

			~ :^ ·	_		ī		~
I)@	partamento	an	(lencias i	$rac{1}{2}$	CHAIAGL	ลง	Intorm	ລຕລດ
	partamento	uc	Cicicias	c	.ciiologi	us uu		açao

Fundamentos de Redes de Computadores (2022/23)

Trabalho prático – desenho e teste de uma rede empresarial

Discentes:

Filipe Farias Rego 99335

Teresa Caetano Fernandes 92866

Tiago Garcia Pereira 98014

Tomás Miguel Gameiro Bettencourt Fernandes 98452

Índice:
Introdução
 Descrição das características da rede:
1.1 Suporte a delegações e departamentos
1.2 Separação e interligações de delegações e departamentos
1.2.1 Dimensionamento e desenho da rede física
1.2.2 Redes locais virtuais (VLAN's)
1.2.3 Protocolo de árvore de escoamento (STP)
1.3 Planeamento do espaço de endereçamento
1.4 Configuração dos routers
1.4.1 Configuração das interfaces dos routers
1.4.2 Configuração do encaminhamento nos routers
1.5 Configuração dos serviços DHCP e HTTP
2. Testes funcionais na rede
2.1 Estrutura da trama 802.3 e 802.11 e estrutura do pacote IP
2.2 Protocolo ARP
2.3 Protocolo DHPC

Conclusão

1. Introdução

Este trabalho está inserido na Unidade Curricular de Fundamentos de Redes de Computadores, lecionada no segundo semestre do ano letivo de 2022/2023. Tem como principal objetivo o planeamento de uma rede empresarial de média dimensão bem como, a realização de testes funcionais nessa mesma rede. Com a realização deste trabalho demonstramos o conhecimento adquirido sobre as tecnologias/protocolos lecionados na UC através da implementação da rede empresarial no simulador *Packet Tracer*.

2. Descrição das características da rede

2.1 Suporte a delegações e departamentos

A empresa Xpto, Lda, constituída por três delegações (Lisboa, Cascais e Porto), vai utilizar na sua Intranet uma rede privada. A delegação de Lisboa é composta pelas sub-redes DTEC-LX, DCOM-LX, WIFI-LX E SRV-LX, a de Cascais pelas sub-redes DCOM-CAS E WIFI-CAS e, por fim, a do Porto pelas sub-redes DTEC-POR, DCOM-POR E WIFI-POR.

2.2 Separação e interligação de delegações e departamentos

Figura 1: Versão simplificada da rede da empresa Xpto, Lda

2.2.1 Dimensionamento e desenho da rede física

Atendendo às características da empresa Xpto, Lda seriam necessários 6 Switches, 4 Routers, 3 Acess Points e 2 Modems(DSL e Cable), distribuídos de acordo com as tabelas abaixo apresentadas.

Departamento/Delegação	# Postos	Switches
WIFI-LX	200	SW4
DTEC-LX	100	SW1
DCOM-LX	100	SW3
SRV-LX	10	SW2
WIFI-POR	100	SW-Porto
DTEC-POR	40	SW-Porto
DCOM-POR	20	SW-Porto
WIFI-CAS	10	SW-Cascais
DCOM-CAS	5	SW-Cascais

Tabela 1: Atribuição de Switches por departamento/delegação

Nota: A escolha de Switches deve se à necessidade de interligação de redes locais

Delegação	#Routers	Comentário	
Lisboa	1	Router utilizado para estabelecer ligação direta à delegação de Cascais e à do Porto através do Router-ISP	
		atraves do Router-ISP	
Porto	1	Router utilizado para estabelecer ligação à delegação de Lisboa através do Router-ISP	
Cascais	1	Router utilizado para estabelecer ligação direta à delegação de Lisboa	

Tabela 2: Atribuição de Routers por departamento/delegação

Nota: A escolha dos Routers para cada delegação deve-se à necessidade de comunicação entre redes diferentes. As delegações de Lisboa e Porto interligam-se entre si e com outras redes através do Router-ISP. A rede de acesso a Lisboa usa cabo coaxial e no Porto par de cobre (DSL). Lisboa e Cascais interligam-se diretamente através de fibra ótica.

Delegação	#APs	Comentário	
Lisboa	1	Acess Points utilizados para a ligação dos equipamentos WIFI da delegação de Lisboa	
Porto	1	Acess Points utilizados para a ligação dos equipamentos WIFI da delegação do Porto	
Cascais	1	Acess Points utilizados para a ligação dos equipamentos WIFI da delegação de Cascais	

Tabela 3: Atribuição de Acess Points por departamento/delegação

Por fim, são usados equipamentos de nível físico (modems) para a ligação às redes de acesso em Lisboa e Porto. Para a de Lisboa um Cable Modem e para a do Porto DSL Modem.

