TD Montage en pont, amplification et linéarisation

1 Principe physique d'une jauge d'extensométrie

1.1 Jauge d'extensométrie à base d'un fil

On considère un fil cylindrique de longueur L, de section circulaire s (rayon a), constitué d'un matériau de résistivité ρ . On donne L = 1 cm et a = 56 μ m.

- 1. Faire un schéma du capteur.
- 2. Rappeler la relation permettant de calculer la résistance d'un conducteur cylindrique. Sachant que la résistance du fil vaut 10Ω , calculer la résistivité du conducteur.
- 3. On soumet le fil à une force de compression F = 4 N dans le sens de sa longueur. Calculer la pression correspondante, appelée contrainte et notée σ .
- 4. Lorsque la contrainte ne dépasse pas la valeur limite $\sigma_{max}=2\times 10^9~\text{N.m}^{-2}$, dite limite élastique, la variation relative de la longueur (déformation ε) est proportionnelle à la contrainte. Le coefficient liant la contrainte à la déformation est appelé module de Young et noté E. Si E = 1,6×10¹¹ N.m⁻² pour le matériau du fil, calculer la variation relative ε et absolue ΔL de la longueur du fil due à la force de compression F.
- 5. La compression s'accompagne également d'une variation relative du rayon proportionnelle à la déformation. Le coefficient de proportionnalité est appelé coefficient de Poisson et vaut $\nu=0$,3 pour le matériau de ce fil. Calculer la variation absolue du rayon Δa .
- 6. La loi de comportement de la jauge de contrainte est $\frac{\Delta R}{R} = K \frac{\Delta L}{L}$, avec K le coefficient de jauge. En déduire K pour $\frac{\Delta R}{R}$ = 5,2×10⁻³.
- 7. La variation relative du volume du fil induit également une variation relative de résistivité du matériau. Ces variations sont reliées à travers la constante de Bridgman : $\frac{\Delta\rho}{\rho}=C\frac{\Delta V}{V}$. C vaut approximativement 1 pour les jauges métalliques et est de l'ordre de 10^2 pour les jauges semi-conductrices. La variation de résistance du fil soumis à une déformation a pour expression :

$$\frac{\Delta R}{R} = ((1+2\nu) + C(1-2\nu))\frac{\Delta L}{L}$$
 (1)

Calculer C et déterminer la nature plus probable de la jauge.

1.2 Réalisation pratique d'une jauge

On réalise une jauge d'extensométrie avec du fil du type étudié précédemment. Cette jauge est constitué de n brins longitudinaux de longueur L, reliés par (n-1) brins transversaux de longueur totale l < L. Les fils sont arrangés et inscrits dans un rectangle $l \times L$ arrangé en chicane. Chacun des brins est caractérisé par un coefficient K.

Cette jauge est parfaitement collée sur une barre cylindrique de circonférence C_0 (rayon a_0) et de hauteur H au repos, de module de Young E_0 et de coefficient de Poisson ν_0 . La barre, constituant le corps d'épreuve, est soumise selon son axe à une contrainte σ_0 selon son axe principal. Les brins longitudinaux de la jauge sont parallèles à l'axe principal de la barre. L'objectif est de mesurer la contrainte σ_0 .

- 1. Faire un schéma de la jauge et de la jauge collée à la barre. Indiquer les axes et les différentes longueurs.
- 2. Au repos, exprimer la résistance totale R_L des brins longitudinaux et la résistance totale R_T des brins transversaux. En déduire la résistance totale R_J de la jauge en fonction de n, du rapport $\alpha = \frac{l}{nL}$, des résistances R_L et R_T .
- 3. Justifier les relations suivantes : $\frac{\Delta R_L}{R_L} = K\left(\frac{\Delta H}{H}\right)$ et $\frac{\Delta R_T}{R_T} = -K\nu_0\left(\frac{\Delta H}{H}\right)$. ¹
- 4. Établir l'expression du coefficient total de jauge K_J à partir de $\frac{\Delta R_J}{R_J}$ et $\frac{\Delta H}{H}$.
- 5. Simplifier K_J lorsque $\alpha \ll 1$ (on considère $\alpha \to 0$). On utilisera l'approximation de Taylor pour une fonction au voisinage de $\alpha_0 = 0$:

$$f(\alpha) = f(\alpha_0) + f'(\alpha_0) \cdot (\alpha - \alpha_0) \tag{2}$$

^{1.} Le signe moins est en cohérence avec le fait logique qu'une traction longitudinale génère une contraction transversale.

2 Pont de Wheatstone avec une jauge active

Une jauge de contrainte est collée sur le corps d'épreuve d'une balance. La masse M (en kg) à mesurer déforme le corps d'épreuve. Les variations relatives de la résistance de la jauge sont proportionnelles à la masse M. On note la résistance de la jauge $R_c = R + \Delta R$, avec R la résistance au repos et ΔR la variation de résistance. On admettra que :

$$\frac{\Delta R}{R} = kM \tag{3}$$

avec $k = 4 \times 10^{-3} \text{ kg}^{-1}$ et $R = 1 \text{ k}\Omega$. La jauge est insérée dans un montage en 1/4 de pont de Wheatstone alimenté par un générateur de tension $V_q = 10 \text{ V}$ de résistance interne négligeable.

- 1. Faire un schéma du dispositif.
- 2. Exprimer la tension de mesure V_{mes} en fonction de V_g et $\frac{\Delta R}{R}$
- 3. Que devient V_{mes} en fonction de k et M? Conclure sur la linéarité de cette expression.
- 4. Si les variations relatives de résistance $\frac{\Delta R}{R}$ sont inférieures à 10 %, quelle masse M maximale peut-on mesurer?
- 5. Tracer l'évolution de la tension V_{mes} en fonction de ΔR . Placer sur l'axe des abscisses la correspondance en fonction de la masse M.

3 Amplification et correction de la non-linéarité

La tension V_{mes} est une tension différentielle qui n'est pas référencée à la masse. Ce signal est d'abord conditionné à l'aide d'un amplificateur d'instrumentation de gain unité. En sortie de ce dernier, on dispose alors du signal V_{mes} référencé à la masse est qui sert d'entrée au montage de linéarisation. On considère ainsi le circuit de linéarisation (présenté en cours) constitué d'un amplificateur opérationnel supposé idéal et d'un diviseur analogique pondéré.

- 1. Déterminer l'expression de V en fonction de V_{mes} .
- 2. Déterminer V_N et V_D en fonction de V, V_g et K. ²
- 3. En déduire l'expression de V_s en fonction de V_D , puis en fonction de K, V_{mes} et V_q .
- 4. En remplaçant l'expression de V_{mes} dans celle de V_s , déterminer la valeur de K pour que la fonction $V_s = f(M)$ soit linéaire.
- 5. Donner alors l'expression de V_s en fonction de M et tracer la nouvelle courbe d'étalonnage.
- 6. En déduire la valeur de la sensibilité du dispositif amélioré $(S = \frac{\Delta V_s}{\Delta M})$.

^{2.} Ne pas confondre avec le coefficient de jauge.