Mouvement des Corps Rigides, Cinématique et Dynamique

KIN-6839

François Bailly

15 Janvier 2020

François Bailly KIN-6839 15 Janvier 2020 1 / 85

- 1 Le Corps Rigide
- 2 Représentation Mouvement et Forces
- 3 Cinématique
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 2 / 85

- 1 Le Corps Rigide
 - Définition
 - Degrés de liberté
- Représentation Mouvement et Forces
- Cinématique
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 3 / 85

Le corps rigide - Définition :

Modèle de solide indéformable.

Ensemble de points dont les distances mutuelles sont constantes au cours du temps.

4 / 85

François Bailly KIN-6839 15 Janvier 2020

Le corps rigide - Définition :

Modèle de solide indéformable.

Ensemble de points dont les distances mutuelles sont constantes au cours du temps.

Un corps rigide Un corps souple

4 / 85

Le corps rigide - Définition :

Modèle de solide indéformable.

Ensemble de points dont les distances mutuelles sont constantes au cours du temps.

Un corps rigide Un corps souple

Représentation spatiale

Positions de tous les points du solide \rightarrow seulement 6 paramètres 6 = nombre de degrés de liberté d'un corps rigide

4 / 85

- 1 Le Corps Rigide
 - Définition
 - Degrés de liberté
- Représentation Mouvement et Forces
- Cinématique
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 5 / 85

Le corps rigide - Degrés de liberté :

Modèle de solide indéformable.

Ensemble de points dont les distances mutuelles sont constantes au cours du temps.

point	coords		contraintes indpt.		ddl
Α	3	-	0	=	3
В	3	-	1	=	2
C	3	-	2	=	1
	3	-	3	=	0
total					6

Représentation spatiale

Positions de tous les points du solide \rightarrow seulement 6 paramètres 6 = nombre de degrés de liberté (ddl) d'un corps rigide.

- 1 Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- Dynamique

7 / 85

François Bailly KIN-6839 15 Janvier 2020

Repère orthonormal direct :

Permet de représenter la configuration d'un corps rigide auquel il est fixé, par rapport à un autre repère \rightarrow translation 3D + rotation 3D.

Repère orthonormal direct :

Permet de représenter la configuration d'un corps rigide auquel il est fixé, par rapport à un autre repère \rightarrow translation 3D + rotation 3D.

Figure: Repérage d'un corps rigide dans l'espace

Figure: Règle de la main droite

- 1 Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- Dynamique

9 / 85

François Bailly KIN-6839 15 Janvier 2020

François Bailly KIN-6839 15 Janvier 2020 10 / 85

François Bailly KIN-6839 15 Janvier 2020 10 / 85

Matrice de rotation - Un exemple :

L'espace des rotations d'un corps rigide est de dimension 3. Mais il y a 9 composantes dans une matrice de rotation... Pourquoi ?

François Bailly KIN-6839 15 Janvier 2020 10 / 85

Matrice de rotation - Un exemple :

L'espace des rotations d'un corps rigide est de dimension 3. Mais il y a 9 composantes dans une matrice de rotation... Pourquoi ?

Les contraintes...

- 3 contraintes de normalité ($||x_b|| = ||y_b|| = ||z_b|| = 1$).
- 3 contraintes d'orthogonalité $(x_b \cdot y_b = y_b \cdot z_b = x_b \cdot z_b = 0)$.

$$R^T R = I, \quad \det R = 1$$

$$\Rightarrow R \in SO(3)$$

Special Orthogonal

Matrice de rotation - Propriétés :

- inverse : $R^{-1} = R^T \in SO(3)$ (quel intérêt en pratique ?)
- composition interne : $R_1R_2 \in SO(3)$
- association : $(R_1R_2)R_3 = R_1(R_2R_3)$
- non commutation : $R_1R_2 \neq R_2R_1$
- $x \in \mathbb{R}^3$, ||Rx|| = ||x||

Et l'ensemble SO(3) est un groupe munis de la composition (multiplication des matrices)...

12 / 85

François Bailly KIN-6839 15 Janvier 2020

Matrice de rotation - Propriétés :

- inverse : $R^{-1} = R^T \in SO(3)$ (quel intérêt en pratique ?)
- composition interne : $R_1R_2 \in SO(3)$
- association : $(R_1R_2)R_3 = R_1(R_2R_3)$
- non commutation : $R_1R_2 \neq R_2R_1$
- $x \in \mathbb{R}^3$, ||Rx|| = ||x||

Et l'ensemble SO(3) est un groupe munis de la composition (multiplication des matrices)...

Matrice de rotation - Utilisation :

- Représenter une orientation
- Changer de repère d'orientation
- Faire tourner un vecteur ou un repère

12 / 85

Figure: Rotations successives

$$R_{ab} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_{ac} = R_{ab}R_{bc} \qquad R_{ab} = R = Rot(z, 90^{\circ})$$

$$R_{ac} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \qquad R_{ac} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \qquad P'_{a} = Rpa \qquad R'_{ac} = RR_{ac} \text{ st. } R = Rot(z_a, 90^{\circ})$$

$$R''_{ac} = R_{ac}R \text{ st. } R = Rot(z_c, 90^{\circ})$$

$$R''_{ac} = R_{ac}R \text{ st. } R = Rot(z_c, 90^{\circ})$$

Chang. de repère (b \rightarrow a)

Orientations

Rotation

Changement de base endomorphisme - Rappel :

Soit E un espace vectoriel de type fini et ϕ un endomorphisme de E. Soient \mathscr{B}_E et \mathscr{B}_E' deux bases de E et $\mathscr{P} = \mathscr{P}_{\mathscr{B}_E \mathscr{B}_E'}$ la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' . Alors, la matrice associée à ϕ par rapport à la base \mathscr{B}_E et la matrice associée à ϕ par rapport à la base \mathscr{B}_E' sont liées par la formule :

$$[\phi]_{\mathscr{B}_E'} = \mathscr{P}^{-1}[\phi]_{\mathscr{B}_E} \mathscr{P}$$

François Bailly KIN-6839 15 Janvier 2020 14 / 85

Changement de base endomorphisme - Rappel :

Soit E un espace vectoriel de type fini et ϕ un endomorphisme de E. Soient \mathscr{B}_E et \mathscr{B}_E' deux bases de E et $\mathscr{P} = \mathscr{P}_{\mathscr{B}_E \mathscr{B}_E'}$ la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' . Alors, la matrice associée à ϕ par rapport à la base \mathscr{B}_E et la matrice associée à ϕ par rapport à la base \mathscr{B}_E' sont liées par la formule :

$$[\phi]_{\mathscr{B}_E'} = \mathscr{P}^{-1}[\phi]_{\mathscr{B}_E} \mathscr{P}$$

Lien avec ce qui précède :

$$R'_{ac} = RR_{ac}$$

 $R''_{ac} = R_{ac}R$

Changement de base endomorphisme - Rappel :

Soit E un espace vectoriel de type fini et ϕ un endomorphisme de E. Soient \mathscr{B}_E et \mathscr{B}'_E deux bases de E et $\mathscr{P} = \mathscr{P}_{\mathscr{B}_E \mathscr{B}'_E}$ la matrice de passage de \mathscr{B}_E à \mathscr{B}'_E . Alors, la matrice associée à ϕ par rapport à la base \mathscr{B}_E et la matrice associée à ϕ par rapport à la base \mathscr{B}'_E sont liées par la formule :

$$[\phi]_{\mathscr{B}_E'} = \mathscr{P}^{-1}[\phi]_{\mathscr{B}_E} \mathscr{P}$$

Lien avec ce qui précède :

$$R'_{ac} = RR_{ac}$$
$$R''_{ac} = R_{ac}R$$

$$\Rightarrow R_{ac}^{\prime\prime} = R^{-1} R_{ac}^{\prime} R$$

- Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 15 / 85

Les angles d'Euler - Une autre représentation :

C'est un ensemble de 3 angles qui paramétrisent 3 rotations successives autour de 3 axes, permettant de représenter l'orientation d'un solide dans l'espace.

Les angles d'Euler - Une autre représentation :

C'est un ensemble de 3 angles qui paramétrisent 3 rotations successives autour de 3 axes, permettant de représenter l'orientation d'un solide dans l'espace.

Les angles d'Euler - Le lien avec les matrices :

Chaque rotation d'Euler peut être représentée par une matrice de rotation autour de l'axe correspondant. Ainsi, les 3 rotations successives ne sont autre que le produit de 3 matrices, qui est aussi une matrice de rotation. Il est de même possible de retrouver un jeu d'angles d'Euler équivalent à partir d'une matrice de rotation quelconque.

Exemple d'une séquence ZX'Z":

$$A = Rot(\Psi, Z) \circ Rot(\theta, X') \circ Rot(\Phi, Z'')$$

= $B * C * D$

Figure: Exemple de séquence d'Euler (video)

$$B = \left[\begin{array}{ccc} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{array} \right], C = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{array} \right], D = \left[\begin{array}{ccc} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{array} \right].$$

François Bailly KIN-6839 15 Janvier 2020 17 / 85

Exemple d'une séquence ZX'Z":

$$A = Rot(\Psi, Z) \circ Rot(\theta, X') \circ Rot(\Phi, Z'')$$

= $B * C * D$

Exercice : Calculer B * C * D.

Figure: Exemple de séquence d'Euler (video)

$$B = \left[\begin{array}{ccc} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{array} \right], C = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{array} \right], D = \left[\begin{array}{ccc} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{array} \right].$$

François Bailly KIN-6839 15 Janvier 2020 17 / 85

Exemple d'une séquence ZX'Z'':

$$A = Rot(\Psi, Z) \circ Rot(\theta, X') \circ Rot(\Phi, Z'')$$

= $B * C * D$

Exercice : Calculer B * C * D.

Figure: Exemple de séquence d'Euler (video)

$$B = \left[\begin{array}{ccc} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{array} \right], C = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{array} \right], D = \left[\begin{array}{ccc} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{array} \right].$$

François Bailly KIN-6839 15 Janvier 2020 17 / 85

$$A = B * C * D$$

$$A = \left[\begin{array}{ccc} \cos(\psi)\cos(\varphi) - \sin(\psi)\cos(\theta)\sin(\varphi) & -\cos(\psi)\sin(\varphi) - \sin(\psi)\cos(\theta)\cos(\varphi) & \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\varphi) + \cos(\psi)\cos(\theta)\sin(\varphi) & -\sin(\psi)\sin(\varphi) + \cos(\psi)\cos(\theta)\cos(\varphi) & -\cos(\psi)\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{array} \right]$$

Exercice:

Pour la séquence ZX'Z'': f? st. : $f(A) = \{\Psi, \theta, \Phi\}$.

François Bailly KIN-6839 15 Janvier 2020 18 / 85

$$A = B * C * D$$

$$A = \left[\begin{array}{ccc} \cos(\psi)\cos(\varphi) - \sin(\psi)\cos(\theta)\sin(\varphi) & -\cos(\psi)\sin(\varphi) - \sin(\psi)\cos(\theta)\cos(\varphi) & \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\varphi) + \cos(\psi)\cos(\theta)\sin(\varphi) & -\sin(\psi)\sin(\varphi) + \cos(\psi)\cos(\theta)\cos(\varphi) & -\cos(\psi)\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{array} \right.$$

Exercice:

Pour la séquence ZX'Z'': f ? st. : $f(A) = \{\Psi, \theta, \Phi\}$.

Application:

$$R = \begin{bmatrix} 0.940 & -0.339 & 0.030 \\ 0.339 & 0.925 & -0.171 \\ 0.030 & 0.171 & 0.985 \end{bmatrix} \Rightarrow \{\Psi, \theta, \Phi\}?$$

François Bailly KIN-6839 15 Janvier 2020 18 / 85

Les angles d'Euler - Choix de la séquence en biomécanique ?:

- Doit représenter les rotations anatomiques le mieux possible
- La dernière rotation selon l'axe longitudinal du segment (vrai pour les os longs)
- Éviter le blocage de cardan
- Consulter les recommandations de l'ISB (attention aux controverses)

Les angles d'Euler - Limites :

Blocage de cardan : perte d'un degré de liberté (gimbal lock), qui survient quand les axes de deux des trois cardans nécessaires pour appliquer la rotation sont portés par la même direction.

- Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- Dynamique

Vitesse angulaire - Question :

Soit R_{ab} , la matrice représentant l'orientation relative de B par rapport à A. La vitesse angulaire de B est-elle \dot{R}_{ab} ? (Spoiler : non !)

Vitesse angulaire - Question :

Soit R_{ab} , la matrice représentant l'orientation relative de B par rapport à A. La vitesse angulaire de B est-elle \dot{R}_{ab} ? (Spoiler : non !)

