Вариант 1

1. Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3, \, v \mapsto Av$, где

$$A = \begin{pmatrix} 3 & -1 & 3 & 7 \\ 2 & -1 & 1 & 4 \\ -1 & 3 & 7 & 3 \end{pmatrix}.$$

Найдите базис \mathfrak{e} пространства \mathbb{R}^4 и базис \mathfrak{f} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.

2. Пусть $V = \mathbb{R}[x]_{\leqslant 2}$ — пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Пусть β — билинейная форма на V, имеющая

в базисе
$$(1-x^2, x^2, x+2x^2)$$
 матрицу $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix}$. Рассмотрим линейные функции

 $\alpha_1, \alpha_2, \alpha_3$ на V, такие что $\alpha_1(f) = \beta(1, f), \ \alpha_2(f) = \beta(x, f), \ \alpha_3(f) = \beta(x^2, f)$ для всех $f \in V$. Найдите базис пространства V, для которого $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

3. Даны две квадратичные формы

$$Q_1(x_1, x_2, x_3) = 5x_1^2 - x_2^2 - 2x_1x_2 - 4x_1x_3, \ Q_2(x_1, x_2, x_3) = (x_1 - x_2 - x_3)^2.$$

Определите нормальный вид квадратичной формы $Q_1 + aQ_2$ в зависимости от значения параметра a.

- **4.** В евклидовом пространстве \mathbb{R}^4 даны два подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2 \rangle$, где $v_1 = (2, -1, 2, -1), v_2 = (3, -3, 1, 1), w_1 = (1, 2, -1, 2), w_2 = (1, -3, 3, -1).$ Найдите вектор $v \in \mathbb{R}^4$, для которого $\operatorname{pr}_U v = (9, -12, -1, 8)$ и $\operatorname{ort}_W v = (1, -8, -7, 4)$.
- **5.** В пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, снабжённом структурой евклидова пространства относительно некоторого скалярного произведения, объём параллелепипеда, натянутого на векторы $2-x+3x^2,\ 3+x+x^2,\ 1+3x-3x^2,$ равен 4. Найдите объём параллелепипеда, натянутого на векторы $1+x+x^2,\ 3-2x+3x^2,\ -1+2x-2x^2.$
- **6.** Прямая $l \subset \mathbb{R}^3$ проходит через точку P=(2,0,1), пересекает прямую $l_1=\{4x-3z=1,\ x+y=-2\}$ и перпендикулярна прямой $l_2=\{x+2y-3z=5,\ y-z=2\}$. Найдите расстояние между прямыми l и l_2 .

Вариант 2

1. Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3, v \mapsto Av$, где

$$A = \begin{pmatrix} 3 & -2 & 5 & 8 \\ 1 & -1 & 2 & 3 \\ 3 & 1 & 2 & 5 \end{pmatrix}.$$

Найдите базис е пространства \mathbb{R}^4 и базис \mathbb{F} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.

2. Пусть $V = \mathbb{R}[x]_{\leqslant 2}$ — пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Пусть β — билинейная форма на V, имеющая

в базисе
$$(x-x^2, x^2, 1+2x^2)$$
 матрицу $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix}$. Рассмотрим линейные функции

 $\alpha_1, \alpha_2, \alpha_3$ на V, такие что $\alpha_1(f) = \beta(1, f), \ \alpha_2(f) = \beta(x, f), \ \alpha_3(f) = \beta(x^2, f)$ для всех $f \in V$. Найдите базис пространства V, для которого $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

3. Даны две квадратичные формы

$$Q_1(x_1, x_2, x_3) = 3x_1^2 + 8x_3^2 + 2x_1x_2 - 6x_1x_3 - 4x_2x_3, \ Q_2(x_1, x_2, x_3) = (x_1 + x_2 - x_3)^2.$$

Определите нормальный вид квадратичной формы Q_1+aQ_2 в зависимости от значения параметра a.

- **4.** В евклидовом пространстве \mathbb{R}^4 даны два подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2 \rangle$, где $v_1 = (2, -1, 2, -1)$, $v_2 = (3, -3, 1, 1)$, $w_1 = (2, -1, 1, -2)$, $w_2 = (-1, 3, 1, 3)$. Найдите вектор $v \in \mathbb{R}^4$, для которого $\operatorname{pr}_U v = (2, -7, -6, 9)$ и $\operatorname{ort}_W v = (12, -1, -9, 8)$.
- **5.** В пространстве $V = \mathbb{R}[x]_{\leqslant 2}$, снабжённом структурой евклидова пространства относительно некоторого скалярного произведения, объём параллелепипеда, натянутого на векторы $1+x+x^2,\ 3-x-3x^2,\ -1+2x+3x^2,$ равен 6. Найдите объём параллелепипеда, натянутого на векторы $1+2x+2x^2,\ -1-3x+x^2,\ 2+3x+3x^2.$
- **6.** Прямая $l\subset\mathbb{R}^3$ проходит через точку P=(2,0,1), пересекает прямую $l_1=\{3x+2z=2,\ x+y=8\}$ и перпендикулярна прямой $l_2=\{x-3y+2z=4,\ x-y=-1\}$. Найдите расстояние между прямыми l и l_2 .