2.2.2 Redes locais virtuais (VLAN's)

Atendendo aos requisitos de segurança e de separação de tráfego, implementaram-se na empresa Xpto, Lda as VLAN's:

Departamento/Delegação	VLAN
WIFI-LX	10
DCOM-LX	20
DTEC-LX	30
SRV-LX	40
DCOM-CAS	50
WIFI-CAS	60
DTEC-POR	70
DCOM-POR	80
WIFI-POR	90

Tabela 4: Atribuição de VLANs por departamento/delegação

As seguintes figuras ilustram as configurações das VLANs nos diferentes switches

-SW1 (LX):

VLAN	Name	Status	Ports
1	default	active	Fa0/3, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24
10	WIFI-LX	active	
20	DCOM-LX	active	
30	DTEC-LX	active	Fa0/1, Fa0/2
40	SRV-LX	active	
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005 SW1>	trnet-default	active	

Fig 1 – Configuração de VLANs do switch 1 da delegação de Lisboa

-SW2 (LX)

VLAN	Name	Status	Ports
1	default	active	Fa0/3, Fa0/4, Fa0/6, Fa0/7 Fa0/8, Fa0/9, Fa0/10, Fa0/11 Fa0/12, Fa0/13, Fa0/14, Fa0/15 Fa0/16, Fa0/17, Fa0/18, Fa0/19 Fa0/20, Fa0/21, Fa0/22, Fa0/23 Fa0/24
40 1002 1003 1004	WIFI-LX DCOM-LX DTEC-LX SRV-LX fddi-default token-ring-default fddinet-default trnet-default	active active active active active active active active	Fa0/1, Fa0/2

-SW3 (LX)

VLAN	Name	Status	Ports
1	default	active	Fa0/4, Fa0/5, Fa0/6, Fa0/7 Fa0/8, Fa0/9, Fa0/10, Fa0/11 Fa0/12, Fa0/13, Fa0/14, Fa0/15 Fa0/16, Fa0/17, Fa0/18, Fa0/19 Fa0/20, Fa0/21, Fa0/22, Fa0/23 Fa0/24
10	WIFI-LX	active	
20	DCOM-LX	active	Fa0/1, Fa0/2
30	DTEC-LX	active	
40	SRV-LX	active	
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005 SW3>	trnet-default	active	

-SW4 LX

VLAN	Name	Status	Ports
1	default	active	Fa0/2, Fa0/3, Fa0/5, Fa0/6 Fa0/7, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/18 Fa0/19, Fa0/20, Fa0/21, Fa0/22 Fa0/23, Fa0/24
30 40 1002 1003 1004	WIFI-LX DCOM-LX DTEC-LX SRV-LX fddi-default token-ring-default fddinet-default trnet-default	active active active active active active active	

-SW Cascais

VLAN	Name	Status	Ports
1	default	active	Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Giq0/2
50	DCOM-CAS	active	Fa0/2, Fa0/3
60	WIFI-CAS	active	Fa0/1, Fa0/4
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005	trnet-default	active	
SW-C	ascais>		

-SW Porto

VLAN Name	Status	Ports
l default	active	Fa0/3, Fa0/7, Fa0/8, Fa0/9 Fa0/10, Fa0/11, Fa0/12, Fa0/13 Fa0/14, Fa0/15, Fa0/16, Fa0/17 Fa0/18, Fa0/19, Fa0/20, Fa0/21 Fa0/22, Fa0/23, Fa0/24, Giq0/2
70 DTEC-POR	active	Fa0/1, Fa0/2
80 DCOM-POR	active	Fa0/4, Fa0/5
90 WIFI-POR	active	Fa0/6
1002 fddi-default	active	
1003 token-ring-default	active	
1004 fddinet-default	active	
1005 trnet-default SW-Porto>	active	

Testes das VLANs no Packet Tracer:

Utilizando a funcionalidade gerador de PDUs, foram testados os cenários de troca de mensagens entre dois PC's pertencentes à mesma VLAN (do PC2 para o PC3) e entre dois PC's não pertencentes à mesma VLAN (do PC2 para o PC0).

										Realtime Simulation
Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
	Successful	PC2	192.168.1.3	ICMP		0.000	N	0	(edit)	(delete)
•	Failed	PC2	192.168.1.4	ICMP		0.000	N	1	(edit)	(delete)

Figura 11: Troca de PDUs entre PCs na mesma VLAN e em VLANs diferentes

Numa troca de mensagens inicial, conforme observado na Figura 11 recorrendo a PDUs simples, o cenário de troca de mensagens entre dois PCs dentro da mesma VLAN teve sucesso, em contrapartida, o cenário de troca de mensagens entre dois PCs pertencentes a diferentes VLANs falhou.

Ao repetir a experiência, utilizando o comando ping através do mesmo PC origem, para um PC dentro da mesma VLAN foi possível enviar e receber os pacotes ICMP reply. Fazendo o ping do PC origem para outro pertencente a uma VLAN diferente, obtemos request timed out para todos os pacotes ICMP que saem do PC origem.

Efetuando um procedimento semelhante ao do Laboratório 3 – "Vlans e switches", os prints seguintes vão demonstrar o que acontece nas tabelas de expedição de um switch na fase de aprendizagem (palavra chave: Mac Origem) e na fase de expedição (palavra chave: Mac Destino). Para a fase de expedição vamos demonstrar o que acontece quando o endereço

destino se encontra ou não na tabela de expedição do switch. Para testar isto de forma correta primeiro limpamos a MAC table do switch com o comando: "clear mac address-table dynamic".

Ao enviar um ping do PC2 para o PC3 (pertencem à mesma VLAN), quando o pacote ICMP chega ao SW3, este entra na fase de aprendizagem: olha para o MAC Origem da trama que chega e por qual porta chegou e adiciona essa associação Mac Origem-Porta à sua tabela de expedição juntamente com a qual VLAN esse MAC pertence:

Para a fase de expedição, neste caso, o endereço destino não se encontra na tabela de expedição do SW3, e por isso vai fazer flooding pelas suas portas, chegando a todos os Switches a que o SW3 está ligado e também ao PC3 destino. Os outros switches como não têm na sua MAC table o endereço MAC do PC3, descartam o pacote ICMP. Ao chegar ao PC3, a Mac table do SW3 é atualizada com o MAC do PC3 e a porta do switch a qual está ligado. Agora o endereço destino já se encontra na tabela de expedição logo ao mandar um novo pacote ICMP para esse destino, o SW3 simplesmente encaminha diretamente para o PC3 pela porta associada. Tabela de expedição após fase de expedição:

Para comunicar entre VLANs diferentes é necessário a configuração dos Routers a qual vamos discutir mais à frente no relatório.

2.2.3 Protocolo de árvore de escoamento – Spanning Tree Protocol (STP)

Na Figura 13 identificamos a rede redundante e layer 2 da delegação de Lisboa. A rede é constituída pelos Switches 1,2,3 e 4 conforme visível na figura:

Figura 13: Rede redundante layer 2 de Lisboa

Capturas do ecrã Packet Tracer mostrando o resultado da execução do comando show spanning-tree em cada um dos switches (p VLAN30 por exemplo):

SW1:

VLAN0030					
Spanning t	ree enabled	protocol ie	ee		
Root ID	Priority	32798			
	Address	0005.5E8C.	EE91		
	Cost	4			
	Port	26(Gigabit	Ethernet0	/2)	
	Hello Time	2 sec Max	Age 20 s	ec Forward Delay 15 sec	
Bridge ID	Priority	32798 (pr	iority 32	768 sys-id-ext 30)	
	Address	00D0.BA9D.	3C96		
	Hello Time	2 sec Max	Age 20 s	ec Forward Delay 15 sec	
	Aging Time	20			
		_		_	
	Role St				
				D2	
	Desg FW			-	
	Altn BL			_	
	Desg FW			-	
	Desg FW			-	
	Root FW			-	
Gi0/1	Desg FW	D 19	128.25	P2p	

SW3:

```
VLAN0030
  Spanning tree enabled protocol ieee
  Root ID Priority 32798
           Address
                      0005.5E8C.EE91
            This bridge is the root
            Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
  Bridge ID Priority 32798 (priority 32768 sys-id-ext 30)
           Address
                     0005.5E8C.EE91
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time 20
Interface
               Role Sts Cost
                               Prio.Nbr Type
                              128.3 P2p
              Desg FWD 19
Gi0/1
              Desg FWD 4
                               128.25 P2p
              Desg FWD 4
Gi0/2
                               128.26 P2p
SW2:
```

VLAN0030

Spanning tree enabled protocol ieee

Root ID Priority 32798

0005.5E8C.EE91 Address

26(GigabitEthernet0/2)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32798 (priority 32768 sys-id-ext 30)

00D0.BABE.0138

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 20

Interface	Role	Sts	Cost	Prio.Nbr	Type
Fa0/5	Altn	BLK	19	128.5	P2p
Gi0/2	Root	FWD	4	128.26	P2p
Gi0/1	Altn	BLK	19	128.25	P2p
	Fa0/5 Gi0/2	Fa0/5 Altn Gi0/2 Root	Fa0/5 Altn BLK Gi0/2 Root FWD	Fa0/5 Altn BLK 19 Gi0/2 Root FWD 4	Fa0/5 Altn BLK 19 128.5 Gi0/2 Root FWD 4 128.26

