NOTE

ON THE FINITE-VALUEDNESS PROBLEM FOR SEQUENTIAL MACHINES

Tat-hung CHAN† and Oscar H. IBARRA*

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Communicated by R. Karp Received December 1981 Revised July 1982

Abstract. For a set $A = \{A_1, \ldots, A_m\}$ of $n \times n$ matrices with nonnegative integer entries, let P(A) be the set of all finite products of matices in A. We show that there is a square space algorithm to decide, given A, whether or not P(A) is finite. As a corollary, we show that there is an exponential space algorithm to decide, given a nondeterministic Mealy sequential machine M with accepting states, whether there exists an integer $d \ge 0$ such that on every input, the number of accepting computations of M producing distinct outputs is at most d. If d exists, the smallest such d can be computed in space exponential in size $(M) + \log d$. The space bound reduces to polynomial for the analogous problem of ambiguity of nondeterministic finite acceptors.

1. Introduction

An acceptor M is said to be d-ambiguous for an integer $d \ge 0$ if on every input, M has at most d distinct accepting computations. M is finitely ambiguous if it is d-ambiguous for some d. The terms d-valued and finite-valued have analogous definitions for transducers if we count outputs on accepting computations instead of just accepting computations. The finite-ambiguity problem and the finite-valuedness problem refer to the corresponding decision problems for acceptors and transducers, respectively. For a finitely ambiguous acceptor M, the degree of ambiguity is the smallest d such that M is d-ambiguous.

It is known that there is an algorithm to decide for a nondeterministic finite automaton (nfa) M and a nonnegative integer d whether M is d-ambiguous [6]. In fact, there is an algorithm to decide given a nondeterministic finite transducer M— essentially a generalized sequential machine (gsm) with accepting states—and a nonnegative integer d whether M is d-valued [1]. The algorithms in [1, 6] are of polynomial-time complexity when d is fixed.

In this note, we consider the problem of deciding the existence of d. More precisely, we show that the finite ambiguity problem for nfa's and the finite-

[†] Current address: Department of Mathematics and Computer Science, State University College, Fredonia, NY 14063, U.S.A.

^{*} This author was supported in part by NSF Grant MCS 81-02853.

valuedness problem for nondeterministic Mealy sequential machines with accepting states (i.e. nfa's without ε -moves that output a single symbol per move) are decidable. The proof involves a reduction to a decision problem concerning products of square matrices over nonnegative integers. The more general finite-valuedness problem for gsm's remains open.

2. Deciding whether P(A) is finite

In the following, A and B are $n \times n$ matrices of nonnegative integers, A(i,j) is the (i,j)-entry of A, and ||A|| is the sum of all entries of A, i.e. $\sum_{i,j} A(i,j)$. A denotes a finite set of $n \times n$ matrices of nonnegative integers, and P(A) denotes the set of all finite products of matrices in A.

Fact 1. If A and B have no zero row and no zero column, then their product AB also has no zero row and no zero column.

Fact 2. If A and B have no zero row and no zero column, then $||AB|| \ge ||A||$ and $||AB|| \ge ||B||$. Furthermore ||AB|| = ||A|| (= ||B||) iff B(A) is a permutation matrix.

Proof. It suffices to prove the assertions relating AB and A; the others follow by transposition. Now

$$||AB|| = \sum_{i,j} \sum_{k} A(i,k)B(k,j) = \sum_{i,k} \left[A(i,k) \sum_{j} B(k,j) \right].$$
 (1)

For each $k, \sum_{i} B(k, j) \ge 1$ because B has no zero row. Hence,

$$||AB|| \ge \sum_{i,k} A(i,k) = ||A||.$$

If B is a permutation matrix, then the column of AB are just the columns of A permuted, so that ||AB|| = ||A||. On the other hand, suppose B is not a permutation matrix. Then there is a k_0 such that $\sum_i B(k_0, j) \ge 2$. Since A has no zero column there is an i_0 such that $A(i_0, k_0) > 0$. From (1) we see that

$$||AB|| \ge ||A|| + A(i_0, k_0) > ||A||$$
.

