MSPA PREDICT 420

Graded Exercise 1: Flying Around

Introduction

This document presents the results of first graded exercise for the Masters of Science in Predictive Analytics course: PREDICT 420. This assessment required the student to perform some data wrangling exercises on airline/flight data retrieved from OpenFlights.org.

Assessment

1. Loading the Data

Load datasets into pandas dataframes.

```
In [1]: import pandas as pd

df_airlines = pd.read_csv("data/airlines.dat", header = None, encoding = "latin-1")
  df_airports = pd.read_csv("data/airports.dat", header = None, encoding = "latin-1")
  df_routes = pd.read_csv("data/routes.dat", header = None, encoding = "latin-1")
```

2. Pre-process the Data

Import field names for each dataframe as lists from relevant text files.

```
In [2]: import csv

f = open("data/airlines_fields.txt", "r")
    reader = csv.reader(f)
    airlines_fields = list(reader)

f = open("data/airports_fields.txt", "r")
    reader = csv.reader(f)
    airports_fields = list(reader)

f = open("data/routes_fields.txt", "r")
    reader = csv.reader(f)
    routes_fields = list(reader)
```

Show each of the imported field name lists.

```
In [3]: airlines_fields
Out[3]: [['airlID',
           'airlName',
          'airlAlias',
          'airlIATA',
           'airlICAO',
          'airlCallsign',
           'airlCountry',
           'airlActive']]
In [4]: airports_fields
Out[4]: [['airpID',
           'airpName',
          'airpCity',
          'airpCountry',
           'airpIATAFAA',
          'airpICAO',
          'airpLat',
          'airpLong',
           'airpAlt',
          'airpTimezone',
           'airpDST',
           'airpTz']]
```

Use the imported field name lists to set column names for each dataframe.

```
In [6]: df_airlines.columns = airlines_fields
    df_airports.columns = airports_fields
    df_routes.columns = routes_fields
```

Show first three rows of each dataframe.

```
In [7]: df_airlines.head(3)
```

Out[7]:

	airIID	air INam e	airlAlias	airlIATA	airIICAO	airlCallsign	airlCountry	airlActive
0	1	Private flight	\N	-	NaN	NaN	NaN	Υ
1	2	135 Airw ays	\N	NaN	GNL	GENERAL	United States	N
2	3	1Time Airline	\N	1T	RNX	NEXTIME	South Africa	Υ

```
In [8]: df_airports.head(3)
```

Out[8]:

:		airpID	airpNam e	airpCity	airpCountry	airpIATAFAA	airpICAO	airpLat	airpLong	airpAlt	airpTimezone	airpDST	airpT;
	0	1	Goroka	Goroka	Papua New Guinea	GKA	AYGA	-6.081689	145.391881	5282	10	U	Pacific
	1	2	Madang	Madang	Papua New Guinea	MAG	AYMD	-5.207083	145.788700	20	10	U	Pacific
	2	3	Mount Hagen	Mount Hagen	Papua New Guinea	HGU	AYMH	-5.826789	144.295861	5388	10	U	Pacific

```
In [9]: df_routes.head(3)
```

Out[9]:

	air INam e	airIID	source Airp Name	sourceAirpID	destAirpName	destAirpID	airlCodeshare	airlStops	airlEquip
C	2B	410	AER	2965	KZN	2990	NaN	0	CR2
1	2B	410	ASF	2966	KZN	2990	NaN	0	CR2
2	2B	410	ASF	2966	MRV	2962	NaN	0	CR2

Pickle final dataframes, then re-read.

```
In [10]: import pickle

df_airlines.to_pickle('data/airlines.p')
    df_airports.to_pickle('data/airports.p')
    df_routes.to_pickle('data/routes.p')

df_airlines = pd.read_pickle("data/airlines.p")
    df_airports = pd.read_pickle("data/airports.p")
    df_routes = pd.read_pickle("data/routes.p")
```

3. What is three letter airport code for the airport that is closest to your home?

 $Import\ 'distance_on_unit_sphere'\ function\ to\ calculate\ distance\ betw\ een\ tw\ o\ latitude/longitude\ pairs.$

Apply 'distance_on_unit_sphere' function to each airport within the df_airports dataframe, in order to find the distance between each airport and my hometown 'Rivervale, Western Australia' (latitude -31.9610 and longitude 115.9170).

Return the airport w hich minimizes the distance to my hometow n.

```
In [13]: min_rivervale_airport_name = df_airports["airpName"].iloc[min_rivervale_row_index]
min_rivervale_airport_name
Out[13]: 'Perth Intl'
```

Return the airport code associated with 'Perth Intl'.

```
In [14]: min_rivervale_airport_code = df_airports["airpIATAFAA"].iloc[min_rivervale_row_index]
    print("Three letter airport code for the airport closest to my home:", min_rivervale_airport_co
    de)
```

Three letter airport code for the airport closest to my home: PER

4. How many departing routes are there from this airport?

Create a new dataframe based on matches of original 'df routes' dataframe where 'Source airport' is equal to 'PER'.

```
In [15]: min_rivervale_airport_routes = df_routes[df_routes.sourceAirpName == min_rivervale_airport_code
]
```

Count rows of matched dataframe.

```
In [16]: min_rivervale_routes_count = len(min_rivervale_airport_routes.index)
    print("Number of departing routes from PER:", min_rivervale_routes_count)
```

Number of departing routes from PER: 92

5. How many routes are there coming into the airport with the three letter code "EGO?"

Create a new dataframe based on matches of original 'df_routes' dataframe where 'Source_airport' is equal to 'EGO'.

```
In [17]: ego_airport_routes = df_routes[df_routes.destAirpName == "EGO"]
```

Count rows of matched dataframe.

```
In [18]: ego_airport_routes_count = len(ego_airport_routes.index)
    print("Number of arriving routes at EGO:", ego_airport_routes_count)
```

Number of arriving routes at EGO: 11