Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia
Camilo Garcia-Jimeno

University of Pennsylvania

November 19th, 2015

What is the causal effect of T^* ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y − Outcome of interest
- ▶ h Unknown function that does not depend on i
- ▶ T* Unobserved, endogenous binary treatment
- ➤ T Observed, mis-measured surrogate for T*
- ▶ x − Exogenous covariates
- \triangleright ε Mean-zero error term
- ▶ z − Discrete instrumental variable

Example 1: Smoking and Birthweight (SNAP Trial)

Coleman et al. (N Engl J Med, 2012)

RCT with 1050 pregnant smokers in England: 521 given nicotine patches, the rest given placebo patches.

- ▶ y Birthweight
- ▶ T* True smoking behavior
- ► T Self-reported smoking behavior
- x Mother characteristics
- z Indicator of nicotine patch

Example 2: Schooling and Test Scores

Burde & Linden (2013, AEJ Applied)

RCT in Afghanistan: 32 villages divided into 11 clusters. Randomly choose 6 and build a school in each village of these clusters.

- ▶ y Score on math and language test
- ▶ T* True school attendance
- ► T Self-reported school attendance
- x Household characteristics
- ▶ z School built in village

Example 3: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Non-classical Measurement Error: Binary T^*

- Many applications of linear model have binary treatment
- ▶ Binary $T^* \implies \mathbb{E}[T^*w] \le 0$
- Misclassification Probabilities:

$$\alpha_0 = \mathbb{P}(T = 1 | T^* = 0)$$
 $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1)$

- ▶ Non-Differential Measurement Error: $T \perp (z, u) | T^*$
- $\sigma_{T^*}^2 \not< \sigma_T^2$ so work with α_0, α_1 rather than κ
- Four-dimensional Problem...

Results for a Mis-classified Binary Regressor

Aigner (1973), Bollinger (1996)...

▶ Even if $\rho_{T^*u} = 0$, OLS is biased and inconsistent: typically attenuated towards zero *but could flip signs!*

Kane et al. (1999), Black et al. (2000), Frazis et al. (2003)...

- $ho_{zu}=0 \implies \text{IV}$ solves endogenous regressor problem if there is no mis-classification
- $ho_{T^*u}=0$ and $ho_{zu}=0 \implies$ non-linear GMM estimator can solve the mis-classification problem

OLS and IV Probability Limits: Binary T^*

Where $p = \mathbb{P}(T = 1)$

$$\begin{aligned} \text{plim}\left(\widehat{\beta}_{OLS}\right) &= \frac{\sigma_{T^*}^2}{\sigma_T^2} \left[\beta \left(1 - \alpha_0 - \alpha_1\right) + \frac{\sigma_{T^*u}}{\sigma_{T^*}^2}\right] \\ \text{plim}\left(\widehat{\beta}_{IV}\right) &= \frac{\beta}{1 - \alpha_0 - \alpha_1} + \frac{\sigma_{zu}}{\sigma_{zT}} \\ \sigma_{T^*}^2 &= \frac{\left(p - \alpha_0\right)\left(1 - p - \alpha_1\right)}{\left(1 - \alpha_0 - \alpha_1\right)^2} \end{aligned}$$

What About Endogenous, Mis-measured T^* , Valid z?

$$y = \beta T^* + u$$
$$u = c + \varepsilon$$

- No results in the literature for this case
- Important setting in applied work: e.g. RCTs
- ▶ Discrete Instrument: $z \in \{z_1, \dots, z_K\}$
- ▶ Non-parametric First Stage: $p_k^* = \mathbb{P}(T^* = 1|z = z_k)$
- ▶ What does $E[\varepsilon|z] = 0$ buy us in this case?

Observable Moments: $y = \beta T^* + u$

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
 $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$

Unobservable Moments: $y = \beta T^* + u$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$

$$p_k^* = \mathbb{P}(T^* = 1|z = z_k) = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}$$

Possible Assumptions On m_{tk}^*

Joint Exogeneity:
$$\mathbb{E}[\varepsilon|T^*,z]=0$$
 $\Rightarrow m_{tk}^*=c \quad \text{for all } t,k$

Exogenous Treatment: $\mathbb{E}[\varepsilon|T^*]=0$
 $\Rightarrow \frac{1}{\mathbb{P}(T^*=t)}\sum_k p_{tk}^* m_{tk}^*=c \quad \text{for all } t$

Exogenous Instrument: $\mathbb{E}[\varepsilon|z]=0$
 $\Rightarrow (1-p_k^*)m_{0k}^*+p_k^*m_{1k}^*=c \quad \text{for all } k$

Mahajan (2006, Econometrica)

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Main Result (Correct) - Exogenous Treatment

Relevant binary instrument z $(p_1^* \neq p_2^*)$ identifies α_0, α_1 and

$$\mathbb{E}[y|T^*]$$
 provided that $\mathbb{E}[\nu|T^*,T,z]=0$.

Mahajan (2006, Econometrica)

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Additional Result (Incorrect) – Endogenous Treatment

$$\mathbb{E}[\varepsilon|z] = 0, \ \rho_1^* \neq \rho_2^*, \ \mathbb{E}[\varepsilon|T,T^*,z] = \mathbb{E}[\varepsilon|T^*] \implies \beta \ \text{identified}.$$

Mahajan's Argument

$$y = \mathbb{E}[y|T^*] + \nu$$

$$\mathbb{E}[
u|T^*] = 0$$
 by construction

Causal Model

$$y = c + \beta T^* + \varepsilon$$

$$\mathbb{E}[\varepsilon|T^*]\neq 0$$

Ingredients

- 1. If $p_1^* \neq p_2^*$, $\mathbb{E}[\varepsilon|z] = 0$ then, since $\beta_{IV} = \beta/(1 \alpha_0 \alpha_1)$, knowledge of α_0, α_1 is sufficient to recover β . (Correct)
- 2. If $p_1^* \neq p_2^*$, $\mathbb{E}[\nu|T^*,T,z]=0$, α_0,α_1 are identified. (Correct) How to satisfy both 1 and 2 while allowing $\mathbb{E}[\varepsilon|T^*]\neq 0$?
- 3. Assume that $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ (i.e. $m_{01}^* = m_{02}^*$ and $m_{11}^* = m_{12}^*$)

Mahajan's Argument

Proposition

If $\mathbb{E}[\varepsilon|T^*] \neq 0$ then $\mathbb{E}[\varepsilon|T^*, T, z] = \mathbb{E}[\varepsilon|T^*]$ combined with $\mathbb{E}[\varepsilon|z] = 0$ implies $p_1^* = p_2^*$, i.e. z is irrelevant for T^* .

Proof

Recall that
$$\mathbb{E}[arepsilon|z]=0$$
 implies
$$(1-p_1^*)m_{01}^*+p_1^*m_{11}^*=c$$

$$(1-p_2^*)m_{02}^*+p_2^*m_{12}^*=c$$

while Mahajan's assumption implies $m_{01}^*=m_{02}^*$ and $m_{11}^*=m_{12}^*$. Therefore either $m_{01}^*=m_{02}^*=m_{11}^*=m_{12}^*=c$, which is ruled out by $E[\varepsilon|T^*]=0$, or $p_1^*=p_2^*$.

Moment Conditions Imposing $\mathbb{E}[\varepsilon|z]=0$

One pair of equations for each k = 1, ..., K

$$\hat{y}_{0k} = \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^*$$

$$\hat{y}_{1k} = (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^*$$

where
$$\hat{y}_{0k} = (1-p_k) \bar{y}_{0k}$$
 and $\hat{y}_{0k} = p_k \bar{y}_{1k}$

2K Equations in K + 4 Unknowns

Proposition: β is Undentified Regardless of K

Proof Sketch

- (1) Show that $W = \beta/(1 \alpha_0 \alpha_1)$ is identified.
- (2) Show that $Q = c + \beta(1 \alpha_0)/(1 \alpha_0 \alpha_1)$ is identified.
- (3) $(1) + (2) \implies (\mathcal{Q}, \mathcal{W})$ are fixed
- (4) Use (3) to rewrite equations in terms of (Q, W).
- (5) Discover that there is only *one* equation per k! Rearranging:

$$m_{1k}^* = \frac{\mathcal{W}(\hat{y}_{0k} - \alpha_1 \mathcal{Q}) - \beta(\mathcal{Q} - \beta - \mathcal{W}\alpha_1) + \mathcal{W}^2(1 - p_k)\alpha_1}{\mathcal{W}(1 - p_k - \alpha_1) - \beta}$$

Special Case of Prev Proof: $\alpha_0 = 0$

$$\hat{y}_{0k} = c + p_k \beta \left(\frac{\alpha_1}{1 - \alpha_1}\right) - p_k m_{1k}^*$$

$$\hat{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

Identification by Conditional Variances?

