1.	Dar	diagramas	para
----	-----	-----------	------

- a) Los retículos con 5 elementos.
- b) Los retículos con 6 elementos.
- c) El retículo de los subespacios vectoriales de \mathbb{R}^2 .

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.

2. Interpretar \wedge y \vee en los siguientes conjuntos ordenados:

- a) $(\mathcal{P}(A), \subseteq)$, donde A es un conjunto arbitrario.
- b) $(\mathbb{N}, |)$, donde | denota la relacion «divide a».
- c) Álgebra de Lindenbaum-Tarski (ver ejercicio práctica anterior).

Soluciones

- a)
- \blacksquare $\land = \cap$.
- \blacksquare $\lor = \cup$.
- b)
- $\wedge = mcd.$
- $\lor = mcm.$
- c)
- $lack \wedge = \wedge.$
- \blacksquare \lor = \lor .

- 3. Sea (X, \wedge, \vee) un retículo.
 - a) Probar que para todos $x, y, z \in X$ se satisface:
 - 1) $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$.
 - 2) $x \land (y \lor z) \ge (x \land y) \lor (x \land z)$.
 - 3) $(x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \leq (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$.
 - b) Probar que si una de las desigualdades anteriores es una igualdad, las restantes también lo son.

- a)
- 1) Sabemos que $y \land z \leq y$ y $y \land z \leq z$ luego por compatibilidad tenemos $x \lor (y \land z) \leq x \lor y$ y $x \lor (y \land z) \leq x \lor z$ y nuevamente por compatibilidad $(x \lor (y \land z)) \land (x \lor (y \land z)) \leq (x \lor y) \land (x \lor z)$. Finalmente concluimos lo propuesto por idempotencia.
- 2) Trivial por dualidad.
- 3) COMPLETAR.
- b) COMPLETAR.
- 4. Sea (X, \wedge, \vee) un retículo. Probar que los siguientes subconjuntos de X son subretículos:
 - $a) \ A = \{x \in X : x \le a\}.$
 - $b) \ B = \{x \in X : b \le x\}.$
 - c) $C = \{x \in X : a \le x \le b\}.$

Soluciones

- a) Sabemos que $a \in A$ luego $A \neq \emptyset$. Ademas sean $x, y \in A$ luego $x \leq a$ y $y \leq a$, pero por compatibilidad $x \vee y \leq a \vee a = a$ por lo que $x \vee y \in A$. Analogamente $x \wedge y \in A$.
- b) Análogo.
- c) Análogo.

- 5. Sea (L, \preceq) un retículo. Un polinomio p en n variables es una función $p: L^n \to L$ que pertenece al conjunto inductivo P_L :
 - Para $i \in \{1, \ldots, n\}$, $\pi_i \in P_L$ donde $\pi_i(x_1, \ldots, x_n) = x_i$.
 - Si $f, g \in P_L$ entonces $f \vee g \in P_L$, donde $(f \vee g)(\overline{x}) = f(\overline{x}) \vee g(\overline{x})$.
 - Si $f, g \in P_L$ entonces $f \wedge g \in P_L$, donde $(f \wedge g)(\overline{x}) = f(\overline{x}) \wedge g(\overline{x})$.

Sea f un polinomio en n variables, y $x_i \leq y_i$ para cada i de 1 hasta n. Probar que $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$.

Solución COMPLETAR.

6. Un retículo L se llama modular si para todos $a, b, c \in L$ resulta

$$a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$$

Probar que son equivalentes:

- a) L es modular.
- b) $a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c$ para todos $a, b, c \in L$.
- c) $a \vee (b \wedge (a \vee c)) = (a \vee b) \wedge (a \vee c)$ para todos $a, b, c \in L$.
- $d) \ \ a \wedge (b \vee (a \wedge c)) = (a \wedge b) \vee (a \wedge c) \ \text{para todos} \ \ a,b,c \in L.$

Soluciones

• $a \Rightarrow b$: Sea $a \ge c$ luego por ser L modular

$$c \lor (b \land a) = (c \lor b) \land a$$

$$\iff (b \land a) \lor c = a \land (c \lor b)$$

$$\iff (a \land b) \lor c = a \land (b \lor c)$$

■ $b \Rightarrow c$: Sabemos que $a \lor c \ge a$ y por hipótesis $(a \lor c) \land (b \lor a) = ((a \lor c) \land b) \lor a$, luego aplicando varias veces conmutatividad obtenemos

$$a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$$

- $c \Rightarrow d$: Trivial por dualidad.
- $d \Rightarrow a$: Sea $a \le c$ entonces $a \lor c = c$ y por hipótesis para cualquier b, resulta

7. Probar que todo retículo distributivo es modular. ¿Es cierta la recíproca?

Solución Sea $a \le c$ entonces $a \land c = a$, luego por distributividad:

$$(a \lor b) \land c = (a \land c) \lor (b \land c) = a \lor (b \land c)$$

La recíproca no vale, pues basta considerar el siguiente contraejemplo:

donde puede observarse que es modular pero $y \lor (x \land z) = y \neq 1 = (y \lor x) \land (y \lor z)$.

- 8. Sea (X,\wedge,\vee) un retículo. Probar que:
 - a) Si \vee tiene elemento neutro 0, entonces $a \wedge 0 = 0$ para todo $a \in X$.
 - b) Si \wedge tiene elemento neutro 1, entonces $a \vee 1 = 1$ para todo $a \in X$.

- a) Por propiedad, como $0 \lor a = a$, entonces $0 \land a = 0$.
- b) Por propiedad, como $a \wedge 1 = a$, entonces $a \vee 1 = 1$.
- 9. Sean (X, \wedge, \vee) y (Y, \wedge', \vee') retículos con 0 y 1; y $h: X \to Y$ un homomorfísmo de retículo. Mostrar con un ejemplo que no siempre $h(1_X) = 1_Y$ o $h(0_X) = 0_Y$

Solución Basta considerar $id : \mathbb{N} \to \mathbb{N}_0$ y $id : -\mathbb{N} \to -\mathbb{N}_0$.

- 10. Sea (X, \wedge, \vee) un retículo acotado (con 0 y 1). Dado $a \in X$, si existe $b \in X$ tal que $a \wedge b = 0$ y $a \vee b = 1$, b se llama complemento de a, y en caso de ser único se nota \overline{a} . Probar que:
 - $a) \ \overline{\overline{a}} = a.$
 - b) $\bar{0} = 1$.
 - c) Si X es distributivo, $\overline{(a \wedge b)} = \overline{a} \vee \overline{b}$ y $\overline{(a \vee b)} = \overline{a} \wedge \overline{b}$.

Soluciones

- a) Sabemos que $a \wedge \overline{a} = 0$ y $\overline{\overline{a}} \wedge \overline{a} = 0$, por lo que a y $\overline{\overline{a}}$ son complementos de \overline{a} , luego como el complemento es único debe ser $\overline{\overline{a}} = a$.
- b) Sabemos $0 \vee \overline{0} = 1$ y como $0 \vee x = x$ (pues 0 es mínimo) entonces $0 \vee \overline{0} = \overline{0}$ por lo que $\overline{0} = 1$.
- c) Para mostrar que el complemento de $a \wedge b$ es $\overline{a} \vee \overline{b}$ debemos ver que $(\overline{a} \vee \overline{b}) \vee (a \wedge b)$ y $(\overline{a} \vee \overline{b}) \vee (a \wedge b) = 0$.
 - $\bullet \ \left(\overline{a} \vee \overline{b}\right) \vee (a \wedge b) = \left(\left(\overline{a} \vee \overline{b}\right) \vee a\right) \wedge \left(\left(\overline{a} \vee \overline{b}\right) \vee b\right) = \left(1 \vee \overline{b}\right) \wedge (1 \wedge \overline{a}) = 1.$
 - $\bullet \ \left(\overline{a} \vee \overline{b}\right) \wedge (a \wedge b) = \left(\overline{a} \wedge (a \wedge b)\right) \vee \left(\overline{b} \wedge (a \wedge b)\right) = (0 \wedge b) \vee (0 \wedge a) = 0.$

La otra igualdad se deduce por dualidad.

- 11. Sean (X,\wedge,\vee) y (Y,\wedge',\vee') retículos y $h:X\to Y$ un homomorfísmo de retículo. Probar que:
 - a) h(X) es un subretículo de Y.
 - b) Si X es distributivo, $h\left(X\right)$ es distributivo.

a)

- Sabemos que $X \neq \emptyset$ por ser retículo, luego $h(X) \neq \emptyset$.
- Sean $a', b' \in h(X) \subseteq Y$ tales que h(a) = a' y h(b) = b'. Sabemos que $h(a \land b) \in Y$ y como h es un homomorfísmo resulta $h(a \lor b) = h(a) \lor' h(b) = a' \lor' b' \in Y$. Analogamente para $a' \land' b'$.
- b) Sean $a', b', c' \in h(X) \subseteq Y$ tales que h(a) = a', h(b) = b' y h(c) = c', luego $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ y como h es un homomorfísmo resultan:
 - $\bullet h(a \land (b \lor c)) = h(a) \land' h(b \lor c) = a' \land' (b' \lor c').$
 - $h\left((a \wedge b) \vee (a \wedge c)\right) = h\left(a \wedge b\right) \vee' h\left(a \wedge c\right) = \\ = (h\left(a\right) \wedge' h\left(b\right)) \vee' (h\left(a\right) \wedge' h\left(c\right)) = (a' \wedge' b') \vee' (a' \wedge' c')$

La otra lev también vale por dualidad.

12. Verificar que todo isomorfismo de retículo se corresponde con un isomorfismo de conjuntos ordenados.

Solución Sean (X, \wedge, \vee) y (Y, \wedge', \vee') retículos y $f: X \to Y$ un isomorfismo de retículo.

