Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Problema de flujo máximo

Dada un red de distribución y dos vértices distinguidos s y t, uno quiere enviar la mayor cantidad de producto de s a t sujeto a ciertas restricciones de flujo

Es un problema muy importante en las áreas de optimización combinatoria, investigación de operaciones, y computación

Es un caso especial del problema de circulación

Flujo máximo en redes

© 2014 Blai Bonet

CI2613

CI2613

Redes de flujo

Una red de flujo es un grafo dirigido G=(V,E) con dos vértices distinguidos s y t, y con capacidades de flujo $c:V\times V\to\mathbb{R}^{\geq 0}$

Por lo general, el grafo G es **conectado**, y los vértices s y t son el único **vértice fuente** y único **vértice sumidero en** G

Suposiciones (sin perdida de generalidad):

- Si E contiene la arista (u,v), entonces $(v,u) \notin E$
- Si $(u, v) \notin E$, entonces c(u, v) = 0
- No existen lazos; i.e. aristas (u, u)
- Todo vértice u pertenece a algún camino $s \sim t$ (por lo tanto, $|E| \geq |V| 1$)

© 2014 Blai Bonet

© 2014 Blai Bonet

Redes de flujo: Ejemplo

© 2014 Blai Bonet Cl2613

Flujo: Ejemplo

© 2014 Blai Bonet

Flujo

Una función de flujo $f: V \times V \to \mathbb{R}^{\geq 0}$ indica la **cantidad de producto** que debe enviarse entre cada par de nodos

El flujo se define sobre todos los pares $V \times V$, aunque a nosotros sólo nos interesan flujos f tales que si f(u,v) > 0, entonces $(u,v) \in E$

Para que una función $f: V \times V \to \mathbb{R}^{\geq 0}$ sea flujo, debe satisfacer:

- Restricciones de capacidad: para todo $u, v \in V$,

$$0 \le f(u, v) \le c(u, v)$$

- Conservación de flujo: para todo vértice $u \in V \setminus \{s, t\}$,

$$\sum_{v} f(u,v) - \sum_{v} f(v,u) = 0$$

Valor del flujo: $|f| = \sum_{v} f(s, v) - \sum_{v} f(v, s)$

© 2014 Blai Bonet Cl2613

Funciones de flujo básicas

- Flujo nulo: $f_{\circ}(u,v)=0$ para todo par $u,v\in V$
- Flujo a lo largo de un camino: sea $p=(v_0,\dots,v_k)$ un camino simple de s a t

Sea $c(p) = \min\{c(v_{i-1}, v_i) : i = 1, \dots, k\}$ la menor capacidad a lo largo del camino p. Definimos

$$f_p(u,v) \ = \ \left\{ egin{array}{ll} c(p) & {
m si} \ (u,v) \in p \\ 0 & {
m en \ otro \ caso} \end{array}
ight.$$

Lema

CI2613

Sea G=(V,E) una red de flujo con capacidades $c:V\times V\to\mathbb{R}^{\geq 0}$. Sea p un camino simple de s a t en G. Las funciones f_\circ y f_p son funciones de flujo sobre G

© 2014 Blai Bonet CI2613

Flujo a lo largo de un camino: Ejemplo

© 2014 Blai Bonet CI2613

Consideraciones de modelaje

• Existencia de aristas antiparalelas:

CI2613

Problema de Flujo Máximo

Dada una red de flujo G=(V,E) y capacidades $c:V\times V\to\mathbb{R}^{\geq 0}$, se quiere un flujo $f:V\times V\to\mathbb{R}^{\geq 0}$ de valor |f| máximo

© 2014 Blai Bonet Cl2613

Consideraciones de modelaje

- Redes con múltiples fuentes y mútiples sumideros:
 - Si existen múltiples fuentes s_1, s_2, \ldots, s_m y sumideros t_1, t_2, \ldots, t_n , basta agregar una **superfuente** s y un **supersumidero** t, y las siguientes aristas y capacidades:
- Aristas (s, s_i) con capacidad ∞ para $i = 1, \ldots, m$
- Aristas (t_i, t) con capacidad ∞ para $i = 1, \ldots, n$

