CHAPITRE 2

Applications linéaires

2.1**Généralités**

Dans tout ce chapitre, E, F désignent des \mathbb{K} - espaces vectoriels.

Définition 2.1 (Application linéaire)

Soient E, F des \mathbb{K} - espaces vectoriels. Une application $f: E \longrightarrow F$ est **linéaire** si :

- i) $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w}), \forall \mathbf{v}, \mathbf{w} \in E \text{ et }$
- ii) $f(\alpha v) = \alpha f(v), \forall \alpha \in \mathbb{K}, \forall v \in E.$

Notation 2.1 On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Remarques et commentaires 2.1

- Si $f \in \mathcal{L}(E, F)$ (c-à-d $f : E \longrightarrow F$ est linéaire), alors $f(\mathbf{0}_E) = \mathbf{0}_F$.
- Si il existe $u_0 \in E$, $u_0 \neq 0_E$, tel que $f(u_0) \neq 0_E$ alors $\forall \lambda \in \mathbb{K} \{0_K\}$, $f(\lambda u_0) \neq 0_E$.
- $f(-\mathbf{v}) = -f(\mathbf{v}), \forall \mathbf{v} \in E.$ 3.
- Si f est linéaire, alors $f(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i f(v_i)$ pour toute combinaison linéaire. On exprime cette propriété en disant qu'une application linéaire « conserve les combinaisons linéaires ».

Proposition 2.1 (Caractérisation des applications linéaires)

Soit f une application d'un \mathbb{K} -e.v. E dans un \mathbb{K} -e.v. F. Les conditions suivantes sont équivalentes

- f est linéaire,
- $\forall \boldsymbol{v}, \boldsymbol{w} \in E, \forall \lambda \in \mathbb{K}, f(\lambda \boldsymbol{v} + \boldsymbol{w}) = \lambda f(\boldsymbol{v}) + f(\boldsymbol{w}).$
- $\forall \boldsymbol{v}, \boldsymbol{w} \in E, \forall \alpha, \beta \in \mathbb{K}, f(\alpha \boldsymbol{v} + \beta \boldsymbol{w}) = \alpha f(\boldsymbol{v}) + \beta f(\boldsymbol{w}).$

En pratique, on pourra choisir la deuxième propriété ci-dessous pour montrer la linéarité de f:

$$\forall \boldsymbol{v}, \boldsymbol{w} \in E, \forall \lambda \in \mathbb{K}, f(\lambda \boldsymbol{v} + \boldsymbol{w}) = \lambda f(\boldsymbol{v}) + f(\boldsymbol{w})$$

Exercice d'application 1 :

Parmi les applications suivantes indiquer, en justifiant, celles qui sont linéaires.

- **1.** $f, g, h : \mathbb{R} \to \mathbb{R}$, f(x) = ax, $g(x) = \sin(x)$, $h(x) = x^2$.
- **2.** $f,g: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y,x-y), g(x,y) = (2x-y,-x+2y). **3.** $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x,y,z) = (x+2y,y-z^2)$.
- **4.** $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x, y, z) = (x + y + 1, y z, 3x + z). \square$

Proposition 2.2

 $\mathcal{L}(E,F)$ est un sous-espace vectoriel de $\mathscr{F}(E,F)$ (ensemble des fonctions définies de E dans F) lorsqu'on le munit des lois + interne et · externe définies par : Si $f, g \in \mathcal{F}(E, F)$ et $\alpha \in \mathbb{K}$, alors

$$\forall \mathbf{v} \in E, \quad (f+g)(\mathbf{v}) = f(\mathbf{v}) + g(\mathbf{v}), \quad (\alpha \cdot f)(\mathbf{v}) = \alpha \cdot f(\mathbf{v})$$

Proposition 2.3 (composée de deux applications linéaires)

Soient E, F, G des \mathbb{K} - espaces vectoriels. Soient $f \in \mathcal{L}(E,F)$, $q \in \mathcal{L}(F,G)$. L'application $g \circ f$ définie de E dans G par

$$\forall \mathbf{v} \in E, (g \circ f)(\mathbf{v}) = g(f(\mathbf{v}))$$

est linéaire (i.e $q \circ f \in \mathcal{L}(E,G)$).

