

UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Matemática

Tesis de Licenciatura

El problema de la palabra para grupos virtualmente libres.

Leopoldo Lerena.

Director: Iván Sadofschi Costa ...

Fecha de Presentación

Índice general

1.	Prel	iminares.	9
	1.1.	Teoría de lenguajes	9
		1.1.1. Gramáticas	11
		1.1.2. Lenguajes regulares	12
		1.1.3. Lenguajes independientes de contexto.	14
		1.1.4. Autómatas de pila	15
		1.1.5. Autómatas de pila determinísticos	19
	1.2.	Teoría de grupos.	23
	1.3.	Grafos no dirigidos	25
2.	Teo	ría de Bass-Serre.	29
	2.1.	Definiciones básicas.	29
	2.2.	Palabras reducidas	36
		2.2.1. Casos particulares	36
		2.2.2. Caso general	38
	2.3.	Árbol de Bass–Serre.	46
		2.3.1. Construcción de \tilde{X}	46
		2.3.2. Teorema de Serre	48
	2.4.	Acciones de grupos sobre árboles.	51
3.	Gru	pos independientes de contexto.	65
	3.1.	Propiedades de los lenguajes independiente de contexto	65
	3.2.	El problema de la palabra	68
	3.3.	Teorema de Muller–Schupp	72
4.	Gra	fos de Cayley.	79
	4.1.	Treewidth	79
	4.2.	Cuasisometrías	86
	4.3.	Grupos independiente de contexto tienen treewidth finito.	89

4	ÍNDICE GENERAL

5.	Cortes de grafos y árboles de estructura.	93
	5.1. Cortes de grafos.	. 93
	5.2. Grafos accesibles	
	5.3. Cortes óptimos	. 100
	5.4. Árbol de estructura	. 104
	5.5. Acciones sobre el árbol de estructura.	. 107

Introducción.

El problema de la palabra de un grupo finitamente generado es el conjunto de palabras sobre los generadores tales que son iguales a la identidad del grupo. Bajo esta definición el problema de la palabra resulta ser un lenguaje formal. El primer trabajo que abordó el problema de la palabra con esta perspectiva fue el trabajo de Animisov [Ani71] en el cual probó que los grupos finitos son exactamente los grupos que tienen un problema de la palabra regular. Un siguiente paso razonable fue entender qué grupos tienen un problema de la palabra independiente de contexto. En un trabajo seminal [MS83] Muller y Schupp probaron que los grupos virtualmente libres son exactamente los grupos que tienen un problema de la palabra independiente de contexto. Para probar este resultado se valieron de varias caracterizaciones equivalentes de los grupos virtualmente libres. Algunas de las posibles caracterizaciones de los grupos virtualmente libre incluyen: (1) grupos fundamentales de grafos de grupos finitos, (2) grupos finitamente generados tales que sus grafos de Cayley tienen treewidth finito, (3) grupos universales de pregrupos finitos, (4) grupos con presentaciones finitas dadas por sistemas geodésicos de reescritura, y (6) grupos finitamente generados con teoría monádica de segundo orden decidible. Para ver aún más caracterizaciones leer los siguientes trabajos [DW17], [Ant11] y [AS17].

El objetivo de esta tesis es estudiar algunas de la posibles caracterizaciones de los grupos virtualmente libres y probar la equivalencia entre los grupos que tienen un problema de la palabra independiente de contexto y los grupos virtualmente libres. Para esto elegimos uno de los caminos de equivalencias de caracterizaciones más cortos. Este camino está basado en el camino de equivalencias que originalmente utilizaron Muller y Schupp. A diferencia de ese trabajo utilizamos algunas construcciones que aparecieron posteriormente que facilitan algunas demostraciones. El trabajo está estructurado de manera que en cada capítulo (exceptuando el de preliminares) probamos una caracterización equivalente de los grupos virtualmente libres. A continuación resumimos los contenidos de cada capítulo:

- En el primer capítulo introducimos las ideas más elementales que usaremos de la teoría de grupos, de la teoría de grafos y de la teoría de lenguajes. Estos temas tratados son clásicos y pueden encontrarse por ejemplo en los siguientes libros [LS77], [Die05] y [HU79].
- En el segundo capítulo damos una introducción a la teoría de Bass–Serre que conecta la estructura de un grupo con sus acciones en árboles. A partir de una acción de un grupo sobre un árbol nos define un grafo de grupos y viceversa, a partir de un grafo de grupos podemos armarnos un grupo (denominado el grupo fundamental del grafo de grupos) y un árbol en el cuál actúa. Uno de los resultados centrales de la teoría de Bass–Serre es que

6 ÍNDICE GENERAL

estas construcciones son inversas y esto lo probamos en el teorema 2.4.12. El resultado central de este capítulo para nuestro trabajo es 2.4.17 que prueba que el grupo fundamental de los grafos de grupos con grupos finitos resulta ser un grupo virtualmente libre.

- En el tercer capítulo introducimos los grupos independiente de contexto, que son los grupos que tienen un problema de la palabra independiente de contexto. En principio como el problema de la palabra depende del conjunto de generadores elegido esta definición no está justificada. Entonces nos vemos obligados a probar que si un grupo tiene un problema de la palabra independiente de contexto entonces para cualquier conjunto de generadores también resulta ser independiente de contexto. Esta propiedad es válida porque los lenguajes independientes de contexto resultan ser un cono de lenguajes. Finalmente probamos el teorema central del capítulo que es el de Muller–Schupp 3.3.9 que todo grupo virtualmente libre es independiente de contexto porque existe un autómata de pila que lo acepta.
- En el cuarto capítulo introducimos para grafos no dirigidos las descomposiciones en un árbol y a partir de estas descomposiciones definimos un número natural o infinito que es el treewidth de un grafo. Probamos varios propiedades elementales que tienen estas descomposiciones y construimos una descomposición en un árbol para un grafo de Cayley de un grupo finitamente generado arbitrario. Para que el treewidth finito sea un invariante para un grupo y no dependa del grafo de Cayley utilizamos cuasisometrías para probar que el treewidth finito es un invariante por cuasisometría y así como todos los grafos de Cayley de un grupo finitamente generado son cuasisométricos entre sí obtenemos que está bien definida la noción de un grupo con treewidth finito. Finalmente probamos el resultado central del capítulo 4.3.3 que nos dice que los grupos independiente de contexto resultan tener treewidth finito.
- En el quinto capítulo terminamos de cerrar las equivalencias de los grupos virtualmente libres. Para esto esbozamos rápidamente la teoría de los cortes de los grafos y nos enfocamos en los grafos accesibles que resultan ser una familia que contiene a los grafos que tienen treewidth finito. Probamos que bajo estas hipótesis podemos construirnos a partir de los cortes de los grafos un árbol que denominamos el árbol de estructura del grafo. El resultado central del capítulo es 5.5.22 que dice que el grupo de automorfismos de un grafo con treewidth finito actúa con finitas órbitas sobre su árbol de estructura. De esta manera por obtenemos que los grupos con treewidth finito son exactamente los grupos fundamentales de grafos de grupos finitos y así terminamos de probar todas estas equivalencias.

ÍNDICE GENERAL 7

El siguiente esquema muestra las relaciones que existen entre los resultados probados en cada capítulo.

Capítulo 1

Preliminares.

En este capítulo introducimos notación y varios resultados estándares que utilizaremos a lo largo de la tesis.

En la primera sección 1.1 introduciremos ágilmente resultados estándares de la teoría de lenguajes junto con algunos ejemplos para ilustrar todas estas definiciones. En particular nos interesará especialmente para este trabajo la noción de lenguaje independiente de contexto que introduciremos en la subsección 1.1.3.

En la segunda sección 1.2 introduciremos notación y probaremos algunos resultados sobre grupos finitamente generados.

Finalmente en 1.3 introducimos la notación que usaremos para los grafos no dirigidos, daremos una definición de los grafos de Cayley de un grupo y probaremos un resultado 1.3.11 sobre los grafos de Cayley de los grupos libres que nos servirá más en adelante para guiarnos en la caracterización de los grafos de Cayley de los grupos virtualmente libres.

§1.1. Teoría de lenguajes.

Consideremos un conjunto no vacío Σ luego dado $k \in \mathbb{N}$ denotaremos Σ^k al conjunto de palabras en Σ de exactamente k elementos. Hacemos énfasis especial en el caso que k=0 denotando $\Sigma^0 = \{\epsilon\}$ a la *palabra vacía*. Dada una palabra $w = a_1 \dots a_k \in \Sigma^k$ diremos que su longitud es k y lo denotaremos |w| = k. Similarmente si $\Sigma = \{a_i\}_{i \in I}$ denotaremos $|w|_i$ a la cantidad ocurrencias de a_i en w.

DEFINICIÓN **1.1.1.** Dado Σ conjunto consideramos

$$\Sigma^* = igcup_{k=0}^\infty \Sigma^k$$

y una operación binaria

$$\cdot: \Sigma^* \times \Sigma^* \to \Sigma^*$$

que llamaremos la *concatenación de palabras* y que definimos de la siguiente manera: dadas $w_1 = a_1 \dots a_k \in \Sigma^*$, $w_2 = b_1 \dots b_l \in \Sigma^*$ luego $w_1 \cdot w_2 = a_1 \dots a_k b_1 \dots b_l$. Esta operación es asociativa y tiene

como elemento neutro a ϵ . De esta manera obtenemos que (Σ^*, \cdot) es un monoide que llamaremos el *monoide libre* sobre Σ .

Este monoide también puede ser caracterizado salvo isomorfismo por una propiedad universal.

OBSERVACIÓN 1.1.2. El monoide es libre con la siguiente propiedad universal: si tenemos una función de conjuntos $f: \Sigma \to M$ donde M es algún monoide entonces existe un único morfismo de monoides $\overline{f}: \Sigma^* \to M$ que hace conmutar al siguiente diagrama.

$$\begin{array}{ccc}
\Sigma & \xrightarrow{f} & M \\
\downarrow & & \downarrow & \uparrow \\
\Sigma^* & & & \end{array}$$

Una palabra sobre Σ es un $w \in \Sigma^*$. Si w es una palabra sobre el alfabeto Σ luego una subpalabra u de w es una palabra $u \in \Sigma^*$ tal que w = vuz para algunas $v, z \in \Sigma^*$. Si w = vu entonces v es un prefijo de w y u es un sufijo de w.

DEFINICIÓN 1.1.3. Un *lenguaje* L sobre un alfabeto Σ es un subconjunto de Σ^* .

DEFINICIÓN 1.1.4. Sea Σ conjunto finito. Dados lenguajes $L_1, L_2 \subseteq \Sigma^*$ definimos el *cociente a derecha de L*₁ *por L*₂ como el siguiente lenguaje

$$L_1/L_2 = \{ w \in \Sigma^* \mid \exists x \in L_2 : wx \in L_1 \}$$

Análogamente definimos el cociente a izquierda $L_2 \setminus L_1$.

Destacamos el caso particular que $L_1 = \{w\}$ un lenguaje formado con una única palabra y que $L_2 = \Sigma^*$. En este caso tenemos que $L_1/\Sigma^* = \{x \in \Sigma^* \mid x \text{ es prefijo de } w\}$. Usaremos para este caso especial la notación $\operatorname{Pre}(w) = \{w\}/\Sigma^*$. Análogamente el caso $L_1\backslash\Sigma^* == \{x \in \Sigma^* \mid x \text{ es posfijo de } w\}$. Usaremos para este caso especial la notación $\operatorname{Pos}(w) = \{w\}\backslash\Sigma^*$.

Un *prefijo propio* de w es un prefijo u tal que $u \neq w$ y $u \neq \varepsilon$ y definimos similarmente un *posfijo propio* como un posfijo u tal que $u \neq w$ y $u \neq \varepsilon$.

DEFINICIÓN 1.1.5. Sea Σ un conjunto finito. Dada una palabra $w \in \Sigma^*$ tal que $w = a_1 \dots a_n$ denotaremos por $w^R \in \Sigma^*$ la *palabra reversa* definida como $w^R = a_n \cdots a_1$.

Dada una palabra $w \in \Sigma^*$ tal que w = uv tenemos que vale la siguiente igualdad $w^R = v^R u^R$. En particular para cada alfabeto podemos definir un lenguaje que es el de los palíndromos.

DEFINICIÓN **1.1.6.** Sea $\Sigma = \{a,b\}$ entonces el *lenguaje de los palíndromos sobre* Σ es el siguiente lenguaje:

$$L_{\text{PAL}} = \{ w \in \Sigma^* \mid w = w^R \}.$$

LEMA 1.1.7. Sea $w \in L_{PAL}$ entonces existe u prefijo de w y $c \in \{a, b, \epsilon\}$ tal que $w = ucu^R$.

Demostración. Separamos en dos casos.

- **1.** Caso |w|=2k para $k\in\mathbb{N}$. Sea w=uv tal que |u|=|v|=k. Luego como $w=w^R$ tenemos que $uv=v^Ru^R$ lo que implica que $v=u^R$ y así $w=u\varepsilon u^R$ tal como queríamos probar.
- **2.** Caso |w|=2k+1 para $k\in\mathbb{N}$. En este caso podemos tomar w=ucv donde $c\in\Sigma$. Idénticamente al caso anterior concluimos que $u=v^R$.

§1.1.1. Gramáticas.

DEFINICIÓN **1.1.8.** Una *gramática* es una tupla $\mathcal{G} = (V, \Sigma, P, S)$ donde:

- *V* es un conjunto finito denominado las *variables*;
- $S \in V$ es el símbolo inicial;
- Σ es un conjunto finito disjunto de V que denominamos símbolos terminales;
- $P \subseteq (V \cup \Sigma)^*V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$ es un conjunto finito de *producciones*.

Dada una gramática $\mathcal{G}=(V,\Sigma,P,S)$ a cualquiera de sus producciones $(\gamma,\nu)\in P$, la vamos a denotar por medio de la siguiente notación $\gamma\to\nu$.

A partir de una gramática $\mathcal{G}=(V,\Sigma,P,S)$ vamos a definir una relación sobre $(\Sigma \cup V)^*$. Dados $x,y \in (\Sigma \cup V)^*$ diremos que x deriva en y si existen $u,v,w,z \in (\Sigma \cup V)^*$ tales que x=uwv e y=uzv y tenemos una producción $w\to z\in P$. La notación que usaremos es $x\Rightarrow_{\mathcal{G}} y$. Consideremos la clausura transitiva y reflexiva de esta relación que denotaremos por $\overset{*}{\to}_{\mathcal{G}}$.

DEFINICIÓN **1.1.9.** Dada una gramática $\mathcal{G}=(V,\Sigma,P,S)$ definimos el *lenguaje generado por la gramática* como

$$L(\mathcal{G}) = \{ w \in \Sigma^* \mid S \stackrel{*}{\to}_{\mathcal{G}} w \}.$$

Este lenguaje está formado por las palabras en Σ^* que se pueden derivar del símbolo inicial. De esta manera una gramática la podemos pensar como un conjunto de reglas que nos permite generar un lenguaje.

EJEMPLO 1.1.10. Consideremos la siguiente gramática $\mathcal{G} = (V, \Sigma, P, S)$ donde $V = \{S\}, \Sigma = \{a, b\}$ y tenemos las siguientes producciones:

$$S \rightarrow aS \mid b$$

donde usamos | para separar distintas producciones que tienen el mismo lado izquierdo.

Veamos como podemos derivar la palabra $a^2b \in \Sigma^*$ usando las producciones de esta gramática. Esto es que $S \stackrel{*}{\to}_{\mathcal{G}} a^2b$. Tomamos la siguiente sucesión:

$$S \rightarrow aS \rightarrow aaS \rightarrow aab$$

y nos queda tal como queríamos ver.

Llamemos al lenguaje $L = \{a^k b : k \ge 0\}$ y probemos que $L(\mathcal{G}) = L$.

Si $w \in L(\mathcal{G})$ entonces $S \xrightarrow{*}_{\mathcal{G}} w$ por definición. Probemos por inducción en la longitud de la palabra w que $w \in L$. En el caso base |w| = 1 entonces la única opción es que w = b dada por la siguiente derivación de un solo paso $S \to b$. Para el paso inductivo supongamos que vale que toda palabra $u \in L(\mathcal{G})$ tal que $|u| \leq n-1$ es tal que $u \in L$. Sea |w| = n entonces tenemos que la derivación tiene la siguiente pinta

$$S \to aS \stackrel{*}{\to}_G aw'$$

donde necesariamente el primer paso tiene que ser $S \to aS$ caso contrario no tendría longitud mayor a 1 y también tiene que ser que |w'| = n-1 y aw' = w. Para finalizar esta demostración basta observar que $w' \in L(\mathcal{G})$ dado que $S \to_{\mathcal{G}}^* w'$. Por hipótesis inductiva concluimos que $w' \in L$ por lo que $w' = a^{n-2}b$ y así $w = a^{n-1}b \in L$ tal como queríamos ver.

Sea $w = a^k b \in L$ para $k \in \mathbb{N}$, veamos que $w \in L(\mathcal{G})$. Para eso consideremos la siguiente derivación:

$$S \stackrel{*}{\rightarrow}_{G} a^{k} S \rightarrow a^{k} b$$

y así vemos que $w \in L(\mathcal{G})$.

Es posible clasificar los lenguajes a partir de las características de las gramáticas que los generan.

§1.1.2. Lenguajes regulares.

DEFINICIÓN 1.1.11. Decimos que una gramática $\mathcal{G} = (V, \Sigma, P, S)$ es *regular* si las producciones son del estilo

- 1. $A \rightarrow \epsilon$
- **2.** $A \rightarrow a$
- 3. $A \rightarrow aB$

donde A, $B \in V$, $a \in \Sigma$ y ϵ es la palabra vacía. Si $L = L(\mathcal{G})$ para alguna gramática regular \mathcal{G} entonces diremos que L es un *lenguaje regular*.

En particular la gramática del ejemplo 1.1.10 es regular. De esta manera $L=\{a^kb:k\geqslant 0\}$ resulta ser un lenguaje regular.

DEFINICIÓN 1.1.12. Un autómata finito no determinístico es una tupla $\mathcal{M} = (Q, q_0, \Sigma, \delta, F)$ donde:

Q es un conjunto finito que denominamos estados.

- $q_0 \in Q$ es el estado inicial.
- Σ es un conjunto finito que denominamos *alfabeto*.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ es la función de transición.
- $F \subseteq Q$ es un subconjunto de estados que llamaremos finales.

Un par $(q, w) \in Q \times \Sigma^*$ lo llamaremos una *configuración* del autómata. Consideremos que w = aw' donde $a \in \Sigma$ y $w' \in \Sigma^*$ luego si tenemos que $p \in \delta(q, a)$ entonces denotaremos esto así $(q, w) \vdash (p, w')$ y diremos que la configuración (q, w) *deriva* en la configuración (p, w'). Esto nos define una relación \vdash sobre $Q \times \Sigma^*$ tal que su clausura transitiva y reflexiva la denotaremos $\vdash^*_{\mathcal{M}}$.

Una configuración (q, w) se dice *irreducible* si no existe ninguna configuración (p, u) tal que $(q, w) \vdash (p, u)$. Equivalentemente esto sucede en dos casos. El primero es que $w = \epsilon$ y el segundo es que w = aw' y tenemos que $\delta(q, a) = \emptyset$. Una configuración (q, w) se dice *final* si $q \in F$ y $w = \epsilon$. En particular las configuraciones finales son irreducibles.

Una manera de *consumir* una palabra $w \in \Sigma^*$ es una sucesión de configuraciones $(q_0, w) \vdash (q_{i_1}, w_{i_1}) \vdash \cdots \vdash (q_{i_n}, w')$ donde (q_{i_n}, w') es una configuración irreducible.

Observación 1.1.13. Los autómatas \mathcal{M} son *no determinísticos* porque dada una configuración (q,w) no irreducible donde w=aw' con $a\in \Sigma, w'\in \Sigma^*$ podría suceder que $|\delta(q,a)|\geqslant 2$ por lo tanto la configuración (q,w) podría derivar en más de una configuración. Un corolario de esta afirmación es que las palabras $w\in \Sigma^*$ pueden ser consumidas en más de una forma.

DEFINICIÓN 1.1.14. Dado un autómata finito no determinístico $\mathcal{M}=(Q,q_0,\Sigma,\delta,F)$ el *lenguaje aceptado* por \mathcal{M} es el siguiente:

$$L(\mathcal{M}) = \{ w \in \Sigma^* \mid \exists q_F \in F, (q_0, w) \vdash^* (q_F, \epsilon) \}.$$

Equivalentemente el lenguaje aceptado por un automáta son las palabras que pueden ser consumidas de manera que terminan en una configuración final. Notemos que al ser un automáta no determinístico podría ser que $w \in L(\mathcal{M})$ y a su vez exista una forma de consumir a w de manera que termina en una configuración que no es final. Lo importante en esta definición es que exista al menos una manera de consumir a la palabra y termine en una configuración final.

Así como las gramáticas generan lenguajes los autómatas aceptan lenguajes. Más en particular dado $\mathcal{M}=(Q,\{q_0\},\Sigma,\delta,F)$ autómata finito no determinístico y $w\in\Sigma^*$ palabra diremos que \mathcal{M} acepta a w si $w\in L(\mathcal{M})$.

TEOREMA 1.1.15. Un lenguaje L es regular si y solo sí es aceptado por un autómata finito no determínistico.

Demostración. Ver [HU79, pp.218-219].

§1.1.3. Lenguajes independientes de contexto.

DEFINICIÓN 1.1.16. Una gramática $\mathcal{G} = (V, \Sigma, P, S)$ es *independiente de contexto* si las producciones tienen la siguiente forma:

$$A \rightarrow w$$

donde $A \in V$, $w \in (\Sigma \cup V)^*$. Si $L = L(\mathcal{G})$ para alguna gramática independiente de contexto \mathcal{G} entonces diremos que L es un *lenguaje independiente de contexto*.

Estas gramáticas reciben el nombre de independientes de contexto porque independientemente de qué símbolos rodean a un no terminal A siempre lo vamos a poder reemplazar por w si $A \to w$ es una producción.

OBSERVACIÓN 1.1.17. Todo lenguaje regular en particular resulta ser un lenguaje independiente de contexto .

PROPOSICIÓN 1.1.18. El lenguaje L_{PAL} es independiente de contexto.

Demostración. Construyamos una gramática independiente de contexto $\mathcal{G} = (V, \Sigma, P, S)$ tal que $L(\mathcal{G}) = L_{\text{PAL}}$. Consideramos la siguiente gramática $\mathcal{G} = (\{S\}, \Sigma, P, S)$ donde las producciones P están dadas por:

$$S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$$
.

Probemos primero que $L(\mathcal{G})\subseteq L_{\mathrm{PAL}}$. Sea $w\in L(\mathcal{G})$, probaremos por inducción en |w| que $w\in L_{\mathrm{PAL}}$. Para el caso base tenemos que |w|=0 por lo que $w=\epsilon$ y notemos que $w\in L(\mathcal{G})$ dado que tenemos la siguiente derivación $S\to\epsilon$. Como $\epsilon=\epsilon^R$ entonces $\epsilon\in L_{\mathrm{PAL}}$.

Para el paso inductivo supongamos que para toda $u \in L(\mathcal{G})$ tal que $|u| \leq n-1$ vale que $u \in L_{\text{PAL}}$. Sea $w \in L(\mathcal{G})$ tal que |w| = n. Separamos en dos casos: Si |w| = 1 entonces w = a o w = b y en tal caso tenemos que $w \in L_{\text{PAL}}$. Si $|w| \geqslant 1$ entonces la derivación de w debería ser de la siguiente forma

$$S \to aSa \stackrel{*}{\to}_G awa$$

o bien

$$S \to bSb \stackrel{*}{\to}_{\mathcal{G}} bw'b$$

dependiendo si w comienza con a o con b. En ambos casos tenemos que $S \xrightarrow{*}_{\mathcal{G}} w'$ y |w'| < n por ser una subpalabra de w por lo tanto por hipótesis inductiva tenemos que $w' \in L_{\text{PAL}}$. En el caso w = aw'a tenemos que $w^R = a(w')^R a = aw'a$ por lo tanto $w \in L_{\text{PAL}}$. Idénticamente vemos que vale esto en el caso que w = bw'b.

Para ver que $L_{\text{PAL}} \subseteq L(\mathcal{G})$ lo probamos por inducción de una manera similar a como probamos la otra contención. Probaremos por inducción en la longitud de la palabra $w \in L_{\text{PAL}}$. En el caso base $w = \epsilon$ y tenemos que $S \to \epsilon$ por lo tanto $\epsilon \in L(\mathcal{G})$. Para el paso inductivo sea $w \in L_{\text{PAL}}$ tal que |w| = n luego separamos en casos. Si |w| = 1 entonces w = a o w = b y en ese caso $w \in L(\mathcal{G})$. Si $|w| \ge 2$ y si w empieza con a tenemos que w = aua necesariamente porque caso contrario no sería un palíndromo. En particular tiene que valer que $u \in L_{\text{PAL}}$ caso contrario $w^R = au^R a \ne aua = w$. Por hipótesis inductiva tenemos que $u \in L(\mathcal{G})$ por lo tanto tenemos la siguiente derivación para w,

$$S \to aSa \stackrel{*}{\to}_{\mathcal{G}} aua = w$$

y así vimos que $w \in L(\mathcal{G})$ tal como queríamos probar. El caso que w empieza con b resulta análogo.

Las gramáticas pueden ser modificadas de manera que sigan generando el mismo lenguaje, en el caso de las gramáticas independiente de contexto pueden ser llevadas a una forma normal.

DEFINICIÓN 1.1.19. Una gramática $\mathcal{G} = (V, \Sigma, P, S)$ independiente de contexto está en *forma normal de Chomsky* si las producciones son de este tipo:

- I) $A \rightarrow BC$ donde $A \in V \setminus B$, $C \in V \setminus \{S\}$.
- II) $A \rightarrow a$ donde $A \in V, a \in \Sigma$.
- III) $S \rightarrow \epsilon$

PROPOSICIÓN 1.1.20. Para toda gramática \mathcal{G} independiente de contexto existe otra gramática \mathcal{G}' independiente de contexto tal que está en forma normal de Chomsky y $L(\mathcal{G}) = L(\mathcal{G}')$,

Demostración. Ver [HU79, pp.274-275].

§1.1.4. Autómatas de pila.

DEFINICIÓN 1.1.21. Un autómata de pila finito no determinístico es una tupla

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F, \$)$$

donde

- Q es un conjunto finito denominado los estados;
- Σ es un conjunto finito que denominamos el *alfabeto del lenguaje*;
- Γ es un conjunto finito que denominamos el *alfabeto de la pila*;
- δ es la función de transición donde $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*);$
- $q_0 \in Q$ es el estado inicial;
- $F \subseteq Q$ es el conjunto de *estados finales*;
- $\$ \in \Gamma$ es el *símbolo inicial* de la pila

Una configuración de un autómata de pila no determinístico va a ser un triple $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$. Dada una configuración de un autómata de pila no determinístico (q, w, γ) tal que $\gamma \neq \epsilon$ y en tal caso $\gamma = Z\gamma'$ diremos que $Z \in \Gamma$ es el *tope de la pila* de esta configuración. Intuitivamente el tope de la pila es lo último que apilamos y es lo único que podemos leer de la pila.

Sea una configuración (q, w, γ) tal que Z es el tope de la pila de esta configuración por lo tanto $\gamma = Z\gamma'$ y w = aw' con $a \in \Sigma \cup \{\epsilon\}$ entonces si $(p, \theta) \in \delta(q, a, Z)$ luego denotaremos $(q, aw', Z\gamma') \vdash$

 $(p,w',\theta\gamma')$ y diremos que la configuración (q,w,γ) *deriva* en la configuración $(p,w',\theta\gamma')$. Así como en el caso anterior de los autómatas finitos consideremos la relación generada por la clausura transitiva y reflexiva de esta operación tal que la denotaremos $\vdash^*_{\mathcal{M}}$. Para cada $k \in \mathbb{N}$ notaremos \vdash^k a la aplicación k veces de la derivación \vdash y así tenemos que $\vdash^*=\bigcup_{k\in\mathbb{N}}\vdash^k$.

Así como en el caso de los autómatas finitos no determinísticos podemos definir una *configuración irreducible* (q, aw', γ) como una configuración para la cual no existe ninguna otra configuración (p, u, θ) tal que $(q, w, \gamma) \vdash (p, u, \theta)$. En particular esto podría ser por dos casos: el primero es que $\gamma = \epsilon$ y el segundo es que si Z es el tope de pila de la configuración luego $\delta(q, a, Z) = \emptyset$. Una manera de *consumir* una palabra $w \in \Sigma^*$ es una sucesión finita de configuraciones $(q_0, w, \$) \vdash \cdots \vdash (p, u, \theta)$ donde (p, u, θ) es una configuración irreducible, o escrito de manera equivalente, debe existir $k \in \mathbb{N}$ tal que $(q_0, w, \$) \vdash^k (p, u, \theta)$.

DEFINICIÓN 1.1.22. Dado $\mathcal M$ un autómata de pila no determinístico consideramos el *lenguaje* aceptado por estado final como

$$L(\mathcal{M}) = \{ w \in \Sigma^* \mid (q_0, w, \$) \vdash^* (q, \epsilon, \gamma), \ q \in F, \ \gamma \in \Gamma^* \}.$$

Las configuraciones finales para el lenguaje aceptado por estado final de un automáta de pila no determinístico van a ser las configuraciones que tienen la pinta (q, ϵ, γ) donde $q \in F$. Expresado de otra manera tenemos que el lenguaje aceptado por un autómata de pila no determinístico son las palabras que pueden ser consumidas de manera que terminan en una configuración final.

PROPOSICIÓN 1.1.23. Existe un autómata no determinístico de pila \mathcal{M} tal que $L(\mathcal{M}) = L_{PAL}$.

Demostración. Consideremos el siguiente autómata de pila

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, \$\}, \delta, q_0, \{q_2\}, \$)$$

donde nuestra pila tiene el mismo alfabeto que el de entrada con un símbolo adicional que va funcionar como nuestro símbolo inicial de la pila. El autómata tiene tres estados y lo vamos a representar de la siguiente manera:

Donde dibujamos una flecha siempre y cuando la función de transición nos permita ir del estado del cual sale la flecha al estado al que llega. A los estados finales los distinguimos dibujandoles el borde dos veces.

Sea $Z \in \{a, b, \$\}$ algún elemento arbitrario del alfabeto de la pila. Vamos a definir la función de transición en 4 casos que numeramos en la representación gráfica del autómata.

■ Caso *I*. En este caso tenemos que si $c \in \Sigma$ entonces $\delta(q_0, c, Z) = (q_0, cZ)$.

1.1. TEORÍA DE LENGUAJES.

17

- Caso *II*. En este caso tenemos que si $c \in \Sigma \cup \{\epsilon\}$ entonces $\delta(q_0, c, Z) = (q_1, Z)$.
- Caso *III*. En este caso tenemos que si $c \in \Sigma$ entonces $\delta(q_1, c, c) = (q_1, \epsilon)$.
- Caso *IV*. En este caso tenemos que $\delta(q_1, \epsilon, \$) = (q_2, \epsilon)$.

A partir de esta definición de la función de transición del autómata obtenemos las siguientes dos observaciones que se siguen de aplicar varias veces la función de transición.

1. Sea $(q_0, uv, \$)$ una configuración de \mathcal{M} y sea |u| = k entonces tenemos que

$$(q_0, uv, \$) \vdash^k (q_0, v, u^R \$).$$

2. Sea $(q_1, v, u\$)$ una configuración de \mathcal{M} , sea |v| = k y sea u = vu' entonces tenemos que

$$(q_1, v, u\$) \vdash^k (q_1, \epsilon, u'\$).$$

Intuitivamente el automáta de pila no determinístico funciona de la siguiente manera. En el primer estado q_0 apilamos algun prefijo de la palabra que queremos consumir. Transicionamos al estado q_1 leyendo alguna letra y en este estado desapilamos el prefijo que leímos anteriormente. Finalmente cuando nuestra pila está solamente con el símbolo inicial transicionamos al estado final.

Probemos que $L_{PAL} = L(\mathcal{M})$.

Primero vemos que $L_{\text{PAL}} \subseteq L(\mathcal{M})$. Si $w \in L_{\text{PAL}}$ luego usando el lema 1.1.7 tenemos que existe u prefijo de w de manera que $w = ucu^R$ para cierto $c \in \Sigma \cup \{\epsilon\}$. Si |w| es par entonces sea $w = ucu^R$ con |u| = k y $c = \epsilon$. Mientras que si es impar tenemos que

Si |w| es par entonces sea $w = ucu^R$ con |u| = k y $c = \epsilon$. Mientras que si es impar tenemos que $w = ucu^R$ con |u| = k y $c \in \Sigma$. Primero apilamos la subpalabra u en la pila y consumimos u,

$$(q_0, ucu^R, \$) \stackrel{k}{\vdash} (q_0, cu^R, u^R \$).$$

Usando una de las transiciones del caso II obtenemos que $(q_0, cu^R, u^R \$) \vdash (q_1, u^R, u^R \$)$. Ahora desapilamos u^R y consumimos u^R

$$(q_1, u^R, u^R\$) \stackrel{k}{\vdash} (q_1, \epsilon, \$).$$

Finalmente tenemos que podemos transicionar al estado final de la siguiente manera

$$(q_2, \epsilon, \$) \vdash (q_2, \epsilon, \epsilon),$$

tal que $(q_2, \epsilon, \epsilon)$ es una configuración final por lo tanto w es una palabra aceptada por el autómata \mathcal{M} tal como queríamos ver.

Probemos la otra contención. Para eso sea $w \in L(\mathcal{M})$ luego tenemos que $(q_0, w, \$) \stackrel{*}{\vdash} (q_2, \varepsilon, \gamma)$ para $\gamma \in \{a, b, \$\}^*$ por definición de lenguaje aceptado por un autómata de pila no determinístico.

Esto es que tenemos una sucesión de configuraciones $(q_0, w, \$) \vdash \cdots \vdash (q_2, \varepsilon, \gamma)$. Por como es nuestro autómata tiene que existir una única transición de una configuración con estado q_0 a

una configuración con estado q_1 . Esto nos dice que debe existir u prefijo de w, v postfijo de w y $c \in \Sigma \cup \{\epsilon\}$ tal que w = ucv y cumple que usando la definición de las transiciones del caso I que:

$$(q_0, ucv, \$) \vdash^* (q_0, cv, u^R\$) \vdash (q_1, v, u^R\$).$$

Por el caso IV la única manera de transicionar del estado q_1 al estado q_2 es que el tope de la pila sea exactamente \$. Por como son las transiciones del caso III tenemos que la palabra en la pila en cada derivación de una configuración con estado q_1 se achica. A su vez tendríamos que haber leído todo el posfijo v y éste debería haber coincidido con u^R . Esto nos dice que:

$$(q_1, v, u^R\$) \vdash^* (q_1, \epsilon, \$).$$

De esta manera obtuvimos que $w = ucu^R$ para $u \in \Sigma^*$ y $c \in \Sigma \cup \{\epsilon\}$ y así probamos que w es un palíndromo por lo que $w \in L_{\text{PAL}}$ tal como queríamos ver.

Hasta ahora definimos los autómatas de pila no determinísticos que aceptan por estado final. Otra definición posible de lenguaje aceptado podría ser que acepten por pila vacía. Es decir que una vez que consumimos la palabra w de entrada llegamos a una configuración (q, ϵ, ϵ) donde ϵ es la palabra vacía de ambos alfabetos respectivamente. Formalmente dado un autómata de pila $\mathcal M$ notaremos al *lenguaje aceptado por pila vacía* de la siguiente manera

$$N(\mathcal{M}) = \{ w \in \Sigma^* \mid (q_0, w, \$) \vdash^* (q, \epsilon, \epsilon), \ q \in Q, u \in \Sigma^* \}$$

donde arrancamos en el estado inicial y llegamos a algún estado q cualquiera sin importar que sea final o no. Dicho de otra manera la configuración final para el lenguaje aceptado por pila vacía de un automáta de pila no determinístico es una configuración de la pinta (q, ϵ, ϵ) . Así tenemos que la diferencia entre el lenguaje aceptado por estado final o por pila vacía radica en las configuraciones que tomamos para que sean finales.

El siguiente resultado nos dice que en el caso que nuestro autómata sea no determinístico es equivalente usar una u otra manera de definir a nuestro lenguaje.

TEOREMA 1.1.24. Un lenguaje L es aceptado por un autómata de pila no determinístico por estado final si y solo sí es aceptado por un autómata de pila no determinístico por pila vacía.

De esta manera no es ambiguo referirnos a los lenguajes aceptados por un automáta de pila no determinístico donde resulta indistinto si son aceptados por estado final o por pila vacía. Así como existe una equivalencia de los lenguajes regulares con los lenguajes aceptados por autómatas finitos no determinísticos tenemos una equivalencia en el marco de los lenguajes independientes de contexto.

TEOREMA 1.1.25. Un lenguaje L es independiente de contexto si y solo si es aceptado por un autómata de pila no determinístico.

Demostración. Ver [HU79, pp. 245-246, 248-250].

§1.1.5. Autómatas de pila determinísticos.

DEFINICIÓN 1.1.26. Un autómata de pila determinístico es un automáta de pila

$$\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F, \$)$$

definido idénticamente a un automáta de pila no determinístico 1.1.21 con la salvedad que la función de transición tiene la siguiente restricción:

$$\forall z \in \Gamma, \ q \in Q, \ a \in \Sigma \cup \{\epsilon\}, \ |\delta(q, a, z)| \leq 1$$

 $\forall z \in \Gamma, \ q \in Q, \ a \in \Sigma, \ \delta(q, \epsilon, z) \neq \emptyset \implies \delta(q, a, z) = \emptyset$

OBSERVACIÓN 1.1.27. Todo automáta de pila determinístico en particular es un autómata de pila no determinístico.

Esto nos dice que todas las definiciones que dimos para automáta de pila no determinístico siguen siendo válidas en este contexto. Una diferencia importante es que si \mathcal{M} es un automáta de pila determinístico entonces dada una palabra $w \in \Sigma^*$ existe una única manera de consumir a la palabra w. A los lenguajes L tales que son aceptados por un automáta de pila determinístico los llamaremos lenguajes independientes de contexto determinísticos.

LEMA 1.1.28. Sea $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F, \$)$ un autómata de pila determinístico. Sean $u, v \in \Sigma^*$ tales que $v \neq \epsilon, \gamma \in \Gamma^*$ y $p, q \in Q$. Si

$$(q_0, uv, \$) \vdash^* (q, \epsilon, \gamma),$$

entonces no puede valer que

$$(q_0, u, \$) \vdash^* (p, \epsilon, \epsilon).$$

Demostración. Supongamos que $(q_0, w_1, \$) \vdash^* (p, \epsilon, \epsilon)$. Como \mathcal{M} es una automáta de pila determinístico entonces para toda configuración $(q_0, uv, \$)$ existe una única manera de consumirla. Esto quiere decir que

$$(q_0, uv, \$) \vdash^* (p, v, \epsilon) \vdash^* (q, \epsilon, \gamma).$$

Pero esto es una contradicción porque (p, v, ϵ) es una configuración final por lo tanto no existe ninguna otra configuración que derive de ella.

Informalmente el lema dice que si un automáta de pila determinístico $\mathcal M$ puede consumir una palabra w entonces todos los prefijos pueden ser consumidos y terminan en una configuración donde la pila no está vacía.

Ahora probemos que no todo lenguaje aceptado por estado final por un automáta de pila no determinístico puede ser aceptado por estado final por un autómata de pila determinístico. El mismo ejemplo del lenguaje de los palíndromos nos sirve como contraejemplo.

PROPOSICIÓN 1.1.29. Existe un lenguaje L tal que es aceptado por un automáta de pila no determinístico pero no es aceptado por ningún autómata de pila determinístico por estado final.

Demostración. Consideramos el lenguaje $L_{\rm PAL}$. Por la proposición 1.1.23 vimos que es aceptado por un automáta de pila no determinístico entonces nos alcanza con probar que no existe ningún $\mathcal M$ automáta de pila determinístico que lo acepta por estado final.

Supongamos que $\mathcal{M}=(Q,\{a,b\},\Gamma,\delta,q_0,F,\$)$ es un automáta de pila determinístico que lo acepta. Sea $w\in\{a,b\}^*$ arbitraria y distinta de ϵ entonces w es el prefijo de $u=ww^R$ tal que $u\in L_{\mathrm{PAL}}$. Entonces por el lema 1.1.28 debe ser que

$$(q_0, w, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma)$$

donde $\gamma \in \Gamma^*$ es tal que $\gamma \neq \epsilon$.

Fijamos una palabra arbitraria $w \in \{a,b\}^*$ y para cada $x \in \{a,b\}^*$ consideramos $\gamma \in \Gamma^*$ definida como

$$(q_0, wx, \$) \vdash^* (q, \epsilon, \gamma)$$

donde $q \in Q$. Es decir γ es la palabra que nos queda en la pila al consumir wx. Sea $x_w \in \{a,b\}^*$ de manera que si $(q_0, wx_w, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma_w)$ entonces $|\gamma_w|$ es minimal. Si consideramos palabras del estilo $wx_wz \in \{a,b\}^*$ para $z \in \Gamma$ entonces sabemos que la longitud de lo que quede en la pila no puede disminuir, esto es que si $(q_0, wx_wz, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma)$ entonces $|\gamma| \ge |\gamma_w|$.

Nuestro automáta de pila determinístico \mathcal{M} tiene finitos estados y un alfabeto de pila finito por lo tanto existen finitos pares de estados y topes de pilas a los que puede llegar este automáta de pila determinístico después de consumir una palabra. Esto nos dice que deben existir al menos dos palabras distintas $w, u \in \{a, b\}^*$ tales que:

$$(q_0, wx_w, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma_w)$$

 $(q_0, ux_u, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma_u)$

que cumplan que caen en el mismo estado y tienen el mismo tope de pila, esto es que existe $z \in \Gamma$ tal que $\gamma_u = z\gamma$ y $\gamma_w = z\gamma'$ para $\gamma, \gamma' \in \Gamma^*$.

Vamos a elegir $v \in \{a, b\}^*$ de manera que si $s = wx_w$ y $t = ux_u$ entonces $sv \in L(\mathcal{M})$ y $tv \in L(\mathcal{M})$ pero tal que $sv \notin L_{PAL}$ o $tv \notin L_{PAL}$. Procedemos separando en casos dependiendo de las longitudes de s y de t.

- Si |t| = |s| basta con tomar $v = s^R$. Entonces $tv \in L(\mathcal{M})$ pero $tv \notin L_{PAL}$.
- Si $|t| \neq |s|$ supongamos que |s| < |t| y que s no es prefijo de t entonces podemos tomar $v = s^R$ de manera que $sv \in L_{PAL}$ mientras que $tv \in L(\mathcal{M})$ pero $tv \notin L_{PAL}$.
- Si $|t| \neq |s|$ y una es prefijo de la otra. Sin pérdida de generalidad supongamos que t = sy donde $y \in \{a,b\}^*$ tal que $|y| \geqslant 1$ y que y = ay' con $y' \in \{a,b\}^*$ entonces $yb \notin L_{PAL}$. De esta manera tenemos que si $v = bs^R$ entonces $sv \in L$ mientras que $tv \in L(\mathcal{M})$ pero $tv \notin L_{PAL}$.

