Дифференциальные уравнения и динамические системы

Алешин Артем на основе лекций Пилюгина С. Ю. под редакцией @keba4ok

5 сентября 2021.

к содержанию к списку объектов

Содержание

Литература
Дифференциальные уравнения 1-го порядка, разрешенные относительно
производной
Задача Коши
Единственность
Поле направлений
Основные теоремы
Интегрируемые типы дифференциальных уравнений 1-го порядка
Интеграл
Дифференциальные уравнения с разделяющимися переменными
Замена переменных
Линейное дифференциальное уравнение первого порядка
Уравнения, сводящиеся к линейным
Дифференциальные уравнения первого порядка в симметричной форме
Уравнение в полных дифференциалах
Условие точности 1-формы
Интегрирующий множитель
Системы дифференциальных уравнений
Частные случаи
Векторная запись нормальных систем
Теоремы существования
Ломаные Эйлера
Напоминание из анализа
Лемма Гронуолла
Метод приближений Пикара
Метод сжимающих отображений
Продолжимость решений
Линейные системы дифференциальных уравнений
Однородные линейные системы
Задача нахождения фундаментальной матрицы
Комплексные Решения ЛОС
Системы с постоянными коэффициентами
Метод Эйлера
Вычисление e^{At}
Оценка фундаментальной матрицы
Сравнение с методом Эйлера
Случай Лаппо-Данилевского
Неоднородные линейныме системы
Метод Лагранжа
Логарифм матрицы

Литература

- В. И. Арнольд Обыкновенные дифференциальные уравнения
- Ю. Н. Бибиков Общий курс дифференциальных уравнения
- С. Ю. Пилюгин Пространства динамических систем

Определение. Дифференциальное уравнение — уравнение от неизвествной фукции y(x), где $x \in \mathbb{R}$ — независимая переменная, вида

$$f(x,y,y',\ldots,y^{(n)})=0$$

Дифференциальные уравнения 1-го порядка, разрешенные относительно производной

Определение. Дифференциальное уравнение 1-го порядка, разрешенное относительно производной – уравнение вида $y'=f(x,y), f\in C(G)$, где G – область (открытое связное множество) в $\mathbb{R}^2_{x,y}$

Определение. $y:(a,b)\to\mathbb{R}$ – решение на (a,b), если

- у дифференцируема;
- $(x,(y(x)) \in G, x \in (a,b)$;
- $y'(x) \equiv f(x,y(x))$ на (a,b).

Пример(ы).

- $y' = ky, k > 0, G = \mathbb{R}^2$;
- $\forall c \in \mathbb{R} \ y(x) = ce^{kx}$ решение на \mathbb{R} .

Определение. Интегральная кривая – график решения.

Задача Коши

Определение. y(x) – решение задачи Коши с начальным условем (x_0,y_0) , если

- y(x) решение дифференциального уравнения на (a,b);
- $y(x_0) = y_0$.

Единственность

Определение. (x_0,y_0) – *точка единственности* для задачи Коши, если $\forall y_1,y_2$ – решения $\exists (\alpha,\beta) \ni x_0 : y_1|_{(\alpha,\beta)} = y_2|_{(\alpha,\beta)}$.

Пример(ы).

$$y' = 3\sqrt[3]{y^2}$$

Если $(x_0,y_0)=0$, то возможны следующие решения:

 $y_1 = 0$

•

$$y_2 = \begin{cases} 0 & x \leqslant 0 \\ x^3 & x > 0 \end{cases}$$

•

$$y_3 = \begin{cases} x^3 & x \leqslant 0\\ 0 & x > 0 \end{cases}$$

Точка (0,0) не является точкой единственности, но при этом (1,1) уже будет точкой единственности

Поле направлений

Определение. Из уравнения y' = f(x,y) мы можем вычислить коэффициент наклона в каждой точке (x,y)

$$k = y'(x) = f(x,y)$$

Если в каждой точке (x,y) области G провести отрезок с угловым коэффициентом равным f(x,y), то получится *поле направлений*. Любая интегральная кривая в каждой своей точке касается соответствующего отрезка.

Основные теоремы

Теорема (*O существовании*). Если y' = f(x,y), $f \in C(G)$, то $\forall (x_0,y_0) \in G \exists$ решение задачи Коши с начальными данными (x_0,y_0) G называется областью существования.

Теорема (*O единственности*). Если y' = f(x,y), $f, \frac{\partial f}{\partial y} \in C(G)$, то $\forall (x_0,y_0) \in G \; \exists \; e \partial u$ н-ственное решение задачи Коши с начальными данными (x_0,y_0) G называется областью единственности.

Интегрируемые типы дифференциальных уравнений 1-го порядка

Пример(ы). y' = f(x) – из анализа знаем, что единнственным решение при данном условии (x_0, y_0) будет

$$y(x) = y_0 + \int_{x_0}^x f(t)dt$$

Интеграл

Пусть $H \subset G$ – область

Определение. Функция $U \in C^1(H,\mathbb{R})$ называется *интегралом уравнения* y' = f(x,y) в H, если выполнены следующие условия:

- $\frac{\partial U}{\partial u} \neq 0$;
- если $y(x), x \in (a,b)$ решение с $(x,y(x)) \in H$, то U(x,y(x)) = const.

Теорема (Напоминание теоремы о неявной функции).

$$F: H \subset \mathbb{R}^2 \to \mathbb{R}, F \in C^1$$

Если

•

$$F(x_0, y_0) = 0$$

•

$$\left. \frac{\partial F}{\partial y} \right|_{(x_0, y_0)} \neq 0$$

тогда $\exists I, J$ – открытые интервалы $x_0 \in I, y_0 \in J, \exists z(x) \in C^1(I)$ такая, что

- $z(x_0) = y_0;$
- $F(x,y) = 0 \leftrightarrow y = z(x) \ npu \ (x,y) \in I \times J$.

Теорема (Об интеграле для дифференциальных уравнений первого порядка). Пусть U – интеграл y' = f(x,y) в $H \subset G$. Тогда $\forall (x_0,y_0) \in H \ \exists H_0 \subset H, H_0 = I \times J \ni (x_0,y_0)$ и $\exists y(x) \in C^1(I)$ такая что:

- ullet y(x) решение задачи Коши с начальными данными (x_0,y_0)
- $(x,y) \in H$ u $U(x,y) = U(x_0,y_0) \Rightarrow y = y(x)$

Доказательство. Фиксируем произвольную точку (x_0,y_0) . Рассмотрим $F(x,y) = U(x,y) - U(x_0,y_0)$. F удовлетворяет условию теоремы о неявной функции, так как $\frac{\partial F}{\partial y} = \frac{\partial U}{\partial y} \neq 0$, поэтому существуют $I_0, J_0 I_0 \times J_0 \subset H$ и $\exists y(x) \in C^1(I_0), \ y(x_0) = y_0$. По теореме существования \exists решение z(x) задачи Коши с начальными условиями (x_0,y_0) на некотором промежутке $I \ni x_0$ такое что $(x,z(x)) \in I_0 \times J_0$. Тогда по определению интеграла $U(x,z(x)) = \text{const} \Rightarrow F(x,z(x)) = 0 \Rightarrow z(x) = y(x)$.

Дифференциальные уравнения с разделяющимися переменными

$$y' = m(x) \cdot n(y)$$

$$m \in C((a,b)), n \in C((\alpha, \beta))$$

$$G = (a,b) \times (\alpha, \beta)$$

- $y_0 \in (\alpha, \beta) n(y_0) = 0 \Rightarrow y \equiv y_0$ Проверяется подставнкой
- $I \subset (\alpha, \beta), n(y) \neq 0$ при $y \in I$ Подсказка: Рассмотрим $y(x) : (x, y(x)) \in (a, b) \times I$ и отличную от 0 y' = m(x)n(y), на n(y) можно поделить

$$\frac{y'}{n(y(x))} = m(x), \int_{x_0}^x \frac{y'(t)dt}{n(y(t))} = \int_{x_0}^x m(t)dt.$$

Замена z = y(t)

$$\int_{y(x_0)}^{y(x)} \frac{dz}{n(z)} = \int_{x_0}^{x} m(t)dt,$$

Обозначим за N(y) и M(x) некоторые первообразные $\frac{1}{n(y)}$ и m(x) соответственно

$$N(y(x)) - N(y(x_0)) = M(x) - M(x_0)$$

 $U(x,y) := N(y) - M(x).$

Если y(x) – решение, то $U(x,y(x)) = N(y(x_0)) - M(x_0)$

$$\frac{\partial U}{\partial y} = \frac{1}{n(y)} \neq 0.$$

Это была некоторая эвристика для того, чтобы найти формулу для интеграла.

Сформулируем некоторое утверждение, которое позволит нам проверять, является ли U интегралом.

Утверждение. (Критерий интеграла)

U – интеграл для уравнения $y' = f(x,y) \iff$

•

$$\frac{\partial U}{\partial u} \neq 0$$

•

$$\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \cdot f \equiv 0$$

Доказательство. Если y(x) – решение, то U(x,y(x)) = const

$$\frac{dU}{dx} \equiv 0$$

$$\frac{d}{dx}U(x,y(x)) = \frac{\partial U}{\partial x}(x,y(x)) + \frac{\partial U}{\partial y} \cdot y'(x) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} \cdot f \equiv 0$$

Применяя это утверждение к нашему уравнению y' = m(x)n(y) и U = N(y) - M(x) имеем:

$$\frac{d}{dx}U = \frac{d}{dx}(N(y) - M(x)) = -m(x) + \frac{1}{n(y)} \cdot m(x)n(y) \equiv 0$$

$$\tag{1}$$

Замена переменных

Пример(ы). 1. y' = f(ax + by)

Новая независимая переменная – x

Новая искомая функция – v = ax + by

$$\frac{dv}{dx} = a + by' = a + bf(v)$$

2. y' = m(x)n(y), Пусть $n(y) \neq 0$

Новая переменная — x

Новая функция – v = N(y)

$$\frac{dv}{dx} = \frac{1}{n(y(x))} \cdot y'(x) = m(x)$$

Все сводится к уравнению, решение которого мы уже умеем находить

$$\frac{dv}{dx} = m(x)$$

Линейное дифференциальное уравнение первого порядка

$$y' = p(x)y + q(x), \ p,q \in C((a,b))$$

f(x,y) определена на $G=(a,b)\times\mathbb{R},\ f$ и $\frac{\partial f}{\partial y}$ непрерывны на G, поэтому G – область существования и единственности.

1. Для начала научимся решать *однородное линенйное уравнение* $(q \equiv 0)$

$$y' = p(x)y$$

Есть решение $y \equiv 0, x \in (a,b)$

Если y > 0, то

$$U = \int \frac{dy}{y} - \int p(x)dx = \log(y) - \int p(x)dx = \log(C)$$
$$y = ce^{\int p(x)dx}$$

Для y < 0 то же самое

2. Метод вариации произвольной переменной (Лагранж)

Воспользуемся заменой переменной:

Новая независимая переменная – x

Новая функция — v(x)

Будем искать решение y(x) в виде $y(x) = v(x)e^{\int p(x)dx}$

$$y' = v'e^{\int p(x)dx} + v \cdot p(x)e^{\int p(x)dx}$$

$$p(x)y + q(x) = p(x)v(x)e^{\int p(x)dx} + q(x)$$

$$v' \cdot e^{\int p(x)dx} = q(x)$$

$$v' = q(x) \cdot e^{-\int p(x)dx}$$

$$v = \int q(x)e^{-\int p(x)dx}dx$$

$$y = e^{\int p(x)dx} \left(\int q(x)e^{-\int p(x)dx}dx\right)$$

Заметим, что первообразная для p(x) берется одна и та же Для задачи Коши с начальным условием (x_0,y_0) имеем

$$y = e^{\int_{x_0}^x p(t)dt} \left(y_0 + \int_{x_0}^x q(s)e^{-\int_{x_0}^s p(t)dt} ds \right)$$

Уравнения, сводящиеся к линейным

Уравнение Бернулли $y' = p(x)y + q(x)y^m, m = \text{const}$

Исключения — m = 0, m = 1, так как тогда это будет обычное линейное уравнение

Если m > 0, то есть решение $y \equiv 0$

Если $y \neq 0$, то возпользуемся заменой переменных $v = y^{1-m}$

$$\frac{y'}{y^m} = p(x)y^{1-m} + q(x)$$
$$v' = (1-m)y'y^{-m}$$
$$\frac{v'}{(1-m)} = p(x)v + q(x)$$

Получилось линейное уравнение, которое мы уже умеем решать.

Уравнение Рикатти

$$y' = ay^2 + bx^\alpha, ab \neq 0$$

Бернулли показал, что при $\alpha=\frac{4k}{2k-1}, k\in\mathbb{Z}$ это уравнение имеет решения. Луивилль(1841) доказал, что если α – не число Бернулли и $\alpha\neq 2$, то уравнение Рикатти не интегрируемо.

Дифференциальные уравнения первого порядка в симметричной форме

Уравнение Пфаффа

$$m(x,y)dx + n(x,y)dy = 0$$

Определение. Дифференциальная 1-форма

$$F = m(x,y)dx + n(x,y)dy, m, n \in C^{1}(G), m^{2} + n^{2} \neq 0$$

Определение. Интегральная кривая дифференциальной формы F – гладкая кривая $\gamma(t)=$ $(\gamma_1(t), \gamma_2(t)), t \in (a,b)$

$$m(\gamma(t))\dot{\gamma}_1(t)+n(\gamma(t))\dot{\gamma}_2(t)=0$$
 на (a,b)

Примечание. Кривая называется гладкой, если \exists непрерывные $\dot{\gamma}_1, \dot{\gamma}_2$ и $(\dot{\gamma}_1, \dot{\gamma}_2) \neq 0$

Связь уравнения Пфаффа с обыкновенным дифференциальным уравнением

Пусть $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ – интегральная кривая F

Выберем $t_0 \in (a,b)$, пусть $\dot{\gamma}_1(t_0) \neq 0$

Тогда $\exists (\alpha, \beta) \ni t_0 : \dot{\gamma}_1(t)|_{(\alpha, \beta)} \neq 0$

Положим $x = \gamma_1(t)$

Так как $\dot{\gamma}_1$ – непрерывна и не обращается в ноль на (α, β) , то существует обратная функция.

Тогда $x = \gamma_1(t) \Longleftrightarrow t = \gamma_1^{-1}(x)$

Положим $y = \gamma_2(\gamma_1^{-1})$

Дифференциальное уравнение для y:

$$\frac{dy}{dx} = \dot{\gamma}_2(t) \cdot \frac{d}{dx}(\gamma_1^{-1}(x)) = \frac{\dot{\gamma}_2(t)}{\dot{\gamma}_1(\gamma_1^{-1}(x))} = \frac{\dot{\gamma}_2(t)}{\dot{\gamma}_1(t)}$$

 γ была интегральной кривой формы F, то есть выполнялось равенство:

$$m(\gamma(t))\dot{\gamma}_1(t) + n(\gamma(t))\dot{\gamma}_2(t) = 0$$

Тогда понятно, что

$$\frac{dy}{dx} = \frac{\dot{\gamma}_2(t)}{\dot{\gamma}_1(t)} = -\frac{m(\gamma(t))}{n(\gamma(t))} = -\frac{m(x,y)}{n(x,y)}$$

Мы получили, что если у нас есть интегральная кривая γ уравнения F=0, то в локальных координатах они решают уравнение $y' = \frac{m(x,y)}{n(x,y)}$ Значит интегральные кривые уравнения Пфаффа mdx + ndy = 0 локально совпадают

с интегральными кривыми уравнения $y' = \frac{m(x,y)}{n(x,y)}$

Верно и обратное: пусть y(x) – решение уравнения $y'=-\frac{m}{n}, n(x,y(x))\neq 0$

Как тогда получить из этого уравнения интегральную кривую уравнения Пфаффа?

Берем $\gamma_1(t) = x, \gamma_2(t) = y(x)$

$$\dot{\gamma}_1(t) = 1, \dot{\gamma}_2(t) = \frac{dy}{dt} = \frac{dy}{dx} = -\frac{m(x,y)}{n(x,y)} = -\frac{m(\gamma(t))}{n(\gamma(t))}$$

Мы получили интегральную кривую уравнения Пфаффа.

Вывод: F = mdx + ndy = 0 – запись совокупности двух обыкновенных дифференциальных уравнений:

$$\begin{bmatrix} \frac{dy}{dx} = -\frac{m}{n} \\ \frac{dx}{dy} = -\frac{n}{m} \end{bmatrix}$$

Уравнение в полных дифференциалах

Определение. Форма F – movная, если $\exists U \in C^2(\mathbb{R}^2_{x,y})$

$$F = \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy$$

Если F – точная, то F = 0 называется уравнением полных дифференциалов

Теорема. Если F – точная, то в окрестности произвольной точки $(x_0,y_0) \in G\ U$ – интеграл одного из уравнений:

$$\frac{dy}{dx} = -\frac{m}{n} unu \frac{dx}{dx} = -\frac{n}{m}$$

Доказательство. $(x_0,y_0) \in G$ можно считать, что $n(x_0,y_0) \neq 0$, тогда $n(x,y) \neq 0$ в некоторой окрестности

Рассмотрим уравнение $y' = -\frac{m}{n}$

Пусть y(x) – решение

$$\frac{d}{dx}U(x,y(x)) = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y}\frac{dy}{dx} = m + n \cdot (-\frac{m}{n}) \equiv 0$$
$$\frac{\partial U}{\partial y} = n \neq 0$$

Получаем, что U – интеграл

Условие точности 1-формы

$$U \in C^{2} \Rightarrow \frac{\partial U}{\partial x}, \frac{\partial U}{\partial y} \in C^{1}$$
$$\frac{\partial m}{\partial y} = \frac{\partial^{2} U}{\partial x \partial y}$$
$$\frac{\partial n}{\partial x} = \frac{\partial^{2} U}{\partial y \partial x}$$

Из курса матанализа знаем, что если производные непрерывны, то они совпадают

$$F$$
 точна $\Rightarrow \frac{\partial m}{\partial y} = \frac{\partial n}{\partial x}$

Утверждение.

$$G = (a,b) \times (\alpha,\beta)$$

Тогда из равенства частных производных m и n следует, что F – точна

Доказательство. Фиксируем $(x_0,y_0) \in G$

Xотим построить U

$$\frac{\partial U}{\partial x} = m, \frac{\partial U}{\partial y} = n$$

$$U = \int_{x_0}^x m(s,y) ds + \varphi(y)$$
 удовлетворяет первому уравнению

Нужно только найти φ

$$\frac{\partial U}{\partial y} = \int_{x_0}^{x} \frac{\partial m}{\partial y}(s, y) ds + \varphi'(y) =$$

$$= \int_{x_0}^{x} \frac{\partial n}{\partial x}(s, y) ds + \varphi'(y) = n(x, y) - n(x_0, y) + \varphi'(y)$$

Хотим

$$n(x,y) = n(x,y) - n(x_0,y) + \varphi'(y)$$

Тогда можно взять в качестве $\varphi(y) = \int_{y_0}^y n(x_0,t) dt$

$$U(x,y) = \int_{x_0}^{x} m(s,y)ds + \int_{y_0}^{y} n(x_0,t)dt$$

Примечание. Это утверждение верно не для любой области G, хотя верно, если G – звездчатое множество

Интегрирующий множитель

Определение. $\mu \in C^1, \mu \neq 0$ называется *интегрирующим множителем*, если μF – точная форма

Пример(ы). Уравнение с разделяющимися переменными:

$$m(x)n(y)dx + dy = 0$$

Интегрирующий множитель — $\frac{1}{n(y)}$

$$m(x)dx + \frac{1}{n(y)}dy = 0$$

$$\frac{\partial m}{\partial y} = 0 = \frac{\partial}{\partial x} \left(\frac{1}{n(y)} \right)$$

И как мы уже видели интегралом будет

$$U(x,y) = \int m(x)dx + \int \frac{1}{n(y)}dy$$

Системы дифференциальных уравнений

Отныне независимая переменная будет обозначаться t и искать мы будем функции x(t)

Определение. *Системы дифференциальных уравенний общего вида* (системы разрешимые относительно старших производных)

n и m_1,\ldots,m_n – фиксированные натуральные числа Для каждого $i=1,\ldots,n$ имеем уравнение

$$\frac{d^m x}{dt^m} = f_i(t, x_1, \dot{x}_1, \dots, \frac{d^{m_1 - 1}}{dt^{m_1 - 1}}, \dots, x_n, \dot{x}_n, \dots, \frac{d^{m_n - 1}}{dt^{m_n - 1}})$$

 $m=\sum m_i$ называется порядком системы

Частные случаи

• Нормальная система Ищем $x_1(t), \ldots, x_n(t)$, все $m_i = 1$

$$\dot{x}_i(t) = f_i(t, x_1, \dots, x_n)$$

ullet Дифференциальное уравнение порядка т x(t) – искомая функция

$$\frac{d^m x}{dt^m} = f(t, x, \dot{x}, \dots, \frac{d^{m-1} x}{dt^{m-1}})$$

Системы общего вида всегда сводятся к нормальным системам Покажем, что дифференциальное уравнение сводится к нормальной системе

$$\begin{cases} \dot{y}_1 = y_2 \\ \dot{y}_2 = y_3 \\ \vdots \\ \dot{y}_{m-1} = y_m \\ y_m = f(t, y_1, \dots, y_{m-1}) \end{cases} \iff \frac{d^m x}{dt^m} = f(t, x, \dot{x}, \dots, \frac{d^{m-1} x}{dt^{m-1}})$$

Если x решение уравнения, то очевидно, что $y_1 = x, y_2 = \dot{x}, \dots y_m = \frac{d^{m-1}x}{dt^{m-1}}$ решения системы и наоборот, если $y_1, y_2, \dots y_m$ решения системы, то $x = y_1$ решение уравнения.

Векторная запись нормальных систем

Сейчас мы введем некоторые обозначения и соглашения, с которыми будем работать в дальнейшем

$$\begin{cases} \dot{x}_1 = f_1(t,x_1,\ldots,x_n) \\ \vdots \\ \dot{x}_n = f_n(t,x_1,\ldots,x_n) \end{cases}$$
 Вектор $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \ \dot{x} = \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{pmatrix}$ Векторная функция $f(t,x) = \begin{pmatrix} f_1(t,x) \\ \vdots \\ f_n(t,x) \end{pmatrix}$

Тогда исходная система принимает вид

$$\dot{x} = f(t,x)$$

Для функции
$$f(t)$$
 под записью $\int f(t)dt$ будем подразумевать $\begin{pmatrix} \int f_1(t)dt \\ \vdots \\ \int f_n(t)dt \end{pmatrix}$

В качестве нормы на \mathbb{R}^n зафиксируем $||x|| = \max_{1 \le i \le n} |x_i|$

Определение. Для уравнения $\dot{x} = f(t,x), x \in \mathbb{R}^n \ (f \in C(G)G \subset \mathbb{R}^{n+1}_{t,x})$ функция $x:(a,b) \to \mathbb{R}^n$ называется решением, если

- $\exists \dot{x}$ на (a,b)
- $(t,x(t)) \in G$
- $\dot{x}(t) = f(t,x(t)), t \in (a,b)$

Определение. $x:(a,b)\to\mathbb{R}^n$ называется решением задачи Коши с начальным условием (t_0,x_0) , если

- x решение
- $x(t_0) = x_0$

Теоремы существования

Теорема. существования (Пеано)

$$\dot{x} = f(t,x)$$

 $f \in C(G) \Rightarrow \forall (t_0, x_0) \in G \exists$ решение задачи Коши

Доказательство. Рассмотрим $(t_0,x_0) \in G$

$$\exists \alpha, \beta > 0 : G \supset R = \{(t,x) \in G \mid |t - t_0| \leqslant \alpha, |x - x_0| \leqslant \beta\}$$
 – компакт

$$\exists M : |(t,x)| \leqslant M \ \forall (t,x) \in R$$

$$h := \min(\alpha, \frac{\beta}{M})$$

Будем доказываеть, что существует решение на промежутке $(t_0 - h, t_0 + h)$

Эквивалентное интегральное уравнение

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s))ds$$

Определение. $x:(a,b)\to\mathbb{R}$ – решение интегрального уравнения, если

- 1. $x \in C((a,b))$
- 2. $(t,x(t)) \in G$
- 3. x(t) удоавлетворяет интегральному уравнению

Лемма. x – решение интегрального уравнения $x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds \Leftrightarrow x$ – решение задачи Коши с начальным условием t_0, x_0

Доказательство леммы очевидно.

Мы будем доказывать разрешимость эквивалентного интегрального уравнения на $[t_0 - h, t_0 + h]$

Сузимся на отрезок $[t_0,t_0+h]$ (для $[t_0-h,t_0]$ все аналогично)

Ломаные Эйлера

Зафиксируем $N \in \mathbb{N}$ и разобьем отрезок $[t_0, t_0 + h]$ на N равных частей $[t_k, t_{k+1}], t_k = t_0 + \frac{kh}{N}$ Определим функцию g(t)

$$g(t) = x_0 + f(t_0, x_0)(t - t_0), t \in [t_0, t_1]$$

$$g(t) = g(t_k) + f(t_k, g(t_k))(t - t_k), t \in [t_k, t_{k+1}]$$

Введем $\dot{g}(t)$ (точечка сверху это просто символ, так как g не дифференцируема в некоторых точках)

$$\dot{g}(t) = f(t_k, g(t_k)), t \in [t_k, t_{k+1}]$$

Лемма. $\forall k = 0,1,\ldots,n$

1. g определена на $[t_k, t_{k+1}]$

2.
$$|g(t) - x_0| \leq M(t - t_0), t \in [t_0, t_k]$$

3.
$$g(t) = x_0 + \int_{t_0}^t \dot{g}(s) ds$$

 $\ensuremath{\mathcal{A}\!\mathit{okaзameльcmso}}$. Индукция по k

Fasa: k = 1 Очевидно $\Pi epexod:$

1. Достаточно показать, что $f(t_k, g(t_k))$ определено, для этого достаточно показать, что $(t_k, g(t_k)) \in R \Leftrightarrow |t - t_0| \leqslant \alpha, |g(t_k) - x_0| \leqslant \beta$

Это верно, так как $|g(t_k)-x_0|\leqslant M|t_k-t_0|\leqslant Mh\leqslant \beta$

2.
$$|g(t) - x_0| \le |g(t) - g(t_k)| + |g(t_k) - x_0| \le |f(t_k, g(t_k))|(t - t_k) + M(t_0 - t_0) \le M(t - t_0)$$

3.
$$g(t) = g(t_k) + \int_{t_k}^t \dot{g}(s)ds = x_0 + \int_{t_0}^{t_k} \dot{g}(s)ds + \int_{t_k}^t g(s)ds = x_0 + \int_{t_0}^t g(s)ds$$

Лемма. (Арцела-Аскори)

$$G = \{g_k : I \to \mathbb{R}^n, k \geqslant 0\}$$

Определение. G равномерно ограничено, если существет $N: |g_k(t)| \leq N \ \forall k \in \mathbb{N}, \ \forall t \in I$ Определение. G рваностепенно непрерывно, если $\forall \varepsilon > 0 \exists \delta > 0$:

$$\forall k \geqslant 0 \ \forall t_1, t_2 \in I \ |t_1 - t_2| < \delta \rightarrow |g_k(t_1) - g_k(t_2)| < \varepsilon$$

