UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING Test 1 – October 9, 2018	Marks Part A: (/10) Part B: 1.(/10)
First Year	2.(/10)
APS110/164 – ENGINEERING CHEMISTRY AND MATERIALS SCIENCE	3. (/10) 4. (/10)
Exam Type: A	
Examiners – CQ Jia, SD Ramsay	
Permissible Calculators: Casio FX-991 or Sharp EL-520 Rulers permitted.	TOTAL:
Duration: 90 minutes	(/50)
 All questions are NOT of equal value Answer all questions on this exam All numerical responses must be expressed in the most appropriate units, including appropriate prefixes (ex. GPa rather than 10⁹ Pa), and be written with appropriate significant figures 	

<u>Part B.</u> Please enter the correct answer for the following questions on the computer answer form. (Each question is worth 1 mark)

- 1. Which of the following materials would you expect to have the lowest Young's modulus?
 - a) The conductor in an extension cord
 - b) A car tire
 - c) A car window
 - d) A car door
- 2. Steel is plastically deformed by being pulled through a die to form a wire that is used to make nails. Another piece of steel is melted and poured into a mold to form a bracket. Comparing the Young's modulus of the nail to that of the bracket, which is true?
 - a) The nail has a Young's modulus of rougly 200 GPa, while the bracket has a Young's modulus closer to 150 GPa.
 - b) Both the nail and the bracket have a Young's modulus close to 200 GPa;
 - c) The nail has a Young's modulus of roughly 150 GPa, while the bracket has a Young's modulus closer to 200 GPa.
 - d) None of the above are reasonable outcomes.
- 3. What are the units of stress?
 - a) N/m^2
 - b) Pa
 - c) Neither of these
 - d) Both a) and b)
- 4. For the interstitial site having coordination number of 8, the cation sits at the center of a _____, where the corners are occupied by anions.
 - a) Triangle
 - b) Octahedron
 - c) Cube
 - d) Tetrahedron
- 5. Which of the following are generally true of elastic behaviour?
 - a) Permanent
 - b) Atoms move to new equilibrium positions
 - c) Neither a) nor b)
 - d) Both a) and b)

- 6. The linear dimension describing the size of the unit cell is known as:
 - a) The unit cell
 - b) The crystal
 - c) The Miller indices
 - d) The lattice parameter
- 7. The atomic diameter of an atom of a FCC crystal, in terms of the lattice parameter a is:
 - a) a

 - b) $\frac{a}{2\sqrt{2}}$ c) $\frac{\sqrt{3}a}{2}$ d) $\frac{a}{\sqrt{2}}$
- 8. Which of the following has long-range order?
 - a) Glass window
 - b) Polyethylene teraphthalate soda bottle
 - c) Rubber sole of a shoe
 - d) Aluminum can
- 9. The atomic packing factor of a crystal structure is the ratio of:
 - a) Volume occupied by atoms to that by voids
 - b) Total volume of unit cell to volume occupied by particles
 - c) Area occupied by atoms to total area of plane
 - d) None of the above
- 10. The Young's modulus is related to which of the following?
 - a) The slope of the interatomic force separation curve taken at the equilibrium interatomic spacing
 - b) The slope of the interatomic energy separation curve taken at the equilibrium interatomic spacing Region between the ultimate tensile strength and fracture
 - c) The slope of the interatomic force separation curve taken at r=0
 - d) Both a) and c)

Part B.1. Show that the ratio of cation radius to anion radius for a coordination number of 8 is 0.732. (10)

- 2. This question pertains to the tensile test.
 - a. Draw a typical metallic tensile specimen. On your sketch, identify the following features: grip region, reduced section, gauge length. (4)

b. On the axes below, sketch the generalized stress strain curves for a metal, ceramic, and a polymer. (3)

- c. Explain why, in the characterization of materials, engineering stress and engineering strain are used rather than force and elongation. (1)
- d. Provide two differences between elastic and plastic deformation. (2)

3. Strontium selenide (SrSe) forms the rock salt crystal structure and has a density of $4.54 \, \frac{g}{cm^3}$. The radius of the selenium anion in this structure is 184 pm. Calculate the radius of the strontium cation in this structure, in pm. Note: 1 pm = 10^{-12} m. (10)

4. The volume of an HCP unit cell is $\frac{3\sqrt{3}}{2}a^2c$. Show that the atomic packing factor of the HCP crystal structure is 0.74. Begin by sketching the atom positions, as small dots, in the unit cell below. (10)

Constants

1 atm = 101.325 kPa = 1.01325 bar = 14.696 psi
$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$
 $e = 1.602 \times 10^{-19} \text{ C}$

