Algorísmica Avançada Algorismes sobre grafs I

Sergio Escalera

• Per a què serveix un graf?

• Com representem un graf? G=(V,E)

- Com representem un graf? Estructura de graf
- Matriu d'adjacència

	1	2	3	4	5	6	7
1	0	8	1	8	8	8	8
2	8	0	5	2	8	∞	∞
3	1	5	0	7	5	8	8
4	8	2	7	0	8	8	8
5	8	8	5	8	0	9	3
6	8	8	8	8	9	0	8
7	8	8	8	8	3	8	0

Sense pesos \rightarrow $a_{ij} = \begin{cases} 1 & \text{if there is an edge from } v_i \text{ to } v_j \\ 0 & \text{otherwise.} \end{cases}$

- Com representem un graf? Estructura de graf
- Llista d'adjacència

- Matriu ó llista d'adjacència?
- Matriu → |V|² posicions → un accés
- Llista → |E| posicions → mínim un accés memòria versus localització
 Graf dens versus graf sparse

¿què faríeu servir per codificar tots els enllaços de les pàgines del www?

• Quins vèrtexs són accessibles des de quins?

Ho podem veure com un laberint Hem de guardar informació a mida que analitzem "explorem" el graf!

Quins vèrtexs són accessibles des de quins?

```
\begin{array}{lll} & \operatorname{procedure} \ \operatorname{explore} (G,v) \\ & \operatorname{Input:} & G = (V,E) \ \text{is a graph; } v \in V \\ & \operatorname{Output:} & \operatorname{visited} (u) \ \text{is set to true for all nodes } u \ \operatorname{reachable} \ \operatorname{from} \ v \\ & \operatorname{visited} (v) = \operatorname{true} \\ & \operatorname{previsit} (v) \\ & \operatorname{for each edge} \ (v,u) \in E \colon \\ & \operatorname{if not visited} (u) \colon \operatorname{explore} (u) \\ & \operatorname{postvisit} (v) \\ \end{array}
```

- Recorregut topològic
- Búsqueda en profunditat (Depth-First Search DFS)

```
\frac{\texttt{procedure dfs}}{\texttt{for all } v \in V:} \texttt{visited}(v) = \texttt{false} \texttt{for all } v \in V: \texttt{if not visited}(v): \texttt{explore}(v)
```


DFS representa la connectivitat amb un bosc d'arbres

Complexitat de DFS?

Complexitat de DFS?

Teorema: la suma de tots els graus de tots els nodes és igual a 2 cops el nombre d'arestes del graf.

$$\Theta(|V|+|E|) \rightarrow \Theta(2|E|) \rightarrow \Theta(|E|)$$

 DFS també ens soluciona un altre problema de grafs: els components conexos

Cada crida a explore crea un nou arbre

I es troba una **nova component conexa**

- Quins vèrtexs són accessibles des de quins?
- Grafs dirigits

- En els grafs no dirigits, una component connexa conté com a mínim un cicle
- En els grafs **dirigits**, un **cicle** ha de començar i acabar en el mateix vèrtex existint connectivitat, sinó és **acíclic**

$$v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_0$$

- Cicles en grafs dirigits
- Podem trobar un cicle en un graf dirigit en temps lineal? → Sí

Hem vist que DFS té complexitat lineal

Propietat: Un graf dirigit té un cicle si i només si l'algorisme DFS troba una aresta "back".

- Els grafs dirigits acíclics són molt comuns:
- Nosaltres modelem ó "intentem" modelar les nostres tasques quotidianes en un ordre determinat, una rere l'altre.
 - Els grafs acíclics modelen relacions com jerarquies o dependències temporals

- Connectivitat en grafs dirigits
- Hi ha d'haver connectivitat $u \rightarrow v$ i $v \rightarrow u$
- Components forts connexes

També els podem trobar amb complexitat lineal fent ús de l'algorisme DFS

- Fins ara hem parlat de connectivitat, però no hem analitzat el cost del camí que hem trobat entre els punts connectats.
- DFS assegura el camí més curt entre 2 punts connectats en un graf no dirigit???

Podem definir el camí entre 2 punts com el número d'arestes fins arribar, o el número de vèrtexs que travessem, o la suma dels pesos de les arestes, dels vèrtexs, etc.

Cerca en amplada (Breadth-first search)

```
procedure bfs (G, s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u,v) \in E:
      if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```

- BFS té un codi similar a DFS, però fa ús d'una cua en lloc d'una pila.
- Els arbres generats per BFS es diuen arbres de camí mínim.
- Si fem ús correcte del "cost del camí" a l'algorisme BFS trobem el camí mínim d'un vèrtex a la resta de vèrtex dins d'un graf!

Graf

DFS

BFS

Order	Queue contents			
of visitation	after processing node			
	[S]			
S	$[A \ C \ D \ E]$			
A	[C D E B]			
C	[D E B]			
D	[E B]			
E	[B]			
B	[]			

- BFS versus DFS
- Una altra diferència és que BFS només té en compte els nodes que estan connectats a un node s, els altres són ignorats
 - □ → només es genera un arbre de camins mínims