Fundamentos de Deep Learning

Entorno Python Para Redes Neuronales

Keras

API de alto nivel para desarrollo rápido de modelos. Construida sobre TensorFlow, simple y fácil de usar.

PyTorch

Librería flexible para control granular de modelos. Ampliamente usada en investigación y academia.

¿Qué es un Tensor?

- Escalar
 - Tensor de orden 0: un número único.
- Vector
 Tensor de orden 1: una lista de números.
- Matriz
 Tensor de orden 2: tabla bidimensional de números.
- Imagen a color
 Tensor de orden 3: altura, ancho y canales de color.

Diseño de RN para resolver un problema de Regresión

Capa de entrada

Neuronas = características del dataset.

Capa de salida

Una neurona, valor continuo.

Capas ocultas

Varias capas densas, cantidad depende del problema.

Función de pérdida

Mean Squared Error (MSE).

Actividad Práctica Guiada

Objetivo: Resolver un problema de regresión usando una red neuronal. Utilizaremos Keras y datos de scikit-learn.

Requisitos:

- 1. Instalar las librerías necesarias: tensorflow, scikit-learn, matplotlib
- 2. Cargar los datos del dataset de Boston Housing.
- 3. Definir la red neuronal usando Keras: capa de entrada, capa oculta y capa de salida.
- 4. Entrenar el modelo: configurar número de épocas y tamaño del batch.
- 5. Visualizar el rendimiento del modelo.
- 6. Realizar predicciones.

El detalle de la actividad se encuentra en la guía de estudio de la sesión.

Clasificación con Redes Neuronales

- ⇒ Capa de entrada Neuronas = características del dataset.
- → Capas ocultas
 Múltiples capas con activaciones como
 ReLU.
- ⇒ Capa de salida Neuronas = número de clases.

Actividad Práctica Guiada

Objetivo: Resolver un problema de clasificación utilizando una red neuronal.

Requisitos:

- 1. Instalar las librerías necesarias: tensorflow, scikit-learn, matplotlib
- 2. Cargar los datos del dataset de Iris desde scikit-learn.
- 3. Definir la red neuronal: capa de entrada, una o más capas ocultas y capa de salida.
- 4. Entrenar el modelo.
- 5. Evaluar el modelo.
- 6. Visualizar el rendimiento del modelo.
- 7. Realizar predicciones.

El detalle de la actividad se encuentra en la guía de estudio de la sesión.

Funciones de Activación

ReLU

Simple y eficaz, resuelve gradientes vanishing.

Sigmoid

Valores entre 0 y 1, clasificación binaria.

Tanh

Rango entre -1 y 1, centra valores en 0.

Softmax

Clasificación multiclase, convierte salidas en probabilidades.

Funciones para Activación

Función	Descripción	Uso
ReLU	Devuelve el valor si es positivo, 0 si es negativo.	General, redes profundas.
Sigmoid	Valores entre 0 y 1.	Clasificación binaria.
Tanh	Valores entre -1 y 1.	Centra valores en 0.
Softmax	Convierte salidas en probabilidades.	Clasificación multiclase.

Preguntas

Sección de preguntas

Fundamentos de

Deep Learning

Continúe con las actividades