Mateusz Bartnicki, grupa nr 3 środa 16:45-18:15

Metody obliczeniowe w nauce i technice, ćwiczenie 7 - 05.06.2024 r.

Rozwiązywanie układów równań liniowych metodami iteracyjnymi

1. Opis ćwiczenia

Ćwiczenie to składa się z 2 zadań.

Pierwsze zadanie polega na utworzeniu macierzy A zadanej wzorem:

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{m}{n-i-j+0.5} \ dla \ i \neq j \end{cases}$$
 i, j = 1, 2, ..., n (w moim przypadku k = 11, m = 2)

Następnie, zakładam wektor \mathbf{x} jako znany, jest on dowolną n-elementową permutację ze zbioru {1, -1}. W moim przypadku jest to wektor [1, -1, 1, -1, ...]. Na tej podstawie obliczam wektor \mathbf{b} (wyliczam to z równania postaci $\mathbf{A}\mathbf{x} = \mathbf{b}$). Gdy mam już wyliczony wektor \mathbf{b} , "zapominam" o znajomości wektora \mathbf{x} i próbuję go wyliczyć rozwiązując równanie tej samej postaci korzystając z metody Jacobiego.

Drugie zadanie polega na zbadaniu zbieżności metody dla zadanego układu, czyli wyznaczeniu promienia spektralnego macierzy iteracji.

2. Dane techniczne

Program został napisany przy użyciu języka Python (3.10.12) z wykorzystaniem bibliotek numpy oraz matplotlib. Ćwiczenie zostało wykonane na WSL (Windows Subsystem for Linux) - Ubuntu 22.04.3 LTS na procesorze Intel Core i5-11400H 2.70GHz. Całe zadanie było przeprowadzane na precyzji float64.

3. Kryterium pomiaru błędu

Kryterium, którym posłużyłem się aby wyznaczyć wartości błędów dla obliczonych wartości wektora **x** względem zadanego wektora **x** była norma euklidesowa, która opisana jest wzorem:

$$\sqrt{\sum_{i=1}^{n} x_i^2 - x_i'^2 x}$$
, gdzie x_i to i – ta wartość zadanego wektora **x**, natomiast x_i' to i – ta wartość obliczonego wektora **x**.

4. Kryteria stopu

Kolejne iteracje, w których obliczany był wektor \mathbf{x} odbywały się do momentu, gdy nie zostało spełnione pewne kryterium stopu. W tym zadaniu rozważyłem dwa kryteria stopu:

- 1) $||x^{(i+1)} x^{(i)}|| < \rho$, oznaczane później jako kryterium a
- 2) $||Ax^{(i)} b|| < \rho$, oznaczane później jako kryterium b

 ρ jest pewnym przyjmowanym parametrem, od którego zależy dokładność otrzymanych wyników.

Norma była obliczana ze wzoru na normę euklidesową, tj. $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$. W moim programie posłużyłem się funkcją linalg.norm z biblioteki numpy.

5. Zadanie 2

Ćwiczenie rozpocząłem od zadania 2, aby określić, dla jakich wartości n metoda jest zbieżna, czyli dla jakich n można spodziewać się wiarygodnych wyników.

Promień macierzy spektralnej jest maksymalną wartością z własności własnych macierzy (w wartości bezwzględnej). Wyznacza się ją z macierzy iteracji, która jest definiowana jako $\mathbf{B} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$, gdzie \mathbf{D} to macierz diagonalna zawierająca elementy diagonalne macierzy \mathbf{A} , \mathbf{L} to dolna trójkątna macierz zawierająca elementy pod diagonalą z macierzy \mathbf{A} , natomiast \mathbf{U} jest górną trójkątną macierzą zawierającą elementy nad diagonalą z macierzy \mathbf{A} . W moim programie najpierw wyznaczam macierz \mathbf{B} z tego wzoru, a następnie wyznaczam jej wartości własne korzystając z funkcji linalg.eigvals z biblioteki numpy, z których ostatecznie znajduję wartość własną o największej wartości bezwzględnej.

n	Wartość promienia spektralnego macierzy
2	0.0519
3	0.111
4	0.195
5	0.445
6	0.599
7	0.595
8	0.6
9	0.599
10	0.602
11	0.601
12	0.602
13	0.602
14	0.603
15	0.603
16	0.603
17	0.603
18	0.604
19	0.604
20	0.604
21	0.604
22	0.604
23	0.604
24	0.604
25	0.605
50	0.605
100	0.606
500	0.606
1000	0.607
2000	0.607
5000	0.607

Tabela 1 – Wartości promienia spektralnego macierzy dla kolejnych n

Jak widać na powyższej tabeli, dla wszystkich zbadanych wartości n, wartości promieni są liczbami mniejszymi od 1, a więc spełniony jest warunek zbieżności. Na początku wartości te są bardzo małe, gdyż dla n = 2 wynosi ona zaledwie 0.05, jednak dość szybko one rosną aż do n = 6, gdzie wartość promienia wynosi 0.6. Dla kolejnych n wartości te praktycznie się nie różnią, są to różnice na 3 miejscu po przecinku. Nawet dla n = 5000 wartość ta wynosi w przybliżeniu 0.6.

6. Zadanie 1

Gdy już wartości promienia spektralnego zostały zbadane i mam pewność o zbieżności metody, przystępuję do realizacji zadania 1 opisanego we wstępie. Jako wektor początkowy przyjmuję wektor dlugości n wypełniony zerami.

Na początku wykonuję obliczenia dla $\rho=1$ e-6.

_	Wartość błędu dla kryterium stopu:		
n	Kryterium a	Kryterium b	
2	2.7793e-08	2.7793e-08	
3	1.2660e-08 1.2660e-08		
4	5.2548e-08	5.2548e-08	
5	3.0868e-07	6.0545e-08	
6	1.0748e-06	1.3845e-07	
7	5.7327e-07	1.1055e-07	
8	2.4681e-07	4.8498e-08	
9	7.3554e-07	8.2318e-08	
10	2.5379e-07	4.9234e-08	
11	8.2367e-07	9.1609e-08	
12	3.0824e-07	5.9760e-08	
13	9.4298e-07 1.0465e-07		
14	3.2037e-07	6.1618e-08	
15	5.7882e-07	1.1105e-07	
16	3.5696e-07 3.9686e-08		
17	6.3264e-07	1.2112e-07	
18	3.7077e-07	4.0934e-08	
19	6.6285e-07	1.2666e-07	
20	2.2993e-07	4.4077e-08	
21	7.0775e-07	1.3499e-07	
22	2.3789e-07	4.5434e-08	
23	7.3549e-07 1.4010e-07		
24	2.5150e-07 4.8029e-08		
25	7.7451e-07 1.4729e-07		
50	3.6057e-07 3.9084e-08		
100	2.9091e-07 5.4631e-08		
500	2.1120e-07	3.9437e-08	
1000	2.9826e-07	5.5641e-08	
2000	2.4080e-07	4.4901e-08	
5000	2.1738e-07	4.0521e-08	

Tabela 2 – Wartości błędów dla kolejnych n przy zastosowaniu różnych kryteriów stopu

n	Liczba iteracji dla kryterium stopu:		
	Kryterium a	Kryterium b	
2	6	6	
3	8	8	
4	9	9	
5	17	19	
6	24	28	
7	27	30	
8	29	32	
9	27	31	
10	29	32	
11	27	31	
12	29	32	
13	27	31	
14	29	32	
15	28	31	
16	29	33	
17	28	31	
18	29	33	
19	28	31	
20	30	33	
21	28	31	
22	30	33	
23	28	31	
24	30	33	
25	28	31	
50	30	34	
100	31	34	
500	33	36	
1000	33	36	
2000	34	37	
5000	35	38	

Tabela 3 – Liczba iteracji dla kolejnych n przy zastosowaniu różnych kryteriów stopu

W tabeli 2, w której znajdują się wartości błędów, możemy dostrzec, że są one do siebie bardzo zbliżone, a różnice występują dopiero na 7 lub nawet 8 miejscu po przecinku (co wynika również z wartości zastosowanego parametru ρ). Dla n = 2, 3, 4 wartości te są identyczne, a dla kolejnych n wartości błędów są mniejsze w przypadku kryterium a. Wyjątkami są tylko n = 2000 i 5000, gdzie to kryterium b okazuje się być lepsze.

W tabeli 3 dostrzegamy natomiast zależność, im większe n tym większa liczba iteracji jest wymagana. Ma to związek z promieniem spektralnym macierzy, gdyż im jest on większy, tym wolniej zbiega macierz, a więc tym więcej obliczeń jest potrzebnych. Widzimy jednak, że wszędzie ten promień spektralny miał podobną wartość, a więc i liczba iteracji jest podobna. Co ciekawe jednak, widać zależność pomiędzy parzystymi i nieparzystymi n – dla parzystych w większości przypadków było to 31 iteracji, a dla n nieparzystych były 32-33 iteracje.

Porównując ze sobą liczby wykonanych iteracji dla różnych kryteriów, dla n = 2, 3, 4 liczby wykonanych iteracji są identyczne, tak jak miało to miejsce w przypadku wartości błędów.

Jednakże w tym miejscu dla kolejnych wartości n, w każdym przypadku kryterium b potrzebowało większej liczby iteracji aby spełnić warunek kryterium stopu. Wszędzie są to różnice tylko 3-4 iteracji.

Kolejnym krokiem w tym ćwiczeniu były eksperymenty z innymi wartościami wektora początkowego. Przyjąłem więc wektor początkowy jako wektor długości n postaci [100, 100, ...], gdyż są one dalekie od rozwiązania. Te obliczenia również były wykonywane dla ρ = 1e-6.

n	Wartość błędu dla kryterium stopu:		
n	Kryterium a	Kryterium b	
2	7.5005e-09 7.5005e-09		
3	4.9739e-08	4.9739e-08	
4	1.1799e-07	2.3046e-08	
5	1.4063e-07	6.2539e-08	
6	1.1391e-06	1.4681e-07	
7	3.5172e-07	4.3012e-08	
8	1.3857e-06	1.7940e-07	
9	2.7516e-07	5.8020e-08	
10	8.6699e-07	1.8765e-07	
11	3.2013e-07	4.0954e-08	
12	8.9137e-07	1.9355e-07	
13	3.4582e-07	4.4660e-08	
14	8.8709e-07	1.9307e-07	
15	3.7435e-07	4.8768e-08	
16	8.9764e-07	1.9586e-07	
17	2.3370e-07	5.0870e-08	
18	8.8775e-07	1.9397e-07	
19	2.4746e-07	5.4045e-08	
20	8.9690e-07	1.9630e-07	
21	2.5299e-07	5.5321e-08	
22	8.8652e-07	1.9413e-07	
23	2.6451e-07	3.4952e-08	
24	8.9618e-07	1.9644e-07	
25	2.6786e-07	3.5412e-08	
50	9.0000e-07	1.1849e-07	
100	5.7038e-07	1.2365e-07	
500	7.1456e-07	8.7320e-08	
1000	4.9728e-07		
2000	3.5649e-07	3.5649e-07 6.9366e-08	
5000	5.0553e-07	5.4367e-08	

Tabela 4 – Wartości błędów dla kolejnych n przy zastosowaniu różnych kryteriów stopu, inny wektor początkowy

Po zmianie wektora początkowego, różnice dostrzegalne są już na pierwszy rzut oka. Choć wnioski są podobne co w przypadku analizy tabeli 2, tak jednak w tym przypadku dostrzegalne są różnice w rzędach błędu pomiędzy tymi dwiema tabelami. W tabeli 2, w przypadku kryterium b wszystkie błędy były rzędu 1e-7 lub 1e-8, tutaj pojawiają nam się błędy rzędu 1e-6. Pomiędzy tymi dwiema tabelami, parę wierszy z błędami różni się wartościami o jeden rząd wielkości, na niekorzyść tych obliczanych dla wektora początkowego [100,...]. Wniosek stąd płynie taki, że dobór wektora początkowego ma wpływ na wartości błędów.

	Liczba iteracji dla kryterium stopu:		
n	Kryterium a	Kryterium b	
2	8	8	
3	10	10	
4	13	14	
5	26	27	
6	34	38	
7	35	39	
8	34	38	
9	36	39	
10	35	38	
11	36	40	
12	35	38	
13	36	40	
14	35	38	
15	36	40	
16	35	38	
17	37	40	
18	35	38	
19	37	40	
20	35	38	
21	37	40	
22	35	38	
23	37	41	
24	35	38	
25	37	41	
50	35	39	
100	36	39	
500	36	40	
1000	37	40	
2000	38	41	
5000	38	42	

Tabela 5 – Liczba iteracji dla kolejnych n przy zastosowaniu różnych kryteriów stopu, inny wektor początkowy

W tej tabeli natomiast dostrzegamy, w zestawieniu z wartościami z tabeli 3, że liczby iteracji dla poszczególnych n znacznie wzrosły, gdyż dla n = 5 jest to różnica aż 8 iteracji. Dla każdych kolejnych wartości n różnice w liczbie iteracji są z zakresu [3-6] Stąd wniosek, że dobór wektora początkowego ma również bardzo duży wpływ na liczbę iteracji.