Définition 2.2 (Noyau et image d'une application linéaire) Soit $f \in \mathcal{L}(E, F)$.

le **noyau** de f est la partie de E définie par

$$Ker(f) = \{ \boldsymbol{v} \in E \mid f(\boldsymbol{v}) = 0 \}.$$

On appelle **image** de f la partie de F définie par

$$\operatorname{Im}(f) = f(E) = \{ \boldsymbol{w} \in F \mid \exists \boldsymbol{v} \in E, \text{ avec } f(\boldsymbol{v}) = \boldsymbol{w} \}.$$

Proposition 2.4

Soit $f \in \mathcal{L}(E, F)$, alors $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$ sont des s.e.v de E et F respectivement.

Exercice d'application 2 :

Déterminer le noyau Ker(f) des applications linéaires suivantes dans les bases canoniques des espaces vectoriels concernés.

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (2x 3y, x + y)$
- **2.** $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (2x y, -x + \frac{1}{2}y)$
- **3.** $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (x + y, y z). \square$

Rappel 2.1

Soit f une application de E dans F.

- 1. f est dite application **injective** (ou **injection**) si tout élément de F admet au plus un antécédent dans E, c'est à dire si $\forall (x, x') \in E^2, f(x) = f(x') \Rightarrow x = x'$.
- 2. f est dite application surjective (ou surjection) si tout élément de F admet au moins un antécédent dans E, c'est à dire si $\forall y \in F$, $\exists x \in E$, y = f(x).
- 3. f est dite application **bijective** (ou **bijection**) si f est à la fois injective et surjective, c'est-à-dire si tout élément $y \in F$ admet un et un seul antécédent dans E par f.

FIG. 2.1 - f injective(à gauche), surjective(au centre) et bijective(à droite) de E vers F.

Proposition 2.5

Soit $f \in \mathcal{L}(E, F)$.

f est injective $\Leftrightarrow \operatorname{Ker} f = \{\mathbf{0}_E\}.$

Démonstration:

Si f est injective, $f(u) = \mathbf{0}_F = f(\mathbf{0}_E)$ implique $u = \mathbf{0}_E$; le noyau de f est bien réduit au vecteur nul.

Réciproquement, supposons que le noyau de f est réduit au vecteur nul. Montrons que f est injective. Pour cela, supposons que f(u) = f(v); par linéarité, on a $f(u-v) = \mathbf{0}_F$ c'est à dire $u-v=\mathbf{0}_E$ et donc u=v: f est bien injective.

Proposition 2.6

Une application linéaire injective transforme les familles libres en familles libres. En conséquence, si E et F sont de dimension finie et si f est injective de E dans F, alors la dimension de F est supérieure à celle de E.

$$fest injective \Rightarrow \dim E \leq \dim F$$
.

Définition 2.3

On appelle rang d'une application linéaire $f \in \mathcal{L}(E, F)$ la dimension du sous-espace vectoriel Im f et sera noté rg(f).

Proposition 2.7

Soit $f \in \mathcal{L}(E, F)$ où dim $E < \infty$. Soit $\{v_1, \dots, v_n\}$ une famille génératrice de E, alors $(f(v_1), \dots, f(v_n))$ est une famille génératrice de Im f et

$$rg(f) = \dim Vect(f(\boldsymbol{v_1}), \dots, f(\boldsymbol{v_n}))$$

Corollaire 2.1 Soit $f \in \mathcal{L}(E, F)$ où dim $E < \infty$. Soit $\{v_1, \ldots, v_n\}$ une base de E, alors $(f(v_1), \ldots, f(v_n))$ est une famille génératrice de $\operatorname{Im} f$ et $\operatorname{rg}(f) = \dim \operatorname{Vect}(f(v_1), \ldots, f(v_n))$

Remarque 2.1 En pratique, pour déterminer $rg(f) = \dim Vect(f(v_1), \ldots, f(v_n))$ il suffit d'utiliser le lemme du vecteur superflu pour éliminer tous les vecteurs superflus et trouver ainsi une nouvelle famille à la fois génératrice et libre dont le cardinal est égal à rg(f).

Exercice d'application 3 :

Proposition 2.8

Soit $f \in \mathcal{L}(E, F)$. L'application linéaire f est surjective si et seulement si son image est égale à F entier. En dimension finie, cela correspond exactement à

 $fest \ surjective \Leftrightarrow \dim \operatorname{Im}(f) = rg(f) = \dim F.$

Proposition 2.9

Soit $f \in \mathcal{L}(E, F)$.

Si f est surjective alors elle transforme les familles génératrices en familles génératrices. Ainsi si f est surjective de E dans F, alors la dimension de E est supérieure à celle de F.

$$fest \ surjective \Rightarrow \dim E \ge \dim F.$$

Corollaire 2.2 Soit $f \in \mathcal{L}(E, F)$, où dim $F < \infty$.

- 1. $\dim F < \dim E \Rightarrow f$ n'est pas injective.
- 2. $\dim E < \dim F \Rightarrow f$ n'est pas surjective.

Proposition 2.10

Une application linéaire bijective transforme une base en une base. En dimension finie, il ne peut donc exister d'application linéaire bijective qu'entre deux espaces de même dimension.

$$fest\ bijective \Rightarrow \dim E = \dim F.$$

Théorème 2.1 (Théorème du Rang / Théorème des dimensions)

Soit $f \in \mathcal{L}(E, F)$, où dim $E < \infty$. Alors:

$$\dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = \dim E \Leftrightarrow \dim(\operatorname{Ker}(f)) + rg(f) = \dim E.$$

Proposition 2.11 (Deuxième Proposition "Deux en un")

Soient E, F des \mathbb{K} - espaces vectoriels tels que dim $E = dim F < \infty$. Soit $f \in \mathcal{L}(E, F)$. Alors les propositions suivantes sont équivalentes :

- 1. f est bijective.
- 2. f est injective.
- **3.** f est surjective.

Proposition 2.12

Soient E, F des \mathbb{K} - espaces vectoriels tels que dim E = n, dim F = m. Soit $f \in \mathcal{L}(E, F)$.

- 1. $rg(f) = n \Leftrightarrow f \text{ est injective.}$
- **2.** $rg(f) = m \Leftrightarrow f \text{ est surjective.}$

Exercice d'application 4 :

En considérant les applications linéaires définies dans l'exercice $\bf 2$, que dire de leurs injectivité, surjectivité et bijectivité? (justifier vôtre réponse) .

××

<u>Note 5 :</u>

Définition 2.4

Un isomorphisme de E sur F est une application linéaire et bijective.

Un endomorphisme de E est une application linéaire de E vers E. On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Un automorphisme de E est un endomorphisme de E bijectif. On note $\mathcal{GL}(E)$ l'ensemble des automorphismes de E.

Une forme linéaire est une application linéaire de E dans $F = \mathbb{K}$.

Notation 2.2 L'application <u>identité</u>, notée Id_E , définie par $Id_E(u) = u$ pour tout u, est un automorphisme de E.

Proposition 2.13 (isomorphisme réciproque)

Soit f un isomorphisme de E sur F. Sa bijection réciproque f^{-1} est un isomorphisme de F sur E.

2.2 Projections, Symétries

2.2.1 Sous-espace $E_{\lambda}(f)$ des vecteurs u tels que $f(u) = \lambda u$

Soit f un endomorphisme de l'espace vectoriel E, et soit λ un scalaire.

Notons $E_{\lambda}(f)$ l'ensemble des vecteurs u de E tels que $f(u) = \lambda u$.

On a les équivalences : $f(u) = \lambda u$, $(f - \lambda \operatorname{Id})(u) = 0$, $u \in \operatorname{Ker}(f - \lambda \operatorname{Id})$.

Ainsi $E_{\lambda}(f) = \text{Ker}(f - \lambda \text{Id})$, et il en résulte que $E_{\lambda}(f)$ est un sous-espace vectoriel de $E_{\lambda}(f)$

Il y a deux cas particuliers importants :

- les vecteurs invariants par f :

$$Inv(f) = E_1 = Ker(f - Id) = \{u \in E, f(u) = u\}$$

- les vecteurs changés en leur opposé par \boldsymbol{f} :

$$Opp(f) = E_{-1} = Ker(f + Id) = \{u \in E, f(u) = -u\}.$$

2.2.2 Projections et symétries vectorielles

Soit E un \mathbb{R} -e.v. et E_1 , E_2 deux s.e.v supplémentaires de E (i.e. $E = E_1 \bigoplus E_2$). Ainsi pour tout $x \in E$ il existe un unique couple $(x_1, x_2) \in E_1 \times E_2$ tel que $x = x_1 + x_2$.

On appelle x_1 la projection de x sur E_1 dirigée par(ou parallèlement à) E_2 . On appelle $x_1 - x_2$ le symétrique de x par rapport à E_1 dirigée par (ou parallèlement) à E_2 .

Définition 2.5

Soient $x \in E$ et $(x_1, x_2) \in E_1 \times E_2$ tel que $x_1 + x_2 = x$. Posons $x_1 = p(x)$, p s'appelle la projection sur E_1 dirigée par E_2 .

Définition 2.6

Soit $x \in E$ et $(x_1, x_2) \in E_1 \times E_2$ tel que $x_1 + x_2 = x$. Posons $x_1 - x_2 = s(x)$, s'appelle la symétrie par rapport à E_1 dirigée par E_2 .

Proposition 2.14

Soit p la projection sur E_1 dirigée par E_2 , on a :

- 1. $p \in \mathcal{L}(E)$,
- 2. $Im(p) = E_1 \text{ et } Ker(p) = E_2,$
- 3. $p \circ p = p$.

Fig. 2.2 – Projection d'un vecteur x sur F parallèlement à G.

Proposition 2.15

Soit s la symétrie par rapport à E_1 dirigée par E_2 , on a :

- 1. $s \in \mathcal{L}(E)$, $s \circ s = \mathrm{Id}_E$, s est bijective et $s^{-1} = s$;
- 2. On a la relation $s = 2p \operatorname{Id}_E$, qui s'écrit encore $p = \frac{1}{2}(s + \operatorname{Id}_E)$,
- 3. On a $E_1 = Inv(s)$ (vecteurs invariants) et $E_2 = Opp(s)$ (vecteurs changés en leur opposé)...

On définit alors simplement :

Définition 2.7

Un endomorphisme p de E est appelé projecteur ssi $p \circ p = p$.

On a la forme de réciproque suivante :

Proposition 2.16 (équivalence entre projecteur et projection vectorielle)

Soit $p \in \mathcal{L}(E)$ vérifiant $p \circ p = p$, on a alors :

- 1. $\operatorname{Ker}(p) \bigoplus \operatorname{Im}(p) = E$,
- 2. p est la projection sur Im(p) dirigée par Ker(p).

Fig. 2.3 – Symétrie d'un vecteur x par rapport à F parallèlement à G.

Définition 2.8

Un endomorphisme f de E est appelé une involution(ou involutif) ssi $f \circ f = \mathrm{Id}_E$.

Proposition 2.17 (équivalence entre involution et symétrie vectorielle)

Si s est un endomorphisme involutif de E, donc si $s \circ s = \mathrm{Id}_E$, on a : $E = Inv(s) \bigoplus Opp(s)$.

L'application s est alors la symétrie vectorielle par rapport à Inv(s) parallèlement à Opp(s).

Fig. 2.4 – Projection sur (resp. Symétrie par rapport à) F parallèlement à G.

2.2.3 Hyperplans

Définition 2.9 (hyperplans d'un espace vectoriel)

Soit E un espace vectoriel sur \mathbb{K} . Soit H un sous-espace vectoriel de E. On dit que H est un hyperplan de E s'il existe une forme linéaire non nulle f telle que H = $\operatorname{Ker} f$.

Définition 2.10 (Formes linéaires en dimension finie)

Soit E un espace vectoriel sur \mathbb{K} de dimension finie et soit f une forme linéaire sur E. Soit $\{v_1, \ldots, v_n\}$ une base de E, alors pour tout vecteur $\mathbf{v} = \sum_{i=1}^n x_i \mathbf{v}_i$,

$$f(v) = f(\sum_{i=1}^{n} x_i v_i) = \sum_{i=1}^{n} x_i f(v_i) = \sum_{i=1}^{n} a_i x_i$$

où $a_i = f(\mathbf{v}_i)$.

Proposition 2.18 (caractérisations des hyperplans)

Soit E un espace vectoriel sur \mathbb{K} . Soit H un sous-espace vectoriel de E. Les conditions suivantes sont équivalentes :

- Le sous-espace H est un hyperplan de E.
- Le sous-espace H est le noyau d'une forme linéaire non nulle sur E.

- Si $\dim(E) = n > 1$, le sous-espace H est de dimension n - 1.

- Pour toute droite vectorielle D non incluse dans H, on a $E = H \bigoplus D$.
- Il existe une droite vectorielle D non incluse dans H, telle que $E = H \bigoplus D$.

Fig. 2.5 – Représentation d'un hyperplan en dimension 3 avec D = Vect(u).

Proposition 2.19 (équation d'un hyperplan en dimension finie)

Soit E un espace de dimension n > 1, muni d'une base $(e_i)_{1 \le i \le n}$. Soit H un hyperplan de E. L'équation de H s'écrit

$$\sum_{i=1}^{n} a_i x_i = 0$$

où les x_i sont les coordonnées d'un vecteur quelconque u. Cette équation est unique à un facteur multiplicatif non nul près.

2.2.3.1 Hyperplans de \mathbb{R}^2 et de \mathbb{R}^3

- Les hyperplans de \mathbb{R}^2 sont les droites vectorielles de \mathbb{R}^2 .
- Si \mathbb{R}^2 est muni d'une base (e_1, e_2) , et si on note (x, y) les coordonnées d'un vecteur quelconque dans cette base, l'équation d'une droite D de \mathbb{R}^2 s'écrit d'une manière unique (à un facteur multiplicatif non nul près) sous la forme ax + by = 0, avec $(a, b) \neq (0, 0)$. Sous cette forme, un vecteur directeur de D est le vecteur $u = -be_1 + ae_2$.
- Les hyperplans de \mathbb{R}^3 sont les plans vectoriels de \mathbb{R}^3 .
- Si \mathbb{R}^3 est muni d'une base (e_1, e_2, e_3) , et si on note (x, y, z) les coordonnées d'un vecteur u quelconque dans cette base, l'équation d'un plan P de \mathbb{R}^3 s'écrit d'une manière unique (à un facteur multiplicatif non nul près) sous la forme ax + by + cz = 0, avec $(a, b, c) \neq (0, 0, 0)$.

Sous cette forme, et si par exemple $a \neq 0$, une base de ce plan est formée des vecteurs : $\begin{cases} u_1 &= -be_1 + ae_2 \\ u_2 &= -ce_1 + ae_3 \end{cases} .$

Exercice d'application 5 :

- 1. Déterminer la projection de \mathbb{R}^2 sur l'axe des abscisses parallèlement à (ou dirigé par) la première bissectrice.
- **2.** Déterminer la projection de \mathbb{R}^2 sur la première bissectrice parallèlement à (ou dirigée par) la deuxième bissectrice.
- 3. Déterminer la projection de \mathbb{R}^3 sur $P = \text{vect}\{(1,1,1),(1,1,-1)\}$ parallèlement à $D = \text{vect}\{(0,1,-1)\}.$
- 4. Donner les trois symétries associées aux projections définies dans les questions précédentes.

<u>Note 6 :</u> ≥

Exercice d'application 6 :

- 1. Déterminer l'équation du plan de \mathbb{R}^3 engendré par $\{(1,1,1),(1,1,-1)\}$.
- **2.** Déterminer une base du plan de \mathbb{R}^3 d'équation 2x + 3y + 4z = 0.
- **3.** Déterminer une base de l'hyperplan de \mathbb{R}^4 d'équation 2x + 3y + 4z t = 0.
- 4. Déterminer une équation de l'hyperplan de \mathbb{R}^4 engendré par les vecteurs (1,2,4,3), (1,1,1,1),(1,0,-1,0).

	Note 7 :	
≈		