

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี √へ) การสอบผสางภาคเรียนที่ 2 ปีการศึกษา 2557

วิชา MEE 221 Thermodynamics สอบวันจันทร์ที่ 11 พฤษภาคม พ.ศ.2558 นศ.วิศวกรรมเครื่องกล ชั้นปีที่ 2 เวลา 13.00 – 16.00 น.

คำเตือน

- 1. ข้อสอบทั้งหมดมี 5 ข้อ 23 ผน้า (รถมใบปเหน้า)
- 2. อนุญาตให้นำเครื่องคำนวณตามที่มหาวิทยาลัยฯ กำหนด เข้าห้องสอบได้
- 3. ไม่อนุญาดให้นำดำราเข้าห้องสอบ
- 4. ให้เขียนชื่อ...... รหัสประจำดัว.....ภาควิชา..... เลขนั่งสอบ (ทุกแผ่น)

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำดอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริดในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา

ผศ.สุรชัย บวรเศรษฐนันท์ (ผู้ออกข้อสอบ) โทร 0-2470-9124

Name	No
1	Answer the following question
1.1	What are the assumptions in analysis the Thermodynamics Power Cycle?
1.2	Draw the P-v and T-s diagram of the following cycle and also specify the process that
constru	act the cycle.
Carnot	Cycle
Otto Cy	ycle
Diesel	Cycle

Name	No
Brayton Cycle	
Draw the schematic diagram and T-s diagram for in	deal Rankine cycle.
Draw the P-h diagram and T-s diagram for ideal Va	apor Compression Refrigeration cycle.

NameNo	oc
--------	----

1.3 Explain the difference between refrigeration and heat pump.

1.4 Explain the difference between C.O.P._{Refrigeration} and E.E.R.

1.5 Explain the difference between Dew point temperature and Wet bulb temperature.

1.6 For Psychrometry, explain the meaning of Saturated Air.

1.7 Fill the data of humid air from Psychometrics Chart into the blank:-

	Dry bulb	Wet bulb	%RH	Dew pt.	Sp. Humidity	Enthalpy
	°C	°C		°C		
Α	35	30				
В	26		50			
С	35			26		
D		30		26		
Е		ii.	60	26		

Nam	eNoNo
1.8	Explain the difference between Rich mixture and Lean mixture in combustion process.
1.9	Explain the effect of A/F ratio on adiabatic flame temperature.
1.10	Explain the difference of high heating value and low heating value

Name......No......

2 Given:- Atmospheric Pressure as 101.325 kPa.

Atmospheric Temperature as 36°C dry bulb and 28°C wet bulb

Air flow rate through A/C = $1 \text{ m}^3/\text{sec}$ @ state 4

Return air / Fresh air = 4/1

Determine:-

- -Condition of air at state 3
- -Condensate at A/C
- -Heat load (heat input into the room)
- -Heat load at A/C
- -Show the states and the processes on the Psychrometric Chart.

Namo	 No
Name	

- 3 A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 3MPa. and 50 kPa. The temperature of the steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 10 kg/s. Show the cycle on a T-s diagram with respect to saturation lines and determine:-
 - (a) The thermal efficiency of the cycle
 - (b) The net power output of the power plant.

TABLE A-4
⁹⁻Saturated water: temperature table

	Sat.	Specifi m³/kg	Specific volume m³/kg		internal energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/(kg·K)		
Temp. T °C	press. P _{sat} kPa	Sat. liquid	Sat. vapor v_g	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	
0.01	0.6113	0.001000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9.1562	9.1562	
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257	
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.0761	8.7498	8.9008	
15	1.7051	0.001000	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.1310	8.5569	8.7814	
20	2.339	0.001001	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672	
25	3.169	0.001002	43.36	104.88	2304.9	2402.9	104.89	2442.3	2547.2	0.3674	8.1905	8.5580	
30	4.246	0.001003								0.4369		8.4533	
35			32.89 *	125.78	2290,8	2416.6	125.79	2430.5	2556.3		8.0164		
40	5.628	0.001006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531	
	7.384	0.001008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570	
45	9.593	0.001010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648	
50	12.349	0.001012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763	
55	15.758	0.001015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.9913	
60	19.940	0.001017	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	0.8312	7.0784	7.9096	
65	25.03	0.001020	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.8310	
70	31.19	0.001023	5.042	292.95	2176.6	2469.6	292.98	2333.8	2626.8	0.9549	6.8004	7.7553	
75	38.58	0.001026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.6824	
80	47.39	0.001029	3.407	334.86	2147.4	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.6122	
85	57.83	0.001033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.5445	
90	70.14	0.001036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.4791	
95	84.55	0.001040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.4159	
	Sat. press. MPa	. =	,										
100	0.10133	0,001044	1,6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.3549	
105	0.12082	0.001048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.2958	
110	0.14327	0.001052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.2387	
115	0.16906	0.001056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7,1833	
120	0.19853	0.001060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.1296	
125	0.2321	0.001065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.0775	
130	0.2701	0.001070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.0269	
135	0.3130	0.001075	0.5822	567,35	1977.7	2545.0	567.69	2159.6	2727.3	1,6870	5.2907	6.9777	
140	0.3613	0.001080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391		6.9299	
145	0.4154	0.001085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.8833	
150	0.4758	0.001091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.8379	
155	0.5431	0.001096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.7935	
160	0.6178	0.001102	0.3071	674.87		2568.4	675.55	2082.6	2758.1	1.9427	4.8075	6.7502	
65	0.7005	0.001108	0.2727	696.56	1876.0	2572.5	697.34	2066.2	2763.5	1.9925	4.7153	6.7078	
70	0.7917	0.001114	0.2428	718,33	1858.1	2576.5	719.21	2049.5	2768.7	2.0419	4.6244	6.6663	
75	0.8920	0.001114	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.6256	
180	1.0021	0.001121	0.2100	762.09	1821.6	2583.7	763.22	2032.4	2778.2	2.1396	4.4461	6.5857	
85	1.1227	0.001127	0.13403	784.10	1802.9	2583.7	785.37	1997.1		2.1879		6,5465	
.90	1.2544	0.001134	0.17409	806.19					2782.4		4.3586	6.5079	
95	1.3978	0.001141	0.13654	828.37	1783.8 1764.4	2590.0	807.62 829.98	1978.8 1960.0	2786.4	2.2359	4.2720	6.4698	
	1.0070	5,001143	. 0.14100	020.37	1704.4	2592.8	029.90	1300.0	2790.0	2.2835	4.1863	0.700	

7.

