Probability and Distributions

Liang Zheng
Australian National University
liang.zheng@anu.edu.au

6.2.1 Discrete Probabilities

- When the target space is discrete, we can imagine the probability distribution of multiple random variables as filling out a (multidimensional) array of numbers.
- We define the joint probability as the entry of both values jointly

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

 n_{ij} is the number of events with state x_i and y_j and N total number of events

• The probability that X = x, Y = y is written as p(x, y)

3

6.2.1 Discrete Probabilities

- The marginal probability that X = x irrespective of the value of Y is written as p(x)
- We write $X \sim p(x)$ to denote that the random variable X is distributed according to p(x)
- If we consider only the instances where X = x, then the fraction of instances (conditional probability) for which Y = y is written as p(y|x).

Example

Lebron James

30	13	6
30	4	17
١	< 30	> 30

Anthony Davis

- X: AD scoring. Y: LBJ scoring.
- X has two possible states; Y has two possible states
- We use n_{ij} to denote the number of events with state X = x and Y = y.
- Total number of events N = 13 + 6 + 4 + 17 = 40
- Value c_i is the event sum of the *i*th column, i.e., $c_i = \sum_{j=1}^2 n_{ij}$
- r_i is the row sum, i.e., $r_i = \sum_{i=1}^2 n_{ij}$
- The probability distribution of each random variable, the marginal probability, can be seen as the sum over a row or column

$$P(X = x_i) = \frac{c_i}{N} = \frac{\sum_{j=1}^{2} n_{ij}}{N}$$

and

$$P(Y = y_j) = \frac{r_j}{N} = \frac{\sum_{i=1}^2 n_{ij}}{N}$$

$$P(LBJ\ scores\ at\ least\ 30\ pts) = \frac{13+6}{40}$$

Example

 For discrete random variables with a finite number of events, we assume that probabilities sum up to one, that is

$$\sum_{i=1}^{2} P(X = x_i) = 1 \text{ and } \sum_{j=1}^{2} P(Y = y_j) = 1$$

 The conditional probability is the fraction of a row or column in a particular cell. For example, the conditional probability of Y given X is

$$P(Y = y_j \mid X = x_i) = \frac{n_{ij}}{c_i}$$

and the conditional probability of X given Y is

$$P(X = x_i \mid Y = y_j) = \frac{n_{ij}}{r_j}$$

•	$P(LBJ < 30 AD \ge 30)$	$=\frac{n_{12}}{n_{12}}$	17
	$I(BB) < 30 IIB \ge 30)$	$ c_2$ $-$	6+17

≥ 30	13	6
< 30	4	17
'	< 30	≥ 30

Anthony Davis

6.2.2 Continuous Probabilities

- A function $f: \mathbb{R}^D \to \mathbb{R}$ is called a probability density function (pdf) if $\forall x \in \mathbb{R}^D: f(x) \geq 0$
- Its integral exists and

$$\int_{\mathbb{R}^D} f(\mathbf{x}) d\mathbf{x} = 1.$$

• Observe that the probability density function is any function f that is non-negative and integrates to one. We associate a random variable X with this function f by

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

where $a, b \in \mathbb{R}$; $x \in \mathbb{R}$ are outcomes of the continuous random variable X. This association is called the distribution of the random variable X.

• Note: the probability of a continuous random variable X taking a particular value P(X = x) is zero. This is to specify an interval where a = b

6.2.2 Continuous Probabilities

• A cumulative distribution function (cdf) of a multivariate real-valued random variable X with states $x \in \mathbb{R}^D$ is given by

$$F_X(\mathbf{x}) = P(X_1 \le x_1, \cdots, X_D \le x_D).$$

where $X = [X_1, \dots, X_D]^T$, $x = [x_1, \dots, x_D]^T$, and the right-hand side represents the probability that random variable X_i takes the value smaller than or equal to x_i .