SW4:

VLAN0030						
	ree enabled pr	otocol iee	e			
	Priority 3 Address 0 Cost 4 Port 2 Hello Time 2	2798 005.5E8C.E 6(GigabitE	E91 thernet0/		Delay 15	sec
Bridge ID	Priority 3 Address 0 Hello Time 2 Aging Time 2	00A.F399.5 sec Max	001	-		sec
Interface	Role Sts	Cost	Prio.Nbr	Type		
Fa0/4 Gi0/1 Gi0/2	_	19 4 4	128.25	-		

Foi testada a conectividade entre os hosts PCO e LaptopO. Na figura 18 verifica-se que no Switch 1 a porta fa 0/4 não foi utilizada, uma vez que, está bloqueada. O caminho realizado pela trama enviada do host é PCO-SW1-flooding por todas as portas menos a que está BLK no SW1(a porta com o circulo a laranja)-morre ali a trama.

Pacote a ser enviado por todas as portas menos a que está blocked:

Em seguida, desativa-se a porta Gig0/2 do Switch 1 de Lisboa, observável na figura 19:

Figura 19: Rede redundante de layer 2 de Lisboa com a porta gig0/2 do Switch 1 de Lisboa desligada e árvore de escoamento em atualização

VLAN40

HTTP Server

Access Point0

Laptop0

VLAN10

Laptop1

Figura 20: Rede redundante de layer 2 de Lisboa com a porta X do Switch X de Lisboa desligada e árvore de escoamento atualizada

2.3 Planeamento do espaço de endereçamento

A empresa Xpto vai requerer blocos de endereços classe C ao seu ISP na quantidade estritamente necessária para as suas necessidades. Neste caso, o total de equipamentos da nossa rede vai ser 200+100+100+10+100+40+20+10+5=585 hosts. Fazendo os cálculos, $2^{(32-24)} - 2 = 254$ hosts. Sendo assim, precisamos de mais bits de rede. Neste caso, ceiling(log2(585+2)) = $32-x \Leftrightarrow x=22$. Significa que vamos precisar de uma super-rede /22 para atribuição do espaço de endereçamento na nossa empresa.

x=Tx10 + Gx6 + 1 = 6*10 + 5*6 + 1 = 91. Assim o nosso endereço inicial é 192.168.91.0 /24.

Vamos precisar de agrupar 4 endereços para ter um /22: 192.168.88.0, 192.168.89.0, 192.168.90.0, 192.168.91.0(atual). Temos de escolher o endereço de rede 192.168.88.0 /22 para atribuição de endereços aos departamentos pois este é o único com os bits de host todos a zero apartir do 22º bit.

Na tabela 5 observa-se a segmentação do espaço de endereçamento para a empresa com as delegações considerando a rede /22.

Na tabela 6 são apresentados os endereços IP para interligação das 3 delegações utilizando a rede da tabela 5.

Departament o/Delegação	VLAN	# Postos	Network	Netmask	Gama de endereços	Gateway	Broadcast	# Interfaces
0/Delegação	VLAN	<u>F03103</u>	Network	INCLINASK	da rede	Gateway	bioaucast	interraces
WIFI-LX	10	200	192.168.88.0/24	255.255.255.0	192.168.88.1- 192.168.88.254	192.168.88.254	192.168.88.255	254
DTEC-LX	30	100	192.168.89.0/25	255.255.255.128	192.168.89.1- 192.168.89.126	192.168.89.126	192.168.89.127	126
DCOM-LX	20	100	192.168.89.128/25	255.255.255.128	192.168.89.129- 192.168.89.254	192.168.89.254	192.168.89.255	126
SRV-LX	40	10	192.168.90.240/28	255.255.255.240	192.168.90.241- 192.168.90.254	192.168.90.254	192.168.90.255	14
WIF-POR	90	100	192.168.90.0/25	255.255.255.128	192.168.90.1- 192.168.90.126	192.168.90.126	192.168.90.127	126
DTEC-POR	70	40	192.168.90.128/26	255.255.255.192	192.168.90.129- 192.168.90.190	192.168.90.190	192.168.90.191	62
DCOM-POR	80	20	192.168.90.192/27	255.255.255.224	192.168.90.193- 192.168.90.222	192.168.90.222	192.168.90.223	30
WIFI-CAS	60	10	192.168.90.224/28	255.255.255.240	192.168.90.225- 192.168.90.238	192.168.90.238	192.168.90.239	14
DCOM-CAS	50	5	192.168.91.0/29	255.255.255.248	192.168.91.1- 192.168.91.6	192.168.91.6	192.168.91.7	6

