DAFTAR ISI

DAFTAR ISI	i
BAB 1 PENDAHULUAN	. 1
1.1 Latar Belakang	1
1.2 Tujuan Khusus riset	
1.3 Manfaat Riset	2
1.4 Urgensi Riset	. 2
1.5 Temuan yang Ditargetkan	. 2
1.6 Kontribusi Riset	
1.7 Luaran Riset	2
BAB 2 TINJAUAN PUSTAKA	. 3
2.1 Detergen	3
2.2 Ampas Tahu	. 3
2.3 Kedelai	3
2.4 Metil Ester	
2.5 Metil Ester Sulfonat (MES)	4
2.6 Eco enzyme	4
BAB 3 METODE RISET	. 4
3.1 Waktu dan Tempat Pelaksanaan Riset	. 4
3.2 Bahan dan Alat	. 4
3.3 Variabel Riset	4
3.3.1 Variabel Bebas	4
3.3.2 Variabel Terikat	. 4
3.4 Tahapan Riset	5
3.5 Prosedur Riset	5
3.6 Luaran dan Indikator Capaian	6
3.7 Analisis Data	. 7
3.8 Cara Penafsiran	7
3.9 Penyimpulan Hasil Riset	
BAB 4 BIAYA DAN JADAWAL KEGIATAN	8
4.1 Anggaran Biaya	
4.2 Jadwal Kegiatan	
DAFTAR PUSTAKA	
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	
Lampiran 2. Justifikasi Anggaran	
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	
Lampiran 4. Surat Pernyataan Ketua Pelaksana	21

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Detergen merupakan produk pembersih pakaian yang berfungsi untuk menurunkan tegangan permukaan air, dan mengangkat lemak. Detergen terbentuk dari surfaktan yang berasal dari minyak bumi atau surfaktan sintetik. Umumnya penggunaan detergen yang beredar di pasaran menggunakan surfaktan yang terbuat dari minyak bumi seperti LAS (linier alkylbenzene sulphonate) dan ABS (alkylbenzene sulphonate) yang menyebabkan pencemaran lingkungan karena sulit untuk didegradasi oleh mikroorganisme, selain itu surfaktan dengan bahan baku minyak bumi juga tidak dapat diperbaharui sedangkan permintaan detergen semakin meningkat (Juliantara dkk., 2018). Peningkatan permintaan detergen di Indonesia ditandai dengan tingginya konsumsi surfaktan yaitu sekitar 95.000 ton per tahun, di mana sekitar 40% kebutuhannya diimpor. Berdasarkan data tersebut dibutuhkan suatu inovasi untuk membuat surfaktan dengan menggunakan bahan baku minyak nabati yang lebih ramah lingkungan dan merupakan sumber daya alam terbarukan (Chasani dkk., 2014). Salah satu surfaktan ramah lingkungan yang menggunakan bahan baku minyak nabati yaitu metil ester sulfonat (MES). MES merupakan salah satu surfaktan anionik yang memiliki keunggulan yaitu ramah lingkungan, biodegradable, dan sifat pembersih yang baik dalam air sadah (Mardiyah dan Fajriati, 2022).

Minyak kedelai merupakan salah satu bahan baku dalam pembuatan metil ester yang dapat dimanfaatkan untuk memproduksi surfaktan metil ester sulfonat (MES) (Putra dkk., 2018). Konsumsi kedelai di Indonesia mencapai 2,3 juta ton per tahun di mana 40% berupa tahu, 50% berupa tempe, dan 10% merupakan minyak kedelai yang dimanfaatkan dalam berbagai jenis produk. Tahu merupakan makanan yang banyak dikonsumsi oleh masyarakat Indonesia, karena memiliki nilai gizi yang tinggi dan harganya terjangkau. Pada proses pembuatan tahu menghasilkan produk samping berupa ampas tahu yang apabila dibuang ke sungai akan mengakibatkan pencemaran air dampaknya kadar COD dan BOD air sungai terganggu sehingga berdampak pada kerusakan ekosistem lingkungan perairan karena tingginya senyawa amoniak (NH₃), karbon dioksida (CO₂), hidrogen sulfida (H₂S) dan asam asetat (CH₃COOH) (Pagoray dkk., 2021).

Ampas tahu memiliki kandungan nutrisi yang tinggi yaitu protein 26,6%, lemak 18,3%, karbohidrat 41%, fosfor 0,29%, kalsium 0,19%, besi 0,04%, dan air 0,09% sehingga masih dapat diolah kembali (MD, 2019). Kandungan lemak pada ampas tahu dapat dimanfaatkan menjadi sesuatu yang bernilai berupa bahan baku metil ester (Anggraini, 2018). Minyak kedelai memiliki rantai karbon 10-18 yang merupakan rantai terbaik untuk membuat surfaktan MES, dengan panjang rantai karbon tersebut akan memudahkan surfaktan dalam mengikat minyak atau noda (Putra dkk., 2018).

Untuk meningkatkan kinerja metil ester sulfonat dalam mengangkat noda diperlukan adanya enzim. Salah satu enzim yang dapat digunakan dalam pembuatan detergen adalah *eco enzyme*. Enzim tersebut merupakan cairan yang berasal dari proses fermentasi yang terdiri dari bahan organik, air, dan gula. *Eco enzyme* terdiri dari enzim amilase,lipase, dan tripsin yang mampu menurunkan tingkat pencemaran air limbah (Pratamadina dan Wikaningrum, 2022).

Penggunaan *eco enzyme* sebagai bahan aditif pada detergen bermanfaat untuk mengangkat kotoran. Jika dibandingkan dengan detergen pada umumnya yang

menimbulkan panas di tangan, daya larut dalam air yang relatif lama serta busa yang banyak, justru detergen yang menggunakan *eco enzyme* tidak menimbulkan panas di tangan, daya larut dalam air lebih cepat serta busa yang dihasilkan lebih sedikit sehingga lebih ramah lingkungan (Bratha dan Putri, 2022).

Berdasarkan latar belakang yang telah dipaparkan di atas, riset bertujuan untuk membuat inovasi detergen dari ampas tahu sebagai bahan surfaktan metil ester sulfonat (MES) dengan penambahan *eco enzyme* untuk meningkatkan keefektifan dari detergen yang terbentuk. Detergen yang terbentuk diharapkan mampu mengatasi pencemaran, dan juga diharapkan mampu mengatasi masalah limbah ampas tahu yang dapat mencemari lingkungan.

1.2 Tujuan Khusus Riset

Riset ini diharapkan menghasilkan detergen yang ramah lingkungan dengan memanfaatkan limbah ampas tahu sebagai bahan baku, dengan penambahan *eco enzyme* yang ramah lingkungan untuk meningkatkan daya detergensi dari detergen yang dihasilkan serta menghasilkan detergen yang lebih mudah untuk didegradasi oleh lingkungan.

1.3 Manfaat Riset

Riset ini diharapkan mampu memberikan manfaat dan sumbangan pemikiran ilmu pengetahuan bagi masyarakat dan mahasiswa dengan pengembangan riset detergen yang ramah lingkungan dari bahan dasar limbah yang mampu mengatasi masalah pencemaran akibat detergen.

1.4 Urgensi Riset

Riset ini dilakukan karena ditemukannya limbah ampas tahu yang menimbulkan aroma tak sedap disekitar lingkungan, karenanya kami mengembangkan limbah tersebut sebagai bahan dasar dalam pembuatan surfaktan Metil Ester Sulfonat (MES) sebagai bahan baku detergen dan penambahan *eco enzyme* untuk meningkatkan daya detergensi detergen serta mengahasilkan detergen yang ramah lingkungan.

1.5 Temuan yang Ditargetkan

Dari riset inovasi detergen ramah lingkungan dari limbah ampas tahu dengan penambahan *eco enzyme* yang kami lakukan diharapkan menghasilkan detergen yang berkualitas dan baik untuk dipergunakan untuk rumah tangga ataupun untuk usaha lainnya yang menggunakan detergen lebih ekonomis dan ramah lingkungan.

1.6 Kontribusi Riset

Riset ini diharapkan berkontribusi bagi masyarakat dengan dihasilkannya detergen dari bahan baku berupa limbah yang dapat dimanfaatkan menjadi detergen dengan menaikkan nilai jual dari limbah tersebut menjadi lebih tinggi, serta mampu untuk mengatasi isu pencemaran air dan tanah oleh detergen yang berada dipasaran saat ini.

1.7 Luaran Riset

Luaran yang diharapkan dari pelaksanaan PKM-RE ini yaitu laporan kemajuan, laporan akhir, dan memperoleh publikasi artikel ilmiah yang akan dipublikasi pada jurnal nasional terakeditasi sehingga dapat menjadi sumber referensi bagi masyarakat luas yang didukung dengan keberadaan akun media sosial yang berisi konten edukasi terkait kegiatan inovasi detergen ramah lingkungan dari ampas tahu sebagai produk dari hasil riset.

BAB 2. TINJAUAN PUSTAKA

2.1 Detergen

Detergen merupakan bahan pembersih yang digunakan seluruh kalangan masyarakat untuk mencuci pakaian dan dijual dipasaran secara bebas. Adapun komposisi detergen adalah surfaktan sebanyak 20-30%, builders 70-80% dan bahan aditif (pemutih dan pewangi) 2-8% (Yuliani dkk., 2018). Rata-rata penggunaan detergen setiap rumah tangga sebanyak 50 gram per hari sehingga penggunaan detergen di Indonesia dalam setahun mencapai 720 ton (Bratha dan Putri, 2022). Kebanyakan rumah tangga di Indonesia membuang limbah domestik ke lingkungan perairan sehingga akan menyebabkan pencemaran air yang berdampak pada ekosistem air (Larasati dkk., 2021).

2.2 Ampas Tahu

Tahu merupakan makanan yang sering di konsumsi oleh manusia dan memiliki protein yang tinggi, meskipun protein hewani lebih baik dari protein tahu tetapi tahu berperan untuk memperbaiki gizi bagi manusia. Pada proses pembuatan tahu menghasilkan limbah berupa ampas tahu jika tidak segera dibersihkan akan mencemarkan udara karena dapat menimbulkan bau yang tidak enak untuk dihirup. Ampas tahu masih kaya akan nutrisi yaitu protein 26.6%, lemak 18.3%, karbohidrat 41.%, fosfor 0.29%, kalsium 0.19%, besi 0.04%, dan air 0.09% sehingga masih dapat diolah kembali (MD, 2019).

2.3 Kedelai

Kedelai merupakan salah satu tanaman yang dijadikan sebagai kebutuhan pangan masyarakat karena mengandung protein nabati yang relatif banyak dibanding sumber protein lain seperti susu dan ikan. Beberapa komposisi kedelai antara lain yaitu mineral, lipid 20%, serat kasar 5%, abu 6%, protein 40%, selulosa, dan hemiselulosa (Danuwarsa, 2019). Dalam proses pengolahannya, negara kita memerlukan kedelai sekitar 2,2 juta ton per tahun (Agastya dkk., 2020).

Permintaan kedelai terus meningkat secara linier dengan pertumbuhan penduduk dari tahun ke tahun, sedangkan produksi yang dicapai belum dapat mengimbangi permintaan tersebut. Sebagai contoh, pada tahun 2004 kebutuhan kedelai di Indonesia diperkirakan sebesar 1.951.100 ton, sedangkan produksi pada tahun yang sama hanya sebesar 672.439 ton, sehingga terjadi defisit sebesar 1.278.661 ton (34,46%) (Rohmah dan Triono, 2016). Untuk mengimbangi akan rendahnya produktivitas serta untuk meningkatkan pasokan kedelai di Indonesia, maka dalam memenuhi permintaan pasar dalam negeri yang seiring waktu selalu meningkat maka negara kita melakukan kegiatan impor yang cukup besar setiap tahunnya (Poerwoko, 2016).