CI2613

© 2014 Blai Bonet

© 2014 Blai Bonet

Método de Ford-Fulkerson

Método general para solucionar el problema de flujo máximo

Tres ideas fundamentales que también aparecen en otros algoritmos:

- Redes residuales
- Caminos de aumento de flujo
- Cortes

Provee una prueba al Teorema de flujo máximo – corte mínimo

© 2014 Blai Bonet

CI2613

Método de Ford-Fulkerson: Pseudocódigo

```
Flujo Metodo-Ford-Fulkerson(G, s, t):

's inicializar flujo inicial nulo

Flujo f = 0

's incrementar flujo de forma iterativa

while exista un camino de aumento p en la red residual G_f

aumentar el flujo f a lo largo del camino p

return f
```

Método de Ford-Fulkerson

Comenzamos desde el **flujo nulo**: $f_o(u,v)=0$ para todo $u,v\in V$

En cada iteración, aumentamos el flujo utilizando un camino de aumento en la red residual

Termina cuando no existen caminos de aumento en la red residual

- ► Las implementaciones varían en torno al camino de aumento utilizado para aumentar el flujo
- ► El algoritmo de Edmonds-Karp es una instancia del método de Ford-Fulkerson

© 2014 Blai Bonet CI2613

Capacidades residuales

Para aumentar un flujo f cambiamos el flujo de algunas aristas

Aún cuando el flujo aumentado f' es de mayor valor (i.e. |f'| > |f|), es posible que el flujo a través de una o más aristas decrezca

La **posibilidad de cuanto aumentar/decrecer** el flujo sobre las aristas del grafo se hace explícita en la **red residual** G_f , la cual es definida con las capacidades residuales c_f :

Las capacidades residuales $c_f: V \times V \to \mathbb{R}^{\geq 0}$ son:

$$c_f(u,v) \ = \ \left\{ \begin{array}{ll} c(u,v) - f(u,v) & \text{si } (u,v) \in E \\ f(v,u) & \text{si } (v,u) \in E \\ 0 & \text{en otro caso} \end{array} \right.$$

© 2014 Blai Bonet Cl2613 ©

© 2014 Blai Bonet

CI2613

Redes residuales: Ejemplo

© 2014 Blai Bonet CI2613

Redes residuales

Las capacidades residuales c_f definen la **red residual** $G_f = (V, E_f)$:

$$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

Cada arista $(u,v) \in E$ puede **generar hasta dos aristas en** G_f : una en el sentido $u \to v$ y otra en el sentido $v \to u$:

$$-(u,v) \in G_f \iff c_f(u,v) > 0 \iff f(u,v) < c(u,v)$$

$$-(v,u) \in G_f \iff f(u,v) > 0$$

Claramente $|E_f| \le 2|E|$

Redes residuales: Ejemplo

© 2014 Blai Bonet Cl2613

Flujos en la red residual

La red residual junto a las capacidades residuales forman un problema de flujo en redes (excepto que G_f puede tener **aristas antiparalelas**)

Sea f un flujo sobre G y f^{\prime} un flujo sobre la red residual G_f

El aumento de f por f', escrito $f \uparrow f'$, es:

$$(f \uparrow f')(u,v) \ = \ \left\{ \begin{array}{ll} f(u,v) + f'(u,v) - f'(v,u) & \text{si } (u,v) \in E \\ 0 & \text{en otro caso} \end{array} \right.$$

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Lema de aumento de flujo

Lema

Sea G=(V,E) una red de flujo y f un flujo sobre G. Sea G_f la red residual para f y f' un flujo sobre G_f . Entonces, $f \uparrow f'$ es un flujo sobre G con valor $|f \uparrow f'| = |f| + |f'|$

Prueba:

Debemos:

- 1 Verificar que $f \uparrow f'$ satisface las restricciones de capacidad
- 2 Verificar que $f \uparrow f'$ satisface las restricciones de flujo
- **3** Calcular el valor de $f \uparrow f'$

