Lecture 6:

Variational Bayes, **Expectation Maximization**

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression, Model selection: Comparing Distributions
	Module 4	Model Selection: Bayesian Signal Detection
	Module 5	Variational Bayes, Expectation Maximization
	Module 6	Stochastic Processes
	Module 7	Monte Carlo Methods
	Module 8	Markov Models, Graphs
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	TBD (GNNs)
	Module 15	TBD (RNNs and LSTMs)
	Module 16	TBD (Transformer and LLMs)

<u>Outline</u>

The Problem

K-means

Actual EM

Variational Bayes

<u>Outline</u>

The Problem

K-means

Actual EM

Variational Bayes

a set of N observations

 $\{x_1, x_2, x_3, \dots x_n, \dots x_N\}$

a set of N observations

$$\{x_1, x_2, x_3, \dots x_n, \dots x_N\}$$

problem: - we have a model of $L_k(x_{n,k}|\theta)$, but

- we don't know θ and
- we don't know from which class/state $k x_n$ has been generated

goal: - find an estimator for θ and find the class/state k of each x_n

a set of *N* observations

$$\{x_1, x_2, x_3, \dots x_n, \dots x_N\}$$

- Gaussian Mixture Models (GMM)
- K-means (clustering, image segmentation)
- **HMM**
- → unsupervised

set of different states/classes

a set of *N* observations

$$\{x_1, x_2, x_3, \dots x_n, \dots x_N\}$$

- Gaussian Mixture Models (GMM)
- K-means (clustering, image segmentation)
- **HMM**
- → unsupervised

a set of *N* observations

$$\{x_1, x_2, x_3, ... x_n, ... x_N\}$$

<u>Outline</u>

The Problem

K-means

Actual EM

Variational Bayes

indicator function $r_{n,k} \in \{0,1\}$

goal: minimizing

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \|x_n - \mu_k\|^2$$

 μ_k : barycenter of cluster k

assigning x_n to its closed mean

$$r_{n,k} = \begin{cases} 1, & if \ k = argmin_j ||x_n - \mu_j||^2 \\ 0, & else \end{cases}$$

$$\frac{\partial J}{\partial \mu_k} = 0$$
 MLE $\qquad \qquad \qquad \mu_k = \frac{\sum_{n=1}^N r_{n,k} x_n}{\sum_{n=1}^N r_{n,k}}$

: number of cluster: number of observations

K – means is an iterative process

K – means is an iterative process

a) assign *k* means randomly

: number of cluster

b) calculate *distance* from each point to each mean

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \|x_n - \mu_k\|^2$$

c) assign each point to its closest mean

d) update the means accordingly

K – means is an iterative process

d) update the means accordingly

e) go back to b)

: number of cluster

N: number of observations μ_k : barycenter of the cluster

$$r_{n,k} = \begin{cases} 1, & \text{if } k = argmin_j ||x_n - \mu_j||^2 \\ 0, & \text{else} \end{cases}$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \|x_n - \mu_k\|^2$$

cluster S_i

Berkeley Variational Bayes, Expectation Maximization:

problem: **K** = **number of cluster**, is a hyperparameter. How do I know the correct value for **K**?

- \rightarrow silhouette Ψ
- distance d_1 of a data point x_0 to its assigned cluster S_i vs distance d_2 to closest cluster (here S_i)

$$\Psi(x_0) = \begin{cases} 0 & \text{if } d_1 = 0\\ \frac{d_2 - d_1}{max[d_1; d_2]} \end{cases}$$

- average over all points $\rightarrow \psi_{tot}$

$$\begin{array}{ll} \text{if} & \psi_{tot} = 0.75 \, \dots 1.00 & \longrightarrow \text{well clustered} \\ \psi_{tot} = 0.50 \, \dots 0.75 & \longrightarrow \text{medium clustered} \\ \psi_{tot} = 0.25 \, \dots 0.50 & \longrightarrow \text{poorly clustered} \\ \psi_{tot} < 0.25 & \longrightarrow \text{data has no structure} \\ \end{array}$$

problem: K = number of cluster, is a hyperparameter. How do I know the correct value for K?