• The cdf can be expressed also as the integral of the probability density function f(x) so that

$$F_X(\mathbf{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_D} f(z_1, \cdots, z_D) dz_1 \cdots dz_D$$

6.2.3 Contrasting Discrete and Continuous Distributions

• Let Z be a discrete uniform random variable with three states $\{z=-1.1,z=0.3,z=1.5\}$. The probability mass function can be represented as a table of probability values:

$$z -1.1 \ 0.3 \ 1.5$$

$$P(Z=z) \boxed{\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}}$$

• States can be located on the x-axis, and the y-axis represents the probability of a particular state

Uniform distribution (discrete): a finite number of values are equally likely to be observed; every one of n values has equal probability 1/n

6.2.3 Contrasting Discrete and Continuous Distributions

- Let X be a continuous random variable taking values in range $0.9 \le X \le 1.6$
- Observe that the height of the density can be greater than 1. However, it needs to hold that

$$\int_{0.9}^{1.6} p(x)dx = 1$$

Uniform distribution (continuous): denoted as U(a, b)

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

- p(x, y) is the joint distribution of the two random variables x, y
- p(x) and p(y) are the marginal distributions
- p(y|x) is the conditional distribution of y given x
- The sum rule states that

$$p(\mathbf{x}) = \begin{cases} \sum_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{x}, \mathbf{y}) & \text{if } \mathbf{y} \text{ is discrete} \\ \int_{\mathcal{Y}} p(\mathbf{x}, \mathbf{y}) d\mathbf{y} & \text{if } \mathbf{y} \text{ is continuous} \end{cases}$$

where y are the states of the target space of random variable Y.

- We sum out (or integrate out) the set of states y of the random Y
- The sum rule is also known as the marginalization property.
- If $\mathbf{x} = [x_1, \dots, x_D]^T$, we obtain the marginal

$$p(x_i) = \int p(x_1, \dots, x_D) d\mathbf{x}_{\setminus i}$$

by repeated application of the sum rule where we integrate/sum out all random variables except x_i , which is indicated by v_i , which reads all "except v_i ."

$$p(x) = 0.4\mathcal{N}\left(x \mid \begin{bmatrix} 10\\2 \end{bmatrix}, \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}\right) + 0.6\mathcal{N}\left(x \mid \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 8.4 & 2.0\\2.0 & 1.7 \end{bmatrix}\right)$$

- The distribution is bimodal (has two peaks)
- One of marginal distributions is unimodal (has one peak)

• The product rule relates the joint distribution to the conditional distribution $p(x, y) = p(y \mid x)p(x)$

The product rule also implies

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y})p(\mathbf{y})$$

• Let us assume we have some prior knowledge p(x) about an unobserved random variable x and some relationship $p(y \mid x)$ between x and a second random variable y, which we can observe. If we observe y, we can use Bayes' theorem (also Bayes' rule or Bayes' law) to draw some conclusions about x given the observed values of y.

$$p(x \mid y) = \frac{\overbrace{p(y \mid x)}^{\text{inkelinood}} \overbrace{p(x)}^{\text{prior}}}{p(y)}$$
evidence

is a direct consequence of the product rule, since

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y})p(\mathbf{y})$$

and

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})$$

so that

$$p(x \mid y)p(y) = p(y \mid x)p(x) \Leftrightarrow p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

$$p(LBJ < 30 \mid AD \ge 30) = \frac{p(AD \ge 30 \mid LBJ < 30)p(LBJ < 30)}{p(AD \ge 30)} = \frac{\frac{17}{21} \cdot \frac{21}{40}}{\frac{23}{40}} = \frac{17}{23}$$

Linear regression: $p(y|x, \theta)$

$$p(x \mid y) = \frac{\overbrace{p(y \mid x)}^{\text{likelihood prior}}}{\overbrace{p(y)}^{\text{posterior}}}$$
Posterior
evidence

- p(x) is the prior, which encapsulates our subjective prior knowledge of the unobserved (latent) variable x before observing any data
- $p(y \mid x)$, the likelihood, describes how x and y are related
- $p(y \mid x)$ is the probability of the data y if we were to know the latent variable x
- We call $p(y \mid x)$ either the "likelihood of x (given y)" or the "probability of y given x" (y is observed; x is latent)
- $p(x \mid y)$, the posterior, is the quantity of interest in Bayesian statistics because it expresses exactly what we are interested in, i.e., what we know about x after having observed y (e.g., linear regression or Gaussian mixture models)

$$p(x \mid y) = \frac{\overbrace{p(y \mid x)}^{\text{likelihood}} \overbrace{p(x)}^{\text{prior}}}{p(y)}$$
posterior
evidence

