DS 1 : un corrigé avec le barème

Le barème comporte 70 points.

Partie I: fonctions convexes (sur 24 points)

- 1°) (sur 1 point) La fonction exp est deux fois dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $\frac{d^2}{dx^2}(e^x) = e^x \geq 0$, donc exp' est croissante et exp est bien une application convexe sur \mathbb{R} .
- 2°) (sur 1 point) Soit $x, y \in I$ et $\alpha \in [0, 1]$. f et g étant convexes, $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$ et $g(\alpha x + (1 \alpha)y) \le \alpha g(x) + (1 \alpha)g(y)$, or a et b sont positifs, donc $af(\alpha x + (1 \alpha)y) \le \alpha af(x) + (1 \alpha)af(y)$ et $bg(\alpha x + (1 \alpha)y) \le \alpha bg(x) + (1 \alpha)bg(y)$, puis en sommant ces inégalités, $(af + bg)(\alpha x + (1 \alpha)y) \le \alpha (af + bg)(x) + (1 \alpha)(af + bg)(y)$, ce qu'il fallait démontrer.
- 3°) (sur 2 points) Pour tout $x \in I$, l'application $t \longmapsto f(x,t)\varphi(t)$ est continue sur [a,b], donc la quantité $J(x) = \int_a^b f(x,t)\varphi(t) \ dt$ est bien définie. Il reste à montrer que l'application J est convexe sur I.

Soit $x, y \in I$ et $\alpha \in [0, 1]$.

Pour tout $t \in [a, b]$, par convexité de l'application $z \mapsto f(z, t)$,

 $f(\alpha x + (1 - \alpha)y, t) \leq \alpha f(x, t) + (1 - \alpha)f(y, t)$, puis en multipliant par $\varphi(t)$ qui est positif, on obtient $f(\alpha x + (1 - \alpha)y, t)\varphi(t) \leq \alpha f(x, t)\varphi(t) + (1 - \alpha)f(y, t)\varphi(t)$ donc en intégrant cette inégalité entre a et b, on obtient

$$J(\alpha x + (1-a)y) \leq \int_a^b \left[\alpha f(x,t)\varphi(t) + (1-\alpha)f(y,t)\varphi(t)\right] \, dt = \alpha I(x) + (1-\alpha)I(y), \text{ par linéarité de l'intégrale. Ceci prouve que } J \text{ est convexe sur } I.$$

4°) (sur 3 points) On intégre deux fois par parties :

$$\int_0^{2\pi} f(t)\cos(t) dt = [f(t)\sin t]_0^{2\pi} - \int_0^{2\pi} \sin t f'(t) dt$$

$$= [f'(t)\cos t]_0^{2\pi} - \int_0^{2\pi} f''(t)\cos t dt$$

$$= f'(2\pi) - f'(0) - \int_0^{2\pi} f''(t)\cos t dt$$

$$= \int_0^{2\pi} f''(t)(1 - \cos t) dt,$$

or f est convexe, donc pour tout $t \in [0, 2\pi]$, $f''(t) \ge 0$ et on sait que, $1 - \cos t \ge 0$. Par croissance de l'intégrale, on en déduit que $\int_0^{2\pi} f(t) \cos(t) dt \ge 0$.

5°) (sur 5 points) Pour tout $x \in [-1,1]$, posons g(x) = xf(x). Ainsi g est une application deux fois dérivable sur [-1,1] et on calcule : g'(x) = f(x) + xf'(x) puis g''(x) = 2f'(x) + xf''(x).

Posons $h(x) = g(x) - \frac{x^2}{2}$: h est une application deux fois dérivable sur [-1,1] telle que, pour tout $x \in [-1,1]$, $h''(x) = 2f'(x) + xf''(x) - 1 \ge 0$. Ceci prouve que h est convexe sur [-1,1], donc en particulier que,

pour tout $x \in [-1, 1]$, $\frac{1}{2}[h(x) + h(-x)] \ge h\left(\frac{x + (-x)}{2}\right) = h(0) = g(0) = 0$, donc en intégrant on obtient : $\int_0^1 (h(x) + h(-x)) dx \ge 0$.

h étant continue, elle possède au moins une primitive notée H.

$$\frac{d}{dx}(-H(-x)) = H'(-x) = h(-x),$$

donc
$$\int_0^1 h(-x) dx = -H(-1) - (-H)(0) = H(0) - H(-1) = \int_{-1}^0 h(x) dx$$
.

