# Leis de Newton

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de outubro de 2022

#### Sumário

- Primeira e terceira leis de Newton
- Segunda lei de Newton
- Apêndice

#### O que é força?

Quando exercemos um esforço para puxar ou empurrar um objeto estamos na verdade interagindo com ele. Essa interação capaz de alterar o seu estado de movimento é chamado de força. Podemos dizer que, para que o efeito de uma força fique totalmente definido, será necessário especificar o seu módulo, direção e sentido.



Todas as forças atuando na caixa.

# **Corollary**

Toda força é uma grandeza vetorial.

#### Medida de força

Um exemplo de força é a "força peso", que representa a interação da Terra atraindo objetos que possuem massa. No caso da força, a unidade de medida escolhida pelos físicos é o peso do quilograma-padrão, ou seja, o peso de um o objeto que possui a massa do quilograma-padrão.

Outra unidade muito usada para medir força é o Newton. Esta unidade é utilizada para satisfazer as unidades de medida do sistema internacional. O seu fator de conversão seria

$$1 kgf = 9,8N.$$

## Corollary

Um quilograma-força (1kgf) é o peso do quilograma-padrão, ao nível do mar e a 45 graus de latitude.

#### Inércia

Medimos a inércia como a capacidade de um objeto mudar o seu estado de movimento sob a ação de uma força. Ou seja, se estiver em repouso ele permanecerá em repouso, e se estiver em movimento, ele permanecerá com a mesma velocidade.



Objeto com maior inércia.



Objeto com menor inércia.

## Corollary

Geralmente a inércia aumenta com a massa do objeto.

#### Primeira Lei de Newton

#### Corollary

Se nenhuma força resultante atua sobre um objeto, a velocidade não pode mudar, ou seja, o objeto não pode sofrer aceleração.

Na figura ao lado, se  $F_1 = F_2$  e  $F_3 = F_4$  temos que a força resultante será zero, portanto o objeto permanecerá com a mesma velocidade  $\vec{v}$ .

## Corollary

Mesmo que um objeto esteja submetido a várias forças, se a resultante das forças for zero, o objeto não sofrerá aceleração.



Forças atuando em um objeto se movendo com velocidade constante.

## Terceira Lei de Newton - Ação e reação

## Terceira Lei de Newton

Quando dois objetos (1 e 2) interagem, as forças qua cada objeto exerce sobre o outro são iguais em módulo e têm sentidos opostos,

$$\vec{F}_{12} = -\vec{F}_{21}$$
.

#### Corollary

A somatória das forças no sistema é zero.



Sistema carregador+caixa e representação da terceira lei de Newton.

## Segunda Lei de Newton

#### Corollary

A força resultante que age sobre um objeto é igual ao produto da massa do objeto pela aceleração. Em termos matemáticos, podemos escrever como

$$\vec{F}_{res} = m\vec{a}$$
.

#### Corollary

No SI a unidade de medida da força é Newton (N),

$$1 N = 1 kg m/s^2$$



Relação entre força, massa e aceleração.

## Equilíbrio de uma partícula

Sabendo que a segunda lei de Newton é uma equação vetorial, é conveniente separá-la em três equações, uma para cada eixo do sistema de coordenadas xyz,

$$F_{res,x} = ma_x; \quad F_{res,y} = ma_y,$$

A componente da aceleração em relação a um dado eixo é causada apenas pela soma das componentes das forças em relação a esse eixo e não por componentes de forças em relação a qualquer outro eixo.



Diagrama de objeto isolado da esfera M.

## Força gravitacional

Considere o objeto de massa m caindo em quedra livre. Nesse caso a única força atuando nele é a força da gravidade. Relacionando com a segunda lei de Newton  $(\vec{F}=m\vec{a})$  temos

$$\vec{F}=m\vec{g}$$
.

Considerando que o deslocamento que o objeto realiza é insignificante ao tamanho da Terra, podemos dizer que  $\vec{g}$  é praticamente constante.

Aceleração da gravidade em diferentes latitudes.

| Latitude | $g(m/s^2)$ |  |
|----------|------------|--|
| 0        | 9,7803     |  |
| 30       | 9,7932     |  |
| 45       | 9,8017     |  |
| 60       | 9,8191     |  |
| 90       | 9,8322     |  |
|          |            |  |

#### Corollary

O peso P de um objeto é igual ao módulo da força gravitacional que age sobre o objeto, aplicando nele uma aceleração igual a g.

#### **Força Normal**

Considere um bloco de massa m pressionando uma mesa para baixo devido a força da gravidade  $\vec{F}_g$ . Pela terceira lei de Newton, a mesa irá empurrar o bloco para cima aplicando uma força  $\vec{F}_N$  com a mesma intensidade.



Forças peso  $\vec{P}$  e normal  $\vec{N}$ .

