Lesson Objectives

- 1. Zero Product Property
- 2. Solve by Factoring GCF
- 3. Solve by Factoring $x^2 + bx + c = 0$ into binomial factors
- 4. Solve by Square Root Method

- 5. Solve by the Quadratic Formula
- 6. Using the Discriminant
- 7. Solve by Graphing (find *x*-intercepts) on Calculator

A. Zero Product Property

If $a \cdot b = 0$, then either

or

EXAMPLE: Solve.

$$(13s + 8)(5s - 15) = 0$$

[*Beecher 3.2.1]

By the Zero Product Property,

Set each factor (parentheses) **equal to zero**: 13s + 8 = 0 or 5s - 15 = 0

$$13s + 8 = 0$$

or
$$5s - 15 = 0$$

Solve each equation.

(both are solutions)

$$s =$$

or
$$s =$$

B. Solve by Factoring GCF

• **EXAMPLE:** Solve the quadratic equation.

$$9x^2 = 54x$$

NEVER divide by a _____! Don't do this: $\frac{9x^2}{9x} = \frac{54x}{9x}$

no, No, NO!!! Bad! Stop it! Very illegal!

Set your equation **EQUAL** to **ZERO**!

$$9x^2 = 54x$$

Then, you can **FACTOR out the GCF**:

Now, use the **Zero Product Property**:

$$= 0$$
 or

$$= 0$$

Solve each equation:

(both are solutions)

$$x =$$

$$x =$$

C. Solve by Factoring $x^2 + bx + c = 0$ into Binomial Factors

• **EXAMPLE:** Solve the equation by factoring. $x^2 = 3x + 40$

$$x^2 = 3x + 40$$

[*Blitzer 1.5.3-Setup & Solve]

Set your equation **EQUAL** to **ZERO**! $x^2 = 3x + 40$

$$x^2 = 3x + 40$$

Try to factor:

Open 2 sets of parentheses with variable in the first position:

$$=$$
 $(x)(x)$

Next, we need 2 integers whose SUM is _____ and whose PRODUCT is _____

To finish factoring, we need 2 numbers:							
Product = -40			Sum = -3				Winner?
(opposite signs)			(opposite signs means SUBTRACT))	
±	· ∓	= -40	±	+ (∓) = ∓		
<u>±</u>	• ∓	= -40	±	+ (∓) = ∓		
±	• ∓	= -40	±	+ (∓) = ∓		
±	· ∓	= -40	±	+ (∓) = ∓		

$$x^2 - 3x - 40$$
 factors into:

Rewrite the equation in factored form $x^2 - 3x - 40 = 0$

$$x^2 - 3x - 40 = 0 = 0$$

By the Zero Product Property, set each factor (parentheses) equal to zero:

$$= 0$$

$$= 0$$

So,
$$x =$$

or
$$x =$$

(both are solutions)

The solution set is { , }.

D. Solve by the _____ Method The **Square Root Method** is used when only the **SQUARED** term and the term are present. That is, the **Square Root Method** is used when your equation is of the form: $ax^2-c=0.$ There is no x term – only an x^2 term and a constant term. **EXAMPLE:** Solve the quadratic equation. Check the answer. $4x^2 - 256 = 0$ [3.2.5] Because no "x" term, **ISOLATE** the **SQUARED** part: $4x^2 = 256$ (add 256) Continue to **ISOLATE** the **SQUARED** part: (divide by 4) (take square root) (What number could you square to get 64?) **REALLY IMPORTANT!** Don't forget the ____ symbol! x = or $\{$ **EXAMPLE:** Solve the following equation. $(x + 21)^2 = 11$ [3.2.29] First, _______ the **SQUARED** part. (DONE!) $(x + 21)^2 = 11$ Simplify, if needed. Don't forget the "plus or minus" Solve for x by subtracting 21: x =(proper format is _____ part first, followed by the ____ part) } Can also be written as: {

E. Solve by the Quadratic Formula

The **Quadratic Formula:** Given $ax^2 + bx + c = 0$ (with $a \ne 0$)

Make sure you do the following:

- 1. Set your equation **EQUAL** to ______, if needed.
- 2. Correctly identify the values for *a*, *b*, and *c*.
- 3. Watch out for negatives! (Use parentheses)
- **EXAMPLE:** Solve the quadratic equation. $x^2 + 6x + 9 = 14$ [3.2-4]

Set your equation **EQUAL** to **ZERO**! = 0 (subtracted 14)

You can try to factor first. If it doesn't factor, use the **Quadratic Formula**.

