In[219]:= Mchx // MatrixForm

Out[219]//MatrixForm=

$$\begin{pmatrix} \texttt{M2} & \texttt{g2} \ \texttt{v2} & \texttt{0} & \texttt{0} & \texttt{0} \\ \texttt{g2} \ \texttt{v1} & \kappa \texttt{0} \ \texttt{\sigmaS} & \texttt{0} & \texttt{0} & -\texttt{Y}\tau \ \texttt{\sigmav} \texttt{[3]} \\ \texttt{g2} \ \texttt{\sigmav} \texttt{[1]} & -\kappa \texttt{1} \texttt{[1]} \ \texttt{\sigman} \texttt{[3]} & \texttt{0} & \texttt{0} & \texttt{0} \\ \texttt{g2} \ \texttt{\sigmav} \texttt{[2]} & -\kappa \texttt{1} \texttt{[2]} \ \texttt{\sigman} \texttt{[3]} & \texttt{0} & \texttt{0} & \texttt{0} \\ \texttt{g2} \ \texttt{\sigmav} \texttt{[3]} & -\kappa \texttt{1} \texttt{[3]} \ \texttt{\sigman} \texttt{[3]} & \texttt{0} & \texttt{0} & \texttt{v1} \ \texttt{Y}\tau \\ \end{cases}$$

In[220]:= Mne χ // MatrixForm

Out[220]//MatrixForm=

M1	0	$-\frac{g1\ v1}{\sqrt{2}}$	$\frac{g1 \text{ v2}}{\sqrt{2}}$	0	$-\frac{g1ov[1]}{\sqrt{2}}$	$-\frac{g1ov[2]}{\sqrt{2}}$	$-\frac{g1ov[3]}{\sqrt{2}}$	0
0	M2	$\frac{g2\ v1}{\sqrt{2}}$	$-\frac{g2v2}{\sqrt{2}}$	0	$\frac{g2\;ov[1]}{\sqrt{2}}$	$\frac{g2 \sigma v [2]}{\sqrt{ 2}}$	$\frac{g2 \text{ ov } [3]}{\sqrt{2}}$	0
$-\frac{g1v1}{\sqrt{2}}$	$\frac{g2\ v1}{\sqrt{2}}$	0	- κ0 σ S	-v2 ×0	0	0	0	0
$\frac{g1 \ v2}{\sqrt{2}}$	$-\frac{g2\;v2}{\sqrt{2}}$	- κ 0 σ S	0	-v1 κ0	$\kappa 1[1] \sigma n[3]$	$\kappa 1[2] \sigma n[3]$	$\kappa 1[3] \sigma n[3]$	$\kappa 1[1] \text{ ov}[1] + \kappa 1[2] \text{ ov}[2] + \kappa 1[3] \text{ ov}[$
0	0	-v2 κ0	-v1 κ0	κ3 σ S	0	0	0	κ2 σn [3]
$-\frac{g1GV[1]}{\sqrt{2}}$	$\frac{g2 \sigma v [1]}{\sqrt{ 2}}$	0	κ1[1] σn[3]	0	0	0	0	v2 x1[1]
$-\frac{g1ov[2]}{\sqrt{2}}$	$\frac{g2 \sigma v [2]}{\sqrt{ 2}}$	0	$\kappa 1[2] \sigma n[3]$	0	0	0	0	v2 к1[2]
$-\frac{g1ov[3]}{\sqrt{2}}$	$\frac{g2 \sigma v[3]}{\sqrt{2}}$	0	κ1[3] σn[3]	0	0	0	0	v2 ×1[3]
0	0	0	$\kappa 1 [1] \text{ ov} [1] + \kappa 1 [2] \text{ ov} [2] + \kappa 1 [3] \text{ ov} [3]$	$\kappa 2 \ \sigma n \ [\ 3\]$	$v2\;\kappa 1[1]$	$v2\;\kappa 1[2]$	$v2\; \kappa 1[3]$	κ 2 σ S