

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AFGL-TR-84-0177

ANALYSIS OF ATMOSPHERIC INTERFEROMETER DATA

James A. Dowling William O. Gallery Sean G. O'Brien

OptiMetrics, Inc. 106 E. Idaho, Suite G Las Cruces, New Mexico 88001

Final Report January 1983 - January 1984

July 1984

Approved for public release; distribution unlimited

FILE COPY

AR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

85 02 15 105

"This technical report has been reviewed and is approved for publication"

(Signature)

LEONARD W. ABREU Contract Manager (Signature)

BERTRAM D. SCHURIN

Branch Chief

FOR THE COMMANDER

Signature)

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS)

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

	Inclassif LASSIFICATI		S PAGE						
		-		REPORT DOCUME	ENTATION PAGE	 E			
1a. REPORT	SECURITY	LASSIFIC	ATION		16. RESTRICTIVE M	ARKINGS			
Unclass									
2a. SECURI	TY CLASSIFI	CATION AL	THORITY		3. DISTRIBUTION/A Approved for				41
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			unlimited	. public re	rease;	distr	ibution		
4. PERFOR			REPORT NUM	BER(S)	5. MONITORING OR	IGANIZATION R	EPORT NU	MBER(S)	
	-IMO	102			AECT TO 94 O	1177			
6a. NAME O	F PERFORMI	NG ORGAI	NIZATION	Sb. OFFICE SYMBOL	AFGL-TR-84-0177				
OptiMet	rics, In	c.		(If applicable)			-		
6c ADDRES	S (City, State	and ZIP Co	del	L	7b. ADDRESS (City.	State and ZIP Coa	le i		
i e	Idaho, S		,		}	olete une zir cou	,		
	ces, New		88001						
Re NAME C	F FUNDING/	SPONSORII	NG	86. OFFICE SYMBOL	9. PROCUREMENT	NSTRIMENT IN	ENTIFICAT	TION NOT	MAER
	IZATION	3701130111		(if applicable)	9. PROCOREMENT	NSTRUMENTID	ENTIFICA	TION NO	MBEN
Air For	ce Geoph	ysics L	aboratory	OPI	F19628-83-C-	0040			
	SS (City, State				10. SOURCE OF FU	NDING NOS.	7		
			etts 0173	31	PROGRAM ELEMENT NO.	PROJECT NO.	TAS		WORK UNIT
Monitor	/Leonard	W. Abr	eu						
11. TITLE	Include Securi	ty Classifica	(ion)Analys	is of Atmos-	62101F	7670	09		AR
pheric	Interfer	ometer	Data		<u> </u>				
	IAL AUTHOR		.						
13a TYPE	James OF REPORT	A. Gal	13b. TIME C	lliam ()and ()'	Rrien, Sean C	RT (Yr., Mo., Day,	15.	PAGE CO	UNT
Final			FROM Ja	<u>n 83</u> то <u>Jan 84</u>	1984 Ju	11 v	21	l 2	
	MENTARY N	OTATION				· · · ·			
17.	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if ne	ecessary and ident	ify by black	num heri	
FIELD	GROUP	Y .	B. GR.	Atmospheric tr					
				Water vapor co	ntinuum absor	ption infra	ared	opecti	
		<u> </u>				-			transmissio
				didentify by block number med in which					
meter-	calibra	ated.	high-re	solution Four	ier transfo	mpies oi	Taser.	r (Em	SUITSSO-
sureme	ents ha v	e bee	Compa	red with corr	esponding s	pectra de	enerate	ed us	ing the
FASCO	OlC comp	puter	model. <	The experime	ntal data w	ere colle	cted	at th	ree
coasta	al sites	and	one inla	and site. Th	👄 measureme	nt path-1	enath:	s var	ied be-
tween	4.07 ar	nd 6.4	km. W	ater vapor pa	rtial press	ures vari	ed be	tween	2.0 and
20.5 t	corr, pa	artial	pressu	re of water v	apor.	Jufrare	d /		
Of p	partiçu	lar in	terest.	in this study)is the use	of the e	xperi	menta	l data i
compar	rison#1	to the	water	vapor continú	um absorpti	on/model	conta	ined	in the
FASCOI	olc comp	outer :	model.	It was found	that the d	ataxagree	e'with	TASC	ODE pre-
				inuum absorpt The N2' cont					
FASCO	olC appe	ears t	o be sm	aller than th	at observed	and this	culati	eo us rvati	on is
			OF ABSTRAC		21. ABSTRACT SEC				
UNCLASSII	FIED/UNLIMI	TED S	AME AS RPT.	OTIC USERS	UNCL	ASSIFIED			
22s. NAME	OF RESPONS	IBLE INDI	VIDUAL		22b. TELEPHONE N		22c. OFFI	CE SYME	OL

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

thought to be related to an unmodeled temperature dependence in the N_2^\prime continuum absorption.

The experimental high-resolution spectra were compared with calculated continuum absorption by selecting 49 discrept frequencies in the 1900 - 3200 cm region which were minimally influenced by discrept line absorption. Corrections for local line and N_2^{\prime} and $CO_2^{\prime\prime}$ continuum absorptions were applied to the experimental data at these 49 frequencies. The data were then compared with $H_2^{\prime\prime}$ 0 continuum absorption coefficients calculated using the FASCODIC model and the 1982 version of the AFGL atmospheric absorption line compilation.

Detailed high-resolutuion comparisons of the experimental data to FASCODE - generated spectra show excellent agreement in nearly all features throughout the 1900 - 3200 cm⁻¹ spectral region. A notable exception occurs with several weak H₂O vapor absorption lines occurring between 2390/cm⁻¹ and 2490 cm⁻¹. Recommended line strength values for these several lines have been derived from the experimental data and are provided.

Recommendations for further analysis of the data base utilized in the present study and for additional measurements are discussed.

Access	ion For
NTIS DTIC I	TAB Dunced
Justii	rication
By	ibution/
Avai	lability Codes
Dist	Avail and/or Special
A-1	
	DTID DOBY NARKOTED

ACKNOWLEDGEMENTS

A great many individuals contributed to the generation of the data base which is analyzed in the present study. One of the authors (James A. Dowling) was associated with and primarily responsible for the design and deployment of the NRL IMORL facility during the several years that the data base treated herein was generated. Accordingly the following acknowledgements are made.

Many individuals at NRL contributed to this work, especially: T. Cosden - IMORL mechanical design, R. Horton - IMORL optical design, experimental procedures, and data collection and analysis, R. Harris - electronic design, S. Hanley - data collection and analysis, K. Haught - data collection and analysis, D. Garcia - data collection and analysis, P. Livingston - programmatical representation and direction, M. Woytko, C. Gott, J. Cox, W. DeMent, and M. Cochran - IMORL system construction and operation. R. Patten was instrumental in making the NRL IMORL data base available for the present analysis. The IMORL optical system was manufactured by the Muffoletto Optical Co., Baltimore, MD and the FTS system was manufactured by the MIDAC Corporation, Newport Beach, CA.

The work reported herein was sponsored by several DoD agencies. The principals at each of these offices who were instrumental in making this work possible were: NAVSEA PMS-405 - D. Finkleman and M. Hughes, NOSC - Juergen Richter, ASL - G. Hoidale, AFGL - S. Clough, F. Kneizys, and L. Abreu.

The careful and comprehensive work performed in the preparation of the text and numerous figures in this report by Deborah Christmas and Valerie Torres is greatly appreciated.

CONTENTS

1.	BACK	GROUND AND INTRODUCTION
2.		NRL HIGH-RESOLUTION ATMOSPHERIC TRANSMISSION BASE
	2.1	Experimental Apparatus
	2.2	Field Measurement Locations and Meteorological Conditions
		2.2.1 Patuxent River Naval Air Station 1
		2.2.2 Cape Canaveral Air Force Station 1
		2.2.3 San Nicolas Island 2
		2.2.4 White Sands Missile Range 2
3.	DATA	ANALYSIS
	3.1	Water Vapor Continuum Absorption Analysis 2
		3.1.1 Evaluation of Absolute-Transmission Normalization Uncertainties
		3.1.2 Corrections to the Experimental Data 2
		3.1.2.1 Corrections for Local Line and for CO ₂ and N ₂ Continuum Contributions 30
		3.1.2.2 Corrections for Aerosol Scattering 50
		3.1.3 Generation of Water Vapor Absorption Coefficients from FASCODIC
		3.1.4 Comparisons of Experimental Data and FASCODE Calculations for Water Vapor Continuum Absorption
	3.2	Water Vapor Line Absorption Analysis 10
		3.2.1 Survey Comparisons Between Measurements and Calculations
		3.2.2 Estimates of Line Strengths for Water Vapor Absorption Lines in the 2390 cm ⁻¹ to 2500 cm ⁻¹ Spectral Region 139

4.	CONCI	LUSIONS AND RECOMMENDATIONS 14
	4.1	Conclusions
	4.2	Recommendations
REFI	ERENCI	ES
APPI	ENDIX	A
APPI	ENDIX	В
****	UND TV	

LIST OF ILLUSTRATIONS

1.	NRL IMORL Transmitter Station During the CCAFS Experiment	6
2.	NRL IMORL Laser Extinction Measurement Schematic	7
3.	Optical Schematic Diagram for FTS Measurements	10
4.	PRNAS Atmospheric Transmission Test Site	12
5.	CCAFS Atmospheric Transmission Test Site	15
6.	SNI Atmospheric Transmission Test Site	22
7.	WSMR Atmospheric Transmission Test Site	25
8a.	Measured Spectrum ASL06RN with Arrows Showing the Location of Selected Wavenumbers in Table 5. 1900 cm ⁻¹ to 2300 cm ⁻¹	34
8b.	Measured Spectrum ASL06RN with Arrows Showing the Location of Selected Wavenumbers in Table 5. 2350 cm ⁻¹ to 2750 cm ⁻¹	35
8c.	Measured Spectrum ASL06RN with Arrows Showing the Location of Selected Wavenumbers in Table 5. 2750 cm ⁻¹ to 3150 cm ⁻¹	36
9a.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 1930.30 cm ⁻¹	37
9b.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 1952.50 cm ⁻¹	37

9c.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 1974.10 cm ⁻¹	37
9d.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 1979.60 cm ⁻¹	37
9e.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2004.65 cm ⁻¹	38
9f.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2031.25 cm ⁻¹	38
9g.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2056.05 cm ⁻¹	38
9h.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2084.35 cm ⁻¹	38
9i.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2102.15	

9j.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2130.50 cm ⁻¹	39
9k•	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2150.05 cm ⁻¹	39
91.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2159.05 cm ⁻¹	39
9m•	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) A166.80 cm ⁻¹	40
9n.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2177.60 cm ⁻¹	40
90.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2190.95 cm ⁻¹	40
9 p.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2223.68	A (

9q.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2400.0 cm ⁻¹	. 41
9r.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2420.42 cm ⁻¹	. 41
9s.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus Measured Spectrum ASLO6RN (Symbols) 2440.85 cm-1$. 41
9t.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2480.33 cm ⁻¹	. 41
9u.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2501.00 cm ⁻¹	. 42
9v.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus Measured Spectrum ASLOGRN (Symbols) 2520.65 cm-1$. 42
9w.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2540.83	40

9x.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2560.42 cm ⁻¹	42
9y.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2580.37 cm ⁻¹	43
9z.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2599.84 cm ⁻¹	43
9aa.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2618.64 cm^{-1}	43
9bb.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus$ Measured Spectrum ASLO6RN (Symbols) 2640.58 cm^{-1}	43
9cc.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2661.55 cm ⁻¹	44
9dd.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2679.51 cm ⁻¹	44

9ee.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2700.72 cm ⁻¹	44
9ff.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2719.28 cm ⁻¹	44
9gg.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2740.74 cm ⁻¹	45
9hh.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus Measured Spectrum ASLO6RN (Symbols) 2760.69 cm-1$	45
9ii.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2778.95 cm ⁻¹	45
9jj.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus Measured Spectrum ASLO6RN (Symbols) 2800.10 \text{ cm}^{-1}$	45
9kk.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2820.11	

911.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2839.40 cm ⁻¹	46
9mm.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2860.19 cm ⁻¹	46
9nn.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2880.80 cm ⁻¹	46
900.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2899.72 cm ⁻¹	47
9pp.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 2920.40 cm ⁻¹	47
9qq.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2941.37 cm ⁻¹	47
9rr.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2959.87	4

9ss.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLO6RN (Symbols) 2979.52 cm ⁻¹	48
9tt.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, $Plus Measured Spectrum ASLOGRN (Symbols) 3000.55 cm-1$	48
9uu.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ °C = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 3020.26 cm ⁻¹	48
9vv.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: $P = 886 \text{ mb}$, $T = 20^{\circ}\text{C}$, $ppH_2O = 2.5$, 15.0 , 10.1 , and 20 Torr , $L = 6.4 \text{ km}$, Plus Measured Spectrum ASLO6RN (Symbols) 3040.45 cm^{-1}	48
9ww.	Calculated Local Line Contributions to the Optical Depth Around the Points Listed in Table 5 for the Following Conditions: P = 886 mb, T = 20°C, ppH ₂ O = 2.5, 15.0, 10.1, and 20 Torr, L = 6.4 km, Plus Measured Spectrum ASLOGRN (Symbols) 3058.71 cm ⁻¹	49
10.	Volume Extinction as a Function of Relative Humidity for a Maritime Aerosol Whose Total Number Density is Fixed at 4,000 cm ⁻³ [17]	59
11.	Ratio of ${}^{\sigma}3.7/{}^{\sigma}1.06$ for Maritime Aerosol for Various Values of R.H. Derived From Reference 17	62
12a.	Comparison of Corrected Spectral Data to Fascode Water Continuum Absorption Calculations ASL17, ASL18, and ASL19 Compared with FASCODE Case 3	65
12b.	Comparison of Corrected Spectral Data to Fascode Water Continuum Absorption Calculations ASL20	

12c.	Comparison of Corrected Spectral Data to Fascode Water Continuum Absorption Calculations ASL23 and ASL21 Compared with FASCODE Case 4	67
12d.	Comparison of Corrected Spectral Data to Fascode Water Continuum Absorption Calculations ASL13, ASL14, and ASL 15 Compared with FASCODE Case 3	68
12e.	Comparison of Corrected Spectral Data to Fascode Water Continuum Absorption Calculations ASL04 and ASL06 Compared with FASCODE Case 1	69
13a.	Comparison of Corrected PRNAS Spectral Data to FASCODE Water Continuum Absorption Calculations PRO37 and PRO39 Compared with FASCODE Case 15	70
13b.	Comparison of Corrected PRNAS Spectral Data to FASCODE Water Continuum Absorption Calculations PRO40, PRO42, and PRO54 Compared with FASCODE Case 16	71
13c.	Comparison of Corrected PRNAS Spectral Data to FASCODE Water Continuum Absorption Calculations PRO49 and PRO50 Compared with FASCODE Case 18	72
13d.	Comparison of Corrected PRNAS Spectral Data to FASCODE Water Continuum Absorption Calculations PRO55 and PRO56 Compared with FASCODE Case 18	73
13e.	Comparison of Corrected PRNAS Spectral Data to FASCODE Water Continuum Absorption Calculations PRO24 Compared with FASCODE Case 19	74
14a.	Comparison of Corrected SNI Spectral Data to FAS-CODE Water Continuum Absorption Calculations SNI24 and SNI17 Compared with FASCODE Case 5	75
14b.	Comparison of Corrected SNI Spectral Data to FAS-CODE Water Continuum Absorption Calculations SNIO5, SNIO4, and SNI12 Compared with FASCODE Case 5	76
14c.	Comparison of Corrected SNI Spectral Data to FAS-CODE Water Continuum Absorption Calculations SNI02 and SNI03 Compared with FASCODE Case 6	77
14d.	Comparison of Corrected SNI Spectral Data to FAS- CODE Water Continuum Absorption Calculations SNIO1, and SNIIO, and SNIO9 Compared with FASCODE	70

14e.	Comparison of Corrected SNI Spectral Data to FAS-CODE Water Continuum Absorption Calculations SNI16, SNI14, and SNI11 Compared with FASCODE Case 7	79
15a.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC083 Compared with FASCODE Case 8	80
15b.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC144 and CC145 Compared with FASCODE Case 9	81
15c.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC147 and CC148 Compared with FASCODE Case 10	82
15d.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC153 and CC154 Compared with FASCODE Case 11	83
15e.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC119, CC120, and CC121 Compared with FASCODE Case 12	84
15f.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC157, CC158, and CC159 Compared with FASCODE Case 13	85
15g.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations CC160, and CC161 Compared with FASCODE Case 14	86
16a.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations (Measurement-Derived Aerosol Extinction Corrections Included). CC144 and CC145 Compared with FASCODE Case 9	87
16b.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations (Measurement-Derived Aerosol Extinction Corrections Included). CC147 and CC148 Compared with FASCODE Case 10	88

16c.	Comparison of Correctred CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations (Measurement-Derived Aerosol Extinction Corrections Included). CC153 and CC154 Compared with FASCODE Case	8 9
16d.	Comparison of Corrected CCAFS Spectral Data to FASCODE water Continuum Absorption Calculations (Measurement-Dervied Aerosol Extinction Corrections Included). CC157, CC158, and CC159 Compared with FASCODE Case 13	90
16e.	Comparison of Corrected CCAFS Spectral Data to FASCODE Water Continuum Absorption Calculations (Measurement-Dervied Aerosol Extinction Corrections Included). CC160 and CC161 Compared with FASCODE Case 14	91
17a.	Ratio of Measured to Calculated Values for Water Vapor Continuum Absorption Coefficients Versus Wavenumber, 1980 cm ⁻¹ to 2140 cm ⁻¹	101
17b.	Ratio of Measured to Calculated Values for Water Vapor Continuum Absorption Coefficients Versus Wavenumber, 2400 cm ⁻¹ to 3000 cm ⁻¹	102
18.	Spectrum ASL06, 1900-3200 cm ⁻¹ , Degraded with a 10 cm ⁻¹ HWHM Triangular Instrument Function, Measured (Solid) and FASCODE (Dashed), no Aerosol Attenuation is included in the FASCODE Calculation	106
19a.	Spectrum ASL06, 1900-2000 cm ⁻¹ : Measured (Top) and Calculated (Bottom): 886 Mb, 290.1 K, 4.5 Torr Water Vapor, 6.4 km path, 100 km Vis, no Aerosol in Calculation	108
19b.	Spectrum ASLU6, 2000-2100 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	109
19c.	Spectrum ASL06, 2100-2200 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	110
19d.	Spectrum ASL06, 2200-2300 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	111
19e.	Spectrum ASL06, 2300-2400 cm ⁻¹ : Measured (Top)	

19f.	Spectrum ASL06, 2400-2500 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	113
19g.	Spectrum ASL06, 2500-2600 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	114
19h.	Spectrum ASL06, 2600-2700 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	115
19i.	Spectrum ASL06, 2700-2800 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	116
19j.	Spectrum ASL06, 2800-2900 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	117
19k.	Spectrum ASL06, 2900-3000 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	118
191.	Spectrum ASL06, 3000-3100 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	
19m.	Spectrum ASL06, 3100-3200 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	
20a.	Spectrum CC159, 1900-2000 cm ⁻¹ : Measured (Top) and Calculated (Bottom: 1016 Mb, 229.9 K, 21 Torr Water Vapor, 5.08 KM path, 32 km Vis (No Aerosol in Calculation)	121
20b.	Spectrum CC159, 2000-2100 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	122
20c.	Spectrum CC159, 2100-2200 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	123
20d.	Spectrum CC159, 2200-2300 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	124
	Spectrum CC159, 2300-2400 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	
20f.	Spectrum CC159, 2400-2500 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	126
20g.	Spectrum CC159, 2500-2600 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	127
20h.	Spectrum CC159, 2600-2700 cm ⁻¹ : Measured (Top)	100

20i.	Spectrum CC159, 2700-2800 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	129
2 0j.	Spectrum CC159, 2800-2900 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	130
20k.	Spectrum CC159, 2900-3000 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	131
201.	Spectrum CC159, 3000-3100 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	132
20m.	Spectrum CC159, 3100-3200 cm ⁻¹ : Measured (Top) and Calculated (Bottom)	133
21.	Atmospheric Absorption Spectrum for 1900 - 1950 cm ⁻¹ . Measured at Kitt Peak Observatory; Measurement Conditions include 0.02 cm ⁻¹ resolution, 1.1 Air-Mass Path, 0.8 grm cm ⁻² Water Vapor along the Path; Taken from [18]	135
22.	Measured Spectrum CC154 (Bottom), and FASCODE (Top) Calculation. Arrows Point to Water Vapor Lines	136
23.	Measured Spectrum CC154 (symbols) and FASCODE Calculation with AFGL Line Tape, 1982 Version (Solid Line) and 1980 Version (Dashed Line).	138-146

LIST OF TABLES

1.	Summary of Meteorological Conditions and Laser Normalization Parameters for PRNAS Spectra	13
2.	Summary of Meteorological Conditions Occurring During 1977 CCAFS Experiment	17
3.	Summary of Meteorological Conditions and Laser Normalization Parameters for the CCAFS Spectra	21
4.	Summary of Meteorological Conditions and Laser Normalization Parameters for the SNI Spectra	24
5.	Summary of Meteorological Conditions and Laser Normalization Parameters for the WSMR Spectra	26
6.	Selected Frequencies for Minimum Local Line Contributions	33
7.	Meteorological Conditions for Each Spectrum	51
ម•	Parameters for Local Line Calculations	53
9.	Mixing Ratios for Gases Other Than Water Vapor	54
10.	Measured Aerosol Extinction Coefficients at 0.63 μm and 1.06 μm Corresponding to Selected CCAFS Spectra	61
11.	DF Laser Line Frequencies Used for Normalization of the PRNAS FTS Data	93
12.	Ratio R or Measured Line Strength to AFGL Value for Selected Water Lines, 2390 cm ⁻¹ to 2500 cm ⁻¹ .	148

1 BACKGROUND AND INTRODUCTION

This report describes the analysis of a collection of high-resolution atmospheric transmittance spectra measured during several field experiments performed by the Naval Research Laboratory (NRL) between 1976 and 1979. The data analyzed in the present study consists of 52 individual high-resolution (0.0625 cm⁻¹) spectra for which an absolute-transmission calibration was obtained by nearly-concurrent measurements of deuterium-fluoride (DF) laser transmittance over the same atmospheric path.

The four experiments which yielded the data base analyzed in this study were conducted at three coastal and one inland locations using the NRL Infrared Mobile Optical kadiation Laboratory (IMORL). The IMORL system was an outgrowth of earlier NRL measurement systems used for studies of atmospheric turbulence effects on laser propagation. The system is briefly described in Section 2.

The first NRL experiment in which laser-extinction-calibrated Fourier-transform spectrometer (FTS) data were collected was performed at the Patuxent River Naval Air Station (PRNAS), Maryland in the fall of 1976 [1]. This experiment was followed by a similar, extended measurement program at the Cape Canaveral Air Force Station (CCAFS), Florida during the late-winter and spring of 1977 [2, 3]. Later experiments were performed at the White Sands Missile Range (WSMR), New Mexico [4], and at San Nicolas Island (SNI), California in the spring of 1979 [5].

A principal objective behind the combined use of highresolution FTS measurements with high-accuracy transmittance values obtained with the IMORL laser transmissometer system

とうころの 一方のののののの 我上午の人の人の人の人

was a measurement of the weak but important absorption in the 3-5 µm atmospheric window contributed by the "so-called" water vapor continuum absorption. Earlier NRL long-path transmittance measurements had shown that the uncertainties associated with the understanding of this continuum absorption represented a major limitation in the ability to correctly predict molecular absorption coefficients for DF laser atmospheric propagation. The high-resolution FTS data provide a direct measure of atmospheric transmittance at spectral locations in the 3-5 μ m region where contributions to the absorption coefficient due to strong individual atmospheric absorption lines are minimal or negligible. these frequencies the residual molecular absorption is due to the water vapor continuum above or the combination of water vapor continuum, the N_2 continuum and the v_3 CO_2 band edge continuum.

Previous analysis and model comparisons have been performed using the large data base of laser transmittance values measured during the several NRL field experiments [1-5]. However, only preliminary comparisons of the NRL high-resolution FTS data to line-by-line high resolution calculations were made [6-7].

The approach used in this study makes use of the high resolution NRL FTS data by comparing measured extinction coefficients, after correction for calculated contributions due to local lines, and due to N_2 and CO_2 continua, with calculated water vapor continuum absorption coefficients obtained with the FASCODIC model [8]. The 1982 AFGL atmospheric absorption line parameters compilation [9] was used together with FASCODIC for the calculation of local line contributions.

This report is divided into 4 sections, the first being this introduction. In Section 2 the NRL Data base is described. The IMORL apparatus is briefly described in subsection 2.1 and the field measurement locations and meteorological conditions are described in subsection 2.2.

Data analysis, procedures and results are described in Section 3. Subsection 3.1 describes the water vapor continuum analysis and in subsection 3.2 the limited analysis performed comparing individual measured and calculated line absorptions is presented.

Section 4 presents a summary of the conclusions which can be drawn from the analysis and presents a list of recommendations based on the findings in this study.

THE NRL HIGH-RESOLUTION ATMOSPHERIC TRANSMISSION DATA BASE

2.1 EXPERIMENTAL APPARATUS

The Infrared Mobile Optical Radiation Laboratory (IMORL) was developed at NRL as a field laboratory for precision atmospheric propagation measurements. Detailed descriptions of the electro-optical instrumentation contained in this facility are presented in References 10 and 11. The essential features of this system are briefly described below to provide the reader with an orientation regarding the high-resolution FTS data base analyzed in this report.

The IMORL system was used extensively to collect lasercalibrated high-resolution atmospheric transmission spectra. The system included several infrared laser and blackbody sources, large, stable telescope optics, a Fourier transform spectrometer (FTS) system, and various support equipment, all of which were transported in and operated from several large semi-trailers. The usual measurement configuration consisted of an optical transmitter trailer housing HeNe, Nd-YAG, DF, CO, and CO₂ single-line, cw laser sources, relay optics, and a large, stably-mounted and precisely-pointed 91 cm aperture, f/35 Cassegrainian collimating telescope. small cw, combustion-driven DF laser used for much of the laser extinction work required a large (755 1/s) vacuum system for operation. This pump was housed in a separate trailer; a 20 cm diameter vacuum line was installed between the transmitter and vacuum pump trailers once the two trailers were properly located at a measurement site. additional trailers contained office space, meteorological signal processing and recording electronics, and bottled

gases and other consumable supplies used during the course of an experiment.

The FTS system and apparatus used for laser extinction measurements were housed in a receiver trailer containing a 120 cm aperture, f/5 newtonian telescope. The receiver telescope aperture insured that the entire laser beam used during long path extinction measurements could be collected, thereby providing reliable absolute transmission calibrations for the FTS measurements. High resolution transmission spectra were taken by substituting a 1300 K blackbody source for the laser source in the transmitter optical system and adjusting the receiver optical system so as to couple the FTS system to the 120 cm collecting tele-Repeated calibrations and extensive experience with the measurement system in field experiments demonstrated that absolute transmission could be reliably measured for long atmospheric paths with an uncertainty less than +3%.

Figure 1 is a photograph of the transmitter station taken during the experiment at CCAFS. From left to right in the figure can be seen an NRL aerosol-micrometeorological measurement van, the IMORL vacuum pump trailer, optical transmitter trailer (the 91 cm aperture telescope mirror and telescope frame may be seen through the open doors), and the office trailer.

Figure 2 is a schematic depicting the experimental arrangement used for laser extinction measurements. The output beam from any of the several laser sources used was first collimated by auxiliary optics to a diameter of approximately 18 mm. The beam was then focused via the offaxis parabolic mirror shown in the upper left of Figure 2 and then diverged to fill the 91 cm transmitter telescope aperture. A 37 Hz, 50% duty cycle chopper modulated the beam near the focus formed by the off-axis parabola. The

NRL IMORL TRANSMITTEN STATION DURING THE CCAFS EXPERIMENT. FIGURE 1.

