Analysis für Informatik [MA0902]

Wintersemester 2022/23

Übungsblatt Nummer

Rückgabe in Übungsgruppe ...

Student*in	Vorname	Nachname	Matrikelnummer
1	Malte	Bai	03752839
2	Yann Marius	Miller	03736057
3	Francesca	Frederick	03763243
4	Chengjie	Zhon	03756877

— vom Korrektor auszufüllen —

Punkte	Sinnvoll bearbeitet

BLATT 2

a)
$$\frac{5n^2 + 3n + 8}{(n + 4)^2 + \sqrt{\pi n}} = \frac{5n^2 + 3n + 8}{n^2 + 8n + 16 + \sqrt{\pi n}} \cdot \frac{n^{-2}}{n^{-2}} = \frac{5 + 3/n + 8/n^2}{1 + \frac{8}{10} + \frac{16}{10^2 + \sqrt{\pi}/3h}}$$

$$\Rightarrow \frac{5}{1} = 5$$

b) Fad 1:
$$q = 0$$
 $\lim_{n \to \infty} 0^n = 0$ Kenvergeet

Fall 2: $q = 1$ $\lim_{n \to \infty} 1^n = 1$ Kenvergeet

Fall 3: $q = 1$ $\lim_{n \to \infty} 1^n = 1$ Kenvergeet

Fall 3: $q = 1$ $\lim_{n \to \infty} 1^n = 1$ $\lim_$

2" € €

Konvergenz

c)
$$n \cdot q^n = \frac{n}{q^{-n}} \xrightarrow{2.H.} \frac{n}{-\ln(q) \cdot q^{-n}}$$

$$= -\frac{1}{\ln(q)} \cdot q^n \longrightarrow -\frac{1}{\ln(q)} \cdot g = 1\Xi$$

Aus Teil b kann man die Schlassfolgerung heransziehen, dass 9° = E, solange 0<191×1

b)
$$\lim_{n\to\infty} \left[b_n \right] = \lim_{n\to\infty} b_n^{\frac{1}{2}} = \left(\lim_{n\to\infty} b_n \right)^{\frac{1}{2}} = b^{\frac{1}{2}}$$

Da b 70 ist, $\exists \xi \neq 0$: $\xi = b^{\frac{1}{2}}$, soders $b_n^{\frac{1}{2}} \leq \xi$

Deshalb konvergiert die Felge