The quantity

$$p(\mathbf{y}) := \int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \mathbb{E}_X[p(\mathbf{y} \mid \mathbf{x})]$$

- is the marginal likelihood/evidence.
- The marginal likelihood integrates the numerator with respect to the latent variable x

6.4 Summary Statistics and Independence6.4.1 Means and Covariances

• The expected value of a function $g: \mathbb{R} \to \mathbb{R}$ of a univariate continuous random variable $X \sim p(x)$ is given by

$$\mathbb{E}_X[g(x)] = \int_{\mathcal{X}} g(x)p(x)dx$$

• Correspondingly, the expected value of a function g of a discrete random variable $X \sim p(x)$ is given by

$$\mathbb{E}_{X}[g(x)] = \sum_{x \in X} g(x)p(x)$$

where X is the set of possible outcomes (the target space) of the random variable X

• We consider multivariate random variables X as a finite vector of univariate random variables $[X_1, \cdots, X_n]^T$. For multivariate random variables, we define the expected value element wise

$$\mathbb{E}_{X}[g(\mathbf{x})] = \begin{bmatrix} \mathbb{E}_{X_{1}}[g(x_{1})] \\ \vdots \\ \mathbb{E}_{X_{D}}[g(x_{D})] \end{bmatrix} \in \mathbb{R}^{D}$$

where the subscript \mathbb{E}_{X_d} indicates that we are taking the expected value with respect to the dth element of the vector x

18

• The mean of a random variable X with states $x \in \mathbb{R}^D$ is an average and is defined as

$$\mathbb{E}_{X}[\mathbf{x}] = \begin{bmatrix} \mathbb{E}_{X_{1}}[x_{1}] \\ \vdots \\ \mathbb{E}_{X_{D}}[x_{D}] \end{bmatrix} \in \mathbb{R}^{D}$$

where

here
$$\mathbb{E}_{x_d}[x_d] := \left\{ \begin{array}{ll} \int_{\mathcal{X}} x_d p(x_d) \mathrm{d}x_d & \text{if } X \text{ is a continuous random variable} \\ \sum_{x_i \in \mathcal{X}} x_i p(x_d = x_i) & \text{if } X \text{ is a discrete random variable} \end{array} \right.$$

for $d = 1, \dots, D$, where the subscript d indicates the corresponding dimension of x. The integral and sum are over the states x of the target space of the random variable X.

• The expected value is a linear operator. For example, given a real-valued function f(x) = ag(x) + bh(x) where $a, b \in \mathbb{R}$ and $x \in \mathbb{R}^D$, we obtain

$$\mathbb{E}_{X}[f(x)] = \int f(x)p(x)dx$$

$$= \int [ag(x) + bh(x)]p(x)dx$$

$$= a \int g(x)p(x)dx + b \int h(x)p(x)dx$$

$$= a\mathbb{E}_{X}[g(x)] + b\mathbb{E}_{X}[h(x)]$$

- The covariance between two univariate random variables $X,Y \in \mathbb{R}$ is given by the expected product of their deviations from their respective means, i.e., $Cov_{X,Y}[x,y] \coloneqq \mathbb{E}_{X,Y}[(x-\mathbb{E}_X[x])(y-\mathbb{E}_Y[y])]$
- By using the linearity of expectations, It can be rewritten as the expected value of the product minus the product of the expected values, i.e.,

$$Cov[x, y] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

- The covariance of a variable with itself Cov[x, x] is called the variance and is denoted by $\mathbb{V}_X[x]$.
- The square root of the variance is called the standard deviation and is often denoted by $\sigma(x)$.
- If we consider two multivariate random variables X and Y with states $x \in \mathbb{R}^D$ and $y \in \mathbb{R}^E$ respectively, the covariance between X and Y is defined as $Cov[x, y] = \mathbb{E}[xy^T] \mathbb{E}[x]\mathbb{E}[y]^T = Cov[y, x]^T \in \mathbb{R}^{D \times E}$