Eсли G - равномерно ограничена и равностепенно непрерывна, тогда из G можно выделить равномерно сходящуюся подпоследовательность

Рассмотрим последоватьельность ломаных Эйлера $g_N, N > 0$ и докажем, что она равномерно ограничена и равностепенно непрерынва

$$|g_N(t) - x_0| \le M(t - t_0) \le Mh \Rightarrow |g_n(t)| \le |x_0| + Mh$$

 $|g_N(t_1) - g_N(t_2)| = \left| \int_{t_1}^{t_2} \dot{g}_N(s) ds \right| \le M|t_1 - t_2| \le M\delta$

В качестве $\delta(\varepsilon)$ можно взять $\delta(\varepsilon) = \frac{\varepsilon}{M}$

Отсюда получаем, что последовательность g_N действительно равномерно ограничена и равностепенно непрерывна, тогда по лемме Арцела-Аскори из нее можно выделить подпоследовательность равномерно сходящуюся к g

Для удобства можем считать, что вся последовательность g_N равномерно сходится к g Мы хотим доказать, что g будет решением интегрального уравнения, для этого нужно проверить следующие свойства g

1.
$$g_N \rightrightarrows g$$
 на $[t_0,t_0+h], g$ – непрерывна

2.
$$(t,g_N(t)) \in R \Rightarrow (t,g(t)) \in R$$

3.
$$g(t) = x_0 + \int_{t_0}^t f(s, g(s)) ds$$
?

$$g_{n}(t) = x_{0} + \int_{t_{0}}^{t} \dot{g}_{N}(s)ds = x_{0} + \int_{t_{0}}^{t} f(s,g_{n}(s))ds + \int_{t_{0}}^{t} \dot{g}_{N}(s) - f(s,g_{n}(s))ds$$

$$g_{N} \Rightarrow g, (t,g_{n}(t)) \in R, f \in C(R)$$

$$\downarrow \downarrow$$

$$f(t,g_{N}(t)) \Rightarrow f(t,g(t)) \text{ Ha } [t_{0},t_{0}+h]$$

$$\downarrow \downarrow$$

$$\int_{t_{0}}^{t} f(s,g_{N}(s))ds \rightarrow \int_{t_{0}}^{t} f(s,g(s))ds$$

Теперь нужно проверить, что
$$\int_{t_0}^t \dot{g}_N(s) - f(s,g_n(s))ds \to 0$$

Так как R – компакт и f непрерывна на нем, то f равномерно непрерывна на R

$$\forall \varepsilon > 0 \ \exists \delta > 0 : |t_1 - t_2| < \delta \land |g_N(t_1) - g_N(t_2)| < \delta \rightarrow |f(t_1, g(t_1)) - f(t_2, g(t_2))| < \varepsilon$$

Если $t \in [t_k, t_{k+1}]$, то $t - t_k < \frac{h}{N} < \delta$ при больших N $\dot{g}_N(t) = f(t_k, g_N(t_k))$, поэтому $|\dot{g}_N(t) - f(t, g_N(t))| = |f(t_k, g_N(t_k)) - f(t, g_N(t))|$ Поэтому, если N достаточно велико

$$\int_{t_k}^t |\dot{g}_N(s) - f(s, g_N(s))| ds \leqslant \varepsilon(t - t_k)$$
 Тогда
$$\left| \int_{t_0}^t \dot{g}_N(s) - f(s, g_N(s)) ds \right| \leqslant \left| \int_{t_0}^{t_1} \left| + \ldots + \left| \int_{t_k}^t \right| \leqslant \varepsilon(t_1 - t_0) + \ldots + \varepsilon(t - t_k) = \varepsilon(t - t_0) \leqslant \varepsilon h$$

Отсюда получаем, что $\int_{t_0}^t \dot{g}_N(s) - f(s, g_N(s)) ds \to 0$, следовательно $g(t) = x_0 + \int_{t_0}^t f(s, g(s)) ds$

Таким образом, мы нашли решение g для исходного уравнения, и доказали теорему.

Напоминание из анализа

Определение. f удовлетворяет *условию Липшица* по x в $G \subset \mathbb{R}^{n+1}_{t,x}$ $(f \in \operatorname{Lip}_x(G))$ Если $\exists L > 0$ такое, что $\forall (t,x), (t,x') \in G$

$$|f(t,x) - f(t,x')| \leqslant L|x - x'|$$

Определение. f удовлетворяет *локальномум условию Липшица* по x в G, если $\forall (t_0, x_0) in G$ $\exists U$ – окрестность, такая что $f \in \operatorname{Lip}_x(U)$

$$f \in \mathrm{Lip}_{x,\mathrm{loc}}(G)$$

Пусть
$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$
 и $\exists \frac{\partial f_i}{\partial x_j} \ \forall i, j = 1, \dots, n$

Определение. Матрица Якоби

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} \cdots \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} \cdots \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Определение. A – матрица, тогда норма $||A|| = \max_{|x|=1} |Ax|$

$$\forall x |x| \leq ||A|| \cdot |x|$$

Лемма.

$$\frac{\partial f}{\partial x} \in C(G) \Rightarrow f \in \mathrm{Lip}_{x,\mathrm{loc}}(G)$$

Доказательство. Фиксируем (t_0,x_0)

$$\exists \alpha, \beta > 0 : G \supset R = \{(t,x) \mid |t - t_0| \leqslant \alpha, |x - x_0| \leqslant \beta\}$$

$$\exists L > 0: \ ||\frac{\partial f}{\partial x}|| \ {\mathrm{B}} \ R$$

Рассмотрим $(t,x), (t,x') \in R, g(s) = f(t,sx + (1-s)x')$

$$f(t,x) - f(t,x') = g(1) - g(0) = \int_0^1 \frac{\partial g}{\partial s} ds = \int_0^1 \frac{\partial f}{\partial x} (t, sx + (1-s)x') ds$$
$$|f(t,x) - f(t,x')| \le |\int_0^1 | \le \int_0^1 | \dots | \le \int_0^1 L|x - x'| ds = L|x - x'|$$

Лемма.

$$f \in C(G), \operatorname{Lip}_{x,\operatorname{loc}}(G), K$$
 – компакт в G \Downarrow $f \in \operatorname{Lip}_x(K)$

Доказательство. Предположим противное:

$$\forall L_n \to \infty \ \exists (t_n, x_n), (t_n, x_n') \in K :$$
$$|f(t_n, x_n) - f(t_n, x_n')| > L_n |x_n - x_n'|$$

Так как K – компакт, то из (t_n,x_n) можно выбрать сходящуюся подпоследовательность $(t_{n_k},x_{n_k}) \to (t_0,x_0)$

После этого можно выбрать сходящуюся подпоследовательность из t_{n_k}, x'_{n_k} , сходяющуюся к (t_0, x'_0)

Для удобства будем считать, что $(t_n,x_n) \to (t_0,x_0), \ (t_n,x_n') \to (t_0,x_0)$

Случай 1 $x_0=x_0'$ Так как f – локально-липшицева по x, то $\exists U\ni (t_0,x_0)$ и L, такие, что

$$(t,x),(t,x') \in U \to |f(t,x) - f(t,x')| \leqslant L|x - x'|$$

При достатчно больших n $(t_n,x_n),\ (t_n,x_n')\in U$ и мы получаем противоречие

Случай 2 $x_0 \neq x_0'$

Рассмотрим $g(t,x,y)=\frac{|f(t,x)-f(t,y)|}{|x-y|},\ f\in C(G)\Rightarrow g$ непрервывна в окрестности U точки (t_0,x_0,x_0')

$$\Rightarrow \exists L : |g(t,x,y)| \leqslant L \Rightarrow |f(t,x) - f(t,y)| \leqslant L|x - y|$$

Тогда для достаточно больших n $(t_n, x_n, x'_n) \in U$ и мы снова получаем противоречие.

Лемма Гронуолла

Лемма. (Лемма Гронуолла)

Пусть $\varphi(t) \geqslant 0$ при $t \in (a,b)$ и $\exists t_0 \in (a,b), \lambda, \mu \geqslant 0$, такие что

$$\varphi(t) \leqslant \lambda + \mu \left| \int_{t_0}^t \varphi(s) ds \right|, \ t \in (a,b)$$

Тогда
$$\varphi(t) \leqslant \lambda e^{\mu(t-t_0)}$$

Доказательство. Разберем случай, когда $t \leqslant t_0$ (случай $t < t_0$ оставим на проверку любопытному читателю)

$$\Phi(t) := \lambda + \mu \left| \int_{t_0}^t \varphi(s) ds \right| \geqslant \varphi(t)$$

$$\dot{\Phi}(t) = \mu \varphi(t) \leqslant \mu \Phi(t)$$

$$\psi$$

$$e^{-\mu(t-t_0)} \dot{\Phi} - \mu e^{\mu(t-t_0)} \Phi \leqslant 0$$

$$\frac{d}{dt} (\Phi e^{-\mu(t-t_0)}) \leqslant 0$$

$$\psi$$

$$\Phi e^{-\mu(t-t_0)} \leqslant \Phi(t_0) = \lambda$$

Частный случай:

$$\varphi(t) \leqslant \mu \left| \int_{t_0}^t \varphi(s) ds \right| \Rightarrow \varphi(t) = 0$$

