Homework #5 (Solutions)

STAT-UB.0003: Regression and Forecasting Models

Solutions adapted from N.S. Boudreau's Instructor's Solution Manual (2011).

1. MBS Ex. 12.72.

Solution: (a) $Race_{black} = \begin{cases} 1 & \text{if race is black} \\ 0 & \text{otherwise} \end{cases}$ $Race_{white} = \begin{cases} 1 & \text{if race is white} \\ 0 & \text{otherwise} \end{cases}$ $Pos_{QB} = egin{cases} 1 & ext{if position is quarterback} \\ 0 & ext{otherwise} \end{cases}$ $\begin{aligned} \text{Pos}_{\text{RB}} &= \begin{cases} 1 & \text{if position is running back} \\ 0 & \text{otherwise} \end{cases} \\ \text{Pos}_{\text{WR}} &= \begin{cases} 1 & \text{if position is wide receiver} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$ $Pos_{TE} = \begin{cases} 1 & \text{if position is tight end} \\ 0 & \text{otherwise} \end{cases}$ $Pos_{DL} = \begin{cases} 1 & \text{if position is defensive lineman} \\ 0 & \text{otherwise} \end{cases}$ $\begin{cases} 1 & \text{if position is the position in the position is the position in the position in the position in the position is the position in the p$ $\begin{aligned} \text{Pos}_{LB} &= \begin{cases} 1 & \text{if position is linebacker} \\ 0 & \text{otherwise} \end{cases} \\ \text{Pos}_{DB} &= \begin{cases} 1 & \text{if position is defensive back} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$ $Pos_{OL} = \begin{cases} 1 & \text{if position is offensive lineman} \\ 0 & \text{otherwise} \end{cases}$

(b) One potential model is

Price =
$$\beta_0 + \beta_1 Race_{black} + \varepsilon$$
.

In this model,

 β_0 = mean price for race white,

 β_1 = difference in mean price between races white and black.

(c) One potential model is

Price =
$$\beta_0 + \beta_1 Avail_{high} + \epsilon$$
.

In this model,

 β_0 = mean price for availability low,

 β_1 = difference in mean price between availability high and low.

(d) One potential model is

$$\begin{aligned} \text{Price} &= \beta_0 + \beta_1 \text{Pos}_{\text{QB}} + \beta_2 \text{Pos}_{\text{RB}} + \beta_3 \text{Pos}_{\text{WR}} + \beta_4 \text{Pos}_{\text{TE}} \\ &+ \beta_5 \text{Pos}_{\text{DL}} + \beta_6 \text{Pos}_{\text{LB}} + \beta_7 \text{Pos}_{\text{DB}} + \epsilon \end{aligned}$$

In this model,

 β_0 = mean price for position offensive lineman (OL),

 β_1 = difference in mean price between position QB and position OL,

 β_2 = difference in mean price between position RB and position OL,

 β_3 = difference in mean price between position WR and position OL,

 β_4 = difference in mean price between position TE and position OL,

 β_5 = difference in mean price between position DL and position OL,

 β_6 = difference in mean price between position LB and position OL,

 β_7 = difference in mean price between position DB and position OL.

2. MBS Ex. 12.74.

Solution:

- (a) $E(y | x) = \beta_0 + \beta_1 x$.
- (b) β_0 =mean relative optimism for analysts who worked for sell-side firms.
- (c) Yes.
- (d) Yes. If the buy-side analysts are less optimistic, then their estimates will be smaller than the sell-side estimates. Thus, the estimate of β_1 will be negative.

3. MBS Ex. 12.78, parts (a)–(d).

Solution:

(a) One possible model is

$$Improve = \beta_0 + \beta_1 Assist_{Check} + \beta_2 Assist_{Full} + \epsilon$$

- (b) In this model, the difference between "completed solution" and "no help" would be β_2 .
- (c) Here is the fit:

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	2	6.643	3.322	0.45	0.637
ASSIST_CHECK			1.121	0.15	0.697
ASSIST_FULL	1	2.803	2.803	0.38	0.538
Error	72	527.357	7.324		
Total	74	534.000			

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2.433	0.494	4.92	0.000	
ASSIST_CHECK	0.287	0.733	0.39	0.697	1.22
ASSIST FULL	-0.483	0.781	-0.62	0.538	1.22

Regression Equation

The least squares prediction equation is

$$\widehat{Improve} = 2.433 + 0.287 Assist_{Check} - 0.483 Assist_{Full}$$
.

(d) The p-value for the F test is p=0.637. There is no evidence that the model is useful.

4. MBS Ex. 12.81.

Solution:

(a) One possible model is

$$Rating = \beta_0 + \beta_1 Rating_S + \beta_2 Rating_V + \epsilon$$

(b) Here is the Minitab output:

Analysis of Variance

```
Source
             DF
                  Adj SS
                            Adj MS
                                   F-Value
                                             P-Value
Regression
              2
                  123.27
                            61.633
                                      20.45
                                                0.000
  RATING_S
                  114.12
                          114.116
                                      37.87
                                                0.000
  RATING_V
              1
                   63.37
                            63.375
                                      21.03
                                                0.000
Error
            321
                  967.35
                             3.014
Total
            323 1090.62
```

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	3.167	0.167	18.96	0.000	
RATING_S	-1.454	0.236	-6.15	0.000	1.33
RATING_V	-1.083	0.236	-4.59	0.000	1.33

Regression Equation

The least squares prediction equation is

$$\widehat{ ext{Recall}} = 3.167 - 1.454 \text{Rating}_{S} - 1.083 \text{Rating}_{V}$$

(c) To test overall model utility, we look at the p-value for the F test. Minitab reports this as p=0.000, which we can interpret as p<0.001 (the p-value is never exactly equal to 0). Since $p<\alpha$, we reject the null hypothesis that all slope coefficients are 0; we have very strong evidence that the model is useful.

(d) The means for the three groups are

$$\begin{split} &\bar{y}_N = \hat{\beta}_0 = 3.167, \\ &\bar{y}_S = \hat{\beta}_0 + \hat{\beta}_1 = 3.167 - 1.454 = 1.713, \\ &\bar{y}_V = \hat{\beta}_0 + \hat{\beta}_2 = 3.167 - 1.083 = 2.084. \end{split}$$

5. MBS Ex. 12.90, parts (c)-(d).

Solution: (Not graded.)