Laboratório de Cálculo Numérico

Solução Aproximada de Equações Não-Lineares

Aluno: Vitor Emanuel da Silva Rozeno

RA: 211044539

• Função para o Método da Falsa Posição

```
function regulaFalsi(xl,xu,tol,n)
    i = 1
    fa = f(x1)
    output = [i, xl, xu, xl + (xu-x1)/2, f(xl + (xu-x1)/2)]
    printf("%-20s %-20s %-20s %-20s %-20s
\n", "n", "a_n", "b_n", "p_n", "f(p_n)")
    while(i <= n),</pre>
        p = (x1*f(xu)-xu*f(x1))/(f(xu) - f(x1))
        fp = f(p)
        if(fp == 0 \mid abs(f(p)) < tol) then
            break
        else
             printf("%-20.8g %-20.8g %-20.8g %-20.8g \n", i, xl,
xu, p, f(p)
        end
        i = i + 1
        if(fa*fp > 0) then
            x1 = p
        else
            xu = p
        end
    end
    disp(output)
endfunction
```

• Função para o Método de Newton-Raphson

```
deff('y=f(x)','y=sin((pi*(x+1))/8)+0.23*x-1.5');//definir função
deff('z=f1(x)','z=0.3926*cos(0.3926*(x+1))+0.23');//definir derivada
a=2;b=2.5;//definir intervalo
x=(a+b)/2;
i=1;
while(i<=3)
x=(x-(f(x)/f1(x)));
i=i+1;
[x]
end;</pre>
```

Considerando a função:

$$f(x) = sen\left(\frac{\pi(x+1)}{8}\right) + 0.23x - 1.5$$

Equação 1 - Função 1

a) Achar a quantidade de zeros reais e os intervalos correspondentes:

Para fazer essa análise, foi construído o gráfico da função.

Figura 1 - Gráfico da Função 1

Ao analisar o gráfico, é possível concluir que a função possui três zeros reais. Os intervalos correspondentes observados são: [2;2,5], [7;8] e [10,5;11], aproximadamente.

b) Método da Falsa Posição:

Intervalo [2;2.5]:

iteração	xl	xu	f(x)
1	2	2.5	0.0040533346
2	2	2.3377727	0.00027323276
3	2	2.3263812	1.8323175e-05

Intervalo [7;8]:

iteração	xl	xu	f(x)
1	7	8	-0.0034513497
2	7	7.721069	-0.00021783244
3	7	7.6991509	-1.3472954e-05

Intervalo [10.5;11]

iteração	xl	xu	f(x)
1	10.5	11	-0.0041280453
2	10.843357	11	-0.00020098437
3	10.862304	11	-9.6566927e-06

c) Método de Newton:

(Utilizando aproximação inicial do zero como sendo $(a\!+\!b)/2)$

Intervalo [2;2.5]:

iteração	X
1	2.3243144
2	2.3255594
3	2.3255601

Intervalo [7;8]:

iteração	X
1	7.693438
2	7.6976769
3	7.6976793

Intervalo [10.5;11]

iteração	X
1	10.868659
2	10.863267
3	10.863267