CONTRACTOR - PROPERTY NO

NRL IMORL LASER EXTINCTION MEASUREMENT SCHEMATIC. FIGURE 2.

beam was alternately transmitted through the telescope and reflected onto the stationary detector as shown. The mobile detector shown in Figure 2 was placed in the "XMTR" position for calibration measurements in which the relative response of the two detectors was measured. The mobile detector was then placed near the focus of the 120 cm aperture receiver telescope for a) calibrations of the large telescope optical efficiency or b) long path extinction measurements. calibration measurements were carried out with the transmitter and receiver trailers immediately opposite one another, i.e., for zero atmospheric path. trailers were separated for long path measurements the two types of calibration data were then used to determine absolute atmospheric transmittance for the several laser lines studied. As shown in Figure 2, the signal produced by the mobile detector in the receiver trailer at one end of the measurement path was relayed to the transmitter by means of a pulse-rate-modulated (PRM) GaAs-laser-based data link. This signal, proportional to laser power at the receiver, was connected to the numerator input of a special purpose analog ratiometer, [11]. The stationary detector signal, proportional to the transmitted laser power was connected to the denominator input of the ratiometer. Thus, a real time measure of transmittance for the laser line being studied was available at the transmitter site. The ratiometer reading was corrected for the relative response of the two detectors for that laser line (monitored daily) and the efficiency of the large optical elements beyond the chopper in order to obtain absolute transmission readings. As shown in Figure 2, the voltage-controlled oscillator (VCO) and frequency-to-voltage converter (FVC) used with the GaAs data link were also connected in the numerator circuit of the ratiometer when the mobile detector was used in the "XMTR"

position, so that their combined transfer function was normalized out of the final extinction ratio.

Figure 3 is a schematic diagram showing the configuration of the transmitter and receiver optical systems used for FTS measurements.

Local meteorological measurements were usually performed at each end of the measurement path. Absolute humidity, air temperature and pressure, and wind conditions were monitored in order to document local conditions during a series of measurements, to provide assurance that uniform environmental conditions existed along the measurement path, and that there conditions remained constant during a complete measurement cycle. The period required to make both laser extinction and FTS measurements, in turn, was typically about one hour. Measurements using an aerosol spectrometer system in the NRL aerosol van were performed during some of the measurements analyzed in this report. Infrared aerosol extinction estimates based on Mie scattering calculations, utilizing the measured particle distributions, have shown good agreement with results derived from infrared extinction measurements at Nd-YAG and DF laser wavelengths. This agreement was obtained during earlier experiments [12] conducted at an inland location, removed from the local effects of surf, etc., which existed during three of the four experiments addressed in this report. However, for the measurements discussed in this report, poor agreement between aerosol-analyzer-derived extinction coefficients and those determined from long-path optical measurements was generally observed.

90 cm COLLIMATOR

> FROM GREYBODY SOURCE

OFF AXIS
PARABOLA

FIGURE 3. OPTICAL SCHEMATIC DIAGRAM FOR FTS MEASUREMENTS.

2.2 FIELD MEASUREMENT LOCATIONS AND METEOROLOGICAL CONDITIONS

2.2.1 PATUXENT RIVER NAVAL AIR STATION

The 5.12 km overwater path used for the PRNAS measurements is shown in Figure 4. The IMORL transmitter station was located at the south end of the PRNAS at location A in the figure. The receiver station was placed at location B in the figure which is a small radar installation used to support operations at the PRNAS.

All of the PRNAS spectra analyzed in this report were measured during mid-November 1976 except for the one designated PRO24 which was measured on 24 September. The meteorological conditions occurring on September 24 included moderate values of air temperature and absolute humidity of 18.3°C and 12.0 torr water vapor partial pressure (ppH₂O), respectively. The remainder of the spectra were collected between 8 and 19 November 1976, during conditions of relatively low air temperatures (-1.7 to 8.5°C) except for 19 November when the air temperature was 17.5°C. The absolute humidity variations encountered during November were confined to relatively low values between 2.5 and 3.0 torr ppH₂O.

Table 1 presents summary of the meteorological conditions occurring during the PRNAS measurements. Also included in Table 1 is information relating to measured and/or derived aerosol extinction values at 0.5 μ m and 3.8 μ m. For the PRNAS data, the aerosol extinction coefficients at 0.55 μ m were obtained from visibility measurements performed for times close to the laser extinction measurement times. The corresponding values for 3.8 μ m were obtained from the 0.55 μ m values using the wavelength scaling procedure described in subsection 3.1.1.2. The four right-most columns

FIGURE 4. PRNAS ATMOSPHERIC TRANSMISSION TEST SITE.

SUMMARY OF METEOROLOGICAL CONDITIONS AND LASER NORMALIZATION PARAMETERS FOR PRNAS SPECTRA. TABLE 1.

	٤	[.00]								OAER	R	Н,0	π .κ.	Absolute Normalization	Absolute malization
	iF	Time	Spectrum	ΑĪ	PP1120+	Ę.	ţQ.	HS+	Visibility† 0.55µm	0.55µm	3.81m	Continuum	Digital	Correction	Fitting
Date	TTS	Laser	Number	(°C)	(Torr)	(2)	Ξ	(B/E)	(#S)	(KZ	(Kill)	14001 at son		ractor	(T) 10117
9-54-16	1445	15-2	Ph.24	٦. ټو:	12.3	67	0,	1.03	12.97	0.127	101.	Yes	Ş.	1.0024	0.040
11-08-76	1540	1626	PB.37	0	2.5	69	290	5.15	12.97	0.127	.1092	Yes	o.	1.0108	0.033
	1800	1626	PRSY	-1.7	2.5	82	98	4.63	12.97	0.127	.1591	Yes	ž.	1.0087	0.036
11-09-76	1115	1633	PR	5.2	2.0	47	200	4.12	12.97	0.127	.0895	Yes	2	1.0105	0.0239
	1700	1633	- K	<u>ه</u> . •	2	22	230	4.12	12.97	0.127	08 60.	Yes	£	0.9971	0.0264
11-11-76	1619	1249	+'K-9	8.5	3.0	99	92	3.39	12.93	0.127	1901.	sak	%	1.0086	0.0229
11-17-76	1615	1630	PRod	5. 8	3.0	95	0	4.63	12.97	0.127	0960.	Yes	2.	1.0023	0.0478
11-18-76	1630	1535	PRS	3.9	3.5	7.2	240	1.54	12.97	0.127	.1224	Yes	Ş.	1.0069	0.0291
11-19-76	1320	1515	S. M.	17.5	2.5	0	260	3.60	12.97	0.127	.0886	Yes	8.	0.9956	0.0238
	1335	1515	9685	17.5	5.5	0,	260	3.60	12.97	0.127	9880.	Yes	o X	0.9924	0.0379

The teurological data records were obtained for these quantities from the Naval Ocean Command (NAVUCOM) weather station at PRNAS. In cases where both NRL and NAVOCOM data were available and differed, the average value of the two data items was used.

of Table 1 contain information relating to the availability of previously unpublished tabulations of values for local transmission maxima in the 2400 - 3200 cm⁻¹ region for the spectra, the availability of a high resolution digital tape file for the spectrum, and absolute-transmission-normalization correction factors and fitting errors derived as part of the present study. The latter two quantities are discussed in Section 3.

2.2.2 CAPE CANAVERAL AIR FORCE STATION

The location of the 5.08 km path used for the CCAFS measurements described in this report is shown in Figure 5. The optical transmitter station was located at the shore end of Camera Rd. "A" and the receiver station was located at the shore end of South Patrol Rd. as shown in the figure.

One of the principal advantages of the CCAFS site for laser propagation and high-resolution transmission studies during the late-winter and spring seasons is the wide variation in absolute humidity which can be expected to occur at that location. Since water vapor in its two most abundant isotopic forms (H2O and HDO) is a principal molecular absorber at DF, CO and CO2 laser wavelengths, validation of molecular absorption models is greatly facilitated by experimental data collected under such widely ranging conditions, particularly when associated meteorological changes in aerosol composition and concentration and air temperature are relatively small by comparison. The variation of meteorological conditions encountered during the NRL 1977 CCAFS experiment proved to be quite useful in meeting the experimental objectives; a range of absolute humidity between a moderately low value of 6 torr ppH20 to over 20 torr ppH20 was observed. The wind conditions encountered during the

FIGURE 5. CCAFS ATMOSPHERIC TRANSMISSION TEST SITE.

experiment included winds originating from both overwater and overland directions, giving rise to both maritime-like and predominately continental atmospheric aerosol compositions, and a range of visibilities between 10 and 50 km. Table 2 contains a summary of the meteorological conditions encountered during the experiment. The maximum and minimum values observed for several relevant meteorological parameters are listed in part 1 of the table while part 2 contains a daily summary including the nature of the wind conditions (absolute wind direction, direction relative to the optical propagation path, and wind speed) along with the absolute humidity, air temperature, visibility, and insolation recorded during each of the transmission measurements Apparent aerosol extinction (AAE) values (measured extinction minus calculated molecular absorption) for the four laser wavelength regions studied are also included in section 2 of the table.

The symbol "~" used in several places in Table 2 is intended to indicate average or approximate values for the corresponding entry as a result of: a) forming averages based on visual inspection of the appropriate individual values, or b) estimating a typical average value for a parameter which changed in a systematic manner during the course of an experiment period; e.g., insolation typically varied from about 1.2 w/cm² around 1300 hours to about 0.80 w/cm² near 1500 hours, therefore an entry of 1.00 w/cm² is used as an average value.

Some general observations can be made upon examination of Table 2. During the first of the three periods when long-path transmission measurements were performed (March 2 through 15, 1977) three distinct frontal passage situations were encountered, occurring on 2, 8 and 14 March. The frontal passages were typified by overland wind directions,

TABLE 2. SUMMARY OF METEOROLOGICAL CONDITIONS OCCURRING DURING 1977 CCAFS EXPERIMENT.

1. Maximum and Minimum Values

	ppH ₂ O (torr)			SR (w/cm ²)	WS (m/s)			
MAXIMUM	20.9	30	1022	2.2	8.0	50		
MINIMUM	5.5	5.5 18 1012 0.4 0.0 10						
AT = BP = SR = WS =	partial air tem baromet solar r wind sp	perature ric pres adiation	e ssure	ater vapon	c			

TABLE 2. CONTINUED.

Daily Record of Wind Character, Meteorological Parameters and Apparent Aerosol Extinction (AAE) Values 2.

AAE Nd-YAC (km-l)	.074 .080 .075 .077 .087 .089 .105 .106 .1160
AAE HeNe (km-1)	.099 .099 .127 .116 .110 .104 .113
Date/ Time	(1-14-77 (1006 (1006 (1151 (11
AAE CO ₂ (km-1)	19. 88.69.69.69.89.89.89.89.89.89.89.89.89.89.89.89.89
AAE DF (km ⁻¹)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
AAE Nd-YAG (km-1)	.083 .050 .049 .062 .062
AAE HeNe (km-1)	. 065 . 104 . 134 . 134 . 140 . 103 . 103 . 103 . 115 . 115 . 117 . 117 . 117 . 100
Insolation (w/cm ²)	1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
AT (°C)	22.00
ppH20 (torr)	25.5 10.00 1
Visibility (km)	73,000 74,000 74,000 1833 75,000 74,0
Wind Speed (m/e)	4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Angle Relative To Optical Path (DEG)*	25
0E/0M+	daddaaaaad aaaaaaa
Wind Direction (DEG)	30 100 245 27 27 27 27 20 113 20 20 20 20 20 20 20 20 20 20 20 20 20
טייני.	3-2-77 3-3-77 3-4-77 3-10-77 3-10-77 3-11-77 3-11-77 3-11-77 3-11-77 4-1-77 4-2-77 4-5-77 5-20-77 5-20-77 5-20-77 5-20-77 5-20-77

t OL = overland; OW = overwater

^{&#}x27; = approximately or variable with average value
indicated; // = parallel; // = perpendicular

relatively low values of absolute humidity and high visibilities. (Refer to Figure 5 for wind direction information). The four days occurring during the middle portion of this period (March 9 through 12, prior to a cold front passage on 14 March) exhibited a weather pattern marked by winds moving from NE to SE, along with increasing absolute humidity and decreasing visibility. It is interesting to note that the air temperature decreases lag the onset of frontal passages by as much as one day; note the drop in air temperature on 8 March and the less dramatic drop on 15 March after several days of systematically increasing temperatures.

The second and third long-path measurement periods (31 March through 5 April and 16 May through 25 May, respectively) presented more static weather situations with predominately overwater wind conditions except for 5 April when another frontal passage occurred. During the second period generally high water vapor conditions (18 torr ppH₂O), high air temperatures (24^OC) and moderate visibilities (14 to 30 km) accompanied the steady and moderate (~5 m/s) overwater winds which were primarily perpendicular to the optical path (see Figure 5). Measurements performed during this period should be quite representative of overwater propagation conditions since the conditions along the propagation path would be expected to be more nearly uniform with a wind direction near-normal to the optical path. The third experimental period between 16 and 25 May inclusive exhibited exclusively overwater wind conditions with intermediate to high values of absolute humidity, increasing air temperatures and moderate to high visibilities. On all days during the third measurement period, with the exception of 17 May, wind directions were nearly perpendicular to the optical path and varied between ENE and SSW. These general observations are useful when interpreting the transmission measurements analyzed in this report.

Table 3 contains the information pertinent to the CCAFS spectra analogous to that presented in Table 1 for the PRNAS data.

2.2.3 SAN NICOLAS ISLAND

The 4.07 km overwater path used in the SNI measurements is shown in Figure 6. The NRL IMORL transmitter station was located at site A and the receiver was located at site C in the figure. The path is located along the northern shoreline of SNI.

The meteorological conditions occurring during the SNI experimental period were quite constant when compared with the PRNAS and especially the CCAFS data. A small variation of less than 1 torr in absolute humidity (8.1 to 8.9 torr ppH₂O) and of slightly more than one degree Celsius in air temperature (10.1 to 11.7°C) characterize the atmospheric conditions occurring during the times that laser transmission and FTS measurements were made. In general, moderately high windspeeds between 5.7 and 11.5 m/s, accompanied by moderate visibilities, occurred during the measurement period. The moderately high windspeeds and the proximity of shoals upwind of the propagation path are viewed as contributing to the generation of proportionately larger aerosol extinction coefficients in the 3-5 μm region than in the case of the CCAFS or PRNAS data. The relatively isolated location of SNI in the open ocean is expected to result in the presence of a more maritime-like aerosol with a proportionately larger number of larger particles, resulting from condensation on wave-generated salt-particle nuclei. these cases aerosol extinction coefficients are expected to

SUMMARY OF METEOROLOGICAL CONDITIONS AND LASER NORMALIZATION PARAMETERS FOR THE CCAFS SPECTRA. TABLE 3.

		cal									OAER	g	н,0	ж.я.	Absoluts	Absoluts
Date	T. STFI	Time Laser	Spectrum	AT (°C)	PPH ₂ 0 (Torr)	(°C)	∌ €	€€	HS (B/B)	Visibility (km)	0.55µm (km ⁻ 1)	3.8µm (km ⁻¹)	Continuum Tabulation	Digital File	Correction Factor	Fitting Error (1)
3-03-77	1250	1445	CCOB 3	17.8	13.2	15.8 82		107	3.5	18		.1321	Yes			
3-31-77	1215	9171 1416	CC119	26.0 25.6	16.8	20.6 76 152 20.6 76 152	76 1	52	4.5	7.7.		.057	Yes	Yes	1.005	0.0083
4-01-11	1310	1225	\$0121	24.0	17.7	20.3 79 115	-62	15	3.0	77	961.	1221.	Yes	Yes	0.9999	67 0.0
5-20-77	1350	1511	CC144	26.7	14.7	17.2 66 17.2 66	99	8 08	3.2	22.23	.101	.055 .055	χ ς ε ε	Yes	0.994	0.0140
2-71-13	1245	1152	CC148	26.3 26.5	16.3 16.5	1.08 1.08 1.08	63	90	6.4	16 15	.164	.086	Yes	Yes	1.0078	0.0344
5-23-77	1310	1226 1450	cc153 cc154	26.6 26.6	17.5	20.4 73	73 1	112 78	2.0	37 55	870.	.036	9 2 X X	Yes	1.0173	0.0158
5-277	1145 1210 1535	1349	CC157 CC158 CC159	26.8 26.8 26.7	20.3 20.0 21.6	22.6 76 130 22.6 78 110 22.6 78 110	76 1	855	3.2 5.1 5.1	29 33	.057 .057 .057	.063 .069 .069	222	Yes	1.0041 1.0058 0.9986	0.0210 0.0224 0.0124
5-25-77	0955 1155	1125	50160 50161	29.5 30.0	20.0	22.2 64 145 22.6 64 145	7.7	4.5	3.3	29 29	.100	.047	2 2	Yos Yes	1.0004	0.0035

FIGURE 6. SNI ATMOSPHERIC TRANSMISSION TEST SITE.

be more nearly comparable for visible and infrared wavelengths than in the case of a continental aerosol where the particulate size distribution contains relatively fewer large particles.

Table 4 contains a summary of the information pertaining to the SNI spectra that was presented earlier for the PRNAS and CCAFS data in Tables 1 and 2.

2.2.4 WHITE SANDS MISSILE RANGE

The measurement sites used for the WSMR/ASL experiment are shown in Figure 7. The IMORL transmitter station was located on an elevated berm approximately 5 m above the desert floor near WSMR Arky site. The receiver station was located on a berm used for photographic data collection at the WSMR PAT site and was approximately 8 m above the desert floor. The propagation path of 6.4 km extended in a nearly north-south direction as shown in Figure 7.

The meteorological conditions occurring during the WSMR experiment are characterized by moderate temperatures (15.6 to 21.7° C), low absolute humidities ranging between 2.0 and 4.5 torr ppH₂O and very high visibilities, varying between 46 and 168 km.

A summary of the meteorological conditions and normalization parameters describing the WSMR FTS data is presented in Table 5.

SUMMARY OF METEOROLOGICAL CONDITIONS AND LASER NORMALIZATION PARAMETERS FOR SNI SPECTRA.

		Local								^O AER	×	0°h	н.	Absolute	Absolute
Jace	TS	١	Spectrum Number	AT (°C)	PPH20 (Torr)	₩€	ξ£()	WS (m/s)	Visibility† 0.55um (km)	0.55um (km-1)	3.8µm (km ⁻ 1)	Continuum Tabulation	Digital File	Correction Factor	Fitting Error (1)
\$-01-79	1601	1004	10170	0	ox ox	5	3,0	2,4	87	730	OF O	2	, , , , , , , , , , , , , , , , , , ,		3000
3	1107	1004	SN102	6.0	999	7 17 2	249	6.75	9 69 7	30.	800	2 2 ;	κ es ;	200	.0244
	1725	1853	SN104	:::	3 6.2	7 92	097	11.5	3 8	.214	.053	2 S	Yes	1.0	.0150
5-02-79	0937	9780	901NS	10.1	.7	82	275	11.4		.333	.227	2	Yes	1.0	.0139
	1900	1826	SNI09 SNI10	9.01	8. 8. 8. 0.	80	258	9.9	29	.383	.136	22	Yes	1.0	.0181
5-03-79	0900	0828 1833	SN111 SN112	10.1	8.9	8 8	271 265	5.7	24 35	.128	.202	22	Yes	0.1	.0300
											_				
5-07-79	1439	1516	SN114 SN116	11.7	8.8	80	255	10.9	36	.154	.110	8 8	Yes	1.0	.0366
5-08-79	1015	0938	SMIL7	11.1	8.1	76	112	10.9	47	.101	.065	ž	Yes	1.0	.0318
5-09-79	2020	1914	771NS	10.8	8.1	18	275	10.5	21	766.	.266	<u>v</u>	Yes	1.0	.0109

FIGURE 7. WSMR ATMOSPHERIC TRANSMISSION TEST SITE.

SUMMARY OF METEOROLOGICAL CONDITIONS AND LASER NORMALIZATION PARAMETERS FOR WSMR SPECTRA. TABLE 5.

										840	-	0	2	Absolute	Absolute
	-	Time	Spectrum	AT	PPH-10+	3	ş	+S+	Vieibilitry	0.551m	3.84	Cont inum	Digital	Correction	Fitting
Date	FTS.	Laser	Number	(°C)	(Tofr)	(1)	€	(*/*)	(km)	(km ⁻¹)	(ta.l.)	Tabulation	File	Factor	Error (1)
3-14-79	1538		ASL 04 RN	17.8++	4.5+	7.	14041	8.5++	100	.039	.003	ž	Yes	1.0	.0225
	1741	1630	90	17.8++		7.	140+1	8.5++	100	.039	.003	No.	Yes	1.0	.0159
3-16-79	1606	1705	13	21.7	3.5	27	190	6.9	168	.023	.00	Ŷ.	Yes	1.0	.0336
	1623	1705	14	21.7	3.5	27	190	6.9	168	.023	.00	Š	Yes	1.0	.0280
	1757	1705	15	21.7	3.5	27	190	6.9	168	.023	.00	2	Yes	1.0	.0197
3-17-79	1551	1652	17	19.4	2.0	21	230	7.9	9,7	980.	800.	2	Yes	1.0	0610.
	1615	1652	18	19.4	5.0	21	730	7.9	97	.086	800.	£	Yes	1.0	.0143
	1740	1652	61	19.4	2.0	21	230	5.2	97	980	800.	£	Yes	1.0	.0147
	1751	1652	50	19.4	5.0	21	240	7.9	9,7	980.	800.	Š.	Yes	1.0	.0155
3-18-79	1623	1 700	22	15.6	3.1	27	, 20	2.0	151	.025	.003	Ą.	Yes	1.0	.0280
	1737	1700	23	15.6	3.1	27	200	2.0	151	.025	.003	No	Yes	1.0	.0418

thats at Arky Site not available; walues used were interpolated between measurements, taken at WSHR Desert Site and Holloman Air Force Base.

++Directly measured at Arky Site.

3 Data Analysis

3.1 WATER VAPOR CONTINUUM ABSORPTION ANALYSIS

3.1.1 EVALUATION OF ABSOLUTE-TRANSMISSION NORMALIZA-TION UNCERTAINTIES

The procedures used in deriving absolute transmission calibrations for the NRL FTS spectra involved the initial generation of a relative transmission spectrum, followed by absolute-transmission normalization of this spectrum using the measured absolute transmittance values obtained from a set of DF laser transmittance measurements.

By ratioing the long-path spectra to local source spectra, the source, beamsplitter, and detector spectral response functions were removed from the resulting spectra. The ratioed spectra were then converted from relative to absolute transmission by determining the scale factor needed to convert the relative transmission value of a spectrum at a particular laser frequency to the absolute transmission value obtained by means of an independent, long-path laser extinction measurement.

Detailed numerical examples showing the application of these procedures to the normalization of the WSMR and SNI data are provided in References 4 and 5, respectively. During the course of the detailed procedures used in the normalization of the WSMR and SNI spectra, the selection of a subset of the several available DF laser transmittance measurements was made to exclude measurements for laser lines located in close proximity to strong atmospheric absorption lines. The uncertainty associated with using a measured transmittance value for such a line to normalize an FTS spectrum was found to be substantially larger (several percent uncertainty) than that associated with the use of a

line well isolated from the effects of strong local lines. Consequently, a re-evaluation of the atmospheric-transmission-normalization of the PRNAS and CCAFS spectra was performed, excluding such lines in question (e.g. the P2-10 DF laser line). The results of this re-normalization are shown under the heading "absolute normalization correction factor" in Tables 1, 2, 4, and 5. As can be seen in the tables, the absolute-transmission correction factors thus obtained differ from unity by +1% and are consequently not significant within the overall experimental uncertainty in the measured data. These correction factors do not apply to the WSMR and SNI data which were originally normalized using the selected subset of laser line measurements. The right-most columns in Tables 1, 2, 4, and 5 list the RMS deviations of the differences between measured individual laser transmittance values and the absolute transmittance value of a resultant normalized FTS spectrum at the frequency of that laser line (actually the transmittance values at the two spectrum sample locations that bracket the position of the laser line frequency). These RMS deviations (labeled fitting errors in the tables) provide a measure of the overall quality of fit or normalization uncertainty, as well as an indirect measure of spectral signal to noise ratio. For the best examples (several CCAFS spectra) these quantities are < *1% in absolute transmittance. The "worst case" examples</pre> are seen be $^{3+}5$ % in absolute transmittance. that the strength of atmospheric turbulence along the measurement path occurring during both the laser and FTS transmittance measurements is a primary factor in determining the magnitude of the fitting errors listed in the tables. The smaller numerical values correspond to data of higher quality and greater reliability.

3.1.2 CORRECTIONS TO THE EXPERIMENTAL DATA

In the 3-5 µm window considered here, three phenomena play major roles in the reduction of atmospheric transmission data, namely aerosol extinction, molecular absorption lines, and molecular continuum absorption. Multiple-scattering effects due to aerosols are not significant in the data examined below, since the aerosol extinction coefficients are typically small (<0.2 km⁻¹). Modification of apparent transmission by thermal emission is also neglected in the following analysis since the laser source used in the measurements was modulated at the source location. Unmodulated emission from the intervening path was therefore not detected in the laser extinction measurements. FTS measurements of the optical path emission (using the same configuration as used during laser and FTS transmission measurements, only with the blackbody source not operating) showed that path emission in the 3-5 μ m region was negligible compared with the blackbody source signal.

The comparisons of measured FTS data with water continuum absorption calculations performed using the FASCODE model which are presented below are based on a correction of the measured data for local absorption line, CO₂ and N₂ continuum, and aerosol scattering effects. The optical depth at selected frequencies arising from the first two types of corrections was calculated and subtracted from the optical depths obtained from the measured data. Aerosol scattering contributions to the optical depths obtained from the transmission data are not readily discernible. In most cases (for data other than selected CCAFS spectra) reliable, independent aerosol extinction values are not available, consequently no well-defined distinction between water continuum absorption and aerosol scattering contributions to the measured optical depth can be made. In these cases the

"shape" of the water vapor continuum absorption coefficient can be examined by comparisons with comparable values calculated using the FASCODE model. This approach relies upon the assumption that the aerosol contribution to the measured optical depth can be obtained from the difference between the measured optical depth, corrected for local line and Na and CO2 continua contributions, and the calculated optical depth due to water vapor continuum absorption obtained using That is, the magnitude of the calculated water vapor continuum absorption is assumed to be correct at some frequency and the difference between it and the measured optical depth (appropriately corrected for molecular absorption) is the aerosol extinction component at that frequency. This aerosol component, with appropriate scaling in wavelength, can then be subtracted from the measured data throughout the $1900 - 3100 \text{ cm}^{-1}$ region and any systematic differences between the measured optical depth and that calculated using FASCODE can be determined.

Detailed information describing the calculated local line and N_2 and CO_2 continuum corrections and the corrections for aerosol extinction applied to the measured data is presented in the following two subsections.

3.1.2.1 Corrections for Local Line and for CO₂ and N₂ Continuum Contributions

The water vapor continuum is best observed at wavenumbers where molecular line contributions to total absorption are minimized. A set of 49 such wavenumbers in the 3-5 µm band was chosen for this study. Nevertheless, the effects of wings of molecular lines local to the selected wavenumbers is frequently strong and must be evaluated.

The local line absorption at a frequency $\nu_{\mbox{\scriptsize O}}$ is defined as the absorption due to all the lines whose centers are

within some distance Δv from v_0 . The difference between the measured and the local line absorptions is the "continuum". The magnitude of the continuum depends upon the interval Δv . For the calculations performed in this study $\Delta v = 25 \text{ cm}^{-1}$ around the line frequency v_0 . The local line contributions were computed with the aid of FASCODIC, in a mode where continuum effects were excluded. The results of this computation were considered reasonably accurate, since much theoretical and experimental work has been made in the description of line shapes and strengths in this wavenumber region.

The local line contributions were calculated using the computer program FASCODIC [8] and the 1982 version of the AFGL Atmospheric Line Parameters Compilation [9]. This program uses a Voigt line shape for all molecules except CO_2 for which an exponential-tailed line shape described in [13] is used. These calculations are concerned with the regions between lines and away from line centers. In these regions the Voigt line shape is essentially the Lorentz line shape.

A final phenomenon treated in this work is the molecular continuum absorption due to N_2 and CO_2 . These continua are especially prominent in the 2200-2500 cm⁻¹ wavenumber region, as is the v_3 CO_2 band. In recognition of the strong absorption band and continuum, no sampling points were situated in the 2223 - 2400 cm⁻¹ wavenumber interval. The N_2 and CO_2 continuum models of FASCODIC were utilized to estimate continuum absorption at sampling points in the vicinity of the v_3 band.

The absorption coefficient due to the water vapor continuum α_{wc} is simply the observed total extinction coefficient ϵ minus the individual coefficients due to other effects:

$$\alpha_{\text{wc}} = \varepsilon - (\alpha_{\text{LL}} + \alpha_{\text{CON}} - \sigma_{\text{AER}}),$$
 (1)

where $\alpha_{\rm LL}$ is the absorption coefficient due to local lines, $\sigma_{\rm AER}$ is the aerosol extinction coefficient at 3.8 µm, and $\alpha_{\rm CON}$ is the N₂ and CO₂ continuum absorption coefficient (all dimensions are in km⁻¹).

