DDSU666 型单相电表通信规程(总结篇)

电表 A(RS485 通信)序列号: 23 12 05 02 99 63, BCD 码为: 35 D4 E4 C8 4B, 低位在前: 63 99 02 05 12 23

电表 B (Modbus 协议) 序列号: 23 11 17 10 66 43, BCD 码为: 35 C FA7 2D D3, 低位在前: 43 66 10 17 11 23

以下操作均针对电表 A,按照 DL/T645-2007《多功能电能表通信协议》规约进行的测试。

(已设置串口参数:波特率 9600bps, 8 位数据位,偶校验,1 位停止位)

- (1) 读电能表通信地址
- 1.1 请求帧, 读地址方式:

[发送]FE FE 68 AA AA AA AA AA AA 68 13 00 DF 16 // DF 为校验码,下同。

[接收]FE FE FE 68 63 99 02 05 12 23 68 93 06 96 CC 35 38 45 56 0B 16

96 CC 35 38 45 56 还原 BCD 码 (减去 33H) 后地址为: 63 99 02 05 12 23, 倒序为 23 12 05 02 99 63 1.2 请求帧读数据方式:

[发送]FE FE 68 AA AA AA AA AA AA 68 11 04 34 37 33 37 B6 16

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 0A 34 37 33 37 96 CC 35 38 45 56 E2 16 96 CC 35 38 45 56 还原 BCD 码 (减去 33H) 后地址为: 63 99 02 05 12 23, 倒序为 23 12 05 02 99 63

(2) 更改通信速率:

[发送]FE FE 68 **63 99 02 05 12 23** 68 17 01 20 **40** 16 将速率更改为 9600BPS,特征字 20 错误 [接收] FE FE FE 68 63 99 02 05 12 23 68 D7 01 3B 1B 16 从站异常应答 3B 对应的波特率为 2400

[发送]FE FE 68 **63 99 02 05 12 23** 68 17 01 43 **63** 16 特征字 43 将速率更改为 4800BPS [接收] FE FE FE 68 63 99 02 05 12 23 68 97 01 43 E3 16 从站正常应答,波特率设置为 4800

[发送]FE FE 68 **63 99 02 05 12 23** 68 17 01 53 **73** 16 将速率更改为 9600BPS [接收] FE FE FE 68 63 99 02 05 12 23 68 **97 01 53** F3 16 从站正常应答,波特率设置为 9600

(3) 读取电网频率:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 35 33 B3 35 **6D** 16

[接收] FE FE FE FE 68 63 99 02 05 12 23 68 91 06 35 33 B3 35 CC 7C 37 16

其中, CC 7C 还可能是: C8 7C, C9 7C, C6 7C, 36 83, 37 83 等

CC 7C 还原 BCD 码(减去 33H) 后值为: 99 49, 倒序为 49 99, 因分辨率为 0.01Hz, 即为 49.99Hz 36 83 还原 BCD 码(减去 33H) 后值为: 03 50, 倒序为 50 03, 因分辨率为 0.01Hz, 即为 50.03Hz

校验码计算方法: 68+63+99+02+05+12+23+68+11+04+35+33+B3+35=36D, 取最低 2 位, 即 6D

(4) 读取总电能:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 33 33 33 33 E**9** 16

[接收] FE FE FE 68 63 99 02 05 12 23 68 91 08 33 33 33 37 33 33 33 30 16 其中, 37 33 33 33 还原 BCD 码(减去 33H) 后值为: 04 00 00 00, 倒序为 00 00 00 04, 值为 4, 总电能分辨率为 0.01kWh, 即表示 0.04kWh

(5) 读取当前电压:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 33 34 34 35 ED 16

[接收] FE FE FE 68 63 99 02 05 12 23 68 91 06 33 34 34 35 B8 54 7B 16 其中, B8 54 还原 BCD 码 (减去 33H) 后值为: 85 21, 倒序为 21 85, 电压分辨率为 0. 1V, 故为 218. 5V

(6) 读取当前电流:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 33 34 35 35 **EE** 16

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 07 33 34 35 35 86 33 33 5D 16

其中, 86 33 33 还原 BCD 码(减去 33H)后值为: 53 00 00,

倒序为 00 00 53, 电流分辨率为 0.001A, 故为 0.053A

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 07 33 34 35 35 97 63 33 9E 16 其中, 97 63 33 还原 BCD 码(减去 33H)后值为: 64 30 00, 倒序为 00 30 64, 电流分辨率为 0.001A, 故为 3.064A

(7) 读取瞬时总有功功率:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 33 33 36 35 **EE** 16

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 07 33 33 36 35 54 34 33 2C 16 其中,53 34 33 还原 BCD 码 (减去 33H) 后值为: 20 01 00, 倒序为 00 01 20, 功率分辨率为 0.0001kW, 故为 0.0120kW, 即 12.0W

[发送]FE FE 68 63 99 02 05 12 23 68 11 04 33 34 36 35 EF 16 //A 相瞬时有功功率,开打印机取最大值

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 07 33 34 36 35 **B7 59 33** B5 16

其中, B7 59 33 还原 BCD 码(减去 33H)后值为: 84 26 00,

倒序为 00 26 84, 功率分辨率为 0.0001kW, 故为 0.2684kW, 即 268.4W

(8) 读取功率因数:

[发送]FE FE 68 **63 99 02 05 12 23** 68 11 04 33 33 39 35 **F1** 16

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 06 33 33 39 35 6A 3C 19 16 其中, 6A 3C 还原 BCD 码(减去 33H) 后值为: 37 09, 倒序为 09 37, 功率因素分辨率为 0.001, 故为 0.937

[接收]FE FE FE 68 63 99 02 05 12 23 68 91 07 33 34 36 35 B3 53 33 AB 16 其中, B3 53 33 还原 BCD 码 (减去 33H) 后值为: 80 20 00, 倒序为 00 20 80, 功率分辨率为 0.0001kW, 故为 0.2080kW, 即 208.0W

- (9) 表内继电器控制(电表没有动作,是否支持未确定)
- 9.1 跳闸控制:

[发送]FE FE 68 **63 99 02 05 12 23** 68 1C 10 35 33 33 33 33 33 33 4D 33 84 3C 43 38 35 48 **06** 16

[接收]FE FE FE FE 68 63 99 02 05 12 23 68 9C 00 A4 16

其中, 9C 00 表示设置跳闸成功?

9.2 合闸控制:

[发送]FE FE 68 63 99 02 05 12 23 68 1C 10 35 33 33 33 33 33 34 E 33 84 3C 43 38 35 48 07 16

[接收]FE FE FE FE 68 63 99 02 05 12 23 68 **9C 00** A4 16

其中, 9C 00 表示设置合闸成功?

以下操作均针对电表 B, 按照 MODBUS-RTU 通讯协议进行的测试。

(已设置串口参数:波特率 9600bps, 8 位数据位,无校验,1 位停止位)

开 始	地址码	功能码	数据区	CRC 校验码	结 束	
大于 3.5 个字符	1字节	1字节	n 字节	2 字节	大于 3.5 个字符	
停顿时间					停顿时间	

先设置好从机地址码为 01H, 后进行以下操作:

- (1) 读寄存器操作-编程参数
- 1.1 主机要读取从机地址为 01H, 起始寄存器地址为 0CH 的 1个寄存器数据:

[发送] 01 03 00 0C 00 01 **44 09** //000CH 地址单元存放的是波特率,长度占 1 个字,44 09 为 CRC-16 校验码 [接收] 01 01 82 80 A0 98 95 51 //串口助手设置偶校验,但电表中为无校验,故返回消息为非法的功能码 01 [接收] 01 03 02 00 03 **F8 45** //将串口助手的校验位设置与电表一致后,返回消息正常

各数据说明:

01: 从机地址码; 03: 从机功能码;

02: 返回数据字节数; 2个数为 00 03

00 03: 为从机的波特率代号,即 9600bps

F8 45: CRC-16 校验码, 低位在前

1.2 读协议切换模式字及 MODBUS-RTU 的地址:

[发送]01 03 00 05 00 02 D4 0A //0005H 寄存器地址单元中为协议切换模式,后一个单元为 Addr

「接收]01 03 04 00 05 00 01 2B F2

各数据说明:

01: 从机地址码; 03: 从机功能码;

04: 返回数据字节数; 4个数为 00 05 00 01

00 05: 为从机的协议切换模式字为 5,表示 Modbus-RTU 协议, 8n1,表示 8 个数据位无校验,1 个停止位;

00 01: 为 0006H 寄存器地址单元中, 从机的地址为 01.

