Cálculo I - Agrupamento IV

2018/2019

Formulário

Derivadas

$(f(x)^p)' = p (f(x))^{p-1} f'(x), \text{ com } p \in \mathbb{R}$	
$\left(a^{f(x)}\right)' = f'(x)a^{f(x)}\ln(a), \text{ com } a \in \mathbb{R}^+ \setminus \{1\}$	$\left(\log_a(f(x))\right)' = \frac{f'(x)}{f(x)\ln(a)}, \text{ com } a \in \mathbb{R}^+ \setminus \{1\}$
$(\operatorname{sen}(f(x)))' = f'(x)\operatorname{cos}(f(x))$	$(\cos(f(x)))' = -f'(x)\operatorname{sen}(f(x))$
$(\operatorname{tg}(f(x)))' = f'(x) \sec^2(f(x))$	$(\cot g(f(x)))' = -f'(x)\operatorname{cosec}^{2}(f(x))$
$(\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$	$\left(\operatorname{cosec}(f(x))\right)' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$
$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$	$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$
$(\arctan(f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$	$(\operatorname{arccotg}(f(x))' = -\frac{f'(x)}{1 + (f(x))^2}$

Fórmulas trigonométricas

•
$$1 + \operatorname{tg}^2(x) = \sec^2(x)$$
, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$

•
$$1 + \cot^2(x) = \csc^2(x)$$
, para $x \neq k\pi$, $k \in \mathbb{Z}$

•
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

•
$$\operatorname{sen}(x \pm y) = \operatorname{sen} x \cos y \pm \cos x \operatorname{sen} y$$

$$\bullet \cos^2(x) = \frac{1 + \cos(2x)}{2}$$

•
$$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}$$