For this analysis, 49 wavenumbers were chosen for which the absorption is a local minimum; these wavenumbers are listed in Table 6. There are 16 points between 1930 and 2224 cm⁻¹, and 33 points between 2400 and 3059 cm⁻¹, spaced approximately every 20 cm⁻¹. Figure 8 shows the location of these points on a plot of the measured spectrum ASLO6RN. Figure 9 shows the 2 cm⁻¹ wide region around each point and includes both the measured spectrum ASLO6RN plus calculations of only the local line contribution for 2.5, 5.0, 10.0, and 20.0 torr of water vapor. These plots demonstrate that the chosen points are points of locally minimum absorption and also minimum local line contributions. The measured spectrum shows that there are no significant lines at the chosen wavenumbers which are missing from the AFGL line tape.

It should be noted that the resolution of the measured transmittances is limited by the instrument function. Since the measured spectra are unapodized, the instrument function has the form $\sin \nu/\nu$ with a half width at half height of about 0.019 cm⁻¹ (and a full width at the base of 0.0625 cm⁻¹). The halfwidths (half width at half height) of the absorption lines in this region are about 0.1 cm⁻¹ on the average but for some water lines they are as small as 0.01 cm⁻¹. The effect of the instrument function width is to degrade the spectrum around the center of lines, increasing the measured width of the lines and decreasing the measured absorption at the line center. Therefore it is not strictly proper to plot the logarithm of the measured transmittances on an optical depth scale, as in Figure 9. How-

TABLE 6. SELECTED FREQUENCIES FOR MINIMUM LOCAL LINE CONTRIBUTIONS.

(cr	n-1)	<u>. (</u>	cm ⁻¹)
			2522.24
	1930.30	26.	2599.84
	1952.50	27.	2618.64
	1974.10	28.	
	1979.60	29.	
	2004.65	30.	
	2031.25	31.	
7.	2056.05	32.	2719.28
8.	2084.35	33.	2740.74
9.	2102.15	34.	2760.69
10.	2130.50	35.	2778.95
11.	2150.05	36.	2800.10
12.	2159.05	37.	2820.11
13.	2166.80	38.	2839.40
14.	2177.60	39.	2860.19
15.	2190.95	40.	2880.80
16.	2223.68	41.	2899.72
17.	2400.00	42.	2920.40
18.	2420.42	43.	2941.37
19.	2440.85	44.	2959.87
20.	2480.33	45.	2979.52
	2501.00	46.	3000.55
	2520.65	47.	3020.26
	2540.83	48.	3040.45
	2560.42	49.	
	2580.37	- •	

MEASURED SPECTRUM ASLOGRN WITH ARROWS SHOWING THE LOCATION OF SELECTED WAVENUMBERS IN TABLE 5. (a): 1900 cm⁻¹ to 2300 cm⁻¹ FIGURE 8.

FIGURE 8. CONTINUED, (b): $2350 \text{ cm}^{-1} \text{ to } 2750 \text{ cm}^{-1}$.

IGURE 8. CONTINUED, (c): 2750 cm^{-1} to 3150 cm^{-1} .

L = 6.4 km, PLUS MEASURED -1, (b): 1952.50 cm-1, (c): CALCULATED LOCAL LINE CONTRIBUTIONS TO THE OPTICAL DEPTH AROUND POINTS LISTED IN TABLE 5 FOR THE FOLLOWING CONDITIONS: ą): 1930.30 cm⁻¹ , and 20 TORR, 20° C, ppH₂O = 2.5, SPECTRUM FIGURE 9.

(f): 2031.25 cm⁻¹, (g): 2056.05 cm⁻¹ CONTINUED, (e): 2004.65 cm⁻¹, (h): 2084.35 cm⁻¹. 9 FIGURE

(j): 2130.50 cm^{-1} , (k): 2150.05 cm^{-1} , CONTINUED, (i): 2102.15 cm⁻¹ (1): 2159.05 cm⁻¹. FIGURE 9.

CONTINUED, (m): 2166.80 cm⁻¹, (n): 2177.60 cm⁻¹, (o): 2190.95 cm⁻¹, (p): 2223.68 cm⁻¹. FIGURE 9.

(s): 2440.85 cm⁻¹ $(r): 2420.42 \text{ cm}^{-1}$ CONTINUED, (q): 2400.00 cm⁻¹, (t): 2480.33 cm⁻¹. σ. FIGURE

CONTINUED, (u): 2501.00 cm⁻¹, (v): 2520.65 cm⁻¹, (w): 2540.83 cm⁻¹ (x): 2560.42 cm⁻¹. FIGURE 9.

とうとう 1 mm とうこう 1 mm 2 mm 1 character mm 1 character mm 1 character mm 2 character mm 1 charac

CONTINUED, (y): 2580.37 cm⁻¹, (z): 2599.84 cm⁻¹, (aa): 2618.64 cm⁻¹. (bb): 2640.58 cm⁻¹. 9. FIGURE

CONTINUED, (cc): 2661.55 cm^{-1} , (dd): 2679.51 cm^{-1} , (ee): 2700.72 cm^{-1} (ff): 2719.28 cm^{-1} . FIGURE 9.

CONTINUED, (gg): 2740.74 cm⁻¹, (hh): 2760.69 cm⁻¹, (ii): 2778.95 cm⁻¹ (jj): 2800.10 cm⁻¹. FIGURE 9.

CONTINUED, (kk): 2820.11 cm⁻¹, (11): 2839.40 cm⁻¹, (mm): 2860.19 cm⁻¹, (nn): 2880.80 cm⁻¹. FIGURE 9.

CONTINUED, (oo): 2899.72 cm⁻¹, (pp): 2920.40 cm⁻¹, (qq): 2941.37 cm⁻¹, (rr): 2959.87 cm⁻¹. FIGURE 9.

CONTINUED, (ss): 2979.52 cm⁻¹, (tt): 3000.55 cm⁻¹, (uu): 3020.26 cm⁻¹, (vv): 3040.45 cm⁻¹. FIGURE 9.

FIGURE 9. CONTINUED, (ww): 3058.71 cm⁻¹.

ever, we are concerned here with the regions between absorption lines where the effect of the instrument function is negligible.

Table 7 lists the meteorological conditions corresponding to the measured spectra used in this study. each of these spectra, the measured optical depth (= -ln T) was corrected for aerosol, local line, and N2 and CO2 continuum contributions. The differences are then the measured continuum values. Table 8 lists 19 sets of conditions for the local line and N₂ and CO₂ continuum calculations along with the measured spectra associated with each calculation. Table 9 gives the volume mixing ratios used to calculate the path-integrated amounts for the gases other than water vapor. A single local line calculation was used for spectra with similar water vapor partial pressures. No aerosol extinction was included in the calculation. The local line contributions were calculated at approximately every 0.05 cm⁻¹ which, in general, did not match exactly the wavenumbers in Table 6. For each wavenumber in Table 6, the nearest three calculated points were averaged. Similarly, the measured spectra are tabulated at intervals of about 0.06 cm⁻¹. For all but the Cape Canaveral spectra, the three measured points nearest to the wavenumbers in Table 6 were used; for the Cape Canaveral spectra, only the nearest point was used. The results of the calculated values for the local line, and N₂ and CO₂ continuum contributions for each of the frequencies listed in Table 6 and for each of the 19 cases listed in Table 8 are tabulated in appendices B and C, respectively.

3.1.2.2 Corrections for Aerosol Scattering

Attenuation due to aerosol extinction is not a well-defined quantity in the available data, for various reasons.

TABLE 7. METEOROLOGICAL CONDITIONS FOR EACH SPECTRUM.

SPECTRUM	T	PPH ₂ O	U	P	VIS
	•	111.20	O	r	V15
]	(°C)	(torr)	(gm/cm ²)	(mb)	(km)
Patuxent Ri	ver L = 5.	12 km			
PR024	18.7	11.4	6.14	NA	13†
PR037	0	2.8	1.32	NA	13
PR039	-1.7	2.8	1.32	NA	13
PR040	6.5	2.8	1.06	NA	13
PR042	5.4	2.8	1.28	NA	13
PR049	7.9	4.3	1.73	NA	13
PR050	7.0	4.7	1.58	NA	13
PR054	3.9	3.3	1.48	NA	13
PR055	17.3	2.5	1.27	ÑΑ	13
PR056	17.3	2.5	1.27	NA	13
Cape Canave	eral L = 5.0	08 km			
CC083	17.8	13.2	6.66	1021	20
CC119	25.0	18.0	8.24	1022	20
CC120	25.6	18.0	8.84	1021	20
CC121	24.0	17.7	8.74	1019	2 0
CC144	26.2	14.7	7.19	1019	20
CC145	26.2	14.7	7.19	1019	25
CC147	26.3	16.3	8.00	1020	14
CC148	26.3	16.3	8.09	1020	15
CC153	25.6	18.0	8.56	1015	50
CC154	26.0	18.3	8.52	1015	55
CC157	26.9	20.3	9.93	1017	3 0
CC158	26.8	20.0	9.79	1017	3 0
CC159	26.7	21.0	10.28	1016	35
CC160	29.5	20.0	9.70	1015	22
CC161	30.0	20.5	9.92	1015	24
j					
L					

 $\ensuremath{^{\dagger}}\xspace \ensuremath{\text{Data}}$ obtained from the Naval Ocean Command Weather Station at PRNAS

TABLE 7. (CONTINUED).

SPECTRUM	т	PPH ₂ O	บ	P	VIS
	(°C)	(torr)	(gm/cm ²)	(mb)	(km)
White Sands					
Missile Range	L = 6.4	km			
ASL04	17.8	4.5	2.86	886	100
ASL06	17.8	4.5	2.86	886	100
ASL13	21.7	3.5	2.19	878	168
ASL14	21.7	3.5	2.19	878	168
ASL15	21.7	3.5	2.19	878	168
ASL17	19.4	2.0	1.26	878	46
ASL18	19.4	2.0	1.26	878	46
ASL19	19.4	2.0	1.26	878	46
ASL20	19.4	2.0	1.26	878	46
ASL21	15.6	3.1	1.98	879	151
ASL23	15.6	3.1	1.98	879	151
San Nicholas					· · · · · ·
Island	L = 4.0	7 km			
SN101	10.9	8.8	3.64	1013	48
SNI02	10.9	8.6	3.56	1013	48
SNI04	11.2	8.3	3.43	1013	33
SNI05	11.1	8.2	3.39	1013	33
SNI06	10.4	8.4	3.48	1013	NA
SNI09	10.8	8.8	3.64	1013	29
SNI10	10.6	8.9	3.69	1013	24
SNIII	10.1	8.9	3.69	1013	24
SNI12	10.5	8.2	3.39	1013	35
SNI14	11.7	8.9	3.67	1013	36
SNI16	11.3	8.8	3.64	1013	20
SNI17	11.1	8.1	3.35	1013	20
SNI24	10.8	8.1	3.35	1013	NA
1					
!					

TABLE 8. PARAMETERS FOR LOCAL LINE CALCULATIONS.

		FA	FASCODE CASE		CORRE	CORRESPONDING MEASUREMENT	
	P (dm)	(c)	Water Vapor (torr)	Path (km)			
-	886	17.8	4.5	6.4	ASL04,	ASL06	
2	878	21.7	3.5	6.4	ASL13,	ASL14, ASL15	
٣	879	19.4	2.0	6.4	ASL17,	ASL18, ASL19, ASL20	
4	879	15.6	3.1	6.4	ASL21,	ASL23	
ហ	1013.25	11.0	8.0	4.07	SNI04,	SNI05, SNI12, SNI17,	SNI24
9	1013.25	11.0	8.5	4.07	SNI02,	90INS	
7	1013.25	11.0	0.6	4.07	SNIO1, SNI14,	SNI09, SNI10, SNI11, SNI16, SNI25, SNI26	SNI13,
∞	1013.25	18.9	13.5	5.1	CC83		
თ	1013.25	26.0	14.75	5.1	CC144, (cc145	
10	1013.25	26.3	16.4	5.1	CC147, (CC148	
11	1013.25	26.7	17.4	5.1	cc153, (cc154	
12	1013.25	25.0	18.0	5.1	cc119, (cc120, cc121	
13	1013.25	26.8	20.0	5.1	cc157, (cc158, cc160	
14	1013.25	28.4	20.5	5.1	CC159, (cc161	
15	1013.25	0.0	2.8	5.12	PRO37,	PRO39	
16	1013.25	5.0	3.0	5.12	PRO40,	PRO42, PRO54	
17	1013.25	7.5	4.5	5.12	PRO49,	PRO50	
18	1013.25	17.3	5.5	5.12	PR055,	PR056	
19	1013.25	19.7	11.4	5.12	PR024		

TABLE 9. MIXING RATIOS FOR GASES OTHER THAN WATER VAPOR.

MOLECULE	MIXING RATIO(ppmv)
co ₂	330.
o ₃	0.04
N ₂ 0	0.27
со	0.19
CH ₄	1.15
o ₂	2.095 x 10 ⁵
N ₂	7.805 x 10 ⁵

Aerosol size distribution data obtained at the SNI site, for example, were probably dominated by surf-generated aerosols for most observed wind directions [5]. Under wind conditions where the aerosol sampling instrumentation at SNI was subjected to strong local surf effects and the majority of the 4.07 km over-water transmission path was not, the optical depth along the transmission path can be grossly overestimated. Sample calculations (which assume a particle size distribution homogeneous over the transmission path) confirm this point, yielding optical depths (due solely to aerosol extinction) which frequently exceed the observed The aerosol extinction coefficient for the SNI data was therefore estimated using the Navy Aerosol Model [14]. This empirically-based model considers such factors as relative humidity, wind speed, visibility at 0.55 µm, and airmass type in the specification of an aerosol extinction coefficient at a particular wavelength. The SNI meteorological data (see Table 3) specify all necessary parameters, with the exception of airmass type.

Airmass type (open oceanic, coastal, continental) happens to correlate very well with the level of atmospheric radon (which is produced by the decay of radium in crustal rock formations). Reference 14 gives an expression for an integer parameter P (which varies between 1 and 10) descriptive of the airmass type:

$$P = INT (Rn/4) + 1$$
 (2)

where INT () is a function which truncates its argument to the next lowest integer and Rn is the decay rate activity of atmospheric radon (expressed in picocuries per cubic meter). An oceanic airmass typically has P = 1 and a continental airmass usually has P = 10. Atmospheric radon measurements

were taken concurrently with the transmission spectra, [15,16], thus completing the essential input for the aerosol model. As expected, the aerosol extinction predicted by the model was frequently quite lower than that inferred from surf-influenced particle measurements for the SNI data.

For the other three experimental sites PRNAS, CCAFS, and WSMR, extinction coefficients in the 3-5 μ m region were estimated by scaling values obtained in the photopic region from available visibility data, except for selected CCAFS data where Nd-YAG laser transmittance measurements were available.

The aerosol extinction coefficient for visible wavelengths is related to the visual range V by Koschmeider's formula:

$$\sigma_{0.55} = 3.912/V.$$
 (3)

Incorporating a small correction for molecular scattering, the relationship becomes:

$$\sigma_{0.55} = 3.912/V - .0123.$$
 (4)

For any given aerosol of known size distribution and composition, the relationship between extinction coefficients at various wavelengths remains constant. Therefore, we can perform the simple scaling:

$$\sigma_{AER}(\lambda, V) = \frac{(\frac{3.912}{V} - .0123) \sigma_{AER}(\lambda, V_0)}{\sigma_{AER}(0.55 \mu m, V_0)}$$
(5)

Reference 17 provides the necessary parameters to apply this scaling formula for the aerosol types defined by Shettle and Fenn. This formula does not represent what actually happens in the atmosphere when the visibility changes. While the formula implies only a change in the aerosol number density, usually there is also a change in both the composition of the aerosol and the particle size distribution. This is because the change in visibility is often accompanied by a change in the relative humidity.

Attempts were made to minimize the impact of the uncertainties in the value of the aerosol extinction component to the total optical depth by excluding (where possible) those spectra obtained under conditions where the visual range was less than 20 km.

Attempts to estimate the aerosol extinction component of the total optical depth utilizing concurrent aerosol spectrometer measurements (CCAFS and SNI data) and/or concurrent visibility data (all data sets) did not yield consistent values for the observed water continuum absorption coefficients, when aerosol optical depths were subtracted from the measured total optical depth. Therefore, an alternate approach was used in the evaluation of the aerosol component in the experimental data. This latter approach assumes that magnitude of the calculated water continuum absorption coefficient is correct at a certain frequency and that the aerosol contribution can be estimated from the difference between the measured extinction and the calculated water continuum absorption coefficient at that frequency.

A cursory study of the FASCODIC-computed local line and continuum contributions indicates that these factors make a minimum contribution to the total extinction at the $2700.720~\rm cm^{-1}$ sample point. Under the assumption that the

local line and continuum results at this sample point are correct, one may subtract the computed results from the observed optical depth $\tau_{\rm OBS}(\nu_{_{\rm O}})$ at 2700.720 cm⁻¹ to get an aerosol extinction coefficient:

$$\sigma_{AER}(v_o) = [\tau_{OBS}(v_o) - [\tau_{LL}(v_o) + \tau_{CONT}(v_o)]]/L_{PATH}$$
(6)

where $v_O = 2700.72 \text{ cm}^{-1}$, and $L_{PATH} = \text{total path length}$.

Equation 6 establishes the aerosol extinction coefficient at a particular wavenumber. The relatively large wavenumber range covered by the sampling points in this study makes the assumption of a wavenumber-invariant aerosol extinction coefficient somewhat tenuous. Examination of Figure 10 (which is a plot of maritime aerosol extinction as a function of wavelength presented in Figure 17 from keference 17) indicates three things of interest here:

- (a) the aerosol extinction curve is relatively free of kinks or strong curvature in the $3-5\,\mu$ m interval
- (b) the linearity of the curve in the 3-5 μ m interval on the log-log plot means that fits of the form $\sigma(v)=Cv^{-n}$ or $\sigma(\lambda)=C\lambda^{+n}$ can be made (n<0)
- (c) the slope of the curve on the log-log plot does not appear to be strongly dependent upon relative humidity in the 50% - 95% range.

A straight line was fit to the 70% RH curve of Figure 10 and extended to the left and right boundaries of the plot frame. The (x, y) values at the two intersections give the value of n:

$$n = \frac{\ln y_2 - \ln y_1}{\ln x_2 - \ln x_1} = -0.968 \tag{7}$$

FIGURE 10. VOLUME EXTINCTION AS A FUNCTION OF RELATIVE HUMIDITY FOR A MARITIME AEROSOL WHOSE TOTAL NUMBER DENSITY IS FIXED AT 4,000 cm $^{-3}$ [17].

thus, for the wavenumber (ν) domain, one obtains

$$\sigma_{AER}(v) = c v^{+0.968},$$
 (8)

where

$$C = \sigma_{AER}(\nu_0) \nu_0^{-0.968}$$
 (9)

The value of C is the quantity determined for each observed spectrum, using the value for $\sigma_{AER}(v_O)$ given by Equation 6.

Plots showing the results of this fitting process for all of the spectra studied are contained in the following section. The relative results (how well the forms of the "observed" and theoretical H₂O continuum curves overlap) appear to be quite acceptable. The absolute fit of the continuum is only approximate, since the aerosol extinction uncertainties are poorly known.

A subset of the CCAFS spectra is amenable to further analysis regarding the magnitude of the water vapor continuum absorption coefficient at the 2700.720 cm $^{-1}$ point. For certain of the CCAFS spectra, measured Nd-YAG laser transmittances at 1.06 μm are available [2,3]. Table 10 provides a listing of the Nd-YAG transmittance measurement times and extinction coefficients together with the identifications and measurement times for the FTS spectra and the times of the DF laser transmittance measurements used for normalization of the FTS spectra.

Using the curves shown in Figure 10, the ratio of the aerosol scattering coefficient at 3.7027 μ m, (2700.720 cm⁻¹), to that at 1.06 μ m can be estimated for various values of relative humidity. Figure 11 shows the dependence of the $\sigma_{3.7}/\sigma_{1.06}$ ratio upon relative humidity which was derived from the curves shown in Figure 10. Using the mea-

MEASURED AEROSOL EXTINCTION COEFFICIENTS AT 0.63 µm AND 1.06 µm CORRESPONDING TO SELECTED CCAFS SPECTRA. TABLE 10.

PTS SPICTION MUMBER	DATE/TIME	LASER E	LASER EXTINCTION HEASUREHENT VALUE (km ⁻¹)/TIME	ONT VALUE	VISIBILITY Value (km)/Time
		DF (3.6-4.0 µm)	HeNe n) (0.63 µm)	Nd-YAG (1.06 µm)	
CC083	3-03-77/1250	1445	;	1	18 6
CC119 CC120	3-31-77/1215 1245	1420	.121 @ 1511		24 @ 1404
CC121	4-01-77/1310	1407	.196 @ 1438	;	
CC144 CC145	5-20-77/1350 1415	1511	.101 @ 1438	.049 @ 1440 .045 @ 1536	25 פ 1440
CC147 CC146	5-21-77/1245 1300	1156	.164 @ 1130 .160 @ 1207 .167 @ 1329 .173 @ 1359	.062 @ 1133 .066 @ 1208 .067 @ 1331 .082 @ 1401	15 ë 1329
CC153 CC154	5-23-77/1310 1330	1215	.029 @ 1236 .041 @ 1558	.041 @ 1139 .046 @ 1239 .056 @ 1433 .057 @ 1435	37 ê 1310
CC157 CC158 CC159	5-24-77/1145 1210 1535	1349	.056 @ 1328 .075 @ 1328 .056 @ 1409 .058 @ 1503	.049 @ 1113 .052 @ 1331 .049 @ 1412 .057 @ 1504	29 @ 1133 33 @ 1504
CC160 CC161	5-25-77/0955	1127	.119 @ 0847 .080 @ 0930 .076 @ 1006	.085 @ 0848 .051 @ 0932 .054 @ 1010	14 @ 0930 29 @ 1130

ない。1911年1月マンクラフト1日の大学なななない。1911年によっても、1918年のスプランド、1918年の大学の大学11日ではないできませ

FIGURE 11. RATIO OF $^{\sigma}$ 3.7/ J 1.06 FOR MARITIME AEROSOL FOR VARIOUS VALUES OF R.H. DERIVED FROM REFERENCE 17.

sured values of $\sigma_{1.06}$ given in Table 10 and the scaling factor shown in Figure 11, aerosol contributions independent of the measured FTS extinction were obtained for the several CCAFS spectra listed in Table 10.

When these values of σ_{AER} at 2700.720 cm⁻¹ are substituted into equation 1 independent values for α_{WC} can be obtained. Plots showing comparisons of the appropriately corrected measured data for the several CCAFS spectra listed in Table 10 to FASCODE water vapor continuum absorption calculations are shown in and discussed in Figure 16, subsection 3.1.4.

3.1.3 GENERATION OF WATER VAPOR ABSORPTION COEFFI-CIENTS FROM FASCODIC

As configured in its public distribution form, the FASCODIC code package does not permit direct access to individual $\rm H_2O$, $\rm N_2$, or $\rm CO_2$ continua. That portion of the code responsible for generation of continuum absorption coefficients was extracted and configured to run as a "stand alone" program on a micro-computer. This continuum generation program accepts the following parameters as input: total air pressure, air temperature, column number densities of $\rm H_2O$, $\rm CO_2$, $\rm O_3$, $\rm N_2O$, $\rm CO$, $\rm CH_4$, $\rm O_2$, and $\rm N_2$, and the array of wavenumber values at which absorption is to be computed. The output is the optical depth due to water vapor continuum alone or the sum of all continua ($\rm H_2O + N_2 + \rm CO_2$).

The FASCODIC local line and continuum computations were carried out for standard conditions which closely approximate those for which the observed transmission spectra were taken. Table 8 indicates the mapping between these standard conditions and specific atmospheric spectra.

dent of the measured FTS extinction were obtained for the own in Figure 11, aerosol contributions indepen-Table 10 and the scaling several CCAFS spectra listed in Table 10.

When these values of o AER at 2700.720 cm⁻¹ are substituted into equation 1 independent values for a wc can be obtained. Plots showing comparisons of the appropriately corrected measured data for the several CCAFS spectra listed in Table 10 to FASCODE water vapor continuum absorption calculations are shown in and discussed in Figure 16, subsection 3.1.4.

GENERATION OF WATER VAPOR ABSORPTION COEFFI-

As configured in its public distribution form, the FASCODIC code package does not permit direct access to individual H₂O, N₂, or CO₂ continua. That portion of the code responsible for generation of continuum absorption coefficients was extracted and configured to run as a "stand alone" program on a micro-computer. This continuum generation program accepts the following parameters as input: total air pressure, air temperature, column number densities of H₂O, CO₂, O₃, N₂O, CO, CH₄, O₂, and N₂, and the array of wavenumber values at which absorption is to be computed. The Output is the Optical depth due to water vapor continuum

alone or the sum of all continua $(H_{20} + N_2 + co_2)$. The FASCODIC local line and continuum computations were carried Out for standard conditions which closely approximate those for which the observed transmission spectra were taken. Table 8 indicates the mapping between these standard conditions and specific atmospheric spectra.

COMPARISON OF CORRECTED SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS ASL17, ASL18, AND ASL19 COMPARED WITH FASCODE CASE 3. FIGURE 12a.

COMPARISON OF CORRECTED SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS ASL20 COMPARED WITH FASCODE CASE 3. FIGURE 12b.

COMPARISON OF CORRECTED SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS ASL23 AND ASL21 COMPARED WITH FASCODE CASE 4. FIGURE 12c.

COMPARISON OF CORRECTED SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS ASL13, ASL14, and ASL15 COMPARED WITH FASCODE CASE 3. FIGURE 12d.

COMPARISON OF CORRECTED SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS ASLO4 and ASLO6 COMPARED WITH FASCODE CASE 1. FIGURE 12e.

COMPARISON OF CORRECTED PRNAS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS PRO37 and PRO39 COMPARED WITH FASCODE CASE 15. FIGURE 13a.

その主義の方式の表示に関係などにある。

COMPARISON OF CORRECTED PRNAS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS PRO40, PRO42, AND PRO54 COMPARED WITH FASCODE CASE 16. FIGURE 13b.

COMPARISON OF CORRECTED PRNAS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS PRO49 AND PRO50 COMPARED WITH FASCODE CASE 18. FIGURE 13c.

COMPARISON OF CORRECTED PRNAS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS PRO55 AND PRO56 COMPARED WITH FASCODE CASE 18. FIGURE 13d.

では、10mm

CONTINUUM ABSORPTION CALCULATIONS PRO24 COMPARED WITH FASCODE CASE 19. COMPARISON OF CORRECTED PRNAS SPECTRAL DATA TO FASCODE WATER FIGURE 13e.

COMPARISON OF CORRECTED SNI SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS SNI24 AND SNI17 COMPARED WITH FASCODE CASE 5. FIGURE 14a.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

COMPARISON OF CORRECTED SNI SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS SNI05, SNI04, AND SNI12 COMPARED WITH FASCODE CASE 5. FIGURE 14b.

COMPARISON OF CORRECTED SNI SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS SNI02 AND SNI03 COMPARED WITH FASCODE CASE 6. FIGURE 14c.

COMPARISON OF CORRECTED SNI SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS SNI01, AND SNI10, AND SNI09 COMPARED WITH FASCODE CASE 7. FIGURE 14d.

COMPARISON OF CORRECTED SNI SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS SNI16, SNI14, AND SNI11 COMPARED WITH FASCODE CASE 7. FIGURE 14e.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC083 COMPARED WITH FASCODE CASE 8. FIGURE 15a.

の場合は、一般に対象となる。

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASTLE WATER CONTINUUM ABSORPTION CALCULATIONS CC144 AND CC145 TIMERREL WITH FASCODE CASE 9. FIGURE 15b.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC147 AND CC148 COMPARED WITH FASCODE CASE 10. FIGURE 15c.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC153 AND CC154 COMPARED WITH FASCODE CASE 11. FIGURE 15d.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC119, CCL20, AND CC121 COMPARED WITH FASCODE CASE 12. FIGURE 15e.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC157, CC158, AND CC159 COMPARED WITH FASCODE CASE 14. FIGURE 15f.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS CC160, AND CC161 COMPARED WITH FASCODE CASE 14. FIGURE 15g.

人人の名前でいいいいかい 神間でからないがに 間に対けられたい

CONTINUUM ABSORPTION CALCULATIONS (MEASUREMENT-DERIVED AEROSOL EXTINCTION CORRECTIONS INCLUDED) CC144 AND CC145 COMPARED WITH FASCODE CASE 9. COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER FIGURE 16a.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS (MEASUREMENT-DERIVED AEROSOL EXTINCTION CORRECTIONS INCLUDED) CC147 AND CC148 COMPARED WITH CASE 10. FIGURE 16b.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS (MEASUREMENT-DERIVED AEROSOL EXTINCTION CORRECTIONS INCLUDED) CC153 AND CC154 COMPARED WITH FASCODE CASE 11. FIGURE 16c.

