Method of Estimation / Elimination of Trend Component Method 3: (Method of Differencing/Box-Jenkin's Method) B = backward shift operation V = I-B . $Y_t = m_t + b \varepsilon_t$ where $m_t = c_0 + c_1 t + \cdots + c_k t^k$ 7 8 = 8 - 8 - 1 €-1 $\nabla m_{t} = (k-1)$ -th degree polynomial Agt = DKMf + DK FF = kick + Vk Et Since E_t is assumed to be stationary, and ∇^k is a linear filter, VKE, is also stationary. Observed TRE is used to predict TRE the From this $\hat{\epsilon}_{th}$ is obtained. Using this math is estimated which is used to predict deth Seasonal <u>Component</u>: s, s2, ..., sd are seasonal effects (d=12 months)

Cos Consider the trend eliminated series
$$(3_1 - \widehat{m}_t)$$

$$\omega_{\mathbf{k}} := \frac{1}{\ell} \sum_{j=0}^{\ell} \left(\mathbf{j}_{\mathbf{k}+jd} - \widehat{\mathbf{m}}_{\mathbf{k}+jd} \right) , \mathbf{k} = 1(1)d$$

$$\sum_{k=1}^{d} \omega_{k} \quad \text{may not be equal to 0}.$$

We calculate seasonal components by

$$\hat{s}_{k} = \omega_{k} - \frac{1}{d} \sum_{k=1}^{d} \omega_{i}$$
, $k = 1(1)d$

 \hat{m}_{t} were extimated earlier.

We re estimate m_t from $(y_t - \hat{s}_t)$ and denote it \hat{m}_t

Estimated random_component,
$$\hat{\epsilon}_t = \hat{a}_t - \hat{m}_t - \hat{s}_t$$

Again_ Et is assumed to be stationary.

From this we again predict Enth

Werestimate Mit for from here

and continue so on. We have \hat{m}_{t+h} in known and so in

Sth. Using all these The is predicted.

Method4: (Estimation of Seasonal Component by Differencing)

$$B_d A_t = A_{t-d}$$

 $\nabla_d \mathcal{J}_{t} = (I - B_d) \mathcal{J}_{t} = \mathcal{J}_{t} - \mathcal{J}_{t-d}$ [seasonal component eleminated strend may be there]

show that, a linear filter {a;} passes an arbitrary polynomial of degree k without distortion, i.e.

$$m_{t} = \sum_{j=0}^{\infty} a_{j} m_{t-j}$$
, $\forall k-th$ degree polynomial $m_{t} = c_{0} + c_{1} + \cdots + c_{k} + c_{k}$

$$\sum_{j} a_{j} = 1$$

and
$$\sum_{j} j^{k} a_{j} = 0$$
, $n = 1,...,k$

Take, $m_t = t^{n_t}k$

$$(4)^{t_k} = \sum_{j=0}^{\infty} a_j (\xi^{-j})^{t_k}$$

Comparing coeff. both side we have

$$\sum_{i=0}^{\infty} a_i = 1$$

and

$$\sum_{i=0}^{\infty} a_i \binom{n}{n} (-i)^{n-n} = 0 , s_n = 1(1) k$$

$$\Leftrightarrow \sum_{j=0}^{\infty} (j)^{2n} \alpha_{j} = 0 , n = 1(1)^{2n}$$

Show that the filter with coeff. $[a_{-2}, a_{-1}, a_0, a_1, a_2] = \frac{1}{9}[-1,4,3,4,-1]$ basses third degree polynomial and elemenates seasonal components of period 3=3.

$$m_{t} = -\frac{1}{9} m_{t-2} + \frac{4}{9} m_{t-1} + \frac{3}{9} m_{t} + \frac{4}{9} m_{t+1} - \frac{1}{9} m_{t+2}$$

ETS,
$$\sum a_{j} = 1$$

 $\sum j^{n} a_{j} = 0$, $n = 1, 2, 3$

$$\sum a_{j} = 1$$
 is clear.

$$\sum j a_j = \frac{2-4+4-2}{9} = 0$$

$$\sum_{j} j^{2} \alpha_{j} = \frac{-4 + 4 + 4 - 4}{9} = 0$$

$$\sum_{j=3}^{3} a_{j} = \frac{8-4+4-8}{9} = 0$$

$$S_{\pm} = (P, Q, -P-Q, P, Q, -P-Q), \dots$$

.. seasonal variation is deminated using this filter.

