MAG120 - Cálculo Vetorial e Geometria Analítica

Pedro Schneider

2° Semestre de 2024

1 Cronograma e Notas

1.1 Critério de Aproveitamento

A média final MF é calculada pela fórmula:

$$m{MF} = 0.3 imes \frac{(m{AT1} + m{AT2})}{2} + 0.7 imes m{PF}$$

AT1, AT2 e AT3 - Atividades Avaliativas (avaliação continuada) com as datas préestabelecidas no cronograma.

OBS.: SERÃO REALIZADAS TRÊS ATIVIDADES, PORÉM SÓ SERÃO UTILIZADAS AS DUAS MAIORES NOTAS (A MENOR DELAS SERÁ DESCARTADA).

PF - Prova final contemplando todo conteúdo do semestre.

A nota da avaliação PF poderá ser substituída pela nota da avaliação PS, caso o aluno não alcance média final maior ou igual a 5,0.

1.2 Cronograma

Tabela 1: Cronograma semestral

Semanas	Datas	conograma semestral Conteúdo
Sem. 1	08/08 a 10/08	MATRIZES. OPERAÇÕES.
		MATRIZ TRANSPOSTA E MATRIZ INVERSA.
		FÓRMULA DE BINET
Sem. 2	12/08 a 16/08	SISTEMAS LINEARES
Sem. 3	19/08 a 24/08	SISTEMAS LINEARES
Sem. 4	26/08 a 31/08 ATP 1	SEGMENTOS ORIENTADOS.
		EQUIPOLÊNCIA VETORES.
		OPERAÇÕES COM VETORES.
Sem. 5	02/09 a 07/09	DEPENDÊNCIA LINEAR E BASES.
	Feriado 07/09	COORDENADAS DE UM VETOR
Sem. 6	09/09 a 14/09	MUDANÇA DE BASE.
		EQUAÇÕES DE MUDANÇA
Sem. 7	16/09 a 21/09	PRODUTOS ESCALAR
Sem. 8	23/09 a 28/09	PRODUTOS ESCALAR (continuação).
		VETOR PROJEÇÃO ORTOGONAL e
		COSSENOS DIRETORES
Sem. 9	30/09 a 04/10	PRODUTO VETORIAL E APLICAÇÕES.
	ATP 2	
Sem. 10	07/10 a 12/10	PRODUTO MISTO.
	Feriado 12/10	1102010 111010.
Sem. 11	14/10 a 19/10	SISTEMAS DE COORDENADAS.
		EQUAÇÕES DA RETA.
		Posições relativas entre duas retas.
Sem. 12	21/10 a 26/10	EQUAÇÕES DO PLANO.
	22 e 23 - INOVAÇÃO	VETOR NORMAL A UM PLANO.
Sem. 13	28/10 a 02/11	EQUAÇÕES DO PLANO.
	Feriado 02/11	VETOR NORMAL A UM PLANO.
Sem. 14	04/11 a 09/11	POSIÇÕES RELATIVAS ENTRE
	ATP 3	RETAS E PLANOS.
Sem. 15	11/11 a 16/11	PROBLEMAS CLÁSSICOS
		DE GEOMETRIA ESPACIAL.
Sem. 16	18/11 a 20/11	DISTÂNCIAS.
	21/11 a 30/11	PERÍODO PROVAS FINAIS
Sem. 17-19	$02/12 \ { m a} \ 07/12$	REVISÃO DE PROVAS
	09/12 a 14/12	PERÍODO PROVAS SUBSTITUTIVAS
	20/12	

2 Semana 1 - Matrizes

2.1 Fundamentos e tipos

2.1.1 O que são matrizes?

É uma tabela contendo $M\times N$ elementos, com $M,N\in\mathbb{N},$ dispostos em linhas e colunas. Ex.:

$$A = \begin{pmatrix} -2 & 1\\ -5 & 0\\ \sqrt{7} & 1/3 \end{pmatrix}$$

2.1.2 Como indicar matrizes?

Com letra latina maiúscula, $A = [a_{ij}]$, onde i indica a **linha** e j indica a **coluna** em que se encontra o elemento; sabendo que $1 \le i \le m$ e $1 \le j \le n$.

$$A = [a_{ij}]$$
 onde $1 \le i \le 2$ e $1 \le j \le 3 \rightarrow A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$

2.1.3 Matriz Quadrada

Quando m=n, ou seja, número de linhas é igual ao número de colunas.

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 5 & -2 \\ 1 & 7 & 1 \end{pmatrix}$$

2.1.4 Matriz Retangular

Quando $m \neq n$, ou seja, número de linhas é diferente do número de colunas.

$$A = \begin{pmatrix} 2 & -1 \\ -5 & 4 \\ 3 & 0 \end{pmatrix}$$
Ordem 3×2

2.1.5 Matriz Nula

Quando todos os elementos são nulos, ou seja, iguais a 0.