Метод приближений Пикара

Теорема. (Теорема Пикара)

$$\dot{x} = f(t, x), x \in \mathbb{R}^n$$

$$f \in C, \text{Lip}_{x, \text{loc}}(G) \subset \mathbb{R}^{n+1}$$

 \Rightarrow G – область существования и единственности

Доказательство. Существование Зафиксируем $(t_0,x_0) \in G$ Возьмем $\alpha,\beta>0$, что $R=\{(t,x)\mid |t-t_0|\leqslant \alpha,|x-x_0|\leqslant \beta\}\subset G$

$$\exists M > 0: |f(t,x)| \leq M, (t,x) \in R$$

$$h = \min(\alpha, \frac{\beta}{M})$$

L>0 – константа Липшица по x в R

Последовательные приближения Пикара $\varphi_k(t)$

$$\varphi_0(t) \equiv x_0$$

$$\varphi_{k+1} = x_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds, \ k \leq 0$$

Лемма. $\forall k \ \varphi_k \ onpederehu на [t_0-h,t_0+h] \ u \ ux$ графики лежат в R

Доказательство. Идукция по k

База $\varphi_0 \equiv x_0$ для всех t, график очевидно лежит в R

Переход

$$\varphi_{k+1} = x_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds$$

$$(s,\varphi_k(s)) \in R \Rightarrow f$$
 – определена

$$|\varphi_{k+1}(t) - x_0| = \left| \int_{t_0}^t f(s, \varphi_k(s)) ds \right| \leqslant M|t - t_0| \leqslant Mh \leqslant \beta$$

Докажем теперь, что φ_k – равномерно сходятся на $[t_0-h,t_0+h]$

Введем $\psi_0(t)=\phi_0(t),\;\psi_k(t)=\varphi_k(t)-\varphi_{k-1}(t)$ при $k\geqslant 0$

Рассмотрим теперь ряд

$$\sum_{k=0}^{\infty} \psi_k(t)$$

Частинчые суммы этого ряда равны $\varphi_k(t)$

Поэтому сходимость ряда \iff сходимость $\varphi_k(t)$

Лемма.
$$k \geqslant 1 \Rightarrow |\psi_k(t)| \leqslant \frac{M}{L} \frac{|L(t-t_0)|^k}{k!}$$

Доказательство. Рассмотрим только случай $t\geqslant t_0$

k = 1

$$|\psi_1(t)| = |\varphi_1(t) - \varphi_0(t)| = \left| \int_{t_0}^t f(s, \varphi_0(s)) ds \right| \le \int_{t_0}^t |f(s, \varphi_0(s))| ds \le M|t - t_0|$$

$$k \to k+1$$

$$|\psi_{k+1}| = |\varphi_{k+1} - \varphi_k| = \left| \int_{t_0}^t f(s, \varphi_k(s)) - f(s, \varphi_{k-1}(s)) ds \right| \le$$

$$\le \int_{t_0}^t |f(s, \varphi_k(s)) - f(s, \varphi_{k-1}(s))| ds \le \int_{t_0}^t L|\psi_k(s)| ds \le \int_{t_0}^t L \frac{M}{L} \frac{|L(s - t_0)|^k}{k!} ds = \frac{M}{L} \frac{|L(t - t_0)|^{k+1}}{(k+1)!}$$

$$\sum |\psi_k(t)| \leqslant \sum \frac{M}{L} \frac{|L(t-t_0)|^k}{k!} \leqslant \frac{M}{L} \frac{(Lh)^k}{k!} = \frac{M}{L} e^{Lh}$$

$$\downarrow \downarrow$$

 $\sum \psi_k$ – сходистя равномерно на $[t_0-h,t_0+h]$

$$\varphi_k \rightrightarrows g$$

Проверим, тчо g является решением нашего уравнения, для этого достаточно проверить, что g — решение эквивалентного интегрального уравнения

$$arphi_k$$
 непрерывна $\Rightarrow g$ непрерывна
$$(t, \varphi_k(t)) \in R \Rightarrow (t, g(t)) \in R$$

$$arphi_{k+1} = x_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds$$
 f равномерно непрерывна на $R \Rightarrow f(s, \varphi_k(s)) \Rightarrow f(s, g(s))$ на R
$$\downarrow \downarrow$$

$$\int_{t_0}^t f(s, \varphi_k(s)) ds \rightarrow \int_{t_0}^t f(s, g(s)) ds$$

Единственность Предположим, что существуют два различных решения $x_1(t), x_2(t)$ задачи Коши с начальным условиям (t_0, x_0)

$$x_1(t) = x_0 + \int_{t_0}^t f(s, x_1(s)) ds$$

$$x_2(t) = x_0 + \int_{t_0}^t f(s, x_2(s)) ds$$

$$|x_1(t) - x_2(t)| \leqslant \left| \int_{t_0}^t |f(s, x_1(s)) ds f(s, x_2(s))| ds \right| \leqslant \left| \int_{t_0}^t L|x_1(s) - x_2(s)| ds \right|$$

$$|x_1 - x_2| \geqslant 0 \Rightarrow \text{ по лемме Гронуолла } x_1 = x_2$$

 $(t,x_1(t)),(t,x_2(t)) \in R$

Теорема. G – область единственности, тогда если существует два решения x_1, x_2 на промежутках (a_1,b_1) и (a_2,b_2) соответственно и $\exists t_0 \in (a,b) = (a_1,b_1) \cap (a_2,b_2)$: $x_1(t_0) = x_2(t_0)$

$$\downarrow x_1 \equiv x_2 \, \operatorname{Ha} (a,b)$$

Доказательство. Докажем, что они совпадают на $[t_0,b)$, остальное аналогично

$$T := \{t' \mid t' \geqslant t_0, x_1|_{[t_0, t']} = x_2|_{[t_0, t']}\}$$

$$T' = \sup T$$

Предположим, что T' < b

Тогда по непрерывности $x_1(T') = x_2(T') = x'$

Так как $(T',x')\in G$, а G – область единственности, то $x_1(t)=x_2(t)$ на $[T',T'+\varepsilon)$ $\Rightarrow T'+\varepsilon\in T$, получаем противоречие с тем, что T' – sup

Метод сжимающих отображений

$$\dot{x}=f(t,\!x),\ f\in C, \mathrm{Lip}_{x,\,\mathrm{loc}}(G)$$

$$(t_0,\!x_0)\in G,\ (t,\!_0,\!x_0)\in R\subset G,\ L$$
 – константа Липшица

$$h_0 \leqslant h$$
 такое что $Lh_0 < 1$

$$X:=\{x$$
 – непрерывные функции на $[t_0-h_0,t_0+h_0],(t,x(t))\in R\}$ Метрика на $X:$ $\rho(x,y)=\max_{t\in[t_0-h_0,t_0+h_0]}|x(t)-y(t)|$

 (X, ρ) – полное метрическое пространство

Введем оператор $\mathcal{L}: X \to X$

$$\mathcal{L}(\varphi) = \psi(t) = x_0 \int_{t_0}^t f(s, \varphi(s)) ds$$

Корректность Очевидно, ψ непрерывна, нам нужно только показать, что $(t,\psi(t)) \in R$

Сжимаемость

$$\varphi_{1}, \varphi_{2} \in X$$

$$\rho(\mathcal{L}(\varphi_{1}), \mathcal{L}(\varphi_{2})) = \max_{t} \left| \int_{t_{0}}^{t} f(s, \varphi_{1}(s)) - f(s, \varphi_{2}(s)) ds \right| \leqslant$$

$$\leqslant \max_{t} \int_{t_{0}}^{t} L|\varphi_{1}(s) - \varphi_{2}(s)| ds \leqslant \max_{t} \left| \int_{t_{0}}^{t} L\rho(\varphi_{1}, \varphi_{2}) ds \right| \leqslant$$

$$\leqslant \max_{t} |t - t_{0}| L\rho(\varphi_{1}, \varphi_{2}) \leqslant Lh_{0}\rho(\varphi_{1}, \varphi_{2})$$

$$Lh_{0} < 1$$

По теореме о сжимающем отображении существует единственная неподвижная точка

$$\varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds$$

Отсюда мы получаем существование и единственность решения для задачи Коши.

Продолжимость решений

$$\dot{x} = f(t,x), x \in \mathbb{R}^n, f \in C(G), G$$
 – область единственности

Определение. x(t) – решение на (a,b)

Решение y(t) – продолжение вправо x(t), если y решение на (a,b_1) , $b_1 > b$ и $x|_{(a,b)} = y|_{(a,b)}$

Теорема. Теорема о продолжимости вправо Решение x на (a,b) продолжимо вправо за $b \iff \exists x' = \lim_{t \to b-0} x(t), (b,x') \in G$

Доказательство. "⇒" Очевидно

" \Leftarrow " По теореме существования $\exists z(t)$ на промежутке (b-h,b+h):z(b)=x'

Рассмотрим
$$y(t) = \begin{cases} x(t), t \in (a,b) \\ z(t), t \in [b,b+h) \end{cases}$$

$$y'(b) = z'(b) = f(b,x')$$
$$y(b) = z(b)$$

y(t) – продолжение x вправо за b

Определение. x(t) – *полное решение* на (a,b), если оно не продолжимо вправо за b и влево за a

Теорема. Существование и единственность полного решения

 $\forall (t_0,x_0) \in G \exists !$ полное решения задачи Коши с н.д. (t_0,x_0)

Доказательство. Фиксируем (t_0,x_0)

Рассмотрим

$$T = \{(a,b) \ni t_0 \mid \exists$$
решение задачи Коши $x(t)$ на $(a,b)\}$

$$T \neq \emptyset$$

$$A = \inf a, B = \sup b : (a,b) \in T$$

Докажем, что $\exists!$ полное решение на (A,B)

Будем рассматривать только $[t_0,B)$ (влево аналогично). Для начала определим решение на этом промежутке.

