Cubical Types

by Sven Nilsen, 2020

In this paper I show that there is a way of modeling cubical types in Path Semantical Logic.

A cubical type^[1] means a relation that behaves like the interior of an N-cube^[2] compared to its exterior. The exterior of an N-cube consists of a hierarchy of N-1-cubes, N-2-cubes and so on, down to 0-cubes. A 0-cube is just a point. A 1-cube is an edge. A 2-cube is a surface. A 3-cube is a normal cube etc.

When one refers to the interior of an N-cube as a set, the exterior is not included in the set. The relation representing the interior of an N-cubical type should not imply exterior relations.

To model N-cubes in a logic means points are propositions^[3], e.g. `a` or `b`. An edge is an equality between two propositions `a=b`. An equality can be `true` without the propositions connected by the equality being `true`. Therefore, a 3-cube is modeled as:

$$((x_{000}=x_{100})=(x_{010}=x_{110}))=((x_{001}=x_{101})=(x_{011}=x_{111}))$$

One can prove in normal Propositional Logic that:

$$(a=b)=(c=d)$$
 = $(a=c)=(b=d)$

This trick works in general for any N-cube. So, it does not matter which order one is modeling the vertices of the cube. Any permutation will suffice.

In Path Semantical Logic^[4], all propositions are assigned to a level, where:

- Level 0 types (usually) starting with a small letter, e.g. `T`
- Level 1 variables (usually) starting with a big letter, e.g. `x`

To model a cubical type means transporting the N-cube relation from level 1 to 0:

- 1. One needs a model of the N-cube in level 1
- 2. One needs an abstract transport^[5] model of the N-cube from level 1 to 0

The proof is as following:

The notation x(T) means x=T where T is at a lower level.

One can also check that no parts of the exterior relations are provable, hence proving the interior type only and therefore modeling cubical types.

References:

- [1] "cubical type theory"
 nLab
 https://ncatlab.org/nlab/show/cubical+type+theory
- [2] "Hypercube"
 Wikipedia
 https://en.wikipedia.org/wiki/Hypercube
- [3] "Propositional calculus"
 Wikipedia
 https://en.wikipedia.org/wiki/Propositional_calculus
- [4] "Path Semantical Logic"
 AdvancedResearch, reading sequence on Path Semantics
 https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic
- [5] "Concrete and Abstract Transport"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/concrete-and-abstract-transport.pdf