ELATE: Elastic tensor analysis

Welcome to ELATE, the online tool for analysis of elastic tensors, developed by **Romain Gaillac** and **François-Xavier Coudert** at CNRS / Chimie ParisTech.

If you use the software in published results (paper, conference, etc.), please cite the <u>corresponding paper</u> (*J. Phys. Condens. Matter*, 2016, 28, 275201) and give the website URL.

ELATE is open source software. Any queries or comments are welcome at fx.coudert@chimie-paristech.fr

Summary of the properties (3D material)

Input: stiffness matrix (coefficients in GPa) of

22.957	25.725	11.643	0.8413	0.403	0.9571
25.725	47.182	17.221	-0.1469	-0.08	1.6534
11.643	17.221	272.96	-0.7252	-0.2686	0.6772
0.8413	-0.1469	-0.7252	1.9104	-0.2137	-0.5831
0.403	-0.08	-0.2686	-0.2137	1.8829	-0.0242
0.9571	1.6534	0.6772	-0.5831	-0.0242	2.6824

Average properties

Averaging scheme	Bulk modulus	Young's modulus	Shear modulus	Poisson's ratio
Voigt	K _V = 50.253 GPa	<i>E</i> _V = 54.205 GPa	G _V = 20.529 GPa	$v_{V} = 0.32022$
Reuss	K _R = 20.883 GPa	<i>E</i> _R = 7.5648 GPa	G _R = 2.6274 GPa	$v_{R} = 0.43962$
Hill	K _H = 35.568 GPa	E _H = 31.334 GPa	G _H = 11.578 GPa	v _H = 0.35317

Eigenvalues of the stiffness matrix

λ ₁	λ_2	λ ₃	λ_4	λ ₅	λ ₆
1.358 GPa	1.9748 GPa	2.918 GPa	6.7945 GPa	61.523 GPa	275 GPa

Variations of the elastic moduli

	Young's modulus		Linear compressibility		Shear modulus		Poisson's ratio		
	E_{min}	E _{max}	β_{min}	β_{max}	G _{min}	G _{max}	v _{min}	v _{max}	
Value	4.3127 GPa	266.11 GPa	-22.854 TPa ⁻¹	57.081 TPa ^{–1}	1.4253 GPa	16.86 GPa	-0.9243	1.3757	Value
Anisotropy	6′	1.7	c	0	11.	.83	o	0	Anisotropy
Axis	0.4007 0.6700 0.6249	0.0013 0.0034 -1.0000	0.1712 0.7968 0.5796	-0.9852 0.1390 0.0999	-0.1947 0.2389 0.9513	0.0469 0.6782 -0.7333	0.0248 0.0819 -0.9963	0.0324 0.1195 -0.9923	Axis

13/09/2024, 16:48 Elastic analysis of

> -0.7622 -0.0753 -0.9141 -0.3919 Second -0.6473 -0.7297 0.4054 -0.9118 axis 0.0065 -0.6796 0.0106 -0.1226

Spatial dependence of Young's modulus

Visualize in 3D

Spatial dependence of linear compressibility

Visualize in 3D

linear compressibility in (xz) plane

linear compressibility in (yz) plane

Spatial dependence of shear modulus

Visualize in 3D

Shear modulus in (xz) plane

Shear modulus in (yz) plane

Spatial dependence of Poisson's ratio

Visualize in 3D

1.5 -0.5 1.5 -1.5 **>** 0.5 -0.5 -1.5 0 +

Poisson's ratio in (yz) plane

Code version: 2024.03.15 (running on Python 3.11.2) Execution time: 1.167 seconds