Xenomai RTDM skin API Reference Manual 2.4.2

Generated by Doxygen 1.5.3

Mon Feb 11 12:24:36 2008

Contents

1	Xen	nomai RTDM skin API Module Index	1
	1.1	Xenomai RTDM skin API Modules	1
2	Xen	nomai RTDM skin API Data Structure Index	3
	2.1	Xenomai RTDM skin API Data Structures	3
3	Xen	nomai RTDM skin API File Index	5
	3.1	Xenomai RTDM skin API File List	5
4	Xen	nomai RTDM skin API Page Index	7
	4.1	Xenomai RTDM skin API Related Pages	7
5	Xen	nomai RTDM skin API Module Documentation	9
	5.1	CAN Devices	9
	5.2	Real-Time Driver Model	33
	5.3	User API	35
	5.4	Serial Devices	45
	5.5	Testing Devices	54
	5.6	Inter-Driver API	56
	5.7	Device Registration Services	62
	5.8	Driver Development API	69
	5.9	Clock Services	70
	5.10	Task Services	72
	5.11	Timer Services	79
	5.12	2 Synchronisation Services	83
		Interrupt Management Services	96
			100
		5 Utility Services	102
		5 Device Profiles	112

ii CONTENTS

6	Xeno	omai RTDM skin API Data Structure Documentation	115
	6.1	can_bittime Struct Reference	115
	6.2	can_bittime_btr Struct Reference	117
	6.3	can_bittime_std Struct Reference	118
	6.4	can_filter_t Struct Reference	119
	6.5	can_frame_t Struct Reference	120
	6.6	rtdm_dev_context Struct Reference	121
	6.7	rtdm_device Struct Reference	122
	6.8	rtdm_device_info_t Struct Reference	124
	6.9	rtdm_operations Struct Reference	125
	6.10	rtser_config_t Struct Reference	126
	6.11	rtser_event_t Struct Reference	127
	6.12	rtser_status_t Struct Reference	128
	6.13	sockaddr_can Struct Reference	129
7	Xeno	omai RTDM skin API File Documentation	131
	7.1	include/rtdm/rtcan.h File Reference	131
	7.2	include/rtdm/rtdm.h File Reference	140
	7.3	include/rtdm/rtdm_driver.h File Reference	143
	7.4	include/rtdm/rtserial.h File Reference	149
	7.5	include/rtdm/rttesting.h File Reference	153
	7.6	ksrc/skins/rtdm/device.c File Reference	155
	7.7	ksrc/skins/rtdm/drvlib.c File Reference	156
	7.8	ksrc/skins/rtdm/module.c File Reference	159
	7.9	ksrc/skins/rtdm/core.c File Reference	160
8	Xeno	omai RTDM skin API Example Documentation	163
	8.1	cross-link.c	163
	8.2	rtcan_rtt.c	169
	8.3	rtcanconfig.c	176
	8.4	rtcanrecv.c	180
	8.5	rtcansend.c	185
9	Xeno	omai RTDM skin API Page Documentation	191
	9.1	Deprecated List	191

Xenomai RTDM skin API Module Index

1.1 Xenomai RTDM skin API Modules

TTarra	:	1: - 4	~ £ ~11	modules.
Here	10 2	IICT (т ап	mooninger

Real-Time Driver Model	33
User API	35
Driver Development API	69
Inter-Driver API	56
Device Registration Services	62
Clock Services	70
Task Services	72
Timer Services	7 9
Synchronisation Services	83
Interrupt Management Services	96
Non-Real-Time Signalling Services	100
Utility Services	102
Device Profiles	112
CAN Devices	9
Serial Devices	45
Testing Devices	54

2	Xenomai RTDM skin API Module Index

Xenomai RTDM skin API Data Structure Index

2.1 Xenomai RTDM skin API Data Structures

Here are the data structures with brief descriptions:

can_bittime (Custom CAN bit-time definition)
can_bittime_btr (Hardware-specific BTR bit-times)
can_bittime_std (Standard bit-time parameters according to Bosch)
can_filter_t (Filter for reception of CAN messages)
can_frame_t (Raw CAN frame)
rtdm_dev_context
rtdm_device
rtdm_device_info_t (Device information)
rtdm_operations (Device operations)
rtser_config_t (Serial device configuration)
rtser_event_t (Additional information about serial device events)
rtser_status_t (Serial device status)
sockaddr_can (Socket address structure for the CAN address family)

4	Xenomai RTDM skin API Data Structure l

Xenomai RTDM skin API File Index

3.1 Xenomai RTDM skin API File List

Here is a list of all documented files with brief descriptions:

include/rtdm/rtcan.h (Real-Time Driver Model for RT-Socket-CAN, CAN device profile	
header)	131
include/rtdm/rtdm.h (Real-Time Driver Model for Xenomai, user API header)	140
include/rtdm/rtdm_driver.h (Real-Time Driver Model for Xenomai, driver API header)	143
include/rtdm/rtserial.h (Real-Time Driver Model for Xenomai, serial device profile	
header)	149
include/rtdm/rttesting.h (Real-Time Driver Model for Xenomai, testing device profile	
header)	153
include/rtdm/syscall.h	??
ksrc/skins/rtdm/core.c (Real-Time Driver Model for Xenomai, device operation multi-	
plexing)	160
ksrc/skins/rtdm/device.c (Real-Time Driver Model for Xenomai, device management) .	155
ksrc/skins/rtdm/drvlib.c (Real-Time Driver Model for Xenomai, driver library)	156
ksrc/skins/rtdm/internal.h	??
ksrc/skins/rtdm/module.c (Real-Time Driver Model for Xenomai)	159

6	Xenomai RTDM skin API File Index

Xenomai RTDM skin API Page Index

4.1	Xenomai	RTDM	skin A	API R	elated	Pages
-----	---------	-------------	--------	-------	--------	--------------

Here is a list of all related documentation pages:	
Deprecated List	19

8	Xenomai RTDM skin API Page Index

Xenomai RTDM skin API Module Documentation

5.1 CAN Devices

Collaboration diagram for CAN Devices:

5.1.1 Detailed Description

This is the common interface a RTDM-compliant CAN device has to provide. Feel free to report bugs and comments on this profile to the "Socketcan" mailing list (Socketcan-core@lists.berlios.de) or directly to the authors (wg@grandegger.com or Sebastian.Smolorz@stud.uni-hannover.de).

Profile Revision: 2

Device Characteristics

Device Flags: RTDM_PROTOCOL_DEVICE

Protocol Family: PF_CAN Socket Type: SOCK_RAW

Device Class: RTDM_CLASS_CAN

Supported Operations

Socket

Environments: non-RT (RT optional)

Specific return values:

• -EPROTONOSUPPORT (Protocol is not supported by the driver. See CAN protocols for possible protocols.)

Close

Blocking calls to any of the Send or Receive functions will be unblocked when the socket is closed and return with an error.

Environments: non-RT (RT optional)

Specific return values: none

IOCTL

Mandatory Environments: see below Specific return values: see below

Bind

Binds a socket to one or all CAN devices (see struct sockaddr_can). If a filter list has been defined with setsockopt (see Sockopts), it will be used upon reception of CAN frames to decide whether the bound socket will receive a frame. If no filter has been defined, the socket will receive all CAN frames on the specified interface(s).

Binding to special interface index 0 will make the socket receive CAN frames from all CAN interfaces.

Binding to an interface index is also relevant for the Send functions because they will transmit a message over the interface the socket is bound to when no socket address is given to them. Environments: non-RT (RT optional)

Specific return values:

- -EFAULT (It was not possible to access user space memory area at the specified address.)
- -ENOMEM (Not enough memory to fulfill the operation)
- -EINVAL (Invalid address family, or invalid length of address structure)
- -ENODEV (Invalid CAN interface index)
- -ENOSPC (No enough space for filter list)
- -EBADF (Socket is about to be closed)
- -EAGAIN (Too many receivers. Old binding (if any) is still active. Close some sockets and try again.)

Setsockopt, Getsockopt

These functions allow to set and get various socket options. Currently, only CAN raw sockets are supported.

Supported Levels and Options:

- Level SOL_CAN_RAW : CAN RAW protocol (see CAN_RAW)
 - Option CAN_RAW_FILTER: CAN filter list
 - Option CAN_RAW_ERR_FILTER: CAN error mask
 - Option CAN_RAW_LOOPBACK: CAN TX loopback to local sockets

Environments: non-RT (RT optional)

Specific return values: see links to options above.

Recv, Recvfrom, Recvmsg

These functions receive CAN messages from a socket. Only one message per call can be received, so only one buffer with the correct length must be passed. For SOCK_RAW, this is the size of struct can frame.

Unlike a call to one of the Send functions, a Recv function will not return with an error if an interface is down (due to bus-off or setting of stop mode) or in sleep mode. Moreover, in such a case there may still be some CAN messages in the socket buffer which could be read out successfully.

It is possible to receive a high precision timestamp with every CAN message. The condition is a former instruction to the socket via RTCAN_RTIOC_TAKE_TIMESTAMP. The timestamp will be copied to the msg_control buffer of struct msghdr if it points to a valid memory location with size of nanosecs_abs_t. If this is a NULL pointer the timestamp will be discarded silently.

Note: A msg_controllen of 0 upon completion of the function call indicates that no timestamp is available for that message.

Supported Flags [in]:

 MSG_DONTWAIT (By setting this flag the operation will only succeed if it would not block, i.e. if there is a message in the socket buffer. This flag takes precedence over a timeout specified by RTCAN_RTIOC_RCV_TIMEOUT.)

• MSG_PEEK (Receive a message but leave it in the socket buffer. The next receive operation will get that message again.)

Supported Flags [out]: none

Environments: RT (non-RT optional)

Specific return values:

- Non-negative value (Indicating the successful reception of a CAN message. For SOCK_-RAW, this is the size of struct can_frame regardless of the actual size of the payload.)
- -EFAULT (It was not possible to access user space memory area at one of the specified addresses.)
- -EINVAL (Unsupported flag detected, or invalid length of socket address buffer, or invalid length of message control buffer)
- -EMSGSIZE (Zero or more than one iovec buffer passed, or buffer too small)
- -EAGAIN (No data available in non-blocking mode)
- -EBADF (Socket was closed.)
- -EINTR (Operation was interrupted explicitly or by signal.)
- -ETIMEDOUT (Timeout)

Send, Sendto, Sendmsg

These functions send out CAN messages. Only one message per call can be transmitted, so only one buffer with the correct length must be passed. For SOCK_RAW, this is the size of struct can frame.

The following only applies to SOCK_RAW: If a socket address of struct sockaddr_can is given, only can_ifindex is used. It is also possible to omit the socket address. Then the interface the socket is bound to will be used for sending messages.

If an interface goes down (due to bus-off or setting of stop mode) all senders that were blocked on this interface will be woken up.

Supported Flags:

MSG_DONTWAIT (By setting this flag the transmit operation will only succeed if it
would not block. This flag takes precedence over a timeout specified by RTCAN_RTIOC_SND_TIMEOUT.)

Environments: RT (non-RT optional)

Specific return values:

- Non-negative value equal to given buffer size (Indicating the successful completion of the function call. See also note.)
- -EOPNOTSUPP (MSG_OOB flag is not supported.)
- -EINVAL (Unsupported flag detected *or:* Invalid length of socket address *or:* Invalid address family *or:* Data length code of CAN frame not between 0 and 15 *or:* CAN standard frame has got an ID not between 0 and 2031)
- -EMSGSIZE (Zero or more than one buffer passed or invalid size of buffer)
- -EFAULT (It was not possible to access user space memory area at one of the specified addresses.)
- -ENXIO (Invalid CAN interface index 0 is not allowed here or socket not bound or rather bound to all interfaces.)
- -ENETDOWN (Controller is bus-off or in stopped state.)
- -ECOMM (Controller is sleeping)

- -EAGAIN (Cannot transmit without blocking but a non-blocking call was requested.)
- -EINTR (Operation was interrupted explicitly or by signal)
- -EBADF (Socket was closed.)
- -ETIMEDOUT (Timeout)

Note: A successful completion of the function call does not implicate a successful transmission of the message.

Files

• file rtcan.h

Real-Time Driver Model for RT-Socket-CAN, CAN device profile header.

Data Structures

- struct can_bittime_std

 Standard bit-time parameters according to Bosch.
- struct can_bittime_btr

 Hardware-specific BTR bit-times.
- struct can_bittime

 Custom CAN bit-time definition.
- struct can_filter_t
- Filter for reception of CAN messages.
- struct sockaddr_can

 Socket address structure for the CAN address family.
- struct can_frame_t

 Raw CAN frame.

CAN operation modes

Modes into which CAN controllers can be set

enum CAN_MODE { CAN_MODE_STOP = 0, CAN_MODE_START, CAN_MODE_SLEEP }

CAN controller states

States a CAN controller can be in.

enum CAN_STATE {
 CAN_STATE_ACTIVE = 0, CAN_STATE_BUS_WARNING, CAN_STATE_BUS_PASSIVE,
 CAN_STATE_BUS_OFF,
 CAN_STATE_SCANNING_BAUDRATE, CAN_STATE_STOPPED, CAN_STATE_ SLEEPING }

CAN ID masks

Bit masks for masking CAN IDs

- #define CAN_EFF_MASK 0x1FFFFFFF
 Bit mask for extended CAN IDs.
- #define CAN_SFF_MASK 0x000007FF Bit mask for standard CAN IDs.

CAN ID flags

Flags within a CAN ID indicating special CAN frame attributes

- #define CAN_EFF_FLAG 0x80000000
 Extended frame.
- #define CAN_RTR_FLAG 0x40000000 Remote transmission frame.
- #define CAN_ERR_FLAG 0x20000000
 Error frame (see Errors), not valid in struct can_filter.
- #define CAN_INV_FILTER CAN_ERR_FLAG

 Invert CAN filter definition, only valid in struct can_filter.

Particular CAN protocols

Possible protocols for the PF_CAN protocol family Currently only the RAW protocol is supported.

#define CAN_RAW 1
 Raw protocol of PF_CAN, applicable to socket type SOCK_RAW.

CAN controller modes

Special CAN controllers modes, which can be or'ed together.

Note:

These modes are hardware-dependent. Please consult the hardware manual of the CAN controller for more detailed information.

- #define CAN_CTRLMODE_LISTENONLY 0x1
- #define CAN_CTRLMODE_LOOPBACK 0x2

Timestamp switches

Arguments to pass to RTCAN_RTIOC_TAKE_TIMESTAMP

- #define RTCAN_TAKE_NO_TIMESTAMPS 0 Switch off taking timestamps.
- #define RTCAN_TAKE_TIMESTAMPS 1

 Do take timestamps.

RAW socket options

Setting and getting CAN RAW socket options.

- #define CAN_RAW_FILTER 0x1 CAN filter definition.
- #define CAN_RAW_ERR_FILTER 0x2 CAN error mask.
- #define CAN_RAW_LOOPBACK 0x3

 CAN TX loopback.
- #define CAN_RAW_RECV_OWN_MSGS 0x4 CAN receive own messages.

IOCTLs

CAN device IOCTLs

- #define SIOCGIFINDEX defined_by_kernel_header_file Get CAN interface index by name.
- #define SIOCSCANBAUDRATE _IOW(RTIOC_TYPE_CAN, 0x01, struct ifreq) Set baud rate.
- #define SIOCGCANBAUDRATE_IOWR(RTIOC_TYPE_CAN, 0x02, struct ifreq)

 Get baud rate.

• #define SIOCSCANCUSTOMBITTIME _IOW(RTIOC_TYPE_CAN, 0x03, struct ifreq) Set custom bit time parameter.

- #define SIOCGCANCUSTOMBITTIME _IOWR(RTIOC_TYPE_CAN, 0x04, struct ifreq)
 Get custum bit-time parameters.
- #define SIOCSCANMODE _IOW(RTIOC_TYPE_CAN, 0x05, struct ifreq) Set operation mode of CAN controller.
- #define SIOCGCANSTATE _IOWR(RTIOC_TYPE_CAN, 0x06, struct ifreq) Get current state of CAN controller.
- #define SIOCSCANCTRLMODE_IOW(RTIOC_TYPE_CAN, 0x07, struct ifreq) Set special controller modes.
- #define SIOCGCANCTRLMODE _IOWR(RTIOC_TYPE_CAN, 0x08, struct ifreq) Get special controller modes.
- #define RTCAN_RTIOC_TAKE_TIMESTAMP_IOW(RTIOC_TYPE_CAN, 0x09, int) Enable or disable storing a high precision timestamp upon reception of a CAN frame.
- #define RTCAN_RTIOC_RCV_TIMEOUT_IOW(RTIOC_TYPE_CAN, 0x0A, nanosecs_rel_t)
 Specify a reception timeout for a socket.
- #define RTCAN_RTIOC_SND_TIMEOUT_IOW(RTIOC_TYPE_CAN, 0x0B, nanosecs_rel_t)

Specify a transmission timeout for a socket.

Error mask

Error class (mask) in can_id field of struct can_frame to be used with CAN_RAW_ERR_FILTER.

Note: Error reporting is hardware dependent and most CAN controllers report less detailed error conditions than the SJA1000.

Note: In case of a bus-off error condition (CAN_ERR_BUSOFF), the CAN controller is **not** restarted automatically. It is the application's responsibility to react appropriately, e.g. calling CAN_MODE START.

Note: Bus error interrupts (CAN_ERR_BUSERROR) are enabled when an application is calling a Recv function on a socket listening on bus errors (using CAN_RAW_ERR_FILTER). After one bus error has occured, the interrupt will be disabled to allow the application time for error processing and to efficiently avoid bus error interrupt flooding.

- #define CAN_ERR_TX_TIMEOUT 0x00000001U
 TX timeout (netdevice driver).
- #define CAN_ERR_LOSTARB 0x00000002U
 Lost arbitration (see data[0]).

- #define CAN_ERR_CRTL 0x00000004U

 Controller problems (see data[1]).
- #define CAN_ERR_PROT 0x00000008U Protocol violations (see data[2], data[3]).
- #define CAN_ERR_TRX 0x00000010U

 Transceiver status (see data[4]).
- #define CAN_ERR_ACK 0x00000020U Received no ACK on transmission.
- #define CAN_ERR_BUSOFF 0x00000040U
 Bus off.
- #define CAN_ERR_BUSERROR 0x00000080U

 Bus error (may flood!).
- #define CAN_ERR_RESTARTED 0x00000100U
 Controller restarted.
- #define CAN_ERR_MASK 0x1FFFFFFFU
 Omit EFF, RTR, ERR flags.

Arbitration lost error

Error in the data[0] field of struct can_frame.

• #define CAN_ERR_LOSTARB_UNSPEC 0x00 unspecified

Controller problems

Error in the data[1] field of struct can_frame.

- #define CAN_ERR_CRTL_UNSPEC 0x00 unspecified
- #define CAN_ERR_CRTL_RX_OVERFLOW 0x01 RX buffer overflow.
- #define CAN_ERR_CRTL_TX_OVERFLOW 0x02 TX buffer overflow.
- #define CAN_ERR_CRTL_RX_WARNING 0x04 reached warning level for RX errors

- #define CAN_ERR_CRTL_TX_WARNING 0x08 reached warning level for TX errors
- #define CAN_ERR_CRTL_RX_PASSIVE 0x10 reached passive level for RX errors
- #define CAN_ERR_CRTL_TX_PASSIVE 0x20 reached passive level for TX errors

Protocol error type

Error in the data[2] field of struct can_frame.

- #define CAN_ERR_PROT_UNSPEC 0x00 unspecified
- #define CAN_ERR_PROT_BIT 0x01 single bit error
- #define CAN_ERR_PROT_FORM 0x02 frame format error
- #define CAN_ERR_PROT_STUFF 0x04
 bit stuffing error
- #define CAN_ERR_PROT_BIT0 0x08 unable to send dominant bit
- #define CAN_ERR_PROT_BIT1 0x10 unable to send recessive bit
- #define CAN_ERR_PROT_OVERLOAD 0x20
 bus overload
- #define CAN_ERR_PROT_ACTIVE 0x40 active error announcement
- #define CAN_ERR_PROT_TX 0x80 error occured on transmission

Protocol error location

Error in the data[3] field of struct can_frame.

• #define CAN_ERR_PROT_LOC_UNSPEC 0x00 unspecified

- #define CAN_ERR_PROT_LOC_SOF 0x03 start of frame
- #define CAN_ERR_PROT_LOC_ID28_21 0x02 ID bits 28 - 21 (SFF: 10 - 3).
- #define CAN_ERR_PROT_LOC_ID20_18 0x06 ID bits 20 - 18 (SFF: 2 - 0).
- #define CAN_ERR_PROT_LOC_SRTR 0x04 substitute RTR (SFF: RTR)
- #define CAN_ERR_PROT_LOC_IDE 0x05
 identifier extension
- #define CAN_ERR_PROT_LOC_ID17_13 0x07 ID bits 17-13.
- #define CAN_ERR_PROT_LOC_ID12_05 0x0F
 ID bits 12-5.
- #define CAN_ERR_PROT_LOC_ID04_00 0x0E ID bits 4-0.
- #define CAN_ERR_PROT_LOC_RTR 0x0C RTR.
- #define CAN_ERR_PROT_LOC_RES1 0x0D
 reserved bit 1
- #define CAN_ERR_PROT_LOC_RES0 0x09
 reserved bit 0
- #define CAN_ERR_PROT_LOC_DLC 0x0B data length code
- #define CAN_ERR_PROT_LOC_DATA 0x0A
 data section
- #define CAN_ERR_PROT_LOC_CRC_SEQ 0x08 CRC sequence.
- #define CAN_ERR_PROT_LOC_CRC_DEL 0x18 CRC delimiter.
- #define CAN_ERR_PROT_LOC_ACK 0x19

 ACK slot.
- #define CAN_ERR_PROT_LOC_ACK_DEL 0x1B ACK delimiter.

- #define CAN_ERR_PROT_LOC_EOF 0x1A end of frame
- #define CAN_ERR_PROT_LOC_INTERM 0x12 intermission

Protocol error location

Error in the data[4] field of struct can_frame.

- #define CAN_ERR_TRX_UNSPEC 0x00 0000 0000
- #define CAN_ERR_TRX_CANH_NO_WIRE 0x04 0000 0100
- #define CAN_ERR_TRX_CANH_SHORT_TO_BAT 0x05 0000 0101
- #define CAN_ERR_TRX_CANH_SHORT_TO_VCC 0x06 0000 0110
- #define CAN_ERR_TRX_CANH_SHORT_TO_GND 0x07 0000 0111
- #define CAN_ERR_TRX_CANL_NO_WIRE 0x40 0100 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_BAT 0x50 0101 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_VCC 0x60 0110 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_GND 0x70 0111 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_CANH 0x80 1000 0000

Defines

- #define AF_CAN 29

 CAN address family.
- #define PF_CAN AF_CAN

CAN protocol family.

• #define SOL_CAN_RAW 103 CAN socket levels.

Typedefs

- typedef uint32_t can_id_t
 Type of CAN id (see CAN_xxx_MASK and CAN_xxx_FLAG).
- typedef can_id_t can_err_mask_t

 Type of CAN error mask.
- typedef uint32_t can_baudrate_t

 Baudrate definition in bits per second.
- typedef enum CAN_BITTIME_TYPE can_bittime_type_t See CAN_BITTIME_TYPE.
- typedef enum CAN_MODE can_mode_t See CAN_MODE.
- typedef int can_ctrlmode_t See CAN_CTRLMODE.
- typedef enum CAN_STATE can_state_t See CAN_STATE.

Enumerations

• enum CAN_BITTIME_TYPE { CAN_BITTIME_STD, CAN_BITTIME_BTR } Supported CAN bit-time types.

5.1.2 Define Documentation

5.1.2.1 #define CAN_CTRLMODE_LISTENONLY 0x1

Listen-Only mode

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is received successfully and messages would not be transmitted. This mode might be useful for bus-monitoring, hot-plugging or throughput analysis.

Examples:

rtcanconfig.c.

5.1.2.2 #define CAN_CTRLMODE_LOOPBACK 0x2

Loopback mode

In this mode the CAN controller does an internal loop-back, a message is transmitted and simultaneously received. That mode can be used for self test operation.

Examples:

rtcanconfig.c.

5.1.2.3 #define CAN ERR LOSTARB UNSPEC 0x00

unspecified

else bit number in bitstream

5.1.2.4 #define CAN_RAW_ERR_FILTER 0x2

CAN error mask.

A CAN error mask (see Errors) can be set with setsockopt. This mask is then used to decide if error frames are delivered to this socket in case of error condidtions. The error frames are marked with the CAN_ERR_FLAG of CAN_xxx_FLAG and must be handled by the application properly. A detailed description of the errors can be found in the can_id and the data fields of struct can_frame (see Errors for futher details).

Parameters:

- \leftarrow level SOL_CAN_RAW
- ← optname CAN_RAW_ERR_FILTER
- ← *optval* Pointer to error mask of type can_err_mask_t.
- *← optlen* Size of error mask: sizeof(can_err_mask_t).

Environments: non-RT (RT optional)

Specific return values:

- -EFAULT (It was not possible to access user space memory area at the specified address.)
- -EINVAL (Invalid length "optlen")

Examples:

rtcanrecv.c.

5.1.2.5 #define CAN_RAW_FILTER 0x1

CAN filter definition.

A CAN raw filter list with elements of struct can_filter can be installed with setsockopt. This list is used upon reception of CAN frames to decide whether the bound socket will receive a frame.

An empty filter list can also be defined using optlen = 0, which is recommanded for write-only sockets.

If the socket was already bound with Bind, the old filter list gets replaced with the new one. Be aware that already received, but not read out CAN frames may stay in the socket buffer.

Parameters:

- \leftarrow level SOL_CAN_RAW
- ← optname CAN_RAW_FILTER
- ← *optval* Pointer to array of struct can_filter.
- ← *optlen* Size of filter list: count * sizeof(struct can_filter).

Environments: non-RT (RT optional)

Specific return values:

- -EFAULT (It was not possible to access user space memory area at the specified address.)
- -ENOMEM (Not enough memory to fulfill the operation)
- -EINVAL (Invalid length "optlen")
- -ENOSPC (No space to store filter list, check RT-Socket-CAN kernel parameters)

Examples:

rtcan_rtt.c, rtcanrecv.c, and rtcansend.c.

5.1.2.6 #define CAN_RAW_LOOPBACK 0x3

CAN TX loopback.

The TX loopback to other local sockets can be selected with this setsockopt.

Note:

The TX loopback feature must be enabled in the kernel and then the loopback to other local TX sockets is enabled by default.

Parameters:

- \leftarrow level SOL_CAN_RAW
- $\leftarrow optname \ CAN_RAW_LOOPBACK$
- *← optval* Pointer to integer value.
- $\leftarrow optlen \ \, \mathsf{Size} \,\, \mathsf{of} \,\, \mathsf{int:} \,\, \mathsf{sizeof(int)}.$

Environments: non-RT (RT optional)

Specific return values:

- -EFAULT (It was not possible to access user space memory area at the specified address.)
- -EINVAL (Invalid length "optlen")
- -EOPNOTSUPP (not supported, check RT-Socket-CAN kernel parameters).

Examples:

rtcansend.c.

5.1.2.7 #define CAN_RAW_RECV_OWN_MSGS 0x4

CAN receive own messages.

Not supported by RT-Socket-CAN, but defined for compatibility with Socket-CAN.

5.1.2.8 #define RTCAN_RTIOC_RCV_TIMEOUT _IOW(RTIOC_TYPE_CAN, 0x0A, nanosecs_rel_t)

Specify a reception timeout for a socket.

Defines a timeout for all receive operations via a socket which will take effect when one of the receive functions is called without the MSG_DONTWAIT flag set.

The default value for a newly created socket is an infinite timeout.

Note:

The setting of the timeout value is not done atomically to avoid locks. Please set the value before receiving messages from the socket.

Parameters:

← *arg* Pointer to nanosecs_rel_t variable. The value is interpreted as relative timeout in nanoseconds in case of a positive value. See Timeouts for special timeouts.

Returns:

0 on success, otherwise:

• -EFAULT: It was not possible to access user space memory area at the specified address.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

Examples:

rtcanrecv.c.

5.1.2.9 #define RTCAN_RTIOC_SND_TIMEOUT _IOW(RTIOC_TYPE_CAN, 0x0B, nanosecs_rel_t)

Specify a transmission timeout for a socket.

Defines a timeout for all send operations via a socket which will take effect when one of the send functions is called without the MSG_DONTWAIT flag set.

The default value for a newly created socket is an infinite timeout.

Note:

The setting of the timeout value is not done atomically to avoid locks. Please set the value before sending messages to the socket.

Parameters:

← arg Pointer to nanosecs_rel_t variable. The value is interpreted as relative timeout in nanoseconds in case of a positive value. See Timeouts for special timeouts.

Returns:

0 on success, otherwise:

• -EFAULT: It was not possible to access user space memory area at the specified address.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

Examples:

rtcansend.c.

5.1.2.10 #define RTCAN_RTIOC_TAKE_TIMESTAMP_IOW(RTIOC_TYPE_CAN, 0x09, int)

Enable or disable storing a high precision timestamp upon reception of a CAN frame.

A newly created socket takes no timestamps by default.

Parameters:

 \leftarrow arg int variable, see Timestamp switches

Returns:

0 on success.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

Activating taking timestamps only has an effect on newly received CAN messages from the bus. Frames that already are in the socket buffer do not have timestamps if it was deactivated before. See Receive for more details.

Rescheduling: never.

Examples:

rtcanrecv.c.

5.1.2.11 #define SIOCGCANBAUDRATE _IOWR(RTIOC_TYPE_CAN, 0x02, struct ifreq)

Get baud rate.

Parameters:

⇔ arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru will be filled with an instance of can_baudrate_t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No baud rate was set yet.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.1.2.12 #define SIOCGCANCTRLMODE _IOWR(RTIOC_TYPE_CAN, 0x08, struct ifreq)

Get special controller modes.

Parameters:

← arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru must be filled with an instance of can_ctrlmode_t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No baud rate was set yet.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.1.2.13 #define SIOCGCANCUSTOMBITTIME _IOWR(RTIOC_TYPE_CAN, 0x04, struct ifreq)

Get custum bit-time parameters.

Parameters:

⇔ arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru will be filled with an instance of struct can bittime.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No baud rate was set yet.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.1.2.14 #define SIOCGCANSTATE _IOWR(RTIOC_TYPE_CAN, 0x06, struct ifreq)

Get current state of CAN controller.

States are divided into main states and additional error indicators. A CAN controller is always in exactly one main state. CAN bus errors are registered by the CAN hardware and collected by the driver. There is one error indicator (bit) per error type. If this IOCTL is triggered the error types which occured since the last call of this IOCTL are reported and thereafter the error indicators are cleared. See also CAN controller states.

Parameters:

⇔ arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name
 must hold a valid CAN interface name, ifr_ifru will be filled with an instance of
 can_mode_t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.1.2.15 #define SIOCGIFINDEX defined_by_kernel_header_file

Get CAN interface index by name.