Con esto probamos que no puede existir ningún autómata \mathcal{M} tal que $L_{\text{PAL}} = L(\mathcal{M})$ porque si $L_{\text{PAL}} \subseteq L(\mathcal{M})$ entonces existen $w \in L(\mathcal{M})$ tales que $w \notin L_{\text{PAL}}$. Por el ejemplo tenemos que L_{PAL} es aceptado por un automáta de pila no determinístico y así vimos que no todo lenguaje que es aceptado por un automáta de pila no determinístico es aceptado por un autómata de pila determinístico.

DEFINICIÓN 1.1.30. Sea $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F, \$)$ un autómata de pila determinístico. Consideremos el siguiente lenguaje

$$L(\mathcal{M}, \gamma) = \{ w \in \Sigma^* \mid (q_0, w, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma), q \in F \}$$

tal que lo llamaremos el lenguaje aceptado por estado final y palabra γ en la pila. Si $L=L(\mathcal{M},\gamma)$ para cierto \mathcal{M} automáta de pila determinístico entonces diremos que L es un lenguaje independiente de contexto determinístico especial.

En nuestro caso en particular nos va a interesar más que nada el caso que $\gamma=\$$, es decir el símbolo inicial de la pila. Primero debemos ver que esta familia de lenguajes son independiente de contexto determinísticos.

PROPOSICIÓN 1.1.31. Todo lenguaje L independiente de contexto determinístico especial es independiente de contexto determinístico.

Demostración. Como L es un lenguaje independiente de contexto determinístico especial entonces existe $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F, \$)$ automáta de pila determinístico y $\gamma \in \Gamma^*$ tal que $L(\mathcal{M}, \gamma) = L$.

Construimos \mathcal{M}' un automáta de pila determinístico que lo acepte por estado final. Para eso definimos $\mathcal{M}' = (Q', \Sigma, \Gamma', \delta', (q_0, 0), F', (\$, 1))$ donde $Q' = Q \times \{0, 1\}, \Gamma' = \Gamma \times \{\bot, 1, \ldots, |\gamma|\},$ $q'_0 = (q_{0,0}), F = \{(q, 1) \mid q \in F\}$ y la función de transición la definimos de la siguiente manera si $\delta(q, a, Z) = (p, \theta)$ y $\theta = \theta_1 \ldots \theta_k$ entonces si usamos la convención que $l = \bot$ si $l > |\gamma|$ luego

$$\delta'((q,i),a,(z,j)) = \left\{ \begin{array}{ll} ((p,1),(\theta_1,j+k)\dots(\theta_k,j)), & \text{si } j+k=n \\ ((p,0),(\theta_1,j+k)\dots(\theta_k,j)), & \text{si } j+k \neq |\gamma| \end{array} \right\}$$

Este automáta es determinístico y de su definición se sigue que vale la siguiente equivalencia:

$$(q, w, \theta) \stackrel{*}{\vdash} (p, u, \phi) \iff ((q, i), w, (\theta_1, |\theta|) \dots (\theta_{|\theta|}, 1)) \stackrel{*}{\vdash} ((p, j), u, (\phi_1, |\phi|) \dots (\phi_{|\phi|}, 1)).$$
 donde $j = 1$ si $|\phi| = |\gamma|$ e $i = 1$ si $|\theta| = |\gamma|$.

Con esto podemos probar que $L(\mathcal{M},\gamma) = L(\mathcal{M}')$. Para esto usamos que si $(q_0, w, \$) \stackrel{*}{\vdash} (q, \epsilon, \gamma)$ entonces esto sucede si y solo sí $((q_0, 0), w, (\$, 1)) \stackrel{*}{\vdash} ((q, 1), \epsilon, (\gamma_1, |\gamma|) \dots (\gamma_{|\gamma|}, 1))$ lo que dice que $w \in L(\mathcal{M}')$ si y solo sí $w \in L(\mathcal{M}, \gamma)$.

Con esto concluimos que \mathcal{M}' acepta a $L(\mathcal{M}, \gamma)$ y así que los lenguajes independiente de contexto determinísticos especiales resultan ser independiente de contexto determinísticos.

Ahora probemos que la familia de los lenguajes independiente de contexto determinísticos especiales están contenidos estrictamente en la familia de los lenguajes independiente de contexto determinísticos.

PROPOSICIÓN 1.1.32. Existen lenguajes independiente de contexto determinísticos que no son independiente de contexto determinísticos especiales.

Demostración. Consideremos el lenguaje $L = \{a^m b^n : m \ge n \ge 1\}$.

Primero veamos que es aceptado por el siguiente automáta de pila determinístico por estado final:

$$\mathcal{M} = (\{q_0, q_1\}, \{q_0\}, \{a, b\}, \{a, b, \$\}, \$, q_1).$$

Introducimos la siguiente notación estándar para representar la función de transición en un gráfico: Si tenemos una flecha de un estado $q \in Q$ a otro estado $p \in Q$ tal que tiene como etiqueta $b, a | \gamma$ entonces esto quiere decir que $\delta(q, b, a) = (p, \gamma)$.

Entonces podemos representar gráficamente al automáta de pila determinístico de la siguiente manera, donde usamos que $Z \in \{a, b, \$\}$ es cualquier letra del alfabeto de la pila,

Notemos que es determinístico por la construcción que hicimos. Veamos que $L = L(\mathcal{M})$.

Primero probamos que $L\subseteq L(\mathcal{M})$. Sea $w\in L$ luego notemos que podemos consumir a la palabra $w=a^mb^n$ de la siguiente manera:

$$(q_0, a^m b^n, \$) \stackrel{*}{\vdash} (q_0, b^n, a^m \$) \vdash (q_1, b^{n-1}, a^{m-1} \$) \stackrel{*}{\vdash} (q_1, \epsilon, a^{m-n} \$).$$

En el caso que $w \in L(\mathcal{M})$ notemos que necesariamente para ser aceptada al consumirla tiene que llegar al estado q_2 . Esto nos dice que $w = a^m b u$ donde $m \ge 1$, $u \in \Sigma^*$ caso contrario no tendríamos que $(q_0, w, \$) \stackrel{*}{\vdash} (q_1, u, a^{m-1}\$)$. Para que la palabra sea consumida tiene que valer que $u = b^n$ con $n \le m-1$. Con esto vimos que $w \in L$ tal como queríamos ver.

Para ver que no es aceptado por un automáta de pila determinístico por estado final y una palabra γ en la pila consideremos que $\mathcal{M}=(Q,\Sigma,\Gamma,\delta,q_0,F,\$)$ automáta de pila determinístico y $\gamma\in\Gamma^*$ tal que $L(\mathcal{M},\gamma)=L$. En este caso sea m>|Q| luego si consideramos las palabras de la pinta $\{a^mb,\ldots,a^mb^m\}\subseteq L$ por el principio del palomar tiene que existir $1\leqslant i< j\leqslant m$ tales que $(q_0,a^mb^i,\$)\stackrel{*}{\vdash} (q,\epsilon,\gamma)$ y $(q_0,a^mb^j,\$)\stackrel{*}{\vdash} (q,\epsilon,\gamma)$ para un mismo estado final $q\in F$. Entonces notemos que necesariamente m-i>0 y que m-i+j>m por lo que

$$(q_0, a^m b^{i+m-i}, \$) \stackrel{*}{\vdash} (p, \epsilon, \gamma)$$

donde $p \in F$ es otro estado final dado que $a^m b^{i+m-i} = a^m b^m \in L$ pero esto implica que

$$(q_0, a^m b^{j+m-i}, \$) \stackrel{*}{\vdash} (p, \epsilon, \gamma)$$

contradiciendo que $j+m-i \le m$ y así obtuvimos una contradicción que vino de suponer que el lenguaje L era aceptado por estado final y por palabra γ en la pila.

§1.2. Teoría de grupos.

Enunciamos y damos definiciones estándares de la teoría de grupos que usaremos en este trabajo.

DEFINICIÓN 1.2.1. Dado un conjunto A podemos definir a F_A el *grupo libre* generado por los elementos de A como un grupo que tiene una función $\iota:A\to F_A$ que denominamos la inclusión de los generadores en el grupo libre y que está definido por la siguiente propiedad universal: Para todo grupo H y toda función $f:A\to H$ existe un único morfismo de grupos $\overline{f}:F_A\to H$ tal que $\overline{f}\circ\iota=f$. Equivalentemente el siguiente diagrama conmuta,

OBSERVACIÓN 1.2.2. Una observación que se desprende de la definición de un grupo libre es que si tenemos dos conjuntos A, A' tales que |A| = |A'| luego $F_A \simeq F_{A'}$. En particular si $|A| = k < \infty$ tenemos que $F_A \simeq F_{\{1,\dots,k\}}$. Introduciremos la notación F_k para referirnos a un grupo libre generado por algún conjunto A tal que |A| = k.

Todo grupo en particular es un monoide. En el caso que F_A es un grupo libre si miramos el conjunto simétrico de generadores $B=A\cup A^{-1}$ donde $A^{-1}=\{a^{-1}:a\in A\}$ luego tenemos que el grupo libre F_A es un cociente del monoide libre B^* . Esto es porque $F_A\simeq B^*/\{aa^{-1}:a\in A\}$. Sea $\pi:B^*\to F_A$ el epimorfismo de monoides al cociente.

DEFINICIÓN **1.2.3.** Dado un grupo libre F_A y sea B el conjunto simétrico de generadores de A, luego una *palabra reducida* es una palabra $w = a_0 \dots a_n \in B^*$ tal que no existe ningún $0 \le i < n$ de manera que $a_{i+1} = a_i^{-1}$.

OBSERVACIÓN 1.2.4. Dado un grupo F_A libre si $\pi: B^* \to F_A$ entonces una palabra reducida y no vacía $w \in B^*$ es tal que $\pi(w) \neq 1$.

Una vez definidos los grupos libres podemos hablar de grupos infinitos finitamente generados que van a ser la familia de grupos que mayoritariamente trataremos en este trabajo.

DEFINICIÓN 1.2.5. Un grupo G es *finitamente generado* si existe un conjunto finito A junto con un epimorfismo de grupos $\pi: F_A \to G$. En este caso al conjunto A lo llamaremos los *generadores* de G.

Por lo visto anteriormente tenemos que si G es finitamente generado por A luego, si $B = A \cup A^{-1}$, tenemos un epimorfismo de monoides $\pi : B^* \to G$. Similarmente si $w \in B^*$ es tal que $\pi(w) = g$ entonces lo denotaremos $w \stackrel{G}{=} g$.

Dado X conjunto una *acción* de G en X es un morfismo de grupos $\alpha: G \to S(X)$. En este trabajo introduciremos varias acciones de grupos sobre distintos objetos: grafos no dirigidos, grafos

dirigidos y cortes óptimos de grafos. Estas definiciones aparecen en cada contexto en específico pero siempre cumplen que una acción de G en algún objeto S se corresponde con un morfismo de grupos $\rho: G \to \operatorname{Aut}(S)$ para la noción correspondiente de automorfismos para el objeto S.

Dado H subgrupo de G podemos definir la acción por multiplicación a izquierda sobre G como $\alpha: H \to S(G)$ definida por $\alpha(h)(g) = hg$. En este caso el cociente por esta acción lo vamos a denotar $H \setminus G$. Análogamente podemos definir una acción por multiplicación a derecha $\beta: H^{op} \to S(G)$ definida como $\beta(h)(g) = gh$. Al cociente de esta acción lo vamos a denotar G/H. Si bien ambas acciones a izquierda o a derecha casi siempre son distintas en nuestro caso no va a ser necesario hacer la distinción entre la acción a izquierda y a derecha salvo para algunos resultado del capítulo 2. Si no hay motivo para confusión alguno utilizaremos G/H para referirnos al cociente de G por H indistintamente.

A los elementos de G/H los llamaremos *cosets a izquierda* y los denotaremos gH mientras que a los de $H \setminus G$ los llamaremos *cosets a derecha* y los denotaremos Hg. Dado G grupo y H subgrupo el *índice* de H en G es el número de cosets a izquierda de H en G (o a derecha) y lo denotaremos [G:H].

Ya podemos definir la familia de grupos con la que trabajaremos en este trabajo.

DEFINICIÓN 1.2.6. Un grupo G es *virtualmente libre* si es finitamente generado y si tiene un subgrupo libre F tal que $[G:F]<\infty$. Un grupo G es *virtualmente* $\mathbb Z$ si es grupo finitamente generado y si tiene un subgrupo $F\simeq\mathbb Z$ tal que $[G:F]<\infty$.

Notemos en particular que un grupo virtualmente libre cumple que es finitamente generado bajo nuestra definición.

EJEMPLO 1.2.7. Veamos algunos ejemplos elementales de grupos que son de esta familia y algunos que no lo sean.

1. Cualquier extensión de un grupo libre por un grupo finito es un grupo virtualmente libre,

$$1 \rightarrow F \rightarrow G \rightarrow K \rightarrow 1$$

donde K es un grupo finito y F es un grupo libre finitamente generado. En particular esta familia de ejemplos incluye los productos directos $G = F \times K$ y semidirectos $G = F \times K$.

2. Uno de los ejemplos más elementales de un grupo que no es virtualmente libre es $\mathbb{Z} \times \mathbb{Z}$. La primera observación es que al ser abeliano si tiene un subgrupo libre necesariamente tiene que ser isomorfo a \mathbb{Z} porque este es el único grupo libre abeliano.

Nos alcanza con ver que no es virtualmente \mathbb{Z} . Vamos a probarlo por reducción al absurdo. Sea entonces F un subgrupo que es isomorfo a \mathbb{Z} . Sea $(n,m) \in \mathbb{Z} \times \mathbb{Z}$ el generador de F. Probaremos que $\mathbb{Z} \times \mathbb{Z}/F$ tiene orden infinito. Para eso consideraremos $(p,q) \in \mathbb{Z} \times \mathbb{Z}$ tal que p,q son primos distintos y ambos coprimos con m y con n. Veamos que $[(p,q)] \in \mathbb{Z} \times \mathbb{Z}/F$ tiene orden infinito. Si no lo fuera deberían existir $\alpha, \beta \in \mathbb{Z}$ de manera que

$$\alpha(p,q) = \beta(n,m)$$

como todos son coprimos entre sí esto nos dice que $p \mid \beta$ y similarmente que $q \mid \beta$, por lo que tenemos que $q \mid \alpha$ y $p \mid \alpha$. Esto nos dice que se pueden escribir de esta manera

$$\alpha = p^{r_1}q^{s_1}\gamma_1$$
$$\beta = p^{r_2}q^{s_2}\gamma_2$$

 $con r_i, s_i \ge 1$ para i = 1, 2.

Finalmente como

$$\alpha p = \beta n$$

tenemos que $r_1 + 1 = r_2$ pero por otro lado como

$$\alpha q = \beta m$$

acá tenemos que al ser m coprimo con p luego la multiplicidad de p en la descomposición en primos de lo que está a la izquierda es r_1 mientras que lo que está a la derecha es r_2 . De acá concluimos que $r_1 = r_1 + 1$ y esto es una contradicción que vino de suponer que $[(p,q)] \in \mathbb{Z} \times \mathbb{Z}/F$ tenía orden finito por lo tanto tenemos que $\mathbb{Z} \times \mathbb{Z}$ no puede ser virtualmente libre .

§1.3. Grafos no dirigidos.

Sea V un conjunto y $k \in \mathbb{N}$ entonces introducimos la siguiente notación:

$$\mathcal{P}_k(V) = \{ X \subseteq \mathcal{P}(V) \mid |X| = k \}$$

DEFINICIÓN 1.3.1. Un *grafo no dirigido* Γ es un par (V,E) de conjuntos disjuntos que satisfacen que $E \subseteq \mathcal{P}_2(V)$. Los elementos de V serán denominados *vértices* mientras que los elementos de E serán denominados *aristas*. El conjunto de vértices de un grafo Γ se escribe $V(\Gamma)$ y el de aristas se escribe $E(\Gamma)$.

Diremos que Γ es un *grafo infinito* si V no es un conjunto finito. Dos vértices $v, w \in V$ son *adyacentes* si $\{v, w\} \in E$. Un vértice $v \in V$ es *incidente* con una arista $e \in E$ si $v \in e$.

Definimos el conjunto $E(v) = \{e \in E : v \text{ es incidente con } e\}$. Al valor |E(v)| lo llamaremos el *grado* de v.

DEFINICIÓN 1.3.2. Un grafo Γ es *localmente finito* si para todo $v \in V$ vale que

$$|E(v)| < \infty$$

Un grafo Γ tiene *el grado acotado uniformemente* si existe $k \in \mathbb{N}$ tal que para todo $v \in V$ vale que

$$|E(v)| \leq k$$
.

Observación 1.3.3. Todo grafo Γ tal que tiene grado acotado uniformemente es un grafo localmente finito.

Un *camino* c en un grafo no dirigido es una sucesión de vértices $c=(v_0,\ldots,v_n)$ de manera tal que v_i es adyacente con v_{i+1} para todo $0 \le i < n$. Dado un grafo no dirigido Γ entonces $\Pi(\Gamma) = \{c \mid c \text{ es un camino en } \Gamma\}$. Dado un camino $c=(v_0,\ldots,v_n)$ denotaremos por su *longitud* al número entero positivo |c|=n. Un grafo es *conexo* si para todo par de vértices $(v,w) \in V \times V$ existe un camino $c=(v_0,\ldots,v_n)$ tal que $v_0=v$ y $w=v_n$. Diremos que el camino c une los vértices v y w. Un camino c es *cerrado* si $v_0=v_n$. Es *simple* si $v_i\neq v_j$ para todo $0 \le i < j \le n$. Un camino c es un camino simple cerrado tal que $|c| \ge 3$. Un grafo conexo y sin ciclos es un arbol.

DEFINICIÓN 1.3.4. Dados grafos no dirigidos Γ , Γ' un *morfismo de grafos no dirigidos* es una función $\varphi: V(\Gamma) \to V(\Gamma')$ tal que para toda arista $\{v,w\} \in E(\Gamma)$ vale que $\{\varphi(v),\varphi(w)\} \in E(\Gamma')$. Un *automorfismo* es un morfismo de grafos biyectivo $\varphi: V(\Gamma) \to V(\Gamma)$ tal que $\{v,w\} \in E(\Gamma) \iff \{\varphi(v),\varphi(w)\} \in E(\Gamma)$.

Dado un grafo Γ sus automorfismos forman un grupo con la composición. Esto es que si $\operatorname{Aut}(\Gamma) = \{\varphi : \Gamma \to \Gamma \mid \varphi \text{ es un automorfismo }\}$ luego si miramos este conjunto con la composición de morfismos \circ tenemos que $(\operatorname{Aut}(\Gamma), \circ)$ es un grupo.

Una vez que tenemos definido el grupo de automorfismos de un grafo podemos hablar de acciones de grupos.

DEFINICIÓN 1.3.5. Una *acción* de un grupo G sobre un grafo no dirigido Γ es un morfismo ψ : $G \to \operatorname{Aut}(\Gamma)$. En este caso diremos que G actúa sobre Γ .

Definimos ahora el tipo de grafos que utilizamos mayoritariamente en este trabajo. Estos grafos conectan la teoría de grupos con la teoría de grafos no dirigidos. Primero una definición útil en este contexto.

DEFINICIÓN 1.3.6. Sea G un grupo y A un conjunto de generadores simétrico tal que $1 \notin A$. Definimos el *grafo de Cayley* $\Gamma = \text{Cay}(G, A)$ como el grafo que tiene como vértices $V(\Gamma) = G$ y aristas $E(\Gamma) = \{\{g, ga\} \mid g \in G, a \in A\}$. Para una arista $e = \{g, ga\}$ llamaremos la *etiqueta de la arista* e al generador $a \in A$.

En particular el grupo *G* tiene una acción bastante natural sobre sus grafos de Cayley tal que es una acción libre.

LEMA 1.3.7. Sea G grupo finitamente generado por A tal que $1 \notin A$ y $\Gamma = Cay(G, A)$ su grafo de Cayley entonces G actúa libremente sobre Γ .

Demostración. Vamos a definir una acción de G sobre Γ y probar que es libre.

Una acción de G en Γ es un morfismo de grupos $\psi: G \to \operatorname{Aut}(\Gamma)$. Dado $g \in G$ definimos $\psi(g)$ para $h \in V(\Gamma)$ como $\psi(g)(h) = gh$ donde usamos que los vértices del grafo de Cayley son los elementos del grupo por lo tanto podemos multiplicarlos en el grupo G y mirar el vértice correspondiente. Por como lo definimos es claro que $\psi(g)$ es un morfismo de grafos. Para ver que es un automorfismo basta con tomar $\psi(g^{-1})$ tal que es la inversa de $\psi(g)$. Por la definición también es claro que ψ es un morfismo de grupos.

Probemos ahora que la acción que conseguimos es libre. Para eso si $h \in V(\Gamma)$ notemos que si $\psi(g)(h) = h$ luego esto nos dice que gh = h lo que implica que g = 1 por lo tanto la acción es libre.

Veamos ahora que características necesariamente tiene que cumplir un grafo no dirigido para ser un grafo de Cayley.

LEMA 1.3.8. Si G es un grupo finitamente generado por un conjunto A tal que $1 \notin A$ luego $\Gamma = Cay(G, A)$ es un grafo conexo y de grado acotado uniformemente.

Demostración. Para ver que es conexo, probaremos que para todo $g \in V(\Gamma)$ existe un camino c tal que une $1 \in V(\Gamma)$ con g. Para eso usamos que A es un conjunto de generadores por lo tanto $g = a_1 \dots a_k$ para $a_i \in A$ para todo $1 \le i \le k$. Esto nos dice que el camino $c = (1, a_1, a_1 a_2, \dots, a_1 \dots a_k)$ une 1 con g y así vemos que el grafo Γ es conexo.

Para ver que tiene grado acotado uniformemente consideramos algún vértice $g \in V(\Gamma)$ luego $E(g) = \{h \in V(\Gamma) : \{g,h\} \in E\}$ tal que por como definimos al grafo de Cayley tenemos que $\{g,h\} \in E(\Gamma) \iff h = ga$ para cierto $a \in A \cup A^{-1}$. De esta manera obtenemos la siguiente cota $|E(g)| \leq 2|A| < \infty$ usando que A es un conjunto finito.

Si G es un grupo finitamente generado por A tomaremos $B = A \cup A^{-1}$ otro conjunto finito de generadores que llamaremos el *simétrico* de A. Otra manera equivalente de pensar esto es que B es un conjunto finito de generadores de G no como grupo sino como monoide.

DEFINICIÓN **1.3.9.** Sea G grupo finitamente generado por A tal que $1 \notin A$. Sea $\operatorname{Cay}(G,A)$ el grafo de Cayley respecto a A entonces definimos la siguiente función $l: \Pi(\operatorname{Cay}(G,A)) \to (A \cup A^{-1})^*$ de la siguiente manera: si $c=(g_0,\ldots,g_n)\in \Pi(\operatorname{Cay}(G,A))$ entonces para cada $0 \leqslant i < n$ consideramos la etiqueta $a_i \in A \cup A^{-1}$ tal que $g_i=g_{i-1}a_i$ y así podemos finalmente definir la etiqueta del camino c como siguiente palabra $l(c)=a_0\ldots a_{n-1}$. En el caso que $c=(g_0)$ un camino constante definimos l(c)=1.

LEMA 1.3.10. Sea G grupo finitamente generado por A tal que $1 \notin A$. Sea $\Gamma = Cay(G, A)$ el grafo de Cayley para estos generadores y $l : \Pi(\Gamma) \to (A \cup A^{-1})^*$

- **1.** Si c es un camino cerrado luego l(c) = 1.
- **2.** Si c es un ciclo entonces l(c) es una palabra reducida vista en el grupo libre F_A .

Demostración. Para probar 1 consideremos $c=(g_0,\ldots,g_n)$ un camino cerrado en Γ luego tiene que valer que $g_n=g_0$. Supongamos que $|c|\geqslant 1$ caso contrario no hay nada que probar. Sea $l(c)=a_0\ldots a_{n-1}$ luego tenemos que

$$(g_0a_0)(a_1a_2...a_{n-1}) = g_1(a_1...a_{n-1}) = \cdots = a_{n-1}g_{n-1} = g_0.$$

Esto dice que $g_0(a_0 \dots a_{n-1}) = g_0$. Por lo tanto como tenemos una acción a izquierda del grupo en su grafo de Cayley obtenemos que

$$(g_0a_0\dots a_{n-1}g_0^{-1})\cdot g_0=g_0$$

dado por lo visto en la proposición 1.3.7 el grupo G actúa libremente sobre su grafo de Cayley, por lo tanto el estabilizador de todo vértice tiene que ser trivial. Esto nos dice que $g_0a_0\dots a_{n-1}g_0^{-1}=1$ lo que implica que $a_0\dots a_{n-1}=1$, esto es que l(c)=1 tal como queríamos ver.

Probemos 2. Si $c = (g_0, \ldots, g_n)$ es un ciclo tal que $l(c) = (a_0, \ldots, a_{n-1})$ luego va a ser reducida porque caso contrario existiría i tal que $a_i^{-1} = a_{i+1}$ lo que implica que $g_i a_i = g_{i+1}$ y que $g_{i+1} a_i^{-1} = g_{i+2}$ y de esta manera obtenemos que $g_{i+2} a_i = g_{i+1} = g_i a_i$ y por lo tanto $g_{i+2} = g_i$ por lo que el camino c no es un ciclo.

Ahora vamos a ver que en el caso particular que el grupo sea libre entonces su grafo de Cayley para ciertos generadores se puede tomar para que sea un árbol.

LEMA 1.3.11. Sea A conjunto finito y F_A el grupo libre sobre A entonces $\Gamma = Cay(F_A, A \cup A^{-1})$ es un árbol.

Demostración. Todo grafo de Cayley es conexo por 1.3.8. Debemos ver que no tiene ciclos. Para eso si c es un ciclo en Γ entonces por la proposición 1.3.10 obtenemos una palabra l(c) en $(A \cup A^{-1})^*$ tal que es reducida y tal que l(c) = 1. Por 1.2.4 si una palabra reducida es la identidad del grupo entonces esta palabra es la palabra vacía lo que condice a que |c| = 0 contradiciendo que c era un ciclo dado que todos los ciclos cumplen que $|c| \ge 3$. Concluimos así que no hay ciclos en el grafo de Cayley de este grupo libre.

Todo grafo lo podemos ver como un espacio métrico discreto si consideramos como conjunto base a sus vértices. Dado Γ un grafo no dirigido conexo el espacio métrico asociado es $(V(\Gamma),d)$ con d la distancia definida como

$$d(v, w) = \inf\{ |\gamma| \mid \gamma \text{ es un camino y } \gamma = (v, \dots, w) \}.$$

A los caminos γ tales que realizan la distancia las llamaremos *geodésicas*. Dado un grupo finitamente generado por A un conjunto simétrico notaremos $(Cay(G,A),d_A)$ al grafo de Cayley visto como espacio métrico.

Utilizaremos en varias ocasiones las siguientes dos observaciones:

- **1-** Si $\alpha = (v_0, \dots, v_n)$ es una geodésica entonces para todo $0 \le i, j \le n$ vale que $d(v_i, v_j) = |j i|$.
- **2-** Si T es un árbol entonces es *únicamente geodésico*. Esto es que para todo par de vértices $t,s \in V(T)$ existe una única geodésica α que comienza en s y termina en t.

Capítulo 2

Teoría de Bass-Serre.

La mayoría de las construcciones de esta sección siguen la exposición de [Ser02] aunque empleamos una notación diferente. También se usó como referencia los trabajos [SW79], [DW17] y [DD89].

En la primera sección damos varias definiciones básicas que empleamos en el capítulo. Muchas se corresponden con las vistas en la sección 1.3 sobre grafos no dirigidos. Introduciremos los grafos de grupos que son el objeto central de la teoría de Bass–Serre y los resultados estándares acerca de sus grupos fundamentales.

En la sección 2.2 generalizaremos la noción de palabras reducidas que vimos para grupos libres al contexto más general de los grupos fundamentales de grafos de grupos.

En la sección 2.3 damos la construcción del árbol de Bass–Serre que en cierta manera generaliza la idea del revestimiento de un grafo en este contexto. Para su construcción emplearemos fuertemente las propiedades sintácticas de los grupos fundamentales de grafos de grupos probados en la sección anterior.

Finalmente en la sección 2.4 mostramos cómo se consigue un grafo de grupos a partir de una acción de un grupo sobre un árbol. En esta sección probaremos el teorema central de Serre 2.4.12 que nos caracteriza a los grupos que son grupos fundamentales de grafos de grupos como grupos que actúan en árboles de cierta manera. En especial nos interesa un teorema que se desprende de este resultado que nos dice que los grupos fundamentales de grafos de grupos finitos resultan ser virtualmente libres.

§2.1. Definiciones básicas.

DEFINICIÓN 2.1.1. Dados conjuntos \underline{V} y E un *grafo dirigido* es un par ordenado Y = (V, E) junto con funciones $s : E \to V$, $t : E \to V$ y $\overline{(.)} : E \to E$ tales para toda $y \in E$ vale que $s(\overline{y}) = t(y)$ y que $\overline{y} = y$. Esto implica que vale la siguiente propiedad $t(\overline{y}) = s(y)$.

Al conjunto V lo nombramos los *vértices* y al conjunto E las *aristas* del grafo. Dada una arista y diremos que s(y) es el *comienzo* de la arista mientras que t(y) es el *fin* de la arista. Si queremos referirnos a los vértices de un grafo Y en particular notaremos V(Y) a sus vértices Y0 sus aristas.

A continuación damos varias definiciones estándares de teoría de grafos bajo esta definición de un grafo dirigido.

- Dado un grafo dirigido Y = (V, E) con funciones $s, t, \overline{(.)}$ diremos que Y' = (V', E') con funciones $s', t', \overline{()}'$ es un *subgrafo* de Y si $V' \subseteq V$, $E' \subseteq E$ y si $s' = s|_{E'}$, $t' = s|_{E'}$ y $\overline{(.)}' = \overline{(.)}|_{E'}$.
- Decimos que Y es *finito* si $|V| < \infty$ y $|E| < \infty$.
- Dado un grafo dirigido Y una *orientación* de sus aristas es un subconjunto $A \subset E$ que cumple que para cada arista $y \in E$ tenemos que $y \in A \iff \overline{y} \notin A$.
- Dado un vértice $P \in V(Y)$ podemos definir su *star* como el siguiente conjunto de aristas,

$$st(P) = \{ y \in E(Y) : s(y) = P \}$$

- Dado un grafo dirigido Y y dos vértices $P,Q \in V$ un *camino* entre P y Q es una sucesión finita de aristas $c = (y_0, \ldots, y_k)$ de manera que $s(y_0) = P, t(y_k) = Q$ y tal que para todo $0 \le i \le k-1$ vale que $y_i \in E$ y que $t(y_i) = s(y_{i+1})$. Por cada camino $c = (y_0, \ldots, y_k)$ podemos tomarnos una sucesión de vértices $(s(y_0), \ldots, s(y_n))$, que observamos que no necesariamente determinan al camino. Un camino es *cerrado* si P = Q. La *longitud* del camino l(c) = k es la cantidad de aristas que lo componen.
- Dado un grafo dirigido Y y un vértice $P \in V$ notaremos () al *camino constante* en P. En particular los caminos constantes son los únicos caminos que cumplen que tienen longitud igual a 0.
- Un camino $c = (y_0, ... y_n)$ tiene backtracking si existe $0 < i \le n$ tal que $y_i = \overline{y_{i-1}}$.
- Dado un grafo dirigido Y una geodésica es un camino $c=(y_0,\ldots y_n)$ tal que si $s(y_0)=P$ y $t(y_n)=Q$ luego para todo camino $d=(z_0,\ldots,z_m)$ tal que $s(z_0)=P$ y $t(z_m)=Q$ resulta que $l(d)\geqslant l(c)$. Un grafo Y dirigido que cumple que para todo par de vértices P,Q exista una única geodésica (y_0,\ldots,y_k) tal que $s(y_0)=P$ y tal que $t(y_k)=Q$ diremos que es únicamente geodésico.
- Un grafo es *conexo* si para todo par de vértices $P, Q \in V$ existe un camino entre ellos. Un grafo es *únicamente geodésico* si para todo par de vértices $P, Q \in V$ existe una única geodésica entre ellos.
- Un *ciclo* en un grafo dirigido es un camino cerrado $c = (y_0, y_1, ..., y_k)$ tal que si consideramos todas los vértices que recorre $(s(y_0), s(y_1), ..., s(y_k))$ luego esta sucesión de vértices no tiene repeticiones.
- Un grafo *T* es un *árbol* si es conexo y no tiene ciclos. Dado *Y* un grafo dirigido, diremos que *T* es un *subárbol* de *Y* si *T* es un subgrafo y es un árbol. Todo árbol *T* es un únicamente geodésico.

■ Dado Y un grafo dirigido, un *árbol generador* T de Y es un subárbol de Y que cumple que V(T) = V(Y) y que T es un árbol.

En particular bajo esta definición tenemos que los grafos dirigidos a diferencia de los no dirigidos pueden tener más de una arista entre dos vértices y pueden tener bucles.

Si Y es un grafo dirigido tal que no tiene bucles y dado dos vértices distintos existe una única arista que los une (salvo orientación) entonces podemos considerar a Γ un grafo no dirigido tal que representa a Y de la siguiente manera:

$$V(\Gamma) = V(Y), \quad E(\Gamma) = \{ \{ s(y), t(y) \} \mid y \in E(Y) \}.$$

DEFINICIÓN 2.1.2. Sean Y, Y' grafos dirigidos. Un par de funciones $\phi_V : V(Y) \to V(Y')$ y $\phi_E : E(Y) \to E(Y')$ que denotaremos $\phi : Y \to Y'$ es un *morfismo de grafos* si:

- Para toda $y \in E(Y)$ vale que $\overline{\phi_E(y)} = \phi_E(\overline{y})$;
- Para toda $y \in E(Y)$ vale que $\phi_V(s(y)) = s(\phi_E(y))$;

En particular de esta definición que dimos se desprende que para toda $y \in E(Y)$ vale que $\phi(t(y)) = t(\phi(y))$ usando que $s(\overline{y}) = t(y)$.

Dados grafos dirigidos X, Y, Z y morfismos de grafos $\phi: X \to Y$ y $\rho: Y \to Z$ podemos definir la composición $\rho \circ \phi: X \to Z$ de la siguiente manera y para todo vértice $P \in V(X)$:

$$(\rho \circ \phi)(y) = \rho_E(\phi_E(y))$$
 para toda arista $y \in E(X)$ $(\rho \circ \phi)(P) = \rho_V(\phi_V(P))$ para todo vértice $P \in V(X)$.

En el caso especial de los morfismos de grafos $\phi: Y \to Y$ consideramos la identidad $I: Y \to Y$ como el morfismo que manda toda arista a sí misma y todo vértice a sí mismo. Un *automorfismo* de grafos dirigidos es un morfismo $\phi: Y \to Y$ tal que tiene una inversa $\phi^{-1}: Y \to Y$, esto es que $\phi \circ \phi^{-1} = I$ y $\phi^{-1} \circ \phi = I$. Los automorfismos de un grafo dirigido Y forman un grupo con la composición que denotaremos $\operatorname{Aut}(Y)$ donde la identidad I es el elemento neutro.

Como tenemos automorfismos de grafos podemos definir una acción de un grupo sobre un grafo dirigido.

DEFINICIÓN 2.1.3. Sea G un grupo y sea Y un grafo dirigido una *acción* de G sobre Y es un morfismo de grupos $\psi: G \to \operatorname{Aut}(Y)$.

Dada una acción de G sobre un grafo Y, $g \in G$ y $x \in Y$, donde x podría ser bien una arista o un vértice, utilizaremos la notación estándar $g \cdot x$ para referirnos a $\psi(g)(x)$. Una acción de un grupo G sobre un grafo dirigido Y no tiene inversiones si para todo $g \in G$ y para toda $y \in E$ tenemos que $g \cdot y \neq \overline{y}$.

Ahora podemos definir los objetos centrales a la teoría de Bass-Serre.

DEFINICIÓN 2.1.4. Dado un grafo dirigido Y. Un grafo de grupos \mathcal{G} sobre Y está definido por lo siguiente:

- **1.** Para cada vértice $P \in V$ tenemos un grupo G_P .
- **2.** Para cada arista $y \in E$ tenemos un subgrupo G_y de $G_{s(y)}$.
- **3.** Para todo $y \in E$ tenemos un isomorfismo de G_y a $G_{\overline{y}}$ que denotaremos por $a \mapsto a^{\overline{y}}$ tal que $(a^{\overline{y}})^y = a$ para todo $a \in G_y$.

Dado un grafo Y = (V, E) sea F_E el grupo libre generado por los elementos del conjunto de aristas del grafo.

DEFINICIÓN **2.1.5.** Dado un grafo de grupos \mathcal{G} sobre un grafo Y=(V,E) consideremos el siguiente grupo:

$$F(\mathcal{G}) = (\underset{P \subset V}{*} G_P * F_E) / \langle \langle R \rangle \rangle$$

donde el conjunto de relaciones por las que dividimos es

$$R = \{ \overline{y}ay = a^{\overline{y}} \text{ para toda } y \in E \text{ y todo } a \in G_y \}$$

A este grupo lo denotaremos el grupo universal del grafo de grupos \mathcal{G} .

Si tomamos $1 \in G_y$ tenemos que para toda $y \in E(Y)$ vale que $\overline{y}y = 1$. El grupo que más nos interesa es un cociente de $F(\mathcal{G})$ que llamamos el grupo fundamental del grafo de grupos.

DEFINICIÓN 2.1.6. Sea un grafo de grupos \mathcal{G} sobre \mathcal{Y} . Consideremos \mathcal{T} un árbol generador del grafo \mathcal{Y} . El grupo fundamental del grafo de grupos es

$$\pi_1(\mathcal{G}, T) = F(\mathcal{G}) / \{ y \mid y \in E(T) \}.$$

OBSERVACIÓN 2.1.7. Para cada arista $y \in E(Y)$ notamos por g_y a la imagen de $y \in F(\mathcal{G})$ en el cociente $\pi_1(\mathcal{G}, T)$.

Veamos en el siguiente ejemplo que nuestra construcción de un grupo fundamental generaliza la definición topológica del grupo fundamental.

EJEMPLO 2.1.8. Sea un grafo de grupos \mathcal{G} sobre un grafo Y tal que $G_y = \{1\}$ para todo $y \in E(Y)$. En este caso en particular tenemos que $F(\mathcal{G}) \simeq (\underset{P \in V}{*} G_P * F_E) / \langle \langle R \rangle \rangle$ donde $R = \{\overline{y}y = 1 \text{ para toda } y \in E\}$. Consideremos una orientación A para las aristas del grafo. Dado que las relaciones R involucran exclusivamente a los generadores de F_E podemos ver que $F(\mathcal{G}) \simeq \underset{P \in V}{*} G_P * F_A$ donde usamos que $F_E / \langle \langle R \rangle \rangle \simeq F_A$.

Sea T un árbol generador de Y entonces consideremos una orientación A de las aristas de Y de manera que para toda $y \in E(T)$ vale que $y \in A$. Calculamos el grupo fundamental de este grafo de grupos. Por definición este resulta ser $F(\mathcal{G})/\{y:y\in E(T)\}$. Por el mismo razonamiento que usamos para calcular el grupo $F(\mathcal{G})$ obtenemos el siguiente isomorfismo

$$\pi(\mathcal{G},T) \simeq \underset{P \in V(Y)}{*} G_P * F_{A \setminus (E(T) \cap A)}$$

2.1. DEFINICIONES BÁSICAS.

33

Si reescribimos esto recordando que el grupo fundamental de un grafo como espacio topólogico $\pi_1(Y)$ es isomorfo al grupo libre generado por las aristas que no pertenecen a un árbol generador nos queda que:

$$\pi_1(\mathcal{G},T)\simeq \underset{P\in V(Y)}{*}G_P*\pi_1(Y).$$

EJEMPLO 2.1.9. Si Y es un bucle. Es decir si $Y = (\{P\}, \{y, \overline{y}\})$ de manera que $s(y) = P = s(\overline{y})$ y $t(y) = P = t(\overline{y})$ entonces este grafo tiene como único árbol generador al vértice P. Consideremos \mathcal{G} un grafo de grupos sobre este grafo.

Por la definición del grupo fundamental del grafo de grupos obtenemos el siguiente isomorfismo.

$$\pi_1(\mathcal{G},T) \simeq F(\mathcal{G}).$$

Si a es algún elemento de G_y entonces notaremos por $a^{\overline{y}}$ a la imagen de a por el isomorfismo con el grupo $G_{\overline{y}}$. Sea y el generador de F_E correspondiente a la arista y.

En este caso las relaciones que tenemos en nuestro grupo son las siguientes

$$y^{-1}ay = a^{\overline{y}}$$
 para todo $a \in G_y$.

De esta manera tenemos que una presentación de nuestro grupo fundamental es la siguiente

$$\pi_1(\mathcal{G}) = \langle G_P, y \mid y^{-1}ay = \overline{a}, \forall a \in G_y \rangle$$

es decir el grupo fundamental de este grafo de grupos resulta ser por definición una extensión HNN del grupo correspondiente al vértice que denotaremos $G_p^{*G_y}$. Notemos que esta extensión depende de la elección del isomorfismo entre los grupos de las aristas aunque en el caso de este capítulo siempre va a quedar claro a qué isomorfismo nos referimos.

EJEMPLO 2.1.10. Si el grafo Y es un segmento entonces $Y = (\{P,Q\},\{y,\overline{y}\})$ tal que s(y) = P y t(y) = Q. El árbol generador resulta ser el mismo grafo Y en este caso. Consideremos \mathcal{G} un grafo de grupos sobre este grafo.

$$\mathcal{G} = G_P \longrightarrow G_Q$$

Dado $a \in G_y$ denotaremos $a^{\overline{y}}$ la imagen por el isomorfismo entre G_y y $G_{\overline{y}}$ de a. Entonces el grupo fundamental de este grafo de grupos resulta ser

$$\pi_1(\mathcal{G}, Y) = F(\mathcal{G})/\langle a = a^{\overline{y}}, \quad \forall a \in G_y \rangle$$

Esto por definición el grupo que buscábamos resulta ser el producto amalgamado

$$\pi_1(\mathcal{G},Y)=G_P\underset{G_y}{*}G_Q.$$

Nuestro foco ahora es dar una definición equivalente de grupo fundamental pero esta vez usando caminos así como lo hacemos para el grupo fundamental usual de un espacio topológico.

