Práctica 7 - Tres ejercicios adicionales Fourier y Chebyshev

Cálculo Numérico, primer cuatrimestre 2020

Ejercicio 1

Definimos, para cada n, el espacio de funciones suaves y periódicas como:

$$C^n_{per}([0,2\pi]) = \left\{ f \in C^n([0,2\pi]) : f^{(p)}(0) = f^{(p)}(2\pi) \text{ para todo } 0 \leq p \leq n \right\}$$

y lo dotamos del producto interno

$$(f,g) = \int_0^{2\pi} f(x)g(x)dx \tag{1}$$

También definimos el conjunto de funciones

$$B_N = \{1, \text{sen}(x), \cos(x), ..., \text{sen}(Nx), \cos(Nx)\} \subset C_{per}^{\infty}([0, 2\pi])$$
 (2)

- (a) Muestre que el conjunto de funciones B_N es ortogonal con respecto a (\cdot, \cdot) para todo $N \in \mathbb{N}$.
- (b) Verifique que, dada $f \in C^n_{per}([0,2\pi])$, los coeficientes $\hat{s}_k = \int_0^{2\pi} f(x) \operatorname{sen}(kx) dx$, y equivalentemente $\hat{c}_k = \int_0^{2\pi} f(x) \cos(kx) dx$, decaen con orden n: es decir, $|\hat{s}_k| \leq Ck^{-n}$ para una cierta constante C independiente de k en los casos $n = 1, 2, \ldots$ (Sug: Integre por partes.)
- (c) Muestre que el operador $T: \langle B_N \rangle \to \langle B_N \rangle$ dado por T[u] = -u'' + u se puede representar como una matriz diagonal. ¿Cual es la representación correspondiente del operador inverso?

Ejercicio 2

(a) Verificar la ortogonalidad de los polinomios de Chebyshev con el producto escalar

$$(f,g) = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$$

Sugerencia: utilice el cambio de variables $x = \cos(t)$ y el ejercicio 1(a).

- (b) Muestre que el coeficiente k-ésimo de una serie de Chebyshev de una función $f:[-1,1] \to \mathbb{R}$ coincide con el coeficiente de Fourier \hat{c}_k de la función $f(\cos(\theta))$ para $\theta \in [0,2\pi]$.
- (c) Considere la función $f: [-1,1] \to \mathbb{R}$ dada por $f(x) = e^x$. En base al ejercicio 1 (b), ¿Cuán rápido decaen los coeficientes de la expansión de Chebyshev de f? ¿En donde falla el argumento si queremos repetirlo para el caso de los coeficientes de Fourier?

Ejercicio 3

Consideramos el espacio vectorial $V_N=\mathbb{C}^{N+1},$ dotado del producto interno discreto

$$(v, w)_d = h \sum_{j=0}^{N} v_j \bar{w}_j, \quad \text{con} \quad h = \frac{2\pi}{N+1}.$$
 (3)

Para cada $k \in \mathbb{Z}$, definimos el modo de Fourier de frecuencia k como el elemento $v^k \in V_N$

$$v^k = (v_0^k, v_1^k, v_2^k, ..., v_J^k)$$
 con $v_j^k = e^{hikj}$

y definimos la base de Fourier discreta

$$B = \left\{ v^k : k \in \mathbb{Z}, 0 \le k \le N \right\}$$

Dado un elemento $f \in V_N$, llamaremos DFT(f) a los coeficientes de f en la base B.

(a) Muestre que B es una base ortogonal de $(V_N, (\cdot)_d)$. Sugerencia: utilice la suma geométrica $\sum_{j=0}^{n-1} z^j = \frac{1-z^n}{1-z}$ para $z \in \mathbb{C}$.