Vitesse angulaire - Intuition :

Pour des raisons topologiques, 3 paramètres suffisent, sans générer de singularité.

Vitesse angulaire - Question :

Soit R_{ab} , la matrice représentant l'orientation relative de B par rapport à A. La vitesse angulaire de B est-elle \dot{R}_{ab} ? (Spoiler : non !)

Vitesse angulaire - Intuition :

Pour des raisons topologiques, 3 paramètres suffisent, sans générer de singularité.

Vitesse angulaire - Définition :

Toute vitesse angulaire peut être représentée par un axe de rotation instantané et une vitesse de rotation autour de cet axe.

Vitesse angulaire - Définition :

Toute vitesse angulaire peut être représentée par un axe de rotation instantané et une vitesse de rotation autour de cet axe.

$$||\hat{\omega}_a|| = 1$$
$$\omega_a = \hat{\omega}_a \dot{\theta}$$

Par exemple, $\dot{x}_b = \omega_a \times x_b = [\omega_a] x_b$

Exercice : expliquer pourquoi $\dot{x}_b = \omega_a \times x_b$.

Exercice : trouver $[\omega_a]$.

Vitesse angulaire - Définition :

Toute vitesse angulaire peut être représentée par un axe de rotation instantané et une vitesse de rotation autour de cet axe.

$$||\hat{\omega}_a|| = 1$$
$$\omega_a = \hat{\omega}_a \dot{\theta}$$

Exercice: trouver $[\omega_a]$.

Vitesse angulaire - Matrice antisymétrique :

On appelle [x] la matrice antisymétrique associée à $x = [x_1, x_2, x_3]^T$:

$$[x] = \left[\begin{array}{ccc} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{array} \right]. \text{ L'ensemble des matrices antisymétriques est}$$

appelé so(3).

Vitesse angulaire - Propriété :

•
$$\dot{R}_{ab} = [\dot{x}_b, \dot{y}_b, \dot{z}_b] = [\omega_a] R_{ab}$$

Vitesse angulaire - Dans le repère local :

$$\bullet \ \omega_b = R_{ba}\omega_a = R_{ab}^T\omega_a$$

François Bailly KIN-6839 15 Janvier 2020 23 / 85

- 1 Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 24 / 85

Transformation homogène - Rappel :

Le configuration spatiale d'un repère $\it b$ par rapport à un repère $\it a$, peut être décrite par :

- sa position, grâce au vecteur $p_{ab} \in \mathbb{R}^3$
- et sa rotation, grâce à la matrice de rotation $R_{ab} \in SO(3)$.

Transformation homogène - Définition :

On peut grouper cette description dans une matrice de $\mathbb{R}^{4\times4}$, appelée matrice de transformation homogène (TH), et définie comme suit :

$$T_{ab} = \begin{bmatrix} R_{ab} & p_{ab} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & p_1 \\ R_{21} & R_{22} & R_{23} & p_2 \\ R_{31} & R_{32} & R_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 R_{ab} $\{b\}$

L'ensemble des matrices TH est appelé

26 / 85

Transformation homogène - Propriétés :

• inverse :
$$T^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \in SE(3)$$

- composition interne : $T_1 T_2 \in SE(3)$
- association : $T_1(T_2T_3) = (T_1T_2)T_3$
- non commutation : $T_1 T_2 \neq T_2 T_1$

François Bailly KIN-6839 15 Janvier 2020 27 / 85

Transformation homogène - Propriétés :

• inverse :
$$T^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix} \in SE(3)$$

- composition interne : $T_1 T_2 \in SE(3)$
- association : $T_1(T_2T_3) = (T_1T_2)T_3$
- non commutation : $T_1 T_2 \neq T_2 T_1$

Transformation homogène - Utilisation :

- Représenter une configuration
- Changer de repère
- Déplacer un vecteur ou un repère

27 / 85

François Bailly KIN-6839 15 Janvier 2020

Figure: Déplacements successifs

$$T_{ab}$$
 T_{bc}
 T_{ac}

$$T_{ac} = \underbrace{T_{ab}}_{Chang. \ b \to a} T$$

Configurations

Changement de repère

<ロ > ← 回 > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □

Transformation homogène - Un exemple de déplacement :

Soit T, une TH représentant un déplacement composé d'une rotation de 90° sur l'axe z, suivie d'une translation de 2 unités sur l'axe y:

$$T = Trans([0,2,0]) \circ Rot(z,\frac{\pi}{2})$$

Transformation homogène - Un exemple de déplacement :

Soit T, une TH représentant un déplacement composé d'une rotation de 90° sur l'axe z, suivie d'une translation de 2 unités sur l'axe y:

$$T = Trans([0,2,0]) \circ Rot(z,\frac{\pi}{2})$$

Transformation homogène - Ordre d'application :

Soit 2 repères $\{a\}$ et $\{b\}$, de configuration relative T_{ab} . Appliquons T, introduite précédemment, au repère $\{b\}$:

- Multiplication à gauche : $T_{ab'} = TT_{ab}$. Les axes de transformations doivent être interprétés dans le repère $\{a\}$ (global).
- Multiplication à droite : $T_{ab''} = T_{ab}T$. Les axes de transformations doivent être interprétés dans le repère $\{b\}$ (local).
 - ⚠ L'ordre des transformation est inversé (translation puis rotation)...

François Bailly KIN-6839 15 Janvier 2020 29 / 85

Figure: Exemple d'application

François Bailly KIN-6839 15 Janvier 2020 30 / 85

Transformation homogène - Coordonnées homogènes :

If y a un problème de dimension pour appliquer une TH $(\in \mathbb{R}^{4\times 4})$ à un vecteur x de \mathbb{R}^3 ...

Donc on représente x en coordonnées homogènes : $x \mapsto \underline{x} \triangleq [x^T \ 1]^T \in \mathbb{R}^4$

Transformation homogène - Application à un vecteur :

- $\bullet ||T\underline{x}|| = ||\underline{x}||$
- $T_{ab} \underline{x}_b = \underline{x}_a$ (Changement de repère)

Transformation homogène - Représentation adjointe :

Soit $T(R,p) \in SE(3)$ une TH. On appelle $[Ad_T]$ sa représentation adjointe :

$$[\mathsf{Ad}_T] = \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right] \in \mathbb{R}^{6 \times 6}$$

François Bailly KIN-6839 15 Janvier 2020 32 / 85

Transformation homogène - Représentation adjointe :

Soit $T(R, p) \in SE(3)$ une TH. On appelle $[Ad_T]$ sa représentation adjointe :

$$[\mathsf{Ad}_T] = \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right] \in \mathbb{R}^{6 \times 6}$$

Représentation adjointe - Utilisation :

Cette notion s'appliquera au chapitre suivant, sur les vitesses généralisées.

