Міністерство освіти і науки України Львівський національний університет імені Івана Франка Кафедра радіофізики та комп'ютерних технологій

Звіт
Про виконання лабораторної роботи №4:
«Моделювання проекту в САПР Quartus II»
Виконав:
студент групи ФЕІ - 41
Подібка Іван
Перевірив:
доц. Рабик В.Г.

Мета роботи: вивчення засобів моделювання проектів на основі програмованих логічних інтегральних схем в середовищі Quartus II; реалізація конкретних цифрових схем та їх моделювання; експериментальна перевірка їх роботи на ПЛІС FPGA Cyclone III лабораторного стенду DE0.

Варіант роботи - 1.

Порядок виконання роботи

- 1. За допомогою САПР Quartus II реалізувати схему логічної функції, приведеної в табл. 4.1. $F(x_2,x_1) = \neg x_2 \neg x_1 + x_2 x_1$ на основі логічних елементів 2АБО НІ. Виконати моделювання в часовій області отриманої схеми в САПР Quartus II. Перевірити роботу спроектованого пристрою на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. До входів отриманого пристрою підключити перемикачі, а до виходу світлодіод. Входи X2, X1 підключити відповідно до SW[1], SW[0]. Вихід пристрою Y підключити до світлодіоду LEDG[2].
- 2. З допомогою САПР Quartus II реалізувати схему мажоритарного елементу на три входи на основі логічних елементів ЗІ-НЕ. Виконати моделювання отриманої схеми в часовій роботі. Перевірити роботу мажоритарного елемента на лабораторному стенді DE0. Для цього сконфігурувати ПЛІС FPGA Cyclone III. До входів отриманого пристрою підключити перемикачі, а до виходу світлодіод. Входи *X3*, *X2*, *X1* підключити відповідно до SW[2], SW[1], SW[0]. Вихід пристрою Y підключити до світлодіоду LEDG[2].

Виконання роботи

1. Перед початком проектування логічної схеми необхідно спростити заданий логічний вираз:

$$F(x_2, x_1) = \neg x_2 \neg x_1 + x_2 x_1$$
 (1)

2. Виходячи із законів де Моргана ми можемо логічний вираз записати наступним чином:

$$F(x_2,x_1) = \neg(x_2 + x_1) + \neg(\neg x_2 + \neg x_1) \quad (2)$$

Запишемо табличку істинності отриманого виразу

X_1	X_2	$\neg X_1$	$\neg X_2$	$\neg (X_1 + X_2)$	$\neg(\neg X_1 + \neg X_2)$	F
0	0	1	1	1	0	1
1	0	0	1	0	0	0
0	1	1	0	0	0	0
1	1	9	0	0	1	1

3. Побудуємо схему виходячи з отриманого логічного виразу, використовуючи тільки логічні елементи 2АБО-НІ. Отримана схема зображена на рисунку 1.

Рис. 1. Схема отримана згідно отриманого логічного виразу (2).

4. Виконаємо моделювання в часовій області отриманої схеми в САПР Quartus II. На рисунку 2 зображено отриману часову діаграму. Як можна побачити, виходячи із значення *pin_name6* часової діаграми, результати моделювання такі ж, як результуючі значення з побудованої таблички істинності.

Рис. 2. Результати моделювання в часовій схеми, побудованої за заданим логічним виразом. Де *pin_name*, *pin_name* – входи, а *pin_*name6 – вихід

5. Побудуємо схему мажоритарного елементу на основі елементів 3І-НЕ. Для початку побудуємо табличку істиності такого елементу.

X_1	X_2	X_3	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

6. Виходячи з побудованої таблички істиності побудуємо ДДНФ.

$$F = \neg X_3 X_2 X_1 + X_3 \neg X_2 X_1 + X_3 X_2 \neg X_1 + X_3 X_2 X_1$$

Запишемо карту Карно для отриманого виразу:

	$\neg X_2 \neg X_1$	$\neg X_2 X_1$	X_2X_1	$X_2 \neg X_1$
X_3		1	1	1
$\neg X_3$			1	

Спростимо вираз виходячи з побудованої карти Карно.

$$F = X_3 X_1 + X_3 X_2 + X_2 X_1$$

Виходячи з правил де Моргана ми можемо записати цей вираз наступним чином:

$$F = \neg(\neg(X_3X_1) \neg(X_3X_2) \neg(X_2X_1))$$

Побудуємо схему мажоритарного елементу в САПР Quartus II. (рис. 3)

Рис. 4. Схема мажоритарного елемента

7. Виконаємо моделювання в часовій області схеми мажоритарного елемента в САПР Quartus II. Як бачимо з рисунку 5 вихід схеми співпадає зі значенням Y в таблиці істинності мажоритарного елемента.

Рис. 5. Часова діаграма мажоритарного елемента. Де X_1 , X_2 , X_3 – входи, out – вихід

Висновок.

Під час виконання лабораторної роботи було побудовано схему виходячи із заданого логічного виразу, а також схему мажоритарного елементу. Варто сказати що побудова мажоритарного елементу потребувала додаткових кроків для спрощення логічного виразу, а саме побудови карти Карно. Обидві схеми були змодельовані в часовій області, і результати моделювання були правильними згідно побудованих табличок істиності.