

10/580906

JAP20 Rec'd PCT/PTO 26 MAY 2006

SEQUENCE LISTING

<110> FUKATSU et al.

<120> RECEPTOR FUNCTION REGULATING AGENT

<130> 20039.0005USWO

<140> New Filing

<141> 2006-05-26

<150> PCT/JP2004/017996

<151> 2004-11-26

<150> JP 2003-394848

<151> 2003-11-26

<160> 20

<170> PatentIn Version 3.1

<210> 1

<211> 361

<212> PRT

<213> Human

<400> 1

Met	Ser	Pro	Glu	Cys	Ala	Arg	Ala	Ala	Gly	Asp	Ala	Pro	Leu	Arg	Ser
					5				10					15	
Leu	Glu	Gln	Ala	Asn	Arg	Thr	Arg	Phe	Pro	Phe	Phe	Ser	Asp	Val	Lys
					20			25						30	
Gly	Asp	His	Arg	Leu	Val	Leu	Ala	Ala	Val	Glu	Thr	Thr	Val	Leu	Val
					35			40			45				
Leu	Ile	Phe	Ala	Val	Ser	Leu	Leu	Gly	Asn	Val	Cys	Ala	Leu	Val	Leu
					50			55			60				
Val	Ala	Arg	Arg	Arg	Arg	Gly	Ala	Thr	Ala	Cys	Leu	Val	Leu	Asn	
					65			70		75				80	
Leu	Phe	Cys	Ala	Asp	Leu	Leu	Phe	Ile	Ser	Ala	Ile	Pro	Leu	Val	Leu
					85			90			95				
Ala	Val	Arg	Trp	Thr	Glu	Ala	Trp	Leu	Leu	Gly	Pro	Val	Ala	Cys	His
					100			105					110		
Leu	Leu	Phe	Tyr	Val	Met	Thr	Leu	Ser	Gly	Ser	Val	Thr	Ile	Leu	Thr
					115			120			125				
Leu	Ala	Ala	Val	Ser	Leu	Glu	Arg	Met	Val	Cys	Ile	Val	His	Leu	Gln
					130			135			140				
Arg	Gly	Val	Arg	Gly	Pro	Gly	Arg	Arg	Ala	Arg	Ala	Val	Leu	Leu	Ala
					145			150		155				160	
Leu	Ile	Trp	Gly	Tyr	Ser	Ala	Val	Ala	Ala	Leu	Pro	Leu	Cys	Val	Phe
					165			170					175		
Phe	Arg	Val	Val	Pro	Gln	Arg	Leu	Pro	Gly	Ala	Asp	Gln	Glu	Ile	Ser
					180			185			190				
Ile	Cys	Thr	Leu	Ile	Trp	Pro	Thr	Ile	Pro	Gly	Glu	Ile	Ser	Trp	Asp
					195			200			205				
Val	Ser	Phe	Val	Thr	Leu	Asn	Phe	Leu	Val	Pro	Gly	Leu	Val	Ile	Val
					210			215			220				
Ile	Ser	Tyr	Ser	Lys	Ile	Leu	Gln	Ile	Thr	Lys	Ala	Ser	Arg	Lys	Arg
					225			230		235				240	

Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser
 245 250 255
 Gln Gln Asp Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser
 260 265 270
 Phe Phe Ile Met Trp Ser Pro Ile Ile Thr Ile Leu Leu Ile Leu
 275 280 285
 Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe
 290 295 300
 Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu
 305 310 315 320
 Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys
 325 330 335
 Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys
 340 345 350
 Arg Asn Asp Leu Ser Ile Ile Ser Gly
 355 360
 <210> 2
 <211> 1083
 <212> DNA
 <213> Human
 <400> 2
 atgtccctg aatgcgcgcg ggcagcgggc gacgcgcct tgcgcagcct ggagcaagcc 60
 aaccgcaccc gctttccctt cttctccgac gtcaaggcg accaccggct ggtgctggcc 120
 gcgtggaga caaccgtgct ggtgctcatc tttgcagtgt cgctgctggg caacgtgtgc 180
 gccctgggtgc tggtggcgcg ccgacgacgc cgccggcgca ctgcctgcct ggtactcaac 240
 ctcttctgct cggacctgct cttcatcagc gctatccctc tggtgcgtggc cgtgcgtgg 300
 actgaggccct ggctgctggg ccccgttgcc tgccacctgc tcttctacgt gatgaccctg 360
 agccgcagcg tcaccatcct cacgctggcc gcggtcagcc tggagcgcatt ggtgtgcattc 420
 gtgcacctgc agcgcggcgt gccccgtctt gggcggcgaa cgccggcagt gctgctggcg 480
 ctcatctggg gctattcggc ggtgcggcgt ctgcctcttgc gcttgcgtggc ccgagtcgtc 540
 cccgaacggc tccccggcgc cgaccaggaa atttcgattt gcacactgat ttggccacc 600
 attcctggag agatctcgat gatatgtctt tttgttactt tgaacttctt ggtgccagga 660
 ctgttcattt tgatcagttt ctccaaaattt ttacagatca caaaggcatc aaggaagagg 720
 ctacacgtaa gcctggctta ctcggagagc caccagatcc gcgtgtccca gcaggacttc 780
 cggctttcc gcaccctttt cttccatcatg gtctcattt tcatcatgtt gagccccatc 840
 atcatcacca tcctccat cctgatccag aacttcaagc aagacctggt catctggccg 900
 tccctttct tctgggtggt ggcttcaca tttgctaatt cagccctaaa ccccatcctc 960
 tacaacatga cactgtgcag gaatgagtgg aagaaaattt tttgctgctt ctgggtccca 1020
 gaaaaggag ccatttaac agacacatct gtcaaaaagaa atgacttgc gattatttct 1080
 ggc
 <210> 3
 <211> 361
 <212> PRT
 <213> Mouse
 <400> 3
 Met Ser Pro Glu Cys Ala Gln Thr Thr Gly Pro Gly Pro Ser His Thr
 5 10 15
 Leu Asp Gln Val Asn Arg Thr His Phe Pro Phe Phe Ser Asp Val Lys
 20 25 30
 Gly Asp His Arg Leu Val Leu Ser Val Val Glu Thr Thr Val Leu Gly
 35 40 45
 Leu Ile Phe Val Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu
 50 55 60
 Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Ser Leu Val Leu Asn
 65 70 75 80
 Leu Phe Cys Ala Asp Leu Leu Phe Thr Ser Ala Ile Pro Leu Val Leu
 85 90 95

Val Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Val Cys His
 100 105 110
 Leu Leu Phe Tyr Val Met Thr Met Ser Gly Ser Val Thr Ile Leu Thr
 115 120 125
 Leu Ala Ala Val Ser Leu Glu Arg Met Val Cys Ile Val Arg Leu Arg
 130 135 140
 Arg Gly Leu Ser Gly Pro Gly Arg Arg Thr Gln Ala Ala Leu Leu Ala
 145 150 155 160
 Phe Ile Trp Gly Tyr Ser Ala Leu Ala Leu Pro Leu Cys Ile Leu
 165 170 175
 Phe Arg Val Val Pro Gln Arg Leu Pro Gly Gly Asp Gln Glu Ile Pro
 180 185 190
 Ile Cys Thr Leu Asp Trp Pro Asn Arg Ile Gly Glu Ile Ser Trp Asp
 195 200 205
 Val Phe Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val
 210 215 220
 Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg
 225 230 235 240
 Leu Thr Leu Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser
 245 250 255
 Gln Gln Asp Tyr Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser
 260 265 270
 Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu
 275 280 285
 Ile Gln Asn Phe Arg Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe
 290 295 300
 Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu
 305 310 315 320
 Tyr Asn Met Ser Leu Phe Arg Asn Glu Trp Arg Lys Ile Phe Cys Cys
 325 330 335
 Phe Phe Phe Pro Glu Lys Gly Ala Ile Phe Thr Asp Thr Ser Val Arg
 340 345 350
 Arg Asn Asp Leu Ser Val Ile Ser Ser
 355 360