Ainsi l'inégalité précédente s'écrit $\int_{-1}^{1} h(x) dx \ge 0$.

Or
$$\int_{-1}^{1} \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_{-1}^{1} = \frac{1}{3}$$
, donc $0 \le \int_{-1}^{1} h(x) dx = \int_{-1}^{1} x f(x) dx - \frac{1}{3}$, ce qui prouve que $\int_{-1}^{1} x f(x) dx \ge \frac{1}{3}$.

6°) a) (sur 3 points) Pour tout $n \in \mathbb{N}^*$, notons S(n) l'assertion suivante : pour tout $x_1, \ldots, x_n \in I$, pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ tels que $\sum_{i=1}^n \lambda_i = 1$, $\sum_{i=1}^n \lambda_i x_i \in I$.

Pour n = 1, pour tout $x_1 \in I$ et $\lambda_1 \in \mathbb{R}_+$ tel que $\lambda_1 = 1$, on a bien sûr $\sum_{i=1}^{1} \lambda_i x_i = x_1 \in I$, ce qui prouve S(1).

Soit $n \in \mathbb{N}^*$. On suppose S(n).

Soit
$$x_1, \ldots, x_{n+1} \in I$$
 et $\lambda_1, \ldots, \lambda_{n+1} \in \mathbb{R}_+$ tels que $\sum_{i=1}^{n+1} \lambda_i = 1$.

Posons $\alpha = \sum_{i=1}^{n} \lambda_i$. Alors $1 - \alpha = \lambda_{n+1}$, donc α et $1 - \alpha$ sont positifs. Ainsi $\alpha \in [0, 1]$.

Supposons d'abord que $\alpha > 0$. Alors $\sum_{i=1}^{n+1} \lambda_i x_i = \alpha \sum_{i=1}^n \frac{\lambda_i}{\alpha} x_i + (1-\alpha) x_{n+1}$, or d'après

S(n), en tenant compte du fait que $\sum_{i=1}^{n} \frac{\lambda_i}{\alpha} = \frac{\sum_{i=1}^{n} \lambda_i}{\alpha} = \frac{\alpha}{\alpha} = 1$, $\sum_{i=1}^{n} \frac{\lambda_i}{\alpha} x_i \in I$. De plus

 $x_{n+1} \in I,$ donc d'après la propriété admise en début d'énoncé, n+1

$$\sum_{i=1}^{n+1} \lambda_i x_i = \alpha \sum_{i=1}^n \frac{\lambda_i}{\alpha} x_i + (1-\alpha) x_{n+1} \in I.$$

Enfin, si $\alpha = 0$, alors $0 = \lambda_1 = \cdots = \lambda_n$, donc $\lambda_{n+1} = 1$ et

 $\sum_{i=1}^{n} \lambda_i x_i = x_{n+1} \in I. \text{ Ainsi, on a prouvé } S(n+1) \text{ dans tous les cas.}$

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, S(n) est vraie, ce qu'il fallait démontrer.

6°) b) (sur 3 points) Pour tout $n \in \mathbb{N}^*$, notons R(n) l'assertion suivante :

pour tout $x_1, \ldots, x_n \in I$, pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ tels que $\sum_{i=1}^n \lambda_i = 1$,

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

Remarquons que cet énoncé a bien un sens d'après a).

- \diamond Supposons d'abord que R(n) est vraie pour tout $n \in \mathbb{N}^*$. Alors R(2) est en particulier vraie, donc pour tout $x_1, x_2 \in I$, pour tout $\lambda_1 \in [0,1]$, en posant $\lambda_2 = 1 \lambda_1$, on a $\lambda_1, \lambda_2 \in \mathbb{R}_+$, donc d'après R(2), $f(\lambda_1 x_1 + (1 \lambda_1) x_2) \leq \lambda_1 f(x_1) + (1 \lambda_1) f(x_2)$, ce qui prouve que f est convexe.
- \diamond Réciproquement, supposons f est convexe et montrons R(n) par récurrence sur n. Pour n=1, pour tout $x_1 \in I$ et $\lambda_1 \in \mathbb{R}_+$ tel que $\lambda_1=1$, on a bien sûr

$$f\left(\sum_{i=1}^{1} \lambda_i x_i\right) = f(x_1) = \sum_{i=1}^{1} \lambda_i f(x_i)$$
, donc $R(1)$ est vraie.