NOTE: You can ALWAYS use Q.F. for ANY quadratic equation, even if other methods do (or don't) work.

Use **Quadratic Formula**: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ with a = b, b = c

Plug in your values: x = ----

Simplify inside the square root (no decimals!) x = ------=

Simplify the square root itself:

(pairs and spares, Section R.7)

Now update the solution above: x = ---- = ----

The common denominator is 2. **PULL them APART!** $x = \frac{1}{2} = \frac{1}{2} \pm \frac{1}{2}$

Reduce each fraction (ignore square root part) $x = \frac{1}{2} \pm \frac{1}{2} = \frac{1}{2}$

The solutions are: $x = \pm$ or $\{$

Mrs. E! Is there...maybe...an EASIER way to do that last example?

Let's revisit it:

EXAMPLE: Solve the quadratic equation $x^2 + 6x + 9 = 14$ [3.2-4]

There is an interesting opportunity here! Look at just the LEFT side of the equation – do NOT set it equal to zero.

$$x^2 + 6x + 9$$

Let's **factor** that.

$$x^2 + 6x + 9 =$$

Revisit the equation:

$$x^2 + 6x + 9 = 14$$

Put factored form on the LEFT.

$$)^2 = 14$$

 $)^2 = 14$ Use **square root** property.

Simplify. Don't forget the \pm symbol.

Subtract 3.

}

The solutions are: x =

F. Using the Discriminant

Recall the **Quadratic Formula**: Given $ax^2 + bx + c = 0$ (with $a \ne 0$)

the solutions are:

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The expression inside the square root (the radicand), the _____ is called the , which can determine the **number of** to the quadratic equation.

QUADRATIC EQUATIONS AND THE DISCRIMINANT

To determine the number of real solutions to $ax^2 + bx + c = 0$ with $a \neq 0$, evaluate the discriminant $b^2 - 4ac$.

1. If
$$b^2 - 4ac = 0$$
, there are real solutions.

2. If
$$b^2 - 4ac = 0$$
, there is real solution.

• **EXAMPLE:** Use the discriminant to determine the number of real solutions.

$$w^2 - 2w + 3 = 0$$

[3.2-29]

$$a = __, b = __, c = __$$

$$b^2 - 4ac =$$

Since the discriminant $b^2 - 4ac$ ____0 (_____), the equation will have: _____ real solutions.

Another (easier?) way: **GRAPH** the equation $w^2 - 2w + 3 = 0$ on calculator (use x as your variable)

(Put left side equation in Y1, right side in Y2)

(standard window Zoom 6)

Because the parabola does ______ have any *x*-intercepts, then that also means it has _____ **real solutions**.

G. Solve by **Graphing** (finding *x*-intercepts) on Calculator

To solve a quadratic equation by graphing:

1. Set your equation **EQUAL** to ______, if needed. Go to **Y**= on calculator.

- Put left side of equation into ____ and right side (zero) into on calculator (use x as your variable).
- 3. Graph starting with standard window, _____.
 You may need to Zoom In or Out (ENTER), if needed.
- 4. Does your graph (parabola) cross or touch ____-axis?
 If YES, go to STEP 5 to find x-intercepts.
 If _____, then stop your equation has _____ real solutions.
- 5. Press _____, _____(Intersect).

- 6. Press DOWN Arrow to switch to Y2=0 and move cursor to where the parabola is touching *x*-axis.
- 7. Press **ENTER** _____ times.
- 8. You should see the word INTERSECTION with x = some number and y = 0. This is an x-intercept.
- 9. The **solution** is the **x-coordinate** of that x-intercept (round the amount accordingly).
- 10. Repeat STEPS 5 through 9 if there is a second *x*-intercept. It will be the second **solution**.
- **EXAMPLE:** Use a calculator to find the graphical solution to the equation. Round to the nearest thousandth.

$$2n^2 = -8n - 5$$

[3.2-16]

Set your equation equal to zero (add 8n and add 5)

_____ = 0

Go to Y= on calculator. Use x as your variable.

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit