AULA 4 - COMPARAÇÃO DE MÉDIAS

1. Moving Up

Essas pessoas estão em ascensão na vida, tanto em termos de carreira quanto financeiramente. Geralmente são profissionais jovens ou de meia-idade, que têm um forte foco em suas carreiras e buscam constantemente melhorias. Eles investem em educação e desenvolvimento pessoal e estão sempre em busca de novas oportunidades para subir na vida. Preferem produtos e serviços que reflitam seu status crescente e que possam facilitar ainda mais seu progresso. São consumidores exigentes, que valorizam qualidade e inovação.

2. Suburb Mix

Este grupo é composto por famílias que vivem em áreas suburbanas. Eles valorizam a segurança, a estabilidade e um bom ambiente para criar seus filhos. As atividades desse grupo incluem visitas regulares a parques, atividades extracurriculares para os filhos e participação em eventos comunitários. Preferem serviços e produtos que atendam às necessidades de toda a família, como supermercados, escolas de qualidade e entretenimento familiar. Embora sejam cuidadosos com seus gastos, estão dispostos a pagar mais por conveniência e produtos de qualidade.

3. Travelers

Este segmento adora explorar novos lugares e experimentar diferentes culturas. São aventureiros, abertos a novas experiências e estão sempre planejando sua próxima viagem, seja para destinos exóticos ou para descobrir cidades vizinhas. Eles preferem gastar dinheiro em experiências, como viagens, gastronomia e atividades culturais, ao invés de bens materiais. Valorizam produtos que possam facilitar suas viagens, como equipamentos de viagem de alta qualidade, seguros de viagem e programas de milhas aéreas.

4. Urban Hip

Esse grupo é composto principalmente por jovens adultos que vivem em grandes cidades e valorizam o estilo de vida urbano. Eles estão antenados nas últimas tendências, tanto na moda quanto na tecnologia, e têm um forte senso de individualidade. Frequentam restaurantes modernos, eventos culturais, e adoram descobrir novos lugares "da moda" na cidade. Estão sempre conectados e preferem produtos que sejam únicos, inovadores e que lhes permitam expressar sua personalidade. Eles gostam de marcas que apoiam causas sociais e ambientais e que se alinham com seus valores pessoais

Base de Dados

•	age [‡]	gender [‡]	income [‡]	kids [‡]	ownHome [‡]	subscribe [‡]	Segment [‡]
1	47	Male	49482.8104	2	ownNo	subNo	Suburb mix
2	31	Male	35546.2883	1	ownYes	subNo	Suburb mix
3	43	Male	44169.1864	0	ownYes	subNo	Suburb mix
4	37	Female	81041.9864	1	ownNo	subNo	Suburb mix
5	41	Female	79353.0144	3	ownYes	subNo	Suburb mix
6	43	Male	58143.3633	4	ownYes	subNo	Suburb mix
7	38	Male	19282.2306	3	ownNo	subNo	Suburb mix
8	28	Male	47245.2385	0	ownNo	subNo	Suburb mix

library(lattice)

Puxando Dados

seg.df <- read.csv("trabalho.csv", sep=",", header = TRUE)
seg.df\$age <- round(seg.df\$age, 0)
View(seg.df)</pre>

Encontrando Descritivos por Grupo em R

Usando a Função 'by()'para descobrir a média da renda por segmento

by(seg.df\$income, seg.df\$Segment, mean)

seg.df\$Segment: Moving up
[1] 53090.97

seg.df\$Segment: Suburb mix

[1] 55033.82

seg.df\$Segment: Travelers

[1] 62213.94

seg.df\$Segment: Urban hip

[1] 21681.93

by(seg.df\$income, list(seg.df\$Segment, seg.df\$subscribe), mean)

: Moving up

: subNo

[1] 53633.73

: Suburb mix

: subNo

[1] 54942.69

```
: Travelers
: subNo
[1] 62746.11
: Urban hip
: subNo
[1] 22082.11
______
: Moving up
: subYes
[1] 50919.89
: Suburb mix
: subYes
[1] 56461.41
: Travelers
: subYes
[1] 58488.77
: Urban hip
: subYes
[1] 20081.19
```

Usando a Função `aggregate()` para o mesmo exercício feito anteriormente

aggregate(seg.df\$income, list(seg.df\$Segment), mean)

```
Group.1 x
1 Moving up 53090.97
2 Suburb mix 55033.82
3 Travelers 62213.94
4 Urban hip 21681.93
```

