Lecture-02

Image Processing

standard image processing operators

- · point operators
 - · manipulate each pixel independently of its neighbors
- · neighborhood (area-based) operators
 - new pixel's value depends on a small number of neighboring input values

Point Operators-Histogram equalization

· Image Histogram

- · a histogram is the estimation of the probability distribution of a particular type of data.
- · An image histogram is a type of histogram which offers a graphical representation of the tonal distribution of the gray values in a digital image.

Histogram Equalization

- · The purpose of a histogram-based operation is that
 - when a grey-level transformation is made, pixels in the image having a specific range of grey levels can be enhanced or suppressed.
 - · This is also called contrast adjustment.
- · It can be done using:
 - · histogram stretching
 - · histogram compression

Histogram Equalization

$$P_1 = (f_{min}, g_0)$$
 $P_2 = (f_{max}, g_0)$
 $\frac{9-9}{F-f_1} = \frac{92-91}{F2-f_1} = m$
 $m = \frac{255-0}{F_{max}-f_{min}}$
 $\frac{9-0}{F-f_0} = m \Rightarrow g = m \cdot (f_{min})$

• Let the pixel value
$$f(x,y) = r$$
 $h(r)$: pumber of pixels that
$$m = \frac{255}{(h_{max} - h_{min})}$$

$$h_e(r) = \begin{cases} m \times (h(r) - h_{min}) & h_{min} < h(r) \le h_{max} \\ \hline 255 & h(r) > h_{max} \end{cases}$$

- The intensity values in an image can be regarded as random variables that can have any value between 0 and L-1. 255
- This random event has a so called cumulative distribution function (CDF) associated to itself.
- This function describes the likelihood that the random variable will be assigned a value less or equal to a specific value.

$$cdf(i \le t) = \sum_{k=1}^{t} p_k$$

describes the CDF for the probability that a pixel has the intensity equal or lower than t.

• The probability that a random pixel has the intensity value k is the number of pixels with the intensity k divided by the total number of pixels, as shown in the following equation.

$$p_k = \frac{amount\ of\ pixels\ with\ intensity\ k}{total\ number\ of\ pixels}$$

6	2	3	4	5
5	5	6	7	5
5	6	4	8	6
4	7	4	3	4
8	5	6	3 6	7

The goal is to create some transformation s=T(i) that creates a
new image with a histogram more resembling

6	2	3	4	5
5	5	6	7	5
5	6	4	8	6
4	7	4	3	4
8	5	6	6	7

Intensity Frequency 0 0 1 0 2 1 3 2 4 5 5 6 6 6 7 3 8 2 9 0		
1 0 2 1 3 2 4 5 5 6 6 6 7 3 8 2	Intensity	Frequency
2 1 3 2 4 5 5 6 6 6 7 3 8 2	0	0
3 2 4 5 5 6 6 6 7 3 8 2	1	0
4 5 6 6 6 7 3 8 2	2	1
5 6 6 7 3 8 2	3	2
6 6 · 3 8 2	4	5 <
7 3 8 2	5	6
8 2	6	6
	7	3
9 0	8	2
	9	0

$$P_0 = \frac{0}{25} = 0$$
 $P_1 = \frac{0}{25} = 0$ $P_2 = \frac{1}{25} = 0.04$ $P_3 = \frac{2}{25} = 0.08$ $P_4 = \frac{5}{25} = 0.2$

$$P_5 = \frac{6}{25} = 0.24$$
 $P_6 = \frac{6}{25} = 0.24$ $P_7 = \frac{3}{25} = 0.12$ $P_8 = \frac{2}{25} = 0.08$ $P_9 = \frac{0}{25} = 0.08$

$$s = T(i) = floor((L-1) * \sum_{k=0}^{i} p_k) = floor(9 * \sum_{k=0}^{i} p_k)$$

Intensity	Frequency
0	0
1	0
2	1
3	2
4	5
5	6
6	6
7	3
8	2
9	0

$$P_5 = \frac{6}{25} = 0.24$$
 $P_6 = \frac{6}{25} = 0.24$ $P_7 = \frac{3}{25} = 0.12$ $P_8 = \frac{2}{25} = 0.08$ $P_9 = \frac{0}{25} = 0$

$$s = T(i) = floor((L-1) * \sum_{k=0}^{i} p_k) = floor(9 * \sum_{k=0}^{i} p_k)$$

7	0	1	2	5
5	5	7	8	5
5	7	2	9	7
2	8	2	1	2
9	5	7	7	8

					_
105	102	100	97	96	
103	99	103	101	102	7
101	98	104	102	100	
99	101	106	104	99	T d
104	104	104	100	98	
		_			1

· Let's start with the sharpening kernel which is defined as:

$$k = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

	0	0	0	0	0	0
	96	97	100	102	105	0
	102	101	103	99	103	0
	100	102	104	98	101	0
7	99	104	106	101	99	0
	98	100	104	104	104	0
	-				7	9

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$0*0+105*-1+102*0+0*-1+103*5+99*-1+0*0+101*-1+98*0 = 210$$

Output Matrix

linear Operation

• Given a filter kernel H, the convolution of the kernel with image F is an image R. The i, j'th component of R are given by:

$$R_{ij} = \sum_{u,v} H_{i-u,j-v} R_{u,v}$$

Smoothing by Averaging

Kernel=
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 6 & 1 & 5 \\ 1 & 4 & 4 \end{bmatrix} * \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 3$$