1 eV = 1.602 x 10⁻¹⁹ J
$$\varepsilon_0 = 8.854 \times 10^{-12} \frac{\text{F}}{\text{m}}$$
 $R = 8.314 \frac{J}{mol \cdot K} = 0.082067 \frac{L \cdot atm}{mol \cdot K}$

$$T_{(K)} = T_{(^{\circ}C)} + 273.15$$
 $k = 8.62 \times 10^{-5} \frac{eV}{atom K}$ $k = 1.38 \times 10^{-23} \frac{J}{atom K}$ $F = 96486 \text{ C} \cdot \text{mol}^{-1}$

Microstructure

$$LD = {^{\#}/_{Length}} \quad LPF = \frac{\text{length of atoms}}{\text{length of vector}} \quad PD = {^{\#}/_{Area}} \quad PPF = \frac{\text{area of atoms}}{\text{area of plane}} \quad V = \frac{4}{3}\pi r^3$$

$$A = \pi r^2 \quad A_{\Delta} = \frac{1}{2}bh \qquad \rho = \frac{n \cdot A}{V_C \cdot N_A} \qquad \rho = \frac{m}{V} \qquad \rho = \frac{n_A A_A + n_C A_C}{V_C N_A} \qquad APF = \frac{V_S}{V_C}$$

$$N = \frac{N_A \rho}{A}$$
 $N_v = N \exp\left(-\frac{Q_v}{kT}\right)$ $a = 2\sqrt{2}R$ $a = \frac{4}{\sqrt{3}}R$

Mechanical Behaviour

$$\sigma = \frac{F}{A}$$
 $\varepsilon = \frac{\Delta l}{l_o}$ $\sigma = E \varepsilon$ $\sigma_{3-point\ bend} = \frac{3FL}{2w \cdot h^2} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Electrical Behaviour

$$\sigma = n|e|\mu_e + h|e|\mu_h$$
 $\sigma = n|e|\mu_e$ $\sigma = h|e|\mu_h$

Thermodynamics =

$$PV = nRT$$
 $\Delta U = q + w$ $\Delta U = q - P_{ext}\Delta V$ $H \equiv U + PV$ $G \equiv H - TS$ $\Delta S = \frac{q_{rev}}{T}$

For process at constant T: $\Delta G = \Delta H - T\Delta S$ $q = mc\Delta T = nC_p\Delta T$ $\Delta G = \Delta H - T\Delta S$

$$W_{phase} = \frac{length\ of\ opposite\ side\ of\ lever}{total\ length\ of\ lever} \qquad \text{For}\ aA + bB \ \rightarrow cC + dD,\ \ Q = \frac{a_C^c \cdot a_D^d}{a_A^a \cdot a_B^b}$$

 v_i : stoichiometric coefficient Assuming no phase change, constant C_p :

$$\Delta H_{reaction}^{\circ} = (\Sigma v_i \Delta H_{f,i}^{\circ})_{products} - (\Sigma v_i \Delta H_{f,i}^{\circ})_{reactants}$$

$$\Delta S_{reaction}^{\circ} = (\Sigma v_i \Delta S_{m,i}^{\circ})_{products} - (\Sigma v_i \Delta H_{m,i}^{\circ})_{reactants}$$

$$\Delta G_{reaction}^{\circ} = \Delta H_{reaction}^{\circ} - T \Delta S_{reaction}^{\circ} \qquad \qquad \Delta G_{reaction} = \Delta G^{\circ} + RT lnQ$$

$$\Delta G^{\circ} = -RTlnK$$

Electrochemistry

$$E = E^{\circ} - \frac{RT}{nF} lnQ$$
 $E = E^{\circ} - \frac{0.0592}{n} lnQ$, at 25°C $I = \frac{nC}{t}$ $W = nFE^{\circ}$