Soit $n \in \mathbb{N}^*$. On suppose R(n). Soit $x_1, \ldots, x_{n+1} \in I$ et $\lambda_1, \ldots, \lambda_{n+1} \in \mathbb{R}_+$ tels que

$$\sum_{i=1}^{n+1} \lambda_i = 1. \ f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^{n} \lambda_i x_i + \lambda_{n+1} x_{n+1}\right). \text{ Posons } \alpha = \sum_{i=1}^{n} \lambda_i.$$

Alors $1 - \alpha = \lambda_{n+1}$, donc α et $1 - \alpha$ sont positifs. Ainsi $\alpha \in [0, 1]$,

or f est convexe, donc lorsque $\alpha > 0$,

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\alpha \sum_{i=1}^n \frac{\lambda_i}{\alpha} x_i + (1-\alpha)x_{n+1}\right) \le \alpha f\left(\sum_{i=1}^n \frac{\lambda_i}{\alpha} x_i\right) + (1-\alpha)f(x_{n+1}), \text{ puis }$$

d'après R(n), en tenant compte du fait que $\sum_{i=1}^{n} \frac{\lambda_i}{\alpha} = \frac{\sum_{i=1}^{n} \lambda_i}{\alpha} = \frac{\alpha}{\alpha} = 1$,

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le \alpha \sum_{i=1}^{n} \frac{\lambda_i}{\alpha} f(x_i) + \lambda_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i).$$

Enfin, si $\alpha = 0$, alors $0 = \lambda_1 = \dots = \lambda_n$, donc $\lambda_{n+1}^{i=1} = 1$ et

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i).$$

Ainsi, on a prouvé R(n+1) dans tous les cas.

7°) (sur 2 points) S'il existe $i \in \{1, ..., n\}$ tel que $x_i = 0$,

alors l'inégalité est vraie car $\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} = 0 \le \frac{1}{n} \sum_{i=1}^{n} x_i$.

Sinon, pour tout
$$i \in \{1, \dots, n\}, x_i > 0$$
 et, par croissance des fonctions ln et exp, on a
$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^n x_i \iff \ln\left[\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}\right] \leq \ln\left(\frac{1}{n} \sum_{i=1}^n x_i\right)$$
$$\iff \frac{1}{n} \sum_{i=1}^n \ln(x_i) \leq \ln\left(\frac{1}{n} \sum_{i=1}^n x_i\right)$$
$$\iff (-\ln)\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \leq \frac{1}{n} \sum_{i=1}^n (-\ln)(x_i).$$

Cette dernière égalité est vraie d'après l'inégalité de Jensen, car la fonction $-\ln$ est convexe sur \mathbb{R}_{+}^{*} . En effet, elle est deux fois dérivable et pour tout x > 0,

$$(-\ln)''(x) = \frac{1}{x^2} \ge 0.$$

$$8^{\circ}$$
) (sur 4 points)

8°) (sur 4 points)
$$1 + \left(\prod_{k=1}^{n} x_{k}\right)^{\frac{1}{n}} \leq \prod_{k=1}^{n} [(1+x_{k})^{\frac{1}{n}}] \iff 1 + e^{\ln(\prod_{k=1}^{n} x_{k}^{\frac{1}{n}})} \leq e^{\ln(\prod_{k=1}^{n} [(1+x_{k})^{\frac{1}{n}}])}$$

$$\iff 1 + e^{\frac{1}{n} \sum_{k=1}^{n} \ln x_{k}} \leq e^{\frac{1}{n} \sum_{k=1}^{n} \ln(1+x_{k})}$$

$$\iff \ln\left(1 + e^{\frac{1}{n} \sum_{k=1}^{n} \ln x_{k}}\right) \leq \frac{1}{n} \sum_{k=1}^{n} \ln(1+x_{k})$$

$$\iff f\left(\frac{1}{n} \sum_{k=1}^{n} \ln x_{k}\right) \leq \frac{1}{n} \sum_{k=1}^{n} f(\ln(x_{k})),$$

où f est l'application $x \longmapsto \ln(1+e^x)$, définie sur \mathbb{R}

f est deux fois dérivable et, pour tout $x \in \mathbb{R}$, $f'(x) = \frac{e^x}{1 + e^x}$

puis $f''(x) = \frac{e^x(1+e^x)-e^xe^x}{(1+e^x)^2} = \frac{e^x}{(1+e^x)^2} \ge 0$, donc f est convexe sur $\mathbb R$ et l'inégalité de Jensen permet de conclure, appliquée à f et aux réels $\ln(x_1), \ldots, \ln(x_n)$.

Partie 2: fonctions log-convexes (sur 27 points)

 9°) (sur 1 point)

Posons $f(x) = \frac{1}{x^3}$. f est une application de \mathbb{R}_+^* dans \mathbb{R}_+^* et $\ln(f(x)) = -3\ln(x)$. On a déjà vu que $-\ln$ est convexe sur \mathbb{R}_+^* , donc d'après la question 2, $\ln \circ f$ est convexe, ce qu'il fallait démontrer.

10°)

 \diamond (sur 2 points) Supposons que f est log-convexe.

Soit $x, y \in I$ et $\alpha \in [0, 1]$. $\ln \circ f$ étant convexe,

 $\ln(f(\alpha x + (1-\alpha)y)) \leq \alpha \ln(f(x)) + (1-\alpha) \ln(f(y)) \text{ donc en passant à l'exponentielle, qui est bien croissante, } f(\alpha x + (1-\alpha)y) \leq e^{\alpha \ln(f(x)) + (1-\alpha) \ln(f(y))}, \text{ mais d'après la question 1, la fonction exp est convexe, donc } e^{\alpha \ln(f(x)) + (1-\alpha) \ln(f(y))} \leq \alpha e^{\ln(f(x))} + (1-\alpha)e^{\ln(f(y))}.$ On en déduit que $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$, donc f est convexe.

- \diamond (sur 1 point) L'application $x \mapsto x$ est clairement convexe sur \mathbb{R}_+^* et est à valeurs dans \mathbb{R}_+^* mais $\ln \circ f = \ln$ et \ln n'est pas convexe sur \mathbb{R}_+^* car $\ln''(x) = -\frac{1}{x^2} < 0$. Ainsi, la réciproque est fausse.
- 11°) (sur 2 points) f est log-convexe si et seulement si (C) : $(\ln \circ f)'' \ge 0$. Pour tout $x \in I$, $(\ln \circ f)'(x) = \frac{f'(x)}{f(x)}$ puis $(\ln \circ f)''(x) = \frac{f''(x)f(x) - f'(x)^2}{f(x)^2}$, donc $(C) \iff \forall x \in I$, $f''(x)f(x) \ge f'(x)^2$.
- 12°) (sur 1 point) Pour tout $x \in \mathbb{R}_+^*$, $\ln[(fg)(x)] = \ln(f(x)) + \ln(g(x))$, or d'après la question 2, la somme de deux fonctions convexes est convexe, donc $x \mapsto \ln((fg)(x))$ est convexe, ce qui prouve que fg est une application log-convexe.
- **13°)** (sur 4 points)

Soit $x \in I$. Il s'agit de montrer que $(f+g)''(x)(f+g)(x) \ge (f+g)'(x)^2$. Notons (D) cette inégalité. En notant h au lieu de h(x), pour toute application h de I dans \mathbb{R}_+^* , $(D) \iff f''f+g''g+f''g+g''f \ge f'^2+g'^2+2f'g'$, or d'après la question 11, $f''f \ge f'^2$ et $g''g \ge g'^2$, donc pour obtenir (D), il suffit de montrer que $f''g+g''f \ge 2f'g'$. On sait que $(f'g-fg')^2 \ge 0$, donc en développant, $2fgf'g' \le f'^2g^2+f^2g'^2$, or à nouveau $f''f \ge f'^2$ et $g''g \ge g'^2$, donc $2fgf'g' \le f''fg^2+g''gf^2$, puis en simplifiant par f(x)g(x) qui est strictement positif, on en déduit que $2f'g' \le f''g+g''f$ ce qui conclut.

 14°)

- \diamond (sur 1 point) Supposons que f est log-convexe sur I. Soit $a \in \mathbb{R}$.
- Notons $g = (x \mapsto e^{ax})$. Pour tout $x \in I$, $\ln(g(x)) = ax$, or l'application $x \mapsto ax$ est convexe sur I car elle vérifie la définition de la convexité; dans ce cas en effet, l'inégalité à vérifier est même une égalité. Ainsi g est log-convexe, puis d'après la question 12, gf est log-convexe, donc elle est convexe.
- \diamond (sur 5 points) Réciproquement, supposons que, pour tout $a \in \mathbb{R}, x \longmapsto e^{ax} f(x)$ est convexe sur I.

Fixons $x, y \in I$ avec x < y et $t \in]0,1[$. Posons z = tx + (1-t)y. Par hypothèse, pour tout $a \in \mathbb{R}$, $e^{az}f(z) \le te^{ax}f(x) + (1-t)e^{ay}f(y)$, donc

 $f(z) \le te^{a(x-z)}f(x) + (1-t)e^{a(y-z)}f(y)$, or x-z = (1-t)(x-y) et y-z = t(y-x), donc en posant $g(a) = te^{a(1-t)(x-y)}f(x) + (1-t)e^{ta(y-x)}f(y)$, on a $f(z) \leq g(a)$ pour tout $a \in \mathbb{R}$.

On cherche à minimiser la quantité g(a):g est dérivable sur \mathbb{R} et

$$g'(a) = t(1-t)(x-y)[e^{a(1-t)(x-y)}f(x) - e^{ta(y-x)}f(y)], \text{ donc}$$

$$g'(a) = 0 \iff e^{a(1-t)(x-y)} f(x) = e^{ta(y-x)} f(y) \\ \iff a(1-t)(x-y) + \ln(f(x)) = ta(y-x) + \ln(f(y)) \\ \iff a = \frac{\ln(f(y)) - \ln(f(x))}{1 + \ln(f(y))}.$$

Posons
$$a_0 = \frac{\ln(f(y)) - \ln(f(x))^g}{x - y}$$
: $f(tx + (1 - t)y) = f(z) \le g(a_0)$, or

$$g'(a) = 0 \iff e^{a(1-t)(x-y)} f(x) = e^{ta(y-x)} f(y)$$

$$\iff a(1-t)(x-y) + \ln(f(x)) = ta(y-x) + \ln(f(y))$$

$$\iff a = \frac{\ln(f(y)) - \ln(f(x))}{x-y}.$$
Posons $a_0 = \frac{\ln(f(y)) - \ln(f(x))}{x-y} : f(tx + (1-t)y) = f(z) \le g(a_0), \text{ or }$

$$g(a_0) = te^{(\ln(f(y)) - \ln(f(x)))(1-t)} f(x) + (1-t)e^{t(\ln(f(x)) - \ln(f(y)))} f(y)$$

$$= tf(x) \left(\frac{f(y)}{f(x)}\right)^{1-t} + (1-t)f(y) \left(\frac{f(x)}{f(y)}\right)^{t}$$

$$= tf(x)^{t} f(y)^{1-t} + (1-t)f(y)^{1-t} f(x)^{t} = f(x)^{t} f(y)^{1-t}.$$

Ainsi $f(tx+(1-t)y) < e^{t\ln(f(x))+(1-t)\ln(f(y))}$, puis en passant au log, on en déduit bien que f est log-convexe.

15°) (sur 1 point) On suppose à nouveau que f et g sont log-convexes. Soit $a \in \mathbb{R}$. $x \longmapsto e^{ax} f(x)$ et $x \longmapsto e^{ax} g(x)$ sont convexes, donc leur somme est également convexe : $x \longmapsto e^{ax}(f+g)(x)$ est convexe pour tout $a \in \mathbb{R}$. D'après la question précédente, f+gest log-convexe.

16°)

 \diamond (sur 1 point) Soit $x, y \in I$ et $t \in [0, 1]$.

g est convexe, donc $g(tx + (1-t)y) \le tg(x) + (1-t)g(y)$.

h est croissante, donc $(h \circ g)(tx + (1-t)y) \leq h(tg(x) + (1-t)g(y)).$

De plus, h et convexe, donc $h(tg(x) + (1-t)g(y)) \le th(g(x)) + (1-t)h(g(y))$.