Parameters:

⇔ arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). If ifr_name holds a valid CAN interface name ifr_ifindex will be filled with the corresponding interface index.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

Examples:

rtcan_rtt.c, rtcanconfig.c, rtcanrecv.c, and rtcansend.c.

5.1.2.16 #define SIOCSCANBAUDRATE _IOW(RTIOC_TYPE_CAN, 0x01, struct ifreq)

Set baud rate.

The baudrate must be specified in bits per second. The driver will try to calculate resonable CAN bit-timing parameters. You can use SIOCSCANCUSTOMBITTIME to set custom bit-timing.

Parameters:

← arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru must be filled with an instance of can_baudrate_t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No valid baud rate, see can_baudrate_t.
- -EDOM : Baud rate not possible.
- -EAGAIN: Request could not be successully fulfilled. Try again.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

Setting the baud rate is a configuration task. It should be done deliberately or otherwise CAN messages will likely be lost.

Rescheduling: possible.

Examples:

rtcanconfig.c.

5.1.2.17 #define SIOCSCANCTRLMODE_IOW(RTIOC_TYPE_CAN, 0x07, struct ifreq)

Set special controller modes.

Various special controller modes could be or'ed together (see CAN_CTRLMODE for further information).

Parameters:

← arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru must be filled with an instance of can_ctrlmode_t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No valid baud rate, see can_baudrate_t.
- -EAGAIN: Request could not be successully fulfilled. Try again.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

Setting special controller modes is a configuration task. It should be done deliberately or otherwise CAN messages will likely be lost.

Rescheduling: possible.

Examples:

rtcanconfig.c.

5.1.2.18 #define SIOCSCANCUSTOMBITTIME _IOW(RTIOC_TYPE_CAN, 0x03, struct ifreq)

Set custom bit time parameter.

Custem-bit time could be defined in various formats (see struct can_bittime).

Parameters:

← arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru must be filled with an instance of struct can_bittime.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EINVAL: No valid baud rate, see can_baudrate_t.
- -EAGAIN: Request could not be successully fulfilled. Try again.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

Setting the bit-time is a configuration task. It should be done deliberately or otherwise CAN messages will likely be lost.

Rescheduling: possible.

Examples:

rtcanconfig.c.

5.1.2.19 #define SIOCSCANMODE _IOW(RTIOC_TYPE_CAN, 0x05, struct ifreq)

Set operation mode of CAN controller.

See CAN controller modes for available modes.

Parameters:

← arg Pointer to interface request structure buffer (struct ifreq from linux/if.h). ifr_name must hold a valid CAN interface name, ifr_ifru must be filled with an instance of can mode t.

Returns:

0 on success, otherwise:

- -EFAULT: It was not possible to access user space memory area at the specified address.
- -ENODEV: No device with specified name exists.
- -EAGAIN: (CAN_MODE_START, CAN_MODE_STOP) Could not successfully set mode, hardware is busy. Try again.
- -EINVAL: (CAN_MODE_START) Cannot start controller, set baud rate first.
- -ENETDOWN: (CAN_MODE_SLEEP) Cannot go into sleep mode because controller is stopped or bus off.
- -EOPNOTSUPP: unknown mode

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

Setting a CAN controller into normal operation after a bus-off can take some time (128 occurrences of 11 consecutive recessive bits). In such a case, although this IOCTL will return immediately with success and SIOCGCANSTATE will report CAN_STATE_ACTIVE, bus-off recovery may still be in progress.

If a controller is bus-off, setting it into stop mode will return no error but the controller remains bus-off.

Rescheduling: possible.

Examples:

rtcanconfig.c.

5.1.2.20 #define SOL_CAN_RAW 103

CAN socket levels.

Used for Sockopts for the particular protocols.

Examples:

rtcan_rtt.c, rtcanrecv.c, and rtcansend.c.

5.1.3 Enumeration Type Documentation

5.1.3.1 enum CAN_BITTIME_TYPE

Supported CAN bit-time types.

Enumerator:

CAN_BITTIME_STD Standard bit-time definition according to Bosch.

CAN_BITTIME_BTR Hardware-specific BTR bit-time definition.

5.1.3.2 enum CAN MODE

Enumerator:

CAN_MODE_STOP Set controller in Stop mode (no reception / transmission possible)

CAN_MODE_START Set controller into normal operation.

Coming from stopped mode or bus off, the controller begins with no errors in CAN_STATE_ACTIVE.

CAN_MODE_SLEEP Set controller into Sleep mode.

This is only possible if the controller is not stopped or bus-off.

Notice that sleep mode will only be entered when there is no bus activity. If the controller detects bus activity while "sleeping" it will go into operating mode again.

To actively leave sleep mode again trigger CAN_MODE_START.

5.1.3.3 enum CAN_STATE

Enumerator:

CAN_STATE_ACTIVE CAN controller is error active.

CAN_STATE_BUS_WARNING CAN controller is error active, warning level is reached.

CAN_STATE_BUS_PASSIVE CAN controller is error passive.

CAN_STATE_BUS_OFF CAN controller went into Bus Off.

CAN_STATE_SCANNING_BAUDRATE CAN controller is scanning to get the baudrate.

CAN_STATE_STOPPED CAN controller is in stopped mode.

CAN_STATE_SLEEPING CAN controller is in Sleep mode.

5.2 Real-Time Driver Model

Collaboration diagram for Real-Time Driver Model:

5.2.1 Detailed Description

The Real-Time Driver Model (RTDM) provides a unified interface to both users and developers of real-time device drivers. Specifically, it addresses the constraints of mixed RT/non-RT systems like Xenomai. RTDM conforms to POSIX semantics (IEEE Std 1003.1) where available and applicable.

API Revision: 6

Modules

- User API
- Driver Development API
- Device Profiles

API Versioning

• #define RTDM_API_VER 6

Common user and driver API version.

#define RTDM_API_MIN_COMPAT_VER 6

Minimum API revision compatible with the current release.

RTDM_TIMEOUT_xxx

Special timeout values

- #define RTDM_TIMEOUT_INFINITE 0 Block forever.
- #define RTDM_TIMEOUT_NONE (-1)

Any negative timeout means non-blocking.

Typedefs

• typedef uint64_t nanosecs_abs_t

RTDM type for representing absolute dates.

• typedef int64_t nanosecs_rel_t

RTDM type for representing relative intervals.

5.2.2 Define Documentation

5.2.2.1 #define RTDM_TIMEOUT_INFINITE 0

Block forever.

5.2.2.2 #define RTDM_TIMEOUT_NONE (-1)

Any negative timeout means non-blocking.

5.2.3 Typedef Documentation

5.2.3.1 typedef uint64_t nanosecs_abs_t

RTDM type for representing absolute dates.

Its base type is a 64 bit unsigned integer. The unit is 1 nanosecond.

Examples:

rtcanrecv.c.

5.2.3.2 typedef int64_t nanosecs_rel_t

RTDM type for representing relative intervals.

Its base type is a 64 bit signed integer. The unit is 1 nanosecond. Relative intervals can also encode the special timeouts "infinite" and "non-blocking", see RTDM_TIMEOUT_xxx.

Examples:

rtcanrecv.c, and rtcansend.c.

5.3 User API 35

5.3 User API

Collaboration diagram for User API:

5.3.1 Detailed Description

This is the upper interface of RTDM provided to application programs both in kernel and user space. Note that certain functions may not be implemented by every device. Refer to the Device Profiles for precise information.

Files

• file rtdm.h

Real-Time Driver Model for Xenomai, user API header.

Functions

- int rt_dev_open (const char *path, int oflag,...)
- int rt_dev_socket (int protocol_family, int socket_type, int protocol)
- int rt_dev_close (int fd)
- int rt_dev_ioctl (int fd, int request,...)
- ssize_t rt_dev_read (int fd, void *buf, size_t nbyte)
- ssize_t rt_dev_write (int fd, const void *buf, size_t nbyte)
- ssize_t rt_dev_recvmsg (int fd, struct msghdr *msg, int flags)
- ssize_t rt_dev_recvfrom (int fd, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen)
- ssize_t rt_dev_recv (int fd, void *buf, size_t len, int flags)
- ssize_t rt_dev_sendmsg (int fd, const struct msghdr *msg, int flags)
- ssize_t rt_dev_sendto (int fd, const void *buf, size_t len, int flags, const struct sockaddr *to, socklen_t tolen)
- ssize_t rt_dev_send (int fd, const void *buf, size_t len, int flags)
- int rt_dev_bind (int fd, const struct sockaddr *my_addr, socklen_t addrlen)
- int rt_dev_connect (int fd, const struct sockaddr *serv_addr, socklen_t addrlen)
- int rt_dev_listen (int fd, int backlog)
- int rt_dev_accept (int fd, struct sockaddr *addr, socklen_t *addrlen)
- int rt_dev_shutdown (int fd, int how)
- int rt_dev_getsockopt (int fd, int level, int optname, void *optval, socklen_t *optlen)
- int rt_dev_setsockopt (int fd, int level, int optname, const void *optval, socklen_t optlen)
- int rt_dev_getsockname (int fd, struct sockaddr *name, socklen_t *namelen)
- int rt_dev_getpeername (int fd, struct sockaddr *name, socklen_t *namelen)

5.3.2 Function Documentation

5.3.2.1 int rt_dev_accept (int fd, struct sockaddr * addr, socklen_t * addrlen)

Accept a connection requests

Parameters:

- ← fd File descriptor as returned by rt_dev_socket()
- \rightarrow *addr* Buffer for remote address
- *⇔ addrlen* Address buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
accept() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.2 int rt_dev_bind (int fd, const struct sockaddr * my_addr, socklen_t addrlen)

Bind to local address

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← *my_addr* Address buffer
- ← addrlen Address buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
bind() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.3 int rt_dev_close (int fd)

Close a device or socket

Parameters:

← *fd* File descriptor as returned by rt_dev_open() or rt_dev_socket()

5.3 User API 37

Returns:

0 on success, otherwise a negative error code.

Note:

If the matching rt_dev_open() or rt_dev_socket() call took place in non-real-time context, rt_dev_close() must be issued within non-real-time as well. Otherwise, the call will fail.

Environments:

Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
close() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.4 int rt_dev_connect (int fd, const struct sockaddr * serv_addr, socklen_t addrlen)

Connect to remote address

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← serv_addr Address buffer
- ← addrlen Address buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
connect() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.5 int rt_dev_getpeername (int fd, struct sockaddr * name, socklen_t * namelen)

Get socket destination address

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- → name Address buffer
- \leftrightarrow namelen Address buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
getpeername() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.6 int rt_dev_getsockname (int fd, struct sockaddr * name, socklen_t * namelen)

Get local socket address

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- → name Address buffer
- ← namelen Address buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
getsockname() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.7 int rt_dev_getsockopt (int fd, int level, int optname, void * optval, socklen_t * optlen)

Get socket option

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- \leftarrow *level* Addressed stack level
- ← *optname* Option name ID
- \rightarrow *optval* Value buffer
- $\leftrightarrow optlen~$ Value buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

getsockopt() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399

5.3 User API 39

5.3.2.8 int rt_dev_ioctl (int fd, int request, ...)

Issue an IOCTL

Parameters:

- ← *fd* File descriptor as returned by rt_dev_open() or rt_dev_socket()
- ← request IOCTL code
- ... Optional third argument, depending on IOCTL function (void * or unsigned long)

Returns:

Positiv value on success, otherwise negative error code

Environments:

Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
ioctl() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.9 int rt_dev_listen (int fd, int backlog)

Listen for incomming connection requests

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← backlog Maximum queue length

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
lsiten() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.10 int rt_dev_open (const char * path, int oflag, ...)

Open a device

Parameters:

- \leftarrow *path* Device name
- ← oflag Open flags
- ... Further parameters will be ignored.

Returns:

Positive file descriptor value on success, otherwise a negative error code.

Environments:

Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
open() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.11 ssize_t rt_dev_read (int fd, void * buf, size_t nbyte)

Read from device

Parameters:

- ← fd File descriptor as returned by rt_dev_open()
- $\rightarrow buf$ Input buffer
- ← *nbyte* Number of bytes to read

Returns:

Number of bytes read, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
read() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.12 ssize_t rt_dev_recv (int fd, void * buf, size_t len, int flags)

Receive message from socket

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- → *buf* Message buffer
- ← *len* Message buffer size
- \leftarrow *flags* Message flags

Returns:

Number of bytes received, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

recv() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399

5.3 User API 41

5.3.2.13 ssize_t rt_dev_recvfrom (int fd, void * buf, size_t len, int flags, struct sockaddr * from, socklen_t * fromlen)

Receive message from socket

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- → *buf* Message buffer
- ← *len* Message buffer size
- ← *flags* Message flags
- → *from* Buffer for message sender address
- ↔ fromlen Address buffer size

Returns:

Number of bytes received, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

recvfrom() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399

5.3.2.14 ssize_t rt_dev_recvmsg (int fd, struct msghdr * msg, int flags)

Receive message from socket

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- \leftrightarrow *msg* Message descriptor
- *← flags* Message flags

Returns:

Number of bytes received, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

recvmsg() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399

5.3.2.15 ssize_t rt_dev_send (int fd, const void * buf, size_t len, int flags)

Transmit message to socket

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← *buf* Message buffer
- ← *len* Message buffer size
- *← flags* Message flags

Returns:

Number of bytes sent, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
send() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.16 ssize_t rt_dev_sendmsg (int fd, const struct msghdr * msg, int flags)

Transmit message to socket

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← *msg* Message descriptor
- *← flags* Message flags

Returns:

Number of bytes sent, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
sendmsg() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.17 ssize_t rt_dev_sendto (int fd, const void * buf, size_t len, int flags, const struct sockaddr * to, socklen_t tolen)

Transmit message to socket

Parameters:

← *fd* File descriptor as returned by rt_dev_socket()

5.3 User API 43

- ← *buf* Message buffer
- ← *len* Message buffer size
- ← *flags* Message flags
- ← *to* Buffer for message destination address
- ← *tolen* Address buffer size

Returns:

Number of bytes sent, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
sendto() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.18 int rt_dev_setsockopt (int fd, int level, int optname, const void * optval, socklen_t optlen)

Set socket option

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- \leftarrow *level* Addressed stack level
- ← *optname* Option name ID
- ← *optval* Value buffer
- ← *optlen* Value buffer size

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
setsockopt() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.19 int rt_dev_shutdown (int fd, int how)

Shut down parts of a connection

Parameters:

- ← *fd* File descriptor as returned by rt_dev_socket()
- ← *how* Specifies the part to be shut down (SHUT_xxx)

Returns:

0 on success, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
shutdown() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.20 int rt_dev_socket (int protocol_family, int socket_type, int protocol)

Create a socket

Parameters:

- ← *protocol_family* Protocol family (PF_xxx)
- ← *socket_type* Socket type (SOCK_xxx)
- \leftarrow *protocol* Protocol ID, 0 for default

Returns:

Positive file descriptor value on success, otherwise a negative error code.

Environments:

Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

```
socket() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.3.2.21 ssize_t rt_dev_write (int fd, const void * buf, size_t nbyte)

Write to device

Parameters:

- ← fd File descriptor as returned by rt_dev_open()
- $\leftarrow buf$ Output buffer
- *← nbyte* Number of bytes to write

Returns:

Number of bytes written, otherwise negative error code Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

See also:

write() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399

5.4 Serial Devices 45

5.4 Serial Devices

Collaboration diagram for Serial Devices:

5.4.1 Detailed Description

This is the common interface a RTDM-compliant serial device has to provide. Feel free to comment on this profile via the Xenomai mailing list (Xenomai-core@gna.org) or directly to the author (jan.kiszka@web.de).

Profile Revision: 2

Device Characteristics

Device Flags: RTDM_NAMED_DEVICE, RTDM_EXCLUSIVE

Device Name: "rtser<N>", N >= 0 Device Class: RTDM_CLASS_SERIAL

Supported Operations

Open

Environments: non-RT (RT optional)

Specific return values: none

Close

Environments: non-RT (RT optional)

Specific return values: none

IOCTL

Mandatory Environments: see below Specific return values: see below

Read

Environments: RT (non-RT optional)

Specific return values:

- -ETIMEDOUT
- -EINTR (interrupted explicitly or by signal)
- -EAGAIN (no data available in non-blocking mode)
- -EBADF (device has been closed while reading)
- -EIO (hardware error or broken bit stream)

Write

Environments: RT (non-RT optional)

Specific return values:

- -ETIMEDOUT
- -EINTR (interrupted explicitly or by signal)
- -EAGAIN (no data written in non-blocking mode)
- -EBADF (device has been closed while writing)

Files

• file rtserial.h

Real-Time Driver Model for Xenomai, serial device profile header.

Data Structures

• struct rtser_config_t

Serial device configuration.

• struct rtser_status_t

Serial device status.

• struct rtser_event_t

Additional information about serial device events.

RTSER_DEF_BAUD

Default baud rate

• #define RTSER_DEF_BAUD 9600

RTSER_xxx_PARITY

Number of parity bits

- #define RTSER_NO_PARITY 0x00
- #define RTSER_ODD_PARITY 0x01
- #define RTSER_EVEN_PARITY 0x03
- #define RTSER_DEF_PARITY RTSER_NO_PARITY

RTSER_xxx_BITS

Number of data bits

- #define RTSER_5_BITS 0x00
- #define **RTSER_6_BITS** 0x01
- #define RTSER_7_BITS 0x02
- #define **RTSER_8_BITS** 0x03
- #define RTSER_DEF_BITS RTSER_8_BITS

5.4 Serial Devices 47

RTSER_xxx_STOPB

Number of stop bits

- #define RTSER_1_STOPB 0x00
- #define RTSER_1_5_STOPB 0x01

valid only in combination with 5 data bits

- #define RTSER_2_STOPB 0x01
- #define RTSER_DEF_STOPB RTSER_1_STOPB

RTSER_xxx_HAND

Handshake mechanisms

- #define RTSER_NO_HAND 0x00
- #define RTSER_RTSCTS_HAND 0x01
- #define RTSER_DEF_HAND RTSER_NO_HAND

RTSER_FIFO_xxx

Reception FIFO interrupt threshold

- #define RTSER_FIFO_DEPTH_1 0x00
- #define RTSER_FIFO_DEPTH_4 0x40
- #define RTSER_FIFO_DEPTH_8 0x80
- #define RTSER_FIFO_DEPTH_14 0xC0
- #define RTSER_DEF_FIFO_DEPTH RTSER_FIFO_DEPTH_1

RTSER_TIMEOUT_xxx

Special timeout values, see also RTDM_TIMEOUT_xxx

- #define RTSER_TIMEOUT_INFINITE RTDM_TIMEOUT_INFINITE
- #define RTSER_TIMEOUT_NONE RTDM_TIMEOUT_NONE
- #define RTSER_DEF_TIMEOUT RTDM_TIMEOUT_INFINITE

RTSER_xxx_TIMESTAMP_HISTORY

Timestamp history control

- #define RTSER_RX_TIMESTAMP_HISTORY 0x01
- #define RTSER_DEF_TIMESTAMP_HISTORY 0x00

RTSER_EVENT_xxx

Events bits

- #define RTSER_EVENT_RXPEND 0x01
- #define RTSER_EVENT_ERRPEND 0x02
- #define RTSER_EVENT_MODEMHI 0x04
- #define RTSER_EVENT_MODEMLO 0x08
- #define RTSER_DEF_EVENT_MASK 0x00

RTSER_SET_xxx

Configuration mask bits

- #define RTSER_SET_BAUD 0x0001
- #define RTSER_SET_PARITY 0x0002
- #define RTSER_SET_DATA_BITS 0x0004
- #define RTSER_SET_STOP_BITS 0x0008
- #define RTSER_SET_HANDSHAKE 0x0010
- #define RTSER_SET_FIFO_DEPTH 0x0020
- #define RTSER_SET_TIMEOUT_RX 0x0100
- #define RTSER_SET_TIMEOUT_TX 0x0200
- #define RTSER SET TIMEOUT EVENT 0x0400
- #define RTSER_SET_TIMESTAMP_HISTORY 0x0800
- #define RTSER_SET_EVENT_MASK 0x1000

RTSER_LSR_xxx

Line status bits

- #define RTSER_LSR_DATA 0x01
- #define RTSER_LSR_OVERRUN_ERR 0x02
- #define RTSER_LSR_PARITY_ERR 0x04
- #define RTSER_LSR_FRAMING_ERR 0x08
- #define RTSER_LSR_BREAK_IND 0x10
- #define RTSER_LSR_THR_EMTPY 0x20
- #define RTSER_LSR_TRANSM_EMPTY 0x40
- #define RTSER_LSR_FIFO_ERR 0x80
- #define RTSER_SOFT_OVERRUN_ERR 0x0100

RTSER_MSR_xxx

Modem status bits

- #define RTSER_MSR_DCTS 0x01
- #define RTSER_MSR_DDSR 0x02
- #define RTSER MSR TERI 0x04
- #define RTSER_MSR_DDCD 0x08

5.4 Serial Devices 49

- #define RTSER_MSR_CTS 0x10
- #define RTSER_MSR_DSR 0x20
- #define RTSER_MSR_RI 0x40
- #define RTSER_MSR_DCD 0x80

RTSER MCR xxx

Modem control bits

- #define RTSER_MCR_DTR 0x01
- #define RTSER_MCR_RTS 0x02
- #define RTSER_MCR_OUT1 0x04
- #define RTSER_MCR_OUT2 0x08
- #define RTSER_MCR_LOOP 0x10

RTSER_BREAK_xxx

Break control

- #define RTSER_BREAK_CLR 0x00
- #define RTSER_BREAK_SET 0x01
- #define RTIOC_TYPE_SERIAL RTDM_CLASS_SERIAL

Sub-Classes of RTDM_CLASS_SERIAL

• #define RTDM_SUBCLASS_16550A 0

IOCTLs

Serial device IOCTLs

• #define RTSER_RTIOC_GET_CONFIG _IOR(RTIOC_TYPE_SERIAL, 0x00, struct rtser_config)

Get serial device configuration.

• #define RTSER_RTIOC_SET_CONFIG _IOW(RTIOC_TYPE_SERIAL, 0x01, struct rtser_config)

Set serial device configuration.

• #define RTSER_RTIOC_GET_STATUS _IOR(RTIOC_TYPE_SERIAL, 0x02, struct rtser_status)

Get serial device status.

- #define RTSER_RTIOC_GET_CONTROL_IOR(RTIOC_TYPE_SERIAL, 0x03, int) Get serial device's modem contol register.
- #define RTSER_RTIOC_SET_CONTROL_IOW(RTIOC_TYPE_SERIAL, 0x04, int) Set serial device's modem contol register.

• #define RTSER_RTIOC_WAIT_EVENT _IOR(RTIOC_TYPE_SERIAL, 0x05, struct rtser_event)

Wait on serial device events according to previously set mask.

Defines

• #define RTSER_RTIOC_BREAK_CTL_IOR(RTIOC_TYPE_SERIAL, 0x06, int) Set or clear break on UART output line.

5.4.2 Define Documentation

5.4.2.1 #define RTSER_RTIOC_BREAK_CTL_IOR(RTIOC_TYPE_SERIAL, 0x06, int)

Set or clear break on UART output line.

Parameters:

← arg RTSER_BREAK_SET or RTSER_BREAK_CLR (int)

Returns:

0 on success, otherwise negative error code

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

A set break condition may also be cleared on UART line reconfiguration.

Rescheduling: never.

5.4.2.2 #define RTSER_RTIOC_GET_CONFIG _IOR(RTIOC_TYPE_SERIAL, 0x00, struct rtser_config)

Get serial device configuration.

Parameters:

→ arg Pointer to configuration buffer (struct rtser_config)

Returns:

0 on success, otherwise negative error code

5.4 Serial Devices 51

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.4.2.3 #define RTSER_RTIOC_GET_CONTROL_IOR(RTIOC_TYPE_SERIAL, 0x03, int)

Get serial device's modem contol register.

Parameters:

→ arg Pointer to variable receiving the content (int, see RTSER_MCR_xxx)

Returns:

0 on success, otherwise negative error code

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.4.2.4 #define RTSER_RTIOC_GET_STATUS _IOR(RTIOC_TYPE_SERIAL, 0x02, struct rtser_status)

Get serial device status.

Parameters:

→ *arg* Pointer to status buffer (struct rtser_status)

Returns:

0 on success, otherwise negative error code

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

- Kernel-based task
- User-space task (RT, non-RT)

Note:

The error states RTSER_LSR_OVERRUN_ERR, RTSER_LSR_PARITY_ERR, RTSER_LSR_FRAMING_ERR, and RTSER_SOFT_OVERRUN_ERR that may have occured during previous read accesses to the device will be saved for being reported via this IOCTL. Upon return from RTSER_RTIOC_GET_STATUS, the saved state will be cleared.

Rescheduling: never.

5.4.2.5 #define RTSER_RTIOC_SET_CONFIG_IOW(RTIOC_TYPE_SERIAL, 0x01, struct rtser_config)

Set serial device configuration.

Parameters:

← arg Pointer to configuration buffer (struct rtser_config)

Returns:

0 on success, otherwise:

- -EPERM is returned if the caller's context is invalid, see note below.
- -ENOMEM is returned if a new history buffer for timestamps cannot be allocated.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Note:

If rtser_config contains a valid timestamp_history and the addressed device has been opened in non-real-time context, this IOCTL must be issued in non-real-time context as well. Otherwise, this command will fail.

Rescheduling: never.

Examples:

cross-link.c.

5.4 Serial Devices 53

5.4.2.6 #define RTSER_RTIOC_SET_CONTROL_IOW(RTIOC_TYPE_SERIAL, 0x04, int)

Set serial device's modem contol register.

Parameters:

← arg New control register content (int, see RTSER_MCR_xxx)

Returns:

0 on success, otherwise negative error code

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.4.2.7 #define RTSER_RTIOC_WAIT_EVENT _IOR(RTIOC_TYPE_SERIAL, 0x05, struct rtser_event)

Wait on serial device events according to previously set mask.

Parameters:

→ arg Pointer to event information buffer (struct rtser_event)

Returns:

0 on success, otherwise:

- -EBUSY is returned if another task is already waiting on events of this device.
- -EBADF is returned if the file descriptor is invalid or the device has just been closed.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: possible.

Examples:

cross-link.c.

5.5 Testing Devices

Collaboration diagram for Testing Devices:

5.5.1 Detailed Description

This group of devices is intended to provide in-kernel testing results. Feel free to comment on this profile via the Xenomai mailing list (xenomai-core@gna.org) or directly to the author (jan.kiszka@web.de).

Profile Revision: 1

Device Characteristics

Device Flags: RTDM_NAMED_DEVICE Device Name: "rttest<N>", N >= 0 Device Class: RTDM_CLASS_TESTING

Supported Operations

Open

Environments: non-RT (RT optional)

Specific return values: none

Close

Environments: non-RT (RT optional)

Specific return values: none

IOCTL

Mandatory Environments: see TSTIOCTLs below Specific return values: see TSTIOCTLs below

Files

• file rttesting.h

Real-Time Driver Model for Xenomai, testing device profile header.

Sub-Classes of RTDM_CLASS_TESTING

- #define RTDM_SUBCLASS_TIMERBENCH 0
- #define RTDM_SUBCLASS_IRQBENCH 1
- #define RTDM_SUBCLASS_SWITCHTEST 2

IOCTLs

Testing device IOCTLs

• #define RTTST_RTIOC_INTERM_BENCH_RES _IOWR(RTIOC_TYPE_TESTING, 0x00, struct rttst_interm_bench_res)

• #define RTTST_RTIOC_TMBENCH_START_IOW(RTIOC_TYPE_TESTING, 0x10, struct rttst_tmbench_config)

- #define RTTST_RTIOC_TMBENCH_STOP_IOWR(RTIOC_TYPE_TESTING, 0x11, struct rttst_overall_bench_res)
- #define RTTST_RTIOC_IRQBENCH_START_IOW(RTIOC_TYPE_TESTING, 0x20, struct rttst_irqbench_config)
- #define **RTTST_RTIOC_IRQBENCH_STOP**_IO(RTIOC_TYPE_TESTING, 0x21)
- #define RTTST_RTIOC_IRQBENCH_GET_STATS _IOR(RTIOC_TYPE_TESTING, 0x22, struct rttst_irqbench_stats)
- #define RTTST_RTIOC_IRQBENCH_WAIT_IRQ _IO(RTIOC_TYPE_TESTING, 0x23)
- #define RTTST_RTIOC_IRQBENCH_REPLY_IRQ _IO(RTIOC_TYPE_TESTING, 0x24)
- #define RTTST_RTIOC_SWTEST_SET_TASKS_COUNT_IOW(RTIOC_TYPE_TESTING, 0x30, unsigned long)
- #define RTTST_RTIOC_SWTEST_SET_CPU _IOW(RTIOC_TYPE_TESTING, 0x31, unsigned long)
- #define RTTST_RTIOC_SWTEST_REGISTER_UTASK _IOW(RTIOC_TYPE_TESTING, 0x32, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_CREATE_KTASK _IOWR(RTIOC_TYPE_TESTING, 0x33, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_PEND _IOR(RTIOC_TYPE_TESTING, 0x34, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_SWITCH_TO _IOR(RTIOC_TYPE_TESTING, 0x35, struct rttst_swtest_dir)
- #define RTTST_RTIOC_SWTEST_GET_SWITCHES_COUNT _IOR(RTIOC_TYPE_TESTING, 0x36, unsigned long)
- #define RTTST_RTIOC_SWTEST_GET_LAST_ERROR _IOR(RTIOC_TYPE_TESTING, 0x37, struct rttst_swtest_error)

5.6 Inter-Driver API

Collaboration diagram for Inter-Driver API:

Functions

- struct rtdm_dev_context * rtdm_context_get (int fd)
- void rtdm_context_lock (struct rtdm_dev_context *context)
- void rtdm_context_unlock (struct rtdm_dev_context *context)
- int rtdm_open (const char *path, int oflag,...)
- int rtdm_socket (int protocol_family, int socket_type, int protocol)
- int rtdm_close (int fd)
- int rtdm_ioctl (int fd, int request,...)
- ssize_t rtdm_read (int fd, void *buf, size_t nbyte)
- ssize_t rtdm_write (int fd, const void *buf, size_t nbyte)
- ssize_t rtdm_recvmsg (int fd, struct msghdr *msg, int flags)
- ssize_trtdm_recvfrom (int fd, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen)
- ssize_t rtdm_recv (int fd, void *buf, size_t len, int flags)
- ssize_t rtdm_sendmsg (int fd, const struct msghdr *msg, int flags)
- ssize_t rtdm_sendto (int fd, const void *buf, size_t len, int flags, const struct sockaddr *to, socklen_t tolen)
- ssize_t rtdm_send (int fd, const void *buf, size_t len, int flags)
- int rtdm_bind (int fd, const struct sockaddr *my_addr, socklen_t addrlen)
- int rtdm_connect (int fd, const struct sockaddr *serv_addr, socklen_t addrlen)
- int rtdm listen (int fd, int backlog)
- int rtdm_accept (int fd, struct sockaddr *addr, socklen_t *addrlen)
- int rtdm_shutdown (int fd, int how)
- int rtdm_getsockopt (int fd, int level, int optname, void *optval, socklen_t *optlen)
- int rtdm_setsockopt (int fd, int level, int optname, const void *optval, socklen_t optlen)
- int rtdm_getsockname (int fd, struct sockaddr *name, socklen_t *namelen)
- int rtdm_getpeername (int fd, struct sockaddr *name, socklen_t *namelen)

5.6.1 Function Documentation

5.6.1.1 int rtdm_accept (int fd, struct sockaddr * addr, socklen_t * addrlen)

Accept a connection requests Refer to rt_dev_accept() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.2 int rtdm_bind (int fd, const struct sockaddr * my_addr, socklen_t addrlen)

Bind to local address Refer to rt_dev_bind() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

5.6 Inter-Driver API 57

5.6.1.3 int rtdm_close (int fd)

Close a device or socket Refer to rt_dev_close() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.4 int rtdm_connect (int fd, const struct sockaddr * serv_addr, socklen_t addrlen)

Connect to remote address Refer to rt_dev_connect() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.5 struct rtdm_dev_context* rtdm_context_get (int fd) [read]

Resolve file descriptor to device context

Parameters:

 \leftarrow *fd* File descriptor

Returns:

Pointer to associated device context, or NULL on error

Note:

The device context has to be unlocked using rtdm_context_unlock() when it is no longer referenced.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.6.1.6 void rtdm_context_lock (struct rtdm_dev_context * context)

Increment context reference counter

Parameters:

← *context* Device context

Note:

rtdm_context_get() automatically increments the lock counter. You only need to call this function in special scenrios.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.6.1.7 void rtdm context unlock (struct rtdm dev context * context)

Decrement context reference counter

Parameters:

← *context* Device context

Note:

Every successful call to rtdm_context_get() must be matched by a rtdm_context_unlock() invocation.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.6.1.8 int rtdm_getpeername (int fd, struct sockaddr * name, socklen_t * namelen)

Get socket destination address Refer to rt_dev_getpeername() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.9 int rtdm_getsockname (int fd, struct sockaddr * name, socklen_t * namelen)

Get local socket address Refer to rt_dev_getsockname() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

5.6 Inter-Driver API

5.6.1.10 int rtdm_getsockopt (int fd, int level, int optname, void * optval, socklen_t * optlen)

Get socket option Refer to rt_dev_getsockopt() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.11 int rtdm_ioctl (int fd, int request, ...)

Issue an IOCTL Refer to rt_dev_ioctl() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.12 int rtdm_listen (int fd, int backlog)

Listen for incomming connection requests Refer to rt_dev_listen() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.13 int rtdm_open (const char * path, int oflag, ...)

Open a device Refer to rt_dev_open() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.14 ssize_t rtdm_read (int fd, void * buf, size_t nbyte)

Read from device Refer to rt_dev_read() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.15 ssize_t rtdm_recv (int fd, void * buf, size_t len, int flags)

Receive message from socket Refer to rt_dev_recv() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.16 ssize_t rtdm_recvfrom (int fd, void * buf, size_t len, int flags, struct sockaddr * from, socklen_t * fromlen)

Receive message from socket Refer to rt_dev_recvfrom() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

5.6.1.17 ssize_t rtdm_recvmsg (int fd, struct msghdr * msg, int flags)

Receive message from socket Refer to rt_dev_recvmsg() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.18 ssize_t rtdm_send (int fd, const void * buf, size_t len, int flags)

Transmit message to socket Refer to rt_dev_send() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.19 ssize_t rtdm_sendmsg (int fd, const struct msghdr * msg, int flags)

Transmit message to socket Refer to rt_dev_sendmsg() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.20 ssize_t rtdm_sendto (int fd, const void * buf, size_t len, int flags, const struct sockaddr * to, socklen_t tolen)

Transmit message to socket Refer to rt_dev_sendto() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.21 int rtdm_setsockopt (int fd, int level, int optname, const void * optval, socklen_t optlen)

Set socket option Refer to rt_dev_setsockopt() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.22 int rtdm_shutdown (int fd, int how)

Shut down parts of a connection Refer to rt_dev_shutdown() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

Rescheduling: possible.

5.6.1.23 int rtdm_socket (int protocol_family, int socket_type, int protocol)

Create a socket Refer to rt_dev_socket() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

5.6 Inter-Driver API 61

5.6.1.24 ssize_t rtdm_write (int fd, const void * buf, size_t nbyte)

Write to device Refer to rt_dev_write() for parameters and return values Environments: Depends on driver implementation, see Device Profiles.

5.7 Device Registration Services

Collaboration diagram for Device Registration Services:

Data Structures

- struct rtdm_operations

 Device operations.
- struct rtdm_dev_context
- struct rtdm_device

Operation Handler Prototypes

typedef int(* rtdm_open_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int oflag)

Named device open handler.

• typedef int(* rtdm_socket_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int protocol)

Socket creation handler for protocol devices.

• typedef int(* rtdm_close_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info)

Close handler.

• typedef int(* rtdm_ioctl_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, unsigned int request, void __user *arg)

IOCTL handler.

typedef ssize_t(* rtdm_read_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, void *buf, size_t nbyte)

Read handler.

• typedef ssize_t(* rtdm_write_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const void *buf, size_t nbyte)

Write handler.

typedef ssize_t(* rtdm_recvmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, struct msghdr *msg, int flags)

Receive message handler.

• typedef ssize_t(* rtdm_sendmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const struct msghdr *msg, int flags)

Transmit message handler.

Device Flags

Static flags describing a RTDM device

- #define RTDM_EXCLUSIVE 0x0001
 - If set, only a single instance of the device can be requested by an application.
- #define RTDM_NAMED_DEVICE 0x0010

If set, the device is addressed via a clear-text name.

- #define RTDM_PROTOCOL_DEVICE 0x0020
 - *If set, the device is addressed via a combination of protocol ID and socket type.*
- #define RTDM_DEVICE_TYPE_MASK 0x00F0

Mask selecting the device type.

Context Flags

Dynamic flags describing the state of an open RTDM device (bit numbers)

- #define RTDM_CREATED_IN_NRT 0
 - Set by RTDM if the device instance was created in non-real-time context.
- #define RTDM_CLOSING 1

Set by RTDM when the device is being closed.

• #define RTDM_USER_CONTEXT_FLAG 8

Lowest bit number the driver developer can use freely.

Driver Versioning

Current revisions of RTDM structures, encoding of driver versions. See API Versioning for the interface revision.

- #define RTDM_DEVICE_STRUCT_VER 4
 - Version of struct rtdm_device.
- #define RTDM_CONTEXT_STRUCT_VER 3

Version of struct rtdm_dev_context.

- #define RTDM SECURE DEVICE 0x80000000
 - Flag indicating a secure variant of RTDM (not supported here).
- #define RTDM_DRIVER_VER(major, minor, patch) (((major & 0xFF) << 16) | ((minor & 0xFF) << 8) | (patch & 0xFF))

Version code constructor for driver revisions.

- #define RTDM_DRIVER_MAJOR_VER(ver) (((ver) >> 16) & 0xFF) Get major version number from driver revision code.
- #define RTDM_DRIVER_MINOR_VER(ver) (((ver) >> 8) & 0xFF) Get minor version number from driver revision code.
- #define RTDM_DRIVER_PATCH_VER(ver) ((ver) & 0xFF) Get patch version number from driver revision code.

Functions

- int rtdm_dev_register (struct rtdm_device *device)
- int rtdm_dev_unregister (struct rtdm_device *device, unsigned int poll_delay)

5.7.1 Define Documentation

5.7.1.1 #define RTDM_CLOSING 1

Set by RTDM when the device is being closed.

5.7.1.2 #define RTDM_CREATED_IN_NRT 0

Set by RTDM if the device instance was created in non-real-time context.

5.7.1.3 #define RTDM_DEVICE_TYPE_MASK 0x00F0

Mask selecting the device type.

5.7.1.4 #define RTDM_EXCLUSIVE 0x0001

If set, only a single instance of the device can be requested by an application.

5.7.1.5 #define RTDM_NAMED_DEVICE 0x0010

If set, the device is addressed via a clear-text name.

5.7.1.6 #define RTDM_PROTOCOL_DEVICE 0x0020

If set, the device is addressed via a combination of protocol ID and socket type.

5.7.2 Typedef Documentation

5.7.2.1 typedef int(* rtdm_close_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info)

Close handler.

Parameters:

- ← *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call

Returns:

0 on success, otherwise negative error code

See also:

```
close() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.2 typedef int(* rtdm_ioctl_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, unsigned int request, void __user *arg)

IOCTL handler.

Parameters:

- ← *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call
- ← *request* Request number as passed by the user
- *⇔ arg* Request argument as passed by the user

Returns:

Positiv value on success, otherwise negative error code

See also:

```
ioctl() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.3 typedef int(* rtdm_open_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int oflag)

Named device open handler.

Parameters:

- \leftarrow *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call
- ← *oflag* Open flags as passed by the user

Returns:

0 on success, otherwise negative error code

See also:

```
open() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.4 typedef ssize_t(* rtdm_read_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, void *buf, size_t nbyte)

Read handler.

Parameters:

- ← *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call
- \rightarrow *buf* Input buffer as passed by the user
- ← *nbyte* Number of bytes the user requests to read

Returns:

On success, the number of bytes read, otherwise negative error code

See also:

```
read() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.5 typedef ssize_t(* rtdm_recvmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, struct msghdr *msg, int flags)

Receive message handler.

Parameters:

- ← *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call
- \leftrightarrow *msg* Message descriptor as passed by the user, automatically mirrored to safe kernel memory in case of user mode call
- ← *flags* Message flags as passed by the user

Returns:

On success, the number of bytes received, otherwise negative error code

See also:

```
recvmsg() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.6 typedef ssize_t(* rtdm_sendmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const struct msghdr *msg, int flags)

Transmit message handler.

Parameters:

← *context* Context structure associated with opened device instance

- \leftarrow *user_info* Opaque pointer to information about user mode caller, NULL if kernel mode call
- ← msg Message descriptor as passed by the user, automatically mirrored to safe kernel memory in case of user mode call
- ← *flags* Message flags as passed by the user

Returns:

On success, the number of bytes transmitted, otherwise negative error code

See also:

```
sendmsg() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.7 typedef int(* rtdm_socket_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int protocol)

Socket creation handler for protocol devices.

Parameters:

- ← *context* Context structure associated with opened device instance
- \leftarrow *user_info* Opaque pointer to information about user mode caller, NULL if kernel mode call
- ← *protocol* Protocol number as passed by the user

Returns:

0 on success, otherwise negative error code

See also:

```
socket() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.2.8 typedef ssize_t(* rtdm_write_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const void *buf, size_t nbyte)

Write handler.

Parameters:

- ← *context* Context structure associated with opened device instance
- ← user_info Opaque pointer to information about user mode caller, NULL if kernel mode call
- ← *buf* Output buffer as passed by the user
- ← *nbyte* Number of bytes the user requests to write

Returns:

On success, the number of bytes written, otherwise negative error code

See also:

```
write() in IEEE Std 1003.1, http://www.opengroup.org/onlinepubs/009695399
```

5.7.3 Function Documentation

5.7.3.1 int rtdm_dev_register (struct rtdm_device * device)

Register a RTDM device

Parameters:

← *device* Pointer to structure describing the new device.

Returns:

0 is returned upon success. Otherwise:

- -EINVAL is returned if the device structure contains invalid entries. Check kernel log in this case.
- -ENOMEM is returned if the context for an exclusive device cannot be allocated.
- -EEXIST is returned if the specified device name of protocol ID is already in use.
- -EAGAIN is returned if some /proc entry cannot be created.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Rescheduling: never.

5.7.3.2 int rtdm_dev_unregister (struct rtdm_device * device, unsigned int poll_delay)

Unregisters a RTDM device

Parameters:

- *← device* Pointer to structure describing the device to be unregistered.
- ← *poll_delay* Polling delay in milliseconds to check repeatedly for open instances of *device*, or 0 for non-blocking mode.

Returns:

0 is returned upon success. Otherwise:

- -ENODEV is returned if the device was not registered.
- -EAGAIN is returned if the device is busy with open instances and 0 has been passed for *poll_delay*.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Rescheduling: never.

5.8 Driver Development API

Collaboration diagram for Driver Development API:

5.8.1 Detailed Description

This is the lower interface of RTDM provided to device drivers, currently limited to kernel-space. Real-time drivers should only use functions of this interface in order to remain portable.

Files

• file rtdm_driver.h

Real-Time Driver Model for Xenomai, driver API header.

Modules

- Inter-Driver API
- Device Registration Services
- Clock Services
- Task Services
- Timer Services
- Synchronisation Services
- Interrupt Management Services
- Non-Real-Time Signalling Services
- Utility Services

5.9 Clock Services

Collaboration diagram for Clock Services:

Functions

- nanosecs_abs_t rtdm_clock_read (void)
- nanosecs_abs_t rtdm_clock_read_monotonic (void)

5.9.1 Function Documentation

5.9.1.1 nanosecs_abs_t rtdm_clock_read (void)

Get system time

Returns:

The system time in nanoseconds is returned

Note:

The resolution of this service depends on the system timer. In particular, if the system timer is running in periodic mode, the return value will be limited to multiples of the timer tick period.

The system timer may have to be started to obtain valid results. Whether this happens automatically (as on Xenomai) or is controlled by the application depends on the RTDM host environment.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.9.1.2 nanosecs_abs_t rtdm_clock_read_monotonic (void)

Get monotonic time

Returns:

The monotonic time in nanoseconds is returned

5.9 Clock Services 71

Note:

The resolution of this service depends on the system timer. In particular, if the system timer is running in periodic mode, the return value will be limited to multiples of the timer tick period.

The system timer may have to be started to obtain valid results. Whether this happens automatically (as on Xenomai) or is controlled by the application depends on the RTDM host environment.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.10 Task Services

Collaboration diagram for Task Services:

Task Priority Range

Maximum and minimum task priorities

- #define RTDM_TASK_LOWEST_PRIORITY XNCORE_LOW_PRIO
- #define RTDM_TASK_HIGHEST_PRIORITY XNCORE_HIGH_PRIO

Task Priority Modification

Raise or lower task priorities by one level

- #define RTDM_TASK_RAISE_PRIORITY (+1)
- #define RTDM_TASK_LOWER_PRIORITY (-1)

Typedefs

typedef void(* rtdm_task_proc_t)(void *arg)
 Real-time task procedure.

Functions

- int rtdm_task_init (rtdm_task_t *task, const char *name, rtdm_task_proc_t task_proc, void *arg, int priority, nanosecs_rel_t period)
- void rtdm_task_destroy (rtdm_task_t *task)
- void rtdm_task_set_priority (rtdm_task_t *task, int priority)
- int rtdm_task_set_period (rtdm_task_t *task, nanosecs_rel_t period)
- int rtdm_task_wait_period (void)
- int rtdm_task_unblock (rtdm_task_t *task)
- rtdm_task_t * rtdm_task_current (void)
- int rtdm_task_sleep (nanosecs_rel_t delay)
- int rtdm_task_sleep_until (nanosecs_abs_t wakeup_time)
- int rtdm_task_sleep_abs (nanosecs_abs_t wakeup_time, enum rtdm_timer_mode mode)
- void rtdm_task_join_nrt (rtdm_task_t *task, unsigned int poll_delay)
- void rtdm_task_busy_sleep (nanosecs_rel_t delay)

5.10 Task Services 73

5.10.1 Typedef Documentation

5.10.1.1 typedef void(* rtdm_task_proc_t)(void *arg)

Real-time task procedure.

Parameters:

⇔ arg argument as passed to rtdm_task_init()

5.10.2 Function Documentation

5.10.2.1 void rtdm_task_busy_sleep (nanosecs_rel_t delay)

Busy-wait a specified amount of time

Parameters:

← *delay* Delay in nanoseconds. Note that a zero delay does **not** have the meaning of RTDM_-TIMEOUT_INFINITE here.

Note:

The caller must not be migratable to different CPUs while executing this service. Otherwise, the actual delay will be undefined.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine (should be avoided or kept short)
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never (except due to external interruptions).

5.10.2.2 rtdm_task_t* rtdm_task_current (void)

Get current real-time task

Returns:

Pointer to task handle Environments: This service can be called from: - Kernel-based task

• User-space task (RT, non-RT) Rescheduling: never.

5.10.2.3 void rtdm_task_destroy (rtdm_task_t * task)

Destroy a real-time task

Parameters:

Note:

Passing the same task handle to RTDM services after the completion of this function is not allowed.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.10.2.4 int rtdm_task_init (rtdm_task_t * task, const char * name, rtdm_task_proc_t task_proc, void * arg, int priority, nanosecs_rel_t period)

Intialise and start a real-time task After initialising a task, the task handle remains valid and can be passed to RTDM services until either rtdm_task_destroy() or rtdm_task_join_nrt() was invoked.

Parameters:

- $\leftrightarrow task$ Task handle
- ← name Optional task name
- ← *task_proc* Procedure to be executed by the task
- \leftarrow arg Custom argument passed to task_proc() on entry
- ← *priority* Priority of the task, see also Task Priority Range
- ← period Period in nanoseconds of a cyclic task, 0 for non-cyclic mode

Returns:

0 on success, otherwise negative error code

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

5.10 Task Services 75

5.10.2.5 void rtdm_task_join_nrt (rtdm_task_t * task, unsigned int poll_delay)

Wait on a real-time task to terminate

Parameters:

- ← *poll_delay* Delay in milliseconds between periodic tests for the state of the real-time task. This parameter is ignored if the termination is internally realised without polling.

Note:

Passing the same task handle to RTDM services after the completion of this function is not allowed.

This service does not trigger the termination of the targeted task. The user has to take of this, otherwise rtdm_task_join_nrt() will never return.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- User-space task (non-RT)

Rescheduling: possible.

5.10.2.6 int rtdm_task_set_period (rtdm_task_t * task, nanosecs_rel_t period)

Adjust real-time task period

Parameters:

- ← *period* New period in nanoseconds of a cyclic task, 0 for non-cyclic mode Environments: This service can be called from: Kernel module initialization/cleanup code
 - Interrupt service routine
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: possible.

5.10.2.7 void rtdm_task_set_priority (rtdm_task_t * task, int priority)

Adjust real-time task priority

Parameters:

- ← priority New priority of the task, see also Task Priority Range Environments: This service can be called from: Kernel module initialization/cleanup code
 - Interrupt service routine
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: possible.

5.10.2.8 int rtdm_task_sleep (nanosecs_rel_t delay)

Sleep a specified amount of time

Parameters:

← *delay* Delay in nanoseconds, see RTDM_TIMEOUT_xxx for special values.

Returns:

0 on success, otherwise:

- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: always.

5.10.2.9 int rtdm_task_sleep_abs (nanosecs_abs_t *wakeup_time*, enum rtdm_timer_mode *mode*)

Sleep until a specified absolute time

Parameters:

- ← *wakeup_time* Absolute timeout in nanoseconds
- \leftarrow *mode* Selects the timer mode, see RTDM_TIMERMODE_xxx for details

Returns:

0 on success, otherwise: --EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_unblock().

- -EPERM may be returned if an illegal invocation environment is detected.
- -EINVAL is returned if an invalid parameter was passed.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: always, unless the specified time already passed.

5.10 Task Services 77

5.10.2.10 int rtdm_task_sleep_until (nanosecs_abs_t wakeup_time)

Sleep until a specified absolute time

Deprecated

Use rtdm_task_sleep_abs instead!

Parameters:

← wakeup_time Absolute timeout in nanoseconds

Returns:

0 on success, otherwise:

- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EPERM *may* be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: always, unless the specified time already passed.

5.10.2.11 int rtdm_task_unblock (rtdm_task_t * task)

Activate a blocked real-time task

Returns:

Non-zero is returned if the task was actually unblocked from a pending wait state, 0 otherwise.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

5.10.2.12 int rtdm_task_wait_period (void)

Wait on next real-time task period

Returns:

0 on success, otherwise: --EINVAL is returned if calling task is not in periodic mode.

• -ETIMEDOUT is returned if a timer overrun occurred, which indicates that a previous release point has been missed by the calling task.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: always, unless a timer overrun occured.

5.11 Timer Services 79

5.11 Timer Services

Collaboration diagram for Timer Services:

RTDM_TIMERMODE_xxx

Timer operation modes

enum rtdm_timer_mode { RTDM_TIMERMODE_RELATIVE = XN_RELATIVE, RTDM_TIMERMODE_ABSOLUTE = XN_ABSOLUTE, RTDM_TIMERMODE_REALTIME = XN_REALTIME }

Typedefs

• typedef void(* rtdm_timer_handler_t)(rtdm_timer_t *timer)

*Timer handler.

Functions

- int rtdm_timer_init (rtdm_timer_t *timer, rtdm_timer_handler_t handler, const char *name)
- void rtdm_timer_destroy (rtdm_timer_t *timer)
- int rtdm_timer_start (rtdm_timer_t *timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)
- void rtdm_timer_stop (rtdm_timer_t *timer)
- int rtdm_timer_start_in_handler (rtdm_timer_t *timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)
- void rtdm_timer_stop_in_handler (rtdm_timer_t *timer)

5.11.1 Typedef Documentation

5.11.1.1 typedef void(* rtdm_timer_handler_t)(rtdm_timer_t *timer)

Timer handler.

Parameters:

← *timer* Timer handle as returned by rtdm_timer_init()

5.11.2 Enumeration Type Documentation

5.11.2.1 enum rtdm_timer_mode

Enumerator:

RTDM_TIMERMODE_RELATIVE Monotonic timer with relative timeout.

RTDM_TIMERMODE_ABSOLUTE Monotonic timer with absolute timeout. RTDM_TIMERMODE_REALTIME Adjustable timer with absolute timeout.

5.11.3 Function Documentation

5.11.3.1 void rtdm_timer_destroy (rtdm_timer_t * timer)

Destroy a timer

Parameters:

- - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.11.3.2 int rtdm_timer_init (rtdm_timer_t * timer, rtdm_timer_handler_t handler, const char * name)

Initialise a timer

Parameters:

- *↔ timer* Timer handle
- ← *handler* Handler to be called on timer expiry
- ← name Optional timer name

Returns:

0 on success, otherwise negative error code Environments: This service can be called from: - Kernel module initialization/cleanup code

- Kernel-based task
- User-space task (RT, non-RT) Rescheduling: never.

5.11.3.3 int rtdm_timer_start (rtdm_timer_t * timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)

Start a timer

Parameters:

- ← *expiry* Firing time of the timer, mode defines if relative or absolute
- ← *interval* Relative reload value, > 0 if the timer shall work in periodic mode with the specific interval, 0 for one-shot timers
- ← *mode* Defines the operation mode, see RTDM_TIMERMODE_xxx for possible values

Returns:

0 on success, otherwise: --ETIMEDOUT is returned if expiry describes an absolute date in the past.

5.11 Timer Services 81

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.11.3.4 int rtdm_timer_start_in_handler (rtdm_timer_t * timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)

Start a timer from inside a timer handler

Parameters:

- ← *expiry* Firing time of the timer, mode defines if relative or absolute
- ← *interval* Relative reload value, > 0 if the timer shall work in periodic mode with the specific interval, 0 for one-shot timers
- ← mode Defines the operation mode, see RTDM_TIMERMODE_xxx for possible values

Returns:

0 on success, otherwise: --ETIMEDOUT is returned if expiry describes an absolute date in the past.

Environments:

This service can be called from:

• Timer handler

Rescheduling: never.

5.11.3.5 void rtdm_timer_stop (rtdm_timer_t * timer)

Stop a timer

Parameters:

- - Interrupt service routine
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.11.3.6 void rtdm_timer_stop_in_handler (rtdm_timer_t * timer)

Stop a timer from inside a timer handler

Parameters:

5.12 Synchronisation Services

Collaboration diagram for Synchronisation Services:

Spinlock with Preemption Deactivation

- typedef rthal_spinlock_t rtdm_lock_t
 Lock variable.
- typedef unsigned long rtdm_lockctx_t

 Variable to save the context while holding a lock.
- #define RTDM_LOCK_UNLOCKED RTHAL_SPIN_LOCK_UNLOCKED Static lock initialisation.
- #define rtdm_lock_init(lock) rthal_spin_lock_init(lock)
 Dynamic lock initialisation.
- #define rtdm_lock_get(lock) rthal_spin_lock(lock)

 Acquire lock from non-preemptible contexts.
- #define rtdm_lock_put(lock) rthal_spin_unlock(lock)
 Release lock without preemption restoration.
- #define rtdm_lock_get_irqsave(lock, context) rthal_spin_lock_irqsave(lock, context)

 **Acquire lock and disable preemption.*
- #define rtdm_lock_put_irqrestore(lock, context) rthal_spin_unlock_irqrestore(lock, context)

Release lock and restore preemption state.

- #define rtdm_lock_irqsave(context) rthal_local_irq_save(context)

 Disable preemption locally.
- #define rtdm_lock_irqrestore(context) rthal_local_irq_restore(context)

 *Restore preemption state.

Timeout Sequence Management

• void rtdm_toseq_init (rtdm_toseq_t *timeout_seq, nanosecs_rel_t timeout)

Event Services

- void rtdm_event_init (rtdm_event_t *event, unsigned long pending)
- void rtdm_event_destroy (rtdm_event_t *event)
- void rtdm_event_pulse (rtdm_event_t *event)
- void rtdm_event_signal (rtdm_event_t *event)
- int rtdm_event_wait (rtdm_event_t *event)
- int rtdm_event_timedwait (rtdm_event_t *event, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)
- void rtdm_event_clear (rtdm_event_t *event)

Semaphore Services

- void rtdm_sem_init (rtdm_sem_t *sem, unsigned long value)
- void rtdm_sem_destroy (rtdm_sem_t *sem)
- int rtdm_sem_down (rtdm_sem_t *sem)
- int rtdm_sem_timeddown (rtdm_sem_t *sem, nanosecs_rel_t timeout, rtdm_toseq_-t *timeout_seq)
- void rtdm_sem_up (rtdm_sem_t *sem)

Mutex Services

- void rtdm_mutex_init (rtdm_mutex_t *mutex)
- void rtdm_mutex_destroy (rtdm_mutex_t *mutex)
- void rtdm_mutex_unlock (rtdm_mutex_t *mutex)
- int rtdm_mutex_lock (rtdm_mutex_t *mutex)
- int rtdm_mutex_timedlock (rtdm_mutex_t *mutex, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)

Global Lock across Scheduler Invocation

#define RTDM_EXECUTE_ATOMICALLY(code_block)

5.12.1 Define Documentation

5.12.1.1 #define RTDM_EXECUTE_ATOMICALLY(code_block)

Value:

Execute code block atomically Generally, it is illegal to suspend the current task by calling rtdm_task_sleep(), rtdm_event_wait(), etc. while holding a spinlock. In contrast, this macro allows to combine several operations including a potentially rescheduling call to an atomic code block with respect to other RTDM_EXECUTE_ATOMICALLY() blocks. The macro is a light-weight alternative for protecting code blocks via mutexes, and it can even be used to synchronise real-time and non-real-time contexts.

Parameters:

code_block Commands to be executed atomically

Note:

It is not allowed to leave the code block explicitly by using break, return, goto, etc. This would leave the global lock held during the code block execution in an inconsistent state. Moreover, do not embed complex operations into the code bock. Consider that they will be executed under preemption lock with interrupts switched-off. Also note that invocation of rescheduling calls may break the atomicity until the task gains the CPU again.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible, depends on functions called within *code_block*.

5.12.1.2 #define rtdm_lock_get(lock) rthal_spin_lock(lock)

Acquire lock from non-preemptible contexts.

Parameters:

lock Address of lock variable

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.1.3 #define rtdm_lock_get_irqsave(lock, context) rthal_spin_lock_irqsave(lock, context)

Acquire lock and disable preemption.

Parameters:

lock Address of lock variable

context name of local variable to store the context in

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.1.4 #define rtdm_lock_init(lock) rthal_spin_lock_init(lock)

Dynamic lock initialisation.

Parameters:

lock Address of lock variable

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.1.5 #define rtdm_lock_irqrestore(context) rthal_local_irq_restore(context)

Restore preemption state.

Parameters:

context name of local variable which stored the context

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

5.12.1.6 #define rtdm_lock_irqsave(context) rthal_local_irq_save(context)

Disable preemption locally.

Parameters:

context name of local variable to store the context in

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.1.7 #define rtdm_lock_put(lock) rthal_spin_unlock(lock)

Release lock without preemption restoration.

Parameters:

lock Address of lock variable

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.1.8 #define rtdm_lock_put_irqrestore(lock, context) rthal_spin_unlock_irqrestore(lock, context)

Release lock and restore preemption state.

Parameters:

lock Address of lock variable
context name of local variable which stored the context

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.12.2 Function Documentation

5.12.2.1 void rtdm_event_clear (rtdm_event_t * event)

Clear event state

Parameters:

- - Interrupt service routine
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.12.2.2 void rtdm_event_destroy (rtdm_event_t * event)

Destroy an event

Parameters:

- - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: possible.

5.12.2.3 void rtdm_event_init (rtdm_event_t * event, unsigned long pending)

Initialise an event

Parameters:

- \leftrightarrow *event* Event handle
- ← *pending* Non-zero if event shall be initialised as set, 0 otherwise Environments: This service can be called from: Kernel module initialization/cleanup code
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.12.2.4 void rtdm_event_pulse (rtdm_event_t * event)

Signal an event occurrence to currently listening waiters This function wakes up all current waiters of the given event, but it does not change the event state. Subsequently callers of rtdm_event_wait() or rtdm_event_timedwait() will therefore be blocked first.

Parameters:

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.12.2.5 void rtdm_event_signal (rtdm_event_t * event)

Signal an event occurrence This function sets the given event and wakes up all current waiters. If no waiter is presently registered, the next call to rtdm_event_timedwait() will return immediately.

Parameters:

⇔ event Event handle as returned by rtdm_event_init()

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.12.2.6 int rtdm_event_timedwait (rtdm_event_t * event, nanosecs_rel_t timeout, rtdm_toseq_t * timeout_seq)

Wait on event occurrence with timeout This function waits or tests for the occurrence of the given event, taking the provided timeout into account. On successful return, the event is reset.

Parameters:

- *⇔ event* Event handle as returned by rtdm_event_init()
- ← *timeout* Relative timeout in nanoseconds, see RTDM_TIMEOUT_xxx for special values
- ⇔ timeout_seq Handle of a timeout sequence as returned by rtdm_toseq_init() or NULL

Returns:

0 on success, otherwise:

- -ETIMEDOUT is returned if the if the request has not been satisfied within the specified amount of time.
- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EIDRM is returned if *event* has been destroyed.
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: possible.

