

CoVault: Secure, Scalable Analytics of Personal Data

Roberta De Viti¹, Isaac Sheff¹, Noemi Glaeser²⁴, Baltasar Dinis³, Rodrigo Rodrigues³, Bobby Bhattacharjee⁴, Anwar Hithnawi⁵, Deepak Garg¹, Peter Druschel¹ ¹MPI-SWS | ²MPI-SP | ³IST (ULisboa), INESC-ID | ⁴UMD | ⁵ETH Zürich

1. Secure Analytics

Society can benefit from large-scale analysis of personal data Opportunity: Improvement of human life and billions in savings through data-driven innovations

Barrier: Privacy, trust, and scale issues

Challenge: Given the high sensitivity of this data, a system must provide:

Confidentiality

Integrity of Results

2. Current designs

TEE-Based Systems

The TEE HW vendor is a single root of trust (possible compromise)

MPC-Based Systems

Geographically separated datacenters

Trust is distributed among parties, which are geo-separated for noncollusion assumptions to hold

3. CoVault design

Unlocks datacenter-scale MPC

Key: Trust distributed among diverse TEE HW vendors

Colocated in a single datacenter

Diverse TEE vendors

Non-collusion without geo-separation

Colocation enabled

High bandwidth b/w parties

4. CoVault architecture

Server-aided MPC + Diverse TEEs enable colocation and scaling

5. Horizontal scaling

Beyond the bandwidth bottleneck: Core parallelism

Map-Reduce Primitives in MPC: Filter, Sort, Merge, Compact

Side-Channel Mitigation:

Pad variable-length communication

6. Oblivious Data Retrieval

Hides patterns of random array accesses with private indexes

Faster than ORAM, with constant query time

7. Epidemic Analytics Scenario

Query Performance with Millions of Records

Minute-scale query execution on large datasets, enough for the applications that we target

Extrapolation: from Millions to Billions of Records

Assumption: a person has 200 encounters/day, so a country the size of Germany (80M people) generates a total of 11.85B records/day

Setup: Intel TDX and AMD SEV-SNP TEEs in Google Cloud