

Profesor Branko Jeren

Laplaceova transformacij

Signali i sustavi

Profesor Branko Jeren

09. lipnja 2008.

Definicija

analizi linearnih

Odziv diskretnog sustava na pobudu kompleksnom eksponencijalom

 pokazano je kako je odziv mirnog, linearnog, vremenski stalnog kontinuiranog sustava, na svevremensku eksponencijalu est.

$$y(t) = H(s)e^{st}$$

pri čemu je

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

• za s, kao kompleksnu varijablu, H(s) je kompleksna funkcija

Profesor Branko Jeren

Laplaceova transformac

Definicija Područje konvergencije

konvergencije z-transformacija Ltransformacija

Svojstva $\mathcal{L}-$ transformacije
Inverzna $\mathcal{L}-$ transformacija $\mathcal{L}-$ transformacija

Laplaceova transformacija

integral

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

možemo interpretirati kao transformaciju vremenske funkcije, impulsnog odziva h(t) kontinuiranog sustava, u kompleksnu funkciju H(s)

- ovako definiranu transformaciju nazivamo dvostrana ili bilateralna **Laplaceova transformacija** \mathcal{L} —transformacija
- Laplaceova transformacija H(s) predstavlja, dakle, alternativni prikaz kontinuiranog vremenskog signala h(t)

Profesor Branko Jeren

Laplaceova transformacij

Definicija

Područje konvergencije z–transformacije

Ltransformacija
osnovnih signal
Svojstva Ltransformacije
Inverzna Ltransformacija

Ltransformacija analizi linearnih

\mathcal{L} –transformacija

• za vremenski kontinuirani signal x(t), definira se dvostrana \mathcal{L} -transformacija

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

• L-transformacija označuje se simbolički kao

$$X(s) = \mathcal{L}\{x(t)\}\$$

ili još jednostavnije

$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$

Profesor Branko Jeren

Laplaceova transformaci

Područje konvergencije z–transformacije

transformacija osnovnih signa Svojstva \mathcal{L} -transformacije Inverzna \mathcal{L} -transformacija \mathcal{L} -

 \mathcal{L} -transformacija – primjer 1

ullet određuje se $\mathcal L$ –transformacija signala

$$x(t) = e^{-at}\mu(t), a \in Realni$$

ullet iz definicije \mathcal{L} -transformacije slijedi

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} e^{-at}\mu(t)e^{-st}dt =$$

$$= \int_{0}^{\infty} e^{-at}e^{-st}dt = \int_{0}^{\infty} e^{-(s+a)t}dt = -\frac{1}{s+a}e^{-(s+a)t}\Big|_{0}^{\infty} =$$

$$= \frac{1}{s+a}, \quad \text{za } Re(s+a) > 0$$

• gornji uvjet je posljedica ponašanja $e^{-(s+a)t}$ za $t \to \infty$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacije

transformacija osnovnih signal Svojstva $\mathcal{L}-$ transformacije Inverzna $\mathcal{L}-$ transformacija $\mathcal{L}-$

transformacija analizi linearnih sustava

\mathcal{L} -transformacija – primjer 1

iz

$$e^{-(s+a)t} = e^{-[Re(s+a)+jIm(s+a)]t} = e^{-[Re(s+a)]t}e^{-j[Im(s+a)]t}$$

a kako je $\left|e^{-j[Im(s+a)]t}\right|=1$, neovisno o vrijednosti [Im(s+a)]t, slijedi

$$\lim_{t \to \infty} e^{-(s+a)t} = \begin{cases} 0 & Re(s+a) > 0 \\ \infty & Re(s+a) < 0 \end{cases}$$

pa vrijedi ispred izvedeno

$$X(s) = -rac{1}{s+a}e^{-(s+a)t}\Big|_0^\infty = rac{1}{s+a}, \qquad ext{za } Re(s+a) > 0$$

• integral koji definira X(s) postoji samo za vrijednosti Re(s) > -a pa se područje vrijednosti Re(s) > -a naziva područjem konvergencije X(s)

Profesor Branko Jeren

transforma

Područje konvergencije z–transformacije

Svojstva Ltransformacije
Inverzna Ltransformacija
L-

Ltransformacija analizi linearni

\mathcal{L} -transformacija – primjer 2

ullet određuje se \mathcal{L} –transformacija signala

$$x(t) = -e^{-at}\mu(-t), a \in Realni$$

• iz definicije *L*-transformacije slijedi

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} -e^{-at}\mu(-t)e^{-st}dt =$$

$$= \int_{-\infty}^{0} -e^{-at}e^{-st}dt = -\int_{-\infty}^{0} e^{-(s+a)t}dt = +\frac{1}{s+a}e^{-(s+a)t}\Big|_{-\infty}^{0} =$$

$$= \frac{1}{s+a}, \quad \text{za } Re(s+a) < 0$$

• pa je područje konvergencije, \mathcal{PK} , \mathcal{L} -transformacije X(s), područje Re(s) < -a

Profesor Branko Jeren

Laplaceova transformacij

Definicija

Područje konvergencije z–transformacije

transformacija osnovnih signa Svojstva $\mathcal{L}-$ transformacije Inverzna $\mathcal{L}-$ transformacija

transformacija u analizi linearnih sustava

$\mathcal{L}\text{--transformacija}-\text{primjer}\ 2$

Područie konvergencije

z-transformacije

\mathcal{L} -transformacija – područje konvergencije

• usporedbom primjera 1 i primjera 2

$$e^{-at}\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad \textit{Re}(s) > -a$$

odnosno

$$-e^{-at}\mu(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad Re(s) < -a$$

zaključujemo kako dva različita signala, jedan kauzalan a drugi antikauzalan, imaju identične izraze za \mathcal{L} -transformaciju i kako se njihova razlika očituje samo u području konvergencije, \mathcal{PK} ,

- područje konvergencije \mathcal{PK} , \mathcal{L} -transformacije, je važna i nužna informacija i tek definirano \mathcal{PK} daje jednoznačnu vezu između signala i njegove *L*-transformacije
- stoga, *L*-transformacija mora biti uvijek zadana s njezinim \mathcal{PK} <ロ > ← □

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacije

transformacija osnovnih sign Svojstva Ltransformacija Inverzna Ltransformacija

transformacija analizi linearnil

Jednostrana \mathcal{L} -transformacija

• dvostrana \mathcal{L} —transformacija kauzalnih signala $x(t)\mu(t)$ je

$$X(s) = \int_{-\infty}^{\infty} x(t)\mu(t)e^{-st}dt = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

donja granica 0^- omogućuje uključivanje impulsa koji se mogu javiti u trenutku t=0

• L-transformacija definirana kao

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

naziva se jednostrana ili unilateralna \mathcal{L} -transformacija

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformacije

transformacija osnovnih sign: Svojstva $\mathcal{L}-$ transformacije Inverzna $\mathcal{L}-$ transformacija $\mathcal{L}-$

transformacija analizi linearnil sustava

Jednostrana \mathcal{L} –transformacija – egzistencija

• kompleksnu variablu s, u \mathcal{L} -transformaciji, možemo prikazati kao $s=\sigma+j\Omega$ pa je

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt = \int_{0^{-}}^{\infty} \left[x(t)e^{-\sigma t}\right]e^{-j\Omega t} dt$$

• kako je $|e^{-j\Omega t}|=1$ gornji integral konvergira ako je zadovoljeno

$$\int_{0^{-}}^{\infty} |x(t)e^{-\sigma t}| \ dt < \infty \tag{1}$$

- iz gornjeg izraza zaključujemo da \mathcal{L} -transformacija postoji za sve signale koji ne rastu brže od nekog eksponencijalnog signala ce^{at} , a to su svi signali od praktičnog i teorijskog interesa
- dakle, ako za neke c i a vrijedi $|x(t)| \le ce^{at}$, tada je za sve $\sigma = Re\{s\} > a$ zadovoljena relacija (1)

2007/2008

Laplaceova transformaci

Područje konvergencije z–transformacije

osnovnih sign Svojstva \mathcal{L} transformacija Inverzna \mathcal{L} transformacija \mathcal{L} transformacija

Jednostrana \mathcal{L} -transformacija

- jednostrana L- transformacija pokazuje se posebno pogodnom u postupcima rješavanja diferencijalnih jednadžbi sa zadanim početnim uvjetima
- jednostrana L- transformacija limitirana je samo na kauzalne signale i sustave
- kako je u ovom predmetu većina pozornosti okrenuta kauzalnim signalima i sustavima, u nastavku se razmatra uglavnom jednostrana \mathcal{L} —transformacija
- sukladno većini literature pod nazivom L-transformacija podrazumijevati će se jednostrana L-transformacija, a u slučaju dvostrane transformacije to će biti posebno istaknuto
- isto tako, zbog jednoznačnosti \mathcal{L} -transformacije, nepotrebno je, u slučaju kauzalnih signala $x(t)\mu(t)$, eksplicitno navoditi područje konvergencije (osim u slučaju mogućih dvojbenosti u interpretaciji)

Cielina 17. Profesor

Branko Jeren

transformaciia osnovnih signala

\mathcal{L} -transformacija osnovnih signala

$$\mathcal{L}\{\delta(t)\} = \int_{0^{-}}^{\infty} \delta(t)e^{-st}dt = 1,$$

$$\mathcal{L}\{\delta(t-t_0)\}=\int^{\infty}\delta(t-t_0)e^{-st}dt=e^{-st_0},\qquad t_0>0$$

$$\mathcal{L}\{\delta(t-t_0)\} = \int_{0^{-}}^{\infty} \delta(t-t_0)e^{-st}dt = e^{-st_0}, \qquad t_0 > 0$$

$$\mathcal{L}\{\mu(t)\} = \int_{0^{-}}^{\infty} \mu(t) \mathrm{e}^{-st} dt = \int_{0^{-}}^{\infty} \mathrm{e}^{-st} dt = -\frac{1}{s} \mathrm{e}^{-st} \Big|_{0^{-}}^{\infty} = \frac{1}{s},$$

verzna
$$\mathcal{L}$$
-verzna \mathcal{L} -v

odnosno

$$\mathcal{L}\{e^{j\omega_0t}\mu(t)\}=\int_{0^-}^\infty e^{j\omega_0t}\mu(t)e^{-st}dt=rac{1}{s_{s}-j\omega_0}$$

Laplaceova transformacij

Područje konvergencije z–transformaci

Ltransformacija osnovnih signala

transformacije
Inverzna $\mathcal{L}-$ transformacija

transformacija analizi linearnil

\mathcal{L} -transformacija osnovnih signala

$$\mathcal{L}\{\cos(\omega_0 t)\mu(t)\} = \frac{s}{s^2 + \omega_0^2}$$

ova \mathcal{L} -transformacija slijedi iz 1

$$\cos(\omega_0 t)\mu(t) = \frac{1}{2} \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right] \mu(t)$$

$$\mathcal{L}\{\cos(\omega_0 t)\mu(t)\} = \frac{1}{2}\mathcal{L}\{e^{j\omega_0}\mu(t)\} + \frac{1}{2}\mathcal{L}\{e^{-j\omega_0}\mu(t)\}$$

$$\mathcal{L}\{\cos(\omega_0 t)\mu(t)\} = \frac{1}{2}\left[\frac{1}{s-j\omega_0} + \frac{1}{s+j\omega_0}\right] = \frac{s}{s^2 + \omega_0^2}$$