- \rightarrow silhouette Ψ
- distance d_1 of a data point x_0 to its assigned cluster S_i vs distance d_2 to closest cluster (here S_i)

$$\Psi(x_0) = \begin{cases} 0 & \text{if } d_1 = 0\\ \frac{d_2 - d_1}{max[d_1; d_2]} \end{cases}$$

- average over all points $\rightarrow \psi_{tot}$

if
$$\psi_{tot} = 0.75 \dots 1.00$$
 \rightarrow well clustered $\psi_{tot} = 0.50 \dots 0.75$ \rightarrow medium clustered $\psi_{tot} = 0.25 \dots 0.50$ \rightarrow poorly clustered $\psi_{tot} < 0.25$ \rightarrow data has no structure

see Walk_Through_Kmeans.ipynb

the actual problem:

observation x_n has been drawn from any of the cluster \mathcal{C}_k

$$P(x_n) = \sum_{k=1}^K P(x_n | C_k) P(C_k) \qquad \sum_{k=1}^K P(C_k) = 1$$

 $P(x_n|C_k)$ likelihood function

 $P(C_k)$ mixing coefficient

K: number of cluster

N: number of observations μ_k : barycenter of the cluster

$$r_{n,k} = \begin{cases} 1, & \text{if } k = argmin_j ||x_n - \mu_j||^2 \\ 0, & \text{else} \end{cases}$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \|x_n - \mu_k\|^2$$

general:

$$P(x_n) = \sum_{z} P(x_n|z) P(z)$$

z: latent variable (i. e. not observable, but can be inferred from $\{x_n\}$)

<u>Outline</u>

The Problem

K-means

Actual EM

Variational Bayes

K: number of cluster π_k : mixing coefficient

$$\frac{\text{f features}}{\mathcal{N}_k(x|\mu_k, \Sigma_k)} = \frac{1}{(2\pi)^{f/2} \det(\Sigma_k)^{1/2}} exp \left[-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right]$$

two features, *K* = *3* components

$$P(x) = \sum_{z} P(x|z) P(z)$$
$$= \sum_{k=1}^{K} \mathcal{N}_{k}(x|\mu_{k}, \Sigma_{k}) \pi_{k}$$

$$P(x) = \sum_{z} P(x|z) P(z) = \sum_{k=1}^{K} \mathcal{N}_k(x|\mu_k, \Sigma_k) \pi_k$$

N : number of observationsK : number of cluster

 π_k : mixing coefficient

indicator variable $z_k \in \{0, 1\}$

goal:
$$P(z_k = 1|x) = \frac{P(z_k = 1) P(x|z_k = 1)}{P(x)} = \frac{\pi_k \mathcal{N}_k(x|\mu_k, \Sigma_k)}{\sum_{j=1}^K \mathcal{N}_j(x|\mu_j, \Sigma_j) \pi_j}$$

via maximizing likelihood by finding best heta

$$L = ln[P(x|\pi,\mu,\Sigma)] = \sum_{n=1}^{N} ln \left\{ \sum_{k=1}^{K} \pi_k \, \mathcal{N}_k(x_n|\mu_k,\Sigma_k) \right\}$$

model parameter $\theta = \{\pi, \mu, \Sigma\}$

 $egin{array}{lll} {\it N} & : {\it number of observations} \\ {\it K} & : {\it number of cluster} \\ {\it \pi}_k & : {\it mixing coefficient} \\ \end{array}$

- 1) initialize $\theta = \{\pi, \mu, \Sigma\}$ and $P(z_k = 1 | x_n)$
- 2) Expectation step *t*:

$$P(z_k = 1 | x_n) = \frac{\pi_k \mathcal{N}_k(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \mathcal{N}_j(x_n | \mu_j, \Sigma_j) \pi_j}$$

i.e. evaluate $P(z|x,\theta)$

3) Maximization step *t* (for example MLE):

$$\mu_k^t = \frac{1}{N_k} \sum_{n=1}^N P(z_k = 1 | x_n) x_n \qquad \qquad \Sigma_k^t = \frac{1}{N_k} \sum_{n=1}^N P(z_k = 1 | x_n) (x_n - \mu_k^t) (x_n - \mu_k^t)^T$$

$$N_k^t = \sum_{m=1}^N P(z_k = 1 | x_m) \qquad \qquad \pi_k^t = \frac{N_k}{N} \qquad \qquad \theta^t = \frac{argmax}{\theta} \{L(\theta^{t-1})\}$$

N : number of observations Κ : number of cluster : mixing coefficient π_k

1) initialize
$$\theta = \{\pi, \mu, \Sigma\}$$
 and $P(z_k = 1 | x_n)$

$$P(z_k = 1 | x_n) = \frac{\pi_k \, \mathcal{N}_k(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \mathcal{N}_j(x_n | \mu_j, \Sigma_j) \, \pi_j}$$

i.e. evaluate $P(z|x,\theta)$

3) Maximization step *t* (for example MLE):

$$\mu_k^t = \frac{1}{N_k} \sum_{n=1}^N P(z_k = 1 | x_n) x_n$$

$$\mu_k^t = \frac{1}{N_k} \sum_{n=1}^N P(z_k = 1 | x_n) x_n \qquad \qquad \Sigma_k^t = \frac{1}{N_k} \sum_{n=1}^N P(z_k = 1 | x_n) (x_n - \mu_k^t) (x_n - \mu_k^t)^T \qquad N_k = \sum_{n=1}^N P(z_k = 1 | x_n) \qquad \pi_k^t = \frac{N_k}{N}$$

$$\theta^{t} = \underset{\theta}{\operatorname{argmax}} \left\{ \sum_{z} P(z|x, \theta^{t-1}) \ \ln[P(x, z|\theta^{t-1})] \right\}$$

4) evaluate log likelihood

$$ln[P(x|\pi,\mu,\Sigma)] = \sum_{n=1}^{N} ln \left\{ \sum_{k=1}^{K} \pi_k \, \mathcal{N}_k(x_n|\mu_k,\Sigma_k) \right\}$$

note:

- one can show that EM indeed converges and maximizes the likelihood function (Bishop, Sec 9.4)
- no guarantee to find a **global** minimum
- applications: HMM, unsupervised clustering, image segmentation (before CNNs)
- iterative process: $\theta_{t+1} = \theta_t + \Delta\theta \rightarrow$ connection to gradient descent (see later)
- see also EM__Example.py

blue and red swapped

→ unsupervised learning

<u>Outline</u>

The Problem

K-means

Actual EM

Variational Bayes

EM: - likelihood function given

- parameter via MLE (point estimate)

problem: - integrals can be complicated, calculation takes too long etc ("intractable")

- need pdf of desired parameter (see BPE) without ad-hoc constrain

only two assumptions: - 1) maximum entropy

- 2) pdf factorizes wrt its parameters (→ mean field approximation)

D : data set

 $Z = \{Z_1, ... Z_n\}$: set of (latent) parameter

goal: - find an approximation Q(Z) for the posterior P(Z|D) via max ent

- the more data, $Q(Z) \rightarrow P(Z|D)$ ("learning")

idea: - $Q(Z) = \prod_{i=1}^{n} q_i(Z_i|D)$ mean field approximation

find an approximation Q(Z) for the posterior P(Z|D)

D: data set

z : set of n (latent) parameter

KL divergence: tells us how much our information is "off" if we work with the approximation Q(Z)

$$KL(P||Q) = -\int P(x) \log \left[\frac{Q(x)}{P(x)}\right] dx$$
 (module 1)

goal: find the Q(x) that minimizes $KL(P||Q) \rightarrow$ variational calculus (Euler-Lagrange)

same principle: maximizing evidence $P(D) \rightarrow$ variational calculus (Euler-Lagrange)

we run the 2nd idea \rightarrow find an equation we know from stat TD see also reading Paisley, Blei & Jordan

$$ln[P(D)] = ln \left[\int P(D,Z) \, dZ \right] = ln \left[\int P(D,Z) \frac{Q(Z)}{Q(Z)} dZ \right] \ge \int Q(Z) \ln \left[\frac{P(D,Z)}{Q(Z)} \right] dZ$$

"Jensen inequality" → evidence lower bound ("ELBO")

find an approximation Q(Z) for the posterior P(Z|D)

D : data setZ : set of n (latent) parameter

maximizing evidence P(D)

$$ln[P(D)] = ln \left[\int P(D,Z) dZ \right] = ln \left[\int P(D,Z) \frac{Q(Z)}{Q(Z)} dZ \right] \ge \int Q(Z) \ln \left[\frac{P(D,Z)}{Q(Z)} \right] dZ$$

"Jensen inequality"

$$ln[P(D)] \ge \int Q(Z) ln[P(D,Z)] dZ - \int Q(Z) ln[Q(Z)] dZ$$
 entropy of $Q(Z)$

$$ln[P(D)] \ge \int \prod_{i=1}^n q_i(Z_i|D) \ ln[P(D,Z)] \ dZ - \int \prod_{i=1}^n q_i(Z_i|D) \ ln\left[\prod_{i=1}^n q_i(Z_i|D)\right] \ dZ \qquad \text{assumption 2}$$

find an approximation Q(Z) for the posterior P(Z|D)