#Variáveis respostas a esquerda e explicativas a direita #y ~ x # Fórmula Simples

#Agregar renda por segmento #aggregate(formula, data, FUN)

aggregate(income ~ Segment, data = seg.df, mean)

```
Segment income
1 Moving up 53090.97
2 Suburb mix 55033.82
3 Travelers 62213.94
4 Urban hip 21681.93
```

#Descritivo para grupo de duas variáveis

aggregate(income ~ Segment + ownHome, data = seg.df, mean)

```
Segment ownHome income

1 Moving up ownNo 54497.68

2 Suburb mix ownNo 54932.83

3 Travelers ownNo 63188.42

4 Urban hip ownNo 21337.59

5 Moving up ownYes 50216.37

6 Suburb mix ownYes 55143.21

7 Travelers ownYes 61889.12

8 Urban hip ownYes 23059.27
```

#Estrutura permite quantas quiser

aggregate(income ~ Segment + ownHome + subscribe, data = seg.df, mean)

	Segment	ownHome	subscribe	income
1	Moving up	ownNc	subNo	55402.89
2	Suburb mix	ownNc	subNo	54579.99
3	Travelers	ownNc	subNo	65852.54
4	Urban hip	ownNo	subNo	21604.16
5	Moving up	ownYes	subNo	49898.85
6	Suburb mix	ownYes	subNo	55354.86
7	Travelers	ownYes	subNo	61749.71
8	Urban hip	ownYes	subNo	23993.93
9	Moving up	ownNo	subYes	50675.70
10	Suburb mix	ownNc	subYes	63753.97
11	Travelers	ownNo	subYes	48091.75
12	Urban hip	ownNo	subYes	20271.33
13	Moving up	ownYes	subYes	51359.44
14	Suburb mix	ownYes	subYes	52815.13
15	Travelers	ownYes	subYes	62944.64
16	Urban hip	ownYes	subYes	19320.64

#Atribuir resultado a dataframe

agg.data <- aggregate(income ~ Segment + ownHome, data = seg.df, mean)</pre>

#Obter frequencias de diferentes Segmentos e Casa Própria

with(seg.df, table(Segment, ownHome))

ownHome					
Segment	ownNo	ownYes			
Moving up	47	23			
Suburb mix	52	48			
Travelers	20	60			
Urban hip	40	10			

#Obter frequencias de crianças por segmentos

with(seg.df, table(kids, Segment))

kids	Moving	up	Suburb	mix	Travelers	Urban	hip
0		13		11	80		17
1		17		36	0		17
2		18		22	0		11
3		13		19	0		4
4		5		7	0		1
5		3		3	0		0
6		0		2	0		0
7		1		0	0		0

#Somatório de filhos por segmentos

xtabs(kids ~ Segment, data = seg.df)

```
Segment kids
1 Moving up 134
2 Suburb mix 192
3 Travelers 0
4 Urban hip 55
```

#ou

aggregate(kids ~ Segment, data = seg.df, sum)

```
Segment
Moving up Suburb mix Travelers Urban hip 134 192 0 55
```

#Proporção subscribe por segmento. Proporção vem por default seg.df\$subscribe <- as.factor(seg.df\$subscribe)</pre>

histogram(~subscribe | Segment, data=seg.df)

#se quisermos contar os subscribes

histogram(~subscribe | Segment, data=seg.df, type="count", layout=c(4,1), col=c("burlywood", "darkolivegreen"))

#Ver dentro de cada segmento, discriminado por casa própria ou não histogram(~subscribe | Segment + ownHome, data=seg.df)

#Por fim, poderíamos plotar apenas as proporções de "sim" em vez de barras de "sim" e "não".

prop.table(table(seg.df\$subscribe, seg.df\$Segment), margin=2) barchart(prop.table(table(seg.df\$subscribe, seg.df\$Segment), margin=2)[2,], xlab="Proporção de Assinantes por Segmento", col="darkolivegreen")

#O resultado comunica fortemente que o segmento "Suburb mix" tem uma taxa de #assinatura aparentemente baixa

#Visualização por Grupos - dados contínuos

#Mas e quanto aos dados contínuos? Como plotar a renda por segmento em nossos dados?

seg.mean <- aggregate(income ~ Segment, data=seg.df, mean) library(lattice)

barchart(income ~ Segment, data=seg.mean, col="red")

