Learning Theory

Generalizability and the Bias/Variance Trade-Off

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2014

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
- The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Empirical Risk Minimization (1)

- In supervised learning, we want to obtain a hypothesis $h \in \mathcal{H}: \mathcal{I} \to \mathcal{L}$ to make predictions
 - \mathcal{I} and \mathcal{L} are spaces of x and r respectively
- Assuming that h is parametrized by θ , we picked θ that minimizes $emp(\theta; \mathcal{X}) = \sum_{t=1}^{N} l(g(\boldsymbol{x}^{(t)}; \theta), r^{(t)})$
 - *l* is the loss function
- For simplicity, here we focus on the binary classifiers and the **0-1 loss** function $l(h(x^{(t)};\theta),r^{(t)})=1(h(x^{(t)};\theta)\neq r^{(t)})$, where $1(\cdot)$ is an indicator function
 - \bullet h is a perceptron
 - Theorems shown below for other h's can be obtained similarly

Empirical Risk Minimization (2)

- Give a function $g \in \mathcal{H}$, define formally its **empirical error/risk** over a training dataset \mathcal{X} as $R_{emp}[g] := \frac{1}{N} \sum_{t=1}^{N} l(g(\mathbf{x}^{(t)}), r^{(t)})$
 - R_{emp} is a functional of h
- h is obtained via **empirical risk minimization**, i.e., $h = \arg\inf_{g \in \mathcal{H}} R_{emp}[g]$

Generalization Error

 The prediction error made by h over the instances unseen during the training process is call the generalization error

$$R[h] := \int p(\mathbf{x}, r) l(h(\mathbf{x}), r) d(\mathbf{x}, r) = E_{\mathcal{I} \times \mathcal{L}} [l(h(\mathbf{x}), r)]$$

- Does a low $R_{emp}[h]$ always imply a low R[h]? No!
- Let

$$h(x) = \begin{cases} r^{(t)} & \text{if } x = x^{(t)} \text{ for some } t \\ 1 & \text{otherwise} \end{cases}$$

then we have $R_{emp}[h] = 0$ but high R[h]

ullet Actually, h does not lean anything from ${\mathfrak X}$

When Does Learning Work? (1)

- No free lunch theorem: learning is impossible if we allow $\mathcal H$ to contain all functions from $\mathfrak I$ to $\mathcal L$ 那麼一定有一個很複雜的function empirical error=0 但generalization error很大 ullet Since h could have arbitrary shape, its values at $oldsymbol{x}^{(t)}$'s carry no
 - information about the values at other points
- We need to assume *inductive bias* that restricts the "capacity of \mathcal{H} ," called model complexity
 - E.g., \mathcal{H} as a collection of hyperplanes, polynomials of degree k, or "smooth" functions, etc.

When Does Learning Work? (2)

- Let $h^* = \operatorname{arginf}_{g \in \mathcal{H}} R[g]$ hypothesis class 裡面最好的那一個
- We say that the empirical risk minimization works (or h is consistent) iff for all ϵ , $\lim_{N\to\infty} P(R[h]-R[h^*]>\epsilon\})=0$ 如果觀察了無限多的樣本那就一定可以做出最好的假設

Theorem

The the one-side uniform convergence

$$\lim_{N\to\infty} P(\sup_{g\in\mathcal{H}} \{R[g] - R_{emp}[g] > \epsilon\}) = 0$$

is a necessary and sufficient condition for h to be consistent.

- Here P is taken over \mathcal{X} , i.e., $P(\cdot) = \int_{\mathcal{X}} 1(\cdot)P(\mathcal{X})d\mathcal{X} = E_{\mathcal{X}}[1(\cdot)]$ where $1(\cdot)$ is an indicator function
- $R[h^*]$ and R[g] are constants; while R[h] and $R_{emp}[g]$ depends on $\mathfrak X$

Graphical Interpretation

- Consistency: R[h] approaches to $R[h^*]$ as N grows amounts to
- ullet (One-side) uniform convergence: the whole R_{emp} approaches to R as N grows

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Can Learn ≠ Learn Well

- Given a hypothesis class 氏, the above discusses whether it can learn from *infinite* examples 我們確保從無限大Dataset一定可以學到東西
- In practice, we have the number of examples is limited
 - Due to limited time, budget, etc.
- ullet Does not tell how well will ${\mathcal H}$ learn with \emph{finite} examples

但我們在意的是從有限大Dataset可以學得多好

Model Complexity and Bias/Variance Trade-Off

- Model complexity matters!
- Consider fitting polynomials of different degrees to examples
- A too simple a model causes
 underfitting
 - Large bias: the expected error made by a model across different training sets
 - h falls to capture the trend between $\mathcal I$ and $\mathcal L$
- A too complex a model causes
 overfitting
 - Large variance: the error made by the model due to the particularity of a training set
 - h captures not only the trend

VC Dimension

 Vapnik-Chervonenkis (VC) dimension is a measure of the capacity of a classification model

Definition (Vapnik-Chervonenkis Dimension)

We say that a hypothesis class $\mathcal H$ can **shatters** n points iff there exists a way to place the n points in the feature space such that for any of the 2^n possible labelings, we can find a hypothesis $g \in \mathcal H$ that separates the positive examples from negative. The maximum number of points $\mathcal H$ can shatter is called the **Vapnik-Chervonenkis** (**VC**) **dimension**, denoted by $VC(\mathcal H)$.

What's the VC dimension of the rectangles? 4

空間中有n個點,有一個Hypothesis class H 存在一種這n個點的排列方式,使得無論這n個點是什麼label(共有2ⁿ)種label方式, 在H中都可以找到一個g,使得g可以將這n個點依照它們的label分開 那麼H的VC dimension,記為VC(H)就至少是n

The Consistency Bound¹

Theorem.

Given $\mathcal H$ and $h \in \mathcal H$ obtained from empirical risk minimization. Then with probability at least $1-\delta$, we have that

$$R[h] \leqslant R[h^*] + 2\sqrt{\frac{32}{N}} \left(VC(\mathcal{H}) \log \frac{Ne}{VC(\mathcal{H})} + \log \frac{4}{\delta} \right)$$

$$= R[h^*] + O\left(\sqrt{\frac{VC(\mathcal{H})}{N}} \left(\log \frac{N}{VC(\mathcal{H})} \right) + \frac{1}{N} \log \frac{1}{\delta} \right).$$

- Bias: $R[h^*]$
- Variance: $O\left(\sqrt{\frac{VC(\mathcal{H})}{N}}\left(\log\frac{N}{VC(\mathcal{H})}\right) + \frac{1}{N}\log\frac{1}{\delta}\right)$
- Also tells how many samples N should be to learn properly

¹This is a *Probably Approximately Correct (PAC)* bound of the form $P(A \leqslant \epsilon) \geqslant 1 - \delta$ for some event A

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

The Union Bound

Lemma (Union Bound)

Let A_1, A_2, \dots, A_k be k different events (may not be independent with each other). Then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) \leqslant P(A_1) + P(A_2) + \cdots + P(A_k).$$

• $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$

Hoeffding's Inequality

Lemma (Hoeffding's Inequality)

Let Z_1, Z_2, \dots, Z_n be n i.i.d. random variables sampled from Z. Then for any real-valued function f with values $f(Z) \in [a,b]$ and $\epsilon > 0$,

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]\right|>\epsilon)\leqslant 2\exp(-\frac{2n\epsilon^{2}}{(b-a)^{2}}).$$

- For any function $g \in \mathcal{H}$ that is independent with the dataset \mathcal{X} , we have $P(|R_{emp}[g] R[g]| > \epsilon) \leqslant 2\exp(-2N\epsilon^2)$
 - $Z_t := 1(g(\mathbf{x}^{(t)}) \neq r^{(t)})$'s are i.i.d. and $f(Z) = Z \in [0, 1]$
- ullet Applicable to $h\in \mathcal{H}$ obtained by empirical risk minimization over \mathfrak{X} ?

Hoeffding's Inequality

Lemma (Hoeffding's Inequality)

Let Z_1, Z_2, \dots, Z_n be n i.i.d. random variables sampled from Z. Then for any real-valued function f with values $f(Z) \in [a,b]$ and $\epsilon > 0$,

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]\right|>\epsilon)\leqslant 2\exp(-\frac{2n\epsilon^{2}}{(b-a)^{2}}).$$

- For any function $g \in \mathcal{H}$ that is independent with the dataset \mathcal{X} , we have $P(|R_{emp}[g] R[g]| > \epsilon) \leqslant 2\exp(-2N\epsilon^2)$
 - $Z_t := 1(g(\mathbf{x}^{(t)}) \neq r^{(t)})$'s are i.i.d. and $f(Z) = Z \in [0, 1]$
- Applicable to $h \in \mathcal{H}$ obtained by empirical risk minimization over \mathfrak{X} ? **No!**

Limitations

- The Hoeffding's Inequality tells us that, for any *fixed* function that does not change with \mathcal{X} , $R_{emp}[g]$ approaches to R[g] as N grows to infinity
- h^* is fixed, but h is not
 - ullet As R_{emp} changes with ${\mathfrak X}$
- So, Hoeffding's Inequality does **not** imply $P(|R_{emp}[h] R[h]| > \epsilon) \le 2 \exp(-2N\epsilon^2)$
 - In particular, $\lim_{N\to\infty} P(R_{emp}[h] R[h] > \epsilon) \neq 0$

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
 - The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

From Consistency to Uniform Convergence (1)

• We want to prove

$$\lim_{N\to\infty} P(R[h] - R[h^*] > \epsilon\}) = 0,$$

iff

$$\lim_{N\to\infty} P(\sup_{g\in\mathcal{H}} \{R[g] - R_{emp}[g] > \epsilon\}) = 0$$

where $h^* = \operatorname{arginf}_{g \in \mathcal{H}} R[g]$

- ullet By definition, we have $R[h]-R[h^*]\geqslant 0$ and $R_{emp}[h^*]-R_{emp}[h]\geqslant 0$
- Therefore, $0 \leqslant R[h] R[h^*] + R_{emp}[h^*] R_{emp}[h]$

From Consistency to Uniform Convergence (2)

We have

$$\begin{array}{ll} 0 & \leqslant R[h] - R[h^*] + R_{emp}[h^*] - R_{emp}[h] \\ & = (R[h] - R_{emp}[h]) + (R_{emp}[h^*] - R[h^*]) \\ & \leqslant \sup_{g \in \mathcal{H}} (R[g] - R_{emp}[g]) + (R_{emp}[h^*] - R[h^*]) \end{array}$$

- By Hoeffding's Inequality, we know that $\lim_{N \to \infty} P(R_{emp}[h^*] R[h^*] > \epsilon) = 0$
 - ullet h^* is independent with $\mathfrak X$
- So, $\lim_{N\to\infty}P(R[h]-R[h^*]+R_{emp}[h^*]-R_{emp}[h]>\varepsilon)=0$ (and therefore $\lim_{N\to\infty}P(R[h]-R[h^*]>\varepsilon)=0$) iff $\lim_{N\to\infty}P(\sup_{g\in\mathcal{H}}(R[g]-R_{emp}[g])>\varepsilon)=0$

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Shattering Coefficient

- \bullet Recall that the VC dimension is a complexity measure of a hypothesis class ${\mathcal H}$ we assumed
 - ullet Independent with ${\mathfrak X}$; no need to know ${\mathfrak X}$ before making the assumption
- \bullet However, during our analysis we need other complexity measures that are dependent with $\mathcal X$
- ullet Given ${\mathfrak X}$ and ${\mathfrak H}$, define the **shattering** coefficient of ${\mathfrak H}$ as

$$\mathcal{N}(\mathcal{H}, \mathcal{X}) := |\{(g(\mathbf{x}^{(1)}), \dots, g(\mathbf{x}^{(N)})) \in \{0, 1\}^N : g \in \mathcal{H}\}|$$

• Measures the number of sequences $(g(\pmb{x}^{(1)}), \cdots, g(\pmb{x}^{(N)})$'s that the functions in $\mathcal H$ can give

Growth Function

• Define the growth function as

$$S(\mathcal{H}, n) := \sup_{(\boldsymbol{x}^{(1)}r^{(1)}), \dots, (\boldsymbol{x}^{(n)}, r^{(n)}) \in \mathcal{I} \times \mathcal{L}} \mathcal{N}(\mathcal{H}, (\boldsymbol{x}^{(1)}r^{(1)}), \dots, (\boldsymbol{x}^{(n)}, r^{(n)}))$$

- If \mathcal{H} shatters n points, then $\mathcal{S}(\mathcal{H},n)=2^n$
 - $VC(\mathcal{H})$ is the largest n such that $S(\mathcal{H},n)=2^n$

Sauer's Lemma

Theorem (Sauer's Lemma)

$$S(\mathcal{H}, n) \leqslant \sum_{k=0}^{VC(\mathcal{H})} \binom{n}{k}$$
.

Corollary

$$S(\mathcal{H}, n) \leqslant \left(\frac{ne}{VC(\mathcal{H})}\right)^{VC(\mathcal{H})}$$
 [Homework]

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

The Consistency Bound

Theorem

Given $\mathcal H$ and $h\in\mathcal H$ obtained from empirical risk minimization based on the 0-1 loss function. Then with probability at least $1-\delta$, we have that

$$\begin{split} R[h] &\leqslant R[h^*] + 2\sqrt{\frac{32}{N}\left(\log \mathcal{S}(\mathcal{H}, N) + \log \frac{8}{\delta}\right)} \\ &\leqslant R[h^*] + 2\sqrt{\frac{32}{N}\left(VC(\mathcal{H})\log \frac{Ne}{VC(\mathcal{H})} + \log \frac{4}{\delta}\right)} \end{split}$$

- Although looser, the VC-dimension version is more "user friendly"
- Note that if we have $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| \le \epsilon) \ge 1 \delta$, then, with probability at least 1δ ,

$$R[h] \leq R_{emp}[h] + \epsilon$$

$$\leq R_{emp}[h^*] + \epsilon$$

$$\leq R[h^*] + 2\epsilon$$

VC Theorem

Theorem

Given $\mathcal H$ and $h\in\mathcal H$ obtained from empirical risk minimization based on the 0-1 loss function. We have

$$P(\sup_{g\in\mathcal{H}}|R[g]-R_{emp}[g]|>\epsilon)<8S(\mathcal{H},N)\exp(-N\epsilon^2/32).$$

• Given a fixed δ , what is ϵ such that $P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| \le \epsilon) \ge 1 - \delta$?

VC Theorem

Theorem

Given $\mathcal H$ and $h\in\mathcal H$ obtained from empirical risk minimization based on the 0-1 loss function. We have

$$P(\sup_{g\in\mathcal{H}}|R[g]-R_{emp}[g]|>\epsilon)<8S(\mathcal{H},N)\exp(-N\epsilon^2/32).$$

- Given a fixed δ , what is ϵ such that $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| \leq \epsilon) \geqslant 1 \delta?$
 - The above amounts to $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| \le \epsilon) \ge 1 8\mathcal{S}(\mathcal{H}, N) \exp(-N\epsilon^2/32)$
 - $\epsilon = \sqrt{\frac{32}{N}} \left(\log \mathcal{S}(\mathcal{H}, N) + \log \frac{8}{\delta} \right)$, the consistency bound holds [Proof]

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

$P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases

- ullet If $|\mathcal{H}|$ is finite, we can easily obtain δ for a given ϵ
- Let $\mathcal{H}=\bigcup_{i=1}^{|\mathcal{H}|}g_i$ and A_i be the event that $|R[g_i]-R_{emp}[g_i]|>\epsilon$
- By the union bound and Hoeffding's Inequality, we have $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) = P(\exists g \in \mathcal{H}, |R[g] R_{emp}[g]| > \epsilon) = P(A_1 \cup \cdots \cup A_{|\mathcal{H}|}) \leqslant \sum_{i=1}^{|\mathcal{H}|} P(A_i) \leqslant \sum_{i=1}^{|\mathcal{H}|} 2 \exp(-2N\epsilon^2) = 2|\mathcal{H}| \exp(-2N\epsilon^2)$

$P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases

- ullet If $|\mathcal{H}|$ is finite, we can easily obtain δ for a given ϵ
- Let $\mathcal{H}=\bigcup_{i=1}^{|\mathcal{H}|}g_i$ and A_i be the event that $|R[g_i]-R_{emp}[g_i]|>\epsilon$
- By the union bound and Hoeffding's Inequality, we have $P(\sup_{g\in\mathcal{H}}|R[g]-R_{emp}[g]|>\varepsilon)=P(\exists g\in\mathcal{H},|R[g]-R_{emp}[g]|>\varepsilon)=P(A_1\cup\cdots\cup A_{|\mathcal{H}|})\leqslant \sum_{i=1}^{|\mathcal{H}|}P(A_i)\leqslant \sum_{i=1}^{|\mathcal{H}|}2\exp(-2N\varepsilon^2)=2|\mathcal{H}|\exp(-2N\varepsilon^2)$
- Unfortunately, $|\mathcal{H}|$ is infinite!
 - ullet Here ${\mathcal H}$ denotes the collection of binary functions
- But if we can partition $\mathcal H$ into finite groups $\mathcal H=\mathcal H_1\cup\cdots$ such that each $P(\sup_{g\in\mathcal H_i}|R[g]-R_{emp}[g]|>\varepsilon)$ can be bounded the same by Hoeffding's inequality, then we can still apply the union bound

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Step 1: Symmetrization by Ghost Samples (1)

Theorem (Ghost Sample Bound)

For $N\epsilon^2 \geqslant 2$, we have

$$P(\sup_{g\in\mathcal{H}}|R[g]-R_{emp}[g]|>\varepsilon)\leqslant 2P(\sup_{g\in\mathcal{H}}|R_{emp}[g]-R_{emp}^{'}[g]|>\varepsilon/2),$$

where $R_{emp}^{'}[g]$ is the empirical risk of g over another dataset consisting of N i.i.d. **ghost samples**.

