drosophila_441_post.csv_run_9_20250525_210621

May 25, 2025

/Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3

Loading file from: /Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3/baysian02/posterior_csvs_baysian01/DROSOPHILA/drosophila_441_post.csv

Reading drosofila_441_seed

1 # 1. Density coner plot

A sample is 1 parameter set scanned. For the corner plot below, the quantiles (represented by the solid lines) are 0.16,0.5,0.84 of the samples. Dots represent individual samples (outside the line surrounding 0.84 of the samples) The parameter search is performed in the transformed space of x_c/η , β/η , x_c^2/ϵ , x_c but we also show the regular parameters (16,)

2 2. Heat map corner plot of raw samples

This plot shows all the raw sample points and their lnprobability

3 3. Posterior distributions of parameters

1d marginalizations of posterior distributions. we use a grid of size nbins=100-150

2D marginalizations of posterior distributions

2D Marginalized Posterior

4 4. Table of results

mode is the marginalized mode, max_likwlihood is the sample with highest likelihood mode_overall is the 4D posterior mode

mean std mode \
xc/eta 342.23 [50.023, 43.644] 345.73

beta/eta	30.941	[2.689, 2.474]	30.309
xc^2/epsilon	148.848	[29.806, 24.833]	140.677
xc	698.559	[392.112, 251.142]	843.738
eta	1.37	[1.092, 0.608]	1.628
beta	43.066	[36.095, 19.637]	53.004
epsilon	1462.128	[3043.675, 987.669]	4229.674
sqrt(xc/eta)	18.498	[1.304, 1.218]	18.594
s= eta^0.5*xc^1.5/epsilon	7.998	[0.999, 0.888]	7.734
beta*xc/epsilon	13.437	[0.655, 0.625]	12.395
eta*xc/epsilon	0.433	[0.0237, 0.0225]	0.425
Fx=beta^2/eta*xc	2.678	[0.892, 0.669]	2.918
<pre>Dx =beta*epsilon/eta*xc^2</pre>	0.208	[0.0622, 0.0479]	0.21
Pk=beta*k/epsilon	0.0148	[0.0114, 0.00643]	0.0115
Fk=beta^2/eta*k	2358.148	[1665.119, 975.972]	2605.083
<pre>Dk =beta*epsilon/eta*k^2</pre>	192237.017	[389574.952, 128719.811]	267676.291
Fk^2/Dk=beta^3/eta*epsilon	35.111	[18.136, 11.959]	34.225
beta^2/epsilon	1.346	[0.192, 0.168]	1.219
k/beta	0.00723	[0.00435, 0.00271]	0.00636
k/epsilon	0.000124	[0.000193, 7.55e-05]	0.000118
best fit_MedianLifetime	49.81	0.51	49.81
best fit_MaxLifetime	77.36	0	77.36
data_MedianLifetime	49.0	0.52	49.0
data_MaxLifetime	82.0	0	82.0

percentile_16 \
[342.046, 357.023]

beta/eta [29.42, 31.224] xc^2/epsilon [138.549, 147.261] хc [759.292, 873.925] [1.464, 1.686] eta beta [45.737, 55.674] [2983.047, 4535.616] epsilon sqrt(xc/eta) [18.297, 18.694] s= eta^0.5*xc^1.5/epsilon [7.65, 7.82]beta*xc/epsilon [12.051, 12.749] eta*xc/epsilon [0.422, 0.428] Fx=beta^2/eta*xc [2.723, 3.127] Dx =beta*epsilon/eta*xc^2 [0.201, 0.219] Pk=beta*k/epsilon [0.0109, 0.0135] Fk=beta^2/eta*k [2418.569, 3255.452] Dk =beta*epsilon/eta*k^2 [248078.102, 391486.951] Fk^2/Dk=beta^3/eta*epsilon [31.1, 37.664] beta^2/epsilon [1.141, 1.303] k/beta [0.00606, 0.00737] k/epsilon [9.58e-05, 0.000146] [49.32, 50.32] best fit_MedianLifetime

