Mathematical Proofs

Cunsheng Ding

HKUST, Hong Kong

September 16, 2015

1 / 15

Contents

1 Inference Rules in Propositional Logic

Arguments

Proof Methods

Some Inference Rules in Propositional Logic

- Since p is true and $p \rightarrow q$, we conclude that q is also true.
 - called, modus ponens.
- Since q is false and $p \rightarrow q$, we conclude that p is also false
 - called, modus tollens.
- Since $p \rightarrow q$ and $q \rightarrow r$, we conclude that $p \rightarrow r$.
 - called, hypothetical syllogism.
- Since $p \lor q$ is true and p is false, we conclude that q must be true.
 - called, disjunctive syllogism.

Remark

In predicate logic, we have similar inference rules. In this case, whenever we say that P(x) is true or false, we view x as a specific element in its domain.

Arguments

Definition 1

- An <u>argument</u> in propositional logic is a sequence of propositions.
- All but the final proposition in the argument are called <u>premises</u>, and the final proposition is called the <u>conclusion</u>.
- An argument is <u>valid</u> if the truth of all its premises implies that the conclusion is true.

Example 2

The following is an argument for the conclusion that $5 \le \sum_{i=1}^{5} i \le 25$.

Proposition 1: $\sum_{i=1}^{5} i \ge \sum_{i=1}^{5} 1 = 5$ (Premise 1).

Proposition 2: $\sum_{i=1}^{5} i \le \sum_{i=1}^{5} 5 = 25$ (Premise 2).

Proposition 3: $5 \le \sum_{i=1}^{5} i \le 25$ (Conclusion).

Combining Propositions 1 and 2 yields the desired conclusion.

Proofs and Proof Methods

Definition 3

- A <u>proof</u> is a valid and clear argument that demonstrates the truth of a theorem (statement).
- A proof is based on premises/axioms/definitions (i.e., statements already assumed/known to be true), and inference rules.
- A <u>proof method</u> usually has a form that can be justified by an **inference** rule.

5/15

Proving that " $P(x) \Rightarrow Q(x)$ " Is True or False

Clarification of terminology

Recall that for any predicate P(x) with domain D, P(x) is either true or false for any specific $x \in D$. So whenever we say P(x) is true or false, we mean the specific proposition P(x) for a specific x in the domain.

By ' $P(x) \Rightarrow Q(x)$ ' being true or false, we mean the same.

Remarks

- Recall P(x) implies Q(x) means " $\forall x \in D, P(x) \to Q(x)$ ".
- Recall P(x) implies Q(x) is true if, whenever P(x) is true, Q(x) is also true.
- Recall P(x) implies Q(x) is false if there is any counterexample x = a where P(a) is true and Q(a) is false.

Counter Example Proof for " $P(x) \Rightarrow Q(x)$ " Being False

Problem

Prove that " $P(x) \Rightarrow Q(x)$ " is false.

How?

Find an element a in the common domain such that P(a) is true and Q(a) is false.

Example 4

Let P(n) be "n is a multiple of 4, and Q(n) be "n is a multiple of 8 with common domain \mathbb{N} . Prove that " $P(x) \Rightarrow Q(x)$ " is false.

Proof.

Note that P(4) is true, but Q(4) is false. Hence, n=4 is an counterexample.

Direct Proof for " $P(x) \Rightarrow Q(x)$ "

Problem

Prove that " $P(x) \Rightarrow Q(x)$ ".

How?

Assume P(x) is true. Derive a chain of implications, which ends with Q(x).

Example 5

Prove x < 0 implies x < 1.

Proof.

Assume that x < 0. We want to prove that x < 1.

- **1** By assumption, x < 0.
- ② We know that 0 < 1.
- **3** Combining the two implications above yields x < 0 < 1.

Proof by Contraposition for " $P(x) \Rightarrow Q(x)$ "

Problem

Prove that " $P(x) \Rightarrow Q(x)$ " (equivalent to its contrapositive " $\sim Q(x) \Rightarrow \sim P(x)$ ")

How?

