Méthode de Jacobi .1

Rappelons que la méthode de Jacobi est itérative et ne garantit pas toujours un résultat. La méthode est définie si A est définie positive.

L'algorithme permet de trouver un résultat si la matrice est dites à diagonale strictement dominante. Autrement dit, Soit $[a_{ij}]_{0 \le i,j \le n}$ les coefficients réels peuplant $A \in \mathcal{M}_{n,n}(\mathbb{R})$, alors si : $\forall i, |a_{i,i}| < \sum_{i \neq j} |a_{ij}|$, on a que Jacobi converge vers l'unique solution du système Ax = b.

Principe de la méthode .1.1

On veut résoudre Ax = b avec $A \in \mathcal{M}_{n,n}(\mathbb{R}), n \in \mathbb{N}, x$ la vecteur colonne contenant les inconnus et b le vecteur colonne des solution.

On pose $D \in \mathcal{M}_{n,n}(\mathbb{R})$ la matrice contenant les coefficients $[a_{i,j}]_{0 \le i = j \le n}$ de A.

On pose aussi E et F avec E la matrice triangulaire opposée inférieure de A et F la matrice supérieure opposée de A.

On obtient alors:

$$Ax = b \tag{1}$$

$$(D - E - F)x = b (2)$$

$$Dx - (E + F)x = b (3)$$

$$x = D^{-1}(E+F)x + D^{-1}b (4)$$

$$x^{k+1} = D^{-1}(E+F)x^k + D^{-1}b (5)$$

Ce qui donne l'algorithme suivant :

Soit ϵ L'erreur maximale, un point initial x^0 et k=0

avec
$$\epsilon^0 = ||Ax^0 - b||$$

On obtient:

Tant que
$$(\epsilon^{(k)} \leq \epsilon)$$

 $|x_i^{k+1}| = \frac{1}{a_{ii}} [b_i - \sum_{j \neq i} a_{ij} x_j^{(k)}], i = 1, \dots, n$
 $|\epsilon^{k+1}| = ||Ax^{k+1}| - b||$
 $|k = k + 1|$
FIN JACOBI

Remarque, on ajoutera aussi un nombre d'iterations maximum afin de ne pas être dans le cas d'une boucle infinies (si jacobi diverge alors l'erreur augmente).

.1.2Résolution manuelle

Nous en détaillerons seulement une itération
$$Soit A = \begin{pmatrix} 4 & 1 & 0 \\ -1 & 3 & 6 \\ -2 & -5 & -3 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 3 \\ 8 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ et } x^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
On a $A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 5 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{pmatrix}$

On a donc $x^{k+1} = D^{-1}[(E+F)x^k + b]$

$$x^{1} = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} \begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 5 & 0 \end{bmatrix} + \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 8 \\ 3 \\ 8 \end{bmatrix} \end{bmatrix}$$

$$x^1 = \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$$
 et

$$\epsilon^{(1)} = ||Ax^{(1)} - b||$$

$$\epsilon^{(1)} = ||\begin{pmatrix} 4 & 1 & 0 \\ -1 & 3 & 6 \\ -2 & -5 & -3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 3 \\ 8 \end{pmatrix} ||$$

$$\epsilon^{(1)} = ||\begin{pmatrix} 1 \\ -26 \\ -5 \end{pmatrix} ||$$

$$\epsilon^{(1)} = \sqrt{1^2 + (-26)^2 + (-5)^2}$$

$$\epsilon^{(1)} = \sqrt{(702)}$$

.1.3**Implémentation**

Pour l'implémentation de cette méthode, nous utiliserons ϵ comme suit :

$$\begin{split} \epsilon^{(k)} &= p^k = \text{Max}_{i=1,\dots,n} |\bar{x_i} - \tilde{x_i}^k| \\ \text{Où } \bar{x_i} \text{ est les résultat attendu et } \tilde{x_i}^k \text{ est l'approximation trouvée à l'étape } k. \end{split}$$

De plus on utilisera aussi une limite d'occurrence, pour pouvoir gérer les matrices où Jacobi diverge.