

Global United Technology Services Co., Ltd.

Report No.: GTS201612000141F03

FCC REPORT

Autel Intelligent Tech. Corp., Ltd. **Applicant:**

Address of Applicant: 6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili,

Nanshan, Shenzhen, China

Autel Intelligent Tech. Corp., Ltd. Manufacturer/ Factory:

6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Address of

Nanshan, Shenzhen, China

Manufacturer/ Factory: Equipment Under Test (EUT)

AUTOMOTIVE DIAGNOSTIC & ANALYSIS SYSTEM Product Name:

Model No.: MaxiSys, MaxiSys Pro

Trade Mark: **AUTEL**

FCC ID: WQ8MAXISYSMY908

FCC CFR Title 47 Part 15 Subpart E Section 15.407:2016 **Applicable standards:**

Date of sample receipt: January 08, 2017

Date of Test: January 09-16, 2017

Date of report issue: January 17, 2017

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 **Version**

Version No.	Date	Description
01	January 17, 2017	Original

Prepared By:	Tiger. Chen	Date:	January 17, 2017
	Project Engineer		
Check By:	Andy wa	Date:	January 17, 2017

Reviewer

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	5 GENERAL INFORMATION	5
5	5.1 GENERAL DESCRIPTION OF EUT 5.2 TEST MODE 5.3 TEST FACILITY 5.4 TEST LOCATION 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 DEVIATION FROM STANDARDS 5.7 ABNORMALITIES FROM STANDARD CONDITIONS 5.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 5.9 TEST RESULTS AND MEASUREMENT DATA	6 6 6 6 7
	5.1 ANTENNA REQUIREMENT	
6	6 TEST SETUP PHOTO	37
7	7 FUT CONSTRUCTIONAL DETAILS	38

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203	PASS	
AC Power Line Conducted Emission	15.207	PASS	
Peak Transmit Power	15.407(a)(1)	PASS	
Power Spectral Density	15.407(a)(1)	PASS	
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS	
Radiated Emission	15.205/15.209	PASS	
Band Edge	15.205	PASS	
Frequency Stability	15.407(f)	PASS	

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

5 General Information

5.1 General Description of EUT

AUTOMOTIVE DIAGNOSTIC & ANALYSIS SYSTEM
MaxiSys, MaxiSys Pro
MaxiSys
Remark: All above models are identical in the same PCB layout, interior structure and electrical circuits. The only difference is the model name for commercial purpose.
802.11a/802.11n(HT20): 5180MHz ~ 5240MHz;
802.11n(HT40): 5190MHz ~ 5230MHz
802.11a/802.11n(HT20): 4;
802.11n(HT40): 2
802.11a/802.11n(HT20): 20MHz;
802.11n(HT40): 40MHz
OFDM
Integral Antenna
0.85dBi (declare by Applicant)
Model No.:GFP361DA-1230-1
Input: AC 100~240V~50/60Hz 1.2A
Output: DC 12.0V 3.0A
DC 3.7V Li-ion Battery

5.2 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation.
	EUT was test with 98% duty cycle at its maximum power control level.
Remark: During the test to	he test voltage was tuned from 85% to 115% of the nominal rated supply

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle is 98% and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Other Information Requested by the Customer

None.

5.9 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 29 2016	June. 28 2017	
4	Spectrum analyzer	Agilent	E4447A	GTS516	June. 29 2016	June. 28 2017	
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 29 2016	June. 28 2017	
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 29 2016	June. 28 2017	
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June. 29 2016	June. 28 2017	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 29 2016	June. 28 2017	
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
10	Coaxial Cable	GTS	N/A	GTS213	June. 29 2016	June. 28 2017	
11	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017	
12	Coaxial cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017	
13	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017	
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 29 2016	June. 28 2017	
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 29 2016	June. 28 2017	
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June. 29 2016	June. 28 2017	
17	Band filter	Amindeon	82346	GTS219	June. 29 2016	June. 28 2017	
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June. 29 2016	June. 28 2017	
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017	
20	20 Universal radio Rohde & Schwarz communication tester		CMU200	GTS235	June. 29 2016	June. 28 2017	
21	21 Splitter Agilent		11636B	GTS237	June. 29 2016	June. 28 2017	
22 Power Meter Anritsu		Anritsu	ML2495A	GTS540	June. 29 2016	June. 28 2017	
23	Power Sensor	Anritsu	MA2411B	GTS541	June. 29 2016	June. 28 2017	