Definition. A matrix A is said to have *Property U* if it has no zero row or zero column, and is not a permutation matrix.

Fact 3. If A has Property U, then $P({A}) = {A^k}$ is infinite.

Proof. By Facts 1 and 2,
$$||A|| < ||A|| < |$$

The converse of Fact 3 is obviously false. Nevertheless, a suitable modification can be generalized to yield a necessary and sufficient condition for P(A) to be infinite.

Definition. Let A be an $n \times n$ matrix, and let J be a nonempty subset of $\{1, \ldots, n\}$. Then $\pi_J^n(A)$ denotes the matrix obtained by deleting from A those columns and rows whose indices are *not* in J.

Theorem 1. Let $A = \{A_1, \ldots, A_m\}$, each A_i an $n \times n$ matrix. P(A) is infinite if and only if there is a B in P(A) and a nonempty subset J of $\{1, \ldots, n\}$ such that $\pi_J^n(B)$ has Property U.

Proof. 'If'. Suppose B and J exist as stated. By Fact 3, $\{(\pi_J^n(B))^k\}$ is infinite. Now it is easy to check that $\pi_J^n(B^k) \ge (\pi_J^n(B))^k$, where \ge holds componentwise. This shows that $\{B^k\}$ and hence P(A) are infinite.

'Only if'. We proceed by double induction on the size measure (n, m) of A, where $(n_1, m_1) < (n_2, m_2)$ iff $n_1 < n_2$ or $(n_1 = n_2 \text{ and } m_1 < m_2)$. The base case n = 1 of the outer induction is trivial whereas the base case m = 0 of the inner induction holds vacuously. For the inductive step of the inner induction, consider $A = \{A_1, \ldots, A_m\}$ with $n \ge 2$ and $m \ge 1$ such that P(A) is infinite.

Case 1: None of A_1, \ldots, A_m has a zero row or zero column. Then in fact one of them must have Property U, as otherwise they are all permutation matrices, implying that $|P(A)| \le n!$, a contradiction.

- Case 2: At least one A_i has a zero row or zero column. Without loss of generality, assume that A_1 has zero bottom row (row n). Let $A' = \{A_2, \ldots, A_m\}$. If P(A') is infinite, then the desired B and J exist by the inner inductive hypothesis. Otherwise
- (1) P(A') is a finite set, say $\{C_1, C_2, \ldots, C_r\}$, where $C_1 = I$ (the identity matrix), and
- (2) it must be the case that the set of products of matrices in A which contain A_1 is infinite.

Now these products can be written in the form

$$C_{i_0}A_1C_{i_1}A_1C_{i_2}\cdots A_1C_{i_t}, t \ge 1.$$

Because there can only be s choices for C_{i_0} , in fact the set of products of the form

$$A_1C_{i_1}A_1C_{i_2}\cdots A_1C_{i_t}, \quad t\geq 1$$

must be infinite. Let $D_i = A_1C_i$, and $D = \{D_1, \ldots, D_s\}$. Then P(D) is infinite. But each D_i has zero bottom row and so can be written as

$$D_i = \left[\frac{X_i \mid Y_i}{0 \mid 0} \right].$$

Hence

$$D_{i_1}\cdots D_{i_t} = \begin{bmatrix} X_{i_1}\cdots X_{i_t} & X_{i_1}\cdots X_{i_{t+1}}Y_{i_t} \\ 0 & 0 \end{bmatrix}$$

which implies that $P(\{X_1, \ldots, X_s\})$ is infinite. Since the X_i 's have dimension n-1, by the outer inductive hypothesis there is a product $B' = X_{i_1} \cdots X_{i_t}$ and a nonempty $J \subseteq \{1, \ldots, n-1\}$ such that $\pi_J^{n-1}(B')$ has Property U. But then $\pi_J^{n-1}(B') = \pi_J^n(B)$ where $B = D_{i_1} \cdots D_{i_r}$. \square

Corollary 1. There is a nondeterministic linear space algorithm, and hence a deterministic square space algorithm, to decide, for an arbitrary set of matrices A, whether P(A) is infinite.