5.12.2.7 int rtdm_event_wait (rtdm_event_t * event)

Wait on event occurrence This is the light-weight version of rtdm_event_timedwait(), implying an infinite timeout.

Parameters:

Returns:

0 on success, otherwise:

- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EIDRM is returned if *event* has been destroyed.
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

5.12.2.8 void rtdm_mutex_destroy (rtdm_mutex_t * mutex)

Destroy a mutex

Parameters:

- Kernel-based task
- User-space task (RT, non-RT) Rescheduling: possible.

5.12.2.9 void rtdm_mutex_init (rtdm_mutex_t * mutex)

Initialise a mutex This function initalises a basic mutex with priority inversion protection. "Basic", as it does not allow a mutex owner to recursively lock the same mutex again.

Parameters:

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.12.2.10 int rtdm_mutex_lock (rtdm_mutex_t * mutex)

Request a mutex This is the light-weight version of rtdm_mutex_timedlock(), implying an infinite timeout.

Parameters:

Returns:

0 on success, otherwise:

- -EIDRM is returned if *mutex* has been destroyed.
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

5.12.2.11 int rtdm_mutex_timedlock (rtdm_mutex_t * mutex, nanosecs_rel_t timeout, rtdm_toseq_t * timeout_seq)

Request a mutex with timeout This function tries to acquire the given mutex. If it is not available, the caller is blocked unless non-blocking operation was selected.

Parameters:

- \leftarrow *timeout* Relative timeout in nanoseconds, see RTDM_TIMEOUT_xxx for special values
- ⇔ timeout_seq Handle of a timeout sequence as returned by rtdm_toseq_init() or NULL

Returns:

0 on success, otherwise:

- -ETIMEDOUT is returned if the if the request has not been satisfied within the specified amount of time.
- -EWOULDBLOCK is returned if *timeout* is negative and the semaphore value is currently not positive.
- -EIDRM is returned if *mutex* has been destroyed.
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: possible.

5.12.2.12 void rtdm_mutex_unlock (rtdm_mutex_t * mutex)

Release a mutex This function releases the given mutex, waking up a potential waiter which was blocked upon rtdm_mutex_lock() or rtdm_mutex_timedlock().

Parameters:

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

5.12.2.13 void rtdm_sem_destroy (rtdm_sem_t * sem)

Destroy a semaphore

Parameters:

- ⇔ sem Semaphore handle as returned by rtdm_sem_init() Environments: This service can be called from: Kernel module initialization/cleanup code
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: possible.

5.12.2.14 int rtdm_sem_down (rtdm_sem_t * sem)

Decrement a semaphore This is the light-weight version of rtdm_sem_timeddown(), implying an infinite timeout.

Parameters:

⇔ sem Semaphore handle as returned by rtdm_sem_init()

Returns:

0 on success, otherwise:

- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EIDRM is returned if sem has been destroyed.
- -EPERM *may* be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: possible.

5.12.2.15 void rtdm_sem_init (rtdm_sem_t * sem, unsigned long value)

Initialise a semaphore

Parameters:

- \leftrightarrow sem Semaphore handle
- ← *value* Initial value of the semaphore Environments: This service can be called from: Kernel module initialization/cleanup code
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.12.2.16 int rtdm_sem_timeddown (rtdm_sem_t * sem, nanosecs_rel_t timeout, rtdm_toseq_t * timeout_seq)

Decrement a semaphore with timeout This function tries to decrement the given semphore's value if it is positive on entry. If not, the caller is blocked unless non-blocking operation was selected.

Parameters:

- ⇔ sem Semaphore handle as returned by rtdm_sem_init()
- \leftarrow *timeout* Relative timeout in nanoseconds, see RTDM_TIMEOUT_xxx for special values
- ← timeout_seq Handle of a timeout sequence as returned by rtdm_toseq_init() or NULL

Returns:

0 on success, otherwise:

- -ETIMEDOUT is returned if the if the request has not been satisfied within the specified amount of time.
- -EWOULDBLOCK is returned if *timeout* is negative and the semaphore value is currently not positive.
- -EINTR is returned if calling task has been unblock by a signal or explicitly via rtdm_task_-unblock().
- -EIDRM is returned if *sem* has been destroyed.
- -EPERM may be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: possible.

5.12.2.17 void rtdm_sem_up (rtdm_sem_t * sem)

Increment a semaphore This function increments the given semphore's value, waking up a potential waiter which was blocked upon rtdm_sem_down().

Parameters:

⇔ sem Semaphore handle as returned by rtdm_sem_init()

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: possible.

5.12.2.18 void rtdm_toseq_init (rtdm_toseq_t * timeout_seq, nanosecs_rel_t timeout)

Initialise a timeout sequence This service initialises a timeout sequence handle according to the given timeout value. Timeout sequences allow to maintain a continuous *timeout* across multiple calls of blocking synchronisation services. A typical application scenario is given below.

Parameters:

- *↔ timeout_seq* Timeout sequence handle
- ← *timeout* Relative timeout in nanoseconds, see RTDM_TIMEOUT_xxx for special values

Application Scenario:

Using a timeout sequence in such a scenario avoids that the user-provided relative timeout is restarted on every call to rtdm_event_timedwait(), potentially causing an overall delay that is larger than specified by timeout. Moreover, all functions supporting timeout sequences also interpret special timeout values (infinite and non-blocking), disburdening the driver developer from handling them separately.

Environments:

This service can be called from:

- Kernel-based task
- User-space task (RT)

Rescheduling: never.

5.13 Interrupt Management Services

Collaboration diagram for Interrupt Management Services:

RTDM_IRQTYPE_xxx

Interrupt registrations flags

- #define RTDM_IRQTYPE_SHARED XN_ISR_SHARED Enable IRQ-sharing with other real-time drivers.
- #define RTDM_IRQTYPE_EDGE XN_ISR_EDGE
 Mark IRQ as edge-triggered, relevant for correct handling of shared edge-triggered IRQs.

RTDM_IRQ_xxx

Return flags of interrupt handlers

- #define RTDM_IRQ_NONE XN_ISR_NONE Unhandled interrupt.
- #define RTDM_IRQ_HANDLED XN_ISR_HANDLED Denote handled interrupt.

Defines

#define rtdm_irq_get_arg(irq_handle, type) ((type *)irq_handle → cookie)
 Retrieve IRQ handler argument.

Typedefs

• typedef int(* rtdm_irq_handler_t)(rtdm_irq_t *irq_handle)

Interrupt handler.

Functions

- int rtdm_irq_request (rtdm_irq_t *irq_handle, unsigned int irq_no, rtdm_irq_handler_t handler, unsigned long flags, const char *device_name, void *arg)
- int rtdm_irq_free (rtdm_irq_t *irq_handle)
- int rtdm_irq_enable (rtdm_irq_t *irq_handle)
- int rtdm_irq_disable (rtdm_irq_t *irq_handle)

5.13.1 Define Documentation

5.13.1.1 #define rtdm_irq_get_arg(irq_handle, type) ((type *)irq_handle → cookie)

Retrieve IRQ handler argument.

Parameters:

```
irq_handle IRQ handle
type Type of the pointer to return
```

Returns:

The argument pointer registered on rtdm_irq_request() is returned, type-casted to the specified *type*.

Environments:

This service can be called from:

• Interrupt service routine

Rescheduling: never.

5.13.2 Typedef Documentation

5.13.2.1 typedef int(* rtdm_irq_handler_t)(rtdm_irq_t *irq_handle)

Interrupt handler.

Parameters:

← *irq_handle* IRQ handle as returned by rtdm_irq_request()

Returns:

0 or a combination of RTDM_IRQ_xxx flags

5.13.3 Function Documentation

5.13.3.1 int rtdm_irq_disable (rtdm_irq_t * irq_handle)

Disable interrupt line

Parameters:

Returns:

0 on success, otherwise negative error code Environments: This service can be called from: - Kernel module initialization/cleanup code

- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT) Rescheduling: never.

5.13.3.2 int rtdm_irq_enable (rtdm_irq_t * irq_handle)

Enable interrupt line

Parameters:

Returns:

0 on success, otherwise negative error code Environments: This service can be called from: - Kernel module initialization/cleanup code

- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT) Rescheduling: possible.

5.13.3.3 int rtdm_irq_free (rtdm_irq_t * irq_handle)

Release an interrupt handler

Parameters:

Returns:

0 on success, otherwise negative error code Environments: This service can be called from: - Kernel module initialization/cleanup code

- Kernel-based task
- User-space task (RT, non-RT) Rescheduling: never.

5.13.3.4 int rtdm_irq_request (rtdm_irq_t * irq_handle, unsigned int irq_no, rtdm_irq_handler_t handler, unsigned long flags, const char * device_name, void * arg)

Register an interrupt handler This function registers the provided handler with an IRQ line and enables the line.

Parameters:

- *↔ irq_handle* IRQ handle
- ← *irq_no* Line number of the addressed IRQ
- \leftarrow *handler* Interrupt handler
- ← *flags* Registration flags, see RTDM_IRQTYPE_xxx for details
- ← *device_name* Device name to show up in real-time IRQ lists
- ← arg Pointer to be passed to the interrupt handler on invocation

Returns:

0 on success, otherwise:

- -EINVAL is returned if an invalid parameter was passed.
- -EBUSY is returned if the specified IRQ line is already in use.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.14 Non-Real-Time Signalling Services

Collaboration diagram for Non-Real-Time Signalling Services:

5.14.1 Detailed Description

These services provide a mechanism to request the execution of a specified handler in non-real-time context. The triggering can safely be performed in real-time context without suffering from unknown delays. The handler execution will be deferred until the next time the real-time subsystem releases the CPU to the non-real-time part.

Typedefs

• typedef void(* rtdm_nrtsig_handler_t)(rtdm_nrtsig_t nrt_sig, void *arg)

Non-real-time signal handler.

Functions

- int rtdm_nrtsig_init (rtdm_nrtsig_t *nrt_sig, rtdm_nrtsig_handler_t handler, void *arg)
- void rtdm_nrtsig_destroy (rtdm_nrtsig_t *nrt_sig)
- void rtdm_nrtsig_pend (rtdm_nrtsig_t *nrt_sig)

Trigger non-real-time signal.

5.14.2 Typedef Documentation

5.14.2.1 typedef void(* rtdm_nrtsig_handler_t)(rtdm_nrtsig_t nrt_sig, void *arg)

Non-real-time signal handler.

Parameters:

- ← *nrt_sig* Signal handle as returned by rtdm_nrtsig_init()
- ← arg Argument as passed to rtdm_nrtsig_init()

Note:

The signal handler will run in soft-IRQ context of the non-real-time subsystem. Note the implications of this context, e.g. no invocation of blocking operations.

5.14.3 Function Documentation

5.14.3.1 void rtdm_nrtsig_destroy (rtdm_nrtsig_t * nrt_sig)

Release a non-realtime signal handler

Parameters:

- \leftrightarrow *nrt_sig* Signal handle Environments: This service can be called from: Kernel module initialization/cleanup code
 - Kernel-based task
 - User-space task (RT, non-RT) Rescheduling: never.

5.14.3.2 int rtdm_nrtsig_init (rtdm_nrtsig_t * nrt_sig, rtdm_nrtsig_handler_t handler, void * arg)

Register a non-real-time signal handler

Parameters:

- ↔ nrt_sig Signal handle
- ← *handler* Non-real-time signal handler
- ← arg Custom argument passed to handler() on each invocation

Returns:

0 on success, otherwise: --EAGAIN is returned if no free signal slot is available.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.14.3.3 void rtdm_nrtsig_pend (rtdm_nrtsig_t * nrt_sig)

Trigger non-real-time signal.

Parameters:

 \leftrightarrow *nrt_sig* Signal handle

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never in real-time context, possible in non-real-time environments.

5.15 Utility Services

Collaboration diagram for Utility Services:

Functions

int rtdm_mmap_to_user (rtdm_user_info_t *user_info, void *src_addr, size_t len, int prot, void **pptr, struct vm_operations_struct *vm_ops, void *vm_private_data)
 Map a kernel memory range into the address space of the user.

- int rtdm_iomap_to_user (rtdm_user_info_t *user_info, unsigned long src_addr, size_t len, int prot, void **pptr, struct vm_operations_struct *vm_ops, void *vm_private_data)

 Map an I/O memory range into the address space of the user.
- int rtdm_munmap (rtdm_user_info_t *user_info, void *ptr, size_t len)

 *Unmap a user memory range.
- void rtdm_printk (const char *format,...)

 Real-time safe message printing on kernel console.
- void * rtdm_malloc (size_t size)
 Allocate memory block in real-time context.
- void rtdm_free (void *ptr)

 Release real-time memory block.
- int rtdm_read_user_ok (rtdm_user_info_t *user_info, const void __user *ptr, size_t size) Check if read access to user-space memory block is safe.
- int rtdm_rw_user_ok (rtdm_user_info_t *user_info, const void __user *ptr, size_t size) Check if read/write access to user-space memory block is safe.
- int rtdm_copy_from_user (rtdm_user_info_t *user_info, void *dst, const void __user *src, size_t size)

Copy user-space memory block to specified buffer.

• int rtdm_safe_copy_from_user (rtdm_user_info_t *user_info, void *dst, const void __user *src, size_t size)

Check if read access to user-space memory block and copy it to specified buffer.

• intrtdm_copy_to_user (rtdm_user_info_t *user_info, void __user *dst, const void *src, size_t size)

Copy specified buffer to user-space memory block.

• int rtdm_safe_copy_to_user (rtdm_user_info_t *user_info, void __user *dst, const void *src, size_t size)

5.15 Utility Services 103

Check if read/write access to user-space memory block is safe and copy specified buffer to it.

• int rtdm_strncpy_from_user (rtdm_user_info_t *user_info, char *dst, const char __user *src, size_t count)

Copy user-space string to specified buffer.

• int rtdm_in_rt_context (void)

Test if running in a real-time task.

5.15.1 Function Documentation

5.15.1.1 int rtdm_copy_from_user (rtdm_user_info_t * user_info, void * dst, const void __user * src, size_t size)

Copy user-space memory block to specified buffer.

Parameters:

- ← user_info User information pointer as passed to the invoked device operation handler
- \leftarrow *dst* Destination buffer address
- ← *src* Address of the user-space memory block
- \leftarrow *size* Size of the memory block

Returns:

0 on success, otherwise:

• -EFAULT is returned if an invalid memory area was accessed.

Note:

Before invoking this service, verify via rtdm_read_user_ok() that the provided user-space address can securely be accessed.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.2 int rtdm_copy_to_user (rtdm_user_info_t * user_info, void __user * dst, const void * src, size_t size)

Copy specified buffer to user-space memory block.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- \leftarrow *dst* Address of the user-space memory block
- ← *src* Source buffer address
- \leftarrow *size* Size of the memory block

Returns:

0 on success, otherwise:

• -EFAULT is returned if an invalid memory area was accessed.

Note:

Before invoking this service, verify via rtdm_rw_user_ok() that the provided user-space address can securely be accessed.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.3 void rtdm_free (void * ptr)

Release real-time memory block.

Parameters:

← ptr Pointer to memory block as returned by rtdm_malloc()

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine (consider the overhead!)
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15 Utility Services 105

5.15.1.4 int rtdm_in_rt_context (void)

Test if running in a real-time task.

Returns:

Non-zero is returned if the caller resides in real-time context, 0 otherwise.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.5 int rtdm_iomap_to_user (rtdm_user_info_t * user_info, unsigned long src_addr, size_t len, int prot, void ** pptr, struct vm_operations_struct * vm_ops, void * vm_private_data)

Map an I/O memory range into the address space of the user.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- ← *src_addr* physical I/O address to be mapped
- ← *len* Length of the memory range
- \leftarrow *prot* Protection flags for the user's memory range, typically either PROT_READ or PROT_READ|PROT_WRITE
- \leftrightarrow *pptr* Address of a pointer containing the desired user address or NULL on entry and the finally assigned address on return
- $\leftarrow vm_ops$ vm_operations to be executed on the vma_area of the user memory range or NULL
- ← *vm_private_data* Private data to be stored in the vma_area, primarily useful for vm_operation handlers

Returns:

0 on success, otherwise (most common values):

- -EINVAL is returned if an invalid start address, size, or destination address was passed.
- -ENOMEM is returned if there is insufficient free memory or the limit of memory mapping for the user process was reached.
- -EAGAIN is returned if too much memory has been already locked by the user process.
- -EPERM *may* be returned if an illegal invocation environment is detected.

Note:

RTDM supports two models for unmapping the user memory range again. One is explicit unmapping via rtdm_munmap(), either performed when the user requests it via an IOCTL etc. or when the related device is closed. The other is automatic unmapping, triggered by the user invoking standard munmap() or by the termination of the related process. To track release of the mapping and therefore relinquishment of the referenced physical memory, the caller of rtdm_iomap_to_user() can pass a vm_operations_struct on invocation, defining a close handler for the vm_area. See Linux documentaion (e.g. Linux Device Drivers book) on virtual memory management for details.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- User-space task (non-RT)

Rescheduling: possible.

5.15.1.6 void* rtdm malloc (size t size)

Allocate memory block in real-time context.

Parameters:

← *size* Requested size of the memory block

Returns:

The pointer to the allocated block is returned on success, NULL otherwise.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine (consider the overhead!)
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.7 int rtdm_mmap_to_user (rtdm_user_info_t * user_info, void * src_addr, size_t len, int prot, void ** pptr, struct vm_operations_struct * vm_ops, void * vm_private_data)

Map a kernel memory range into the address space of the user.

Parameters:

← *user_info* User information pointer as passed to the invoked device operation handler

5.15 Utility Services 107

- ← *src_addr* Kernel virtual address to be mapped
- ← *len* Length of the memory range
- \leftarrow *prot* Protection flags for the user's memory range, typically either PROT_READ or PROT_READ|PROT_WRITE
- ← vm_ops vm_operations to be executed on the vma_area of the user memory range or NULL
- ← *vm_private_data* Private data to be stored in the vma_area, primarily useful for vm_operation handlers

Returns:

0 on success, otherwise (most common values):

- -EINVAL is returned if an invalid start address, size, or destination address was passed.
- -ENOMEM is returned if there is insufficient free memory or the limit of memory mapping for the user process was reached.
- -EAGAIN is returned if too much memory has been already locked by the user process.
- -EPERM *may* be returned if an illegal invocation environment is detected.

Note:

This service only works on memory regions allocated via kmalloc() or vmalloc(). To map physical I/O memory to user-space use rtdm_iomap_to_user() instead.

RTDM supports two models for unmapping the user memory range again. One is explicit unmapping via rtdm_munmap(), either performed when the user requests it via an IOCTL etc. or when the related device is closed. The other is automatic unmapping, triggered by the user invoking standard munmap() or by the termination of the related process. To track release of the mapping and therefore relinquishment of the referenced physical memory, the caller of rtdm_mmap_to_user() can pass a vm_operations_struct on invocation, defining a close handler for the vm_area. See Linux documentaion (e.g. Linux Device Drivers book) on virtual memory management for details.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- User-space task (non-RT)

Rescheduling: possible.

5.15.1.8 int rtdm_munmap (rtdm_user_info_t * user_info, void * ptr, size_t len)

Unmap a user memory range.

Parameters:

- ← user_info User information pointer as passed to rtdm_mmap_to_user() when requesting to map the memory range
- $\leftarrow ptr$ User address or the memory range
- ← *len* Length of the memory range

Returns:

0 on success, otherwise:

- -EINVAL is returned if an invalid address or size was passed.
- -EPERM *may* be returned if an illegal invocation environment is detected.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- User-space task (non-RT)

Rescheduling: possible.

5.15.1.9 void rtdm_printk (const char * format, ...)

Real-time safe message printing on kernel console.

Parameters:

- ← *format* Format string (conforming standard printf())
- ... Arguments referred by format

Returns:

On success, this service returns the number of characters printed. Otherwise, a negative error code is returned.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Interrupt service routine (consider the overhead!)
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never in real-time context, possible in non-real-time environments.

5.15 Utility Services 109

5.15.1.10 int rtdm_read_user_ok (rtdm_user_info_t * user_info, const void __user * ptr, size_t size)

Check if read access to user-space memory block is safe.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- $\leftarrow ptr$ Address of the user-provided memory block
- ← *size* Size of the memory block

Returns:

Non-zero is return when it is safe to read from the specified memory block, 0 otherwise.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.11 int rtdm_rw_user_ok (rtdm_user_info_t * user_info, const void __user * ptr, size_t size)

Check if read/write access to user-space memory block is safe.

Parameters:

- ← user_info User information pointer as passed to the invoked device operation handler
- $\leftarrow ptr$ Address of the user-provided memory block
- \leftarrow *size* Size of the memory block

Returns:

Non-zero is return when it is safe to read from or write to the specified memory block, 0 otherwise.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.12 int rtdm_safe_copy_from_user (rtdm_user_info_t * user_info, void * dst, const void __user * src, size_t size)

Check if read access to user-space memory block and copy it to specified buffer.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- \leftarrow *dst* Destination buffer address
- ← *src* Address of the user-space memory block
- \leftarrow *size* Size of the memory block

Returns:

0 on success, otherwise:

• -EFAULT is returned if an invalid memory area was accessed.

Note:

This service is a combination of rtdm_read_user_ok and rtdm_copy_from_user.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.15.1.13 int rtdm_safe_copy_to_user (rtdm_user_info_t * user_info, void __user * dst, const void * src, size_t size)

Check if read/write access to user-space memory block is safe and copy specified buffer to it.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- \leftarrow *dst* Address of the user-space memory block
- *← src* Source buffer address
- \leftarrow *size* Size of the memory block

Returns:

0 on success, otherwise:

• -EFAULT is returned if an invalid memory area was accessed.

5.15 Utility Services

Note:

This service is a combination of rtdm_rw_user_ok and rtdm_copy_to_user.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

```
5.15.1.14 int rtdm_strncpy_from_user (rtdm_user_info_t * user_info, char * dst, const char __user * src, size_t count)
```

Copy user-space string to specified buffer.

Parameters:

- ← *user_info* User information pointer as passed to the invoked device operation handler
- \leftarrow *dst* Destination buffer address
- \leftarrow *src* Address of the user-space string
- ← *count* Maximum number of bytes to copy, including the trailing '0'

Returns:

Length of the string on success (not including the trailing '0'), otherwise:

• -EFAULT is returned if an invalid memory area was accessed.

Note:

This services already includes a check of the source address, calling rtdm_read_user_ok() for src explicitly is not required.

Environments:

This service can be called from:

- Kernel module initialization/cleanup code
- Kernel-based task
- User-space task (RT, non-RT)

Rescheduling: never.

5.16 Device Profiles

Collaboration diagram for Device Profiles:

5.16.1 Detailed Description

Device profiles define which operation handlers a driver of a certain class has to implement, which name or protocol it has to register, which IOCTLs it has to provide, and further details. Sub-classes can be defined in order to extend a device profile with more hardware-specific functions.

Modules

- CAN Devices
- Serial Devices
- Testing Devices

Data Structures

• struct rtdm_device_info_t

Device information.

RTDM CLASS xxx

Device classes

- #define RTDM_CLASS_PARPORT 1
- #define RTDM_CLASS_SERIAL 2
- #define RTDM_CLASS_CAN 3
- #define RTDM_CLASS_NETWORK 4
- #define RTDM_CLASS_RTMAC 5
- #define RTDM_CLASS_TESTING 6
- #define RTDM_CLASS_EXPERIMENTAL 224
- #define RTDM_CLASS_MAX 255

Device Naming

Maximum length of device names (excluding the final null character)

• #define RTDM_MAX_DEVNAME_LEN 31

5.16 Device Profiles 113

RTDM_PURGE_xxx_BUFFER

Flags selecting buffers to be purged

- #define RTDM_PURGE_RX_BUFFER 0x0001
- #define RTDM_PURGE_TX_BUFFER 0x0002

Common IOCTLs

The following IOCTLs are common to all device profiles.

• #define RTIOC_DEVICE_INFO _IOR(RTIOC_TYPE_COMMON, 0x00, struct rtdm_device_info)

Retrieve information about a device or socket.

• #define RTIOC_PURGE_IOW(RTIOC_TYPE_COMMON, 0x10, int)

Purge internal device or socket buffers.

5.16.2 Define Documentation

5.16.2.1 #define RTIOC_DEVICE_INFO _IOR(RTIOC_TYPE_COMMON, 0x00, struct rtdm_device_info)

Retrieve information about a device or socket.

Parameters:

→ arg Pointer to information buffer (struct rtdm_device_info)

5.16.2.2 #define RTIOC_PURGE_IOW(RTIOC_TYPE_COMMON, 0x10, int)

Purge internal device or socket buffers.

Parameters:

← arg Purge mask, see RTDM_PURGE_xxx_BUFFER

114	Xenomai RTDM skin API Module Documentation

Chapter 6

Xenomai RTDM skin API Data Structure Documentation

6.1 can_bittime Struct Reference

Collaboration diagram for can_bittime:

6.1.1 Detailed Description

Custom CAN bit-time definition.

Examples:

rtcanconfig.c.

Data Fields

- can_bittime_type_t type

 Type of bit-time definition.
- struct can_bittime_std std Standard bit-time.
- struct can_bittime_btr btr

 Hardware-spcific BTR bit-time.

The documentation for this struct was generated from the following file:

116	Xenomai RTDM skin API Data Structure Documentation
• include/rtdm/rtcan.h	

6.2 can_bittime_btr Struct Reference

6.2.1 Detailed Description

Hardware-specific BTR bit-times.

Data Fields

- uint8_t btr0

 Bus timing register 0.
- uint8_t btr1

 Bus timing register 1.

The documentation for this struct was generated from the following file:

6.3 can_bittime_std Struct Reference

6.3.1 Detailed Description

Standard bit-time parameters according to Bosch.

Data Fields

```
• uint32_t brp

Baud rate prescaler.
```

```
• uint8_t prop_seg from 1 to 8
```

```
• uint8_t phase_seg1 from 1 to 8
```

```
• uint8_t phase_seg2 from 1 to 8
```

```
• uint8_t sjw:7

from 1 to 4
```

• uint8_t sam:1
1 - enable triple sampling

The documentation for this struct was generated from the following file:

6.4 can_filter_t Struct Reference

6.4.1 Detailed Description

Filter for reception of CAN messages.

This filter works as follows: A received CAN ID is AND'ed bitwise with can_mask and then compared to can_id. This also includes the CAN_EFF_FLAG and CAN_RTR_FLAG of CAN_xxx_FLAG. If this comparison is true, the message will be received by the socket. The logic can be inverted with the can_id flag CAN_INV_FILTER:

```
if (can_id & CAN_INV_FILTER) {
   if ((received_can_id & can_mask) != (can_id & ~CAN_INV_FILTER))
      accept-message;
} else {
   if ((received_can_id & can_mask) == can_id)
      accept-message;
}
```

Multiple filters can be arranged in a filter list and set with Sockopts. If one of these filters matches a CAN ID upon reception of a CAN frame, this frame is accepted.

Data Fields

• uint32_t can_id

CAN ID which must match with incoming IDs after passing the mask.

• uint32_t can_mask

Mask which is applied to incoming IDs.

6.4.2 Field Documentation

6.4.2.1 uint32_t can_filter_t::can_id

CAN ID which must match with incoming IDs after passing the mask.

The filter logic can be inverted with the flag CAN_INV_FILTER.

6.4.2.2 uint32_t can_filter_t::can_mask

Mask which is applied to incoming IDs.

See CAN ID masks if exactly one CAN ID should come through.

The documentation for this struct was generated from the following file:

6.5 can_frame_t Struct Reference

6.5.1 Detailed Description

Raw CAN frame.

Central structure for receiving and sending CAN frames.

Examples:

rtcan_rtt.c, rtcanrecv.c, and rtcansend.c.

Public Member Functions

• uint8_t data[8] <u>__attribute__</u> ((aligned(8)))

Payload data bytes.

Data Fields

- can_id_t can_id

 CAN ID of the frame.
- uint8_t can_dlc

 Size of the payload in bytes.

6.5.2 Field Documentation

6.5.2.1 can_id_t can_frame_t::can_id

CAN ID of the frame.

See CAN ID flags for special bits.

The documentation for this struct was generated from the following file:

6.6 rtdm_dev_context Struct Reference

Collaboration diagram for rtdm_dev_context:

6.6.1 Detailed Description

Device context A device context structure is associated with every open device instance. RTDM takes care of its creation and destruction and passes it to the operation handlers when being invoked

Drivers can attach arbitrary data immediately after the official structure. The size of this data is provided via rtdm_device.context_size during device registration.

Data Fields

- unsigned long context_flags

 Context flags, see Context Flags for details.
- int fd

 Associated file descriptor.
- atomic_t close_lock_count

 Lock counter of context, held while structure is referenced by an operation handler.
- struct rtdm_operations * ops
 Set of active device operation handlers.
- struct rtdm_device * device Reference to owning device.
- struct rtdm_devctx_reserved reserved
 Data stored by RTDM inside a device context (internal use only).
- char dev_private [0]

 Begin of driver defined context data structure.

The documentation for this struct was generated from the following file:

• include/rtdm/rtdm_driver.h

6.7 rtdm_device Struct Reference

Collaboration diagram for rtdm_device:

6.7.1 Detailed Description

RTDM device This structure specifies a RTDM device. As some fields, especially the reserved area, will be modified by RTDM during runtime, the structure must not reside in write-protected memory.

Data Fields

• int struct_version

Revision number of this structure, see Driver Versioning defines.

• int device_flags

Device flags, see Device Flags for details.

size_t context_size

Size of driver defined appendix to struct rtdm_dev_context.

• char device_name [RTDM_MAX_DEVNAME_LEN+1]

Named device identification (orthogonal to Linux device name space).

• int protocol_family

Protocol device identification: protocol family (PF_xxx).

• int socket_type

Protocol device identification: socket type (SOCK_xxx).

• rtdm_open_handler_t open_rt

Named device instance creation for real-time contexts, optional if open_nrt is non-NULL, ignored for protocol devices.

rtdm_open_handler_t open_nrt

Named device instance creation for non-real-time contexts, optional if open_rt is non-NULL, ignored for protocol devices.

• rtdm_socket_handler_t socket_rt

Protocol socket creation for real-time contexts, optional if socket_nrt is non-NULL, ignored for named devices.

rtdm_socket_handler_t socket_nrt

Protocol socket creation for non-real-time contexts, optional if socket_rt is non-NULL, ignored for named devices.

• struct rtdm_operations ops

Default operations on newly opened device instance.

• int device_class

Device class ID, see RTDM_CLASS_xxx.

• int device_sub_class

Device sub-class, see RTDM_SUBCLASS_xxx definition in the Device Profiles.

• int profile_version

Supported device profile version.

• const char * driver name

Informational driver name (reported via /proc).

• int driver_version

Driver version, see Driver Versioning defines.

