I) 1) Eusembles de solutais

2) thai as long

h(2) = 0 a tarjans ? solutions: Fays le pair (3a; 4(1+a2)) ECh : Vrai

II) 1) Simplifien A

danc d'après la riviposon de lythogore dan le tirangle EFG, ce de min est rectangle on G.

2) Is en action de TB et TE

3) IR en fanction de FB et FC

4) Natu que Is = ZIR

5) Opelan déduine pour k?

四) 1) 14

2) AM et MU en fantian de n

on a:
$$\frac{MN}{AC} = \frac{BM}{BA}$$
 due $\frac{MN}{4} = \frac{\pi}{4}$ due $\frac{MN = \pi}{4}$

3) Netwin (6)

Pan John de St:

$$loc\left[\frac{(h)}{(h)} = \frac{(h+h) \times h}{2} = \frac{(n+2)(4-h)}{2}\right]$$

4) Résordre graphique ment f(n) = 3

$$\left[-\frac{1}{2} (n-1)^{2} + \frac{5}{2} = \frac{3^{2} - (n-1)^{2}}{2} = \frac{(6-n+1)(3+n-1)}{2} = \frac{(4-n)(2+n)}{2} = \frac{1}{4} = \frac$$

(b) Resonder E: 1(h) = 3

I) 1) @ calulu A, B & C

6) The rendeque-t- an?

A, B et C sont 3 cours parfait

(a) mystise (4) =
$$\sqrt{(4-1)(6+1)+1}$$
 = $\sqrt{16}$ = 4
mystis (5) = $\sqrt{(5-1)(5+1)+1}$ = $\sqrt{25}$ = 5
mystis (15) = $\sqrt{(5-1)(15+1)+1}$ = $\sqrt{225}$ = 15

myster (n) = n

3) Nemastration Pan tout a de W,

mystère (n) =
$$\sqrt{(n-1)(n+1)+1} = \sqrt{n^2-1+1} = \sqrt{n^2}$$

n n > 0 dec myster (n) = n

II) Colul d FF + FH + ID

I) 1) 2) Simplifier A et B

$$A = \frac{5}{\sqrt{7} - \sqrt{2}} - \sqrt{7} = \frac{5(\sqrt{7} + \sqrt{2})}{(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2})} - \sqrt{7} = \frac{5\sqrt{4} + 5\sqrt{2}}{7 - 2} - \sqrt{7} = \frac{5\sqrt{4} + 5\sqrt{2}}{5} - \sqrt{7} = \sqrt{7} + \sqrt{2} - \sqrt{7} = \sqrt{2}$$

14

3) EFG est-il rechangle?

$$FG = \sqrt{\frac{5}{17-12}} - \sqrt{7} = A = \sqrt{2}$$
 done $FG^2 = B = \frac{4}{15}$
 $FG = \sqrt{\frac{5}{3}} - \sqrt{\frac{2}{5}}$ done $FG^2 = B = \frac{4}{15}$

or or unarque que $EG^2 + FG^2 = \frac{26}{15} + \frac{4}{15} = \frac{30}{15} = 2 = EF^2$

donc d'après la réciproque des Mérime de Pythogore, le triangle [EFG est rechargh en G]

II) Simplifien

$$6 = \frac{3\sqrt{18} - 2\sqrt{2} + \sqrt{50}}{\sqrt{32} + 5\sqrt{2} - 3\sqrt{8}} = \frac{9\sqrt{2} - 2\sqrt{2} + 5\sqrt{2}}{4\sqrt{2} + 5\sqrt{2}} = \frac{9\sqrt{2}}{3\sqrt{8}} = \frac{4\times3}{3} = \boxed{4}$$

$$T = \sqrt{10^2 - \sqrt{(-8)^2}} = 10 - 8 = 2$$

$$K = \frac{\frac{1}{17} \div \frac{1}{3}}{\frac{3}{7} \div \frac{16}{5}} = \frac{\frac{1}{17} \times \frac{3}{2}}{\frac{31}{7} \times \frac{1}{16}} = \frac{\frac{2 \times 1 \times 3}{3 \times 1 \times 1}}{\frac{31}{7} \times \frac{1}{16}} = \frac{\frac{2}{3} \times \frac{1}{1 \times 1}}{\frac{1}{16} \times \frac{1}{16}} = \frac{\frac{2}{3} \times \frac{1}{16}}{\frac{1}{16} \times \frac{1}{16}} = \frac{\frac{2}{3} \times \frac{1}{16}}{\frac{1}{16}} = \frac{\frac{2}{3} \times \frac{1}{16}$$

$$L = \frac{15 \times (-6)^{-4}}{10^{-2} \times 75 \times (-12^{-2})} = -\frac{15 \times 6^{-4}}{10^{-2} \times 75 \times 12^{-2}} = -\frac{3 \times 5 \times 3^{-4} \times 2^{-4}}{2^{-2} \times 5^{2} \times 3^{2} \times 3^{-2}} = -2^{2} \times 3^{-2} \times 5 = -2^{2} \times 3^{-2} \times$$

II) Eure son forme de praction

A = 8,515151... Lane 1000 = 851,515151... Lanc 1000 - 0 = 851 - 8 = 843 Lanc 550 = 843Lanc $M = \frac{843}{95} = \frac{3 \times 281}{3 \times 33} = \boxed{\frac{781}{33}}$

N Factainer

$$N = 3\left[\left(N - \pi \right)^2 - \left(3\pi \right)^2 \right]$$

$$\frac{0 = 0,25 \pi^{2} - n + 1}{\left[0 = \left(0,5 \pi - A\right)^{2}\right]}$$

$$P = n^{2}(x-2) + 3 x^{2} - 3x + (x \cdot 2)(3x+5)$$

$$P = x^{2}(x-2) + 3x(x-2) + (x \cdot 2)(3x+5)$$

$$P = (n-1)(n^2 + 3n + 3n + 5)$$

$$P = (n-2)(n^{2} + 6n + 5)$$

$$P = (n-2)((n+3)^{2} - 9 + 5)$$

$$P = (n-2)((n+3)^{2} - 2^{2})$$

$$P = (n-2)(n+3-2)(n+3+2)$$

$$P = (n-2)(n+1)(n+5)$$

V létemine ny

Part ABCD est un couré donc le trough ABC est isocitive rectaugh en D danc d'apris by hogore, ara:

AC2 = AD2 + DC2 = 2AD2 donc AC = VI AD donc AC = VI

De plus le cari de diojonale [OA] a par côte re dans en appliquent le raisonnement ci-dessus, an a : OA = VI re

De nime dans le coné de diazonale (0'E) al de rôte y ano: 0'c = Vz y

$$AC = A0 + 00' + 0'C$$

$$dac \quad x + y = \frac{\sqrt{2}}{1 + \sqrt{2}}$$

$$x + y = \frac{\sqrt{2}(4 + \sqrt{2})}{(4 + \sqrt{2})(1 - \sqrt{2})}$$

$$2x+y = \frac{\sqrt{2}-2}{1-2}$$

$$2x+y = \frac{\sqrt{2}-2}{1-2}$$

ZIK DS du 191XOS 1h conigî succint

I) 1)
$$(\sqrt{4-17} + \sqrt{4+17})^2 = 4-\sqrt{4} + 2\sqrt{4-17} \times \sqrt{4+17} + 4+\sqrt{7} = 8+2\sqrt{4+17})$$

= $8+2\sqrt{16-7} = 8+2\times3 = \sqrt{4}$

2) Pan but (a;b) til gre a & b et a & -b:

$$\frac{a}{a-b} - \frac{b}{a+b} - \frac{a^{2}+b^{2}}{(a+b)(a-b)} = \frac{a(a+b)-b(a-b)-a^{2}-b^{2}}{(a+b)(a-b)} = \frac{a^{2}+a^{2}b-a^{2}b+b^{2}}{(a+b)(a-b)} = \boxed{0}$$

$$(\pi \sqrt{3})^{\frac{1}{2}} (\pi^{2}\sqrt{2})^{\frac{1}{2}} = \pi^{\frac{1}{2}} \sqrt{3}^{\frac{1}{2}} \sqrt{3}^{\frac{1}{2}$$

$$\frac{3}{3} \frac{(\pi \sqrt{3})^{\frac{1}{3}} (\pi^{2} \sqrt{2})^{5}}{(\sqrt{3})^{\frac{3}{3}} \times \sqrt{8}^{-3}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times (2\sqrt{5})^{-3}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times (2\sqrt{5})^{-3}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times (2\sqrt{5})^{-3}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{3}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}}{\sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} = \frac{\pi^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}}} \times \sqrt{15}^{\frac{3}{3}} \times \sqrt{15}^{\frac{3}$$

I) 1)
$$n^{2} = 9$$

 $(= -n^{2} - 3^{2} = 0)$
 $(= -n^{2} - 3^{2} = 0)$

2)
$$(1-2)^2 + 3 = 0$$

 $(=> (1-2)^2 = -3$
a un can' us pent str négaty!

3)
$$\frac{92^{7}-75}{(n+2)(3n+5)} = 0$$
 (additions:
 $\frac{3}{(n+2)(3n+5)} = 0$ $\frac{3}{(n+7)} = 0$ $\frac{3}{(n+5)} = 0$ $\frac{3}{(n+5)$

4)
$$\frac{n}{(n+2)^2} = \frac{7n+3}{n(n+2)}$$
 (and tan; $\frac{n+2}{n+2}$) $\frac{n+2}{n+2} \neq 0$ (b) $\frac{n}{n+2} = \frac{2n+3}{n}$

(a) $\frac{n}{n+2} = \frac{2n+3}{n}$

(b) $\frac{n}{n+2} = \frac{2n+3}{n}$

(c) $\frac{n}{n+2} = \frac{2n+3}{n}$

(d) $\frac{n}{n+2} = \frac{2n+3}{n}$

(e) $\frac{n}{n+2} = \frac{2n+3}{n}$

(f) $\frac{n}{n+2} = \frac{2n+3}{n}$

(in dition; $\frac{n+2}{n+2} = 0$

(in $\frac{n}{n+2} = \frac{2n+3}{n}$

(in dition; $\frac{n+2}{n+2} = 0$

(in $\frac{n}{n+2} = 0$

(in

$$II) 1) \frac{1}{1+n} = n \quad \text{candition} : n = -1$$

$$\Leftrightarrow 1 = n (1+n)$$

$$\Leftrightarrow n^2 + n - 1 = 0$$

$$\Leftrightarrow (n + \frac{1}{2})^2 - \frac{1}{4} - \frac{1}{2} = 0$$

$$\Leftrightarrow (n + \frac{1}{4})^2 - (\frac{1}{2})^2 = 0$$

$$\Leftrightarrow (n + \frac{1}{4})^2 - (\frac{1}{2})^2 = 0$$

$$\Leftrightarrow (n + \frac{1}{4})^2 - (\frac{1}{2})^2 = 0$$

E) n = -1-15 2 n n = -1+15

S= 1-1-15 , -1+15

2) D'apris 1),
$$\sqrt{5-1}$$
 at solution de $\frac{1}{1+n} = n$

denc $\frac{1}{1+\sqrt{5-1}} = \frac{\sqrt{5-1}}{2}$

En remplaçant danc $\frac{1}{1+\sqrt{5-1}}$ par $\frac{(5-1)}{2}$ six lass

de suit dans A, as traine: $A = 1 + \sqrt{5-1}$

II) Sait num entien. Si l'entie p divise n alors prest entie et divise n lui aussi. Les diviseurs d'un enter vout deux par 2

les diviseurs d'un enter voit donc par 2, le produit de choque paire étant égal à l'entir. Expemple avec 6 dont les diviseurs sont : 1 2 3 6 Il yours exception apendant: ni l'entre n'est un coné alors le diviseur du cuitien est comple avec lui no une est le nombre total de diviseur est impoir. Exemple avec 9: 1 3 9