第一章 矩阵

1.1 求高次幂 2

1.1 求高次幂

Remark. 基本方法

- (1) 若 r(A) = 1, 则 $A^n = tr(A)^{n-1}A$, 关键点在于 $r(A) = 1 \implies A = \alpha \beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$B = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, \mathbb{N}B^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}$$

$$A^{n} = C_{n}^{n}E + C_{n}^{1}B + C_{n}^{2}B^{2}$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

$$P^{-1}AP = \Lambda \otimes A = P\Lambda P^{-1}$$
,

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

1.1 求高次幂 3

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution. 由 BA = 0 知 $r(A) + r(B) \le n$, 又 r(B) > 1, $r(A) \ge 1$ 所以 $1 \le r(A) \le 1$, \Longrightarrow r(A) = 1,

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2. 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}$$
 则 $A^n =$ ______.

Solution.
$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \mathbb{N}$$

$$A^{n} = 2^{n}E + 2^{n-1}nB + 2^{n-3}n(n-1)B^{2}$$

3. 设
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$
 P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

Solution.
$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题
$$(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$$

1.2 逆的判定与计算

- 4. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则下列结论不正确的是:
 - (A) A 可逆
- (B) A E 可逆
- (C)A + E 可逆
- (D)A 3E 可逆

Solution. 利用特征值, 由题设可知对于 A 的任意特征值有

$$\lambda^2 - 2\lambda = 0 \implies \lambda = 0$$
 $\vec{\boxtimes} \lambda = 2$

故 B,C,D 的特征值分别是

$$\lambda_B : \begin{cases} -1 & \\ & \\ 1 \end{cases} \lambda_C \begin{cases} 1 & \\ & \\ 3 \end{cases} \lambda_D \begin{cases} -3 & \\ -1 & \\ \end{cases}$$

由可逆的充分条件可知 BCD 均可逆

- 5. 设 A, B 为 n 阶矩阵,a, b 为非零常数. 证明:
 - (1) 若 AB = aA + bB, 则 AB = BA;
 - (2) 若 $A^2 + aAB = E$, 则 AB = BA.

Solution. (1)

$$AB = aA + bB$$

$$A(B - aE) - bB = 0$$

$$(A - bE)(B - aE) = abE \implies (A - bE), (B - aE)$$
可逆
$$(B - aE)(A - bE) = abE$$

$$BA = aA + bB = AB$$

(2)

$$A^2 + aAB = E$$

 $A(A + aE) = E \implies (A + aE)A = E \implies AB = BA$

1.2 逆的判定与计算

5

$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overline{\text{可逆}} \\ \bar{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \bar{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \, \overline{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

6. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (1) 求 a 的值;
- (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

Solution. (1) $\div A^3 = 0 \implies \lambda^3 = 0 \implies \lambda_i = 0 \ \ensuremath{\mathbb{R}} tr(A) = \sum_{i=0}^3 \lambda_i \div a = 0$ (2)

原式 =
$$X(E - A^2) - AX(E - A^2)$$

= $(E - A)X(E - A^2) = E$

有 $E-A, E-A^2$ 均可逆 (用特征值) 故

$$X = (E - A)^{-1}(E - A^2)^{-1}$$

通过初等行变换化为行最简型有

$$\begin{aligned}
\left(E - A - A^2 \mid E\right) & \xrightarrow{\text{NSFGrown}} \left(E \mid (E - A - A^2)^{-1}\right) \\
&= \begin{pmatrix} 1 & 0 & 0 & 3 & 1 & -2 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{pmatrix}
\end{aligned}$$

1.3 秩的计算与证明

Remark. 秩

秩的定义: $\exists r$ 阶子式非零且 $\forall r+1$ 阶子式均为零 秩的性质

- (1) 设 A 为 $m \times n$ 阶矩阵, 则 $r(A) < \min\{m, n\}$
- (2) $r(A+B) \le r(A) + r(B)$
- $(3) r(AB) \le \min\{r(A), r(B)\}$
- (4) $\max\{r(A), r(B)\} \le r(A \mid B) \le r(A) + r(B)$
- (5) $r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
 - 7. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵,(XY) 表示分块矩阵,则:

