2018 Plant Factory – Hydropinics

KU-The Future

Changes in Plant Production

2018 Plant Factory – Hydropinics

KU-The Future

Hydroponics

Water Culture?

Nutrient Solution Culture?

Soilless Culture?

Hydro (water)

Ponos (labor)

 Gerick's application of hydroponics soon provides itself by providing food for troops stationed on nonarable islands in the Pacific in the early 1940s 2018 Plant Factory – Hydropinics

KU-The Future

Comparison

Cultural practice	Soil	Soilless		
Plant Nutrition	Difficult to control	Easy control		
Fertilization	High / Inefficient	Less / Efficient		
Media Sterilization	2-3 weeks	Short time		
Weed control	Frequent	Less or none		
Diseases, Insect	Happens often Rotation required	Less disease		
Plant Spacing	Limited	Closer spacing		

Comparison

Cultural practice	Soil	Soilless		
Water	Stress	No stress		
Sanitation	Sometimes problem	Little problem		
Quality	Acceptable	Good		
Yield	Normal	2-3 times more		
Initial Cost	Cheaper	Expensive		

Importance and Benefits

Producer

- Automation
- Land use efficient
- Year-thru high quality production
- Urban production

Consumer

- Fresh product with Safe and High quality
- Year-thru
- Health Benefits

Environment

- Environmental Friendly
- Less pollutant
- Recycled nutrient solution

2018 Plant Factory – Hydropinics

KU-The Future

Sustainability

2018 Plant Factory – Hydropinics

KU-The Future

Classification of Hydroponics

2018 Plant Factory – Hydropinics

KU-The Future

Deep Flow Technique (DFT)

2018 Plant Factory – Hydropinics

Pros and Cons of DFT

Advantage

- High volume of NS
- → Little temperature fluctuation
- → Stable nutrient concentration and pH
- Little damage when the circulation pump is out of order

Disadvantage

- Difficult in water control → difficult in growth control
- Higher cost due to high volume of NS
- Critical damage with disease spread
- Lack of oxygen supply

2018 Plant Factory – Hydropinics

KU-The Future

Nutrient Film Technique (NFT)

- Plants are grown with their root systems contained in plastic film through which nutrient solution is continuously circulated
- The least acceptable slope was about 1 in 100 or 1 in 80
- Many applied method were developed

Pot Using Home NFT

Pros and Cons of NFT

Advantage

- Less usage of NS
- Easier change in NS
- Pesticide treatment available
- Circulation types → less pollution
- Cheaper investment

Disadvantage

- Difficult in temp control of NS
- More attention is required due to small volume of NS
- Huge damage when NS circulation stops

2018 Plant Factory – Hydropinics

KU-The Future

2018 Plant Factory - Hydropinics

KU-The Future

Aeroponics

Potato Seed Tuber Production

Simple Aeroponics

Pros and Cons of Aeroponics

Advantage

- Less usage of NS
- Easier change in NS
- Easier sanitation
- Good growth
- Efficient spacing

Disadvantage

- Expensive
- Difficult temp control
- Problematic when nozzle is clogged
- Huge damage when electrical shortage

2018 Plant Factory – Hydropinics

KU-The Future

2018 Plant Factory – Hydropinics

KU-The Future

Sand Culture

Pros and Cons of Sand Culture

Advantage

- Small particle size → root distribution
- Good aeration
- No-circulation type
- Better water holding capacity than gravel culture

Disadvantage

- Sand sanitation required
- More NS is required than circulation type
- Salt accumulation
- Clogging on drippers
- Heavy media

Rockwool Culture

Pros and Cons of Rockwool Culture

nth on there

salb

Advantage

- Easy control of NS
- Less disease
- Modified block
- Starting from nothing

Disadvantage

- No visual changes
- Difficult in medium temperature control
- Salt accumulation
- Disposal problem

2018 Plant Factory - Hydropinics

KU-The Future

2018 Plant Factory - Hydropinics

KU-The Future

Perlite Culture

Pros and Cons of Perlite Culture

Advantage

- Good aeration, water filtration
- Easy fertilization
- Easy sanitation
- Longer lifespan

Disadvantage

- No CEC
- No buffering capacity
- Dust problem
- Difficult in recycling after multiple use

x cation

가

Coir Dust Culture

Pros and Cons of Coir Culture

Advantage

- Cheaper than peatmoss
- Light weight
- Block or bag types
- Organic matter → recycling
- Higher water holding capacity with rich in porosity 90%
- Buffering capacity

Disadvantage

- Variation across the manufacturer or origins
- Require more experiences to control nutrient solution (ph, size)

whc nho

2018 Plant Factory – Hydropinics

KU-The Future

Nutrient Solution

- Knop (Germany)
 - Only KNO₃, Ca(NO₃)₂, KH₂PO₄, MgSO₄, an iron salt
- Hoagland Solution
 - Contains all of the known mineral elements for plant
- Asian Nutrient Solutions
 - Yamazaki Solution
 - Korean Wonshi (韓國園藝試驗場)
 - Japanese Enshi (日本園藝試驗場)

Stock Solutions

To prevent precipitation

2018 Plant Factory – Hydropinics

KU-The Future

Modified Hoagland Solution

Compound	Molecular weight g mol ⁻¹	Concentration of stock solution mM	Concentration of stock solution g L ⁻¹	Volume of stock solution per liter of final solution mL	Element	Final concentration of element	
						μМ	ppm
Macronutrients KNO ₃	101.10	1,000	101.10	6.0	N	16,000	224
Ca(NO ₃) ₂ -4H ₂ O	236.16	1,000	236.16	4.0	K	6,000	235
NH ₄ H ₂ PO ₄	115.08	1,000	115.08	2.0	Ca	4,000	160
MgSO ₄ -7H ₂ O	246.48	1,000	246.49	1.0	P	2,000	62
					S	1,000	32
					Mg	1,000	24
Micronutrients KCI	74.55	25	1.864		CI	50	1.77
H ₃ BO ₃	61.83	12.5	0.773		В	25	0.27
MnSO ₄ ·H ₂ O	169.01	1.0	0.169	2.0	Mn	2.0	0.11
ZnSO ₄ ·7H ₂ O	287.54	1.0	0.288		Zn	2.0	0.13
CuSO ₄ ·5H ₂ O	249.68	0.25	0.062		Cu	0.5	0.03
H ₂ MoO ₄ (85% MoO ₃)	161.97	0.25	0.040		Мо	0.5	0.05
NaFeDTPA (10% Fe)	468.20	64 DT	PA 300 ~	0.3-1.0	Fe	16.1-53.7	1.00-3.00
Optional ^a NiSO ₄ -6H ₂ O	262.86	0.25	0.066	2.0	Ni	0.5	0.03
Na ₂ SiO ₃ ·9H ₂ O	284.20	1,000	284.20	1.0	Si	1,000	28

Source: After Epstein 1972

Chelators

- In nutrient solution, precipitation of iron
 → unavailable to the plant → Need something
- Chelating agents
 - EDTA: ethylenediaminetetraacetic acid

DTPA: diethylenetriaminepentaacetic acid

Stock Solutions and Mixer

Stock Solutions

To prevent precipitation

2018 Plant Factory – Hydropinics

KU-The Future

Feeding Water and Nutrient

- Soilless media require proper feeding
- Depending on species and growth stages
- Requires experience and cumulative data
- Leachate Analysis
 - Checking EC and pH of drainage solution
 - Adjust feeding nutrient solution

What to CONSIDER

EC

рΗ

D

Temp

2018 Plant Factory – Hydroponics

KU-The Future

EC/pH Control for Media

Increase EC

- Increase fertilizer rates
- Increase the fertilizer frequency

Decrease EC

- Lower fertilizer rates
- Leaching with water

Increase pH

- Nitrate-based fertilizer
- Add hydrated lime or potassium bicarbonate

Decrease pH

- Ammonium fertilizer
- Acid drenches

EC control

- Generally 1.5-3.0 dS/m → species specific
 - Fruit vegetable: 2.0-3.0 dS/m
 - Leafy vegetable: 1.2-1.8 dS/m
 - Ornamental plants: 1.5-2.0 dS/m
- Control the concentration based on weather
 - Higher consumption → lower the concentration
- Specific ion deficiency can occur
 - ISFET (ion-selective field effect transistor) sensor

2018 Plant Factory – Hydropinics

KU-The Future

Dissolved Oxygen (DO)

- Oxygen for respiration and proper growth
- Factors affecting dissolved oxygen

Temperature

- High temperature requires more oxygen
- DO decreases with higher temperature

Light

- High light intensity
- → more transpiration and respiration

Species dependent

• Cucumber require x2 oxygen than tomato

Hydroponic system

• DFT requires more attention

7} (23)(

pH control

- Generally between 5.5-6.5 (weak acidic)
- Decrease in pH when cation uptake increase
 - K⁺, Ca²⁺, Mg²⁺, NH₄⁺ uptake \rightarrow release H⁺
- Increase in pH when anion uptake increase
- Decrease pH through adding acids
 - H₂SO₄, H₃PO₄, HNO₃, (NH₄)₂SO₄
- Increase pH through adding KOH / NaOH

2018 Plant Factory – Hydropinics

KU-The Future

DO Control

Oxygen Deficit Symptom

Less uptake of water and nutrient → Deficit symptom

Less hormonal biosynthesis (cytokinin)

Less root hair development

Higher ethylene → Root senescence

How to increase DO

Control the level (height) of the nutrient solution

Using air bubbler or aerator

Decrease the water temperature

#21

가

Solution Temperature

• Effect of solution temperature

Fertigation Methods

Timer Control

- Based on time schedule
- Simple automation

env factor

DLI Control

- Water use ∝ Daily Light Integral
- Timer at night no ferigate @ night

Weight based Control

- Using load-cell (weight measure)
- Calculating evapotranspiration

Soil Moisture Sensor Control

- Based on VWC measurement
- FDR sensors

* soil EC

2018 Plant Factory – Hydropinics

KU-The Future

Ionic Conc. w/ constant EC

2018 Plant Factory – Hydropinics

KU-The Future

Ion Specific Quantification

Ion Chromatography Atomic Absorption Spectrophotometer Inductively Coupled Plasma

Portable Spectrophotometer

accuracy