Reducción de Orden.

Sandra Elizabeth Delgadillo Alemán.

Universidad Autónoma de Aguascalientes.

May 20, 2022

Reducción de Orden.

Uno de los hechos más interesantes al estudiar a ecuaciones diferenciales de 2^{do} orden, es que podemos formar una 2^{da} solución $y_2(x)$ de la E.D.H

$$a_2(x)y'' + a_1(x) + a_0(x)y = 0$$
 $a_2(x) \neq 0$ en I .

Siempre y cuando se conozca una solución $y_1(x)$ no trivial (es decir, $y_1(x) \neq 0$) en I, de tal forma que $\{y_1, y_2\}$ sea linealmente independiente.

Observemos que dos soluciones son linealmente dependientes si una es un múltiplo escalar de la otra. Dados y_1, y_2 son L.D. si y sólo si $y_2(x) = cy_1(x)$.

$$\iff \frac{y_2(x)}{y_1(x)} = c \quad \forall x \in I.$$

Ahora, estamos interesados en determinar $y_2(x)$ tal que sea L.I: a $y_1(x)$, por lo cual, proponemos $\frac{y_2(x)}{v_1(x)} = \mu(x)$

$$\iff y_2(x) = \mu(x)y_1(x).$$

Derivemos $y_2(x) = \mu(x)y_1(x)$

$$y_2'(x) = \mu' y_1 + \mu y_1'$$
 $y'' = \mu'' y_1 + \mu' y_1' + \mu' y_1' + \mu y''$
= $\mu'' y_1 + 2\mu' y_1' + \mu y''$.

ahora sustituyendo y_2 , y_2' , y_2'' en la E.D. en su forma estándar y'' + p(x)y' + q(x)y = 0, donde

$$p(x) = \frac{a_1(x)}{a_2(x)}, \ q(x) = \frac{a_0(x)}{a_2(x)}.$$

esto es

$$(\mu''y_1 + 2\mu'y_1' + \mu y'') + p(x)(y_2'(x) + \mu'y_1 + \mu y_1') + q(x)(\mu y_1) = 0$$

$$(\mu y_1'' + p(x)\mu y_1' + q(x)\mu y_1) + (\mu''y_1 + 2\mu'y_1' + p(x)\mu'y_1) = 0$$

$$\mu(y_1'' + p(x)y_1' + q(x)y_1) + (\mu'' + 2\mu'y_1' + p(x)\mu'y_1) = 0$$

$$\mu''y_1 + \mu'(2y_1' + p(x)y_1) = 0 \qquad E.D. \ \mu = \mu(x)$$

Hagamos un cambio de variable

$$\tilde{\mu} = \mu' \implies \tilde{\mu}' = \mu''.$$

Luego:

$$\tilde{\mu}' y_1 + \tilde{\mu}(2y_1' + p(x)y_1) = 0$$

$$\tilde{\mu}' y_1 + \tilde{\mu}(2y_1' + p(x)y_1) = 0$$

$$\iff y_1 \tilde{\mu}' = -(2y_1' + p(x)y_1)\tilde{\mu}$$

$$\iff \frac{\tilde{\mu}'}{\tilde{\mu}} = -\frac{2y_1' + p(x)y_1}{y_1}.$$

Integramos con respecto a x,

$$\int \frac{\tilde{\mu}'}{\mu} dx = -\int \frac{2y_1' + p(x)y_1}{y_1} dx = -\left[2\int \frac{y_1'}{y_1} dx + \int p(x)dx\right]$$

$$\iff \ln |\tilde{\mu}| = -2 \ln |y_1| - \int p(x) dx = \ln |y_1|^{-2} - \int p(x) dx + C$$

$$e^{\ln |\tilde{\mu}|} = e^{\ln |y_1|^{-2} - \int p(x) dx + C} = e^{\ln |y_1|^{-2}} \cdot e^{-\int p(x) dx} \cdot e^{C}$$

$$\tilde{\mu} = C|y_1|^{-2} e^{-\int p(x) dx}.$$

Como $\tilde{\mu} = \mu'$, entonces obtenemos a μ integrando.

