

Part III: Network Embedding with Deep Learning

Xin Zhao
batmanfly@qq.com
Renmin University of China

Outline

- Preliminaries
 - word2vec
- Network Embedding Models
 - DeepWalk
 - Node2vec
 - GENE
 - LINE
 - SDNE
- Applications of Network Embedding
 - Basic applications
 - Visualization
 - Text classification
 - Recommendation
- Conclusion

Preliminaries

- Softmax functions
- Distributional semantics
- Word2vec
 - CBOW
 - Skip-gram

Preliminaries

- Representation learning
 - Using machine learning techniques to derive data representation
- Distributed representation
 - Different from one-hot representation, it uses dense vectors to represent data points

- Embedding
 - Mapping information entities into a low-dimensional space

Softmax function

- It transforms a K-dimensional real vector into a probability distribution
 - A common transformation function to derive objective functions for classification or discrete variable modeling

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K

Distributional semantics

Target word = "stars"

```
he curtains open and the stars shining in on the barely ars and the cold , close stars " . And neither of the w rough the night with the stars shining so brightly , it made in the light of the stars . It all boils down , wr surely under the bright stars , thrilled by ice-white sun , the seasons of the stars ? Home , alone , Jay pla m is dazzling snow , the stars have risen full and cold un and the temple of the stars , driving out of the hug in the dark and now the stars rise , full and amber a bird on the shape of the stars over the trees in front But I could n't see the stars or the moon , only the they love the sun , the stars and the stars . None of r the light of the shiny stars . The plash of flowing w man 's first look at the stars ; various exhibits , aer rief information on both stars and constellations, inc
```

Distributional semantics

Collect the contextual words for "stars"

Word2Vec

Input: a sequence of words from a vocabulary
 V

 Output: a fixed-length vector for each term in the vocabulary

 $-\mathbf{v}_{\mathsf{w}}$

It implements the idea of distributional semantics using a shallow neural network model.

<u>CBOW</u> predicts the current word using surrounding contexts

$$-Pr(w_t | context(w_t))$$

- Window size 2c
- context $(w_t) = [w_{t-c}, ..., w_{t+c}]$

- <u>CBOW</u> predicts the current word using surrounding contexts
 - $-Pr(w_t | context(w_t))$

- Using a *K*-dimensional vector to represent words
 - $w_t \rightarrow v_{w_t}$

•
$$\widetilde{\boldsymbol{v}}_{w_t} = \frac{\sum_{i=t-c}^{t+c} \boldsymbol{v}_{w_i}}{2c}$$
 $(i \neq t)$

- <u>CBOW</u> predicts the current word using surrounding contexts
 - $-Pr(w_t | context(w_t))$

- Basic Idea
 - Given the context of the current word $\widetilde{m{v}}_{w_{t}}$
 - $\operatorname{Sim}(\widetilde{\boldsymbol{v}}_{w_t}, \boldsymbol{v}_{w_t}) > \operatorname{Sim}(\widetilde{\boldsymbol{v}}_{w_t}, \boldsymbol{v}_{w_j})$

- How to formulate the idea
 - Using a softmax function
 - Considered as a classification problem
 - Each word is a classification label

$$P(w|w_{\text{context}}) = \frac{\exp(sim(\widetilde{v}_w, v_w))}{\sum_{w'} \exp(sim(\widetilde{v}_w, v_{w'}))}$$

Architecture 2

 Skip-gram predicts surrounding words using the current word

- $-Pr(context(w_t) \mid w_t)$
 - Window size 2c
 - context $(w_t) = [w_{t-c}, ..., w_{t+c}]$

Architecture 2

 Skip-gram predicts surrounding words using the current word

- $-Pr(context(w_t) \mid w_t)$
 - Window size 2c
 - context $(w_t) = [w_{t-c}, ..., w_{t+c}]$

$$P(w'|w) = \frac{\exp(sim(\boldsymbol{v}_w, \boldsymbol{v}_{w'}))}{\sum_{w''} \exp(sim(\boldsymbol{v}_w, \boldsymbol{v}_{w''}))}$$

Network Embedding Models

- DeepWalk
- Node2vec
- GENE
- LINE
- SDNE

Network Embedding Models

- DeepWalk (Perozzi et al., KDD 2014)
- Node2vec
- GENE
- LINE
- SDNE

What is network embedding?

