R Graphics Overview

Graphics in R

Dominant systems:

1. base

R's built-in graphics functions, like plot() and curve().

2. lattice

Similar interface to base, but more features, especially for making grouped plots.

3. **ggplot2**

o "Grammar of graphics" interface, where graphics are assembled in layers.

Each is incompatible with the others.

The ggplot2 Package

We'll mainly use ggplot2.

Why?

- Excellent documentation, with examples: <u>agplot2.tidyverse.org</u>
- More concise and featureful than base
- More popular than lattice
- Available for Python (<u>plotnine</u>) & Julia (<u>Gadfly.il</u>)
- Part of the Tidyverse...

The Tidyverse

The Tidyverse

The **Tidyverse** is a collection of R packages for data analysis.

- Designed to work well together
- Made by many of the same people as RStudio
- Excellent documentation: <u>www.tidyverse.org</u>
 - Also many cheat sheets: <u>rstudio.com/resources/cheatsheets</u>
- Alternatives to R's built-in tools
 - A different dialect of R
 - Occasionally accused of dividing the R community

The Tidyverse Packages

Package	Tools For	
readr, readxl	Reading files	
tibble, dplyr, tidyr	Data frames	
stringr	Strings	
forcats	Factors	
ggplot2	Graphics	
purrr	Functional programming	

Tidy Data

Most Tidyverse packages require tidy data sets.

In a **tidy** data set:

- Each observation has its own row.
- Each feature has its own column.
- Each value has its own cell.

The tidyr package has examples and tools to clean up untidy data.

Tibbles

The Grammar of Graphics

Saving Plots

Customizing Plots

Exploratory Data Analysis

Exploring Data

What does it mean to "explore" data?

- Get an overview of what's included
- Look for errors (typos, extreme values, etc.)
- Look for patterns within features
- Look for relationships between features
- Check assumptions (for conclusions, models, etc.)

Use plots, summary statistics, and with caution, models.

Choosing a Plot

There isn't a strict guideline for how to choose a plot.

This table has *suggestions*:

First Feature	Second Feature	Suggested Plots
categorical		bar, dot
categorical	categorical	bar, dot, mosaic
numerical		box, density, histogram
numerical	categorical	box, density
numerical	numerical	line, scatter, smooth scatter