Compensator design - Loop shaping

Kjartan Halvorsen

September 23, 2021

Specifications on the frequency properties of the closed-loop system

The design procedure - overview

Specifications on the closed-loop system
$$G_c(i\omega)$$

$$\downarrow$$
Specifications on the loop gain $G_o(i\omega)$

$$\downarrow$$
Determine $F(i\omega)$ in $G_o(i\omega) = G(i\omega)F(i\omega)$

From specifications on G_c to specifications on G_o

Closed-loop specifications	Loop gain specifications
Bandwidth ω_B	cross-over frequency ω_c
Resonance peak M_p	phase margin $arphi_m$
Static gain $G_c(0) pprox 1$	static gain $G_o(0)$ high
$egin{aligned} e_0 = \mathit{G}_c(0) - 1 = \left rac{\mathit{G}_o(0)}{1 + \mathit{G}_o(0)} - 1 ight = \left rac{1}{1 + \mathit{G}_o(0)} ight < \epsilon \end{aligned}$	

 $G_o(0) > ?$

Classed laser empolifications. I some main empolifications

From specifications on G_c to specifications on G_o

Closed-loop specifications	Loop gain specifications
Bandwidth ω_B	cross-over frequency ω_c
Resonance peak M_p	phase margin $arphi_{m}$
Static gain $G_c(0)pprox 1$	static gain $G_o(0)$ high

$$e_0 = |G_c(0) - 1| = \left| \frac{G_o(0)}{1 + G_o(0)} - 1 \right| = \left| \frac{1}{1 + G_o(0)} \right| < \epsilon$$
 \Rightarrow
 $G_o(0) > \frac{1}{\epsilon} - 1$

Design procedure in detail

Given $G(i\omega)$ and specifications on $G_o(i\omega)$: ω_c , φ_m , steady-state error e_0 .

The problem with a PD-controller

The problem with a PD-controller, contd

The problem with a PD-controller, contd

High frequency measurement noise entering the system is amplified in the PD-controller F(s)

PD-controller + Low-pass filter = lead compensator + gain

$$F(s) = KF_{lead} = K \frac{\alpha T_d s + 1}{T_d s + 1}$$

The lead- and lag filters/compensators

$$F_{\textit{lead}} = rac{lpha_d T_d s + 1}{T_d s + 1}, \; lpha_d > 1$$
 $F_{\textit{lag}} = rac{1}{lpha_i} \cdot rac{lpha_i T_i s + 1}{T_i s + 1}, \; lpha_i < 1 \; ext{or} \; F_{\textit{lag}} = rac{T_i s + 1}{T_i s}$

Position control of a radar antenna

Nyquist plot of the plant

Will proportional control work? (The open-loop system is stable)