- We map each node in a network into a lowdimensional space
 - Distributed representation for nodes
 - Similarity between nodes indicate the link strength
 - Encode network information and generate node representation

Example

Zachary's Karate Network:

DeepWalk

 DeepWalk learns a latent representation of adjacency matrices using deep learning techniques developed for language modeling

Language modeling

- Learning a representation of a word from documents (word co-occurrence):
 - word2vec: $\Phi: v \in V \mapsto \mathbb{R}^{|V| \times d}$
- The learned representations capture inherent structure
- Example:

$$||\Phi(rose) - \Phi(daisy)|| < ||\Phi(rose) - \Phi(tiger)||$$

From language modeling to graphs

- Idea:
 - Nodes <--> Words
 - Node sequences <--> Sentences
- Generating node sequences:
 - Using random walks
 - short random walks = sentences

- Connection:
 - Words frequency in a natural language corpus follows a power law.
 - Vertex frequency in random walks on scale free graphs also follows a power law.

Framework

1 Input: Graph

4 Hierarchical Softmax

3 Representation Mapping

5 Output: Representation

Representation Mapping

$$\mathcal{W}_{v_4} \equiv v_4 \rightarrow v_3 \rightarrow v_1 \rightarrow v_5 \rightarrow v_1 \rightarrow v_{46} \rightarrow v_{51} \rightarrow v_{89}$$

$$\mathcal{W}_{v_4} = 4 \qquad \qquad \text{Map the vertex under focus } (v_1) \text{ to its representation.}$$

$$u_k \begin{bmatrix} 3 \\ 1 \end{bmatrix} v_j \rightarrow u_j \qquad \qquad \text{Define a window of size } w$$

$$1 \qquad \qquad \Phi \qquad \qquad \text{If } w = 1 \text{ and } v = v_1$$

$$\vdots$$

$$\mathbf{Maximize:} \quad \Pr(v_3 | \Phi(v_1))$$

 $\Pr(v_5|\Phi(v_1))$

Deep Learning Structure: Skip-gram model

Skip-gram: The input to the model is w_i , and the output could be

 $W_{i-1}, W_{i-2}, W_{i+1}, W_{i+2}$

Maximize: $\Pr(v_3|\Phi(v_1))$

 $\Pr(v_5|\Phi(\mathbf{v_1}))$

Experiments

- Node Classification
 - Some nodes have labels, some don't
- DataSet
 - BlogCatalog
 - Flickr
 - YouTube

Results: BlogCatalog

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
Micro-F1(%)	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DeepWalk	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
Macro-F1(%)	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Network Embedding Models

- DeepWalk
- Node2vec (Grover et al., KDD 2016)
- GENE
- LINE
- SDNE

Node2Vec

- A generalized version of DeepWalk
 - Objective function

$$\max_{f} \quad \sum_{u \in V} \log Pr(N_S(u)|f(u)).$$

Conditional independence

$$Pr(N_S(u)|f(u)) = \prod_{n_i \in N_S(u)} Pr(n_i|f(u)).$$

Symmetry in feature space

$$Pr(n_i|f(u)) = \frac{\exp(f(n_i) \cdot f(u))}{\sum_{v \in V} \exp(f(v) \cdot f(u))}.$$

Node2Vec

$$N_S(u) \subset V$$

- a network neighborhood of node u generated through a neighborhood sampling strategy S.
- The key lies in how to find a neighbor on the graph
- How DeepWalk solve this?

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

where π_{vx} is the unnormalized transition probability between nodes v and x, and Z is the normalizing constant.

How Node2vec Do this?

Motivation

Figure 1: BFS and DFS search strategies from node u (k = 3).

- BFS: broader → homophily
- DFS: deeper → structural equivalence

How Node2vec Do this?

- Can we combine the merits of DFS and BFS
 - BFS: broader → homophily
 - DFS: deeper → structural equivalence

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$

$$\alpha_{pq}(t, x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0 \\ 1 & \text{if } d_{tx} = 1 \\ \frac{1}{p} & \text{if } d_{tx} = 2 \end{cases}$$

How Node2vec Do this?

