MONOID k-SCHEMES AND THEIR REPRESENTATIONS

1. EQUIVALENCE OF REPRESENTATIONS AND COMODULES

Let *k* be a commutative ring.

Theorem 1.1. Let **M** be an affine monoid scheme over k. Suppose that $\rho : \mathbf{M} \to \mathcal{L}(V)$ is a morphism of functors of sets. Yoneda lemma implies that ρ is determined by some element

$$p_{\rho} \in \operatorname{Hom}_{\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})} (\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_{k} V, \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_{k} V)$$

Next under the natural isomorphism

$$\operatorname{Hom}_{k}(V, \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_{k} V) \to \operatorname{Hom}_{\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})} (\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_{k} V, \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_{k} V)$$

we deduce that p_{ρ} corresponds to a unique k-linear morphism $d_{\rho}: V \to \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_k V$. Then (V, ρ) is a representation of \mathbf{M} if and only if (V, d_{ρ}) is a comodule over $\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})$.

Moreover, assume that (V, ρ_V) , (W, ρ_W) are representations and (V, d_{ρ_V}) , (W, d_{ρ_W}) are associated comodules. Then a morphism of k-modules $f: V \to W$ is a morphism of the representations if and only if it is a morphism of the comodules.

In order to give a proof we will fix some notation. For every affine scheme S over k we denote by O_S its k-algebra of global regular functions. We also denote by $\delta_S: O_S \otimes_k O_S \to O_S$ the multiplication on O_S and by $\eta_S: k \to O_S$ the structural morphism. In particular, $O_{\mathbf{M}} = \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})$ is a bialgebra of global regular functions on \mathbf{M} . We denote its counit and comultiplication by $\xi_{\mathbf{M}}$ and $\Delta_{\mathbf{M}}$, respectively. Finally for every morphism $f: S \to T$ of affine k-schemes denote by $f^\#: O_T \to O_S$ the corresponding morphism of k-algebras.

We identify freely **M** with its functor of points. Let V be a module over k. Note that every morphism $\rho: \mathbf{M} \to \mathcal{L}(V)$ of functors of sets gives rise by the rule described in the statement to a unique morphism of k-modules $d_{\rho}: V \to O_{\mathbf{M}} \otimes_k V$. This correspondence is one to one by Yoneda lemma.

Fix a morphism $\rho: \mathbf{M} \to \mathcal{L}(V)$ of functors and associated morphism of k-modules $d_{\rho}: V \to O_{\mathbf{M}} \otimes_k V$. Let S be an affine k-scheme and pick an S-point $m \in \mathbf{M}(S)$. Then m gives rise to a morphism $m^{\#}: O_{\mathbf{M}} \to O_{S}$ of k-algebras and

$$\rho(m) = (\delta_S \otimes_k 1_V) \cdot (1_{O_S} \otimes_k m^{\#} \otimes_k 1_V) \cdot (1_{O_S} \otimes_k d_{\rho})$$

Now we need some additional results.

Lemma 1.1.1. Let V be a module over k, $\rho : \mathbf{M} \to \mathcal{L}(V)$ be a morphism of functors and d_{ρ} be an associated morphism of k-modules. Then ρ is a morphism of semigroups if and only if d_{ρ} satisfies

$$(\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho} = (1_{O_{\mathbf{M}}} \otimes_k d_{\rho}) \cdot d_{\rho}$$

Proof of the lemma. Let *S* be an affine *k*-scheme and suppose that $m_1, m_2 \in \mathbf{M}(S)$. Then

$$\rho(m_1) \cdot \rho(m_2) = \left(\left(\delta_S \cdot \left(1_{O_S} \otimes_k \delta_S \right) \right) \otimes_k 1_V \right) \cdot \left(1_{O_S} \otimes_k m_1^\# \otimes_k m_2^\# \otimes_k 1_V \right) \cdot \left(1_{O_S} \otimes_k \left(\left(1_{O_M} \otimes_k d_\rho \right) \cdot d_\rho \right) \right)$$
 and if $m_1 \cdot m_2$ denotes product of these elements in $\mathbf{M}(S)$, then

