

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 18.1

Der Wasserdampfpartialdruck ungesättigter feuchter Luft, die von einer Klimaanlage angesaugt wird, beträgt $0.031\,\mathrm{bar}$.

- a) Wie groß ist bei einem Gesamtdruck von 1 bar der Wassergehalt x?
- b) Durch Befeuchten wird x auf 0.04 erhöht. Auf welchen Wert ändert sich der Partialdruck?
- c) Bei welcher Temperatur ist die Luft mit diesem Wassergehalt gesättigt?
- d) Wie groß ist die spezifische Enthalpie der feuchten Luft h_{1+x} in beiden Fällen bei $T=36.5\,^{\circ}\text{C}$?

Aufgabe 18.2

 $5000\,\mathrm{m^3/h}$ feuchte Luft strömen mit $15\,^\circ\mathrm{C},$ einer relativen Feuchte von $60\,\%$ und einem Gesamtdruck von $1.013\,25\,\mathrm{bar}$ durch eine Rohrleitung. Zu bestimmen sind:

- a) der Partialdruck des Wasserdampfes,
- b) der Massenstrom des Wasserdampfes in der feuchten Luft.

Stoffdaten für die Aufgaben 1) und 2):

Luft und Wasserdampf sind als ideale Gase zu behandeln.

Universelle Gaskonstante	$R_{ m m}$	=	$8.3145\mathrm{J/(molK)}$
Molmasse Luft	$M_{ m L}$	=	$28.96\mathrm{g/mol}$
Molmasse Wasser	$M_{ m W}$	=	$18.02\mathrm{g/mol}$
Spez. Wärmekapazität Luft	$c_{p,\mathrm{L}}^o$	=	$1.007\mathrm{kJ/(kgK)}$
Spez. Wärmekapazität Wasserdampf	$c_{p,\mathrm{D}}^{o}$	=	$1.86\mathrm{kJ/(kgK)}$
Flüssiges Wasser	$c_{p,\mathrm{W}}^{o}$	=	$4.18\mathrm{kJ/(kgK)}$
Verdampfungsenthalpie ($_{\rm H_2O}$) bei 0 °C	$\Delta h_{v,o}$	=	$r_0 = 2500 \mathrm{kJ/kg}$
Schmelzenthalpie (H_{2O}) bei 0 °C	$\Delta h_{s,o}$	=	$333\mathrm{kJ/kg}$

Die Enthalpie für trockene Luft und flüssiges Wasser bei 0°C ist 0kJ/kg.

Für die Dampfdruckkurve von Wasser gelte die Näherungsgleichung: $\ln(p/p_0) = 14.091 - \frac{5232 \,\mathrm{K}}{T} \quad (p_0 = 1 \,\mathrm{bar}, \, T \,\mathrm{in} \,\mathrm{K}).$