Dados dos vértices $P,Q \in V$ denotaremos por $\Pi(P,Q)$ el conjunto de caminos de P a Q. De esta manera nos queda definido

$$\Pi(P,Q) = \{(y_1,\ldots,y_k) \mid y_i \in E, s(y_1) = P, t(y_k) = Q, t(y_i) = s(y_{i+1}) \text{ para } 1 \le i \le k\}$$

Todo camino $(y_1, ..., y_k) \in \Pi(P, Q)$ lo podemos pensar como la palabra $y_1 ... y_k$ en el grupo libre F_E y similarmente podemos mirar la clase de $y_1 ... y_k$ en el cociente $F(\mathcal{G})$.

DEFINICIÓN 2.1.11. Dado \mathcal{G} grafo de grupos sobre Y grafo conexo y $P,Q \in V$ dos vértices de Y definimos el siguiente subconjunto de $F(\mathcal{G})$,

$$\pi(\mathcal{G}, P, Q) = \{g_0y_1g_1 \dots g_{k-1}y_kg_k : (y_1, \dots, y_k) \in \Pi(P, Q), \ \forall i, \ 0 \leq i < k, g_i \in G_{s(y_{i+1})}, \ g_k \in G_Q\}$$

PROPOSICIÓN 2.1.12. Para todo $P \in V$ tenemos que $\pi(\mathcal{G}, P, P)$ es un subgrupo de $F(\mathcal{G})$.

Demostración. Debemos ver que tiene a la identidad del grupo, que es cerrado por el producto y que todo elemento tiene un inverso.

Si consideramos el camino constante en P y $g_0 = 1$ luego obtenemos que $1 \in \pi(\mathcal{G}, P, P)$. Para ver que es cerrado por el producto notemos que

$$(g_0y_1g_1\dots g_{k-1}y_kg_k)\circ(g_0'y_1'g_1'\dots g_{k-1}'y_k'g_k')=g_0y_1g_1\dots g_{k-1}y_k(g_kg_0')y_1'g_1'\dots g_{k-1}'y_k'g_k'$$

donde $g_k g_0' \in G_P$ por lo tanto su producto está bien definido y en definitiva nos queda otro elemento de $\pi(\mathcal{G}, P, P)$ tal como queríamos ver. Finalmente vemos que es cerrado por inversos porque si tomamos el elemento $g_0 y_1 \dots y_k g_k$ su inverso resulta ser $g_k^{-1} \overline{y_k} \dots \overline{y_1} g_0^{-1} \in \pi(\mathcal{G}, P, P)$.

DEFINICIÓN 2.1.13. El grupo fundamental de \mathcal{G} respecto a un punto base P se define como $\pi_1(\mathcal{G}, P) = \pi(\mathcal{G}, P, P)$.

Notemos que en particular para esta construcción obtuvimos un subgrupo del grupo $F(\mathcal{G})$ mientras que en el caso de la definición anterior del grupo fundamental 2.1.6 obtuvimos un cociente. Podemos ver que ambas definiciones son equivalentes porque tenemos un isomorfismo como grupos.

TEOREMA 2.1.14. Sea \mathcal{G} un grafo de grupos sobre un grafo conexo finito Y = (V, E), sea $P \in V$ un vértice y sea T un árbol generador de Y entonces $\pi_1(\mathcal{G}, P)$ es isomorfo a $\pi_1(\mathcal{G}, T)$.

Demostración. Dados $P,Q \in V$ consideremos la geodésica α que los une sobre T. Si leemos la sucesión de aristas que recorre esta geodésica tenemos una palabra $T[P,Q] \in F_E$. Consideramos a T[P,Q] como un elemento en el grupo $F(\mathcal{G})$. Observemos que $T[P,Q] = T[Q,P]^{-1}$ porque el árbol es únicamente geodésico.

Ahora definamos el siguiente morfismo (que depende del árbol de expansión que tomamos) sobre los generadores del producto libre:

$$\tau: \underset{P \in V}{*} G_P * F_E \to \pi_1(\mathcal{G}, P)$$

$$\tau(y) = T[P, s(y)]yT[t(y), P] \text{ para } y \in E(Y)$$

$$\tau(g) = T[P, Q]gT[Q, P] \text{ para } Q \in V(Y), g \in G_O$$

Tal que lo único que debemos chequear es que $\tau(gh) = \tau(g)\tau(h)$ para $g,h \in G_Q$. Para eso notemos que

$$\tau(gh) = T[P,Q]ghT[Q,P] = T[P,Q]gT[Q,P] T[P,Q]hT[Q,P] = \tau(g)\tau(h).$$

Notemos que por como definimos a este morfismo tenemos que $\tau(y) \in \pi_1(\mathcal{G}, P)$ y que similarmente $\tau(g) \in \pi_1(\mathcal{G}, P)$.

Veamos que τ pasa al cociente $F(\mathcal{G})$. Debemos ver que cumple la relación $\tau(\overline{y}ay) = \tau(a^{\overline{y}})$ para toda arista $y \in E(Y)$ y todo $a \in G_y$. Esto vale porque justamente

$$\tau(\overline{y}ay) = T[P, s(\overline{y})]\overline{y}T[t(\overline{y}), P]T[P, s(y)]aT[t(y), P]T[P, s(\overline{y})]yT[t(y), P]$$

$$= T[P, s(\overline{y})]\overline{y}ayT[t(y), P]$$

$$= \tau(a^{\overline{y}}).$$

donde usamos que $\overline{y}ay = a^{\overline{y}}$ en $\pi_1(\mathcal{G}, P)$. Sea $\overline{\tau}: F(\mathcal{G}) \to \pi_1(\mathcal{G}, P)$ este morfismo que definimos. Por como está definido τ tenemos que si lo restringimos al subgrupo $\pi_1(\mathcal{G}, P)$ resulta ser la identidad y en particular tenemos que τ es un epimorfismo.

Veamos que $\overline{\tau}$ baja al cociente $\pi_1(\mathcal{G},T)$. Sea $y\in E(T)$ luego $\tau(y)=T[P,s(y)]yT[t(y),P]$ donde $T[t(y),P]=\overline{y}T[s(y),P]$ y de esta manera $\tau(y)=1$ para todo $y\in E(T)$. Por esta razón τ pasa al cociente y existe $\overline{\overline{\tau}}:\pi_1(\mathcal{G},T)\to\pi_1(\mathcal{G},P)$ epimorfismo tal que hace conmutar el siguiente diagrama,

Para terminar la demostración probemos que $\overline{\overline{\tau}}$ es un monomorfismo. Para eso consideramos $\nu = \pi \circ \iota$ donde $\iota : \pi_1(\mathcal{G}, P) \to F(\mathcal{G})$ es la inclusión como subgrupo y probemos que $\nu \circ \overline{\tau}$ nos queda la identidad. Si hacemos $\nu \circ \overline{\tau}$ notemos que si $g \in G_Q$ con $Q \in V$ luego

$$\nu \circ \overline{\overline{\tau}}(\pi(g)) = \nu(T[P, Q]gT[Q, P])$$

$$= \pi(T[P, Q]gT[Q, P])$$

$$= \pi(T[P, Q])\pi(g)\pi(T[Q, P])$$

$$= \pi(g).$$

Donde usamos que T[P,Q] es un camino de aristas en el árbol de expansión y por lo tanto $\pi(T[P,Q])=1$. Similarmente podemos ver que para toda $y\in E$ tenemos que $\nu\circ\overline{\overline{\tau}}(\pi(y))=\pi(y)$. De esta manera vimos que $\overline{\overline{\tau}}:\pi_1(\mathcal{G},T)\to\pi_1(\mathcal{G},P)$ es un isomorfismo de grupos.

COROLARIO 2.1.15. Sea \mathcal{G} grafo de grupos sobre un grafo conexo y finito Y. Sean T, T' árboles generadores de Y luego tenemos que $\pi_1(\mathcal{G}, T) \simeq \pi_1(\mathcal{G}, T')$.

Demostración. Sea $P \in V$ entonces por el resultado anterior 2.1.14 que vale que $\pi_1(\mathcal{G}, P) \simeq \pi_1(\mathcal{G}, T)$ para cualquier T árbol generador por lo tanto obtenemos que $\pi_1(\mathcal{G}, T) \simeq \pi_1(\mathcal{G}, T')$ volviendo a usar este resultado para T'.

§2.2. Palabras reducidas.

En esta sección probaremos que todo elemento del grupo fundamental de un grafo de grupos puede ser llevado a una forma reducida.

§2.2.1. Casos particulares.

En esta subsección vamos a caracterizar las palabras reducidas de los grupos fundamentales de algunos grafos de grupos donde los grafos resultan ser más sencillos. El objetivo aparte de ejemplificar en unos casos en particular, es que más en adelante nos va a servir para reducir proposiciones sobre grafos de grupos arbitrarios a grafos de grupos donde sus grafos sean de estas formas.

2.2.1.1. Bucles.

Por lo visto en el ejemplo 2.1.9 tenemos que dado $Y = (\{P\}, \{y, \overline{y}\})$ un bucle, entonces entonces toda estructura de grafo de grupos \mathcal{G} que le demos a este segmento hace que el grupo fundamental sea isomorfo a un producto HNN, es decir que $\pi_1(\mathcal{G}) = G_p^{*G_y}$.

DEFINICIÓN **2.2.1.** Dado $G_p^{*G_y}$ extensión HNN diremos que una sucesión

$$(x_0, y^{\epsilon_0}, x_1, y^{\epsilon_1}, \ldots, x_n, y^{\epsilon_n}, x_{n+1})$$

donde para todo $0 \le i \le n$ tenemos que $x_i \in G_P$ y $\varepsilon_i \in \{-1, 1\}$ es una *sucesión reducida* si no tiene subsucesiones $y^{-1}x_iy$ con $x \in G_V$ o bien yx_iy^{-1} con $x \in G_{\overline{V}}$.

Nos interesan las sucesiones reducidas porque principalmente es una manera fácil de chequear cuándo algún elemento no es la identidad en el grupo.

PROPOSICIÓN 2.2.2 (Britton). Sea $G_p^{*G_y}$ una extensión HNN. Para todo sucesión reducida

$$(x_0, y^{\epsilon_0}, x_1, y^{\epsilon_1}, \ldots, x_n, y^{\epsilon_n}, x_{n+1})$$

| tal que $n \ge 0$ vale que $x_0 y^{\epsilon_0} x_1 y^{\epsilon_1} \dots x_n, y^{\epsilon_n} x_{n+1} \ne 1$.

Si elegimos conjuntos transversales de G_y y de $G_{\overline{y}}$ vamos a poder quedarnos con algunas de las sucesiones reducidas que llamaremos las formas normales. Estas caracterizan unívocamente a los elementos de una extensión HNN.

DEFINICIÓN 2.2.3. Sea $G_p^{*G_y}$ una extensión HNN y sean S conjunto transversal a izquierda de G_y en G_P y T conjunto transversal a izquierda de $G_{\overline{y}}$ en G_P . Tomamos ambos transversales de manera que $1 \in S$ y $1 \in T$. Una forma normal para una extensión HNN va a ser una sucesión

$$(x_0, y^{\epsilon_0}, x_1, g^{\epsilon_1}, \ldots, x_n, y^{\epsilon_n}, x_{n+1})$$

donde para todo $0 \le i \le n$ tenemos que $x_i \in G_P$ y $e_i \in \{-1, 1\}$ y cumple las siguientes propiedades:

- **1.** $x_0 \in G_P$.
- **2.** En el caso que $\epsilon_i = 1$ entonces $x_i \in S \setminus \{1\}$ mientras que en el caso que $\epsilon_i = -1$ tenemos que $x_i \in T \setminus \{1\}$.
- 3. No tiene la subsucesión $y^{\epsilon}1y^{-\epsilon}$.

Podemos probar que todo elemento de una extensión HNN puede ser escrita en forma normal y más aún esta escritura es única.

TEOREMA 2.2.4. Para todo $g \in G_p^{*G_y}$ existe una única forma normal

$$(x_0, y^{\epsilon_0}, x_1, y^{\epsilon_1}, \ldots, x_n, y^{\epsilon_n}, x_{n+1})$$

tal que $g = x_0 y^{\epsilon_0} x_1 y^{\epsilon_1} \dots x_n, y^{\epsilon_n} x_{n+1}$.

Demostración. Ver [LS77, p.182].

2.2.1.2. Segmentos.

En el ejemplo 2.1.10 vimos que dado un segmento $Y = (\{P,Q\}, \{y,\overline{y}\})$ entonces para toda estructura de grafo de grupos \mathcal{G} que le demos a este segmento resulta que el grupo fundamental es isomorfo a un producto amalgamado, es decir que $\pi_1(\mathcal{G}) = G_P *_{G_y} G_Q$.

En esta subsección vamos a repetir los resultados y definiciones que vimos para las extensiones HNN y definir sucesiones reducidas y formas normales.

DEFINICIÓN **2.2.5.** Dado $G_P *_{G_y} G_Q$ producto amalgamado diremos que una sucesión

$$(x_0, x_1, \ldots, x_n)$$

es una sucesión reducida si valen las siguientes condiciones:

- **1.** Para todo $0 \le i \le n$ vale que $x_i \in G_P$ o $x_i \in G_O$
- **2.** Para todo $0 \le i < n$ no puede valer que $x_i, x_{i+1} \in G_P$ o que $x_i, x_{i+1} \in G_O$.
- **3.** Si n > 0 entonces $x_i \notin G_y$.
- **4.** Si n = 0 entonces $x_0 \neq 1$.

TEOREMA 2.2.6. Sea $G_P *_{G_y} G_Q$ grupo amalgamado entonces si $(x_0, x_1, ..., x_n)$ es una sucesión reducida y $n \ge 0$ entonces tenemos que $1 \ne x_0 x_1 ... x_n$.

Demostración. Ver [LS77, pp.187-188].

Analogamente al caso de las extensiones HNN podemos definir una forma normal para un producto amalgamado.

DEFINICIÓN 2.2.7. Sea $G_P *_{G_y} G_Q$ un producto amalgamado. Sean S transversal a izquierda de G_y en G_P y T transversal a izquierda de $G_{\overline{y}}$ en G_Q . Tomamos ambos transversales de manera que $1 \in S$ y $1 \in T$.

Una forma normal para un producto amalgamado va a ser una sucesión $(a, x_0, x_1, ..., x_n)$ tal que $a \in G_y$ y para todo $0 \le i \le n$ tenemos que $x_i \in S \setminus \{1\}$ o bien $x_i \in T \setminus \{1\}$ y no existe $0 \le i < n$ tal que $x_i, x_{i+1} \in T$ o $x_i, x_{i+1} \in S$.

PROPOSICIÓN 2.2.8. Dado un grupo amalgamado $G_P *_{G_y} G_Q$ vale que para todo $g \in G_P *_{G_y} G_Q$ existe una única forma normal $(a, x_0, x_1, \ldots, x_n)$ de manera que $g = ax_0x_1 \ldots x_n$.

Demostración. Ver [LS77, p.187].

§2.2.2. Caso general.

En el contexto de esta sección \mathcal{G} denota un grafo de grupos sobre un grafo conexo y finito Y. Nuestro objetivo es probar que en el grupo universal del grafo de grupos $F(\mathcal{G})$ ciertas sucesiones que resultan asociadas a caminos son reducidas. Más específicamente queremos probar que definen elementos diferentes de la identidad del grupo tal como hicimos en los resultados 2.2.2 y 2.2.6.

DEFINICIÓN 2.2.9. Sea Y grafo conexo y finito, \mathcal{G} un grafo de grupos sobre Y y $F(\mathcal{G})$ el grupo universal de este grafo de grupos. Sean:

- I) $c = (y_1, ..., y_n) \in \Pi(P, Q)$ algún camino entre dos aristas $P, Q \in V$;
- II) $\mu = (r_0, \dots r_n)$ una sucesión tomados de manera que $r_0 \in G_P$ y para todo $1 \le i \le n$ vale que $r_i \in G_{t(y_i)}$.

De esta manera denotaremos por el par (c, μ) a la palabra en el grupo $\underset{P \in V}{*} G_P * F_E$:

$$(c,\mu)=r_0y_1r_1y_2\ldots r_n.$$

Diremos que (c, μ) es una palabra de tipo c.

Denotaremos por $|c, \mu|$ la imagen de esta palabra en el grupo $F(\mathcal{G})$ esto es que

$$|c,\mu|=[r_0y_1r_1y_2\ldots r_n]_{F(\mathcal{G})}.$$

DEFINICIÓN **2.2.10.** Una palabra $(c, \mu) = r_0 y_1 r_1 y_2 \dots r_n$ de tipo c está *reducida* si satisface:

- **R1.** Si la longitud de c es 0 entonces $r_0 \neq 1$.
- **R2.** Si la longitud de c es positiva entonces $r_i \notin G_{\overline{y}_i}$ para todo i tal que $y_{i+1} = \overline{y}_i$.

A partir de esta definición podemos ver inmediatamente las siguientes dos observaciones.

- **1.** Sea $c = (y_1, ..., y_n)$ un camino que no tiene backtracking: esto es que no existe $1 \le i < n$ tal que $\overline{y_{i+1}} = y_i$. Entonces toda palabra de tipo c va a estar en forma normal porque cumple **R2**.
- **2.** Esta definición de forma normal generaliza las definiciones que dimos para grafos con una única arista en 2.2.1 y 2.2.5.

TEOREMA 2.2.11. Sea \mathcal{G} un grafo de grupos sobre un grafo finito y conexo Y luego toda palabra (c, μ) en forma normal es tal que $|c, \mu| \neq 1$.

En particular de este resultado se desprenden corolarios importantes para entender la estructura de los grupos fundamentales de grafos de grupos finitos.

COROLARIO 2.2.12. Sea G un grafo de grupos sobre un grafo finito y conexo Y luego para todo $P \in V$ vale que G_P es un subgrupo de F(G).

Demostración. Para todo $P \in V$ tenemos que G_P es un subgrupo de $*_{P \in V}G_P * F_E$. Sea $g \in G_P \setminus \{1\}$ entonces $(c, \mu) = g$ donde c = () es el camino constante en P y $\mu = (g)$. Es una palabra reducida por cumplir la propiedad **R1**. Por el teorema 2.2.11 tenemos que $|c, \mu| \neq 1$ por lo que la proyección a $F(\mathcal{G})$ nos da un isomorfismo restringida a G_P y así a G_P lo podemos considerar un subgrupo de $F(\mathcal{G})$.

COROLARIO 2.2.13. Sea \mathcal{G} un grafo de grupos sobre un grafo finito y conexo Y, sea $c = y_0 \dots y_n$ un camino no constante $y(c, \mu)$ una palabra reducida entonces $|c, \mu| \notin G_{s(y_0)}$.

Demostración. Vamos a suponer que esto no es cierto y contradecir el teorema 2.2.11. Sea $(c, \mu) = r_0 y_1 r_1 \dots r_n$. Si no fuera cierto tendríamos que $|c, \mu| = x \in G_{s(y_0)}$. Consideremos entonces otra palabra (c, μ') tal que $\mu' = (x^{-1} r_0, \dots, r_n)$ de manera que por como la tomamos $|c, \mu'| = 1$. Es una palabra reducida porque por suposición tenemos que c no es el camino constante y aparte μ' es idéntica a μ salvo en la primera posición que no afecta la condición **R2**. Esto contradice 2.2.11 por lo tanto $|c, \mu| \notin G_{s(y_0)}$.

El siguiente corolario va resultarnos el de mayor utilidad porque en general vamos a trabajar con el grupo fundamental de un grafo de grupos. El grupo fundamental de un grafo de grupos con respecto a un árbol generador T es un cociente de $F(\mathcal{G})$. Sea $\pi: F(\mathcal{G}) \to \pi_1(\mathcal{G}, T)$ la proyección.

COROLARIO 2.2.14. Sean \mathcal{G} un grafo de grupos sobre un grafo finito y conexo Y, c un camino cerrado en Y, T un árbol generador de Y y (c, μ) una palabra reducida entonces $\pi(|c, \mu|) \neq 1$ en $\pi_1(\mathcal{G}, T)$.

Demostración. Por el teorema 2.2.11 tenemos que $|c,\mu| \neq 1$ en el grupo $F(\mathcal{G})$. A su vez por como elegimos a (c,μ) tenemos que es un elemento del grupo fundamental $\pi_1(\mathcal{G},P)$. Por el teorema 2.1.14 tenemos que este grupo es isomorfo con el grupo fundamental $\pi_1(\mathcal{G},T)$ por medio de la proyección π entonces esto termina de probar el resultado.

Primero vamos a dar una definición estándar que es la del cociente de un grafo no dirigido que va a ser la herramienta principal para poder reducir el tamaño de un grafo.

DEFINICIÓN 2.2.15. Sea Y un grafo conexo y sea Y' un subgrafo conexo de Y entonces el grafo dirigido W = Y/Y' cociente de Y por Y' es el grafo dado por los siguientes conjuntos de aristas y vértices:

- **1.** Los vértices son $V(W) = V(Y) \setminus V(Y') \cup \{[Y']\}.$
- **2.** Las aristas son $E(W) = E(Y) \setminus E(Y')$.

Donde el vértice correspondiente a Y' lo denotamos [Y']. Sea $y \in E(W)$ entonces:

$$s(y) = \begin{cases} s(y) & \text{si } s(y) \notin V(Y') \\ [Y'] & \text{caso contrario} \end{cases}$$

y análogamente,

$$t(y) = \begin{cases} t(y) & \text{si } t(y) \notin V(Y') \\ [Y'] & \text{caso contrario} \end{cases}$$

Si las aristas no empiezan ni terminaban en Y' dentro del grafo Y al contraer el subgrafo siguen idénticas. En el otro caso las definimos para que terminen (o empiecen) en [Y'].

Una observación directa de esta definición es que si los grafos Y e Y' son conexos entonces el grafo W también resulta serlo.

EJEMPLO 2.2.16. Un ejemplo particular de cómo es el grafo cociente

Donde en este ejemplo distinguimos al subgrafo Y' conexo con este color.

2.2.2.1. Argumento dévissage.

Queremos probar que toda palabra de tipo c cumple que es distinta de la identidad en $F(\mathcal{G})$. Para esto siguiendo a Serre en [Ser02] vamos a emplear un argumento de *dévissage* qué consiste en reducir el problema que queremos probar para grafos de grupos arbitrarios a casos más pequeños. Más específicamente queremos reducir este problema a los casos que los grafos de grupos están dados sobre grafos con una única arista como ya hicimos anteriormente en las subsecciones 2.2.1.1 y 2.2.1.2.

Consideremos un grafo de grupos \mathcal{G} sobre un grafo Y finito y conexo. Tomemos Y' un subgrafo conexo de Y y restrinjamos el grafo de grupos \mathcal{G} a Y'. El grupo de este grafo de grupos restringido al subgrafo Y' lo denotaremos $F(\mathcal{G}|Y')$. Supongamos que $F(\mathcal{G}|Y')$ tiene la propiedad del teorema 2.2.11. Entonces definamos el grafo de grupos \mathcal{H} sobre el grafo conexo W = Y/Y' de la siguiente manera.

- Si $P \in V(Y) \setminus V(Y')$, tomamos $H_P = G_P$;
- Si P = [Y'] entonces tomamos $H_P = F(\mathcal{G}|Y')$;
- Si $y \in E(W)$ ponemos $H_y = G_y$ tal que como suponemos válido el resultado 2.2.11 para Y' tenemos que es un subgrupo.

Construyamos un morfismo de grupos $\beta : F(\mathcal{G}) \to F(\mathcal{H})$. Para eso primero lo definimos sobre los generadores. Para todo $g \in G_P$ con $P \in V(Y)$ definimos

$$\beta(g) = \begin{cases} [g] \in H_P & \text{si } P \notin Y' \\ [g] \in F(\mathcal{G}|Y') & \text{si } P \in Y' \end{cases}$$

y para toda arista $y \in E(Y)$ definimos

$$\beta(y) = \begin{cases} y & \text{si } y \notin E(Y') \\ [y] \in F(\mathcal{G}|Y') & \text{si } y \in E(Y'). \end{cases}$$

De manera que así como está definida cumple las relaciones de $F(\mathcal{G})$ porque en particular el grupo $F(\mathcal{H})$ también las cumple. Obtenemos así que β está bien definida.

LEMA 2.2.17. El morfismo de grupos $\beta : F(\mathcal{G}) \to F(\mathcal{H})$ es un isomorfismo.

Demostración. Podemos construirnos un morfismo $\alpha : F(\mathcal{H}) \to F(\mathcal{G})$ tal que sea su inversa. La construcción es análoga a la construcción que hicimos para β definiendola sobre sus generadores. Para todo $g \in H_P$ con $P \in V(W) \setminus [Y']$ definimos,

$$\alpha(g) = [g]$$

y para toda arista $y \in E(W)$ tal que no empiece ni termine en [Y'] definimos,

$$\alpha(y) = [y].$$

En el caso de F(G|Y') usamos que este grupo está generado por $y \in E(Y')$ y por $g \in G_P$ tales que $P \in Y'$. Sobre F(G|Y') definimos

$$\alpha([g]) = [g]$$

para $g \in G_P$ si $P \in V(Y')$ e idénticamente para todas las aristas definimos

$$\alpha([y]) = [y]$$

Vemos que bajo esta definición sobre los generadores de $F(\mathcal{H})$ y que respeta las relaciones del grupo entonces tenemos que define un morfismo $\alpha: F(\mathcal{H}) \to F(\mathcal{G})$ tal que por construcción es la inversa de β .

La moraleja de este lema es que podemos tomar el grupo $F(\mathcal{G}|Y')$ para un subgrafo Y' conexo y después tomar el grupo $F(\mathcal{H})$ para el grafo resultante Y/Y' y es exactamente lo mismo que tomar $F(\mathcal{G})$ en el comienzo con la ventaja que el grafo es más chico ahora.

Para cada palabra (c, μ) del grafo de grupos $F(\mathcal{G})$ le vamos a asociar una palabra (c', μ') de \mathcal{H} tal que $\beta(|c, \mu|) = |c', \mu'|$. La idea es reemplazar las partes de la palabra que involucren a Y' con las respectivas en $F(\mathcal{G}|Y')$. Dados $1 \le i \le j \le n$ llamemos c_{ij} al camino $(y_i \dots y_j)$ y μ_{ij} a los elementos (r_i, \dots, r_j) . Si c_{ij} está contenida en Y' denotaremos por r_{ij} al elemento correspondiente visto en $F(\mathcal{G}|Y')$. De esta manera lo que haremos es pensar en todos los subintervalos $[i_a, j_a]$ tales que el camino c está dentro del subgrafo Y'. Así tenemos subdividido al intervalo [1, n] de la siguiente manera,

$$1 \leqslant i_1 \leqslant j_1 < i_2 \leqslant j_2 < \dots i_m \leqslant j_m \leqslant n.$$

Donde en particular si miramos la palabra $c_{j_{a-1}i_a}$ notemos que es un camino por fuera de Y' exceptuando su comienzo y su final.

Definimos la palabra (c', μ') sobre los generadores de $F(\mathcal{H})$ como:

1.
$$c' = (c_{j_1 i_2} \dots, c_{j_{a-1} i_a}, c_{j_a i_{a+1}} \dots, c_{j_{m-1} i_m})$$

2.
$$\mu' = (\mu_{1i_1}, r_{i_1j_2}, \dots, r_{i_mj_m}, \mu_{j_mn})$$

donde tomamos la convención que μ_{1i_1} o bien μ_{j_mn} pueden ser la identidad si $i_1=1$ o bien si $j_m=n$.

EJEMPLO 2.2.18. Sea Y = (V, E) grafo finito que representamos de la siguiente manera.

En este caso consideramos que el subgrafo conexo Y' es el que está pintado de color naranja. Consideremos \mathcal{G} una estructura de grafo de grupos sobre Y. Sea $c=(y_1,y_2,y_3,y_7,y_8)$ resaltado en negrita en la figura un camino en el grafo Y y sea $\mu=(r_0,r_1,\ldots,r_8)$ una sucesión de elementos de manera que (c,μ) es una palabra de tipo c. Si contraemos el subgrafo Y' nos queda el grafo W=Y/Y' que representamos de la siguiente manera,

tal que si \mathcal{H} es la estructura de grafo de grupos que construimos sobre el grafo W entonces tenemos definida (c', μ') una palabra de tipo c' donde $c' = (y_1, y_7, y_8)$ y donde $\mu' = (r_0, r_1 y_2 r_2 y_3 r_3, r_7, r_8)$ con $r_1 y_2 r_2 y_3 r_3 \in H_{[Y']} = F(\mathcal{G} \mid Y')$.

Por como las construimos nos queda que $\beta(|c,\mu|) = |c',\mu'|$ tal como queríamos ver. Veamos ahora que β preserva las palabras reducidas. Esto nos permitirá trabajar en grafos de grupos cada vez más chicos a medida que vayamos contrayendo subgrafos conexos.

PROPOSICIÓN 2.2.19. Si (c, μ) es una palabra reducida para $F(\mathcal{G})$ entonces (c', μ') es reducida para $F(\mathcal{H})$.

Demostración. Dividimos en dos casos dependiendo la longitud de c'.

Si la longitud de c' es 0 entonces es un camino constante en algún vértice $P' \in V(W)$. En tal caso $\mu' = r'_0$. Si $P' \in V(W) \setminus [Y']$ entonces por como construimos al grafo de grupos \mathcal{H} tenemos que $H_P = G_P$ y al ser (c, μ) una palabra reducida para \mathcal{G} obtenemos que $r_0 \neq 1$ visto en H_P . En el caso que P' = [Y'] nos queda que $r_0 \in F(\mathcal{G}|Y')$ y por lo tanto es reducida usando el teorema 2.2.11 inductivamente en el grafo Y'.

Supongamos ahora que la longitud de c' es al menos 1, entonces si queremos ver que (c', μ') es reducida debemos garantizar que cumpla **R2**. Sean $c = (y_1 ... y_m)$, $\mu = (r_0 ... r_m)$ y sean $c' = (w_1 ... w_n)$, $\mu' = (r'_0, ..., r'_n)$. Queremos ver que si existe $1 \le k \le n$ tal que $w_{k+1} = \overline{w_k}$ entonces $r'_k \notin H_{w_k}$. El caso particular que $t(w_k) \ne [Y']$ tenemos que (c', μ') es reducida porque justamente (c, μ) lo es y por lo tanto cumple **R2**. Si $t(w_k) = [Y']$ vamos a distinguir dos casos.

- I) En el primer caso tenemos que proviene de backtracking de c. Esto es que para cierto i vale que $w_k = y_i$ y $w_{k+1} = \overline{y}_i$. Por como definimos a (c', μ') tenemos que $r'_k = r_i$ bajo esta hipótesis. Queremos ver que $r'_k \notin H_{\overline{w_k}}$. El grupo $H_{\overline{w_k}}$ es isomorfo a $G_{\overline{y_i}}$ aunque la diferencia es que el primero es un subgrupo de $H_{[Y]}$ mientras que el segundo es un subgrupo de $G_{t(y_i)}$. Por ser (c, μ) reducida tenemos que $r_i \notin G_{\overline{y_i}}$. Por el corolario 2.2.12 tenemos que $G_{\overline{y_i}}$ es un subgrupo de $H_{[Y']} = F(\mathcal{G}|Y')$ entonces $r'_k \notin H_{[Y']}$.
- II) En el segundo caso tenemos que proviene de un ciclo no constante de c sobre Y'. Siguiendo la notación introducida anteriormente tenemos que para cierto a vale que $w_k = y_{i_a}, r'_k = r_{i_a j_a}$ y que $w_{k+1} = y_{j_{a+1}}$ donde bajo nuestras suposiciones tenemos que $w_{k+1} = \overline{w_k}$ por lo tanto $y_{j_{a+1}} = \overline{y_{i_a}}$.

Nuevamente queremos ver que se cumple **R2**. Esto es que $r'_k \notin H_{\overline{w_k}}$. Dado que el camino $c_{i_aj_a}$ no es constante, podemos aplicar el resultado 2.2.13 al grafo de grupos \mathcal{G} restringido al subgrafo Y' y obtenemos así que $r_{i_aj_a} \notin G_{t(y_{i_a})}$. Esto nos dice que en el grupo $F(\mathcal{H})$ tenemos que $r'_k = r_{i_aj_a} \notin H_{\overline{w_k}}$ dado que $H_{\overline{w_k}}$ es un subgrupo de $G_{t(y_{i_a})}$ si lo miramos dentro de $F(\mathcal{G}, Y')$.

Como último resultado previo veamos un lema que nos dice qué pasa cuando contraemos un subárbol de un árbol Y.

LEMA 2.2.20. Si Y es un árbol finito e Y' es un subárbol de Y entonces W = Y/Y' es un árbol.

Demostración. Debemos ver que W no tiene ciclos dado que todo cociente de un grafo conexo sigue siendo conexo. Para cada vértice $P' \in V(W)$ consideremos P su levantado en Y tal que para el caso particular de [Y'] consideramos algún vértice $P \in V(Y')$ arbitrario. En el caso de las aristas cada arista $w \in E(W)$ se corresponde con una única arista $y \in E(Y)$. Para ver que no tiene ciclos supongamos que c' es un ciclo de W. Este ciclo tiene que pasar por [Y'] caso contrario tomando levantados de aristas y vértices conseguiríamos un ciclo en Y, consideremos que este ciclo c' pasa solamente al comienzo y al final por [Y']. Si levantamos este ciclo nos queda un camino c en c tal que comienza c termina en c c aparte cumple que ninguna de las aristas está en c c c c hipótesis tenemos que c es conexo por lo tanto debe existir un camino c con aristas contenidas

en Y' tal que une los extremos de c. Concantenando c con d obtenemos un ciclo de Y pero esto contradice que Y es un árbol.

Finalmente estamos en condiciones de probar el resultado central de esta sección.

Demostración de 2.2.11. Separamos en casos dependiendo cómo es el grafo Y.

1. El caso que Y es un segmento que representaremos de la siguiente manera:

Sea \mathcal{G} un grafo de grupos sobre este grafo. Si (c,μ) es una palabra de tipo c entonces el elemento $|c,\mu|$ es de la pinta $r_0y^{e_1}r_1y^{e_2}\dots y^{e_n}r_n$. Donde $e_i=-e_{i+1}$ para todo $i=1\dots n$ y los elementos cumplen que $r_0\in G_{P_{-e_1}}$ y $r_i\in G_{P_{e_i}}\backslash G_{y^{e_i}}$ dado que (c,μ) es una palabra reducida. El caso particular que nuestro camino es constante tenemos que $r_0\neq 1$ porque vale **R1**.

Para el otro caso en el cual el camino c no es constante consideremos el morfismo sobreyectivo al cociente $\pi_1(\mathcal{G},T)$ donde T=Y es el mismo segmento. Por lo visto en el ejemplo 2.1.10 tenemos un isomorfismo $\pi_1(\mathcal{G},T)\simeq G_{P_{-1}}*_{G_y}G_{P_1}$.

Consideramos el morfismo sobreyectivo π que es la proyección del grupo universal al grupo fundamental

$$\pi: F(\mathcal{G}) \to G_{P_{-1}} \underset{G_y}{*} G_{P_1}$$

tenemos que

$$\pi(|c,\mu|)=r_0r_1\ldots r_n$$

tal que para todo $0 \le i \le n$ vale que $r_i \in G_{P_{e_i}} \setminus G_{y_{e_i}}$. Esto es equivalente a que $\phi(|c,\mu|)$ sea reducida para el grupo amalgamado $G_{P_{-1}} *_{G_y} G_{P_1}$. Por el resultado 2.2.8 tenemos que $\phi(|c,\mu|) \ne 1$ y así concluimos que $|c,\mu| \ne 1$ no es la identidad.

2. El caso que Y es un árbol.

Lo probamos usando inducción en la cantidad de aristas |E(Y)|=m. El caso base es m=1 lo que implica que Y es un segmento y esto lo probamos en el caso anterior de la demostración de este teorema. Para el paso inductivo nos basta tomar Y' algún segmento de Y. Por el lema 2.2.20 vemos que el grafo W=Y/Y' resulta ser un árbol y más aún podemos aplicarle la hipótesis inductiva dado que |E(W)| < m. De esta manera aplicando el paso inductivo obtenemos que vale este resultado para el grafo de grupos $\mathcal H$ sobre W entonces vale que $|c',\mu'| \ne 1$. Por el isomorfismo α definido en 2.2.17 y por el lema 2.2.19 terminamos de ver que $|c,\mu| \ne 1$.

3. El caso que *Y* es un bucle.

Sea \mathcal{G} una estructura de grafo de grupos sobre entonces en este caso el grupo universal resulta $F(\mathcal{G}) \simeq G_p^{*G_y}$. Por ser (c,μ) una palabra reducida para $F(\mathcal{G})$ vemos que esta condición en este caso coincide con la definición de una palabra reducida para una extensión HNN. Bajo estas condiciones podemos aplicar el lema de Britton 2.2.2 que nos garantiza que $|c,\mu| \neq 1$ en el grupo $F(\mathcal{G})$ tal como queríamos ver.

4. El caso general. Sea Y = (V, E) un grafo finito conexo arbitrario. Lo probamos por inducción en m = |E|. El caso base m = 1 se corresponde con un bucle o bien con un segmento ambos casos ya probados en la demostración de este teorema. Para el paso inductivo sea Y' subgrafo de Y que podría ser un segmento o bien un bucle. Aplicamos el resultado a W = Y/Y' tal que |E(W)| < m. A W le damos la estructura de grafo de grupos \mathcal{H} . Por inducción vale en \mathcal{H} entonces usando el lema 2.2.19 terminamos de probarlo para un grafo Y conexo Y finito arbitrario.

§2.3. Árbol de Bass–Serre.

Vamos a definir el árbol de Bass–Serre que resulta ser en nuestro contexto el revestimiento universal de un grafo de grupos. Presentamos una construcción un poco más concisa que la que aparece en [Ser02] si bien la idea es prácticamente la misma. Otra construcción posible del árbol de Bass–Serre se puede ver en el trabajo [DW17] donde los autores construyen este árbol de una manera sintáctica usando sistemas de reescritura.

\S **2.3.1.** Construcción de \widetilde{X} .

Sea Y un grafo dirigido conexo y sea \mathcal{G} un grafo de grupos sobre este grafo. Sea T un árbol generador del grafo Y luego llamemos $G = \pi_1(\mathcal{G}, T)$. Queremos construirnos los siguientes objetos:

- **1.** Un grafo dirigido \tilde{X} .
- **2.** Una acción de G en \widetilde{X} sin inversiones de aristas de manera que $\widetilde{X}/G \simeq Y$.
- **3.** Una sección $Y \to \widetilde{X}$ tal que para todo vértice $P \in V(Y)$ denotaremos $\widetilde{P} \in V(\widetilde{X})$ a su imagen y similarmente para toda arista $y \in E(Y)$ denotaremos $\widetilde{y} \in E(\widetilde{X})$ a su imagen.

Para construir este grafo vamos a partir de la siguiente observación. Si \widetilde{X} fuera un grafo tal que G actúa sobre él e $Y = \widetilde{X}/G$ entonces tendríamos que vale lo siguiente: para todo vértice $\widetilde{P} \in V(\widetilde{X})$ por el teorema de órbitas estabilizador existe una biyección entre la órbita $G\widetilde{P}$ y los

cosets del estabilizador $G/G_{\tilde{p}}$. De esta manera vamos a construir a los vértices para que valga esta propiedad:

$$V(\widetilde{X}) = \bigsqcup_{v \in V(Y)} G/G_v$$

mientras que para las aristas por un razonamiento idéntico llegamos a que:

$$E(\widetilde{X}) = \bigsqcup_{y \in E(Y)} G/G_y.$$

Ya habiendo definido el conjunto de vértices y de aristas del grafo \widetilde{X} vamos a definir la arista con orientación opuesta y los inicios y finales de las aristas.

El comienzo de una arista $s: E(\widetilde{X}) \to V(\widetilde{X})$ va a estar definida como:

$$s(gG_y) = gG_{s(y)}.$$

Probemos que esta definición no depende de los representantes elegidos. Si tenemos que $gG_y = hG_y$ esto nos dice que $h^{-1}gG_y = G_y$. Como G_y es un subgrupo de $G_{s(y)}$ entonces si $h^{-1}g \in G_y$ esto nos dice que $h^{-1}g \in G_{s(y)}$. De esta manera $hG_{s(y)} = gG_{s(y)}$ tal como queríamos ver y por lo tanto el origen de una arista no depende de la elección del representante.

Ahora vamos a ver la definición del fin de una arista $t: E(\widetilde{X}) \to V(\widetilde{X})$ que está dada por:

$$t(gG_y) = gg_yG_{t(y)}$$

Probemos que esta definición no depende de los representantes elegidos. Si tenemos que $hG_y = gG_y$ luego queremos ver que $hg_yG_{t(y)} = gg_yG_{t(y)}$ y esto ocurre si y solo sí $g_y^{-1}h^{-1}gg_yG_{t(y)} = G_{t(y)}$. Usando una de las relaciones del grupo tenemos que $g_y^{-1}G_yg_y \subseteq G_{\overline{y}}$ y como $h^{-1}g \in G_y$ luego obtenemos que $g_y^{-1}h^{-1}gg_y \in G_{\overline{y}}$. Por como definimos a los grafos de grupos tenemos que $G_{\overline{y}}$ es un subgrupo $G_{s(\overline{y})}$ y como $s(\overline{y}) = t(y)$ terminamos de probar que $g_y^{-1}h^{-1}gg_y \in G_{t(y)}$ tal como queríamos ver.

Usando estas dos definiciones tenemos que la arista inversa $\overline{(.)}: E(\widetilde{X}) \to E(\widetilde{X})$ tiene que ser:

$$\overline{gG_y} = gg_yG_{\overline{y}}.$$

tal que $s(gg_yG_{\overline{y}})=gg_yG_{t(y)}$ y $t(gg_yG_{\overline{y}})=gg_yg_{\overline{y}}G_{s(y)}$ y como $g_yg_{\overline{y}}=1$ obtenemos así que $t(gg_yG_{\overline{y}})=gG_{s(y)}$. A su vez por una cuenta similar vemos que $\overline{gG_y}=gG_y$.

De esta manera ya tenemos definido el grafo dirigido \widetilde{X} . Por como construimos a \widetilde{X} nos aseguramos que G actúa en \widetilde{X} y que $\widetilde{X}/G \simeq Y$. A su vez esta acción es sin inversión de aristas por que para todo $g \in G$ y toda arista $hG_{V} \in E(\widetilde{X})$ tenemos que

$$g(hG_y) \neq hg_yG_{\overline{y}}$$

dado que son cosets correspondientes a aristas diferentes.

§2.3.2. Teorema de Serre.

Llamemos $q:\widetilde{X}\to Y$ a la proyección de \widetilde{X} en $\widetilde{X}/G\simeq Y$. Este epimorfismo de grafos está definido por $q(gG_P)=P$ para todo $P\in V$ y $q(gG_y)=y$ para todo $y\in E$.