1.3 读寄存器全部地址中的编程参数数据:

[发送] 01 03 00 00 00 10 44 06 //读从 0000H 地址单元开始 16 个地址单元中的数据

[接收]01 03 20 02 BD 00 D0 00 00 00 05 00 00 05 00 01 00 0A 00 01 00 05 00 41

00 24 00 03 D3 57 00 01 00 6C BF D7

各数据说明:

01: 从机地址码; 03: 从机功能码;

20: 返回该字段之后的 32 个字节数据 (02 BD 00 D0 00 01 00 6C)

02 BD: 编程密码 codE; 00 DO: 软件版本;

00 00: 电能清零; 00 05 00 00: 保留参数;

00 05: 协议切换模式; 00 01: Addr;

00 0A 00 01 00 05 00 41 00 24: 地址单元 0007H-000BH, 保留参数

00 03: 为从机的波特率代号,即 9600bps

D3 57 00 01 00 6C: 地址单元 000EH-0010H, 保留参数

BF D7: CRC-16 校验码, 低位在前

(2) 读寄存器操作-二次侧全部电量数据:

[发送]01 03 20 00 00 10 4F C6 //读取寄存器 2000H 单元中的 16 个字的电压值

[接收] 01 03 20 43 5C 4C CD 3D 50 E5 60 3C 3A C7 11 00 00 00 00 3C 3A C7 11 3F

80 00 00 00 00 00 00 42 47 EB 85 82 62

各数据说明:

- 01: 从机地址码; 03: 从机功能码;
- 20: 返回该字段之后的 32 个字节数据 (43 5C 4C CD 42 47 EB 85)
- 43 5C 4C CD: A 相**电压数据**, 待解析; 3D 50 E5 60: A 相电流数据, 待解析;
- 3C 3A C7 11: 瞬时总有功功率数据,待解析; 00 00 00 00: 瞬时总无功功率数据;
- 3C 3A C7 11: 瞬时总视在功率数据,待解析; 3F 80 00 00: 总功功率因数,待解析;
- 00 00 00 00: 地址单元 200CH-000DH, 保留参数; 42 47 EB 85: 电网频率, 待解析;
- 82 62: CRC-16 校验码, 低位在前

(3) 读取当前电压:

[发送] 01 03 20 00 00 02 CF CB //读取寄存器 2000H 单元中的 2 个字的电压值

[接收]01 03 04 43 5C 4C CD DA F0

接收数据各字段说明:

- 01 03 04: 含义与前相同, 其后 4 个字节为当前 A 相电流数据;
- 43 5C 4C CD: 当前 A 相电压数据; 倒序为 00 00 53, 电流分辨率为 0.001A, 故为 0.053A
- DA FO: CRC-16 校验码, 低位在前

倒序为 21 85, 电压分辨率为 0.1V, 故为 218.5V

(4) 读取当前电流:

[发送] 01 03 20 02 00 02 6E 0B //读取寄存器 2002H 单元中的 2 个字的电流值

「接收 01 03 04 3D 54 FD F4 F7 58

接收数据各字段说明:

- 01 03 04: 含义与前相同, 其后 4 个字节为当前 A 相电流数据;
- 3D 54 FD F4: 当前 A 相电流数据; 倒序为 00 00 53, 电流分辨率为 0.001A, 故为 0.053A

F7 58: CRC-16 校验码, 低位在前

(5) 读取功率

5.1 读取瞬时总有功功率:

[发送]01 03 20 04 00 02 **8E 0A** //读取寄存器 2004H 单元中的 2 个字的瞬时总有功功率值

「接收] 01 03 04 3C 3A C7 11 44 52

- 01 03 04: 含义与前相同, 其后 4 个字节为总有功功率的数据;
- 3C 3A C7 11: 总有功功率的数据; **倒序为**00 01 20, 功率分辨率为 0.0001kW, 故为 0.0120kW, 即 12.0W 44 52; CRC-16 校验码, 低位在前

5.2 读取瞬时总视在功率:

[发送] 01 03 20 08 00 02 4E 09 //读取寄存器 2008H 单元中的 2 个字的瞬时总视在功率值

[接收]01 03 04 3C 3C 6A 7F 59 2F

- 01 03 04: 含义与前相同, 其后 4 个字节为总有功功率的数据;
- 3C 3A 6A 7F: 瞬时总视在功率的数据; 倒序为 00 01 20, 功率分辨率为 0.0001kW, 故为 0.0120kW, 即 12.0W 59 2F: CRC-16 校验码, 低位在前

