MATH 2330: Multivariable Calculus

Section 4.1: Functions of Several Variables

Definitions & Terminology:

- A function of two variables, f, is a rule that assigns a *unique* value to each ordered pair, (x, y), in a set D, which is called the **domain** of f. The **range** is the set of all values that f takes on.
- The **graph** of f is a **surface** in \mathbb{R}^3 which is the set of all points (x,y,z) such that z=f(x,y) for all (x,y) in the domain D.
- The horizontal traces of a function of two variables are cross-sectional curves that have equations f(x,y) = k, where k is a constant in the range of f. If you project the horizontal traces of a surface down to a contour in the xy-plane, you get **level curves**. If you plot a bunch of level curves, you can create a **contour map** (contour plot) of the function f.

Examples:

We will work through the following examples together. (Note: Example 1(a) can be found in a pre-class video / lecture notes.)

Example 1: Evaluate f(3,2) and sketch the domain of f:

(b)
$$f(x,y) = x \ln(y^2 - x)$$

Example 2: Consider $f(x,y) = \sqrt{9 - x^2 - 4y^2}$.

(a) Evaluate f(2,1) and $f(2t,t^2)$.

(b) Sketch the domain and describe the range of f.

(c) Sketch the graph of z = f(x, y).

Example 3: Consider $f(x,y) = 10 - x^2 - y^2$.

(a) Sketch a contour plot of f.

(b) Use your contour plot to sketch the graph of z = f(x, y).

Group Work:

Introductions:

Introduce yourself to your neighbors. Share one unusual thing that you did over the break.

Work with your partners on the Matching Game activity.

The Matching Game

Match each function with its graph. Give reasons for your choices.

1.
$$f \mid x \mid y \# \mid \frac{1}{x \mid 1} \mid \sin y$$
 2. $f \mid x \mid y \# \mid \frac{1}{4 \# x^2 \# y^2}$ **3.** $f \mid x \mid y \# \mid \cos x \mid y^2 \#$ **4.** $f \mid x \mid y \# \mid \ln x^2 \mid y^2 \mid 1 \#$ **5.** $f \mid x \mid y \# \mid x^2 \notin \overline{y}$ **6.** $f \mid x \mid y \# \mid x^3 y$

2
$$f!x"y\#!$$
 $\frac{!}{4 \# x^2 \# y^2}$

3.
$$f!x"y\#! \cos x" y^2$$

4.
$$f!x"y\#! \ln x^2" y^2" 1$$

5.
$$f!x"y\#! x^2 = \bar{y}$$

6.
$$f!x"y\#! x^3y$$