We have

$$\begin{split} &P(\sup_{g \in \mathcal{H}} |R_{emp}[g] - R_{emp}^{'}[g]| > \frac{\epsilon}{2}) = P(\exists g, |R_{emp}[g] - R_{emp}^{'}[g]| > \frac{\epsilon}{2}) \\ &= P(\exists g, \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)}) - 1(g(\boldsymbol{x}^{(t)'}) \neq r^{(t)'})| > \frac{\epsilon}{2}) \\ &\leqslant P(\exists g, \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4} \\ &\quad \text{or } \exists g, \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)'})| > \frac{\epsilon}{4}) \\ &\leqslant 2P(\exists g, \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &= 2P(\sup_{g \in \mathcal{H}} \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \end{split}$$

Step 1: Symmetrization by Ghost Samples (2)

- So far, we have $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) \leqslant 4P(\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4})$
- Recall that, given \mathcal{H} , the sequence $(g(x^{(1)}), \cdots, g(x^{(N)}))$ can take at most $\mathcal{S}(\mathcal{H}, N)$ values
- The sequence $(1(g(x^{(1)}) \neq r^{(1)}), \cdots, 1(g(x^{(N)}) \neq r^{(N)}))$ can take at most $\mathcal{S}(\mathcal{H}, N)$ values
- Let $\mathcal{H}_{\mathcal{X}} \subseteq \mathcal{H}$ be the smallest subset of \mathcal{H} that gives rise of all the sequences $(1(g(\boldsymbol{x}^{(1)}) \neq r^{(1)}), \cdots, 1(g(\boldsymbol{x}^{(N)}) \neq r^{(N)}))$'s, we have $P(\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) = P(\max_{g \in \mathcal{H}_{\mathcal{X}}} \frac{1}{N} |\sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4})$
- Note that $|\mathcal{H}_{\mathcal{X}}| \leq \mathcal{S}(\mathcal{H}, N)$
- Since $\mathcal{H}_{\mathfrak{X}}$ is finite, we are ready to apply the union bound + Hoeffding's Inequality @

Step 2: Union Bound

$$\begin{split} &P(\sup_{g\in\mathcal{H}}\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &=P(\max_{g\in\mathcal{H}_{\mathcal{X}}}\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &=P(\bigcup_{g\in\mathcal{H}_{\mathcal{X}}}\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &\leqslant\sum_{g\in\mathcal{H}_{\mathcal{X}}}P(\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &\leqslant|\mathcal{H}_{\mathcal{X}}|\sup_{g\in\mathcal{H}_{\mathcal{X}}}P(\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &\leqslant\mathcal{S}(\mathcal{H},N)\sup_{g\in\mathcal{H}_{\mathcal{X}}}P(\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\\ &\leqslant\mathcal{S}(\mathcal{H},N)\sup_{g\in\mathcal{H}}P(\frac{1}{N}|\sum_{t=1}^{N}1(g(\boldsymbol{x}^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4}) \end{split}$$

- We "pull" the supremum outside the probability
- Then, how to apply the Hoeffding's Inequality?

Step 2: Union Bound

$$\begin{split} &P(\sup_{g \in \mathcal{H}} \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &= P(\max_{g \in \mathcal{H}_{\mathcal{X}}} \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &= P(\bigcup_{g \in \mathcal{H}_{\mathcal{X}}} \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &\leq \sum_{g \in \mathcal{H}_{\mathcal{X}}} P(\frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &\leq |\mathcal{H}_{\mathcal{X}}| \sup_{g \in \mathcal{H}_{\mathcal{X}}} P(\frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &\leq \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}_{\mathcal{X}}} P(\frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \\ &\leq \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} P(\frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \end{split}$$

- We "pull" the supremum outside the probability
- Then, how to apply the Hoeffding's Inequality? No you can't ©
 - $E[1(g(\mathbf{x}) \neq r)]$ does not have zero mean satisfying $P(|\frac{1}{N}\sum_{t=1}^{N}1(g(\mathbf{x}^{(t)}) \neq r^{(t)}) \mathbf{0}| > \frac{\epsilon}{4}) \leqslant 2\exp(-\frac{2N(\epsilon/4)^2}{(1-0)^2}) = 2\exp(-\frac{N\epsilon^2}{8})$

Step 1 Revisited

• Ghost sample bound:

$$\begin{split} & P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| > \epsilon) \\ & \leq 2P(\sup_{g \in \mathcal{H}} |R_{emp}[g] - R'_{emp}[g]| > \epsilon/2) \\ &= 2P(\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)}) - 1(g(\boldsymbol{x}^{(t)'}) \neq r^{(t)'})| > \epsilon/2) \end{split}$$

- $1(g(\pmb{x}^{(t)})
 eq r^{(t)})$ and $1(g(\pmb{x}^{(t)})
 eq r^{(t)})$ have the same distribution
- $1(g(\pmb{x}^{(t)}) \neq r^{(t)}) 1(g(\pmb{x}^{(t)'}) \neq r^{(t)'})$ has zero mean and a symmetric distribution
- So, the probability won't change if we change the sign of each $1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)}) 1(g(\boldsymbol{x}^{(t)'}) \neq r^{(t)'})$

Step 1b: Symmetrization by Random Signs

- Let $\sigma^{(1)}, \dots, \sigma^{(N)}$ be N i.i.d. random variables, independent with \mathfrak{X} and \mathfrak{X}' , such that $P(\sigma^{(t)}=1)=P(\sigma^{(t)}=-1)=1/2$
 - These are called Rademacher random variables
- Step 1 [Proof]:

$$\begin{split} &P(\sup_{g \in \mathcal{H}} |R_{emp}[g] - R_{emp}'[g]| > \frac{\epsilon}{2}) = P(\exists g, |R_{emp}[g] - R_{emp}'[g]| > \frac{\epsilon}{2}) \\ &= P(\exists g, \frac{1}{N} | \sum_{t=1}^{N} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)}) - 1(g(\boldsymbol{x}^{(t)'}) \neq r^{(t)'})| > \frac{\epsilon}{2}) \\ &= P(\exists g, \frac{1}{N} | \sum_{t=1}^{N} \boldsymbol{\sigma}^{(t)} \{ 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)}) - 1(g(\boldsymbol{x}^{(t)'}) \neq r^{(t)'}) \}| > \frac{\epsilon}{2}) \\ &\vdots \\ &\leq 2P(\sup_{g \in \mathcal{H}} \frac{1}{N} | \sum_{t=1}^{N} \boldsymbol{\sigma}^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \end{split}$$

• Step 2 [Proof]:

$$P(\sup_{g \in \mathcal{H}} \frac{1}{N} | \sum_{t=1}^{N} \mathbf{\sigma}^{(t)} 1(g(\mathbf{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4})$$

$$\vdots$$

$$\leq \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} P(\frac{1}{N} | \sum_{t=1}^{N} \mathbf{\sigma}^{(t)} 1(g(\mathbf{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4})$$

Step 3: Hoeffding's Inequality (1)

- $$\begin{split} \bullet \text{ So far, we have } P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) \leqslant \\ 4 \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} P(\frac{1}{N} |\sum_{t=1}^{N} \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) \end{split}$$
- Note that in $P(\frac{1}{N}|\sum_{t=1}^N \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4})$ both \mathcal{X} and $\sigma^{(t)}$'s are random variables
- Conditioning on $\mathfrak X$ (i.e., treating $(\boldsymbol x^{(t)}, r^{(t)})$'s as constants), we can apply Hoeffding's inequality: $P(\frac{1}{N}|\sum_{t=1}^N\sigma^{(t)}1(g(\boldsymbol x^{(t)})\neq r^{(t)})|>\frac{\epsilon}{4})\leqslant 2\exp(-\frac{2N(\epsilon/4)^2}{(1-(-1))^2})=2\exp(-\frac{N\epsilon^2}{32})$
 - $\sigma^{(t)}1(g(\pmb{x}^{(t)}) \neq r^{(t)})$'s are i.i.d. and have zero mean

Step 3: Hoeffding's Inequality (2)

We have the conditioned version of step 2 and step 3:

$$\begin{split} &P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| > \epsilon) \\ &= \int_{\mathcal{X}, \sigma} 1(\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) p(\mathcal{X}, \sigma) d(\mathcal{X}, \sigma) \\ &= \int_{\mathcal{X}, \sigma} 1(\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) P(\sigma|\mathcal{X}) p(\mathcal{X}) d(\mathcal{X}, \sigma) \\ &= \int_{\mathcal{X}} P_{\sigma|\mathcal{X}} (\sup_{g \in \mathcal{H}} \frac{1}{N} |\sum_{t=1}^{N} \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) p(\mathcal{X}) d\mathcal{X} \\ &= \int_{\mathcal{X}} \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} P_{\sigma|\mathcal{X}} (\frac{1}{N} |\sum_{t=1}^{N} \sigma^{(t)} 1(g(\boldsymbol{x}^{(t)}) \neq r^{(t)})| > \frac{\epsilon}{4}) p(\mathcal{X}) d\mathcal{X} \\ &\text{(see old step 2)} \\ &\leqslant \int_{\mathcal{X}} \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} 2 \exp(-\frac{N\epsilon^2}{32}) p(\mathcal{X}) d\mathcal{X} \\ &= \mathcal{S}(\mathcal{H}, N) \sup_{g \in \mathcal{H}} 2 \exp(-\frac{N\epsilon^2}{32}) = 2 \mathcal{S}(\mathcal{H}, N) \exp(-\frac{N\epsilon^2}{32}) \end{split}$$

• Finally, $P(\sup_{g \in \mathcal{H}} |R[g] - R_{emp}[g]| > \epsilon) \le 8S(\mathcal{H}, N) \exp(-N\epsilon^2/32)$

Remark

- ullet To learn something, we have to make hypothesis ${\cal H}$
- ullet To learn well in the presence of finite examples, we need to pick ${\mathcal H}$ with right complexity to prevent both underfitting and overfitting
 - Note that the consistency bound (and the bias/variance trade-off) holds for **any** distribution of f(Z)
 - There are similar bounds for classifiers/regressors other than perceptron

Outline

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Generalization Error Revisited (1)

- Assuming a hypothesis class \mathcal{H} , let $h \in \mathcal{H}$ be the hypothesis trained from the dataset $\mathcal{X} = \{(\boldsymbol{x}^{(t)}, r^{(t)})\}_{t=1}^N$ by minimizing the empirical error: $R_{emp}[h] := \frac{1}{N} \sum_{t=1}^N l(h(\boldsymbol{x}^{(t)}), r^{(t)})$
 - *l* is the loss function
- Generalization error of h: $R[h] := \int p(\mathbf{x}, r) l(h(\mathbf{x}), r) d(\mathbf{x}, r) = E_{\Im \times \mathcal{L}}[l(h(\mathbf{x}), r)]$
- Let $h^* := \operatorname{arginf}_{g \in \mathcal{H}} R[g]$
- The consistency bound

$$R[h] \leqslant R[h^*] + O\left(\sqrt{\frac{VC(\mathcal{H})}{N}} \left(\log \frac{N}{VC(\mathcal{H})}\right) + \frac{1}{N} \log \frac{1}{\delta}\right)$$

tells us that as long as $VC(\mathcal{H})$ is finite, we have $R[h] \to R[h^*]$ as $N \to \infty$

Generalization Error Revisited (2)

- Let $R^* := \inf_{f: \mathcal{I} \to \mathcal{L}} R[f]$, the "true" function that generates \mathcal{X}
- ullet Consistency $R[h] o R[h^*]$ is **not** our ultimate goal
- Instead, our ultimate goal is to have $R[h] o R^*!$
- $R[h] R^* = (R[h^*] R^*) + (R[h] R[h^*])$
 - $R[h^*] R^*$ is called the **approximation error**
 - $R[h] R[h^*]$ is called the **estimation error**

Components of Generalization Error

- Approximation error $(R[h^*] R^*)$:
 - Measures how well the "true" function can be approximated by the best function in our hypothesis class \mathcal{H}
 - Corresponds to the bias from the statistics point of view
- Estimation error $(R[h] R[h^*])$:
 - Measures how accurately we can determine the best function implementable by our learning system using a finite training set instead of the unseen testing examples
 - Corresponds to the *variance* from the statistics point of view

Optimization error

- Error introduced when solving the objective (e.g., using numeric methods)
- Measures how precisely we can compute the function, given limited resources such as CPU and/or memory

Trade-Offs

- ullet Too simple a model ${\mathcal H}$ causes large approximation error and underfitting
 - ullet h falls to capture the trend between ${\mathfrak I}$ and ${\mathcal L}$
- ullet Too complex a model ${\mathcal H}$ causes large estimation error and overfitting
 - h captures not only the trend but some spurious patterns (e.g., noise) local to a particular $\mathcal X$
- The right complexity can be determined using model selection techniques, to be discussed later
- Estimation error is also determined by #training examples
- Optimization error can be reduced at the cost of computation time (e.g, more iterations)

Small-Scale vs. Large-Scale Learning

- In practice, we have budget for a given problem
 - Number of examples, computation time, memory, etc.
- Small-scale learning problems:
 - Constrained by #training examples
 - Generalization error dominated by the approximation and estimation errors
 - Optimization error insignificant since the computation time not limited
- Large-scale learning problems:
 - Constrained by computation time
 - Besides adjusting the approximation capacity of the family of function, one can also adjust #training examples
 - Example sampling or approximate optimization (e.g. early-termination)?