(6) 读取功率因数:

[发送] 01 03 20 0A 00 02 EF C9 //读取寄存器 200AH 单元中的 2 个字的功率因数值

[接收]01 03 04 3F 80 00 00 F7 CF

- 01 03 04: 含义与前相同, 其后 4 个字节为总有功功率的数据;
- 3F 80 00 00: 功率因数的数据; F7 CF: CRC-16 校验码, 低位在前

(7) 读取频率:(注:从机地址更改为 0x02,偶校验)

[发送]01 03 20 0E 00 02 AE 08 //读取寄存器 200EH 单元中的 2 个字的功率因数值

[发送] 02 03 20 0E 00 02 AE 3B //读取寄存器 200EH 单元中的 2 个字的功率因数值

[接收]02 03 04 42 48 1E B8 54 8F

02 03 04: 含义与前相同, 其后 4 个字节为总有功功率的数据;

42 48 1E B8: 从机信号频率的数据;

54 8F: CRC-16 校验码, 低位在前

- (8) 读取电能相关参数:
- 8.1 读取有功总电能:

[发送]01 03 40 00 00 02 D1 CB 或 //从机地址为 0x01 时

[发送]02 03 40 00 00 02 D1 F8 //从机地址为 0x02 时

[接收] 01 03 04 3D 23 D7 0A D9 A2 或 02 03 04 00 00 00 00 C9 33 电能被清零过

接收数据各字段说明:

01 03 04: 含义与前相同, 其后 4 个字节为当前 A 相电流数据;

3D 23 D7 OA: 当前有功总电能; 倒序为 00 00 04, 值为 4, 总电能分辨率为 0.01kWh, 即表示 0.04kWh

D9 A2: CRC-16 校验码, 低位在前

8.2 读取正向有功总电能:

[发送]01 03 40 0A 00 02 F1 C9

「接收] 01 03 04 3D 23 D7 0A D9 A2

接收数据各字段说明:

01 03 04: 含义与前相同, 其后 4 个字节为当前 A 相电流数据;

3D 23 D7 0A: 当前正向有功总电能; 倒序为 00 00 04, 值为 4, 总电能分辨率为 0.01kWh, 即表示 0.04kWh

D9 A2: CRC-16 校验码, 低位在前

8.3 读取反向有功总电能:

[发送]01 03 40 14 00 02 91 CF

[接收]01 03 04 00 00 00 00 FA 33

接收数据各字段说明:

01 03 04: 含义与前相同, 其后 4 个字节为当前 A 相电流数据;

00 00 00 00: 当前反向有功总电能; 倒序为 00 00 04, 值为 4, 总电能分辨率为 0.01kWh, 即表示 0.04kWh FA 33: CRC-16 校验码, 低位在前

- (9) 写寄存器相关编程参数:
- 9.1 修改数据协议切换设置
- 9.1.1 将数据协议切换设置改为偶校验

[发送]01 10 00 05 00 01 02 00 06 26 07 或 //从机地址为 0x01 时

[发送] 02 10 00 05 00 01 02 00 06 32 F7 //从机地址为 0x02 时

发送数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 05: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节; 00 06: 写入寄存器的数据值;

26 07: CRC-16 校验码, 低位在前

[接收]01 10 00 05 00 01 11 C8 或 02 10 00 05 00 01 11 C8

接收数据各字段说明:

01: 从机地址码; 10: 写寄存器操作;

00 05: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

11 C8: CRC-16 校验码, 低位在前

9.1.2 将数据协议切换设置改回无校验

[发送] 01 10 00 05 00 01 02 **00 05** 66 06 //**00 05** 即为写入的数据, 8n1

「接收] 01 10 00 05 00 01 11 C8

发送及接收各字段含义参考前面说明。

备注: ChangeProtocol 协议切换模式字:

数据为 1 时为 DL/T 645-2007 协议, 8E1, 表示 8 个数据位偶校验, 1 个停止位;

数据为 2 时 Modbus-RTU 协议, 8n2, 表示 8 个数据位无校验, 2 个停止位;

数据为 5 时 Modbus-RTU 协议, 8n1, 表示 8 个数据位无校验, 1 个停止位;

数据为 6 时 Modbus-RTU 协议, 8E1, 表示 8 个数据位偶校验, 1 个停止位;

数据为 7 时 Modbus-RTU 协议,801,表示 8 个数据位奇校验,1 个停止位;