Con	Conducted Emission:						
Item	Test Equipment Manufacturer Model No. In		Inventory No.	Cal.Date	Cal.Due date		
iteiii	rest Equipment	Manufacturei	Model No.	inventory No.	(mm-dd-yy)	(mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2016	June 28 2017	
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 29 2016	June 28 2017	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017	
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2016	June 28 2017	
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017	
7	7 EMI Test Software AUDIX		E3	N/A	N/A	N/A	
8 Thermo meter KTJ		TA328	GTS233	June 29 2016	June 28 2017		

Gen	General used equipment:						
Item Test Equipment Manufacturer Model No. Inventory No.						Cal.Due date	
1.0	rest Equipment	manaratarar	model No.		(mm-dd-yy)	(mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017	

5 Test results and Measurement Data

5.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 0.85Bi.

5.2 Conducted Emissions

Toot Doguiroment	FCC Part15 C Section 15.207				
Test Requirement:					
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	Frequency range (MHz)	lBuV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test setup:	The E.U.T and simulators are connected to the main power throus impedance stabilization network(L.I.S.N.). The provide a 50ohm/st coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm terminal (Please refers to the block diagram of the test setup and photogram Both sides of A.C. line are checked for maximum conducted interest in order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed accortance. Reference Plane				
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 5.10 for detail	ls			
Test mode:	Refer to section 5.2 for details of worst case is reported.	. All of list mode were	tested, Only the data		
Test results:	Pass				
Massurament Data					

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Line:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.156	49.21	0.41	0.10	49.72	65.65	-15.93	QP
0.156	34.89	0.41	0.10	35.40	55.65	-20.25	Average
0.320	42.18	0.42	0.10	42.70	59.71	-17.01	QP
0.320	32.48	0.42	0.10	33.00	49.71	-16.71	Average
0.675	46.73	0.25	0.10	47.08	56.00	-8.92	QP
0.675	41.24	0.25	0.10	41.59	46.00	-4.41	Average
1.153	45.77	0.21	0.10	46.08	56.00	-9.92	QP
1.153	33.42	0.21	0.10	33.73	46.00	-12.27	Average
2.001	44.45	0.20	0.10	44.75	56.00	-11.25	QP -
2.001	31.67	0.20	0.10	31.97	46.00	-14.03	Average
3.293	42.92	0.21	0.10	43.23	56.00	-12.77	QP
3, 293	33.19	0.21	0.10	33.50	46.00	-12.50	Average

Neutral:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.157	48.65	0.42	0.10	49.17	65.60	-16.43	QP
0.157	33.28	0.42	0.10	33.80	55.60	-21.80	Average
0.323	41.68	0.43	0.10	42.21	59.62	-17.41	QP
0.323	32.90	0.43	0.10	33.43	49.62	-16.19	Average
0.675	46.43	0.29	0.10	46.82	56.00	-9.18	QP
0.675	41.61	0.29	0.10	42.00	46.00	-4.00	Average
1.172	45.46	0.24	0.10	45.80	56.00	-10.20	QP
1.172	33.40	0.24	0.10	33.74	46.00	-12.26	Average
2.001	44.44	0.20	0.10	44.74	56.00	-11.26	QP
2.001	32.37	0.20	0.10	32.67	46.00	-13.33	Average
21.946	42.31	0.32	0.21	42.84	60.00	-17.16	QP
21.946	34.30	0.32	0.21	34.83	50.00	-15.17	Average

5.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407		
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v01.		
Test Instruments:	Refer to section 5.10 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

CH.	Frequency	99% Occupied B	Sandwidth (MHz)	26dB Occupied E	Bandwidth (MHz)
No.	(MHz)	802.11a	802.11n(HT20)	802.11a	802.11n(HT20)
36	5180.00	16.5593	17.7152	20.535	21.359
40	5200.00	16.5513	17.6879	20.524	21.295
48	5240.00	16.5606	17.7003	20.266	21.081

CH. Frequency		99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)
No.	(MHz)	802.11n(HT40)	802.11n(HT40)
38	5190.00	36.3147	43.023
46	5230.00	36.3031	42.527

Test plots as followed:

5.4 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01
Limit:	24dBm
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

	802.11a mode							
СН	Fraguency		Measured Pov	ver (dBm)	Limit			
No.	Frequency (MHz)	Measured	Duty Factor	Total Output Power (dBm)	Limit (dBm)	Result		
36	5180.00	12.40	0.08	12.48	24	Pass		
40	5200.00	13.08	0.08	13.16	24	Pass		
48	5240.00	12.38	0.08	12.46	24	Pass		