D: data set

Z : set of n (latent) parameter

$$S_q = \int \prod_{i=1}^n q_i(Z_i|D) \ln \left[\prod_{i=1}^n q_i(Z_i|D) \right] dZ$$

maximizing evidence P(D)

one n-dimensional problem (hard)

$$= \int \{q_1(Z_1|D) \ q_2(Z_2|D) \dots \ q_N(Z_N|D)\} \ln[q_1(Z_1|D)] \ dZ_1 dZ_2 \dots dZ_n +$$

$$\int \{q_1(Z_1|D) \ q_2(Z_2|D) \dots \ q_N(Z_N|D)\} \ln[q_2(Z_2|D)] \ dZ_1 dZ_2 \dots dZ_n +$$

... +

$$\int \{q_1(Z_1|D) \ q_2(Z_2|D) \dots \ q_N(Z_N|D)\} \ ln[q_n(Z_n|D)] \ dZ_1 dZ_2 \dots dZ_n$$

find an approximation Q(Z) for the posterior P(Z|D)maximizing evidence P(D) D : data set

z : set of n (latent) parameter

$$\begin{split} S_q &= \int \{q_1(Z_1|D) \; q_2(Z_2|D) \; ... \; q_N(Z_N|D)\} \; ln[q_1(Z_1|D)] \; dZ_1 dZ_2 \; ... \; dZ_n \; + \\ & \int \{q_1(Z_1|D) \; q_2(Z_2|D) \; ... \; q_N(Z_N|D)\} \; ln[q_2(Z_2|D)] \; dZ_1 dZ_2 \; ... \; dZ_n \; + \cdots \; + \\ & \int \{q_1(Z_1|D) \; q_2(Z_2|D) \; ... \; q_N(Z_N|D)\} \; ln[q_n(Z_n|D)] \; dZ_1 dZ_2 \; ... \; dZ_n \\ &= \int q_1(Z_1|D) \; ln[q_1(Z_1|D)] \; dZ_1 \; \int q_2(Z_2|D) \; dZ_2 \; ... \int q_n(Z_n|D) \; dZ_n \; + \\ & \int q_2(Z_2|D) \; ln[q_2(Z_2|D)] \; dZ_2 \; \int q_1(Z_1|D) \; dZ_1 \; ... \int q_n(Z_n|D) \; dZ_n \; + \ldots \; + \end{split}$$

find an approximation Q(Z) for the posterior P(Z|D)

maximizing evidence P(D)

D : data set

: set of n (latent) parameter

$$S_q = \int q_1(Z_1|D) \ln[q_1(Z_1|D)] dZ_1 \int q_2(Z_2|D) dZ_2 \dots \int q_n(Z_n|D) dZ_n +$$

$$\int q_2(Z_2|D) \ln[q_2(Z_2|D)] dZ_2 \int q_1(Z_1|D) dZ_1 \dots \int q_n(Z_n|D) dZ_n + \dots + q_n(Z_n|D)$$

$$= \sum_{i=1}^n \int q_i(Z_i|D) \ln[q_i(Z_i|D)] dZ_i \left\{ \prod_{j\neq i}^{n-1} \int q_j(Z_j|D) dZ_j \right\}$$

$$= \sum_{i=1}^{n} \langle ln[q_i(Z_i|D)] \rangle \left\{ \prod_{j \neq i}^{n-1} \int q_j(Z_j|D) dZ_j \right\} = \mathbf{1} \text{ (the } q_j \text{ are all a pdf of } Z_j)$$

$$S_q = \sum_{i=1}^n \langle ln[q_i(Z_i|D)] \rangle = \sum_{i=1}^n \int q_i(Z_i|D) \, ln[q_i(Z_i|D)] \, dZ_i \qquad \text{n one-dimensional problems (not so hard)}$$

find an approximation Q(Z) for the posterior P(Z|D)

D : data set

 \boldsymbol{Z}

: set of n (latent) parameter

maximizing evidence P(D)

$$ln[P(D)] \ge \int \prod_{i=1}^{n} q_i(Z_i|D) \ ln[P(D|Z)] \ dZ - \int \prod_{i=1}^{n} q_i(Z_i|D) \ ln \left[\prod_{i=1}^{n} q_i(Z_i|D)\right] \ dZ$$

$$ln[P(D)] \ge \int \prod_{i=1}^{n} q_i(Z_i|D) \ ln[P(D,Z)] \ dZ \ - \sum_{i=1}^{n} \int q_i(Z_i|D) \ ln[q_i(Z_i|D)] \ dZ_i$$

$$E(D,Z):=ln[P(D,Z)]$$

$$ln[P(D)] \ge \int \prod_{i=1}^{n} q_i(Z_i|D) E(D,Z) dZ - \sum_{i=1}^{n} \int q_i(Z_i|D) ln[q_i(Z_i|D)] dZ_i$$

find an approximation Q(Z) for the posterior P(Z|D)

D : data setZ : set of n (latent) parameter

maximizing evidence P(D)

$$ln[P(D)] \ge \int \prod_{i=1}^{n} q_i(Z_i|D) E(D,Z) dZ - \sum_{i=1}^{n} \int q_i(Z_i|D) ln[q_i(Z_i|D)] dZ_i$$

has the structure of F = U - TS, but with -U + TS term (aka negative variational free energy)

solution:

$$q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i, \{Z_{j\neq i}\}, D)\rangle_{\{j\neq i\}}\right)$$

$$Z = \int \exp\left(\langle E(Z_i, \{Z_{j\neq i}\}, D)\rangle_{\{j\neq i\}}\right) dZ_{\{j\neq i\}}$$

example: we can measure μ and $\frac{1}{\sigma^2} = \tau$ from D

goal: find $q_{\mu}(\mu|D)$ and $q_{\tau}(\tau|D)$

$$q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i, \{Z_{j\neq i}\}, D)\rangle_{\{j\neq i\}}\right)$$

$$ln[q_{\mu}(\mu|D)] = \langle E(\mu, \tau, D) \rangle_{\tau} - \ln(\mathcal{Z})$$

$$= \langle \ln[P(D|\mu, \tau)P(\mu|\tau)P(\tau)] \rangle_{\tau} - \ln(\mathcal{Z})$$

$$= \langle \ln[P(D|\mu, \tau)] \rangle_{\tau} + \langle \ln[P(\mu|\tau)] \rangle_{\tau} + \langle \ln[P(\tau)] \rangle_{\tau} - \ln(\mathcal{Z})$$

D: data set

: set of n (latent) parameter

 σ^2 : variance μ : mean

 $\frac{1}{\sigma^2} = \tau$: precision

: data set of size K

: set of n (latent) parameter

Berkeley Variational Bayes, Expectation Maximization:

example: we can measure μ and $\frac{1}{\sigma^2} = \tau$ from D

find $q_{\mu}(\mu|D)$ and $q_{ au}(au|D)$ goal:

: variance : mean : precision

$$ln[q_{\mu}(\mu|D)] = \langle ln[P(D|\mu,\tau)] \rangle_{\tau} + \langle ln[P(\mu|\tau)] \rangle_{\tau} + \langle ln[P(\tau)] \rangle_{\tau} - ln(\mathcal{Z})$$

if no constrain: gaussian

$$P(D|\mu,\tau) = \prod_{k=1}^{K} \mathcal{N}(x_k|\mu,\tau)$$

support is $[0, +\infty) \rightarrow \max$ ent

$$P(\tau) = \Gamma(\tau|a,b) = \frac{b^a \tau^{a-1} e^{-b\tau}}{\int_0^\infty t^{a-1} e^{-t} dt}$$

with yet unknown parameter a and b

if μ has support $(-\infty, +\infty)$ it is drawn from a gaussian of yet unknown μ_0 and precision τ_0 (= small pos number, max ent)

$$P(\mu|\tau) = \mathcal{N}(\mu|\mu_0, \tau_0)$$

example: we can measure μ and $\frac{1}{\sigma^2} = \tau$ from D

goal: find $q_{\mu}(\mu|D)$ and $q_{\tau}(\tau|D)$

 σ^2 : variance μ : mean $\frac{1}{2} = \tau$: precision

$$ln[q_{\mu}(\mu|D)] = \langle ln[P(D|\mu,\tau)] \rangle_{\tau} + \langle ln[P(\mu|\tau)] \rangle_{\tau} + \langle ln[P(\tau)] \rangle_{\tau} - ln(\mathcal{Z})$$

$$P(D|\mu,\tau) = \prod_{k=1}^{K} \mathcal{N}(x_k|\mu,\tau) \qquad P(\mu|\tau) = \mathcal{N}(\mu|\mu_0,\tau_0) \qquad P(\tau) = \Gamma(\tau|a,b) = \frac{b^a \tau^{a-1} e^{-b\tau}}{\int_0^\infty t^{a-1} e^{-t} dt}$$

after some (lengthy algebra):

$$ln\big[q_{\mu}(\mu|D)\big] = -\frac{\langle \tau \rangle_{\tau}}{2} \left\{ \sum_{k} (x_{k} - \mu)^{2} + \tau_{0}(\mu - \mu_{0})^{2} \right\} + constant \ terms$$

$$q_{\mu}(\mu|D) \sim \mathcal{N}(\mu|\mu_K, \lambda_K^{-1})$$
 where $\mu_K = \frac{\tau_0 \, \mu_0 + K \, \bar{x}}{\tau_0 + K}$ $\lambda_K = (\tau_0 + K) \, \langle \tau \rangle_{\tau}$ $\bar{x} = \frac{1}{\nu} \sum_{k=1}^K x_k$

example: we can measure μ and $\frac{1}{\sigma^2} = \tau$ from D

goal: find $q_{\mu}(\mu|D)$ and $q_{\tau}(\tau|D)$

D: data set of size K

z : set of n (latent) parameter

 σ^2 : variance μ : mean $\frac{1}{2} = \tau$: precision

 $ln[q_{\mu}(\mu|D)] = \langle ln[P(D|\mu,\tau)] \rangle_{\tau} + \langle ln[P(\mu|\tau)] \rangle_{\tau} + \langle ln[P(\tau)] \rangle_{\tau} - ln(\mathcal{Z})$

$$P(D|\mu,\tau) = \prod_{k=1}^{K} \mathcal{N}(x_k|\mu,\tau) \qquad P(\mu|\tau) = \mathcal{N}(\mu|\mu_0,\tau_0) \qquad P(\tau) = \Gamma(\tau|a,b) = \frac{b^a \tau^{a-1} e^{-b\tau}}{\int_0^\infty t^{a-1} e^{-t} dt}$$

same for $q_{\tau}(\tau|D)$ (lengthy algebra)

$$q_{ au}(au|D) \sim \Gamma(au|a_K, b_K)$$
 where $a_K = a + rac{K+1}{2}$
$$b_K = b + rac{1}{2} \langle \sum_k (x_k - \mu)^2 + au_0 (\mu - \mu_0)^2 \rangle_{\mu}$$

: data set of size K

: variance : mean

: set of n (latent) parameter

Berkeley Variational Bayes, Expectation Maximization:

$$q_{\mu}(\mu|D) \sim \mathcal{N}(\mu|\mu_K, \lambda_K^{-1})$$

 $q_{\tau}(\tau|D) \sim \Gamma(\tau|a_K, b_K)$

where
$$\mu_K = \frac{\tau_0 \,\mu_0 + K \,\bar{x}}{\tau_0 + K} \qquad \begin{array}{c} D \\ Z \\ \sigma^2 \\ \lambda_K = (\tau_0 + K) \, \langle \tau \rangle_\tau \\ \bar{x} = \frac{1}{K} \sum_{k=1}^K x_k \qquad \frac{1}{\sigma^2} = \tau \end{array}$$

$$\bar{x}=\frac{1}{K}\sum_{k=1}^K x_k \qquad \frac{1}{\sigma^2}=\tau \qquad : \text{precision}$$
 where
$$a_K=a+\frac{K+1}{2}$$

$$b_K=b+\frac{1}{2}\langle \sum_k (x_k-\mu)^2+\tau_0(\mu-\mu_0)^2\rangle_{\mu}$$

$$\langle \tau \rangle_{\tau} = \int \tau \, q_{\tau}(\tau|D) \, d\tau = \frac{a_K}{b_K}$$

We start with setting τ_0 , μ_0 , a and b to small positive values (largest ignorance, broad peaks) and use the circular dependencies (like actual EM)

- from $\langle \tau \rangle_{\tau}$ (here integral over the gamma distribution) we can calculate $q_{\mu}(\mu|D)$
- from that we can calculate b_K and $\langle \mu \rangle_\mu = \mu_K$ and $\langle \mu^2 \rangle_\mu = \frac{1}{\lambda_K} + \mu_K^2$ etc

note:

- calculations for $q_i(Z_i|D)$ will lead to an **iterative procedure like for actual EM**
- instead of point estimates for Z_i (MLE) as before, we get the actual posterior $q_i(Z_i|D)$
- these distributions get more accurate the larger $D \rightarrow learning$ (see BPE)
- we only use maximum entropy

see Var_Bayes_Example.py

data = np.random.normal(3, 1, (10,))
Var_Bayes_Example(data)

Thank you very much for your attention!