TABLE A-5
Saturated water: pressure table

	Sat.	Specific volum — m³/kg		Internal energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/(kg·K)		
Press. P kPa	temp.	Sat. liquid	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat, vapor
0.6113	0.01	0.001000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
1.0	6.98	0.001000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756
1.5	13.03	0.001001	87.98	54.71	2338.6	2393.3	54.71	24̂70.6	2525.3	0.1957	8.6322	8.8279
2.0	17.50	0.001001	67.00	73.48	2326.0	2399.5	73,48	2460.0	2533.5	0.2607	8.4629	8.7237
2.5	21.08	0.001002	54.25	.88.48	2315.9	2404.4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432
3.0	24,08	0.001003	45.67	101.04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776
4.0	28.96	0.001004	34.80	121.45	2293.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	8.4746
5.0	32.88	0.001005	28.19	137,81	2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.3951
7.5	40.29	0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515
10	45.81	0.001010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502
15	53.97	0.001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.9085
25	64.97	0.001017	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9383	7.8314
30	69.10	0.001020	5.229	289.20	2179.2	2468.4	289.23	2336.1	2625.3	0.9439	6.8247	
40	75.87	0.001022	3.993	317.53	2159.5	2477.0	317.58	2319.2				7.7686
50	81.33	0.001027					340.49		2636.8	1.0259	6.6441	7.6700
75	91.78	0.001030	3.240 2.217	340.44 384.31	2143.4	2483.9	384.39	2305.4 2278.6	2645.9 2663.0	1.0910	6.5029	7.5939
Press.	31,76	0.001037	2.217	304.31	2112.4	2496.7	304.39	2210.0	2000.0	1.2130	6.2434	7.4564
MPa												
0.100	99.63	0.001043	1.6940	417.36	2088.7	2506.1	417,46	2258.0	2675.5	1.3026	6.0568	7.3594
0.125	105.99	0.001048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.2844
0.150	111.37	0.001053	1.1593	466,94	2052.7	2519.7	467.11	2226.5	2693.6	1.4336	5.7897	7,2233
0.175	116.06	0,001057	1.0036	486.80	2038.1	2524.9	486.99	2213.6	2700.6	1.4849	5.6868	7.1717
0.200	120.23	01 001061	0.8857	504.49	2025.0	2529.5	504.70	2201.9	2706.7	1.5301	5.5970	7.127
0.225	124.00	0.001064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878
0.250	127.44	0.001067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527
0.275	130.60	0.001070	0.6573	548.59	1991.9	2540.5	548.89	2172.4	2721.3	1.6408	5.3801	7.0209
0.300	133.55	0.001073	0.6058	561.15	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919
0.325	136.30	0.001076	0.5620	572.90	1973.5	2546.4	573.25	2155.8	2729.0	1.7006	5.2646	6.9652
0.350	138.88	0.001079	0.5243	583.95	1965.0	2548.9	584.33	2148.1	2732.4	1.7275	5.2130	6.9405
0.375	141.32	0.001081	0.4914	594,40	1956.9	2551.3	594.81	2140.8	2735.6	1.7528	5.1647	6.9175
	143.63	0.001084	0.4625	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.8959
0.45	147.93	0.001088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.8565
0.50	151.86	0.001093	0.3749	639.68	1921.6	2561.2	640.23	2108.5	2748.7	1.8607	4.9606	6.8213
0.55	155.48	0.001097	0.3427	655.32	1909.2	2564.5	665.93	2097.0	2753.0	1.8973	4.8920	6.7893
0.60	158.85	0.001101	0.3157	669.90	1897.5	2567.4	670.56	2086.3	2756.8	1.9312	4.8288	6.7600
0.65	162.01	0.001104	0.2927	683.56	1886.5	2570.1	684.28	2076.0	2760.3	1.9627	4.7703	6.7331
0.70	164.97	0.001104	0.2327	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080
0.75	167.78	0.001112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847
0.80	170.43	0.001112	0.2336	720.22	1856.6	2576.8	703.47	2048.0	2769.1	2.0462	4.6166	6.6628
0.85	172.96	0.001118	0.2404	731.27	1847.4	2578.7		2039.4	2771.6	2.0402	4.5711	6.6421
0.90	175.38	0.001114	0.2150	741.83	1838.6	2580.5	742.83	2039.4	2773.9	2.0946	4.5280	6.6226
0.95	177.69	0.001121	0.2042	751.95	1830.2	2580.5 2582.1	753.02	2023.1	2776.1	2.1172	4.4869	6.6041
1.00	179.91	0.001127	0.2042	761.68	1822.0	2583.6		2025.1		2.1387		
1.10	184.09	0.001127	0.19444	780.09	1806.3	2586.4	762.81	2000.4			4.4478	6.5865
1.20	187.99	0.001133					781,34		2781.7	2.1792	4.3744	6.5536
1.30			0.16333		1791.5	2588.8	798.65	1986.2	2784.8	2.2166	4.3067	6.5233
1.50	191.64	0.001144	0.15125	813.44	1777.5	2591.0	814.93	1972.7	2787.6	2.2515	4.2438	6.4953

TABLE A-6 Superheated water (Continued)

