Image Classification of Brain Tumors

Corso di Pattern Recognition e Machine Learning

- Simone Catenacci
- Marco Salvatori
- Simone Sorgonà

Sommario

Analisi Dataset

Processing Dataset

Implementazione

Analisi dei Risultati

Conclusioni

Pituitary Tumor

Normal

Pituitary Tumor

Meningioma Tumor

Pituitary Tumor

Normal

Meningioma Tumor

Glioma Tumor

Glioma Tumor

Struttura Dataset

- 3096 immagini totali
- 4 classi di tumori :
 - Normal
 - Glioma Tumor
 - Meningioma Tumor
 - Pituitary Tumor
- Model Validation: K-Fold Crossvalidation

Processing dei dati

Features Extraction: VGG16

Parametri: 138.4M Top 1 Accuracy (Imagenet): 71.3%

Uscite della CNN considerate nei layer di:

- Max pooling di conv 2 block
- Max pooling di conv 4 block
- Max pooling di conv 5 block

FC-2

Softmax

Features Extraction EfficientNetV2L

Parametri: 119M Top 1 Accuracy (Imagenet): 85.3%

Uscite della CNN considerate nei layer di:

- Output Layer di Block 3
- Output Layer di Block 5
- Output Layer di Block 7

Features Selection

- Area Under the ROC Curve fornisce una misurazione aggregata del rendimento in tutte le possibili soglie di classificazione
- Valori di soglia:
 - VGG16 → ≥ 0.8
 - ENetV2 → ≥ 0.8 ∧ 0.85
- Rimozione delle features più dipendenti tramite Mutual Information:

$$I(X,Y) = \sum_{X} \sum_{Y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

 MI è uguale a 0 se X e Y sono totalmente indipendenti (valori alti significa alta dipendenza)

Features Selection

Numero di features di un'immagine: 65 536

Numero di features per le diverse feature extraction e selection:

Layer	CNN Extraction	AUC-ROC	MI
Layer 1	524 288	112	112
Layer 2	131 072	99	99
Layer 3	32 768	27	27
Layer 1	98 304	28	18
Layer 2	57 344	46	45
Layer 3	81 920	171	165

ENetV2

- LDA (Linear Discriminant Analysis) è una tecnica di classificazione lineare o di dimensionality reduction.
- LDA può essere descritta da modelli probabilistici che sfruttano la probabilità condizionale. La classe predetta è ottenuta utilizzando le regole di Bayes per ogni osservazione x.

Si seleziona la classe k che massimizza la seguente probabilità a posteriori:

$$P(y = k|x) = \frac{P(x|y = k)P(y = k)}{P(x)} = \frac{P(x|y = k)P(y = k)}{\sum_{l} P(x|y = l)P(y = l)}$$

LDA: EfficientNetV2

PLS-DA

La PLS Regression trova un modello di regressione lineare, proiettando le variabili X e Y in un nuovo spazio, le nuove componenti sono denominate variabili latenti (LV) e sono determinate massimizzando la covarianza delle score matrix T e U, sottospazi di X e Y.

 PLS-DA (Partial Least Square Discriminant Analysis) è un metodo di classificazione basato su una PLS Regression in cui le uscite sono di tipo categorico.

PLS-DA: VGG16

Accuracy media delle k crossvalidazione al variare del numero di variabili latenti (Best case > VGG16 layer 2)

Best Acc. Mean = 72.71%

Std = 1.33%

PLS-DA: VGG16

PLS-DA: EfficientNetV2

Accuracy media delle k crossvalidazione al variare del numero di variabili latenti (Best case → ENetV2 layer 3)

Best Acc. Mean = 71.90%

Std = 1.09%

PLS-DA: EfficientNetV2

FeedForward Neural Network

- Nella FeedForward Neural Network, l'informazione si muove in avanti ed è composta dai seguenti layer:
 - Input layer
 - Hidden layer
 - Output layer

FFNET: Hyperparameter Tuning

- Algoritmo di hyperparameter tuning -> HyperBand
- Parametri ottimizzati:
 - Numero di Hidden Layers: 1 5
 - Neuroni per Hidden Layers: 50-500 con step 5
 - Learning Rate: 10^{-4} 10^{-2} con log sampling
- Parametri fissi:
 - Neuroni Output Layer: 4
 - Funzione di attivazione: ReLU (hidden), softmax (output)
 - Optimizer: Adam

FFNET: VGG16

Accuracy media delle k crossvalidazione al variare delle epoche (Best case > VGG16 layer 2)

Best Acc. Mean = 85.92%

Std = 1.52%

Hyperparameters:

- N° layer: 1
- Neuroni: 435
- Learn. Rate: $1.87 \cdot 10^{-3}$

FFNET: VGG16

FFNET: EfficientNetV2

Accuracy media delle k crossvalidazione al variare delle epoche (Best case > ENetV2 layer 3)

Best Acc. Mean = 81.78%

Std = 0.83%

Hyperparameters:

- N° layer: 1
- Neuroni: 395
- Learn. Rate: $1.6 \cdot 10^{-3}$

FFNET: EfficientNetV2

Conclusioni e sviluppi futuri

Conclusioni

- Si osserva che le classificazioni migliori sono ottenute attraverso l'uso della CNN VGG16 considerando come uscita il layer 2
- Tra i vari classificatori quello che offre le migliori performance è la FFNET, raggiungendo accuracy medie del 86%

Sviluppi Futuri

Al fine di ottenere una migliore classificazione sarebbe importante:

- Avere a disposizione un numero maggiore di immagini
- · Applicare metodi di Feature Selection migliori
- Eseguire Fine-Tuning

TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA