

Metody programowania

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka:-

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.120.03269.22

Języki wykładowe : polski

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MP.OL

Koordynator przedmiotu

Maciej Ślusarek

Prowadzący zajęcia

Okres Semestr 2

Maciej Ślusarek, Iwona Cieślik

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia laboratoryjne: 30

Liczba punktów ECTS 6.0

Efekty uczenia się dla przedmiotu

Kod Efekty w zakresie Kierunkowe efekty Metody uczenia się weryfikacji

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	zna podstawowe struktury danych (drzewa, grafy, tablice haszowane) i metody ich realizacji programistycznej	IAN_K1_W04, IAN_K1_W06	egzamin pisemny, zaliczenie
W2	zna wybrane techniki konstrukcji algorytmów	IAN_K1_W06	egzamin pisemny, zaliczenie
W3	zna podstawowe techniki sortowania i wyszukiwania danych	IAN_K1_W06	egzamin pisemny, zaliczenie
Umiejętności – Student potrafi:			
U1	posługuje się podstawowymi strukturami danych przy opisie prostych problemów przedstawionych w języku naturalnym	IAN_K1_U01, IAN_K1_U07, IAN_K1_U08	egzamin pisemny, zaliczenie
U2	projektuje i implementuje algorytmy wykorzystując podstawowe struktury danych oraz wybrane techniki programistyczne	IAN_K1_U03, IAN_K1_U05, IAN_K1_U06, IAN_K1_U07, IAN_K1_U08	egzamin pisemny, zaliczenie
U3	potrafi pisać program w sposób czytelny, na podstawowym poziomie testować go, szukać w nim błędów i optymalizować	IAN_K1_U17	egzamin pisemny, zaliczenie
U4	potrafi zaproponować rozwiązanie dla prostego problemu algorytmicznego wybierając dla jego rozwiązania właściwą metodę	IAN_K1_U11, IAN_K1_U21	egzamin pisemny, zaliczenie
U5	potrafi ustnie i pisemnie przedstawiać opracowanie rozwiązania prostego problemu	IAN_K1_U21	egzamin pisemny, zaliczenie
Kompetencji społecznych – Student jest gotów do:			

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
K1	potrafi precyzyjnie formułować pytania, służące pogłębieniu lub uzupełnieniu własnego zrozumienia danego tematu	IAN_K1_K01	egzamin pisemny, zaliczenie

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia laboratoryjne	30	
samodzielne rozwiązywanie zadań komputerowych	60	
przygotowanie do zajęć	30	
przygotowanie do egzaminu	30	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

		Efekty
Lp. Treści prograr	Trości programowa	uczenia się
	rresci programowe	dla
		przedmiotu

		Efekty
Lp. Treści programowe	Trości programowo	uczenia się
	dla	
		przedmiotu

1. Złożoność obliczeniowa algorytmów – definicja, notacja, porównania funkcji złożoności. Pojęcie abstrakcyjnej struktury danych (ADT). Podstawowe struktury danych: lista, stos, kolejka, kolejka priorytetowa, słownik; realizacja tablicowa, wskaźnikowa, kursorowa. Przykłady: wyszukiwanie połówkowe, sortowanie topologiczne, gospodarka pamięcią. 2. Struktury drzewiaste: drzewa, drzewa binarne, reprezentacje, elementarne i zaawansowane algorytmy przeglądu, drzewo wyszukiwań binarnych. 3. Złożoność amortyzowana, tablice dynamiczne, haszowanie (podstawy). 4. Grafy: reprezentacja, przegląd BFS i DFS, spójne składowe, cykle,

wyszukiwań binarnych. 3. Złożoność amortyzowana, tablice dynamiczne, haszowanie (podstawy). 4. Grafy: reprezentacja, przegląd BFS i DFS, spójne składowe, cykle, sortowanie topologiczne DFS-em, cykl Eulera. 5. Rekurencja, zamiana na iterację, przykłady: DFS ze stosem, programowanie z nawrotami. 6. Metoda dziel i zwyciężaj, szybkie mnożenie, sortowanie przez scalanie, twierdzenie o rekurencji uniwersalnej (wersja uproszczona). 7. Quicksort, warianty (Hoare, Lomuto), wersja nierekurencyjna. 8. Kopiec binarny, heapsort, statystyki pozycyjne, drzewo licznikowe. 9. Sortowanie pozycyjne, dolne oszacowanie na złożoność sortowania. 10. Programowanie dynamiczne – wstęp. 11. Algorytmy zachłanne – wstęp.

W1, W2, W3, U1, U2, U3, U4, U5, K1

Informacje rozszerzone

Metody nauczania:

1.

wykład konwencjonalny, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	Pozytywna ocena z egzaminu. Dopuszczenie do egzaminu pod warunkiem pozytywnej oceny z laboratorium. Końcowa ocena jest średnią oceny z laboratorium oraz egzaminu.
ćwiczenia laboratoryjne	zaliczenie	Zaliczenie laboratorium na podstawie programów zaliczeniowych, zadań domowych oraz kolokwiów.

Wymagania wstępne i dodatkowe

Podstawy programowania

Literatura

Obowiązkowa

1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, wydanie III, PWN, 2012

Dodatkowa

1. L.Banachowski, K.Diks, W.Rytter, Algorytmy i struktury danych, PWN, 2018

- 2. D. Knuth, Sztuka programowania, tom 1 i 3, WNT, 2002
- 3. A.V.Aho, J.E.Hopcroft, J.D.Ullman, Projektowanie i analiza algorytmów, PWN 1985, Helion 2003.