Review of Random Variables Distributions, and Moure
Discrete Random Variables: - Discrete probability Dist's. - Countable number of values, y;, i=1, 2,
- Discrete probability Dist"c.
- Comptable manple of values 4. 221.2
$-P(Y_{L^{2}}y_{i})=p_{i}>0 \forall i$
$-2p_i=1$
E.g: Coin Toss: Outcome, 0= {(H, H), (H, 7), (T, H), (T, T)} (twice)
Let Y= # 87 Heads observed in 2 flips.
for y=0: f(y)=0.25
y = 1 : f(y) = 0.5
y = 1; $f(y) = 0.5y = 2$; $f(y) = 0.25$
where f(y) is the probability dest.fh.
Cantinuous randam variables:
$P \cdot D \cdot F f(y) \geq 0$
$\int f(y) dy = 1$
b
$\int f(y)dy = P(a \leq Y \leq b)$
50
Momento: Expectations of powers of 2. v. 5. Consider 4:
1) Mean / Expected value: E(y)= \(\sum_{i} \partial_{i} \tag{2} \) = \(\mu_{i} \)
Neasure of location, or "central tendency"
2) Variance: $\sigma^2 f = Var(y) = E(y-\mu)^2$
Measure of dispersion, or scale, of y around its mean
Q: Why prefer or ever or? Same units as y'.
U: Why prefer or ever or? Same units as y.

k,

Skewness:
$$S = \frac{E(y-\mu)^3}{\sigma^3}$$
 (Capiel deviation, seal by σ^3 (pa fecturial successor)

Measure of asymmetry in a distribution.

Large positive value => Long right tail.

4) Kurtosis: $K = \frac{E(y-\mu)^4}{\sigma^4}$

Measure of thickness of the tails of a dist.

 $K > 3 => fad tails$
=> Leptokurtoris (sel. to gassesian dist.)
=> Estreme events are more likely to occur than under the case of normality.

Multipastriste Marsach Distributions.

Multipastriste Marsach Distributions.

(av (z, y) = $E((y - \mu_y)(z - \mu_x)) = T_{z,y}$

(av (z, y) = $Cov(z,y) = T_{z,y} = fay \in [-1,1]$

Gy $\sigma_z = \sigma_z\sigma_y$

Cov(z, y) > 0 >> When $y_1 > \mu_y$, then z_1 tends to be $x_2 > x_3$

Corr(z, y) is unitless... hence popular.

Statistics

 $x_1 > x_2 > x_3 > x_4$
 $x_2 > x_3 > x_4 > x_5 > x_5$

Sample Variance,
$$\hat{\sigma}^2 = \sum_{k=1}^{7} (y_k - \bar{y})^2$$

T

Unbiased estimator \bar{q} σ^2 , $g^2 = \sum_{k=1}^{7} (y_k - \bar{y})^2$

Sample and deviation, $\hat{\sigma}^2 = \sqrt{\hat{\sigma}^2} = \sqrt{\sum_{k=1}^{7} (y_k - \bar{y})^2}$
 $g^2 = \sqrt{\frac{2}{7}} = \sqrt{\frac{2}{7}} (y_k - \bar{y})^2$

Sample akewness, $\hat{S} = \frac{1}{7} \sum_{k=1}^{7} (y_k - \bar{y})^3$
 $\hat{\sigma}^{-3}$

Sample kurtonio, $\hat{K} = \frac{1}{7} \sum_{k=1}^{7} (y_k - \bar{y})^4$
 $\hat{\sigma}^4$

If $\hat{Y} \sim \hat{Y}$, then $\hat{Y}^2 \sim \hat{X}^2$ dist.

 $\hat{X}^2 / \hat{X}^2 \sim \hat{Y}$ dist.

