Hoja 1 – Introducción al Cálculo de Probabilidades

- **1.-** Dados el conjunto $B \subset \Omega$ y las sucesiones $\{A_n : n \geq 1\} \subset \mathcal{P}(\Omega)$ y $\{B_n : n \geq 1\} \subset \mathcal{P}(\Omega)$, se pide
- (1.a) Demostar la igualdad $\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.
- **(1.b)** Si $A_n \downarrow$, demostrar que existe $\lim_{n\to\infty} A_n$ y que $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.
- (1.c) Demostrar que $\limsup A_n = \limsup A_{2n} \cup \limsup A_{2n-1}$ y $\liminf A_n = \liminf A_{2n-1}$.
- (1.d) Demostrar que $\limsup (B A_n) = B \liminf A_n$ y $\liminf (B A_n) = B \limsup A_n$.
- (1.e) Demostrar que $(\limsup A_n)^c = \liminf A_n^c$ y $(\liminf A_n)^c = \limsup A_n^c$.
- (1.f) Demostrar que $\limsup (A_n \cup B_n) = \limsup A_n \cup \limsup B_n$ y $\liminf (A_n \cap B_n) = \liminf A_n \cap \liminf B_n$.
- **2.-** Determinar los límites inferiores y superiores de $\{A_n : n \ge 1\}$ cuando:

(2.a)
$$A_{2n-1} = \mathbb{Q} \cap \left[\frac{1}{n}, \frac{5n}{2n+2}\right] \text{ y } A_{2n} = (\mathbb{R} - \mathbb{Q}) \cap \left(-\frac{2}{n}, \frac{7n+3}{9n}\right].$$

(2.b)
$$A_{3n-2} = \left(\frac{n-1}{5n+3}, \frac{2n-1}{n}\right], A_{3n-1} = \left(\frac{3n}{5n+1}, \frac{3n+2}{n}\right) \text{ y } A_{3n} = \left[1, \frac{2n^2+1}{n+2}\right].$$

(2.c)
$$A_n = \{x \in \mathbb{R} / \frac{1}{n} \le x \le 3 - \frac{1}{n} \}.$$

3.- Supongamos $\Omega = \mathbb{R}^2$. Calcular los conjuntos $\lim_{n\to\infty} E_n$, $\lim_{n\to\infty} E_n^c$, $\lim_{n\to\infty} F_n^c$ y $\lim_{n\to\infty} (E_n \cap F_n^c)$, donde

$$E_n = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1 + \frac{1}{n} \right\},$$

$$F_n = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \le \frac{n}{n+1} \right\}.$$

4.- Calcular $\lim_{n\to\infty} A_n$ en los siguientes casos:

(4.a)
$$A_n = \{(x,y) \in \mathbb{R}^2 : \frac{1}{n} \le x^2 + y^2 \le 4 - \frac{1}{n}\}.$$

(4.b)
$$A_n = \{(x,y) \in \mathbb{R}^2 : 0 \le x^2 + y^2 \le \frac{1}{n}\}.$$

5.- Estudiar la convergencia de la sucesión $\{A_n:n\geq 1\}\subset \mathcal{P}(\Omega)$ en los siguientes casos:

(5.a)
$$A_n = \left(-\frac{1}{n}, 1\right]$$
 si n es par, y $\left(-1, \frac{1}{n}\right]$ si n es impar.

(5.b)
$$A_n = (0, 1 - \frac{1}{n}]$$
 si n es impar, y $\left[\frac{1}{n}, 1\right)$ si n es par.