4 Confidence Interval Introduction

(a) $\frac{\sigma^2}{\epsilon^2}$

Since $\sigma = \sqrt{\text{var}(X)}$, so $\text{var}(X) = \sigma^2$. Thus, using Chebyshev's Inequality, we have that the upper bound would be:

$$\mathbb{P}[|X - \mu| \ge \epsilon] \le \frac{\operatorname{var}(X)}{\epsilon^2} = \frac{\sigma^2}{\epsilon^2}$$

(b) Direct Proof

Since the event $|X - \mu| < \epsilon$ is equivalent to the event $-\epsilon < X - \mu < \epsilon$, which is then equivalent to the event $X - \epsilon < \mu < X + \epsilon$ by properties of inequalities, which is then equivalent to the event $\mu \in (X - \epsilon, X + \epsilon)$ by definition, so the event space of $|X - \mu| < \epsilon$ is the same as the event space of $\mu \in (X - \epsilon, X + \epsilon)$, and they have the same sample space.

Thus,
$$\mathbb{P}[|X - \mu| < \epsilon] = \mathbb{P}\{\mu \in (X - \epsilon, X + \epsilon)\}$$
, as desired.

Q.E.D.

(c) $\epsilon = 2\sqrt{5}\sigma$

We wish to have $\mathbb{P}\{\mu \in (X - \epsilon, X + \epsilon)\} \ge 95\%$. Using our results from parts (a) and (b), so we have that $\mathbb{P}\{\mu \in (X - \epsilon, X + \epsilon)\} = \mathbb{P}[|X - \mu| < \epsilon] = \mathbb{P}[\overline{|X - \mu| \ge \epsilon}] = 1 - \mathbb{P}[|X - \mu| \ge \epsilon] \ge 1 - \frac{\sigma^2}{\epsilon^2}$. This means that if we can choose ϵ such that $1 - \frac{\sigma^2}{\epsilon^2} \ge 95\%$, then we can guarantee that

$$\mathbb{P}\big\{\mu \in (X - \epsilon, X + \epsilon)\big\} \geq 1 - \frac{\sigma^2}{\epsilon^2} \geq 95\%$$

Thus, we can calculate that for $1 - \frac{\sigma^2}{\epsilon^2} \ge 95\%$, so we need:

$$\epsilon^2 \ge 20\sigma^2$$

$$\implies \epsilon > 2\sqrt{5}\sigma$$

(d)
$$\mathbb{E}[\overline{X}] = \mu$$
, $\operatorname{var}(\overline{X}) = \frac{\sigma^2}{n}$

Since we're given that $n \in \mathbb{Z}^+$ is a constant, and that μ is the mean for X (i.e. $\mu = \mathbb{E}[X]$), and that X_1, \ldots, X_n are i.i.d. samples, as well as that $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, so we can utilize Theorem 15.1 to get that:

$$\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n} \cdot \mathbb{E}[X_{1} + \dots + X_{n}] = \frac{1}{n} \cdot (\mathbb{E}[X_{1}] + \dots + \mathbb{E}[X_{n}]) = \frac{1}{n} \cdot (\mu + \dots + \mu)$$

$$\Longrightarrow \mathbb{E}[\overline{X}] = \frac{1}{n} \cdot (n\mu) = \mu$$

And also, using Theorem 16.3 and a result from Note 16 we have:

$$\operatorname{var}(\overline{X}) = \operatorname{var}(\frac{1}{n} \sum_{i=1}^{n} X_i) = (\frac{1}{n})^2 \cdot \operatorname{var}(X_1 + \dots + X_n) = \frac{1}{n^2} \cdot (\operatorname{var}(X_1) + \dots + \operatorname{var}(X_n))$$

Then, since $var(X) = \sigma^2$ by definition, so:

$$\operatorname{var}(\overline{X}) = \frac{1}{n^2} \cdot (\sigma^2 + \dots + \sigma^2) = \frac{1}{n^2} \cdot (n\sigma^2) = \frac{\sigma^2}{n}$$

(e)
$$\epsilon = \sqrt{\frac{20\sigma^2}{n}}$$

We can repeat the process of parts (a) to (c) to choose a proper width ϵ of the confidence interval.

First, denoting the mean of \overline{X} as $\mathbb{E}[\overline{X}] = \nu$, and we calculate an upper bound on $\mathbb{P}[|\overline{X} - \nu| \ge \epsilon]$, which, using Chebyshev's Inequality, is:

$$\mathbb{P}\big[|\overline{X} - \nu| \ge \epsilon\big] \le \frac{\operatorname{var}(\overline{X})}{\epsilon^2} = \frac{\frac{\sigma^2}{n}}{\epsilon^2} = \frac{\sigma^2}{n \cdot \epsilon^2}$$

Now, since the event $|\overline{X} - \nu| < \epsilon$ is equivalent to the event $-\epsilon < \overline{X} - \nu < \epsilon$, which is then equivalent to the event $\overline{X} - \epsilon < \nu < \overline{X} + \epsilon$ by properties of inequalities, which is then equivalent to the event of $\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)$ by definition, so the event space of $|\overline{X} - \nu| < \epsilon$ is the same as the event space of $\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)$. Thus, $\mathbb{P}[|\overline{X} - \nu| < \epsilon] = \mathbb{P}\{\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)\}$.

Then,
$$\mathbb{P}\left\{\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)\right\} = \mathbb{P}[|\overline{X} - \nu| < \epsilon] = \mathbb{P}[|\overline{X} - \nu| \ge \epsilon] = 1 - \mathbb{P}[|\overline{X} - \nu| \ge \epsilon].$$
 Since $\mathbb{P}\left[|\overline{X} - \nu| \ge \epsilon\right] \le \frac{\sigma^2}{n \cdot \epsilon^2}$, so $\mathbb{P}\left\{\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)\right\} = 1 - \mathbb{P}[|\overline{X} - \nu| \ge \epsilon] \ge 1 - \frac{\sigma^2}{n \cdot \epsilon^2}$.

Since we wish to have $\mathbb{P}\left\{\nu\in(\overline{X}-\epsilon,\overline{X}+\epsilon)\right\}\geq 95\%$, so if $1-\frac{\sigma^2}{n\cdot\epsilon^2}\geq 95\%$, then we can guarantee our desired result. With σ being known, so we can calculate:

$$1 - \frac{\sigma^2}{n \cdot \epsilon^2} \ge 95\%$$

$$\implies \frac{\sigma^2}{n \cdot \epsilon^2} \le 0.05$$

$$\implies 0.05\epsilon^2 \ge \frac{\sigma^2}{n}$$

$$\implies \epsilon^2 \ge \frac{20\sigma^2}{n}$$

$$\implies \epsilon \ge \sqrt{\frac{20\sigma^2}{n}}$$

Thus, $\epsilon = \sqrt{\frac{20\sigma^2}{n}}$ is an appropriate width of the confidence interval for the desired result, i.e. guaranteeing $\mathbb{P}\{\nu \in (\overline{X} - \epsilon, \overline{X} + \epsilon)\} \ge 95\%$.

(Confirmed: as n increases, ϵ decreases.)