

Linear Regression Models

Dinesh K. Vishwakarma, Ph.D.

Learning Objectives

- 1. Describe the Linear Regression Model
- 2. State the Regression Modeling Steps
- 3. Explain Ordinary Least Squares
- 4. Compute Regression Coefficients
- 5. Understand and check model assumptions
- 6. Predict Response Variable

Learning Objectives...

- 7. Correlation Models
- 8. Link between a correlation model and a regression model
- 9. Test of coefficient of Correlation

What is a Model?

- 1. Representation of Some Phenomenon
- 2. Non-Maths/Stats Model

What is a Maths/Stats Model?

- 1. Often Describe Relationship between Variables
- 2. Types
 - Deterministic Models (no randomness)
 - Probabilistic Models (with randomness)

Deterministic Models

- 1. Hypothesize Exact Relationships
- 2. Suitable When Prediction Error is Negligible
- 3. Example: Body mass index (BMI) is measure of body fat based.
 - Metric Formula: $BMI = \frac{Weight \ in \ Kilograms}{(Height \ in \ Meters)2}$
 - Non-metric Formula: $BMI = \frac{Weight (pounds) \times 703}{(Height in inches)2}$

Probabilistic Models

1. Hypothesize 2 Components

- Deterministic
- Random Error
- Example: Systolic blood pressure of newborns is 6Times the Age in days + Random Error
 - $SBP = 6 \times age(d) + \varepsilon$
 - Random Error may be due to factors other than age in days (e.g. Birth weight)

Model with simultaneous relationship

Price of wheat Quantity of wheat produced

Dinesh K. Vishwakarma, DTU

Regression Modeling Steps

- > 1. Hypothesize Deterministic Component
 - Estimate Unknown Parameters
- Specify Probability Distribution of Random Error Term
 - Estimate Standard Deviation of Error
- > 3. Evaluate the fitted Model
- > 4. Use Model for Prediction & Estimation

Models Facts

- ➤ 1. Theory of Field (e.g., Epidemiology)
- ➤ 2. Mathematical Theory
- > 3. Previous Research
- > 4. 'Common Sense'

Thinking Challenge: Which is more logical?

Scatter Plot of Data

Types of Relationship

Linear relationships

Curvilinear relationships

Types of Relationship...

Types of Relationship...

X

Linear Regression Models

- A linear regression is one of the easiest statistical models in machine learning.
- It is used to show the linear relationship between a dependent variable and one or more independent variables.
- Relationship between one dependent variable(y) and explanatory variable (s).
- Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent and independent variable

Types of Regression

> Types of	Basis	Linear Regression	Logistic Regression
RegressionLinear Regression	Core Concept	The data is modelled using a straight line	The data is modelled using a sigmoid
Logistic Regression	Used with	Continuous Variable	Categorical Variable
Polynomial	Output/Prediction	Value of the variable	Probability of occurrence of an event
Regression			Measured by
> Stepwise Regression	Accuracy and Goodness of Fit	Measured by loss, R squared, Adjusted R squared etc.	Accuracy, Precision, Recall, F1 score, ROC curve, Confusion

Matrix, etc

Applications of LR

- > Evaluating Trends and Sales Estimates
 - A company sales analysis (monthly sales vs time)
- > Analyzing the Impact of Price Changes
 - If company changes the price of a product several times
- > Assessing Risk E.g. health care
 - Number claims vs age

Benefits of LR Model

- > Ease
- > Interpretability
- > Scalability
- > Deploys and Performs well on Online Settings

Linear Equations

Linear Regression Model

Relationship Between Variables is a Linear Function

Estimating the Coefficients

- > The estimates are determined by
 - drawing a sample from the population of interest,
 - calculating sample statistics.
 - producing a straight line that cuts into the data.

Sum Squared Difference

Let us compare two lines
The second line is horizontal

The smaller the sum of squared differences the better the fit of the line to the data.

A good line is one that minimizes the sum of squared differences between the points and the line.

3

Population Linear Regression Model

Simple Linear Regression Model

Simple LR Model vs Multiple LR

Estimating Parameters: Least Squares Method

Scatter plot

- \triangleright 1. Plot of All (X_i, Y_i) Pairs
- ➤ 2. Suggests How Well Model Will Fit

Thinking Challenge

How would you draw a line through the points? How do you determine which line 'fits best'?

Least Squares Error

- Best Fit' Means Difference Between Actual Y Values & Predicted \widehat{Y} Values are a Minimum. But Positive Differences Off-Set Negative ones
- > So square errors!

$$\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^{n} \widehat{\varepsilon}_i^2$$

LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Least Squares Graphically

LS Minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} \dots \dots + \hat{\varepsilon}_{n}^{2}$$

Coefficient Equations

Prediction equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Sample slope

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Sample Y - intercept

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Finding β_0 MSE Method

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \beta_0 + \beta_1 \cdot x_i)^2$$

$$> 0 = \frac{\partial \sum_{i=1}^{n} (y_i - \beta_0 + \beta_1 \cdot x_i)^2}{\partial \beta_0}$$

$$\geq \frac{\partial \sum_{i=1}^{n} y_i^2 + \beta_0^2 + \beta_1^2 \cdot x_i^2 + 2\beta_0 \beta_1 \cdot x_i - 2y_i \cdot \beta_0 - 2y_i \beta_1 \cdot x_i}{\partial \beta_0} = 0$$

$$\frac{\partial \beta_0}{\partial x_i} > 0 = 2 \sum_{i=1}^n \beta_0 + 2\beta_1 \sum_{i=1}^n x_i - 2 \sum_{i=1}^n y_i$$

$$> 0 = 2(n\beta_0 + n\beta_1 \bar{x} - n\bar{y})$$

$$> \widehat{\boldsymbol{\beta}}_0 = \overline{\mathbf{y}} - \widehat{\boldsymbol{\beta}}_1 \overline{\mathbf{x}}$$

Minimum Sum Square Error Method

Finding β_1 MSE Method

- $\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = y_i^2 + \hat{y}_i^2 2y_i \cdot \hat{y}_i$ Where $\hat{y}_i = \beta_0 + \beta_1 \cdot x_i$
- $\sum_{i=1}^{n} y_i^2 + (\beta_0 + \beta_1 \cdot x_i)^2 2y_i \cdot (\beta_0 + \beta_1 \cdot x_i)^2$
 - \rightarrow

$$\sum_{i=1}^{n} y_i^2 + \beta_0^2 + \beta_1^2 \cdot x_i^2 + 2\beta_0 \beta_1 \cdot x_i - 2y_i \cdot \beta_0 - 2y_i \beta_1 \cdot x_i$$

> Finding minimum error, the derivative must be zero:

Optimization

$$\frac{\partial (\sum_{i=1}^{n} \varepsilon_i^2)}{\partial \beta_1} = \frac{\partial \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 \cdot x_i)^2)}{\partial \beta_1} = 0$$

$$\triangleright 0 = -2\sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i)$$

$$\rightarrow 0=-2\sum_{i=1}^n x_i(y_i-\bar{y}+\beta_1\bar{x}-\beta_1x_i)$$
 substituting the value of β_0

Minimum Square Error Method...

$$> 0 = -2 \sum_{i=1}^{n} x_i (y_i - \bar{y} + \beta_1 \bar{x} - \beta_1 x_i)$$

• substituting the value of β_0

$$\beta_1 \sum_{i=1}^n x_i (x_i - \bar{x}) = \sum_{i=1}^n x_i (y_i - \bar{y})$$

$$\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})}$$

$$\beta_1 = \frac{SS_{xy}}{SS_{xx}}$$

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
X ₁	Y ₁	X_1^2	Y ₁ ²	$X_1 Y_1$
X ₂	Y ₂	X_2^2	Y ₂ ²	X_2Y_2
:	:	:	•	:
X _n	Y _n	X_n^2	Y _n ²	X_nY_n
ΣX_i	$\sum Y_i$	$\sum X_i^2$	$\sum Y_i^2$	$\Sigma X_i Y_i$

Interpretation of Coefficients

ightharpoonup Slope $(\widehat{\beta_1})$

- $\beta_1 > 0 \implies$ Positive Association
- $\beta_1 < 0 \Rightarrow$ Negative Association
- $\beta_1 = 0 \implies \text{No Association}$
- Estimated *Y* Changes by $\widehat{\beta_1}$ for each 1 Unit Increase in *X*
 - If $\widehat{\beta_1} = 2$, then *Y* Is Expected to Increase by 2 for each 1 Unit Increase in *X*

- \triangleright Y-Intercept (β_0)
 - Average Value of Y When X = 0
 - If $\beta_0 = 4$, then Average Y is expected to be 4 When X is 0

E.g. Parameter Estimation

What is the relationship between Mother's Estriol level & Birthweight using the following data?

