人工智能原理-作业7

Author: 夏弘宇 2023011004

T1

(1) 同步价值 迭代
$$V_{k+1}(s) = \max_{a \in A} (Y_s^a + Y_{s \in S}^a P_{s}^a, V_k(s))$$
 $V_1(A) = V_1(B) = V_1(c) = 4.$
 $V_2(A) = -8 + 0.5 \times 1 \times V_1(B) = -6$
 $V_2(B) = \max \{-2 + 0.5 \times 1 \times V_1(c), 2 + 0.5 \times 1 \times V_1(A)\} = 4$
 $V_2(C) = \max \{8 + 0.5 \times 1 \times V_1(B), 0.25 \times (4 + 0.5 \times 1 \times V_1(A)) + 0.75 \times (0 + 0.5 \times 1 \times V_1(C))\} = 10$
贪吃策略: $\pi_2(a = AE | S = A) = 1$
 $\pi_2(a = bc | s = B) = 0$
 $\pi_2(a = bc | s = B) = 0$
 $\pi_2(a = cb | s = C) = 0$
 $\pi_2(a = cb | s = C) = 0$

(2) 异步价值迭代

$$V(A) = -8 + o.5x | x V(B) = -b.$$
 $V(B) = \max \{-2 + o.5x | x V(C), 2 + o.5 * | x V(A)\} = 0$ (c)

 $V(C) = \max \{8 + o.5x | x V(B), o.25x (4 + o.5x | x V(A)) + o.7x (0 + o.5x | x V(C))\} = 8$ (b)

会证整: $\pi_2(Q = Qb | S = A) = |$
 $\pi_2(Q = Cb | S = C) = |$
 $\pi_2(Q = Cb | S = C) = |$
 $\pi_2(Q = Cb | S = C) = |$
 $\pi_2(Q = Cb | S = C) = |$

(1)
$$V_{\pi}(S) = I_{\alpha \in A} \pi(\alpha | S) \left(r_{S}^{\alpha} + r_{S}^{\alpha} = P_{SS'} V_{\pi}(S') \right)$$

$$V_{\pi}(A) = P_{AA} \left(R_{A} + V_{\pi}(AI) + P_{AB}(R_{B} + V_{\pi}(B)) \right)$$

$$V_{\pi}(B) = P_{BA} \left(R_{A} + V_{\pi}(AI) + P_{BL} \times O \right)$$
解得 $V_{\pi}(A) = -1$, $V_{\pi}(B) = +1$.

(2) 首次访问
$$V_A = \frac{1}{2} [(3+2-4+4-3)+(4+3-3)]=1$$

 $V_B = \frac{1}{2} [(-4+4-3)+(-2+3-3)]=-2.5$
每次访问 $V_A = \frac{1}{4} [1-1+2+3]=0.5$
 $V_B = \frac{1}{4} [-3-3-3-2]=-2.75$

(1) 财序差分 Vtn(St)=Vt(St)+ x(rtn+ rVt(Stn)-Vt(St))

		1-4			
	0	-0.75	0		
6	7	-0.5	0		
	0	0	0		

	4			
	0	-0.75	0	
	0	-2.70	10	
	0	0	D	
_			-	

	/		
0	27	10	7
0	-03	0	
0	0,5	0	
	-		

terminate

(2) SARSA算法 QtH(St, Qt)=Qt(St, Qt)+Xt(rt++ rqt(St, Qt+))-Qt(&qt))

$$4 \rightarrow 7 \rightarrow 6 \rightarrow 3 \rightarrow terminate$$

Q(4, F) \approx R + Q(7, $\frac{1}{2}$) Q(7, $\frac{1}{2}$) \leftarrow R + Q(6, $\frac{1}{2}$) Q(6, $\frac{1}{2}$) \leftarrow R + Q(3, $\frac{1}{2}$) Q(3, $\frac{1}{2}$) \leftarrow R.

_			. 27				
	1	2	3] 4	15	6	17
上	-4	-}	-1	-}	-4	-2	-4
友	-}	-}	-1	4	-2	-}	-}
下	-ψ	-}	-ψ	-}	-2	-}	-4
左	-}	-2	-3	-3	74	-}	-}
		•					4.