Superheated water (Con									Continued)				
<i>T</i>	m³/kg	u kJ/kg	к kJ/kg	s kJ/(kg·K)	ນ m³/kg	" kJ/kg	h kJ/kg	s kJ/(kg⋅K)	m³/kg	" kJ/kg	h kJ/kg	s kJ/(kg·K)	
	F	= 1.00 M	Pa (179.	91°C)	·	= 1.20 M	IPa (187.	99°C)	P = 1.40 MPa (195.07°C)				
Sat.	0.19444	2583.6	2778.1	6.5865	0.16333	2588.8	2784.8	6.5233	0.14084	2592.8	2790.0	6.4693	
200	0.2060	2621.9	2827.9	6.6940	0.16930	2612.8	2815.9	6.5898	0.14302	2603.1	2803.3	6.4975	
250	0.2327	2709.9	2942.6	6.9247	0.19234	2704.2	2935.0	6.8294	0.16350	2698.3	2927.2	6.7467	
300	0.2579	2793.2	3051.2	7.1229	0.2138	2789.2	3045.8	7.0317	0.18228	2785.2	3040.4	6.9534	
350	0.2825	2875.2	3157.7	7.3011	0.2345	2872.2	3153.6	7.2121	0.2003	2869.2	3149.5	7.1360	
400	0.3066	2957.3	3263.9	7.4651	0.2548	2954.9	3260.7	7.3774	0.2003	2952.5	3257.5	7.1360	
500	0.3541	3124.4	3478.5	7.7622	0.2946	3122.8	3476.3	7.6759	0.2521	3121.1	3474.1	7.6027	
600	≥0.4011	3296.8	3697.9	8.0290	0.3339	3295.6	3696.3	7.9435	0.2860	3294.4	3694.8	7.8710	
700	0.4478	3475.3	3923.1	8.2731	0.3729	3474.4	3922.0	8.1881	0.3195	3473.6	3920.8	8.1160	
800	0.4943	3660.4	4154.7	8.4996	0.4118	3659.7	4153,8	8.4148	0.3528	3659.0	4153.0	8.3431	
900	² 0.5407	3852.2	4392.9	8.7118	0.4505	3851.6	4392.2	8.6272	0.3861	3851,1			
1000	0.5871	4050.5	4637.6	8.9119	0.4303	4050.0	4637.0	8.8274	0.4192	4049.5	4391.5	8.5556	
			_								4636.4	8.7559	
1100	0.6335	4255.1	4888.6	9.1017	0.5278	4254.6	4888.0	9.0172	0.4524	4254.1	4887.5	8.9457	
1200	0.6798	4465.6	5145.4	9.2822	0.5665	4465.1	5144.9	9.1977	0.4855	4464.7	5144.4	9.1262	
1 300	0.7261	4681.3	5407.4	9.4543	0.6051	4680.9	5407.0	9.3698	0.5186	4680.4	5406.5	9.2984	
	F	= 1.60 M	Pa (201,	41°C)		P = 1.80 M	APa (207	15°C)	P	= 2.00 ME	a (212.4	2°C)	
Sat.	0.12380	2596.0	2794.0	6.4218	0.11042	2598.4	2797.1	6.3794	0.09963	2600.3	2799.5	6.3409	
225	0.13287	2644.7	2857.3	6.5518	0.11673	2636.6	2846.7	6.4808	0.10377	2628.3	2835.8	6.4147	
250	0.14184	2692.3	2919.2	6.6732	0.12497	2686.0	2911.0	6.6066	0.11144	2679.6	2902.5	6.5453	
300	- 0.15862	2781.1	3034.8	6.8844	0.14021	2776.9	3029.2	6.8226	0.12547	2772.6	3023.5	6.7664	
350	0.17456	2866.1	3145,4	7.0694	0.15457	2863.0	3141.2	7.0100	0.13857	2859.8	3137.0	6.9563	
400	0.19005	2950.1	3254.2	7.2374	0.16847	2947.7	3250.9	7.1794	0.15120	2945.2	3247.6	7.1271	
500	0.2203	3119.5	3472.0	7.5390	0.19550	" 31̃17.9	3469.8	7.4825	0.17568	3116.2	3467.6	7.4317	
