Chapter 2 Linear Regression

• Regression: Algorithm to predict a Response variable $y \dots$

• based on a set of REGRESSORS or EXPLANATORY VARIABLES

	Sales	
	(Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

• Regression: Algorithm to predict a response variable y...

 based on a set of regressors or explanatory variables

X(k) - Regressor y(k) - Response Sales Advertising Year Euro) (Million Euro) 23 651 762 26 856 1,063 1,190 1,298 1,421 1,440 1,518 58

• In general the regressor $\overline{\mathbf{X}}$ can be an

n —dimensional vector

• x_1 is the cost of

• x_2 is the cost of _____

and so on....

2: Newspaper

<u> </u>	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

• In general the regressor $\bar{\mathbf{X}}$ can be an n —dimensional vector

• x_1 is the cost of TV advertising

• x_2 is the cost of Radio advertising and so on....

y(k) x,(k) x,(k) x,(k)

		TV	Radio	Newspaper	Sales
,	0	230.1	37.8	69.2	22.1
k /		44.5		45.1	10.4
	2	17.2	45.9	69.3	9.3
	3	151.5	41.3	58.5	18.5
	4	180.8	10.8	58.4	12.9

7)	TRADIO Radio Newspaper 23

- In general the regressor $\overline{\mathbf{x}}$ can be an n —dimensional vector
 - x_1 is the cost of TV advertising
 - x_2 is the cost of Radio advertising and so on....

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Regression: Other Examples

- Example 1
- y(k) = Price of particular stock at time k
 - $x_1(k), x_2(k), ..., x_N(k)$: Prices of related stocks at time k

Linear Regression Model Bias. **Linear Regression Model**

$$y(k) = h_0 + h_1 x_1(k) + h_2 x_2(k) + \cdots + h_n x_n(k) + \varepsilon(k)$$

$$= \left[\begin{array}{ccc} \chi_{1}(k) & \chi_{2}(k) & \chi_{n}(k) \end{array} \right] \begin{array}{c} \chi_{n}(k) & \chi_{n}(k) \end{array} + \underbrace{E(k)} & \underbrace{Model} \\ \chi_{1}(k) & \underbrace{\chi_{n}(k)} & \chi_{n}(k) \end{array} \right] \begin{array}{c} \chi_{1}(k) & \chi_{n}(k) & \chi_{n}(k) \end{array}$$

$$= \overline{\chi}^{T}(\lambda).\overline{\lambda} + C(k)$$

Linear Regression Model

$$y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$$

$$= \begin{bmatrix} 1 & x_1(k) & x_2(k) & \dots & x_n(k) \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_n \end{bmatrix} + \epsilon(k)$$

$$y(k) = \overline{\mathbf{x}}^T(k)\overline{\mathbf{h}} + \epsilon(k)$$

$$y(k) = \overline{\mathbf{x}}^T(k)\overline{\mathbf{h}} + \epsilon(k)$$

• This is termed Linear Regression
• No. M. And are termed the

Regression coefficients

Learn the Regression vegficient ve dor

- This is termed **Linear Regression**
- $h_0, h_1, ..., h_n$ are termed the Regression coefficients

Training Data

- The regression coefficients can be computed as follows
- Consider the availability of tammy

Pairs
$$(y(k), \bar{\mathbf{x}}(k))$$

• for k = 1, 2, ..., M

$$y(1)$$
, $\overline{\chi}(1)$
 $y(2)$, $\overline{\chi}(2)$
 $y(M)$ $\overline{\chi}(M)$

Training Data

- The regression coefficients can be computed as follows
- Consider the availability of <u>training</u> pairs $(y(k), \bar{\mathbf{x}}(k))$
 - for k = 1, 2, ..., M

Model Computation

• The training set can be expressed as

Model Computation

• The training set can be expressed as MReymes M

Least Squares

$$\overline{y} = Xh + \overline{\epsilon}$$

$$\overline{Squares}$$

$$\overline{E} = \overline{y} - Xh$$

$$\overline{y} = Xh + \overline{\epsilon}$$

$$\overline{Squares}$$

$$\overline{Squares}$$

$$\overline{y} = Xh + \overline{\epsilon}$$

Least Squares

Model Computation

• The regression coefficients are

• The regression coefficients are

Regression weff

given as

$$\bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \bar{\mathbf{y}}$$

$$\left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \right)^{-1} \left(\begin{array}{c} \\ \\ \end{array} \right)^{-1} \left(\begin{array}{c} \\ \\ \end{array} \right) = \boxed{\bot}$$

The Boston Housing Dataset

- The Boston Housing Dataset is a derived from information collected by the U.S. Census Service
- Concerning housing in the area of Boston MA.

The following describes the dataset columns:

• CRIM - per capita crime rate by town

- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)

M - average number of rooms per dwelling

GE - proportion of owner-occupied units built prior to 1940

- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per_\$10,000
- PTRATIO pupil-teacher ratio by town
- MEDV Median value of owner-occupied homes in \$1000's

-CrimeRate

Humber of rooms

Response

Regressors.

```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
import pandas as pd
```

```
BosData = pd.read_csv('BostonHousing.csv')
        X = BosData.iloc[:,0:11]
        y = BosData.iloc[:, 13] # MEDV: Median value of owner-occupied homes in $1000s
   10
                                       Read CSV File
Boston housing data
Regression vector Median home price mean Regression vector
```

```
X_train, X_test, y_train, y_test =\
          train_test_split(X, y, test_size = 0.2,\random_state=5)
    13
         reg = LinearRegression()
    14
        reg.fit(X train, y train)
    15
Linear Regression)
module
        FitsLinear Regression model For training set
```

```
y_train_predict = reg.predict(X_train)
    rmse = np.sqrt(mean_squared_error(y_train,y_train_predict));
18
    r2 = r2_score(y_train, y_train_predict)
19
20
```

```
y_test_predict = reg.predict(X_test)
25
    rmse = (np.sqrt(mean_squared_error(y_test, y_test_predict)))
26
    r2 = r2_score(y_test, y_test_predict)
27
    print('Test RMSE =', rmse)
28
    print('Test R2 score =', r2)
29
30
                                   compute R2 8 corefortest
```

Train RMSE = 5.511467677842388 Train R2 score = 0.6463832866583819

Test RMSE = 4.287105260205546 Test R2 score = 0.7652527354155101

In [9]:

Training set

7 Test Set Instructors may use this white area (14.5 cm / 25.4 cm) for the text. Three options provided below for the font size.

Font: Avenir (Book), Size: 32, Colour: Dark Grey

Font: Avenir (Book), Size: 28, Colour: Dark Grey

Font: Avenir (Book), Size: 24, Colour: Dark Grey

Do not use the space below.