xc/eta

best fit_MaxLifetime

[77.36, 77.36]

data_MedianLifetime	[48.	54, 49.52]		
data_MaxLifetime	[8:	2.0, 82.0]		
	per	centile_50	percentile_95	\
xc/eta	[320.749	, 372.657]	[276.071, 461.713]	
beta/eta	[27.72]	1, 31.224]	[24.611, 35.169]	
xc^2/epsilon	[130.352	, 151.821]	[115.383, 218.902]	
xc	[573.164	, 937.576]	[186.105, 1157.722]	
eta	[1.3	64, 2.399]	[0.441, 2.965]	
beta	[41.45	5, 82.493]	[14.059, 100.416]	
epsilon	[1483.769,	5215.489]	[182.593, 6896.243]	
sqrt(xc/eta)	[17.90	9, 19.304]	[16.615, 21.488]	
$s = eta^0.5*xc^1.5/epsilon$	[7.48	84, 8.171]	[6.706, 10.176]	
beta*xc/epsilon	[12.05	1, 13.487]	[11.392, 14.268]	
eta*xc/epsilon	[0.4	16, 0.439]	[0.389, 0.476]	
Fx=beta^2/eta*xc	[2.0	65, 3.127]	[1.364, 4.122]	
<pre>Dx =beta*epsilon/eta*xc^2</pre>		185, 0.26]	[0.11, 0.309]	
Pk=beta*k/epsilon		2, 0.0168]	[0.007, 0.0405]	
Fk=beta^2/eta*k	[1796.824,		[854.817, 6842.953]	
Dk =beta*epsilon/eta*k^2	[213081.368, 7		[18700.715, 837398.268]	
Fk^2/Dk=beta^3/eta*epsilon		9, 45.614]	[14.457, 66.902]	
beta^2/epsilon		99, 1.488]	[0.766, 1.941]	
k/beta		, 0.00897]	[0.00498, 0.0292]	
k/epsilon	[8.33e-05,		[6.3e-05, 0.00207]	
best fit_MedianLifetime		32, 50.32]	[49.32, 50.32]	
best fit_MaxLifetime		36, 77.36]	[77.36, 77.36]	
data_MedianLifetime		54, 49.52]	[48.54, 49.52]	
data_MaxLifetime		2.0, 82.0]	[82.0, 82.0]	
dddd_ndxbiicoime	ĮO.	2.0, 02.0]	[02.0, 02.0]	
	max_likelihood n	mode overall		
xc/eta	323.203	323.203		
beta/eta	31.446	31.446		
xc^2/epsilon	139.087	139.087		
xc	923.645	923.645		
eta	2.858	1.542		
beta	89.866	47.675		
epsilon	6133.708	1959.093		
sqrt(xc/eta)	17.978	17.978		
s= eta^0.5*xc^1.5/epsilon	7.737	7.737		
beta*xc/epsilon	13.532	13.532		
eta*xc/epsilon	0.43	0.43		
Fx=beta^2/eta*xc	3.06	3.06		
Dx =beta*epsilon/eta*xc^2	0.226	0.226		
Pk=beta*k/epsilon	0.00733	0.220		
Fk=beta^2/eta*k		2947.469		
	5651.809			
Dk =beta*epsilon/eta*k^2	771519.921	283427.86		
Fk^2/Dk=beta^3/eta*epsilon	41.403	18.019		

beta^2/epsilon	1.317	1.317
k/beta	0.00556	0.00556
k/epsilon	0.000082	0.000082
best fit_MedianLifetime	49.81	NaN
best fit_MaxLifetime	77.36	NaN
data_MedianLifetime	49.0	NaN
data_MaxLifetime	82.0	NaN

5 5. Fits of simulations to data

best params is the sample with highest likelihood. mode trans is the 4D posterior mode in the transformed space of $x_c/\eta,\,\beta/\eta,\,x_c^2/\epsilon,\,x_c$

Text(0, 0.5, 'Hazard')

Text(0, 0.5, 'Prob density')

