Chapter 1: The Basics

Slides by: Prof. Alok Shukla

Department of Physics, I.I.T. Bombay, Powai, Mumbai 400076

Vectors and Coordinate Systems

- Mathematicians define vectors as a set of numbers which transform in a particular way when the coordinate system is changed
- Physicists think of vectors as physical quantities with which a direction can be attached

Properties of vectors (continued)

Consider two vectors B and C

 If these two vectors have the same length, and the same direction, they are equal

$$B = C$$

- If length of a vector is one unit, it is called a unit vector.
- The unit vector associated with a vector A is defined as

$$\hat{A} = \frac{A}{|A|},$$

where |A| is the length (magnitude) of the vector. We will also use the notation A=|A|

Properties of vectors....

So that

$$A = A\hat{A}$$
.

Algebraic operations on vectors

• One can multiply a vector by a scalar (number)

- The operation leads to a change in magnitude of the original vector if b > 0
- Will flip the direction as well, if b < 0
- ullet Obviously, for b=-1, just a direction flip occurs

Adding and Subtracting Vectors

• Given two vectors A and B, one can add the two, which can be shown pictorially as

• Similarly, one can subtract one from the other

Algebraic properties of vectors

Vector addition is commutative

$$A + B = B + A$$

 Associative law holds with respect to vector addition and scalar multiplication

$$A + (B + C) = (A + B) + C$$
$$c(dA) = (cd)A$$

Distributive law also holds

$$c(A+B) = cA+cB$$

 $(c+d)A = cA+dA$

above c and d are scalars.

Algebraic properties contd...

• Pictorial proof of commutative law is as follows

Multiplication of vectors

- Can one also multiply two vectors?
- Yes, and in two possible ways!
- In one case, the end result is a scalar, so the product is called "scalar product" or "dot product".
- In the other case, the end result is a vector, and the product is called "cross product".
- Pictorially, the dot product can be shown as

Multiplication of vectors, contd...

Mathematically it is defined as

$$A \cdot B = AB \cos \theta$$
,

where θ is the angle between two vectors.

Which can also be stated as

$$A \cdot B = projection of A on B$$

= projection of B on A

Naturally

$$A \cdot A = AA \cos 0^{\circ} = A^2 = |A|^2.$$

• This helps as define |A| as

$$A = |A| = \sqrt{A \cdot A}.$$

Vector Cross Product

ullet Consider two vectors A and B, with an angle ullet between them, as shown below

• The cross product of the two vectors yields a third vector C (say), and the operation is mathematically denoted as

$$C = A \times B$$
.

• The magnitude of C is given by

$$C = AB\sin\theta$$
.

- And the direction of C is perpendicular to both A and B, given by the right-hand rule
- Above θ is taken to be the angle which is less than π .

Cross product continued...

 Easy to verify, that the cross product of a vector with itself is null vector

$$A \times A = 0$$

- As a matter of fact, cross product between any two parallel $(\theta=0)$ and anti-parallel $(\theta=\pi)$, will always be zero.
- The direction of the cross product can be understood from the following figure

• A consequence of right-hand rule is

$$A \times B = -B \times A$$

Examples of dot and cross products in physics

ullet Work done W, due to a force F, causing displacement d, is given by

$$W = F \cdot d$$

• Torque au, due to a force F, applied at a point whose position vector with respect to the reference point is r, is given by

$$\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F}$$
.

 Force F acting on a charged particle with charge q, moving with velocity v, exposed to a magnetic field B, is given by

$$F = qv \times B$$
.

Area as a cross product

- Even the surface area can be defined as a vector, in terms of a cross product
- Consider the parallelogram shown below

Its area can be written as

$$A = \mathsf{base} \times \mathsf{height}$$

= $CD \sin \theta$
= $|\mathsf{C} \times \mathsf{D}|$

Area as vector....

 The direction is chosen to be one of the outward drawn normals n̂, so that

$$A = |C \times D|\hat{n}$$
.

