one-hot encoding works for classification, but for tasks where features can take any value continuous value functions are much better.

This is a dataset where we are classifying cats and dogs.

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
3	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
(E)	Pointy	Round	Present	8.4	1
	Pointy	Round	Absent	7.6	1
	Floppy	Not round	Absent	11	0
(3)	Pointy	Round	Absent	10.2	1
(Total	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0

Splitting on a continuous variable

When splitting on 8, we see how many cats and dogs are there and calculate the information gain.

$$I \cdot G = H(0.5) - \left[\frac{2}{2}H(\frac{2}{2}) + \frac{8}{8}H(\frac{3}{8})\right] = 0.24$$

Repeat for all,

$$I \cdot G = H(0.5) - [\frac{4}{4}] + \frac{6}{10}H(\frac{1}{6})] = 0.61$$

$$I.G = H(0.5) - \left[\frac{7}{10}H(\frac{5}{7}) + \frac{3}{10}H(\frac{0}{3})\right] = 0.40$$

In this example, we get to know that 9 is the most adequate threshold.

In general, we take many different thresholds and then decide which is most suitable.

To create candidate threshold values, you look at the midpoints of consecutive values in a sorted list of features (in this case weights). use the midpoint as the threshold.

eg. If you have to examples, there will be atleast 9 potential threshold values.

[2.3, 3.1, 4.0, 4.5, 5.0, 5.2, 6.0, 7.1, 8.0, 9.2]

$$\frac{(2.3+3.1)}{2}$$
 midpoint
$$= 2.7$$

$$\uparrow$$
threshold

value.