	802.11n(HT20) mode							
CH	Frequency		Measured Power (dBm)		Limit			
No.	CH Frequency No. (MHz) Measured Duty		Duty Factor	Total Output Power (dBm)	Limit (dBm)	Result		
36	5180.00	12.85	0.08	12.93	24	Pass		
40	5200.00	12.79	0.08	12.87	24	Pass		
48	5240.00	12.68	0.08	12.76	24	Pass		

	802.11n(HT40) mode						
CII	Fraguenov		Measured Power (dBm)				
	Frequency (MHz)	Measured	Duty Factor	Total Output Power (dBm)	· (ubiii)		
38	5190.00	12.56	0.08	12.64	24	Pass	
46	5230.00	11.91	0.08	11.99	24	Pass	

5.5 Peak Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407		
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01		
Limit:	11dBm/MHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PPSD. 		
Test Instruments:	Refer to section 5.10 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

	802.11a mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	1.87	1.95	11.00	Pass				
40	5200.00	2.55	2.63	11.00	Pass				
48	5240.00	2.82	2.88	11.00	Pass				

	802.11n(HT20) mode							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
36	5180.00	3.63	3.71	11.00	Pass			
40	5200.00	4.35	4.43	11.00	Pass			
48	5240.00	3.56	3.64	11.00	Pass			

	802.11n(HT40) mode							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
38	5190.00	-0.87	-0.79	11.00	Pass			
46	5230.00	-1.20	-1.14	11.00	Pass			

Note: Total PPSD = Measured PPSD + 10 log (1/Duty Cycle)

Test plots as followed:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.6 Band Edge

Test Requirement:	FCC Part15 E Se	ection 15.407	and 5.205		
Test Method:	ANSI C63.10:201	3			
Test site:	Measurement Dis	stance: 3m (Se	emi-Anecho	ic Chambe	r)
Receiver setup:		,			
. tooon or cotap.	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above Toriz	AV	1MHz	3MHz	Average Value
Limit:		<u></u>			1
	Frequen		_imit (dBuV/		Remark
	30MHz-88		40.0		Quasi-peak Value
	88MHz-216		43.5		Quasi-peak Value
	216MHz-96		46.0		Quasi-peak Value
	960MHz-1	GHZ	54.0		Quasi-peak Value
	Above 10	Hz ⊢	54.0		Average Value
			74.0)	Peak Value
	outside of the dBm/MHz. (2) For transmitted outside of the dBm/MHz. If generate en applicable te band (included emission EIR) (3) For transmitted outside of the dBm/MHz.	ers operating e 5.15-5.35 Gers operating e 5.15-5.35 Gevices operations in the chnical requiring indoor use P limit of -27 rs operating in e 5.47-5.725 Gers operating in the control of t	Hz band shin the 5.25-Hz band shating in the 5.15-5.2 ements for a se) or altered Bm/MHz in the 5.47-5 GHz band shin the shand shin the	sall not exc 5.35 GHz sall not exc e 5.25-5.3 5 GHz ba operation in natively m the 5.15-5 5.725 GHz nall not exc	band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 b5 GHz band that and must meet all the 5.15-5.25 GHz eet an out-of-band band: all emissions eed an EIRP of -27
Test Procedure:	ground at a 3 determine the b. The EUT was antenna, white tower. c. The antenna the ground to Both horizont make the me d. For each sus case and the meters and the degrees to fir e. The test-rece Specified Bar f. If the emission the limit specifier in the second specif	meter camber position of the set 3 meters ch was mount height is varied determine the all and vertical asurement. Pected emission the antenname rotable table and the maximuliver system would with the ified, then testing the testing the ified, then testing position is the antenname rotable table and the maximuliver system would be the ified, then testing position of the ified position	ar. The table the highest rate away from the total add from one the maximum on, the EUT was turned the was turne are as set to Perinary for the EUT in peaking could be	was rotate adiation. the interfere p of a varial meter to fo value of the area was arranto heights fid from 0 deeak Detect I old Mode. It is mode was estopped a	rom 1 meter to 4 egrees to 360

	Kepolt No.: 913201012000141F03
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
Test setup:	Above 1GHz Company Co
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Report No.: GTS201612000141F03

802.11a(HT2	20)			Low	est			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	48.53	32.07	8.99	37.49	52.10	68.20	-16.10	Vertical
5150.00	35.77	32.07	8.99	37.49	39.34	54.00	-14.66	Vertical
5150.00	50.44	32.07	8.99	37.49	54.01	68.20	-14.19	Horizontal
5150.00	37.86	32.07	8.99	37.49	41.43	54.00	-12.57	Horizontal

