Ghent University, Belgium

Diamond Light Source

xraylib

The definitive manual

Version 3.2.0

Bruno Golosio Antonio Brunetti Manuel Sanchez del Rio Teemu Ikonen Tom Schoonjans Matthew Wormington David Sagan

Contents

1	Intro	oduction	3			
2	Installation instructions					
	2.1	Compilation from source	4			
	2.2	Linux	5			
		2.2.1 Fedora, Centos, Scientific Linux	5			
		2.2.2 Debian and Ubuntu	6			
	2.3	Mac OS X	7			
	2.4	Windows SDK	7			
	2.5	Windows command-line utility	7			
	2.6	Java JAR with OSGi support	8			
3	Usin	g xraylib	8			
	3.1	Using the C library with pkg-config	8			
	3.2	Using the C library in Visual Studio (Windows)	9			
	3.3	Using the framework in Mac OS X	9			
	3.4	Fortran bindings	9			
	3.5	Python bindings	10			
	3.6	Perl bindings (Linux and Mac OS X)	10			
	3.7	IDL bindings	10			
	3.8	Lua bindings (Linux and Mac OS X)	10			
	3.9	Java bindings	11			
	3.10	.NET bindings (Windows only)	11			
	3.11	Ruby bindings (Linux and Mac OS X)	12			
	3.12	PHP bindings (Linux and Mac OS X)	12			
		Matlab bindings (Linux and Windows)	12			
		3.13.1 Linux:	12			
		3.13.2 Windows	13			
	3.14	Mathematica bindings	13			
		Command-line interface	14			
		Using xraylib: examples	14			
4	The	xraylib API: list of all functions	14			
	4.1	Atomic weights	14			
	4.2	Element densities	14			
	4.3	Cross sections	15			
	4.4	Unpolarized differential scattering cross sections	16			
	4.5	Polarized differential scattering cross sections	17			
	4.6	Scattering factors	17			
	4.7	X-ray fluorescence line energies	18			
	4.8	X-ray fluorescence yields	18			
	49	Auger yields	19			

	4.10	Coster-Kronig transition probabilities
	4.11	Absorption edge energies
	4.12	Jump factors
	4.13	X-ray fluorescence cross sections
	4.14	Radiative rates
		Non-radiative rates
	4.16	Atomic level widths
	4.17	Compton energy
	4.18	Refractive indices
	4.19	Compton profiles
		Electronic configurations
	4.21	Crystal diffraction
	4.22	Compound parser
		NIST compound catalog
	4.24	Radionuclides
	4.25	Error handling
5	Code	e examples
	5.1	Fundamental parameter method (Fortran 2003)
	5.2	Transmission efficiency using Monte Carlo method (Ruby)
	5.3	More examples
6	Refe	rences and additional resources
	6.1	Papers
	6.2	Posters
	6.3	Oral presentation
A	Tabl	es of xraylib macros
		Physical constants
		X-ray fluorescence line macros
		A.2.1 IUPAC X-ray fluorescence line macros
		A.2.1 IUPAC X-ray fluorescence line macros
	A.3	A.2.1 IUPAC X-ray fluorescence line macros A.2.2 Siegbahn X-ray fluorescence line macros A.2.3 Obsolete X-ray fluorescence macros
	A.3 A.4	A.2.1 IUPAC X-ray fluorescence line macros A.2.2 Siegbahn X-ray fluorescence line macros A.2.3 Obsolete X-ray fluorescence macros Shell macros
	1 2.0	A.2.2 Siegbahn X-ray fluorescence line macros A.2.3 Obsolete X-ray fluorescence macros Shell macros Coster-Kronig transition macros
	A.4	A.2.1 IUPAC X-ray fluorescence line macros A.2.2 Siegbahn X-ray fluorescence line macros A.2.3 Obsolete X-ray fluorescence macros Shell macros

1 Introduction

Quantitative estimate of elemental composition by spectroscopic and imaging techniques using X-ray fluorescence requires the availability of accurate data of X-ray interaction with matter. Although a wide number of computer codes and data sets are reported in literature, none of them is presented in the form of freely available library functions which can be easily included in software applications for X-ray fluorescence. This work presents a compilation of data sets from different published works and an xraylib interface in the form of callable functions. Although the target applications are on X-ray fluorescence, cross sections of interactions like photoionization, coherent scattering and Compton scattering, as well as form factors and anomalous scattering functions, are also available.

xraylib provides access to some of the most respected databases of physical data in the field of X-rays. The core of xraylib is a library, written in ANSI C, containing over 40 functions to be used to retrieve data from these databases. This C library can be directly linked with any program written in C, C++ or Objective-C. Furthermore, the xraylib package contains bindings to several popular programming languages: Fortran 2003, Perl, Python, Java, IDL, Lua, Ruby, PHP and .NET, as well as a command-line utility which can be used as a pocket-calculator. Although not officially supported, xraylib has been reported to be useable from within Matlab and LabView.

The source code is known to compile and run on the following platforms: Linux, Mac OS X, Solaris, FreeBSD and Windows. It is very likely that xraylib will also work on other platforms: we would be grateful if you would report your successes in this regard. Please note that not all of the bindings are currently working on all platforms.

A paper was published concerning xraylib by A. Brunetti, M. Sanchez del Rio, B. Golosio, A. Simionovici and A. Somogyi, "A library for X-ray matter interaction cross sections for X-ray fluorescence applications", Spectrochimica Acta B 59 (2004) 1725-1731.

This paper was recently superseded by a new manuscript, covering all features of xraylib upto version 2.15.0, written by T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. A. Solé, C. Ferrero and L. Vincze, named The xraylib library for X-ray—matter interactions. Recent developments

You are kindly requested to include this paper in the reference list of your published work when you would decide to use xraylib for scientific purposes.

The xraylib source code is distributed under the BSD license. A copy of this license can be found in the source tarball.

New: we are currently building a website that allows users to perform simple queries from xraylib. This is possible through the PHP bindings that were added to the version 3.0.0. The code of the website can be found at http://github.com/tschoonj/xraylib-web. If you want to try out the website itself, visit http://lvserver.ugent.be/xraylib-web for a demo.

2 Installation instructions

2.1 Compilation from source

You can download the latest version of the *xraylib* source code from our **Downloads** repository.

I would recommend NOT to download the tagged version that is offered by Github, since this version does not come with the configure file. It is still possible though to compile the software based on this package, if you run autoreconf—i after unpacking the tarball, and then following the rest of the steps outlined in the installation section. This requires a complete installation of the GNU build tools Autoconf, Automake and Libtool (at least version 2.0!).

After downloading the tarball, unpack and compile the source code using the following commands:

```
gunzip xraylib-version.tar.gz
tar xvf xraylib-version.tar

cd xraylib-version
./configure
make
```

Optional, but recommended is to check if the compilation went well:

```
make check
```

Depending on the requested install location, it may be necessary to perform the installation as a user with administrative privileges

```
make install
```

configure and make will try to build as many bindings as possible (except for the PHP and Pascal bindings, which will only be built if the --enable-php and/or --enable-pascal options are passed). If some of these would be considered as redundant, it is possible to disable their compilation using --disable-binding options to configure. See ./configure --help for a list of all options. Keep in mind though that for the command-line utility to work, the python bindings are essential.

The default behavior is for the libraries and the bindings to be installed in subdirectories of --prefix=<your_installation_root> (default is /usr/local). This could cause the user to be forced to define language specific environment variables before the bindings become usable. This problem can be circumvented by forcing

the bindings to be installed in the default locations as set when the specific interpreter (Perl, Python etc) was built. For this purpose, the --enable-perl-integration, --enable-python-integration, --enable-ruby-integration and --enable-php-integration options were added to the configure script. This is considered an advanced feature and is not recommended for standard installations.

More information can be found in the README and INSTALL files that are in-

2.2 Linux

cluded in the package.

2.2.1 Fedora, Centos, Scientific Linux

To facilitate the installation on RPM based Linux distributions, the package includes a spec file which can be used to produce RPM packages for linux distributions that support them (Fedora, Red Hat etc). The developers have built 64-bit RPM packages of *xraylib* for the officially supported Fedora and Redhat EL/CentOS/Scientific Linux 6/7 distributions. These can be downloaded from the RPM repository that is hosted by the X-ray Microspectroscopy and Imaging research group of Ghent University. Access to this repository can be obtained as follows for Fedora distros:

```
su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-fedora.noarch.rpm'
```

for Red Hat EL 6 based distributions:

```
su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-6.0-1.el6.noarch.rpm'
and for Red Hat EL 7 based distributions:
```

```
su -c 'rpm -Uvh http://lvserver.ugent.be/yum/xmi-repo-key-7.0-1.el7.noarch.rpm'
```

The xraylib packages themselves can then be downloaded using yum:

```
su -c 'yum install xraylib xraylib-python xraylib-devel
xraylib-fortran xraylib-idl xraylib-lua xraylib-perl
xraylib-ruby'
```

Updates can be installed in a similar way:

```
su -c 'yum update xraylib xraylib-python xraylib-devel
xraylib-fortran xraylib-idl xraylib-lua xraylib-perl
xraylib-ruby'
```

The python packages for Fedora contain bindings to both python2 and python3 interpreters. Since neither RHEL 6 nor 7 offers python3 in its default repository, no python3 bindings are available in the rpm packages.

2.2.2 Debian and Ubuntu

Packages were created for Debian and Ubuntu. Currently the following flavors are supported: Debian Wheezy and Jessie, as well as a number of Ubuntu releases. For now only the python, fortran and perl bindings are supported. More bindings will be packaged in the future.

In order to access these packages using your favorite package manager, execute the following command to import our public key:

```
curl http://lvserver.ugent.be/apt/xmi.packages.key |
sudo apt-key add -
```

Next, add the package download location corresponding to your distribution to the /etc/apt/sources.list file (as root):

Debian Wheezy:

```
deb http://lvserver.ugent.be/apt/debian wheezy stable
deb-src http://lvserver.ugent.be/apt/debian wheezy stable
```

Debian Jessie:

```
deb http://lvserver.ugent.be/apt/debian jessie stable
deb-src http://lvserver.ugent.be/apt/debian jessie stable
```

Ubuntu Precise 12.04:

```
deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu precise stable
deb-src http://lvserver.ugent.be/apt/ubuntu precise stable
```

Ubuntu Trusty 14.04:

```
deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu trusty stable
deb-src http://lvserver.ugent.be/apt/ubuntu trusty stable
```

Ubuntu Wily 15.10:

```
deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu wily stable
deb-src http://lvserver.ugent.be/apt/ubuntu wily stable
```

Ubuntu Xenial 16.04:

```
deb [arch=amd64] http://lvserver.ugent.be/apt/ubuntu xenial stable
deb-src http://lvserver.ugent.be/apt/ubuntu xenial stable
```

When the sources.list file contains the correct download locations, update the apt cache by running:

```
sudo apt-get update
```

After this, one can install xraylib by executing the following command:

```
sudo apt-get install libxrl7 xraylib libxrl7-dev libxrlf03-7
libxrl-perl
```

2.3 Mac OS X

The recommended way to install *xraylib* on Mac OS X is through Homebrew. In a terminal type in the following command:

brew install homebrew/science/xraylib

Most bindings are supported, as can be seen when invoking the info option:

brew info homebrew/science/xraylib

We have also released a universal framework (32/64-bit Intel) for inclusion in Xcode projects. A zipfile containing the framework can be found in the Downloads folder. After unpacking, either drag it straight into your Xcode project or copy it into /Library/Frameworks.

2.4 Windows SDK

We have created two xraylib SDKs (32- and 64-bit) for the Windows operating system. To install, download the xraylib-{version}-win32.exe or xraylib-{version}-win64.exe file from the **Downloads repository** and double-click to activate the installation wizard.

Depending on the selected options, this will install the headers, examples, static libraries and the dynamic-link library (dll) into the appropriate folders. The SDK has been verified to work with several compilers: mingw32, Microsoft Visual C++, Intel C++ and Borland C++ (32-bit only). For this last compiler use the libxrl-{version}-bcc.lib file to link.

The SDK also contains bindings for IDL and Python , as well as bindings for the .NET framework.

The PYTHONPATH, IDL_PATH and IDL_DLM_PATH environment variables will be set correctly during installation making the bindings immediately available to the user

When activating the Python bindings, the xraylib command-line utility will also be installed (called xraylib-cli.py), and its location will be added to the PATH environment variable.

The README.TXT file in the Lib subdirectory of the xraylib SDK explains the steps we used to create this package, as well as some advice on how to use it. The Visual C++ 2008 and 2010 Redistributable libraries will be installed if necessary. It should be noted that both 32-bit and 64-bit SDKs can be installed alongside each other.

2.5 Windows command-line utility

With the release of version 2.14.0, a special version of the *xraylib* command-line utility was created for the Windows platform. The installer xraylib-{version}-win32-cli.exe can be found in the **Downloads repository**. It will install the executable

xraylib.exe, as well as some auxiliary files and the Visual C++ 2008 Redistributable libraries (if necessary). This executable was constructed using py2exe and contains the *xraylib* dll, Python bindings and scripts as well as the Python interpreter version 2.7.

After the installation, typing in: xraylib.exe at the command prompt will launch the application. The PATH environment variable should pick it up.

2.6 Java JAR with OSGi support

xraylib release 3.2.0 introduces a completely rewritten implementation of the Java bindings. Unlike the previously provided SWIG generated JNI bindings, this new version is rewritten in pure Java and is not linked to the xraylib shared library. The jar comes with an OSGi manifest and can therefore easily be integrated into software projects that support the OSGi standard (e.g. Eclipse).

The jar is distributed separately and requires Java Runtime Environment 7 or later. It depends on Apache Commons Math 3 for the use of its Complex class, which is used by the diffraction API.

This dependency will be downloaded automatically when building the jar with the configure script: add --enable-java to the argument list to do this. It is not shipped with the jar though!

3 Using xraylib

3.1 Using the C library with pkg-config

The source code contains a pkg-config file that will facilitate the use of xraylib in combination with your own software, written in C, C++ or Objective-C. For example, you can compile program.c as follows:

```
gcc `pkg-config --cflags libxrl` program.c `pkg-config --libs libxrl`
```

This approach makes sure that the preprocessor finds the right headers and that the linker finds the library.

Include the xraylib headers with:

```
#include <xraylib.h>
```

Depending on the installation location of the library, it may be necessary to change the LD_LIBRARY_PATH and/or DYLD_LIBRARY_PATH environment variables. On some Linux systems it is also possible to add a file containing the xraylib library location to the /etc/ld.so.conf.d directory and running ldconfig if linking errors appear at runtime.

If xraylib was installed using our RPM or DEB packages, the required pkg-config file will only be available if the development package was also installed.

Use the PKG_CONFIG_PATH variable if the pkg-config file is not picked up: this will

probably be the case when compiling from source and using the default installation prefix.

pkg-config may also be used on the Windows platform, provided xraylib is compiled from source (usually with the MinGW compiler or using Cygwin).

3.2 Using the C library in Visual Studio (Windows)

Open the property pages of your project. Go to Configuration Properties $\rightarrow C/C++$ $\rightarrow General$.

Add the Include folder of your xraylib installation to the *Additional IncludeDirectories* key.

With this, you should have access to the headers of xraylib when adding the following line to your C/C++ program:

```
#include <xraylib.h>
```

In order to have successful linking to the xraylib dll, go in the property pages of your project to *Configuration Properties* \rightarrow *Linker* \rightarrow *General*, and add the location of the Lib folder of your xraylib installation to the *Additional Library Directories* key. The library itself can be specified from *Configuration Properties* \rightarrow *Linker* \rightarrow *Input*: add libxrl-7.lib to *Additional Dependencies*.

3.3 Using the framework in Mac OS X

After installing the framework in /Library/Frameworks, you may link to it from within your Xcode application, or from the commandline:

```
clang -framework xraylib -o test test.c
```

Include the header as:

#import <xraylib/xraylib.h>

3.4 Fortran bindings

In order to compile the xraylib Fortran bindings, it is necessary that the configure script finds a Fortran compiler on the system that supports the C interoperability features of the Fortran 2003 standard. Compilers known to do the job include: gfortran (starting with 4.4), Intel Fortran and Sun Studio 12.

Similar to the C library, it is possible to link in the Fortran bindings using a pkg-config file. Use the following syntax:

```
gfortran `pkg-config --cflags libxrlf03` program.f90 `pkg-config --libs libxrlf03`
```

In order to gain access to the xraylib module, include the following line in your Fortran source code:

```
USE :: xraylib
```

3.5 Python bindings

To include the xraylib python module in your own scripts add the following line:

```
import xraylib
```

xraylib 3.1.0 introduced an alternative implementation of the Python bindings, in which the arguments and return values are in fact numpy arrays (currently not supported on Windows). This is recommended whenever large amounts of calls to xraylib are required and performance becomes critical. This module, generated with Cython may be loaded from your script with:

```
import xraylib_np
```

Our testresults have shown that using this module one can obtain virtually identical performance as when using native C-code, or around 60 % faster compared to the default SWIG-generated bindings. The numpy based module does not export all functions from xraylib: those using strings and structs are not covered.

Both the default (SWIG generated) and the numpy (Cython generated) modules can be used alongside each other.

Depending on the install location of xraylib, it may be necessary to adjust the PYTHONPATH environment variable.

3.6 Perl bindings (Linux and Mac OS X)

To include the xraylib perl module in your own scripts add the following line:

```
use xraylib;
```

Depending on the install location of xraylib, it may be necessary to adjust the PERL5LIB environment variable.

3.7 IDL bindings

To use the IDL bindings, update the IDL_PATH and IDL_DLM_PATH environment variables to include \${prefix}/pro and \${prefix}/dlm respectively. If you want to take advantage of the xraylib constants, add the line

```
@xraylib
```

to your IDL scripts or your IDL startup script.

3.8 Lua bindings (Linux and Mac OS X)

In order to use the Lua bindings, update the LUA_CPATH environment variable to include \${libdir}/lua/x.y (with x.y corresponding to your version of lua), and include the following line in your lua code:

```
require("xraylib")
```

3.9 Java bindings

To import the xraylib jar, include the lines

```
import com.github.tschoonj.xraylib.*;
import org.apache.commons.math3.complex.Complex;
```

in your java code. You may have to update the CLASSPATH environment variable to make sure that it points to the location of the xraylib class variables at compile and runtime.

In case of an error when calling an xraylib function (e.g. with invalid arguments) anXraylibException will be thrown instead of returning 0.0. The diffraction API can be used in two ways: using static methods (identical to the other bindings) or using an object oriented API.

3.10 .NET bindings (Windows only)

The .NET Framework can be installed on computers running Microsoft Windows operating systems. It supports multiple programming languages, including C#, VB.NET, C++/CLI, Pascal, Fortran and includes a large class library for that solves many common programming problems. Microsoft offers free versions of its Express Edition compilers from http://www.microsoft.com/express/

These were compiled using Visual Studio 2008 Standard and was built against .NET Framework Version 2. The binding consists of a single, mixed-mode assembly XrayLib.NET.dll written in C++/CLI. The assembly provides the interop between a managed XrayLib class and the native functions and types exposed by libxrl-7.dll. This combines the language interoperability of .NET with the performance of the native underlying functions.

A pre-built Release version of the assembly and an example program can be found in the bin folder together with a HTML Help v1 file.

To use XrayLib.NET.dll in Visual Studio:

- 1. Right-click on your project in the Solution Explorer
- 2. Click the References... menu item
- 3. Click the Add New Reference... button in the dialog box
- 4. Click the Browse tab of the Add Reference dialog box
- 5. Navigate to the xraylib Lib folder and select the XrayLib.NET.dll file
- 6. Click the OK buttons to add the assembly reference and close the dialog boxes
- 7. Assuming you are using C#, add the following line to the top of your source code file

using Science;

1. To create a instance of the XrayLib class that provides access to the XrayLib functionality, use the make the following call

```
XrayLib xl = XrayLib.Instance;
```

The class uses the static property Instance to implement a singleton pattern so that only a single instance of the XrayLib class is created and can be used throughout your program.

3.11 Ruby bindings (Linux and Mac OS X)

To include the xraylib ruby module in your own scripts add the following line:

```
require 'xraylib'
```

Depending on the install location of xraylib, it may be necessary to adjust the RUBYLIB environment variable.

3.12 PHP bindings (Linux and Mac OS X)

To include the xraylib PHP module in your own scripts add the following line:

```
include("xraylib.php");
```

Furthermore, you may have to modify your php.ini file by updating it with a new extension:

```
extension=<path_to_xraylib.so>/xraylib.so
```

and by modifying the include path:

```
include_path=<path_to_xraylib.php>
```

The PHP bindings have been used to generate the online calculator.

3.13 Matlab bindings (Linux and Windows)

It was reported that xraylib can be called on Linux and Windows by defining functions as in the following examples.

3.13.1 Linux:

3.13.2 Windows

Obviously, the exact path to the xraylib library and the header will depend on the installation.

Since the developers do not have access to a Matlab installation, these bindings are currently not officially supported.

3.14 Mathematica bindings

xraylib has been reported to be callable from Mathematica (on Windows) after executing the following series of commands:

```
Needs["NETLink`"];
UninstallNET[];
InstallNET["Force32Bit"->True];
dllLocation="C:\\SomeFolder\\PathToDLL\\libxrl-7.dll";
```

To load an xraylib function one needs to define each function separately, according to the prototypes defined in the xraylib API

```
CSPhoto = DefineDLLFunction["CS_Photo", dllLocation, "double", {"int", "double"}];
CSFluorLineKissel = DefineDLLFunction["CS_FluorLine_Kissel", dllLocation, "double", FluorYield = DefineDLLFunction["FluorYield", dllLocation, "double", {"int", "int"}];
```

These functions may then be called as:

```
CSPhoto[33, 15.00];
CSFluorLineKissel[33, 0, 15.00];
FluorYield[33, 0];
```

The Mathematica bindings are currently not officially supported.

3.15 Command-line interface

The command-line utility called xraylib will be installed in the bin subfolder of the requested installation path (default: /usr/local/bin). If your shell does not pick this up after the installation, update your PATH environment variable accordingly. An example of usage (fluorescence line energy of Ca-Kalpha):

```
xraylib "LineEnergy(20,KA1_LINE)"
Help can be requested:
xraylib -h
```

3.16 Using xraylib: examples

Examples demonstrating the usage of the C library and the bindings can be found in the example folder of the xraylib package. These examples will be compiled and executed when make check is invoked after make during the installation.

Two complete typical usage examples written in Fortran and Ruby can be found here

4 The xraylib API: list of all functions

Important: with the release of version 3.0.0, we have changed all float datatypes to double! This may require users to make modifications to their existing C/C++/Obj-C and Fortran codes, as well as recompile their software that depends on xraylib. Apart from this datatype transition, we also changed the CompoundParser prototype.

Unless explicitly stated otherwise, all energies are assumed to be expressed in keV, whether used as input argument or return value.

Similarly, all angles are assumed to be expressed in radians.

4.1 Atomic weights

```
double AtomicWeight(int Z);
```

Given an element Z, returns its atomic weight in g/mol.

4.2 Element densities

```
double ElementDensity(int Z);
```

Given an element Z, returns its density at room temperature in g/cm³.