Small-Scale vs. Large-Scale Learning

- In practice, we have budget for a given problem
 - Number of examples, computation time, memory, etc.
- Small-scale learning problems:
 - Constrained by #training examples
 - Generalization error dominated by the approximation and estimation errors
 - Optimization error insignificant since the computation time not limited
- Large-scale learning problems:
 - Constrained by computation time
 - Besides adjusting the approximation capacity of the family of function, one can also adjust #training examples
 - Example sampling or approximate optimization (e.g. early-termination)? Always try the latter first because optimization error usually decreases exponentially (or at least faster) with time

Outline

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Outline

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- 3 When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Hoeffding's Inequality

Lemma (Hoeffding's Inequality)

Let Z_1, Z_2, \dots, Z_n be n i.i.d. random variables sampled from Z. Then for any real-valued function f with values $f(Z) \in [a,b]$ and $\epsilon > 0$,

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]\right|>\epsilon)\leqslant 2\exp(-\frac{2n\epsilon^{2}}{(b-a)^{2}}).$$

We show that

$$P(\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]>\epsilon)\leqslant \exp(-\frac{2n\epsilon^{2}}{(b-a)^{2}}),$$

which implies
$$P(\left|\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]\right|>\varepsilon)=P(\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]>\varepsilon)+P(-\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})+E[f(Z)]>\varepsilon)=P(\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]>\varepsilon)+P(\frac{1}{n}\sum_{i=1}^{n}-f(Z_{i})-E[-f(Z)]>\varepsilon)\leqslant 2\exp(-\frac{2n\varepsilon^{2}}{(b-a)^{2}})+2\exp(-\frac{2n\varepsilon^{2}}{(-a+b)^{2}})=2\exp(-\frac{2n\varepsilon^{2}}{(b-a)^{2}})$$

Proof (1)

- $P(\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]>\varepsilon)=P(\sum_{i=1}^{n}f(Z_{i})-nE[f(Z)]>n\varepsilon)=E_{Z}[1(\sum_{i=1}^{n}f(Z_{i})-nE[f(Z)]>n\varepsilon)]$
- Note that for any positive real number η , we have $E_Z[1(\sum_{i=1}^n f(Z_i) nE[f(Z)] n\epsilon > 0)] \leqslant E_Z[\exp(\eta(\sum_{i=1}^n f(Z_i) nE[f(Z)] n\epsilon))] = e^{-\eta n\epsilon} \prod_{i=1}^n E[\exp(\eta(f(Z_i) E[f(Z)]))]$

Proof (2)

Lemma

Given a random variable Z and a real-valued function f with values $f(Z) \in [a,b]$, for any real number η , we have

$$E[e^{\eta f(Z)}] \leqslant \frac{b - E[f(Z)]}{b - a} e^{\eta a} + \frac{E[f(Z)] - a}{b - a} e^{\eta b}.$$

Proof.

[Homework]

Proof (3)

- From above we have $E[\exp(\eta(f(Z_i) E[f(Z)]))] = e^{-\eta E[f(Z)]} E[\exp(\eta f(Z_i))] \leqslant e^{-\eta E[f(Z)]} \left(\frac{b E[f(Z_i)]}{b a} e^{\eta a} + \frac{E[f(Z_i)] a}{b a} e^{\eta b} \right) = e^{-\eta (E[f(Z)] a)} \left(1 \frac{E[f(Z_i)] a}{b a} + \frac{E[f(Z_i)] a}{b a} e^{\eta (b a)} \right) = \exp(-\eta (b a) p_i) \cdot \exp\log(1 p_i + p_i e^{\eta (b a)}) = \exp(-\kappa p_i + \log(1 p_i + p_i e^{\kappa}))$
- Let $L(\kappa)=-\kappa p_i+\log(1-p_i+p_ie^\kappa)$. By Taylor's theorem, we can expend it at 0 and get $L(\kappa)=L(0)+L'(0)\kappa+\frac{1}{2}L''(\zeta)\kappa^2$, where $\zeta\in(0,\kappa)$, $L'(\kappa)=-p_i+\frac{p_ie^\kappa}{1-p_i+p_ie^\kappa}=-p_i+\frac{p_i}{(1-p_i)e^{-\kappa}+p_i}$, and $L''(\kappa)=\frac{p_i(1-p_i)e^{-\kappa}}{((1-p_i)e^{-\kappa}+p_i)^2}$ [Proof]
- By inequality of arithmetic and geometric means, we have

$$L''(\kappa) = \frac{p_i(1-p_i)e^{-\kappa}}{((1-p_i)e^{-\kappa}+p_i)^2} = \frac{\left(\sqrt{p_i(1-p_i)e^{-\kappa}}\right)^2}{((1-p_i)e^{-\kappa}+p_i)^2} \leqslant \frac{\left(\frac{p_i+(1-p_i)e^{-\kappa}}{2}\right)^2}{((1-p_i)e^{-\kappa}+p_i)^2} = \frac{1}{4},$$
 implying $L(\kappa) \leqslant L(0) + L'(0)\kappa + \frac{1}{8}\kappa^2 = \frac{1}{8}\eta^2(b-a)^2$

• So $E[\exp(\eta(f(Z_i) - E[f(Z)]))] \le e^{L(\kappa)} \le e^{\frac{1}{8}\eta^2(b-a)^2}$

Proof (4)

Now we have

$$\begin{array}{l} P(\frac{1}{n}\sum_{i=1}^n f(Z_i) - E[f(Z)] > \epsilon) \leqslant e^{-\eta n\epsilon} \prod_{i=1}^n E[\exp(\eta(f(Z_i) - E[f(Z)]))] \leqslant e^{-\eta n\epsilon} \prod_{i=1}^n e^{\frac{1}{8}\eta(b-a)^2} = \exp(\frac{n}{8}(b-a)^2\eta^2 - n\epsilon\eta) \end{array}$$

- Note that $P(\frac{1}{n}\sum_{i=1}^n f(Z_i) E[f(Z)] > \epsilon) \leqslant \exp(\frac{n}{8}(b-a)^2\eta n\epsilon\eta)$ holds for all $\eta > 0$, so we can simply find the best η that gives the tightest bound
- How?

Proof (4)

Now we have

$$\begin{split} &P(\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-E[f(Z)]>\varepsilon)\leqslant e^{-\eta n\varepsilon}\prod_{i=1}^{n}E[\exp(\eta(f(Z_{i})-E[f(Z)]))]\leqslant e^{-\eta n\varepsilon}\prod_{i=1}^{n}e^{\frac{1}{8}\eta(b-a)^{2}}=\exp(\frac{n}{8}(b-a)^{2}\eta^{2}-n\varepsilon\eta) \end{split}$$

- Note that $P(\frac{1}{n}\sum_{i=1}^n f(Z_i) E[f(Z)] > \epsilon) \leqslant \exp(\frac{n}{8}(b-a)^2\eta n\epsilon\eta)$ holds for all $\eta > 0$, so we can simply find the best η that gives the tightest bound
- How? $\frac{d(\frac{n}{8}(b-a)^2\eta^2-n\varepsilon\eta)}{d\eta}=0\Rightarrow \eta=\frac{4\varepsilon}{(b-a)^2}>0$, at which the bound $P(\frac{1}{n}\sum_{i=1}^n f(Z_i)-E[f(Z)]>\varepsilon)\leqslant \exp(-\frac{2n\varepsilon^2}{(b-a)^2})$ is the tightest

Outline

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- Preliminaries
- When Does Learning Work?
- 4 The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Sauer's Lemma

Theorem (Sauer's Lemma)

$$S(\mathcal{H},n)\leqslant \sum_{k=0}^{VC(\mathcal{H})} \left(egin{array}{c} n \\ k \end{array}
ight)$$
 for all \mathcal{H} and n .

- ullet The proof proceeds by induction on both $VC(\mathcal{H})$ and n
- Base case 1: n = 0 and $VC(\mathcal{H})$ is arbitrary
 - When n = 0, there can only be one subset, hence

$$S(\mathcal{H},n) = 1 = 1 + 0 + 0 + \dots = \sum_{k=0}^{VC(\mathcal{H})} \begin{pmatrix} 0 \\ k \end{pmatrix}$$

- Base case 2: $VC(\mathcal{H}) = 0$ and n is arbitrary
 - When $VC(\mathcal{H})=0$, no set of points can be shattered, hence all points can be labeled only one way, implying that $\mathcal{S}(\mathcal{H},n)=1=\sum_{k=0}^{0}\binom{n}{k}$

Proof (1)

- Assume for induction that for all \mathcal{H}' and m such that $VC(\mathcal{H}') \leqslant VC(\mathcal{H})$ and $m \leqslant n$, and at least one of these inequalities is strict, we have $\mathcal{S}(\mathcal{H}',m) \leqslant \sum_{k=0}^{VC(\mathcal{H}')} \binom{m}{k}$
- Now suppose we have a data set $\mathcal{X} = \{x_1, x_2, \cdots, x_m\}$. Let \mathcal{G} be a hypothesis class defined over \mathcal{X} such that $\{(g(\boldsymbol{x}^{(1)}), \cdots, g(\boldsymbol{x}^{(m)})) \in \{0, 1\}^m : g \in \mathcal{G}\} = \{(h(\boldsymbol{x}^{(1)}), \cdots, h(\boldsymbol{x}^{(m)})) : h \in \mathcal{H}\}$ and $|\mathcal{G}| = \mathcal{N}(\mathcal{H}, \mathcal{X})$
- We have $VC(\mathfrak{G}) \leqslant VC(\mathfrak{H})$ since any subset of \mathfrak{X} that is shattered by \mathfrak{G} is also shattered by \mathfrak{H}

Proof (2)

- We now construct \mathcal{G}_1 and \mathcal{G}_2 as follows on which we can apply our induction hypothesis:
 - For each possible labeling of $\{x_1, x_2, \cdots, x_{m-1}\}$ induced by \mathcal{G} , we add a representative function from \mathcal{G} to \mathcal{G}_1
 - Let $\mathcal{G}_2 = \mathcal{G} \setminus \mathcal{G}_1$
- So for each $g \in \mathcal{G}_2$, there exists $\tilde{g} \in \mathcal{G}_1$ such that $g(x_i) = \tilde{g}(x_i)$ for $i \in \{1, \dots, m-1\}$ and $g(x_m) \neq \tilde{g}(x_m)$
 - For convenience, let's choose the representatives such that $g(x_m)$ remains the same for all $g \in \mathcal{G}_2$
 - We have $\mathcal{N}(\mathcal{G}_1, \mathcal{X}) = \mathcal{N}(\mathcal{G}_1, \mathcal{X} \setminus \{x_m\})$ and $\mathcal{N}(\mathcal{G}_2, \mathcal{X}) = \mathcal{N}(\mathcal{G}_2, \mathcal{X} \setminus \{x_m\})$
- By construction we have $\mathcal{N}(\mathcal{H}, \mathcal{X}) = \mathcal{N}(\mathcal{G}, \mathcal{X}) = \mathcal{N}(\mathcal{G}_1, \mathcal{X}) + \mathcal{N}(\mathcal{G}_2, \mathcal{X}) = \mathcal{N}(\mathcal{G}_1, \mathcal{X} \setminus \{x_m\}) + \mathcal{N}(\mathcal{G}_2, \mathcal{X} \setminus \{x_m\})$

Proof (3)

- Since $\mathfrak{G}_1 \subseteq \mathfrak{G}$, we have $VC(\mathfrak{G}_1) \leqslant VC(\mathfrak{G}) \leqslant VC(\mathfrak{H})$
- By induction, we obtain $\mathcal{N}(\mathcal{G}_1, \mathcal{X}\setminus\{\pmb{x}_m\}) \leqslant \sum_{k=0}^{VC(\mathcal{H})} \binom{m-1}{k}$

Proof (4)

- ullet Note that if a dataset ${\mathcal Y}$ is shattered by ${\mathcal G}_2$ then
 - $x_m \notin \mathcal{Y}$, since for all $g \in \mathcal{G}_2$, $g(x_m)$ remains the same
 - In addition, $\mathcal{Y} \cup \{x_m\}$ is shattered by \mathcal{G} because each $g \in \mathcal{G}_2$ has a twin $\tilde{g} \in \mathcal{G}_1$ that is identical except on x_m
- So, $VC(\mathcal{G}_2) \leqslant VC(\mathcal{G}) 1 \leqslant VC(\mathcal{H}) 1$ and by induction we have $\mathcal{N}(\mathcal{G}_2, \mathcal{X} \setminus \{x_m\}) \leqslant \sum_{k=0}^{VC(\mathcal{H})-1} \binom{m-1}{k}$

Proof (5)

• Combining the above we have

$$\mathcal{N}(\mathcal{H}, \mathcal{X}) = \mathcal{N}(\mathcal{G}, \mathcal{X}) = \mathcal{N}(\mathcal{G}_{1}, \mathcal{X}) + \mathcal{N}(\mathcal{G}_{2}, \mathcal{X}) = \mathcal{N}(\mathcal{G}_{1}, \mathcal{X} \setminus \{x_{m}\}) + \\ \mathcal{N}(\mathcal{G}_{2}, \mathcal{X} \setminus \{x_{m}\}) \leqslant \sum_{k=0}^{VC(\mathcal{H})} \binom{m-1}{k} + \sum_{k=0}^{VC(\mathcal{H})-1} \binom{m-1}{k} = \\ \binom{m}{0} + \sum_{k=1}^{VC(\mathcal{H})} \binom{m-1}{k} + \sum_{k=1}^{VC(\mathcal{H})} \binom{m-1}{k-1} = \sum_{k=0}^{VC(\mathcal{H})} \binom{m}{k}$$

Outline

- Why Learning Theory?
 - When Does Learning Work?
 - How Well Could We Learn?
- 2 Preliminaries
- When Does Learning Work?
- The Consistency Bound
 - Complexity Measure Revised
 - From Consistency Bound to VC Theorem
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Finite Cases
 - $P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \epsilon) < \delta$ for Infinite Cases
- Generalization Error
- 6 Proofs*
 - Proof of Hoeffding's Inequality
 - Proof of Sauer's Lemma
 - Proof of Ghost Sample Bound

Ghost Sample Bound

Theorem (Ghost Sample Bound)

For $N\epsilon^2 \geqslant 2$, we have

$$P(\sup_{g\in\mathcal{H}}|R[g]-R_{emp}[g]|>\varepsilon)\leqslant 2P(\sup_{g\in\mathcal{H}}|R_{emp}[g]-R_{emp}^{'}[g]|>\varepsilon/2),$$

where $R_{emp}^{'}[g]$ is the empirical risk of g over another dataset consisting of N i.i.d. **ghost samples**.

• Before going into the proof, read Appendix on Probability for Chebyshev's Inequality: $P(|X - \mu_X| \ge t) \le \frac{\sigma_X^2}{t^2}$ for any t > 0

Proof (1)

- ullet Denote \mathfrak{X}' the ghost sample set
- $\begin{array}{l} \bullet \text{ For simplicity, we assume that } \sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| \text{ is attained at } \\ g^*, \text{ i.e., } P(\sup_{g \in \mathcal{H}} |R[g] R_{emp}[g]| > \varepsilon) = P(|R[g^*] R_{emp}[g^*]| > \varepsilon) \end{array}$
- At r.h.s., $P(\sup_{g \in \mathcal{H}} |R_{emp}[g] R'_{emp}[g]| > \epsilon/2)$ $\geqslant P(|R_{emp}[g^*] - R'_{emp}[g^*]| > \epsilon/2)$ $= \int_{\mathcal{X}, \mathcal{X}'} 1(|R_{emp}[g^*] - R'_{emp}[g^*]| > \epsilon/2)p(\mathcal{X}'|\mathcal{X})p(\mathcal{X})d\mathcal{X}'d\mathcal{X}$ \geqslant $\int_{\mathcal{X}, \mathcal{X}'} 1(|R[g^*] - R_{emp}[g^*]| > \epsilon \wedge |R[g^*] - R'_{emp}[g^*]| < \epsilon/2)p(\mathcal{X}'|\mathcal{X})p(\mathcal{X})d\mathcal{X}'d\mathcal{X}$ $= \int_{\mathcal{X}} 1(|R[g^*] - R_{emp}[g^*]| > \epsilon) \int_{\mathcal{X}'} 1(|R[g^*] - R'_{emp}[g^*]| < \epsilon/2)p(\mathcal{X}'|\mathcal{X})d\mathcal{X}'p(\mathcal{X})d\mathcal{X}$ $= \int_{\mathcal{X}} 1(|R[g^*] - R_{emp}[g^*]| > \epsilon)P_{\mathcal{X}'|\mathcal{X}}(|R[g^*] - R'_{emp}[g^*]| < \epsilon/2)p(\mathcal{X})d\mathcal{X}$ $= \int_{\mathcal{X}} 1(|R[g^*] - R_{emp}[g^*]| > \epsilon)P_{\mathcal{X}'|\mathcal{X}}(|R[g^*] - R'_{emp}[g^*]| < \epsilon/2)p(\mathcal{X})d\mathcal{X}$ $= \int_{\mathcal{X}} 1(|R[g^*] - R_{emp}[g^*]| > \epsilon)P_{\mathcal{X}'}(|R[g^*] - R'_{emp}[g^*]| < \epsilon/2)p(\mathcal{X})d\mathcal{X}$

Proof (2)

• By Chebyshev's Inequality, we have

$$P_{\chi'}(|R[g^*]-R_{emp}^{'}[g^*]|\geqslant \epsilon/2)\leqslant \frac{4 Var_{\chi'}[R_{emp}^{'}[g^*]]}{\epsilon^2}=\frac{4 Var_{\chi'}[1(g^*(\mathbf{x})\neq r)]}{N\epsilon^2}\leqslant \frac{1}{N\epsilon^2}$$

- Note that $Var[1(g^*(x) \neq r)] \leqslant \frac{1}{4}$ [Homework]
- This amounts to $P_{\chi'}(|R[g^*]-R_{emp}'[g^*]|<\epsilon/2)\geqslant 1-\frac{1}{N\epsilon^2}$