

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen X

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2017-18.

Grupo A.

Profesor Rafael Ortega Ríos.

Descripción Parcial B.

Fecha 27 de abril de 2017.

Ejercicio 1. Encuentra la solución del problema siguiente, indicando el intervalo en el que está definida:

$$y - 4x^3 + (2y + x)y' = 0$$
, $y(0) = -1$.

Ejercicio 2. Encuentra un factor integrante del tipo $\mu(t,x)=m(t)$ para la ecuación

$$2t + t^2x + x\dot{x} = 0.$$

Ejercicio 3. Demuestra que las funciones $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ dadas por:

$$f_1(t) = e^t$$
, $f_2(t) = e^{2t}$, $f_3(t) = e^{3t}$,

son linealmente independientes.

Ejercicio 4. Demuestra que la función $F: \mathbb{R} \to \mathbb{R}$ definida por la integral

$$F(x) = \int_0^1 e^{\theta x^2} \cos^2(\theta) d\theta$$

es derivable y cumple F'(0) = 0.

Definimos la siguiente función auxiliar:

$$G: \mathbb{R} \times [0,1] \longrightarrow \mathbb{R}$$

 $(x,\theta) \longmapsto e^{\theta x^2} \cos^2(\theta).$

Comprobemos en primer lugar que $G \in C^1(\mathbb{R} \times [0,1])$. Esto es directo, por ser producto y composición de funciones de clase C^1 . Entonces, por el Teorema de la Derivación de Funciones dependientes de un Parámetro, la función F es derivable en \mathbb{R} con:

$$F'(x) = \int_0^1 \frac{\partial G}{\partial x}(x, \theta) d\theta.$$

Calculemos su derivada parcial de primer orden respecto de x:

$$\frac{\partial G}{\partial x}(x,\theta) = 2x\theta e^{\theta x^2} \cos^2(\theta)$$

Por tanto, la derivada de F es:

$$F'(x) = \int_0^1 2x\theta e^{\theta x^2} \cos^2(\theta) d\theta$$
$$= 2x \int_0^1 \theta e^{\theta x^2} \cos^2(\theta) d\theta.$$

Evaluando en x = 0 obtenemos:

$$F'(0) = 2 \cdot 0 \int_0^1 \theta e^{\theta \cdot 0^2} \cos^2(\theta) d\theta = 0$$

Ejercicio 5. Dada una función $\ell \in C^1(\mathbb{R})$ que cumple $\ell(t) > 0$ para cada $t \in \mathbb{R}$ se define la transformación del plano

$$\varphi: \quad \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (t,x) & \longmapsto & (t,\ell(t)x). \end{array}$$

Demuestra que el conjunto de estas transformaciones es un grupo de difeomorfismos. Encuentra el subgrupo que deja invariante la ecuación $x' = 2t^2x$.