4.3 Cross sections

```
double CS_Total(int Z, double E);
double CS_Photo(int Z, double E);
double CS_Rayl(int Z, double E);
double CS_Compt(int Z, double E);
```

Given an element Z and an energy E, these functions will return respectively the total absorption cross section, the photoionization cross section, the Rayleigh scattering cross section and the Compton scattering cross section, expressed in cm²/g.

```
double CSb_Total(int Z, double E);
double CSb_Photo(int Z, double E);
double CSb_Rayl(int Z, double E);
double CSb_Compt(int Z, double E);
```

Identical to the last four functions, but the cross section is returned expressed in barn/atom.

```
double CS_KN(double E);
```

Given an energy E, returns the total Klein-Nishina cross section expressed in barn.

```
double CS_Photo_Partial(int Z, int shell, double E);
```

Given an element Z, shell-type macro shell and energy E, returns the partial photoionization cross section expressed in cm²/g.

```
double CSb_Photo_Partial(int Z, int shell, double E);
```

Identical to the last function, but the cross section is returned in barn/electron.

```
double CS_Total_Kissel(int Z, double E);
double CSb_Total_Kissel(int Z, double E);
```

Identical to CS_Total and CSb_Total, but the photoionization contribution is calculated using the Kissel cross sections.

```
double CS_Energy(int Z, double E);
```

Given an element Z and an energy E, returns the mass-energy absorption cross section in cm²g

```
double CS_Total_CP(const char compound[], double E);
double CS_Photo_CP(const char compound[], double E);
double CS_Rayl_CP(const char compound[], double E);
double CS_Compt_CP(const char compound[], double E);
```

```
double CSb_Total_CP(const char compound[], double E);
double CSb_Photo_CP(const char compound[], double E);
double CSb_Rayl_CP(const char compound[], double E);
double CSb_Compt_CP(const char compound[], double E);
double CS_Total_Kissel_CP(const char compound[], double E);
double CSb_Total_Kissel_CP(const char compound[], double E);
double CS Energy(const char compound[], double E);
```

Identical to the earlier mentioned functions, but require a chemical formula or a NIST compound name compound as first argument.

4.4 Unpolarized differential scattering cross sections

```
double DCS_Thoms(double theta);
```

Given a scattering polar angle theta, returns the Thomson differential cross section expressed in barn.

```
double DCS_KN(double E, double theta);
```

Given an energy E and a scattering polar angle theta, returns the Klein-Nishina differential scattering cross section expressed in barn.

```
double DCS_Rayl(int Z, double E, double theta);
double DCS_Compt(int Z, double E, double theta);
```

Given an element Z, energy E and a scattering polar angle theta, returns respectively the differential Rayleigh and the differential Compton scattering cross section expressed in cm^2/g /sterad.

```
double DCSb_Rayl(int Z, double E, double theta);
double DCSb_Compt(int Z, double E, double theta);
```

Identical to the last two functions, but the cross section is returned expressed in barn/atom/sterad.

```
double DCS_Rayl_CP(const char compound[], double E, double theta);
double DCS_Compt_CP(const char compound[], double E, double theta);
double DCSb_Rayl_CP(const char compound[], double E, double theta);
double DCSb_Compt_CP(const char compound[], double E, double theta);
```

Identical to the earlier mentioned functions, but require a chemical formula or a NIST compound name compound as first argument.

4.5 Polarized differential scattering cross sections

```
double DCSP_Thoms(double theta, double phi);
```

Given a scattering polar angle theta and scattering azimuthal angle phi, returns the Thomson differential cross section for a polarized beam expressed in barn.

```
double DCSP_KN(double E, double theta, double phi);
```

Given an energy E, a scattering polar angle theta and scattering azimuthal angle phi, returns the Klein-Nishina differential cross section for a polarized beam expressed in barn.

```
double DCSP_Rayl(int Z, double E, double theta, double phi);
double DCSP_Compt(int Z, double E, double theta, double phi);
```

Given an element Z, an energy E, a scattering polar angle theta and scattering azimuthal angle phi, returns respectively the Rayleigh differential and Compton differential cross sections for a polarized beam expressed in cm²/g/sterad.

```
double DCSPb_Rayl(int Z, double E, double theta, double phi);
double DCSPb_Compt(int Z, double E, double theta, double phi);
```

Identical to the last two functions, but the cross section is returned expressed in barn/atom/sterad.

```
double DCSP_Rayl_CP(const char compound[], double E, double theta, double phi);
double DCSP_Compt_CP(const char compound[], double E, double theta, double phi);
double DCSPb_Rayl_CP(const char compound[], double E, double theta, double phi);
double DCSPb_Compt_CP(const char compound[], double E, double theta, double phi);
```

Identical to the earlier mentioned functions, but require a chemical formula or a NIST compound name compound as first argument.

4.6 Scattering factors

In this section, we introduce the momentum transfer parameter q, which is used in several of the following functions. It should be noted that several definitions can be found of this parameter throughout the scientific literature, which vary mostly depending on the community where it is used. The crystallography and diffraction community for example, use the following definition:

```
q = 4\pi \times \sin(\theta)/\lambda
```

with θ the angle between the incident X-ray and the crystal scattering planes according to Bragg's law, and λ the wavelength.

xraylib uses however, a different definition, in which θ corresponds to the scattering angle, which in case of Bragg scattering is equal to twice the angle from the previous definition. This new definition has the advantage of being useful when working with amorphous materials, as well as with incoherent scattering. Furthermore, our definition drops the 4π scale factor, in line with the definition by Hubbell et al in *Atomic form factors, incoherent scattering functions, and photon scattering cross sections*, J. Phys. Chem. Ref. Data, Vol.4, No. 3, 1975:

```
q = E \times \sin(\theta/2) \times h \times c \times 10^8
```

with E the energy of the photon, h Planck's constant and c the speed of light. The unit of the returned momentum transfer is then $Å^{-1}$.

```
double FF_Rayl(int Z, double q);
```

Given an element Z and a momentum transfer q (expressed in $Å^{-1}$), returns the atomic form factor for Rayleigh scattering.

```
double SF_Compt(int Z, double q);
```

Given an element Z and a momentum transfer q (expressed in $Å^{-1}$), returns the incoherent scattering function for Compton scattering.

```
double MomentTransf(double E, double theta);
```

Given an energy E and a scattering polar angle theta, returns the momentum transfer for X-ray photon scattering expressed in $Å^{-1}$.

```
double Fi(int Z, double E);
double Fii(int Z, double E);
```

Given an element Z and and energy E, returns respectively the anomalous scattering factors $\Delta f'$ and $\Delta f''$.

4.7 X-ray fluorescence line energies

```
double LineEnergy(int Z, int line);
```

Given an element Z and line-type macro line, returns the energy of the requested XRF line expressed in keV.

4.8 X-ray fluorescence yields

```
double FluorYield(int Z, int shell);
```

Given an element Z and shell-type macro shell, returns the corresponding fluorescence yield.

4.9 Auger yields

```
double AugerYield(int Z, int shell);
```

Given an element Z and shell-type macro shell, returns the corresponding Auger yield.

4.10 Coster-Kronig transition probabilities

```
double CosKronTransProb(int Z, int trans);
```

Given an element Z and transition-type macro trans, returns the corresponding Coster-Kronig transition probability.

4.11 Absorption edge energies

```
double EdgeEnergy(int Z, int shell);
```

Given an element Z and shell-type macro shell, returns the absorption edge energy expressed in keV.

4.12 Jump factors

```
double JumpFactor(int Z, int shell);
```

Given an element Z and shell-type macro shell, returns the jump factor.

4.13 X-ray fluorescence cross sections

```
double CS_FluorLine(int Z, int line, double E);
```

Given an element Z, a line-type macro line and an energy E, returns the XRF cross section expressed in $\rm cm^2/g$

```
double CSb_FluorLine(int Z, int line, double E);
```

Identical to the previous function, but returns the cross section expressed in barn/atom. These last two functions calculate the XRF cross sections assuming the jump factor approximation. We also offer XRF cross sections calculated using the partial photoelectric effect cross sections calculated by Kissel et al. The corresponding functions are:

```
double CS_FluorLine_Kissel(int Z, int line, double E);
double CSb_FluorLine_Kissel(int Z, int line, double E);
```

Recently we introduced XRF cross sections that take into account cascade effects, both those coming from radiative transitions and those from non-radiative transitions:

```
double CS_FluorLine_Kissel_Cascade(int Z, int line, double E);
double CSb_FluorLine_Kissel_Cascade(int Z, int line, double E);
double CS_FluorLine_Kissel_Nonradiative_Cascade(int Z, int line, double E);
double CSb_FluorLine_Kissel_Nonradiative_Cascade(int Z, int line, double E);
double CS_FluorLine_Kissel_Radiative_Cascade(int Z, int line, double E);
double CSb_FluorLine_Kissel_Radiative_Cascade(int Z, int line, double E);
double CS_FluorLine_Kissel_no_Cascade(int Z, int line, double E);
double CSb_FluorLine_Kissel_no_Cascade(int Z, int line, double E);
```

CS_FluorLine_Kissel and CbS_FluorLine_Kissel are mapped to resp. CS_FluorLine_Kissel_Cascade and CSb_FluorLine_Kissel_Cascade.

Using these functions, it is possible to examine the influence of the two different cascade types separately, but keep in mind that in reality they will always be occuring simultaneously.

All CS_FluorLine* functions offer XRF cross sections for both K- and L-lines (provided the corresponding shells can be excited), but only the CS_FluorLine_Kissel* functions offer also the M-line XRF cross sections!

4.14 Radiative rates

```
double RadRate(int Z, int line);
```

Given an element Z and a line-type macro line, returns the radiative rate.

4.15 Non-radiative rates

```
double AugerRate(int Z, int auger);
```

Given an element Z and an Auger-type macro auger corresponding with the electrons involved, returns the non-radiative rate.

4.16 Atomic level widths

```
double AtomicLevelWidth(int Z, int shell);
```

Given an element Z and a shell-type macro shell, returns the atomic level width in keV.

4.17 Compton energy

```
double ComptonEnergy(double E0, double theta);
```

Given an initial photon energy E0 and a scattering polar angle theta, returns the photon energy after Compton scattering.

4.18 Refractive indices

```
double Refractive_Index_Re(const char compound[], double E, double rho);
double Refractive_Index_Im(const char compound[], double E, double rho);
xrlComplex Refractive_Index(const char compound[], double E, double rho);
```

Given a chemical formula compound, energy E and a density rho, return respectively the real, the imaginary or both parts of the refractive index. For a definition of xrlComplex, see the crystal diffraction section.

4.19 Compton profiles

```
double ComptonProfile(int Z, double pz);
```

Given an element Z and a momentum pz (expressed in atomic units), returns the Compton scattering profile summed over all shells.

```
double ComptonProfile_Partial(int Z, int shell, double pz);
```

Given an element Z, a shell-type macro shell and a momentum pz, returns the Compton scattering profile for a particular subshell.

4.20 Electronic configurations

```
double ElectronConfig(int Z, int shell);
```

Given an element Z and a shell-type macro shell, returns the number of electrons the shell possesses.

4.21 Crystal diffraction

```
Crystal_Struct* Crystal_GetCrystal(const char* material, Crystal_Array* c_array);
```

Get a pointer to a Crystal Struct of a given crystal material from c_array.

If c_array is NULL then the internal array of crystals is searched.

If not found, NULL is returned.

The c_array argument is only used in C, C++ and Fortran. The other bindings support only the internal array.

```
double Bragg_angle (Crystal_Struct* cryst, double E, int i_miller, int j_miller, in
```

Computes the Bragg angle in radians for a given crystal cryst, energy E and Miller indices i_miller, j_miller and k_miller.

```
double Q_scattering_amplitude(Crystal_Struct* cryst, double E, int i_miller, int j_
```

Computes the Q scattering amplitude for a given crystal cryst, incident energy E, Miller indices (i_miller, j_miller and k_miller) and relative angle rel_angle.

```
void Atomic_Factors (int Z, double E, double q, double debye_factor, double* f0, do
```

Computes the atomic factors f_0 f0, $\Delta f'$ f_prime and $\Delta f''$ f_prime2 for a given element Z, incident energy E, momentum transfer q and Debye factor debye_factor. f0, f_prime and f_prime2 are pointers to doubles in C, C++, Fortran and IDL BUT return values in Perl, Python and Lua!!

```
xrlComplex Crystal_F_H_StructureFactor (Crystal_Struct* cryst, double E, int i_mille
```

Computes the F_H Structure factor for a given crystal cryst, incident energy E, Miller indices (i_miller, j_miller and k_miller), Debye factor debye_factor and relative angle rel_angle. The return value is a complex number.

xrlComplex Crystal_F_H_StructureFactor_Partial (Crystal_Struct* crystal, double ene

```
typedef struct {
    double re;
    double im;
} xrlComplex;
```

with:

with:

- re: real part
- im: imaginary part

Wherever possible for the bindings (Python, IDL, Perl, Ruby, Fortran, C#), we have tried using the native complex number datatype in favor of a direct analogue of the xrlComplex struct.

See also Crystal_F_H_StructureFactor.

The Atomic structure factor has three terms:

$$F_{H} = f_{0} + \Delta f' + \Delta f''.$$

For each of these three terms, there is a corresponding *_flag argument which controls the numerical value used in computing F_H : *_flag = 0 \rightarrow Set this term to 0. *_flag = 1 \rightarrow Set this term to 1. Only used for f_0 . *_flag = 2 \rightarrow Set this term to the value given.

double Crystal_UnitCellVolume (Crystal_Struct* cryst);

Computes the unit cell volume for a crystal cryst. Structures obtained from the official array will have their volume in .volume

```
double Crystal_dSpacing (Crystal_Struct* cryst, int i_miller, int j_miller, int k_m;
```

Computes the d-spacing for a given crystal cryst and Miller indices (i_miller, j_miller and k_miller).

The routine assumes that if cryst->volume is nonzero then it holds a valid value. If (i,j,k) = (0,0,0) then zero is returned.

4.22 Compound parser

```
struct compoundData {
    int nElements;
    double nAtomsAll;
    int *Elements;
    double *massFractions;
};
with:
```

- nElements: number of different elements in the compound
- nAtomsAll: number of atoms in the formula. Since indices may be real numbers, this member variable is of type double
- Elements: a dynamically allocated array (length = nElements) containing the elements, in ascending order
- massFractions: a dynamically allocated array (length = nElements) containing the mass fractions of the elements in Elements

```
struct compoundData *CompoundParser(const char compoundString[])
```

The CompoundParser function will parse a chemical formula compoundString and will allocate a compoundData structure with the results if successful, otherwise NULL is returned.

Chemical formulas may contain (nested) brackets, followed by an integer or real number (with a dot) subscript.

Examples of accepted formulas are: H20, Ca5(P04)3F, Ca5(P04)F0.33C10.33(0H)0.33. The allocated memory should be freed with

```
FreeCompoundData(struct compoundData *cd); (C/C++/Obj-C and Fortran only)
char * AtomicNumberToSymbol(int Z);
```

The AtomicNumberToSymbol function returns a pointer to a string containing the element for atomic number Z. If an error occurred, the NULL string is returned. The string should be freed after usage with the xrlFree function (C/C++/Obj-C and Fortran only).

```
int SymbolToAtomicNumber(char *symbol);
```

The SymbolToAtomicNumber function returns the atomic number that corresponds with element symbol. If the element does not exist, 0 is returned.

4.23 NIST compound catalog

```
struct compoundDataNIST {
    char *name;
    int nElements;
    int *Elements;
    double *massFractions;
    double density;
};
```

with:

- name: a string containing the full name of the compound, as retrieved from the NIST database
- nElements: number of different elements in the compound
- Elements: a dynamically allocated array (length = nElements) containing the elements, in ascending order
- massFractions: a dynamically allocated array (length = nElements) containing the mass fractions of the elements in Elements
- density: the density of the compound, expressed in g/cm³

```
struct compoundDataNIST *GetCompoundDataNISTByName(const char compoundString[]);
```

struct compoundDataNIST *GetCompoundDataNISTByIndex(int compoundIndex);

Using these two functions it is possible to query the contents of NISTs catalog of compound compositions and densities. The former takes a compound name compoundString and if a match is found, the corresponding newly allocated compoundDataNIST structure is returned, while the latter takes an index compoundIndex in the form of a NIST compound-type macro. The list of compound names can be queried using:

```
char **GetCompoundDataNISTList(int *nCompounds);
```

which returns a NULL terminated array of strings. Optionally, pass a pointer to an integer nCompounds to obtain the number of strings in the array (pass NULL if value is not required). This option is only present in the C/C++/Obj-C implementation. The list can also be obtained at our online xraylib calculator.

After usage, the returned compoundDataNIST structures should be freed with (C/C++/Obj-C and Fortran only):

void FreeCompoundDataNIST(struct compoundDataNIST *compoundData);

4.24 Radionuclides

```
struct radioNuclideData {
    char *name;
    int Z;
    int A;
    int N;
    int Z_xray;
    int nXrays;
    int *XrayLines;
    double *XrayIntensities;
    int nGammas;
    double *GammaEnergies;
    double *GammaIntensities;
};
```

- name: a string containing the mass number (A), followed by the chemical element (e.g. 55Fe)
- Z: atomic number of the radionuclide
- A: mass number of the radionuclide
- N: number of neutrons of the radionuclide
- Z_xray: atomic number of the nuclide after decay, which should be used in calculating the energy of the emitted X-ray lines using LineEnergy
- nXrays: number of emitted characteristic X-rays
- XrayLines: a dynamically allocated array (length = nXrays) of line-type macros, identifying the emitted X-rays
- XrayIntensities: a dynamically allocated array (length = nXrays) of photons per disintegration, one value per emitted X-ray
- nGammas: number of emitted gamma-rays
- GammaEnergies: a dynamically allocated array (length = nGammas) of emitted gamma-ray energies
- GammaIntensities: a dynamically allocated array (length = nGammas) of emitted gamma-ray photons per disintegration

struct radioNuclideData *GetRadioNuclideDataByName(const char radioNuclideString[]);
struct radioNuclideData *GetRadioNuclideDataByIndex(int radioNuclideIndex);

Use these two functions to query xraylib's database of X-ray emission profiles for several important radionuclides. The former expects the name radioNuclideString of a radionuclide, while the latter takes a radionuclide-type macro radioNuclideIndex. When successful, a freshly allocated radioNuclideData structure is returned. Query the list of names using:

```
char **GetRadioNuclideDataList(int *nRadioNuclides);
```

which returns a NULL terminated array of strings. Optionally, pass a pointer to an integer nRadioNuclides to obtain the number of strings in the array (pass NULL if value is not required). This option is only present in the C/C++/Obj-C implementation

The list can also be obtained at our online xraylib calculator.

After usage, the returned radioNuclideData structures should be freed with (C/C++/Obj-C and Fortran only):

void FreeRadioNuclideData(struct radioNuclideData *radioNuclideData);

4.25 Error handling

xraylib's error handling consists of error messages that are presented to the user whenever necessary, most commonly when invalid arguments were detected. Internally a global variable ExitStatus will be set to 1 at the first occurrence of an error. It is possible to force the calling program to exit in this case, by using the SetHardExit function, before calling the function that could trigger the error. If you are merely interested in knowing whether an error occurred or not, check the return value of GetExitStatus, after calling the function that could trigger the error. Consider setting SetExitStatus(0) before to ensure that no previous errors would influence the outcome of GetExitStatus. The following functions determine the error handling behavior:

```
void SetHardExit(int hard_exit);
Pass 1 to exit the program at the first error.
void SetExitStatus(int exit_status);
int GetExitStatus(void);
```

These two functions allow for the setting and getting of the ExitStatus. If it is equal to 1, then an error has occurred, while 0 indicates normal operation.

The authors of xraylib strongly discourage the use of these three functions. Due to the internal use of a global variable, they are NOT thread-safe. Furthermore, some functions will set the ExitStatus variable to 1, although no error has occurred! This is considered a bug and will be fixed in a future update. For now, the authors recommend to check the return value of the functions: 0 indicates either an error or an unavailable quantity.

Since some of the error messages are in fact meaningless (in particular those produced by the XRF cross section functions), it may be useful to turn them off completely. Use the following functions for this purpose:

```
void SetErrorMessages(int status);
int GetErrorMessages(void);
```

Passing 0 to SetErrorMessages suppresses the output of the error messages, while 1 restores it.

5 Code examples

In this section we will demonstrate how to use xraylib in some real-world situations. You should be able to compile (if necessary) and run these examples after installing xraylib with the required bindings.

5.1 Fundamental parameter method (Fortran 2003)

This first example, written in Fortran 2003, demonstrates how one can determine the expected first order net-line intensity of a particular XRF line after irradiating a sample (apatite) with an X-ray beam. Compilation instructions can be found in the Fortran bindings section.

The equation that has been used here can be found in every handbook on quantitative X-ray fluorescence and many scientific articles. Try for example *Spectrochim*. *Acta Part B*, 67:32–42, 2012.

```
PROGRAM fpm
USE :: xraylib
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
REAL (C_DOUBLE) :: flux = 1E9 !photons/s
REAL (C_DOUBLE) :: G = 1E-5
REAL (C_DOUBLE) :: density = 3.19 !q/cm3
REAL (C_DOUBLE) :: thickness = 0.1 !cm
REAL (C_DOUBLE) :: xrf_intensity, chi
REAL (C_DOUBLE) :: mu_0, mu_1, w_Ca, A_corr, Q
REAL (C_DOUBLE) :: alpha = 45.0, beta = 45.0 !degrees
REAL (C_DOUBLE) :: beam_energy = 20.0 !keV
TYPE (compoundData), POINTER :: cd
CHARACTER (len=50) :: apatite = 'Ca5(PO4)3(OH)0.33F0.33C10.33'
REAL (C_DOUBLE), PARAMETER :: deg2rad = 3.14159265359/180.0
cd => compoundParser(apatite)
w_Ca = cd%massFractions(6) ! fortran array indexing starts at 1!!!!
```

```
mu_0 = CS_Total_CP(apatite, beam_energy)
mu_1 = CS_Total_CP(apatite, LineEnergy(20, KL3_LINE))
chi = mu_0/SIN(deg2rad*alpha) + mu_1/SIN(deg2rad*beta)
A_corr = (1.0-EXP(-chi*density*thickness))/(chi*density*thickness)
Q = CS_FluorLine_Kissel(20, KL3_LINE, beam_energy)

xrf_intensity = flux*G*Q*w_Ca*density*thickness*A_corr

CALL FreeCompoundData(cd)

WRITE (*, '(A, ES12.4)') 'xrf_intensity: ', xrf_intensity
END PROGRAM fpm

Save as fpm.f90 and compile with:
gfortran -o fpm `pkg-config --cflags libxrlf03` fpm.f90 `pkg-config --libs libxrlf03:
Executing fpm should produce the following output:
xrf_intensity: 1.0849E+01
```

5.2 Transmission efficiency using Monte Carlo method (Ruby)

The Monte Carlo method is often used in the field of X-rays as it can be used to predict the outcome of experiments, provided that all the relevant physical datasets are present. xraylib can be used to this effect as is shown in the following example, written in Ruby, in which one determines the fraction of photons than manages to penetrate through a sample of a particular thickness along the beampath.

```
require 'xraylib'
compound = "Uranium Monocarbide"

Xraylib.SetErrorMessages(0)

cdn = Xraylib.GetCompoundDataNISTByName(compound)
density = cdn['density'] #g/cm3
thickness = 0.01 #cm
energy = 50.0 #keV

mu_rho = Xraylib.CS_Total_CP(compound, energy)*density
transmitted = 0
total = 100000
```

```
total.times {|i|
x = -Math.log(rand())/mu_rho
transmitted += 1 if x > thickness
}

printf("transmitted: %i\n", transmitted)
printf("MC fraction: %f\n", Float(transmitted)/total)
printf("True fraction: %f\n", Math.exp(-mu_rho*thickness))
Save as mc.rb and execute with:
ruby mc.rb
```

This should produce something similar (remember: it's a Monte Carlo simulation!) to the following output:

transmitted: 23438 MC fraction: 0.234380 True fraction: 0.233201

5.3 More examples

The xraylib example folder contains example files for all the languages that are officially supported. Click on the following to links to access them directly.

- C
- Perl
- Fortran 2003
- IDL
- Python
- C++
- Java
- C#
- Lua
- Ruby
- PHP
- Python-Numpy

6 References and additional resources

Our work on *xraylib* has been published in two peer-reviewed journals and has been presented at several conferences. Additional information can be found in the following resources.