Estriol	Birthweight
(mg/24h)	(g/1000)
1	1
2	1
3	2
4	2
5	4

Scatterplot Birthweight vs. Estriol level

Parameter Estimation Solution Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Parameter Estimation Solution

$$\hat{\beta}_{1} \triangleq \frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}} = \frac{37 - \frac{(15)(10)}{5}}{5} = 0.70$$

$$\sum_{i=1}^{n} X_{i}^{2} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} = 2 - (0.7)(3) = -0.1$$
 $\hat{y} = -0.1 + 0.7x$

$$\hat{y} = -.1 + .7x$$

Coefficient Interpretation Solution

- \triangleright 1. Slope $(\beta_1)^{\alpha}$
 - Birthweight (*Y*) is Expected to Increase by .7 Units for Each 1 unit Increase in Estriol (*X*).
- \triangleright 2. Intercept (β_0)
 - Average Birthweight (Y) is -.10 Units When Estriol level (X) Is 0
 - Difficult to explain
 - The birthweight should always be positive

Goodness: Variation Measures

Estimation of σ^2

$$s^{2} = \frac{SSE}{n-2} \qquad \text{Where } SSE = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$s = \sqrt{s^2} = \sqrt{\frac{SSE}{n-2}}$$

The subtraction of 2 can be thought of as the fact that we have estimated two parameters: β_0 and β_1

E.g. Compute SSE, s², s

You're a marketing analyst for any Toys. You gather the following data:

Ad (₹)	Sales (Qty)
1	1
2	1
3	2
4	2
5	4

Find SSE, s^2 , and s.

E.g. Solution: SSE, s², s

x_i	y_i	$\hat{y} =1 + .7x$	$y - \hat{y}$	$(y-\hat{y})^2$
1	1	.6	.4	.16
2	1	1.3	3	.09
3	2	2	0	0
4	2	2.7	7	.49
5	4	3.4	.6	.36
				SSE=1.1

$$s^2 = \frac{SSE}{n-2} = \frac{1.1}{5-2} = .36667$$
 $s = \sqrt{.36667} = .6055$

$$s = \sqrt{.36667} = .6055$$

Residual Analysis

$$e_i = Y_i - \hat{Y}_i$$

- The residual for observation i, e_i , is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)

Residual Analysis for Linearity

Residual Analysis for Independence

RA for Equal Variance

Evaluating the Model

Testing for Significance

Regression Modeling Steps

- 1. Hypothesize deterministic component
- 2. Estimate unknown model parameters
- 3. Specify probability distribution of random error term
 - Estimate standard deviation of error
- 4. Evaluate model
- 5. Use model for prediction and estimation

Test of Slope Coefficient

- Shows if there is a linear relationship between x and y
- \triangleright Involves population slope β_1
- Hypotheses
 - H_0 : $\beta_1 = 0$ (No Linear Relationship)
 - H_a : $\beta_1 \neq 0$ (Linear Relationship)
- Theoretical basis is sampling distribution of slope

Distribution of Sample Slopes

All Possible Sample Slopes

Sample 1: 2.5
Sample 2: 1.6
Sample 3: 1.8
Sample 4: 2.1

Very large number of sample slopes

Slope Coefficient Test Statistic

$$t = \frac{\widehat{\beta_1}}{S_{\widehat{\beta_1}}} = \frac{\widehat{\beta_1}}{S}, \qquad df = 2$$

$$SS_{xx} = \sum_{i=1}^{n} x_i - \frac{(\sum_{i=1}^{n} x_i)^2}{n}$$

E.g. Test of Slope Coefficient

You're a marketing analyst for any Toys.

You find $\hat{\beta_0} = -.1$, $\hat{\beta_1} = .7$ and s = .6055.

<u>Ad (₹)</u>	Sales (Qty)
1	1
2	1
3	2
4	2
5	4

Is the relationship **significant** at the **.05** level of significance?

Solution Table

x_i	y_i	x_i^2	y_i^2	$x_i y_i$
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Slope Coefficient Test Statistic

$$t = \frac{\widehat{\beta}_1}{S_{\widehat{\beta}_1}} = \frac{\widehat{\beta}_1}{\frac{S}{\sqrt{SS_{xx}}}},$$

$$t = \frac{\widehat{\beta_1}}{S_{\widehat{\beta_1}}} = \frac{\widehat{\beta_1}}{\frac{S}{\sqrt{SS_{min}}}}, \qquad df = 2 \qquad \Longrightarrow \qquad Where \\ SS_{xx} = \sum_{i=1}^n x_i - \frac{(\sum_{i=1}^n x_i)^2}{n}$$

$$S_{\widehat{\beta}_1} = \frac{s}{\sqrt{SS_{XX}}} = \frac{0.6055}{\sqrt{55 - \frac{15^2}{5}}} = .1914$$

$$t = \frac{0.70}{1914} = 3.657$$

Test of Slope Coefficient Solution

$$\rightarrow$$
 H₀: $\beta_1 = 0$

$$\triangleright$$
 Ha: $β_1 ≠ 0$

$$\rightarrow \alpha = .05$$

$$\rightarrow$$
 df = 5 - 2 = 3

Critical Value(s):

Test Statistic:
$$t = \frac{\widehat{\beta_1}}{S_{\widehat{\beta}_1}} = \frac{0.70}{.1914} = 3.657$$

Decision: Reject (H_0) at $\alpha = .05$,

Conclusion: There is evidence of a relationship

Correlation Coefficient

Correlation Models

- Answers 'How strong is the **linear** relationship between two variables?'
- Coefficient of correlation
 - Sample correlation coefficient denoted *r*
 - Values range from −1 to +1
 - Measures degree of association
 - Does not indicate cause—effect relationship

Coefficient of Correlation

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n}$$

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n}$$

$$SS_{xy} = \sum xy - \frac{\left(\sum x\right)\left(\sum y\right)}{n}$$

Correlation Coefficient Values

E.g. Coefficient of Correlation

You're a marketing analyst for any Toys.

