MATH214

Linear algebra

Homework 4

Manuel — UM-JI (Spring 2023)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Matrix calculations

1. Use block multiplication to determine the product of M_1 and M_2 , where

$$M_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 10 & 1 & 2 & -3 & -1 \\ 1 & 8 & -3 & -4 & -3 & 4 \\ 1 & 1 & 6 & -3 & -9 & 6 \end{pmatrix} \text{ and } M_{2} = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 8 & -3 & -2 & 5 \\ 7 & 8 & 1 & 0 \\ 2 & 7 & -2 & 9 \\ 12 & 23 & -2 & -1 \\ 5 & 7 & -9 & 5 \end{pmatrix}.$$

2. If it exists, determine the inverse of the matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 9 & 8 \end{pmatrix}, \begin{pmatrix} -1 & 2 & 3 \\ 6 & -5 & 4 \\ 7 & 9 & -8 \end{pmatrix}, \text{ and } \begin{pmatrix} -1 & 2 & -3 \\ 6 & -5 & 4 \\ -7 & 9 & -8 \end{pmatrix}.$$

Ex. 2 — Dual space

Let V_1 and V_2 be two subspaces of a finite dimensional \mathbb{K} -vector space V.

- 1. Show that $(V_1+V_2)^\perp=V_1^\perp\cap V_2^\perp$ and $(V_1\cap V_2)^\perp=V_1^\perp+V_2^\perp$. Hint. Use simple words to explain what $(V_1+V_2)^\perp$ is.
- 2. Conclude that if $V=V_1\oplus V_2$, then $V^*=V_1^\perp\oplus V_2^\perp$. Hint. For a subspace $V_0\subset V$, $(V_0^\perp)^\perp$.

Ex. 3 — Symmetric matrices

Let $M \in \mathcal{M}_{n,p}(\mathbb{K})$. Show that MM^{\top} and $M^{\top}M$ are both symmetric matrices.

Hint. Think in term of matrix elements.

Ex. 4 — Gram-Schmidt procedure

Let V be a finite n-dimensional \mathbb{R} -vector space. A symmetric bilinear form on V is a bilinear form b such that for any $v_1, v_2 \in v$, b(v, w) = b(w, v). We say that b is positive definite if for any $v \in V$, $b(v, v) \geq 0$, with equality if and only if v = 0.

- 1. Bilinear forms.
 - a) Let $v=(v_1,\cdots,v_n)$ and $w=(w_1,\cdots,w_n)\in V$ be the representations of v and w on a basis $\mathcal{B}=\{e_1,\cdots,e_n\}$ of V. Show that if b is a bilinear form then b(v,w) can be expressed in terms of matrices as

$$b(v,w) = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,n} \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

b) Calling B the matrix of b in \mathcal{B} , show that B is symmetric if and only if b is symmetric.

A bilinear form $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, which is symmetric and positive definite is called an *inner product*. A vector space endowed with an inner product is called an *inner product space*. A finite dimensional real inner product space is called a *Euclidean space*.

A map $\|\cdot\|:V\to\mathbb{R}$ is called a *norm* if for any $v,w\in V$, (i) $\|v\|=0$ if and only if v=0, (ii) for any $a\in\mathbb{R}$, $\|av\|=|a|\|v\|$, and (iii) $\|v+w\|\leq \|v\|+\|w\|$.

- 2. Inner product and norm. Let $v, w \in V$.
 - a) Show that V endowed with $\langle v, w \rangle = \sum_{i=1}^{n} v_i w_i$, is an *n*-dimensional Euclidean space.
 - b) Show that if V is an inner product space over \mathbb{R} , then for any $v \in V$, $||v|| = \sqrt{\langle v, v \rangle}$ defines a norm and V is a normed vector space.
 - c) Prove Cauchy-Swartz inequality, $|\langle v, w \rangle| \le ||v|| ||w||$.

A *unit vector* is a vector with norm 1. Two vectors w and v are said to *orthogonal* if $\langle v, w \rangle = 0$. As set of vectors $\{u_1, \dots, u_n\}$ is said to be *orthonormal* if they all have norm 1 and for any $i, j \in [1, n]$, $\langle u_i, u_j \rangle = \delta_{i,j}$.

- 3. Construction of an orthonormal basis.
 - a) Show that any set of orthogonal vectors is linearly independent.
 - b) Prove that for any basis \mathcal{B} of V there exists an orthonormal basis \mathcal{B}' with $\operatorname{span} \mathcal{B}' = \operatorname{span} \mathcal{B}$.

 Hint. Proceed by induction on the dimension n of the space.

Gram-Schmidt procedure transforms any given basis into an orthonormal basis.

* Ex. 5 — Challenging problem

Let V be a \mathbb{K} -vector space, and f_1, \dots, f_p and g be linear forms on V. Prove that if $\bigcap_{i=1}^p \ker f_i \subset \ker g$, then $g \in \operatorname{span}\{f_1, \dots, f_p\}$.

Hints.

- Do not forget the case g = 0.
- \bullet Independently consider the cases where V is a finite and an infinite dimensional vector space.
- Let L be a subspace of V^* . In infinite dimension do we have $({}^{\circ}L)^{\perp} = L$?
- For the infinite dimension case, reason by induction on p.

¹Those definitions are only valid over \mathbb{R} . When working on \mathbb{C} , the notion of *sesquilinear form* generalises the definition of a bilinear form and allows the definition of the inner product over \mathbb{C} .