# 物理实验报告

| 7134 H 131- | <u>加展引强网盘加固观围</u> | J 27773 |   | 1144 33 |
|-------------|-------------------|---------|---|---------|
| 实验桌号:       |                   | _       |   |         |
| 指导教师:       | 潘佰良               |         | _ |         |
|             |                   |         |   |         |
|             |                   |         |   |         |
| T-17 /377   |                   |         |   |         |
| 班级:         |                   |         |   |         |
| 姓名:         |                   |         |   |         |
| 学号:         |                   |         |   |         |
|             |                   |         |   |         |

实验名称: 用霍尔法测直流圆线圈与亥姆霍兹线圈磁场

浙江大学物理实验教学中心

实验日期: 2025 年 3 月 27 日 星期四上午

## 一、预习报告

## 1. 实验综述

## 实验现象

实验种可以观察到载流圆线圈轴线上的磁场分布呈现单峰曲线,磁场强度在圆心处最大,向两侧逐渐减小。亥姆霍兹线圈轴线上的磁场分布则在两线圈中心连线附近形成较均匀的磁场区域,即匀强磁场。改变线圈间距后,磁场分布会发生变化,匀强磁场区域的范围和强度会随之改变。

#### 实验原理

实验基于霍尔效应原理。当电流通过半导体薄片且受到垂直磁场作用时,载流子在洛伦兹力作用下发生偏转,产生横向电场,形成霍尔电势差。通过测量霍尔电流和霍尔电势差,结合霍尔元件的灵敏度,可计算出磁场强度。同时,利用载流圆线圈和亥姆霍兹线圈的磁场分布规律,通过霍尔传感器测量磁场强度,研究磁场分布。

#### 实验方法

- 1. 组装实验装置。
- 2. 对实验装置进行调零。
- 3. 按实验要求调整线圈位置,固定可动线圈。
- 4. 调节励磁电流至实验需要值,沿轴向或径向移动霍尔传感器探头,逐点测量磁场强度。
- 5. 记录数据并绘制磁场分布曲线,分析磁场分布规律。

## 2. 实验重点

- 1. 了解用霍尔效应法测量磁场的原理,掌握 FB511 型霍尔法亥姆霍兹线圈磁场实验仪的使用方法。
- 2. 了解载流圆线圈的径向磁场分布情况。
- 3. 测量载流圆线圈和亥姆霍兹线圈的轴线上的磁场分布。
- 4. 两平行线圈的间距改变为 d=R/2 和 d=2R 时, 测定其轴线上的磁场分布。

## 3. 实验难点

- 1. 精确调整霍尔传感器的位置,确保其与线圈轴线垂直且移动平稳;
- 2. 准确消除地磁场和环境杂散磁场的干扰,需多次调零;
- 3. 测量过程中保持励磁电流稳定,避免电流波动影响磁场测量精度。

# 二、原始数据

(含有个人信息, 删去)

# 三、结果与分析

## 1. 数据处理与结果

## (1) 载流圆单线圈轴线上磁场分布的数据记录

载流圆单线圈轴线上磁场分布的数据记录(X₀=14.00cm, N₀=400, I=0.400A, Y=0.00cm)

| 1/1/1/12   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1/2/14   1 |       |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 刻度尺读数<br>(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00  | 10.00 | 11.00 | 12.00 | 13.00 | 14.00 | 15.00 | 16.00 | 17.00 | 18.00 | 19.00 |
| 轴向距离<br>X(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | 0.00  | 1.00  | 2.00  | 3.00  | 4.00  | 5.00  |
| 磁感应强度<br>B(μT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 694   | 780   | 862   | 931   | 983   | 1010  | 1004  | 973   | 917   | 845   | 757   |
| 理论 B(μT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 719   | 805   | 883   | 948   | 990   | 1005  | 990   | 948   | 883   | 805   | 719   |
| 相对误差%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.5  | -3.1  | -2.4  | -1.8  | -0.7  | 0.5   | 1.4   | 2.6   | 3.9   | 5.0   | 5.3   |

绘制的图表如下:



从图中可以看出,实验曲线与理论曲线大致重合,载流圆线圈轴线上磁场分布左右对称,且从 中间到两边递减。

#### (2) 载流圆单线圈径向磁场分布的数据记录

载流圆单线圈中心平面内径向磁场分布数据记录(X=0.00cm, N₀=400, I=0.400A)

| 径向距离<br>Y(cm) | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 |
|---------------|-------|-------|-------|-------|-------|------|------|------|------|------|------|
| ` '           |       |       |       |       |       |      |      |      |      |      |      |
| 磁感应强度         | 1240  | 1145  | 1083  | 1040  | 1016  | 1011 | 1018 | 1043 | 1088 | 1158 | 1258 |
| B(µT)         |       |       |       |       |       |      |      |      |      |      |      |

绘制的图表如下:



从图中可以看出,载流圆线圈径向磁场分布左右对称,且在线圈内部,从中间到两边递增。

## (3) 亥姆霍兹线圈轴线上磁场分布的数据记录

| 刻度尺读数<br>(cm)  | 9.00   | 10.00 | 11.00 | 12.00 | 13.00 | 14.00 | 15.00 | 16.00 | 17.00 | 18.00 |
|----------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 轴向距离<br>X(cm)  | -10.00 | -9.00 | -8.00 | -7.00 | -6.00 | -5.00 | -4.00 | -3.00 | -2.00 | -1.00 |
| 磁感应强度<br>Β(μT) | 859    | 968   | 1078  | 1186  | 1275  | 1344  | 1395  | 1427  | 1440  | 1446  |
| 刻度尺读数<br>(cm)  | 20.00  | 21.00 | 22.00 | 23.00 | 24.00 | 25.00 | 26.00 | 27.00 | 28.00 | 29.00 |
| 轴向距离<br>X(cm)  | 1.00   | 2.00  | 3.00  | 4.00  | 5.00  | 6.00  | 7.00  | 8.00  | 9.00  | 10.00 |
| 磁感应强度<br>B(μT) | 1447   | 1446  | 1443  | 1429  | 1396  | 1341  | 1266  | 1176  | 1071  | 959   |

## 绘制的图表:



从图中可以看出,载流圆线圈轴线上磁场分布左右对称,且有一段长度约为 7cm 的匀强磁场区

域,从中间到两边递减。匀强磁场中心的理论磁感应强度为:

$$B = \frac{8\mu_0 N_0 I}{5\sqrt{5}R} = \frac{32\pi \times 10^{-7} \times 400 \times 0.400}{5\sqrt{5} \times 0.1} T = 1439\mu T$$

## 2. 误差分析

本实验中,尽管实验曲线与理论曲线大致重合,但仔细观察会发现实验曲线和理论曲线之间存在偏移关系(对称轴偏右)。同时也出现了测量值大于理论值的情况。可能原因如下:

- (1) 线圈摆放并不竖直。
- (2) 或线圈实际中心相对画线位置偏右。
- (3) 线圈实际半径小于 10cm。
- (4) 调零时,示数会有跳动且幅度较大,导致测量值不准确。
- (5) 调节霍尔元件的位置时有误差,可能无法很好的放在规定位置上。

## 3. 实验探讨

本次实验中我不仅重温了高中阶段学到的霍尔效应,还学习了霍尔效应的应用,同时也认识到了载流圆线圈、亥姆霍兹线圈的磁场分布。

# 四、思考题

1.

- (1) 地磁场和其他环境杂散磁场的影响
- (2) 霍尔元件的安装并非与磁场完全垂直
- (3) 长时间使用霍尔元件的灵敏度可能发生改变,导致仪器计算所得的值不准确。
- 2. 霍尔电势差与霍尔元件通过的电流存在线性关系,励磁电流的大小直接影响线圈产生的磁场强度。保持二者不变可以确保不同测量点的数据具有可比性,便于分析磁场分布的规律。
- 3. 由于存在地磁场和其他环境杂散磁场,这些磁场也会被检测到,导致显示的磁场值不为零,为了排除干扰,需要将其调零校准。
- 4. 有影响。地磁场会与线圈产生的磁场进行叠加,导致实验产生偏差。而当地磁场波动时,即使进行了调零,也难以避免地磁场对实验测量的干扰。