1 propositional logic

a proposition is a precise statement that is either true (\top) or false (\bot) , but not both, for example:

- 2 + 2 = 4 (true)
- all dogs have 3 legs (false)
- $x^2 < 0$ (false)

however, not all statements are propositions. for example:

- eliana is cool
 - ► *cool* is a subjective term.
- $x^3 < 0$
 - true if x < 0, false otherwise.
- springfield is the capital
 - true in illinois, false in massachusetts.

1.1 logical connectives

$1.1.1 \neg negation$

the negation (or not) of a proposition is true iff the proposition is false.

- $\neg \bot = \top$
- $\neg T = \bot$

$1.1.2 \land conjunction$

the *conjunction* (or *and*) of two propositions is true *iff* **both** propositions are true.

- $\top \wedge \top = \top$
- $\top \wedge \bot = \bot$
- $\bot \land \top = \bot$
- $\bot \land \bot = \bot$

$1.1.3 \lor disjunction$

the disjunction (or or) of two propositions is true iff at least one proposition is true.

- $\top \lor \top = \top$
- $\top \lor \bot = \top$
- $\bot \lor \top = \top$
- $\bot \lor \bot = \bot$

$1.1.4 \oplus$ exclusive disjunction

the *exclusive disjunction* (or *xor*) of two propositions is true *iff* **exactly one** proposition is true.

- $\top \oplus \top = \bot$
- $\top \oplus \bot = \top$
- $\bot \oplus \top = \top$
- $\bot \oplus \bot = \bot$

1.1.5 ightarrow implication

the *implication* $p \to q$ is false if p is true, and q is false $p \to q$ is true otherwise. hint: p is called the *hypothesis*, and q is called the *conclusion*.

- $\top \rightarrow \top = \top$
- $\top \rightarrow \bot = \bot$
- $\bot \to \top = \top$
- $\bot \to \bot = \top$

$1.1.6 \leftrightarrow biconditional$

the *biconditional* $p \leftrightarrow q$ is true iff p and q assume the same truth value.

- $\bullet \quad \top \leftrightarrow \top = \top$
- $\top \leftrightarrow \bot = \bot$
- $\bot \leftrightarrow \top = \bot$
- $\bot \leftrightarrow \bot = \top$

1.2 logic operators order

- 1. \neg negation
 - $\neg q \lor r$ means $(\neg q) \lor r$, not $\neg (q \lor r)$
- 2. \land conjunction
- 3. V disjunction
 - $q \wedge r \vee s$ means $(q \wedge r) \vee s$, not $q \wedge (r \vee s)$
- 4. \rightarrow implication
 - $q \wedge r \rightarrow s$ means $(q \wedge r) \rightarrow s$, not $q \wedge (r \rightarrow s)$
- $5. \leftrightarrow biconditional$

1.3 other conditional statements

given an implication $p \to q$:

- $\neg p \rightarrow \neg q$ is its inverse
- $q \rightarrow p$ is its converse
- $\neg q \rightarrow \neg p$ is its contrapositive

1.4 plain words

we can also translate sentences from plain english into propositions. here are some common patterns to memorize:

(remember that p is called the *hypothesis*, and q is called the *conclusion*.)

- $q \text{ if } p \equiv p \rightarrow q$
- if p, then $q \equiv p \rightarrow q$
- p only if $q \equiv p \rightarrow q$
- p if and only if $q \equiv p \leftrightarrow q$
- neither p nor $q \equiv \neg p \land \neg q = \neg (p \lor q)$
- p unless $q \equiv \neg q \rightarrow p$

1.4.1 example 1

proposition: you can see an r-rated movie *only if* you are over 17 *or* you are accompanied by your legal guardian.

let:

- $r \equiv \text{you can see an R-rated movie}$
- $o \equiv \text{you are over } 17$
- $a \equiv \text{you}$ are accompanied by your legal guardian

$$r \to (o \lor a)$$

1.4.2 example 2

proposition: you can have free coffee *if* you are a senior citizen *and* it is a tuesday.

let:

- $c \equiv \text{you can have free coffee}$
- $s \equiv \text{you are a senior citizen}$
- $t \equiv \text{it is a tuesday}$

$$(s \wedge t) \to c$$

1.4.3 example 3

proposition: if you are under 17 and are not accompanied by your legal guardian, then you cannot see the r-rated movie.

we can reuse our definitions from example 1:

- $r \equiv \text{you can see an R-rated movie}$
- $o \equiv \text{you are over } 17$
- $a \equiv \text{you are accompanied by your legal guardian}$

$$\boxed{(\neg o \land \neg a) \to \neg r}$$

this is the *contrapositive* of example 1: we swapped both sides and negated them both.

1.4.4 example for conditional statements

remember in 1.3 where we talked about other conditional statements such as *inverse*, *converse*, and *contrapositive*? we can also translate those into plain words.

take the proposition $p \to q$ that:

"if it is raining, then the flowers are watered."

the converse $(q \to p)$ of that would be:

"if the flowers are watered, then it is raining."

the inverse $(\neg p \rightarrow \neg q)$ would be:

"if it is not raining, then the flowers are not watered."

and finally, the *contrapositive* $(\neg q \rightarrow \neg p)$ would be:

"if the flowers are not watered, then it is not raining."

you might notice that the *contrapositive* is the only proposition that is logically equivalent to our original statement $p \to q$, you can find the truth table comparison below in 1.5.1.

1.5 activities

1.5.1 two propositions

show that an implication $p \to q$ and its $contrapositive \neg q \to \neg p$ always have the same value.

p,q	$\neg q, \neg p$	p o q	$\neg q \rightarrow \neg p$	$(p \to q) \leftrightarrow (\neg q \to p)$
ТТ	\perp \perp	Т	Т	Т
Т⊥	Т⊥	上	上	Τ
\perp \perp	⊥ ⊤	Т	Т	Τ
\Box	ТТ	Т	Т	Τ

1.5.2 complex example 1

construct a truth table for $(p \land q) \rightarrow \neg r$.

p,q,r	$p \wedge q$	eg r	$(p \land q) \to \neg r$
\top \top \top	Т	\perp	\perp
\top \top \bot	Т	Τ	T
$\top \bot \top$	Τ		Τ
$\top \bot \bot$	工	Τ	Τ
\bot \top \top	上		Τ
1 十 1	Τ	Т	Τ
\bot \bot \top			Τ
$\perp \perp \perp \perp$	Τ	Т	T

1.6 complex example 2

construct a truth table for $p \land (\neg q \lor r) \to r$.

p,q,r	$\neg q$	$\neg q \lor r$	$p \wedge (\neg q \vee r)$	$\begin{array}{c} p \wedge (\neg q \vee \\ r) \rightarrow r \end{array}$
TTT	上	Т	Τ	Т
\top \top \bot	上	上	上	Т
$\top \perp \top$	Т	Т	Τ	Т
$\top \bot \bot$	Т	Т	Т	
$\top \bot \bot$	上	Т	上	Т

p,q,r	$\neg q$	$\neg q \lor r$	$p \wedge (\neg q \vee r)$	$\begin{array}{c} p \wedge (\neg q \vee \\ r) \rightarrow r \end{array}$
$\top \bot \top$	\perp		上	Т
\bot \bot \top	Т	Т		Т
\bot \bot \bot	Τ	Т		Τ

1.6.1 plain words activity 1

proposition: you get a free salad only if you order off the extended menu and it is a wednesday.

let:

- $s \equiv \text{you can get free salad}$
- $e \equiv \text{you order off the extended menu}$
- $w \equiv \text{it is a wednesday}$

$$s \to (e \land w)$$

1.6.2 plain words activity 2

proposition: if it is raining and today is saturday, then you will either play video games or watch a movie

let:

- $r \equiv \text{it is raining}$
- $s \equiv \text{today}$ is saturday
- $g \equiv$ you will play video games
- $m \equiv \text{you will watch a movie}$

$$(r \wedge s) \to (g \vee m)$$