Вариант 3

1. Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3, \ v \mapsto Av$, где

$$A = \begin{pmatrix} 3 & 2 & 1 & -7 \\ 2 & 1 & 1 & -5 \\ -1 & 1 & -2 & 4 \end{pmatrix}.$$

Найдите базис \mathfrak{e} пространства \mathbb{R}^4 и базис \mathfrak{f} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.

2. Пусть $V = \mathbb{R}[x]_{\leq 2}$ — пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Пусть β — билинейная форма на V, имеющая

в базисе
$$(1+x^2,\ x^2,x-2x^2)$$
 матрицу $\begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Рассмотрим линейные функции

 $\alpha_1, \alpha_2, \alpha_3$ на V, такие что $\alpha_1(f) = \beta(1, f), \ \alpha_2(f) = \beta(x, f), \ \alpha_3(f) = \beta(x^2, f)$ для всех $f \in V$. Найдите базис пространства V, для которого $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

3. Даны две квадратичные формы

$$Q_1(x_1, x_2, x_3) = 3x_1^2 + 6x_3^2 - 2x_1x_2 - 6x_1x_3 + 4x_2x_3, \ Q_2(x_1, x_2, x_3) = (-x_1 + x_2 + x_3)^2.$$

Определите нормальный вид квадратичной формы Q_1+aQ_2 в зависимости от значения параметра a.

- **4.** В евклидовом пространстве \mathbb{R}^4 даны два подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2 \rangle$, где $v_1 = (1, 2, -1, 2), v_2 = (1, -3, 3, -1), W_1 = (2, -1, 1, -2), w_2 = (-1, 3, 1, 3).$ Найдите вектор $v \in \mathbb{R}^4$, для которого $\operatorname{pr}_U v = (1, 12, -9, 8)$ и $\operatorname{ort}_W v = (7, 4, -8, 1)$.
- **5.** В пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, снабжённом структурой евклидова пространства относительно некоторого скалярного произведения, объём параллелепипеда, натянутого на векторы $2+3x+3x^2,\ -2-x+x^2,\ 3+x-2x^2,$ равен 6. Найдите объём параллелепипеда, натянутого на векторы $2-x-3x^2,\ 1+2x+3x^2,\ 3+x+x^2.$
- **6.** Прямая $l \subset \mathbb{R}^3$ проходит через точку P=(1,2,0), пересекает прямую $l_1=\{4x+5z=-2,\ x+y=-3\}$ и перпендикулярна прямой $l_2=\{x+3y-4z=4,\ y-z=1\}$. Найдите расстояние между прямыми l и l_2 .

Вариант 4

1. Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3, v \mapsto Av$, где

$$A = \begin{pmatrix} 3 & -2 & -7 & 5 \\ -2 & 1 & 4 & -3 \\ 3 & 2 & 1 & 1 \end{pmatrix}.$$

Найдите базис е пространства \mathbb{R}^4 и базис \mathbb{F} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.

2. Пусть $V = \mathbb{R}[x]_{\leqslant 2}$ — пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Пусть β — билинейная форма на V, имеющая

в базисе
$$(x+2x^2, x^2, 1-x^2)$$
 матрицу $\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Рассмотрим линейные функции

 $\alpha_1, \alpha_2, \alpha_3$ на V, такие что $\alpha_1(f) = \beta(1, f), \ \alpha_2(f) = \beta(x, f), \ \alpha_3(f) = \beta(x^2, f)$ для всех $f \in V$. Найдите базис пространства V, для которого $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

3. Даны две квадратичные формы

$$Q_1(x_1, x_2, x_3) = 5x_1^2 + 2x_3^2 - 4x_1x_2 + 2x_1x_3, \ Q_2(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2.$$

Определите нормальный вид квадратичной формы Q_1+aQ_2 в зависимости от значения параметра a.

- **4.** В евклидовом пространстве \mathbb{R}^4 даны два подпространства $U = \langle u_1, u_2 \rangle$ и $W = \langle w_1, w_2 \rangle$, где $v_1 = (2, 1, 1, -2), v_2 = (3, -1, 3, -1), w_1 = (2, -1, 2, -1), w_2 = (3, -3, 1, 1).$ Найдите вектор $v \in \mathbb{R}^4$, для которого $\operatorname{pr}_U v = (9, -8, 12, 1)$ и $\operatorname{ort}_W v = (-2, -1, 2, 1)$.
- **5.** В пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, снабжённом структурой евклидова пространства относительно некоторого скалярного произведения, объём параллелепипеда, натянутого на векторы $3+x+x^2,\ 1+3x-3x^2,\ 2-x+3x^2,\$ равен 3. Найдите объём параллелепипеда, натянутого на векторы $1-x+x^2,\ 1+x+x^2,\ -2+3x-3x^2.$
- **6.** Прямая $l \subset \mathbb{R}^3$ проходит через точку P=(1,2,0), пересекает прямую $l_1=\{4x+3z=1,\ x-y=2\}$ и перпендикулярна прямой $l_2=\{x+2y-3z=3,\ y-z=1\}$. Найдите расстояние между прямыми l и l_2 .