Boston University Questrom School of Business

MF793 - Fall 2021 Eric Jacquier

Filtering Methods for Time-Varying Volatility

- 1. Rolling vs. extending window estimators
- 2. Issues to address
 - o Sample size, horizon
 - Outliers and regime shifts
 - o Spurious memory
- 3. Risk Metrics Declining (EWMA) weights estimator
- 4. From block sampling to **realized volatility**: high frequency estimators
- 5. Recall the good news: Variance estimated more precisely with high frequency data

1. Rolling vs. extending window estimator

- Extending window estimator:
 - Use all available data at all times
 - Say we start at time t with **n available observations** from **t-n+1** to **t**
 - o Every period, we get one new observation, and we can **re-estimate**

t-n+1
$$t t+1$$
• Estimate at time t
$$mean m_t = \sum_{i=0}^{n-1} R_{t-i} / n$$

$$variance s^2_t = \sum_{i=0}^{n-1} (R_{t-i} - m_t)^2 / n$$

sample covariance $s_{AB,t}$ for series $R_{A,t-i}$ and $R_{B,t-i}$

• Re-estimate at time t+1
$$m_{t+1} = \sum_{i=0}^n R_{t+1-i} / (n+1)$$

$$s^2_{t+1}$$
 with one more observation

Rolling window estimator

- We decide on an arbitrary number n of observation, e.g.,
 5 years of monthly data
 1 or 2 years of weekly or daily data
- o Every period: add a new observation, remove the oldest, re-estimate
- => We keep the window length n constant

Rolling window length n

```
at t: uses observations [t-n+1, \dots, t] at t+1: uses observations [t-n+2, \dots, t+1]
```

• Note the **overlapping observations** from one estimate to the next ones

- Extending window estimator consistent with:
 - Underlying belief: parameter estimated is constant
 Old observations remain useful
 - o more observations => higher precision
- Rolling window estimator consistent with:
 - Underlying belief: parameter varies with time
 => older observations are less relevant
 "parameter has changed, we remove old data as time goes"
 - Little guidance on window size apart from common practice
 - σ : up to 1 year of daily data
 - β: 5 years of monthly data 1 or 2 years of weekly or daily data
- Rolling or Extending? The usual dilemma
 - o Rolling: less precise but more robust
 - Extending: more precise (if correct) but less robust (if wrong),
 misspecification risk

2 Three issues (example with estimating std. dev.)

• Outliers (extreme data): e.g. st around Oct 19, 1987?

Outliers come in an out of estimation window abruptly, filter has unrealistic patterns

• **Regime shifts** in true variance: Durable change in true volatility ...

Filter does not incorporate regime shifts quickly, they come in slowly (linearly)

• Spurious Memory:

Overlapping moving window creates unwanted memory from one estimate to the next ones

$$s^{2}_{t} = \sum_{i=0}^{n-1} (R_{t-i} - m)^{2} / n$$
 returns used: $[t-n+1, \dots, t]$ $t+1$
$$s^{2}_{t+k} = \sum (R_{t-i+k} - m)^{2} / n$$
 returns used: $[t+k-n+1, \dots, t+k]$ $n-k$ common terms with s^{2}_{t}
$$s^{2}_{t+n} = \sum (R_{t-i+n} - m)^{2} / n$$
 returns used: $[t+n-n+1, \dots, t+n]$: no common term

- => Causes a spurious linearly declining autocorrelation structure up to lag n even if the true variance is not autocorrelated or is constant.
- => One can't use ACF up to lag n to conclude on the time series process of the true σ_t ... because of the spurious autocorrelation in s_t .

Spurious memory affects all overlapping estimators

3 Risk Metrics: a filter better adapted to heteroskedasticity

• RM uses declining weights

$$s^{2}_{t} = \sum_{i=0}^{n-1} (R_{t-i} - m_{t-i})^{2} (w_{i} / \Sigma w_{i}), \quad w_{i} = \lambda^{i}, \quad 0 < \lambda < 1 \quad \text{e.g., 0.9, 0.81, ...}$$

• No need for an arbitrary finite window

$$5+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}-\frac{1}{2}\right)$$

 \circ Σw_i = 1 + λ + λ ² + ... + λ ⁿ⁻¹ = (1- λ ⁿ)/(1- λ) Weights must sum to 1 for correct scaling

$$o$$
 n → ∞: Σ w_i = 1 / (1- λ) since λ <1

- Precision:
 - Equal weights most precise if data is homoskedastic (has constant variance)
 - Equal weights less precise if volatility changes with time.

• Easy updating rule:

$$s_{t}^{2} = \lambda s_{t-1}^{2} + (1-\lambda) (R_{t} - m_{t})^{2}$$

Let $r_t = R_t - m_t$

$$s_{t}^{2} = (r_{t}^{2} + \lambda r_{t-1}^{2} + \lambda^{2} r_{t-2}^{2} +) (1-\lambda)$$

$$s^{2}_{t-1} = (r^{2}_{t-1} + \lambda r^{2}_{t-2} +)$$
 (1- λ) rewritten at t-1

• **Outliers:** Most effect right away λ (1- λ) $(r_{t-1})^2$ Then weight decays: $\lambda^2 (1-\lambda) (r_{t-2})^2$

• Regime shift: new regime taken into account faster since most recent observations have highest weights

4 Realized Volatility (Block Sampling)

- 1. Say we need estimates at a given frequency. Call it the *low* frequency.
- 2. Collect data at a frequency **higher** than the frequency needed daily if monthly is needed 5 minutes if daily is needed
- 3. Estimate σ_t for each low frequency period using the higher frequency data.

- Pros:
 - Outliers absorbed right away
 - o Regime shifts incorporated right away
 - \circ Subsequent estimates s_1 , s_2 , do not share common observations:

Block Sampling estimators have no spurious autocorrelation

• Added benefit valid for any estimator based on high frequency returns.

Recall: $V(x) = E(x^2) - [E(x)]^2$ The mean "shrinks" at the same rate as the variance.

For very high frequencies we can ignore the estimation of the mean

$$\mathbf{s^{2}_{t}} = \mathbf{n} \sum_{i=0}^{n-1} (R_{t-i/n} - \widehat{\mu}_{t})^{2} / n \approx \sum_{i=0}^{n-1} \mathbf{R^{2}_{t-i/n}}$$

Why multiply by n?

Careful to understand the notation, we use the higher frequency returns Effectively, we compute the sample mean of x^2 .

• Cons:

At ultra-high frequency, the financial data process becomes very complicated, ...

... Measurement errors, non-synchronous trading, prices not in equilibrium

Rule of thumb: Intervals no shorter than 5 minute even for liquid instruments

5 Recall volatility (2^{nd} moment) estimation: precision increases with data frequency

Recall Lecture Note 7, Aggregation and Precision, we did a t-test approach.

• Confidence interval from low frequency data:

$$\left[s_M - 1.96 \, \frac{s_M}{\sqrt{2T}} \, , \, s_M + 1.96 \, \frac{s_M}{\sqrt{2T}}\right]$$
 [1]

• Confidence interval from high frequency data (N points per low frequency interval):

$$\left[s_D - 1.96 \frac{s_D}{\sqrt{2TN}}, s_D + 1.96 \frac{s_D}{\sqrt{2TN}}\right]$$
 [2]

• Convert the high frequency interval [2] into low frequency to allow for comparison with [1].

Both lower and upper bounds in [2] are high frequency standard deviations: to be multiplied by \sqrt{N} for annualization into low frequency. [2] becomes

$$\left[s_M - 1.96 \frac{s_M}{\sqrt{2TN}}, s_M + 1.96 \frac{s_M}{\sqrt{2TN}}\right]$$
 [3]

Precision increases by \sqrt{N} when the sampling frequency increases by N