Lecture #2 Frequent Pattern Mining: Itemsets, Association Rules, Algorithms, and Applications*

^{*} Slides partly based on Jiawei Han, and Jeff Ullman

Frequent Pattern Mining: Overview

Frequent pattern

- a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together in supermarket?
 - ◆ What are the subsequent purchases after buying a PC?
 - ◆ What kinds of DNA are sensitive to this new drug?

Frequent Pattern Mining: Overview

Applications

- Market-Basket analysis to improve sales
- Web log (click stream) analysis
- DNA sequence analysis
- Plagiarism detection
- •
- First proposed by Agrawal, Imielinski, and Swami [1993] in the context of frequent itemsets and association rule mining

The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket
- A large set of baskets, each of which is a ``small''
 set of the items, e.g., the things one customer
 buys on one day
 - baskets are also referred to as transactions in the literature

Frequent Itemsets: Concept

- Simple computational question: find sets of items that appear "frequently" in the baskets.
- Support for itemset I
 - ^ Absolute: the number of baskets containing all items in I
 - <u>Relative:</u> the fraction of baskets that contain items in I (i.e., the probability that a basket contains items in I)
- Frequent Itemset
 - ◆ Given a <u>support threshold</u> s, a set of items appearing in at least s baskets is called a <u>frequent itemset</u>

Frequent Itemsets: Example

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.
- Example baskets with items.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j},{m,b}, {b,c}, {c,j}

Frequent Itemsets: Applications

- "Classic" application was analyzing what people bought together in a brick-and-mortar store
 - Apocryphal story of "diapers and beer" discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips.
- Many other applications, including plagiarism detection
 - Items = documents; baskets = sentences
 - Basket/sentence contains all the items/documents that have that sentence
 - MOSS software: https://theory.stanford.edu/~aiken/moss/

Frequent Patterns: Combinatorial Explosion and ``Closed'' Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + ... + \binom{1}{1000} \binom{1}{1000} = 2^{100} 1 = 1.27*10^{30} \text{ sub-patterns!}$
- Solution: Mine ``closed'' patterns
- An itemset I is <u>closed</u> if I is <u>frequent</u> and there exists <u>no super-set JoI</u>, with the same support as I
- Closed pattern is a lossless compression of frequent patterns: Reducing the # of patterns and rules

Association Rules: Concept

- If-then rules about the contents of baskets
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"
 - <u>Example</u>: {bread, peanut-butter} → jelly
- Confidence of this association rule is the "probability" of j given $i_1,...,i_k$
 - ↑ That is, the fraction of the baskets with $i_1,...,i_k$ that also contain j

Subtle point: "probability" implies there is a process generating random baskets. Really we're just computing the fraction of baskets, because we're computer scientists, not statisticians.

Association Rules: Example

$$B_{1} = \{m, c, b\}$$
 $B_{2} = \{m, p, j\}$
 $B_{3} = \{m, b\}$ $B_{4} = \{c, j\}$
 $B_{5} = \{m, p, b\}$ $B_{6} = \{m, c, b, j\}$
 $B_{7} = \{c, b, j\}$ $B_{8} = \{b, c\}$

- An association rule: $\{m, b\} \rightarrow c$
 - ^ Confidence = 2/4 = 50%

Computation Model

- Typically, data is a file consisting of a list of baskets
- The true cost of mining disk-resident data is usually the number of disk I/O's
- In practice, we read the data in passes all baskets read in turn.
 - ◆ Thus, we measure the cost by the number of passes an algorithm takes

Main-Memory Bottleneck

- For many frequent-itemset mining algorithms, main memory is the critical resource
- As we read baskets, we need to count something, e.g., occurrences of pairs of items

- The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs
 - <u>► Why?</u> Often frequent pairs are common, frequent triples are rare
 - Support threshold is usually set high enough that you don't get too many frequent itemsets

 We'll first concentrate on computing frequent pairs, and then extend to larger sets.

Finding Frequent Pairs: Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair
 - ↑ From each basket of n items, generate its n(n-1)/2 pairs by two nested loops

- Fails if (#items)² exceeds main memory
 - <u>► Example 1</u>: Walmart sells 100K items, so probably OK.
 - <u>► Example 2</u>: Web has 100B pages, so definitely not OK.