• const char * peripheral_name

Informational peripheral name the device is attached to (reported via /proc).

• const char * provider_name

Informational driver provider name (reported via /proc).

• const char * proc_name

Name of /proc entry for the device, must not be NULL.

• struct proc_dir_entry * proc_entry

Set to device's /proc root entry after registration, do not modify.

• int device_id

Driver definable device ID.

• void * device data

Driver definable device data.

• struct rtdm_dev_reserved reserved

Data stored by RTDM inside a registered device (internal use only).

The documentation for this struct was generated from the following file:

• include/rtdm/rtdm_driver.h

6.8 rtdm_device_info_t Struct Reference

6.8.1 Detailed Description

Device information.

Data Fields

int device_flags

Device flags, see Device Flags for details.

• int device_class

Device class ID, see RTDM_CLASS_xxx.

• int device_sub_class

Device sub-class, either RTDM_SUBCLASS_GENERIC or a RTDM_SUBCLASS_xxx definition of the related Device Profile.

• int profile_version

Supported device profile version.

The documentation for this struct was generated from the following file:

• include/rtdm/rtdm.h

6.9 rtdm_operations Struct Reference

6.9.1 Detailed Description

Device operations.

Data Fields

Common Operations

- rtdm_close_handler_t close_rt Close handler for real-time contexts (optional).
- rtdm_close_handler_t close_nrt Close handler for non-real-time contexts (required).
- rtdm_ioctl_handler_t ioctl_rt IOCTL from real-time context (optional).
- rtdm_ioctl_handler_t ioctl_nrt IOCTL from non-real-time context (optional).

Stream-Oriented Device Operations

- rtdm_read_handler_t read_rt

 Read handler for real-time context (optional).
- rtdm_read_handler_t read_nrt

 Read handler for non-real-time context (optional).
- rtdm_write_handler_t write_rt
 Write handler for real-time context (optional).
- rtdm_write_handler_t write_nrt
 Write handler for non-real-time context (optional).

Message-Oriented Device Operations

- rtdm_recvmsg_handler_t recvmsg_rt

 Receive message handler for real-time context (optional).
- rtdm_recvmsg_handler_t recvmsg_nrt

 Receive message handler for non-real-time context (optional).
- rtdm_sendmsg_handler_t sendmsg_rt

 Transmit message handler for real-time context (optional).
- rtdm_sendmsg_handler_t sendmsg_nrt

 Transmit message handler for non-real-time context (optional).

The documentation for this struct was generated from the following file:

• include/rtdm/rtdm_driver.h

6.10 rtser_config_t Struct Reference

6.10.1 Detailed Description

Serial device configuration.

Data Fields

- int config_mask

 mask specifying valid fields, see RTSER_SET_xxx
- int baud_rate

 baud rate, default RTSER_DEF_BAUD
- int parity

 number of parity bits, see RTSER_xxx_PARITY
- int data_bits

 number of data bits, see RTSER_xxx_BITS
- int stop_bits

 number of stop bits, see RTSER_xxx_STOPB
- int handshake handshake mechanisms, see RTSER_xxx_HAND
- int fifo_depth reception FIFO interrupt threshold, see RTSER_FIFO_xxx
- nanosecs_rel_t rx_timeout reception timeout, see RTSER_TIMEOUT_xxx for special values
- nanosecs_rel_t tx_timeout transmission timeout, see RTSER_TIMEOUT_xxx for special values
- nanosecs_rel_t event_timeout
 event timeout, see RTSER_TIMEOUT_xxx for special values
- int timestamp_history

 enable timestamp history, see RTSER_xxx_TIMESTAMP_HISTORY
- int event_mask event mask to be used with RTSER_RTIOC_WAIT_EVENT, see RTSER_EVENT_xxx

The documentation for this struct was generated from the following file:

• include/rtdm/rtserial.h

6.11 rtser_event_t Struct Reference

6.11.1 Detailed Description

Additional information about serial device events.

Data Fields

- int events signalled events, see RTSER_EVENT_xxx
- int rx_pending number of pending input characters
- nanosecs_abs_t last_timestamp last interrupt timestamp
- nanosecs_abs_t rxpend_timestamp reception timestamp of oldest character in input queue

The documentation for this struct was generated from the following file:

• include/rtdm/rtserial.h

6.12 rtser_status_t Struct Reference

6.12.1 Detailed Description

Serial device status.

Data Fields

- int line_status

 line status register, see RTSER_LSR_xxx
- int modem_status modem status register, see RTSER_MSR_xxx

The documentation for this struct was generated from the following file:

• include/rtdm/rtserial.h

6.13 sockaddr_can Struct Reference

6.13.1 Detailed Description

Socket address structure for the CAN address family.

Examples:

rtcan_rtt.c, rtcanrecv.c, and rtcansend.c.

Data Fields

- sa_family_t can_family

 CAN address family, must be AF_CAN.
- int can_ifindex

 Interface index of CAN controller.

6.13.2 Field Documentation

6.13.2.1 int sockaddr_can::can_ifindex

Interface index of CAN controller.

See SIOCGIFINDEX.

The documentation for this struct was generated from the following file:

130	Xenomai RTDM skin API Data Structure Documentation
	Canarated on Mon Feb 11 12:24:36 2008 for Yanomai RTDM skin API by Doyygan

Chapter 7

Xenomai RTDM skin API File Documentation

7.1 include/rtdm/rtcan.h File Reference

7.1.1 Detailed Description

Real-Time Driver Model for RT-Socket-CAN, CAN device profile header.

Note:

Copyright (C) 2006 Wolfgang Grandegger < wg@grandegger.com>
Copyright (C) 2005, 2006 Sebastian Smolorz < Sebastian. Smolorz@stud.uni-hannover.de>

This RTDM CAN device profile header is based on:

include/linux/can.h, include/linux/socket.h, net/can/pf_can.h in linux-can.patch, a CAN socket framework for Linux

Copyright (C) 2004, 2005, Robert Schwebel, Benedikt Spranger, Marc Kleine-Budde, Pengutronix

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for rtcan.h:

Data Structures

- struct can_bittime_std

 Standard bit-time parameters according to Bosch.
- struct can_bittime_btr

 Hardware-specific BTR bit-times.
- struct can_bittime

 Custom CAN bit-time definition.
- struct can_filter_t

 Filter for reception of CAN messages.
- struct sockaddr_can

 Socket address structure for the CAN address family.
- struct can_frame_t

 Raw CAN frame.

Defines

- #define AF_CAN 29

 CAN address family.
- #define PF_CAN AF_CAN CAN protocol family.
- #define SOL_CAN_RAW 103 CAN socket levels.

CAN ID masks

Bit masks for masking CAN IDs

• #define CAN_EFF_MASK 0x1FFFFFFF Bit mask for extended CAN IDs. • #define CAN_SFF_MASK 0x000007FF Bit mask for standard CAN IDs.

CAN ID flags

Flags within a CAN ID indicating special CAN frame attributes

- #define CAN_EFF_FLAG 0x80000000 Extended frame.
- #define CAN_RTR_FLAG 0x40000000 Remote transmission frame.
- #define CAN_ERR_FLAG 0x20000000 Error frame (see Errors), not valid in struct can_filter.
- #define CAN_INV_FILTER CAN_ERR_FLAG

 Invert CAN filter definition, only valid in struct can_filter.

Particular CAN protocols

Possible protocols for the PF_CAN protocol family Currently only the RAW protocol is supported.

#define CAN_RAW 1
 Raw protocol of PF_CAN, applicable to socket type SOCK_RAW.

CAN controller modes

Special CAN controllers modes, which can be or'ed together.

Note:

These modes are hardware-dependent. Please consult the hardware manual of the CAN controller for more detailed information.

- #define CAN_CTRLMODE_LISTENONLY 0x1
- #define CAN_CTRLMODE_LOOPBACK 0x2

Timestamp switches

Arguments to pass to RTCAN_RTIOC_TAKE_TIMESTAMP

- #define RTCAN_TAKE_NO_TIMESTAMPS 0
 Switch off taking timestamps.
- #define RTCAN_TAKE_TIMESTAMPS 1 Do take timestamps.

RAW socket options

Setting and getting CAN RAW socket options.

• #define CAN_RAW_FILTER 0x1

CAN filter definition.

- #define CAN_RAW_ERR_FILTER 0x2 CAN error mask.
- #define CAN_RAW_LOOPBACK 0x3
 CAN TX loopback.
- #define CAN_RAW_RECV_OWN_MSGS 0x4 CAN receive own messages.

IOCTLs

CAN device IOCTLs

- #define SIOCGIFINDEX defined_by_kernel_header_file Get CAN interface index by name.
- #define SIOCSCANBAUDRATE _IOW(RTIOC_TYPE_CAN, 0x01, struct ifreq) Set baud rate.
- #define SIOCGCANBAUDRATE _IOWR(RTIOC_TYPE_CAN, 0x02, struct ifreq)

 Get haud rate.
- #define SIOCSCANCUSTOMBITTIME _IOW(RTIOC_TYPE_CAN, 0x03, struct ifreq) Set custom bit time parameter.
- #define SIOCGCANCUSTOMBITTIME _IOWR(RTIOC_TYPE_CAN, 0x04, struct ifreq) Get custum bit-time parameters.
- #define SIOCSCANMODE_IOW(RTIOC_TYPE_CAN, 0x05, struct ifreq) Set operation mode of CAN controller.
- #define SIOCGCANSTATE _IOWR(RTIOC_TYPE_CAN, 0x06, struct ifreq) Get current state of CAN controller.
- #define SIOCSCANCTRLMODE _IOW(RTIOC_TYPE_CAN, 0x07, struct ifreq)
 Set special controller modes.
- #define SIOCGCANCTRLMODE_IOWR(RTIOC_TYPE_CAN, 0x08, struct ifreq) Get special controller modes.
- #define RTCAN_RTIOC_TAKE_TIMESTAMP_IOW(RTIOC_TYPE_CAN, 0x09, int) Enable or disable storing a high precision timestamp upon reception of a CAN frame.
- #define RTCAN_RTIOC_RCV_TIMEOUT _IOW(RTIOC_TYPE_CAN, 0x0A, nanosecs_rel_t)
 Specify a reception timeout for a socket.
- #define RTCAN_RTIOC_SND_TIMEOUT _IOW(RTIOC_TYPE_CAN, 0x0B, nanosecs_rel t)

Specify a transmission timeout for a socket.

Error mask

Error class (mask) in can_id field of struct can_frame to be used with CAN_RAW_ERR_FILTER.

Note: Error reporting is hardware dependent and most CAN controllers report less detailed error conditions than the SJA1000.

Note: In case of a bus-off error condition (CAN_ERR_BUSOFF), the CAN controller is **not** restarted automatically. It is the application's responsibility to react appropriately, e.g. calling CAN_MODE_START.

Note: Bus error interrupts (CAN_ERR_BUSERROR) are enabled when an application is calling a Recv function on a socket listening on bus errors (using CAN_RAW_ERR_FILTER). After one bus error has occured, the interrupt will be disabled to allow the application time for error processing and to efficiently avoid bus error interrupt flooding.

- #define CAN_ERR_TX_TIMEOUT 0x00000001U TX timeout (netdevice driver).
- #define CAN_ERR_LOSTARB 0x00000002U Lost arbitration (see data[0]).
- #define CAN_ERR_CRTL 0x00000004U Controller problems (see data[1]).
- #define CAN_ERR_PROT 0x00000008U
 Protocol violations (see data[2], data[3]).
- #define CAN_ERR_TRX 0x00000010U

 Transceiver status (see data[4]).
- #define CAN_ERR_ACK 0x00000020U Received no ACK on transmission.
- #define CAN_ERR_BUSOFF 0x00000040U Bus off.
- #define CAN_ERR_BUSERROR 0x00000080U

 Bus error (may flood!).
- #define CAN_ERR_RESTARTED 0x00000100U
 Controller restarted.
- #define CAN_ERR_MASK 0x1FFFFFFFU

 Omit EFF, RTR, ERR flags.

Arbitration lost error

Error in the data[0] *field of struct can_frame*.

• #define CAN_ERR_LOSTARB_UNSPEC 0x00 unspecified

Controller problems

Error in the data[1] *field of struct can_frame.*

- #define CAN_ERR_CRTL_UNSPEC 0x00 unspecified
- #define CAN_ERR_CRTL_RX_OVERFLOW 0x01 RX buffer overflow.
- #define CAN_ERR_CRTL_TX_OVERFLOW 0x02 TX buffer overflow.
- #define CAN_ERR_CRTL_RX_WARNING 0x04 reached warning level for RX errors
- #define CAN_ERR_CRTL_TX_WARNING 0x08 reached warning level for TX errors
- #define CAN_ERR_CRTL_RX_PASSIVE 0x10 reached passive level for RX errors
- #define CAN_ERR_CRTL_TX_PASSIVE 0x20 reached passive level for TX errors

Protocol error type

Error in the data[2] *field of struct can_frame.*

- #define CAN_ERR_PROT_UNSPEC 0x00 unspecified
- #define CAN_ERR_PROT_BIT 0x01 single bit error
- #define CAN_ERR_PROT_FORM 0x02 frame format error
- #define CAN_ERR_PROT_STUFF 0x04 bit stuffing error
- #define CAN_ERR_PROT_BIT0 0x08 unable to send dominant bit
- #define CAN_ERR_PROT_BIT1 0x10 unable to send recessive bit
- #define CAN_ERR_PROT_OVERLOAD 0x20 bus overload
- #define CAN_ERR_PROT_ACTIVE 0x40 active error announcement
- #define CAN_ERR_PROT_TX 0x80 error occured on transmission

Protocol error location

Error in the data[3] *field of struct can_frame.*

- #define CAN_ERR_PROT_LOC_UNSPEC 0x00 unspecified
- #define CAN_ERR_PROT_LOC_SOF 0x03 start of frame
- #define CAN_ERR_PROT_LOC_ID28_21 0x02 ID bits 28 - 21 (SFF: 10 - 3).
- #define CAN_ERR_PROT_LOC_ID20_18 0x06 ID bits 20 - 18 (SFF: 2 - 0).
- #define CAN_ERR_PROT_LOC_SRTR 0x04 substitute RTR (SFF: RTR)
- #define CAN_ERR_PROT_LOC_IDE 0x05 identifier extension
- #define CAN_ERR_PROT_LOC_ID17_13 0x07 ID bits 17-13.
- #define CAN_ERR_PROT_LOC_ID12_05 0x0F ID bits 12-5.
- #define CAN_ERR_PROT_LOC_ID04_00 0x0E ID bits 4-0.
- #define CAN_ERR_PROT_LOC_RTR 0x0C RTR.
- #define CAN_ERR_PROT_LOC_RES1 0x0D reserved bit 1
- #define CAN_ERR_PROT_LOC_RES0 0x09 reserved bit 0
- #define CAN_ERR_PROT_LOC_DLC 0x0B data length code
- #define CAN_ERR_PROT_LOC_DATA 0x0A data section
- #define CAN_ERR_PROT_LOC_CRC_SEQ 0x08 CRC sequence.
- #define CAN_ERR_PROT_LOC_CRC_DEL 0x18 CRC delimiter.
- #define CAN_ERR_PROT_LOC_ACK 0x19

 ACK slot.

- #define CAN_ERR_PROT_LOC_ACK_DEL 0x1B ACK delimiter.
- #define CAN_ERR_PROT_LOC_EOF 0x1A end of frame
- #define CAN_ERR_PROT_LOC_INTERM 0x12 intermission

Protocol error location

Error in the data[4] *field of struct can_frame.*

- #define CAN_ERR_TRX_UNSPEC 0x00 0000 0000
- #define CAN_ERR_TRX_CANH_NO_WIRE 0x04 0000 0100
- #define CAN_ERR_TRX_CANH_SHORT_TO_BAT 0x05 0000 0101
- #define CAN_ERR_TRX_CANH_SHORT_TO_VCC 0x06 0000 0110
- #define CAN_ERR_TRX_CANH_SHORT_TO_GND 0x07 0000 0111
- #define CAN_ERR_TRX_CANL_NO_WIRE 0x40 0100 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_BAT 0x50 0101 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_VCC 0x60 0110 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_GND 0x70 0111 0000
- #define CAN_ERR_TRX_CANL_SHORT_TO_CANH 0x80 1000 0000

Typedefs

- typedef uint32_t can_id_t

 Type of CAN id (see CAN_xxx_MASK and CAN_xxx_FLAG).
- typedef can_id_t can_err_mask_t

 Type of CAN error mask.

- typedef uint32_t can_baudrate_t
 Baudrate definition in bits per second.
- typedef enum CAN_BITTIME_TYPE can_bittime_type_t See CAN_BITTIME_TYPE.
- typedef enum CAN_MODE can_mode_t See CAN_MODE.
- typedef int can_ctrlmode_t See CAN_CTRLMODE.
- typedef enum CAN_STATE can_state_t See CAN_STATE.

Enumerations

• enum CAN_BITTIME_TYPE { CAN_BITTIME_STD, CAN_BITTIME_BTR } Supported CAN bit-time types.

CAN operation modes

Modes into which CAN controllers can be set

• enum CAN_MODE { CAN_MODE_STOP = 0, CAN_MODE_START, CAN_MODE_SLEEP }

CAN controller states

States a CAN controller can be in.

enum CAN_STATE {
 CAN_STATE_ACTIVE = 0, CAN_STATE_BUS_WARNING, CAN_STATE_BUS_PASSIVE, CAN_STATE_BUS_OFF,
 CAN_STATE_SCANNING_BAUDRATE, CAN_STATE_STOPPED, CAN_STATE_SLEEPING }

7.2 include/rtdm/rtdm.h File Reference

7.2.1 Detailed Description

Real-Time Driver Model for Xenomai, user API header.

Note:

```
Copyright (C) 2005, 2006 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>
```

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for rtdm.h:

This graph shows which files directly or indirectly include this file:

Data Structures

• struct rtdm_device_info_t Device information.

Defines

API Versioning

• #define RTDM_API_VER 6

Common user and driver API version.

• #define RTDM_API_MIN_COMPAT_VER 6

Minimum API revision compatible with the current release.

RTDM_TIMEOUT_xxx

Special timeout values

- #define RTDM_TIMEOUT_INFINITE 0 Block forever.
- #define RTDM_TIMEOUT_NONE (-1)

Any negative timeout means non-blocking.

RTDM_CLASS_xxx

Device classes

- #define RTDM_CLASS_PARPORT 1
- #define RTDM CLASS SERIAL 2
- #define RTDM_CLASS_CAN 3
- #define RTDM_CLASS_NETWORK 4
- #define RTDM_CLASS_RTMAC 5
- #define RTDM_CLASS_TESTING 6
- #define RTDM_CLASS_EXPERIMENTAL 224
- #define RTDM_CLASS_MAX 255

Device Naming

Maximum length of device names (excluding the final null character)

• #define RTDM_MAX_DEVNAME_LEN 31

RTDM_PURGE_xxx_BUFFER

Flags selecting buffers to be purged

- #define RTDM PURGE RX BUFFER 0x0001
- #define RTDM_PURGE_TX_BUFFER 0x0002

Common IOCTLs

The following IOCTLs are common to all device profiles.

• #define RTIOC_DEVICE_INFO _IOR(RTIOC_TYPE_COMMON, 0x00, struct rtdm_device_info)

Retrieve information about a device or socket.

• #define RTIOC_PURGE_IOW(RTIOC_TYPE_COMMON, 0x10, int)

Purge internal device or socket buffers.

Typedefs

- typedef uint64_t nanosecs_abs_t

 RTDM type for representing absolute dates.
- typedef int64_t nanosecs_rel_t

 RTDM type for representing relative intervals.

7.3 include/rtdm/rtdm_driver.h File Reference

7.3.1 Detailed Description

Real-Time Driver Model for Xenomai, driver API header.

Note:

```
Copyright (C) 2005-2007 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>
```

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for rtdm_driver.h:

This graph shows which files directly or indirectly include this file:

Data Structures

- struct rtdm_operations
 - Device operations.
- struct rtdm_dev_context
- struct rtdm_device

Spinlock with Preemption Deactivation

- #define RTDM_LOCK_UNLOCKED RTHAL_SPIN_LOCK_UNLOCKED Static lock initialisation.
- #define rtdm_lock_init(lock) rthal_spin_lock_init(lock)

 Dynamic lock initialisation.
- #define rtdm_lock_get(lock) rthal_spin_lock(lock)

 Acquire lock from non-preemptible contexts.
- #define rtdm_lock_put(lock) rthal_spin_unlock(lock) Release lock without preemption restoration.
- #define rtdm_lock_get_irqsave(lock, context) rthal_spin_lock_irqsave(lock, context)

 Acquire lock and disable preemption.
- #define rtdm_lock_put_irqrestore(lock, context) rthal_spin_unlock_irqrestore(lock, context)

Release lock and restore preemption state.

- #define rtdm_lock_irqsave(context) rthal_local_irq_save(context) Disable preemption locally.
- #define rtdm_lock_irqrestore(context) rthal_local_irq_restore(context) Restore preemption state.
- typedef rthal_spinlock_t rtdm_lock_t Lock variable.
- typedef unsigned long rtdm_lockctx_t

 Variable to save the context while holding a lock.

Defines

#define rtdm_irq_get_arg(irq_handle, type) ((type *)irq_handle → cookie)
 Retrieve IRQ handler argument.

Device Flags

Static flags describing a RTDM device

- #define RTDM_EXCLUSIVE 0x0001

 If set, only a single instance of the device can be requested by an application.
- #define RTDM_NAMED_DEVICE 0x0010

 If set, the device is addressed via a clear-text name.
- #define RTDM_PROTOCOL_DEVICE 0x0020

If set, the device is addressed via a combination of protocol ID and socket type.

• #define RTDM_DEVICE_TYPE_MASK 0x00F0

Mask selecting the device type.

Context Flags

Dynamic flags describing the state of an open RTDM device (bit numbers)

- #define RTDM_CREATED_IN_NRT 0

 Set by RTDM if the device instance was created in non-real-time context.
- #define RTDM_CLOSING 1

 Set by RTDM when the device is being closed.
- #define RTDM_USER_CONTEXT_FLAG 8
 Lowest bit number the driver developer can use freely.

Driver Versioning

Current revisions of RTDM structures, encoding of driver versions. See API Versioning for the interface revision.

- #define RTDM_DEVICE_STRUCT_VER 4 Version of struct rtdm_device.
- #define RTDM_CONTEXT_STRUCT_VER 3 Version of struct rtdm_dev_context.
- #define RTDM_SECURE_DEVICE 0x80000000

 Flag indicating a secure variant of RTDM (not supported here).
- #define RTDM_DRIVER_VER(major, minor, patch) (((major & 0xFF) << 16) | ((minor & 0xFF) << 8) | (patch & 0xFF))

Version code constructor for driver revisions.

- #define RTDM_DRIVER_MAJOR_VER(ver) (((ver) >> 16) & 0xFF) Get major version number from driver revision code.
- #define RTDM_DRIVER_MINOR_VER(ver) (((ver) >> 8) & 0xFF) Get minor version number from driver revision code.
- #define RTDM_DRIVER_PATCH_VER(ver) ((ver) & 0xFF) Get patch version number from driver revision code.

Global Lock across Scheduler Invocation

• #define RTDM_EXECUTE_ATOMICALLY(code_block)

RTDM_IRQTYPE_xxx

Interrupt registrations flags

- #define RTDM_IRQTYPE_SHARED XN_ISR_SHARED Enable IRQ-sharing with other real-time drivers.
- #define RTDM_IRQTYPE_EDGE XN_ISR_EDGE
 Mark IRQ as edge-triggered, relevant for correct handling of shared edge-triggered IRQs.

RTDM_IRQ_xxx

Return flags of interrupt handlers

- #define RTDM_IRQ_NONE XN_ISR_NONE Unhandled interrupt.
- #define RTDM_IRQ_HANDLED XN_ISR_HANDLED Denote handled interrupt.

Task Priority Range

Maximum and minimum task priorities

- #define RTDM_TASK_LOWEST_PRIORITY XNCORE_LOW_PRIO
- #define RTDM_TASK_HIGHEST_PRIORITY XNCORE_HIGH_PRIO

Task Priority Modification

Raise or lower task priorities by one level

- #define RTDM_TASK_RAISE_PRIORITY (+1)
- #define RTDM_TASK_LOWER_PRIORITY (-1)

Typedefs

- typedef int(* rtdm_irq_handler_t)(rtdm_irq_t *irq_handle)

 Interrupt handler.
- typedef void(* rtdm_nrtsig_handler_t)(rtdm_nrtsig_t nrt_sig, void *arg)

 Non-real-time signal handler.
- typedef void(* rtdm_timer_handler_t)(rtdm_timer_t *timer)

 **Timer handler.*
- typedef void(* rtdm_task_proc_t)(void *arg)
 Real-time task procedure.

Operation Handler Prototypes

- typedef int(* rtdm_open_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int oflag)
 Named device open handler.
- typedef int(* rtdm_socket_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, int protocol)

Socket creation handler for protocol devices.

• typedef int(* rtdm_close_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info)

Close handler.

- typedef int(* rtdm_ioctl_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, unsigned int request, void __user *arg)

 IOCTL handler.
- typedef ssize_t(* rtdm_read_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, void *buf, size_t nbyte)
 Read handler.
- typedef ssize_t(* rtdm_write_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const void *buf, size_t nbyte)

 Write handler.
- typedef ssize_t(* rtdm_recvmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, struct msghdr *msg, int flags)

 *Receive message handler.
- typedef ssize_t(* rtdm_sendmsg_handler_t)(struct rtdm_dev_context *context, rtdm_user_info_t *user_info, const struct msghdr *msg, int flags)

 Transmit message handler.

Enumerations

$RTDM_TIMERMODE_xxx$

Timer operation modes

 enum rtdm_timer_mode { RTDM_TIMERMODE_RELATIVE = XN_RELATIVE, RTDM_-TIMERMODE_ABSOLUTE = XN_ABSOLUTE, RTDM_TIMERMODE_REALTIME = XN_REALTIME }

Functions

- int rtdm_dev_register (struct rtdm_device *device)
- int rtdm_dev_unregister (struct rtdm_device *device, unsigned int poll_delay)
- struct rtdm_dev_context * rtdm_context_get (int fd)
- int rtdm_irq_request (rtdm_irq_t *irq_handle, unsigned int irq_no, rtdm_irq_handler_t handler, unsigned long flags, const char *device_name, void *arg)
- void rtdm_timer_destroy (rtdm_timer_t *timer)
- int rtdm_timer_start (rtdm_timer_t *timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)
- void rtdm_timer_stop (rtdm_timer_t *timer)
- int rtdm_task_init (rtdm_task_t *task, const char *name, rtdm_task_proc_t task_proc, void *arg, int priority, nanosecs_rel_t period)
- void rtdm_task_busy_sleep (nanosecs_rel_t delay)
- void rtdm_toseq_init (rtdm_toseq_t *timeout_seq, nanosecs_rel_t timeout)
- void rtdm_event_init (rtdm_event_t *event, unsigned long pending)

- int rtdm_event_wait (rtdm_event_t *event)
- int rtdm_event_timedwait (rtdm_event_t *event, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)
- void rtdm_event_t *event)
- void rtdm_event_clear (rtdm_event_t *event)
- void rtdm_sem_init (rtdm_sem_t *sem, unsigned long value)
- int rtdm_sem_down (rtdm_sem_t *sem)
- int rtdm_sem_timeddown (rtdm_sem_t *sem, nanosecs_rel_t timeout, rtdm_toseq_- t *timeout_seq)
- void rtdm_sem_up (rtdm_sem_t *sem)
- void rtdm_mutex_init (rtdm_mutex_t *mutex)
- int rtdm_mutex_lock (rtdm_mutex_t *mutex)
- int rtdm_mutex_timedlock (rtdm_mutex_t *mutex, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)

7.4 include/rtdm/rtserial.h File Reference

7.4.1 Detailed Description

Real-Time Driver Model for Xenomai, serial device profile header.

Note:

Copyright (C) 2005-2007 Jan Kiszka < jan.kiszka@web.de>

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for rtserial.h:

Data Structures

- struct rtser_config_t

 Serial device configuration.
- struct rtser_status_t Serial device status.
- struct rtser_event_t

Additional information about serial device events.

Defines

• #define RTSER_RTIOC_BREAK_CTL_IOR(RTIOC_TYPE_SERIAL, 0x06, int) Set or clear break on UART output line.

RTSER_DEF_BAUD

Default baud rate

• #define RTSER_DEF_BAUD 9600

RTSER_xxx_PARITY

Number of parity bits

- #define RTSER NO PARITY 0x00
- #define RTSER_ODD_PARITY 0x01
- #define RTSER_EVEN_PARITY 0x03
- #define RTSER_DEF_PARITY RTSER_NO_PARITY

RTSER_xxx_BITS

Number of data bits

- #define RTSER_5_BITS 0x00
- #define **RTSER_6_BITS** 0x01
- #define RTSER_7_BITS 0x02
- #define RTSER 8 BITS 0x03
- #define RTSER_DEF_BITS RTSER_8_BITS

RTSER xxx STOPB

Number of stop bits

- #define RTSER 1 STOPB 0x00
- #define RTSER_1_5_STOPB 0x01

valid only in combination with 5 data bits

- #define RTSER_2_STOPB 0x01
- #define RTSER_DEF_STOPB RTSER_1_STOPB

RTSER_xxx_HAND

Handshake mechanisms

- #define RTSER_NO_HAND 0x00
- #define RTSER_RTSCTS_HAND 0x01
- #define RTSER_DEF_HAND RTSER_NO_HAND

RTSER_FIFO_xxx

Reception FIFO interrupt threshold

- #define RTSER_FIFO_DEPTH_1 0x00
- #define RTSER_FIFO_DEPTH_4 0x40
- #define **RTSER_FIFO_DEPTH_8** 0x80
- #define RTSER_FIFO_DEPTH_14 0xC0
- #define RTSER_DEF_FIFO_DEPTH RTSER_FIFO_DEPTH_1

RTSER TIMEOUT xxx

Special timeout values, see also RTDM_TIMEOUT_xxx

- #define RTSER_TIMEOUT_INFINITE RTDM_TIMEOUT_INFINITE
- #define RTSER_TIMEOUT_NONE RTDM_TIMEOUT_NONE
- #define RTSER_DEF_TIMEOUT RTDM_TIMEOUT_INFINITE

RTSER_xxx_TIMESTAMP_HISTORY

Timestamp history control

- #define RTSER_RX_TIMESTAMP_HISTORY 0x01
- #define RTSER_DEF_TIMESTAMP_HISTORY 0x00

RTSER_EVENT_xxx

Events bits

- #define RTSER EVENT RXPEND 0x01
- #define RTSER_EVENT_ERRPEND 0x02
- #define RTSER_EVENT_MODEMHI 0x04
- #define RTSER_EVENT_MODEMLO 0x08
- #define RTSER DEF EVENT MASK 0x00

RTSER_SET_xxx

Configuration mask bits

- #define RTSER_SET_BAUD 0x0001
- #define RTSER_SET_PARITY 0x0002
- #define RTSER_SET_DATA_BITS 0x0004
- #define RTSER_SET_STOP_BITS 0x0008

- #define RTSER_SET_HANDSHAKE 0x0010
 #define RTSER_SET_FIFO_DEPTH 0x0020
 #define RTSER_SET_TIMEOUT_RX 0x0100
 #define RTSER_SET_TIMEOUT_TX 0x0200
 #define RTSER_SET_TIMEOUT_EVENT 0x0400
 #define RTSER_SET_TIMESTAMP_HISTORY 0x0800
- #define RTSER_SET_EVENT_MASK 0x1000

RTSER_LSR_xxx

Line status bits

- #define RTSER_LSR_DATA 0x01
- #define RTSER_LSR_OVERRUN_ERR 0x02
- #define RTSER_LSR_PARITY_ERR 0x04
- #define RTSER_LSR_FRAMING_ERR 0x08
- #define RTSER_LSR_BREAK_IND 0x10
- #define RTSER_LSR_THR_EMTPY 0x20
- #define RTSER_LSR_TRANSM_EMPTY 0x40
- #define RTSER_LSR_FIFO_ERR 0x80
- #define RTSER_SOFT_OVERRUN_ERR 0x0100

RTSER_MSR_xxx

Modem status bits

- #define RTSER MSR DCTS 0x01
- #define RTSER MSR DDSR 0x02
- #define RTSER MSR TERI 0x04
- #define RTSER MSR DDCD 0x08
- #define RTSER MSR CTS 0x10
- #define RTSER MSR DSR 0x20
- #define RTSER MSR RI 0x40
- #define RTSER_MSR_DCD 0x80

RTSER_MCR_xxx

Modem control bits

- #define RTSER_MCR_DTR 0x01
- #define RTSER_MCR_RTS 0x02
- #define RTSER_MCR_OUT1 0x04
- #define RTSER_MCR_OUT2 0x08
- #define RTSER_MCR_LOOP 0x10

RTSER_BREAK_xxx

Break control

- #define RTSER BREAK CLR 0x00
- #define RTSER BREAK SET 0x01
- #define RTIOC_TYPE_SERIAL RTDM_CLASS_SERIAL

Sub-Classes of RTDM_CLASS_SERIAL

• #define RTDM_SUBCLASS_16550A 0

IOCTLs

Serial device IOCTLs

#define RTSER_RTIOC_GET_CONFIG_IOR(RTIOC_TYPE_SERIAL, 0x00, struct rtser_config)

Get serial device configuration.

• #define RTSER_RTIOC_SET_CONFIG_IOW(RTIOC_TYPE_SERIAL, 0x01, struct rtser_config)

Set serial device configuration.

• #define RTSER_RTIOC_GET_STATUS _IOR(RTIOC_TYPE_SERIAL, 0x02, struct rtser_status)

Get serial device status.

- #define RTSER_RTIOC_GET_CONTROL_IOR(RTIOC_TYPE_SERIAL, 0x03, int) Get serial device's modem contol register.
- #define RTSER_RTIOC_SET_CONTROL_IOW(RTIOC_TYPE_SERIAL, 0x04, int) Set serial device's modem contol register.
- #define RTSER_RTIOC_WAIT_EVENT_IOR(RTIOC_TYPE_SERIAL, 0x05, struct rtser_event)

Wait on serial device events according to previously set mask.

7.5 include/rtdm/rttesting.h File Reference

7.5.1 Detailed Description

Real-Time Driver Model for Xenomai, testing device profile header.

Note:

Copyright (C) 2005 Jan Kiszka < jan.kiszka@web.de>

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for rttesting.h:

Defines

Sub-Classes of RTDM_CLASS_TESTING

- #define RTDM SUBCLASS TIMERBENCH 0
- #define RTDM_SUBCLASS_IRQBENCH 1
- #define RTDM_SUBCLASS_SWITCHTEST 2

IOCTLs

Testing device IOCTLs

- #define **RTTST_RTIOC_INTERM_BENCH_RES** _IOWR(RTIOC_TYPE_TESTING, 0x00, struct rttst_interm_bench_res)
- #define RTTST_RTIOC_TMBENCH_START _IOW(RTIOC_TYPE_TESTING, 0x10, struct rttst_tmbench_config)
- #define RTTST_RTIOC_TMBENCH_STOP _IOWR(RTIOC_TYPE_TESTING, 0x11, struct rttst_overall_bench_res)
- #define RTTST_RTIOC_IRQBENCH_START _IOW(RTIOC_TYPE_TESTING, 0x20, struct rttst_irqbench_config)
- #define RTTST_RTIOC_IRQBENCH_STOP_IO(RTIOC_TYPE_TESTING, 0x21)
- #define RTTST_RTIOC_IRQBENCH_GET_STATS _IOR(RTIOC_TYPE_TESTING, 0x22, struct rttst_irqbench_stats)

- #define RTTST_RTIOC_IRQBENCH_WAIT_IRQ_IO(RTIOC_TYPE_TESTING, 0x23)
- #define RTTST_RTIOC_IRQBENCH_REPLY_IRQ_IO(RTIOC_TYPE_TESTING, 0x24)
- #define RTTST_RTIOC_SWTEST_SET_TASKS_COUNT _IOW(RTIOC_TYPE_TESTING, 0x30, unsigned long)
- #define RTTST_RTIOC_SWTEST_SET_CPU _IOW(RTIOC_TYPE_TESTING, 0x31, unsigned long)
- #define RTTST_RTIOC_SWTEST_REGISTER_UTASK _IOW(RTIOC_TYPE_TESTING, 0x32, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_CREATE_KTASK_IOWR(RTIOC_TYPE_TESTING, 0x33, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_PEND _IOR(RTIOC_TYPE_TESTING, 0x34, struct rttst_swtest_task)
- #define RTTST_RTIOC_SWTEST_SWITCH_TO _IOR(RTIOC_TYPE_TESTING, 0x35, struct rttst_swtest_dir)
- #define RTTST_RTIOC_SWTEST_GET_SWITCHES_COUNT _IOR(RTIOC_TYPE_-TESTING, 0x36, unsigned long)
- #define RTTST_RTIOC_SWTEST_GET_LAST_ERROR _IOR(RTIOC_TYPE_TESTING, 0x37, struct rttst_swtest_error)

7.6 ksrc/skins/rtdm/device.c File Reference

7.6.1 Detailed Description

Real-Time Driver Model for Xenomai, device management.

Note:

```
Copyright (C) 2005 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>
```

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for device.c:

Functions

- int rtdm_dev_register (struct rtdm_device *device)
- int rtdm_dev_unregister (struct rtdm_device *device, unsigned int poll_delay)

7.7 ksrc/skins/rtdm/drvlib.c File Reference

7.7.1 Detailed Description

Real-Time Driver Model for Xenomai, driver library.

Note:

```
Copyright (C) 2005-2007 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>
```

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for drvlib.c:

Functions

- nanosecs abs trtdm clock read (void)
- nanosecs abs trtdm clock read monotonic (void)
- int rtdm_task_init (rtdm_task_t *task, const char *name, rtdm_task_proc_t task_proc, void *arg, int priority, nanosecs_rel_t period)
- void rtdm_task_destroy (rtdm_task_t *task)
- void rtdm_task_set_priority (rtdm_task_t *task, int priority)
- int rtdm_task_set_period (rtdm_task_t *task, nanosecs_rel_t period)
- int rtdm_task_wait_period (void)
- int rtdm_task_unblock (rtdm_task_t *task)
- rtdm_task_t * rtdm_task_current (void)
- int rtdm_task_sleep (nanosecs_rel_t delay)
- int rtdm_task_sleep_until (nanosecs_abs_t wakeup_time)
- int rtdm_task_sleep_abs (nanosecs_abs_t wakeup_time, enum rtdm_timer_mode mode)
- void rtdm_task_join_nrt (rtdm_task_t *task, unsigned int poll_delay)
- void rtdm_task_busy_sleep (nanosecs_rel_t delay)
- int rtdm_timer_init (rtdm_timer_t *timer, rtdm_timer_handler_t handler, const char *name)
- void rtdm_timer_destroy (rtdm_timer_t *timer)

- int rtdm_timer_start (rtdm_timer_t *timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)
- void rtdm_timer_stop (rtdm_timer_t *timer)
- int rtdm_timer_start_in_handler (rtdm_timer_t *timer, nanosecs_abs_t expiry, nanosecs_rel_t interval, enum rtdm_timer_mode mode)
- void rtdm_timer_stop_in_handler (rtdm_timer_t *timer)
- int rtdm_irq_request (rtdm_irq_t *irq_handle, unsigned int irq_no, rtdm_irq_handler_t handler, unsigned long flags, const char *device_name, void *arg)
- int rtdm_irq_free (rtdm_irq_t *irq_handle)
- int rtdm_irq_enable (rtdm_irq_t *irq_handle)
- int rtdm_irq_disable (rtdm_irq_t *irq_handle)
- int rtdm_nrtsig_init (rtdm_nrtsig_t *nrt_sig, rtdm_nrtsig_handler_t handler, void *arg)
- void rtdm_nrtsig_destroy (rtdm_nrtsig_t *nrt_sig)
- void rtdm_nrtsig_pend (rtdm_nrtsig_t *nrt_sig)

Trigger non-real-time signal.

• int rtdm_mmap_to_user (rtdm_user_info_t *user_info, void *src_addr, size_t len, int prot, void **pptr, struct vm_operations_struct *vm_ops, void *vm_private_data)

Map a kernel memory range into the address space of the user.

- int rtdm_iomap_to_user (rtdm_user_info_t *user_info, unsigned long src_addr, size_t len, int prot, void **pptr, struct vm_operations_struct *vm_ops, void *vm_private_data)

 Map an I/O memory range into the address space of the user.
- int rtdm_munmap (rtdm_user_info_t *user_info, void *ptr, size_t len)

 *Unmap a user memory range.
- void rtdm_printk (const char *format,...)

Real-time safe message printing on kernel console.

void * rtdm_malloc (size_t size)

Allocate memory block in real-time context.

void rtdm_free (void *ptr)

Release real-time memory block.

- int rtdm_read_user_ok (rtdm_user_info_t *user_info, const void __user *ptr, size_t size) Check if read access to user-space memory block is safe.
- int rtdm_rw_user_ok (rtdm_user_info_t *user_info, const void __user *ptr, size_t size) Check if read/write access to user-space memory block is safe.
- int rtdm_copy_from_user (rtdm_user_info_t *user_info, void *dst, const void __user *src, size t size)

Copy user-space memory block to specified buffer.

• int rtdm_safe_copy_from_user (rtdm_user_info_t *user_info, void *dst, const void __user *src, size_t size)

Check if read access to user-space memory block and copy it to specified buffer.

• int rtdm_copy_to_user (rtdm_user_info_t *user_info, void __user *dst, const void *src, size_t size)

Copy specified buffer to user-space memory block.

• int rtdm_safe_copy_to_user (rtdm_user_info_t *user_info, void __user *dst, const void *src, size_t size)

Check if read/write access to user-space memory block is safe and copy specified buffer to it.

• int rtdm_strncpy_from_user (rtdm_user_info_t *user_info, char *dst, const char __user *src, size_t count)

Copy user-space string to specified buffer.

• int rtdm_in_rt_context (void)

Test if running in a real-time task.

Timeout Sequence Management

• void rtdm toseg init (rtdm toseg t *timeout seg, nanosecs rel t timeout)

Event Services

- void rtdm_event_init (rtdm_event_t *event, unsigned long pending)
- void rtdm_event_destroy (rtdm_event_t *event)
- void rtdm_event_pulse (rtdm_event_t *event)
- void rtdm_event_signal (rtdm_event_t *event)
- int rtdm_event_wait (rtdm_event_t *event)
- int rtdm_event_timedwait (rtdm_event_t *event, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)
- void rtdm_event_clear (rtdm_event_t *event)

Semaphore Services

- void rtdm sem init (rtdm sem t *sem, unsigned long value)
- void rtdm_sem_destroy (rtdm_sem_t *sem)
- int rtdm_sem_down (rtdm_sem_t *sem)
- int rtdm_sem_timeddown (rtdm_sem_t *sem, nanosecs_rel_t timeout, rtdm_toseq_t *timeout_seq)
- void rtdm_sem_up (rtdm_sem_t *sem)

Mutex Services

- void rtdm_mutex_init (rtdm_mutex_t *mutex)
- void rtdm_mutex_destroy (rtdm_mutex_t *mutex)
- void rtdm_mutex_unlock (rtdm_mutex_t *mutex)
- int rtdm_mutex_lock (rtdm_mutex_t *mutex)
- int rtdm_mutex_timedlock (rtdm_mutex_t *mutex, nanosecs_rel_t timeout, rtdm_toseq_t *timeout seq)

7.8 ksrc/skins/rtdm/module.c File Reference

7.8.1 Detailed Description

Real-Time Driver Model for Xenomai.

Note:

Copyright (C) 2005, 2006 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for module.c:

7.9 ksrc/skins/rtdm/core.c File Reference

7.9.1 Detailed Description

Real-Time Driver Model for Xenomai, device operation multiplexing.

Note:

```
Copyright (C) 2005 Jan Kiszka < jan.kiszka@web.de>
Copyright (C) 2005 Joerg Langenberg < joerg.langenberg@gmx.net>
```

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Include dependency graph for core.c:

Functions

- struct rtdm_dev_context * rtdm_context_get (int fd)
- void rtdm_context_lock (struct rtdm_dev_context *context)
- void rtdm_context_unlock (struct rtdm_dev_context *context)
- int rtdm_open (const char *path, int oflag,...)
- int rtdm_socket (int protocol_family, int socket_type, int protocol)
- int rtdm_close (int fd)
- int rtdm_ioctl (int fd, int request,...)
- ssize t rtdm read (int fd, void *buf, size t nbyte)
- ssize t rtdm write (int fd, const void *buf, size t nbyte)
- ssize_t rtdm_recvmsg (int fd, struct msghdr *msg, int flags)
- ssize_trdm_recvfrom (int fd, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen)
- ssize_t rtdm_recv (int fd, void *buf, size_t len, int flags)
- ssize_t rtdm_sendmsg (int fd, const struct msghdr *msg, int flags)

- ssize_t rtdm_sendto (int fd, const void *buf, size_t len, int flags, const struct sockaddr *to, socklen t tolen)
- ssize_t rtdm_send (int fd, const void *buf, size_t len, int flags)
- int rtdm_bind (int fd, const struct sockaddr *my_addr, socklen_t addrlen)
- int rtdm_connect (int fd, const struct sockaddr *serv_addr, socklen_t addrlen)
- int rtdm_listen (int fd, int backlog)
- int rtdm_accept (int fd, struct sockaddr *addr, socklen_t *addrlen)
- int rtdm_shutdown (int fd, int how)
- int rtdm_getsockopt (int fd, int level, int optname, void *optval, socklen_t *optlen)
- int rtdm_setsockopt (int fd, int level, int optname, const void *optval, socklen_t optlen)
- int rtdm_getsockname (int fd, struct sockaddr *name, socklen_t *namelen)
- int rtdm_getpeername (int fd, struct sockaddr *name, socklen_t *namelen)
- int rt_dev_open (const char *path, int oflag,...)
- int rt_dev_socket (int protocol_family, int socket_type, int protocol)
- int rt dev close (int fd)
- int rt_dev_ioctl (int fd, int request,...)
- ssize_t rt_dev_read (int fd, void *buf, size_t nbyte)
- ssize_t rt_dev_write (int fd, const void *buf, size_t nbyte)
- ssize_t rt_dev_recvmsg (int fd, struct msghdr *msg, int flags)
- ssize_t rt_dev_recvfrom (int fd, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen)
- ssize_t rt_dev_recv (int fd, void *buf, size_t len, int flags)
- ssize_t rt_dev_sendmsg (int fd, const struct msghdr *msg, int flags)
- ssize_t rt_dev_sendto (int fd, const void *buf, size_t len, int flags, const struct sockaddr *to, socklen_t tolen)
- ssize trt dev send (int fd, const void *buf, size t len, int flags)
- int rt_dev_bind (int fd, const struct sockaddr *my_addr, socklen_t addrlen)
- int rt dev connect (int fd, const struct sockaddr *serv addr, socklen t addrlen)
- int rt dev listen (int fd, int backlog)
- int rt_dev_accept (int fd, struct sockaddr *addr, socklen_t *addrlen)
- int rt_dev_shutdown (int fd, int how)
- int rt_dev_getsockopt (int fd, int level, int optname, void *optval, socklen_t *optlen)
- int rt_dev_setsockopt (int fd, int level, int optname, const void *optval, socklen_t optlen)
- int rt dev getsockname (int fd, struct sockaddr *name, socklen t *namelen)
- int rt_dev_getpeername (int fd, struct sockaddr *name, socklen_t *namelen)

162	Xenomai RTDM skin API File Documentation

Chapter 8

Xenomai RTDM skin API Example Documentation

8.1 cross-link.c

```
1 /*
2 * cross-link.c
4 * Userspace test program (Xenomai native skin) for RTDM-based UART drivers
5 * Copyright 2005 by Joerg Langenberg <joergel75@gmx.net>
7 * Updates by Jan Kiszka <jan.kiszka@web.de>
9 \,\,^* This program is free software; you can redistribute it and/or modify
10 \,^{*} it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 \,\,^* but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <stdio.h>
24 #include <signal.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
28 #include <native/task.h>
29 #include <native/timer.h>
31 #include <rtdm/rtserial.h>
33 #define MAIN_PREFIX "main : "
34 #define WTASK_PREFIX "write_task: "
35 #define RTASK_PREFIX "read_task: "
37 #define WRITE_FILE "rtser0"
38 #define READ_FILE
40 int read_fd = -1;
```

```
41 int write_fd = -1;
42
43 #define STATE_FILE_OPENED
44 #define STATE_TASK_CREATED
45
46 unsigned int read_state = 0;
47 unsigned int write_state = 0;
48
49 /*
                                --s-ms-us-ns */
50 RTIME write_task_period_ns = 1000000000llu;
51 RT_TASK write_task;
52 RT_TASK read_task;
53
54 static const struct rtser_config read_config = {
55
                             = 0xFFFF,
           .config mask
                              = 115200,
56
           .baud_rate
57
                              = RTSER_DEF_PARITY,
           .parity
58
                              = RTSER_DEF_BITS,
           .data bits
59
           .stop_bits
                              = RTSER_DEF_STOPB
60
           .handshake
                              = RTSER_DEF_HAND,
61
           .fifo_depth
                              = RTSER_DEF_FIFO_DEPTH,
62
           .rx_timeout
                              = RTSER_DEF_TIMEOUT,
63
           .tx timeout
                              = RTSER_DEF_TIMEOUT,
                             = 1000000000, /* 1 s */
64
           .event_timeout
65
           .timestamp_history = RTSER_RX_TIMESTAMP_HISTORY,
                              = RTSER_EVENT_RXPEND,
66
           .event_mask
67 };
68
69 static const struct rtser_config write_config = {
70
           .config_mask
                           = RTSER_SET_BAUD | RTSER_SET_TIMESTAMP_HISTORY,
71
                              = 115200,
           .baud rate
           . \verb|timestamp_history| = RTSER_DEF_TIMESTAMP_HISTORY|,
72
73
           /* the rest implicitely remains default */
74 };
75
76 static int close_file( int fd, char *name)
77 {
78
           int err, i=0;
79
80
           do {
81
82
                   err = rt_dev_close(fd);
83
                   switch (err) {
84
                   case -EAGAIN:
                           printf(MAIN_PREFIX "%s -> EAGAIN (%d times)\n",
85
86
                                  name, i);
                           rt_task_sleep(50000); /* wait 50us */
87
88
                           break;
89
                   case 0:
                           printf(MAIN_PREFIX "%s -> closed\n", name);
90
91
                           break;
92
                   default:
93
                           printf(MAIN_PREFIX "%s -> %s\n", name,
94
                                  strerror(-err));
95
                           break;
96
                   }
97
           } while (err == -EAGAIN && i < 10);
98
99
           return err;
100 }
101
102 void cleanup_all(void)
103 {
104
            if (read_state & STATE_FILE_OPENED) {
105
                    close_file(read_fd, READ_FILE" (read)");
106
                    read_state &= ~STATE_FILE_OPENED;
107
            }
```

8.1 cross-link.c

```
109
            if (write_state & STATE_FILE_OPENED) {
                    close_file(write_fd, WRITE_FILE " (write)");
110
                    write_state &= ~STATE_FILE_OPENED;
111
112
            }
113
            if (write_state & STATE_TASK_CREATED) {
114
                    printf(MAIN_PREFIX "delete write_task\n");
115
                    rt_task_delete(&write_task);
116
117
                    write_state &= ~STATE_TASK_CREATED;
118
119
            if (read_state & STATE_TASK_CREATED) {
120
121
                    printf(MAIN_PREFIX "delete read_task\n");
122
                    rt_task_delete(&read_task);
123
                    read_state &= ~STATE_TASK_CREATED;
124
            }
125 }
126
127 void catch_signal(int sig)
128 {
129
            cleanup_all();
            printf(MAIN_PREFIX "exit\n");
130
131
            return;
132 }
133
134 void write_task_proc(void *arg)
135 {
136
            int err;
137
            RTIME write_time;
138
            ssize_t sz = sizeof(RTIME);
139
            ssize_t written = 0;
140
141
            err = rt_task_set_periodic(NULL, TM_NOW,
142
                                        rt_timer_ns2ticks(write_task_period_ns));
143
            if (err) {
                    printf(WTASK\_PREFIX "error on set periodic, %s\n",
144
145
                           strerror(-err));
146
                    goto exit_write_task;
147
            }
148
149
            while (1) {
150
                    err = rt_task_wait_period(NULL);
151
                    if (err) {
                            printf(WTASK_PREFIX
152
153
                                    "error on rt_task_wait_period, %s\n",
154
                                    strerror(-err));
155
                            break;
156
157
158
                    write_time = rt_timer_read();
159
160
                    written = rt_dev_write(write_fd, &write_time, sz);
161
                    if (written < 0 ) {
                            printf(WTASK_PREFIX "error on rt_dev_write, %s\n",
162
163
                                    strerror(-err));
164
                            break;
165
                    } else if (written != sz) {
                            printf(WTASK\_PREFIX "only %d / %d byte transmitted\n",
166
167
                                    written, sz);
168
                            break;
169
                    }
170
            }
171
172
    exit_write_task:
            if ((write_state & STATE_FILE_OPENED) &&
173
                close_file(write_fd, WRITE_FILE " (write)") == 0)
174
```

```
write_state &= ~STATE_FILE_OPENED;
175
176
177
           printf(WTASK_PREFIX "exit\n");
178 }
179
180 void read_task_proc(void *arg)
181 {
182
           int err;
183
           int nr = 0;
184
           RTIME read_time = 0;
185
           RTIME write_time = 0;
186
           RTIME irq_time = 0;
187
           ssize_t sz = sizeof(RTIME);
188
           ssize_t read = 0;
189
           struct rtser_event rx_event;
190
           printf(" Nr | write->irq | irq->read
191
                                                         | write->read |\n");
           printf("-----\n");
192
193
194
            \ensuremath{^{*}} We are in secondary mode now due to printf, the next
195
            * blocking Xenomai or driver call will switch us back
196
            * (here: RTSER_RTIOC_WAIT_EVENT).
197
198
199
           while (1) {
200
201
                   /* waiting for event */
202
                   err = rt_dev_ioctl(read_fd, RTSER_RTIOC_WAIT_EVENT, &rx_event);
203
                   if (err) {
204
                           printf(RTASK_PREFIX
205
                                   "error on RTSER_RTIOC_WAIT_EVENT, %s\n",
                                  strerror(-err));
206
207
                           if (err == -ETIMEDOUT)
208
                                   continue;
209
                           break;
210
                   }
211
212
                   irq_time = rx_event.rxpend_timestamp;
213
                   read = rt_dev_read(read_fd, &write_time, sz);
214
                   if (read == sz) {
215
                           read_time = rt_timer_read();
                           printf("%3d |%16llu |%16llu |%16llu\n", nr,
216
217
                                  irq_time - write_time,
218
                                  read_time - irq_time,
                                  read_time - write_time);
219
220
221
                   } else if (read < 0 ) {</pre>
                           printf(RTASK_PREFIX "error on rt_dev_read, code %s\n",
222
223
                                  strerror(-err));
224
                           break:
225
                   } else {
226
                           printf(RTASK_PREFIX "only %d / %d byte received \n",
227
                                  read, sz);
228
                           break;
229
                   }
230
           }
231
232
           if ((read_state & STATE_FILE_OPENED) &&
                close_file(read_fd, READ_FILE " (read)") == 0)
233
234
                   read_state &= ~STATE_FILE_OPENED;
235
236
           printf(RTASK_PREFIX "exit\n");
237 }
238
239 int main(int argc, char* argv[])
240 {
241
           int err = 0;
```

8.1 cross-link.c 167

```
242
243
            signal(SIGTERM, catch_signal);
244
            signal(SIGINT, catch_signal);
245
            /* no memory-swapping for this programm */
246
247
            mlockall(MCL_CURRENT | MCL_FUTURE);
248
            /* open rtser0 */
249
            write_fd = rt_dev_open( WRITE_FILE, 0);
250
251
            if (write_fd < 0) {</pre>
252
                    printf(MAIN_PREFIX "can't open %s (write), %s\n", WRITE_FILE,
253
                           strerror(-write_fd));
254
                    goto error;
255
256
            write_state |= STATE_FILE_OPENED;
257
            printf(MAIN_PREFIX "write-file opened\n");
258
259
            /* writing write-config */
260
            err = rt_dev_ioctl(write_fd, RTSER_RTIOC_SET_CONFIG, &write_config);
261
            if (err) {
                    printf(MAIN_PREFIX "error while RTSER_RTIOC_SET_CONFIG, %s\n",
262
263
                           strerror(-err));
264
                    goto error:
265
266
            printf(MAIN_PREFIX "write-config written\n");
267
268
            /* open rtser1 */
269
            read_fd = rt_dev_open( READ_FILE, 0 );
            if (read_fd < 0) {
270
271
                    printf(MAIN_PREFIX "can't open %s (read), %s\n", READ_FILE,
272
                           strerror(-read_fd));
273
                    goto error;
274
275
            read_state |= STATE_FILE_OPENED;
276
            printf(MAIN_PREFIX "read-file opened\n");
277
278
            /* writing read-config */
279
            err = rt_dev_ioctl(read_fd, RTSER_RTIOC_SET_CONFIG, &read_config);
280
            if (err) {
                    printf(MAIN_PREFIX "error while rt_dev_ioctl, %s\n",
281
282
                           strerror(-err));
283
                    goto error;
284
285
            printf(MAIN_PREFIX "read-config written\n");
286
287
            /* create write_task */
            err = rt_task_create(&write_task, "write_task", 0, 50, 0);
288
289
            if (err) {
290
                    printf(MAIN_PREFIX "failed to create write_task, %s\n",
291
                           strerror(-err));
292
                    goto error;
293
294
            write_state |= STATE_TASK_CREATED;
295
            printf(MAIN_PREFIX "write-task created\n");
296
            /* create read_task */
297
298
            err = rt_task_create(&read_task, "read_task", 0, 51, 0);
299
            if (err) {
300
                    printf(MAIN_PREFIX "failed to create read_task, %s\n",
301
                           strerror(-err));
302
                    goto error;
303
            read_state |= STATE_TASK_CREATED;
304
            printf(MAIN_PREFIX "read-task created\n");
305
306
307
            /* start write task */
            printf(MAIN_PREFIX "starting write-task\n");
308
```

```
309
            err = rt_task_start(&write_task, &write_task_proc, NULL);
            if (err) {
310
                    printf(MAIN_PREFIX "failed to start write_task, %s\n",
311
                          strerror(-err));
312
313
                    goto error;
314
315
            /* start read_task */
316
           printf(MAIN_PREFIX "starting read-task\n");
317
           err = rt_task_start(&read_task,&read_task_proc,NULL);
318
           if (err) {
319
320
                   printf(MAIN_PREFIX "failed to start read_task, %s\n",
321
                          strerror(-err));
322
                    goto error;
323
           }
324
325
           pause();
326
           return 0;
327
328 error:
329
            cleanup_all();
330
            return err;
331 }
```

```
2 * Round-Trip-Time Test - sends and receives messages and measures the
3
                            time in between.
4
  * Copyright (C) 2006 Wolfgang Grandegger <wg@grandegger.com>
5
6
  * Based on RTnet's examples/xenomai/posix/rtt-sender.c.
7
8 *
9 * Copyright (C) 2002 Ulrich Marx <marx@kammer.uni-hannover.de>
10 *
                    2002 Marc Kleine-Budde <kleine-budde@gmx.de>
11 *
                    2006 Jan Kiszka <jan.kiszka@web.de>
12
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15
  * the Free Software Foundation; either version 2 of the License, or
16 \,^* (at your option) any later version.
17
18 \,\,^* This program is distributed in the hope that it will be useful,
19 \,\,^* but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22
^{23} * You should have received a copy of the GNU General Public License
^{\rm 24} ^{\rm *} along with this program; if not, write to the Free Software
25
  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27
28
  * The program sends out CAN messages periodically and copies the current
29\ ^{*} time-stamp to the payload. At reception, that time-stamp is compared
30 \,^{*} with the current time to determine the round-trip time. The jitter
   * values are printer out regularly. Concurrent tests can be carried out
32 \,\,^* by starting the program with different message identifiers. It is also
  * possible to use this program on a remote system as simple repeater to
33
34
   * loopback messages.
35
37 #include <errno.h>
38 #include <mqueue.h>
39 #include <signal.h>
40 #include <pthread.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <limits.h>
46 #include <getopt.h>
47 #include <netinet/in.h>
48 #include <sys/mman.h>
49
50 #include <rtdm/rtcan.h>
51
52 #define NSEC_PER_SEC 1000000000
53
54 static unsigned int cycle = 10000; /* 10 ms */
55 static can_id_t can_id = 0x1;
56
57 static pthread_t txthread, rxthread;
58 static int txsock, rxsock;
59 static mqd_t mq;
60 static int txcount, rxcount;
61 static int overruns:
62 static int repeater;
63
64 struct rtt_stat {
       long long rtt;
65
```

```
66
       long long rtt_min;
67
       long long rtt_max;
68
       long long rtt_sum;
69
       long long rtt_sum_last;
70
       int counts_per_sec;
71 };
72
73 static void print_usage(char *prg)
74 {
75
       fprintf(stderr,
               "Usage: %s [Options] <tx-can-interface> <rx-can-interface>\n"
76
77
               "Options:\n"
               " -h, --help
78
                                 This help\n''
               " -r, --repeater Repeater, send back received messages \ensuremath{\text{n}} "
79
               " -i, --id=ID
80
                                 CAN Identifier (default = 0x1)\n"
               " -c, --cycle
81
                                 Cycle time in us (default = 10000us)\n",
82
               prq);
83 }
84
85 void *transmitter(void *arg)
86 {
87
       struct sched_param param = { .sched_priority = 80 };
88
       struct timespec next_period;
89
       struct timespec time;
90
       struct can_frame frame;
91
       long long *rtt_time = (long long *)&frame.data;
92
93
       /* Pre-fill CAN frame */
94
       frame.can_id = can_id;
95
       frame.can_dlc = sizeof(*rtt_time);
96
97
       pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
98
       clock_gettime(CLOCK_MONOTONIC, &next_period);
99
100
101
            next_period.tv_nsec += cycle * 1000;
102
103
            while (next_period.tv_nsec >= NSEC_PER_SEC) {
                    next_period.tv_nsec -= NSEC_PER_SEC;
104
105
                    next_period.tv_sec++;
106
107
            clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next_period, NULL);
108
109
110
            if (rxcount != txcount) {
111
                overruns++;
112
                continue;
113
114
115
            clock_gettime(CLOCK_MONOTONIC, &time);
116
            *rtt_time = time.tv_sec * NSEC_PER_SEC + time.tv_nsec;
117
            /\!\!^* Transmit the message containing the local time ^*/\!\!
118
            if (send(txsock, (void *)&frame, sizeof(can_frame_t), 0) < 0) {
119
120
                if (errno == EBADF)
                    printf("terminating \ transmitter \ thread\n");\\
121
122
                    perror("send failed");
123
124
                return NULL;
125
126
            txcount++;
127
        }
128 }
129
131 void *receiver(void *arg)
132 {
```

```
133
        struct sched_param param = { .sched_priority = 82 };
134
        struct timespec time:
135
        struct can_frame frame;
        long long *rtt_time = (long long *)frame.data;
136
        struct rtt_stat rtt_stat = {0, 10000000000000000LL, -1000000000000000000LL,
137
138
                                     0, 0, 0};
139
        pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
140
141
        rtt_stat.counts_per_sec = 1000000 / cycle;
142
143
        while (1) {
144
            if (recv(rxsock, (void *)&frame, sizeof(can_frame_t), 0) < 0) {</pre>
145
                if (errno == EBADF)
146
                    printf("terminating receiver thread\n");
147
                else
                    perror("recv failed");
148
149
                return NULL;
150
151
            if (repeater) {
152
                /* Transmit the message back as is */
153
                if (send(txsock, (void *)&frame, sizeof(can_frame_t), 0) < 0) {
                    if (errno == EBADF)
154
155
                        printf("terminating transmitter thread\n");
156
                    else
157
                        perror("send failed");
158
                    return NULL;
159
                }
160
                txcount++;
161
            } else {
162
                clock_gettime(CLOCK_MONOTONIC, &time);
163
                if (rxcount > 0) {
                    rtt_stat.rtt = (time.tv_sec * 1000000000LL +
164
                                    time.tv_nsec - *rtt_time);
165
166
                    rtt_stat.rtt_sum += rtt_stat.rtt;
167
                    if (rtt_stat.rtt < rtt_stat.rtt_min)</pre>
168
                        rtt_stat.rtt_min = rtt_stat.rtt;
169
                    if (rtt_stat.rtt > rtt_stat.rtt_max)
170
                        rtt_stat.rtt_max = rtt_stat.rtt;
171
                }
172
            }
173
            rxcount++;
174
175
            if ((rxcount % rtt_stat.counts_per_sec) == 0) {
176
                mq_send(mq, (char *)&rtt_stat, sizeof(rtt_stat), 0);
177
                rtt_stat.rtt_sum_last = rtt_stat.rtt_sum;
178
            }
179
        }
180 }
182 void catch_signal(int sig)
183 {
        mq_close(mq);
185 }
186
187
188 int main(int argc, char *argv[])
189 {
190
        struct sched_param param = { .sched_priority = 1 };
191
        pthread_attr_t thattr;
192
        struct mq_attr mqattr;
193
        struct sockaddr_can rxaddr, txaddr;
194
        struct can_filter rxfilter[1];
195
        struct rtt_stat rtt_stat;
196
        char mqname[32];
197
        char *txdev, *rxdev;
198
        struct ifreq ifr;
199
        int ret, opt;
```

```
200
201
        struct option long_options[] = {
            { "id", required_argument, 0, 'i'},
202
            { "cycle", required_argument, 0, 'c'},
204
            { "repeater", required_argument, 0, 'r'},
205
            { "help", no_argument, 0, 'h'},
            { 0, 0, 0, 0},
206
207
208
209
        while ((opt = getopt_long(argc, argv, "hri:c:",
210
                                   long_options, NULL)) != -1) {
211
            switch (opt) {
            case 'c':
212
213
                cycle = atoi(optarg);
214
                break:
215
            case 'i':
216
                can_id = strtoul(optarg, NULL, 0);
217
218
                break;
219
            case 'r':
220
221
                repeater = 1;
222
                break:
223
224
            default:
225
               fprintf(stderr, "Unknown option %c\n", opt);
226
            case 'h':
227
                print_usage(argv[0]);
228
                exit(-1);
229
            }
230
        }
231
232
        printf("%d %d\n", optind, argc);
233
        if (optind + 2 != argc) {
234
            print_usage(argv[0]);
235
            exit(0);
236
        }
237
238
        txdev = argv[optind];
239
        rxdev = argv[optind + 1];
240
241
        /* Create and configure RX socket */
242
        if ((rxsock = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {</pre>
243
            perror("RX socket failed");
244
            return -1;
245
246
247
        strncpy(ifr.ifr_name, rxdev, IFNAMSIZ);
248
        printf("RX rxsock=%d, ifr_name=%s\n", rxsock, ifr.ifr_name);
249
250
        if (ioctl(rxsock, SIOCGIFINDEX, &ifr) < 0) {</pre>
251
            perror("RX ioctl SIOCGIFINDEX failed");
252
            goto failure1;
253
254
        /st We only want to receive our own messages st/
255
256
        rxfilter[0].can_id = can_id;
257
        rxfilter[0].can_mask = 0x3ff;
        \verb|if (setsockopt(rxsock, SOL_CAN_RAW, CAN_RAW_FILTER,
258
259
                        &rxfilter, sizeof(struct can_filter)) < 0) {</pre>
260
            perror("RX setsockopt CAN_RAW_FILTER failed");
261
            goto failure1;
262
        }
        memset(&rxaddr, 0, sizeof(rxaddr));
263
264
        rxaddr.can_ifindex = ifr.ifr_ifindex;
265
        rxaddr.can_family = AF_CAN;
        if (bind(rxsock, (struct sockaddr *)&rxaddr, sizeof(rxaddr)) < 0) {</pre>
266
```

```
267
            perror("RX bind failed\n");
268
            goto failure1;
269
270
        /* Create and configure TX socket */
271
272
        if (strcmp(rxdev, txdev) == 0) {
273
274
            txsock = rxsock;
275
        } else {
276
            if ((txsock = socket(PF_CAN, SOCK_RAW, 0)) < 0) {</pre>
277
                perror("TX socket failed");
278
                goto failure1;
279
280
281
            strncpy(ifr.ifr_name, txdev, IFNAMSIZ);
282
            printf("TX txsock=%d, ifr_name=%s\n", txsock, ifr.ifr_name);
283
284
            if (ioctl(txsock, SIOCGIFINDEX, &ifr) < 0) {</pre>
285
                perror("TX ioctl SIOCGIFINDEX failed");
286
                goto failure2;
287
            }
288
289
            /* Suppress definiton of a default receive filter list */
290
            if (setsockopt(txsock, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0) < 0) {</pre>
291
                perror("TX setsockopt CAN_RAW_FILTER failed");
                goto failure2;
292
293
294
295
            memset(&txaddr, 0, sizeof(txaddr));
296
            txaddr.can_ifindex = ifr.ifr_ifindex;
297
            txaddr.can_family = AF_CAN;
298
299
            if (bind(txsock, (struct sockaddr *)&txaddr, sizeof(txaddr)) < 0) {</pre>
300
                    perror("TX bind failed\n");
301
                    goto failure2;
302
303
        }
304
305
        signal(SIGTERM, catch_signal);
306
        signal(SIGINT, catch_signal);
307
        signal(SIGHUP, catch_signal);
308
        mlockall(MCL_CURRENT|MCL_FUTURE);
309
310
        printf("Round-Trip-Time test %s \rightarrow %s with CAN ID 0x\%x\n",
               argv[optind], argv[optind + 1], can_id);
311
312
        printf("Cycle time: %d us\n", cycle);
        printf("All RTT timing figures are in us.\n");
313
314
        /* Create statistics message queue */
315
        snprintf(mqname, sizeof(mqname), "/rtcan_rtt-%d", getpid());
316
317
        mqattr.mq_flags
                         = 0;
318
        mqattr.mq_maxmsg = 100;
319
        mqattr.mq_msgsize = sizeof(struct rtt_stat);
320
        mq = mq_open(mqname, O_RDWR | O_CREAT | O_EXCL, 0600, &mqattr);
321
        if (mq == (mqd_t)-1) {
322
            perror("opening mqueue failed");
323
            goto failure2;
324
325
326
        /* Create receiver RT-thread */
327
        pthread_attr_init(&thattr);
328
        pthread_attr_setdetachstate(&thattr, PTHREAD_CREATE_JOINABLE);
        pthread_attr_setstacksize(&thattr, PTHREAD_STACK_MIN);
329
330
        ret = pthread_create(&rxthread, &thattr, &receiver, NULL);
331
        if (ret) {
            fprintf(stderr, "%s: pthread_create(receiver) failed\n",
332
333
                    strerror(-ret));
```

```
334
            goto failure3;
335
        }
336
337
        if (!repeater) {
338
            /* Create transitter RT-thread */
339
            ret = pthread_create(&txthread, &thattr, &transmitter, NULL);
340
            if (ret) {
                fprintf(stderr, "%s: pthread_create(transmitter) failed\n",
341
342
                         strerror(-ret));
343
                goto failure4:
344
            }
345
        }
346
347
        pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
348
349
        if (repeater)
350
            printf("Messages\n");
351
        else
352
            printf("Messages RTTlast RTT_avg RTT_min RTT_max Overruns\n");
353
354
        while (1) {
355
            long long rtt_avg;
356
            ret = mq_receive(mq, (char *)&rtt_stat, sizeof(rtt_stat), NULL);
357
358
            if (ret != sizeof(rtt_stat)) {
359
                if (ret < 0) {
360
                    if (errno == EBADF)
361
                        printf("terminating mq_receive\n");
362
                    else
363
                        perror("mq_receive failed");
364
                } else
365
                    fprintf(stderr,
366
                             "mq_receive returned invalid length %d\n", ret);
367
                break:
368
            }
369
370
            if (repeater) {
371
                printf("%8d\n", rxcount);
372
            } else {
373
                rtt_avg = ((rtt_stat.rtt_sum - rtt_stat.rtt_sum_last) /
374
                            rtt_stat.counts_per_sec);
375
                printf("%8d %7ld %7ld %7ld %8d\n", rxcount,
376
                        (long)(rtt\_stat.rtt \ / \ 1000), \ (long)(rtt\_avg \ / \ 1000),
377
                        (long)(rtt_stat.rtt_min / 1000),
                        (long)(rtt_stat.rtt_max / 1000),
378
379
                        overruns);
380
            }
381
        }
383
        /* This call also leaves primary mode, required for socket cleanup. */
384
        printf("shutting down\n");
385
386
        /* Important: First close the sockets! */
387
        while ((close(rxsock) < 0) && (errno == EAGAIN)) {
388
            printf("RX socket busy - waiting...\n");
389
            sleep(1);
390
391
        while ((close(txsock) < 0) && (errno == EAGAIN)) {</pre>
392
            printf("TX socket busy - waiting...\n");
393
            sleep(1);
394
        }
395
        pthread_join(txthread, NULL);
396
        pthread_kill(rxthread, SIGHUP);
397
398
        pthread_join(rxthread, NULL);
399
400
        return 0;
```

```
401
402 failure4:
       pthread_kill(rxthread, SIGHUP);
403
404
       pthread_join(rxthread, NULL);
405 failure3:
406
       mq_close(mq);
407 failure2:
408
       close(txsock);
409 failure1:
410
       close(rxsock);
411
412
       return 1;
413 }
```

8.3 rtcanconfig.c

```
2
  * Program to configuring the CAN controller
3
  * Copyright (C) 2006 Wolfgang Grandegger <wg@grandegger.com>
5
6
  * Copyright (C) 2005, 2006 Sebastian Smolorz
7
                              <Sebastian.Smolorz@stud.uni-hannover.de>
8
9
10
  * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License as published by
11
12
   * the Free Software Foundation; either version 2 of the License, or
   * (at your option) any later version.
13
14
15
   * This program is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
   * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22
23 */
24
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <signal.h>
28 #include <unistd.h>
29 #include <string.h>
30 #include <time.h>
31 #include <errno.h>
32 #include <getopt.h>
33 #include <sys/mman.h>
34
35 #include <rtdm/rtcan.h>
37 static void print_usage(char *prg)
38 {
39
       fprintf(stderr,
40
               "Usage: %s <can-interface> [Options] [up|down|start|stop|sleep]\n"
41
               "Options:\n"
               " -v, --verbose
                                          be verbose\n"
42
               " -h, --help
43
                                          this help\n''
               " -c, --ctrlmode=CTRLMODE listenonly, loopback or none\n"
44
               " -b, --baudrate=BPS
45
                                          baudrate in bits/sec\n"
               "-B, --bittime=BTR0:BTR1 BTR or standard bit-time\n"
46
47
               " -B, --bittime=BRP:PROP_SEG:PHASE_SEG1:PHASE_SEG2:SJW:SAM\n",
48
               prg);
49 }
50
51 can_baudrate_t string_to_baudrate(char *str)
52 {
53
       can baudrate t baudrate:
54
       if (sscanf(str, "%i", &baudrate) != 1)
55
          return -1;
56
       return baudrate;
57 }
58
59 int string_to_mode(char *str)
60 {
       if ( !strcmp(str, "up") || !strcmp(str, "start") )
61
62
          return CAN_MODE_START;
       else if ( !strcmp(str, "down") || !strcmp(str, "stop") )
63
          return CAN_MODE_STOP;
64
       else if ( !strcmp(str, "sleep") )
```

8.3 rtcanconfig.c 177

```
return CAN_MODE_SLEEP;
66
67
       return -EINVAL;
68 }
70 int string_to_ctrlmode(char *str)
71 {
       if ( !strcmp(str, "listenonly") )
72
            return CAN_CTRLMODE_LISTENONLY;
73
74
        else if ( !strcmp(str, "loopback") )
           return CAN_CTRLMODE_LOOPBACK;
75
76
        else if ( !strcmp(str, "none") )
77
            return 0;
78
79
       return -1;
80 }
81
82 int main(int argc, char *argv[])
83 {
84
        char
                ifname[16];
85
                can_fd = -1;
       int
86
       int
                new_baudrate = -1;
87
       int
                new\_mode = -1;
88
       int
                new_ctrlmode = 0, set_ctrlmode = 0;
89
                verbose = 0;
       int
90
       int
                bittime_count = 0, bittime_data[6];
       struct ifreq ifr;
91
92
       can_baudrate_t *baudrate;
93
       can_ctrlmode_t *ctrlmode;
94
       can_mode_t *mode;
95
        struct can_bittime *bittime;
96
       int opt, ret;
97
       char* ptr;
98
       struct option long_options[] = {
      { "help", no_argument, 0, 'h' },
99
100
             { "verbose", no_argument, 0, 'v'},
101
             { "baudrate", required_argument, 0, 'b'}, { "bittime", required_argument, 0, 'B'}, { "ctrlmode", required_argument, 0, 'c'},
102
103
104
105
             { 0, 0, 0, 0},
106
107
         while ((opt = getopt_long(argc, argv, "hvb:B:c:",
108
109
                                      long_options, NULL)) != -1) {
             switch (opt) {
110
111
             case 'h':
112
                 print_usage(argv[0]);
113
                 exit(0);
114
115
             case 'v':
116
                 verbose = 1;
117
                 break;
118
119
             case 'b':
120
                 new_baudrate = string_to_baudrate(optarg);
                 if (new_baudrate == -1) {
121
122
                      print_usage(argv[0]);
123
                      exit(0);
124
125
                 break;
126
             case 'B':
127
128
                 ptr = optarg;
129
                 while (1) {
130
                      bittime_data[bittime_count++] = strtoul(ptr, NULL, 0);
                      if (!(ptr = strchr(ptr, ':')))
131
132
                          break;
```

```
133
                    ptr++;
134
135
                if (bittime_count != 2 && bittime_count != 6) {
136
                    print_usage(argv[0]);
137
                    exit(0);
138
139
                break;
140
141
            case 'c':
                ret = string_to_ctrlmode(optarg);
142
143
                if (ret == -1) \{
144
                    print_usage(argv[0]);
145
                    exit(0);
146
147
                new_ctrlmode |= ret;
148
                set_ctrlmode = 1;
                break;
149
150
151
                break;
152
153
            default:
154
                fprintf(stderr, "Unknown option %c\n", opt);
155
                break:
            }
156
157
        }
158
159
        /* Get CAN interface name */
160
        if (optind != argc - 1 && optind != argc - 2) {
161
            print_usage(argv[0]);
162
            return 0;
163
        }
164
165
        strncpy(ifname, argv[optind], IFNAMSIZ);
166
        strncpy(ifr.ifr_name, ifname, IFNAMSIZ);
167
        if (optind == argc - 2) { /* Get mode setting */
168
            new_mode = string_to_mode(argv[optind + 1]);
169
170
            if (verbose)
171
                printf("mode: %s (%#x)\n", argv[optind + 1], new_mode);
172
            if (new_mode < 0) {</pre>
173
                print_usage(argv[0]);
174
                return 0;
175
            }
176
        }
177
178
        can_fd = rt_dev_socket(PF_CAN, SOCK_RAW, CAN_RAW);
179
        if (can_fd < 0) {</pre>
            fprintf(stderr, "Cannot open RTDM CAN socket. Maybe driver not loaded? \n");\\
180
181
            return can_fd;
182
        }
183
184
        ret = rt_dev_ioctl(can_fd, SIOCGIFINDEX, &ifr);
185
        if (ret) {
186
            fprintf(stderr,"Can't get interface index for %s, code = %d\n", ifname, ret);
187
            return ret:
188
        }
189
190
191
        if (new_baudrate != -1) {
192
            if (verbose)
                printf("baudrate: %d\n", new_baudrate);
193
194
            baudrate = (can_baudrate_t *)&ifr.ifr_ifru;
195
            *baudrate = new_baudrate;
            ret = rt_dev_ioctl(can_fd, SIOCSCANBAUDRATE, &ifr);
196
197
            if (ret) {
198
                goto abort;
199
            }
```

8.3 rtcanconfig.c 179

```
200
        }
201
202
        if (bittime_count) {
            bittime = (struct can_bittime *)&ifr.ifr_ifru;
            if (bittime_count == 2) {
204
205
                bittime->type = CAN_BITTIME_BTR;
206
                bittime->btr.btr0 = bittime_data[0];
207
                bittime->btr.btr1 = bittime_data[1];
208
                if (verbose)
                    printf("bit-time: btr0=0x%02x btr1=0x%02x\n".
209
210
                           bittime->btr.btr0, bittime->btr.btr1);
211
            } else {
                bittime->type = CAN_BITTIME_STD;
212
213
                bittime->std.brp = bittime_data[0];
214
                bittime->std.prop_seg = bittime_data[1];
215
                bittime->std.phase_seg1 = bittime_data[2];
                bittime->std.phase_seg2 = bittime_data[3];
216
                bittime->std.sjw = bittime_data[4];
217
218
                bittime->std.sam = bittime_data[5];
219
                if (verbose)
220
                    printf("bit-time: brp=%d prop_seg=%d phase_seg1=%d "
221
                            "phase_seg2=%d sjw=%d sam=%d\n",
222
                           bittime->std.brp,
223
                           bittime->std.prop_seg,
224
                           bittime->std.phase_seg1,
225
                           bittime->std.phase_seg2,
226
                           bittime->std.sjw,
227
                           bittime->std.sam);
228
229
230
            ret = rt_dev_ioctl(can_fd, SIOCSCANCUSTOMBITTIME, &ifr);
231
            if (ret) {
232
                goto abort;
233
234
235
       }
236
237
        if (set_ctrlmode != 0) {
            ctrlmode = (can_ctrlmode_t *)&ifr.ifr_ifru;
238
            *ctrlmode = new_ctrlmode;
239
240
            if (verbose)
241
                printf("ctrlmode: %#x\n", new_ctrlmode);
242
            ret = rt_dev_ioctl(can_fd, SIOCSCANCTRLMODE, &ifr);
243
            if (ret) {
244
                goto abort;
245
246
       }
247
248
        if (new\_mode != -1) {
249
            mode = (can_mode_t *)&ifr.ifr_ifru;
250
            *mode = new_mode;
251
            ret = rt_dev_ioctl(can_fd, SIOCSCANMODE, &ifr);
252
            if (ret) {
253
                goto abort;
254
        }
255
256
257
        rt_dev_close(can_fd);
258
        return 0;
259
260 abort:
261
        rt_dev_close(can_fd);
262
        return ret;
263 }
```

8.4 rtcanrecv.c

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <unistd.h>
5 #include <time.h>
6 #include <errno.h>
7 #include <getopt.h>
8 #include <sys/mman.h>
10 #include <native/task.h>
11 #include <native/pipe.h>
12
13 #include <rtdm/rtcan.h>
14
15 static void print_usage(char *prg)
16 {
17
       fprintf(stderr,
18
               "Usage: %s [<can-interface>] [Options]\n"
               "Options:\n"
19
               " -f --filter=id:mask[:id:mask]... apply filter\n"
20
               " -e --error=mask
" -t, --timeout=MS
21
                                        receive error messages\n"
22
                                        timeout in ms\n"
               " -T, --timestamp
23
                                        with absolute timestamp\n''
               " -R, --timestamp-rel
24
                                        with relative timestamp\n"
               " -v, --verbose
25
                                        be verbose\n"
               " -p, --print=MODULO
" -h, --help
                                        print every MODULO message\n"
26
27
                                        this help\n'',
28
               prg);
29 }
30
31
32 extern int optind, opterr, optopt;
34 static int s = -1, verbose = 0, print = 1;
35 static nanosecs_rel_t timeout = 0, with_timestamp = 0, timestamp_rel = 0;
37 RT_TASK rt_task_desc;
38
39 #define BUF_SIZ 255
40 #define MAX_FILTER 16
41
42 struct sockaddr_can recv_addr;
43 struct can_filter recv_filter[MAX_FILTER];
44 static int filter_count = 0;
45
46 int add_filter(u_int32_t id, u_int32_t mask)
47 {
48
       if (filter_count >= MAX_FILTER)
49
          return -1;
50
       recv_filter[filter_count].can_id = id;
51
       recv_filter[filter_count].can_mask = mask;
       printf("Filter #%d: id=0x%08x mask=0x%08x\n", filter_count, id, mask);
52
53
       filter_count++;
54
       return 0;
55 }
56
57 void cleanup(void)
58 {
59
       int ret;
60
61
       if (verbose)
           printf("Cleaning up...\n");
62
63
       if (s >= 0) {
64
65
           ret = rt_dev_close(s);
```

8.4 rtcanrecv.c 181

```
66
           s = -1;
67
           if (ret) {
               fprintf(stderr, "rt_dev_close: %s\n", strerror(-ret));
68
69
70
           rt_task_delete(&rt_task_desc);
71
       }
72
       }
73
74 void cleanup_and_exit(int sig)
75 {
76
       if (verbose)
77
          printf("Signal %d received\n", sig);
78
       cleanup();
79
       exit(0);
80 }
81
82 void rt_task(void)
83 {
84
       int i, ret, count = 0;
       struct can_frame frame;
85
86
       \verb|struct sockaddr_can addr|;\\
87
       socklen_t addrlen = sizeof(addr);
       struct msghdr msg;
88
89
       struct iovec iov;
90
       nanosecs_abs_t timestamp, timestamp_prev = 0;
91
92
       if (with_timestamp) {
93
           msg.msg_iov = &iov;
94
           msg.msg_iovlen = 1;
95
           msg.msg_name = (void *)&addr;
96
           msg.msg_namelen = sizeof(struct sockaddr_can);
97
           msg.msg_control = (void *)&timestamp;
98
           msg.msg_controllen = sizeof(nanosecs_abs_t);
99
       }
100
        while (1) {
101
102
            if (with_timestamp) {
103
                iov.iov_base = (void *)&frame;
104
                iov.iov_len = sizeof(can_frame_t);
105
                ret = rt_dev_recvmsg(s, &msg, 0);
106
                ret = rt_dev_recvfrom(s, (void *)&frame, sizeof(can_frame_t), 0,
107
108
                                       (struct sockaddr *)&addr, &addrlen);
109
            if (ret < 0) {
110
                switch (ret) {
111
                case -ETIMEDOUT:
112
                    if (verbose)
113
                        printf("rt_dev_recv: timed out");
                    continue;
114
115
                case -EBADF:
116
                    if (verbose)
117
                        printf("rt_dev_recv: aborted because socket was closed");
                    break;
118
119
                default:
                    fprintf(stderr, "rt_dev_recv: %s\n", strerror(-ret));
120
121
                }
122
                break;
123
            }
124
125
            if (print && (count % print) == 0) {
                printf("#%d: (%d) ", count, addr.can_ifindex);
126
127
                if (with_timestamp && msg.msg_controllen) {
128
                    if (timestamp_rel) {
                    printf("%lldns ", (long long)(timestamp - timestamp_prev));
129
130
                        timestamp_prev = timestamp;
131
                    } else
                        printf("%lldns ", (long long)timestamp);
132
```

```
133
                 if (frame.can_id & CAN_ERR_FLAG)
134
                      printf("!0x%08x!", frame.can_id & CAN_ERR_MASK);
135
                 else if (frame.can_id & CAN_EFF_FLAG)
136
                     printf("<0x%08x>", frame.can_id & CAN_EFF_MASK);
137
138
139
                     printf("<0x%03x>", frame.can_id & CAN_SFF_MASK);
140
                 printf(" [%d]", frame.can_dlc);
if (!(frame.can_id & CAN_RTR_FLAG))
141
142
143
                      for (i = 0; i < frame.can_dlc; i++) {
144
                          printf(" %02x", frame.data[i]);
145
146
                 if (frame.can_id & CAN_ERR_FLAG) {
                      printf(" ERROR ");
147
                      if (frame.can_id & CAN_ERR_BUSOFF)
148
                          printf("bus-off");
149
                      if (frame.can_id & CAN_ERR_CRTL)
150
151
                          printf("controller problem");
                 } else if (frame.can_id & CAN_RTR_FLAG)
152
                      printf(" remote request");
153
154
                 printf("\n");
155
156
             count++;
157
        }
158 }
159
160 int main(int argc, char **argv)
161 {
162
        int opt, ret;
163
        u_int32_t id, mask;
        u_int32_t err_mask = 0;
164
        struct ifreq ifr;
165
        char *ptr;
166
167
        char name[32];
168
        struct option long_options[] = {
169
             { "help", no_argument, 0, 'h' },
170
             { "verbose", no_argument, 0, 'v'},
171
            { "filter", required_argument, 0, 'f'}, { "error", required_argument, 0, 'e'}, { "timeout", required_argument, 0, 't'},
172
173
174
             { "timestamp", no_argument, 0, 'T'}
175
176
             { "timestamp-rel", no_argument, 0, 'R'},
177
             { 0, 0, 0, 0},
178
179
        mlockall(MCL_CURRENT | MCL_FUTURE);
180
181
182
        signal(SIGTERM, cleanup_and_exit);
183
        signal(SIGINT, cleanup_and_exit);
184
        while ((opt = getopt_long(argc, argv, "hve:f:t:p:RT",
185
186
                                     long_options, NULL)) != -1) {
187
             switch (opt) {
             case 'h':
188
189
                 print_usage(argv[0]);
190
                 exit(0);
191
192
             case 'p':
193
                 print = strtoul(optarg, NULL, 0);
194
                 break;
195
             case 'v':
196
197
                 verbose = 1;
198
                 break:
199
```

8.4 rtcanrecv.c 183

```
200
            case 'e':
201
                 err_mask = strtoul(optarg, NULL, 0);
202
                 break;
203
            case 'f':
204
205
                 ptr = optarg;
206
                 while (1) {
                     id = strtoul(ptr, NULL, 0);
207
208
                     ptr = strchr(ptr, ':');
209
                     if (!ptr) {
                         fprintf(stderr, "filter must be applied in the form id:mask[:id:mask]...\n");
210
211
                         exit(1);
212
                     }
213
                     ptr++;
                     mask = strtoul(ptr, NULL, 0);
ptr = strchr(ptr, ':');
214
215
                     add_filter(id, mask);
216
217
                     if (!ptr)
218
                         break;
219
                     ptr++;
220
221
                 break;
222
            case 't':
223
224
                 timeout = (nanosecs_rel_t)strtoul(optarg, NULL, 0) * 1000000;
225
                 break:
226
227
            case 'R':
                 timestamp_rel = 1;
228
229
            case 'T':
230
                 with_timestamp = 1;
231
                 break;
232
            default:
233
                 fprintf(stderr, \ "Unknown \ option \ \%c\n", \ opt);
234
235
                 break;
236
            }
237
238
239
        ret = rt_dev_socket(PF_CAN, SOCK_RAW, CAN_RAW);
240
        if (ret < 0) {
            fprintf(stderr, "rt_dev_socket: %s\n", strerror(-ret));
241
242
            return -1;
243
        }
244
        s = ret;
245
        if (argv[optind] == NULL) {
246
247
            if (verbose)
248
                 printf("interface all\n");
249
250
            ifr.ifr_ifindex = 0;
251
        } else {
252
            if (verbose)
253
                 printf("interface %s\n", argv[optind]);
254
255
            strncpy(ifr.ifr_name, argv[optind], IFNAMSIZ);
256
            if (verbose)
257
                printf("s=%d, ifr_name=%s\n", s, ifr.ifr_name);
258
259
            ret = rt_dev_ioctl(s, SIOCGIFINDEX, &ifr);
260
            if (ret < 0) {
                 fprintf(stderr, "rt_dev_ioctl GET_IFINDEX: %s\n", strerror(-ret));
261
262
                 goto failure;
            }
263
264
        }
265
        if (err_mask) {
266
```