$$\rho(m_1 \cdot m_2) = \left(\left(\delta_S \cdot \left(\mathbf{1}_{O_S} \otimes_k \delta_S \right) \right) \otimes_k \mathbf{1}_V \right) \cdot \left(\mathbf{1}_{O_S} \otimes_k m_1^\# \otimes_k m_2^\# \otimes_k \mathbf{1}_V \right) \cdot \left(\mathbf{1}_{O_S} \otimes_k \left(\left(\Delta_{\mathbf{M}} \otimes_k \mathbf{1}_V \right) \cdot d_\rho \right) \right)$$

These formulas imply that if

$$(\Delta_{\mathbf{M}} \otimes_{k} 1_{V}) \cdot d_{\rho} = (1_{O_{\mathbf{M}}} \otimes_{k} d_{\rho}) \cdot d_{\rho}$$

then ρ is a morphism of functors of semigroups.

Conversely consider two canonical projections π_1 , $\pi_2 : \mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M} \to \mathbf{M}$ so that π_1 , $\pi_2 \in \mathbf{M} \left(\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M} \right)$. Then formulas above together with the fact that $1_{O_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}}} = \delta_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}} \cdot \left(\pi_1^\# \otimes_k \pi_2^\# \right)$ imply

$$\rho(\pi_1 \cdot \pi_2) = \left(\delta_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}} \otimes_k 1_V\right) \cdot \left(1_{O_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}}} \otimes_k \left(\left(\Delta_{\mathbf{M}} \otimes_k 1_M\right) \cdot d_\rho\right)\right)$$

and

$$\rho(\pi_1) \cdot \rho(\pi_2) = \left(\delta_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}} \otimes_k 1_V\right) \cdot \left(1_{O_{\mathbf{M} \times_{\operatorname{Spec} k} \mathbf{M}}} \otimes_k \left(\left(1_{O_{\mathbf{M}}} \otimes_k d_\rho\right) \cdot d_\rho\right)\right)$$

Now if ρ is a morphism of functors of semigroups, then $\rho(\pi_1 \cdot \pi_2) = \rho(\pi_1) \cdot \rho(\pi_2)$ and hence

$$(1_{O_{\mathbf{M}}} \otimes_k d_{\rho}) \cdot d_{\rho} = (\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$$

Lemma 1.1.2. Let V be a module over k, $\rho : \mathbf{M} \to \mathcal{L}(V)$ be a morphism of functors and d_{ρ} be an associated morphism of k-modules. Then ρ preserves identity elements if and only if $(\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$ coincides with the canonical morphism $V \to k \otimes_k V$.

Proof of the lemma. For every affine k-scheme S define $e_S \in \mathbf{M}(S)$ as a structural morphism $S \to \operatorname{Spec} k$ composed with the neutral element $e : \operatorname{Spec} k \to \mathbf{M}$. This is an identity element of monoid $\mathbf{M}(S)$. We have

$$\rho(e_S) = (\delta_S \otimes_k 1_V) \cdot (1_{O_S} \otimes_k \eta_S \otimes_k 1_V) \cdot (1_{O_S} \otimes_k ((\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_\rho))$$

Therefore, if

$$((\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho})$$

is equal to the canonical isomorphism $V \to k \otimes_k V$, then $\rho(e_S) = 1_{O_S \otimes_k V}$.

On the other hand if $\rho(e_S) = 1_{O_S \otimes_k V}$ for every affine k-scheme S, then setting $S = \operatorname{Spec} k$ we derive

$$1_{k \otimes_k V} = \rho(e_{\operatorname{Spec} k}) = \left(\delta_{\operatorname{Spec} k} \otimes_k 1_V\right) \cdot \left(1_k \otimes_k \left(\left(\xi_{\mathbf{M}} \otimes_k 1_V\right) \cdot d_\rho\right)\right)$$

and thus $(\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$ is equal to the canonical morphism $V \to k \otimes_k V$.

