

一、特性描述

TM1680是一种存储器交换LED显示控制的驱动芯片,可以选择多重的ROW/COM模式(32ROW/8COM和24ROW/16COM),可以用来驱动点阵 LED。该芯片提供了软件设置的 16 个级别的脉宽调制控制输出,可以调整 LED 循环显示的亮度。利用串行接口(I2C通信接口)串行输入的方式,可以便捷地进入命令模式(COMMAND MDOE)和数据模式(DATA、MODE),只需要简单的命令就可以建立起主控芯片和 TM1680的通信。通过 TM1680 便可以进行持续的输出显示,在 LED 灯的显示中具有广泛的应用性,如工业仪表控制,数字钟/温度计/计数器/电压表显示,仪表数据的读出,LED显示,智能手环等应用。本产品性能优良,质量可靠。

二、功能特点

- ➤ 工作电压2.4~5.5V
- ➤ 32ROW*8COM 和 24ROW*16COM 两种显示方案可选
- ▶ 综合显示存储器——64*4显示RAM(32ROW*8COM), 96*4显示RAM(24ROW*16COM)
- ▶ 16 个级别脉宽调制控制亮度
- ▶ 内置 256KHz RC振荡器
- ➤ I2C接口 (SDA、SCL) 通讯
- ▶ 数据模式和命令模式指令
- ▶ 可选的 NMOS 输出渠道和PMOS 输出渠道
- ▶ 封装形式: LQFP48、LQFP52

三、内部结构框图

四、管脚排列

五、管脚功能

管脚名称	管脚序号	I/0	功能说明
VDD	21	-	芯片逻辑电源正极
VSS	14	-	芯片逻辑电源负极
LED_VDD	7/38	=	LED驱动电源正极,必须和21脚VDD接相同电压
LED_VSS	25/36	-	LED驱动电源负极,接VSS
ROWO∼ ROW23	$1\sim6/8\sim$ $13/41\sim52$	0	LED行驱动输出
ROW24/COM1 5~ ROW31/COM8	31~ 35/37/39/40	0	LED行驱动输出端或者公共输入端
COMO~COM7	22~24/26~30	0	LED公共输入端
SYNC	20	I/0	如果主触发模式或者外部扩展触发模式被选择,则同步信号 将从SYNC引脚输出:如果选择被动模式,则同步信号将从SYNC 引脚输入。
OSC	15	I/0	RC振荡主触发模式被选择时,系统时钟由片内RC振荡产生,并且从OSC管脚输出;如果被动模式或者外部扩展触发模式被选择,则系统时钟由OSC 脚从外部输入。
AO	19	Ι	从机地址扩展位,已内置上拉电阻。
A1	18	Ι	从机地址扩展位,已内置上拉电阻。
SCL	17	Ι	I2C通讯时钟输入,在SCL信号上升沿时,SDA线上的数据被写进TM1680,已内置上拉电阻。
SDA	16	I/0	I2C通讯数据输入/输出端口,应用时需要外接上拉电阻。

***备注:** 上表中的管脚序号,以LQFP52封装为例。不同的封装,脚位有所不一样,详情请参考管脚排列图。48PIN封装的显示方式只有24*8。

六、输入输出等效电路

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

七、电气参数

7.1 极限参数

参数名称	参数符号	极限值	单 位
逻辑电源电压	VDD	VSS−0.3V ~ VSS+6V	V
输入端电压范围 SDA, SCL, OSC, SYNC	Vin	VSS-0.3∼VDD+0.3	V
工作温度范围	Topt	-40∼+85	$^{\circ}$ C
储存温度范围	Tstg	−55~+125	$^{\circ}$ C

⁽¹⁾ 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。

7.2 推荐工作条件

参数名称	参数符号	最小值	典型值	最大值	
工作电压	VDD	2.4	5.0	5. 5	V
输入低电平电压	Vil	0	-	0.3VDD	V
输入高电平电压	Vih	0.7VDD	ı	5	V

