

Filtering (Exercices)

1 Filtering Constraints

1.1 Filtering allDifferent

1. For a Sudoku block, we have the following constraint allDifferent($x_{00}, x_{01}, \ldots, x_{22}$):

Sudoku Block

3	12	29
156	8	26
679	4	19

Which values can be removed when enforcing AC?

2. For a Sudoku block, we have the following constraint allDifferent($x_{00}, x_{01}, \ldots, x_{22}$):

Sudoku Block

3	126	1256
156	8	126
1256	4	125 679

Which values can be removed when enforcing AC? What can you conclude?

1.2 Filtering sum

1. Let the constraint:

$$2x_1 + 3x_2 + 2x_3 + x_4 + 4x_5 + 2x_6 \ge 50$$

with $\forall i \in 1...6, dom(x_i) = \{1, 2, 3, 4\}.$

Which values can be removed when enforcing AC?

2. Let the constraint:

$$12 \ge 2x_1 + 2x_2 + x_3 \ge 9$$

with
$$\forall i \in 1..3, dom(x_i) = \{1, 2\}.$$

Which values can be removed when enforcing AC? You will build a Knapsack graph, its reduced version and the corresponding MDD.

1.3 Filtering Arithmetic Constraints

Let the ternary constraint x < y + z

- 1. Identify BC filtering rules for each variable with respect to the min and max bounds of the other variables (in order to establish AC).
- 2. Assuming that $dom(x) = \{4, 5, 6, 7, 8\}$, $dom(y) = \{0, 1, 2, 3\}$ and $dom(z) = \{2, 3\}$, indicate which values are removed when enforcing AC on x < y + z.

1.4 Filtering Logical Combinations

1. Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2, ..., 10\}$. Indicate what is the AC filtering achieved by the meta-constraint:

$$\operatorname{or}(x+7 \le y, y+6 \le x)$$

2. Let w, x, y and z four variables such that $dom(w) = dom(x) = dom(y) = dom(z) = \{a, b, c\}$. Indicate what is the AC filtering achieved by the meta-constraint:

$$\operatorname{and}(c_{wxy},c_{xyz})$$

where (the relations of) c_{wxy} and c_{xyz} are defined as follows:

\overline{w}	x	y
a	b	c
b	c	a
c	b	b
c	c	b
a	a	a
(a) 1	col(c)
(a) 1	er (c	wxy)

1.5 Filtering Bounds

Assuming that domains are totally ordered by a relation <, the minimum and maximum values of the current domain of a variable x are respectively denoted by min(x) and max(x). For example, for $dom(x) = \{2, 3, 5, 8\}$, min(x) and max(x) are equal to 2 and 8, respectively.

A bound support on a constraint c is a tuple τ such that $\tau \in rel(c)$ and $\forall x \in scp(c)$, $min(x) \le \tau[x] \le max(x)$. A support on a constraint c is a tuple τ such that $\tau \in rel(c)$ and $\forall x \in scp(c)$, $\tau[x] \in dom(x)$.

• A constraint c is bound(Z)-consistent, or BC(Z), iff $\forall x \in scp(c), (x, min(x))$ and (x, max(x)) belong to a bound support on c.

2

- A constraint c is bound(D)-consistent, or BC(D), iff $\forall x \in scp(c), (x, min(x))$ and (x, max(x)) belong to a support on c.
- A constraint c is range-consistent, or RC, iff $\forall x \in scp(c), \forall a \in dom(x), (x, a)$ belongs to a bound support on c.

Let P be a CN such that:

```
• vars(P) = \{x_1, \dots, x_6\} where:

- dom(x_1) = \{1, 2\},
- dom(x_2) = \{1, 2\},
- dom(x_3) = \{2, 3, 5, 6\},
- dom(x_4) = \{2, 3, 5, 6\},
- dom(x_5) = \{5\},
- dom(x_6) = \{3, 4, 5, 6, 7\},
• ctrs(P) = \{\text{allDifferent}(x_1, x_2, x_3, x_4, x_5, x_6)\}
```

Give the result (state of domains) of applying on P an algorithm enforcing:

- 1. BC(Z)
- 2. BC(D)
- 3. RC
- 4. AC

1.6 Filtering Multi-valued Decision Diagrams

You have to write an algorithm that enforces (generalized) arc consistency on MDD constraints. We will use an approach similar to STR, recording arc-consistent values while exploring the structure of the constraint (here, an MDD). The skeleton of the algorithm is:

```
Algorithm 0: enforceAC(c: MDD Constraint)
```

Concerning notations, we shall use:

- mdd(c) for denoting the root node of the MDD associated with a constraint c
- sink(c) for denoting the sink node of the MDD associated with a constraint c
- with ν denoting a node in the MDD,
 - $-var(\nu)$ denotes the variable associated with the level of the node ν

- $-arcs(\nu)$ denotes the set of outgoing arcs from node ν
- with α denoting an arc in the MDD,
 - label(α) denotes the value labelling the arc α
 - $-target(\alpha)$ denotes the node that represents the destination of the arc α
- 1. in a first step, write a basic algorithm
- 2. in a second step, avoid exploring several times the same nodes during exploration

2 Constraint Propagation

2.1 Exercice

The following code describes a model written in PyCSP³. Give the AC-closure of this constraint network.

2.2 Exercice

The following code describes a model written in PyCSP³. Simulate the process of constraint propagation (AC-closure) on this constraint network.

```
from pycsp3 import *

x = Var(1,2,3,4)
y = Var(2,3,4)
z = Var(2,3)

satisfy(
    x + 2*y - z <= 4,
    AllDifferent(x,y,z)
)</pre>
```