COMPUTAÇÃO GRÁFICA

Arquitetura da placa de vídeo

ARQUITETURA DO COMPUTADOR

PLACA MÃE

Notebook

Desktop

- A placa de vídeo funciona como um "computador secundário" que se comunica com seu "computador principal", normalmente pelo barramento PCI express, visto no slide anterior.
- A Graphical Processing Unit (GPU) foi criada inicialmente para renderizar componentes visuais em uma tela.
 - A utilização e avanço das placas foi posteriormente bastante expressivo por conta da indústria de jogos.
 - Se hoje temos carros dirigindo sozinho devemos muito à indústria de jogos.
 - Hoje as placas também são utilizadas para processamento de alto desempenho. Por conta de sua arquitetura, é possível rodar vários problemas de forma muito mais rápida do que na CPU convencional.

DIFERENÇAS ENTRE CPU E GPU

 Uma das principais diferenças claras e iniciais é a quantidade de núcleos em ambos os processadores e paradigmas:

DIFERENTES PARADIGMAS

 Na verdade, o paradigma de execução de código de ambas as plataformas também é totalmente diferente.

- CPU:
 - Multiple Instruction Multiple Data (MIMD);

- GPU:
 - Single Instruction Multiple Data (SIMD);

Fábrica (SIMD)

DIFERENTES PARADIGMAS

• MIMD:

- Específico para diversas aplicações (diferentes entre si);
- Precisa de mais memória;
- Precisa de mais de uma unidade de controle;

• SIMD:

- Não funciona bem com todas as aplicações;
- Apenas uma unidade de controle;
- Menos memória (apenas uma cópia do programa);

PLACA DE VIDEO

ARQUITETURA DA CPU

ARQUITETURA DA GPU

HIERARQUIA E MEMÓRIA DA GPU

COMPARAÇÃO DE MEMÓRIA

 Comparação genérica de estruturas de memória da CPU vs da GPU:

	CPU	GPU
Memory	6 - 64 GB	768 MB - 6 GB
Memory Bandwidth	24 - 32 GB/s	100 - 200 GB/s
L2 Cache	8 - 15 MB	512 - 768 kB
L1 Cache	256 - 512 kB	16 - 48 kB

• Quais fatores pesam na escolha de uma placa de vídeo?

- Quais fatores pesam na escolha de uma placa de vídeo?
 - Tudo conta, mas os mais importantes são:
 - Quantidade de stream processors (núcleos);
 - Tamanho das memórias (inclusive tamanho de memória compartilhada);
 - Nesse caso, quando a memória impacta mais?
 - Taxa de bits do barramento de memória (muitas vezes esquecida, mas tem um impacto brutal);
 - Geração da placa de vídeo (tecnologias mais recentes, por exemplo, ray tracing);
 - Float operations per second (flops);
 - Etc;

- Quais fatores pesam na escolha de uma placa de vídeo?
 - Tudo conta, mas os mais importantes são:
 - Quantidade de stream processors (núcleos);
 - Tamanho das memórias (inclusive tamanho de memória compartilhada);
 - Nesse caso, quando a memória impacta mais?
 - Resolução é o **principal fator** que impacta memória, principalmente em jogos;
 - Taxa de bits do barramento de memória (muitas vezes esquecida, mas tem um impacto brutal);
 - Geração da placa de vídeo (tecnologias mais recentes, por exemplo, ray tracing);
 - Float operations per second (flops);
 - Etc;

- O que são as seguintes linguagens?
 - OpenGL
 - OpenCL
 - CUDA
 - DirectX
 - Vulkan

- Linguagens de "desenhar gráfico":
 - OpenCL
 - DirectX
 - Vulkan
- Linguagens de programação de propósito geral (GPGPU):
 - CUDA
 - OpenCL