600	0.2500	3293.3	3693.2	7.8080	0.2220	3292.1	3691.7	7.7523	0.19960	3290.9	3690.1	7.7024	
700	0.2794	3472.7	3919.7	8.0535	0.2482	3471.8	3918.5	7.9983	0.2232	3470.9	3917.4	7.9487	
800	0.3086	3658.3	4152.1	8.2808	0.2742	3657.6	4151.2	8.2258	0.2467	3657.0	4150.3	8.1765	
900	0.3377	3850.5	4390.8	8.4935	0.3001	3849.9	4390.1	8.4386	0.2700	3849.3	4389.4	8.3895	
1000	0.3668	4049.0	4635.8	8.6938	0.3260	4048.5	4635.2	8.6391	0.2933	4048.0	4634.6	8.5901	
1 100	0.3958	4253.7	4887.0	8.8837	0.3518	4253.2	4886.4	8.8290	0.3166	4252.7	4885.9	8.7800	
1200	0.4248	4464.2	5143.9	9.0643	0.3776	4463.7	5143.4	9.0096	0.3398	4463.3	5142.9	8.9607	
1300	0.4538	4679.9	5406.0	9.2364	0.4034	4679.5	5405.6	9.1818	0.3631	4679.0	5405.1	9.1329	
		° = 2.50 M	IDa (222	90°C)		P = 3.001	MD- 1222	90°C1	·	= 3.50 MF	22 1242 6	.0°C1	
0 -1		· · · · · · · · · · · · · · · · · · ·				2604.1	2804.2				2803.4	6.1253	
Sat.	0.07998	2603.1	2803.1	6.2575 6.2639	0.06668	2004,1	2004.2	6.1869	0.05707	2603.7	2003.4	0.1255	
225	0.08027	2605.6	2806.3		0.07060	2644.0	2055.0	6 2070	0.05070	2622.7	2829.2	6 1740	
250	0.08700	2662.6	2880.1	6.4085	0.07058	2644.0	2855.8	6.2872	0.05872	2623.7		6.1749	
300	0.09890	2761.6	8.8008	6.6438	0.08114	2750.1 2843.7	2993.5	6.5390	0.06842	2738.0	2977.5	6.4461	
350	0.10976	2851.9	3126.3	6.8403	0.09053		3115.3	6.7428	0.07678	2835.3	3104.0	6.6579	
400	0.12010	2939.1	3239.3	7.0148	0.09936	2932.8	3230.9	6.9212	0.08453	2926.4	3222.3	6.8405	
450	0.13014	3025.5	3350.8	7.1746	0.10787	3020.4	3344.0	7.0834	0.09196	3015.3	3337.2	7,0052	
500	0.13993	3112.1	3462.1	7.3234	0.11619	3108.0	3456.5	7.2338	0.09918	3103.0	3450.9	7.1572	
600	0.15930	3288.0	3686.3	7.5960	0.13243	3285.0	3682.3	7.5085	0.11324	3282,1	3678.4	7.4339	
700	0.17832	3468.7	3914.5	7.8435	0.14838	3466.5 3653.5	3911.7	7.7571	0.12699	3464.3 3651.8	3908.8	7.6837 7.9134	
800	. 0.19716	3655.3	4148.2	8.0720	0.16414		4145.9	7.9862	1		4143.7	8.1276	
900	0.21590	3847.9	4387.6	8.2853	0.17980	3846.5	4385.9	8.1999	0.15402	3845.0	4384.1		
1000	0.2346	4046.7		8.4861	0.19541	4045.4	4631.6	8.4009	0.16743	4044.1	4630.1	8.3288	
1100	0.2532	4251.5	4884.6	8.6762	0.21098	4250.3	4883.3	8.5912	0.18080	4249.2	4881.9	8.5192	
1200	0.2718	4462.1	5141.7	8.8569	0.22652	4460.9	5140.5	8.7720	0.19415	4459.8	5139.3	8.7000	
1300	0.2905	4677.8	5404.0	9.0291	0.24206	4676.5	5402.8	8.9442	0.20749	4675.5	5401.7	8.8723	