6.1 Papers

- A library for X-ray matter interaction cross sections for X-ray fluorescence applications. Antonio Brunetti, Manuel Sanchez del Rio, Bruno Golosio, Alexandre Simionovici and Andrea Somogyi. Spectrochimica Acta B, 59(10-11), 1725-1731, 2004. DOI
- The xraylib library for X-ray-matter interactions. Recent developments. T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. A. Solé, C. Ferrero and L. Vincze. Spectrochimica Acta Part B, 66(11-12), 776-784, 2011.
 DOI

6.2 Posters

- The xraylib library for X-ray matter interaction cross-sections: New developments and applications. Tom Schoonjans, Manuel Sanchez del Rio, Laszlo Vincze. Denver X-ray Conference, Colorado Springs, CO, USA, 27-31 July 2009 Best XRF poster award PDF
- The xraylib library for X-ray matter interaction cross sections: New developments and applications. Tom Schoonjans, Antonio Brunetti, Bruno Golosio, Manuel Sanchez del Rio, Vicente Armando Solé, Claudio Ferrero and Laszlo Vincze. SPIE Optics and Photonics, San Diego, CA, USA, 21-25 August 2011
- The xraylib library for X- ray—matter interactions: recent developments. Tom Schoonjans, Antonio Brunetti, Bruno Golosio, Manuel Sanchez Del Rio, Vicente Armando Solé, Claudio Ferrero and Laszlo Vincze. European Conference on X-Ray Spectrometry, IAEA, Vienna, Austria, 18-22 June 2012
- The xraylib library for X-ray-matter interactions. Tom Schoonjans, Antonio Brunetti, Bruno Golosio, Manuel Sanchez del Rio, Vicente Armando Solé, Claudio Ferrero and Laszlo Vincze. European Conference on X-Ray Spectrometry, Alma Mater Studiorum Università di Bologna, Italy, 15-20 June 2014
- The xraylib library for X-ray-matter interactions. Tom Schoonjans, Antonio Brunetti, Bruno Golosio, Manuel Sanchez del Rio, Vicente Armando Solé, Claudio Ferrero and Laszlo Vincze. European Conference on X-Ray Spectrometry, University of Gothenburg, Sweden, 19-24 June 2016 PDF

6.3 Oral presentation

- The xraylib library for X-ray matter interaction cross sections: New developments. Tom Schoonjans, Manuel Sanchez del Rio, Antonio Brunetti, Bruno Golosio, Alexandre Simionovici, Claudio Ferrero and Laszlo Vincze. European Conference on X-Ray Spectrometry, Figueira da Foz, Coimbra, Portugal, 20-25 June 2010 PDF
- The xraylib library for X-ray-matter interaction cross sections. Tom Schoonjans. Monte Carlo simulation tools for X-ray imaging and fluorescence work-

A Tables of xraylib macros

This appendix contains tables of all macros that are used by the xraylib API. These will be substituted at compile-time (C, C++, Objective-C) or run-time with a corresponding integer. These integers have intentionally not been included in these tables as their direct usage is strongly discouraged: it is possible that these integers will change in future versions!

A.1 Physical constants

xraylib provides several physical constants, which are commonly used in the field of X-ray physics. They are implemented as macros that are mapped to the corresponding values as provided by NIST.

Constant	Value	Unit	Macro
Avogadro	0.60221	41 29 ol ⁻¹	AVOGNUM
constant		×	
		${\rm barn}^{-1}$	
		$\times \mathrm{cm}^2$	
Electron	510.998	92 & eV	MEC2
rest mass			
energy			
Square of	0.07940	78 1 67arn	RE2
classical			
electron			
radius			
Classical	2.81794	03 26 7e-	R_E
electron	15		
radius			
keV to	12.3984	1930	KEV2ANGST
$\rm \AA^{-1}$			
conversion			

A.2 X-ray fluorescence line macros

In this section an overview is presented of all macros that are being used by such functions as LineEnergy, RadRate and the CS_FluorLine family. Three types of macros are offered: IUPAC, Siegbahn and obsolete. The first two categories refer to individual XRF lines while the third category refers to groups of XRF lines. Usage of this last group is deprecated as explained in our manuscript The xraylib library for X-ray—matter interactions. Recent developments:

Access to these functions from the xraylib API is managed through a number of macros which allow for the extraction of specific information, such as a particular XRF line or atomic shell. A number of examples can be found in our earlier work [13]. However, care should be taken when using the macros related to the XRF lines. Despite the longstanding recommendation by the International Union of Pure and Applied Chemistry (IUPAC) to designate an XRF line based on the atomic levels involved in the transition (e.g. K-L₃), the Siegbahn notation is still widely used in X-ray spectroscopy. This notation (e.g. $K_{\alpha,1}$), which classifies lines on the basis of their relative intensities, is very often used in a way that overlapping lines are referred to using a single notation: e.g. K_{α} corresponds to both $K_{\alpha 1}$ and $K_{\alpha 2}$. Another example concerns the L_{β} line which actually indicates about twenty individual lines. This situation has an impact on how several functions from the xraylib API are used: Firstly, when retrieving an XRF cross section for a line group, the function must return the sum of the XRF cross sections of all lines belonging to that group. Secondly, a problem arises when calling the XRF line energy of a line group. One solution is returning an (weighted) average of the individual line energies. In the case of elements with a high atomic number, however, this would result in a line energy that would be absent from a real experimental spectrum (e.g. Pb K-L₂: 72.8045 keV, K-L₃: 74.9693). Thirdly, in the case of transition probabilities, it makes no sense to request e.g. this value for L_{β} since it corresponds to several lines, originating from the L₁, L₂ and L₃ shells! These issues were circumvented at an earlier stage by defining 4 Siegbahn macros KA_LINE, KB_LINE, LA_LINE and LB_LINE which correspond to $K_{\alpha 1} + K_{\alpha 2}, \, K_{\beta 1} + K_{\beta 2}, \, L_{\alpha 1}$ and $L_{\beta 1}$, respectively. These 4 macros were accompanied by a large number of IUPAC macros, each associated with an individual line. Recent xraylib versions have, however, been augmented with about 45 new Siegbahn macros retrieving individual XRF lines [33]. Their usage will resolve the above mentioned issues entirely. The original 4 Siegbahn macros are kept for backward compatibility but their usage is deprecated. When invoking functions with these macros, the returned values will be valid for the complete line group, which means that they will in some cases be different from older xraylib versions.

A.2.1 IUPAC X-ray fluorescence line macros

Transition	IUPAC macro
$K \leftarrow L_1$	KL1_LINE
$K \leftarrow L_2$	KL2_LINE
$K \leftarrow L_3$	KL3_LINE

Transition	IUPAC macro
$K \leftarrow M_1$	KM1_LINE
$K \leftarrow M_2$	KM2_LINE
$K \leftarrow M_3$	KM3_LINE
$K \leftarrow M_4$	KM4_LINE
$K \leftarrow M_5$	KM5_LINE
$K \leftarrow N_1$	KN1_LINE
$K \leftarrow N_2$	KN2_LINE
$K \leftarrow N_3$	KN3_LINE
$K \leftarrow N_4$	KN4_LINE
$K \leftarrow N_5$	KN5_LINE
$K \leftarrow N_6$	KN6_LINE
$K \leftarrow N_7$	KN7_LINE
$K \leftarrow O$	KO_LINE
$K \leftarrow O_1$	KO1_LINE
$K \leftarrow O_2$	KO2_LINE
$K \leftarrow O_3$	KO3_LINE
$K \leftarrow O_4$	KO4_LINE
$K \leftarrow O_5$	KO5_LINE
$K \leftarrow O_6$	KO6_LINE
$K \leftarrow O_7$	KO7_LINE
$K \leftarrow P$	KP_LINE
$K \leftarrow P_1$	KP1_LINE
$K \leftarrow P_2$	KP2_LINE
$K \leftarrow P_3$	KP3_LINE
$K \leftarrow P_4$	KP4_LINE
$K \leftarrow P_5$	KP5_LINE
$L_1 \leftarrow L_2$	L1L2_LINE
$L_1 \leftarrow L_3$	L1L3_LINE
$L_1 \leftarrow M_1$	L1M1_LINE
$L_1 \leftarrow M_2$	L1M2_LINE
$L_1 \leftarrow M_3$	L1M3_LINE
$L_1 \leftarrow M_4$	L1M4_LINE L1M5_LINE
$L_1 \leftarrow M_5 \\ L_1 \leftarrow N_1$	LIMS_LINE L1N1_LINE
$L_1 \leftarrow N_1$ $L_1 \leftarrow N_2$	LINI_LINE L1N2_LINE
$L_1 \leftarrow N_2$ $L_1 \leftarrow N_3$	LINZ_LINE L1N3_LINE
$L_1 \leftarrow N_3$ $L_1 \leftarrow N_4$	LING_LINE L1N4_LINE
$L_1 \leftarrow N_5$	L1N5_LINE
$L_1 \leftarrow N_6$	L1N6_LINE
$L_1 \leftarrow N_{67}$	L1N67_LINE
$L_1 \leftarrow N_7$	L1N7_LINE
$L_1 \leftarrow O_1$	L101_LINE

Transition	IUPAC macro
$L_1 \leftarrow O_2$	L102_LINE
$L_1 \leftarrow O_3$	L103_LINE
$L_1 \leftarrow O_4$	L104_LINE
$L_1 \leftarrow O_{45}$	L1045_LINE
$L_1 \leftarrow O_5$	L105_LINE
$L_1 \leftarrow O_6$	L106_LINE
$L_1 \leftarrow O_7$	L107_LINE
$L_1 \leftarrow P_1$	L1P1_LINE
$L_1 \leftarrow P_2$	L1P2_LINE
$L_1 \leftarrow P_{23}$	L1P23_LINE
$L_1 \leftarrow P_3$	L1P3_LINE
$L_1 \leftarrow P_4$	L1P4_LINE
$L_1 \leftarrow P_5$	L1P5_LINE
$L_2 \leftarrow L_3$	L2L3_LINE
$\mathbf{L}_2 \leftarrow \mathbf{M}_1$	L2M1_LINE
$\mathbf{L}_2 \leftarrow \mathbf{M}_2$	L2M2_LINE
$L_2 \leftarrow M_3$	L2M3_LINE
$\mathbf{L}_2 \leftarrow \mathbf{M}_4$	L2M4_LINE
$L_2 \leftarrow M_5$	L2M5_LINE
$\mathbf{L_2} \leftarrow \mathbf{N_1}$	L2N1_LINE
$\mathbf{L_2} \leftarrow \mathbf{N_2}$	L2N2_LINE
$L_2 \leftarrow N_3$	L2N3_LINE
$\mathbf{L_2} \leftarrow \mathbf{N_4}$	L2N4_LINE
$L_2 \leftarrow N_5$	L2N5_LINE
$L_2 \leftarrow N_6$	L2N6_LINE
$L_2 \leftarrow N_7$	L2N7_LINE
$\mathbf{L}_2 \leftarrow \mathbf{O}_1$	L201_LINE
$\mathbf{L}_2 \leftarrow \mathbf{O}_2$	L202_LINE
$\mathbf{L}_2 \leftarrow \mathbf{O}_3$	L203_LINE
$\mathbf{L}_2 \leftarrow \mathbf{O}_4$	L204_LINE
$L_2 \leftarrow O_5$	L205_LINE
$L_2 \leftarrow O_6$	L206_LINE
$L_2 \leftarrow O_7$	L207_LINE
$L_2 \leftarrow P_1$	L2P1_LINE
$L_2 \leftarrow P_2$	L2P2_LINE
$L_2 \leftarrow P_{23}$	L2P23_LINE
$L_2 \leftarrow P_3$	L2P3_LINE
$L_2 \leftarrow P_4$	L2P4_LINE
$L_2 \leftarrow P_5$	L2P5_LINE
$\mathbf{L}_2 \leftarrow \mathbf{Q}_1$	L2Q1_LINE
$L_3 \leftarrow M_1$	L3M1_LINE
$L_3 \leftarrow M_2$	L3M2_LINE

Transition	IUPAC macro
$L_3 \leftarrow M_3$	L3M3_LINE
$L_3 \leftarrow M_4$	L3M4_LINE
$L_3 \leftarrow M_5$	L3M5_LINE
$L_3 \leftarrow N_1$	L3N1_LINE
$L_3 \leftarrow N_2$	L3N2_LINE
$L_3 \leftarrow N_3$	L3N3_LINE
$L_3 \leftarrow N_4$	L3N4_LINE
$L_3 \leftarrow N_5$	L3N5_LINE
$L_3 \leftarrow N_6$	L3N6_LINE
$L_3 \leftarrow N_7$	L3N7_LINE
$L_3 \leftarrow O_1$	L301_LINE
$L_3 \leftarrow O_2$	L302_LINE
$L_3 \leftarrow O_3$	L303_LINE
$L_3 \leftarrow O_4$	L304_LINE
$L_3 \leftarrow O_{45}$	L3045_LINE
$L_3 \leftarrow O_5$	L305_LINE
$L_3 \leftarrow O_6$	L306_LINE
$L_3 \leftarrow O_7$	L307_LINE
$L_3 \leftarrow P_1$	L3P1_LINE
$L_3 \leftarrow P_2$	L3P2_LINE
$L_3 \leftarrow P_{23}$	L3P23_LINE
$L_3 \leftarrow P_3$	L3P3_LINE
$L_3 \leftarrow P_4$	L3P4_LINE
$L_3 \leftarrow P_{45}$	L3P45_LINE
$L_3 \leftarrow P_5$ $L_3 \leftarrow Q_1$	L3P5_LINE L3Q1_LINE
$M_1 \leftarrow M_2$	M1M2_LINE
$M_1 \leftarrow M_2$ $M_1 \leftarrow M_3$	M1M3_LINE
$M_1 \leftarrow M_3$ $M_1 \leftarrow M_4$	M1M4_LINE
$M_1 \leftarrow M_5$	M1M5_LINE
$M_1 \leftarrow M_5$ $M_1 \leftarrow N_1$	M1N1_LINE
$M_1 \leftarrow N_2$	M1N2_LINE
$M_1 \leftarrow N_3$	M1N3_LINE
$M_1 \leftarrow N_4$	M1N4_LINE
$M_1 \leftarrow N_5$	M1N5_LINE
$M_1 \leftarrow N_6$	M1N6_LINE
$M_1 \leftarrow N_7$	M1N7_LINE
$M_1 \leftarrow O_1$	M101_LINE
$M_1 \leftarrow O_2$	M102_LINE
$M_1 \leftarrow O_3$	M103_LINE
$M_1 \leftarrow O_4$	M104_LINE
$\mathbf{M}_1 \leftarrow \mathbf{O}_5$	M105_LINE

Transition	IUPAC macro
$M_1 \leftarrow O_6$	M106_LINE
$M_1 \leftarrow O_7$	M107_LINE
$M_1 \leftarrow P_1$	M1P1_LINE
$M_1 \leftarrow P_2$	M1P2_LINE
$M_1 \leftarrow P_3$	M1P3_LINE
$M_1 \leftarrow P_4$	M1P4_LINE
$M_1 \leftarrow P_5$	M1P5_LINE
$M_2 \leftarrow M_3$	M2M3_LINE
$M_2 \leftarrow M_4$	M2M4_LINE
$M_2 \leftarrow M_5$	M2M5_LINE
$M_2 \leftarrow N_1$	M2N1_LINE
$\mathbf{M}_2 \leftarrow \mathbf{N}_2$	M2N2_LINE
$M_2 \leftarrow N_3$	M2N3_LINE
$\mathbf{M}_2 \leftarrow \mathbf{N}_4$	M2N4_LINE
$\mathbf{M}_2 \leftarrow \mathbf{N}_5$	M2N5_LINE
$M_2 \leftarrow N_6$	M2N6_LINE
$M_2 \leftarrow N_7$	M2N7_LINE
$M_2 \leftarrow O_1$	M201_LINE
$M_2 \leftarrow O_2$	M2O2_LINE
$M_2 \leftarrow O_3$	M203_LINE
$M_2 \leftarrow O_4$	M204_LINE
$M_2 \leftarrow O_5$	M205_LINE
$M_2 \leftarrow O_6$	M206_LINE
$M_2 \leftarrow O_7$	M207_LINE
$M_2 \leftarrow P_1$	M2P1_LINE
$M_2 \leftarrow P_2$	M2P2_LINE M2P3_LINE
$M_2 \leftarrow P_3 \\ M_2 \leftarrow P_4$	M2P3_LINE M2P4_LINE
$M_2 \leftarrow P_4$ $M_2 \leftarrow P_5$	M2P4_LINE M2P5_LINE
$M_2 \leftarrow I_5$ $M_3 \leftarrow M_4$	M3M4_LINE
$M_3 \leftarrow M_4$ $M_3 \leftarrow M_5$	M3M5_LINE
$M_3 \leftarrow M_5$ $M_3 \leftarrow N_1$	M3N1_LINE
$M_3 \leftarrow N_2$	M3N2_LINE
$M_3 \leftarrow N_3$	M3N3_LINE
$M_3 \leftarrow N_4$	M3N4_LINE
$M_3 \leftarrow N_5$	M3N5_LINE
$M_3 \leftarrow N_6$	M3N6_LINE
$M_3 \leftarrow N_7$	M3N7_LINE
$M_3 \leftarrow O_1$	M301_LINE
$M_3 \leftarrow O_2$	M302_LINE
$M_3 \leftarrow O_3$	M3O3_LINE
$M_3 \leftarrow O_4$	M304_LINE
· ·	

Transition	IUPAC macro
$M_3 \leftarrow O_5$	M3O5_LINE
$M_3 \leftarrow O_6$	M306_LINE
$M_3 \leftarrow O_7$	M307_LINE
$M_3 \leftarrow P_1$	M3P1_LINE
$M_3 \leftarrow P_2$	M3P2_LINE
$M_3 \leftarrow P_3$	M3P3_LINE
$M_3 \leftarrow P_4$	M3P4_LINE
$M_3 \leftarrow P_5$	M3P5_LINE
$M_3 \leftarrow Q_1$	M3Q1_LINE
$M_4 \leftarrow M_5$	M4M5_LINE
$M_4 \leftarrow N_1$	M4N1_LINE
$\mathbf{M}_4 \leftarrow \mathbf{N}_2$	M4N2_LINE
$M_4 \leftarrow N_3$	M4N3_LINE
$M_4 \leftarrow N_4$	M4N4_LINE
$\mathbf{M}_4 \leftarrow \mathbf{N}_5$	M4N5_LINE
$M_4 \leftarrow N_6$	M4N6_LINE
$M_4 \leftarrow N_7$	M4N7_LINE
$M_4 \leftarrow O_1$	M401_LINE
$M_4 \leftarrow O_2$	M402_LINE
$M_4 \leftarrow O_3$	M403_LINE
$M_4 \leftarrow O_4$	M404_LINE
$M_4 \leftarrow O_5$	M405_LINE
$M_4 \leftarrow O_6$	M406_LINE
$M_4 \leftarrow O_7$	M407_LINE
$M_4 \leftarrow P_1$	M4P1_LINE
$M_4 \leftarrow P_2$	M4P2_LINE M4P3_LINE
$M_4 \leftarrow P_3$	M4P3_LINE M4P4_LINE
$M_4 \leftarrow P_4 \\ M_4 \leftarrow P_5$	M4P4_LINE M4P5_LINE
$M_4 \leftarrow \Gamma_5$ $M_5 \leftarrow N_1$	M5N1_LINE
$M_5 \leftarrow N_1$ $M_5 \leftarrow N_2$	M5N1_LINE
$M_5 \leftarrow N_3$	M5N2_LINE
$M_5 \leftarrow N_4$	M5N4_LINE
$M_5 \leftarrow N_5$	M5N5_LINE
$M_5 \leftarrow N_6$	M5N6_LINE
$M_5 \leftarrow N_7$	M5N7_LINE
$M_5 \leftarrow O_1$	M501_LINE
$M_5 \leftarrow O_2$	M502_LINE
$M_5 \leftarrow O_3$	M503_LINE
$M_5 \leftarrow O_4$	M504_LINE
$M_5 \leftarrow O_5$	M505_LINE
$M_5 \leftarrow O_6$	M506_LINE
9	

Transition	IUPAC macro
$M_5 \leftarrow O_7$	M507_LINE
$M_5 \leftarrow P_1$	M5P1_LINE
$M_5 \leftarrow P_2$	M5P2_LINE
$M_5 \leftarrow P_3$	M5P3_LINE
$M_5 \leftarrow P_4$	M5P4_LINE
$M_5 \leftarrow P_5$	M5P5_LINE
$N_1 \leftarrow N_2$	N1N2_LINE
$N_1 \leftarrow N_3$	N1N3_LINE
$N_1 \leftarrow N_4$	N1N4_LINE
$N_1 \leftarrow N_5$	N1N5_LINE
$N_1 \leftarrow N_6$	N1N6_LINE
$N_1 \leftarrow N_7$	N1N7_LINE
$N_1 \leftarrow O_1$	N101_LINE
$N_1 \leftarrow O_2$	N102_LINE
$N_1 \leftarrow O_3$	N103_LINE
$N_1 \leftarrow O_4$	N104_LINE
$N_1 \leftarrow O_5$	N105_LINE
$N_1 \leftarrow O_6$	N106_LINE
$N_1 \leftarrow O_7$	N107_LINE
$N_1 \leftarrow P_1$	N1P1_LINE
$N_1 \leftarrow P_2$	N1P2_LINE
$N_1 \leftarrow P_3$	N1P3_LINE
$N_1 \leftarrow P_4$	N1P4_LINE
$N_1 \leftarrow P_5$	N1P5_LINE
$N_2 \leftarrow N_3$	N2N3_LINE
$N_2 \leftarrow N_4$	N2N4_LINE
$N_2 \leftarrow N_5$	N2N5_LINE
$N_2 \leftarrow N_6$	N2N6_LINE
$N_2 \leftarrow N_7$	N2N7_LINE
$N_2 \leftarrow O_1$	N2O1_LINE N2O2_LINE
$N_2 \leftarrow O_2$	-
$N_2 \leftarrow O_3$	N2O3_LINE
$N_2 \leftarrow O_4$	N2O4_LINE N2O5_LINE
$N_2 \leftarrow O_5 \\ N_2 \leftarrow O_6$	N205_LINE N206_LINE
$N_2 \leftarrow O_6$ $N_2 \leftarrow O_7$	N200_LINE N207_LINE
$N_2 \leftarrow O_7$ $N_2 \leftarrow P_1$	N2O7_LINE N2P1_LINE
$N_2 \leftarrow I_1$ $N_2 \leftarrow P_2$	N2P1_LINE N2P2_LINE
$N_2 \leftarrow P_2$ $N_2 \leftarrow P_3$	N2P2_LINE N2P3_LINE
$N_2 \leftarrow \Gamma_3$ $N_2 \leftarrow P_4$	N2P3_LINE N2P4_LINE
$N_2 \leftarrow P_4$ $N_2 \leftarrow P_5$	N2P4_LINE N2P5_LINE
$N_2 \leftarrow I_5$ $N_3 \leftarrow N_4$	N3N4_LINE
13 \ 14	MONA-PINE