802.11a(HT2	20)			High	est			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5350.00	45.56	31.75	9.29	37.20	49.40	68.20	-18.80	Vertical
5350.00	36.79	31.75	9.29	37.20	40.63	54.00	-13.37	Vertical
5350.00	48.02	31.75	9.29	37.20	51.86	68.20	-16.34	Horizontal
5350.00	34.45	31.75	9.29	37.20	38.29	54.00	-15.71	Horizontal

802.11n(HT2	20)			Low	est			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	50.51	32.07	8.99	37.49	54.08	68.20	-14.12	Vertical
5150.00	38.46	32.07	8.99	37.49	42.03	54.00	-11.97	Vertical
5150.00	49.79	32.07	8.99	37.49	53.36	68.20	-14.84	Horizontal
5150.00	38.03	32.07	8.99	37.49	41.60	54.00	-12.40	Horizontal

802.11n(HT2	20)			High	est			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5350.00	46.63	31.75	9.29	37.20	50.47	68.20	-17.73	Vertical
5350.00	35.22	31.75	9.29	37.20	39.06	54.00	-14.94	Vertical
5350.00	47.54	31.75	9.29	37.20	51.38	68.20	-16.82	Horizontal
5350.00	34.04	31.75	9.29	37.20	37.88	54.00	-16.12	Horizontal

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11n(HT4	40)			Low	est			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	47.56	32.07	8.99	37.49	51.13	68.20	-17.07	Vertical
5150.00	34.02	32.07	8.99	37.49	37.59	54.00	-16.41	Vertical
5150.00	46.87	32.07	8.99	37.49	50.44	68.20	-17.76	Horizontal
5150.00	33.89	32.07	8.99	37.49	37.46	54.00	-16.54	Horizontal

802.11n(HT4	1 0)			High	nest			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5350.00	48.06	31.75	9.29	37.20	51.90	68.20	-16.30	Vertical
5350.00	33.44	31.75	9.29	37.20	37.28	54.00	-16.72	Vertical
5350.00	46.57	31.75	9.29	37.20	50.41	68.20	-17.79	Horizontal
5350.00	32.73	31.75	9.29	37.20	36.57	54.00	-17.43	Horizontal

5.7 Radiated Emission

5.7 Radiated Emission					
Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.10:20	013			
Test Frequency Range:	30MHz to 40GH	Ηz			
Test site:	Measurement D	Distance: 3m (S	emi-Anecho	ic Chambe	r)
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	30MHz-	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	1GHz	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	AV	1MHz	3MHz	Average Value
Limit:	Freque	1	Limit (dBuV		Remark
	30MHz-8		40.0)	Quasi-peak Value
	88MHz-2		43.5		Quasi-peak Value
	216MHz-9		46.0		Quasi-peak Value
	960MHz-	-1GHz	54.0 54.0		Quasi-peak Value
	Above 1	IGHz —	74.0		Average Value Peak Value
Test Procedure:	Substitution me	thod was perfo		_	
root roodaare.	emission levels		illou to dott		dottal ETT
	The following te	est procedure as	s below:		
	1>.Below 1GHz	test procedure			
		•		ntating table	e (0.8m for below
		1.5 meters for a			
					s to determine the
	· ·	the highest rad			
					rence-receiving
	antenna, v antenna to	vhich was mour ower	ited on the i	op or a van	able-neight
		-	ied from one	e meter to f	our meters above
					ne field strength.
		ontal and vertic measurement.	al polarizati	ons of the a	intenna are set to
			sion. the EU	T was arra	nged to its worst
	case and t	hen the antenn	a was tuned	I to heights	from 1 meter to 4
		d the rotable tal			legrees to 360
		ofind the maximeceiver system			Function and
		Bandwidth with			T diletion and
	6. If the emis	sion level of the	EUT in pea	ak mode wa	as 10dB lower than
		ecified, then te			
		ne EUT would i ve 10dB margin			the emissions that
					d and then reported
	in a data s		<u> </u>	,	-,
	2>.Above 1GHz	z test procedure) :		
		•		e,the EUT	shall be placed at
	the 0.8m sup	port on the turn	table and in		n closest to normal
	use as declar	ed by the provi	der.		
	2. The test ante	nna shall be or	iented initial	ly for vertic	al polarization and

- shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:

Below 1GHz

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Report No.: GTS201612000141F03 Above 1GHz < 3m >+ Test Antenna-< 1m ... 4m >+ EUT Tum Table <150cm> Receiver+ Preamplifier+ Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.2 for details Test results: **Pass**

Measurement Data:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
194.45	49.79	12.56	1.81	32.12	32.04	43.50	-11.46	Vertical
197.89	51.77	12.57	1.83	32.13	34.04	43.50	-9.46	Vertical
199.99	54.32	12.57	1.84	32.14	36.59	43.50	-6.91	Vertical
204.24	50.68	12.70	1.86	32.14	33.10	43.50	-10.40	Vertical
276.12	40.98	14.55	2.25	32.17	25.61	46.00	-20.39	Vertical
292.06	42.45	14.89	2.32	32.18	27.48	46.00	-18.52	Vertical
139.36	54.82	10.19	1.50	31.94	34.57	43.50	-8.93	Horizontal
143.83	55.55	10.22	1.53	31.96	35.34	43.50	-8.16	Horizontal
147.92	54.42	10.24	1.56	31.97	34.25	43.50	-9.25	Horizontal
150.01	52.69	10.26	1.57	31.98	32.54	43.50	-10.96	Horizontal
196.51	48.93	12.57	1.82	32.13	31.19	43.50	-12.31	Horizontal
198.59	49.16	12.57	1.83	32.14	31.42	43.50	-12.08	Horizontal

Report No.:	GTS201612000141F03
-------------	--------------------

Above 1GHz: 802.11a(HT20) 5180MHz

Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	polarization
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(ubu v/III)	(dB)	
10360	28.36	39.67	14.62	32.65	50.00	74	-24.00	Vertical
15540	29.41	38.6	17.66	34.46	51.21	74	-22.79	Vertical
10360	29.64	39.67	14.62	32.65	51.28	74	-22.72	Horizontal
15540	30.43	38.6	17.66	34.46	52.23	74	-21.77	Horizontal

802.11a(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	27.68	39.75	14.63	32.71	49.35	74	-24.65	Vertical
15600	26.83	38.33	17.67	34.17	48.66	74	-25.34	Vertical
10400	28.96	39.75	14.63	32.71	50.63	74	-23.37	Horizontal
15600	29.72	38.33	17.67	34.17	51.55	74	-22.45	Horizontal

802.11a(HT20) 5240MHz

OZITIA(TTZ) OZIOMILE									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	26.39	39.82	14.68	32.86	48.03	74	-25.97	Vertical	
15720	28.98	38.09	17.73	33.66	51.14	74	-22.86	Vertical	
10480	28.85	39.82	14.68	32.86	50.49	74	-23.51	Horizontal	
15720	27.36	38.09	17.73	33.66	49.52	74	-24.48	Horizontal	

802.11n(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	29.33	39.67	14.62	32.65	50.97	74	-23.03	Vertical
15540	27.52	38.60	17.66	34.46	49.32	74	-24.68	Vertical
10360	27.81	39.67	14.62	32.65	49.45	74	-24.55	Horizontal
15540	29.63	38.60	17.66	34.46	51.43	74	-22.57	Horizontal

802.11n(HT20) 5200MHz

•	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	27.64	39.75	14.63	32.71	49.31	74	-24.69	Vertical
15600	26.53	38.33	17.67	34.17	48.36	74	-25.64	Vertical
10400	25.82	39.75	14.63	32.71	47.49	74	-26.51	Horizontal
15600	26.71	38.33	17.67	34.17	48.54	74	-25.46	Horizontal

802.11n(HT20) 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	26.67	39.82	14.68	32.86	48.31	74	-25.69	Vertical
15720	25.83	38.09	17.73	33.66	47.99	74	-26.01	Vertical
10480	26.05	39.82	14.68	32.86	47.69	74	-26.31	Horizontal
15720	27.13	38.09	17.73	33.66	49.29	74	-24.71	Horizontal

802.11n(HT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	25.33	39.71	14.63	32.68	46.99	74	-27.01	Vertical
15570	26.04	38.46	17.67	34.32	47.85	74	-26.15	Vertical
10380	26.28	39.71	14.63	32.68	47.94	74	-26.06	Horizontal
15570	27.83	38.46	17.67	34.32	49.64	74	-24.36	Horizontal

802.11n(HT40) 5230MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	26.73	39.82	14.66	32.80	48.41	74	-25.59	Vertical
15690	26.42	38.09	17.71	33.81	48.41	74	-25.59	Vertical
10460	27.15	39.82	14.66	32.80	48.83	74	-25.17	Horizontal
15690	28.43	38.09	17.71	33.81	50.42	74	-23.58	Horizontal

5.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data:

Report No.: GTS201612000141F03

Frequency stability versus Temp.									
		•	wer Supply: DC 3.7V	•					
T	Operating	0 minute	2 minute	5 minute	10 minute				
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured				
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5179.9833	5179.9841	5179.9853	5179.9861				
-30	5200	5199.9838	5199.9845	5199.9858	5199.9865				
-30	5220	5219.9842	5219.9850	5219.9862	5219.9869				
	5240	5239.9847	5239.9854	5239.9866	5239.9873				
	5180	5179.9851	5179.9859	5179.9870	5179.9876				
-20	5200	5199.9856	5199.9863	5199.9874	5199.9880				
-20	5220	5219.9860	5219.9867	5219.9877	5219.9883				
	5240	5239.9864	5239.9871	5239.9881	5239.9887				
	5180	5179.9868	5179.9874	5179.9884	5179.9890				
40	5200	5199.9872	5199.9878	5199.9888	5199.9893				
-10	5220	5219.9876	5219.9882	5219.9891	5219.9896				
	5240	5239.9879	5239.9885	5239.9894	5239.9899				
	5180	5179.9838	5179.9845	5179.9858	5179.9865				
0	5200	5199.9842	5199.9850	5199.9862	5199.9869				
0	5220	5219.9847	5219.9854	5219.9866	5219.9873				
	5240	5239.9851	5239.9858	5239.9870	5239.9876				
	5180	5179.9856	5179.9863	5179.9873	5179.9880				
40	5200	5199.9860	5199.9867	5199.9877	5199.9883				
10	5220	5219.9864	5219.9870	5219.9881	5219.9887				
	5240	5239.9868	5239.9874	5239.9884	5239.9890				
	5180	5179.9872	5179.9878	5179.9888	5179.9893				
20	5200	5199.9876	5199.9881	5199.9891	5199.9896				
20	5220	5219.9879	5219.9885	5219.9894	5219.9899				
	5240	5239.9883	5239.9888	5239.9897	5239.9902				
	5180	5179.9831	5179.9839	5179.9852	5179.9859				
20	5200	5199.9836	5199.9844	5199.9856	5199.9864				
30	5220	5219.9841	5219.9849	5219.9860	5219.9868				
	5240	5239.9846	5239.9853	5239.9865	5239.9871				
	5180	5179.9850	5179.9857	5179.9868	5179.9875				
40	5200	5199.9854	5199.9861	5199.9872	5199.9879				
40	5220	5219.9859	5219.9865	5219.9876	5219.9882				
	5240	5239.9863	5239.9869	5239.9880	5239.9886				
	5180	5179.9867	5179.9873	5179.9883	5179.9889				
50	5200	5199.9871	5199.9877	5199.9887	5199.9892				
50	5220	5219.9874	5219.9880	5219.9890	5219.9895				
	5240	5239.9878	5239.9884	5239.9893	5239.9898				

F_L=5179.9833MHz; F_H=5239.9902MHz

	Frequency stability versus Voltage									
Temperature: 25°C										
Power	Operating	0 minute	2 minute	5 minute	10 minute					
Supply (VDC)	Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)					
	5180	5179.9843	5179.9851	5179.9863	5179.9869					
0.0	5200	5199.9846	5199.9854	5199.9865	5199.9872					
3.3	5220	5219.9849	5219.9857	5219.9868	5219.9875					
	5240	5239.9852	5239.9859	5239.9870	5239.9877					
	5180	5179.9855	5179.9862	5179.9873	5179.9879					
2.7	5200	5199.9858	5199.9865	5199.9875	5199.9882					
3.7	5220	5219.9861	5219.9867	5219.9878	5219.9884					
	5240	5239.9864	5239.9870	5239.9880	5239.9886					
	5180	5179.9866	5179.9873	5179.9883	5179.9889					
4.1	5200	5199.9869	5199.9875	5199.9885	5199.9891					
4.1	5220	5219.9871	5219.9878	5219.9887	5219.9893					
	5240	5239.9874	5239.9880	5239.9889	5239.9895					

F_L=5179.9843MHz;F_H=5239.9895MHz

6 Test Setup Photo

Radiated Emission

Conducted Emission

7 EUT Constructional Details

Reference to the test report No. GTS201612000141F01

---END---