Unemployment Analysis using Python

Sreeparna Ray

The COVID-19 pandemic and containment responses have exposed exist ing social, economic, gender, ethnic and health inequities and are rap idly exacerbating these. The higher risks of infection and mortality r ecorded for specific population groups can be traced to a legacy of cu mulative inequities in the social determinants of health (SDH). Additi onally, the necessary COVID-19 response measures applied, while helpin g to reduce infection and mortality, have placed a disproportionate bu rden on more disadvantaged populations, widening health inequities.

Here we will analysis the unemployment rate of India using Python.

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import cv2
   import plotly.express as px

%matplotlib inline
```

Data Collection

In [3]: data = pd.read_csv(r".\\Unemployment_Analysis_data.csv")
 data.head()

Out[3]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latitu
0	Andhra Pradesh	31- 01- 2020	M	5.48	16635535	41.02	South	15.9129	79.
1	Andhra Pradesh	29- 02- 2020	M	5.83	16545652	40.90	South	15.9129	79.
2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129	79.
3	Andhra Pradesh	30- 04- 2020	M	20.51	11336911	33.10	South	15.9129	79.
4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129	79.
4									•

In [4]: print(data.head())

	Region	Date	Frequency	Estimated Unemployment Rate (%)
\				
0	Andhra Pradesh	31-01-2020	М	5.48
1	Andhra Pradesh	29-02-2020	М	5.83
2	Andhra Pradesh	31-03-2020	М	5.79
3	Andhra Pradesh	30-04-2020	М	20.51
4	Andhra Pradesh	31-05-2020	М	17.43

	LStillated Ellipioyed	LSCIIIIaceu Laboui	rai cicipacion	Nace (%)	Wegion.i
0	16635535			41.02	South
1	16545652			40.90	South
2	15881197			39.18	South
3	11336911			33.10	South
4	12988845			36.46	South

	longitude	latitude
0	15.9129	79.74
1	15.9129	79.74
2	15.9129	79.74
3	15.9129	79.74
4	15.9129	79.74

Data Pre-processing

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 267 entries, 0 to 266
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Region	267 non-null	object
1	Date	267 non-null	object
2	Frequency	267 non-null	object
3	Estimated Unemployment Rate (%)	267 non-null	float64
4	Estimated Employed	267 non-null	int64
5	Estimated Labour Participation Rate (%)	267 non-null	float64
6	Region.1	267 non-null	object
7	longitude	267 non-null	float64
8	latitude	267 non-null	float64

dtypes: float64(4), int64(1), object(4)

memory usage: 18.9+ KB

In [6]: data.describe()

Out[6]:

	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
count	267.000000	2.670000e+02	267.000000	267.000000	267.000000
mean	12.236929	1.396211e+07	41.681573	22.826048	80.532425
std	10.803283	1.336632e+07	7.845419	6.270731	5.831738
min	0.500000	1.175420e+05	16.770000	10.850500	71.192400
25%	4.845000	2.838930e+06	37.265000	18.112400	76.085600
50%	9.650000	9.732417e+06	40.390000	23.610200	79.019300
75%	16.755000	2.187869e+07	44.055000	27.278400	85.279900
max	75.850000	5.943376e+07	69.690000	33.778200	92.937600

```
print(data.describe())
```

```
Estimated Unemployment Rate (%)
                                            Estimated Employed
                               267.000000
                                                   2.670000e+02
count
                                12.236929
                                                   1.396211e+07
mean
std
                                10.803283
                                                   1.336632e+07
min
                                 0.500000
                                                   1.175420e+05
25%
                                 4.845000
                                                   2.838930e+06
50%
                                 9.650000
                                                   9.732417e+06
75%
                                16.755000
                                                   2.187869e+07
max
                                75.850000
                                                   5.943376e+07
        Estimated Labour Participation Rate (%)
                                                     longitude
                                                                   latitude
                                       267.000000
                                                    267.000000
                                                                267.000000
count
                                        41.681573
                                                     22.826048
                                                                 80.532425
mean
std
                                         7.845419
                                                      6.270731
                                                                   5.831738
min
                                        16.770000
                                                     10.850500
                                                                  71.192400
25%
                                        37.265000
                                                     18.112400
                                                                  76.085600
50%
                                        40.390000
                                                     23.610200
                                                                  79.019300
75%
                                        44.055000
                                                     27.278400
                                                                  85.279900
                                        69.690000
                                                     33.778200
                                                                  92.937600
max
data.columns
```

```
In [8]:
```

```
Out[8]: Index(['Region', 'Date', 'Frequency', 'Estimated Unemployment Rate (%)',
               'Estimated Employed', 'Estimated Labour Participation Rate (%)',
               'Region.1', 'longitude', 'latitude'],
              dtype='object')
```

Check if the dataset contains null value or not

data.isnull() In [9]: Out[9]: **Estimated Estimated Estimated** Labour **Date Frequency Unemployment** Region.1 longitude lati **Employed Participation** Rate (%) **Rate (%)** 0 False False False False False False F False False 1 False False False False **False** False False False F 2 False False False False False False False False F 3 False False False False False False False False F 4 False False False False False False False False F 262 False False False False **False** False False False F 263 False False False False False False False False F 264 False F False False False False False False False 265 False False False False False False False False F 266 False False False False False False False False F 267 rows × 9 columns print(data.isnull().sum()) In [10]: Region 0 Date 0 Frequency 0 Estimated Unemployment Rate (%) 0 Estimated Employed 0 Estimated Labour Participation Rate (%) 0 Region.1 0 longitude 0 latitude 0 dtype: int64

While analyzing the missing values, we found that the column names are not correct. So, for a better understanding of this data, we will rename all the columns

Correlation between the features of the Dataset

Unemployment Rate Analysis - Data Visualization

Let visualize the dataset to calculate Unemployment Rate. We will first take a look at the estimated number of employees according to different regions of India

Now let's see the unemployment rate according to different regions of India

```
In [15]: plt.figure(figsize=(12, 10))
    plt.rc("font", size=16)
    plt.title("Indian Unemployment", fontsize=36)
    sns.histplot(x="Estimated Unemployment Rate", hue="Region", data=data)
    plt.show()
```


Create a dashboard to analyze the unemployment rate of each Indian state by region. For this, I'll use a sunburst plot

```
In [17]: img = cv2.imread(".\\unemployment rate.png")
    plt.figure(figsize=(35,28))
    plt.imshow(img)
```

Out[17]: <matplotlib.image.AxesImage at 0x227e48e85b0>

In []: