

分析学技巧积累

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

		想法	1
	1.1	分段估计	1
	1.2	分部积分	1
<i></i> ₩.		±1- 1- ±10 m □	_
	-	求和与求积符号	2
	2.1	求和符号	
		2.1.1 求和号交换顺序	
		2.1.2 裂项求和	
	2.2	求积符号	8
第三	E章	实数基本定理与上下极限	9
	3.1	实数基本定理	ç
		3.1.1 定理介绍	
		3.1.2 综合应用	ç
	3.2	上下极限	
		极限与渐近分析方法	17
	4.1	基本的渐进估计与求极限方法	17
		4.1.1 基本极限计算	17
		4.1.1.1 基本想法	17
		4.1.1.2 带 ln 的极限计算	19
		4.1.1.3 幂指函数的极限问题	19
		4.1.1.4 拟合法求极限	20
		4.1.2 Taylor 公式	21
		4.1.2.1 直接利用 Taylor 公式计算极限	22
		4.1.3 利用 Lagrange 中值定理求极限	24
		4.1.4 L'Hospital'rules	25
		4.1.5 与方程的根有关的渐近估计	27
		4.1.5.1 可以解出 n 的类型	27
		4.1.5.2 迭代方法	28
	4.2	估计和式的常用方法	29
		4.2.1 强行替换 (拟合法) 和凑定积分	29
		4.2.2 和式内部对 n 可求极限 (极限号与求和号可换序)	30
		4.2.3 利用 Taylor 公式计算和式极限 (和式内部 n,k 不同阶)	32
		4.2.4 分段估计 (Toeplitz 定理)	35
		4.2.5 欧拉麦克劳林公式 (E-M 公式)	39
	4.3	Stirling 公式	47
		Abel 变换	49
		Stolz 定理	51
		4.5.1 数列 Stolz 定理	51
		4.5.1.1 利用 Stolz 定理求数列极限	
		4.5.1.2 利用 Stolz 定理求抽象数列极限	
		····· 14/14 ******* / 😅 · 4 /	

4.5.2 函数 Stolz 定理	61
4.6 递推数列求极限和估阶	64
4.6.1 "折线图 (蛛网图)"分析法 (图未完成, 但已学会)	64
4.6.2 单调性分析法	67
4.6.3 利用上下极限求递推数列极限	69
4.6.4 类递增/类递减递推数列	71
· · · · · · · · · · · · · · · · · · ·	75
4.6.6 利用不等放缩求递推数列极限	78
4.6.7 可求通项和强求通项	78
4.6.7.1 三角换元求通项	78
4.6.7.2 凑出可求通项的递推数列	80
4.6.7.3 直接凑出通项	82
4.6.7.4 凑裂项	82
4.6.7.5 母函数法求通项	83
4.6.7.6 强求通项和强行裂项	84
4.6.8 递推数列综合问题	89
4.7 分部积分	96
4.8 Laplace 方法	97
4.9 Riemann 引理	110
4.10 极限问题综合题	116
第五章 函数与导数	120
第六章 函数性态分析	121
6.1 基本性态分析模型	121
6.2 函数方程	126
6.3 凸函数 1	129
6.4 一致连续	140
第七章 无理数初步	149
70 d = 70 d x 10 d	
第八章 不等式	150
8.1 基本初等不等式	150
8.2 重要不等式	150
第九章 积分	156
9.1 积分常用结论	
9.2 积分性态分析	
אני איין איין איין איין איין איין איין א	1.71
第十章 小技巧	159
10.1 长除法	159
10.2 将多项式分式分解为其部分因式的和	160
第十一章 钓鱼题合集	163
	_ 50

第一章 想法

1.1 分段估计

结论 分段估计和式

分段的方式: 将和式分成两部分, 一部分是和式的前充分多项 (前有限项/前 N 项), 另一部分是余项 (从 N+1 项开始包括后面的所有项).(黎曼积分本质就是和式的极限, 直接细分成每一小段, 估计每一小段的被积函数值, 进而区分积分 (和式) 的主体部分和余项部分)

拿 笔记 如果和式的极限存在,则由 Cauchy 收敛准则,可知和式的余项的极限一般会趋于 0.

1.2 分部积分

分部积分转换导数

分部积分能够将两个被积函数的导数交换.

第二章 求和与求积符号

2.1 求和符号

定义 2.1 (空和 (Empty sum))

$$\sum_{i=b+1}^{b} f(i) \stackrel{\triangle}{=\!\!\!=} 0, b \in \mathbb{Z}. \tag{2.1}$$

定理 2.1 (关于求和号下限大于上限的计算)

$$\sum_{i=a}^{c} f(i) \equiv -\sum_{i=c+1}^{a-1} f(i), a, c \in \mathbb{Z} \mathbb{H} a > c.$$
 (2.2)

室记 上述空和的定义与关于求和号下限大于上限的计算定理都来自论文:Interpreting the summation notation when the lower limit is greater than the upper limit(Kunle Adegoke).

定理 2.2 (求和号基本性质)

1. (**倒序求和**) 当 n 为非负整数时, 有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} a_{n-k+1}.$$

1. 看到求和号内部有两个变量,都可以尝试一下将其转化为倒序求和的形式.

2.1.1 求和号交换顺序

定理 2.3 (基本结论)

1. 当 n, m 均为非负整数时, 有

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{ij} = \sum_{i=1}^n \sum_{j=1}^m a_{ij} = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

2. 当 n, m 均为非负整数, $p \le n, q \le m \coprod p, q \in \mathbb{N}_+$ 时,有

$$\sum_{\substack{p\leq i\leq n\\q\leq j\leq m}}a_{ij}=\sum_{i=p}^n\sum_{j=q}^ma_{ij}=\sum_{j=q}^m\sum_{i=p}^na_{ij}.$$

3. 当 n 为非负整数时, 有

$$\sum_{1 \le i \le n} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{j} a_{ij}.$$

4. 当 n 为非负整数时, 有

$$\sum_{1 \le i < j \le n} a_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{ij}.$$

5. 当 n 为非负整数时, 有

$$\sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} b_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j.$$

6. 当 n 为非负整数时, 有

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} a_j \geqslant 0, \forall a_1, a_2, \cdots, a_n \in \mathbb{R} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j.$$

笔记 如果上述命题第1条中的 n 或 m 取到无穷, 第2条中的 n 取到无穷, 则求和号不能直接交换顺序. 此时, 往往要添加一个条件, 相应的交换和号的结论才能成立. 比如, 著名的 Fubini 定理 (见关于无限和的 Fubinin 定理). 证明 1. 利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{i=1}^m a_{ij} (i = 1, 2, \dots, n).$$

矩阵 A 的第 j 列的和记为

$$c_j = \sum_{i=1}^n a_{ij} \ (j = 1, 2, \cdots, m) \ .$$

易知,矩阵所有元素的和等于所有行和 $r_i, i=1,2,\cdots,n$ 求和也等于所有列和 $c_j, j=1,2,\cdots,m$ 求和,即

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_{ij} = \sum_{i=1}^n r_i = \sum_{i=1}^n \sum_{j=1}^m a_{ij},$$

$$\sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} a_{ij} = \sum_{j=1}^m c_j = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

故

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_{ij}.$$

2. 同理利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{pq} & a_{p,q+1} & \cdots & a_{pm} \\ a_{p+1,q} & a_{p+1,q+1} & \cdots & a_{p+1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nq} & a_{n,q+1} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{j=q}^{m} a_{ij} (i = p, p + 1, \dots, n).$$

矩阵 A 的第 i 列的和记为

$$c_j = \sum_{i=n}^n a_{ij} (j = q, q + 1, \dots, m).$$

易知,矩阵所有元素的和等于所有行和 $r_i, i=p,p+1,\cdots,n$ 求和也等于所有列和 $c_i, j=q,q+1,\cdots,m$ 求和,即

$$\sum_{\substack{p \leq i \leq n \\ q \leq j \leq n}} a_{ij} = \sum_{i=p}^n r_i = \sum_{i=p}^n \sum_{j=q}^m a_{ij},$$

$$\sum_{\substack{p \le i \le n \\ a < j < n}} a_{ij} = \sum_{j=q}^{m} c_j = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

故

$$\sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij} = \sum_{\substack{p \le i \le n \\ q \le j \le n}} a_{ij}.$$

3. 根据 (1) 的结论可得

$$\sum_{i=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{i=1}^{n} \sum_{i=1}^{n} a_{ij} \chi_{i \le j}(i) \xrightarrow{\text{1.bik}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \chi_{i \le j}(i) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

4. 根据 (1) 的结论可得

$$\sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{ij} = \sum_{j=2}^{n} \sum_{i=1}^{n-1} a_{ij} \chi_{i < j} (i) \xrightarrow{\underline{1.65 \%}} \sum_{i=1}^{n-1} \sum_{j=2}^{n} a_{ij} \chi_{i < j} (i) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij}.$$

- 5. 结论是显然的.
- 6. 结论是显然的.

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

称为集合 A 的示性函数.

例题 2.1 计算

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}.$$

解 令
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}$$
,则
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)} \frac{\frac{i}{2^{i+j} (i+j)}}{\frac{i}{2^{i+j} (i+j)}} \frac{\frac{i}{2^{i+j} (i+j)}}{\frac{i}{2^{i+j} (i+j)}} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} (i+j)}$$

$$= \frac{1}{2} \left(\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} (i+j)} \right) = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{2^{i+j} (i+j)} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} (i+j)} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i+j}{2^{i+j} (i+j)} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2^{i+j}} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2^{i}} \cdot \sum_{j=1}^{n} \frac{1}{2^{j}} = \frac{1}{2} \left(\sum_{i=1}^{n} \frac{1}{2^{i}} \right)^{2}$$

$$= \frac{1}{2} \left(\frac{\frac{1}{2} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} \right)^{2} = \frac{1}{2} \left[1 - \frac{1}{2^{n}} \right]^{2}.$$

例题 2.2 记

 $T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c$ 可以构成某个三角形的三边长 $\}$.

证明:

$$\sum_{(a,b,c)\in T}A_{a,b,c}=\sum_{(x,y,z)\in\mathbb{N}^3且有相同的奇偶性}A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}.$$

💡 笔记 核心想法: 两个集合间可以建立一一映射

结论 若 $x, y, z \in \mathbb{N}_+, x, y, z$ 具有相同奇偶性的充要条件为

$$x + y = 2a, y + z = 2b, x + z = 2c, \not = a, b, \in \mathbb{N}_+.$$

证明 必要性显然. 下面证明充分性. 假设 x,y,z 具有不同的奇偶性, 则不妨设 x,z 为奇数,y 为偶数. 从而 x+y 一定为奇数, 这与 x+y=2a 矛盾. 故 x,y,z 具有相同奇偶性.

证明 设 $T = \{(a,b,c) \in \mathbb{N}^3 : a,b,c \text{ 可以构成某个三角形的三边长}\}.$

记 $S = \{(x, y, z) \in \mathbb{N}^3 : x, y, z \text{ 有相同的奇偶性}\}$, 则对 $\forall (x, y, z) \in S$, 取 $a = \frac{x + y}{2}, b = \frac{y + z}{2}, c = \frac{z + x}{2}$. 此时我们有

$$a + b = \frac{x + 2y + z}{2} > \frac{z + x}{2} = c,$$

$$b + c = \frac{x + y + 2z}{2} > \frac{x + y}{2} = a,$$

$$a + c = \frac{2x + y + z}{2} > \frac{y + z}{2} = b.$$

从而 a,b,c 可以构成某个三角形的三边长, 即此时 $(a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})\in T$. 于是我们可以构造映射

$$\tau:S\to T, (x,y,z)\mapsto (a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}).$$

反之, 对 $\forall (a,b,c) \in T$, 取 x = a + c - b, y = a + b - c, z = b + c - a. 此时我们有

$$x + y = 2a, y + z = 2b, x + z = 2c.$$

从而 x, y, z 具有相同的奇偶性, 即此时 $(x, y, z) = (a + c - b, a + b - c, b + c - a) \in S$.

于是我们可以构造映射

$$\tau': T \to S, (a, b, c) \mapsto (x, y, z) = (a + c - b, a + b - c, b + c - a).$$

因此对 $\forall (x, y, z) \in S$, 都有 $\tau \tau'(x, y, z) = \tau' \tau(x, y, z) = (x, y, z)$. 即 $\tau \tau' = I$. 故映射 τ 存在逆映射 τ' . 从而映射 τ 是 双射.

因此集合 S 中的每一个元素都能在集合 T 中找到与之一一对应的元素. 于是两和式 $\sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}$ 和

 $\sum_{(a,b,c)\in T} A_{a,b,c}$ 的项数一定相同. 并且任取 $\sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}} + (x,y,z)$ 所对应的一项 $A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}, \sum_{(a,b,c)\in T} A_{a,b,c}$

中一定存在与之一一对应的 $\tau(x, y, z)$ 所对应的一项 $A_{\tau(x, y, z)}$. 而 $\tau(x, y, z) = (\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2})$, 因此 $A_{\tau(x, y, z)} = A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}}$. 故 $\sum_{(x, y, z) \in S} A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}} = \sum_{(a, b, c) \in T} A_{a,b,c}$.

注 上述证明中逆映射的构造可以通过联立方程 $a = \frac{x+y}{2}, b = \frac{y+z}{2}, c = \frac{z+x}{2}$ 解出 x = a+c-b, y = a+b-c, z = b+c-a 得到.

定理 2.4 (关于无限和的 Fubinin 定理)

设 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ 是一个使得 $\sum_{(n,m) \in \mathbb{N} \times \mathbb{N}} f(n,m)$ 绝对收敛的函数. 那么 1.

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f(n,m) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(n,m).$$

2.

$$\sum_{n=1}^{\infty} \sum_{m=1}^{n} f(n,m) = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} f(n,m).$$

 \Diamond

🔮 笔记 这个命题是关于求和号换序的基本结论的推广.

证明

例题 2.3 (PutnamA3) 已知 a_0, a_1, \ldots, a_n, x 是实数, 且 0 < x < 1, 并且满足

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

证明:存在一个0<y<1,使得

$$a_0 + a_1 y + \dots + a_n y^n = 0.$$

证明 由题意可知,将 $\frac{1}{1-r^{k+1}}$ $(k=0,1,\cdots,n)$ 根据幂级数展开可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i}.$$

又因为0 < x < 1,所以几何级数 $\sum_{i=0}^{+\infty} x^{(k+1)i}$ 是绝对收敛的. 从而有限个绝对收敛的级数的线性组合 $\sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i}$ 也是绝对收敛的. 于是根据关于无限和的 Fubinin 定理可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} \sum_{k=0}^{n} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki}.$$

设 $f(y) = a_0 + a_1 y + \dots + a_n y^n = 0$, $y \in (0,1)$, 则 $f \in \mathbb{C}(0,1)$. 假设对任意的 $y \in (0,1)$, 有 $f(y) \neq 0$. 则 f 要么恒为 正数,要么恒为负数. 否则,存在 $y_1, y_2 \in (0,1)$,使得 $f(y_1) > 0$, $f(y_2) < 0$. 那么由连续函数介值定理可知,一定存在 $y_0 \in (0,1)$,使得 $f(y_0) = 0$. 这与假设矛盾. 因此不失一般性,我们假设 f(y) > 0, $\forall y \in (0,1)$. 又由 0 < x < 1 可知, $x^i \in (0,1)$. 从而

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki} = \sum_{i=0}^{+\infty} x^i f\left(x^i\right) > 0.$$

这与题设矛盾. 故原结论成立.

2.1.2 裂项求和

定理 2.5 (基本结论)

(1) 当 $a,b \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n) - f(n+1)] = f(a) - f(b+1);$$

$$\sum_{n=a}^{b} [f(n+1) - f(n)] = f(b+1) - f(a);$$

$$\sum_{n=a}^{b} [f(n) - f(n-1)] = f(b) - f(a-1);$$

$$\sum_{n=a}^{b} [f(n-1) - f(n)] = f(a-1) - f(b).$$

(2) 当 $a,b,m \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n);$$
 (2.3)

$$\sum_{n=a}^{b} [f(n) - f(n+m)] = \sum_{n=a}^{a+m-1} f(n) - \sum_{n=b+1}^{b+m} f(n).$$
 (2.4)

证明 (1) 将求和展开后很容易得到证明.

(2) 因为(2) 中上下两个式子(2.3)(2.4) 互为相反数, 所以我们只证明(2.3)即可.

当 $m \ge 0$ 时, 若 $m \le b - a$. 则

$$\sum_{n=a}^{b} [f(n+m) - f(n)]$$

$$= f(a+m) + \dots + f(b) + f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1) - f(a+m) - \dots - f(b)$$

$$= f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1)$$

$$= \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

若m > b - a, 则

$$\sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

$$= f(b+1) + \dots + f(a+m-1) + f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b) - f(b+1) - \dots - f(a+m-1)$$

$$= f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b)$$

$$= \sum_{n=a}^{b} [f(n+m) - f(n)]$$

综上, 当
$$m \ge 0$$
 时, 有 $\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$.

当 m < 0 时, 我们有 -m > 0. 从而

$$\begin{split} &\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=a+m}^{b+m} [f(n) - f(n-m)] = -\sum_{n=a+m}^{b+m} [f(n-m) - f(n)] \\ &= -\left(\sum_{n=b+m+1}^{b+m-m} f(n) - \sum_{n=a+m}^{a+m-m-1} f(n)\right) = \sum_{n=a+m}^{a-1} f(n) - \sum_{n=b+m+1}^{b} f(n) \\ &\frac{\text{\mathbb{R}} \pi \text{ \mathbb{F}} \text{\mathbb{R}} \text{$\mathbb{R}$$$

例题 2.4 1. 对
$$m \in \mathbb{N}$$
, 计算 $\sum_{n=1}^{m} \left(\sin n^2 \cdot \sin n \right)$. 2. 对 $n, m \in \mathbb{N}$, 计算 $\sum_{k=1}^{n} \frac{1}{k(k+m)}$.

解 1.

$$\sum_{n=1}^{m} \left(\sin n^{2} \cdot \sin n \right) \xrightarrow{\text{ARCANEAN}} -\frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n^{2} + n \right) - \cos \left(n^{2} - n \right) \right]$$

$$= -\frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n (n+1) \right) - \cos \left(n (n-1) \right) \right]$$

$$= -\frac{1}{2} \left[\cos \left(m (m+1) \right) - 1 \right]$$

2.

$$\sum_{k=1}^{n} \frac{1}{k(k+m)} = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+m} \right)$$
$$= \frac{1}{m} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n+m} \right)$$

2.2 求积符号

定义 2.2 (求积符号)

$$\prod_{k=1}^n a_k \stackrel{\triangle}{=\!\!\!=\!\!\!=} a_1 a_2 \cdots a_n.$$

定理 2.6 (基本结论)

当 $p,q \in \mathbb{Z}$ 且 $p \leq q$ 时,有

$$\prod_{n=p}^{q} \frac{a_{n+1}}{a_n} = \frac{a_{q+1}}{a_p};$$

$$\prod_{n=p}^{q} \frac{a_n}{a_{n+1}} = \frac{a_p}{a_{q+1}}.$$

证明 由求积符号定义很容易得到证明.

注 对于正数列的乘积, 我们可以通过取对数的方式, 将其转化为 $\ln \prod_{k=1}^{n} a_k = \sum_{k=1}^{n} \ln a_k$ 来研究.

例题 2.5 计算: $\prod_{k=2}^{n} \frac{k^3-1}{k^3+1}$.

解

$$\begin{split} &\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1} = \prod_{k=2}^{n} \left(\frac{k - 1}{k + 1} \cdot \frac{k^2 + k + 1}{k^2 - k + 1} \right) = \prod_{k=2}^{n} \frac{k - 1}{k + 1} \cdot \prod_{k=2}^{n} \frac{k (k + 1) + 1}{k (k - 1) + 1} \\ &= \frac{1 \cdot 2 \cdot \dots n - 1}{3 \cdot 4 \cdot \dots n + 1} \cdot \frac{n (n + 1) + 1}{2 + 1} = \frac{2}{n + 1} \cdot \frac{n (n + 1) + 1}{3} \\ &= \frac{2n^2 + 2n + 2}{3n + 3} \end{split}$$

例题 2.6 证明:

$$\frac{(2n-1)!!}{2n!!} < \frac{1}{\sqrt{2n+1}}, \forall n \in \mathbb{N}.$$

笔记 利用" **糖水" 不等式**: 对任意真分数 $\frac{b}{a}, a, b, c > 0$,都有 $\frac{b}{a} < \frac{b+c}{a+c}$ 成立. 证明 根据" 糖水" 不等式, 对 $\forall n \in \mathbb{N}_+$,我们有

$$\left[\frac{(2n-1)!!}{2n!!}\right]^2 = \left(\prod_{k=1}^n \frac{2k-1}{2k}\right)^2 = \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k-1}{2k}$$

$$< \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k}{2k+1} = \prod_{k=1}^n \frac{2k-1}{2k+1} = \frac{1}{2n+1}$$

故对 $\forall n \in \mathbb{N}_+$, 都有 $\frac{(2n-1)!!}{2n!!} < \frac{1}{\sqrt{2n+1}}, \forall n \in \mathbb{N}$ 成立.

第三章 实数基本定理与上下极限

3.1 实数基本定理

3.1.1 定理介绍

定理 3.1 (实数基本定理)

- 1. 确界存在定理: 有上界的非空数集一定有上确界.
- 2. 单调有界原理: 单调有界数列一定收敛.
- 3. 柯西收敛准则: 数列 $\{x_n\}$ 收敛当且仅当任意 $\varepsilon > 0$, 存在 N 使得任意 m,n > N 都有 $|x_m x_n| < \varepsilon$.
- 4. 闭区间套定理: 闭区间套 $I_n = [a_n, b_n]$ 满足 $I_{n+1} \subset I_n$ 并且 $\lim_{n \to \infty} (a_n b_n) = 0$, 则存在唯一的 ξ , 使得 ξ 属于每一个 I_n .
- 5. 聚点定理: 有界数列必有收敛子列.
- 6. 有限覆盖定理: 有界闭集的任意一族开覆盖, 都存在有限子覆盖.

定义 3.1 (点集相关概念)

- 1. 如果存在 r > 0 使得 $(a r, a + r) \subset A$, 则称 a 是集合 A 的内点 (高维改为开球即可).
- 2. 如果一个集合 A 中的每一个点都是内点, 则称 A 是开集.
- 3. 如果集合 A 中的任意一个收敛序列 x_n 的极限点 x, 都有 $x \in A$, 则称 A 是闭集.
- 4. 设 $B \subset A$, 如果对任意 r > 0 和任意 $x \in A$, 都有 $(x r, x + r) \cap B \neq \emptyset$, 则称 B 在 A 中稠密.

3.1.2 综合应用

例题 3.1 设 $f(x):[0,1] \to [0,1]$ 单调递增且 f(0) > 0, f(1) < 1, 证明: 存在 x 使得 f(x) = x.

管记 因为题目条件中的函数 f 只是一个实值函数,并没有其他更进一步的性质 (连续性、可微性、凸性等). 所以我们只能利用最基本的实数基本定理证明. 证明存在性,考虑反证法会更加简便.

注 f 并不是连续函数, 不能用介值定理.

证明 (反证法) 假设对 $\forall x \in [0,1]$, 都有 $f(x) \neq x$. 将闭区间 [0,1] 记作 $[a_1,b_1]$, 且由条件可知 $f(a_1) > a_1,f(b_1) < b_1$. 令 $c_1 = \frac{a_1 + b_1}{2}$, 若 $f(c_1) > c_1$, 则取 $[a_2,b_2] = [c_1,b_1]$; 若 $f(c_1) < c_1$, 则取 $[a_2,b_2] = [a_1,c_1]$. 从而得到闭区间 $[a_2,b_2] \subset [a_1,b_1]$,并且 $f(a_2) > a_2,f(b_2) < b_2$. 以此类推, 可得到一列闭区间 $\{[a_n,b_n]\}$,并且 $[a_n,b_n] \subset [a_{n+1},b_{n+1}],f(a_n) > a_n,f(b_n) < b_n,\forall n \in \mathbb{N}_+$.

根据闭区间套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n, b_n]$, $\forall n \in \mathbb{N}_+$. 又由 f(x) 在 [0,1] 上单调递增及 $f(a_n) > a_n$, $f(b_n) < b_n$, $\forall n \in \mathbb{N}_+$, 可知 $a_n < f(a_n) \le f(\xi) \le f(b_n) < b_n$. 令 $n \to \infty$ 可得 $\xi \le f(\xi) \le \xi$, 即 $f(\xi) = \xi$. 这与假设矛盾.

引理 3.1 (Lebesgue 数引理)

如果 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖,则存在一个正数 $\delta > 0$,使得对于区间 [a,b] 中的任何两个点 x',x'',只要 $|x'-x''| < \delta$,就存在开覆盖中的一个开区间,它覆盖 x',x''.(称这个数 δ 为开覆盖的 Lebesgue 数.)

管记 本题谢惠民上的证明是利用有限覆盖定理, 而 CMC 红宝书上通过直接构造出 δ 进行证明. 这里我们采用的是聚点定理进行证明.

证明 (反证法) 假设对 $\forall n \in \mathbb{N}_+$, 取 $\delta = \frac{1}{n} > 0$, 都存在相应的 $x_n, y_n \in [a, b]$ 且 $|x_n - y_n| < \delta$, 使得对 $\forall I \in \{O_\alpha\}$, 要 $\Delta x_n \notin I$, 要么 $y_n \notin I$. 由聚点定理可知, 有界数列 $\{x_n\}$, $\{y_n\}$ 一定存在收敛子列. 设 $\{x_{n_k}\}$, $\{y_{m_k}\}$ 为相应的收敛子列,则由 $|x_n - y_n| < \delta = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$ 可知 x_{n_k} , y_{m_k} 收敛于同一个极限点. 故设 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a, b]$.

因为 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖, 所以存在 $I_0 \in \{O_{\alpha}\}$, 使得 $x_0 \in I_0$. 又由于 I_0 是开集, 因此存在 $\eta > 0$, 使得 $(x_0 - \eta, x_0 + \eta) \subset I_0$. 从而由 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a,b]$ 可知, 存在充分大的 K, 使得 $|x_{n_K} - x_0| < \eta$, $|y_{m_K} - x_0| < \eta$. 于是 $x_{n_K}, y_{m_K} \in (x_0 - \eta, x_0 + \eta) \subset I_0$. 即开区间 $I_0 \in \{O_{\alpha}\}$ 同时覆盖了 x_{n_K}, y_{m_K} 这两个点,与假设矛盾.

注 注意对于两个收敛子列 $\{x_{n_k}\}$, $\{y_{m_k}\}$, 此时 $n_k = m_k$ 并不一定对 $\forall k \in \mathbb{N}_+$ 都成立, 即这两个收敛子列的指标集 $\{n_k\}_{k=1}^{\infty}$, $\{m_k\}_{k=1}^{\infty}$, 不相同也不一定有交集, 故无法利用聚点定理反复取子列的方法取到两个指标相同且同时收敛 的子列 $\{x_{n_k}\}_{k=1}^{\infty}$, $\{y_{n_k}\}_{k=1}^{\infty}$ (取 $\{x_n\}$ 为一个奇子列收敛, 偶子列发散的数列; 取 $\{y_n\}$ 为一个奇子列发散, 偶子列收敛的数列就能得到反例。).

例题 3.2

- 1. 设 f(x) 定义在 \mathbb{R} 中且对任意 x, 都存在与 x 有关的 r > 0, 使得 f(x) 在区间 (x r, x + r) 中为常值函数, 证明: f(x) 是常值函数.
- 2. 设 f(x) 是定义在 [a,b] 中的实值函数, 如果对任意 $x \in [a,b]$, 均存在 $\delta_x > 0$ 以及 M_x , 使得 $|f(y)| \le M_x$, $\forall y \in (x \delta_x, x + \delta_x) \cap [a,b]$, 证明: f(x) 是有界的.
- 3. 设 f(x) 定义在 \mathbb{R} 上, 对任意 $x_0 \in \mathbb{R}$ 均存在与 x_0 有关的 $\delta > 0$, 使得 f(x) 在 $(x_0 \delta, x_0 + \delta)$ 是单调递增的, 证明: f 在整个 \mathbb{R} 上也是单调递增的.

证明

1. 证法一 (有限覆盖定理)(不建议使用):对任意 $x \in [a,b]$, 存在 $r_x > 0$ 使得 f(t) 在区间 $(x - r_x, x + r_x)$ 为常值函数,则 $\bigcup_{x \in [a,b]} (x - r_x, x + r_x) \supset [a,b]$, 故存在其中有限个区间 $(x_k - r_k, x_k + r_k)$, $1 \le k \le n$ 使得他们的并集包含 [a,b].

直观来看只需要将这些区间"从小到大"排列,就可以依次推出每一个区间上都是相同的一个常值函数,但是所谓"从小到大"排列目前是无法准确定义的,所以这样说不清楚,优化如下:

方案 1: 选择其中个数尽可能少的区间, 使得它们的并集可以覆盖 [a,b] 但是任意删去一个都不可以 (这是能够准确定义的一个操作), 此时区间具备性质 "任意一个不能被其余的并集盖住", 接下来将这些区间按照左端点的大小关系来排序, 去论证它们确实是如你所想的那样 "从小到大"排列的 (关注右端点), 进而得证.

方案 2: 利用Lebesgue 数引理, 将区间 [a,b] 分为有限个 $[a,a+\delta]$, $[a+\delta,a+2\delta]$, \cdots , $[a+n\delta,b]$, 其中 δ 是 Lebesgue 数. 则每一个闭区间都可以被开覆盖中的某一个开区间覆盖住, 于是分段常值函数, 并且还能拼接 起来, 所以是常值函数.

证法二 (确界存在定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 构造数集

$$E = \left\{x \in [a, b] \mid f(t) = f(a), \forall t \in [a, x]\right\}.$$

从而 $E \neq \emptyset$ 且 $E \in [a,b]$. 于是由确界存在定理, 可知数集 E 存在上确界, 设 $x_0 = \sup E$.

如果 $f(a) \neq f(x_0)$, 则由条件可知, 存在 $r_0 > 0$, 使得 $f(t) = f(x_0), \forall t \in (x_0 - r_0, x_0 + r_0)$. 由 $x_0 = \sup E$ 可知, 存在 $x_1 \in (x_0 - r_0, x_0)$ 且 $x_1 \in E$. 于是 $f(t) = f(a), \forall t \in [a, x_1]$. 从而 $f(t) = f(a) = f(x_0), \forall t \in (x_0 - r_0, x_1)$. 这 与 $f(x_0) \neq f(a)$ 矛盾.

如果 $f(a) = f(x_0)$, 则由条件可知, 存在 $r_1 > 0$, 使得 $f(t) = f(x_0) = f(a)$, $\forall t \in (x_0 - r_1, x_0 + r_1)$. 又由 $x_0 = \sup E$ 可知, 存在 $x_2 \in (x_0 - r_1, x_0)$ 且 $x_2 \in E$. 于是 f(t) = f(a), $\forall t \in [a, x_2]$. 进而对 $\forall t \in [a, x_2] \cup (x_0 - r_1, x_0 + \frac{r_1}{2}] = [a, x_0 + \frac{r_1}{2}]$, 有 f(t) = f(a). 从而 $x_0 + \frac{r_1}{2} \in E$, 这与 $x_0 = \sup E$ 矛盾. 故假设不成立,命题得证.

证法三 (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 不妨设 f(a) < f(b), 则记闭区间 $[a,b] = [a_1,b_1]$. 若 $f(\frac{a_1+b_1}{2}) > f(a_1)$, 则记闭区间 $[a_1,\frac{a_1+b_1}{2}] = [a_2,b_2]$; 若 $f(\frac{a_1+b_1}{2}) < f(b_1)$, 则记闭区间 $[\frac{a_1+b_1}{2},b_1] = [a_2,b_2]$. 以此类推, 可以得到一列闭区间 $\{[a_n,b_n]\}$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) < [a_n,b_n]$

 $f(b_n), \forall n \in \mathbb{N}_+$. 由闭区间套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n, b_n]$. 又由条件可知, 存在 r > 0, 使得 $f(t) = f(\xi), \forall t \in (\xi - r, \xi + r)$. 从而存在充分大的 $N \in \mathbb{N}_+$, 使得 $|a_N - \xi| < r, |b_N - \xi| < r$, 即 $a_N, b_N \in (\xi - r, \xi + r)$. 于是 $f(a_N) = f(b_N)$, 这与 $f(a_N) < f(b_N)$ 矛盾.

- 2. (聚点定理):(反证法) 假设 f(x) 在 [a,b] 上无界,则对 $\forall n > 0$,都存在 $x_n \in [a,b]$,使得 $|f(x_n)| > n$.从而得到一个有界数列 $\{x_n\}$.由聚点定理,可知其存在收敛子列 $\{x_{n_k}\}$,设 $\lim_{k \to \infty} x_{n_k} = x_0$.由条件可知,存在 $\delta_{x_0} > 0$ 以及 M_{x_0} ,使得 $|f(y)| \leq M_{x_0}$, $\forall y \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$.又由 $\lim_{k \to \infty} x_{n_k} = x_0$ 可知,存在 $K > M_{x_0}$,使得 $|x_{n_K} x_0| < \delta_{x_0}$,即 $x_{n_K} \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$.于是 $|f(x_{n_K})| \leq M_{x_0}$.而 $|f(x_{n_K})| > n_K \geq K > M_{x_0}$ 矛盾.
- 3. (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \geq f(b)$. 记闭区间 $[a,b] = [a_1,b_1]$, 若 $f\left(\frac{a_1+b_1}{2}\right) \leqslant f(a_1)$, 则记闭区间 $\left[a_1,\frac{a_1+b_1}{2}\right] = [a_2,b_2]$; 若 $f\left(\frac{a_1+b_1}{2}\right) \geqslant f(b_1)$, 则记闭区间 $\left[\frac{a_1+b_1}{2},b_1\right] = [a_2,b_2]$. 以此类推, 可以得到一列闭区间 $\{[a_n,b_n]\}$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) \geqslant f(b_n)$, $\forall n \in \mathbb{N}_+$. 由闭区间 套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n,b_n]$. 由条件可知, 存在 $\delta > 0$, 使得 f(x) 在区间 $(\xi-\delta,\xi+\delta)$ 上单调递增. 又由 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 可知, 存在 N > 0, 使得 $|a_N-\xi| < \delta$, 即 $a_N,b_N \in (\xi-\delta,\xi+\delta)$, 且 $a_N < b_N$. 于是 $f(a_N) \leqslant f(b_N)$. 而 $f(a_N) \geqslant f(b_N)$, 这就产生了矛盾.

引理 3.2

设 f(x) 定义在区间 I 中, 则 f(x) 的全体极值构成的集合是至多可数集.

证明 极值只有极大值和极小值,因此只要证明极大值全体与极小值全体都是至多可数的即可.

设 f(x) 的全体极小值构成的集合为 A,则

$$A = \{ f(x) | \exists \delta > 0, \forall t \in (x - \delta, x + \delta), f(t) \ge f(x) \}.$$

故对 $\forall y \in A$, 都存在 $x \in I$, 使得 y = f(x), 并且 $\exists \delta > 0$, $\forall t \in (x - \delta, x + \delta)$, $f(t) \geqslant f(x)$. 由有理数的稠密性可知, 存在 $r \in (x - \delta, x) \cap \mathbb{Q}$, $s \in (x, x + \delta) \cap \mathbb{Q}$. 从而 $(r, s) \subset (x - \delta, x + \delta)$, 于是对 $\forall t \in (r, s)$, 同样有 $f(t) \geqslant f(x)$.

再设全体有理开区间构成的集合为 B, 现在定义一个映射

$$\varphi: A \longrightarrow B; \quad y \longmapsto (r, s).$$

任取 $y_1, y_2 \in A$ 且 $y_1 \neq y_2$, 则存在 $x_1, x_2 \in I$, 使得 $f(x_1) = y_1, f(x_2) = y_2$. 假设 $\varphi(y_1) = \varphi(y_2) = (r_0, s_0)$, 则 对 $\forall t \in (r_0, s_0)$, 都有 $f(t) \geq y_1, y_2$. 于是 $y_1 = f(x_1) \geq y_2, y_2 = f(x_2) \geq y_1$, 从而 $y_1 = y_2$, 这产生了矛盾. 故 $\varphi(y_1) \neq \varphi(y_2)$, 因此 φ 是单射.

而由全体有理开区间构成的集合 B 是至多可数的,因此 f(x) 的全体极小值构成的集合 A 也是至多可数的. 同理, f(x) 的全体极大值构成的集合也是至多可数的.

注 由全体有理开区间构成的集合 B 是可数集的原因:

构造一个映射

$$\phi: B \longrightarrow \mathbb{Q} \times \mathbb{Q}; \quad (r,s) \longmapsto (r,s) \, .$$

显然 ϕ 是一个双射, 而 $\mathbb{Q} \times \mathbb{Q}$ 是可数集, 故 B 也是可数集.

例题 3.3 设 f(x) 在区间 I 中连续, 并且在每一点 $x \in I$ 处都取到极值, 证明: f(x) 是常值函数.

注 连续这一条件不可删去, 也不可减弱为至多在可数个点不连续. 反例: 考虑黎曼函数即可, 它处处取极值, 并且在有理点不连续, 无理点连续.

证明 证法一(引理 3.2):(反证) 假设 f(x) 不是常值函数,则存在 $a,b \in I$,使得 $f(a) \neq f(b)$.由 f 的连续性及连续函数的介值性可知,f(x) 可以取到 f(a),f(b) 中的一切值.故 f(x) 的值域是不可数集(区间都是不可数集).又由条件可知,f(x) 的值域就是由 f(x) 的全体极值构成的.于是根据引理 3.2可得,f(x) 的值域是至多可数集.这与 f(x) 的值域是不可数集矛盾.

证法二(闭区间套定理):假设 f(x) 不是常值函数,则存在 $a_1,b_1 \in I$,使得 $f(a_1) \neq f(b_1)$. 不妨设 $f(a_1) < f(b_1)$. 因为 f 在 I 上连续, 所以由介值定理可知,存在 $c_1 \in [a_1,b_1]$,使得 $f(a_1) < f(c_1) = \frac{f(a_1) + f(b_1)}{2} < f(b_1)$. 若

 $b_1 - c_1 \leqslant \frac{b_1 - a_1}{2}$, 则令 $[a_2, b_2] = [c_1, b_1]$; 若 $c_1 - a_1 \leqslant \frac{b_1 - a_1}{2}$, 则令 $[a_2, b_2] = [a_1, c_1]$. 无论哪种情况, 都有 $f(a_2) < f(b_2)$.

在 $[a_2,b_2]$ 上重复上述操作, 并依次类推下去, 得到一列闭区间套 $\{[a_n,b_n]\}$ 满足

$$[a_n, b_n] \subset [a_{n+1}, b_{n+1}], f(a_n) < f(b_n), \forall n \in \mathbb{N}_+.$$

由闭区间套定理可知, 存在唯一 $x_0 \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, 使得 $x_0 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. 再由 f 的连续性以及 Heine 归结原则可知, $f(a_n)$ 严格递增收敛于 $f(x_0)$, $f(b_n)$ 严格递减收敛于 $f(x_0)$. 故 $f(a_n) < f(x_0) < f(b_n)$, $\forall n \in \mathbb{N}_+$. 因此对 $\forall \delta > 0$, 都存在 N > 0, 使得 $|a_N - x_0| < \delta$, $|b_N - x_0| < \delta$, 并且 $f(a_N) < f(x_0) < f(b_N)$. 从而 $x_0 \in I$ 不是 f(x) 的极值点, 这与 f 在 I 上处处取极值矛盾.

定理 3.2 (Baire 纲定理)

- 1. 设 $A_n \subset \mathbb{R}$ 是一列没有内点的闭集,则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.
- 2. 设 $A_n \subset \mathbb{R}$ 是一列开集并且都在 \mathbb{R} 稠密, 则 $\bigcap_{n=1}^{\infty} A_n$ 也在 \mathbb{R} 中稠密.
- 3. 设 $A_n \subset \mathbb{R}$ 是一列闭集, 并且 $A = \bigcup_{n=1}^{\infty} A_n$ 也是闭集, 则存在开区间 (a,b)(可以无穷区间) 和正整数 N 使得 $(a,b) \cap A \subset A_N$.
- 4. 设 A_n 是一列无处稠密集 (闭包没有内点), 则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.

证明

1. 用反证法. 设 $x_0 \in A = \bigcup_{n=1}^{\infty} A_n$ 为内点,则存在 $\delta_0 > 0$,使得 $[x_0 - \delta_0, x_0 + \delta_0] \subset A$. 因为 A_1 没有内点,故存在 $x_1 \in (x_0 - \delta_0, x_0 + \delta_0) - A_1$.由于 A_1 为闭集,故存在 $\delta_1 > 0$,使得

$$[x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0), \quad [x_1 - \delta_1, x_1 + \delta_1] \cap A_1 = \emptyset$$

不妨设 $\delta_1 < 1$. 因为 A_2 没有内点, 故存在 $x_2 \in (x_1 - \delta_1, x_1 + \delta_1) - A_2$. 由于 A_2 为闭集, 故存在 $\delta_2 > 0$, 使得

$$[x_2 - \delta_2, x_2 + \delta_2] \subset (x_1 - \delta_1, x_1 + \delta_1), \quad [x_2 - \delta_2, x_2 + \delta_2] \cap A_2 = \emptyset$$

不妨设 $\delta_2 < \frac{1}{2}$. 如此继续, 我们得到闭区间套

$$[x_1 - \delta_1, x_1 + \delta_1] \supset [x_2 - \delta_2, x_2 + \delta_2] \supset \cdots \supset [x_n - \delta_n, x_n + \delta_n] \supset \cdots,$$

使得 $[x_n - \delta_n, x_n + \delta_n] \cap A_n = \emptyset$, $\delta_n < \frac{1}{n} (n \ge 1)$. 根据闭区间套原理, 存在 $\xi \in [x_n - \delta_n, x_n + \delta_n]$, $\forall n \ge 1$. 因此 $\xi \notin \bigcup_{n \ge 1} A_n = A$, 这和 $\xi \in [x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0) \subset A$ 相矛盾.

2.

3.

4

例题 3.4 设数列 a_n 单调递增趋于正无穷, 并且 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\leqslant 1$, 函数 f(x) 定义在 $(0,+\infty)$ 中且对任意 $x\geq 1$ 都有 $\lim_{n\to\infty}f(a_nx)=0$.

- 1. 若 f(x) 是连续函数,证明: $\lim_{x\to+\infty} f(x) = 0$;
- 2. 若删去连续这一条件, 或者虽然连续, 但是 $\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$, 则上述结论均不成立.

证明

1. 对任意 $\varepsilon > 0$, 定义 $E_n = \{x \ge 1 | \forall k \ge n, |f(a_k x)| \le \varepsilon\}$, 则 E_n 是一列闭集, 根据条件有 $\bigcup_{n=1}^{\infty} E_n = [1, +\infty)$. 于是根据 baire 纲定理可知存在正整数 N 和区间 (u, v) 使得 $(u, v) \subset E_N$, 也就是说, 任意 $x \in (u, v)$, 任意 $n \ge N$ 都有 $|f(a_n x)| \le \varepsilon$, 换句话说我们得到了一个一致的 N. 因此 |f(x)| 在区间 $(a_N u, a_N v)$, $(a_{N+1} u, a_{N+1} v)$, …

中都是不超过 ε 的,只要这些区间在n很大之后能够相互有重叠,一个接着下一个,全覆盖就行了.换句话 说, 我们要证明: 存在 N_0 使得任意 $n \ge N_0$ 都有 $a_{n+1}u < a_nv$, 这等价于 $\frac{a_{n+1}}{a_n} < \frac{v}{u}$, 注意条件: 极限等于 1 并 且右端 $\frac{\nu}{\mu}>1$, 所以上式成立. 将前面推导的东西梳理一下, 就是说: 任意 $\varepsilon>0$, 存在 M 使得 x>M 时恒有 $|f(x)| < \varepsilon$, 结论得证.

2. 例如考虑 $a_n = n$, 定义 f(x) 为: 当 $x = m \cdot 2^{\frac{1}{k}}, m \in \mathbb{N}^+$ 时候取 1, 其余情况都取 0, 则对任意的 x > 0, 数列 f(nx) 中都至多只有一项为 1, 因此极限总是 0, 但是很明显 f(x) 的极限并不存在. 另外一个反例, 可以考虑 $a_n = e^n$, 现在有连续性, 条件为

$$\lim_{n \to \infty} f(e^n) = \lim_{n \to \infty} f(e^{n + \ln x}) = 0$$

将 $\ln x \in \mathbb{R}$ 看成一个变量, 相应的考虑 $g(x) = f(e^x)$, 则连续函数 g(x) 定义在 \mathbb{R} 上且满足 $\lim_{x \to \infty} g(y+n) = g(x)$ $\lim_{x \to \infty} f(e^{y+n}) = 0, \forall y \in \mathbb{R}$, 我们构造一个例子使得 g(x) 在无穷处极限非零或者不存在即可. 这与经典的命题 有关: 设 f(x) 一致连续且 $f(x+n) \to 0$ 对任意 x 成立, 则 $f(x) \to 0$, 现在删去了一致连续性命题自然是错 的,具体构造留作习题.

<u>注</u> 通常, 点态收敛 (上题) 或者数列极限 (本题) 这种非一致性的条件, 描述起来是"任意 $x \in (0,1)$, 任意 $\varepsilon > 0$, 存在 N 使得任意 n>N 都有 $|f_n(x)-f(x)|<\varepsilon$ " 或者"任意 x>0, 任意 $\varepsilon>0$, 存在 N 使得任意 n>N 都有 $|f(a_nx)| < \varepsilon$ ", 很明显这里的 N 是与 x, ε 都有关系的, 如果我们事先取定 $\varepsilon > 0$, 那么这个过程可以说是"给定 x, 去找对应的 N". 而 baire 纲定理的想法就是反过来找: 不同的 x 对应的 N 确实可以不一样, 那就先取好 N, 我们 看都有哪些 x 对应到这一个 N, 也就是说事先取定 $\varepsilon > 0$, 然后对每一个 n 去定义集合, 反找 x. 所有 baire 纲定理 相关的问题, 思想都是如此, 根据定理便能得到一个一致的东西, 拿来做事情.

例题 3.5 设 f(x) 在区间 (0,1) 中可导, 证明: f'(x) 在 (0,1) 中的一个稠密子集中连续.

证明

引理 3.3

有界数列 x_n 如果满足 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$, 则 x_n 的全体聚点构成一个闭区间.

证明

例题 3.6 设连续函数 $f(x):[0,1] \to [0,1], x_1 \in [0,1], x_{n+1} = f(x_n)$, 证明: 数列 $\{x_n\}$ 收敛的充要条件是 $\lim_{x \to \infty} (x_{n+1} - x_n)$

证明 必要性 (⇒): 若 $\{x_n\}$ 收敛, 则 $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$ 显然成立. 充分性 (←):

3.2 上下极限

命题 3.1 (子列极限命题)

(a): 给定 $x \in \mathbb{R} \cup \{+\infty, -\infty\}$, $\lim_{n \to \infty} x_n = x$ 的充分必要条件是对任何广义存在的 $\lim_{k \to \infty} x_{n_k}$, 都有 $\lim_{k \to \infty} x_{n_k} = x$. (b): 设 $m \in \mathbb{N}$, 若 $\lim_{n \to \infty} x_{mn+r}$, $\forall r = 0, 1, 2, \cdots, m-1$ 相同, 则 $\lim_{n \to \infty} x_n$ 存在且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{mn}$.

笔记 当 m = 2, 上述命题是在说如果序列奇偶子列极限存在且为同一个值, 则序列的极限存在且极限和偶子 列极限值相同. 所谓奇偶. 就是看除以 2 的余数是 1 还是 0. 对一般的 m ∈ ≥, 我们也可以看除以 m 的余数是 $\{0,1,2,\cdots,m-1\}$ 中的哪一个来对整数进行分类, 即 $\operatorname{mod} m$ 分类. 严格的说, 我们有无交并

$$\mathbb{Z} = \bigcup_{r=0}^{m-1} \{ mk + r : k \in \mathbb{Z} \}.$$

证明 对 (a): 考虑上下极限即可.

对 (b): 记 $A riangleq \lim_{n \to \infty} x_{mn}$. 事实上对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 k > N 时, 我们有

$$|x_{mk+r} - A| < \varepsilon, \forall r \in \{0, 1, 2, \cdots, m - 1\}.$$
 (3.1)

我们知道对任何正整数 n > mN + m - 1, 存在唯一的 $r \in \{0, 1, 2, \cdots, m - 1\}$ 和 k > N, 使得 n = km + r, 于是运用(3.1)我们有 $|x_n - A| < \varepsilon$, 因此我们证明了

$$\lim_{n\to\infty} x_n = A = \lim_{n\to\infty} x_{mn}.$$

定义 3.2 (上下极限的定义)

我们定义

$$\overline{\lim}_{n \to \infty} a_n \stackrel{\triangle}{=} \lim_{n \to \infty} \sup_{k \ge n} a_k, \underline{\lim}_{n \to \infty} a_n \stackrel{\triangle}{=} \lim_{n \to \infty} \inf_{k \ge n} a_k.$$
 (3.2)

命题 3.2 (上下极限的等价定义)

假定 $\{a_n\}$ 是个实数列,则有

- (1): 设 A 是某个实数, 则 $\overline{\lim}_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$, 存在 N > 0, 使得当 n > N 时, 有 $x_n < A + \varepsilon$ 且存在子列 $\{x_{n_k}\}$, 使得 $x_{n_k} > A \varepsilon$, $k = 1, 2, \cdots$.
- (2): $\overline{\lim} \ a_n = +\infty$ 的充分必要条件是对任何 A > 0, 存在 n, 使得 $a_n > A$.
- (3): 设 A 是某个实数,则 $\lim_{n\to\infty}a_n=A$ 的充分必要条件是对任何 $\varepsilon>0$,存在 N>0,使得当 n>N 时,有 $x_n>A-\varepsilon$ 且存在子列 $\{x_{n_k}\}$,使得 $x_{n_k}<A+\varepsilon, k=1,2,\cdots$.
- (4): $\underline{\lim} \ a_n = -\infty$ 的充分必要条件是对任何 A < 0, 存在 n, 使得 $a_n < A$.

命题 3.3 (上下极限的性质)

我们有如下的

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n) \leq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$.
- $2. \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} (-a_n).$
- 3. $\underline{\lim}_{n\to\infty}(a_n+b_n)\geq \underline{\lim}_{n\to\infty}a_n+\underline{\lim}_{n\to\infty}b_n$.
- 4. 若 $\lim_{n \to +\infty} b_n = b$, $\overline{\lim}_{n \to +\infty} a_n = a$, 则 $\overline{\lim}_{n \to +\infty} a_n b_n = ab$.

笔记 上下极限的性质都可以通过考虑其子列的极限快速得到证明. 因此我们一般不需要额外记忆上下极限的性质,只需要熟悉通过考虑子列极限直观地得到结论即可. 并且因为上下极限就是(最大/最小)子列极限,所以一般极限的性质对于上下极限都成立.

证明 1.

- 2.
- 3.
- 4. 由于 $\overline{\lim}_{n\to +\infty} a_n = a$,因此我们可设 $\lim_{k\to +\infty} a_{n_k} = a$. 根据极限的四则运算法则,可知 $\lim_{n\to +\infty} a_{n_k} b_{n_k} = ab$. 从而 $\overline{\lim}_{n\to +\infty} a_n b_n \geqslant \lim_{n\to +\infty} a_{n_k} b_{n_k} = ab$. 又由上下极限的性质,可知 $\overline{\lim}_{n\to +\infty} a_n b_n \leqslant \overline{\lim}_{n\to +\infty} a_n \cdot \overline{\lim}_{n\to +\infty} b_n = ab$. 故 $\overline{\lim}_{n\to +\infty} a_n b_n = ab$.

例题 3.7 求上极限

$$\overline{\lim}_{n \to +\infty} n \sin \left(\pi \sqrt{n^2 + 1} \right).$$

解 注意到

$$n\sin\left(\pi\sqrt{n^2+1}\right) = n\sin\left(\pi\sqrt{n^2+1} - n\pi + n\pi\right) = (-1)^n n\sin\left(\pi\sqrt{n^2+1} - n\pi\right) = (-1)^n n\sin\frac{\pi}{\sqrt{n^2+1} + n}$$

又因为

$$\lim_{n\to+\infty} n\sin\frac{\pi}{\sqrt{n^2+1}+n} = \lim_{n\to+\infty} \frac{n\pi}{\sqrt{n^2+1}+n} = \lim_{n\to+\infty} \frac{\pi}{\sqrt{1+\frac{1}{n^2}+1}} = \frac{\pi}{2}.$$

所以

$$\overline{\lim}_{n \to +\infty} n \sin\left(\pi \sqrt{n^2 + 1}\right) = \overline{\lim}_{n \to +\infty} (-1)^n n \sin\frac{\pi}{\sqrt{n^2 + 1} + n} = \frac{\pi}{2}.$$

注 本题最后一个等号其实是直接套用了一个上极限的性质得到的.

命题 3.4

对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \le a_n \le f_2(n,\varepsilon), \forall n \ge N,$$

这里

$$\lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_2(n, \varepsilon) = \lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_1(n, \varepsilon) = A \in \mathbb{R}.$$

证明 $\lim a_n = A$.

室 笔记 以后可以直接使用这个命题. 但是要按照证法一的格式书写.

证明 证法一(利用上下极限)(也是实际做题中直接使用这个命题的书写步骤):

已知对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \le a_n \le f_2(n,\varepsilon), \forall n \ge N,$$

上式两边 $on \rightarrow +\infty$. 则有

$$\underline{\lim_{n \to +\infty}} f_1(n, \varepsilon) \le \underline{\lim_{n \to +\infty}} a_n, \overline{\lim_{n \to +\infty}} a_n \le \overline{\lim_{n \to +\infty}} f_2(n, \varepsilon), \forall \varepsilon > 0.$$

由 ε 的任意性, 两边 $\varphi \varepsilon \to 0^+$, 可得

$$A = \lim_{\varepsilon \to 0^+} \underline{\lim}_{n \to +\infty} f_1(n, \varepsilon) \le \underline{\lim}_{n \to +\infty} a_n, \overline{\lim}_{n \to +\infty} a_n \le \lim_{\varepsilon \to 0^+} \overline{\lim}_{n \to +\infty} f_2(n, \varepsilon) = A.$$

又显然有 $\underline{\lim} a_n \leq \overline{\lim}_{n \to +\infty} a_n$, 于是

$$A = \lim_{\varepsilon \to 0^+} \lim_{n \to +\infty} f_1(n, \varepsilon) \le \lim_{n \to +\infty} a_n \le \lim_{n \to +\infty} a_n \le \lim_{\varepsilon \to 0^+} \overline{\lim}_{n \to +\infty} f_2(n, \varepsilon) = A.$$

故由夹逼准则可得 $\lim_{n\to\infty} a_n = A$.

证法二 $(\varepsilon - \delta$ 语言):

 $\forall \varepsilon > 0$, 记 $g_1(\varepsilon) = \lim_{n \to +\infty} f_1(n, \varepsilon), g_2(\varepsilon) = \lim_{n \to +\infty} f_2(n, \varepsilon)$. 由 $\lim_{\varepsilon \to 0^+} g_1(\varepsilon) = \lim_{\varepsilon \to 0^+} g_2(\varepsilon) = A$, 可知对 $\forall \eta > 0$, 存在 $\delta > 0$, 使得

$$g_1(\delta) > A - \frac{\eta}{2}, g_2(\delta) < A + \frac{\eta}{2}.$$

由于 $g_1(\delta) = \lim_{n \to +\infty} f_1(n, \delta), g_2(\delta) = \lim_{n \to +\infty} f_2(n, \delta),$ 因此存在 $N' \in \mathbb{N}$, 使得

$$f_1(n,\delta) > g_1(\delta) - \frac{\eta}{2}, f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2}, \forall n > N'.$$

又由条件可知,存在 $N \in \mathbb{N}$,使得

$$f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta), \forall n > N.$$

于是当 $n > \max\{N, N'\}$ 时, 对 $\forall \eta > 0$, 我们都有

$$A-\eta < g_1(\delta) - \frac{\eta}{2} < f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2} < A + \eta.$$

故由夹逼准则可知 $\lim_{n\to+\infty} a_n = A$.

第四章 极限与渐近分析方法

4.1 基本的渐进估计与求极限方法

4.1.1 基本极限计算

4.1.1.1 基本想法

裂项、作差、作商的想法是解决极限问题的基本想法.

例题 **4.1** 对正整数 v,求极限 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k(k+1)\cdots(k+v)}$.

笔记 直接裂项即可

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)\cdots(k+v)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{v} \left[\frac{1}{k(k+1)\cdots(k+v-1)} - \frac{1}{(k+1)(k+2)\cdots(k+v)} \right]$$
$$= \lim_{n \to \infty} \frac{1}{v} \left[\frac{1}{v!} - \frac{1}{n(n+1)\cdots(n+v)} \right] = \frac{1}{v!v}.$$

例题 4.2 设
$$p_0 = 0, 0 \le p_j \le 1, j = 1, 2, \dots$$
。 求 $\sum_{j=1}^{\infty} \left(p_j \prod_{i=0}^{j-1} (1 - p_i) \right) + \prod_{j=1}^{\infty} (1 - p_j)$ 的值.

笔记 遇到求和问题, 可以先观察是否存在裂项的结构

解 记 $q_i = 1 - p_i$, 则有

$$\sum_{j=1}^{\infty} p_j \prod_{i=0}^{j-1} (1-p_i) + \prod_{j=1}^{\infty} (1-p_j) = \sum_{j=1}^{n} (1-q_j) \prod_{i=0}^{j-1} q_i + \prod_{i=0}^{\infty} q_i = \sum_{j=1}^{\infty} \left(\prod_{i=0}^{j-1} q_i - \prod_{i=0}^{j} q_i \right) + \prod_{i=0}^{\infty} q_i = q_0 - \prod_{i=0}^{\infty} q_i + \prod_{i=0}^{\infty} q_i = q_0.$$

例题 **4.3** 设 |x|<1,求极限 $\lim_{n\to\infty}(1+x)(1+x^2)\cdots(1+x^{2^n})$. 注 如果把幂次 $1,2,2^2,\cdots$ 改成 $1,2,3,\cdots$,那么显然极限存在,但是并不能求出来,要引入别的特殊函数,省流 就是:钓鱼题.

笔记 平方差公式即可

解

$$\lim_{n \to \infty} (1+x)(1+x^2) \cdots (1+x^{2^n}) = \lim_{n \to \infty} \frac{(1-x)(1+x)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \lim_{n \to \infty} \frac{(1-x^2)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \cdots = \lim_{n \to \infty} \frac{1-x^{2^{n+1}}}{1-x} = \frac{1}{1-x}.$$

例题 4.4 对正整数 n,方程 $\left(1+\frac{1}{n}\right)^{n+t}=e$ 的解记为 t=t(n),证明 t(n) 关于 n 递增并求极限 $(t\to +\infty)$. 解 解方程得到

$$\left(1+\frac{1}{n}\right)^{n+t}=e \Leftrightarrow (n+t)\ln\left(1+\frac{1}{n}\right)=1 \Leftrightarrow t=\frac{1}{\ln\left(1+\frac{1}{n}\right)}-n.$$

读
$$f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)} - x, x > 0$$
, 则

$$f'(x) = \frac{1}{\ln^2\left(1 + \frac{1}{x}\right)} \frac{1}{x^2 + x} - 1 > 0 \Leftrightarrow \ln^2\left(1 + \frac{1}{x}\right) < \frac{1}{x^2 + x} \Leftrightarrow \ln\left(1 + t\right) < \frac{t}{\sqrt{1 + t}}, t = \frac{1}{x} \in (0, 1).$$

最后的不等式由关于 \ln 的常用不等式可知显然成立, 于是 f(x) 单调递增, 故 t(n) = f(n) 也单调递增. 再来求极限

$$\lim_{n\to\infty}t\left(n\right)=\lim_{n\to\infty}\left(\frac{1}{\ln\left(1+\frac{1}{n}\right)}-n\right)=\lim_{n\to\infty}\frac{1-n\ln\left(1+\frac{1}{n}\right)}{\ln\left(1+\frac{1}{n}\right)}=\lim_{x\to+\infty}\frac{1-x\ln\left(1+\frac{1}{x}\right)}{\ln\left(1+\frac{1}{x}\right)}=\lim_{x\to+\infty}\frac{1-x\ln\left(1+\frac{1}{x}\right)}{\frac{1}{x}}=\frac{1}{2}.$$

命题 4.1 (数列收敛的级数与累乘形式)

- 1. 数列 $\{a_n\}_{n=1}^{\infty}$ 收敛的充要条件是 $\sum_{n=1}^{\infty} (a_{n+1} a_n)$ 收敛.
- 2. 数列 $\{a_n\}_{n=1}^{\infty}$ $(a_n \neq 0)$ 收敛的充要条件是 $\prod_{n=1}^{\infty} \frac{a_{n+1}}{a_n}$ 收敛.

注 在关于数列的问题中, **将原数列的等式或不等式条件转化为相邻两项的差或商的等式或不等式条件**的想法是 非常常用的.

\$

笔记 这个命题给我们证明数列极限的存在性提供了一种想法: 我们可以将数列的收敛性转化为级数的收敛性, 或者将数列的收敛性转化为累乘的收敛性. 而累乘可以通过取对数的方式转化成级数的形式, 这样就可以利用级数的相关理论来证明数列的收敛性.

这种想法的具体操作方式:

- (i) 先令数列相邻两项作差或作商, 将数列的极限写成其相邻两项的差的级数或其相邻两项的商的累乘形式.(如果是累乘的形式, 那么可以通过取对数的方式将其转化成级数的形式.)
- (ii) 若能直接证明累乘或级数收敛, 就直接证明即可. 若不能, 则再利用级数的相关理论来证明上述构造的级数的收敛性, 从而得到数列的极限的存在性. 此时, 我们一般会考虑这个级数的通项, 然后去找一个通项能够控制住所求级数通项的收敛级数 (几何级数等), 最后利用级数的比较判别法来证明级数收敛

证明

- 1. 必要性 (⇒) 和充分性 (⇐) 都可由 $\lim_{n\to\infty} a_n = a_1 + \lim_{n\to\infty} \sum_{k=1}^{n-1} (a_{k+1} a_k)$ 直接得到.
- 2. 必要性 (⇒) 和充分性 (⇐) 都可由 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k}$ 直接得到.

例题 **4.5** 设 $a_n = \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1}$,证明:数列 a_n 收敛到一个正数。

证明 由条件可得 ∀n ∈ №+,都有

$$\frac{a_{n+1}}{a_n} = \frac{\left(\frac{(2n+2)!!}{(2n+1)!!}\right)^2 \frac{1}{2n+3}}{\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1}} = \frac{(2n+2)^2}{(2n+1)^2} \cdot \frac{2n+1}{2n+3} = \frac{(2n+2)^2}{(2n+1)(2n+3)} = 1 + \frac{1}{(2n+1)(2n+3)} > 1.$$

从而 $\forall n \in \mathbb{N}_+$, 都有

$$a_n = \prod_{k=1}^{n-1} \left[1 + \frac{1}{(2k+1)(2k+3)} \right] = e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}.$$
 (4.1)

注意到

$$\ln\left[1 + \frac{1}{(2n+1)(2n+3)}\right] \sim \frac{1}{(2n+1)(2n+3)}, n \to \infty.$$

而
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
 收敛, 故 $\lim_{n\to\infty} \sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]$ 存在。于是由 (4.1)式可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]} = e^{\lim_{n \to \infty} \sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}$$

也存在。

4.1.1.2 带 ln 的极限计算

通常,带着一堆 ln 的极限算起来都非常烦人,并不是简单的一个泰勒就秒杀的,比如这种题.这种题不建议 用泰勒,很多时候等价无穷小替换、拆项和加一项减一项会方便不少.

例题 4.6 求极限
$$\lim_{x\to +\infty} \left(\frac{(2x^2+3x+1)\ln x}{x\ln(1+x)} \arctan x - \pi x\right)$$
。
注 做这种题一定要严格处理余项,不要想当然,比如下面的做法就是错的(过程和答案都不对)

$$\frac{(2x^2 + 3x + 1)\ln x}{x\ln(1+x)} \arctan x - \pi x \approx (2x+3)\frac{\ln x}{\ln(1+x)} \arctan x - \pi x \approx (2x+3)\cdot 1 \cdot \frac{\pi}{2} - \pi x = \frac{3\pi}{2}.$$

解 根据洛必达法则,显然
$$\lim_{x\to+\infty} \frac{\ln x}{\ln(1+x)} = \lim_{x\to+\infty} \frac{\frac{1}{x}}{\frac{1}{1+x}} = 1$$
,拆分一下有

$$\lim_{x \to +\infty} \left(\frac{(2x^2 + 3x + 1) \ln x}{x \ln(1 + x)} \arctan x - \pi x \right)$$

$$= \lim_{x \to +\infty} \left((2x + 3) \frac{\ln x}{\ln(1 + x)} \arctan x - \pi x \right) + \lim_{x \to +\infty} \frac{\ln x}{x \ln(1 + x)} \arctan x$$

$$= \lim_{x \to +\infty} \left(\frac{2x \ln x}{\ln(1 + x)} \arctan x - \pi x \right) + 3 \lim_{x \to +\infty} \frac{\ln x}{\ln(1 + x)} \arctan x$$

$$= 2 \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1 + x)} \arctan x - \frac{\pi}{2} \right) + \frac{3}{2} \pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{x \ln x}{\ln(1 + x)} \left(\arctan x - \frac{\pi}{2} \right) + \frac{\pi}{2} \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1 + x)} - 1 \right) \right) + \frac{3}{2} \pi$$

$$= 2 \left(\lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) - \frac{\pi}{2} \lim_{x \to +\infty} \frac{x \ln(1 + \frac{1}{x})}{\ln(1 + x)} \right) + \frac{3}{2} \pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} - \frac{\pi}{2} \lim_{x \to +\infty} \frac{1}{\ln(1 + x)} \right) + \frac{3}{2} \pi$$

$$= 2 \lim_{x \to +\infty} \frac{-1}{\frac{1 + x^2}{2}} + \frac{3}{2} \pi = \frac{3}{2} \pi - 2.$$

4.1.1.3 幂指函数的极限问题

幂指函数的极限问题,一律写成 e^{\ln} 形式,并利用等价无穷小替换和加一项减一项去解决,方便.

注 不要用泰勒做这个题,因为你需要分别展开好几项直到余项是高阶无穷小才可以,等价无穷小替换则只需要 看 Taylor 展开的第一项并且是严谨的,泰勒则需要展开好几项, 计算量爆炸.

例题 4.7 求极限
$$\lim_{r\to 0^+} \frac{x^{\sin x} - (\sin x)^x}{r^3 \ln r}$$
。

注 不要用泰勒做这个题,因为你需要分别展开好几项直到余项是高阶无穷小才可以,等价无穷小替换则只需要 看第一项并且是严谨的,泰勒则至少需要展开三项,计算量爆炸,大致如下

$$x^{\sin x} = e^{\sin x \ln x} = 1 + \sin x \ln x + \frac{1}{2} \sin^2 x \ln^2 x + \frac{1}{6} \sin^3 x \ln^3 x + O(x^4 \ln^4 x)$$

$$(\sin x)^x = e^{x \ln \sin x} = 1 + x \ln \sin x + \frac{1}{2} x^2 \ln^2 \sin x + \frac{1}{6} x^3 \ln^3 \sin x + O(x^4 \ln^4 \sin x)$$

然后你不仅需要看第一项,还要检查并验证平方项,三次方项作差后对应的极限是零,麻烦.

笔记 先说明写成 eln 形式后, 指数部分都是趋于零的, 然后等价无穷小替换即可.

解 注意到

$$\lim_{x \to 0^+} \sin x \ln x = \lim_{x \to 0^+} x \ln x = 0, \lim_{x \to 0^+} x \ln \sin x = \lim_{x \to 0^+} \sin x \ln \sin x = \lim_{x \to 0^+} x \ln x = 0.$$

从而

$$\lim_{x \to 0^+} (\sin x)^x = \lim_{x \to 0^+} e^{x \ln \sin x} = 1.$$

于是我们有

$$\begin{split} &\lim_{x\to 0^+} \frac{x^{\sin x} - (\sin x)^x}{x^3 \ln x} = \lim_{x\to 0^+} (\sin x)^x \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x} = \lim_{x\to 0^+} \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x} \\ &= \lim_{x\to 0^+} \frac{\sin x \ln x - x \ln \sin x}{x^3 \ln x} = \lim_{x\to 0^+} \frac{\sin x \ln x - x \ln x + x \ln x - x \ln \sin x}{x^3 \ln x} \\ &= \lim_{x\to 0^+} \frac{\sin x - x}{x^3} + \lim_{x\to 0^+} \frac{\ln x - \ln \sin x}{x^2 \ln x} = -\frac{1}{6} - \lim_{x\to 0^+} \frac{\ln \frac{\sin x}{x}}{x^2 \ln x} (\frac{\sin x}{x} - 1 - \frac{1}{6}x^2, x \to 0^+) \\ &= -\frac{1}{6} - \lim_{x\to 0^+} \frac{\ln (1 + \frac{\sin x - x}{x})}{x^2 \ln x} = -\frac{1}{6} - \lim_{x\to 0^+} \frac{\sin x - x}{x^3 \ln x} = -\frac{1}{6} + \frac{1}{6} \lim_{x\to 0^+} \frac{1}{\ln x} = -\frac{1}{6}. \end{split}$$

例题 4.8 求极限 $\lim_{x\to\infty} x^2 \left(e^{(1+\frac{1}{x})^x} - \left(1+\frac{1}{x}\right)^{ex}\right)$.

解 注意到

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, \lim_{x \to \infty} ex \ln \left(1 + \frac{1}{x} \right) = e.$$

从而

$$\lim_{x \to 0^+} \left(1 + \frac{1}{x} \right)^{ex} = \lim_{x \to 0^+} e^{ex \ln\left(1 + \frac{1}{x}\right)} = e^e.$$

于是我们有

$$\begin{split} &\lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x} - \left(1 + \frac{1}{x} \right)^{ex} \right) = \lim_{x \to \infty} x^2 \left(1 + \frac{1}{x} \right)^{ex} \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) = e^e \lim_{x \to \infty} x^2 \left(\left(1 + \frac{1}{x} \right)^x - ex \ln\left(1 + \frac{1}{x} \right) \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x})} - ex \ln\left(1 + \frac{1}{x} \right) \right) = e^{e+1} \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x}) - 1} - x \ln\left(1 + \frac{1}{x} \right) \right) \\ &= \frac{Taylor \, \mathbb{R}^{\#}}{e} e^{e+1} \lim_{x \to \infty} x^2 \frac{1}{2} \left(x \ln\left(1 + \frac{1}{x} \right) - 1 \right)^2 = \frac{e^{e+1}}{2} \lim_{x \to \infty} \left(x^2 \ln\left(1 + \frac{1}{x} \right) - x \right)^2 = \frac{e^{e+1}}{8} \end{split}$$

4.1.1.4 拟合法求极限

例题 **4.9** 求极限 $\lim_{n\to\infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{i=1}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}}$

笔记 核心想法是**拟合法**, 但是最后的极限估计用到了**分段估计**的想法. 证明 注意到 $\frac{\ln n}{\ln(2n)} \to 1$, 所以

$$\lim_{n \to \infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}} = \lim_{n \to \infty} \frac{\ln^2 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \sqrt{n+k}}$$

显然

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{1+\frac{k}{n}}} = \int_0^1 \frac{1}{\sqrt{1+x}} dx = 2\sqrt{2} - 2$$

我们用上面的东西来拟合, 所以尝试证明

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意求和里面的每一项都是正的,并且 $\frac{1}{\sqrt{1+\frac{k}{2}}} \in \left[\frac{1}{\sqrt{2}},1\right]$, 所以只需证

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意对称性,证明 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=2}^{\frac{n}{2}}\left(\frac{\ln^2 n}{\ln k\ln(n-k)}-1\right)=0$ 即可,待定一个m来分段放缩。首先容易看出数列 $\ln k\ln(n-k)$ 在 $2\leq k\leq \frac{n}{2}$ 时是单调递增的,这是因为

$$f(x) = \ln x \ln(n-x), f'(x) = \frac{\ln(n-x)}{x} - \frac{\ln x}{n-x} > 0$$

$$\Leftrightarrow (n-x) \ln(n-x) > x \ln x, \forall x \in \left(2, \frac{n}{2}\right)$$

显然成立, 所以待定 $m \in [2, \frac{n}{2}]$, 于是

$$\frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \le \frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right) = \frac{m}{n} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right)$$

$$\frac{1}{n} \sum_{k=2}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \le \frac{1}{n} \sum_{k=2}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln m \ln(n-m)} - 1 \right) \le \frac{\ln^2 n}{\ln m \ln(n-m)} - 1$$

为了让第一个趋于零,可以取 $m = \frac{n}{2 \ln^2 n}$,然后代入检查第二个极限

$$\lim_{n \to \infty} \frac{\ln^2 n}{\ln m \ln(n - m)} - 1 = \lim_{n \to \infty} \frac{\ln^2 n}{\ln \frac{n}{2 \ln^2 n} \ln \left(n - \frac{n}{2 \ln^2 n}\right)} - 1 = 0$$

所以结论得证(过程中严格来讲应补上取整符号,这里方便起见省略了)。

4.1.2 Taylor 公式

定理 4.1 (带 Peano 余项的 Taylor 公式)

设f在x = a是n阶右可微的,则

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + o((x - a)^n), x \to a^+.$$
 (4.2)

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x - a)^k + O((x - a)^n), x \to a^+.$$
 (4.3)

S

笔记 用 Taylor 公式计算极限, 如果展开 n 项还是不方便计算, 那么就多展开一项或几项即可.

证明 (1) 要证明(4.2)式等价于证明

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = 0.$$

对上式左边反复使用 n-1 次 L'Hospital'rules, 可得

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = \frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k - 1)!} (x - a)^{k - 1}}{n (x - a)^{n - 1}}$$

$$\frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}} \frac{f''(x) - \sum_{k=2}^{n} \frac{f^{(k)}(a)}{(k - 2)!} (x - a)^{k - 2}}{n (n - 1) (x - a)^{n - 2}}$$

$$\frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a) - f^{(n - 1)}(a) (x - a)}{n! (x - a)}}$$

$$= \frac{1}{n!} \lim_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a)}{x - a} - \frac{f^{(n)}(a)}{n!} \frac{n \Re \# \& £ X}{n!} 0$$

故(4.2)式成立.

(2) 要证明(4.3)式等价于证明: 存在 C > 0 和 $\delta > 0$, 使得

$$\left| \frac{f(x) - \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k}{(x - a)^n} \right| \leqslant C, \forall x \in [a, a + \delta].$$

4.1.2.1 直接利用 Taylor 公式计算极限

例题 **4.10** 设 $\lim_{n \to +\infty} \frac{f(n)}{n} = 1$, 计算

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n.$$

筆记 由 $\frac{f(n)}{n} = 1 + o(1), n \to +\infty$, 可得 $f(n) = n + o(n), n \to +\infty$. 这个等式的意思是: f(n) = n + o(n) 对 $\forall n \in \mathbb{N}_+$ 都成立. 并且当 $n \to +\infty$ 时,有 $\lim_{n \to +\infty} \frac{f(n)}{n} = \lim_{n \to +\infty} \frac{n + o(n)}{n} = 1 + \lim_{n \to +\infty} \frac{o(n)}{n} = 1$. 其中 o(n) 表示一个 (类) 数列,只不过这个 (类) 数列具有 $\lim_{n \to +\infty} \frac{o(n)}{n} = 0$ 的性质. 解 解法一 (一般解法):

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n = \lim_{n \to +\infty} e^{n \ln\left(1 + \frac{1}{f(n)}\right)} = e^{\lim_{n \to +\infty} n \ln\left(1 + \frac{1}{f(n)}\right)} = e^{\lim_{n \to +\infty} \frac{n}{f(n)}} = e.$$

解法二(渐进估计):

由
$$\lim_{n \to +\infty} \frac{f(n)}{n} = 1$$
, 可知

$$\frac{f(n)}{n} = 1 + o(1), n \to +\infty.$$

$$\left(1+\frac{1}{f\left(n\right)}\right)^{n}=\left[1+\frac{1}{n}\cdot\frac{1}{1+o\left(1\right)}\right]^{n}=\left[1+\frac{1}{n}\left(1+o\left(1\right)\right)\right]^{n}=\left[1+\frac{1}{n}+o\left(\frac{1}{n}\right)\right]^{n}=e^{n\ln\left[1+\frac{1}{n}+o\left(\frac{1}{n}\right)\right]},n\rightarrow+\infty.$$

$$\lim_{n\to +\infty} \left(1 + \frac{1}{f(n)}\right)^n = \lim_{n\to +\infty} e^{n\ln\left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{n\left[\frac{1}{n} + o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{1 + o(1)} = e.$$

例题 4.11 计算:
1.
$$\lim_{x\to 0} \frac{\cos\sin x - \cos x}{x^4}$$
.
2. $\lim_{x\to +\infty} \left[\left(x^3 - x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$.

