SP605 Hardware User Guide

UG526 (v1.9) February 14, 2019

© Copyright 2009–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

DISCLAIMER

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision	
10/07/09	1.0	Initial Xilinx release.	
11/09/09	1.1	Updated Figure 1-17 and Figure 1-23.	
		Changed speed grade from -2 to -3.	
		Miscellaneous typographical edits.	
02/01/10	1.1.1	Minor typographical edits to Table 1-24 and Table 1-25.	
05/18/10	1.2	Updated Figure 1-2. Added Note 6 to Table 1-11. Updated board connections for SFP_TX_DISABLE in Table 1-12. Added note about FMC LPC J63 connector in 18. VITA 57.1 FMC LPC Connector. Updated U1 FPGA Pin column for FMC_LA00_CC_P/N in Table 1-28. Updated description of PMBus Pod and TI Fusion Digital Power Software GUI in Onboard Power Regulation. Updated Appendix B, VITA 57.1 FMC LPC Connector Pinout, and Appendix C, Xilinx Design Constraints.	
06/16/10	1.3	Updated 2. 128 MB DDR3 Component Memory. Added note 1 to Table 1-30.	
09/24/10	1.4	Updated description of Fusion Digital Power Software in Onboard Power Regulation.	
02/16/11	1.5	Revised oscillator manufacturer information from Epson to SiTime in Table 1-1. Revised oscillator manufacturer information from Epson to SiTime on page page 26. Deleted note on page 44 referring to J55: "Note: This header is not installed on the SP605 as built." Revised values for R50 and R216 in Figure 1-12. Revised oscillator manufacturer information from Epson to SiTime on page page 69.	

Date	Version	Revision
07/18/11	1.6	Corrected "jitter" to "stability" in section Oscillator (Differential). Revised the feature and notes descriptions for reference numbers 6 and 12 in Table 1-1. Revised FPGA pin numbers for ZIO and RZQ in Table 1-4. Added Table 1-29, Table 1-31, and table notes in Table 1-30.
06/19/12	1.7	Removed reference to FPGA speed grade in 2. 128 MB DDR3 Component Memory. Added IIC External Access Header. Updated SFP Module connector reference designator in 8. Multi-Gigabit Transceivers (GTP MGTs).
09/24/12	1.8	Updated Figure 1-2. Added Regulatory and Compliance Information.
02/14/19	1.9	Updated the Electrostatic Discharge Caution section, Appendix C, Xilinx Design Constraints, and Appendix D, Regulatory and Compliance Information. Updated 2. 128 MB DDR3 Component Memory.

Table of Contents

Revision History	
Preface: About This Guide	
Guide Contents	7
Additional Documentation	
Additional Support Resources	
Chapter 1: SP605 Evaluation Board	
Overview	
Additional Information	
Features	
Block Diagram	
Related Xilinx Documents	
Electrostatic Discharge Caution	
Detailed Description	
1. Spartan-6 XC6SLX45T-3FGG484 FPGA	
Configuration	
I/O Voltage Rails	
2. 128 MB DDR3 Component Memory	
3. SPI x4 Flash	
4. Linear BPI Flash	
FPGA Design Considerations for the Configuration Flash	
5. System ACE CF and CompactFlash Connector	
6. USB JTAG	
7. Clock Generation	
Oscillator (Differential)	
Oscillator Socket (Single-Ended, 2.5V or 3.3V)	
SMA Connectors (Differential)	
8. Multi-Gigabit Transceivers (GTP MGTs)	
9. PCI Express Endpoint Connectivity	
10. SFP Module Connector	
11. 10/100/1000 Tri-Speed Ethernet PHY	
12. USB-to-UART Bridge	
13. DVI CODEC	
14. IIC Bus	
IIC External Access Header	
8-Kb NV Memory	
15. Status LEDs	
Ethernet PHY Status LEDs	
FPGA INIT and DONE LEDs	
16. User I/O	
User LEDs	
User Pushbutton Switches	
User DIP Switch	
User SIP Header	

User SMA GPIO . 17. Switches . Power On/Off Slide Switch SW2 . FPGA_PROG_B Pushbutton SW3 (Active-Low) . SYSACE_RESET_B Pushbutton SW9 (Active-Low) . System ACE CF CompactFlash Image Select DIP Switch S1 (Active-High) . Mode DIP Switch SW1 (Active-High) . 18. VITA 57.1 FMC LPC Connector . 19. Power Management . AC Adapter and 12V Input Power Jack/Switch .	49 49 50 50 51 52 53 55
Onboard Power Regulation	
Configuration Options	60
Appendix A: Default Jumper and Switch Settings	
Appendix B: VITA 57.1 FMC LPC Connector Pinout	
Appendix C: Xilinx Design Constraints	
	65
Appendix C: Xilinx Design Constraints	65
Appendix C: Xilinx Design Constraints Overview	
Appendix C: Xilinx Design Constraints Overview Appendix D: Regulatory and Compliance Information	67 67 67

Appendix E: References

About This Guide

This manual accompanies the Spartan®-6 FPGA SP605 Evaluation Board and contains information about the SP605 hardware and software tools.

Guide Contents

This manual contains the following chapters:

- Chapter 1, SP605 Evaluation Board, provides an overview of and details about the components and features of the SP605 board.
- Appendix A, Default Jumper and Switch Settings.
- Appendix B, VITA 57.1 FMC LPC Connector Pinout.
- Appendix C, Xilinx Design Constraints.
- Appendix D, Regulatory and Compliance Information.
- Appendix E, References.

Additional Documentation

The following documents are available for download at www.xilinx.com/products/spartan6/.

- Spartan-6 Family Overview
 This overview outlines the features and product selection of the Spartan-6 family.
- Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
 This data sheet contains the DC and switching characteristic specifications for the Spartan-6 family.
- Spartan-6 FPGA Packaging and Pinout Specifications
 This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.
- Spartan-6 FPGA Configuration User Guide
 This all-encompassing configuration guide includes chapters on configuration interfaces (serial and parallel), multi-bitstream management, bitstream encryption, boundary-scan and JTAG configuration, and reconfiguration techniques.
- Spartan-6 FPGA SelectIO Resources User Guide
 This guide describes the SelectIOTM resources available in all Spartan-6 devices.
- Spartan-6 FPGA Clocking Resources User Guide

This guide describes the clocking resources available in all Spartan-6 devices, including the DCMs and PLLs.

- Spartan-6 FPGA Block RAM Resources User Guide
 This guide describes the Spartan-6 device block RAM capabilities.
- Spartan-6 FPGA GTP Transceivers User Guide
 This guide describes the GTP transceivers available in the Spartan-6 LXT FPGAs.
- Spartan-6 FPGA DSP48A1 Slice User Guide
 This guide describes the architecture of the DSP48A1 slice in Spartan-6 FPGAs and provides configuration examples.
- Spartan-6 FPGA Memory Controller User Guide
 This guide describes the Spartan-6 FPGA memory controller block, a dedicated embedded multi-port memory controller that greatly simplifies interfacing Spartan-6 FPGAs to the most popular memory standards.
- Spartan-6 FPGA PCB Designer's Guide
 This guide provides information on PCB design for Spartan-6 devices, with a focus on strategies for making design decisions at the PCB and interface level.

Additional Support Resources

To search the database of silicon and software questions and answers or to create a technical support request in the Request Portal, see the <u>Xilinx website</u>.

SP605 Evaluation Board

Overview

The SP605 board enables hardware and software developers to create or evaluate designs targeting the Spartan®-6 XC6SLX45T-3FGG484 FPGA.

The SP605 provides board features common to many embedded processing systems. Some commonly used features include: a DDR3 component memory, a 1-lane PCI Express® interface, a tri-mode Ethernet PHY, general purpose I/O, and a UART. Additional user desired features can be added through mezzanine cards attached to the onboard high speed VITA-57 FPGA Mezzanine Connector (FMC) low pin count (LPC) connector.

Features provides a general listing of the board features with details provided in Detailed Description.

Additional Information

Additional information and support material is located at:

• Spartan-6 FPGA SP605 Evaluation Kit

This information includes:

- Current version of this user guide in PDF format
- Example design files for demonstration of Spartan-6 FPGA features and technology
- Demonstration hardware and software configuration files for the System ACE™ CF controller, Platform Flash configuration storage device, and linear flash chip
- Reference Design Files
- Schematics in PDF format and DxDesigner schematic format
- Bill of materials (BOM)
- Printed-circuit board (PCB) layout in Allegro PCB format
- Gerber files for the PCB (Many free or shareware Gerber file viewers are available on the Internet for viewing and printing these files.)
- · Additional documentation, errata, frequently asked questions, and the latest news

For information about the Spartan-6 family of FPGA devices, including product highlights, data sheets, user guides, and application notes, see the <u>Spartan-6 FPGA website</u>.

Features

The SP605 board provides the following features (see Figure 1-2 and Table 1-1):

- 1. Spartan-6 XC6SLX45T-3FGG484 FPGA
- 2. 128 MB DDR3 Component Memory
- 3. SPI x4 Flash
- 4. Linear BPI Flash
- 5. System ACE CF and CompactFlash Connector
- 6. USB JTAG
- 7. Clock Generation
 - Fixed 200 MHz oscillator (differential)
 - Socket with a 2.5V 27MHz oscillator (single-ended)
 - SMA connectors (differential)
 - SMA connectors for MGT clocking (differential)
- 8. Multi-Gigabit Transceivers (GTP MGTs)
 - FMC LPC connector
 - SMA
 - PCIe
 - SFP module connector
- 9. PCI Express Endpoint Connectivity
 - Gen1 x1
- 10. SFP Module Connector
- 11. 10/100/1000 Tri-Speed Ethernet PHY
- 12. USB-to-UART Bridge
- 13. DVI CODEC
- 14. IIC Bus
 - IIC EEPROM 1KB
 - DVI CODEC
 - DVI connector
 - FMC LPC connector
 - SFP Module connector
- 15. Status LEDs
 - Ethernet Status
 - FPGA INIT
 - FPGA DONE
- 16. User I/O
 - USER LED GPIO
 - User pushbuttons
 - CPU Reset pushbutton
 - User DIP switch GPIO
 - User SMA GPIO connectors

- 17. Switches
 - Power On/Off slide switch
 - System ACE CF Reset pushbutton
 - System ACE CF bitstream image select DIP switch
 - Mode DIP switch
- 18. VITA 57.1 FMC LPC Connector
- 19. Power Management
 - AC Adapter and 12V Input Power Jack/Switch
 - Onboard Power Regulation
- Configuration Options
 - 3. SPI x4 Flash (both onboard and off-board)
 - 4. Linear BPI Flash
 - 5. System ACE CF and CompactFlash Connector
 - 6. USB JTAG

Block Diagram

The following figure shows a high-level block diagram of the SP605 and its peripherals.

Figure 1-1: SP605 Features and Banking

Related Xilinx Documents

Prior to using the SP605 Evaluation Board, users should be familiar with Xilinx resources. See the following locations for additional documentation on Xilinx tools and solutions:

- ISE
- Answer Browser
- Design Hub

Electrostatic Discharge Caution

Caution! ESD can damage electronic components when they are improperly handled, and can result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.

To prevent ESD damage:

- Use an ESD wrist or ankle strap and ensure that it makes skin contact. Connect the equipment end of the strap to an unpainted metal surface on the chassis.
- Avoid touching the adapter against your clothing. The wrist strap protects components from ESD on the body only.
- Handle the adapter by its bracket or edges only. Avoid touching the printed circuit board or the connectors.
- Put the adapter down only on an anti-static surface such as the bag supplied in your kit.
- If you are returning the adapter to Xilinx Product Support, place it back in its antistatic bag immediately.

Detailed Description

Figure 1-2 shows a board photo with numbered features corresponding to Table 1-1 and the section headings in this document.

Figure 1-2: SP605 Board

The numbered features in Figure 1-2 correlate to the features and notes listed in Table 1-1.

Table 1-1: SP605 Features

Number	Feature	Notes	Schematic Page
1	Spartan-6 FPGA	XC6SLX45T-3FGG484 FPGA	2–7
2	DDR3 Component Memory Micron MT41J64M16LA-187E		9
3	SPI Header Ext. x4 SPI Flash x4 (on backside)	Winbond W25Q64FVSFIG	18
4	Linear BPI Flash x16	Numonyx JS28F256P30T95	19
5	System ACE CompactFlash Socket	XCCACE-TQ144I Controller	20
6	USB UART (USB-to-UART Bridge)	Silicon Labs CP2103GM	32

Table 1-1: SP605 Features (Cont'd)

Number	Feature Notes		Schematic Page
7	Clock Generation	200 MHz OSC, oscillator socket, SMA connectors	13, 14
	a. 200 MHz oscillator	SiTime 200 MHz 2.5V LVDS	14
7	b. Oscillator socket, single- ended, LVCMOS	MMD Components 2.5V 27 MHz	14
	c. SMA connectors	SMA pair P(J41) / N(J38)	13
8	GTP port SMA x4 and MGT Clocking SMA (REFCLK)	MGT RX,TX Pairs x4 SMA MGT REFCLK x2 SMA	13
9	PCIe 1-lane edge conn.(Gen 1)	Card Edge Connector, 1-lane	12
10	SFP Module Cage/Connector	AMP 136073-1	12
11	Ethernet 10/100/1000	Marvell M88E1111 EPHY	11
12	USB JTAG Conn. (USB Mini-B)	USB JTAG Download Circuit	15
13	DVI Codec and Video Connector	Chrontel CH7301C-TF	16,17
14	IIC EEPROM (on backside)	ST Micro M24C08-WDW6TP	
	Status LEDs		10, 11, 14, 18, 20, 25, 27, 31, 33
	a. FMC Power Good		10
	b. System ACE CF Status		11
	c. FPGA INIT and DONE		14
15	d. Ethernet PHY Status		18
	e. JTAG USB Status		20
	f. FPGA Awake		27
	g. TI Power Good		31
	h. MGT AVCC, DDR3 Term Pwr Good		33
	a. User LEDs (4)	Red LEDs (active-High)	14
16	b. User Pushbuttons (4)	Active-High	14
16	c. User DIP Switch (4-pole)	4-pole (active-High)	14
	d. User SMA (2)	GPIO x2 SMA	13

Table 1-1: SP605 Features (Cont'd)

Number	Feature	Notes	Schematic Page
	Switches	Power, Configuration, Pushbutton Switches	14, 18, 20, 25
	a. SP605 Power On-Off Slide Switch		25
17	b. FPGA Mode DIP Switch		18
-7	c. System ACE CF Configuration DIP Switch		20
	d. FPGA PROG, CPU Reset, and System ACE CF Reset Pushbutton Switches		14, 20
18	FMC LPC Connector	Samtec ASP-134603-01	10
19	a. Power Management Controller	2x TI UCD9240PFC	21, 26
19	b. Mini-Fit Type 6-Pin, ATX Type 4-pin	12V input power connectors	25

1. Spartan-6 XC6SLX45T-3FGG484 FPGA

A Xilinx Spartan-6 XC6SLX45T-3FGG484 FPGA is installed on the SP605 Evaluation Board. See the *Spartan-6 FPGA Data Sheet* (DS162). [Ref 1]

Configuration

The SP605 supports configuration in the following modes:

- JTAG (using the included USB-A to Mini-B cable)
- JTAG (using System ACE CF and CompactFlash card)
- Master SPI x4
- Master SPI x4 with off-board device
- Linear BPI Flash

For details on configuring the FPGA, see Configuration Options.

Mode switch SW1 (see Table 1-32) is set to 10 = Slave SelectMAP to choose the System ACE CF default configuration.

See the Spartan-6 FPGA Configuration User Guide (UG380) for more information. [Ref 2]

I/O Voltage Rails

There are four available banks on the XC6SLX45T-3FGG484 device. Banks 0, 1, and 2 are connected for 2.5V I/O. Bank 3 is used for the 1.5V DDR3 component memory interface of Spartan-6 FPGA's hard memory controller. The voltage applied to the FPGA I/O banks used by the SP605 board is summarized in Table 1-2.

Table 1-2: I/O Voltage Rail of FPGA Banks

FPGA Bank	I/O Voltage Rail	
0	2.5V	
1	2.5V	
2	2.5V	
3	1.5V	

See the Xilinx Spartan-6 FPGA documentation for more information.

2. 128 MB DDR3 Component Memory

The SP605 128 MB 16-bit wide DDR3 memory consists of a single 1 Gb x 16 SDRAM U42 wired to Bank 3 (V_{cco} = 1.5V) of the U1 XC6SLX45T FPGA. The Spartan-6 FPGA hard memory controller is used for data transfer across the DDR3 memory interface's 16-bit data path using SSTL15 signaling.

Manufacturer: Micron

Part Number: MT41J64M16LA-187E

• Description:

• 1 Gb: 128 MB (64 Mb x 16)

1.5V 96-ball FBGA

• Performance: up to DDR3-1066

The SP605 board supports the "standard" VCCINT setting of 1.20V \pm 5%. This setting provides memory controller block (MCB) performance of 667 MT/s for DDR3 memory.

The SP605 XC6SLX45T FPGA DDR interface performance is documented in the *Spartan-6 FPGA Data Sheet: DC and Switching Characteristics* (DS162). [Ref 1]

Signal integrity is maintained through DDR3 resistor terminations and memory on-die terminations (ODT), as shown in Table 1-3 and Table 1-4.

Table 1-3: Termination Resistor Requirements

Signal Name	Board Termination	On-Die Termination
MEM1_A[14:0]	49.9Ω to V_{TT}	-
MEM1_BA[2:0]	49.9Ω to V_{TT}	-
MEM1_RAS_N	49.9Ω to V_{TT}	-
MEM1_CAS_N	49.9Ω to V_{TT}	-
MEM1_WE_N	49.9Ω to V_{TT}	-
MEM1_CS_N	100Ω to GND	-
MEM1_CKE	4.7 KΩ to GND	-

Table 1-3: Termination Resistor Requirements (Cont'd)

Signal Name	Board Termination	On-Die Termination
MEM1_ODT	4.7 KΩ to GND	_
MEM1_DQ[15:0]	-	ODT
MEM1_UDQS[P,N], MEM1_LDQS[P,N]	_	ODT
MEM1_UDM, MEM1_LDM	_	ODT
MEM1_CK[P,N]	100Ω differential at memory component	_

Notes:

Table 1-4: FPGA On-Chip (OCT) Termination External Resistor Requirements

U1 FPGA Pin	FPGA Pin Number	Board Connection for OCT
ZIO	M7	No Connect
RZQ	K7	100Ω to GROUND

Table 1-5 shows the connections and pin numbers for the DDR3 Component Memory.

Table 1-5: DDR3 Component Memory Connections

U1 FPGA	Schematic Net Name	Memory U42	
Pin		Pin Number	Pin Name
K2	MEM1_A0	N3	A0
K1	MEM1_A1	P7	A1
K5	MEM1_A2	Р3	A2
M6	MEM1_A3	N2	A3
Н3	MEM1_A4	P8	A4
M3	MEM1_A5	P2	A5
L4	MEM1_A6	R8	A6
K6	MEM1_A7	R2	A7
G3	MEM1_A8	Т8	A8
G1	MEM1_A9	R3	A9
J4	MEM1_A10	L7	A10/AP
E1	MEM1_A11	R7	A11
F1	MEM1_A12	N7	A12/BCN
J6	MEM1_A13	Т3	NC/A13
H5	MEM1_A14	T7	NC/A14
Ј3	MEM1_BA0	M2	BA0
J1	MEM1_BA1	N8	BA1
H1	MEM1_BA2	M3	BA2

^{1.} Nominal value of $\ensuremath{V_{TT}}$ for DDR3 interface is 0.75V.

Table 1-5: DDR3 Component Memory Connections (Cont'd)

U1 FPGA	Schematic Net Name	Memory U42		
Pin		Pin Number	Pin Name	
R3	MEM1_DQ0	G2	DQ6	
R1	MEM1_DQ1	H3	DQ4	
P2	MEM1_DQ2	E3	DQ0	
P1	MEM1_DQ3	F2	DQ2	
L3	MEM1_DQ4	H7	DQ7	
L1	MEM1_DQ5	H8	DQ5	
M2	MEM1_DQ6	F7	DQ1	
M1	MEM1_DQ7	F8	DQ3	
T2	MEM1_DQ8	C2	DQ11	
T1	MEM1_DQ9	C3	DQ9	
U3	MEM1_DQ10	A2	DQ13	
U1	MEM1_DQ11	D7	DQ8	
W3	MEM1_DQ12	A3	DQ15	
W1	MEM1_DQ13	C8	DQ10	
Y2	MEM1_DQ14	B8	DQ14	
Y1	MEM1_DQ15	A7	DQ12	
<u>.</u>	·			
H2	MEM1_WE_B	L3	WE_B	
M5	MEM1_RAS_B	J3	RAS_B	
M4	MEM1_CAS_B	K3	CAS_B	
L6	MEM1_ODT	K1	ODT	
K4	MEM1_CLK_P	J7	CLK_P	
К3	MEM1_CLK_N	K7	CLK_N	
F2	MEM1_CKE	K9	CKE	
N3	MEM1_LDQS_P	F3	LDQS_P	
N1	MEM1_LDQS_N	G3	LDQS_N	
V2	MEM1_UDQS_P	C7	UDQS_P	
V1	MEM1_UDQS_N	В7	UDQS_N	
N4	MEM1_LDM	E7	LDM	
Р3	MEM1_UDM	D3	UDM	
E3	MEM1_RESET_B	T2	RESET_B	

See the Micron Technology, Inc. *DDR3 SDRAM Specification* for more information. [Ref 15] Also, see the *Spartan-6 FPGA Memory Controller User Guide* (UG388). [Ref 3]

3. SPI x4 Flash

The Xilinx Spartan-6 FPGA hosts a SPI interface which is visible to the Xilinx iMPACT configuration tool. The SPI memory device operates at 3.0V; the Spartan-6 FPGA I/Os are 3.3V tolerant and provide electrically compatible logic levels to directly access the SPI flash through a 2.5V bank. The XC6SLX45T-3FGG484 is a master device when accessing an external SPI flash memory device.