Transition	IUPAC macro
$\overline{N_3 \leftarrow N_5}$	N3N5_LINE
$N_3 \leftarrow N_6$	N3N6_LINE
$N_3 \leftarrow N_7$	N3N7_LINE
$N_3 \leftarrow O_1$	N301_LINE
$N_3 \leftarrow O_2$	N302_LINE
$N_3 \leftarrow O_3$	N3O3_LINE
$N_3 \leftarrow O_4$	N304_LINE
$N_3 \leftarrow O_5$	N3O5_LINE
$N_3 \leftarrow O_6$	N306_LINE
$N_3 \leftarrow O_7$	N307_LINE
$N_3 \leftarrow P_1$	N3P1_LINE
$N_3 \leftarrow P_2$	N3P2_LINE
$N_3 \leftarrow P_3$	N3P3_LINE
$N_3 \leftarrow P_4$	N3P4_LINE
$N_3 \leftarrow P_5$	N3P5_LINE
$N_4 \leftarrow N_5$	N4N5_LINE
$N_4 \leftarrow N_6$	N4N6_LINE
$N_4 \leftarrow N_7$	N4N7_LINE
$N_4 \leftarrow O_1$	N401_LINE
$N_4 \leftarrow O_2$	N402_LINE
$N_4 \leftarrow O_3$	N4O3_LINE
$N_4 \leftarrow O_4$	N404_LINE
$N_4 \leftarrow O_5$	N405_LINE
$N_4 \leftarrow O_6$	N406_LINE
$N_4 \leftarrow O_7$	N407_LINE
$N_4 \leftarrow P_1$	N4P1_LINE
$N_4 \leftarrow P_2$	N4P2_LINE
$N_4 \leftarrow P_3$	N4P3_LINE
$N_4 \leftarrow P_4$	N4P4_LINE
$N_4 \leftarrow P_5$	N4P5_LINE
$N_5 \leftarrow N_6$	N5N6_LINE
$N_5 \leftarrow N_7$ $N_7 \leftarrow 0$	N5N7_LINE N5O1_LINE
$N_5 \leftarrow O_1 \\ N_5 \leftarrow O_2$	N501_LINE N502_LINE
$N_5 \leftarrow O_2$ $N_5 \leftarrow O_3$	N502_LINE
$N_5 \leftarrow O_4$	N504 LINE
$N_5 \leftarrow O_5$	N505_LINE
$N_5 \leftarrow O_6$	N506_LINE
$N_5 \leftarrow O_7$	N507_LINE
$N_5 \leftarrow P_1$	N5P1 LINE
$N_5 \leftarrow P_2$	N5P2_LINE
$N_5 \leftarrow P_3$	N5P3_LINE
ა ა	

Transition	IUPAC macro
$N_5 \leftarrow P_4$	N5P4_LINE
$N_5 \leftarrow P_5$	N5P5_LINE
$N_6 \leftarrow N_7$	N6N7_LINE
$N_6 \leftarrow O_1$	N601_LINE
$N_6 \leftarrow O_2$	N602_LINE
$N_6 \leftarrow O_3$	N603_LINE
$N_6 \leftarrow O_4$	N604_LINE
$N_6 \leftarrow O_5$	N605_LINE
$N_6 \leftarrow O_6$	N606_LINE
$N_6 \leftarrow O_7$	N607_LINE
$N_6 \leftarrow P_1$	N6P1_LINE
$N_6 \leftarrow P_2$	N6P2_LINE
$N_6 \leftarrow P_3$	N6P3_LINE
$N_6 \leftarrow P_4$	N6P4_LINE
$N_6 \leftarrow P_5$	N6P5_LINE
$N_7 \leftarrow O_1$	N701_LINE
$N_7 \leftarrow O_2$	N702_LINE
$N_7 \leftarrow O_3$	N703_LINE
$N_7 \leftarrow O_4$	N704_LINE N705_LINE
$N_7 \leftarrow O_5$	_
$N_7 \leftarrow O_6 \\ N_7 \leftarrow O_7$	N706_LINE N707_LINE
$N_7 \leftarrow O_7$ $N_7 \leftarrow P_1$	N707_LINE
$N_7 \leftarrow P_2$	N7P2_LINE
$N_7 \leftarrow P_3$	N7P3_LINE
$N_7 \leftarrow P_4$	N7P4_LINE
$N_7 \leftarrow P_5$	N7P5_LINE
$O_1 \leftarrow O_2$	0102_LINE
$O_1 \leftarrow O_3$	0103_LINE
$O_1 \leftarrow O_4$	0104_LINE
$O_1 \leftarrow O_5$	0105_LINE
$O_1 \leftarrow O_6$	0106_LINE
$\mathcal{O}_1 \leftarrow \mathcal{O}_7$	0107_LINE
$O_1 \leftarrow P_1$	O1P1_LINE
$O_1 \leftarrow P_2$	01P2_LINE
$O_1 \leftarrow P_3$	O1P3_LINE
$O_1 \leftarrow P_4$	O1P4_LINE
$O_1 \leftarrow P_5$	01P5_LINE
$O_2 \leftarrow O_3$	0203_LINE
$O_2 \leftarrow O_4$	0204_LINE
$O_2 \leftarrow O_5$	0205_LINE
$O_2 \leftarrow O_6$	0206_LINE

Transition	IUPAC macro
$O_2 \leftarrow O_7$	0207_LINE
$O_2 \leftarrow P_1$	02P1_LINE
$O_2 \leftarrow P_2$	02P2_LINE
$O_2 \leftarrow P_3$	O2P3_LINE
$O_2 \leftarrow P_4$	02P4_LINE
$O_2 \leftarrow P_5$	02P5_LINE
$O_3 \leftarrow O_4$	0304_LINE
$O_3 \leftarrow O_5$	0305_LINE
$O_3 \leftarrow O_6$	0306_LINE
$O_3 \leftarrow O_7$	0307_LINE
$O_3 \leftarrow P_1$	O3P1_LINE
$O_3 \leftarrow P_2$	O3P2_LINE
$O_3 \leftarrow P_3$	O3P3_LINE
$O_3 \leftarrow P_4$	O3P4_LINE
$O_3 \leftarrow P_5$	O3P5_LINE
$O_4 \leftarrow O_5$	0405_LINE
$O_4 \leftarrow O_6$	0406_LINE
$O_4 \leftarrow O_7$	0407_LINE
$O_4 \leftarrow P_1$	04P1_LINE
$O_4 \leftarrow P_2$	04P2_LINE
$O_4 \leftarrow P_3$	04P3_LINE
$O_4 \leftarrow P_4$	04P4_LINE 04P5_LINE
$O_4 \leftarrow P_5 \\ O_5 \leftarrow O_6$	04P5_LINE 0506_LINE
$O_5 \leftarrow O_6$ $O_5 \leftarrow O_7$	0500_LINE 0507_LINE
$O_5 \leftarrow P_1$	O5P1_LINE
$O_5 \leftarrow P_2$	05P2_LINE
$O_5 \leftarrow P_3$	O5P3_LINE
$O_5 \leftarrow P_4$	O5P4_LINE
$O_5 \leftarrow P_5$	O5P5_LINE
$O_6 \leftarrow O_7$	0607_LINE
$O_6 \leftarrow P_4$	06P4_LINE
$O_6 \leftarrow P_5$	06P5_LINE
$O_7 \leftarrow P_4$	07P4_LINE
$O_7 \leftarrow P_5$	07P5_LINE
$P_1 \leftarrow P_2$	P1P2_LINE
$P_1 \leftarrow P_3$	P1P3_LINE
$P_1 \leftarrow P_4$	P1P4_LINE
$P_1 \leftarrow P_5$	P1P5_LINE
$P_2 \leftarrow P_3$	P2P3_LINE
$P_2 \leftarrow P_4$	P2P4_LINE
$P_2 \leftarrow P_5$	P2P5_LINE

Transition	IUPAC macro
$P_3 \leftarrow P_4$	P3P4_LINE
$P_3 \leftarrow P_5$	P3P5_LINE

A.2.2 Siegbahn X-ray fluorescence line macros

The following table contains the Siegbahn macros: these are all mapped to a corresponding IUPAC macro from the previous table.

Siegbahn notation	Siegbahn macro	IUPAC macro
$K_{\alpha 1}$	KA1_LINE	KL3_LINE
$K_{\alpha 2}$	KA2_LINE	KL2_LINE
$K_{\alpha 3}$	KA3_LINE	KL1_LINE
$K_{\beta 1}$	KB1_LINE	KM3_LINE
$K_{\beta 2}$	KB2_LINE	KN3_LINE
$K_{\beta 3}$	KB3_LINE	KM2_LINE
$K_{\beta 4}$	KB4_LINE	KN5_LINE
$K_{\beta 5}$	KB5_LINE	KM5_LINE
$L_{\alpha 1}$	LA1_LINE	L3M5_LINE
$L_{\alpha 2}$	LA2_LINE	L3M4_LINE
$L_{\beta 1}$	LB1_LINE	L2M4_LINE
$L_{eta 2}$	LB2_LINE	L3N5_LINE
$L_{\beta 3}$	LB3_LINE	L1M3_LINE
$L_{\beta 4}$	LB4_LINE	L1M2_LINE
$L_{\beta 5}$	LB5_LINE	L3045_LINE
$L_{\beta 6}$	LB6_LINE	L3N1_LINE
$L_{\beta7}$	LB7_LINE	L301_LINE
$L_{\beta 9}$	LB9_LINE	L1M5_LINE
$L_{\beta 10}$	LB10_LINE	L1M4_LINE
$L_{\beta 15}$	LB15_LINE	L3N4_LINE
$L_{\beta 17}$	LB17_LINE	L2M3_LINE
$\mathcal{L}_{\gamma 1}$	LG1_LINE	L2N4_LINE
$L_{\gamma 2}$	LG2_LINE	L1N2_LINE
$L_{\gamma 3}$	LG3_LINE	L1N3_LINE
$L_{\gamma 4}$	LG4_LINE	L103_LINE
$L_{\gamma 5}$	LG5_LINE	L2N1_LINE
$L_{\gamma 6}$	LG6_LINE	L204_LINE
$L_{\gamma 8}$	LG8_LINE	L201_LINE
L_{η}	LE_LINE	L2M1_LINE
L_h	LH_LINE	L2M1_LINE
L_l	LL_LINE	L3M1_LINE
L_s	LS_LINE	L3M3_LINE
\mathcal{L}_t	LT_LINE	L3M2_LINE

Siegbahn notation	Siegbahn macro	IUPAC macro
$\overline{\mathrm{L}_u}$	LU_LINE	L3N6_LINE
$L_{\boldsymbol{v}}$	LV_LINE	L2N6_LINE
$M_{\alpha 1}$	MA1_LINE	M5N7_LINE
${ m M}_{lpha 2}$	MA2_LINE	M5N6_LINE
M_{eta}	MB_LINE	M4N6_LINE
M_{γ}	MG_LINE	M3N5_LINE

A.2.3 Obsolete X-ray fluorescence macros

The following macros based on the Siegbahn notation are presented here strictly for the sake of completeness: though it is quite unlikely that they will be removed in future versions, their usage is deprecated. Since they refer to groups of lines you will up receiving values that are calculated as averages or sums over a number of individual lines, which may not have an obvious counterpart in experimental data.

Siegbahn notation	Obsolete macro
K_{α}	KA_LINE
K_{β}	KB_LINE
L_{α}^{r}	LA_LINE
L_{β}	LB_LINE

A.3 Shell macros

These macros denote X-ray levels ('shells') conforming with the many-electron description of electronic structure as is commonly used in X-ray spectrometry. They are used in the CS_Photo_Partial, FluorYield, AugerYield, EdgeEnergy, JumpFactor, AtomicLevelWidth, ComptonProfile_Partial and ElectronConfig.

Level	Electron configuration	Shell macro
K	$1s^{-1}$	K_SHELL
L_1	$2s^{-1}$	L1_SHELL
L_2	$2p_{1/2}^{-1}$	L2_SHELL
L_3	$2p_{3/2}^{-1}$	L3_SHELL
M_1	$3s^{-1}$	M1_SHELL
M_2	$3p_{1/2}^{-1}$	M2_SHELL
M_3	$3p_{3/2}^{-1}$	M3_SHELL
M_4	$3d_{3/2}^{-1}$	M4_SHELL
M_5	$3d_{5/2}^{7}^{-1}$	M5_SHELL
N_1	$4s^{-1}$	N1_SHELL
N_2	$4p_{1/2}^{-1}$	N2_SHELL
N_3	$4p_{3/2}^{-1}$	N3_SHELL
	•	

Level	Electron configuration	Shell macro
$\overline{N_4}$	$4d_{3/2}^{-1}$	N4_SHELL
N_5	$4\mathbf{d}_{5/2}^{-7} - 1 \\ 4\mathbf{f}_{5/2}^{-1}$	N5_SHELL
N_6	$4f_{5/2}^{-1}$	N6_SHELL
N_7	$4f_{7/2}^{-1}$	N7_SHELL
O_1	$5s^{-1}$	01_SHELL
O_2	$5p_{1/2}^{-1}$	02_SHELL
O_3	$5{p_{1/2}}^{-1} \ 5{p_{3/2}}^{-1}$	03_SHELL
O_4	$5d_{3/2}^{-1}$	04_SHELL
O_5	$5d_{5/2}^{-1}$	05_SHELL
O_6	$5{ m f}_{5/2}^{-1}^{-1} \ 5{ m f}_{7/2}^{-1}$	06_SHELL
O_7	$5f_{7/2}^{-1}$	07_SHELL
P_1	$6s^{-1}$	P1_SHELL
P_2	$6p_{1/2}^{-1}$	P2_SHELL
P_3	$6p_{3/2}^{-1}$	P3_SHELL
P_4	$6d_{3/2}^{-1}$	P4_SHELL
P_5	$6d_{5/2}^{-1}$	P5_SHELL
Q_1	$7s^{-1}$	Q1_SHELL
Q_2	$7p_{1/2}^{-1}$	Q2_SHELL
Q_3	$7p_{3/2}^{-1}$	Q3_SHELL

A.4 Coster-Kronig transition macros

The following macros are used to select a specific Coster-Kronig (CK) transition with the CosKronTransProb function. Currently we are only supporting L- and M-shell CK transitions.

Transition	CK macro
$L_1 \leftarrow L_2$	FL12_TRANS
$L_1 \leftarrow L_3$	FL13_TRANS
$L_2 \leftarrow L_3$	FL23_TRANS
$M_1 \leftarrow M_2$	FM12_TRANS
$M_1 \leftarrow M_3$	FM13_TRANS
$M_1 \leftarrow M_4$	FM14_TRANS
$M_1 \leftarrow M_5$	FM15_TRANS
$M_2 \leftarrow M_3$	FM23_TRANS
$M_2 \leftarrow M_4$	FM24_TRANS
$M_2 \leftarrow M_5$	FM25_TRANS
$M_3 \leftarrow M_4$	FM34_TRANS
$M_3 \leftarrow M_5$	FM35_TRANS
$M_4 \leftarrow M_5$	FM45_TRANS

A.5 Auger transition macros

The AugerRate function requires one of the following macros as argument. Some of these macros (e.g. L2_L3M1_AUGER) correspond to Coster-Kronig transitions (a special case of the Auger effect), these will return zero. This list contains only those transitions that are relevant for X-ray fluorescence production involving the K-, L- and M-shells: do not expect to find macros like K_N2O3_AUGER although these Auger transitions certainly exist!

Excited shell	Ionized shells	Auger macro
K	$L_1 \& L_1$	K_L1L1_AUGER
K	$L_1 \& L_2$	K_L1L2_AUGER
K	$L_1 \& L_3$	K_L1L3_AUGER
K	$L_1 \& M_1$	K_L1M1_AUGER
K	$L_1 \& M_2$	K_L1M2_AUGER
K	$L_1 & M_3$	K_L1M3_AUGER
K	$L_1 \& M_4$	K_L1M4_AUGER
K	$L_1 \& M_5$	K_L1M5_AUGER
K	$L_1 \& N_1$	K_L1N1_AUGER
K	$L_1 \& N_2$	K_L1N2_AUGER
K	$L_1 \& N_3$	K_L1N3_AUGER
K	$L_1 \& N_4$	K_L1N4_AUGER
K	$L_1 \& N_5$	K_L1N5_AUGER
K	$L_1 \& N_6$	K_L1N6_AUGER
K	$L_1 \& N_7$	K_L1N7_AUGER
K	$\mathrm{L}_1 \;\&\; \mathrm{O}_1$	K_L101_AUGER
K	$L_1 \& O_2$	K_L102_AUGER
K	$L_1 \& O_3$	K_L103_AUGER
K	$L_1 \& O_4$	K_L104_AUGER
K	$L_1 \& O_5$	K_L105_AUGER
K	$L_1 \& O_6$	K_L106_AUGER
K	$L_1 \& O_7$	K_L107_AUGER
K	$L_1 \& P_1$	K_L1P1_AUGER
K	$L_1 \& P_2$	K_L1P2_AUGER
K	$L_1 \& P_3$	K_L1P3_AUGER
K	$L_1 \& P_4$	K_L1P4_AUGER
K	$L_1 \& P_5$	K_L1P5_AUGER
K	$L_1 \& Q_1$	K_L1Q1_AUGER
K	$\mathrm{L}_1 \And \mathrm{Q}_2$	K_L1Q2_AUGER
K	$L_1 \& Q_3$	K_L1Q3_AUGER
K	$\rm L_2 \ \& \ L_2$	K_L2L2_AUGER
K	$L_2 \& L_3$	K_L2L3_AUGER
K	$L_2 \& M_1$	K_L2M1_AUGER
K	$L_2 \& M_2$	K_L2M2_AUGER

Excited shell	Ionized shells	Auger macro
K	$L_2 \& M_3$	K_L2M3_AUGER
K	L_2 & M_4	K_L2M4_AUGER
K	$L_2 \& M_5$	K_L2M5_AUGER
K	$L_2 \& N_1$	K_L2N1_AUGER
K	$L_2 \& N_2$	K_L2N2_AUGER
K	$L_2 \& N_3$	K_L2N3_AUGER
K	$\rm L_2~\&~N_4$	K_L2N4_AUGER
K	$\rm L_2~\&~N_5$	K_L2N5_AUGER
K	$L_2 \& N_6$	K_L2N6_AUGER
K	$L_2 \& N_7$	K_L2N7_AUGER
K	$L_2 \& O_1$	K_L201_AUGER
K	$L_2 \& O_2$	K_L202_AUGER
K	$L_2 \& O_3$	K_L203_AUGER
K	$\rm L_2 \ \& \ O_4$	K_L204_AUGER
K	$L_2 \& O_5$	K_L205_AUGER
K	$L_2 \& O_6$	K_L206_AUGER
K	$L_2 \& O_7$	K_L207_AUGER
K	$L_2 \& P_1$	K_L2P1_AUGER
K	$L_2 \& P_2$	K_L2P2_AUGER
K	$L_2 \& P_3$	K_L2P3_AUGER
K	$\mathrm{L}_2 \ \& \ \mathrm{P}_4$	K_L2P4_AUGER
K	$\mathrm{L}_2~\&~\mathrm{P}_5$	K_L2P5_AUGER
K	$L_2 \& Q_1$	K_L2Q1_AUGER
K	$L_2 \& Q_2$	K_L2Q2_AUGER
K	$L_2 \& Q_3$	K_L2Q3_AUGER
K	$L_3 \& L_3$	K_L3L3_AUGER
K	$L_3 \& M_1$	K_L3M1_AUGER
K	$L_3 \& M_2$	K_L3M2_AUGER
K	$L_3 \& M_3$	K_L3M3_AUGER
K	$L_3 \& M_4$	K_L3M4_AUGER
K	$L_3 \& M_5$	K_L3M5_AUGER
K	L ₃ & N ₁	K_L3N1_AUGER
K	$L_3 \& N_2$	K_L3N2_AUGER
K	L ₃ & N ₃	K_L3N3_AUGER
K	$\rm L_3 \ \& \ N_4$	K_L3N4_AUGER
K	$L_3 \& N_5$	K_L3N5_AUGER
K	L ₃ & N ₆	K_L3N6_AUGER
K	$L_3 \& N_7$	K_L3N7_AUGER
K	$L_3 \& O_1$	K_L301_AUGER
K	$L_3 \& O_2$	K_L302_AUGER
K	$L_3 \& O_3$	K_L303_AUGER
K	$\rm L_3 \ \& \ O_4$	K_L304_AUGER

Excited shell	Ionized shells	Auger macro
K	L ₃ & O ₅	K_L305_AUGER
K	$L_3 \& O_6$	K_L306_AUGER
K	$L_3 \& O_7$	K_L307_AUGER
K	$L_3 \& P_1$	K_L3P1_AUGER
K	$L_3 \& P_2$	K_L3P2_AUGER
K	$L_3 \& P_3$	K_L3P3_AUGER
K	$L_3 \& P_4$	K_L3P4_AUGER
K	$L_3 \& P_5$	K_L3P5_AUGER
K	$L_3 \& Q_1$	K_L3Q1_AUGER
K	$L_3 \& Q_2$	K_L3Q2_AUGER
K	$L_3 \& Q_3$	K_L3Q3_AUGER
K	$M_1 \& M_1$	K_M1M1_AUGER
K	$\mathrm{M}_1 \And \mathrm{M}_2$	K_M1M2_AUGER
K	M_1 & M_3	K_M1M3_AUGER
K	$\mathrm{M}_1 \And \mathrm{M}_4$	K_M1M4_AUGER
K	M_1 & M_5	K_M1M5_AUGER
K	$M_1 & N_1$	K_M1N1_AUGER
K	$\mathrm{M}_1 \ \& \ \mathrm{N}_2$	K_M1N2_AUGER
K	M_1 & N_3	K_M1N3_AUGER
K	$M_1 \& N_4$	K_M1N4_AUGER
K	$\mathrm{M_1} \ \& \ \mathrm{N_5}$	K_M1N5_AUGER
K	$M_1 & N_6$	K_M1N6_AUGER
K	$M_1 & N_7$	K_M1N7_AUGER
K	$M_1 \& O_1$	K_M101_AUGER
K	$\mathrm{M}_1 \ \& \ \mathrm{O}_2$	K_M102_AUGER
K	$M_1 \& O_3$	K_M103_AUGER
K	$\mathrm{M}_1 \;\&\; \mathrm{O}_4$	K_M104_AUGER
K	$\mathrm{M}_1 \;\&\; \mathrm{O}_5$	K_M105_AUGER
K	$\mathrm{M}_1~\&~\mathrm{O}_6$	K_M106_AUGER
K	$M_1 \& O_7$	K_M107_AUGER
K	$M_1 & P_1$	K_M1P1_AUGER
K	$\mathrm{M}_1 \& \mathrm{P}_2$	K_M1P2_AUGER
K	$M_1 \& P_3$	K_M1P3_AUGER
K	$\mathrm{M}_1 \;\&\; \mathrm{P}_4$	K_M1P4_AUGER
K	M_1 & P_5	K_M1P5_AUGER
K	$M_1 \& Q_1$	K_M1Q1_AUGER
K	$M_1 \& Q_2$	K_M1Q2_AUGER
K	$M_1 \& Q_3$	K_M1Q3_AUGER
K	M_2 & M_2	K_M2M2_AUGER
K	M_2 & M_3	K_M2M3_AUGER
K	$\mathrm{M}_2 \And \mathrm{M}_4$	K_M2M4_AUGER
K	$\mathrm{M}_2 \And \mathrm{M}_5$	K_M2M5_AUGER