Explaining the sampling strategy

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$

$$\alpha_{pq}(t, x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0 \\ 1 & \text{if } d_{tx} = 1 \\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

Return parameter, p. Parameter p controls the likelihood of immediately revisiting a node in the walk.

In-out parameter, q. Parameter q allows the search to differentiate between "inward" and "outward" nodes.

Node2vec Algorithm

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
   node r, Walk length l, Context size k, Return p, In-out q)
   \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G' = (V, E, \pi)
  Initialize walks to Empty
  for iter = 1 to r do
     for all nodes u \in V do
       walk = node2vecWalk(G', u, l)
        Append walk to walks
   f = StochasticGradientDescent(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
   Inititalize walk to [u]
  for walk\_iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = \text{AliasSample}(V_{curr}, \pi)
     Append s to walk
```

return walk

Comparison between DeepWalk and Node2vec

They actually have the same objective function and formulations

The difference lies in how to generate random walks

BEAUTY: node → word, path → sentence

Network Embedding Models

- DeepWalk
- Node2vec
- **GENE** (Chen et al., CIKM 2016)
- LINE
- SDNE

GENE

- Incorporate Group Information to Enhance Network Embedding
 - When group information is available, how to model it?
 - Group →_{control} member

GENE

Recall doc2vec

 How to use doc2vec to model group and member vectors

GENE

- Incorporate Group Information to Enhance Network Embedding
 - When group information is available, how to model it?

GENE

Formulate the idea

$$\mathcal{L} = \sum_{g_i \in C} (\alpha \sum_{W \in W_{g_i}} \sum_{v_j \in W} \log p(v_j | v_{j-k}, ..., v_{j+k}, g_i) + \beta \sum_{\hat{v_j} \in \hat{W_{g_i}}} \frac{\log p(\hat{v_j} | g_i)}{\log p(\hat{v_j} | g_i)}, \tag{1}$$

$$\log p(v_j|v_{j-k}, ..., v_{j+k}, g_i) = \frac{\exp(\bar{u}^T u_j')}{\sum_{n=1}^M \exp(\bar{u}^T u_n')}, \quad (2)$$

$$\log p(\hat{v_j}|g_i) = \frac{\exp(u_{g_i}^T \hat{u_j})}{\sum_{n=1}^M \exp(u_{g_i}^T \hat{u_n})},$$
 (3)

Network Embedding Models

- DeepWalk
- Node2vec
- GENE
- LINE (Tang et al., WWW 2015)
- SDNE

First-order Proximity

Vertex **6** and **7** have a large first-order proximity

- The local pairwise proximity between the vertices
 - Determined by the observed links
- However, many links between the vertices are missing
 - Not sufficient for preserving the entire network structure

Second-order Proximity

Vertex **5** and **6** have a large second-order proximity

$$\hat{p}_5 = (1,1,1,1,0,0,0,0,0,0)$$

$$\hat{p}_6 = (1,1,1,1,0,0,5,0,0,0)$$

- The proximity between the neighborhood structures of the vertices
- Mathematically, the second-order proximity between each pair of vertices (u,v) is determined by:

$$\hat{p}_u = (w_{u1}, w_{u2}, \dots, w_{u|V|})$$

$$\hat{p}_v = (w_{v1}, w_{v2}, \dots, w_{v|V|})$$

Preserving the First-order Proximity

• Given an **undirected** edge (v_i, v_j) , the joint probability of v_i, v_j

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$

$$\vec{p}_1(v_i, v_j) = \frac{w_{ij}}{\sum_{(i', j')} w_{i'j'}}$$

• Objective:

$$O_1 = d(\hat{p}_1(\cdot,\cdot), p_1(\cdot,\cdot))$$
 KL-divergence
$$\propto -\sum_{(i,j) \in E} w_{ij} \log p_1(v_i,v_j)$$

