Métodos Estatísticos Básicos

Aula 4 - Medidas de Dispersão

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

21 de julho de 2020

Conteúdo

Medidas de dispersão

Amplitude

Desvio quartil

Boxplot

Desvio médio absoluto

Desvio-padrão

Variância

Medidas de dispersão relativa

Coeficiente de variação de Pearson

Coeficiente de variação de Thorndike

Medidas de assimetria

Medidas de curtose

Momentos de uma distribuição

Medidas de dispersão

Medidas de dispersão são estatísticas que nos dão informação sobre a variabilidade dos dados. Podemos separá-las em 4 grupos:

- Medidas de dispersão absolutas: caracterizam a variabilidade de um conjunto de dados, porém não são comparáveis entre conjuntos com dados de magnitudes diferentes
- Medidas de dispersão relativa: possibilitam a comparação da variabilidade dos dados para conjuntos diferentes
- Medidas de assimetria: calculam a posição em que os maiores valores de um conjunto de dados se situam
- Medidas de curtose: calculam o grau de achatamento da distribuição dos dados

Amplitude

Amplitude total: valor máximo menos o valor mínimo da amostra

$$AT = X_{max} - X_{min}$$

- Medida de dispersão que não é centrada na média
- Para dados com intervalos de classe: $AT = L_{max} I_{min}$
 - Sendo I_{min} o menor limite inferior das classes e L_{max} o maior limite superior
- A amplitude total n\u00e3o \u00e9 afetada por valores intermedi\u00e1rios

Amplitude

Vamos calcular a amplitude de uma amostra da altura de mulheres obtida na variável women do R. Antes de fazermos os cálculos, transformamos os dados de polegadas para centímetros e de libras para quilos utilizando o pacote measurements:

```
library(tidyverse)
library(measurements)
women_adj <- women %>%
  mutate(
    height = conv_unit(height, from = "inch", to = "cm"),
    weight = conv_unit(weight, from = "lbs", to = "kg")
)
```

Amplitude

```
range(women_adj$height)
[1] 147.32 182.88

max(women_adj$height) - min(women_adj$height)
[1] 35.56
```

Note que a função range reporta o valor mínimo e máximo, enquanto

que o segundo comando calcula a amplitude da amostra

Desvio quartil

Desvio quartil: é a média da diferença entre os quartis da distribuição, também chamado de *amplitude semi-interquartílica*

$$D_q = \frac{(Q_3 - Q_1)}{2}$$

- O desvio quartil é mais comum quando a medida de tendência central utilizada é a mediana
- O desvio quartil n\u00e3o \u00e9 tao afetado por valores extremos como a amplitude

Ex: Calcule o desvio quartil de {40, 45, 48, 62, 70}

$$Q1 = 45 \text{ e } Q3 = 62$$

$$D_q = \frac{62 - 45}{2} = 8,5$$

Desvio quartil

Vamos calcular os quartis e o amplitude semi-interquartílica dos dados do exemplo anterior no R:

```
quantile(women_adj$height)
    0% 25% 50% 75% 100%
147.32 156.21 165.10 173.99 182.88

IQR(women_adj$height) / 2
```

[1] 8.89

A função quantile reporta os quartis, enquanto que a função IQR calcula a amplitude interquartílica

Boxplot

- Uma maneira muito útil de visualizar os quartis e valores máximos e mínimos da distribuição dos dados é atraves de um boxplot
- O boxplot é um gráfico de caixa que marca com linhas horizontais a mediana, o primeiro e terceiro quartis, bem como o valor mínimo e máximo dos dados
- Podemos plotar este gráfico para a altura das mulheres utilizando a função boxplot no R:

boxplot(women_adj\$height)

Boxplot

Desvio médio absoluto

Desvio médio absoluto: é a média aritmética dos valores absolutos dos desvios tomados em relação à média (ou à mediana)

$$D_m = \frac{\sum\limits_{i=1}^n |Xi - \bar{X}|}{n}$$

• Podemos substituir a média, \bar{X} , pela mediana, \bar{M}_e para termos o desvio médio absoluto em relação à mediana

