

Optimización

Optimización sin restricciones

Docente: Cristian Guarnizo Lemus

Somos Innovación Tecnológica con Sentido Humano

Contenido

- 1. Métodos de solución para Optimización sin restricciones.
- 2. Búsqueda en una línea. (Condiciones de Armijo y Wolfe seleccionar paso)
- 3. Determinación de la dirección (Steepest, Conjugate, Newton)

Métodos de solución para Optimización sin restricciones

Métodos indirectos - Concepto

Condiciones necesarias de primer orden

Total contest necessarias de primer order
$$\left. \frac{\partial f}{\partial x_1} \right|_x = 0 = g_1(x)$$
 Sistema de ecuaciones no lineales $\left. \frac{\partial f}{\partial x_2} \right|_x = 0 = g_2(x) \Leftrightarrow \left. \frac{\partial f}{\partial x_1} \right|_x = 0 = g_n(x)$ Sistema de ecuaciones no lineales $g(x) = 0$

- La solución optima es encontrada solucionando el sistema de ecuaciones analíticamente o numéricamente. (p.e. con el Método de Newton).
- Diferenciar y solucionar un sistema de ecuaciones es difícil para sistemas complejos.

Métodos de solución para Optimización sin restricciones

Métodos directos

Métodos indirectos

La solución optima se encuentra solucionando un sistema de ecuaciones:

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

Analíticamente o numéricamente.

Somos Innovación Tecnológica con

Métodos directos - Concepto

Idea: Construir una secuencia convergente de $\{x^{(k)}\}_{k=1}^{\infty}$, que satisfaga las siguientes condiciones:

$$\exists \overline{k} \ge 0: f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}) \, \forall k > \overline{k} \qquad \text{y} \qquad \lim_{k \to \infty} x^{(k)} = x^* \in \mathbb{R}^n$$

Métodos directos - Concepto

Idea: Construir una secuencia convergente de $\{x^{(k)}\}_{k=1}^{\infty}$, que satisfaga las siguientes condiciones:

$$\exists \overline{k} \ge 0: f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}) \, \forall k > \overline{k} \qquad \text{y} \qquad \lim_{k \to \infty} x^{(k)} = x^* \in \mathbb{R}^n$$

Convergencia:

• Lineal: Sí existe una constante $C \in (0,1)$, tal que para un k suficientemente largo:

$$||x^{(k+1)} - x^{(k)}|| \le C||x^{(k)} - x^*||$$

• Orden P: Sí existe una constante M > 0, tal que

$$||x^{(k+1)} - x^{(k)}|| \le M ||x^{(k)} - x^*||^p$$

• Superlineal: Sí existe una secuencia \ddot{c}_k convergente a cero.

$$||x^{(k+1)} - x^{(k)}|| \le c_k ||x^{(k)} - x^*||$$

Vigilada Mineducaci

Métodos de solución para Optimización sin restricciones

Métodos de Optimización sin restricciones

Métodos directos

La solución optima se encuentra mejorando la función objetivo por medio de iteraciones descendentes

Métodos indirectos

La solución optima se encuentra solucionando un sistema de ecuaciones:

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

Analíticamente o numéricamente.

Somos Innovación Tecnológica con

Métodos de solución para Optimización sin restricciones

Contenido

- 1. Métodos de solución para Optimización sin restricciones.
- 2. Búsqueda en una línea. (Condiciones de Armijo y Wolfe seleccionar paso)
- 3. Determinación de la dirección (Steepest, Conjugate, Newton's)

Métodos de solución para Optimización sin restricciones

Búsqueda en una línea

Definición (dirección descendente):

Un vector p es llamado dirección descendente en $x^{(k)}$, sí $\nabla f(x^{(k)})^{\mathsf{T}} p < 0$ se mantiene.

Algoritmo básico (line-search):

- 1. Seleccionar ya dirección descendente, $p^{(k)}$, tal que $\nabla f(x^{(k)})^{\mathsf{T}} p^{(k)} < 0$
- 2. Determinar el tamaño el paso α_k
- 3. Calcular $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$

Problemas abiertos:

- 1. Determinar la dirección del descendente $p^{(k)}$?
- 2. Calcular el tamaño el paso α_k .

Calculo del paso α_k

Algoritmo básico (line-search):

1. Definir una función de una dimensión sobre la dirección descendente $p^{(k)}$

$$\phi(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{p}^{(k)})$$

2. Solucionar el problema de minimización de una dimensión

$$\min_{\alpha>0} \phi(\alpha)$$

Observaciones:

- 1. De manera ingenua seria ideal minimizar globalmente $\phi(\alpha)$. Generalmente, es muy costoso encontrar esta solución. No es necesariamente una buena idea buscar en una dimensión.
- 2. Se podría buscar alguna solución local. Pero esto es a menudo costoso (se necesita evaluar la función y/o gradientes en un numero de puntos).
- 3. Estrategias practicas (también llamadas LS no exacto): encontrar α tal que $\nabla f(x^{(k+1)})$ se vuelva lo mas posible pequeño con el esfuerzo mínimo.

con Sentido Humano

Somos Innovación Tecnológica con Sentido

Universitaria Reacreditada en Alta Calidad Estrategias de búsqueda en una línea

Contenido

- 1. Métodos de solución para Optimización sin restricciones.
- 2. Búsqueda en una línea.
- 3. Determinación de la dirección (Steepest, Newton, Quasi-Newton)

Determinación de la dirección

Los métodos de búsqueda en una línea difieren el uno del otro con respecto a la determinación de la dirección del descendente y el tamaño del paso.

Muchos métodos de gradiente usan matrices definidas positivas $D^{(k)}$ y calculan

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{D}^{(k)} \nabla f(\mathbf{x}^{(k)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}_{\text{model}}^{(k)} \mathbf{p}_{\text{nnovación Tecnológica con}}^{(k)}$$
 Sentido Humano

Vigilada Mineduca

Steepest-Descent

Series de Taylor: $f(\mathbf{x}^{(k)} + \alpha \mathbf{p}^{(k)}) = f(\mathbf{x}^{(k)}) + \alpha \nabla f(\mathbf{x}^{(k)})^{\mathsf{T}} \mathbf{p}^{(k)} + O(\alpha^2)$ La razón del cambio de f en $x^{(k)}$ en la dirección $p^{(k)}$ es el coeficiente en expresión $\nabla f(\mathbf{x}^{(k)})^{\mathsf{T}} \mathbf{p}^{(k)}$ lineal

La dirección unitaria con el mayor cambio es la solución del siguiente problema

$$\min_{\boldsymbol{p}^{(k)} \in \mathbb{R}^n} \nabla f(\boldsymbol{x}^{(k)})^T \boldsymbol{p}^{(k)} \quad \text{s. t. } \|\boldsymbol{p}^{(k)}\| = 1$$

Note que $\nabla f(x^{(k)})^T p^{(k)} = ||\nabla f(x^{(k)})|| ||p^{(k)}|| \cos(\theta)$ La solución del problema se alcanza para $cos(\theta) = -1 \Rightarrow \theta = \pi$ $\Rightarrow \boldsymbol{p}^{(k)} = -\boldsymbol{\nabla} f(\boldsymbol{x}^{(k)}) / \|\boldsymbol{\nabla} f(\boldsymbol{x}^{(k)})\|$

La selección de $D^{(k)}$ es la matriz identidad I.

Somos Innovación Tecnológica con Sentido Humano

Steepest-Descent

Algorithm:

choose $x^{(0)}$

for k=0,1,...

if
$$\|\nabla f(\mathbf{x}^{(k)})\| \le \varepsilon$$
 stop, else

$$\mathbf{set}\;\boldsymbol{p}^{(k)} = -\boldsymbol{\nabla}f(\boldsymbol{x}^{(k)})$$

determine the step length α_k (e.g. using the Armijo rule)

set
$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

end for

Directions become perpendicular

Determinación de la dirección

Los métodos de búsqueda en una línea difieren el uno del otro con respecto a la determinación de la dirección del descendente y el tamaño del paso.

