Created: 19/02/13 18:18 **Updated:** 19/02/13 20:51

orthogonalization

each control does a specific task and doesn't affect other controls.

single number evaluation metric

• confusion matrix: regression/recall

• F1 scores: F1 = 2 / ((1/P) + (1/R))

satisfying and optimizing metric

• facing many metrics, hard to judge which model is better.

Classifier	F1	Running time
Α	90%	80 ms
В	92%	95 ms
С	92%	1,500 ms

• choosing a single **optimizing** metric and decide that other metrics are **satisfying**.

Maximize F1 # optimizing metric

subject to running time < 100ms # satisficing metric

train/dev/test sets distribution

• come from same distribution

• Choose dev set and test set to reflect data you expect to get in the future and consider important to do well on

when to change dev/test sets and metrics

analogy

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Plue took to
- \rightarrow 2. Worry separately about how to do well on this metric.

• Figure out how to define a metric that captures what you want to do - place the target.

Worry about how to actually do well on this metric - how to aim/shoot accurately at the target.

Another example

Algorithm A: 3% error

/ Algorithm B: 5% error

Dev/test

User images

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Andrew Ng

human-level performance

human-level error can be used to estimate bayes error

Comparing to human-level performance

- avoidable error
 - define as Avoidable bias = Training error Human (Bayes) error
 - should be and can be reduce

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- Get labeled data from humans. (x, y)
- Gain insight from manual error analysis:
 Why did a person get this right?
- Better analysis of bias/variance.

Improve model performance

- fundamental assumptions of supervised learning:
 - i. fit the training set pretty well (achieve low **avoidable bias**.)
 - ii. The training set performance generalizes pretty well to the dev/test set. (variance is not too bad.)
- To improve your deep learning supervised system
 - i. Look at the difference between human level error and the training error avoidable bias.
 - ii. Look at the difference between the dev/test set and training set error Variance.
 - iii. If avoidable bias is large you have these options:
 - Train bigger model.
 - Train longer/better optimization algorithm (like Momentum, RMSprop, Adam).
 - Find better NN architecture/hyperparameters search.
 - iv. If **variance** is large you have these options:
 Get more training data.

 - Regularization (L2, Dropout, data augmentation).
 - Find better NN architecture/hyperparameters search.