Preserving the Second-order Proximity

• Given a *directed* edge (v_i, v_j) , the conditional probability of v_j given v_i is:

$$p_2(v_j|v_i) = \frac{\exp(\vec{u}_j'^T \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k'^T \cdot \vec{u}_i)}$$
 \vec{u}_i : Embedding of vertex i when i is a source node; \vec{u}_i' : Embedding of vertex i when i is a target node.
$$\hat{p}_2(v_j|v_i) = \frac{w_{ij}}{\sum_{k \in V} w_{ik}}$$

• Objective: $O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot | v_i), p_2(\cdot | v_i))$ $\propto -\sum_{(i,j) \in F} w_{ij} \log p_2(v_j | v_i)$ $\lambda_i : \text{ Prestige of vertex in the network}$ $\lambda_i = \sum_j w_{ij}$

Preserving both Proximity

Concatenate the embeddings individually learned by the two proximity

Network Embedding Models

- DeepWalk
- Node2vec
- GENE
- LINE
- SDNE (Wang et al., KDD 2016)

- Preliminary
 - Autoencoder

$$egin{aligned} \phi: \mathcal{X} &
ightarrow \mathcal{F} \ \psi: \mathcal{F} &
ightarrow \mathcal{X} \ rg\min_{\phi, \psi} \|X - (\psi \circ \phi)X\|^2 \end{aligned}$$

- Preliminary
 - Autoencoder
 - The simplest case: a single hidden layer

$$\mathbf{z} = \sigma_1(\mathbf{W}\mathbf{x} + \mathbf{b})$$

$$\mathbf{x}' = \sigma_2(\mathbf{W}'\mathbf{z} + \mathbf{b}')$$

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2$$

- Preliminary
 - Autoencoder
 - The simplest case: a single hidden layer

$$\mathbf{z} = \sigma_1(\mathbf{W}\mathbf{x} + \mathbf{b})$$

$$\mathbf{x}' = \sigma_2(\mathbf{W}'\mathbf{z} + \mathbf{b}')$$

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2$$

- First-order proximity
 - Linked nodes should be coded similarly

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

$$\begin{aligned} \mathbf{y}_{i}^{(1)} &= \sigma(W^{(1)}\mathbf{x}_{i} + \mathbf{b}^{(1)}) \\ \mathbf{y}_{i}^{(k)} &= \sigma(W^{(k)}\mathbf{y}_{i}^{(k-1)} + \mathbf{b}^{(k)}), k = 2, ..., K \end{aligned}$$

- Second-order proximity
 - The model should reconstruct the neighborhood vectors
 - Similar nodes even without links can have similar codes
 - Or we can not reconstruct the neighborhood

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{x}}_i - \mathbf{x}_i) \odot \mathbf{b_i}\|_2^2$$
$$= \|(\hat{X} - X) \odot B\|_F^2$$

$$\mathbf{y}_{i}^{(1)} = \sigma(W^{(1)}\mathbf{x}_{i} + \mathbf{b}^{(1)})$$
$$\mathbf{y}_{i}^{(k)} = \sigma(W^{(k)}\mathbf{y}_{i}^{(k-1)} + \mathbf{b}^{(k)}), k = 2, ..., K$$

Network reconstruction

Table 4: MAP on ARXIV-GRQC and BLOGCATALOG on reconstruction task

Method		ARX	KIV-GRO	QC	BLOGCATALOG					
	SDNE	GraRep	LINE	DeepWalk	LE	SDNE	GraRep	LINE	DeepWalk	LE
MAP	0.836**	0.05	0.69	0.58	0.23	0.63**	0.42	0.58	0.28	0.12

Significantly outperforms GraRep at the: ** 0.01 level.

Link prediction

Table 5: precision@k on ARXIV GR-QC for link prediction

		tore et p	corprore Cit		0-1- V	P-			
Algorithm	P@2	P@10	P@100	P@200	P@300	P@500	P@800	P@1000	P@10000
SDNE	1	1	1	1	1*	0.99**	0.97**	0.91**	0.257**
LINE	1	1	1	1	0.99	0.936	0.74	0.79	0.2196
DeepWalk	1	0.8	0.6	0.555	0.443	0.346	0.2988	0.293	0.1591
GraRep	1	0.2	0.04	0.035	0.033	0.038	0.035	0.035	0.019
Common Neighbor	1	1	1	0.96	0.9667	0.98	0.8775	0.798	0.192
LE	1	1	0.93	0.855	0.827	0.66	0.468	0.391	0.05

Significantly outperforms Line at the: ** 0.01 and * 0.05 level, paired t-test.

Network Embedding Models

- DeepWalk
 - Node sentences + word2vec
- Node2vec
 - DeepWalk + more sampling strategies
- GENE
 - Group~document + doc2vec(DM, DBOW)
- LINE
 - Shallow + first-order + second-order proximity
- SDNE
 - Deep + First-order + second-order proximity

Applications of Network Embedding

- Basic applications
- Data Visualization
- Text classification
- Recommendation

Basic Applications

- Network reconstruction
- Link prediction
- Clustering
- Feature coding
 - Node classification
 - Demographic prediction

Applications of Network Embedding

- Basic applications
- Data Visualization (Tang et al., WWW 2016)
- Text classification
- Recommendation

Figure 1: A typical pipeline of data visualization by first constructing a K-nearest neighbor graph and then projecting the graph into a low-dimensional space.

Construction of the KNN graph

For the weights of the edges in the K-nearest neighbor graph, we use the same approach as t-SNE. The conditional probability from data \vec{x}_i to \vec{x}_j is first calculated as:

$$p_{j|i} = \frac{\exp(-||\vec{x}_i - \vec{x}_j||^2 / 2\sigma_i^2)}{\sum_{(i,k)\in E} \exp(-||\vec{x}_i - \vec{x}_k||^2 / 2\sigma_i^2)}, \text{ and}$$

$$p_{i|i} = 0,$$
(1)

Then the graph is symmetrized through setting the weight between \vec{x}_i and \vec{x}_j as:

$$w_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}. (2)$$

Visualization-based embedding

$$P(e_{ij} = 1) = f(||\vec{y}_i - \vec{y}_j||),$$

$$P(e_{ij} = w_{ij}) = P(e_{ij} = 1)^{w_{ij}}$$
.

$$O = \prod_{(i,j)\in E} p(e_{ij} = 1)^{w_{ij}} \prod_{(i,j)\in \bar{E}} (1 - p(e_{ij} = 1))^{\gamma}$$

$$\propto \sum_{(i,j)\in E} w_{ij} \log p(e_{ij} = 1) + \sum_{(i,j)\in \bar{E}} \gamma \log(1 - p(e_{ij} = 1)),$$

Non-linear function

$$P(e_{ij} = 1) = f(||\vec{y}_i - \vec{y}_j||),$$

Figure 4: Comparing different probabilistic functions.

$$f(x) = \frac{1}{1+x^2}$$

Accuracy

Running time

Table 2: Comparison of running time (hours) in graph visualization between the t-SNE and LargeVis.

Algorithm	20NG	MNIST	WikiWord	WikiDoc	LiveJournal	CSAuthor	DBLPPaper
t-SNE	0.12	0.41	9.82	45.01	70.35	28.33	18.73
LargeVis	0.14	0.23	2.01	5.60	9.26	4.24	3.19
Speedup Rate	0	0.7	3.9	7	6.6	5.7	4.9

Applications of Network Embedding

- Basic applications
- Data Visualization
- Text classification (Tang et al., KDD 2015)
- Recommendation

Network embedding helps text modeling

Text representation, e.g., word and document representation, ...

Deep learning has been attracting increasing attention ...

A future direction of deep learning is to integrate unlabeled data ...

The Skip-gram model is quite effective and efficient ...

Information networks encode the relationships between the data objects ...

Free text

word co-occurrence network

If we have the word network, we can a network embedding model to learn word representations.

- Adapt the advantages of unsupervised text embedding approaches but naturally utilize the *labeled* data for specific tasks
- Different levels of word co-occurrences: *local context-level, document-level, label-level*

Bipartite Network Embedding

- Extend previous work LINE (Tang et al. WWW'2015) on large-scale information network embedding
 - Preserve the first-order and second-order proximity
 - Only consider the second-order proximity here
- For each edge (v_i, v_j) , define a conditional probability

$$p(v_j|v_i) = \frac{\exp(\vec{u}_j^T \cdot \vec{u}_i)}{\sum_{j' \in B} \exp(\vec{u}_{j'}^T \cdot \vec{u}_i)}$$

Objective:

$$0 = -\sum_{(i,j)\in E} w_{ij} \log p(v_j|v_i)$$

Edge sampling and negative sampling for optimization

Tang et al. LINE: Large-scale Information Network Embedding. WWW'2015

Heterogeneous Text Network Embedding

- Heterogeneous text network: three bipartite networks
 - Word-word (word-context), word-document, word-label network

 $O_{nte} = O_{ww} + O_{wd} + O_{wl}$

- Jointly embed the three bipartite networks
- Objective

where

$$O_{ww} = -\sum_{(i,j) \in E_{ww}} w_{ij} \log p(v_i|v_j)$$

$$O_{wd} = -\sum_{(i,j) \in E_{wd}} w_{ij} \log p(v_i|d_j)$$

$$O_{wl} = -\sum_{(i,j)\in E_{wl}} w_{ij} \log p(v_i|l_j)$$

Objective for **word-word** network

Objective for word-document network

Objective for word-label network

Results on **Long** Documents: Predictive

		20newsgroup		Wiki	pedia	IMDB		
Туре	Algorithm	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
Unsupervised	$LINE(G_{wd})$	79.73	78.40	80.14	80.13	89.14	89.14	
	CNN	78.85	78.29	79.72	79.77	86.15	86.15	
	CNN(pretrain)	80.15	79.43	79.25	79.32	89.00	89.00	
Predictive	$PTE(G_{wl})$	82.70	81.97	79.00	79.02	85.98	85.98	
embedding	$PTE(G_{ww} + G_{wl})$	83.90	83.11	81.65	81.62	89.14	89.14	
	$PTE(G_{wd} + G_{wl})$	84.39	83.64	82.29	82.27	89.76	89.76	
	PTE(pretrain)	82.86	82.12	79.18	79.21	86.28	86.28	
	PTE(joint)	84.20	83.39	82.51	82.49	89.80	89.80	

PTE(joint) > PTE(pretrain)

 $PTE(joint) > PTE(G_{wl})$

PTE(joint) > CNN/CNN(pretrain)

Results on **Short** Documents: Predictive

		DBLP		IV	1R	Twitter		
Туре	Algorithm	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
Unsupervised embedding	LINE $(G_{ww} + G_{wd})$	74.22	70.12	71.13	71.12	73.84	73.84	
	CNN	76.16	73.08	72.71	72.69	75.97	75.96	
	CNN(pretrain)	75.39	72.28	68.96	68.87	75.92	75.92	
Predictive	$PTE(G_{wl})$	76.45	72.74	73.44	73.42	73.92	73.91	
embedding	$PTE(G_{ww} + G_{wl})$	76.80	73.28	72.93	72.92	74.93	74.92	
	$PTE(G_{wd} + G_{wl})$	77.46	74.03	73.13	73.11	75.61	75.61	
	PTE(pretrain)	76.53	72.94	73.27	73.24	73.79	73.79	
	PTE(joint)	77.15	73.61	73.58	73.57	75.21	75.21	

PTE(joint) > PTE(pretrain)

 $PTE(joint) > PTE(G_{wl})$

PTE(joint) ≈ CNN/CNN(pretrain)

Applications of Network Embedding

- Basic applications
- Data Visualization
- Text classification
- Recommendation (Zhao et al., AIRS 2016)

- Learning Distributed Representations for Recommender Systems with a Network Embedding Approach
 - Motivation

(a) User-item bipartite net- (b) User-item-tag tripartite work.

From training records to networks

Definition 3. Bipartite User-Item (UI) Network. Let \mathcal{U} denote the set of all the users, and \mathcal{I} denote the set of all the items. A bipartite user-item network can be denoted by $\mathcal{G}^{(bi)} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$, where the vertex set $\mathcal{V} = \mathcal{U} \cup \mathcal{I}$, the edge set $\mathcal{E} \subset \mathcal{U} \times \mathcal{I}$, the weight matrix \mathbf{W} stores the edge weights, and $W_{u,i}$ denote the link weight between a user u and an item i.

Definition 4. Tripartite User-Item-Tag (UIT) Network. Let \mathcal{U} denote the set of all the users, \mathcal{I} denote the set of all the items, and \mathcal{T} denote the set of all the tags. A tripartite user-item-tag network can be denoted by $\mathcal{G}^{(tri)} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$, where the vertex set $\mathcal{V} = \mathcal{U} \cup \mathcal{I} \cup \mathcal{T}$, the edge set $\mathcal{E} \subset ((\mathcal{U} \times \mathcal{I}) \cup (\mathcal{U} \times \mathcal{T}) \cup (\mathcal{I} \times \mathcal{T}))$, and the weight matrix \mathbf{W} stores the edge weights.

