# Numerical results for the 1d-2v Vlasov-Poisson system in a uniform magnetic field



Alexandre Rege<sup>1</sup> Frédérique Charles<sup>1</sup> Bruno Després<sup>1</sup>

alexandre.rege@sorbonne-universite.fr







Fig 0 - Landau Damping for 1d-1v Vlasov-Poisson system

- ➤ According to linear theory, wave solutions of the unmagnetized Vlasov equation exhibit collisionless damping, while in a magnetized plasma, waves perpendicular to the magnetic field are exactly undamped, no matter how weak the magnetic field is, this is the **Landau-Bernstein paradox**.
- > The theory for magnetized plasma [2] does not converge smoothly to the theory for unmagnetized plasmas when the magnetic field goes to zero [7].
- > Our general goal is to develop mathematical and numerical analysis of this phenomenon. The poster is essentially restricted to the presentation of numerical results obtained with a semi-lagrangian method.

### 1. The model

## Vlasov-Poisson system in dimension 1d-2v

$$\begin{cases} \partial_t f + v_1 \partial_x f - E \partial_{v_1} f + \omega_c (-v_2 \partial_{v_1} f + v_1 \partial_{v_2} f) = 0 \\ \partial_x E = 1 - \int_{(v_1, v_2) \in \mathbb{R}^2} f(x, v_1, v_2) dv_1 dv_2 \end{cases} \tag{1}$$

Here  $\omega_c > 0$  is the cyclotron frequency for electrons and the unknowns are the density of electrons  $f(t, x, v_1, v_2)$  and the electric field E(t, x). The domain is  $\Omega = \mathbb{T} \times \mathbb{R}^2$ ,  $\mathbb{T} = [0; L]_{per}$  is the 1D-torus.

#### Assumptions

- $\succ$  The total mass is normalized  $\int_{\mathbb{T}\times\mathbb{R}^2} f_0 dx dv_1 dv_2 = 1$  (and the Vlasov equation guarantees that the total mass is conserved).
- > The mean value of the electric field vanishes  $\int_{\mathbb{T}} E(t,x) dx = 0$ .

## 2. Semi-Lagrangian scheme with splitting

## Principle of the classical (backward) Semi-lagrangian method [3]

The aim is to find an approximation  $f_n$  of the solution of  $\partial_t f + E(x,t)\partial_x f = 0$  at all discrete time  $t_n$ .

- > For every point  $x_i$  of the grid in x, we compute the value of the characteristic which is equal to  $x_i$  at time  $t_{n+1}$ .
- $\triangleright$  We compute  $f_{n+1}$  by interpolation using these values and  $f_n$ .

## Splitting

This system is particularly adapted to a numerical scheme that uses splitting operations: we can split the Vlasov equation in three equations with constant advection terms. These equations write as:

$$\partial_t f + v_1 \partial_x f = 0$$

$$\partial_t f - (E + \omega_c v_2) \partial_{v_1} f = 0$$

$$\partial_t f + \omega_c v_1 \partial_{v_2} f = 0$$
(2)
(3)

# Algorithm to solve system (1)

# 1. Initialisation

- > We are given the initial distribution function  $f_0(x,v)$ , from which we can compute the initial electron density  $\rho(0,x)=\int_{\mathbb{R}}f_0(x,v)dv$ .
- ightharpoonup We then compute the initial electric field E(0,x) by solving the Poisson equation  $\partial_x E = 1 \rho(0,x)$ .

# 2. Going from $t_n$ to $t_{n+1}$

We assume that we know the matrix  $(f^n(x_i, v_j))$ , whose coefficients are simply the values of the approximation of  $f(t_n, \cdot, \cdot)$  at the grid points  $(x_i, v_j)$ , and  $E^n$ , the approximation of the electric field at time  $t_n$ , at the grid points  $x_i$  of the physical space.

 $\triangleright$  We compute  $f^*$  by solving

$$\partial_t f + v_1 \partial_x f = 0$$

during one time step  $\Delta t$  with initial condition  $f^n$ .

- We update the electric field by computing  $\rho^{n+1}(x) = \int_{\mathbb{R}} f^*(x,v) dv$  and solving the Poisson equation  $\partial_x E^{n+1} = 1 \rho^{n+1}(x)$ .
- $\succ$  We compute  $f^{**}$  by solving

$$\partial_t f - (E^{n+1} + \omega_c v_2) \partial_{v_1} f = 0$$

during one time step  $\Delta t$  with initial condition  $f^*$ .

ightharpoonup We compute  $f^{n+1}$  by solving

$$\partial_t f + \omega_c v_1 \partial_{v_2} f = 0$$

during one time step  $\Delta t$  with initial condition  $f^{**}$ .

# 3. Numerical results: illustration of the Landau Bernstein paradox

# Interpolation

- > We use a classical cubic spline interpolation with periodic boundary conditions (in all three variables).
- > Cubic spline interpolation is conservative, which ensures that the algorithm conserves mass.

# Numerical parameters

> In the following simulations, we use the algorithm from section 2 with  $L = \frac{2\pi}{k}$  and the initial condition  $f_0$  given by:

$$f_0(x, v_1, v_2) = \frac{1}{2\pi} (1 + \epsilon \cos(kx)) \exp(-\frac{v_1^2 + v_2^2}{2})$$
 (5)

with  $\epsilon = 0.001$ .

> This is the classical initial condition used for testing Landau-Damping.

# Evolution of the electrical energy in time

- > For Fig. 1-3, green lines indicate the multiples of  $\frac{L}{\Delta v_1}$ .
- > For Fig. 4-6, green lines indicate the multiples of  $\frac{2\pi}{\omega_c}$ .



Fig 1 - Numerical recurrence  $\omega_c=0$ 



Fig 4 - Physical recurrence  $\omega_c = 0.1$ 



Fig 2 - Physical recurrence hidden by numerical recurrence  $\omega_c=0.01$ 



Fig 5 - Physical recurrence  $\omega_c=0.13$ 



Fig 3 - Physical recurrence hidden by numerical recurrence  $\omega_c=0.02$ 



Fig 5 - Physical recurrence  $\omega_c=0.2$ 

# Numerical recurrence vs physical recurrence

- ➤ The drawback of semi-lagrangian schemes is the appearance of a numerical recurrence [4], [6].
- > Time of numerical recurrence  $T_N \approx \frac{L}{\Delta v_1}$  and time of physical recurrence  $T_P \approx \frac{2\pi}{\omega_c}$
- > We see that for small values of  $\omega_c$  (Fig 1 and 2), the physical recurrence is hidden by the numerical recurrence.
- > The physical recurrence is visible when  $\omega_c$  is "big enough" (Fig 1 and 2) or more precisely verifies  $\frac{2\pi}{\omega_c} < \frac{L}{\Delta v_1}$

# 4. Prospects

> We linearize system (1) around the stationary solution  $(f_0, E_0) = (\frac{1}{2\pi}e^{-\frac{v_1^2 + v_2^2}{2}}, 0)$  to get:

$$\begin{cases} \partial_t u + v_1 \partial_x u - F v_1 e^{-\frac{v_1^2 + v_2^2}{4}} u + \omega_c (-v_2 \partial_{v_1} u + v_1 \partial_{v_2} u) = 0 \\ \partial_x F = -\int_{(v_1, v_2) \in \mathbb{R}^2} u(x, v_1, v_2) e^{-\frac{v_1^2 + v_2^2}{4}} dv_1 dv_2 \end{cases}$$
(6)

- > Write the linearized system in the form  $\partial_t u = iHu$  with H a symmetric operator (framework of scattering theory) and conduct a spectral study of H.
- > With this framework, find analytic solutions of the problem to further study the L-B paradox and the situation  $\omega_c \to 0$ .
- > Compare with a 3d-3v analysis developed in [1].
- > Compare the theoretical and numerical results: eigenvectors, eigenvalues, decay rate.

# References

- [1] J. Bedrossian, F. Wang, *The linearized vlasov and vlasov-Fokker-Planck equations in a uniform magnetic field*, preprint, 2018.
- [2] I. Bernstein, Waves in a Plasma in a Magnetic Field, Physical Review, Vol. 109, 1958
- [3] M. Z. Cheng, G. Knorr, *The Integration of the Vlasov Equation in Configuration Space*, Journal of Computational Physics Vol. 22, 1976.
- [4] N. Crouseilles, T. Respaud, E. Sonnendrücker, A Forward semi-Lagrangian Method for the Numerical Solution of the Vlasov Equation, Rapport de recherche nº6727, Inria, 2008.
  [5] B. Eliasson, Numerical simulations of the Fourier transformed Vlasov-Maxwell system in higher
- dimensions Theory and applications, Journal of Computational Physics Vol. 22, 1976.

  [6] M. Mehrenberger, L. Navoret, N. Pham, Recurrence phenomenon for Vlasov-Poisson simulations on regular finite element mesh preprint, 2018.
- [7] A. I. Sukhorukov and P. Stubbe, *On the Bernstein-Landau Paradox*, Physics of Plasma Vol. 4, 1997.