DEFINICIÓN 2.3.1. Dado un grafo Y, $C \subseteq V(Y)$ un conjunto de vértices entonces diremos que el *subgrafo generado por C* es el siguiente grafo W:

$$V(W)=C,\quad E(W)=\{y\in E(Y)\mid s(y),t(y)\in C\}.$$

Donde las definiciones de $s: E(W) \to V(W)$, $t: E(W) \to V(W)$ y de $\overline{(.)}: E(W) \to E(W)$ son las restricciones de las de Y.

Observación 2.3.2. El subgrafo $W \subseteq \widetilde{X}$ generado por el siguiente conjunto de vértices

$$V(W) = \{G_P \mid \forall P \in V(Y)\} \cup \{g_y G_O : \forall y \in E(Y), Q \in V(Y) / t(y) = Q\}$$

es tal que resulta ser un dominio fundamental de la acción de G en \widetilde{X} .

Sea T el árbol generador de Y que fijamos en el comienzo de la sección. Veamos que en estas circunstancias podemos definir un levantado de T en \widetilde{X} .

Observación 2.3.3. En particular podemos definir \widetilde{T} subárbol de \widetilde{X} de manera que está generado por el siguiente conjunto de vértices:

$$V(\widetilde{T}) = \{G_P \mid P \in V(Y)\}\$$

y que tiene como aristas a

$$E(\widetilde{T}) = \{G_y \mid y \in E(Y)\}.$$

Donde usamos que $g_y = 1$ para toda $y \in E(T)$. De esta manera nuestra sección $\iota : \widetilde{T} \to \widetilde{X}$ está definida por $\iota(P) = G_P$ y $\iota(y) = G_y$. Tal que $q \circ \iota : \widetilde{T} \to \widetilde{T}$ es la identidad.

Antes de probar el resultado central de esta sección vamos a enunciar un lema que usaremos fuertemente en la demostración.

LEMA 2.3.4. Sean $\{X_i\}_{i\in\mathbb{N}}$ grafos conexos de manera que para todo $i\in\mathbb{N}$ vale que $X_i\cap X_{i+1}\neq\varnothing$ entonces $\bigcup_{i\in\mathbb{N}}X_i$ es un grafo conexo.

TEOREMA 2.3.5 (Serre). El grafo \widetilde{X} es un árbol.

Demostración. Debemos ver dos cosas: que es conexo y que no tiene ciclos.

 \mathbf{X} es conexo.

2.3. ÁRBOL DE BASS-SERRE.

49

El subgrafo W definido en la observación 2.3.2 es un dominio fundamental para la acción de G en \widetilde{X} esto quiere decir que $G \cdot W = \widetilde{X}$ por lo que

$$\widetilde{X} = \bigcup_{g \in G} gW$$

donde gW es conexo para todo $g \in G$ dado que W lo es.

Si S es un conjunto finito de generadores de G entonces todo $g \in G$ lo podemos escribir como $g = s_{i_1} \dots s_{i_n}$ para $s_{i_j} \in S$. Si fijamos $g \in G$ podemos definir el siguiente grafo:

$$W_g = W \cup \bigcup_{i=1}^n s_{i_j} \dots s_{i_n} W.$$

Entonces al grafo \tilde{X} lo podemos reescribir de la siguiente manera:

$$\widetilde{X} = \bigcup_{g \in G} W_g.$$

Fijamos un conjunto finito de generadores de *G*:

$$S = \bigcup_{P \in V(Y)} G_P \cup \{g_y : y \in E \setminus E(T)\}.$$

Con este conjunto de generadores vamos a probar que para todo $g \in G$ resulta que W_g es conexo. Si probamos esto como \widetilde{X} es unión de W_g y para todo $g,h \in G$ tenemos que $W \subseteq W_g \cap W_h$ con $W \neq \emptyset$ luego por el lema 2.3.4 tendremos que \widetilde{X} es conexo tal como queríamos ver.

Dado $g \in G$ nos alcanza con probar que W_g es conexo. Para esto lo vamos a probar por inducción en la longitud de g visto como palabra en los generadores S.

Para el caso base tenemos que g = s para $s \in S$. Queremos ver que $W_s = W \cup sW$ es conexo. Debemos ver dos casos dependiendo como sea el generador que estemos tomando.

- **1.** Si $s = g_y$ para alguna arista $y \in E(Y)$ luego tenemos que $g_y G_y \in g_y W$. Queremos ver que $g_y G_y \in W$. Para esto debemos ver que el comienzo y el final de la arista pertenecen al grafo W. Por la definición tenemos que $s(gG_y) = G_{s(y)} \in V(W)$ y similarmente $t(gG_y) = g_y G_{t(y)} \in V(W)$. De esta manera $g_y W \cap W \neq \emptyset$ y por lo tanto la unión es conexa.
- **2.** Si $s \in G_P$ para algún $P \in V$ entonces $sG_P = G_P \in V(sW) \cap V(W)$ por lo tanto $sW \cap W \neq \emptyset$ y así la unión es conexa.

Ahora para el paso inductivo supongamos que W_g es conexo para todo g tal que puede ser escrito como una palabra de n-1 letras en S. Queremos verlo para $g=s_1\dots s_n$ y esto lo podemos hacer notando que

$$s_n W \cup W$$

es conexo por lo tanto si multiplicamos a izquierda por $s_1 \dots s_{n-1}$ va a seguir siendo conexo y no vacío

$$s_1 \dots s_{n-1}(W \cup s_n W) = s_1 \dots s_{n-1} W \cup s_1 \dots s_n W$$
 (2.1)

De esta manera si llamamos $g' = s_1 \dots s_{n-1}$ entonces

$$W_{g} = W_{g'} \cup s_1 \dots s_n W.$$

Por hipótesis inductiva tenemos que $W_{g'}$ es conexo y como por 2.1 vimos que $s_1 \dots s_{n-1}W \cap s_1 \dots s_nW \neq \emptyset$ y $s_1 \dots s_{n-1}W \subseteq W_{g'}$ entonces probamos que W_g es conexo tal como queríamos ver.

Vimos así que el grafo \widetilde{X} es conexo porque lo escribimos como unión de conexos que se intersecan de a pares.

• Veamos ahora que no tiene ciclos. Probaremos la proposición equivalente: para todo $n \in \mathbb{N}$ no existe camino cerrado de longitud n sin backtracking.

El caso que n = 0,1 es claro porque no existen caminos con estas longitudes de manera que tengan backtracking.

Supongamos entonces que $n \ge 2$. Sea \widetilde{c} un camino sobre \widetilde{X} cerrado de longitud n y sin backtracking. Queremos llegar a un absurdo. Sea este camino $\widetilde{c} = (h_1 G_{y_1}, h_2 G_{y_2}, \ldots, h_n G_{y_n})$. Introduciremos las siguientes notaciones. Para todo $1 \le i \le n$ llamemos $P_i = s(y_i)$ y llamaremos $g_i = g_{y_i}$. Al ser \widetilde{c} un camino cerrado valen las siguientes igualdades:

$$t(h_n G_{y_n}) = h_n g_n G_{P_0} = h_1 G_{P_0} = s(h_1 G_{y_1})$$

$$\vdots = \vdots \qquad \vdots$$

$$t(h_{n-1} G_{y_{n-1}}) = h_{n-1} g_{n-1} G_{P_{n-1}} = h_n G_{P_{n-1}} = s(h_n G_{P_{n-1}})$$

de manera que para todo $1 \le i \le n$ existe $r_i \in G_{P_i}$ tal que $h_i g_i r_i = h_{i+1}$.

Podemos reescribir las igualdades anteriormente obtenidas de la siguiente manera:

$$h_1 = h_n g_n r_n$$

$$h_2 = h_1 g_1 r_1$$

$$\vdots \quad \vdots$$

$$h_n = h_{n-1} g_{n-1} r_{n-1}$$

Más aún usando cada ecuación para reescribirla en la anterior obtenemos que multiplicando todo de forma telescópica nos termina quedando lo siguiente,

$$g_1 r_1 \dots g_n r_n = 1. \tag{2.2}$$

Sea la palabra (c, μ) de tipo c dada por el camino $c = q(\tilde{c})$ y la sucesión $\mu = (1, r_1, \dots, r_n)$. Sea $\pi : F(\mathcal{G}) \to \pi_1(\mathcal{G}, T)$ la proyección al cociente. En la ecuación 2.2 vimos que $\pi(|c, \mu|) = g_1 r_1 \dots g_n r_n = 1$. Veamos que (c, μ) es una palabra reducida. Si probamos esto, entonces (c, μ) cumple las hipótesis del resultado 2.2.14 dado que c es un camino cerrado no trivial y es una palabra reducida por lo tanto $\pi(|c, \mu|) \neq 1$ y así llegaríamos a una contradicción.

Para eso debemos chequear que se cumpla la condición **R2** de la definición de las palabras reducidas, ya que suponemos que \tilde{c} es un camino cerrado con longitud al menos 2.

Para ver que (c, μ) es reducida debemos ver que si existe $1 \le i \le n$ tal que $y_{i+1} = \overline{y_i}$ entonces para ese mismo i vale que $r_i \notin G_{\overline{y_i}}$.

Consideramos la ecuación que teníamos anteriormente

$$h_i g_i r_i = h_{i+1}$$

de manera que si despejamos a r_i obtenemos que

$$r_i = g_i^{-1}(h_i^{-1}h_{i+1}).$$

Supongamos que $r_i \in G_{\overline{\nu}_i}$, en tal caso tendríamos que

$$h_i g_i r_i G_{\overline{y_i}} = h_i g_i G_{\overline{y_i}} = h_{i+1} G_{\overline{y_i}}.$$

Esto nos dice que vale la siguiente igualdad

$$h_{i+1}G_{\overline{y}_i}=\overline{h_iG_{y_i}}$$

pero esto es una contradicción porque al camino original \tilde{c} lo habíamos tomado sin backtracking. Por lo tanto $r_i \notin G_{\overline{y_i}}$ y así vemos que (c, μ) era reducida tal como queríamos ver.

DEFINICIÓN 2.3.6. Sea \mathcal{G} un grafo de grupos sobre un grafo conexo Y y sea T un árbol generador de Y. El grafo $\widetilde{X} = \widetilde{X}(T, \mathcal{G})$ lo llamamos el *árbol de Bass–Serre* de \mathcal{G} .

§2.4. Acciones de grupos sobre árboles.

Sea X un grafo conexo finito y sea G un grupo finitamente generado que actúa sobre X. Llamemos Y = G/X y T árbol generador de Y. Nuestro objetivo es construir un grafo de grupos G sobre Y de manera que se corresponda a esta acción y $\pi_1(G,T) \simeq G$.

Sea la proyección $\pi:X\to Y$ tal que es un epimorfismo de grafos. Este grafo está dado por el conjunto de vértices

$$V(Y) = \{GP : P \in V(X)\}\$$

y las aristas

$$E(Y) = \{Gy : y \in E(X)\}.$$

En particular como el grafo X es conexo tenemos que Y también lo es. Consideremos $\iota: Y \to X$ una sección como conjuntos que la armamos con los siguientes dos pasos.

- **1.** Para cada vértice $P \in V(Y)$ elegimos $\iota(P) = P' \in V(X)$ tal que $\pi(P') = P$.
- **2.** Para cada arista $y \in E(Y)$ elegimos $\iota(y) = y' \in E(X)$ de manera que $s(\iota(y)) = \iota(s(y))$. Esto lo podemos hacer para cada arista por separado.

Por como hicimos esta construcción nos garantizamos que el comienzo de cada arista cuando la miramos en X sea uno de los vértices que tomamos como representantes de vértices de Y en X. En principio no sabemos que el vértice del final de la arista de y coincida con el de comienzo de y. Lo que sabemos es que existe $g_y \in G$ tal que

$$g_y \overline{\iota(y)} = \iota(\overline{y})$$

porque ambas aristas en la misma órbita por la acción de G. Si fijamos una orientación de aristas para el grafo X luego podemos elegir para cada arista de la orientación algún $g_y \in G$ tal que $g_y \overline{\iota(y)} = \iota(\overline{y})$. Para las aristas con la orientación opuesta tendremos algún $g_{\overline{y}} \in G$ tal que

$$g_{\overline{y}}\overline{\iota(\overline{y})} = \iota(y).$$

Como la acción de G sobre X es por morfismos de grafos tenemos que $\overline{gy} = g\overline{y}$ y por lo tanto podemos elegir $g_{\overline{y}} = g_{\overline{y}}^{-1}$. El caso particular que $\overline{\iota(y)} = \iota(\overline{y})$ definiremos que $g_y = 1 = g_{\overline{y}}$.

Veamos un ejemplo de cómo sería construir esta sección en una acción de un grupo particular en un grafo sencillo.

EJEMPLO 2.4.1. Veamos cómo construir esta sección a partir de una acción de un grupo en un grafo dirigido.

Sea $G = \langle a \mid a^2 \rangle$ el grupo cíclico de orden 2. Sea X el siguiente grafo dirigido.

entonces para definir una acción de G en X nos basta definir un morfismo idempotente sobre este grafo. Para eso definimos $a \cdot X$ de la siguiente manera:

$$q \cdot Y = P_5 \leftarrow y_4 \qquad P_4 \leftarrow y_3 \qquad P_3 \leftarrow y_2 \qquad P_2 \leftarrow y_1 \qquad P_1$$

Este morfismo de grafos es tal que a(aX) = X.

De esta manera tenemos definida una acción de G sobre el grafo dirigido X. Sea Y = X/G el grafo dirigido definido de la siguiente manera:

donde los vértices están dados por las órbitas de la acción de G en X por lo que $GP_1 = \{P_1, P_5\}$, $GP_2 = \{P_2, P_4\}$ y $GP_3 = \{P_3\}$. Para las aristas tenemos que $Gy_1 = \{y_1, \overline{y_4}\}$, $G\overline{y_1} = \{\overline{y_1}, y_4\}$, $Gy_2 = \{y_2, \overline{y_3}\}$ y $G\overline{y_2} = \{\overline{y_2}, y_3\}$.

Ahora vamos a definirnos una sección $\iota: Y \to X$ de la misma manera que la hicimos anteriormente. Para eso definimos $\iota(GP_3) = P_3$, $\iota(GP_2) = P_2$ y $\iota(GP_1) = P_5$. Para definir la sección sobre las aristas recordamos que para la arista que esté en la imagen por la sección tiene que ser tal que su comienzo sea uno de los vértices que estaban en la imagen en la sección. De esta manera podemos definir así: $\iota(Gy_1) = \overline{y_4}$, $\iota(\overline{Gy_1}) = \overline{y_1}$, $\iota(Gy_2) = y_2$, $\iota(\overline{Gy_2}) = \overline{y_2}$. Tal que $\iota: Y \to X$ así definida es una sección tal como queríamos construir.

Ahora procedemos a definir para cada arista de $y \in E(Y)$ algún elemento $g_y \in G$ de manera que:

$$g_y \overline{\iota(y)} = \iota(\overline{y}).$$

Notemos que si definimos $g_{Gy_1} = a$ luego

$$a\overline{\iota(Gy_1)} = a\overline{y_4} = ay_4 = \overline{y_1} = \iota \overline{G}y_1.$$

Por otro lado tenemos que si definimos $g_{Gy_2} = 1$ entonces

$$1\overline{\iota(Gy_2)} = \overline{y_2} = \iota \overline{G}y_2.$$

Un comentario importante es que podríamos haber tomado varias secciones $\iota: Y \to X$. En particular usando la proposición 2.4.5 como el grafo Y es un árbol podríamos haber tomado una sección ι de manera que $\iota(Y)$ sea un subárbol de X. En tal caso tendríamos que $g_y = 1$ para todo $y \in E(Y)$. Más en adelante probaremos que no importa qué sección tomemos el grafo de grupos que vamos a construir va a tener el mismo grupo fundamental.

Vamos a construir \mathcal{G} un grafo de grupos sobre el grafo Y. Consideremos para $P \in V(Y)$, $y \in E(Y)$ los siguientes grupos,

$$G_P = G_{\iota(P)}, G_y = G_{\iota(y)}$$

donde estamos mirando los estabilizadores de la acción de G sobre X. Por como elegimos a la sección tenemos que $G_{\iota(y)} \subset G_{s(\iota y)}$. Si no hubiéramos definido a la sección ι para que $\iota(y)$ cumpla que $s(\iota(y)) = \iota(s(y))$ no podríamos habernos asegurado que se cumpla que $G_y \subseteq G_{s(y)}$ para todo $y \in E(Y)$ como requerimos para la definición de un grafo de grupos.

Queremos ver que $G_y \simeq G_{\overline{y}}$ para garantizar que \mathcal{G} sea un grafo de grupos. Consideremos el siguiente morfismo de grupos;

$$\phi: G_{\overline{y}} \to G_y$$
$$a \mapsto g_y^{-1} a g_y$$

Veamos que está bien definido. Para eso veamos que $g_y^{-1}ag_y\iota(y)=\iota(y)$. Como $g_y\iota(y)=\overline{\iota(\overline{y})}$ dado que $g_y\overline{\iota(y)}=\iota(\overline{y})$ por como lo elegimos a g_y y porque $\overline{gw}=g\overline{w}$ para toda $w\in E(X)$. Ahora usamos que si $a\in G_{\iota(\overline{y})}$ luego $a\in G_{\overline{\iota(\overline{y})}}$ por lo tanto $a\overline{\iota(\overline{y})}=\overline{\iota(\overline{y})}$. Finalmente como $g_y^{-1}\overline{\iota(\overline{y})}=\iota(y)$ tal como

queríamos ver. Este morfismo tiene un inverso $\phi^{-1}:G_y\to G_{\overline{y}}$ definido por $\phi^{-1}(b)=g_ybg_y^{-1}$ por lo tanto ϕ es un isomorfismo tal como queríamos ver.

Definimos el siguiente morfismo del producto libre de los estabilizadores de los vértices y el grupo libre en las aristas del grafo al grupo *G*.

$$\varphi: \underset{P \in V(Y)}{*} G_P * F_{E(Y)} \to G$$

$$g \mapsto g$$

$$y \mapsto g_y$$

Probemos que este morfismo baja a F(G). Para eso veamos que cumple las relaciones que definen a este cociente.

- **1.** $g_y g_{\overline{y}} = 1$ para todo $y \in E(Y)$ porque justamente elegimos a $g_{\overline{y}}$ de esta manera;
- **2.** $\overline{y}ay = a^{\overline{y}}$ para todo $y \in E(Y), a \in G_y$ porque justamente vimos que

$$\varphi(\overline{y})\varphi(a)\varphi(y) = g_y^{-1}ag_y = a^{\overline{y}}$$

De esta manera tenemos definido un morfismo de grupos $\varphi: F(\mathcal{G}) \to G$. Nuestro objetivo ahora es ver que este morfismo baja al grupo fundamental del grafo de grupos sobre un árbol generador.

LEMA 2.4.2. Sea G un grupo que actúa en un grafo conexo X sin inversiones de aristas y sea \mathcal{G} el grafo de grupos asociado sobre Y = X/G. El morfismo $\varphi : F(\mathcal{G}) \to G$ es tal que $\varphi(g) = g$ para todo $g \in G_P$.

Demostración. Por el corolario 2.2.12 tenemos que G_P es un subgrupo de $F(\mathcal{G})$ por lo tanto por nuestra definición tenemos que $\varphi(g) = g$ para todo $g \in G_P$.

En particular si consideramos que para toda arista $y \in E(X)$ el grupo G_y es subgrupo de $G_{s(y)}$ luego $\varphi(a) = a$ para todo $a \in G_y$.

PROPOSICIÓN 2.4.3. Sea G un grupo que actúa en un grafo conexo X sin inversiones de aristas g sea g el grafo de grupos asociado sobre Y = X/G. El morfismo de grupos $g : F(g) \to G$ restringido al subgrupo $\pi_1(g, P)$ es sobreyectivo.

Demostración. Dado $g \in G$ queremos ver que $g \in \varphi(\pi_1(\mathcal{G}, P))$.

Sea $P \in \iota(V(Y))$ un vértice. Consideremos $gP \in V(X)$, como el grafo es conexo tenemos un camino que une a P con gP. Sea este camino $(e_0\iota(y_1),\ldots,e_{k-1}\iota(y_k))$ donde $e_i \in G$ para todo $0 \le i \le k-1$ y (y_1,\ldots,y_k) es un camino en el grafo Y. Si miramos los vértices que aparecen en este camino tenemos:

$$e_0 P_0 \xrightarrow{e_0 \iota(y_1)} e_1 P_1 \xrightarrow{e_1 \iota(y_2)} e_{k-1} P_{k-1} \xrightarrow{e_{k-1} \iota(y_k)} e_k P_k$$

de manera que $P_i \in V(\iota(Y))$. En particular $P_0 = P$ y $P_k = P$ y así $s(\iota(y_i)) = P_{i-1}$ por como tomamos las levantadas de las aristas. Los elementos e_i son tales que $e_i t(\iota(y_{i+1})) = e_{i+1} P_{i+1}$.

Una primera observación que podemos hacer es que $ge_k^{-1} \in G_P$ dado que $e_kP = gP$. Por el lema 2.4.2 tenemos que $\varphi(h) = h$ para todo $h \in G_P$ por lo tanto $\varphi(ge_k^{-1}) = ge_k^{-1}$. Esto nos dice que si escribimos a g de la siguiente manera,

$$g = (ge_k^{-1})e_k$$

entonces como $ge_k^{-1} \in G_P$ tenemos que usando el resultado 2.2.12 que vale lo siguiente: $ge_k^{-1} \in \pi_1(\mathcal{G}, P)$. Como $\varphi(ge_k^{-1}) = ge_k^{-1}$ obtenemos que $ge_k^{-1} \leqslant \varphi(\pi_1(\mathcal{G}, P))$. Si vemos que $e_k \in \varphi(\pi_1(\mathcal{G}, P))$ probaríamos que $g \in \varphi(\pi_1(\mathcal{G}, P))$ tal como queríamos ver.

Probaremos por inducción en el camino que tomamos anteriormente que $e_i \in \varphi(\Pi_1(\mathcal{G}, P, P_i))$ para todo $i = 0 \dots n$.

El caso base consiste en ver que $e_0 \in \varphi(\pi_1(\mathcal{G}, P))$. Esto es cierto porque justamente tenemos que $e_0 \in G_P$ dado que $e_0 P = P$ y por el lema anterior 2.4.2 tenemos que φ es la identidad cuando la restringimos a G_P .

Para el paso inductivo supongamos que $e_{i-1} \in \varphi(\pi_1(\mathcal{G}, P, P_{i-1}))$ y queremos ver que $e_i \in \varphi(\pi_1(\mathcal{G}, P, P_i))$. Antes de probar esto veamos de reescribir a e_i en términos de e_{i-1} . Observemos que por como tomamos el camino tenemos que

$$e_{i-1}t(\iota(y_i))=e_iP_i$$

y así $t(\iota(y_i)) = e_{i-1}^{-1}e_iP_i$ y como $t(\iota(y_i)) = s(\overline{\iota(y_i)})$ luego obtenemos que $s(\overline{\iota(y_i)}) = e_{i-1}^{-1}e_iP_i$. Por como definimos al elemento del grupo $g_{y_i} \in G$ tenemos que $g_{y_i}\iota(\overline{y}_i) = \overline{\iota(y_i)}$ por lo tanto obtenemos que

$$s(g_{y_i}\iota(\overline{y_i})) = g_{y_i}P_i = e_{i-1}^{-1}e_iP_i = s(\overline{\iota(y_i)})$$

de esta manera llegamos a la siguiente escritura para e_i

$$e_i = e_{i-1}g_{y_i}h_i$$

donde $h_i \in G_{P_i}$.

Ahora podemos usar nuestra hipótesis inductiva para obtener un camino

$$h_0y_0\ldots y_{i-1}h_{i-1}\in\Pi_1(\mathcal{G},P,P_i)$$

de manera que $e_{i-1} = \varphi(h_0 y_0 \dots y_{i-1} h_{i-1})$. Recordemos que $\varphi(y_i) = g_{y_i}$ por la definición de nuestro morfismo φ y por otro lado tenemos que $\varphi(h_i) = h_i$ porque φ fija a los grupos G_{P_i} por 2.4.2. Con esto concluímos la siguiente igualdad,

$$e_i = \varphi(h_0 y_0 \dots y_{i-1} h_{i-1} y_i h_i)$$

y como $h_0y_0 \dots y_{i-1}h_{i-1}y_ih_i \in \Pi_1(\mathcal{G},P,P_i)$ terminamos de probar que $e_i \in \varphi(\Pi_1(\mathcal{G},P,P_i))$ tal como queríamos ver. En particular con esto probamos que $e_k \in \varphi(\mathcal{G},P)$ y esto implica que $g \in \varphi(\mathcal{G},P)$ tal como queríamos ver. De esta manera la restricción de φ al subgrupo $\pi_1(\mathcal{G},P)$ es sobreyectiva.

Ahora vamos a probar que este morfismo φ se factoriza por el cociente $\pi_1(\mathcal{G}, T)$. Primero una observación sobre uniones de árboles.

OBSERVACIÓN 2.4.4. Dada una sucesión de árboles $\{T_i\}_{i\in\mathbb{N}}$ tales que para todo $i\in\mathbb{N}$ vale que $T_i\subseteq T_{i+1}$ entonces

$$T = \bigcup_{i=1}^{\infty} T_i$$

es un árbol. Esto se debe a que la unión de conexos sigue siendo conexo y si tuviera un ciclo entonces existiría N suficientemente grande tal que T_N tendría un ciclo y esto contradice que es un árbol.

PROPOSICIÓN 2.4.5. Sea X grafo conexo no vacío, G grupo que actúa sin inversiones sobre X. Sea Y = X/G y sea $\pi : X \to Y$ la proyección. Sea T árbol generador de Y. Entonces podemos tomar $\iota : V(Y) \to V(X)$ sección a π tal que si nombramos $T' = \iota(T)$ resulta ser un subgrafo de X.

Demostración. Vamos a usar el Lema de Zorn. Sea el siguiente conjunto

$$\Omega = \{(S, \iota) \mid S \text{ subárbol de } T, \iota \text{ es sección de } \pi, \iota(S) \text{ subárbol de } X\}$$

tal que si consideramos el siguiente orden

$$(S,\iota) \leqslant (S',j) \iff (S \subseteq S' \implies \iota(S) \subseteq j(S') \land j|_{S} = \iota)$$

donde miramos la inclusión como grafos en ambas coordenadas.

Observemos que si tomamos una arista $y \in E(Y)$ luego como G actúa sin inversiones de aristas tenemos que para todo $g,h \in G$ y para toda $y \in E(Y)$ vale lo siguiente $g \cdot y \neq h \cdot \overline{y}$ en X. Esto nos dice que es posible definir secciones a la proyección $\pi : X \to Y$.

- Veamos que Ω es no vacío. Tomamos $y \in E(T)$ alguna arista de T y tomamos el subárbol $S = (\{s(y), t(y)\}, \{y\})$. Definimos $\iota(y) = 1 \cdot y$ y $\iota(\overline{y}) = g_y \cdot \overline{y}$ que por como la definimos es una sección. De esta manera vemos que $\iota(S)$ es un subárbol de X por lo tanto $(S, \iota) \in \Omega$.
- Probamos ahora que toda cadena $(S_i, \iota_i)_{i \in \mathbb{N}} \in \Omega$ tiene un supremo en Ω por lo tanto por el lema de Zorn concluiríamos que existe un elemento maximal de Ω . Si tomamos la unión de todos los subgrafos S_i obtenemos el siguiente subgrafo

$$S = \bigcup_{i \in \mathbb{N}} S_i.$$

Similarmente tomamos la unión de todas las secciones,

$$\iota = \bigcup_{i=0}^k \iota_i$$

donde $\iota(y) = g \cdot y$ si existe $i \in \mathbb{N}$ tal que $y \in S_i$ y en ese caso $\iota_i(y) = g \cdot y$. Por esta definición tenemos que ι es una sección de π y por la observación 2.4.4 tenemos que S y $\iota(S)$ resultan ser árboles. El supremo para esta cadena resulta ser $(S, \iota) \in \Omega$.

Por el lema de Zorn tenemos un elemento maximal (M,j). Veamos que $(\pi \circ j)(M) = T$. Caso contrario como $M \in \Omega$ tenemos que es un subgrafo de T y así como hicimos anteriormente podríamos levantar una arista $y \in E(T) \setminus E(M)$ a $g \cdot y \in E(X)$ de manera que $s(g \cdot y) \in V(j(M))$. Si consideramos $M' = M \cup \{y\}$ luego (M',j') con $j'(y) = g \cdot y$ y j'(z) = j(z) para todo $z \in E(M)$ es tal que $(M',j') \in \Omega$ y $(M,j) \leq (M',j')$ contradiciendo la maximalidad de (M,j). Concluimos así que M = T tal como queríamos ver.

COROLARIO 2.4.6. Sea G un grupo que actúa en un grafo conexo X sin inversiones de aristas y sea G el grafo de grupos asociado sobre Y = X/G. Sea T un árbol generador de Y. Entonces la restricción del morfismo $\varphi : \pi_1(G, P)$ se factoriza por $\pi_1(G, T)$.

Demostración. Por la proposición anterior 2.4.5 tenemos que podemos construirnos una sección $\iota: Y \to X$ de manera que el levantado $\iota(T) \subseteq X$ lo podemos tomar para que sea un subárbol de X. Al ser un subgrafo tenemos que $\iota(\overline{y}) = \overline{\iota(y)}$ y equivalentemente que $g_y = 1$ y esto nos dice que $\varphi(\iota(y)) = 1$. Como $\pi_1(\mathcal{G}, T) = F(\mathcal{G})/\langle\langle R \rangle\rangle$ donde $R = \{y \in E(T)\}$ luego tenemos que φ define un morfismo $\overline{\varphi}: \pi_1(\mathcal{G}, T) \to G$ tal como queríamos ver.

2.4.0.1. Morfismo de grafos ψ .

En esta subsección mantenemos los nombres que elegimos en la anterior sección: X es un grafo en el cual actúa un grupo G, Y = X/G es el cociente por esta acción y \mathcal{G} es un grafo de grupos sobre Y construido tal como lo hicimos anteriormente.

Sea \widetilde{X} el árbol de Serre del grafo de grupos \mathcal{G} . Nuestro objetivo es dar un epimorfismo de grafos $\psi:\widetilde{X}\to X$ que en nuestro contexto de la teoría de Bass–Serre va a ser equivalente a decir que \widetilde{X} junto con este morfismo es un revestimiento de X.

Definimos entonces $\psi : \widetilde{X} \to X$ dada por:

$$\psi(gG_P) = \varphi(g) \cdot P$$
 para todo $g \in G, P \in V(Y)$
 $\psi(gG_V) = \varphi(g) \cdot \iota(y)$ para todo $g \in G, y \in V(Y)$

Veamos que la definición de ψ no depende del representante y por lo tanto que está bien definida. Sean dos representantes del mismo coset, $gG_P = hG_P$, queremos ver que $\varphi(g) \cdot P = \varphi(h) \cdot P$. Dado que $h^{-1}g \in G_P$ luego tenemos que $\varphi(h^{-1}g) = h^{-1}g$ porque φ restringida a G_P es la identidad por el resultado 2.4.2. Esto nos dice que

$$\varphi(h)\varphi(h^{-1}g) = \varphi(g)$$

$$\varphi(h)(h^{-1}g) = \varphi(g)$$

$$\implies \varphi(h) \cdot P = \varphi(g) \cdot P.$$

por lo tanto ψ está bien definida para todo coset de vértices. Similarmente por un razonamiento idéntico podemos ver que ψ está bien definida para todo coset de aristas y así vemos que ψ es una función bien definida.

LEMA 2.4.7. La función $\psi: \widetilde{X} \to X$ resulta ser un morfismo de grafos.

Demostración. Para ver que es un morfismo de grafos nos basta ver que manda vértices en vértices, aristas en aristas y respeta comienzo de aristas y la asignación de las aristas opuestas. Por como lo definimos está claro que manda vértices en vértices y aristas en aristas.

Veamos que respeta el comienzo de las aristas. Sea una arista $gG_v \in V(\widetilde{X})$ luego tenemos que:

$$s(\psi(gG_y)) = s(\varphi(g) \cdot \iota(y)) = \varphi(g) \cdot s(\iota(y))$$

$$\psi(s(gG_y)) = \psi(gG_{s(y)}) = \varphi(g) \cdot s(\iota(y))$$

Finalmente veamos que respeta la asignación de las aristas opuestas. Dada una arista $gG_y \in E(\widetilde{X})$ tenemos que ver que $\psi(\overline{gG_y}) = \overline{\psi(gG_y)}$. Primero usamos que $\overline{gG_y} = (gy)G_{\overline{y}}$ por lo tanto tenemos que

$$\psi(\overline{gG_y}) = \psi(gyG_{\overline{y}}) = \varphi(gy) \cdot \iota(\overline{y}) = \varphi(g)\varphi(y) \cdot \iota(\overline{y}) = \varphi(g)\varphi(y) \cdot \iota(\overline{y})$$

por nuestra definición de φ tenemos que $\varphi(y)=g_y$, así obtenemos

$$\psi(\overline{gG_y}) = \varphi(g)g_y \cdot \iota(\overline{y}).$$

Por otro lado tenemos que como $\overline{\iota(y)} = g_{\nu}\iota(y)$ entonces

$$\overline{\psi(gG_y)} = \overline{\varphi(g) \cdot y} = \varphi(g) \cdot \overline{\iota(y)} = \varphi(g)g_y \cdot \iota(\overline{y})$$

Probando así que $\overline{gG_y} = (gy)G_{\overline{y}}$. Con esto terminamos de probar que ψ es un morfismo de grafos.

DEFINICIÓN 2.4.8. Un morfismo de grafos $\psi: X \to Y$ se dice *localmente inyectivo* si para todo vértice $P \in V(X)$ resulta que la restricción $\psi: st(P) \to E(Y)$ es inyectiva.

Así como el revestimiento de un grafo es un epimorfismo de grafos localmente inyectivo vamos a probar que en el contexto de la teoría de Bass–Serre el morfismo ψ también tiene estas propiedades.

PROPOSICIÓN 2.4.9. El morfismo $\psi : \widetilde{X} \to X$ es sobreyectivo.

Demostración. Sea $g \cdot P \in V(X)$ vértice arbitrario, queremos ver que existe $g'G_Q \in V(\widetilde{X})$ de manera que $\psi(g'G_Q) = g \cdot P$.

Por el resultado 2.4.3 el morfismo de grupos φ resulta ser sobreyectivo. De esta manera tenemos que existe $h \in \pi_1(\mathcal{G}, P)$ tal que $\varphi(h) = g$. Luego alcanza con tomar como vértice a $hG_P \in V(\widetilde{X})$ de manera que

$$\psi(hG_P) = \varphi(h) \cdot P = g \cdot P$$

tal como queríamos ver. Una cuenta idéntica prueba que toda arista $g \cdot \iota(y) \in E(X)$ está en la imagen de ψ .

PROPOSICIÓN 2.4.10. El morfismo $\psi : \widetilde{X} \to X$ es localmente inyectivo.

Demostración. Sea $gG_P \in V(\widetilde{X})$ vértice y sean $aG_y, bG_{y'} \in E(\widetilde{X})$ aristas distintas tales que $s(aG_y) = gG_P = s(bG_{y'})$. Queremos probar que $\psi(aG_y) \neq \psi(bG_{y'})$. Consideraremos dos casos dependiendo si las aristas correspondientes en el grafo Y son idénticas o no lo son.

- **1.** Supongamos primero que $y \neq y'$. En este caso tenemos que $\psi(aG_y) = \varphi(a) \cdot \iota(y)$ mientras que $\psi(bG_{y'}) = \varphi(b) \cdot \iota(y')$. Como son elementos de órbitas distintas no pueden ser el mismo elemento y de esta manera concluimos que $\psi(aG_y) \neq \psi(bG_{y'})$.
- **2.** El otro caso es que y=y'. Veamos que por una cadena de equivalencias que la función ψ coincide en estas aristas si y solo sí son idénticas. Esto nos dice que

$$\psi(aG_y) = \psi(bG_y) \iff \varphi(a) \cdot \iota(y) = \varphi(b) \cdot \iota(y)$$

y esto es equivalente a $\varphi(a^{-1}b) \in G_y$. Por el resultado 2.4.3 tenemos que φ es la identidad restringida a G_y . De esta manera tenemos que

$$\varphi(a) \cdot \iota(y) = \varphi(b) \cdot \iota(y) \iff a^{-1}b \in G_y \iff aG_y = bG_y$$

y así terminamos de probar que ψ es localmente inyectivo.

El siguiente resultado nos va a garantizar que el morfismo $\psi: \widetilde{X} \to X$ sea un isomorfismo de grafos pidiéndole a X ser un árbol.

PROPOSICIÓN 2.4.11. Sea T un árbol y sea Y un grafo conexo entonces todo morfismo de grafos ψ : $Y \to T$ localmente inyectivo es un monomorfismo de grafos.

Demostración. Notemos que el grafo Y es conexo por hipótesis entonces para todo par de vértices existe un camino que los une. Vamos a probar la siguiente afirmación equivalente a que ψ es un monomorfismo. Para todo todo $n \in \mathbb{N}$ y para todo par de vértices distintos $P, Q \in V(Y)$ tales que existe una geodésica α que une P con Q y que cumple que $l(\alpha) = n$ entonces $\psi(P) \neq \psi(Q)$.

El caso base es que la longitud de la geodésica sea exactamente 1. En este caso nuestra geodésica es el camino $\alpha=(y)$ donde denotamos s(y)=P y t(y)=Q. Supongamos que $\psi(P)=\psi(Q)$. Al ser ψ un morfismo de grafos tenemos que $\psi(y)\in E(T)$ y cumple que:

$$s(\psi(y)) = \psi(P) = \psi(Q) = t(\psi(y))$$

por lo tanto $\psi(y)$ es un bucle y esto contradice que T es un árbol por lo tanto $\psi(P) \neq \psi(Q)$ tal como queríamos ver.

El paso inductivo tenemos que existe una geodésica $\alpha = (y_1, \dots, y_n)$ entre P y Q de manera que $l(\alpha) = n$ y suponemos que $\psi(P) = \psi(Q)$. Tenemos que $\psi(\alpha)$ es un camino en T tal que comienza y termina en un mismo vértice. Como estamos en un árbol no puede haber ciclos, de esta manera

tiene que ser que $\psi(y_k) = \overline{\psi(y_{k+1})}$ para cierto $1 \le k \le n$. Como ψ es un morfismo de grafos cumple que $\overline{\psi(y)} = \psi(\overline{y})$ para todo $y \in E(Y)$ y así de esta manera obtenemos que $\psi(y_k) = \psi(\overline{y_{k+1}})$. Consideremos las aristas $\psi(\overline{y}_k)$ y $\psi(y_{k+1})$ tales que comienzan en el mismo vértice, entonces como el morfismo ψ es localmente inyectivo vale que $y_{k+1} = \overline{y_k}$. Esto es una contradicción porque asumimos que α es una geodésica y como tal no puede tener backtracking.

El siguiente resultado nos da la estructura de un grupo que actúa sobre un grafo conexo sin inversiones de aristas. Es el resultado central de la teoría de Bass–Serre.

TEOREMA 2.4.12 ([Ser02]). Sea G un grupo que actúa en un grafo conexo X sin inversiones de aristas y sea G el grafo de grupos asociado sobre Y = X/G. Consideremos T un árbol generador de Y y los morfismos $\psi: \widetilde{X} \to X$ y $\varphi: \pi_1(G,T) \to G$. Luego las siguientes afirmaciones son equivalentes.

- (a) el grafo X es un árbol;
- **(b)** el morfismo $\psi : \widetilde{X} \to X$ es un isomorfismo de grafos;
- (c) el morfismo $\varphi : \pi_1(\mathcal{G}, T) \to G$ es un isomorfismo de grupos.

Demostración. La implicación $\mathbf{a} \Rightarrow \mathbf{b}$ la hacemos usando la proposición 2.4.11 dado que ψ es localmente inyectivo por la proposición 2.4.10. Para ver $\mathbf{b} \Rightarrow \mathbf{a}$ usamos que \widetilde{X} es un árbol por lo tanto X al ser isomorfo también es un árbol.

Probemos $\mathbf{b} \Rightarrow \mathbf{c}$. Para eso notemos que al ser φ sobreyectivo por la proposición 2.4.3 nos alcanza con ver que es inyectivo. Si $g \in \pi_1(\mathcal{G}, T)$ y $g \neq 1$ tal que $\varphi(g) = 1$ entonces necesariamente $g \notin G_P$ por el lema 2.4.2 dado que la restricción a estos subgrupos es la identidad. Esto nos dice que $gG_P \neq G_P$. Por como definimos a ψ tenemos que

$$\psi(gG_P) = \varphi(g) \cdot P = P = \psi(G_P)$$

pero esto contradice que ψ sea un isomorfismo.

Finalmente probemos $\mathbf{c} \Rightarrow \mathbf{b}$. Para esto como ψ es sobreyectivo por 2.4.9 nos alcanza con ver que es inyectivo. Sean gG_P , $hG_Q \in V(\widetilde{X})$ tales que $\psi(gG_P) = \psi(hG_Q)$. Por la definición del morfismo ψ obtenemos que

$$\varphi(g) \cdot P = \varphi(h) \cdot Q$$

pero esto nos diría que P=Q caso contrario estarían en órbitas distintas. Por otro lado obtenemos que $\varphi(gh^{-1}) \cdot P = P$ y así $\varphi(gh^{-1}) \in G_P$. Usando que φ es un isomorfismo y la proposición 2.4.3 deducimos que $\varphi^{-1}(\varphi gh^{-1}) = gh^{-1} \in G_P$. Por lo tanto $gG_P = hG_Q$ y de esta manera probamos que ψ es inyectiva.

De este teorema se desprende una caracterización importante que es que dado un grupo G si encontramos un árbol X donde actúe sin inversiones obtenemos que este grupo es el grupo fundamental del grafo de grupos que armamos sobre el grafo X/G. Como corolario directo obtenemos una caracterización para los grupos libres.

COROLARIO 2.4.13. Un grupo G es libre si y solo sí G actúa libremente sobre un árbol sin inversiones de aristas.

Demostración. Si G es libre y generado por un conjunto finito A entonces Cay(G,A) es un árbol y G actúa libremente sobre su grafo de Cayley y sin invertir aristas.

Si G actúa libremente sobre un árbol sin inversiones entonces usando 2.4.12 obtenemos que G es isomorfo a $\pi_1(G, T)$. Este grupo es libre por ser el grupo fundamental de un grafo en el cual los grupos correspondientes a las aristas y a los vértices son triviales dado que la acción de G es libre.