Excited shell	Ionized shells	Auger macro
K	$M_2 \& N_1$	K_M2N1_AUGER
K	$M_2 \& N_2$	K_M2N2_AUGER
K	$M_2 \& N_3$	K_M2N3_AUGER
K	M_2 & N_4	K_M2N4_AUGER
K	$\mathrm{M}_2~\&~\mathrm{N}_5$	K_M2N5_AUGER
K	$M_2 \& N_6$	K_M2N6_AUGER
K	$\mathrm{M}_2~\&~\mathrm{N}_7$	K_M2N7_AUGER
K	M_2 & O_1	K_M2O1_AUGER
K	$\mathrm{M}_2 \;\&\; \mathrm{O}_2$	K_M2O2_AUGER
K	$M_2 \& O_3$	K_M2O3_AUGER
K	$\mathrm{M}_2~\&~\mathrm{O}_4$	K_M2O4_AUGER
K	$\mathrm{M}_2 \;\&\; \mathrm{O}_5$	K_M2O5_AUGER
K	M_2 & O_6	K_M206_AUGER
K	$\mathrm{M}_2~\&~\mathrm{O}_7$	K_M207_AUGER
K	$\mathrm{M}_2 \ \& \ \mathrm{P}_1$	K_M2P1_AUGER
K	M_2 & P_2	K_M2P2_AUGER
K	M_2 & P_3	K_M2P3_AUGER
K	$\mathrm{M}_2~\&~\mathrm{P}_4$	K_M2P4_AUGER
K	$\mathrm{M}_2~\&~\mathrm{P}_5$	K_M2P5_AUGER
K	$\mathrm{M}_2 \;\&\; \mathrm{Q}_1$	K_M2Q1_AUGER
K	$\mathrm{M}_2 \ \& \ \mathrm{Q}_2$	K_M2Q2_AUGER
K	$\mathrm{M}_2 \ \& \ \mathrm{Q}_3$	K_M2Q3_AUGER
K	$M_3 \& M_3$	K_M3M3_AUGER
K	M_3 & M_4	K_M3M4_AUGER
K	$M_3 \& M_5$	K_M3M5_AUGER
K	$M_3 \& N_1$	K_M3N1_AUGER
K	M_3 & N_2	K_M3N2_AUGER
K	$M_3 \& N_3$	K_M3N3_AUGER
K	M_3 & N_4	K_M3N4_AUGER
K	M_3 & N_5	K_M3N5_AUGER
K	$M_3 \& N_6$	K_M3N6_AUGER
K	$M_3 \& N_7$	K_M3N7_AUGER
K	$M_3 \& O_1$	K_M3O1_AUGER
K	M_3 & O_2	K_M302_AUGER
K	$M_3 \& O_3$	K_M3O3_AUGER
K	M_3 & O_4	K_M3O4_AUGER
K	M_3 & O_5	K_M3O5_AUGER
K	$M_3 \& O_6$	K_M306_AUGER
K	$M_3 \& O_7$	K_M307_AUGER
K	$M_3 \& P_1$	K_M3P1_AUGER
K	$\mathrm{M}_3 \;\&\; \mathrm{P}_2$	K_M3P2_AUGER
K	$M_3 \& P_3$	K_M3P3_AUGER

Excited shell	Ionized shells	Auger macro
K	$M_3 & P_4$	K_M3P4_AUGER
K	$M_3 & P_5$	K_M3P5_AUGER
K	$M_3 \& Q_1$	K_M3Q1_AUGER
K	$M_3 \& Q_2$	K_M3Q2_AUGER
K	$M_3 \& Q_3$	K_M3Q3_AUGER
K	$M_4 \& M_4$	K_M4M4_AUGER
K	M_4 & M_5	K_M4M5_AUGER
K	$\mathrm{M_4} \ \& \ \mathrm{N_1}$	K_M4N1_AUGER
K	$\mathrm{M_4}~\&~\mathrm{N_2}$	K_M4N2_AUGER
K	$\mathrm{M_4}~\&~\mathrm{N_3}$	K_M4N3_AUGER
K	$\mathrm{M_4}\ \&\ \mathrm{N_4}$	K_M4N4_AUGER
K	$\mathrm{M_4}~\&~\mathrm{N_5}$	K_M4N5_AUGER
K	$\mathrm{M_4} \ \& \ \mathrm{N_6}$	K_M4N6_AUGER
K	$M_4 \& N_7$	K_M4N7_AUGER
K	$\mathrm{M}_4 \;\&\; \mathrm{O}_1$	K_M401_AUGER
K	$\mathrm{M}_4 \;\&\; \mathrm{O}_2$	K_M402_AUGER
K	M_4 & O_3	K_M403_AUGER
K	M_4 & O_4	K_M404_AUGER
K	$\mathrm{M}_4 \;\&\; \mathrm{O}_5$	K_M405_AUGER
K	M_4 & O_6	K_M406_AUGER
K	$\mathrm{M_4} \ \& \ \mathrm{O_7}$	K_M407_AUGER
K	$\mathrm{M_4} \;\&\; \mathrm{P_1}$	K_M4P1_AUGER
K	$\mathrm{M}_4 \;\&\; \mathrm{P}_2$	K_M4P2_AUGER
K	$M_4 \& P_3$	K_M4P3_AUGER
K	M_4 & P_4	K_M4P4_AUGER
K	$\mathrm{M_4}~\&~\mathrm{P_5}$	K_M4P5_AUGER
K	M_4 & Q_1	K_M4Q1_AUGER
K	$\mathrm{M}_4 \;\&\; \mathrm{Q}_2$	K_M4Q2_AUGER
K	$\mathrm{M_4}~\&~\mathrm{Q_3}$	K_M4Q3_AUGER
K	M_5 & M_5	K_M5M5_AUGER
K	M_5 & N_1	K_M5N1_AUGER
K	$\mathrm{M}_5 \;\&\; \mathrm{N}_2$	K_M5N2_AUGER
K	$M_5 \& N_3$	K_M5N3_AUGER
K	M_5 & N_4	K_M5N4_AUGER
K	M_5 & N_5	K_M5N5_AUGER
K	$M_5 \& N_6$	K_M5N6_AUGER
K	$M_5 \& N_7$	K_M5N7_AUGER
K	M_5 & O_1	K_M501_AUGER
K	$\mathrm{M}_5 \;\&\; \mathrm{O}_2$	K_M502_AUGER
K	$M_5 \& O_3$	K_M503_AUGER
K	$\mathrm{M}_5 \;\&\; \mathrm{O}_4$	K_M504_AUGER
K	$\mathrm{M}_5 \;\&\; \mathrm{O}_5$	K_M505_AUGER

Excited shell	Ionized shells	Auger macro
K	M ₅ & O ₆	K_M506_AUGER
K	$M_5 & O_7$	K_M507_AUGER
K	$M_5 & P_1$	K_M5P1_AUGER
K	$M_5 \& P_2$	K_M5P2_AUGER
K	$M_5 \& P_3$	K_M5P3_AUGER
K	M_5 & P_4	K_M5P4_AUGER
K	$M_5 & P_5$	K_M5P5_AUGER
K	M_5 & Q_1	K_M5Q1_AUGER
K	$\mathrm{M}_5 \;\&\; \mathrm{Q}_2$	K_M5Q2_AUGER
K	$M_5 \& Q_3$	K_M5Q3_AUGER
L_1	$\mathrm{L}_2 \And \mathrm{L}_2$	L1_L2L2_AUGER
L_1	$L_2 \& L_3$	L1_L2L3_AUGER
L_1	$L_2 \& M_1$	L1_L2M1_AUGER
L_1	$\rm L_2 \ \& \ M_2$	L1_L2M2_AUGER
L_1	$L_2 \& M_3$	L1_L2M3_AUGER
L_1	$\rm L_2 \ \& \ M_4$	L1_L2M4_AUGER
L_1	$L_2 \& M_5$	L1_L2M5_AUGER
L_1	$L_2 \& N_1$	L1_L2N1_AUGER
L_1	$L_2 \& N_2$	L1_L2N2_AUGER
L_1	$L_2 \& N_3$	L1_L2N3_AUGER
L_1	$\rm L_2 \ \& \ N_4$	L1_L2N4_AUGER
L_1	$L_2 \& N_5$	L1_L2N5_AUGER
L_1	$L_2 \& N_6$	L1_L2N6_AUGER
L_1	$L_2 \& N_7$	L1_L2N7_AUGER
L_1	$L_2 \& O_1$	L1_L2O1_AUGER
$_{-}^{\mathrm{L_{1}}}$	$L_2 \& O_2$	L1_L202_AUGER
$_{-}^{\mathrm{L_{1}}}$	$L_2 \& O_3$	L1_L203_AUGER
L_1	$L_2 \& O_4$	L1_L204_AUGER
$_{-}^{\mathrm{L_{1}}}$	L ₂ & O ₅	L1_L205_AUGER
L_1	$L_2 \& O_6$	L1_L206_AUGER
L_1	$L_2 \& O_7$	L1_L207_AUGER
L_1	$L_2 \& P_1$	L1_L2P1_AUGER
L_1	$L_2 \& P_2$	L1_L2P2_AUGER
L_1	$L_2 \& P_3$	L1_L2P3_AUGER
L_1	$L_2 \& P_4$	L1_L2P4_AUGER
L_1	$L_2 \& P_5$	L1_L2P5_AUGER
L_1	$L_2 \& Q_1$	L1_L2Q1_AUGER
L_1	$L_2 \& Q_2$	L1_L2Q2_AUGER
L_1	$L_2 \& Q_3$	L1_L2Q3_AUGER
L_1	$L_3 \& L_2$	L1_L3L2_AUGER
L_1	$L_3 \& L_3$	L1_L3L3_AUGER
L_1	$L_3 \& M_1$	L1_L3M1_AUGER

Excited shell	Ionized shells	Auger macro
$\overline{}$ L_1	L ₃ & M ₂	L1_L3M2_AUGER
L_1	$L_3 \& M_3$	L1_L3M3_AUGER
L_1	$L_3 \& M_4$	L1_L3M4_AUGER
L_1	$L_3 \& M_5$	L1_L3M5_AUGER
L_1	$L_3 \& N_1$	L1_L3N1_AUGER
L_1	$L_3 \& N_2$	L1_L3N2_AUGER
L_1	$L_3 \& N_3$	L1_L3N3_AUGER
L_1	$\rm L_3 \ \& \ N_4$	L1_L3N4_AUGER
L_1	$L_3 \& N_5$	L1_L3N5_AUGER
L_1	$L_3 \& N_6$	L1_L3N6_AUGER
L_1	$L_3 \& N_7$	L1_L3N7_AUGER
L_1	$L_3 \& O_1$	L1_L301_AUGER
L_1	$L_3 \& O_2$	L1_L302_AUGER
L_1	$L_3 \& O_3$	L1_L303_AUGER
L_1	$L_3 \& O_4$	L1_L304_AUGER
L_1	$L_3 \& O_5$	L1_L305_AUGER
L_1	$L_3 \& O_6$	L1_L306_AUGER
L_1	L ₃ & O ₇	L1_L307_AUGER
L_1	$L_3 \& P_1$	L1_L3P1_AUGER
L_1	$L_3 \& P_2$	L1_L3P2_AUGER
L_1	$L_3 \& P_3$	L1_L3P3_AUGER
L_1	$\mathrm{L}_3 \And \mathrm{P}_4$	L1_L3P4_AUGER
L_1	L_3 & P_5	L1_L3P5_AUGER
L_1	$L_3 \& Q_1$	L1_L3Q1_AUGER
L_1	$L_3 \& Q_2$	L1_L3Q2_AUGER
$_{-}^{\mathrm{L_{1}}}$	$L_3 \& Q_3$	L1_L3Q3_AUGER
L_1	$M_1 \& L_2$	L1_M1L2_AUGER
$_{1}^{L_{1}}$	$M_1 \& L_3$	L1_M1L3_AUGER
L_1	$M_1 & M_1$	L1_M1M1_AUGER
L_1	$M_1 & M_2$	L1_M1M2_AUGER
L_1	$M_1 & M_3$	L1_M1M3_AUGER
L_1	$M_1 & M_4$	L1_M1M4_AUGER
L_1	$M_1 & M_5$	L1_M1M5_AUGER
L_1	$M_1 & N_1$	L1_M1N1_AUGER
L_1	$M_1 & N_2$	L1_M1N2_AUGER
L_1	$M_1 & N_3$	L1_M1N3_AUGER
L_1	$M_1 & N_4$	L1_M1N4_AUGER
\mathcal{L}_1	$M_1 & N_5$	L1_M1N5_AUGER
\mathcal{L}_1	$M_1 & N_6$	L1_M1N6_AUGER
L_1	$M_1 & N_7$	L1_M1N7_AUGER
\mathcal{L}_1	$M_1 & O_1$	L1_M101_AUGER
L_1	$\mathrm{M}_1 \& \mathrm{O}_2$	L1_M1O2_AUGER

Excited shell	Ionized shells	Auger macro
L_1	$M_1 \& O_3$	L1_M1O3_AUGER
L_1	$M_1 \& O_4$	L1_M1O4_AUGER
L_1	M_1 & O_5	L1_M1O5_AUGER
L_1	$M_1 \& O_6$	L1_M106_AUGER
L_1	$M_1 \& O_7$	L1_M107_AUGER
L_1	$M_1 \& P_1$	L1_M1P1_AUGER
L_1	$\mathrm{M}_1 \ \& \ \mathrm{P}_2$	L1_M1P2_AUGER
L_1	$M_1 \& P_3$	L1_M1P3_AUGER
L_1	$M_1 \& P_4$	L1_M1P4_AUGER
L_1	$\mathrm{M}_1 \ \& \ \mathrm{P}_5$	L1_M1P5_AUGER
L_1	$M_1 \& Q_1$	L1_M1Q1_AUGER
L_1	M_1 & Q_2	L1_M1Q2_AUGER
L_1	$M_1 \& Q_3$	L1_M1Q3_AUGER
L_1	$M_2 \& L_2$	L1_M2L2_AUGER
L_1	M_2 & L_3	L1_M2L3_AUGER
L_1	$\mathrm{M}_2 \And \mathrm{M}_1$	L1_M2M1_AUGER
L_1	$\mathrm{M}_2 \And \mathrm{M}_2$	L1_M2M2_AUGER
L_1	M_2 & M_3	L1_M2M3_AUGER
L_1	$\mathrm{M}_2 \And \mathrm{M}_4$	L1_M2M4_AUGER
L_1	$\mathrm{M}_2 \And \mathrm{M}_5$	L1_M2M5_AUGER
L_1	$\mathrm{M_2} \ \& \ \mathrm{N_1}$	L1_M2N1_AUGER
L_1	$\mathrm{M_2} \ \& \ \mathrm{N_2}$	L1_M2N2_AUGER
L_1	$M_2 \& N_3$	L1_M2N3_AUGER
L_1	$\mathrm{M}_2 \And \mathrm{N}_4$	L1_M2N4_AUGER
L_1	$\mathrm{M}_2 \ \& \ \mathrm{N}_5$	L1_M2N5_AUGER
L_1	M_2 & N_6	L1_M2N6_AUGER
L_1	M_2 & N_7	L1_M2N7_AUGER
${\color{Myan} ext{L}_1}$	$\mathrm{M}_2 \;\&\; \mathrm{O}_1$	L1_M2O1_AUGER
L_1	$\mathrm{M}_2 \ \& \ \mathrm{O}_2$	L1_M2O2_AUGER
L_1	$M_2 \& O_3$	L1_M2O3_AUGER
L_1	$\mathrm{M}_2 \ \& \ \mathrm{O}_4$	L1_M2O4_AUGER
L_1	$\mathrm{M}_2 \;\&\; \mathrm{O}_5$	L1_M2O5_AUGER
L_1	M_2 & O_6	L1_M2O6_AUGER
L_1	$\mathrm{M}_2~\&~\mathrm{O}_7$	L1_M2O7_AUGER
L_1	$\mathrm{M_2} \ \& \ \mathrm{P_1}$	L1_M2P1_AUGER
L_1	$\mathrm{M}_2 \;\&\; \mathrm{P}_2$	L1_M2P2_AUGER
L_1	M_2 & P_3	L1_M2P3_AUGER
L_1	$\mathrm{M}_2 \;\&\; \mathrm{P}_4$	L1_M2P4_AUGER
L_1	M_2 & P_5	L1_M2P5_AUGER
L_1	$M_2 \& Q_1$	L1_M2Q1_AUGER
L_1	$\mathrm{M}_2 \ \& \ \mathrm{Q}_2$	L1_M2Q2_AUGER
L_1	$M_2 \& Q_3$	L1_M2Q3_AUGER

Excited shell	Ionized shells	Auger macro
L_1	$M_3 \& L_2$	L1_M3L2_AUGER
L_1^-	$M_3 \& L_3$	L1_M3L3_AUGER
L_1	$M_3 \& M_1$	L1_M3M1_AUGER
L_1	M_3 & M_2	L1_M3M2_AUGER
L_1	$M_3 \& M_3$	L1_M3M3_AUGER
L_1	M_3 & M_4	L1_M3M4_AUGER
L_1	$M_3 \& M_5$	L1_M3M5_AUGER
L_1	M_3 & N_1	L1_M3N1_AUGER
L_1	M_3 & N_2	L1_M3N2_AUGER
L_1	$M_3 \& N_3$	L1_M3N3_AUGER
L_1	M_3 & N_4	L1_M3N4_AUGER
L_1	M_3 & N_5	L1_M3N5_AUGER
L_1	$M_3 \& N_6$	L1_M3N6_AUGER
L_1	$M_3 \& N_7$	L1_M3N7_AUGER
L_1	M_3 & O_1	L1_M3O1_AUGER
L_1	M_3 & O_2	L1_M302_AUGER
L_1	$M_3 \& O_3$	L1_M3O3_AUGER
L_1	M_3 & O_4	L1_M3O4_AUGER
L_1	M_3 & O_5	L1_M3O5_AUGER
L_1	$M_3 \& O_6$	L1_M306_AUGER
L_1	M_3 & O_7	L1_M307_AUGER
L_1	$M_3 \& P_1$	L1_M3P1_AUGER
L_1	$M_3 \& P_2$	L1_M3P2_AUGER
L_1	$M_3 \& P_3$	L1_M3P3_AUGER
L_1	$M_3 \& P_4$	L1_M3P4_AUGER
L_1	$M_3 \& P_5$	L1_M3P5_AUGER
L_1	$M_3 \& Q_1$	L1_M3Q1_AUGER
$\mathbf{L_1}$	$M_3 \& Q_2$	L1_M3Q2_AUGER
$\overline{\mathrm{L_1}}$	$M_3 & Q_3$	L1_M3Q3_AUGER
$\overline{\mathrm{L_1}}$	$M_4 \& L_2$	L1_M4L2_AUGER
$\overline{\mathrm{L_1}}$	$M_4 \& L_3$	L1_M4L3_AUGER
L_1	$M_4 \& M_1$	L1_M4M1_AUGER
L_1	$\mathrm{M_4}\ \&\ \mathrm{M_2}$	L1_M4M2_AUGER
L_1^-	$M_4 \& M_3$	L1_M4M3_AUGER
$\mathbf{L_1}$	$M_4 \& M_4$	L1_M4M4_AUGER
L_1^-	$M_4 \& M_5$	L1_M4M5_AUGER
L_1	$M_4 & N_1$	L1_M4N1_AUGER
L_1	$M_4 & N_2$	L1_M4N2_AUGER
L_1	$M_4 & N_3$	L1_M4N3_AUGER
L_1	$M_4 & N_4$	L1_M4N4_AUGER
L_1	$M_4 & N_5$	L1_M4N5_AUGER
L_1^-	$M_4 \& N_6$	L1_M4N6_AUGER

L1 M4 & N7 L1_M4N7_AUGER L1 M4 & O1 L1_M401_AUGER L1 M4 & O2 L1_M402_AUGER L1 M4 & O3 L1_M403_AUGER L1 M4 & O4 L1_M404_AUGER L1 M4 & O5 L1_M406_AUGER L1 M4 & O6 L1_M407_AUGER L1 M4 & O7 L1_M407_AUGER L1 M4 & P1 L1_M4P1_AUGER L1 M4 & P2 L1_M4P2_AUGER L1 M4 & P2 L1_M4P3_AUGER L1 M4 & P3 L1_M4P3_AUGER L1 M4 & P4 L1_M4P4_AUGER L1 M4 & P3 L1_M4P3_AUGER L1 M4 & P4 L1_M4P3_AUGER L1 M4 & Q1 L1_M4P3_AUGER L1 M4 & Q2 L1_M4Q2_AUGER L1 M4 & Q3 L1_M5L2_AUGER L1 M5 & M2 L1_M5M1_AUGER L1 M5 & M3 L1_M5M3_AUGER L1 M5 & M3 L1_M5M3_AUGER L1 M5 & M3<	Excited shell	Ionized shells	Auger macro
L1 M4 & O2 L1_M402_AUGER L1 M4 & O3 L1_M403_AUGER L1 M4 & O4 L1_M404_AUGER L1 M4 & O5 L1_M406_AUGER L1 M4 & O6 L1_M407_AUGER L1 M4 & O7 L1_M407_AUGER L1 M4 & P1 L1_M4P1_AUGER L1 M4 & P2 L1_M4P2_AUGER L1 M4 & P2 L1_M4P3_AUGER L1 M4 & P3 L1_M4P4_AUGER L1 M4 & P4 L1_M4P4_AUGER L1 M4 & P5 L1_M4P3_AUGER L1 M4 & Q1 L1_M4P4_AUGER L1 M4 & Q2 L1_M4P4_AUGER L1 M4 & Q2 L1_M4P3_AUGER L1 M4 & Q2 L1_M4Q2_AUGER L1 M4 & Q2 L1_M5L2_AUGER L1 M5 & M2 L1_M5L2_AUGER L1 M5 & M2 L1_M5M2_AUGER L1 M5 & M2 L1_M5M2_AUGER L1 M5 & M3 L1_M5M3_AUGER L1 M5 & M4 L1_M5M4_AUGER L1 M5 & M3 L1_M5M3_AUGER <td>L_1</td> <td>$\mathrm{M_4}~\&~\mathrm{N_7}$</td> <td>L1_M4N7_AUGER</td>	L_1	$\mathrm{M_4}~\&~\mathrm{N_7}$	L1_M4N7_AUGER
L1	L_1	M_4 & O_1	L1_M4O1_AUGER
L1	L_1	$\mathrm{M}_4 \;\&\; \mathrm{O}_2$	L1_M402_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	M_4 & O_3	L1_M4O3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$\mathrm{M}_4 \;\&\; \mathrm{O}_4$	L1_M4O4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M_4 & O_5	L1_M4O5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	M_4 & O_6	L1_M406_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$\mathrm{M}_4 \;\&\; \mathrm{O}_7$	L1_M407_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_4 \& P_1$	L1_M4P1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$\mathrm{M}_4 \ \& \ \mathrm{P}_2$	L1_M4P2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_4 \& P_3$	L1_M4P3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_4 \& P_4$	L1_M4P4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$\mathrm{M_4}~\&~\mathrm{P_5}$	L1_M4P5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_4 \& Q_1$	L1_M4Q1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$\mathrm{M}_4 \ \& \ \mathrm{Q}_2$	L1_M4Q2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_4 \& Q_3$	L1_M4Q3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_5 \& L_2$	L1_M5L2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L1_M5L3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	M_5 & M_1	L1_M5M1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	M_5 & M_2	L1_M5M2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_5 \& M_3$	L1_M5M3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{M}_5~\&~\mathrm{M}_4$	L1_M5M4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 \& M_5$	L1_M5M5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_5 \& N_1$	L1_M5N1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_5 \& N_2$	L1_M5N2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1	$M_5 \& N_3$	L1_M5N3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 \& N_4$	L1_M5N4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 & N_5$	L1_M5N5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 & N_6$	L1_M5N6_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L1_M5N7_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1^-		L1_M501_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 & O_2$	L1_M502_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L_1^-		L1_M503_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 & O_4$	L1_M5O4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 \& O_5$	L1_M5O5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_5 & O_6$	L1_M506_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L1_M507_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	
$\begin{array}{cccc} L_1 & M_5 \& P_3 & \texttt{L1_M5P3_AUGER} \\ L_1 & M_5 \& P_4 & \texttt{L1_M5P4_AUGER} \end{array}$		$M_5 \& P_2$	
$\rm L_1 \hspace{1.5cm} M_5 \ \& \ P_4 \hspace{1.5cm} L1_M5P4_AUGER$		$M_5 & P_3$	L1_M5P3_AUGER
			L1_M5P4_AUGER
			L1_M5P5_AUGER

Excited shell	Ionized shells	Auger macro
$\overline{}$ L_1	M ₅ & Q ₁	L1_M5Q1_AUGER
L_1	$M_5 & Q_2$	L1_M5Q2_AUGER
L_1^-	$M_5 & Q_3$	L1_M5Q3_AUGER
L_2	$L_3 \& L_3$	L2_L3L3_AUGER
L_2	$L_3 \& M_1$	L2_L3M1_AUGER
L_2	$L_3 \& M_2$	L2_L3M2_AUGER
L_2	$L_3 \& M_3$	L2_L3M3_AUGER
L_2	$\rm L_3 \ \& \ M_4$	L2_L3M4_AUGER
L_2	$L_3 \& M_5$	L2_L3M5_AUGER
L_2	$L_3 \& N_1$	L2_L3N1_AUGER
L_2	$L_3 \& N_2$	L2_L3N2_AUGER
L_2	$L_3 \& N_3$	L2_L3N3_AUGER
L_2	$L_3 \& N_4$	L2_L3N4_AUGER
L_2	$L_3 \& N_5$	L2_L3N5_AUGER
$\mathbf{L_2}$	$L_3 \& N_6$	L2_L3N6_AUGER
L_2	$L_3 \& N_7$	L2_L3N7_AUGER
L_2	$L_3 \& O_1$	L2_L301_AUGER
L_2	$L_3 \& O_2$	L2_L302_AUGER
L_2	$L_3 \& O_3$	L2_L303_AUGER
L_2	$L_3 \& O_4$	L2_L304_AUGER
$\mathbf{L_2}$	$L_3 \& O_5$	L2_L305_AUGER
$\mathbf{L_2}$	$L_3 \& O_6$	L2_L306_AUGER
L_2	$L_3 \& O_7$	L2_L307_AUGER
L_2	$L_3 \& P_1$	L2_L3P1_AUGER
$\mathbf{L_2}$	$L_3 \& P_2$	L2_L3P2_AUGER
$\mathbf{L_2}$	$L_3 \& P_3$	L2_L3P3_AUGER
L_2	$L_3 \& P_4$	L2_L3P4_AUGER
$\mathbf{L_2}$	$L_3 \& P_5$	L2_L3P5_AUGER
${\color{Myan} ext{L}_2}$	$L_3 \& Q_1$	L2_L3Q1_AUGER
L_2	$L_3 \& Q_2$	L2_L3Q2_AUGER
L_2	$L_3 \& Q_3$	L2_L3Q3_AUGER
$_{\mathbf{L_{2}}}^{\mathbf{L_{2}}}$	$M_1 & M_1$	L2_M1M1_AUGER
$_{-}^{\mathrm{L_{2}}}$	$M_1 \& M_2$	L2_M1M2_AUGER
$_{\mathbf{L_{2}}}^{\mathbf{L_{2}}}$	$M_1 & M_3$	L2_M1M3_AUGER
$\mathbf{L_2}$	$\mathrm{M}_1 \And \mathrm{M}_4$	L2_M1M4_AUGER
$_{\mathbf{L_{2}}}^{\mathbf{L_{2}}}$	$M_1 & M_5$	L2_M1M5_AUGER
$_{\mathbf{L_{2}}}^{\mathbf{L_{2}}}$	$M_1 & N_1$	L2_M1N1_AUGER
$_{ m L_2}$	$M_1 & N_2$	L2_M1N2_AUGER
$_{ m L_2}$	$M_1 & N_3$	L2_M1N3_AUGER
$_{ m L_2}$	$M_1 & N_4$	L2_M1N4_AUGER
$_{ m L_2}$	$M_1 & N_5$	L2_M1N5_AUGER
${\color{Myan} ext{L}_2}$	$M_1 \& N_6$	L2_M1N6_AUGER

Excited shell	Ionized shells	Auger macro
L_2	$M_1 & N_7$	L2_M1N7_AUGER
L_2	$M_1 \& O_1$	L2_M101_AUGER
L_2	$M_1 \& O_2$	L2_M1O2_AUGER
L_2	$M_1 \& O_3$	L2_M1O3_AUGER
L_2	$M_1 \& O_4$	L2_M1O4_AUGER
L_2	M_1 & O_5	L2_M1O5_AUGER
L_2	$M_1 \& O_6$	L2_M106_AUGER
L_2	$M_1 & O_7$	L2_M107_AUGER
$\overline{\mathrm{L_2}}$	$M_1 & P_1$	L2_M1P1_AUGER
$\overline{\mathrm{L_2}}$	$M_1 & P_2$	L2_M1P2_AUGER
$\overline{\mathrm{L}_2}$	$M_1 & P_3$	L2_M1P3_AUGER
$\overline{\mathrm{L}_2}$	$M_1 & P_4$	L2_M1P4_AUGER
$\overline{\mathrm{L_2}}$	$M_1 & P_5$	L2_M1P5_AUGER
$\overline{\mathrm{L_2}}$	$M_1 & Q_1$	L2_M1Q1_AUGER
$\overline{\mathrm{L}_2}$	$M_1 & Q_2$	L2_M1Q2_AUGER
L_2^-	$M_1 & Q_3$	L2_M1Q3_AUGER
L_2^-	$M_2 \& L_3$	L2_M2L3_AUGER
$\overline{\mathrm{L}_{2}}$	$M_2 \& M_1$	L2_M2M1_AUGER
L_2^2	$M_2 \& M_2$	L2_M2M2_AUGER
L_2^-	$M_2 \& M_3$	L2_M2M3_AUGER
L_2^-	$M_2 \& M_4$	L2_M2M4_AUGER
L_2^2	$M_{2}^{2} \& M_{5}^{2}$	L2_M2M5_AUGER
L_2^2	$M_2 & N_1$	L2_M2N1_AUGER
L_2^2	$M_2^2 \& N_2$	L2_M2N2_AUGER
L_2^2	$M_2^2 \& N_3^2$	L2_M2N3_AUGER
L_2^2	$M_2 & N_4$	L2_M2N4_AUGER
L_2^2	$M_2^2 \& N_5^2$	L2_M2N5_AUGER
L_2^2	$M_2^2 \& N_6$	L2_M2N6_AUGER
L_2^2	$M_2^2 \& N_7$	L2_M2N7_AUGER
L_2^2	$M_{2}^{2} \& O_{1}$	L2_M2O1_AUGER
L_2^2	$M_2^2 \& O_2$	L2_M2O2_AUGER
L_2^2	$M_2 & O_3$	L2_M2O3_AUGER
L_2^2	$M_2 \& O_4$	L2_M2O4_AUGER
$\overline{\mathrm{L}_2}$	$M_{2}^{2} \& O_{5}$	L2_M2O5_AUGER
$\overline{\mathrm{L}_{2}}$	$M_{2} & O_{6}$	L2_M2O6_AUGER
L_2^2	$M_2 & O_7$	L2_M2O7_AUGER
L_2^2	$M_2 & P_1$	L2_M2P1_AUGER
L_2^2	$M_2 & P_2$	L2_M2P2_AUGER
L_2^2	$M_{2}^{2} \& P_{3}^{2}$	L2_M2P3_AUGER
L_2^2	$M_{2}^{2} \& P_{4}^{3}$	L2_M2P4_AUGER
L_2^2	$M_{2}^{2} \& P_{5}^{4}$	L2_M2P5_AUGER
L_2^2	$M_2^2 \& Q_1$	L2_M2Q1_AUGER
-	1	=

Excited shell	Ionized shells	Auger macro
$\overline{}$ L_2	$M_2 \& Q_2$	L2_M2Q2_AUGER
$\overline{\mathrm{L_2}}$	$M_2 & Q_3$	L2_M2Q3_AUGER
$\overline{\mathrm{L_2}}$	$M_3 \& L_3$	L2_M3L3_AUGER
L_2	$M_3 \& M_1$	L2_M3M1_AUGER
L_2	$M_3 \& M_2$	L2_M3M2_AUGER
L_2	$M_3 \& M_3$	L2_M3M3_AUGER
L_2	M_3 & M_4	L2_M3M4_AUGER
L_2	M_3 & M_5	L2_M3M5_AUGER
L_2	$M_3 \& N_1$	L2_M3N1_AUGER
L_2	M_3 & N_2	L2_M3N2_AUGER
L_2	$M_3 \& N_3$	L2_M3N3_AUGER
L_2	M_3 & N_4	L2_M3N4_AUGER
L_2	$M_3 \& N_5$	L2_M3N5_AUGER
L_2	$M_3 \& N_6$	L2_M3N6_AUGER
L_2	M_3 & N_7	L2_M3N7_AUGER
L_2	$M_3 \& O_1$	L2_M3O1_AUGER
L_2	M_3 & O_2	L2_M3O2_AUGER
L_2	$M_3 \& O_3$	L2_M3O3_AUGER
L_2	M_3 & O_4	L2_M3O4_AUGER
L_2	$M_3 \& O_5$	L2_M3O5_AUGER
L_2	M_3 & O_6	L2_M3O6_AUGER
$\mathbf{L_2}$	$M_3 \& O_7$	L2_M3O7_AUGER
L_2	$M_3 \& P_1$	L2_M3P1_AUGER
L_2	$M_3 \& P_2$	L2_M3P2_AUGER
L_2	$M_3 \& P_3$	L2_M3P3_AUGER
L_2	M_3 & P_4	L2_M3P4_AUGER
L_2	$M_3 \& P_5$	L2_M3P5_AUGER
L_2	$M_3 \& Q_1$	L2_M3Q1_AUGER
L_2	$\mathrm{M}_3 \ \& \ \mathrm{Q}_2$	L2_M3Q2_AUGER
L_2	$M_3 \& Q_3$	L2_M3Q3_AUGER
L_2	$M_4 \& L_3$	L2_M4L3_AUGER
L_2	M_4 & M_1	L2_M4M1_AUGER
L_2	M_4 & M_2	L2_M4M2_AUGER
L_2	M_4 & M_3	L2_M4M3_AUGER
${\rm L_2}$	$\mathrm{M_4} \ \& \ \mathrm{M_4}$	L2_M4M4_AUGER
L_2	M_4 & M_5	L2_M4M5_AUGER
L_2	$\mathrm{M_4}\ \&\ \mathrm{N_1}$	L2_M4N1_AUGER
L_2	$\mathrm{M_4} \ \& \ \mathrm{N_2}$	L2_M4N2_AUGER
L_2	$\mathrm{M_4}\ \&\ \mathrm{N_3}$	L2_M4N3_AUGER
L_2	$M_4 \& N_4$	L2_M4N4_AUGER
L_2	$\mathrm{M_4}~\&~\mathrm{N_5}$	L2_M4N5_AUGER
${\tt L_2}$	$\mathrm{M_4}\ \&\ \mathrm{N_6}$	L2_M4N6_AUGER

Excited shell	Ionized shells	Auger macro
$\overline{}$ L_2	M ₄ & N ₇	L2_M4N7_AUGER
$\overline{\mathrm{L}_{2}}$	$M_4 & O_1$	L2_M401_AUGER
$\overline{\mathrm{L}_{2}}$	$M_4 & O_2$	L2_M402_AUGER
L_2	$M_4 \& O_3$	L2_M4O3_AUGER
$\overline{\mathrm{L}_2}$	$M_4 & O_4$	L2_M4O4_AUGER
$\overline{\mathrm{L}_{2}}$	$M_4 & O_5$	L2_M4O5_AUGER
L_2	$M_4 \& O_6$	L2_M406_AUGER
$\mathbf{L_2}$	$M_4 \& O_7$	L2_M407_AUGER
L_2	$M_4 \& P_1$	L2_M4P1_AUGER
L_2	$\mathrm{M_4}~\&~\mathrm{P_2}$	L2_M4P2_AUGER
L_2	$M_4 \& P_3$	L2_M4P3_AUGER
$\overline{\mathrm{L}_{2}}$	$M_4 & P_4$	L2_M4P4_AUGER
L_2	$\mathrm{M_4}~\&~\mathrm{P_5}$	L2_M4P5_AUGER
L_2	$M_4 \& Q_1$	L2_M4Q1_AUGER
${\bf L_2}$	$\mathrm{M_4} \ \& \ \mathrm{Q_2}$	L2_M4Q2_AUGER
L_2	$M_4 \& Q_3$	L2_M4Q3_AUGER
L_2	$M_5 \& L_3$	L2_M5L3_AUGER
L_2	$M_5 \& M_1$	L2_M5M1_AUGER
L_2	M_5 & M_2	L2_M5M2_AUGER
L_2	M_5 & M_3	L2_M5M3_AUGER
L_2	$\mathrm{M}_5~\&~\mathrm{M}_4$	L2_M5M4_AUGER
$\mathbf{L_2}$	$M_5 \& M_5$	L2_M5M5_AUGER
L_2	$M_5 \& N_1$	L2_M5N1_AUGER
L_2	$M_5 \& N_2$	L2_M5N2_AUGER
L_2	$M_5 \& N_3$	L2_M5N3_AUGER
L_2	M_5 & N_4	L2_M5N4_AUGER
L_2	$M_5 \& N_5$	L2_M5N5_AUGER
$\mathbf{L_2}$	$M_5 \& N_6$	L2_M5N6_AUGER
$\mathbf{L_2}$	$\mathrm{M}_5~\&~\mathrm{N}_7$	L2_M5N7_AUGER
L_2	$M_5 \& O_1$	L2_M501_AUGER
L_2	M_5 & O_2	L2_M502_AUGER
L_2	$M_5 \& O_3$	L2_M503_AUGER
L_2	$\mathrm{M}_5~\&~\mathrm{O}_4$	L2_M504_AUGER
L_2	$M_5 \& O_5$	L2_M505_AUGER
${\bf L_2}$	M_5 & O_6	L2_M506_AUGER
$\mathbf{L_2}$	$M_5 \& O_7$	L2_M507_AUGER
L_2^-	$M_5 & P_1$	L2_M5P1_AUGER
L_2	$M_5 \& P_2$	L2_M5P2_AUGER
L_2	$M_5 & P_3$	L2_M5P3_AUGER
L_2^-	$M_5 & P_4$	L2_M5P4_AUGER
L_2	M ₅ & P ₅	L2_M5P5_AUGER
$\mathbf{L_2}$	$\mathrm{M}_5 \;\&\; \mathrm{Q}_1$	L2_M5Q1_AUGER

Excited shell	Ionized shells	Auger macro
$\overline{}$ L_2	$M_5 \& Q_2$	L2_M5Q2_AUGER
$\overline{\mathrm{L}_{2}}$	$M_5 & Q_3$	L2_M5Q3_AUGER
L_3^-	$M_1 & M_1$	L3_M1M1_AUGER
L_3	$M_1 \& M_2$	L3_M1M2_AUGER
L_3	$M_1 & M_3$	L3_M1M3_AUGER
L_3	$M_1 & M_4$	L3_M1M4_AUGER
L_3	M_1 & M_5	L3_M1M5_AUGER
L_3	$M_1 & N_1$	L3_M1N1_AUGER
L_3	M_1 & N_2	L3_M1N2_AUGER
L_3	$M_1 \& N_3$	L3_M1N3_AUGER
L_3	$M_1 & N_4$	L3_M1N4_AUGER
L_3	$M_1 \& N_5$	L3_M1N5_AUGER
L_3	$M_1 & N_6$	L3_M1N6_AUGER
L_3	$M_1 & N_7$	L3_M1N7_AUGER
L_3	$M_1 & O_1$	L3_M1O1_AUGER
L_3	$M_1 & O_2$	L3_M1O2_AUGER
L_3	$M_1 \& O_3$	L3_M1O3_AUGER
L_3	$M_1 \& O_4$	L3_M1O4_AUGER
L_3	$M_1 \& O_5$	L3_M1O5_AUGER
L_3	$M_1 \& O_6$	L3_M1O6_AUGER
L_3	$M_1 & O_7$	L3_M107_AUGER
L_3	$M_1 & P_1$	L3_M1P1_AUGER
L_3	$M_1 \& P_2$	L3_M1P2_AUGER
L_3	$M_1 \& P_3$	L3_M1P3_AUGER
L_3	$M_1 \& P_4$	L3_M1P4_AUGER
L_3	$M_1 \& P_5$	L3_M1P5_AUGER
L_3	$M_1 \& Q_1$	L3_M1Q1_AUGER
L_3	$\mathrm{M}_1 \ \& \ \mathrm{Q}_2$	L3_M1Q2_AUGER
L_3	$M_1 \& Q_3$	L3_M1Q3_AUGER
L_3	$\mathrm{M}_2 \And \mathrm{M}_1$	L3_M2M1_AUGER
L_3	$\mathrm{M}_2 \And \mathrm{M}_2$	L3_M2M2_AUGER
L_3	M_2 & M_3	L3_M2M3_AUGER
L_3	$\mathrm{M}_2 \And \mathrm{M}_4$	L3_M2M4_AUGER
L_3	$\mathrm{M}_2 \ \& \ \mathrm{M}_5$	L3_M2M5_AUGER
L_3	$\mathrm{M}_2 \ \& \ \mathrm{N}_1$	L3_M2N1_AUGER
L_3	$\mathrm{M}_2 \ \& \ \mathrm{N}_2$	L3_M2N2_AUGER
L_3	M_2 & N_3	L3_M2N3_AUGER
L_3	$\mathrm{M}_2 \;\&\; \mathrm{N}_4$	L3_M2N4_AUGER
L_3	$\mathrm{M}_2 \;\&\; \mathrm{N}_5$	L3_M2N5_AUGER
L_3	M_2 & N_6	L3_M2N6_AUGER
L_3	$M_2 \& N_7$	L3_M2N7_AUGER
L_3	$\mathrm{M}_2 \;\&\; \mathrm{O}_1$	L3_M2O1_AUGER

Excited shell	Ionized shells	Auger macro
$\overline{\mathbb{L}_3}$	$M_2 \& O_2$	L3_M2O2_AUGER
L_3	$M_2 & O_3$	L3_M2O3_AUGER
L_3	$M_2 \& O_4$	L3_M2O4_AUGER
L_3	M_2 & O_5	L3_M2O5_AUGER
L_3	$M_2 & O_6$	L3_M2O6_AUGER
L_3	$M_2 & O_7$	L3_M2O7_AUGER
L_3	$M_2 \& P_1$	L3_M2P1_AUGER
L_3	$\mathrm{M_2}~\&~\mathrm{P_2}$	L3_M2P2_AUGER
L_3	$M_2 \& P_3$	L3_M2P3_AUGER
L_3	$M_2 \& P_4$	L3_M2P4_AUGER
L_3	M_2 & P_5	L3_M2P5_AUGER
L_3	$M_2 \& Q_1$	L3_M2Q1_AUGER
L_3	M_2 & Q_2	L3_M2Q2_AUGER
L_3	$M_2 \& Q_3$	L3_M2Q3_AUGER
L_3	M_3 & M_1	L3_M3M1_AUGER
L_3	M_3 & M_2	L3_M3M2_AUGER
L_3	$M_3 \& M_3$	L3_M3M3_AUGER
L_3	M_3 & M_4	L3_M3M4_AUGER
L_3	M_3 & M_5	L3_M3M5_AUGER
L_3	$M_3 \& N_1$	L3_M3N1_AUGER
L_3	$\mathrm{M}_3 \ \& \ \mathrm{N}_2$	L3_M3N2_AUGER
L_3	$M_3 \& N_3$	L3_M3N3_AUGER
L_3	$\mathrm{M}_3 \;\&\; \mathrm{N}_4$	L3_M3N4_AUGER
L_3	$M_3 \& N_5$	L3_M3N5_AUGER
L_3	$M_3 \& N_6$	L3_M3N6_AUGER
L_3	$M_3 \& N_7$	L3_M3N7_AUGER
L_3	$M_3 \& O_1$	L3_M3O1_AUGER
L_3	$\mathrm{M}_3 \;\&\; \mathrm{O}_2$	L3_M3O2_AUGER
L_3	$M_3 \& O_3$	L3_M3O3_AUGER
L_3	$\mathrm{M}_3 \ \& \ \mathrm{O}_4$	L3_M3O4_AUGER
L_3	$M_3 \& O_5$	L3_M3O5_AUGER
L_3	$M_3 \& O_6$	L3_M3O6_AUGER
L_3	$M_3 \& O_7$	L3_M3O7_AUGER
L_3	$M_3 \& P_1$	L3_M3P1_AUGER
L_3	$\mathrm{M}_3 \ \& \ \mathrm{P}_2$	L3_M3P2_AUGER
L_3	$M_3 \& P_3$	L3_M3P3_AUGER
L_3	M_3 & P_4	L3_M3P4_AUGER
L_3	$M_3 \& P_5$	L3_M3P5_AUGER
L_3	$M_3 \& Q_1$	L3_M3Q1_AUGER
L_3	$\mathrm{M}_3 \;\&\; \mathrm{Q}_2$	L3_M3Q2_AUGER
L_3	$M_3 \& Q_3$	L3_M3Q3_AUGER
L_3	$\mathrm{M_4} \ \& \ \mathrm{M_1}$	L3_M4M1_AUGER

Excited shell	Ionized shells	Auger macro
L_3	$M_4 \& M_2$	L3_M4M2_AUGER
L_3	$M_4 \& M_3$	L3_M4M3_AUGER
L_3	$M_4 \& M_4$	L3_M4M4_AUGER
L_3	$M_4 \& M_5$	L3_M4M5_AUGER
L_3	$M_4 & N_1$	L3_M4N1_AUGER
L_3	$M_4 & N_2$	L3_M4N2_AUGER
L_3	$M_4 \& N_3$	L3_M4N3_AUGER
L_3	$M_4 \& N_4$	L3_M4N4_AUGER
L_3	$\mathrm{M_4}~\&~\mathrm{N_5}$	L3_M4N5_AUGER
L_3	$\mathrm{M_4~\&~N_6}$	L3_M4N6_AUGER
L_3	$\mathrm{M_4~\&~N_7}$	L3_M4N7_AUGER
L_3	M_4 & O_1	L3_M4O1_AUGER
L_3	$\mathrm{M}_4 \;\&\; \mathrm{O}_2$	L3_M4O2_AUGER
L_3	M_4 & O_3	L3_M4O3_AUGER
L_3	$\mathrm{M}_4 \;\&\; \mathrm{O}_4$	L3_M4O4_AUGER
L_3	M_4 & O_5	L3_M4O5_AUGER
L_3	M_4 & O_6	L3_M406_AUGER
L_3	M_4 & O_7	L3_M407_AUGER
L_3	$M_4 \& P_1$	L3_M4P1_AUGER
L_3	$\mathrm{M_4} \;\&\; \mathrm{P_2}$	L3_M4P2_AUGER
L_3	$\mathrm{M_4} \ \& \ \mathrm{P_3}$	L3_M4P3_AUGER
L_3	$\mathrm{M_4} \;\&\; \mathrm{P_4}$	L3_M4P4_AUGER
L_3	$\mathrm{M_4}~\&~\mathrm{P_5}$	L3_M4P5_AUGER
L_3	$M_4 \& Q_1$	L3_M4Q1_AUGER
L_3	$\mathrm{M}_4 \;\&\; \mathrm{Q}_2$	L3_M4Q2_AUGER
L_3	$M_4 \& Q_3$	L3_M4Q3_AUGER
L_3	M_5 & M_1	L3_M5M1_AUGER
L_3	M_5 & M_2	L3_M5M2_AUGER
L_3	M_5 & M_3	L3_M5M3_AUGER
L_3	M_5 & M_4	L3_M5M4_AUGER
L_3	M_5 & M_5	L3_M5M5_AUGER
L_3	M_5 & N_1	L3_M5N1_AUGER
L_3	M_5 & N_2	L3_M5N2_AUGER
L_3	M_5 & N_3	L3_M5N3_AUGER
L_3	$\mathrm{M}_5~\&~\mathrm{N}_4$	L3_M5N4_AUGER
L_3	M_5 & N_5	L3_M5N5_AUGER
L_3	$M_5 \& N_6$	L3_M5N6_AUGER
L_3	$M_5 \& N_7$	L3_M5N7_AUGER
L_3	$M_5 & O_1$	L3_M501_AUGER
L_3	$M_5 \& O_2$	L3_M502_AUGER
L_3	$M_5 \& O_3$	L3_M5O3_AUGER
L_3	$\mathrm{M}_5 \;\&\; \mathrm{O}_4$	L3_M504_AUGER

