Bases formelles du TAL Correction du partiel

Pierre-Léo Bégay 1 mars 2019

Dans tout ce partiel, on utilise l'alphabet $\Sigma = \{a, b\}$. Quand on parle d'automate non-déterministe, on autorise à la fois la définition "classique" et celle avec ϵ -transitions.

Exercice 1 [4 points]

Soit $L = [ab^*a]$

Question 1 [1] Donnez un automate fini qui reconnaît L

Question 2 [1] Donnez un automate fini qui reconnaît \overline{L}

Correction L'algorithme de complémentation nécessite un automate complet. Puisque celui de la question 1 ne l'est pas, on ajoute un état poubelle P et les transitions manquantes :

On peut maintenant inverser les états terminaux et non-terminaux :

Question 3 [2] Donnez une expression régulière qui décrit \overline{L} (c'est sans doute plus facile en s'aidant de l'automate de la question précédente)

Correction Un mot est accepté s'il mène à l'état 1, 2 ou P. On analyse les 3 cas :

- Il n'y a aucun moyen de revenir à l'état 1. Le seul mot qui y "emmène" est donc le mot vide, ϵ
- La seule façon d'aller en 2 est de prendre la première transition en a et de lire uniquement des b. Les mots qui vont en 2 sont donc ceux de la forme ab^*
- Pour aller en P, il y a deux méthodes :
 - Prendre la première transition en b, puis lire n'importe quoi. L'expression est donc $b(a+b)^*$
 - passer par 2 puis 3. On a déjà vu que pour aller en 2 on doit lire ab^* . On ajoute ensuite un a pour aller en 3, puis un (a+b) pour aller en P. D'ici, on lit ce qu'on veut. On a donc $ab^*a(a+b)(a+b)^*$, ou $ab^*a(a+b)^+$

Puisqu'on a le choix entre tous ces mots, l'expression qui les représente est une disjonction. L'expression régulière de \overline{L} est donc $\epsilon + ab^* + b(a+b)^* + ab^*a(a+b)^+$.

Exercice 2 [10 points]

Soit $L_1 = \{u \in \Sigma^* | aa \text{ est un sous-mot de } u\}.$

Question 1 [1] Donnez un automate fini déterministe complet reconnaissant L_1

¹Notez qu'il y a toujours une infinité d'expressions régulières pour décrire le même langage, et donc équivalentes. Vous pouvez donc avoir trouvé autre chose et quand même avoir raison, je trouve juste celle-ci plus "naturelle".

Les états servent à compter le nombre de a lus. Le dernier état est à comprendre comme "2 ou plus, mais de toute façon c'est pareil à partir de 2 on a gagné donc pas besoin de compter plus loin".

Question 2 [1] Donnez une expression rationnelle décrivant L_1

Correction Ici on peut exploiter le non-déterministe à l'envie : $\Sigma^* a \Sigma^* a \Sigma^*$.

Soit $L_2 = \{u \in \Sigma^* | aba \text{ est un facteur de } u\}.$

Question 3 [1] Donnez un automate fini déterministe complet reconnaissant L_2

On a clairement un "chemin" aba de l'état initial à l'état gagnant 3. Si on est en 1, on vient de lire un a. Si on lit à nouveau un a, ça veut dire que le premier n'était pas le "bon" (le aba), mais qu'on peut retenter sa chance avec le nouveau. Si on lit un b en 2, ça fait deux b à la suite, ce qui n'est pas possible dans la fin du mot. On doit alors à nouveau attendre un a.

Soit $L_3 = L_1 \cap L_2$

Question 4 [2] Donnez un automate déterministe complet reconnaissant L_3

Correction En appliquant l'algorithme de produit d'automates :

Question 5 [2 + 1 bonus] Minimisez l'automate obtenu.

Bonus: Qu'observez-vous? Comment l'expliquez-vous?

Correction Pour simplifier les notations, commence par renommer les états de l'automate précédent :

Au départ, on a deux classes : $C_T = \{3\}$ et $C_{nT} = \{0, 1, 2, 4, 5, 6, 7\}$.

Lors de la première itération, on remarque que via a, 2 et 7 envoient en C_T alors que les autres non. C'est la seule incompatibilité que l'on trouve. On sépare alors C_{nT} en $C_{\alpha} = \{2,7\}$ et $C_{\beta} = \{0,1,4,5,6\}$.

On analyse alors C_{β} , et on observe que 1 et 4, contrairement aux autres, envoient sur C_{α} via b. C'est encore une fois la seule incompatibilité trouvée. On divise alors C_{β} en $C_{\gamma} = \{1,4\}$ et $C_{\zeta} = \{0,5,6\}$.

