PyPSA-Eur version

P_{max} c_{max} c_{max}

P_{min}-c_v h_{min}

h min

Modelling CHP within a national power system, Grohnheit 1993

Problem: In the EGS case, peak electricity generation produces waste heat that still has utility for DH. Hence, the line starting at (0., 1.) being sloped is not appropriate: 100% electricity generation should still allow some DH generation.

https://pypsa.readthedocs.io/en/latest/examples/power-to-gas-boiler-chp.html

h_{max}

Proposal

Point B:

Maximum electricity generation, maximum heat generation with the assumed efficiencies: $\eta_{el}=10\%$ for electricity, $\eta_{dh}=80\%$ for district heat from waste heat.

Let η_{direct} be the efficiency of using the geothermal heat directly from the well for district heating, skipping the generation of electricity.

Point A:

Electricity generation is skipped, resulting in an efficiency gain and $p_max_pu = \eta_{direct}/\eta_{dh}$

If the backpressure limit is included, the feasible region is shrunk.

Question: What are realistic values for η_{direct} , and how does it depend on well temperature?

Proposal

Point B:

Maximum electricity generation, maximum heat generation with the assumed efficiencies: $\eta_{el}=10\%$ for electricity, $\eta_{dh}=80\%$ for district heat from waste heat.

Let η_{direct} be the efficiency of using the geothermal heat directly from the well for district heating, skipping the generation of electricity.

Point A:

Electricity generation is skipped, resulting in an efficiency gain and $p_{max}pu = \eta_{direct}/\eta_{dh}$

If the backpressure limit is included, the feasible region is shrunk.

Question: What are realistic values for η_{direct} , and how does it depend on well temperature?

Implementation

```
"Link",
    "geothermal CHP electricity",
    bus0='geothermal well',
    bus1='AC bus',
    "Link",
    "geothermal CHP district heat",
    bus0='geothermal well',
    bus1='DH bus',
    efficiency=eta dh * (1 + eta),
    capital cost=dh capital cost * eta dh,
# Plus additional constraints
# 1. p_nom of both links equal
                                                                         -> CHP operation
# 2. p el > alpha p dh
                                                                         -> backpressure limit
# 3. p_el = p_nom * (eta_direct - (p_dh / p_nom)) / (eta_direct - 1)
                                                                        -> iso fuel
# recall p_nom = p_nom_el = p_nom_dh
```

Notes:

The scaling factor ensures that the continuity at the geothermal well is satisfied despite 'doubly using' the heat compared to the *Multilink* setup. In the plot this factor is approximately 1 + 1.19 (i.e. $1 + \eta$ in the code snippet).