Dla tych 2 wektorów początkowych wykonałem również zestawienie czasowe wykonywania tych algorytmów dla poszczególnych n.

	Średni czas wykonania jednej iteracji algorytmu [sekundy]:			
n	Wektor początkowy [0]		Wektor początkowy [100]	
	Kryterium a	Kryterium b	Kryterium a	Kryterium b
2	6.5565e-06	7.1923e-06	6.0499e-06	7.0035e-06
3	5.3644e-06	5.9605e-06	4.2915e-06	6.0797e-06
4	5.2717e-06	5.7220e-06	3.9247e-06	5.0919e-06
5	3.9970e-06	4.9942e-06	3.7780e-06	4.7684e-06
6	3.7253e-06	4.8620e-06	3.6464e-06	8.1188e-06
7	3.8059e-06	4.8558e-06	3.7874e-06	6.3334e-06
8	3.6667e-06	4.7758e-06	3.8287e-06	4.6617e-06
9	3.7176e-06	4.8914e-06	3.8015e-06	4.6461e-06
10	3.6832e-06	4.7311e-06	3.7534e-06	4.6743e-06
11	3.9118e-06	4.7914e-06	3.8081e-06	4.6432e-06
12	3.7243e-06	4.6641e-06	3.7738e-06	4.5300e-06
13	3.6028e-06	4.6453e-06	5.2585e-06	4.4763e-06
14	3.6832e-06	4.6864e-06	4.7343e-06	4.4986e-06
15	3.6444e-06	4.6838e-06	8.6427e-06	4.4703e-06
16	3.8229e-06	4.6817e-06	4.7207e-06	4.4609e-06
17	4.6492e-06	4.6530e-06	4.7555e-06	4.4763e-06
18	3.7818e-06	4.7250e-06	8.9100e-06	4.4798e-06
19	4.6151e-06	4.7145e-06	7.1719e-06	4.5240e-06
20	3.7114e-06	4.7178e-06	6.7915e-06	4.5676e-06
21	3.7806e-06	4.6530e-06	9.5432e-06	4.7505e-06
22	3.7511e-06	5.2958e-06	7.5477e-06	4.6994e-06
23	3.8232e-06	4.6607e-06	4.3366e-06	4.9021e-06
24	3.7988e-06	4.7395e-06	3.8419e-06	6.1361e-06
25	3.7977e-06	4.7991e-06	4.5428e-06	8.2051e-06
50	4.0531e-06	5.1611e-06	4.8774e-06	6.4556e-06
100	3.6147e-04	6.5845e-03	3.7570e-03	2.5158e-03
500	1.6738e-04	3.0458e-05	3.1313e-03	2.3326e-03
1000	4.0167e-04	7.5842e-03	2.6302e-03	1.0429e-02
2000	3.0213e-03	1.3669e-02	6.4850e-03	1.4815e-02
5000	1.9281e-02	3.5514e-02	2.1262e-02	3.6869e-02

Tabela 6 – zestawienie czasów wykonywania jednej iteracji algorytmu dla różnych wektorów początkowych i różnych kryteriów stopu

W powyższej tabeli widać, że w każdym przypadku jedna iteracja algorytmu wykonywała się szybciej w przypadku, gdy wartości przyjętego wektora początkowego były bliższe rozwiązania. Choć nie są to duże różnice, tak dla dużo większych n i większej liczby obliczanych wyników mogą mieć one jednak spore znaczenie.

Oprócz tego, zawsze jedna iteracja algorytmu wykonywała się szybciej w przypadki kryterium a – jest to związane po prostu ze złożonością obliczeń równań w obydwóch kryteriach W przypadku kryterium b, równanie **Ax** – **b** jest bardzo kosztowne obliczeniowo. Dodatkowo, w związku z większą liczbą iteracji w przypadku tego kryterium, obliczenia te wymagają o wiele więcej czasu.

