Math 122 A Homework 2

Piper Morris

January 2022

1 Problem 1

Prove $f: C \mathbb{R}^2 \to C \mathbb{R}^2$

a) Maps the line $x = a_0$ onto $u = a_0^2 - \frac{v^2}{4a_0^2}$

$$u = a_0^2 - y^2 \quad v = 2a_0$$
$$u = a_0^2 - (\frac{v}{2a_0})^2$$

where

$$y = \frac{v}{2a_0}$$

$$u = a_0^2 - \left(\frac{v^2}{4a_0^2}\right)$$

b) Maps the line $y=-b_0$ onto $u=-b_0^2+\frac{v^2}{4b_0^2}$

$$u = x^2 - b_0^2 \quad v = 2xb_0$$

$$u = (\frac{v}{2b_0})^2 - b_0^2 \ x = \frac{v}{2b_0}$$

$$u = \frac{v^2}{4b_0^2} - b_0^2$$

c) Maps the hyperbola $x^2 - y^2 = c_0$ onto the line $u = c_0$

$$u = x^2 - y^2$$

Plug in c_0 for u

$$x^2 - y^2 = c_0$$

d) Maps the hyperbola $xy = d_0$ onto the line $v = 2d_0$

$$v=2xy$$

$$\frac{v}{2} = xy$$

Plug in d_0 for xy

$$\frac{v}{2} = d_0$$

$$v = 2d_0$$

2 Problem 2

Prove that the function $f:C\text{-}0\to C$ defined as $\frac{1}{z}$ maps any line and any circle onto a line or a circle

Proof:

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$
$$u(x, y) = \frac{x}{x^2 + y^2}$$
$$v(x, y) = -\frac{y}{x^2 + y^2}$$

To show $\frac{1}{z}$ maps a circle on to a line:

$$\frac{1}{z} = \frac{1}{r}e^{-i\theta} = |z - 1| = 1$$
$$|z - 1| = |(x - 1) + iy|^2 = 1$$
$$(x - 1)^2 + y^2 = 1$$
$$x^2 - 2x + 1 + y^2 = 1$$
$$= x^2 + y^2 = 2x$$

So, $u = \frac{x}{2x} = \frac{1}{2}$ and $y = -\frac{y}{2x} = 0$ Which maps the line $x = \frac{1}{2}$

Now for mapping a line to a circle: Show $f(z)=\frac{1}{z}$ maps $x=c_0$ say, x=1, onto a circle, $(u-\frac{1}{2})^2+v^2=\frac{1}{4}$

$$u = \frac{1}{1+y^2} \quad v = -\frac{y}{1+y^2}$$
$$(u - \frac{1}{2})^2 = (\frac{1}{1+y^2})^2$$
$$= (\frac{1-y^2}{2+2y^2})^2$$
$$= \frac{1-2y^2+4y^2}{4(1+2y^2+y^4)}$$
$$v^2 = \frac{y^2}{1+2y^2+y^4} = \frac{4y^2}{1+2y^2+y^4}$$
$$(u - \frac{1}{2})^2 + v^2 = \frac{1+2y^2+y^2}{4(1+2y^2+y^4)} = \frac{1}{4}$$

Therefore, the line x=1 maps onto the circle $(u - \frac{1}{2})^2 + v^2 = \frac{1}{4}$

Problem 3 3

a) Prove $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

$$\lim_{z=x+iy\to 0} \frac{x-iy}{x+iy}$$

$$\lim_{y\to 0} \frac{x-i0}{x+i0} = 1$$

$$\lim_{x\to 0} \frac{0-iy}{0+iy} = -1$$

- $-1 \neq 1$ So the limit does not exist. b) Prove $\lim_{z \to 0} \frac{\overline{z}\overline{z}}{z} = 0$

$$\lim_{z \to 0} \frac{\overline{zz}}{z} = \lim_{z \to 0} \frac{(x - iy)^2}{x + iy}$$

$$\lim_{x \to 0} \frac{(x - iy)^2}{x + iy} = \frac{(0 - iy)^2}{iy + 0} = 0$$

$$\lim_{y \to 0} \frac{(x - iy)^2}{x + iy} = \frac{(x - 0)^2}{x + 0} = 0$$

Therefore, $\lim_{z\to 0} \frac{\overline{z}\overline{z}}{z} = 0$

Problem 4 4

Prove

$$\lim_{z \to w} z^n = w^n \ \forall n \in N$$

Proof: For the base case, let n=1. Then,

$$\lim_{z \to w} z = w \ \forall n \in N$$

Let $\epsilon > 0$. Choose some δ such that $\delta = \epsilon$. So,

$$0 < |z - w| < \delta$$

$$\rightarrow |w - z| < \delta| \leftrightarrow |w - z| < \epsilon$$

Therefore, the base case holds.

Now, for proof by induction, assume $\lim_{z\to w} z^n = w^n$ holds for n. We can use this to prove it also holds for n+1.

$$\lim_{z \to w} z^{n+1} = \lim_{z \to w} z^n \cdot z$$

$$= \lim_{z \to w} z^n \cdot \lim_{z \to w} z$$
$$= w^n \cdot w$$
$$= w^{n+1}$$

5 Problem 5

For any a,b,c,d $\in C$ with ad-bc $\neq 0$, define $T_A:C-\frac{d}{c}\to C$ if $c\neq 0,T_A:C\to C$ if c=0 with

$$T_A = \frac{az+b}{cz+b}$$

a) Prove if $c \neq 0$ then

$$\lim_{z \to \infty} T_A(z) = \frac{a}{c}, \lim_{z \to \frac{-d}{c}} T_A(z) = \infty$$

$$T_A(\frac{-d}{c}) = \infty \quad T_A(\infty) = \frac{a}{c}$$

b) Prove $T_A: C \bigcup \infty \to C \bigcup \infty$ is one to one.

$$\forall z, z' \in C - \frac{-d}{c}$$

, z does not equal z' $T_A(z)$ does not equal $T_A(z^\prime)$

$$\leftrightarrow \forall z, z' \in C - \frac{-d}{c}, \quad T_A(z) = T_A(z') \to z = z'$$

$$T_A(z) = T_A(z') \to \frac{az+b}{cz+d} = \frac{az'+b}{cz'+b}$$

$$\leftrightarrow (az+b)(cz'+b) = (az'+b)(cz+d)$$

$$\cdots$$

$$\leftrightarrow z = z'$$

c) $T_A^{-1} = T_{A^{-1}}$ I have no idea ahh!! //d)