例题 **4.12** 计算 $(1+\frac{1}{x})^x, x \to +\infty$ 的渐进估计. 解 由带 Peano 余项的 Taylor 公式, 可得

$$\left(1 + \frac{1}{x}\right)^{x} = e^{x \ln\left(1 + \frac{1}{x}\right)} = e^{x \left[\frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{3x^{3}} + o\left(\frac{1}{x^{3}}\right)\right]} = e^{1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)} = e \cdot e^{-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)}$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right) + \frac{1}{2}\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2} + o\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2}\right]$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + \frac{1}{8x^{2}} + o\left(\frac{1}{x^{2}}\right)\right]$$

$$e - \frac{e}{2x} + \frac{11e}{24x^{2}} + o\left(\frac{1}{x^{2}}\right)$$

故

$$\left(1+\frac{1}{x}\right)^x = e - \frac{e}{2x} + \frac{11e}{24x^2} + o\left(\frac{1}{x^2}\right), x \to +\infty.$$

于是

$$\lim_{x \to +\infty} x \left[e - \left(1 + \frac{1}{x} \right)^x \right] = \frac{e}{2}, \lim_{x \to +\infty} x \left[x \left(e - \left(1 + \frac{1}{x} \right)^x \right) - \frac{e}{2} \right] = -\frac{11e}{24}. \tag{4.4}$$

注 反复利用上述(4.4)式构造极限的方法, 再求出相应极限, 就能得到 e 的更精确的渐进估计. 这也是计算渐进估 计的一般方法.

例题 4.13 计算

$$\lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$$

解 记
$$I = \lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$$
, 则由带 $Peano$ 余项的 $Taylor$ 公式, 可得

$$\cos x \cos(2x) \cdots \cos(nx) = \left[1 - \frac{1}{2}x^2 + o(x^2)\right] \left[1 - \frac{(2x)^2}{2} + o(x^2)\right] \cdots \left[1 - \frac{(nx)^2}{2} + o(x^2)\right]$$
$$= 1 - \frac{1^2 + 2^2 + \dots + n^2}{2}x^2 + o(x^2) = 1 - \frac{n(n+1)(2n+1)}{2 \cdot 6}x^2 + o(x^2), x \to 0.$$

故 $I = \frac{n(n+1)(2n+1)}{12}$ 例题 **4.14** 计算

$$\lim_{x \to 0} \frac{x - \overline{\sin \sin \cdots \sin x}}{x^3}.$$

解 先证明 $\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{=x-\frac{n}{6}x^3+o(x^3),x\to 0}$.

n次复合 当 n=1 时,由 Taylor 公式结论显然成立.假设 n=k 时,结论成立.则当 n=k+1 时,我们有

$$\sin\left(x - \frac{n}{6}x^3 + o(x^3)\right)$$

$$= x - \frac{n}{6}x^3 + o(x^3) - \frac{1}{6}\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3 + o\left(\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3\right)$$

$$= x - \frac{n+1}{6}x^3 + o(x^3), x \to 0.$$

由数学归纳法得 $\underline{\sin(\sin(\sin(\cdots(\sin x))\cdots))} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$ 故 $\lim_{x \to 0} \frac{x - \overline{\sin\sin\cdots\sin x}}{x^3} = \frac{n}{6}.$

例题 4.15 计算

$$\lim_{n\to\infty} n\sin(2\pi e n!).$$

解 由带 Lagrange 余项的 Taylor 展开式可知

$$e^x = \sum_{k=0}^{n+1} \frac{x^k}{k!} + \frac{e^{\theta} x^{n+2}}{(n+2)!}, \theta \in (0, x).$$

从而

$$e = \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

于是

$$2\pi e n! = 2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

而
$$n! \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{N}$$
, 因此

$$n\sin(2\pi e n!) = n\sin\left(2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right) = n\sin\left(\frac{2\pi n!}{(n+1)!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right)$$
$$= n\sin\left(\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right) \sim n\left[\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right] \to 2\pi, n \to +\infty.$$

4.1.3 利用 Lagrange 中值定理求极限

Lagrange 中值定理不会改变原数列或函数的阶, 但是可以更加精细地估计原数列或函数的阶. 以后利用 Lagrange 中值定理处理数列或函数的阶的过程都会直接省略.

例题 4.16 计算

$$\lim_{n\to\infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n}) \right].$$

解 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (\sqrt{n+1}, \sqrt{n})$, 使得

$$\sin(\sqrt{n+1}) - \sin(\sqrt{n}) = (\sqrt{n+1} - \sqrt{n})\cos\theta_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos\theta_n.$$

从而当 $n \to +\infty$ 时, 有 $\theta_n \to +\infty$. 于是

$$\lim_{n\to\infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n})\right] = \lim_{n\to\infty} \left[\frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos\theta_n\right] = 0.$$

例题 4.17 计算

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} \right).$$

证明 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}$, 存在 $\theta_n \in (\frac{2024}{n}, \frac{2024}{n+1})$, 使得

$$\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} = \frac{1}{1+\theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1}\right).$$

并且 $\lim_{n\to+\infty} \theta_n = 0$. 故

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} \right) = \lim_{n \to \infty} \frac{n^2}{1 + \theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1} \right) = 2024 \lim_{n \to \infty} \frac{n^2}{n(n+1)} = 2024.$$

例题 4.18

- 1. 对 $\alpha \neq 0$, 求 $(n+1)^{\alpha} n^{\alpha}$, $n \rightarrow \infty$ 的等价量;
- 2. 求 $n \ln n (n-1) \ln (n-1), n \to \infty$ 的等价量.

笔记 熟练这种利用 Lagrange 中值定理求极限的方法以后, 这类数列或函数的等价量我们应该做到能够快速口算出来. 因此, 以后利用 Lagrange 中值定理计算数列或函数的等价量的具体过程我们不再书写, 而是直接写出相应的等价量.

注 不难发现利用 Lagrange 中值定理计算数列或函数的等价量,并不改变原数列或函数的阶.

解 1. 根据 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$(n+1)^{\alpha} - n^{\alpha} = \alpha \cdot \theta_n^{\alpha-1}, \theta_n \in (n, n+1).$$

$$\alpha = \lim_{n \to \infty} \frac{\alpha n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha \theta_n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha (n + 1)^{\alpha - 1}}{n^{\alpha - 1}} = \alpha.$$

因此 $(n+1)^{\alpha} - n^{\alpha} \sim \alpha n^{\alpha-1}, n \to \infty$.

2. 由 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$\lim_{n\to\infty}\frac{n\ln n-(n-1)\ln(n-1)}{\ln n}=\lim_{n\to\infty}\frac{(n-(n-1))\cdot(1+\ln\theta_n)}{\ln n}=\lim_{n\to\infty}\frac{1}{\ln n}+\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}, n-1<\theta_n< n.$$

又
$$\frac{\ln(n-1)}{\ln n} < \frac{\ln \theta_n}{\ln n} < \frac{\ln n}{\ln n} = 1$$
,故 $\lim_{n \to \infty} \frac{\ln \theta_n}{\ln n} = 1$,从而
$$\lim_{n \to \infty} \frac{n \ln n - (n-1) \ln(n-1)}{\ln n} = \lim_{n \to \infty} \frac{\ln \theta_n}{\ln n} = 1.$$

于是 $n \ln n - (n-1) \ln (n-1) \sim \ln n, n \rightarrow +\infty$.

例题 4.19 计算

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x}.$$

证明 由 Lagrange 中值定理, 可知对 $\forall x \in U(0)$, 都有

$$\cos(\sin x) - \cos x = (x - \sin x)\sin\theta, \theta \in (\sin x, x).$$

从而

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \lim_{x \to 0} \frac{(x - \sin x)\sin\theta}{\frac{1}{2}x^2 \cdot x^2} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 \cdot \sin\theta}{\frac{1}{2}x^4} = \frac{1}{3}\lim_{x \to 0} \frac{\sin\theta}{x}.$$

又由 $\sin x < \theta < x, \forall x \in U(0)$ 可知

$$1 = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin \left(\sin x\right)}{x} < \lim_{x \to 0} \frac{\sin \theta}{x} \leqslant \lim_{x \to 0} \frac{\theta}{x} < \lim_{x \to 0} \frac{x}{x} = 1.$$

故
$$\sin \theta \sim \theta \sim x, x \to 0$$
. 因此 $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin \theta}{x} = \frac{1}{3} \lim_{x \to 0} \frac{x}{x} = \frac{1}{3}$.

4.1.4 L'Hospital'rules

定理 4.2 (上下极限 L'Hospital 法则)

设 f,g 满足洛必达法则的适用条件,则有

$$\underline{\lim} \frac{f'}{g'} \leqslant \underline{\lim} \frac{f}{g} \leqslant \overline{\lim} \frac{f}{g} \leqslant \overline{\lim} \frac{f'}{g'}.$$
 (4.5)

且

$$\underline{\lim} \left| \frac{f'}{g'} \right| \leqslant \underline{\lim} \left| \frac{f}{g} \right| \leqslant \overline{\lim} \left| \frac{f}{g} \right| \leqslant \overline{\lim} \left| \frac{f'}{g'} \right|. \tag{4.6}$$

笔记 此定理第一部分(4.5)可以直接使用且以后可以不必再担心分子分母同时求导之后极限不存在而不能使用洛必达法则的情况。但(4.6)一般是不能直接用的、需要给证明。

证明 以 $\rightarrow +\infty$ 为例, 事实上, 固定 x, 由 Cauchy 中值定理, 我们有

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(\xi)}{g'(\xi)}, x < \xi < y.$$

我们断言对 $A \in \mathbb{R} \cup \{+\infty\}$,必有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A \Leftrightarrow \lim_{n \to \infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A. \tag{4.7}$$

若 $\lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A$. 首先利用极限的四则运算, 我们有

$$\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n\to\infty} \left| \frac{\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}}{1 - \frac{g(x)}{g(y_n)}} \right| = \lim_{n\to\infty} \left| \frac{1}{1 - \frac{g(x)}{g(y_n)}} \right| \cdot \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right|.$$

利用

$$\left| \frac{f(y_n)}{g(y_n)} \right| - \left| \frac{f(x)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} \right| + \left| \frac{f(x)}{g(y_n)} \right|, \lim_{n \to \infty} g(y_n) = \infty,$$

我们知道

$$\lim_{n \to \infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

反之设 $\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A$, 同样的由四则运算, 我们有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

于是由

$$\left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| - \left| \frac{f(x)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} \right| \le \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| + \left| \frac{f(x)}{g(y_n)} \right|, \lim_{n \to \infty} |g(y_n)| = \infty,$$

我们知道

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A.$$

现在就证明了(4.7)。

于是结合 $x \to +\infty$, 我们容易得到 7

$$\frac{\overline{\lim}}{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \frac{\overline{\lim}}{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \frac{\overline{\lim}}{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \leqslant \frac{\overline{\lim}}{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right|$$

$$\lim_{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \lim_{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \lim_{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \geqslant \lim_{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right|$$

这就完成了证明.

例题 **4.20** 若 $f \in D^1[0, +\infty)$.

(1) 设

$$\lim_{x \to +\infty} [f(x) + f'(x)] = s \in \mathbb{R},$$

$$\lim_{x \to +\infty} \left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] = s \in \mathbb{R},$$

证明 $\lim_{x \to +\infty} f(x) = \frac{s}{2}$.

笔记 (2) 中的构造思路: 根据条件构造相应的微分方程, 然后求解这个微分方程, 再常数变易得到我们需要构造的 函数. 具体步骤如下:

构造微分方程: $y'+\frac{2x}{\sqrt[3]{1+x^3}}y=0$,整理可得 $\frac{y'}{y}=-\frac{2x}{\sqrt[3]{1+x^3}}$, 再对其两边同时积分得到 $\ln y=-\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx+C_0$. 从而 $y=Ce^{-\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$,于是 $C=ye^{\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$.故我们要构造的函数就是 $C(x)=f(x)e^{\int_0^x\frac{2x}{\sqrt[3]{1+x^3}}dx}$.并且此时 C(x) 满足 $C'(x)=f'(x)+\frac{2x}{\sqrt[3]{1+x^3}}f(x)$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x) \cdot e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}} \xrightarrow{\text{L'Hospital'rules}} \lim_{x \to +\infty} \frac{\left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x)\right] e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{\frac{2x}{\sqrt[3]{1+x^3}} e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt[3]{1+x^3}}{2x} \left[f(x) + \frac{2x}{\sqrt[3]{1+x^3}} f'(x)\right] = \frac{s}{2}.$$

4.1.5 与方程的根有关的渐近估计

4.1.5.1 可以解出 n 的类型

例题 **4.21** 设 $x^{2n+1} + e^x = 0$ 的根记为 x_n , 计算

$$\lim_{n\to\infty} x_n, \lim_{n\to\infty} n(1+x_n)$$

解 注意到 $0^{2n+1} + e^0 > 0$, $(-1)^{2n+1} + e^{-1} < 0$ 且 $x^{2n+1} + e^x$ 严格单调递增, 所以由零点存在定理可知, 对每个 $n \in \mathbb{N}$, 存在唯一的 $x_n \in (-1,0)$, 使得

$$x_n^{2n+1} + e^{x_n} = 0 \Rightarrow \frac{x_n}{\ln(-x_n)} = 2n + 1 \to +\infty, n \to +\infty.$$

任取 $\{x_n\}$ 的一个收敛子列 $\{x_{n_k}\}$,又 $x_n \in (-1,0)$,因此可设 $\lim_{k \to \infty} x_{n_k} = c \in [-1,0]$,则 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln(-x_{n_k})} = \frac{c}{\ln(-c)}$.又 因为 $\lim_{n \to +\infty} \frac{x_n}{\ln(-x_n)} = +\infty$,所以由 Heine 归结原则可知 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln(-x_{n_k})} = +\infty$. 从而

$$\lim_{k \to +\infty} \frac{x_{n_k}}{\ln(-x_{n_k})} = \frac{c}{\ln(-c)} = +\infty,$$

故 c=-1. 于是由子列极限命题 (a)知 $\lim_{n\to\infty} x_n=-1$. 因此

$$\lim_{n \to \infty} n(1+x_n) = \frac{1}{2} \lim_{n \to \infty} (2n+1)(1+x_n) = \frac{1}{2} \lim_{n \to \infty} \frac{x_n(1+x_n)}{\ln(-x_n)} = \frac{1}{2} \lim_{x \to -1^+} \frac{x(1+x)}{\ln(-x)} = \frac{1}{2}.$$

例题 4.22 设 $a_n \in (0,1)$ 是 $x^n + x = 1$ 的根, 证明

$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

证明 注意到 $0^n + 0 - 1 < 0, 1^n + 1 - 1 > 0$, 且 $x^n + x - 1$ 在 (0, 1) 上严格单调递增, 所以由零点存在定理可知, 对 $\forall n \in \mathbb{N}_+$, 存在唯一的 $a_n \in (0, 1)$, 使得

$$a_n^n + a_n = 1 \Rightarrow \frac{\ln(1 - a_n)}{\ln a_n} = n \to +\infty, n \to +\infty.$$
 (4.8)

任取 $\{a_n\}$ 的一个收敛子列 $\{a_{n_k}\}$,又 $a_n \in (0,1)$,因此可设 $\lim_{k \to +\infty} a_{n_k} = c \in [0,1]$,则 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = \frac{\ln(1-c)}{\ln c}$. 又由 (1.1) 式可知 $\lim_{n \to +\infty} \frac{\ln(1-a_n)}{\ln a_n} = +\infty$,所以由 Heine 归结原则可知 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = +\infty$. 从而

$$\lim_{k\to+\infty}\frac{\ln(1-a_{n_k})}{\ln a_{n_k}}=\frac{\ln(1-c)}{\ln c}=+\infty.$$

故 c=1, 于是由子列极限命题 (a)可知

$$\lim_{n \to +\infty} a_n = c = 1. \tag{4.9}$$

而要证 $a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty$,等价于证明 $\lim_{n \to +\infty} \frac{a_n - 1 + \frac{\ln n}{n}}{\frac{\ln n}{n}} = \lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = 0$. 利用(4.8)(4.9)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{n \to +\infty} \left[\frac{\frac{\ln(1 - a_n)}{\ln a_n} \cdot a_n - \frac{\ln(1 - a_n)}{\ln a_n}}{\ln \frac{\ln(1 - a_n)}{\ln a_n}} + 1 \right] = \lim_{n \to +\infty} \left[\frac{(a_n - 1) \ln (1 - a_n)}{\ln a_n \left(\ln \frac{\ln(1 - a_n)}{\ln a_n} \right)} + 1 \right]$$

$$= \lim_{x \to 1^-} \left[\frac{(x - 1) \ln (1 - x)}{\ln x \left(\ln \frac{\ln(1 - x)}{\ln x} \right)} + 1 \right] = \lim_{x \to 0^-} \left[\frac{x \ln (-x)}{\ln (1 + x) \left(\ln \frac{\ln(-x)}{\ln(1 + x)} \right)} + 1 \right]. \tag{4.10}$$

由 L'Hospital's rules 可得

$$\lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)}\right)} = \lim_{x \to 0^{-}} \frac{\ln(-x)}{\ln \frac{\ln(-x)}{\ln(1+x)}} \xrightarrow{\text{L'Hospital's rules}} \lim_{x \to 0^{-}} \frac{\frac{1}{x}}{\frac{\ln(1+x)}{\ln(-x)} \cdot \frac{\frac{1}{x} \ln(1+x) - \frac{1}{1+x} \ln(-x)}{\frac{1}{n^{2}}(1+x)}}$$

$$= \lim_{x \to 0^{-}} \frac{\ln(-x) \cdot \ln(1+x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)} = \lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)}$$

$$= \lim_{x \to 0^{-}} \frac{x}{\frac{\ln(1+x)}{\ln(-x)} - \frac{x}{1+x}} = \lim_{x \to 0^{-}} \frac{x}{-\frac{x}{1+x}} = -1.$$
(4.11)

于是结合(4.10)(4.11)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)} \right)} + 1 \right] = -1 + 1 = 0.$$

故 $a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty.$

例题 4.23 设 $f_n(x) = x + x^2 + \dots + x^n, n \in \mathbb{N}, f_n(x) = 1$ 在 [0,1] 的根为 x_n . 求 $\lim x_n$.

解 注意到 $f_n(x)-1$ 严格单调递增,且 $f_n(0)-1=-1<0$, $f_n(1)-1=n-1>0$, $\forall n \geq 2$ 。故由零点存在定理可知,当 $n \geq 2$ 时,存在唯一的 $x_n \in (0,1)$,使得 $f_n(x_n)=1$ 。从而

$$f_n(x_n) = \frac{x_n - x_n^{n+1}}{1 - x_n} = 1 \Rightarrow x_n - x_n^{n+1} = 1 - x_n \Rightarrow x_n^{n+1} = 2x_n - 1 \Rightarrow n + 1 = \frac{\ln(2x_n - 1)}{\ln x_n}.$$
 (4.12)

由上式(4.12)可知 $x_n^{n+1} = 2x_n - 1$ 且 $x_n \in (0,1)$,因此

$$0 \leqslant x_n^{n+1} = 2x_n - 1 \leqslant 1 \Rightarrow x_n \in \left(\frac{1}{2}, 1\right).$$

任取 $\{x_n\}$ 的收敛子列 $\{x_{n_k}\}$,设 $\lim_{k\to+\infty}x_{n_k}=a\in\left[\frac{1}{2},1\right]$,则由 (1.1) 式和 Heine 归结原则可知

$$\lim_{k \to +\infty} \frac{\ln(2x_{n_k} - 1)}{\ln x_{n_k}} = \frac{\ln(2a - 1)}{\ln a} = +\infty.$$

故 $a=\frac{1}{2}$,再由子列极限命题 (a)可知 $\lim_{n\to+\infty}x_n=a=\frac{1}{2}$ 。

4.1.5.2 迭代方法

例题 4.24 设 x_n 是 $x = \tan x$ 从小到大排列的全部正根,设

$$\lim_{n\to\infty}n(x_n-An-B)=C,$$

求 A, B, C。

拿 笔记 主要想法是结合 $\arctan x$ 的性质: $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$, x > 0, 再利用迭代法计算渐近展开. 解 令 $f(x) = \tan x - x$, $x \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$, 则 $f'(x) = \tan^2 x > 0$, $\forall x \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$ 。因此 f(x) 在 $(n\pi, n\pi + \frac{\pi}{2})$ 上严格单调递增,其中 $n = 1, 2, \cdots$ 。又注意到 $\lim_{x \to (n\pi)^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = -n\pi < 0$ $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) =$

从而 $x_n - n\pi \in (0, \frac{\pi}{2})$,于是

$$x_n = \tan x_n = \tan(x_n - n\pi) \Rightarrow x_n = \arctan x_n + n\pi.$$
 (4.13)

又因为 $x_n \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$, 所以当 $n \to +\infty$ 时, 有 $x_n \to +\infty$ 。 再结合(4.13)式可得

$$x_n = \arctan x_n + n\pi = n\pi + \frac{\pi}{2} + o(1), n \to +\infty.$$
 (4.14)

注意到 $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$, x > 0, 从而 $\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}$ 。于是利用(4.14)式可得

$$x_n = \arctan x_n + n\pi = \frac{\pi}{2} + n\pi - \arctan \frac{1}{x_n} = \frac{\pi}{2} + n\pi - \arctan \frac{1}{n\pi + \frac{\pi}{2} + o(1)}$$

$$= \frac{\pi}{2} + n\pi - \arctan\left(\frac{1}{n\pi} \frac{1}{1 + \frac{1}{2n} + o(\frac{1}{n})}\right) = \frac{\pi}{2} + n\pi - \arctan\left[\frac{1}{n\pi} \left(1 + O(\frac{1}{n})\right)\right]$$

$$= \frac{\pi}{2} + n\pi - \arctan\left[\frac{1}{n\pi} + O(\frac{1}{n^2})\right] = \frac{\pi}{2} + n\pi - \frac{1}{n\pi} + O(\frac{1}{n^2}), n \to +\infty.$$

因此
$$\lim_{n\to+\infty} n\left(x_n - \frac{\pi}{2} - n\pi\right) = -\frac{1}{\pi}$$
。

4.2 估计和式的常用方法

4.2.1 强行替换(拟合法)和凑定积分

例题 4.25 计算

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}}.$$

室记 证明的想法要么是凑定积分定义.要么强行替换为自己熟悉的结构(拟合法),无需猜测放缩手段. 注 注意定积分定义是任意划分任意取点,而不只是等分取端点.

解 解法一:注意到

$$\frac{i}{n} < \frac{\sqrt{i^2 + 1}}{n} < \frac{i + 1}{n}, i = 1, 2, \dots, n,$$

于是由定积分定义有

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{\sqrt{i^2 + 1}}{n}\right)^2} = \int_0^1 \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$$

解法二:注意到

$$0 \leq \left| \sum_{i=1}^n \frac{1}{n + \frac{i^2 + 1}{n}} - \sum_{i=1}^n \frac{1}{n + \frac{i^2}{n}} \right| \leq \sum_{i=1}^n \frac{1}{n \left(n + \frac{i^2 + 1}{n}\right) \left(n + \frac{i^2}{n}\right)} \leq \sum_{i=1}^n \frac{1}{n^3} = \frac{1}{n^2} \to 0, n \to \infty,$$

故

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+\frac{i^2+1}{n}}=\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+\frac{i^2}{n}}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\frac{1}{1+\frac{i^2}{n^2}}=\int_0^1\frac{1}{1+x^2}dx=\frac{\pi}{4}.$$

例题 4.26 计算

$$\lim_{n\to\infty} \sum_{i=1}^{2n} \frac{i+4}{n^2+\frac{1}{i}} \sin^4 \frac{\pi i}{n}.$$

拿 笔记 长得神似定积分定义且很容易观察到 $\frac{i+4}{n^2+\frac{1}{i}}$ 和 $\frac{i}{n^2}$ 没有区别, 懒得去寻求放缩方法, 直接采用强行替换的方法, 即做差 $\frac{i+4}{n^2+\frac{1}{i}}-\frac{i}{n^2}$ 强估证明不影响极限.

证明 注意到

$$\left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| = \left| \sum_{i=1}^{2n} \left(\frac{i+4}{n^2 + \frac{1}{i}} - \frac{i}{n^2} \right) \sin^4 \frac{\pi i}{n} \right|$$

$$\leqslant \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^2 \left(n^2 + \frac{1}{i} \right)} \leqslant \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^4} = \frac{2n(4n^2 - 1)}{n^4},$$

于是

$$0 \leqslant \lim_{n \to \infty} \left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| \leqslant \lim_{n \to \infty} \frac{2n(4n^2 - 1)}{n^4} = 0.$$

因此

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \frac{i}{n} \sin^4 \frac{\pi i}{n}$$

$$= \int_0^2 x \sin^4 \pi x dx \frac{\mathbb{E} | \tilde{n} = \tilde{n}|}{\frac{1}{2} (2-y) \sin^4 \pi (2-y) dy}$$

$$= \int_0^2 (2-y) \sin^4 \pi y dy = \int_0^2 \sin^4 \pi x dx = \frac{1}{\pi} \int_0^{2\pi} \sin^4 x dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sin^4 x dx = \frac{4}{\pi} \cdot \frac{3!!}{4!!} \cdot \frac{\pi}{2} = \frac{3}{4}.$$

4.2.2 和式内部对 n 可求极限 (极限号与求和号可换序)

当和式内部对 \mathbf{n} 可求极限时, 极限号与求和号可以换序.(当和式内部对 \mathbf{n} 求极限是 $\frac{\infty}{\infty}$ 或 $\frac{0}{0}$ 等都不能换序) 本质上就是**控制收敛定理**的应用.

注 不能按照极限号与求和号可换序的想法书写过程, 应该利用不等式放缩、夹逼准则和上下极限进行严谨地书写证明.

例题 4.27 求极限

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k}.$$

拿 笔记 求这种前 n 项和关于 n 的极限 (n 既和求和号上限有关, 又和通项有关) 的思路是: 先假设极限存在 (这里极限号内是数列不是级数, 所以这里是数列收敛). 于是由数列收敛的柯西收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}_+$, 使得对 $\forall n > N_0$, 都有

$$\varepsilon > \left| \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}} - \sum_{k=0}^{N_{0}+1} \frac{\cos \sqrt{\frac{k}{N_{0}+1}}}{2^{k}} \right| = \left| \sum_{k>N_{0}}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}} + \sum_{k=0}^{N_{0}+1} \frac{\cos \sqrt{\frac{k}{n}} - \cos \sqrt{\frac{k}{N_{0}+1}}}{2^{k}} \right| > \sum_{k>N_{0}}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}}.$$

从而由数列极限的定义, 可知对 $\forall N > N_0$, 都有 $\lim_{n \to +\infty} \sum_{k>N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = 0$.

因此对 $\forall N > N_0$. 我们有

$$\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} + \lim_{n \to +\infty} \sum_{k>N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \lim_{n \to +\infty} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \frac{1}{2^k}.$$

再令
$$N \to +\infty$$
, 得到 $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{N \to +\infty} \sum_{k=0}^{N} \frac{1}{2^k} = 2$.

综上所述, 我们在假设原极限收敛的前提下能够得到原极限就是 2, 因此我们可以凭借直觉不严谨地断言原极限实际上就是 2(如果原极限不是 2, 那么原极限只能发散, 否则与上述证明矛盾. 而出题人要我们求解的极限一般都不发散, 并且凭借直觉也能感觉到这个极限不发散).

注意:因为这里我们并不能严谨地证明原数列收敛,所以只凭借上述论证并不能严谨地得到原极限等于 2. (上述论证实际上就是一种"猜测"这种极限的值的方法)

虽然只凭借上述论证我们并不能直接得到原极限等于 2 的证明, 但是我们可以得到一个重要的结果: 原极限的值就是 2. 我们后续只需要证明这个结果是正确的即可. 后续证明只需要适当放缩原本数列, 再利用上下极限和夹逼定理即可 (因为我们已经知道极限的值, 放缩的时候就能更容易地把握放缩的"度"). 并且我们根据上述论证可知 (放缩的时候我们可以利用下述想法, 即将不影响整体的阶的余项通过放缩去掉), 原和式的极限等于其前 N 项的极限, 原和式除前 N 项外的余项的极限趋于 0, 即余项并不影响原数列的极限, 可以通过放缩将其忽略. 我们只需要考虑前 N 项的极限即可.

后续证明的套路一般都是: 放大: 可以直接通过一些常用不等式得到: 放小: 将原级数直接放缩成有限项再取 下极限.

注: 关键是如何利用上述想法直接计算出极限的值, 后续的放缩证明只是为了保证其严谨性的形式上的证明.

注 上述思路本质上就是控制收敛定理的应用, 也可以使用 Toplitz 定理的分段估计想法解决本题. 于是我们今后 遇到类似问题可以分别采取这两种思路解决.

这里我们可以采取两种方法去书写证明过程(夹逼定理和 Toplitz 定理).

一方面, 注意到
$$\sum_{k=0}^n \frac{\cos\sqrt{\frac{k}{n}}}{2^k} \leqslant \sum_{k=0}^n \frac{1}{2^k} = \frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}$$
, 于是 $\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos\sqrt{\frac{k}{n}}}{2^k} \leqslant \lim_{n \to +\infty} \frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}} = 2$.

另一方面, 注意到对
$$\forall N \in \mathbb{N}_+$$
, 都有 $\sum_{k=0}^n \frac{\cos\sqrt{\frac{k}{n}}}{2^k} \geqslant \sum_{k=0}^N \frac{\cos\sqrt{\frac{k}{n}}}{2^k}$, $\forall n > N$. 从而

$$\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} \geqslant \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \lim_{n \to +\infty} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \lim_{n \to +\infty} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \frac{1}{2^k}, \forall N \in \mathbb{N}_+.$$

于是令
$$N \to +\infty$$
, 得到 $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} \geqslant \lim_{N \to +\infty} \sum_{k=0}^{N} \frac{1}{2^k} = 2$.

综上所述, 我们有
$$2 \leqslant \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} \leqslant \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} \leqslant 2$$
. 故 $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = 2$.

解法二 (Toplitz 定理

例题 4.28 计算 $\lim_{n\to+\infty} \sum_{n}^{n} \left(\frac{k}{n}\right)^{n}$.

注 注意倒序求和与顺序求和相等.(看到求和号内部有两个变量,都可以尝试一下倒序求和) **笔记** 解法一的思路: 我们利用上一题的想法计算 $\lim_{n\to +\infty} \sum_{k=1}^{n} e^{n \ln \left(1-\frac{k-1}{n}\right)}$. 先假设级数 $\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n$ 收敛,则由 Cauchy收敛准则可知, 存在 N' > 0, 使得

$$\lim_{n \to +\infty} \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1 - k}, \forall N > N'.$$

令 $N \to +\infty$, 则 $\lim_{n \to +\infty} \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \lim_{N \to +\infty} \sum_{k=1}^{N} e^{1-k} = \frac{e}{e-1}$. 然后再根据计算出来的结果对原级数进行适当放

解 解法一: 注意到

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} = \sum_{k=1}^{n} \left(\frac{n-k+1}{n}\right)^{n} = \sum_{k=1}^{n} \left(1 - \frac{k-1}{n}\right)^{n} = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)}, \forall n \in \mathbb{N}_{+}.$$

一方面, 利用 $\ln(1+x) \le x, \forall x \in \mathbb{R}$, 我们有

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)} \le \sum_{k=1}^{n} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{n} e^{1-k}, \forall n \in \mathbb{N}_{+}.$$

$$\diamondsuit n \to +\infty, \, \mathbb{N} | \, \varlimsup_{n \to +\infty} \sum_{k=1}^n \left(\frac{k}{n}\right)^n \leq \varlimsup_{n \to +\infty} \sum_{k=1}^n e^{1-k} = \frac{e}{e-1}.$$

另一方面, 注意到 $\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)} \ge \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)}, \forall N \in \mathbb{N}_{+}.$ 两边同时对 n 取下极限, 可得对

 $\forall N \in \mathbb{N}_+$, 都有

$$\underline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \geqslant \underline{\lim}_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \underline{\lim}_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)}$$

$$= \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1-k}$$

令
$$N \to +\infty$$
, 则 $\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \ge \lim_{N \to +\infty} \sum_{k=1}^{N} e^{1-k} = \frac{e}{e-1}$. 故 $\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \frac{e}{e-1}$.

解法二(单调有界定理): 因为

$$S_n = \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n,$$

$$S_{n+1} = \left(\frac{1}{n+1}\right)^{n+1} + \left(\frac{2}{n+1}\right)^{n+1} + \dots + \left(\frac{n-1}{n+1}\right)^{n+1} + \left(\frac{n}{n+1}\right)^{n+1}.$$

所以证明 $\left(\frac{k}{n}\right)^n \le \left(\frac{k+1}{n+1}\right)^{n+1}$, $1 \le k \le n-1$ 即可,这等价于 $\frac{(n+1)^{n+1}}{n^n} \le \frac{(k+1)^{n+1}}{k^n}$ 。实际上 $a_k = \frac{(k+1)^{n+1}}{k^n}$, $1 \le k \le n$ 是单调递减数列,因为

$$\frac{a_{k+1}}{a_k} = \frac{k^n(k+2)^{n+1}}{(k+1)^{2n+1}} = \frac{(x-1)^n(x+1)^{n+1}}{x^{2n+1}} = \left(1 - \frac{1}{x^2}\right)^n \left(1 + \frac{1}{x}\right), x = k+1 \in [2,n].$$

又由于

$$n \ln \left(1 - \frac{1}{x^2}\right) + \ln \left(1 + \frac{1}{x}\right) \le -\frac{n}{x^2} + \frac{1}{x} = \frac{x - n}{x^2} \le 0, \forall x = k + 1 \in [2, n].$$

从而 $\left(1-\frac{1}{x^2}\right)^n \left(1+\frac{1}{x}\right) = e^{n\ln\left(1-\frac{1}{x^2}\right)+\ln\left(1+\frac{1}{x}\right)} \leqslant e^0 = 1, \forall x = k+1 \in [2,n], 故 a_{k+1} \leq a_k, \forall 1 \leq k \leq n.$ 于是 $\frac{(k+1)^{n+1}}{k^n} = a_k \geq a_n = \frac{(n+1)^{n+1}}{n^n},$ 也即 S_n 单调递增。注意

$$S_n = \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right)^n = \sum_{k=1}^{n-1} e^{n \ln\left(1 - \frac{k}{n}\right)} \le \sum_{k=1}^{n-1} e^{-k} \le \sum_{k=1}^{\infty} e^{-k} = \frac{1}{e-1}$$

所以单调有界,极限一定存在,设为S。对任意正整数n>m,先固定m,对n取极限有

$$S_n = \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right)^n \ge \sum_{k=1}^m \left(1 - \frac{k}{n} \right)^n \Rightarrow S = \lim_{n \to \infty} S_n \ge \sum_{k=1}^m \lim_{n \to \infty} \left(1 - \frac{k}{n} \right)^n = \sum_{k=1}^m e^{-k}$$

这对任意正整数 m 均成立,再令 $m \to \infty$ 有 $S \ge \frac{1}{e-1}$,从而所求极限为 $\frac{1}{e-1}$ 。

4.2.3 利用 Taylor 公式计算和式极限 (和式内部 n,k 不同阶)

只有当和式内部 n,k 不同阶时, 我们才可以直接利用 Taylor 展开进行计算. 但是书写过程不能用 Taylor 展开书写 (关于 o 和 O 余项的求和估计不好说明), 这样书写不严谨 (见例题 4.29 证法一).

我们可以采用**拟合法** (见<mark>例题 4.30)、夹逼准则</mark> (见例题 4.31)、 $\varepsilon - \delta$ 语言 (见例题 4.29 证法二) 严谨地书写过程

\$

笔记 虽然这三种方法都比较通用, 但是更推荐拟合法和夹逼准则, 一般比较简便.

虽然 ε-δ 语言书写起来比较繁琐, 但是当有些和式不容易放缩、拟合的时候, 用这个方法更简单.

这类和式内部 n, k 不同阶的问题的处理方式: 先利用 Taylor 展开计算极限 (可以先不算出极限), 并判断到底要展开多少项, 然后根据具体问题综合运用**拟合法、夹逼准则、** $\varepsilon - \delta$ 语言严谨地书写过程 (怎么书写简便就怎么写).

注 这类和式内部 n, k 不同阶的问题, Taylor 公式是本质, **拟合法、夹逼准则、** $\varepsilon - \delta$ 语言只是形式上的过程. **例题 4.29** 设 f 在 0 处可微, f(0) = 0, 证明:

$$\lim_{n\to\infty}\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}.$$

🕏 笔记 本题如果使用例题 4.27的方法求极限, 那么我们将得到

$$\lim_{n\to\infty}\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\lim_{n\to\infty}\sum_{i=1}^N f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N\lim_{n\to\infty} f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N f\left(0\right) = \lim_{N\to\infty}\left(N\cdot 0\right) = +\infty\cdot 0.$$

而 $+\infty \cdot 0$ 我们是无法确定其结果的, 故本题并不适用这种方法. 不过, 我们也从上述论述结果发现我们需要更加精细地估计原级数的阶, 才能确定出上述" $+\infty \cdot 0$ "的值, 进而得到原级数的极限. 因此我们使用 Taylor 展开并引入余项方法和 $\varepsilon - \delta$ 方法更加精细地估计原级数的阶.

 $\frac{1}{2}$ 虽然使用余项证明这类问题并不严谨, 但是在实际解题中, 我们仍使用这种余项方法解决这类问题. 因为严谨的 $\varepsilon - \delta$ 语言证明比较繁琐. 我们只在需要书写严谨证明的时候才使用严谨的 $\varepsilon - \delta$ 语言进行证明.

证明 证法一 (不严谨的余项方法): 由 f 在 0 处可微且 f(0) = 0 和带 Peano 余项的 Taylor 公式, 可知

$$f(x) = f'(0)x + o(x), x \to 0.$$

于是

$$\begin{split} & \sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \sum_{i=1}^n \left[f'(0) \cdot \frac{i}{n^2} + o\left(\frac{i}{n^2}\right)\right] = \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^n o\left(\frac{i}{n^2}\right) \\ & = \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^n o\left(\frac{1}{n}\right) = \frac{f'(0)(n+1)}{2n} + n \cdot o\left(\frac{1}{n}\right) \to \frac{f'(0)}{2}, n \to +\infty. \end{split}$$

证法二 $(\varepsilon - \delta)$ 严谨的证明): 由 Taylor 定理,可知对 $\forall \varepsilon \in (0,1), \exists \delta > 0$,当 $|x| \leq \delta$ 时,有 $|f(x) - f'(0)x| \leq \varepsilon |x|$. 只要 $n > \frac{1}{\delta}$,有 $\left|\frac{i}{n^2}\right| \leq \delta$, $\forall i = 1, 2, \cdots, n$,故 $\left|f\left(\frac{i}{n^2}\right) - f'(0)\frac{i}{n^2}\right| \leq \varepsilon \frac{i}{n^2}, i = 1, 2, \cdots, n$.

$$f'(0)(1-\varepsilon)\frac{i}{n^2} \le f\left(\frac{i}{n^2}\right) \le f'(0)(1+\varepsilon)\frac{i}{n^2}.$$

进而

$$\frac{f'(0)}{2}(1-\varepsilon) \cdot \frac{n+1}{n} = f'(0)(1-\varepsilon) \sum_{i=1}^n \frac{i}{n^2} \leq \sum_{i=1}^n f\left(\frac{i}{n^2}\right) \leq f'(0)(1+\varepsilon) \sum_{i=1}^n \frac{i}{n^2} = \frac{f'(0)}{2}(1+\varepsilon) \cdot \frac{n+1}{n}.$$

于是

$$-\frac{\varepsilon f'(0)}{2} \le \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \le \frac{f'(0)\varepsilon}{2}.$$

即

$$\left| \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \right| \le \frac{|f'(0)|}{2} \varepsilon.$$

因此
$$\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}$$
, 故 $\lim_{n\to\infty} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) = \frac{\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right)}{\lim_{n\to\infty} \frac{n}{n+1}} = \frac{f'(0)}{2}$.

例题 4.30 求极限: $\lim_{n\to\infty} \sqrt{n} \left(1-\sum_{k=1}^n \frac{1}{n+\sqrt{k}}\right)$.

🔮 笔记 本题采用拟合法书写过程.

解 由于对 $\forall k \in \mathbb{N}_+$, 都有 $\frac{\sqrt{k}}{n} \to +\infty$, $n \to \infty$, 故由 Taylor 定理可得, 对 $\forall k \in \mathbb{N}_+$, 都有

$$\frac{1}{n+\sqrt{k}} = \frac{1}{n} \frac{1}{1+\frac{\sqrt{k}}{n}} = \frac{1}{n} \left(1 - \frac{\sqrt{k}}{n} + \frac{k}{n^2} + \cdots \right), n \to \infty.$$

于是考虑拟合

$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{k=1}^n \frac{1}{n+\sqrt{k}} \right) = \lim_{n\to\infty} \sqrt{n} \left(1 - \frac{1}{n} \sum_{k=1}^n \left(1 - \frac{\sqrt{k}}{n} \right) - \frac{1}{n} \sum_{k=1}^n \left(\frac{1}{1 + \frac{\sqrt{k}}{n}} - 1 + \frac{\sqrt{k}}{n} \right) \right).$$

又由于

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \left(\frac{1}{1 + \frac{\sqrt{k}}{n}} - 1 + \frac{\sqrt{k}}{n} \right) = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{k}{n^2} \frac{1}{1 + \frac{\sqrt{k}}{n}} \le \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{k}{n^2} \le \frac{1}{\sqrt{n}} \to 0.$$

因此

$$\lim_{n\to\infty}\sqrt{n}\left(1-\sum_{k=1}^n\frac{1}{n+\sqrt{k}}\right)=\lim_{n\to\infty}\sqrt{n}\left(1-\frac{1}{n}\sum_{k=1}^n\left(1-\frac{\sqrt{k}}{n}\right)\right)=\lim_{n\to\infty}\frac{\sum\limits_{k=1}^n\sqrt{k}}{n\sqrt{n}}$$

$$\frac{Stolz \triangle \vec{\lambda}, \vec{\lambda$$

例题 4.31 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\left(\sqrt{1+\frac{k}{n^2}}-1\right)$ 。

笔记 本题采用央逼准则书写过程. 注意 n, k 不同阶,因此有理化然后直接把无穷小量放缩掉,然后使用夹逼准则即可

证明 注意到

$$\frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n}}+1} \le \sqrt{1+\frac{k}{n^2}}-1 = \frac{\frac{k}{n^2}}{\sqrt{1+\frac{k}{n^2}}+1} \le \frac{k}{2n^2}, \forall k \in \mathbb{N}.$$

所以

$$\frac{n+1}{2n\left(\sqrt{1+\frac{1}{n}}+1\right)} = \sum_{k=1}^{n} \frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n}}+1} \le \sum_{k=1}^{n} \left(\sqrt{1+\frac{k}{n^2}}-1\right) \le \sum_{k=1}^{n} \frac{k}{2n^2} = \frac{n+1}{4n}$$

根据夹逼准则可知所求极限是 $\frac{1}{4}$.

例题 **4.32** 计算
$$\lim_{n\to\infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2+k}}\right)^n$$
.

笔记 证法二综合运用了拟合法和夹逼准则书写过程(只用其中一种方法的话,书写起来很麻烦).
解 证法一(不严谨的余项方法):注意到

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}} = \lim_{n \to \infty} e^{n \ln \left(\sum_{k=1}^{n} \frac{1}{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)}.$$

由带 Peano 余项的 Taylor 公式, 可知

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \frac{1}{n} \sum_{k=1}^{n} \left[1 - \frac{k}{2n^2} + O\left(\frac{k^2}{n^4}\right) \right] = \frac{1}{n} \left[n - \frac{\sum_{k=1}^{n} k}{2n^2} + \sum_{k=1}^{n} O\left(\frac{1}{n^2}\right) \right]$$
$$= 1 - \frac{n+1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} - \frac{1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right), n \to +\infty.$$

从而

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \left(\sum_{k=1}^n \frac{1}{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)} = \lim_{n \to \infty} e^{n \ln \left(1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{n \cdot \left(-\frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{-\frac{1}{4} + O\left(\frac{1}{n}\right)} = e^{-\frac{1}{4}}.$$

证法二 (严谨地书写过程): 注意到

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}} = \lim_{n \to \infty} e^{n \ln \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)}. \tag{4.15}$$

因为对 $\forall k \in \mathbb{N}_+$, 有 $\frac{k}{n^2} \to 0$, $n \to \infty$, 所以利用 Taylor 公式可得

$$\frac{1}{\sqrt{1+\frac{k}{n^2}}}=1-\frac{k}{2n^2}+\cdots,n\to\infty.$$

从而考虑拟合

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{k=1}^{n} \left(\frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 + \frac{k}{2n^2} \right) + \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{k}{2n^2} \right) \right].$$

由于

$$\frac{1}{n}\sum_{k=1}^{n}\left(\frac{1}{\sqrt{1+\frac{k}{n^2}}}-1+\frac{k}{2n^2}\right)=\sum_{k=1}^{n}\left(\frac{1}{\sqrt{n^2+k}}+\frac{k}{2n^3}\right)-1\leqslant \sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k}{2n^3}\right)-1=\frac{n+1}{4n^2}\to 0, n\to\infty.$$

因此

$$\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \left(1 - \frac{k}{2n^2}\right) = 1 - \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{2n^3} = 1.$$

于是

$$\lim_{n \to \infty} n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} - n \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 \right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{n}{\sqrt{n^2 + k}} - 1 \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n - \sqrt{n^2 + k}}{\sqrt{n^2 + k}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{\sqrt{n^2 + k} \left(n + \sqrt{n^2 + k} \right)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{n^2 + k + n\sqrt{n^2 + k}}.$$
(4.16)

注意到

$$-\frac{n+1}{2\left(n+1+\sqrt{n^2+n}\right)} = \sum_{k=1}^{n} \frac{-k}{n^2+n+n\sqrt{n^2+n}} \leqslant \sum_{k=1}^{n} \frac{-k}{n^2+k+n\sqrt{n^2+k}} \leqslant \sum_{k=1}^{n} \frac{-k}{2n^2} = -\frac{n+1}{4n}, \forall n \in \mathbb{N}_+.$$

令 $n \to \infty$,则由夹逼准则可得 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{n^2 + k + n\sqrt{n^2 + k}} = -\frac{1}{4}$ 。 再结合(4.15)(4.16)式可知

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}} = e^{\lim_{n \to \infty} n \ln \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}} = e^{\lim_{n \to \infty} \sum_{k=1}^n \frac{-k}{n^2 + k + n \sqrt{n^2 + k}}} = e^{-\frac{1}{4}}.$$

4.2.4 分段估计 (Toeplitz 定理)

对于估计级数或积分的极限或阶的问题,当问题难以直接处理时,我们可以尝试分段估计,分段点的选取可以直接根据级数或积分的性质选取,也可以根据我们的需要待定分段点 *m*,然后再选取满足我们需要的 *m* 作为分段点.

定理 4.3 (Toeplitz 定理)

(a): 设 $\{t_{nk}\}_{1\leqslant k\leqslant n}\subset [0,+\infty)$ 满足 $\lim_{n\to\infty}\sum_{k=1}^nt_{nk}=1$ 和 $\lim_{n\to\infty}t_{nk}=0$. 若 $\lim_{n\to\infty}a_n=a\in\mathbb{R}$. 证明

$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} a_k = a. \tag{4.17}$$

(b): 设 $\{t_{nk}\}_{n,k=1}^{\infty} \subset [0,+\infty)$ 满足 $\lim_{n\to\infty} \sum_{k=1}^{\infty} t_{nk} = 1$ 和 $\lim_{n\to\infty} t_{nk} = 0$. 若 $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. 证明

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} t_{nk} a_k = a. \tag{4.18}$$

 \Diamond

笔记 无需记忆 Toeplitz 定理的叙述, 其证明的思想更为重要. 一句话证明 Toeplitz 定理, 即当 n 比较小的时候, 用 t_{nk} 趋于 0 来控制, 当 n 比较大的时候, 用 a_n 趋于 a 来控制.

我们需要熟悉蕴含在Toeplitz 定理当中的一个关键想法:分段估计(分段的方式要合理才行).

Toeplitz 定理只是先对和式进行分段处理, 将和式分成两部分, 一部分是和式的前充分多项 (前有限项/前 N项), 另一部分是余项 (从 N+1 项开始包括后面的所有项). 然后在这种分段估计的基础上, 利用已知的极限条件, 分别控制 (放缩) 和式的前充分多项 (前有限项/前 N 项) 和余项 (从 N+1 项开始包括后面的所有项).

注 注意区分 (a),(b) 两者的条件:
$$\lim_{n\to+\infty}\sum_{k=1}^{\infty}t_{nk}=\lim_{n\to+\infty}\lim_{m\to+\infty}\sum_{k=1}^{m}t_{nk}\neq\lim_{n\to+\infty}\sum_{k=1}^{n}t_{nk}$$
.

证明 (a): 事实上, 不妨设 a=0, 否则用 a_n-a 代替 a_n 即可.

对 $\forall N \in \mathbb{N}$, 当 n > N 时, 我们有

$$\left| \sum_{k=1}^{n} t_{nk} a_k \right| = \left| \sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{n} t_{nk} a_k \right| \leqslant \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \sum_{k=N+1}^{n} |t_{nk} a_k|.$$

 $\phi n \rightarrow +\infty$ 得到

$$\overline{\lim_{n\to+\infty}} \left| \sum_{k=1}^{n} t_{nk} a_k \right| \leqslant \overline{\lim_{n\to+\infty}} \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \overline{\lim_{n\to+\infty}} \sum_{k=N+1}^{n} |t_{nk} a_k| \leqslant \sup_{k\geqslant N+1} |a_k| \cdot \overline{\lim_{n\to+\infty}} \sum_{k=1}^{n} t_{nk} = \sup_{k\geqslant N+1} |a_k|, \forall N \in \mathbb{N}.$$

由 N 的任意性, 再令 N → + ∞ , 可得

$$\overline{\lim_{n\to +\infty}} \left| \sum_{k=1}^n t_{nk} a_k \right| \leqslant \lim_{N\to +\infty} \sup_{k\geqslant N+1} |a_k| = \overline{\lim_{n\to +\infty}} |a_n| = \overline{\lim_{n\to +\infty}} a_n = \lim_{n\to +\infty} a_n = 0.$$

故(4.17)式成立.

(b): 事实上, 不妨设 a = 0, 否则用 $a_n - a$ 代替 a_n 即可

对 $\forall N \in \mathbb{N}$, 我们有

$$\left|\sum_{k=1}^{\infty} t_{nk} a_k\right| = \left|\sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{\infty} t_{nk} a_k\right| \leqslant \left|\sum_{k=1}^{N} t_{nk} a_k\right| + \sum_{k=N+1}^{\infty} |t_{nk} a_k|.$$

 $\phi n \to +\infty$, 得到

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leqslant \overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \overline{\lim_{n \to +\infty}} \sum_{k=N+1}^{\infty} |t_{nk} a_k| \leqslant \sup_{k \geqslant N+1} |a_k| \cdot \overline{\lim_{n \to +\infty}} \sum_{k=1}^{\infty} t_{nk} = \sup_{k \geqslant N+1} |a_k| \, , \forall N \in \mathbb{N}.$$

由 N 的任意性, 再令 $N \rightarrow +\infty$, 可得

$$\overline{\lim}_{n \to +\infty} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leqslant \lim_{N \to +\infty} \sup_{k \geqslant N+1} |a_k| = \overline{\lim}_{n \to +\infty} |a_n| = \overline{\lim}_{n \to +\infty} a_n = \lim_{n \to +\infty} a_n = 0.$$

故(4.18)式成立.

例题 **4.33** 设 $p_k > 0, k = 1, 2, \dots, n$ 且

$$\lim_{n\to\infty}\frac{p_n}{p_1+p_2+\cdots+p_n}=0,\,\lim_{n\to\infty}a_n=a.$$

证明

$$\lim_{n\to\infty} \frac{p_n a_1 + \dots + p_1 a_n}{p_1 + p_2 + \dots + p_n} = a.$$

笔记 理解到本质之后不需要记忆Toeplitz 定理, 但是这里可以直接套用 Toeplitz 定理我们就引用了. 今后我们不 再直接套用 Toeplitz 定理, 而是利用 Toeplitz 定理的证明方法解决问题

证明 记
$$t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_n} \ge 0, k = 1, 2, \dots, n.$$
 则 $\sum_{k=1}^{n} t_{nk} = \frac{\sum_{k=1}^{n} p_{n-k+1}}{p_1 + p_2 + \dots + p_n} = 1.$ 又因为
$$0 \le \lim_{n \to \infty} t_{nk} \le \lim_{n \to \infty} \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_{n+k+1}} = 0.$$

所以由夹逼准则可知, $\lim_{n\to\infty} t_{nk} = 0$. 故由Toeplitz 定理得

$$\lim_{n \to \infty} \frac{p_n a_1 + \dots + p_1 a_n}{p_1 + p_2 + \dots + p_n} = \lim_{n \to \infty} \sum_{k=1}^n t_{nk} a_k = a.$$

例题 4.34 设 $\lim_{n\to\infty} a_n = a$ 且 $b_n \geqslant 0$. 记 $S_n = \sum_{k=1}^n b_k$,若 $\lim_{n\to\infty} S_n = S$. 证明

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = aS.$$

证明
$$(i)$$
 若 $S=0$, 则 $b_n\equiv 0$. 此时结论显然成立.
 (ii) 若 $S>0$, 则令 $t_{nk}=\frac{1}{S}b_{n-k+1}, k=1,2,\cdots,n$. 从而

$$\sum_{k=1}^{\infty} t_{nk} = \lim_{n \to +\infty} \sum_{k=1}^{n} t_{nk} = \frac{1}{S} \lim_{n \to +\infty} \sum_{k=1}^{n} b_{n-k+1} = \frac{1}{S} \lim_{n \to +\infty} S_n = 1.$$

又因为 $\lim_{n\to+\infty} S_n$ 存在, 所以 $\lim_{n\to+\infty} b_n = \lim_{n\to+\infty} (S_n - S_{n-1}) = 0$. 故 $\lim_{n\to+\infty} t_{nk} = 0$. 于是

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = \lim_{n \to \infty} \sum_{k=1}^n a_k b_{n-k+1} = S \cdot \lim_{n \to \infty} \sum_{k=1}^n a_k t_{nk}.$$

不妨设 a = 0, 则对 $\forall N \in \mathbb{N}$, 当 n > N 时, 有

$$0 \leqslant \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \left| \sum_{k=N+1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=N+1}^{n} t_{nk} \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=1}^{n} t_{nk}.$$

$$\Leftrightarrow n \to +\infty, \mathbb{M}$$

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \lim_{n \to +\infty} \left(\sup_{k \ge N+1} |a_k| \sum_{k=1}^{n} t_{nk} \right) = \sup_{k \ge N+1} |a_k|, \forall N \in \mathbb{N}.$$

再令 $N \to +\infty$, 可得

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \lim_{N \to +\infty} \sup_{k \ge N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_k| = \lim_{n \to +\infty} |a_k| = \lim_{n \to +\infty} |a_k| = 0.$$

于是
$$\lim_{n\to+\infty}\sum_{k=1}^{n}a_{k}t_{nk}=a$$
. 故 $\lim_{n\to\infty}(a_{n}b_{1}+a_{n-1}b_{2}+\cdots+a_{1}b_{n})=S\cdot\lim_{n\to\infty}\sum_{k=1}^{n}a_{k}t_{nk}=aS.$

例题 **4.35** 设
$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$$
. 且存在常数 $K > 0$, 使得 $\sum_{i=0}^n |y_i| \le K, \forall n \in \mathbb{N}$, 证明

$$\lim_{n\to\infty}\sum_{i=1}^n x_i y_{n-i} = 0.$$

$$\left| \sum_{i=1}^n x_i y_{n-i} \right| \leq \left| \sum_{i=1}^N x_i y_{n-i} \right| + \left| \sum_{i=N+1}^n x_i y_{n-i} \right| \leq \left| \sum_{i=1}^N x_i y_{n-i} \right| + \sup_{i \geq N+1} |x_i| \cdot \sum_{i=N+1}^n |y_{n-i}| \leq \left| \sum_{i=1}^N x_i y_{n-i} \right| + K \cdot \sup_{i \geq N+1} |x_i|.$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} x_i y_{n-i} = \lim_{N \to \infty} \sup_{i \ge N+1} |x_i| = \overline{\lim}_{n \to \infty} |x_n| = \lim_{n \to \infty} x_n = 0.$$

例题 **4.36** 设 $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b$, 证明

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab.$$

笔记 可以不妨设 a = b = 0 的原因: 假设当 a = b = 0 时, 结论成立. 则当 a, b 至少有一个不为零时, 我们有 $\lim_{n\to\infty} (a_n - a) = 0, \lim_{n\to\infty} (b_n - b) = 0. 从而由假设可知$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (a_k - a) (b_{n-k+1} - b)}{n} = 0.$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k b_{n-k+1}}{n} + ab - a \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} b_{n-k+1}}{n} - b \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k}{n} = 0$$

又由Stolz 定理可知

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^na_k}{n}=\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}\frac{\sum\limits_{k=1}^nb_{n-k+1}}{n}=\lim_{n\to\infty}b_n=b.$$

故
$$\lim_{n \to \infty} \frac{\sum\limits_{k=1}^n a_k b_{n-k+1}}{n} = a \cdot \lim_{n \to \infty} \frac{\sum\limits_{k=1}^n b_{n-k+1}}{n} + b \cdot \lim_{n \to \infty} \frac{\sum\limits_{k=1}^n a_k}{n} - ab = ab.$$
 证明 不妨设 $a = b = 0$, 否则用 $a_n - a$ 代替 a_n ,用 $b_n - b$ 代替 b_n . 对 $\forall N \in \mathbb{N}$, 当 $n > N$ 时,有

$$\left| \frac{\sum\limits_{k=1}^{n} a_k b_{n-k+1}}{n} \right| \le \left| \frac{\sum\limits_{k=1}^{N} a_k b_{n-k+1}}{n} \right| + \left| \frac{\sum\limits_{k=N+1}^{n} a_k b_{n-k+1}}{n} \right|$$

$$\le \frac{1}{n} \left| \sum\limits_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \ge N+1} |a_k| \cdot \frac{1}{n} \sum_{k=N+1}^{n} |b_{n-k+1}|$$

$$\le \frac{1}{n} \left| \sum_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \ge N+1} |a_k| \cdot \frac{1}{n} \sum_{k=1}^{n} |b_k|.$$

$$\overline{\lim_{n\to\infty}} \left| \frac{1}{n} \sum_{k=1}^{n} a_k b_{n-k+1} \right| \leqslant \sup_{k \ge N+1} |a_k| \cdot \overline{\lim_{n\to\infty}} \frac{\sum_{k=1}^{n} |b_k|}{n} \leqslant \sup_{k \ge N+1} |a_k| \cdot \overline{\lim_{n\to\infty}} b_n = 0.$$

故
$$\overline{\lim}_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} a_k b_{n-k+1} = 0.$$

例题 4.37 求 $\lim_{n\to\infty}\sum_{i=1}^n\frac{n^{\frac{i}{k}}}{n}$ 。

注 取 $m = [\sqrt{\sqrt{n \ln n}}] + 1$ 的原因: 我们希望找到一个合适的分段点 m,使得 $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{n^{\frac{1}{k}}}{n} = 1$, $\lim_{n \to \infty} \sum_{k=0}^{m} \frac{n^{\frac{1}{k}}}{n} = 0$ 。由 $\sum^{m} \frac{n^{\frac{1}{k}}}{n} \leqslant \frac{(m-1)\sqrt{n}}{n} = \frac{(m-1)}{\sqrt{n}}$ 可知,我们可以希望 $\frac{(m-1)}{\sqrt{n}} \to 0$,即 $m = o(\sqrt{n})$ 。又由上述证明的积分放缩可 知, $\lim_{n\to\infty}\sum_{k=1}^{m}\frac{n^{\frac{1}{k}}}{n}=\lim_{n\to\infty}\frac{n^{\frac{1}{m}}}{n}(n-m+1)=\lim_{n\to\infty}n^{\frac{1}{m}}$,从而我们希望 $\lim_{n\to\infty}n^{\frac{1}{m}}=1$,即 $\lim_{n\to\infty}n^{\frac{1}{m}}=\lim_{n\to\infty}e^{\frac{\ln n}{m}}=1$,也即

$$\lim_{n\to\infty}\frac{\ln n}{m}=0_{\,\circ}$$

 $n\to\infty$ m 综上,我们希望当 $n\to\infty$ 时,m 的阶比 \sqrt{n} 低但比 $\ln n$ 高,于是我们考虑 $\ln n$ 和 \sqrt{n} 的几何平均,即令 $m=\sqrt{\sqrt{n}\ln n}$,恰好满足需要。又由于 m 表示求和项数,因此取整保证严谨性。

室记 本题核心想法是: 分段估计. 分段后的估计方式和分段点的选取方法较多.(清疏讲义上有另一种分段估计的做法)

注意: 本题使用 Stolz 定理解决不了, 直接放缩也不行.

证明 取
$$m = [\sqrt{\sqrt{n \ln n}}] + 1$$
,考虑 $\sum_{k=1}^{n} \frac{n^{\frac{1}{k}}}{n} = 1 + \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} + \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n}$ 。 不难发现
$$\frac{m}{n} \leqslant \frac{\sqrt{\sqrt{n \ln n}}}{n} \to 0, n \to \infty.$$

$$\sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} \leqslant \frac{(m-1)\sqrt{n}}{n} \leqslant \frac{\sqrt{\sqrt{n \ln n}}}{\sqrt{n}} = \sqrt{\frac{\ln n}{\sqrt{n}}} \to 0, n \to \infty.$$

因此
$$\lim_{n\to\infty} \frac{m}{n} = \lim_{n\to\infty} \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} = 0$$
。并且一方面,我们有

$$\sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = \frac{1}{n} \sum_{k=m}^{n} \int_{k-1}^{k} n^{\frac{1}{k}} dx \leqslant \frac{1}{n} \sum_{k=m}^{n} \int_{k-1}^{k} n^{\frac{1}{k}} dx = \frac{1}{n} \int_{m-1}^{n} n^{\frac{1}{k}} dx$$
$$= \frac{1}{n} \int_{\frac{1}{n}}^{\frac{1}{m-1}} \frac{n^{x}}{x^{2}} dx \leqslant \frac{n^{\frac{1}{m-1}}}{n} \int_{\frac{1}{n}}^{\frac{1}{m-1}} \frac{1}{x^{2}} dx = \frac{n^{\frac{1}{m-1}}}{n} (n-m+1).$$

另一方面, 我们有

$$\sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = \frac{1}{n} \sum_{k=m}^{n} \int_{k}^{k+1} n^{\frac{1}{k}} dx \geqslant \frac{1}{n} \sum_{k=m}^{n} \int_{k}^{k+1} n^{\frac{1}{k}} dx = \frac{1}{n} \int_{m}^{n+1} n^{\frac{1}{k}} dx$$
$$= \frac{1}{n} \int_{\frac{1}{n+1}}^{\frac{1}{m}} \frac{n^{x}}{x^{2}} dx \leqslant \frac{n^{\frac{1}{m}}}{n} \int_{\frac{1}{n+1}}^{\frac{1}{m}} \frac{1}{x^{2}} dx = \frac{n^{\frac{1}{m}}}{n} (n-m+1).$$

又注意到

$$\lim_{n \to \infty} n^{\frac{1}{m-1}} = \lim_{n \to \infty} e^{\frac{\ln n}{\sqrt{\sqrt{n} \ln n}}} = \lim_{n \to \infty} e^{\frac{1}{\sqrt{\frac{n}{\ln n}}}} = 1,$$

$$\lim_{n \to \infty} n^{\frac{1}{m}} = \lim_{n \to \infty} e^{\frac{\ln n}{\sqrt{\sqrt{n} \ln n}}} = \lim_{n \to \infty} e^{\frac{1}{\sqrt{\frac{n}{\ln n}}}} = 1.$$

故

$$1 = \underline{\lim_{n \to \infty} \frac{n^{\frac{1}{m}}}{n}}(n-m+1) \leqslant \underline{\lim_{n \to \infty} \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n}} \leqslant \overline{\lim_{n \to \infty} \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n}} \leqslant \overline{\lim_{n \to \infty} \frac{n^{\frac{1}{m-1}}}{n}}(n-m+1) = 1.$$

因此
$$\lim_{n\to\infty} \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = 1$$
。 于是 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n^{\frac{1}{k}}}{n} = \lim_{n\to\infty} \left(1 + \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} + \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n}\right) = 1 + 0 + 1 = 2$ 。

4.2.5 欧拉麦克劳林公式 (E-M 公式)

命题 4.2 (0 阶欧拉麦克劳林公式 (0 阶 E-M 公式))

设 $a, b \in \mathbb{Z}, f \in D[a, b], f' \in L^1[a, b]$, 让我们有

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x)dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} \left(x - [x] - \frac{1}{2}\right) f'(x)dx.$$

注 如果考试中要使用 0 阶欧拉麦克劳林公式,则一定要先证明 0 阶欧拉麦克劳林公式 (按照下面的证明书写即

可), 再使用.

E-M 公式求和通项与求和号上限无关. **笔记** 在 [0,1) 上 $x-[x]-\frac{1}{2}=x-\frac{1}{2}$,它也是 $x-\frac{1}{2}$ 做周期 1 延拓得到的函数. 故 $-\frac{1}{2}\leqslant x-[x]-\frac{1}{2}\leqslant \frac{1}{2}$, $\forall x\in\mathbb{R}$.

$$\int_{a}^{b} \left(x - [x] - \frac{1}{2}\right) f'(x) dx = \sum_{k=a}^{b-1} \int_{k}^{k+1} \left(x - [x] - \frac{1}{2}\right) f'(x) dx$$

$$= \sum_{k=a}^{b-1} \int_{k}^{k+1} \left(x - k - \frac{1}{2}\right) f'(x) dx = \sum_{k=a}^{b-1} \int_{0}^{1} \left(x - \frac{1}{2}\right) f'(x+k) dx$$

$$= \sum_{k=a}^{b-1} \left[\frac{1}{2} f(1+k) + \frac{1}{2} f(k) - \int_{0}^{1} f(x+k) dx \right]$$

$$= \sum_{k=a}^{b-1} \left[\frac{f(k) + f(k+1)}{2} - \int_{k}^{k+1} f(x) dx \right]$$

$$= \frac{1}{2} \sum_{k=a}^{b-1} \left[f(k) + f(k+1) \right] - \int_{a}^{b} f(x) dx$$

$$= -\frac{f(a) + f(b)}{2} + \sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx.$$

注 假设已知 f'(x) 在 \mathbb{R} 上连续, 记 $b_1(x) = x - [x] - \frac{1}{2}$, 使用 0 阶 E-M 公式后, 由于 $-\frac{1}{2} \leqslant x - [x] - \frac{1}{2} \leqslant \frac{1}{2}$, $\forall x \in \mathbb{R}$, 因此直接将 $b_1(x)$ 放大成 $\frac{1}{2}$ 就可以得到原级数的一个较为粗略的估计. 具体例题见<mark>例题 4.38.</mark> 但是如果我们想要得到原级数更加精确的估计, 就需要对 $b_1(x)$ 使用分部积分. 但是由于 b_1 并非连续函数,

为了把 $\int_{a}^{b} (x - [x] - \frac{1}{2}) f'(x) dx$ 继续分部积分, 我们需要寻求 b_1 的原函数 b_2 使得

$$\int_{a}^{b} b_{1}(x)f'(x)dx = \int_{a}^{b} f'(x)db_{2}(x),$$

即期望 $b_2(x)$ 是 $b_1(x)$ 的一个原函数并且仍然有周期 1(因为求导不改变周期性, 又由于 $b_1(x)$ 周期为 1, 故原函数 b2(x) 的周期也必须为 1). 相当于需要

$$b_2(x) = \int_0^x b_1(y)dy, b_2(x+1) = b_2(x), \forall x \in \mathbb{R}.$$

(构造 $b_2(x)$ 的想法: 先找到 $x \in [0,1)$ 这个特殊情况下的 $b_2(x)$, 再由此构造出 $x \in \mathbb{R}$ 这个一般情况下的 $b_2(x)$, 即 由特殊推广到一般)

先考虑 $x \in [0,1)$ 的情况 (因为此时 $[x] \equiv 0$, 方便后续计算得到原函数 $b_2(x)$), 于是就需要 $\int_a^1 b_1(x) dx =$ $b_2(1) = b_2(0) = 0$. 显然

$$b_2(1) = \int_0^1 b_1(x) dx = \int_0^1 \left(x - \frac{1}{2} \right) dx = 0 = b_2(0)$$

是自带条件. 并且还需要 $b_2(x) = \int_0^x b_1(y) dy = \int_0^x \left(y - \frac{1}{2}\right) dy = \frac{1}{2}x^2 - \frac{1}{2}x + c(其中c为任意常数), x \in [0,1).$ 又因 为我们需要 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1, 所以再将 $\frac{1}{2}x^2 - \frac{1}{2}x + c$ 做周期 1 延拓到 \mathbb{R} 上, 得到在 \mathbb{R} 上连续且周期为 1 的 $b_2(x)$ (易知此时 $b_2(x)$ 在 \mathbb{R} 上只有至多可数个不可导点). 由此我们可以得到 $b_2(x)$ 在 \mathbb{R} 上的表达式为

$$b_2(x) = b_2(x - [x]) = \int_0^{x - [x]} b_1(y) \, dy = \int_0^{x - [x]} \left(y - \frac{1}{2} \right) dy = \frac{1}{2} (x - [x])^2 - \frac{1}{2} (x - [x]) + c, \forall x \in \mathbb{R}.$$

此时又由 $\int_{0}^{1} b_{1}(y) dy = 0$ 可得

$$b_2(x) = b_2(x - [x]) = \int_0^{x - [x]} b_1(y) \, dy = \int_{[x]}^x b_1(y - [x]) \, dy = \int_{[x]}^x b_1(y) \, dy$$

$$= \sum_{k=0}^{\lfloor x \rfloor - 1} \int_0^1 b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy = \sum_{k=0}^{\lfloor x \rfloor - 1} \int_0^1 b_1(y+k) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy$$

$$= \sum_{k=0}^{\lfloor x \rfloor - 1} \int_k^{k+1} b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy = \int_0^{\lfloor x \rfloor} b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy$$

$$= \int_0^x b_1(y) \, dy, \forall x \in \mathbb{R}.$$

故此时周期延拓得到的 $b_2(x)$ 恰好就是 $b_1(x)$ 的一个原函数. 即 $b_1(x)$ 在 \mathbb{R} 上有连续且周期为1的原函数 $b_2(x)$,f'(x)在 \mathbb{R} 上连续. 因此我们可以对 $b_1(x)$ 进行分部积分. 即此时

$$\int_a^b b_1(x)f'(x)dx = \int_a^b f'(x)db_2(x)$$

成立. 并且此时 $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + c$, $\forall x \in \mathbb{R}$. 其中 c 为任意常数. 如果我们想要继续分部积分, 就需要 $b_3(x)$ 是 $b_2(x)$ 的一个原函数. 按照上述构造的想法, 实际上, 我们只需期 望 $b_3(1) = b_3(0)$ 和 $b_3(x) = \int_0^x b_2(y) dy, \forall x \in [0, 1)$. 即

$$\int_0^1 b_2(x)dx = b_3(1) = b_3(0) = 0,$$

$$b_3(x) = \int_0^x b_2(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_3(x)$, 再对其做周期 1 延拓, 就能得到 \mathbb{R} 上的 $b_3(x)$, 并且 $b_3(x)$ 满足在 \mathbb{R} 上连续且周 期为 1. 进而可以利用这个 $b_3(x)$ 继续对原积分进行分部积分, 得到更加精细的估计.

而由
$$\int_0^1 b_2(x)dx = b_3(1) = b_3(0) = 0$$
 可知

$$\int_0^1 b_2(x) dx = \int_0^1 \left(\frac{1}{2} x^2 - \frac{1}{2} x + c \right) dx = 0 \Rightarrow c = \frac{1}{12}.$$

于是如果我们还需要继续分部积分的话, 此时 $b_1(x)$ 的原函数 $b_2(x)$ 就被唯一确定了 (如果只进行一次分部积分, 那么 c 可以任取. 但是一般情况下, 无论是否还需要继续分部积分, 我们都会先取定这里的 $c = \frac{1}{12}$). 此时这个唯一 确定的 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1,并且

$$b_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0, 1);$$

$$b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, b_2(x) = \int_0^x b_1(y) \, dy, |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

依次下去我们给出计算 $b_n, n \in \mathbb{N}$ 的算法.

定义 $4.1(b_n(x)$ 定义和算法)

我们令 $b_1(x)$ 为 $x-\frac{1}{2},x\in[0,1)$ 的周期 1 延拓. 对所有 $n=2,3,\cdots,b_n(x)$ 是 $b_{n-1}(x)$ 的一个原函数.

笔记 $b_n(x)$ 的算法:

根据上述构造 $b_2(x), b_3(x)$ 的想法可知, 我们只需期望 $b_n(1) = b_n(0)$ 和 $b_n(x) = \int_0^x b_{n-1}(y) dy, \forall x \in [0,1).$ 即

$$\int_0^1 b_{n-1}(x)dx = b_n(1) = b_n(0) = 0,$$

$$b_n(x) = \int_0^x b_{n-1}(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_n(x)$, 再对其做周期 1 延拓, 就能得到 $\mathbb R$ 上的 $b_n(x)$, 并且 $b_n(x)$ 满足在 $\mathbb R$ 上连续且周 期为 1. 并且根据 $\int_0^1 b_{n-1}(x)dx = b_n(1) = b_n(0) = 0$ 我们可唯一确定 $b_{n-1}(x)$ 在 [0,1) 上的表达式. 从而可以唯一 确定 $b_n(x)$ 之前的所有 $b_{n-1}(x)$ 在 \mathbb{R} 上的表达式. 又因为这个过程可以无限地进行下去, 所以我们其实可以唯一 确定所有的 $b_n(x)$ 在 \mathbb{R} 上的表达式,方便我们后续可按照我们的需要对原积分进行多次分部积分.

根据上述 $b_n(x)$ 的定义和算法, 可知 $b_n(x)$ 是连续且周期为 1 的函数. 而连续的周期函数一定有界, 故一定存在 $M_n > 0$, 使得对 $\forall x \in \mathbb{R}$, 有 $|b_n(x)| \leq M_n$.

注 我们可以利用这些 $b_n(x)$ 不断地对原积分进行分部积分,得到更加精细的估计,而且这个过程可以一直进行下去.因此无论我们需要多么精确的估计,都可以通过这样的分部积分方式来得到.具体例题见例题 4.4,例题 4.38. 结论 我们计算一些 $b_n(x)$ 以备用:

$$b_1(x) = x - \frac{1}{2}, x \in [0, 1).$$

$$b_1(x) = x - [x] - \frac{1}{2}, |b_1(x)| \le \frac{1}{2}, x \in \mathbb{R}.$$

$$b_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0, 1).$$

$$b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, |b_2(x)| \le \frac{1}{12}, x \in \mathbb{R}.$$

$$b_3(x) = \frac{x^3}{6} - \frac{x^2}{4} + \frac{x}{12}, x \in [0, 1).$$

$$b_3(x) = \frac{(x - [x])^3}{6} - \frac{(x - [x])^2}{4} + \frac{(x - [x])}{12}, |b_3(x)| \leqslant \frac{2\sqrt{3} - 3}{36}, x \in \mathbb{R}.$$

$$b_4\left(x\right) = \frac{x^4}{24} - \frac{x^3}{12} + \frac{x^2}{24} - \frac{1}{720}, x \in [0, 1].$$

$$b_4\left(x\right) = \frac{\left(x - [x]\right)^4}{24} - \frac{\left(x - [x]\right)^3}{12} + \frac{\left(x - [x]\right)^2}{24} - \frac{1}{720}, |b_4\left(x\right)| \leqslant \frac{1}{720}, x \in \mathbb{R}.$$

例题 **4.38** 估计 $\sum_{k=1}^{n} \frac{1}{k}, n \to \infty$.