Proof. The nondeterministic algorithm is

```
B \coloneqq I;

do forever

guess some A_i in A;

B \coloneqq B \otimes A_i;

guess a nonempty J \subseteq \{1, \dots, n\};

if \pi_J^n(B) has Property U then [output('accept'); halt]

od
```

 \odot means that in the matrix multiplication the algorithm only keeps track of whether an entry is 0, 1, or ≥ 2 . This eliminates element growth so that the algorithm runs in linear space. The correctness of the algorithm follows from Theorem 1. The deterministic version is obtained by Savitch's simulation [5]. \square

3. The finite-ambiguity and finite-valuedness problems

We can use Corollary 1 to decide the finite-ambiguity problem for nondeterministic finite automata (nfa's). We shall consider only nfa's without ε -moves; extension to nfa's with ε -moves is straightforward. An nfa is a 5-tuple $M = \langle S, \Sigma, \delta, s_1, F \rangle$, where S, Σ , and F are the sets of states, input symbols, and accepting states, respectively, s_1 is the start state, and δ is a mapping from $S \times \Sigma$ into the set of all subsets of S. Given a string x, let $c_M(x)$ be the number of distinct accepting computations of M on input x. Note that $c_M(x) = 0$ if and only if x is not accepted.

We now describe an algorithm to decide if there exists an integer d such that $c_M(x) \le d$ for al. x in Σ^* .

Let $S = \{s_1, \ldots, s_n\}$. For each a in Σ construct an $n \times n$ matrix T_a such that

$$T_{\alpha}(i,j) = \begin{cases} 1 & \text{if } s_i \stackrel{a}{\rightarrow} s_j \text{ is an arc in } M, \\ 0 & \text{otherwise.} \end{cases}$$

Let $A = \{T_{\alpha} \mid a \in \Sigma\}$. For each $w = a_1 \cdots a_m$ in Σ^* , let T_w denote $T_{\alpha_1} \cdots T_{\alpha_m}$. It is easily shown by induction that $T_w(i, j)$ is the number of distinct computations of M that change state s_i to s_j on input w.

Now we can assume that each state s_i of M

- (1) can be reached from the start state s_1 , and
- (2) can each some accepting state,

since any states violating either condition can be deleted without changing the set of accepting computations. Clearly, if P(A) is finite, then M is finitely ambiguous. Conversely, suppose P(A) is infinite. Then there exists (i, j) such that for all k, there is some $w_k \in \Sigma^*$ such that $T_w(i, j) \ge k$. Let u, v be strings such that on input u (respectively v) M can change state from s_1 to s_i (respectively from s_j to an accepting state). Then for all k, $uw_k v$ has k distinct accepting computations so M is not finitely ambiguous. In fact, the proof of Theorem 1 shows that there is a string w such that $w_k = w^k$ for $k \ge 1$.

If M is finitely ambiguous, we can compute its degree of ambiguity by testing for d-ambiguity for $d = 0, 1, 2, \ldots$ The following nondeterministic algorithm accepts (M, d) such that M is not d-ambiguous by working with the set of matrices $A = \{T_a \mid a \text{ in } \Sigma\}$ as in Corollary 1:

```
B := I;

do forever

guess some A_i in A;

B := B \otimes A_i; (//the \otimes operation identifies all integers > d//)

if \sum_{s_i \in F} B(1, j) > d then [output ('accept'); half]

od
```

The deterministic version of this algorithm (cf. Corollary 1) decides whether M is d-ambiguous in space polynomial in size(M) + log d. Hence

Theorem 2. There is a polynomial space algorithm to decide, given an nfa M, whether it is finitely ambiguous. If M is finitely ambiguous, then its degree of ambiguity d can be computed in space polynomial in size(M) + log d.

The following proposition shows that it is unlikely that 'polynomial space' in Theorem 2 can be reduced to 'polynomial time'.

Proposition. It is PSPACE-complete to decide, given an nfa M and an integer $d \ge 0$, whether M is d-ambiguous.

