ST 705 Linear models and variance components Lab practice problem set 2

January 27, 2021

- 1. Let $A \in \mathbb{R}^{p \times p}$ and $\alpha \in \mathbb{R}$. Is the matrix αA similar to A (i.e., do they share the same spectrum)?
- 2. Use Jensen's inequality to establish the arithmetic-geometric mean inequality. That is, show that if a_1, \ldots, a_n are positive constants, then

$$\frac{1}{n}\sum_{i=1}^{n}a_{i} \ge \left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}.$$

3. Let $\{a_1,\ldots,a_n\}$ and $\{b_1,\ldots,b_n\}$ be sequences of real numbers. Show that

$$\min\{a_i\} + \min\{b_i\} \le \min\{a_i + b_i\} \le \min\{a_i\} + \max\{b_i\}.$$

4. Let V be a convex subset of some vector space. Recall that a function $f: V \to \mathbb{R}$ is said to be *convex* if for every $x, y \in V$ and every $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Show, by definition, that the sum of squared errors function

$$Q(\beta) := \|Y - X\beta\|_2^2$$

is convex.