Nodal sets of Gaussian Laplace eigenfunctions

Lakshmi Priya

Department of Mathematics Indian Institute of Science, Bangalore

Introduction

Nodal sets

For M be a manifold and $f: M \to \mathbb{R}$, define the following:

Nodal set of
$$f: \mathcal{Z}(f) := f^{-1}\{0\},\$$

Nodal component of f is a connected component of $\mathcal{Z}(f)$,

Nodal domain of f is a connected component of $M \setminus \mathcal{Z}(f)$.

 $\Delta f + f = 0$ on \mathbb{R}^2

 $\Delta f + \lambda f = 0$ on \mathbb{S}^2

A band limited function on \mathbb{S}^2

The above pictures are taken from Prof. Dmitry Belyaev's webpage.

Laplace eigenfunctions on smooth manifolds

Let (M,g) be a smooth Riemannian manifold and Δ_g be the **Laplace–Beltrami** operator or **Laplacian**, then in local coordinates

$$\Delta_g f = \frac{1}{\sqrt{|g|}} \sum_{i,j} \partial_i (g^{ij} \sqrt{|g|} \partial_j f) \longleftrightarrow \Delta = \partial_1^2 + \cdots + \partial_n^2.$$

 $\lambda \in \mathbb{R}$ is an eigenvalue of Δ_g if $\exists f : M \to \mathbb{R}$ s.t. $f \not\equiv 0$ and $-\Delta_g f = \lambda f$.

f is called an **eigenfunction** corresponding to the eigenvalue λ .

If M is closed, then the eigenvalues of Δ_g are non-negative and can be enumerated as $0 \le \lambda_1 < \lambda_2 < \cdots$ with $\lambda_n \nearrow \infty$ and each λ_j has finite multiplicity.

There is an ONB for $L^2(M, dVol_g)$ consisting of eigenfunctions of Δ_g .

Ex: $M = \mathbb{S}^1$ w/ eigenvalues n^2 , $n \in \mathbb{N}$ and eigenfunctions $\sin n\theta$, $\cos n\theta$.

Regularity of Δ eigenfunctions

Harmonifying Δ eigenfunctions: For f satisfying $\Delta f + \lambda f = 0$, the function $F: M \times \mathbb{R} \to \mathbb{R}$ defined by $F(z,t) := f(z)e^{-\sqrt{\lambda}t}$ is harmonic on $M \times \mathbb{R}$.

At the wavelength scale ($\sim 1/\sqrt{\lambda}$), f resembles a harmonic function.

Estimates at wavelength scale for Δ eigenfunctions on \mathbb{R}^2 , \mathbb{S}^2 and \mathbb{T}^2 : For every $p \in M$, $n \in \mathbb{N}_0$ and r > 0, $\exists C_{r,n} > 0$ s.t. $\forall f, \lambda$ satisfying $\Delta f + \lambda f = 0$,

$$|\nabla^n f(p)|^2 \leq C_{r,n} \lambda^{n+1} \int_{B(p,\frac{r}{\sqrt{\lambda}})} f(x)^2 dV(x).$$

Regularity of the nodal sets of Δ eigenfunctions

Let M be a smooth closed Riemannian manifold and let $\Delta \phi + \lambda \phi = 0$.

• Courant's nodal domain theorem: A bound for # of nodal domains is

$$\# \text{ nodal domains of } \phi \ \leq \sum_{\lambda' \leq \lambda} \text{multiplicity of } \Delta \text{ eigenvalue } \lambda'.$$

Yau's conjecture (resolved for analytic g by Donnelly & Fefferman):
 Asymptotics for nodal volume

$$c_M \sqrt{\lambda} \leq \text{Volume of } \mathcal{Z}(\phi) \leq C_M \sqrt{\lambda}.$$

For a smooth Riemannian manifold M of dim. n, if $\Delta\phi + \lambda\phi = 0$

• Faber–Krahn: Every nodal domain of ϕ is large enough

Volume of every nodal domain of
$$\phi \gtrsim 1/\lambda^{n/2}$$
.

• The nodal set forms a $c/\sqrt{\lambda}$ net on M.