$$\mu(x) = \int \mu' dx = \int c |y_1|^{-2} e^{-\int p(x)dx} dx.$$

$$\tilde{\mu} = \int \frac{e^{-\int p(x)dx}}{y_1^2} dx \qquad \text{con } c = 1.$$

Luego, dada $y_1 \neq 0$ solución de la E.D., una 2^{da} solción linealmente independiente a y_1 está dada por

$$y_2(x) = \mu(x)y_1(x)$$
 donde $\mu(x) = \int \frac{e^{-\int p(x)dx}}{y_1^2} dx$.

Así pues, $\{y_1, y_2\}$ conforman una c.f.s y la solución general de la E.D. está dado por la combinación lineal de éstas.

Example

Sea $y_1(x) = x^2$ una solución de la E.D. $x^2y'' - 3xy' + 4y = 0$. Determine la solución general de la E.D. en el intervalo $I = (0, \infty)$.

Solución. La E.D. en su forma estándar está dada por

$$y'' - \underbrace{\frac{3}{x}}_{p(x)} y' + \frac{4}{x^2} y = 0.$$

$$\mu(x) = \int \frac{e^{-\int p(x)dx}}{y^2(x)} dx = \int \frac{e^{-\int \frac{-3}{x}dx}}{(x^2)^2} dx = \int \frac{e^{3\ln x}}{x^4} dx$$
$$= \int \frac{x^3}{x^4} dx$$
$$= \int \frac{1}{x} dx$$
$$= \ln x.$$

$$\therefore y_2(x) = (\ln x)x^2 = x^2 \ln x.$$

Verifiquemos que $y_1(x) = x^2$, y $Y_2(x) = x^2 \ln x$ conforman un c.f.s.

Es fácil verificar que y_1, y_2 son soluciones de la E.D. Veamos que son L.I. usando el wronskiano.

$$W[y_1, y_2](x) = \begin{vmatrix} x^2 & x^2 \ln x \\ 2x & x + 2x \ln x \end{vmatrix}$$
$$= x^2 (x + 2x \ln x) - 2x (x^2 \ln x)$$
$$= x^3 + 2x^3 \ln x - 2x^2 \ln x = x^3 \neq 0.$$

 $y_1, y_2 \text{ son L.I. } \forall x \in (0, \infty).$

Por consiguiente, y_1, y_2 conforman un c.f.s y la sol. gral. está dada por

$$y(x) = c_x^2 + c_2 x^2 \ln x$$
, c_1, c_2 constantes arbitrarias.

Ejercicio.

Si $y_1(x) = e^x$ es solución de y'' - y = 0, en el intervalo $(-\infty, \infty)$. Aplique reducción de orden para determinar $y_2(x)$, L.I. a $y_1(x)$ y determine explícitamente la solución general de la E.D.

Solución.
$$y'' + \underbrace{0}_{p(x)} y' \underbrace{-}_{q(x)} y = 0.$$

 $y_2(x) = \mu(x) \cdot y_1(x), \quad \mu(x) = \int \frac{e^{-\int p(x)dx}}{y_1^2} dx.$
 $\mu(x) = \int \frac{e^{-\int 0dx}}{(e^x)^2} dx = \int \frac{e^0}{e^{2x}} dx = \int \frac{1}{e^{2x}} dx$
 $= \int e^{-2x} dx$
 $= -\frac{1}{2} \int -2e^{-2x} dx$
 $= -\frac{1}{2} e^{-2x}.$

Luego $\{y_1, y_2\}$ son dos soluciones L.I. para la E.D. de segundo orden.

:. conforman un c.f.s.

$$y(x) = c_1 e^x - c_2 e^{-x}$$
 sol. gral. explícita de la E.D.