```
ret = rt_dev_setsockopt(s, SOL_CAN_RAW, CAN_RAW_ERR_FILTER,
267
268
                                    &err_mask, sizeof(err_mask));
269
            if (ret < 0) {
                fprintf(stderr, "rt_dev_setsockopt: %s\n", strerror(-ret));
270
271
                goto failure;
272
273
            if (verbose)
                printf("Using err_mask=%#x\n", err_mask);
274
275
276
277
        if (filter_count) {
278
            ret = rt_dev_setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER,
279
                                    &recv_filter, filter_count *
280
                                    sizeof(struct can_filter));
281
            if (ret < 0) {
                fprintf(stderr, "rt_dev_setsockopt: %s\n", strerror(-ret));
282
283
                goto failure;
284
            }
285
        }
286
287
        recv_addr.can_family = AF_CAN;
288
        recv_addr.can_ifindex = ifr.ifr_ifindex;
289
        ret = rt_dev_bind(s, (struct sockaddr *)&recv_addr,
290
                          sizeof(struct sockaddr_can));
291
        if (ret < 0) {
            fprintf(stderr, "rt_dev_bind: %s\n", strerror(-ret));
292
293
            goto failure;
294
295
296
        if (timeout) {
297
            if (verbose)
                printf("Timeout: %lld ns\n", (long long)timeout);
298
299
            ret = rt_dev_ioctl(s, RTCAN_RTIOC_RCV_TIMEOUT, &timeout);
300
            if (ret) {
                fprintf(stderr, "rt_dev_ioctl RCV_TIMEOUT: %s\n", strerror(-ret));
301
302
                goto failure;
303
            }
304
        }
305
306
        if (with_timestamp) {
307
            ret = rt_dev_ioctl(s, RTCAN_RTIOC_TAKE_TIMESTAMP, RTCAN_TAKE_TIMESTAMPS);
308
            if (ret) {
                fprintf(stderr, "rt_dev_ioctl TAKE_TIMESTAMP: %s\n", strerror(-ret));
309
310
                goto failure;
311
            }
312
313
        snprintf(name, sizeof(name), "rtcanrecv-%d", getpid());
314
        ret = rt_task_shadow(&rt_task_desc, name, 0, 0);
315
316
        if (ret) {
317
            fprintf(stderr, "rt_task_shadow: %s\n", strerror(-ret));
318
            goto failure;
319
        }
320
321
        rt_task();
322
        /* never returns */
323
324 failure:
325
        cleanup();
326
        return -1;
327 }
```

8.5 rtcansend.c

8.5 rtcansend.c

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <unistd.h>
5 #include <time.h>
6 #include <errno.h>
7 #include <getopt.h>
8 #include <sys/mman.h>
10 #include <native/task.h>
11 #include <native/timer.h>
12 #include <native/pipe.h>
13
14 #include <rtdm/rtcan.h>
15
16 extern int optind, opterr, optopt;
18 static void print_usage(char *prg)
19 {
20
       fprintf(stderr,
               "Usage: %s <can-interface> [Options] <can-msg>\n"
21
               "<can-msg> can consist of up to 8 bytes given as a space separated list\n"
22
               "Options:\n"
23
               " -i, --identifier=ID CAN Identifier (default = 1)\n"
24
               " -r --rtr
25
                                        send remote request\n"
               " -e --extended
26
                                       send extended frame\n"
               " -1 --loop=COUNT
                                        send message COUNT times\n"
27
               " -c, --count
28
                                       message count in data[0-3]\n"
               " -d, --delay=MS
                                       delay in ms (default = 1ms)\n"
29
               " -s, --send
30
                                        use send instead of sendto\n"
              " -t, --timeout=MS
31
                                       timeout in ms\n"
               " -L, --loopback=0|1
                                        switch local loopback off or on \n''
32
              " -v, --verbose
33
                                        be verbose\n"
              " -p, --print=MODULO
" -h, --help
34
                                       print every MODULO message\n"
35
                                        this help\n'',
36
              prg);
37 }
38
40 RT_TASK rt_task_desc;
41
42 static int s=-1, dlc=0, rtr=0, extended=0, verbose=0, loops=1;
43 static SRTIME delay=1000000;
44 static int count=0, print=1, use_send=0, loopback=-1;
45 static nanosecs_rel_t timeout = 0;
46 static struct can_frame frame;
47 static struct sockaddr_can to_addr;
48
49
50 void cleanup(void)
51 {
52
       int ret;
53
54
       if (verbose)
55
          printf("Cleaning up...\n");
56
57
       usleep(100000);
58
59
       if (s >= 0) {
60
          ret = rt_dev_close(s);
61
           s = -1:
62
           if (ret) {
63
               fprintf(stderr, "rt_dev_close: %s\n", strerror(-ret));
64
65
           rt_task_delete(&rt_task_desc);
```

```
66
       }
67 }
68
69 void cleanup_and_exit(int sig)
70 {
71
       if (verbose)
72
           printf("Signal %d received\n", sig);
73
       cleanup();
74
       exit(0);
75 }
76
77 void rt_task(void)
78 {
79
       int i, j, ret;
80
       for (i = 0; i < loops; i++) {
81
           rt_task_sleep(rt_timer_ns2ticks(delay));
82
83
           if (count)
84
               memcpy(&frame.data[0], &i, sizeof(i));
           /* Note: sendto avoids the definiton of a receive filter list */
85
86
           if (use_send)
87
               ret = rt_dev_send(s, (void *)&frame, sizeof(can_frame_t), 0);
88
           else
89
               ret = rt_dev_sendto(s, (void *)&frame, sizeof(can_frame_t), 0,
90
                                    (struct sockaddr *)&to_addr, sizeof(to_addr));
           if (ret < 0) {
91
92
               switch (ret) {
93
               case -ETIMEDOUT:
94
                   if (verbose)
95
                       printf("rt_dev_send(to): timed out");
96
                   break;
97
               case -EBADF:
98
                   if (verbose)
99
                       printf("rt_dev_send(to): aborted because socket was closed");
100
                    break;
101
                default:
                    fprintf(stderr, "rt_dev_send: %s\n", strerror(-ret));
102
103
104
                                     /* abort */
105
                i = loops;
106
                break;
107
108
            if (verbose && (i % print) == 0) {
109
                if (frame.can_id & CAN_EFF_FLAG)
                    printf("<0x%08x>", frame.can_id & CAN_EFF_MASK);
110
111
                    printf("<0x%03x>", frame.can_id & CAN_SFF_MASK);
112
                printf(" [%d]", frame.can_dlc);
113
                for (j = 0; j < frame.can_dlc; j++) {</pre>
114
115
                    printf(" %02x", frame.data[j]);
116
117
                printf("\n");
118
            }
119
        }
120 }
121
122 int main(int argc, char **argv)
123 {
124
        int i, opt, ret;
125
        struct ifreq ifr;
126
        char name[32];
127
128
        struct option long_options[] = {
            { "help", no_argument, 0, 'h' },
129
            { "identifier", required_argument, 0, 'i'},
130
            { "rtr", no_argument, 0, 'r'},
131
            { "extended", no_argument, 0, 'e'},
132
```

8.5 rtcansend.c 187

```
{ "verbose", no_argument, 0, 'v'},
             { "count", no_argument, 0, 'c'},
{ "print", required_argument, 0, 'p'},
134
135
             { "loop", required_argument, 0, '1'}, { "delay", required_argument, 0, 'd'}, { "send", no_argument, 0, 's'},
136
137
138
             { "timeout", required_argument, 0, 't'}, { "loopback", required_argument, 0, 'L'},
139
140
141
              { 0, 0, 0, 0},
142
         };
143
144
         mlockall(MCL_CURRENT | MCL_FUTURE);
145
146
         signal(SIGTERM, cleanup_and_exit);
147
         signal(SIGINT, cleanup_and_exit);
148
149
         frame.can_id = 1;
150
         while ((opt = getopt_long(argc, argv, "hvi:l:red:t:cp:sL:",
151
152
                                       long_options, NULL)) != -1) {
153
              switch (opt) {
154
              case 'h':
155
                  print_usage(argv[0]);
156
                  exit(0);
157
             case 'p':
158
159
                  print = strtoul(optarg, NULL, 0);
160
             case 'v':
161
162
                  verbose = 1;
163
                  break;
164
165
              case 'c':
166
                  count = 1:
167
                  break;
168
             case '1':
169
170
                  loops = strtoul(optarg, NULL, 0);
171
                  break;
172
173
              case 'i':
174
                  frame.can_id = strtoul(optarg, NULL, 0);
175
                  break;
176
             case 'r':
177
178
                  rtr = 1;
179
                  break;
180
181
              case 'e':
182
                  extended = 1;
183
                  break;
184
              case 'd':
185
186
                  delay = strtoul(optarg, NULL, 0) * 1000000LL;
187
                  break;
188
189
              case 's':
190
                  use_send = 1;
191
                  break;
192
             case 't':
193
194
                  timeout = strtoul(optarg, NULL, 0) * 1000000LL;
195
                  break;
196
197
              case 'L':
                  loopback = strtoul(optarg, NULL, 0);
198
199
                  break;
```

```
200
201
            default:
                fprintf(stderr, "Unknown option %c\n", opt);
202
203
                break;
204
            }
205
        }
206
207
        if (optind == argc) {
208
            print_usage(argv[0]);
209
            exit(0):
210
        }
211
212
        if (argv[optind] == NULL) {
213
            fprintf(stderr, "No Interface supplied\n");
214
            exit(-1);
215
216
217
        if (verbose)
218
            printf("interface %s\n", argv[optind]);
219
        ret = rt_dev_socket(PF_CAN, SOCK_RAW, CAN_RAW);
220
221
        if (ret < 0) {
222
            fprintf(stderr, "rt_dev_socket: %s\n", strerror(-ret));
223
            return -1;
224
        }
225
        s = ret:
226
227
        if (loopback >= 0) {
228
            ret = rt_dev_setsockopt(s, SOL_CAN_RAW, CAN_RAW_LOOPBACK,
229
                                     &loopback, sizeof(loopback));
230
            if (ret < 0) {
                fprintf(stderr, "rt_dev_setsockopt: %s\n", strerror(-ret));
231
232
                goto failure;
233
234
            if (verbose)
235
                printf("Using loopback=%d\n", loopback);
236
        }
237
238
        strncpy(ifr.ifr_name, argv[optind], IFNAMSIZ);
239
        if (verbose)
240
            printf("s=%d, ifr_name=%s\n", s, ifr.ifr_name);
241
242
        ret = rt_dev_ioctl(s, SIOCGIFINDEX, &ifr);
243
        if (ret < 0) {
            fprintf(stderr, "rt_dev_ioctl: %s\n", strerror(-ret));
244
245
            goto failure;
246
        }
247
248
        memset(&to_addr, 0, sizeof(to_addr));
249
        to_addr.can_ifindex = ifr.ifr_ifindex;
250
        to_addr.can_family = AF_CAN;
251
        if (use_send) {
            /st Suppress definiton of a default receive filter list st/
252
253
            ret = rt_dev_setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0);
254
            if (ret < 0) {
                fprintf(stderr, "rt_dev_setsockopt: %s\n", strerror(-ret));
255
256
                goto failure;
257
            }
258
259
            ret = rt_dev_bind(s, (struct sockaddr *)&to_addr, sizeof(to_addr));
260
            if (ret < 0) {
                fprintf(stderr, "rt_dev_bind: %s\n", strerror(-ret));
261
262
                goto failure;
263
            }
264
        }
265
        if (count)
266
```

8.5 rtcansend.c

```
267
            frame.can_dlc = sizeof(int);
268
        else {
            for (i = optind + 1; i < argc; i++) {
269
270
                frame.data[dlc] = strtoul(argv[i], NULL, 0);
                dlc++;
271
272
                if(dlc == 8)
273
                    break;
274
275
            frame.can_dlc = dlc;
276
        }
277
278
        if (rtr)
279
            frame.can_id |= CAN_RTR_FLAG;
280
281
        if (extended)
            frame.can_id |= CAN_EFF_FLAG;
282
283
284
        if (timeout) {
            if (verbose)
285
286
               printf("Timeout: %lld ns\n", (long long)timeout);
            ret = rt_dev_ioctl(s, RTCAN_RTIOC_SND_TIMEOUT, &timeout);
287
288
                fprintf(stderr, "rt_dev_ioctl SND_TIMEOUT: %s\n", strerror(-ret));
289
290
                goto failure;
291
            }
292
        }
293
294
        snprintf(name, sizeof(name), "rtcansend-%d", getpid());
295
        ret = rt_task_shadow(&rt_task_desc, name, 1, 0);
296
        if (ret) {
297
            fprintf(stderr, "rt_task_shadow: %s\n", strerror(-ret));
298
            goto failure;
299
300
301
        rt_task();
302
303
        cleanup();
304
        return 0;
305
306
    failure:
307
        cleanup();
308
        return -1;
309 }
```

190	Xenomai RTDM skin API Example Documentation
	Consolid on May Felt 41 10 04 07 0000 (as Veneral DTDM dein ADI las Deserva

Chapter 9

Xenomai RTDM skin API Page Documentation

9.1 Deprecated List

Index

CAND: 0	CANLOTATE
CAN Devices, 9	CAN_STATE
can_bittime, 115	rtcan, 31
CAN_BITTIME_BTR	CAN_STATE_ACTIVE
rtcan, 31	rtcan, 32
can_bittime_btr, 117	CAN_STATE_BUS_OFF
CAN_BITTIME_STD	rtcan, 32
rtcan, 31	CAN_STATE_BUS_PASSIVE
can_bittime_std, 118	rtcan, 32
CAN_BITTIME_TYPE	CAN_STATE_BUS_WARNING
rtcan, 31	rtcan, 32
CAN_CTRLMODE_LISTENONLY	CAN_STATE_SCANNING_BAUDRATE
rtcan, 20	rtcan, 32
CAN_CTRLMODE_LOOPBACK	CAN_STATE_SLEEPING
rtcan, 20	rtcan, 32
CAN_ERR_LOSTARB_UNSPEC	CAN_STATE_STOPPED
rtcan, 21	rtcan, 32
can_filter_t, 119	clock
can_id, 119	rtdm_clock_read, 70
can_mask, 119	rtdm_clock_read_monotonic, 70
can_frame_t, 120	Clock Services, 70
can_id, 120	
can_id	Device Profiles, 112
can_filter_t, 119	Device Registration Services, 62
can_frame_t, 120	devregister
can_ifindex	rtdm_close_handler_t, 64
	RTDM_CLOSING, 64
sockaddr_can, 129	RTDM_CREATED_IN_NRT, 64
can_mask	rtdm_dev_register, 68
can_filter_t, 119	rtdm_dev_unregister, 68
CAN_MODE	RTDM_DEVICE_TYPE_MASK, 64
rtcan, 31	RTDM_EXCLUSIVE, 64
CAN_MODE_SLEEP	rtdm_ioctl_handler_t, 65
rtcan, 31	RTDM_NAMED_DEVICE, 64
CAN_MODE_START	rtdm_open_handler_t, 65
rtcan, 31	RTDM_PROTOCOL_DEVICE, 64
CAN_MODE_STOP	rtdm_read_handler_t, 65
rtcan, 31	rtdm_recvmsg_handler_t, 66
CAN_RAW_ERR_FILTER	rtdm_sendmsg_handler_t, 66
rtcan, 21	rtdm_socket_handler_t, 67
CAN_RAW_FILTER	rtdm_write_handler_t, 67
rtcan, 21	Driver Development API, 69
CAN_RAW_LOOPBACK	,
rtcan, 22	include/rtdm/rtcan.h, 131
CAN_RAW_RECV_OWN_MSGS	include/rtdm/rtdm.h, 140
rtcan, 22	include/rtdm/rtdm driver.h, 143

include/rtdm/rtserial.h, 149	userapi, 36
include/rtdm/rttesting.h, 153	rt_dev_close
Inter-Driver API, 56	userapi, 36
interdry	rt_dev_connect
rtdm_accept, 56	userapi, 37
rtdm_bind, 56	rt_dev_getpeername
rtdm_close, 56	userapi, 37
rtdm_connect, 57	rt_dev_getsockname
rtdm_context_get, 57	userapi, 38
rtdm_context_lock, 57	rt_dev_getsockopt
rtdm_context_unlock, 58	userapi, 38
rtdm_getpeername, 58	rt_dev_ioctl
rtdm_getsockname, 58	userapi, 38
rtdm_getsockopt, 58	rt_dev_listen
rtdm_ioctl, 59	userapi, 39
rtdm_listen, 59	rt_dev_open
rtdm_open, 59	userapi, 39
rtdm_read, 59	rt_dev_read
rtdm_recv, 59	userapi, 40
rtdm_recvfrom, 59	rt_dev_recv
rtdm_recvmsg, 59	userapi, 40
rtdm_send, 60	rt_dev_recvfrom
rtdm_sendmsg, 60	userapi, 40
rtdm_sendto, 60	rt_dev_recvmsg
rtdm_setsockopt, 60	userapi, 41
rtdm_shutdown, 60	rt_dev_send
rtdm_socket, 60	userapi, 41
rtdm_write, 60	rt_dev_sendmsg
Interrupt Management Services, 96	userapi, 42
interrup virantagement services, ye	rt_dev_sendto
ksrc/skins/rtdm/core.c, 160	userapi, 42
ksrc/skins/rtdm/device.c, 155	rt_dev_setsockopt
ksrc/skins/rtdm/drvlib.c, 156	userapi, 43
ksrc/skins/rtdm/module.c, 159	rt_dev_shutdown
, ,	userapi, 43
nanosecs_abs_t	rt_dev_socket
rtdm, 34	userapi, 44
nanosecs_rel_t	rt_dev_write
rtdm, 34	userapi, 44
Non-Real-Time Signalling Services, 100	rtcan
nrtsignal	CAN_BITTIME_BTR, 31
rtdm_nrtsig_destroy, 100	CAN_BITTIME_STD, 31
rtdm_nrtsig_handler_t, 100	CAN_BITTIME_TYPE, 31
rtdm_nrtsig_init, 101	CAN_CTRLMODE_LISTENONLY, 20
rtdm_nrtsig_pend, 101	CAN_CTRLMODE_LOOPBACK, 20
•	CAN_ERR_LOSTARB_UNSPEC, 21
profiles	CAN_MODE, 31
RTIOC_DEVICE_INFO, 113	CAN_MODE_SLEEP, 31
RTIOC_PURGE, 113	CAN_MODE_START, 31
	CAN_MODE_STOP, 31
Real-Time Driver Model, 33	CAN_RAW_ERR_FILTER, 21
rt_dev_accept	CAN_RAW_FILTER, 21
userapi, 36	CAN_RAW_LOOPBACK, 22
rt_dev_bind	CAN_RAW_RECV_OWN_MSGS, 22

C 1 1 2 CT 1 TT 2 C1	
CAN_STATE, 31	interdry, 58
CAN_STATE_ACTIVE, 32	rtdm_copy_from_user
CAN_STATE_BUS_OFF, 32	util, 103
CAN_STATE_BUS_PASSIVE, 32	rtdm_copy_to_user
CAN_STATE_BUS_WARNING, 32	util, 103
CAN_STATE_SCANNING_BAUDRATE,	RTDM_CREATED_IN_NRT
32	devregister, 64
CAN_STATE_SLEEPING, 32	rtdm_dev_context, 121
CAN_STATE_STOPPED, 32	rtdm_dev_register
RTCAN_RTIOC_RCV_TIMEOUT, 23	devregister, 68
RTCAN_RTIOC_SND_TIMEOUT, 23	rtdm_dev_unregister
RTCAN_RTIOC_TAKE_TIMESTAMP, 24	devregister, 68
SIOCGCANBAUDRATE, 25	rtdm_device, 122
SIOCGCANCTRLMODE, 25	rtdm_device_info_t, 124
SIOCGCANCUSTOMBITTIME, 26	RTDM_DEVICE_TYPE_MASK
SIOCGCANSTATE, 26	devregister, 64
SIOCGIFINDEX, 27	rtdm_event_clear
SIOCSCANBAUDRATE, 27	rtdmsync, 88
SIOCSCANCTRLMODE, 28	rtdm_event_destroy
SIOCSCANCUSTOMBITTIME, 29	rtdmsync, 88
SIOCSCANMODE, 30	rtdm_event_init
SOL_CAN_RAW, 31	rtdmsync, 88
RTCAN_RTIOC_RCV_TIMEOUT	rtdm_event_pulse
rtcan, 23	rtdmsync, 88
RTCAN_RTIOC_SND_TIMEOUT	rtdm_event_signal
rtcan, 23	rtdmsync, 89
RTCAN_RTIOC_TAKE_TIMESTAMP	rtdm_event_timedwait
rtcan, 24	rtdmsync, 89
rtdm	rtdm_event_wait
nanosecs_abs_t, 34	rtdmsync, 90
nanosecs_rel_t, 34	RTDM_EXCLUSIVE
RTDM_TIMEOUT_INFINITE, 34	devregister, 64
RTDM_TIMEOUT_NONE, 34	RTDM_EXECUTE_ATOMICALLY
rtdm_accept	rtdmsync, 84
interdry, 56	rtdm_free
rtdm_bind	util, 104
interdry, 56	rtdm_getpeername
rtdm_clock_read	interdry, 58
clock, 70	rtdm_getsockname
rtdm_clock_read_monotonic	interdry, 58
clock, 70	rtdm_getsockopt
rtdm_close	interdry, 58
interdry, 56	rtdm_in_rt_context
rtdm_close_handler_t	util, 104
devregister, 64	rtdm_ioctl
RTDM_CLOSING	interdry, 59
devregister, 64	rtdm_ioctl_handler_t
rtdm_connect	devregister, 65
interdry, 57	rtdm_iomap_to_user
rtdm_context_get	util, 105
interdry, 57	rtdm_irq_disable
rtdm_context_lock	rtdmirq, 97
interdry, 57	rtdm_irq_enable
rtdm_context_unlock	rtdmirq, 97

rtdm_irq_free	rtdm_operations, 125
rtdmirq, 98	rtdm_printk
rtdm_irq_get_arg	util, 108
rtdmirq, 97	RTDM_PROTOCOL_DEVICE
rtdm_irq_handler_t	devregister, 64
rtdmirq, 97	rtdm_read
rtdm_irq_request	interdry, 59
rtdmirq, 98	rtdm_read_handler_t
rtdm_listen	devregister, 65
interdry, 59	rtdm_read_user_ok
rtdm_lock_get	util, 108
rtdmsync, 85	rtdm_recv
rtdm_lock_get_irqsave	interdry, 59
rtdmsync, 85	rtdm_recvfrom
rtdm_lock_init	interdry, 59
rtdmsync, 86	rtdm_recvmsg
rtdm_lock_irqrestore	interdry, 59
rtdmsync, 86	rtdm_recvmsg_handler_t
rtdm_lock_irqsave	devregister, 66
rtdmsync, 86	rtdm_rw_user_ok
rtdm_lock_put	util, 109
rtdmsync, 87	rtdm_safe_copy_from_user
rtdm_lock_put_irqrestore	util, 109
rtdmsync, 87	rtdm_safe_copy_to_user
rtdm_malloc	util, 110
util, 106	
	rtdm_sem_destroy
rtdm_mmap_to_user util, 106	rtdmsync, 92 rtdm_sem_down
rtdm_munmap	rtdmsync, 93
util, 107	rtdm_sem_init
rtdm_mutex_destroy	rtdmsync, 93
rtdmsync, 90	rtdm_sem_timeddown
rtdm_mutex_init	rtdmsync, 93
rtdmsync, 91	rtdm_sem_up
rtdm_mutex_lock	rtdmsync, 94
rtdmsync, 91	rtdm_send
rtdm_mutex_timedlock	interdry, 60
rtdmsync, 91	rtdm_sendmsg
rtdm_mutex_unlock	interdry, 60
rtdmsync, 92	rtdm_sendmsg_handler_t
RTDM_NAMED_DEVICE	devregister, 66
devregister, 64	rtdm_sendto
rtdm_nrtsig_destroy	interdry, 60
nrtsignal, 100	rtdm_setsockopt
rtdm_nrtsig_handler_t	interdry, 60
nrtsignal, 100	rtdm_shutdown
rtdm_nrtsig_init	interdry, 60
nrtsignal, 101	rtdm_socket
rtdm_nrtsig_pend	interdry, 60
nrtsignal, 101	rtdm_socket_handler_t
rtdm_open	devregister, 67
interdry, 59	rtdm_strncpy_from_user
rtdm_open_handler_t	util, 111
devregister, 65	rtdm_task_busy_sleep

rtdmtask, 73	interdry, 60
rtdm_task_current	rtdm_write_handler_t
rtdmtask, 73	devregister, 67
rtdm_task_destroy	rtdmirq
rtdmtask, 73	rtdm_irq_disable, 97
rtdm_task_init	rtdm_irq_enable, 97
rtdmtask, 74	rtdm_irq_free, 98
rtdm_task_join_nrt	rtdm_irq_get_arg, 97
rtdmtask, 74	rtdm_irq_handler_t, 97
rtdm_task_proc_t	rtdm_irq_request, 98
rtdmtask, 73	rtdmsync
rtdm_task_set_period	rtdm_event_clear, 88
rtdmtask, 75	rtdm_event_destroy, 88
rtdm_task_set_priority	rtdm_event_init, 88
rtdmtask, 75	rtdm_event_pulse, 88
rtdm_task_sleep	rtdm_event_signal, 89
rtdmtask, 75	rtdm_event_timedwait, 89
rtdm_task_sleep_abs	rtdm_event_wait, 90
rtdmtask, 76	RTDM_EXECUTE_ATOMICALLY, 84
rtdm_task_sleep_until	rtdm_lock_get, 85
rtdmtask, 76	rtdm_lock_get_irqsave, 85
rtdm_task_unblock	rtdm_lock_init, 86
rtdmtask, 77	rtdm_lock_irqrestore, 86
rtdm_task_wait_period	rtdm_lock_irqsave, 86
rtdmtask, 77	rtdm_lock_put, 87
RTDM_TIMEOUT_INFINITE	rtdm_lock_put_irqrestore, 87
rtdm, 34	rtdm_mutex_destroy, 90
RTDM_TIMEOUT_NONE	rtdm_mutex_init, 91
rtdm, 34	rtdm_mutex_lock, 91
rtdm_timer_destroy	rtdm_mutex_timedlock, 91
rtdmtimer, 80	rtdm_mutex_unlock, 92
rtdm_timer_handler_t	rtdm_sem_destroy, 92
rtdmtimer, 79	rtdm_sem_down, 93
rtdm_timer_init	rtdm_sem_init, 93
rtdmtimer, 80	rtdm_sem_timeddown, 93
rtdm_timer_mode	rtdm_sem_up, 94
rtdmtimer, 79	rtdm_toseq_init, 95
rtdm_timer_start	rtdmtask
rtdmtimer, 80	rtdm_task_busy_sleep, 73
rtdm_timer_start_in_handler	rtdm_task_current, 73
rtdmtimer, 81	rtdm_task_destroy, 73
rtdm_timer_stop	rtdm_task_init, 74
rtdmtimer, 81	rtdm_task_join_nrt, 74
rtdm_timer_stop_in_handler	rtdm_task_proc_t, 73
rtdmtimer, 81	rtdm_task_set_period, 75
RTDM_TIMERMODE_ABSOLUTE	rtdm_task_set_priority, 75
rtdmtimer, 79	rtdm_task_sleep, 75
RTDM_TIMERMODE_REALTIME	rtdm_task_sleep_abs, 76
rtdmtimer, 80	rtdm_task_sleep_until, 76
RTDM_TIMERMODE_RELATIVE	rtdm_task_unblock, 77
rtdmtimer, 79	rtdm_task_wait_period, 77
rtdm_toseq_init	rtdmtimer
rtdmsync, 95	rtdm_timer_destroy, 80
rtdm_write	rtdm_timer_handler_t, 79
ream_wire	rum_umci_nanuici_t, / 7

rtdm_timer_init, 80	SIOCSCANCUSTOMBITTIME
rtdm_timer_mode, 79	rtcan, 29
rtdm_timer_start, 80	SIOCSCANMODE
rtdm_timer_start_in_handler, 81	rtcan, 30
rtdm_timer_stop, 81	sockaddr_can, 129
rtdm_timer_stop_in_handler, 81	can_ifindex, 129
RTDM_TIMERMODE_ABSOLUTE, 79	SOL_CAN_RAW
RTDM_TIMERMODE_REALTIME, 80	rtcan, 31
RTDM_TIMERMODE_RELATIVE, 79	Synchronisation Services, 83
RTIOC_DEVICE_INFO	T1-C
profiles, 113	Task Services, 72
RTIOC_PURGE	Testing Devices, 54
profiles, 113	Timer Services, 79
rtser_config_t, 126	User API, 35
rtser_event_t, 127	userapi
RTSER_RTIOC_BREAK_CTL	rt_dev_accept, 36
rtserial, 50	rt_dev_bind, 36
RTSER_RTIOC_GET_CONFIG	rt_dev_close, 36
rtserial, 50	rt_dev_connect, 37
RTSER_RTIOC_GET_CONTROL	rt_dev_getpeername, 37
rtserial, 51	rt_dev_getsockname, 38
RTSER_RTIOC_GET_STATUS	rt_dev_getsockopt, 38
rtserial, 51	rt_dev_ioctl, 38
RTSER_RTIOC_SET_CONFIG	rt_dev_listen, 39
rtserial, 52	rt_dev_open, 39
RTSER_RTIOC_SET_CONTROL	rt_dev_read, 40
rtserial, 52	rt_dev_recv, 40
RTSER_RTIOC_WAIT_EVENT	rt_dev_recvfrom, 40
rtserial, 53	rt_dev_recvmsg, 41
rtser_status_t, 128	rt_dev_send, 41
rtserial RTSER_RTIOC_BREAK_CTL, 50	rt_dev_sendmsg, 42
RTSER_RTIOC_GET_CONFIG, 50	rt_dev_sendto, 42
RTSER_RTIOC_GET_CONTROL, 51	rt_dev_setsockopt, 43
RTSER_RTIOC_GET_CONTROL, 51 RTSER_RTIOC_GET_STATUS, 51	rt_dev_shutdown, 43
RTSER_RTIOC_SET_CONFIG, 52	rt_dev_socket, 44
RTSER_RTIOC_SET_CONTROL, 52	rt_dev_write, 44
RTSER_RTIOC_WAIT_EVENT, 53	util
KIOLK_KIIOC_WHI_LVLIVI,00	rtdm_copy_from_user, 103
Serial Devices, 45	rtdm_copy_to_user, 103
SIOCGCANBAUDRATE	rtdm_free, 104
rtcan, 25	rtdm_in_rt_context, 104
SIOCGCANCTRLMODE	rtdm_iomap_to_user, 105
rtcan, 25	rtdm_malloc, 106
SIOCGCANCUSTOMBITTIME	rtdm_mmap_to_user, 106
rtcan, 26	rtdm_munmap, 107
SIOCGCANSTATE	rtdm_printk, 108
rtcan, 26	rtdm_read_user_ok, 108
SIOCGIFINDEX	rtdm_rw_user_ok, 109
rtcan, 27	rtdm_safe_copy_from_user, 109
SIOCSCANBAUDRATE	rtdm_safe_copy_to_user, 110
rtcan, 27	rtdm_strncpy_from_user, 111
SIOCSCANCTRLMODE	Utility Services, 102
rtcan, 28	