¹Koristi se svojstvo linearnosti Laplaceove transformacije koje se pokazuje nešto kasnije

2007/2008

Laplaceova transformaci

Područje konvergencije z–transformaci

transformacija osnovnih signala

transformacije Inverzna *L*transformacija

transformacija u analizi linearnih

Tablica osnovnih \mathcal{L} –transformacija 2

	x(t)	X(s)
1	$\delta(t)$	1
2	$\delta(t-t_0)$	e^{-st_0}
3	$\mu(t)$	$\frac{1}{5}$
4	$t\mu(t)$	$\frac{1}{s}$ $\frac{1}{s^2}$
5	$t^j \mu(t)$	$\frac{j!}{si+1}$
6	$e^{\lambda t}\mu(t)$	$\frac{1}{s-\lambda}$
7	$te^{\lambda t}\mu(t)$	$\frac{1}{(s-\lambda)^2}$
8	$t^j e^{\lambda t} \mu(t)$	$\frac{j!'}{(s-\lambda)^{j+1}}$
9	$\cos(bt)\mu(t)$	$\frac{s}{s^2+b^2}$
10	$\sin(bt)\mu(t)$	$\frac{b}{s^2+b^2}$

²izvor:B.P. Lathi: Linear Systems and Signals str_□344 ≥ ▶

Laplaceova transformaci

Područje konvergencije z–transformacij

transformacija osnovnih signala

transformacije Inverzna *L*transformacija

transformacija u analizi linearnih sustava

Tablica osnovnih \mathcal{L} -transformacija 3

	x(t)	X(s)
11	$e^{-at}\cos(bt)\mu(t)$	$\frac{s+a}{(s+a)^2+b^2}$
12	$e^{-at}\sin(bt)\mu(t)$	$\frac{b}{(s+a)^2+b^2}$
13	$re^{-at}\cos(bt+ heta)\mu(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
ili		
13ª	$re^{-at}\cos(bt+ heta)\mu(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$

³izvor:B.P. Lathi: Linear Systems and Signals str⊕344 ≥ ▶

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformaci

z-transformacij

L
transformacija

osnovnih signa
Svojstva $\mathcal{L}-$ transformacije
Inverzna $\mathcal{L}-$

transformacija analizi linearni sustava

\mathcal{L} -transformacija – linearnost

neka je
$$w(t) = ax(t) \pm by(t)$$
 tada je \mathcal{L} —transformacija od $w(t)$

$$W(s) = aX(s) \pm bY(s)$$

linearnost \mathcal{L} -transformacije proizlazi iz definicije

$$W(s) = \int_{0^{-}}^{\infty} w(t)e^{-st}dt = \int_{0^{-}}^{\infty} [ax(t) \pm by(t)]e^{-st}dt =$$

$$= a \int_{0^{-}}^{\infty} x(t)e^{-st}dt \pm b \int_{0^{-}}^{\infty} y(t)e^{-st}dt = aX(s) \pm bY(s)$$

transformac

Područje konvergencije z–transformaci

transformacija osnovnih signa Svojstva *L*transformacije

Inverzna $\mathcal{L}-$ transformacija $\mathcal{L}-$

transformacija analizi linearni sustava

\mathcal{L} –transformacija – vremenski pomak

neka je $X(s)=\mathcal{L}\{x(t)\mu(t)\}$ tada je, za $t_0\geq 0$

$$\mathcal{L}\{x(t-t_0)\mu(t-t_0)\}=e^{-st_0}X(s)$$

izvod:

$$\mathcal{L}\{x(t-t_0)\mu(t-t_0)\} = \int_0^\infty x(t-t_0)\mu(t-t_0)e^{-st}dt =$$

za
$$t-t_0= au$$

$$=\int_{-t_0}^{\infty}x(\tau)\mu(\tau)e^{-s(t_0+\tau)}d\tau=e^{-st_0}\int_{0}^{\infty}x(\tau)e^{-s\tau}d\tau=e^{-st_0}X(s)$$

Protesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacije

z-transformacija

L
transformacija
osnovnih signal

Svojstva L-

transformacije Inverzna *L*transformacija

Ltransformacija i analizi linearnih sustava

\mathcal{L} —transformacija — primjer uporabe svojstva vremenski pomak

određuje se \mathcal{L} —transformacija pravokutnog impulsa definiranog za 0 < a < b

$$x(t) = \left\{ egin{array}{ll} 1 & ext{za } a \leq t < b \\ 0 & ext{za ostale } t \end{array}
ight.$$

što se može zapisati i kao razlika dva pomaknuta jedinična skoka

$$x(t) = \mu(t-a) - \mu(t-b)$$

 \mathcal{L} -transformacija je tada

$$X(s) = \mathcal{L}\{\mu(t-a) - \mu(t-b)\} = e^{-as} \frac{1}{s} - e^{-bs} \frac{1}{s} = \frac{e^{-as} - e^{-bs}}{s}$$