© 2014 Blai Bonet CI2613

Lema de aumento de flujo: Prueba

2 Conservación de flujo:

$$\sum_{v} (f \uparrow f')(u, v) = \sum_{v} f(u, v) + f'(u, v) - f'(v, u)$$

$$= \sum_{v} f(u, v) + \sum_{v} f'(u, v) - \sum_{v} f'(v, u)$$

$$= \sum_{v} f(v, u) + \sum_{v} f'(v, u) - \sum_{v} f'(u, v)$$

$$= \sum_{v} f(v, u) + f'(v, u) - f'(u, v)$$

$$= \sum_{v} (f \uparrow f')(v, u)$$

Lema de aumento de flujo: Prueba

- 1 Restricciones de capacidad:
- Si $(u, v) \notin E$, $(f \uparrow f')(u, v) = 0$
- Si $(u,v) \in E$,

$$(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)$$

$$\geq f(u,v) + f'(u,v) - f(u,v)$$

$$= f'(u,v)$$

$$> 0$$

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

© 2014 Blai Bonet

CI2613

CI2613

Lema de aumento de flujo: Prueba

3 Cálculo del valor del flujo |f|:

Defina
$$V_1 = \{v \in V : (s, v) \in E\}$$
 y $V_2 = \{v \in V : (v, s) \in E\}$

Por la inexistencia de aristas antiparalelas, $V_1 \cap V_2 = \emptyset$

$$|f \uparrow f'| = \sum_{v} (f \uparrow f')(s, v) - \sum_{v} (f \uparrow f')(v, s)$$
$$= \sum_{v \in V_1} (f \uparrow f')(s, v) - \sum_{v \in V_2} (f \uparrow f')(v, s)$$
$$= (f \uparrow f')(s, V_1) - (f \uparrow f')(V_2, s)$$

donde
$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Lema de aumento de flujo: Prueba

3 Cálculo del valor del flujo |f|:

$$|f \uparrow f'| = (f \uparrow f')(s, V_1) - (f \uparrow f')(V_2, s)$$

$$= [f(s, V_1) + f'(s, V_1) - f'(V_1, s)] - [f(V_2, s) + f'(V_2, s) - f'(s, V_2)]$$

$$= f(s, V_1) - f(V_2, s) + f'(s, V_1) + f'(s, V_2) - f'(V_1, s) - f'(V_2, s)$$

$$= f(s, V_1) - f(V_2, s) + \sum_{v} f'(s, v) - \sum_{v} f'(v, s)$$

$$= \sum_{v} f(s,v) - \sum_{v} f(v,s) + \sum_{v} f'(s,v) - \sum_{v} f'(v,s)$$
$$= |f| + |f'|$$

Observar $f(s, V_1) = \sum_v f(s, v)$ y $f(V_2, s) = \sum_v f(v, s)$ (ejercicio)

© 2014 Blai Bonet

CI2613

CI2613

П

Algoritmo básico de Ford-Fulkerson: Pseudocódigo

```
Flujo Ford-Fulkerson(G, s, t):
        % inicializar flujo inicial nulo
3
        foreach (u,v) \in E
            f(u,v) = 0
4
        % incrementar flujo de forma iterativa
6
        while exista un camino p de s a t en la red residual G_f
7
            c(p) = min \{ c_f(u,v) : (u,v) \in p \}
8
            foreach (u,v) \in p
9
                if (u,v) \in E
10
                    f(u,v) = f(u,v) + c(p)
11
                else
12
                    f(u,v) = f(u,v) - c(p)
13
14
        % retornar flujo encontrado
15
        return f
16
```

Caminos de aumento

Dada una red de flujo G=(V,E) y un flujo p, un camino de aumento es un camino simple p de s a t en la red residual G_f

El camino p define una función de flujo f_p sobre la red residual

Por el Lema de aumento de flujo, $f\uparrow f_p$ es un flujo sobre G con valor $|f|+|f_p|=|f|+c(p)$

