Hugo Marquerie 14/03/2025

Todo espacio L^p es una espacio normado

Lema 1. Sea (X, Σ, μ) un espacio de medida $y p \in [1, \infty]$

 $\implies L^p := \mathcal{L}^p \big/\!\! \sim \ es \ un \ espacio \ vectorial \ normado \ con \ la \ norma \ p\text{-}\'esima \ \|\cdot\|_p$

donde $\forall f, g \in \mathcal{L}^p(\mu) : f \sim g \iff f = g \ c.t.p.$

Demostración: El Lem-esp-lp-vectorial/?? nos dice que $\mathcal{L}^p(\mu)$ es un espacio vectorial. Por lo tanto, L^p también lo es (con las operaciones bien definidas inducidas).

Basta comprobar las propiedades de la definición de norma:

(i)
$$\forall f \in L^p : ||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p} \ge 0 \wedge ||f||_p = 0 \iff f = 0 \text{ c.t.p.}$$

(ii)
$$\forall f \in L^p : \forall \lambda \in \mathbb{R} \text{ o } \mathbb{C} : \|\lambda f\|_p = \left(\int_X |\lambda f|^p \,\mathrm{d}\mu\right)^{1/p} = |\lambda| \left(\int_X |f|^p \,\mathrm{d}\mu\right)^{1/p} = |\lambda| \,\|f\|_p.$$

(iii)
$$\forall f, g \in L^p : \|f + g\|_p \leq \|f\|_p + \|g\|_p$$
.

Minkowski

Referenciado en

• Teo-esp-lp-banach