The SP605 SPI interface has two parallel connected configuration options (Figure 1-3): an SPI X4 (Winbond W25Q64FVSFIG) 64-Mb flash memory device (U32) and a flash programming header (J17). J17 supports a user-defined SPI mezzanine board. The SPI configuration source is selected via SPI select jumper J46. For details on configuring the FPGA, see Configuration Options.

Figure 1-3: J17 SPI Flash Programming Header

Figure 1-4: SPI Flash Interface Topology

Table 1-6: SPI x4 Memory Connections

U1 FPGA	U1 FPGA Schematic Net Name		I MEM U32	SPI	HDR J17
Pin	Schematic Net Name	Pin #	Pin Name	Pin #	Pin Name
AB2	FPGA_PROG_B	-	-	1	-
T14	FPGA_D2_MISO3	1	IO3_HOLD_B	2	_
R13	FPGA_D1_MISO2_R	9	IO2_WP_B	3	-
AA3	SPI_CS_B	_	_	4	TMS
AB20	FPGA_MOSI_CSI_B_MISO0	15	DIN	5	TDI
AA20	FPGA_D0_DIN_MISO_MISO1	8	IO1_DOUT	6	TDO
Y20	FPGA_CCLK	16	CLK	7	TCK
_	-	_	_	8	GND
_	-	_	_	9	VCC3V3
J46.2 ⁽¹⁾	SPIX4_CS_B	7	CS_B	_	-

Notes:

1. Not a U1 FPGA pin

See the Winbond *Serial Flash Memory Data Sheet* for more information. [Ref 16] See the *XPS Serial Peripheral Interface Data Sheet* (DS570) for more information. [Ref 4]

4. Linear BPI Flash

A Numonyx JS28F256P30 Linear Flash memory (U25) on the SP605 (Figure 1-5) provides 32 MB of non-volatile storage that can be used for configuration as well as software storage. The Linear Flash is operated in asynchronous mode.

For details on configuring the FPGA, see Configuration Options.

Figure 1-5: Linear BPI Flash Interface

Table 1-7: Linear Flash Connections

U1 FPGA Pin	Schematic Net Name	U25 BP	I FLASH
OT FPGA PIII	Schematic Net Name	Pin Number	Pin Name
N22	FLASH_A0	29	A1
N20	FLASH_A1	25	A2
M22	FLASH_A2	24	A3
M21	FLASH_A3	23	A4
L19	FLASH_A4	22	A5
K20	FLASH_A5	21	A6
H22	FLASH_A6	20	A7
H21	FLASH_A7	19	A8
L17	FLASH_A8	8	A9
K17	FLASH_A9	7	A10
G22	FLASH_A10	6	A11
G20	FLASH_A11	5	A12
K18	FLASH_A12	4	A13
K19	FLASH_A13	3	A14
H20	FLASH_A14	2	A15
J19	FLASH_A15	1	A16
E22	FLASH_A16	55	A17

Table 1-7: Linear Flash Connections (Cont'd)

III FDOA Bir	Oak awatia Nat Nama	U25 BPI	FLASH
U1 FPGA Pin	Schematic Net Name	Pin Number	Pin Name
E20	FLASH_A17	18	A18
F22	FLASH_A18	17	A19
F21	FLASH_A19	16	A20
H19	FLASH_A20	11	A21
H18	FLASH_A21	10	A22
F20	FLASH_A22	9	A23
G19	FLASH_A23	26	A24
AA20	FPGA_D0_DIN_MISO_MISO1	34	DQ0
R13	FPGA_D1_MISO2	36	DQ1
T14	FPGA_D2_MISO3	39	DQ2
AA6	FLASH_D3	41	DQ3
AB6	FLASH_D4	47	DQ4
Y5	FLASH_D5	49	DQ5
AB5	FLASH_D6	51	DQ6
W9	FLASH_D7	53	DQ7
T7	FLASH_D8	35	DQ8
U6	FLASH_D9	37	DQ9
AB19	FLASH_D10	40	DQ10
AA18	FLASH_D11	42	DQ11
AB18	FLASH_D12	48	DQ12
Y13	FLASH_D13	50	DQ13
AA12	FLASH_D14	52	DQ14
AB12	FLASH_D15	54	DQ15
V13	FMC_PWR_GOOD_FLASH_RST_B	44	RST_B
R20	FLASH_WE_B	14	WE_B
P22	FLASH_OE_B	32	OE_B
P21	FLASH_CE_B	30	CE_B
T19	FLASH_ADV_B	46	ADV_B
T18	FLASH_WAIT	56	WAIT

FPGA Design Considerations for the Configuration Flash

The SP605 has the P30 BPI flash connected to the FPGA dual use configuration pins and is not shared. It can be used to configure the FPGA, and then controlled post-configuration via the FPGA fabric. After FPGA configuration, the FPGA design can disable the configuration flash or access the configuration flash to read/write code or data.

When the FPGA design does not use the configuration flash, the FPGA design must drive the FLASH_OE_B pin High in order to disable the configuration flash and put the flash into a quiescent, low-power state. Otherwise, the flash memory can continue to drive its array data onto the data bus causing unnecessary switching noise and power consumption.

For FPGA designs that access the flash for reading/writing stored code or data, connect the FPGA design or EDK embedded memory controller (EMC) peripheral to the flash through the pins defined in Figure 1-5.

See the Numonyx *StrataFlash Embedded Memory Data Sheet* [Ref 17] and the *Spartan-6 FPGA Configuration User Guide* (UG380) [Ref 2] for more information.

5. System ACE CF and CompactFlash Connector

The Xilinx System ACE CompactFlash (CF) configuration controller allows a Type I or Type II CompactFlash card to program the FPGA through the JTAG port. Both hardware and software data can be downloaded through the JTAG port. The System ACE CF controller supports up to eight configuration images on a single CompactFlash card. The configuration address switches allow the user to choose which of the eight configuration images to use.

The CompactFlash (CF) card shipped with the board is correctly formatted to enable the System ACE CF controller to access the data stored in the card. The System ACE CF controller requires a FAT16 file system, with only one reserved sector permitted, and a sector-per-cluster size of more than one (UnitSize greater than 512). The FAT16 file system supports partitions of up to 2 GB. If multiple partitions are used, the System ACE CF directory structure must reside in the first partition on the CompactFlash, with the <code>xilinx.sys</code> file located in the root directory. The <code>xilinx.sys</code> file is used by the System ACE CF controller to define the project directory structure, which consists of one main folder containing eight sub-folders used to store the eight ACE files containing the configuration images. Only one ACE file should exist within each sub-folder. All folder names must be compliant with the DOS 8.3 short file name format. This means that the folder names can be up to eight characters long, and cannot contain the following reserved characters: <> " / \ | . This DOS 8.3 file name restriction does not apply to the actual ACE file names.

Other folders and files may also coexist with the System ACE CF project within the FAT16 partition. However, the root directory must not contain more than a total of 16 folder and/or file entries, including deleted entries. When ejecting or unplugging the CompactFlash device, it is important to safely stop any read or write access to the CompactFlash device to avoid data corruption.

System ACE CF error and status LEDs indicate the operational state of the System ACE CF controller:

- A blinking red error LED indicates that no CompactFlash card is present
- A solid red error LED indicates an error condition during configuration
- A blinking green status LED indicates a configuration operation is ongoing
- A solid green status LED indicates a successful download

The mode SW1 setting is important because the System ACE CF can fail to configure the FPGA when the mode pins are set to the master modes (Table 1-32). A configuration failure from the master mode can drive INIT_B low, which blocks the System ACE CF from downloading a configuration ACE file. The FPGA mode pins must be set as specified in Table 1-32 for the System ACE CF configuration solution.

With the mode switch SW1 set to 10 (Slave SelectMAP, Table 1-32), if a Compact Flash (CF) card is installed in the CF socket U37, the System ACE CF will attempt to load a bitstream from the CF card image address pointed to by the image select switch S1.

Every time a CompactFlash card is inserted into the System ACE CF socket, a configuration operation is initiated. Pressing the System ACE CF reset button reprograms the FPGA.

Note: System ACE CF configuration is enabled by way of DIP switch S1. See 17. Switches for more details.

The System ACE CF MPU port (Table 1-8) is connected to the FPGA. This connection allows the FPGA to use the System ACE CF controller to reconfigure the system or access the CompactFlash card as a generic FAT file system.

Table 1-8: System ACE CF Connections

U1 FPGA Pin	Schematic Net Name ⁽¹⁾	U17 XCCA	CETQ144I
OT FPGA PIN	Schematic Net Name(1)	Pin Number	Pin Name
N6	SYSACE_D0	66	MPD00
N7	SYSACE_D1	65	MPD01
U4	SYSACE_D2	63	MPD02
T4	SYSACE_D3	62	MPD03
P6	SYSACE_D4	61	MPD04
P7	SYSACE_D5	60	MPD05
Т3	SYSACE_D6	59	MPD06
R4	SYSACE_D7	58	MPD07
V5	SYSACE_MPA00	70	MPA00
V3	SYSACE_MPA01	69	MPA01
P5	SYSACE_MPA02	68	MPA02
P4	SYSACE_MPA03	67	MPA03
H4	SYSACE_MPA04	45	MPA04
G4	SYSACE_MPA05	44	MPA05
D2	SYSACE_MPA06	43	MPA06

U1 FPGA Pin	Schematic Net Name ⁽¹⁾	U17 XCCA	CETQ144I
OT FFGA FIII	OT FPGA PIN Schematic Net Name		Pin Name
AA1	SYSACE_MPBRDY	39	MPBRDY
W4	SYSACE_MPCE	42	MPCE
AA2	SYSACE_MPIRQ	41	MPIRQ
T6	SYSACE_MPOE	77	MPOE
T5	SYSACE_MPWE	76	MPWE
G17	SYSACE_CFGTDI	81	CFGTDI
A21	FPGA_TCK	80	CFGTCK
E18	FPGA_TDI	82	CFGTDO
D20	FPGA_TMS	85	CFGTMS
N19	CLK_33MHZ_SYSACE(2)	93	CLK

Table 1-8: System ACE CF Connections (Cont'd)

Notes:

- 1. U17 System ACE CF controller 3.3V signals as named are wired to a set of TXB0108 3.3V-to-1.5V level shifters. The nets between the 1.5V side of the level shifters and the U1 FPGA have the same names with _LS appended.
- 2. The System ACE CF clock is sourced from U29 32.000MHz oscillator.

