

Buddy-Verfahren (Ausgangszustand)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 $n \coloneqq 2^{\tilde{n}-1}$ $k \coloneqq 2^{\tilde{n}} - 1$

Buddy-Verfahren (A Reservieren)

Buddy-Verfahren (B Reservieren)

Buddy-Verfahren (C Reservieren)

Buddy-Verfahren (D Reservieren)

Buddy-Verfahren (E Reservieren)

Buddy-Verfahren (D Freigeben)

Buddy-Verfahren (F Ablehnen)

Segmentbasierte Adressberechnung

- Die physikalische Adresse erhält man bei der segmentbasierten Adressberechnung durch die Addition von Startadresse mit dem in der virtuellen Adresse enthaltenen Offset (Byteposition in der Seite)
- Ist der Offset größer als die Segmentlänge entsteht eine Speicherschutzverletzung (engl. Segmentation-Fault):

Speicherschutzverletzung: Offset ≥ Länge

Segmentierung

Setzt man $\overline{\text{Index}} = \overline{0}$, führt die MMU eine Identitätsabbildung aus: So kann direkt auf Segmenttabelle R zugegriffen werden.

Holen der Segmentnummer (Falls vorhanden)

Zusammensetzen der physikalischen Adresse II

Segmentbasierte Adressberechnung (Beispiel)

Segmentierung

Holen der Segmentnummer (Falls vorhanden)

Zusammensetzen der physikalischen Adresse II

LRU-Algorithmus

Beispiel:

Registertabelle

Zugriff:	1	5	3	3	5	4	4	2	7	4	9	1	4	6
Kachel 0:	1	1	1	1	1	1	1	2	2	2	2	1	1	1
Kachel 2:	-	5	5	5	5	5	5	5	5	5	9	9	9	9
Kachel 2:	-	-	3	3	3	3	3	3	7	7	7	7	7	6
Kachel 3:	-	-	-	-	-	4	4	4	4	4	4	4	4	4

Zugriffstabelle (Zahl der Zyklen seit des letzten Aufrufs)

Kachel	0: 0	1	2	3	4	5	6	0	1	2	3	0	1	2
Kachel	2: INT_MAX	0	1	2	0	1	2	3	4	5	0	1	2	3
Kachel	2: INT_MAX	INT_MAX	0	0	1	2	3	4	0	1	2	3	4	0
Kachel	3: INT_MAX	INT_MAX	INT_MAX	INT_MAX	INT_MAX	0	0	1	2	0	1	2	0	1

Adjazenztafel der 'Älter als'-Relation ≼

- ≼ kann als Adjazenzmatrix Adj_≤ dargestellt werden
- $\bullet j \leq i \equiv \mathrm{Adj}_{\leq}[i,j] = 1$, ansonsten gilt $\mathrm{Adj}_{\leq}[i,j] = 0$
- lacktriangle Offensichtlich muss \leq reflexiv sein: Für die Diagonale $d_0 \cdots d_{n-1} = 1$
- Außerdem ist \leq antisymmetrisch: $\mathrm{Adj}_{\leq}[i,j] = 0 \Leftrightarrow \mathrm{Adj}_{\leq}[j,i] = 1$
- Statt $\forall j \in \{k \in K | j > k\}$ wird für ein festes k hier $\forall j > k$ geschrieben

Adjazenztafel der 'Älter als'-Relation (Beispiel)

LRU-Algorithmus mit Adjazenzmatrix

- Wurde <u>unmittelbar</u> vor dem t-ten Zeitschritt die Kachel $k \in K$ aufgerufen, so muss k unter \leq_t als \leq bzw. \prec die folgenden Eigenschaften erfüllen:
 - $\forall j > k$. Adj_≤[k, j] = 0 bzw. $\forall j > k$. k < j: Zeile auf Null setzen
 - $\forall i < k$. Adj $\leq [i, k] = 1$ bzw. $\forall i < k$. $k \leq i$: Spalte auf Eins setzen
- Der Älteste Eintrag zum Zeitpunkt t wird $x \coloneqq \max_{\leq t} K$ genannt:
 - $\forall i < x$. $\mathrm{Adj}_{\leq}[i, x] = 0$ bzw. $\forall i < x$. i < x: Spalte ist Null
 - $\forall j > x$. $\mathrm{Adj}_{\leqslant}[x,j] = 1$ bzw. $\forall j > x$. $j \leqslant x$: Zeile ist Eins

Berechnung des ältesten Elements (Aufgabe)

i j	0	1	2	3	4	5	6	7
0	d_0	1	1	1	0	1	0	1
1		d_1	0	1	0	0	0	0
2			d_2	1	0	0	0	1
3				d_3	0	0	0	0
4					d_4	1	0	1
5						d_5	0	1
6							d_6	1
7								d_7

Berechnung des ältesten Elements (Lösung)

Was ist hier das älteste Element?

i^{j}	0	1	2	3	4	5	6	7
0	d_0	1	1	1	1	1	1	1
1		d_1	1	1	0	0	1	0
2			d_2	0	0	0	1	0
3				d_3	0	0	1	0
4					d_4	1	1	1
5						d_5	1	1
6							d_6	0
7								d_7

Was ist hier das älteste Element? (Lösung)

i j	0	1	2	3	4	5	6	7
0	d_0	1	1	1	1	1	1	1
1		d_1	1	1	0	0	1	0
2			d_2	0	0	0	1	0
3				d_3	0	0	1	0
4					d_4	1	1	1
5						d_5	1	1
6							d_6	0
7								d_7

Beispiele zu Kachelaufrufen

```
i^{j} 0 1 2 3 4 5 6 7 0 d_{0} 0 0 0 0 0 0 1 0 1 0 1 d_{1} 0 0 0 0 0 1 0 2 d_{2} 0 1 1 1 0 0 3 1 1 1 1 0 4 d_{4} 0 1 0 d_{5} 1 0 6 7 d_{6} 0 d_{7}
```

Beispiele zu Kachelaufrufen

Beispiele zu Kachelaufrufen

