Homework 5 (Due Sept 22, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

October 1, 2023

Justify all of your answers completely.

1. Prove every open ball B(a,r) is open.

Proof. Let $b \in B(a,r)$. Then d(a,b) < r. Let $\rho = r - d(a,b)$. Let $b' \in B(b,\rho)$. Then $d(b,b') < \rho \implies d(b,b') + d(a,b) < r$. Since $d(a,b') \le d(a,b) + d(b,b')$ by the triangle inequality, we get d(a,b') < r. So $b' \in B(a,r)$.

So $B(b, \rho) \subseteq B(a, b)$, which means B(a, r) is open.

2. Prove for any $a \in E$ and r > 0 the set $U = \{x \in E : x \notin \overline{B}(a, r)\} = \{x \in E : d(x, a) > r\}$ is open.

Proof. Let $b \in U$. Then d(a,b) > r > 0. Let $\rho = d(a,b) - r$.

Let $b' \in B(b, \rho)$, so $d(b, b') < \rho$. By rearranging the triangle inequality, $d(a, b') \ge d(a, b) - d(b, b')$.

Then $d(b,b') < \rho \implies d(a,b) - d(b,b') > r$. Using the triangle inequality, we get d(a,b') > r. So $b' \in U$.

So $B(b, \rho) \subseteq U$, which means U is open.

3. Let $\{U_{\alpha} : \alpha \in A\}$ be a possibly infinite collection of open subsets of E. Prove that the union

$$U\coloneqq\bigcup_{\alpha\in A}U_\alpha$$

is open.

Proof. Let $a \in U$. Then $a \in U_{\alpha}$ for some $\alpha \in A$. Since U_{α} is open, then $\exists r \text{ s.t. } B(a,r) \subseteq U_{\alpha}$. Since U is comprised of the unions of sets, $U_{\alpha} \subseteq U$. So $B(a,r) \subseteq U$. This means U is open.

4. Let $U_1, \ldots, U_n \subseteq E$ be a finite collection of open subsets of E. Prove that the intersection

$$U = U_1 \cap \ldots \cap U_n$$

is open.

Proof. Let $a \in U$. Then $\forall j \in [n], a \in U_j$. So $\forall j \in [n], \exists r_j > 0$ s.t. $B(a,r_j) \subseteq U_j$. Let r be the $\min(r_1,\ldots,r_n)$. Then $B(a,r) \subseteq B(a,r_j)$ for every j. So $B(a,r) \subseteq U_j$ for every j, which means $B(a,r) \subseteq U$. So U is open.

5. Let $U_n = (-1/n, 1/n)$ in \mathbb{R} . Show

$$U = \bigcap_{n=1}^{\infty} U_n = \{0\}$$

and therefore the intersection is not open.

Proof. $U_n = (-1/n, 1/n)$ is equivalent to $U_n = B(0, 1/n)$.

BWOC, let $x \in U$ not be 0. WLOG, let x be positive.

So then $\forall n \in \mathbb{N}$, x < 1/n. This violates Archimedes' axiom (small version). So then x cannot be positive (and not negative since same can be said for -x).

x = 0 does work since 1/n will always be a nonzero number.

So $U = \{0\}$. Since it is a singleton set, there is no way for it to be open, trust me.