Фиксируем $\tau \in (t_0, B)$

Так как $B = \sup\{b\} \Rightarrow \exists b \in (\tau,B), \exists x_b$ – решение на $[t_0,b)$

Положим $x(\tau) = x_b(\tau)$

Корректность Рассмотрим $b' \in (\tau, b)$

По теореме об области единственности $x_b(t) = x_{b'}(t)$ на $[t_0,b) \cap [t_0,b') \Rightarrow x_b(\tau) = x_{b'}(\tau)$

Получаем, что x(t) – корректно определенная функция, очевидно, что она является решением.

Единственность Пусть есть $x_1(t)$ – полное решение на (A_1,B_1) и $x_2(t)$ – полное решение на (A_2,B_2) , по теореме единственности они совпадают на пересечении

Если $(A_1,B_1)\cap (A_2,B_2)\neq (A_1,b_1)$, то (без ограничения общности можно считать, что $B_2>B_1$) тогда x_2 – продолжение x_1 вправо, но x_1 было полным, получаем противоречие.

Теорема. Теорема о полном решении и компакте

Пусть K – компактное подмножество в G x(t) – полное решение на конечном промежутке (a,b) $\Rightarrow \exists \Delta = \Delta(K) > 0 : (t,x(t)) \notin K, t \in (a,a+\Delta) \cup (b-\Delta,b)$

Доказательство.

$$\exists \alpha, \beta > 0: \ \forall (t_0, x_0) \in K: H(t_0, x_0) = \{|t - t_0| \leqslant \alpha, |x - x_0| \leqslant \beta\} \subset G$$

$$\Rightarrow H' = \bigcup_{(t_0, x_0) \in K} H(t_0, x_0) - \text{компакт в } G$$

$$\Rightarrow \exists M > 0 \ |f(t, x)| \leqslant M \text{ в } H'$$

$$\Rightarrow \forall (t_0, x_0) \in K \text{ берем } R = H(t_0, x_0)$$

$$\exists h \ \forall (t_0, x_0) \in K: \ [t_0 - h, t_0 + h] - \text{промежуток Пеано}$$

$$h = \min(\alpha, \frac{\beta}{M})$$

$$\Delta := \frac{h}{2}$$

Рассмотрим полное решение x(t) на (a,b)

Предположим, что $\exists \tau \in (b - \Delta, b) : (\tau, x(\tau)) \in K$

Тогда \exists решение x(t) задачи Коши с н.д. $(\tau, x(\tau))$ на $[\tau - h, \tau + h]$

Рассмотрим

$$y(t) = \begin{cases} x(t), t \in (a, \tau) \\ z(t), t \in [\tau, \tau + h) \end{cases}$$

Определено на $(a, \tau + h), \tau + h = \tau + 2\Delta > b$

 $\Rightarrow y$ – продолжение x(t) за b вправо.

$$y' = f(y), y \in \mathbb{R}f \in C[0,1], f(y) > 0, y \in (0,1], f(0) = 0$$

Определение. Система $\dot{x} = f(t,x)$ называется *сравнимой с линейной*, если

- 1. $G = (a,b) \times \mathbb{R}^n$
- 2. \exists непрерывные m(t) и n(t) на $(a,b): m(t), n(t) \leq 0$

$$|f(t,x)| \leq m(t)|x| + n(t)$$

Теорема. Если система сравнима с линейной, то любое полное решение определено на промежсутке (a,b)

Доказательство. Пусть x(t) – полное решенеие на (a',b')

Предположим, что b' < b, выберем $t_0 \in (a',b'), \ x_0 = x(t_0)$

Рассмотрим $[t_0,b'] \subset (a,b) \Rightarrow \exists M,N > 0: m(t) \leqslant M, n(t) \leqslant N$ на $[t_0,b']$

Запишем интегральное уравнение для х

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$

$$t \in [t_0, b') : |x(t)| \le |x_0| = \left| \int_{t_0}^t f(s, x(s)) ds \right| \le$$

$$\le |x_0| + \left| \int_{t_0}^t m(s)|x(s)| + n(s) ds \le |x_0| + \int_{t_0}^t M|x(s)| + N ds$$

$$\Downarrow$$

$$|x(t)|\leqslant |x_0|+N|b'-t_0|+M\int_{t_0}^t|x(s)|ds$$

$$\Downarrow \ \, (\text{лемма Гронуолла})$$

$$|x(t)|\leqslant (|x_0+N|b-t_0|)e^{M(t-t_0)}\leqslant (|x_0|+N|b-t_0|)e^{M(b'-t_0)}=:N_1$$

$$(t,x(t)) \in K, \ t \in [t_0,b'), \ K = [t_0,b'] \times \{|x| \leqslant N1\}$$

Получаем противоречие с теоремой о полном решении и компакте, так как для любого сколь угодно близкого слева к b' числа t (t,x(t)) содержится в компакте K

Линейные системы дифференциальных уравнений

 $\dot{x} = P(t)x + q(t), x \in \mathbb{R}^n, \ P(t)$ непрерывная на (a,b) $n \times n$ -матрица q(t) непрерывный на (a,b) вектор Что мы знаем про нашу систему?

$$f(t,x) = P(t)x + q(t)$$

$$f \in C(G), G = (a,b) \times \mathbb{R}^n$$

Матрица Якоби $\frac{\partial f}{\partial x} = P(t)$ – непрерывна в G

$$f \in \operatorname{Lip}_{x,\operatorname{loc}}(G)$$

G – область существования и единственности

$$|f(t,x)| \leqslant ||P(t)|| \cdot |x| + |q(t)|$$

$$||P(t)||, |q(t)| \leqslant 0$$
 и непрерывны в G

Любое полное решение x(t) определено на (a,b)

Далее мы будем рассматирвать только полные решения.

Свойство существования и единственности

- 1. $\forall (t_0,x_0) \in G \; \exists \;$ решение задачи Коши с начальными данными (t_0,x_0) , определенное на (a,b)
- 2. Если $x_1(t)$ и $x_2(t)$ решения на (a,b) и $\exists t_0 \in (a,b): \ x_1(t_0) = x_2(t_0),$ то $x_1|_{(a,b)} = x_2|_{(a,b)}$

к содержанию к списку объектов 24

Однородные линейные системы

$$\dot{x} = P(t)x, x \in \mathbb{R}^n, P(t) \in C((a,b))$$

Теорема. Множество решений ЛОС – линейное пространство над $\mathbb R$

Доказательство. Очевидно.

Рассмотрим n решений $x_1(t), \ldots x_n(t)$

Сопоставим им $n \times n$ матрицу

$$\Phi(t) = (x_1(t), \dots, x_n(t))$$

Обозначим $W(t) = \det \Phi(t) - O$ пределитель Вронского (вронскиан) Лемма. $\exists t_0 : W(t_0) = 0 \Rightarrow W(t) \equiv 0$

Доказательство. Рассмотрим линейную алгебраическую систему

$$\Phi(t_0)c = 0$$

Так как $\det = 0 \Rightarrow \exists c \neq 0$ – решение

$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

Тогда $x(t) = \Phi(t)c = c_1x_1(t) + \ldots + c_nx_n(t)$ – решение

$$x(t_0) = \Phi(t_0)c = 0$$

Естьрешение $y(t) \equiv 0$

$$x(t_0) = y(t_0) \Rightarrow x(t) \equiv 0$$

$$\Phi(t)c \equiv 0, \ c \neq 0 \Rightarrow \det \Phi(t) \equiv 0$$

Главная задача – описать структуру множества решений линейной однородной системы

Определение. $\Phi(t) = (x_1(t), \dots, x_n(t)) - \frac{\phi y + \partial a}{\partial t}$ матрица, если существует $t_0 \in (a,b)$, в которой $W(t_0) \neq 0$ (тогда по предыдущей лемме $W(t) \neq 0$ на (a,b))

Теорема. $\forall \ \textit{ЛОС} \ \exists \ \textit{фундаментальная матрица}$

Доказательство. Фиксируем $t_0 \in (a,b), a_1 \dots a_n \in \mathbb{R}^n$ – линейно независимы.

Тогда $\forall i$ существует решение $x_i(t), x_i(t_0) = a_i$

Возьмем в качестве фундаментальной матрицы $\Phi(x_1,\ldots,x_n),\ \Phi(t_0)=(a_1,\ldots a_n),$

 $W(t_0) \neq 0 \Rightarrow W(t) \neq 0$ на всем интервале.

Примечание. $a_i = e_i$ – базисные векторы тогда $\Phi(t_0) = E$

 $\Phi(t)$ – фундаментальная матрица, нормированная κ единичной при $t=t_0$

Теорема. об общем решениии ЛОС

 $\Phi(t)$ – фундаментальная матрица $\Rightarrow \forall x(t)$ – решение ЛОС $\exists !\ c \in \mathbb{R}^n: x(t) = \Phi(t)c$

Доказательство. $\Phi(t)$, рассмотрим решение x(t), фиксируем точку $t_0 \in (a,b)$ Рассмотрим линейную алгебраическую систему

$$\Phi(t_0)c = x(t_0)$$

Поскольку Φ – фундаментальная матрица, ее определитель отличен от нуля и эта система имеет единственное решение.

Рассмотрим $y(t) = \Phi(t)c$ – линейная комбинация столбцов $\Phi(t)$, поэтому это тоже решение ЛОС

$$y(t_0) = \Phi(t_0)c = x(t_0)$$

По единственности решений ЛОС y(t) = x(t) на (a,b)

Единственность c следует из единственности решения алгебраической системы. \square

Таким образом, мы установили линейный изоморфизм:

$$\{$$
решения $\Pi OC\} \simeq \mathbb{R}^n$ $x(t) = \Phi(t)c$

Выбор фундаментальной матрицы – выбор базиса пространства решений.

Теорема. о множестве фундаментальных матриц

$$\Phi - \phi.M. \Rightarrow \{\phi.M. \ AOC\} = \{\Phi(t)C : C - Mampuya \ n \times n, \det C \neq 0\}$$

Доказательство. " \supset " Рассмотрим $\Psi = \Phi C$

Столбцы Ψ — линейные комбинации столбцов $\Phi,$ значит они решения. $\det \Psi = \det \Phi \cdot \det C \neq 0$

"
$$\subset$$
 " $s \ \Psi - \Phi.M. \ \Psi = (\psi_1, \dots \psi_n)$

$$\forall i \ \psi_i = \Phi c_i \Rightarrow \Psi = (\Phi c_1, \dots, \Phi c_n) = \Phi C, \ C = (c_1, \dots, c_n)$$

$$0 \neq \det \Psi \det \Phi \det C \Rightarrow \det C \neq 0$$

Теорема. Пусть $\Phi(t) = (x_1(t), \dots, x_n(t)), x_i$ – решения ЛОС $\Rightarrow \frac{d\Phi(t)}{dt} = P(t)\Phi(t)$

Доказательство.

$$\frac{dx_i}{dt} = Px_i$$

$$\frac{d\Phi}{dt} = (Px_1, \dots, Px_n) = P(x_1, \dots, x_n) = P\Phi$$

Задача нахождения фундаментальной матрицы

• Тривиальна в случае n=1

$$\dot{x} = p(t), \ \Phi(t) = e^{\int p(t)dt}$$

• n=2 Построение ф.м. по P(t) – неразрешимая задача:

Доказательство. Рассмотрим уравнение $\ddot{y}+t^{\alpha}y=0\Leftrightarrow egin{cases} \dot{y}=z\\ \dot{z}=-t^{\alpha}y \end{cases}$

Предположим $y(t) \not\equiv 0$

Рассмотрим
$$x(t) = \frac{\dot{y}}{y}$$

Тогда
$$\dot{x} = -\frac{1}{y^2}(\dot{y})^2 + \frac{1}{y}\dot{y} = -x^2 - t^{\alpha}$$

 уравнение Рикатти, для которого ни одно решение не представимо в элементарных функциях.

А если x не представим в элементарных функция, то и y не представим в элементарных функциях.

Комплексные Решения ЛОС

$$\dot{x} = P(t)x, x \in \mathbb{R}^n, P \in C(a,b)$$

$$z = x + iy, \ x, y \in \mathbb{R}^n$$

Лемма. P(t) – вещественная матрица, z = x + iy – комплексное решение $\Leftrightarrow x,y$ – вещественное решения

Лемма. об овеществлении

 $\Psi(t)=(y_1,\ldots,y_2)$ – комплексная фундаментальная матрица, у котрой $y_1=\overline{y_2}$

 $\Phi(t) = (\operatorname{Re} y_1, \operatorname{Im} y_1, y_3, \dots, y_n) - \phi.M$

Доказательство.

$$\Phi = \Psi \begin{pmatrix} \frac{1}{2} & \frac{1}{2i} & 0 & \dots & 0 \\ \frac{1}{2} & \frac{1}{2i} & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
$$\det \neq 0$$

Системы с постоянными коэффициентами

$$\dot{x} = Ax, x \in \mathbb{R}^n$$

Метод Эйлера

Ищем решения в виде $x(t) = \gamma e^{\lambda t}, \ \gamma \neq 0$

$$\dot{x} = \lambda \gamma e^{\lambda t} = A \gamma e^{\lambda t}$$

$$\updownarrow$$

$$A \gamma = \lambda \gamma$$

Простой частный случай: $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ и простые(кратность каждого 1) Тогда есть n решений $\gamma_1 e^{\lambda_1 t}, \ldots, \gamma_n e^{\lambda_n t}$

$$\Phi(t) = \gamma_1 e^{\lambda_1 t}, \dots, \gamma_n e^{\lambda_n t}$$
 – фудаментальна

 $\{A\ n \times n$ комплексные матрицы $\}$ ||A|| – операторная норма A

$$||AB|| \leqslant ||A|| \cdot ||B||$$

Определение. Матричная экспонента

$$e^A = \sum_{k=0}^{\infty} \frac{A^K}{k!}$$

Теорема. Этот ряд сходистя

Доказательство. $\Sigma_m = \sum_{k=0}^M \frac{A^k}{k!}$

$$||\Sigma_m - \Sigma_{m+l}|| = ||\sum_{k=m+1}^{m+l} \frac{A^k}{k!}|| \le \sum_{k=m+1}^{m+l} \frac{||A||^k}{k!} \to 0$$

Теорема. $B = S^{-1}AS \Rightarrow e^B = s^{-1}e^AS$

Для матриц, вообще говоря, неверно равенство $e^{A+B} = e^A e^B$

Теорема.

$$AB = BA \Rightarrow e^{A+B} = e^A e^B$$

Доказательство.

$$\sum_{k=0}^{m} \frac{1}{k!} (A+B)^k = \sum_{k=0}^{m} \frac{1}{k!} (A+B) \dots (A+B) =$$

$$= \sum_{k=0}^{m} \frac{1}{k!} \sum_{l=0}^{k} \frac{k!}{l!(k-l)!} A^l B^{k-l} = \sum_{k=0}^{m} \sum_{l=0}^{k} \frac{A^l}{l!} \frac{B^{k-l}}{(k-l)!} \to e^A e^B$$

 $e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}, \ t \in \mathbb{R}$

Теорема.

$$\frac{d}{dt}e^{At} = Ae^{At}$$

Доказательство.

$$\frac{d}{dt} \sum_{k=0}^{m} \frac{1}{k!} A^k t^k = \frac{d}{dt} \left(E + At + \dots + \frac{1}{m!} A^m t^m \right) = A + A^2 t + \dots + \frac{1}{(m-1)!} A^m t^{m-1} = A \left(\sum_{k=0}^{m-1} \frac{A^k t^k}{k!} \right)$$

Cледствие. e^{At} – фундаментальная матрица $\dot{x}=Ax$

$$rac{d}{dt}e^{At}=Ae^{At}\Rightarrow ext{ столбцы }e^{At}$$
 — решения
$$t=0,e^{A\cdot 0}=E$$
 Если $A=\mathrm{diag}(\lambda_1,\lambda_n)$
$$A^k=\mathrm{diag}(\lambda_1^k,\dots,\lambda_n^k)$$

$$e^{At}=\mathrm{diag}(e^{\lambda_1},\dots,e^{\lambda_n})$$

Вычисление e^{At}

$$B = s^{-1}AS \Rightarrow e^{Bt} = S^{-1}e^{At}S$$

Матрицу A можно привести к ЖНФ $\exists S: S^{-1}AS = J = \mathrm{diag}(J_1, \ldots, J_m)$, где J_i – жордановы блоки.

$$S^{-1}e^{At}S = \operatorname{diag}(e^{J_1t}, \dots, e^{J_mt})$$

Жорданов блок $J_l = \lambda E_s + I_s$

$$I_{s} = \begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$
$$e^{J_{s}t} = e^{\lambda E_{s}t + I_{s}t} = e^{\lambda E_{s}t} \cdot e^{I_{s}t}$$

$$e^{\lambda E_s t} = e^{\operatorname{diag}(\lambda t, \dots, \lambda t)} = e^{\lambda t} \cdot E_s$$

Вычислим
$$e^{I_s t}$$

$$I_s^0 = E_s$$

$$I_s^2 = \begin{pmatrix} 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$\vdots$$

$$I_s^{s-1} = \begin{pmatrix} 0 & \dots & 1 \\ \vdots & & 0 \\ 0 & \dots & 0 \end{pmatrix}$$

$$e^{I_{s}t} = \sum_{k=0}^{\infty} \frac{1}{k!} I_{s}^{k} t^{k} = \begin{cases} 1 & t & \frac{t^{2}}{2} & \dots & \frac{t^{s-1}}{(s-1)!} \\ 0 & 1 & t & \dots & \frac{t^{s-2}}{(s-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \dots & & 1 \end{cases}$$

Тогда

$$e^{J_l t} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^2}{2} & \dots & \frac{t^{s-1}}{(s-1)!} \\ 0 & 1 & t & \dots & \frac{t^{s-2}}{(s-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \dots & & 1 \end{pmatrix}$$

Зная каждую матрицу $e^{J_s t}$, легко вычислить и всю $e^{J t}$

Оценка фундаментальной матрицы

Теорема. A – матрица, λ_j – собственные числа:

$$\forall a > \text{Re } \lambda_j, j = 1, \dots, n \exists c > 0 :$$

 $||e^{At}|| \leqslant Ce^{at}$

Доказательство.

$$J = S^{-1}AS$$

Достаточно посчитать норму $||e^{Jt}||$

Ненулевой элемент – $\frac{t^k}{k!}e^{\lambda_j t}, |e^{\lambda_j t}| = e^{\operatorname{Re}\lambda_j t}$

$$a > \max \operatorname{Re} \lambda_j$$

$$e^{-at} \cdot \frac{t^k}{k!} e^{\lambda_j, t} \xrightarrow{k \to \infty} 0$$

$$\downarrow \downarrow$$

$$\exists c_{j,k} : |e^{-at} \cdot \frac{t^k}{k!} e^{\lambda_j, t}| \leqslant c_{j,k}$$

Тогда $\left| \frac{t^k}{k!} e^{\lambda_j t} \right| \leqslant c_{j,k} e^{at}$ при $t \geqslant 0$

В качестве константы C можно взять $\max c_{j,k}$ (пар (j,k) конечное число)

Сравнение с методом Эйлера

$$\dot{x} = Ax$$

Предполагаем, что с.ч. A вещественные и простые λ_j – с.ч. A, γ_j – соответствующие с.в. Методом Эйлера получаем, что ф.м. равна:

$$(\gamma_1 e^{\lambda_1 t}, \dots, \gamma_n e^{\lambda_n t})$$

Если следовать методу матричной экспоненты:

Берем $S: S^{-1}AS = J = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

Тогда $S^{-1}e^{At}S = e^{Jt} = \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_n t})$

S – решение уравнения $AS = SJ, S = (s_1, \dots, s_n)$

 $As_j = \lambda_j s_j \Rightarrow s_j$ – собственные векторы.

Знаем, что e^{At} – фундаментальная матрица

По теореме об общем виде фундаментальных матриц $\Rightarrow e^{At} \cdot S - \phi$. м.

$$e^{At}S = Se^{Jt} = (s_1e^{\lambda_1t}, \dots, s_ne^{\lambda_nt})$$

То же самое. что и методом Эйлера

Случай Лаппо-Данилевского

$$\dot{x} = A(t)x, x \in \mathbb{R}^n, A \in C(a,b)$$

Теорема. $npe \partial no no Эсим, что <math>\exists t_0 \in (a,b)$:

$$A(t) \int_{t_0}^t A(s)ds = \left(\int_{t_0}^t A(s)ds \right) \cdot A(t)$$

$$\Downarrow$$

 $e^{\int_{t_0}^t A(s)ds}$ – фундаментальная матрица

Доказательство. Достаточно доказать, что

$$\frac{d}{dt}e^{\int_{t_0}^t A(s)ds} = A(t)e^{\int_{t_0}^t A(s)ds}$$

Тогда $e^{\int_{t_0}^t A(s)ds}$ — матрица решений и $W(t_0) = \det(E) = 1$

$$e^{\int_{t_0}^t A(s)ds} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\int_{t_0}^t \right)^k$$

$$\frac{d}{dt} \left(\int_{t_0}^t \right)^k = \frac{d}{dt} \left(\int_{t_0}^t \cdot \ldots \cdot \int_{t_0}^t \right) = A(t) \left(\int_{t_0}^t \right)^{k-1} + \left(\int_{t_0}^t \right) A(t) \left(\int_{t_0}^t \right)^{k-2} + \ldots$$

Так как матрица и интеграл коммутируют:

$$= kA(t)(\int_{t_0}^t)^{k-1}$$

$$\frac{d}{dt} \sum_{k=0}^{l} \frac{1}{k!} \left(\int_{t_0}^{t} \right)^k = \sum_{k=1}^{l-1} \frac{1}{k!} \cdot k \cdot A(t) \left(\int_{t_0}^{t} \right)^{k-1} = A(t) \sum_{k=1}^{l-1} \frac{1}{(k-1)!} \left(\int_{t_0}^{t} \right)^{k-1} \to A(t) e^{\int_{t_0}^{t} A(s) ds}$$

Откуда и следует формула для производной.

Неоднородные линейныме системы

Определение. Неоднородная линейная система

$$\dot{x} = P(t)x + Q(t), x \in \mathbb{R}^n$$

Соответствующая Лос $\dot{x} = P(t)x$

Теорема. Об общем решении неоднородной линейной системы

 $\Pi y cm v \ y(t)$ – решение $H \Pi C$

 $\Phi(t)$ – ф.м. соответсвующей ЛОС

$$\Rightarrow \forall x(t)$$
 - pewerue HJIC $\exists ! \ c \in \mathbb{R}^n : \ x(t) = \Phi(t)c + y(t)$

Доказательство.

$$x(t) - y(t)$$
 – решение ЛОС

$$\dot{x} - \dot{y} = Px + Q - (Py + Q) = P(x - y)$$

Тогда $x-y=\Phi(t)c,\ c\in\mathbb{R}^n$

При фиксированном $y, x = \Phi(t)c + y(t)$, причем c – единственно.

Метод Лагранжа

 $\Phi(t)$ – ф.м. соответствующей ЛОС Ищем решение x(t) НЛС в виде

$$x(t) = \Phi(t)\alpha(t), \alpha \in C^1$$

$$\dot{x} = \dot{\Phi}\alpha + \Phi\dot{\alpha} = Px + Q$$

Так как $\dot{\Phi}(t) = P\Phi(t)$, уравнение можно переписать в виде

$$P\Phi\alpha + \Phi\dot{\alpha} = P\Phi\alpha + Q$$

Откуда

$$\Phi \dot{\alpha} = Q, \det \Phi \neq 0$$

$$\exists \Phi^{-1} \in C$$

$$\Phi \dot{\alpha} = Q \Leftrightarrow \dot{\alpha} = \Phi^{-1}Q$$

$$\alpha = \int \Phi^{-1} Q dt$$

$$x(t) = \Phi \int \Phi^{-1} Q dt$$

Логарифм матрицы

Определение. Логарифм матрицы $\log(B)$ — такая матрица A, что $e^A=B$, так как e^A всегда обратима, необходимо, чтобы $\det B \neq 0$

Оказывается, что это условие необходимо и достаточно **Теорема.**

$$\forall A, \det A \neq 0 \exists \log A$$

Напомним, что

$$I_r = egin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$
 — матрица $r \times r$

Лемма. $\lambda \neq 0$

$$Z = \sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p} \left(\frac{I_r}{\lambda}\right)^p$$

Тогда $e^Z = E_r + \frac{I_r}{\lambda}$

 \mathcal{A} оказательство. Ряд в определении Z конечен $z \in \mathbb{C}, |z| < 1$

$$\log(1+z) = \sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p} z^p$$

$$e^{\log(1+z)} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p} z^p \right)^k = 1+z$$

Частная сумма ряда $\sigma_m(z) = \sum_{k=0}^m \frac{1}{k!} (\sum_{p=1}^\infty \frac{(-1)^{p+1}}{p} z^p)^k$

$$\sigma_{m+1}(z) - \sigma_m(z) = z^{m+1}(...)$$

$$\sigma_m(z) = a_0^{(m)} + a_1^{(m)}z + \ldots + a_m^{(m)}z^m + \ldots$$

Предметный указатель

Дифференциальная 1-форма, 8
Дифференциальное уравнение, 3
1-го порядка, 3
Дифференциальное уравнение порядка m ,
11
Задача Коши, 3
Интеграл уравнения, 4
Интегральная кривая, 3
Интегральная кривая дифференциальной
формы, 8
Интегрирующий множитель, 10
Коэффициент наклона, 4
Лемма Арцела-Аскори, 14
Лемма Гронуолла, 17
Лемма об овеществлении, 26
Логарифм матрицы, 31
Локальное условие Липшица, 15
Матрица Якоби, 15
Матричная экспонента, 27
Метод вариации произвольной переменной, 7
•
Нормальная система, 11 Область
единственности, 4
существования, 4
Однородное линейное уравнени, 7
Определитель Вронского (вронскиан), 24
Поле направлений, 4
Полное решение, 21
Порядок системы, 11
Последовательные приближения Пикара,
17
Продолжение решения, 21
Решение дифференциального уравнения, 3
Решение интегрального уравнения, 13
Система дифференциальных уравнений об-
щего вида, 11
Сравнимая с линейной система, 22
Существование и единственность полного
решения, <mark>21</mark>
Теорема
об интеграле для дифференциальных
уравнений первого порядка, 5
Теорема Пикара, 17
Теорема о множестве фундаментальных мат-
риц, 25
Теорема о полном решении и компакте, 22

```
Теорема о продолжимости вправо, 21
Теорема об общем решениии ЛОС, 24
Точка единственности, 3
Точная форма, 9
Уравнение Бернулли, 8
Уравнение Пфаффа, 8
Уравнение Рикатти, 8
Уравнение полных дифференциалов, 9
Условие Липшица, 15
Эквивалентное интегральное уравнение, 13
неоднородная линейная система, 30
фундаментальная матрица, 24
фундаментальная матрица, нормированная к единичной, 24
```