解解法一:一方面,对 $\forall n \in \mathbb{N}$ 我们有

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{k} dx \geqslant \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1).$$

另一方面, 对 $\forall n \in \mathbb{N}$ 我们也有

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k} dx \le 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} dx = 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln n.$$

于是对 $\forall n \in \mathbb{N}$ 都有

$$\ln(n+1) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant 1 + \ln n.$$

从而对 $\forall n \in \mathbb{N}$ 都有

$$\frac{\ln(n+1)}{\ln n} \leqslant \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln n} \leqslant \frac{1}{\ln n} + 1.$$

令 $n \to \infty$, 由夹逼准则可知 $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = 1$. 即 $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n, n \to \infty$.

解法二(E-M 公式): 由E-M 公式可得

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n} \frac{1}{x} dx + \frac{1 + \frac{1}{n}}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx. \tag{4.19}$$

因为
$$\int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx \leqslant \int_{1}^{n} \frac{1}{2x^{2}} dx$$
,而 $\lim_{n \to \infty} \int_{1}^{n} \frac{1}{2x^{2}} dx$ 存在,所以可设
$$\lim_{n \to \infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx \triangleq C < \infty.$$
于是 $\int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx = C - \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$. 从而
$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$
$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$
$$\leqslant \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$
$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{1}{2x^{2}} dx$$
$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{1}{2n}.$$

故 $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2} - C + \frac{1}{2n} + O\left(\frac{1}{n}\right) = \ln n + \frac{1}{2} - C + +O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$ 此 时令 $\frac{1}{2} - C = \frac{1}{2} - \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^2} dx \triangleq \gamma$ (欧 拉常教). 则

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$$
(4.20)

由 $b_n(x)$ 的构造和分部积分可知,上述结果只是对 $\sum_{k=1}^n \frac{1}{k}$ 的一个最粗糙的估计。实际上,我们可以利用分部积分得到更加精细的估计。记 $b_1(x) = x - [x] - \frac{1}{2}$, $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}$. 则不难发现 $b_2(x)$ 是连续且周期为 1 的函数, $b_2(x)$ 是 $b_1(x)$ 在 \mathbb{R} 上的一个原函数,并且 $|b_2(x)| \leq \frac{1}{12}$, $x \in \mathbb{R}$. 而由 Dirichlet 判别法可知 $\int_1^{+\infty} \frac{b_1(x)}{x^2} dx$ 收敛,于是设 $\int_1^{+\infty} \frac{b_1(x)}{x^2} dx \triangleq C$. 从而再对(4.19)分部积分得到

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \left(\int_{1}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx \right)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{1}{x^{2}} db_{2}(x)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{b_{2}(x)}{x^{2}} \Big|_{n}^{+\infty} + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}} . (4.19)$$

$$(4.21)$$

又由 $|b_2(x)| \leqslant \frac{1}{12}, \forall x \in \mathbb{R}$ 可知

$$\left|2\int_{n}^{+\infty}\frac{b_{2}\left(x\right)}{x^{3}}dx-\frac{b_{2}\left(n\right)}{n^{2}}\right|\leqslant2\left|\int_{n}^{+\infty}\frac{b_{2}\left(x\right)}{x^{3}}dx\right|+\frac{\left|b_{2}\left(n\right)\right|}{n^{2}}\leqslant\frac{1}{6}\left|\int_{n}^{+\infty}\frac{1}{x^{3}}dx\right|+\frac{1}{12n^{2}}=\frac{1}{6n^{2}},\forall n\in\mathbb{N}.$$

即

$$2\int_{n}^{+\infty} \frac{b_{2}\left(x\right)}{x^{3}} dx - \frac{b_{2}\left(n\right)}{n^{2}} = O\left(\frac{1}{n^{2}}\right), \forall n \in \mathbb{N}. \tag{4.22}$$

再结合(4.21)和(4.22)式可得

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - C + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

记 $\gamma \triangleq \frac{1}{2} - C(\gamma)$ 为欧拉常数),则我们就得到了比(4.20)式更加精细的估计:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

例题 4.39 计算

$$\lim_{m\to\infty}\sum_{n=1}^m (-1)^{n-1}\,\frac{\ln n}{n}.$$

室记 估计交错级数的想法:将原交错级数分奇偶子列,观察奇偶子列的关系(一般奇偶子列的阶相同),再估计奇子列或偶子列,进而得到原级数的估计.

解 注意到原级数的奇子列有

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + (-1)^{2m-2} \frac{\ln (2m-1)}{2m-1} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + \frac{\ln (2m-1)}{2m-1}, \forall m \in \mathbb{N}.$$

从而

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + o(1), m \to +\infty.$$
 (4.23)

因此我们只需要估计原级数的偶子列 $\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n}$ 即可. 又注意到

$$\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{m} \left[(-1)^{2n-2} \frac{\ln(2n-1)}{2n-1} + (-1)^{2n-1} \frac{\ln 2n}{2n} \right] = \sum_{n=1}^{m} \left[\frac{\ln(2n-1)}{2n-1} - \frac{\ln 2n}{2n} \right]$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} = \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{n}$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n}.$$
(4.24)

由例题例题 4.38可知

$$\sum_{m=1}^{m} \frac{\ln 2}{n} = \ln 2(\ln m + \gamma + o(1)) = \ln 2 \cdot \ln m + \gamma \ln 2 + o(1), m \to +\infty.$$
 (4.25)

又由E-M 公式可知

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \int_{1}^{m} \frac{\ln x}{x} dx + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx$$

$$= \frac{\ln m}{2m} + \frac{1}{2} \ln^{2} m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx. \tag{4.26}$$

因为

$$\left| \int_1^m \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx \right| \leqslant \frac{1}{2} \left| \int_1^m \frac{1 - \ln x}{x^2} dx \right|, \forall m \in \mathbb{N}.$$

并且
$$\int_{1}^{m} \frac{1 - \ln x}{x^{2}} dx$$
 收敛, 所以 $\lim_{m \to +\infty} \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C < \infty$. 即
$$\int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C + o(1), m \to +\infty. \tag{4.27}$$

于是结合(4.26)(4.27)式可得

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \frac{1}{2} \ln^2 m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx$$
$$= o(1) + \frac{1}{2} \ln^2 m + C + o(1)$$

$$= \frac{1}{2} \ln^2 m + C + o(1), m \to +\infty. \tag{4.28}$$

因此由(4.24)(4.25)(4.28)式可得

$$\begin{split} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} &= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n} = \frac{1}{2} \ln^2 2m + C + o(1) - \left[\ln 2 \cdot \ln m + \gamma \ln 2 + o(1) + \frac{1}{2} \ln^2 m + C + o(1) \right] \\ &= \frac{1}{2} \ln^2 2m - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) = \frac{1}{2} (\ln 2 + \ln m)^2 - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) \\ &= \frac{\ln^2 2}{2} - \gamma \ln 2 + o(1), m \to +\infty. \end{split}$$

即 $\lim_{m \to +\infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2$. 再结合(4.23)式可得

$$\lim_{m \to +\infty} \sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to +\infty} \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$$

故
$$\lim_{m \to +\infty} \sum_{n=1}^{m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$$

例题 4.40 设 $f \in C^1[1, +\infty)$ 且 $\int_1^\infty |f'(x)| dx < \infty$, 证明 $\int_1^\infty f(x) dx$ 收敛等价于 $\lim_{n \to \infty} \sum_{k=1}^n f(k)$ 存在.

Ŷ 笔记 关键想法参考:E-M 公式和命题 9.1.

证明 由E-M 公式可知

$$\sum_{k=1}^{n} f(k) = \frac{f(1) + f(n)}{2} + \int_{1}^{n} f(x)dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) f'(x)dx. \tag{4.29}$$

注意到 $0 \le \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \right| \le \frac{1}{2} |f'(x)|$,并且 $\int_1^\infty |f'(x)| dx$ 收敛,因此 $\int_1^\infty \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \right| dx$ 也收敛. 从 而 $\int_1^\infty \left(x - [x] - \frac{1}{2} \right) f'(x) dx$ 也收敛,故由 Henie 归结原则可知 $\lim_{n \to +\infty} \int_1^n \left(x - [x] - \frac{1}{2} \right) f'(x) dx$ 存在.

(1) 若 $\int_1^\infty f(x)dx$ 存在, 则由 Henie 归结原则可知 $\lim_{n\to+\infty}\int_1^n f(x)dx$ 存在. 又由 $\int_1^\infty |f'(x)|dx < \infty$ 可知 $\int_1^\infty f'(x)dx$ 收敛. 于是

$$\lim_{x \to +\infty} [f(x) - f(1)] = \lim_{x \to +\infty} \int_{1}^{x} f'(y) dy = \int_{1}^{\infty} f'(x) dx < \infty.$$

由此可知 $\lim_{x\to +\infty} f(x)$ 存在. 从而由 Henie 归结原则可知 $\lim_{n\to +\infty} f(n)$ 也存在. 又由 $\lim_{n\to +\infty} \int_1^n \left(x-[x]-\frac{1}{2}\right) f'(x) dx$ 存在, 再结合(4.29)式可知 $\lim_{n\to +\infty} \sum_{i=1}^n f(k)$ 存在.

(2) 若 $\lim_{n \to +\infty} \sum_{k=1}^{n} f(k)$ 存在,则 $\lim_{x \to +\infty} f(x) = \lim_{n \to +\infty} f(n) = 0$. 又由 $\lim_{n \to +\infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) f'(x) dx$ 存在,再结

合(4.29)式可知 $\lim_{n \to +\infty} \int_{1}^{n} f(x)dx$ 也存在. 于是对 $\forall x \ge 1$, 一定存在 $n \in \mathbb{N}$, 使得 $n \le x < n+1$. 从而可得

$$\int_{1}^{x} f(x)dx = \int_{1}^{n} f(x)dx + \int_{n}^{x} f(x)dx.$$
 (4.30)

并且

$$\int_{n}^{x} f(x)dx \le \int_{n}^{x} |f(x)| dx \le \int_{n}^{n+1} |f(x)| dx \le \sup_{y \ge n} |f(y)|.$$
 (4.31)

对(4.31)式两边同时令 $x \to +\infty$,则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to +\infty}\int_n^x f(x)dx=0$. 于是再对(4.30)式两边同时令 $x\to +\infty$, 则 $n\to +\infty$. 从而可得

$$\int_{1}^{\infty} f(x)dx = \lim_{x \to +\infty} \int_{1}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx + \lim_{x \to +\infty} \int_{n}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx.$$

又因为此时 $\lim_{n\to+\infty} \int_1^n f(x)dx$ 存在, 所以 $\int_1^\infty f(x)dx$ 也存在.

例题 4.41 用积分放缩法得到 $\sum_{k=2}^{n} \frac{1}{k \ln k}, n \to \infty$ 的等价无穷大.

证明 注意到对∀n≥2且n∈N,都有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{k \ln k} dx \geqslant \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x \ln x} dx = \int_{2}^{n+1} \frac{1}{x \ln x} dx = \ln \ln(n+1) - \ln \ln 2. \tag{4.32}$$

同时,也有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k \ln k} dx \le \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x \ln x} dx = \int_{1}^{n} \frac{1}{x \ln x} dx = \ln \ln n.$$
 (4.33)

从而对 $\forall n \ge 2$ 且 $n \in \mathbb{N}$, 由(4.32)(4.33)式可得

$$\ln \ln (n+1) - \ln \ln 2 \leqslant \sum_{k=2}^{n} \frac{1}{k \ln k} \leqslant \ln \ln n.$$

于是对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$, 我们有

$$\frac{\ln \ln (n+1) - \ln \ln 2}{\ln \ln n} \leqslant \frac{\sum\limits_{k=2}^{n} \frac{1}{k \ln k}}{\ln \ln n} \leqslant 1.$$

例题 4.42 用积分放缩法得到 $\sum_{n=1}^{\infty} x^{n^2}, x \to 1^-$ 的等价无穷大.

证明 注意到对 $\forall x \in (0,1)$, 固定 x, 都有

$$\sum_{n=1}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{n^2} dt \geqslant -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{t^2} dt = -1 + \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt. \tag{4.34}$$

同时也有

$$\sum_{n=1}^{\infty} x^{n^2} = \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{n^2} dt \leqslant \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{t^2} dt = \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt.$$
 (4.35)

又由于 $x \in (0,1)$, 因此 $\ln x \in (-\infty,0)$. 从而

$$\int_0^\infty x^{t^2} dt = \int_0^\infty e^{t^2 \ln x} dt \xrightarrow{\frac{\partial y = t\sqrt{-\ln x}}{}} \frac{1}{\sqrt{-\ln x}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

故 $\int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}$ 收敛. 于是由 Henie 归结原则可知

$$\lim_{n \to \infty} \int_0^n x^{t^2} dt = \int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$
 (4.36)

从而对 $\forall x \in (0,1)$, 结合(4.34)(4.35)(4.36)式可得

$$-1 + \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} = -1 + \lim_{n \to \infty} \int_{1}^{n} x^{t^{2}} dt \leqslant \sum_{n=1}^{\infty} x^{n^{2}} \leqslant \lim_{n \to \infty} \int_{0}^{n} x^{t^{2}} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

即

$$-\sqrt{-\ln x} + \frac{\sqrt{\pi}}{2} \leqslant \sqrt{-\ln x} \sum_{n=1}^{\infty} x^{n^2} \leqslant \frac{\sqrt{\pi}}{2}, \forall x \in (0,1).$$

令
$$x \to 1^-$$
, 则 $\lim_{x \to 1^-} \sqrt{-\ln x} \sum_{n=1}^{\infty} x^{n^2} = \frac{\sqrt{\pi}}{2}$. 即 $\sum_{n=1}^{\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}, x \to 1^-$. 又由 $\ln(1+x) \sim x, x \to 0$ 可知 $-\ln x = -\ln(1+x-1) \sim 1-x, x \to 1^-$. 因此
$$\sum_{n=1}^{\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} \sim \frac{\sqrt{\pi}}{2\sqrt{1-x}}, x \to 1^-.$$

4.3 Stirling 公式

对于阶乘问题, 最好用的估计工具就是 Stirling 公式. 与组合数相关的极限问题, 都可以尝试将其全部转化为阶乘然后估计大小.

定理 4.4 (Stirling 公式)

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

证明 由E-M 公式可知, 对 $\forall n \in \mathbb{N}$, 都有

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + \int_{1}^{n} \ln x \, dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} \, dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} \, dx. \tag{4.37}$$

由 Dirichlet 判别法可知, $\int_{1}^{+\infty} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx$ 收敛. 则可设 $\lim_{n\to\infty} \int_{1}^{n} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx = \int_{1}^{+\infty} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx \triangleq C_{0} < \infty$. 记 $b_{1}(x) = x-[x]-\frac{1}{2}$,再令 $b_{2}(x) = \frac{1}{2}(x-[x])^{2}-\frac{1}{2}(x-[x])+\frac{1}{12}$, $x \in \mathbb{R}$. 则不难发现 $b_{2}(x)$ 在 $x \in \mathbb{R}$ 上连续且周期为 1,并且

$$b_2(x) = \int_0^x b_1(y)dy, \quad |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

从而对(4.37)式使用分部积分可得

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \frac{b_{1}(x)}{x} dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{+\infty} \frac{b_{1}(x)}{x} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x} dx$$

$$= \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \int_{n}^{+\infty} \frac{1}{x} db_{2}(x) = \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \frac{b_{2}(x)}{x} \Big|_{n}^{+\infty} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx$$

$$= \left(n + \frac{1}{2}\right) \ln n - n + 1 + C_{0} + \frac{b_{2}(n)}{n} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx, \forall n \in \mathbb{N}.$$

又因为 $|b_2(x)| \leq \frac{1}{12}, \forall x \in \mathbb{R}$. 所以对 $\forall n \in \mathbb{N}$, 我们有

注意到

$$(2n)!! = 2^n n!, n = 0, 1, 2, \cdots$$
 (4.39)

于是由 Wallis 公式: $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty$. 再结合(4.38)(4.39)可得

$$\begin{split} \sqrt{\pi} &= \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!!\sqrt{n}} = \lim_{n \to \infty} \frac{\left[(2n)!!\right]^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! \cdot n!}{(2n)!\sqrt{n}} \\ &= \lim_{n \to \infty} \frac{4^n n!}{\sqrt{n} \prod_{k=1}^n k} \sum_{k=1}^n \lim_{n \to \infty} \frac{4^n n! e^{\sum_{k=1}^n \ln k}}{\sqrt{n} e^{\sum_{k=1}^n \ln k}} = \lim_{n \to \infty} \frac{4^n n! e^{\left(n + \frac{1}{2}\right) \ln n - n + C + O\left(\frac{1}{n}\right)}}{\sqrt{n} e^{\left(2n + \frac{1}{2}\right) \ln 2n - 2n + C + O\left(\frac{1}{n}\right)}} \\ &= \lim_{n \to \infty} \frac{4^n n! e^{\left(n + \frac{1}{2}\right) \ln n - n + C + O\left(\frac{1}{n}\right) - \left[\left(2n + \frac{1}{2}\right) \ln 2n - 2n + C + O\left(\frac{1}{n}\right)\right]}}{\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! e^{-n \ln n + n - \left(2n + \frac{1}{2}\right) \ln 2 + O\left(\frac{1}{n}\right)}}{\sqrt{n}} \\ &= \lim_{n \to \infty} \frac{4^n n! 2^{-2n - \frac{1}{2}} e^n}{n^n \sqrt{n}} e^{O\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{2n}} e^{O\left(\frac{1}{n}\right)}. \end{split}$$

从而 $\lim_{n\to\infty}\frac{n!e^n}{n^n\sqrt{2n}}=\frac{\sqrt{\pi}}{\lim\limits_{n\to\infty}e^{O\left(\frac{1}{n}\right)}}=\sqrt{\pi}.$ 因此 $\lim_{n\to\infty}\frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n}=\lim_{n\to\infty}\frac{n!e^n}{n^n\sqrt{n}}=\sqrt{2\pi}.$ 故 $n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^n,n\to\infty.$

例题 4.43 设 n, v 为正整数且 1 < v < n,满足 $\lim_{n \to \infty} \frac{v - \frac{n}{2}}{\sqrt{n}} = \lambda > 0$,证明: $\lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^v = \sqrt{\frac{2}{\pi}} e^{-2\lambda^2}$ 。

证明 根据条件,显然在 $n\to\infty$ 时 v 也会趋于无穷,设 $v=\frac{n}{2}+w\sqrt{n}$,则 $w=\frac{v-\frac{n}{2}}{\sqrt{n}}$,从而 $\lim_{n\to\infty}w=\lambda>0$,则有

$$\frac{\sqrt{n}}{2^n}C_n^{\nu} = \frac{\sqrt{n}}{2^n} \frac{n!}{\nu!(n-\nu)!}, n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

从而

$$\lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^{\nu} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{n!}{\nu! (n-\nu)!} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi \nu} \left(\frac{\nu}{e}\right)^{\nu} \sqrt{2\pi (n-\nu)} \left(\frac{n-\nu}{e}\right)^{n-\nu}}$$

$$= \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \frac{n^n}{2^n \nu^{\nu} (n-\nu)^{n-\nu}} \frac{n}{\sqrt{\nu (n-\nu)}} = \sqrt{\frac{2}{\pi}} e^{-2\lambda^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^{\nu} \left(\frac{n}{2} - w\sqrt{n}\right)^{n-\nu}} \frac{n}{2\sqrt{\nu (n-\nu)}} = e^{-2\lambda^2}.$$

又

$$\lim_{n\to\infty} \frac{n}{2\sqrt{v(n-v)}} = \lim_{n\to\infty} \frac{n}{2\sqrt{\left(\frac{n}{2} + w\sqrt{n}\right)\left(\frac{n}{2} - w\sqrt{n}\right)}} = \lim_{n\to\infty} \frac{1}{\sqrt{1 - \frac{4w^2}{\sqrt{n}}}} = 1,$$

故

$$\lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^v \left(\frac{n}{2} - w\sqrt{n}\right)^{n-v}} \frac{n}{2\sqrt{v(n-v)}} = e^{-2\lambda^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)}}{2^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)} \left(\frac{n}{2} + w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(\frac{n}{2} - w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)}}{\left(n + 2w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(n - 2w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{1}{\left(1 + \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} + w\sqrt{n}} \left(1 - \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\Leftrightarrow \lim_{n \to \infty} \left[\left(\frac{n}{2} + w\sqrt{n}\right) \ln\left(1 + \frac{2w}{\sqrt{n}}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \ln\left(1 - \frac{2w}{\sqrt{n}}\right)\right] = 2\lambda^2. \tag{4.40}$$

又由 Taylor 公式可得

$$\left(\frac{n}{2} + w\sqrt{n}\right) \ln\left(1 + \frac{2w}{\sqrt{n}}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \ln\left(1 - \frac{2w}{\sqrt{n}}\right)$$

$$= \left(\frac{n}{2} + w\sqrt{n}\right) \left(\frac{2w}{\sqrt{n}} - \frac{2w^2}{n} + O\left(\frac{1}{n\sqrt{n}}\right)\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \left(-\frac{2w}{\sqrt{n}} - \frac{2w^2}{n} + O\left(\frac{1}{n\sqrt{n}}\right)\right)$$

$$= w\sqrt{n} + w^2 + O\left(\frac{1}{\sqrt{n}}\right) - w\sqrt{n} + w^2 + O\left(\frac{1}{\sqrt{n}}\right) = 2w^2 + O\left(\frac{1}{\sqrt{n}}\right), n \to \infty.$$

再结合 $\lim_{n\to\infty} w = \lambda$ 可知(4.40)式成立, 因此结论得证.

4.4 Abel 变换

设 $\{a_n\}_{n=1}^N, \{b_n\}_{n=1}^N$ 是数列,则有恒等式

$$\sum_{k=1}^{N} a_k b_k = (a_1 - a_2)b_1 + \dots + (a_{N-1} - a_N)(b_1 + b_2 + \dots + b_{N-1}) + a_N(b_1 + b_2 + \dots + b_N)$$

$$= \sum_{j=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i.$$

笔记 Abel 变换的证明想法"强行裂项"是一种很重要的思想. 证明 为了计算 $\sum_{i=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i$,我们来强行构造裂项,差什么就给他补上去再补回来,即:

$$\begin{split} &\sum_{j=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^j b_i + a_N \sum_{i=1}^N b_i = \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^j b_i - a_{j+1} \sum_{i=1}^j b_i \right) + a_N \sum_{i=1}^N b_i \\ &= \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^j b_i - a_{j+1} \sum_{i=1}^{j+1} b_i \right) + \sum_{j=1}^{N-1} \left(a_{j+1} \sum_{i=1}^{j+1} b_i - a_{j+1} \sum_{i=1}^j b_i \right) + a_N \sum_{i=1}^N b_i \\ &= a_1 b_1 - a_N \sum_{i=1}^N b_i + \sum_{j=1}^{N-1} a_{j+1} b_{j+1} + a_N \sum_{i=1}^N b_i = \sum_{j=1}^N a_j b_j. \end{split}$$

命题 4.3 (经典乘积极限结论)

设 $a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n \geqslant 0$ 且 $\lim_{n \to \infty} a_n = 0$, 极限 $\lim_{n \to \infty} \sum_{i=1}^n a_k b_k$ 存在. 证明

$$\lim_{n\to\infty}(b_1+b_2+\cdots+b_n)a_n=0.$$

笔记 为了估计 $\sum_{i=1}^{n} b_{j}$, 前面的有限项不影响. 而要用上极限 $\sum_{i=1}^{\infty} a_{n}b_{n}$ 收敛, 自然想到 $\sum_{i=1}^{n} b_{j} = \sum_{i=1}^{n} \frac{b_{j}a_{j}}{a_{j}}$ 和Abel 变 换. 而 a_j 的单调性能用在Abel 变换之后去绝对值.

证明 不妨设 $a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n > 0$. 则由于级数 $\sum_{i=1}^{\infty} a_n b_n$ 收敛, 存在 $N \in \mathbb{N}$, 使得

$$\left| \sum_{i=N+1}^{m} a_i b_i \right| \leqslant \varepsilon, \forall m \geqslant N+1.$$

当 $n \ge N + 1$, 由Abel 变换, 我们有

$$\begin{split} \left| \sum_{j=N+1}^{n} b_{j} \right| &= \left| \sum_{j=N+1}^{n} \frac{a_{j} b_{j}}{a_{j}} \right| = \left| \sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right) \sum_{i=N+1}^{j} a_{i} b_{i} + \frac{1}{a_{n}} \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \cdot \left| \sum_{i=N+1}^{j} a_{i} b_{i} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \cdot \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \varepsilon \left[\sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j+1}} - \frac{1}{a_{j}} \right) + \frac{1}{a_{n}} \right] = \varepsilon \left(\frac{2}{a_{n}} - \frac{1}{a_{N+1}} \right). \end{split}$$

因此我们有

$$\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^nb_j\right|\leqslant\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^Nb_j\right|+\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=N+1}^nb_j\right|\leqslant\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^Nb_j\right|+\varepsilon\overline{\lim_{n\to\infty}}\left(2-\frac{a_n}{a_{N+1}}\right)=2\varepsilon.$$

由 ε 任意性即可得 $\overline{\lim_{n\to\infty}} \left| a_n \sum_{j=1}^n b_j \right| = 0$,于是就证明了 $\lim_{n\to\infty} (b_1 + b_2 + \dots + b_n) a_n = 0$.

例题 4.44 设 $\lim_{n\to\infty} x_n = x$, 证明

$$\lim_{n\to\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x.$$

 $rac{\mathfrak{S}}{2}$ 笔记 可以不妨设 x=0 的原因: 假设当 x=0 时, 结论成立, 则当 $x\neq 0$ 时, 令 $y_n=x_n-x$, 则 $\lim_{n\to +\infty}y_n=0$. 从而由假设可知

$$0 = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k y_k = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k (x_k - x) = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k - x \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k - x.$$

于是
$$\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x.$$

证明 不妨设 x = 0, 则对 $\forall N > 0$, 当 n > N 时, 我们有

$$0 \leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{n} C_{n}^{k} x_{k} \right| = \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \left| \frac{1}{2^{n}} \sum_{k=N+1}^{n} C_{n}^{k} x_{k} \right|$$

$$\leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \frac{1}{2^{n}} \sum_{k=N+1}^{n} C_{n}^{k} \sup_{k \geqslant N+1} |x_{k}| \leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \frac{1}{2^{n}} \sum_{k=0}^{n} C_{n}^{k} \sup_{k \geqslant N+1} |x_{k}|$$

$$= \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \sup_{k \geqslant N+1} |x_{k}|$$

由 N 的任意性, 上式两边令 $N \to +\infty$, 则

$$\overline{\lim_{n \to +\infty}} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \overline{\lim}_{N \to +\infty} \sup_{k \geqslant N+1} |x_k|.$$

又根据上极限的定义, 可知 $\lim_{N\to +\infty} \sup_{k>N+1} |x_k| = \overline{\lim}_{n\to +\infty} |x_n| = \lim_{n\to +\infty} x_n = 0.$

从而

$$0 \leqslant \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \overline{\lim_{n \to +\infty}} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant 0.$$

$$\text{th} \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| = 0. \text{ \mathbb{R} $\widehat{\phi}$ \mathbb{M} $\widehat{\phi}$ $\widehat{\psi}$ $\widehat{$$

4.5 Stolz 定理

4.5.1 数列 Stolz 定理

定理 4.6 (Stolz 定理)

(a): 设 x_n 是严格递增数列且满足 $\lim_{n\to\infty} x_n = +\infty$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}.$$

(b): 设 x_n 是严格递减数列且满足 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, 则

$$\varliminf_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}\leqslant\varliminf_{n\to\infty}\frac{y_n}{x_n}\leqslant\varlimsup_{n\to\infty}\frac{y_n}{x_n}\leqslant\varlimsup_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}.$$

(c): 分别在 (a),(b) 的条件基础上, 若还有 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ , 则

$$\lim_{n \to \infty} \frac{y_n}{x_n} = \lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
 (4.41)

注 注意 (c) 由 (a),(b) 是显然的, 且只有 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ 时才(4.41)式成立. 他和我们的洛必达法则有一定的相似程度. 即Stolz 定理是离散的洛必达法则.

证明 我们仅证明 x_n 是严格递增数列且满足 $\lim_{n\to\infty}x_n=+\infty$ 和 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}<\infty$ 时有

$$\overline{\lim}_{n \to \infty} \frac{y_n}{x_n} \leqslant \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
(4.42)

记 $A \triangleq \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$,由上极限定义我们知道对任何 $\varepsilon > 0$,存在 $N \in \mathbb{N}$,使得 $\frac{y_{n+1} - y_n}{x_{n+1} - x_n} \leqslant A + \varepsilon, \forall n \geqslant N$. 利用 x_n 严格递增时,成立 $y_{n+1} - y_n \leqslant (A + \varepsilon)(x_{n+1} - x_n)$, $n \geqslant N$,然后求和得

$$\sum_{j=N}^{n-1} (y_{j+1} - y_j) \leqslant (A + \varepsilon) \sum_{j=N}^{n-1} (x_{j+1} - x_j), \forall n \geqslant N + 1.$$

即

$$y_n - y_N \le (A + \varepsilon)(x_n - x_N), \forall n \ge N + 1.$$

$$\overline{\lim_{n\to\infty}} \frac{y_n}{x_n} = \overline{\lim_{n\to\infty}} \frac{\frac{y_n}{x_n} - \frac{y_N}{x_n}}{1 - \frac{x_N}{x_n}} = \overline{\lim_{n\to\infty}} \frac{y_n - y_N}{x_n - x_N} \leqslant A + \varepsilon.$$

由 ε 任意性得到式(4.42).

命题 4.4 (Cauchy 命题)

若 $\lim y_n$ 存在或者为确定符号的 ∞ , 则有

$$\lim_{n\to\infty}\frac{y_1+y_2+\cdots+y_n}{n}=\lim_{n\to\infty}y_n.$$

\$

笔记 这个命题说明Stolz 定理是一种有效的把求和消去的降阶方法.

证明 容易由Stolz 定理的 (a)直接得出.

4.5.1.1 利用 Stolz 定理求数列极限

例题 4.45 计算

$$\lim_{n\to\infty} \frac{\ln n}{\ln \sum_{k=1}^n k^{2020}}.$$

笔记 本题计算过程中使用了 Lagrange 中值定理, 只是过程省略了而已 (以后这种过程都会省略). 证明 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (n+1) - \ln n}{\ln \sum_{k=1}^{n+1} k^{2020} - \ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{n})}{\ln \sum_{k=1}^{n+1} k^{2020}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln (1 + \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}})}.$$

又由Stolz 定理可知

$$\lim_{n \to \infty} \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{(n+2)^{2020} - (n+1)^{2020}}{(n+1)^{2020}} = \lim_{n \to \infty} \frac{2020 \cdot n^{2019}}{(n+1)^{2020}} = 0.$$

于是再利用Stolz 定理可得

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\ln\left(1 + \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}}\right)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n \cdot (n+1)^{2020}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n^{2021}}$$

$$= \lim_{n \to \infty} \frac{(n+1)^{2020}}{(n+1)^{2021} - n^{2021}} = \lim_{n \to \infty} \frac{(n+1)^{2020}}{2021 \cdot n^{2020}} = \frac{1}{2021}.$$

故
$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \frac{1}{2021}.$$

例题 4.46

- 1. 计算极限 $\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln n}$.
- 2. 证明下述极限存在 $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} \ln n\right)$.
- 3. 计算 $\lim_{n\to\infty} n \left(\sum_{k=1}^n \frac{1}{k} \ln n \gamma \right)$.

拿 笔记 注意, $\gamma \triangleq \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \approx 0.577 \cdots$ 是没有初等表达式的, 我们只能规定为一个数字, 这个数字叫做欧拉常数, 截至目前, 人类甚至都不知道 γ 会不会是一个分数.

1. 直接由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\ln (n+1) - \ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1.$$

2. 记
$$c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
,则

$$c_{n+1} - c_n = \frac{1}{n+1} + \ln n - \ln(n+1) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$$

$$\begin{split} &=\frac{1}{n+1}-\left[\frac{1}{n}+O\left(\frac{1}{n^2}\right)\right]=-\frac{1}{n(n+1)}+O\left(\frac{1}{n^2}\right)\\ &=O\left(\frac{1}{n^2}\right),n\to+\infty. \end{split}$$

从而存在常数 C>0, 使得 $|c_{n+1}-c_n|\leq \frac{C}{n^2}$, 又因为 $\sum_{n=1}^{\infty}\frac{C}{n^2}$ 收敛, 所以由比较原则可知 $\sum_{n=1}^{\infty}|c_{n+1}-c_n|$ 也收敛.

由于数列级数绝对收敛一定条件收敛, 因此 $\sum_{n=1}^{\infty} (c_{n+1}-c_n)$ 也收敛, 即 $\lim_{n\to\infty} \sum_{k=1}^{n} (c_{k+1}-c_k) = \lim_{n\to\infty} (c_{n+1}-c_1)$

存在. 故
$$\lim_{n\to\infty} c_n = \lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right)$$
 也存在.

3. 由Stolz 定理可得

$$\lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma \right) = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln \left(1 + \frac{1}{n} \right)}{\frac{1}{n+1} - \frac{1}{n}}$$

$$\lim_{n \to \infty} \frac{1}{\left(\frac{1}{n+1} - \frac{1}{n} \right) n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n} \right) \right] = \lim_{n \to \infty} \frac{1}{-\frac{1}{n(n+1)} \cdot n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n} \right) \right]$$

$$= -\lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2} \right) \right) \right] = \frac{1}{2}.$$

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right), n \to \infty.$$

例题 4.47 计算

1.
$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}$$
;

题 4.47 计算
$$1. \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n};$$

$$2. \lim_{n \to \infty} {\binom{n+1}{(n+1)!}} - \sqrt[n]{n!}.$$

1. 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \frac{e^{\sum_{k=1}^{\ln k} \ln k}}{n} = \lim_{n \to \infty} e^{\sum_{k=1}^{\ln \ln k} \ln n} - \ln n = e^{\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln k - n \ln n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln(n+1) - (n+1) \ln(n+1) + n \ln n}{1}} = e^{\lim_{n \to \infty} n \ln \frac{n+1}{n}}$$

$$= e^{\lim_{n \to \infty} n \left(\frac{n}{n+1} - 1\right)} = e^{-1}.$$

2. 注意到

$$\lim_{n \to \infty} \binom{n+1}{\sqrt{(n+1)!}} - \sqrt[n]{n!} = \lim_{n \to \infty} \left(e^{\sum_{k=1}^{n+1} \ln k} e^{\sum_{k=1}^{n} \ln k} - e^{\sum_{k=1}^{n} \ln k} e^{\sum_{k=1}^{n} \ln k} \right) = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} \left(e^{\sum_{k=1}^{n+1} \ln k} - \sum_{k=1}^{n} \ln k} - 1 \right).$$

由上一小题可知

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim_{n\to\infty}\frac{e^{\sum\limits_{k=1}^{\infty}\ln k}}{n}=e^{-1}.$$

故
$$e^{\sum_{k=1}^{n} \ln k} \sim \frac{n}{e}, n \to \infty$$
. 并且

$$\lim_{n \to \infty} \left(\frac{\sum_{k=1}^{n+1} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n} \right) = \lim_{n \to \infty} \frac{n \sum_{k=1}^{n+1} \ln k - (n+1) \sum_{k=1}^{n} \ln k}{n (n+1)} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)}$$

因此

$$\lim_{n \to \infty} \binom{n+1}{\sqrt{(n+1)!}} - \sqrt[n]{n!} = \lim_{n \to \infty} e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \binom{\sum_{k=1}^{n+1} \ln k}{e^{\frac{\sum_{k=1}^{n} \ln k}{n+1}} - \frac{\sum_{k=1}^{n} \ln k}{n}} - 1 = \lim_{n \to \infty} \frac{n}{e} \cdot \binom{\sum_{k=1}^{n} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n}$$

$$= \frac{1}{e} \lim_{n \to \infty} n \cdot \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)} = \frac{1}{e} \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n+1}$$

$$\frac{\text{Stolz } \cancel{\mathbb{R}}\cancel{\mathbb{Z}}}{e} \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - \sum_{k=1}^{n+1} \ln k - n \ln (n+1) + \sum_{k=1}^{n} \ln k \right]$$

$$= \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - (n+1) \ln (n+1) \right] = \frac{1}{e} \lim_{n \to \infty} (n+1) \ln \left(1 + \frac{1}{n+1} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \left[\frac{1}{n+1} + o\left(\frac{1}{n+1}\right) \right] = \frac{1}{e}.$$

例题 4.48 计算

$$\lim_{n\to\infty} \frac{\sum_{k=1}^n \ln C_n^k}{n^2}.$$

笔记 注意到,分子求和时,不是单纯的 $\sum_{k=0}^{n+1} \ln C_n^k - \sum_{k=0}^n \ln C_n^k$, 而是 $\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^n \ln C_n^k$.

结论
$$C_a^b = \frac{a}{b}C_{a-1}^{b-1}$$
.
解 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2} - (n-1)^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(\frac{n+1}{k}C_{n}^{k-1}\right) - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln (n+1) - \sum_{k=1}^{n} \ln k + \sum_{k=1}^{n} \left(\ln C_{n}^{k-1} - \ln C_{n}^{k}\right)}{2n} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k - \left(\ln C_{n}^{0} - \ln C_{n}^{n}\right)}{2n}$$

$$= \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{2n} = \frac{1}{2} \lim_{n \to \infty} \frac{(n+1) \ln (n+2) - n \ln (n+1) - \ln (n+1)}{1}$$

$$= \frac{1}{2} \lim_{n \to \infty} (n+1) \ln \frac{n+2}{n+1} = \frac{1}{2} \lim_{n \to \infty} (n+1) \left(\frac{n+2}{n+1} - 1\right) = \frac{1}{2}.$$

例题 **4.49** 求极限 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{n+1}{2^{k}(n+1-k)}$

笔记 倒序求和与顺序求和相等!(看到 n+1-k, 就应该想到倒序求和)

解 解法一(Stolz 公式):

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^k (n+1-k)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{n+1-k}k} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{2^k}{k}}{\frac{2^{n+1}}{n+1}} = \lim_{n \to \infty} \frac{\frac{2^n}{n}}{\frac{2^{n+1}}{n+1} - \frac{2^n}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{2}{n+1} - \frac{1}{n}} = 1.$$

解法二(和式内部对 n 可求极限(极限号与求和号可换序)):一方面,注意到对∀N∈N+,都有

$$\sum_{k=1}^{n} \frac{n+1}{2^{k}(n+1-k)} \geqslant \sum_{k=1}^{N} \frac{n+1}{2^{k}(n+1-k)}, \forall n > N.$$

上式两边同时令 $n \to \infty$ 并取下极限,得到

$$\varliminf_{n \to \infty} \sum_{k=1}^n \frac{n+1}{2^k (n+1-k)} \geqslant \varliminf_{n \to \infty} \sum_{k=1}^N \frac{n+1}{2^k (n+1-k)} = \sum_{k=1}^N \varliminf_{n \to \infty} \frac{n+1}{2^k (n+1-k)} = \sum_{k=1}^N \frac{1}{2^k} = \frac{\frac{1}{2} (1-\frac{1}{2^N})}{1-\frac{1}{2}}, \forall N \in \mathbb{N}_+.$$

令
$$N \to \infty$$
,则 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^k (n+1-k)} \geqslant \lim_{N \to \infty} \frac{\frac{1}{2} (1 - \frac{1}{2^N})}{1 - \frac{1}{2}} = 1.$ 另一方面,我们有

$$\sum_{k=1}^{n} \frac{n+1}{2^{k}(n+1-k)} \leqslant \sum_{k=1}^{n} \frac{1}{2^{k}(n+1-n)} = \sum_{k=1}^{n} \frac{1}{2^{k}} = \frac{\frac{1}{2}(1-\frac{1}{2^{n}})}{1-\frac{1}{2}}, \forall n \in \mathbb{N}_{+}.$$

上式两边同时令 $n \to \infty$ 并取上极限,得到

$$\overline{\lim}_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^k (n+1-k)} \leqslant \overline{\lim}_{n \to \infty} \frac{\frac{1}{2} (1 - \frac{1}{2^n})}{1 - \frac{1}{2}} = 1.$$

故

$$1\leqslant \varliminf_{n\to\infty}\sum_{k=1}^n\frac{n+1}{2^k(n+1-k)}\leqslant \varlimsup_{n\to\infty}\sum_{k=1}^n\frac{n+1}{2^k(n+1-k)}\leqslant 1.$$

$$\mathbb{F}^{p} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{k}(n+1-k)} = 1.$$

例题 **4.50** 求极限 $\lim_{n\to\infty} n(H_n - \ln n - \gamma)$,其中 γ 为欧拉常数, $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ 。 证明

$$\begin{split} \lim_{n \to \infty} n(H_n - \ln n - \gamma) &= \lim_{n \to \infty} \frac{H_n - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{H_{n+1} - H_n - \ln(n+1) + \ln n}{\frac{1}{n+1} - \frac{1}{n}} \\ &= \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n})}{-\frac{1}{n^2}} = \lim_{n \to \infty} n^2 \left(\ln(1 + \frac{1}{n}) - \frac{1}{n+1} \right) = \lim_{n \to \infty} n^2 \left(\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n+1} \right) = \frac{1}{2} \end{split}$$

 \mathbf{i} 类似的,你可以继续计算 $\lim_{n\to\infty}\left(n(H_n-\ln n-\gamma)-\frac{1}{2}\right)$,并且仅用 stolz 公式就能证明存在一列 c_1,\cdots,c_k 使得

$$H_n = \ln n + \gamma + \frac{c_1}{n} + \frac{c_2}{n^2} + \dots + \frac{c_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right), n \to \infty.$$

例题 **4.51** 求极限 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1+\frac{k}{n}}$.

全 笔记 这题也可以凑定积分定义是显然的。

证明

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1 + \frac{k}{n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \sqrt{n+k}}{n\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2n+1} + \sqrt{2n+2} - \sqrt{n+1}}{\frac{3}{2}\sqrt{n}} = \frac{2}{3}(2\sqrt{2} - 1).$$

4.5.1.2 利用 Stolz 定理求抽象数列极限

例题 4.52 设 $x_1 > 0, x_{n+1} = x_n + \frac{1}{x_n \sqrt{n}}$, 求极限 $\lim_{n \to \infty} n^{-\frac{1}{4}} x_n$.

证明 归纳易证 x_n 单调递增, 如果 x_n 有界则设 $x_n \leq A < \infty$, 代入条件可知 $x_{n+1} - x_n = \frac{1}{\sqrt{nx_n}} \geq \frac{1}{A\sqrt{n}}$, 从而 $x_{n+1} = \sum_{k=1}^{n} (x_{k+1} - x_k) \geqslant \sum_{k=1}^{n} \frac{1}{A\sqrt{n}}$. 而这个不等式右边发散, 故 x_n 也发散, 矛盾. 所以 x_n 单调递增趋于无穷, 下面

用 Stolz 公式求极限

$$\lim_{n \to \infty} \frac{x_n^2}{\sqrt{n}} = \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{(x_{n+1} - x_n)(x_{n+1} + x_n)}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{\frac{1}{x_n \sqrt{n}} \left(2x_n + \frac{1}{x_n \sqrt{n}}\right)}{\frac{1}{2\sqrt{n}}} = 2\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2 \sqrt{n}}\right) = 4.$$

因此所求的极限是2.

注

1. 直接用 stolz 会做不出来:

$$\lim_{n \to \infty} \frac{x_n}{n^{\frac{1}{4}}} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\frac{1}{4}n^{-\frac{3}{4}}} = \lim_{n \to \infty} \frac{4\frac{1}{x_n\sqrt{n}}}{n^{-\frac{3}{4}}} = 4\lim_{n \to \infty} \frac{n^{-\frac{1}{4}}}{x_n}.$$

设 $\lim_{n\to\infty} \frac{x_n}{n^{\frac{1}{2}}} = A$, 则由上式可得 $A = \frac{4}{A}$, 解得 A = 2.

但是注意我们事先并没有论证上式最后一个极限存在, 所以不满足 Stolz 定理的条件, 这导致前面的等号都 不一定成立. 因此不可以"解方程"得到所求极限为 2.

2. 上述证明中最后一步求原式平方的极限而不求其他次方的极限的原因: 我们也可以待定系数自己探索出数 列的阶并算出这样的结果, 待定 a,b>0, 则由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n^a}{n^b} = \lim_{n \to \infty} \frac{x_{n+1}^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n\sqrt{n}}\right)^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \left(\left(1 + \frac{1}{x_n^2\sqrt{n}}\right)^a - 1\right)}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \frac{a}{x_n^2\sqrt{n}}}{bn^{b-1}} = \frac{a}{b} \lim_{n \to \infty} \frac{x_n^{a-2}}{n^{b-\frac{1}{2}}}.$$

我们希望上式最后一个极限能够直接算出具体的数, 因此令 $a = 2, b = \frac{1}{2}$, 则 $\lim_{n \to \infty} \frac{x_n^a}{n^b} = \lim_{n \to \infty} \frac{x_n^2}{\sqrt{n}} = \frac{a}{b} = 4$. 故

实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty} \frac{x_n'}{\sqrt{n}}$ 即可.

类似题目的最后一步求的极限式都是通过这种待定系数的方式得到的, 并不是靠猜. 例题 **4.53** 设
$$k \geq 2$$
, $a_0 > 0$, $a_{n+1} = a_n + \frac{1}{\sqrt[4]{a_n}}$, 求极限 $\lim_{n \to \infty} \frac{a_n^{k+1}}{n^k}$.

筆记 这题很容易能猜出要先对原极限开 k 次方再用 Stolz 定理求解.

实际上, 我们也可以同例题 4.52一样, 待定系数自己探索出数列的阶并算出这样的结果, 待定 a,b > 0, 则由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{a_n^{a(k+1)}}{n^{bk}} = \lim_{n \to \infty} \frac{a_{n+1}^{a(k+1)} - a_n^{a(k+1)}}{bkn^{bk-1}} = \lim_{n \to \infty} \frac{\left(a_n + a_n^{-\frac{1}{k}}\right)^{a(k+1)} - a_n^{a(k+1)}}{bkn^{bk-1}}$$

$$= \lim_{n \to \infty} \frac{a_n^{a(k+1)} \left[\left(1 + a_n^{-\frac{1}{k}-1}\right)^{a(k+1)} - 1\right]}{bkn^{bk-1}} = \lim_{n \to \infty} \frac{a_n^{a(k+1)} \frac{\frac{1}{k}+1}{a_n^{\frac{1}{k}+1}}}{bkn^{bk-1}} = \frac{k+1}{bk^2} \lim_{n \to \infty} \frac{a_n^{a(k+1)-\frac{k+1}{k}}}{n^{bk-1}}.$$

我们希望上式最后一个极限能够直接算出具体的数值, 因此令 $a=b=\frac{1}{k}$, 于是 $\lim_{n\to\infty}\frac{a_n^{a(k+1)}}{n^{bk}}=\lim_{n\to\infty}\frac{a_n^{1+k}}{n}=\frac{1}{k}$ $\frac{k+1}{\frac{1}{k}k^2}\lim_{n\to\infty}\frac{a_n^{\frac{k+1}{k}-\frac{k+1}{k}}}{n_n^{\frac{k}{k}-1}}=\frac{k+1}{k}.$ 故实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty}\frac{a_n^{1+\frac{1}{k}}}{n}$ 即可.

 $\overline{\text{tr}}$ 归纳易证 a_n 单调递增, 假设 a_n 有界, 则由单调有界定理可知, a_n 收敛, 设 $\lim a_n = A < \infty$. 则由递推条件可 得, $A=A+\frac{1}{\sqrt[4]{a}}$, 无解, 矛盾. 于是 a_n 单调递增且无上界, 故 $\lim_{n\to\infty}a_n=+\infty$. 根据 Stolz 公式有

$$\lim_{n \to \infty} \frac{a_n^{1 + \frac{1}{k}}}{n} = \lim_{n \to \infty} \left(a_{n+1}^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} \left(\left(a_n + a_n^{-\frac{1}{k}} \right)^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} a_n^{1 + \frac{1}{k}} \left(\left(1 + a_n^{-\frac{1}{k} - 1} \right)^{1 + \frac{1}{k}} - 1 \right)$$

$$= \lim_{x \to +\infty} x^{1 + \frac{1}{k}} \left(\left(1 + x^{-(1 + \frac{1}{k})} \right)^{1 + \frac{1}{k}} - 1 \right) = \lim_{x \to +\infty} x^{1 + \frac{1}{k}} \left(1 + \frac{1}{k} \right) x^{-(1 + \frac{1}{k})} = 1 + \frac{1}{k}$$

因此所求极限是 $\left(1+\frac{1}{k}\right)^k$.

 $egin{align*} \dot{\mathbf{L}} & \text{如果题目没给出需要求的极限} \lim_{n \to \infty} \frac{a_n^{k+1}}{n^k}, & \text{而是问求} \ a_n & \text{的渐近展开式 (只展开一项), 那么我们就需要待定系数自己探索} \ a_n & \text{的阶。待定} \ \alpha > 0, & \text{由 Taylor} 公式得到 \\ \end{bmatrix}$

$$a_{n+1}^{\alpha} = \left(a_n + \frac{1}{\sqrt[4]{a_n}}\right)^{\alpha} = a_n^{\alpha} + \alpha a_n^{\alpha - 1} \frac{1}{\sqrt{a_n}} + o\left(a_n^{\alpha - \frac{3}{2}}\right)$$
$$\Rightarrow a_{n+1}^{\alpha} \approx a_n^{\alpha} + \alpha a_n^{\alpha - \frac{3}{2}} \Rightarrow a_{n+1}^{\alpha} - a_n^{\alpha} \approx \alpha a_n^{\alpha - \frac{3}{2}}.$$

从而令 $\alpha = \frac{3}{2}$,则

$$a_{n+1}^{\frac{3}{2}} = a_{n+1}^{\alpha} = \sum_{k=1}^{n} \left(a_{k+1}^{\alpha} - a_{k}^{\alpha} \right) \approx \sum_{k=1}^{n} \alpha a_{k}^{\alpha - \frac{3}{2}} = \sum_{k=1}^{n} \frac{3}{2} a_{k}^{\frac{3}{2} - \frac{3}{2}} = \frac{3n}{2}.$$

这样就能写出 a_n 渐近展开式的第一项,即 $a_n = \left(\frac{3n}{2}\right)^{\frac{2}{3}} + o\left(n^{\frac{2}{3}}\right)$.

例题 4.54 设 k 为正整数,正数列 $\{x_n\}$ 满足 $\lim_{n\to\infty} x_n(x_1^k+x_2^k+\cdots+x_n^k)=1$,证明: $\lim_{n\to\infty} nx_n^{k+1}=\frac{1}{k+1}$ 。 证明 设 $S_n=x_1^k+x_2^k+\cdots+x_n^k$,则 S_n 单调递增。如果 S_n 有界,则 S_n 趋于零, S_n 0,这与已知条件矛盾,所以 S_n 单调递增趋于正无穷,进一步结合条件可知 S_n 趋于零。注意到

$$\lim_{n \to \infty} x_{n+1} S_n = \lim_{n \to \infty} \frac{x_{n+1} S_{n+1} S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{1}{1 + \frac{a_{n+1}}{S_{n+1}}} = 1.$$

下面运用等价无穷小替换和 Stolz 公式来求极限:

$$\begin{split} \lim_{n \to \infty} n x_n^{k+1} &= \lim_{n \to \infty} \frac{n x_n^{k+1} S_n^{k+1}}{S_n^{k+1}} = \lim_{n \to \infty} \frac{n}{S_n^{k+1}} = \lim_{n \to \infty} \frac{1}{S_{n+1}^{k+1} - S_n^{k+1}} \\ &= \lim_{n \to \infty} \frac{1}{(S_{n+1} - S_n)(S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)} \\ &= \lim_{n \to \infty} \frac{1}{x_{n+1}^k (S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)} \\ &= \lim_{n \to \infty} \frac{1}{(x_{n+1} S_{n+1})^k + (x_{n+1} S_{n+1})^{k-1} (x_{n+1} S_n) + \dots + (x_{n+1} S_{n+1}) (x_{n+1} S_n)^{k-1} + (x_{n+1} S_n)^k} \\ &= \frac{1}{k+1}. \end{split}$$

例题 4.55 设 $\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$, 计算 $\lim_{n\to\infty} \sqrt[3]{n} a_n$.

解 因为 $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 单调递增, 故由单调有界定理可知, $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 的极限要么为有限数, 要么为 $+\infty$. 假设 $\lim_{n\to\infty}a_{n}\neq0$

或不存在,则此时
$$\lim_{n\to\infty}\sum_{k=1}^n a_k^2 = +\infty$$
. 否则,设 $\lim_{n\to\infty}\sum_{k=1}^n a_k^2 = c < \infty$,则 $\lim_{n\to\infty}a_n = \lim_{n\to\infty}\left(\sum_{k=1}^n a_k^2 - \sum_{k=1}^{n-1} a_k^2\right) = c - c = 0$

矛盾. 又由 $\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2=1$ 可得 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2\cdot\lim_{n\to\infty}\frac{1}{\sum\limits_{k=1}^na_k^2}=0$, 这与 $\lim_{n\to\infty}a_n\neq0$ 或不存在矛盾. 故

$$\lim_{n\to\infty}a_n=0.$$
 并且由 $\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2=1$ 可知 $a_n\sim\frac{1}{\sum\limits_{k=1}^na_k^2},n\to\infty.$ 于是

$$\lim_{n \to \infty} \frac{1}{na_n^3} = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^n a_k^2\right)^3}{n} = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n+1} a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$
$$= \lim_{n \to \infty} \left[\left(a_{n+1}^2 + \sum_{k=1}^n a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} + 1 \right)^3 - 1 \right]$$

又由于
$$\lim_{n\to\infty} \frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} = \lim_{n\to\infty} a_{n+1}^2 a_n = 0$$
,因此由 Taylor 公式可知 $\left(\frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} + 1\right)^3 - 1 \sim \frac{3a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2}, n \to \infty$. 从而上式可化为

$$\lim_{n \to \infty} \frac{1}{na_n^3} = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^n a_k^2} + 1 \right)^3 - 1 \right]$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \frac{3a_{n+1}^2}{\sum_{k=1}^n a_k^2} = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^n a_k^2 \right)^2$$

$$= 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1} \right)^2 = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1}^2 \right)^2$$

$$= 3 \lim_{n \to \infty} \left[a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 \right)^2 - 2a_{n+1}^4 \sum_{k=1}^{n+1} a_k^2 + a_{n+1}^6 \right] = 3 + 0 + 0 = 3.$$

因此
$$\lim_{n\to\infty} \sqrt[3]{n} a_n = \frac{1}{\sqrt[3]{\lim_{n\to\infty} \frac{1}{na_n^2}}} = \frac{1}{\sqrt[3]{3}}$$
.

例题 4.56

解

1. 由 $\ln(1+x) \le x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \le x_n, \forall n \in \mathbb{N}$. 并且 $x_1 > 0$, 假设 $x_n > 0$, 则 $x_{n+1} = \ln(1+x_n) > 0$. 从而由数学归纳法, 可知 $x_n > 0, \forall n \in \mathbb{N}$. 于是由单调有界定理, 可知数列 $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = a \ge 0$. 对 $x_{n+1} = \ln(1+x_n)$ 两边同时令 $n \to \infty$, 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \ln(1 + x_n) = \ln(1 + a).$$

故 $\lim_{n \to \infty} x_n = a = 0$. 进而, 由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{1}{nx_n} = \lim_{n \to \infty} \frac{\frac{1}{x_n}}{n} = \lim_{n \to \infty} \left(\frac{1}{x_{n+1}} - \frac{1}{x_n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{\ln(1+x_n)} - \frac{1}{x_n} \right) = \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$$

$$= \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^2}{2} + o(x^2)\right)}{x^2} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} nx_n = 2$. 即 $x_n \sim \frac{2}{n}, n\to\infty$. 因而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n} = \lim_{n \to \infty} \frac{nx_n \left(n - \frac{2}{x_n}\right)}{\ln n} = 2 \lim_{n \to \infty} \frac{n - \frac{2}{x_n}}{\ln n}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\ln\left(1 + \frac{1}{n}\right)} = 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\frac{1}{n}}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{\ln(1+x_n)}}{\frac{x_n}{2}} = 4 \lim_{x \to 0} \frac{1 + \frac{2}{x} - \frac{2}{\ln(1+x)}}{x}$$

$$= 4 \lim_{x \to 0} \frac{(x+2)\ln(1+x) - 2x}{x^2\ln(1+x)} = 4 \lim_{x \to 0} \frac{(x+2)\left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) - 2x}{x^3}$$

$$= 4 \lim_{x \to 0} \frac{-\frac{x^3}{2} + \frac{2x^3}{3} + o(x^3)}{x^3} = \frac{2}{3}.$$

实际上, 由上述计算我们可以得到 x_n 在 $n \to \infty$ 时的渐进估计:

$$\frac{n(nx_n - 2)}{\ln n} = \frac{2}{3} + o(1) \Rightarrow nx_n - 2 = \frac{2\ln n}{3n} + o\left(\frac{\ln n}{n}\right)$$
$$\Rightarrow x_n = \frac{2}{n} + \frac{2\ln n}{3n^2} + o\left(\frac{\ln n}{n^2}\right), n \to \infty.$$

2. 由 $\sin x \leqslant x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \leqslant x_n, \forall n \in \mathbb{N}$. 又由于 $0 < x_1 < \pi$ 及 $0 < x_{n+1} = \sin x_n < 1, \forall n \in \mathbb{N}_+$,故归纳可得 $0 \leqslant x_n \leqslant 1, \forall n \geqslant 2$. 因此 $\{x_n\}$ 极限存在,设 $\lim_{n \to \infty} x_n = a < \infty$. 从而对 $x_{n+1} = \sin x_n$ 两边同时令 $n \to \infty$ 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sin x_n = \sin a.$$

故 $\lim_{n\to\infty} x_n = a = 0$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{3}{nx_n^2} = 3 \lim_{n \to \infty} \frac{\frac{1}{x_n^2}}{n} = 3 \lim_{n \to \infty} \left(\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right) = 3 \lim_{n \to \infty} \left(\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} \right)$$

$$= 3 \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = 3 \lim_{x \to 0} \frac{x^2 - \left(x - \frac{x^3}{3!} + o(x^3)\right)^2}{x^4}$$

$$= 3 \lim_{x \to 0} \frac{\frac{x^4}{3} + o(x^4)}{x^4} = 1.$$

因此 $\lim_{n\to\infty}\sqrt{\frac{n}{3}}x_n=\lim_{n\to\infty}\sqrt{\frac{1}{\frac{3}{nx^2}}}=1,\lim_{n\to\infty}nx_n^2=3.$ 即 $x_n\sim\sqrt{\frac{3}{n}},n\to\infty$. 进而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right) = \lim_{n \to \infty} \frac{n \left(1 - \frac{n}{3} x_n^2 \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)} = \lim_{n \to \infty} \frac{n x_n^2 \left(\frac{1}{x_n^2} - \frac{n}{3} \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_n^2} - \frac{n}{3}}{\ln n} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} - \frac{1}{3}}{\ln \left(1 + \frac{1}{n} \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{1}{n}} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{x_n^2}{3}}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{x^2} = \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \sin^2 x - \frac{1}{3} x^2 \sin^2 x}{x^4 \sin^2 x}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2 - \frac{1}{3} x^2 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2}{x^6}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{-\frac{x^6}{36} - \frac{x^6}{60} + \frac{x^6}{9} + o(x^6)}{x^6} = \frac{3}{10}.$$

(最几步的计算除了用 Taylor 展开也可以用洛朗展开计算, 即先用长除法算出 $\frac{1}{\sin^2 x} = \frac{1}{x^2} + \frac{1}{3} + \frac{1}{15}x^2 + o\left(x^2\right)$, 再直接带入计算得到结果, 实际上利用洛朗展开计算更加简便.)

3. 由条件可知 $x_{n+1}=x_n+\frac{1}{x_n}\geqslant x_n, \forall n\in\mathbb{N}_+$. 又 $x_1=1>0$, 故归纳可得 $x_n>0, \forall n\in\mathbb{N}_+$. 由单调有界定理可知数

列 $\{x_n\}$ 的极限要么是 $+\infty$, 要么是有限数. 假设 $\lim_{n\to\infty} x_n = a < \infty$, 则对 $x_{n+1} = x_n + \frac{1}{x_n}$ 两边同时令 $n\to\infty$, 可得 $a = a + \frac{1}{a} \Rightarrow \frac{1}{a} = 0$ 矛盾. 故 $\lim_{n\to\infty} x_n = +\infty$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n}{\sqrt{n}} = \sqrt{\lim_{n \to \infty} \frac{x_n^2}{n}} = \sqrt{\lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{n+1-n}} = \sqrt{\lim_{n \to \infty} \left(\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2\right)}$$
$$= \sqrt{\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2}\right)} = \sqrt{2}.$$

因此 $x_n \sim \sqrt{2n}, n \to \infty$. 从而 $x_n + \sqrt{2n} \sim 2\sqrt{2n}, n \to \infty$. 再结合 Stolz 定理可得

$$\begin{split} \lim_{n \to \infty} \frac{\sqrt{2n}(x_n - \sqrt{2n})}{\ln n} & \xrightarrow{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\ln n} \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{(x_n + \sqrt{2n}) \ln n} = \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{2\sqrt{2n} \ln n} \\ & = \frac{1}{2} \lim_{n \to \infty} \frac{x_n^2 - 2n}{\ln n} = \frac{1}{2} \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2 - 2}{\ln(n+1) - \ln n} \\ & = \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{1}{n}} = \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{2}{x_n^2}} \\ & = \frac{1}{2} \lim_{n \to \infty} \frac{\frac{2}{x_n^2}}{\frac{2}{x_n^2}} = \frac{1}{2}. \end{split}$$

例题 4.57 设 $a_1 = 1, a_{n+1} = a_n + \frac{1}{S_n}, S_n = \sum_{k=1}^n a_k$, 计算 $\lim_{n \to \infty} \frac{a_n}{\sqrt{\ln n}}$.

解 由于 $a_{n+1} = a_n + \frac{1}{S_n}$, $\forall n \in \mathbb{N}_+$, 并且 $a_1 > 0$, 故由数学归纳法可知 $a_n > 0$, $\forall n \in \mathbb{N}_+$. 又 $a_2 = a_1 + a_1 > a_1$, 再根据 递推式, 可以归纳得到数列 $\{a_n\}$ 单调递增. 因此, 数列 $\{a_n\}$ 要么 $\lim_{n \to \infty} a_n = a < \infty$, 要么 $\lim_{n \to \infty} a_n = +\infty$. 由条件可知 $a_{n+1} - a_n = \frac{1}{S_n} \geqslant \frac{1}{na_1} = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$. 从而对 $\forall n \in \mathbb{N}_+$, 都有

$$a_n = a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 \geqslant \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1 = \sum_{k=1}^{n-1} \frac{1}{k}$$

而 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{1}{k}=+\infty$, 故 $\lim_{n\to\infty}a_n=+\infty$. 于是由 Stolz 定理, 可知

$$\begin{split} \lim_{n \to \infty} \frac{a_n^2}{\ln n} &= \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{\ln(1 + \frac{1}{n})} = \lim_{n \to \infty} n(a_{n+1}^2 - a_n^2) \\ &= \lim_{n \to \infty} n \left[\left(a_n + \frac{1}{S_n} \right)^2 - a_n^2 \right] = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right). \end{split}$$

根据 Stolz 定理, 可得

$$\lim_{n \to \infty} \frac{n}{S_n^2} = \lim_{n \to \infty} \frac{1}{a_{n+1}^2} = 0;$$

$$\lim_{n \to \infty} \frac{na_n}{S_n} = \lim_{n \to \infty} \frac{(n+1)a_{n+1} - na_n}{a_{n+1}} = \lim_{n \to \infty} \left[n + 1 - \frac{na_n}{a_{n+1}} \right].$$

由递推公式, 可得对 $\forall n \in \mathbb{N}_+$, 有

$$1 = n + 1 - n \le n + 1 - \frac{na_n}{a_{n+1}} = n + 1 - \frac{na_n}{a_n + \frac{1}{S_n}} = 1 + \frac{\frac{n}{a_n S_n}}{1 + \frac{1}{a_n S_n}}$$
$$= 1 + \frac{n}{1 + a_n S_n} \le 1 + \frac{n}{1 + a_1 S_n} = 1 + \frac{n}{1 + S_n}.$$

又由
$$Stolz$$
 定理, 可得 $\lim_{n\to\infty}\frac{n}{1+S_n}=\lim_{n\to\infty}\frac{1}{a_{n+1}}=0$. 故由夹逼准则可知, $\lim_{n\to\infty}\frac{na_n}{S_n}=\lim_{n\to\infty}\left[n+1-\frac{na_n}{a_{n+1}}\right]=1$. 于是
$$\lim_{n\to\infty}\frac{a_n^2}{\ln n}=\lim_{n\to\infty}n\left(\frac{2a_n}{S_n}+\frac{1}{S_n^2}\right)=2\lim_{n\to\infty}\frac{na_n}{S_n}+\lim_{n\to\infty}\frac{n}{S_n^2}=2+0=2.$$

因此
$$\lim_{n\to\infty} \frac{a_n}{\sqrt{\ln n}} = \sqrt{2}$$
.

4.5.2 函数 Stolz 定理

定理 4.7 (函数 Stolz 定理)

设 $T > 0, f, g: [0, +\infty) \to \mathbb{R}$ 是内闭有界函数.

(1) 设 g(x+T) > g(x), 若有 $\lim_{x \to +\infty} g(x) = +\infty$ 且

$$\lim_{x\to +\infty}\frac{f(x+T)-f(x)}{g(x+T)-g(x)}=A\in\mathbb{R}\bigcup\{-\infty,+\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

(2) 设 0 < g(x+T) < g(x), 若有

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0,$$

且

$$\lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = A \in \mathbb{R} \bigcup \{-\infty, +\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

注 考试中, 如果要用函数 Stolz 定理, 不要直接证明这个抽象的版本 (直接证明这个定理太繁琐). 而是根据具体问题, 利用夹逼准则和数列 Stolz 定理进行证明. 具体可见例题 4.58.

Ŷ 笔记

- (1) 不妨设 A = 0 的原因:
- (2) 不妨设T = 1的原因:

证明 我们仅考虑 $A \in \mathbb{R}$, 其余情况类似, 为了书写方便, 我们不妨设 A = 0, 否则用 f - Ag 代替 f 即可. 不妨设 T = 1, 否则用 f(Tx) 代替 f 即可.

(1) 不妨设 A = 0, 否则用 f - Ag 代替 f 即可. 不妨设 T = 1, 否则用 f(Tx) 代替 f 即可. 对任何 $\varepsilon > 0$, 由条件知 存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon [g(x+1) - g(x)], g(x) > 0.$$
 (4.43)

于是对 $\forall x > X$, 利用(4.43)式, 我们有

$$\left| \frac{f(x)}{g(x)} \right| = \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} + \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\leq \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} + \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\stackrel{(4.43)}{\leqslant} \varepsilon \frac{\sum\limits_{k=1}^{\lceil x \rceil - X} \left[g(x-k+1) - g(x-k) \right]}{|g(x)|} + \left| \frac{f(x-\lceil x \rceil + X)}{g(x)} \right| \\
= \varepsilon \frac{g(x) - g(x-\lceil x \rceil + X)}{|g(x)|} + \left| \frac{f(x-\lceil x \rceil + X)}{g(x)} \right| \\
\stackrel{(4.43)}{\leqslant} \varepsilon + \left| \frac{f(x-\lceil x \rceil + X)}{g(x)} \right|.$$

于是利用 f 在 [X, X+1] 有界及 $X \leq x - [x] + X < X + 1$, 我们有

$$\overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon,$$

由ε任意性即得

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

这就完成了证明.

(2) 不妨设 A=0, 否则用 f-Ag 代替 f 即可. 不妨设 T=1, 否则用 f(Tx) 代替 f 即可. 任何 $\varepsilon>0$, 由条件可知 存在某个 $X \in \mathbb{N}$. 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon[g(x) - g(x+1)].$$
 (4.44)

于是对 $\forall x > X, \forall n \in \mathbb{N}$, 利用(4.44)可得

$$\left| \frac{f(x)}{g(x)} \right| = \left| \frac{\sum_{k=1}^{n} [f(x+k-1) - f(x+k)] + f(x+n)]}{g(x)} \right|$$

$$\leqslant \frac{\sum_{k=1}^{n} |f(x+k-1) - f(x+k)|}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leqslant \varepsilon \frac{\sum_{k=1}^{n} [g(x+k-1) - g(x+k)]}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$= \varepsilon \frac{g(x) - g(x+n)}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leqslant \varepsilon + \frac{|f(x+n)|}{g(x)}.$$

再利用 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$ 得

$$\lim_{n \to \infty} \frac{|f(x+n)|}{g(x)} = 0 \Rightarrow \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon, \forall x > X.$$

从而结论得证.

(1) 设
$$\alpha > -1$$
, 计算 $\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}}$.

(2) 计算 $\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{1 + \int_0^x \frac{|\sin t|}{t} dt}$.

(2) 计算
$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x}$$

(3) 计算
$$\lim_{x \to +\infty} \frac{1}{x} \int_0^{\ln x} (t - [t]) dt$$
, 这里 [·] 表示向下取整函数.

笔记 虽然这个几个问题的思路都是函数 Stolz 定理, 但是注意在考试中我们不能直接使用这个定理, 需要我们结 合具体问题给出这个定理的证明. 具体可见下述证明.

注 第 (1) 题如果直接洛必达得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{r^{\alpha+1}} = \lim_{x \to +\infty} \frac{|\sin x|}{\alpha+1}$$
 不存在,

因此无法运用洛必达, 但也无法判断原本的极限, 而需要其他方法确定其极限.

证明

(1) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\begin{split} &\lim_{x \to +\infty} \frac{\int_0^x t^\alpha \left| \sin t \right| \, \mathrm{d}t}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\int_0^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t - \int_0^x t^\alpha \left| \sin t \right| \, \mathrm{d}t}{(x+\pi)^{\alpha+1} - x^{\alpha+1}} \\ &= \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty} \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty} \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty}, \end{split}$$

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 于是

$$\lim_{x \to +\infty} \frac{\int_0^x t^\alpha \left| \sin t \right| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\theta_x^\alpha \int_x^{x+\pi} \left| \sin t \right| dt}{\pi \left(\alpha + 1 \right) x^\alpha} = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_x^{x+\pi} \left| \sin t \right| dt = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_0^\pi \left| \sin t \right| dt = \frac{2}{\pi \left(\alpha + 1 \right)}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$,存在唯一的 $n \in \mathbb{N}$,使得 $n\pi \le x \le (n+1)\pi$ 。故

$$\frac{\int_0^{n\pi} t^{\alpha} |\sin t| dt}{[(n+1)\pi]^{\alpha+1}} \le \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} \le \frac{\int_0^{(n+1)\pi} t^{\alpha} |\sin t| dt}{(n\pi)^{\alpha+1}}, \forall x \in [0, +\infty).$$
(4.45)

又由数列 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_{0}^{(n+1)\pi} t^{\alpha} |\sin t| dt}{(n\pi)^{\alpha+1}} \xrightarrow{\frac{\text{Stolz } \not \in \mathbb{H}}{\pi^{\alpha+1}}} \frac{1}{x^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_{n\pi}^{(n+1)\pi} t^{\alpha} |\sin t| dt}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\frac{\frac{\Re \beta + \text{dig}}{\text{Lagrange } + \text{dig}}}{\frac{\pi^{\alpha+1}}{\pi^{\alpha+1}}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{(\alpha+1) n^{\alpha+1}} = \frac{2}{\pi (\alpha+1)},$$

$$\lim_{x \to +\infty} \frac{\int_{0}^{n\pi} t^{\alpha} |\sin t| dt}{[(n+1)\pi]^{\alpha+1}} \frac{\text{Stolz } \not \in \mathbb{H}}{\frac{\pi^{\alpha+1}}{\pi^{\alpha+1}}} \lim_{x \to +\infty} \frac{\int_{(n-1)\pi}^{n\pi} t^{\alpha} |\sin t| dt}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\frac{\Re \beta + \text{dig}}{\text{Lagrange } + \text{dig}} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{(n-1)\pi}^{n\pi} |\sin t| dt}{(\alpha+1)^{n^{\alpha+1}}} = \frac{2}{\pi (\alpha+1)}.$$

$$(4.47)$$

又因为 $n\pi \le x \le (n+1)\pi$, $\forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(4.45)(4.46)(4.47)式, 由夹逼准则可得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \lim_{n \to \infty} \frac{\int_0^x t^{\alpha} |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \frac{2}{\pi(\alpha+1)}.$$

(2) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \lim_{x \to +\infty} \frac{\int_0^{x+\pi} \frac{|\sin t|}{t} dt - \int_0^x \frac{|\sin t|}{t} dt}{\ln (x+\pi) - \ln x} \xrightarrow{\text{Lagrange } + \text{d} \in \mathbb{Z}} \lim_{x \to +\infty} \frac{\int_x^{x+\pi} \frac{|\sin t|}{t} dt}{\frac{\pi}{x}}$$

$$\frac{\# \text{d} + \text{d} \notin \mathbb{Z}}{\pi} = \lim_{x \to +\infty} \frac{x}{\theta_x} \int_x^{x+\pi} |\sin t| dt = \frac{1}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} \int_0^{\pi} |\sin t| dt = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x}. \tag{4.48}$$

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 再结合(4.48)式可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} = \frac{2}{\pi}$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$,存在唯一的 $n \in \mathbb{N}$,使得 $n\pi \le x \le (n+1)\pi$ 。故

$$\frac{\int_0^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} \le \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} \le \frac{\int_0^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)}, \forall x > 0.$$

$$(4.49)$$

又由数列 Stolz 定理和积分中值定理可知

$$\lim_{n \to \infty} \frac{\int_{0}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)} = \lim_{n \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi) - \ln((n-1)\pi)}$$

$$\frac{\frac{\pi}{n} + \frac{\pi}{n} + \frac{\pi}{n}}{\ln(n\pi)} = \lim_{n \to \infty} \frac{\frac{1}{n\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln(1 + \frac{1}{n-1})} = \lim_{n \to \infty} \frac{2(n-1)}{n\pi} = \frac{2}{\pi},$$

$$\lim_{n \to \infty} \frac{\int_{0}^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} = \lim_{n \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln((n+2)\pi) - \ln((n+1)\pi)}$$
(4.50)

$$\frac{-\frac{\Re \beta + \text{\'e} \text{\'e} \text{\'e} \text{\'e}}{\ln n \to \infty} \lim_{n \to \infty} \frac{\frac{1}{n\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln \left(1 + \frac{1}{n+1}\right)} = \lim_{n \to \infty} \frac{2(n+1)}{n\pi} = \frac{2}{\pi}.$$
 (4.51)

又因为 $n\pi \le x \le (n+1)\pi$, $\forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$ 。于是利用(4.49)(4.50)(4.51)式,由夹逼准则可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \lim_{n \to \infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi}.$$

(3) 直接使用函数 Stolz 定理:注意到 t - [t] 是 \mathbb{R} 上周期为 1 的非负函数, 故由函数 Stolz 定理可知

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (t - [t]) dt = \lim_{x \to +\infty} \frac{\int_0^{x+1} (t - [t]) dt - \int_0^x (t - [t]) dt}{x + 1 - x} = \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt$$

$$= \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 t dt = \frac{1}{2}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n \le x \le n + 1$ 。故

$$\frac{\int_0^n (t - [t])dt}{n+1} \leqslant \frac{1}{x} \int_0^x (t - [t])dt \leqslant \frac{\int_0^{n+1} (t - [t])dt}{n}, \forall x > 0.$$
 (4.52)

又由数列 Stolz 定理可知

$$\lim_{n \to \infty} \frac{\int_0^{n+1} (t - [t]) dt}{n} \xrightarrow{\text{Stolz } \not\equiv \mathbb{H}} \lim_{n \to \infty} \int_n^{n+1} (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1, \tag{4.53}$$

$$\lim_{n \to \infty} \frac{\int_0^n (t - [t]) dt}{n + 1} = \frac{\text{Stolz } \not \text{Epe}}{n + 1} \lim_{n \to \infty} \int_{n - 1}^n (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1. \tag{4.54}$$

又因为 $n \le x \le n+1, \forall x \in (0, +\infty)$,所以 $n \to +\infty$ 等价于 $x \to +\infty$ 。于是利用(4.52)(4.53)(4.54)式,由夹逼准则可得

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (t - [t]) dt = \lim_{n \to \infty} \frac{1}{x} \int_0^x (t - [t]) dt = 1.$$

4.6 递推数列求极限和估阶

4.6.1 "折线图 (蛛网图)"分析法 (图未完成, 但已学会)

关于递推数列求极限的问题,可以先画出相应的"折线图",然后根据"折线图 (蛛网图)"的性质来判断数列的极限.这种方法可以帮助我们快速得到数列的极限,但是对于数列的估阶问题,这种方法并不适用.