<210> 4

<211> 1083

<212> DNA

<213> Mouse

<400> 4

atgtccctg	agtgtgcaca	gacgacgggc	cctggccc	cgcacaccct	ggaccaagtc	60
aatcgacacc	acttcccttt	cttctcgat	gtcaaggcg	accaccgtt	ggtgttgagc	120
gtcggtgaga	ccaccgttct	ggggctcatc	tttgcgtct	cactgctgg	caacgtgt	180
gctctagtgc	tggtggcg	ccgtcgccgc	cgtggggcga	cagccagct	ggtgctcaac	240
ctcttctgcg	cggatttgct	cttcaccagc	gccatccctc	tagtgcgt	cgtgcgctgg	300
actgaggcct	ggctgttgg	gcccgctg	tgccacactgc	tcttctacgt	gatgacaatg	360
agcggcagcg	tcacgatcct	cacactggcc	gccccatgc	tggagcgc	gtgtgcac	420
gtgcgcctcc	ggcgccgtt	gagcgcccg	gggcggcg	ctcaggcggc	actgctggct	480
ttcatatggg	gttactcggc	gctcgcccg	ctgcccctct	gcattttgtt	cccgctggc	540
cccgagcgcc	ttcccgccgg	ggaccaggaa	attccgattt	gcacattgga	ttggcccaac	600
cgcataaggag	aaatctcatg	ggatgtgtt	tttgcgtactt	tgaacttcc	ggtgcggga	660
ctggtcattt	tgatcgtta	ctccaaaattt	ttacagatca	cgaaagcatc	gcggaaagagg	720
cttacgctga	gcttggcata	ctctgagagc	caccagatcc	gagtgtccca	acaagactac	780
cgactcttcc	gcacgcttct	cctgctcatg	gtttccctct	tcatcatgt	gagtcccac	840
atcatcacca	tcctccat	cttgatccaa	aacttccggc	aggacctgg	catctggcca	900
tccctttct	tctgggtgg	ggccttcacg	tttgccaaact	ctgcccctaaa	ccccatactg	960
tacaacatgt	cgctgttcag	gaacgaatgg	aggaagattt	tttgctgctt	ctttttcca	1020
gagaagggag	ccattttac	agacacgtct	gtcaggcgaa	atgacttg	tgttatttcc	1080

agc 1083
 <210> 5
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <400> 5
 gctgtggcat gctttaaac 20
 <210> 6
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <400> 6
 cgctgtggat gtctattgc 20
 <210> 7
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <400> 7
 agtcatttc cagtaccctc catcagtggc 30
 <210> 8
 <211> 361
 <212> PRT
 <213> Rat
 <400> 8
 Met Ser Pro Glu Cys Ala Gln Thr Thr Gly Pro Gly Pro Ser Arg Thr
 5 10 15
 Pro Asp Gln Val Asn Arg Thr His Phe Pro Phe Phe Ser Asp Val Lys
 20 25 30
 Gly Asp His Arg Leu Val Leu Ser Val Leu Glu Thr Thr Val Leu Gly
 35 40 45
 Leu Ile Phe Val Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu
 50 55 60
 Val Val Arg Arg Arg Arg Gly Ala Thr Val Ser Leu Val Leu Asn
 65 70 75 80
 Leu Phe Cys Ala Asp Leu Leu Phe Thr Ser Ala Ile Pro Leu Val Leu
 85 90 95
 Val Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Val Cys His
 100 105 110
 Leu Leu Phe Tyr Val Met Thr Met Ser Gly Ser Val Thr Ile Leu Thr
 115 120 125
 Leu Ala Ala Val Ser Leu Glu Arg Met Val Cys Ile Val Arg Leu Arg
 130 135 140
 Arg Gly Leu Ser Gly Pro Gly Arg Arg Thr Gln Ala Ala Leu Leu Ala
 145 150 155 160
 Phe Ile Trp Gly Tyr Ser Ala Leu Ala Ala Leu Pro Leu Cys Ile Leu
 165 170 175
 Phe Arg Val Val Pro Gln Arg Leu Pro Gly Gly Asp Gln Glu Ile Pro
 180 185 190
 Ile Cys Thr Leu Asp Trp Pro Asn Arg Ile Gly Glu Ile Ser Trp Asp
 195 200 205
 Val Phe Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val
 210 215 220
 Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg
 225 230 235 240