2.4 Metil Ester

Metil ester adalah bahan bakar yang terdiri dari campuran ester mono-alkil dari asam lemak rantai panjang. Metil ester merupakan bahan bakar alternatif yang dihasilkan melalui transesterifikasi minyak nabati atau lemak hewani dan esterifikasi alkohol rantai pendek dengan katalis asam atau basa (Fiyansah dkk., 2021). Metil ester merupakan bahan baku dalam produksi surfaktan, biodiesel dan plasticizer dalam produk kosmetik, sedangkan gliserin dapat digunakan sebagai bahan baku dalam berbagai aplikasi industri seperti kosmetik, sabun, dan obatobatan (Makalalag, 2018).

2.5 Metil Ester Sulfonat (MES)

Metil ester sulfonat merupakan salah satu surfaktan anionik menjadi bahan yang paling menjanjikan untuk digunakan di masa depan. Surfaktan ini biasanya digunakan pada produk pencuci dan pembersih karena memiliki sifat deterjensi yang tinggi,tingkat pembusaan yang rendah,dan stabilitasnya baik (Putra dkk., 2018). Selain itu, dapat digunakan sebagai pengemulsi dalam berbagai produk kosmetik, obat - obatan, dan makanan. Menurut MacArthur et al.(2008), metil ester sulfonat menunjukkan kualitas lebih unggul jika dibandingkan dengan surfaktan LAS (*Ammonium Lauryll Sulfate*) atau AS (*Alcohol Sulfate*) dalam hal daya cuci dalam air dingin dan air sadah bahkan dapat mencapai 100 ppm (CaCO₃) dalam penelitian Lion-jepang pada C16-C18. Menurut hasil uji di laboratorium juga membuktikan bahwa metil ester sulfonat terdegradasi dengan kecepatan yang sebanding dengan AS dan sabun, akan tetapi lebih cepat untuk ALS (Sempepana dkk., 2018).

2.6 Eco Enzyme

Eco enzyme merupakan larutan zat organik yang kompleks yang diproduksi dengan fermentasi sisa sampah organik, gula, dan air (As'ari dkk., 2022). Biasanya eco enzyme memiliki warna coklat muda yang sedikit keruh. Dalam pembuatannya, eco enzyme difermentasi dari bahan organik berupa sampah sayuran atau buah-buahan yang tidak terpakai, hal ini menambah manfaat dari eco enzyme untuk mengurangi sampah organik di lingkungan (Pratamadina dan Wikaningrum, 2022). Pembuatan eco enzyme ini mengkasilkan cairan serbaguna yang bermanfaat untuk pembuatan detergen. Adapun enzim yang tedapat pada eco enzyme ini adalah enzim lipase, enzim tripsin, dan enzim amilase yang dapat mengurai kotoran dengan jenis noda protein dan lemak yang ada (Rochyani dkk., 2020).

BAB 3. METODE RISET

3.1 Waktu dan Tempat Pelaksanaan Riset

Riset ini dilaksanakan selama 5 bulan di Laboratorium Kimia Organik Departemen Kimia FMIPA dan Laboratorium Kualitas Air Departemen Teknik Lingkungan Fakultas Teknik, Universitas Sumatera Utara, Medan.

3.2 Alat dan Bahan

Bahan yang digunakan dalam riset ini adalah ampas tahu, *n-hexane*, NaOH 0,013N, NaOH 1M, *methanol*, H₂SO₄ 1M, Na₂SO₄ anhidrat, *aquadest*, indikator PP, NaHSO₃, Al₂O₃ 99%, NaOH 20%, *eco enzyme*, *Carboxyl Methyl Cellulose*, Na₂CO₃, dan parfum detergen.

Alat yang digunakan pada riset ini adalah oven, *chopper*, *beaker glass*, pipet volume, pipet tetes, kaca arloji, *hot plate*, labu erlenmeyer, labu ukur, *magnetic stirrer*, buret, termometer, botol sampel, piknometer, neraca analitik, *rotary evaporator*, statif dan klem, labu leher 3, corong kaca, gelas ukur, corong pisah, pH meter, dan spatula.

3.3 Variabel Riset

3.3.1 Variabel Bebas

Dalam riset yang di lakukan, digunakan variasi metil ester sulfonat (MES) sebanyak 50, 75, dan 100 gram serta dengan variasi *eco enzyme* 50, 75, dan 100 mL pada pembuatan detergen.

3.3.2 Variabel Terikat

Dalam riset ini digunakan variasi terikat berupa uji fisikokimia pada detergen berupa nilai pH, viskositas, dan densitas. Serta data analisis air limbah detergen berupa kadar BOD, COD, pH, dan TSS.

3.4 Tahapan Riset

Riset ini terdiri atas beberapa tahapan, yaitu preparasi sampel ampas tahu, proses ekstraksi ampas tahu, proses destilasi, uji FFA, pembuatan metil ester, analisis metil ester, pembuatan metil ester sulfonat, uji FT-IR, uji IFT, pembuatan detergen, dan uji daya detergensi.