# **Corollary**

- ✓ Quando um objeto exerce uma força sobre uma superfície, a superfície (ainda que aparentemente rígida) se deforma e empurra o objeto com uma força normal que é perpendicular à superfície;
- ✓ A força normal será sempre perpendicular a superfície de contanto.

unda lei de Newton Apêndice ⊙⊙⊙oooo ⊙○

## Tração

Quando uma corda é presa a um objeto e esticada, a corda aplica ao objeto uma força  $\vec{T}$  orientada na direção da corda. Essa força é chamada força de tração.

- ✓ A corda é frequentemente considerada sem massa;
- ✓ As forças nas duas extremidades da corda são iguais em módulo.



Tração atuando na corda e nos blocos A e B.

## Força de atrito

A experiência mostra que, quando um objeto não lubrificado pressiona uma superfície nas mesmas condições, a força de atrito possui três propriedades:

- ✓ Se o objeto não se move, a força de atrito se iguala em módulo a força  $\vec{F}$ ;
- ✓ A força de atrito possui valor máximo de  $f_{max} = \mu_s N$ , onde  $\mu_s$  é o coeficiente de atrito estático e N o módulo da força normal;
- ✓ Se o objeto começa a deslizar na superfície, o módulo da força de atrito diminui rapidamente para um valor dado por  $f_k = \mu_k N$ , onde onde  $\mu_k$  é o coeficiente de atrito cinético,  $\mu_k < \mu_s$ .

## Relação entre força de atrito e a força atuando no objeto (continuação)

- ✓ A força de atrito é zero se não há outras forças atuando no objeto;
- ✓ A força de atrito é igual a força externa se o objeto está em repouso;
- ✓ A força de atrito máxima é igual a  $\mu_s N$ .
- ✓ Se o objeto está em movimento a força de atrito é igual a  $\mu_k N$ .



Relação entre força de atrito e a tração na corda.

#### Força de arrasto

Quando um objeto se movimenta na presença de um fluido como o ar, ele experimenta uma força de resistência ao seu movimento chamada força de arrasto dado por

$$F_{arrasto} = bv^2$$
,

onde b é o coeficiente de arrasto que depende da densidade do ar e da área de contato do objeto.  $F_{arrasto}$  aumenta com o quadrado da velocidade, portanto à medida que o objeto acelera  $F_{arrasto}$  aumenta.



Força de arrasto atuando em um objeto em queda.

## Força de arrasto (continuação)

A força de arrasto é contrária a força da gravidade, portanto à medida que  $F_{arrasto}$  aumenta a aceleração diminui. Portanto, a velocidade atinge um limite chamado velocidade terminal  $v_t$ . Aplicando a segunda lei de Newton,

$$bv^2 - F_a = 0.$$

#### Velocidade terminal

$$v_t = \sqrt{\frac{F_g}{b}}.$$



Velocidade terminal.

## Força centrípeta

Vimos que um objeto que descreve uma trajetória circular de raio r está sujeito a uma aceleração apontada para o centro da circunferência chamada aceleração centrípeta,  $a=v^2/r$ . Pelas leis de Newton, a aceleração em um objeto é devido a uma força resultante, portanto podemos dizer que existe uma força sendo aplicada no caso do movimento circular. Essa força é chamada de força centrípeta,

$$F=m\frac{v^2}{r}$$
.



Força centrípeta e velocidade tangencial em um movimento circular.

# Alfabeto grego

| Alfa    | Α | $\alpha$                |
|---------|---|-------------------------|
| Beta    | В | $\beta$                 |
| Gama    | Γ | $\gamma$                |
| Delta   | Δ | $\delta$                |
| Epsílon | Ε | $\epsilon, \varepsilon$ |
| Zeta    | Z | $\zeta$                 |
| Eta     | Η | $\eta$                  |
| Teta    | Θ | $\theta$                |
| lota    | 1 | $\iota$                 |
| Capa    | Κ | $\kappa$                |
| Lambda  | ٨ | $\lambda$               |
| Mi      | Μ | $\mu$                   |

V IT-

| Ni      | Ν | $\nu$           |
|---------|---|-----------------|
| Csi     | Ξ | ξ               |
| ômicron | 0 | 0               |
| Pi      | П | $\pi$           |
| Rô      | Р | $\rho$          |
| Sigma   | Σ | $\sigma$        |
| Tau     | Τ | au              |
| ĺpsilon | Υ | v               |
| Fi      | Φ | $\phi, \varphi$ |
| Qui     | X | $\chi$          |
| Psi     | Ψ | $\psi$          |
| Ômega   | Ω | $\omega$        |
|         |   |                 |

# Referências e observações<sup>1</sup>

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- https://brasilescola.uol.com.br/fisica/
  movimento-uniforme.htm
- https://br.freepik.com/fotos-premium/
  rodovia-suburbana-no-final-da-noite-vestigios-de-farois-e-lan
  20424758.htm

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

<sup>&</sup>lt;sup>1</sup>Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.