Motivation

Although nodal sets of Δ eigenfunctions are *regular*, there is quite a bit of *variability* in their behaviour and it is interesting to understand their *typical* behaviour. The following are some properties of the nodal set of Δ eigenfunctions which have been studied:

- Nodal domain/component count in compact subsets of the manifold:
 - Total count.
 - Specialized count: Count of nodal components/domains with a specified topology, volume, boundary volume etc.
- Length (or more generally volume in higher dim.) of the nodal set.

Hence we *randomize* and study the above mentioned random quantities for the nodal set of random functions.

Q: Expectation, higher moments, LLN, CLT, concentration?

Motivation

Although nodal sets of Δ eigenfunctions are *regular*, there is quite a bit of *variability* in their behaviour and it is interesting to understand their *typical* behaviour. The following are some properties of the nodal set of Δ eigenfunctions which have been studied:

- Nodal domain/component count in compact subsets of the manifold:
 - Total count.
 - Specialized count: Count of nodal components/domains with a specified topology, volume, boundary volume etc.
- Length (or more generally volume in higher dim.) of the nodal set.

Hence we *randomize* and study the above mentioned random quantities for the nodal set of random functions.

Q: Expectation, higher moments, LLN, CLT, concentration?

Conjectures about Δ eigenfunctions

- ▶ Random wave conjecture: Random plane wave (RPW) is a universal object which models Δ eigenfns. corresponding to high eigenvalues on any manifold whose geodesic flow is ergodic (these include manifolds with negative curvature).
- ▶ Semi-classical eigenfunction hypothesis: If $\{\phi_n: n \geq 1\}$ is an ONB s.t. $\Delta\phi_n + \lambda_n\phi_n = 0$ where λ_n 's are non-decreasing, then there is a density one subsequence of $\{\phi_n: n \geq 1\}$, call it $\{\phi_{n_i}\}$, whose L^2 mass equidistributes at scales slightly larger than wavelength scale,

$$\lim_{i\to\infty}\sup_{x\in M,r\geq r_{n_i}}\left|\frac{\int_{B(x,\frac{r}{\sqrt{\lambda_{n_i}}})}\phi_{n_i}^2}{\operatorname{Vol}(B(x,\frac{r}{\sqrt{\lambda_{n_i}}}))}-1\right|=0,$$

whenever $\lim_{i\to\infty} r_{n_i} = \infty$.

Local vs. Non-local vs. Semi-local

A part of the nodal set of $f: \mathbb{R}^2 \to \mathbb{R}$.

Local vs. Non-local vs. Semi-local

Nodal set of $f: \mathbb{R}^2 \to \mathbb{R}$.

- Local Nodal length in $[0, T]^2 = \sum Nodal$ length in the tiling boxes.
- Non-local # Nod. comp. in $[0, T]^2 \neq \sum \#$ Nod. comp. in the tiling boxes.
- Semi-local # Nod. comp. in $[0,T]^2 \approx \sum \#$ Nod. comp. in the tiling boxes, if the tiling boxes are *large* enough.

 $F:\mathbb{R}^2 \to \mathbb{R}$ is a smooth SGP. What can we say about $\mathbb{E}[N_R(F)]/R^2$?

 $F:\mathbb{R}^2 o \mathbb{R}$ is a smooth SGP. What can we say about $\mathbb{E}[N_R(F)]/R^2$?

 $F: \mathbb{R}^2 \to \mathbb{R}$ is a smooth SGP. What can we say about $\mathbb{E}[N_R(F)]/R^2$?

$$\sum \#NC \le N_R = \sum \#NC + \# NC,$$

 $F: \mathbb{R}^2 \to \mathbb{R}$ is a smooth SGP. What can we say about $\mathbb{E}[N_R(F)]/R^2$?

This proves that $\mathbb{E}[N_R]/R^2$ is Cauchy and hence converges to a constant $c \geq 0$.

 $\mathbb{E}[\# NC] \leq \mathbb{E}[\# zeros \text{ of } F \text{ restricted to the hor.} \& vert.lines] = C \frac{R}{\ell} \cdot 2R.$

Random functions & their

nodal sets

Random plane wave (RPW)

Consider n angularly equidistributed points $\{a_1, a_2, \ldots, a_n\}$ on the half circle $[0, \pi] \subset \mathbb{S}^1$ and consider the following Gaussian process, w/ $\xi_j, \eta_j \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$:

$$F_n(z) := rac{1}{\sqrt{n}} \sum_{j=1}^n \xi_j \cos(z \cdot a_j) + \eta_j \sin(z \cdot a_j).$$

RPW F_{RPW} is the *limit* of F_n as $n \to \infty$. A.s., F_n and F_{RPW} satisfy $\Delta f + f = 0$ on \mathbb{R}^2 .

Formally, the RPW is the centered stationary Gaussian process on \mathbb{R}^2 whose spectral measure is the uniform measure on \mathbb{S}^1 .

Quantities of interest:

 $N_R := \#\{ \text{Nodal comp. of } F \text{ contained in } B(R) \},$

$$\mathcal{L}_R := \text{length}(\{F = 0\} \cap B(R)).$$

Questions

$ {X_n \overset{\text{i.i.d.}}{\sim} \nu, \mathbb{E}[X_1] = \mu \&} \\ \text{Var}(X_1) = \sigma^2 $	Random plane wave	
$\overline{S_n := \sum_{k=1}^n X_k}$	Nodal length \mathcal{L}_R	Nodal domain count N_R
Law of large numbers $\frac{S_n - n\mu}{n} \stackrel{\text{a.s.}}{\longrightarrow} 0$	$\xrightarrow{\mathcal{L}_R} \xrightarrow{\mathbf{a.s.}, \underline{l^1}} C$	$\stackrel{N_R}{\stackrel{a.s.,L^1}{\longrightarrow}} C$
Central limit theorem $rac{S_n-n\mu}{\sigma\sqrt{n}}\stackrel{ ext{d}}{ o} \mathcal{N}(0,1)$	$egin{aligned} Varig(\mathcal{L}_Rig) &\sim R^2 \log R \ rac{\mathcal{L}_R - \mathbb{E}[\mathcal{L}_R]}{\sqrt{Var(\mathcal{L}_R)}} \stackrel{d}{ ightarrow} \mathcal{N}(0,1) \end{aligned}$	×
Large deviation/exp. conct. (w/ extra assumptions on ν) $\mathbb{P}(S_n - n\mu \ge \epsilon n) \approx \mathrm{e}^{-l(\epsilon)n}$	×	$\mathbb{P}\left(N_R - cR^2 \ge \epsilon R^2\right)$ $\lesssim e^{-c_\epsilon R}$

Nodal component count of the RPW

Since F_{RPW} is an ergodic process, Wiener's ergodic theorem implies the following LLN type result.

Theorem (Nazarov & Sodin, 2016)

There is $c_{NS} > 0$ s.t.

$$\frac{\textit{N}_{\textit{R}}(\textit{F}_{\textit{RPW}})}{\textit{R}^2} \xrightarrow{\textit{a.s.},\textit{L}^1} \textit{c}_{\textit{NS}} \textit{ as } \textit{R} \rightarrow \infty.$$

Nodal component count of the RPW

Since F_{RPW} is an ergodic process, Wiener's ergodic theorem implies the following LLN type result.

Theorem (Nazarov & Sodin, 2016)

There is $c_{NS} > 0$ s.t.

$$\frac{\textit{N}_{\textit{R}}(\textit{F}_{\textit{RPW}})}{\textit{R}^2} \xrightarrow{\textit{a.s.},\textit{L}^1} \textit{c}_{\textit{NS}} \textit{ as } \textit{R} \rightarrow \infty.$$

Following result/proof is heavily inspired from Nazarov–Sodin's result/proof of concentration for RSH. Main tool: Gaussian concentration result.

