# Image Style Transfer, Neural Doodles & Texture Synthesis

**Dmitry Ulyanov** 

MIXAR Moscow, 2016





### VGG-style neural networks

- Consist of repeated
  - Convolutions
  - ReLU
  - MaxPool

+

FC + Softmax at the end

- Activations (feature maps)
  - Tensor of size CxWxH



Image credit: Xavier Giro, DeepFix slides

# Image generation examples



Mordvintsev, 2015



Simonyan et al. 2014

#### Presentation structure

- General overview:
  - Texture synthesis
  - 2. Image style transfer
  - 3. Neural doodles

- Our work "Texture networks" (ICML 2016):
  - Fast texture synthesis
  - Fast image style transfer
  - Fast neural doodles

### **Examples: Texture Synthesis**







L. A. Gatys, A. S. Ecker, M. Bethge; "Texture Synthesis Using Convolutional Neural Networks"; NIPS 2015

## **Examples: Image Artistic Style Transfer**



L. A. Gatys, A. S. Ecker, M. Bethge; "Image Style Transfer Using Convolutional Neural Networks"; CVPR 2016

# **Examples: Neural Doodles**



A. J. Champandard. "Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks", 2016

How does it work?

## Image generation by optimization

$$x^* = \arg\min_{x} \mathcal{L}(x)$$



### Gatys et. al.: Optimization-based texture synthesis



- Texture:
- Activations at layer l:
- Gram matrix at layer *l*:

t

 $F^l(t)$ 

$$G^l(t)$$

$$G_{ij}^{l}(t) = \sum_{k=1}^{M_l N_l} F_{ik}^{l}(t) F_{jk}^{l}(t)$$

### Gatys et. al.: Optimization-based texture synthesis



- Image:
- Gram matrix at layer l:

$$G^l(x)$$

Loss at layer 
$$l$$
:  $L^{l}(x;t) = ||G^{l}(t) - G^{l}(x)||_{2}^{2}$ 

$$\mathcal{L}_{texture}(x;t) = \sum_{l} L^{l}(x;t)$$

### Gatys et. al.: Optimization-based texture synthesis



Loss:

$$\mathcal{L}_{texture}(x;t) = \sum_{l} ||G^{l}(t) - G^{l}(x)||_{2}^{2}$$

Solve

$$\min_{x} \mathcal{L}_{texture}(x;t)$$

By gradient descent 
$$x^{k+1} = x^k - \alpha \frac{\partial \mathcal{L}(x;t)}{\partial x}$$

### **Examples: Texture Synthesis**







L. A. Gatys, A. S. Ecker, M. Bethge; "Texture Synthesis Using Convolutional Neural Networks"; NIPS 2015

### How to: Neural Doodles



github.com/DmitryUlyanov/fast-neural-doodle

### Gatys et. al.: Content loss for style transfer



- Total loss:  $\mathcal{L}(x;t,c) = \mathcal{L}_{texture}(x;t) + \mathcal{L}_{content}(x;c)$
- Texture loss:  $\mathcal{L}_{texture}(x;t) = \sum_{l} ||G^l(t) G^l(x)||_2^2$
- Content loss:  $\mathcal{L}_{content}(x;c) = ?$

### Gatys et. al.: Content loss for style transfer



- Content image:
- Activations at layer l:

C

 $F^l(c)$ 

### Gatys et. al.: Content loss for style transfer



- Total loss:  $\mathcal{L}(x;t,c) = \mathcal{L}_{texture}(x;t) + \mathcal{L}_{content}(x;c)$
- Texture loss:  $\mathcal{L}_{texture}(x;t) = \sum_{l} ||G^l(t) G^l(x)||_2^2$
- Content loss:  $\mathcal{L}_{content}(x;t) = \sum_{l} ||F^{l}(t) F^{l}(x)||_{2}^{2}$

#### What else?

The results are excellent, but...

It is slow! Several minutes on a high-end GPU.

### **Texture Networks:**

Feed-forward Synthesis of Textures and Stylized Images

Dmitry Ulyanov<sup>1,2</sup>, Vadim Lebedev<sup>1,2</sup>, Andrea Vedaldi<sup>3</sup>, Victor Lempitsky<sup>2</sup>

**ICML 2016** 







### Our method: learn a neural net to generate

# **Instead of solving Solve** $\min_{\boldsymbol{\theta}} \mathbb{E} \mathcal{L}(\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})) \quad \boldsymbol{z} \sim \mathrm{U}(0,1)$ $\min \mathcal{L}(x)$ p(z) $g(z_3)$ $g(z_1)$

- Now
  - Generation requires a single  $g_{\theta}(z)$  evaluation
- But
  - Need to make sure  $g_{\theta}(z)$  does not collapse everything into one point

### We propose: texture network



- Solve
- By gradient descent
- Generate x:

$$\min_{\boldsymbol{\theta}} \mathbb{E} \mathcal{L}_{texture}(\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z});t), \quad \boldsymbol{z} \sim U(0,1)$$

$$\theta^{k+1} = \theta^k - \alpha \frac{\partial \mathcal{L}(g_{\theta}(z);t)}{\partial \theta}$$

$$x = g_{\theta}(\boldsymbol{z}), \quad \boldsymbol{z} \sim U(0, 1)$$

## We propose: stylization network



- Solve
- By gradient descent
- Generate x:

$$\min_{\boldsymbol{\theta}} \mathbb{E} \mathcal{L}(\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{c}); c, t), \quad \boldsymbol{z} \sim U(0, 1)$$

$$\theta^{k+1} = \theta^k - \alpha \frac{\partial \mathcal{L}(g_{\theta}(z))}{\partial \theta}$$

$$x = g_{\theta}(\boldsymbol{z}, \boldsymbol{c}), \quad \boldsymbol{z} \sim U(0, 1)$$

### Qualitative evaluation: textures



Almost similar but ours 500 times faster.

### Qualitative evaluation: textures



**Texture** 



Gatys et. al. (90 sec.)



Ours (0.06 sec.)

# Qualitative evaluation: textures



# Qualitative results: stylization



# Qualitative results: stylization









Ours Gatys et. al.

#### Generator network

- Works good with any fully convolutional architectures.
- Use Instance normalization instead of Batch Normalization.



# Was the technology used somewhere?

Yes!

### Online neural doodles: likemo.net



GIF: prostheticknowledge-online-neural-doodle

Code: aithub.com/DmitryUlyanov/online-neural-doodle

### Fast stylization

Made possible many stylization apps for mobile devices



#### Source code

Source code is open at

https://github.com/DmitryUlyanov/

### The last slide

Thank you!

#### Related work

#### Feed-forward generator

• **Generative Adversarial Networks** (Goodfellow et. al., NIPS 2014): a neural network aims to produce samples that are indistinguishable from real examples

#### Similar concurrent work

- Perceptual Losses for Real-Time Style Transfer and Super-Resolution, (Johnson et. al., ECCV 2016): very similar approach fast stylization approach.
- Precomputed Real-Time Texture Synthesis with Markovian Generative
  Adversarial Networks (Li & Wand, ECCV 2016): similar patch-based style transfer acceleration approach.