CONTINUUM ABSORPTION CALCULATIONS (MEASUREMENT-DERIVED AEROSOL EXTINCTION CORRECTIONS INCLUDED)CC157, CC158, AND CC159 COMPARED COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER WITH FASCODE CASE 13. FIGURE 16d.

COMPARISON OF CORRECTED CCAFS SPECTRAL DATA TO FASCODE WATER CONTINUUM ABSORPTION CALCULATIONS (MEASUREMENT-DERIVED AEROSOL EXTINCTION CORRECTIONS INCLUDED)CC160 AND CC161 COMPARED WITH FASCODE 14 FIGURE 16e.

independent aerosol extinction components could be determined. In Figures 16 (a) through 16 (e) the data shown in Figures 15 (b) through 15 (g) (except 15 (e)), have been replotted, using the scaled Nd-YAG measurements to determine the aerosol extinction at 2700.270 cm⁻¹.

Tabular listings of the data shown in Figures 12 through 16 are contained in Appendix A. Included in these tabulations are the water vapor continuum absorption coefficient values calculated using the appropriate FASCODE case and the ratios and differences between each of the measured spectral values and the corresponding calculated values.

The DF laser line transmittance measurements typically used for absolute-transmittance normalization of the FTS spectra span the region between 2527.391 cm $^{-1}$ (P2-12 line) and 2727.309 cm $^{-1}$ (P2-4 line). This is the case for the ASL and SNI spectra. The PRNAS spectra were normalized using varied sets of DF laser transmittances as shown in Table 11. The CCAFS spectra shown in Figures 15 and 16 were normalized using six DF laser lines between the P2-12 line (2527.391 cm $^{-1}$) and the P1-6 line (2767.968 cm $^{-1}$).

Several observations can be made upon examination of the plots shown in Figures 12-16 and the corresponding tabulated data presented in Appendix A. Consistently, in all of the data sets, one sees that the experimental data point at 2223.68 cm⁻¹ shows a considerably larger optical depth than does the FASCODE calculation. The converse is generally true for the data point located at 2719.28 cm⁻¹.

An examination of the local line optical depth calculations for these frequencies (shown in Figure 9) shows that they occur in troughs between strong absorption lines. In such situations small registration errors ($\stackrel{<}{\sim}$ 0.1 cm⁻¹) in the experimental wavenumber scale can cause substantial discre-

TABLE 11. DF LASER LINE PREQUENCIES USED FOR NORMALIZATION OF THE PRNAS FTS DATA.

SPECTRUM	RANGE OF DF LASER LINES			
	LOWEST WAVENUMBER		HIGHEST WAVENUMBER	
	LINE I.D.	WAVENUMBER (cm ⁻¹)	LINE I.D.	wavenumber (cm ⁻¹)
PRO37	P2 - 12	2527.391	P2 - 7	2742.997
PRO40 PRO42 PRO54	P3 -10	2496.721	P1 - 6	2767.968
PRO49 PRO50				
PRO55 PRO56	P2 - 12	2527.391	P1 - 6	2767.968
PRO24	P2 - 12	2527.391	P2 - 7	2742.997

pancies in the calculated corrections for local line contributions. Further examination of the plots shown in Figure 9 shows that data points located at 2979.52 cm⁻¹ and 3020.26 cm⁻¹ also fall into this category. It is not surprising to see the experimental data points corresponding to the four above frequencies deviate from otherwise smooth curves in the plots shown in Figures 13-16.

Additional observations are consistently evident in all of the comparisons shown in Figures 12-16. These include (with respect to the calculated FASCODE results): a) consistently larger measured extinction values for the three frequencies 2400.00, 2420.42, and 2440.84 cm⁻¹, b) consistently lower measured extinction values for the data points between 1930.30 and 2190.95 cm⁻¹, and c) for those spectra collected during conditions of lower absolute humidity, (ASL and PRNAS) generally a larger measured extinction than the calculated values for v > 2800 cm⁻¹.

In comparing the plots with one another one should be mindful of the differences in the ordinate scales for the various plots. The ASL and PRNAS spectra were collected during conditions of low absolute humidity and the water continuum absorption coefficients are correspondingly low, with typical values ranging from 0.002 to 0.009 km⁻¹ at 2700 cm⁻¹, except for spectrum PRO24 where the value is 0.019 km⁻¹. Small uncertainties in the aerosol component of the total extinction tend to obscure the comparisons shown in Figures 12 and 13 for the ASL and PRNAS data. In general, the magnitude of the calculated water continuum absorption coefficient is comparable to or even smaller than the experimental uncertainty in the measured extinction coefficient corresponding to a $\pm 3\%$ transmittance measurement uncertainty. The relative uncertainty in extinction, $d\epsilon/\epsilon$,

is related to the relative uncertainty in transmittance dT/T by the relationship:

$$d\varepsilon/\varepsilon = - (1/\ln T) dT/T.$$
 (10)

When the extinction coefficient at 2700 cm⁻¹, ε , equals 0.002 km⁻¹ (apart from aerosol contributions), the transmittance of a 5.1 km path is 99%. A +3% value for dT/T translates into a 300% uncertainty in $d\epsilon/\epsilon$. The aerosol component required to produce agreement between the measured extinction coefficient and the calculated FASCODE water continuum absorption coefficient is typically 0.02 to 0.03 km⁻¹ for the ASL and PRNAS spectra shown in Figures 12 and 13, and consequently overwhelms the small water vapor continuum absorption coefficients corresponding to these spec-The relatively large amount of scatter in the data points between 2800 and 3060 cm⁻¹ seen in the ASL spectra reflects the fact that the measured transmittances were very high, on the order of 80%. In this case $d\epsilon/\epsilon = 4.5 \times dT/T$ or +13.4% for a value of dT/T = +3%. There is an indication, within the uncertainties identified above, that the experimental absorption coefficient values are usually larger than the calculated values in the region from $2800~{\rm cm}^{-1}$ to 2980 cm⁻¹ and frequently smaller than the calculated values for $v > 3000 \text{ cm}^{-1}$. The latter behavior is apparent in the PRNAS spectra collected for absolute humidities, $\sqrt{5.5}$ torr ppH₂O.

The SNI Spectra show generally good agreement with the FASCODE calculations in the spectral region between $2600 \, \mathrm{cm}^{-1}$ and $3000 \, \mathrm{cm}^{-1}$. Due to the large variation in absorption coefficient between $1970 \, \mathrm{cm}^{-1}$ and $2200 \, \mathrm{cm}^{-1}$ the plots shown in Figures 14 (a) through 14 (e) are scaled such that the coefficient values between $2400 \, \mathrm{cm}^{-1}$ and $2900 \, \mathrm{cm}^{-1}$ are

difficult to discern. The tabular listings of the plotted values presented in appendix A are useful for obtaining quantitative comparisons in this spectral region.

A general feature of all of the SNI data except for the plots of spectra SNIO2, SNIO4, SNIO5, and SNIO6 is that the experimental data points between 1974.10 cm⁻¹ and 2223.68 cm⁻¹ lie below the calculated points as do the ASL spectral points in this region. The relatively large aerosol component and its associated uncertainty undoubtedly contribute to the inconsistencies seen in the SNI data.

In all of the comparisons of the SNI data shown in Figures 14 (a) through 14 (e) the data points between 2959.87 cm $^{-1}$ and 3058.71 cm $^{-1}$ exhibit larger extinction values than do the corresponding calculated points.

As previously discussed, the effects of uncertainties associated with the correction for local line contributions render the corrected values of the data points at 2979.52 $\,\mathrm{cm}^{-1}$ questionable.

The CCAFS data shown in Figures 15(a) through 15(g) show rather consistent behavior in that the experimental extinction values are smaller than the calculated values between 1930.30 cm⁻¹ and 2102.15 cm⁻¹ and again between 2880.80 cm⁻¹ and 3058.71 cm⁻¹. In general, the CCAFS data points fall on smoother curves than do the data from the other three data sets. This is in part due to the fact that the higher molecular absorption coefficients seen in the CCAFS data are larger than the fundamental experimental uncertainties in the measurements. The several data points subject to errors in the local-line-absorption corrections are quite obvious when examining the plots of the CCAFS data. A good comparison of the "shape" of the FASCODE water continuum absorption coefficient with that determined by the

experimental data is presented in the several plots of the CCAFS data shown in Figures 15(a) through 15(g).

The use of Nd-YAG laser transmittance measurements as an independent means of assessing the aerosol extinction component in the 3-5 µm region was discussed in subsection 3.1.2.2. The CCAFS spectra for which Nd-YAG laser transmittance values are available are listed in Table 9 and include the spectra designated as CC144, -145, -147, -148, -153, -154, -157, -158, -159, -160, and -161. These spectra were re-plotted using infrared aerosol extinction coefficients at 2700.72 cm⁻¹ derived from the measured Nd-YAG extinction coefficients listed in Table 10. The humidity and wavelength scaling discussed in subsection 3.1.2.2 and the modeled wavelength dependence given by Equations 8 and 9 were used. Figures 16(a) through 16(e) show the results of using this approach to determine an experimental water vapor continuum absorption coefficient.

The comparison shown in Figure 16(a) between experimental data points for spectra CC144 and CC145 and calculated values for FASCODE case 9 shows a significant difference between the measured and calculated values. Over the spectral range from 2501.00 cm $^{-1}$ to 2958.87 cm $^{-1}$ the experimental data points for the two CCAFS spectra are essentially superimposed on one another and are larger than the corresponding calculated points by an amount varying from 0.067 km $^{-1}$ at 2501.00 cm $^{-1}$ to 0.034 km $^{-1}$ at 3959.87 cm $^{-1}$ (see Appendix A for a tabulation of the difference values).

The several comparisons shown in Figures 16(b) through 16(e) show generally close agreement between the magnitudes of the measured data and calculated values over the 2599.84 cm⁻¹ to 2941.37 cm⁻¹ region. In light of the distinctly different appearance of the comparison shown in Figure 16(a), it is likely that the relatively large differences in

extinction values are due to an incorrect determination of the aerosol component of the total extinction. The time differences between the FTS and calibrating DF laser measurements are comparable for the CC144 and CC145 spectra to those for the several succeeding spectra and the measured aerosol extinction coefficient at 1.06 µm remained fairly constant during the FTS and DF laser measurement period. The discrepancy in evaluation of the aerosol component for the spectra shown in Figure 16(a) therefore cannot be readily explained on the basis of the above considerations.

The remaining data and comparisons shown in Figures 16(b) through 16(e) form a rather consistent data set. In all cases the measured values exceed the calculated values over the range between $2400.00~\rm cm^{-1}$ and $2941.37~\rm cm^{-1}$. A crossover occurs between $2920~\rm and~2940~\rm cm^{-1}$ and the experimental data are lower than the calculated values for wavenumbers larger than $2940~\rm cm^{-1}$.

Looking at the comparisons in the longer wavelength region one sees good agreement in extinction magnitude for the data points between 2130.50 cm⁻¹ and 2190.95 cm⁻¹. The measured extinction values are consistently smaller than the calculated values for wavenumbers smaller than 2130.50 cm⁻¹. The ratio of the measured extinction values to those calculated using FASCODE for all of the data shown in Figures 12 through 16 is tabulated in Appendix A. These ratios can be used to determine the size of the correction factor needed to produce exact agreement between the measured data and the FASCODE result, keeping in mind that the validity of the correction factor so derived rests on the validity of the aerosol extinction corrections described above.

For purposes of quantitatively determining a correction factor for the FASCODE water vapor continuum absorption coefficient, the spectral values plotted in Figures 16 (b)

through 16 (e) were divided into two groups, corresponding to different ranges of absolute humidity. Data for spectra CC147, -148, -153, and -154, corresponding to the absolute humidity range between 16.3 and 17.4 torr ppH₂O, were averaged together as were those for spectra CC157, -158, -159, -160, and -161 which correspond to the water vapor partial pressures of 20.0 and 20.5 torr. The average values of the ratio of the measured data to the calculated values, CC/FCD, for each of the two groupings are plotted as two separate curves versus wavenumber in Figures 17(a) and 17(b).

In Figure 17(a), the measured values are seen to be about 55% of the calculated values at 1980 cm⁻¹, rising to near unity around 2060 cm⁻¹. The data points corresponding to the higher absolute humidities define a lower-valued curve nearly parallel to that for the lower humidity data. The two curves show small variations with wavenumber around the value of unity in the region between 2060 cm⁻¹ and 2140 cm⁻¹. The error bars, shown only on one curve for simplicity, represent the RMS deviated from the average value calculated for each set of spectra. The RMS values are comparable in magnitude for each of the two curves shown in Figure 17(a).

The shorter wavelength data shown in Figure 17(b) show a considerably larger value for the CC/FCD ratio of about 2.4 at 2400 cm⁻¹, dropping to a value of unity around 2925 cm⁻¹ and then to a value of 0.55 at 3000 cm⁻¹. As in the case of the long wavelength region shown in Figure 17(a), the data for the two absolute humidity groupings define two nearly parallel curves, only with the higher humidity curve showing larger extinction values in this case.

The rapid increase of the value of the CC/FCD ratio for wavenumbers shorter than 2700 cm⁻¹ seen in Figure 17(b) can probably be attributed to inaccuracies in the calculated corrections for $\rm CO_2$ and $\rm N_2$ continuum contributions to the total extinction. An examination of the calculated $\rm CO_2$ and $\rm N_2$ continuum contributions tabulated in Appendix C shows that the $\rm N_2$ continuum contribution is important for wavenumbers between 2084.35 cm⁻¹ and 2223.68 cm⁻¹ on the long wavelength side of the $\rm v_3$ $\rm CO_2$ band and for wavenumbers between 2400.00 cm⁻¹ and 2740.74 on the short wavelength side. Superimposed on the $\rm N_2$ continuum absorption coefficient is the $\rm CO_2$ band-wing continuum, important for wavenumbers between 2400.00 cm⁻¹ and about 2520 cm⁻¹.

Thus, the initial sharp rise of the CC/FCD curves in Figure 17 for wavenumbers below 2700 cm⁻¹ likely can be attributed to an under-estimation of the No continuum absorption in the FASCODE model. For wavenumbers below about 2520 cm^{-1} in Figure 17(b) the sum of the CO_2 and N_2 absorptions are underestimated. Since the No continuum appears to be underestimated in the region between 2520 cm⁻¹ and 2720 cm⁻¹, and no abrupt discontinuity in the curves shown in Figure 17(b) is evident around 2520 cm⁻¹, it is likely that the No continuum underestimate is the major contributor to the large values of the CC/FCD ratio seen in Figure 17(b) between 2400 cm^{-1} and 2720 cm^{-1} . The slopes of the curves in Figure 17(b) level out around 2700 cm⁻¹ (before turning down around 2800 cm⁻¹), at a value of about 1.25, indicating that the calculated FASCODE water vapor continuum absorption coefficient is about 77% of the average experimental values in this region.

For wavenumbers greater than about 2925 cm⁻¹ the CC/FCD ratio is less than unity in Figure 17(b) indicating that the model predicts anomalously high water vapor absorption in this region.

RATIO OF MEASURED TO CALCULATED VALUES FOR WATER VAPOR CONTINUUM ABSORPTION COEFFICIENTS VERSUS WAVENUMBER, 1980 cm⁻¹ to 2140 cm⁻¹. FIGURE 17a.

RATIO OF MEASURED TO CALCULATED VALUES FOR WATER VAPOR CONTINUUM ABSORPTION COEFFICIENTS VERSUS WAVENUMBER, 2400 cm⁻¹ to 3000 cm⁻¹. FIGURE 17b.

It is interesting to note also that the positive slope in the region of the curves shown in Figure 17(a) between 2100 cm $^{-1}$ and 2160 cm $^{-1}$ is consistent with the observation made with respect to Figure 17(b) that the predicted N₂ continuum absorption coefficients are too large.

The comparisons shown in Figure 17(b) should not be interpreted as showing that the experimental water vapor continuum absorption coefficient is 2.4 times as large as the FASCODE-calculated result at 2400 cm⁻¹. The point has already been made that the calculated N2 continuum absorption coefficient is too large and probably accounts for the discrepancies shown in Figure 17(b). The relative magnitudes of the calculated H₂O and CO₂ + N₂ continuum absorption coefficients can be determined by an examination of the results tabulated in Appendices A and C respectively. Since the magnitude of the $CO_2 + N_2$ continuum optical depths at $2400 \, \mathrm{cm^{-1}}$ is some 25 to 28 times larger than the calculated H₂O continuum absorption coefficients at that frequency (0.7 to 0.9 versus 0.025 to 0.035), the apparently large deviation from unity shown in Figure 17(b) must be kept in this The large deviations represent only a 10 - 12% change in the magnitude of the calculated N2 optical depth at 2400 cm^{-1} .

The error bars plotted in Figures 17(a) and 17(b) show the RMS deviations from the average values for the CC/FCD ratios plotted for each group of spectra.

The uncertainties in the measured data associated with the ratios shown in Figures 17(a) and 17(b) can be determined by combining the experimental uncertainties in the measured data together with the uncertainties associated with the calculated local line contributions and estimated aerosol extinction corrections.

The experimental uncertainty in the measured transmittance is accepted to be ±3% in most cases and in all of the cases shown in Figures 17(a) and 17(b). Typically the maximum average transmittance values in the spectral range shown in the figures is about 80%. Referring to Equation 10 we see that the resultant uncertainty in measured optical depth corresponding to a ±3% transmittance uncertainty is ±13.5%.

The calculated local line contributions to the total optical depth can be seen to range from low values of 0.3 to 0.4 of the FASCODE-calculated H2O continuum absorption values to higher values which are 20 to 150 times as large as the H₂O continuum values, depending upon the particular wavenumber locations under consideration. Since the comparison plots shown in Figures 12-16 show generally smooth behavior as a function of wavenumber for a wide variation in local-line-correction values to the optical depth, (see Appendix B), it may be concluded that the magnitudes of the calculated corrections are generally quite good, except for the specific wavenumber previously noted. Assuming a conservative estimate of a ±20% uncertainty in the calculated local line contributions in the 2500 - 2900 cm⁻¹ region, and noting that the magnitude of these corrections is 30-40% of the H₂O continuum absorption values in this region, then an estimate of the uncertainties in the comparisons shown in Figures 17(a) and 17(b) due to uncertainties in local line absorption coefficients would be ±8%.

The uncertainties in the CC/FCD ratios due to corrections for aerosol attenuation are difficult to estimate. The measured Nd-YAG transmittance values can be characterized by a $\pm 3\%$ uncertainty, just as the measured DF laser transmittances. however, the uncertainty associated

with the extrapolation of aerosol extinction values measured at 1.06 μm to 3.8 μm is difficult to ascertain in a quantitative manner. If one assumes that on the average this extrapolation has associated with it a $\pm 25\%$ uncertainty, then the Nq-YAG transmittance-derived aerosol extinction corrections at 3.8 μm would have an uncertainty of $\pm 20\%$.

Combining the three categories of contributing uncertainties, the measured (and appropriately corrected) data used in the comparisons shown in Figures 17(a) and 17(b) would have associated with them an overall uncertainty of $\pm 55\%$. This value easily includes the FASCODE-derived h_2O continuum absorption prediction in the $2500-2900~{\rm cm}^{-1}$ region. The large deviation due to N_2 continuum absorption near 2400 cm⁻¹ must be viewed independently from the h_2O continuum comparisons as previously discussed.

3.2 WATER VAPOR LINE ABSORPTION ANALYSIS

3.2.1 SURVEY COMPARISONS BETWEEN MEASUREMENTS AND CAL-CULATIONS

This section presents a comparison between two of the measured spectra and FASCODE calculations over the full spectral range of the measurements from 1900 cm⁻¹ to 3200 cm⁻¹. The two spectra chosen were selected to be representative of low and high water vapor amounts and to have high signal to noise and visibility: spectrum ASLO6 corresponds to 2.9 gm cm⁻² of water vapor along the path with 100 km visibility and spectrum CC159 corresponds to 10.3 gm cm⁻² of water vapor with 35 km visibility. The calculated spectra were produced using FASCOD1C and the 1982 version of the AFGL Line Tape.

Figure 18 shows a low resolution comparison between one of the measured spectra (ASLO6) and the FASCODE calcula-

, DEGRADED WITH A 10 cm⁻¹ HWHM TRIANGULAR SPECTRUM ASL06, 1900-3200 cm⁻¹, DEGRADED WITH A 10 cm⁻¹ HWHM TRIANGULAI INSTRUMENT FUNCTION, MEASURED (SOLID) AND FASCODE (DASHED), NO AEROSOL ATTENUATION IS INCLUDED IN THE FASCODE CALCULATION. FIGURE 18.

tion; both the measured and the calculated spectra have been degraded with a 10 cm⁻¹ half-width at half-height triangular instrument function. By degrading the spectra it is possible to survey the whole range from 1900 to 3200 cm⁻¹ on a single plot. No aerosol extinction has been included in the FASCODE calculation so that the calculated transmittance in the windows is generally higher than the measured transmittance.

Figures 19 and 20 show the high resolution comparisons for each of the measured spectra in sections of $100~\rm{cm}^{-1}$ each. In these comparisons the following points should be noted:

- No aerosol extinction is included in the calculation.
- 2. The resolution of the measurement is determined by the instrument function which is a sinc function: sin (2πνL)/(2πνL) where the optical retardation L = 16 cm. The half width at half-height of this function is 0.018 cm⁻¹. The half widths of atmospheric absorption lines are typically 0.08 cm⁻¹ but may be as small as 0.009 for some anomalously narrow water lines. Therefore, for most of the absorption lines in this spectra, the absorption at the line center will not be greatly reduced by the limited instrument resolution: for the narrow water lines however, the effect may be large.
- 3. In the measured spectrum ASL06, zero percent transmittance level in the measurement is displaced by about 0.05 at 1900 cm⁻¹ decreasing to a negligible value at 2260 cm⁻¹. There appears to be no displacement at 2390 cm⁻¹ and above 2900 cm⁻¹. The non zero transmittance seen between 2330 cm⁻¹ and 2390 cm⁻¹ is not real but is an artifact of the calibration procedure.
- 4. There are a number of apparent "mini-windows" in the measured spectrum ASL06 between 1900 cm⁻¹ and 2000 cm⁻¹ which are not seen in the

MEASURED (TOP) AND CALCULATED

SPECTRUM ASL06, 2300-2400 cm $^{-1}$: (BOTTOM).

FIGURE 19e.

112

114

MEASURED (TOP) AND CALCULATED SPECTRUM ASL06, 2600-2700 cm⁻¹: (BOTTOM). FIGURE 19h.

MEASURED (TOP) AND CALCULATED SPECTRUM CC159, 2300-2400 cm⁻¹: (BOTTOM) FIGURE 20e.

SPECTRUM CC159, 3100-3200 cm $^{-1}$: MEASURED (TOP) AND CALCULATED (BOTTOM). FIGURE 20m.

calculation, for example, at 1917 cm⁻¹ and 1942 cm⁻¹. These features are apparently not real: they are not seen in other high resolution atmospheric spectra under similar conditions, for example, Figure 21, shows a spectrum which was taken at Kitt Peak [18]. This measurement was made at a resolution of about 0.02 cm⁻¹ and contains about the same amount of total air in the path as spectrum ASL06 (about 1 air mass) but much less water vapor. These artifacts are also not seen in the measured spectra CC154.

exact cause of the artifacts is not known. However the positions of these features correspond one-to-one with the positions of strong water vapor lines listed on the AFGL Line Tape. One possible explanation for these features is that they are somehow generated in the calibration procedure when ratioing a long path spectrum to a "zero path" Here the source and receiver optical system were separated by about 30 meters. The transmittance measured over this short path is used to normalize the long path transmittance. Strong absorption by these lines over the short path could generate these features in the normalized spectra due to lack of numerical precision in the ratioing of two small numbers which is performed in the normalization procedure.

3.2.2 ESTIMATES OF LINE STRENGTHS FOR WATER VAPOR ABSORPTION LINES IN THE 2390 CM⁻¹ TO 2500 CM⁻¹ SPECTRAL REGION

There are a number of molecular absorption lines of water vapor between 2390 cm⁻¹ to 2500 cm⁻¹ whose strengths in the 1982 edition of the AFGL Atmospheric Absorption Line Parameter Compilation [9] are too large. These lines are seen marked by arrows in Figure 22, which is a comparison between the measured spectra CC154 and a FASCODE calculation using the 1982 version of the AFGL Line Compilation. The lines due to water vapor are marked by arrows. Some of these lines stand out clearly in the calculated spectrum but

ATMOSPHERIC ABSORPTION SPECTRUM FOR 1900-1950 cm⁻¹. MEASURED AT KITT PEAK OBSERVATORY; MEASUREMENT CONDITIONS INCLUDE 0.02 cm⁻¹ RESOLUTION, 1.1 AIP-MASS PATH, 0.8 grm cm⁻ WATER VAPOR ALONG THE PATH; TAKEN FROM [18].

MEASURED SPECTRUM CC154 (BOTTOM), AND FASCODE (TOP) CALCULATION. ARROWS POINT TO WATER VAPOR LINES. FIGURE 22.

are much weaker or completely absent in the measurement. Figure 23 shows separately the 1 cm⁻¹ region around each of the marked lines and include the measured spectrum CC154 and FASCODE calculations using both the 1982 version of the AFGL Line Compilation (solid line) and the 1980 version (dashed line). There are several points which can be made concerning these comparisons:

- 1. The calculations are monochromatic while the measurement includes the effect of a sinc instrument function with a half width at half height of 0.018 cm⁻¹. The widths of some of these water lines are as small as 0.01 cm⁻¹ so that these narrow lines are somewhat degraded in the measured spectra.
- 2. Due to the lack of aerosol extinction in the calculation, the measured lines ride on lower background transmittances than the calculation, so that even if the calculated lines were of the proper strength, the calculated lines would appear deeper (in transmittance) than the measured.
- 3. The strengths for these lines were revised for the 1980 version of the AFGL Line Compilation. In most cases the strengths were increased. When it was realized that these revised strengths were too large compared to measurements, the earlier line strength values from the 1978 compilation were used again for the 1982 compilation.
- 4. There is a small systematic error in the wavenumber scale of the measured spectrum as determined by comparison with accurately known N₂O lines around 2450 cm⁻¹. This error has been corrected in the plots as shown in Figure 22.

From the plots in Figure 22 it is possible to estimate the strength of the measured lines relative to the calculated values. This was done by comparing the depths of the absorption line at the line center relative to the local background between the measured and the calculated lines

FIGURE 23. MEASURED SPECTRUM CC154 (SYMBOLS) AND
FASCODE CALCULATION WITH AFGL LINE TAPE,
1982 VERSION (SOLID LINE) AND 1980 VERSION
(DASHED LINE). ARROW POINTS TO CENTER OF
WATER VAPOR LINE.

FIGURE 23. (CONTINUED).

FIGURE 23. (CONTINUED).

using the 1982 version of the AFGL compilation. The effect of the different background transmittance levels was accounted for but the effect of the finite resolution of the measurement was not. In many cases the absorption line is not discernible in the measurement above the noise. In these cases, the depth of the measured line was taken to be equal to the level of the noise, as estimated from the plots (about ± 0.01 transmittance) and only an upper limit for the strength of these lines is given.

The results of this analysis are given in Table 12 which lists for each absorption line, the frequency of the line center, the strength, the halfwidth, and the upper and lower vibrational and rotational quantum numbers, all taken from the 1982 version of the AFGL Line Compilation [9]. The last column, labeled R, is the ratio of the measured line strength to the value in the AFGL line compilation. Values of R which represent an upper limit are indicated by <. Estimates of some of the values are uncertain due to interfering lines of other molecules; these values are indicated with an asterisk. Estimates for the remaining values are uncertain by ±10 percent, based on comparisons performed for lines whose strengths are well known.

Note that the lines for which R is significantly different from 1.0 belong to the band (010,000): the measured strengths for the band (001,010) all agree with the AFGL values within the experimental uncertainty. The AFGL strengths were calculated based on observations of strong lines from the (010,000) band. The extrapolation of the calculation to the weaker lines involves large uncertainties, especially for values of $\Delta K_a = 3$ or 5 [19].

RATIO R OF MEASURED LINE STRENGTH TO AFGL VALUE FOR SELECTED WATER LINES, TO 2500 CM-1 2390 CM⁻¹ TABLE 12.

	2		B								; ;	
	(cm ⁻¹)	$(mol/cm^2/cm^{-1})$	(cm ⁻¹)	۷,	Λ"	J.	K,	K C	۳۲.	Ka"	ж о	ps,
	2394.851	1.27×10^{25}	0.0686	010	000	6	7	3	8	4	4	۲. >
7	2395.413	1.01 x " "	0.0496	010	000	6	Ŋ	ſΩ	∞	0	∞	.08
т	2396.351	0.27 x " "	0.0182	010	000	12	12	-	11	11	0	۳.
4	2396.910	1.77 x " "	0.0616	010	000	ω	9	m	7	7	9	.16
2	2400.310	0.44 x " "	0.0190	010	000	15	٣	12	14	7	13	۳.
9	2403.921	3.88 x " "	0.0562	010	000	6	7	~	∞	4	ഹ	< .02
7	2407.163	1.65 x " "	6680.0	100	010	9	Ċ	М	ις.	7	4	1.1
ω	2410.478	2.52 x " "	0.0725	010	000	10	7	4	6	4	ഹ	90.0>
6	2421.321	2.37 x " "	0.0700	010	000	11	4	7	10	7	10	<0.08
10	2422.706	1.19 x " "	0.0831	001	010	ญ	m	м	4	7	4	1.0
11	2429.930	1.75 x " "	0.0864	001	010	9	7	4	Ŋ	0	S	.74*
12	2433.218	0.50 x "	0.0110	010	000	15	~	13	14	-	14	.18
13	2437.401	1.23 x " "	0.0861	001	010	9	4	7	2	7	m	1.2*
14	2457.067	1.43 x " "	0.0459	010	000	11	7	4	10	4	7	.12
15	2463.097	1.40 x " "	0.0457	010	000	10	ß	9	6	0	6	.17
16	2485.625	1.23 x " "	0.0432	010	000	10	9	ഹ	6	٦	∞	*8*
17	2486.474	0.22 x " "	0.0400	010	000	12	7	ഹ	11	4	œ	*4*
18	2488.883	0.16 x " "	0.009	010	000	16	7	14	15	7	15	. 1

(at half height) = rotational quantum numbers, K = rotational quar
measured strength/s, = halfwidth = line strength, = vibrational quantum number, J, K, = upper state, " = lower state, R $\frac{a}{a}$ m ' = upper state, " = lower state, I
uncertain due to interfering lines center frequency,

CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The conclusions which have been reached as a result of this study can be summarized as follows:

- 2. The CCAFS results have been found to be most useful for the purposes of the present study for two reasons, namely:
 - a) these data correspond to a wider range of atmospheric humidity conditions than do the other data and include measurements under higher absolute humidities than do the other data sets. The resolution of questions concerning water vapor continuum absorption (treated in Section 3.1.4) is best addressed using several of the CCAFS spectra measured during high visibility (low aerosol extinction), high water vapor conditions, and
 - b) during several of the CCAFS measurements, laser transmittance measurements using a Nd-YAG laser operating at 1.06 μ m were performed. The results of these measurements, scaled to 3.7 μ m are considered a more reliable measure of aerosol extinction at 3.7 μ m than concurrent, land-based (and surf-influenced) aerosol particulate

spectrometer data or than estimates derived from maritime aerosol extinction models. (See Section 3.1.2.2).

- 3. Determination of the aerosol extinction contributions to the total measured extinction probably represents the largest source of uncertainty in the analysis of the data. Various approaches were evaluated depending upon the amount of independent information available for each data set. Only visibility data (supplied by the NAVCOM, PRNAS) were available for the PRNAS data. Independent Nd-YAG laser transmissometer data were available for some of the CCAFS data and provide the most useful means of determining the value of aerosol extinction at 3.7 $\mu\,\text{m}$.
- 4. Using the semi-empirical procedure of determining the aerosol extinction component at 3.7 μ m by subtracting the FASCODE-calculated molecular absorption coefficient from the measured total extinction coefficient (actually optical depth), the shape of the envelope of the measured optical depth as a function of wavenumber (corrected for N2 and CO2 continua, and local line effects) was compared with the equivalent FASCODE calculation. In nearly all cases (see Figures 12 through 15) the measured data show a smaller optical depth relative to the calculations for 1979 cm $^{-1}$ < ν $< 2177 \text{ cm}^{-1}$ and again for $v>2920 \text{ cm}^{-1}$. For 2400 cm⁻¹ < v< 2650 cm⁻¹ the measured optical depths are larger than the calculated values. The former comparisons are interpreted as indicating differences between the predicted and measured H₂O continuum absorption contribution. The latter comparisons (in the 2400-2650 cm⁻¹ range) are interpreted as pointing up a discrepancy between the calculated No continuum absorption coefficient and the measured values.
- 5. The FASCODE-generated water vapor continuum optical depth is seen to agree with the experimental data in the $2600~\rm{cm}^{-1}$ to $2800~\rm{cm}^{-1}$ range to within the range of

uncertainty of the data, conservatively estimated to be ±55%. See section 3.1.4 for a discussion of the estimated experimental uncertainty.

6. The high-resolution survey comparisons shown in Figures 19 and 20 point-out certain discrepancies between the measured and calculated high resolution spectra in each of the cases compared. In spectrum ASL06, shown in Figure 19(a) through 19(m) certain features appear in the measured data in the region between 1900 cm⁻¹ and 2000 cm⁻¹. These features do not appear in the calculation. Since these features do not appear in the CC159 spectrum or in the high resolution Kitt Peak spectrum shown in Figure 21, they therefore must represent artifacts introduced in the measurement and/or data reduction processes. Since their location corresponds to the location of strong water vapor absorption lines, the most likely explanation involves the lack of sufficient dynamic range in the computations used in the numerical ratio of the long path spectrum to its zeropath-counterpart.

It can also be seen that the FASCODE calculation shows generally lower transmission than the measurement in this region (1900-2000 cm⁻¹). Although no aerosol attenuation has been included in the calculation, making a one-to-one comparison of the measured and calculated transmission values invalid, the amount of aerosol extinction that would realistically correspond to the measurement conditions (100 km visibility corresponding to $\sim 0.003~{\rm km}^{-1}$ aerosol attenuation at 3.8 $\mu\,{\rm m}$) is quite small and should not substantially alter the comparison shown in Figure 19(a).

7. The line-strengths of several of the weak water vapor absorption lines occurring between 2390 cm⁻¹ and 2490 cm⁻¹ are seen to be overestimated in the current AFGL atmospheric absorption line compilation. As demonstrated in Section 3.2.2 the 1982 version of the line compilation is in better agreement with experimental observations than are the data

included in the 1980 version. The results of comparisons of the experimental data to calculations performed using the 1982 version of the line compilation are summarized in the Table 12 and show that the measured line strengths vary from 0.02 to 1.2 times the values predicted using the 1982 compilation. On the average the observed values are in the range of about 10 to 30% of the predicted values.

4.2 RECOMMENDATIONS

Certain recommendations can be made as a consequence of the comparisons and analyses performed during the present study. These recommendations include the following:

- 1. More extensive quantitative comparisons of the high-resolution FTS data treated in this study might be developed if the aerosol extinction component at 3.7 μ m in the various spectra can be determined unequivocally. Use of the comparisons shown in Figures 12-15 as a basis to establish a "zero-order" aerosol extinction coefficient, combined with the use of aerosol model predictions in a self-consistent analysis is recommended. The somewhat detailed statistical analysis that would be required was not possible within the scope of the present study. If this recommendation were to be implemented, the water vapor dependence of the 3-5 μ m water vapor continuum absorption could be examined in greater detail.
- 2. A further investigation of the apparent excess N_2 continuum absorption evidenced in the comparisons shown in section 3.1.3.4 should be performed. The suggestion has been made [20] that an unaccounted for temperature dependence of the N_2 continuum absorption may be responsible for the discrepancies between the calculated and measured results shown in Figure 17. This question should be further investigated using the data treated in this study as well as pertinent laboratory data.

- 3. The line strengths of several of the weak water vapor absorption lines occurring between 2390 cm $^{-1}$ and 2490 cm $^{-1}$ are clearly too large as they appear in the 1982 AFGL atmospheric absorption line compilation. The line strength values for these lines should be modified on future editions of the compilation to reflect the values tabulated in Table 12.
- 4. The analysis performed in the present study has shown certain of the CCAFS spectra to be the most useful in comparisons of calculated and measured values for the weak, 3-5 µm water vapor absorption coefficient. These are the spectra collected during high humidity, high visibility Atmospheric conditions corresponding to substantially greater absolute humidities than the 20 torr ppH₂O corresponding to several of the CCAFS spectra are unlikely to occur at any experimental site. The only remaining alternative to increasing the total path-integral amount of water vapor in an experimental configuration is the use of a longer measurement path-length. The use of larger collecting apertures (~1.2 m) which can provide complete collection of a laser transmissometer beam under conditions of moderate atmospheric turbulence over paths lengths of 10-50 km is currently under study. Data similar to those discussed in the present study but collected over much longer paths (provided that aerosol attentuation remains small and/or usefully characterized) should provide information which can be used to reduce the quantitative uncertainties which persist as a result of the present analysis.

REFERENCES

- 1. T.H. Cosden, et. al. "Atmospheric Transmission Measurement Program Report for 1 July through 30 September 1976 (TQ 1976)" NRL Report 8104, September 1977.
- 2. A. Gutman, ed., "Data Compendium for Atmospheric Laser Propagation Studies Conducted at Cape Canaveral, Florida February May 1977", NRL Memorandum Report 3611, September 1977.
- 3. J.A. Dowling, "Analysis of 1977 Cape Canaveral Air Force Station Atmospheric Laser Propagation and Fourier Transform Spectroscopic Data Base" NRL Report to be published (1984).
- 4. J.A. Dowling, et. al., "Laser-Extinction and High-Resolution Atmospheric Transmission Measurements Conducted at White Sands Missile Range, New Mexico, March 1979" NRL Report 8446, November 1980.
- 5. J.A. Dowling, et. al. "Results of Laser-Calibrated High-Resolution Transmission Measurements and Comparisons with Broadband Transmissometer Data: San Nicolas Island, California, May 1979" NRL Report 8618, September 1982.
- 6. J.A. Dowling, et. al. "High-Resolution Field Measurement of Atmospheric Transmission" SPIE Proceedings Vol. 142, 25 (1978).
- 7. K.M. Haught and J.A. Dowling, "Long-Path High Resolution Field Measurements of Absolute Transmission in the 3.5 to 4.0 μm Atmospheric Window", Opt. Ltrs. 1, 121, (1977).
- 8. S.A. Clough, et. al. "Atmospheric Spectral Transmittance and Radiance: FASCODIB" SPIE Proceedings Vol. 277, 152, (1981); update to FASCODIC, documented in AFGL Memorandum: OPI (S.A. Clough), 1 August 1982; available from: National Climatic Center, Environmental Data Service, Federal Building, Asheville, N.C., 28801.
- 9. L.S. Rothman, et. al. "AFGL Atmospheric Absorption Line Parameters Compilation: 1982", Appl. Opt., 22 2247 (1983).
- J.A. Dowling, et. al., "Atmospheric Transmission Measurement and Field Test Plan:, NRL Report 8059, November 1977.

- R.W. Harris, "Electronic Instrumentation for a High-Accuracy Atmospheric Extinction Experiment", (Abstract), J. Opt. Soc. Am. 65, 1201 (1975).
- 12. J.A. Dowling, et. al., "Atmospheric Extinction Measurements at Nd-YAG and DF Laser Wavelengths Performed in Conjunction with JAN Propagation Tests, June September 1975", NRL Report 8058, February 1978.
- 13. P.L. Roney, et. al, Opt. Ltr. 6, 151 (1981).
- 14. S.G. Gathman, Optical Properties of the Marine Aerosol as predicted by a BASIC Version of the Navy Aerosol Model, NRL Memorandum Report 5157, Naval Research Laboratory, Washington, D.C., September 1983, ADA132411.
- 15. R.E. Larson, Atmospheric ²²²Rn Measurements at San Nicolas Island, NRL Memorandum Report 4099, Naval Research Laboratory, Washington, D.C., November 1979, ADA077363.
- 16. R.E. Larson and R.K. Jeck, Atmospheric ²²²Rn Measurements at San Nicolas Island during 1980, NRL Memorandum Report 4649, Naval Research Laboratory, Washington, D.C., October 1981, ADA104802.
- 17. E.P. Shettle and R.W. Fenn, "Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties", AFGL-TR-79-0214, 20 September 1979, ADAO85951.
- 18. L. Delfouille, G. Roland, J. Brault, and L. Testerman, "Photometric Atlas of the Solar Spectrum from 1850 to 10,000 cm⁻¹", Kitt Peak National Observatory (1981).
- 19. Lawrence Rothman, AFGL, private communication.
- Darrell Burch, Ford Aerospace Corp., private communication.

APPENDIX A

COMPARISON OF MEASURED EXTINCTION COEFFICIENTS, CORRECTED FOR LOCAL LINE AND FOR $\rm N_2$ AND $\rm CO_2$ CONTINUUM ABSORPTION, TO FASCODE WATER-VAPOR-CONTINUUM ABSORPTION CALCULATIONS

WATER VAPOR	EXTINCTION COEF	PICIENT					
WAVENUMBER	FASCODE CASE	3 ASL	17	ASL1	8	ASL19	
(CH**-1)	(KH**-1)	AS/FCD	AS-FCD	AS/FCD	AS-FCD	AS/FCD	AS-FCD
1930.300	.137	.295	097	.359	088	.813	026
1952.500	.093	.048	089	.196	075	.727	025
1974.100	.061	.058	057	.260	045	.852	009
1979.600	.053	.021	052	.199	042	.824	009
2004.650	.035	315	046	031	036	.833	006
2031.250	.020	722	035	177	024	1.035	.001
2056.050	.013	-1.022	026	177	015	1.613	.008
2084 - 350	.008	-2.027	.024	553	012	1.809	.006
2102.150	.006	-3.403	025	-1.437	014	1.731	.004
2130.500	.004	-4.171	021	-1.559	010	2.531	.006
2150.050	.003	-6.145	025	-2.644	013	1.557	.002
2159.050	.003	-6.380	024	-2.472	011	1.836	.003
2166.800	.003	-6.334	023	-1.528	008	2.497	.005
2177.600	.003	-7.591	024	-3.304	012	1.449	.001
2190.950	.003	-8.578	025	-3.387	012	1.355	.001
2223.680	.003	2.517	.004	7.543	.016	12.091	.028
2400.000	.002	1.201	.000	3.461	.005	10.430	.019
2420.420	.002	-1.169	004	2.253	.003	7.076	.012
2440.850	.002	-4.231	011	-1.493	005	2.414	.003
2480.330	.002	-4.269	011	-1.899	006	1.252	.001
2501.000	.002	-3.949	010	-1.801	006	1.204	.000
2520.650	.002	-3.313	009	-1.003	004	1.239	.000
2540.830	.002	-2.528	007	-1.132	004	.964	000
2560.420	.002	-1.969	006	489	003	1.461	.001
2580.370	.002	-2.240	007	858	004	.816	000
2599.840	.002	-1.220	005	330	003	.779	000
2618.640	.002	839	004	013	003	1.031	.000
2640.580	.002	179	003	267	003	.981	000
2661.550	.002	103	003	.683	001	1.138	.000
2679.510	.002	.458	001	.584	001	.577	001
2700.720	.002	1.000	000	1.000	000	1.000	000
2719.280	.002	309	003	769	004	297	003
2740.740	.002	2.431	.003	1.645	.002	. 924	000
2760.690	.002	3.514	.006	2.068	.003	1.287	.001
2778.950	.002	2.739	.004	1.167	.000	.592	001
2800.100	.002	3.548	.006	1.517	.001	.348	002
2820.110	.002	3.564	.006	1.940	.002	.711	001
2839.400	.002	4.717	.009	2.767	-004	.477	001
2860.190	.002	4.928	.009	2.052	.002	-502	001
2880.800	.002	6.074	.012	3.872	.007	1.594	.001
2899.720	.003	5.777	.012	3.594	.006	.715	001
2920.400	.003	5.348	.013	2.884	.006	.517	001
2941.370	.004	4.645	.015	3.118	.009	2.045	.004
2959.870	.006	3.393	.013	1.931	.005	1.215	.001
2979.520	.008	4.949	.031	3.488	.020	3.886	.023
3000.550	.012	2.956	.024	2.028	.013	1.776	.009
3020.260	.015	2.519	.023	1.444	.007	1.368	.006
3040.450	.019	2.496	.029	1.983	.019	1.622	.012
3058.710	.021	1.809	.017	1.615	.013	1.955	.020

WATER VAPOR	EXTINCTION COE	FFICIENT	
WAVENUMBER	FASCODE CASE	3 ASL:	20
(CM**-1)	(KM**-1)	AS/FCD	AS-FCD
1930.300	.137	.821	025
1952.500	•093	-695	028
1974.100	.061	.737	016
1979.600	.053	.686	017
2004.650	.035	.628	013
2031.250	.020	.556	009
2056.050	.013	.824	002
2084.350	.008	.389	005
2102.150	.006	.080	005
2130.500	.004	.063	004
2150.050	.003	-1.134	007
2159.050	.003	-1.176	007
2166.800	-003	667	005
2177.600	.003	-1.568	007
2190.950	.003	-1.901	008
2223.680	.003	8.938	.020
2400.000	.002	7.735	.014
2420.420	.002	4.530	.007
2440.850	-002	060	002
2480.330	.002	231	003
2501.000	.002	515	003
2520.650	•002	254	003
2540.830	.002	150	002
2560.420	-002	.265	001
2580.370	•002	299	003
2599.840	.002	.374	001
2618.640	.002	.192	002
2640.580	.002	•594	001
2661.550	•002	.613	001
2679.510	.002	•582	001
2700.720	-002	1.000	000
2719.280	-CO2	.366	001
2740.740	•002	1.449	-001
2760.690	.002	1.741	.002
2778.950	•002	•908	000
2800.100	.002	1.393	.001
2820.110	•002	1.285	.001
2839.400	•002	1.713	.002
2860.190	•002	1.667	.002
2880.800	-002	2.955	.005
2899.720	.003	2.675	.004
2920.400	•003	1.743	.002
2941 - 370	• 004	2.862	.008
2959.870	.006	1.914	.005
2979.520	•008	4.516	.028
3000.550	.012	2.302	.016
3020.260	.015	1.857	.013
3040.450	.019	1.930	.018
3058.710	•021	2.820	.038

WATER VAPOR	EXTINCTION COEF	PICIENT			
WAVENUMBER	PASCODE CASE	4 ASL	23	ASL2	1
(CM**-1)	(KM**-1)	AS/FCD	AS-FCD	AS/FCD	AS-PCD
1930.300	• 223	- 206	177	• 290	158
1952.500	-152	.025	148	.159	128
1974.100	-100	.015	098	.246	075
1979.600	-086	013	087	.279	062
2004.650	.057	291	074	.155	048
2031.250	-034			.053	032
2056.050	-021			.107	019
2084.350	.013			194	016
2102.150	.010			330	013
2130.500	-007			653	012
2150.050	.006			-1.288	014
2159.050	-006			-1.630	015
2166.800	.005			-1.979	016
2177.600	.005	-7.638	042	-2.521	017
2190.950	•005	-8.207	042	-2.146	014
2223.680	.004	-1.281	010	1.413	.002
2400.000	•003	.150	003	3.046	.007
2420.420	.003	-1.412	008	1.018	.000
2440.850	.003	-3.019	014	.125	003
2480.330	-003	-3.414	015	655	006
2501.000	.003	-2.840	013	275	004
2520.650	•003	-2.947	014	210	004
2540.830	.003	-2.599	012	329	005
2560.420	•003	-2.206	011	-100	003
2580.370	•003	-2.540	012	382	005
2599.840	.004	-1.097	008	.350	002
2618.640	- 004	981	007	.111	003
2640.580	-004	-1.289	009	.325	003
2661.550	-004	805	007	• 380	002
2679.510	-004	401	005	.320	003
2700.720	-004	1.000	0.000	1.000	000
2719.280	-004	-1.555	010	562	006
2740.740	-004	1.172	.001	1.192	.001
2760.690	٠004	1.289	.001	1.384	.001
2778.950	-004	1.185	.001	1.111	.000
2800.100	-004	-810	001	•523	002
2820.110	-004	1.621	.002	1.145	.001
2839.400	•004	3.023	.008	1.665	.002
2860.190	-004	3.175	.008	1.471	.002
2880.800	-004	3.473	.010	2.146	.004
2899. 720	-004	3.212	.009	2.160	.005
2920.400	.005	3.617	.013	2.081	.005
2941-370	.006	2.239	.008	1.459	.003
2959.870	• 009	1.674	.006	•463	005
2979.520	•013	.604	005	328	017
3000.550	.020	.862	003	.737	005
3020.260	.025	1.015	.000	· 586	010
3040.450	.031	1.724	.023	.869	004
3058.710	.034	1.837	.028	-840	005

WATER VAPOR	EXTINCTION COEF	FICIENT					
WAVENUMBER	FASCODE CASE	2 ASI	.13	ASL1	4	ASL15	
(CM**-1)	(KM**-1)	AS/FCD	AS-FCD	AS/FCD	AS-FCD	AS/FCD	AS-FCD
1930.300	. 242	.027	235	.008	240	139	275
1952.500	.164	185	195	207	198	310	215
1974.100	.108	145	124	176	127	199	130
1979.600	.093	165	109	189	111	168	109
2004.650	.062	528	095	496	093	447	090
2031.250	.037	937	072	942	072	707	063
2056.050	.023	-1.460	057	-1.386	055	-1.068	048
2084-350	.015	-11400	037	-1.300	033	-2.105	045
2102.150	.013					-2.795	041
2130.500	.008					-3.258	033
2150.050	.006					-3.256 -4.777	033
2159.050	.006	-7.160	050	-6.519	046	-4.473	037
2166.800	.006	-7.480	049	-7.101	047	-4.781	033
2177.600	.005	-8.454	050	-8.217	049	-6.399	033
2190.950	.005	104*78	057	-9.257	051	-7.638	043
2223.680	.005	-7.221	037	-6.561	034	-6.360	033
2400.000	.003	-1.531	009	220	005	1.775	.003
2420.420	.004	-3.133	015	-2.415	012	-1.420	009
2440.850	.004	-4.798	021	-3.253	015	-1.779	010
2480.330	.004	-4.561	020	-3.491	016	-3.190	015
2501.000	.004	-3.531	016	-2.895	016	-2.680	013
2520.650	.004	-3.369	016	-2.730		-2.690	013
2540.830	.004	-2.990	014		013 013	-1.135	008
2560.420	.004	-2.793	014	-2.698 -2.053		-1.135	009
2580.370	.004	-3.263	014	-2.730	011 014	-2.940	015
2599.840	.004	-1.342	009	869	007	-1.391	009
2618.640	.004	790	007	996	008	-1.437	010
2640.580	.004	929	008	510	006	742	007
2661.550	.004	365	006	637	007	-1.484	010
2679.510	.004	409	006	526	006	.281	003
2700.720	.004	1.000	000	1.000	000	1.000	000
2719.280	.004	-2.199	013	-2.506	014	-3.390	018
2740.740	.004	1.555	.002	1.327	.001	.290	003
2760.690	.004	2.237	.002	2.088	.004	1.819	.003
2778.950	.004	1.778	.003	1.339	.001	253	005
2800-100	.004	.913	~.000	1.179	.001	709	007
2820.110	.004	2.091	.004	1.638	.003	.832	001
2839.400	.004	3.198	.009	3.515	.010	2.209	.005
2860.190	.004	3.993	.012	3.888	.012	1.583	.002
2880.800	.004	4.481	.014	4.339	.014	2.034	.004
2899.720	.004	4.082	.013	3.559	.011	2.061	.005
2920.400	.005	3,999	.016	3.099	.011	2.072	.006
2941.370	.003	3.147	.015	2.468	.010	1.403	.003
2959.870	.010	1.540	.005	.886	001	.210	008
2979.520	.014	898	027	-1.159	030	-2.380	048
3000.550	.021	1.184	.004	1.144	.003	.337	014
3020.260	.027	.904	003	.697	008	.095	024
3040 - 450	.034	1.429	.014	1.246	•008	.814	006
3058.710	.037	.338	024	.097	033	949	071

WATER VAPOR WAVENUMBER	EXTINCTION COEFF		0.4	ASLO	_
(CM**-1)	(KM**-1)	AS/FCD	AS-PCD		AS-FCD
(CH1)	(WWT)	MS/FCD	AS-FCD	AS/PCD	AB-FCD
1930.300	.331	- 508	163	.531	155
1952.500	.225	.462	121	.467	120
1974.100	.149	. 567	065	.582	062
1979.600	.129	. 564	056	.607	051
2004.650	.086	.561	038	•604	034
2031.250	.052	. 526	024	.608	020
2056.050	.032	.899	003	.915	003
2084.350	.021	•838	003	•970	001
2102.150	.015	- 634	006	•880	002
2130.500	.011	. 789	002	-982	000
2150.050	.009	.461	005	. 793	002
2159.050	.009	.173	007	• 506	004
2166.800	.008	.005	008	. 282	006
2177.600	.008	.055	007	.397	005
2190.950	•007	-500	004	-691	002
2223.680	•006	5.445	.028	5.102	.026
2400.000	.005	2.937	.010	4.655	.019
2420.420	.005	2.176	.006	2.837	.009
2440.850	.005	. 961	000	1.769	.004
2480.330	.005	-864	001	1.116	.001
2501.000	.005	. 549	002	1.115	•001
2520.650	•005	.360	003	.961	000
2540.830	•005	.889	001	1.305	.002
2560.420	.005	.919	000	1.244	.001
2580.370	.005	•920	000	1.238	.001
2599.840	.005	•980	000	1.144	.001
2618.640	• 005	.863	001	1.058	•000
2640.580	.005	•691	002	•969	000
2661.550	.005	-659	002	.911	000
2679.510	-005	• 946	000	-858	001
2700.720	.006	1.000	0.000	1.000	0.000
2719.280	.006	1.278	.002	1.031	.000
2740.740	.006	1.108	.001	1.085	.000
2760.690	.006	1.107	.001	1.225	.001
2778.950	.006	1.080	.000	1.172	.001
2800.100	.006	1.049	.000	1.450	.003
2820.110	-006	1.631	.004	1.812	.005
2839.400	.005	1.362	.002	1.722	.004
2860.190	.005	1.674	.004	2.094	.006
2880.800	.006	2.486	.008	3.313	.013
2899.720	-006	2.372	•008	3.214	.013
2920.400	.007	2.639	.012	3.421	.017
2941.370	.010	2 - 284	.012	3.006	.019
2959.870	.013	2.110	.015	2.817	.024
2979.520	.019	3.437	.046	3.857	.054
3000.550	.029	1.061	-002	1.405	.012
3020.260	.036	1.245	.009	1.389	.014
3040.450	-046	.932	003	1.057	.003
3058.710	.050	1.956	.047	2.075	.053

WATER VAPOR	EXTINCTION COEFFI	CIENT			
WAVENUMBER	PASCODE CASE 15	PRO	37	PRO3	9
(CM**-1)	(KM**-1)	PR/FCD	PR-FCD	PR/FCD	PR-FCD
2400.000	.005	4.265	.015	4.523	-017
2420.420	.005	1.697	.003	2.341	.006
2440.850	.005	.653	002	1.076	.000
2480.330	•005	.152	004	296	006
2501.000	.005	652	008	-1.248	011
2520.650	.005	150	005	968	009
2540.830	.005	-540	002	. 274	003
2560-420	-005	.366	003	.109	004
2580.370	.005	•956	000	.324	003
2599.840	.005	- 398	003	.579	002
2618.640	.005	095	005	. 359	003
2640.580	.005	.476	003	.121	004
2661.550	.005	.157	004	. 288	004
2679.510	.005	.479	003	.790	001
2700.720	.005	1.000	000	1.000	000
2719.280	•005	662	008	901	010
2740.740	- 005	1.124	-001	1.081	•000
2760.690	.005	1.398	.002	.926	000
2778.950	.005	.949	000	-558	002
2800.100	•005	329	007	.893	001
2820.110	•005	1.964	.005	2.286	-007
2839.400	.005	1.104	.001	2.301	-007
2860.190	.005	2.105	.006	3.038	-010
2880.800	.005	1.725	.004	3.843	.015
2899.720	.006	2.315	-007	3.144	.012
2920.400	.007	3.016	.013	3.049	-014
2941.370	•009	2.063	.009	2.755	-015
2959.870	.012	.800	002	1.182	.002
2979.520	.017	901	033	466	025
3000.550	.026	.532	012	.971	001
3020.260	.033	-457	018	-435	019
3040-450	.042	.332	028	.629	016
3058.710	.045	611	073	096	050