COROLARIO 2.4.14 (Nielsen–Schreier). *Sea G un grupo libre entonces todo subgrupo H de G resulta ser libre.*

Demostración. Veamos que H actúa libremente y sin inversiones de aristas sobre un árbol por lo tanto por el corolario 2.4.13 tendríamos que H es libre. Como G es libre entonces por este mismo corolario tenemos que G actúa libremente sobre un árbol sin inversiones de aristas. En particular si restringimos esta acción de G a una del subgrupo H obtenemos que H actúa sobre este mismo árbol libremente y sin inversiones de aristas.

Estamos en condiciones de probar el resultado central del capítulo, que es que todo grupo fundamental de un grafo de grupos finito es un grupo virtualmente libre. Primero debemos ver unos lemas de acciones de grupos finitos.

LEMA 2.4.15. Sea G un grupo finito y X conjunto finito tal que $|G| \mid |X|$ luego existe $\alpha : G \to S(X)$ acción libre de G en X.

Demostración. Sea |G| = k y sea |X| = mk luego como queremos que la acción de G sea libre designamos nuestros candidatos a órbitas X_i i = 1, ... k donde $X_i \subseteq \mathcal{P}(X)$, $|X_i| = m$ y $X_i \cap X_j = \emptyset$ para todo $i \neq j$. Les asignamos índices a todos los elementos de X_i para todo $1 \leq i \leq k$ y los denotamos x_i^j para el j-ésimo elemento de X_i donde $1 \leq j \leq m$. Similarmente como G es finito luego $G = \{g_1, ..., g_k\}$. Luego definimos $\alpha : G \to S(X)$ de la siguiente manera si $g_1g_i = g_h$ entonces

$$\alpha(g_l)(x_i^j) = x_h^j.$$

Chequeamos que es una acción y a su vez $\alpha(g)(x_i^j) = x_i^j$ si y solamente si $gg_i = g_i$ lo que implica que g = 1 y así vemos que la acción α resulta ser libre tal como buscábamos.

LEMA 2.4.16. Sea G un grupo finito y X un conjunto finito tal que $\alpha, \beta: G \to S(X)$ son dos acciones libres de G sobre X. Entonces debe existir $\varphi \in S(X)$ tal que para todo $g \in G$ valga que

$$\alpha(g) = \varphi^{-1} \circ \beta(g) \circ \varphi.$$

Demostración. Denotaremos a la órbita de un elemento $x \in X$ por medio de la acción $\alpha : G \to S(X)$ de la siguiente manera:

$$\alpha(G)(x) = \bigcup_{g \in G} \alpha(g)(x).$$

Sean ahora $R\subseteq X$ conjunto de representantes para la acción α y $S\subseteq X$ para la acción β , entonces tenemos que

$$X = \bigsqcup_{r \in R} \alpha(G)(r) = \bigsqcup_{s \in S} \beta(G)(s)$$

donde la unión es disjunta porque son órbitas. Como ambas acciones son libres resulta que $\alpha(G)(r)$ y $\beta(G)(s)$ tienen cardinal exactamente |G|. Como X es finito si usamos el teorema de órbitas y estabilizadores vemos que |R| = |X|/|G| = |S| por lo tanto existe una biyección $\varphi: R \to S$ entre ambos conjuntos. Si $\varphi(r) = s$ entonces la extendemos a todo X de la siguiente manera,

$$\varphi(\alpha(g)r) = \beta(g)s$$

Esta biyección cumple todo lo que queríamos.

TEOREMA 2.4.17. [KPS73] Sea \mathcal{G} un grafo de grupos sobre un grafo Y finito y conexo tal que para todo $P \in V$ vale que $|G_P| < \infty$. Entonces $\pi_1(\mathcal{G}, P)$ es un grupo virtualmente libre.

Demostración. Dado que el grafo Y es finito y para todo $P \in V$ los grupos G_P también son finitos entonces podemos tomarnos X un conjunto finito de manera que

$$|X|=\prod_{P\in V}|G_P|.$$

Para cada $P \in V$ podemos construir una acción libre de G_P en X usando el lema 2.4.15. Al ser acciones libres obtenemos monomorfismos $\tau: G_P \to S(X)$ para cada $P \in V$. Para cada arista $y \in E$ obtenemos una acción libre de G_y sobre X restringiendo la acción que conseguimos para $G_{s(y)}$. Por otro lado G_y es isomorfo como grupo a $G_{\overline{y}}$ y este es un subgrupo de $G_{t(y)}$ por lo tanto obtenemos otra acción libre de G_y sobre X si identificamos a G_y con $G_{\overline{y}}$ y después restringimos la acción que conseguimos para $G_{t(y)}$. Como tenemos dos acciones libres de G_y sobre un conjunto finito podemos usar el lema 2.4.16 de manera que existe $\phi_y: S(X) \to S(X)$ tal que hace conmutar al siguiente diagrama

y está definida como $\phi_y(\psi) = \varphi_y^{-1} \circ \psi \circ \varphi_y$ donde $\varphi_y \in S(X)$ que existe por el lema. Para la arista con orientación opuesta tenemos un diagrama casi idéntico y notamos que si definimos $\phi_{\overline{y}}(\psi) = \varphi_y \circ \psi \circ \varphi_y^{-1}$ luego ese diagrama conmuta.

Definimos un morfismo de grupos $h: *G_P *F_E \rightarrow S(X)$ de la siguiente manera,

$$h(g) = \tau(g)$$
 si $g \in G_P$, $\tau : G_P \to S(X)$ acción libre $h(y) = \varphi_y$ si $g \in F_E$

Por como tomamos a $\varphi_{\overline{y}}$ tenemos que h respeta las relaciones de $F(\mathcal{G})$ y así tenemos un morfismo $h: F(\mathcal{G}) \to S(X)$. Si fijamos $P \in V$, como $\pi_1(\mathcal{G}, P)$ es un subgrupo de $F(\mathcal{G})$ podemos restringir h y así considerar el subgrupo normal de $\pi_1(\mathcal{G}, P)$

$$F = \{g \in \pi_1(G, P) \mid h(g) = 1\}$$

entonces por como lo consideramos tenemos que $F \cap G_Q = \{1\}$ para todo $Q \in V(Y)$ porque la restricción de h a G_Q es inyectiva para todo $Q \in V$.

Recordemos que dado T árbol generador de Y tenemos que $\pi_1(\mathcal{G},T)$ actúa sin inversiones de aristas sobre \widetilde{X} el árbol de Bass–Serre de \mathcal{G} . Por el teorema 2.1.14 tenemos que podemos identificar $\pi_1(\mathcal{G},P)$ con $\pi_1(\mathcal{G},T)$ y de esta manera como $F\leqslant\pi_1(\mathcal{G},P)$ luego tenemos que F actúa sobre \widetilde{X} . Como los estabilizadores de la acción sobre \widetilde{X} son los grupos G_P para todo $P\in V$, esto nos dice que el grupo F actúa libremente sobre el árbol de Bass–Serre de nuestro grafo de grupos \mathcal{G} . Estamos en condiciones de usar el teorema de Serre 2.4.12 dado F actúa libremente sobre el árbol \widetilde{X} por lo tanto F debe ser un grupo libre.

Tenemos que F es un subgrupo libre de $\pi_1(\mathcal{G}, P)$, que es un grupo finitamente generado, y queremos ver que F tiene índice finito para probar que $\pi_1(\mathcal{G}, P)$ es virtualmente libre. Para eso notemos que al ser $|X| < \infty$ entonces $|S(X)| < \infty$ y como $S(X) \simeq \pi_1(\mathcal{G}, P)/F$, por la propiedad universal del cociente, entonces $(\pi_1(\mathcal{G}, P) : F) < \infty$ tal como queríamos ver.

Capítulo 3

Grupos independientes de contexto.

Este capítulo sigue las ideas de los trabajos [MS83] y [MS85] completando muchos detalles que son omitidos por estos.

En la sección 3.1 probamos varias propiedades importantes de los lenguajes independientes de contexto que nos sirven para poder conectar la teoría de lenguajes con la teoría de grupos.

En la sección 3.2 damos la definición formal del problema de la palabra de un grupo visto como un lenguaje y también damos una condición necesaria para que esta definición no dependa de los generadores elegidos para el grupo.

En la sección 3.3 probamos algunos resultados que nos garanticen tener una buena presentación para un grupo virtualmente libre y probamos el resultado central de este capítulo que es el teorema de Muller–Schupp 3.3.9.

§3.1. Propiedades de los lenguajes independiente de contexto.

La familia de lenguajes independientes de contexto va a ser la siguiente:

$$IC = \{L \mid \exists \Sigma, L \subseteq \Sigma^*, L \text{ es independiente de contexto}\}.$$

de manera similar podemos definir la familia de lenguajes regulares como

REG = {
$$L \mid \exists \Sigma, L \subseteq \Sigma^*, L \text{ es regular}$$
}.

La primera propiedad que vamos a ver de los lenguajes independiente de contexto es que son cerrados con respecto a la intersección con lenguajes regulares.

PROPOSICIÓN 3.1.1. Sea $L \in IC$ y sea $R \in REG$ tales que existe Σ de manera que L, $R \subseteq \Sigma^*$ entonces $L \cap R \in IC$.

Demostración. Sea L un lenguaje independiente de contexto tal que $L \subset \Sigma^*$ y sea R un lenguaje regular tal que $R \subset \Sigma^*$. Queremos ver que el lenguaje $L \cap R$ es aceptado por un automáta de pila no determinístico .

Si L es aceptado por un automáta de pila no determinístico $\mathcal{M}=(Q,\Sigma,Z,\delta,q_0,F,\$)$ y R es aceptado por un autómata no determinístico $\mathcal{M}'=(Q',\Sigma,\delta',q_0',F')$.

Consideremos el siguiente automáta de pila no determinístico

$$\mathcal{N} = (Q \times Q', \Sigma, Z, \delta \times \delta', (q_0, q'_0), F \times F', \$),$$

tal que la función de transición está definida de la siguiente manera. Para todo $q_i \in Q, q'_j \in Q', a \in \Sigma, Z \in \Gamma$ vale que si $(q, \gamma) \in \delta(q_i, a, Z)$ para $\gamma \in \Gamma^*$ y $q' \in \delta(q'_j, a)$ entonces $((q, q'), \gamma) \in \delta \times \delta'((q_i, q'_j), a, Z)$.

Queremos ver que $L(\mathcal{N}) = L \cap R$. Probemos primero la siguiente afirmación.

$$((q_0, q'_0), w, \$) \vdash_{\mathcal{N}}^* ((q_i, q_j), \epsilon, z) \iff (q_0, w, \$) \vdash_{\mathcal{M}}^* (q_i, \epsilon, z) y (q'_0, w) \vdash_{\mathcal{M}'}^* (q_j, \epsilon)$$

Para ver esto veremos las dos implicaciones a la vez haciendo inducción en la longitud de la palabra w.

En el caso base |w|=1 de manera que $w=a\in \Sigma$. Este caso tenemos la igualdad porque justamente la función de transición del automáta de pila no determinístico \mathcal{N} es $\delta \times \delta'$.

Para el paso inductivo consideremos que |w|=n de manera que w=ua con |u|=n-1 y $a\in\Sigma$. Luego tenemos que $((q_0,q_0'),u,\$)\vdash_{\mathcal{N}}^* ((q_k,q_l),\varepsilon,z')\iff (q_0,u,\$)\vdash_{\mathcal{M}}^* (q_k,\varepsilon,z')$ y $(q_0',u)\vdash_{\mathcal{M}'}^* (q_l,\varepsilon)$. Nuevamente usamos nuestra definición de la función de transición $\delta\times\delta'$ para concluir que

$$((q_i,q_j),\epsilon,z)\in\delta\times\delta'((q_k,q_l),a,z')\iff (q_i,a,z')\in\delta(q_k,a,z')\;y\;(q_j,a)\in\delta(q_l,a).$$

Con esto terminamos de probar la afirmación.

Finalmente para ver que $L(\mathcal{N}) = L \cap R$ usamos que por nuestra afirmación si $w \in L \cap R$ entonces es aceptado por lo dos autómatas \mathcal{M} y por \mathcal{M}' , esto es que $(q_0, w, \$) \vdash^* (p, \varepsilon, z)$ para $p \in F$ y que $(q'_0, w) \vdash^* (p', \varepsilon)$ para $p' \in F'$ y equivalentemente $((q_0, q'_0), w, \$) \vdash^* ((p, p'), \varepsilon, z)$. Dado que los estados finales del autómata \mathcal{N} resultan ser $F \times F'$ obtenemos que $w \in L(\mathcal{N}) \iff w \in L \cap R$. Concluimos así que el lenguaje $L \cap R$ resulta ser independiente de contexto tal como queríamos ver.

Ahora vamos a estudiar la relación de esta familia de lenguajes con los morfismos de monoides. Probaremos que IC es cerrada por imágenes de morfismos de monoides y por preimágenes de morfismos de monoides.

PROPOSICIÓN 3.1.2. Sea $L \in IC$, Σ tal que $L \subseteq \Sigma^*$ y $h : \Sigma^* \to \Delta^*$ un morfismo de monoides entonces $h(L) \in IC$.

Demostración. Consideramos L lenguaje independiente de contexto sobre Σ . Esto nos dice que existe una gramática $\mathcal{G}=(V,\Sigma,P,S)$ independiente de contexto, que la tomamos en forma normal de Chomsky, tal que $L(\mathcal{G})=L$. Si tenemos un morfismo de monoides $h:\Sigma^*\to \Delta^*$ consideramos la sustitución $\sigma:\Sigma \cup V\to \Delta^*\cup V$ definida por $\sigma(a)=h(a)$ para toda $a\in\Sigma$ y $\sigma(A)=A$ para toda $A\in V$. Para probar que h(L) es independiente de contexto vamos a construir una gramática \mathcal{G}' tal que $L(\mathcal{G}')=h(L)$. Sea la gramática $\mathcal{G}'=(V,\Delta,P',S')$ tal que si $A\to w\in P$ luego $A\to\sigma(w)\in P'$. Es decir la única diferencia con la gramática \mathcal{G} es que reemplazamos en cada producción $P\in\mathcal{G}$ a

cada letra $a \in \Sigma$ por $h(a) \in \Delta^*$. La gramática sigue siendo independiente de contexto porque las producciones tienen la forma $A \to u$ con $A \in V$, $u \in (\Delta \cup V)^*$. Para finalizar la demostración nos alcanza con ver que genera al lenguaje que queremos.

Para esto notemos que vale la siguiente igualdad:

$$S \to^* w \iff S' \to^* h(w).$$

Veamos la ida. Si tenemos que $S \to^* w$ para $w = a_1 a_2 \dots a_k$ luego esto dice que existe una sucesión finita de producciones $P_1 = S \to AB, \dots, P_n = C \to a_j$ para $1 \le j \le k$ de manera que $S \to AB \to \dots \to a_1 \dots C \dots a_k \to a_1 \dots a_j \dots a_k = w$.

Si tomamos la sucesión de producciones para la gramática \mathcal{G}' dada por $P_1' = S' \to A'B', \ldots, P_n' = C' \to h(a_j)$ luego obtuvimos que $S' \to^* h(w)$. De manera idéntica se prueba la vuelta. Así vimos que $w \in L(\mathcal{G}) \iff h(w) \in L(\mathcal{G}')$ y probamos así que $h(L) = L(\mathcal{G}')$.

PROPOSICIÓN 3.1.3. Sea $L \in IC$, Σ tal que $L \subseteq \Sigma^*$ y $h : \Delta^* \to \Sigma^*$ un morfismo de monoides entonces $h^{-1}(L) \in IC$.

Demostración. Sea L un lenguaje independiente de contexto sobre el alfabeto Σ tal que es aceptado por un automáta de pila no determinístico $\mathcal{M}=(Q,\Sigma,Z,\delta,q_0,F,\$)$. Queremos ver que el lenguaje $h^{-1}(L)\subset \Delta^*$ es independiente de contexto.

Consideremos el conjunto finito $\mathcal{U} = \{h(a) \mid a \in \Delta\}$ luego $Pos(\mathcal{U})$ los posfijos de estas finitas palabras. Definimos un automáta de pila no determinístico de la siguiente forma

$$\mathcal{M}' = (Q \times \operatorname{Pos}(\mathcal{U}), \Delta, Z, \delta, (q_0, \epsilon), F \times \{\epsilon\}, \$)$$

Finalmente nuestra función de transición resulta ser para $a \in \Delta, z \in Z, q \in Q$

$$\delta((q,\epsilon),a,z) = ((q,h(a)),z) \tag{3.1}$$

y en el caso que $u \in Pos(\mathcal{U})$ y $u \neq \epsilon$ vale que si $u = yu' \operatorname{con} y \in \Sigma$, $u' \in Pos(\mathcal{U})$ luego

$$\delta((q, yu'), \epsilon, z) = ((p, u'), z') \tag{3.2}$$

 $\operatorname{si} \delta(q, y, z) = (p, z').$

Probemos primero la siguiente afirmación. Para cada $w \in \Delta^*$ tenemos la siguiente equivalencia,

$$((q_0,\epsilon),w,z)\vdash_{\mathcal{M}'}^* ((q,\epsilon),\sigma) \iff (q_0,h(w),z)\vdash_{\mathcal{M}}^* (q,\sigma).$$

Para probar esta equivalencia lo hacemos por inducción en la longitud de |w|. Para el caso base tenemos que $w = a \in \Delta$. En este caso tenemos que $((q_0, \epsilon), a, z) \vdash ((q, h(a)), z)$ usando una vez el caso 3.1 de la función de transición δ' . Una vez en este estado por como definimos la función de transición tenemos que $(q_0, h(a), z) \stackrel{*}{\vdash} (q, \sigma) \iff ((q_0, h(a)), \epsilon, z) \stackrel{*}{\vdash} ((q, \epsilon), \sigma)$ usando reiteradas veces el caso 3.2 de la función de transición δ' . El caso general tenemos una palabra w

tal que |w|=n. Sabemos que la afirmación vale para cualquier palabra de longitud menor a n. En particular si w=ua con |u|=n-1 y $a\in \Delta$, tenemos que por la hipótesis inductiva que

$$(q'_0, u, z) \vdash_{\mathcal{M}'}^* ((q, \epsilon), \sigma) \iff (q_0, h(u), z) \vdash_{\mathcal{M}}^* (q, \sigma)$$

entonces de nuevo por el mismo razonamiento que hicimos para el caso base tenemos probada la afirmación.

Para concluir la demostración notamos que por nuestra afirmación si $w \in L(\mathcal{M}')$ entonces existe $q \in F$ tal que $((q_0, \epsilon), w, z) \vdash_{\mathcal{M}'}^* (q, \epsilon)$ y esto sucede sí y solo sí $(q_0, h(w), z) \vdash_{\mathcal{M}}^* (q, \sigma)$, dicho de otra forma que $h(w) \in L(\mathcal{M})$. Entonces $w \in L(\mathcal{M}')$ si y solo si $h(w) \in L$. Esto nos dice que el lenguaje aceptado por estado final de \mathcal{M}' resulta ser $L' = \{w \in \Delta^* : h(w) \in L\} = h^{-1}(L)$.

La herramienta principal que tenemos para ver que cierto lenguaje L no es independiente de contexto es usar el siguiente lema.

LEMA 3.1.4 (Pumping). Sea L un lenguaje independiente de contexto entonces existe una constante $n \ge 0$ tal que para todas las palabras $\gamma \in L$ de longitud al menos n existe una factorización $\gamma = uvwxy$ con $|vwx| \le n \ y \ |vx| > 0$ tal que para todo $i \in \mathbb{N}$ vale que $uv^iwx^iy \in L$.

Demostración. Ver [HU79, p.281].

§3.2. El problema de la palabra.

Sea G un grupo finitamente generado por A entonces si tomamos $B=A\cup A^{-1}$ el conjunto simétrico de generadores resulta que G es finitamente generado como monoide por B, en otras palabras, existe un epimorfismo de monoides $\pi:B^*\to G$. El problema de la palabra consiste en dadas $w,w'\in B^*$ determinar si $\pi(w)=\pi(w')$. Equivalentemente esto es ver si $\pi(w'w^{-1})=1$. Definimos entonces el siguiente lenguaje.

DEFINICIÓN 3.2.1. Dado G un grupo finitamente generado como monoide por Σ con epimorfismo de monoides $\pi: \Sigma^* \to G$ entonces el *problema de la palabra de G para los generadores* Σ es el siguiente lenguaje

$$WP(G,\Sigma) = \{ w \in \Sigma^* \mid \pi(w) = 1 \}.$$

Observación 3.2.2. En esta definición que damos del problema de la palabra no estamos considerando conjuntos simétricos de generadores sino que estamos considerando conjuntos de generadores como monoide. Esto es que Σ no necesariamente cumple que $\Sigma = A \cup A^{-1}$ para A conjunto finito de generadores de G como grupo.

El lenguaje del problema de la palabra depende de una elección de un conjunto finito de generadores, en principio no queda claro que si tomamos otro conjunto finito de generadores estos lenguajes tengan algo en común, como por ejemplo su clasificación. Queremos saber bajo qué condiciones el lenguaje del problema de la palabra podría ser un invariante del grupo y así la clasificación del lenguaje del problema de la palabra no dependa del conjunto de generadores utilizado. Para garantizar esto, nos enfocamos en las familias de lenguajes que cumplen las siguientes propiedades.

DEFINICIÓN 3.2.3. Una familia de lenguajes $\mathbb C$ es un *cono* si para todo $L \in \mathbb C$ lenguaje sobre algún alfabeto finito Σ resulta que:

- C1. Es cerrado por imágenes de morfismos de monoides de manera que para todo morfismo de monoides $\phi: \Sigma^* \to \Delta^*$ debe ser que $\phi(L) \in \mathbb{C}$.
- **C2.** Es cerrado por preimágenes de morfismos de monoides de manera que para todo morfismo de monoides $\phi: \Delta^* \to \Sigma^*$ debe ser que $\phi^{-1}(L) \in \mathbb{C}$.
- C3. Es cerrado por intersecciones con lenguajes regulares de manera que para todo lenguaje regular R sobre el alfabeto Σ vale que $L \cap R \in \mathbb{C}$.

Los conos de lenguajes cumplen la siguiente propiedad de gran importancia para el estudio del problema de la palabra.

PROPOSICIÓN 3.2.4. Sea $\mathbb C$ cono de lenguajes, G un grupo finitamente generado por Σ como monoide g $WP(G,\Sigma)$ el lenguaje del problema de la palabra. Si $WP(G,\Sigma) \in \mathbb C$ luego valen las siguientes afirmaciones:

- **W1.** Sea Δ conjunto finito de generadores de G como monoide entonces $WP(G, \Delta) \in \mathbb{C}$.
- **W2.** Sea H subgrupo de G finitamente generado por Ω entonces $WP(H,\Omega) \in \mathbb{C}$.

Demostración. Vamos a probar **W1**. Como Δ y Σ son dos conjuntos finitos de generadores de G entonces tenemos dos epimorfismos de monoides: $\delta: \Delta^* \to G$ y $\pi: \Sigma^* \to G$. Si $\Delta = \{b_1, \ldots, b_n\}$ entonces definimos $\Delta' = \{b'_1, \ldots, b'_n\} \subseteq \Sigma^*$ de manera que $b'_i \in \pi^{-1}(\delta(b_i))$ para todo $1 \le i \le n$. Definimos una función biyectiva $f: \Delta \to \Delta'$ como $f(b_i) = b'_i$ para todo $1 \le i \le n$. Por la propiedad universal de los monoides libres tenemos que existe $\overline{f}: \Delta^* \to \Sigma^*$ morfismo tal que hace conmutar al siguiente diagrama:

$$\begin{array}{ccc}
\Delta^* & -\overline{f} \\
\uparrow^{\iota} & f
\end{array}$$

Por la construcción que hicimos del morfismo \overline{f} tenemos que el siguiente diagrama también conmuta:

$$\begin{array}{ccc}
\Delta^* & \xrightarrow{\delta} & G \\
\hline
\overline{f} \downarrow & & \\
\Sigma^* & & \end{array}$$

para probar que $\pi \circ \overline{f} = \delta$ nos alcanza con probarlo sobre Δ . Para esto notemos que si $b_i \in \Delta$ luego $\pi(\overline{f}(b_i)) = \pi(f(b_i)) = \pi(b_i')$ donde $b_i' \in \pi^{-1}(\delta(b_i))$ lo que implica que $\pi(b_i') = \delta(b_i)$ tal como queríamos ver.

Notemos que como el diagrama conmuta luego vale que

$$\overline{f}^{-1}(\pi^{-1}(1)) = \delta^{-1}(1)$$

lo que implica que por la definición del lenguaje del problema de la palabra que

$$\overline{f}^{-1}(WP(G,\Sigma)) = WP(G,\Delta).$$

Como $WP(G,\Sigma) \in \mathbb{C}$ resulta que por la propiedad **C2** de los conos de lenguajes que $\overline{f}^{-1}(WP(G,\Sigma)) \in \mathbb{C}$ por lo tanto $WP(G,\Delta) \in \mathbb{C}$ tal como queríamos ver.

Veamos ahora que vale **W2**. Sea Ω conjunto de generadores de H. Podemos extender este conjunto a otro conjunto finito Σ tal que Σ genera a G y $\Omega \subseteq \Sigma$. De esta manera la siguiente igualdad es inmediata

$$WP(H,\Omega) = WP(G,\Sigma) \cap \Omega^*$$

y dado que $WP(G,\Sigma) \in \mathbb{C}$ entonces por la propiedad **C3** de los conos vale que $WP(H,\Omega) \in \mathbb{C}$.

La moraleja de este resultado es que si $\mathbb C$ es un cono entonces si G es un grupo finitamente generado tal que para cierto conjunto de generadores finito Σ vale que $WP(G,\Sigma) \in \mathbb C$ luego decimos que G es un grupo $\mathbb C$.

La flia de lenguajes IC es un cono. Esto se puede ver a partir de las proposiciones 3.1.1 y 3.1.2.

DEFINICIÓN 3.2.5. Si G es un grupo finitamente generado como monoide por un conjunto finito Σ y el lenguaje $WP(G,\Sigma)$ es independiente de contexto entonces diremos que G es un *grupo independiente de contexto*.

Construyamos algunos ejemplos de grupos independientes de contexto.

PROPOSICIÓN 3.2.6. Todo grupo libre F finitamente generado es independiente de contexto.

Demostración. Sea F grupo libre generado por un conjunto finito A tal que $1 \notin A$. Sea $B = A \cup A^{-1}$ el conjunto de generadores simétrico de A y sea $\pi: B^* \to G$. Dada $w \in B^*$ notaremos \overline{w} a la palabra reducida que representa el mismo elemento que w en el grupo G.

Probemos que WP(F, B) es un lenguaje independiente de contexto construyendo un autómata de pila \mathcal{M} tal que acepte a este lenguaje. Consideremos el siguiente autómata de pila:

$$\mathcal{M} = (\{q_0\}, B, B \cup \{1\}, \delta, q_0, \{q_0\}, 1).$$

Por como lo definimos tiene un solo estado que es final e inicial. El alfabeto de entrada es el conjunto de generadores B mientras que el de pila es $B \cup \{1\}$ donde 1 es el símbolo inicial de la pila aunque no es la identidad del grupo libre o del monoide libre que denotaremos indistintamente ϵ . Sean $b_i, b_j \in B$ luego notamos $b_i \cdot b_j$ su producto en el grupo libre F. El autómata lo representamos de la siguiente manera:

$$b_i, b_j \mid b_i \cdot b_j$$
start $\longrightarrow \boxed{q_0}$

Notemos que este autómata es determinístico. Consideramos el lenguaje aceptado por estado final y por 1 en la pila

$$L(\mathcal{M}, 1) = \{ w \in B^* \mid (q_0, w, 1) \vdash^* (q_0, \epsilon, 1) \}.$$

Probamos la siguiente observación: sea $w = uv \in B^*$ luego si $(q_0, uv, 1) \stackrel{*}{\vdash} (q, v, s)$ entonces $s = \overline{u}^R$, es decir la palabra reducida asociada a u en reversa.

Para probar esto lo hacemos por inducción en la longitud de u. Supongamos que $|w|\geqslant 1$ caso contrario no hay nada que probar. Sea entonces w=bv con $b\in B$ y $v\in B^*$ tal que en este caso u=b. Tenemos que $(q_0,bv,1)\vdash (q_0,v,b)$ donde usamos que $\overline{b}^R=b$. Para el paso inductivo se sigue de manera idéntica. Supongamos que vale que: $(q_0,uv,1)\vdash (q_0,v,\overline{u}^R)$. Sea $|v|\geqslant 1$, caso contrario no hay nada que probar, luego si v=bv' para $b\in B$ y $v'\in B^*$ entonces $(q,bv',\overline{u}^R)\vdash (p,v',b\cdot\overline{u}^R)$. Donde $b\cdot\overline{u}^R$ es una palabra reducida y en este caso vale que $b\cdot\overline{u}^R=(\overline{u\cdot b})^R$ tal como queríamos ver.

A partir de esta observación obtenemos que si $w \in L(\mathcal{M})$ luego $(q_0, w, 1) \stackrel{*}{\vdash} (q_0, \varepsilon, 1)$ lo que nos dice que $\overline{w} = 1$ y esto implica que $w \in WP(F, B)$. Para la otra contención usamos que es un automáta de pila determinístico por lo tanto cada palabra se puede consumir de una única forma y por la observación tenemos que $(q_0, w, 1) \stackrel{*}{\vdash} (q_0, \varepsilon, 1)$ dado que $\overline{w} = 1$.

En particular obtuvimos que los grupos libres tienen un problema de la palabra independiente de contexto determinístico especial. Más en adelante construiremos un automáta de pila determinístico que acepta al problema de la palabra de un grupo virtualmente libre generalizando esta misma construcción. Veamos ahora un grupo que no es independiente de contexto.

PROPOSICIÓN 3.2.7. El grupo $\mathbb{Z} \times \mathbb{Z}$ no es independiente de contexto.

Demostración. Tomamos los siguientes generadores como monoide $\Sigma = \{a,b,c\}$ con morfismo de monoides $\pi: \Sigma^* \to \mathbb{Z} \times \mathbb{Z}$ dado por $\pi(a) = (1,0), \pi(b) = (0,1), \pi(c) = (-1,-1)$. Bajo esta presentación

$$WP(\mathbb{Z} \times \mathbb{Z}, \Sigma) = \{ \gamma \in \Sigma^* : \exists n \in \mathbb{N}, |\gamma|_a = |\gamma|_b = |\gamma|_c = n \}.$$

Probemos que este lenguaje no es independiente de contexto. Para eso usamos el lema del pumping 3.1.4 para probarlo por contradicción. Si fuera independiente de contexto debería existir una constante $n \ge 0$ tal que hace valer las hipótesis del lema. Consideremos la palabra $\gamma = a^n b^n c^n \in WP(G,\Sigma)$. Si tenemos una factorización

$$uvwxy = a^n b^n c^n$$

tal que $|vwx| \le n$, esto implica que no todas las letras aparecen en vwx. Supongamos que la letra que no aparece es c. Por otro lado como |vx| > 0 esto nos dice que al menos una letra aparece

en la subpalabra vx. Si tomamos i=0 esto implicaría que $uwy \in WP(G,\Sigma)$ pero esto es una contradicción porque $|uwy|_c > |uwy|_a$ y $|uwy|_c > |uwy|_b$.

§3.3. Teorema de Muller–Schupp.

Nuestro objetivo es probar que todo grupo virtualmente libre resulta ser independiente de contexto pero para esto debemos demostrar algunos resultados sobre grupos virtualmente libres.

Primero vamos a ver que todo grupo virtualmente libre puede tomarse de manera que el subgrupo libre sea normal. Para eso nuestra estrategia es probar que la intersección de los conjugados del subgrupo libre tiene índice finito y también es un grupo libre. La parte más laboriosa de esta demostración es la de demostrar que todo subgrupo de un grupo libre es libre. Este resultado sale como un corolario directo del teorema central de Bass–Serre que probamos en el capítulo 2.

DEFINICIÓN 3.3.1. Sea G un grupo y H un subgrupo entonces el *normalizador* de H en G es el siguiente subgrupo

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

Denotaremos por $S = \{g \in G : gHg^{-1}\}$ al conjunto de conjugados del subgrupo H.

El siguiente lema nos va decir que los grupos de índice finito tienen finitos conjugados.

LEMA 3.3.2. Si G es un grupo finitamente generado y H es un subgrupo de índice finito entonces $N_G(H)$ tiene índice finito y más aún $[G:N_G(H)] = |S|$.

Demostración. Para ver que tiene índice finito notamos que $H \leq N_G(H)$ por lo tanto tenemos que

$$[G:N_G(H)] \leq [G:H] < \infty.$$

Para probar la otra afirmación definimos la siguiente función:

$$S \to G/N_G(H)$$

 $sHs^{-1} \mapsto sN_G(H)$.

Veamos que es biyectiva viendo que es inyectiva ya que $G/N_G(H)$ es un conjunto finito.

Si $sN_G(H) = tN_G(H)$ entonces tenemos que esto sucede si y solo sí $t^{-1}s \in N_G(H)$. Esto nos dice que por la definición del normalizador,

$$t^{-1}sHs^{-1}t = H \iff sHs^{-1} = tHt^{-1}$$

y de esta manera obtenemos que la función está bien definida y es inyectiva y por lo tanto biyectiva.

LEMA 3.3.3. Sea G grupo y $K_1, ..., K_n$ subgrupos tales que K_i tiene índice finito para todo $1 \le i \le n$ entonces $\bigcap_{i=1}^n K_i$ es un subgrupo de índice finito.

Demostración. Lo probaremos por inducción en n que es la cantidad de subgrupos de índice finito que estamos intersecando. En el caso base tenemos dos subgrupos H,K de índice finito. Primero notamos que por el segundo teorema de isomorfismo para grupos tenemos que existe una biyección entre los siguientes conjuntos de cosets $KH/H \simeq K/K \cap H$ (en principio ningún subgrupo es normal así que no podemos hablar de grupos sino de conjuntos). Como $|KH/H| \leq |G/H| < \infty$ dado que H tiene índice finito obtenemos así que $|K/K \cap H| < \infty$. Entonces:

$$[G:K\cap H]=[G:K][K:K\cap H]$$

y como ambos índices de la derecha son finitos esto implica que $K \cap H$ es un subgrupo de índice finito tal como queríamos ver.

Para la demostración del paso inductivo debemos ver que si tenemos n subgrupos de índice finito K_1, \ldots, K_n entonces $\bigcap_{i=1}^n K_i$ también tiene índice finito. La demostración se reduce a la del caso base si tomamos $H = \bigcap_{i=1}^{n-1} K_i$ (que por hipótesis inductiva tiene índice finito) y $K = K_n$.

Este lema nos garantiza que tomar subgrupos de índice finito preserva la propiedad de ser finitamente generado.

LEMA 3.3.4. Sea G un grupo finitamente generado y sea H subgrupo de índice finito entonces H es un grupo finitamente generado .

Demostración. Sea $A = \{g_1, \dots, g_n\}$ conjunto finito de generadores de G. Sea $T = \{t_1, \dots, t_m\}$ conjunto transversal a derecha de H tal que $t_1 = 1$.

Dado g_j generador de G debe existir $h_{ij} \in H$ tal que $h_{ij}t_k = t_ig_j$ para cierto t_k . También debe existir $h_i \in H$ de manera que $h_it_k = g_i$ para cierto t_k . Veamos que el conjunto finito

$$B = \{ h_{ij} \mid 1 \leq j \leq n, \ 1 \leq i \leq m \} \cup \{ h_i \mid 1 \leq i \leq n \}$$

genera a H.

Dado $h \in H$ veamos que se puede escribir como una palabra en B. Tenemos que

$$h = g_{i_1} \dots g_{i_r}$$

donde usamos el conjunto finito de generadores de *G*.

Por lo visto anteriormente podemos escribir $g_{i_1} = h_{i_1}t_{k_1}$ para ciertos $h_{i_1} \in B$, $t_{k_1} \in T$. Entonces nos queda la siguiente escritura de h,

$$h=h_{i_1}t_{k_1}g_{i_2}\dots g_{i_r}$$

entonces usando que h_{k_1i} , $t_{k_2} = t_{k_1}g_{i_2}$ llegamos a la siguiente escritura de h,

$$h = h_{i_1} h_{k_1 i_2} t_{k_2} \dots g_{i_r}.$$

Repitiendo inductivamente este procedimiento llegamos a que $h = h_{i_1}h_{k_1i_2}\dots t_{k_r}$. Necesariamente $t_{k_r} = 1$ porque T es un conjunto de transversales a derecha de H y $h \in H$. Concluimos que B es un conjunto finito de generadores de H.

LEMA 3.3.5. Sea G grupo, sea H subgrupo de G luego el subgrupo $K = \bigcap_{g \in G} gHg^{-1}$ es un subgrupo normal de G.

Demostración. Primero veamos que es un subgrupo. El neutro cumple que $1 \in K$ dado que para todo $g \in G$ vale que $1 = g1g^{-1} \in gHg^{-1}$. Para ver que es cerrado por inversos notamos que si $k \in K$ luego para todo $g \in G$ existe $h_g \in H$ de manera que $k = gh_gg$. Para ver que $k^{-1} \in K$ basta notar que $k^{-1} = g^{-1}h_g^{-1}g$ lo que implica que $k \in g^{-1}Hg$ para todo $g \in G$. Esto dice que $k^{-1} \in K$ tal como queríamos ver. Veamos ahora que dados $k_1, k_2 \in K$ vale que $k_1k_2 \in K$. Tenemos que para todo $g \in G$ vale que existen $h_1, h_2 \in H$ de manera que $k_1 = gh_1g^{-1}$ y $k_2 = gh_2g^{-1}$. De esta manera $k_1k_2 = gh_1h_2g^{-1} \in gHg^{-1}$. Como esto lo hicimos para un $g \in G$ genérico concluimos que $k_1k_2 \in K$ tal como queríamos ver.

Para ver que es normal consideramos la acción de G sobre los cosets de K en G por multiplicación a izquierda. Sea $\phi: G \to G/K$ esta acción luego $\ker(\phi) = \{k \in G \mid \forall g \in G, kgH = gH\}$. Esto nos dice que $k \in \ker(\phi) \iff \forall g \in G. \exists h_g \in H. kg = gh_g$ y esto implica que para todo $g \in G$ vale que $k = gh_gg^{-1}$. De esta manera probamos que $K = \ker(\phi)$ y por lo tanto vimos que K es normal.

Finalmente podemos probar que la clase de grupos que son virtualmente libres resulta ser cerrada por subgrupos de índice finito y que a su vez los subgrupos libres pueden ser tomados para que sean normales.

PROPOSICIÓN 3.3.6. Para todo grupo G virtualmente libre valen las siguientes propiedades.

- **1.** Si F es un subgrupo libre de índice finito de G entonces podemos tomarnos un subgrupo F' de G de manera que sea normal, libre g de índice finito.
- **2.** Si H es un subgrupo de G de índice finito entonces H es virtualmente libre.

Demostración. Vamos a probar **1**. Si *G* es virtualmente libre y *F* es un subgrupo libre tenemos que la cantidad de conjugados de *F* es finita por el lema 3.3.2 dado que el índice de *F* en *G* es finito. Por el lema 3.3.5 tenemos que el siguiente subgrupo de *G* es normal

$$F' = \bigcap_{g \in G} gFg^{-1}.$$

Veamos que este subgrupo F' cumple las propiedades que queremos.

El subgrupo F tiene índice finito y todos sus conjugados, al ser isomorfos a F, también tienen índice finito entonces F' tiene índice finito por el lema 3.3.3. Como G es finitamente generado por ser virtualmente libre entonces usando 3.3.4 obtenemos que F' es finitamente generado. Finalmente como F' es subgrupo de F y F es un grupo libre entonces por el resultado 2.4.14 obtenemos que F' es libre también.

Probemos **2**. Por el lema 3.3.4 obtenemos directamente que H es un grupo finitamente generado. Si F es un libre de índice finito en G podemos tomar $H \cap F$ que es libre por ser subgrupo de un libre de acuerdo al resultado 2.4.14. El índice resulta ser finito puesto que

$$[H:F\cap H] \leq [G:F] < \infty.$$

75

Concluimos así que *H* es un grupo virtualmente libre.

OBSERVACIÓN 3.3.7. Dado G virtualmente libre vamos a construirnos una presentación en particular. Como es un grupo virtualmente libre tenemos F subgrupo libre que podemos tomarlo normal por 3.3.6 y G/F grupo finito de manera que podemos escribir a G como una extensión de estos dos grupos de la siguiente forma

$$1 \longrightarrow F \stackrel{\iota}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} G/F \longrightarrow 1$$

donde $\iota : F \to G$ es la inclusión como subgrupo y $\pi : G \to G/F$ es la proyección.

Consideremos que F es libre generado por $A = \{a_i : 1 \le i \le n\}$ bajo la suposición que $1 \notin A$. Por otro lado el cociente G/F resulta ser finito entonces $G/F = \{q_i : 1 \le i \le m\}$. Elegimos un transversal a derecha $T = \{t_1, \ldots, t_m\}$ de manera que $\pi(t_i) = q_i$ y fijamos para que $t_1 = 1$.

Observamos que se deben cumplir las siguientes dos relaciones para todo $a_l \in A$, $t_i, t_j, t_k \in T$ y $q_i, q_j, q_k \in G/F$.

- **1.** F es normal por lo tanto para todo $1 \le i \le m$ y todo $1 \le l \le n$ debe existir $u_{il} \in F$ de manera que $t_i a_l t_i^{-1} = u_{il}$.
- **2.** T es un transversal a derecha entonces si tenemos que $q_iq_j=q_k$ entonces necesariamente vale la siguiente igualdad $(Ft_i)(Ft_j)=Ft_k$, de la cual se desprende que debe existir $z_{ij}\in F$ tal que $t_it_j=z_{ij}t_k$.

Sean

$$W = A \cup A^{-1} \cup T, \quad R = \{t_i a_l t_i^{-1} = u_{il}, t_i t_j = z_{ij} t_k \quad \forall (i, j, k, l) : 1 \leq i, j, k \leq m, 1 \leq l \leq n\}.$$

Vamos a probar que $G \equiv \langle W \mid R \rangle$. Denotamos a este grupo presentado como $H = \langle W \mid R \rangle$ y sea F_W el grupo libre sobre sus generadores.

Notemos que W genera a G porque dado $g \in G$ luego existe $a \in F$ y $t \in T$ de manera que g = at. Como F es libre generado por $A \subseteq W$ y por otro lado $T \subseteq W$ entonces g está generado por W. Esto nos dice que tenemos un epimorfismo de grupos $\varphi : F_W \to G$.

Por como elegimos las relaciones $r \in R$ de H tenemos que el grupo G las cumple. De esta manera por la propiedad universal del cociente tenemos un epimorfismo de grupos $\overline{\phi}$ tal que hace conmutar al siguiente diagrama

Vimos que $\overline{\varphi}$ es un epimorfismo, veamos ahora que es un monomorfismo. Sea $w \in H$ luego queremos ver que $\overline{\varphi}(w) = 1 \iff w = 1$. Por un procedimiento similar al que hicimos en la

demostración del lema 3.3.4 tenemos que podemos llevar a w (vista como una palabra en W^*) a que sea de la siguiente pinta

$$w = st$$

donde $s \in F$ reducida y $t \in T$.

Especificamos como funciona este procedimiento. Dada $w \in W^*$ supongamos que $|w| \ge 2$ caso contrario no tenemos nada para hacer. Sea entonces $w = w_1 w_2 w'$ con $w_1, w_2 \in W$ y $w' \in W^*$. Separamos en casos.

- Si $w_1, w_2 \in A \cup A^{-1}$ no hacemos nada.
- Si $w_1, w_2 \in T$ luego si $w_1 = t_i$ y $w_2 = t_i$ cambiamos a $t_i t_i$ por $z_{ijk} t_k$.
- Si $w_1 \in T$ y $w_2 \in A \cup A^{-1}$ luego si $w_1 = t_i$ y $w_2 = a_l$ cambiamos a $t_i a_l$ por $u_{il} t_i$.
- Si $w_1 \in A \cup A^{-1}$ y $w_2 \in T$ no hacemos nada.

Hacemos este procedimiento inductivamente empezando desde la izquierda y como la longitud |w| es finita eventualmente llevamos a una palabra de la pinta w = s't con $t \in T$ y $s' \in A \cup A^{-1}$. Para terminar reducimos la palabra $s' \in A \cup A^{-1}$ a una palabra reducida en el grupo libre F.

Por lo tanto $\overline{\varphi}(w) = \overline{\varphi}(st) = st$. Entonces st = 1 si y solamente si s = 1 y t = 1. Esto nos dice que $\overline{\varphi}(w) = 1$ si y solamente si w = 1. Concluimos así que $\overline{\varphi}$ es un isomorfismo de grupos tal como queríamos ver y por lo tanto $\langle W \mid R \rangle$ resultó ser una presentación de G.

Sea G grupo virtualmente libre y consideremos una presentación $\langle W \mid R \rangle$ como la que construimos en 3.3.7 respetando la misma notación que introducimos en esta observación.

Por nuestra definición del conjunto de relaciones R teníamos que para todo $t_i, t_j, t_k \in T, a_l \in A$ existían $u_{il}, z_{ijk} \in F$ de manera que $t_i a_l = u_{il} t_i$ y que $t_i t_j = z_{ijk} t_k$. Sea entonces el conjunto finito

$$\mathcal{U} = \{u_{il} : 1 \leq i \leq m, \ 1 \leq l \leq n\} \cup \{z_{ijk} : 1 \leq i, j, k \leq m\}$$

donde tomamos la escritura de todas las palabras en U para que sean reducidas. Consideremos Pos(U) el conjunto de los posfijos de las palabras en U, tal que es un conjunto finito también. El automáta de pila determinístico de Muller–Schupp está definido por

$$\mathcal{M} = (Q, W, A \cup A^{-1} \cup \{1\}, \delta, (1, 1, 1), 1, \{(1, 1, 1)\}).$$

Donde $Q = T \times (T \cup A \cup A^{-1}) \times \text{Pos}(\mathcal{U})$. El alfabeto de entrada es W que es el conjunto de generadores del grupo. El alfabeto de la pila es $A \cup A^{-1} \cup 1$ que es el conjunto simétrico de generadores del subgrupo libre F y agregamos a 1 como símbolo inicial para la pila. Nuestro estado inicial que también es el final corresponde a la terna (1,1,1).

Ahora podemos definir la función de transición. Sea $w_i \in W$ algún generador del grupo luego tenemos que

$$\delta(w_i, (t_j, 1, 1), s) = \begin{cases} ((t_j, a_i, u_{ij}), s) & \text{si } w_i = a_i \\ ((t_k, t_i, z_{ijk}), s) & \text{si } w_i = t_i \text{ y } t_j t_i = t_k \end{cases}$$

Sea $u \in Pos(\mathcal{U})$ tal que $u \neq 1$ luego si $u = a_i v$ donde $v \in Pos(\mathcal{U})$ y $a_i \in A \cup A^{-1}$ en este caso definimos

$$\delta(\epsilon, (t_i, w_i, a_i v), s) = ((t_i, w_i, v), a_i \cdot s).$$

La notación $v \cdot a_i$ representa el producto en el grupo libre F de $v \in F$ con a_i un generador en F. Notemos que para cada configuración del tipo $(w, (t_j, w_i, u), s)$ existe una única transición posible dado que fijamos de antemano alguna escritura única en los generadores A para cada palabra $u \in \mathcal{U}$.

Finalmente definimos la función de transición de la siguiente manera para todo $w_i \in W$ y $t_i \in T$,

$$\delta(\epsilon, (t_j, w_i, 1), s) = ((t_j, 1, 1), s).$$

LEMA 3.3.8. Sea \mathcal{M} el automáta de pila determinístico de Muller–Schupp, $w \in W^*$ tal que w = uv entonces

$$(uv, (1, 1, 1), 1) \stackrel{*}{\vdash} (v, (t_k, 1, 1), s^R)$$

 $si y solo si u = st_k$.

Demostración. Probamos ambas implicaciones a la vez usando inducción en la longitud de u. El caso base es que |u| = 1. Separamos en dos subcasos. En el primer subcaso $u = a_i \in B$.

$$(a_i v, (1,1,1), 1) \vdash (v, (1,a_i,a_i), 1) \vdash (v, (1,a_i,1), a_i) \vdash (v, (1,1,1), a_i)$$

tal que $1 \cdot a_i = a_i$ así como queríamos ver. El otro subcaso corresponde a que $u = t_i \in T$.

$$(t_i v, (1,1,1), 1) \vdash (v, (t_i, t_i, t_i), 1) \vdash (v, (t_i, t_i, 1), 1) \vdash (v, (t_i, 1, 1), 1)$$

donde usamos que $z_{1i1}=1$ y cumple que $t_i\cdot 1=t_i$ tal como queríamos ver. De manera idéntica vemos que vale la vuelta.

Para el paso inductivo sea $u = u'w_i$ donde $u' \in Pre(w)$ y $w_i \in W$.

Tenemos que por hipótesis inductiva

$$(u'a_iv,(1,1,1),1) \stackrel{*}{\vdash} (a_iv,(t_k,1,1),s^R)$$

de manera que $st_k = u'$.

Nuevamente separamos en casos. En el caso que $w_i = a_i \in A \cup A^{-1}$ si usamos la definición del autómata obtenemos que

$$(a_i v, (t_k, 1, 1), s^R) \vdash (v, (t_k, a_i, u_{ki}), s^R) \stackrel{*}{\vdash} (v, (t_k, 1, 1), u_{ki}^R \cdot s^R)$$

si y solo si $st_ka_i=su_{ik}t_k$. Para el caso que $w_i=t_i\in T$ similarmente si $t_kt_i=z_{kij}t_j$ luego

$$(t_i v, (t_k, 1, 1), s^R) \vdash (v, (t_i, t_i, z_{kii}), s^R) \stackrel{*}{\vdash} (v, (t_k, 1, 1), z_{kii}^R \cdot s^R)$$

si y solo si $st_k t_i = sz_{kij}t_j$.

Intuitivamente el autómata de Muller–Schupp formaliza el procedimiento que empleamos en la observación 3.3.7 para transformar una palabra $w \in W^*$ en w = st con $s \in F$, $t \in T$.

Ya estamos en condiciones de probar el resultado central de este capítulo.

TEOREMA 3.3.9. [MS83] Todo grupo virtualmente libre es independiente de contexto.

Demostración. Para probar que es independiente de contexto vamos a probar que el automáta de pila determinístico de Muller–Schupp \mathcal{M} cumple que $L(\mathcal{M}) = \mathrm{WP}(G,W)$. Consideremos ahora el lenguaje aceptado por estado final y por palabra en la pila 1:

$$\mathcal{L}(M) = \{ w \in W^* \mid (w, (1, 1, 1), 1) \vdash^* (\epsilon, (1, 1, 1), 1) \}.$$

Debemos ver que el autómata acepta justamente al lenguaje que queremos. Esto es que $\mathcal{L}(M) = WP(G, W)$

Si $w \in L(\mathcal{M})$ entonces $(w, (1, 1, 1), 1) \stackrel{*}{\vdash} (\epsilon, (1, 1, 1), 1)$ y por lo tanto por el lema 3.3.8 obtenemos que w = 1 y así que $w \in WP(G, W)$.

Si $w \in WP(G, W)$ entonces w = 1 en G por lo que nuevamente usando el lema 3.3.8 obtenemos que $(w, (1, 1, 1), 1) \stackrel{*}{\vdash} (\varepsilon, (t_i, 1, 1), s)$ y esto implica que $st_i = 1$ por lo que $t_i = 1, s = 1$ y así $w \in L(\mathcal{M})$.

Con esto probamos que los grupos virtualmente libres son independiente de contexto usando la equivalencia 1.1.25.

Siendo más precisos probamos algo más fuerte que lo enunciado en el teorema. A saber, los lenguajes que son el problema de la palabra de un grupo virtualmente libre son lenguajes determinísticos independientes de contexto especiales.

Capítulo 4

Grafos de Cayley.

Las principales referencias de este capítulo son [DW17], [KL05] y [Die05].

En la primer sección 4.1 introducimos las descomposiciones en árboles para grafos no dirigidos y la definición del treewidth finito. El ejemplo 4.1.14 de la descomposición en un árbol para el grafo de Cayley de un grupo finitamente generado va a ser crucial en la demostración del teorema principal de este capítulo.

En la segundo sección 4.2 introducimos brevemente ideas elementales detrás de las cuasisometrías (en nuestro caso restringidas al contexto de grafos). La idea es poder usar estas herramientas para probar que la definición de treewidth no depende de los generadores.

Finalmente en la sección 4.3 probamos uno de los resultados centrales del trabajo que establece que todo grupo independiente de contexto tiene treewidth finito.

§4.1. Treewidth.

Dado que el grafo de Cayley de todo grupo libre se puede tomar para que sea un árbol (ver 1.3.11) es razonable pensar que todo grupo virtualmente libre es tal que su grafo de Cayley se parece a un árbol. Vamos a dar una primera definición que nos permite formalizar esta idea de que un grafo se parezca a un árbol.

DEFINICIÓN 4.1.1. Una descomposición en un árbol de un grafo Γ es un par (T, f) donde T es un árbol y f un mapa

$$f: V(T) \to 2^{V(\Gamma)}$$

Que cumple las siguientes condiciones:

- **T1.** Para todo vértice $v \in V(\Gamma)$ debe existir $t \in V(T)$ tal que $v \in f(t)$.
- **T2.** Para toda arista $\{v,w\} \in E(\Gamma)$ debe existir $t \in V(T)$ tal que $v,w \in f(t)$.
- **T3.** Si $v \in V(\Gamma)$ es tal que $v \in f(t) \cap f(s)$ luego $v \in f(r)$ para todo $r \in V(T)$ en la geodésica que va desde s a t dentro de T.

Dado $t \in V(T)$ llamaremos a $f(t) \in 2^{V(\Gamma)}$ un bolsón.

Notemos que la tercer condición **T3** se puede reescribir de la siguiente manera: dado $v \in V(\Gamma)$ entonces el conjunto $T_v = \{t \in V(T) : v \in f(t)\}$ forma un subárbol de T.

Si queremos que una descomposición en un árbol de un grafo modele la idea que el grafo se parece a un árbol entonces vamos a requerir que los bolsones no tengan muchos vértices. Esto nos conduce a la siguiente definición.

DEFINICIÓN 4.1.2. Dado Γ un grafo no dirigido y (T, f) una descomposición en un árbol de Γ el *bagsize* de esta descomposición es el siguiente valor:

$$bs(\Gamma, T, f) = \sup_{t \in V(T)} |f(t)| - 1$$

Un grafo Γ tiene *treewidth finito* si existe una descomposición en un árbol de bagsize finito.

EJEMPLO 4.1.3. Sea Γ el grafo definido por los vértices

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

y por las aristas

$$E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_5\}, \{v_3, v_4\}, \{v_5, v_4\}, \{v_4, v_6\}\}.$$

Entonces una descomposición en un árbol para Γ está dada por T árbol con vértices $V(T) = \{t_1, t_2, t_3\}$ y con aristas $E(T) = \{\{t_1, t_2\}, \{t_2, t_3\}\}$ y un mapa definido por $f(t_1) = \{v_1, v_2, v_3\}$, $f(t_2) = \{v_2, v_3, v_4, v_5\}$ y $f(t_3) = \{v_4, v_6\}$. Representamos gráficamente esta descomposición pintando los vértices del grafo Γ con el color correspondiente al bolsón del vértice del árbol T que pertenece.

Por como lo construimos tenemos que $bs(\Gamma, T, f) = 3$.

Observación 4.1.4. Si Γ es un grafo finito entonces Γ tiene treewidth finito.

4.1. TREEWIDTH. 81

DEFINICIÓN 4.1.5. Dado Γ un grafo no dirigido llamaremos a Γ' la subdivisión baricéntrica de Γ al grafo no dirigido dado por $V(\Gamma') = V(\Gamma) \cup E(\Gamma)$ y $E(\Gamma') = \{\{v, \{v, w\}\} \mid \text{ si } \{v, w\} \in E(\Gamma)\}$.

OBSERVACIÓN 4.1.6. Si T es un árbol entonces T' la subdivisión baricéntrica de T también es un árbol.

PROPOSICIÓN 4.1.7. *Todo árbol T tiene treewidth igual a* 1.

Demostración. Consideremos el siguiente par (T', f) donde T' es la subdivisión baricéntrica de T y por lo tanto es un árbol por 4.1.6 y donde f está definida como

$$f(t) = \begin{cases} \{v\} & \text{si } t = v \in V(T) \\ \{v, w\} & \text{si } t = \{v, w\} \in E(T). \end{cases}$$

Por como definimos a f vale que $|f(t)| \le 2$ para todo $t \in V(T)$. De esta manera si vemos que (T', f) se trata de una descomposición en un árbol para T tendremos probado que bs(T, T', f) = 1 tal como queríamos ver.

- **T1.** Sea $t \in V(T)$ luego consideremos $f(t) = \{t\}$ dado que $t \in V(T')$ por construcción de la subdivisión baricéntrica.
- **T2.** Dada una arista $\{t,s\} \in E(T)$ consideramos $f(\{t,s\}) = \{t,s\}$ de manera que tanto t como s están en un mismo bolsón.
- **T3.** Sea $t \in V(T)$, queremos ver que $\{t' \in V(T') : t \in f(t')\}$ resulta ser un subárbol de T'. Para empezar tenemos que $t \in f(t')$ si y solo sí sucede alguno de dos casos: t' = t o bien ocurre que $t' = \{t, s\}$ para cierta arista $\{t, s\} \in E(T)$. Estos vértices de T' están conectados y en particular son un subgrafo dado que $\{t, \{t, s\}\} \in E(T')$ para $t \in V(T)$ y $\{t, s\} \in E(T)$.

Probaremos algunas proposiciones útiles de las descomposiciones en árboles de grafos. Esta primer proposición generaliza la propiedad **T3** de una descomposición.

PROPOSICIÓN 4.1.8. Sea Γ grafo no dirigido. Sea (T, f) una descomposición en un árbol de Γ . Sean $t_1, t_2, t_3 \in V(T)$ tales que $[t_1, t_2]$ pasa por t_3 . Sean $v, w \in V(\Gamma)$ de manera que $v \in f(t_1)$ y tal que $w \in f(t_2)$. Si $\gamma = v_0 \dots v_n$ es algún camino en Γ conectándolos de manera que $v_0 = v$ y $v_n = w$ entonces debe existir algún $0 \le i \le n$ de manera que $v_i \in f(t_3)$.

Demostración. Vamos a demostrarlo haciendo inducción en la longitud $|\gamma|$.

El caso base es que $|\gamma|=0$ por lo tanto v=w. En este caso por ser (T,f) una descomposición en un árbol tenemos que usando **T3** vale que $\{t\in V(T)\mid v\in f(t)\}$ es un subárbol, por lo que $v\in f(t_3)$.

Para el paso inductivo supongamos que vale para caminos de longitud n. Sea $t' \in V(T)$ de manera que $v_0, v_1 \in f(t')$ que existe por la propiedad **T2**. Dado que $[t_1, t_2] = [t_1, t'][t', t_2]$ luego t_3 está en alguna de las dos geodésicas: $[t_1, t']$ o bien en $[t', t_2]$.

Si t_3 está en la primera geodésica entonces $t'=t_3$ y ya está porque nos alcanza con tomar i=1 de manera que $v_1 \in f(t_3)$. En el otro caso consideramos el camino de longitud n dado por $(v_1,v_2,\ldots v_n)$ y usando la hipótesis inductiva llegamos al resultado.

PROPOSICIÓN 4.1.9. Sea Γ un grafo no dirigido localmente finito con treewidth finito entonces podemos tomar una descomposición en un árbol (T, f') de Γ de manera que para todo $v \in V(\Gamma)$ valga que:

$$|T_v| = |\{t \in V(T) : v \in f'(t)\}| < \infty.$$

Demostración. Sea (T, f) una descomposición en un árbol de Γ tal que tiene bagsize finito. Por la propiedad **T2** tenemos que para cada arista $\{u, v\} \in E(\Gamma)$ existe al menos un vértice $t_{uv} \in V(T)$ de manera que $u, v \in f(t_{uv})$.

Fijamos $v \in V(\Gamma)$ un vértice de Γ . Consideremos el siguiente conjunto de vértices de T

$$\{t_{uv} \in V(T) \mid \exists u \in V(\Gamma). \{u, v\} \in f(t_{uv})\}.$$

Notemos que es un conjunto finito porque por hipótesis Γ es un grafo localmente finito. Sea T' el subárbol finito de T generado a partir de estos finitos vértices.

Vamos a definir una descomposición en un árbol de Γ usando este subárbol de manera que $|T_v| < \infty$. Nuestra descomposición resulta ser (T, f_v) con f_v definida de la siguiente manera

$$f_v(t) = \begin{cases} f(t) & \text{si } t \in V(T') \\ f(t) \setminus \{v\} & \text{si } t \notin V(T') \end{cases}$$

Chequeamos que sea trata de una descomposición en un árbol. Las primeras dos condiciones **T1** y **T2** se siguen cumpliendo. La condición **T3** es válida porque si tomamos $w \in V(\Gamma)$, tal que $w \neq v$, por nuestra construcción T_w era un subárbol de T y similarmente para el vértice v tenemos que

$$\{t' \in V(T') \mid v \in f_v(t')\}$$

es un subárbol generado a partir de una cantidad finita de vértices por lo tanto T_v también es un árbol. Con esto probamos que (T,f_v) es una descomposición en un árbol y como $|f_v(t)| \leq |f(t)|$ para todo $t \in V(T)$ luego obtenemos que el bagsize de (T,f_v) también es finito.

Hacemos este procedimiento para cada vértice $v \in V(\Gamma)$ de manera iterativa para obtener la descomposición en un árbol que buscábamos.

DEFINICIÓN **4.1.10.** Sea Γ un grafo no dirigido y $C \subseteq V(\Gamma)$ un conjunto de vértices entonces definimos los *vecinos de C* por medio de

$$N(C) = \{ v \in V(\Gamma) \mid \exists w \in C, \{v, w\} \in E(\Gamma) \}.$$

De esta manera dado $l \ge 2$ podemos definir recursivamente los *l-ésimos vecinos* por medio de $N^l(C) = N(N^{l-1}(C))$.

4.1. TREEWIDTH.

Si al grafo no dirigido Γ lo interpretamos como un espacio métrico entonces podemos escribir esta definición de la siguiente manera un poco más concisa

$$N^{l}(C) = \{v \in V(\Gamma) : \exists w \in C, d(v, w) \leq l\}.$$

Veamos ahora que dada una descomposición en un árbol si tomamos los vecinos de los bolsones podemos armarnos otra descomposición en un árbol.

PROPOSICIÓN 4.1.11. Sea Γ un grafo no dirigido y sea (T, f) una descomposición en un árbol para Γ . Dado $l \in \mathbb{N}$ consideramos (T, g) tal que $g(t) = N^l(f(t))$ entonces (T, g) resulta ser una descomposición en un árbol para Γ .

Demostración. Probemos este resultado haciendo inducción en *l*.

Consideremos el caso base l=1. En este caso, las dos primeras condiciones de la descomposición en un árbol **T1** y **T2** se siguen cumpliendo porque no hicimos más que agrandar los bolsones. Esto es que $f(t) \subseteq g(t)$.

Debemos ver que (T,g) cumple **T3**. Queremos ver que si fijamos $v \in V(\Gamma)$ el conjunto

$$T_v = \{t \in V(T) \mid v \in g(t)\}\$$

forma un subárbol de T. Para ver esto nos basta con ver que T_v es conexo. Como los árboles son únicamente geodésicos podemos ver equivalentemente lo siguiente: dados $t_1, t_2 \in T_v$ entonces para todo t_3 que esté en la geodésica $[t_1, t_2]$ vale que $t_3 \in T_v$.

Como $v \in g(t_1)$ entonces existe $w \in f(t_1)$ adyacente (o bien podría ser exactamente v) a v. Similamente existe $u \in f(t_2)$ adyacente (o bien podría ser exactamente v) a v.

Consideramos el camino de tres vértices $\gamma=(w,v,u)$ y usamos la proposición 4.1.8 para concluir que, sin pérdida de generalidad, $v\in f(t_3)$. De esta manera vemos que necesariamente $v\in g(t_3)$ tal como queríamos ver.

El paso inductivo se sigue directamente del caso base. Esto se debe a que si sabemos que (T,g) con $g(t) = N^{l-1}(f(t))$ forma una descomposición de un árbol entonces podemos usar el caso base para ver que los vecinos de esta descomposición siguen siendo otra descomposición en un árbol y con esto terminamos de probarlo porque $N^l(f(t)) = N(N^{l-1}(f(t)))$.

COROLARIO 4.1.12. Sea Γ un grafo no dirigido con grado acotado uniformemente y con treewidth finito si (T, f) es una descomposición en un árbol para Γ tal que tiene bagsize finito luego dado $l \in \mathbb{N}$ consideramos (T, g) tal que $g(t) = N^l(f(t))$ entonces (T, g) resulta ser una descomposición en un árbol para Γ con bagsize finito.

Demostración. Para ver esto basta notar que si existe $k \in \mathbb{N}$ de manera que $|f(t)| \le k$ para todo $t \in V(T)$ entonces como Γ tiene grado acotado uniformemente por $n \in \mathbb{N}$ luego para todo $t \in V(T)$ vale que

$$|N^l(f(t))| \leqslant kn < \infty.$$

DEFINICIÓN 4.1.13. Dado un grafo no dirigido Γ y un conjunto de vértices $C \subseteq V(\Gamma)$ definimos el *borde de vértices* de C como

$$\beta C = N(C) \cap N(\overline{C}).$$

El *borde de aristas* de $C \subseteq V(\Gamma)$ se define como

$$\delta C = \{ \{v, w\} \in E(\Gamma) \mid v \in C, w \in \overline{C} \}.$$

OBSERVACIÓN 4.1.14. Construyamos una descomposición en un árbol que podemos hacer en general para todos los grafos de Cayley de grupos finitamente generados. Sea G un grupo finitamente generado por A y $\Gamma = \text{Cay}(G,A)$ el respectivo grafo de Cayley de G.

Definimos $V_l = \Gamma \backslash N^l(\{1\})$ tal que $V_0 = \Gamma \backslash \{1\}$. Los vértices del árbol T van a estar dados por los siguientes conjuntos:

$$V(T) = \{\beta C : \exists l \in \mathbb{N}/C \subseteq V_l \text{ componente conexa}\} \cup \{1\}.$$

estamos tomando todos los posibles bordes de vértices de todas las componentes conexas de todos los V_l con $l \in \mathbb{N}$.

Antes de definir las aristas notemos lo siguiente. Si C es una componente conexa de V_{l+1} entonces tiene que existir D componente conexa de V_l de manera tal que $C \subseteq D$. Esto se debe a que $V_{l+1} \subseteq V_l$ y a su vez como C es conexo si interseca a una componente conexa necesariamente tiene que estar incluido en esta componente. Las aristas van a estar dadas por lo siguiente:

$$E(T) = \{\{\beta C, \beta D\} : \exists l \in \mathbb{N} / C \subseteq D \subseteq V_l \land C \subseteq V_{l+1}\} \cup \{\{1, \beta C\} : C \subseteq V_0\}$$

Probemos que el grafo *T* resulta ser un árbol.

• T es conexo. Probaremos la siguiente afirmación que va a implicar la conectividad de T: Para todo $\beta C \in V(T)$ existe un camino que lo conecte con 1. Lo probaremos por inducción en l siendo $l \in \mathbb{N}$ tal que C es una componente conexa de V_l .

El caso base es l=0 y en este caso tenemos que $\{1,\beta C\}$ para toda componente conexa $C \in V_0$ por definición de las aristas de T.

Para el paso inductivo suponemos que todo βD para D componente conexa de V_l está conectado con 1. Sea entonces C componente conexa de V_{l+1} entonces necesariamente tiene que existir D componente conexa de V_l tal que $C \subseteq D$ dado que C es conexo y $V_{l+1} \subseteq V_l$. Esto nos dice que $\{\beta C, \beta D\} \in V(\Gamma)$ y así como βD está conectado con 1 vimos que βC también lo está.

• T es acíclico. Probemos que todo camino cerrado en T no es simple. Para eso sea γ un camino cerrado (no constante sino no hay nada que probar) en T tal que empieza y termina en βE donde E es alguna componente conexa para algún V_k . Sea C tal que βC es uno de los vértices del camino γ y es componente conexa de V_l con l maximal en el camino. Supongamos sin pérdida de generalidad que E es distinto de C porque sino podemos modificar el comienzo y final del camino porque es un camino cerrado. Necesariamente tenemos que si $\{\beta D, \beta C\}$ es una arista del camino entonces D es componente conexa de V_{l-1} . Esto nos dice que el camino γ tiene la siguiente pinta

$$\gamma = (\beta E, \dots, \beta D, \beta C, \beta D, \dots, \beta E)$$

por lo que el camino no es simple dado que tiene dos veces a la misma arista $\{\beta C, \beta D\}$.

4.1. TREEWIDTH. 85

Sea entonces $f:V(T)\to 2^{V(\Gamma)}$ la función definida por $f(\beta C)=\beta C$ donde en el lado izquierdo lo miramos como un vértice del árbol T y en el lado derecho como un conjunto de vértices de Γ . Afirmamos que (T,f) es una descomposición en un árbol para el grafo de Cayley Γ . Para verlo debemos ver que cumple las tres condiciones 4.1.1 de la definición.

- **T1.** Sea $g \in V(\Gamma)$ luego si d(1,g) = l tenemos que $g \in C \subseteq V_{l-1}$ para cierta C componente conexa de V_{l-1} y en particular $g \in \beta C$.
- **T2.** Sea una arista $\{g,h\} \in E(\Gamma)$. Separamos en dos casos dependiendo si d(g,1) = d(h,1) o si no sucede esto.

Supongamos que ambas están a la misma distancia del vértice 1. En tal caso sea l tal que

$$d(g,1) = l = d(h,1)$$

luego tiene que existir C componente conexa de V_{l-1} tal que $g,h \in C$ dado que ambos vértices están conectados. Tenemos en particular que $g,h \in \beta C$.

El otro caso es que las distancias al vértice 1 son distintas aunque necesariamente están restringidas a que sean del tipo

$$d(g,1) = l < l + 1 = d(h,1)$$

y en este caso resulta que $g, h \in \beta C$ si C es la componente conexa que contiene a h en V_l .

T3. Queremos ver que si fijamos $g \in V(\Gamma)$ entonces el subgrafo $T_g = \{t \in V(T) \mid g \in f(t)\}$ es un subárbol de T. Para eso notemos que si d(g,1) = l luego $g \in \beta V_{l-1}$ y $g \in \beta V_l$ y para cualquier otro valor j no vale que $g \in \beta V_j$.

Existe una única componente conexa $D \in V_{l-1}$ de manera que $g \in \beta D$. Por otro lado como el grafo de Cayley de un grupo finitamente generado es localmente finito entonces existen finitas componentes conexas C_1, \ldots, C_k de V_l de manera que $g \in \beta C_1, \ldots, g \in \beta C_k$.

Notemos que T_g es conexo porque para todo βC_i vale que $\{\beta D, \beta C_i\} \in E(T)$ por lo que T_g resulta ser un subárbol de T tal como queríamos ver.

EJEMPLO 4.1.15. Sea $G = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ tal que tiene la siguiente presentación $G \simeq \langle a, b \mid a^2, b^3 \rangle$. Tomamos el conjunto simétrico de generadores $\{a, b, b^{-1}\}$ tal que al grafo Cay $(G, \{a, b, b^2\})$ lo representamos de la siguiente manera:

Consideremos entonces cómo es la descomposición en un árbol construida en 4.1.14 para este grafo de Cayley. El árbol *T* lo representamos de la siguiente manera:

Cada vértice $t \in V(T)$ es el bolsón correspondiente para la descomposición en un árbol de Cay $(G, \{a, b, b^2\})$.

§4.2. Cuasisometrías.

Nuestro objetivo es introducir las cuasisometrías para garantizar que la propiedad de tener treewidth finito no dependa de los generadores elegidos. Esta subsección sigue los textos de [BH13] y de [Löh17].

DEFINICIÓN 4.2.1. Sean (X, d_X) , (Y, d_Y) espacios métricos. Una *cuasisometría* es una función ϕ : $X \to Y$ tal que:

Q1. Existe constante A > 0 tal que para todo par de puntos $x_1, x_2 \in X$ hace valer la siguientes desigualdades

$$\frac{1}{A}d_X(x_1, x_2) - A \leqslant d_Y(\phi(x_1), \phi(x_2)) \leqslant Ad_X(x_1, x_2) + A$$

Q2. Existe una constante $C \ge 0$ tal que para todo punto $y \in Y$ debe existir $x \in X$ de manera que

$$d(y, \phi(x)) \leq C$$

4.2. CUASISOMETRÍAS. 87

Intuitivamente una cuasisometría entre espacios métricos nos dice que estos resultan ser globalmente similares y las diferencias que tienen localmente están uniformemente acotadas.

PROPOSICIÓN 4.2.2. Sean (X, d_X) , (Y, d_Y) espacios métricos. Una función $\phi: X \to Y$ es una cuasisometría si y solo sí existe $\psi: Y \to X$ cuasisometría y constantes positivas $C, D \in \mathbb{R}$ tales que:

- $d(\psi \circ \phi(x), x) < C$ para todo $x \in X$.
- $d(\phi \circ \psi(y), y) < D$ para todo $y \in Y$.

Demostración. Ver [Löh17, pp.84-85].

PROPOSICIÓN 4.2.3. Sean $(X, d_X), (Y, d_Y), (Z, d_Z)$ espacios métricos y sean $\phi : X \to Y$ y $\psi : Y \to Z$ cuasisometrías, entonces $\psi \circ \phi : X \to Z$ es una cuasisometría.

Demostración. Ver [Löh17, p.86].

La relación de cuasisometría es reflexiva. La proposición 4.2.2 nos dice que la relación de cuasisometría entre espacios métricos es simétrica. Por la proposición 4.2.3 tenemos que esta relación es transitiva también. Esto nos dice que la relación de cuasisometría es una relación de equivalencia entre los espacios métricos.

DEFINICIÓN 4.2.4. Dados (X, d_X) y (Y, d_Y) espacios métricos diremos que son espacios métricos *cuasisométricos* si existe $\phi: X \to Y$ cuasisometría.

En nuestro caso en particular los espacios métricos que nos van a interesar son los grafos no dirigidos. Más aún nos vamos a interesar en los grafos de Cayley de grupos finitamente generados. El siguiente resultado que enunciamos sin demostración nos garantiza que todos los grafos de Cayley para un grupo finitamente generado son cuasisométricos entre sí.

PROPOSICIÓN 4.2.5. Sea G grupo finitamente generado por Σ y por Δ entonces $(Cay(G, \Sigma), d_{\Sigma})$ y $(Cay(G, \Delta), d_{\Delta})$ son cuasisométricos entre sí.

Demostración. Ver [Löh17, p.89].

Este resultado deja de ser cierto en el contexto que tomamos un conjunto de generadores que no es finito.

Si el grafo de Cayley de un grupo para cierto conjunto de generadores tiene una propiedad P y queremos ver que esta propiedad P es intrínseca al grupo, es decir que no depende del conjunto de generadores que tomemos, nos alcanza con probar que esta propiedad P se preserva por cuasisometrías. En nuestro caso en particular la propiedad P que nos va a interesar es la de tener treewidth finito.

PROPOSICIÓN 4.2.6. Sean (Γ_1, d_1) , (Γ_2, d_2) grafos no dirigidos de grado uniformemente acotado cuasisométricos entre sí y Γ_2 grafo con treewidth finito. Entonces Γ_1 tiene treewidth finito.

Demostración. Sea ϕ : $\Gamma_1 \to \Gamma_2$ cuasisometría y sea $k \in \mathbb{N}$ el treewidth de Γ_2 . Al ser ϕ una cuasisometría tenemos que existe A > 0 tal que para todo par $v, v' \in V(\Gamma_1)$ vale que

$$\frac{1}{A}d_1(v,v') - A \leqslant d_2(\phi(v),\phi(v')) \leqslant Ad_1(v,v') + A.$$

Probemos que Γ_1 tiene treewidth finito también.

Consideremos l tal que $d(\phi(v),\phi(w)) \le l$ para vértices $v,w \in V(\Gamma_1)$ que estén conectados por una arista. Esto lo podemos tomar porque al ser una cuasisometría

$$d_2(\phi(v),\phi(v')) \leqslant Ad_1(v,v') + A \leqslant 2A$$

entonces basta con tomar $l \ge 2A$.

Sea (T,f) descomposición en un árbol para Γ_2 tal que tiene treewidth finito. Por 4.1.11 si tomamos $N^l(f(t))$ los vecinos del bolsón f(t) que están a distancia no mayor a l seguimos teniendo una descomposición en un árbol para Γ_2 . Consideraremos los bolsones $g(t) = \phi^{-1}(N^l(f(t)))$ de vértices en Γ_1 . Probemos que (T,g) es una descomposición en un árbol para Γ_1 .

Debemos ver que cumplen las tres propiedades.

T1. La primera se cumple puesto que los bolsones f(t) cubren $V(\Gamma_2)$. De esta manera $\bigcup_{t \in T} N^l(f(t)) = V(\Gamma_2)$ y por lo tanto tomando preimagen tenemos que

$$\bigcup_{t \in V(T)} \phi^{-1}(N^{l}(f(t))) = \bigcup_{t \in V(T)} g(t) = \phi^{-1}(V(\Gamma_{2})) = V(\Gamma_{1})$$

donde usamos que la preimagen de la unión es la unión de las preimágenes.

- **T2.** La segunda condición usamos que si hay una arista $\{x,y\} \in E(\Gamma_2)$ luego debe ser que $d(\phi(x),\phi(y)) \leq l$ por como tomamos a l. De esta manera como $\phi(x) \in f(t)$ para algún $t \in V(T)$, notemos que $\phi(y) \in N^l(f(t))$ también. Tomando preimagen tenemos que $x,y \in \phi^{-1}(N^l(f(t)))$ y esto es que justamente $x,y \in g(t)$ para un mismo $t \in V(T)$ tal como queríamos ver.
- **T3.** Para la tercera condición si $x \in g(t) \cap g(s)$ queremos ver que $x \in g(r)$ para todo $r \in V(T)$ que aparezca en la geodésica de s a t. Como la preimagen de una intersección es lo mismo que la intersección de las preimágenes entonces

$$x \in \phi^{-1}(N^l(f(t))) \cap \phi^{-1}(N^l(f(s))) = \phi^{-1}(N^l(f(t)) \cap N^l(f(s)))$$

de esta manera debe existir $v \in V(\Gamma_2)$ tal que $v \in N^l(f(s)) \cap N^l(f(t))$. Ahora usamos que esta es una descomposición sobre Γ_2 para notar que $v \in N^l(f(r))$. Tomando preimagen tenemos que $x \in g(r)$ tal como queríamos ver.

Finalmente debemos ver que el tamaño de los bolsones está acotado uniformemente para probar que Γ_1 tiene treewidth finito. Dado que Γ_2 tiene treewidth finito entonces existe $M \in \mathbb{N}$ de manera que $|f(t)| \leq M$ uniformemente para todo $t \in V(T)$. Como el grado de los grafos está acotado uniformemente tenemos que por el resultado 4.1.12 que esta descomposición tiene el bagsize finito por lo que

$$\exists N \in \mathbb{N}, \forall t \in V(T). |N^l(f(t))| \leq N.$$

Finalmente notemos que al ser ϕ una cuasisometría tenemos que existe B>0 tal que para todo $v\in V(\Gamma_2)$ vale que $|\phi^{-1}(v)|\leqslant B$. Esto lo podemos ver porque si $\phi(x)=v=\phi(y)$ entonces

$$\frac{1}{A}d_1(x,y) - A \leqslant d_2(\phi(x),\phi(y)) = 0 \implies d_1(x,y) \leqslant A^2 < \infty$$

si tomamos $B>A^2$ obtenemos una cota uniforme para todo $v\in\Gamma_2$. Así vemos que:

$$|g(t)| = |\phi^{-1}(N^l(X(t)))| \le BN < \infty$$

Concluímos así que la descomposición que nos armamos para Γ_1 tiene treewidth finito.

De esta manera podemos definir el treewidth finito como un invariante para grupos.

DEFINICIÓN 4.2.7. Un grupo G finitamente generado tiene treewidth finito si para algún conjunto de generadores A vale que Cay(G, A) tiene treewidth finito.

§4.3. Grupos independiente de contexto tienen treewidth finito.

En esta sección probaremos un resultado que fue originalmente probado por Muller–Schupp en [MS85]. En ese trabajo usan una definición que resultó ser equivalente al treewidth que es la de ser *k*-triangulable. La demostración que presentamos sigue la exposición del trabajo [DW17]. Primero unos lemas sobre el lenguaje del problema de la palabra de un grupo independiente de contexto.

LEMA 4.3.1. Sea G un grupo independiente de contexto con gramática $\mathcal{G} = (V, \Sigma, P, S)$ de manera que $L(\mathcal{G}) = WP(G, \Sigma)$. Sea $A \in V$ una variable de esta gramática y consideremos el lenguaje

$$L_A = \{ w \in \Sigma^* \mid A \xrightarrow{*}_{\mathcal{G}} w \}.$$

Sea $\pi: \Sigma^* \to G$ la proyección del monoide libre al grupo. Entonces vale el siguiente resultado: dadas palabras $v, v' \in L_A$ luego $\pi(v) = \pi(v')$.

Demostración. Veamos que si $v, v' \in L_A$ entonces $\pi(v) = \pi(v')$. Es decir son el mismo elemento vistos en el grupo G. Para eso si tenemos una derivación que en algún momento llega a $S \stackrel{*}{\to}_{\mathcal{G}} \beta A \gamma \stackrel{*}{\to}_{\mathcal{G}} uvw$ también tenemos otra derivación que deriva en $S \stackrel{*}{\to}_{\mathcal{G}} \beta A \gamma \stackrel{*}{\to}_{\mathcal{G}} uv'w$. Es decir que $uvw, u'v'w' \in \mathrm{WP}(G, \Sigma)$ por lo tanto

$$\pi(uvw) = 1 = \pi(uv'w) \implies \pi(v) = \pi(v')$$

tal como queríamos ver.

LEMA 4.3.2. Sea Γ un grafo de grado acotado uniformemente y (T, f) una descomposición en un árbol para Γ de manera que existe $M \in \mathbb{N}$ tal que para todo $t \in V(T)$ tenemos la siguiente cota

entonces la descomposición (T, f) tiene bagsize finito.

Demostración. Buscamos $k \in \mathbb{N}$ tal que nos permita acotar $|f(t)| \le k$ para todo $t \in V(T)$. Como exista $M \in \mathbb{N}$ tal que

$$\operatorname{diam}(f(t)) = \sup_{g,h \in f(t)} d(g,h) \leqslant M$$

para todo t entonces al ser Γ de grado acotado uniformemente por $n \in \mathbb{N}$ luego

$$|f(t)| \le n^M < \infty$$

para todo $t \in V(T)$ así probando que (T, f) es una descomposición con bagsize finito.

TEOREMA 4.3.3. [MS85] Sea G un grupo independiente de contexto entonces G tiene treewidth finito.

Demostración. Sea Σ un conjunto finito de generadores de G. La descomposición en un árbol (T,f) que hicimos en 4.1.14 es válida para todo grafo de Cayley en particular resulta serlo para Cay (G,Σ) . Veamos que esta descomposición para G tiene treewidth finito. Para esto vamos a usar el lema 4.3.2 para probar que todo $\beta C \in V(T)$ cumple que diam $(\beta C) < \infty$.

Dado que G es un grupo independiente de contexto entonces el lenguaje del problema de la palabra para estos generadores WP(G, Σ) tiene una gramática $\mathcal{G}=(V,\Sigma,P,S)$ independiente de contexto que lo genera. Por la proposición 1.1.20 consideremos que la gramática está en forma normal de Chomsky.

Para cada variable A de nuestra gramática podemos considerar el siguiente lenguaje:

$$L_A = \{ w \in \Sigma^* : A \xrightarrow{*}_{\mathcal{G}} w \}.$$

Para este lenguaje introduzcamos un número natural $k_A \in \mathbb{N}$ definido por $k_A = \min_{w \in L_A} |w|$. Como tenemos finitas variables en nuestra gramática \mathcal{G} podemos considerar $k = \max_{A \in V} k_A$. Veamos que diam $(\beta C) \leq 3k$ para todo $\beta C \in V(T)$.

Sea C componente conexa de V_n para algún valor de $n \in \mathbb{N}$ genérico. Sean $g,h \in \beta C$, vamos a acotar d(g,h). Para eso consideremos una geodésica α que una 1 con g y análogamente otra geodésica γ que una 1 con h. Como $C \cup \beta C$ es conexo podemos tomar un camino τ que una g con h dentro de C exceptuando sus extremos. Sin pérdida de generalidad supongamos que $|\tau| \ge 2$ caso contrario tendríamos que g y h son adyacentes y no tendríamos nada que probar porque en este caso d(g,h)=1. De esta manera tenemos un triángulo tal que tiene los lados tienen las siguientes etiquetas: $l(\alpha)=u, l(\tau)=v$ y $l(\gamma)=w$. Como $\alpha\tau\gamma$ es un ciclo en el grafo de Cayley entonces $l(\alpha\tau\gamma)=uvw\in \mathrm{WP}(G,\Sigma)$ por el resultado 1.3.10 y por lo tanto tenemos alguna derivación $S \overset{*}{\to} g$ uvw.

Ya que tenemos esta derivación $S \stackrel{*}{\to}_{\mathcal{G}} uvw$ consideramos la última variable que deriva a v como subpalabra. Esto es que para la subpalabra v sabemos que existe alguna variable A y palabras posiblemente vacías v',v'' tal que $A \stackrel{*}{\to}_{\mathcal{G}} v'v''$ donde v es una subpalabra de v'v''. Tomamos la última variable que aparece en la derivación antes de que aparezca v como subpalabra en la derivación. Ésta variable debe existir porque en particular v como subpalabra que contiene a v como subpalabra.

Como la gramática $\mathcal G$ está en forma normal de Chomsky sabemos que al suponer que $|v|\geqslant 2$ entonces la derivación tiene la siguiente pinta

$$S \stackrel{*}{\rightarrow}_G u'Aw' \rightarrow_G u'BCw' \stackrel{*}{\rightarrow}_G u'v'v''w'$$

donde B, C son otras variables. En particular notamos que $A \stackrel{*}{\to}_{\mathcal{G}} v'v''$, $B \stackrel{*}{\to}_{\mathcal{G}} v'$ y $C \stackrel{*}{\to}_{\mathcal{G}} v''$.

La palabra u' es un prefijo de u luego si consideramos la geodésica α tenemos que al haber leído la etiqueta u' llegamos a un vértice x y por estar sobre la geodésica cumple la siguiente igualdad:

$$d(x,g) = d(1,g) - d(1,x).$$

Análogamente w' es un prefijo de w luego si consideramos la geodésica γ en la instancia que ya leímos w' comenzando desde h llegamos a cierto vértice z y por la misma razón que en el caso anterior obtenemos

$$d(z,h) = d(1,h) - d(1,z).$$

Consideremos el vértice y al que llegamos después de leer u'v'. Este vértice está en el camino τ dado que v es subpalabra de v'v''. Usando que $y \in \tau \subseteq C$ tenemos que $d(1,y) \geqslant n+1=d(1,g)$ por ser C una componente conexa de V_n , entonces vale la siguiente desigualdad

$$d(x,g) = d(1,g) - d(1,x) \le d(1,y) - d(1,x) = d(x,y)$$

donde usamos que x,y están en una misma geodésica. Análogamente tenemos que $d(z,h) \le d(z,y)$.

Por el lema 4.3.1 notemos que si reemplazamos v' por la palabra de menor tamaño del lenguaje L_B seguimos teniendo un ciclo pero de longitud idéntica o más chica. La palabra v' la leemos justamente cuando vamos del vértice x al vértice y, así la distancia d(x,y) está acotada por la palabras que puede derivarse de B de menor longitud. Idénticamente hacemos esto para las variables A y C. Por como definimos a k tenemos las siguientes cotas: d(x,y), d(y,z), $d(x,z) \le k$.

Terminamos de probar que $d(g,h) \le 3k$. Usamos la desigualdad triangular tres veces,

$$d(g,h) \le d(g,x) + d(x,z) + d(h,z)$$

$$\le d(x,y) + d(x,z) + d(y,z) \le 3k$$

tal como queríamos ver.

Figura 4.1: Diagrama que muestra como acotar la distancia entre $g \ y \ h$.

Capítulo 5

Cortes de grafos y árboles de estructura.

Las principales referencias de este capítulo son [DW13], [TW93] y [Krö10]. En la primera sección 5.1 damos varias definiciones básicas que usaremos en el capítulo.

En la segunda sección 5.2 definimos una familia de grafos que denominamos grafos accesibles. Esta definición de un grafo accesible generaliza la idea de los grafos de Cayley de grupos accesibles. En el teorema 5.2.10 probamos que los grupos que tienen treewidth finito tienen grafos de Cayley accesibles.

En la tercera sección 5.3 definimos los cortes óptimos que son una familia de cortes que tienen la propiedad de estar siempre anidados entre sí. El resultado principal de esta sección es el teorema 5.3.6.

En la cuarta sección 5.4 dado un grafo accesible y localmente finito definimos un árbol que denominamos el árbol de estructura. Este árbol lo definimos a partir de los cortes óptimos del grafo.

En la quinta sección 5.5 construimos una acción del grupo de automorfismos de un grafo accesible y localmente finito sobre su árbol de estructura. El resultado central es 5.5.22 que dice que los grupos con treewidth finito son el grupo fundamental de un grafo de grupos con grupos finitos.

§5.1. Cortes de grafos.

DEFINICIÓN 5.1.1. Sea Γ un grafo no dirigido. Dado $C \subset V(\Gamma)$ diremos que es un *corte* si cumple las siguientes condiciones:

- C y \overline{C} son conexos y no vacíos.
- $|\delta C| < \infty$.

Si $|\delta C| \le k$ diremos que C es un k-corte.

Equivalentemente un subconjunto de vértices C es un corte si $\Gamma \backslash \delta C$ tiene dos componentes conexas no vacías.

La siguiente observación elemental va a ser fundamental a los argumentos de este capítulo.

Figura 5.1: *C* es un 2-corte en este caso.

OBSERVACIÓN 5.1.2. Si Γ es un grafo conexo, C un corte de Γ , $x \in C$ e $y \in \overline{C}$ y α un camino que une x con y entonces tenemos que debe existir $v \in \delta C$ tal que v pertenece al camino α .

En particular nos van a interesar los cortes para separar caminos en grafos y en cierta manera usar los cortes para distinguir caminos infinitos. Idealmente queremos que nuestros cortes nos separen en partes infinitas al grafo pero esto no siempre es posible.

EJEMPLO 5.1.3. Consideremos $\mathbb{Z} \times \mathbb{Z} = \langle a, b \mid aba^{-1}b^{-1} \rangle$ y $\Gamma = \text{Cay}(\mathbb{Z}^2, \{a, b, a^{-1}, b^{-1}\})$ su grafo de Cayley.

Este grafo cumple que todo conjunto $C \subseteq V(\Gamma)$ conexo tal que $|\delta C| < \infty$ es tal que C es finito o bien \overline{C} es finito. Para probar esto sea $v \in \delta C$ tal que maximice $\max_{w \in \delta C} d(1, w)$. Si consideramos una bola B centrada en 1 de radio mayor a esta distancia entonces tenemos que $C \subseteq B$ o bien $\overline{C} \subseteq B$ dado que, en caso contrario como \overline{B} es conexo entonces usando la observación 5.1.2 tendríamos

que habría algún $v' \in \overline{B}$ tal que $v' \in \beta C$ contradiciendo la elección del radio de B. Dado que Γ tiene el grado acotado uniformemente obtenemos que $|B| < \infty$ lo que implica que $|C| < \infty$ o bien que $|\overline{C}| < \infty$.

Una propiedad fundamental de los cortes es que fijada una arista solo hay finitos cortes que tienen a esta arista dentro de su borde. Dado un grafo Γ y $\{x,y\} \in E(\Gamma)$ usaremos la notación $\Gamma \setminus \{x,y\}$ para referirnos al grafo no dirigido definido por $V(\Gamma \setminus \{x,y\}) = V(\Gamma)$ y $E(\Gamma \setminus \{x,y\}) = E(\Gamma) \setminus \{x,y\}$.

LEMA 5.1.4. Sea Γ un grafo conexo infinito $y \ k \ge 2$. Si C es un k-corte en Γ $y \ \{x,y\} \in \delta C$ entonces C es un (k-1)-corte en $\Gamma \setminus \{x,y\}$.

Demostración. Los conjuntos de vértices C y \overline{C} siguen siendo conexos y no vacíos si los miramos en $\Gamma \setminus \{x,y\}$. Por otro lado tenemos que su borde de aristas en el grafo $\Gamma \setminus \{x,y\}$ es $\delta C \setminus \{x,y\}$, por lo tanto C resulta ser un (k-1)-corte de $\Gamma \setminus \{x,y\}$.

LEMA 5.1.5. Sea Γ un grafo conexo. Sea $Y \subseteq E(\Gamma)$ un subconjunto finito de manera que $\Gamma \setminus Y$ resulta ser disconexo. Entonces si existe un corte C tal que $Y \subseteq \delta C$ luego tiene que valer que $Y = \delta C$.

Demostración. Si $\Gamma \setminus Y$ resulta ser disconexo entonces para que exista algún corte C con $Y \subseteq \delta C$ es necesario que $\Gamma \setminus Y$ tenga exactamente dos componentes conexas. Si tuviera más de una componente conexa y existiera un corte C que cumpla que $Y \subseteq \delta C$ entonces $\Gamma \setminus \delta C$ tendría más de dos componentes conexas, negando que C es un corte.

Llamemos a las dos componentes conexas de $\Gamma \setminus Y$ como D y \overline{D} . Supongamos que C es un corte tal que $Y \subseteq \delta C$. Notemos que C y \overline{C} son conexos si los vemos en $\Gamma \setminus Y$. En este caso tenemos que necesariamente $C \cap D = \emptyset$ o $C \cap \overline{D} = \emptyset$ en $\Gamma \setminus Y$. Caso contrario como $C \cup \overline{C} = V(\Gamma)$ entonces negaríamos que D y \overline{D} desconectan a $\Gamma \setminus Y$. Concluimos que necesariamente C = D o bien $C = \overline{D}$ y así que $\delta C = Y$ tal como queríamos ver.

PROPOSICIÓN 5.1.6. Sea Γ un grafo conexo y sea $\{x,y\} \in E(\Gamma)$ entonces para todo $k \in \mathbb{N}$ existen finitos k-cortes C tales que $\{x,y\} \in \delta C$.

Demostración. Vamos a probar esta afirmación por inducción en *k*.

En el caso base tenemos que k = 1. Si $\Gamma \setminus \{x, y\}$ es disconexo y separa al grafo en dos componentes conexas no vacías entonces tenemos un 1-corte. Caso contrario no existe un 1-corte C tal que $\delta C = \{x, y\}$.

Para el paso inductivo supongamos que vale para (k-1)-cortes y veamos que vale para k-cortes. Sea C un k-corte sobre Γ , por la observación 5.1.4 tenemos que C es un (k-1)-corte para el grafo $\Gamma \setminus \{x,y\}$. Como suponemos que $k \geq 2$ entonces por el lema 5.1.5 el grafo $\Gamma \setminus \{x,y\}$ tiene que ser conexo caso contrario no existiría tal corte C. Esto nos dice que debe existir un camino α tal que $\alpha = (x_0, \ldots, x_n)$ con $x_0 = x$ y $x_n = y$. Por la observación 5.1.2 tenemos que alguna de las aristas $\{x_i, x_{i+1}\}$ es tal que pertenece a δC . Por cada una de estas aristas si aplicamos la hipótesis inductiva concluimos que existen finitos (k-1)-cortes que la contienen. Como el camino α tiene finitas aristas entonces tenemos finalmente que existen finitos (k-1)-cortes en $\Gamma \setminus \{x,y\}$ y así que existen finitos k-cortes en Γ tales que contienen a $\{x,y\}$ tal como queríamos ver.

COROLARIO 5.1.7. Sea Γ un grafo conexo y localmente finito. Sea $S \subset V(\Gamma)$ un conjunto finito y $k \ge 1$. Entonces existen finitos k-cortes C con $\beta C \cap S \ne \emptyset$.

Demostración. Como el grafo Γ es localmente finito entonces existen finitas aristas adyacentes a S. Aplicando el lema 5.1.6 a cada una de estas finitas aristas obtenemos el resultado.

DEFINICIÓN 5.1.8. Dos cortes $C, D \in V(\Gamma)$ están *anidados* si vale alguna de las cuatro inclusiones $C \subseteq D, C \subseteq \overline{D}, \overline{C} \subseteq \overline{D}, \overline{C} \subseteq D$. Los conjuntos $C \cap D, C \cap \overline{D}, \overline{C} \cap D, \overline{C} \cap \overline{D}$ los llamamos las *esquinas*. Dos esquinas K, K' tales que $K' = \overline{K}$ las llamaremos *esquinas opuestas*. Caso contrario diremos que son *esquinas adyacentes*.

LEMA 5.1.9. Dos cortes C, D están anidados si y solo si alguna de las cuatro esquinas es vacía.

Demostración. Para la ida supongamos que $C \subseteq D$ luego tiene que valer que $C \cap \overline{D} = \emptyset$. Para la vuelta si por ejemplo $C \cap D = \emptyset$ como vale que $C = (C \cap D) \cup (C \cap \overline{D})$ esto nos dice que $C \subseteq \overline{D}$.

LEMA 5.1.10. Sean C, D cortes tales que $\beta C \subseteq D$ entonces $C \subseteq D$ o $\overline{C} \subseteq D$.

Demostración. Si C, D no estuvieran anidados tendríamos que $C \cap \overline{D} \neq \emptyset \neq \overline{C} \cap \overline{D}$. Esto nos diría que podríamos tomarnos un camino entre $c_0 \in C \cap \overline{D}$ y $c_1 \in \overline{C} \cap \overline{D}$ tal que esté contenido en \overline{D} . Esto es una contradicción porque este camino tendría que pasar por βC y sabemos que $\beta C \subseteq D$.

LEMA 5.1.11. Dado C corte $y k \in \mathbb{N}$ tenemos que

 $|\{D:C,D \text{ no están anidados y } D \text{ es un } k\text{-corte}\}| < \infty$

Demostración. Por el lema 5.1.10 no pueden haber cortes que no estén anidados D tales que $\beta C \subseteq D$. Por el lema 5.1.7 concluimos que hay finitos k-cortes D tales que $\beta C \cap \beta D \neq \emptyset$ dado que βC es un conjunto finito.

§5.2. Grafos accesibles.

DEFINICIÓN **5.2.1.** Dado Γ un grafo no dirigido conexo diremos que un camino simple r es un rayo si es un camino indexado por los naturales,

$$r = (v_0, \ldots, v_n, \ldots).$$

Diremos que α es un *camino infinito* si es un camino indexado por los enteros,

$$\alpha = (\ldots, v_{-n}, \ldots, v_0, \ldots, v_n, \ldots).$$

En particular utilizaremos en varias ocasiones los siguientes resultados.

Lema 5.2.2 (König). Si Γ es un grafo conexo e infinito entonces existe un rayo r sobre Γ .

Demostración. Ver [Die05, p.215].

LEMA 5.2.3. Sea Γ un grafo no dirigido infinito y conexo y $C \subseteq V(\Gamma)$ un corte de Γ de manera que $|C| = |\overline{C}| = \infty$ entonces existe α un camino infinito tal que $|\alpha \cap C| = \infty = |\alpha \cap \overline{C}|$.

Demostración. Fijemos dos vértices $u \in C$ y $v \in \overline{C}$ de manera que $\{u,v\} \in \delta C$. Vamos a construir dos rayos, uno en C que empieza en u y el otro en \overline{C} empezando en v. Por 5.2.2 existe r_1 un rayo dentro de C. Si este rayo no pasa por el vértice u nos tomamos un camino simple finito que una u con el origen de este rayo. Consideremos entonces el primer vértice del rayo que interseca a este camino, sea este u_1 . Si consideramos la concatenación de este camino finito hasta u_1 y luego la continuación del rayo a partir de u_1 obtenemos un rayo v_2 de manera que $v_2 = (u, \dots, u_1, \dots)$. Para obtener el otro rayo y así llegar a tener un camino infinito u hacemos lo mismo a partir del vértice $v \in \overline{C}$.

Para finalizar concatenamos estos dos rayos con la arista $\{u,v\}$ para así llegar a un camino infinito α que cumple lo pedido.

No necesariamente vale la vuelta. Esto es que si tenemos un camino infinito α entonces existe un corte C tal que cumple que $|\alpha \cap C| = \infty = |\alpha \cap \overline{C}|$.

Esto nos dice que dado un corte podemos tener caminos que son separados por el corte pero no vale que dado un camino tenemos que un corte lo separa. Esto nos lleva a dar la siguiente definición.

DEFINICIÓN **5.2.4.** Sea Γ un grafo no dirigido conexo y sea α un camino infinito en este grafo. Definimos el conjunto de *cortes del camino* como

$$C(\alpha) = \{ C \subset V(\Gamma) \mid C \text{ es un corte y } |\alpha \cap C| = \infty = |\alpha \cap \overline{C}| \}$$

Observación 5.2.5. Dado Γ un grafo no dirigido conexo y α un camino infinito en Γ entonces: $\mathcal{C}(\alpha) \neq \emptyset$ si y solo sí existe un corte C de manera que $\alpha \setminus \delta C$ tiene dos componentes conexas infinitas.

DEFINICIÓN 5.2.6. Dado Γ un grafo infinito y conexo, definimos una relación sobre los rayos r, r' de Γ de la siguiente manera:

$$r \sim r' \iff \forall C \text{ corte de } \Gamma. \ (|r \cap C| = \infty \iff |r' \cap C| = \infty).$$

A las clases de equivalencia ω de esta relación se las llama *ends* del grafo.

Figura 5.2: El grafo Γ tiene tres ends. Estos son $ω_1$, $ω_2$ y $ω_3$.

Por resultados anteriores 5.2.3 tenemos que un grafo Γ conexo y localmente finito tiene más de un end si y solo sí existe un camino infinito α tal que $\mathcal{C}_{\alpha} \neq \emptyset$.

Equivalentemente diremos que un grafo Γ localmente finito y conexo *tiene más de un end* si existe un conjunto finito S de vértices de manera que $\Gamma \backslash S$ tiene más de dos componentes conexas infinitas.

Un dato importante es que en el contexto de los grupos la cantidad de ends de sus grafos de Cayley resulta ser un invariante del grupo. En [Sta71] Stallings probó que dado un grupo finitamente generado con más de un end entonces se parte como el producto amalgamado o producto HNN sobre un subgrupo finito no trivial. Si alguno de estos factores resulta tener más de un end este procedimiento continúa. En el caso que el procedimiento termine Stallings denominó a estos grupos como grupos accesibles.

En esta sección vamos a introducir la definición de los grafos accesibles que generaliza esta definición de Stallings. Esta noción fue originalmente introducida en el trabajo [TW93]. En ese trabajo prueban que un grupo es accesible siguiendo la definición clásica si y solo sí todo grafo de Cayley de este grupo resulta ser accesible.

DEFINICIÓN 5.2.7. Un grafo Γ infinito y conexo es *accesible* si existe $k \in \mathbb{N}$ de manera que todo camino infinito α cumple que $\mathcal{C}(\alpha) = \emptyset$ o bien $\mathcal{C}(\alpha)$ contiene un k-corte.

En particular de la definición obtenemos que los grafos accesibles tienen más de un end. Equivalentemente podemos definir a un grafo como accesible si existe $k \in \mathbb{N}$ tal que para todo par de ends distintos ω_1, ω_2 existe un k-corte C de manera que separa a ambos ends.

Veamos que bajo esta definición los grafos con treewidth finito son accesibles. Esto no nos va a asegurar que ser accesible en este sentido es una propiedad intrínseca de un grupo. Para probar esto vamos a probar un lema un poco más técnico que generaliza esta afirmación.

LEMA 5.2.8. Sea Γ un grafo infinito y conexo con treewidth finito y grado uniformemente acotado. Entonces existe $k \in \mathbb{N}$ tal que: para todo r rayo, todo $v_0 \in V(\Gamma)$ y todo $n \in \mathbb{N}$ debe existir un k-corte D que cumple las siguientes propiedades: $d(v_0, \overline{D}) \ge n, v_0 \in D, |\overline{D} \cap r| = \infty$.

Demostración. Sea d una cota para el grado de los vértices del grafo Γ y sea m el treewidth del grafo. Propondremos k = dm como la constante que buscamos.

Sea (T,f) descomposición en un árbol para Γ tal que $bs(\Gamma,T,f)=m$. Sea r un rayo sobre Γ y $v_0 \in V(\Gamma)$ un vértice. Consideremos $t_0 \in V(T)$ de manera que $v_0 \in f(t_0)$. Si tenemos dos vértices $u_1, u_2 \in \overline{f(t_0)}$ tales que u_1 y u_2 están en bolsones $f(t_1), f(t_2)$ de manera que t_1 y t_2 están en componentes conexas distintas de $T \setminus t_0$, luego como los árboles son únicamente geodésicos si usamos la proposición 4.1.8 obtenemos que todo camino α que pase por u_1 y por u_2 debe pasar en algún momento por $f(t_0)$. En particular estamos considerando un rayo r que resulta ser un camino simple entonces dado que $|f(t_0)| < \infty$ obtenemos que debe haber una única componente conexa de $\overline{f(t_0)}$ tal que interseca infinitas veces al rayo r. Nombraremos a esta componente conexa $C_{t_0,r}$. Tenemos así que, nuevamente por 4.1.8, exactamente una de las dos componentes conexas de $T \setminus \{t_0\}$ la unión de los bolsones de sus vértices contienen a $C_{t_0,r}$.

Sea ahora $t_1 \in V(T)$ tal que es adyacente a t_0 y cumple que está en la componente conexa de $T \setminus \{t_0\}$ que cubre a $C_{t_0,r}$. Elegimos la componente conexa de $\overline{f(t_1)}$ que interseca infinitas veces al

99

rayo r. Repetimos este procedimiento para llegar a un rayo sobre el árbol $(t_0, t_1, \dots t_n \dots)$ y una sucesión de componentes conexas correspondientes $(C_{t_0,r}, C_{t_1,r}, \dots, C_{t_n,r}, \dots)$.

Sea $n \in \mathbb{N}$ arbitrario luego si elegimos $l \in \mathbb{N}$ suficientemente grande podemos garantizar que

$$f(t_l) \cap B_n(v_0) = \emptyset$$
.

Esto porque por la proposición 4.1.9 tenemos que la descomposición se puede tomar de manera que cada vértice aparezca en finitos bolsones. Por otro lado como Γ es localmente finito esto nos dice que la bola $|B_n(v_0)|$ es finita por lo tanto hay finitos bolsones en los cuales pueden aparecer los vértices de $B_n(v_0)$.

Figura 5.3: Tenemos que $f(t_l)$ está lo suficientemente lejos de v_0 .

Ahora vamos a buscar el corte D que nos cumpla lo pedido. Para eso vamos a necesitar un conjunto conexo con complemento conexo y no vacío tal que su borde sea finito. Consideremos D la componente conexa de v_0 en $\overline{C_{t_1,r}}$.

- Primero veamos que \overline{D} es conexo. Para ver esto notemos que $C_{t_l,r} \subseteq \overline{D}$. Si tenemos un elemento $u_1 \in \overline{D}$ tiene que estar conectado en Γ con algún vértice de $C_{t_l,r}$. Esto se debe a que el grafo Γ es conexo por lo que u_1 tiene al menos un camino que lo conecta con el conjunto de vértices $C_{t_l,r}$. Si este camino interseca a D tendríamos que $u_1 \in D$ porque sería la misma componente conexa de $\overline{C_{t_l,r}}$. De esta manera vimos que todo elemento de \overline{D} está conectado con $C_{t_l,r}$, que es conexo, evitando pasar por D y así concluimos que \overline{D} es conexo.
- Tanto D como \overline{D} son no vacíos porque $C_{t_l,r}$ es infinito y está contenido en \overline{D} y por otro lado porque $v_0 \in D$.
- Finalmente veamos que D es un k-corte. Notemos que si $v \in D \cap \beta D$ luego tenemos que existe $u \in \overline{D} \cap \beta D$ tal que $\{u, v\} \in E(\Gamma)$.

Por lo visto anteriormente todo camino que va de \overline{D} a D tiene que pasar necesariamente por $C_{t_l,r}$. Entonces tenemos que $u \in C_{t_l,r}$. En este caso notemos que $v \in f(t_l)$ caso contrario tendríamos que $v \in C_{t_l,r}$ dado que esta es una de las componentes conexas de $\Gamma \setminus f(t_l)$ y asumimos que $v \in D \subseteq \overline{C_{t_l,r}}$. De esta manera vimos que $\beta D \cap D \subseteq f(t_l)$. Como toda arista

 δD tiene uno de sus vértices en $f(t_l)$ y el grafo tiene grado acotado uniformemente esto nos dice que $|\delta D| \le dm = k$ tal como queríamos ver.

Finalmente notemos que por la construcción $v_0 \in D$. Como $d(v_0, f(t_l)) \ge n$ dado que así elegimos a t_l y vimos que $D \cap \delta D \subseteq f(t_l)$ entonces se garantiza que $d(v_0, \overline{D}) \ge n$. Como $|r \cap C_{t_l,r}| = \infty$ y $C_{t_l,r} \subseteq \overline{D}$ obtenemos lo que queríamos probar.

OBSERVACIÓN 5.2.9. En particular notemos que el resultado del lema anterior 5.2.8 sigue siendo válido si reemplazamos a r el rayo por α un camino infinito. Esto porque a partir de un camino infinito podemos armarnos un rayo.

Ahora sí con este resultado podemos probar que los grafos con treewidth finito y grado uniformemente acotado son accesibles.

TEOREMA 5.2.10. Sea Γ un grafo no dirigido infinito y conexo con treewidth finito y con grado unifor- \parallel memente acotado. Entonces Γ es accesible.

Demostración. Tomemos *α* un camino infinito tal que $C(\alpha) \neq \emptyset$ y $C \in C(\alpha)$. Veamos de construirnos un *k*-corte *D* de manera que $D \in C(\alpha)$.

Fijemos $v_0 \in \beta C$ y consideremos el siguiente número natural

$$n = \max\{d(v_0, w) : w \in \beta C\}.$$

Por el lema anterior 5.2.8 y la observación 5.2.9 podemos ver que existe un k-corte D de manera que $v_0 \in D$, $d(v_0, \overline{D}) \ge n+1$ y que cumple que $|\overline{D} \cap \alpha| = \infty$. Por como tomamos a este corte D cumple que $\beta C \subset D$ y así por el lema 5.1.10 tenemos que el corte C cumple que $C \subseteq D$ o bien $\overline{C} \subseteq D$. En cualquiera de estos dos casos como $|\alpha \cap C| = |\alpha \cap \overline{C}| = \infty$ obtenemos así que $|D \cap \alpha| = \infty$ y así que $D \in \mathcal{C}(\alpha)$ tal como queríamos ver.

§5.3. Cortes óptimos.

Por el lema 5.1.10 tenemos que el siguiente número natural está bien definido.

DEFINICIÓN **5.3.1.** Dado Γ grafo conexo y localmente finito, C un corte y $k \in \mathbb{N}$ constante definimos

$$m_k(C) = |\{D : C, D \text{ no están anidados y } D \text{ es un k-corte}\}|.$$

DEFINICIÓN 5.3.2. Dado α camino infinito definimos el conjunto de sus *cortes mínimos* como

$$C_{\min}(\alpha) = \{C \in C(\alpha) : |\delta C| \text{ es mínimo}\}$$

Dado un grafo Γ definimos el conjunto de sus *cortes mínimos* como

$$C_{\min} = \bigcup \{ C_{\min}(\alpha) : \alpha \text{ es un camino infinito} \}$$

5.3. CORTES ÓPTIMOS. 101

LEMA 5.3.3. Sea Γ un grafo infinito y conexo y sean C, D cortes tales que $C \in C(\alpha)$ y $D \in C(\beta)$ para α y β caminos infinitos. Entonces sucede alguno de estos dos casos:

- **1.** $C \in C(\beta)$ $y \in C(\alpha)$ y existen esquinas opuestas E, E' tales que $|E \cap \alpha| = \infty = |E' \cap \alpha|$.
- 2. Existen E, E' esquinas opuestas tales que

$$|E \cap \alpha| = |E' \cap \beta| = \infty.$$

Demostración. Dado $C \in \mathcal{C}(\alpha)$ y $D \in \mathcal{C}(\beta)$ tenemos que necesariamente no pueden haber dos esquinas adyacentes tales que ambas cumplan que intersecan finitamente a α y a β . Por otro lado deben existir al menos dos esquinas tales que intersecan infinitamente a α y otras dos tales que intersecan infinitamente a β .

Estas restricciones nos dejan en dos casos posibles. El primer caso que consideramos es el que tenemos dos esquinas E, E' tales que $|E \cap \alpha| = |\overline{E} \cap \alpha| = \infty$ y $|E' \cap \beta| = |\overline{E'} \cap \beta| = \infty$. Esto nos dice que $C \in \mathcal{C}(\beta)$ y que $D \in \mathcal{C}(\alpha)$. En cualquier otro caso obtenemos que existen E, E' esquinas opuestas de manera que $|E \cap \alpha| = |E' \cap \beta| = \infty$.

Figura 5.4: En la izquierda tenemos que si tomamos $E = \overline{C} \cap D$ y $E' = C \cap \overline{D}$ estas esquinas cumplen que $|E \cap \alpha| = \infty$ y que $|E' \cap \beta| = \infty$. En la derecha tenemos que nos alcanza con tomar $E = \overline{C} \cap \overline{D}$ y $E' = C \cap D$. En este caso $C \in \mathcal{C}(\beta)$ y $D \in \mathcal{C}(\alpha)$.

PROPOSICIÓN 5.3.4. Sea Γ un grafo infinito, conexo, localmente finito y accesible. Entonces para todo par de cortes minimales $C, D \in C_{min}$ existen dos esquinas opuestas E, E' tales que $E, E' \in C_{min}$.

Demostración. Sea $C \in C_{\min}(\alpha)$ y $D \in C_{\min}(\beta)$ luego por el lema 5.3.3 podemos separar en dos casos.

1. Si $C \in \mathcal{C}(\beta)$ y $D \in \mathcal{C}(\alpha)$ entonces esto nos dice que $|\delta C| = |\delta D|$ dado que ambos cortes son minimales. Esto implica que $D \in \mathcal{C}_{\min}(\alpha)$. En este caso simplemente nos olvidamos del camino β y consideramos $C, D \in \mathcal{C}_{\min}(\alpha)$. Luego tenemos que existen dos esquinas opuestas E, E' tales que $|E \cap \alpha| = \infty$ y $|E' \cap \alpha| = \infty$.

2. Existen esquinas E, E' tales que $|E \cap \alpha| = \infty = |E' \cap \beta|$.

Si es necesario renombramos a los cortes para que $E = C \cap D$ y $E' = \overline{C} \cap \overline{D}$.

Debemos ver que estas esquinas nos sirven pero en principio no sabemos si son cortes siquiera. Sea F componente conexa de E tal que $|F \cap \alpha| = \infty$. Notemos que $\overline{C} \cup \overline{D} \subseteq \overline{F}$ por lo tanto tenemos que $|\overline{F} \cap \alpha| = \infty$. Más aún podemos ver que \overline{F} es conexo. Para eso consideremos $v, w \in \overline{F}$. Si tanto $v, w \in \overline{C} \cup \overline{D}$ entonces como este conjunto es un conexo y está contenido en \overline{F} no hay nada para hacer. En el caso que $v \in (C \cap D) \setminus F$ luego consideramos γ un camino en Γ tal que los una. Sea u el primer vértice tal que $u \in E \cap \delta E$ entonces necesariamente el camino (v, \ldots, u) está contenido en la componente conexa de v en E y esta componente conexa no es F. Como $u \in \delta E$ luego existe $u' \in \overline{C} \cup \overline{D}$ tal que u' es adyacente a u. Luego como $\overline{C} \cup \overline{D}$ es conexo tenemos un camino entre u' y w contenido en \overline{F} y así cerramos nuestra demostración. Similarmente encontramos un conjunto de vértices F' que cumple esto para β . Notemos que $|\delta F| < \infty$, esto se debe a que si $\{v, w\} \in \delta F$ luego necesariamente $\{v, w\} \in \delta E$. Por otro lado $\delta E = \delta(C \cap D) \subseteq \delta C \cup \delta D$ y $|\delta C| + |\delta D| < \infty$. Con esto probamos que $F \in \mathcal{C}(\alpha)$ y que $F' \in \mathcal{C}(\beta)$.

Veamos ahora que F y que F' son cortes minimales. Como $\delta E \subseteq \delta C \cup \delta D$ y $\delta E' \subseteq \delta C \cup \delta D$ entonces $\delta E \cup \delta E' \subseteq \delta C \cup \delta D$. Consideramos las siguientes designaldades:

$$|\delta E \cup \delta E'| \le |\delta C \cup \delta D|$$
$$|\delta E| + |\delta E'| - |\delta (E) \cap \delta (E')| \le |\delta C| + |\delta D| - |\delta C \cap \delta D|$$

si $\{x,y\} \in \delta E \cap \delta E'$ esto nos dice que $x \in E$ e $y \in \delta E'$ por lo que $x \in C \cap D$ e $y \in \overline{C} \cap \overline{D}$ lo que implica que $\{x,y\} \in \delta C \cap \delta D$. Entonces tenemos que $|\delta(E) \cap \delta(E')| \le |\delta C \cap \delta D|$ por lo tanto vale la siguiente desigualdad

$$|\delta E| + |\delta E'| \le |\delta C| + |\delta D|.$$

Por otro lado como F y F' son cortes tales que $|\delta F| \le |\delta E|$ y $|\delta F'| \le |\delta E'|$ luego obtenemos que

$$|\delta F| + |\delta F'| \le |\delta C| + |\delta D|$$

y dado que C,D son cortes minimales obtenemos así que $|\delta C| \le |\delta F|$ y que $|\delta D| \le |\delta F'|$ concluyendo que $|\delta F| = |\delta C|, |\delta F'| = |\delta D|$ y por lo tanto que F,F' son cortes minimales. Por el mismo razonamiento obtenemos que $|\delta E| = |\delta C|$ y que $|\delta E'| = |\delta D|$.

Probemos ahora que E = F, equivalentemente que E es conexo y que por lo tanto esto implicaría que $E \in \mathcal{C}_{\min}(\alpha)$. Para esto notemos que si $v \in E \setminus F$ luego necesariamente por el mismo argumento anterior que usamos para probar que \overline{F} es conexo tenemos que debe existir u tal que $u \in \overline{C} \cup \overline{D}$ y conectado con $v' \in E \setminus F$. Si existiera esta arista $\{v', u\}$ luego esto nos diría que $\{v', u\} \in \delta E \setminus \delta F$ lo que contradice que $|\delta E| = |\delta F| = |\delta C|$. Similarmente podemos probar que E' = F'. Concluimos así que $E, E' \in \mathcal{C}_{\min}$.

Así como definimos cortes mínimos ahora vamos a definir cortes óptimos que serán un subconjunto de ellos. Consideremos ahora que el grafo Γ es accesible y su constante es k. En este caso notaremos para cada corte C el siguiente valor

$$m(C) = m_k(C)$$
.

5.3. CORTES ÓPTIMOS. 103

DEFINICIÓN 5.3.5. Dado Γ grafo infinito, conexo, localmente finito y accesible y α camino infinito en Γ sea

$$m_{\alpha} = \min\{m(C) : C \in \mathcal{C}_{\min}(\alpha)\}.$$

De esta manera los *cortes óptimos* del camino α serán

$$C_{\text{opt}}(\alpha) = \{ C \in C_{\min}(\alpha) : m(C) = m_{\alpha} \}$$

y el conjunto de los cortes óptimos análogamente será el conjunto que contenga a todos ellos

$$C_{\text{opt}} = \bigcup \{C_{\text{opt}}(\alpha) : \alpha \text{ es un camino infinito}\}.$$

El siguiente es el resultado central y más importante de los cortes óptimos.

TEOREMA 5.3.6. Sea Γ un grafo infinito, conexo, localmente finito y accesible. Entonces todo par de cortes óptimos $C, D \in C_{opt}$ está anidado.

Demostración. Dado que $C, D \in \mathcal{C}_{opt}$ entonces tenemos dos caminos α , β tales que $C \in \mathcal{C}_{opt}(\alpha)$ y $D \in \mathcal{C}_{opt}(\beta)$. Supongamos sin pérdida de generalidad que $m_{\alpha} \ge m_{\beta}$.

La idea de la demostración es suponer que estos dos cortes no están anidados y llegar a una contradicción. Para esto queremos encontrar cortes $E, E' \in \mathcal{C}_{opt}$ de manera que estén anidados con C y con D y que hagan valer la siguiente desigualdad:

$$m(E) + m(E') < m(C) + m(D).$$

La validez de esta desigualdad nos diría que alguno de los dos cortes C, D no es óptimo tal como supusimos.

Por la proposición 5.3.4 tenemos que existen dos esquinas opuestas E, E' tales que son minimales. Si es necesario renombramos a los cortes para que $E = C \cap D$ y $E' = \overline{C} \cap \overline{D}$. Queremos ver ahora que son E, E' son cortes óptimos. Para esto probaremos primero que si F es un corte anidado con C o con D entonces está anidado con E o con E'. Separamos en dos casos que son simétricos. Si $E \cap C = \emptyset$ entonces $E \cap E = \emptyset$ y similarmente si $E \cap C = \emptyset$ entonces $E \cap E' = \emptyset$. Similarmente para E0. Esto nos va a decir que todos los cortes que estén anidados con alguno de los dos cortes originales E0. Va a estar anidado con alguno de los dos propuestos E1.

Por ahora tenemos la siguiente desigualdad de conjuntos

```
|\{F: F \text{ no está anidado con } E \text{ o con } E'\}| \leq |\{F: F \text{ no está anidado con } C \text{ o con } D\}|
```

notemos que esta desigualdad la podemos escribir como:

$$m(E) + m(E') - |\{F : F \text{ no está anidado con } E \text{ ni con } E'\}| \le m(C) + m(D) - |\{F : F \text{ no está anidado con } C \text{ ni con } D\}|.$$

Ahora vamos a probar que

```
|\{F : F \text{ no está anidado con } E \text{ ni con } E'\}| \leq |\{F : F \text{ no está anidado con } C \text{ ni con } D\}|.
```

Tenemos cuatro casos a analizar.

- **1.** $C \subseteq F$ y $D \subseteq \overline{F}$. Este caso está descartado porque tendríamos que $E = \emptyset$ y sabemos que E es infinito.
- **2.** $\overline{C} \subseteq F$ y $\overline{D} \subseteq \overline{F}$. Similar al caso anterior tendríamos que $E' = \emptyset$ y es una contradicción.
- **3.** $\overline{C} \subseteq F$ y $D \subseteq \overline{F}$. Esto nos dice que $E \subseteq \overline{F}$ y que $E' \subseteq F$.
- **4.** $C \subseteq F$ y $D \subseteq \overline{F}$. Esto nos dice que $E \subseteq F$ y que $E' \subseteq \overline{F}$.

Por lo tanto $|\{F : F \text{ no está anidado con } E \text{ ni con } E'\}| \le |\{F : F \text{ no está anidado con } C \text{ ni con } D\}| \text{ y esto nos dice que:}$

$$m(E) + m(E') \leq m(C) + m(D)$$

pero nosotros queremos ver que es estricta para terminar de probar este teorema. Para eso notemos que C está anidado con E puesto que $\overline{C} \cap E = \overline{C} \cap (C \cap D) = \emptyset$. Idénticamente vemos que está anidado con E'. Pero por suposición tenemos que C y D no están anidados así que tenemos una desigualdad estricta y por lo tanto llegamos a una contradicción (que alguno de los dos cortes C o D no son óptimos) de suponer que los cortes C, D no están anidados.

§5.4. Árbol de estructura.

Los árboles de estructura fueron introducidos y demostradas todas las propiedades que describimos en esta sección en los trabajos de Dunwoody [Dun79] y [Dun82]. La teoría se profundizó enormemente en [DD89] codificando la construcción en un problema de un anillo booleano asociado al grafo.

Así como en la sección anterior, todos los grafos que vamos a considerar a partir de ahora son accesibles. Vamos a construir un árbol a partir de los cortes óptimos. Para esto lo primero que vamos a ver es que los cortes óptimos forman un poset localmente finito respecto a la inclusión.

LEMA 5.4.1. Sea Γ un grafo infinito, conexo, localmente finito y accesible. Si C, $D \in C_{opt}$ luego

$$|\{E \in \mathcal{C}_{opt} : C \subseteq E \subseteq D\}| < \infty$$

Demostración. Tomemos un camino γ tal que salga de $c \in C$ y termine en $d \in \overline{D}$.

Si E es un corte luego tiene que separar a γ caso contrario tendríamos que $d \in E \cap \overline{D}$. Como el grafo que estamos considerando es accesible sabemos que $E \in \mathcal{C}_{\mathrm{opt}}$ implica que E es un k-corte. Si ahora usamos el lema 5.1.7 con el conjunto finito γ esto nos dice que solo existen finitos cortes E que cumplen lo pedido.

Ahora vamos a definir la siguiente relación sobre los cortes óptimos.

DEFINICIÓN **5.4.2.** Dos cortes $C \sim D \in C_{\text{opt}}$ si y solo sí

$$C = D$$
 o bien $\overline{C} \subsetneq D$ y $\forall E \in \mathcal{C}_{opt} : \overline{C} \subsetneq E \subseteq D \implies D = E$

OBSERVACIÓN 5.4.3. Sean $C, D \in \mathcal{C}_{opt}$ cortes óptimos tales que $C \subseteq D$ y $C \sim D$ entonces necesariamente C = D.

OBSERVACIÓN 5.4.4. Dados cortes $C, D \in \mathcal{C}_{opt}$ tales que $C \subsetneq D$ luego por el lema 5.4.1 debe existir corte E tal que $C \subseteq E \subsetneq D$ y maximal con respecto a esta propiedad. Esto implica que en particular vale que $\overline{E} \sim D$.

PROPOSICIÓN 5.4.5. *La relación* (C_{opt}, \sim) *es de equivalencia.*

Demostración. Por como la definimos es clara que es reflexiva. Para ver que es simétrica notemos que si $C \sim D$ y son cortes distintos entonces

$$\overline{C} \subsetneq D \implies \overline{D} \subsetneq C$$

por lo tanto volviendo a tomar complemento obtenemos que

$$(\forall E \in \mathcal{C}_{\mathrm{opt}} : \overline{C} \subsetneq E \subseteq D \implies D = E) \implies (\forall E \in \mathcal{C}_{\mathrm{opt}} : \overline{D} \subsetneq E \subseteq C \implies C = E).$$

Finalmente nos queda ver que la relación resulta ser transitiva. Esto es que para ciertos cortes óptimos tenemos que $C \sim D$, $D \sim E$ y queremos ver que $C \sim E$. Una primera observación que podemos hacer es que si partimos que $C \neq D \neq E$ entonces dado que $C \sim D$ luego $\overline{D} \subseteq C$ y similarmente $\overline{D} \subseteq E$ por lo tanto tenemos que $\overline{D} \subseteq C \cap D$ y así que $C \cap D \neq \emptyset$.

Por el teorema 5.3.6 tenemos que *C*, *E* están anidados. Veamos que sucede en los cuatro posibles casos.

