集装箱码头轮胎式龙门起重机自动化操控系统的 实施

◎ 熊丰华 孙强 金勇 中交二航局第三工程有限公司

- ▶ 摘 要: 文章以实际工程为例,介绍全自动集装箱堆场轮胎式龙门起重机的装卸工艺和自动化。 操控系统,阐述了轮胎式龙门起重机自动化操控系统的实施关键点,详细介绍了轮胎式龙门起重 机各系统的实施,可供参考。
- ▶ 关键词: 自动纠偏 防摇摆 吊具位置自动检测

1.工程概况

和黄码头位于泰国东部春武里 省是拉差县, 是泰国当前最大的集装 箱码头港口项目, 也是泰国境内第一 个全自动远程操控集装箱码头。本项 目垂直码头长1000m, 堆场与辅建区 28.5hm²。垂直码头配置7台自动化 桥吊, 堆场分D1、D2两个箱区, D1、 D2箱区各分10个封闭式堆垛区,每 个堆垛区各配置1台全自动轮胎式龙 门吊ARTG (Automated Rubbertyred Gantry Crane, ARTG), 其 主要参数大车速度134m/min, 小车 速度70m/min, 吊具速度60m/min 配置防摇8绳索系统。在集卡进出闸 口单体建筑二层配置中控室对ARTG 远程操控。每台ARTG均配置转场柴 油发电机、移动连续供电系统、微波 通信系统 (SMG), 单机自动化系统 (ACCS)等。通过码头装卸系统、远 程通信系统、远程操控系统实现自动 化远程操控。

2.自动化集装箱码头装卸方案

泰国和黄集装箱码头项目海侧配 置7台岸桥进行装卸作业,平行于码 头岸线布置了20个堆垛区,每个堆垛 区配备了1台ARTG用于集装箱的装 卸作业,在ARTG对集卡作业时采用 ARTG在特定阶段进行自动化作业。 当ARTG自动作业阶段完成后,会将 作业控制交由远程中控室(ROC)的 远程控制台进行手动操作。当ARTG 对集卡进行装箱时, 在任务开始后, 中控室开启ARTG的自动运行模式, ARTG会自动运行到堆垛区合适的位 置并抓取待装的集装箱, 然后ARTG 自动移动大车、小车到目标车道上 方,并将吊具下降至安全高度(离地 约6m),此时切换到手动控制,由中 控室操作员在现场视频监控画面的指 导下手动进行集卡对箱和装箱,装箱 完毕后将吊具上升至安全高度,返回 自动模式,等待新的装箱作业。

远程作业系统相当于把传统的轮 胎式龙门起重机操作室搬到了远程中 控室内,并将其改造成自动化轮胎式 龙门起重机,操作员不需要在起重机 上作业,为操作人员创造了良好舒适 的工作环境。

3.ARTG相关土建结构及钢结构实施

3.1集装箱堆场布置概述

堆场以中间纵向车道分两个区布 置,每个区布设10个堆垛区(行号AB CDEFGHJK), 共20各堆垛区, 每2个堆垛区为一个单元进行自动化 设置(分5组AB/CD/EF/GH/JK)。

以东侧堆场A、B行功能单元为例,此 功能区沿着集装箱底座基础外边沿 设置围栏,将其围挡封闭仅在两堆垛 中间ARTG跑道梁处设置大门及门 禁系统。功能单元包含2个堆垛区分 别为A行和B行,每个标准堆垛区可对 方38×6个标准集装箱, 堆垛两侧设 置1.5宽的ARTG跑道梁,两堆垛中 间2条ARTG跑道梁之间留设2m空 间安装ARTG滑触线配电钢支架。在 A堆垛区北侧ERTG跑道梁及B堆垛 区南侧ERTG跑道梁内设置大车定位 磁钉。

3.2ARTG跑道梁施工

ARTG跑道梁作为起重机的承重 结构, 其设计方案和施工工艺均通过 多个项目实际检验都很成熟。沙面找 平、夯实及压实度验收, 标高控制; 铺 设150mm级配碎石、夯实验收压实 度; 铺设240mm厚水稳层, 分两次铺 设,每次120mm厚,跑道梁基础施 工完成。跑道梁钢筋混凝土施工,模 板采用成型钢模,钢筋在加工场地预 制成型现场绑扎、预留磁钉安装孔、 C30混凝土浇筑、养护达到设计强度 要求方可驶入ARTG。

施工过程需要注意事项: ARTG 跑道梁基础压实时如遇软基, 应实时 换填保证基础承载力; 磁钉安装要求 其半径120mm范围内无金属,为确 保磁钉信号不受干扰,在跑道梁中预 留直径240mm深120mm圆孔, 待磁 钉安装前使用专用二次浇筑料浇筑后 钻孔安装。

3.3ARTG滑触线支架钢构安装

因ARTG自动纠偏系统参照物固 定在滑触线钢支架上, 顾其安装精度 要求高应在±3mm内,且单条支架 全长252m, 所以其安装精度控制为 难点关键点。使用全站仪精准放点, 误差控制在±2mm内, 放样每个立 柱中心点,以中心点为基准准确打螺 栓孔, 埋设螺栓待粘结剂凝固安装立 柱, 安装导轨, 再安装二次立柱; 调平 立柱和导轨使其保证直线度, 安装反 射板基板、安装反射板; 安装电源滑 触线、安装SMGX滑触线。电源箱接 入电房, SMGX接入自控中心, 起重 机通过自动伸缩手臂与滑触线接通电 源和通信系统。

4.ARTG本机系统

4.1大车定位及纠偏系统 (TSS)

大车移动自动控制需要在ARTG 移动电源取电臂侧的滑动电源母线支 架上布置反射板,在ARTG另一侧跑 道梁结构内精确预设磁钉。在ARTG 对应位置安装探测读取装置,读出预 设的磁钉或参照物, 通过纠偏系统的 测算, 执行机构的动态纠偏来控制大 车的纠偏运行,从而保证ARTG运行 在轨道的跑道内。大车位置自动控制 通过探测器对磁钉和参照物的探测计 算处理得出当前位置, 计算出目标位 置的剩余距离和目标位置的标志物来 综合控制大车的行走速度和距离。

4.2 吊具位置检测系统 (SDS)

吊具位置检测系统通过一系列探 测器,实时将吊具位置信息传导给自 动化起重机控制系统, 实时计算吊具 的高度、水平面旋转角度、倾斜角度、 摇摆角度、小车方向位移和大车方向 位移(见图1),作为对吊具进行微调 的依据,并将偏差反馈给电气控制系 统,实现对吊具的安全可靠的控制。

4.3目标位置检测系统 (TDS)

目标位置检测系统通过安装在 小车底部的两个3D激光扫描仪实现 对集装箱底座上固定的开底反射装置 (贝位)、集装箱堆叠高度、集装箱尺 寸、集装箱之间间隙、起重机下集卡 位置的精准识别, 实时传导至自动化 起重机控制系统, 为吊箱运动轨迹提 供依据。

4.4吊具定位系统(LPS)

吊具定位系统由目标位置检测系 统TDS和吊具位置检测系统SDS组合 实现, TDS 检测目标集装箱的位置, SDS检测吊具与目标集装箱的偏差。 结合两个系统完成准确的叠箱。经探 测器和处理器给出目标箱上边缘(或 开底标志) 及吊箱下边缘并计算出两 者的相应值及目标箱上边缘及吊箱与 标准点的水平距离。ARTG会因小车 移动、箱体过重等造成轮胎或本体变 形或振动, 另外吊具是绳索吊箱, 会 有小车移动或风力等外力因素导致振 动的情况。探测器快速检测出以上外 力影响的偏差值, 检测出吊箱和目标 箱的实际距值, 为高精度的运动控制 提供精确数据。控制并尽可能达到吊 箱堆放与电子眼检测出目标距离差为 零,使吊箱向目标箱上方堆放整齐。

4.5小车防撞系统 (TSS)

小车防撞系统利用安装在有轨电 车(小车)平台上的两台激光扫描仪。 实时扫描小车方向上的集装箱堆垛轮 廓和障碍物。PLC对接收到的信息进 行识别处理,选择大车、小车及吊具 的最优路径,避开运动轨迹上的障碍 物,有效地防止碰撞。

5.视频监控系统(CCTV)

每台ARTG都配置了视频监控系 统(CCTV)。视频监控系统由ARTG 上安装的20个摄像头、数据传输装 置、视频处理装置、监控显示设备等

图1 吊具位置检测系统 (SDS)

组成。在ARTG上特定位置配置了3 个变焦摄像头、4个探测摄像头、13个 半球形主摄像机。这些摄像头可以在 任何天气条件下监控ARTG周围的环 境,帮助操作员在远程操作控制室内 对ARTG的可视远程操控。

6.结束语

综上所述, 泰国和黄项目D1码头 堆场成功实现自动化轮胎式龙门起 重机远程操控, 为集装箱码头装卸系 统开辟了新的思路,为港口的发展确 立新的经济增长点。全系统使用电驱 动,体现低成本、高效益、节能减排、 降能增效、绿色环保的世界大趋势, 因此自动化轮胎式龙门起重机远程操 控的运用十分值得推广。▼

[1]刘广红,程泽坤,林浩.自动化集装箱码头总 体布置[J].水运工程,2013(10):73-78. [2]陆青.GPS在集装箱轮胎龙门起重机上的应用 [J]. 港口装卸, 2001(01):10-11.