Muchos métodos de gradiente usan matrices definidas positivas $\mathbf{D}^{(k)}$ y calculan

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{D}^{(k)} \nabla f(\boldsymbol{x}^{(k)})$$

Vigilada Mineducac

Dirección del descendente de Newton

Aproximacion cuadrática de f en $x^{(k+1)}$:

$$m(x^{(k+1)}) = f(x^{(k)}) + \nabla f(x^{(k)})^{\mathsf{T}}(x^{(k+1)} - x^{(k)}) + (x^{(k+1)} - x^{(k)})^{\mathsf{T}}\nabla^2 f(x^{(k)})(x^{(k+1)} - x^{(k)})$$

Primera condición necesaria para m

$$0 = \nabla m(\mathbf{x}^{(k+1)}) = \nabla f(\mathbf{x}^{(k)}) + \nabla^2 f(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$

$$\Rightarrow \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$$

$$\Rightarrow \mathbf{p}^{(k)} = -[\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$$

$$\Rightarrow \alpha_k = 1$$

Se selecciona $D^{(k)}$ como la inversa de la Hessiana.

Somos Innovación Tecnológica con Sentido Humano

Dirección del descendente de Newton

Vigilada Mineducació

Algoritmo:

Choose $x^{(0)}$

FOR
$$k = 0,1,2,...$$

IF
$$\|\nabla f(\mathbf{x}^{(k)})\| \le \varepsilon$$
 STOP, ELSE
SET $\mathbf{p}^{(k)} = -[\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$

SET
$$x^{(k+1)} = x^{(k)} + p^{(k)}$$

END_FOR

Método de Newton

Ventajas:

- Localmente tiene convergencia cuadrática, sí $x^{(k)}$ es cercano a x^*
- Si f es cuadrático, el algoritmo converge en una iteración.

Desventajas:

 Es muy costoso para muchas variables, por el calcula de la 2da derivada y la inversa.

Método Quasi-Newton

Definiciones: $f^{(k)} = f(\mathbf{x}^{(k)}), \ \mathbf{g}^{(k)} := \nabla f(\mathbf{x}^{(k)}) \ \mathbf{y} \ \mathbf{H}^{(k)} := \nabla^2 f(\mathbf{x}^{(k)})$

Del método de Newton:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{p}^{(k)}$$

 $[\nabla^2 f(\mathbf{x}^{(k)})] \mathbf{p}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) \Rightarrow \mathbf{H}^{(k)} \mathbf{p}^{(k)} = -\mathbf{g}^{(k)}$

Idea:

El sistema lineal $\mathbf{H}^{(k)}\mathbf{p}^{(k)} = -\mathbf{g}^{(k)}$ se puede solucionar aproximadamente por un método iterativo.

Observaciones:

Factorizaciones como LU o Cholesky – costo computacional alto.

Ocurren errores grandes para problemas mal condicionados.

No se requiere la solución exacta.

Método Quasi-Newton (2)

Idea: reducir la compejidad simplificando el calculo de $H^{(k)}$ (Davidon):

- Reemplazar $H^{(k)}$ por una aproximación $B^{(k)}$.
- En vez de calcular $B^{(k)}$, buscamos una simple actualización usando la información de las ultimas iteraciones.

Método:

- Considerar la aproximación cuadrática de f en $\mathbf{x}^{(k)}$, $m^{(k)}(\mathbf{p}) = f^{(k)} + [\mathbf{g}^{(k)}]^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \mathbf{B}^{(k)} \mathbf{p}$.
- Condición de optimalidad de primer orden: $p^{(k)} = -B^{(k)^{-1}}g^{(k)}$
- Por convexidad es necesaria y suficiente para la minimización de $m^{(k)}(\mathbf{p})$.
- Construir la aproximación cuadrática en $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$

$$m^{(k+1)}(\mathbf{p}) = f^{(k+1)} + [\mathbf{g}^{(k+1)}]^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \mathbf{B}^{(k+1)} \mathbf{p}$$

• Que condiciones debe satisfacer $B^{(k+1)}$?

