M 431: Assignment 3

Nathan Stouffer

Page 48 — Problem 29

Problem. Let G be a finite, nonempty set with an operation * such that:

- 1. G is closed under *
- 2. * is associative
- 3. Given $a, b, c \in G$ with a * b = a * c, then b = c
- 4. Given $a, b, c \in G$ with b * a = c * a, then b = c

Prove that G must be a group under *.

Proof. To prove that (G,*) is a group, we must show that G contains an identity element and an inverse for each element. Let's begin with the identity element. We must find an element $e \in G$ such that x*e = e*x = x for all $x \in G$. Let $|G| = n < +\infty$ and fix an element $g \in G$ and consider $g, g^2, g^3, ..., g^{n+1}$. Since G is closed under *, every g^k is an element of G, yet G has only n elements so we must have $g^i = g^j$ for some $1 \le i < j \le n+1$.

Now let l=j-i>0 (which means j=l+i=i+l) and we can say that $g^j=g^{l+i}=g^l*g^i$ and $g^j=g^{i+l}=g^i*g^l$. But then $g^j=g^i$ so we have $g^i=g^i*g^l=g^l*g^i$. Letting $g^i=\bar{g}$ and $g^l=\bar{e}$ (both elements of G by closure under *) gives us $\bar{g}=\bar{g}*\bar{e}=\bar{e}*\bar{g}$ for the specific element $\bar{g}\in G$.

We now show that \bar{e} is an identity element for every element of G. Fix any $x \in G$, then $\bar{g} * x = \bar{g} * \bar{e} * x$ since $\bar{g} = \bar{g} * \bar{e}$. But then property 3 says that $x = \bar{e} * x$. Further, $x * \bar{g} = x * \bar{e} * \bar{g}$ since $\bar{e} * \bar{g} = \bar{g}$ and then property 4 allows us to say that $x * \bar{e} = x$. So we have just shown that $x * \bar{e} = \bar{e} * x = x$ for an arbitrary $x \in G$. In other words, \bar{e} is an identity element for G.

Now we must show an inverse element exists for every element of G: that there exists some element $g' \in G$ such that $g*g'=g'*g=\bar{e}$. To do this, we take g and $g^l=\bar{e}$ as before. Pick $g'=g^{l-1}\in G$ then $g*g'=g*g^{l-1}=g^{l+l-1}=g^l=\bar{e}$ and $g'*g=g^{l-1}*g=g^{l-1+1}=g^l=\bar{e}$ as desired. Since we chose g arbitrarily, we have just shown every element has an inverse in G.

So we have showed that an identity exists in G and each element has an inverse so G satisfies the conditions of a group.

Page 54 — Problem 3

Problem. Let S_3 be the symmetric group of degree 3. Find all the subgroups of S_3 .

Proof.

Page 55 — Problem 12

Problem. Prove that a cyclic group is abelian.

Proof. Let's first introduce the definition of a cyclic group. A group G is cyclic if there exists some $a \in G$ such every $x \in G$ is a power of a ($x = a^j$ for some $j \in \mathbb{Z}$). Additionally, a group is abelian if ab = ba for all $a, b \in G$.

Suppose we have some cyclic group G. Since G is cyclic, there is some $g \in G$ such that every $x \in G$ is of the form $x = g^j$ for some $j \in \mathbb{Z}$. Now take any $a, b \in G$ and note that $a = g^i$ and $b = g^k$ for some $i, k \in Z$. Then $ab = g^i g^k = g^{i+k} = g^{k+i} = g^k g^i = ba$ as desired. Therefore, every cyclic group is abelian.

Heisenberg group problem

Problem. Recall the general linear group $\mathbb{GL}_3(\mathbb{R})$ of 3×3 invertible matrices with real entries (taken with the matrix product). Verify that the following subset, called the Heisenberg group, is a subgroup of $\mathbb{GL}_3(\mathbb{R})$:

$$\mathbb{H}_3(\mathbb{R}) := \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Proof. First we note that $\mathbb{H}_3(\mathbb{R})$ is a (nonempty) subset of $\mathbb{GL}_3(\mathbb{R})$ since $I_3 \in \mathbb{H}_3(\mathbb{R})$ and every matrix in $\mathbb{H}_3(\mathbb{R})$ has rank 3. Then since $\mathbb{H}_3(\mathbb{R}) \subset \mathbb{GL}_3(\mathbb{R})$ we automatically inherit the associativity of matrix multiplication. So only two conditions remain for $\mathbb{H}_3(\mathbb{R})$ to be a subgroup: closure and the existence of an inverse in $\mathbb{H}_3(\mathbb{R})$. The previous two conditions imply $I_3 \in \mathbb{H}_3(\mathbb{R})$ but this was also verified by inspection.

Let's first prove closure. Pick $A, A' \in \mathbb{H}_3(\mathbb{R})$ and compute

$$AA' = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & x' + x & z' + xy' + z \\ 0 & 1 & y' + y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \bar{x} & \bar{z} \\ 0 & 1 & \bar{y} \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{H}_3(\mathbb{R})$$

where $\bar{x}, \bar{y}, \bar{z} \in \mathbb{R}$ by the closure of \mathbb{R} under addition and multiplication. So $\mathbb{H}_3(\mathbb{R})$ is closed under matrix multiplication. We must now show that for every $A \in \mathbb{H}_3(\mathbb{R})$ we also have $B \in \mathbb{H}_3(\mathbb{R})$ such that $AB = BA = I_3$. For A, choose

$$B = \begin{bmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{bmatrix}$$

Certainly B is in the set $\mathbb{H}_3(\mathbb{R})$ and we have

$$AB = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} = BA$$

So we have checked that $\mathbb{H}_3(\mathbb{R})$ is closed under matrix multiplication and every element has an inverse in the subset so $\mathbb{H}_3(\mathbb{R})$ is a subgroup of $\mathbb{GL}_3(\mathbb{R})$.

Cube subgroups problem

Problem. Recall the group Sym(Q) of the rigid symmetries of the cube $Q := [-1, 1]^3$ in \mathbb{R}^3 . Describe in words/pictures the following:

a subgroup of order 4

a subgroup of order 12

a subgroup of order 3

a subgroup of order 6

a subgroup of order 8

Proof.