Thus, the eigenvalues of $f^* \circ f$ are of the form $\sigma_1^2, \ldots, \sigma_r^2$ or 0, where $\sigma_i > 0$, and similarly for $f \circ f^*$.

The above considerations also apply to any linear map $f: E \to F$ between two Euclidean spaces $(E, \langle -, - \rangle_1)$ and $(F, \langle -, - \rangle_2)$. Recall that the adjoint $f^*: F \to E$ of f is the unique linear map f^* such that

$$\langle f(u), v \rangle_2 = \langle u, f^*(v) \rangle_1$$
, for all $u \in E$ and all $v \in F$.

Then $f^* \circ f$ and $f \circ f^*$ are self-adjoint (the proof is the same as in the previous case), and the eigenvalues of $f^* \circ f$ and $f \circ f^*$ are nonnegative.

Proof. If λ is an eigenvalue of $f^* \circ f$ and $u \neq 0$ is a corresponding eigenvector, we have

$$\langle (f^* \circ f)(u), u \rangle_1 = \langle f(u), f(u) \rangle_2,$$

and also

$$\langle (f^* \circ f)(u), u \rangle_1 = \lambda \langle u, u \rangle_1,$$

so

$$\lambda \langle u, u \rangle_1 = \langle f(u), f(u) \rangle_2,$$

which implies that $\lambda \geq 0$. A similar proof applies to $f \circ f^*$.

The situation is even better, since we will show shortly that $f^* \circ f$ and $f \circ f^*$ have the same nonzero eigenvalues.

Remark: Given any two linear maps $f: E \to F$ and $g: F \to E$, where $\dim(E) = n$ and $\dim(F) = m$, it can be shown that

$$\lambda^m \det(\lambda I_n - g \circ f) = \lambda^n \det(\lambda I_m - f \circ g),$$

and thus $g \circ f$ and $f \circ g$ always have the same nonzero eigenvalues; see Problem 15.14.

Definition 22.1. Given any linear map $f: E \to F$, the square roots $\sigma_i > 0$ of the positive eigenvalues of $f^* \circ f$ (and $f \circ f^*$) are called the *singular values of* f.

Definition 22.2. A self-adjoint linear map $f: E \to E$ whose eigenvalues are nonnegative is called *positive semidefinite* (or *positive*), and if f is also invertible, f is said to be *positive definite*. In the latter case, every eigenvalue of f is strictly positive.

The following proposition shows that the conditions on the eigenvalues of a self-adjoint linear map used to define the notion of a positive definite linear map is equivalent to the condition used in Definition 8.4. A similar but weaker condition is equivalent to the notion of self-adjoint positive semidefinite linear map.

Proposition 22.2. Let $f: E \to E$ be a self-adjoint linear map, where E is a Euclidean space of finite dimension with inner product $\langle -, - \rangle$.