Leu Thr Leu Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser
 245 250 255
 Gln Gln Asp Tyr Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser
 260 265 270
 Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu
 275 280 285
 Ile Gln Asn Phe Arg Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe
 290 295 300
 Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu
 305 310 315 320
 Tyr Asn Met Ser Leu Phe Arg Ser Glu Trp Arg Lys Ile Phe Cys Cys
 325 330 335
 Phe Phe Phe Pro Glu Lys Gly Ala Ile Phe Thr Glu Thr Ser Ile Arg
 340 345 350
 Arg Asn Asp Leu Ser Val Ile Ser Thr
 355 360
 <210> 9
 <211> 1083
 <212> DNA
 <213> Rat
 <400> 9
 atgtccctg agtgtgcgca gacgacgggc cctggccctt cgccgaccccc ggaccaagtc 60
 aatcgacccc acttcccttt cttctcgat gtcaaggcg accaccggct ggtgctgagc 120
 gtcctggaga ccaccgttct gggactcatc tttgtgtct cactgctggg caacgtgtt 180
 gccctgggtgc tgggtgtgcg ccgtcggcgc cgtggggcga cagtcagctt ggtgctcaac 240
 ctcttctgctc cgaggattgtctt cttcaccagc gccatccctc tagtgcgtt ggtgcgttgg 300
 actgaagcctt ggctgctggg gcccgtcgatc tgccacactgc tcttctacgt gatgaccatg 360
 agcggcagcg tcacgatcct cacgctggcc gcggtcagcc tggagcgcattt ggtgtgcattc 420
 gtgcgcctgc ggcgcggctt gagcggcccg gggcggcgaa cgcaggcggc gctgctggctt 480
 ttcatatatggg gttactcgcc gctcgccgcg ctggccctct gcattttgtt ccgcgtggc 540
 ccgcagcgcc ttcccgccgg ggaccaggaa attccgattt gcacatttggaa ttggcccaac 600
 cgcataaggag aaatctcatg ggtatgttttt tttgtgactt tgaacttcctt ggtaccagga 660
 ctggtcattt ttagtgcata ctccaagatt ttacagatca cgaaagcctc gcgaaagagg 720
 cttacgctga gcttggcata ctccgagagc caccagatcc gagtgccttgc gcaaggactac 780
 cggctcttcc gaacgctctt cctgctcatg gtttcccttct tcattatgtt gatcccatttc 840
 atcatcacca tccttcctcat cttgatccat aacttccggc aggacctgg tatctggccg 900
 tccctttct tctgggtgtt ggccttcacg tttgccaactt ccgccttaaaa cccatttcg 960
 tacaacatgt cgctgttcag gagcgtgttgg aggaagattt tttgctgctt cttttccca 1020
 gagaaggag ccatttttac agaaacgtctt atcaggcggaa atgacttgctc tgtttatttcc 1080
 acc
 <210> 10
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <400> 10
 gtgggtggcct tcacgtttg 19
 <210> 11
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <400> 11
 cgctcctgaa cagcgacat 19
 <210> 12
 <211> 26
 <212> DNA

<213> Artificial Sequence
<220>
<400> 12
caactccgcc ctaaacccca ttctgt 26
<210> 13
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<400> 13
gtcgacatgt cccctgagtg tgcgcagacg acg 33
<210> 14
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<400> 14
gctagcttag gtggaaataa cagacaagtc att 33
<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<400> 15
tccgagtgtc ccaacaagac tac 23
<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<400> 16
gactccacat gatgaagaag gaaa 24
<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<400> 17
ccgcacgctc ttcctgctca tg 22
<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<400> 18
gtggtgtggcct tcacgtttg 19
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<400> 19
cgctcctgaa cagcgacat 19
<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<400> 20
caactccgcc ctaaaaccca ttctgt

26