New Assumption

Homoskedastic errors w.r.t. the *instrument*: $E[\varepsilon^2|z] = E[\varepsilon^2]$

Not Crazy!

Holds in an RCT or a true natural experiment.

New Moment Conditions

For each pair (k, ℓ)

$$s_k^2 - s_\ell^2 = \mathcal{W}^2 \left[p_k (1 - p_k) - p_\ell (1 - p_\ell) + (\alpha_0 - \alpha_1) (p_k - p_\ell) \right]$$

+2\mathcal{W} \left[(p_k - \alpha_0) (m_{1k}^* - c) - (p_\ell - \alpha_0) (m_{1\ell}^* - c) \right]

Where $s_k^2 = Var(y|z=z_k)$, and W is the Wald IV estimator.

Proposition: $(\alpha_0 - \alpha_1)$ is Identified

Define

$$\widetilde{\mathcal{W}}_{k\ell} = \frac{\mathbb{E}[yT|z_k] - \mathbb{E}[yT|z_\ell]}{p_k - p_\ell}$$

Show that:

$$(p_{k} - \alpha_{0})(m_{1k}^{*} - c) - (p_{\ell} - \alpha_{0})(m_{1\ell}^{*} - c) =$$

$$(p_{k} - p_{\ell}) \left[\widetilde{W}_{k\ell} - \mathbb{E}[y] - \mathcal{W} \left\{ (1 - p) + (\alpha_{0} - \alpha_{1}) \right\} \right]$$

Substituting and rearranging:

$$lpha_0 - lpha_1 = (2p - 1 - p_k - p_\ell) + \frac{2(W_{k\ell} - \mathbb{E}[y])}{W} - \frac{s_k^2 - s_\ell^2}{(p_k - p_\ell)W^2}$$

What Good is $(\alpha_0 - \alpha_1)$?

- ▶ Test a necessary condition for *no mis-classification*: $\alpha_0 = \alpha_1$
- ▶ Simple, tighter partial identification bounds for β
- In some settings, one of the mis-classification probabilities is known to be zero $\implies \beta$ point identified

Identification from Third Moments

Simulation Study

$$\begin{split} y &= \beta \, T^* + \varepsilon \\ T^* &= \mathbf{1} \, \{ \gamma_0 + \gamma_1 z + \eta > 0 \} \\ \gamma_0 &= \Phi^{-1}(\delta), \; \gamma_1 = \Phi^{-1}(1-\delta) - \Phi(\delta) \; \text{so that} \; \delta \\ \text{E.g. if} \; \delta &= 0.1 \; \text{then} \; 10\% \; \text{of those} \; \textit{not} \; \text{offered treatment get it} \\ \text{anyway, and} \; 10\% \; \text{of those offered treatment don't take it up.} \\ \text{If} \; T^* &= 0 \; \text{then} \; T = 0 \; \text{(E.g. Birthweight and smoking)} \\ T | T^* &= 1 \sim \text{Bernoulli(?)} \end{split}$$

$$\left[\begin{array}{c} \varepsilon \\ \eta \end{array}\right] \sim N\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array}\right]\right)$$

Sampling Distribution of $\hat{\alpha}_1 - \hat{\alpha}_0$

Sampling Distribution of $\widehat{eta}=(1-\widehat{lpha}_0-\widehat{lpha}_1)\widehat{eta}_{IV}$

(a)
$$N = 500, \delta = 0.1$$
 (b) $N = 1000, \delta = 0.1$ (c) $N = 5000, \delta = 0.1$ (d) $N = 5000, \delta = 0.1$ (e) $N = 5000, \delta = 0.1$ (f) $N = 5000, \delta = 0.1$ (f) $N = 5000, \delta = 0.1$ (g) N

(a)
$$N = 500, \delta = 0.3$$
 (b) $N = 1000, \delta = 0.3$ (c) $N = 5000, \delta = 0.3$ (d) $N = 5000, \delta = 0.3$ (e) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (g) $N = 5000, \delta = 0.3$ (h) $N = 1000, \delta = 0.3$ (f) $N = 5000, \delta = 0.3$ (g) N

Empirical Illustration: Schooling and Test Scores