• The variance of a random variable X with states $x \in \mathbb{R}^D$ and a mean vector $\mu \in \mathbb{R}^D$ is defined as

$$\mathbb{V}_{X}[x] = \text{Cov}_{X}[x, x]$$

$$= \mathbb{E}_{X}[(x - \mu)(x - \mu)^{T}] = \mathbb{E}_{X}[xx^{T}] - \mathbb{E}_{X}[x]\mathbb{E}_{X}[x]^{T}$$

$$= \begin{bmatrix} Cov[x_{1}, x_{1}] & Cov[x_{1}, x_{2}] & \cdots & Cov[x_{1}, x_{D}] \\ Cov[x_{2}, x_{1}] & Cov[x_{2}, x_{2}] & \cdots & Cov[x_{2}, x_{D}] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[x_{D}, x_{1}] & \cdots & Cov[x_{D}, x_{D}] \end{bmatrix}$$

- The $D \times D$ matrix is called the covariance matrix of the multivariate random variable X. The covariance matrix is symmetric and positive definite and tells us something about the spread of the data.
- On its diagonal, the covariance matrix contains the variances of x_i

Example - Computation of covariance matrix

•
$$X = [x_1, x_2] = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• $\mu = \begin{bmatrix} 2 \\ 1.5 \\ 2 \end{bmatrix}$;
• $X - \mu = \begin{bmatrix} -1 & 1 \\ 0.5 & -0.5 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ x_2 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 & -1 \\ x_1 & x_2 \end{bmatrix}$
• $\sum = \frac{1}{2}(X - \mu)(X - \mu)^T = \frac{1}{2}\begin{bmatrix} 2 & -1 & -2 \\ -1 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 & x_3 \end{bmatrix}$

•
$$\Sigma = \frac{1}{2}(X - \mu)(X - \mu)^T = \frac{1}{2}\begin{bmatrix} 2 & -1 & -2 \\ -1 & 0.5 & 1 \\ -2 & 1 & 2 \end{bmatrix} \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}$$

The correlation between two random variables X, Y is given by

$$\operatorname{corr}[x, y] = \frac{\operatorname{Cov}[x, y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}} \in [-1, 1]$$

- The covariance (and correlation) indicate how two random variables are related;
- Positive correlation corr[x, y] means that when x grows, then y is also expected to grow. Negative correlation means that as x increases, then y decreases

(a) x and y are negatively correlated.

(b) x and y are positively correlated.

Two-dimensional datasets with identical means and variances along each axis (colored lines) but with different covariances.

6.4.2 Empirical Means and Covariances

- In 6.4.1 we defined population mean and covariance, as it refers to the true statistics for the population
- In machine learning, we have a finite dataset of size N
- The empirical mean vector is the arithmetic average of the observations for each variable, and it is defined as

$$\overline{x} \coloneqq \frac{1}{N} \sum_{n=1}^{N} x_n$$

Where $x_n \in \mathbb{R}^D$.

• The empirical covariance matrix is a $D \times D$ matrix

$$\sum_{n=1}^{\infty} \left[\sum_{n=1}^{N} (x_n - \overline{x}) (x_n - \overline{x})^{\mathrm{T}} \right]$$

• To compute the statistics for a particular dataset, we would use the observations x_1, \ldots, x_N and use the two equations above.

6.4.3 Three Expressions for the Variance

• The standard definition of variance is the expectation of the squared deviation of a random variable X from its expected value μ , i.e.,

$$\mathbb{V}_X[x] := \mathbb{E}_X[(x - \mu)^2]$$

- This is equivalent to the mean of a new random variable $Z := (X \mu)^2$.
- We use a two-pass algorithm: one pass through the data to calculate μ , and then a second pass using this estimate $\hat{\mu}$ to calculate the variance.
- It can be converted to the so-called raw-score formula for variance:

$$\mathbb{V}_X[x] = \mathbb{E}_X[x^2] - (\mathbb{E}_X[x])^2$$

- The mean of the square minus the square of the mean. It can be calculated empirically in one pass
- A third way to understand the variance is that it is a sum of pairwise differences between all pairs of observations. Consider a sample x_1, \ldots, x_N of realizations of random variable X, and we compute the squared difference between pairs of x_i and x_j . By expanding the square, we can show that the sum of N^2 pairwise differences is the empirical variance of the observations:

$$\frac{1}{N^2} \sum_{i,j=1}^{N} (x_i - x_j)^2 = \dots = 2 \left[\frac{1}{N} \sum_{i=1}^{N} x_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)^2 \right]$$

