Problem Statement:

Implementing all models in the dataset.we have to predict which model is b est model for Dataset. Based on the accuracy.

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
```

Data Collection:

Data is collected from kaggle.for implementing all models.In this train dat aset contains 10683rows and 11 columns.In the test dataset contains 2671rows and 10columns

In [2]:

train_df=pd.read_csv(r"C:\Users\raja\Downloads\Data_Train.csv")
train_df

Out[2]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h
1	Air India	1/05/2019	Kolkata	Banglore	CCU IXR BBI BLR	05:50	13:15	7h
2	Jet Airways	9/06/2019	Delhi	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	
3	IndiGo	12/05/2019	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h
4	IndiGo	01/03/2019	Banglore	New Delhi	BLR → NAG → DEL	16:50	21:35	4h
10678	Air Asia	9/04/2019	Kolkata	Banglore	CCU → BLR	19:55	22:25	2h
10679	Air India	27/04/2019	Kolkata	Banglore	CCU → BLR	20:45	23:20	2h
10680	Jet Airways	27/04/2019	Banglore	Delhi	BLR → DEL	08:20	11:20	
10681	Vistara	01/03/2019	Banglore	New Delhi	BLR → DEL	11:30	14:10	2h
10682	Air India	9/05/2019	Delhi	Cochin	DEL → GOI → BOM → COK	10:55	19:15	8h
10683	rows × 1	1 columns						
4								•

In [3]:

test_df=pd.read_csv(r"C:\Users\raja\Downloads\Test_set.csv")
test_df

Out[3]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Durat
0	Jet Airways	6/06/2019	Delhi	Cochin	DEL → BOM → COK	17:30	04:25 07 Jun	10h 5
1	IndiGo	12/05/2019	Kolkata	Banglore	CCU → MAA → BLR	06:20	10:20	
2	Jet Airways	21/05/2019	Delhi	Cochin	DEL → BOM → COK	19:15	19:00 22 May	23h 4
3	Multiple carriers	21/05/2019	Delhi	Cochin	DEL → BOM → COK	08:00	21:00	
4	Air Asia	24/06/2019	Banglore	Delhi	BLR → DEL	23:55	02:45 25 Jun	2h 5
2666	Air India	6/06/2019	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ DEL \\ \to \\ BLR \end{array}$	20:30	20:25 07 Jun	23h 5
2667	IndiGo	27/03/2019	Kolkata	Banglore	CCU → BLR	14:20	16:55	2h 3
2668	Jet Airways	6/03/2019	Delhi	Cochin	DEL → BOM → COK	21:50	04:25 07 Mar	6h 3
2669	Air India	6/03/2019	Delhi	Cochin	DEL → BOM → COK	04:00	19:15	15h 1
2670	Multiple carriers	15/06/2019	Delhi	Cochin	DEL → BOM → COK	04:55	19:15	14h 2
2671 r	ows × 10) columns						
4								•

Data Cleaning and Preprocessing

In [4]:

train_df.head()

Out[4]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m
1	Air India	1/05/2019	Kolkata	Banglore	CCU IXR BBI BLR	05:50	13:15	7h 25m
2	Jet Airways	9/06/2019	Delhi	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	19h
3	IndiGo	12/05/2019	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h 25m
4	IndiGo	01/03/2019	Banglore	New Delhi	$\begin{array}{c} BLR \\ \to \\ NAG \\ \to \\ DEL \end{array}$	16:50	21:35	4h 45m
4								•

In [5]:

test_df.head()

Out[5]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration
0	Jet Airways	6/06/2019	Delhi	Cochin	DEL → BOM → COK	17:30	04:25 07 Jun	10h 55m
1	IndiGo	12/05/2019	Kolkata	Banglore	CCU → MAA → BLR	06:20	10:20	4h
2	Jet Airways	21/05/2019	Delhi	Cochin	DEL → BOM → COK	19:15	19:00 22 May	23h 45m
3	Multiple carriers	21/05/2019	Delhi	Cochin	DEL → BOM → COK	08:00	21:00	13h
4	Air Asia	24/06/2019	Banglore	Delhi	BLR → DEL	23:55	02:45 25 Jun	2h 50m
4								•

In [6]:

train_df.tail()

Out[6]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
10678	Air Asia	9/04/2019	Kolkata	Banglore	CCU → BLR	19:55	22:25	2h
10679	Air India	27/04/2019	Kolkata	Banglore	CCU → BLR	20:45	23:20	2h
10680	Jet Airways	27/04/2019	Banglore	Delhi	BLR → DEL	08:20	11:20	
10681	Vistara	01/03/2019	Banglore	New Delhi	BLR → DEL	11:30	14:10	2h
10682	Air India	9/05/2019	Delhi	Cochin	DEL GOI BOM COK	10:55	19:15	8h
4								•

In [7]:

test_df.tail()

Out[7]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratic
2666	Air India	6/06/2019	Kolkata	Banglore	CCU → DEL → BLR	20:30	20:25 07 Jun	23h 55
2667	IndiGo	27/03/2019	Kolkata	Banglore	CCU → BLR	14:20	16:55	2h 35
2668	Jet Airways	6/03/2019	Delhi	Cochin	DEL → BOM → COK	21:50	04:25 07 Mar	6h 35
2669	Air India	6/03/2019	Delhi	Cochin	DEL → BOM → COK	04:00	19:15	15h 15
2670	Multiple carriers	15/06/2019	Delhi	Cochin	DEL → BOM → COK	04:55	19:15	14h 20
4								•

In [8]:

train_df.describe()

Out[8]:

	Price
count	10683.000000
mean	9087.064121
std	4611.359167
min	1759.000000
25%	5277.000000
50%	8372.000000
75%	12373.000000
max	79512.000000

In [9]:

```
test_df.describe()
```

Out[9]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Dura
count	2671	2671	2671	2671	2671	2671	2671	2
unique	11	44	5	6	100	199	704	
top	Jet Airways	9/05/2019	Delhi	Cochin	DEL → BOM → COK	10:00	19:00	2h
freq	897	144	1145	1145	624	62	113	
4								•

In [10]:

train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Airline	10683 non-null	object
1	Date_of_Journey	10683 non-null	object
2	Source	10683 non-null	object
3	Destination	10683 non-null	object
4	Route	10682 non-null	object
5	Dep_Time	10683 non-null	object
6	Arrival_Time	10683 non-null	object
7	Duration	10683 non-null	object
8	Total_Stops	10682 non-null	object
9	Additional_Info	10683 non-null	object
10	Price	10683 non-null	int64

dtypes: int64(1), object(10)
memory usage: 918.2+ KB

```
In [11]:
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2671 entries, 0 to 2670
Data columns (total 10 columns):
     Column
                      Non-Null Count
                                      Dtype
                      -----
0
     Airline
                      2671 non-null
                                      object
 1
     Date_of_Journey 2671 non-null
                                      object
 2
     Source
                      2671 non-null
                                      object
 3
     Destination
                      2671 non-null
                                      object
 4
     Route
                      2671 non-null
                                      object
 5
     Dep_Time
                      2671 non-null
                                      object
 6
     Arrival_Time
                      2671 non-null
                                      object
 7
                      2671 non-null
     Duration
                                      object
 8
     Total_Stops
                      2671 non-null
                                      object
     Additional_Info 2671 non-null
                                      object
dtypes: object(10)
memory usage: 208.8+ KB
In [12]:
train_df.size
Out[12]:
117513
In [13]:
test_df.size
Out[13]:
26710
In [14]:
train_df.shape
Out[14]:
(10683, 11)
In [15]:
test_df.shape
Out[15]:
(2671, 10)
```

Exploratory Data Analysis

```
In [16]:
train_df.isnull().sum()
Out[16]:
Airline
                    0
Date_of_Journey
                    0
                    0
Source
Destination
                    0
Route
                    1
Dep_Time
                    0
Arrival_Time
                    0
Duration
                    0
                    1
Total Stops
Additional_Info
                    0
Price
dtype: int64
In [17]:
test_df.isnull().sum()
Out[17]:
Airline
                    0
Date_of_Journey
                    0
Source
                    0
Destination
                    0
                    0
Route
Dep_Time
                    0
Arrival_Time
                    0
Duration
                    0
Total_Stops
                    0
Additional_Info
                    0
dtype: int64
In [18]:
train_df.duplicated().sum()
Out[18]:
220
In [19]:
test_df.duplicated().sum()
Out[19]:
26
In [20]:
train_df.dropna(inplace=True)
```

In [21]:

```
train_df.isnull().sum()
```

Out[21]:

Airline 0 Date_of_Journey 0 Source 0 Destination 0 Route 0 Dep_Time 0 Arrival_Time 0 Duration 0 Total Stops 0 Additional_Info 0 Price dtype: int64

In [22]:

```
train_df['Airline'].value_counts()
```

Out[22]:

Airline Jet Airways 3849 IndiGo 2053 Air India 1751 Multiple carriers 1196 SpiceJet 818 Vistara 479 Air Asia 319 GoAir 194 Multiple carriers Premium economy 13 6 Jet Airways Business Vistara Premium economy 3 Trujet 1 Name: count, dtype: int64

In [23]:

```
train_df['Source'].value_counts()
```

Out[23]:

Source

Delhi 4536 Kolkata 2871 Banglore 2197 Mumbai 697 Chennai 381

Name: count, dtype: int64

In [24]:

```
train_df['Destination'].value_counts()
```

Out[24]:

Destination

Cochin 4536
Banglore 2871
Delhi 1265
New Delhi 932
Hyderabad 697
Kolkata 381

Name: count, dtype: int64

In [25]:

```
train_df['Total_Stops'].value_counts()
```

Out[25]:

Total_Stops

1 stop 5625 non-stop 3491 2 stops 1520 3 stops 45 4 stops 1

Name: count, dtype: int64

In [26]:

```
airline={"Airline":{"Jet Airways":0,"IndiGo":1,"Air India":2,"Multiple carriers":3,
    "SpiceJet":4,"Vistara":5,"Air Asia":6,"GoAir":7,
    "Multiple carriers Premium economy":8,
    "Jet Airways Business":9,"Vistara Premium economy":10,"Trujet":11}}
train_df=train_df.replace(airline)
train_df
```

Out[26]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Durat
0	1	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h f
1	2	1/05/2019	Kolkata	Banglore	CCU IXR BBI BLR	05:50	13:15	7h 2
2	0	9/06/2019	Delhi	Cochin	DEL	09:25	04:25 10 Jun	
3	1	12/05/2019	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h 2
4	1	01/03/2019	Banglore	New Delhi	$\begin{array}{c} BLR \\ \to \\ NAG \\ \to \\ DEL \end{array}$	16:50	21:35	4h
10678	6	9/04/2019	Kolkata	Banglore	CCU → BLR	19:55	22:25	2h 3
10679	2	27/04/2019	Kolkata	Banglore	CCU → BLR	20:45	23:20	2h 3
10680	0	27/04/2019	Banglore	Delhi	BLR → DEL	08:20	11:20	
10681	5	01/03/2019	Banglore	New Delhi	BLR → DEL	11:30	14:10	2h 4
10682	2	9/05/2019	Delhi	Cochin	DEL → GOI → BOM → COK	10:55	19:15	8h 2
10682 ו	rows × 1	1 columns						
4								•

In [27]:

```
city={"Source":{"Delhi":0,"Kolkata":1,"Banglore":2,
"Mumbai":3,"Chennai":4}}
train_df=train_df.replace(city)
train_df
```

Out[27]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	2	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	1	Banglore	CCU → IXR → BBI → BLR	05:50	13:15	7h 25
2	0	9/06/2019	0	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	1!
3	1	12/05/2019	1	Banglore	$\begin{array}{c} CCU \\ \to \\ NAG \\ \to \\ BLR \end{array}$	18:05	23:30	5h 2ŧ
4	1	01/03/2019	2	New Delhi	BLR → NAG → DEL	16:50	21:35	4h 45
10678	6	9/04/2019	1	Banglore	CCU → BLR	19:55	22:25	2h 30
10679	2	27/04/2019	1	Banglore	CCU → BLR	20:45	23:20	2h 35
10680	0	27/04/2019	2	Delhi	BLR → DEL	08:20	11:20	;
10681	5	01/03/2019	2	New Delhi	BLR → DEL	11:30	14:10	2h 40
10682	2	9/05/2019	0	Cochin	DEL → GOI → BOM → COK	10:55	19:15	8h 20

10682 rows × 11 columns

In [28]:

```
destination={"Destination":{"Cochin":0,"Banglore":1,"Delhi":2,
"New Delhi":3,"Hyderabad":4,"Kolkata":5}}
train_df=train_df.replace(destination)
train_df
```

Out[28]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	2	3	BLR → DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	1	1	CCU IXR BBI BLR	05:50	13:15	7h 2ŧ
2	0	9/06/2019	0	0	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	1!
3	1	12/05/2019	1	1	CCU → NAG → BLR	18:05	23:30	5h 25
4	1	01/03/2019	2	3	BLR → NAG → DEL	16:50	21:35	4h 45
10678	6	9/04/2019	1	1	CCU → BLR	19:55	22:25	2h 30
10679	2	27/04/2019	1	1	CCU → BLR	20:45	23:20	2h 35
10680	0	27/04/2019	2	2	BLR → DEL	08:20	11:20	;
10681	5	01/03/2019	2	3	BLR → DEL	11:30	14:10	2h 40
10682	2	9/05/2019	0	0	DEL → GOI → BOM → COK	10:55	19:15	8h 20

10682 rows × 11 columns

In [29]:

```
stops={"Total_Stops":{"non-stop":0,"1 stop":1,"2 stops":2,
"3 stops":3,"4 stops":4}}
train_df=train_df.replace(stops)
train_df
```

Out[29]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duratio
0	1	24/03/2019	2	3	BLR → DEL	22:20	01:10 22 Mar	2h 50
1	2	1/05/2019	1	1	CCU IXR BBI BLR	05:50	13:15	7h 25
2	0	9/06/2019	0	0	DEL	09:25	04:25 10 Jun	1!
3	1	12/05/2019	1	1	$\begin{array}{c} CCU \\ \to \\ NAG \\ \to \\ BLR \end{array}$	18:05	23:30	5h 25
4	1	01/03/2019	2	3	$\begin{array}{c} BLR \\ \to \\ NAG \\ \to \\ DEL \end{array}$	16:50	21:35	4h 45
10678	6	9/04/2019	1	1	CCU → BLR	19:55	22:25	2h 30
10679	2	27/04/2019	1	1	CCU → BLR	20:45	23:20	2h 35
10680	0	27/04/2019	2	2	BLR → DEL	08:20	11:20	;
10681	5	01/03/2019	2	3	BLR → DEL	11:30	14:10	2h 40
10682	2	9/05/2019	0	0	DEL GOI BOM COK	10:55	19:15	8h 2C

10682 rows × 11 columns

→

Data visualization

In [30]:

```
import seaborn as sns
df=train_df[['Airline','Source','Destination','Total_Stops','Price']]
sns.heatmap(df.corr(),annot=True)
```

Out[30]:

<Axes: >

Data Modelling

Linear Regression

In [31]:

```
x=df[['Airline','Source','Destination','Total_Stops']]
y=df['Price']
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
```

In [32]:

```
#Data prediction and Evaluation
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X_train,y_train)
print(regr.intercept_)
coeff_df=pd.DataFrame(regr.coef_,x.columns,columns=['coefficient'])
coeff_df
```

7211.098088897488

Out[32]:

Airline -418.483922 Source -3275.073380 Destination 2505.480291 Total_Stops 3541.798053

In [33]:

```
score=regr.score(X_test,y_test)
print(score)
```

In [34]:

```
predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)
```

Out[34]:

<matplotlib.collections.PathCollection at 0x25a4e13bdf0>

In [35]:

```
x=np.array(df['Price']).reshape(-1,1)
y=np.array(df['Total_Stops']).reshape(-1,1)
df.dropna(inplace=True)
```

C:\Users\raja\AppData\Local\Temp\ipykernel_13156\2340303250.py:3: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [36]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
```

Out[36]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [37]:

```
y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='g')
plt.plot(X_test,y_pred,color='b')
plt.show()
```


Logistic Regression

```
In [38]:
```

```
x=np.array(df['Price']).reshape(-1,1)
y=np.array(df['Total_Stops']).reshape(-1,1)
df.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(max_iter=10000)
import warnings
warnings.simplefilter(action='ignore')
```

C:\Users\raja\AppData\Local\Temp\ipykernel_13156\1264944960.py:3: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [39]:
```

```
lr.fit(x_train,y_train)
```

Out[39]:

LogisticRegression(max_iter=10000)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [40]:

```
score=lr.score(x_test,y_test)
print(score)
```

In [41]:

```
sns.regplot(x=x,y=y,data=df,logistic=True,ci=None)
```

Out[41]:

<Axes: >

Decision Tree

In [42]:

```
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier(random_state=0)
clf.fit(x_train,y_train)
```

Out[42]:

DecisionTreeClassifier(random_state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [43]:

```
score=clf.score(x_test,y_test)
print(score)
```

Random Forest

In [44]:

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(X_train,y_train)
```

Out[44]:

RandomForestClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [45]:

```
params={'max_depth':[2,3,5,10,20],
'min_samples_leaf':[5,10,20,50,100,200],
'n_estimators':[10,25,30,50,100,200]}
```

In [46]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
grid_search.fit(X_train,y_train)
```

Out[46]:

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [47]:
```

```
grid_search.best_score_
```

Out[47]:

In [48]:

```
rf_best=grid_search.best_estimator_
rf_best
```

Out[48]:

RandomForestClassifier(max_depth=3, min_samples_leaf=5, n_estimators=10)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [49]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],class_names=['0','1','2','3','4'],filled=True);
```


In [50]:

```
score=rfc.score(x_test,y_test)
print(score)
```

0.4414976599063963

Conclusion:

In the Flight Price Prediction dataset we have to find best model.after appl ying all models Decision Tree is the best model because the dataset got 93% accuracy. In Linear Regression 41% accuracy, In Logistic Regression 71% accuracy, In Random Forest 48% accuracy.

By Implementing all models in this dataset.we conclude Decision Tree is the b est model for Flight Price Prediction dataset.Because it got high accuracy.