See the <u>System ACE CF product page</u>, System ACE file generation <u>information</u>, and the *System ACE CompactFlash Solution Data Sheet* (DS080) [Ref 5] for more information.

6. USB JTAG

JTAG configuration is provided through onboard USB-to-JTAG configuration logic where a computer host accesses the SP605 JTAG chain through a Type-A (computer host side) to Type-Mini-B (SP605 side) USB cable. The JTAG chain of the board is illustrated in Figure 1-6. JTAG configuration is allowable at any time under any mode pin setting. JTAG initiated configuration takes priority over the mode pin settings.

Figure 1-6: JTAG Chain Diagram

FMC bypass jumper J19 must be connected between pins 1-2 (bypass) to enable JTAG access to the FPGA on the basic SP605 board (without FMC expansion modules installed),

as shown in Figure 1-7. When the VITA 57.1 FMC LPC expansion connector is populated with an expansion module that has a JTAG chain, jumper J19 must be set to connect pins 2-3 in order to include the FMC expansion module's JTAG chain in the main SP605 JTAG chain.

Figure 1-7: VITA 57.1 FMC LPC (J2) JTAG Bypass Jumper J19

The JTAG chain can be used to program the FPGA and access the FPGA for hardware and software debug.

The JTAG connector (USB Mini-B J4) allows a host computer to download bitstreams to the FPGA using the Xilinx iMPACT software tool. In addition, the JTAG connector allows debug tools such as the ChipScope® Pro Analyzer tool or a software debugger to access the FPGA. The iMPACT software tool can also program the BPI flash via the USB J4 connection. iMPACT can download a temporary design to the FPGA through the JTAG. This provides a connection within the FPGA from the FPGAs JTAG port to the FPGAs BPI interface. Through the connection made by the temporary design in the FPGA, iMPACT can indirectly program the BPI flash from the JTAG USB J4 connector. For an overview on configuring the FPGA, see Configuration Options.

7. Clock Generation

There are three clock sources available on the SP605.

Oscillator (Differential)

The SP605 has one 2.5V LVDS differential 200 MHz oscillator (U6) soldered onto the board and wired to an FPGA global clock input.

- Crystal oscillator: SiTime SiT9102AI-243N25E200.00000
- Frequency stability: 50 ppm

See the SiTime *SiT9102 Data Sheet* for more information. Search SiT9102 at <u>SiTime.com</u> [Ref 18].

Oscillator Socket (Single-Ended, 2.5V or 3.3V)

One populated single-ended clock socket (X2) is provided for user applications. The option of 2.5V or 3.3V power may be selected via a 0Ω resistor selection. The SP605 board is shipped with a 27 MHz 2.5V oscillator installed.

Figure 1-8 shows the unpopulated user oscillator socket. This figure indicates the socket pin 1 location. Figure 1-9 shows the oscillator installed with its pin 1 location identifiers.

Figure 1-8: SP605 X2 Oscillator Socket Pin 1 Location Identifiers

Figure 1-9: SP605 X2 Oscillator Pin 1 Location Identifiers

SMA Connectors (Differential)

A high-precision clock signal can be provided to the FPGA using differential clock signals through the onboard 50Ω SMA connectors J38 (N) and J41 (P).

Table 1-9: SP605 Clock Source Connections

Source	U1 FPGA Pin	Schematic Net Name	Pin Number	Pin Name
U6 200MHZ OSC	K22	SYSCLK_N	5	OUT_B
00 200WII 12 03C	K21	SYSCLK_P	4	OUT
X2 27MHZ OSC	AB13	USER_CLOCK	5	OUT
USER_SMA_CLOCK	M19	USER_SMA_CLOCK_N	J38.1	_
SMA Connectors	M20	USER_SMA_CLOCK_P	J41.1	-

8. Multi-Gigabit Transceivers (GTP MGTs)

The SP605 provides access to 4 MGTs.

- One (1) MGT is wired to the PCIe x1 Endpoint (P4) edge connector fingers
- One (1) MGT is wired to the FMC LPC connector (J2)
- One (1) MGT is wired to MGT SMA connectors (J36, J37)
- One (1) MGT is wired to the SFP Module connector (P2)

The SP605 includes a set of six SMA connectors for the GTP (MGT) RX/TX Port and GTP (MGT) Clock as described in Figure 1-10 and Table 1-10.

Figure 1-10: GTP SMA Clock

Table 1-10: GTP SMA Clock Connections

U1 FPGA Pin	Schematic Net Name	SMA Pin
C9	SMA_RX_N	J35.1
D9	SMA_RX_P	J34.1
A8	SMA_TX_N	J33.1
B8	SMA_TX_P	J32.1
D11	SMA_REFCLK_N	J36.1
C11	SMA_REFCLK_P	J37.1

PCI Express Endpoint Connectivity

The 1-lane PCIe edge connector performs data transfers at the rate of 2.5 GT/s for a Gen1 application. The Spartan-6 FPGA GTP MGT is used for the multi-gigabit per second serial interface.

The SP605 board trace impedance on the PCIe lane supports Gen1 applications. The SP605 supports Gen1 x1.

Table 1-11: PCIe Edge Connector Connections

U1 FPGA Pin	Schematic Net Name	P4 PCle Edg	e Connector
OT FFGA PIII	Schematic Net Name	Pin Number	Pin Name
C7	PCIE_RX0_N	B15	PETn0
D7	PCIE_RX0_P	B14	PETp0
A6	PCIE_TX0_N ⁽¹⁾	A17	PERn0
В6	PCIE_TX0_P(1)	A16	PERp0
-	PCIE_CLK_QO_N ⁽²⁾	A14	REFCLK-
-	PCIE_CLK_QO_P ⁽²⁾	A13	REFCLK+
B10	PCIE_250M_N ⁽³⁾⁽⁶⁾	U48.17 ⁽⁴⁾	NQ
A10	PCIE_250M_P ⁽³⁾⁽⁶⁾	U48.18 ⁽⁴⁾	Q
J7	PCIE_PERST_B_LS	A11	PERST ⁽⁵⁾

Notes:

- 1. Each of the TX0_N/P signals has a 0.1 μF series capacitor.
- 2. PCIE_CLK_QO_N/P is the PC motherboard 100MHZ REFCLK.
- 3. Each of the PCIE_250M_N/P signals has a 0.1 μF series capacitor.
- 4. U48 is an ICS874001 clock multiplier device (U48.17/18 are not P4 pins).
- 5. The PERST signal from pin P4.A11 is isolated by a series resistor and then level-shifted by U52 before making the FPGA pin U1.J7 connection.
- 6. PCIE_250M_N/P signals can be a frequency other than 250 MHz, depending on the settings selected by resistor population for U48 ICS874001. The default setting is 125 MHz.

The PCIe interface obtains its power from the DC power supply provided with the SP605 or through the 12V ATX power supply connector. The PCIe edge connector is not used for any power connections.

The board can be powered by one of two 12V sources; J18, a 6-pin (2x3) Mini-Fit-type connector and J27, a 4-pin (inline) ATX disk drive type connector.

The 6-pin Mini-Fit-type connector provides 60W (12V @ 5A) from the AC power adapter provided with the board while the 4-pin ATX disk drive type connector is provided for users who want to power their board while it is installed inside a PC chassis.

For applications requiring additional power, such as the use of expansion cards drawing significant power, a larger AC adapter might be required. If a different AC adapter is used, its load regulation should be better than ±10%.

SP605 power slide switch SW2 turns the board on and off by controlling the 12V supply to the board.

Caution! Never apply power to the power brick 6-pin Mini-Fit type connector (J18) and the 4-pin ATX disk drive type connector (J27) at the same time as this will result in damage to the board. Never connect an auxiliary PCIe 6-pin power connector to J18 6-pin Mini-Fit type connector on the SP605 board as this could result in damage to the PCIe motherboard and/or

SP605 board. The 6-pin Mini-Fit type connector is marked with a no PCIe power label to warn users of the potential hazard.

See the Spartan-6 FPGA GTP Transceivers User Guide (UG386) for more information. [Ref 6]

Also, see the following websites for more information about the *Spartan-6 FPGA Integrated Endpoint Block for PCI Express*:

Product information, www.xilinx.com/products/intellectual-property/s6_pci_express_block.html

In addition, see the PCI Express specifications for more information. [Ref 19]

10. SFP Module Connector

The board contains a small form-factor pluggable (SFP) connector and cage assembly that accepts SFP modules. The SFP interface is connected to MGT Bank 123 on the FPGA. The SFP module serial ID interface is connected to the "SFP" IIC bus (see 14. IIC Bus for more information). The control and status signals for the SFP module are connected to jumpers and test points as described in Table 1-12. The SFP module connections are shown in Table 1-13.

Table 1-12: SFP Module Control and Status

SFP Control/Status Signal	Board Connection
	Test Point J15
SFP_TX_FAULT	High = Fault
	Low = Normal Operation
	Jumper J44
SFP_TX_DISABLE	On = SFP Enabled
	Off = SFP Disabled
	Test Point J16
SFP_MOD_DETECT	High = Module Not Present
	Low = Module Present
	Jumper J22
SFP_RT_SEL	Jumper Pins 1-2 = Full Bandwidth
	Jumper Pins 2-3 = Reduced Bandwidth
	Test Point J14
SFP_LOS	High = Loss of Receiver Signal
	Low = Normal Operation

Table 1-13: SFP Module Connections

U1 FPGA Pin	Schematic Net Name	P2 SFP Module Connector	
OT FFGA FIII	Schematic Net Name	Pin Number	Pin Name
D13	SFP_RX_P	13	RDP
C13	SFP_RX_N	12	RDN
B14	SFP_TX_P	18	TDP
A14	SFP_TX_N	19	TDN
T17	SFP_LOS	8	LOS
Y8	SFP_TX_DISABLE_FPGA	3	TX_DISABLE
A12	SFPCLK_QO_N ⁽¹⁾	U47.6 ⁽²⁾	-
B12	SFPCLK_QO_P ⁽¹⁾	U47.7 ⁽²⁾	-

Notes:

- 1. The 125MHz SFP clock is sourced by clock driver U47.
- 2. Not P2 SFP module pins.

11. 10/100/1000 Tri-Speed Ethernet PHY

The SP605 uses the onboard Marvell Alaska PHY device (88E1111) for Ethernet communications at 10, 100, or 1000 Mb/s. The board supports a GMII interface from the FPGA to the PHY. The PHY connection to a user-provided Ethernet cable is through a Halo HFJ11-1G01E RJ-45 connector with built-in magnetics.

On power-up, or on reset, the PHY is configured to operate in GMII mode with PHY address **0b00111** using the settings shown in the following table. These settings can be overwritten via software commands passed over the MDIO interface.

Table 1-14: PHY Configuration Pins

Pin	Connection on Board		Bit[1] Definition and Value	Bit[0] Definition and Value
CFG2	V _{CC} 2.5V	ANEG[3] = 1	ANEG[2] = 1	ANEG[1] = 1
CFG3	V _{CC} 2.5V	ANEG[0] = 1	ENA_XC = 1	DIS_125 = 1
CFG4	V _{CC} 2.5V	$HWCFG_MD[2] = 1$	HWCFG_MD[1] = 1	$HWCFG_MD[0] = 1$
CFG5	V _{CC} 2.5V	DIS_FC = 1	DIS_SLEEP = 1	$HWCFG_MD[3] = 1$
CFG6	PHY_LED_RX	SEL_BDT = 0	INT_POL = 1	$75/50\Omega = 0$

Table 1-15 shows the connections and pin numbers for the PHY.

Table 1-15: Ethernet PHY Connections

U1 FPGA Pin	Cohomotic Not Name	U46 M88E111	
	Schematic Net Name	Pin Number	Pin Name
V20	PHY_MDIO	33	MDIO
R19	PHY_MDC	35	MDC
J20	PHY_INT	32	INT_B
J22	PHY_RESET	36	RESET_B
N15	PHY_CRS	115	CRS
M16	PHY_COL	114	COL
P20	PHY_RXCLK	7	RXCLK
U20	PHY_RXER	8	RXER
T22	PHY_RXCTL_RXDV	4	RXDV
P19	PHY_RXD0	3	RXD0
Y22	PHY_RXD1	128	RXD1
Y21	PHY_RXD2	126	RXD2
W22	PHY_RXD3	125	RXD3
W20	PHY_RXD4	124	RXD4
V22	PHY_RXD5	123	RXD5
V21	PHY_RXD6	121	RXD6

Table 1-15: Ethernet PHY Connections (Cont'd)

U1 FPGA Pin	Cohomotic Not Name	U46 M88E111		
	Schematic Net Name	Pin Number	Pin Name	
U22	PHY_RXD7	120	RXD7	
AB7	PHY_TXC_GTPCLK	14	GTXCLK	
L20	PHY_TXCLK	10	TXCLK	
U8	PHY_TXER	13	TXER	
Т8	PHY_TXCTL_TXEN	16	TXEN	
U10	PHY_TXD0	18	TXD0	
T10	PHY_TXD1	19	TXD1	
AB8	PHY_TXD2	20	TXD2	
AA8	PHY_TXD3	24	TXD3	
AB9	PHY_TXD4	25	TXD4	
Y9	PHY_TXD5	26	TXD5	
Y12	PHY_TXD6	28	TXD6	
W12	PHY_TXD7	29	TXD7	

See the Marvell *Alaska Gigabit Ethernet Transceivers* product page [Ref 20] and the *LogiCORE*TM *IP Tri-Mode Ethernet MAC User Guide* (UG138) [Ref 7] for more information.

12. USB-to-UART Bridge

The SP605 contains a Silicon Labs CP2103GM USB-to-UART bridge device (U4) which allows connection to a host computer with a USB cable. The USB cable is supplied in this evaluation kit (Type A end to host computer, Type Mini-B end to SP605 connector J23). Table 1-16 details the SP605 J23 pinout.

Xilinx UART IP is expected to be implemented in the FPGA fabric (for instance, Xilinx XPS UART Lite). The FPGA supports the USB-to-UART bridge using four signal pins: Transmit (TX), Receive (RX), Request to Send (RTS), and Clear to Send (CTS).

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers which permit the CP2103GM USB-to-UART bridge to appear as a COM port to host computer communications application software (for example, HyperTerm or TeraTerm). The VCP device driver must be installed on the host PC prior to establishing communications with the SP605. Refer to the evaluation kit *Getting Started Guide* for driver installation instructions.

Table 1-16: USB Type B Pin Assignments and Signal Definitions

USB Connector Pin	Signal Name	Description
1	VBUS	+5V from host system (not used)
2	USB_DATA_N	Bidirectional differential serial data (N-side)
3	USB_DATA_P	Bidirectional differential serial data (P-side)
4	GROUND	Signal ground

Table 1-17: USB-to-UART Connections

U1 FPGA Pin	UART Function in FPGA	Schematic Net Name	U30 CP2103GM Pin	UART Function in CP2103GM
F18	RTS, output	USB_1_CTS	22	CTS, input
F19	CTS, input	USB_1_RTS	23	RTS, output
B21	TX, data out	USB_1_RX	24	RXD, data in
H17	RX, data in	USB_1_TX	25	TXD, data out

Notes:

Refer to the <u>Silicon Labs</u> website for technical information on the CP2103GM and the VCP drivers.

In addition, see some of the Xilinx UART IP specifications at:

- XPS UART Lite (DS571) [Ref 13]
- XPS 16550 UART (DS577) [Ref 14]

^{1.} The schematic net names correspond with the CP2103GM pin names and functions, and the UART IP in the FPGA must be connected accordingly.

13. DVI CODEC

A DVI connector (P3) is present on the board to support an external video monitor. The DVI circuitry utilizes a Chrontel CH7301C (U31) capable of 1600 X 1200 resolution with 24-bit color. The video interface chip drives both the digital and analog signals to the DVI connector. A DVI monitor can be connected to the board directly. A VGA monitor can also be connected to the board using the supplied DVI-to-VGA adaptor. The Chrontel CH7301C is controlled by way of the video IIC bus.

The DVI connector (Table 1-18) supports the IIC protocol to allow the board to read the monitor's configuration parameters. These parameters can be read by the FPGA using the DVI IIC bus (see 14. IIC Bus).

Table 1-18: DVI Controller Connections

U1 FPGA Pin	Schematic Net	U31 Chront	el CH7301C
UT FPGA PIN	Name	Pin Number	Pin Name
K16	DVI_D0	63	D0
U19	DVI_D1	62	D1
T20	DVI_D2	61	D2
N16	DVI_D3	60	D3
P16	DVI_D4	59	D4
M17	DVI_D5	58	D5
M18	DVI_D6	55	D6
R15	DVI_D7	54	D7
R16	DVI_D8	53	D8
P17	DVI_D9	52	D9
P18	DVI_D10	51	D10
R17	DVI_D11	50	D11
J17	DVI_DE	2	DE
J16	DVI_H	4	Н
L15	DVI_RESET_B	13	RESET_B
B22	DVI_V	5	V
C22	DVI_XCLK_N	56	XCLK_N
C20	DVI_XCLK_P	57	XCLK_P
No Connect	DVI_GPIO0	8	GPIO0
D22	DVI_GPIO1	7	GPIO1

14. IIC Bus

The SP605 implements three IIC bus interfaces at the FPGA.

The MAIN IIC bus hosts four items:

- FPGA U1 Bank 1 "MAIN" IIC interface
- 8-Kb NV Memory U4
- FMC LPC connector J2
- 2-Pin External Access Header J45

The DVI IIC bus hosts two items:

- FPGA U1 Bank 2 DVI IIC interface
- DVI Codec U31 and DVI connector P3

The SFP IIC bus hosts two items:

- FPGA U1 Bank 0 SFP IIC interface
- SFP module connector P2

The SP605 IIC bus topology is shown in Figure 1-11.

Figure 1-11: IIC Bus Topology

U1 FPGA Pin	Schematic Netname	Connected To	Level-Shifted Connection	Level-Shifted Net Name
R22	IIC_SDA_MAIN	J2.C31, U4.5 ⁽¹⁾	_	-
T21	IIC_SCL_MAIN	J2.C30, U4.6 ⁽¹⁾	_	-
AA4	IIC_SDA_DVI	Q8.2, U31.14	Q8.3, P3.7	IIC_SDA_DVI_F
W13	IIC_SCL_DVI	Q7.2, U31.15	Q7.3, P3.6	IIC_CLK_DVI_F
E6	IIC_SDA_SFP	P2.4	_	-
E5	IIC_SCL_SFP	P2.5	_	-

Table 1-19: IIC Bus Connections

Notes:

- 1. U4 IIC bus signals are resistively coupled with 0Ω resistors
- 2. Legend
 - J2, FMC LPC Connector
 - P2, SFP Module Connector
 - P3, DVI Connector
 - Qn.n, Level-Shifting Transistor
 - U31, Chrontel CH7301C

IIC External Access Header

J45 (see Figure 1-12) is a two-pin header that allows external IIC devices to be connected to the SP605 IIC bus. When connected, the external device can be accessed via IIC commands using IIC_SDA_MAIN and IIC_SCL_MAIN.

8-Kb NV Memory

The SP605 hosts a 8-Kb ST Microelectronics M24C08-WDW6TP IIC parameter storage memory device (U4). The IIC address of U4 is **0b1010100**, and U4 is not write protected (WP pin 7 is tied to GND).

The IIC memory is shown in Figure 1-12.

Figure 1-12: IIC Memory U4

Table 1-20: IIC Memory Connections

U1 FPGA Pin	Schematic Netname	IIC Memo	ory U4
UI FPGA PIII	Schematic Nethanie	Pin Number	Pin Name
Not Applicable	Tied to GND	1	A0
Not Applicable	Tied to GND	2	A1
Not Applicable	Pulled up (0Ω) to VCC3V3	3	A2
R22	IIC_SDA_MAIN	5	SDA
T21	IIC_SCL_MAIN	6	SCL
Not Applicable	Tied to GND	7	WP

See the ST Micro M24C08 Data Sheet for more information. [Ref 21] In addition, see the Xilinx XPS IIC Bus Interface Data Sheet (DS606). [Ref 8]

15. Status LEDs

Table 1-21 defines the status LEDs.