6.4.4 Sums and Transformations of Random Variables

- Consider two random variables X, Y with states $x, y \in \mathbb{R}^D$. Then:
- $\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y]$
- $\mathbb{E}[x-y] = \mathbb{E}[x] \mathbb{E}[y]$
- $\mathbb{V}[x+y] = \mathbb{V}[x] + \mathbb{V}[y] + \operatorname{Cov}[x,y] + \operatorname{Cov}[y,x]$
- $\mathbb{V}[x-y] = \mathbb{V}[x] + \mathbb{V}[y] \operatorname{Cov}[x,y] \operatorname{Cov}[y,x]$
- Mean and (co)variance have useful properties when it comes to affine transformation of random variables. Consider a random variable X with mean μ and covariance matrix Σ and an affine transformation y = Ax + b of x. Then y is itself a random variable whose mean vector and covariance matrix are given by
- $\mathbb{E}_Y[y] = \mathbb{E}_X[Ax + b] = A\mathbb{E}_X[x] + b = A\mu + b$
- $\mathbb{V}_{Y}[y] = \mathbb{V}_{X}[Ax + b] = \mathbb{V}_{X}[Ax] = A\mathbb{V}_{X}[x]A^{T} = A\Sigma A^{T}$
- Furthermore,
- $Cov[x, y] = \mathbb{E}[x(Ax + b)^{T}] \mathbb{E}[x]\mathbb{E}[Ax + b]^{T}$
- = $\mathbb{E}[x]b^{\mathrm{T}} + \mathbb{E}[xx^{\mathrm{T}}]A^{\mathrm{T}} \mu b^{\mathrm{T}} \mu \mu^{\mathrm{T}}A^{\mathrm{T}}$
- = $\mu b^{\mathrm{T}} \mu b^{\mathrm{T}} + (\mathbb{E}[xx^{\mathrm{T}}] \mu \mu^{\mathrm{T}})A^{\mathrm{T}}$
- = ΣA^{T}
- where $\Sigma = \mathbb{E}[xx^T] \mu\mu^T$ is the covariance of X.

6.4.5 Statistical Independence

- Two random variables X, Y are statistically independent if and only if p(x, y) = p(x)p(y)
- Intuitively, two random variables X and Y are independent if the value of y (once known) does not add any additional information about x (and vice versa). If X, Y are (statistically) independent, then

$$p(\mathbf{y} \mid \mathbf{x}) = p(\mathbf{y})$$

$$p(\mathbf{x} \mid \mathbf{y}) = p(\mathbf{x})$$

$$Cov_{X,Y}[\mathbf{x}, \mathbf{y}] = \mathbf{0}$$

$$\mathbb{V}_{X,Y}[\mathbf{x} + \mathbf{y}] = \mathbb{V}_{X}[\mathbf{x}] + \mathbb{V}_{Y}[\mathbf{y}]$$

- The last point may not hold in converse, i.e., two random variables can have covariance zero but are not statistically independent.
- covariance measures only linear dependence. Therefore, random variables that are nonlinearly dependent could have covariance zero.
- **Example**. Consider a random variable X with zero mean ($\mathbb{E}_X[x] = 0$) and also $\mathbb{E}_X[x^3] = 0$. Let $y = x^2$ (hence, Y is dependent on X) and consider the covariance between X and Y. But this gives

$$Cov[x, y] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y] = \mathbb{E}[x^3] = 0$$

6.5 Gaussian Distribution

- The Gaussian distribution is the most well-studied probability distribution for continuous-valued random variables.
- It is also referred to as the normal distribution.
- For a univariate random variable, the Gaussian distribution has a density that is given by

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

The multivariate Gaussian distribution is fully characterized by a mean vector
 μ and a covariance matrix Σ and defined as

$$\mu$$
 and a covariance matrix Σ and defined as
$$p(x|\mu, \Sigma) = (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

where $x \in \mathbb{R}^D$. We write $p(x) = \mathcal{N}(x|\mu, \Sigma)$ or $X \sim \mathcal{N}(\mu, \Sigma)$.

• The special case of the Gaussian with zero mean and identity covariance, that is, $\mu = 0$ and $\Sigma = I$, is referred to as the standard normal distribution.

