Math40003 Linear Algebra and Groups Problem Sheet 3

- 1. (a) Which of these sets of vectors are linearly independent? Which span \mathbb{R}^3 ?
 - i. (5,3,0), (2,1,1) iii. (1,3,1), (2,1,1), (-1,7,-5)
 - ii. (1,0,1), (-1,1,0), (0,1,1) iv. (1,-3,2), (2,-1,1), (2,-5,4), (1,2,5)
 - (b) For which a, b, c are the vectors (1, 3, 1), (2, 1, 1), (a, b, c) linearly dependent?
 - (a) i. Linearly independent, does not span
 - ii. Linearly dependent since $v_1 + v_2 v_3 = 0$; does not span
 - iii. Linearly independent and spans \mathbb{R}^3
 - iv. Linearly dependent since $-17v_1 v_2 + 10v_3 v_4 = 0$, but spans \mathbb{R}^3
 - (b) Those satisfying 2a + b 5c = 0.
- 2. *Let V be a finite-dimensional vector space. For each of the following statements, say whether it is true or false. If it is true, give a justification; otherwise find a counterexample.
 - (a) If $\{v_1, \ldots, v_n\}$ is a basis, for V, and $\{x_1, \ldots, x_r\}$ is a linearly independent subset of V with r < n, and if $v_i \notin Span\{x_1, \ldots, x_r\}$ for all $i = 1, \ldots, n$, then $\{x_1, \ldots, x_r, v_{r+1}, \ldots, v_n\}$ is a basis for V.
 - (b) If U is a subspace of V, then U + U = U.
 - (c) If U and W are subspaces of V, and $\dim U + \dim W = \dim V$, then $U \cap W = \{0_V\}$.
 - (d) If dim V = n and $v_1 \in V$, then there exist vectors v_2, \ldots, v_n in V such that $\{v_1, \ldots, v_n\}$ spans V.
 - (e) If W is a subspace of V , then $\dim W \leq \dim V$ and $\dim W = \dim V$ if and only if W = V.
 - (a) False: take $\{v_1, v_2, v_3\}$ to be the standard basis of \mathbb{R}^3 , with s = 1 and $x_1 = (0, 1, 1)$.
 - (b) True: since U is closed under addition, we have $U + U \subseteq U$; but since $0_V \in U$ we have $u = u + 0_V \in U + U$ for all $u \in U$, and so $U \subseteq U + U$.
 - (c) False: take $V = \mathbb{R}^2$, and $U = W = Span\{(1,0)\}$.
 - (d) False: but only because v_1 might be 0_V . For any other v_1 it is true.
 - (e) True: Let B be a basis for W. Now consider B as a subset of V. If Span(B) = V then B is also a basis for V, so $\dim W = \dim V$. Otherwise, we have $v \in V \setminus Span(B)$, now $B' = \{v\} \cup B$ is LI. If this

does not span V we continue to add vectors until we get a spanning set B^* . Now B^* will be basis for V and $B \subseteq B^*$, so $|B| \le |B^*|$.

It remains to show that if $\dim W = \dim V$ then V = W. Suppose $v \in V \setminus W$ then $v \notin Span(B)$, so $\{v\} \cup B$ is an LI subset of V, so $dim(V) \ge dim(W) + 1$ giving us a contradiction.

- 3. Which of the following sets of vectors in \mathbb{R}^4 are linearly independent? Extend those which are linearly independent to a basis of \mathbb{R}^4 .
 - (a) (1,2,3,0), (-1,2,3,0) (b) (1,2,3,0), (-1,2,3,0), (0,1,2,3)
 - (c) (1, 1, -1, -1), (1, -1, 1, -1), (-1, 1, 1, -1), (0, 1, 2, -3)
 - (a) Linearly independent An example of a basis is $\{v_1, v_2, e_3, e_4\}$, where v_1, v_2 are the vectors given.
 - (b) Linearly independent Basis $\{v_1, v_2, v_3, e_1\}$.
 - (c) Linearly dependent
- 4. Let $V = \mathbb{R}^{\mathbb{R}}$ (the vector space of functions from \mathbb{R} to \mathbb{R}).
 - (a) Show that the functions

$$f_1(x) = 1$$
, $f_2(x) = 1 + x + x^2$, $f_3(x) = \sin x$, $f_4(x) = \cos x$

are linearly independent.