$$\mathbf{A} \ r(A \ AB) = r(A)$$

$$\mathbf{B} \ r(A \ BA) = r(A)$$

$$C r(A B) = \max\{r(A), r(B)\}\$$

$$\mathbf{D} \ r(A \ B) = r(A^T B^T)$$

Solution. (方法一) 由性质 4, 联立的秩大于等于每一个有

$$r\left[A(E,B)\right] \geq r(A)$$

由性质 3, 乘积的秩小于等于每一个有

$$r[A(E,B)] \le r(A)$$

1.3 秩的计算与证明

故A选项正确

易错点,B 选项为啥不能写成

$$r[(E+B)A]$$

7

其中 $(E+B)_{n\times 2n}$, $A_{n\times 2}$ 列 \neq 行无法乘 (方法二)

$$r(A, AB) = r[A(E, B)]$$

其中(E,B)显然行满秩,由性质7右乘行满列则秩不变,即

$$r(A, AB) = r(A)$$

(方法三)

$$AB = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \dots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix} = (b_{11}\alpha_1 + \dots + b_{n1}\alpha_n, \dots, b_{1n}\alpha_1 + \dots + b_{nn}\alpha_n)$$

即 AB 的列向量可以由 A 的列向量线性表示, 故由极大无关组的定义有

$$r(A, AB) = r(A)$$

(方法四)广义初等变化(分块矩阵)

$$(A, AB) = (A, O) \begin{pmatrix} E & B \\ O & E \end{pmatrix} \implies r(A, AB) = r(A, O) = r(A)$$

8. 设 A 为 n 阶矩阵, 证明:

Solution. 证明第二个, 第一个和第二个基本一致. 由 $A^2 = E$ 有 (A+E)(A-E) = 0 故

$$r(A+E) + r(A-E) \le n$$

又

$$r(A+E) + r(A-E) = r(A+E) + r(E-A) \ge r(2E) = n$$

因此
$$r(A+E) + r(A-E) = n$$

1.4 关于伴随矩阵 8

若 A 的二次方程有两个互异根,则因式分解后,秩的和为 n

关于伴随矩阵 1.4

Remark. 伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

- (2) $(kA)^* = k^{n-1}A^*$
- (3) $(AB)^* = B^*A^*$
- $(4) |A^*| = |A|^{n-1}$
- (5) $(A^T)^* = (A^*)^T$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

- 9. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A| = 6, 则 A^* 的各列元素之和均为:
 - (A) 2
- (B) $\frac{1}{3}$ (C) 3
- (D)6

Solution. 由题设有

$$(1,\ldots,1) A = 2(1,\ldots,1)$$

两边同时右乘 A* 即

$$(1,\ldots,1)A^* = 3(1,\ldots,1)$$

故 A* 的各列元素之和均为 3

1.4 关于伴随矩阵 9

各行/列元素之和

(各行元素之和为 λ) 通过右乘列向量即

$$A\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \iff \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} 为A的特征值为\lambda的特征向量$$

(各列元素之和为 λ) 通过做成行向量即

$$(1,\ldots,1) A = \lambda (1,\ldots,1)$$

10. 设 $A = (a_{ij})$ 为 $n(n \ge 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(1)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(2)
$$a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1.$$

Solution. 这道题的结论比较重要 第一个充要条件通过定义即可证明即

$$A^* = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \dots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \dots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} = A^T$$

下面证明第二个充要条件.

右推左, 由于 $AA^T = E$ 且 |A| = 1 则

$$A^* = |A| A^{-1} = A^{-1} = A^T$$

左推右, 由 $A^* = A^T$ 则 $|A^*| = |A|^{n-1} = |A^T| = |A|$ 从而 |A| = 0, 1, -1 由于 $A \neq O$, 不妨设 $a_1 1 \neq 0$, 按第一行展开有

$$|A| = a_{11}A_{11} + \dots + a_{1n}A_{1n} = \sum_{i=1}^{n} a_{ii}^2 > 0 \implies |A| = 1$$

又

$$AA^T = AA^* = |A|E = E$$

1.5 初等变换与初等矩阵

Remark. 初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(i(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
 - 11. (2005, 数一、二) 设 A 为 n(n > 2) 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A^* 的第 1 行与第 2 行, 的 B^*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

Solution. 有题设有

$$E(1,2)A = B$$

即

$$B^* = A^* [E(1,2)]^*$$

$$= A^* |E(1,2)| E^{-1}(1,2)$$

$$= -A^* E(1,2)$$

即交换 A^* 的第 1 列与第 2 列, 得 $-B^*$