Lemma 1.1.3. Suppose that V and W are k-modules and $f: V \to W$ be a morphism of k-modules. Let $\rho_V: \mathbf{M} \to \mathcal{L}(V)$, $\rho_W: \mathbf{M} \to \mathcal{L}(W)$ be morphisms of functors of sets and d_{ρ_V} , d_{ρ_W} be associated morphism of k-modules. Then the following assertions are equivalent.

(i) The formula

$$(1_{\Gamma(\mathbf{M},\mathcal{O}_{\mathbf{M}})} \otimes_k f) \cdot d_{\rho_V} = d_{\rho_W} \cdot f$$

holds.

(ii) The formula

$$\rho_W(m) \cdot \left(1_{\Gamma(S,\mathcal{O}_S)} \otimes_k f\right) = \left(1_{\Gamma(S,\mathcal{O}_S)} \otimes_k f\right) \cdot \rho_V(m)$$

holds for every affine scheme S over k and $m \in \mathbf{M}(S)$.

Proof of the lemma. Let $m \in \mathbf{M}(S)$ be an S-point for some affine scheme S. We have

$$\left(1_{O_S} \otimes_k f\right) \cdot \rho_V(m) = \left(\delta_S \otimes_k 1_V\right) \cdot \left(1_{O_S} \otimes_k m^\# \otimes_k 1_V\right) \cdot \left(1_{O_S} \otimes_k \left(\left(1_{O_\mathbf{M}} \otimes_k f\right) \cdot d_{\rho_V}\right)\right)$$

and

$$\rho_W(m) \cdot (1_{O_S} \otimes_k f) = \left(\delta_S \otimes_k 1_V\right) \cdot \left(1_{O_S} \otimes_k m^\# \otimes_k 1_V\right) \cdot \left(1_{O_S} \otimes_k \left(d_{\rho_W} \cdot f\right)\right)$$

Hence clearly (i) \Rightarrow (ii). Now suppose that (ii) holds. In particular

$$(\delta_{\mathbf{M}} \otimes_{k} 1_{V}) \cdot (1_{O_{\mathbf{M}}} \otimes_{k} ((1_{O_{\mathbf{M}}} \otimes_{k} f) \cdot d_{\rho_{V}})) = (1_{O_{\mathbf{M}}} \otimes_{k} f) \cdot \rho_{V} (1_{\mathbf{M}}) =$$

$$= \rho_{W} (1_{\mathbf{M}}) \cdot (1_{O_{\mathbf{M}}} \otimes_{k} f) = (\delta_{\mathbf{M}} \otimes_{k} 1_{V}) \cdot (1_{O_{\mathbf{M}}} \otimes_{k} (d_{\rho_{W}} \cdot f))$$

This implies that

$$\left(1_{\mathcal{O}_{\mathbf{M}}} \otimes_k f\right) \cdot d_{\rho_V} = d_{\rho_W} \cdot f$$

Proof of the theorem. According to Lemmas 1.1.1 and 1.1.2 we deduce that ρ is a morphism of functors of monoids if and only if (M, d_{ρ}) is a comodule over the bialgebra $\Gamma(\mathbf{V}, \mathcal{O}_{\mathbf{M}})$. This proves that the correspondence $(V, \rho) \mapsto (V, d_{\rho})$ between representations of \mathbf{M} and comodules over $\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})$ is bijective.

Now suppose that $f: V \to W$ is a morphism of k-modules and (V, ρ_V) , (W, ρ_W) are representations. Lemma 1.1.3 shows that f is a morphism of representations if and only if f is a morphism of comodules over $\Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}})$.

Corollary 1.2. *Let* **M** *be an affine monoid k-scheme. Then correspondence described in Theorem* **1.1** *gives rise to an isomorphism of categories*

$$Rep_M \to coMod\left(\Gamma(M,\mathcal{O}_M)\right)$$

Proof. This is just a reformulation of Theorem 1.1.