9.2 写寄存器修改从机地址

9.2.1 将从机地址 0x01 修改为 0x02

[发送]01 10 00 06 00 01 02 00 02 27 F7

发送数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 06: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节; 00 02: 写入寄存器的数据值,即修改从机地址为 02;

27 F7: CRC-16 校验码, 低位在前

[接收]01 10 00 06 00 01 E1 C8

接收数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 06: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

E1 C8: CRC-16 校验码, 低位在前

9.2.2 将从机地址 02 改回为 0x01

[发送]02 10 00 06 00 01 02 00 01 73 06

发送数据各字段说明:

02: 从机当前地址码;

10: 写寄存器操作;

00 06: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节; 00 01: 写入寄存器的数据值,即修改从机地址为 01;

73 06: CRC-16 校验码, 低位在前

[接收]02 10 00 06 00 01 E1 FB

接收数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 06: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

11 C8: CRC-16 校验码, 低位在前

9.3 修改从机的波特率

BAud 波特率: 0:1200bps; 1:2400bps; 2:4800bps; 3:9600bps;

9.3.1 修改从机的波特率为 4800bps

[发送]01 10 00 0C 00 01 02 00 02 27 5D

发送数据各字段说明:

02: 从机当前地址码;

10: 写寄存器操作;

00 0C: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节; 00 02: 写入寄存器的数据值,即修改从机的通信速率为 4800bps;

27 5D: CRC-16 校验码, 低位在前

「接收]01 10 00 0C 00 01 C1 CA

接收数据各字段说明:

01: 从机地址码; 10: 写寄存器操作:

00 0C: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

C1 CA: CRC-16 校验码, 低位在前

9.3.2 将从机的波特率改回 9600bps

[发送]01 10 00 0C 00 01 02 00 03 E6 9D

发送数据各字段说明:

02: 从机当前地址码;

10: 写寄存器操作;

00 0C: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节; 00 03: 写入寄存器的数据值,即修改从机的通信速率为 9600bps;

E6 9D: CRC-16 校验码, 低位在前

[接收]01 10 00 0C 00 01 C1 CA

接收数据各字段说明同上。

9.4 写寄存器将从机电量清零(慎用!!!!!!!)

[发送]01 10 00 02 00 01 02 00 01 66 72

发送数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 02: 往此地址开始的寄存器中写入数据; 00 01: 写入寄存器数量为 1;

02: 写入数据 2 个字节: 00 01: 写入寄存器的数据值 1, 即进行电量清零操作;

66 72: CRC-16 校验码, 低位在前

「接收]01 10 00 02 00 01 A0 09

接收数据各字段说明:

01: 从机地址码;

10: 写寄存器操作;

00 02: 从机被写入数据的寄存器地址;

00 01: 写入寄存器数量为 1;

AO 09: CRC-16 校验码, 低位在前

查询当前电量情况:

[发送]01 03 40 00 00 02 D1 CB

「接收] 01 03 04 **00 00 00 00** FA 33 //4 个数据位全为 0

两表通过 485 总线串接进行同时测量

一、电表设置

- 1、将两个电表都设置为 modbus 协议, 8E1 模式 (9600bps, 偶校验, 8位数据位, 1位停止位)
- 2、设置两表的地址分别为 0x01 和 0x02
- 3、采用串口助手进行调试

二、发送读取命令

读取全部的电量二次侧数据

发送 1: 01 03 20 00 00 10 4F C6

80 00 00 **00 00 00 00** 42 48 1E B8 3A E3

各数据说明:

- 01: 从机地址码; 03: 从机功能码;
- 20: 返回该字段之后的 32 个字节数据 (43 5C E6 66 42 48 1E B8)
- 43 5C E6 66: A 相电压数据,对应单精度浮点数为 220.89999389648438;
- 00 00 00 00: A 相电流数据,对应单精度浮点数为 0;
- 00 00 00 00: 瞬时总有功功率数据,对应单精度浮点数为 0;
- 00 00 00 00: 瞬时总无功功率数据,对应单精度浮点数为0;
- 00 00 00 00: 瞬时总视在功率数据,对应单精度浮点数为 0;
- 3F 80 00 00: 总功功率因数,对应单精度浮点数为1;
- 00 00 00 00: 地址单元 200CH-000DH, 保留参数;
- 42 48 1E B8: 电网频率,对应单精度浮点数为 50. 029998779296875;
- 3A E3: CRC-16 校验码, 低位在前