Por definicion de G_f : $(u,v) \in E_f \iff c_f(u,v) > 0$

Por lo tanto, c(p) > 0 y $|f \uparrow f_p| = |f| + |f_p| = |f| + c(p) > |f|$

© 2014 Blai Bonet CI2613

Algoritmo de Ford-Fulkerson: Ejemplo

flujo de camino en red residual

CI2613

nujo de Camino en red residua

CI2613

Algoritmo de Ford-Fulkerson: Ejemplo

Algoritmo de Ford-Fulkerson: Ejemplo

© 2014 Blai Bonet CI2613

Cortes en redes de flujo: Ejemplo

$$(S_1 = \{s\}, T_1 = \{v_1, v_2, v_3, v_4, t\}), f(S_1, T_1) = 8, c(S_1, T_1) = 29$$

 $(S_2 = \{s, v_1, v_2\}, T_2 = \{v_3, v_4, t\}), f(S_2, T_2) = 8, c(S_2, T_2) = 26$
 $(S_3 = \{s, v_2, v_4\}, T_3 = \{v_1, v_3, t\}), f(S_3, T_3) = 8, c(S_3, T_3) = 31$

© 2014 Blai Bonet

Cortes en redes de flujo

Un corte (S,T) de una red G=(V,E) es una partición de V tal que $s\in S$ y $t\in T$

Si f es un flujo sobre G, el **flujo neto que cruza el corte** es

$$f(S,T)^* = f(S,T) - f(T,S) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$

La capacidad del corte es $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$

Un corte (S,T) es **mínimo** si es de mínima capacidad; i.e. $c(S,T) \leq c(S',T')$ para cualquier otro corte (S',T')

(Observar asimetría en las definiciones de flujo neto y capacidad de un corte)

© 2014 Blai Bonet CI2613

Relación entre flujos y cortes

Lema

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Sea (S,T) un corte de G. Entonces, el flujo neto a través del corte es igual a |f|; i.e. $f(S,T)^*=|f|$

Prueba: para cualquier $u \in V \setminus \{s, t\}$, por conservación de flujo:

$$\sum_{v} f(u,v) - \sum_{v} f(v,u) = 0$$

Sumando las igualdades para todos los $u \in S \setminus \{s\}$:

$$|f| = \sum_{v} f(s, v) - \sum_{v} f(v, s) + \underbrace{\sum_{u \in S \setminus \{s\}} \left(\sum_{v} f(u, v) - \sum_{v} f(v, u) \right)}_{= 0} \right)$$

Cl2613 © 2014 Blai Bonet Cl2613

Relación entre flujos y cortes

$$|f| = \sum_{v} f(s,v) - \sum_{v} f(v,s) + \sum_{u \in S \setminus \{s\}} \left(\sum_{v} f(u,v) - \sum_{v} f(v,u) \right) \right)$$

$$= \sum_{v} f(s,v) - \sum_{v} f(v,s) + \sum_{v} \sum_{u \in S \setminus \{s\}} f(u,v) - \sum_{v} \sum_{u \in S \setminus \{s\}} f(v,u)$$

$$= \sum_{v} f(s,v) - \sum_{v} f(v,s) + \sum_{v} f(S \setminus \{s\},v) - \sum_{v} f(v,S \setminus \{s\})$$

$$= \sum_{v} \left(f(s,v) + f(S \setminus \{s\},v) \right) - \sum_{v} \left(f(v,s) + f(v,S \setminus \{s\}) \right)$$

$$= \sum_{v} f(S,v) - \sum_{v} f(v,S)$$

$$= f(S,S) + f(S,T) - f(S,S) - f(T,S)$$

$$= f(S,T) - f(T,S) = f(S,T)^*$$

© 2014 Blai Bonet

Teorema de flujo máximo - corte mínimo

Teorema

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Las siguientes condiciones son equivalentes:

- 1 f es un flujo máximo sobre G
- 2 No existe camino de aumento en la red residual G_f
- **3** |f| = c(S,T) para algún corte (S,T) de G

Prueba: Mostraremos la cadena de implicaciones $0 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$

1 \Rightarrow **2**: Si existe un camino de aumento p en G_f , $f \uparrow f_p$ es un flujo de valor mayor a |f|. Por lo tanto, f no puede ser de flujo máximo

 $3 \Rightarrow 1$: Por Corolario, para todo flujo f' y corte (S',T'), $|f'| \leq c(S',T')$. Si |f| = c(S,T) para algún corte (S,T), entonces |f| es máximo