On en déduit que $(h \circ g)(tx + (1-t)y) \le t(h \circ g)(x) + (1-t)(h \circ g)(y)$, ce qu'il fallait démontrer.

(sur 3 points) Une composée d'applications convexes n'est pas toujours convexe, ainsi que le prouve le contre-exemple suivant; Posons $f(x) = \frac{1}{x}$ et $g(x) = e^{-x}$. f est une application de \mathbb{R}_+^* dans \mathbb{R}_+^* , convexe car deux fois dérivable avec $f''(x) = 2x^{-3} > 0$ lorsque x > 0 et g est une application de \mathbb{R} dans \mathbb{R} , convexe car deux fois dérivable avec $g''(x) = e^{-x} > 0$ pour tout $x \in \mathbb{R}$. $g \circ f$ est une application de \mathbb{R}_+^* dans \mathbb{R} .

Soit $x \in \mathbb{R}_+^*$. On calcule $(g \circ f)'(x) = \frac{1}{x^2} e^{-\frac{1}{x}}$ puis $(g \circ f)''(x) = \left(-\frac{2}{x^3} + \frac{1}{x^4}\right) e^{-\frac{1}{x}}$, donc par exemple $(g \circ f)''(1) = -e^{-1} < 0$, ce qui prouve que $g \circ f$ n'est pas convexe.

17°)

 \diamond (sur 1 point) Supposons que ln $\circ f$ est convexe. Soit $\alpha \in \mathbb{R}_+^*$. Alors, d'après la question 2, $\alpha \ln \circ f$ est encore convexe. De plus, d'après la question 1, l'application exp est convexe et elle est croissante, donc d'après la question précédente, $f^{\alpha} = \exp \circ (\alpha \ln \circ f)$

 \diamond (sur 4 points) Réciproquement, supposons que, f^{α} est convexe pour tout $\alpha \in \mathbb{R}_{+}^{*}$. Fixons $x, y \in I$ et $t \in [0, 1]$.

Pour tout $\alpha \in \mathbb{R}_+^*$, $e^{\alpha \ln(f(tx+(1-t)y))} = f^{\alpha}(tx+(1-t)y) \le te^{\alpha \ln(f(x))} + (1-t)e^{\alpha \ln(f(y))}$, donc $e^{\alpha \ln(f(tx+(1-t)y))} - 1 \le t(e^{\alpha \ln(f(x))} - 1) + (1-t)(e^{\alpha \ln(f(y))} - 1)$,

or pour tout $\lambda \in \mathbb{R}$, en posant $g(v) = e^{\lambda v}$ pour tout $v \in \mathbb{R}$,

 $\frac{e^{\lambda u}-1}{u}=\frac{e^{\lambda u}-e^{\lambda\times 0}}{u-0}\underset{u\to 0}{\longrightarrow}g'(0)=\lambda, \text{ donc en divisant par }\alpha \text{ l'inégalité précédente puis en faisant tendre }\alpha \text{ vers }0, \text{ on obtient}$

 $\ln(f(tx+(1-t)y)) \le t\ln(f(x)) + (1-t)\ln(f(y))$, donc $\ln \circ f$ est bien convexe.

Partie III : Inégalité de Hölder (sur 19 points)

 18°)

$$\Leftrightarrow \text{ (sur 2 points) Soit } q \in \mathbb{R}^*.$$

$$\frac{1}{p} + \frac{1}{q} = 1 \iff \frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \iff q = \frac{p}{p-1}, \text{ car } p-1 \neq 0. \text{ Ceci prouve que le réel } \frac{p}{p-1}, \text{ qui est non nul, est l'unique réel } q \text{ tel que } \frac{1}{p} + \frac{1}{q} = 1.$$

- \diamond (sur 1 point) On a vu que ln est convexe sur \mathbb{R}_+^* , donc par définition de la convexité, $-\ln(\frac{x}{p}+\frac{y}{q}) \le -\frac{1}{p}\ln x - \frac{1}{q}\ln y$, d'où l'on déduit l'inégalité demandée.
- 19°) a) (sur 2 points) Soit $t \in [a, b]$.

si $f(t) \neq 0$ et $g(t) \neq 0$, alors en appliquant la question précédente avec $x = |f(t)|^p$

et
$$y = |g(t)|^q$$
, on obtient $\ln\left(\frac{[f(t)]^p}{p} + \frac{|g(t)|^q}{q}\right) \ge \frac{1}{p} \ln|[f(t)|^p] + \frac{1}{q} \ln|[g(t)|^q] = \ln(|f(t)|g(t)|)$,

donc en passant à l'exponentielle, $|f(t)g(t)| \leq \frac{|f(t)|^p}{n} + \frac{|g(t)|^{\frac{1}{q}}}{n}$.

Cette inégalité est encore vraie lorsque f(t) = 0 ou g(t) = 0,

et on conclut en intégrant cette inégalité entre a et b.

- b) (sur 5 points) Utilisons dès maintenant la notation définie en question 20.
- \diamond Premier cas : on suppose que $||f||_p = 0$.

Alors $t \mapsto |f(t)|^p$ est une application positive, continue et dont l'intégrale entre a et b est nulle, donc d'après le cours, c'est l'application identiquement nulle. On en déduit

que
$$f = 0$$
, donc dans ce cas, on a bien $\int_{a}^{b} |f(t)g(t)| dt = 0 \le 0 = ||f||_{p} ||g||_{q}$.

On raisonne de même lorsque $||g||_q = 0$.

 \diamond Second cas : on suppose que $||f||_p > 0$ et que $||g||_q > 0$. On peut alors appliquer

l'inégalité de la question précédente en remplaçant f par $t \longmapsto \frac{f(t)}{\|f\|}$ et g par

$$t \longmapsto \frac{g(t)}{\|g\|_q}$$
. On obtient : $\int_a^b \frac{|f(t)g(t)|}{\|f\|_p \|g\|_q} \le \frac{1}{p} \times \frac{1}{\|f\|_p^p} \int_a^b |f(t)|^p dt + \frac{1}{q} \times \frac{1}{\|g\|_q^q} \int_a^b |g(t)|^q dt$,

puis $\int_a^b \frac{|f(t)g(t)|}{\|f\|_p \|g\|_q} \le \frac{1}{p} \times \frac{1}{\|f\|_p^p} \times \|f\|_p^p + \frac{1}{q} \times \frac{1}{\|g\|_q^q} \times \|g\|_q^q = \frac{1}{p} + \frac{1}{q} = 1$, donc $\int_a^b |f(t)g(t)| dt \le \|f\|_p \|g\|_q$, ce qu'il fallait démontrer.

 $\begin{aligned} \mathbf{20^{\circ}}) & \text{ (sur 5 points) } \|f+g\|_{p}^{p} = \int_{a}^{b} |f(t)+g(t)|^{p} \, dt \leq \int_{a}^{b} |f(t)+g(t)|^{p-1} (|f(t)|+|g(t)|) \, dt, \\ \text{donc } \|f+g\|_{p}^{p} \leq \int_{a}^{b} |f(t)+g(t)|^{p-1} |f(t)| \, dt + \int_{a}^{b} |f(t)+g(t)|^{p-1} |g(t)| \, dt, \text{ or d'après } \\ \text{l'inégalité de H\"older}, & \int_{a}^{b} |f(t)+g(t)|^{p-1} |f(t)| \, dt \leq \|f\|_{p} \Big(\int_{a}^{b} |f(t)+g(t)|^{(p-1)q} \, dt \Big)^{\frac{1}{q}}. \\ \text{De plus } & \frac{1}{p}+\frac{1}{q}=1, \text{ donc en multipliant par } pq, \, q+p=pq \text{ puis } (p-1)q=p. \text{ Ainsi, } \\ & \int_{a}^{b} |f(t)+g(t)|^{p-1} |f(t)| \, dt \leq \|f\|_{p} \Big(\int_{a}^{b} |f(t)+g(t)|^{p} \, dt \Big)^{\frac{1}{q}} \text{ et de même, } \\ & \int_{a}^{b} |f(t)+g(t)|^{p-1} |g(t)| \, dt \leq \|g\|_{p} \Big(\int_{a}^{b} |f(t)+g(t)|^{p} \, dt \Big)^{\frac{1}{q}}. \text{ On en d\'eduit que } \\ & \|f+g\|_{p}^{p} \leq (\|f\|_{p}+\|g\|_{p}) \Big(\int_{a}^{b} |f(t)+g(t)|^{p} \, dt \Big)^{\frac{1}{q}} = (\|f\|_{p}+\|g\|_{p}) \|f+g\|_{p}^{\frac{p}{q}}. \\ & \text{Si } \|f+g\|_{p}=0, \text{ on a clairement } \|f+g\|_{p} \leq \|f\|_{p}+\|g\|_{p}. \\ & \text{Sinon, on peut diviser l'inégalité par } \|f+g\|_{p}^{p} \text{ qui est strictement positif, ce qui donne} \end{aligned}$

Sinon, on peut diviser l'inégalité par $||f+g||_p^{\frac{r}{q}}$ qui est strictement positif, ce qui donne $||f+g||_p^{p-\frac{p}{q}} \leq ||f||_p + ||g||_p$. Or $p-\frac{p}{q} = \frac{pq-p}{q} = \frac{q}{q} = 1$, donc l'inégalité triangulaire est établie dans tous les cas.

 $21^\circ) \quad (\text{sur 2 points}) \ \frac{r}{p} + \frac{r}{q} = 1, \text{ donc si l'on pose } p' = \frac{p}{r} \text{ et } q' = \frac{q}{r}, \text{ on a } \frac{1}{p'} + \frac{1}{q'} = 1 \text{ et } p' > 1 \\ (\text{car } \frac{1}{p'} = 1 - \frac{1}{q'} < 1). \text{ On peut donc utiliser la formule de Hölder avec } p' \text{ et } q'. \text{ Ainsi,} \\ \|fg\|_r^r = \int_a^b |f(t)|^r [g(t)|^r \ dt \leq \||f|^r\|_{p'} \||g|^r\|_{q'} = \left(\int_a^b |f(t)|^{rp'}\right)^{\frac{1}{p'}} \times \left(\int_a^b |g(t)|^{rq'}\right)^{\frac{1}{q'}}. \\ \text{Ainsi, } \|fg\|_r^r \leq \|f\|_p^r \|g\|_q^r. \text{ On conclut en \'elevant cette in\'egalit\'e \`a la puissance } \frac{1}{r}, \text{ ce qui est correct car l'application } x \longmapsto x^{\frac{1}{r}} \text{ est croissante sur } \mathbb{R}_+.$

22°) (sur 2 points) Pour $n \in \mathbb{N}^*$, on note R(n) l'assertion suivante : pour tout $p_1, \ldots, p_n \in \mathbb{R}_+^*$ et $r \in \mathbb{R}_+^*$ tels que $\sum_{k=1}^n \frac{1}{p_k} = \frac{1}{r}$, pour tout $f_1, \ldots, f_n \in E$, on a

$$\left\| \prod_{k=1}^{n} f_k \right\|_r \le \prod_{k=1}^{n} \|f_k\|_{p_k}.$$

Pour n = 1, on a $p_1 = r$, donc la propriété est évidente.

On suppose que $n \ge 1$ et que R(n) est vraie.

Soit
$$p_1, \dots, p_{n+1} \in \mathbb{R}_+^*$$
 et $r \in \mathbb{R}_+^*$ tels que $\sum_{k=1}^{n+1} \frac{1}{p_k} = \frac{1}{r}$, soit $f_1, \dots, f_{n+1} \in E$.

Notons r' l'unique réel strictement positif tel que $\sum_{k=1}^{n} \frac{1}{p_k} = \frac{1}{r'}$.

Ainsi,
$$\frac{1}{r'} + \frac{1}{p_{n+1}} = \frac{1}{r}$$
, donc, en posant $f = \prod_{k=1}^n f_k$, d'après la question précédente,
$$\left\| \prod_{k=1}^{n+1} f_k \right\|_r = \|f \times f_{n+1}\|_r \le \|f\|_{r'} \|f_{n+1}\|_{p_{n+1}}, \text{ or d'après } R(n), \|f\|_{r'} \le \prod_{k=1}^n \|f_k\|_{p_k}, \text{ donc}$$
$$\left\| \prod_{k=1}^{n+1} f_k \right\|_r \le \prod_{k=1}^{n+1} \|f_k\|_{p_k}, \text{ ce qui prouve } R(n+1).$$