Tabela 5: Atribuição de IPs por departamento-delegação usando a super-rede 192.168.88.0/22 apartir de um 192.168.91.0 /24

Network	Lisboa	Porto	Cascais	ISP	Broadcast
192.168.91.8/30	192.168.91.9	-	-	192.168.91.10	192.168.91.11
192.168.91.12/30	192.168.91.13	-	192.168.91.14	-	192.168.91.15
192.168.91.16/30	-	192.168.91.17	-	192.168.91.18	192 <u>.168</u> .91.19

Tabela 6: Atribuição de IPs para interligações entre routers usando a super-rede 192.168.88.0/22

Nota: Os endereços dos servidores são fixos. Também foi atribuído endereço à interface do RT-ISP que liga ao servidor WWW externo, sendo este o 1º endereço da rede do servidor WWW externo, o 8.8.8.1.

Teste de conectvidade entre duas máquinas de uma mesma delegação:

Primeiramente foi feito um teste de conectividade no modo simulação entre PCs da mesma delegação (Porto) e departamento (DTEC-POR). Ping do PC6 (192.168.90.129) para o PC7(192.168.90.130), com sucesso.

Por fim, foi feito um teste de conectividade no modo simulação entre PCs da mesma delegação mas departamentos diferentes. Um ping do PC6(192.168.90.129, VLAN70, DTEC-POR) para o PC8 (192.168.90.193, VLAN80, DCOM-POR) não funciona porque ainda não foi configurado o router. É necessário um router para conseguirmos comunicar entre redes diferentes.

2.4 Configuração dos routers

2.4.1 Configuração das interfaces dos routers

Na tabela 7, os 4 routers são configurados de acordo com cada Interface/Sub-Interface necessária.

Router- Delegação	Interface	Subinterface	IP (GW)	Máscara de rede
	-	Fa 0/0.50	192.168.91.6	255.255.255.248
RT-Cascais	-	Fa 0/0.60	192.168.90.238	255.255.255.240
	Fa 4/0	-	192.168.91.14	255.255.255.252
	-	Fa 0/0.10	192.168.88.254	255.255.255.0
	-	Fa 0/0.20	192.168.89.254	255.255.255.128
RT-Lisboa	-	Fa 0/0.30	192.168.89.126	255.255.255.128
	-	Fa 0/0.40	192.168.90.254	255.255.255.240
	Fa 1/0	-	192.168.91.9	255.255.255.252
	Fa 4/0	-	192.168.91.13	255.255.255.252
	-	Fa 0/0.70	192.168.90.190	255.255.255.192
RT-Porto	-	Fa 0/0.80	192.168.90.222	255.255.255.224
	-	Fa 0/0.90	192.168.90.126	255.255.255.128
	Fa 1/0	-	192.168.91.17	255.255.255.252
	Gig 0/0	-	8.8.8.1	255.255.255.240
RT-ISP	Gig 0/1	-	192.168.91.10	255.255.255.252
	Gig 0/2	-	192.168.91.18	255.255.255.252

Tabela 7: Interfaces e Sub-Interfaces dos Routers

Nas figuras seguintes obtidas do Packet Tracer obtiveram-se os resultados das configurações dos routers de Lisboa, Cascais, Porto e ISP.

2.4.2 Configuração do encaminhamento nos routers

Teste de conectividade entre duas máquinas de redes diferentes ligadas no mesmo interface do router – conceito de sub-interface:

Considerando dois PCs pertencentes a VLANs diferentes na delegação de Lisboa, foi feito um teste de conectividade do PC2 para o PCO. A mensagem ICMP sai do PC2 e através dos switches em Lisboa é encaminhada para o Router de Lisboa. Esta primeira mensagem ICMP vai ser descartada e o router manda uma mensagem ARP através de Broadcast de forma a descobrir o MAC address do IP destino(target) que é o do PCO. Isto porque, vendo a pilha protocolar, para passar do L3 para L2, a trama tem de ser construída e no PCI tem que ser preenchido o MAC destino, o qual só consegue ser descoberto desta forma. Ao ser descoberto o MAC do PCO, manda a segunda mensagem ICMP a qual vai ter sucesso sendo que o MAC destino já consegue ser preenchido.

ICMP ao chegar ao router, para descobrir o MAC dest.

ICMP após descobrir o MAC dest do IP target.

