Solutions for 20140212

Nguyễn Duy Khương

JAIST

Ngày 12 tháng 2 năm 2014

Best Journey

Bài này có hai cách:

- Cách 1: trặt nhị phân giá trị trung bình:
- Cách 2: Áp dụng thuật toán tìm chu trình độ dài mean nhỏ nhất Karp ¹:
 - Quy hoạch động tính F[i][k] là đường đi nhỏ nhất đi qua k
 và kết thúc ở i.
 - Suy ra lời giải sẽ là:
 - answer = $min\{\frac{F[i][k_2]-F[i][k_1]}{k_2-k_1}|0 \le k_1 \le k_2 \le N\}$
 - Độ phức O(N³)

¹http://www.iitg.ernet.in/rinkulu/combopt/slides/minmeancycle.pdf

MRobot

- Bài kiểu này đã xuất hiện hiện một vài lần ở thi quốc gia và năm vừa ACM.
- Nó liên quan đến định lý:
- Số nguyên tố ngược tích 2 của một số a đổi với m hiệu là $p^{-1}(a)$ nếu $ap^{-1}(a) \equiv 1 \pmod{m}$. Lưu nếu: $m = 10^9 + 7$ là số nguyên tố thì $p^{-1}(a) = a^{m-2} \pmod{m}$ theo Fermat nhỏ 3
- answer = $\frac{n!}{k!(n-1k)!}$ mod $m = n!p^{-1}(k!)p^{-1}((n-k)!)$ mod m. Như vậy độ phức tạp của bài này là: $O(10^6 + T * log(max(N, M)))$

²http://en.wikipedia.org/wiki/Modular multiplicative inverse

³http://en.wikipedia.org/wiki/Fermat's little theorem

Chia Nhóm

- Bài này chúng ta dễ dàng nghĩ ra công thức quy hoạch động $F_i = max(F_{i-a^k}a^k)$ trong đó a là số nguyên tố.
- Mẹo của bài này liên quan đến lý thuyết về logarit để xử lý các số rất lớn hoặc các số rất bé. Tích a₁ a₂...a_n lớn nhất khi và chỉ khi In(a₁)In(a₂)...In(a_n) lớn nhất. Độ phúc tạp bài này là: O(NKlog()) trong đó K là số nguyên tố.

Xâu gấp đôi

- Bài có thể giải bằng cách chặt tam phân vì dễ dàng chứng minh hàm độ dài xâu gấp đôi là một parabol.
- Tuy nhiên lưu ý, hôm này không phải là lồi chặt nên độ phức tạp có thể lên đến $O(N^2log^2(N))$