#Dividindo ainda mais os dados de posse por casa

#Usando o `boxplot()` para plotar um box-and-whiskers plot por fator para comparar valores de dados contínuos, como a renda para diferentes grupos.

boxplot(income ~ Segment, data=seg.df, yaxt="n", ylab="Renda (\$k)") ax.seq <- seq(from=0, to=120000, by=20000) axis(side=2, at=ax.seq, labels=paste(ax.seq/1000, "k", sep=""), las=1)

#Para plotar um gráfico mais bonito

bwplot(Segment ~ income, data=seg.df, horizontal=TRUE, xlab="Renda")

#detalhar a posse de casa como uma variável de condicionamento usando `| ownHome` na fórmula

bwplot(Segment ~ income | ownHome, data=seg.df, horizontal=TRUE, xlab="Renda")

#Neste gráfico, descobrimos—entre outras coisas—que, em nossos dados simulados, o segmento "Travelers" tem uma distribuição muito mais ampla de renda entre aqueles que possuem suas casas do que entre aqueles que não possuem.

#Dados para comparação de Grupos #Verifica um resumo dos dados

summary(seg.df)

age	gender	income	kids	ownHome
Min. :19.00	Length: 300	Min. : -5183	Min. :0.00	Length: 300
1st Qu.:33.00) Class:character	1st Qu.: 39656	1st Qu.:0.00	Class :character
Median :39.50) Mode :character	Median : 52014	Median :1.00	Mode :character
Mean :41.17	7	Mean : 50937	Mean :1.27	
3rd Qu.:48.00)	3rd Qu.: 61403	3rd Qu.:2.00	
Max. :80.00)	Max. :114278	Max. :7.00	
subscribe	Segment			
subNo :260	Length: 300			
subYes: 40	class :character			
	Mode :character			

#Tamanho da amostra por segmento

chisq.test(table(seg.df\$Segment))

```
Chi-squared test for given probabilities

data: table(seg.df$Segment)

X-squared = 17.333, df = 3, p-value = 0.0006035
```

#O valor de p é 0.0006, o que indica que os tamanhos #dos segmentos são significativamente diferentes.

#Independência entre fatores

#Para verificar se o status de assinatura é independente da posse de casa, construímos uma tabela cruzada e aplicamos o teste qui-quadrado:

```
table(seg.df$subscribe, seg.df$ownHome)
chisq.test(table(seg.df$subscribe, seg.df$ownHome))

Pearson's Chi-squared test with Yates' continuity correction
```

```
data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.010422, df = 1, p-value = 0.9187
```

#O valor de p é 0.919, indicando que não há evidências suficientes para sugerir uma relação entre status de assinatura e posse de casa.

#TESTE T: Média entre grupos

#Um teste t compara a média de uma amostra com a média de outra amostra (ou com um #valor específico, como 0). O ponto importante é que ele compara a média de exatamente #dois conjuntos de dados. Por exemplo, nos dados segmentados, poderíamos querer saber #se a renda domiciliar é diferente entre aqueles que possuem uma casa e aqueles que não #possuem.

#Verificando distribuição

hist(seg.df\$income)

Histogram of seg.df\$income

with(seg.df, hist(income[ownHome == "ownYes"]))

Histogram of income[ownHome == "ownYes"]

Histogram of income[ownHome == "ownNo"]

income[ownHome == "ownNo"]

#Teste T de renda por status de casa

t.test(income ~ ownHome, data=seg.df)

```
Welch Two Sample t-test
data: income by ownHome
t = -3.2731, df = 285.25, p-value = 0.001195
alternative hypothesis: true difference in means between group ownNo and
group ownYes is not equal to 0
95 percent confidence interval:
 -12080.155 -3007.193
sample estimates:
 mean in group ownNo mean in group ownYes
            47391.01
                                 54934.68
```

#Há várias informações importantes na saída do `t.test()`. #Primeiro, vemos que a estatística #t é -3.2, com um p-valor de 0.0012. #Isso significa que a hipótese nula de nenhuma #diferença na renda por posse de casa é rejeitada. #Os dados sugerem que pessoas que #possuem suas casas têm uma renda mais alta.

#Mesma diferença mas dentro do grupo de viajantes

t.test(income ~ ownHome, data=subset(seg.df, Segment == "Travelers"))

```
Welch Two Sample t-test

data: income by ownHome

t = 0.26561, df = 53.833, p-value = 0.7916

alternative hypothesis: true difference in means between group ownNo and
group ownYes is not equal to 0

95 percent confidence interval:
    -8508.993 11107.604

sample estimates:

mean in group ownNo mean in group ownYes
    63188.42 61889.12
```

#O intervalo de confiança de -8508 a 11107 inclui 0, e,

#portanto, concluímos—como evidenciado pelo p-valor de 0.79—que não há uma #diferença significativa na renda média

#entre os "Travelers" em nossos dados que possuem casas e os que não possuem.

#Localizando onde está a diferença de salario: ANOVA

#Uma análise de variância (ANOVA) compara as médias de múltiplos grupos. #Tecnicamente, isso é feito comparando o grau em que os grupos diferem, medido pela #variância em suas médias (entre os grupos), em relação à variância das observações em #torno de cada média (dentro de cada grupo).

#Renda por Status de Casa

```
seg.aov.own <- aov(income ~ ownHome , data=seg.df) anova(seg.aov.own)
```

```
Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

ownHome 1 4.2527e+09 4252661211 10.832 0.001118 **

Residuals 298 1.1700e+11 392611030

---

Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
```

#Renda por Segmento

```
seg.aov.seg <- aov(income ~ Segment , data=seg.df)
anova(seg.aov.seg)</pre>
```

```
Analysis of Variance Table
```

Response: income

```
Sum Sq Mean Sq F value
                                           Pr(>F)
           3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***
Residuals 296 6.6281e+10 2.2392e+08
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#E para ambos?
anova(aov(income ~ Segment + ownHome , data=seg.df))
Analysis of Variance Table
Response: income
         Df
                Sum Sq Mean Sq F value Pr(>F)
          3 5.4970e+10 1.8323e+10 81.6381 <2e-16 ***
Segment
ownHome 1 6.9918e+07 6.9918e+07 0.3115 0.5772
Residuals 295 6.6211e+10 2.2444e+08
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
#Rodar uma anova com todos as variáveis
seg.aov.step <- step(aov(income ~ ., data=seg.df))
income ~ age + gender + kids + ownHome + subscribe + Segment
          Df Sum of Sq
                              RSS
                                     AIC
           1 4.0618e+06 6.5661e+10 5777.2
- age
- ownHome 1 1.0320e+08 6.5760e+10 5777.6
- kids 1 1.3383e+08 6.5790e+10 5777.8
- subscribe 1 1.5958e+08 6.5816e+10 5777.9
- gender 1 2.6883e+08 6.5925e+10 5778.4
                        6.5657e+10 5779.2
<none>
- Segment 3 1.9353e+10 8.5010e+10 5850.7
Step: AIC=5777.19
income ~ gender + kids + ownHome + subscribe + Segment
          Df Sum of Sq
                            RSS
- ownHome
           1 1.0159e+08 6.5762e+10 5775.7
           1 1.3205e+08 6.5793e+10 5775.8
- kids
- subscribe 1 1.5794e+08 6.5819e+10 5775.9
- gender 1 2.7009e+08 6.5931e+10 5776.4
<none>
                         6.5661e+10 5777.2
- Segment 3 4.9044e+10 1.1470e+11 5938.6
Step: AIC=5775.66
income ~ gender + kids + subscribe + Segment
           Df Sum of Sq RSS
                                      AIC
          1 1.0707e+08 6.5869e+10 5774.1
- kids
```

- subscribe 1 1.6370e+08 6.5926e+10 5774.4 - gender 1 2.5520e+08 6.6017e+10 5774.8 <none> 6.5762e+10 5775.7 - Segment 3 5.2897e+10 1.1866e+11 5946.7

Step: AIC=5774.15

income ~ gender + subscribe + Segment

Df Sum of Sq RSS AIC
- subscribe 1 1.6226e+08 6.6032e+10 5772.9
- gender 1 2.4390e+08 6.6113e+10 5773.3
<none> 6.5869e+10 5774.1
- Segment 3 5.3005e+10 1.1887e+11 5945.3

Step: AIC=5772.88

income ~ gender + Segment

Df Sum of Sq RSS AIC
- gender 1 2.4949e+08 6.6281e+10 5772.0
<none> 6.6032e+10 5772.9
- Segment 3 5.4001e+10 1.2003e+11 5946.2

Step: AIC=5772.02
income ~ Segment

Df Sum of Sq RSS AIC <none> 6.6281e+10 5772.0 - Segment 3 5.497e+10 1.2125e+11 5947.2