■ Find a filter of the form 1+αβ+ββ²+8β³ (i.e. find α,β,8) that passes linear files trends without distortion and that eleminates arbitrary seasonal component of period 2.

$$\rightarrow$$
 Take, $m_t = a + bt$

So by the condⁿ,
$$(1+\alpha B+\beta B^2+\delta B^3) (a+bt) = a+bt$$

$$\therefore 1 + \alpha + \beta + \vartheta = 1$$

$$bt(1+\alpha+\beta+8) - b(\alpha+2\beta+38) = bt$$

$$\therefore \quad \alpha + \beta + 8 = 0 \quad \dots \quad \langle i \rangle$$

$$\alpha+2\beta+3\emptyset=0$$
 $\langle ii\rangle$

Now, the seasonal component $s_t = (P, -P)$

$$\therefore (1+\alpha\beta+\beta\beta^2+8\beta^3)/s_t=0$$

$$\Rightarrow$$
 $1+\beta-8-66=0...(iii)$

Solving (i), (ii) and (iii) use house values for α , β , δ .

Exc. Show that I some stationary time series {xe} whose ACVF

(a)
$$\gamma(t)=1$$
, $\forall t=0,\pm 1,\pm 2,...$

(e)
$$\eta(h) = 1 + \cos(\frac{\pi h}{2}) + 2\cos(\frac{\pi h}{4})$$
, $\forall h = 0, \pm 1, \pm 2,...$

Suppose X be a r.v. with finite variance.

$$\therefore X_{t} = X, \forall t \quad \text{has } ACVF \text{ of the form (a)}$$

$$X_{t} = 600 (-1)^{t} X$$
, $4 \pm hos$ ACVF of the form (b)

 $X_{t} = \frac{1}{2} X_{t-1} + Z_{t}$

$$\therefore \frac{\theta}{1+\theta^2} = 0.4$$

$$\Rightarrow (\theta - 2)(2\theta - 1) = 0$$

Since
$$101 < 1$$
, $\theta = \frac{1}{2}$

Consider, $X_t = A \cos(\omega t) + B \sin(\omega t)$, $t = 0, \pm 1, \pm 2, \dots$ 図

Find mean and ACVF.

A,B id N(0,1)

Hence show that $cos(\omega h) = \eta(h)$ is non-neg. definite.

E(X^f) = 0

 $Vor(x_t) = 1$

 $con(x_t, x_{t+n}) = con(Acon(\omega t) + Bsin(\omega t), Acon(\omega (t+n)) + Bsin(\omega (t+n)))$

= cos (w(t+h)) cos (wt) & Vor(A)

+ sin (w (t+h)) sin (wt) Voor (B)

= cos (wh)

 $\therefore g(h) = \cos(\omega h)$

:. cos (wh) is non-neg. definite.

\$ 50 m of (c): 1

\$5.00 (D) Let

X,, X2, X3, X4, X5 19 N(0,1)

Define Ut = X, 4+

Vt = X2 con (五本) + X3 sin(三文), サナ

Wt = X4 cos (It) + X5 sin(It), ++

has ACVF. of the form (e) Z = U + V + 12W+

 $\{\omega_t\} \sim \omega \, \kappa \, (o, \sigma_{\omega}^2)$

{Zt}~ WN(0, 522)

cou (W, Z,) = 0, 4 t, s

 $\Delta_t := X_t + \omega_t$ where $X_t \sim AR(1)$

 $x_{t} - \phi x_{t-1} = Z_{t}$, $|\phi| < 1$

(9) Show It is stationary and find its ACVF.

(i) Show that $Y_{t} - \phi Y_{t-1}$ is 1-correlated. Hence recon MA(1).

(ii) Show that Y_t in ARMA(1,1)

Find its parameters in terms of \$, Tw2, Tz2

 $Fef E(x^f) = \gamma r$

: E(7f) = m+0=m

Boodxess 8, (h) be the ACVF of Xt

: $8/(h) = 8/(h) 8/(0) = 6/(h) \frac{\sigma_z^2}{1-8/2}$

: (Ou (Yt, Jth) = 8,(4) + (ou (Wt, Wth))

=> & (P) = & (P)

: Yt is stationary.

(Ou (Vt, Vt+h) = (Ou (Zt + Wt - & Wt-1, Zt+h + Wt+h - & Wt+h-1)

 $= \begin{cases} -\phi_{\omega}^{2} & \text{if } |h| = 1 \\ 0 & \text{otherwise} \end{cases}$

 $Y_t - \emptyset Y_{t-1} = P_t + \Theta P_{t-1}$ [Since V_t is MA(1)] 0

.. yt is ARMA(1,1)

$$(1+0)$$
 $\sigma^2 = \sigma_z^2 + (1+\phi^2)\sigma_\omega^2$

$$\Rightarrow \theta \sigma^2 = -\phi \sigma_{\omega}^2 \dots 2$$

From (1) and (2) we have

$$\frac{\theta}{1+\theta^2} = \frac{-\phi\sigma_{\omega}^2}{\sigma_{z}^2 + (1+\phi^2)\sigma_{\omega}^2}$$

$$\Rightarrow \Theta\left(\sigma_{z}^{2} + (1+\phi^{2})\sigma_{\omega}^{2}\right) + \Theta^{2}\left(\phi\sigma_{\omega}^{2}\right) + \left(\phi\sigma_{\omega}^{2}\right) = 0$$

Discriminant
$$\geqslant 0$$

 $\therefore \hat{\Theta}$ be $\approx \text{sol}^{2}$
 $\therefore \hat{\sigma}^{2} = -\frac{\phi}{\hat{\Theta}} \sigma_{\omega}^{2}$

$$\therefore \hat{G}^2 = -\frac{\phi}{\hat{\Theta}} \nabla_{\omega}^2$$

Prediction Problem in Time 600 Series

X1, X2,..., Xn is a time series (stationary/non-stationary)

Best predictor to minimize expected square evoron loss

to $E(X_{n+h}|X_1,...,X_m)$, h>0.

But it is difficult to handle and cumbersome to compute

So we use Best Linear Predictor.

It only requires Voriance-Covariance Function. and mean Lunction.

Linear Predictor:

$$P_{n}(X_{n+n}) = a_0 + a_1 X_n + a_2 X_{n-1} + \dots + a_n X_1$$

We want to estimate the values of $a_0, a_1, ..., a_n$ by minimiseing $E = E((x_{n+n} - a_0 - a_1 x_n - a_2 x_{n-1} - \cdots - a_n x_1)^2)$ over a_i 's.

Suppose one considering Stationary Time Series with ACVF 8(h)

Normal Equation

$$\frac{\partial E}{\partial a_i} = 0$$
 , i=0,1,2,...,n

with
$$i=0$$
, $E[x_{n+n}-a_0-a_1x_n-\cdots-a_nx_1]=0$ — 0
with $i=j$, $E[(x_{n+n}-a_0-a_1x_n-\cdots-a_nx_1)x_{n-j+}]=0$, $j=1(i)n$.

From O,

$$\mu - \alpha_0 = \mu \sum_{i=1}^{\infty} \alpha_i$$

$$\Rightarrow a_0 = \mu \left(1 - \sum_{i=1}^n a_i\right)$$

$$\Rightarrow \mu = \frac{a_0}{1 - \sum_{i=1}^{n} a_i}$$

From the rest of the normal eqn,

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right)_{n,j=1}^{\infty} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)_{n,j=1}^{\infty} \frac{1}{2} \left(\frac{1}{2} \left($$

So
$$P_m(X_{m+h}) = \mu_{s'} + \sum_{i=1}^{m} \hat{a}_i \left(X_{m-i+1} - \mu \right)$$

Proporties of the Predictor

1)
$$E[evolon_1] = 0$$
, i.e. $E[X_{n+h} - P_n(X_{n+h})] = 0$

- 2> Cov (Prozon, predictor)=0 i.e. $E[(x_{n+h} P_n(x_{n+h})) \times_{n-i+1}]=0$
- 3) $E(\text{even}^2) = 8(0) 2 \text{ gin} 8_n(h) + \text{gin} \Gamma_n \text{ gin}$ = $8(0) - \text{gin} 8_n(h) \Gamma_n \text{ gin} = \text{satisfies} \Gamma_n \text{ gin} = \text{sin}(h)$
- 4) $P_n(X_{n+h})$ is unique, whatever be solution to normal eqn. $(\Gamma_n \mod be \ singular)$
- \rightarrow Let the two values of predictor $P_m(x_{n+n})$ and $P_m(x_{n+n})$

We shall show,
$$E(\tilde{Z}^2)=0$$
 where $\tilde{Z}=Z_1-Z_2$

$$E\left[\widetilde{z}_{J}\right] = E\left[\left(\left(x^{n+\mu} - b^{\mu}\left(x^{n+\mu}\right)\right) - \left(x^{n+\mu} - b^{\mu}\left(x^{n+\mu}\right)\right)\right]_{J}^{2}\right]$$

$$X_n = \phi X_{n-1} + Z_n$$
, $Z_n \sim WN(0, \sigma^2)$
 $Cov_i(Z_m, X_n) = 0$, $\forall m > n$
 $1\phi 1 < 1$

$$\delta(0) = \frac{1 - \phi_{2}}{\omega_{1}^{2}}$$

$$P_{m}(x_{n+n}) = \sum_{i=1}^{n} a_{i} x_{m-i+1}$$

$$\mu = 0$$

$$\Gamma_{n} a_{m} = g_{n}(1)$$

$$\int_{0}^{1} \phi d^{2} ... \phi^{n-1} d^{n-1} d^{n-1$$

$$Q_{n} \frac{\partial_{n}(x)}{\partial x_{n+1}} = (\phi, 0, ..., 0)$$

$$P_{m}(x_{n+1}) = \sum_{i=1}^{n} \alpha_{i} x_{n-i+1} = \phi x_{n-i}$$

$$E[\omega_{\text{mon}}] = E[Z_{n+1}] = \omega_{\text{mon}}$$

$$E[Z_{n+1} \mid X_{m}] = 0 \quad \forall m \leqslant n$$

This also emplies over =
$$Z_{n+1}$$

 $P_n(X_{n+1}) = \emptyset X_n$

General Prediction Problem

I is predicted on the basis of 1 and
$$\omega = (\omega_n, \omega_{n-1}, ..., \omega_1)$$

$$P(Y|\omega) = \mu_Y + \Omega_m'(\omega - \mu_\omega)$$
 [to get Ω_m']

an is solution to
$$\Gamma_n = 8n \quad \text{where} \quad \Gamma_n = \left(\left(\cos \left(\omega_{n-i+1}, \omega_{n-j+1} \right) \right) \right)$$

$$R' = \cos(\lambda, \omega)$$

$$P(\Delta I \omega) = \mu_{\Delta} + \rho_{\alpha} (\omega - \mu_{\omega})$$

2>
$$E[(y-P(y|\omega))\omega] = 0$$

3> $P(\alpha y_1 + \beta y_2 + \delta |\omega) = \alpha P(y_1|\omega) + \beta P(y_2|\omega) + \delta$

4>
$$P\left(\sum_{i=1}^{k}\alpha_{i}\omega_{i}; \left|\frac{\omega}{2}\right|\right) = \sum_{i=1}^{k}\alpha_{i}\omega_{i}$$

5>
$$P(X|\omega) = E(X)$$
 if $Cov(X, \omega) = 0$

6)
$$P(P(\Delta I \vee, \omega) | \omega) = P(\Delta I \omega)$$

$$\mathbb{E}\left\{(\mathbf{Z}-\mathbf{P}(\mathbf{Z}|\mathbf{\omega},\mathbf{V}))=0\right\} \Rightarrow \mathbb{E}\left(\mathbf{P}(\mathbf{Z}|\mathbf{\omega})-\mathbf{P}(\mathbf{Z}|\mathbf{\omega},\mathbf{V})\right)=0$$

$$\mathbb{E}\left(\left((2-\rho(2|\alpha))(\omega)=0\right)\right)=0$$

$$\mathbb{E}\left(\left((2-\rho(2|\alpha))(\omega)=0\right)\right)=0$$

To estimate x_2 value in term of known x_1 and x_2 value

$$W = (X_1, X_3)$$

$$Q_n' = (Q_1, Q_2)$$

$$Q_n = \frac{\sigma^2}{1 - \beta^2} (\phi, \phi)$$

$$\Gamma_{m} = \frac{\sigma^{2}}{1 - \sigma^{2}} \begin{pmatrix} 1 & \sigma^{2} \\ \sigma^{2} & 1 \end{pmatrix}$$

Now,
$$\frac{\sigma^{2}}{1-\beta^{2}}\begin{pmatrix} 1 & \beta^{2} \\ \beta^{2} & 1 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} = \begin{pmatrix} \beta \\ \beta \end{pmatrix}$$

$$= \frac{1}{1-\phi^4} \begin{pmatrix} \phi - \phi^3 \\ \phi - \phi^3 \end{pmatrix}$$

$$= \frac{1}{1+\cancel{0}^2} \left(\cancel{0} \right)$$

- predictor = $\frac{\phi}{1+\phi^2}(x_1+x_3)$ $E(evicon^2) = Vor(x_2) - an 8n = \frac{\sigma^2}{1-\beta^2} - \frac{\sigma^2}{1-\beta^2} \frac{1}{1+\beta^2} 2\beta^2$