Homework 1, additional problems, solution set

1.a. We want to show that there are constants 0 < c < d and an integer n_{cd} such that for all $n \ge n_{cd}$, $c \cdot g(n) \le f(n) \le d \cdot g(n)$.

Using the handout on big Oh bounds, we know that for $n \ge 1$, $\log n \le n$. Also, for $n \ge 1$, $\log n \ge 0$. Thus $2n^2 \le 2n^2 + n \log n \le 3n^2$. Setting c = 2, d = 3, and $n_{cd} = 1$, it follows that for all $n \ge n_{cd}$, $c \cdot g(n) \le f(n) \le d \cdot g(n)$.

b. The answer is "no". To see this, let f(n) = 2n and g(n) = n. Then $2^{f(n)} = 2^{2n}$ and $2^{g(n)} = 2^n$. So if $2^{f(n)} = O(2^{g(n)})$ then $2^{2n} = O(2^n)$; i.e. $4^n = O(2^n)$; but this is not true.

For if it were true, there would be a constant c>0 and an integer \overline{n} such that for all $n\geq \overline{n}$, $4^n\leq c\cdot 2^n$; or equivalently, $2^n\leq c$; but this does not hold for $n>\log c$, and consequently there cannot be a pair (c,\overline{n}) of the desired form.

- 2.a. Suppose we first combine S_1 and S_2 and then combine the result with S_3 . The total number of steps performed is $s_1s_2 + (s_1 + s_2)s_3 = s_1s_2 + s_1s_3 + s_2s_3$. If instead, we started by combining S_1 and S_3 , the cost would be the same, and likewise if we started by combining S_2 and S_3 .
- b. Suppose we first combine S_1 and S_2 . Let the resulting list be named T. By part (a), the remaining cost is the same regardless of the order in which T, S_3 and S_4 are combined. Thus, the overall cost is $s_1s_2 + (s_1 + s_2)s_3 + (s_1 + s_2)s_4 + s_3s_4 = \sum_{1 \le i < j \le 4} s_i s_j$. Clearly, the cost remains the same regardless of which pair is combined first.
- c. Consider some set S_i . Over the course of the algorithm it forms part of larger and larger sets. The sets it is combined with in turn are disjoint and their union is $\bigcup_{j\neq i} S_i$. Thus the contribution to the total operation cost of the combinings in which S_i is involved is $s_i \cdot \sum_{j\neq i} s_j$. Summing over all i would count each operation twice, once for the combining of S_j with S_i and once for the combining of S_i with S_j . Thus the total number of operations being performed is $\frac{1}{2} \sum_{i\neq j} s_i s_j = \sum_{1\leq i< j\leq k} s_i s_j$. Clearly, this is the same regardless of the order in which the combinings are performed.