Informatik C: – Blatt 3

Rasmus Diederichsen

25. Juli 2014

Aufgabe 3.1

Sei $L=\{a_1,a_2,\dots,a_n\}$ eine endliche Sprache, $n<\infty$. Definiere für alle $i\in[1,n]$ Regeln S_{ik} , wobei $k=|a_i|$

$$S_{i1} \rightarrow a_i[1]S_{i2}$$

$$S_{i2} \rightarrow a_i[2]S_{i3}$$

$$\vdots$$

$$S_{ik} \rightarrow a_i[k]$$

sowie die Regel

$$S \to S_i \mid \ldots \mid S_n$$

Durch diese Aufzählung können alle Worte in L generiert werden. Alle S_{ik} sind regulär, daher sind alle endlichen Sprachen regulär.

Aufgabe 3.2

a)

Die reguläre Grammatik ist

$$A_1 \to 1A_2 \mid 1$$

 $A_2 \to 1A_2 \mid 0A_3 \mid 1$
 $A_3 \to 0A_1 \mid 1$

b)

Die obige Grammatik als nichtdeterministischer endlicher Automat ausgedrückt ist

Aufgabe 3.3

Ein äquivalenter deterministischer Automat gemäß der Vorlesung ist

Aufgabe 3.4

Zunächst separieren wir den Ausdruck in Baumschreibweise

Wir kreieren einen NDEA für jeden Knoten, beginnend mit den Blättern.

- \bigcirc start $\longrightarrow \bigcirc$ \longrightarrow
- 3 start $\longrightarrow \bigcirc d$
- 4 start -

Aufgabe 3.5

Aufgabe 3.6

Wir erstellen für $k=0,\dots,n$ mit n=4 jeweils eine Übergangsmatrix M_k , wobei $M_k(i,j)$ einen regulären Ausdruck enthält, der die Sprache $L^k_{i,j}$ gemäß Vorlesung beschreibt.

Sei $x := (a \mid b), y := aa, z := ab$.

k = 0

	1	2	3	4
1	ε	b	a	Ø
2	Ø	ε	Ø	Ø
3	Ø	Ø	$(a \mid b) \mid \varepsilon$	c
4	a	Ø	Ø	ε

k = 2

		1	2	3	4
	1	ε	b	a	Ø
	2	Ø	ε	Ø	Ø
_	3	Ø	Ø	$x \mid \varepsilon$	c
_	4	a	z	y	ε

k = 1

	1	2	3	4	
1	ε	b	a	Ø	
2	Ø	ε	Ø	Ø	
3	Ø	Ø	$x \mid \varepsilon$	c	
4	a	z	y	ε	

k = 3

	1	2	3	4
1	ε	b	ax*	ax^*c
2	Ø	ε	Ø	Ø
3	Ø	Ø	$x^* \mid \varepsilon$	x^*c
4	a	z	yx^*	$\varepsilon \mid yx^*c$

k = 4

	1	2	3	4
1	$\varepsilon \mid (ax^*ca)^*$	$(a\mathbf{x}^*ca)^*b$	$ax^*(cyx^*)^*$	$ax^*c(yx^*c)^*$
2	Ø	ε	Ø	Ø
3	$x^*ca(ax^*ca)^*$	$x^*(x^*cy)^*cz$	$\varepsilon \mid x^*(cyx^*)^*$	$x^*c(yx^*c)^*$
4	$a(ax^*ca)^*$	$(yx^*c)^*z$	$yx^*(cyx^*)^*$	$\varepsilon \mid (yx^*c)^*$

Es sind Z_1 der einzige Startzustand und Z_2, Z_4 Endzustände. Der generierte reguläre Audruck ist daher $(ax^*ca)^*b\mid ax^*c(yx^*c)^*=(a(a\mid b)^*ca)^*b\mid a(a\mid b)^*c(aa(a\mid b)^*c)^*$