注 这种方法只能用来分析问题,严谨的证明还是需要用单调性分析法或压缩映像法书写.

一般的递推数列问题, 我们先画"折线图 (蛛网图)"分析, 分析出数列 (或奇偶子列) 的收敛情况, 就再用单调分析法或压缩映像法严谨地书写证明.

如果递推函数是单调递增的,则画蛛网图分析起来非常方便,书写证明过程往往用单调有界 (单调性分析法) 就能解决问题.

例题 **4.59** 设 $u_1 = b, u_{n+1} = u_n^2 + (1-2a)u_n + a^2$, 求 a, b 的值使得 a_n 收敛, 并求其极限.

 $\hat{\mathbf{y}}$ 笔记 显然递推函数只有一个不动点 x=a, 画蛛网图分析能够快速地得到取不同初值时, u_n 的收敛情况. 但是注意需要严谨地书写证明过程.

解 由条件可得

$$u_{n+1} = u_n^2 + (1-2a)u_n + a^2 = (u_n - a)^2 + u_n \ge u_n.$$

故 u_n 单调递增。(i) 若 b>a,则由 u_n 单调递增可知, $u_n>a$, $\forall n\in\mathbb{N}_+$ 。又由单调有界定理可知 u_n 要么发散到 $+\infty$,要么收敛到一个有限数。假设 u_n 收敛,则可设 $\lim_{n\to\infty}u_n=u>u_1>a$ 。从而由递推条件可得

$$u = (u - a)^2 + u \Rightarrow u = a$$

矛盾。故 $\lim_{n\to\infty} u_n = +\infty$ 。

(ii) 若 b=a, 则由递推条件归纳可得 $u_n=a, \forall n \in \mathbb{N}_+$ 。

$$a-1 < a - \frac{1}{4} = f\left(\frac{2a-1}{2}\right) \leqslant f(x) \leqslant \max\{f(a-1), f(a)\} = a, \forall x \in [a-1, a].$$

由于 $u_1 = b \in [a-1,a]$, 假设 $u_n \in [a-1,a]$, 则

$$a-1\leqslant u_{n+1}=f(u_n)\leqslant a.$$

由数学归纳法可得 $u_n \in [a-1,a], \forall n \in \mathbb{N}_+$ 。于是由单调有界定理可知 u_n 收敛。再对 $u_{n+1} = u_n^2 + (1-2a)u_n + a^2$ 两边同时取极限,解得 $\lim u_n = a$ 。

(iv) 若
$$b < a - 1$$
, 则

$$u_2 = (u_1 - a)^2 + u_1 > a \Leftrightarrow (b - a)^2 + b > a \Leftrightarrow (b - a)(b - a + 1) > 0.$$

由 b < a-1 可知上式最后一个不等式显然成立,故 $u_2 > a$ 。于是由 (i) 同理可证 $\lim u_n = +\infty$ 。

综上,只有当 $a \in \mathbb{R}$, $b \in [a-1,a]$ 时,数列 u_n 才收敛,极限为 a。 例题 **4.60** 设 $x_1 > 0, x_1 \neq 1, x_{n+1} = \frac{x_n^2}{2(x_n-1)}$,证明 x_n 收敛并求极限。

笔记 显然递推函数有两个个不动点 x=0,2, 画蛛网图分析能够快速地得到取不同初值时, x_n 的收敛情况. 这里利 用压缩映像书写过程更加简便.

 \mathbf{R} (i) 如果 $x_1 > 1$, 则归纳易证 $x_n \ge 2$, $\forall n \ge 2$, 所以

$$|x_{n+1}-2| = \left|\frac{x_n^2}{2(x_n-1)}-2\right| = \frac{(x_n-2)^2}{2(x_n-1)} = |x_n-2| \left|\frac{x_n-2}{2(x_n-1)}\right| \le \frac{1}{2}|x_n-2| \le \cdots \le \frac{1}{2^n}|x_1-2|$$

令 $n \to \infty$, 由此可知 x_n 的极限是 2。

(ii) 如果 $x_1 \in (0,1)$, 则归纳易证 $x_n \le 0, \forall n \ge 2$, 所以

$$|x_{n+1}| = \left| \frac{x_n^2}{2(x_n - 1)} \right| = |x_n| \left| \frac{x_n}{2(x_n - 1)} \right| \le \frac{1}{2} |x_n| \le \dots \le \frac{1}{2^n} |x_1|$$

令 $n \to \infty$, 由此可知 x_n 的极限是 0。

例题 **4.61** 设 $S_1 = 1$, $S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2}$, 证明: $\lim_{n \to \infty} S_n = \frac{1}{\sqrt{2}}$.

笔记 递推函数性质及例题分析递推函数递减时候,意味着奇偶两个子列具有相反的单调性,本题没有产生新的 不动点, 是容易的。

画蛛网图分析表明递推函数(在(0.1)内)是递减的,所以数列不单调,但是奇偶子列分别单调,并且(这 一步只能说"似乎",因为对于不同的递减的递推式,可能结论是不一样的,取决于二次复合有没有新的不动点) 奇子列单调递增趋于 $\frac{1}{\sqrt{2}}$,偶子列单调递减趋于 $\frac{1}{\sqrt{2}}$,数列的范围自然是在 $[S_1,S_2]$ 之间,显然不动点只有 $\frac{1}{\sqrt{2}}$ 一 个, 因此证明单调有界即可解决问题.

证明 $S_1=1, S_2=2-\sqrt{2}$,先证明 $S_n\in[2-\sqrt{2},1]$ 恒成立,采用归纳法。n=1,2 时显然成立,如果 n 时成立,则 n+1 时,注意 $f(x)=x+\frac{1}{x}-\sqrt{2}$ 在区间 (0,1) 中单调递减,所以

$$2 - \sqrt{2} \le S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2} \le 2 - \sqrt{2} + \frac{1}{2 - \sqrt{2}} - \sqrt{2} = 2 - 2\sqrt{2} + \frac{2 + \sqrt{2}}{2} = 3 - \frac{3}{2}\sqrt{2} \le 1$$

这就证明了 S_n 是有界数列,且 $S_3 \leq S_1, S_4 \geq S_2$,下面证明 S_{2n-1} 递减, S_{2n} 递增: 注意函数 $f(x) = x + \frac{1}{r} - \sqrt{2}$ 在区间 (0,1) 中单调递减,所以如果已知 $S_{2n+1} \leq S_{2n-1}, S_{2n+2} \geq S_{2n}$,则

$$S_{2n+3} = f(S_{2n+2}) \le f(S_{2n}) = S_{2n+1}, S_{2n+4} = f(S_{2n+3}) \ge f(S_{2n+1}) = S_{2n+2}$$

根据归纳法可得单调性,这说明 S_{2n-1},S_{2n} 都是单调有界的,因此极限存在,设

$$\lim_{n \to \infty} S_{2n-1} = a, \lim_{n \to \infty} S_{2n} = b, a, b \in [2 - \sqrt{2}, 1]$$

在递推式 $S_{n+1}=S_n+rac{1}{S_n}-\sqrt{2}$ 中分别让 n 取奇数, 偶数, 然后令 $n\to\infty$ 取极限, 可得关于极限 a,b 的方程组

 $a = b + \frac{1}{b} - \sqrt{2}, b = a + \frac{1}{a} - \sqrt{2}$, 希望证明 $a = b = \frac{1}{\sqrt{2}}$, 为了解这个方程组, 三种方法:

$$a = b + \frac{1}{b} - \sqrt{2} = a + \frac{1}{a} - \sqrt{2} + \frac{1}{a + \frac{1}{a} - \sqrt{2}} - \sqrt{2} = \frac{1 - 3\sqrt{2}a + 7a^2 - 3\sqrt{2}a^3 + a^4}{a(1 - \sqrt{2}a + a^2)}$$

$$1 - 3\sqrt{2}a + 7a^2 - 3\sqrt{2}a^3 + a^4 - a^2(1 - \sqrt{2}a + a^2) = -\left(\sqrt{2}a - 1\right)^3 = 0$$

由此可知 $a=b=\frac{1}{\sqrt{2}}$, 所以数列 S_n 收敛于 $\frac{1}{\sqrt{2}}$.

r法二:上面硬算起来实在太麻烦了,我们可以先对递推式变形化简,减小计算量

$$S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2} = \frac{S_n^2 - \sqrt{2}S_n + 1}{S_n} = \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)^2 + \frac{1}{2}}{S_n}$$

$$\Rightarrow S_{n+1} - \frac{\sqrt{2}}{2} = \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)^2 + \frac{1}{2} - \frac{\sqrt{2}}{2}S_n}{S_n} = \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)(S_n - \sqrt{2})}{S_n}$$

然后对奇偶子列 (代入递推式)分别取极限可得方程组

$$a - \frac{\sqrt{2}}{2} = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b}, b - \frac{\sqrt{2}}{2} = \frac{\left(a - \frac{\sqrt{2}}{2}\right)(a - \sqrt{2})}{a}$$

如果 a,b 之中有一个是 $\frac{1}{\sqrt{2}}$,则另一个也是,显然数列 S_n 收敛于 $\frac{1}{\sqrt{2}}$,如果都不是则

$$a - \frac{\sqrt{2}}{2} = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b} = \frac{\left(a - \frac{\sqrt{2}}{2}\right)(a - \sqrt{2})(b - \sqrt{2})}{ab}$$

$$\Rightarrow \left(a - \sqrt{2}\right)\left(b - \sqrt{2}\right) - ab = 2 - \sqrt{2}(a + b) = 0 \Rightarrow a + b = \sqrt{2}$$

$$\Rightarrow a - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} - b = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b} \Rightarrow b - \sqrt{2} = -b, b = \frac{\sqrt{2}}{2} = a.$$

导致矛盾。

方法三: (最快的方法,比上课的算法要好): 如果 $a \neq b$,则根据方程组 $a = b + \frac{1}{b} - \sqrt{2}$, $b = a + \frac{1}{a} - \sqrt{2}$ 有

$$ab = b^{2} - \sqrt{2}b + 1 = a^{2} - \sqrt{2}a + 1 \Rightarrow a^{2} - b^{2} = \sqrt{2}(a - b) \Rightarrow a + b = \sqrt{2}$$
$$\Rightarrow b = a + \frac{1}{a} - \sqrt{2} = \sqrt{2} - a \Rightarrow 2\sqrt{2} = 2a + \frac{1}{a} \ge 2\sqrt{2a \cdot \frac{1}{a}} = 2\sqrt{2}$$

最后一个不等式等号成立当且仅当 $a = \frac{\sqrt{2}}{2}$, 由此可知 $a = b = \frac{1}{\sqrt{2}}$ 矛盾。

 $\dot{\mathbf{L}}$ 一般来说,递推函数递减时候是否收敛完全取决于递推函数二次复合之后在区间内(这个数列的最大,最小值对应的区间)是否会有新的不动点,如果没有就收敛,如果有,则通常奇偶子列收敛到不同极限,于是数列不收敛。可以看到核心是二次复合后是否有新的不动点,也即解方程 f(f(x)) = x,一般不建议硬算,尤其是多项式或者分式类型,往往化为两个方程 a = f(b),b = f(a) 然后作差会比较方便,只有出现超越函数时候,才有必要真的把二次复合化简算出来,然后硬解方程,或者求导研究问题,这样"迫不得已"的例子见最后一个练习题。例题 **4.62** 定义数列 $a_0 = x$, $a_{n+1} = \frac{a_n^2 + y^2}{2}$, $n = 0, 1, 2, \cdots$, 求 $D \triangleq \{(x, y) \in \mathbb{R}^2 : 数列 a_n$ 收敛}的面积.

解

4.6.2 单调性分析法

命题 4.5 (不动点)

设数列 $\{x_n\}$ 满足递推公式 $x_{n+1}=f(x_n), n\in\mathbb{N}_+$ 。若有 $\lim_{n\to\infty}x_n=\xi$,同时又成立 $\lim_{n\to\infty}f(x_n)=f(\xi)$ 则极限 ξ 一定是方程 f(x)=x 的根 (这时称 ξ 为函数 f 的不动点).

证明 对 $x_{n+1} = f(x_n)$ 两边取极限即得.

关于递推数列求极限和估阶的问题,单调性分析法只适用于

$$x_{n+1} = f(x_n), n \in \mathbb{N}.$$

f 是递增或者递减的类型,且大多数情况只适用于 f 递增情况,其余情况不如压缩映像思想方便快捷.显然递推数列 $x_{n+1} = f(x_n)$ 确定的 x_n 如果收敛于 $x \in \mathbb{R}$,则当 f 连续时一定有 f(x) = x,此时我们也把这个 x 称为 f 的不动点. 因此 f(x) = x 是 x_n 收敛于 $x \in \mathbb{R}$ 的必要条件.

命题 4.6 (递增函数递推数列)

设 f 是递增函数, 则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{4.55}$$

确定的 x_n 一定单调, 且和不动点大小关系恒定.

堂 笔记 本结论表明由递增递推(4.55)确定的数列的单调性和有界性, 完全由其 $x_2 - x_1$ 和 x_1 与不动点 x_0 的大小关系确定. 即 $x_2 > x_1 \Rightarrow x_{n+1} > x_n, \forall n \in \mathbb{N}_+.x_1 > x_0 \Rightarrow x_n > x_0, \forall n \in \mathbb{N}_+.$

证明 我们只证一种情况, 其余情况是完全类似的. 设 x_0 是 f 的不动点且 $x_1 \le x_0, x_2 \ge x_1$, 则若 $x_n \le x_{n+1}, x_n \le x_0, n \in \mathbb{N}$, 运用 f 递增性有

$$x_{n+1} = f(x_n) \le f(x_0) = x_0, x_{n+2} = f(x_{n+1}) \ge f(x_n) = x_{n+1}.$$

由数学归纳法即证明了命题 4.6

命题 4.7 (递减函数递推数列)

设 f 是递减函数, 则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{4.56}$$

确定的 $\{x_n\}$ 一定不单调, 且和不动点大小关系交错. 但 $\{x_n\}$ 的两个奇偶子列 $\{x_{2k-1}\}$ 和 $\{x_{2k}\}$ 分别为单调数列, 且具有相反的单调性.

室记 我们注意到 $f \circ f$ 递增就能把 f 递减转化为递增的情况,本结论无需记忆或证明,只记得思想即可. x_n 和不 动点关系交错,即若 x_0 为数列 x_n 的不动点,且 $x_1 \geq x_0, x_2 \leq x_0$,则 $x_3 \geq x_0, \cdots, x_{2n} \leq x_0, x_{2n-1} \geq x_0, \cdots$;并且 $x_2 \leq x_1, x_3 \geq x_1, x_4 \leq x_2, x_5 \geq x_3, \cdots, x_{2n} \leq x_{2n-2}, x_{2n-1} \geq x_{2n-3}, \cdots$.

证明 由命题 4.6类似证明即可.

例题 4.63 递增/递减递推数列

- 1. $\forall x_1 > -6, x_{n+1} = \sqrt{6 + x_n}, n = 1, 2, \dots, \text{ if } \lim_{n \to \infty} x_n.$
- 2. $\[\[\psi \] x_1, a > 0, x_{n+1} = \frac{1}{4} (3x_n + \frac{a}{x_n^3}), n = 1, 2, \cdots, \] \[\[x \in \mathbb{R} \] \lim_{n \to \infty} x_n. \]$
- 3. 设 $x_1 = 2, x_n + (x_n 4)x_{n-1} = 3, (n = 2, 3, \dots)$, 求极限 $\lim x_n$.
- 4. $\forall x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} 1, n = 1, 2, \dots, \text{ π WR } \lim_{n \to \infty} x_n.$

❤ 笙记

1. 不妨设 $x_1 \ge 0$ 的原因: 我们只去掉原数列 $\{x_n\}$ 的第一项, 得到一个新数列, 并且此时新数列是从原数列 $\{x_n\}$ 的第二项 x_2 开始的. 对于原数列 $\{x_n\}$ 而言, 有 $x_{n+1} = \sqrt{6 + x_n} \ge 0$, $\forall n \in \mathbb{N}_+$. 故新数列的每一项都大于等于

0. 将新数列重新记为 $\{x_n\}$, 则 $x_1 \ge 0$. 若此时能够证得新数列收敛到 x_0 , 则由于数列去掉有限项不会影响数列的敛散性以及极限值, 可知原数列也收敛到 x_0 . 故不妨设 $x_1 \ge 0$ 是合理地.

(简单地说, 就是原数列用 x_2 代替 x_1 , 用 x_{n+1} 代替 $x_n, \forall n \in \mathbb{N}_+$, 而由 $x_1 > -6$, 可知 $x_2 = \sqrt{6 + x_1} \ge 0$.)

注 这种不妨设的技巧在数列中很常用,能减少一些不必要的讨论.实际上就是去掉数列中有限个有问题的项,而去掉这些项后对数列的极限没有影响.

解

1. 不妨设 $x_1 \ge 0$, 则设 $f(x) = \sqrt{6+x}$, 则 f(x) 单调递增.

当 x_1 <3时,由条件可知

$$x_2 - x_1 = \sqrt{6 + x_1} - x_1 = \frac{(3 - x_1)(2 + x_1)}{\sqrt{6 + x_1} + x_1}.$$
 (4.57)

从而此时 $x_2 > x_1$. 假设当 n = k 时, 有 $x_k < 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} < \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n < 3, \forall n \in \mathbb{N}_+$.

假设当n=k时,有 $x_{k+1} \ge x_k$.则当n=k+1时,就有

$$x_{k+2} = f(x_{k+1}) \geqslant f(x_k) = x_{k+1}.$$

故由数学归纳法, 可知 $\{x_n\}$ 单调递增. 于是由单调有界定理, 可得数列 $\{x_n\}$ 收敛.

当 $x_1 \ge 3$ 时, 由(4.57)式可知, 此时 $x_2 \le x_1$. 假设当 n = k 时, 有 $x_k \ge 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} \geqslant \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n \ge 3, \forall n \in \mathbb{N}_+$.

假设当 n = k 时, 有 $x_{k+1} \leq x_k$. 则当 n = k+1 时, 就有

$$x_{k+2} = f(x_{k+1}) \leqslant f(x_k) = x_{k+1}.$$

故由数学归纳法, 可知 $\{x_n\}$ 单调递减. 于是由单调有界定理, 可得数列 $\{x_n\}$ 收敛.

综上, 无论 $x_1>3$ 还是 $x_1\leqslant 3$, 都有数列 $\{x_n\}$ 收敛. 设 $\lim_{n\to\infty}x_n=a$. 则对 $x_{n+1}=\sqrt{6+x_n}$ 两边同时令 $n\to\infty$ 可得 $a=\sqrt{6+a}$, 解得 $\lim x_n=a=3$.

2.

3.

4

例题 **4.64** 设 $c, x_1 \in (0,1)$,数列 $\{x_n\}$ 满足 $x_{n+1} = c(1-x_n^2), x_2 \neq x_1$,证明 x_n 收敛当且仅当 $c \in \left(0, \frac{\sqrt{3}}{2}\right)$.

证明 根据题目显然有 $x_n \in (0,1)$, 考虑函数 $f(x) = c(1-x^2)$,则 f(x) 单调递减,并且 f(x) = x 在区间 (0,1) 中有唯一解 $t_0 = \frac{\sqrt{1+4c^2}-1}{2c}$,则 $x_1 \neq t_0$,不妨设 $x_1 \in (0,t_0)$ (若不然 $x_1 > t_0$,则 $x_2 = f(x_1) < f(t_0) = t_0$,从 x_2 开始考虑即可),所以 $x_2 > t_0$, $x_3 < t_0$,… 也即 $x_{2n-1} < t_0$, $x_{2n} > t_0$ 恒成立。

为了研究奇偶子列的单调性,考虑二次复合,计算有

$$f(f(x)) - x = c\left(1 - c^2(1 - x^2)^2\right) - x = (-cx^2 + c - x)(c^2x^2 + cx + 1 - c^2)$$

两个因子都是二次函数,前者开口向下,在(0,1)区间中与y=x的唯一交点(横坐标)是 $t_0=\frac{\sqrt{1+4c^2-1}}{2c}$,后者开口向上,解方程有(形式上) $x=\frac{-c\pm\sqrt{4c^2-3}}{2c}$ 。

因此我们应该以 $c = \frac{\sqrt{3}}{2}$ 分类,当 $c \in \left(0, \frac{\sqrt{3}}{2}\right)$ 时, $c^2x^2 + cx + 1 - c^2 \ge 0$ 也即当 $x \in (0, t_0)$ 时 $f(f(x)) \ge x$, $x \in (t_0, 1)$ 时 $f(f(x)) \le x$,代入可知

$$x_1 \le x_3 \le x_5 \le \cdots \le t_0, x_2 \ge x_4 \ge x_6 \ge \cdots \ge t_0$$

也即奇子列单调递增有上界 t_0 ,偶子列单调递减有下界 t_0 ,所以奇偶子列分别都收敛,解方程 f(f(x)) = x 可知

两个子列也都收敛到 t_0 ,则存在 N 使得 n > N 时恒有 $x_{2n-1} \in (t_1, t_0), x_{2n} \in (t_0, t_2)$ 。注意

$$f(f(x)) - x = (-cx^2 + c - x)(c^2x^2 + cx + 1 - c^2)$$

因此在区间 (t_1,t_0) 中 f(f(x)) < x,区间 (t_0,t_2) 中 f(f(x)) > x,所以 n > N 时奇子列单调递减,偶子列单调递

增,根据单调有界,只能奇子列收敛到 t_1 ,偶子列收敛到 t_2 ,这与 $x_n \to t_0$ 矛盾。 方法二:这个方法可以快速说明 $c>\frac{\sqrt{3}}{2}$ 时数列一定不收敛,但是剩下一半似乎用不了。显然 f(x)=x 的解 是 $t_0 = \frac{\sqrt{1+4c^2}-1}{2c}$,如果 $c > \frac{\sqrt{3}}{2}$,求导有 f'(x) = -2cx, $|f'(t_0)| = \sqrt{1+4c^2}-1 > 1$ 。所以在 t_0 附近的一个邻域内都有 $|f'(x)| \ge 1+\delta > 1$,而如果此时 x_n 收敛,则必然收敛到 t_0 ,也就是说存在 x_N 落入 t_0 附近一个去心邻域 内 (条件 $x_2 \neq x_1$ 保证了 $x_n \neq t_0$ 恒成立), 于是

$$|x_{N+1} - t_0| = |f(x_N) - f(t_0)| = |f'(\xi)||x_N - t_0| \ge (1 + \delta)|x_N - t_0|$$

以此类推下去,显然 x_n 与 t_0 的距离只会越来越远,因此不可能收敛到 t_0 导致矛盾。

注 方法一是标准方法也是通用的,注意多项式时候一定有整除关系 $f(x) - x \mid f(f(x)) - x$ 所以必定能因式分解。 方法二则是回忆之前讲过的"极限点处导数大于等于1时候就不可能压缩映射",利用这个原理我们很快能发现 c 的分界线,同时也能快速说明 $c > \frac{\sqrt{3}}{2}$ 时数列一定不收敛。

4.6.3 利用上下极限求递推数列极限

例题 **4.65** 设 $A, B > 0, a_1 > A$ 以及 $a_{n+1} = A + \frac{B}{a_n}, n \in \mathbb{N}_+$, 计算 $\lim_{n \to \infty} a_n$.

证明 显然 $a_n > A > 0, \forall n \in \mathbb{N}_+$. 从而 $a_{n+1} = A + \frac{B}{a_n} \le A + \frac{B}{A}, \forall n \in \mathbb{N}_+$. 故数列 $\{a_n\}$ 有界. 于是可设 $a = \overline{\lim_{n \to \infty}} a_n < 0$ $\infty, b = \underline{\lim}_{n \to \infty} a_n < \infty$. 对等式 $a_{n+1} = A + \frac{B}{a_n}$ 两边同时关于 $n \to +\infty$ 取上下极限得到

$$a = \overline{\lim_{n \to \infty}} a_{n+1} = A + \overline{\lim_{n \to \infty}} \frac{B}{a_n} = A + \frac{B}{\underline{\lim_{n \to \infty}} a_n} = A + \frac{B}{b},$$

$$b = \underline{\lim}_{n \to \infty} a_{n+1} = A + \underline{\lim}_{n \to \infty} \frac{B}{a_n} = A + \frac{B}{\underline{\lim}_{n \to \infty} a_n} = A + \frac{B}{a}.$$

于是我们有 $\begin{cases} ab = Ab + B \\ ab = Aa + B \end{cases}$,解得 $a = b0 = \frac{A \pm \sqrt{A^2 - 4B}}{2}$. 又由 $a_n > A > 0$,可知 $a = b = \frac{A + \sqrt{A^2 - 4B}}{2}$. 故

$$\lim_{n \to \infty} a_n = \frac{A + \sqrt{A^2 - 4B}}{2}.$$

例题 **4.66** 设 $x_0, y_0 > 0, x_{n+1} = \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1}, y_{n+1} = \frac{1}{2x_n^2 + x_n y_n + y_n^2 + 1},$ 证明:数列 x_n, y_n 都收敛且极限相

注 $1 + \frac{3}{4}u^2$ 的放缩思路: 我们希望 $\frac{x}{(1 + \frac{3}{4}x^2)^2} < 1$, 待定 m > 0, 利用均值不等式可知

$$\left(1 + \frac{3}{4}x^2\right)^2 = \left(\frac{3}{4}x^2 + \frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m}\right)^2 \geqslant \left((m+1)^{\frac{m+1}{4}}\sqrt{\frac{3}{4}x^2 \cdot \frac{1}{m^m}}\right)^2 = \left(\frac{3}{4}\right)^{\frac{2}{m+1}} \cdot \frac{m+1}{m^{\frac{2m}{m+1}}}x^{\frac{4}{m+1}}.$$

从而我们希望 $x^{\frac{4}{m+1}} = x$,即 m = 3。这样就能使得

$$\frac{x}{(1+\frac{3}{4}x^2)^2} \leqslant \left(\frac{3}{4}\right)^{\frac{2}{m+1}} \cdot \frac{m+1}{m^{\frac{2m}{m+1}}} x^{\frac{4}{m+1}} = \left(\frac{3}{4}\right)^{\frac{2}{3+1}} \cdot \frac{3+1}{3^{\frac{2\cdot 3}{3+1}}} < 1.$$

故取 m=3。

证明 根据条件可知 $x_n, y_n > 0$,并且进一步归纳易证 $x_n, y_n \in [0, 1]$,所以上下极限也都在 [0, 1] 之间。

$$x_{n+1} - y_{n+1} = \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} - \frac{1}{2x_n^2 + x_n y_n + y_n^2 + 1}$$
$$= \frac{x_n^2 - y_n^2}{(x_n^2 + x_n y_n + 2y_n^2 + 1)(2x_n^2 + x_n y_n + y_n^2 + 1)}$$

由均值不等式可得

$$x^{2} + xy + y^{2} = (x + y)^{2} - xy \ge (x + y)^{2} - \left(\frac{x + y}{2}\right)^{2} = \frac{3}{4}(x + y)^{2}.$$

记 $u = x_n + y_n \ge 0$, 则由均值不等式可得

$$1 + \frac{3}{4}u^2 = \frac{3}{4}u^2 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \ge 4\sqrt[4]{\frac{u^2}{36}} = 4\sqrt{\frac{|u|}{6}} \Rightarrow \frac{u}{(1 + \frac{3}{4}u^2)^2} \le \frac{8}{3}.$$

于是

$$\begin{aligned} |x_{n+1} - y_{n+1}| &= \frac{|x_n - y_n|(x_n + y_n)}{(x_n^2 + x_n y_n + 2y_n^2 + 1)(2x_n^2 + x_n y_n + y_n^2 + 1)} \\ &\leq |x_n - y_n| \frac{x_n + y_n}{(x_n^2 + x_n y_n + y_n^2 + 1)(x_n^2 + x_n y_n + y_n^2 + 1)} \\ &\leq |x_n - y_n| \frac{x_n + y_n}{(1 + \frac{3}{4}(x_n + y_n)^2)^2} &= |x_n - y_n| \frac{u}{(1 + \frac{3}{4}u^2)^2} \end{aligned}$$

故

$$|x_{n+1} - y_{n+1}| \le \frac{3}{8}|x_n - y_n| \le \dots \le (\frac{3}{8})^n|x_1 - y_1|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} (x_n - y_n) = 0$. 因此, 设 $\overline{\lim_{n \to \infty}} x_n = \overline{\lim_{n \to \infty}} y_n = A$, $\underline{\lim_{n \to \infty}} x_n = \underline{\lim_{n \to \infty}} y_n = B$, $A, B \in \mathbb{R}$ $[0,1], A \ge B$ 利用上下极限的基本性质有

$$A = \overline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} \le \frac{1}{4B^2 + 1}$$

$$B = \underline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} \ge \frac{1}{4A^2 + 1}$$

$$\Rightarrow A \le \frac{1}{4B^2 + 1} \le \frac{1}{\frac{4}{(4A^2 + 1)^2} + 1} = \frac{(4A^2 + 1)^2}{(4A^2 + 1)^2 + 4}$$

方法一:去分母并化简,因式分解得到(这个方法难算,建议用 mma,或者慢慢手动拆)

$$A((4A^2+1)^2+4) - (4A^2+1)^2 = (2A-1)^3(2A^2+A+1) \le 0$$

于是 $A \leq \frac{1}{2}$,同理可知 $B \geq \frac{1}{2}$,所以 $A = B = \frac{1}{2}$,因此 x_n, y_n 都收敛到 $\frac{1}{2}$ 。 方法二:最后计算 A, B 时候如果采用上述方法硬做有点难算,其实有巧妙一些的选择. 因为 $\lim_{n \to \infty} (x_n - y_n) = 0$, 所以 $\lim_{n\to\infty} (4x_n^2 - (x_n^2 + x_n y_n + 2y_n^2)) = \lim_{n\to\infty} x_n (x_n - y_n) + 2 \lim_{n\to\infty} (x_n + y_n) (x_n - y_n) = 0$ (有界量乘无穷小量). 进而上下极限也有等式 $\overline{\lim}_{n\to\infty} (x_n^2 + x_n y_n + 2y_n^2) = \overline{\lim}_{n\to\infty} 4x_n^2 = 4A^2$, $\underline{\lim}_{n\to\infty} (x_n^2 + x_n y_n + 2y_n^2) = \underline{\lim}_{n\to\infty} 4x_n^2 = 4B^2$ 代入可知

$$A = \overline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} = \frac{1}{4B^2 + 1}$$

$$B = \underline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} = \frac{1}{4A^2 + 1}$$

$$\Rightarrow 4AB^2 + A = 4A^2B + B = 1, (4AB - 1)(B - A) = 0$$

所以若 A=B 则显然成立, 进而由递推条件可得 $A=B=\frac{1}{2}$. 若 $A\neq B$ 则 $AB=\frac{1}{4}$, 代入有 A+B=1, 显然解出

 $A = B = \frac{1}{4}$ 矛盾。

注 有必要先来证明 $x_n - y_n \to 0$ 而不是上来直接设 x_n, y_n 的上下极限一共四个数字,这样的话根本算不出来(用 mma 都算不出来),而如果证明了 $x_n - y_n \to 0$,则只有两个变量了。方法二好做是因为都是等式了,所以可以作差然后简单的因式分解解出来,而方法一那样无脑硬算,就要麻烦。本题运用的若干上下极限性质都可以在任何一本数学分析教材上面找到证明。只要你记住三点:

- 1. 逐项(包括加法也包括乘法)取上下极限通常都会成立一个确定方向的不等式。
- 2. 计算上下极限时候,如果其中某一项极限就是存在的,那么上下极限的不等式将会成为等式。
- 3. 对于都是正数的问题,取倒数的上下极限运算规则就是你脑海中最自然的那种情况。这样考试时候就算忘了具体的结论,也可以通过画图和举例快速确定下来。

4.6.4 类递增/类递减递推数列

例题 4.67 类递增模型

- 2. 设 $a_k \in (0,1), 1 \le k \le 2021$ 且 $(a_{n+2021})^{2022} = a_n + a_{n+1} + \dots + a_{n+2020}, n = 1, 2, \dots$, 这里 $a_n > 0, \forall n \in \mathbb{N}$ 证明 $\lim_{n \to \infty} a_n$ 存在.
- $\stackrel{?}{\circ}$ 笔记 解决此类问题一般先定界 (即确定 c_n 的上下界的具体数值), 再对等式两边同时取上下极限即可.
 - 1. 记 $b ext{ = max}\{c_1, c_2, 4\}$ 的原因: 为了证明数列 c_n 有界, 我们需要先定界 (即确定 c_n 的上下界的具体数值), 然后再利用数学归纳法证得数列 c_n 有界. 显然 c_n 有一个下界 0, 但上界无法直接观察出来. 为了确定出数列 c_n 的一个上界, 我们可以先假设 c_n 有一个上界 b(此时 b 是待定常数). 则 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \le \sqrt{b} + \sqrt{b} = 2\sqrt{b} \le b$, 由此解得 $b \ge 4$. 又由数学归纳法的原理, 可知需要保证 b 同时也是 c_1, c_2 的上界. 故只要取 $b \ge 4$, c_1, c_2 就一定能归纳出 b 是 c_n 的一个上界. 而我们取 $b \triangleq \max\{c_1, c_2, 4\}$ 满足这个条件.
 - 2. 记 M = 的原因: 同上一问, 假设数列 a_n 有一个上界 M(此时 M 是待定常数), 则

$$a_{n+2021} = \sqrt[2022]{a_n + a_{n+1} + \dots + a_{n+2020}} \le \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021} \le M.$$

由此解得 $M \geq (2021)^{\frac{1}{2021}}$. 又由数学归纳法的原理,可知需要保证 M 同时也是 $a_1, a_2, \cdots, a_{2020}$ 的上界. 故只要取 $M \geq (2021)^{\frac{1}{2021}}$, $a_1, a_2, \cdots, a_{2020}$ 就一定能归纳出 M 是 a_n 的一个上界. 而我们取 $M = \max \left\{ (2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020} \right\}$ 满足这个条件.

解

1. 记 $b \triangleq \max\{c_1, c_2, 4\}$, 则 $0 < c_1, c_2 \le b$. 假设 $0 < c_n \le b$, 则

$$0 < c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \le \sqrt{b} + \sqrt{b} = 2\sqrt{b} \le b.$$

由数学归纳法, 可知对 $\forall n \in \mathbb{N}_+$, 都有 $0 < c_n \le b$ 成立. 即数列 $\{c_n\}$ 有界.

因此可设 $L = \overline{\lim_{n \to \infty}} c_n < \infty, l = \underline{\lim_{n \to \infty}} c_n < \infty.$ 令 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}}$ 两边同时对 $n \to \infty$ 取上下极限, 可得

$$\begin{split} L &= \overline{\lim_{n \to \infty}} \, c_{n+1} = \overline{\lim_{n \to \infty}} \, (\sqrt{c_n} + \sqrt{c_{n-1}}) \leqslant \overline{\lim_{n \to \infty}} \, \sqrt{c_n} + \overline{\lim_{n \to \infty}} \, \sqrt{c_{n-1}} = 2\sqrt{L} \Rightarrow L \leqslant 4, \\ l &= \underline{\lim_{n \to \infty}} \, c_{n+1} = \underline{\lim_{n \to \infty}} \, (\sqrt{c_n} + \sqrt{c_{n-1}}) \geqslant \underline{\lim_{n \to \infty}} \, \sqrt{c_n} + \underline{\lim_{n \to \infty}} \, \sqrt{c_{n-1}} = 2\sqrt{l} \Rightarrow l \geqslant 4. \end{split}$$

 \mathbb{X} $l = \underset{n \to \infty}{\underline{\lim}} c_n \leqslant \underset{n \to \infty}{\overline{\lim}} c_n = L, \ \text{if } L = l = 4. \ \text{if } \underset{n \to \infty}{\underline{\lim}} c_n = 4.$

2. 取 $M = \max\left\{(2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020}\right\}$, 显然 $a_n > 0$ 且 $a_1, a_2, \cdots, a_{2020} \le M$. 假设 $a_k \le M, k = 1, 2, \cdots, n$ 则由条件可得

$$a_{n+1} = \sqrt[2022]{a_{n-2020} + a_{n-2019} + \dots + a_n} \leq \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021M} \leq M.$$

由数学归纳法, 可知 $0 < a_n \le M, \forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 因此可设 $A = \overline{\lim_{n \to \infty}} a_n < \infty, a = \underline{\lim_{n \to \infty}} a_n < \infty$. 由条

件可得

$$a_{n+2021} = \sqrt[202]{a_n + a_{n+1} + \cdots + a_{n+2020}}$$

上式两边同时对 $n \to \infty$ 取上下极限得到

$$A = \overline{\lim}_{n \to \infty} a_{n+2021} = \overline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\leqslant {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} a_n + \overline{\lim}_{n \to \infty} a_{n+1} + \dots + \overline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{A + A + \dots + A} \Rightarrow A \leqslant (2021)^{\frac{1}{2021}},$$

$$a = \underline{\lim}_{n \to \infty} a_{n+2021} = \underline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\underline{\lim}_{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\geqslant {}^{2022}\sqrt{\underline{\lim}_{n \to \infty}} a_n + \underline{\lim}_{n \to \infty} a_{n+1} + \dots + \underline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}}$$

又 $a = \underline{\lim}_{n \to \infty} a_n \leq \overline{\lim}_{n \to \infty} a_n = A$, 故 $A = a = (2021)^{\frac{1}{2021}}$. 內 $\lim_{n \to \infty} a_n = (2021)^{\frac{1}{2021}}$.

- 例题 4.68 类递减模型

 1. 设 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}, a_1, a_2 > 0, n = 1, 2, \cdots$ 证明 $\lim_{n \to \infty} a_n$ 存在.

 2. 设 $x_1 = a > 0, x_2 = b > 0, x_{n+2} = 3 + \frac{1}{x_{n+1}^2} + \frac{1}{x_n^2}, n = 1, 2, \cdots$ 证明 $\lim_{n \to \infty} x_n$ 存在.

笔记 此类问题一定要记住, 先定界. 这里我们提供两种方法:

第一题我们使用上下极限, 再隔项抽子列的方法.(这里就算我们解不出不动点也能用这个方法证明极限存 在.)

第二题我们使用构造二阶差分的线性递推不等式的方法. (这里也可以设出不动点 x_0 , 由条件可知, $x_0 = 3 + \frac{1}{x_0^2} + \frac{1}{x_0^2}$, 解出不动点. 然后两边减去不动点,类似的去构造一个二阶线性递推数列,然后待定系数放缩一下说明

这类题如果不记住做题时会难以想到, 与类递增模型一样, 一开始要定界,

注 第二题的极限是一个无理数, 特征方程比较难解, 因此我们只证明极限的存在性.

1. 取
$$a = \min\left\{a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2}\right\} > 0$$
,则有 $0 < a \le a_1, a_2 \le \frac{2}{a}$ 成立. 假设 $0 < a \le a_n \le \frac{2}{a}$,则由条件可得
$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \le \frac{1}{a} + \frac{1}{a} = \frac{2}{a}.$$

由数学归纳法, 可知 $0 < a \le a_n \le \frac{2}{a}$, $\forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 于是可设 $A = \overline{\lim}_{n \to \infty} a_n < \infty$, $B = \underline{\lim}_{n \to \infty} a_n < \infty$. 由致密性定理, 可知存在一个子列 $\{a_{n_k}\}$, 使得 $\lim_{k \to \infty} a_{n_k+2} = A$, $\lim_{k \to \infty} a_{n_k+1} = l_1 < \infty$, $\lim_{k \to \infty} a_{n_k} = l_2 < \infty$.

 ∞ , $\lim_{k\to\infty} a_{n_k-1}=l_3<\infty$. 并且根据上下极限的定义, 可知 $B\leq l_1,l_2,l_3\leq A$. 对等式 $a_{n+2}=\frac{1}{a_{n+1}}+\frac{1}{a_n}$ 两

$$A = \overline{\lim_{n \to \infty}} a_{n+2} = \overline{\lim_{n \to \infty}} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right) \leqslant \overline{\lim_{n \to \infty}} \frac{1}{a_{n+1}} + \overline{\lim_{n \to \infty}} \frac{1}{a_n}$$
$$= \frac{1}{\underline{\lim_{n \to \infty}} a_{n+1}} + \frac{1}{\underline{\lim_{n \to \infty}} a_n} = \frac{1}{B} + \frac{1}{B} = \frac{2}{B} \Rightarrow AB \leqslant 2.$$

$$B = \underbrace{\lim_{n \to \infty} a_{n+2}}_{n \to \infty} = \underbrace{\lim_{n \to \infty} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right)}_{n \to \infty} \geqslant \underbrace{\lim_{n \to \infty} \frac{1}{a_{n+1}}}_{n \to \infty} + \underbrace{\lim_{n \to \infty} \frac{1}{a_n}}_{n \to \infty} = \underbrace{\frac{1}{\lim_{n \to \infty} a_{n+1}}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty} a_n}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A}}_{n \to \infty} + \underbrace{\frac{1}{A}}_{n \to \infty} = \underbrace{\frac{1}{A$$

故 AB = 2. 因为 $\{a_{n_k}\}$ 是数列 a_n 的一个子列, 所以 $\{a_{n_k}\}$ 也满足 $a_{n_k+2} = \frac{1}{a_{\dots+1}} + \frac{1}{a_{\dots}}, \forall k \in \mathbb{N}_+$. 并且子列

 $\{a_{n_k-1}\}, \{a_{n_k}\}, \{a_{n_k+1}\}, \{a_{n_k+2}\}$ 的极限都存在,于是对 $a_{n_k+2} = \frac{1}{a_{n_k+1}} + \frac{1}{a_{n_k}}$ 等式两边同时关于 $k \to +\infty$ 取极限, 再结合 $B < l_1, l_2, l_3 < A$ 得到

$$A = \lim_{k \to \infty} a_{n_k+2} = \lim_{k \to \infty} \frac{1}{a_{n_k+1}} + \lim_{k \to \infty} \frac{1}{a_{n_k}}$$
$$= \frac{1}{l_1} + \frac{1}{l_2} \leqslant \frac{1}{B} + \frac{1}{B} = \frac{2}{B} = A \Rightarrow l_1 = l_2 = B.$$

同理再对 $a_{n_k+1} = \frac{1}{a_{n_k}} + \frac{1}{a_{n_k-1}}$ 等式两边同时关于 $k \to +\infty$ 取极限, 再结合 $B \le l_1, l_2, l_3 \le A$ 得到

$$B = l_1 = \lim_{k \to \infty} a_{n_k + 1} = \lim_{k \to \infty} \frac{1}{a_{n_k}} + \lim_{k \to \infty} \frac{1}{a_{n_k - 1}}$$
$$= \frac{1}{l_2} + \frac{1}{l_3} \geqslant \frac{1}{A} + \frac{1}{A} = \frac{2}{A} = B \Rightarrow l_2 = l_3 = A.$$

故 $A=B=l_1=l_2=l_3$, 又由于 AB=2, 因此 $\overline{\lim}_{n\to\infty}a_n=\underline{\lim}_{n\to\infty}a_n=A=B=\sqrt{2}$. 即 $\lim_{n\to\infty}a_n=\sqrt{2}$.

2. 根据递推条件显然, $x_n \ge 3$, $\forall n \ge 3$ 。从而 $x_5 = 3 + \frac{1}{x_4^2} + \frac{1}{x_3^2} \le 3 + \frac{1}{9} + \frac{1}{9} < 4$ 。假设 $x_n \le 4$, $\forall n \ge 5$,则

$$x_{n+1} = 3 + \frac{1}{x_n^2} + \frac{1}{x_{n-1}^2} \le 3 + \frac{1}{9} + \frac{1}{9} < 4.$$

由数学归纳法可知 $x_n \in [3,4], \forall n \geq 5$ 。于是

$$\begin{aligned} |x_{n+2} - x_{n+1}| &= \left| \frac{1}{x_{n+1}^2} - \frac{1}{x_{n-1}^2} \right| \leqslant \left| \frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right| + \left| \frac{1}{x_n^2} - \frac{1}{x_{n-1}^2} \right| = \frac{\left| x_n^2 - x_{n+1}^2 \right|}{x_{n+1}^2 x_n^2} + \frac{\left| x_{n-1}^2 - x_n^2 \right|}{x_{n}^2 x_{n-1}^2} \\ &= \frac{x_n + x_{n+1}}{x_{n+1}^2 x_n^2} \left| x_{n+1} - x_n \right| + \frac{x_n + x_{n-1}}{x_n^2 x_{n-1}^2} \left| x_n - x_{n-1} \right| \\ &= \frac{1}{x_{n+1} x_n} \left(\frac{1}{x_{n+1}} + \frac{1}{x_n} \right) \left| x_{n+1} - x_n \right| + \frac{1}{x_n x_{n-1}} \left(\frac{1}{x_n} + \frac{1}{x_{n-1}} \right) \left| x_n - x_{n-1} \right| \\ &\leqslant \frac{2}{27} \left| x_{n+1} - x_n \right| + \frac{2}{27} \left| x_n - x_{n-1} \right|, \forall n \geqslant 6. \end{aligned}$$

记
$$q = \frac{1}{2} \in (0,1), \ \lambda = \frac{1}{3}, u_n = |x_n - x_{n-1}|, \ \text{则由上式可得}$$

$$u_{n+2} \leqslant \frac{2}{27} u_{n+1} + \frac{2}{27} u_n \leqslant (q - \lambda) u_{n+1} + q \lambda u_n, \forall n \geqslant 6.$$

$$\Leftrightarrow u_{n+2} + \lambda u_{n+1} \leqslant q(u_{n+1} + \lambda u_n), \forall n \geqslant 6.$$

从而对 $\forall n \geq 10 \ (n \ \text{大于 7} \ \text{就行})$,我们有

$$u_n \leqslant u_n + \lambda u_{n-1} \leqslant q(u_{n-1} + \lambda u_{n-2}) \leqslant \cdots \leqslant q^{n-7}(u_7 + \lambda u_6).$$

于是对 $\forall n \geq 10$, 我们有

$$x_n \leqslant \sum_{k=10}^n |x_{k+1} - x_k| + x_6 = \sum_{k=10}^n u_k + x_6 \leqslant (u_7 + \lambda u_6) \sum_{k=10}^n q^{k-7} + x_6.$$

令 $n \to \infty$,则由上式右边收敛可知, x_n 也收敛。

注

1. (1) 取 $a = \min \left\{ a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2} \right\}$ 的原因: 为了证明数列 a_n 有界, 我们需要先定界, 然后再利用数学归纳法证得数列 a_n 有界. 显然 a_n 有一个下界 0, 但上界无法直接观察出来. 为了确定出数列 a_n 的上下界, 我们可以先假设 b 为数列 a_n 的一个上界 (此时 b 是待定常数), 但是我们根据 $a_n > 0$ 和 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 只能得到 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} < +\infty$, 无法归纳法出 $a_n \leq b$, 故我们无法归纳出 $0 < a_n < b$, $\forall n \in \mathbb{N}_+$. 因此仅待定一个上界并不够,下界并不能简单的取为 0, 我们还需要找到一个更接近下确界的大于零的下界,不妨先假设这个下界为 a > 0(此时 a 也是待定常数). 利用这个下界和递推式 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 归

纳出 $0 < a \le a_n \le b, \forall n \in \mathbb{N}_+$ (此时 a, b 都是待定常数). 于是由已知条件可得

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \leqslant \frac{1}{a} + \frac{1}{a} = \frac{2}{a} \leqslant b \Rightarrow ab \geqslant 2,$$

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \geqslant \frac{1}{b} + \frac{1}{b} = \frac{2}{b} \geqslant a \Rightarrow ab \leqslant 2.$$

从而 ab=2,即 $b=\frac{2}{a}$. 进而 $0< a\leq a_n\leq \frac{2}{a}$. 又由数学归纳法的原理,可知我们需要同时保证 $0< a\leq a_1, a_2\leq \frac{2}{a}$. 因此找到一个合适的 a,使得 $0< a\leq a_1, a_2\leq \frac{2}{a}$ 成立就一定能归纳出 $0< a\leq a_1\leq \frac{2}{a}$, $\forall n\in\mathbb{N}_+$,即数列 $\{a_n\}$ 有界. 而当我们取 $a=\min\left\{a_1,a_2,\frac{2}{a_1},\frac{2}{a_2}\right\}$ 时,有 $a_1,a_2\leqslant a$, $\frac{2}{a}\geq \frac{2}{\frac{2}{a_1}}=a_1$, $\frac{2}{a}\geq \frac{2}{\frac{2}{a_1}}=a_2$. 恰好满足这个条件.

- (2) 能取到一个子列 a_{nk} ,使得 $\lim_{k\to\infty} a_{nk+2} = A$, $\lim_{k\to\infty} a_{nk+1} = l_1 < \infty$, $\lim_{k\to\infty} a_{nk} = l_2 < \infty$, $\lim_{k\to\infty} a_{nk-1} = l_3 < \infty$ 成立的原因: 由 $A = \overline{\lim_{n\to\infty}} a_n$ 和上极限的定义 (上极限就是最大的子列极限),可知存在一个子列 $\{a_{nk}\}$,使得 $\lim_{k\to\infty} a_{nk+2} = A$. 因为数列 $\{a_{nk+1}\}$ 有界 (因为数列 $\{a_n\}$ 有界),所以由致密性定理可知 $\{a_{nk+1}\}$ 一定存在一个收敛的子列 $\{a_{nk_j+1}\}$,并记 $\lim_{j\to\infty} a_{nk_j+1} = l_1 < \infty$. 又因为 $\{a_{nk_j+2}\}$ 是 $\{a_{nk+2}\}$ 的子列,所以 $\lim_{k\to\infty} a_{nk_j+2} = A$. 由于 $\{a_{nk_j}\}$ 仍是 $\{a_n\}$ 的一个子列,因此不妨将 $\{a_{nk_j}\}$ 记作 $\{a_{nk}\}$,则此时有 $\lim_{k\to\infty} a_{nk+2} = A$, $\lim_{k\to\infty} a_{nk+1} = l_1 < \infty$. 同理由于数列 $\{a_{nk_j}\}$ 有界,所以由致密性定理可知 $\{a_{nk_j}\}$ 存在一个收敛的子列 $\{a_{nk_j}\}$,并记 $\lim_{l\to\infty} a_{nk_l} = l_2$. 又因为 $\{a_{nk_l+2}\}$ 的子列, $\{a_{nk_l+1}\}$ 的子列,所以 $\lim_{l\to\infty} a_{nk_l+2} = A$, $\lim_{l\to\infty} a_{nk_l+1} = l_1$. 由于 $\{a_{nk_j}\}$ 仍是 $\{a_n\}$ 的一个子列,因此不妨将 $\{a_{nk_j}\}$ 记作 $\{a_{nk_j}\}$,则此时有 $\lim_{k\to\infty} a_{nk_l+2} = A$, $\lim_{k\to\infty} a_{nk_l+1} = l_1$ 。由于 $\{a_{nk_j}\}$ 仍是 $\{a_n\}$ 的一个子列,因此不妨将 $\{a_{nk_j}\}$ 有界,所以由致密性定理可知 $\{a_{nk_j}\}$ 存在一个收敛的子列 $\{a_{nk_s}\}$,并记 $\lim_{s\to\infty} a_{nk_s} = l_3$. 又因为 $\{a_{nk_s+2}\}$ 是 $\{a_{nk+2}\}$ 的子列, $\{a_{nk_s+1}\}$ 起 $\{a_{nk_s+2}\}$ 是 $\{a_{nk_s+2}\}$ 的子列, $\{a_{nk_s+1}\}$ 能为了列, $\{a_{nk_s+1}\}$ 是 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 能为了列, $\{a_{nk_s+1}\}$ 是 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 是 $\{a_{nk_s+1}\}$ 的子列,为以 $\{a_{nk_s+2}\}$ 是 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+2}\}$ 记 $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 记 $\{a_{nk_s+1}\}$ 的子列, $\{a_{nk_s+1}\}$ 记 $\{$
- 2. 记 $q = \frac{1}{2} \in (0,1), \lambda = \frac{1}{3}$ 的原因: 记 $u_n = |x_n x_{n-1}|$,则 $u_{n+2} \leq \frac{2}{27}(u_{n+1} + u_n)$,类比二阶线性递推数列方法,希望找到 $\lambda > 0, q \in (0,1)$ 使得 $u_{n+2} + \lambda u_{n+1} \leq q(u_{n+1} + \lambda u_n)$ 恒成立,这样一直递推下去就有 $u_{n+2} + \lambda u_{n+1} \leq Cq^n, C > 0$,说明 $|x_{n+1} x_n|$ 是以等比数列速度趋于零的,根据级数收敛的比较判别法显然 x_n 收敛,结论成立。 而对比已知不等式 $u_{n+2} \leq \frac{2}{27}(u_{n+1} + u_n)$ 和目标不等式 $u_{n+2} \leq (q \lambda)u_{n+1} + q\lambda u_n$ 可知,只要满足 $u_{n+2} \leq \frac{2}{27}(u_{n+1} + u_n) \leq (q \lambda)u_{n+1} + q\lambda u_n$, $q \in (0,1), \lambda > 0$ 即可达到目的。即只需取合适的 q, λ 使其满足 $q \lambda \geq \frac{2}{27}, q\lambda \geq \frac{2}{27}, q \in (0,1), \lambda > 0$ 即可. 这明显有很多可以的取法,例如 $q = \frac{1}{2}, \lambda = \frac{1}{3}$,因此得证。

例题 **4.69** 设
$$a_1, \dots, a_k, b_1, \dots, b_k > 0, k \ge 2, a_n = \sum_{i=1}^k \frac{b_i}{a_{n-i}}, n \ge k+1$$
, 证明: $\lim_{n \to \infty} a_n = \sqrt{\sum_{i=1}^k b_i}$ 。

Ŷ 笔记 本题是例题 4.68 第一题的推广. 核心想法就是**反复抽收敛子列**.

证明 先证明数列是有界的,为此取充分大的正数 M 使得

$$a_n \in \left[\frac{b_1 + b_2 + \dots + b_k}{M}, M\right], n = 1, 2, \dots, k$$

然后归纳证明对任意 $n \in \mathbb{N}^+$ 都有上述不等式成立,若n时成立,则n+1时

$$a_{n+1} = \frac{b_1}{a_n} + \frac{b_2}{a_{n-1}} + \dots + \frac{b_k}{a_{n-k+1}} \ge \frac{b_1 + b_2 + \dots + b_k}{M}$$

$$a_{n+1} = \frac{b_1}{a_n} + \frac{b_2}{a_{n-1}} + \dots + \frac{b_k}{a_{n-k+1}} \le \frac{b_1}{\frac{b_1 + \dots + b_k}{M}} + \frac{b_2}{\frac{b_1 + \dots + b_k}{M}} + \dots + \frac{b_k}{\frac{b_1 + \dots + b_k}{M}} = M$$

因此 a_n 是有界数列,设其上极限为 L,下极限为 l,则 $L \ge l$ 。在递推式两边取上下极限可知

$$L = \overline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} \left(\frac{b_1}{a_{n-1}} + \frac{b_2}{a_{n-2}} + \dots + \frac{b_k}{a_{n-k}} \right) \le \overline{\lim}_{n \to \infty} \frac{b_1}{a_{n-1}} + \overline{\lim}_{n \to \infty} \frac{b_2}{a_{n-2}} + \dots + \overline{\lim}_{n \to \infty} \frac{b_k}{a_{n-k}} = \frac{b_1 + b_2 + \dots + b_k}{l}$$

$$l = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{b_1}{a_{n-1}} + \frac{b_2}{a_{n-2}} + \dots + \frac{b_k}{a_{n-k}} \right) \ge \lim_{n \to \infty} \frac{b_1}{a_{n-1}} + \lim_{n \to \infty} \frac{b_2}{a_{n-2}} + \dots + \lim_{n \to \infty} \frac{b_k}{a_{n-k}} = \frac{b_1 + b_2 + \dots + b_k}{L}$$
所以 $Ll = b_1 + b_2 + \dots + b_k$,只要证明 $L = l$ 便可得到需要的结论。

根据上极限定义,可以取子列 $a_{n_i} \to L$,不妨要求 $n_{i+1}-n_i > 2k+2$,然后关注各个 a_{n_i} 的上一项 $a_{n_{i-1}}$ 构 成的数列,这也是一个有界数列,所以一定存在收敛子列,我们可以将其记为 a_{n_i} -1, $j=1,2,\cdots$,那么对于这个 子列的每一项,它后面的那一项 $a_{n_{i_j}}$ 构成的数列,是之前取的数列 $a_{n_i} \to L$ 的子列,自然成立 $\lim_{i \to \infty} a_{n_{i_j}-1} = l_1 \in I$ [l,L], $\lim_{i \to \infty} a_{n_{i_j}} = L$, 为了方便起见,我们将这两个数列分别记为 a_{n_i-1}, a_{n_i} . (n_{i_j}) 的指标集是可列集,按对角线或正 方形法则排序)

进一步考虑每个 a_{ni-1} 的上一项构成的数列,作为有界数列一定存在收敛子列,然后取出这个收敛子列,则 对于这个子列,它后面一项构成的数列趋于 l_1 ,它后面第二项构成的数列趋于L。

以此类推反复操作有限次(可以保证每次取的子列 $n_{i+1}-n_i \ge 2$,从而反复取k+1次后就有 $n_{i+1}-n_i \ge 2(k+1)$, 但本题用不上这个条件), 最终我们可以得到一列正整数 n_i 单调递增趋于无穷, 满足

 $a_{n_i} \to L, a_{n_i-1} \to l_1, a_{n_i-2} \to l_2, \cdots, a_{n_i-k} \to l_k, a_{n_i-k-1} \to l_{k+1}, n_{i+1} - n_i \ge 2k + 2, l_1, \cdots, l_{k+1} \in [l, L]$ 代入到条件递推式中, 取极限有

$$\begin{split} L &= \lim_{i \to \infty} a_{n_i} = \lim_{i \to \infty} \left(\frac{b_1}{a_{n_i - 1}} + \frac{b_2}{a_{n_i - 2}} + \dots + \frac{b_k}{a_{n_i - k}} \right) = \frac{b_1}{l_1} + \frac{b_2}{l_2} + \dots + \frac{b_k}{l_k} \le \frac{b_1 + b_2 + \dots + b_k}{l} = L \\ \Rightarrow l_1 &= l_2 = \dots = l_k = l \\ l_1 &= \lim_{i \to \infty} a_{n_i - 1} = \lim_{i \to \infty} \left(\frac{b_1}{a_{n_i - 2}} + \frac{b_2}{a_{n_i - 3}} + \dots + \frac{b_k}{a_{n_i - k - 1}} \right) = \frac{b_1}{l_2} + \frac{b_2}{l_3} + \dots + \frac{b_k}{l_{k + 1}} \ge \frac{b_1 + b_2 + \dots + b_k}{L} = l_1 \\ \Rightarrow l_2 &= l_3 = \dots = l_{k + 1} = L \end{split}$$

于是 $L=l_1=l_2=l$ (这是公共的一个值,注意 $k\geq 2$),结论得证.再对递推条件两边取极限得到极限值.

4.6.5 压缩映像

我们来看一种重要的处理模型, 压缩映像方法, 它是我们以后解决基础题的重要方法, 其思想内核有两种, 一 种是找到不动点 x_0 , 然后得到某个 $L \in (0,1)$, 使得

$$|x_n - x_0| \le L|x_{n-1} - x_0| \le \cdots \le L^{n-1}|x_1 - x_0|.$$

还有一种是得到某个 $L \in (0,1)$, 使得

$$|x_n - x_{n-1}| \le L|x_{n-1} - x_{n-2}| \le \cdots \le L^{n-2}|x_2 - x_1|.$$

当数列由递推确定时,我们有

$$|x_n - x_0| = |f(x_{n-1}) - f(x_0)|, |x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|,$$

因此往往可适用中值定理或者直接放缩法来得到渴望的 $L \in (0,1)$,特别强调 L = 1 是不对的.

筆记 常规的递减递推数列求极限问题我们一般使用压缩映像证明. 压缩映像的书写过程往往比用递推函数的二 次复合和数学归纳法的书写要简便的多.

注 当递推函数的不动点/极限点处导数大于等于 1 的时候, 就不可能压缩映射.

例题 4.70

1. 设
$$x_1 > -1$$
, $x_{n+1} = \frac{1}{1+x_n}$, $n = 1, 2, \dots$, 求极限 $\lim_{n \to \infty} x_n$.
2. 求数列 $\sqrt{7}$, $\sqrt{7-\sqrt{7}}$, $\sqrt{7-\sqrt{7+\sqrt{7}}}$, \dots 极限.

2. 求数列
$$\sqrt{7}$$
, $\sqrt{7} - \sqrt{7}$, $\sqrt{7} - \sqrt{7 + \sqrt{7}}$, ... 极限.

1. 解法一 (递减递推归纳法): 不妨设 $x_1 > 0$ (因为 $x_2 = \frac{1}{1+x_1} > 0$), 归纳可知 $x_n > 0$. 由于原递推函数是递减函数, 因此考虑递推函数的二次复合 $x_{n+2} = \frac{1}{1+\frac{1}{1+x_n}} = \frac{1+x_n}{2+n}$, 这个递推函数一定是单调递增的. 进而考虑

$$\frac{1+x}{2+x} - x = \frac{\left(x + \frac{\sqrt{5}+1}{2}\right)\left(\frac{\sqrt{5}-1}{2} - x\right)}{2+x}.$$

于是当 $x_1 \ge \frac{\sqrt{5}-1}{2}$ 时,有 $x_3-x_1 = \frac{1+x_1}{2+x_1}-x_1 \le 0$,即 $x_3 \le x_1$.从而由递增递推结论可知, $\{x_{2n-1}\}$ 单调递减且 $x_{2n-1} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$.此时 $x_2 < \frac{\sqrt{5}-1}{2}$ (由 $x = \frac{1}{1+x}$ 以及 $x_n > 0$ 可以解得不动点 $x_0 = \frac{\sqrt{5}-1}{2}$,又因为原数列是递减递推,所以 x_n 与 x_0 大小关系交错.而 $x_1 \ge \frac{\sqrt{5}-1}{2}$,故 $x_2 < \frac{\sqrt{5}-1}{2}$).于是 $x_4-x_2 = \frac{1+x_2}{2+x_2}-x_2 > 0$,

即 $x_4 > x_2$. 从而由递增递推结论可知, $\{x_{2n}\}$ 单调递增且 $x_{2n} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$.

因此由单调有界定理可知, $\{x_{2n}\}$, $\{x_{2n-1}\}$ 收敛. 设 $\lim_{n\to\infty} x_{2n} = a > 0$, $\lim_{n\to\infty} x_{2n-1} = b > 0$. 又由 $x_{2n} = \frac{1}{1+x_{2n}}$, $x_{2n-1} = a > 0$.

$$\frac{1}{1+x_{2n-1}}$$
, $\forall n \in \mathbb{N}_+$, 再令 $n \to \infty$, 可得 $a = \frac{1}{1+a}$, $b = \frac{1}{1+b}$, 进而解得 $a = b = \frac{\sqrt{5}-1}{2}$. 故 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1} = \frac{\sqrt{5}-1}{2}$. 同理, 当 $x_1 < \frac{\sqrt{5}-1}{2}$ 时, 也有 $\lim_{n \to \infty} x_n = \frac{\sqrt{5}-1}{2}$.

解法二 (压缩映像):不妨设 $x_1 > 0$ (用 $x_2 = \frac{1}{1+x_1} > 0$ 代替 x_1), 归纳可知 $x_n > 0$. 设 $x = \frac{\sqrt{5}-1}{2}$, 则

$$|x_{n+1} - x| = \left| \frac{1}{1 + x_n} - x \right| = \left| \frac{1}{1 + x_n} - \frac{1}{1 + x} \right| = \frac{|x_n - x|}{(1 + x_n)(1 + x)} \leqslant \frac{1}{1 + x} |x_n - x|.$$

从而

$$|x_{n+1}-x| \leqslant \frac{1}{1+x} |x_n-x| \leqslant \frac{1}{(1+x)^2} |x_{n-1}-x| \leqslant \cdots \leqslant \frac{1}{(1+x)^n} |x_1-x|.$$

于是令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - x| = 0$, 因此 $\lim_{n \to \infty} x_n = x = \frac{\sqrt{5} - 1}{2}$.

2. 由条件可知, $x_{n+2} = \sqrt{7 - \sqrt{7 + x_n}}, \forall n \in \mathbb{N}_+$ (由此可解得 x = 2 为不动点). 于是

$$|x_{n+2} - 2| = |\sqrt{7 - \sqrt{7 + x_n}} - 2| = \frac{|3 - \sqrt{7 + x_n}|}{\sqrt{7 - \sqrt{7 + x_n}} + 2}$$
$$= \frac{|2 - x_n|}{(\sqrt{7 - \sqrt{7 + x_n}} + 2)(3 + \sqrt{7 + x_n})} \le \frac{1}{6}|x_n - 2|.$$

从而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{2n} - 2| \leqslant \frac{1}{6} |x_{2n-2} - 2| \leqslant \frac{1}{6^2} |x_{2n-4} - 2| \leqslant \dots \leqslant \frac{1}{6^{n-1}} |x_2 - 2|;$$

$$|x_{2n+1} - 2| \leqslant \frac{1}{6} |x_{2n-1} - 2| \leqslant \frac{1}{6^2} |x_{2n-3} - 2| \leqslant \dots \leqslant \frac{1}{6^n} |x_1 - 2|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{2n} - 2| = \lim_{n \to \infty} |x_{2n+1} - 2| = 0$. 因此 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = 2$. 例题 4.71 设数列 $x_1 \in \mathbb{R}, x_{n+1} = \cos x_n, n \in \mathbb{N}$, 求 $\lim_{n \to \infty} x_n$.

解 令 $g(x) = x - \cos x$, 则 $g'(x) = 1 + \sin x \ge 0$, 且 g'(x) 不恒等于 0. 又 g(0) = -1 < 0, $g(1) = 1 - \cos 1 > 0$, 因此由零点存在定理可知, g 存在唯一零点 $x_0 \in (0,1)$. 不妨设 $x_1 \in [-1,1]$ (用 x_2 代替 x_1), 则 $x_n \in [-1,1]$. 再令 $f(x) = \cos x$, 则 $f'(x) = -\sin x$. 于是记 $C \triangleq \max_{x \in [-1,1]} |f'(x)| \in (0,1)$.

故由 Lagrange 中值定理, 可得存在 $\theta_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$, 使得对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\theta_n)||x_n - x_0| \leqslant C|x_n - x_0|.$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| \le C|x_n - x_0| \le C^2|x_{n-1} - x_0| \le \cdots \le C^n|x_1 - x_0|.$$

上式两边同时令 $n \to \infty$, 再结合 $C \in (0,1)$, 可得 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 4.8 (加强的压缩映像)

设可微函数 $f:[a,b] \to [a,b]$ 满足 $|f'(x)| < 1, \forall x \in [a,b]$. 证明: 对

$$x_1 \in [a, b], x_{n+1} = f(x_n), n \in \mathbb{N},$$

必有 $\lim_{n\to\infty} x_n$ 存在.

 $\mathbf{\dot{z}}$ 注意到 f' 未必是连续函数, 所以 $\sup_{x \in [a,b]} |f'(x)|$ 未必可以严格小于 1.

笔记 实际上, 用压缩映像证明 $\{x_n\}$ 的极限是 x_0 , 也同时蕴含了 x_0 就是这个递推数列的唯一不动点 (反证易得). 证明 $\Diamond g(x) = x - f(x)$, 则 $g(a) = a - f(a) \leq 0$, $g(b) = b - f(b) \geq 0$. 由零点存在定理可知, 存在 $x_0 \in [a, b]$, 使得 **証明** $\forall g(x) = x + f(x_0)$, $\Rightarrow h(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$, 则由导数定义可知 $h \in C[a, b]$. 又由 $|f'(x)| < 1, \forall x \in [a, b]$, 可知

 $|h(x_0)| < 1$. 对 $\forall x \neq x_0$, 由 Lagrange 中值定理可知

$$|h(x)| = \left| \frac{f(x) - f(x_0)}{x - x_0} \right| = |f'(\theta_x)| < 1, \quad \theta_x \in (\min\{x, x_0\}, \max\{x, x_0\})$$

故 $|h(x)| < 1, \forall x \in [a,b]$. 于是记 $L \triangleq \max_{x \in [a,b]} |h(x)| \in (0,1)$. 因此再由 Lagrange 中值定理可得, 对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\xi_n)| |x_n - x_0|, \quad \xi_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$$

从而对 $\forall n \in \mathbb{N}_+$, 都有

$$|f'(\xi_n)| = \left| \frac{f(x_n) - f(x_0)}{x_n - x_0} \right| = |h(x_n)| \leqslant L$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f'(\xi_n)||x_n - x_0| \le L|x_n - x_0| \le L^2|x_{n-1} - x_0| \le \dots \le L^n|x_1 - x_0|$$

上式两边同时令 $n \to \infty$, 则 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 4.9 (反向压缩映像)

设 $x_{n+1} = f(x_n), n \in \mathbb{N}$ 满足

$$\lim_{n\to\infty} x_n = a \in \mathbb{R}, x_n \neq a, \forall n \in \mathbb{N},$$

证明: 若 f 在 x = a 可导, 则 $|f'(a)| \le 1$.

证明 (反证法) 假设 |f'(a)| > 1, 由导数定义及极限保号性可知, 存在 r > 1, $\delta > 0$, 使得

$$\left| \frac{f(x) - f(a)}{x - a} \right| \geqslant r > 1, \quad \forall x \in [a - \delta, a + \delta].$$

即

$$|f(x) - f(a)| \ge r|x - a|, \quad \forall x \in [a - \delta, a + \delta].$$

因为 f 在 x=a 可导以及 $\lim_{n\to\infty} x_n=a$, 所以由 Heine 归结原则可知 $\lim_{n\to\infty} f(x_n)=f(a)$. 又 $x_{n+1}=f(x_n), \forall n\in\mathbb{N}_+$, 从 而等式两边同时令 $n \to \infty$, 可得 a = f(a). 由于 $\lim_{n \to \infty} |x_n - a| = 0$, 因此存在 $N \in \mathbb{N}$, 使得对 $\forall n \ge N$, 有

$$|x_{n+1} - a| = |f(x_n) - f(a)| \ge r|x_n - a|$$
.

故对 $\forall n \ge N$, 有

$$|x_{n+1} - a| \ge r|x_n - a| \ge r^2|x_{n-1} - a| \ge \cdots \ge r^n|x_1 - x_0|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - a| = +\infty$, 矛盾.

4.6.6 利用不等放缩求递推数列极限

例题 4.72 对 $x \ge 0$,定义 $y_n(x) = \sqrt[n]{[x[x\cdots[x]\cdots]]}$,这里一共 n 层取整,求极限 $\lim_{n\to\infty} y_n(x)$.

笔记 这里求极限运用了递推的想法找关系,如果直接对取整函数用不等式放缩,只能得到 $x-1 < y_n(x) \le x$,这 没什么用处, 因为放缩太粗糙了.

实际上, 由 Stolz 定理可知, 数列 $\frac{1}{n}$ 次幂的极限与其相邻两项项除的极限近似相等. 解 显然 $x \in [0,1)$ 时 $y_n(x) = 0$, $x \in [1,2)$ 时 $y_n(x) = 1$, 这两个式子对任意 n 都成立,下面来看 $x \geq 2$ 时的极限. n次复合

令 $u_n(x) = (y_n(x))^n = [x[\cdots[x]\cdots]] \ge 0$, 由于单调递增函数的复合仍是单调递增函数, 且 [x] 在 $[0,+\infty)$ 上单调递增,故 $u_n(x)$ 在 $[0,+\infty)$ 上单调递增。从而由 $u_n(x)$ 的单调性可得

$$u_n(x) \geqslant u_n(2) = \underbrace{[2[\cdots[2]\cdots]]}_{n \not = \infty} = 2^n \to \infty, n \to \infty.$$

再结合 [x] 的基本不等式: $x-1 < [x] \leq x$ 可知

$$\begin{aligned} xu_{n-1}(x)-1 &\leq u_n(x) = \left[xu_{n-1}(x)\right] \leq xu_{n-1}(x), \forall x \geq 2. \\ \Rightarrow &1-\frac{1}{u_{n-1}(x)} \leq \frac{u_n(x)}{u_{n-1}(x)} \leq x \Rightarrow \lim_{n \to \infty} \frac{u_n(x)}{u_{n-1}(x)} = x, \forall x \geq 2. \end{aligned}$$

再根据 Stolz 公式有

$$\lim_{n \to \infty} y_n(x) = \lim_{n \to \infty} u_n(x)^{\frac{1}{n}} = e^{\lim_{n \to \infty} \frac{\ln u_n(x)}{n}} = e^{\lim_{n \to \infty} [\ln u_n(x) - \ln u_{n-1}(x)]} = \lim_{n \to \infty} \frac{u_n(x)}{u_{n-1}(x)} = x.$$

因此

$$\lim_{n \to \infty} y_n(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x \in [1, 2) \\ x, & x \ge 2 \end{cases}$$

4.6.7 可求诵项和强求诵项

4.6.7.1 三角换元求通项

先来看能够直接构造出数列通项的例子. 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我 们可以猜递推数列通项就是三角函数或双曲三角函数的形式,再利用三角函数或双曲三角函数的性质递推归纳.

例题 **4.73** 设
$$a_1 \in (0,1), a_{n+1} = \sqrt{\frac{1+a_n}{2}}, n = 1, 2, \dots,$$
求 $\lim_{n \to \infty} a_1 a_2 \cdots a_n$.

Ŷ 笔记 本题是经典的例子,注意此类问题如果不能求出通项就无法求出具体值,本题便是一个能求出通项从而算出 极限值的经典例子.

注 这类问题只能靠记忆积累.

解 利用

$$\cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}}, \theta \in \mathbb{R},$$

因为 $a_1 \in (0,1)$, 所以一定存在 $\theta \in (0,\frac{\pi}{2})$, 使得 $a_1 = \cos\theta$. 则 $\theta = \arccos a_1, \sin\theta = \sqrt{1-a_1^2}$. 并且由 $a_{n+1} = \cos\theta$. $\sqrt{\frac{1+a_n}{2}}, n=1,2,\cdots$ 可得

$$a_2 = \cos \frac{\theta}{2}, a_3 = \cos \frac{\theta}{2^2}, \dots, a_n = \cos \frac{\theta}{2^{n-1}}.$$

因此

$$\lim_{n\to\infty} a_1 a_2 \cdots a_n = \lim_{n\to\infty} \prod_{k=0}^{n-1} \cos\frac{\theta}{2^k} = \lim_{n\to\infty} \frac{\sin\frac{\theta}{2^{n-1}}}{\sin\frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-1} \cos\frac{\theta}{2^k} = \lim_{n\to\infty} \frac{\sin\frac{\theta}{2^{n-2}}}{2\sin\frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-2} \cos\frac{\theta}{2^k}$$

$$= \dots = \lim_{n \to \infty} \frac{\sin 2\theta}{2^n \sin \frac{\theta}{2^{n-1}}} = \frac{\sin 2\theta}{2\theta} = \frac{\sin(2 \arccos a_1)}{2 \arccos a_1} = \frac{a_1 \sqrt{1 - a_1^2}}{\arccos a_1}.$$

例题 **4.74** 设 $x_1 = \sqrt{5}, x_{n+1} = x_n^2 - 2$, 计算

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}.$$

輸完 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我们可以猜递推数列通项就是三角函数/双曲三角函数的形式, 再利用三角函数/双曲三角函数的性质递推归纳.

