

Differential Expression Analysis

functional genomics center zurich

Falko Noé

Differential expression analysis

- General idea
- Tools
- Exploration of differential expression results

What is differential expression?

Differential expression is the **assessment** of differences in read counts between two or more experimental conditions. Genes are differentially expressed if this difference is **statistically significant**.

Differential expression testing: General Idea

- Each gene that has been identified above a certain threshold of expression is independently tested for difference between two groups
- The test usually relies on the count data of the gene in the samples involved in the testing (e.g., 3 replicates per group)
- The normalization is applied when the comparison is performed
- The output is a table which associates to each gene a series of statistics, notably the **p-value** of the test and **log2ratio** (or fold-change)

Is gene g differentially expressed between the conditions?

1. Formulate hypotheses:

H0: gene g is NOT differentially expressed between the conditions

H1: gene g is differentially expressed between the conditions

Is gene g differentially expressed between the conditions?

1. Formulate two hypotheses:

H0: gene g is NOT differentially expressed between the conditions

H1: gene g is differentially expressed between the conditions

2. Collect appropriate data

		con	itrol	treated			
Gene 1	5	1	0	0	4	0	0
Gene 2	0	2	1	2	1	0	0
Gene 3	92	161	76	70	140	88	70
:			:			:	
:			:			:	
Gene g	0	11	2	6	12	8	14
:			:			:	
:			:			:	
Gene G	15	25	9	5	20	14	17

Is gene g differentially expressed between the conditions?

1. Formulate two hypotheses:

H0: gene g is NOT differentially expressed between the conditions

H1: gene g is differentially expressed between the conditions

- 2. Collect appropriate data
- 3. Fit the model for each gene

Is gene g differentially expressed between the conditions?

- 1. Formulate two hypotheses:
 - H0: gene g is NOT differentially expressed between the conditions
 - H1: gene g is differentially expressed between the conditions
- 2. Collect appropriate data
- 3. Fit the model for each gene
- 4. Use statistics to quantify the difference

Is gene g differentially expressed between the conditions?

- 1. Formulate two hypotheses:
 - H0: gene g is NOT differentially expressed between the conditions
 - H1: gene g is differentially expressed between the conditions
- 2. Collect appropriate data
- 3. Fit the model for each gene
- 4. Use statistics to quantify the difference
- Small p-value: small chance that the observed result is due to pure coincidence
- Large p-value: large chance the observed result is caused by random noise

Testing for differential expression

- The variance for the counts for a given gene between samples is often much larger than the mean, making the Poisson assumption restrictive
 - Binomial distribution
- Biological replicates are crucial (no replicates, no statistics, no p-Value)
- The test is done as many times as there are genes
 - Adjust the p-values for multiple hypothesis testing (estimate the False Discovery Rate according to the Benjamini-Hochberg rule)

Multiple testing

- Standard equations for significance and estimates of error rates (false positives and false negatives) apply **only to single comparisons**
- If multiple comparisons are performed (e.g. >1 gene) this must be reflected in the computations for significance and error rates.
- When multiple tests are performed, error rates, statistics and associated p-values must be adjusted
 - The strictest correction is Bonferroni (all tests are independent)
 - In the context of differential gene expression, a False Discovery Rate is applied to allow for partial interdependence of the genes

A summary of the results of differentially expressed genes (DEG)

Number of significants by p-value and fold-change

	#significants	FDR	fc >= 1	fc >= 1.5	fc >= 2	fc >= 3	fc >= 4	fc >= 8	fc >= 10
p < 0.1	2905	0.2063000	2905	1717	797	333	222	88	75
p < 0.05	2378	0.1259000	2378	1605	785	331	222	88	75
p < 0.01	1543	0.0388300	1543	1322	718	331	222	88	75
p < 0.001	846	0.0070840	846	838	588	312	218	88	75
p < 1e-04	485	0.0012330	485	485	424	276	208	88	75
p < 1e-05	292	0.0002042	292	292	285	222	182	83	72

- How many features are identified above certain thresholds?
- What are the trends at fixed p-values and fold-change?
- Does the false discovery rate decreases with p-value?

A summary of the results of differentially expressed genes (DEG)

Number of significants by p-value and fold-change

	#significants	FDR	fc >= 1	fc >= 1.5	fc >= 2	fc >= 3	fc >= 4	fc >= 8	fc >= 10
p < 0.1	678	0.99990	678	17	1	0	0	0	0
p < 0.05	289	0.99990	289	17	1	0	0	0	0
p < 0.01	68	0.99990	68	12	1	0	0	0	0
p < 0.001	25	0.53160	25	10	1	0	0	0	0
p < 1e-04	11	0.11540	11	7	1	0	0	0	0
p < 1e-05	7	0.01811	7	6	1	0	0	0	0

- Something like this can indicate
 - very small difference in the groups (down to a handful of genes)
 - batch effects (i.e., hidden confounders)
 - wrong group assignment (i.e., mislabeling)

Differential expression analysis

- General idea
- Tools
- Exploration of differential expression results

Popular tools

- R/Bioconductor packages: DESeq2 and EdgeR
- Start with un-normalized integer read counts
 - EdgeR: TMM
 - DESeq2: median of ratios
- Similar performance
 - DESeq2 moderates log ratios (genes with very low and highly variable counts)
 - DESeq2 has slightly more conservative p-values
 - EdgeR handles outliers better/more conservative logFC

Importance of biological replicates

- The fundamental problem with generalizing results gathered from unreplicated data is a complete lack of knowledge about biological variation. Without an estimate of variability within the groups, there is no sound statistical basis for inference of differences between the groups.
- When biological replicates are impossible
 - EdgeR
 - Ignore P values
 - Rank genes/isoforms by fold changes

Differential expression analysis

- General idea
- Tools
- Exploration of differential expression results

Comparison of average expression between sample groups

Distribution of significantly DEGs - volcano plot

Distribution of significantly DEGs - volcano plot

- Is the distribution symmetric?
- If not, is there a biological reason for that?

functional genomics center zurich

Heatmap of significant DEGs

• How do the genes cluster?

• Is there a dominant cluster?

 Are there small clusters which might represent very strong effects?

Differential expression analysis: summary

- Biological replicates are crucial
- Variance of count data follows Binomial distribution

- Correction for multiple testing (FDR)
 - Allows partial interdependency of genes
 - Decrease with decreasing p-values

- Look at the summary of p-values and FDR to spot unusual trends
- Compare distribution of mis-regulated genes with expectation

Further reading

Results and

discussion

A comparison of methods for differential expression analysis of RNA-seq data

Christopher E Mason²³, Nicholas D Socci¹ and Doron Betel³⁴*

Franck Rapaport¹, Raya Khanin¹, Yupu Liang¹, Mono Pirun¹, Azra Krek¹, Paul Zumbo²,

Further reading

BMC Genomics. 2016; 17: 28.

Published online 2016 Jan 5. doi: 10.1186/s12864-015-2353-z

PMCID: PMC4702322

PMID: 26732976

Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual *Drosophila melanogaster*

Yanzhu Lin, Kseniya Golovnina, Zhen-Xia Chen, Hang Noh Lee, Yazmin L. Serrano Negron, Hina Sultana, Brian Oliver, and Susan T. Harbison[™]

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