François Bailly KIN-6839 15 Janvier 2020 32 / 85

- Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- Dynamique

François Bailly KIN-6839 15 Janvier 2020 33 / 85

Vitesse généralisée - Question :

Soit T_{ab} , la TH représentant la configuration relative de B \ A. La vitesse de B est-elle \dot{T}_{ab} ? (Spoiler : toujours pas !)

Vitesse généralisée - Intuition :

Pour des raisons topologiques, 6 paramètres suffisent, sans générer de singularité.

34 / 85

Vitesse généralisée - Rappel :

Toute déplacement d'un corps rigide peut être représentée par une translation le long d'un axe instantané $(\hat{\omega})$, suivie (ou précédée) par une rotation autour de cet axe (Théorème de Chasles-Mozzi).

Vitesse généralisée - Rappel :

Toute déplacement d'un corps rigide peut être représentée par une translation le long d'un axe instantané $(\hat{\omega})$, suivie (ou précédée) par une rotation autour de cet axe (Théorème de Chasles-Mozzi).

Vitesse généralisée - Rappel :

Toute déplacement d'un corps rigide peut être représentée par une translation le long d'un axe instantané $(\hat{\omega})$, suivie (ou précédée) par une rotation autour de cet axe (Théorème de Chasles-Mozzi).

Vitesse généralisée - Définition :

On appelle "pas" h, le rapport entre vitesse angulaire et vitesse de translation le long de l'axe ω . Par conséquent, la vitesse généralisée d'un corps rigide peut être représentée par le vecteur

$$\mathcal{V} = \left[\begin{array}{c} \omega \\ v \end{array} \right] = \left[\begin{array}{c} \dot{\theta} \hat{\omega} \\ (h\hat{\omega} + q \times \hat{\omega}) \dot{\theta} \end{array} \right] = \left[\begin{array}{c} \hat{\omega} \\ (h\hat{\omega} + q \times \hat{\omega}) \end{array} \right] \dot{\theta} = S \dot{\theta} \ ,$$

avec *S* appelé "screw axis", correspondant à l'axe normalisé de la vitesse généralisée.

4□ > 4□ > 4 = > 4 = > = 90

Vitesse généralisée - Déplacement :

•
$$\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \begin{bmatrix} \omega_a \\ v_a \end{bmatrix} = [\mathsf{Ad}_{T_{ba}}]\mathcal{V}_a$$

•
$$\mathcal{V}_a = \begin{bmatrix} \omega_a \\ v_a \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = [\mathsf{Ad}_{T_{ab}}]\mathcal{V}_b$$

François Bailly KIN-6839 15 Janvier 2020 38 / 85

Vitesse généralisée - Déplacement :

•
$$V_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \begin{bmatrix} \omega_a \\ v_a \end{bmatrix} = [Ad_{T_{ba}}]V_a$$

•
$$\mathcal{V}_a = \begin{bmatrix} \omega_a \\ v_a \end{bmatrix} = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = [\mathsf{Ad}_{T_{ab}}] \mathcal{V}_b$$

Lien avec la vitesse angulaire :

- $\bullet \ \omega_b = R_{ba} \omega_a = R_{ab}^T \omega_a$
- $\omega_a = R_{ab}\omega_b = R_{ba}^T\omega_b$

François Bailly KIN-6839 15 Janvier 2020 38 / 85

Forme matricielle vitesse angulaire - Rappel :

- $[\omega_a] = \dot{R}_{ab} R_{ab}^{-1} \in so(3) \rightarrow \mathsf{Global}$
- $[\omega_b] = R_{ab}^{-1} \dot{R}_{ab} \in so(3)$ (utiliser $R[\omega]R^T = [R\omega]$) \rightarrow Local

François Bailly KIN-6839 15 Janvier 2020 39 / 85

Forme matricielle vitesse angulaire - Rappel :

- $[\omega_a] = \dot{R}_{ab} R_{ab}^{-1} \in so(3) \rightarrow \mathsf{Global}$
- $[\omega_b] = R_{ab}^{-1} \dot{R}_{ab} \in so(3)$ (utiliser $R[\omega]R^T = [R\omega]$) \rightarrow Local

Vitesse généralisée - Proposition :

•
$$[\mathcal{V}_a] = \dot{T}_{ab} T_{ab}^{-1} = \begin{bmatrix} [\omega_a] & v_a \\ 0 & 0 \end{bmatrix} \in se(3) \rightarrow \mathsf{Global}$$

•
$$[\mathcal{V}_b] = T_{ab}^{-1} \dot{T}_{ab} = \begin{bmatrix} [\omega_b] & v_b \\ 0 & 0 \end{bmatrix} \in se(3) \rightarrow Local$$

L'ensemble des matrices de la forme $\begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}$, avec $[\omega] \in se(3)$ and $p \in \mathbb{R}^3$ est appelé se(3) et constitue une représentation matricielle de la vitesse généralisée d'un corps rigide.

39 / 85

- Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- 4 Dynamique

Coordonnées exponentielles - Retour aux rotations pures :

L'idée d'introduire une nouvelle représentation des rotations vient de la nécessité de lier explicitement un axe et son angle de rotation à la matrice de rotation correspondante.

Coordonnées exponentielles - Retour aux rotations pures :

L'idée d'introduire une nouvelle représentation des rotations vient de la nécessité de lier explicitement un axe et son angle de rotation à la matrice de rotation correspondante.

François Bailly KIN-6839 15 Janvier 2020 41 / 85

Coordonnées exponentielles - Retour aux rotations pures :

Cette rotation peut être interprétée comme une rotation autour de $\hat{\omega}$ à une vitesse unitaire, pendant θ secondes. [Quelles sont les autres interprétations possibles ?]

$$\dot{p}=\hat{\omega}\times p$$

$$\dot{p}=[\hat{\omega}]p\rightarrow \text{ \'Equation diff. ord. du premier ordre...}$$

$$\forall \theta, \quad p(\theta)=e^{[\hat{\omega}]\theta}p(0)$$

Exponentielle matricielle SO(3) - Définition :

Soit un vecteur $\hat{\omega}\theta \in \mathbb{R}^3$, avec $\hat{\omega}$ unitaire, l'exponentielle matricielle de $[\hat{\omega}\theta] \in so(3)$ est :

$$e^{[\hat{\omega}]\theta} = Rot(\hat{\omega}, \theta) = I + \sin\theta[\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2 \in SO(3)$$

C'est la formule de Rodrigues qui met en évidence que l'exponentielle matricielle transforme des éléments de so(3) (vitesses de rotation) en éléments de SO(3) (rotations). C'est donc une fonction d'intégration. Cette formule vient du développement en séries de Fourier de la fonction e.

