INFO4-EP

Jonatha ANSELMI

Exercice 1. Soient X et Y deux variables aléatoires indépendantes avec une loi exponentielle de paramètre λ_1 et λ_2 , respectivement. Montrer que $\min(X,Y)$ suit une loi exponentielle de paramètre $\lambda_1 + \lambda_2$ et que $P(\min(X,Y) = X) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.

Exercice 2. Soit $X = (X_t)_{t \geq 0}$ une chaîne de Markov à temps continu, à espace d'états $\mathbb{S} = \{0, 1, \dots, N\}$ et telle que X(0) = 0. Soit $Q = (q_{i,j})$ la matrice de transition de X ou $q_{i,j} = 1$ if |i - j| = 1 et $q_{i,j} = 0$ if |i - j| > 1.

- 1. Trouver la loi de la variable aleatoire $t_1 = \inf\{t \ge 0 : X(t) > 0\}$.
- 2. Pour tous $i \in \mathbb{N}$, trouver $P(t_1 = i)$.
- 3. Est-ce que X est irreducible? Recurrent positive? Pourquoi?
- 4. Calculer la probabilité stationnaire de X.
- 5. Est-ce que $(X_t^2)_{t\geq 0}$ est une chaîne de Markov? Si oui, donner son espace d'états et sa matrice de transition.
- 6. Soit $(Y_t)_{t\geq 0}$ une chaîne de Markov à temps continu indépendant de X mais avec la même matrice de transition. Est-ce que $(X_t, Y_t)_{t\geq 0}$ est une chaîne de Markov? Si oui, donner son espace d'états et sa matrice de transition.
- 7. Soit $Z_t = |X_t Y_t|$. Est-ce que $(Z_t)_{t \geq 0}$ est une chaîne de Markov? Si oui, donner son espace d'états et sa matrice de transition.

Exercice 3. On souhaite comparer les deux architectures de files d'attente suivantes: une architec-

ture parallel distribuée (gauche) vs une architecture centralisé (droite). On suppose que les clients arrivent selon un processus de Poisson de paramètre λ et que leur tailles sont de variables aleatoires exponentielle de paramètre 1. Donc, les temps de service dans une file du systeme a gauche resp. droite sont Exp(1) resp. Exp(K). Pour chaque systeme, déterminer la condition de stabilité et comparer le temps de réponse moyen en régime stationnaire.