Table 1-21: Status LEDs

Reference Designator	Signal Name	Color	Label	Description
DS1	FMC_PWR_GOOD_FLASH_RST_B	Green	FMC PWR GD	FMC Power Good
DS2	FPGA_DONE	Green	DONE	FPGA DONE
DS3	GPIO_LED_0	Green		GPIO_LED_0
DS4	GPIO_LED_1	Green		GPIO_LED_1
DS5	GPIO_LED_2	Green		GPIO_LED_2
DS6	GPIO_LED_3	Green		GPIO_LED_3
DS7	FPGA_AWAKE	Green		FPGA AWAKE
DS8	SYSACE_STAT_LED	Green	System ACE CF Status LED	System ACE CF Status
DS9	TI_PWRGOOD (AND) MGT_TI_PWRGOOD	Green	POWER GOOD	TI_CORE_PWR+TI_MGT_PWR GOOD
DS10	LED_RED / LED_GRN	Red/Green	STATUS	USB JTAG Controller Status
DS14	VCC12_P	Green	12V	12V Power On
DS15	(U11.9 PGOOD PIN)	Green	DDR3 PWR GD	DDR3 1.5V Power On
DS17	FPGA_INIT_B	Red	INIT	FPGA INIT
DS18	SYSACE_ERR_LED	Red	System ACE CF Error LED	System ACE CF Error
DS19	MGT_POWERGOOD	Green	MGT_AVCC GD	MGT_AVCC Power On

Ethernet PHY Status LEDs

The Ethernet PHY status LEDs (DS11-DS13) are mounted in right-angle plastic housings to make them visible on the connector end of the board when the SP605 board is installed into a PC motherboard. This cluster of six LEDs is installed adjacent to the RJ45 Ethernet jack P1.

UG526_13 _092409

Figure 1-13: Ethernet PHY Status LEDs

FPGA INIT and DONE LEDs

The typical Xilinx FPGA power up and configuration status LEDs are present on the SP605.

The red INIT LED DS17 comes on momentarily after the FPGA powers up and during its internal power-on process. The DONE LED DS2 comes on after the FPGA programming bitstream has been downloaded and the FPGA successfully configured.

Figure 1-14: FPGA INIT and DONE LEDs

Table 1-22: FPGA INIT and DONE LED Connections

U1 FPGA Pin	Schematic Net Name	Controlled LED	
Y4	FPGA_INIT_B	DS17 INIT, Red	
AB21	FPGA_DONE	DS2 DONE, Green	

16. User I/O

The SP605 provides the following user and general purpose I/O capabilities:

- User LEDs
- User Pushbutton Switches
- User DIP Switch
- User SIP Header
- User SMA GPIO

User LEDs

The SP605 provides four active-High green LEDs as described in Figure 1-15 and Table 1-23.

Figure 1-15: User LEDs

Table 1-23: User LED Connections

U1 FPGA Pin	Schematic Net Name	Controlled LED
D17	GPIO_LED_0	DS3
AB4	GPIO_LED_1	DS4
D21	GPIO_LED_2	DS5
W15	GPIO_LED_3	DS6

44

User Pushbutton Switches

The SP605 provides five active-High pushbutton switches: SW4, SW5, SW6, SW7, and SW8. The five pushbuttons all have the same topology as the sample shown in Figure 1-16. Four pushbuttons are assigned as GPIO, and the fifth is assigned as a CPU_RESET. Figure 1-16 and Table 1-24 describe the pushbutton switches.

Figure 1-16: User Pushbutton Switch (Typical)

Table 1-24: Pushbutton Switch Connections

U1 FPGA Pin	Schematic Netname	Switch Pin
F3	GPIO_BUTTON_0	SW4.2
G6	GPIO_BUTTON_1	SW7.2
F5	GPIO_BUTTON_2	SW5.2
C1	GPIO_BUTTON_3	SW8.2
H8	CPU_RESET	SW6.2

User DIP Switch

The SP605 includes an active-High four-pole DIP switch, as described in Figure 1-17 and Table 1-25. Three poles (switches 1-3) are pulled up to 2.5V, and one pole (switch 4) is pulled up to 1.5V, when closed.

Figure 1-17: User DIP Switch S2

Table 1-25: User DIP Switch Connections

U1 FPGA Pin	Schematic Net Name	DIP Switch Pin
C18	GPIO_SWITCH_0	S2.1
Y6	GPIO_SWITCH_1	S2.2
W6	GPIO_SWITCH_2	S2.3
E4	GPIO_SWITCH_3	S2.4

User SIP Header

The SP605 includes a 6-pin single-inline (SIP) male pin header (J55) for FPGA GPIO access. Four pins of J55 are wired to the FPGA through 200Ω series resistors and a level shifter, and the remaining two J55 pins are wired to 3.3V and GND. The J55 header is described in Figure 1-18 and Table 1-26.

Figure 1-18: User SIP Header J55

Table 1-26: User SIP Header Connections

U1 FPGA Pin	GPIO Header Pin	
G7	G7 GPIO_HEADER_0	
H6	GPIO_HEADER_1	J55.2
D1	GPIO_HEADER_2	J55.3
R7	GPIO_HEADER_3	J55.4
_	GND	J55.5
_	VCC3V3	J55.6

Notes:

- 1. Each GPIO_HEADER_n signal is sourced from the FPGA as <netname>_LS to a level shifter, then to the J55 header.
- 2. Each GPIO_HEADER_n net has a 200Ω series resistor between the level shifter and its respective header pin.

User SMA GPIO

The SP605 includes an pair of SMA connectors for GPIO as described in Figure 1-19 and Table 1-27.

Figure 1-19: User SMA GPIO

Table 1-27: User SMA Connections

U1 FPGA Pin	Schematic Net Name	GPIO SMA Pin
A3	USER_SMA_GPIO_N	J39.1
В3	USER_SMA_GPIO_P	J40.1

17. Switches

The SP605 Evaluation board includes the following switches:

- Power On/Off Slide Switch SW2
- FPGA_PROG_B Pushbutton SW3 (Active-Low)
- SYSACE_RESET_B Pushbutton SW9 (Active-Low)
- System ACE CF CompactFlash Image Select DIP Switch S1 (Active-High)
- Mode DIP Switch SW1 (Active-High)

Power On/Off Slide Switch SW2

SW2 is the SP605 board main power on/off switch. Sliding the switch actuator from the off to on position applies 12V power from either J18 (6-pin Mini-Fit) or J27 (4-pin ATX) power connector to the VCC12_P power plane. Green LED DS14 will illuminate when the SPL605 board power is on. See 19. Power Management for details on the on-board power system.

Figure 1-20: Power On/Off Slide Switch SW2

FPGA_PROG_B Pushbutton SW3 (Active-Low)

The SW3 switch (Figure 1-21) grounds the FPGA PROG_B pin when pressed. This action clears the FPGA. See the *Spartan-6 FPGA Data Sheet: DC and Switching Characteristics* (DS162) [Ref 1] for more information on clearing the contents of the FPGA.

Figure 1-21: FPGA PROG_B Pushbutton SW3

SYSACE_RESET_B Pushbutton SW9 (Active-Low)

When the System ACE CF configuration mode pin is high (enabled by closing DIP switch S1 switch 4), the System ACE CF controller configures the FPGA from the CompactFlash card when a card is inserted or the SYSACE RESET button is pressed. See 5. System ACE CF and CompactFlash Connector for more details.

Figure 1-22: System ACE CF RESET_B Pushbutton SW9

System ACE CF CompactFlash Image Select DIP Switch S1 (Active-High)

System ACE CF CompactFlash (CF) image select DIP switch S1, switches 1–3 (Figure 1-23) select which CF resident bitstream image is downloaded to the FPGA. S1 switches 1–3 offer eight binary addresses. When ON (high), the S1 switch 4 enables the System ACE CF controller to configure the FPGA from the CompactFlash card when a card is inserted or the SYSACE RESET button is pressed. See 5. System ACE CF and CompactFlash Connector for more details.

Figure 1-23: System ACE CF CompactFlash Image Select DIP Switch S1

Mode DIP Switch SW1 (Active-High)

DIP switch SW1 sets the FPGA mode as shown in Figure 1-24 and Table 1-32.

Figure 1-24: FPGA Mode DIP Switch SW1

For more information, refer to the *Spartan-6 FPGA Configuration User Guide* (UG380) [Ref 2]. See Table 1-32 for the configuration modes.

18. VITA 57.1 FMC LPC Connector

The SP605 implements the Low Pin Count (LPC, J2) connector option of the VITA 57.1.1 FMC specification.

Note: The FMC LPC J2 connector is a keyed connector oriented so that a plug-on card faces *away* from the SP605 board.

The FMC standard calls for two connector densities: a High Pin Count (HPC) and a Low Pin Count (LPC) implementation. A common 10 x 40 position (400 pin locations) connector form factor is used for both versions. The HPC version is fully populated with 400 pins present, and the LPC version is partially populated with 160 pins.

The 10 x 40 rows of a FMC LPC connector provides connectivity for:

- 68 single-ended or 34 differential user defined signals
- 1 MGT
- 1 MGT clock
- 2 differential clocks
- 61 ground, 10 power connections

Of the above signal and clock connectivity capability, the SP605 implements the full set:

- 34 differential user-defined pairs
 - 34 LA pairs
- 1 MGT
- 1 MGT clock
- 2 differential clocks

Note: The SP605 board VADJ voltage for the FMC LPC connector J2 is fixed at 2.5V (non-adjustable). The 2.5V rail cannot be turned off. The SP605 VITA 57.1 FMC interfaces are compatible with 2.5V mezzanine cards capable of supporting 2.5V VADJ.

Table 1-28 shows the VITA 57.1 FMC LPC connections. The connector pinout is in Appendix B, VITA 57.1 FMC LPC Connector Pinout.