<u>Ad (₹)</u>	Sales (Qty)
1	1
2	1
3	2
4	2
5	4

Calculate the **coefficient of correlation**.

Solution Table

\boldsymbol{x}_{i}	y_i	x_i^2	y_i^2	$x_i y_i$
1	1	1	1	1
2	1	4	1	2
3	2	9	4	6
4	2	16	4	8
5	4	25	16	20
15	10	55	26	37

Coefficient of Correlation Solution

$$SS_{xx} = \sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} = 55 - \frac{(15)^{2}}{5} = 10$$

$$SS_{yy} = \sum y^{2} - \frac{\left(\sum y\right)^{2}}{n} = 26 - \frac{(10)^{2}}{5} = 6$$

$$SS_{xy} = \sum xy - \frac{\left(\sum x\right)\left(\sum y\right)}{n} = 37 - \frac{(15)(10)}{5} = 7$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{7}{\sqrt{10 \cdot 6}} = .904$$

It can be predicted using LR due High value of Correlation Coefficient

Coefficient of Correlation Challenge

You're an economist for the county cooperative.

You gather the following data:

Fertilizer (lb.)	Yield (lb.)	
4	3.0	
6	5.5	
10	6.5	
12	9.0	

Find the coefficient of correlation.

Solution Table*

\boldsymbol{x}_i	y_i	x_i^2	y_i^2	$x_i y_i$
4	3.0	16	9.00	12
6	5.5	36	30.25	33
10	6.5	100	42.25	65
12	9.0	144	81.00	108
32	24.0	296	162.50	218

Coefficient of Correlation Solution*

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n} = 296 - \frac{(32)^2}{4} = 40$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n} = 162.5 - \frac{(24)^2}{4} = 18.5$$

$$SS_{xy} = \sum xy - \frac{\left(\sum x\right)\left(\sum y\right)}{n} = 218 - \frac{(32)(24)}{4} = 26$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{26}{\sqrt{40.18.5}} = .956$$

Coefficient of Determination

Proportion of variation 'explained' by relationship between *x* and *y*

$$r^2 = \frac{\text{Explained Variation}}{\text{Total Variation}} = \frac{SS_{yy} - SSE}{SS_{yy}}$$

 $0 \le r^2 \le 1$

$$r^2$$
 = (coefficient of correlation)²

E.g. Approximate r² Values

$$r^2 = 1$$

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

E.g. Approximate r² Values...

$$r^2 = 0$$

- No linear relationship between X and Y:
- The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

E.g. Determination Coefficient

You're a marketing analyst for any Toys. You

know r = .904.

<u>Ad (₹)</u>	Sales (Qty)
1	1
2	1
3	2
4	2
5	4

Calculate and interpret the coefficient of determination.

E.g. Determination Coefficient

$$r^2$$
 = (coefficient of correlation)²
 r^2 = (.904)²
 r^2 = .817

Interpretation: About 81.7% of the sample variation in Sales (y) can be explained by using Ad $\not\in$ (x) to predict Sales (y) in the linear model.

Other Evaluation Metrics

- Mean Squared Error (MSE)
 - Most commonly used Metric
 - Differentiable due to convex shape
 - Easier to optimize.
 - Penalizes large errors
- Mean Absolute Error (MAE)

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$

 $MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \widehat{y}_i)^2$

- Not preferred in cases where outliers are prominent = 1
- MAE does not penalize large errors.
- Small MAE suggests the model is great at prediction, while a large MAE suggests that model may have trouble in certain areas.

Other Evaluation Metrics...

- > Root Mean Squared Error (RMSE)
 - RMSE measures the scatter of these residuals
 - RMSE penalizes large errors.
 - Lower RMSE indicates model is better for predictions.
 - Higher RMSE indicates, large deviations between the predicted and actual value.

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \widehat{y}_i)^2}$$

Conclusion

- 1. Described the Linear Regression Model
- 2. Stated the Regression Modeling Steps
- 3. Explained Least Squares
- 4. Computed Regression Coefficients
- 5. Explained Correlation
- 6. Predicted Response Variable