Vigilada Mineducación

Método Quasi-Newton (3)

Condiciones de $B^{(k+1)}$:

1. Gradiente de $m^{(k+1)}$ en $x^{(k+1)}$ debe ser igual al gradiente de f.

$\nabla m^{(k+1)}(p) = g^{(k+1)} + B^{(k+1)}p$	
At $x = x^{(k+1)}$, $p = 0$	At $\boldsymbol{x} = \boldsymbol{x}^{(k)}$, $\boldsymbol{p} = -\alpha_k \boldsymbol{p}^{(k)}$
Queremos $\nabla m^{(k+1)}(0) = g^{(k+1)}$	Queremos $\mathbf{p}m^{(k+1)}(-\alpha_k\mathbf{p}^{(k)})=\mathbf{g}^{(k)}$
Satisface automáticamente	$\Rightarrow \boldsymbol{g}^{(k+1)} - \alpha_k \boldsymbol{B}^{(k+1)} \boldsymbol{p}^{(k)} = \boldsymbol{g}^{(k)}$ $\Rightarrow \boldsymbol{B}^{(k+1)} \alpha_k \boldsymbol{p}^{(k)} = \boldsymbol{g}^{(k+1)} - \boldsymbol{g}^{(k)}$
	$\Rightarrow B^{(k+1)}s^{(k)} = y^{(k)}, \text{ donde } s^{(k)} = x^{(k+1)} - x^{(k)} \text{y} y^{(k)} = g^{(k+1)} - g^{(k)}$

2. Debido que $\mathbf{B}^{(k+1)}$ es simétrica definida positiva: $\mathbf{s}^{(k)} \mathbf{B}^{(k+1)} \mathbf{s}^{(k)} > 0$, $\forall \mathbf{s}^{(k)} \neq \mathbf{0} \Rightarrow \mathbf{s}^{(k)} \mathbf{y}^{(k)} > 0$

Vigilada Mineducación

Método Quasi-Newton (3)

Condiciones de $B^{(k+1)}$:

 $\mathbf{B}^{(k+1)}\mathbf{s}^{(k)} = \mathbf{y}^{(k)}$ gives many solutions for $\mathbf{B}^{(k+1)}$

• Unique solution: $B^{(k+1)}$ should be close to $B^{(k)}$

$$\min_{\boldsymbol{B}} \left\| \boldsymbol{B} - \boldsymbol{B}^{(k)} \right\|_{W} \leftarrow \text{weighted Frobenius-Norm}$$
s. t. $\boldsymbol{B}^{T} = \boldsymbol{B}$

$$\left\| \boldsymbol{A} \right\|_{W} = \left\| W^{1/2} \boldsymbol{A} W^{1/2} \right\|_{F}, \text{ for any } W \text{ s.t. } W y_{k} = s_{k}$$

$$\left\| \boldsymbol{B} \boldsymbol{s}^{(k)} = \boldsymbol{y}^{(k)} \right\|_{F}^{2} : R^{n \times n} \rightarrow R_{\geq 0}, \left\| \boldsymbol{C} \right\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{2}$$

$$\Rightarrow \boldsymbol{B}^{(k+1)} = \left(\boldsymbol{I} - \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{y}^{(k)} \boldsymbol{s}^{(k)^T}\right) \boldsymbol{B}^{(k)} \left(\boldsymbol{I} - \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{s}^{(k)} \boldsymbol{y}^{(k)^T}\right) + \frac{1}{\boldsymbol{y}^{(k)^T} \boldsymbol{s}^{(k)}} \boldsymbol{y}^{(k)} \boldsymbol{y}^{(k)^T} \quad \to \text{DFP formula}$$

$$\Rightarrow B^{(k+1)^{-1}} = \left(I - \frac{1}{y^{(k)^T} s^{(k)}} s^{(k)} y^{(k)^T}\right) B^{(k)^{-1}} \left(I - \frac{1}{y^{(k)^T} s^{(k)}} y^{(k)} s^{(k)^T}\right) + \frac{1}{y^{(k)^T} s^{(k)}} s^{(k)} s^{(k)^T} \rightarrow \text{BFGS formula}$$

Vigilada Mineduca

Referencias

- Basado en el curso "Applied Numerical Optimization" por el profesor Alexander Mitsos.
- Nocedal J. Wright S. J. Numerical Optimization, 2nd Edition, Springer, 2006.

1 Gracias!