Counting in Main Memory: Two Approaches

- Approach 1: Count all pairs using a triangular matrix
 - Count[i,j] in row i, column j, provided i < j</p>
 - use a "ragged array," so the empty triangle is not there (more details later)

Note: assume integers are 4 bytes

Counting in Main Memory: Two Approaches

- Approach 2: Store a table of pairs with count > 0
 - ^ Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c"

Note: assume integers are 4 bytes

Triangular Matrix vs. Tabular Method

- Triangular matrix
 - Requires 4 bytes per pair
- Tabular method
 - Requires 12 bytes per pair, but only for those pairs with count > 0

 Comparison: tabular approach beats triangular matrix only when at most 1/3 of all pairs have a nonzero count

Triangular Matrix as One-Dimensional Array

- Number items 1, 2,..., *n*
 - rianlle Requires table of size O(n) to convert item names to consecutive integers
- Count {*i*, *j*} only if *i* < *j*
 - ^ Keep pairs in the order {1,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},..., {2,*n*}, {3,4},..., {3,*n*},..., {*n* -1,*n*}
- Find pair {*i*, *j*}, where i<j, at the position:

$$(i-1)(n-i/2)+j-i$$

- Total number of pairs n(n-1)/2
 - total bytes about 2n²

The A-Priori Algorithm

Monotonicity of "Frequent" Candidate Pairs

Extension to Larger Itemsets

A-Priori Algorithm

 A two-pass approach called ``a-priori'' limits the need for main memory

 Key idea: monotonicity: if a set of items appears at least s times, so does every subset of the set

 Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets

A-Priori Algorithm (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items

 Items that appear at least s times are the frequent items

A-Priori Algorithm (3)

• Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent

 Requires memory proportional to square of frequent items only (for counts), plus a table of the frequent items (so you know what must be counted).

Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items
 - May save space compared with storing triples

 Trick: number frequent items 1, 2,... and keep a table relating new numbers to original item numbers

Frequent Triples etc.

 For each size of itemsets k, we construct two sets of k-sets (sets of size k):

 $^{\bullet}$ C_k = candidate k-sets = those that might be frequent sets (support ≥ s) based on information from the pass for itemsets of size k-1

 $^{\blacktriangle}L_k$ = the set of truly frequent k-sets

A-Priori Algorithm: Pictorial Illustration

Passes Beyond Two

- C_1 = all items
- In general, L_k = members of C_k with support $\geq s$
 - Requires one pass
- $C_{k+1} = (k+1)$ -sets, each k of which is in L_k

- How would you generate C_{k+1} from L_k ?
 - Enumerating all sets of size k+1 and testing each seems really dumb

A-Priori Algorithm: Example

$Sup_{min} = 2$

Database TDB

Bid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 C_{I} $\xrightarrow{1^{\text{st}} \text{ scan}}$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

sup

2

2

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 $\begin{array}{c}
C_2 \\
2^{\text{nd}} & \text{scan}
\end{array}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

A-Priori Algorithm: Pseudocode

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each basket t in database do
     increment the count of all candidates in C_{k+1} that
      are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

Memory Requirements

• At the k^{th} pass, you need space to count each member of C_k

 In realistic cases, because you need fairly high support, the number of candidates of each size drops, once you get beyond pairs

Improvements over A-Priori Algorithm

The PCY (Park-Chen-Yu) Algorithm

▲ Improvement to A-Priori

Exploits empty memory on first Pass

Frequent buckets

PCY Algorithm

During Pass 1 of A-priori, most memory is idle

- Use that memory to keep counts of buckets into which pairs of items are hashed
 - Just the count, not the pairs themselves

 For each basket, enumerate all its pairs, hash them, and increment the resulting bucket count by 1

PCY Algorithm (2)

- A bucket is *frequent* if its count is at least the support threshold
- If a bucket is not frequent, no pair that hashes to that bucket could possibly be a frequent pair
- On Pass 2, we only count pairs of frequent items that <u>also</u> hash to a frequent bucket.
- A *bitmap* tells which buckets are frequent, using only one bit per bucket (i.e., 1/32 of the space used on Pass 1).

Picture of PCY

Pass 1 of PCY: Memory Organization

- Space to count each item
 - One (typically) 4-byte integer per item

 Use the rest of the space for as many integers, representing buckets, as we can

PCY Algorithm: Pass 1

```
FOR (each basket) {
   FOR (each item in the basket)
    add 1 to item's count;
   FOR (each pair of items) {
     hash the pair to a bucket;
     add 1 to the count for that bucket
   }
}
```

Observations about Buckets

- A bucket that a frequent pair hashes to is surely frequent
 - We cannot eliminate any member of this bucket
- Even without any frequent pair, a bucket can be frequent
 - Again, nothing in the bucket can be eliminated
 - 3. But if the count for a bucket is less than the support *s*, all pairs that hash to this bucket can be eliminated, even if the pair consists of two frequent items

PCY Algorithm: Between Passes

- Replace the buckets by a bit-vector (the "bitmap"):
 - ^ 1 means the bucket is frequent; 0 means it is not

 Also, decide which items are frequent and list them for the second pass

PCY Algorithm: Pass 2

 Count all pairs {i, j} that meet the conditions for being a candidate pair:

Both i and j are frequent items

2. The pair {*i*, *j*}, hashes to a bucket number whose bit in the bit vector is 1

PCY Algorithm: Memory Details

- Buckets require a few bytes each
 - Note: we don't have to count past s
 - If s < 2¹⁶, 2 bytes/bucket will do
 - # buckets is O(main-memory size)

- On second pass, a table of (item, item, count) triples is essential
 - ◆ Thus, hash table on Pass 1 must eliminate 2/3 of the candidate pairs for PCY to beat a-priori

All (Or Most) Frequent Itemsets In ≤ 2 Passes

Simple Algorithm

Savasere-Omiecinski- Navathe (SON) Algorithm

Toivonen's Algorithm

Simple Algorithm

- Take a random sample of the market baskets
 - Do not sneer; "random sample" is often a cure for the problem of having too large a dataset
- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don't pay for disk I/O each time you increase the size of itemsets.
- Use as your support threshold a suitable, scaledback number
 - ► Example: if your sample is 1/100 of the baskets, use s/100 as your support threshold instead of s.

Simple Algorithm: Option

 Optionally, verify that your guesses are truly frequent in the entire data set by a second pass

- But you don't catch sets frequent in the whole but not in the sample
 - ◆ Smaller threshold, e.g., s/125 instead of s/100, helps catch more truly frequent itemsets (requires more space)

SON Algorithm: Pass 1

Partition the baskets into small subsets

- Read each subset into main memory and perform the first pass of the simple algorithm on each subset
 - Parallel processing of the subsets a good option

 An itemset is a candidate if it is frequent (with support threshold suitably scaled down) in at least one subset.

SON Algorithm: Pass 2

 On a second pass, count all the candidate itemsets and determine which are frequent in the entire set

 Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset

Toivonen's Algorithm

 Start as in the simple algorithm, but lower the threshold slightly for the sample

<u>Example:</u> if the sample is 1% of the baskets, use *s*/125 as the support threshold rather than *s*/100

 Goal is to avoid missing any itemset that is frequent in the full set of baskets

Toivonen's Algorithm (2)

 Add to the itemsets that are frequent in the sample the negative border of these itemsets

- An itemset is in the negative border if it is <u>not</u> deemed frequent in the sample, but <u>all</u> its immediate subsets are
 - ▲ Immediate subset = "delete exactly one element"

Example: Negative Border

- $\{A,B,C,D\}$ is in the negative border if and only if:
 - 1. It is not frequent in the sample, but
 - 2. All of {*A*,*B*,*C*}, {*B*,*C*,*D*}, {*A*,*C*,*D*}, and {*A*,*B*,*D*} are
- {A} is in the negative border if and only if it is not frequent in the sample
 - Because the empty set is always frequent. Unless there are fewer baskets than the support threshold (silly case)
 - Useful trick: When processing the sample by A-Priori, each member of C_k is either in L_k or in the negative border, never both

48

Picture of Negative Border

Toivonen's Algorithm (3)

 In a second pass, count all candidate frequent itemsets from the first pass, and also count sets in their negative border

• If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are *exactly* the frequent itemsets

Toivonen's Algorithm (4)

 What if we find that something in the negative border is actually frequent?

- We must start over again with another sample!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in mainmemory

If Something in the Negative Border is Frequent ...

Theorem

• If there is an itemset that is frequent in the whole, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole

Proof

- Suppose not; i.e.;
 - There is an itemset S frequent in the whole but not frequent in the sample, and
 - Nothing in the negative border is frequent in the whole
- Let T be a smallest subset of S that is not frequent in the sample
- T is frequent in the whole (5 is frequent + monotonicity)
- T is in the negative border (else not "smallest")