7.3 The hydrogen atom

Slides: Video 7.3.1 Multiple particle wavefunctions

Text reference: Quantum Mechanics for Scientists and Engineers

Chapter 10 introduction and Section 10.1

Multiple particle systems

How should we tackle this problem of two particles, electron and proton?

We start by generalizing the Schrödinger equation writing generally for time-independent problems $\hat{H}\psi=E\psi$

where now we mean that the Hamiltonian \hat{H} is the operator representing the energy of the entire system and ψ is the wavefunction representing the state of the entire system

Multiple particle wavefunctions

```
For the hydrogen atom
  there are two particles
     the electron and the proton
Each of these has a set of coordinates
 associated with it
  x_{e'} y_{e'} and z_{e'} for the electron and
  x_{p'} y_{p'} and z_p for the proton
The wavefunction will therefore in general be
   a function of all six of these coordinates
```