A partir de maintenant, on ne trouvera plus d'incompatibilité dans les classes². Il nous reste alors $C_T = \{3\}$, $C_\alpha = \{2,7\}$, $C_\gamma = \{1,4\}$ et $C_\zeta = \{0,5,6\}$. On fusionne donc les états équivalents (cad appartenant à la même classe), ce qui nous donne l'automate suivant :

²Attention à bien refaire le calcul pour toutes avant de dire que c'est fini! En cassant une classe en deux, vous pouvez changer le résultat des calculs de compatibilité sur une autre

Bonus On observe que, modulo le nom des états, c'est exactement l'automate de L_2 ! C'est en fait normal, car $L_2 \subset L_1$, dans le sens où tout mot qui appartient à L_2 appartient aussi à L_1 ³. En effet, si un mot contient le facteur aba, alors il contient bien le sous-mot aa.

Pour vérifier qu'un mot appartient à L_3 , il suffit donc de vérifier qu'il appartient à L_2 . On peut donc se contenter d'utiliser l'automate de la question 2 (qui était déjà minimal).

Question 6 (bonus) [1] Donnez une expression rationnelle décrivant L_3

Correction Dans le même état d'esprit, on peut se contenter d'utiliser une expression rationnelle décrivant L_2 , comme $\Sigma^*aba\Sigma^*$.

Soit
$$L_4 = L_1 \setminus L_2$$

Question 7 [1] Donnez un automate déterministe complet reconnaissant L_4 .

Correction On peut réutiliser l'automate produit fait pour l'intersection, en changeant uniquement les états terminaux. En effet, au lieu de prendre comme terminaux les états dans $F_{L_1} \times F_{L_2}$, on prend ceux dans $F_{L_1} \times \overline{F_{L_2}}^4$. On obtient donc

Question 8 [2] Minimisez l'automate obtenu.

Correction On renomme à nouveau les états :

 $^{^3 \}mathrm{Attention},$ la réciproque n'est pas vraie. Cf. aa par exemple

⁴Informellement, puisqu'on veut être dans L_1 mais pas dans L_2 , on veut à gauche un état terminal, et à droite un état non-terminal

On a au début 3 classes : $C_T = \{4,6,7\}$ et $C_{nT} = \{0,1,2,3,5\}$. On s'intéresse d'abord à la classe C_T , en remarquant que 7 permet d'aller en C_{nT} via a, alors que les autres restent en C_T . 7 est donc incompatible.

Or, 4 permet d'aller en 7 via b, alors que 6 boucle avec b. 4 et 6 sont donc également incompatibles. On a donc les classes $C_{nT} = \{0, 1, 2, 3, 5\}, C_4 = \{4\}, C_6 = \{6\}$ et $C_7 = \{7\}$.

On regarde maintenant C_{nT} . 1 et 5 permettent d'aller en C_4 via a, ce qui n'est pas le cas des autres, ils sont donc séparés. On a alors $C_{\alpha} = \{1, 5\}$ et $C_{\beta} = \{0, 2, 3\}$.

2 va en C_{α} via b, ce qui n'est pas le cas de 0 et 3. On sépare alors C_{β} en $C_{\gamma}=\{0,3\}$ et $C_2=\{2\}$.

0 va en C_{α} via a, ce qui n'est pas le cas de 3 (qui reste en C_{γ} . On les sépare alors en C_0 et C_3 .

La seule classe non-atomique⁵ restante est donc C_{α} . Or, 1 va en C_2 via b, alors que 5 reste en C_5 .

Au final, toutes les classes sont atomiques, ce qui veut dire que l'automate était déjà minimal.

Exercice 3 [3 points]

Déterminisez l'automate suivant :

 $^{^5{\}rm Contenant}$ plusieurs éléments

Correction En appliquant l'algorithme de déterminisation :

Exercice 4 [3 points]

Question 1 [1] Donnez un automate qui reconnaît le langage décrit par l'expression rationnelle a^*b^* .

Correction On veut lire une série (potentiellement vide) de a, puis passer à un mode où on lit uniquement des b. On peut le faire très facilement comme ceci par exemple :

Question 2 [2] Montrez que le langage $\{u \in \Sigma^* \mid |u|_a = |u|_b\}$ n'est pas reconnaissable par automate.

Correction On procède par l'absurde. On vient de montrer que le langage $\llbracket a^*b^* \rrbracket$ est reconnaissable par automate. Or, on sait également que l'intersection de deux langages reconnaissables est reconnaissable (cf. les propriétés de clôture). Donc, si $\{u \in \Sigma^* \mid |u|_a = |u|_b\}$ est reconnaissable, alors $\llbracket a^*b^* \rrbracket \cap \{u \in \Sigma^* \mid |u|_a = |u|_b\}$ l'est aussi.

Or, $[a^*b^*] \cap \{u \in \Sigma^* \mid |u|_a = |u|_b\} = l$ 'ensemble des mots composés uniquement de a puis uniquement de b, avec autant de a que de b, c'est à dire $\{a^nb^n \mid n \in \mathbb{N}\}$, dont on a vu en cours qu'il n'était pas reconnaissable.

Puisqu'on déduit quelque chose de faux, une de nos hypothèses doit l'être également. La seule hypothèse faite était que $\{u \in \Sigma^* \mid |u|_a = |u|_b\}$ est reconnaissable par automate fini. C'est donc faux.