iva	arne	No
4	Diesel fuel (C ₁₂ H ₂₆) is burned with 20% excess air during a stead	ly-flow combustion process.

Determine the required mass flow rate of the fuel for 3 kW heat output if the exhaust gas temperature is 500 K while the fuel and air enter the combustion chamber at 25 $^{\circ}$ C.

TABL	LE A-18					138 13 31 3	
Ideal-	gas properties of	f nitrogen, N ₂					
Т	ћ	ū	s̄°	<i>T</i> K	<i>ĥ</i>	ū	§°
К	kJ/kmol	kJ/kmol	kJ/kmol⋅K		kJ/kmol	kJ/kmol	kJ/kmol⋅K
220 230 240 250	0 6,391 6,683 6,975 7,266	0 4,562 4,770 4,979 5,188	0 182.639 183.938 185.180 186.370	600 610 620 630 640	17,563 17,864 18,166 18,468 18,772	12,574 12,792 13,011 13,230 13,450	212.066 212.564 213.055 213.541 214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270	7,849	5,604	188.614	660	19,380	13,892	214.954
280	8,141	5,813	189.673	670	19,685	14,114	215.413
290	8,432	6,021	190.695	680	19,991	14,337	215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216,756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760	22,460	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450 -	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	10,848	207.792	920	27,532	19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560	16,363	11,707	209.999	960	28,826	20,844	226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728

PERSONAL PROPERTY.	A-19						
ldeal-g	as properties of	oxygen, O ₂					
T	<i>ĥ</i>	ū	్	T	ћ	ū	s̃°
K	kJ/kmol	kJ/kmol	kJ/kmo) ∙ K	K	kJ/kmol	kJ/kmol	kJ/kmol ⋅ K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	5,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184.	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	. 219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TAB	LE	A-	-20	

470

580

590

15,916

21,337

21,807

12,091

16,515

16,902

ではない 一大の事業を

Ideal-gas properties of carbon dioxide, CO2 T. ĥ š۵ ū T. ĥ. ū ۶° K kJ/kmol kJ/kmol kJ/kmol · K Κ kJ/kmol kJ/kmol kJ/kmol K 0 0 0 0 600 22,280 .17,291 243.199 220 6,601 4,772 202.966 610 22,754 17,683 243,983 230 6,938 5,026 204.464 620 23,231 18,076 244.758 240 7,280 5,285 205,920 630 23,709 18,471 245,524 250 7,627 5,548 207.337 640 24,190 18,869 246.282 260 7.979 5,817 208.717 650 24,674 19,270 247.032 270 8,335 6,091 210.062 660 25,160 19,672 247.773 280 8,697 6,369 211.376 670 25,648 20,078 248.507 290 9,063 6,651 212.660 680 26.138 20,484 249.233 298 9,364 6,885 213.685 690 26,631 20,894 249.952 300 9,431 6,939 213.915 700 27,125 21,305 250.663 310 9,807 7,230 215.146 710 27,622 21,719 251.368 320 10,186 7,526 216.351 720 28,121 22,134 252.065 330 10,570 7,826 217.534 730 28,622 22,522 252.755 340 10,959 8,131 218.694

350 11,351 8,439 219.831 750 29,629 23,393 254.117 360 11,748 8,752 220.948 760 20,135 23,817 254.787 370 12,148 9.068 222.044 770 30,644 24,242 255.452 380 12.552 9.392 223.122 780 31,154 24,669 256.110 390 12,960 9,718 224.182 790 31,665 25,097 256.762 400 13,372 10.046 225.225 800 32,179 25,527 257.408 410 13,787 10,378 226.250 810 32,694 25,959 258.048 420 14,206 10,714 227.258 820 33,212 26,394 258.682 430 14,628 11,053 228.252 830 33,730 26,829 259.311 440 15,054 11,393 229.230 840 34,251 27,267 259.934 450 15,483 230.194 11,742 850 34,773 27,706 260.551

740

860

980

990

29,124

35,296

41,685

42,226

22,972

28,125

33,537

33,995

253.439

261.164

268.119

268.670

16,351 12,444 232.080 870 35,821 28,588 261.770 480 16,791 12,800 233.004 880 36,347 29,031 262,371 490 17,232 13,158 233.916 890 36,876 29,476 -262.968500 17,678 13,521 234.814 900 37,405 29,922 263.559 510 18,126 13,885 235.700 910 37,935 30,369 264.146 520 18,576 14,253 236.575 920 38,467 30,818 264.728 530 19,029 14,622 237.439 930 39,000 31,268 265.304 540 19,485 14,996 238.292 940 39,535 265.877 31,719 550 19,945 15,372 239.135 950 40,070 266.444 32,171 560 20,407 15,751 239.962 960 40,607 32,625 267,007 570 20,870 16,131 240.789 970 41,145 33;081 267.566