El flujo es acotado por la capacidad de los cortes

Corolario

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Sea (S,T) un corte de G. Entonces, $|f| \leq c(S,T)$

Prueba:

$$|f| = f(S,T)^*$$

$$= f(S,T) - f(T,S)$$

$$\leq f(S,T)$$

$$\leq c(S,T)$$

© 2014 Blai Bonet CI2613

П

Teorema de flujo máximo – corte mínimo

Teorema

CI2613

CI2613

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Las siguientes condiciones son equivalentes:

- 1 f es un flujo máximo sobre G
- 2 No existe camino de aumento en la red residual G_f
- 3 |f| = c(S,T) para algún corte (S,T) de G

Prueba: Mostraremos la cadena de implicaciones $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$

 $2 \Rightarrow 3$: Suponga que no existe camino de s a t en G_f

Defina $S = \{v : \text{existe un camino de } s \text{ a } v \text{ en } G_f\} \text{ y } T = V \setminus S.$

Claramente $s \in S$, $t \in T$, y (S,T) es un corte de G

Teorema de flujo máximo - corte mínimo

Teorema

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Las siguientes condiciones son equivalentes:

- $oldsymbol{1}$ f es un flujo máximo sobre G
- 2 No existe camino de aumento en la red residual G_f
- **3** |f| = c(S,T) para algún corte (S,T) de G

Prueba: Mostraremos la cadena de implicaciones $\mathbf{1} \Rightarrow \mathbf{2} \Rightarrow \mathbf{3} \Rightarrow \mathbf{1}$

 $\mathbf{2} \Rightarrow \mathbf{3}$: Corte $(S = \{v : \text{existe un camino de } s \text{ a } v \text{ en } G_f\}, T = V \setminus S)$

Considere vértices $u \in S$ y $v \in T$:

- Si $(u,v) \in E$, f(u,v) = c(u,v) (sino $(u,v) \in E_f$ y $v \in S$)
- Si $(v,u) \in E$, f(v,u) = 0 (sino $c_f(u,v) > 0$, $(u,v) \in E_f$ y $v \in S$)
- Si $(u,v) \notin E$ y $(v,u) \notin E$, f(u,v) = f(v,u) = 0

© 2014 Blai Bonet

Teorema de flujo máximo - corte mínimo

Teorema

Sea f un flujo sobre una red G=(V,E) con vértices s y t. Las siguientes condiciones son equivalentes:

- 1 f es un flujo máximo sobre G
- 2 No existe camino de aumento en la red residual G_f
- 3 |f| = c(S,T) para algún corte (S,T) de G

Prueba: Mostraremos la cadena de implicaciones $\mathbf{0} \Rightarrow \mathbf{2} \Rightarrow \mathbf{3} \Rightarrow \mathbf{0}$

2 ⇒ **3**:

$$|f| = f(S,T)^* = f(S,T) - f(T,S)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0$$

$$= c(S,T)$$

© 2014 Blai Bonet

CI2613

CI2613

Cl2613

Teorema de flujo máximo - corte mínimo: Ejemplo

 $(S = \{s, v_1, v_2, v_4\}, T = \{v_3, t\}), f(S, T) = 23, c(S, T) = 23$

Teorema de flujo máximo - corte mínimo

Corolario

Si el algoritmo de Ford-Fulkerson **termina**, el flujo retornado es de valor máximo

Prueba: El algoritmo de Ford-Fulkerson termina al no haber camino de aumento en la red residual G_f . Por el Teorema, f es de valor máximo

© 2014 Blai Bonet CI2613

© 2014 Blai Bonet

Algoritmo de Ford-Fulkerson: Análisis

Suposición: todas las capacidades son integrales

- 1 El cálculo de un camino de s a t en la red residual $G_f=(V,E_f)$ toma tiempo $O(V+E_f)=O(E)$ ya que $|E_f|\leq 2|E|$
- 2 En cada iteración, las capacidades residuales y flujos son integrales
- 3 En el peor caso, el flujo aumenta 1 en cada iteración
- 4 Por lo tanto, Ford-Fulkerson toma tiempo $O(E \times |f^*|)$ donde f^* es flujo óptimo (i.e. **tiempo exponencial** en el tamaño de la entrada)

Si las capacidades son racionales, se pueden multiplicar por una constante para convertirlas en integrales

© 2014 Blai Bonet

CI2613

CI2613

Algoritmo de Ford-Fulkerson: Patología II

donde r es tal que $r^2=1-r \implies r=\frac{\sqrt{5}-1}{2}$

Es fácil ver que $|f^*| = 201$

Sin embargo, existe una secuencia de caminos de aumento tal que el flujo se incrementa de forma:

$$1 + 2r + 2r^2 + 2r^3 + \dots \rightarrow 1 + \sum_{k>1} 2r^k = 3 + 2r < 5$$

Algoritmo de Ford-Fulkerson: Patología II

¿Qué sucede si las capacidades son irracionales?

Ford-Fulkerson puede **no terminar** al quedar atrapado en un lazo

© 2014 Blai Bonet Cl2613

Algoritmo de Edmonds-Karp

El algoritmo de Edmonds-Karp es una instancia del método de Ford-Fulkerson en donde el camino de aumento es un **camino más corto** entre s y t

Edmonds-Karp encuente un camino de aumento en la red residual G_f utilizando **búsqueda en amplitud** (BFS)

Esta simple modificación garantiza encontrar un flujo máximo en tiempo ${\cal O}(VE^2)$

Algoritmo de Edmonds-Karp: Pseudocódigo

```
Flujo Edmonds-Karp(G, s, t):
       % inicializar flujo inicial nulo
       foreach (u,v) \in E
3
            f(u,v) = 0
4
5
       % incrementar flujo de forma iterativa
6
       while exista un camino p de s a t en la red residual G_f
7
            Calcular con BFS un camino más corto p de s a t en G_f
            c(p) = min \{ c_f(u,v) : (u,v) \in p \}
            foreach (u,v) \in p
10
                if (u,v) \in E
11
12
                    f(u,v) = f(u,v) + c(p)
                else
13
14
                    f(u,v) = f(u,v) - c(p)
15
       % retornar flujo encontrado
16
        return f
17
```

CI2613 © 2014 Blai Bonet

Algoritmo de Edmonds-Karp: Ejemplo

© 2014 Blai Bonet

flujo de camino en red residual

CI2613

Algoritmo de Edmonds-Karp: Ejemplo cálculo de red residual flujo de camino en red residual

© 2014 Blai Bonet

CI2613

Algoritmo de Edmonds-Karp: Ejemplo

© 2014 Blai Bonet CI2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Lema:

- Sea f el flujo justo antes del primer aumento que decrece la distancia de algún vértice y sea f' el flujo resultante de dicho aumento
- Sea $v \in V$ tal que la distancia decrece y $\delta_{f'}(s,v)$ es mínimo
- Sea $p=s \leadsto u \to v$ un camino más corto en $G_{f'}$: $\delta_{f'}(s,v)=\delta_{f'}(s,u)+1$

Por definición, $\delta_f(s,v) > \delta_{f'}(s,v)$ y $\delta_f(s,u) \leq \delta_{f'}(s,u)$ por elección de v

• Veamos que $(u,v) \notin E_f$. Suponga que $(u,v) \in E_f$:

$$\begin{array}{ll} \delta_f(s,v) & \leq & \delta_f(s,u)+1 \\ & \leq & \delta_{f'}(s,u)+1 \\ & = & \delta_{f'}(s,v) \end{array} \qquad \mbox{(por designaldad de arriba)}$$

$$= & \delta_{f'}(s,v) \qquad \mbox{(por optimalidad de } s \sim u \rightarrow v \mbox{ en } G_{f'})$$

Esto contradice $\delta_f(s,v) > \delta_{f'}(s,v)$. Por lo tanto, $(u,v) \notin E_f$

Algoritmo de Edmonds-Karp: Análisis

Notación: $\delta_f(u,v)$ es la distancia de u a v en la red residual G_f

Lema

Considere la ejecución del algoritmo de Edmonds-Karp sobre la red G=(V,E,s,t). Entonces, para todo vértice $v\in V\setminus\{s,t\}$, $\delta_f(s,v)$ se incrementa monotónicamente con cada aumento de flujo