Seluruh rangkaian kegiatan riset ini akan dipublikasikan secara regular melalui akun media sosial instagram berupa postingan bulanan. Sebanyak 5 postingan diantaranya akan diberi *adsense (ads)* yang di tanyangkan pada Tabel berikut:

Hari, Tanggal	Waktu	Konten diiklankan					
Selasa, 25 April 2023	12.00 WIB	Pengenalan Program					
Kamis, 25 Mei 2023	12.00 WIB	Persiapan Riset					
Minggu, 25 Juni 2023	12.00 WIB	Pembuatan Bahan Baku					
Selasa, 25 Juli 2023	12.00 WIB	Pembuatan Detergen					
Jumat, 25 Agustus 2023	12.00 WIB	Hasil Program PKM					

Tabel 3.1. Jadwal Postingan Media Sosial

3.5 Prosedur Riset

3.5.1 Preparasi Ampas Tahu

Ampas tahu yang masih mengandung kandungan air akan dikeringkan dengan oven pada suhu 105° C selama \pm 3 jam. Kemudian, dihaluskan dengan menggunakan alu dan lumpang.

3.5.2 Proses Ekstraksi dan Destilasi Ampas Tahu

Pada tahap ini kita menggunakan ekstraksi maserasi. Sebanyak 200 gr ampas tahu yang telah dihaluskan dibungkus dengan kain penyaring dan dimasukkan ke dalam botol sampel plastik diikuti dengan penambahan 1000 mL *n-hexane*. Kemudian botol ditutup rapat dan dibungkus dengan *alumium foil* lalu didiamkan selama 3 hari. Setelah 3 hari minyak yang telah terpisah dari ampas tahu di destilasi untuk memisahkan minyak dengan *n-hexane*.

3.5.3 Uii FFA

Pengujian yang dilakukan dengan metode FFA dibuat untuk menentukan tahap selanjutnya dalam pembuatan metil ester, dimana jika kadar FFA yang dihasilkan melebihi 0,5% maka perlu dilakukan *pre-tretment* yaitu proses esterifikasi. Uji ini dilakukan dengan menggunakan pentitran yaitu larutan NaOH 0,013 N.

3.5.4 Pembuatan Metil Ester

Dalam pembuatan metil ester dilakukan 2 tahapan yaitu tahap esterifikasi dan transesterifikasi. Pada tahap esterifikasi dimasukkan ke dalam labu leher 3, minyak ampas tahu dan *methanol* dengan perbandingan mol 1:6 dan katalis H₂SO₄ 0,5% berat minyak. Kemudian dipanaskan pada suhu 60°C selama 120 menit. Kemudian didinginkan dan dipisahkan antara ester dan air dengan corong pisah.

Pada tahap transesterifikasi dimasukkan ke dalam labu leher 3, minyak hasil esterifikasi dan *methanol* dengan perbandingan mol 1:5 dan katalis NaOH

1,5 % berat minyak. Kemudian dipanaskan pada suhu 60°C selama 90 menit. Selanjutnya didinginkan dan dipisahkan antara metil ester dengan gliserol menggunakan corong pisah.

Hasil yang diperoleh kemudian dianalisis dengan menggunakan alat GC-MS (*Gas Chromatography-Mass Spectrometry*) untuk mengetahui kadar dari metil ester yang diperoleh.

3.5.5 Pembuatan Metil Ester Sulfonat (MES)

Sebanyak 100 gram metil ester yang diperoleh dicampurkan dengan NaHSO₃ setetes demi setes dengan perbandingan rasio mol 1:2 ke dalam labu leher 3 serta dengan penambahan katalis Al₂O₃ sambil dipanaskan pada suhu 100°C selama 210 menit. Hasil yang diperoleh kemudian dimurnikan dengan menggunakan *methanol* sebanyak 355(v/v) selama 60 menit pada suhu 55°C, kemudian *methanol* dan air akan diuapkan dengan *rotary evaporator*. Hasil pemurnian dilanjutkan ke proses penetralan dengan menggunakan NaOH 20% hingga pH 6-8.

Hasil yang diperoleh kemudian dilakukan uji FT-IR untuk mengetahui gugus fungsi dari MES yang didapatkan serta uji IFT untuk mengetahui nilai tegangan permukaan dari MES yang diperoleh.

3.5.6 Pembuatan Detergen

Sebanyak 50 gr *Carboxyl Methyl Cellulose* (CMC) dimasukkan ke wadah yang berisi 500 mL air, kemudian didiamkan hingga mengental selama 3 jam. Kemudian ditambahkan MES dengan variasi 50, 75, dan 100 gram sambil diaduk. Setelah itu ditambahkan 100 gram NaCO₃ dan *eco enzyme* dengan variasi 50, 75, dan 100 mL campuran kemudian didiamkan beberapa waktu. Hasil yang diperoleh ditambahkan dengan pewarna dan pewangi secukupnya.

Detergen yang terbentuk kemudian diuji karakteristik fisikokimianya berupa nilai pH, viskositas, dan densitas dari detergen untuk mengetahui kelayakan penggunaan dari detergen.

3.5.7 Uji daya Detergensi

Pada tahap ini, detergen kemudian akan diaplikasikan kepada kain yang telah diberi zat pengotor untuk mengukur nilai kekeruhan (FTU) yang dihasilkan larutan detergen dengan menggunakan larutan detergen 1%.

3.5.8 Analisis Cemaran Detergen

Air limbah hasil pemakaian detergen kemudian diuji kadar BOD, COD, pH, serta TSS untuk mengetahui keamanan dari limbah yang digunakan untuk lingkungan, data yang diperoleh kemudian dibandingkan dengan standar limbah yang berlaku di Indonesia.

3.6 Luaran dan Indikator Capaian

Tabel 3.2. Luaran dan Capaian Indikator Riset

No	Kegiatan	Luaran	Indikator
1	Studi literatur	Jurnal riset	Diperoleh jurnal riset yang benar dan
			sesuai
2	Izin riset	Surat izin riset	Diperoleh surat izin untuk riset di
			Laboratorium Kimia Organik
			FMIPA USU dan Laboratorium
			Kualitas Air FT USU
3	Penyiapan	Bahan dan alat	Diperoleh bahan dan alat yang

	bahan dan alat		dibutuhkan
4	Pengambilan data	Data hasil pengujian terhadap detergen yang diperoleh. Didapat data hasil cemaran limbah detergen yang didapat.	Diperoleh data hasil uji karakteristik fisikokimia berupa nilai pH, viskositas, densitas, serta daya detergesi dari detergen. Untuk data hasil cemaran limbah detergen didapatkan data uji BOD, COD, pH, dan TSS.
5	Pembuatan laporan kemajuan	Laporan kemajuan	Laporan kemajuan didapatkan
6	Pengolahan data	Analisis data	Diperoleh data yang sesuai
7	Pembuatan laporan akhir	Laporan akhir	Diperoleh laporan akhir yang baik
8	Hak Kekayaan Intelektual (HKI)	Hak paten	Diperoleh hak paten secara elektronik
9	Pembuatan artikel ilmiah	Artikel ilmiah mengenai hasil riset	Artikel ilmiah dimuat pada jurnal
10	Pembuatan akun media sosial	Akun Media Sosial	Dimuatnya konten iklan dalam media sosial

3.7 Analisis Data

Data pengujian karakteristik fisikokimia berupa nilai pH, viskositas, dan densitas pada detergen yang diperoleh bertujuan untuk mengetahui kualitas detergen secara kualitatif dan untuk mengetahui pengaruh kontak langsung kulit dengan detergen. Pada uji air limbah dari bekas pemakaian detergen dilakukan untuk mengetahui kualitas detergen sebagai detergen ramah lingkungan dengan membandingkan nilai pada parameter yang didapatkan dengan standar limbah di Indonesia pada Permen LH No 5 Tahun 2014 tentang Standar Baku Mutu Air Limbah.

3.8 Cara Penafsiaran Data

Penafsiran data yang diperoleh pada riset ini berpedoman pada data primer dan sekunder yang diperoleh dan sesuai untuk mendukung pelaksanaan riset detergen ramah lingkungan dari limbah ampas tahu dengan penambahan *eco enzyme* sebagai alternatif pemanfaatan limbah.

3.9 Penyimpulan Hasil Riset

Kesimpulan dari hasil riset "Inovasi Detergen Ramah Lingkungan Dari Limbah Ampas Tahu Dengan Penambahan *Eco enzyme* Sebagai Alternatif Pemanfaatan Limbah" diambil dari data pada analisis yang telah dilakukan pada riset serta pengujian detergen dengan membandingkan dengan standar yang berlaku.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1. Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran
			Dana (Rp)
1	Bahan habis pakai dan alat	Belmawa	5.000.000
		Perguruan Tinggi	500.000
2	Sewa dan jasa	Belmawa	1.200.000
		Perguruan Tinggi	-
3	Transportasi lokal	Belmawa	1.300.000
		Perguruan Tinggi	500.000
4	Lain-lain	Belmawa	1.500.000
		Perguruan Tinggi	-
	Jumlah		10.000.000
		Belmawa	9.000.000
	Rekap Sumber Dana	Perguruan Tinggi	1.000.000
		Jumlah	10.000.000

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal Kegiatan

No	Jenis Kegiatan	Bulan					Person Penanggung Jawab
			2	3	4	5	
1	Mengirim postingan pengenalan program ke akun media sosial pada Selasa, 25 April 2023 pukul 12.00 WIB						Jesica Grace Rajagukguk
2	Persiapan bahan dan alat						Daniel Ariwibowo Manalu
3	Mengirim postingan persiapan riset ke akun media sosial pada Kamis, 25 Mei 2023 pukul 12.00 WIB						Anggriani Feranika Roni
4	Preparasi dan ekstraksi ampas tahu						Anggriani Feranika Roni
5	Uji FFA						Daniel Ariwibowo Manalu
6	Pembuatan metil ester						Jesica Grace Rajagukguk
7	Mengirim postingan pembuatan bahan baku detergen akun media sosial pada Minggu, 25						Anggriani Feranika Roni

	Juni 2023 pukul 12.00 WIB			
8	Pembuatan metil ester sulfonat			Anggriani Feranika Roni dan Daniel Ariwibowo Manalu
9	Pembuatan detergen			Raihan Dwi Zalva
10	Mengirim postingan ke akun sosial media tentang pembuatan detergen pada Selasa, 25 Juli 2023 pukul 12.00 WIB			Anggriani Feranika Roni
11	Uji daya detergensi			Daniel Ariwibowo Manalu
12	Analisis cemaran detergen			Raihan Dwi Zalva
13	Analisis data			Jesica Grace Rajagukguk
14	Penulisan laporan kemajuan			Raihan Dwi Zalva
15	Mengirim postingan ke akun sosial media tentang hasil program PKM pada Jumat, 25 Agustus 2023 pukul 12.00 WIB			Jesica Grace Rajagukguk
16	Penulisan laporan akhir			Anggriani Feranika Roni
17	Pembuatan artikel ilmiah			Daniel Ariwibowo Manalu

DAFTAR PUSTAKA

- Agatya, I.M.I.A., Julianto, R.P.D. dan Warwoto. 2020. Pengaruh Pemanasan Global Terhadap Intensitas Serangan Kutu Kebul (Bemisia tabbaci Genn) Dan Cara Pengendaliannya Pada Tanaman Kedelai. *Buana Sains*. 20 (1).
- Anggraini, T.M. dan Fitriani, N. 2018. Limbah Ampas Tahu Sebagai Bahan Baku Untuk Produksi Biodiesel. *Jurnal Integrasi Proses*. Vol 7.
- As'ari, H., Yusepri, O., Aditya, R.M., Ramadhani, M.A., Perdana, M.A., Manurung, S.S., Gultom, P.R., Sari, W.M., Tarigan, I., Hutasoit, H.A. dan Tamrin, L. 2022. Eco-Enzym: Pemanfaatan Sampah Organik Menjadi Produk Serbaguna Di Kelurahan Kampung Baru. *Diklat Review: Jurnal Manajemen Pendidikan Dan Pelatihan.* 6(2): 187–192.
- Bratha, R.W.K. dan Putri, N.R. 2022. Inovasi Pembuatan Detergen Ramah Lingkungan Dengan Penambahan Eco-Enzyme Dari Batang Pisang (Musa paradisiaca). *Jurnal Studi Inovasi*. 2(4).
- Chasani, M., Nursalim, V.H., Widyaningsih, S., Budiasih, I.N. dan Kurniawan, W.A. 2014. Sintesis, Pemurnian Dan Karakterisasi Metil Ester Sulfonat (MES) Sebagai Bahan Inti Detergen Dari Minyak Biji Nyamplung (Calophyllum inophyllum L). *Molekul*. 9(1): 63-72.
- Danuwarsa dan Amalia, R. 2019. Penetapan Komposisi Asam Lemak Kacang

- Kedelai Secara Kromatografi Gas. *Prosiding Temu Teknis Jabatan Fungsional Non Peneliti*. pp. 269-271.
- Fiyansah, T.O., Faradina, Juniadi, R. dan Zamhari, M. 2021. Pembuatan Metil Ester dari Minyak Jelantah Menggunakan Katalis CaO/Abu Terbang Batubara. *Jurnal Pendidikan dan Teknologi Indonesia (JPTI)*. 1 (11): 453-459.
- Juliantara, I.K.P., Putra, I.G.P.A.F.S. dan Utami, A.A.S.R.S.D. 2018. Toksisitas Detergen Terhadap Lintah (Hirudo medicinalis). *Jurnal Media Sains*. 2(2): 64-70.
- Larasati, N. N., Wulandari, S.Y., Maslukah, L., Zainuri, M. dan Kunarso, K. 2021. Kandungan Pencemar Detejen Dan Kualitas Air Di Perairan Muara Sungai Tapak, Semarang. *Indonesian Journal of Oceanography*. *3*(1): 1–13.
- Makalalag, A. 2018. Pembuatan Metil Ester Dari Minyak Kelapa. *Jurnal Penelitian Teknologi Industri*. 10 (2): 67-74.
- Mardiyah, T. dan Fajriati, I. 2022. Preparasi Detergen Penyuci Najis Air Liur Anjing dengan Variasi Konsentrasi Surfaktan Metil Ester Sulfonat (MES). *Kaunia: Integration and Interconnection Islam and Science Journal*. 18(1): 9–15.
- MD, M., Rangkuti, K. dan Fuadi, M. 2019. Pemanfaatan Limbah Ampas Tahu Dalam Upaya Diversifikasi Pangan. *Agrintech: Jurnal Teknologi Pangan Dan Hasil Pertanian*. 2(2): 52–54.
- Pagoray, H., Sulistyawati, dan Ritriyani. 2021. Limbah Cair Industri Tahu Dan Dampaknya Terhadap Kualitas Air Dan Biota Perairan. *Jurnal Pertanian Terpadu*. 9(1): 53-65.
- Poerwoko, M.S. 2016. Breeding of The Soybean Varieties, Aged Maturity and Resistant To Rust Disease. *Agriculture and Agricultural Science Procedia*. (9)
- Putra, R.A., Ismayanti, R. dan W., A.D.K. 2018. Sintesis Metil Ester Sulfonat Melalui Sulfonasi Metil Ester Minyak Kedelai Untuk Aplikasi Chemical flooding. *Jurnal Sains Materi Indonesia*. 19 (2).
- Rochyani, N., Utpalasari, R.L. dan Dahliana, I. 2020. Analisis Hasil Konversi Eco Enzyme Menggunakan Nenas (Ananas comosus) Dan Pepaya (Carica papaya L.). *Jurnal Redoks*. 5(2): 135.
- Rohmah, E.A. dan Saputro, T.B. 2016. Analisis pertumbuhan tanaman kedelai (Glycine max L.) Varietas Grobogan Pada Kondisi Cekaman Genangan. *Jurnal Sains Dan Seni ITS*. 5(2): 2337–3520.
- Pratamadina, E., Wikaningrum T. 2022. Potensi Penggunaan Eco Enzyme Pada Degradasi Detergen Dalam Air Limbah Domestik. *Serambi Engineering*. 7(1): 2722-2728.
- Sampepana, E., Yustini, P.A., Rinaldi, A. dan Amiroh. 2015. Perbandingan Karakteristik Surfaktan Metil Ester Sulfonat Dan Sodium Lauril Sulfonat Sebagai Bahan Emulsifier Comparison Of The Characteristics Of The Quaternary Methyl Ester Sulfonat And Sodium Lauryl Sulfonat As Emulsifier. *Jurnal Riset Teknologi Industri*. 9(2).
- Yuliani, R.L., Purwanti, E. dan Pantiwati, Y. 2015. Pengaruh Limbah Detergen Industri Laundry Terhadap Mortalitas dan Indeks Fisiologi Ikan Nila (Oreochromis niloticus). *Seminar Nasional XII Pendidikan Biologi FKIP UNS*. Pp. 822–828.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, serta Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Daniel Ariwibowo Manalu
2	Jenis Kelamin	Laki-laki
3	Program Studi	S-1 Kimia
4	NIM	200802011
5	Tempat dan Tanggal Lahir	Hinalang, 01 September 2002
6	Alamat Email	bowomanalu@gmail.com
7	Nomor Telepon/HP	0895343369183

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Kimia (IMK)	Anggota Divisi Rohani Kristen IMK	2020 USU
2	Asisten Laboratorium Organik FMIPA Universitas Sumatera Utara	Asisten	2022-Sekarang USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	ghargaan Pihak Pemberi Penghargaan	
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

(Daniel Ariwibowo Manalu)

Medan, 14-02 2023

Ketua Tim,

Biodata Anggota

A. Identitas Diri

1	Nama Lengkap	Jesica Grace Rajagukguk
2	Jenis Kelamin	Perempuan
3	Program Studi	S-1 Kimia
4	NIM	200802137
5	Tempat dan Tanggal Lahir	Pematangsiantar,05 Februari 2002
6	Alamat Email	Jesicagrace05@gmail.com
7	Nomor Telepon/HP	085359951375

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Kimia (IMK)	Anggota	2020-Sekarang USU
2	Asisten Laboratorium Organik FMIPA Universitas Sumatera Utara	Asisten	2022-Sekarang USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	•	-	•

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-02-2023

Anggota Tim,

(Jesica Grace Rajagukguk)

Biodata Anggota

A. Identitas Diri

Nama Lengkap	Anggriani Feranika Roni
	Perempuan
	S-1 Kimia
	200802117
	Batam, 13 September 2001
	anggrianiferaa@gmail.com
	081365092728
	Nama Lengkap Jenis Kelamin Program Studi NIM Tempat dan Tanggal Lahir Alamat Email Nomor Telepon/HP

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	
1	Ikatan Mahasiswa Kimia (IMK)	Anggota Bidang INFOKOM	2020-Sekarang USU
2	Bimbel Ambi	Tutor Kimia	2021 Batam

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	•	-	ė

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-02-2023 Anggota Tim,

(Anggriani Feranika Roni)

Biodata Anggota

A. Identitas Diri

1	Nama Lengkap	Raihan Dwi Zalva
2	Jenis Kelamin	Laki-Laki
3	Program Studi	S-1 Teknik Lingkungan
4	NIM	200407069
5	Tempat dan Tanggal Lahir	Kutacane, 21 Desember 2002
6	Alamat Email	dwizalvaraihan@gmail.com
7	Nomor Telepon/HP	082216651462

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Asisten Laboratorium Kualitas Air	Asisten Laboratorium	2022-Sekarang USU
2	Himpunan Mahasiswa Teknik Lingkungan (HMTL) FT USU	Anggota Pengurus Divisi Komunikasi dan Informasi	2023-Sekarang USU
3	Magang MBKM Perumda Tirtanadi	Mahasiswa Magang	2022-2023 Medan

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1		-	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-02-2023 Anggota Tim,

(Raihan Dwi Zalva)

Raihan te,

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Dr. Rini Hardiyanti, S.TP
2	Jenis Kelamin	Perempuan
3	Program Studi	Kimia
4	NIP/NIDN	199112222019102001 / 0022129103
5	Tempat dan Tanggal Lahir	Medan, 22 Desember 1991
6	Alamat Email	rinihardiyanti@usu.ac.id
7	Nomor Telepon/HP	0822 7470 2229

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sariana (ST)	Ilmu dan Teknologi	Universitas	2013
1		Pangan	Sumatera Utara	
2	Magistan (S2)	ter (S2) Ilmu Kimia	Universitas	2016
	Wagister (32)		Sumatera Utara	
2	Dolaton (S2)	Ilmu Kimia	Universitas	2019
3	Doktor (S3)	oktor (53) limu Kimia	Sumatera Utara	2019

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Kimia Lingkungan	Wajib	2
2	Manajemen Wirausaha	Wajib	2
3	Biokimia Lingkungan	Pilihan	2
4	Biologi Molekuler	Wajib	2
5	Biokimia II	Wajib	2
6	Bioteknologi	Wajib	2
7	Teknologi Pangan	Pilihan	2
8	Biokimia I	Wajib	2
9	Mikrobiologi	Wajib	2
10	Kimia Dasar	Wajib	2
11	Bioteknologi	Wajib	2
12	Analisa Hasil Perkebunan	Wajib	2
13	Teknik Penelitian Biokimia	Pilihan	2

Riset

No	Judul Riset	Penyandang Dana	Tahun
1	Studi Fitokimia dan Bioaktivitas	DRPM	2016
	Flavonoid dari Daun Benalu Duku	Kemenristekdikti	
	(Dendrophtoe pentandara (L.) Miq)	melalui PMDSU	
	(Lorhantaceae)	Tahun I	
2	Studi Fitokimia dan Bioaktivitas	DRPM	2017

	Flavonoid dari Daun Benalu Duku	Kemenristekdikti	
	(Dendrophtoe pentandara (L.) Miq)	melalui PMDSU	
	(Lorhantaceae)	Tahun II	
3	Studi Fitokimia dan Bioaktivitas	DRPM	2018
	Flavonoid dari Daun Benalu Duku	Kemenristekdikti	
	(Dendrophtoe pentandara (L.) Miq)	melalui PMDSU	
	(Lorhantaceae)	Tahun III	
4	Modifikasi dan Bioaktivitas Pati	Talenta Universitas	2020
	Resisten dari Pati Kentang dan Pati Biji	Sumatera Utara	
	Durian		
5	Preparasi dan Karakterisasi Nanofiber	Talenta Universitas	2020
	Berbasis Styrofoam dengan	Sumatera Utara	
	Penambahan Zeolit Alam PAHAE		
	Menggunakan Metode Elektrospinning		
6	Upgrading Biodegradable Film Berbasis	Talenta Universitas	2021
	Pati Termodifikasi dan Kitosan untuk	Sumatera Utara	
	Pengembangan Kemasan Aktif		
7	Pengembangan Material Sensor	Talenta Universitas	2021
	Kolorimetri Dengan Selektivitas dan	Sumatera Utara	
	Sensitivitas Tinggi Terhadap Anion		
	Sianida Menggunakan Turunan		
	Senyawa Vanilin		
	Sianida Menggunakan Turunan		

Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pemberdayaan IPTEK dan Pemanfaatan	Non PNBP USU	2020
	Jamur Synchepalastrum racemosum asal		
	Isolat Batang Sawit sebagai Kitosan		
	untuk Meningkatkan Tanaman Buah		
	pada Desa Sei. Kopas Kisaran		
2	Pemanfaatan Ampas Tahu	Non PNBP USU	2020
	Terfermentasi sebagai Pakan Ternak		
	pada Peternakan Kambing di Desa Deli		
	Tua Kecamatan Namorambe		
3	Pemberantasan Lalat buah (Bactrocera	Non PNBP USU	2021
	sp.) pada Jeruk Manis (Citrus X		
	Sinensis) menggunakan Biopestisida		
	berbahan Eucalyptus grandis pada		
	Kelompok Tani Bukit Rumah Sendi		
	Kabupaten Karo		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Medan, 14-02-2023 Dosen Pendamping

(Rini Hardiyanti)

Lampiran 2. Justifikasi Anggaran Kegiatan

Laiii	piran 2. Justifikasi Anggaran l	Kegiatan	Harga	T . 1	
No	Jenis Pengeluaran	Volume	Satuan	Total	
			(Rp)	(Rp)	
1.	Belanja Bahan				
	Aquadest	20 L	15.000	300.000	
	Methanol	1 L	150.000	150.000	
	n-hexane	5 L	70.000	350.000	
	Na ₂ SO ₄ anhidrat	200 gr	60.000	120.000	
	NaOH	25 gr	3.000	75.000	
	H ₂ SO ₄	25 mL	4.000	100.000	
	NaHSO ₃	500 gr	400.000	400.000	
	Indikator PP	5 mL	2.000	10.000	
	Al ₂ O ₃ 99%	50 gr	50.000	50.000	
	Eco enzyme	1 L	50.000	50.000	
	Carboxyl Methyl Cellulose	500 gr	80.000	80.000	
	Na ₂ CO ₃	1 Kg	50.000	50.000	
	Parfum	50mL	30.000	30.000	
	Tisu	5 gulung	12.000	60.000	
	Chopper	1 buah	500.000	500.000	
	Hotplate Magnetic Stirrer	1 unit	900.000	900.000	
	Buret 25 mL	1 buah	200.000	200.000	
	Termometer	1 buah	35.000	35.000	
	Botol Sampel 1L	2 buah	50.000	100.000	
	Corong pisah 1L	1 buah	685.000	685.000	
	pH meter	1 buah	150.000	150.000	
	Aluminium foil	1 gulung	20.000	20.000	
	Kain putih	1m2	30.000	30.000	
	Sarung tangan	2 kotak	50.000	100.000	
	Beaker glass	3 buah	40.000	120.000	
	Pipet volume	1 buah	50.000	50.000	
	Pipet tetes	5 buah	5.000	25.000	
	Kaca arloji	2 buah	15.000	30.000	
	Lau erlenmeyer	5 buah	30.000	150.000	
	Labu ukur 250mL	5 buah	60.000	300.000	
	Spatula	5 buah	3.000	15.000	
	Gelas ukur	4 buah	40.000	160.000	
	Corong kaca	3 buah	35.000	105.000	
	SUB TOTAL			5.500.000	
2	Belanja Sewa		_		
	Sewa Lab Kimia Organik	3 bulan	200.000	600.000	
	Sewa Lab Kualitas Air	3 bulan	200.000	600.000	
	SUB TOTAL			1.200.000	

3	Perjalan Lokal			
	Biaya transportasi pembelian alat	2 bulan	300.000	600.000
Biaya transportasi pembelian bahan		2 bulan	300.000	600.000
	Biaya transportasi pengujian	2 bulan	300.000	600.000
	SUB TOTAL			1.800.000
4	Lain-lain			
	Uji COD	9 sampel	35.000	315.000
	Uji BOD	9 sampel	35.000	315.000
	Uji TSS	9 sampel	35.000	315.000
	Uji FTIR	1 sampel	100.000	100.000
	Uji IFT	1 sampel	55.000	55.000
	Uji GC-MS	1 Sampel	300.000	300.000
	Adsense akun media sosial	5 kali	20.000	100.000
	SUB TOTAL			1.500.000
GRAND TOTAL				10.000.000
	GRAND TOTAL (Terbilang Sepuluh Juta Ribu Rupiah)			

Lampiran 3. Susunan Organisasi Tim Penyusun dan Pembagian Tugas

	Alokasi				
No	Nama/NIM	Program Studi	Bidang Ilmu	Waktu (jam/minggu)	Uraian Tugas
1	Daniel Ariwibowo Manalu /200802011	S-1	Kimia	10	 - Persiapan Alat dan Bahan - Uji FFA - Pembuatan Metil Ester Sulfonat - Uji Daya Detergensi - Pembuatan Artikel Ilmiah
2	Jesica Grace Rajagukguk /200802137	S-1	Kimia	8	 Persiapan Alat dan Bahan Pembuatan Metil Ester Analisis Data Posting perkenalan program ke media sosial Posting hasil program PKM ke media sosial
3	Anggriani Feranika Roni /200802117	S-1	Kimia	8	 Preparasi dan Ekstraksi Ampas Tahu Pembuatan Metil Ester Sulfonat Penulisan Laporan Akhir Posting persiapan riset ke media sosial Posting pembuatan detergen ke media sosial
4	Raihan Dwi Zalva /200407069	S-1	Teknik Lingkungan	8	PembuatanDetergenAnalisis CemaranDetergenPenulisanLaporanKemajuan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	1:	Daniel Ariwibowo Manalu
Nomor Induk Mahasiswa	:	200802011
Program Studi	:	S1 Kimia
Nama Dosen Pendamping	:	Dr. Rini Hardiyanti, S.TP
Perguruan Tinggi	:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Inovasi Detergen Ramah Lingkungan Dari Limbah Ampas Tahu Dengan Penambahan *Eco enzyme* Sebagai Alternatif Pemanfaatan Limbah yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Medan, 14-02-2023

(Daniel Ariwibowo Manalu)

NIM 200802011