231.144

241.602

242.405

TA	DI	A	-	н	
TA	ΒL	A-	-2	ŧ	

Ideal-gas properties of carbon monoxide, CO

		Carbon monoxi			1 1	e e e	
K	ñ	ū	5°	T	<i>h</i>	ū	s̄°
K	kJ/kmol	kJ/kmol	kJ/kmol ∙ K	K	kJ/kmol	kJ/kmol .	kJ/kmol⋅K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849.	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

Ideal are properly and the second

T	·Ā	· ũ	Ŝ°	T	ñ	r.	=0
K	kJ/kmol	kJ/kmol	kJ/kmol - K	K	ri kJ/kmol	ũ kJ/kmol	50
0	0						kJ/kmol · K
220	7,295	0 5 466	0	600	20,402	15,413	212.920
230	7,628	5,466	178.576	610	20,765	15,693	213.529
240		5,715	180.054	620	21,130	15,975	214.122
250	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	, 6,968	186.616	670	22,970	17,399	216.976
290	9,631 -	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	
310	10,302	7,725	190.030	710	24,464	18,561	218.610
320	10,639	7,978	191.098	720	24,464	18,854	219.142
330	10,976	8,232	192.136	730	•	,	219.668
340	11,314	8,487	193.144	740	25,218 25,597	19,148 19,444	220.189 220.707
350	11,652	8,742	194.125		·		
360	11,992	8,998		750	25,977	19,741	221.215
370	12,331		195.081	760	26,358	20,039	221.720
380	12,672	9,255	196.012	. 770	26,741	20,339	222.221
390	13,014	9,513	196.920	780	27,125	20,639	222.717
		9,771	197.807	790	27,510	20,941	223,207
400	13,356	10,030	198.673	800	27,896	21,245	223,693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21 ,8 55	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206,413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841		
560	18,959	14,303	210.440	960		25,943	230.499
570	19,318	14,579	211.075	970	34,247 34,653	26,265 26,588	230.924
580	19,678	14,856	211.702	980		,	231.347
590	20,039	15,134	212.320	990	35,061 35,472	26,913 27,240	231.767 232.184
	,	10,10-	212.020	. 230	33,472	41,440	434,104

TABLE A-26

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

Substance	Formula	$ar{h}_t^\circ$ kJ/kmol	<i>ĝ</i> r̂ kJ/kmol	§° kJ/kmol · K
Carbon	C(s)	. 0	0	5.74
Hydrogen-	$H_2(g)$	Ö	Ö	130.68
Nitrogen	$N_2(g)$. 0	0	191.61
Oxygen	$O_2(g)$. 0	0	205.04
Carbon monoxide	CO(g)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2O(g)$	-241,820	-228,590	188.83
Water	$H_2O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	$CH_3OH(g)$	-200,670	-162,000	239.70
Methyl alcohol	$CH_3OH(\ell)$	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Oxygen	O(g)	+249,190	+231,770	161.06
Hydrogen	H(g)	+218,000	+203,290	114.72
Nitrogen	N(g)	+472,650	+455,510	153.30
Hydroxyl	OH(g)	+39,460	+34,280	183.70

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

5 A cascade refrigeration system (as shown in the figure) has the following data as:

	R-22 cycle	R-503 cycle
Condensing pressure	2 MPa.	2 MPa.
Evaporating pressure	0.25 MPa.	0.2 MPa.
Degree of superheated	0	0
Degree of sub-cooled	0	0

- If , the cooling load at the Evaporator is 5 kW. Find:
 - -mass flow rate of the refrigerant in each cycle
 - -total compression work
 - -total C.O.P. of the cycle
 - -draw the refrigeration cycle on the P-h diagram of each cycle

Prepara by: CENTER FOR APPLIED THERMODYNAMIC STUDIES. University of Idaho CONTRIONING ENGINEERS COPPRIGHT 1985 AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS

