

amanhussain0175@gmail.com github.com/amanh-iitj linkedin.com/in/aman-hussain1997/

EDUCATION

Degree/Certificate	${\bf Institute/Board}$	CGPA/Percentage	Year
M.Tech.	Indian Institute of Technology, Jodhpur, Rajasthan	8.27	2023-2025
B.Tech.	Barak Valley Engineering College, Karimganj, Assam	79.09%	2017-2021
Senior Secondary	AHSEC Board	78.8%	2016
Secondary	SEBA Board	83.3%	2014

PROJECTS

• Design of In-Memory Multi-Bit Multiplication and Accumulation for Neural Network Acceleration

Associated with IIT Jodhpur, Rajasthan

Github

- Outline: The novel in-memory MAC design integrated into a 6T SRAM array offers a promising solution for neural network acceleration, with scope for future enhancements in accuracy and adaptability through linearity and transistor optimization. This work is carried out using Cadence Virtuoso.
- System Verilog FIFO Design and Constrained Random Verification with Scoreboard and Monitor

 Associated with IIT Jodhpur, Rajasthan
 - Outline: This project implements and verifies an 8-bit, 16-depth FIFO using SystemVerilog with constrained-random verification on EDA Playground. The testbench consists of Transaction, Generator, Driver, Monitor, Scoreboard, and Environment, using a mailbox for communication. The simulation ensures correct FIFO functionality by validating write/read operations, handling full/empty conditions, and detecting errors using a scoreboard.
- Design and Verification of APB Protocol-Based Communication System Using Verilog Associated with IIT Jodhpur, Rajasthan

Github

- Outline: This project focuses on the design and simulation of the AMBA APB (Advanced Peripheral Bus) protocol using Verilog HDL. The implementation includes modules for APB master, APB slave, and top-level integration. The design ensures proper read/write transactions, signal handshaking (psel, penable, pready), and address/data handling (paddr, pwdata, prdata) as per the APB specification.
- Physical Design Flow for RISC-V: A Case Study with PicoRV32A

Github

 $Associated\ with\ VLSI\ System\ Design,\ Bangalore$

 Outline: Completed ASIC flow from RTL to GDSII for PicoRV32A, including synthesis, place and route, and timing analysis. This work is carried out using Openlane flow.

TECHNICAL SKILLS

- -Programming Languages and Scripting: Verilog, System Verilog*, Shell scripting*
- -Tools: Xilinx Vivado, EDA Playground, Cadence Virtuoso, Openlane Flow, XSchem, NgSpice
- -Operating System: Windows, Linux

* Elementary proficiency

RELEVANT COURSEWORK AND CERTIFICATIONS

- -Digital VLSI Design, IIT Jodhpur
- -Digital ASIC Lab, IIT Jodhpur
- -Analog IC Design, IIT Jodhpur
- -Digital VLSI SoC Design and Planning, VLSI System Design
- -Static Timing Analysis 1, 2 by Kunal Ghosh, Udemy
- -In-memory Computing, IIT Jodhpur

Positions of Responsibility

-Sports Secretary: Students' Union, BVEC (Apr. 2019 - Apr. 2020)