解 注意到 $\cos x = \frac{\sqrt{5}}{2}$ 在 \mathbb{R} 上无解, 因此推测类似的双曲三角函数可以做到. 设 $x_1 = 2\cosh\theta, \theta \in (0, +\infty)$. 利用

$$\cosh x = 2\cosh^2\frac{x}{2} - 1, \forall x \in \mathbb{R},$$

我们归纳可证

$$x_n = 2\cosh(2^{n-1}\theta), n = 1, 2, \cdots$$

于是利用 $sinh(2x) = 2 sinh x cosh x, \forall x \in \mathbb{R},$ 我们有

$$\begin{split} \lim_{n \to \infty} \frac{x_1 x_2 \cdots x_n}{x_{n+1}} &= \lim_{n \to \infty} \frac{2^n \prod\limits_{k=0}^{n-1} \cosh(2^k \theta)}{2 \cosh(2^n \theta)} = \lim_{n \to \infty} \frac{2^n \sinh \theta \prod\limits_{k=0}^{n-1} \cosh(2^k \theta)}{2 \sinh \theta \cosh(2^n \theta)} = \lim_{n \to \infty} \frac{2^{n-1} \sinh(2\theta) \prod\limits_{k=1}^{n-1} \cosh(2^k \theta)}{2 \sinh \theta \cosh(2^n \theta)} \\ &= \lim_{n \to \infty} \frac{2^{n-2} \sinh(2^2 \theta) \prod\limits_{k=2}^{n-1} \cosh(2^k \theta)}{2 \sinh \theta \cosh(2^n \theta)} = \lim_{n \to \infty} \frac{\sinh 2^n \theta}{2 \sinh \theta \cosh(2^n \theta)} = \lim_{n \to \infty} \frac{\tanh 2^n \theta}{2 \sinh \theta} = \frac{1}{2 \sinh \theta} = 1, \end{split}$$

这里倒数第二个等号来自 $\lim_{x \to \infty} \tanh x = 1$.

例题 **4.75** 设 $a_1 = 3$, $a_n = 2a_{n-1}^2 - 1$, $n = 2, 3, \dots$, 则计算

$$\lim_{n\to\infty}\frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}}.$$

注 因为双曲三角函数 $\cosh x$ 在 $(0, +\infty)$ 上的值域为 $(1, +\infty)$, 并且 $\cosh x$ 在 $(0, +\infty)$ 上严格递增, 所以一定存在唯一的 $\theta \in (0, +\infty)$, 使得 $a_1 = \cosh \theta = 3$.

证明 设 $a_1 = \cosh \theta = 3, \theta \in (0, +\infty)$. 则利用 $\cosh 2\theta = 2 \cosh^2 \theta - 1$, 再结合条件归纳可得

$$a_n = 2a_{n-1}^2 - 1 = \cosh 2^{n-1}\theta, \quad n = 2, 3, \dots$$

于是

$$\lim_{n \to \infty} \frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}} = \lim_{n \to \infty} \frac{\cosh 2^{n-1} \theta}{2^n \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta} = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^n \sinh \theta \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^{n-1} \sinh 2\theta \prod_{k=2}^{n-1} \cosh 2^{k-1} \theta} = \cdots = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2 \sinh 2^{n-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta}{2 \tanh 2^{n-1} \theta} \frac{\lim_{n \to \infty} \tanh 2^{n-1} \theta = 1}{2} \frac{\sinh \theta}{2} = \frac{\sqrt{\cosh^2 \theta - 1}}{2} = \sqrt{2}.$$

例题 4.76 设 $y_0 \ge 2$, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n}$.

笔记 关于求和的问题,要注意求和的通项能否凑成相邻两项相减的形式,从而就能直接求和消去中间项,进而将求和号去掉。

注 因为双曲三角函数 $2\cosh x$ 在 (0, +∞) 上的值域为 (1, +∞), 并且 $2\cosh x$ 在 (0, +∞) 上严格递增, 所以一定存在 唯一的 $\theta \in (0, +∞)$, 使得 $y_0 = 2\cosh \theta \ge 2$.

证明 设 $y_0 = 2\cosh\theta$, $\theta \in (0, +\infty)$, 则利用 $\cosh 2\theta = 2\cosh^2\theta - 1$, 再结合条件归纳可得

$$y_1 = y_0^2 - 2 = 4\cosh^2\theta - 2 = 2(2\cosh^2\theta - 1) = 2\cosh 2\theta,$$

$$y_2 = y_1^2 - 2 = 4\cosh^2 2\theta - 2 = 2(2\cosh^2 2\theta - 1) = 2\cosh 2^2\theta,$$
.....
$$y_n = y_{n-1}^2 - 2 = 4\cosh^2 2^{n-1}\theta - 2 = 2(2\cosh^2 2^{n-1}\theta - 1) = 2\cosh 2^n\theta,$$
.....

于是

$$\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n} = \sum_{n=0}^{\infty} \frac{1}{\prod_{k=0}^{n} 2^{n+1} \cosh 2^k \theta} = \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^{n+1} \sinh \theta} \prod_{k=0}^{n} \cosh 2^k \theta$$

$$= \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^n \sinh 2\theta} \prod_{k=1}^{n} \cosh 2^k \theta = \cdots = \sum_{n=0}^{\infty} \frac{\sinh \theta}{\sinh 2^{n+1} \theta}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \frac{1}{e^{2^{n+1} \theta} - e^{-2^{n+1} \theta}} = 2 \sinh \theta \sum_{n=0}^{\infty} \frac{e^{2^{n+1} \theta}}{e^{2^{n+2} \theta} - 1}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \left(\frac{1}{e^{2^{n+1} \theta} - 1} - \frac{1}{e^{2^{n+2} \theta} - 1} \right) = \frac{2 \sinh \theta}{e^{2\theta} - 1}$$

$$= \frac{e^{\theta} - e^{-\theta}}{e^{\theta} \left(e^{\theta} - e^{-\theta} \right)} = e^{-\theta} = \cosh \theta - \sinh \theta$$

$$= \frac{y_0}{2} - \sqrt{\cosh^2 \theta - 1} = \frac{y_0}{2} - \sqrt{\frac{y_0^2}{4} - 1}.$$

4.6.7.2 凑出可求通项的递推数列

利用比值换元等方法, 可以将原本不能直接求通项的递推数列转化成可三角换元或用高中方法求通项的递 推数列. 求出通项后, 后续问题就很简单了.

例题 4.77 设 a > b > 0,定义 $a_0 = a$, $b_0 = b$, $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$,求 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$ 。 注 这是算数-调和平均数数列,与算术-几何平均不同,这个通项以及极限值都可以求出来.
② 笔记 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$ 是一个经典的可求通项的递推数列 (高中学过),处理方法必须掌握. 即先求解其特征方程,然后用 x_{n+1} 分别减去两个特征根再作商,再将递推式代入这个分式,反复递推得到一个等比数列,进而得到 x_n 的通项. 具体步骤见下述证明

证明 由条件可得

$$a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{2a_n b_n}{a_n + b_n} = \frac{a_n b_n}{a_{n+1}} \Rightarrow a_{n+1} b_{n+1} = a_n b_n = \dots = a_0 b_0 = ab.$$
因此 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{ab}{a_n} \right)$ 。 $\Leftrightarrow a_n = \sqrt{ab} x_n, x_0 = \sqrt{\frac{a}{b}} > 1$,则 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right), \forall n \in \mathbb{N}_+$ 。从而
$$\frac{x_{n+1} - 1}{x_{n+1} + 1} = \frac{\frac{x_{n+1}^2 - 1}{2x_{n+1}}}{\frac{x_{n+1}^2 + 1}{2x_{n+1}}} = \frac{(x_n - 1)^2}{(x_n + 1)^2} = \dots = \left(\frac{x_0 - 1}{x_0 + 1} \right)^{2^{n+1}} \Rightarrow \frac{x_n - 1}{x_n + 1} = C^{2^n}, C = \frac{x_0 - 1}{x_0 + 1} \in (0, 1).$$
于是 $x_n = \frac{1 + C^{2^n}}{1 - C^{2^n}}$ 。 再由 $a_n = \sqrt{ab} x_n$ 可得
$$a_n = \sqrt{ab} \frac{1 + C^{2^n}}{1 - C^{2^n}} \to \sqrt{ab}, n \to \infty.$$

$$b_n = \frac{ab}{a_n} \to \sqrt{ab}, n \to \infty.$$

例题 **4.78** 设 $a_{n+1} = \frac{2a_nb_n}{a_{n+1}b_n}$, $b_{n+1} = \sqrt{a_{n+1}b_n}$, 证明: a_n, b_n 收敛到同一极限,并且在 $a_1 = 2\sqrt{3}, b_1 = 3$ 时,上述

极限值为 π .

注 这是几何 - 调和平均数列,通项也能求出来,自然求极限就没有任何问题.

 $\stackrel{ extstyle }{ extstyle }$ 笔记 (1) 因为 a_n,b_n 的递推式都是齐次式, 所以我们尝试比值换元, 将其转化为可求通项的递推数列. 实际上, 我 们利用的比值换元是 $c_n = \frac{b_n}{a_n}$,但是为了避免讨论数列 a_n 能否取 0 的情况,我们就取 $b_n = a_n c_n$. (2) 三角换元求通项的一些问题: 由递推条件易证 $a_n, b_n \geq 0$,其实当 a_n, b_n 中出现为零的项时,由递推条件易

知 a_n,b_n 后面的所有项都为零, 此时结论平凡. 因此我们只需要考虑 $a_n,b_n>0$ 的情况. 此时直接设 $\cos x_1=c_1=c_1$ $\frac{b_1}{a_1}$ 似乎不太严谨. 因为虽然 $c_1 > 0$, 但是 c_1 不一定在 (0,1) 内, 所以我们需要对其进行分类讨论.

当
$$c_1 \in (0,1)$$
 时, 设 $\cos x_1 = c_1 = \frac{b_1}{a_1}$, 其中 $x_1 \in (0,\frac{\pi}{2})$;

当
$$c_1 > 1$$
 时,设 $\cosh x_1 = c_1 = \frac{b_1}{a_1}$,其中 $x_1 \in (0, +\infty)$.

实际上, 我们直接设 $\cos x_1=c_1=rac{b_1}{a_1}$, 只要将 x_1 看作一个复数, 就可以避免分类讨论. 因为由复变函数论 可知, $\cos x$ 在复数域上的性质与极限等结论与在实数域上相同, 而且由 $c_1>0$ 可知, 一定存在一个复数 x_1 , 使得 $\cos x_1 = c_1$. 所以这样做是严谨地.(考试的时候最好还是分类讨论书写)

证明 设 $b_n = a_n c_n$ 代入有

$$a_{n+1} = \frac{2a_nb_n}{a_n + b_n} = \frac{2a_nc_n}{c_n + 1}, a_{n+1}c_{n+1} = \sqrt{a_{n+1}a_nc_n} \Rightarrow \frac{a_{n+1}}{a_n} = \frac{c_n}{c_{n+1}^2} = \frac{2c_n}{c_n + 1} \Rightarrow c_{n+1} = \sqrt{\frac{c_n + 1}{2}}$$
(4.58)

设 $\cos x_1 = c_1 = \frac{b_1}{a_1}$, 其中 $x_1 \in \mathbb{C}$, 则由(4.58)式归纳可得 $c_n = \cos\left(\frac{x_1}{2^{n-1}}\right)$. 代入回去求 a_n, b_n 有

$$c_{n} = \frac{b_{n}}{a_{n}} = \cos\left(\frac{x_{1}}{2^{n-1}}\right), b_{n+1} = \sqrt{a_{n+1}b_{n}} \Rightarrow b_{n+1}^{2} = a_{n+1}b_{n} = \frac{b_{n+1}b_{n}}{c_{n+1}} \Rightarrow \frac{b_{n+1}}{b_{n}} = \frac{1}{\cos\left(\frac{x_{1}}{2^{n}}\right)}$$

$$\Rightarrow \frac{b_{n+1}}{b_{1}} = \frac{1}{\cos\left(\frac{x_{1}}{2}\right)\cos\left(\frac{x_{1}}{2^{2}}\right)\cdots\cos\left(\frac{x_{1}}{2^{n}}\right)} = \frac{2^{n}\sin\frac{x_{1}}{2^{n}}}{\sin x_{1}} \Rightarrow b_{n} = b_{1}\frac{2^{n-1}\sin\frac{x_{1}}{2^{n-1}}}{\sin x_{1}}$$

$$\Rightarrow a_n = \frac{b_n}{c_n} = \frac{b_1 \frac{2^{n-1} \sin \frac{x_1}{2^{n-1}}}{\sin x_1}}{\cos \frac{x_1}{2^{n-1}}} = 2^{n-1} \frac{b_1}{\sin x_1} \tan \frac{x_1}{2^{n-1}}, \cos x_1 = c_1 = \frac{b_1}{a_1}$$

由此可见

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{b_1 x_1}{\sin x_1} = \frac{b_1 \arccos \frac{b_1}{a_1}}{\sqrt{1 - \frac{b_1^2}{a_1^2}}} = \frac{a_1 b_1 \arccos \frac{b_1}{a_1}}{\sqrt{a_1^2 - b_1^2}}$$

所以收敛到同一极限对于 $a_1 = 2\sqrt{3}$, $b_1 = 3$ 的情况有

$$\cos x_1 = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}, x_1 = \frac{\pi}{6}, \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{b_1 x_1}{\sin x_1} = \pi$$

结论得证.

例题 **4.79** 设 $a_n = 2^{n-1} - 3a_{n-1}, n \ge 1$,求 a_0 的所有可能值,使得 a_n 严格单调递增。

证明 直接裂项, 求通项即可得到

$$\frac{a_{n+1}}{(-3)^{n+1}} = \frac{a_n}{(-3)^n} + \frac{2^n}{(-3)^{n+1}} \Rightarrow \frac{a_{n+1}}{(-3)^{n+1}} - \frac{a_n}{(-3)^n} = \frac{2^n}{(-3)^{n+1}}$$

$$\Rightarrow \frac{a_{n+1}}{(-3)^{n+1}} = \frac{a_0}{(-3)^0} - \frac{1}{3} \left(1 + \left(-\frac{2}{3} \right) + \dots + \left(-\frac{2}{3} \right)^n \right) = a_0 - \frac{1}{3} \frac{1 - \left(-\frac{2}{3} \right)^{n+1}}{\frac{5}{3}}$$

$$\Rightarrow \frac{a_n}{(-3)^n} = a_0 - \frac{1}{5} \left(1 - \left(-\frac{2}{3} \right)^n \right) \Rightarrow a_n = \left(a_0 - \frac{1}{5} \right) (-3)^n + \frac{1}{5} 2^n.$$

由此可见 $a_0 = \frac{1}{5}$ 是唯一解.

例题 **4.80** 设 $x_1 > 0, x_{n+1} = 1 + \frac{1}{r}$, 求极限 $\lim_{n \to \infty} x_n$.

证明 解方程
$$x^2 - x - 1 = 0 \Rightarrow \lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2},$$
 于是
$$\frac{x_{n+1} - \lambda_1}{x_{n+1} - \lambda_2} = \frac{1 + \frac{1}{x_n} - \lambda_1}{1 + \frac{1}{x_n} - \lambda_2} = \frac{(1 - \lambda_1)x_n + 1}{(1 - \lambda_2)x_n + 1} = \frac{\lambda_2 x_n + 1}{\lambda_1 x_n + 1} = \frac{\lambda_2}{\lambda_1} \frac{x_n + \frac{1}{\lambda_2}}{x_n + \frac{1}{\lambda_1}} = \frac{\lambda_2}{\lambda_1} \frac{x_n - \lambda_1}{x_n - \lambda_2}$$
$$\Rightarrow \frac{x_{n+1} - \lambda_1}{x_{n+1} - \lambda_2} = \left(\frac{\lambda_2}{\lambda_1}\right)^n \frac{x_1 - \lambda_1}{x_1 - \lambda_2} \to 0, n \to \infty.$$

故 $\lim_{n\to\infty} x_n = \lambda_1 = \frac{1+\sqrt{5}}{2}$.

例题 **4.81** 设 $a_{n+1} = \sqrt[2]{a_n + 2}$,求 a_n 的通项公式.

证明 设 $a_n = 2b_n$ 则问题转化为已知 $b_{n+1} = \sqrt{\frac{b_n + 1}{2}}$, 求 b_n 的通项公式. 由例题 4.78, 立即得到

$$a_n = 2\cos\frac{\theta_1}{2^{n-1}}, \cos\theta_1 = \frac{1}{2}a_1.$$

4.6.7.3 直接凑出通项

例题 **4.82** 设 $a_1 = \frac{1}{2}$, $a_{n+1} = 2a_n^2 + 2a_n$, 求 a_n 的通项公式.

$$a_{n+1} = 2a_n^2 + 2a_n = 2\left(a_n + \frac{1}{2}\right)^2 - \frac{1}{2} \Rightarrow 2a_{n+1} + 1 = (2a_n + 1)^2 = \dots = (2a_1 + 1)^{2^n}$$
$$\Rightarrow a_n = \frac{(2a_1 + 1)^{2^{n-1}} - 1}{2} = \frac{2^{2^{n-1}} - 1}{2}.$$

4.6.7.4 凑裂项

凑裂项:根据已知的递推式,将需要求解的累乘或求和的通项凑成裂项的形式,使得其相邻两项相乘或相加可以抵消中间项,从而将累乘或求和号去掉.

例题 **4.83** 设
$$a_1 = 1, a_n = n(a_{n-1} + 1), x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k}\right), 求极限 \lim_{n \to \infty} x_n.$$

证明 由条件可知 $a_n + 1 = \frac{a_{n+1}}{n+1}$, 从而

$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k} \right) = \prod_{k=1}^n \frac{a_k + 1}{a_k} = \prod_{k=1}^n \frac{a_{k+1}}{(k+1)a_k} = \frac{a_{n+1}}{a_1} \frac{1}{(n+1)!} = \frac{a_{n+1}}{(n+1)!}.$$

再根据 $a_n = n(a_{n-1} + 1)$ 可得

$$\frac{a_n}{n!} = \frac{a_{n-1}}{(n-1)!} + \frac{1}{(n-1)!}.$$

故

$$x_n = \frac{a_{n+1}}{(n+1)!} = \frac{a_n}{n!} + \frac{1}{n!} = \frac{a_{n-1}}{(n-1)!} + \frac{1}{(n-1)!} + \frac{1}{n!} = \dots = \sum_{k=0}^n \frac{1}{k!} \to e.$$

例题 4.84 设
$$y_0 > 2$$
, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\prod_{n=0}^{\infty} (1 - \frac{1}{y_n})$.

笔记 关于累乘的问题,要注意累乘的通项能否凑成相邻两项相除的形式,从而就能直接累乘消去中间项,进而将累乘号去掉.

本题是利用已知条件和平方差公式将累乘的通项能否凑成相邻两项相除的形式.

证明 一方面

$$y_n + 1 = y_{n-1}^2 - 1 = (y_{n-1} - 1)(y_{n-1} + 1) \Rightarrow y_{n-1} - 1 = \frac{y_n + 1}{y_{n-1} + 1} \Rightarrow y_n - 1 = \frac{y_{n+1} + 1}{y_n + 1}.$$

另外一方面

$$y_n - 2 = y_{n-1}^2 - 4 = (y_{n-1} - 2)(y_{n-1} + 2) \Rightarrow y_n - 2 = (y_{n-1} - 2)y_{n-2}^2 \Rightarrow y_n = \sqrt{\frac{y_{n+2} - 2}{y_{n+1} - 2}}$$

于是结合 $\lim_{m\to\infty} y_m = +\infty$ 我们有

$$\begin{split} \prod_{n=0}^{\infty} \left(1 - \frac{1}{y_n}\right) &= \prod_{n=0}^{\infty} \frac{y_n - 1}{y_n} = \prod_{n=0}^{\infty} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}}\right) = \lim_{m \to \infty} \prod_{n=0}^{m} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}}\right) \\ &= \lim_{m \to \infty} \frac{y_{m+1} + 1}{y_0 + 1} \cdot \sqrt{\frac{y_1 - 2}{y_{m+2} - 2}} = \lim_{m \to \infty} \frac{y_{m+1} + 1}{\sqrt{y_{m+1}^2 - 4}} \cdot \frac{\sqrt{y_0^2 - 4}}{y_0 + 1} = \frac{\sqrt{y_0^2 - 4}}{y_0 + 1}. \end{split}$$

4.6.7.5 母函数法求通项

例题 **4.85** 设 $a_{n+1} = a_n + \frac{2}{n+1} a_{n-1}, n \ge 1, a_0 > 0, a_1 > 0$,求极限 $\lim_{n \to \infty} \frac{a_n}{n^2}$ 。 注 本题采用单调有界只能证明极限存在,而并不能算出来极限值:

$$\frac{a_{n+1}}{(n+1)^2} - \frac{a_n}{n^2} = \frac{a_n + \frac{2}{n+1}a_{n-1}}{(n+1)^2} - \frac{a_n}{n^2} = \frac{2n^2a_{n-1} - (2n+1)(n+1)a_n}{n^2(n+1)^3} < 0$$

证明 这类线性递推数列问题采用母函数方法是无敌的,因为能求出来通项公式。设 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 则根据条件有

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n = a_1 + \sum_{n=1}^{\infty} (n+1) \left(a_n + \frac{2}{n+1} a_{n-1} \right) x^n$$

$$= a_1 + \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=1}^{\infty} a_n x^n + 2 \sum_{n=1}^{\infty} a_{n-1} x^n = a_1 + x f'(x) + f(x) - a_0 + 2x f(x)$$

$$\Rightarrow f'(x) + \frac{2x+1}{1-x} f(x) = \frac{a_1 - a_0}{1-x}, f(0) = a_0, f'(0) = a_1$$

这是一阶线性微分方程,容易求出

$$f(x) = \frac{2x^2 - 6x + 5}{(1 - x)^3} \frac{a_1 - a_0}{4} + \frac{e^{-2x}}{(1 - x)^3} \frac{9a_0 - 5a_1}{4} = \sum_{n=0}^{\infty} a_n x^n$$

然后对左边这两个函数(先不看系数)做泰勒展开,关注 x^n 前面的 n^2 项系数,就对应极限。

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \Rightarrow \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n, \frac{1}{(1-x)^3} = \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2}x^n$$

$$\frac{2x^2 - 6x + 5}{(1-x)^3} = (2x^2 - 6x + 5) \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2}x^n = \sum_{n=0}^{\infty} (5b_n - 6b_{n-1} + 2b_{n-2})x^n$$

$$b_n = \frac{(n+2)(n+1)}{2} \Rightarrow 5b_n - 6b_{n-1} + 2b_{n-2} = \frac{1}{2}n^2 + O(n)$$

由此可见第一部分对应着极限 $\frac{a_1-a_0}{8}$, 然后算第二部分

$$\frac{e^{-2x}}{(1-x)^3} = \sum_{m=0}^{\infty} \frac{(-2)^m}{m!} x^m \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^n = \sum_{k=0}^{\infty} \sum_{m+n=k} \frac{(-2)^m}{m!} \frac{(n+2)(n+1)}{2} x^k$$

所以每一个 x^m 项相应的系数是

$$\sum_{k=0}^{m} \frac{(-2)^m}{m!} \frac{(k+2-m)(k+1-m)}{2} = \frac{1}{2} \sum_{k=0}^{m} \frac{(-2)^m}{m!} (m-(k-1))(m-(k-2))$$

由 Stolz 公式和 e^x 的无穷级数展开式可得, 对应的极限为

$$\frac{1}{2} \lim_{m \to \infty} \frac{\sum_{k=0}^{m} \frac{(-2)^m}{m!} (m^2 - (2k - 3)m + (k - 1)(k - 2))}{m^2} = \frac{1}{2} \lim_{m \to \infty} \sum_{k=0}^{m} \frac{(-2)^m}{m!} = \frac{1}{2e^2}$$

这是因为括号里面的 m 一次项和常数项部分,对应的求和的极限是零,由 stolz 公式是显然的。所以第二部分提供了 $\frac{9a_0-5a_1}{8e^2}$,最终所求极限为 $\lim_{n\to\infty}\frac{a_n}{n^2}=\frac{a_1-a_0}{8}+\frac{9a_0-5a_1}{8e^2}$ 。

4.6.7.6 强求通项和强行裂项

若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足下列递推条件之一:

- 1. $a_n = d_n a_{n-1} + b_n, n = 1, 2, \cdots;$
- 2. $\lim (a_n d_n a_{n-1}) = A$.

则我们都可以考虑对 a_n 进行强行裂项和强求通项, 从而可以将 a_n 写成关于 b_n, d_n 或 A, d_n 的形式, 进而将题目 条件和要求进行转化.

命题 4.10 (强求通项和强行裂项)

(1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$a_n = d_n a_{n-1} + b_n, n = 1, 2, \cdots,$$
 (4.59)

则令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}, n = 0, 1, \dots, -定有$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = A,\tag{4.60}$$

则令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}, n = 0, 1, \dots$$
, 再令 $b_0 = 1, b_n = a_n - \frac{c_{n-1}a_{n-1}}{c_n}, n = 1, 2, \dots$, 一定有

$$\lim_{n\to\infty}b_n=A,$$

$$\lim_{n\to\infty} b_n = A,$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots.$$

 $\dot{\mathbf{L}}$ 此时**只能都对** a_n 进行强行裂项和强求通项, b_n 和 d_n 都无法通过这种方法强行裂项和强求通项!

笔记 也可以通过观察原数列 a_n 的递推条件直接得到需要构造的数列,从而将 a_n 强行裂项和强求通项. 具体可 见例题 4.86 解法一. (1) 的具体应用可见例题 4.87 笔记; (2) 的具体应用可见例题 4.86 笔记. 证明 (强行裂项和强求通项的具体步骤)

(1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(4.59)式, 则令 $c_0 = 1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(4.59)式可得

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n, n = 1, 2, \cdots$$
 (4.61)

我们希望
$$c_n d_n = c_{n-1}, n = 2, 3, \dots$$
, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$ 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n = \prod_{i=1}^n \frac{1}{d_k}, n=0,1,\cdots$, 则由(4.61)式可知

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n \Rightarrow c_n a_n - c_{n-1} a_{n-1} = c_n b_n, n = 1, 2, \cdots$$

于是

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

这样就完成了对 a_n 的强行裂项和强求通项,并将 a_n 写成了关于 b_n , d_n 的形式.

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(4.60)式, 则令 $c_0=1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(4.60)式可得

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = A.$$
 (4.62)

我们希望 $c_n d_n = c_{n-1}, n = 2, 3, \dots$, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$ 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n=\prod_{k=1}^n\frac{1}{d_k}, n=0,1,\cdots$, 则由(4.62)式可知

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n} = A. \tag{4.63}$$

于是令 $b_0=1$, 待定 $\{b_n\}_{n=0}^{\infty}$, 希望 b_n 满足 $c_nb_n=c_na_n-c_{n-1}a_{n-1}, n=1,2,\cdots$, 即 $b_n=\frac{c_na_n-c_{n-1}a_{n-1}}{c_n}=a_n-\frac{c_{n-1}a_{n-1}}{c_n}, n=1,2,\cdots$, 因此, 令 $b_0=1, b_n=a_n-\frac{c_{n-1}a_{n-1}}{c_n}, n=1,2,\cdots$, 则 b_n 满足

$$c_n b_n = c_n a_n - c_{n-1} a_{n-1}, n = 1, 2, \cdots$$
 (4.64)

并且由(4.63)式可知

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{c_na_n-c_{n-1}a_{n-1}}{c_n}=A.$$

从而由(4.64)式可得

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

这样就完成了对 a_n 的强行裂项和强求通项.

例题 4.86 设 $\{a_n\}_{n=0}^{\infty}$ 满足 $\lim_{n\to\infty}(a_n-\lambda a_{n-1})=a, |\lambda|<1$, 计算 $\lim_{n\to\infty}a_n$.

拿 笔记 解法二构造数列 c_n , b_n 的思路: 待定数列 c_n 且 $c_0 = 1$, 由条件可得 $\lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = a$. 希望 $c_{n-1} = \lambda c_n$,

即 $\frac{c_n}{c_{n-1}} = \frac{1}{\lambda}$, 等价于 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \frac{1}{\lambda^n}$. 该式对 n = 0 也成立. 于是令 $c_n = \frac{1}{\lambda^n}$, 则由条件可知

$$a = \lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n}$$

从而待定 b_n , 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$, 即 $\frac{b_n}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}} = \frac{a_n - \lambda a_{n-1}}{\lambda^n}$. 于是令 $b_n = a_n - \lambda a_{n-1}$, 则由条件可知 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} (a_n - \lambda a_{n-1}) = a_n c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此

$$a_n = \frac{1}{c_n} \left(c_n a_n - c_0 a_0 + c_0 a_0 \right) = \frac{1}{c_n} \left[\sum_{k=1}^n \left(c_k a_k - c_{k-1} a_{k-1} \right) + c_0 a_0 \right]$$
$$= \frac{1}{c_n} \left(\sum_{k=1}^n c_k b_k + c_0 a_0 \right) = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n.$$

这样就完成了对 a_n 的强行裂项和强求通项.后续计算极限的方法与解法一相同.

解 解法一 (通过观察直接构造出裂项数列 b_n): 当 $\lambda=0$ 问题时显然的, 当 $\lambda\neq 0$, 记 $b_n=a_n-\lambda a_{n-1}, n=1,2,\cdots$, 我们有

$$\frac{b_n}{\lambda^n} = \frac{a_n - \lambda a_{n-1}}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}}, n = 1, 2, \cdots.$$

上式对 $n=1,2,\cdots$ 求和得

$$a_n = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n, n = 1, 2, \cdots$$
 (4.65)

由于 $|\lambda| < 1$, 我们知道 $\lim_{n \to \infty} a_0 \lambda^n = 0$. 于是由 Stolz 定理, 可知当 $\lambda > 0$ 时, 我们有

$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n}\frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{\lambda^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (此时分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(4.65)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(4.65)式的奇子列, 由 Stolz 定理, 我们有

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{(\frac{1}{4})^{2n-1}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{\frac{1}{12n}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n}\frac{b_k}{\lambda^k}}{\frac{1}{12n}}-\frac{1}{\lambda}\lim_{n\to\infty}\frac{\frac{b_{2n}}{\lambda^{2n}}}{\frac{1}{12n}}=\frac{\|\beta\|_{2}}{\|\beta\|_{2}}\frac{\beta}{\|\beta\|_{2}}$$

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$.

解法二 (强求通项和强行裂项的标准解法): 令 $c_n = \frac{1}{\lambda^n}$, $n = 0, 1, \dots, b_n = a_n - \lambda a_{n-1}$, $n = 1, 2, \dots$, 则由条件可知 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \lambda a_{n-1}) = a$, $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 从而对 $\forall n \in \mathbb{N}$, 都有

$$a_{n} = \frac{1}{c_{n}} \left(c_{n} a_{n} - c_{0} a_{0} + c_{0} a_{0} \right) = \frac{1}{c_{n}} \left[\sum_{k=1}^{n} \left(c_{k} a_{k} - c_{k-1} a_{k-1} \right) + c_{0} a_{0} \right]$$

$$= \frac{1}{c_{n}} \left(\sum_{k=1}^{n} c_{k} b_{k} + c_{0} a_{0} \right) = \lambda^{n} \sum_{k=1}^{n} \frac{b_{k}}{\lambda^{k}} + a_{0} \lambda^{n}.$$

$$(4.66)$$

由于 $|\lambda| < 1$, 我们知道 $\lim_{n \to \infty} a_0 \lambda^n = 0$. 于是由 Stolz 定理, 可知当 $\lambda > 0$ 时, 我们有

$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^n \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{2^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 而我们发现其奇偶子列恰好严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(4.66)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{122n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{122n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(4.66)式的奇子列, 由 Stolz 定理, 我们有

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{(\frac{1}{\lambda})^{2n-1}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n}\frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}}-\frac{1}{\lambda}\lim_{n\to\infty}\frac{\frac{b_{2n}}{\lambda^{2n}}}{\frac{1}{\lambda^{2n}}}\xrightarrow{\underline{B}\beta(3+\underline{\beta})\delta(3)}\frac{a}{\lambda(1-\lambda)}-\frac{a}{\lambda}=\frac{a}{1-\lambda}.$$

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$

例题 **4.87** 设 $a_1 = 2$, $a_n = \frac{1 + \frac{1}{n}}{2} a_{n-1} + \frac{1}{n}$, $n \ge 2$, 证明: $\lim_{n \to \infty} na_n$ 存在.

筆记 构造数列 c_n , b_n 的思路: 待定数列 c_n 且 c_1 = 1, 由条件可得 $c_n a_n = \frac{n+1}{2n} c_n a_{n-1} + \frac{c_n}{n}$, 希望 c_n 满足 $\frac{n+1}{2n} c_n = c_{n-1}$, $n=2,3,\cdots$, 即 $\frac{c_n}{c_{n-1}} = \frac{n+1}{n}$, 等价于 $c_n = \prod_{k=2}^n \frac{2k}{k+1} = \frac{(2n)!!}{(n+1)!}$ 且该式对 n=1 也成立. 于是令 $c_n = \frac{(2n)!!}{(n+1)!}$,则由条件可知

$$c_n a_n = \frac{n+1}{2n} c_{n-1} + \frac{c_n}{n} = c_{n-1} a_{n-1} + \frac{c_n}{n}, n = 2, 3, \cdots$$

于是待定 b_n , 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$, 即 $c_n b_n = \frac{1}{n}$. 从而令 $b_n = \frac{1}{n}$, 则 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此 对 $\forall m \in \mathbb{N}_+$, 都有

$$a_{m} = \frac{1}{c_{m}} \left(c_{m} a_{m} - c_{1} a_{1} + c_{1} a_{1} \right) = \frac{1}{c_{m}} \left[\sum_{n=1}^{m} \left(c_{n} a_{n} - c_{n-1} a_{n-1} \right) + c_{1} a_{1} \right]$$
$$= \frac{1}{c_{m}} \left(\sum_{n=1}^{m} c_{n} b_{n} + c_{1} a_{1} \right) = \frac{(m+1)!}{(2m)!!} \left(\sum_{n=1}^{m} \frac{(2n)!!}{n(n+1)!} + 2 \right).$$

这样就完成了对 a_n 的强行裂项和强求通项. 后续再利用 Stolz 定理计算极限即可. 证明 令 $c_n = \frac{(2n)!!}{(n+1)!}, b_n = \frac{1}{n}, n=1,2,\cdots$,则由条件可知 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 从而对 $\forall m \in \mathbb{N}$,都有

$$c_m a_m - 2 = c_m a_m - c_1 a_1 = \sum_{n=2}^m (c_n a_n - c_{n-1} a_{n-1}) = \sum_{n=1}^m \frac{c_n}{n} = \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!},$$

从而

$$a_m = \frac{1}{c_m} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right).$$

再由 Stolz 定理可得

$$\lim_{m \to \infty} m a_m = \lim_{m \to \infty} m \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \lim_{m \to \infty} \frac{2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!}}{\frac{(2m)!!}{m(m+1)!}}$$

$$\frac{\text{Stolz } \overline{\mathbb{Z}}^{\underline{H}}}{\lim_{m \to \infty}} \lim_{m \to \infty} \frac{\frac{(2m+2)!!}{(m+1)(m+2)!}}{\frac{(2m+2)!!}{(m+1)(m+2)!}} = \lim_{m \to \infty} \frac{\frac{2m+2}{m+1}}{\frac{2m+2}{m+1}} = \frac{2}{2-1} = 2.$$

例题 **4.88** 设 $\lim_{n\to\infty} b_n = b$ 存在, 令

$$a_{n+1} = b_n - \frac{na_n}{2n+1},$$

拿 笔记 构造数列 c_n 的思路: 令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 由条件可知 $c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n$. 希望 $-\frac{n}{2n+1}c_{n+1} = c_{n+1}a_n$. c_n ,则 $\frac{c_{n+1}}{c} = -\frac{2n+1}{n}$,从而

$$c_n = \prod_{k=1}^{n-1} \frac{c_{k+1}}{c_k} = \prod_{k=1}^{n-1} \left(-\frac{2k+1}{k} \right) = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}$$

该式对 n=1 也成立. 因此令 $c_n=(-1)^{n-1}\frac{(2n-1)!!}{(n-1)!}$, 则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n + c_na_n \Rightarrow c_{n+1}a_{n+1} - c_na_n = c_{n+1}b_n$$

从而

$$a_n = \frac{1}{c_n} \left[\sum_{k=2}^n \left(c_k a_k - c_{k-1} a_{k-1} \right) + c_1 a_1 \right] = \frac{1}{c_n} \left[\sum_{k=2}^n c_k b_{k-1} + c_1 a_1 \right]$$

这样就完成了对 a_n 的强行裂项和强求通项.

注 计算 $\lim_{n\to\infty} a_n$ 的思路分析: 如果此时我们将(4.67)中的 $\frac{(2n+1)!!}{n!}$ 看作分母,将 $(-1)^n$ 放到分子上,那么由Wallis 公式可知分母严格单调递增趋于 $+\infty$,此时 a_n 满足 Stolz 定理条件. 但是使用一次 Stolz 定理后我们并不能直接得

到结果, 并且此时 $(-1)^n$ 仍未消去. 因此我们不采用这种处理方式. 如果此时我们将(4.67)中的 $\frac{(-1)^n (2n+1)!!}{n!}$ 看作分母, 则由于 $(-1)^n$ 的振荡性, 导致这个分母不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此 我们可以分奇偶子列进行讨论.

证明
$$\diamondsuit c_n = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}, n = 1, 2, \dots,$$
则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n = c_{n+1}b_n + c_na_n, \quad \forall n \in \mathbb{N}_+.$$

从而 $c_{n+1}a_{n+1}-c_na_n=c_{n+1}b_n$, $\forall n\in\mathbb{N}_+$. 于是

$$a_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} a_{k+1} - c_k a_k \right) + c_1 a_1 \right] = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + c_1 a_1 \right]$$

$$= \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + a_1 \right] = \frac{(-1)^n n!}{(2n+1)!!} \left[\sum_{k=1}^{n} \left(-1 \right)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right], n \in \mathbb{N}_+. \tag{4.67}$$

下面计算 $\lim_{n\to\infty} a_n$.

由Wallis 公式可知

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty.$$

从而我们有

$$\frac{n!}{(2n+1)!!} = \frac{n!}{(2n+1)(2n-1)!!} = \frac{(2n)!!}{(2n+1)2^n(2n-1)!!} \sim \frac{\sqrt{\pi n}}{n2^{n+1}} = \frac{\sqrt{\pi}}{2^{n+1}\sqrt{n}}, n \to \infty.$$
 (4.68)

于是由(4.67)(4.68)式以及 Stolz 定理和 $\lim_{n\to\infty} b_n = b$ 可知, 一方面, 考虑 $\{a_n\}$ 的奇子列, 我们有

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{(-1)^{2n} (2n)!}{(4n+1)!!} \left[\sum_{k=1}^{2n} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n+1} \sqrt{2n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n+1} \sqrt{2n}} \xrightarrow{\frac{\text{Stolz } \mathbb{R}\mathbb{H}}{2n}} \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\frac{(4n+1)!!}{(2n)!} b_{2n} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n+1} \sqrt{2n} - 2^{2n-1} \sqrt{2n} - 2}$$

$$= \frac{\sqrt{\pi}}{\sqrt{2}} \lim_{n \to \infty} \frac{\frac{(4n-1)!!}{(2n-1)!} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{2^{2n+1} \sqrt{n} - 2^{2n-1} \sqrt{n} - 1}} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{2^{2n} \sqrt{2n-1} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{2^{2n+1} \sqrt{n} - 2^{2n-1} \sqrt{n} - 1}$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{4\sqrt{n} - \sqrt{n-1}} = \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1}}{4\sqrt{n} - \sqrt{n-1}} \cdot \lim_{n \to \infty} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2-\frac{1}{n}}}{4 - \sqrt{1-\frac{1}{n}}} \cdot (2b-b) = \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{3} \cdot b = \frac{2}{3}b. \tag{4.69}$$

另一方面,考虑 $\{a_n\}$ 的偶子列,我们有

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{(-1)^{2n-1} (2n-1)!}{(4n-1)!!} \left[\sum_{k=1}^{2n-1} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n} \sqrt{2n-1}}$$

$$= -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n} \sqrt{2n-1}} \xrightarrow{\frac{2n\sqrt{2n-1}}{(2n-2)!}} - \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\frac{(4n-3)!!}{(2n-2)!} b_{2n-2} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -\sqrt{\pi} \lim_{n \to \infty} \frac{\frac{(4n-3)!!}{(2n-2)!} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}} = -\lim_{n \to \infty} \frac{2^{2n-1} \sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{4\sqrt{2n-1} - \sqrt{2n-3}} = -2 \lim_{n \to \infty} \frac{\sqrt{2n-2}}{4\sqrt{2n-1} - \sqrt{2n-3}} \cdot \lim_{n \to \infty} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2-\frac{2}{n}}}{4\sqrt{2-\frac{1}{n}} - \sqrt{2-\frac{3}{n}}} = -2 \cdot \frac{\sqrt{2}}{3\sqrt{2}} \cdot (-b) = \frac{2}{3}b.$$

$$(4.70)$$

故由(4.69)(4.70)式, 再结合子列极限命题 (b)可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = \frac{2}{3}b.$$

例题 **4.89** 设 $a_n, b_n > 0, a_1 = b_1 = 1, b_n = a_n b_{n-1} - 2, n \ge 2$ 且 b_n 有界, 求 $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$.

笔记 构造数列 c_n 的思路: 观察已知的数列递推条件: $b_n = a_n b_{n-1} - 2$, 可知我们只能对 b_n 进行强行裂项和强求通项. 于是令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 则由条件可知 $c_n b_n = a_n c_n b_{n-1} - 2c_n$, $n \geq 2$. 希望 $a_n c_n = c_{n-1}$, 则 $\frac{c_n}{c_{n-1}} = \frac{1}{a_n}$,

从而
$$c_n = \prod_{k=2}^n \frac{1}{a_k} = \prod_{k=1}^n \frac{1}{a_k}$$
. 该式对 $n=1$ 也成立. 因此, 令 $c_n = \prod_{k=1}^n \frac{1}{a_k}$, 则由条件可知

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n \ge 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \ge 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} b_{k+1} - c_k b_k \right) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^{n} c_k \right).$$

这样就完成了对 b_n 的强行裂项和强求通项, 而我们发现 $\sum_{k=1}^n c_k = \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$ 恰好就是题目要求的数列极限.

证明 令 $c_n = \prod_{k=1}^n \frac{1}{a_k}$,则由条件可知 $c_n > 0$,且

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n \ge 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \ge 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} b_{k+1} - c_k b_k \right) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^{n} c_{k+1} \right) . \forall n \in \mathbb{N}_+.$$

由此可得

$$\sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \sum_{k=1}^{n} c_k = 1 + \sum_{k=1}^{n} c_{k+1} = 1 + \frac{1 - b_{n+1} c_n}{2} = \frac{3}{2} - \frac{c_n b_{n+1}}{2}, \forall n \in \mathbb{N}_+.$$
 (4.71)

由于 $a_n, b_n, c_n > 0$, 再结合(4.71)式, 可知 $\sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$ 单调递增且 $\sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k} = \frac{3}{2} - \frac{c_n b_{n+1}}{2} \leq \frac{3}{2}$, 因此

 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{a_{1}a_{2}\cdots a_{k}}$ 一定存在. 故 $\lim_{n\to\infty}\frac{1}{a_{1}a_{2}\cdots a_{n}}=\lim_{n\to\infty}c_{n}=0$. 从而再结合(4.71)式和 b_{n} 有界可得

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \lim_{n \to \infty} \left(\frac{3}{2} - \frac{c_n b_{n+1}}{2} \right) = \frac{3}{2}.$$

4.6.8 递推数列综合问题

再次回顾命题 4.1的想法. 这个想法再解决递推数列问题中也很常用.

例题 **4.90** 设 $a_n, b_n \ge 0$ 且 $a_{n+1} < a_n + b_n$,同时 $\sum_{n=1} b_n$ 收敛,证明: a_n 也收敛.

 $\stackrel{n=1}{\succeq}$ 不妨设 $m_k > n_k$ 的原因: 由假设 a_n 不收敛可知,存在 $\delta > 0$,对 $\forall N > 0$,都存在 $m \in \mathbb{N}$,使得 $|a_m - A| \geqslant \delta$ 。从而

取
$$N = n_1 > 0$$
,则存在 $m_1 \in \mathbb{N}$,使得 $|a_{m_1} - A| \ge \delta$.

取 $N = n_2 > 0$,则存在 $m_2 \in \mathbb{N}$,使得 $|a_{m_2} - A| \ge \delta$.

.

取 $N = n_k > 0$, 则存在 $m_k \in \mathbb{N}$, 使得 $|a_{m_k} - A| \ge \delta$.

.

这样就得到了一个子列 $\{a_{m_k}\}$ 满足对 $\forall n \in \mathbb{N}_+$,都有 $m_k > n_k$ 且 $|a_{m_k} - A| \ge \delta$ 。 证明 由 $a_{n+1} < a_n + b_n$ 可得

$$a_n = a_1 + \sum_{i=1}^{n-1} (a_{i+1} - a_i) < a_1 + \sum_{i=1}^{n-1} b_i, \forall n \geqslant 2.$$

$$(4.72)$$

又 $\sum_{n=1}^{\infty}b_n$ 收敛,故对 $\forall n\in\mathbb{N}$,有 $\sum_{i=1}^{n}b_i$ 有界。再结合 (4.72) 式可知, a_n 也有界。由聚点定理可知,存在一个收敛子列 $\{a_{n_k}\}$,设 $\lim_{n\to\infty}a_{n_k}=A<\infty$ 。

(反证) 假设 a_n 不收敛,则存在 $\delta > 0$ 和一个子列 $\{a_{m_k}\}$,使得

$$|a_{m_k} - A| \geqslant \delta, \forall n \in \mathbb{N}_+.$$

不妨设 $m_k > n_k, \forall n \in \mathbb{N}_+$ 。此时分两种情况讨论。

(i) 如果有无穷多个 k, 使得 $a_{m_k} \ge A + \delta$ 成立。再结合条件可得, 对这些 k, 都有

$$a_{m_k} - a_{n_k} = \sum_{i=n_k}^{m_k-1} (a_{i+1} - a_i) < \sum_{i=n_k}^{m_k-1} b_i,$$
(4.73)

$$a_{m_k} - a_{n_k} = (a_{m_k} - A) + (A - a_{n_k}) \geqslant \delta + (A - a_{n_k}). \tag{4.74}$$

又因为 $\sum_{n=1}^{\infty} b_n$ 收敛和 $\lim_{k\to\infty} a_{n_k} = A$,所以

$$\lim_{k \to \infty} \sum_{i=n_k}^{m_k - 1} b_i = \lim_{k \to \infty} (A - a_{n_k}) = 0.$$

于是对 (4.73)(4.74) 式两边同时令 $k \to \infty$, 得到

$$0 < \delta \leqslant \lim_{k \to \infty} (a_{m_k} - a_{n_k}) \leqslant \lim_{k \to \infty} \sum_{i=n_k}^{m_k - 1} b_i = 0.$$

上述不等式矛盾。

(ii) 如果有无穷多个 k,使得 $a_{m_k} \leq A - \delta$ 成立。取 $\{a_{n_k}\}$ 的一个子列 $\{a_{t_k}\}$,使得 $t_k > m_k, \forall n \in \mathbb{N}_+$,则 $\lim_{k \to \infty} a_{t_k} = \lim_{k \to \infty} a_{n_k} = A$ 。再结合条件可得,对这些 k,都有

$$a_{t_k} - a_{m_k} = \sum_{i=m_k}^{t_k - 1} (a_{i+1} - a_i) < \sum_{i=m_k}^{t_k - 1} b_i,$$
(4.75)

$$a_{t_k} - a_{m_k} = (a_{t_k} - A) + (A - a_{m_k}) \geqslant (a_{t_k} - A) + \delta.$$
(4.76)

又因为 $\sum_{n=1}^{\infty} b_n$ 收敛和 $\lim_{k\to\infty} a_{t_k} = A$,所以

$$\lim_{k \to \infty} \sum_{i=m_i}^{t_k - 1} b_i = \lim_{k \to \infty} (a_{t_k} - A) = 0.$$

于是对 (4.75)(4.76)式两边同时令 $k \to \infty$, 得到

$$0 < \delta \leqslant \lim_{k \to \infty} (a_{t_k} - a_{m_k}) \leqslant \lim_{k \to \infty} \sum_{i=m_k}^{t_k - 1} b_i = 0.$$

上述不等式矛盾。结论得证。

例题 **4.91** 设 $a_{n+1} = \ln\left(\frac{e^{a_n} - 1}{a_n}\right)$, $a_1 = 1$, 证明: 极限 $\lim_{n \to \infty} 2^n a_n$ 存在。

\$

笔记 本题证明的思路分析:

注意到递推函数 $f(x) = \ln\left(\frac{e^x - 1}{x}\right)$ 在 $(0, +\infty)$ 上单调递增,且 $a_1 = 1 > 0$ 。因此直接利用单调分析法归纳证明 $\{a_n\}$ 单调有界且 $a_n \in (0, 1]$ 。进而得到 $\lim_{n \to \infty} a_n = 0$ 。再利用命题 4.1 将 $2^n a_n$ 转化为级数的形式。因为递推函数与 \ln 有关,所以我们考虑作差转换,即

$$2^{n+1}a_{n+1} = \sum_{k=1}^{n} (2^{k+1}a_{k+1} - 2^k a_k) = \sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2} a_k \right).$$

因此我们只需证明级数 $\sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{ak} - 1}{a_k} \right) - \frac{1}{2} a_k \right)$ 收敛即可。考虑其通项 $2^{n+1} \left(\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right)$ 。由于 $\lim_{n \to \infty} a_n = 0$,因此利用 Taylor 公式可得

$$\ln\left(\frac{e^{a_n}-1}{a_n}\right) - \frac{1}{2}a_n = \ln\frac{a_n + \frac{a_n^2}{2} + \frac{a_n^3}{6} + o(a_n^3)}{a_n} - \frac{1}{2}a_n = \ln\left(1 + \frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2)\right) - \frac{1}{2}a_n$$

$$= \frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2) - \left(\frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2)\right)^2 + o(a_n^2) - \frac{1}{2}a_n = \frac{a_n^2}{24}, n \to \infty.$$

故当 n 充分大时, 我们有

$$2^{n+1} \left(\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right) = \frac{1}{24} 2^{n+1} a_n^2.$$

于是我们只须证级数 $\sum_{k=1}^{n} \frac{1}{24} 2^{n+1} a_n^2$ 收敛即可。因此我们需要找到一个收敛级数 $\sum_{k=1}^{n} c_n$,使得 $2^{n+1} a_n^2$ 被这个收敛级数的通项 c_n 控制,即当 n 充分大时,有

$$2^{n+1}a_n^2 \le c_n$$

又题目要证 $\lim_{n\to\infty} 2^n a_n$ 存在, 说明 $\lim_{n\to\infty} 2^n a_n$ 一定存在, 从而一定有

$$a_n \sim \frac{c}{2^n}, n \to \infty,$$
 (4.77)

其中 c 为常数。虽然无法直接证明 (4.77) 式,但是 (4.77) 式给我们提供了一种找 c_n 的想法。(4.77) 式表明 a_n 与几何级数的通项近似,于是一定存在 $\lambda \in (0,1)$,使得 $a_n \approx \frac{c}{2^n} \leq c_0 \lambda^n, n \to \infty$ 。其中 c_0 为常数。从而

$$2^{n+1}a_n^2 \le c_0^2 2^{n+1} \lambda^{2n} = c_1 (2\lambda^2)^n, n \to \infty.$$

故我们只需要保证 $\sum_{n=1}^{\infty} (2\lambda^2)^n$ 收敛,就能由级数的比较判别法推出 $\sum_{k=1}^n \frac{1}{24} 2^{n+1} a_n^2$ 收敛。因此我们待定 $\lambda \in (0,1)$,

使得 $\sum_{n=1}^{\infty} (2\lambda^2)^n$ 恰好就是一个几何级数。于是 $2\lambda^2 < 1 \Rightarrow \lambda < \frac{\sqrt{2}}{2}$ 。故我们只要找到一个恰当的 $\lambda \in \left(0, \frac{\sqrt{2}}{2}\right)$,使得

$$a_n \le c_0 \lambda^n, n \to \infty.$$
 (4.78)

其中 c_0 为常数,即可。我们需要与已知的递推条件联系起来,因此考虑

$$a_{n+1} \le c_0 \lambda^{n+1}, n \to \infty. \tag{4.79}$$

又 $a_n \in (0,1]$, 显然将(4.78)与(4.79) 式作商得到

$$a_n \leqslant c_0 \lambda^n, n \to \infty \Leftrightarrow \frac{a_{n+1}}{a_n} \le \lambda, n \to \infty \Leftrightarrow \frac{f(a_n)}{a_n} \le \lambda, n \to \infty$$

又 $\lim_{n\to\infty} a_n = 0$, 故上式等价于

$$\lim_{x \to 0^{+}} \frac{f(x)}{x} \le \lambda \Leftrightarrow \lim_{x \to 0^{+}} \frac{\ln\left(\frac{e^{x} - 1}{x}\right)}{x} \le \lambda$$

注意到 $\lim_{x\to 0^+}\frac{\ln\left(\frac{e^x-1}{x}\right)}{x}=\lim_{x\to 0^+}\frac{\frac{x}{2}+o(x)}{x}=\frac{1}{2}$,所以任取 $\lambda\in\left(\frac{1}{2},\frac{\sqrt{2}}{2}\right)$ 即可。最后根据上述思路严谨地书写证明即可。

(注: 也可以利用 f(x) 的凸性去找 $\lambda \in \left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$, 见下述证明过程。)

证明 令 $f(x) = \ln\left(\frac{e^x - 1}{x}\right)$, 注意到对 $\forall x > 0$, 有

$$f(x) < x \Leftrightarrow \ln\left(\frac{e^x - 1}{x}\right) < x \Leftrightarrow \frac{e^x - 1}{x} < e^x \Leftrightarrow \ln x > 1 - \frac{1}{x}$$

$$\Leftrightarrow \ln \frac{1}{t} > 1 - t, \ \mbox{\sharp} \ \mbox{\dag} \ \mbox{\dag} \ \mbox{$t = \frac{1}{x} > 0$} \Leftrightarrow \ln t < t - 1, \ \mbox{\sharp} \ \mbox{\dag} \mbox{\dag} \ \mbox{\dag} \m$$

上式最后一个不等式显然成立。因此

$$f(x) = \ln\left(\frac{e^x - 1}{x}\right) < x, \forall x > 0.$$

$$(4.80)$$

由 $e^x - 1 > x$, $\forall x \in \mathbb{R}$ 可知

$$f(x) = \ln\left(\frac{e^x - 1}{x}\right) > \ln 1 = 0, \forall x > 0.$$
 (4.81)

从而由 (4.80)(4.81) 式及 $a_1 = 1$, 归纳可得 $\forall n \in \mathbb{N}_+$, 都有

$$a_{n+1} = f(a_n) < a_n, \quad a_{n+1} = f(a_n) > 0.$$

故数列 $\{a_n\}$ 单调递减且有下界 0。于是 $a_n\in(0,1]$,并且由单调有界原理可知 $\lim_{n\to\infty}a_n=A\in[0,1]$ 。对 $a_{n+1}=\ln\left(\frac{e^{a_n}-1}{a_n}\right)$ 两边同时令 $n\to\infty$,得到

$$A = \ln\left(\frac{e^A - 1}{A}\right) \Leftrightarrow Ae^A = e^A - 1 \Leftrightarrow (1 - A)e^A = 1.$$

显然上述方程只有唯一解: A=0。故 $\lim_{n\to\infty}a_n=0$ 。下面证明 $\lim_{n\to\infty}2^na_n$ 存在。由 $a_{n+1}=\ln\left(\frac{e^{a_n}-1}{a_n}\right)$ 可得,对 $\forall n\in\mathbb{N}_+$,都有

$$2^{n+1}a_{n+1} - 2^n a_n = 2^{n+1} \left[\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right].$$

从而

$$2^{n+1}a_{n+1} = 2a_1 + \sum_{k=1}^n 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2}a_k \right) = 2 + \sum_{k=1}^n 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2}a_k \right), \forall n \in \mathbb{N}_+.$$

故要证 $\lim_{n\to\infty} 2^n a_n$ 存在,即证 $\sum_{k=1}^n 2^{k+1} \left(\ln \left(\frac{e^{a_k}-1}{a_k} \right) - \frac{1}{2} a_k \right)$ 收敛。注意到

$$\lim_{x \to 0} \frac{\ln \frac{e^x - 1}{x} - \frac{1}{2}x}{x^2} = \lim_{x \to 0} \frac{\ln \frac{x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)}{x^2} - \frac{1}{2}x}{x^2} = \lim_{x \to 0} \frac{\ln \left(1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)\right) - \frac{1}{2}x}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{x}{2} + \frac{x^2}{6} + o(x^2) - \left(\frac{x}{2} + \frac{x^2}{6} + o(x^2)\right)^2 + o(x^2) - \frac{1}{2}x}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{x^2}{24} + o(x^2)}{x^2} = \frac{1}{24} < 1,$$

再结合
$$\lim_{n\to\infty} a_n = 0$$
 可得, $\lim_{n\to\infty} \frac{\ln\left(\frac{e^{a_n}-1}{a_n}\right) - \frac{1}{2}a_n}{a_n^2} = \frac{1}{24} < 1$ 。 故存在 $N \in \mathbb{N}_+$,使得
$$\ln\left(\frac{e^{a_n}-1}{a_n}\right) - \frac{1}{2}a_n < a_n^2, \forall n > N. \tag{4.82}$$

由
$$f(x) = \ln\left(\frac{e^x - 1}{x}\right)$$
 可知, $f'(x) = \frac{e^x}{e^x - 1} - \frac{1}{x}$, $f''(x) = \frac{1}{x^2} - \frac{e^x}{(e^x - 1)^2}$ 。 注意到对 $\forall x \in (0, 1]$,都有
$$f''(x) > 0 \Leftrightarrow \frac{1}{x^2} > \frac{e^x}{(e^x - 1)^2}$$

$$\Leftrightarrow \frac{1}{\ln^2 t} > \frac{t}{(t - 1)^2}, \ \ \sharp \ \forall t = e^x > 1$$

$$\Leftrightarrow \ln t < \frac{t - 1}{\sqrt{t}} = \sqrt{t} - \frac{1}{\sqrt{t}}, \ \ \sharp \ \forall t = e^x > 1$$

而上式最后一个不等式显然成立(见关于 In 的常用不等式 (2))。故 $f''(x) > 0, \forall x \in (0,1]$ 。故 f 在 (0,1] 上是下凸函数。从而由下凸函数的性质(切割线放缩)可得, $\forall x \in (0,1]$,固定 x,对 $\forall y \in (0,x)$,都有

$$f'(y)x \le f(x) \le [f(1) - f(y)]x = [\ln(e - 1) - f(y)]x. \tag{4.83}$$

注意到

$$\begin{split} &\lim_{y\to 0^+} f(y) = \lim_{y\to 0^+} \ln\left(\frac{e^y-1}{y}\right) = \ln\left(\lim_{y\to 0^+} \frac{e^y-1}{y}\right) = \ln 1 = 0,\\ &\lim_{y\to 0^+} f'(y) = \lim_{y\to 0^+} \left(\frac{e^y}{e^y-1} - \frac{1}{y}\right) = \lim_{y\to 0^+} \frac{e^y(y-1)+1}{y(e^y-1)}\\ &= \lim_{y\to 0^+} \frac{(1+y+\frac{1}{2}y^2+o(y^2))(y-1)+1}{y^2} = \lim_{y\to 0^+} \frac{\frac{1}{2}y^2+o(y^2)}{y^2} = \frac{1}{2}. \end{split}$$

于是令 (4.83) 式 $y \to 0^+$, 得到

$$\frac{1}{2}x = \lim_{y \to 0^+} f'(y)x \le f(x) \le [\ln(e-1) - \lim_{y \to 0^+} f(y)]x = x \ln(e-1), \forall x \in (0,1].$$

又 $a_n \in (0,1]$, 故

$$\frac{1}{2}a_n \leq a_{n+1} = f(a_n) \leq \ln(e-1)a_n, \forall n \in \mathbb{N}_+.$$

从而

$$\frac{1}{2} \le \frac{a_{n+1}}{a_n} \le \ln(e-1) < \frac{\sqrt{2}}{2}, \forall n \in \mathbb{N}_+.$$
 (4.84)

因此

$$a_n = a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k} \le [\ln(e-1)]^{n-1}, \forall n \in \mathbb{N}_+.$$
(4.85)

于是结合 (4.82)(4.85) 式可得对 $\forall n > N$, 我们有

$$2^{n+1} \left(\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right) < 2^{n+1} a_n^2 \le 2^{n+1} \left[\ln(e - 1) \right]^{2n-2} = \frac{2}{\ln^2(e - 1)} \left[2 \ln^2(e - 1) \right]^n.$$

又由 (4.84)式可知, $2\ln^2(e-1) < 2 \cdot \left(\frac{\sqrt{2}}{2}\right)^2 = 1$ 。故 $\sum_{k=1}^n \frac{2}{\ln^2(e-1)} [2\ln^2(e-1)]^k$ 收敛。从而由比较判别法知,

$$\sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2} a_k \right)$$
 也收敛。结论得证。

例题 **4.92 Herschfeld** 判别法 设 p > 1,令 $a_n = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \cdots + \sqrt[p]{b_n}}}, \ b_n > 0$,证明:数列 a_n 收敛等价于数 列 $\frac{\ln b_n}{p^n}$ 有界。

注 这个很抽象的结果叫做 Herschfeld 判别法, 但是证明起来只需要单调有界。

证明 由条件可知 $a_2 > a_1$, 假设 $a_n > a_{n-1}$, 则由 $b_n > 0$ 可得

$$a_{n+1} = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n + \sqrt[p]{b_{n+1}}}}} > \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n}}} = a_n.$$

由数学归纳法可知 {an} 单调递增。

若 a_n 收敛,则由单调有界定理可知, a_n 有上界。即存在 M>0,使得 $a_n < M, \forall n \in \mathbb{N}_+$ 。从而

$$M>a_n=\sqrt[p]{b_1+\sqrt[p]{b_2+\cdots+\sqrt[p]{b_n}}}>\sqrt[p]{0+\sqrt[p]{0+\cdots+\sqrt[p]{b_n}}}=b_n^{\frac{1}{p^n}}, \forall n\in\mathbb{N}_+.$$

故

$$\frac{\ln b_n}{p^n} = \ln b_n^{\frac{1}{p^n}} < \ln M, \forall n \in \mathbb{N}_+.$$

即 $\frac{\ln b_n}{p^n}$ 有界。

若 $\frac{\ln b_n}{p^n}$ 有界,则存在 $M_1 > 0$,使得

$$\frac{\ln b_n}{p^n} < M_1, \forall n \in \mathbb{N}_+. \tag{4.86}$$

记 $C = e^{M_1}$, 则由 (4.86)式可得

$$b_n < e^{M_1 p^n} = C^{p^n}, \forall n \in \mathbb{N}_+.$$

从而

$$a_n = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n}}} < \sqrt[p]{C^p + \sqrt[p]{C^{p^2} + \dots + \sqrt[p]{C^{p^n}}}} = C\sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}}.$$
 (4.87)

考虑数列 $x_1 = 1, x_{n+1} = \sqrt[p]{1+x_n}, \forall n \in \mathbb{N}_+$ 。显然 $x_n > 0$,记 $f(x) = \sqrt[p]{1+x}$,则

$$f'(x) = \frac{1}{p}(1+x)^{\frac{1}{p}-1} < \frac{1}{p} < 1, \forall x > 0.$$

而显然 f(x) = x 有唯一解 a > 1,从而由 Lagrange 中值定理可得 $\forall n \in \mathbb{N}_+$,存在 $\xi_n \in (\min\{x_n, a\}, \max\{x_n, a\})$,使得

$$|x_{n+1} - a| = |f(x_n) - f(a)| = f'(\xi_n)|x_n - a| < \frac{1}{p}|x_n - a|.$$

于是

$$|x_{n+1} - a| < \frac{1}{p}|x_n - a| < \frac{1}{p^2}|x_{n-1} - a| < \dots < \frac{1}{p^n}|x_1 - a| \to 0, n \to \infty.$$

故 x_n 收敛到 a,因此 x_n 有界,即存在 K,使得 $x_n < K, \forall n \in \mathbb{N}_+$ 。于是结合 (4.87) 可得

$$a_n = C \sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}} = Cx_n < CK, \forall n \in \mathbb{N}_+.$$

即 a_n 有界,又因为 $\{a_n\}$ 单调递增,所以由单调有界定理可知, a_n 收敛。

引理 4.1 (有界数列差分极限为 0 则其闭包一定是闭区间)

有界数列 x_n 如果满足 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$,则 x_n 的全体聚点构成一个闭区间 (且这个闭区间的端点就是数列的上下极限).

<u>~</u>

笔记 先根据条件直观地画图分析,分析出大致的思路后,再考虑严谨地书写证明.

证明 当数列 x_n 收敛时, x_n 的聚点集为单点集, 结论显然成立。

当数列 x_n 不收敛时,因为数列 x_n 有界,所以可设 $\limsup_{n\to\infty} x_n = L < \infty, \liminf_{n\to\infty} x_n = l < L$ 。假设 $\exists A \in (l,L)$,使得 A 不是 x_n 的极限点。则 $\exists \delta \in (0, \min\{L-A, A-l\})$,使得区间 $(A-\delta, A+\delta) \subseteq (l,L)$ 中只包含了数列 x_n 中有限项。因此存在 $N_1 \in \mathbb{N}$,使得当 $n > N_1$ 时,有 $|x_n - A| \ge \delta$ 。即

$$\exists n > N_1$$
时, 要么 $x_n \ge A + \delta$, 要么 $x_n \le A - \delta$. (4.88)

由 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$ 可知,存在 $N_2\in\mathbb{N}$,使得

$$|x_{n+1} - x_n| < \delta, \forall n > N_2. \tag{4.89}$$

取 $N = \max\{N_1, N_2\}$ 。由 $\limsup_{n \to \infty} x_n = L$ 和 $\liminf_{n \to \infty} x_n = l$ 可知,对 $\forall \varepsilon \in \left(0, \min\{L - A - \delta, A - l - \delta, \frac{L - l}{2}\}\right)$,存在

子列 $\{x_{n_k}\}$, $\{x_{m_k}\}$, 使得对 $\forall k \in \mathbb{N}_+ \cap (N, +\infty)$, 都有

$$x_{m_k} < l + \varepsilon \leqslant A - \delta < A + \delta \leqslant L - \varepsilon < x_{n_k}$$

任取 $K \in \mathbb{N}_+ \cap (N, +\infty)$,则 $x_{m_K} < l + \varepsilon \leqslant A - \delta < A + \delta \leqslant L - \varepsilon < x_{n_K}$ 。不妨设 $n_K > m_K$,则 $n_K > m_K \geqslant K > N$ 。现在考 虑 $x_{m_K}, x_{m_K+1}, \cdots, x_{n_K-1}, x_{n_K}$ 这些项。将其中最后一个小于等于 $A-\delta$ 的项记为 x_s , 显然 $n_K-1 \geqslant s \geqslant m_K \geqslant K > N$, 进而 $s+1 \in [m_K+1,n_K]$,于是 $x_{s+1} > A-\delta$ 。又因为 $s+1 \geqslant m_K+1 > K > N$,所以结合(4.88)可知, $x_{s+1} \geqslant A+\delta$ 。 因此 $|x_{s+1}-x_s| \ge 2\delta$ 。这与(4.89)式矛盾! 因此 x_n 的全体聚点构成一个闭区间 [l,L].

例题 **4.93** 设连续函数 $f(x):[0,1] \rightarrow [0,1], x_1 \in [0,1], x_{n+1} = f(x_n)$, 证明: 数列 $\{x_n\}$ 收敛的充要条件是

$$\lim_{n\to\infty}(x_{n+1}-x_n)=0.$$

笔记 先根据条件直观地画图分析,分析出大致的思路后,再考虑严谨地书写证明.

证明 必要性: 如果 x_n 收敛,则显然 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$.

充分性: 假设数列 x_n 不收敛. 设 $\overline{\lim_{n\to\infty}} x_n = L$, $\underline{\lim} x_n = l$, 则由条件可知 l < L 且 $[l,L] \subseteq [0,1]$. 从而由引理 $n\to\infty$ $n\to\infty$ 4.1可知, 数列 x_n 的全体聚点构成一个闭区间 [l,L]. 于是 $\forall A\in [l,L]$,则存在一个子列 $\{x_{n_k}\}$,使得 $\lim_{n\to\infty}x_{n_k}=A$ 。 由 $\lim_{n\to\infty} (x_{n+1}-x_n) = 0$ 可知, $\lim_{k\to\infty} x_{n_k+1} = \lim_{k\to\infty} x_{n_k} = A$ 。根据 $x_{n+1} = f(x_n)$ 可得 $x_{n_k+1} = f(x_{n_k})$,令 $k\to\infty$,再结 合 f ∈ C[0,1] 可得

$$A = f(A), \forall A \in [l, L]. \tag{4.90}$$

因此取 $A = \frac{l+L}{2}$, 这也是 x_n 的一个极限点, 从而令 $\varepsilon_0 = \frac{L-l}{2}$ 存在 $N \in \mathbb{N}$, 使得

$$l = A - \varepsilon_0 < x_N < A + \varepsilon_0 = L.$$

即 $x_N \in [l,L]$ 。于是由 $x_{n+1} = f(x_n)$ 及(4.90)式可得 $x_{N+1} = f(x_N) = x_N$ 。从而归纳可得 $x_n = x_N, \forall n \in \mathbb{N}_+ \cap (N,+\infty)$ 。

显然此时 x_n 收敛到 x_N ,这与 x_n 不收敛矛盾! 故数列 x_n 收敛。 **例题 4.94** 设 d 为正整数,给定 $1 < a \le \frac{d+2}{d+1}, x_0, x_1, \cdots, x_d \in (0, a-1)$,令 $x_{n+1} = x_n(a-x_{n-d}), n \ge d$,证明: $\lim x_n$ 存在并求极限。

证明 证明见 lsz(2024-2025) 数学类讲义的不动点与蛛网图方法部分.

例题 **4.95** 设 x_n 满足当 $|i-j| \le 2$ 时总有 $|x_i-x_j| \ge |x_{i+1}-x_{j+1}|$,证明: $\lim_{n\to\infty} \frac{x_n}{n}$ 存在。

 $\mathbf{\dot{L}}$ 仅凭 $|x_{n+1}-x_n|$ 单调递减无法保证极限存在,只能说明数列 $\frac{x_n}{}$ 有界,但是完全有可能其聚点集合是一个闭区 间,所以 $|x_{n+2}-x_n|$ 的递减性是必要的。本题其实画图来看走势很直观。

证明 条件等价于 $|x_{n+1}-x_n|$, $|x_{n+2}-x_n|$ 这两个数列都是单调递减的,显然非负,所以它们的极限都存在。

- (i) 如果 $\lim_{n\to\infty} |x_{n+1}-x_n|=0$,则由 stolz 公式显然 $\lim_{n\to\infty} \frac{x_n}{n}=\lim_{n\to\infty} x_{n+1}-x_n=0$ 。
- (ii) 如果 $\lim_{n\to\infty} |x_{n+2}-x_n|=0$,则奇偶两个子列分别都有

$$\lim_{n \to \infty} \frac{x_{2n}}{2n} = \lim_{n \to \infty} x_{2n+2} - x_{2n} = 0, \lim_{n \to \infty} \frac{x_{2n+1}}{2n+1} = \lim_{n \to \infty} x_{2n+1} - x_{2n-1} = 0$$

所以 $\lim \frac{x_n}{x_n} = 0$,因此下面只需讨论 $|x_{n+1} - x_n|$, $|x_{n+2} - x_n|$ 的极限都非零的情况。

不妨设 $|x_{n+1}-x_n|$ 单调递减趋于 1(如果极限不是 1 而是别的正数,考虑 kx_n 这样的数列就可以了),由于 非负递减数列 $|x_{n+2}-x_n|$ 的极限非零,故存在 $\delta \in (0,1)$ 使得 $|x_{n+2}-x_n| \geq \delta$ 恒成立。

- (i) 如果 x_n 是最终单调的,也就是说存在 N 使得 n > N 时 $x_{n+1} x_n$ 恒正或者恒负,则 $\lim_{n \to \infty} x_{n+1} x_n = 1$ 或 者 $\lim_{n\to\infty} x_{n+1} - x_n = -1$, 再用 stolz 公式可知极限 $\lim_{n\to\infty} \frac{x_n}{n}$ 存在。
- (ii) 如果 x_n 不是最终单调的,因为 $\lim_{n\to\infty} |x_{n+1}-x_n| = 1$,所以存在 N 使得 n > N 时恒有 $|x_{n+1}-x_n| \in \left[1, 1+\frac{\delta}{2}\right]$,
- 并且 n > N 时 x_n 不是单调的,故存在 n > N 使得以下两种情况之一成立 (a): $1 \le x_{n+1} x_n \le 1 + \frac{\delta}{2}, 1 \le x_{n+1} x_{n+2} \le 1 + \frac{\delta}{2} \Rightarrow |x_{n+2} x_n| \le \frac{\delta}{2}$.
 - (b): $1 \le x_n x_{n+1} \le 1 + \frac{\delta}{2}, 1 \le x_{n+2} x_{n+1} \le 1 + \frac{\delta}{2} \Rightarrow |x_{n+2} x_n| \le \frac{\delta}{2}$

可见不论哪种情况成立,都会与 $|x_{n+2}-x_n| \geq \delta$ 恒成立矛盾,结论得证.

例题 4.96 设四个正数列 $\{a_n\},\{b_n\},\{c_n\},\{t_n\}$ 满足

$$t_n \in (0,1), \sum_{n=1}^{\infty} t_n = +\infty, \sum_{n=1}^{\infty} b_n < +\infty, \lim_{n \to \infty} \frac{a_n}{t_n} = 0, x_{n+1} \le (1-t_n)x_n + a_n + b_n$$

证明: $\lim_{n\to\infty} x_n = 0$ 。

Ŷ 笔记 这类问题直接强求通项即可.

