Kapitel 2

Komplexe Differenzierbarkeit & der Cauchy'sche Integralsatz

In diesem und den folgenden Kapiteln bezeichnet U immer eine nichtleere, offene Teilmenge von \mathbb{C} .

2.1 Komplex Differenzieren

Definition 2.1 (komplex differenzierbar, holomorph, ganz).

Sei $U \neq \emptyset$ offen. Eine Funktion $f: U \to \mathbb{C}$ heißt in $z_0 \in U$ (komplex) differenzierbar, falls ein $f'(z_0) := c \in \mathbb{C}$ existiert,

$$\forall \varepsilon > 0, \ \exists \delta > 0 : \left| \frac{f(z_0) - f(z)}{z_0 - z} - c \right| \le \varepsilon \quad \forall z \in B_{\delta}(z_0), \ z \ne z_0$$
 (2.1)

$$\Leftrightarrow \lim_{z \to z_0} \frac{f(z_0) - f(z)}{z_0 - z} = c. \tag{2.2}$$

die Funktion f heißt (komplex) differenzierbar, falls f in jedem Punkt $z \in U$ differenzierbar ist, d.h. f'(z) existiert für alle $z \in U$. Falls die dadurch auf U definierte Ableitungsfunktion f' stetig ist, heißt f holomorph (auf U). Eine auf ganz \mathbb{C} (definierte und dort) holomorphe Funktion heißt ganz.

Definition 2.2 (Stammfunktion).

Sei $U \neq \emptyset$ offen und $f: U \to \mathbb{C}$. Eine differenzierbare Funktion $F: U \to \mathbb{C}$ mit F' = f heißt Stammfunktion von f.

Lemma 2.3 (differenzierbar \Rightarrow stetig).

Sei $U \neq \emptyset$ offen. Falls die Funktion $f: U \rightarrow C$ in z_0 differenzierbar ist, ist sie in z_0 stetig.

Beweis:

Beispiel 2.4. Konstante Funktionen und die Identität sind auf ganz $\mathbb C$ differenzierbar.

Beispiel 2.5. Die Funktion $k(z) = \bar{z}$ ist nirgends differenzierbar.

Satz 2.6 (Ableitungsregeln).

Seien $U, V \neq 0$ offen. Falls $f, g: U \to \mathbb{C}$ und $h: V \to \mathbb{C}$ mit $f(U) \subseteq V$ komplex differenzierbar sind, so sind für $c, d \in \mathbb{C}$ auch cf + dg, $f \cdot g$, f/g (wo definiert) und $h \circ g$ differenzierbar. Es gilt

(a)
$$(cf + dg)' = cf' + dg'$$
,

(b)
$$(fg)' = f'g + fg'$$
,

(c)
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
,

$$(d) \ (h\circ g)'=(g'\circ f)\cdot f', \ also \ (h\circ g)'(z)=g'(f(z))\cdot f'(z) \ f\ddot{u}r\ z\in U.$$

Aufgabe: Zeige, dass Polynomfunktionen auf ganz $\mathbb C$ und rationale Funktionen, wo definiert, differenzierbar sind. Zeige dass für Polynome $p(z) = \sum_{n=0}^N a_n (z-z_0)^n$ gilt

$$p'(z) = \sum_{n=1}^{N} n a_n (z - z_0)^{n-1}.$$

Aufgabe: Zeige, dass die Betragsfunktion $z \mapsto |z|$ nirgends differenzierbar ist.

Satz 2.7 (analytisch \Rightarrow differenzierbar (unendlich oft)).

Sei $U \neq \emptyset$ offen und die Funktion $f: U \rightarrow C$ in z_0 analytisch mit Konvergenzradius R, also

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 für $z \in B_R(z_0)$, (2.3)

dann gilt:

(a) f ist auf $B_R(z_0)$ differenzierbar mit Ableitungsfunktion

$$f'(z) = \sum_{n=1}^{\infty} n \, a_n (z - z_0)^{n-1} \quad \text{für} \quad z \in B_R(z_0).$$
 (2.4)

(b) Die k-te Ableitung f^k auf $B_R(z_0)$ existiert und

$$a_k = \frac{f^k(z_0)}{k!}.$$

(c) Die Koeffizienten a_n in 2.3 sind eindeutig bestimmt.

Beweis:

18

Lemma 2.8 (Ableitung der Umkehrfunktion).

Seien U, V offen und $f: U \to V$ stetig und $g: V \to U$ differenzierbar, sowie $g \circ f = id$. Falls für $w \in U$ gilt $g'(f(w)) \neq 0$, dann ist f in w differenzierbar und es gilt

$$f'(w) = \frac{1}{g'(f(w))}.$$

Aufgabe: Berechne die Ableitung von exp, cos, sin, log.

Aufgabe: Zeige, dass eine Funktion, die in z_0 analytisch mit Konvergenzradius R ist, eine Stammfunktion auf $B_R(z_0)$ besitzt.

Definition 2.9 (Cauchy-Riemann'sche DGL).

Eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ erfüllt die Cauchy-Riemann'schen Differentialgleichungen, falls für

$$f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} \qquad gilt \qquad \begin{array}{l} \partial_x u \ = \ \partial_y v \\ \partial_y u \ = -\partial_x v \end{array} \qquad also \qquad Df(x_0,y_0) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Satz 2.10 (komplex differenzierbar $\hat{=}$ reell differenzierbar & Cauchy-Riemann).

Eine Funktion $f: U \to \mathbb{C}$ ist genau dann komplex differenzierbar in $z_0 = x_0 + iy_0$ falls die Funktion f_r mit

$$f_r(x,y) = \begin{pmatrix} \operatorname{Re} f(x+iy) \\ \operatorname{Im} f(x+iy) \end{pmatrix}$$

 $in (x_0, y_0)$ reell differenzierbar ist und die Cauchy-Riemann'schen DGL erfüllt.

Beweis: