MATH2349 Semester 1, 2018

Assignment 3

Suraj Kannan - s3668855

RPubs link: https://rpubs.com/surajkannan/Assignment 3 (https://rpubs.com/surajkannan/Assignment 3)

Groups 1. Ancy Antappan - s3691722 2. Suraj Kannan - s3668855 3. Hari Hara Priya Kannan - s3673037

Required packages

The packages required for this project are loaded as the first step.

library(readr)
library(tidyr)
library(dplyr)
library(outliers)
library(Hmisc)
library(readxl)

Executive Summary

Objective of the study was to create a dataset which could be used to predict the relationship between Number of accidents and the total vehicle ownership in Australian states for the year 2016.

Initially the data is loaded and explored by inspecting the summary. In Tidy tasks, the column names are changed and the values are factorized for merging the datasets. Then, the dataset is checked for missing values and the missing values are handled by replacing the mean values. Then, the dataset is checked for any outliers and visualised using a boxplot. Later, the data is merged and mutated and transformed to obtain the desired output.

Data

For the analysis two datasets were considered

1.Data describing the number of crashes and variables which explains the scenarion in which crashes occured - https://bitre.gov.au/statistics/safety/fatal_road_crash_database.aspx (https://bitre.gov.au/statistics/safety/fatal_road_crash_database.aspx)

2. Number of vehicle ownership in Australian States

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/9208.012%20months%20ended%2030%20June%202016? OpenDocument

(http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/9208.012%20months%20ended%2030%20June%202016? OpenDocument)

Road_fatalities <- read.csv("C:\\Sem2\\Data Preprocessing\\Assignment3\\Road_Fatalit
ies.csv")</pre>

head(Road_fatalities)

		State <fctr></fctr>	Mo <fctr></fctr>		Dayweek <fctr></fctr>	Time <fctr></fctr>	Crash.Type <fctr></fctr>	BusInvolvement <fctr></fctr>	•
1	20181062	NSW	April	2018	Sunday	19:00	Multiple vehicle	No	
2	20181062	NSW	April	2018	Sunday	19:00	Multiple vehicle	No	
3	20181070	NSW	April	2018	Saturday	9:05	Multiple vehicle	No	
4	20181003	NSW	April	2018	Friday	16:45	Multiple vehicle	No	
5	20181045	NSW	April	2018	Tuesday	1:30	Single vehicle	No	
6	20181107	NSW	April	2018	Sunday	18:50	Single vehicle	No	
6 r	ows 1-9 of	14 colu	mns						

Hide

Total_Vehicles_and_Km <- read_excel("Total Vehicles and Km.xlsx")
head(Total_Vehicles_and_Km)</pre>

Country	Total Km travelled in million	Number of Vehicles
<chr></chr>	<dbl></dbl>	<dbl></dbl>
New South Wales	70696.00	5333001
Victoria	66850.00	4611155
Queensland	54437.00	3791028
South Australia	16915.00	1343791
Western Australia	29434.00	2212489
Tasmania	4.92	457922
6 rows		

Understand

Let us first check the dimensions and class of objects in both the datasets

Hide

str(Road_fatalities)

```
'data.frame':
               48982 obs. of 14 variables:
$ Crash.ID
                                 : int 20181062 20181062 20181070 20181003 20181045 20181107 20
181107 20181014 20181033 20181101 ...
                                 : Factor w/ 8 levels "ACT", "NSW", "NT",...: 2 2 2 2 2 2 2 2 2 2 2 2
$ State
                                 : Factor w/ 12 levels "April", "August", ...: 1 1 1 1 1 1 1 1 1 1 1
$ Month
                                 $ Year
$ Dayweek
                                 : Factor w/ 7 levels "Friday", "Monday", ..: 4 4 3 1 6 4 4 4 3 1
. . .
$ Time
                                 : Factor w/ 1394 levels "-9", "0:00", "0:01", ...: 654 654 1340 519
89 644 644 445 1012 798 ...
$ Crash.Type
                                 : Factor w/ 3 levels "Multiple vehicle",..: 1 1 1 1 3 3 3 3 3 3
. . .
                                 : Factor w/ 3 levels "-9", "No", "Yes": 2 2 2 2 2 2 2 2 2 2 ...
$ Bus..Involvement
$ Rigid.Truck..Involvement
                                 : Factor w/ 3 levels "-9", "No", "Yes": 2 2 2 2 2 2 2 2 2 2 ...
$ Articulated.Truck..Involvement.: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1 1 ...
$ Speed.Limit
                                 : int 100 100 60 80 110 50 50 100 50 100 ...
$ Road.User
                                 : Factor w/ 9 levels "-9", "9", "Bicyclist (includes pillion pass
engers)",...: 4 8 8 4 6 4 8 6 4 4 ...
$ Gender
                                 : Factor w/ 4 levels "-9", "Female", ...: 3 2 3 2 3 3 3 3 3 ...
                                 : int 70 68 94 19 38 24 25 62 24 43 ...
 $ Age
```

\$ Number of Vehicles : num 5333001 4611155 3791028 1343791 2212489 ...

We can observe that the dataset has multiple data types such as factor, int, chr and num.

\$ Total Km travelled in million: num 70696 66850 54437 16915 29434 ...

Tidy & Manipulate Data I

Our goal is to join the datasets by state. But we can see that in order to do so, the data is not in tidy format. Let us start by inpecting the column we wish to join.

```
names(Road_fatalities)
```

```
[1] "Crash.ID" "State"
[3] "Month" "Year"
[5] "Dayweek" "Time"
[7] "Crash.Type" "Bus..Involvement"
[9] "Rigid.Truck..Involvement" "Articulated.Truck..Involvement."
[11] "Speed.Limit" "Road.User"
[13] "Gender" "Age"
```

Hide

```
names(Total_Vehicles_and_Km)
```

- [1] "Country" "Total Km travelled in million"
- [3] "Number of Vehicles"

The states are mentioned under the Country column in the total_vechicles_and_km dataset while it is named as state in the road fatalirties dataset.

As a first step, we change the column name.

Hide

```
names(Total_Vehicles_and_Km)[1]<-"State"
names(Total_Vehicles_and_Km)</pre>
```

- [1] "State" "Total Km travelled in million"
- [3] "Number of Vehicles"

The "State" variable is character type in the total_vehicles_and_km dataframe by default and this to be converted to factor variable.

Hide

```
Total_Vehicles_and_Km$State<-factor(Total_Vehicles_and_Km$State,levels=c("New South Wales", "Vict oria","Queensland","South Australia","Western Australia","Tasmania","Northern Territory","Austral ian Capital Territory"),
```

```
labels = c("NSW", "VIC","QLD","SA","WA","TAS","NT","ACT"))
class(Total Vehicles and Km$State)
```

[1] "factor"

Hide

levels(Total_Vehicles_and_Km\$State)

```
[1] "NSW" "VIC" "QLD" "SA" "WA" "TAS" "NT" "ACT"
```

Tidy & Manipulate Data II

The "State" variable is character type in the total_vehicles_and_km dataframe by default and this to be converted to factor variable.

Total_Vehicles_and_Km\$Country<-factor(Total_Vehicles_and_Km\$State,levels=c("New South Wales", "Victoria","Queensland","South Australia","Western Australia","Tasmania","Northern Territory","Australian Capital Territory"),

labels = c("NSW", "VIC","QLD","SA","WA","TAS","NT","ACT"))

class(Total_Vehicles_and_Km\$State)

[1] "factor"

Hide

levels(Total_Vehicles_and_Km\$State)

```
[1] "NSW" "VIC" "QLD" "SA" "WA" "TAS" "NT" "ACT"
```

Scan I

subsetting function was used to eliminate some variables which are outside the scope of the study