Proof. By Theorem 2, we need only show PSPACE-hardness. In [4] it was shown that it is PSPACE-hard to decide, given a set $\{M_1, \ldots, M_k\}$ of deterministic finite automata (dfa's), whether there exists a string accepted by all the M_i 's. Clearly, we can construct an nfa M from M_1, \ldots, M_k such that M is (k-1) ambiguous if and only if M_1, \ldots, M_k do not accept a common string. The result follows. \square

A nondeterministic Mealy sequential machine (or simply, nsm) is a 6-tuple $M = \langle S, \Sigma, \Delta, \delta, s_1, F \rangle$. S, Σ, s_1 , and F are as in an nfa, and δ is a mapping from $S \times \Sigma$ into the set of all subsets of $S \times \Delta$. Thus, an nsm is an nfa without ε -moves that can output a single symbol per move. Given a string x in Σ^* , let $h_M(x)$ be the number of distinct outputs corresponding to accepting computations of M on input

x. Note that $h_M(x) = 0$ if and only if x is not accepted. M is finite-valued if there exists a nonnegative integer d such that $h_M(x) \le d$ for all x in Σ^* .

Theorem 3. There is an exponential space algorithm to decide, given an $nsm\ M$, whether it is finite-valued. if M is finite-valued, then the smallest integer d such that M is d-valued can be computed in space exponential in $size(M) + \log d$.

Proof. The algorithm consists of the following steps:

- (1) Let $\Gamma = \Sigma \times \Delta$. Clearly, the set $L_M = \{(a_1, b_1) \cdots (a_n, b_n) | n \ge 0, M$ on input $a_1 \cdots a_n$ has an accepting computation with output $b_1 \cdots b_n\}$ is a regular subset of Γ^* . Construct a dfa $M_1 = \langle S_1, \Gamma, \delta_1, S_1, F_1 \rangle$ accepting L_M .
- (2) Next construct from M_1 an nfa M_2 with state set $S_1 \times \Delta$, and start state (s_1, b_1) , where b_1 is any fixed element in Δ . The transitions in M_2 are defined as follows: If there is an arc

$$s \xrightarrow{(a,b)} t \text{ in } M_1$$

then define, for each c in Δ , the following arc in M_2 :

$$(s,c) \xrightarrow{a} (t,b).$$

The set of accepting states of M_2 is $F_1 \times \Delta$.

It is easily verified by induction that $c_{M_2}(x) = h_M(x)$ for each x in Σ^* . Hence, M_2 is finitely ambiguous if and only if M is finite-valued. The result follows from Theorem 2. \square

Remark. The finite-ambiguity problem can be shown undecidable for 1-turn pushdown automata without ε -moves by a reduction of the Post Correspondence Problem, and for ε -free counter machines by using the fact that it is undecidable for two arbitrary ε -free deterministic counter machines M_1, M_2 whether $L(M_1) \cap L(M_2)$ is empty [2]. The same techniques can be used to show that it is undecidable, for an arbitrary integer $d \ge 1$ and an arbitrary machine M known to be finitely ambiguous, whether M is d-ambiguous. For finite-turn counter machines, the d-ambiguity problem is decidable for each $d \ge 0$ [3], but the finite-ambiguity problem is open.

References

- [1] E.M. Gurari and O.H. Ibarra, A note on finite-valued and finitely ambiguous transducers, *Math. Systems Theory*, to appear.
- [2] J. Hartmanis and J.E. Hopcroft, What makes some language theory problems undecidable, J. Comput. System Sci. 4 (1970) 368-376.
- ⁽³⁾ O.H. Ibarra, On some decision questions concerning pushdown machines, *Theoret. Comput. Sci.*, to appear.

- [4] D. Kozen, Lower bounds for natural proof systems, *Proc. 18th Annual Symposium on Foundations of Computer Science* (1977) 254-266.
- [5] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. System Sci. 4 (1970) 177-192.
- [6] R.E. Stearns and H.B. Hunt III, On the equivalence and containment problem for unambiguous regular expressions, grammars, and automata, *Proc. 22nd Annual Symposium on Foundations of Computer Science* (1981) 74-81.