COURS NO6

Chapitre 13

- Analyse des coûts
- Seuil de rentabilité (SR) ou Point Mort (PM)
- Analyse marginale

SSH3201 Mohammed KHALFOUN

COMPOSANTES DU COÛT DE FABRICATION ou DE PRODUCTION

- MATIÈRES PREMIÈRES (M.P.):
 - Objets, matériaux, matières ou composantes incorporées aux produits finis
 - Coûts variables (dépendent directement du volume d'activité)
- MAIN D'ŒUVRE DIRECTE (M.O.D.)
 - Salaires de ceux qui travaillent directement à la transformation des matières premières en produits finis
- FRAIS GÉNÉRAUX DE FABRICATION (F.G.F.)
 - tous les coûts de fabrication autres que la M.O.D. et les M.P.

FRAIS GÉNÉRAUX DE FABRICATION (F.G.F.)

DÉFINITION:

- Les F.G.F représentent tous les coûts de fabrication autres que la M.O.D. et les M.P.
 - Amortissement comptable des équipements et immeubles;
 - Chauffage et éclairage des immeubles;
 - Entretien des équipements et immeubles;
 - Assurances, impôt foncier;
 - Main-d'œuvre indirecte (M.O.I.): salaires des contremaîtres, directeur, employés de bureau, ingénieurs, programmeurs, etc.)
 - Etc.
- > Les F.G.F. peuvent être fixes ou variables
- > Les F.G.F. sont imputés (répartis) aux produits

IDENTIFICATION DES COÛTS

Lors de l'analyse des coûts d'un projet, il ne faut tenir compte que des coûts pertinents c'est-à-dire de ceux directement liés au choix d'un projet en particulier.

- Coûts différentiels et coûts stables
- Coûts engagés et coûts d'opportunité
- Coûts passés

Coûts NON PERTINENTS à l'analyse de projets:

- Coûts stables
- Coûts passés (coûts non récupérables)

COÛTS DIFFÉRENTIELS ET COÛTS STABLES

COÛTS DIFFÉRENTIELS

- Spécifiques à la réalisation d'un projet en particulier.
- ♦ Si le projet n'est pas réalisé, ces coûts seront évités.
- Coûts additionnels: résultant d'une augmentation du volume d'activité.
- Coûts réduits : résultant d'une baisse du volume d'activité ou de suppression d'un secteur d'activité.

COÛTS STABLES

- Non pertinents aux décisions à prendre
- Ne sont pas spécifiques à la réalisation d'un projet en particulier.
- Quelque soit le projet retenu, ces coûts restent inchangés.
 (ex. amortissement comptable)

COÛTS ENGAGÉS ET COÛTS D'OPPORTUNITÉ

COÛTS ENGAGÉS

Coûts que l'on prévoit encourir dans l'avenir (estimés).

COÛTS D'OPPORTUNITÉ (COÛT DE RENONCIATION)

- Proviennent des occasions que l'on sacrifie en choisissant une option plutôt qu'une autre.
- Il s'agit de la valeur des bénéfices de l'option sacrifiée en faveur de l'option retenue.
- Sont difficiles à évaluer car ils sont impossibles à retracer dans le système d'information comptable.
- Ils exigent que l'on détermine le flux monétaire net qui aurait pu être gagné si le projet rejeté avait été choisi.

COÛTS ENGAGÉS ET COÛTS D'OPPORTUNITÉ

Exemple:

- Option actuelle :
 - Salaire annuel: 35 000 \$
 - Épargnes : 30 000 \$ à 10% d'intérêts par année
- Option échange :
 - Acquisition d'une usine : 30 000 \$
 - Revenu annuel net : 55 000 \$
- Coût d'opportunité de l'achat ?
- Réponse :
- Éléments perdus :
 - ■Salaire annuel: 35 000 \$
 - ■Intérêts : 30 000 \$ x 10% = 3 000 \$
- Donc le coût d'opportunité de cet achat est de 38 000 \$.

À cela il faut ajouter les impondérables (risques).

COÛTS PASSÉS

COÛTS PASSÉS:

- Coûts historiques et comptabilisés (irrécupérables donc <u>non pertinents</u> à la décision)
- Coûts passés servent à prévoir les coûts futurs (estimation)
- Coûts passés ne doivent pas servir à la décision de poursuivre ou d'adopter un nouveau projet, seuls les coûts futurs sont pertinents.

(exemple: coût d'étude de projet)

MESURE DES COÛTS

- Le facteur qui a le plus d'influence sur les coûts est le volume d'activité.
- L'ingénieur qui doit mesurer les coûts pertinents à la décision à prendre, s'intéresse donc à la relation entre le volume d'activité et les coûts.
- > COÛTS VARIABLES
- > COÛTS FIXES
- > COÛTS SEMI-VARIABLES (HYBRIDES)

COÛTS VARIABLES

> COÛTS VARIABLES (CV)

Ceux qui <u>augmentent au total</u> lorsque le volume d'activité augmente et qui <u>diminuent au total</u> lorsque le volume d'activité diminue.

Exemple: Main d'œuvre directe, matières premières et matériaux, heures supplémentaires, pièces d'usine, prime payées pour heures supplémentaires, etc.

Coût variable unitaire =
$$\frac{\text{coût variable total}}{\text{volume total}}$$

COÛTS FIXES (CF):

Entre des limites bien définies du volume d'activité de l'entreprise, ces coûts demeurent les mêmes au total **quelque soit** le volume d'activité (analyse à court terme).

Exemple: Amortissements, administration, taxes, frais généraux (partie fixe), assurances, main-d'œuvre indirecte (partie fixe), loyer, entretien, publicité, etc.

Total des coûts fixes

COÛTS SEMI-VARIABLES

Coût semi-variable comporte une partie fixe incompressible et une partie variant proportionnellement au volume d'activité. Par exemple, la charge d'électricité

Exemple:

Une entreprise loue un camion de livraison au coût forfaitaire de 2 000 \$ par mois plus 0.15 \$ pour chaque kilomètre parcouru.

Représentations algébriques de la relation coûts-volume.

$$y = ax + b$$

- y = coût total
- x = volume d'activité
- a = coût variable unitaire
- ax = coûts variables totaux
- b = coûts fixes totaux.

MÉTHODES DE SÉPARATION DES COÛTS FIXES ET DES COÛTS VARIABLES

- la méthode des points extrêmes;
- la méthode des moindres carrés.

LA MÉTHODE DES POINTS EXTRÊMES

- Identifier les deux volumes d'activité extrêmes (minimum et maximum) d'une série de données.
- Identifier leurs coûts correspondants
- Utiliser la formule suivante pour calculer coût variable unitaire

```
Coût variable unitaire = \frac{(coût \ maximum - coût \ minimum)}{(niveau \ maximum - niveau \ minimum)}
```

Coût variable total = coût variable unitaire * nombre d'unités

Coûts Fixes = coût total - coût variable total

Hypothèse: les autres coûts de l'exercice fluctuent de la même manière que les deux coûts extrêmes choisis pour le calcul, et que les résultats obtenus représentent la moyenne de la période.

EXEMPLE

	Heures	Coûts
	machines	totaux
	X	У
Janvier	9 000	2 900
Février	8 000	2 660
Mars	9 000	2 880
Avril	10 000	3 080
Mai	13 000	3 830
Juin	12 000	3 620
Juillet	11 000	3 380
Août	11 000	3 380
Septembre	10 000	3 140
Octobre	8 000	2 660
Novembre	7 000	2 380
Décembre	8 000	2 670
	116 000	36 580 \$

CVu= (3 830 - 2 380) / (13 000 - 7 000) = 0.2417\$/h-m CF= 2 380 \$ - 0.2417 \$ x 7 000 heures-machine = 688 \$

LA MÉTHODE DES MOINDRES CARRÉS

Cette méthode est basée sur l'équation de la droite des moindres carrés suivante:

$$y = ax + b + e$$

v = coût total

x = volume d'activité

a = coût variable unitaire

ax = coûts variables totaux

b = coûts fixes totaux.

 e écart entre la valeur réelle des coûts et la valeur calculée à partir d'un échantillon.

$$e = y_i - \hat{y}_i = y_i - (ax_i + b) i = 1, 2, ..., N$$

e_i est l'écart vertical entre la valeur observée y_i et l'estimation ŷ_i obtenue de la droite de régression empirique

LA MÉTHODE DES MOINDRES CARRÉS (MC)

HYPOTHÈSES RELATIVES À LA MÉTHODE MC

$$y = ax + b + e$$

- Relation linéaire entre x et y
- E[e] = 0 (espérance mathématique)
- σ = constante
- e ~ NID $(0,\sigma^2)$
- y ~ N
- x variables indépendantes
- Nombre d'observations (>30)

LA MÉTHODE DES MOINDRES CARRÉS

$$a = \frac{N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}}$$

Calcul de la pente de la droite

Une fois qu'on a déterminé **a**, la valeur de **b** peut être obtenue par l'expression suivante:

$$b = y - ax$$
; où: $y = \frac{\sum_{i=1}^{N} y_i}{N}$; $x = \frac{\sum_{i=1}^{N} x_i}{N}$

Calcul de l'ordonnée à l'origine

EXEMPLE

	Heures machines	Coûts totaux		
	X	у	xy * 10 ³	x ² * 10 ⁶
Janvier	9 000	2 900 \$	26 100 \$	81 \$
Février	8 000	2 660	21 280	64
Mars	9 000	2 880	25 920	81
A∨riI	10 000	3 080	30 800	100
Mai	13 000	3 830	49 790	169
Juin	12 000	3 620	43 440	144
Juillet	11 000	3 380	37 180	121
Août	11 000	3 380	37 180	121
Septembre	10 000	3 140	31 400	100
Octobre	8 000	2 660	21 280	64
Novembre	7 000	2 380	16 660	49
Décembre	8 000	2 670	21 360	64
	116 000	36 580 \$	362 390 \$	1 158 \$

EXEMPLE

	100 miles	Marillo Salara Caraca C	F18810E	
	X	у	xy * 10 ³	$x^2 * 10^6$
Janvier	9 000	2 900 \$	26 100 \$	$\mathbf{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{y}_{i} - \sum_{i=1}^{N} \mathbf{x}_{i} \sum_{i=1}^{N} \mathbf{y}_{i}$
Février	8 000	2 660	21 280	$a = \frac{i=1}{1} \frac{i=1}{i=1} \frac{i=1}{i=1}$
Mars	9 000	2 880	25 920	$N \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}$
Avril	10 000	3 080	30 800	. j=1 i=1
Mai	13 000	3 830	49 790	169
Juin	12 000	3 620	43 440	144
Juillet	11 000	3 380	37	N N
Août	11 000	3 380	37	$\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i$
Septembre	10 000	3 140	3b=y-ax	; où: $y = \frac{i-1}{N}$; $x = \frac{i-1}{N}$
Octobre	8 000	2 660	21 280	64
Novembre	7 000	2 380	16 660	49
Décembre	8 000	2 670	21 360	64
	116 000	36 580 \$	362 390 \$	1 158 \$

$$Y = ax + b$$

Méthode points extrêmes:

a= 0.2417 b= 688

Moindres carrés:

a= 0.2395 b= 733

$$a = \frac{12 \times (362390000) - (116000 \times 36580)}{12 \times (11580000000) - (1160000)^{2}}$$
$$= 0.2395 \$$$

$$a = \frac{N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}}$$

$$b = y - ax; où: y = \frac{\sum_{i=1}^{N} y_i}{N}; x = \frac{\sum_{i=1}^{N} x_i}{N}$$

ANALYSE GLOBALE

Revenus Totaux	Situation actuelle	Option B
_		
-		
Dépenses Totales	Situation actuelle	Option B
_		
_		
RÉSULTATS NETS		

Différence de résultats option B vs situation actuelle

ANALYSE DIFFÉRENTIELLE

Revenus additionnels apportés par la réalisation du Projet

Option B

Revenus perdus par la réalisation du projet (coût d'opportunité)

Option B

Revenus différentiels nets du projet

Dépenses supplémentaires causées par la réalisation du projet

Option B

Coûts économisés par la réalisation du projet

Option B

Coûts différentiels du projet

Résultats nets différentiels

ANALYSE DIFFÉRENTIELLE – EXEMPLE EN CLASSE

	Option actuelle	Option B	
Unités produites et vendues	12 000	20%	
Prix de vente unitaire	90.00 \$	-15%	
Coût variable unitaire	11.90 \$	-10%	
Frais fixes annuels	105 000 \$	25%	
Revenus additionnels apportés par l'option B			
-	<u> </u>	\$ \$	
_		\$	
Revenus perdus à cause de l'opt	<u>ion B (coûts d'opportunité)</u>	_	
_		- \$ \$	
Revenus différentiels nets		21 600 \$	
Coûts additionnels causés par l'	option B	· ·	
-		\$ \$	
-		\$	
Coûts économisés par l'option l	<u>B</u>		
		\$ \$	
Coûts différentiels nets		37 674 \$	
		· · · · ·	
Résultats différentiels nets		(16 074) \$ \(\)	

- SEUIL DE RENTABILITÉ (SR) ou POINT MORT (PM)

- ANALYSE MARGINALE (AM)

LE SEUIL DE RENTABILITÉ (SR)

DÉFINITION

- Le SR est le volume d'activité requis pour que les revenus d'une entreprise soient égaux au total de ses coûts fixes et de ses coûts variables.
- Le SR est aussi défini en termes de seuil critique et de chiffre d'affaires critique.
- C'est l'un des **outils de gestion à court terme** le plus utilisé dans la pratique.

LE SEUIL DE RENTABILITÉ (SR)

<u>UTILITÉ</u>

Le SR permet par exemple de:

- Déterminer la capacité réelle limite en dessous de laquelle une installation n'est pas financièrement équilibrée;
- Déterminer le nombre d'années nécessaires pour atteindre un équilibre financier, ceci en fonction du taux d'utilisation d'une installation;
- Comparer entre elles des solutions alternatives (dont le service rendu est le même);
- Surtout utilisée pour étudier les risques inhérents à un projet;
- Fixer le prix de vente d'un produit

LES RELATIONS DU COÛT ET DU REVENU

- Il existe des modèles linéaires.
- Il existe des modèles non linéaires.
- On utilise ces deux types de modèles pour estimer des valeurs réelles.

LES RELATIONS DU COÛT ET DU REVENU

COÛT TOTAL

Coût total = coûts fixes + coûts variables

$$CT = CF + CV$$

Relations du profit

LE SEUIL DE RENTABILITÉ (SR)

- Le seuil de rentabilité SR correspond au point où la relation du revenu et celle du coût total se croisent.
- Dans le cas de relations non linéaires, il peut y avoir plus d'un seuil de rentabilité SR
- Le ou les seuils de rentabilité constituent une excellente référence à des fins de planification.

SEUIL DE RENTABILITÉ (SR)

FORMULATION

Au seuil de rentabilité on a:

Revenus = coûts variables + coûts fixes + bénéfices nuls

Ventes

RNAI --> Résultat net
avant impots

Appelons:

Q: nombre d'unités (quantités)

PVu: prix de vente unitaire

CVu: coût variable unitaire

CF: total des coûts fixes

CMu = Contribution marginale unitaire ou marge sur coût variable unitaire

= PVu - CVu

CM (\$)= Contribution marginale totale ou marge sur coût variable globale

Ventes totales (\$) ou (chiffre d'affaires) - CV totaux

$$CM(\%) = \frac{CM_u}{PV_u} \times 100\%$$
 Contribution marginale en pourcentage.

FORMULES DE CALCUL DU SEUIL DE RENTABILITÉ

1- Au SR: **RT = CV + CF**

2- Au SR : Profit (bénéfice)= 0

3- Au SR: CM globale ou MCV = CF

LE SEUIL DE RENTABILITÉ (SR)

DEUX MODES DE CALCUL

Le seuil de rentabilité peut être exprimé :

- En quantités physiques: SR(Q)
- En termes monétaires: SR(\$).

SEUIL DE RENTABILITÉ (SR) (suite)

1. EN TERMES PHYSIQUES (quantité):

Au SR, on a: $PVu \times Q = CVu \times Q + CF$

$$SR(Q) = \frac{CF}{PVu - CVu}$$
 (PVu - CVu) = CMu (ou marge sur coûts variables unitaires)

2. EN TERMES MONÉTAIRES (\$):

Deux possibilités:

. Utiliser l'expression :
$$SR(\$) = \frac{CF}{CM(\%)} = \frac{C(Mu/PVu) * 100\%}{(CMu/PVu) * 100\%}$$

. Multiplier le nombres d'unités au SR par PVu

$$SR(\$) = SR(Q) \times PVu$$

Au SR les produits d'exploitation génèrent une marge sur coûts variables tout juste suffisante pour couvrir les charges fixes.

REPRÉSENTATION GRAPHIQUE DU SEUIL DE RENTABILITÉ (forme linéaire)

SR - EXEMPLE

À la société Harley Motors, les coûts fixes s'élèvent à 1 million de dollars par année. Le principal produit de l'entreprise entraîne un revenu de 8,50 \$ par unité et des coûts variables de 4,25 \$ par unité. Déterminez :

- a) Le seuil de rentabilité SR en quantité par année;
- b) Le seuil de rentabilité SR en dollars par année;
- c) Le **profit annuel**, si l'entreprise vend 200 000 unités et si elle en vend 350 000.

Solution

SR (Q) = $1000\ 000\$ \$ /(8.50\\$ - 4.25\\$) = 235\ 294\ unités.

SR (\$) =
$$\frac{1000\,000\,\$}{\left(\frac{8.50\,\$ - 4.25\,\$}{8.50\,\$}\right) \times 100\%}$$
CM (%)
=
$$\frac{1000\,000\,\$}{50\%}$$
Chaque \$ de vente permet de couvrir 0.5 \$ de CF

38

SR - EXEMPLE (suite)

Solution

c) Pour ventes = 200 000 unités

Résultat = $(8.50\$-4.25\$) \times 200\ 000 - 1\ 000\ 000$

= 150 000 \$ (perte)

Pour ventes = 350 000 unités

Résultat = $(8.50\$-4.25\$) \times 350\ 000 - 1\ 000\ 000$

= 487 500 \$ (profit)

SEUIL RENTABILITÉ COMME OBJECTIF À ATTEINDRE

$$SR(Q) = \frac{CF + b\acute{e}n\acute{e}fice d\acute{e}sir\acute{e}}{CMu}$$

Dans l'exemple la Société Harvey Motors, supposons que l'entreprise se soit fixée comme objectif de rentabilité un bénéfice net annuel de 100 000 \$.

```
1. SR (Q):

SR(Q) = (CF totaux + profit désiré) / CMu

= (1000 000 $ + 100 000$) / (8.50 $ - 4.25$)

= 258 824 unités.
```

2. SR (\$):

POINT D'ÉQUIVALENCE ENTRE DEUX PROJETS (PE)

DÉFINITION

C'est le volume d'activité ou le chiffre d'affaires qui permet à deux projets donnés de réaliser des <u>résultats nets</u> prévus identiques.

1. POINT D'ÉQUIVALENCE (QUANTITÉ) - PE(Q):

$$CM_u * Q - CF = CM_{u1} * Q - CF_1$$

$$\frac{PE(Q)}{CM_u - CM_{u1}} Point d'équivalence en unités$$

2. POINT D'ÉQUIVALENCE (\$) - PE(\$):

CM (%) * X - CF = CM₁ (%) * X - CF₁

$$PE (\$) = \frac{CF - CF_1}{CM (\%) - CM_1 (\%)} \Rightarrow Point d'équivalence$$

PE(\$)= chiffre d'affaires ou revenu des ventes en \$

POINT D'ÉQUIVALENCE (EXEMPLE)

Projet A:

- Moteur électrique et ligne d'électricité: 27 000\$
- Durée de vie: 6 ans
- Valeur de revente: 3 000\$
- Coûts d'électricité: 10\$/heure
- Coûts d'entretien: 1500\$/année

Projet B:

- Moteur à essence (valeur de remplacement): 10 000\$
- Valeur de revente: 2 000\$
- Durée de vie: 4 ans
- Coûts d'essence et d'huile 5,50\$/heure
- Coûts d'entretien: 2,50\$/heure
- Salaire de l'opérateur: 12\$/heure

EXEMPLE:

Considérer le facteur heures de fonctionnement et établir le point d'équivalence des projets A et B.

	Projet A	Projet B
	(Moteur élect.)	(Moteur à essence)
Coûts fixes annuels		
Amortissement constant		
(27 000-3000)/6	4000 \$	
(10 000-2000)/4		2000 \$
Entretien	<u> 1500</u>	
Total	5500	2000
Coûts variables		
Électricité (10 \$/h)	10X	-
Salaire (12 \$/h * h)	-	12.0X
Entretien (2.50 \$/h)	-	2.5X
Essence et huile (5.50	\$/h) <u>-</u>	<u>5.5X</u>
Total	10X	20.0X
Coûts totaux	10X + 5500 \$	20X + 2000 \$

X = nombre d'heures de fonctionnement annuel des moteurs.

Les coûts totaux annuels dépendent de X.

(On suppose l'hypothèse de répétition des projets).

Trouver X qui rend les 2 projets équivalents en terme de coûts

$$10X + 5500 = 20X + 2000$$

$$X = 350 h$$

Ainsi pour une durée de fonctionnement égale à 350 h, les deux projets sont équivalents.

REPRÉSENTATION GRAPHIQUE

L'analyse du seuil de rentabilité financier d'un projet unique

- En économie d'ingénierie, on s'intéresse notamment aux valeurs *P*, *F*, *A*, *i* et *n*.
- Si toutes ces valeurs sont connues sauf une, on peut établir la valeur du paramètre inconnu.
- On peut déterminer la valeur d'un seuil de rentabilité (SR) en établissant une relation d'équivalence VA, VC ou AÉ = 0.
 - On effectue ensuite les calculs nécessaires pour trouver la valeur du paramètre inconnu.

Exemple (problème 13.10 p 427)

Revenus annuels (des années 2 à 8) pour

rentabiliser l'investissement au taux de 10%?

R=20 000

Solution:

VAN (10%) = 0

$$50\ 000(P/F,10\%,1) + \text{Rev}(P/A,10\%,7)(P/F,10\%,1) -150,000 +$$

 $20\ 000(P/F,10\%,8) - 42\ 000(P/A,10\%,8) = 0$
 $Rev = -50\ 000(0.9091) + 150,000 - 20\ 000(0.4665) + 42\ 000(5.3349)$
 $(4.8684)(0.9091)$
Rev = 319 281\$ / 4.4259 = 72 140 \$ par année

ANALYSE MARGINALE

L'analyse marginale est utilisée pour ressortir les effets de la variation du volume d'activité sur le bénéfice net.

ANALYSE MARGINALE: QUELQUES DÉFINITIONS (suite)

MARGE DE SÉCURITÉ:

- Marge de sécurité MS (\$):
 MS(\$)= Revenus totaux prévus SR (\$)
- Marge de sécurité (MS) en unité:
 M.S. (Unités) = Unités prévues SR(Q)
- Pourcentage de sécurité MS(%):

$$M \operatorname{arg} e \operatorname{de} \operatorname{s\'{e}curit\'{e}} = \frac{\operatorname{Marge de s\'{e}curit\'{e}}}{\operatorname{revenus pr\'{e}vus}} \times 100\%$$

ANALYSE MARGINALE: QUELQUES DÉFINITIONS (suite)

Pourcentage des bénéfices = $\frac{Bénéfice \ net}{Ventes}$ (\$) Ou Marge bénéficiaire nette en % = CM(%) * MS(%)

Marge bénéficiaire brute =
$$\frac{B\acute{e}n\acute{e}fice\ brut}{Ventes\ (\$)}$$

- $SR (\$) = Ventes(\$) \times [1 MS(\%)]$
- Bénéfice net prévu total = $M.S.(unités) \times CMu$ = $M.S.(\%) \times C.M.globale$

COMPAGNIE (NOM) ÉTAT DES RÉSULTATS

POUR LA PÉRIODE D'UNE ANNÉE TERMINÉE LE j-mois-année (MÉTHODE CONVENTIONNELLE – COÛTS COMPLETS) (PAR FONCTION)

VENTES - COÛT DES VENTES (ou : COÛT DES PRODUITS FABRIQUÉS POUR ENTREPRISE DE FABRICATION)	-	XX XX	100%
MARGE BRUTE		XX	% ventes
- CHARGES COMMERCIALES ET ADMINISTRATIVES + Autres revenus (tels que les intérêts)	- +	XX XX	
RÉSULTAT (avant impôts) - Impôts	-	XX XX	% ventes
RÉSULTAT NET (après impôts)		XX	% ventes

Compagnie (nom)

État des résultats

POUR LA PÉRIODE D'UNE ANNÉE TERMINÉE LE j-mois-année MÉTHODE DES COÛTS VARIABLES (COÛTS PROPORTIONNELS)

(SELON LEUR COMPORTEMENT)

VENTES		XX	100%
- COÛTS VARIABLES			
Coûts de fabrication variables	XX		
Charges commerciales variables	XX		
Charges administratives Variables	XX -	XX	% des ventes
MARGE SUR COÛTS VARIABLES		XX	% des ventes
Moins: COÛTS FIXES			
Coûts de Fabrication fixes	XX		
Charges commerciales fixes	XX		
Charges administratives fixes	XX	XX	
RÉSULTAT AVANT IMPÔT		XX	% des ventes
Moins: Impôt	-	XX	
RÉSULTAT NET APRÈS IMPÔT		XX	% des ventes
			52

FORMES NON LINÉAIRE

FONCTION NON-LINÉAIRE DES COÛTS

• COÛT TOTAL (CT)

```
CT = CF + CV
= CF + (a*Q - b*Q^2 + c*Q^3)
où:
```

a, b et c sont des paramètres constants.

Q : quantités (volume)

COÛT MOYEN (CMo)

$$CM_0(Q) = CT(Q)/Q$$

= $CF/Q + a - b*Q + c*Q^2$

COÛT MARGINAL (Cma)

Coût pour produire une unité additionnelle

Cm_a =
$$\partial$$
CT/ ∂ Q
= a - 2*b*Q + 3* c*Q²

L'analyse non linéaire du seuil de rentabilité

- Dans le cas d'une analyse non linéaire, on s'intéresse au point qui correspond au profit maximal.
- Il peut alors exister plusieurs seuils de rentabilité.

Analyse non linéaire du seuil de rentabilité

Le profit maximal: Rma = Cma
Ou Bma= 0
Volume pour lequel le profit marginal est nul.

EXEMPLE

Différents revenus	Différents coûts
RT(Q) = 5*Q	$CT(Q) = 5 + 5*Q - Q^2 + 0.1*Q^3$
RMo(Q) = 5	CMo(Q)= $(5/Q) + 5 - Q + 0.1*Q^2$ Cma(Q)= $5 - 2*Q + 0.3*Q^2$
Rma(Q) = 5	Cma(Q)= $5 - 2*Q + 0.3*Q^2$

Q = quantités produites et vendues par période (en 000 unités)

RT= revenu total en milliers de dollars

RMo = revenu moyen en dollars Rma= revenu marginal en dollars

CT= coût total en milliers de dollars

CMo = coût moyen en dollars Cma= coût marginal en dollars le profit est maximal quand

Rma = Cma Ou Bma= 0

Différents profits

$$BT = RT - CT$$

BT =
$$-5 + Q^2 - 0.1*Q^3$$

$$BM0 = -(5/Q) + Q - 0.1*Q^2$$

Bma= 5- $(5-2Q+0.3Q^2)= 2*Q - 0.3*Q^2$

TRAVAIL À FAIRE

Problèmes suggérés du chapitre 13 ÉI:

13.1, 13.4, 13.5, 13.6, 13.11, 13.12 et 13.17

Lire chapitres 5,7 et 8 Él