Agora considerando dois PCs pertencentes a delegações diferentes não será possível ter sucesso no teste de conectividade sendo que as tabelas de encaminhamento não estão preenchidas. Para rede destino x, o router não vai saber para qual router encaminhar a mensagem ICMP por isso é preciso definir para cada um o seu nextHop. O PC que fez o ping vai acabar por receber uma mensagem ICMP do tipo "destination host unreachable". Na tabela de encaminhamento do router de Lisboa apenas encontram-se as redes a qual ele está diretamente conectado representadas por um C.

```
Router#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.88.0/24 is directly connected, FastEthernet0/0.10

192.168.99.0/25 is subnetted, 2 subnets

C 192.168.89.0 is directly connected, FastEthernet0/0.30

C 192.168.99.128 is directly connected, FastEthernet0/0.20

192.168.90.0/28 is subnetted, 1 subnets

C 192.168.90.240 is directly connected, FastEthernet0/0.40

192.168.91.0/30 is subnetted, 2 subnets

C 192.168.91.18 is directly connected, FastEthernet1/0

C 192.168.91.18 is directly connected, FastEthernet1/0

Router#
```

Encaminhamento estático:

Tabela de encaminhamento do Router-Lisboa:

Tabela de encaminhamento do RT-Porto:

```
8.0.0.0/29 is subnetted, 1 subnets
   8.8.8.8 [1/0] via 192.168.91.10
                                                                                 8.0.0.0/29 is subnetted, 1 subnets
                                                                                     8.8.8.8 [1/0] via 192.168.91.18
192.168.88.0/24 is directly connected, FastEthernet0/0.10
                                                                                 192.168.88.0/24 [1/0] via 192.168.91.18
192.168.89.0/25 is subnetted, 2 subnets
  192.168.89.0 is directly connected, FastEthernet0/0.30
                                                                                 192.168.89.0/25 is subnetted, 2 subnets
                                                                                  192.168.89.0 [1/0] via 192.168.91.18
   192.168.89.128 is directly connected, FastEthernet0/0.20
                                                                                     192.168.89.128 [1/0] via 192.168.91.18
192.168.90.0/24 is variably subnetted, 5 subnets, 4 masks
                                                                                 192.168.90.0/24 is variably subnetted, 5 subnets, 4 masks
  192.168.90.0/25 [1/0] via 192.168.91.10
                                                                                  192.168.90.0/25 is directly connected, FastEthernet0/0.90
  192.168.90.128/26 [1/0] via 192.168.91.10 192.168.90.192/27 [1/0] via 192.168.91.10
                                                                                    192.168.90.128/26 is directly connected, FastEthernet0/0.70 192.168.90.192/27 is directly connected, FastEthernet0/0.80
   192.168.90.224/28 [1/0] via 192.168.91.14
                                                                                    192.168.90.224/28 [1/0] via 192.168.91.18
   192.168.90.240/28 is directly connected, FastEthernet0/0.40
                                                                                     192.168.90.240/28 [1/0] via 192.168.91.18
192.168.91.0/24 is variably subnetted, 3 subnets, 2 masks
                                                                                 192.168.91.0/24 is variably subnetted, 2 subnets, 2 masks
   192.168.91.0/29 [1/0] via 192.168.91.14
                                                                                     192.168.91.0/29 [1/0] via 192.168.91.18
   192.168.91.8/30 is directly connected, FastEthernet1/0
                                                                                     192.168.91.16/30 is directly connected, FastEthernet1/0
   192.168.91.12/30 is directly connected, FastEthernet4/0
```

Tabela de encaminha do Router-Cascais:

```
8.0.0.0/29 is subnetted, 1 subnets
8.8.8.8 [1/0] via 192.168.91.13
192.168.88.0/24 [1/0] via 192.168.91.13
192.168.88.0/25 is subnetted, 2 subnets
192.168.89.0/25 is subnetted, 2 subnets
192.168.89.0 [1/0] via 192.168.91.13
192.168.89.128 [1/0] via 192.168.91.13
192.168.90.0/24 is variably subnetted, 5 subnets, 4 masks
192.168.90.0/25 [1/0] via 192.168.91.13
S 192.168.90.128/26 [1/0] via 192.168.91.13
S 192.168.90.128/26 [1/0] via 192.168.91.13
C 192.168.90.224/28 is directly connected, FastEthernet0/0.60
192.168.90.240/28 [1/0] via 192.168.91.13
192.168.91.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.91.0/29 is directly connected, FastEthernet0/0.50
192.168.91.12/30 is directly connected, FastEthernet4/0
```

Importante: Nos prints anteriores, não estão feitas as agregações para as tabelas de encaminhamento de forma a ser percebido o raciocínio feito. Sendo assim, vamos indicar as agregações que foram feitas:

Para o Router-Cascais é possível agregar as entradas 192.168.89.0 /25 e 192.168.89.128 /25 ambas com nextHop = 192.168.91.13. Tendo os critérios cumpridos para sumarizar entradas em routing tables, no RT-Cascais, essas 2 entradas sumarizam-se numa da seguinte forma:

192.168.89.0 /24 nexthop=192.168.91.13

Para o Router-Porto é possível agregar as entradas 192.168.89.0 / 25 e 192.168.89.128 / 25 ambas com nextHop = 192.168.91.18 numa só entrada 192.168.89.0 / 24 com nextHop = 192.168.91.18.