■ Veamos primero que si f es isomorfimo de retículo tambien lo es f^{-1} . Sean $a', b' \in Y$ tales que f(a) = a' y f(b) = b' luego sabemos que $f(a \lor b) = f(a) \lor' f(b) = a' \lor' b'$ por lo que

$$f^{-1}(a' \lor' b') = a \lor b = f^{-1}(a') \lor f^{-1}(b')$$

Analogamente para $a \wedge b$.

■ Ahora $a, b \in X/a \leq b$ resultará $a \vee b = b$ y como f es isomorfismo:

$$a \leq b \iff a \vee b = b \iff f(a \vee b) = f(b) \Rightarrow$$

 $\Rightarrow f(a) \vee' f(b) = f(b) \iff f(a) \leq' f(b)$

Por otro lado:

$$f(a) \preceq' f(b) \iff f(a) \vee' f(b) = f(b) \iff f^{-1}(f(a) \vee' f(b)) = f^{-1}(f(b)) \iff f^{-1}(f(a)) \vee f^{-1}(f(b)) = b \iff a \vee b = b \iff a \prec b$$

13. Probar que el retículo potencia de cualquier conjunto es completo.

Solución Sean $(\mathcal{P}(A), \cap, \cup)$ un retículo y $X, Y \in \mathcal{P}(A)$, debemos ver que $X \cap Y$ y $X \cup Y$ estan en $\mathcal{P}(A)$; o lo que es lo mismo, que estan contenidos en A.

• Como $X, Y \in \mathcal{P}(A)$ entonces $X \subseteq A$ y $Y \subseteq A$, luego:

$$\alpha \in X \cap Y \iff \alpha \in X \land \alpha \in Y \Rightarrow x \in A$$

■ Como $X, Y \in \mathcal{P}(A)$ entonces $X \subseteq A$ y $Y \subseteq A$, luego:

$$\alpha \in X \cup Y \iff \alpha \in X \vee \alpha \in Y$$

- Si $\alpha \in X \Rightarrow \alpha \in A$ (pues $X \subseteq A$).
- Si $\alpha \in T \Rightarrow \alpha \in A$ (pues $Y \subseteq A$).
- 14. Knaster-Tarski. Sea (L, \sqsubseteq) un retículo completo y $f: L \to L$ una función monótona. Probar que el mínimo punto fijo de f es $y = \bigwedge D$ donde $D = \{x \in L | f(x) \sqsubseteq x\}$.

Solución

- Veamos que y es punto fijo, es decir que f(y) = y o lo que es lo mismo: $f(y) \sqsubseteq y$ y $y \sqsubseteq f(y)$.
 - $f(y) \sqsubseteq y$: Sea $x \in D$ luego por definición $f(x) \sqsubseteq x$. Como y es cota inferior de D resulta $y \sqsubseteq x$ y como f es monotona $f(y) \sqsubseteq f(x)$. Ahora por transitividad $f(y) \sqsubseteq x$, es decir que f(y) también es cota inferior de D y como y es la mayor de las cotas inferores de D resulta $f(y) \sqsubseteq y$.
 - $y \sqsubseteq f(y)$: Sabemos que y es cota inferior de D, es decir $\forall x \in D : y \sqsubseteq x$ y como f es monotona resulta $f(y) \sqsubseteq f(x)$ por lo que f(y) también es cota inferior de D; pero y es la menor de ellas luego $y \sqsubseteq f(y)$.
- Resta ver que y es el menor de los puntos fijos. Como todos los puntos fijos estan en D, debemos ver que: $\forall x \in D : y \sqsubseteq x$, lo cual se deduce sabiendo que y es cota inferior de D.

- 15. Aplicar el resultado del ejercicio anterior para definir el conjunto inductivo de los números pares P como el mínimo punto fijo de una función monótona, donde P se define como el menor conjunto para el cual:
 - $0 \in P$.
 - Si $n \in P$, entonces $n + 2 \in P$.

Solución COMPLETAR.

16. Sea (P, \leq) un orden total. Probar que P es un retículo distributivo.

Solución COMPLETAR.

17. Retículo completo. Sea (P, \leq) un orden. Probar que si todo subconjunto de P tiene supremo, entonces todo subconjunto de P tiene ínfimo.

Solución COMPLETAR.

- 18. Un álgebra de Boole es un retículo acotado distributivo con complementos.
 - a) Dar un ejemplo de álgebra de Bool de los retículos vistos en clase.
 - b) Probar que $O_n = (\{x \in \mathbb{N} : x | n\}, |)$ es un álgebra de Boole si n es producto de factores primos distintos.
 - c) Enunciar y probar la ley de De Morgan para las álgebras de Boole.
 - d) Si (L, \leq) es un álgebra de Boole, entonces para $x, y \in L$ si $x \leq y$ entonces $\overline{y} \leq \overline{x}$.
 - e) Si (L, \leq) , (L', \leq') son álgebras de Boole, entoneces todo isomorfismo de conjuntos ordenados de L en L' preserva complementos.
 - f) Sean $(L, \leq), (L', \leq')$ álgebras de Boole. Construir un orden para $L \times L'$ y probar que es un álgebra de Boole.

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- f) COMPLETAR.