Table 1-28: VITA 57.1 FMC LPC Connections

J63 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin	J63 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin
			D1	FMC_PWR_GOOD_FLASH_RST_B	V13
C2	FMC_DP0_C2M_P	B16	D4	FMC_GBTCLK0_M2C_P	E12
C3	FMC_DP0_C2M_N	A16	D5	FMC_GBTCLK0_M2C_N	F12
C6	FMC_DP0_M2C_P	D15	D8	FMC_LA01_CC_P	F14
C7	FMC_DP0_M2C_N	C15	D9	FMC_LA01_CC_N	F15
C10	FMC_LA06_P	D4	D11	FMC_LA05_P	C4
C11	FMC_LA06_N	D5	D12	FMC_LA05_N	A4
C14	FMC_LA10_P	H10	D14	FMC_LA09_P	F7
C15	FMC_LA10_N	H11	D15	FMC_LA09_N	F8
C18	FMC_LA14_P	C17	D17	FMC_LA13_P	G16
C19	FMC_LA14_N	A17	D18	FMC_LA13_N	F17
C22	FMC_LA18_CC_P	T12	D20	FMC_LA17_CC_P	Y11
C23	FMC_LA18_CC_N	U12	D21	FMC_LA17_CC_N	AB11
C26	FMC_LA27_P	AA10	D23	FMC_LA23_P	U9
C27	FMC_LA27_N	AB10	D24	FMC_LA23_N	V9
C30	IIC_SCL_MAIN	T21	D26	FMC_LA26_P	U14
C31	IIC_SDA_MAIN	R22	D27	FMC_LA26_N	U13
			T. T		T
G2	FMC_CLK1_M2C_P	E16	H2	FMC_PRSNT_M2C_L	Y16
G3	FMC_CLK1_M2C_N	F16	H4	FMC_CLK0_M2C_P	H12
G6	FMC_LA00_CC_P	G9	H5	FMC_CLK0_M2C_N	G11
G7	FMC_LA00_CC_N	F10	H7	FMC_LA02_P	G8
G9	FMC_LA03_P	B18	H8	FMC_LA02_N	F9
G10	FMC_LA03_N	A18	H10	FMC_LA04_P	C19
G12	FMC_LA08_P	B20	H11	FMC_LA04_N	A19
G13	FMC_LA08_N	A20	H13	FMC_LA07_P	B2
G15	FMC_LA12_P	H13	H14	FMC_LA07_N	A2
G16	FMC_LA12_N	G13	H16	FMC_LA11_P	H14
G18	FMC_LA16_P	C5	H17	FMC_LA11_N	G15
G19	FMC_LA16_N	A5	H19	FMC_LA15_P	D18

Table 1-28: VITA 57.1 FMC LPC Connections (Cont'd)

J63 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin	J63 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin
G21	FMC_LA20_P	R9	H20	FMC_LA15_N	D19
G22	FMC_LA20_N	R8	H22	FMC_LA19_P	R11
G24	FMC_LA22_P	V7	H23	FMC_LA19_N	T11
G25	FMC_LA22_N	W8	H25	FMC_LA21_P	V11
G27	FMC_LA25_P	W14	H26	FMC_LA21_N	W11
G28	FMC_LA25_N	Y14	H28	FMC_LA24_P	AA14
G30	FMC_LA29_P	T15	H29	FMC_LA24_N	AB14
G31	FMC_LA29_N	U15	H31	FMC_LA28_P	AA16
G33	FMC_LA31_P	U16	H32	FMC_LA28_N	AB16
G34	FMC_LA31_N	V15	H34	FMC_LA30_P	Y15
G36	FMC_LA33_P	Y17	H35	FMC_LA30_N	AB15
G37	FMC_LA33_N	AB17	H37	FMC_LA32_P	W17
			H38	FMC_LA32_N	Y18

Table 1-29: Power Supply Voltages for LPC Connector

Voltage Supply	Voltage	Number of Pins	Maximum Current	Tolerance
VADJ	Fixed 2.5V	2	2A	±5%
VIO_B_M2C	NC	0	0A	N/A
VREF_A_M2C	0-VADJ	1	0.001A	±2%
VREF_B_M2C	NC	0	0A	N/A
3P3VAUX	3.3V	1	0.020A	± 5%
3P3V	3.3V	4	3A	±5%
12P0V	12V	2	1A	±5%

19. Power Management

AC Adapter and 12V Input Power Jack/Switch

The SP605 is powered from a 12V source that is connected through a 6-pin (2X3) right angle Mini-Fit type connector J18. The AC-to-DC power supply included in the kit has a mating 6-pin plug.

When the SP605 is installed into a table top or tower PC's PCIe slot, the SP605 is typically powered from the PC ATX power supply. One of the PC's ATX hard disk type 4-pin power connectors is plugged into SP605 connector J27. The SP605 can be powered with the AC power adapter (plugged into J18) even when plugged into a PC PCIe motherboard slot;

however, users are cautioned not to also connect a PC ATX type 4-pin power connector to J27.

Caution! DO NOT plug a PC ATX power supply 6-pin connector into SP605 connector J18. The ATX 6-pin connector has a different pinout than SP605 J18, and connecting the ATX 6-pin connector will damage the SP605 and void the board warranty.

Caution! DO NOT apply power to 6-pin Mini-Fit type connector J18 and 4-pin ATX disk drive type connector J27 at the same time as this will damage the SP605 board. Refer to Figure 1-20 for details. The SP605 Power can be turned on or off through the board mounted slide switch SW2. When the switch is in the on position, a green LED (DS14) is illuminated.

Onboard Power Regulation

The following figure shows the SP605 onboard power supply architecture. The SP605 uses Texas Instruments power controllers for primary core power control and monitoring.

Figure 1-25: Onboard Power Regulators

Table 1-30: Onboard Power System Devices

Device Type	Reference Designator	Description	Power Rail Net Name	Power Rail Voltage (V)	
UCD9240PFC ⁽¹⁾	U26	PMBus Controller - Core (Addr = 52)			21
PTD08A010W	U18	10A 0.6V - 3.6V Adj. Switching Regulator	VCCINT_FPGA	1.20(3)	22
PTD08A010W	U19	10A 0.6V - 3.6V Adj. Switching Regulator	VCC2V5_FPGA	2.50	23
PTD08A010W	U20	10A 0.6V - 3.6V Adj. Switching Regulator	VCCAUX	2.50	24
UCD9240PFC ⁽²⁾	U27	PMBus Controller - Core (Addr = 53)			26
PTD08A010W	U21	10A 0.6V - 3.6V Adj. Switching Regulator	VCC1V5_FPGA	1.50	29
PTD08A010W	U22	10A 0.6V - 3.6V Adj. Switching Regulator	VCC3V3	3.30	30
TL1963AKTTR	U5	1.5A 12V IN, 5.0V OUT Linear Regulator	VCC5	5.00	21
TPS74401	U51	3A 1.5V IN, 1.2V OUT Linear Regulator	MGT_AVCC	1.20	27
TPS51200DRCT	U11	3A DDR3 VTERM Tracking Linear Regulator	VTTDDR	0.75	31
TPS51200DRCT	U11	10 mA Tracking Reference output	VTTVREF	0.75	31
TL1963-18DCQR	U44	1.5A 2.5V IN, 1.8V OUT Linear Regulator	VCC1V8	1.80	31
LT1763CS8	U49	500 mA 5V IN, 3.0V OUT Linear Regulator	VCC3V0	3.00	31
TPS73633DBVT	U10	400 mA 5V IN, 3.30V OUT Linear Regulator	DVI_VCCA	3.30	17

Notes:

- 1. See Table 1-31, part 1 (addr 52)
- 2. See Table 1-31, part 2 (addr 53)
- 3. V_{CCINT} tolerance meets or exceeds the V_{CCINT} ±5% specification in the Recommended Operating Conditions table in the Spartan-6 FPGA Data Sheet. [Ref 1]

Table 1-31: Power Rail Specifications (UCD9240 PMBus Controllers at Addresses 52 and 53)

Device	Rail #	Rail Name	Schematic Rail Name	Vout (V)	PG On (V)	PG Off (V)	On Delay (ms)	Rise (ms)		Fall (ms)	Vout Over Fault (V)	Response	lout Over Fault (A)	Response	Temp Over Fault (°C)	Response
UCD9240 (Addr 52)	1	Rail #1	VCCINT _FPGA	1.2	1.14	1.104		10	0	10	1.344		14	Shut down	80	Shut down
	2	Rail #2	VCC2V5 _FPGA	2.5	2.375	2.3	0				2.8	Shut down				
	3	Rail #3	VCCAUX	2.5	2.375	2.3										
UCD9240 (Addr 53)	1	Rail #1	VCC1V5 _FPGA	1.5	1.425	1.38	0	10	0	10	1.68	Shut	13.203	Shut	80	Shut
	2	Rail #2	VCC3V3	3.3	3.135	3.036	U		0	10	3.696	down	15.203	down	00	down

Voltage and current monitoring and control are available for selected power rails through Texas Instruments' Fusion Digital PowerTM graphical user interface (GUI). Both onboard TI power controllers are wired to the same PMBus. The PMBus connector, J1, is provided for use with the TI USB Interface Adapter PMBus pod (for TI part number, see EVM USB-TO-GPIO) The SP605 board is shipped with a TI flyer containing information that allows the user to purchase this EVM at a discount.

TI provides the <u>Fusion Digital Power Designer software package</u> which includes several tools capable of communicating with the UCD92xx series of controllers from a Windowsbased host computer via the PMBus pod. The SP605 onboard connector J1 is wired for the TI EVM interface and provides access to the PMBUS and UCD9240s for monitoring purposes. This is the simplest and most convenient way to monitor the power rails. See Table 1-30 and Table 1-31.

For details concerning the use of the Fusion software tool, refer to the documentation offered in the Fusion Digital Power Designer GUI help system (select **Help** \rightarrow **Documentation and Help Center**).

For more detailed information about this technology and the various power management controllers and regulator modules offered by Texas Instruments, visit www.ti.com/ww/en/analog/digital-power/index.html.

Configuration Options

The FPGA on the SP605 Evaluation Board can be configured by the following methods:

- 3. SPI x4 Flash
- 4. Linear BPI Flash
- 5. System ACE CF and CompactFlash Connector
- 6. USB JTAG

For more information, refer to the *Spartan-6 FPGA Configuration User Guide* (UG380). [Ref 2]

Table 1-32: SP605 FPGA Configuration Modes

Configuration Mode	- MITOLI BUS WIGTH C		Configuration Solution	User Guide Section	
Master Serial/SPI	Serial/SPI 01 1, 2, 4 ⁽¹⁾ Output SPI X4 Memory U32 (J46 on), or External SPI Header J17 (J46 off)		3. SPI x4 Flash		
Master SelectMAP/BPI ⁽²⁾	00	8, 16	Output	Linear Flash Memory U25 (BPI)	4. Linear BPI Flash
JTAG ⁽³⁾	xx	1	Input (TCK)	Xilinx Platform Cable USB plugged into J4	6. USB JTAG
Slave SelectMAP ⁽²⁾	10	8, 16	Input	System ACE CF Controller and CompactFlash Card	5. System ACE CF and CompactFlash Connector
Slave Serial ⁽⁴⁾	11	1	Input	Not Supported	_

Notes:

- 1. Utilizing dual and quad SPI modes.
- 2. Parallel configuration mode bus is auto-detected by the configuration logic.
- 3. Spartan-6 devices also have a dedicated four-wire JTAG (IEEE Std 1149.1) port that is always available to the FPGA regardless of the mode pin settings.
- 4. Default setting due to internal pull-up termination on Mode pins.

With the mode switch SW1 set to **01**, the SP605 will attempt to boot or load a bitstream from either the SPI X4 Flash device U32 or a user supplied SPI Flash memory mezzanine card installed on the SPI programming header J17, depending on the SPI select jumper J46 configuration, as shown in Table 1-32. With the mode set to **00**, the SP605 will attempt to boot or load a bitstream from Linear Flash device U25 (BPI).

With the mode switch SW1 set to 10, if a CompactFlash (CF) card is installed in the CF socket U37, System ACE CF will attempt to load a bitstream from the CF card image address pointed to by the image select switch S1. With no CF card present, the SP605 can be configured via the onboard JTAG controller and USB download cable as described in 6. USB JTAG.

Default Jumper and Switch Settings

Table A-33 shows the default switch settings and Table A-34 shows the default jumper settings for the SP605.

Table A-33: Default Switch Settings

REFDES		Default				
SW2	Boar	off				
		FPGA mode 2-pole DIP switch, Slave SelectMAP default selects System ACE CF configuration				
SW1	2	M1 = 1	on			
	1	M0 = 0	off			
		F configuration and image select 4-pole DIP switch				
	4 SysAce Mode = 1		on			
S1	3	SysAce CFGAddr2 = 0	off			
	2	SysAce CFGAddr1 = 0	off			
	1	SysAce CFGAddr0 = 0	off			
	User (
	4		off			
S2	3		off			
	2		off			
	1		off			

Table A-34: Default Jumper Settings

Jumper REFDES	Function	Default
FMC JTAG Bypass		
J19	Exclude FMC LPC connector J2	Jump 1-2
SFP Module		
J22	SFP Full BW	Jump 1-2
J44	SFP Enabled	Jump 1-2
SPI Memory Select		
J46	SPI Select SPI X4 Memory U32	Jump 1-2
System ACE CF Error LED		
J60	System ACE CF Error LED DS18 Enabled	Jump 1-2

VITA 57.1 FMC LPC Connector Pinout

Figure B-26 shows the pinout of the FMC LPC connector. Pins marked NC are not connected.

	K	J	Н	G	F	Е	D	С	В	Α
1	NC	NC	VREFAM2C	GND	NC	NC	PG C2M	GND	NC	NC
2	NC	NC	PRSNT M2C L	CLK1 M2C P	NC	NC	GND	DP0 C2M P	NC	NC
3	NC	NC	GND	CLK1 M2C N	NC	NC	GND	DP 0 C2M N	NC	NC
4	NC	NC	CLK0 M2C P	GND	NC	NC	GBTCLK0 M2C P	GND	NC	NC
5	NC	NC	CLK0 M2C N	GND	NC	NC	GBTCLK0 M2C N	GND	NC	NC
6	NC	NC	GND	LA00_P_CC	NC	NC	GND	DP 0_M2C_P	NC	NC
7	NC	NC	LA02_P	LA00_N_CC	NC	NC	GND	DP 0_M2C_N	NC	NC
8	NC	NC	LA02_N	GND	NC	NC	LA01_P_CC	GND	NC	NC
9	NC	NC	GND	LA03_P	NC	NC	LA01_N_CC	GND	NC	NC
10	NC	NC	LA04_P	LA03_N	NC	NC	GND	LA06_P	NC	NC
11	NC	NC	LA04_N	GND	NC	NC	LA05_P	LA06_N	NC	NC
12	NC	NC	GND	LA08_P	NC	NC	LA05_N	GND	NC	NC
13	NC	NC	LA07_P	LA08_N	NC	NC	GND	GND	NC	NC
14	NC	NC	LA07_N	GND	NC	NC	LA09_P	LA10_P	NC	NC
15	NC	NC	GND	LA12_P	NC	NC	LA09_N	LA10_N	NC	NC
16	NC	NC	LA11_P	LA12_N	NC	NC	GND	GND	NC	NC
17	NC	NC	LA11_N	GND	NC	NC	LA13_P	GND	NC	NC
18	NC	NC	GND	LA16_P	NC	NC	LA13_N	LA14_P	NC	NC
19	NC	NC	LA15_P	LA16_N	NC	NC	GND	LA14_N	NC	NC
20	NC	NC	LA15_N	GND	NC	NC	LA17_P_CC	GND	NC	NC
21	NC	NC	GND	LA20_P	NC	NC	LA17_N_CC	GND	NC	NC
22	NC	NC	LA19_P	LA20_N	NC	NC	GND	LA18_P_CC	NC	NC
23	NC	NC	LA19_N	GND	NC	NC	LA23_P	LA18_N_CC	NC	NC
24	NC	NC	GND	LA22_P	NC	NC	LA23_N	GND	NC	NC
25	NC	NC	LA21_P	LA22_N	NC	NC	GND	GND	NC	NC
26	NC	NC	LA21_N	GND	NC	NC	LA26_P	LA27_P	NC	NC
27	NC	NC	GND	LA25_P	NC	NC	LA26_N	LA27_N	NC	NC
28	NC	NC	LA24_P	LA25_N	NC	NC	GND	GND	NC	NC
29	NC	NC	LA24_N	GND	NC	NC	TCK	GND	NC	NC
30	NC	NC	GND	LA29_P	NC	NC	TDI	SCL	NC	NC
31	NC	NC	LA28_P	LA29_N	NC	NC	TDO	SDA	NC	NC
32	NC	NC	LA28_N	GND	NC	NC	3P3VAUX	GND	NC	NC
33	NC	NC	GND	LA31_P	NC	NC	TMS	GND	NC	NC
34	NC	NC	LA30_P	LA31_N	NC	NC	TR ST_L	GA0	NC	NC
35	NC	NC	LA30_N	GND	NC	NC	GA1	12P0V	NC	NC
36	NC	NC	GND	LA33_P	NC	NC	3P 3V	GND	NC	NC
37	NC	NC	LA32_P	LA33_N	NC	NC	GND	12P0V	NC	NC
38	NC	NC	LA32_N	GND	NC	NC	3P3V	GND	NC	NC
39	NC	NC	GND	VADJ	NC	NC	GND	3P3V	NC	NC
40	NC	NC	VADJ	GND	NC	NC	3P 3V	GND	NC	NC

UG526_26_092709

Figure B-26: FMC LPC Connector Pinout

For more information, refer to the VITA 57.1 FMC LPC Connections table (Table 1-28).

Xilinx Design Constraints

Overview

The Xilinx Design Constraints (XDC) file template provides for designs targeting the SP605 evaluation board. Net names in the constraints correlate with net names on the latest SP605 evaluation board schematic. Identify the appropriate pins and replace the net names with net names in the user RTL.

See the Constraints Guide (UG625) [Ref 12] for more information.

Note: The SP605 board VADJ voltage for the FMC LPC connector J2 is fixed at 2.5V (nonadjustable). The 2.5V rail cannot be turned off. The SP605 VITA 57.1 FMC interfaces are compatible with 2.5V mezzanine cards capable of supporting 2.5V VADJ.

Note: The latest version of the Xilinx constraint file can be found on the <u>Spartan-6 FPGA SP605</u> Evaluation Kit website.

Regulatory and Compliance Information

This product is designed and tested to conform to the European Union directives and standards described in this section.

See the Spartan-6 FPGA SP605 - Known Issues and Release Notes Xilinx Master Answer Record 33839 concerning the CE requirements for the PC Test Environment.

CE Directives

2006/95/EC, Low Voltage Directive (LVD)
2004/108/EC, Electromagnetic Compatibility (EMC) Directive

CE Standards

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).

Electromagnetic Compatibility

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

Safety

IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements

Markings

In August of 2005, the European Union (EU) implemented the EU WEEE Directive 2002/96/EC and later the WEEE Recast Directive 2012/19/EU requiring Producers of electronic and electrical equipment (EEE) to manage and finance the collection, reuse, recycling and to appropriately treat WEEE that the Producer places on the EU market after August 13, 2005. The goal of this directive is to minimize the volume of electrical and electronic waste disposal and to encourage re-use and recycling at the end of life.

Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.

If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.

This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.

This product complies with CE Directives 2006/95/EC, Low Voltage Directive (LVD) and 2004/108/EC, Electromagnetic Compatibility (EMC) Directive.

Appendix E

References

This appendix provides references to documentation supporting Spartan-6 FPGAs, tools, and IP.

For additional information, see www.xilinx.com/support/documentation/index.htm.

Spartan-6 FPGA SP605 - Known Issues and Release Notes Xilinx Master Answer Record 33839

Xilinx documents supporting the SP605 Evaluation Board:

- 1. DS162, Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
- 2. UG380, Spartan-6 FPGA Configuration User Guide
- 3. UG388, Spartan-6 FPGA Memory Controller User Guide
- 4. DS570, XPS Serial Peripheral Interface (SPI) Data Sheet
- 5. DS080, System ACE CompactFlash Solution Data Sheet
- 6. <u>UG386</u>, Spartan-6 FPGA GTP Transceivers User Guide
- 7. <u>UG138</u>, LogiCORETM IP Tri-Mode Ethernet MAC v4.2 User Guide
- 8. DS606, XPS IIC Bus Interface Data Sheet
- 9. <u>UG381</u>, Spartan-6 FPGA SelectIO Resources User Guide
- 10. DS614, Clock Generator (v3.01a) Data Sheet
- 11. DS643, Multi-Port Memory Controller (MPMC) (v5.02a) Data Sheet
- 12. UG625, Constraints Guide
- 13. DS571, XPS UART Lite
- 14. DS577, XPS 16550 UART

Additional documentation:

- 15. Micron Technology, Inc., DDR3 SDRAM Specification (MT41J64M16LA-187E)
- 16. Winbond, Serial Flash Memory Data Sheet (W25Q64FVSFIG)
- 17. Numonyx, StrataFlash Embedded Memory Data Sheet (JS28F256P30)
- 18. SiTime, Oscillator Data Sheet (SiT9102AI-243N25E200.00000)
- 19. PCI SIG, PCI Express Specifications
- 20. Marvell, Alaska Gigabit Ethernet Transceivers Product Page
- 21. ST Micro, M24C08 Data Sheet

