Bezier Curves and B-Spline Curves

Bezier Curve and Surfaces

- ☐ This spline approximation method developed by the French engineer Pierre Bezier for use in the design of Renault automobile bodies.
- ☐ Easy to implement.
- Available in CAD system, graphic package, drawing and painting packages.

Bezier Curve

- ☐ A Bezier curve can be fitted to any number of control points.
- □ Given n+1 control points position

$$p_k = (x_k, y_k, z_k)$$
 $0 \le k \le n$

The coordinate positions are blended to produce the position vector P(u) which describes the path of the Bezier polynomial function between p_0 and p_n

$$P(u) = \sum_{k=0}^{n} p_k BEZ_{k,n}(u), \qquad 0 \le u \le 1$$

□ The Bezier blending functions $BEZ_{k,n}(u)$ are the Bernstein polynomials

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

where parameters C(n,k) are the binomial coefficients

$$C(n,k) = \frac{n!}{k!(n-k)!}$$

☐ The individual curve coordinates can be given as follows

$$x(u) = \sum_{k=0}^{n} x_k BEZ_{k,n}(u)$$

$$y(u) = \sum_{k=0}^{n} y_k BEZ_{k,n}(u)$$

$$z(u) = \sum_{k=0}^{n} z_k BEZ_{k,n}(u)$$

Properties Of Bezier Curves

☐ Bezier Curve is a polynomial of degree one less than the number of control points

□ Bezier Curves always passes through the first and last control points.

$$P(0) = p_0$$
$$P(1) = p_n$$

- ☐ Bezier curves are tangent to their first and last edges of control garph.
- ☐ The curve lies within the convex hull as the Bezier blending functions are all positive and sum to 1

$$\sum_{k=0}^{n} BEZ_{k,n}(u) = 1$$

Design Techniques

 Closed Bezier curves are generated by specifying the first and last control points at same position.

□ Specifying multiple control points at a single coordinate position gives more weight to that position.

Cubic Bezier Curve

- Cubic Bezier curves are generated with 4 control points.
- □ Cubic Bezier curves gives reasonable design flexibility while avoiding the increased calculations needed with higher order polynomials.

The blending functions when
$$n = 3$$

$$BEZ_{0,3} = (1-u)^3$$

$$BEZ_{1,3} = 3u(1-u)^2$$

$$BEZ_{2,3} = 3u^2(1-u)$$

$$BEZ_{3,3} = u^3$$

At u=0, BEZ_{0,3}=1, and at u=1, BEZ_{3,3}=1. thus, the curve will always pass through control points P_0 and P_3 .

 $\ \square$ The functions BEZ_{1,3} and BEZ_{2,3}, influence the shape of the curve at intermediate values of parameter u.

☐ The resulting curve tends toward points P1 and P3.

Bezier Surface

☐ Two sets of orthogonal Bezier curves are used to design surface.

$$P(u, v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} BEZ_{j,m}(v) BEZ_{k,n}(u)$$

 $P_{j,k}$ specify the location of the control points.

B-Spline Curves and Surfaces

1. The degree of a B-spline polynomial can be set independently of the number of control points.

2.B-splines allow local control over the shape of a spline curve (or surface)

The point on the curve that corresponds to a knot is referred to as a *knot vector*.

The knot vector divide a B-spline curve into curve subinterval, each of which is defined on a knot span.

- □ Given n + 1 control points $P_0, P_1, ..., P_n$
- □ Knot vector $U = \{ u_0, u_1, ..., u_{n+d} \}$
- ☐ The B-spline curve defined by these control points and knot vector

$$P(u) = \sum_{k=0}^{n} p_k B_{k,d}(u), \quad u \le u \le u \le n+1$$

P_k is kth control point

Blending function B_{k,d} of degree d-1

Blending functions defined with Cox-deBoox recursive form

$$B_{k,1}(u) = \begin{cases} 1, & if u_k \le u \le u_{k+1} \\ 0, & otherwise \end{cases}$$

$$B_{k,d}(u) = \frac{u - u_k}{u_{k+d-1}} B_{k,d-1}(u) + \frac{u_{k+d} - u}{u_{k+d} - u_{k+1}} B_{k+1,d-1}(u)$$

To change the shape of a B-spline curve, modify one or more of these control parameters:

- 1. The positions of control points
- 2. The positions of knots
- 3. The degree of the curve

Uniform B-Spline

☐ The spacing between knot values is constant.

Non-uniform B-spline

☐ Unequal spacing between the knot values.

Open uniform B-Spline

- □ This B-Spline is across between Uniform B-Spline and non-uniform B-Spline.
- The knot spacing is uniform except at the ends where knot values are repeated d times

B-Spline Surfaces

Similar to Bezier surface

$$P(u,v) = \sum_{k_1=0}^{n_1} \sum_{k_2=0}^{n_2} p_{k_1,k_2} B_{k_1,d_1}(u) B_{k_2,d_2}(v)$$