Given any edge in the network

$$P(e_s, e_t) = \sigma(\mathbf{v}_{e_s}^{\top} \cdot \mathbf{v}_{e_t}) = \frac{1}{1 + \exp(-\mathbf{v}_{e_s}^{\top} \cdot \mathbf{v}_{e_t})}.$$

$$\hat{P}(e_s, e_t) = \frac{W_{e_s, e_t}}{\sum_{(e_{s'}, e_{t'}) \in \mathcal{E}} W_{e_{s'}, e_{t'}}}.$$

$$L(\mathcal{G}) = D_{KL}(\hat{P}(\cdot, \cdot)||P(\cdot, \cdot)) \propto \sum_{(e_s, e_t) \in \mathcal{E}} W_{e_s, e_t} \log P(e_s, e_t).$$

• User-item recommendation

Table 2. Performance comparisons of the proposed method and baselines on item recommendation.

Methods		JI			MovieLens					
Methods	P@10	R@10	MAP	MRR	P@10	R@10	MAP	MRR		
BPR DeepWalk	0.171	0.360	0.337	0.564	0.097	0.169	0.148	0.195		
DeepWalk	0.259	0.443	0.502	0.806	0.203	0.243	0.249	0.358		
NERM	0.275	0.477	0.528	0.819	0.206	0.256	0.258	0.368		

User-item-tag recommendation

Table 4. Performance comparisons of the proposed methods and baselines on tag recommendation.

Methods	Last.fm						Bookmarks					
	P@1	R@1	F@1	P@5	R@5	F@5	P@1	R@1	F@1	P@5	R@5	F@5
PITF	0.305	0.125	0.178	0.189	0.351	0.245	0.381	0.132	0.197	0.204	0.304	0.244
DeepWalk	0.088	0.044	0.059	0.040	0.099	0.057	0.064	0.024	0.035	0.038	0.074	0.050
NERM	0.327	0.165	0.220	0.182	0.370	0.244	0.396	0.135	0.201	0.228	0.323	0.267

Conclusions

- There are no boundaries between data types and research areas in terms of mythologies
 - Data models are the core
- Even if the ideas are similar, we can move from shallow to deep if the performance actually improves

Disclaimer

 For convenience, I directly copy some original slides or figures from the referred papers. I am sorry but I did not ask for the permission of each referred author. I thank you for these slides. I will not distribute your original slides.

References

- Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean.
 Distributed Representations of Words and Phrases and their Compositionality.
 NIPS 2013: 3111-3119
- Bryan Perozzi, Rami Al-Rfou', Steven Skiena. DeepWalk: online learning of social representations. KDD 2014: 701-710
- Aditya Grover, Jure Leskovec. node2vec: Scalable Feature Learning for Networks.
 KDD 2016: 855-864
- Jifan Chen, Qi Zhang, Xuanjing Huang, Incorporate Group Information to Enhance Network Embedding. CIKM 2016
- Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW 2015: 1067-1077
- Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD 2016: 1225-1234
- Jian Tang, Jingzhou Liu, Ming Zhang, Qiaozhu Mei. Visualizing Large-scale and Highdimensional Data. WWW 2016: 287-297
- Jian Tang, Meng Qu, Qiaozhu Mei. PTE: Predictive Text Embedding through Largescale Heterogeneous Text Networks. KDD 2015: 1165-1174
- Wayne Xin Zhao, Jin Huang, Ji-Rong Wen. Learning Distributed Representations for Recommender Systems with a Network Embedding Approach. AIRS 2016.

Advanced Readings

- Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang: Heterogeneous Network Embedding via Deep Architectures. KDD 2015: 119-128
- Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016: 1105-1114
- Thomas N. Kipf, Max Welling: Semi-Supervised Classification with Graph Convolutional Networks. CoRR abs/1609.02907 (2016)
- Mikael Henaff, Joan Bruna, Yann LeCun: Deep Convolutional Networks on Graph-Structured Data. CoRR abs/1506.05163 (2015)