EST-46114 Métodos Multivariados y Datos Categóricos

ITAM

Lista de Ejercicios (Parte 1 – ERRATA)

Prof.: Juan Carlos Martínez-Ovando

19 de febrero de 2016

1. Considera el modelo normal multivariado normal para x_1, \dots, x_n vectores p-dimensionales, con

$$\mathbf{x}_i | \boldsymbol{\mu}, \lambda \sim N_p(\mathbf{x} | \boldsymbol{\mu}, \lambda \mathbf{I}),$$
 (1.1)

donde μ es un vector p-dimensional, λ es un escalar positivo y I es la matriz identidad de dimensión $p \times p$. Interpreta λI como la matriz de precisión del modelo.

Considera adicionalmente que la distribución inicial para μ y λ está dada por

$$\pi(\boldsymbol{\mu}, \lambda) = N_p(\boldsymbol{\mu}|m_0, \lambda S_0) Ga(\lambda|a_0, b_0), \tag{1.2}$$

con m_0 un vector p-dimensional, S_0 una matriz simétrica positivo definida de dimensión $p \times p$, a_0 y b_0 escalares positivos, todos conocidos.

- a) Muestra que la distribución (1.2) es conjugada para (1.1).
- b) Calcula la distibución inicial predictiva el modelo, dada por

$$p(\mathbf{x}) = \int p(\mathbf{x}|\boldsymbol{\mu}, \lambda) \pi(\boldsymbol{\mu}, \lambda) d\boldsymbol{\mu} d\lambda.$$
 (1.3)

- c) Calcula la distibución posterior para μ y λ dado x_1, \ldots, x_n .
- d) Calcula la distibución predictiva para \boldsymbol{x}_f , un valor futuro no observado aun, dado $\boldsymbol{x}_1,\dots,\boldsymbol{x}_n.$
- 2. Considera el modelo lineal de regresión para $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n)$, para $\mathbf{x}_1, \dots, \mathbf{x}_n$ vectores p-dimensionales, expresado en forma matricial como

$$y|X, \beta, \lambda \sim N_n(y|X\beta, \lambda I),$$
 (1.4)

donde $\boldsymbol{y}=(y_1,\ldots,y_n)'$ es un vector n-dimesional, $\boldsymbol{X}=(\boldsymbol{x}_1',\ldots,\boldsymbol{x}_n')'$ es una matriz de dimensión $n\times p$, $\boldsymbol{\beta}$ es un vector p-dimensional, λ es un escalar y \boldsymbol{I} es la matriz identidad de dimensión $n\times n$. De nuevo, interpreta $\lambda \boldsymbol{I}$ como la matriz de precisión del modelo.

Considera adicionalmente que la distribución inicial para β y λ está dada por

$$\pi(\boldsymbol{\beta}, \lambda) = \mathcal{N}_p(\boldsymbol{\beta}|b_0, \lambda S_0) \operatorname{Ga}(\lambda|c_0, d_0), \tag{1.5}$$

con b_0 un vector p-dimensional, S_0 una matriz simétrica positivo definida de dimensión $p \times p$, c_0 y d_0 escalares positivos, todos conocidos.

- a) Muestra que la distribución (1.5) es conjugada para (1.4).
- b) Calcula la distibución inicial predictiva el modelo, dada por

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}, \lambda) \pi(\boldsymbol{\beta}, \lambda) d\boldsymbol{\beta} d\lambda.$$
 (1.6)

- c) Calcula la distibución posterior para $\boldsymbol{\beta}$ y λ dado $(y_1, \boldsymbol{x}_1), \dots, (y_n, \boldsymbol{x}_n)$.
- d) Calcula la distibución predictiva para y_f , un valor futuro no observado aun de y, dado $(y_1, x_1), \ldots, (y_n, x_n)$ y x_f observado.
- 3. Considera el modelo lineal de regresión para $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n)$, para $\mathbf{x}_1, \dots, \mathbf{x}_n$ vectores p-dimensionales, expresado en forma matricial como

$$y|X, \beta, \lambda \sim N_n(y|X\beta, \lambda I),$$
 (1.7)

donde $\boldsymbol{y}=(y_1,\ldots,y_n)'$ es un vector n-dimesional, $\boldsymbol{X}=(\boldsymbol{x}_1',\ldots,\boldsymbol{x}_n')'$ es una matriz de dimensión $n\times p$, $\boldsymbol{\beta}$ es un vector p-dimensional, λ es un escalar y \boldsymbol{I} es la matriz identidad de dimensión $n\times n$. De nuevo, interpreta $\lambda \boldsymbol{I}$ como la matriz de precisión del modelo.

Considera adicionalmente que la distribución inicial para β y λ está dada por

$$\pi(\boldsymbol{\beta}, \lambda) = N_p(\boldsymbol{\beta}|b_0, S_0) Ga(\lambda|c_0, d_0), \tag{1.8}$$

con b_0 un vector p-dimensional, S_0 una matriz simétrica positivo definida de dimensión $p \times p$, c_0 y d_0 escalares positivos, todos conocidos.

a) Responde argumentando si la distribución (1.8) es conjugada para (1.7).

b) Calcula la distibución inicial predictiva el modelo, dada por

$$p(\boldsymbol{y}|\boldsymbol{X}) = \int p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}, \lambda) \pi(\boldsymbol{\beta}, \lambda) d\boldsymbol{\beta} d\lambda.$$
 (1.9)

- c) Calcula la distibución posterior para $\boldsymbol{\beta}$ y λ dado $(y_1, \boldsymbol{x}_1), \dots, (y_n, \boldsymbol{x}_n)$.
- d) Calcula la distibución predictiva para y_f , un valor futuro no observado aun de y, dado $(y_1, x_1), \ldots, (y_n, x_n)$ y x_f observado.
- 4. Para el modelo de regresión de la pregunta 1 se sabe que tanto la distribución final para (β, λ) como la distribución predictiva de y_f en x_f , dado los datos, son analíticamente cerradas. Aun así, diseña lo siguiente:
 - a) Un algoritmo muestreador de Gibbs que actualice β y λ en dos bloques.
 - b) Un algoritmo muestreador de Gibbs que actualice los componentes de $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$ y λ uno a la vez.