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

3

2.1.6 Matriz Identidade

Quando temos uma matriz quadrada onde os elementos da diagonal principal são unitários e os demais são nulos, ou seja, se $i = j \rightarrow a_{ij} = 1$ e se $i \neq j \rightarrow a_{ij} = 0$.

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

2.1.7 Matriz Diagonal

Quando temos uma matriz quadrada onde os elementos da diagonal principal são unitários e os demais são nulos, ou seja, se $i = j \rightarrow a_{ij} \neq 0$ e se $i \neq j \rightarrow a_{ij} = 0$.

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

2.1.8 Matriz Transposta

Dada a matriz $A = [a_{ij}]; 1 \le i \le m, 1 \le j \le n$, a matriz transposta é indicada por A^T , e é a matriz tal que $B = [b_{ij}]$, onde $b_{ij} = a_{ij}$.

$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & -3 & 4 \end{pmatrix} \implies A^{T} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -3 & 4 \end{pmatrix}$$

2.2 Operações com matrizes

2.2.1 Adição

Dadas duas matrizes de mesma ordem: $A = [a_{ij}]$ e $B = [b_{ij}]$, $1 \le i \le m$ e $1 \le j \le n$, a soma é a matriz: $A + B = (a_{ij} + b_{ij})$. Ex.:

$$\begin{pmatrix} 2 & -3 \\ 8 & 5 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 12 & 2 \end{pmatrix}$$

4

Propriedades da adição de matrizes

 $\forall A, B, C$, de mesma ordem, tem-se:

a) Comutatividade: A + B = B + A

b) Associatividade: A + (B + C) = (A + B) + C

c) Existência do elemento neutro: A + 0 = A

d) Existência do elemento oposto: A + (-A) = 0

2.2.2 Multiplicação por um número real

Dado um número real λ e uma matriz $A = [a_{ij}]$, de ordem $M \times N$: $\lambda A = \lambda [a_{ij}] = \lambda a_{ij}$

Ex.:

$$A = \begin{pmatrix} 2 & -3 \\ 8 & 5 \end{pmatrix}, 3A = \begin{pmatrix} 6 & -9 \\ 24 & 15 \end{pmatrix}$$

Propriedades da multiplicação de matrizes por um número real $\forall A, B$, de mesma ordem, $\forall \lambda, \mu \in \Re$ tem-se:

a)
$$(\lambda A)\mu = (\lambda \mu)A$$

b)
$$\lambda(A+B) = \lambda A + \lambda B$$

c)
$$(\lambda \mu)A = \lambda A + \mu A$$

d) Existência do elemento neutro: 1A = A

2.2.3 Multiplicação entre duas raízes

Dadas duas matrizes $A = [a_{ij}]$ e $B = [b_{jk}]$, $1 \le i \le m$, $1 \le j \le n$ e $1 \le k \le p$, o produto de A por B é uma matriz $C = [c_{ik}]$, de ordem $N \times P$, onde $c_{ik} = \sum_{1}^{n} a_{ij}b_{jk}$. O produto entre duas matrizes só é possível se o número de **colunas** da matriz A for **igual** ao número de **linhas** da matriz B.

Ex.:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & -1 \\ 5 & 4 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 5 & 1 \cdot (-1) + 2 \cdot 4 \\ 2 \cdot 3 + 1 \cdot 5 & 2 \cdot (-1) + 1 \cdot 4 \end{pmatrix} = \begin{pmatrix} 13 & 7 \\ 11 & 2 \end{pmatrix}$$

$$BA = \begin{pmatrix} 3 \cdot 1 + (-1) \cdot 2 & 3 \cdot 2 + (-1) \cdot 1 \\ 5 \cdot 1 + 4 \cdot 2 & 5 \cdot 2 + 4 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 13 & 14 \end{pmatrix}$$

Propriedades da multiplicação entre matrizes

a) O produto AB e BA não é comutativo, dependendo da ordem das matrizes esse produto pode nem existir, e caso exista, a ordem da matriz produto poderá ser diferente.

5

Ex.: $A_{3\times 2}B_{2\times 1}=C_{3\times 1}$ e $B_{2\times 1}A_{3\times 2}=\sharp$ (Não é possível realizar essa operação)

b) $(A + B) \cdot C = AC + BC$ é válida? Sim, desde que existam esses produtos.

2.2.4 Operações com matriz transposta

Propriedades da matriz transposta

a)
$$(A+B)^T = A^T + B^T$$

$$\mathbf{b)} \ (AB)^T = B^T A^T$$

$$\mathbf{c)} \ (A^T)^T = A$$

d)
$$(\lambda A)^T = \lambda A^T, \lambda \in \Re$$