6.5 Gaussian Distribution

 Figure below shows a univariate Gaussian and a bivariate Gaussian with corresponding samples.

(a) Univariate (one-dimensional) Gaussian; The red cross shows the mean and the red line shows the extent of the variance.

(b) Multivariate (two-dimensional) Gaussian, viewed from top. The red cross shows the mean and the colored lines show the contour lines of the density.

Spherical Gaussian

General probability density function

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}}\exp(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}))$$

Spherical Gaussian

•
$$p(x \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-D/2} \exp\left\{-\frac{1}{2\sigma^2} ||x - \mu||^2\right\}, \quad \mu \in \mathbb{R}^D, \sigma \in \mathbb{R}.$$

$$\sum = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$
 diagonal covariance, equal variances

Spherical Gaussian

(a) Spherical Gaussian (diagonal covariance, equal variances)

Gaussian with diagonal covariance matrix (variance not equal for different x_i)

(b) Gaussian with diagonal covariance matrix

Gaussian with full covariance matrix

(c) Gaussian with full covariance matrix

6.5.1 Marginals and Conditionals of Gaussians are Gaussians

- Let *X* and *Y* be two multivariate random variables that may have different dimensions.
- We write the Gaussian distribution in terms of the concatenated states [x; y],

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

where $\Sigma_{xx} = \text{Cov}[x, x]$ and $\Sigma_{yy} = \text{Cov}[y, y]$ are the marginal covariance matrices of x and y, respectively, and $\Sigma_{xy} = \text{Cov}[x, y]$ is the cross-covariance matrix between x and y.

• The conditional distribution $p(x \mid y)$ is also Gaussian and given by

$$p(\mathbf{x} \mid \mathbf{y}) = \mathcal{N} \left(\boldsymbol{\mu}_{x \mid y}, \boldsymbol{\Sigma}_{x \mid y} \right)$$

$$\boldsymbol{\mu}_{x \mid y} = \boldsymbol{\mu}_{x} + \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} (\mathbf{y} - \boldsymbol{\mu}_{y})$$

$$\boldsymbol{\Sigma}_{x \mid y} = \boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{yy}^{-1} \boldsymbol{\Sigma}_{yx}$$

• The marginal distribution p(x) of a joint Gaussian distribution p(x, y) is itself Gaussian and computed by applying the sum rule and given by

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{xx})$$

Consider the bivariate Gaussian distribution

$$p(x_1, x_2) = \mathcal{N}\left(\begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 0.3 & -1\\-1 & 5 \end{bmatrix}\right)$$

- We can compute the parameters of the univariate Gaussian, conditioned on $x_2 = -1$, to obtain the mean and variance respectively.
- · Numerically, this is

$$\mu_{x_1 \mid x_2 = -1} = 0 + (-1)(0.2)(-1 - 2) = 0.6$$

$$\sigma^2_{x_1 \mid x_2 = -1} = 0.3 - (-1)(0.2)(-1) = 0.1$$

Therefore, the conditional Gaussian is given by

 $p(x_1 \mid x_2 = -1) = \mathcal{N}(0.6, 0.1)$

Consider the bivariate Gaussian distribution

$$p(x_1, x_2) = \mathcal{N}\left(\begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 0.3 & -1\\-1 & 5 \end{bmatrix}\right)$$

• The marginal distribution $p(x_1)$ can be obtained by

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \mathcal{N}(\mathbf{x} \, | \, \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}})$$

which is essentially using the mean and variance of the random variable x_1 . So we have,

$$p(x_1) = \mathcal{N}(0, 0.3)$$

Check your understanding

- Covariance (correlation) of univariate random variables has two directions, i.e., negative and positive values have different meanings, while variance does not.
- When the covariance of two random variables equals to the sum of their individual covariances, the two variables are statistically independent.
- The empirical mean $\frac{1}{N}\sum_{n=1}^{N}x_n$ approximates the expected value $\int_{\mathcal{X}}g(x)p(x)dx$ of a random variable when N is large.
- In the figure (cumulative distribution function, cdf), which Gaussian has the largest variance?
 - Green? Blue? Red? Yellow?
- What is the mean of the red Gaussian?
- The cdf terminates at →1.
- The cdf starts from $\rightarrow 0$.
- The cdf always increases.

