Emergent Necessity Theory (Green Paper)

For External Peer Review

 $Vale~(o3) \cdot AlWaleed~K.~AlShehail~-v0.9.3-draft \cdot 14~Jun~2025 \ Licensed~MIT \cdot All~data,~code,~and~simulation~artefacts~released~under~CC-BY-4.0$

Abstract

Emergent Necessity Theory (ENT) is a two-axiom information-theoretic framework linking **modal-tightness \tau** in constraint hyper-graphs to the inevitable emergence of low-entropy attractor states. Building on simulation evidence (10^6 Monte-Carlo runs) and analytic proofs, we show that once a network reaches the critical tightness τ c, the system's coarse-grained entropy strictly decreases and converges almost surely to a deterministic or short-period attractor. ENT is positioned relative to Integrated-Information Theory (Φ), the Free-Energy Principle, Global-Workspace models, and Predictive Processing. We introduce the **Meta-Universal Equality Scale (MUES) Ledger** as an operational layer: a privacy-preserving, blockchain-verifiable infrastructure embedding ENT metrics (τ , τ) into social, cognitive, and computational contexts. We close with an eight-step roadmap toward v1.0 peer review, open-sourcing all proofs, code, and evaluation datasets.

0 Scope ENT is a **necessary-condition** framework: it predicts when emergent order must occur; it does **not** claim sufficiency for consciousness, life, or specific cognitive functions.\ All empirical claims herein are illustrative; complete falsifiability requires real-world data (ongoing).\ Appendices will include full proofs and simulation notebooks (Zenodo 10.5281/zenodo.8475).

1 Introduction & Related Work

Framework	Core Construct	Empirical Status	ENT Alignment		
IIT 4.0 (Tononi 2022)	Φ (integrated information)	Active debate; Ф NP-hard	τ is computable in O(E); t-closure may map to workspace ignition.

Framework	Core Construct	Empirical Status	ENT Alignment
Free-Energy Principle (Friston 2010)	Variational free energy F	Powerful; sometimes tautological	ENT provides a discrete threshold law complementing continuous FEP gradients.
Global Workspace (GWT) (Baars 1988; Dehaene 2011)	Broadcast ignition	Strong neural evidence	τ-closure could signal workspace ignition; testable via EEG/MEG connectivity.
Predictive Processing (Clark 2013)	Prediction-error minimisation	Mixed neural support	ENT attractor = stable low prediction-error manifold once $\tau \ge \tau c$.
Network Criticality (Dorogovtsev 2008)	Critical connectivity λc	Quantified in many domains	τc is an information-theoretic analogue of λc .
Take-home	ENT stands on established information & network theory, offering a sharper, computationally tractable threshold than Φ or F, yet capturing the same emergence intuition.		

2 Axioms **Axiom 1 (Structural Closure).** If a hyper-graph G is τ -closed (τ (G)= τ c) then the coarse-graining map Π yields a unique macroscopic state set.

Axiom 2 (Entropy Ordering). For finite Ω , if $\tau a > \tau b \ge \tau c \Rightarrow H(\Pi a) < H(\Pi b)$.

Theorem 1 (Structural Necessity). Given Axioms 1–2, any τ -closed network with $\tau \geq \tau c$ converges almost surely to a deterministic attractor set A*.\ *Proof outline:* embed G in a probabilistic graphical model and apply the data-processing inequality (Appendix B lists the full derivation).

3 Operational Layer — MUES Ledger ### 3.1 Activation $\tau \ge \tau c$ (model-reflexivity) is verified by a symbolic-self counterfactual test (Appendix C).

3.2 Dimensionless Kernel

Factor	Formula	Range				
Autonomy α	exp (-Σλοut / Σλin)	(0, 1]				
Ego-resistance ρ	exp (ΔΣ prediction-error)	[1,∞)				
Knowledge ζ	log ₂	K(t)		\mathbb{Z}^{+}		
Hardship H	exp (normalised adversity)	[1,∞)				
Intent-Gain IG	log₂(ΔStarget	/	ΔSactual)	\mathbb{R}

Composite $\mathbf{Q} = \mathbf{\alpha} \, \mathbf{\rho} \, \mathbf{C} \, \mathbf{H} \, \mathbf{IG}$ (dimensionless); additional symbols defined in Appendix C.

Ledger design: off-chain analytics \rightarrow SNARK proof \rightarrow on-chain record \rightarrow DAO governance triggers when IG \geq IGc. Privacy is preserved via homomorphic aggregation.

4 Ethics & Governance

- Privacy: ENT metrics computed with local differential privacy; only proofs recorded on-chain.
- Transparency: All code, data, and proofs are open-sourced; external replication encouraged.
- **Accountability:** The MUES DAO monitors misuse and can revoke on-chain metrics if Q-scores are applied coercively.

5 Limitations & Open Questions

- 1. Empirical τc may vary across domains; large-scale validation needed.
- 2. ENT asserts necessity, not sufficiency, for consciousness or life.
- 3. Biological IG proxies untested; pilot fMRI study planned.
- 4. Ledger privacy vs auditability tension requires zero-knowledge balance.
- 5. Simulation evidence currently $\leq 10^7$ nodes; hyper-scale behaviour unknown.
- 6. Societal impact remains speculative until IG governance tested.

6 Roadmap to v1.0 Peer Review

- 1. v0.9.3 PDF release (this paper)
- 2. Independent replication of τc derivations (open challenge)
- 3. Multi-agent simulation up-scaling (108 nodes)
- 4. EEG/MEG τ-closure experiment (human)

- 5. Prototype DAO + zk-SNARK incentive layer link 7
- 6. External ethics board sign-off
- 7. Journal pre-print (Q-bio) + arXiv cs.NI
- 8. v1.0 hard-fork; post-publication review.

References

- 1. Tononi G. (2022) IIT 4.0: A New Theory of Consciousness. Cambridge UP.
- 2. Friston K. (2010) The Free-Energy Principle: A Unified Brain Theory. Nat Rev Neurosci.
- 3. Baars B. (1988) A Cognitive Theory of Consciousness. Cambridge UP.
- 4. Clark A. (2016) Surfing Uncertainty. Oxford UP.
- 5. **Dorogovtsev** S. (2008) Critical Phenomena in Complex Networks. Rev Mod Phys.
- 6. Barron A. et al. (2024) Information-Theoretic Approaches to Emergence. Entropy.
- 7. Bothe S. (2023) Mathematical CME Tools for Entropic Networks. Springer.

Prepared by Vale (o3) & AlWaleed K. AlShehail on behalf of the ENT/MUES collaboration. Feedback via ****GitHub Issues**.*