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 9000

Exponentielle matricielle SO(3) - Définition :

Soit un vecteur $\hat{\omega}\theta \in \mathbb{R}^3$, avec $\hat{\omega}$ unitaire, l'exponentielle matricielle de $[\hat{\omega}\theta] \in so(3)$ est :

$$e^{[\hat{\omega}]\theta} = Rot(\hat{\omega}, \theta) = I + \sin\theta[\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2 \in SO(3)$$

C'est la **formule de Rodrigues** qui met en évidence que l'exponentielle matricielle transforme des éléments de so(3) (vitesses de rotation) en éléments de SO(3) (rotations). C'est donc une fonction d'intégration. Cette formule vient du développement en séries de Fourier de la fonction e.

Logarithme matriciel - Définition :

Il existe l'application réciproque, qui transforme des éléments de SO(3) (rotations) en éléments de so(3) (vitesses de rotation). C'est le logarithme matriciel :

$$\begin{array}{cccc} log & : & SO(3) & \rightarrow & so(3) \\ & R = e^{[\hat{\omega}]\theta} & \mapsto & [\hat{\omega}]\theta \end{array}$$

Coordonnées exponentielles - Les transformations homogènes :

Naturellement, on retrouve l'idée précédente avec les transformations homogènes. Le plus simple est de penser au théorème de Chasles-Mozzi.

François Bailly KIN-6839 15 Janvier 2020 44 / 85

Coordonnées exponentielles - Les transformations homogènes :

Naturellement, on retrouve l'idée précédente avec les transformations homogènes. Le plus simple est de penser au théorème de Chasles-Mozzi.

Exponentielle matricielle SE(3) - Définition :

Soit $\mathcal{V} \in \mathbb{R}^6$ la vitesse généralisée d'un corps rigide et $S = \begin{bmatrix} \omega \\ v \end{bmatrix}$ son axe généralisé associé. Alors, pour un temps/vitesse/déplacement de θ le long de cet axe, l'exponentielle matricielle de $[S]\theta \in se(3)$ est :

$$e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)\nu \\ 0 & 1 \end{bmatrix} \in SE(3)$$

C'est la généralisation de la **formule de Rodrigues** qui met en évidence que l'exponentielle matricielle transforme des éléments de se(3) (vitesses généralisées) en éléments de SE(3) (transformations homogènes). Cette formule est plus complexe à démontrer.

<ロ > → □ → → □ → → □ → → へ ○ ○

François Bailly KIN-6839 15 Janvier 2020 45 / 85

Logarithme matriciel - Définition :

Il existe l'application réciproque, qui transforme les éléments de SE(3) en éléments de se(3). C'est le logarithme matriciel :

$$\begin{array}{cccc} log & : & SE(3) & \rightarrow & se(3) \\ & & R = e^{[S]\theta} & \mapsto & [S]\theta \end{array}$$

- Le Corps Rigide
- Représentation Mouvement et Forces
 - Généralités
 - Matrices de rotation SO(3)
 - Les angles d'Euler
 - Vitesses angulaires so(3)
 - Transformations homogènes SE(3)
 - Vitesses généralisées se(3)
 - Représentation en coordonnées exponentielles
 - Forces et Moments
- Cinématique
- Dynamique

Forces et Moments - Introduction :

Soit $\{a\}$ et $\{b\}$, 2 repères. Soit une force f, appliquée en un point r. Le moment m_b généré par cette force, à l'origine de $\{b\}$ est :

$$m_b = r_b \times f_b$$

Forces et Moments - Représentation :

On peut grouper la force et le moment précédent dans un vecteur appelé torseur :

$$\mathscr{F}_b = \left[\begin{array}{c} m_b \\ f_b \end{array} \right]$$

Forces et Moments - Propriétés :

De la même manière qu'une TH peut agir sur un repère ou sur un vecteur, son adjoint peut agir sur un torseur :

$$\mathcal{F}_a = [\mathsf{Ad}_{T_{ba}}]^T \mathcal{F}_b$$

$$\mathscr{F}_b = [\mathsf{Ad}_{T_{ab}}]^T \mathscr{F}_a$$

Forces et Moments - Représentation :

On peut grouper la force et le moment précédent dans un vecteur appelé torseur :

$$\mathscr{F}_b = \left[\begin{array}{c} m_b \\ f_b \end{array} \right]$$

Forces et Moments - Propriétés :

De la même manière qu'une TH peut agir sur un repère ou sur un vecteur, son adjoint peut agir sur un torseur :

$$\mathscr{F}_a = [\mathsf{Ad}_{T_{ba}}]^T \mathscr{F}_b$$

 $\mathscr{F}_b = [\mathsf{Ad}_{T_{ab}}]^T \mathscr{F}_a$

Exercice : Démontrer ces relations. Partir du fait que la puissance $(V_k^T \mathscr{F}_k)$ est un invariant du repère choisi.

François Bailly KIN-6839 15 Janvier 2020 49 / 85

Forces et Moments - Exemple numérique :

Calculer le torseur appliqué par la pomme de masse m au niveau du capteur (en gris). On fait l'hypothèse d'une main sans masse.

Exercice : Comment trouver ce résultat trivial plus rapidement ?