Ex: calcule o desvio médio absoluto de {-4, -3, -2, 3, 5} $\bar{X} = -0, 2 \text{ e } M_e = -2 \\ D_m = \frac{|-4+0,2|+|-3+0,2|+|-2+0,2|+|3+0,2|+|5+0,2|}{5} = 3,36$ $D_{me} = \frac{|-4+2|+|-3+2|+|-2+2|+|3+2|+|5+2|}{5} = 3$

Desvio médio absoluto

Para dados agrupados devemos utilizar as frequências:

$$D_m = \frac{\sum_{i=1}^n f_{i,i} | X_i - \bar{X}|}{\sum_{i=1}^n f_i}$$

• Se os dados forem agrupados em intervalos de classe, então X_i será o ponto médio de cada classe

Desvio médio absoluto

No R podemos calcular o desvio médio absoluto através da função MeanAD do pacote DescTools:

```
library(DescTools)
MeanAD(women_adj$height, center = Mean)
```

[1] 9.482667

O argumento center pode ser utilizado para centrar os desvios ao redor da mediana, utilizando center = Median

Desvio-padrão

Desvio padrão: mede o grau de variação de um conjunto de elementos

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (Xi - \overline{X})^{2}}{n}}$$

Ex:
$$\{-4, -3, -2, 3, 5\}$$

 $\bar{X} = -0, 2$

$$\sigma = \sqrt{\frac{(-4+0,2)^2 + (-3+0,2)^2 + (-2+0,2)^2 + (3+0,2)^2 + (5+0,2)^2}{5}} = \sqrt{12,56} = 3,54$$

Desvio-padrão

Para calcular o desvio-padrão a partir de uma amostra, fazendo um pequeno ajuste no denominador

• Usaremos σ para denotar o desvio-padrão populacional e S para denotar o desvio-padrão amostral

Desvio padrão amostral: utilizamos uma pequena correção no caso de termos apenas uma amostra da população inteira

$$S = \sqrt{\frac{\sum\limits_{i=1}^{n} (Xi - \bar{X})^2}{n-1}}$$

Desvio-padrão com dados agrupados

Se tivermos dados agrupados, ponderamos o desvio-padrão pelas frequências:

$$S = \sqrt{\frac{\sum_{i=1}^{n} f_i \cdot (Xi - \overline{X})^2}{\sum_{i=1}^{n} f_i - 1}}$$

• Com intervalos de classe, a fórmula será a mesma, mas X_i será o ponto médio da classe

Desvio-padrão

No R podemos calcular o desvio-padrão amostral com a função sd:

```
sd(women_adj$height)
```

[1] 11.35923

Raramente teremos os dados da população inteira a nossa disposição, mas nesse caso, o desvio-padrão populacional pode ser calculado através do comando $sqrt(sum((x-mean(x))^2)/lenght(x))$

Propriedades do desvio-padrão

O desvio-padrão possui as seguintes propriedades:

- 1. O desvio-padrão nunca é um número negativo
- 2. Somando (ou subtraindo) uma constante a todos os valores de uma variável, o desvio-padrão não se altera
- Multiplicando (ou dividindo) todos os valores de uma variável por uma constante (diferente de zero), o desvio-padrão será multiplicado (ou dividido) por essa constante

Exercício: checar estas propriedades no R utilizando os dados da variável women\$height

Variância

Variância: é o desvio-padrão elevado ao quadrado

 A propriedade 1 continua válida para a variância, mas a propriedade 3 se altera, pois se multiplicarmos todos os valores por uma constante (diferente de zero), a variância será multiplicada por essa mesma constante elevada ao quadrado

Exemplo no R:

```
var(women_adj$height)
```

[1] 129.032

Coeficiente de variação de Pearson

Coeficiente de variação de Pearson (CVP): caracteriza a dispersão dos dados em relação ao seu valor médio

$$CVP = \frac{s}{\bar{X}} \times 100$$

- Onde S se refere ao desvio-padrão amostral
- Um desvio padrão de 2 pode ser grande para dados cuja média é 20, mas pequeno se a média é 200. O CVP padroniza as variações, possibilitando a comparação entre dados distintos

