Ch-2 Polynomials

1. **Zeroes of a polynomial** – k is said to be zero of a polynomial p(x), if p(k) = 0.

2. Graph of polynomial -

- a. Graph of a linear polynomial p(x) = ax + b is a straight line.
- b. Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like \cup , if a > 0.

3. Relationship between the zeroes and the coefficients of a Polynomial -

a. If α , β are zeroes / roots of $p(x) = ax^2 + bx + c$, then

Sum of root
$$\alpha + \beta = \frac{-b}{a} \Rightarrow \alpha + \beta = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$$
, and Product of roots $= \alpha.\beta = \frac{c}{a} \Rightarrow \alpha.\beta = \frac{\text{constant term}}{\text{coefficient of } x^2}$.

b. If α , β and γ are zeroes / roots of $p(x) = ax^3 + bx^2 + cx + d$

Product of roots =
$$\alpha . \beta = \frac{c}{a} \Rightarrow \alpha . \beta = \frac{\text{constant term}}{\text{coefficient of } x^2}$$

Sum of roots =
$$\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(\text{coefficient of } x^2)}{\text{coefficient of } x^3}$$
,

Sum of products of roots, taken 2 at a time =
$$\alpha \cdot \beta + \beta \cdot \gamma + \gamma \cdot \alpha = \frac{c}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^3}$$
, and

Product of roots =
$$\alpha.\beta.\gamma = \frac{-d}{a} = \frac{-(contant\ term)}{coefficient\ of\ x^3}$$
.

- c. If α , β are roots of a quadratic polynomial p(x), then $p(x) = x^2 (\alpha + \beta) x + \alpha\beta \Rightarrow p(x) = \alpha$ x^2 – (sum of roots) x + product of roots
- d. If α , β and γ are zeroes of a cubic polynomial p(x). Then, $p(x) = x^3 (\alpha + \beta + \gamma) x^2 + (\alpha \beta + \beta) x^2 + (\alpha \beta +$ $+\beta\gamma + \alpha\gamma$) x - $(\alpha\beta\gamma) \Rightarrow p(x) = x^3$ - (sum of zeroes) x^2 + (sum of product of zeroes / roots taken two at a time)x - (product of zeroes)