- Le Corps Rigide
- 2 Représentation Mouvement et Forces
- Cinématique
 - Cinématique directe
 - Cinématique en vitesse
 - Cinématique inverse
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 51 / 85

Cinématique directe - Problématique générale :

Connaissant les configurations des articulations d'une chaîne cinématique, on souhaite calculer la configuration de l'effecteur final.

$$\theta = [\theta_1, \theta_2, ..., \theta_n]^T \mapsto T(\theta) \in SE(3)$$

François Bailly KIN-6839 15 Janvier 2020 52 / 85

Cinématique directe - Problématique générale :

Connaissant les configurations des articulations d'une chaîne cinématique, on souhaite calculer la configuration de l'effecteur final.

$$\theta = [\theta_1, \theta_2, ..., \theta_n]^T \mapsto T(\theta) \in SE(3)$$

Cinématique directe - Approches possibles :

- Trigonométrie → fastidieux
- ullet Produit des matrices de TH o paramètres de Denavit-Hartenberg
- Produit d'exponentielles en déterminant les axes généralisés de chaque articulation du système

Cinématique directe - Résolution :

- $T_{ab} = T_{a1} T_{12} T_{23} T_{3b}$
- $T_{ab} = T_{a1}e^{[S_1]\theta_1}e^{[S_2]\theta_2}T_{3b}$

François Bailly KIN-6839 15 Janvier 2020 54 / 85

Cinématique directe - Résolution :

- $T_{ab} = T_{a1} T_{12} T_{23} T_{3b}$
- $T_{ab} = T_{a1}e^{[S_1]\theta_1}e^{[S_2]\theta_2}T_{3b}$

Cinématique directe - Convention :

Dans la suite, on appellera x(t) la trajectoire de l'effecteur final, $\theta(t)$ la trajectoire articulaire de la chaîne et f la fonction de cinématique directe, telle que :

$$x(t) = f(\theta(t))$$

54 / 85

- Le Corps Rigide
- 2 Représentation Mouvement et Forces
- Cinématique
 - Cinématique directe
 - Cinématique en vitesse
 - Cinématique inverse
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 55 / 85

Cinématique en vitesse - Problématique

On cherche la relation entre la vitesse de l'effecteur final et la vitesse des articulations (vitesses relatives des corps de la chaîne).

Jacobienne des vitesses - Définition

Soit f la fonction de cinématique directe, et x la position de l'effecteur final, telles que :

$$x(t) = f(\theta(t))$$

En dérivant cette relation on obtient :

$$\dot{x}(t) = \frac{\partial f}{\partial \theta}(\theta)\dot{\theta}$$

 $\triangle \frac{\partial f}{\partial \theta}$ est une matrice $dim(x) \times dim(\theta)$

François Bailly KIN-6839 15 Janvier 2020 56 / 85

Jacobienne - Interprétation

Chaque ligne de la matrice jacobienne (il y en a autant que le nombre de ddl de x) contient des scalaires qui représentent la contribution de chaque degré de liberté de la chaîne cinématique à la vitesse de x sur le ddl correspondant.

⇒ Utile pour faire des analyses biomécaniques spécifiques ou pour savoir comment contrôler un robot !

- Le Corps Rigide
- 2 Représentation Mouvement et Forces
- Cinématique
 - Cinématique directe
 - Cinématique en vitesse
 - Cinématique inverse
- 4 Dynamique

François Bailly KIN-6839 15 Janvier 2020 58 / 85

Étant donnée une configuration désirée de l'effecteur final, trouver les configurations de la chaîne cinématique appropriées.

Sachant $X \in SE(3)$, trouver $\theta = [\theta_1, \theta_2, ..., \theta_n]^T$ tels que $T(\theta) = X$

François Bailly KIN-6839 15 Janvier 2020 59 / 85

Étant donnée une configuration désirée de l'effecteur final, trouver les configurations de la chaîne cinématique appropriées.

Sachant $X \in SE(3)$, trouver $\theta = [\theta_1, \theta_2, ..., \theta_n]^T$ tels que $T(\theta) = X$

Problème : il n'y a pas forcément de solution ou de solution unique à cette question...

Méthodes:

- Calculer une solution analytique quand c'est possible
- Utiliser des méthodes numériques itératives

Problème : il n'y a pas forcément de solution ou de solution unique à cette question...

Méthodes :

- Calculer une solution analytique quand c'est possible
- Utiliser des méthodes numériques itératives

Cinématique inverse - Méthode numérique

Méthode de Newton-Raphson : trouver une racine de la fonction $X-T(\theta)$. En partant d'une configuration initiale $\theta^{\{0\}}$, on calcule des incréments $\Delta\theta$ de configuration en inversant la dérivée de la cinématique directe par rapport aux configurations du système (Jacobienne). Si la solution initiale n'est pas trop mauvaise et s'il existe au moins une

Si la solution initiale n'est pas trop mauvaise et s'il existe au moins une solution, on converge vers une configuration θ telle que $T(\theta) = X$.

- Dynamique
 - La formulation Lagrangienne
 - La matrice de masse
 - La formulation Newton-Euler
 - La dynamique inverse Newton-Euler
 - La dynamique directe Newton-Euler

62 / 85

Formulation Lagrangienne de la dynamique - Définition :

Le Lagrangien ${\mathscr L}$ d'un système dynamique est définit par :

$$\mathcal{L}(\theta,\dot{\theta}) = E_c(\theta,\dot{\theta}) - E_p(\theta),$$

avec E_c l'énergie du système et E_p son énergie potentielle.

François Bailly KIN-6839 15 Janvier 2020 63 / 85

Formulation Lagrangienne de la dynamique - Définition :

Le Lagrangien ${\mathscr L}$ d'un système dynamique est définit par :

$$\mathcal{L}(\theta,\dot{\theta}) = E_c(\theta,\dot{\theta}) - E_p(\theta),$$

avec E_c l'énergie du système et E_p son énergie potentielle.

Formulation Lagrangienne - Équation du mouvement :

L'équation du mouvement d'un système poly-articulé soumis à des forces articulaires est :

$$\tau = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} - \frac{\partial \mathcal{L}}{\partial \theta},$$

avec au, le vecteur de forces articulaires. On peut réécrire cette équation :

$$\tau = M(\theta)\ddot{\theta} + C(\dot{\theta}, \theta)\dot{\theta} + g(\theta)$$

Formulation Lagrangienne de la dynamique - Interprétation :

$$\tau = M(\theta)\ddot{\theta} + C(\dot{\theta}, \theta)\dot{\theta} + g(\theta),$$

avec, $M(\theta)$ la matrice de masse, $C(\dot{\theta},\theta)$, la matrice de Coriolis et $g(\theta)$ un vecteur traduisant l'effet de la gravité sur les forces articulaires.

On retrouve tous les éléments de la deuxième loi de Newton (forces, masse, accélération $\to \tau, M, g, \ddot{\theta}$), à deux différences près : M dépend de θ et $C(\dot{\theta}, \theta)$.

François Bailly KIN-6839 15 Janvier 2020 64 / 85

Formulation Lagrangienne de la dynamique - Interprétation :

$$\tau = M(\theta)\ddot{\theta} + C(\dot{\theta}, \theta)\dot{\theta} + g(\theta),$$

avec, $M(\theta)$ la matrice de masse, $C(\dot{\theta},\theta)$, la matrice de Coriolis et $g(\theta)$ un vecteur traduisant l'effet de la gravité sur les forces articulaires.

On retrouve tous les éléments de la deuxième loi de Newton (forces, masse, accélération $\to \tau, M, g, \ddot{\theta}$), à deux différences près : M dépend de θ et $C(\dot{\theta}, \theta)$.

Explication simple : on travail avec des repères non inertiels, donc les équations de Newton ne s'appliquent pas directement (Les vitesses de rotations peuvent créer des forces articulaires !).

François Bailly KIN-6839 15 Janvier 2020 64 / 85

Formulation Lagrangienne de la dynamique - Analogie :

Soit une masse m, de vitesse $\dot{x} \in \mathbb{R}^3$. Sa quantité de mouvement p est :

$$p = m\dot{x}$$
.

La force f agissant sur cette masse est :

$$f = \frac{dp}{dt} = m\ddot{x}.$$

Formulation Lagrangienne de la dynamique - Analogie :

Soit une masse m, de vitesse $\dot{x} \in \mathbb{R}^3$. Sa quantité de mouvement p est :

$$p = m\dot{x}$$
.

La force f agissant sur cette masse est :

$$f = \frac{dp}{dt} = m\ddot{x}.$$

$$\triangle$$
 Ceci n'est vrai que si $\frac{dm}{dt} = 0$.
Si $m = m(x(t)) \Rightarrow f = \frac{dp}{dt} = m\ddot{x} + \frac{\partial m}{\partial x}\dot{x}\dot{x}$.

François Bailly KIN-6839 15 Janvier 2020 65 / 85

- Dynamique
 - La formulation Lagrangienne
 - La matrice de masse
 - La formulation Newton-Euler
 - La dynamique inverse Newton-Euler
 - La dynamique directe Newton-Euler

66 / 85

La matrice de masse - Propriétés :

La matrice de masse $M(\theta)$ précédemment introduite est symétrique définie positive :

- $x^T M(\theta) x > 0, \forall x \neq 0.$
- $M = M^T$

François Bailly KIN-6839 15 Janvier 2020 67 / 85

La matrice de masse - Propriétés :

La matrice de masse $M(\theta)$ précédemment introduite est symétrique définie positive :

- $x^T M(\theta) x > 0, \forall x \neq 0.$
- $M = M^T$

L'énergie cinétique Ec d'une chaîne poly-articulée est :

$$Ec(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta}$$

François Bailly KIN-6839 15 Janvier 2020 67 / 85

La matrice de masse - Propriétés :

La matrice de masse $M(\theta)$ précédemment introduite est symétrique définie positive :

- $x^T M(\theta) x > 0, \forall x \neq 0.$
- $M = M^T$

L'énergie cinétique *Ec* d'une chaîne poly-articulée est :

$$Ec(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta}$$

On calcule $M(\theta)$ par méthodes itératives.

François Bailly KIN-6839 15 Janvier 2020 67 / 85

- Le Corps Rigide
- 2 Représentation Mouvement et Forces
- Cinématique
- 4 Dynamique
 - La formulation Lagrangienne
 - La matrice de masse
 - La formulation Newton-Euler
 - La dynamique inverse Newton-Euler
 - La dynamique directe Newton-Euler

68 / 85

Formulation Newton-Euler - Introduction :

L'approche Lagrangienne se base sur une analyse énergétique du système suivie d'une formulation variationnelle.

L'approche Newton-Euler se base sur la dynamique classique d'un corps rigide, puis par récursion, l'applique à l'ensemble du système.

Formulation Newton-Euler - Un seul corps :

Soit un corps rigide de masse M, avec un repère $\{b\}$ attaché à son centre de masse. Soit $\mathcal{V}_b = \left[\begin{array}{c} \omega_b \\ v_b \end{array} \right]$ la vitesse généralisée et $\dot{\mathcal{V}}_b$ l'accélération de ce corps rigide. Le torseur nécessaire pour produire un telle accélération est donné par :

$$\mathscr{F}_b = \left[\begin{array}{c} m_b \\ f_b \end{array} \right] = \left[\begin{array}{c} I_b \dot{\omega}_b + [\omega_b] I_b \omega_b \\ M(\dot{v}_b + [\omega_b] v_b) \end{array} \right]$$

Ce sont les équations du mouvement pour un corps rigide seul.

François Bailly KIN-6839 15 Janvier 2020 70 / 85

Formulation Newton-Euler - La matrice d'inertie :

 I_b est appelée matrice d'inertie. Elle ne dépend que de la répartition géométrique des masses du solide. Elle symbolise la résistance de l'objet à sa mise en rotation selon les différents axes. En général :

$$I = \left[\begin{array}{ccc} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{array} \right]$$

François Bailly KIN-6839 15 Janvier 2020 71 / 85

Formulation Newton-Euler - La matrice d'inertie :

 I_b est appelée matrice d'inertie. Elle ne dépend que de la répartition géométrique des masses du solide. Elle symbolise la résistance de l'objet à sa mise en rotation selon les différents axes. En général :

$$I = \left[\begin{array}{ccc} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{array} \right]$$

 \triangle Son expression dépend du repère dans lequel elle est exprimé. Il existe un repère dans lequel cette matrice est diagonal \rightarrow simplification des calculs.

François Bailly KIN-6839 15 Janvier 2020 71 / 85

La matrice d'inertie - Exemple :

Dans cet exemple, le repère choisi exploite les symétries de l'objet. La matrice d'inertie I sera donc diagonale. Une idée de l'ordre relatif de ses termes ?

La matrice d'inertie - Exemple :

Dans cet exemple, le repère choisi exploite les symétries de l'objet. La matrice d'inertie I sera donc diagonale. Une idée de l'ordre relatif de ses termes ?

$$I_{xx} \approx I_{yy} >> I_{zz}$$

La matrice d'inertie - Propriétés :

La matrice d'inertie est :

- Définie positive
- Symétrique
- Liée à l'énergie cinétique en rotation : $E_{cr} = \frac{1}{2}\omega_b^T I_b \omega_b$

François Bailly KIN-6839 15 Janvier 2020 73 / 85

La matrice d'inertie - En pratique :

En biomécanique, comment estimer les paramètres inertiels des différents segments ?