Jako ostatni eksperyment, zmieniane były wartości ρ . Jako wektor początkowy był tutaj zastosowany wektor zer.

ρ	n	Wartość błędu dla kryterium stopu:		
ρ		Kryterium a	Kryterium b	
	2	1.0520e-14	1.0520e-14	
	5	1.4080e-13	6.2612e-14	
1e-12	10	3.6915e-13	7.6682e-14	
16-12	50	4.0542e-13	4.8817e-14	
	100	2.9768e-13	5.9560e-14	
	1000	2.5587e-13	6.4591e-14	
	2	3.8962e-12	3.8962e-12	
	5	1.8190e-11	3.5972e-12	
1e-10	10	4.3612e-11	5.1774e-12	
1e-10	50	3.0393e-11	5.9570e-12	
	100	2.3327e-11	4.5045e-12	
	1000	2.2162e-11	4.1558e-12	
	2	2.7793e-08	2.7793e-08	
	5	3.0868e-07	6.0545e-08	
1.0	10	2.5379e-07	4.9234e-08	
1e-6	50	3.6057e-07	3.9084e-08	
	100	2.9091e-07	5.4631e-08	
	1000	2.9826e-07	5.5641e-08	
	2	5.3501e-07	5.3501e-07	
	5	1.9248e-05	3.6234e-06	
10.4	10	3.5659e-05	3.9438e-06	
1e-4	50	3.1070e-05	5.8340e-06	
	100	2.5330e-05	4.7402e-06	
	1000	2.6277e-05	4.8996e-06	
	2	1.9825e-04	1.9825e-04	
	5	3.9795e-03	6.2887e-04	
10.0	10	2.9535e-03	5.6274e-04	
1e-2	50	2.7013e-03	5.0590e-04	
	100	2.2178e-03	4.1436e-04	
	1000	2.3168e-03	4.3189e-04	

Tabela 7 – Wartości błędów dla różnych kryteriów stopu i różnych wartości ρ

Otrzymujemy spodziewany efekt: im większa wartość ρ , tym większa wartość błędu. Ten sam efekt otrzymujemy dla obydwóch kryteriów stopu. Uwidacznia nam się tutaj jednak pewna zależność, która wcześniej była niedostrzegalna dla wartości ρ = 1e-6, a mianowicie, kryterium b przeważnie daje nam mniejsze wartości błędów w stosunku do wartości błędu z kryterium a.

ρ	n	Liczba iteracji dla kryterium stopu:		
		Kryterium a	Kryterium b	
	2	11	11	
	5	35	36	
1e-12	10	54	57	
16-12	50	55	59	
	100	56	59	
	1000	58	61	
	2	9	9	
	5	29	31	
10.10	10	45	49	
1e-10	50	47	50	
	100	48	51	
	1000	50	53	
	2	6	6	
	5	17	19	
1- 0	10	29	32	
1e-6	50	30	34	
	100	31	34	
	1000	33	36	
	2	5	5	
	5	12	14	
10.4	10	20	24	
1e-4	50	22	25	
	100	23	26	
	1000	25	28	
	2	3	3	
1.0	5	6	8	
	10	12	15	
1e-2	50	14	17	
	100	15	18	
	1000	17	20	

Tabela 8 – Liczba iteracji dla różnych kryteriów stopu i różnych wartości ρ

Z analizy tej tabeli również płynie jeden wniosek: im mniejsza wartość ρ , tym większa liczba iteracji jest wymagana, aby zaszło kryterium stopu. Również i dla innych wartości ρ niż 1e-6 kryterium b potrzebuje więcej iteracji, aby zostało spełnione.

7. Wnioski

- Dla coraz większych n, wartość promienia spektralnego macierzy rośnie, jednak dla n > 5
 są to już różnice niewielkie, na 3 miejscu po przecinku
- Im większa wartość promienia spektralnego, tym większa liczba iteracji potrzebna do spełnienia kryterium stopu
- Kryterium b okazuje się dawać mniejsze wartości błędów kosztem większej liczby iteracji i większego czasu wykonywania jednej iteracji.
- Dobry dobór wektora początkowego ma wpływ na wielkość błędu oraz liczbę iteracji
- Im mniejsza wartość ρ , tym większe wartości błędów, lecz mniejsza liczba iteracji do wykonania