МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №7

по дисциплине: исследование операций и теория игр тема: «Решение полностью целочисленных задач с помощью первого алгоритма Гомори, а также методом ветвей и границ»

Выполнил: ст. группы ПВ-211 Стародубов Алексей Геннадьевич Проверили: Куртова Лилиана Николаевна Вирченко Юрий Петрович **Цель работы:** освоить метод отсечения Гомори для полностью целочисленных задач. Изучить алгоритм этого метода. Программно реализовать этот алгоритм.

Вариант- 19

Задания для подготовки к работе

- 1. Изучить возможные постановки задач целочисленного и частичноцелочисленного программирования.
- 2. Ознакомиться с методами решения таких задач, в частности, с методами отсечения и методом ветвей и границ.
- 3. Выяснить для каких задач применяется первый алгоритм Гомори. Изучить этот алгоритм и написать реализующую его программу для ПЭВМ. В качестве тестовых данных использовать, решенную вручную одну из нижеследующих задач.

$$z = 10x_1-5x_2+4x_4 \rightarrow \max$$

$$\begin{cases} 9x_1+3x_2+x_3=75 \\ 18x_1-4x_2-3x_4=22 \\ 2x_1-10x_2+x_5=18 \end{cases}$$
 $x_i \geq 0, x_i$ - целые $(i=\overline{1,5})$

3.

$$z=34x_1-rac{31}{3}x_2-rac{88}{3}
ightarrow \max$$
 $\begin{cases} 9x_1+3x_2+x_3=75 \ -6x_1+rac{4}{3}x_2+x_4=-rac{22}{3} \ 2x_1-10x_2+x_5=18 \end{cases}$ $x_i\geq 0, x_i$ - целые $(i=\overline{1,5})$

Отбрасывая условия целочисленности, решаем обобщенным двойственным симплекс методом задачу 3₀:

$$z = 34x_{1} - \frac{31}{3}x_{2} - \frac{88}{3} \rightarrow \max$$

$$\begin{cases} 9x_{1} + 3x_{2} + x_{3} = 75 \\ -6x_{1} + \frac{4}{3}x_{2} + x_{4} = -\frac{22}{3} \\ 2x_{1} - 10x_{2} + x_{5} = 18 \end{cases}$$

$$x_{i} \ge 0, (i = \overline{1,5})$$

Таблица 1

Б	C	X	(1↓	x2		x3	x4	x 5	Отн	
x 3	75		9	3		1	0	0	8	1/3
← x4	-7 1	./3	-6	1	1/3	0	1	0	1	2/9
x 5	18		2	-10		0	0	1	9	
Z	-29 1	/3 -	-34	10	1/3	0	0	0		

Таблица 2

Б	С		x1	x2		x3	x4↓		x 5	Отн	
← x3	64		0	5		1	1	1/2	0	42	2/3
x1	1	2/9	1	-	2/9	0	-	1/6	0	-7	1/3
x5	15	5/9	0	-9	5/9	0		1/3	1	46	2/3
Z	12	2/9	0	2	7/9	0	-5	2/3	0		

Таблица 3

Б	С		x1	x2	x3	x 4	x5
x4	42	2/3	0	3 1/3	2/3	1	0
x1	8	1/3	1	1/3	1/9	0	0
x 5	1	1/3	0	-10 2/3	- 2/9	0	1
Z	254		0	21 2/3	3 7/9	0	0

Из последней симплекс-таблицы получаем оптимальное решение задачи 3_0 :

$$\overline{X}_0 = \left\{8\frac{1}{3}; 0; 0; 42\frac{2}{3}; 1\frac{1}{3}\right\}$$

Это решение не является целочисленным, построим задачу 3_1 , для этого запишем сечение Гомори по первой строке:

$$\frac{2}{3} - \frac{1}{3}x_2 - \frac{2}{3}x_3 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{1}{3}x_2 - \frac{2}{3}x_3 + u_1 = -\frac{2}{3}$$

Добавляя это ограничение к ограничениям задачи 3_0 , получим задачу 3_1 .

Б хЗ↓ C x2 х4 x5 u1 x1 х4 42 2/3 0 1/3 2/3 1 0 0 8 1/3 1/3 1/9 0 x1 1/3 0 2/3 2/9 1 0 х5 -10 ←u1 2/3 0 1/3 2/3 0 0 1 254 0 2/3 7/9 0 21 5 2/3 Отн 65

Таблица 4

Таблица 5

Б	С		x1	x2		х3	x4	x5	u1
x4	42		0	3		0	1	0	1
x1	8	2/9	1		5/18	0	0	0	1/6
x 5	1	5/9	0	-10	5/9	0	0	1	- 1/3
x 3	1		0		1/2	1	0	0	-1 1/2
Z	250	2/9	0	19	7/9	0	0	0	5 2/3

Полученное решение не является целочисленным. Построим задачу 3_2 , для этого запишем сечение Гомори по третьей строке:

$$\frac{5}{9} \cdot \frac{4}{9} x_2 \cdot \frac{2}{3} u_1 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{4}{9}x_2 - \frac{2}{3}u_1 + u_2 = -\frac{5}{9}$$

Добавляя это ограничение к ограничениям задачи 3_1 , получим задачу 3_2 .

Таблица 6

Б	С		x1	x2		x 3	x4	x5	u1↓		u2
x4	42		0	3		0	1	0	1		0
x1	8	2/9	1		5/18	0	0	0		1/6	0
x5	1	5/9	0	-10	5/9	0	0	1	-	1/3	0
x3	1		0		1/2	1	0	0	-1	1/2	0
←u2	-	5/9	0	-	4/9	0	0	0	-	2/3	1
Z	250	2/9	0	19	7/9	0	0	0	5	2/3	0
Отн				44	1/2				8	1/2	

Таблица 7

Б	C		x1	x2		x 3	x4	x5	u1	u2	
x4	41	1/6	0	2	1/3	0	1	0	0	1	1/2
x1	8	1/12	1		1/6	0	0	0	0		1/4
x5	1	5/6	0	-10	1/3	0	0	1	0	-	1/2
x3	2	1/4	0	1	1/2	1	0	0	0	-2	1/4
u1		5/6	0		2/3	0	0	0	1	-1	1/2
Z	245	1/2	0	16		0	0	0	0	8	1/2

Полученное решение не является целочисленным. Построим задачу 3_3 , для этого запишем сечение Гомори по третьей строке:

$$\frac{5}{6} \cdot \frac{2}{3} x_2 \cdot \frac{1}{2} u_2 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{2}{3}x_2 - \frac{1}{2}u_2 + u_3 = -\frac{5}{6}$$

Добавляя это ограничение к ограничениям задачи 3_2 , получим задачу 3_3 .

Таблица 8

Б	С		x1	x2		x 3	x 4	x 5	u1	u2↓	u3
x4	41	1/6	0	2	1/3	0	1	0	0	1 1/2	0
x1	8	1/12	1		1/6	0	0	0	0	1/4	0
x5	1	5/6	0	-10	1/3	0	0	1	0	- 1/2	0
x3	2	1/4	0	1	1/2	1	0	0	0	-2 1/4	0
u1		5/6	0		2/3	0	0	0	1	-1 1/2	0
←u3	-	5/6	0	-	2/3	0	0	0	0	- 1/2	1
Z	245	1/2	0	16		0	0	0	0	8 1/2	0
Отн				24						17	

Таблица 9

Б	С		x1	x2		x3	x 4	x 5	u1	u2	u3
x4	38	2/3	0		1/3	0	1	0	0	0	3
x1	7	2/3	1	-	1/6	0	0	0	0	0	1/2
x5	2	2/3	0	-9	2/3	0	0	1	0	0	-1
x 3	6		0	4	1/2	1	0	0	0	0	-4 1/2
u1	3	1/3	0	2	2/3	0	0	0	1	0	-3
u2	1	2/3	0	1	1/3	0	0	0	0	1	-2
Z	231	1/3	0	4	2/3	0	0	0	0	0	17

Полученное решение не является целочисленным. Построим задачу 3_4 , для этого запишем сечение Гомори по первой строке:

$$\frac{2}{3} - \frac{1}{3} x_2 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{1}{3}x_2 + u_4 = -\frac{2}{3}$$

Добавляя это ограничение к ограничениям задачи 3_3 , получим задачу 3_4 .

Таблица 10

Б	C	x1	x2↓	x 3	x4	x5	u1	u2	u3	u4
x 4	38 2/3	0	1/3	0	1	0	0	0	3	0
x1	7 2/3	1	- 1/6	0	0	0	0	0	1/2	0
x 5	2 2/3	0	-9 2/3	0	0	1	0	0	-1	0
x 3	6	0	4 1/2	1	0	0	0	0	-4 1/2	0
u1	3 1/3	0	2 2/3	0	0	0	1	0	-3	0
u2	1 2/3	0	1 1/3	0	0	0	0	1	-2	0
←u4	- 2/3	0	- 1/3	0	0	0	0	0	0	1
Z	231 1/3	0	4 2/3	0	0	0	0	0	17	0
Отн			14							

Таблица 11

Б	C	x1	x2	x 3	x4	x5	u1	u2	u3↓	u4
x4	38	0	0	0	1	0	0	0	3	1
x1	8	1	0	0	0	0	0	0	1/2	- 1/2
x 5	22	0	0	0	0	1	0	0	-1	-29
← x3	-3	0	0	1	0	0	0	0	<u>-4 1/2</u>	13 1/2
u1	-2	0	0	0	0	0	1	0	-3	8
u2	-1	0	0	0	0	0	0	1	-2	4
x2	2	0	1	0	0	0	0	0	0	-3
Z	222	0	0	0	0	0	0	0	17	14
Отн									3 7/9	

Таблица 12

Б	С	x1	x2	x3	x4	x5	u1	u2	u3	u4
x4	36	0	0	2/3	1	0	0	0	0	10
x1	7 2/3	1	0	1/9	0	0	0	0	0	1
x5	22 2/3	0	0	- 2/9	0	1	0	0	0	-32
u3	2/3	0	0	- 2/9	0	0	0	0	1	-3
u1	0	0	0	- 2/3	0	0	1	0	0	-1
u2	1/3	0	0	- 4/9	0	0	0	1	0	-2
x2	2	0	1	0	0	0	0	0	0	-3
Z	210 2/3	0	0	3 7/9	0	0	0	0	0	65

Полученное решение не является целочисленным. Построим задачу 3_5 , для этого запишем сечение Гомори по второй строке:

$$\frac{2}{3} - \frac{1}{9} x_3 \le 0$$

Преобразуя и уравнивая неравенство, получим:

$$-\frac{1}{9}x_3 + u_5 = -\frac{2}{3}$$

Добавляя это ограничение к ограничениям задачи 3_4 , получим задачу 3_5 .

Таблица 13

Б	С	x1	x2	x3↓	x4	x 5	u1	u2	u3	u4	u5
x4	36	0	0	2/3	1	0	0	0	0	10	0
x1	7 2/3	1	0	1/9	0	0	0	0	0	1	0
x5	22 2/3	0	0	- 2/9	0	1	0	0	0	-32	0
u3	2/3	0	0	- 2/9	0	0	0	0	1	-3	0
u1	0	0	0	- 2/3	0	0	1	0	0	-1	0
u2	1/3	0	0	- 4/9	0	0	0	1	0	-2	0
x2	2	0	1	0	0	0	0	0	0	-3	0
←u5	- 2/3	0	0	- 1/9	0	0	0	0	0	0	1
Z	210 2/3	0	0	3 7/9	0	0	0	0	0	65	0
Отн				34							

Таблица 14

Б	С	x1	x2	x3	x4	x5	u1	u2	u3	u4	u5
x4	32	0	0	0	1	0	0	0	0	10	6
x1	7	1	0	0	0	0	0	0	0	1	1
x5	24	0	0	0	0	1	0	0	0	-32	-2
u3	2	0	0	0	0	0	0	0	1	-3	-2
u1	4	0	0	0	0	0	1	0	0	-1	-6
u2	3	0	0	0	0	0	0	1	0	-2	-4
x2	2	0	1	0	0	0	0	0	0	-3	0
x3	6	0	0	1	0	0	0	0	0	0	-9
Z	188	0	0	0	0	0	0	0	0	65	34

Полученное решение является целочисленным. Решение исходной задачи целочисленного программирования:

```
z<sub>max</sub> = 188; точка максимума: (7; 2; 6; 32; 24)
```

Программная реализация первого алгоритма Гомори:

```
#include <iostream>
#include <vector>
#include <string>
#include <iomanip>
#include <cmath>
#include <numeric>
#define DBL EPSILON IN MY CASE 7.7e-10
using SimplexTable = std::vector<std::pair<std::string,</pre>
std::vector<double>>>;
void outputSimplexTable(const SimplexTable &simplexTable)
{
    std::cout << "BV\tFV\t";</pre>
    for (size t i{1}; i < simplexTable.at(0).second.size(); ++i)</pre>
    {
        std::cout << "x" << i << '\t';</pre>
    std::cout << '\n';</pre>
    for (size t i{}; i < simplexTable.size(); ++i)</pre>
    {
         std::cout << simplexTable.at(i).first << '\t';</pre>
        for (size_t j{}; j < simplexTable.at(i).second.size();</pre>
++j)
        {
             std::cout << simplexTable.at(i).second.at(j) << '\t';</pre>
         std::cout << '\n';</pre>
    }
    std::cout << '\n';</pre>
```

```
}
void derivationOfTheOptimumPoint(const SimplexTable
&simplexTable, const std::vector<std::string> integralVar)
{
    std::cout << "Optimum point : (";</pre>
    for (size t i{}; i < integralVar.size(); ++i)</pre>
    {
        bool findVar{false};
        for (size_t j{}; j < simplexTable.size() - 1; ++j)</pre>
             if (simplexTable.at(j).first == integralVar.at(i))
             {
                 findVar = true;
                 if (simplexTable.at(j).second.at(0) <=</pre>
DBL_EPSILON_IN_MY_CASE)
                 {
                     std::cout << 0 << ';';
                 }
                 else
                 {
                     std::cout << simplexTable.at(j).second.at(0)</pre>
<< ';';
                 }
             }
        }
        if (!findVar)
        {
             std::cout << 0 << ';';
        }
    }
    std::cout << "\b)\n";
}
bool objFunctionHasNegative(const SimplexTable &simplexTable,
size_t &minNegativeIndex)
{
    size t rowIndex{simplexTable.size() - 1};
    size t minIndex{};
    bool findNegative{false};
    for (size_t i{1}; i < simplexTable.at(0).second.size(); ++i)</pre>
```

```
{
        if (simplexTable.at(rowIndex).second.at(i) < (-</pre>
DBL_EPSILON_IN_MY_CASE))
        {
            findNegative = true;
            if (simplexTable.at(rowIndex).second.at(i) <</pre>
simplexTable.at(rowIndex).second.at(minIndex))
            {
                 minIndex = i;
            }
        }
    }
    minNegativeIndex = minIndex;
    return findNegative;
}
bool exHasPositiveCoeff(const SimplexTable &simplexTable, const
size_t &colIndex, size_t &minCoeffIndex)
{
    size t minCoeffIn{};
    double minCoeff{std::numeric limits<double>::max()};
    bool findPositive{false};
    for (size_t i{}; i < simplexTable.size() - 1; ++i)</pre>
        if (simplexTable.at(i).second.at(0) /
simplexTable.at(i).second.at(colIndex) > DBL EPSILON IN MY CASE)
        {
            findPositive = true;
            const double coeff{simplexTable.at(i).second.at(0) /
simplexTable.at(i).second.at(colIndex)};
            if (coeff < minCoeff)</pre>
            {
                 minCoeff = coeff;
                 minCoeffIn = i;
            }
        }
    minCoeffIndex = minCoeffIn;
    return findPositive;
}
```

```
void maxValueOfTheObjFunctionWithTableDisplay(SimplexTable
&simplexTable)
{
    size t minIndex{};
    size_t minCoeffIndex{};
    while (objFunctionHasNegative(simplexTable, minIndex))
        std::cout << "Simplex table :\n";</pre>
        outputSimplexTable(simplexTable);
        if (exHasPositiveCoeff(simplexTable, minIndex,
minCoeffIndex))
        {
            const double
divider{simplexTable.at(minCoeffIndex).second.at(minIndex)};
            for (size_t i{}; i <</pre>
simplexTable.at(minCoeffIndex).second.size(); ++i)
            {
                simplexTable.at(minCoeffIndex).second.at(i) /=
divider;
            for (size t i{}; i < simplexTable.size(); ++i)</pre>
            {
                if (i != minCoeffIndex)
                     const double divide{-
simplexTable.at(i).second.at(minIndex) /
simplexTable.at(minCoeffIndex).second.at(minIndex)};
                    for (size_t j{}; j <</pre>
simplexTable.at(i).second.size(); ++j)
                     {
                         simplexTable.at(i).second.at(j) +=
(divide * simplexTable.at(minCoeffIndex).second.at(j));
                     }
                }
            }
            simplexTable.at(minCoeffIndex).first = "x" +
std::to_string(minIndex);
        }
        else
        {
```

```
std::cout << "The problem does not have solution(The</pre>
objective function is unbounded on the range of admissible values
of solutions)";
            std::exit(1);
        }
    }
    std::cout << "Simplex table :\n";</pre>
    outputSimplexTable(simplexTable);
}
bool hasNegativeFree(const SimplexTable &simplexTable, size_t
&minFreeIndex)
{
    size t minFreeIn{};
    double minFree{std::numeric_limits<double>::max()};
    bool findNegative{false};
    for (size_t i{}; i < simplexTable.size() - 1; ++i)</pre>
    {
        if (simplexTable.at(i).second.at(0) < (-</pre>
DBL_EPSILON_IN_MY_CASE))
        {
            findNegative = true;
            if (simplexTable.at(i).second.at(0) < minFree)</pre>
            {
                 minFree = simplexTable.at(i).second.at(0);
                 minFreeIn = i;
            }
        }
    }
    minFreeIndex = minFreeIn;
    return findNegative;
}
bool hasNegativeCoeff(const SimplexTable &simplexTable, const
size t &rowIndex, size t &minColIndex)
{
    bool hasNegative{false};
    double minimum{std::numeric limits<double>::max()};
    size t minIndex{0};
    for (size_t i{1}; i <</pre>
simplexTable.at(rowIndex).second.size(); ++i)
```

```
{
        if (simplexTable.at(rowIndex).second.at(i) < (-</pre>
DBL_EPSILON_IN_MY_CASE))
        {
            hasNegative = true;
            const double coeff{-
simplexTable.at(simplexTable.size() - 1).second.at(i) /
simplexTable.at(rowIndex).second.at(i)};
            if (coeff < minimum)</pre>
            {
                 minimum = coeff;
                 minIndex = i;
            }
        }
    }
    minColIndex = minIndex;
    return hasNegative;
}
double generalizedSimplexMethod(SimplexTable &simplexTable)
{
    maxValueOfTheObjFunctionWithTableDisplay(simplexTable);
    size t minFreeIndex{};
    while (hasNegativeFree(simplexTable, minFreeIndex))
    {
        size t minColIndex{};
        if (hasNegativeCoeff(simplexTable, minFreeIndex,
minColIndex))
        {
            const double
divide{simplexTable.at(minFreeIndex).second.at(minColIndex)};
            for (size_t i{}; i <</pre>
simplexTable.at(minFreeIndex).second.size(); ++i)
            {
                 simplexTable.at(minFreeIndex).second.at(i) /=
divide;
            }
            for (size t i{}; i < simplexTable.size(); ++i)</pre>
            {
                 if (i != minFreeIndex)
```

```
{
                     const double divider{-
simplexTable.at(i).second.at(minColIndex) /
simplexTable.at(minFreeIndex).second.at(minColIndex)};
                     for (size_t j{}; j <</pre>
simplexTable.at(i).second.size(); ++j)
                     {
                         simplexTable.at(i).second.at(j) +=
(divider * simplexTable.at(minFreeIndex).second.at(j));
                     }
                 }
            }
            simplexTable.at(minFreeIndex).first = "x" +
std::to_string(minColIndex);
        }
        else
        {
            std::cout << "The problem has no solution due to the</pre>
absence of admissible solutions to the system of constraints\n";
            std::exit(1);
        }
        std::cout << "Simplex table :\n";</pre>
        outputSimplexTable(simplexTable);
    return simplexTable.at(simplexTable.size() - 1).second.at(0);
}
double fractionPart(const double &value)
    if (std::fabs(value) <= DBL_EPSILON_IN_MY_CASE)</pre>
    {
        return 0;
    return value - std::floor(value);
}
bool isInteger(const double &value)
{
    return (fractionPart(value) <= DBL EPSILON IN MY CASE);</pre>
}
```

```
bool resultIsInteger(const SimplexTable &simplexTable, const
std::vector<std::string> &integerVar)
{
    for (size_t i{}; i < integerVar.size(); ++i)</pre>
    {
        for (size_t j{}; j < simplexTable.size() - 1; ++j)</pre>
            if (simplexTable.at(j).first == integerVar.at(i) &&
!isInteger(simplexTable.at(j).second.at(0)))
            {
                return false;
            }
        }
    }
    return true;
}
size_t rowIndexOfMaxFraction(const SimplexTable &simplexTable)
    size t maxIndex{};
    double maxValue{std::numeric limits<double>::min()};
    for (size_t i{}; i < simplexTable.size() - 1; ++i)</pre>
    {
        double
fracPart{fractionPart(simplexTable.at(i).second.at(0))};
        if (fracPart - maxValue > DBL EPSILON IN MY CASE)
        {
            maxValue = fracPart;
            maxIndex = i;
        }
    }
    return maxIndex;
}
double GomorysFirstAlgorithm(SimplexTable &simplexTable, const
std::vector<std::string> &integerVar)
{
    double result{};
    while (true)
    {
        result = generalizedSimplexMethod(simplexTable);
```

```
if (resultIsInteger(simplexTable, integerVar))
        {
            return result;
        //* build Section of Gomory
        size t maxRow{rowIndexOfMaxFraction(simplexTable)};
        simplexTable.push back(std::make pair(std::string("x" +
std::to string(simplexTable.at(0).second.size())),
std::vector<double>{}));
        for (size_t i{}; i <</pre>
simplexTable.at(maxRow).second.size(); ++i)
        {
            simplexTable.at(simplexTable.size() -
1).second.push_back(-
fractionPart(simplexTable.at(maxRow).second.at(i)));
        }
        for (size_t i{}; i < simplexTable.size(); ++i)</pre>
        {
            if (i != simplexTable.size() - 1)
            {
                simplexTable.at(i).second.push_back(0);
            }
            else
            {
                simplexTable.at(i).second.push back(1);
            }
        }
        std::swap(simplexTable.at(simplexTable.size() - 1),
simplexTable.at(simplexTable.size() - 2));
    }
}
int main(int argc, char **argv)
{
    size_t numberOfIntegerVar{};
    std::cout << "Number of integer variables = ";</pre>
    std::cin >> numberOfIntegerVar;
    std::cout << "Enter variables that are integers (In ascending</pre>
order of indices) : ";
```

```
std::vector<std::string>
integerVariables(numberOfIntegerVar);
    for (size_t i{}; i < numberOfIntegerVar; ++i)</pre>
    {
        std::cin >> integerVariables.at(i);
    }
    size t numberOfRows{};
    size t numberOfCols{};
    std::cout << "Number of rows in simplex table = ";</pre>
    std::cin >> numberOfRows;
    std::cout << "Number of cols in simplex table = ";</pre>
    std::cin >> numberOfCols;
    std::cout << "Enter simplex table(with the names of basic</pre>
variables) : \n";
    SimplexTable simplexTable(numberOfRows);
    for (size_t i{}; i < numberOfRows; ++i)</pre>
    {
        std::string basisVarName{};
        std::cin >> basisVarName;
        simplexTable.at(i).first = basisVarName;
        for (size t j{}; j < numberOfCols; ++j)</pre>
        {
             double value{};
             std::cin >> value;
             simplexTable.at(i).second.push_back(value);
        }
    }
    std::cout << std::setprecision(3);</pre>
    double maxFunctValue{GomorysFirstAlgorithm(simplexTable,
integerVariables)};
    std::cout << "Max function value = " << maxFunctValue <<</pre>
",\t";
    derivationOfTheOptimumPoint(simplexTable, integerVariables);
    /*
    std::boolalpha(std::cout);
    std::cout << resultIsInteger(simplexTable, integerVariables);</pre>
    */
    return 0;
}
```

Тестовые данные:

```
PS D:\VS CODE CPlusPlus> .\rooster.exe
Number of integer variables = 5
Enter variables that are integers (In ascending order of indices): x1 x2 x3 x4 x5
Number of rows in simplex table = 4
Number of cols in simplex table = 6
Enter simplex table(with the names of basic variables) :
x3 110 9 4 1 0 0
x4 -24 -11 3 0 1 0
x5 -15 -2 7 0 0 1
z 0 -7 -1 0 0 0
Simplex table :
BV
        FV
                x1
                         x2
                                 х3
                                         x4
                                                  x5
        110
                9
                         4
                                         0
x3
                                 1
                                                  0
                                                  0
х4
        -24
                -11
                         3
                                 0
                                         1
x5
        -15
                -2
                         7
                                 0
                                         0
                                                  1
                -7
                                         0
        0
                         -1
                                 0
                                                  0
Z
Simplex table :
BV
        FV
                x1
                         x2
                                 x3
                                         x4
                                                  x5
х3
        90.4
                0
                         6.45
                                 1
                                         0.818
                                                  0
        2.18
                1
                         -0.273
                                         -0.0909 -0
х1
                                 -0
x5
        -10.6
                0
                         6.45
                                 0
                                         -0.182 1
        15.3
                                         -0.636 0
Z
                0
                         -2.91
                                 0
Simplex table :
                                                  x5
BV
        FV
                x1
                         x2
                                 х3
                                         х4
x2
        14
                0
                         1
                                 0.155
                                         0.127
                                                  0
                1
                                 0.0423
                                         -0.0563 0
        6
                         0
х1
x5
        -101
                0
                         0
                                 -1
                                         -1
                                                  1
Z
        56
                0
                         0
                                 0.451
                                         -0.268 0
Simplex table :
BV
        FV
                x1
                         x2
                                 х3
                                         x4
                                                  x5
                                                  0.127
x2
        1.2
                0
                         1
                                 0.0282
                                         0
        11.7
                1
                                 0.0986
                                                  -0.0563
                         0
                                         0
x1
x4
        101
                -0
                         -0
                                 1
                                         1
                                                  -1
        83
                0
                         0
                                 0.718
                                         0
                                                  -0.268
Z
Simplex table :
BV
        FV
                         x2
                                                  x5
                x1
                                 х3
                                         x4
x5
        9.44
                         7.89
                                                  1
                0
                                 0.222
                                         0
                                                  0
        12.2
                1
                         0.444
                                 0.111
                                         0
x1
х4
        110
                0
                         7.89
                                 1.22
                                         1
                                                  0
        85.6
                0
                         2.11
                                 0.778
                                         0
                                                  0
Z
```

```
Simplex table :
BV
         FV
                 х1
                          x2
                                   х3
                                            х4
                                                     х5
                                                              хб
х5
         9.44
                 0
                          7.89
                                   0.222
                                                     1
                                                              0
                                            0
x1
         12.2
                 1
                          0.444
                                   0.111
                                                     0
                                                              0
                                            0
                                                              0
х4
         110
                 0
                          7.89
                                   1.22
                                            1
                                                     0
         -0.444
                                   -0.222
                                                     -0
х6
                  -0
                           -0.889
                                            -0
                                                              1
         85.6
                                                     0
                                                              0
Z
                 0
                          2.11
                                   0.778
                                            0
Simplex table :
                                                     x5
                                                              х6
BV
         FV
                 х1
                          x2
                                   х3
                                            x4
         5.5
                                   -1.75
                                                              8.87
x5
                 0
                          0
                                                     1
                                            0
                          0
                                                                       0.5
х1
        12
                 1
                                   9.71e-17
                                                     0
                                                              0
                                   -0.75
         107
                 0
                          0
                                                     0
                                                              8.87
х4
                                            1
x2
         0.5
                 0
                          1
                                   0.25
                                            0
                                                     0
                                                              -1.12
         84.5
                          0
                                   0.25
                 0
                                            0
                                                     0
                                                              2.37
Ζ
Simplex table :
                                                     x5
BV
                                            х4
                                                              х6
                                                                       x7
         FV
                 х1
                          x2
                                   х3
x5
         5.5
                 0
                          0
                                   -1.75
                                                     1
                                                              8.87
                                            0
                                                                       0
х1
        12
                 1
                          0
                                   9.71e-17
                                                     0
                                                              0
                                                                       0.5
                                                                                0
        107
                                   -0.75
                                                              8.87
x4
                 0
                          0
                                            1
                                                     0
                                                                       0
x2
        0.5
                          1
                                   0.25
                                                     0
                                                              -1.12
                 0
                                            0
                                                                       0
x7
         -0.5
                  -0
                           -0
                                   -0.25
                                            -0
                                                     -0
                                                              -0.875
                                                                       1
Z
         84.5
                          0
                                   0.25
                                                     0
                                                              2.37
                                                                       0
                 0
                                            0
Simplex table :
BV
         FV
                 х1
                          x2
                                   x3
                                            х4
                                                     х5
                                                              х6
                                                                       x7
         9
x5
                 0
                          0
                                   0
                                            0
                                                     1
                                                              15
                                                                       -7
x1
         12
                 1
                          0
                                   0
                                            0
                                                     0
                                                              0.5
                                                                       3.89e-16
                                   0
х4
         108
                 0
                          0
                                            1
                                                     0
                                                              11.5
                                                                       -3
x2
         -7.7e-14
                          0
                                   1
                                            0
                                                     0
                                                              0
                                                                       -2
                                                                                1
         2
                 0
                          0
                                   1
                                            0
                                                     0
                                                              3.5
                                                                       -4
х3
                                            0
                                                     0
Z
        84
                 0
                                   0
                                                              1.5
                                                                       1
Max function value = 84,
                                   Optimum point : (12;0;2;108;9)
PS D:\VS CODE CPlusPlus>
```

Вывод: освоил метод сечения Гомори для полностью целочисленных задач. Изучил алгоритм этого метода. Программно реализовал этот алгоритм.