1. Ejercicios

Definición 1. A una función $f: \mathbb{R}^n \to \mathbb{R}$ es cuadrática si es de la forma

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T Q \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$$

donde $Q \in \mathbb{R}^{n \times n}$, $\boldsymbol{b} \in \mathbb{R}^n$, $c \in \mathbb{R}$.

En muchas de las tareas abajo, la función f es cuadrática como en Definición 1 .

1. Aplicación 1: El problema de mínimos cuadrados (lineales) regularizados. Sea $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, entonces el problema es encontrar $\mathbf{x}_{\star} \in \mathbb{R}^n$ tal que

$$f(\boldsymbol{x}_{\star}) = \min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$
 donde $f(\boldsymbol{x}) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \|A\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \mu \|\boldsymbol{x}\|_2^2$

y $\mu > 0$ es un parámetro. La función f es una función cuadrática.

Encuentre, Q, b, c y muestre que Q es simétrica positiva definida.

Nota: Sin el termino azul, la solución puede ser no única (ver SVD, Cálculo Numérico).

2. Supón que f es una función cuadrática con una matriz simétrica positiva definida $Q \in \mathbb{R}^{n \times n}$. Demuestre que $\phi(\alpha) \stackrel{\text{def}}{=\!=\!=} f(\boldsymbol{x} + \alpha \boldsymbol{d})$ es un polinomio cuadrático en α que siempre tiene un mínimo en el parámetro α_{\star} . Además, si \boldsymbol{d} es dirección de descenso, entonces el mínimo de ϕ esta en $\alpha_{\star} > 0$.

Resultado:
$$\alpha_{\star} = \frac{-\mathbf{d}^T \nabla f(\mathbf{x})}{\mathbf{d}^T Q \mathbf{d}}$$

3. Supón que $f(x) = x^T Q x$ donde $Q \in \mathbb{R}^{n \times n}$ es una matriz simétrica positiva semi-definida. Muestra que f es convexa en \mathbb{R}^n . Ayuda, para $x, y \in \mathbb{R}^n$ muestre que

$$f(\mathbf{y} + \alpha(\mathbf{x} - \mathbf{y})) - \alpha f(\mathbf{x}) - (1 - \alpha)f(\mathbf{y}) \le 0$$

para todo $\alpha \in [0,1]$.

Ayuda: Considerar en el apartado anterior.

4. Supón que $f(x) = \frac{1}{2}x^TQx + b^Tx$ donde $b \in \mathbb{R}^n$ y $Q \in \mathbb{R}^{n \times n}$ es una matriz simétrica positiva definida. Sea x_* el mínimo (global) único. Demuestre que

$$f(\boldsymbol{x}) - f(\boldsymbol{x}_{\star}) = \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}_{\star}\|_{Q}^{2}$$
 donde $\|\boldsymbol{x} - \boldsymbol{x}_{\star}\|_{Q}^{2} \stackrel{\text{def}}{=} (\boldsymbol{x} - \boldsymbol{x}_{\star})^{T} Q (\boldsymbol{x} - \boldsymbol{x}_{\star})$.

Ayuda: Use primero $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$ para encontrar una expresión para $\mathbf{b}^{T}(\mathbf{x} - \mathbf{x}_{\star})$.

- 5. Supón que $f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^TQ\boldsymbol{x} + \boldsymbol{b}^T\boldsymbol{x}$ donde $\boldsymbol{b} \in \mathbb{R}^n$ y $Q \in \mathbb{R}^{n \times n}$ es una matriz simétrica positiva definida. Sean $\boldsymbol{x} \in \mathbb{R}^n$ fijo, $\boldsymbol{d} \stackrel{\text{def}}{=} -\nabla f(\boldsymbol{x})$ y $\phi(\alpha) \stackrel{\text{def}}{=} f(\boldsymbol{x} + \alpha \boldsymbol{d})$.
 - a) Muestre que

$$\phi(\alpha) = \phi(0) + \frac{1}{2}\alpha^2 \mathbf{d}^T Q \mathbf{d} - \alpha \mathbf{d}^T \mathbf{d}.$$

- b) Encuentre el paso óptimo α_{\star} que minimiza a la función $\phi(\alpha)$.
- c) Usando el paso óptimo $\alpha_{\star} = \frac{d^T d}{d^T Q d}$, muestre que

$$\phi(\alpha_{\star}) = \phi(0) - \frac{1}{2} \frac{(\boldsymbol{d}^T \boldsymbol{d})^2}{\boldsymbol{d}^T Q \boldsymbol{d}}$$

d) Demuestre que $d^T Q^{-1} d = \|x - x_{\star}\|_Q^2$. Además, usando la tarea anterior

$$\left\|\boldsymbol{x} + \alpha_{\star} \boldsymbol{d} - \boldsymbol{x}_{\star}\right\|_{Q}^{2} = \left(1 - \frac{(\boldsymbol{d}^{T} \boldsymbol{d})^{2}}{(\boldsymbol{d}^{T} Q \boldsymbol{d})(\boldsymbol{d}^{T} Q^{-1} \boldsymbol{d})}\right) \left\|\boldsymbol{x} - \boldsymbol{x}_{\star}\right\|_{Q}^{2}$$

e) La identidad en d) es poderosa.

Demuestre, que si $x - x_{\star}$ es un eigenvector de Q, entonces $x + \alpha_{\star} d = x_{\star}$.

Ayuda: Para a) se usa $\mathbf{d} = -\nabla f(\mathbf{x}) = -(Q\mathbf{x} + \mathbf{b})$ (similar a 2.), para d) considere c), 5. $y \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}_{\star}) = Q(\mathbf{x} - \mathbf{x}_{\star})$, para e) considere d) $y \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}_{\star}) = Q(\mathbf{x} - \mathbf{x}_{\star})$.

2. Otra aplicación

El problema de Fermat-Weber.

El objetivo de este problema es encontrar una posición óptima $x_{\star} \in \mathbb{R}^n$ cuya distancia a distintos puntos $a^i \in \mathbb{R}^n$, i = 1, ..., m con pesos w_i (de Ingles: weights) es mínima. El vector x_{\star} debe ser solución del problema:

$$\min_{oldsymbol{x} \in \mathbb{R}^n} \left(f(oldsymbol{x}) \stackrel{ ext{def}}{=\!=\!=} \sum_{i=1}^m w_i ig\| oldsymbol{a}^i - oldsymbol{x} ig\|_2
ight) \,.$$

Ejemplo: El vector \mathbf{x}_{\star} puede ser una posición de un almacén, con el fin de reducir gastos de transporte. Los pesos \mathbf{w}_{i} pueden contener información sobre como se convierte la norma de taxi a la norma euclidiana y gastos de usar una calle o un medio de transporte.

El problema se puede resolver con una iteración de punto fijo diseñada por Weiszfeld (1937). Esta iteración construye (de manera explícita) una sucesión $\{x^k\}_{k\geq 0}$ empezando en $x^0 \notin \{a^1,\ldots,a^m\}$. Cada punto x^{k+1} de la sucesión coincide con la solución del problema

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \left(g(\boldsymbol{x}) \stackrel{\text{def}}{=} \sum_{i=1}^m w_i \frac{\left\| \boldsymbol{a}^i - \boldsymbol{x} \right\|_2^2}{\left\| \boldsymbol{a}^i - \boldsymbol{x}^k \right\|_2} \right).$$

En caso que $f(\mathbf{x}^0) < \min \{ |f(\mathbf{a}^j)| : j = 1, ..., m \}$, todos los puntos de acumulación de la sucesión son puntos estacionarios.

Referencia: Introduction to non-linear optimization, Beck, p. 68-72.