Assume Q(x) is false. Prove that P(x) is also false (it is an indirect proof).

Example 6

Prove x < 0 implies x < 1.

Proof.

Assume that $x \ge 1$. We want to prove that x > 0.

- By assumption, $x \ge 1$.
- ② We know that 1 > 0.
- **3** Combining the two implications above yields $x \ge 1 > 0$.

Proof by Contradiction for " $P(x) \Rightarrow Q(x)$ "

Problem

Prove that " $P(x) \Rightarrow Q(x)$ " (it is an indirect proof).

How?

Assume that P(x) is true but Q(x) is false. Then show a contradiction.

Example 7

Prove xy = 0 implies $x = 0 \lor y = 0$.

Proof.

Assume that xy = 0 and $x \neq 0 \land y \neq 0$. We want to derive a contradiction.

- By assumption, $x \neq 0$ and $y \neq 0$.
- ② It then follows that $xy \neq 0$, which is contrary to the assumption that xy = 0.

Proof of " $\exists x, P(x)$ "

How?

Find a value of x such that P(x) is true.

Example 8

Prove that there exists an $x \in \mathbb{N}$ such that $x^2 - 3x + 2 = 0$.

Proof.

We have $x^2-3x+2=(x-1)(x-2)$. Hence $x=2\in\mathbb{N}$ is a solution of the equation $x^2-3x+2=0$.

Proof of " $\forall x, P(x)$ "

Direct proof

Show that P(x) is true for all values of x in the domain.

Example 9

Prove that $\lfloor (n+1)/2 \rfloor \geq n/2$ for all $n \in \mathbb{N}$.

Proof.

When *n* is even, |(n+1)/2| = n/2.

When *n* is odd, $\lfloor (n+1)/2 \rfloor = (n+1)/2 > n/2$.

Combining the conclusions in the two cases completes the proof.

Proof of " $\forall x, P(x)$ "

Proof by contradiction

Assume P(x) is false for some value of x in the domain. We want to derive a contradiction.

Example 10

Prove that $x < x^2 + 1$ for all $x \in \mathbb{R}$, the set of real numbers.

Proof.

Assume that $x \ge x^2 + 1$ for some $x \in \mathbb{R}$. We want to derive a contradiction.

- $x \ge x^2 + 1$ and $x^2 + 1 \ge 1$ implies that $x \ge 1$.
- $x \ge x^2 + 1$ and $x^2 + 1 > x^2$ implies that $x > x^2$.
- x > 1 and $x > x^2$ implies that x < 1.

 $x \ge 1$ and x < 1 form a contradiction.

Indirect Proofs: Two Classical Theorems

Definition 11

Rational numbers are those of the form $\frac{m}{n}$, where $n \in \mathbb{N}$ and $m \in \mathbb{Z}$.

Theorem 12

 $\sqrt{2}$ is irrational (not rational).

Proof.

Suppose $\sqrt{2}$ is rational. Then there are two integers m and n such that $\gcd(m,n)=1$ and $\sqrt{2}=m/n$. We want to derive a contradiction. We have then $m^2=2n^2$. It then follows that m is even. Let m=2k for some integer k. We obtain then

$$n^2 = 2k^2$$
.

Hence, n is also even. Consequently, gcd(m, n) has the factor 2. This is contrary to our assumption that gcd(m, n) = 1.

Indirect Proofs: Two Classical Theorems

Theorem 13

There are infinitely many prime numbers.

Proof.

Suppose there are only a finite number of primes. Then some prime number p is the largest of all the prime numbers, and hence we can list the prime numbers in ascending order:

$$2,3,5,7,11,\ldots,p.$$

Let

$$n = (2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times p) + 1.$$

Then n > 1, and n cannot be divided by any prime number in the list above. Therefore, n is also a prime. Clearly, n is larger than all the primes in the list. This is contrary to the assumption that all primes are in the list above.