Test \hat{Y} Normality: Jargne-Bera test statistics

 $\hat{Y} = \frac{1}{6} (\hat{S}^2 + \frac{1}{4} (\hat{K} - 3)^2) \hat{x}_{i} \hat{y}_{i} \hat{y}_{i}^2$

(as $\hat{T} - k$, for models with k parameters, testing for rinduals)

Statistics background for Foresasting Time Series: y_t , t=1,2,...,T $y_1,y_2,...,y_T$

det "be the forecast lead time,

Then, generast made at time $t-\tau'$ is denoted by $\hat{y}(t-\tau)$ is forecast (or predicted) value of y' that was made at time period $t-\tau'$

Forecast Error: $C_t(z) = y_t - \hat{y}_t(t-z)$ 'Lead-z' forecast error.

Regussion residual: $e_t = y_t - \hat{y}_t$ Nonally, $e_t < e_t(z)$

1. Graphical displays

Classical toels of descriptive statistics not very useful if they lose the time dependent features of a series. E.g.: Figure 2.1 & 2.2.

Smoothing Techniques

Moving -averages: Of span N $M_{T} = y_{T} + y_{T-1} + y_{T-2} + \cdots + y_{T-N+1}$ $T \qquad N$ $= \frac{1}{N} \sum_{t=T-N+1} y_{t}$

Assigns a weight of / to N-most recent observation

Fig. 1. Var
$$(y_t) = \sigma^2$$

Reall: $Var(a) = 0$
 $Var(ax) = a^2 Var(x)$
 $Var(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} Var(X_i) + \sum_{i\neq j} Cov(X_i, X_j)$
 $Var(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} Var(X_i) + \sum_{i\neq j} Cov(X_i, X_j) = 0$. $\forall i$;

 $Var(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} Var(X_i)$
 $Var(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} Var(X_i)$
 $Var(M_T) = Var(\sum_{i=1}^{N} Y_i) + Var(\sum_{i=1}^{N} Y_i)$
 $Var(M_T) = Var(\sum_{i=1}^{N} Y_i)$
 $Var(M_T) = Var(Y_i)$
 $Var(M_T) = Var(Y_i)$

Linear filters can also be created using uniqual weights Hanning filter: Mt = 0.25 yt1 + 0.5 yt + 0.25 yt-, This is an example of a "Centered Moving average" $M_t = \frac{1}{S+1} = \frac{\sum_{j=1}^{N} y_{t-j}}{y_{t-j}}, \text{ where } pan = 2S+$ Disadrantage of linear fitters: Emphasizes outliers in the span duration. Use moving medians instead! $m_t^{(N)} = median(y_{t-u}, \dots, y_t, \dots, y_{t+u}), when$ span = N = 2u + 1!. mt = med (yt-1, yt, yt) Numerical Descriptions Stationary time series: if Fy (4t, 4th) ..., ythm) = Fy (4th, 4th) ..., ythr 1) My = E(4) = Sy.fly) dy => Countaint mean 2) $\sigma_y^2 = Var(y) = \int (y - \mu_y)^2 \cdot f(y) dy =) Constant Warrance$ 3) $E[(y_{t+j} - E(y_{t+j}))(y_{t+k} - E(y_{t+k}))]$ only dependence covariance electronarity!

2)
$$E[(y_t - \mu)^2] = E[(y_{t-s} - \mu)^2] = \sigma^2 y$$

 $vor(y_t) = vor(y_{t-s}) = \sigma^2 y$

3)
$$E[(y_t - \mu)(y_{t-s} - \mu)] = E[(y_{t-j} - \mu)(y_{t-j-s} - \mu)]^{-1}$$

 $COV(y_t, y_{t-s}) = COV(y_{t-j}, y_{t-j-s}) - \gamma_s$

This is called weak stationarity, second-order what or wide-sense stationary proces

storagly stationary processes are not required to har a finite mean s/or variance.

Simply put, a time series is covariance statishary if its mean and all autocorariances are unaffected by a change of time origin

Sample:
$$\vec{y} = \hat{\mu}_{y} = \frac{1}{T} \sum_{t=1}^{J} y_{t}$$

$$8^{2} = \vec{\sigma}_{y}^{2} = \frac{1}{T} \sum_{t=1}^{J} (y_{t} - \vec{y})^{2}$$

Acitocovariance and Autocorrelation
Morful tip: plat yt vs. y + 1. Recall, autocovariance at log 'k':
Recall, autocovariance at log 'k':
MR = CON(Yt, YthR) = E([Yt-M][YtHR-M])
Antocovariance function: { Tk } - { To, T1, T2, }
Recall, autocorrelation at lag 'k' (for a stationary series
SR = E[(4c-μ)(4tr -μ)]
VE[(YE-M)2]·E[(Yb+R-M)2]
$= \frac{\text{cov}(y_t, y_{t+R})}{\text{Var}(y_t)} = \frac{\gamma_R}{\tau^2} = \frac{\gamma_R}{\gamma_0}$
Var(yt) 52 To
Autocorrelation for (ACF): { Sk} R=0,1,2,
Properties: (1) fo = 1
(2) Dinensianless/Independent of scal
(3) Symmetric around zero.
=> SR= S-R.
$ACI^{-}: \mathcal{S}_{R} = \hat{\mathcal{J}}_{R} = \frac{c_{R}}{c_{0}}, \ k=0,1,2,,K$
Should have T > 50; Kupto T/4.

Variageam: $G_k = Var (y_{t+k} - y_t)$; k = 1, 2, ...Var (y+1-y+) Variance of differences by observations that are it lags apart and diff variance of the differences that are one time unit apart. Yt is stationary, GR = 1-9k. Stationary Jenis => Variogram converges to //- 5, asymptotically

Non-Stationary Jenis => priogram increases
monotonically! Let $d_t = y_{t+k} - y_t$ $\frac{1}{T-R} = \frac{1}{\sum_{t=1}^{L-R} \sum_{t=1}^{L-R} d_t^R}$ 1. $8k^{2} = \frac{1}{\sqrt{2}} = \sum_{k=1}^{T-k} \frac{(a_{k}^{k} - \overline{a}_{k})^{2}}{\sqrt{1-k-1}}$ $G_{R} = \frac{g_{R}^{2}}{g_{1}^{2}}$; k=1,2,...

Data Transformations

- Used to stabilize the variance of data. Non Constant variance common in time series data.

$$y^{(\lambda)} = \begin{cases} y^{\lambda} - 1 & \lambda \neq 0 ; \\ \frac{\lambda y^{\lambda - 1}}{\lambda y^{\lambda - 1}} & \lambda \neq 0 ; \\ y \ln y & \lambda = 0 \end{cases}$$

where
$$\dot{y} = \exp\left[\frac{1}{T}\sum_{t=1}^{T}\ln y\right] = y_{connetric}$$
 mean of

$$\lambda = 0 \implies \log \text{ transform}$$

 $\lambda = 0.5 \implies \text{ Square-root transform}$
 $\lambda = -0.5 \implies \text{ Recipercal square-root transform}$
 $\lambda = -1 \implies \text{ Inverse transform}$

Also,
$$\lim_{\lambda \to 0} \frac{y^{\lambda}-1}{\lambda} = \ln y$$
.

Example: Log transform.

$$\{y_{t}\}_{t=1}^{T}$$
. Let $\chi_{t} = \frac{y_{t} - y_{t-1}}{y_{t-1}} + 100$

= % change in yt

$$100 \left[\ln(y_t) - \ln(y_{t-1}) \right] = 100 \ln\left[\frac{y_t}{y_{t-1}} \right]$$

$$= 100 \ln\left[\frac{y_{t-1}}{y_{t-1}} + \frac{y_{t-1}}{y_{t-1}} \right]$$

$$= 100 \ln \left[1 + \frac{y_t - y_{t-1}}{y_{t-1}} \right]$$

$$= 100 \ln \left[1 + \frac{\chi_t}{100} \right]$$

$$= 100 \ln \left[1 + \frac{\chi_t}{100} \right]$$

$$\left[h(1+3) \cong 3_{t} \right] \cong \chi_{t}$$

Detrending data

Lines trend: E(yt) = Bo + Bit

Grahatic trend: E(yt) = Bo + Bit + B2t²

Exponential trend: E(yt) = Bo e Bit

Diffuencing data

Let x= y= y= 74

Let Backshift Operator, B be defined as:

Second difference:
$$\chi_t = \nabla^2 y_t = \nabla(\nabla y_t)$$

$$= (1-B)^{2}y_{t}$$

$$= (1-2B+B^{2})y_{t}$$

Why Second difference? First différences: Accounts for trend (which changes the mean) Second difference: Accounts for change in sh Seasonal differencing: 7 yt = (1-84) yt = yt - yt-d For monthly data: $\nabla_{12} y_t = (1-18^{12})y_t$ = $y_t - y_{t-12}$

	Steps in Jine Series modeling & forecasting
T·	Plot data determine basic features:
	- Grend:
	- Seasonality
	- Outhiers
	Plot data determine basic features: - Trend: - Seasonality - Outliers - Change over time in the above:
1	Eliminate trend, eliminate seasonality,
	transform.
14	Eliminate trend, eliminate seasonality, transform Produce "Stationary Residuals."
II.	
	- use instarical data to determine
	Develop a forecasting model - Use instorical data to determine model fit.
Ŋ.	Validate madel performance
文·	Compose values of actual ye and forecast values of untransformed data
y ·	Construct pudiction intervals
<u>র</u> ।	Maritor forecasts: evaluate stream of forecast en

Evaluating perecast model One-step ahead forecast errors: e, (1) = ye - ye(t-1) Let e_t(1), t=1,2,...,n = 'n' 1-step ahead forcast excess for n forecasts; Hen Man Error, ME = $\frac{1}{n} \sum_{t=1}^{n} e_t(1)$: Mean Aquared error, MSE = 1 \(\sum_{\text{E}} \left(\eq(1) \right)^2 . We want forecasts to be unbiased =) 16 (ME) ≈ 0 • MAD and MSE measure the variability in forecast error. In fact MSE = \$224) \$\hat{\tilde{c}}^2\$. Why? To get a unitless forecast error masurement, use Pulative forecast error (percent), se (1) = (e/(1)) + 100
or percent frecast error

(y=): y= t Mean present forecast error, MPE = 1 \sum_{n=1}^{n} se_t(2). Mean absolute percent forecast every, MAPE = 1 2 | reg (1) Finally, do a "usernal probability plot"

If et is white noise, then sample antocorrelation coefficient at log k (for large samples): $r_k \sim N(0, \frac{1}{T})$ Calculate Z-stat f. y-x In = 2 2 2 2 2 T Check to see if [Z-stat] > Zy, say Zoos = 1.96
[Dudividual automidation welf] Zoos = 2.58. If we want to evaluate a "set of antocorrelations"
printly to determine if they are white noise; Let $G_{BP} = T \sum_{k} r_{k}^{2} = Box - Prierre Statiste .$ (Recall, If $x \sim N$, then $x^{2} \sim \chi^{2}$). : QBP ~ x2(K); Ho: 2 is white warise In small samples, use Lying-Box gordners-of-fit stat $Q_{LB} = T(T+2) \sum_{k=1}^{K} \frac{x_k^2}{T-k} = -\infty^{\frac{1}{2}} (k)$

	Model Selection
	- Avoid overfitting; prefer persimony.
	- use data splitting to produce "out - of-sample"
	forcast errors sandard
	- Avoid overfitting; prefer parsimony. - Use data splitting to produce "out-of-sample" forecast errors situated - Minimise was MSE of out-of-sample forecast error - This is called "cross-validation":
	MSE of usidnals, $s^2 = \sum_{i=1}^{7} e_{i}^2$
	T= periods D date used to fit the model
	p = # parameters
	T= periods of data used to fit the model p=#parameters ct = residual from model fitting in period t.
	$R^{2} = 1 - \frac{\sum e_{t}^{2}}{r} = 1 - \frac{RSS}{TSS}$ $\frac{t^{2}}{r} = \frac{1 - RSS}{r}$ $\frac{\sum (y_{t} - \bar{y})^{2}}{r} = \frac{1 - RSS}{TSS}$
	$\frac{t^{3}}{t^{2}} \left(y_{t} - \overline{y} \right)^{2} \qquad TSS$
	Note: A large value Q R2 boss NOT ensure that
	Note: A large value of R2 does NOT ensure that out-D-sample one-step-ahead forecast errors will be small.
	$R_{adj}^{2} = 1 - \frac{RSS/T-p}{TSS/T-1} = 1 - \frac{\sum_{i}^{T} C_{i}^{2}/T-p}{\sum_{i}^{T} (y_{i} - y_{i})^{2}/T-1} = \frac{1-8}{\sum_{i}^{T} (y_{i} - y_{i})^{2}/T-1}$
<u> </u>	

AIC :=
$$ln\left(\frac{\sum e_c^2}{\sum T}\right) + \frac{2p}{T}$$

BIC/SBC :=
$$ln\left(\frac{\sum e_{\ell}^{2}}{t^{2}}\right) + \frac{p \cdot ln(T)}{T}$$

Both penalize the model for additional parameters

- Consistent possessates cinterion:

 i) If true model is present among those being considered, then it selects the true model with prob. -> 1 as T -> 00
 - ii) If true model is not among those under consideration, then it selects the best approximation with prob - 1 as 7 - so.

Rz, Rody, AIC are Inconsistent!

SBC/BIC is consistent! Heavier "size" adjustus
penalty

For asymptotically efficient oriterion, use AIC.

$$AIC_{c} = ln\left(\frac{\sum_{i=1}^{T}}{i}\right) + \frac{2T(p+1)}{T-p-2}$$

	Monitoring a forecasting model
a·)	Shewhart Control Charts:
	a) Center line: zero (for unbiased forecast)
	Shewhart Control Charts: a) Center line: zero(for unbiased forecast) or ME (= Z; Cz(i))
	b) Control limits: + 3 s.d's of the center line
	Define moving range as the absolute value of the
	Define maving range as the absolute value of the difference between two successive one-step ahead forecast errors; i.e.
	20
	$MR = \sum_{t=2}^{\infty} e_{t}(1) - e_{t-1}(1) $
	$rac{re(u)}{n-1} = \frac{0.8865 \text{ MR}}{n-1} = \frac{0.8865 \sum_{t=2}^{\infty} \frac{e_t(t) - e_{t-1}(t)}{n-1}$
	·. • • 0.8865 MR
	Use this to construct Upper control limit as lower control limit.
	lower control limit.

EWMA: Exponentially weighted Moving Average

$$\frac{e_{1}(1) = \lambda e_{1}(1) + (1-\lambda) e_{1}(1) ; 0.05 < \lambda < 0}{\lambda^{2} \text{ Sunstand}}$$
Note that this is a differential equation!

$$\frac{e_{1}(1) = \lambda e_{1}(1) + (1-\lambda) e_{1}(1)}{e_{1}(1) + (1-\lambda) e_{2}(1)} = \lambda e_{1}(1) + (1-\lambda) e_{1}(1) + (1-\lambda) e_{2}(1) + (1-\lambda) e_{2}(1) + (1-\lambda) e_{2}(1) + (1-\lambda)^{2} e_{2}(1)$$
For a forward Arriss,

$$\frac{e_{1}(1) = \lambda \sum_{j=0}^{\infty} (1-\lambda)^{j} e_{7-j}(1) + (1-\lambda)^{2} e_{2}(1)$$
Then, of $e_{1}(1) = e_{1}(1) + e_{2}(1) + (1-\lambda)^{2} e_{3}(1)$

$$\frac{e_{1}(1) = \lambda \sum_{j=0}^{\infty} (1-\lambda)^{j} e_{7-j}(1) + (1-\lambda)^{2} e_{3}(1)$$
Then, of $e_{1}(1) = e_{2}(1) + e_{3}(1) + e_{3}(1)$

$$\frac{e_{1}(1) = \lambda e_{2}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{1}(1) = e_{2}(1) + e_{3}(1)$

$$\frac{e_{2}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{2}(1) = e_{3}(1) + e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)}{e_{3}(1) + e_{3}(1)}{e_{3}(1)}$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1) = e_{3}(1)$

$$\frac{e_{3}(1) + e_{3}(1) + e_{3}(1)$$
Then $e_{3}(1)$