发送 2: 02 03 20 00 00 10 4F F5

接收: 02 03 20 **43 5C E6 66 3D 54 FD F4 3C 3E 0D ED 00 00 00 00 3C 3E 0D ED 3F 80 00 00 00 00 00 00** 42 48 1E B8 BA D2

各数据说明:

- 01: 从机地址码; 03: 从机功能码;
- 20: 返回该字段之后的 32 个字节数据 (43 5C E6 66 42 48 1E B8)
- 43 5C E6 66: A 相电压数据,对应单精度浮点数为 220.89999389648438;
- 3D 54 FD F4: A 相电流数据,对应单精度浮点数为 0.052000001072883606;
- 3C 3E 0D ED: 瞬时总有功功率数据,对应单精度浮点数为 0.011599999852478504;
- 00 00 00 00: 瞬时总无功功率数据,对应单精度浮点数为0;
- 3C 3E 0D ED: 瞬时总视在功率数据,对应单精度浮点数为 0.011599999852478504;
- 3F 80 00 00: 总功功率因数,对应单精度浮点数为1;
- 00 00 00 00: 地址单元 200CH-000DH, 保留参数;
- 42 48 1E B8: 电网频率,对应单精度浮点数为 50. 029998779296875;
- BA D2: CRC-16 校验码, 低位在前

附 1: 寄存器各参数地址信息表

表 9 通讯参数信息

		衣 9 週讯参数信息					
参数 地址	参数代号	参数说明	数据类型	数据 长度 Word	读写 属性		
编程参数							
0000Н	UcodE	编程密码 codE	int	1	R/W		
0001H	REV.	软件版本	int	1	R		
0002H	CLrE	电能清零 CLr. E	int	1	R/W		
0003H	RESERVED	保留	int	1			
0004H	RESERVED	保留	int	1			
0005H	ChangeProtocol	协议切换设置	int	1	R/W		
0006Н	Addr	此地址只有 Modbus-RTU 时有效	int	1	R/W		
0007Н	RESERVED	保留	int	1			
0008H	RESERVED	保留	int	1			
0009Н	RESERVED	保留	int	1			
000AH	RESERVED	保留	int	1			
000BH	RESERVED	保留	int	1			
000CH	BAud	波特率	int	1	R/W		
000DH	Switch Out	开关量输出	int		R/W		
000EH	RESERVED	保留	int	1			
000FH	RESERVED	保留	int	1			
0010H	RESERVED	保留	int	1			
二次侧电量数据							
2000Н	U	A 相电压	float	2	R		
2002Н	I	A 相电流	float	2	R		
2004Н	P	瞬时总有功功率	float	2	R		
2006Н	Q	瞬时总无功功率	float	2	R		
2008H	S	瞬时总视在功率	float	2	R		
200AH	PF	总功功率因数	float	2	R		
200CH	RESERVED	保留	float	2	R		
200EH	Freq	电网频率	float	2	R		
2010H	RESERVED	保留	long	2	R		
电 能 二 次 侧 数 据							
4000H	Ер	有功总电能	float	2	R		
400A H	Imp	正向有功电能	float	2	R		
4014H	Exp	反向有功电能	float	2	R		
		1					

附 2: CRC-16 (MODBUS) 校验在线计算网址:

http://www.ip33.com/crc.html

操作界面截图如下:

	CRC(循环冗余校验)在线计算	
	⑥Hex ○Ascii 校验文件	
需要校验的数据:	01 10 00 02 00 01 02 00 01	
	輸入的数据为16进制,例如: 31 32 33 34	
参数模型 NAME:	CRC-16/MODBUS x16+x15+x2+1	
宽度 WIDTH:	16	
多项式 POLY(Hex):	8005 例如: 3D65	
初始值 INIT (Hex):	FFFF 例如: FFFF	
结果异或值 XOROUT (Hex):	0000 例如: 0000	
	圖輸入數据反转(REFIN) ■輸出數据反转(REFOUT)	
	计算 清空	
校验计算结果(Hex):	7266 复制	
Artani (no.)	高位在左低位在右,使用时请注意高低位顺序!!!	
校验计算结果 (Bin):	0111001001100110	

附 3:16 进制转单精度浮点数在线计算网址:

https://www.5axxw.com/tools/web/jinzhi.html

操作界面截图如下:

Design By ZhangJB, 2024.3.2