(b) Which of the following functions lie in $Span(f_1, f_2, f_3, f_4)$?

$$5-3x-3x^2$$
, $\tan x$, $10-x-x^2+\sin(x+\pi/3)$.

(a) If $\exists \lambda_i \in \mathbb{R}$ such that $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 + \lambda_4 f_4 = \mathbf{0}$ (the zero function), then

$$\lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) + \lambda_4 f_4(x) = 0$$
 for all $x \in \mathbb{R}$.

Putting $x=0,\pi,2\pi$ gives the equations $\lambda_1+\lambda_2+\lambda_4=0$, $\lambda_1+(1+\pi+\pi^2)\lambda_2-\lambda_4=0$, $\lambda_1+(1+2\pi+4\pi^2)\lambda_2+\lambda_4=0$, from which it easily follows that $\lambda_1=\lambda_2=\lambda_4=0$. Now put $x=\pi/2$ to get $\lambda_3=0$ also. So f_1,f_2,f_3,f_4 are linearly independent.

(b) The function $\tan x$ is not in $Span(f_1,\ldots,f_4)$ — otherwise $\exists \lambda_i \in \mathbb{R}$ such that $\tan x = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) + \lambda_4 f_4(x)$ for all $x \in \mathbb{R}$, which we check to be impossible by putting $x = 0, \pi, 2\pi$ etc. as above.

The other two functions are in $Span(f_1, ..., f_4)$: use the addition formula to show that for the last one.

- 5. (a) Write down an infinite number of different bases of \mathbb{R}^2 (in finite time).
 - (b) Find a basis for $W = Span(x^2 1, x^2 + 1, 4, 2x 1, 2x + 1) \le \mathbb{R}[x]$.

Recall: $\mathbb{R}[x]$ is the set of real polynomials in the variable x

- (a) E.g. $\{(1,0),(0,t)\}$ are bases for any $t \in \mathbb{R} \setminus \{0\}$.
- (b) Call these polynomials p_1,\ldots,p_5 . Since $p_1\neq 0$ we keep it. Since p_2 is not a scalar multiple of p_1 , we keep it. Next, $p_3=2(p_2-p_1)\in Span(p_1,p_2)$, so we throw it away. Now p_4 has an x term, so cannot be in $\langle p_1,p_2\rangle$, so keep it. Finally, $p_5=p_4+\frac{1}{2}p_3\in Span(p_1,p_2,p_4)$ so discard it. So a basis is $\{p_1,p_2,p_4\}$.
- 6. Let V be the vector space of all 3×3 matrices over \mathbb{R} .
 - (i) Find a basis of V consisting of invertible matrices.
 - (ii) Let $W = \{A \in V : A^t = A\}$. Show $W \leq V$ and compute dim W.
 - (iii) Let $W \subset V$ be the set of matrices whose columns, rows, and both diagonals add to 0. Show $W \leq V$ and find a basis for W.
 - (a) E.g. $I, I-2E_{33}, I-2E_{22}$ together with $I+E_{ij}$ for all $i \neq j$, where E_{ij} has a 1 in the ijth position only.
 - (b) The general symmetric matrix

$$\begin{pmatrix} a & x & y \\ x & b & z \\ y & z & c \end{pmatrix}$$

is $aE_{11} + bE_{22} + cE_{33} + x(E_{12} + E_{21}) + y(E_{13} + E_{31}) + z(E_{23} + E_{32})$. So a basis for this subspace is $E_{11}, E_{22}, E_{33}, E_{12} + E_{21}, E_{13} + E_{31}, E_{23} + E_{32}$, and its dimension is 6.

(c) First show the middle entry must be 0 — e.g. add each diagonal and the middle row to get that 0 = the sum of the 1st and third columns plus twice the middle entry.

So the magic matrices have the form $\begin{pmatrix} a & b & -a-b \\ c & 0 & -c \\ -a-c & -b & -a \end{pmatrix}$, with 2a+b+c=0 to get the last row to add to 0.

Get a basis by taking first a=1,b=0 then a=0,b=1. So dimension = 2.