Coeficiente de variação de Pearson

Exemplo no R: embora o desvio-padrão da altura seja maior que do peso, quando normalizados através do coeficiente de variação, podemos observar que o peso varia mais entre as mulheres do que a altura

```
library(raster)
women_adj %>%
summarise(
    sd_height = sd(height),
    sd_weight = sd(weight),
    cv_height = cv(height),
    cv_weight = cv(weight)
)
```

```
sd_height sd_weight cv_height cv_weight 1 11.35923 7.03009 6.880209 11.33498
```

Coeficiente de variação de Thorndike

Coeficiente de variação de Thorndike (CVT): utilizamos a mediana para o cálculo do coeficiente de variação

$$CVT = \frac{S}{Me} \times 100$$

Exemplo no R: coeficiente de variação de Thorndike para o peso das mulheres

```
(sd(women$weight) / median(women$weight)) * 100
```

[1] 11.48051

- As medidas de assimetria calculam a posição em que os maiores valores de um conjunto de dados se situam
- O valor da assimetria depende da relação entre média e mediana, sendo que uma distribuição pode ser classificada como:

Simétrica: os dados têm uma distribuição simétrica quando Média = Mediana

Assimétrica à esquerda: os dados têm assimetria negativa quando Média < Mediana

Assimétrica à direita: os dados têm assimetria positiva quando Média > Mediana

Coeficiente de assimetria

Coeficiente de assimetria de Pearson: compara graus de assimetria entre distribuições diferentes¹

$$CAP = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{Xi - \bar{X}}{S} \right]^{3}$$

Classificação:

- *CAP* = 0 ⇒ Distribuição simétrica
- $CAP < 0 \Rightarrow$ Assimetria negativa (ou à esquerda)
- $CAP > 0 \Rightarrow$ Assimetria positiva (ou à direita)

¹Se os dados estiverem agrupados, devemos considerar os pesos na fórmula.

Utilizamos a função skewness do pacote e1071 para calcular o coeficiente de assimetria:

```
library(e1071)
skewness(women_adj$height)

[1] -4.731446e-16

skewness(women_adj$weight)

[1] 0.2276454
```

Podemos plotar a densidade da distribuição das variáveis de altura e peso das mulheres e checar a assimetria comparando a média com a mediana dos dados no R:

```
par(mfrow = c(1,2))
plot(density(women_adj$height))
abline(v=mean(women_adj$height), lty=2, col="red")
plot(density(women_adj$weight))
abline(v=mean(women_adj$weight), lty=2, col="red")
abline(v=median(women_adj$weight), lty=2, col="blue")
```


Medidas de curtose

A curtose é o grau de achatamento de uma distribuição em relação à distribuição normal (em forma de sino) 2

$$K = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{Xi - \bar{X}}{S} \right]^4$$

- A fórmula acima se refere ao momento de curtose
- É comum também a utilização do *excesso de curtose*, definido por K-3

²Se os dados estiverem agrupados, devemos considerar os pesos na fórmula.

Medidas de curtose

Classificação:

- K = 3 ⇒ Mesocúrtica: distribuição não é nem achatada nem alongada (igual a distribuição normal)
- K > 3 ⇒ Leptocúrtica: apresenta uma distribuição mais alongada do que a normal
- $K < 3 \Rightarrow$ **Platicúrtica**: apresenta uma distribuição mais achatada do que a normal

Medidas de curtose

Podemos calcular o excesso de curtose utilizando a função kurtosis no R. Para calcular o momento de curtose basta somar 3 ao resultado:

```
kurtosis(women_adj$height) + 3
```

[1] 1.558667

```
kurtosis(women_adj$weight) + 3
```

[1] 1.6553

Momentos de uma distribuição

- O n-ésimo momento de uma distribuição é definido como $E[X^n]$, sendo E o operador de expectativas
- As estatísticas que vimos até aqui descrevem quatro momentos da distribuição de um conjunto de dados:
 - 1. A **média** é o primeiro momento de uma distribuição: $\mu = E[X]$
 - 2. A **variância** é o segundo momento centrado de uma distribuição: $\sigma^2 = E[(X \mu)^2]$
 - 3. A **assimetria** é o terceiro momento padronizado de uma distribuição: $CAP = E[(X \mu)^3]/\sigma^3$
 - 4. A **curtose** é o quarto momento padronizado de uma distribuição: $K = E[(X \mu)^4]/\sigma^4$

Momentos de uma distribuição

