HOMEWORK 2 MATH 104, SECTION 6

Office Hours: I'll be out of town for a conference next week. So I'll be holding office hours on Monday (1/27) 8-11am, and my office hours on Tuesday (1/28) and Wednesday (1/29) are cancelled.

READING

There will be reading assigned for each lecture. You should come to the class having read the assigned sections of the textbook.

Due January 30: Ross, Section 8
Due February 4: Ross, Section 9

PROBLEM SET (10 PROBLEMS)

- (1) Prove that $\sqrt{2}$ is not a rational number.
- (2) Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$. (Read Ross, Section 1 if you're not familiar with mathematical induction.)
- (3) For any ordered field F and any $a \in F$, one can define the notion of absolute value $|a| \in F$ of a (c.f. Ross, Definition 3.3). Prove that

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$

holds for any $a_1, a_2, \ldots, a_n \in F$.

- (4) Formulate the definition of the greatest lower bound inf A of a set of real numbers. State a "greatest lower bound property" for \mathbb{R} and show that it is equivalent to the least upper bound property of \mathbb{R} . (c.f. Ross, Section 4)
- (5) Let $S \subset \mathbb{R}$ be a nonempty subset which is bounded above, and let $z = \sup S$. Prove that for any $\epsilon > 0$, there exists $a \in S$ such that $z \epsilon < a \le z$. Can $a \in S$ always be found so that $z \epsilon < a < z$?
- (6) Let $x, y \in \mathbb{R}$. Suppose that $x < y + \epsilon$ for any $\epsilon > 0$. Prove that $x \le y$.
- (7) Prove that $\sup\{1-\frac{1}{n}:n\in\mathbb{N}\}=1$.
- (8) Let

$$A = \{m + n\sqrt{2} | m, n \in \mathbb{Z} \text{ and } m + n\sqrt{2} > 0\}.$$

Prove that $\inf A = 0$.

(9) Define $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$. Prove that the sequence (a_n) diverges.

- (10) (a) Suppose that (a_n) is a convergent sequence. Show that the subsequences $(a_{2n}) = (a_2, a_4, a_6, \cdots)$ and $(a_{2n-1}) = (a_1, a_3, a_5, \cdots)$ both converge.
 - (b) Let (a_n) be a sequence such that both (a_{2n}) and (a_{2n-1}) converge. Is it guaranteed that (a_n) converges?
 - (c) Let (a_n) be a sequence such that (a_{2n}) , (a_{2n-1}) , and (a_{3n}) converge. Prove that (a_n) is a convergent sequence.