- There is an ambiguity in the choice of \(\hat{n}\), because there are two possibilities
- Choice doesn't matter as long as we are consistent with it

Coordinate Systems: Cartesian Coordinates

- So far we have described vectors in abstract terms
- But, we have to come up with a way of representing real-life vectors such as velocity, force, torque etc. in numerical terms
- For the purpose we need to define a coordinate system
- Then all the vectors can be represented with respect to the chosen coordinate system
- The simplest coordinate system in 3D is the Cartesian system
- Which is defined by three mutually perpendicular directions x, y, and z.
- A vector A, in this system, is defined by three components A_x , A_y , and A_z .

Cartesian Coordinate System contd.

 Symbolically we can represent the vector A, in terms of its components, as

$$A = (A_x, A_y, A_z).$$

 We can also define a set of unit vectors î, ĵ, and k, in x, y, and z directions, respectively

Cartesian coordinates....

- Unit vectors \hat{i} , \hat{j} , and \hat{k} , are called basis vectors of the 3D Cartesian coordinate system
- Now we can express A, as a linear combination of these basis vectors

$$A = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}.$$

 Because these basis vectors are perpendicular to each other, they satisfy

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$
$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$
$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}; \ \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}; \ \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$$

Cartesian coordinates...

• Using this, it is easy to verify the following

$$A + B = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k} = B + A$$

$$A \cdot B = A_x B_x + A_y B_y + A_z B_z$$

$$|A| = \sqrt{A \cdot A} = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Similarly

$$A \times B = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{array} \right|$$

Position Vector...

• Position vector of a point P, with Cartesian coordinates (x, y, z), is given by

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

• Vector connecting two points (x, y, z), and (x + dx, y + dy, z + dz), which are infinitesimally apart from each other, is given by

$$d\mathbf{r} = dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}} + dz\hat{\mathbf{k}}$$

Coordinate System: Plane Polar Coordinates

 Whenever we are dealing with a system with circular symmetry, such as a particle executing circular motion, it is much more convenient to use a different set of coordinates called "Plane Polar Coordinates.

- It is a 2D coordinate system equivalent to Cartesian 2D:(x,y)
- Location of a point specified by (r, θ)
- r is distance from the origin
- $m{ heta}$ is the angle which line joining the point to the origin, makes with the x axis.

Plane polar coordinates contd.

Clearly

$$x = r\cos\theta$$
$$y = r\sin\theta$$

• Easy to deduce from above

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Plane polar coordinates ...

• Unit vectors denoted as \hat{r} and $\hat{\boldsymbol{\theta}}$ are shown below

- Direction of $\hat{\mathbf{r}}$ is the one in which r increases, but $\boldsymbol{\theta}$ is held fixed.
- Similarly $\hat{\boldsymbol{\theta}}$ is in the direction in which $\boldsymbol{\theta}$ increases, but r is held fixed
- Yet \hat{r} and $\hat{\theta}$ are mutually perpendicular, just like \hat{i} and \hat{j} .
- Also note that unlike Cartesian coordinates, (r, θ) have different dimensions.
- r has dimensions of length, while θ is dimensionless

Plane Polar Coordinates....

- In Cartesian coordinates, directions of unit vectors \hat{i} , \hat{j} and \hat{k} are fixed in space, and same everywhere
- This is not true in plane polar coordinates

Relation between plane polar and Cartesian unit vectors

Consider the figure below

 From above, it is easy to derive the relationship between two sets of unit vectors

$$\hat{\mathbf{r}} = \cos \theta \hat{\mathbf{i}} + \sin \theta \hat{\mathbf{j}}$$

$$\hat{\boldsymbol{\theta}} = -\sin \theta \hat{\mathbf{i}} + \cos \theta \hat{\mathbf{j}}$$

Polar-Cartesian Relationship contd...

• And, the inverse relationship

$$\hat{\mathbf{i}} = \cos \theta \hat{\mathbf{r}} - \sin \theta \,\hat{\boldsymbol{\theta}}$$
$$\hat{\mathbf{j}} = \sin \theta \hat{\mathbf{r}} + \cos \theta \,\hat{\boldsymbol{\theta}}$$

Polar-Cartesian Comparison

 Position vector of an arbitrary point P in two coordinate systems is given by

$$r = x\hat{i} + y\hat{j}$$
$$r = r\hat{r}$$

Infinitesimal displacement dr is given by

$$dr = dx\hat{i} + dy\hat{j}$$
$$dr = dr\hat{r} + rd\theta\hat{\theta}$$