Theorem (LP)

Given
$$\epsilon>0$$
, \exists $c_{\epsilon},\widetilde{c_{\epsilon}},C_{\epsilon},\widetilde{C_{\epsilon}}>0$ such that

$$|\widetilde{C_{\epsilon}}\exp\left(-\widetilde{c_{\epsilon}}R\right) \leq \mathbb{P}\left(\left|\frac{N_R(F_{RPW})}{R^2} - c_{NS}\right| \geq \epsilon\right) \leq C_{\epsilon}\exp\left(-c_{\epsilon}R\right).$$

Nesting configurations

To every nodal component (here γ), we associate a finite rooted tree (called its tree end) with the nodes \leftrightarrow nodal domains contained in the interior of γ and an edge between two nodes if the corresponding nodal domains share a boundary.

This tree contains information about the *nesting* of the nodal components in the interior of γ .

Connectivity of $\gamma := 1 + \text{degree}$ of the root of its tree end.

Let \mathcal{T} be the collection of finite rooted trees and let $T \in \mathcal{T}$. For $f : \mathbb{R}^2 \to \mathbb{R}$, define

 $N_R(f,T) := \# \text{nodal comp. of } f \text{ in } B(R) \text{ whose tree end is } T.$

Theorem (Sarnak & Wigman, 2019)

If ν has no atoms, $\exists \ \mu$ a probability measure on \mathbb{T} w/ supp $(\mu) = \mathbb{T}$ s.t. for every $T \in \mathbb{T}$,

$$rac{N_R(F_{RPW},\,T)}{R^2} \xrightarrow{a.s.,L^1} c_{NS} \cdot \mu(\,T), \; ext{as } R o \infty.$$

Theorem (LP)

In the setting of the above thm, $\exists c_{\epsilon}, C_{\epsilon} > 0$ s.t. $\forall \epsilon > 0$

$$\mathbb{P}\left(\left|\frac{N_R(F_{RPW},T)}{R^2}-c_{NS}\cdot\mu(T)\right|\geq\epsilon\right)\leq C_\epsilon\exp\left(-c_\epsilon R\right).$$

Random spherical harmonics (RSH) on S²

- Eigenvalues of Δ : n(n+1), $n \in \mathbb{N}$. Eigenspace \mathcal{H}_n : (2n+1) dimensional space of degree n spherical harmonics (restriction to \mathbb{S}^2 of deg n hom. harmonic polynomials in \mathbb{R}^3).
- RSH of degree n: Let $\{\phi_j: 0 \leq j \leq 2n\}$ be any ONB for \mathcal{H}_n , then

$$F_n := \frac{1}{\sqrt{2n+1}} (\xi_0 \phi_0 + \dots + \xi_{2n} \phi_{2n}), \ \xi_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$$

- Covariance kernel: $K(z, w) = \mathbb{E}[F_n(z)F_n(w)] = P_n(\cos\Theta(z, w))$, where P_n is the degree n Legendre polynomial s.t. $P_n(1) = 1$.
- If $N(\cdot) := \# \text{nodal component count}$, then for every $f \in \mathcal{H}_n$, Courant's ND thm. $\Rightarrow 1 \leq N(f) \leq n^2$.

Nodal component count for RSH

Theorem (Nazarov & Sodin, 2009)

There exists $c_{NS} > 0$ satisfying: given $\epsilon > 0$, $\exists c, C_{\epsilon} > 0$ such that

$$\mathbb{P}\left(\left|\frac{N(F_n)}{n^2}-c_{NS}\right|>\epsilon\right)\leq C_{\epsilon}\mathrm{e}^{-c\epsilon^{\mathbf{15}}n}.$$

For $p \in \mathbb{S}^2$ and $\lambda_n = \sqrt{n(n+1)}$, we study nodal count at wavelength scale. Let $N(F_n, r_n) := \# \text{nodal components of } F_n \text{ in } B(p, \frac{r_n}{\sqrt{\lambda_n}})$.

Theorem (LP)

There are constants c, C>0 such that $orall \epsilon>0$ and sequence $r_n o\infty$

$$\mathbb{P}\left(\left|\frac{N(F_n, r_n)}{n^2 \text{Vol } B(p, r_n/\sqrt{\lambda_n})} - c_{NS}\right| > \epsilon\right) \leq C \ e^{-c\epsilon^{\mathbf{16}} r_n}.$$

Thank You!