Angular displacement $\Delta \phi = \phi_f - \phi_i$ Avg. angular speed $\overline{\omega} = \frac{\Delta \phi}{\Delta t}$ Inst. angular speed $\omega = \frac{d\vec{\phi}}{dt}$ Avg. angular acceleration $\overline{\alpha} = \frac{\Delta \omega}{\Delta t}$ Inst. angular acceleration $\alpha = \frac{d\omega}{dt}$ $\omega = \omega_0 + \alpha t$ $\phi = \phi_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2 = \omega_0^2 + 2\alpha(\phi - \phi_0)$ $x = x_0 + v_0 t + \frac{1}{2}at^2$ $v^2 = v_0^2 + 2a(x - x_0)$ $I = \int_{body} r^2 dm$ Rotational kinetic energy: $K_r = \frac{1}{2}I\omega^2$ Translational kinetic energy: $K_t \stackrel{?}{=} \frac{1}{2}mv^2$ Parallel Axis Theorem: $I - I_{cm} + \bar{M}D^2$ Torque: $\tau = rFsin\phi = rF_t = I\alpha$ "Rolling without slipping" occurs \iff $[S_{cm} = R\phi \wedge v_{cm} = R\omega \wedge a_{cm} = R\alpha]$ Rolling motion: $K = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}mv_{cm}^2$ $= \frac{1}{2}(I_{cm} + MR^2)\omega^2 = \frac{1}{2}(\frac{I_{cm}}{R^2} + M)v_{cm}^2$ Angular Momentum: $L = I\omega(=rmv)$ Gravity: $F_g = G\frac{m_1m_2}{r^2} \wedge g = \frac{GM}{R^2}$ $U_g(r) = -G\frac{m_1m_2}{r^2}$ $\begin{array}{l} v_{escape} = \sqrt{\frac{2GM_{planet}}{R}} \\ \text{Kepler's Laws:} \end{array}$ a is semimajor axis $(\frac{1}{2}$ of "long diameter") b is semiminor axis $(\frac{1}{2}$ of "short diameter") F_1 and F_2 are foci of the ellipse, each located c distance from the other, where $c = \sqrt{a^2 - b^2}$ Ellipse is a circle \iff a=b=RKepler's 1st Law: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = c^2$

Kepler's 2nd Law: Area swept by radius vector in time Δt $=A_1=\frac{\Delta t}{2m}L$, where $L=r\times mv=r\times p$ Kepler's 3rd Law: $T^2 = \frac{r\pi^2}{GM}r^3$ Mass on a Spring: $m\frac{d^2x(t)}{dt^2} + kx(t) = 0$ $x(t) = A\cos(\omega t + \phi)$ A is amplitude, ω is angular frequency, ϕ is phase Spring-Mass: $\omega = \sqrt{\frac{k}{m}}$ Simple Pendulum: $\omega = \sqrt{\frac{g}{l}}$ Physical Pendulum: $\omega = \sqrt{\frac{mgL_{cm}}{I}}$ Period of Oscillation: $T = \frac{2\pi}{\omega}$ Frequency of Oscillation: $f = \frac{1}{T} = \frac{\omega}{2\pi} \text{ Hz } (s^{-1})$ Total energy of simple harmonic motion: $K(t) = \frac{1}{2}m\omega^2 A^2 \sin^2(\omega t + \phi)$ $U(t) = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$ $E_{net}(t) = \frac{1}{2}kA^2$ For simple pendulum, $F_{tan} = -mgsin(\phi) \wedge \alpha = -\frac{g}{l}sin(\phi)$ For small ϕ , we can say that $sin(\phi) \approx \phi$ Dampered Harmonic Oscillator: $\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$ $\implies x(t) = Ae^{-\frac{b}{2m}t}cos(\omega t + \phi)$ $\implies \omega = (\omega_0^2 - (\frac{b}{2m})^2)^{0.5}$ $\implies \omega_0 = \sqrt{\frac{k}{m}}$, which is the "natural frequency" For $b > 2\sqrt{mk}$, x decays to 0 without a single oscilla-We call this an "overdamped oscillator" The underdamped oscillator is: $x(t) = e^{-\gamma t}acos(\omega_0 t - \alpha)$ For a damped driven oscillator, $A = \frac{F_0}{m\sqrt{(\omega^2 - \omega_0^2)^2 + (\frac{b\omega}{m})^2}}$