Zadania kwalifikacyjne na WWW6

Równania i nierówności funkcyjne

Termin nadsyłania rozwiązań 15 VII 2010r.

1. Dana jest funkcja $g: \mathbb{R} \longrightarrow \mathbb{R}$ taka, że g(g(x)) = x dla każdego $x \in \mathbb{R}$. Znaleźć wszystkie funkcje $f: \mathbb{R} \longrightarrow \mathbb{R}$ spełniające równanie

$$f(x) + \sqrt{2}f(g(x)) = x,$$

dla wszystkich $x \in \mathbb{R}$.

2. Udowodnić, że nie istnieje funkcja $f\colon [-2010,2010] \longrightarrow [-2010,2010]$ spełniająca

$$f(f(x)) - f(x) \ge \frac{1}{2010},$$

dla dowolnego $x \in [-2010, 2010]$.

3. Znaleźć wszystkie funkcje $g: \mathbb{R} \longrightarrow \mathbb{R}$ spełniające nierówność

$$g(xy) + g(yz) + g(y)g(zx) \leqslant -1,$$

dla dowolnych $x, y, z \in \mathbb{R}$.

4. Znaleźć wszystkie funkcje $f\colon [0,1] \longrightarrow [0,1]$ różnowartościowe i spełniające równanie

$$f(2x - f(x)) = x,$$

dla każdego $x \in [0, 1]$.

5. Rozstrzygnąć czy istnieje funkcja $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ taka, że f(f(x)) = x + 1, dla każdej liczby całkowitej x. Odpowiedź uzasadnić.

6. Niech funkcja $f: \mathbb{R} \longrightarrow \mathbb{R}$ spełnia dla wszytkich $a, b, c \in \mathbb{R}$ równanie

$$f(a + f(b+c)) + f(b + f(c+a)) + f(c + f(a+b)) = 0.$$

Znaleźć wszystkie możliwe wartości f(0).

7. Znaleź wszystkie funkcje $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ spełniające równanie

$$xf(x) - yf(y) = (x - y)f(x + y),$$

dla dowolnych $x, y \in \mathbb{R}$.

8. Zbadać czy istnieje funkcja f ze zbioru liczb rzeczywistych, nieujemna i różna od stałej, spełniająca dla dowolnych $x,y\in\mathbb{R}$ nierówność

a)
$$f(x) + f(y) \le 2\sqrt{f(x)f(y)}$$
,

b)
$$f(x) + f(y) \ge 2\sqrt{f(x)f(y)}$$
.

Odpowiedź w każdym z podpunktów uzasadnić.

Uwaga 1. Z oznacza zbiór liczb całkowitych.

Uwaga 2. Pewnie nie trzeba rozwiązać wszystkich zadań, żeby się zakwalifikować. Jest ich dużo, aby było z czego wybierać.

Uwaga 3. W razie jakichkolwiek pytań, proszę pytać mailowo.

Uwaga 4. Życzę miłej zabawy z zadankami.