Ainda para o Router-Porto é possível agregar 192.168.90.224 /28 e 192.168.90.240 /28 ambas com nextHop = 192.168.91.18 numa só entrada 192.168.90.224 /27 com nextHop = 192.168.91.18.

Por fim, fazendo um teste de conectividade entre um PC de uma rede de Lisboa com PCs de outras delegações:

Temos sucesso sendo o PC5 da delegação de cascais e o destino da delegação do Porto.

Fazendo um teste de conectividade com o WWW externo:

2.5. Configuração dos serviços DHCP e HTTP

Configuração dos diferentes Relay Agents:

RT-LX: RT-Cascais: RT-Porto:

```
interface FastEthernet0/0.10
encapsulation dot1Q 10
ip address 192.168.88.254 255.255.255.0
ip helper-address 192.168.90.241
! interface FastEthernet0/0.20
encapsulation dot1Q 20
ip address 192.168.89.254 255.255.255.128
ip helper-address 192.168.90.241
! interface FastEthernet0/0.30
encapsulation dot1Q 30
ip address 192.168.90.126 255.255.255.128
ip helper-address 192.168.90.241
! interface FastEthernet0/0.40
encapsulation dot1Q 40
encapsulation dot1Q 40
ip address 192.168.90.254 255.255.255.240
ip helper-address 192.168.90.254
```

```
!
interface FastEthernet0/0
no ip address
duplex auto
speed auto
!
interface FastEthernet0/0.50
encapsulation dot10 50
ip address 192.168.91.6 255.255.255.248
ip helper-address 192.168.90.241
!
interface FastEthernet0/0.60
ip address 192.168.90.238 255.255.255.240
ip helper-address 192.168.90.238
ip helper-address 192.168.90.241
!
interface FastEthernet1/0
```

·
interface FastEthernet0/0.70
encapsulation dot1Q 70
ip address 192.168.90.190 255.255.255.192
ip helper-address 192.168.90.241
!
interface FastEthernet0/0.80
encapsulation dot1Q 80
ip address 192.168.90.222 255.255.255.224
ip helper-address 192.168.90.241
!
interface FastEthernet0/0.90
encapsulation dot1Q 90
ip address 192.168.90.126 255.255.255.128
ip helper-address 192.168.90.241
!
interface FactFthornet1/0

Pool Name	Default Gateway	DNS Server	Start IP Address	Subnet Mask	Max User	TFTP Server	WLC Address
serverPool	192.168.90.254	0.0.0.0	192.168.90.240	255.255.255.240	15	0.0.0.0	0.0.0.0
WIFI-POR	192.168.90.126	0.0.0.0	192.168.90.1	255.255.255.128	124	0.0.0.0	0.0.0.0
DCOM-POR	192.168.90.222	0.0.0.0	192.168.90.193	255.255.255.224	28	0.0.0.0	0.0.0.0
DTEC-POR	192.168.90.190	0.0.0.0	192.168.90.129	255.255.255.192	60	0.0.0.0	0.0.0.0
WIFI-CAS	192.168.90.238	0.0.0.0	192.168.90.225	255.255.255.240	12	0.0.0.0	0.0.0.0
DCOM-CAS	192.168.91.6	0.0.0.0	192.168.91.1	255.255.255.248	5	0.0.0.0	0.0.0.0
SRV-LX	192.168.90.254	0.0.0.0	192.168.90.241	255.255.255.240	12	0.0.0.0	0.0.0.0
DCOM-LX	192.168.89.254	0.0.0.0	192.168.89.129	255.255.255.128	124	0.0.0.0	0.0.0.0
WIFI-LX	192.168.88.254	0.0.0.0	192.168.88.1	255.255.255.0	252	0.0.0.0	0.0.0.0
DTEC-LX	192.168.89.126	0.0.0.0	192.168.89.1	255.255.255.128	124	0.0.0.0	0.0.0.0

Tabela 8: Configuração de Pools no Servidor DHCP

Figura 29: Configuração IP do Server DHCP

Figura 30: Página HTML criada

Teste de atribuição dinâmica de endereços IP para o DTEC-LX:

Teste do serviço HTTP:

3. Testes funcionais na rede

3.1 Estrutura da trama 802.3 e 802.11 e estrutura do pacote IP

i) Os PCs A e B pertencem à mesma delegação e VLAN (do PC3 => PC2):

PDU Information at Device: PC2		PDU Information at Device: PC3			
OSI Model Inbound PDU Details Outbou	und PDU Details	OSI Model Inbound I	PDU Details		
PDU Formats		PDU Formats			
PREAMBLE: 10101010		Bytes			
VFR:4	6 20 24 Bits	0 4	DSCP:0x00	16: 1 : 20	0 24 Bits TL:128
VER.4 INL.5 DSCP.0X00	IL. 120			<u> </u>	
ID:0x0013	FLAGS:0 FRAG OFFSET:0x000 x0	ID:0x	001e	FLAGS:0 x0	FRAG OFFSET:0x000
TTL:128 PRO:0x01	CHKSUM	TTL:128 PRO:0x01		CHKSUM	
SRC IP:192.1	168.89.130	SRC IP:192.168.89.129			
DST IP:192.1	168.89.129	DST IP:192.168.89.130			
DATA (VARIABI	LE LENGTH)	DATA (VARIABLE LENGTH)			
TYPE:0x08 CODE:0x00	CHECKSUM SEQ NUMBER:17	TYPE:0x00	CODE:0x00		CHECKSUM
		ID:0x	0007		SEQ NUMBER:17
Variable Size PDU		Variable Size PDU	B		

Sendo que o destino já se encontra na tabela de expedição do SW3, não tem problema em enviar a mensagem ICMP. Caso não esteja, faz flooding e aprende... (já foi falado acima na parte 2.2.2).

ii) Os PCs A e B pertencem à mesma delegação e a VLANs diferentes (PC2=>PC0). Entrega a mensagem ICMP ao router, o qual vai mandar mensagens ARP pra descobrir qual o MAC dest do TargetIP (PC0). Isto foi explicado em detalhe no ponto 2.4.2.. Neste caso já conhecendo o MAC dos PCs após vários testes, já não precisa de enviar a mensagem ARP ao chegar ao Router.

iii) Os PCs A e B pertencem a delegações diferentes(PC2 => PC4).

Numa comunicação de um dispositivo wireless da rede de Lisboa(Laptop1) para um PC noutra delegação (PC4):

3.2 Protocolo ARP

Executaram-se testes recorrendo ao comando ping entre vários PCs vizinhos da rede com a tabela ARP inicialmente vazia, e é previsto que fiquem registados os IPs e os MACs dos PCs da mesma VLAN e o IP e MAC da Gateway. Escolhemos o PC2 para limpar a cache ARP, num ping PC2=>PC3.

ARP-request

ARP-reply

Para o caso do ARP Request, os Source MAC e Source IP pertencem ao PC origem, em contrapartida, o Target MAC encontra-se a zeros dado que, é desconhecido o MAC de destino.

Para o caso do ARP Reply, o Source MAC pertence à interface do Router, o Source IP pertence à Gateway do Router e o Target MAC e o Target IP pertencem ao PC que efetou o ARP Request.

No ARP-request são transportadas tramas Ethernet por Broadcast, dado que a tabela cache ARP está vazia / não tem o valor do MAC do PC dest. No ARP-reply são transportadas tramas Ethernet por unicast, pois PC destino tem informação suficiente na sua tabela ARP para encaminhar o reply somente para o PC origem.

3.3 Testes funcionais ma rede - Protocolo DHPC

Analisando o processo de libertação e aquisição de IP por DHCP no PC2:

O DHCP DISCOVER enviado pelo PC origem tem como intuito chegar a todos os servidores DHCP que estejam a escutar por isso o destino é Broadcast. Depois disto os vários servidores DHCP que receberam a mensagem (neste caso é apenas um) vão enviar um DHCP OFFER com o IP que pretendem atribuir aquele MAC que está a pedir configuração dinâmica:

O PC origem vai enviar agora um DHCP Request com a escolha do IP de uma das Offers que recebeu (neste caso so recebe uma offer), ao qual o servidor vai fazer a atribuição na sua tabela dinâmica:

Por fim o servidor DHCP manda um ACK para o PC origem.

Ao fazer ipconfig /release vai libertar a atribuição que fez dos endereços aquele MAC que pediu o release. PDU enviada pelo DHCP server:

O que foi concluido do uso do release e renew foi que na mesma rede o relay agent nunca é preenchido e em redes diferentes, o gateway vai servir de relay agent.