Lemma 0. Let $n \in \mathbb{Z}$. Then $n \mid 0$.

Proof. Let $n \in \mathbb{Z}$ be given. By definition of divisibility, 0 = 0n. Therefore, $n \mid 0$.

1.9 Theorem. Let $a, n \in \mathbb{Z}$ with n > 0. Then $a \equiv a \pmod{n}$.

Proof. Let Let $a, n \in \mathbb{Z}$ with n > 0 be given. Since a - a = 0 and any n > 0 divides 0, by Lemma 0, $n \mid (a - a)$. Therefore, by definition, $a \equiv a \pmod{n}$.