Hide

```
Road Fatalities1<-select(Road fatalities,-(Dayweek:Articulated.Truck..Involvement.))</pre>
```

The study focuses only on the year 2016, hence filter function usesd to filter the data for year 2016

Hide

Road_Fatalities1<-filter(Road_Fatalities1, Year==2016)</pre>

Checking for missing variables/inconsistencies

Hide

colSums(is.na(Road_Fatalities1))

Crash.ID	State	Month	Year Spee	d.Limit	Road.Use
0	0	0	0	0	(
Gender	Age				
0	0				

no "NA"s but all the unavailable information is coded as "-9", hence changing -9 to NA, then checking for missing variables.

Hide

```
Road_Fatalities1$Speed.Limit[Road_Fatalities1$Speed.Limit == -9] <- NA
Road_Fatalities1$Gender[Road_Fatalities1$Gender == -9] <- NA</pre>
```

colSums(is.na(Road_Fatalities1))

Crash.ID	State	Month	Year Spee	d.Limit	Road.User
0	0	0	0	9	0
Gender	Age				
1	0				

We can observe there is 1 NA in Gender and the 9 "NA"'s in Speed.Limit.

For eliminating NA in the Speed.Limit column, we imputed average NA's with mean value

Hide

Road_Fatalities1\$Speed.Limit[is.na(Road_Fatalities1\$Speed.Limit)]<-mean(Road_Fatalities1\$Speed.Li
mit,na.rm=TRUE)
colSums(is.na(Road_Fatalities1))</pre>

Crash.ID	State	Month	Year Spee	d.Limit	Road.User
0	0	0	0	0	0
Gender	Age				
1	0				

NA succesfully eliminated for speed limit category.

Scan II

Outliers for Speed.Limit \$ Age checked using boxplot function

Hide

boxplot((Road_Fatalities1\$Speed.Limit))

boxplot((Road_Fatalities1\$Age))

From boxplot, it can be predicted that there is no outliers

Merging

new = summarise(group_by(Road_fatalities,State),count =n())
new

State <fctr></fctr>	count <int></int>
ACT	452
NSW	15234
NT	1517
QLD	9626
SA	4216
TAS	1440
VIC	10759
WA	5738
8 rows	

Hide

S1<-left_join(new,Total_Vehicles_and_Km,by="State")
S1</pre>

State <chr></chr>	count <int></int>	Total Km travelled in million <dbl></dbl>	Number of Vehicles <dbl></dbl>	Country <fctr></fctr>
ACT	452	3746.00	284345	NA
NSW	15234	70696.00	5333001	NA
NT	1517	2053.00	157944	NA
QLD	9626	54437.00	3791028	NA
SA	4216	16915.00	1343791	NA
TAS	1440	4.92	457922	NA
VIC	10759	66850.00	4611155	NA
WA	5738	29434.00	2212489	NA

Mutate

Percentage of accidents in each state

mutate(S1, percentageofaccidents=round((S1\$count/sum(S1\$count))*100,2))

	co <int></int>	Total Km travelled in million <dbl></dbl>	Number of Vehicles <dbl></dbl>	Coun percentage	eofac
ACT	452	3746.00	284345	NA	
NSW	15234	70696.00	5333001	NA	
NT	1517	2053.00	157944	NA	
QLD	9626	54437.00	3791028	NA	
SA	4216	16915.00	1343791	NA	
TAS	1440	4.92	457922	NA	
VIC	10759	66850.00	4611155	NA	
WA	5738	29434.00	2212489	NA	
8 rows					
→					•

Transform

The histogram is right skewed as the frequency of counts is crowded towards the left. This indicates that the mean counts is greater than the median value. Below is the histogram plotted representing the trsnaformation.

hist(S1\$count, main = "Histogram of Count")

To normalize the distribution ,log transformation is applied to reduce the skewness and make it normally distributed.

Hide

hist(log10(S1\$count))

