Lecture 10: **Deep Learning** COURSE: BIOMEDICAL DATA SCIENCE Parisa Rashidi FALL 2019

Deep Neural Network

Material partially based on:

- -Raschka, Sebastian. Python Machine Learning (p. 18). Packt Publishing.
- -Stanford CS231n: Convolutional Neural Networks for Visual Recognition, 2019.

Learning Features instead of Feature Engineering

- The visual system is deep (around 10 layers)
- What is the learning algorithm of the neo-cortex?

Visual Pathway is Complex!

Banich, Marie T.; Compton, Rebecca J.. Cognitive Neuroscience (Kindle Location 7070). Cambridge University Press.

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represent nearby regions in the visual field

Human brain

Retinotopy images courtesy of Jesse Gomez in the Stanford Vision & Perception Neuroscience Lab.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 13 April 16, 2019

Hierarchical organization

Simple cells:

Response to light orientation

Complex cells:

Response to light orientation and movement

Hypercomplex cells:

response to movement with an end point

No response

Response (end point)

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

A bit of history: **Gradient-based learning applied to document recognition** [LeCun, Bottou, Bengio, Haffner 1998]

Convolutional NN

Why Deep Learning Works

- Some tricks
 - GPU utilization
 - Dropout
 - Pre-training each layer (not popular anymore)

Notable Architectures

ImageNet Challenge: 1000 classes, 1.5M training images

AlexNet by Krizhevsky et al. 2012

- 650K neurons, 832M synapses, 60M parameters
- Error rate 15%

Improvement Over Time

ResNet: 152 layers, 2015

Improvement over Time

Big Picture

- Remember the 4 steps (sample, forward, backprop, update)
 - Learning rate
 - Activation function

Weight Initialization

- All set to zero?
 - No asymmetry
- Random numbers?
 - Variance is important
 - If the weights are initialized to be too small, then the output from each layer gets smaller and smaller.
 - If the weights are initialized to be too large, then output from each layer gets larger and larger.

Weight Initialization

- The variance of the output from a randomly initialized neuron grows with the number of inputs.
 - Fine for small networks, it can lead to nonhomogeneous distributions of activations across the layers of a network.

$$\operatorname{Var}(Y) = \operatorname{Var}(W_1X_1 + W_2X_2 + \cdots + W_nX_n) = n\operatorname{Var}(W_i)\operatorname{Var}(X_i)$$

Weight Initialization

- We can initialize the weights using a distribution with mean zero and variance as obtained in the previous slides.
- Two popular methods:
 - He initialization
 - Xavier (or Glorot) initialization
 - Or use batch normalization after every layer (an advanced topic)

Regularization

- Minimize ($Loss + \lambda Penalty$)
- L2 regularization is the most common form of regularization.
 - encouraging the network to use all of its inputs a little rather that some of its inputs a lot (diffused weights)
- L1 regularization allows the weight vectors to become sparse.
- In practice, if you are not concerned with explicit feature selection, use L2 regularization.

Dropout

 Randomly set some neurons to zero in each forward pass

(a) Standard Neural Net

(b) After applying dropout.

Convolutional Filters

- A group operator
 - Goes back to conventional vision techniques

1 _{×1}	1,0	1,	0	0
0,×0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Convolutional Filters

• Example: edge detection

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	4

Transfer Learning

Transfer Learning with CNNs

image 3. If you have medium sized conv-64 dataset, "finetune" instead: conv-64 use the old weights as maxpool initialization, train the full conv-128 network or only some of the conv-128 higher layers maxpool conv-256 conv-256 retrain bigger portion of the maxpool network, or even all of it. conv-512 conv-512 maxpool conv-512 conv-512 maxpool

FC-4096

FC-4096

FC-1000

softmax

More

We will teach the rest of the material using slides <u>here</u>