WATER VAPOR	EXTINCTION COEFF	ICIENT			_		
WAVENUMBER	FASCODE CASE 16			PRO4		PRO54	
(CM**-1)	(KM**-1)	PR/FCD	PR-FCD	PR/FCD	PR-FCD	PR/FCD	PR-PCD
2400.000	.005	5.003	.020	4.167	.015	1.820	.004
2420.420	.005	2.637	.008	1.998	.005	408	007
2440.850	.005	2.390	.007	1.859	.004	-1.409	012
2480.330	.005	.476	002	.048	004	-1.290	011
2501.000	.005	575	007	363	006	-1.475	012
2520.650	.005	.524	002	.637	002	308	006
2540.830	.005	1.023	.000	.049	004	447	007
2560.420	.005	.732	001	.147	004	799	009
2580.370	.005	.747	001	290	006	.311	003
2599.840	.005	1.127	.001	.610	002	. 326	003
2618.640	.005	.419	003	065	005	391	007
2640.580	.005	-496	003	.871	001	208	006
2661.550	.005	.832	001	1.426	.002	. 395	003
2679.510	.005	.541	002	049	006	.927	000
2700.720	.005	1.000	000	1.000	000	1.000	000
2719.280	.005	297	007	-1.025	011	883	010
2740.740	.005	1.605	- 003	.665	002	.774	001
2760.690	.005	1.102	.001	1.232	.001	1.661	.003
2778.950	.005	1.336	.002	.545	002	1.533	.003
2800.100	-005	1.569	.003	1.064	.000	1.269	.001
2820.110	.005	2.053	.006	.814	001	2.016	- 005
2839.400	-005	1.816	-004	.486	003	3.078	.011
2860.190	.005	3.605	.014	2.038	.005	4.147	.017
2880.800	•005	5.131	.022	2.951	.010	4.433	.01B
2899.720	.006	4.624	.021	2.653	.009	4.698	.021
2920.400	•007	4.536	.024	1.747	.005	3.885	.020
2941.370	.009	3.630	.024	2.074	.010	3.982	.027
2959.870	.013	2.850	.023	1.381	.005	2.112	.014
2979.520	.018	.948	001	. 569	008	.750	004
3000.550	.027	.863	004	.455	015	1.484	.013
3020.260	.034	.591	014	138	039	. 598	014
3040.450	.043	.721	012	.480	022	.963	002
3058.710	.047	. 304	033	. 499	023	1.147	.007

WATER VAPOR	EXTINCTION COEFFI				
WAVENUMBER	PASCODE CASE 17	PRO		PR05	
(CM**-1)	(KM**-1)	PR/FCD	PR-FCD	PR/FCD	PR-PCD
2400.000	.007	4.278	-024	4.172	.024
2420.420	.007	2.786	.013	2.412	.010
2440.850	.007	1.400	.003	1.220	.002
2480.330	.007	1.106	.001	1.042	.000
2501.000	.007	1.200	.001	.612	003
2520.650	.007	1.479	•003	.566	003
2540.830	.007	.523	003	1.584	.004
2560.420	.007	1.072	.001	.149	006
2580.370	.007	1.375	.003	584	012
2599.840	.008	.980	000	1.366	.003
2618.640	.008	.712	002	1.015	.000
2640.580	.008	1.031	.000	.815	001
2661.550	.008	.838	001	.427	004
2679.510	.008	.606	003	483	012
2700.720	.008	1.000	000	1.000	000
2719.280	.008	.091	007	1.891	.007
2740.740	.008	1.590	• 005	. 195	006
2760.690	.008	1.588	•005	1.186	.001
2778.950	.008	.675	003	1.449	.004
2800.100	•008	1.045	.000	.687	003
2820.110	.008	2.186	•009	2.408	-011
2839.400	.008	1.443	-003	.740	002
2860.190	.008	2.486	.012	1.995	.008
2880.800	.008	2.301	.010	4.387	.027
2899.720	.009	2.684	-014	2.961	-017
2920.400	.010	2.413	.014	4.195	.032
2941.370	.013	1.966	.013	1.557	.008
2959.870	.019	1.361	-007	2.754	.033
2979.520	.027	1.854	.023	3.456	.066
3000.550	.041	.650	014	1.148	.006
3020.260	.052	. 238	039	.943	003
3040.450	.065	.573	028	.943	004
3058.710	.070	. 540	032	2.965	.138

	EXTINCTION COEFFI				
WAVENUMBER	FASCODE CASE 18	PRO	55	PR05	6
(CM**-1)	(KM**-1)	PR/FCD	PR-FCD	PR/FCD	PR-FCD
2400.000	.008	1.726	.006	1.755	.006
2420.420	.008	1.507	.004	1.595	.005
2440.850	.008	.951	000	1.059	.000
2480.330	.008	.883	001	.953	000
2501.000	.008	.797			
2520.650	.008	1.086	001	.492	004
			-001	-816	002
2540.830	.008	.915	001	.927	001
2560.420	•008	.913	001	.923	001
2580.370	•008	.901	001	.667	003
2599.840	.009	1.128	.001	1.048	•000
2618.640	.009	1.088	.001	.896	001
2640.580	.009	.637	003	.612	003
2661.550	.009	.881	001	.858	001
2679.510	.009	.957	000	.738	002
2700.720	.009	1.000	000	1.000	000
2719.280	.009	.041	009	378	012
2740.740	.009	1.042	.000	1.042	.000
2760.690	.009	1.207	.002	.904	001
2778.950	.009	•690	003	.663	003
2800.100	.009	1.184	.002	.106	008
2820.110	.009	1.358	•003	1.666	- 006
2839.400	•009	1.163	.001	1.333	.003
2860.190	.009	1.661	.006	1.486	.004
2880.800	-009	2.380	.013	1.944	.009
2899.720	•010	2.035	.010	2.764	.017
2920.400	.012	2.376	.016	2.212	.014
2941.370	.015	1.961	.015	2.006	.016
2959.870	.021	1.639	.014	1.171	.004
2979.520	.031	1.119	.004	1.057	.002
3000.550	.046	.711	013	.695	014
3020.260	.059	-583	025	.539	027
3040.450	.074	.621	028	.606	029
3058.710	.080	1.183	.015	1.169	.014

WATER VAPOR		CIENT	
WAVENUMBER	PASCODE CASE 19	PRO	24
(CM**-1)	(KM**~1)	PR/PCD	PR-PCD
2400.000	.019	1.438	•008
2420.420	.019	1.105	.002
2440.850	.019	.775	004
2480.330	.018	.459	010
2501.000	.018	.526	009
2520.650	.018	.575	008
2540.830	.018	.718	005
2560.420	.018	.658	006
2580.370	.018	.737	005
2599.840	.018	.787	004
2618.640	.019	.736	005
2640.580	.019	• 7 55	005
2661-550	.019	.882	002
2679.510	.019	•905	002
2700.720	.019	1.000	0.000
2719.280	.019	•980	000
2740.740	•019	1.127	.002
2760.690	.019	1.280	.005
2778.950	-020	1.383	.007
2800.100	.020	1.520	.010
2820.110	.019	1.910	.018
2839.400	.019	1.785	.015
2860 • 190	.019	2.271	.024
2880.800	.020	2.867	.036
2899.720	.021	2.697	.036
2920.400	.025	2.677	.042
2941 · 370	.033	2.302	.043
2959.8 70	.046	1.865	.040
2979.520	.067	2.136	.076
3000.550	.100	.963	004
3020.260	.126	.979	÷.003
3040.450	.158	.913	014
3058.710	.172	1.766	.132

WATER VAPOR	EXTINCTION COEFF	CIENT			
WAVENUMBER	FASCODE CASE 5	SNI	24	SNIl	7
(CM**-1)	(KM**-1)	SN/FCD	SN-FCD	SN/PCD	SN-FCD
1930.300	.861	. 699	259	. 454	470
1952.500	.591	• 575	251	•375	369
1974.100	. 395	.621	150	. 429	225
1979.600	.343	• 680	110	• 483	178
2004.650	.232	. 680	074	• 476	122
2031.250	.142	-676	046	-411	084
2056.050	.092	.864	012	.532	043
2084.350	.060	•935	004	.456	033
2102.150	.046	.929	003	. 367	029
2130.500	.033	•893	004	.346	022
2150.050	.029	•860	004	-237	022
2159.050	.027	.674	009	.074	025
2166.800	.026	.699	008	.037	025
2177.600	.024	-820	004	.120	021
2190.950	.022	•980	000	-315	015
2223.680	.019	2.774	.034	.025	019
2400.000	.014	2.991	.028	1.896	.013
2420-420	.014	2.209	.017	1.489	.007
2440.850	.014	1.928	.013	1.137	.002
2480.330	.013	1.364	.005	.785	003
2501.000	.013	1.145	.002	.753	003
2520.650	.013	1.059	.001	.667	004
2540.830	.013	1.361	.005	1.062	.001
2560.420	.013	1.201	.003	-828	002
2580.370	.013	1.318	.004	1.000	.000
2599.840	.014	1.174	.002	.952	001
2618.640	.014	1.230	.003	1.031	.000
2640.580	.014	1.036	.001	.724	004
2661.550	.014	.987	000	.833	002
2679.510	.014	.981	000	.840	002
2700.720	.014	1.000	000	1.000	000
2719.280	.014	1.113	.002	.248	011
2740.740	.014	.960	001	.977	000
2760.690	.014	1.103	.001	1.224	.003
2778.950	.014	.874	002	.888	002
2800 - 100	.014	.622	005	.401	002
2820.110	.014	1.086	.001	.914	001
2839.400	.014	.657	005	.901	001
2860.190	.014	.643	005	.924	001
		.997	000	1.169	002
2880.800	-014	1.038	.001		
2899.720	.015	1.141	.003	1.434 1.142	.007
2920.400	.018		003		.003
2941.370	.024	.866		1.091	•005
2959.870 2979.520	.034	.988	000	.857	005
3000.550	.049	1.943	.046	1.478	-023
	•073	.898	007	.875	009
3020.260	.092	1.040	.004	.937	006
3040.450	.116	. 963	004	.804	023
3058.710	.126	2.152	.145	1.458	-058

WAVENUMBER	EXTINCTION COE PASCODE CASE		105	SNIC	4	SNI12	!
(CM**-1)	(KM**-1)	SN/FCD	SN-FCD	SN/FCD	SN-FCD	SN/FCD	SN-FCD
1930.300	.861	114*95	998*61	.778	192	.572	368
1952.500	• 591	.784	128	.914	051	.512	288
1974.100	. 395	.813	074	·8P2	047	. 548	179
1979.600	.343	.955	015	1.017	.006	.587	142
2004.650	.232	1.146	.034	1.364	.084	. 547	105
2031.250	.142	1.106	.015	1.165	.023	.464	076
2056.050	.092	1.827	.076	1.845	.077	.605	036
2084.350	.060	1.848	.051	1.816	.049	.527	028
2102.150	.046	1.903	.042	1.935	.043	.318	032
2130.500	.033	2.073	.036	2.018	.034	.163	028
2150.050	.029	2.351	.038	2.147	.033	063	030
2159-050	.027	2.020	.028	1.927	.025	423	038
2166.800	.026	1.932	-024	1.924	.024	295	033
2177.600	.024	1.886	.021	1.654	.015	395	033
2190.950	.022	1.560	.012	1.250	.005	294	028
2223.680	.019	1.828	.016	1.093	.002	239	024
2400.000	.014	3.631	.037	3.588	.036	2.235	.017
2420.420	-014	3.510	.035	3.126	-029	1.660	.009
2440.850	.014	2.396	.019	2.494	.021	1.063	.001
2480.330	.013	1.900	.012	2.130	.015	.679	004
2501.000	.013	1.707	.009	1.658	.009	.653	005
2520.650	.013	1.369	• 005	1.690	.009	.534	006
2540.830	.013	1.455	.006	1.571	.008	.804	003
2560.420	.013	1.506	.007	1.343	.005	.722	004
2580.370	.013	1.018	.000	1.059	.001	.899	001
2599.840	.014	1.250	.003	1.253	.003	.966	000
2618.640	.014	1.046	.001	1.100	.001	1.031	.000
2640.580	.014	.948	001	.933	001	.591	006
2661.550	•014	.698	004	.976	000	.635	005
2679.510	.014	.785	003	.957	001	1.008	.000
2700.720	.014	1.000	.000	1.000	000	1.000	000
2719.280	.014	.481	007	.376	009	.993	000
2740.740	.014	.871	002	.886	002	1.053	.001
2760.690	.014	.760	003	.947	001	1.219	.003
2778.950	.014	- 289	010	.674	005	1.209	.003
2800.100	.014	.110	013	.192	012	.778	003
2820.110	.014	.469	008	.861	002	1.474	.007
2839.400	.014	.509	007	.819	003	1.370	.005
2860.190	-014	. 589	006	.899	001	1.467	.007
2880.800	.014	.816	003	1.251	.004	1.563	.008
2899.720	.015	-588	006	1.057	.001	1.679	.011
2920.400	.018	.741	005	1.255	.005	1.871	.016
2941.370	.024	.698	007	1.138	.003	1.373	.009
2959.870	.034	.606	013	•938	002	1.091	.003
2979.520	.049	1.560	.027	1.829	.040	1.793	.039
3000.550	.073	.752	018	-875	009	.958	003
3020.260	.092	.896	010	.998	000	1.163	.015
3040.450	.116	.925	009	.990	001	.955	005
3058.710	.126	2,699	. 214	1.848	- 107	2.278	.161

	EXTINCTION COEF	FICIENT			
WAVENUMBER			102	SNI	16
(CM**-1)	(KM**-1)	SN/FCD	SN-FCD	SN/FCD	SN-FCD
1930.300	.923	107*27	999*23	107*27	999*23
1952.500	.633	1.269	.170	.819	114
1974.100	. 424	1.142	.060	.953	020
1979.600	.369	1.343	.126	1.127	.047
2004.650	.250	2.146	. 286	1.331	.083
2031.250	.153	2.043	.160	1.379	.058
2056.050	.099	3.527	.251	1.925	.092
2084.350	-065	3.719	.177	2.074	.070
2102.150	.050	3.665	.134	2.371	.069
2130.500	.036	3.881	.105	2.727	.063
2150.050	.031	4.279	.102	2.862	.058
2159.050	.029	3.798	.082	2.778	.052
2166.800	.028	3.979	.083	2.882	.052
2177.600	.026	3.591	.067	2.700	.044
2190.950	.024	2.901	.045	2.888	.045
2223.680	.021	2.347	-028	4.518	.074
2400.000	.015	5.297	.065	4.459	.053
2420.420	.015	4.449	.052	3.545	.038
2440.850	.015	3.374	.035	2.851	.027
2480.330	.014	2.561	.022	2.134	.016
2501.000	.014	2.354	.019	1.906	.013
2520.650	-014	2.097	.016	1.662	.009
2540.830	.014	1.890	.013	1.884	.013
2560.420	.014	1.616	.009	1.502	.007
2580.370	.014	1.237	.003	1.310	.004
2599.840	-014	1.556	.008	1.489	.007
2618.640	.015	1.482	.007	1.181	.003
2640.580	.015	1.046	.001	.992	000
2661.550	.015	.611	006	.762	004
2679.510	.015	.597	006	.747	004
2700.720	-015	1.000	000	1.000	000
2719.280	.015	.034	015	.661	005
2740.740	.015	.652	005	.852	002
2760.690	.015	•551	007	.993	000
2778.950	.015	.226	012	•533	007
2800.100	.015	234	019	.402	009
2820.110	.015	027	016	.857	002
2839.400	.015	059	016	.559	007
2860.190	.015	.023	015	.653	005
2880.800	.015	.054	015	.994	000
2899.720	.017	.213	013	1.406	.007
2920.400	.020	. 294	014	1.029	.001
2941.370	.026	. 345	017	1.105	.003
2959.870	.036	.317	025	•933	002
2979.520	.052	1.239	.012	1.915	.04R
3000.550 3020.260	.078	.678	025	.773	018
3040.450	-099	.723	027	.937	006
3058.710	-124	.896	013	.961	005
20,30.710	-135	1.748	.101	1.778	.105

WATER VAPOR	EXTINCTION COEF	PICIENT					
WAVENUMBER		7 SNI	01	SNII	^		_
(CM**-1)	(KM**-1)	SN/FCD	SN-FCD	SN/PCD	SN-FCD	SNIOS SN/FCD	
				ON, I CD	SN-FCD	SM/ FCD	SN-FCD
1930.300	.985	.645	349	.722	274	.562	431
1952.500	.676	.701	202	. 504	335	.500	338
1974.100	.453	.721	127	.379	281	.639	163
1979.600	.394	.856	057	•400	237	.640	
2004.650	. 267	.933	018	- 282	192	.745	142
2031.250	.165	.888	018	.100	148	.793	068
2056.050	-107	1.150	.016	051	112	.981	034
2084.350	-070	1.240	.017	322	093	1.257	002
2102.150	.054	1.312	.017	692	092	1.397	.018
2130.500	-040	1.396	.016	-1.197	087	1.414	.022
2150.050	.034	1.378	.013	-1.642	089	1.611	.016
2159.050	.032	1.220	.007	-1.926	093	1.678	.021
2166.800	.030	1.328	.010	-2.055	~.092	1.347	.021
2177.600	-028	1.180	.005	-2.15?	088	1.585	.010
2190.950	.026	.839	004	-2.110	081		.016
2223.680	•023	1.769	.018	-1.604	059	2.290 6.462	.034
2400.000	.016	2.675	.027	.131	014		.125
2420.420	.016	2.071	.017	242		2.804	.029
2440.850	.016	1.433	.007		020	2.570	-025
2480.330	•015	.982	000	908 994	030	2.110	.017
2501.000	.015	.887	002		030	1.472	.007
2520.650	•015	.711	004	726	026	1.149	.002
2540.830	.015	.855	002	-1.069	032	1.070	.001
2560.420	.015	.650	002	715	026	1.465	.007
2580.370	015	.765	003	417	022	1.267	.004
2599.840	.015	.850	002	244	019	1.413	•006
2618.640	.016	.870		355	021	1.155	.002
2640.580	.016	.617	002	570	025	1.109	-002
2661.550	.016	.678	006	.150	014	1.012	-000
2679.510	.016		005	189	013	• 996	000
2700.720	.016	.620	006	• 341	011	.850	002
2719.280	.016	1.000 .821	000	1.000	000	1.000	000
2740.740	.016		003	•438	009	1.444	-007
2760.690	.016	1.078	.001	·887	002	.883	002
2778.950	.016	.929 .798	001	.911	001	.685	005
2800.100	.016		003	1.061	•001	.725	005
2820.110	.016	.799	003	1.218	•004	.798	003
2839.400	.016	1.328	•005	1.838	.014	1.084	-001
2860.190	.016	1.289	.005	1.895	.014	. 796	003
2880.800	.016	1.444	.007	1.950	-015	.472	008
2899.720		1.805	.013	1.990	-016	1.473	.008
2920.400	.018	1.695	.012	1.948	-017	1.319	.006
2941.370	.021 .028	1.637	.013	2.292	•027	1.152	.003
2959.870		1.600	.017	1.718	.020	1.008	.000
2979.520	•038	1.208	.008	1.592	•023	.802	008
3000.550	•055 •083	2.024	.057	2.174	-065	2.077	.060
3020.260		1.019	.002	1.194	•016	-879	010
3040.450	.105	1.151	.016	1.216	-023	1.038	.004
3058.710	.132	1.130	.017	1.118	.016	.887	015
2020-110	.143	1.912	.131	2.570	· 225	2.350	.193

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AVENUMBER	PASCODE CASE 7	SWI	16	SNIl	4	SWIll	
(CM**-1)	(KM**-1)	SM/PCD	SN-PCD	SM/PCD	SM-FCD	SM/PCD	SH-PC
1930.300	. 985	. 495	497	.627	367	. 388	602
1952.500	.676	. 453	370	.510	331	.387	415
1974.100	.453	-523	216	.561	199	. 386	278
1979.600	.394	. 564	172	.632	145	. 366	250
2004-650	. 267	. 574	114	.647	094	. 295	189
2031.250	.165	. 566	071	.627	061	.089	150
2056.050	.107	.701	032	. 745	027	.051	101
2084.350	.070	.685	022	. 794	014	286	090
2102.150	.054	.715	015	.773	012	622	088
2130.500	.040	. 704	012	.773	009	-1.046	08
2150-050	.034	.615	013	. 692	010	-1.427	082
2159.050	.032	.441	018	.419	018	-1.677	08
2166.800	.030	. 325	020	. 423	017	-1.829	089
2177.600	.028	. 385	017	.611	011	-1.827	079
2190.950	.026	.611	010	.652	009	-1.704	070
2223.680	.023	1.146	.003	1.387	.009	-1.645	060
2400.000	.016	2.191	-019	2.182	.019	. 452	009
2420.420	.016	1.744	.012	1.881	.014	435	02
2440.850	.016	1.158	.002	1.257	.004	724	02
2480.330	.015	.885	002	.952	001	732	02
2501.000	.015	.881	-,002	.761	004	654	02
2520.650	.015	.766	004	.734	004	783	02
2540.830	.015	.857	002	.996	000	207	01
2560-420	.015	.777	003	.841	002	155	01
2580.370	.015	.791	003	.910	001	011	01
2599.840	.015	-698	005	.711	004	.085	01
2618.640	.015	.812	~.003	.723	004	087	01
2640.580	.016	.796	003	.973	000	.336	01
2661.550	.016	.942	001	.853	002	.546	00
	.016	.808	001	.969	001	.609	00
2679.510 2700.720	.016	1.000	003	1.000	000	1.000	00
	.016	.456	009	.948	001	.759	00
2719-280	.016	.995	009	1.008	.000	1.058	.00
2740.740		1.144	.002	1.164	.003	1.256	.00
2760.690	.016 .016	.905	002	.783	004	1.254	.00
2778.950	.016	.736	002	.650	004	.938	00
2800 - 100		1.154	.002	1.149	.002	2.012	.01
2820.110	.016	1.155	.002	1.388	.002	2.012	.01
2839.400	.016			1.159	.003	2.334	.02
2860.190	.016	1.120	-002		.003	2.785	.02
2880-800	.016	1.561	.009	1.530			.02
2899.720	.018	1.105	-002	1.264	.005	2.384	.02
2920.400	.021	1.192	-004	1.308	.006	2.606	
2941.370	.028	1.045	.001	1.110	.003	2.030	-02
2959-870	.038	.930	003	.941	002	1.760	.02
2979.520	.055	1.658	.036	2.010	.056	2.358	.07
3000.550	.083	- 798	017	.957	004	1.099	.00
3020.260	.105	.875	013	1.053	.006	1.219	.02
3040.450	.132	. 866	018	.994	001	1.114	.01
3058.710	.143	1.461	.066	2.205	.173	2.016	.14

WATER VAPOR	EXTINCTION COEF	PPICIENT 8 CCO	02
(CM**-1)	(KM**-1)	CC/FCD	CC-FCD
,	(33,132	
1979.600	. 597	- 580	251
2004-650	.407	-481	211
2031.250	. 254	. 565	110
2056.050	.166	.753	041
2084.350	.111	. 585	046
2102.150	.086	.534	040
2130.500	.063	-401	038
2150.050	.054	. 700	016
2159.050	-050	. 522	024
2166.800	• 048	.066	044
2177.600	.044	.377	027
2190.950	.041	.105	036
2223.680	.036	.514	017
2400.000	.024	2.279	.031
2420-420	.023	1.821	.019
2440-850	.023	1.189	-004
2480.330	.022	1.608	.014
2501.000	.022	1.163	- 004
2520.650	.022	-825	004
2540.830	.022	. 465	012
2560 • 420 2580 • 370	.022 .022	.607 .197	009 018
2599.B40	.022	.625	018
2618.640	.022	.140	020
2640.580	.023	.751	006
2661.550	.023	1.475	.011
2679.510	.023	.691	007
2700.720	.024	1.000	000
1719.280	.023	173	027
2740.740	.023	.672	008
2760.690	.023	1.321	.008
2778.950	.024	.833	004
2800.100	.024	1.036	.001
2820.110	.023	-508	012
2839 - 400	.023	.967	001
2860.190	• 023	.862	003
2880.800	•024	.322	016
2899. 720	.026	-614	010
2920.400	.030	.685	010
2941.370	•040	.526	019
2959.870	-056	-557	025
2979.520	.081	1.817	.066
3000.550	-121	.741	031
3020.260	.153	.568	066
3040.450	.192	.587	079

WATER VAPOR	EXTINCTION COEFF	ICIENT			_
WAVENUMBER	FASCODE CASE 9	CC1		CC14	
(CM**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD
1979.600	.622	.582	260	. 588	256
	.424	.629	157	.636	154
2004-650 2031-250	. 263	.672	086	.679	084
2056.050	.172	.924	013	.933	012
2084 - 350	.114	1.059	.007	1.069	.008
2102.150	.088	.970	003	· 985	001
2130.500	.064	1.146	.009	1.163	.010
2150.050	.054	1.197	.011	1.209	.011
2159.050	.051	1.063	.003	1.093	.005
2166.800	.048	1.144	.007	1.158	.008
2177.600	.045	1.209	.009	1.223	.010
2190.950	.041	1.167	.007	1.161	.007
2223.680	.036	2.849	.067	2.841	.066
2400.000	,024	2.623	.040	2.645	.040
2420 - 420	.024	2.380	.033	2.368	.033
2440.850	.023	2.042	.024	2.051	.025
2480.330	.023	1.618	.014	1.623	-014
2501.000	.023	1.631	.014	1.634	.014
2520.650	.022	1.513	.012	1.483	.011
2540.830	.022	1.513	.011	1.515	.011
2560 - 420	.022	1.442	.010	1.412	.009
2580.370	.023	1.411	.009	1.364	.008
2599.840	.023	1.218	.005	1.220	.005
2618-640	.023	1.138	.003	1.124	.003
2640.580	.024	1.083	.002	1.040	.001
2661.550	.024	1.054	.001	1.040	.001
2679.510	.024	.993	000	. 994	000 0.000
2700.720	.024	1.000	000	1.000	012
2719.280	.024	. 447	013	.497 .851	004
2740.740	.024	.893	003	.885	003
2760-690	.024	.913	002 003	.870	003
2778.950	.024	.869	003	.920	002
2800.100	.024	.882	003	.847	004
2820.110	.024	.862	005	.798	005
2839.400	.024	. 783	005	.769	005
2860 - 190	.024	. 798 . 854	004	.855	004
2880 - 800	.024	.704	004	.662	009
2899.720	.026	. 704 . 685	010	.674	010
2920.400	.031	.597	017	.561	018
2941 - 370	.042	.468	031	.452	032
2959-870	.058 .084	.914	007	.910	008
2979.520	.126	.499	063	.496	064
3000.550	.126	.630	059	.638	058
3020-260	. 200	.650	070	. 638	072
3040.450	. 200	. 020			

WATER VAPOR	EXTINCTION COEFFI	CIENT			
Wavenumber	PASCODE CASE 10	CC1	47	CC14	В
(CM**-1)	(KM**-1)	CC/FCD	CC-PCD	CC/FCD	CC-FCD
1979.600	.708	.522	338	. 560	311
2004.650	.483	• 565	210	.645	172
2031.250	. 302	.630	112	.698	091
2056.050	.198	.856	029	1.011	.002
2084.350	-132	.946	007	1.148	.020
2102.150	.103	.806	020	.900	010
2130.500	.075	.957	003	1.030	.002
2150.050	.063	.962	002	1.102	.006
2159.050	.059	-852	009	.979	001
2166.800	.056	.900	006	1.045	.003
2177.600	.052	.926	004	1.051	.003
2190.950	.048	.761	011	.867	006
2223.680	.042	2.534	.064	2.761	.074
2400.000	.028	2.170	.032	2.188	.033
2420.420	.027	2.000	.027	2.036	.028
2440.850	.027	1.709	.019	1.760	.020
2480.330	.026	1.357	.009	1.390	.010
2501.000	.025	1.403	.010	1.435	.011
2520.650	.025	1.295	.007	1.339	.009
2540.830	.025	1.296	.007	1.340	.009
2560.420	.025	1.226	.006	1.258	.007
2580.370	-025	1.147	.004	1.203	.005
2599.840	.026	1.123	.003	1.110	.003
2618.640	.026	1.008	.000	.985	000
2640.580	.027	.903	003	.945	001
2661.550	.027	.924	002	.922	002
2679.510	.027	.919	002	.917	002
2700.720	.027	1.000	0.000	1.000	0.000
2719.280	.027	.231	021	.300	019
2740.740	.027	.857	004	.878	003
2760.690	.027	.935	002	.966	001
2778.950	.027	.890	003	.945	001
2800.100	.027	1.037	.001	1.018	.000
2820.110	.027	-847	004	.893	003
2839.400	.027	.890	003	.901	003
2860.190	.027	.992	000	1.025	.001
2880.800	.027	1.063	.002	1.017	.000
2899.720	.030	.825	005	-887	003
2920.400	.035	.864	005	.847	005
2941 - 370	•047	.697	014	.724	013
2959.870	.066	.556	029	. 565	028
2979.520	.094	.998	000	1.052	.005
3000.550	.142	.574	060	.606	056
3020.260	.179	.685	056	.679	058
3040 - 450	.224	.706	066	.704	066