Prueba: supondremos que para algún aumento de flujo la distancia $\delta_f(s,v)$ decrece para algún vértice v, y llegaremos a una contradicción

© 2014 Blai Bonet CI2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Lema:

- Sea f el flujo justo antes del **primer aumento que decrece la distancia de algún vértice** y sea f' el flujo resultante de dicho aumento
- Sea $v \in V$ tal que la distancia decrece y $\delta_{f'}(s,v)$ es mínimo
- Sea $p=s \leadsto u \to v$ un camino más corto en $G_{f'}$: $\delta_{f'}(s,v)=\delta_{f'}(s,u)+1$

Por definición, $\delta_f(s,v) > \delta_{f'}(s,v)$ y $\delta_f(s,u) \leq \delta_{f'}(s,u)$ por elección de v

- Tenemos que el flujo cambia de f a f', $(u,v) \notin E_f$ y $(u,v) \in E_{f'}$ Razonamos por casos: $(u,v) \in E$ y $(u,v) \notin E$
- **1** Caso $(u, v) \in E$. Tenemos $0 = c_f(u, v) = c(u, v) f(u, v)$ y $0 < c_{f'}(u, v) = c(u, v) f'(u, v)$. Entonces, f'(u, v) < f(u, v).

Como $f'(u,v)=f(u,v)+f_q(u,v)-f_q(v,u)$ donde q es camino de aumento en G_f , la arista (v,u) debe pertenecer a q. Es decir, (v,u) pertenece a un camino más corto de s a t en G_f

© 2014 Blai Bonet C|2613 © 2014 Blai Bonet C|2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Lema:

- Sea f el flujo justo antes del **primer aumento que decrece la distancia de algún vértice** y sea f' el flujo resultante de dicho aumento
- Sea $v \in V$ tal que la distancia decrece y $\delta_{f'}(s,v)$ es mínimo
- Sea $p=s \leadsto u \to v$ un camino más corto en $G_{f'}\colon \delta_{f'}(s,v)=\delta_{f'}(s,u)+1$

Por definición, $\delta_f(s,v) > \delta_{f'}(s,v)$ y $\delta_f(s,u) \leq \delta_{f'}(s,u)$ por elección de v

• Tenemos que el flujo cambia de f a f', $(u,v) \notin E_f$ y $(u,v) \in E_{f'}$ Razonamos por casos: $(u,v) \in E$ y $(u,v) \notin E$

2 Caso $(u, v) \notin E$. Tenemos $0 = c_f(u, v) = f(v, u)$ y $0 < c_{f'}(u, v) = f'(v, u)$. Entonces, f'(v, u) > f(v, u).

Como $f'(v,u) = f(v,u) + f_q(v,u) - f_q(u,v)$ donde q es camino de aumento en G_f , la arista (v,u) debe pertenecer a q. Es decir, (v,u) pertenece a un camino más corto de s a t en G_f

© 2014 Blai Bonet CI2613

Algoritmo de Edmonds-Karp: Análisis

Teorema

El número de aumentos de flujo que realiza el algoritmo de Edmonds-Karp en una red G=(V,E) es O(VE). Por lo tanto, Edmonds-Karp finaliza en tiempo $O(VE^2)$

Algoritmo de Edmonds-Karp: Análisis

Prueba del Lema:

- Sea f el flujo justo antes del primer aumento que decrece la distancia de algún vértice y sea f' el flujo resultante de dicho aumento
- Sea $v \in V$ tal que la distancia decrece y $\delta_{f'}(s,v)$ es mínimo
- Sea $p = s \sim u \rightarrow v$ un camino más corto en $G_{f'}$: $\delta_{f'}(s, v) = \delta_{f'}(s, u) + 1$

Por definición, $\delta_f(s,v) > \delta_{f'}(s,v)$ y $\delta_f(s,u) \leq \delta_{f'}(s,u)$ por elección de v

