Devoir à la maison n° 21

À rendre le 27 mai

I. Deux calculs de déterminants.

On appelle $\mathbb{K} : \mathbb{R}$ ou \mathbb{C} , soit $n \in \mathbb{N}$. Soit $a_0, \ldots, a_n, x, \alpha_1, \ldots, \alpha_n$ des éléments de \mathbb{K} . Calculer les déterminants de dimension n+1 suivants :

$$D_n = \begin{vmatrix} a_n & a_{n-1} & \cdots & \cdots & a_0 \\ -1 & x & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & x \end{vmatrix} \quad \text{et} \quad \Delta_n = \begin{vmatrix} 0 & \alpha_1 & \alpha_2 & \alpha_3 & \cdots & \cdots & \alpha_n \\ \alpha_1 & 0 & \alpha_2 & \alpha_3 & \cdot & \cdot & \alpha_n \\ \vdots & \alpha_2 & 0 & \alpha_3 & \cdot & \cdot & \alpha_n \\ \vdots & \vdots & \alpha_3 & 0 & \cdot & \cdot & \vdots \\ \vdots & \vdots & \vdots & \alpha_4 & \ddots & \cdot & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \cdots & \alpha_n & 0 \end{vmatrix}.$$

II. Encore un déterminant.

Soit $n \in \mathbb{N}^*$, $(\alpha, \beta) \in \mathbb{R}^2$ et $(x_1, \dots, x_n) \in \mathbb{R}^n$. Calculer

$$D_n(x) = \begin{vmatrix} x_1 - x & \alpha - x & \cdots & \alpha - x \\ \beta - x & x_2 - x & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha - x \\ \beta - x & \cdots & \beta - x & x_n - x \end{vmatrix}.$$

III. Autour de S_n .

On appelle t la transposition $(1 \ 2)$ et c le cycle (1, 2, 3, ..., n). Calculer c^k et $c^k t c^{-k}$ (pour chaque $1 \le k < n$). En déduire que t et c engendrent S_n .