Laplaceova transformacij

Područje konvergencije

konvergencije z-transformacij Ltransformacija

osnovnih signal
Svojstva \mathcal{L} transformacije
Inverzna \mathcal{L} -

transformacij

Ltransformacij

transformacija analizi linearni sustava

\mathcal{L} –transformacija – frekvencijski pomak

neka je $X(s) = \mathcal{L}\{x(t)\}$, tada je

$$\mathcal{L}\{x(t)e^{s_0t}\}=X(s-s_0)$$

što je dualno prije izvedenom svojstvu vremenskog pomaka izvod:

$$\mathcal{L}\{x(t)e^{s_0t}\} = \int_{0^-}^{\infty} x(t)e^{s_0t}e^{-st}dt = \int_{0^-}^{\infty} x(t)e^{-(s-s_0)t}dt = X(s-s_0)$$

primjer: za

$$\sin(bt)\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{b}{s^2 + b^2}$$

primjenom svojstva frekvencijskog pomaka slijedi, za $s_0 = -a$,

$$e^{-at}\sin(bt)\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{b}{(s+a)^2+b^2}$$

Laplaceova transformacija

Definicija
Područje
konvergencije
z–transformacij

Ltransformacija
osnovnih signal
Svojstva Ltransformacije
Inverzna L-

transformacija

L
transformacija

L-transformacija – vremenska kompresija

neka je
$$X(s) = \mathcal{L}\{x(t)\}$$
, tada je, za⁴ $a > 0$

$$\mathcal{L}\{x(at)\} = \frac{1}{a}X\left(\frac{s}{a}\right)$$

izvod:

$$\mathcal{L}\{x(at)\} = \int_{0^{-}}^{\infty} x(at)e^{-st}dt = \frac{1}{a}\int_{0^{-}}^{\infty} x(\tau)e^{-\frac{s}{a}\tau}d\tau = \frac{1}{a}X\left(\frac{s}{a}\right)$$

- zaključuje se kako vremenska kompresija signala za faktor a rezultira u ekspanziji signala u frekvencijskoj domeni za isti faktor
- ekspanzija x(t) rezultira u kompresiji X(s)

 $^{^4}a > 0$ osigurava kauzalnost

Laplaceova transformacija

Područje konvergencije z–transformacii

transformacija osnovnih signa Svojstva *L*transformacije

Inverzna Ltransformacij

transformacija analizi linearnil sustava \mathcal{L} —transformacija — konvolucija u vremenu

neka su $X_1(s)=\mathcal{L}\{x_1(t)\mu(t)\}$ i $X_2(s)=\mathcal{L}\{x_2(t)\mu(t)\}$ tada je,

$$\mathcal{L}\{[x_1(t)\mu(t)] * [x_2(t)\mu(t)]\} = X_1(s)X_2(s)$$

izvod: konvolucija vremenskih signala je

$$\begin{aligned} [x_1(t)\mu(t)] * [x_2(t)\mu(t)] &= \int_{-\infty}^{\infty} [x_1(\tau)\mu(\tau)] [x_2(t-\tau)\mu(t-\tau)] d\tau \\ &= \int_{0^{-}}^{\infty} x_1(\tau) [x_2(t-\tau)\mu(t-\tau)] d\tau \end{aligned}$$

pa je \mathcal{L} –transformacija

$$\begin{split} \mathcal{L}\{[x_1(t)\mu(t)]*[x_2(t)\mu(t)]\} &= \\ &= \int_{0^-}^{\infty} \left[\int_{0^-}^{\infty} x_1(\tau)[x_2(t-\tau)\mu(t-\tau)] d\tau \right] e^{-st} dt &= \end{split}$$

Profesor Branko Jeren

Laplaceova transforma

Definicija Područje konvergencije

Područje konvergencije z–transformacij

transformacija osnovnih signa Svojstva Ltransformacije

transformaci

transformacija analizi linearnil sustava

\mathcal{L} –transformacija – konvolucija u vremenu

zamjenom redoslijeda integracije

$$\mathcal{L}\{[x_1(t)\mu(t)] * [x_2(t)\mu(t)]\} =$$

$$= \int_{0^-}^{\infty} x_1(\tau) \left[\int_{0^-}^{\infty} x_2(t-\tau)\mu(t-\tau)e^{-st}dt \right] d\tau$$

 $zamjenom \ t - \tau = \lambda$

$$= \int_{0^{-}}^{\infty} x_1(\tau) \left[\int_{-\tau}^{\infty} x_2(\lambda) \mu(\lambda) e^{-s(\lambda+\tau)} d\lambda \right] d\tau =$$

 $\operatorname{\mathsf{zbog}}\ \mu(\lambda) = 0 \ \operatorname{\mathsf{za}}\ \lambda < 0$

$$= \int_{0^{-}}^{\infty} x_1(\tau)e^{-s\tau} \left[\underbrace{\int_{0^{-}}^{\infty} x_2(\lambda)e^{-s\lambda}d\lambda}_{X_2(s)}\right] d\tau = X_2(s)\underbrace{\int_{0^{-}}^{\infty} x_1(\tau)e^{-s\tau}d\tau}_{X_1(s)} =$$

$$= X_2(s)X_1(s)$$

2007/2008

Laplaceova transformacija

Područje konvergencije z–transformaci

z-transformacija

Svojstva $\mathcal{L}-$ transformacije Inverzna $\mathcal{L}-$

transformacij

transformacija analizi linearnil sustava

\mathcal{L} –transformacija – vremenska derivacija

neka je $X(s) = \mathcal{L}\{x(t)\}$, tada je

$$\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = sX(s) - x(0^{-})$$

višestrukom primjenom ovog svojstva slijedi

$$\mathcal{L}\left\{\frac{d^2x(t)}{dt^2}\right\} = s^2X(s) - sx(0^-) - x^{(1)}(0^-)$$