- Tenemos que el flujo cambia de f a f', $(u,v) \notin E_f$ y $(u,v) \in E_{f'}$
- ullet (v,u) pertenece a un camino más corto de s a t en G_f

$$\delta_f(s,v) = \delta_f(s,u) - 1$$
 (porque (v,u) pertenece a camino óptimo)
 $\leq \delta_{f'}(s,u) - 1$ (por desigualdad de arriba)
 $= \delta_{f'}(s,v) - 2$ (por optimalidad de $s \sim u \rightarrow v$)

Contradicción con $\delta_f(s,v) > \delta_{f'}(s,v)$. Entonces, no existe tal vértice v

© 2014 Blai Bonet CI2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Teorema:

- Una arista (u,v) en G_f es **crítica** para el camino p si $c_f(p)=c_f(u,v)$
- Todo camino de aumento tiene al menos un arista crítica
- Si el flujo f se aumenta con p y (u,v) es crítica para p, entonces (u,v) desaparece de la nueva red residual

Mostraremos que cada arista puede ser crítica a lo sumo |V|/2 veces

• Considere arista $(u,v) \in E_f$. Como los caminos de aumento son caminos más cortos, si (u,v) es crítica en G_f : $\delta_f(s,v) = \delta_f(s,u) + 1$

Una vez que se hace crítica, (u,v) desaparece de la nueva red residual. Para que vuelva a ser crítica, el flujo sobre (u,v) debe decrecer. Esto sólo pasa si (v,u) aparece en un camino de aumento p

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Teorema:

- Una arista (u,v) en G_f es **crítica** para el camino p si $c_f(p)=c_f(u,v)$
- Todo camino de aumento tiene al menos un arista crítica
- Si el flujo f se aumenta con p y (u,v) es crítica para p, entonces (u,v) desaparece de la nueva red residual

Mostraremos que cada arista puede ser crítica a lo sumo |V|/2 veces

 \bullet Sea f' el flujo con p camino de aumento en $G_{f'}$ y (v,u) crítica para p. Tenemos $\delta_{f'}(s,u)=\delta_{f'}(s,v)+1$

$$\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$$
 $((v,u) \in \text{camino más corto en } G_{f'})$
 $\geq \delta_f(s,v) + 1$ (por el Lema)
 $= \delta_f(s,u) + 2$ $((u,v) \in \text{camino más corto en } G_f)$

Cada vez que (u, v) se "rehace" crítica, la distancia de s a u aumenta en 2. Como la distancia $\leq |V|$, máximo #veces que (u, v) es crítica es $\leq |V|/2$

© 2014 Blai Bonet Cl2613

Algoritmo de Edmonds-Karp: Análisis

Prueba del Teorema:

- Una arista (u,v) en G_f es **crítica** para el camino p si $c_f(p)=c_f(u,v)$
- Todo camino de aumento tiene al menos un arista crítica
- Si el flujo f se aumenta con p y (u,v) es crítica para p, entonces (u,v) desaparece de la nueva red residual

Mostraremos que cada arista puede ser crítica a lo sumo |V|/2 veces

Análisis final de Edmonds-Karp:

- ullet Existen O(VE) iteraciones (número máximo de caminos de aumento)
- ullet En cada iteración se debe encontrar un camino más corto en G_f
- Como |V| = O(E) y $|E_f| = O(E)$, BFS tarda tiempo $O(V + E_f) = O(E)$
- El tiempo total para Edmonds-Karp es $O(VE^2)$

© 2014 Blai Bonet

Algoritmo de Edmonds-Karp: Análisis

Prueba del Teorema:

- Una arista (u,v) en G_f es **crítica** para el camino p si $c_f(p)=c_f(u,v)$
- Todo camino de aumento tiene al menos un arista crítica
- Si el flujo f se aumenta con p y (u,v) es crítica para p, entonces (u,v) desaparece de la nueva red residual

Mostraremos que cada arista puede ser crítica a lo sumo |V|/2 veces

- ullet Existen O(E) aristas que pueden aparecer en una red residual
- Cada una de dichas aristas puede ser crítica O(V) veces
- Cada camino de aumento tiene al menos una arista crítica
- \bullet Entonces, pueden existir a lo sumo O(VE) caminos de aumento

© 2014 Blai Bonet CI2613