- $C \subseteq E$. Como $D \sim C$ tenemos que $\overline{D} \subseteq C$ y como $D \sim E$ entonces para todo $\forall F \in \mathcal{C}_{opt} : \overline{D} \subsetneq F \subseteq E \implies F = E$). Si tomamos F = C luego obtenemos que C = E lo que nos dice que $C \sim E$ tal como queríamos ver.
- $E \subseteq C$ análogo al caso anterior.
- $E \subseteq \overline{C}$. Tenemos que por la observación anterior que $C \cap E \neq \emptyset$ contradiciendo que $E \subseteq \overline{C}$.
- $\overline{C} \subseteq E$. Como $C \cap E \neq \emptyset$ esto nos dice que $\overline{C} \subsetneq E$ por lo tanto tenemos que si $F \in \mathcal{C}_{opt}$ luego para todo $F \in \mathcal{C}_{opt}$ tal que $\overline{C} \subsetneq F \subseteq E$ queremos ver que F = E. Lo separamos en cuatro casos nuevamente gracias al teorema 5.3.6 dado que F debe estar anidado con D.
 - $D \subseteq F$. Esto nos dice que $D \subseteq E$ entonces por la observación 5.4.3 obtenemos que D = E y así $C \sim E$.
 - $F \subseteq D$. Tenemos que $C \sim D$ entonces $\overline{C} \subsetneq F \subset D$ implica que F = D y así tenemos que $D \subseteq E$ y por lo tanto nuevamente por la observación 5.4.3 que $C \sim E$.
 - $\overline{D} \subseteq F$. Tenemos que dado que $D \sim E$ entonces $\overline{D} \subsetneq F \subseteq E$ implica que F = E.
 - $F \subseteq \overline{D}$. Entonces tenemos que $\overline{C} \subseteq F \subseteq \overline{D}$ entonces por la observación 5.4.3 concluimos que $\overline{C} = \overline{D}$ lo que implica que C = D.

EJEMPLO 5.4.6. Sea $G = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ con presentación $G \simeq \langle a, b \mid a^2, b^3 \rangle$. Sea el grafo de Cayley Cay $(G, \{a, b, b^2\})$.

Notemos que toda arista de la pinta $\{g,ga\} \in E(\Gamma)$ define un corte con $\delta C = \{g,ga\}$. Es decir todas las aristas con etiqueta a nos definen un 1-corte. Este corte naturalmente es minimal porque no podría ser que δC sea menor. Vale la siguiente igualdad:

$$C_{\min} = \{C \text{ corte } | \exists g \in G, \delta C = \{g, ga\}\}.$$

Notemos que dado $C \in \mathcal{C}_{\min}$ luego necesariamente tenemos que m(C) = 0. Esto se debe a que si $D \in \mathcal{C}_{\min}$ luego $\delta D \in C$ o bien $\delta D \in \overline{C}$ esto nos dice que $D \subseteq C$ o bien que $\overline{D} \subseteq C$ y así que C y D están anidados. Concluimos que $\mathcal{C}_{\min} = \mathcal{C}_{\mathrm{opt}}$.

Veamos ahora si fijamos $C \in \mathcal{C}_{opt}$ como es la clase de equivalencia [C]. Para esto notemos que |[C]| = 3. Esto se debe a que si $\delta C = \{g, ga\}$ entonces los siguientes cortes $D, E \in \mathcal{C}_{opt}$ son tales que $C \sim D \sim E$.

Figura 5.5: Los tres cortes *C*, *D*, *E* están en la misma clase de equivalencia.

Si F es otro corte tal que $\overline{F} \subsetneq C$ tenemos que necesariamente vale que $\overline{F} \subsetneq \overline{D}$ o bien $\overline{F} \subsetneq \overline{E}$.

DEFINICIÓN 5.4.7. Sea Γ un grafo conexo, accesible y localmente finito y sea \mathcal{C}_{opt} el conjunto de sus cortes óptimos. El *árbol de estructura* $T(\mathcal{C}_{opt})$ de un grafo Γ es el siguiente grafo dirigido:

$$V(T(\mathcal{C}_{\text{opt}})) = \{ [C] : C \in \mathcal{C}_{\text{opt}} \}$$

$$E(T(\mathcal{C}_{\text{opt}})) = \{ \{ [C], [\overline{C}] \} : C \in \mathcal{C}_{\text{opt}} \}$$

En particular notemos que está bien definido como grafo no dirigido dado que para todo $C \in \mathcal{C}_{\mathrm{opt}}$ tenemos que $C \not\sim \overline{C}$ por lo que no tiene bucles. Por otro lado si $C \sim D$ entonces no puede pasar que $\overline{C} \sim \overline{D}$ caso contrario obtendríamos que $\overline{C} \subsetneq D$ y que $D \subsetneq \overline{C}$ por lo tanto $\overline{C} \subsetneq \overline{C}$ y esto es una contradicción.

OBSERVACIÓN 5.4.8. Por nuestra construcción el árbol de estructura no tiene porqué ser localmente finito. El grado de cada vértice $[C] \in V(T(\mathcal{C}_{\mathrm{opt}}))$ está acotado por el órden de la clase de equivalencia de C y éste podría ser infinito.

PROPOSICIÓN 5.4.9. El grafo $T(C_{opt})$ es un árbol.

Demostración. Primero veamos que no tiene ciclos. Supongamos que γ es un ciclo

$$\gamma = ([C_0], [C_1], [C_2], \dots [C_{n-1}], [C_0])$$

donde $\overline{C}_i \sim C_{i+1}$ para todo $i=1\dots n-1$. Notemos que $\overline{C}_{i-1} \neq C_i$ para todo $i=1\dots n-1$ sino tendríamos que $C_{i-1}=\overline{C}_i$ y esto implicaría que $C_{i-1}=\overline{C}_i \sim C_{i-1}$ y esto diría que el camino γ no es simple.

De esta manera tenemos una cadena de inclusiones

$$C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq C_{n-1} \tag{5.1}$$

tal que $\overline{C_{n-1}} \sim C_0$. Veamos que no puede haber una arista $\{[C_{n-1}], [C_0]\}$. Si la hubiera tendría que valer alguna de estas dos condiciones:

- **1.** $\overline{C_{n-1}} = C_0$. Esto contradice lo visto en 5.1 dado que en tal caso llegamos a que $\overline{C_{n-1}} \subsetneq C_{n-1}$.
- **2.** $C_{n-1} \subsetneq C_0$ pero esto nos da un absurdo porque en tal caso por 5.1 obtenemos que $C_0 \subsetneq C_0$.

Por lo tanto el grafo resulta ser acíclico.

Veamos ahora que es conexo. Sean [C], $[D] \in V(T(\mathcal{C}_{opt}))$, vamos a construir un camino entre ellos. Por el teorema 5.3.6 tenemos que necesariamente $C, D \in \mathcal{C}_{opt}$ están anidados. Sin pérdida de generalidad podemos suponer que $C \subseteq D$. Por el lema 5.4.1 sabemos que hay finitos cortes E intermedios. Tomemos entonces una sucesión creciente no refinable de cortes de manera que

$$C = C_0 \subsetneq C_1 \subsetneq \cdots \subsetneq C_n = D$$

luego por como tomamos estos cortes obtenemos que $\overline{C}_i \sim C_{i+1}$ por lo tanto obtenemos el siguiente camino $\gamma = ([C], [C_1], \dots, [C_{n-1}], [D])$ en el grafo $T(C_{\text{opt}})$ probando así que es conexo.

§5.5. Acciones sobre el árbol de estructura.

En esta sección vamos a ver que los cortes óptimos no solamente están anidados entre sí sino que si un grupo G actúa sobre el grafo Γ luego actúa sobre estos cortes óptimos. Esta acción se traslada naturalmente a una acción sobre el árbol de estructura.

PROPOSICIÓN 5.5.1. Sea Γ un grafo accesible, conexo y localmente finito tal que $Aut(\Gamma)$ actúa con finitas órbitas sobre este grafo. Entonces $Aut(\Gamma)$ actúa sobre C_{opt} .

Demostración. Para eso notemos que si C es un corte luego si $\varphi \in \operatorname{Aut}(\Gamma)$ tenemos que $\varphi(C)$ es conexo y no vacío. Por otro lado al ser un morfismo del grafo Γ obtenemos que $\overline{\varphi(C)} = \varphi(\overline{C})$ por lo tanto su complemento sigue siendo conexo. Al ser un automorfismo tenemos que $\varphi(\beta C) = \beta(\varphi C)$ y por este motivo tenemos que $|\varphi(\beta C)| = |\beta(\varphi C)|$ y esto nos dice que manda k-cortes en k-cortes.

Veamos que manda un corte minimal en uno minimal. Para eso si $C \in \mathcal{C}_{min}(\alpha)$ para cierto camino infinito α luego notemos que $\varphi(\alpha)$ es otro camino infinito y por ser un automorfismo obtenemos que $\varphi(C) \in \mathcal{C}(\varphi(\alpha))$ y que $|\delta(\varphi(C))| = |\delta C|$. De esta manera $C \in \mathcal{C}_{min}(\alpha) \iff \varphi(C) \in \mathcal{C}_{min}(\varphi(\alpha))$.

Veamos ahora que manda cortes óptimos en cortes óptimos. Sean $C,D\in\mathcal{C}_{\min}$ cortes que no están anidados luego necesariamente $\varphi(C)$ y $\varphi(D)$ no están anidados tampoco. Caso contrario si lo estuvieran supongamos que $\varphi(C)\cap\varphi(D)=\varnothing$ luego tendríamos que dado que $\varphi\in\mathrm{Aut}(\Gamma)$ esto dice que preserva las intersecciones y tiene una inversa por lo que $C\cap D=\varnothing$ y esto contradice que C,D no están anidados. Esto nos dice que C0 actúa sobre los cortes óptimos porque dado $C\in\mathcal{C}_{\mathrm{opt}}(\alpha)$ luego $\varphi(C)\in\mathcal{C}_{\mathrm{opt}}(\varphi(\alpha))$.

Más aún podemos extender esta acción al árbol de estructura.

COROLARIO 5.5.2. Sea Γ un grafo accesible, conexo y localmente finito tal que $Aut(\Gamma)$ actúa con finitas órbitas sobre este grafo. Entonces $Aut(\Gamma)$ actúa sobre $T(C_{opt})$.

Demostración. Sean $C \sim D \in \mathcal{C}_{opt}$ cortes óptimos relacionados probemos que para todo $\varphi \in Aut(\Gamma)$ vale que $\varphi(C) \sim \varphi(D)$. Para eso notemos que si para todo $E \in \mathcal{C}_{opt}$ tenemos que $\overline{C} \subsetneq E \subset D$ implica que E = D luego

$$\overline{\varphi(C)} \subsetneq E \subset \varphi(D) \iff \overline{C} \subsetneq \varphi^{-1}(E) \subset D$$

donde usamos que φ es un automorfismo y que actúa sobre los cortes óptimos. Entonces como $C \sim D$ luego $\varphi^{-1}(E) = D$ lo que implica que $E = \varphi(D)$ tal como queríamos ver. Esto nos dice que la acción dada por $\varphi([C]) = [\varphi(C)]$ está bien definida y por lo tanto actúa sobre los vértices de $T(\mathcal{C}_{\text{opt}})$. Para ver que actúa sobre el árbol notemos que

$$\varphi(\{[C],[\overline{C}]\}) = (\{[\varphi(C)],[\varphi(\overline{C})]\}) = (\{[\varphi(C)],[\overline{\varphi(C)}]\})$$

donde usamos que $\varphi(\overline{C}) = \overline{\varphi(C)}$ dado que $\varphi \in \operatorname{Aut}(\Gamma)$. De esta manera vimos que $\operatorname{Aut}(\Gamma)$ actúa sobre $T(\mathcal{C}_{\operatorname{opt}})$.

LEMA 5.5.3. Sea Γ un grafo accesible, conexo y localmente finito. Si $Aut(\Gamma)$ actúa con finitas órbitas sobre Γ luego actúa con finitas órbitas sobre \mathcal{C}_{opt} y sobre el árbol de estructura $T(\mathcal{C}_{opt})$.

Demostración. Veamos primero que actúa con finitas órbitas sobre \mathcal{C}_{opt} . Para eso tenemos que existe $A \in V(\Gamma)$ dominio fundamental finito de la acción de Aut(Γ) sobre Γ. Por lo tanto para todo corte $C \in \mathcal{C}_{opt}$ podemos tomar otro corte $D \in \mathcal{C}_{opt}$ de manera que para cierta $\varphi \in Aut(\Gamma)$ vale

que $C = \varphi(D)$ y tal que $\delta D \cap A \neq \emptyset$. Entonces la acción de $\operatorname{Aut}(\Gamma)$ sobre $\mathcal{C}_{\operatorname{opt}}$ tiene el siguiente dominio fundamental

$$B = \{ D \in \mathcal{C}_{\text{opt}} \mid \delta D \cap A \neq \emptyset \}.$$

Como el grafo Γ es accesible existe k de manera que todo corte óptimo D es un k-corte. Por el resultado 5.1.7 tenemos que $|B| < \infty$ y así vimos que $\operatorname{Aut}(\Gamma)$ actúa con finitas órbitas sobre $\mathcal{C}_{\operatorname{opt}}$.

Para ver que son finitas las órbitas sobre el árbol de estructura notemos que al ser $V(T(\bar{\mathcal{C}}_{\text{opt}}))$ isomorfo a un cociente de \mathcal{C}_{opt} luego tenemos que en particular las órbitas sobre el árbol de estructura también tienen que ser finitas.

OBSERVACIÓN 5.5.4. Un caso particular que nos interesa es cuando el grafo Γ es el grafo de Cayley para cierto grupo finitamente generado G. En este caso tenemos que G es un subgrupo de $\operatorname{Aut}(\Gamma)$ y como G tiene una única órbita se sigue que $|\operatorname{Aut}(\Gamma)/\Gamma|=1$ de manera que en particular actúa con finitas órbitas.

Nuestro objetivo ahora es entender cómo es la acción sobre el árbol de estructura. Lo primero que vamos a buscar entender es cómo son los estabilizadores de esta acción.

LEMA 5.5.5. Sea Γ un grafo accesible, conexo y localmente finito. Entonces existe $l \in \mathbb{N}$ de manera que $N^l(C) \cap \overline{C}$ es conexo para todo $C \in \mathcal{C}_{opt}$.

Demostración. Primero consideremos algún $C \in C_{opt}$ y después veamos de extender este resultado para todos los cortes óptimos.

Dado que \overline{C} es conexo tenemos que para todo par de vértices $v,w\in \delta C\cap \overline{C}$ existe un camino α_{vw} tal que $\alpha_{vw}\subset \overline{C}$ y es de longitud minimal. Sea $l\in \mathbb{N}$ tal que $l\geqslant \sup_{v,w\in \delta C\cap \overline{C}}d(C,\alpha_{vw})$ que está bien definido dado que existen finitos pares de vértices $v,w\in \delta C\cap \overline{C}$.

Afirmamos que $N^l(C) \cap \overline{C}$ es conexo. Para eso sean $w, w' \in N^l(C) \cap \overline{C}$ luego tenemos que existe un camino tal que conecta a w con $v \in \delta C \cap \overline{C}$ y un camino que conecta a w' con $v' \in \delta C \cap \overline{C}$ y ambos caminos están contenidos en $N^l(C) \cap \overline{C}$. Por la elección de l tenemos que v y v' están conectados en $N^l(C) \cap \overline{C}$ probando así que es conexo.

Para finalizar la demostración observemos que por el lema anterior 5.5.3 tenemos finitas órbitas de la acción de $\operatorname{Aut}(\Gamma)$ sobre los cortes óptimos. Para cada representante de órbita $C_i \in \mathcal{C}_{\operatorname{opt}}$ donde $i=1,\ldots,n$ podemos tomar $l_i \in \mathbb{N}$ de manera que $N^{l_i}(C) \cap \overline{C}_i$ sea conexo. Si tomamos $l=\max_{i=1,\ldots,n} l_i$ vemos que nos sirve para todos los representantes de órbitas y así para todos los cortes óptimos.

OBSERVACIÓN 5.5.6. En particular notemos que si Γ es un grafo localmente finito accesible entonces $|N^l(C) \cap \overline{C}| < \infty$. Esto se puede ver porque si $v \in N^l(C) \cap \overline{C}$ luego existe $w \in \beta C \cap C$ tal que esté en el camino que une v con C. Esto nos dice que $N^l(C) \cap \overline{C} = N^l(\beta C \cap C) \cap \overline{C}$. El conjunto $N^l(\beta C \cap C) \cap \overline{C}$ es finito porque los vecinos de un conjunto finito en un grafo localmente finito forman un conjunto finito.

Ahora definimos un objeto que nos va a ayudar a entender como son estos estabilizadores.

DEFINICIÓN **5.5.7.** Sea Γ un grafo accesible, conexo y localmente finito tal que Aut(Γ) actúa con finitas órbitas sobre \mathcal{C}_{opt} . Sea $l \in \mathbb{N}$ tal que $N^l(C) \cap \overline{C}$ es conexo para todo $C \in \mathcal{C}_{opt}$. El *bloque* asignado a $[C] \in V(T(\mathcal{C}_{opt}))$ está definido como

$$B([C]) = \bigcap_{D \sim C} N^l(D).$$

Veamos que estos bloques no son vacíos.

LEMA 5.5.8. Tenemos la siguiente igualdad de conjuntos,

$$B([C]) = \bigcap_{D \sim C} D \cup \bigcup_{D \sim C} N^{l}(D) \cap \overline{D}$$

Demostración. Veamos las dos inclusiones.

- (⊆). Sea $v \in B([C])$. Si $v \in \bigcap_{D \sim C} D$ ya está. Caso contrario tenemos que debe existir $D \in [C]$ tal que $v \in N^l(D) \cap \overline{D}$ y por lo tanto queda probada esta inclusión.
- (⊇). Nos alcanza con ver que $N^l(D) \cap \overline{D} \subseteq B([C])$ para todo $D \in [C]$. Para eso notemos que al estar en la misma clase de equivalencia tenemos que

$$N^l(D) \cap \overline{D} \subseteq \overline{D} \subsetneq C \subseteq N^l(C)$$

terminando de probar esta inclusión y así obteniendo la igualdad de conjuntos.

Estos bloques aparte cumplen que son conexos.

LEMA 5.5.9. Sea Γ grafo infinito, conexo, localmente finito y accesible tal que $Aut(\Gamma)$ actúa con finitas órbitas sobre Γ . Existe una constante $\kappa \in \mathbb{N}$ tal que para todo $C \in \mathcal{C}_{opt}$ y todo $S \subseteq B([C])$ tenemos que: Cuando dos vértices $u, v \in B([C]) \setminus N^{\kappa}(S)$ se pueden conectar por algún camino en $\Gamma \setminus N^{\kappa}(S)$ entonces se pueden conectar por algún camino en $B([C]) \setminus S$.

Demostración. La acción de Aut(Γ) sobre C_{opt} tiene finitas órbitas entonces por lo probado en el lema 5.5.5 podemos considerar $\kappa = \max\{d(u,v) \mid D \in C_{\text{opt}}, u,v \in N^l(D) \cap \overline{D}\}$. Veamos que esta constante nos sirve.

Vamos a probarlo por inducción en la longitud del camino. Sea γ camino en $\Gamma \backslash N^{\kappa}(S)$ tal que une u con v. Queremos ver de acortar este camino usando el que $N^l(D) \cap \overline{D}$ es conexo. Si $\gamma \subseteq B([C])$ no hay nada que probar. Entonces consideremos el primer vértice v_m de γ tal que $v_m \notin B([C])$ y esto quiere decir que para cierto $D \in [C]$ tenemos que $v_m \notin N^l(D)$. Por como tomamos a v_m y por el lema 5.5.8 tenemos que $v_{m-1} \in N^l(D) \cap \overline{D}$.

Consideremos ahora el primer vértice v_n de γ con n>m tal que $v_n\in N^l(D)$. Por ser el primer vértice que aparece en el camino después de v_m y por el lema 5.5.8 tiene que valer que $v_n\in N^l(D)\cap \overline{D}$.

Dado que $N^l(D) \cap \overline{D}$ es conexo tenemos un camino de longitud minimal que une v_{m-1} con v_n tal que está contenido en $N^l(D) \cap \overline{D}$ y en particular por el lema 5.5.8 está contenido en B([C]).

Este camino evita S porque para todo w en el camino vale que

$$d(v_n, w) \leq d(v_n, v_{m-1}) \leq \kappa$$

dado que $v_n, v_{m-1} \in \delta D \cap \overline{D}$ y dado que el camino tiene longitud mínima. Luego si algún w del camino estuviera en S tendríamos que $d(v_n, S) \leq \kappa$ contradiciendo que partimos de un camino γ que está contenido en $\Gamma \setminus N^{\kappa}(S)$.

OBSERVACIÓN 5.5.10. Como corolario del resultado anterior obtenemos que para todo $C \in \mathcal{C}_{\text{opt}}$ vale que B([C]) es conexo. Esto porque podemos tomar $S = \emptyset$.

LEMA 5.5.11. Sea Γ grafo accesible, infinito, conexo, localmente finito tal que $Aut(\Gamma)$ actúa con finitas órbitas sobre Γ , D corte $g \in Aut(\Gamma)$. Entonces vale la siguiente igualdad de conjuntos:

$$g \cdot N^l(D) = N^l(g \cdot D).$$

Demostración. Veamos las dos contenciones.

- (⊆). Sea $v \in N^l(D)$ luego existe $w \in D$ tal que $d(v,w) \le l$. Como multiplicar por g es un automorfismo manda vértices adyacentes en vértices adyacentes, en particular no aumenta la distancia. Esto es que $d(g \cdot v, g \cdot w) \le l$ concluyendo así que $g \cdot v \in N^l(g \cdot D)$.
- (⊇). Si $v \in N^l(g \cdot D)$ luego tenemos que debe existir $w \in D$ tal que $d(g \cdot w, v) \leq l$. Ahora como multiplicar por g es un automorfismo con inversa multiplicar por g^{-1} obtenemos que

$$d(g^{-1} \cdot v, w) \leq l \implies g^{-1}v \in N^l(D) \implies v \in g \cdot N^l(D).$$

Dado $C \in \mathcal{C}_{opt}$ definimos el estabilizador $G_{[C]} = \{g \in G \mid g \cdot [C] \subseteq [C]\}.$

LEMA 5.5.12. Sea Γ grafo accesible, infinito, conexo, localmente finito tal que G actúa con finitas órbitas sobre Γ , D corte $g \in G$ tal que $g \in G_{[C]}$ luego tenemos que $g \cdot B([C]) = B([C])$.

Demostración. Si $v \in B([C])$ luego $v \in \bigcap_{C \sim D} N^l(D)$. Por lo tanto usando que multiplicar por g es un automorfismo del grafo obtenemos la siguiente igualdad

$$g \cdot v \in \bigcap_{C \sim D} g \cdot N^l(D)$$

por lo que por el lema 5.5.11 concluímos que

$$g \cdot v \in \bigcap_{C \sim D} N^l(g \cdot D).$$

Por nuestra hipótesis tenemos que $g\cdot D\sim C$ para todo $D\in [C]$ por lo tanto renombrando obtenemos la siguiente igualdad

$$g \cdot v \in \bigcap_{C \sim D} N^l(D) = B([C]),$$

tal como queríamos ver.

LEMA 5.5.13. Sea Γ un grafo conexo, localmente finito y accesible tal que G actúa sobre Γ con finitas órbitas y sea $C \in \mathcal{C}_{opt}$. Entonces $G_{[C]}$ actúa con finitas órbitas sobre [C].

Demostración. Podemos ver que $G_{[C]}$ actúa sobre [C] si restringimos la acción de G al subgrupo $G_{[C]}$. Como G actúa con finitas órbitas tenemos que existen finitos cortes $D_1,\ldots,D_k\in [C]$ de manera que las órbitas $\mathcal{O}(D_i)$ son distintas para todo $1\leqslant i\leqslant k$. Sea $D\in [C]$ entonces existe $g\in G$ y D_i tal que $D=gD_i$ y como $D\sim gD_i\sim C$ esto dice que $gC\sim C$ lo que implica que $g\in G_{[C]}$. De esta manera tenemos que $G_{[C]}$ también actúa con finitas órbitas sobre [C].

LEMA 5.5.14. Sea Γ un grafo conexo, localmente finito y accesible tal que G actúa sobre Γ con finitas órbitas. Entonces existe $m \in \mathbb{N}$ tal que para todo $v \in B([C])$ existe un corte $D \in [C]$ que cumple que $d(v, \beta D) \leq m$.

Demostración. Probemos entonces que existe tal corte D. Sea $v \in B([C])$ luego tenemos que si existe un corte $D \in [C]$ tal que $v \in N^l(D) \cap \overline{D}$ ya está porque podemos tomar m = l. Entonces nos interesa el caso que $v \in D$ para todo $D \sim C$. Sabemos que G actúa con finitas órbitas sobre el grafo G por lo tanto debe existir G finito tal que G (G) G inito tal que G (G) G inito tenemos que debe existir G para todo G para todo G para todo que G inito tenemos que debe existir G para todo G para todo G para todo que G0. Esto nos dice que usando el lema 5.5.11 luego

$$d(g \cdot u, \beta(g \cdot C)) \leq m$$
,

por lo tanto $v \in B([C])$ está en una bola de radio m de $\beta(g \cdot C)$. Sea $w \in \beta(g \cdot C)$ tal que $d(v, w) \leq m$. Podemos suponer que $w \in \beta(g \cdot C) \cap B([C])$, caso contrario tendríamos que $w \in \beta(g \cdot C)$ y para todo $D \sim C$ tendríamos que $w \in \overline{D}$ lo que implicaría que $d(v, \beta D) \leq m$ y en este caso no quedaría nada para probar dado que habríamos encontrado al corte $D \in [C]$ que cumple que $d(v, \beta D) \leq m$.

Probemos que $\beta(g \cdot C) \subseteq \bigcup_{D \sim C} \beta D$. Entonces supongamos que $w \in \beta(g \cdot C) \cap B([C])$ y más aún nos queda considerar el caso que $w \in D$ para todo $D \sim C$ y $w \in \beta(g \cdot C)$.

Por la proposición 5.3.6 tenemos que $g \cdot C$ y C están anidados. Renombrando a $g \cdot C$ de ser necesario obtenemos dos casos en particular, $g \cdot C \subsetneq C$ y $C \subseteq g \cdot C$.

El caso que $C \subseteq \overline{g \cdot C}$ tenemos que $g \cdot C \subseteq \overline{C}$ lo que nos dice que $\beta(g \cdot C) \subseteq \beta \overline{C} \cup \overline{C}$. Como suponemos que $w \in C$ luego esto nos dice que $w \in \beta \overline{C} = \beta C$ tal como queríamos ver.

Consideremos ahora el caso que $\overline{g \cdot C} \subsetneq C$. Por la obs 5.4.4 tenemos que existen finitos cortes intermedios y debe existir $D \in \mathcal{C}_{opt}$ tal que $\overline{g \cdot C} \subseteq \overline{D} \subsetneq C$ y resulta maximal respecto a la inclusión

y así por definición $D \sim C$. Como $w \in \bigcap_{C \sim D} D \subseteq B([C])$ luego tenemos que $w \in D \cap \beta(g \cdot C)$. Como tenemos la siguiente contención $\beta(g \cdot C) \subseteq \beta D \cup \overline{D}$ obtenemos que

$$w \in D \cap (\beta D \cup \overline{D}) \implies w \in \beta D$$

tal como queríamos ver.

LEMA 5.5.15. Sea Γ un grafo conexo, localmente finito y accesible tal que G actúa sobre Γ con finitas órbitas. Entonces $G_{[C]}$ actúa con finitas órbitas sobre B([C]).

Demostración. Como G actúa con finitas órbitas sobre $\mathcal{C}_{\mathrm{opt}}$ en particular lo hace sobre el subconjunto $\bigcup_{D \sim C} \beta D$. Como corolario de 5.5.13 vemos que $G_{[C]}$ actúa con finitas órbitas en el conjunto $\bigcup_{D \sim C} \beta D$.

Por el lema previo 5.5.12 vimos que $G_{[C]}$ actúa sobre B([C]). Queremos ver que lo hace con finitas órbitas. Para eso sabemos que existe $m \in \mathbb{N}$ tal que para todo $v \in B([C])$ existe un corte $D \in [C]$ que cumple que $d(v, \beta D) \leq m$ gracias al lema 5.5.14.

Con esto nos alcanza para ver que $G_{[C]}$ actúa con finitas órbitas sobre B([C]). Nos armarnos un dominio fundamental finito de la acción de $G_{[C]}$ en B([C]) de la siguiente manera. Dado que existen finitos v_1, \ldots, v_n tales que $v_i \in \beta D_i$ para algún $D_i \in [C]$ tales que son dominio fundamental de la acción de $G_{[C]}$ en $\bigcup_{D \sim C} \beta D$ podemos considerar el conjunto $A = \bigcup_{i=1...n} N^m(v_i)$. Luego este conjunto es un dominio fundamental de la acción de $G_{[C]}$ en B([C]) y es finito porque Γ es localmente finito.

LEMA 5.5.16. Sea Γ un grafo infinito, conexo, localmente finito y accesible. Los bloques B([C]) tienen a lo sumo un solo end.

Demostración. Si el bloque tuviera más de un end entonces debería existir α camino infinito y $S \subseteq B([C])$ finito de manera que α tiene infinitos vértices en dos componentes conexas distintas de $B([C]) \setminus S$. Para todo $D \in [C]$ tenemos que $\alpha \subseteq B([C]) \subseteq N^l(D)$ y por el lema 5.5.5 sabemos que $|N^l(D) \cap \overline{D}| < \infty$. Esto nos dice que en particular tenemos que $|\alpha \cap \overline{D}| < \infty$.

El conjunto $N^l(S)$ sigue siendo finito por lo tanto tenemos que α tiene infinitos vértices en $\Gamma \backslash N^l(S)$. Por el lema 5.5.9 tenemos que dados dos vértices de B[C] luego todo camino en $\Gamma \backslash N^l(S)$ que los conecte se puede tomar para que esté dentro de $B([C]) \backslash S$. De esta manera tienen que existir dos componentes conexas de $\Gamma \backslash N^l(S)$ tales que tengan infinitos vértices de α . Caso contrario negaríamos que existen dos componentes conexas de $B([C]) \backslash S$ que tienen infinitos vértices de α . Esto nos dice que $\mathcal{C}_{\alpha} \neq \emptyset$. Como el conjunto de cortes es no vacío debe existir $E \in \mathcal{C}_{\mathrm{opt}} \cap \mathcal{C}_{\alpha}$. Como $E \in \mathcal{C}_{\alpha}$ luego tenemos que $|\alpha \cap E| = \infty = |\alpha \cap \overline{E}|$. Nuestro objetivo es llegar a una contradicción de suponer la existencia de este corte.

Dado que $E, C \in \mathcal{C}_{opt}$ luego están anidados gracias a la proposición 5.3.6. Dos posibilidades están descartadas. Es imposible que $E \subseteq \overline{C}$ o bien $\overline{E} \subseteq \overline{C}$ porque en ambos casos contradecimos que $E \in \mathcal{C}_{\alpha}$. Nos queda considerar los otros dos casos que son $E \subsetneq C$ o bien $\overline{E} \subsetneq C$, ambos casos los tratamos análogamente. Por la observación 5.4.4 tenemos existe $D \in [C]$ tal que

$$E\subseteq \overline{D}\varsubsetneq C$$

pero como justamente $D \sim C$ tenemos que $E \cap \alpha \subseteq \overline{D} \cap \alpha$ pero $|\alpha \cap \overline{D}| < \infty$ y esto es una contradicción porque suponíamos que $E \in \mathcal{C}_{\alpha}$.

LEMA 5.5.17. Sea Γ un grafo conexo, localmente finito e infinito de manera que $Aut(\Gamma)$ actúa con finitas órbitas sobre Γ . Entonces Γ tiene una geodésica infinita.

Demostración. Dada γ una geodésica de longitud impar denotaremos $m(\gamma)$ su vértice medio. El grafo es infinito entonces existen geodésicas de cualquier tamaño arbitrario. En particular como la acción de $\operatorname{Aut}(\Gamma)$ tiene un dominio fundamental finito obtenemos que tiene que haber algún vértice v_0 de manera que $m(\gamma) = v_0$ para infinitas geodésicas γ de longitud arbitraria.

En base a este vértice vamos a construir un árbol T de la siguiente manera. La raíz va a ser v_0 y los vértices van a ser $(v_{-n}, \ldots, v_0, \ldots, v_n)$ geodésicas que tienen a v_0 como punto medio. Las aristas entonces van a ser

$$((v_{-n},\ldots,v_0,\ldots,v_n),(v_{-n-1},\ldots,v_0,\ldots,v_{n+1}))$$

siempre y cuando $(v_{-n-1}, \ldots, v_0, \ldots, v_{n+1})$ siga siendo una geodésica con v_0 su punto medio. Dado que el grafo Γ es localmente finito por suposición tenemos que T también lo va a ser.

Finalmente para encontrar la geodésica infinita lo que hacemos es usar el lema de König 5.2.2 en T para obtener un rayo en T, que se corresponde justamente con una geodésica infinita en Γ tal como buscábamos.

LEMA 5.5.18. Sea Γ un grafo infinito, conexo y con treewidth finito de manera que $Aut(\Gamma)$ actúa con finitas órbitas sobre Γ . Entonces Γ tiene más de un end.

Demostración. Este grafo resulta ser accesible por el teorema 5.2.10. Consideremos $m = \max\{d(u,v) : u,v \in \beta C \cap \overline{C}\}$ para todo $C \in \mathcal{C}_{opt}$. Esto lo podemos considerar porque por el lema 5.5.3 tenemos que $\operatorname{Aut}(\Gamma)$ actúa con finitas órbitas sobre \mathcal{C}_{opt} .

Supongamos que Γ no tiene más de un end. Sea $\alpha = (\dots v_{-n}, \dots, v_0, \dots, v_n \dots)$ una geodésica infinita como en el lema 5.5.17. Usando 5.2.8 tenemos que debe existir un k-corte C de manera que $d(v_0, \overline{C}) > m$, $v_0 \in C$ y tal que $|\alpha \cap \overline{C}| = \infty$. Como suponemos que el grafo no tiene más de un end entonces necesariamente vale que $\mathcal{C}_{\alpha} = \emptyset$. Veamos que esto nos da una contradicción.

Como $|\alpha \cap C| < \infty$ debe existir $i, j \in \mathbb{N}$ de manera que $v_{-i} \in \beta C \cap \overline{C}$ y $v_j \in \beta C \cap \overline{C}$. Dado que α es geodésico tenemos que

$$d(v_{-i}, v_i) = d(v_{-i}, v_0) + d(v_0, v_i) = 2m$$

y esto es una contradicción por como elegimos a m. Concluyendo así que Γ tiene más de un end.

Consideremos \mathcal{G} una clase de grupos tal que es cerrada por subgrupos de índice finito. En nuestro caso en particular nos va a interesar la clase de grupos finitos pero otras clases interesantes que cumplen esta propiedad son la de los grupos virtualmente libres por lo visto en la proposición 3.3.6. Recordemos que un grupo G es virtualmente G si existe G subgrupo de G de índice finito tal que G que G de índice finito tal que G de

LEMA 5.5.19. Sea Γ un grafo conexo, localmente finito, accesible tal que $Aut(\Gamma)$ actúa con finitas órbitas y sea G grupo que actúa en Γ por automorfismos. Consideremos que para todo vértice $v \in V(\Gamma)$ tenemos que $G_v \in \mathcal{G}$. Entonces dado $U \subseteq V(\Gamma)$ finito tenemos que $G_u = \{g \in G \mid g \cdot U \subset U\}$ es virtualmente \mathcal{G} .

Demostración. Tenemos el morfismo $G_U \to \operatorname{Sym}(U)$ que tiene como núcleo al subgrupo $\bigcap_{u \in U} G_u$ de índice finito en G_U . Veamos que esta intersección es un grupo que está en \mathcal{G} .

Para todo $k \in \mathbb{N}$ tenemos que G_v actúa sobre $B_k(v) = \{w \in V(\Gamma) : d(w,v) \leq k\}$. Elegimos k de manera que $U \subset B_k(v)$. Dado que Γ es localmente finito tenemos que $B_k(v)$ es finito y así que si N es el núcleo de la acción $G_v \to B_k(v)$ entonces N tiene índice finito y por lo tanto N está en \mathcal{G} . Como $[G_v : N] < \infty$ esto implica que $[\bigcap_{u \in U} G_u : N] < \infty$ y esto implica que $\bigcap_{u \in U} G_u$ está en \mathcal{G} y por lo tanto G_U es virtualmente \mathcal{G} .

PROPOSICIÓN 5.5.20. Sea Γ un grafo conexo, localmente finito, accesible tal que $Aut(\Gamma)$ actúa con finitas órbitas y sea G grupo que actúa en Γ por automorfismos. Consideremos que para todo vértice $v \in V(\Gamma)$ tenemos que $G_v \in \mathcal{G}$. Entonces:

- **1.** G actúa con estabilizadores virtualmente \mathcal{G} en las aristas de $T(\mathcal{C}_{opt})$.
- **2.** Si B([C]) es finito para todo $C \in C_{opt}$ entonces G actúa con estabilizadores virtualmente G en los vértices de $T(C_{opt})$.

Demostración. Probemos **1**. Tenemos que si $g \in G_{\{C,\overline{C}\}}$ luego esto nos dice que $g \cdot C = C$ y que $g \cdot \overline{C} = \overline{C}$. En particular obtenemos que $g \cdot \beta C \subset \beta C$. Esto nos dice que $g \in G_{\beta C}$ y como $|\beta C| < \infty$ entonces por el lema 5.5.19 obtenemos que $G_{\{C,\overline{C}\}}$ es virtualmente $\mathcal G$ tal como queríamos ver.

como el grupo G actúa con finitas órbitas y βC es finito debe ser que existe $U \in V(\Gamma)$ de manera que $g \in G_U$. Como $N \leqslant G_{\{[C],[\overline{C}]\}}$ luego tenemos que $G_{\{[C],[\overline{C}]\}}$ es virtualmente \mathcal{G} .

Probemos que vale **2**. Por el lema 5.5.15 tenemos que si B([C]) es finito entonces $G_{[C]}$ actúa con finitas órbitas sobre B([C]). En particular tenemos que si $g \in G_{[C]}$ luego $g \in G_{B([C])}$ y como $|B([C])| < \infty$ esto nos dice que por el lema 5.5.19 que $G_{[C]}$ es virtualmente $\mathcal G$ tal como queríamos ver.

TEOREMA 5.5.21. Sea Γ grafo conexo, localmente finito con treewidth finito. Sea G grupo que actúa en Γ por medio de automorfismos con finitas órbitas y tal que para cada vértice $v \in V(\Gamma)$ tenemos que el estabilizador G_v es finito. Entonces G actúa en $T(C_{opt})$ con finitas órbitas y con estabilizadores finitos.

Demostración. Por la proposición 5.5.3 tenemos que G actúa con finitas órbitas sobre $T(\mathcal{C}_{\mathsf{opt}})$.

Veamos ahora que los estabilizadores son finitos. Para eso queremos ver primero que B([C]) es finito. Para esto notemos que B([C]) tiene treewidth finito por ser subgrafo de un grafo con treewidth finito y aparte resulta ser accesible por el teorema 5.2.10. Esto nos dice que $G_{[C]}$ actúa con finitas órbitas sobre B([C]). Ahora supongamos que B([C]) es infinito, en este caso por el lema 5.5.18 tendríamos que debería tener más de un end pero anteriormente vimos en el lema 5.5.16

que estos grafos no pueden tener más de end. De esta manera descartamos que B([C]) es infinito y por lo tanto es finito. Ahora para finalizar usamos el resultado 5.5.20 para la clase \mathcal{G} de los grupos finitos.

COROLARIO 5.5.22. Si G es un grupo con treewidth finito entonces G es el grupo fundamental de un grafo de grupos con grupos finitos en sus vértices y aristas.

Demostración. Usamos el resultado anterior 5.5.21 para obtener que actúa sobre un árbol con finitas órbitas y con estabilizadores finitos. Por el teorema central de Bass Serre 2.4.12 concluímos lo que queríamos probar.

Todo list

Bibliografía

- [Ani71] A. V. Anisimov. Group languages. Cybernetics, 7(4):594–601, 1971. 5
- [Ant11] Yago Antolin. On cayley graphs of virtually free groups. 2011. 5
- [AS17] Vítor Araújo and Pedro V Silva. Geometric characterizations of virtually free groups. *Journal of Algebra and Its Applications*, 16(09):1750180, 2017. 5
- [BH13] Martin R Bridson and André Haefliger. *Metric spaces of non-positive curvature*, volume 319. Springer Science & Business Media, 2013. 86
- [DD89] Warren Dicks and Martin John Dunwoody. *Groups acting on graphs*, volume 17. Cambridge University Press, 1989. 29, 104
- [Die05] Reinhard Diestel. *Graph Theory (Graduate Texts in Mathematics)*. Springer, August 2005. 5, 79, 96
- [Dun79] Martin J Dunwoody. Accessibility and groups of cohomological dimension one. *Proceedings of the London Mathematical Society*, 3(2):193–215, 1979. 104
- [Dun82] Martin J Dunwoody. Cutting up graphs. Combinatorica, 2:15–23, 1982. 104
- [DW13] Volker Diekert and Armin Weiß. Context-free groups and their structure trees. *International Journal of Algebra and Computation*, 23(03):611–642, 2013. 93
- [DW17] Volker Diekert and Armin Weiß. Context-free groups and bass-serre theory. In *Algorithmic* and geometric topics around free groups and automorphisms, pages 43–110. Springer, 2017. 5, 29, 46, 79, 89
- [HU79] John E. Hopcroft and Jeff D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Publishing Company, 1979. 5, 13, 15, 18, 19, 68
- [KL05] Dietrich Kuske and Markus Lohrey. Logical aspects of cayley-graphs: the group case. *Annals of Pure and Applied Logic*, 131(1-3):263–286, 2005. 79
- [KPS73] Abraham Karrass, Alfred Pietrowski, and Donald Solitar. Finite and infinite cyclic extensions of free groups. *Journal of the Australian Mathematical Society*, 16(4):458–466, 1973.

[Krö10] Bernhard Krön. Cutting up graphs revisited—a short proof of stallings' structure theorem. 2010. 93

- [Löh17] Clara Löh. Geometric group theory. Springer, 2017. 86, 87
- [LS77] Roger C Lyndon and Paul E Schupp. Combinatorial group theory. chapter 4, pages "174–235". Springer, 1977. 5, 37, 38
- [MS83] David E Muller and Paul E Schupp. Groups, the theory of ends, and context-free languages. *Journal of Computer and system sciences*, 26(3):295–310, 1983. 5, 65, 78
- [MS85] David E Muller and Paul E Schupp. The theory of ends, pushdown automata, and second-order logic. *Theoretical Computer Science*, 37:51–75, 1985. 65, 89, 90
- [Ser02] Jean-Pierre Serre. Trees. Springer Science & Business Media, 2002. 29, 41, 46, 60
- [Sta71] John Robert Stallings. Group theory and three-dimensional manifolds. *Yale University Press*, 1971. 98
- [SW79] Peter Scott and Terry Wall. Topological methods in group theory. In *Homological group theory* (*Proc. Sympos., Durham, 1977*), volume 36, pages 137–203, 1979. 29
- [TW93] Carsten Thomassen and Wolfgang Woess. Vertex-transitive graphs and accessibility. *Journal of Combinatorial Theory, Series B*, 58(2):248–268, 1993. 93, 98