odnosno

$$\mathcal{L}\left\{\frac{d^{j}x(t)}{dt^{j}}\right\} = s^{j}X(s) - s^{j-1}x(0^{-}) - s^{j-2}x^{(1)}(0^{-}) - \dots - x^{(j-1)}(0^{-}) = 0$$

$$= s^{j}X(s) - \sum_{m=1}^{j} s^{j-m}x^{(m-1)}(0^{-})$$

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformaci

z-transformacija
conovnih signa

osnovnih signa Svojstva Ltransformacije

Inverzna \mathcal{L} transformacij \mathcal{L} -

transformacija analizi linearnil sustava

\mathcal{L} -transformacija – vremenska derivacija

izvod

$$\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = \int_{0^{-}}^{\infty} \frac{dx(t)}{dt} e^{-st} dt$$

integral se rješava parcijalnom integracijom

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$
neka su

$$u(t) = e^{-st}$$
 i $dv = \frac{dx(t)}{dt}dt$

vrijedi

$$u(t) = e^{-st}$$
 \Rightarrow $du = -se^{-st} dt$
 $dv = \frac{dx(t)}{dt} dt$ \Rightarrow $v(t) = x(t)$

tada je,

školska godina 2007/2008 Cielina 17. Profesor Branko Jeren

Svojstva Ltransformacije

\mathcal{L} -transformacija – vremenska derivacija

$$\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = \int_{0^{-}}^{\infty} \frac{dx(t)}{dt} e^{-st} dt =$$

$$= uv \Big|_{t=0^{-}}^{t=\infty} - \int_{0^{-}}^{\infty} v \ du =$$

$$= e^{-st} x(t) \Big|_{t=0^{-}}^{t=\infty} - \int_{0^{-}}^{\infty} x(t)(-s) e^{-st} \ dt$$

$$= \lim_{t \to \infty} \left[e^{-st} x(t)\right] - x(0^{-}) + sX(s) = sX(s) - x(0^{-})$$

- već je pokazano kako L-transformacija konvergira za signale koji ne rastu brže od nekog eksponencijalnog signala ce^{at} , dakle, za signale za koje vrijedi $|x(t)| \leq ce^{at}$
- tada za sve s za koje je $\sigma = Re\{s\} > a$ vrijedi $\lim_{t\to\infty} \left[e^{-st} x(t) \right] = 0$

Profesor Branko Jeren

Laplaceova transformacij Definicija

Područje konvergencije z–transformacij

transformacija osnovnih signa Svojstva *L*transformacije

Inverzna Ltransformacij

transformacija i analizi linearnih sustava

\mathcal{L} -transformacija – integracija u vremenu neka ie $X(s) = \mathcal{L}\{x(t)\}$, tada je

$$\mathcal{L}\left\{\int_{0^{-}}^{t}x(\tau)d\tau\right\}=\frac{1}{s}X(s)$$

izvod se temelji na korištenju svojstva konvolucije

$$\int_{0^{-}}^{t} x(\tau)d\tau = \int_{0^{-}}^{t} x(\tau)\mu(t-\tau)d\tau = x(t)*\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s}X(s)$$

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformacij

Ltransformacija
osnovnih signa
Svojstva Ltransformacije

Inverzna $\mathcal{L}-$ transformacija

transformacija analizi linearnil sustava

\mathcal{L} –transformacija – frekvencijska derivacija

neka je $X(s) = \mathcal{L}\{x(t)\}$, tada je

$$\mathcal{L}\left\{-tx(t)\right\} = \frac{d}{ds}(X(s)) \Leftrightarrow \mathcal{L}\left\{tx(t)\right\} = -\frac{d}{ds}(X(s))$$

izvod

$$\frac{d}{ds}(X(s)) = \frac{d}{ds} \int_{0^{-}}^{\infty} x(t)e^{-st}dt =$$

$$= \int_{0^{-}}^{\infty} \frac{d}{ds}[x(t)e^{-st}]dt = \int_{0^{-}}^{\infty} [-tx(t)]e^{-st}dt = \mathcal{L}\left\{-tx(t)\right\}$$

općenito vrijedi

$$\frac{d^j}{ds^j}(X(s)) = \int_{0^-}^{\infty} [(-t)^j x(t)] e^{-st} dt = \mathcal{L}\{(-t)^j x(t)\}$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacij

Ltransformacija
osnovnih signa
Svojstva L-

Inverzna *L*-transformacija

transformacija analizi linearnih

Inverzna \mathcal{L} -transformacija – rastavom na parcijalne razlomke

 X(s) je razlomljena racionalna funkcija i možemo je prikazati kao

$$X(s) = \frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}}$$

odnosno kao omjer polinoma *M*-tog i *N*-tog reda

$$X(s) = \frac{P_M(s)}{P_N(s)}$$

 za N > M radi se o pravoj razlomljenoj racionalnoj funkciji koju je moguće rastaviti na parcijalne razlomke