Excited shell	Ionized shells	Auger macro
L_3	M ₅ & O ₅	L3_M505_AUGER
L_3	$M_5 & O_6$	L3_M506_AUGER
L_3	$M_5 & O_7$	L3_M507_AUGER
L_3	$M_5 & P_1$	L3_M5P1_AUGER
L_3	$M_5 & P_2$	L3_M5P2_AUGER
L_3	$M_5 & P_3$	L3_M5P3_AUGER
L_3	$M_5 & P_4$	L3_M5P4_AUGER
L_3	$M_5 & P_5$	L3_M5P5_AUGER
L_3	$M_5 \& Q_1$	L3_M5Q1_AUGER
L_3	M_5 & Q_2	L3_M5Q2_AUGER
L_3	$M_5 \& Q_3$	L3_M5Q3_AUGER
M_1	$\mathrm{M}_2 \And \mathrm{M}_2$	M1_M2M2_AUGER
M_1	M_2 & M_3	M1_M2M3_AUGER
M_1	$\mathrm{M}_2 \And \mathrm{M}_4$	M1_M2M4_AUGER
M_1	$\mathrm{M}_2 \ \& \ \mathrm{M}_5$	M1_M2M5_AUGER
M_1	M_2 & N_1	M1_M2N1_AUGER
M_1	$\mathrm{M}_2 \ \& \ \mathrm{N}_2$	M1_M2N2_AUGER
M_1	M_2 & N_3	M1_M2N3_AUGER
M_1	$\mathrm{M}_2 \ \& \ \mathrm{N}_4$	M1_M2N4_AUGER
M_1	$\mathrm{M}_2~\&~\mathrm{N}_5$	M1_M2N5_AUGER
M_1	M_2 & N_6	M1_M2N6_AUGER
M_1	$\mathrm{M}_2~\&~\mathrm{N}_7$	M1_M2N7_AUGER
M_1	M_2 & O_1	M1_M2O1_AUGER
M_1	$\mathrm{M}_2 \;\&\; \mathrm{O}_2$	M1_M2O2_AUGER
M_1	$M_2 \& O_3$	M1_M2O3_AUGER
M_1	$\mathrm{M}_2 \;\&\; \mathrm{O}_4$	M1_M2O4_AUGER
M_1	M_2 & O_5	M1_M2O5_AUGER
${\rm M}_1$	M_2 & O_6	M1_M2O6_AUGER
${\rm M}_1$	$\mathrm{M}_2~\&~\mathrm{O}_7$	M1_M2O7_AUGER
M_1	M_2 & P_1	M1_M2P1_AUGER
M_1	M_2 & P_2	M1_M2P2_AUGER
M_1	M_2 & P_3	M1_M2P3_AUGER
M_1	$\mathrm{M}_2 \ \& \ \mathrm{P}_4$	M1_M2P4_AUGER
M_1	M_2 & P_5	M1_M2P5_AUGER
M_1	$\mathrm{M}_2 \ \& \ \mathrm{Q}_1$	M1_M2Q1_AUGER
M_1	$\mathrm{M}_2 \;\&\; \mathrm{Q}_2$	M1_M2Q2_AUGER
M_1	$M_2 \& Q_3$	M1_M2Q3_AUGER
M_1	M_3 & M_2	M1_M3M2_AUGER
M_1	$M_3 \& M_3$	M1_M3M3_AUGER
M_1	M_3 & M_4	M1_M3M4_AUGER
M_1	M_3 & M_5	M1_M3M5_AUGER
M_1	$M_3 \& N_1$	M1_M3N1_AUGER

M1 M3 & N2 M1_M3N2_AUGER M1 M3 & N3 M1_M3N3_AUGER M1 M3 & N4 M1_M3N4_AUGER M1 M3 & N5 M1_M3N5_AUGER M1 M3 & N6 M1_M3N5_AUGER M1 M3 & N6 M1_M3N7_AUGER M1 M3 & N7 M1_M3N7_AUGER M1 M3 & O1 M1_M301_AUGER M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M302_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M304_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O6 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M3P3_AUGER M1 M3 & P2 M1_M3P3_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & Q2 M1_M3Q3_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M3<	Excited shell	Ionized shells	Auger macro
M1 M3 & N3 M1_M3N3_AUGER M1 M3 & N4 M1_M3N4_AUGER M1 M3 & N5 M1_M3N5_AUGER M1 M3 & N6 M1_M3N5_AUGER M1 M3 & N6 M1_M3N5_AUGER M1 M3 & N7 M1_M3N7_AUGER M1 M3 & O1 M1_M301_AUGER M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M304_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M304_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M307_AUGER M1 M3 & P2 M1_M307_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & Q1 M1_M3P3_AUGER M1 M3 & Q2<	M_1	M ₃ & N ₂	M1_M3N2_AUGER
M1 M3 & N5 M1_M3N5_AUGER M1 M3 & N6 M1_M3N6_AUGER M1 M3 & N7 M1_M3N7_AUGER M1 M3 & O1 M1_M3O1_AUGER M1 M3 & O2 M1_M3O2_AUGER M1 M3 & O3 M1_M3O3_AUGER M1 M3 & O3 M1_M3O4_AUGER M1 M3 & O6 M1_M3O5_AUGER M1 M3 & O6 M1_M3O5_AUGER M1 M3 & O6 M1_M3O7_AUGER M1 M3 & O7 M1_M3O7_AUGER M1 M3 & O7 M1_M3O7_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M4 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M3<	$\overline{M_1}$	$M_3 \& N_3$	M1_M3N3_AUGER
M1 M3 & N6 M1_M3N6_AUGER M1 M3 & N7 M1_M3N7_AUGER M1 M3 & O1 M1_M301_AUGER M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M303_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M4 & M2 M1_M4M3_AUGER M1	M_1	$M_3 \& N_4$	M1_M3N4_AUGER
M1 M3 & N7 M1_M3N7_AUGER M1 M3 & O1 M1_M301_AUGER M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M303_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O7 M1_M306_AUGER M1 M3 & O6 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M307_AUGER M1 M3 & P2 M1_M3P1_AUGER M1 M3 & P3 M1_M3P2_AUGER M1 M3 & P4 M1_M3P3_AUGER M1 M3 & P5 M1_M3P3_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M3 M1_M4M4_AUGER M1 M4 & N4<	M_1	$M_3 \& N_5$	M1_M3N5_AUGER
M1 M3 & O1 M1_M301_AUGER M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M303_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M304_AUGER M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P2 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M3 & Q2 M1_M4M2_AUGER M1 M4 M4 M1_M4M3_AUGER M1 M4 M4 M1_M4M3_AUGER M1	M_1	$M_3 \& N_6$	M1_M3N6_AUGER
M1 M3 & O2 M1_M302_AUGER M1 M3 & O3 M1_M303_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M3 M1_M4M1_AUGER M1 M4 & N3<	M_1	$M_3 \& N_7$	M1_M3N7_AUGER
M1 M3 & O3 M1_M303_AUGER M1 M3 & O4 M1_M304_AUGER M1 M3 & O6 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P4_AUGER M1 M3 & P3 M1_M3P4_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P4_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M1_AUGER M1 M4 & N4 M1_M4N1_AUGER M1 M4 & N3 M1_M4N2_AUGER M1 M4 & N4 M1_M4N3_AUGER M1 M4 & N4 M1_M4N3_AUGER <td>M_1</td> <td>$M_3 \& O_1$</td> <td>M1_M3O1_AUGER</td>	M_1	$M_3 \& O_1$	M1_M3O1_AUGER
M1 M3 & O4 M1_M304_AUGER M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3P5_AUGER M1 M3 & Q2 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M3 & Q2 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M3_AUGER M1 M4 & M4 M1_M4M1_AUGER M1 M4 & M4 M1_M4M1_AUGER M1 M4 & N4 M1_M4N1_AUGER M1 M4 & N4 M1_M4N1_AUGER M1 M4 & N4 M1_M4N1_AUGER M1 M4 & N4 M1_M4N1_AUGER <td>M_1</td> <td>$\mathrm{M}_3 \ \& \ \mathrm{O}_2$</td> <td>M1_M302_AUGER</td>	M_1	$\mathrm{M}_3 \ \& \ \mathrm{O}_2$	M1_M302_AUGER
M1 M3 & O5 M1_M305_AUGER M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P4_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q2 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M3 M1_M4M1_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 M2 M1_M4N1_AUGER M1 M4 N3 <td>M_1</td> <td>$M_3 \& O_3$</td> <td>M1_M3O3_AUGER</td>	M_1	$M_3 \& O_3$	M1_M3O3_AUGER
M1 M3 & O6 M1_M306_AUGER M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & M5 M1_M4N1_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 & N2 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N3_AUGER <td>M_1</td> <td>M_3 & O_4</td> <td>M1_M3O4_AUGER</td>	M_1	M_3 & O_4	M1_M3O4_AUGER
M1 M3 & O7 M1_M307_AUGER M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M3 M1_M4M4_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M3 M1_M4N5_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N4_AUGER M1 M4 & N3 M1_M4N4_AUGER M1 M4 & N3 M1_M4N4_AUGER M1 M4 & N6 M1_M4N4_AUGER <td>M_1</td> <td>M_3 & O_5</td> <td>M1_M3O5_AUGER</td>	M_1	M_3 & O_5	M1_M3O5_AUGER
M1 M3 & P1 M1_M3P1_AUGER M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M4 M1_M4N1_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N4_AUGER M1 M4 & N6 M1_M4N4_AUGER M1 M4 & N6 M1_M4N4_AUGER M1 M4 & N6 M1_M4N4_AUGER <td>M_1</td> <td>M_3 & O_6</td> <td>M1_M306_AUGER</td>	M_1	M_3 & O_6	M1_M306_AUGER
M1 M3 & P2 M1_M3P2_AUGER M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & N1 M1_M4N3_AUGER M1 M4 & N2 M1_M4N3_AUGER M1 M4 & N3 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N7 M1_M4N7_AUGER <td>M_1</td> <td>M_3 & O_7</td> <td>M1_M307_AUGER</td>	M_1	M_3 & O_7	M1_M307_AUGER
M1 M3 & P3 M1_M3P3_AUGER M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & M5 M1_M4N1_AUGER M1 M4 & N1 M1_M4N3_AUGER M1 M4 & N2 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & O1 M1_M401_AUGER <td>M_1</td> <td>$M_3 \& P_1$</td> <td>M1_M3P1_AUGER</td>	M_1	$M_3 \& P_1$	M1_M3P1_AUGER
M1 M3 & P4 M1_M3P4_AUGER M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & M5 M1_M4M1_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 & N2 M1_M4N2_AUGER M1 M4 & N2 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N4_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N5 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M401_AUGER M1 M4 & O1 M1_M401_AUGER M1 M4 & O2 M1_M403_AUGER M1 M4 & O3 M1_M403_AUGER <td>M_1</td> <td>M_3 & P_2</td> <td>M1_M3P2_AUGER</td>	M_1	M_3 & P_2	M1_M3P2_AUGER
M1 M3 & P5 M1_M3P5_AUGER M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 & N2 M1_M4N2_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N5 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M401_AUGER M1 M4 & O1 M1_M401_AUGER M1 M4 & O2 M1_M402_AUGER M1 M4 & O3 M1_M404_AUGER M1 M4 & O4 M1_M404_AUGER <td>M_1</td> <td>$M_3 \& P_3$</td> <td>M1_M3P3_AUGER</td>	M_1	$M_3 \& P_3$	M1_M3P3_AUGER
M1 M3 & Q1 M1_M3Q1_AUGER M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M4 M1_M4M5_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 & N2 M1_M4N2_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N5 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & O1 M1_M401_AUGER M1 M4 & O2 M1_M402_AUGER M1 M4 & O3 M1_M404_AUGER M1 M4 & O6 M1_M406_AUGER M1 M4 & O6 M1_M406_AUGER <td>M_1</td> <td>$M_3 \& P_4$</td> <td>M1_M3P4_AUGER</td>	M_1	$M_3 \& P_4$	M1_M3P4_AUGER
M1 M3 & Q2 M1_M3Q2_AUGER M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & N1 M1_M4N1_AUGER M1 M4 & N2 M1_M4N2_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N5 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & O1 M1_M401_AUGER M1 M4 & O2 M1_M402_AUGER M1 M4 & O3 M1_M403_AUGER M1 M4 & O4 M1_M404_AUGER M1 M4 & O6 M1_M405_AUGER M1 M4 & O6 M1_M406_AUGER M1 M4 & O7 M1_M406_AUGER <td>M_1</td> <td>$M_3 \& P_5$</td> <td>M1_M3P5_AUGER</td>	M_1	$M_3 \& P_5$	M1_M3P5_AUGER
M1 M3 & Q3 M1_M3Q3_AUGER M1 M4 & M2 M1_M4M2_AUGER M1 M4 & M3 M1_M4M3_AUGER M1 M4 & M4 M1_M4M4_AUGER M1 M4 & M5 M1_M4M5_AUGER M1 M4 & N1 M1_M4M5_AUGER M1 M4 & N2 M1_M4N1_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N3 M1_M4N3_AUGER M1 M4 & N4 M1_M4N4_AUGER M1 M4 & N5 M1_M4N5_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N6_AUGER M1 M4 & N6 M1_M4N7_AUGER M1 M4 & N6 M1_M401_AUGER M1 M4 & O1 M1_M401_AUGER M1 M4 & O2 M1_M402_AUGER M1 M4 & O3 M1_M403_AUGER M1 M4 & O4 M1_M404_AUGER M1 M4 & O4 M1_M404_AUGER M1 M4 & O6 M1_M405_AUGER M1 M4 & O7 M1_M405_AUGER M1 M4 & O6 M1_M406_AUGER <td>M_1</td> <td>$M_3 \& Q_1$</td> <td>M1_M3Q1_AUGER</td>	M_1	$M_3 \& Q_1$	M1_M3Q1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	M_3 & Q_2	M1_M3Q2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_3 \& Q_3$	M1_M3Q3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$\mathrm{M_4~\&~M_2}$	M1_M4M2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1		M1_M4M3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_4 \& M_4$	M1_M4M4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$\mathrm{M_4}\ \&\ \mathrm{M_5}$	M1_M4M5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_4 & N_1$	M1_M4N1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$\mathrm{M_4}\ \&\ \mathrm{N_2}$	M1_M4N2_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_4 \& N_3$	M1_M4N3_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_4 & N_4$	M1_M4N4_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\overline{M}_1^-	$M_4 & N_5$	M1_M4N5_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\overline{M}_1^-	$M_4 & N_6$	M1_M4N6_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_4 & N_7$	M1_M4N7_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_4 & O_1$	M1_M4O1_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M_4 & O_2	M1_M402_AUGER
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M_1	$M_4 \& O_3$	M1_M4O3_AUGER
$\begin{array}{ccccccc} M_1 & M_4 &\& O_5 & \texttt{M1_M405_AUGER} \\ M_1 & M_4 &\& O_6 & \texttt{M1_M406_AUGER} \\ M_1 & M_4 &\& O_7 & \texttt{M1_M407_AUGER} \\ M_1 & M_4 &\& P_1 & \texttt{M1_M4P1_AUGER} \\ M_1 & M_4 &\& P_2 & \texttt{M1_M4P2_AUGER} \end{array}$	\overline{M}_1	$M_4 & O_4$	M1_M4O4_AUGER
$\begin{array}{cccccc} M_1 & M_4 & & O_7 & \text{M1_M407_AUGER} \\ M_1 & M_4 & & P_1 & \text{M1_M4P1_AUGER} \\ M_1 & M_4 & & P_2 & \text{M1_M4P2_AUGER} \\ \end{array}$		$M_4 & O_5$	M1_M4O5_AUGER
$\begin{array}{ccccc} \mathbf{M}_1 & \mathbf{M}_4 \ \& \ \mathbf{O}_7 & \mathtt{M1_M407_AUGER} \\ \mathbf{M}_1 & \mathbf{M}_4 \ \& \ \mathbf{P}_1 & \mathtt{M1_M4P1_AUGER} \\ \mathbf{M}_1 & \mathbf{M}_4 \ \& \ \mathbf{P}_2 & \mathtt{M1_M4P2_AUGER} \end{array}$	_	- 0	
$egin{array}{lll} M_1 & M_4 & P_1 & \texttt{M1_M4P1_AUGER} \\ M_1 & M_4 & P_2 & \texttt{M1_M4P2_AUGER} \\ \end{array}$	_	- 0	M1_M407_AUGER
$\mathrm{M}_1 \qquad \qquad \mathrm{M}_4 \; \& \; \mathrm{P}_2 \qquad \; \mathrm{M1_M4P2_AUGER}$	-	- '	M1_M4P1_AUGER
			M1_M4P2_AUGER
		$\mathrm{M}_4 \And \mathrm{P}_3$	M1_M4P3_AUGER

Excited shell	Ionized shells	Auger macro
M_1	M ₄ & P ₄	M1_M4P4_AUGER
M_1	$M_4 & P_5$	M1_M4P5_AUGER
\overline{M}_1	$M_4 & Q_1$	M1_M4Q1_AUGER
M_1	$\mathrm{M}_4 \ \& \ \mathrm{Q}_2$	M1_M4Q2_AUGER
M_1	$M_4 \& Q_3$	M1_M4Q3_AUGER
M_1	M_5 & M_2	M1_M5M2_AUGER
M_1	M_5 & M_3	M1_M5M3_AUGER
M_1	$\mathrm{M}_5 \And \mathrm{M}_4$	M1_M5M4_AUGER
M_1	M_5 & M_5	M1_M5M5_AUGER
M_1	$M_5 \& N_1$	M1_M5N1_AUGER
M_1	$\mathrm{M}_5 \;\&\; \mathrm{N}_2$	M1_M5N2_AUGER
M_1	$M_5 \& N_3$	M1_M5N3_AUGER
M_1	M_5 & N_4	M1_M5N4_AUGER
M_1	M_5 & N_5	M1_M5N5_AUGER
M_1	M_5 & N_6	M1_M5N6_AUGER
M_1	$\mathrm{M}_5~\&~\mathrm{N}_7$	M1_M5N7_AUGER
M_1	M_5 & O_1	M1_M501_AUGER
M_1	M_5 & O_2	M1_M502_AUGER
M_1	$M_5 \& O_3$	M1_M5O3_AUGER
M_1	M_5 & O_4	M1_M504_AUGER
M_1	$M_5 & O_5$	M1_M5O5_AUGER
M_1	$M_5 \& O_6$	M1_M506_AUGER
M_1	$M_5 & O_7$	M1_M507_AUGER
M_1	$M_5 & P_1$	M1_M5P1_AUGER
M_1	$M_5 & P_2$	M1_M5P2_AUGER
M_1	$M_5 & P_3$	M1_M5P3_AUGER
M_1	$M_5 & P_4$	M1_M5P4_AUGER
M_1	$M_5 & P_5$	M1_M5P5_AUGER
M_1	$M_5 & Q_1$	M1_M5Q1_AUGER
M_1	$M_5 & Q_2$	M1_M5Q2_AUGER
M_1	$M_5 & Q_3$	M1_M5Q3_AUGER
M_2	$M_3 \& M_3$	M2_M3M3_AUGER
M_2	$M_3 \& M_4$	M2_M3M4_AUGER
${ m M}_2$	$M_3 \& M_5$	M2_M3M5_AUGER
${ m M}_2$	$M_3 & N_1$	M2_M3N1_AUGER
${ m M}_2$	$M_3 & N_2$	M2_M3N2_AUGER
$egin{matrix} M_2 \\ M \end{matrix}$	$M_3 \& N_3$	M2_M3N3_AUGER
$egin{matrix} M_2 \\ M \end{matrix}$	$M_3 \& N_4 M_3 \& N_5$	M2_M3N4_AUGER M2_M3N5_AUGER
$\begin{matrix} \mathbf{M_2} \\ \mathbf{M_2} \end{matrix}$	$M_3 \& N_5 $ $M_3 \& N_6$	M2_M3N6_AUGER
${ m M}_2$	$M_3 & N_6$ $M_3 & N_7$	M2_M3N7_AUGER
${ m M}_2$	$M_3 & N_7$ $M_3 & O_1$	M2_M3O1_AUGER
1 v1 2	1 3 4 0 1	"15" 11001 AOGEN

Excited shell	Ionized shells	Auger macro
$\overline{}$	M ₃ & O ₂	M2_M3O2_AUGER
$\overline{M}_2^{\mathtt{z}}$	$M_3 & O_3$	M2_M3O3_AUGER
\overline{M}_2	$M_3 \& O_4$	M2_M3O4_AUGER
M_2	$M_3 \& O_5$	M2_M3O5_AUGER
M_2	$M_3 \& O_6$	M2_M3O6_AUGER
M_2	$M_3 \& O_7$	M2_M307_AUGER
M_2	$M_3 \& P_1$	M2_M3P1_AUGER
M_2	$\mathrm{M}_3 \ \& \ \mathrm{P}_2$	M2_M3P2_AUGER
M_2	$M_3 \& P_3$	M2_M3P3_AUGER
M_2	M_3 & P_4	M2_M3P4_AUGER
M_2	$M_3 \& P_5$	M2_M3P5_AUGER
M_2	$M_3 \& Q_1$	M2_M3Q1_AUGER
M_2	$M_3 \& Q_2$	M2_M3Q2_AUGER
M_2	$M_3 \& Q_3$	M2_M3Q3_AUGER
M_2	$\mathrm{M}_4 \And \mathrm{M}_3$	M2_M4M3_AUGER
M_2	$\mathrm{M}_4 \And \mathrm{M}_4$	M2_M4M4_AUGER
M_2	M_4 & M_5	M2_M4M5_AUGER
M_2	$\mathrm{M_4}\ \&\ \mathrm{N_1}$	M2_M4N1_AUGER
M_2	$\mathrm{M_4}\ \&\ \mathrm{N_2}$	M2_M4N2_AUGER
M_2	$\mathrm{M_4}~\&~\mathrm{N_3}$	M2_M4N3_AUGER
M_2	$\mathrm{M_4} \ \& \ \mathrm{N_4}$	M2_M4N4_AUGER
M_2	$\mathrm{M_4} \ \& \ \mathrm{N_5}$	M2_M4N5_AUGER
M_2	$M_4 \& N_6$	M2_M4N6_AUGER
M_2	$M_4 \& N_7$	M2_M4N7_AUGER
M_2	$M_4 \& O_1$	M2_M4O1_AUGER
M_2	$\mathrm{M}_4 \;\&\; \mathrm{O}_2$	M2_M4O2_AUGER
M_2	$M_4 \& O_3$	M2_M4O3_AUGER
M_2	$\mathrm{M}_4 \ \& \ \mathrm{O}_4$	M2_M4O4_AUGER
M_2	$\mathrm{M}_4~\&~\mathrm{O}_5$	M2_M405_AUGER
M_2	M_4 & O_6	M2_M406_AUGER
M_2	$\mathrm{M}_4~\&~\mathrm{O}_7$	M2_M407_AUGER
M_2	$M_4 \& P_1$	M2_M4P1_AUGER
M_2	$\mathrm{M_4}~\&~\mathrm{P_2}$	M2_M4P2_AUGER
M_2	$M_4 \& P_3$	M2_M4P3_AUGER
M_2	$\mathrm{M_4} \ \& \ \mathrm{P_4}$	M2_M4P4_AUGER
M_2	$M_4 & P_5$	M2_M4P5_AUGER
M_2	$M_4 & Q_1$	M2_M4Q1_AUGER
M_2	$M_4 \& Q_2$	M2_M4Q2_AUGER
M_2	$M_4 \& Q_3$	M2_M4Q3_AUGER
M_2	$M_5 \& M_3$	M2_M5M3_AUGER
M_2	$M_5 \& M_4$	M2_M5M4_AUGER
M_2	M_5 & M_5	M2_M5M5_AUGER

Excited shell	Ionized shells	Auger macro
M_2	M ₅ & N ₁	M2_M5N1_AUGER
$\overline{\mathrm{M}_{2}}^{-}$	$M_5 & N_2$	M2_M5N2_AUGER
$\overline{\mathrm{M}_{2}}^{-}$	$M_5 & N_3$	M2_M5N3_AUGER
M_2	$M_5 \& N_4$	M2_M5N4_AUGER
M_2	$M_5 \& N_5$	M2_M5N5_AUGER
M_2	$M_5 \& N_6$	M2_M5N6_AUGER
M_2	$M_5 \& N_7$	M2_M5N7_AUGER
M_2	M_5 & O_1	M2_M501_AUGER
M_2	$\mathrm{M}_5 \;\&\; \mathrm{O}_2$	M2_M502_AUGER
M_2	$M_5 \& O_3$	M2_M503_AUGER
M_2	$\mathrm{M}_5 \;\&\; \mathrm{O}_4$	M2_M504_AUGER
M_2	M_5 & O_5	M2_M505_AUGER
M_2	M_5 & O_6	M2_M506_AUGER
M_2	M_5 & O_7	M2_M507_AUGER
M_2	M_5 & P_1	M2_M5P1_AUGER
M_2	M_5 & P_2	M2_M5P2_AUGER
M_2	$M_5 \& P_3$	M2_M5P3_AUGER
M_2	M_5 & P_4	M2_M5P4_AUGER
M_2	$M_5 \& P_5$	M2_M5P5_AUGER
M_2	$M_5 \& Q_1$	M2_M5Q1_AUGER
${ m M}_2$	$\mathrm{M}_5 \;\&\; \mathrm{Q}_2$	M2_M5Q2_AUGER
M_2	M_5 & Q_3	M2_M5Q3_AUGER
M_3	M_4 & M_4	M3_M4M4_AUGER
M_3	M_4 & M_5	M3_M4M5_AUGER
M_3	$M_4 \& N_1$	M3_M4N1_AUGER
M_3	$\mathrm{M_4} \;\&\; \mathrm{N_2}$	M3_M4N2_AUGER
M_3	$\mathrm{M_4}~\&~\mathrm{N_3}$	M3_M4N3_AUGER
M_3	$\mathrm{M_4}~\&~\mathrm{N_4}$	M3_M4N4_AUGER
M_3	$\mathrm{M_4~\&~N_5}$	M3_M4N5_AUGER
M_3	$\mathrm{M_4~\&~N_6}$	M3_M4N6_AUGER
M_3	$\mathrm{M_4~\&~N_7}$	M3_M4N7_AUGER
M_3	$\mathrm{M}_4~\&~\mathrm{O}_1$	M3_M4O1_AUGER
M_3	M_4 & O_2	M3_M402_AUGER
M_3	$M_4 \& O_3$	M3_M4O3_AUGER
M_3	$\mathrm{M}_4~\&~\mathrm{O}_4$	M3_M4O4_AUGER
M_3	$M_4 \& O_5$	M3_M4O5_AUGER
M_3	$M_4 \& O_6$	M3_M406_AUGER
M_3	$M_4 & O_7$	M3_M407_AUGER
M_3	$M_4 & P_1$	M3_M4P1_AUGER
M_3	$M_4 & P_2$	M3_M4P2_AUGER
M_3	$M_4 & P_3$	M3_M4P3_AUGER
M_3	$\mathrm{M_4}~\&~\mathrm{P_4}$	M3_M4P4_AUGER

Excited shell	Ionized shells	Auger macro
M_3	M ₄ & P ₅	M3_M4P5_AUGER
M_3	$M_4 & Q_1$	M3_M4Q1_AUGER
M_3	$M_4 & Q_2$	M3_M4Q2_AUGER
M_3	$M_4 \& Q_3$	M3_M4Q3_AUGER
M_3	M_5 & M_4	M3_M5M4_AUGER
M_3	M_5 & M_5	M3_M5M5_AUGER
M_3	M_5 & N_1	M3_M5N1_AUGER
M_3	$\mathrm{M}_5~\&~\mathrm{N}_2$	M3_M5N2_AUGER
M_3	$M_5 \& N_3$	M3_M5N3_AUGER
M_3	M_5 & N_4	M3_M5N4_AUGER
M_3	$M_5 \& N_5$	M3_M5N5_AUGER
M_3	$M_5 \& N_6$	M3_M5N6_AUGER
M_3	$M_5 \& N_7$	M3_M5N7_AUGER
M_3	M_5 & O_1	M3_M501_AUGER
M_3	$\mathrm{M}_5 \;\&\; \mathrm{O}_2$	M3_M502_AUGER
M_3	$M_5 \& O_3$	M3_M503_AUGER
M_3	$\mathrm{M}_5 \;\&\; \mathrm{O}_4$	M3_M504_AUGER
M_3	M_5 & O_5	M3_M505_AUGER
M_3	M_5 & O_6	M3_M506_AUGER
M_3	$M_5 \& O_7$	M3_M507_AUGER
M_3	$M_5 \& P_1$	M3_M5P1_AUGER
M_3	$\mathrm{M}_5 \;\&\; \mathrm{P}_2$	M3_M5P2_AUGER
M_3	$M_5 \& P_3$	M3_M5P3_AUGER
M_3	M_5 & P_4	M3_M5P4_AUGER
M_3	$M_5 \& P_5$	M3_M5P5_AUGER
M_3	$M_5 \& Q_1$	M3_M5Q1_AUGER
M_3	M_5 & Q_2	M3_M5Q2_AUGER
M_3	$M_5 \& Q_3$	M3_M5Q3_AUGER
M_4	M_5 & M_5	M4_M5M5_AUGER
M_4	$M_5 \& N_1$	M4_M5N1_AUGER
M_4	M_5 & N_2	M4_M5N2_AUGER
M_4	$M_5 \& N_3$	M4_M5N3_AUGER
M_4	$M_5 & N_4$	M4_M5N4_AUGER
M_4	$M_5 \& N_5$	M4_M5N5_AUGER
M_4	M_5 & N_6	M4_M5N6_AUGER
M_4	$M_5 \& N_7$	M4_M5N7_AUGER
M_4	$M_5 & O_1$	M4_M501_AUGER
M_4	$M_5 & O_2$	M4_M502_AUGER
M_4	$M_5 & O_3$	M4_M503_AUGER
M_4	$M_5 & O_4$	M4_M504_AUGER
M_4	$M_5 & O_5$	M4_M505_AUGER
M_4	M_5 & O_6	M4_M506_AUGER

Excited shell	Ionized shells	Auger macro
M_4	$\mathrm{M_5}~\&~\mathrm{O_7}$	M4_M507_AUGER
M_4	$M_5 \& P_1$	M4_M5P1_AUGER
M_4	M_5 & P_2	M4_M5P2_AUGER
M_4	$M_5 \& P_3$	M4_M5P3_AUGER
M_4	M_5 & P_4	M4_M5P4_AUGER
M_4	$M_5 \& P_5$	M4_M5P5_AUGER
M_4	$M_5 \& Q_1$	M4_M5Q1_AUGER
M_4	$\mathrm{M}_5 \;\&\; \mathrm{Q}_2$	M4_M5Q2_AUGER
M_4	M_5 & Q_3	M4_M5Q3_AUGER

A.6 NIST compound catalog macros

The functions GetCompoundDataNISTByIndex and GetCompoundDataNISTByName provide access to the compositions of a large number of commonly used compounds, obtained from the NIST website.

The following table has two columns: the first for the macros that are intended to be used as argument to GetCompoundDataNISTByIndex, while the second contains the names that should be provided to the GetCompoundDataNISTByName function, as well as the cross section functions with the _CP suffix. The list of names in the second column is identical to the array of strings that can be queried using GetCompoundDataNISTList.

NIST compound catalog macro	NIST compound catalog name			
NIST_COMPOUND_A_150_TISSUE_EQUESOATESTEPE ASSIVEDENT				
	Plastic			
NIST_COMPOUND_ACETONE	Acetone			
NIST_COMPOUND_ACETYLENE	Acetylene			
NIST_COMPOUND_ADENINE	Adenine			
NIST_COMPOUND_ADIPOSE_TISSUEAddpase Tissue (ICRP)				
NIST_COMPOUND_AIR_DRY_NEAR_	_S AAr_, Dry H(hear sea level)			
NIST_COMPOUND_ALANINE	Alanine			
NIST_COMPOUND_ALUMINUM_OXIDEAluminum Oxide				
NIST_COMPOUND_AMBER	Amber			
NIST_COMPOUND_AMMONIA	Ammonia			
NIST_COMPOUND_ANILINE	Aniline			
NIST_COMPOUND_ANTHRACENE	Anthracene			
NIST_COMPOUND_B_100_BONE_EQUBVACEBOD_RELASTIVATENT Plastic				
NIST_COMPOUND_BAKELITE	Bakelite			
NIST_COMPOUND_BARIUM_FLUORID B arium Fluoride				
NIST_COMPOUND_BARIUM_SULFATEBarium Sulfate				
NIST_COMPOUND_BENZENE	Benzene			
NIST_COMPOUND_BERYLLIUM_OXID B eryllium oxide				

```
NIST compound catalog macro
                              NIST compound catalog name
NIST_COMPOUND_BISMUTH_GERMANBUMn_OUXIGErmanium oxide
NIST_COMPOUND_BLOOD_ICRP
                              Blood (ICRP)
NIST COMPOUND BONE COMPACT IBRUE, Compact (ICRU)
NIST COMPOUND BONE CORTICAL BORP, Cortical (ICRP)
NIST_COMPOUND_BORON_CARBIDE Boron Carbide
NIST_COMPOUND_BORON_OXIDE
                              Boron Oxide
NIST_COMPOUND_BRAIN_ICRP
                              Brain (ICRP)
NIST_COMPOUND_BUTANE
                              Butane
NIST_COMPOUND_N_BUTYL_ALCOHOM-Butyl Alcohol
NIST_COMPOUND_C_552_AIR_EQUICASENTA iP Existivadent Plastic
NIST_COMPOUND_CADMIUM_TELLURCDetmium Telluride
NIST_COMPOUND_CADMIUM_TUNGST@Totalmium Tungstate
NIST_COMPOUND_CALCIUM_CARBON@arkium Carbonate
NIST_COMPOUND_CALCIUM_FLUORIOElcium Fluoride
NIST_COMPOUND_CALCIUM_OXIDE Calcium Oxide
NIST COMPOUND CALCIUM SULFATEalcium Sulfate
NIST_COMPOUND_CALCIUM_TUNGSTCTEium Tungstate
NIST_COMPOUND_CARBON_DIOXIDECarbon Dioxide
NIST_COMPOUND_CARBON_TETRACHCOPHIDETetrachloride
NIST_COMPOUND_CELLULOSE_ACET@FEul@SelADPHANE Cellophane
NIST_COMPOUND_CELLULOSE_ACET@TEuBistYRacetEte Butyrate
NIST_COMPOUND_CELLULOSE_NITRATEulose Nitrate
NIST_COMPOUND_CERIC_SULFATE_OOGICMENTERe_SOUSIMEDEN
                              Solution
NIST_COMPOUND_CESIUM_FLUORIDEesium Fluoride
NIST_COMPOUND_CESIUM_IODIDE Cesium Iodide
NIST_COMPOUND_CHLOROBENZENE Chlorobenzene
                              Chloroform
NIST_COMPOUND_CHLOROFORM
NIST_COMPOUND_CONCRETE_PORTL@NDcrete, Portland
NIST_COMPOUND_CYCLOHEXANE
                              Cyclohexane
NIST_COMPOUND_12_DDIHLOROBENZENDdihlorobenzene
NIST COMPOUND DICHLORODIETHYDickstrackiethyl Ether
NIST COMPOUND 12 DICHLOROETHAMEDichloroethane
NIST_COMPOUND_DIETHYL_ETHER Diethyl Ether
NIST_COMPOUND_NN_DIMETHYL_FORMANDDE ethyl Formamide
NIST_COMPOUND_DIMETHYL_SULFORD in Ethyl Sulfoxide
NIST_COMPOUND_ETHANE
                              Ethane
NIST_COMPOUND_ETHYL_ALCOHOL Ethyl Alcohol
NIST_COMPOUND_ETHYL_CELLULOSEthyl Cellulose
NIST_COMPOUND_ETHYLENE
                              Ethylene
NIST_COMPOUND_EYE_LENS_ICRP Eye Lens (ICRP)
NIST_COMPOUND_FERRIC_OXIDE Ferric Oxide
```

NIST compound catalog macro	NIST compound catalog name			
NIST_COMPOUND_FERROBORIDE	Ferroboride			
NIST_COMPOUND_FERROUS_OXIDE Ferrous Oxide				
NIST_COMPOUND_FERROUS_SULFAT E edDOGS SETTAR e_ DOSITITETE D				
	Solution			
NIST_COMPOUND_FREON_12	Freon-12			
NIST_COMPOUND_FREON_12B2	Freon-12B2			
NIST_COMPOUND_FREON_13	Freon-13			
NIST_COMPOUND_FREON_13B1	Freon-13B1			
NIST_COMPOUND_FREON_13I1	Freon-13I1			
NIST_COMPOUND_GADOLINIUM_OX	Y Gudəlinə lm Oxysulfide			
NIST_COMPOUND_GALLIUM_ARSEN	I GE llium Arsenide			
NIST_COMPOUND_GEL_IN_PHOTOG	RAPHiCPENTASTAPING Emulsion			
NIST_COMPOUND_GLASS_PYREX	Glass, Pyrex			
NIST_COMPOUND_GLASS_LEAD	Glass, Lead			
NIST_COMPOUND_GLASS_PLATE	Glass, Plate			
NIST_COMPOUND_GLUCOSE	Glucose			
NIST_COMPOUND_GLUTAMINE	Glutamine			
NIST_COMPOUND_GLYCEROL	Glycerol			
NIST_COMPOUND_GUANINE	Guanine			
NIST_COMPOUND_GYPSUM_PLASTE	RGOPS MAR PSaster of Paris			
NIST_COMPOUND_N_HEPTANE	N-Heptane			
NIST_COMPOUND_N_HEXANE	N-Hexane			
NIST_COMPOUND_KAPTON_POLYIM	I KEpril Molyimide Film			
NIST_COMPOUND_LANTHANUM_OXY	- ·			
NIST_COMPOUND_LANTHANUM_OXY	SUMMINEUM Oxysulfide			
NIST_COMPOUND_LEAD_OXIDE	Lead Oxide			
NIST_COMPOUND_LITHIUM_AMIDE	Lithium Amide			
NIST_COMPOUND_LITHIUM_CARBONAITEium Carbonate				
NIST_COMPOUND_LITHIUM_FLUORIDH hium Fluoride				
NIST_COMPOUND_LITHIUM_HYDRIDEithium Hydride				
NIST_COMPOUND_LITHIUM_IODIDELithium Iodide				
NIST_COMPOUND_LITHIUM_OXIDE Lithium Oxide				
NIST_COMPOUND_LITHIUM_TETRABDRATEM Tetraborate				
NIST_COMPOUND_LUNG_ICRP	Lung (ICRP)			
NIST_COMPOUND_M3_WAX	M3 Wax			
NIST_COMPOUND_MAGNESIUM_CAR	BMMgnesium Carbonate			
NIST_COMPOUND_MAGNESIUM_FLUOMAMeesium Fluoride				
NIST_COMPOUND_MAGNESIUM_OXIDMagnesium Oxide				
NIST_COMPOUND_MAGNESIUM_TETRMBOPALSTEIM Tetraborate				
NIST_COMPOUND_MERCURIC_IODIDMercuric Iodide				
NIST_COMPOUND_METHANE	Methane			
NIST_COMPOUND_METHANOL	Methanol			

NIST compound catalog macro	NIST compound catalog name			
NIST_COMPOUND_MIX_D_WAX	Mix D Wax			
NIST_COMPOUND_MS20_TISSUE_SUBSECTISSUE Substitute				
NIST_COMPOUND_MUSCLE_SKELET	'AMuscle, Skeletal			
NIST_COMPOUND_MUSCLE_STRIATEMuscle, Striated				
NIST_COMPOUND_MUSCLE_EQUIVA	LINNISclei QuinivallemH_ispicel,Oscith			
	Sucrose			
NIST_COMPOUND_MUSCLE_EQUIVA	L INNIS_LEFEQUIO V_d V&fTHIOU QLi_ & ,UCROSF			
	without Sucrose			
NIST_COMPOUND_NAPHTHALENE	Naphthalene			
NIST_COMPOUND_NITROBENZENE	Nitrobenzene			
NIST_COMPOUND_NITROUS_OXIDE	Nitrous Oxide			
NIST_COMPOUND_NYLON_DU_PONT				
	8062			
NIST_COMPOUND_NYLON_TYPE_6_	ANDLOW, REPES and type 6/6			
NIST_COMPOUND_NYLON_TYPE_61	0Nylon, type 6/10			
NIST_COMPOUND_NYLON_TYPE_11	_NYLSANype 11 (Rilsan)			
NIST_COMPOUND_OCTANE_LIQUID	,			
NIST_COMPOUND_PARAFFIN_WAX				
NIST_COMPOUND_N_PENTANE	N-Pentane			
NIST_COMPOUND_PHOTOGRAPHIC_	EMbutsepoaphic Emulsion			
NIST_COMPOUND_PLASTIC_SCINT	IP. LANTIONS CVITAIN VALUE OF LUENE BASED			
	(Vinyltoluene based)			
NIST_COMPOUND_PLUTONIUM_DIO	XPDEonium Dioxide			
NIST_COMPOUND_POLYACRYLONIT	RELLEVacrylonitrile			
NIST_COMPOUND_POLYCARBONATE				
	Lexan)			
NIST_COMPOUND_POLYCHLOROSTY	REMEychlorostyrene			
NIST_COMPOUND_POLYETHYLENE	Polyethylene			
NIST_COMPOUND_POLYETHYLENE_	TEREPHTHALATE OPHILARIA TE			
	(Mylar)			
NIST_COMPOUND_POLYMETHYL_ME	TPAKAMATAYEMATOTOLATERSPEX			
- -	(Lucite, Perspex)			
NIST_COMPOUND_POLYOXYMETHYL	ENG lyoxymethylene			
NIST_COMPOUND_POLYPROPYLENE	Polypropylene			
NIST_COMPOUND_POLYSTYRENE	Polystyrene			
NIST_COMPOUND_POLYTETRAFLUO	R Dolymetrative orverhylv ne			
- -	(Teflon)			
NIST_COMPOUND_POLYTRIFLUORO	CPALITATION CENTRO CENTRAL CEN			
NIST_COMPOUND_POLYVINYL_ACE				
NIST_COMPOUND_POLYVINYL_ALCO POL yvinyl Alcohol				
NIST_COMPOUND_POLYVINYL_BUTY RAL yvinyl Butyral				
NIST_COMPOUND_POLYVINYL_CHL				

```
NIST compound catalog macro
                                                                                                                                  NIST compound catalog name
NIST_COMPOUND_POLYVINYLIDENEP_CHyLOURALD TEERS AR AND ride, Saran
NIST_COMPOUND_POLYVINYLIDENEP of Lyvory library librar
NIST COMPOUND POLYVINYL PYRR POLYVONNI Pyrrolidone
NIST COMPOUND POTASSIUM IODIPotassium Iodide
NIST_COMPOUND_POTASSIUM_OXIDEotassium Oxide
NIST_COMPOUND_PROPANE
                                                                                                                                  Propane
NIST_COMPOUND_PROPANE_LIQUIDPropane, Liquid
NIST_COMPOUND_N_PROPYL_ALCOHNLPropyl Alcohol
NIST_COMPOUND_PYRIDINE
                                                                                                                                   Pyridine
NIST_COMPOUND_RUBBER_BUTYL Rubber, Butyl
NIST_COMPOUND_RUBBER_NATURALRubber, Natural
NIST_COMPOUND_RUBBER_NEOPRENRubber, Neoprene
NIST_COMPOUND_SILICON_DIOXIDScilicon Dioxide
NIST_COMPOUND_SILVER_BROMIDESilver Bromide
NIST_COMPOUND_SILVER_CHLORIDSilver Chloride
NIST COMPOUND SILVER HALIDESSILVER HOUNGER APPRICATE TO SILVER HALIDESSILVER HALIDESSILVER HOUNGER APPRICATE TO SILVER HALIDESSILVER HALIDESSI
                                                                                                                                   Emulsion
NIST_COMPOUND_SILVER_IODIDE Silver Iodide
NIST_COMPOUND_SKIN_ICRP
                                                                                                                                   Skin (ICRP)
NIST COMPOUND SODIUM CARBONAS Edium Carbonate
NIST_COMPOUND_SODIUM_IODIDE Sodium Iodide
NIST_COMPOUND_SODIUM_MONOXIDSodium Monoxide
NIST_COMPOUND_SODIUM_NITRATESodium Nitrate
NIST_COMPOUND_STILBENE
                                                                                                                                   Stilbene
NIST_COMPOUND_SUCROSE
                                                                                                                                   Sucrose
NIST_COMPOUND_TERPHENYL
                                                                                                                                   Terphenyl
NIST_COMPOUND_TESTES_ICRP
                                                                                                                                  Testes (ICRP)
NIST_COMPOUND_THALLIUM_CHLORTballium Chloride
NIST_COMPOUND_TISSUE_SOFT_ICRESue, Soft (ICRP)
NIST_COMPOUND_TISSUE_SOFT_ICRISSIFQUSOCCOMPRINENT
                                                                                                                                    four-component)
NIST COMPOUND TISSUE EQUIVALENTUE ABJUNETE ANG ASASED
                                                                                                                                  (Methane based)
NIST_COMPOUND_TISSUE_EQUIVALENTU.GASQUPROMEANGASSED
                                                                                                                                  (Propane based)
NIST_COMPOUND_TITANIUM_DIOXIDE anium Dioxide
NIST_COMPOUND_TOLUENE
                                                                                                                                   Toluene
NIST_COMPOUND_TRICHLOROETHYLENEhloroethylene
NIST_COMPOUND_TRIETHYL_PHOSPHATE yl Phosphate
NIST_COMPOUND_TUNGSTEN_HEXAFT. HEXAFT. HEXAFT.
NIST_COMPOUND_URANIUM_DICARBUDAHium Dicarbide
```

NIST compound catalog macro	NIST compound catalog name		
NIST_COMPOUND_URANIUM_MONOCARBAINEM Monocarbide			
NIST_COMPOUND_URANIUM_OXIDE	Uranium Oxide		
NIST_COMPOUND_UREA	Urea		
NIST_COMPOUND_VALINE	Valine		
NIST_COMPOUND_VITON_FLUOROE	LW##6MHRoroelastomer		
NIST_COMPOUND_WATER_LIQUID	Water, Liquid		
NIST_COMPOUND_WATER_VAPOR	Water Vapor		
NIST_COMPOUND_XYLENE	Xylene		

A.7 Radionuclide macros

The functions GetRadioNuclideDataByIndex and GetRadioNuclideDataByName provide access to the X-ray and gamma intensity profiles of several commonly used radionuclides, obtained from the website of the Lawrence Berkeley National Laboratory.

The following table has two columns: the first for the macros that are intended to be used as argument to GetRadioNuclideDataByIndex, while the second contains the names that should be provided to the GetRadioNuclideDataByName function. The list of names in the second column is identical to the array of strings that can be queried using GetRadioNuclideDataList.

Radionuclide macros	Radionuclide name
RADIO_NUCLIDE_55FE	55Fe
RADIO_NUCLIDE_57CO	57Co
RADIO_NUCLIDE_109CD	109Cd
RADIO_NUCLIDE_125I	125I
RADIO_NUCLIDE_137CS	137Cs
RADIO_NUCLIDE_133BA	133Ba
RADIO_NUCLIDE_153GD	153Gd
RADIO_NUCLIDE_238PU	238Pu
RADIO_NUCLIDE_241AM	241Am
RADIO_NUCLIDE_244CM	244Cm