⁽²⁾ 所有电压值均相对于系统地测试。

7.3 DC电气特性

在 VDD=2.4~ 5.5	N 及 Ta=+25°		单位				
参数名称	参数符号	VDD	测试条件	最小值	典型值	最大值	
工作电流	IDD	5. OV	片内 RC, 空载, 开显示		0.3	0.6	mA
待机电流	ISTB	5. OV	省电模式,空载		0.1	10	μА
OSC, SYNC, SDA 灌	IOL1	5. OV	Vol=0.5V	18	25	-	mA
OSC, SYNC, SDA 拉	IOH1	5. OV	Voh=4.5V	-10	-13	_	mA
ROW 灌电流	IOL2	5. OV	Vo1=0.5V	12	16	-	mA
ROW 拉电流	IOH2	5. OV	Voh=4.5V	-50	-70	_	mA
COM 灌电流	IOL3	5. OV	Vol=0.5V	250	350	_	mA
COM 拉电流	IOH3	5. OV	Voh=4.5V	-45	-60	-	mA
上拉电阻	Rph	5. OV	SDA, SCL, OSC, SYNC	18	27	40	kΩ

7.4 开关特性

工作温度为 25℃	:下测试,阅	*非另有说明	VDD=2. 4V~5. 5V VDD=3. 0V~5. 5V			√°5. 5V	** **
参数名称	参数符 号	测试条件	最小	最大	最小	最大	単位
时钟频率	fSCL	芯片内部时钟	-	100	-	400	kHZ
总线空闲时间	tBUF	总线在下一个 时钟到来之前 的空闲时间	4.7	(-)	1. 3	_	μs
Start 信号保持时 间	tHD:STA	-	4	-	0.6	_	μs
SCL 低电平时间	tLOW	-	4. 7	_	1.3	_	μs
SCL 高电平时间	tHIGH	-	4	_	0.6	-	μs
Start 信号建立时 间	tSU:STA		4. 7	-	0.6	_	μs
数据保持时间	tHD:DAT	-	0	-	0	-	μs
数据建立时间	tSU:DAT		250	-	100	-	ns
SDA/SCL 上升时间	tr	_	1	1	1	0.3	μs
SDA/SCL 下降时间	tf	_		0.3		0.3	μs
Stop 信号建立时间	tSU:STO	_	4		0.6		μs
SDA/SCL 输入时消 噪时间	tSP	消噪时间	_	20	_	20	ns

八、功能描述

8.1显示内存(RAM)

静态显示内存包含64*4位和96*4位两种格式来存储需要显示的数据。 如果模式32ROW/8COM模式被选 择,则RAM的存储空间64*4位:如果模式24ROW/16COM模式被选择,则RAM的存储空间为96*4位。RAM中的 数据直接映射到LED显示驱动器,如果RAM的数据设置为"1"则对应LED将被点亮。下图5和图6给出的是 RAM到LED的映射图:

图5

24 ROW & 16 COM for 96×4 Display RAM 图6

8.2 系统时钟

TM1680的系统时钟用来产生系统工作的时钟频率。LED 驱动时钟、系统时钟可以取自片内的 RC 振 荡器(256KHz)或者使用 S/W 设置由外部时钟输入。系统振荡器构造如图7所示,当SYS DIS命令被执 行时,系统时钟停止,LED 工作循环将被关闭(这条指令只能适用与片内 RC 振荡器)。一旦系统时钟 停止时,LED 显示为空白,时基也会丧失其功能。LED OFF命令用来关闭 LED 工作循环,LED 工作循环 被关闭之后,用 SYS DIS 命令节省电源开支,充当省电命令;如果是片外时钟源被选择的话,使用 SYS DIS 命令不能够关闭振荡器以及执行省电模式。晶体振荡器可以通过OSC管脚提供时钟频率,在这种情 况下,系统将不能进入省电模式。在系统上电时,TM1680 默认处在 SYS DIS 状态下。

8.3 LED驱动

TM1680 含有 256(32*8)和 384(24*16)两种模式的 LED驱动,可以设定成 32*8 或者 24*16 显 示模式,通过COM口输出可以选择 N-MOS 或者 P-MOS 输出渠道。这些特性使得TM1680 可以适应不同的 LED应用场合。LED 驱动时钟源于系统时钟,驱动的时钟一般情况下选择片内RC振荡器 256KHz或者扩展 的外部振荡器。详细设置命令请见命令概述表。

8.4 级联操作

在级联操作时,级联的第一颗芯片设置为主机模式,其管脚SYNC和OSC用作输出;级联的第二片芯 片设置为从机模式,其管脚SYNC和OSC用作输入,并与主机芯片的SYNC和OSC脚连接。TM1680的器件地址 包含2位外部地址选择位A1、A0, 所以最多可以连接4个TM1680到同一总线上。详细设置请参考级联应用 电路图。A1\A0内置上拉电阻,在单独驱动芯片时,A1\A0可悬空,此时TM1680从机地址为0xe7。

8.5 LED驱动模式输出波形

32×8 N-MOS开漏输出驱动模式输出波形如下图所示(Tclk=1/Fsys):

24×16 P-MOS开漏输出驱动模式(Tclk=1/Fsys, COM脚外加晶体管):

8.6 闪光灯

TM1680具有闪烁功能,可以使得所有的LED按一定频率闪烁,闪烁速率可通过Blink命令设置,可以分为2Hz/1Hz/0.5Hz。以下是闪烁频率为2Hz的输出波形:

8.7 亮度调节设置

TM1680可以通过设置ROW端的PWM驱动脉宽进行多种亮度控制。下图11为不同占空比条件下COM和ROW端的输出波形: (1) $T=20 \times Tc \ lk \ (32 \times 8 \ won 模式)$; (2) $T=10 \times Tc \ lk \ (24 \times 16 \ won 模式)$;

8.8 命令格式

本芯片在输入命令或显示数据时,必须按照以下步骤:

- (1) 形成开始条件
- (2) 发送从机地址(Slave Address)
- (3) 命令,显示数据的传送
- (4) 形成停止条件

8.9 I2C串行接口

本芯片由I2C协议2线串行接口来进行数据传送的,包含一个串行数据线SDA和时钟线SCL,两线内置上拉电阻,总线空闲时为高电平。

每次数据传输时由控制器产生一个起始信号,采用同步串行传送数据,TM1680每接收一个字节数据后都回应一个ACK应答信号。发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量不受限制。每个字节后必须跟一个ACK响应信号,在不需要ACK信号时,从SCL信号的第8个信号下降沿到第9个信号下降沿为止需输入低电平"L"。当数据从最高位开始传送后,控制器通过产生停止信号来终结总线传输,而数据发送过程中重新发送开始信号,则可不经过停止信号。

当SCL为高电平时,SDA上的数据保持稳定;SCL为低电平时允许SDA变化。如果SCL处于高电平时,SDA上产生下降沿,则认为是起始信号;如果SCL处于高电平时,SDA上产生的上升沿认为是停止信号。如下图所示:

九、时序图

9.1 写命令操作

如图15所示,从器件的8位从地址字节的高6位固定为111001,接下来的2位A1、A0为器件外部的地址位。

9.2 字节写操作

9.3 页写操作

9.4 写命令+写数据操作

十、应用电路

低功耗LED应用(直接驱动方式): 32ROW*8COM模式举例图19

低功耗LED应用(直接驱动方式): 24ROW*16COM模式举例图20

中功耗LED应用(COM加晶体管驱动方式): 32ROW*8COM模式举例图21

中功耗LED应用(COM加晶体管驱动方式): 24ROW*16COM模式举例图22

大功耗LED应用(ROW和COM加晶体管驱动方式): 32ROW*8COM模式举例图23

大功耗LED应用(ROW和COM加晶体管驱动方式): 24ROW*16COM模式举例图24

级联应用(直接驱动方式): 32ROW*8COM模式举例图25

级联应用(COM加晶体管驱动方式): 32ROW*8COM模式举例图26

级联应用(直接驱动方式): 24ROW*16COM模式举例图27

13

级联应用(COM加晶体管驱动方式): 24ROW*16COM模式举例图28

十一、一般设计流程图

十二、命令概述表:

命令名称	命令代码	D/C	功能描述	默认
WRITE	1110-01A1A0	D	写从机地址	
数据地址(I2C)	0 A6 A5 A4 A3 A2 A1 A0	D	写 RAM 地址	
数据格式(I2C)	$D_{\rm A3}D_{\rm A2}D_{\rm A1}D_{\rm A0}D_{\rm B3}D_{\rm B2}D_{\rm B1}D_{\rm B0}$	D	A3-A0 低四位,B3-B0 高四位	
SYS DIS	1000-0000	С	关闭系统时钟和 LED 循环	√
SYS EN	1000-0001	С	打开系统振荡器	
LED OFF	1000-0010	С	关闭 LED 循环	√
LED ON	1000-0011	С	开启 LED 循环	
BLINK OFF	1000-1000	С	关闭闪烁功能	√
BLINK 2Hz	1000-1001	С	LED 按 2Hz 的频率闪烁	
BLINK_1Hz	1000-1010	С	LED 按 1Hz 的频率闪烁	
BLINK_0.5Hz	1000-1011	С	LED 按 0. 5Hz 的频率闪烁	
SLAVE MODE	1001 0000	С	外置振荡,时钟由 OSC 引脚输	
SLAVE MODE	1001-0XXX		入,同步信号由 SYN 引脚输入	
RC Master		С	内置振荡, OSC 保持低电平,	√
Mode0	1001-100X		同步信号在 SYN 引脚保持高电	
Modeo			平,只应用于单芯片	
RC Master		C	内置振荡,内部频率在 OSC 输	
Mode1	1001-101X		出,同步信号在 SYN 引脚输出	
Model				
EXT CLK		C	外置振荡,时钟由 OSC 引脚输	\checkmark
Master Mode0	1001-110X		入,同步信号由 SYN 引脚保持	
master modeo			高电平,只引用于单芯片	
EXT CLK	1001-111X	С	外置振荡,时钟由 OSC 引脚输	
Master Model	1001 1111		入,同步信号由 SYN 引脚输出	
		C	当 ab=00 时,8COM Nmos;	
COM Option	1010-abXX		当 ab=01 时,16COM Nmos;	
COM OPTION	1010 abax		当 ab=10 时,8COM Pmos;	00
			当 ab=11 时,16COM Pmos;	
		С	abcd 从 0-F 变化分别对应	
PWM Duty	1011-abcd		1/1616/16的LED的16阶辉	F
			度调节	

注.

- 1、X不关心,建议写"0"。
- 2、A6[~]A0显存地址。
- 3、D0~D3显存数据。
- 4、D/C数据/命令模式。
- 5、默认: 上电复位后芯片的状态

十三、封装示意图

LQFP48 7mm*7mm

Dimensions

Item	BL	BW	TL	LW	LP	FT	BT	S0	TH	LL	FL	Θ
表示	总长	胶体宽度	跨度	脚宽	脚间距	脚厚	胶体厚度	站高	胶体高度	单边长	脚长	脚角度
Unit	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	?
Spec	7.10 (7.00) 6.90	7.10 (7.00) 6.90	9.20 (9.00) 8.80	0.200 TYP	0.500 TYP	0.150 (0.127) 0.100	1.45 (1.40) 1.35	0.150 (0.100) 0.050	1.550 Max.	1.10 (1.00) 0.90	0.75 (0.60) 0.45	8 (4) 0

QFP52 14mm*14mm

Dimensions

Item	BL	BW	TL	LW	LP	FT	BT	S0	TH	LL	FL	Θ
表示	总长	胶体宽度	跨度	脚宽	脚间距	脚厚	胶体厚度	站高	胶体高度	单边长	脚长	脚角度
Unit	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	?
Spec	14.10 (14.00) 13.90	14.10 (14.00) 13.90	16.20 (16.00) 15.80	0.400 TYP	1.000 TYP	0.150 (0.127) 0.100	1.45 (1.40) 1.35	0.150 (0.100) 0.050	1.550 Max.	1.10 (1.00) 0.90	0.75 (0.60) 0.45	8 (4) 0

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)