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformaci

Ltransformacija
osnovnih signa
Svojstva L-

Inverzna $\mathcal{L}-$ transformacija

transformacija analizi linearni

Inverzna \mathcal{L} –transformacija – rastavom na parcijalne razlomke

• u slučaju $M \geq N$, X(s) je neprava razlomljena racionalna funkcija, pa je prije rastave na parcijalne razlomke potrebno, dijeljenjem brojnika i nazivnika, X(s) dovesti u oblik

$$X(s) = P_{M-N}(s) + \frac{P_R(s)}{P_N(s)}$$
, gdje je $R \le N-1$

• primjer za $X(s) = \frac{s^3}{s^2 + 2s + 1}$ dijeljenjem brojnika s nazivnikom slijedi

$$X(s) = \frac{s^3}{s^2 + 2s + 1} = s - 2 + \frac{3s + 2}{s^2 + 2s + 1}$$

Profesor Branko Jeren

Laplaceova transformacija

Definicija
Područje
konvergencije

Ltransformacija
osnovnih signa
Svojstva L-

Inverzna *L*-transformacija

transformacija u analizi linearnih

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke

 pravu razlomljenu racionalnu funkciju, za slučaj jednostrukih polova,

$$X(s) = \frac{B(s)}{A(s)} = \frac{B(s)}{(s - p_1)(s - p_2) \cdots (s - p_N)}$$

rastavljamo na parcijalne razlomke

$$X(s) = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \ldots + \frac{c_N}{s - p_N},$$

$$c_i = \lim_{s \to p_i} \left\{ (s - p_i)X(s) \right\}, \qquad i = 1, 2, \dots, N$$

iz čega slijedi inverzna \mathcal{L} -transformacija

$$x(t) = [c_1 e^{p_1 t} + c_2 e^{p_2 t} + \ldots + c_N e^{p_N t}] \mu(t)$$

Profesor Branko Jeren

transforma Definicija

Područje konvergencije z–transformacij

transformacija osnovnih signa Svojstva Ltransformacija

Inverzna *L*-transformacija

transformacija analizi linearni sustava

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke

za slučaj višestrukih polova,

$$X(s) = \frac{B(s)}{A(s)} = \frac{B(s)}{(s - p_1)^r (s - p_{r+1}) \cdots (s - p_N)}$$

rastavljamo na parcijalne razlomke

$$X(s) = \frac{c_{11}}{s - p_1} + \frac{c_{12}}{(s - p_1)^2} + \dots + \frac{c_{1r}}{(s - p_1)^r} + \frac{c_{r+1}}{s - p_{r+1}} + \frac{c_{r+2}}{s - p_{r+2}} + \dots + \frac{c_N}{s - p_N}$$

$$c_{1j} = \frac{1}{(r-j)!} \lim_{s \to p_1} \left\{ \frac{d^{r-j}}{ds^{r-j}} \Big[(s-p_1)^r X(s) \Big] \right\}, \quad j = r, r-1, \dots, 2, 1$$

$$c_i = \lim_{s \to p_1} \left\{ (s-p_i)X(s) \right\}, \qquad i = r+1, r+2, \dots, N$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacij

Ltransformacija
osnovnih signa
Svojstva L-

Inverzna Ltransformacija

transformacija analizi linearni sustava

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke

ullet inverzna ${\mathcal L}$ —transformacija

$$X(s) = \frac{c_{11}}{s - p_1} + \frac{c_{12}}{(s - p_1)^2} + \dots + \frac{c_{1r}}{(s - p_1)^r} + \frac{c_{r+1}}{s - p_{r+1}} + \frac{c_{r+2}}{s - p_{r+2}} + \dots + \frac{c_N}{s - p_N}$$

kako je

$$e^{\lambda t}\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s-\lambda} \qquad \mathsf{i} \qquad t^j e^{\lambda t}\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{j!}{(s-\lambda)^{j+1}}$$

$$\begin{split} x(t) &= \Big[c_{11}e^{\rho_1t} + c_{12}te^{\rho_1t} + c_{13}\frac{1}{2!}t^2e^{\rho_1t} + \ldots + c_{1r}\frac{1}{(r-1)!}t^{(r-1)}e^{\rho_1t} + \\ &\quad + c_{r+1}e^{\rho_{r+1}t} + c_{r+2}e^{\rho_{r+2}t} + \ldots + c_Ne^{\rho_Nt}\Big]\mu(t) \end{split}$$

Branko Jeren

Laplaceova transformacija Definicija Područie

z-transformacije $\mathcal{L}-$ transformacija osnovnih signala Svojstva $\mathcal{L}-$

transformacije Inverzna $\mathcal{L}-$ transformacija $\mathcal{L}-$

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke — primjer

inverzna transformacija

$$X(s) = \frac{s+3}{s(s+1)^2} = \frac{c_{11}}{s+1} + \frac{c_{12}}{(s+1)^2} + \frac{c_3}{s}$$

 $x(t) = -3e^{-t}\mu(t) - 2te^{-t}\bar{\mu}(t) + 3\mu(t)$

• konstante c_{11}, c_{12} i c_3 iz

$$c_{11} = \frac{1}{1!} \lim_{s \to -1} \left\{ \frac{d}{ds} \left[(s+1)^2 \frac{s+3}{s(s+1)^2} \right] \right\} =$$

$$= \lim_{s \to -1} \left\{ \frac{s - (s+3)}{s^2} \right\} = -3$$

$$c_{12}=rac{1}{0!}\lim_{s o -1}\left\{ (s+1)^2rac{s+3}{s(s+1)^2}
ight\} = -2$$

$$c_3 = \lim_{s \to 0} \left\{ \frac{s+3}{\sharp (s+1)^2} \right\} = 3$$

≣ •⊘ • ○ ○ 34

školska godina 2007/2008 Cielina 17.

Profesor Branko Jeren

Inverzna Ltransformacija

Inverzna \mathcal{L} -transformacija – rastavom na parcijalne razlomke – primjer

rastav na parcijalne razlomke moguće je učiniti i metodom neodređenih koeficijenata

$$X(s) = \frac{s+3}{s(s+1)^2} = \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{s}$$

množenjem obje strane s nazivnikom lijeve strane izlazi

$$s + 3 = As(s + 1) + Bs + C(s + 1)^{2} =$$

= $(A + C)s^{2} + (A + B + 2C)s + C$

 usporedbom koeficijenata jednako visokih potencija lijevo i desno slijedi sustav linearnih jednačaba

$$A + C = 0$$

$$A + B + 2C = 1$$

$$C = 3$$

$$\Rightarrow A = -3, B = -2, C = 3$$

$$\Rightarrow A = -3, B = -2, C = 3$$

$$\Rightarrow A = -3, B = -2, C = 3$$

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije

Ltransformacija
osnovnih signal
Svojstva L-

Inverzna $\mathcal{L}-$ transformacija

transformacija analizi linearni

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke — primjer

inverzna transformacija

$$X(s) = \frac{s^2 + s + 2}{s^3 + s^2 + s + 1} = \frac{s^2 + s + 2}{(s+1)(s-j)(s+j)} = \frac{s^2 + s + 2}{(s+1)(s^2 + 1)}$$

- rastav je moguće učiniti kao rastav razlomljene racionalne funkcije za jednostruke polove
- dva su pola konjugirano kompleksni i prepoznaje se da će inverzna transformacija rezultirati u sinusoidnom signalu, pa stoga, rastav možemo učiniti i na ovaj način

$$X(s) = \frac{s^2 + s + 2}{(s+1)(s^2+1)} = \frac{A}{s+1} + \frac{Bs + C}{s^2+1}$$

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformac

Ltransformacija osnovnih sign Svojstva L-

Inverzna *L*-transformacija

transformacija analizi linearni

Inverzna \mathcal{L} —transformacija — rastavom na parcijalne razlomke — primjer

metodom neodređenih koeficijenata određujemo A, B, C,

$$s^{2} + s + 2 = As^{2} + A + Bs^{2} + Bs + Cs + C =$$

= $(A + B)s^{2} + (B + C)s + (A + C)$

 usporedbom koeficijenata jednako visokih potencija lijevo i desno slijedi sustav linearnih jednačaba

$$A + B = 1
B + C = 1
A + C = 2
 \Rightarrow A = 1, B = 0, C = 1$$

$$X(s) = \frac{s^2 + s + 2}{(s+1)(s^2 + 1)} = \frac{1}{s+1} + \frac{1}{s^2 + 1}$$
$$x(t) = e^{-t}\mu(t) + \sin(t)\mu(t)$$

Profesor Branko Jeren

Laplaceova transformacija

Područje konvergencije z–transformaci

transformacija osnovnih signa Svojstva *L*transformacije Inverzna *L*-

Ltransformacija u analizi linearnih sustava

Primjena \mathcal{L} —transformacije u analizi linearnih sustava — prijenosna funkcija

- neka je sustav opisan diferencijalnom jednadžbom

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \dots + a_{N-1}\frac{dy}{dt} + a_{N}y(t) =
= b_{N-M}\frac{d^{M}u}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}u}{dt^{M-1}} + \dots + b_{N-1}\frac{du}{dt} + b_{N}u(t)$$

• \mathcal{L} -transformacijom ove jednadžbe, uzimajući u obzir da je sustav miran, i koristeći svojstvo $\mathcal{L}\{\frac{d^jy}{dt^j}\}=s^jX(s)$ slijedi

$$(s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N})Y(s) =$$

$$= (b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N})U(s)$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformacij

Ltransformacija
osnovnih signal
Svojstva Ltransformacija

transformaciji Inverzna \mathcal{L}_{-} transformaciji

transformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava – prijenosna funkcija

pa je

$$Y(s) = \underbrace{\frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}}}_{H(s)} U(s)$$

$$H(s) = \frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}} = \frac{Y(s)}{U(s)}$$

pa, prijenosnu funkciju vremenski kontinuiranog sustava, H(s), definiramo kao omjer \mathcal{L} —transformacija odziva i pobude, uz početne uvjete jednake nuli

$$H(s) = \frac{Y(s)}{U(s)} = \frac{\mathcal{L}\{y(t)\}}{\mathcal{L}\{u(t)\}}$$

Laplaceova transformacij

Područje konvergencije z–transformacij

transformacija osnovnih signa Svojstva \mathcal{L} -transformacije Inverzna \mathcal{L} -

Ltransformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

 primjenu *L*-transformacije u analizi linearnih sustava ilustriramo primjerom sustava opisanog diferencijalnom jednadžbom

$$y''(t) + 0.2y'(t) + 0.16y(t) = u(t)$$
 (2)

- neka je sustav pobuđen pobudom $u(t)=0.64\mu(t)$ i neka su $y(0^-)=-3$ i $y'(0^-)=-1$
- ullet \mathcal{L} -transformacija jednadžbe je

$$s^{2}Y(s) - sy(0^{-}) - y'(0^{-}) +$$

 $+ 0.2sY(s) - 0.2y(0^{-}) + 0.16Y(s) = U(s)$

$$[s^{2} + 0.2s + 0.16] Y(s) = U(s) + + sy(0^{-}) + y'(0^{-}) + 0.2y(0^{-})$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije

Ltransformacija
osnovnih signal
Svojstva Ltransformacije

Ltransformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

$$Y(s) = \underbrace{\frac{sy(0^{-}) + y'(0^{-}) + 0.2y(0^{-})}{s^{2} + 0.2s + 0.16}}_{\text{odziv nepobuđenog sustava - }Y_{0}(s)} + \underbrace{\frac{1}{s^{2} + 0.2s + 0.16}}_{\text{Odziv mirnog sustava - }Y_{m}(s)}$$

uz
$$\mathcal{L}\{u(t)\}=\mathcal{L}\{0.64\mu(t)\}=\frac{0.64}{s}=U(s)$$
 i zadane početne uvjete $y(0^-)=-3$ i $y'(0^-)=-1$

$$Y(s) = \underbrace{\frac{-3s - 1.6}{s^2 + 0.2s + 0.16}}_{Y_0(s)} + \underbrace{\frac{0.64}{s^3 + 0.2s^2 + 0.16s}}_{Y_m(s)}$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformaci

L transformacija
 osnovnih signala
 Svojstva L transformacije

Inverzna $\mathcal{L}-$ transformacij

transformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

$$Y(s) = \underbrace{\frac{c_1}{s + 0.1 - j0.3873} + \frac{c_2}{s + 0.1 + j0.3873}}_{Y_0(s)} + \underbrace{\frac{c_3}{s + 0.1 - j0.3873} + \frac{c_4}{s + 0.1 + j0.3873} + \frac{c_5}{s}}_{Y_m(s)}$$

 c_1, c_2 određujemo iz $Y_0(s)$, a c_3, c_4, c_5 iz $Y_m(s)$

$$c_1 = \left[(s + 0.1 - j0.3873) Y_0(s) \right]_{s = -0.1 + j0.3873} = -1.5000 + j1.6783$$

$$c_2 = \left[(s + 0.1 + j0.3873) Y_0(s) \right]_{s = -0.1 - j0.3873} = -1.5000 - j1.6783$$

$$c_3 = \left[(s + 0.1 - j0.3873) Y_m(s) \right]_{s = -0.1 + j0.3873} = -2.0000 + j0.5164$$

$$c_4 = \left[(s + 0.1 + j0.3873) Y_m(s) \right]_{s = -0.1 - j0.3873} = -2.0000 - j0.5164$$

$$c_5 = \left[s Y_m(s) \right]_{s = 0} = 4$$

Profesor Branko Jeren

Laplaceova transformacij

Područje konvergencije z–transformac

Ltransformacija
osnovnih signal
Svojstva Ltransformacije

Inverzna Ltransformacij

transformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

$$Y(s) = \underbrace{\frac{-1.5000 + j1.6783}{s + 0.1 - j0.3873} + \frac{-1.5000 - j1.6783}{s + 0.1 + j0.3873}}_{Y_0(s)} + \underbrace{\frac{-2.0000 + j0.5164}{s + 0.1 - j0.3873} + \frac{-2.0000 - j0.5164}{s + 0.1 + j0.3873} + \frac{4}{s}}_{Y_m(s)}$$

$$y(t) = [(-1.5 + j1.6783)e^{-0.1t + j0.3873t} + (-1.5 - j1.6783)e^{-0.1t - j0.3873t} + (-2.0 + j0.5164)e^{-0.1t + j0.3873t} + (-2.0 - j0.5164)e^{-0.1t - j0.3873t} - +4]\mu(t)$$

$$y(t) = [(-3.5 + j2.1947)e^{-0.1t + j0.3873t} + (-3.5 - j2.1947)e^{-0.1t - j0.3873t} - +4]\mu(t)$$

$$y(t) = 4.5018e^{-0.1t}\cos(0.3873t + 2.3002) + +4.1313e^{-0.1t}\cos(0.3873t + 2.8889) + 4, t \ge 0$$

$$y(t) = 8.2624e^{-0.1t}\cos(0.3873t + 2.5815) + 4, \quad t \ge 0$$

Profesor Branko Jeren

Laplaceova transformacija

Definicija Područje konvergencije z–transformaci

transformacija osnovnih signal Svojstva \mathcal{L} transformacije Inverzna $\mathcal{L}-$

Ltransformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

• primjenom \mathcal{L} -transformacije odrediti impulsni odziv sustava, $u(t)=\delta(t)$, opisanog diferencijalnom jednadžbom

$$y''(t) + 2y'(t) + y(t) = u''(t) + u'(t) + u(t)$$
 (3)

• \mathcal{L} -transformacija jednadžbe je, uz $y(0^-) = y'(0^-) = 0$,

$$s^{2}Y(s) + 2sY(s) + Y(s) = s^{2}U(s) + sU(s) + U(s)$$

$$Y(s) = \underbrace{\frac{s^2 + s + 1}{s^2 + 2s + 1}}_{H(s)} U(s)$$

• kako je $u(t) = \delta(t) \Rightarrow U(s) = 1$, pa je

$$Y(s) = H(s) = \frac{s^2 + s + 1}{s^2 + 2s + 1}$$

2007/2008

Laplaceova transformaci

Definicija
Područje
konvergencije

transformacija osnovnih signa Svojstva L-

Inverzna Ltransformacij

transformacija u analizi linearnih sustava

Primjena \mathcal{L} –transformacije u analizi linearnih sustava

- ullet inverzna ${\mathcal L}$ -transformacija je traženi impulsni odziv
- kako je H(s) neprava razlomljena racionalna funkcija, dijeljenjem brojnika s nazivnikom, slijedi

$$H(s) = \frac{s^2 + s + 1}{s^2 + 2s + 1} = 1 - \frac{s}{s^2 + 2s + 1}$$

rastavom na parcijalne razlomke

$$\frac{s}{s^2 + 2s + 1} = \frac{s}{(s+1)^2} = \frac{A}{s+1} + \frac{B}{(s+1)^2} = \frac{As + A + B}{(s+1)^2}$$

• metodom neodređenih koeficijenata slijedi

$$h(t) = \mathcal{L}^{-1} \left\{ 1 - \frac{1}{s+1} + \frac{1}{(s+1)^2} \right\} = \delta(t) - e^{-t} \mu(t) + te^{-t} \mu(t)$$