证明 根据条件有

$$\frac{x_{n+1}}{(1-t_n)\cdots(1-t_1)} \le \frac{x_n}{(1-t_{n-1})\cdots(1-t_1)} + \frac{a_n+b_n}{(1-t_n)\cdots(1-t_1)}$$

$$\frac{x_{n+1}}{(1-t_n)\cdots(1-t_1)} \le x_1 + \sum_{k=1}^n \frac{a_k+b_k}{(1-t_k)\cdots(1-t_1)}$$

$$x_{n+1} \le x_1(1-t_n)\cdots(1-t_1) + \sum_{k=1}^n (a_k+b_k)(1-t_{k+1})\cdots(1-t_n)$$

换元令 $u_n = 1 - t_n \in (0,1)$,则

$$\ln \prod_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \ln u_n \le \sum_{n=1}^{\infty} (u_n - 1) = -\sum_{n=1}^{\infty} t_n = -\infty \Rightarrow \prod_{n=1}^{\infty} u_n = 0$$

代入有

$$x_{n+1} \le x_1 u_1 u_2 \cdots u_n + \sum_{k=1}^n a_k u_{k+1} u_{k+2} \cdots u_n + \sum_{k=1}^n b_k u_{k+1} u_{k+2} \cdots u_n$$

显然 $x_1u_1u_2\cdots u_n\to 0$,于是只需要看后面两项。对于最后一项,我们待定正整数 $N\le n$,则有

$$\sum_{k=1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n = \sum_{k=1}^{N} b_k u_{k+1} u_{k+2} \cdots u_n + \sum_{k=N+1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n$$

其中 $\sum_{k=N+1}^n b_k u_{k+1} u_{k+2} \cdots u_n \le \sum_{k=N+1}^n b_k < \sum_{k=N}^\infty b_k$,于是对任意 $\varepsilon > 0$,可以取充分大的 N 使得 $\sum_{k=N+1}^n b_k u_{k+1} u_{k+2} \cdots u_n < \varepsilon$,现在 N 已经取定,再对前面有限项取极限有

$$\overline{\lim}_{n\to\infty} \sum_{k=1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n \le \sum_{k=1}^{N} b_k \overline{\lim}_{n\to\infty} (u_{k+1} u_{k+2} \cdots u_n) + \varepsilon = \varepsilon$$

由此可见最后一项的极限是零,最后来看中间一项,记 $s_n = \frac{a_n}{t_n} = \frac{a_n}{1-u_n} \to 0$,则对任意 N 有

$$\sum_{k=1}^{n} a_k u_{k+1} u_{k+2} \cdots u_n = \sum_{k=1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n$$

$$= \sum_{k=1}^{N} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n + \sum_{k=N+1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n$$

$$\frac{n}{n}$$

$$\sum_{k=N+1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n \le \sup_{k \ge N} s_k \sum_{k=N+1}^{n} (1 - u_k) u_{k+1} u_{k+2} \cdots u_n \le \sup_{k \ge N} s_k$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k u_{k+1} u_{k+2} \cdots u_n \le \lim_{n \to \infty} \sum_{k=1}^{N} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n + \sup_{k \ge N} s_k = \sup_{k \ge N} s_k$$

再令 $N \to \infty$, 由此可见这一部分的极限也是零, 结论得证。

4.7 分部积分

分析学里流传着一句话:"遇事不决分部积分".

分部积分在渐近分析中的用法:

- (1) 有时候分部积分不能计算出某一积分的具体值, 但是我们可以利用分部积分去估计原积分 (或原含参积分)的范围. 并且我们可以通过不断分部积分来提高估计的精确程度.
- (2) 分部积分也可以转移被积函数的导数.
- (3) 分部积分可以改善阶. 通过分部积分提高分母的次方从而增加收敛速度方便估计. 并且可以通过反复分部积分得到更加精细的估计.

例题 4.97

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt.$$

证明 $|f(x)| \leq \frac{1}{x}, x > 0.$

🕏 笔记 证明的想法是利用分部积分在渐近分析中的用法 (1).

证明 由分部积分可得, 对 $\forall x > 0$, 都有

$$|f(x)| = \left| \int_{x}^{x+1} \sin\left(t^{2}\right) dt \right| = \left| \int_{x^{2}}^{(x+1)^{2}} \frac{\sin u}{2\sqrt{u}} du \right| = \left| -\frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} \cos u du - \frac{\cos u}{2\sqrt{u}} \Big|_{x^{2}}^{(x+1)^{2}} \right|$$

$$\leq \left| \frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} du \right| + \left| \frac{\cos x}{2x} - \frac{\cos (x+1)}{2(x+1)} \right| = \frac{1}{2} \left| \frac{1}{x} - \frac{1}{x+1} \right| + \frac{1}{2} \left| \frac{\cos x}{x} - \frac{\cos (x+1)}{(x+1)} \right|$$

$$= \frac{1}{2x(x+1)} + \frac{x \left[\cos x - \cos (x+1) \right] + \cos x}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{2 \sin \frac{1}{2} x \sin \frac{2x+1}{2} + \cos x}{2x(x+1)}$$

$$\leq \frac{1}{2x(x+1)} + \frac{x+1}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{1}{2x} \leq \frac{1}{x}.$$

例题 **4.98** 设 $f(x) = \int_0^x \sin \frac{1}{y} dy$, 求 f'(0).

['] 笔记 证明的想法是利用分部积分在渐近分析中的用法 (3).

解 注意到

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sin \frac{1}{y} dy}{x} = \lim_{x \to 0^{+}} \frac{\int_{+\infty}^{\frac{1}{x}} \sin y d\frac{1}{y}}{x} = \lim_{x \to 0^{+}} \frac{\int_{\frac{1}{x}}^{+\infty} \frac{\sin y}{y^{2}} dy}{x} \xrightarrow{\frac{c}{x} t = \frac{1}{x}} \lim_{t \to +\infty} t \int_{t}^{+\infty} \frac{\sin y}{y^{2}} dy, (1.1)$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} \sin \frac{1}{y} dy}{x} = \lim_{x \to 0^{-}} \frac{\int_{+\infty}^{\frac{1}{x}} \sin y d\frac{1}{y}}{x} = \lim_{x \to 0^{-}} \frac{\int_{\frac{1}{x}}^{+\infty} \frac{\sin y}{y^{2}} dy}{x} \xrightarrow{\frac{1}{x} + \frac{1}{x}} \lim_{t \to -\infty} t \int_{t}^{-\infty} \frac{\sin y}{y^{2}} dy.$$
(1.2)

由分部积分可得

$$\int_{t}^{+\infty} \frac{\sin y}{y^{2}} dy = -\int_{t}^{+\infty} \frac{1}{y^{2}} d\cos y = \frac{\cos y}{y^{2}} \Big|_{+\infty}^{t} + \int_{t}^{+\infty} \cos y d\frac{1}{y^{2}} = \frac{\cos t}{t^{2}} - 2\int_{t}^{+\infty} \frac{\cos y}{y^{3}} dy.$$

故对 $\forall t > 0$. 我们有

$$\left| \int_{t}^{+\infty} \frac{\sin y}{y^{2}} dy \right| = \left| \frac{\cos t}{t^{2}} - 2 \int_{t}^{+\infty} \frac{\cos y}{y^{3}} dy \right| \leqslant \frac{1}{t^{2}} + 2 \int_{t}^{+\infty} \frac{1}{y^{3}} dy = \frac{2}{t^{2}}.$$

即 $\int_{t}^{+\infty} \frac{\sin y}{y^2} dy = O\left(\frac{1}{t^2}\right), \forall t > 0$ 。 再结合(4.91)式可知

$$f'_{+}(0) = \lim_{t \to +\infty} t \int_{+}^{+\infty} \frac{\sin y}{y^2} dy = 0.$$

同理可得 $f'_{-}(0) = \lim_{t \to -\infty} t \int_{t}^{-\infty} \frac{\sin y}{y^2} dy = 0$ 。 故 $f'(0) = f'_{+}(0) = f'_{-}(0) = 0$ 。

4.8 Laplace 方法

Laplace 方法适用于估计形如 $\int_a^b \left[f(x)\right]^n g(x) \, dx, n \to \infty$ 的渐近展开式, 其中 $f,g \in C[a,b]$ 且 g 在 [a,b] 上有界; 或者 $\int_a^b e^{f(x,y)} g(y) dy, x \to +\infty$ 的渐近展开式, 其中 $f,g \in C[a,b]$ 且 g 在 [a,b] 上有界. 实际上, 若要估计的

是前者, 我们可以将其转化为后者的形式如下:

$$\int_{a}^{b} [f(x)]^{n} g(x) dx = \int_{a}^{b} e^{n \ln f(x)} g(x) dx.$$

若参变量 n,x 在积分区间上, 或者估计的不是 $n,x\to +\infty$ 处的渐近展开式, 而是其他点处 $(x\to x_0)$ 处的渐近展开式. 我们都可以通过积分换元将其转化为标准形式 $\int^b e^{f(x,y)}g(y)dy,x\to +\infty$, 其中 $f,g\in C[a,b]$.

思路分析: 首先, 由含参量积分的计算规律(若被积函数含有 $e^{f(x)}$,则积分得到的结果中一定仍含有 $e^{f(x)}$),我们可以大致估计积分 $\int_a^b e^{f(x,y)}g(y)dy,x\to +\infty$ 的结果是 $C_1h_1(x)e^{f(x,b)}-C_2h_2(x)e^{f(x,b)}e^{f(x,a)}$,其中 C 为常数. 因为指数函数的阶远大于一般初等函数的阶,这个结果的阶的主体部分就是 $e^{f(x,b)}$ 和 $e^{f(x,a)}$. 而我们注意到到改变指数函数 e^{px+q} 的幂指数部分的常数 p 会对这个指数函数的阶 $(x\to +\infty)$ 产生较大影响,而改变 q 不会影响这个指数函数的阶. 比如, e^{2x} 比 e^x 高阶 $(x\to +\infty)$. 由此我们可以发现 $e^{f(x,b)}$ 和 $e^{f(x,a)}$ 中的幂指数部分中 f(x,a),f(x,b) 中除常数项外的含 x 项的系数(暂时叫作指数系数)对这个函数的阶影响较大. 然而这些系数都是由被积函数中的 f(x,y) 和积分区间决定的,但是在实际问题中 f(x,y) 的形式已经确定,因此这些系数仅仅由积分区间决定。于是当我们只计算某些不同点附近(充分小的邻域内)的含参量积分时,得到的这些系数一般不同,从而导致这些积分的阶不同。故我们可以断言这类问题的含参量积分在每一小段上的阶都是不同的。因此我们只要找到这些不同的阶中最大的阶(此时最大阶就是主体部分)就相当于估计出了积分在整个区间 [a,b] 上的阶。由定积分的几何意义,我们不难发现当参变量 x 固定时,并且当积分区间为某一点 y_0 附近时,只要被积函数的 $e^{f(x,y)}$ 在 y_0 处(关于 y)的取值越大,积分后得到的(值/充分小邻域内函数与 x 轴围成的面积)指数系数就会越大,从而在 y_0 附近的积分的阶也就越大。综上所述,当参变量 x 固定时,f(x,y)(关于 y)的最大值点附近的积分就是原积分的主体部分,在其他区间上的积分全都是余项部分。

然后, 我们将原积分按照上述的积分区间分段, 划分为主体部分和余项部分. 我们知道余项部分一定可以通过放缩、取上下极限等操作变成 0(余项部分的放缩一般需要结合具体问题, 并使用一些放缩技巧来实现. 但是我们其实只要心里清楚余项部分一定能够通过放缩、取上下极限变成 0 即可), 关键是估计主体部分的阶. 我们注意到主体部分的积分区间都包含在某一点的邻域内, 而一般估计在某个点附近的函数的阶, 我们都会想到利用 Taylor 定理将其在这个点附近展开. 因此我们利用 Taylor 定理将主体部分的被积函数的指数部分 f(x,y) 在最大值点附近 (关于 y) 展开 (注意: 此时最多展开到 x^2 项, 如果展开项的次数超过二次, 那么后续要么就无法计算积分, 要么计算就无法得到有效结果, 比如最后积分、取极限得到 $\infty + \infty$ 或 $0 \cdot \infty$ 等这一类无效的结果). Taylor 展开之后, 我们只需要利用欧拉积分和定积分, 直接计算得到结果即可.

事实上,原积分中的有界连续函数 g(x) 只会影响渐进展开式中的系数,对整体的阶并不造成影响. 在实际估计中处理 g(x) 的方法:(i) 在余项部分,直接将 g(x) 放缩成其在相应区间上的上界或下界即可.(ii) 在主体部分,因为主体部分都包含在 f(x,y)(关于 y) 的某些最大值点 y_i 的邻域内,所以结合 g(x) 的连续性,直接将 g(x) 用 $g(y_i)$ 代替即可 (将 g(x) 放缩成 $g(y_i) \pm \varepsilon$ 即可). 即相应的主体部分 (y_i 点附近) 乘以 g(x) 相应的函数值 $g(y_i)$. 具体例题见例题 4.105. 也可以采取拟合法处理 g(x),具体例题见例题 4.106.

严谨的证明过程最好用上下极限和 ε – δ 语言书写. 具体严谨的证明书写见例题:例题 4.102,例题 4.103,例题 4.104.例题 4.105.

 $\stackrel{>}{\sim}$ 笔记 Laplace 方法的思路蕴含了一些常用的想法: 分段估计、Taylor 定理估阶. 而严谨的证明书写也使用一些常用方法: 上下极限、 ε – δ 语言、拟合法.

注上述 Laplace 方法得到的渐近估计其实比较粗糙, 想要得到更加精细的渐近估计需要用到更加深刻的想法和技巧(比如 Puiseux 级数展开(见清疏讲义)等).

例题 **4.99** 设 $a_1, a_2, \dots, a_m > 0, m \in \mathbb{N}$, 则

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max_{1\le j\le m} a_j.$$

注 熟知, 极限蕴含在 a_1, a_2, \cdots, a_m 的最大值中.

证明 显然

$$\max_{1 \le j \le m} a_j = \lim_{n \to \infty} \sqrt[n]{\max_{1 \le j \le m} a_j^n} \le \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \le \max_{1 \le j \le m} a_j \cdot \lim_{n \to \infty} \sqrt[n]{m} = \max_{1 \le j \le m} a_j, \tag{4.93}$$

从而我们证明了(4.93).

例题 **4.100** 设非负函数 $f \in C[a,b]$, 则

$$\lim_{n \to \infty} \sqrt[n]{\int_a^b f^n(x)dx} = \max_{x \in [a,b]} f(x).$$

注 熟知, 极限蕴含在 f 的最大值中.

笔记 这两个基本例子也暗示了离散和连续之间有时候存在某种类似的联系.

证明 事实上记 $f(x_0) = \max_{x \in [a,b]} f(x), x_0 \in [a,b]$, 不失一般性我们假设 $x_0 \in (a,b)$. 那么对充分大的 $n \in \mathbb{N}$, 我们由

积分中值定理知道存在 $\theta_n \in (x_0 - \frac{1}{2n}, x_0 + \frac{1}{2n})$, 使得

$$f(\theta_n)\sqrt[n]{\frac{1}{n}} = \sqrt[n]{\int_{x_0 - \frac{1}{2n}}^{x_0 + \frac{1}{2n}} f^n(x)dx} \le \sqrt[n]{\int_a^b f^n(x)dx} \le \sqrt[n]{\int_a^b f^n(x_0)dx} = f(x_0)\sqrt[n]{b-a}.$$
 (4.94)

两边取极限即得(4.94).

例题 4.101 设非负严格递增函数 $f \in C[a,b]$, 由积分中值定理我们知道存在 $x_n \in [a,b]$, 使得

$$f^{n}(x_{n}) = \frac{1}{b-a} \int_{a}^{b} f^{n}(x) dx.$$

计算 $\lim_{n\to\infty} x_n$. 证明 由(上一题) 例题 4.100, 我们知道

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sqrt[n]{\frac{1}{b-a}} \cdot \lim_{n \to \infty} \sqrt[n]{\int_a^b f^n(x)dx} = f(b).$$

注意到 $\{x_n\}_{n=1}^{\infty}\subset [a,b]$, 我们知道对任何 $\lim_{k\to\infty}x_{n_k}=c\in [a,b]$, 都有 $\lim_{k\to\infty}f(x_{n_k})=f(c)=f(b)$. 又由于 f 为严格 递增函数, 因此只能有 c=b, 利用命题 3.1 的 (a)(Heine 归结原理), 我们知道 $\lim_{n\to\infty} x_n=b$. 证毕!

定理 4.8 (Wallis 公式)

$$\frac{(2n)!!}{(2n-1)!!} = \sqrt{\pi n} + \frac{\sqrt{\pi}}{8} \cdot \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right). \tag{4.95}$$

注 我们只需要记住 $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty$ 及其证明即可, 更精细的渐近表达式一般用不到.

笔记 (4.95) 式等价于

$$\lim_{n \to \infty} \sqrt{n} \left[\frac{(2n)!!}{(2n-1)!!} - \sqrt{\pi n} \right] = \frac{\sqrt{\pi}}{8}.$$
 (4.96)

证明的想法是把(4.96)式用积分表示并运用 Laplace 方法进行估计.

证明 我们只证明 $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty$, 更精细的渐近表达式一般不会被考察, 故在此不给出证明.(更精细 的渐近表达式的证明可见清疏讲义)

注意到经典积分公式

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}.$$
(4.97)

利用 Taylor 公式的 Peano 余项, 我们知道

$$\ln \sin^2 x = -\left(x - \frac{\pi}{2}\right)^2 + o\left[\left(x - \frac{\pi}{2}\right)^2\right],\tag{4.98}$$

即 $\lim_{x \to (\frac{\pi}{2})} \frac{\ln \sin^2 x}{-(x-\frac{\pi}{2})^2} = -1$. 于是利用(4.98), 对任何 $\varepsilon \in (0,1)$, 我们知道存在 $\delta \in (0,1)$, 使得对任何 $x \in [\frac{\pi}{2} - \delta, \frac{\pi}{2}]$,

$$-(1+\varepsilon)\left(x-\frac{\pi}{2}\right)^2 \leqslant \ln\sin^2 x \leqslant -(1-\varepsilon)\left(x-\frac{\pi}{2}\right)^2. \tag{4.99}$$

利用(4.99)式,现在一方面,我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\frac{\pi}{2}} e^{n \ln \sin^2 x} dx \leqslant \int_0^{\frac{\pi}{2} - \delta} e^{n \ln \sin^2(\frac{\pi}{2} - \delta)} dx + \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1 - \varepsilon)(x - \frac{\pi}{2})^2} dx$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \int_0^{\delta} e^{-n(1 - \varepsilon)y^2} dy$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\delta \sqrt{(1 - \varepsilon)n}} e^{-z^2} dz$$

$$\leqslant (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\infty} e^{-z^2} dz.$$

另外一方面, 我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx \geqslant \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1+\varepsilon)(x - \frac{\pi}{2})^2} dx = \int_0^{\delta} e^{-n(1+\varepsilon)y^2} dy = \frac{1}{\sqrt{n(1+\varepsilon)}} \int_0^{\delta \sqrt{n(1+\varepsilon)}} e^{-z^2} dz.$$

因此我们有

$$\frac{1}{\sqrt{1+\varepsilon}}\int_0^\infty e^{-z^2}dz\leqslant \lim_{n\to\infty}\sqrt{n}\int_0^{\frac{\pi}{2}}\sin^{2n}xdx\leqslant \frac{1}{\sqrt{1-\varepsilon}}\int_0^\infty e^{-z^2}dz,$$

由ε任意性即可得

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\infty} e^{-z^2} dz = \frac{\sqrt{\pi}}{2}.$$

再结合(4.97)式可得

$$\lim_{n \to \infty} \frac{\pi \sqrt{n}}{2} \frac{(2n-1)!!}{(2n)!!} = \frac{\sqrt{\pi}}{2}.$$

即

$$\lim_{n\to\infty} \sqrt{\pi n} \cdot \frac{(2n-1)!!}{(2n)!!} = 1.$$

故
$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty.$$

例题 **4.102** 求 $\int_0^\infty \frac{1}{(2+x^2)^n} dx, n \to \infty$ 的等价无穷小. 解 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta > 0$, 使得当 $x \in [0,\delta]$ 时, 有

$$\frac{x^2}{2} - \varepsilon x^2 \leqslant \ln\left(1 + \frac{x^2}{2}\right) \leqslant \frac{x^2}{2} + \varepsilon x^2.$$

现在,一方面我们有

$$\int_{0}^{\infty} \frac{1}{(2+x^{2})^{n}} dx = \frac{1}{2^{n}} \int_{0}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx = \frac{1}{2^{n}} \left(\int_{0}^{\delta} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right)$$

$$= \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n\ln\left(1+\frac{x^{2}}{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right)$$

$$\leq \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n\left(\frac{x^{2}}{2}-\varepsilon x^{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{1+\frac{x^{2}}{2}} \cdot \frac{1}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} dx \right)$$

$$\frac{\Rightarrow y = x\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}}{2^{n}} \frac{1}{2^{n}} \left(\frac{1}{\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} \int_{0}^{\delta\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} e^{-y^{2}} dy + \frac{\sqrt{2}}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} \left(\frac{\pi}{2} - \arctan\frac{\delta}{\sqrt{2}}\right) \right)$$

$$\leqslant \frac{1}{2^n} \left(\frac{1}{\sqrt{n\left(\frac{1}{2} - \varepsilon\right)}} \int_0^\infty e^{-y^2} dy + \frac{\pi\sqrt{2}}{2\left(1 + \frac{\delta^2}{2}\right)^{n-1}} \right) = \frac{1}{2^n} \left(\frac{\sqrt{\pi}}{2\sqrt{n\left(\frac{1}{2} - \varepsilon\right)}} + \frac{\pi\sqrt{2}}{2\left(1 + \frac{\delta^2}{2}\right)^{n-1}} \right).$$

于是

$$\int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^2}{2}\right)^{n-1}}.$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \overline{\lim_{n\to\infty}} \left(\frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^2}{2}\right)^{n-1}} \right) = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx \leqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{n}}} = \sqrt{\frac{\pi}{2}}.$

另外一方面, 我们有

$$\begin{split} \int_0^\infty \frac{1}{(2+x^2)^n} dx &= \frac{1}{2^n} \int_0^\infty \frac{1}{\left(1+\frac{x^2}{2}\right)^n} dx \geqslant \frac{1}{2^n} \int_0^\delta \frac{1}{\left(1+\frac{x^2}{2}\right)^n} dx \\ &= \frac{1}{2^n} \int_0^\delta e^{-n\ln\left(1+\frac{x^2}{2}\right)} dx \geqslant \frac{1}{2^n} \int_0^\delta e^{-n\left(\frac{x^2}{2}+\varepsilon x^2\right)} dx \\ &= \frac{\frac{1}{2^n} \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}}{2^n \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} \frac{1}{2^n \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy. \end{split}$$

于是

$$\int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \geqslant \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy.$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\lim_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)} dx \geqslant \lim_{n \to \infty} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy = \lim_{n \to \infty} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}+\varepsilon\right)}}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx\geqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{2}}}=\sqrt{\frac{\pi}{2}}.$

因此, 再结合 $\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx \leqslant \overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx$, 我们就有

$$\sqrt{\frac{\pi}{2}} \leqslant \lim_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \overline{\lim}_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \sqrt{\frac{\pi}{2}}.$$

故 $\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx = \sqrt{\frac{\pi}{2}}.$ 即 $\int_0^\infty \frac{1}{(2+x^2)^n}dx = \frac{\sqrt{\pi}}{2^n\sqrt{2n}} + o\left(\frac{1}{2^n\sqrt{n}}\right), n\to\infty.$

例题 **4.103** 求 $\int_0^x e^{-y^2} dy, x \to +\infty$ 的渐近估计 (仅两项).

拿 笔记 因为 $\lim_{x\to +\infty} \int_0^x e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$, 所以实际上只需要估计

$$\frac{\sqrt{\pi}}{2} - \int_0^x e^{-y^2} dy = \int_0^\infty e^{-y^2} dy - \int_0^x e^{-y^2} dy = \int_x^\infty e^{-y^2} dy, x \to +\infty.$$

解 由 Taylor 定理可知, 对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in [0, \delta]$ 时, 有

$$2x - \varepsilon x \le x^2 + 2x \le 2x + \varepsilon x$$
.

现在,一方面我们有

$$\int_{x}^{\infty} e^{-y^{2}} dy \xrightarrow{\frac{c}{2} y = xu} x \int_{1}^{\infty} e^{-(xu)^{2}} du \xrightarrow{\frac{c}{2} t = u - 1} x \int_{0}^{\infty} e^{-(xt + x)^{2}} dt$$

$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = xe^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$= xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(t^{2} + 2t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt \right)$$

$$\leq xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(2t + \varepsilon t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t + 2t)} e^{-x^{2}\delta} dt \right)$$

$$= xe^{-x^{2}} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{(2+\varepsilon)x^{2}} + \frac{e^{-2x^{2}(\delta + 1)}}{x^{2}} \right)$$

$$= \frac{e^{-x^{2}}}{x} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{2 + \varepsilon} + e^{-2x^{2}(\delta + 1)} \right).$$

于是就有

$$xe^{x^2}\int_x^\infty e^{-y^2}dy\leqslant \frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon}+e^{-2x^2(\delta+1)}.$$

上式两边同时令 $x \to +\infty$ 并取上极限得到

$$\overline{\lim}_{x\to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \leqslant \overline{\lim}_{x\to +\infty} \left(\frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon} + e^{-2x^2(\delta+1)} \right) = \frac{1}{2+\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \leqslant \frac{1}{2}$.

另外一方面, 我们有

$$\int_{x}^{\infty} e^{-y^{2}} dy \xrightarrow{\frac{c}{2} y = xu} x \int_{1}^{\infty} e^{-(xu)^{2}} du \xrightarrow{\frac{c}{2} t = u - 1} x \int_{0}^{\infty} e^{-(xt + x)^{2}} dt$$

$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = xe^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$\geqslant xe^{-x^{2}} \int_{0}^{\delta} e^{-x^{2}(t^{2} + 2t)} dt \geqslant xe^{-x^{2}} \int_{0}^{\delta} e^{-x^{2}(2t - \varepsilon t)} dt$$

$$= xe^{-x^{2}} \cdot \frac{1 - e^{-(2 - \varepsilon)x^{2}\delta}}{(2 - \varepsilon)x^{2}}.$$

于是就有

$$xe^{x^2}\int_x^\infty e^{-y^2}dy\geqslant \frac{1-e^{-(2-\varepsilon)x^2\delta}}{(2-\varepsilon)x^2}.$$

上式两边同时令 $x \to +\infty$ 并取下极限得到

$$\underline{\lim}_{x \to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \geqslant \underline{\lim}_{x \to +\infty} \frac{1 - e^{-(2-\varepsilon)x^2} \delta}{(2-\varepsilon)x^2} = \frac{1}{2-\varepsilon}.$$

再由 ε 的任意性可得 $\lim_{x \to +\infty} xe^{x^2} \int_x^\infty e^{-y^2} dy \geqslant \frac{1}{2}$.

因此, 再结合
$$\lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy$$
, 我们就有
$$\frac{1}{2} \leqslant \lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \frac{1}{2}.$$

因此
$$\int_0^x e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \int_x^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{x}\right), x \to +\infty.$$

例题 **4.104** 计算 $\lim_{n\to\infty}\int_0^{10n}\left(1-\left|\sin\left(\frac{x}{n}\right)\right|\right)^ndx$.

 \mathbf{R} 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta \in (0,\frac{\pi}{4})$, 使得当 $x \in [0,\delta]$ 时, 有 $-t - \varepsilon t \leqslant \ln(1 - \sin t) \leqslant -t + \varepsilon t$.

此时, 我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx \stackrel{\text{\rightleftharpoons} x = nt}{=} n \int_{0}^{10} (1 - |\sin t|)^{n} dt = n \int_{0}^{10} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt.$$
(4.100)

由积分换元可得

$$n\int_{\pi-\delta}^{\pi} e^{n\ln(1-\sin t)}dt \xrightarrow{\frac{c}{2}u=\pi-t} -n\int_{\delta}^{0} e^{n\ln(1-\sin(\pi-u))}du = n\int_{0}^{\delta} e^{n\ln(1-\sin u)}du,$$

$$n\int_{\pi}^{\pi+\delta} e^{n\ln(1+\sin t)}dt \xrightarrow{\frac{c}{2}u=t-\pi} n\int_{0}^{\delta} e^{n\ln(1+\sin(\pi+u))}du = n\int_{0}^{\delta} e^{n\ln(1-\sin u)}du,$$

$$n\int_{\pi+\delta}^{2\pi-\delta} e^{n\ln(1+\sin t)}dt \xrightarrow{\frac{c}{2}u=t-\pi} \int_{\delta}^{\pi-\delta} e^{n\ln(1+\sin(\pi+u))}du = \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin u)}du,$$

$$n\int_{2\pi+\delta}^{3\pi-\delta} e^{n\ln(1-\sin t)}dt \xrightarrow{\frac{c}{2}u=t-2\pi} \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin(2\pi+u))}du = \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin u)}du.$$

从而

$$n \int_{\pi-\delta}^{\pi+\delta} e^{n \ln(1-|\sin t|)} dt = n \int_{\pi-\delta}^{\pi} e^{n \ln(1-\sin t)} dt + n \int_{\pi}^{\pi+\delta} e^{n \ln(1-\sin t)} dt = 2n \int_{0}^{\delta} e^{n \ln(1-\sin t)} dt.$$

同理,
$$n \int_{2\pi-\delta}^{2\pi+\delta} e^{n\ln(1-|\sin t|)} dt = n \int_{3\pi-\delta}^{3\pi+\delta} e^{n\ln(1-|\sin t|)} dt = 2n \int_{0}^{\delta} e^{n\ln(1-\sin t)} dt$$
. 于是原积分(4.100)式可化为
$$\int_{0}^{10n} (1-|\sin(\frac{x}{n})|)^{n} dx = 7n \int_{0}^{\delta} e^{n\ln(1-\sin t)} dt + 3 \int_{s}^{\pi-\delta} e^{n\ln(1-\sin t)} dt.$$

进而,一方面我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx = 7n \int_{0}^{\delta} e^{n\ln(1-\sin t)} dt + 3 \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin t)} dt$$

$$\leq 7n \int_{0}^{\delta} e^{n(-t+\varepsilon t)} dt + 3n \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin \delta)} dt$$

$$= 7 \cdot \frac{e^{(\varepsilon-1)n\delta} - 1}{\varepsilon - 1} + 3ne^{n\ln(1-\sin \delta)} (\pi - 2\delta).$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}} \int_0^{10n} (1-|\sin(\frac{x}{n})|)^n dx \leqslant \overline{\lim_{n\to\infty}} \left[7 \cdot \frac{e^{(\varepsilon-1)n\delta}-1}{\varepsilon-1} + 3ne^{n\ln(1-\sin\delta)} (\pi-2\delta) \right] = \frac{7}{1-\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim_{n\to\infty}}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx\leqslant 7.$

另外一方面, 我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx = 7n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt + 3 \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt$$

$$\geqslant 7n\int_0^{\delta} e^{n\ln(1-\sin t)}dt \geqslant 7n\int_0^{\delta} e^{n(-t-\varepsilon t)}dt = 7\cdot \frac{1-e^{-(\varepsilon+1)n\delta}}{\varepsilon+1}$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underline{\lim}_{n\to\infty} \int_0^{10n} (1-|\sin(\frac{x}{n})|)^n dx \geqslant \underline{\lim}_{n\to\infty} 7 \cdot \frac{1-e^{-(\varepsilon+1)n\delta}}{\varepsilon+1} = \frac{7}{\varepsilon+1}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx\geqslant \frac{7}{\varepsilon+1}$.

因此, 再结合
$$\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx \leq \overline{\lim}_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx$$
, 我们就有

$$7 \leqslant \varliminf_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant \varlimsup_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant 7.$$

故
$$\lim_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx = 7.$$

例题 **4.105** 计算
$$\lim_{n\to\infty} \frac{\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx}{\int_0^1 (1-x^2+x^3)^n dx}$$
.

注 注意由 $\ln(1-x^2+x^3) = x-1+o(x-1), x \to 1$. 得到的是 $\ln(1-x^2+x^3) = x-1+o(x-1), x \to 1$. 而不是. 证明 由 Taylor 定理可知,

$$\ln(1 - x^2 + x^3) = -x^2 + o(x^2), x \to 0;$$

$$\ln(1 - x^2 + x^3) = x - 1 + o(x - 1), x \to 1.$$

从而对 $\forall \varepsilon \in (0, \frac{1}{2})$, 存在 $\delta_1 \in (0, \frac{1}{10})$, 使得

$$-x^{2} - \varepsilon x^{2} \leq \ln(1 - x^{2} + x^{3}) \leq -x^{2} + \varepsilon x^{2}, \forall x \in (0, \delta_{1});$$

$$x - 1 - \varepsilon(x - 1) \leq \ln(1 - x^{2} + x^{3}) \leq x - 1 + \varepsilon(x - 1), \forall x \in (1 - \delta_{1}, 1).$$

设 $f \in C[0,1]$, 则由连续函数最大值、最小值定理可知, f 在闭区间 $[0,\frac{1}{2}]$ 和 $[\frac{1}{2},1]$ 上都存在最大值和最小值. 设 $M_1 = \sup_{x \in [0,\frac{1}{2}]} f(x)$, $M_2 = \sup_{x \in [\frac{1}{2},1]} f(x)$. 又由连续性可知, 对上述 ε , 存在 $\delta_2 > 0$, 使得

$$f(0) - \varepsilon < f(x) < f(0) + \varepsilon, \forall x \in [0, \delta_2];$$

$$f(1) - \varepsilon < f(x) < f(1) + \varepsilon, \forall x \in [1 - \delta_2, 1].$$

取 $\delta = \min\{\delta_1, \delta_2\}$,则一方面我们有

$$\int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{0}^{\delta} (1 - x^{2} + x^{3})^{n} f(x) dx + \int_{\delta}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx$$

$$= \int_{0}^{\delta} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx + \int_{\delta}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx$$

$$\leq (f(0) + \varepsilon) \int_{0}^{\delta} e^{n(-x^{2} + \varepsilon x^{2})} dx + \int_{\delta}^{\frac{1}{2}} M_{1} \left(\frac{7}{8} - \delta^{2}\right)^{n} dx$$

$$= \frac{f(0) + \varepsilon}{\sqrt{n(1 - \varepsilon)}} \int_{0}^{\delta \sqrt{n(1 - \varepsilon)}} e^{-y^{2}} dy + M_{1} \left(\frac{7}{8} - \delta^{2}\right)^{n} \left(\frac{1}{2} - \delta\right),$$

又易知 $1-x^2+x^3$ 在 $[0,\frac{2}{3}]$ 上单调递减,在 $(\frac{2}{3},1]$ 上单调递增. 再结合 $\delta < \frac{1}{10}$ 可知, $1-(\frac{1}{2})^2+(\frac{1}{2})^3 < 1-(\frac{1}{10})^2+(\frac{1}{10})^3 < 1-(1-\delta)^2+(1-\delta)^3$. 从而当 $x \in (\frac{1}{2},1-\delta)$ 时,我们就有 $1-x^2+x^3 < 1-(1-\delta)^2+(1-\delta)^3 < 1$. 进而可得

$$\int_{\frac{1}{2}}^{1} (1-x^2+x^3)^n f(x) dx = \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) dx + \int_{1-\delta}^{1} (1-x^2+x^3)^n f(x) dx$$

$$\begin{split} &= \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) dx + \int_{1-\delta}^1 e^{n \ln(1-x^2+x^3)} f(x) dx \\ &\leq \int_{\frac{1}{2}}^{1-\delta} M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n dx + (f(1)+\varepsilon) \int_{1-\delta}^1 e^{n[x-1+\varepsilon(x-1)]} dx \\ &= M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n \left(\frac{1}{2}-\delta\right) + \frac{f(1)+\varepsilon}{n(1+\varepsilon)} \left(1-e^{-n\delta(1+\varepsilon)}\right). \end{split}$$

于是就有

$$\begin{split} &\sqrt{n}\int_0^{\frac{1}{2}}(1-x^2+x^3)^nf(x)dx\leqslant \frac{f(0)+\varepsilon}{\sqrt{1-\varepsilon}}\int_0^{\delta\sqrt{n(1-\varepsilon)}}e^{-y^2}dy+\sqrt{n}M_1\left(\frac{7}{8}-\delta^2\right)^n\left(\frac{1}{2}-\delta\right),\\ &n\int_{\frac{1}{2}}^1(1-x^2+x^3)^nf(x)dx\leqslant nM_2\left(\frac{3}{4}+(1-\delta)^3\right)^n\left(\frac{1}{2}-\delta\right)+\frac{f(1)+\varepsilon}{1+\varepsilon}\left(1-e^{-n\delta(1+\varepsilon)}\right). \end{split}$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \leqslant \frac{f(0)+\varepsilon}{\sqrt{1-\varepsilon}} \int_0^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{1-\varepsilon}} (f(0)+\varepsilon),$$

$$\overline{\lim_{n\to\infty}} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \leqslant \frac{f(1)+\varepsilon}{1+\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \leq \frac{\sqrt{\pi}}{2} f(0), \overline{\lim}_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \leq f(1).$ 另外一方面, 我们有

$$\begin{split} \int_{0}^{\frac{1}{2}} (1-x^{2}+x^{3})^{n} f(x) dx & \geqslant \int_{0}^{\delta} (1-x^{2}+x^{3})^{n} f(x) dx = \int_{0}^{\delta} e^{n \ln(1-x^{2}+x^{3})} f(x) dx \\ & \geqslant (f(0)-\varepsilon) \int_{0}^{\delta} e^{n(-x^{2}-\varepsilon x^{2})} dx = \frac{f(0)-\varepsilon}{\sqrt{n(1+\varepsilon)}} \int_{0}^{\delta \sqrt{n(1+\varepsilon)}} e^{-y^{2}} dy, \\ \int_{\frac{1}{2}}^{1} (1-x^{2}+x^{3})^{n} f(x) dx & \geqslant \int_{1-\delta}^{1} (1-x^{2}+x^{3})^{n} f(x) dx = \int_{1-\delta}^{1} e^{n \ln(1-x^{2}+x^{3})} f(x) dx \\ & \geqslant (f(1)-\varepsilon) \int_{1-\delta}^{1} e^{n[x-1-\varepsilon(x-1)]} dx = \frac{f(1)-\varepsilon}{n(1+\varepsilon)} \left(1-e^{-n\delta(1-\varepsilon)}\right). \end{split}$$

于是就有

$$\sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}} \int_0^{\delta \sqrt{n(1 + \varepsilon)}} e^{-y^2} dy,$$

$$n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(1) - \varepsilon}{1 + \varepsilon} \left(1 - e^{-n\delta(1 - \varepsilon)} \right).$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underbrace{\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx}_{n \to \infty} \geqslant \frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}} \int_0^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{1 + \varepsilon}} (f(0) - \varepsilon),$$

$$\underbrace{\lim_{n \to \infty} n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx}_{n \to \infty} \geqslant \frac{f(1) - \varepsilon}{1 + \varepsilon}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \geqslant \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \geqslant f(1).$

$$\frac{\sqrt{\pi}}{2}f(0) \leqslant \lim_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \frac{\sqrt{\pi}}{2} f(0),$$

$$f(1) \leqslant \lim_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant f(1).$$

故
$$\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx = \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = f(1).$$
 从而
$$\int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right), n \to \infty;$$

$$\int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$
 故 $\int_0^1 (1-x^2+x^3)^n f(x) dx = \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx + \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$ 从而 当 $f \equiv 1$ 时, 上式等价于
$$\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx = \frac{\sqrt{\pi}\ln 2}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$
 于是
$$\lim_{n\to\infty} \frac{\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx}{\int_0^1 (1-x^2+x^3)^n dx} = \lim_{n\to\infty} \frac{\frac{\sqrt{\pi}\ln 2}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)}{\frac{\sqrt{\pi}}{2\sqrt{n}} + \frac{1}{n} + o\left(\frac{1}{n}\right)} = \ln 2.$$

例题 4.106 设 $f \in R[0,1]$ 且 f 在 x = 1 连续, 证明

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n dx = f(1).$$

笔记 这种运用 Laplace 方法估阶的题目, 如果要求解/证明的是极限值, 而不是估计函数或数列的阶, 那么也可以 用拟合法进行书写.

证明 由于 $f \in R[0,1]$, 因此存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall n \in \mathbb{N}_+, \forall \delta \in (0,1)$, 有

$$\left| n \int_{0}^{1} f(x)x^{n} dx - n \int_{0}^{1} f(1)x^{n} dx \right| = \left| n \int_{0}^{1} [f(x) - f(1)]x^{n} dx \right|$$

$$\leq n \int_{0}^{1} |[f(x) - f(1)]x^{n}| dx = n \int_{0}^{\delta} |f(x) - f(1)|x^{n} dx + n \int_{\delta}^{1} |f(x) - f(1)|x^{n} dx$$

$$\leq n \int_{0}^{\delta} |M + f(1)|\delta^{n} dx + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_{\delta}^{1} x^{n} dx$$

$$\leq n |M + f(1)|\delta^{n+1} + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_{0}^{1} x^{n} dx$$

$$= n |M + f(1)|\delta^{n+1} + \frac{n}{n+1} \sup_{x \in [\delta, 1]} |f(x) - f(1)|.$$

上式两边同时令 $n \to \infty$,并取上极限可得

$$\overline{\lim_{n\to\infty}} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \sup_{x\in [\delta,1]} |f(x) - f(1)|, \quad \forall \delta \in (0,1).$$

$$\overline{\lim}_{n\to\infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \lim_{\delta \to 1^-} \sup_{x \in [\delta, 1]} |f(x) - f(1)| = \overline{\lim}_{\delta \to 1^-} |f(x) - f(1)|.$$

又因为 f 在 x = 1 处连续, 所以 $\overline{\lim}_{\delta \to 1^-} |f(x) - f(1)| = 0$. 故

$$0 \leqslant \underline{\lim}_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \overline{\lim}_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant 0.$$

因此 $\lim_{n\to\infty} n \int_0^1 f(x) x^n dx = \lim_{n\to\infty} n \int_0^1 f(1) x^n dx = f(1) \lim_{n\to\infty} \frac{n}{n+1} = f(1).$ 例题 **4.107 Possion** 核 设 $f \in R[0,1]$ 且 f 在 x=0 连续, 证明

$$\lim_{t \to 0^+} \int_0^1 \frac{t}{x^2 + t^2} f(x) dx = \frac{\pi}{2} f(0).$$

证明 因为 $f \in R[0,1]$, 所以存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall \delta \in (0,1)$, 固定 δ , 再对 $\forall t > 0$, 我们

有

$$\left| \int_{0}^{1} \frac{t}{x^{2} + t^{2}} f(x) dx - \int_{0}^{1} \frac{t}{x^{2} + t^{2}} f(0) dx \right| \leq \int_{0}^{1} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx$$

$$= \int_{0}^{\delta} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx + \int_{\delta}^{1} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx$$

$$\leq \sup_{x \in [0, \delta]} |f(x) - f(0)| \int_{0}^{\delta} \frac{t}{x^{2} + t^{2}} dx + \int_{0}^{1} \frac{t}{\delta^{2} + t^{2}} |M + f(0)| dx$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \arctan \frac{x}{t} \Big|_{0}^{\delta} + \frac{t}{\delta^{2} + t^{2}} |M + f(0)|$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \cdot \arctan \frac{\delta}{t} + \frac{t}{\delta^{2} + t^{2}} |M + f(0)|.$$

上式两边同时令 $t \to 0^+$ 并取上极限, 可得

$$\overline{\lim_{t \to 0^+}} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \frac{\pi}{2} \sup_{x \in [0, \delta]} |f(x) - f(0)|, \forall \delta \in (0, 1).$$

再根据 δ 的任意性, φ $\delta \rightarrow 0$ ⁺ 可得

$$\overline{\lim}_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \frac{\pi}{2} \lim_{\delta \to 0^+} \sup_{x \in [0, \delta]} |f(x) - f(0)| = \frac{\pi}{2} \overline{\lim}_{x \to 0^+} |f(x) - f(0)|.$$

又由于 f 在 x = 0 处连续, 从而 $\overline{\lim}_{x \to 0^+} |f(x) - f(0)| = 0$. 故

$$0 \leqslant \lim_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \overline{\lim}_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant 0.$$

因此
$$\lim_{t\to 0^+} \int_0^1 \frac{t}{x^2+t^2} f(x) dx = \lim_{t\to 0^+} \int_0^1 \frac{t}{x^2+t^2} f(0) dx = f(0) \lim_{t\to 0^+} \arctan \frac{1}{t} = \frac{\pi}{2} f(0).$$

例题 **4.108 Fejer** 核 设 f 在 x = 0 连续且在 $\left[-\frac{1}{2}, \frac{1}{2}\right]$ 可积,则

$$\lim_{N \to +\infty} \int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(x) dx = f(0).$$

证明 因为 $f \in R\left[-\frac{1}{2}, \frac{1}{2}\right]$, 所以存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. 又因为 $\sin x \sim x, x \to 0$, 所以对 $\forall \varepsilon \in (0, 1)$, 存在 $\delta_0 > 0$, 使得当 $|x| \leq \delta_0$ 时, 有 $\sin x \geq (1 - \varepsilon)x$. 于是对 $\forall \delta \in \min\left\{\frac{1}{2}, \delta_0\right\}$, 我们有

$$\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} [f(x) - f(0)] dx \right| \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$= \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$\leq \sup_{|x| \leq \delta} |f(x) - f(0)| \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^{2}(\pi \delta)} |M + f(0)| dx$$

$$\leq \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{(\pi x)^{2}} dx + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

上式两边同时今 $N \to +\infty$ 并取上极限 得到

$$\overline{\lim_{N \to +\infty}} \left| \int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy.$$

又由 Dirichlet 判别法, 可知 $\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy$ 收敛. 从而根据 δ 的任意性, 上式两边同时令 $\delta \to 0^+$, 再结合 f 在

$$\frac{\overline{\lim}}{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right|$$

$$\leqslant \lim_{\delta \to 0^+} \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy$$

$$= \frac{\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy}{1 - \varepsilon} \lim_{x \to 0^+} |f(x) - f(0)| = 0.$$

从而

$$0 \leqslant \lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant \lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant 0.$$

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \geqslant \lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} f(0) dx$$

$$\xrightarrow{\frac{\Phi}{y} = N x}} \lim_{N \to +\infty} \int_{-\frac{N}{2}}^{\frac{N}{2}} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy = \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy = f(0).$$

另一方面, 对 $\forall \varepsilon \in (0,1)$ 我们有

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx = \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx$$

$$\leqslant f(0) \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^2(\pi \delta)} f(0) dx \leqslant \frac{f(0)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} dx$$

$$\frac{2}{N} \frac{\sin^2(\pi N x)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|y| \leqslant N \delta} \frac{\sin^2(\pi y)}{(\pi y)^2} dy = \frac{f(0)}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy = \frac{f(0)}{1 - \varepsilon}.$$

$$\lim_{N \to +\infty} \int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \leqslant f(0).$$

因此, 由夹逼准则, 可知 $\lim_{N\to+\infty}\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{N}\frac{\sin^2(\pi Nx)}{\sin^2(\pi x)}f(0)dx=f(0).$ **例题 4.109** 设 $\varphi_n(x)=\frac{n}{\sqrt{\pi}}e^{-n^2x^2}, n=1,2,\cdots,f$ 是 \mathbb{R} 上的有界实值连续函数, 证明:

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(y)\varphi_n(x - y)dy = f(x).$$

证明 由条件可知, 存在 M>0, 使得 $|f(x)|\leqslant M, \forall x\in\mathbb{R}$. 于是对 $\forall x\in\mathbb{R}$, 固定 x, 再对 $\forall \delta>0$, 我们有

$$\begin{split} & \overline{\lim}_{n \to \infty} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \right| \leqslant \overline{\lim}_{n \to \infty} \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \\ & \leqslant \overline{\lim}_{n \to \infty} \int_{|x-y| \leqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy + \overline{\lim}_{n \to \infty} \int_{|x-y| \geqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \\ & \leqslant \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|x-y| \leqslant \delta} \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy + \overline{\lim}_{n \to \infty} \int_{|x-y| \geqslant \delta} 2M \frac{n}{\sqrt{\pi}} e^{-n^2 \delta^2} dy \\ & \stackrel{\frac{\Phi}{z} = n(x-y)}{= |x-y| \leqslant \delta} \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|z| \leqslant n \delta} \frac{1}{\sqrt{\pi}} e^{-z^2} dz \\ & = \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} dz = \sup_{|x-y| \leqslant \delta} |f(y) - f(x)|. \end{split}$$

$$\overline{\lim_{n\to\infty}} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \right| \leqslant \lim_{\delta \to 0^+} \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| = \lim_{y\to x} |f(y) - f(x)| = 0.$$

故

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(y) \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy$$

$$= f(x) \lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \xrightarrow{\frac{4}{7}z = n(x-y)} f(x) \lim_{n \to \infty} \int_{|z| \leqslant n\delta} \frac{1}{\sqrt{\pi}} e^{-z^2} dz$$

$$= f(x) \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} dz = f(x).$$

例题 **4.110** 设 $f(x) \in C[0,1], f'(0)$ 存在,证明:对任意正整数 m,在 $n \to \infty$ 时有

$$\int_0^1 f(x^n) dx = f(0) + \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{f(x) - f(0)}{x} \frac{\ln^k x}{k!} dx + O\left(\frac{1}{n^{m+1}}\right).$$

注 这里积分换元之后,再 Taylor 展开,但是后续的积分与求和的换序以及余项的估计并不好处理.

管记估计抽象函数的渐近展开一般考虑拟合和分段.如果考虑积分与求和换序的话并不好处理,一般只有估计具体函数的渐近才会考虑换序.

这里分段的想法也是将原积分分成主体部分和余项部分. 容易观察 (直观地分析一下即可) 到这里积分的阶的主体部分集中在 0 附近.

的主体部分集中在 0 附近. 证明 记 $g(x) = \frac{f(x) - f(0)}{x}$, 则由条件可知, $g \in C[0,1]$,从而

$$|g(x)| \le C, \forall x \in [0, 1].$$
 (4.101)

于是

$$\int_0^1 f(x^n) dx - f(0) = \int_0^1 \left[f(x^n) - f(0) \right] dx \xrightarrow{\frac{4}{n} y = x^n} \int_0^1 \frac{x^{\frac{1}{n} - 1}}{n} \left[f(x) - f(0) \right] dx$$
$$= \frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} \frac{f(x) - f(0)}{x} dx = \frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx.$$

因此原问题等价于证明对 $\forall m \in \mathbb{N}_+$, 当 $n \to \infty$ 时, 都有

$$\frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx = \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{\ln^k x}{k!} g(x) dx + O\left(\frac{1}{n^{m+1}}\right).$$

由 Taylor 公式可知, $\forall x \in [\delta, 1]$, 对 $\forall m \in \mathbb{N}_+$, 都有

$$e^{\frac{\ln x}{n}} = \sum_{k=0}^{m-1} \frac{\ln^k x}{k! n^k} + O\left(\frac{1}{n^m}\right), n \to \infty.$$

即存在 M>0, 使得 $\forall x \in [\delta,1]$, 对 $\forall m \in \mathbb{N}_+$, 存在 N>0, 使得 $\forall n>N$, 都有

$$\left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^k x}{k! n^k} \right| \leqslant \frac{M}{n^m}. \tag{4.102}$$

取 $\delta = \frac{1}{n^{2m}} \in (0,1)$,则对 $\forall m \in \mathbb{N}_+$,当 n > N 时,结合 (4.101)(4.102) 式,我们有

$$\left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_{0}^{1} \frac{\ln^{k} x}{k!} g(x) dx \right| = \left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \frac{1}{n} \sum_{k=0}^{m-1} \int_{0}^{1} \frac{\ln^{k} x}{k! n^{k}} g(x) dx \right| = \left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \frac{1}{n} \int_{0}^{1} \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} g(x) dx \right| = \left| \frac{1}{n} \int_{0}^{1} \left(e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right) g(x) dx \right|$$

$$\leq \frac{1}{n} \int_{0}^{\delta} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| g(x) dx + \frac{1}{n} \int_{\delta}^{1} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| g(x) dx$$

$$(4.103)$$

$$\leqslant \frac{C}{n} \int_{0}^{\delta} \left(x^{\frac{1}{n}} + \sum_{k=0}^{m-1} \frac{|\ln x|^{k}}{k! n^{k}} \right) dx + \frac{C}{n} \int_{\delta}^{1} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| dx \leqslant \frac{C}{n} \int_{0}^{\delta} \left(1 + \sum_{k=0}^{m-1} |\ln x|^{k} \right) dx + \frac{C}{n} \int_{0}^{1} \frac{M}{n^{m}} dx \\
\leqslant \frac{C}{n} \int_{0}^{\delta} \left(1 + m |\ln x|^{m-1} \right) dx + \frac{MC}{n^{m+1}} = \frac{C}{n} \int_{0}^{\frac{1}{n^{2m}}} \left(1 - m \ln^{m-1} x \right) dx + \frac{MC}{n^{m+1}} \\
= \frac{C}{n^{2m+1}} - \frac{mC}{n} \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx + \frac{MC}{n^{m+1}} \leqslant \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right|. \tag{4.104}$$

注意到

$$\int \ln^n x dx = x \left(a_0 + a_1 \ln x + \dots + a_n \ln^n x \right) + c = x \left(a_0 + \sum_{k=1}^n a_k \ln k \right) + c,$$

其中 a_0, a_1, \cdots, a_n, c 都是常数。又因为对 $\forall n \in \mathbb{N}_+$,都成立 $\lim_{x \to +\infty} \frac{\ln^n x}{x} = 0$,所以一定存在 N' > 0,使得当 n > N'时,我们有

$$\left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right| = \left| x \left(b_{0} + b_{1} \ln x + \dots + b_{m-1} \ln^{m-1} x \right) \right|_{0}^{\frac{1}{n^{2m}}} = \left| \frac{1}{n^{2m}} \left(b_{0} + b_{1} \ln \frac{1}{n^{2m}} + \dots + b_{m-1} \ln^{m-1} \frac{1}{n^{2m}} \right) \right|$$

$$\leq \frac{mB}{n^{2m}} \left| \ln^{m-1} \frac{1}{n^{2m}} \right| = \frac{2m^{2}B \ln^{m-1} n}{n^{2m}} \leq \frac{2m^{2}B}{n^{2m-1}} \leq \frac{2m^{2}B}{n^{m}}, \tag{4.105}$$

其中 $b_0, b_1, \cdots, b_{m-1}$ 都是常数, $B = \max\{b_0, b_1, \cdots, b_{m-1}\}$ 。因此由 (4.104)(4.105) 式可得,对 $\forall m \in \mathbb{N}_+$,当 $n > \max\{N, N'\}$ 时,我们有

$$\left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_{0}^{1} \frac{\ln^{k} x}{k!} g(x) dx \right| \leq \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right|$$

$$\leq \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \cdot \frac{2m^{2}B}{n^{m}} = \frac{MC + C - 2m^{3}BC}{n^{m+1}}.$$

即
$$\frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{\ln^k x}{k!} g(x) dx = O\left(\frac{1}{n^{m+1}}\right), n \to \infty$$
。 结论得证。

4.9 Riemann 引理

引理 4.2 (Riemann 引理)

设 $E \subset \mathbb{R}$ 是区间且 f 在 E 上绝对可积. g 是定义在 \mathbb{R} 的周期 T>0 函数, 且在任何有界闭区间上 Riemann 可积,则我们有

$$\lim_{x \to +\infty} \int_E f(y)g(xy)dy = \frac{1}{T} \int_E f(y)dy \int_0^T g(y)dy. \tag{4.106}$$

考试中,Riemann 引理不能直接使用,需要我们根据具体问题给出证明.具体可见例题 4.111.

🖹 笔记

(1) 不妨设 $E = \mathbb{R}$ 的原因: 若 (1.1) 式在 $E = \mathbb{R}$ 时已得证明, 则当 $E \subseteq \mathbb{R}$ 时, 令 $\widetilde{f}(y) = f(y) \cdot X_E, y \in \mathbb{R}$, 则由 f(y) 在 E 上绝对可积, 可得 $\widetilde{f}(y)$ 在 \mathbb{R} 上也绝对可积. 从而由假设可知

$$\lim_{x \to +\infty} \int_{\mathbb{D}} \widetilde{f}(y)g(xy)dy = \frac{1}{T} \int_{\mathbb{D}} \widetilde{f}(y)dy \int_{0}^{T} g(y)dy.$$

于是

$$\lim_{x \to +\infty} \int_E f(y)g(xy)dy = \lim_{x \to +\infty} \int_{\mathbb{R}} \widetilde{f}(y)g(xy)dy = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y)dy \int_0^T g(y)dy = \frac{1}{T} \int_E f(y)dy \int_0^T g(y)dy$$
故可以不妨设 $E = \mathbb{R}$.

(2) 不妨设 $\sup_{\mathbb{R}}|g|>0$ 的原因: 若 $\sup_{\mathbb{R}}|g|=0$, 则 $g(x)\equiv 0$, 此时结论显然成立. 因此我们只需要考虑当 $\sup_{\mathbb{R}}|g|>0$

时的情况.

(3) 不妨设 T = 1 的原因: 若 (4.106) 式在 T = 1 时已得证明, 则当 $T \neq 1$ 时, 有

$$\frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy \xrightarrow{\frac{4}{2} y = Tx} \int_{E} f(y) dy \int_{0}^{1} g(Tx) dx = \int_{E} f(y) dy \int_{0}^{1} g(Ty) dy. \tag{4.107}$$

由于 g(y) 是 \mathbb{R} 上周期为 $T \neq 1$ 的函数, 因此 g(Ty) 就是 \mathbb{R} 上周期为 1 的函数. 从而由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy = \int_{E} f(y)dy \int_{0}^{1} g(Ty)dy. \tag{4.108}$$

又由(4.107) 式及 T > 0 可得

$$\int_{E} f(y)dy \int_{0}^{1} g(Ty)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy$$

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy \xrightarrow{\frac{c}{T}} \lim_{t \to +\infty} \int_{E} f(y)g(ty)dy = \lim_{x \to +\infty} \int_{E} f(y)g(xy)dy$$

再结合(4.108)式可得 $\lim_{x\to +\infty} \int_E f(y)g(xy)dy = \frac{1}{T} \int_E f(y)dy \int_0^T g(y)dy$. 故可以不妨设 T=1.

(4) 不妨设 $\int_0^1 g(y)dy = 0$ 的原因: 若 (4.106) 式在 $\int_0^1 g(y)dy = 0$ 时已得证明, 则当 $\int_0^1 g(y)dy \neq 0$ 时, 令 $G(y) = g(y) - \int_0^1 g(t)dt$, 则 G(y) 是 \mathbb{R} 上周期为 1 的函数, 并且 $\int_0^1 G(y)dy = 0$. 于是由假设可知

$$\lim_{x \to +\infty} \int_E f(y)G(xy)dy = \int_E f(y)dy \int_0^1 G(y)dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_E f(y) \left[g(xy) - \int_0^1 g(t)dt \right] dy = \int_E f(y)dy \int_0^1 \left[g(y) - \int_0^1 g(t)dt \right] dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \left(\int_E f(y)g(xy)dy - \int_E f(y) \int_0^1 g(t)dtdy \right) = \int_E f(y)dy \int_0^1 g(y)dy - \int_E f(y)dy \int_0^1 g(t)dt = 0$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_E f(y)g(xy)dy = \int_E f(y) \int_0^1 g(t)dtdy$$

再结合(2)可知, 此时原结论成立. 故可以不妨设 $\int_0^1 g(y)dy = 0$.

证明 不妨设 $E = \mathbb{R}, \sup_{\mathbb{R}} |g| > 0, T = 1$, 再不妨设 $\int_0^1 g(y) dy = 0$. 因此只需证 $\lim_{x \to +\infty} \int_{\mathbb{R}} f(y) g(xy) dy = 0$. 由 g 的周期 为 1 及 $\int_0^1 g(y) dy = 0$ 可得, 对 $\forall n \in \mathbb{N}$, 都有

$$\int_{-n}^{0} g(t)dt \xrightarrow{\frac{4}{2}x=t+n} \int_{0}^{n} g(x-n)dx \xrightarrow{\underline{g} \text{ in } \underline{n} \underline{n} \underline{n}} \int_{0}^{n} g(x)dx = \int_{0}^{n} g(t)dt$$

$$= \sum_{k=0}^{n-1} \int_{k}^{k+1} g(t)dt \xrightarrow{\frac{4}{2}y=t-k} \sum_{k=0}^{n-1} \int_{0}^{1} g(y+k)dy \xrightarrow{\underline{g} \text{ in } \underline{n} \underline{n} \underline{n}} \sum_{k=0}^{n-1} \int_{0}^{1} g(y)dy$$

$$= (n-1) \cdot 0 = 0.$$

从而对 $\forall \beta > \alpha > 0$, 我们有

$$\left| \int_{\alpha}^{\beta} g(t)dt \right| = \left| \int_{0}^{\beta} g(t)dt - \int_{0}^{\alpha} g(t)dt \right| = \left| \int_{-[\beta]}^{\beta-[\beta]} g(t+[\beta])dt - \int_{-[\alpha]}^{\alpha-[\alpha]} g(t+[\alpha])dt \right|$$

$$= \left| \int_{-[\beta]}^{\beta-[\beta]} g(t)dt - \int_{-[\alpha]}^{\alpha-[\alpha]} g(t)dt \right| = \left| \int_{0}^{\beta-[\beta]} g(t)dt - \int_{0}^{\alpha-[\alpha]} g(t)dt \right|$$

$$= \left| \int_{\alpha-[\alpha]}^{\beta-[\beta]} g(t)dt \right| \leqslant \sup_{\mathbb{R}} |g|.$$

故

$$\left| \int_{\alpha}^{\beta} g(xy) dy \right| \xrightarrow{\frac{c}{2}t = xy} \frac{1}{x} \left| \int_{x\alpha}^{x\beta} g(t) dt \right| \leqslant \frac{\sup_{\mathbb{R}} |g|}{x}, \quad \forall x > 0, \forall \beta > \alpha > 0.$$
 (4.109)

因为 f 在 \mathbb{R} 上绝对可积, 所以由 Cauchy 收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$\left| \int_{|y| > N} f(y) dy \right| < \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}. \tag{4.110}$$

由于 f 在 \mathbb{R} 上绝对可积, 从而 f 在 \mathbb{R} 上也 Riemann 可积, 因此由可积的充要条件可知, 存在划分

$$-N = t_0 < t_1 < t_2 < \cdots < t_n = N,$$

使得

$$\sum_{i=1}^{n} \left(\sup_{[t_{i-1}, t_i]} f - \inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1}) \leqslant \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}.$$
(4.111)

 $3\sum\limits_{j=1}^{...}|\inf_{[t_{j-1},t_j]}f|\cdot\sup_{\mathbb{R}}|g|$ 于是当 x> 一 时, 结合(4.109)(4.110)(4.111)可得

$$\left| \int_{-\infty}^{+\infty} f(y)g(xy)dy \right| \leqslant \left| \int_{-N}^{N} f(y)g(xy)dy \right| + \left| \int_{|y|>N} f(y)g(xy)dy \right|^{\frac{(4.110)}{4.110}} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(y)g(xy)dy + \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g|$$

$$\leqslant \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f]g(xy)dy \right| + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \inf_{[t_{j-1},t_{j}]} f \cdot g(xy)dy \right| + \frac{\varepsilon}{3}$$

$$\stackrel{(4.109)}{\leqslant} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f]dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f|dy + \frac{\varepsilon}{3}$$

$$\leqslant \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f)dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f|dy + \frac{\varepsilon}{3}$$

$$= \sum_{j=1}^{n} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f)(t_{j} - t_{j-1}) \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f|dy + \frac{\varepsilon}{3}$$

$$\stackrel{(4.111)}{\leqslant} \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f|dy + \frac{\varepsilon}{3}$$

$$\frac{x \pi / \pi}{\xi} \times \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

因此 $\lim_{x\to +\infty}\int_{\mathbb{R}}f(y)g(xy)dy=0$. 结论得证. 例题 **4.111** 设 $f\in R[0,2\pi]$, 不直接使用Riemann 引理计算

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin(nx)| dx.$$

证明 对 $\forall n \in \mathbb{N}_+$, 固定 n. 将 $[0,2\pi]$ 等分成 2n 段, 记这个划分为

$$T: 0 = t_0 < t_1 < \cdots < t_{2n} = 2\pi,$$

其中 $t_i = \frac{i\pi}{n}, i = 0, 1, \dots, n$. 此时我们有

$$\int_{t_{i-1}}^{t_i} |\sin(nx)| dx = \int_{\frac{(i-1)\pi}{n}}^{\frac{i\pi}{n}} |\sin(nx)| dx = \frac{1}{n} \int_{(i-1)\pi}^{i\pi} |\sin x| dx = \frac{2}{n}.$$
 (4.112)

由 $f \in R[0,2\pi]$ 可知, f 在 $[0,2\pi]$ 上有界也内闭有界. 从而利用(4.112)式可知, 对 $\forall n \in \mathbb{N}_+$, 一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \leqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \sup_{[t_{i-1},t_{i}]} f \cdot |\sin(nx)| dx = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot (t_{i} - t_{i-1}).$$

$$(4.113)$$

另一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \geqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \inf_{[t_{i-1},t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(4.112)} \pm 2 \over n} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f$$

$$= \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{4.114}$$

由 $f \in R[0, 2\pi]$ 和 Riemann 可积的充要条件可知

$$\int_0^{2\pi} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}) = \lim_{n \to \infty} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}).$$

于是对(4.113)(4.114)式两边同时令 $n \to \infty$,得到

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_0^{2\pi} f(x) dx.$$

例题 4.112 设 f 是 \mathbb{R} 上周期 2π 函数且在 $[-\pi,\pi]$ 上 Riemann 可积, 设

$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt, n = 1, 2, \cdots$$

若 $x_0 \in (-\pi, \pi)$ 是 f 在 $[-\pi, \pi]$ 唯一间断点且存在下述极限

$$A = \lim_{x \to x_0^+} f(x), B = \lim_{x \to x_0^-} f(x), \lim_{x \to x_0^+} \frac{f(x) - A}{x - x_0}, \lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}.$$

证明:

$$\lim_{n \to \infty} S_n(x_0) = \frac{\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x)}{2}.$$

(1) 计算 $I_1=\frac{1}{\pi}\int_0^\pi \frac{f(x_0+t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路: 由于 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上只可能有奇点 t=0,因此 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上不一定绝对可积. 从而不能直接利用 Riemann 引理. 于是我们需要将 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 转化 为在 $[0,\pi]$ 上无奇点的函数 (排除 t=0 这个奇点,即证明 t=0 不再是奇点),只要被积函数在积分区间上无奇点且 Riemann 可积,就一定绝对可积. 进而满足 Riemann 引理的条件,再利用 Riemann 引理就能求解出 I_1 . 具体处理方式见下述证明.

具体处理方式见下述证明. 计算 $I_2=\frac{1}{\pi}\int_0^\pi \frac{f(x_0-t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路同理, 也是要排除 t=0 这个可能的奇点, 再利用 Riemann 引理进行求解. 具体计算方式见下述证明.

引理进行求解. 具体计算方式见下述证明. (2) 计算 $\lim_{n\to\infty}\int_0^\pi \frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路: 注意由于 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上有一个奇点 t=0,并且对 $\forall t\in(0,\pi]$,都有

$$\left|\frac{1}{2\sin\frac{t}{2}}\right| \geqslant \left|\frac{1}{2\cdot\frac{2}{\pi}\cdot\frac{t}{2}}\right| = \frac{\pi}{2t} > 0.$$

而 $\int_0^\pi \frac{\pi}{2t} dt$ 是发散的,故 $\int_0^\pi \left| \frac{1}{2\sin\frac{t}{2}} \right| dt$ 也发散. 因此 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上一定不是绝对可积的,从而不能利用 Riemann 引理计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$. 真正能计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$ 的方法有多种,下述证明利用的是强行替换/拟合法.

证明 注意到

$$S_{n}(x_{0}) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{2\pi}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} - t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$(4.115)$$

记
$$I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2}t\right) dt, I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2}t\right) dt,$$
 则由(4.115)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2). \tag{4.116}$$

于是

$$I_{1} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{A}{\pi} \int_{0}^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt, \tag{4.117}$$

$$I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{B}{\pi} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt.$$
(4.118)

由条件可知
$$\lim_{t\to 0^+} \frac{f(x_0+t)-A}{2\sin\frac{t}{2}} = \lim_{t\to 0^+} \frac{f(x_0+t)-A}{t} = \lim_{x\to x_0^+} \frac{f(x)-A}{x-x_0}$$
 存在, $\lim_{t\to 0^-} \frac{f(x_0-t)-B}{2\sin\frac{t}{2}} = \lim_{t\to 0^-} \frac{f(x_0-t)-B}{t} = \lim_{t\to 0^+} \frac{f(x_0-t)-B}{t} = \lim_{t\to$

$$t \to 0^+$$
 $2 \sin \frac{t}{2}$ $t \to 0^+$ t $x \to x_0^+$ $x - x_0$ $t \to 0^ 2 \sin \frac{t}{2}$ $t \to 0^ t$ $\lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}$ 存在,因此 $\frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}}$, $\frac{f(x_0 - t) - B}{2 \sin \frac{t}{2}}$ 在 $[0, \pi]$ 都没有奇点且 Riemann 可积,从而 $\lim_{n \to \infty} \int_0^{\pi} \frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + t}{2}\right)$ 都满足 Riemann 引理的条件.于是由 Riemann 引理可得

$$\lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0, \quad \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0. \tag{4.119}$$

下面计算 $\lim_{n\to\infty}\int_{-\infty}^{\pi}\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)dt$.

$$\left| \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt - \int_0^{\pi} \frac{1}{t} \sin \left(\frac{2n+1}{2} t \right) dt \right| = \left| \int_0^{\pi} \frac{t - 2 \sin \frac{t}{2}}{2t \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt \right|. \tag{4.120}$$

而
$$\lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2} = \frac{\text{L'Hospital'rules}}{t^2} \lim_{t\to 0} \frac{1-\cos\frac{t}{2}}{2t} = 0$$
,因此 $\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上无奇点且 Riemann 可

积, 从而由 Riemann 引理可知
$$\lim_{n\to\infty}\int_0^{\pi}\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0$$
. 于是再结合 (4.120) 式可得

$$\lim_{n \to \infty} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\pi} \frac{1}{t} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\frac{2n+1}{2} \pi} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$
 (4.121)

$$\lim_{n \to \infty} I_1 = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt + \lim_{n \to \infty} \frac{A}{\pi} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt = 0 + \frac{A}{\pi} \cdot \frac{\pi}{2} = \frac{A}{2},$$

$$\lim_{n\to\infty}I_2=\lim_{n\to\infty}\frac{1}{\pi}\int_0^\pi\frac{f(x_0-t)-B}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t+\lim_{n\to\infty}\frac{B}{\pi}\int_0^\pi\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0+\frac{B}{\pi}\cdot\frac{\pi}{2}=\frac{B}{2}.$$

再结合 (4.116)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2) = \lim_{n \to \infty} I_1 + \lim_{n \to \infty} I_2 = \frac{A + B}{2}.$$

例题 **4.113** 设 $f \in C^1[0, \frac{\pi}{2}], f(0) = 0$, 计算

$$\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2 x} f(x) dx.$$

注 由于 x=0 可能是 $\frac{f(x)}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上的奇点,因此我们需要将其转化为在 $\left[0,\frac{\pi}{2}\right]$ 上不含奇点的函数,才能利用Riemann 引理进行计算.

证明 注意到

$$\frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx. \tag{4.122}$$

先计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 由 $f \in C^1\left[0, \frac{\pi}{2}\right]$ 可知, $f \in D^2\left[0, \frac{\pi}{2}\right]$. 从而由 L'Hospital 法则可知

$$\lim_{x \to 0^+} \frac{f(x) - f'(0)x}{\sin^2 x} = \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{2 \sin x \cos x} = \frac{1}{2} \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x} = \frac{f''(0)}{2}.$$

于是 $\frac{f(x)-f'(0)x}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积, 从而绝对可积. 故由Riemann 引理可得

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx \int_0^{\pi} \sin^2 x dx$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx < \infty. \tag{4.123}$$

利用(4.123)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = 0.$$
 (4.124)

下面计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 对 $\forall n \in \mathbb{N}_+$, 我们有

$$\left| \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx - \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx \right| = \left| \frac{f'(0)}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx \right|. \tag{4.125}$$

又
$$\lim_{x\to 0^+} \frac{x^2 - \sin^2 x}{x \sin^2 x} = \lim_{x\to 0^+} \frac{x^2 - \left(x - \frac{x^3}{6} + o(x^3)\right)^2}{x^3} = \lim_{x\to 0^+} \frac{-\frac{x^3}{3} + o(x^3)}{x^3} = -\frac{1}{3}$$
,故 $\frac{x^2 - \sin^2 x}{x \sin^2 x}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积 从而绝对可积 于是由Riemann 引理可得

$$\lim_{n \to \infty} f'(0) \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx \int_0^{\pi} \sin^2 x dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx < \infty.$$
 (4.126)

利用(4.126)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = 0. \tag{4.127}$$

因此, 对(4.125)式两边同时令 $n \to \infty$, 利用(4.127)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx$$

$$= \lim_{n \to \infty} \frac{f'(0)}{\ln n} \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx = \lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}}.$$
(4.128)

而由函数 Stolz 定理可知

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = f'(0) \lim_{n \to \infty} \frac{\int_x^{x+\pi} \frac{\sin^2 t}{t} dt}{\ln (x+\pi) - \ln x} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x+\pi} \frac{\sin^2 t}{t} dt.$$
(4.129)

由积分中值定理可知, 对 $\forall x > 0$, 存在 $\theta_x \in [x, x + \pi]$, 使得

$$\int_{x}^{x+\pi} \frac{\sin^2 t}{t} dt = \frac{1}{\theta_x} \int_{x}^{x+\pi} \sin^2 t dt = \frac{1}{\theta_x} \int_{0}^{\pi} \sin^2 t dt = \frac{\pi}{2\theta_x}.$$

又由 $\theta_x \in [x, x + \pi]$ 可知, $\theta_x \sim x, x \to +\infty$. 从而(4.129)式可化为

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x + \pi} \frac{\sin^2 t}{t} dt = \frac{f'(0)}{\pi} \lim_{n \to \infty} \frac{\pi x}{2\theta_x} = \frac{f'(0)}{2}.$$

于是由 Heine 归结原则可得

$$\lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}} = \lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{2}.$$
 (4.130)

利用(4.124)(4.130)式, 对(4.122)式两边同时令 $n \to \infty$, 可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \frac{f'(0)}{2}.$$

4.10 极限问题综合题

例题 **4.114** 设二阶可微函数 $f:[1,+\infty) \to (0,+\infty)$ 满足

$$f''(x) \leqslant 0$$
, $\lim_{x \to +\infty} f(x) = +\infty$.

求极限

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)}.$$

 $rac{\mathfrak{S}}{\mathfrak{S}}$ 笔记 本例非常经典,深刻体现了"拉格朗日中值定理"保持阶不变和"和式和积分"转化的思想. 证明 由条件 $f''(x) \leqslant 0$ 可知,f 是上凸函数. 而上凸函数只能在递增、递减、先增后减中发生一个. 又 $\lim_{x \to +\infty} f(x) = +\infty$,因此 f 一定在 $[1,+\infty)$ 上递增. 再结合 $f''(x) \leqslant 0$ 可知 $f' \geqslant 0$ 且单调递减. 下面来求极限.

由 Lagrange 中值定理可得,对 $\forall n \in \mathbb{N}_+$,存在 $\theta_n \in (2n-1,2n)$,使得

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \sum_{n=1}^{\infty} \left[\frac{1}{f^s(2n)} - \frac{1}{f^s(2n-1)} \right] \xrightarrow{\text{Lagrange } + \text{dig} \neq \text{m}} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)}. \tag{4.131}$$

由于 $\theta_n \in (2n-1,2n)$, $\forall n \in \mathbb{N}_+$ 且 $f \geqslant 0$ 单调递增, $f' \geqslant 0$ 单调递减, 因此

$$s\sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)}.$$
(4.132)

又因为 $\left[\frac{-f'(x)}{f^{s+1}(x)}\right]' = \frac{f''(x)f(x) - (s+1)f'(x)}{f^{s+2}(x)} \leqslant 0$,所以 $\frac{-f'(x)}{f^{s+1}(x)}$ 单调递减。从而一方面,我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \leqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n-1}^{n} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{4.133}$$

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \geqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{2}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(2)} \right] = -\frac{1}{2}. \tag{4.134}$$

于是利用(4.133)(4.134)式,由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} = -\frac{1}{2}.$$
(4.135)

另一方面, 我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{f'(2x-1)}{f^{s+1}(2x-1)} dx \right] = -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \sum_{n=2}^{\infty} \int_{2n-3}^{2n-1} \frac{f'(x)}{f^{s+1}(x)} dx \right] = -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx \right] = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x) = \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty}$$

$$= -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}.$$
(4.136)

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \geqslant -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{4.137}$$

于是利用(4.136)(4.137)式,由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} = -\frac{1}{2}.$$
(4.138)

故结合(4.131)(4.132)(4.135)(4.138)式,由夹逼准则可得

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} = -\frac{1}{2}.$$

例题 4.115 求极限 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k}$ 。

证明 根据对称性,不妨设 $x\in\left[0,\frac{1}{2}\right]$,先尝试找到最大值点。在 $x=0,\frac{1}{2}$ 时代入,很明显对应的极限是零,考虑 $x\in\left(0,\frac{1}{2}\right)$,根据等比数列求和公式有

$$\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = (1-x)^n \sum_{k=1}^{n-1} \left(\frac{x}{1-x}\right)^k = \frac{x(1-x)}{1-2x} ((1-x)^n - x^n)$$

如果 $\delta \in \left(0, \frac{1}{2}\right)$ 已经取定,则在区间 $\left[\delta, \frac{1}{2}\right]$ 中

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \le n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \le n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

右端是指数级趋于零的并且上式不依赖于x,所以函数会一致趋于零。因此最大值点应该在x=0附近,近似的有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx nx(1-x)^n$$

取 $x = \frac{1}{n}$ 显然极限是 $\frac{1}{e}$, 我们猜测这就是答案, 下面开始证明。首先取 $x = \frac{1}{n}$ 有

$$\lim_{n \to \infty} n \sum_{k=1}^{n-1} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k} = \lim_{n \to \infty} \frac{1 - \frac{1}{n}}{1 - \frac{2}{n}} \left(\left(1 - \frac{1}{n} \right)^n - \left(\frac{1}{n} \right)^n \right) = \frac{1}{e}$$

由此可知 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \geq \frac{1}{e}$,下面估计上极限。根据对称性,不妨只考虑 $x\in\left[0,\frac{1}{2}\right]$,对任意 $\delta\in\left(0,\frac{1}{2}\right)$ 取定,当 $x\in\left[\delta,\frac{1}{2}\right]$ 时总有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \le n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \le n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

当 x ∈ [0, δ] 时,结合均值不等式有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx \frac{nx(1-x)^n}{1-2\delta} \le \frac{\left(1-\frac{1}{n+1}\right)^{n+1}}{1-2\delta} \le \frac{1}{e} \frac{1}{1-2\delta}$$

所以可以取n > N 充分大, 使得 $\frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}} < \frac{1}{e}$, 此时便有

$$n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \le \frac{1}{e} \frac{1}{1-2\delta} \Rightarrow \overline{\lim}_{n \to \infty} n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \le \frac{1}{e} \frac{1}{1-2\delta}$$

最后,根据 δ 的任意性,可知结论成立。

例题 **4.116** 设 $x_n > 0, k$ 为正整数,证明: $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_{n+k}}{r} \ge \frac{(k+1)^{k+1}}{t \cdot k}$ 且常数是最佳的。

🔮 笔记 此类问题反证法将会带来一个恒成立的不等式,有很强的效果,所以一般都用反证法,证明的灵感来源于 k=1 时的情况.

证明 设 $S_n = x_1 + x_2 + \cdots + x_n$, 采用反证法,则存在 N 使得 $n \ge N$ 时恒成立

$$S_{n+k} \le \lambda(S_n - S_{n-1}), \lambda \in \left[1, \frac{(k+1)^{k+1}}{k^k}\right)$$

显然 S_n 是单调递增的,如果 S_n 有界,则在不等式两端取极限可知 S_n 收敛到零,矛盾,所以 S_n 严格单调递增 趋于正无穷,因此对任意 $n \ge N$ 有 $S_n > S_{n-1}$ 。如果已经得到了 $S_n > cS_{n-1}$ 对任意 $n \ge N$ 恒成立,这里 c 是正 数,则对任意 $n \ge N$ 有

$$S_{n+k} > cS_{n+k-1}, S_{n+k-1} > cS_{n+k-2}, \cdots, S_{n+1} > cS_n \Rightarrow S_{n+k} > c^k S_n$$

$$0 < S_{n+k} - c^k S_n \le (\lambda - c^k) S_n - \lambda S_{n-1} \Rightarrow S_n > \frac{\lambda}{\lambda - c^k} S_{n-1}$$

这样不等式就加强了,记 $c'=\frac{\lambda}{\lambda-c^k}$,我们得到 $S_n>c'S_{n-1}$ 对任意 $n\geq N$ 恒成立。定义数列 u_n 为 $u_1=1,u_{n+1}=1$ $\frac{\lambda}{\lambda-u_n^k}$,则重复以上过程可知 $S_n>u_mS_{n-1}$ 对任意 m 以及 $n\geq N$ 都恒成立,所以 u_m 这个数列必须是有界的,下 面我们就由此导出矛盾。因为 $u_{n+1}>u_n \Leftrightarrow (\lambda-u_n^k)u_n<\lambda \Leftrightarrow (\lambda-u_n^k)^ku_n^k<\lambda^k$,由均值不等式有

$$kx^k(\lambda-x^k)^k \leq \left(\frac{k\lambda}{k+1}\right)^{k+1} < k\lambda^k \Leftrightarrow \lambda < \frac{(k+1)^{k+1}}{k^k}$$

显然成立,所以 u_m 单调递增,而如果极限存在,则极限点满足方程 $x=\frac{\lambda}{\lambda-x^k} \Leftrightarrow x(\lambda-x^k)=\lambda$,这与前面均值不等式导出的结果矛盾,所以 u_m 单调递增趋于正无穷,又与有界性矛盾。综上结论得证。例题 4.117 设 $x_n>0, x_n\to 0$ 且 $\lim_{n\to\infty}\frac{\ln x_n}{x_1+x_2+\cdots+x_n}=a<0$,证明: $\lim_{n\to\infty}\frac{\ln x_n}{\ln n}=-1$ 。

证明 不妨设 a=-1, 否则将 x_n 换成 x_n^k 即可, 取 k 将 a 变成 -1。

设 $S_n=x_1+x_2+\cdots+x_n$,则 $S_n>0$ 严格单调递增,如果 S_n 收敛,则 $\ln x_n\to -\infty$ 与条件矛盾,所以 S_n 单

$$\lim_{n \to \infty} \frac{\ln x_{n+1}}{S_n} = \lim_{n \to \infty} \frac{\ln x_{n+1}}{S_{n+1}} \frac{S_{n+1}}{S_n} = -\lim_{n \to \infty} \left(1 + \frac{x_{n+1}}{S_n} \right) = -1$$

现在等价的,已知 S_n 单调递增趋于无穷且 $\lim_{n\to\infty}\frac{\ln(S_{n+1}-S_n)}{S_n}=-1$,要证明 $\lim_{n\to\infty}\frac{S_n}{\ln n}=1$ 。由极限定义,对任意 $\varepsilon>0$,存在 N 使得任意 n>N 都有 $(-1-\varepsilon)S_n<\ln(S_{n+1}-S_n)<(-1+\varepsilon)S_n$ 也即

$$\left(\frac{1}{e} - \varepsilon\right)^{S_n} + S_n < S_{n+1} < \left(\frac{1}{e} + \varepsilon\right)^{S_n} + S_n, \forall n \ge N$$

不妨要求 $S_N > 1$, 考虑

$$f(x) = \left(\frac{1}{e} + \varepsilon\right)^x + x, f'(x) = 1 + \left(\frac{1}{e} + \varepsilon\right)^x \ln\left(\frac{1}{e} + \varepsilon\right) > 1 - \left(\frac{1}{e} + \varepsilon\right)^x > 0$$

再定义 $u_N = S_N, u_{n+1} = \left(\frac{1}{e} + \varepsilon\right)^{u_n} + u_n$,于是若有 $u_n \leq S_n$ 则结合单调性可知 $u_{n+1} = f(u_n) \leq f(S_n) = S_{n+1}$,这说明 $S_n \leq u_n$ 对任意 $n \geq N$ 恒成立。同样考虑

$$g(x) = \left(\frac{1}{e} - \varepsilon\right)^x + x, g'(x) = 1 - \left(\frac{1}{e} - \varepsilon\right)^x \ln\left(\frac{1}{e} - \varepsilon\right) \ge 1 - \left(\frac{1}{e} - \varepsilon\right) \ln\left(\frac{1}{e} - \varepsilon\right) > 0$$

再定义 $v_N = S_N, v_{n+1} = \left(\frac{1}{e} - \varepsilon\right)^{v_n} + v_n$,同样道理 $S_n \geq v_n$ 恒成立,于是 $\frac{v_n}{\ln n} \leq \frac{S_n}{\ln n} \leq \frac{u_n}{\ln n}, n \geq N$ 。

注意 u_n, v_n 具备完全一样的形式,所以统一的考虑 $a_1 > 1, a_{n+1} = a_n + e^{ca_n}$,其中 c 在 $\frac{1}{e}$ 附近,显然这个数列是单调递增趋于正无穷的,我们用 stolz 公式来计算相应的极限,则有

列是单调递增趋于正无穷的,我们用 stolz 公式来计算相应的极限,则有
$$\lim_{n\to\infty}\frac{\ln a_n}{n}=\lim_{n\to\infty}\frac{\ln a_{n+1}-\ln a_n}{1}=\lim_{n\to\infty}\frac{e^{-ca_n}}{c^{-a_n}-1}=\lim_{n\to\infty}\frac{1}{c^{-a_{n+1}}-c^{-a_n}}=\lim_{n\to\infty}\frac{1}{e^{-ca_n}(c^{-(a_{n+1}-a_n)}-1)}$$

$$=\lim_{n\to\infty}\frac{e^{ca_n}}{c^{-e^{ca_n}}-1}=\lim_{x\to+\infty}\frac{e^{cx}}{e^{-x\ln c}-1}=\lim_{x\to0+}\frac{x}{e^{-x\ln c}-1}=\frac{1}{-\ln c}$$

所以

$$\lim_{n\to\infty}\frac{u_n}{\ln n}=\frac{1}{-\ln(\frac{1}{e}+\varepsilon)}=\frac{1}{1-\ln(1+e\varepsilon)}, \lim_{n\to\infty}\frac{v_n}{\ln n}=\frac{1}{-\ln(\frac{1}{e}-\varepsilon)}=\frac{1}{1-\ln(1-e\varepsilon)}$$

这意味着

$$\overline{\lim_{n\to\infty}} \frac{S_n}{\ln n} \le \frac{1}{1-\ln(1+e\varepsilon)}, \underline{\lim_{n\to\infty}} \frac{S_n}{\ln n} \ge \frac{1}{1-\ln(1-e\varepsilon)}, \forall \varepsilon > 0$$

由此可知结论成立。

第五章 函数与导数

常见的反例: $f(x) = x^m \sin \frac{1}{x^n}$.

定理 5.1 (Leibniz 公式)

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x)g^{(k)}(x).$$

例题 5.1 设 f(x) 定义在 [0,1] 中且 $\lim_{x\to 0^+} f\left(x\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\right)=0$,证明: $\lim_{x\to 0^+} f(x)=0$ 。

笔记 将极限定义中的 $\varepsilon\delta$ 适当地替换成 $\frac{1}{n}$ 在往更方便我们分析问题和书写过程.

证明 用 $\{x\}$ 表示 x 的小数部分,则 $x\left(\frac{1}{x} - \left[\frac{1}{x}\right]\right) = x\left\{\frac{1}{x}\right\}$ 。

对任意 $\varepsilon > 0$,依据极限定义,存在 $\delta > 0$ 使得任意 $x \in (0, \delta)$ 都有 $\left| f\left(x\left\{\frac{1}{x}\right\}\right) \right| < \varepsilon$ 。 取充分大的正整数 N 使得 $\frac{1}{N} < \delta$,则任意 $x \in \left(\frac{1}{N+1}, \frac{1}{N}\right)$ 都有 $\left| f\left(x\left\{\frac{1}{x}\right\}\right) \right| < \varepsilon$ 。 考虑函数 $x\left\{\frac{1}{x}\right\}$ 在区间 $\left(\frac{1}{N+1}, \frac{1}{N}\right)$ 中的值域,也就是连续函数

$$g(u) = \frac{u - [u]}{u} = \frac{u - N}{u}, u \in (N, N + 1)$$

的值域,考虑端点处的极限可知 g(u) 的值域是 $\left(0,\frac{1}{N+1}\right)$, 且严格单调递增. 所以对任意 $y\in\left(0,\frac{1}{N+1}\right)$, 都存在 $x\in\left(\frac{1}{N+1},\frac{1}{N}\right)\subset(0,\delta)$ 使得 $\frac{1}{x}=g^{-1}(y)\in(N,N+1)$, 即 $y=g(\frac{1}{x})=x\left\{\frac{1}{x}\right\}$, 故 $|f(y)|=\left|f\left(x\left\{\frac{1}{x}\right\}\right)\right|<\varepsilon$. 也就是说,任意 $\varepsilon>0$,存在正整数 N,使得任意 $y\in\left(0,\frac{1}{N+1}\right)$,都有 $|f(y)|<\varepsilon$,结论得证。

例题 5.2

证明

第六章 函数性态分析

6.1 基本性态分析模型

命题 6.1 (多个函数取最值或者中间值)

设 f,g,h 是定义域上的连续函数,则 (a): $\max\{f,g\}$, $\min\{f,g\}$ 是定义域上的连续函数. (b): $\min\{f,g,h\}$ 是定义域上的连续函数.

 $\mathbf{\dot{z}}$ 这里 $\mathrm{mid}\{f,g,h\}$ 表示取中间值函数,显然这个命题可以推广到多个函数的情况.

证明 只需要注意到

$$\begin{split} \max\{f,g\} &= \frac{f+g+|f-g|}{2}, \\ \min\{f,g\} &= \frac{f+g-|f-g|}{2}, \\ \min\{f,g,h\} &= f+g+h-\max\{f,g,h\} - \min\{f,g,h\}. \end{split}$$

命题 6.2

若 f 是区间 I 上处处不为零的连续函数,则 f 在区间 I 上要么恒大于零,要么恒小于零.

证明 用反证法, 若存在 $x_1, x_2 \in I$, 使得 $f(x_1) = f(x_2) = 0$, 则由零点存在定理可知, 存在 $\xi \in (\min x_1, x_2, \max x_1, x_2)$, 使得 $f(\xi) = 0$ 矛盾.

命题 6.3

设 f 为区间 I 上的可微函数. 证明: f' 为 I 上的常值函数的充分必要条件是 f 为线性函数.

证明 充分性显然, 下证必要性. 设 $f'(x) \equiv C$, 其中 C 为某一常数. $\forall x \in I$, 任取固定点 $x_0 \in I$, 由 Lagrange 中值定理可知, 存在 $\xi \in (\min\{x_0, x\}, \max\{x_0, x\})$, 使得

$$f(x) = f'(\xi)(x - x_0) + f(x_0) = C(x - x_0) + f(x_0).$$

故 f(x) 为线性函数.

命题 6.4 (导数有正增长率则函数爆炸)

设 f 在 $[a, +\infty)$ 可微且 $\lim_{x\to +\infty} f'(x) = c > 0$, 证明

$$\lim_{x \to +\infty} f(x) = +\infty.$$

奎记 类似的还有趋于 -∞ 或者非极限形式的结果,读者应该准确理解含义并使得各种情况都能复现,我们引用本结论时未必就是本结论本身,而是其蕴含的思想.

证明 因为 $\lim_{x\to +\infty} f'(x)=c>0$,所以存在 X>a,使得 $f'(x)>\frac{c}{2}, \forall x\geqslant X$ 。于是由 Lagrange 中值定理得到, 对 $\forall x\geqslant X$,存在 $\theta\in (X,x)$,使得

$$f(x) = f(X) + f'(\theta)(x - X) \geqslant f(X) + \frac{c}{2}(x - X), \forall x \geqslant X.$$

 $it x \rightarrow +\infty$ 就得到

$$\lim_{x \to +\infty} f(x) = +\infty.$$

命题 6.5 (函数不爆破则各阶导数必然有趋于 0 的子列)

设 $k \in \mathbb{N}, a \in \mathbb{R}$ 且 $f \in D^k[a, +\infty)$,若 $\lim_{x \to +\infty} |f(x)| \neq +\infty$,那么存在趋于正无穷的 $\{x_n\}_{n=1}^{\infty} \subset [a, +\infty)$ 使得 $\lim_{n \to \infty} f^{(k)}(x_n) = 0$.

Ŷ 笔记

(1) 存在 X > 0 使得 $f^{(k)}$ 在 $(X, +\infty)$ 要么恒正,要么恒负的原因: 否则,对 $\forall X > 0$,存在 $x_1, x_2 \in (X, +\infty)$,使 得 $f^{(k)}(x_1) > 0$, $f^{(k)}(x_2) < 0$ 。从而由导数的介值性可知,存在 $\xi_X \in (x_1, x_2)$,使得 $f^{(k)}(\xi_X) = 0$ 。于是

令
$$X = 1$$
, 则存在 $y_1 > 1$, 使得 $f^{(k)}(y_1) = 0$;

$$令 X = \max\{2, y_1\}, \, \, \text{则存在}y_2 > \max\{2, y_1\}, \, \, \text{使得}f^{(k)}(y_2) = 0;$$

.

令
$$X = \max\{n, y_{n-1}\}$$
, 则存在 $y_n > \max\{n, y_{n-1}\}$, 使得 $f^{(k)}(y_n) = 0$;

.

这样得到一个数列 $\{y_n\}_{n=1}^{\infty}$ 满足

$$\lim_{n \to \infty} y_n = +\infty \mathbb{E} f^{(k)}(y_n) = 0, \forall n \in \mathbb{N}_+.$$

这与假设矛盾!

(2) 存在 m > 0, 使得 $f^{(k)}(x) \ge m > 0$, $\forall x \ge X$ 的原因: 假设对 $\forall m > 0$, 有 $m > f^{(k)}(x) > 0$, $\forall x \ge X$ 。再令 $m \to 0^+$,则由夹逼准则可得 $f^{(k)}(x) = 0$, $\forall x \ge X$ 。这与假设矛盾! (也可以用下极限证明)

证明 注意到若不存在 $\{x_n\}_{n=1}^{\infty}$ 使得 $\lim_{n\to\infty} f^{(k)}(x_n)=0$ 成立那么将存在 X>0 使得 $f^{(k)}$ 在 $(X,+\infty)$ 要么恒正,要么恒负 (见笔记 (1)).如果找不到子列使得 $\lim_{n\to\infty} f^{(k)}(x_n)=0$ 成立,那么不妨设存在 X>0 使得

$$f^{(k)}(x) > 0, \forall x \geqslant X.$$

从而一定存在m > 0(见笔记(2)), 使得

$$f^{(k)}(x) \geqslant m > 0, \forall x \geqslant X. \tag{6.1}$$

则由 Taylor 中值定理, 我们知道对每个x > X, 运用(6.1), 都有

$$f(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{f^{(k)}(\theta)}{k!} (x - X)^k \geqslant \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{m}{k!} (x - X)^k,$$

于是 $\lim_{x\to +\infty} f(x) = +\infty$, 这就是一个矛盾! 因此我们证明了必有子列使得 $\lim_{n\to \infty} f^{(k)}(x_n) = 0$ 成立.

定理 6.1 (严格单调和导数的关系)

- 1. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递增,则 f 在 [a,b] 严格递增的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都 存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0。
- 2. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递减,则 f 在 [a,b] 严格递减的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都 存在 $c \in (x_1,x_2)$ 使得 f'(c) < 0。

证明 若 f 在 [a,b] 严格递增,则对任何 $[x_1,x_2] \subset [a,b]$,由 Lagrange 中值定理可知,存在 $c \in (x_1,x_2)$,使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0.$$

反之对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0。任取 $[s,t] \subset [a,b]$,现在有 $c \in (s,t)$ 使得 f'(c) > 0,则根据 $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c) - f(c-h)}{h} > 0$,再结合 f 递增,可知存在充分小的 h > 0 使得

$$f(s) \leqslant f(c-h) < f(c) < f(c+h) \leqslant f(t),$$

这就证明了 f 严格递增。严格递减是类似的, 我们完成了证明。

定理 6.2 (导数极限定理)

设
$$f \in C[a,b] \cap D^1(a,b]$$
 且 $\lim_{x \to a^+} f'(x) = c$ 存在, 证明 f 在 a 右可导且 $f'_+(a) = c$ 。

 \Diamond

注 本结果当然也可对应写出左可导的版本以及可导的版本.

🕏 笔记 本结果告诉我们可在 f 连续的时候用 f' 的左右极限存在性来推 f 可导性.

证明 运用 Lagrange 中值定理, 我们知道

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{+}} f'(\theta(x)) = c,$$

其中 $\theta(x) \in (a,x)$, $\lim_{x \to a^+} \theta(x) = a$. 这就完成了这个定理的证明.

例题 6.1 经典光滑函数 考虑

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & |x| > 0\\ 0, & |x| = 0 \end{cases}$$

則 $f \in C^{\infty}(\mathbb{R})$ 且 $f^{(n)}(0) = 0, \forall n \in \mathbb{N}$ 。

证明 我们归纳证明, 首先 $f\in C^0(\mathbb{R})=C(\mathbb{R})$, 假定 $f\in C^k(\mathbb{R})$, $k\in\mathbb{N}$ 。注意到存在多项式 $p_{k+1}\in\mathbb{R}[x]$, 使得

$$f^{(k+1)}(x) = p_{k+1}\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}}, \forall x \neq 0.$$

于是

$$\lim_{x \to 0} f^{(k+1)}(x) = \lim_{x \to 0} p_{k+1}\left(\frac{1}{x}\right) e^{-\frac{1}{x^2}} = \lim_{x \to \infty} p_{k+1}(x) e^{-x^2} = 0,$$

运用导数极限定理, 我们知道 $f^{(k+1)}(0)=0$ 。由数学归纳法我们知道 $f^{(n)}(0)=0, \forall n\in\mathbb{N}$, 这就完成了证明。

定理 6.3 (连续函数中间值定理)

设 $p_1, p_2, \cdots, p_n \geqslant 0$ 且 $\sum_{j=1}^n p_j = 1$ 。则对有介值性函数 $f: [a, b] \to \mathbb{R}$ 和 $a \leqslant x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n \leqslant b$,必然存在 $\theta \in [x_1, x_n]$ 。使得

$$f(\theta) = \sum_{j=1}^{n} p_j f(x_j).$$

C

 $extstyle{ }$ 笔记 中间值可以通过介值定理取到是非常符合直观的。特别的当 $p_1=p_2=\cdots=p_n=rac{1}{n}$,就是所谓的平均值定理

$$f(\theta) = \frac{1}{n} \sum_{j=1}^{n} f(x_j).$$

证明 设

$$M = \max_{1 \leqslant i \leqslant n} f(x_i), m = \min_{1 \leqslant i \leqslant n} f(x_i).$$

于是

$$m = m \sum_{j=1}^{n} p_{j} \leqslant \sum_{j=1}^{n} p_{j} f(x_{j}) \leqslant M \sum_{j=1}^{n} p_{j} = M.$$

因此由 f 的介值性知: 必然存在 $\theta \in [x_1, x_n]$, 使得 $f(\theta) = \sum_{j=1}^n p_j f(x_j)$ 成立。

命题 6.6 (连续单射等价严格单调)

设 f 是区间 I 上的连续函数,证明 f 在 I 上严格单调的充要条件是 f 是单射。

证明 必要性是显然的,只证充分性.如若不然,不妨考虑 $f(x_3) < f(x_1) < f(x_2), x_1 < x_2 < x_3$ (其他情况要么类似,要么平凡),于是由连续函数介值定理知存在 $\theta \in [x_2, x_3]$ 使得 $f(\theta) = f(x_1)$,这就和 f 在 I 上单射矛盾!故 f 严格单调.

例题 6.2 证明不存在 \mathbb{R} 上的连续函数 f 满足方程

$$f(f(x)) = e^{-x}.$$

🕏 笔记 注意积累二次复合的常用处理手法, 即运用命题 6.6.

证明 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$e^{-x} = f(f(x)) = f(f(y)) = e^{-y}$$
.

由 e^{-x} 的严格单调性我们知 x = y,于是 f 是单射。由命题 6.6知 f 严格单调。又递增和递增复合递增,递减和递减复合也递增,我们知道 $f(f(x)) = e^{-x}$ 递增,这和 e^{-x} 严格递减矛盾! 故这样的 f 不存在。

例题 6.3 求 $k \in \mathbb{R}$ 的范围,使得存在 $f \in C(\mathbb{R})$ 使得 $f(f(x)) = kx^9$ 。

 $ilde{f Y}$ 笔记 取 $f(x)=\sqrt[4]{k}x^3$ 的原因: 当 $k\geqslant 0$ 时, 我们可待定 $f(x)=cx^3$,需要 $c^4x^9=kx^9$, 从而可取 $c=\sqrt[4]{k}$.

证明 当 k < 0 时, 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$kx^9 = f(f(x)) = f(f(y)) = ky^9.$$

由 kx^9 的严格单调性我们知 x = y,于是 f 是单射。由命题 6.6知 f 严格单调。又递增和递增复合递增,递减和递减复合也递增,我们知道 $f(f(x)) = kx^9$ 递增,这和 kx^9 严格递减矛盾! 故这样的 f 不存在。

当 $k \ge 0$ 时,取 $f(x) = \sqrt[4]{k}x^3$,此时 f(x) 满足条件.

命题 **6.7** ([a,b] 到 [a,b] 的连续函数必有不动点)

设 $f:[a,b] \to [a,b]$ 是连续函数,证明 f 在 [a,b] 上有不动点。

奎记 注意 [a,b] → [a,b] 表示 f 是从 [a,b] → [a,b] 的映射,右端的 [a,b] 是像集而不是值域,f 可能取不到整个 [a,b]。

证明 考虑 $g(x) = f(x) - x \in C[a,b]$, 注意到 $g(a) \ge 0$, $g(b) \le 0$, 由连续函数的零点定理知道 f 在 [a,b] 上有不动点。

命题 6.8 (没有极值点则严格单调)

设 $f \in C[a,b]$ 且 f 在 (a,b) 没有极值点,证明 f 在 [a,b] 严格单调。

证明 因为闭区间上连续函数必然取得最值,且在 (a,b) 的最值点必然是极值点,因此由假设我们不妨设 f 在 [a,b] 端点取得最值。不失一般性假设

$$f(a) = \min_{x \in [a,b]} f(x), f(b) = \max_{x \in [a,b]} f(x).$$

此时若在 [a,b] 上 f 严格单调,则只能是严格单调递增. 若在 [a,b] 上 f 不严格递增,则存在 $x_2 > x_1$,使得 $f(x_2) \leq f(x_1)$ 。

若 $x_1 = a, x_2 < b$, 则注意到 $f(x_2) ≤ \min\{f(a), f(b)\}$, 同样的 f 在 (a, b) 取得极小值而矛盾。

若 $x_1 = a, x_2 = b$,则 f 恒为常数而矛盾!这就完成了证明。

命题 6.9 (函数值相同的点导数值相同就一定单调)

设 $f \in D(a,b)$ 满足 $f(x_1) = f(x_2), x_1, x_2 \in (a,b)$, 必有 $f'(x_1) = f'(x_2)$, 证明 f 在 (a,b) 是单调函数。

笔记 令 $\sigma = \max\{x \in [c, \xi] : f(x) = f(d)\}$ 的原因: 设 $E = \{x \in [c, \xi] : f(x) = f(d)\}$. 实际上, 这里取 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\}$ 也可以, 效果类似.

(1) σ 的存在性证明: 由 f 的介值性知, 存在 $\eta \in (c, \xi)$, 使得

$$f(\xi) \le f(\eta) = f(d) \le f(c)$$
.

从而 $\eta \in E = \{x \in [c, \xi] : f(x) = f(d)\}$, 故 E 非空. 又由 E 的定义, 显然 E 有界, 故由确界存在定理可知, E 存在上确界. 于是令 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} \le [c, \xi]$. 下证 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} = \max\{x \in [c, \xi] : f(x) = f(d)\}$, 即 $\sigma \in E = \{x \in [c, \xi] : f(x) = f(d)\}$.

由上确界的性质可知, 存在 $\{x_n\}_{n=1}^{\infty}$ 满足 $x_n \in E$ 且 $\lim_{n \to \infty} x_n = \sigma$. 从而 $f(x_n) = f(d)$. 于是由 f 的连续性可得

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(\sigma) = f(d).$$

故 $\sigma \in E$. 这样就完成了证明.

(2) 取 $\sigma = \max\{x \in [c, \xi] : f(x) = f(d)\}$ 的原因: 当 $f(c) \ge f(d)$ 时, $E = \{x \in [c, \xi] : f(x) = f(d)\}$ 中的其他 点 $a \in E$, 可能有 f'(a) > 0, 也可能有 $f'(a) \le 0$. 而 σ 一定只满足 $f'(\sigma) \le 0$.

证明 若 f 不在 (a,b) 是单调,则不妨设 a < c < d < b,使得 f'(c) < 0 < f'(d)。

由 $f'(d) = \lim_{x \to d^-} \frac{f(x) - f(d)}{x - d} > 0$ 知在 d 的左邻域内, f(x) < f(d)。由 $f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} < 0$ 知 f 在 c 的右邻域内有 f(x) < f(c),于是 f(c),f(d) 不是 f 在 [c,d] 上的最小值,又由 $f \in C[c,d]$ 可知 f 在 [c,d] 上一定存在最小值. 故可以设 f 在 [c,d] 最小值点为 $\xi \in (c,d)$ 。

当 $f(c) \ge f(d)$ 时,令

$$\sigma = \max\{x \in [c, \xi] : f(x) = f(d)\}.$$

注意到 $\sigma < \xi$ 。显然 $f'(\sigma) \leq 0$,因为如果 $f'(\sigma) > 0$ 会导致在 σ 右邻域内有大于 f(d) 的点,由介值定理可以找到 $\xi > \sigma' > \sigma$,使得 $f(\sigma') = f(d)$ 而和 σ 是最大值矛盾! 而函数值相同的点导数值也相同,因此 $f'(\sigma) = f'(d) > 0$,这与 $f'(\sigma) \leq 0$ 矛盾!

当 $f(c) \leq f(d)$ 时类似可得矛盾! 我们完成了证明。

命题 6.10 (一个经典初等不等式)

设 $a,b \ge 0$, 证明:

$$\begin{cases} a^{p} + b^{p} \leqslant (a+b)^{p} \leqslant 2^{p-1}(a^{p} + b^{p}), & p \geqslant 1, p \leqslant 0 \\ a^{p} + b^{p} \geqslant (a+b)^{p} \geqslant 2^{p-1}(a^{p} + b^{p}), & 0
(6.2)$$

 $\stackrel{ extbf{ iny P}}{ extbf{ extbf{ iny F}}}$ 笔记 不等式左右是奇次对称的,我们可以设 $t=rac{a}{b}\in[0,1]$,于是(6.2)两边同时除以 b^p 得

$$\begin{cases} t^p + 1 \leqslant (t+1)^p \leqslant 2^{p-1}(t^p + 1), & p \geqslant 1, p \leqslant 0 \\ t^p + 1 \geqslant (t+1)^p \geqslant 2^{p-1}(t^p + 1), & 0$$

证明 考虑 $f(t) \triangleq \frac{(t+1)^p}{1+t^p}, t \in [0,1]$, 我们有

$$f'(t) = p(t+1)^{p-1} \frac{1 - t^{p-1}}{(1+t^p)^2} \begin{cases} \ge 0, & p \ge 1, p \le 0 \\ < 0, & 0 < p < 1 \end{cases}$$

于是

$$\begin{cases} 2^{p-1} = f(1) \geqslant f(t) \geqslant f(0) = 1, & p \geqslant 1, p \leqslant 0 \\ 2^{p-1} = f(1) \leqslant f(t) \leqslant f(0) = 1, & 0$$

这就完成了证明.

6.2 函数方程

定义 6.1

我们称 $f: \mathbb{R} \to \mathbb{R}$ 满足的方程

$$f(x+y) = f(x) + f(y).$$

为 Cauchy 方程.

 $\widehat{\mathbb{Y}}$ 笔记 显然 $f(x)=cx,c\in\mathbb{R}$ 为 Cauchy 方程的解,一个自然的问题是,满足 Cauchy 方程的函数 f 是否一定是 cx?

命题 6.11 (Cauchy 方程基本性质)

设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程: f(x+y) = f(x) + f(y) 的解, 则

$$f(rx) = r f(x), \forall r \in \mathbb{Q}.$$

证明 $\forall x \in \mathbb{R}$, 由条件可知 f(2x) = f(x) + f(x) = 2f(x), 然后就有

$$f(3x) = f(2x) + f(x) = 2f(x) + f(x) = 3f(x).$$

依次下去可得

$$f(nx) = nf(x), \forall n \in \mathbb{N}_{+}. \tag{6.3}$$

现在对 $\forall r = \frac{q}{p} \in \mathbb{Q}, p \neq 0, q, p \in \mathbb{Z}$ 。我们由条件可得

$$rf(x) = f(rx) \Leftrightarrow qf(x) = pf\left(\frac{q}{p}x\right).$$
 (6.4)

利用 (6.3)式可得

$$pf\left(\frac{q}{p}x\right) = f(qx) = qf(x).$$

故由 (6.4)式可知, 对 $\forall x \in \mathbb{R}$, 有 $rf(x) = f(rx), \forall r \in \mathbb{Q}$ 成立。

定理 6.4

设 $f: \mathbb{R} \to \mathbb{R}$ 满足 Cauchy 方程: f(x+y) = f(x) + f(y) 且 f 在 \mathbb{R} 上连续, 则

$$f(x) = f(1)f(x), \forall x \in \mathbb{R}.$$

证明 由命题 6.11可知, 对 $\forall x \in \mathbb{R}$, 有

$$rf(x) = f(rx), \forall r \in \mathbb{Q}.$$
 (6.5)

成立。现在对每个无理数 a,由有理数的稠密性可知,存在有理数列 $\{r_n\}_{n=1}^{\infty}$,使得 $\lim_{n\to\infty}r_n=a$ 。于是由 f 的连续性及 (6.5) 式可得

$$f(ax) = \lim_{n \to \infty} f(r_n x) = \lim_{n \to \infty} r_n f(x) = af(x), \forall x \in \mathbb{R}.$$

故 $f(ax) = af(x), \forall a, x \in \mathbb{R}$. 取 x = 1, 则 $f(a) = f(1)a, \forall a \in \mathbb{R}$.

定理 6.5 (Cauchy 方程基本定理)

设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程: f(x+y) = f(x) + f(y) 的解,则满足下述条件之一:

- 1. *f* 在某点连续.
- 2. f 在某个区间有上界或者下界.

- 3. f 在某个区间上单调.
- 4. f 在一个正测集上有界.
- 5. f 可测.
- 6. $\{(x, f(x)) : x \in \mathbb{R}\}$ 在 \mathbb{R}^2 不稠密.

我们就有 $f(x) = f(1)x, \forall x \in \mathbb{R}$ 。

注 不妨设 f 在包含原点的对称区间 I 上有上界原因: 假设已证 f 在 (-a,a) 上有上界时,结论成立。 如果 f 在 (c,d) 上有上界,那么记 $x_0 = \frac{c+d}{2}, a = \frac{d-c}{2}$,则 $(c,d) = (x_0-a,x_0+a)$,即 f 在 (x_0-a,x_0+a) 上有上界。从而令 $g(x) = f(x+x_0) - f(x_0)$,则由条件可得

$$g(x+y) = f(x+y+x_0) - f(x_0) = f(x+y+2x_0-x_0) - f(x_0)$$

$$= f(x+x_0) + f(y+x_0-x_0) - f(x_0) = f(x+x_0) + f(y+x_0) - 2f(x_0)$$

$$= g(x) + g(y).$$

故 g(x) 满足 Cauchy 方程且在 (-a,a) 上有上界,于是由假设可知, $g(x) = g(1)x, \forall x \in \mathbb{R}$ 。因此不妨设合理。 证明

1. 如果 f 在 x_0 连续,则对任何 $x' \in \mathbb{R}$,有

$$\lim_{x \to x'} f(x) = \lim_{x \to x'} f(x - x' + x_0) + \lim_{x \to x'} f(x' - x_0) = f(x_0) + f(x' - x_0) = f(x').$$

于是我们证明了 f 在 x' 连续. 于是由定理 6.4我们知道 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

2. 不妨设 f 在包含原点的对称区间 I 上有上界. 下证 f 在原点连续. 注意到由命题 6.11我们知道

$$f(x) = \frac{f(rx)}{r}, \forall r \in \mathbb{Q} \setminus \{0\}, x \in \mathbb{R}.$$
 (6.6)

现在对任何 $\lim x_n = 0$, 取 $r_n \in \mathbb{Q} \setminus \{0\}$ 使得

$$\lim_{n \to \infty} r_n = +\infty, \lim_{n \to \infty} r_n x_n = 0. \tag{6.7}$$

注意到在(6.6)中令 r = -1 知 f 是奇函数,从而 f 在 I 上有下界.现在由于有界和无穷小之积也为无穷小, 我们由(6.6)和(6.7)得

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{f(r_n x_n)}{r_n} = 0.$$

由 Heine 归结原理即得 f 在 x = 0 连续. 故由第一点知 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

- 3. 在区间单调自然在子区间上有界, 用第二点即得 $f(x) = f(1)x, \forall x \in \mathbb{R}$.
- 4. 其依托于经典结论

结论 设勒贝格可测集 A,B 的勒贝格测度都非 0,则 A+B 包含一个区间.

上述结论可以在任何一本实变函数习题集中找到,例如徐森林.运用此结论假设 f 在 E 上有界, E 的勒贝 格测度非 0. 则 E+E 包含一个区间 I, 于是对 $z \in I$, 存在 $x,y \in E$ 使得 z=x+y, 然后

$$|f(z)| \leqslant |f(x)| + |f(y)| \leqslant 2 \sup_{E} |f|.$$

由第二点即得 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

- 5. 由 Lusin 定理, 存在有正测度的紧集 K 和 ℝ 上的连续函数 g 使得 f(x) = g(x), $\forall x \in K$, 故 f 在 K 上有界. 现在我们就可以运用上一条知 $f(x) = f(1)x, \forall x \in \mathbb{R}$.
- 6. 若存在 $x_0 \in \mathbb{R}$ 使得 $f(x_0) \neq f(1)x_0$, 显然 $x_0 \neq 0, 1$. 于是

$$\Rightarrow \mathbb{R}^2 = \overline{\{(x, f(x)) : x \in \mathbb{R}\}},$$

这就证明了 $\{(x, f(x)): x \in \mathbb{R}\}$ 在 \mathbb{R}^2 稠密. 这是一个矛盾!

例题 **6.4** 求函数方程 2f(2x) = f(x) + x 的所有 \mathbb{R} 上在 x = 0 的连续解。

\$

笔记 这里也能利用强求通项和强行裂项的想法. 具体操作如下:

 $\forall x \in \mathbb{R}$, 固定 x, 则由条件可知

$$f(x) = \frac{f\left(\frac{x}{2}\right)}{2} + \frac{x}{4}.$$

从而由上式归纳可得

$$f\left(\frac{x}{2^n}\right) = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

于是令
$$x_n = f\left(\frac{x}{2^n}\right), n = 0, 1, 2, \dots, 则$$

$$x_n = \frac{x_{n+1}}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

对上式进行强行裂项并强求通项得到

$$\frac{x_n}{2^{n-1}} = \frac{x_{n+1}}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

即

$$\frac{f\left(\frac{x}{2^n}\right)}{2^{n-1}} = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

从而

$$2x_0 - \frac{x_{n+1}}{2^n} = \sum_{k=0}^n \left(\frac{x_k}{2^{k-1}} - \frac{x_{k+1}}{2^k} \right) = \sum_{k=0}^n \frac{x}{2^{2k+1}}, \forall n \in \mathbb{N}_+.$$

于是

$$f(x) = x_0 = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{x_{n+1}}{2^{n+1}} = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}}, \forall n \in \mathbb{N}_+.$$

这就完成了对 x_n 的强行裂项并强求通项。

注 只有除以 2 的迭代才能与 f 在 x = 0 处连续联系起来, 如果是乘 2 的迭代则不行.

证明 设 f 在 x = 0 处连续, $\forall x \in \mathbb{R}$, 固定 x, 则由条件可知

$$f(x) = \frac{f(\frac{x}{2})}{2} + \frac{x}{4},$$

$$2f(0) = f(0) \Rightarrow f(0) = 0.$$
(6.8)

从而由 f 在 x = 0 处连续可知, $f(0) = \lim_{x \to 0} f(x)$ 。由 (6.8)式归纳可得

$$f\left(\frac{x}{2^n}\right) = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

注意到

$$\frac{f\left(\frac{x}{2^n}\right)}{2^{n-1}} = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

于是

$$f\left(x\right) = x_0 = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{x_{n+1}}{2^{n+1}} = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}}, \forall n \in \mathbb{N}_+.$$

$$f(x) = \sum_{k=0}^{\infty} \frac{x}{2^{2k+2}} + \lim_{n \to \infty} \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}} = \frac{\frac{1}{4}x}{1 - \frac{1}{4}} = \frac{x}{3}.$$

根据 x 的任意性, 可知 $f(x) = \frac{x}{3}$, $\forall x \in \mathbb{R}$ 就是原方程符合条件的一个解.

再将 $f(x) = \frac{x}{3}$ 代入原方程, 仍然成立. 故 $f(x) = \frac{x}{3}$, $\forall x \in \mathbb{R}$ 就是原方程符合条件的所有解. **例题 6.5** \mathbb{R} 上的既凸又凹的连续函数是直线 \mathbb{R} 上的既凸又凹的连续函数是直线.

筆记 容易由证明知道任何开区间 (a, b) 上的既凸又凹的连续函数也是直线,

证明 设函数 f 在 \mathbb{R} 上既凸又凹,则

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y).$$

考虑 g(x) = f(x) - f(0), 则运用 $f(x+y) + f(0) = 2f\left(\frac{x+y}{2}\right)$ 知 g 满足 Cauchy 方程, 于是由定理 6.4 可得 f(x) = f(0) + [f(1) - f(0)]x.

例题 6.6 求方程 f(xy) = xf(y) + yf(x) 的全部连续解.

证明 设 $f \in C(\mathbb{R})$,则由条件可得

$$f(0) = x f(0), \forall x \in \mathbb{R} \Rightarrow f(0) = 0.$$

$$f(x) = x f(1) + f(x), \forall x \in \mathbb{R} \Rightarrow x f(1) = 0, \forall x \in \mathbb{R} \Rightarrow f(1) = 0.$$

$$f(1) = -f(-1) - f(-1) \Rightarrow f(-1) = 0.$$

$$f(-x) = x f(-1) - f(x), \forall x \in \mathbb{R} \Rightarrow f(x) + f(-x) = x f(-1) = 0, \forall x \in \mathbb{R} \Rightarrow f \notin \mathbb{R}$$
 be a fixed function of $f(-x) = x f(-1) = 0, \forall x \in \mathbb{R} \Rightarrow f \notin \mathbb{R}$.

于是对 $\forall x, y > 0$, 我们取 $x = e^s, y = e^t, \forall s, t \in \mathbb{R}$ 。则由条件可得

$$\frac{f(e^{s+t})}{e^{s+t}} = \frac{f(e^s)}{e^s} + \frac{f(e^t)}{e^t}.$$

从而 $\frac{f(e^x)}{e^x}$ 满足 Cauchy 方程,且 $f \in C(\mathbb{R})$,因此由定理 6.4可得

$$\frac{f(e^x)}{e^x} = \frac{f(e)}{e}x, \forall x \in \mathbb{R} \Rightarrow f(x) = \frac{f(e)}{e}x \ln x, \forall x > 0.$$

又因为f是奇函数,所以

$$f(x) = \begin{cases} \frac{f(e)}{e} x \ln x, & x > 0 \\ 0, & x = 0 \\ \frac{f(e)}{e} x \ln(-x), & x < 0 \end{cases}$$

最后,将上述 f(x) 代入原方程,等式仍成立。故上述 f(x) 就是原方程的全部连续解。

6.3 凸函数

定义 6.2 (半连续函数定义)

拓扑空间 X 上的一个函数 $f: X \to [-\infty, +\infty]$ 被称为上半连续的, 如果对每个 $c \in \mathbb{R}$ 都有

$$\{x \in X : f(x) < c\}$$

是 X 的开集.

<mark>筆记</mark> 下半连续函数同理定义.

命题 6.12 (上半连续函数基本性质)

设 X 是拓扑空间.

- 1. 若 f_{α} 是一族 X 上的上半连续函数,则 $f=\inf_{\alpha}f_{\alpha}$ 也是上半连续函数。 2. 若 f 是 X 上的上半连续函数,则对每一个紧集 $K\subset X$ 有 $a\in K$ 使得 $f(x)\leq f(a), \forall x\in K$.

- 3. 设 $I \subset [-\infty, +\infty)$ 是开区间,如果 $f: X \to I$ 和 $g: I \to [-\infty, +\infty)$ 是上半连续函数且 g 递增,则 $g \circ f$ 是上半连续函数.
- 拿 笔记 第二条是说紧集上的上半连续函数一定有上界且取得最大值. 一个经典的技巧是, 很多时候如果一个命题对所有紧集成立, 则等价于这个命题局部上成立, 即对每个点, 都存在一个邻域使得在这个邻域上成立. 现在我们注意到对每个点 x, 如果其所有邻域上, 上半连续函数 f 无上界, 那么取 $x_n \to x$ 使得 $\lim_{n \to \infty} f(x_n) = +\infty$, 则 f 在紧集 $\{x_n\} \cup \{x\}$ 上无上界, 这就是一个矛盾! 证明
 - 1. 对任何 $x_0 \in X, \beta$, 我们有

$$\overline{\lim_{x \to x_0}} \inf_{\alpha} f_{\alpha}(x) \le \overline{\lim_{x \to x_0}} f_{\beta}(x) \le f_{\beta}(x_0).$$

两边对β取下确界即得

$$\overline{\lim}_{x \to x_0} \inf_{\alpha} f_{\alpha}(x) \le \inf_{\beta} f_{\beta}(x_0).$$

故 $f = \inf_{\alpha} f_{\alpha}$ 也是上半连续函数.

2. 注意到开覆盖 $K = \bigcup \{x \in K : f(x) < c\}$ 必有有限子覆盖

$$K = \bigcup_{i=1}^{n} \{ x \in K : f(x) < c_i \}.$$

不妨设 c_1 是 c_i , $i=1,2,\cdots,n$ 的最大值, 则 $f(x) < c_1$, $\forall x \in K$. 取 $c=\sup_K f$, 如果 f 达不到最大值, 注意到 $\frac{1}{c-f(x)}$ 是 K 上上半连续函数, 因此同样应该有上界, 故 $c>\sup_K f$, 矛盾!

3. 注意到 $\{x \in X : g(x) < c\} = [-\infty, \alpha_c)$, 因此

$${x \in X : g \circ f(x) < c} = {x \in X : f(x) < \alpha_c},$$

这就证明了gof是上半连续函数.

定理 6.6 (半连续函数逼近定理)

设 X 是一个度量空间, f 是 X 上的上半连续函数, 则存在递减函数列 $f_n \subset C(X)$ 使得

$$\lim_{n \to \infty} f_n(x) = f(x), \forall x \in X$$

证明 如果 $f \equiv -\infty$,取 $f_n = -n, n = 1, 2, \cdots$ 。现在假定 $f \not\equiv -\infty$,然后考虑 $g = e^{-f}: X \to (0, +\infty]$ 并定义

$$g_n(x) = \inf_{z \in X} \{g(z) + nd(x, z)\}, n = 1, 2, \cdots$$

显然

$$g_n(x) \le g_{n+1}(x) \le g(x), \forall x \in X, n = 1, 2, \cdots$$

因为 $g \neq +\infty$,我们知道 $g_n, n \in \mathbb{N}$ 都是有限函数。若对某个 $n \in \mathbb{N}$ 和 $x \in X$,有 $g_n(x) = 0$ 。则存在 $z_m \in X$, $m \in \mathbb{N}$ 使得

$$\lim_{m \to \infty} [g(z_m) + nd(z_m, x)] = 0,$$

即

$$\lim_{m \to \infty} d(z_m, x) = 0, \lim_{m \to \infty} f(z_m) = +\infty.$$

又由命题 6.12 的第二条和笔记知 f 局部有上界,这就是矛盾! 因此我们证明了

$$g_n(x) > 0, \forall x \in X, n \in \mathbb{N}.$$

为了说明 $f_n = -\ln g_n, n \in \mathbb{N}$ 是我们需要的函数, 我们只需证明

$$g_n \in C(X)$$
, $\lim_{n \to \infty} g_n = g$.

事实上,对任何 $x,y,z \in X$,我们有

$$g_n(x) \le g(z) + nd(z, x) \le g(z) + nd(y, z) + nd(x, y).$$

对z取下确界得

$$g_n(x) \le g_n(y) + nd(x, y),$$

对称得

$$g_n(y) \le g_n(x) + nd(x, y),$$

即

$$|g_n(y) - g_n(x)| \le nd(x, y).$$

故 $g_n \in C(X)$, $\forall n \in \mathbb{N}$ 。

给定 $x \in X$ 和 $\epsilon > 0$,因为 g 下半连续,所以存在 x 的半径为 $\delta > 0$ 的开球邻域 U,使得

$$g(z) > g(x) - \epsilon, \forall z \in U.$$

于是由 g_n 定义知

$$g_n(x) \ge \min\{g(x) - \epsilon, n\delta\}.$$

当 n 充分大, 我们知道 $g(x) \ge g_n(x) \ge g(x) - \epsilon$, 这就证明了 $\lim_{n \to \infty} g_n = g$ 。我们完成了证明.

定义 6.3 (下凸函数的定义)

对集 $S \subset \mathbb{R}^n$, 我们称

1. $f: S \to \mathbb{R}$ 是一个 Jensen 下凸函数, 如果对任何 $x, y \in S$, 只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2},$$

2. $f: S \to \mathbb{R}$ 是一个严格 Jensen 下凸函数, 如果对任何 $x \neq y \in S$, 只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2},$$

3. 称 $f: S \to \mathbb{R}$ 是一个下凸函数,如果对任何 $x, y \in S$,只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall \lambda \in [0, 1].$$

4. 称 $f: S \to \mathbb{R}$ 是一个严格下凸函数,如果对任何 $x \neq y \in S$,只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y), \forall \lambda \in (0, 1).$$

注 同理可以定义上凸函数.

- 1. 我们常用 $\{\lambda x + (1 \lambda)y : \lambda \in [0, 1]\}$ 来表示连接 x, y 的线段.
- 2. 显然 f 在 S 上各种凸的充要条件都是对任何含于 S 的线段 ℓ , 都有 $f|_{\ell}$ 上是对应的那种一元凸函数.
- 3. 开集上的二阶可微函数为下凸函数等价于 Hess 矩阵半正定可以在任何一般数学分析教材上找到.
- 4. 显然下凸蕴含 Jensen 下凸, 实际运用中我们更偏爱下凸而不是 Jensen 下凸, 推导二者的联系是重要的命题.

命题 6.13

闭区间上的连续函数如果在开区间内是下凸函数,则必然在闭区间上也是下凸函数.

证明

命题 6.14 (下凸函数的基本性质)

- 1. 下凸函数恒在割线下方
 - (1) 设 I 为一区间, $f:I\to\mathbb{R}$,则 f 在 I 上下凸的充要条件是对任何 $[s,t]\subset I$ 成立

$$f(x) \leqslant \frac{f(s) - f(t)}{s - t}(x - s) + f(s), \forall x \in [s, t].$$

(2) 设 I 为一区间, $f: I \to \mathbb{R}$, 则 f 在 I 上下凸的充要条件是对任何 $[s,t] \subset I$ 成立

$$f(x) < \frac{f(s) - f(t)}{s - t}(x - s) + f(s), \forall x \in (s, t),$$

- 2. 下凸函数割线斜率递增
 - (1) 设 I 为一区间, $f:I\to\mathbb{R}$,则 f 在 I 上下凸的充要条件是对 $x_1 < x_2 < x_3$, $x_1,x_2,x_3 \in I$,有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

(2) 设 I 为一区间, $f: I \to \mathbb{R}$, 则 f 在 I 上严格下凸的充要条件是对 $x_1 < x_2 < x_3, x_1, x_2, x_3 \in I$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

- 3. 可微的下凸函数恒在切线上方
 - (1) 设 $f:(a,b)\to\mathbb{R}$ 是可微函数,则 f 在 (a,b) 下凸的充要条件是对任何 $x_0\in(a,b)$, 我们都有

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b).$$

(2) 设 $f:(a,b)\to\mathbb{R}$ 是可微函数,则 f 在 (a,b) 严格下凸的充要条件是对任何 $x_0\in(a,b)$,我们都有

$$f(x) > f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b) \setminus \{x_0\}.$$

注 上述下凸函数的性质都可以通过几何作图直观地得到.

拿 笔记 下凸函数割线斜率递增也表明: 下凸函数对 $\forall x_0 \in I$, 都有 $\frac{f(x) - f(x_0)}{x - x_0}$ 单调递增.(但是不能由这个结论推出 f 下凸)

证明

- 1. 函数恒在割线下方
 - (1) 首先证明充分性 (⇒): 对 $\forall [s,t] \subset I$, $\forall x \in [s,t]$, 可设 $x = \lambda s + (1-\lambda)t$, 其中 $\lambda \in [0,1]$ 。由 f 在 I 上下凸可知,对 $\forall x \in [s,t]$,有

$$f(x) = f(\lambda s + (1 - \lambda)t) \leqslant \lambda f(s) + (1 - \lambda)f(t) = (\lambda - 1)[f(s) - f(t)] + f(s).$$

再结合 $\lambda = \frac{x-t}{s-t}$ 可得

$$f(x) \le \left(\frac{x-t}{s-t} - 1\right) [f(s) - f(t)] + f(s) = \frac{f(s) - f(t)}{s-t} (x-s) + f(s), \quad \forall x \in [s, t].$$

接着证明必要性 (\Leftarrow): 对 $\forall s, t \in I$, 不妨设 s < t, 则 $[s,t] \subset I$ 。对 $\forall x \in [s,t]$,可设 $x = \lambda s + (1 - \lambda)t$,其中 $\lambda \in [0,1]$ 。则由条件可知,对 $\forall x \in [s,t]$,有

$$f(x) = f(\lambda s + (1 - \lambda)t) \leqslant \frac{f(s) - f(t)}{s - t}(\lambda s + (1 - \lambda)t - s) + f(s) = \lambda f(s) + (1 - \lambda)f(t).$$

即 $\forall s, t \in I$, 都有 $f(\lambda s + (1 - \lambda)t) \leq \lambda f(s) + (1 - \lambda)f(t)$ 。故 f 在 I 上下凸。

(2) 显然 (1) 证明中的不等号可以全部改为严格不等号.

2. 下凸函数割线斜率递增

(1) 首先证明充分性 (⇒): 对于任意的 $x_1, x_2, x_3 \in I \ \exists \ x_1 < x_2 < x_3$,取 $\lambda = \frac{x_2 - x_1}{x_3 - x_1} \in (0, 1)$ 。因为函数 f 在区间 I 上下凸,所以有

$$f(x_2) = f(\lambda x_3 + (1 - \lambda)x_1) \le \lambda f(x_3) + (1 - \lambda)f(x_1) = \frac{x_2 - x_1}{x_3 - x_1}f(x_3) + \frac{x_3 - x_2}{x_3 - x_1}f(x_1).$$

即

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

接下来证明必要性 (\leftarrow): 由已知条件可知,对于任意的 $x_1,x_2,x_3 \in I$ 且 $x_1 < x_2 < x_3$,都满足

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

这等价于

$$f(x_2) \leqslant \frac{x_2 - x_1}{x_3 - x_1} f(x_3) + \frac{x_3 - x_2}{x_3 - x_1} f(x_1). \tag{6.9}$$

进而,对于任意的 $x_1, x_3 \in I$ 且 $x_1 < x_3$,以及任意的 $\lambda \in [0,1]$,令 $x_2 = \lambda x_1 + (1-\lambda)x_3 \in (x_1,x_3)$,此 时 $\lambda = \frac{x_3 - x_2}{x_3 - x_1}$ 。于是,根据(6.9)式可以得到

$$f(\lambda x_1 + (1 - \lambda)x_3) = f(x_2) \leqslant \frac{x_2 - x_1}{x_3 - x_1} f(x_3) + \frac{x_3 - x_2}{x_3 - x_1} f(x_1) = \lambda f(x_1) + (1 - \lambda)f(x_3).$$

所以,函数f在区间I上下凸。

(2) 显然(1)证明中的不等号可以全部改为严格不等号.

3. 可微的下凸函数恒在切线上方

(1) 首先证明充分性 (⇒): 由下凸函数割线斜率递增可知, 对于任意的 $x_0 \in (a,b)$, 函数 $\frac{f(x) - f(x_0)}{x - x_0}$ 在 (a,b) 上单调递增。

对于任意的 $x \in (x_0, b)$, 取 $x' \in (x_0, x)$, 根据 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性, 有

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f(x') - f(x_0)}{x' - x_0}.$$

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \lim_{x' \to x_0^+} \frac{f(x') - f(x_0)}{x' - x_0} = f'(x_0), \quad \forall x \in (x_0, b).$$

同理, 对于任意的 $x \in (a, x_0)$, 取 $x'' \in (x, x_0)$, 由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性可知

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f(x'') - f(x_0)}{x'' - x_0}.$$

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \lim_{x'' \to x_0^-} \frac{f(x'') - f(x_0)}{x'' - x_0} = f'(x_0), \quad \forall x \in (a, x_0).$$

因此,对于任意的 $x_0 \in (a,b)$,都有

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant f'(x_0) \Leftrightarrow f(x) \geqslant f(x_0) + f'(x_0)(x - x_0).$$

接下来证明必要性 (\Leftarrow): 由已知条件可知,对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$,都有

$$f(x_1) \ge f'(x_2)(x_1 - x_2) + f(x_2), \quad f(x_3) \ge f'(x_2)(x_3 - x_2) + f(x_2).$$

由此可以推出

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2) \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

所以,由下凸函数割线斜率递增可知f在I上下凸.

(2) 首先证明充分性 (⇒): 由下凸函数割线斜率递增可知, 对于任意的 $x_0 \in (a,b)$, 函数 $\frac{f(x) - f(x_0)}{x - x_0}$ 在 (a,b) 上单调递增。

对于任意的 $x \in (x_0, b)$, 取 $x' \in \left(x_0, \frac{x + x_0}{2}\right)$, 根据 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性,有

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} > \frac{f(x') - f(x_0)}{x' - x_0}.$$

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} \geqslant \lim_{x' \to x_0^+} \frac{f(x') - f(x_0)}{x' - x_0} = f'(x_0), \quad \forall x \in (x_0, b).$$

同理, 对于任意的 $x \in (a, x_0)$, 取 $x'' \in \left(x_0, \frac{x + x_0}{2}\right)$, 由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性可知

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} > \frac{f(x'') - f(x_0)}{x'' - x_0}.$$

$$\frac{f(x)-f(x_0)}{x-x_0} > \frac{f\left(\frac{x+x_0}{2}\right)-f(x_0)}{\frac{x+x_0}{2}-x_0} \geqslant \lim_{x''\to x_0^-} \frac{f(x'')-f(x_0)}{x''-x_0} = f'(x_0), \quad \forall x\in(a,x_0).$$

因此,对于任意的 $x_0 \in (a,b)$,都有

$$\frac{f(x) - f(x_0)}{x - x_0} > f'(x_0) \Leftrightarrow f(x) > f(x_0) + f'(x_0)(x - x_0).$$

接下来证明必要性 (\Leftarrow): 由已知条件可知,对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$,都有

$$f(x_1) > f'(x_2)(x_1 - x_2) + f(x_2), \quad f(x_3) > f'(x_2)(x_3 - x_2) + f(x_2).$$

由此可以推出

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f'(x_2) < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

所以,由下凸函数割线斜率递增可知f在I上下凸。

例题 6.7 导数递增则割线斜率也递增 函数 f 在 (a,b) 可导,证明:

1. f' 递增的充要条件是对 $a < x_1 < x_2 < x_3 < b$,有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

2. f' 严格递增的充要条件是对 $a < x_1 < x_2 < x_3 < b$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

证明

(1) 首先证明必要性 (⇒): 对于满足 $a < x_1 < x_2 < x_3 < b$ 的情况,根据 Lagrange 中值定理以及 f' 单调递增的性质可知,存在 $y_1 \in (x_1, x_2)$, $y_2 \in (x_2, x_3)$,使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(y_1) \leqslant f'(y_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

由此,必要性得证。

接着证明充分性 (\leftarrow): 由已知条件可知, 对于满足 $a < x_1 < x_2 < b$ 的情况, 取 $c = \frac{x_1 + x_2}{2}$, 则有

$$\frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \forall s \in (a, x_1),$$

$$\frac{f(c) - f(x_2)}{c - x_2} \leqslant \frac{f(t) - f(x_2)}{t - x_2}, \quad \forall t \in (x_2, b).$$

令 $s \rightarrow x_1^-$, $t \rightarrow x_2^+$, 可得

$$f'(x_1) = \lim_{s \to x_1^-} \frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \frac{f(c) - f(x_2)}{c - x_2} \leqslant \lim_{t \to x_2^+} \frac{f(t) - f(x_2)}{t - x_2} = f'(x_2).$$

所以有 $f'(x_1) \leqslant \frac{f(c) - f(x_2)}{c - x_2} \leqslant f'(x_2)$ 。再由 x_1 , x_2 的任意性可知,f' 单调递增。 (2) 首先证明必要性 (⇒): 对于满足 $a < x_1 < x_2 < x_3 < b$ 的情况,根据 Lagrange 中值定理以及 f' 单调递增的

性质可知,存在 $y_1 \in (x_1, x_2)$, $y_2 \in (x_2, x_3)$,使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(y_1) < f'(y_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

由此,必要性得证。

接着证明充分性 (\Leftarrow): 由条件可知,对于满足 $a < x_1 < x_2 < b$ 的情况,取 $c = \frac{x_1 + x_2}{2}$,则有

$$\begin{split} \frac{f(s)-f(x_1)}{s-x_1} &< \frac{f(c)-f(x_2)}{c-x_2}, \quad \forall s \in (a,x_1), \\ \frac{f(c)-f(x_2)}{c-x_2} &< \frac{f(t)-f(x_2)}{t-x_2}, \quad \forall t \in (x_2,b). \end{split}$$

$$f'(x_1) = \lim_{s \to x_1^-} \frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \frac{f(c) - f(x_2)}{c - x_2} \leqslant \lim_{t \to x_2^-} \frac{f(t) - f(x_2)}{t - x_2} = f'(x_2).$$

故 $f'(x_1) \leqslant \frac{f(c) - f(x_2)}{c - x_2} \leqslant f'(x_2)$ 。若 $f'(x_1) = f'(x_2)$,则由命题 6.3可知,f 在 $[x_1, x_2]$ 上为线性函数。设 f(x) = cx + d, $x \in [x_1, x_2]$, 其中 $c, d \in \mathbb{R}$ 。从而

$$\frac{f\left(\frac{x_1+x_2}{2}\right)-f(x_1)}{\frac{x_1+x_2}{2}-x_1}=c=\frac{f(x_2)-f\left(\frac{x_1+x_2}{2}\right)}{x_2-\frac{x_1+x_2}{2}}.$$

这与已知条件矛盾! 故 $f'(x_1) < f'(x_2)$, $\forall x_1, x_2 \in (a,b)$ 且 $a < x_1 < x_2 < b$, 即 f' 递增。

命题 6.15

设 f 在 (a,b) 上的下凸函数,则 f 在 (a,b) 有上界的充要条件是 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 存在.

笔记 由这个命题及命题 6.13可知: 如果下凸函数 f 在 (a,b) 上有上界,则 f 可连续延拓到 [a,b](补充定义端点的 函数值等于端点的左右极限即可), 使得 f 在 [a,b] 上仍是下凸函数.

证明 (\Leftarrow): 由开区间下凸函数左右导数处处存在可知,f 在 (a,b) 上连续. 又因为 $\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$ 存在, 所以由Cantor 定理可知,f 可以连续延拓到 [a,b] 上, 故 f 在 [a,b] 上有界, 从而在 (a,b) 上有界. (\Rightarrow): 由下凸函数割线斜率递增可知, 对 $\forall x_0 \in (a,b)$, 有 $\frac{f(x) - f(x_0)}{x - x_0}$ 在 $(a,x_0) \cup (x_0,b)$ 上递增. 由 f 在 (a,b)

上有上界可知,存在M>0,使得

$$|f(x)| \leqslant M, \forall x \in (a, b). \tag{6.10}$$

由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性及(6.10)式可知

$$\frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{M - f(x_0)}{x - x_0}, \forall x \in (x_0, b).$$
(6.11)

又因为 $\lim_{x\to b^-}\frac{M-f(x_0)}{x-x_0}=\frac{M-f(x_0)}{b-x_0}$,所以 $\frac{M-f(x_0)}{x-x_0}$ 在 (x_0,b) 上有界. 从而存在 K>0,使得

$$\frac{M - f(x_0)}{x - x_0} \leqslant K, \forall x \in (x_0, b). \tag{6.12}$$

于是结合(6.11)(6.12)式可知, $\frac{f(x) - f(x_0)}{r - r_0} \leqslant K, \forall x \in (x_0, b)$. 进而由单调有界定理可知 $\lim_{x \to b^-} \frac{f(x) - f(x_0)}{r - r_0}$ 存在.

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} \left[\frac{f(x) - f(x_{0})}{x - x_{0}} \cdot (x - x_{0}) + f(x_{0}) \right] = (b - x_{0}) \lim_{x \to b^{-}} \frac{f(x) - f(x_{0})}{x - x_{0}} + f(x_{0}).$$

故 $\lim_{x\to h^-} f(x)$ 也存在. 同理可得 $\lim_{x\to a^+} f(x)$ 也存在.

命题 6.16 (下凸函数的单调性刻画)

1. 闭区间凸函数的单调性刻画

设 f 是 [a,b] 上的下凸函数,则 f 只有下述三种情况:

- (1) f 在 [a,b) 递减,
- (2) f 在 (a, b] 递增,
- (3) 存在 $c \in (a,b)$, 使得 f 在 [a,c] 递减, 在 [c,b] 递增.
- 2. 开区间凸函数的单调性刻画

设 $f \in (a,b)$ 上的下凸函数, a 允许取 $-\infty$, b 允许取 $+\infty$, 则 f 只有下述三种情况:

- (1) f在(a,b) 递减;
- (2) f 在 (a,b) 递增;
- (3) 存在 $c \in (a,b)$, 使得 f 在 (a,c] 递减, 在 [c,b) 递增。

证明

1. 闭区间凸函数的单调性刻画

由下凸函数恒在割线下方, 我们有

$$f\left(x\right) \leqslant \frac{f\left(b\right) - f\left(a\right)}{b - a} \left(x - a\right) + f\left(a\right) \leqslant \frac{f\left(b\right) - f\left(a\right)}{b - a} \left(b - a\right) + f\left(a\right), \forall x \in [a, b].$$

因此 f 在 [a,b] 上有上界. 于是由命题 6.15可知, f 可以连续延拓到 [a,b], 并且仍然在 [a,b] 上下凸. 记这个连续延拓函数为 \overline{f} , 则 $\overline{f} \in C[a,b]$ 且 \overline{f} 在 [a,b] 上也下凸. 下证

$$f(a) \geqslant \tilde{f}(a), f(b) \geqslant \tilde{f}(b).$$
 (6.13)

事实上, 由下凸函数割线斜率递增可知 $\frac{f(x)-f(x_0)}{x-x_0}$ 在 $(x_0,b]$ 递增, 从而

$$\tilde{f}(b) = \lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} \left[(x - x_{0}) \frac{f(x) - f(x_{0})}{x - x_{0}} + f(x_{0}) \right]$$

$$\leqslant \lim_{x \to b^{-}} \left[(x - x_{0}) \frac{f(b) - f(x_{0})}{b - x_{0}} + f(x_{0}) \right] = f(b),$$

类似可得 $f(a) \ge \tilde{f}(a)$, 这就证明了(6.13). 下面证明 \overline{f} 的单调性.

由上述证明可知 $\overline{f} \in C[a,b]$ 且在 [a,b] 上下凸. 不妨设 \overline{f} 最小值为 0. 现在设 $c \in [a,b]$ 是 f 的最小值点. 若 $c \in (a,b)$,则对 $b \ge x_2 > x_1 > c$,我们有

$$\frac{\overline{f}(x_2) - \overline{f}(c)}{x_2 - c} \geqslant \frac{\overline{f}(x_1) - \overline{f}(c)}{x_1 - c} \Rightarrow \overline{f}(x_2) \geqslant \frac{x_2 - c}{x_1 - c} \overline{f}(x_1) \geqslant \overline{f}(x_1). \tag{6.14}$$

故 \overline{f} 在 [c,b] 递增. 类似可知 \overline{f} 在 [a,c] 递减. 这就证明了第三种情况. 若 c=a,则不等式(6.14)也成立,故 \overline{f} 在 [a,b] 递增. 同样的若 c=b 则 \overline{f} 在 [a,b] 递减.

于是再结合(6.13)可知

- (i) 当 \overline{f} 的最小值 c = b 时,若 $f(b) > \overline{f}(b)$,则 f 只在 [a,b) 上单调递减;若 $f(b) = \overline{f}(b)$,则 f 在 [a,b] 上单调递减. 故此时无论如何,f 一定在 [a,b) 上单调递减.
- (ii) 当 \overline{f} 的最小值 c = a 时,若 $f(a) > \overline{f}(a)$,则 f 只在 (a,b] 上单调递增;若 $f(a) = \overline{f}(a)$,则 f 在 [a,b] 上单调递增. 故此时无论如何,f 一定在 (a,b] 上单调递增.
- (iii) 当 \overline{f} 的最小值 $c \in (a,b)$ 时,f 的单调性与 \overline{f} 相同,即 f 在 [c,b] 递增,在 [a,c] 递减. 因此结论得证.
- 2. **开区间凸函数的单调性刻画** 由 (1) 的证明类似,只是不再额外需要考虑 f 的两个端点,同理证明即可.

命题 6.17 (Jensen 不等式)

对集 $S \subset \mathbb{R}^n$,设 $f: S \to \mathbb{R}$ 是一个 Jensen 下凸函数,则对完全含于 S 内的一条线段上的点 x_1, x_2, \cdots, x_m 和

$$\sum_{k=1}^{m} \lambda_k = 1, \lambda_k \in [0, 1] \cap \mathbb{Q},$$

我们有

$$f\left(\sum_{k=1}^{m} \lambda_k x_k\right) \leqslant \sum_{k=1}^{m} \lambda_k f(x_k). \tag{6.15}$$

特别的,

$$f\left(\frac{1}{m}\sum_{k=1}^{m}x_{k}\right) \leqslant \sum_{k=1}^{m}\frac{1}{m}f(x_{k}).$$
 (6.16)

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 初等的,如果 S 性质足够好且 f 二阶可微,读者可以通过把 f 在 $\sum_{k=1}^m \lambda_k x_k$ Taylor 展开, 然后丢掉二阶微分

那项来得到不等式 $f\left(\sum_{k=1}^{m}\lambda_k x_k\right) \leqslant \sum_{k=1}^{m}\lambda_k f(x_k)$. 本部分的证明尽可能追求一般性。 证明 首先不等式(6.16)的建立是经典高中数学习题,一个参考可以见Jensen 不等式. 我们归纳证明不等式(6.15),

证明 首先不等式(6.16)的建立是经典高中数学习题,一个参考可以见Jensen 不等式. 我们归纳证明不等式(6.15), 当 m=2,设有理数 $\frac{p}{q} \in [0,1], q>0$,运用不等式(6.16),我们有

$$f\left(\frac{p}{q}x + \left(1 - \frac{p}{q}\right)y\right) = f\left(\underbrace{\frac{x}{q} + \frac{x}{q} + \dots + \frac{x}{q}}_{p} + \underbrace{\frac{y}{q} + \frac{y}{q} + \dots + \frac{y}{q}}_{q-p}\right) \leqslant \frac{p}{q}f(x) + \left(1 - \frac{p}{q}\right)f(y).$$

这就证明了(6.15)的 m=2 的情况。假定 m 时不等式(6.15)成立,当 m+1 时,我们不妨设 $\sum_{i=1}^m \lambda_i \neq 0$,否则不等式(6.15)是平凡的。现在

$$\sum_{j=1}^{m+1} \lambda_j f(x_j) = \sum_{i=1}^m \lambda_i \cdot \sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} f(x_j) + \lambda_{m+1} f(x_{m+1})$$

$$\geqslant \sum_{i=1}^m \lambda_i \cdot f\left(\sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} x_j\right) + \lambda_{m+1} f(x_{m+1})$$

$$\geqslant f\left(\sum_{i=1}^m \lambda_i \cdot \sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} x_j + \lambda_{m+1} x_{m+1}\right) = f\left(\sum_{j=1}^{m+1} \lambda_i x_j\right),$$

这里最后一个不等号来自m=2时的不等式。于是就对一般的 $m∈ \mathbb{N}$,我们证明了(6.15)。

引理 6.1

设 f 在 $x_0 \in \mathbb{R}^n$ 的邻域内是 Jensen 下凸函数,若 $\overline{\lim}_{x \to x_0} f(x) < \infty$,则 f 在 x_0 连续.

证明 要证 f 在 x_0 连续,只须证 $f(x_0) \leqslant \underline{\lim}_{x \to x_0} f(x) \leqslant \overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$ 。

由条件可知

$$-\infty < f(x_0) \le \frac{f(x_0 - x) + f(x_0 + x)}{2}, \quad \forall x \in U(0).$$

$$-\infty < f(x_0) \leqslant \lim_{x \to 0} \frac{f(x_0 - x) + f(x_0 + x)}{2} \leqslant \frac{1}{2} \lim_{x \to 0} f(x_0 - x) + \frac{1}{2} \lim_{x \to 0} f(x_0 + x) = \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} \lim_{x \to x_0} f(x).$$
 (6.17)

根据条件可得

$$f(x) \leqslant \frac{f(x_0) + f(2x - x_0)}{2}, \quad \forall x \in U(x_0).$$

令 $x \rightarrow x_0$ 并取上极限,则

$$\overline{\lim_{x \to x_0}} f(x) \leqslant \overline{\lim_{x \to x_0}} \frac{f(x_0) + f(2x - x_0)}{2} \leqslant \frac{f(x_0)}{2} + \frac{1}{2} \overline{\lim_{x \to x_0}} f(2x - x_0) = \frac{f(x_0)}{2} + \frac{1}{2} \overline{\lim_{x \to x_0}} f(x).$$

于是 $\overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$ 。 将其代入 (6.17) 式得到

$$-\infty < f(x_0) \leqslant \frac{1}{2} \underbrace{\lim_{x \to x_0} f(x) + \frac{1}{2} \underbrace{\lim_{x \to x_0} f(x)}}_{x \to x_0} f(x) \leqslant \underbrace{\frac{1}{2} \underbrace{\lim_{x \to x_0} f(x) + \frac{1}{2} f(x_0)}}_{x \to x_0} \Rightarrow f(x_0) \leqslant \underbrace{\lim_{x \to x_0} f(x)}_{x \to x_0} f(x).$$

因此 $f(x_0) \leqslant \underline{\lim}_{x \to x_0} f(x) \leqslant \overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$ 。即 f 在 x_0 处连续

定理 6.7 (开区间下凸函数左右导数处处存在)

(a,b) 上的下凸函数 f 在每一点左右导数都存在,从而 f 在 (a,b) 连续.

证明 由下凸函数割线斜率递增可知,对 $\forall x_0 \in (a,b)$,有 $\frac{f(x)-f(x_0)}{x-x_0}$ 在 $(a,x_0) \cup (x_0,b)$ 上递增。从而

$$\frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f\left(\frac{x_0 + b}{2}\right) - f(x_0)}{\frac{x_0 + b}{2} - x_0}, \quad \forall x \in (a, x_0),$$

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f\left(\frac{x_0 + a}{2}\right) - f(x_0)}{\frac{x_0 + a}{2} - x_0}, \quad \forall x \in (x_0, b).$$

于是
$$\frac{f(x)-f(x_0)}{x-x_0}$$
 在 (a,x_0) 上有上界 $\frac{f\left(\frac{x_0+b}{2}\right)-f(x_0)}{\frac{x_0+b}{2}-x_0}$, $\frac{f(x)-f(x_0)}{x-x_0}$ 在 (x_0,b) 上有下界 $\frac{f\left(\frac{x_0+a}{2}\right)-f(x_0)}{\frac{x_0+a}{2}-x_0}$ 。 故由单调有界定理可知 $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ 和 $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$ 都存在,即 $f'_+(x_0)$ 和 $f'_-(x_0)$ 都存在. 进而

$$\lim_{x \to x_0^+} [f(x) - f(x_0)] = \lim_{x \to x_0^+} (x - x_0) = 0,$$

$$\lim_{x \to x_0^-} [f(x) - f(x_0)] = \lim_{x \to x_0^-} (x - x_0) = 0.$$

因此 $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$, 即 f 在 $x = x_0$ 处连续, 再根据 x_0 的任意性可知, f 在 (a,b) 上连续.

定理 6.8 (开区间上的下凸函数内闭 Lipschitz 连续)

(a,b) 上的下凸函数 f 一定内闭 Lipschitz 连续.

证明 对 $\forall [A,B] \subset (a,b)$, 任取 $s \in (a,A)$, $t \in (B,b)$, 固定 s,t。则由下凸函数割线斜率递增可知

$$\frac{f(A)-f(s)}{A-s}\leqslant \frac{f(x)-f(y)}{x-y}\leqslant \frac{f(t)-f(B)}{t-B},\quad \forall x,y\in [A,B].$$

记
$$L = \max\left\{\left|\frac{f(A) - f(s)}{A - s}\right|, \left|\frac{f(t) - f(B)}{t - B}\right|\right\}$$
,则

$$\left| \frac{f(x) - f(y)}{x - y} \right| \leqslant L \Rightarrow |f(x) - f(y)| \leqslant L |x - y|, \quad \forall x, y \in [A, B].$$

故 f 在 (a,b) 上内闭 Lipschitz 连续.

定理 6.9

设f在 $\mathbf{x}_0 \in \mathbb{R}^n$ 的邻域内是下凸函数,则f在 \mathbf{x}_0 连续.

 \Diamond

证明 仅证明 n=2 的情形, 一般情况是类似的.

由条件可知, 当 n = 2 时, 设 $\delta > 0$, f 在 $(x_0 - \delta, y_0 - \delta) \times (x_0 + \delta, y_0 + \delta)$ 上下凸, 则对 $\forall (x_1, y_1), (x_2, y_2) \in [x_0 - \delta, y_0 - \delta] \times [x_0 + \delta, y_0 + \delta]$, $\forall \lambda \in [0, 1]$, 有

$$f(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) \leqslant \lambda f(x_1, y_1) + (1 - \lambda)f(x_2, y_2). \tag{6.18}$$

 $\forall x' \in [x_0 - \delta, x_0 + \delta]$, 固定 x', 在 (6.18)式中令 $x_1 = x_2 = x'$, 则对 $\forall y_1, y_2 \in [y_0 - \delta, y_0 + \delta]$, 都有

$$f(x', \lambda y_1 + (1 - \lambda)y_2) = f(\lambda x' + (1 - \lambda)x', \lambda y_1 + (1 - \lambda)y_2) \leqslant \lambda f(x', y_1) + (1 - \lambda)f(x', y_2).$$

故 f 关于单变量 y 在 $[y_0 - \delta, y_0 + \delta]$ 上下凸。同理可得 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上下凸。由开区间下凸函数左右导数处处存在可知 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上连续,关于单变量 y 在 $[y_0 - \delta, y_0 + \delta]$ 上连续。因此对 $\forall \varepsilon > 0$,存在 $\delta_1 \in (0, \delta)$,使得当 $|x - x_0| \leq \delta_1$ 时,有

$$|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2}.$$
 (6.19)

任取 $x \in [x_0 - \delta, x_0 + \delta]$,固定 x,从而此时 f(x, y) 是在 $[y_0 - \delta, y_0 + \delta]$ 上关于 y 的一元连续下凸函数。于是由开区间上的下凸函数一定内闭 Lipschitz 连续可知,f(x, y) 在 $(y_0 - \delta, y_0 + \delta)$ 上内闭 Lipschitz 连续。进而存在 $\delta_2 \in (0, \delta)$,使得对 $\forall y \in [y_0 - \delta_2, y_0 + \delta_2]$,有

$$|f(x,y) - f(x,y_0)| \le \max\left\{\frac{f(x,y_0 - \delta_2) - f(x,y_0 - \delta_2)}{\delta_2}, \frac{f(x,y_0 + \delta_2) - f(x,y_0 + \delta_2)}{\delta_2}\right\} \cdot |y - y_0|. \tag{6.20}$$

由 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上连续可知, $f(x, y_0 - \delta_2)$, $f(x, y_0 - \delta_2)$, $f(x, y_0 + \delta_2)$, $f(x, y_0 + \delta_2)$ 在 $[x_0 - \delta, x_0 + \delta]$ 上都有界,从而我们记

$$L = \max \left\{ \sup_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x, y_0 - \delta_2) - f(x, y_0 - \delta_2)}{\delta_2}, \sup_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x, y_0 + \delta_2) - f(x, y_0 + \delta_2)}{\delta_2} \right\}.$$

令 $\delta' = \min\{\delta_1, \delta_2, \frac{\varepsilon}{2L}\}$,于是由 (6.20) 式可知,对 $\forall (x,y) \in [x_0 - \delta', x_0 + \delta'] \times [y_0 - \delta', y_0 + \delta']$,都有

$$|f(x, y) - f(x, y_0)| \le L|y - y_0|.$$
 (6.21)

利用 (6.19) (6.21) 式可得,对上述 ε , δ' , 当 $(x,y) \in [x_0 - \delta', x_0 + \delta'] \times [y_0 - \delta', y_0 + \delta']$ 时,我们都有

$$|f(x, y) - f(x_0, y_0)| \le |f(x, y) - f(x, y_0)| + |f(x, y_0) - f(x_0, y_0)|$$

 $< L|y - y_0| + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

故 f 在 (x_0, y_0) 连续.

推论 6.1 (开集上的下凸函数必连续)

开集上的下凸函数是连续函数.

 \sim

证明

定理 6.10 (下凸函数的局部定义)

设开集 $V \subset \mathbb{R}^n$, f 在V 上半连续, 如果对任何 $x \in V$, $y \in \mathbb{R}^n$, $\delta > 0$, 都存在 $h \in (0, \delta)$, 使得

$$f(x) \leqslant \frac{f(x+hy) + f(x-hy)}{2}.$$
(6.22)

证明 $f \in V$ 上的下凸函数.

 \Diamond

 $\stackrel{\diamondsuit}{\mathbf{Y}}$ 笔记 本定理表明下凸函数是个局部的概念,只要局部是下凸函数,整体也是下凸函数. 从证明可以看到,若对 $\mathbf{Y} \neq \mathbf{0}$,不等式(6.22)改为严格不等号,则 \mathbf{f} 也是严格下凸的.

证明 对 $x \in V, y \in \mathbb{R}^n$,满足 $x + wy \in V, \forall w \in [-1,1]$,考虑上半连续函数

$$g(w) = f(x + wy) - \frac{f(x + y) - f(x - y)}{2}w - \frac{f(x + y) + f(x - y)}{2},$$

现在有

$$g(1) = g(-1) = 0.$$

如果存在 $s \in (-1,1)$, 使得 g(s) > 0, 那么记

$$M \triangleq \sup_{[-1,1]} g > 0, A \triangleq \{x \in [-1,1] : g(x) = M\}.$$

显然 $A \in (-1,1)$ 中的紧集,设 A 的最大值点 w_0 ,则 $1-w_0>0$,现在运用条件不等式(6.22),我们知道存在充分小的 h>0,使得

$$f(x+w_0y) \le \frac{f(x+w_0y+hy)+f(x+w_0y-hy)}{2}.$$

于是对这个h, 我们有

$$\begin{split} g(w_0) &= f(x+w_0y) - \frac{f(x+y) - f(x-y)}{2} w_0 - \frac{f(x+y) + f(x-y)}{2} \\ &\leqslant \frac{f(x+w_0y+hy) + f(x+w_0y-hy)}{2} - \frac{f(x+y) - f(x-y)}{2} w_0 - \frac{f(x+y) + f(x-y)}{2} \\ &= \frac{g(w_0+h) + g(w_0-h)}{2} < M, \end{split}$$

这是一个矛盾! 因此

$$g(w) \leq 0, \forall w \in [-1, 1],$$

因此

$$g(0) \leqslant 0 \Rightarrow f(x) \leqslant \frac{f(x+y) + f(x-y)}{2},$$

故 f 是 Jensen 下凸函数,因为 f 上半连续,所以 f 局部有上界,所以由引理 6.1知 f 在 V 上连续,因此我们证明了 f 是下凸函数.

6.4 一致连续

定理 6.11 (Cantor 定理)

 $f \in C(a,b)$ 一致连续的充要条件是 $\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$ 存在.

注 这个定理对 $f \in C(a,b]$ 和 $f \in C[a,b)$ 也成立.

推论 6.2

若 $f \in C[a,b]$,则 f 在 [a,b] 上一致连续.

命题 6.18

设 $f \in C[0, +\infty)$ 且 $\lim_{x \to +\infty} f(x)$ 存在。证明:f 在 $[0, +\infty)$ 一致连续。

 $\dot{\mathbf{z}}$ 这个命题反过来并不成立, 反例: $f(x) = \sqrt{x}$. 因此这个条件只是函数一致连续的充分不必要条件.

证明 $\forall \varepsilon > 0$, 由 Cauchy 收敛准则可知,存在 A > 0,对 $\forall x_1, x_2 \ge A$,有

$$|f(x_2) - f(x_1)| < \varepsilon. \tag{6.23}$$

由 Cantor 定理可知, f 在 [0,A+1] 上一致连续。故存在 $\delta \in (0,1)$, 使得 $\forall x_1,x_2 \in [0,A+1]$ 且 $|x_2-x_1| \leqslant \delta$, 有

$$|f(x_2) - f(x_1)| < \varepsilon. \tag{6.24}$$

现在对 $\forall |x_1 - x_2| \le \delta < 1$,必然有 $x_1, x_2 \in [0, A+1]$ 或 $x_1, x_2 \in [A, +\infty)$,从而由(6.23)(6.24)式可知,此时一定有 $|f(x_2) - f(x_1)| < \varepsilon.$

故 f 在 $[0,+\infty)$ 上一致连续。

命题 6.19

设f在 $[0,+\infty)$ 一致连续且 $g \in C[0,+\infty)$ 满足

$$\lim_{x \to +\infty} [f(x) - g(x)] = 0.$$

证明:g 在 $[0,+\infty)$ 一致连续。

证明 $\forall \varepsilon > 0$, 由 f 一致连续可知,存在 $\delta \in (0,1)$,使得对 $\forall x,y \in [0,+\infty)$ 且 $|x-y| \leq \delta$,有

$$|f(x) - f(y)| < \frac{\varepsilon}{3}. \tag{6.25}$$

由 $\lim_{x\to a} [f(x) - g(x)] = 0$ 可知,存在 A > 0,使得对 $\forall x \ge A$,有

$$|f(x) - g(x)| < \frac{\varepsilon}{3}. \tag{6.26}$$

由 Cantor 定理可知, g 在 [0,A+1] 上一致连续。故存在 $\eta \in (0,1)$, 使得对 $\forall x,y \in [0,A+1]$ 且 $|x-y| \leq \eta$, 有

$$|g(x) - g(y)| < \frac{\varepsilon}{3}. \tag{6.27}$$

故对 $\forall x,y \geq 0$ 且 $|x-y| \leq \eta$,要么都落在 [0,A+1],要么都落在 $[A,+\infty)$ 。

- (ii) 若 $x, y \in [A, +\infty)$, 则由(6.25)(6.26)式可得

$$|g(x) - g(y)| \le |g(x) - f(x)| + |f(x) - f(y)| + |f(y) - g(y)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

故 g 在 $[0,+\infty)$ 上一致连续。

定理 6.12

f 在区间 I 一致连续的充要条件是对任何 $\{x_n'\}_{n=1}^{\infty}$, $\{x_n''\}_{n=1}^{\infty} \subset I$ 且 $\lim_{n\to\infty} (x_n'' - x_n') = 0$ 都有 $\lim_{n\to\infty} (f(x_n'') - f(x_n')) = 0$.

命题 6.20

设 f 定义在区间 I 的函数. 证明 f 在区间 I 一致连续的充要条件是对任何 $\varepsilon > 0$,存在 M > 0,使得对任何 $x_1, x_2 \in I$,都有

$$|f(x_2) - f(x_1)| \le M|x_1 - x_2| + \varepsilon.$$

注 这个命题相当重要! 但是考试中不能直接使用, 需要证明.

证明 充分性: 由条件可知, $\forall \varepsilon > 0$, $\exists M > 0$, 取 $\delta = \frac{\varepsilon}{M}$, 则当 $|x_2 - x_1| \leqslant \delta$ 且 $x_1, x_2 \in I$ 时, 有

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2| + \varepsilon \le M \cdot \frac{\varepsilon}{M} + \varepsilon = 2\varepsilon.$$

故 f 在 I 上一致连续.

必要性: 由 f 在 I 上一致连续可知, $\forall \varepsilon > 0$,存在 $\delta > 0$,使得对 $\forall x_1, x_2 \in I$ 且 $|x_1 - x_2| \leq \delta$,有

$$|f(x_1) - f(x_2)| < \varepsilon. \tag{6.28}$$

因此任取 $x, y \in I$, ①当 $|x-y| \le \delta$ 时, 由(6.28)式可知 $|f(x)-f(y)| < \varepsilon \le M|x-y| + \varepsilon$. 由 x, y 的任意性可知结论成立.

②当 $|x-y| > \delta$ 时, (i) 当 $|f(x)-f(y)| \le \varepsilon$ 时, 此时结论显然成立;

(ii) 当 $|f(x) - f(y)| > \varepsilon$ 时,不妨设 y > x, f(y) > f(x)(其它情况类似),令 f(y) - f(x) = kt,其中 $k \in \mathbb{N}, t \in \mathbb{N}$

 $(\varepsilon, 2\varepsilon]$.由介值定理可知,存在 $x = x_0 < x_1 < \cdots < x_k = y$,使得

$$f(x) \le f(x_i) = f(x) + jt \le f(x) + kt = f(y), j = 0, 1, 2, \dots, k.$$

于是

$$f(x_i) - f(x_{i-1}) = t > \varepsilon, j = 1, 2, \dots, k.$$

此时由(6.28)式可知 $x_i - x_{i-1} > \delta$, $j = 1, 2, \dots, k$ 。从而我们有

$$y - x = \sum_{j=1}^{k} (x_j - x_{j-1}) > k\delta \Rightarrow k < \frac{y - x}{\delta}.$$
 (6.29)

取 $M = \frac{2\varepsilon}{\delta} > 0$, 于是结合(6.29)式及 $t \in (\varepsilon, 2\varepsilon]$ 就有

$$|f(y) - f(x)| = kt \leqslant \frac{t}{\delta}|y - x| \leqslant \frac{2\varepsilon}{\delta}|y - x| = M|y - x|.$$

再由 x, y 的任意性可知结论成立.

注 这里 k,t 的存在性可以如此得到: 考虑 $(\varepsilon,+\infty) = \bigcup_{k\in\mathbb{N}} (k\varepsilon,2k\varepsilon]$ 即可,又因为 $(k+1)\varepsilon \leqslant 2k\varepsilon$,所以相邻的 $(k\varepsilon,2k\varepsilon]$ 一定相交。于是一定存在 $k\in\mathbb{N}$,使得 $f(y)-f(x)\in(k\varepsilon,2k\varepsilon]$,从而 $\frac{f(y)-f(x)}{k}\in(\varepsilon,2\varepsilon]$ 。故取 $t=\frac{f(y)-f(x)}{k}\in(\varepsilon,2\varepsilon]$ 。此时就有 f(y)-f(x)=kt。

推论 6.3 (一致连续函数被线性函数控制)

若 f 在 \mathbb{R} 一致连续且 f(0) = 0, 证明存在 M > 0 使得

$$|f(x)| \le 1 + M|x|, \forall x \in \mathbb{R}.$$

笔记 读者应该积累大概的感觉:一致连续函数的增长速度不超过线性函数,这能帮助我们快速排除一些非一致连续函数。

证明 取命题 6.20中的 $\varepsilon = 1, x_1 = x \in \mathbb{R}, x_2 = 0,$ 则一定存在 M > 0, 使得 $|f(x)| \le 1 + M|x|, \forall x \in \mathbb{R}$.

推论 6.4

若f在I上一致连续,则存在M,c>0使得

$$|f(x)| \le c + M|x|, \forall x \in I.$$

推论 6.5 (一致连续函数的阶的提升)

若 f 在 $[1,+\infty)$ 一致连续, 证明存在 M>0 使得

$$\left|\frac{f(x)}{x}\right| \leqslant M, \forall x \geqslant 1.$$

证明 取命题 6.20中的 ε = 1, x_1 = x ≥ 1, x_2 = 1, 则一定存在 C > 0, 使得

$$|f(x) - f(1)| \le C|x - 1| + 1, \forall x \ge 1.$$

于是

$$\left|\frac{f\left(x\right)}{x}\right| \leqslant \left|\frac{f\left(x\right) - f\left(1\right)}{x}\right| + \frac{\left|f\left(1\right)\right|}{x} \leqslant \frac{C\left|x - 1\right| + 1}{x} + \left|f\left(1\right)\right|, \forall x \geqslant 1.$$

上式两边同时令 $x \to +\infty$,得到

$$\overline{\lim_{x \to +\infty}} \left| \frac{f(x)}{x} \right| \leqslant C.$$

由上极限的定义可知, 存在 X > 1, 使得 $\sup_{x \ge X} \left| \frac{f(x)}{x} \right| \le C$. 从而我们有

$$\left| \frac{f(x)}{x} \right| \leqslant C, \forall x > X. \tag{6.30}$$

又因为 f 在 $[1,+\infty)$ 上一致连续, 所以由 Cantor 定理可知 f 在 [1,X] 上连续, 从而 f 在 [1,X] 上有界, 即存在 C'>0. 使得

$$\left| \frac{f(x)}{x} \right| \leqslant C', \forall x \in [1, X]. \tag{6.31}$$

于是取 $M = \max\{C, C'\}$,则由(6.30)(6.31)式可知

$$\left| \frac{f(x)}{x} \right| \leqslant M, \forall x \geqslant 1.$$

命题 6.21

证明区间 I 上的函数 f 一致连续的充要条件是对任何 $\varepsilon > 0$, 存在 $\ell > 0$, 使得当 $x_1 \neq x_2 \in I$, 就有:

$$\left|\frac{f(x_2)-f(x_1)}{x_2-x_1}\right| > \ell \Rightarrow |f(x_2)-f(x_1)| < \varepsilon.$$

证明 必要性: 由命题 6.20可知, $\forall \varepsilon > 0$, $\exists M > 0$, 使得

$$|f(x)-f(y)|\leq M|x-y|+\varepsilon, \forall x,y\in I.$$

取
$$\ell = \frac{\varepsilon}{\delta} + M$$
, 任取 $x_1 \neq x_2 \in I$, 当 $\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| > \ell$ 时, 我们有

$$\ell < \left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| \le \frac{M|x_2 - x_1|}{|x_2 - x_1|} + \frac{\varepsilon}{|x_2 - x_1|} = M + \frac{\varepsilon}{|x_2 - x_1|}.$$

从而

$$|x_2 - x_1| < \frac{\varepsilon}{\ell - M} = \delta. \tag{6.32}$$

又由 f 在 I 上一致连续可知

$$|f(x') - f(x'')| < \varepsilon, \forall x', x'' \in I \, \mathbb{E} |x' - x''| < \delta. \tag{6.33}$$

因此结合(6.32)(6.33)式可得 $|f(x_2) - f(x_1)| < \varepsilon$ 。故必要性得证.

充分性: 已知对 $\forall \varepsilon > 0$, 存在 $\ell > 0$, 使得 $\forall x_1 \neq x_2 \in I$, 有

$$\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| > \ell \Rightarrow |f(x_2) - f(x_1)| < \varepsilon.$$
 (6.34)

取 $\delta \in \left(0, \frac{\varepsilon}{\rho}\right)$, 若 $|f(x_2) - f(x_1)| \ge \varepsilon$ 但 $|x_2 - x_1| \le \delta$, 则我们有

$$\left|\frac{f(x_2)-f(x_1)}{x_2-x_1}\right|\geqslant \frac{\varepsilon}{\delta}>\ell.$$

而由(6.34)式可得,此时 $|f(x_2) - f(x_1)| < \varepsilon$ 。矛盾! 故 f 在 I 上一致连续。

命题 6.22 (一致连续函数的拼接)

设 $f \in C[0,+\infty)$, 若存在 $\delta > 0$ 使得 f 在 $[\delta,+\infty)$ 一致连续, 则 f 在 $[0,+\infty)$ 一致连续。

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 证明的想法比结论本身重要,在和本命题叙述形式不同的时候需要快速准确判断出来 f 在 $[0,+\infty)$ 一致连

证明 $\forall \varepsilon > 0$,由 Cantor 定理可知,f 在 $[0, \delta + 1]$ 上一致连续。故存在 $\eta \in (0, 1)$,使得 $\forall x, y \in [0, \delta + 1]$ 且 $|x - y| \leq \eta$,都有

$$|f(x) - f(y)| < \varepsilon. \tag{6.35}$$

由 f 在 $[\delta, +\infty)$ 上一致连续可知, 对 $\forall x, y \in [\delta, +\infty)$ 且 $|x-y| \leq \eta$, 都有

$$|f(x) - f(y)| < \varepsilon. \tag{6.36}$$

现在对 $\forall x, y \in [0, +\infty)$, 都有 $|x - y| \leq \eta$ 。

- (i) 若 $x, y \in [0, \delta + 1]$ 或 $[\delta, +\infty)$,则由(6.35)(6.36)式可直接得到 $|f(x) f(y)| < \varepsilon$;
- (ii) 若 $x \in [0, \delta + 1]$, $y \in [\delta, +\infty)$, 则 $|x y| \ge 1 > \eta$, 这是不可能的。

故原命题得证。

例题 6.8 设 f 在 $[1,+\infty)$ 一致连续。证明: $\frac{f(x)}{x}$ 也在 $[1,+\infty)$ 一致连续。 证明 由 f 在 $[1,+\infty)$ 上一致连续可知, $\forall \varepsilon > 0$,存在 $\delta > 0$,使得对 $\forall x,y \geqslant 1$ 且 $|x-y| \leqslant \delta$,有

$$|f(x) - f(y)| < \frac{\varepsilon}{2}. ag{6.37}$$

由推论 6.5可知, $\left|\frac{f\left(x\right)}{x}\right|$ 有界. 故可设 $M \triangleq \sup_{x \geq 1} \left|\frac{f\left(x\right)}{x}\right| < +\infty$. 取 $\delta' = \min\left\{\delta, \frac{\varepsilon}{2M}\right\}$, 则对 $\forall x, y \geq 1$ 且 $|x-y| \leq \delta'$, 由(6.37)式可得

$$\left| \frac{f(x)}{x} - \frac{f(y)}{y} \right| = \frac{|yf(x) - xf(y)|}{xy} \leqslant \frac{|yf(x) - yf(y)| + |y - x| |f(y)|}{xy}$$

$$= \frac{|f(x) - f(y)|}{x} + \frac{|y - x|}{xy} |f(y)| \leqslant |f(x) - f(y)| + M|y - x|$$

$$< \frac{\varepsilon}{2} + M \cdot \frac{\varepsilon}{2M} = \varepsilon.$$

故 $\frac{f(x)}{r}$ 也在 $[1,+\infty)$ 一致连续.

命题 6.23 (函数爆炸一定不一致连续)

设 f 在 $[a,+\infty)$ 可微且 $\lim_{n\to\infty} f'(x) = +\infty$, 证明:f 在 $[a,+\infty)$ 不一致连续.

证明 证法一:假设 f 在 $[a,+\infty)$ 上一致连续,则由推论 6.4可知,存在 c,d>0,使得

$$|f(x)| \le c|x| + d, \forall x \in [a, +\infty). \tag{6.38}$$

从而

$$\underline{\lim}_{x \to +\infty} \left| \frac{f(x)}{x} \right| \leqslant \overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{x} \right| < +\infty. \tag{6.39}$$

由上下极限 L'Hospital 法则可得

$$\underline{\lim_{x \to +\infty}} \frac{f(x)}{x} \geqslant \underline{\lim_{x \to +\infty}} f'(x) = +\infty.$$

这与(6.39)式矛盾. 故 f 在 $[a,+\infty)$ 不一致连续.

证法二:假设 f 在 $[a,+\infty)$ 上一致连续,则由推论 6.4可知,存在 c,d>0,使得

$$|f(x)| \le c|x| + d, \forall x \in [a, +\infty). \tag{6.40}$$

由 $\lim_{x\to \infty} f'(x) = +\infty$ 可知,存在 X > 0,使得对 $\forall x \ge X$,有

$$f'(x) \ge c + 1 \Leftrightarrow f'(x) - c + 1 \ge 0.$$

从而 f(x) - (c+1)x 在 $[X, +\infty)$ 上单调递增,于是就有

$$f(x) - (c+1)x \ge f(X) - (c+1)X \triangleq D, \forall x \ge X.$$

故 $f(x) \ge (c+1)x + D, \forall x \ge X$ 。再结合(6.40)式可得

$$(c+1)x + D \le f(x) \le cx + d, \forall x \ge X > 0.$$

即 $x \leq d - D, \forall x \geq X > 0$ 。 $\diamondsuit x \rightarrow +\infty$,则

$$+\infty = \lim_{x \to +\infty} x \leqslant d - D.$$

矛盾。故 f 在 $[a,+\infty)$ 不一致连续.

例题 6.9 判断下述函数的一致连续性:

(1)
$$f(x) = \ln x$$
, $x \in (0, 1]$;

(1)
$$f(x) = \ln x$$
, $x \in (0, 1]$;
(2) $f(x) = e^x \cos \frac{1}{x}$, $x \in (0, 1]$;

(3)
$$f(x) = \frac{\sin x}{x}, \quad x \in (0, +\infty);$$

$$(4) f(x) = \sin^2 x, \quad x \in \mathbb{R};$$

(5)
$$f(x) = e^x$$
, $x \in \mathbb{R}$;

(6)
$$f(x) = \sin x^2$$
, $x \in [0, +\infty)$;

(7)
$$f(x) = \sin(x \sin x), \quad x \in [0, +\infty);$$

(8)
$$f(x) = x \cos x, \quad x \in [0, +\infty);$$

(8)
$$f(x) = x \cos x$$
, $x \in [0, +\infty)$;
(9) $\male a > 0$, $f(x) = \frac{x+2}{x+1} \sin \frac{1}{x}$, $x \in (0, a) \ \male x \in (a, +\infty)$;

笔记 关于三角函数找数列的问题, 一般 sin, cos 函数就多凑一个 $2n\pi$ 或 $2n\pi + \frac{\pi}{2}$

注 (6)中找这两个数列 $x_n' = \sqrt{2n\pi}, x_n'' = \sqrt{2n\pi} + \frac{1}{\sqrt{n}}$ 的方式: 待定 c_n , 令 $x_n' = \sqrt{2n\pi}, x_n'' = \sqrt{2n\pi} + c_n$, 我们希望 $\lim_{n\to\infty} \left(x_n'' - x_n' \right) = \lim_{n\to\infty} c_n = 0,$

并且

$$\lim_{n\to\infty} \left[f\left(x_n^{\prime\prime}\right) - f\left(x_n^{\prime}\right) \right] = \lim_{n\to\infty} \sin\left(2n\pi + c_n^2 + 2c_n\sqrt{2n\pi}\right) = \lim_{n\to\infty} \sin\left(c_n^2 + 2c_n\sqrt{2n\pi}\right) \neq 0.$$

再结合 $\lim_{n\to\infty} c_n = 0$ 可得

$$\lim_{n\to\infty}\sin\left(c_n^2+2c_n\sqrt{2n\pi}\right)=\lim_{n\to\infty}\left(\sin c_n^2\cos 2c_n\sqrt{2n\pi}+\cos c_n^2\sin 2c_n\sqrt{2n\pi}\right)=\lim_{n\to\infty}\sin 2c_n\sqrt{2n\pi}.$$

故我们希望 $\lim_{n\to\infty} c_n = 0$ 且 $\lim_{n\to\infty} \sin 2c_n \sqrt{2n\pi} \neq 0$ 。从而令 $c_n = \frac{1}{\sqrt{n}}$ 即可.

(7)(8) 找数列的方式与(6) 类似。

解

- (1) 不一致连续. 由 $\lim_{x\to 0^+} \ln x = +\infty$ 及 Cantor 定理可得.
- (2) 不一致连续. 由 $\lim_{r\to 0^+} e^r \cos \frac{1}{r}$ 不存在及Cantor 定理可得.
- (3) 一致连续. 由 $\lim_{x\to 0^+} f(1)$ 存在 (连续性), $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$ 及 Cantor 定理可知, f 在 (0,1] 上一致连续。又因为 $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$,所以由命题 6.18可知, f 在 $[1,+\infty)$ 上一致连续。再根据一致连续函数的拼接可知, f 在 $(0,+\infty)$ 上一致连续.
- (4) 一致连续. 由 $(\sin^2 x)' = 2\sin x \cos x \le 2$ 及由 Lagrange 中值定理, 易知 f(x) 是 Lipschitz 连续的, 从而一致连
- (5) 不一致连续. 由 $\lim_{x\to +\infty} e^x = +\infty$ 及命题 6.23可得.
- (6) 不一致连续.令 $x'_n = \sqrt{2n\pi}, x''_n = \sqrt{2n\pi} + \frac{1}{\sqrt{n}}$, 则 $\lim_{n \to \infty} (x'_n x''_n) = 0$. 但是

$$\lim_{n \to \infty} \left(f\left(x_n'' \right) - f\left(x_n' \right) \right) = \lim_{n \to \infty} \sin\left(2n\pi + \frac{1}{n} + 2\sqrt{2\pi} \right) = \lim_{n \to \infty} \sin\left(\frac{1}{n} + 2\sqrt{2\pi} \right)$$
$$= \lim_{n \to \infty} \left[\sin 2\sqrt{2\pi} \cos \frac{1}{n} + \cos 2\sqrt{2\pi} \sin \frac{1}{n} \right] = \sin 2\sqrt{2\pi} \neq 0.$$

故根据定理 6.12可知 f 不一致连续.

(7) 不一致连续.令
$$x'_n = 2n\pi$$
, $x''_n = 2n\pi + \frac{\pi}{2n}$, 则
$$\lim_{n \to \infty} (x'_n - x''_n) = 0.$$

但是

$$\lim_{n \to \infty} \left(f\left(x_n''\right) - f\left(x_n'\right) \right) = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\left(2n\pi + \frac{\pi}{2n} \right) \right] = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\frac{\pi}{2n} \right]$$

$$= \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\frac{\pi}{2n} \right] = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \left(\frac{\pi}{2n} + o\left(\frac{1}{n} \right) \right) \right]$$

$$= \lim_{n \to \infty} \sin\left[\pi^2 + o\left(\frac{1}{n^2} \right) \right] = \lim_{n \to \infty} \left[\sin\pi^2 x \cos o\left(\frac{1}{n^2} \right) + \cos\pi^2 \sin o\left(\frac{1}{n^2} \right) \right]$$

$$= \sin\pi^2 \neq 0.$$

故根据定理 6.12可知 f 不一致连续.

(8) 不一致连续.令
$$x'_n = 2n\pi + \frac{\pi}{2}$$
, $x''_n = 2n\pi + \frac{\pi}{2} + \frac{1}{n}$, 则
$$\lim_{n \to \infty} (x'_n - x''_n) = 0.$$

但是

$$\lim_{n \to \infty} \left(f\left(x_n'' \right) - f\left(x_n' \right) \right) = \lim_{n \to \infty} \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) \cos \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) = -\lim_{n \to \infty} \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) \sin \frac{1}{n} = -2\pi.$$

故根据定理 6.12可知 f 不一致连续.

(9) 在 (0,a) 上不一致连续,在 $(a,+\infty)$ 上一致连续. 由 $\lim_{x\to 0^+} \frac{x+2}{x+1} \sin\frac{1}{x}$ 不存在, $\lim_{x\to +\infty} \frac{x+2}{x+1} \sin\frac{1}{x} = 0$ 及Cantor 定理可得.

命题 6.24 (一个重要不等式)

对 $\alpha \in (0,1)$, 证明

$$|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}, \, \forall x, y \in [0, +\infty).$$

证明 不妨设 $y \ge x \ge 0$,则只须证 $y^{\alpha} - x^{\alpha} \le (y - x)^{\alpha}$ 。则只须证 $\left(\frac{y}{x}\right)^{\alpha} - 1 \le \left(\frac{y}{x} - 1\right)^{\alpha}$ 。故只须证 $t^{\alpha} - 1 \le (t - 1)^{\alpha}$ 、 $\forall t \ge 1$.

 \diamondsuit $g(t) = t^{\alpha} - 1 - (t-1)^{\alpha}$, 则 $g'(t) = \alpha t^{\alpha-1} - \alpha (t-1)^{\alpha-1} \leqslant 0$. 从而 $g(t) \leqslant g(1) = 0$, $\forall t \geqslant 1$ 。 故 $t^{\alpha} - 1 \leqslant (t-1)^{\alpha}$, $\forall t \geqslant 1$.

例题 **6.10** 证明: $f(x) = x^{\alpha} \ln x$ 在 $(0, +\infty)$ 一致连续的充要条件是 $\alpha \in (0, 1)$ 。

 $\overline{\mathbf{u}}$ 明 当 $\alpha \ge 1$ 时,f 不被线性函数控制,故由一致连续函数被线性函数控制可知 f 不一致连续。

当 $\alpha \le 0$ 时, $\lim_{x \to 0^+} f(x)$ 不存在,由Cantor 定理可知,f 在 (0,2) 上不一致连续。故此时 f 在 $(0,+\infty)$ 上不一致连续。

当 $\alpha \in (0,1)$ 时,有 $f'(x) = x^{\alpha-1} (\alpha \ln x - 1)$. 因此 $\lim_{x \to +\infty} f'(x) = 0$, 于是 f'(x) 在 $[2,+\infty)$ 上有界,从而由 Lagrange 中值定理易得 f 在 $[1,+\infty)$ 上 Lipschitz 连续,故 f 在 $[2,+\infty)$ 上一致连续。此时,注意到 $\lim_{x \to 0^+} f(x) = 0$, 故由Cantor 定理可知, f 在 [0,2] 上一致连续。于是由一致连续的拼接可得, f 在 $[0,+\infty)$ 上一致连续.

故由Cantor 定理可知, f 在 (0,2] 上一致连续。于是由一致连续的拼接可得, f 在 $(0,+\infty)$ 上一致连续. 例题 **6.11** 设 $f(x) = \begin{cases} x^{\alpha}\cos\frac{1}{x}, & x > 0 \\ 0, & x = 0 \end{cases}$ 。求 α 的范围使得 f 在 $[0,+\infty)$ 一致连续。

 $rac{\mathfrak{S}}{2}$ 笔记 找这两个数列 $x_n' = 2n\pi, x_n'' = 2n\pi + n^{1-\alpha}$ 的方法: 当 $\alpha > 1$ 时,待定 c_n ,令 $x_n' = 2n\pi, x_n'' = 2n\pi + c_n$ 。我们希望 $\lim_{n \to \infty} (x_n'' - x_n') = \lim_{n \to \infty} c_n = 0$,并且 $\lim_{n \to \infty} \left[f\left(x_n''\right) - f\left(x_n'\right) \right] \neq 0$. 注意到

$$f(x_n'') - f(x_n') = (2n\pi + c_n)^{\alpha} \cos \frac{1}{2n\pi + c_n} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi} \right)^{\alpha} \cos \frac{1}{2n\pi + c_n} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi} \right)^{\alpha} \left[1 + O\left(\frac{1}{(2n\pi + c_n)^2}\right) \right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right) \right]$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi} \right)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right) \right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right) \right]$$

$$= (2n\pi)^{\alpha} \left[\left(1 + \frac{c_n}{2n\pi} \right)^{\alpha} - 1 \right] \left[1 + O\left(\frac{1}{n^2}\right) \right]$$

$$= (2n\pi)^{\alpha} \left[\frac{\alpha c_n}{2n\pi} + O\left(\frac{c_n}{n^2}\right) \right] \left[1 + O\left(\frac{1}{n^2}\right) \right]$$

$$= (2n\pi)^{\alpha} \left[\frac{\alpha c_n}{2n\pi} + O\left(\frac{c_n}{n^2}\right) \right], \quad n \to \infty.$$

于是取 $c_n = n^{1-\alpha}$, 则 $\lim_{n \to \infty} c_n = 0$, 并且由上式可得

$$f(x_n'') - f(x_n') = (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O\left(n^{-\alpha - 1}\right) \right]$$
$$= \alpha (2\pi)^{\alpha - 1} + O\left(\frac{1}{n}\right) \to \alpha (2\pi)^{\alpha - 1} \neq 0, \quad n \to \infty.$$

故我们可取 $x_n' = 2n\pi$, $x_n'' = 2n\pi + n^{1-\alpha}$ 。

证明 当 $\alpha \le 0$ 时, $\lim_{x \to 0^+} f(x)$ 不存在,由Cantor 定理可知,f 在 (0,1) 上不一致连续。故此时 f 在 $(0,+\infty)$ 上不一致连续。

当 α ∈ (0,1] 时,由条件可知,对 $\forall x \ge 1$,都有

$$|f'(x)| = \left| \left(x^{\alpha} \cos \frac{1}{x} \right)' \right| = \left| \alpha x^{\alpha - 1} \cos \frac{1}{x} - x^{\alpha - 2} \sin \frac{1}{x} \right| \le \left| \alpha x^{\alpha - 1} \cos \frac{1}{x} \right| + \left| x^{\alpha - 2} \sin \frac{1}{x} \right| \le \alpha + 1.$$

因此 f'(x) 在 $[1,+\infty)$ 上有界。从而由 Lagrange 中值定理易得 f 在 $[1,+\infty)$ 上 Lipschitz 连续,故 f 在 $[1,+\infty)$ 上一致连续。此时,注意到 $\lim_{x\to 0^+} f(x) = 0$,故由Cantor 定理可知,f 在 [0,1] 上一致连续。于是由一致连续的拼接可得,f 在 $[0,+\infty)$ 上一致连续。

当 $\alpha > 1$ 时,令 $x'_n = 2n\pi$, $x''_n = 2n\pi + n^{1-\alpha}$, 则

$$\lim_{n\to\infty} \left(x_n'' - x_n' \right) = \lim_{n\to\infty} n^{1-\alpha} = 0.$$

此时我们有

$$f(x_n'') - f(x_n') = \left(2n\pi + n^{1-\alpha}\right)^{\alpha} \cos \frac{1}{2n\pi + n^{1-\alpha}} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \cos \frac{1}{2n\pi + n^{1-\alpha}} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{(2n\pi + n^{1-\alpha})^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left[\left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} - 1\right] \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O\left(n^{-\alpha-1}\right)\right] \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O\left(n^{-\alpha-1}\right)\right]$$

$$= \alpha (2\pi)^{\alpha-1} + O\left(\frac{1}{n}\right) \rightarrow \alpha (2\pi)^{\alpha-1} \neq 0, \quad n \to \infty.$$

故根据定理 6.12可知 f 在 $[0,+\infty)$ 上不一致连续。

例题 **6.12** 设 $f_n:(0,+\infty)\to\mathbb{R}, n=1,2,\cdots$ 是一致连续函数且 $f_n\to f$,证明: f 在 $(0,+\infty)$ 一致连续。 证明 $\forall \varepsilon>0$, $\exists N\in\mathbb{N}$,使得当 $n\geqslant N$ 时,有

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall x \in (0, +\infty).$$
 (6.41)

由 f_N 一致连续, 可知 $\exists \delta > 0$, 使得 $\forall x, y \in (0, +\infty)$ 且 $|x - y| \leq \delta$, 有

$$|f_N(x) - f_N(y)| < \varepsilon. \tag{6.42}$$

于是对 $\forall x, y \in (0, +\infty)$ 且 $|x - y| \leq \delta$,结合 (6.41) 和 (6.42) 式,我们有

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < 3\varepsilon.$$

故 f 在 (0,+∞) 一致连续。

例题 6.13 设 f 在 $[0,+\infty)$ 一致连续且对任何 $x \ge 0$ 都有 $\lim_{n \to \infty} f(x+n) = 0$,证明 $\lim_{x \to +\infty} f(x) = 0$ 。并说明如果去掉一致连续则结论不对。

聲 笔记 证明的想法即把点拉回到 [0,1] 并用一致连续来解决。反例可积累

$$f(x) = \frac{x \sin(\pi x)}{1 + x^2 \sin^2(\pi x)}.$$

核心想法:分段放缩、取整平移、一致连续.

证明 由 f 在 $[0,+\infty)$ 上一致连续可知, $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $x,y \in [0,+\infty)$ 且 $|x-y| \leq \delta$ 时,有

$$|f(x) - f(y)| < \varepsilon. \tag{6.43}$$

把 [0,1] 做 N 等分,其中 $N=\frac{1}{\delta}$ 。由 $\lim_{n\to\infty}f\left(\frac{i}{N}+n\right)=0$, $i=0,1,\cdots,N$ 可知,存在 $N'\in\mathbb{N}$,使得 $\forall n\geqslant N'$,有

$$\left| f\left(\frac{i}{N} + n\right) \right| < \varepsilon, \quad i = 0, 1, \dots, N.$$
 (6.44)

从而对 $\forall x \geq 1+N'$,一定存在 $i \in \{0,1,\cdots,N-1\}$, $n \in \mathbb{N} \cap [N',+\infty)$, 使得 $x \in \left[\frac{i}{N}+n,\frac{i+1}{N}+n\right]$ 。注意到此时

$$\left|x - \left(\frac{i}{N} + n\right)\right| \le \left|\left(\frac{i+1}{N} + n\right) - \left(\frac{i}{N} + n\right)\right| = \frac{1}{N} = \delta.$$

于是结合 (6.43) 和 (6.44) 式我们就有

$$|f(x)| \le \left| f(x) - f\left(\frac{i}{N} + n\right) \right| + \left| f\left(\frac{i}{N} + n\right) \right| < 2\varepsilon.$$

故 $\lim_{x \to +\infty} f(x) = 0$.

第七章 无理数初步

定理 7.1 (狄利克雷定理)

对于无理数 a,则存在无穷多对互素的整数 p,q 使得 $\left|a-\frac{p}{q}\right| \leq \frac{1}{q^2}$,而对有理数 a,这样的互素整数对 (p,q) 只能是有限个.

Ŷ 笔记 这通常称为"齐次逼近",证明利用抽屉原理即可.

推论 7.1

对于实数 a,则 a 为无理数当且仅当任意 $\varepsilon > 0$,存在整数 x,y 使得 $0 < |ax-y| < \varepsilon$.

证明 对任意正整数 N,将 [0,1] 均分为 N 个闭区间,每一个长度 $\frac{1}{N}$,则 n+1 个数 $0,\{a\},\{2a\},\cdots,\{Na\}$ 全部落在 [0,1] 中,根据抽屉原理必定有两个数落入同一区间,也即存在 $0 \le i < j \le N$ 使得 $\{ia\},\{ja\} \in \left[\frac{k}{N},\frac{k+1}{N}\right]$ 。注:因为 a 是无理数,所以任意 $i \ne j$ 都一定有 $\{ia\} \ne \{ja\}$,否则 ia-[ia]=ja-[ja] 意味着 a 是有理数。所以

$$|\{ia\} - \{ja\}| = |(j-i)a - M| \le \frac{1}{N} \Rightarrow \left|a - \frac{M}{j-i}\right| \le \frac{1}{N(j-i)}$$

这里 M 是一个整数,现在不一定有 M 与 j-i 互素,但是我们可以将其写成既约分数 M=up,j-i=uq,其中 $(p,q)=1,u\in\mathbb{N}^+$,代入得到:对任意正整数 N,都存在互素的整数 p,q,其中 $1\leq q\leq N$ 是正整数,使得 $\left|a-\frac{p}{q}\right|\leq \frac{1}{Nq}\leq \frac{1}{q^2}$ 。现在还没有说明"无穷多个",采用反证法,假如使得 $\left|a-\frac{p}{q}\right|\leq \frac{1}{q^2}$ 成立的互素的整数 (p,q) 只有有限对,记为 $(p_1,q_1),\cdots,(p_m,q_m)$,那么(在上面证明的结论里面)依次取 $N=3,4,\cdots$,则每一个 N 都能够对应这 m 对 (p,q) 中的某一个,而 $N=3,4,\cdots$ 是无限的,m 是有限的,所以必定有一个 (p_i,q_i) 对应了无穷多个正整数 N。不妨设 i=1,换句话说:存在一列正整数 N_k 单调递增趋于正无穷,使得 $\left|a-\frac{p_1}{q_1}\right|\leq \frac{1}{N_kq_1}$ 恒成立,令 $k\to\infty$ 可知 $a=\frac{p}{q}$ 是有理数,导致矛盾。

而如果 $a=\frac{m}{n}$ 是有理数,但是有无穷个互素的 (p,q) 使得 $\left|\frac{m}{n}-\frac{p}{q}\right| \leq \frac{1}{q^2}$,则当 q 充分大时,所有这些 (p,q) 中的 p 也都会充分大(相当于同时趋于无穷),然而不等式等价于 $\frac{1}{q} \geq \frac{|mq-np|}{n}$,则当 p,q 都充分大时 $mq-np\neq 0$ (不然会导致 p|mq 结合互素有 p|m (对充分大的 p 均成立),显然矛盾),于是 $\frac{1}{q} \geq \frac{|mq-np|}{n} \geq \frac{1}{n}$ 导致 q 有上界,还是矛盾,结论得证。

第八章 不等式

8.1 基本初等不等式

命题 8.1 (关于 In 的常用不等式)

(1)
$$\ln(1+x) < \frac{x}{\sqrt{1+x}}, x > 0.$$

(2)
$$\ln x < \sqrt{x} - \frac{1}{\sqrt{x}}, x > 0.$$

(3)

证明

(1)
$$\Leftrightarrow f(x) = \ln(1+x) - \frac{x}{\sqrt{1+x}}, \ x \geqslant 0, \ \mathbb{N}$$

$$f'(x) = \frac{2\sqrt{1+x} - x - 2}{2(1+x)^{\frac{3}{2}}} = -\frac{1+x - 2\sqrt{1+x} + 1}{2(1+x)^{\frac{3}{2}}} = -\frac{\left(\sqrt{1+x} - 1\right)^2}{2(1+x)^{\frac{3}{2}}} < 0, \forall x > 0.$$

故 f 在 $(0,+\infty)$ 上严格单调递减,又 $f \in C[0,+\infty)$, 因此 f 在 $[0,+\infty)$ 上也严格单调递减。从而

$$f(x) \leqslant f(0) = 0, \forall x > 0.$$

$$\mathbb{P}\ln(1+x)<\frac{x}{\sqrt{1+x}}, x>0.$$

(2)

(3)

8.2 重要不等式

定理 8.1 (Cauchy 不等式)

对任何 $n \in \mathbb{N}$, (a_1, a_2, \dots, a_n) , $(b_1, b_2, \dots, b_n) \in \mathbb{R}^n$, 有

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2. \tag{8.1}$$

且等号成立条件为 (a_1, a_2, \dots, a_n) , (b_1, b_2, \dots, b_n) 线性相关.

证明 (i) 当 b_i 全为零时,(8.1)式左右两边均为零,结论显然成立.

(ii) 当
$$b_i$$
 不全为零时, 注意到 $\left(\sum_{i=1}^n (a_i+tb_i)\right)^2\geqslant 0, \forall t\in\mathbb{R}$. 等价于
$$t^2\sum_{i=1}^n b_i^2+2t\sum_{i=1}^n a_ib_i+\sum_{i=1}^n a_i^2\geqslant 0, \forall t\in\mathbb{R}.$$

根据一元二次方程根的存在性定理, 可知 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 \leqslant 0.$

从而
$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2$$
. 下证(8.1)式等号成立的充要条件.

(i) 当 b_i 全为零时,因为零向量与任意向量均线性相关,所以此时 $(a_1,a_2,\cdots,a_n),(b_1,b_2,\cdots,b_n)$ 线性相关.

(ii) 当 b_i 不全为零时, 此时我们有 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 根据一元二次方程根的存在性定理, 可知存在 $t_0 \in \mathbb{R}$, 使得

$$\left(\sum_{i=1}^{n} (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^{n} b_i^2 + 2t_0 \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i^2 = 0.$$

于是 $a_i + t_0 b_i = 0, i = 1, 2, \dots, n$. 即 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ 线性相关. 反之, 若 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ 线性相关,则存在不全为零的 $\lambda, \mu \in \mathbb{R}$, 使得

$$\lambda a_i + \mu b_i = 0, i = 1, 2, \dots, n.$$

不妨设
$$\lambda \neq 0$$
, 则 $a_i = -\frac{\mu}{\lambda} b_i$, $i = 1, 2, \dots, n$. 从而当 $t = \frac{\mu}{\lambda}$ 时, $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = 0$. 即一元二次方程 $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^n b_i^2 + 2t_0 \sum_{i=1}^n a_i b_i + \sum_{i=1}^n a_i^2 = 0$ 有实根 $\frac{\mu}{\lambda}$. 因此 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 即(8.1)式等号成立.

例题 8.1 证明:

$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

证明 对 $\forall n \in \mathbb{N}, x_1, x_2, \dots, x_n > 0$, 由Cauchy 不等式可得

$$\sum_{i=1}^{n} \frac{1}{x_i} \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \left(\frac{1}{\sqrt{x_i}}\right)^2 \cdot \sum_{i=1}^{n} \left(\sqrt{x_i}\right)^2 \geqslant \left(\sum_{i=1}^{n} \sqrt{x_i} \cdot \frac{1}{\sqrt{x_i}}\right)^2 = n^2.$$

故
$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum\limits_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

例题 8.2 求函数 $y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$ 在定义域内的最大值和最小值.

² **笔记** 首先我们猜测定义域的端点处可能存在最值, 然后我们通过简单的放缩就能得到 y(0) 就是最小值. 再利用Cauchy 不等式我们可以得到函数的最大值. 构造 Cauchy 不等式的思路是: 利用待定系数法构造相应的 Cauchy 不等式. 具体步骤如下:

设 A, B, C > 0, 则由 Cauchy 不等式可得

$$\left(\frac{1}{\sqrt{A}}\sqrt{Ax + 27A} + \frac{1}{\sqrt{B}}\sqrt{13B - Bx} + \frac{1}{\sqrt{C}}\sqrt{Cx}\right)^{2} \leqslant \left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C}\right)\left[(A + C - B)x + 27A + 13B\right]$$

并且当且仅当 $\sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx}$ 时, 等号成立.

令 A+C-B=0(因为要求解 y 的最大值, 我们需要将 y 放大成一个不含 x 的常数), 从而与上式联立得到方程组

$$\begin{cases} \sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx} \\ A + C - B = 0 \end{cases}$$

解得:A = 1, B = 3, C = 2, x = 9.

从而得到我们需要构造的 Cauchy 不等式为

$$\left(\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x}\right)^2 \leqslant \left(1 + \frac{1}{3} + \frac{1}{2}\right)(x+27+39-3x+2x)$$

并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立.

解 由题可知, 函数 y 的定义域就是: $0 \le x \le 13$. 而

$$y(x) = \sqrt{x + 27} + \sqrt{[\sqrt{13 - x} + \sqrt{x}]^2}$$
$$= \sqrt{x + 27} + \sqrt{13 + 2\sqrt{x(13 - x)}}$$
$$\geqslant \sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13} = y(0)$$

于是 y 的最小值为 $3\sqrt{3} + \sqrt{13}$. 由 Cauchy 不等式可得

$$y^{2}(x) = (\sqrt{x+27} + \sqrt{13-x} + \sqrt{x})^{2}$$

$$= (\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x})^{2}$$

$$\leq (1 + \frac{1}{3} + \frac{1}{2})(x+27+39-3x+2x)$$

$$= 121 = y^{2}(9)$$

即 $y(x) \le y(9) = 11$. 并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立. 故 y 的最大值为 11.

定理 8.2 (均值不等式)

设 $a_1, a_2, \cdots, a_n > 0$, 则下述函数是连续递增函数

$$f(r) = \begin{cases} \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n}\right)^{\frac{1}{r}}, r \neq 0\\ \sqrt[q]{a_1 a_2 \dots a_n}, \qquad r = 0 \end{cases}$$
 (8.2)

其中若 $r_1 \neq r_2$,则 $f(r_1) = f(r_2)$ 的充要条件是 $a_1 = a_2 = \cdots = a_n$.

🔮 笔记 均值不等式最重要的特例是下面的均值不等式常用形式.

定理 8.3 (均值不等式常用形式)

设 $a_1, a_2, \dots, a_n > 0$, 则

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

例题 **8.3** 设 $f(x) = 4x(x-1)^2, x \in (0,1)$, 求 f 的最大值.

解 由均值不等式常用形式可得

$$f(x) = 4x (x - 1)^{2} = 2 \cdot 2x (1 - x) (1 - x)$$

$$= 2 \cdot \left[\sqrt[3]{2x (1 - x) (1 - x)} \right]^{3}$$

$$\leq 2 \cdot \left[\frac{2x + 1 - x + 1 - x}{3} \right]^{3}$$

$$= 2 \cdot \left(\frac{2}{3} \right)^{3} = \frac{16}{27}$$

并且当且仅当 2x = 1 - x, 即 $x = \frac{1}{3}$ 时等号成立.

定理 8.4 (Bernoulli 不等式)

设 $x_1, x_2, \cdots, x_n \geq -1$ 且两两同号,则

$$(1+x_1)(1+x_2)\cdots(1+x_n) \geqslant 1+x_1+x_2+\cdots+x_n$$
.

证明 当 n=1 时, 我们有 $1+x_1 \ge 1+x_1$, 结论显然成立.

假设当n=k时,结论成立.则当n=k+1时,由归纳假设可得

$$(1+x_1)(1+x_2)\cdots(1+x_{k+1}) \ge (1+x_1+x_2+\cdots+x_k)(1+x_{k+1})$$

$$= 1+x_1+x_2+\cdots+x_k+x_{k+1}+x_1x_{k+1}+x_2x_{k+1}+\cdots+x_kx_{k+1}$$

$$\ge 1+x_1+x_2+\cdots+x_k+x_{k+1}$$

故由数学归纳法可知,结论成立.

定理 8.5 (Bernoulli 不等式特殊形式)

设 $x \ge -1$,则

$$(1+x)^n \ge 1 + nx.$$

定理 8.6 (Jesen 不等式)

设 $\lambda_i \geq 0, i = 1, 2, \cdots, n, \sum_{i=1}^n \lambda_i = 1$, 则对下凸函数 f, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

对上凸函数 f, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \ge \sum_{i=1}^{n} \lambda_i f(x_i).$$

定理 8.7 (Young 不等式)

对任何 $a, b \ge 0, \frac{1}{p} + \frac{1}{q} = 1, p > 1$ 有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

证明 (i) $\exists a, b$ 至少有一个为零时, 结论显然成立.

(ii) 当 a, b 均不为零时, 我们有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

$$\Leftrightarrow \ln a + \ln b \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

$$\Leftrightarrow \frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

由Jesen 不等式和 $f(x) = \ln x$ 函数的上凸性可知, 上述不等式成立. 故原结论也成立.

定理 8.8 (Hold 不等式)

设 $\frac{1}{p} + \frac{1}{q} = 1, p > 1, a_1, a_2, \dots, a_n \ge 0, b_1, b_2, \dots, b_n \ge 0$, 则有

$$\sum_{k=1}^n a_k b_k \le \sqrt[p]{\sum_{k=1}^n a_k^p} \cdot \sqrt[q]{\sum_{k=1}^n b_k^q}.$$

证明 (i) 当 a_1, a_2, \cdots, a_n 全为零时, 结论显然成立.

(ii) 当 a_1, a_2, \cdots, a_n 不全为零时,令

$$a'_{k} = \frac{a_{k}}{\sqrt[p]{\sum_{k=1}^{n} a_{k}^{p}}}, b'_{k} = \frac{b_{k}}{\sqrt[q]{\sum_{k=1}^{n} b_{k}^{q}}}, k = 1, 2, \dots, n.$$

从而只需证明 $\sum_{k=1}^{n} a_k' b_k' \leq 1$. 由Young 不等式可得

$$\sum_{k=1}^{n} a'_k b'_k \leqslant \sum_{k=1}^{n} \left[\frac{\left(a'_k \right)^p}{p} + \frac{\left(b'_k \right)^q}{q} \right] = \sum_{k=1}^{n} \left(\frac{a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{b_k^p}{q \sum_{k=1}^{n} b_k^q} \right)$$

$$= \frac{\sum_{k=1}^{n} a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{\sum_{k=1}^{n} b_k^p}{q \sum_{k=1}^{n} b_k^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

故原结论成立.

定理 8.9 (排序和不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \le a_2 \le \cdots \le a_n, b_1 \le b_2 \le \cdots \le b_n.$$

 $\{c_1, c_2, \cdots, c_n\}$ 是 $\{b_1, b_2, \cdots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \le \sum_{i=1}^{n} a_i c_i \le \sum_{i=1}^{n} a_i b_i,$$

且等号成立的充要条件是 $a_i = a_j$, $1 \le i < j \le n$ 或者 $b_i = b_j$, $1 \le i < j \le n$.

笔记 简单记为倒序和≤乱序和≤同序和.

定理 8.10 (Chebeshev 不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \leq a_2 \leq \cdots \leq a_n, b_1 \leq b_2 \leq \cdots \leq b_n$$
.

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \le \sum_{i=1}^{n} a_i b_i.$$

且等号成立的充要条件是 $a_i = a_j$, $1 \le i < j \le n$ 或者 $b_i = b_j$, $1 \le i < j \le n$.

C

定理 8.11 (Chebeshev 不等式积分形式)

设 $p \in R[a,b]$ 且非负,f,g 在 [a,b] 上是单调函数,则

$$\left(\int_{a}^{b} p(x)f(x) dx\right) \left(\int_{a}^{b} p(x)g(x) dx\right) \leq \left(\int_{a}^{b} p(x) dx\right) \left(\int_{a}^{b} p(x)f(x)g(x) dx\right), f, g \stackrel{\text{i.i.}}{=} interpolation |f(x)| dx$$

$$\left(\int_a^b p(x)f(x)\,dx\right)\left(\int_a^b p(x)g(x)\,dx\right) \geq \left(\int_a^b p(x)\,dx\right)\left(\int_a^b p(x)f(x)g(x)\,dx\right), f,g \, \mbox{$\stackrel{.}{=}$ iiith d} \label{eq:partial}$$

证明

$$\begin{split} &\left(\int_a^b p(x)f(x)dx\right)\left(\int_a^b p(x)g(x)dx\right) - \left(\int_a^b p(x)dx\right)\left(\int_a^b p(x)f(x)g(x)dx\right) \\ &= \left(\int_a^b p(x)f(x)dx\right)\left(\int_a^b p(y)g(y)dy\right) - \left(\int_a^b p(x)dx\right)\left(\int_a^b p(y)f(y)g(y)dy\right) \\ &= \iint_{[a,b]^2} p(x)p(y)g(y)[f(x) - f(y)]dxdy \\ &= \iint_{[a,b]^2} p(y)p(x)g(x)[f(y) - f(x)]dxdy \\ &= \frac{1}{2}\iint_{[a,b]^2} p(x)p(y)[g(y) - g(x)][f(x) - f(y)]dxdy, \end{split}$$

第九章 积分

9.1 积分常用结论

定理 9.1 (基本结论)

$$\sum_{n=1}^{m} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \sum_{n=1}^{m} f_{n}(x) dx.$$

$$\sum_{n=1}^{m} \int_{a_{n-1}}^{a_{n}} f(x) dx = \int_{a_{0}}^{a_{m}} f(x) dx, \sum_{n=1}^{m} \int_{a_{n}}^{a_{n-1}} f(x) dx = \int_{a_{m}}^{a_{0}} f(x) dx.$$

证明 由定积分的性质易证.

命题 9.1

$$\label{eq:relation} \ddot{\mathcal{H}} \ f \in R[a,+\infty), \lim_{n \to +\infty} \int_a^n |f(x)| dx \ \dot{\mathcal{F}}$$
在且 $\overline{\lim}_{x \to +\infty} |f(x)| = 0$,则 $\int_a^\infty f(x) dx$ 一定 $\dot{\mathcal{F}}$ 在.

章 笔记 若已知 $\int_a^\infty f(x)dx$ 存在,则由 Heine 归结原则可知 $\lim_{n \to +\infty} \int_a^n f(x)dx$ 一定存在. 但是反过来, $\lim_{n \to +\infty} \int_a^n f(x)dx$ 只是 $\int_a^\infty f(x)dx$ 的一个子列极限,故 $\int_a^\infty f(x)dx$ 不一定存在. 还需要额外的条件才能使得 $\int_a^\infty f(x)dx$ 存在. 证明 对 $\forall x \geqslant a$,一定存在 $n \in \mathbb{N}$,使得 $n \leqslant x < n+1$. 从而可得

$$\int_{a}^{x} f(x)dx = \int_{a}^{n} f(x)dx + \int_{n}^{x} f(x)dx.$$

$$(9.1)$$

并且

$$\int_{n}^{x} f(x)dx \le \int_{n}^{x} |f(x)| dx \le \int_{n}^{n+1} |f(x)| dx \le \sup_{y \ge n} |f(y)|. \tag{9.2}$$

对(9.2)式两边同时令 $x \to +\infty$,则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to+\infty}\int_{n}^{x}f(x)dx=0$. 于是再对(9.1)式两边同时令 $x\to+\infty$, 则 $n\to+\infty$. 从而可得

$$\int_a^\infty f(x)dx = \lim_{x \to +\infty} \int_a^x f(x)dx = \lim_{n \to +\infty} \int_a^n f(x)dx + \lim_{x \to +\infty} \int_n^x f(x)dx = \lim_{n \to +\infty} \int_a^n f(x)dx.$$

又因为此时 $\lim_{n\to+\infty} \int_a^n f(x)dx$ 存在, 所以 $\int_a^\infty f(x)dx$ 也存在.

定理 9.2

设 f(x) 在 [a,b] 上可积,则 |f(x)| 在 [a,b] 上也可积 (即绝对可积),且成立

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

9.2 积分性态分析

例题 9.1 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x f(x) dx = 0.$$

证明: f(x) 在 (a,b) 上至少 2 个零点.

证明 设 $F_1(x) = \int_a^x f(t)dt$, 则 $F_1(a) = F_1(b) = 0$. 再设 $F_2(x) = \int_a^x F_1(t)dt = \int_a^x \left[\int_a^t f(s)ds \right] dt$, 则 $F_2(a) = 0$, $F_2'(x) = F_1(x)$, $F_2''(x) = F_1'(x) = f(x)$. 由条件可知

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F_{1}'(x) dx = \int_{a}^{b} x dF_{1}(x) = x F_{1}(x) \Big|_{a}^{b} - \int_{a}^{b} F_{1}(x) dx = -F_{2}(b).$$

于是由 Rolle 中值定理可知, 存在 $\xi \in (a,b)$, 使得 $F_2'(\xi) = F_1(\xi) = 0$. 从而再由 Rolle 中值定理可知, 存在 $\eta_1 \in (a,\xi), \eta_2 \in (\xi,b)$, 使得 $F_1'(\eta_1) = F_1'(\eta_2) = 0$. 即 $f(\eta_1) = f(\eta_2) = 0$.

例题 9.2 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, 2, \dots, n.$$

证明: f(x) 在 (a,b) 上至少 n+1 个零点.

笔记 利用分部积分转换导数的技巧.

证明 令 $F(x) = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \left[\int_a^{x_2} f(x_1) dx_1 \right] dx_2 \cdots dx_n$. 则 $F(a) = F'(a) = \cdots = F^{(n)}(a) = 0, F^{(n+1)}(x) = f(x)$. 由已知条件,再反复分部积分,可得当 $1 \le k \le n$ 且 $k \in \mathbb{N}$ 时,有

$$0 = \int_{a}^{b} f(x) dx = \int_{a}^{b} F^{(n+1)}(x) dx = F^{(n)}(x) \Big|_{a}^{b} = F^{(n)}(b),$$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F^{(n+1)}(x) dx = \int_{a}^{b} x dF^{(n)}(x) = x F^{(n)}(x) \Big|_{a}^{b} - \int_{a}^{b} F^{(n)}(x) dx = -F^{(n-1)}(b),$$

$$0 = \int_{a}^{b} x^{n} f(x) dx = \int_{a}^{b} x^{n} F^{(n+1)}(x) dx = \int_{a}^{b} x^{n} dF^{(n)}(x) = x^{n} F^{(n)}(x) \Big|_{a}^{b} - n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx$$
$$= -n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx = \dots = (-1)^{n} n! \int_{a}^{b} F_{\ell}(x) dx = (-1)^{n} n! F(b).$$

从而 $F(b) = F'(b) = \cdots = F^{(n)}(b) = 0$. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (a,b)$, 使得 $F'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知存在 $\xi_1^2, \xi_2^2 \in (a,b)$, 使得 $F''(\xi_1^2) = F''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^{n+1}, \xi_2^{n+1}, \cdots, \xi_{n+1}^{n+1} \in (a,b)$, 使得 $F^{(n+1)}(\xi_1^{n+1}) = F^{(n+1)}(\xi_2^{n+1}) = \cdots = F^{(n+1)}(\xi_{n+1}^{n+1}) = 0$. 即 $f(\xi_1^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_{n+1}^{n+1}) = 0$.

例题 9.3 己知 $f(x) \in D^2[0,1]$, 且

$$\int_0^1 f(x) \, dx = \frac{1}{6}, \int_0^1 x f(x) \, dx = 0, \int_0^1 x^2 f(x) \, dx = \frac{1}{60}.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 16$.

笔记 构造 $g(x) = f(x) - (8x^2 - 9x + 2)$ 的原因: 受到上一题的启发, 我们希望找到一个 g(x) = f(x) - p(x), 使得

$$\int_0^1 x^k g(x) dx = \int_0^1 x^k [f(x) - p(x)] dx = 0, \quad k = 0, 1, 2.$$

成立.即

$$\int_0^1 x^k f(x) dx = \int_0^1 x^k p(x) dx, \quad k = 0, 1, 2.$$

待定 $p(x) = ax^2 + bx + c$, 则代入上述公式, 再结合已知条件可得

$$\frac{1}{6} = \int_0^1 p(x)dx = \int_0^1 \left(ax^2 + bx + c\right)dx = \frac{a}{3} + \frac{b}{2} + c,$$

$$0 = \int_0^1 x p(x) dx = \int_0^1 \left(ax^3 + bx^2 + cx \right) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2},$$

$$\frac{1}{60} = \int_0^1 x^2 p(x) dx = \int_0^1 \left(ax^4 + bx^3 + cx^2 \right) dx = \frac{a}{5} + \frac{b}{4} + \frac{c}{3}.$$

解得:a = 8, b = -9, c = 2. 于是就得到 $g(x) = f(x) - (8x^2 - 9x + 2)$.

$$\int_0^1 x^k g(x) dx = 0, \quad k = 0, 1, 2.$$

再令
$$G(x) = \int_0^x \left[\int_0^t \left(\int_0^s g(y) dy \right) ds \right] dt$$
,则 $G(0) = G'(0) = G''(0) = 0$, $G'''(x) = g(x)$.利用分部积分可得
$$0 = \int_0^1 g(x) dx = \int_0^1 G'''(x) dx = G''(1),$$

$$0 = \int_0^1 xg(x) dx = \int_0^1 xG'''(x) dx = \int_0^1 xdG''(x) = xG''(x) \Big|_0^1 - \int_0^1 G''(x) dx = -G'(1),$$

$$0 = \int_0^1 x^2g(x) dx = \int_0^1 x^2G'''(x) dx = \int_0^1 x^2dG''(x) = x^2G''(x) \Big|_0^1 - 2\int_0^1 xG''(x) dx$$

$$= -2\int_0^1 xdG'(x) = 2\int_0^1 G'(x) dx - 2xG'(x) \Big|_0^1 = 2G(1).$$

从而 G(1)=G'(1)=G''(1)=0. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1\in(0,1)$, 使得 $G'(\xi_1^1)=0$. 再利用 Rolle 中值定理可知, 存在 $\xi_1^2,\xi_2^2\in(0,1)$, 使得 $G''(\xi_1^2)=G''(\xi_2^2)=0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^3,\xi_2^3,\xi_3^3\in(0,1)$, 使得 $G'''(\xi_1^3)=G'''(\xi_2^3)=G'''(\xi_3^3)=0$. 即 $g(\xi_1^3)=g(\xi_2^3)=g(\xi_3^3)=0$. 再反复利用 Rolle 中值定理可得, 存在 $\xi\in(0,1)$, 使得 $g''(\xi)=0$. 即 $f''(\xi)=16$.

第十章 小技巧

10.1 长除法

例题 **10.1** 利用多项式除法计算 **Taylor** 级数和 **Laurent** 级数
已知
$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \cdots$$
, $\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \cdots$.
1. 求 $\tan x$. 2. 求 $\frac{1}{\sin^2 x}$.

笔记 实际问题中需要多展开几项,展开得越多,得到的结果也越多.

解 1. 根据多项式除法可得

因此
$$\tan x = \frac{\sin x}{\cos x} = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$
.

2. 根据多项式乘法可得

$$\sin^2 x = \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) = x^2 - \frac{1}{3}x^4 + \dots$$

再根据多项式除法可得

$$\frac{\frac{1}{x^{2}} - \frac{1}{3} + \cdots}{1}$$

$$\frac{1 - \frac{1}{3}x^{2} + \cdots}{\frac{1}{3}x^{2} + \cdots}$$

$$\frac{\frac{1}{3}x^{2} + \cdots}{0 + \cdots}$$

因此
$$\frac{1}{\sin^2 r} = \frac{1}{r^2} - \frac{1}{3} + \cdots$$
.

10.2 将多项式分式分解为其部分因式的和

例题 **10.2** 1. 分解 a > 0, $\frac{1}{(1+x^2)(1+ax)}$.

2. 分解
$$\frac{1}{(1+x^2)(1+x)^2}$$
3. 分解
$$\frac{1}{(1+x^2)^2(1+x)}$$

4. 分解
$$\frac{1}{(1+x^2)^2(1+x)^2}$$
.

$$\frac{1}{\left(1+x^2\right)\left(1+ax\right)} = \frac{Ax+B}{1+x^2} + \frac{C}{1+ax}.$$
 (10.1)

其中 A, B, C 均为常数.

解法一(待定系数法):

将(10.1)式右边通分得到

$$\frac{Ax+B}{1+x^2} + \frac{C}{1+ax} = \frac{(Ax+B)(1+ax) + C(1+x^2)}{(1+x^2)(1+ax)} = \frac{(Aa+C)x^2 + (A+Ba)x + B + C}{(1+x^2)(1+ax)}.$$

比较上式左右两边分子各项系数可行

$$\begin{cases} Aa + C = 0 \\ A + Ba = 0 \\ B + C = 1 \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$, $C = \frac{a^2}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}$$

解法二(留数法):

(10.1) 式两边同时乘
$$1 + ax$$
,得到 $\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+ax) + C$. 再令 $x \to -\frac{1}{a}$,得 $C = \frac{1}{1+\frac{1}{a^2}} = \frac{a^2}{1+a^2}$. (10.1) 式两边同时乘 $1+x^2$,得到 $\frac{1}{1+ax} = Ax+B+\frac{C}{1+ax} \cdot \left(1+x^2\right)$. 再分别令 $x \to \pm i$,可得
$$\begin{cases} Ai+B=\frac{1}{1+ai} \\ -Ai+B=\frac{1}{1-ai} \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}$$

解法三(留数法+待定系数法):

(10.1) 式两边同时乘
$$1 + ax$$
,得到 $\frac{1}{1 + x^2} = \frac{Ax + B}{1 + x^2} \cdot (1 + ax) + C$. 再令 $x \to -\frac{1}{a}$,得 $C = \frac{1}{1 + \frac{1}{a^2}} = \frac{a^2}{1 + a^2}$.

容易直接观察出(10.1)式右边通分后分子的最高次项系数为 Aa+C, 常数项为 B+C. 并将其与(10.1)式左边的 分子对比,可以得到

$$\begin{cases} Aa + C = 0 \\ B + C = 1 \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}.$$

2. 根据代数学知识我们可以设

$$\frac{1}{(1+x^2)(1+x)^2} = \frac{Ax+B}{1+x^2} + \frac{C}{1+x} + \frac{D}{(1+x)^2}.$$
 (10.2)

其中 A, B, C, D 均为常数.

(10.2)式两边同时乘 $(1+x)^2$, 得到

$$\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+x)^2 + C(1+x) + D. \tag{10.3}$$

再令 $x \to -1$, 可得 $D = \frac{1}{2}$. 对(10.3)式两边同时求导得到

$$\left. \frac{-2x}{\left(1+x^2\right)^2} \right|_{x \to -1} = \left[\frac{Ax+B}{1+x^2} \cdot (1+x)^2 \right]' \Big|_{x \to -1} + C = C.$$

从而 $C = \frac{1}{2}$. 令(10.2)中的 x = 0, 得到 1 = B + C + D, 将 $C = D = \frac{1}{2}$ 代入解得:B = 0. 再令(10.2)中的 x = 1, 得到 $\frac{1}{8} = \frac{A + B}{2} + \frac{C}{2} + \frac{D}{4}$, 将 $C = D = \frac{1}{2}$, B = 0 代入解得: $A = -\frac{1}{2}$. 于是原式可分解为

$$\frac{1}{\left(1+x^2\right)\left(1+x\right)^2} = \frac{-x}{2\left(1+x^2\right)} + \frac{1}{2+2x} + \frac{1}{2\left(1+x\right)^2}.$$

例题 10.3 分解 $\frac{1}{1+x^4}$. 解 首先我们注意到

$$\frac{1}{1+x^4} = \frac{1}{(1+x^2) - 2x^2} = \frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)}.$$

然后根据代数学知识我们可以设

$$\frac{1}{1+x^4} = \frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{Ax + B}{x^2 - \sqrt{2}x + 1} + \frac{Cx + D}{x^2 + \sqrt{2}x + 1}.$$
 (10.4)

其中 A, B, C, D 均为常数. 将上式右边通分可得

$$\frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{(Ax + B)\left(x^2 + \sqrt{2}x + 1\right) + (Cx + D)\left(x^2 - \sqrt{2}x + 1\right)}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)}.$$

比较上式左右两边分子各项系数可得

$$\begin{cases} B+D=1\\ A+\sqrt{2}B+C-\sqrt{2}D=0\\ A\sqrt{2}+B-C\sqrt{2}+D=0\\ A+C=0 \end{cases}$$

解得: $A = -\frac{\sqrt{2}}{4}, B = \frac{1}{2}, C = \frac{\sqrt{2}}{4}, D = \frac{1}{2}.$ 于是原式可分解为

$$\frac{1}{1+x^4} = \frac{-\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 - \sqrt{2}x + 1} + \frac{\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 + \sqrt{2}x + 1}.$$

例题 10.4 分解 $\frac{x^4}{(1+x)(1+x^2)}$.

解 先利用多项式除法用 x^4 除以 $(1+x)(1+x^2)$ 得到 $x^4=(x-1)(1+x)\left(1+x^2\right)+1$. 从而

$$\frac{x^4}{(1+x)\left(1+x^2\right)} = \frac{(x-1)\left(1+x\right)\left(1+x^2\right)+1}{(1+x)\left(1+x^2\right)} = x-1+\frac{1}{(1+x)\left(1+x^2\right)}.$$

然后再利用多项式分式的分解方法 (待定系数法和留数法) 将 $\frac{1}{(1+x)\left(1+x^2\right)}$ 分解为部分因式的和. 最后我们可将原式分解为

$$\frac{x^4}{(1+x)\left(1+x^2\right)} = x-1+\frac{1}{2+2x}+\frac{-x+1}{2+2x^2}.$$

第十一章 钓鱼题合集

例题 **11.1** 设 $0 < a < b < \infty$ 为实数, $K_{a,b}$ 为区间 [a,b] 上满足 $\int_a^b f(t) dt = 1$,且 af(a) = bf(b) 的非负单调递 减函数全体。求 $\sup_{f,g \in K_{a,b}} \int_a^b \max\{f(t),g(t)\} dt$ 。