	0	He 4.0026	10	Ne	20.183	18	Ar	39.948	36	궃	83.80	54	Xe	131.30	98	Rn	(222)				71	r.	174.97	103	Lw	(257)
			10.000		\rightarrow	_				_				-							\vdash		_			\dashv
		VIIA	6	т ,	18.998	17	5	35.453	35	B	79.91	53	_	126.90	85	Aŧ	(210)				70	Yb	173.04	102	Š	(254
		VIA	œ	0 1	15.999	16	S	32.064	34	Se	78.96	25	Те	127.60	84	Ъ	(210)				69	H	168.93	101	Md	(256)
		۸	7	Z ;	14.007	15	۵	30.974	33	As	74.922	51	Sb	121.75	83	Bi	208.98				89	Ē	167.26	100	Fm	(253)
		IVA		0	-		S	28.086	32	Ge	72.59	90	Sn	118.69	82	Pb	207.19				29	유	164.93	66	Es	(254)
		HIA	2	В	10.811	13	A	26.982	31	Ga	69.72	49	ㅁ	114.82	81	F	204.37				99	Q	162.50	86	Ç	(249)
								IIB	30	Zn	65.37	48	Р	112.40	80	Нg	200.59				65	Tp	158.92	6	BK	(247)
	[a]			diate				IB	59	Cu	63.54	47	Ag	107.87	79	Au	196.97				64	pg	157.25	96	Cm	(247)
Metal	Nonmetal		:	Intermediate					28	ž	58.71	46	Pd	106.4	78	Ł	195.09				63	En	151.96	98	Am	(243)
							=∢		27	ပိ	58.933	45	Rh	102.91	77	<u>-</u>	192.2				62	Sm	150.35	94	Pn	(242)
	Je				_				56	Fe	55.847	44	Ru	101.07	9/	Os	190.2				61	Pm	(145)	93	Np	(237)
	– Atomic number		Atomic weignt					VIIB	25	M	54.938	43	ည	(66)	75	Re	186.2				09	PN	144.24	92	⊃	238.03
	- Atom	— Symbo	Atom					VIB	24	ప	51.996	42	Mo	95.94	74	>	183.85				59	Ą	140.91	91	Ра	(231)
	Key 29 €	Cu <						٨B	23	>	50.942	41	QN	92.91	73	Та	180.95				58	Ce	140.12	06	т	232.04
								IVB	22	F	47.90	40	Zr	91.22	72	Ŧ	178.49				57	La	138.91	88	Ac	(227)
								IIB	21	Sc	44.956	39	>	88.91	Rare	earth	series	Acti-	nide	series		series			series	
		IIA	4	Be	9.0122	12	M	24.312	20	Ca	40.08	38	Sr	87.62	99	Ва	137.34	88	Ra	(226)		Rare earth series			Actinide series	
	I I	H 1.0080	က	.I.	6.939	11	Na	22.990	19	×	39.102	37	Rb	85.47	22	Cs	132.91	87	Ŀ.	(223)		Œ				

STANDARD FORMATION ENTHALPY, STANDARD ENTROPY AND STANDARD FORMATION GIBBS ENERGY AT 298.15 K

Species	$\Delta_{f}H^{\circ}$ [kJ/mol]	S° [J/mol·K]	$\Delta_{f} \mathbf{G}^{\circ}$ [kJ/mol]
C (s, graphite)	0	5.74	0
CH ₄ (g)	-74.81	186.2	-50.75
$C_2H_2(g)$	226.7	200.93	
C ₃ H ₈ (g)	-103.8	269.9	-23.49
CaC ₂ (s)	-59.8	70.3	
CaF ₂ (s)	-1225	68.87	-1162
CaF ₂ (I)	-1186	92.6	
Ca(OH) ₂ (s)	-987.0	83.0	
CO ₂ (g)	-393.5	213.6	-394.4
Cu ₂ O (s)	-168.6	93.1	
Cu ₂ O (I)	-154.79		
Cu (s)		33.2	
Fe (s)	0	27.3	0
Fe ₂ O ₃ (s)	-824.2	87.4	
H ₂ O (g)	-241.8	188.7	-228.6
H ₂ O (I)	-285.8	69	
O ₂ (g)	0	205.0	0

MISCELLANEOUS ENTHALPIES

Substance	Reaction	Δ H [kJ/mol]
F-F	Bond dissociation	157
F	Electron affinity	-328
	$F(g) \rightarrow F^{-}(g)$	
Ca	Second Ionization energy	1734
	Ca (g) \rightarrow Ca ²⁺ (g)	

SPECIFIC HEATS AND HEAT CAPACITIES

Substance	Specific Heat c [J/g·K]	Molar Heat Capacity C _p [J/mol⋅K]
CO ₂ (g)	0.843	37.1
H ₂ O (g)	2.03	36.4
$H_2O(I)$	4.184	75.3
H ₂ O (s)	2.09	37.7

TEMPERATURES AND ENTHALPIES OF PHASE CHANGES

Substance	Melting Point [°C]	∆ _{fus} H° [kJ/mol]	Boiling Point [°C]	∆ _{vap} H° [kJ/mol]
Al	658	10.6	2467	284
Ca	851	9.33	1487	162
CH ₄	-182	0.92	-164	8.18
H_2O	0	6.01	100	40.7
Fe	1530	14.9	2735	354