WATER VAPOR	EXTINCTION COEFFI	CIENT			
WAVENUMBER	FASCODE CASE 11	CC1	.53	CC15	4
(CM**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-PCD
1979.600	. 760	-544	346	-551	341
2004.650	.519	·601	207	•625	195
2031.250	.325	• 679	104	.702	097
2056.050	.214	•952	010	.981	004
2084.350	.143	1.067	.010	1.098	.014
2102.150	.111	•889	012	.913	010
2130.500	.081	1.020	.002	1.041	.003
2150.050	.069	1.072	.005	1.099	.007
2159.050	-065	• 988	001	1.004	.000
2166.800	.061	1.037	.002	1.059	-004
2177.600	.056	1.081	.005	1.083	-005
2190.950	.052	.973	001	.992	000
2223.680	-045	2.662	-075	2.693	.076
2400.000	.030	2.264	.037	2.286	.038
2420.420	-029	2.058	.031	2.101	.032
2440.850	.028	1.790	.022	1.824	.023
2480.330	-028	1.410	.011	1.433	.012
2501.000	.027	1.484	.013	1.503	.014
2520.650	.027	1.370	.010	1.386	-010
2540.830	.027	1.389	.010	1.404	.011
2560.420	.027	1.317	.008	1.321	.009
2580.370	-027	1.277	.008	1.293	.008
2599.840	-028	1.136	.004	1.138	.004
2618.640	-028	1.073	.002	1.076	.002
2640.580	.028	. 994	000	.996	000
2661.550	.029	.985	000	1.008	.000
2679.510	.029	.962	001	. 985	000
2700.720	.029	1.000	000	1.000	0.000
2719.280	.029	.313	020	. 362	018
2740.740	.029	.841	005	.860	004
2760.690	.029	.945	002	. 935	002
2778.950	.029	.874	004	.876	004
2800.100	.029	.870	004	.902	003
2820.110	.029	-828	005	.844	004
2839.400	.028	.809	005	. 799	006
2860.190	.028	.878	003	.877	003
2880.800	.029	.962	001	.943	002
2899.720	.032	.750	008	.722	009
2920.400	.038	. 782	008	.751	009
2941.370	.050	.688	016	.664	017
2959.870	.070	- 584	029	. 552	031
2979.520	.101	.899	010	.988	001
3000.550	.151	.537	070	.553	067
3020.260	. 191	.636	069	.678	061
3040.450	. 239	.663	081	- 680	077

WATER VAPOR	EXTINCTION COEFFI	CIENT					
WAVENUMBER	FASCODE CASE 12	CC1	19	CC12	0	CC121	
(CM**-1)	(KM**-1)	CC/FCD	CC-PCD	CC/PCD	CC-FCD	CC/FCD	CC-PCD
1979.600	.807	.522	385	. 594	328	- 525	383
2004.650	-553	- 543	253	.632	203	.551	248
2031.250	.347	.633	127	.719	097	.628	129
2056.050	.230	.795	047	-902	022	.802	045
2084.350	.154	.894	016	1.031	.005	.879	019
2102.150	.120	.891	013	1.008	.001	.849	018
2130.500	.088	1.046	- 004	1.174	.015	.965	003
2150.050	.074	1.040	-003	1.194	.014	.953	003
2159.050	.070	. 962	003	1.096	.007	.874	009
2166.800	.066	1.019	.001	1.137	.009	.873	008
2177.600	.061	1.062	.004	1.181	.011	.890	007
2190.950	.056	.994	000	1.123	.007	.782	012
2223.680	.049	2.574	.077	2.694	.083	1.989	.048
2400.000	.032	2.217	.039	2.331	-042	2.192	.03B
2420.420	.031	1.994	.031	2.108	.034	1.876	.027
2440.850	.030	1.724	.022	1.846	.026	1.597	.018
2480.330	.029	1.410	.012	1.482	.014	1.238	.007
2501.000	.029	1.453	.013	1.512	.015	1.310	.009
2520.650	-029	1.383	.011	1.455	.013	1.276	.008
2540.830	.029	1.400	.011	1.438	.013	1.261	.007
2560.420	.029	1.290	.008	1.328	.009	1.157	.004
2580.370	.029	1.236	.007	1.286	.008	1.083	.002
2599.840	.029	1.196	.006	1.234	.007	1.071	.002
2618.640	.030	1.089	.003	1.106	.003	1.020	.001
2640.580	.030	.992	000	1.030	.001	.941	002
2661.550	.030	.989	000	1.048	.001	.947	002
2679.510	.030	.971	001	• 998	000	.904	003
2700.720	.031	1.000	000	1.000	000	1.000	0.000
2719.280	.030	. 294	021	.525	014	.312	021
2740.740	.030	.918	002	.889	003	.917	003
2760.690	.030	.954	001	.925	002	1.046	.001
2778.950	.031	.897	003	.926	002	.969	001
2900 - 100	.031	1.022	.001	1.086	.003	1.043	.001
2820.110	.030	.857	004	.884	004	.913	003
2839.400	.030	.893	003	.891	003	1.006	.000
2860.190	.030	1.029	.001	.947	002	1.143	.004
2880.800	.031	1.173	.005	1.104	.003	1.312	.010
2899.720	.033	.886	004	.861	005	1.113	.004
2920.400	.040	.993	000	.915	003	1.123	.005
2941.370	.053	.834	009	.801	011	.959	002
2959.870	.074	.671	024	. 686	023	.784	016
2979.520	.106	.904	010	1.292	.031	1.140	.015
3000.550	.159	. 536	074	. 599	064	.640	057
3020.260	.201	.628	075	.734	053	.723	056
3040 - 450	. 252	.665	085	.734	067	.774	057
	- 202						

WAVERUMBER FASCODE CASE 13 CC197CD CC-97CD CC-97CD CC-97CD CC-97CD CC-97CD CC-97CD CC-97CD CC-97CD CC197CD CC-97CD CC197CD CC-97CD CC197CD CC-97CD CC197CD CC1		EXTINCTION COEFFI						
1979.600	AVAEMONDES	PASCODE CASE 13				8	CC159	
2004.650	(CM++-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD	CC/FCD	. CC-FCD
2031,250					-570	390	.670	299
2054-050		.622		138	.701	186	.830	106
2084.350	2031.250	. 392	.833	063	-771	090	.886	045
2102.130	2056.050	- 260	1.156	.041	1.033	.009	1.173	.045
2102.150	2084.350	.175	1.272	-048	1.120	.021	1.258	.045
2130-500	2102.150	.137	.987	002				
2150.050	2130.500	.100	1.083	.008	.952	005	1.042	.004
2159-050			1.149	.013				
2166.800 .075 1.107 .008 .954 003 1.037 .003 2177.600 .069 1.119 .008 .979 001 1.038 .003 2190.950 .064 .986 001 .861 009 .896 007 2223.680 .055 2.645 .091 2.440 .079 2.707 .094 2400.000 .035 2.118 .039 1.993 .035 2.005 .093 2440.420 .034 1.948 .033 1.814 .022 1.846 .029 2440.850 .034 1.716 .024 1.564 .019 1.620 .021 2440.850 .032 1.358 .012 1.245 .008 1.226 .009 2501.000 .032 1.423 .014 1.304 .010 1.352 .011 2520.650 .032 1.330 .010 1.213 .007 1.262 .008 2540.420 .031 1.279 .009 1.183 .006 1.221 .009 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2177.600								
2190.990								
2223.680 .055 2.645 .091 2.440 .079 2.707 .094 2400.000 .035 2.118 .039 1.993 .035 2.005 .035 2420.420 .034 1.948 .033 1.814 .022 1.846 .029 2480.330 .032 1.358 .012 1.245 .008 1.286 .009 2501.000 .032 1.433 .014 1.304 .010 1.352 .011 2520.650 .032 1.330 .010 1.213 .007 1.262 .008 2540.830 .031 1.337 .011 1.261 .008 1.274 .009 2560.420 .031 1.279 .009 1.183 .006 1.221 .007 2580.370 .032 1.238 .008 1.182 .006 1.191 .006 2599.840 .032 1.210 .003 1.045 .001 1.084 .003 2618.640								
2400.000 .035 2.118 .039 1.993 .035 2.005 .035 2420.420 .034 1.948 .033 1.814 .028 1.846 .029 2440.850 .034 1.716 .024 1.564 .019 1.620 .021 2480.330 .032 1.358 .012 1.245 .008 1.286 .009 2501.000 .032 1.423 .014 1.304 .010 1.352 .011 2520.450 .032 1.330 .010 1.213 .007 1.262 .008 2540.830 .031 1.337 .011 1.261 .008 1.274 .009 2550.420 .031 1.279 .009 1.183 .006 1.222 .007 2580.370 .032 1.238 .008 1.182 .006 1.91 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 .000 .980 .001								
2420.420 .034 1.948 .033 1.814 .022 1.846 .029 2440.850 .034 1.716 .024 1.364 .019 1.620 .021 2480.330 .032 1.358 .012 1.245 .008 1.286 .009 2501.000 .032 1.423 .014 1.304 .010 1.352 .011 2520.650 .032 1.330 .010 1.213 .007 1.262 .008 2540.830 .031 1.337 .011 1.261 .008 1.274 .009 2560.420 .031 1.279 .009 1.183 .006 1.222 .007 2580.370 .032 1.238 .008 1.182 .006 1.391 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 000 1.028 .001 2661.550 .033 1.025 .001 1.990 000 .980 001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2440.850 .034 1.716 .024 1.564 .019 1.620 .021 2480.330 .032 1.358 .012 1.245 .008 1.286 .009 2501.000 .032 1.423 .014 1.304 .010 1.352 .011 2520.650 .032 1.330 .010 1.213 .007 1.262 .008 2540.830 .031 1.337 .011 1.261 .008 1.274 .009 2560.420 .031 1.279 .009 1.183 .006 1.222 .007 2580.370 .032 1.238 .008 1.182 .006 1.91 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.025 .001 .996 000 1.028 .001 2641.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000								
2480-330 .032 1-358 .012 1.245 .008 1.286 .009 2501-000 .032 1-423 .014 1-304 .010 1.352 .011 2520-650 .032 1-330 .010 1-213 .007 1-262 .008 2540-830 .031 1-337 .011 1-261 .008 1-274 .009 2560-420 .031 1-279 .009 1-183 .006 1-222 .007 2580-370 .032 1-238 .008 1-182 .006 1-222 .007 2580-840 .032 1-101 .003 1-045 .001 1-084 .003 2640-860 .033 1-041 .001 .996 000 1-028 .001 2640-580 .033 1-025 .001 1-090 000 .980 001 2661-550 .033 1-024 .001 1-010 .000 1-012 .000 2700-720 .034 1-004 .000 -989 000 .985 001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2501.000								
2520.650								
2540.830 .031 1.337 .011 1.261 .008 1.274 .009 2560.420 .031 1.279 .009 1.183 .006 1.222 .007 2580.370 .032 1.238 .008 1.182 .006 1.191 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 000 1.028 .001 2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 276								
2560.420 .031 1.279 .009 1.183 .006 1.222 .007 2580.370 .032 1.238 .008 1.182 .006 1.191 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 000 1.028 .001 2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 .980 001 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 001 .000 .000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .625 012 .630 012 .645 012 2760.690								
2580.370 .032 1.238 .008 1.182 .006 1.191 .006 2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 000 1.028 .001 2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 .000 .985 000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2778.950 .034 .964 001 1.000 .000 .976 001 28								
2599.840 .032 1.101 .003 1.045 .001 1.084 .003 2618.640 .033 1.041 .001 .996 000 1.028 .001 2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 001 1.000 .000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2								
2618.640 .033 1.041 .001 .996 000 1.028 .001 2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 000 1.000 .000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .688 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2640.580 .033 1.025 .001 .990 000 .980 001 2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 000 1.000 0.000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .9882 004 .943 002 .896 003								
2661.550 .033 1.024 .001 1.010 .000 1.012 .000 2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 000 1.000 0.000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .937 002 .991 000 .962 001 2860.190 .033 .937 002 1.003 .000 .941 002<								
2679.510 .033 1.004 .000 .989 000 .985 000 2700.720 .034 1.000 000 1.000 000 1.000 0.000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .668 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 .991 000 .962 001 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .882 004 .943 002 .896 003 2860.800 .033 .937 002 1.003 .000 .941 002 2899.720 .037 .811 007 .883 004 .844 006<								
2700.720 .034 1.000 000 1.000 000 0.000 2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .882 004 .943 002 .896 003 2860.190 .033 .937 002 1.003 .000 .941 002 2880.800 .034 .943 002 1.036 .001 .992 000 2899.720 <								
2719.280 .033 .625 012 .630 012 .645 012 2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .945 002 .991 000 .962 001 2860.190 .033 .937 002 1.003 .000 .941 002 2880.800 .034 .943 002 1.036 .001 .992 000 2899.720 .037 .811 007 .883 004 .844 006 2920.400 .044 .789 009 .890 005 .816 008 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2740.740 .033 .868 004 .877 004 .859 005 2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 .001 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .982 004 .943 002 .896 003 2860.190 .033 .997 002 1.003 .000 .941 002 2880.800 .034 .943 002 1.036 .001 .992 000 2899.720 .037 .811 007 .883 004 .844 006 2920.400 .044 .789 009 .890 005 .816 008 2941.370 .059 .719 017 .775 013 .753 014								
2760.690 .033 .953 002 .971 001 .947 002 2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .882 004 .943 002 .896 003 2860.190 .033 .937 002 1.003 .000 .941 002 2880.800 .034 .943 002 1.036 .001 .992 000 2899.720 .037 .811 007 .883 004 .844 006 2920.400 .044 .789 009 .890 005 .816 008 2941.370 .059 .719 017 .775 013 .753 014 295								
2778.950 .034 .964 001 1.000 .000 .976 001 2800.100 .034 1.062 .002 1.104 .004 1.136 .005 2820.110 .033 .945 002 .991 000 .962 001 2839.400 .033 .882 004 .943 002 .896 003 2860.190 .033 .937 002 1.003 .000 .941 002 2880.800 .034 .943 002 1.036 .001 .992 000 2899.720 .037 .811 007 .883 004 .844 006 2920.400 .044 .789 009 .890 005 .816 008 2941.370 .059 .719 017 .775 013 .753 014 2959.870 .082 .620 031 .658 028 .674 027 297								
2800-100 .034 1.062 .002 1.104 .004 1.136 .005 2820-110 .033 .945 002 .991 000 .962 001 2839-400 .033 .882 004 .943 002 .896 003 2860-190 .033 .937 002 1.003 .000 .941 002 2880-R00 .034 .943 002 1.036 .001 .992 000 2899-720 .037 .811 007 .883 004 .844 006 2920-400 .044 .789 009 .890 005 .816 008 2941-370 .059 .719 017 .775 013 .753 014 2959-870 .082 .620 031 .658 028 .674 027 2979-520 .118 1.152 .018 1.223 .026 1.290 .034 3000-550 .177 .618 067 .640 064 .658 060 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2820-110								
2839.400								
2860.190								
2880.R00								
2899.720 .037 .811 007 .883 004 .844 006 2920.400 .044 .789 009 .890 005 .816 008 2941.370 .059 .719 017 .775 013 .753 014 2959.870 .082 .620 031 .658 028 .674 027 2979.520 .118 1.152 .018 1.223 .026 1.290 .034 3000.550 .177 .618 067 .640 064 .658 060 3020.260 .223 .768 052 .774 050 .824 039								
2920.400 .044 .789 009 .890 005 .816 008 2941.370 .059 .719 017 .775 013 .753 014 2959.870 .082 .620 031 .658 028 .674 027 2979.520 .118 1.152 .018 1.223 .026 1.290 .034 3000.550 .177 .618 067 .640 064 .658 060 3020.260 .223 .768 052 .774 050 .824 039								
2941.370 .059 .719 017 .775 013 .753 014 2959.870 .082 .620 031 .658 028 .674 027 2979.520 .118 1.152 .018 1.223 .026 1.290 .034 3000.550 .177 .618 067 .640 064 .658 060 3020.260 .223 .768 052 .774 050 .824 039								
2959.870								
2979.520 .118 1.152 .018 1.223 .026 1.290 .034 3000.550 .177 .618067 .640064 .658060 3020.260 .223 .768052 .774050 .824039								
3000.550 .177 .618067 .640064 .658060 3020.260 .223 .768052 .774050 .824039								
3020.260 .223 .768052 .774050 .824039	1000.550							

WATER VAPOR	EXTINCTION COEFFI	CIENT			
WAVENUMBER	FASCODE CASE 14	CC1	60	CC16	1
(CM**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD
1979.600	.921	- 396	557	.577	390
2004.650	.632	.439	354	-763	150
2031.250	- 398	.627	149	-896	041
2056.050	.264	-832	044	1.231	.061
2084.350	.177	.936	011	1.356	.063
2102.150	-138	-836	023	1.096	.013
2130.500	.101	.962	004	1.210	.021
2150.050	.086	1.000	.000	1.313	.027
2159.050	-081	•900	00R	1.203	.016
2166.800	.076	-957	003	1.241	.018
2177.600	.070	.991	001	1.268	.019
2190.950	.065	-846	010	1.124	.008
2223.680	.056	2.301	.072	3.036	.113
2400.000	.036	2.058	.038	2.356	.048
2420.420	.035	1.847	.029	2.131	.039
2440.850	.034	1.625	.021	1.874	.030
2480.330	.033	1.269	.009	1.482	.016
2501.000	.032	1.359	.012	1.543	.018
2520.650	.032	1.271	.009	1.432	.014
2540.830	.032	1.276	.009	1.437	.014
2560.420	.032	1.210	.007	1.360	.011
2580.370	.032	1.186	.006	1.350	.011
2599.840	.032	1.087	.003	1.199	.006
2618.640	.033	1.011	.000	1.121	.004
2640.580	.034	.955	002	1.083	.003
2661.550	.034	.944	002	1.074	.003
2679.510	.033	.933	002	1.055	.002
2700.720	.034	1.000	0.000	1.000	0.000
2719.280	.034	.460	018	.703	010
2740.740	.034	.861	005	.853	005
2760.690	.034	.951	002	.919	003
2778.950	.034	.940	002	.950	002
2800.100	.034				
		1.029	.001	1.150	.005
2820.110	.034	.931	002	.901	003
2839.400	.033	.901	003	.807	006
2860.190	-033	1.057	.002	.890	004
2880.800	.034	1.186	.006	-972	001
2899.720	.037	.966	001	.805	007
2920.400	• 045	1.004	•000	-801	009
2941.370	.059	.893	006	.722	017
2959.870	-083	.742	021	.688	026
2979.520	.120	1.187	.022	1.213	.025
3000.550	-179	.581	075	-603	071
3020.260	.226	.696	069	.785	049
3040.450	. 281	. 705	084	742	_ 073

WATER VAPOR	EXTINCTION COEF	FICIENT			
WAVENUMBER	FASCODE CASE	9 CC1	44	CC14	5
(CH**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD
1979.600	.622	.643	222	.650	218
2004.650	.424	.720	118	.728	115
2031.250	.263	-823	047	.830	045
2056.050	.172	1.158	.027	1.168	.029
2084.350	.114	1.419	.048	1.431	.049
2102.150	.088	1.441	.039	1.459	.040
2130.500	.064	1.805	.052	1.826	.053
2150.050	.054	1.985	.054	2.002	.054
2159.050	.051	1.905	.046	1.941	.048
2166.800	.048	2.042	.050	2.061	.051
2177.600	.045	2.185	.053	2.205	-054
2190.950	.041	2.236	.051	2.236	.051
2223.680	.036	4 - 094	.111	4.094	.111
2400.000	.024	4 - 659	.089	4.693	.090
2420.420	.024	4.490	.083	4.490	.083
2440.850	.023	4-211	.075	4.233	.076
2480.330	.023	3.890	.066	3.909	.066
2501.000	.023	3.948	.067	3.965	.067
2520.650	.022	3.875	.065	3.859	.064
2540.830	.022	3.921	.065	3.937	.063
2560.420	.022	3.852	.064	3.837	.064
2580.370	.023	3.824	.064	3.792	.063
2599.840	.023	3.613	.060	3.629	.061
2618.640	.023	3.514	.059	3.514	.059
2640.580	.024	3.446	.058	3.416	: 058
2661.550	.024	3.421	-058	3.421	.058
2679.510	.024	3.400	.057	3.415	.058
2700.720	.024	3.392	-058	3.406	.058
2719.280	.024	2.879	-045	2.944	.047
2740.740	.024	3.330	.056	3.302	.056
2760.690	-024	3.393	.057	3.379	.057
2778.950	.024	3.349	.057	3.364	.057
2800.100	.024	3.365	.058	3.417	.059
2820.110	.024	3.408	.058	3.408	.058
2839.400	.024	3.395	.057	3.425	.057
2860.190	.024	3.433	.057	3.419	.057
2880.800	.024	3.428	.059	3.443	.060
2899.720	-026	3.105	.056	3.076	.055
2920.400	.031	2.714	.054	2.714	. 054
2941.370	.042	2.135	.048	2.107	.046
2959.870	-058	1.583	.034	1.574	.033
2979.520	.084	1.693	-058	1.693	.058
3000.550	.126	1.023	.003	1.023	.003
3020.260	-159	1.048	.008	1.059	.009
3040.450	.200	.987	003	. 976	005

WAVENUMBER (CH**-1) FASCODE CASE 10 (KH**-1) CC147 CC/FCD CC-FCD CC148 CC/FCD CC-FCD 1979.600 .708 .321 339 .555 315 2004.650 .483 .363 211 .639 175 2031.250 .302 .629 112 .689 094 2056.050 .198 .856 028 .999 000 2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 <
(CM**-1) (KM**-1) CC/FCD CC-FCD CC/FCD CC-FCD 1979.600 .708 .321 339 .555 315 2004.650 .483 .363 211 .639 175 2031.250 .302 .629 112 .689 094 2056.050 .198 .856 028 .999 000 2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2179.950 .048 .797 010 .853 007
2004.650 .483 .563 211 .639 175 2031.250 .302 .629 112 .689 094 2056.050 .198 .856 028 .999 000 2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030
2031.250 .302 .629 112 .689 094 2056.050 .198 .856 028 .999 000 2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2159.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2480.330 .026 1.567 .015 1.503 .013
2056.050 .198 .856 028 .999 000 2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2480.330 .026 1.567 .015 1.503 .013
2084.350 .132 .949 007 1.133 .018 2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013
2102.150 .103 .812 019 .882 012 2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 250.650 .025 1.530 .013 1.475 .012 250.830 .025 1.542 .014 1.486 .012
2130.500 .075 .970 002 1.010 .001 2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012
2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2550.830 .025 1.542 .014 1.486 .012
2150.050 .063 .981 001 1.083 .005 2159.050 .059 .874 007 .960 002 2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2550.830 .025 1.542 .014 1.486 .012
2166.800 .056 .926 004 1.027 .002 2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2500.650 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2177.600 .052 .956 002 1.035 .002 2190.950 .048 .797 010 .853 007 2223.680 .042 2.386 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2190.950 .048 .797 010 .853 007 2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2223.680 .042 2.586 .066 2.754 .073 2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2400.000 .028 2.330 .037 2.257 .035 2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2420.420 .027 2.172 .032 2.117 .030 2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2440.850 .027 1.894 .024 1.851 .023 2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2480.330 .026 1.567 .015 1.503 .013 2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2501.000 .025 1.627 .016 1.560 .014 2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2520.650 .025 1.530 .013 1.475 .012 2540.830 .025 1.542 .014 1.486 .012
2540.830 .025 1.542 .014 1.486 .012
2560.420 .025 1.442 012 1.44 010
2580·370
2599.840 .026 1.392 .010 1.281 .007
2618.640 .026 1.280 .007 1.161 .004
2640-580 -027 1-181 -005 1-128 -003
2661.550 .027 1.212 .006 1.115 .003
2679.510 .027 1.215 .006 1.119 .003
2700-720 .027 1-302 .008 1.208 .006
2719.280 .027 .544012 .518013
2740.740 .027 1.178 .005 1.104 .003
2760.690 .027 1.268 .007 1.204 .006
2778.950 .027 1.229 .006 1.189 .005
2800.100 .027 1.383 .010 1.270 .007
2820.110 .027 1.208 .006 1.158 .004
2839.400 .027 1.265 .007 1.179 .005 2860.190 .027 1.377 .010 1.313 .008
1111 111 111 111 111 111 111 11 11 11 1
2899.720 .030 1.186 .006 1.161 .005 2920.400 .035 1.176 .006 1.085 .003
1111 111
3000.550 .142 .659048 .673046 3020.260 .179 .753044 .732048
3040.450 .224 .762053 .748056

	EXTINCTION COEFF				
WAVENUMBER	PASCODE CASE 11	CC1	53	CC15	4
(CH**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD
1979.600	.760	.551	341	.553	339
2004.650	-519	-611	202	.629	193
2031.250	-325	.695	099	.708	095
2056.050	-214	.977	005	.991	002
2084.350	-143	1.105	.015	1.114	.016
2102.150	-111	-938	007	.933	007
2130.500	-081	1.088	.007	1.069	.006
2150.050	.069	1.154	.011	1.131	.009
2159.050	-065	1.076	.005	1.039	.002
2166.800	-061	1.130	.008	1.096	.006
2177.600	-056	1-181	.010	1.123	.007
2190.950	.052	1.083	.004	1.036	.002
2223.680	-045	2.791	.081	2.745	.079
2400.000	.030	2.475	.044	2.370	.040
2420.420	.029	2.276	.037	2.188	.034
2440.850	.028	2.014	.029	1.914	.026
2480.330	-028	1.644	.018	1.526	.015
2501.000	.027	1.723	.020	1.598	.016
2520.650	-027	1.613	.017	1.483	.013
2540.830	.027	1.636	.017	1.503	.013
2560.420	.027	1.566	.015	1.420	.011
2580.370	.027	1.524	.014	1.391	.011
2599.840	-028	1.380	.010	1.237	.007
2618.640	.028	1.317	.009	1.173	.005
2640.580	-028	1.235	.007	1.093	.003
2661.550	.029	1.226	.006	1.105	.003
2679.510	.029	1.206	.006	1.083	.002
2700.720	.029	1.244	.007	1.098	.003
2719.280	.029	- 560	013	.461	015
2740.740	.029	1.088	.003	.959	001
2760.690	.029	1.196	.006	1.036	.001
2778.950	.029	1.123	.004	.975	001
2800.100	.029	1.120	.003	1.002	.000
2820.110	.029	1.082	.002	.946	002
2839.400	.028	1.070	.002	.904	003
2860.190	.028	1.141	.004	.982	000
2880.800	.029	1.218	.006	1.046	.001
2899.720	-032	.986	000	.817	006
2920.400	.038	982	001	.831	006
2941.370	.050	.839	008	.725	014
2959.870	.070	.694	021	.596	028
2979.520	-101	.975	002	1.019	.002
3000.550	-151	. 588	062	. 573	064
3020.260	-191	.677	062	.694	058
3040.450	. 239	-696	073	.693	073

NAVENUMBER FASCODE CASE 13 CC157 CC-FCD CC-FCD CC/FCD CC-FCD CC/FCD CC-FCD CC-FCD	WATER VAPOR	EXTINCTION CORPF	CIENT					
CCFFCD			CCI	157	CC15	8	CC159	
2004.650	(CM**-1)	(KM**-1)	CC/FCD	CC-FCD	CC/FCD	CC-FCD		
2004.650	1979.600	.907	.643	324	. 584	- 277	470	
2031-250	2004.650							
2056.050								
2084-350	2056.050							
2130.500								
2130-500								
2159-050	2130.500							
2159-050	2150.050							
2166.800	2159.050							
2177.600	2166.800							
2190.950	2177.600							
2223.680	2190.950							
2400.000	2223.680							
2420.420 .034 2.387 .048 2.266 .044 2.085 .037 2440.850 .034 2.169 .039 2.031 .035 1.867 .029 2480.330 .032 1.835 .027 1.736 .024 1.545 .018 2501.000 .032 1.909 .029 1.805 .026 1.617 .020 2520.650 .032 1.826 .026 1.725 .023 1.533 .017 2540.830 .031 1.840 .026 1.779 .025 1.548 .017 2580.370 .031 1.786 .025 1.706 .022 1.488 .016 2589.3840 .032 1.602 .019 1.563 .018 1.357 .012 2618.640 .033 1.540 .018 1.510 .017 1.300 .010 2640.580 .033 1.550 .017 1.503 .017 1.283 .009 27	2400.000							
2440.850	2420.420							-
2480-330	2440.850							
2501.000	2480.330							
2520.650	2501.000							
2540.830	2520.650							
2560.420	2540.830							
2580.370	2560.420							
2599.840								
2618.640 .033 1.540 .018 1.510 .017 1.300 .010 2640.580 .033 1.519 .017 1.500 .017 1.249 .008 2661.550 .033 1.523 .017 1.523 .017 1.283 .009 2679.510 .033 1.506 .017 1.506 .017 1.258 .009 2700.720 .034 1.499 .017 1.515 .017 1.272 .009 2719.280 .033 1.133 .004 1.154 .005 .923 003 2740.740 .033 1.377 .013 1.402 .013 1.137 .005 2760.690 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 282	2599.840							
2640.580 .033 1.519 .017 1.500 .017 1.249 .008 2661.550 .033 1.523 .017 1.523 .017 1.283 .009 2679.510 .033 1.506 .017 1.506 .017 1.283 .009 2700.720 .034 1.499 .017 1.515 .017 1.272 .009 2719.280 .033 1.133 .004 1.154 .005 .923 003 2740.740 .033 1.377 .013 1.402 .013 1.137 .005 2778.950 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 283	2618.640							
2661.550 .033 1.523 .017 1.523 .017 1.283 .009 2679.510 .033 1.506 .017 1.506 .017 1.258 .009 2700.720 .034 1.499 .017 1.515 .017 1.272 .009 2719.280 .033 1.133 .004 1.154 .005 .923 003 2740.740 .033 1.377 .013 1.402 .013 1.137 .005 2760.690 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 2860.190 .033 1.418 .014 1.496 .016 1.189 .006 2860.800 .034 1.468 .016 1.577 .020 1.279 .009 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2679.510								
2700.720 .034 1.499 .017 1.515 .017 1.272 .009 2719.280 .033 1.133 .004 1.154 .005 .923 003 2740.740 .033 1.377 .013 1.402 .013 1.137 .005 2760.690 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 2839.400 .033 1.418 .014 1.496 .016 1.189 .006 2860.800 .033 1.477 .016 1.560 .018 1.235 .008 2880.800 .034 1.468 .016 1.577 .020 1.279 .009 2899.720 .037 1.298 .011 1.384 .014 1.109 .004 <td>2679.510</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2679.510							
2719-280 .033 1.133 .004 1.154 .005 .923 003 2740.740 .033 1.377 .013 1.402 .013 1.137 .005 2760.690 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 2839.400 .033 1.469 .014 1.496 .016 1.189 .006 2860.190 .033 1.477 .016 1.560 .018 1.235 .008 2889.720 .034 1.468 .016 1.577 .020 1.279 .009 2920.400 .034 1.298 .011 1.384 .014 1.109 .004 294								
2740-740 .033 1.377 .013 1.402 .013 1.137 .005 2760-690 .033 1.469 .016 1.503 .017 1.228 .008 2778-950 .034 1.478 .016 1.529 .018 1.256 .009 2800-100 .034 1.576 .020 1.634 .021 1.416 .014 2820-110 .033 1.469 .016 1.531 .018 1.247 .008 2839-400 .033 1.418 .014 1.496 .016 1.189 .006 2860-190 .033 1.477 .016 1.560 .018 1.235 .008 2880-800 .034 1.468 .016 1.577 .020 1.279 .009 2899-720 .037 1.298 .011 1.384 .014 1.109 .004 2920-400 .044 1.201 .009 1.314 .014 1.090 .004 2941-370 .059 1.030 .002 1.096 .006 .923 005 <td>2719.280</td> <td>.033</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2719.280	.033						
2760.690 .033 1.469 .016 1.503 .017 1.228 .008 2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 2839.400 .033 1.418 .014 1.496 .016 1.189 .006 2860.190 .033 1.477 .016 1.560 .018 1.235 .008 2880.800 .034 1.468 .016 1.577 .020 1.279 .009 2899.720 .037 1.298 .011 1.384 .014 1.040 .002 2920.400 .044 1.201 .009 1.314 .014 1.040 .002 2941.370 .059 1.030 .002 1.096 .006 .923 005 2959.870 .082 .845 013 .889 009 .797 017 <td>2740.740</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2740.740							
2778.950 .034 1.478 .016 1.529 .018 1.256 .009 2800.100 .034 1.576 .020 1.634 .021 1.416 .014 2820.110 .033 1.469 .016 1.531 .018 1.247 .008 2839.400 .033 1.418 .014 1.496 .016 1.189 .006 2860.800 .034 1.468 .016 1.577 .020 1.279 .009 2899.720 .037 1.298 .011 1.384 .014 1.109 .004 2920.400 .044 1.201 .009 1.314 .014 1.040 .002 2941.370 .059 1.030 .002 1.096 .006 .923 005 2959.870 .082 .845 013 .889 009 .797 017 2979.520 .118 1.309 .036 1.385 .045 1.376 .044 300	2760.690							
2800-100	2778.950	.034						
2820-110	2800.100	.034						
2839.400	2820.110							
2860-190								
2880.800	2860.190							
2899.720 .037 1.298 .011 1.384 .014 1.109 .004 2920.400 .044 1.201 .009 1.314 .014 1.009 .002 2941.370 .059 1.030 .002 1.096 .006 .923005 2959.870 .082 .845013 .889009 .797017 2979.520 .118 1.309 .036 1.385 .045 1.376 .044 3000.550 .177 .723049 .748044 .716050 3020.260 .223 .852033 .861031 .870029	2880.800							
2920-400	2899.720							
2941-370								
2959.870 .082 .845013 .889009 .797017 2979.520 .118 1.309 .036 1.385 .045 1.376 .044 3000.550 .177 .723049 .748044 .716050 3020.260 .223 .852033 .861031 .870029	2941.370							
2979.520 .118 1.309 .036 1.385 .045 1.376 .044 3000.550 .177 .723049 .748044 .716050 3020.260 .223 .852033 .861031 .870029	2959.870							
3000.550 .177 .723049 .748044 .716050 3020.260 .223 .852033 .861031 .870029	2979.520							
3020.260 .223 .852033 .861031 .870029								
3040.450	3020.260							
	3040.450	.280	.807	054	.820	050	.833	047

WATER VAPOR	EXTINCTION COEFF	ICIENT			
WAVENUMBER	FASCODE CASE 14	CC1	60	CC16	1
(CH**-1)	(KH**-1)	CC/PCD	CC-FCD	CC/FCD	CC-FCD
1979.600	.921	-406	547	.584	383
2004.650	.632	.454	345	.774	143
2031.250	.398	.651	139	.913	035
2056.050	. 264	.869	034	1.258	.068
2084.350	.177	.993	001	1.396	.070
2102.150	.138	.909	013	1.148	.020
2130.500	.101	1.063	.006	1.281	.028
2150.050	.086	1.120	.010	1.397	.034
2159.050	.081	1.029	.002	1.293	.024
2166.800	.076	1.094	.007	1.337	.026
2177.600	.070	1.139	.010	1.372	.026
2190.950	.065	1.008	.001	1.238	.015
2223.680	.056	2.492	.083	3.170	.121
2400.000	.036	2.379	.049	2.581	.056
2420.420	.035	2.180	.041	2.365	.047
2440.850	.034	1.969	.033	2.115	.038
2480.330	.033	1.628	.021	1.734	.024
2501.000	.032	1.728	.024	1.802	.026
2520.650	.032	1.645	.021	1.694	.022
2540.830	.032	1.655	.021	1.703	-022
2560.420	.032	1.592	.019	1.628	.020
2580.370	.032	1.569	.018	1.618	.020
2599.840	.032	1-468	.015	1.466	.015
2618.640	.033	1.387	.013	1.385	.013
2640.580	.034	1.328	.011	1.345	.012
2661.550	.034	1.319	.011	1.337	.011
2679.510	.033	1.314	.010	1.321	.011
2700.720	.034	1.377	.013	1.264	.009
2719.280	.034	.844	005	.972	001
2740.740	.034	1.246	-008	1.123	.004
2760.690	.034	1.341	.011	1.192	.006
2778.950	.034	1.328	.011	1.222	.008
2800.100	.034	1.417	.014	1.422	.014
2820.110	.034	1.327	.011	1.178	.006
2839.400	.033	1.306	.010	1.091	.003
2860.190	.033	1.464	.015	1.176	.006
2880.800	.034	1.583	.020	1.250	.009
2899.720	.037	1.334	.012	1.063	.002
2920.400	-045	1.314	-014	1.018	.001
2941.370	.059	1.127	.008	.886	007
2959.870	.083	.911	007	-807	016
2979.520	-120	1.305	.036	1.296	.035
3000.550 3020.260	,179	.660	061	-659	061
3040.450	.226	.760 .756	054 069	.829 .778	039 063

•							
			APPENDIX B				
	CALCULATED	LOCAL LINE	CONTRIBUTIONS	то тне	OPTICAL	DEPTH	

			FASCODE	CASE			
(cm ⁻¹)	1	2	3	4	5	6	7
1930.300	1.127	-860	.486	.755	1.725	1.842	1.954
1952.500	.974	.746	.425	.657	1.446	1.537	1.639
1974.100	.374	. 286	.161	. 250	. 586	.624	.665
1979.600	.251	.194	-109	.168	. 364	.388	.411
2004.650	.301	- 236	.132	. 200	.425	.454	.481
2031.250	.120	•095	-056	.082	.166	.176	.187
2056.050	.147	.127	.101	.119	.172	.179	.187
2084.350	.121	-104	•075	.093	.144	.151	.158
2102.150	.091	•079	•063	.074	.106	.111	.115
2130.500	.056	.051	.042	-047	.058	.060	.062
2150.050	.072	.064	• 050	-057	.077	.081	.084
2159.050	.109	.101	.088	.095	.103	.106	.108
2166.800	•089	• 086	•075	.079	.079	.081	.083
2177.600	.120	.119	.114	.114	.099	.100	.101
2190.950	.404	. 394	- 384	. 389	.338	.340	.343
2223.680	-612	.610	. 594	• 589	.490	.492	.493
2400.000	.016	.017	•016	.016	.013	.013	.013
2420.420	•003	•003	•002	•002	.002	.002	.002
2440.850	.011	.011	.011	.011	.009	.009	.010
2480.330	.020	.019	•016	.017	.018	.019	.019
2501.000	.001	•001	•001	.001	.001	.001	.001
2520.650	•004	.003	•003	.003	•003	.003	.003
2540.830	-017	.016	.017	•017	.015	.015	.015
2560.420	.018	.017	.017	.018	.016	.016	.016
2580.370	.059	•056	•054	.057	•053	.054	.055
2599.840	.036	.034	•030	.033	-034	.035	.035
2618.640	.019	.016	.012	.015	.024	.025	.026
2640.580	.023	.018	.012	.016	.032	-034	.036
2661.550	.028	.021	.012	.019	• 044	• 047	.050
2679.510	•029	.022	.014	-020	.043	.046	.048
2700.720	•005	•004	• 003	.004	800	• 008	- 009
2719.280	.160	.121	•069	-109	.231	. 246	.261
2740.740	.017	.014	•011	-014	.022	.023	.024
2760.690	.010	•008	•006	•008	.012	.013	.014
2778.950	•038	.029	.019	.027	.055	-058	.062
2800.100 2820.110	.104	.086	.064	•083	.133	.140	.147
2839.400	.084	.072	-057	.069	.098	.102	.107
2860.190	-028	•023	.015	.021	.039	.041	.043
2880.800	.016 .038	.013	•009	.012	•021	.022	.023
2899.720	.057	.032 .049	•025	.030	.046	.048	.050
2920.400	.040	.037	•038 •033	•046 •035	.067	•070	.073
2941.370	.053	.046	.033		.039	.040	.041
2959.870	.185	.161	.129	.041 .151	.057 .210	.060	.063
2979.520	.914	.780	.603	.739	1.061	.220	.228
3000.550	.175	.142	•098	.130	.234	1.112 .247	1.158 .261
3020.260	.493	.414	• 325	.400	.612	.644	.672
3040.450	.173	.135	.086	.124	.248	. 263	. 278
3058.710	1 222	1 022			. 270	. 203	.2/0

Е	, y G	\sim	DE	CA	CD
	w	-	200	~~	JE

(cm ⁻¹)	8	9	10	11	12	13	14
1930.300	3.795	4.215	4.733	5.047	5.230	5.880	6.057
1952.500	3.148	3.515	3.945	4.204	4.331	4.880	5.027
1974.100	1.292	1.441	1.615	1.725	1.789	2.016	2.077
1979.600	-809	.913	1.025	1.094	1.127	1.271	1.314
2004.650	,971	1.122	1.260	1.346	1.379	1.566	1.627
2031.250	.372	.427	.478	.511	•525	.594	.616
2056.050	.328	.365	.402	.424	.434	· 482	.497
2084.350	.302	.351	.390	.415	.422	.477	•497
2102.150	.209	.236	.259	.273	.281	.313	.322
2130.500	.110	.127	.139	.148	.149	.167	.174
2150.050	.157	.185	.204	.216	.218	.247	.257
2159.050	.182	.209	.225				
2166.800	.141	.165	.178	.236 .187	.236	• 262	.272 .215
2177.600	.144	.155	.159	.163	.186	.206	
2190.950	.466	•487	.502	.510	.162	.170 .530	.174
2223.680					.509		. 540
2400.000	•666	.707	•718	.726	.718	.743	• 753
	.018	.020	•020	•020	.020	.021	.021
2420.420	.004	•005	•005	•005	•005	•005	.006
2440.850	.013	.014	.015	•015	.015	.016	.016
2480.330	•035	-042	.045	.048	.047	.053	.056
2501.000	.002	-002	.002	.002	.002	.003	.003
2520.650	•005	.006	.006	• 006	• 006	.007	.007
2540.830	.019	.019	.019	.019	.019	.019	.019
2560.420	.021	•020	.021	.021	.021	.022	.022
2580.370	•075	.076	.079	-081	.083	-087	•088
2599.840	•054	-057	.061	.063	.065	• 069	-070
2618.640	.045	.048	.053	.056	.058	-064	.066
2640.580	• 064	• 069	.076	•081	• 085	- 094	• 096
2661.550	•090	•095	.106	.112	.118	.131	.133
2679.510	• 086	- 091	•100	-107	.113	-124	.127
2700.720	.016	-017	-019	.020	.021	.023	.023
2719.280	-481	.516	• 577	.614	.639	• 70 9	.723
2740.740	.041	•042	-047	-049	.051	.057	.057
2760.690	•023	-024	•026	•028	· 02 9	.032	.032
2778.950	.108	.111	.124	.131	.138	.151	.153
2800.100	• 249	- 257	- 285	. 300	.312	.342	. 347
2820.110	-188	- 202	.225	.237	. 246	.270	.277
2839.400	-077	•081	•091	• 096	.100	.111	.113
2860.190	-040	.043	.048	.051	.053	•058	.059
2880.800	• 088	•096	.105	.112	.115	.127	.130
2899.720	.125	.135	.149	.157	.161	.178	.182
2920.400	.067	.074	.080	.084	.085	.093	.097
2941.370	.119	.141	.155	.165	.166	.187	.196
2959.870	• 398	.437	.482	.506	.516	.576	. 594
2979.520	2.027	2.222	2.448	2.583	2.665	2.966	3.047
3000.550	-481	. 526	.583	.621	.642	.716	.732
3020.260	1.135	1.206	1.324	1.403	1.451	1.589	1.620
3040.450	• 506	.542	.604	.641	.669	.744	. 759
3058.710	3.744	3.973	4.411	4.687	4.872	5.386	5.487

FASCODE CASE

1930.300	(cm ⁻¹)	15	16	17	18	19
1952.500		.712	.771	1.169	1.462	3.149
1974.100	1952.500		–			
1979.600	1974.100					
2004.650 .169 .188 .289 .382 .826 2031.250 .070 .077 .116 .150 .319 2056.050 .119 .123 .148 .168 .279 2084.350 .086 .091 .116 .143 .263 2102.150 .068 .072 .089 .105 .182 2130.500 .046 .047 .055 .064 .102 2130.500 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.660 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420						
2031.250 .070 .077 .116 .150 .319 2056.050 .119 .123 .148 .168 .279 2084.350 .086 .091 .116 .143 .263 2130.500 .068 .072 .089 .105 .182 2130.500 .046 .047 .055 .064 .102 2159.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .003 .003 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
2056.050 .119 .123 .148 .168 .279 2064.350 .086 .091 .116 .143 .263 2102.150 .068 .072 .089 .105 .182 2130.500 .046 .047 .055 .064 .102 2150.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .003 .004 2440.850 .010 .010 .011 .011 .011 .012<						
2084.350 .086 .091 .116 .143 .263 2102.150 .068 .072 .089 .105 .182 2130.500 .046 .047 .055 .064 .102 2150.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2540.830						
2102.150 .068 .072 .089 .105 .182 2130.500 .046 .047 .055 .064 .102 2150.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .001 .001 .002 2540.830 .019 .018 .018 .018 .018						
2130.500 .046 .047 .055 .064 .102 2150.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2540.830 .019 .018 .018 .018 .018 2560.400 .021 .021 .021 .020 .022 .039<						
2150.050 .050 .053 .065 .080 .138 2159.050 .099 .102 .113 .128 .180 2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .001 .001 .002 2540.830 .019 .018 .018 .018 .018 .018 .018 2560.420 .021 .021 .021 .022 .035 .037 .056 2618.640 .015 .015						
2159.050 .099 .102 .113 .128 .180 21666.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .001 .001 .002 2540.830 .019 .018 .018 .018 .018 .018 .018 2560.420 .021 .021 .021 .021 .022 .062 .062 .062 .062 .062 .062 .072 .2599.840 .031 .032 .035 .037						
2166.800 .069 .072 .080 .094 .132 2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2510.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580						
2177.600 .108 .112 .116 .125 .140 2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .001 .002 2540.830 .019 .018 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 .035 .037 .050 2618.640 .031 .032 .035 .037 .050 .050 .022 .039 .044 .027 .054 2661.550 .020 .021 .031 .036 .075 .075 .0679.510 .021 .021 .031						
2190.950 .399 .401 .409 .421 .458 2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .011 .021 .025 .040 2501.000 .001 .001 .001 .001 .001 .001 .002 .025 .040 2501.000 .001 .001 .001 .001 .001 .002 .025 .040 2501.000 .001 .001 .001 .001 .001 .002 .002 .025 .040 2501.000 .001 .001 .001 .001 .001 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .003 .003 .003 .003 .003 .003 .003 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2223.680 .644 .660 .674 .715 .747 2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .004 2501.000 .001 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2580.370 .062 .061 .062 .062 .062 .020 .022 2580.370 .062 .061 .062 .062 .062 .072 .054 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022						
2400.000 .014 .014 .015 .017 .018 2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2640.580 .016 .017 .024 .027 .054 2641.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 <tr< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td></tr<>			_			
2420.420 .002 .002 .003 .003 .004 2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .021 .031 .036 .073 2679.510 .021 .022 .031 .036 .073 2740.740 .015 .015 .019 .020 .036						
2440.850 .010 .010 .011 .011 .012 2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014						
2480.330 .016 .017 .020 .025 .040 2501.000 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280						
2501.000 .001 .001 .001 .001 .002 2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280						
2520.650 .003 .003 .004 .004 .005 2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100						
2540.830 .019 .018 .018 .018 .018 2560.420 .021 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100						
2560.420 .021 .021 .020 .022 2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021						
2580.370 .062 .061 .062 .062 .072 2599.840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190						
2599-840 .031 .032 .035 .037 .050 2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800						
2618.640 .015 .015 .020 .022 .039 2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720						
2640.580 .016 .017 .024 .027 .054 2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400						
2661.550 .020 .021 .031 .036 .075 2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370						
2679.510 .021 .022 .031 .036 .073 2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870						
2700.720 .004 .004 .006 .007 .014 2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520						
2719.280 .103 .109 .163 .194 .405 2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2740.740 .015 .015 .019 .020 .036 2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2760.690 .008 .008 .010 .011 .020 2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2778.950 .030 .030 .042 .047 .092 2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
2800.100 .084 .085 .109 .118 .211 2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
2820.110 .067 .069 .085 .096 .167 2839.400 .021 .021 .029 .034 .065 2860.190 .012 .012 .016 .018 .034 2880.800 .029 .030 .038 .043 .077 2899.720 .046 .047 .059 .066 .112 2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428		-				
2839.400						
2860·190 .012 .012 .016 .018 .034 2880·800 .029 .030 .038 .043 .077 2899·720 .046 .047 .059 .066 .112 2920·400 .034 .035 .039 .042 .060 2941·370 .039 .041 .052 .064 .114 2959·870 .173 .177 .210 .236 .380 2979·520 .785 .799 .978 1.098 1.868 3000·550 .131 .138 .187 .225 .429 3020·260 .444 .450 .552 .603 1.023 3040·450 .126 .131 .185 .215 .428						
2880 · 800						
2899.720						
2920.400 .034 .035 .039 .042 .060 2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
2941.370 .039 .041 .052 .064 .114 2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
2959.870 .173 .177 .210 .236 .380 2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
2979.520 .785 .799 .978 1.098 1.868 3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
3000.550 .131 .138 .187 .225 .429 3020.260 .444 .450 .552 .603 1.023 3040.450 .126 .131 .185 .215 .428						
3020-260						
3040.450 .126 .131 .185 .215 .428						
3058.710 1.048 1.068 1.460 1.631 3.178	3058.710					

APPENDIX C

CALCULATED CO₂ AND N₂ CONTINUUM CONTRIBUTIONS TO THE OPTICAL DEPTH

F	AS	CO	DE	CASE	
---	----	----	----	------	--

(cm ⁻¹)	1	2	3	4	5	66	7
1930.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1952.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1974.100	0.000	0.000	.001	0.000	0.000	0.000	0.000
1979.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2004.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2031.250	0.000	0.000	.001	0.000	0.000	0.000	0.000
2056.050	0.000	.001	0.000	0.000	0.000	0.000	.001
2084.350	.002	.002	.002	.001	.001	.002	.002
2102.150	•004	.004	.004	.004	•004	.004	.004
2130.500	.014	.013	.014	.014	.013	.013	.013
2150.050	.037	.035	.036	-037	.032	.032	.033
2159.050	• 054	.051	.052	.054	.047	-048	.048
2166.800	.072	.069	.070	.072	.063	.063	.064
2177.600	.092	•088	.090	.093	.081	.080	• 080
2190.950	.121	.116	.118	.121	.106	.106	.105
2223.680	. 206	.196	.199	• 205	.180	.180	.180
2400.000	.773	.739	.752	.773	.676	.676	.676
2420.420	.483	· 463	.470	•483	.423	.422	.423
2440.850	.368	.352	.358	• 367	.321	.321	.322
2480.330	.184 .123	.176	.179	.184	.161	.162	.162
2501.000 2520.650	.079	.118 .076	.120 .077	.122	.107	.107	.107
2540.830	.048	.046	.047	•079 •048	.069 .042	-069	.069
2560.420	.033	.030	.032	.032	.042	.042 .028	.042 .028
2580.370	.022	.030	.032	.032	.020	.020	.028
2599.840	.014	.013	.014	.014	.013	.013	.020
2618.640	.009	.008	.009	.009	.007	.008	.008
2640.580	.006	.006	.006	.006	•005	.005	.005
2661.550	.006	.006	•006	.006	.005	.005	.005
2679.510	.004	.004	.004	.004	•003	.003	.003
2700.720	.002	.002	.002	.002	.001	.001	.001
2719.280	.001	.001	.001	.001	.001	.001	.001
2740.740	0.000	.001	.001	0.000	0.000	0.000	0.000
2760.690	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2778.950	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2800.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2820.110	0.000	0.000	0.000	.001	0.000	0.000	0.000
2839.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2860.190	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2880.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2899.720	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2920.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2941.370	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2959.870	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2979.520	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3000.550	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3020.260	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3040.450 3058.710	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3030 - / 10	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(cm ⁻¹)	8	9	10	11	12	13	14
1930.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1952.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1974.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1979.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2004.650	0.000	0.000	0.000	.001	0.000	0.000	0.000
2031.250	0.000	.001	0.000	.001	0.000	0.000	0.000
2056.050	.001	0.000	0.000	0.000	0.000	0.000	0.000
2084.350	.002	.002	•001	-002	.002	.002	.001
2102.150	.005	.005	-004	.004	.005	-004	.005
2130.500	.015	.014	.014	.014	.014	.014	.014
2150.050	.038	.036	.036	-036	-037	•036	.036
2159.050	•056	.053	•053	.053	.053	.053	.052
2166.800	.074	.071	-071	.071	.071	.070	.070
2177.600	.095	•090	•090	.090	.092	.090	.089
2190.950	.125	.119	.119	.118	.120	.118	.117
2223.680	.212	. 201	.201	.201	. 203	.201	.198
2400.000	• 797	• 759	.758	. 756	.764	.755	.747
2420.420	• 499	•475	.474	.473	.478	.472	.467
2440.850	. 379	.361	• 360	- 360	. 364	. 359	.356
2480.330	.190	.181	.180	.180	.182	.180	.178
2501.000	.126	.120	.121	.120	.121	.120	.119
2520.650	•081	.077	-078	.077	•079	.077	.076
2540.830	• 050	.048	-047	.047	-047	.047	.046
2560.420	.034	.031	.032	.032	.032	.032	.031
2580.370	•023	.022	•022	.021	.022	.022	.021
2599.840	.015	.014	.014	.014	.014	.014	.014
2618.640	•009	•008	.008	.008	.009	• 009	.008
2640.580	•006	.006	•006	-007	.006	•006	.006
2661.550	.007	.005	• 006	.006	.006	.006	.006
2679.510	.004	.004	.004	•003	.004	.003	.004
2700.720	.001	.002	.001	.002	.001	.001	.001
2719.280	.001	.001	.001	.001	0.000	.001	.001
2740.740	.001	0.000	0.000	.001	.001	.001	.001
2760.690	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2778.950	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2800.100	0.000	0.000	0.000	.001	0.000	0.000	0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

.001

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

.001

2820.110

2839.400

2860.190

2880.800

2899.720

2920.400

2941.370

2959.870

2979.520

3000.550

3020.260

3040.450 3058.710

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

FASCODE CASE

FA	SCC	DDE	CA	SE

_					
(cm ⁻¹)	15	16	17	18.	19
1930.300	0.000	0.000	0.000	0.000	
1952.500	0.000	0.000	0.000		0.000
1974.100	0.000	0.000	0.000	0.000	0.000
1979.600	0.000	0.000	0.000	.001	0.000
2004.650	0.000	.001	0.000	0.000	0.000
2031.250	0.000	0.000	.001	0.000	0.000
2056.050	0.000	0.000	.001	0.000	0.000 .001
2084.350	-002	.002	.002	.002	.001
2102.150	•005	.005	.005	.004	.002
2130.500	.017	.017	.016	.015	.014
2150.050	-044	.042	.042	.039	.039
2159.050	.064	. 062	.060	.057	.056
2166.800	• 086	.083	.081	.076	.074
2177.600	.110	.106	.103	.097	-095
2190.950	.144	.139	.136	.127	.125
2223.680	. 244	. 235	.231	.216	.212
2400.000	.919	.885	.870	.812	.798
2420.420	- 574	.553	.544	.508	-499
2440.850	•437	.421	-413	.387	-380
2480.330	.219	.211	. 207	.193	.190
2501.000	.146	.141	.138	.129	.127
2520.650	.094	.091	.089	.083	.081
2540.830	.057	.056	.054	•050	.050
2560.420	•038	.037	.036	.034	.033
2580.370	.027	.026	.025	.023	.023
2599.840	.017	.016	.016	.015	.015
2618.640	.011	.010	.010	•009	.009
2640.580	.007	.007	.007	.006	.006
2661.550	.007	.007	.007	.006	.006
2679.510	.005	.004	.005	.004	.004
2700.720	.002	.002	.002	.001	.002
2719.280	.001	.001	.001	.001	.001
2740.740	0.000	.001	0.000	0.000	.001
2760.690	0.000	0.000	0.000	0.000	0.000
2778.950	0.000	0.000	0.000	0.000	0.000
2800.100	0.000	0.000	0.000	0.000	0.000
2820.110	0.000	0.000	0.000	0.000	0.000
2839.400	0.000	0.000	0.000	0.000	0.000
2860.190	0.000	0.000	0.000	0.000	0.000
2880.800	0.000	0.000	0.000	0.000	0.000
2899.720	0.000	0.000	0.000	0.000	0.000
2920.400	0.000	0.000	0.000	0.000	0.000
2941.370	0.000	0.000	0.000	0.000	0.000
2959.870	0.000	0.000	0.000	0.000	0.000
2979.520	0.000	0.000	0.000	0.000	0.000
3000.550	0.000	0.000	0.000	0.000	0.000
3020.260	0.000	0.000	0.000	0.000	0.000
3040.450	0.000	0.000	0.000	0.000	0.000
3058.710	0.000	0.000	0.000	0.000	0.000

END

FILMED

3-85

DTIC