- À partir de mesures cadavériques et d'équations de régression (contraignant, peu précis)
- À partir d'estimation volumique des segments et calculs géométriques (peu précis)
- À partir de la mesures des forces externes et exploitation des équations du mouvement (Thèse Couvertier)

74 / 85

- Le Corps Rigide
- 2 Représentation Mouvement et Forces
- Cinématique
- 4 Dynamique
 - La formulation Lagrangienne
 - La matrice de masse
 - La formulation Newton-Euler
 - La dynamique inverse Newton-Euler
 - La dynamique directe Newton-Euler

75 / 85

La dynamique inverse récursive - Idée :

Précédemment, on a vu les équations du mouvement d'un corps rigide. Elle correspondent à la dynamique inverse pour un seul corps $((\theta,\dot{\theta},\ddot{\theta})\mapsto\tau)$. Grâce au caractère arborescent d'une chaîne poly-articulée ouverte, on peut utiliser cette méthode récursivement.

François Bailly KIN-6839 15 Janvier 2020 76 / 85

La dynamique inverse récursive - Idée :

Précédemment, on a vu les équations du mouvement d'un corps rigide. Elle correspondent à la dynamique inverse pour un seul corps $((\theta,\dot{\theta},\ddot{\theta})\mapsto\tau)$. Grâce au caractère arborescent d'une chaîne poly-articulée ouverte, on peut utiliser cette méthode récursivement.

La dynamique inverse récursive - Passe avant :

En partant de la base de la chaîne, itérativement, on calcule les vitesses et accélérations généralisées de chaque corps de la chaîne. A chaque fois, la vitesse/accélération de la sous-chaîne parente s'ajoute à la contribution de l'articulation courante.

François Bailly KIN-6839 15 Janvier 2020 76 / 85

La dynamique inverse récursive - Idée :

Précédemment, on a vu les équations du mouvement d'un corps rigide. Elle correspondent à la dynamique inverse pour un seul corps $((\theta,\dot{\theta},\ddot{\theta})\mapsto\tau)$. Grâce au caractère arborescent d'une chaîne poly-articulée ouverte, on peut utiliser cette méthode récursivement.

La dynamique inverse récursive - Passe avant :

En partant de la base de la chaîne, itérativement, on calcule les vitesses et accélérations généralisées de chaque corps de la chaîne. A chaque fois, la vitesse/accélération de la sous-chaîne parente s'ajoute à la contribution de l'articulation courante.

La dynamique inverse récursive - Passe arrière :

En partant du bout de la chaîne, itérativement, on calcule le torseur nécessaire à la vitesse et accélération de chaque corps de la chaîne. A chaque fois, le torseur de la sous-chaîne parente s'ajoute à celui de l'articulation courante.

François Bailly KIN-6839 15 Janvier 2020 76 / 85

La dynamique inverse - Utilisation :

La dynamique inverse d'une chaîne poly-articulée permet donc de connaître les couples articulaires nécessaires à la réalisation d'un mouvement cinématique désiré ou enregistré. En robotique on s'en sert pour le contrôle, en biomécanique pour l'estimation des efforts articulaires.

La dynamique inverse - Utilisation :

La dynamique inverse d'une chaîne poly-articulée permet donc de connaître les couples articulaires nécessaires à la réalisation d'un mouvement cinématique désiré ou enregistré. En robotique on s'en sert pour le contrôle, en biomécanique pour l'estimation des efforts articulaires. Elle permet aussi de calculer la dynamique directe...

- Dynamique
 - La formulation Lagrangienne
 - La matrice de masse
 - La formulation Newton-Euler
 - La dynamique inverse Newton-Euler
 - La dynamique directe Newton-Euler

78 / 85

La dynamique directe - Idée :

Pour visualiser l'objectif de la dynamique directe, on peut s'appuyer sur la formulation Lagrangienne. On veut résoudre :

$$\tau = M(\theta)\ddot{\theta} + C(\dot{\theta}, \theta)\dot{\theta} + g(\theta),$$

en $\ddot{\theta}$, connaissant $\theta, \dot{\theta}, \tau$, pour un système à n DDLs.

François Bailly KIN-6839 15 Janvier 2020 79 / 85

La dynamique directe - Idée :

Pour visualiser l'objectif de la dynamique directe, on peut s'appuyer sur la formulation Lagrangienne. On veut résoudre :

$$\tau = M(\theta)\ddot{\theta} + C(\dot{\theta}, \theta)\dot{\theta} + g(\theta),$$

en $\ddot{\theta}$, connaissant $\theta, \dot{\theta}, \tau$, pour un système à n DDLs.

La dynamique directe - Méthode :

- Par 1 appel à la dynamique inverse on obtient : $C(\dot{\theta},\theta)\dot{\theta}+g(\theta)$ en imposant $\ddot{\theta}=0$.
- Pour i=1..n appels à la dynamique inverse on obtient $M_i(\theta)$ en imposant $\ddot{\theta}_i=1$ et $\ddot{\theta}_{j\neq i}=\dot{\theta}=g=0$.

François Bailly KIN-6839 15 Janvier 2020 79 / 85

La dynamique directe - Résolution :

En connaissant tous les termes de l'équation, il ne reste plus qu'à écrire :

$$\ddot{\theta} = M(\theta)^{-1} (\tau - C(\dot{\theta}, \theta)\dot{\theta} - g(\theta)),$$

François Bailly KIN-6839 15 Janvier 2020 80 / 85

La dynamique directe - Résolution :

En connaissant tous les termes de l'équation, il ne reste plus qu'à écrire :

$$\ddot{\theta} = M(\theta)^{-1} (\tau - C(\dot{\theta}, \theta)\dot{\theta} - g(\theta)),$$

La dynamique directe - Utilisation :

La dynamique directe (DD) permet de connaître l'accélération du système à chaque instant, connaissant sa configuration (positions, vitesses) et les forces qui s'appliquent. Elle permet donc, en l'utilisant conjointement avec un intégrateur (INT), de réaliser des simulations.

$$(\theta, \dot{\theta}, \tau)_{prev} \xrightarrow{DD} \ddot{\theta} \xrightarrow{INT} (\theta, \dot{\theta})_{nouveau}$$

François Bailly KIN-6839 15 Janvier 2020 80 / 85

Pour aller plus loin...

- K.-M. Lynch, F.-C. Park Modern Robotics - Mechanics, Planning and Control. Cambridge University Press, 2017.
- R. Featherstone
 Rigid body dynamics algorithms.
 Springer, 2014.

François Bailly KIN-6839 15 Janvier 2020 81 / 85