Formato digital dos dados sísmicos (headers e keywords).

Os dados sísmicos registrados com o sismógrafo digital **Geode** (produzido pela GEOMETRICS) podem ser armazenados nos formatos: SEG2 ou SEGY.

O formato **SEGY**, recomendado pela **S**ociety of **E**xploration **G**eophysicists, ainda é o formato mais conhecido e usado. Embora alguns softwares e novas tecnologias computacionais utilizem outros formatos mais apropriados para os dados sísmicos.

O SEG2, dedicado a sismógrafos digitais portáteis, é mais recente e não é tão utilizado como o SEGY.

Em geral, as extensões padrão são: .sgy para o SEGY e .dat para o SEG2.

As diferenças entre o SEGY e o SEG2 estão no formato do cabeçalho principal e em alguns aspectos nos cabeçalhos dos traços sísmicos.

O pacote SU - Seismic Unix, lê os dados no formato SEGY, utilizando o programa **segyread,** o qual descarta o cabeçalho principal dos dados (sendo assim, o formato que o SU trabalha é igual ao SEGY sem o cabeçalho principal).

#Comando para ler um arquivo de dados no formato .sgy e exportar para o display na tela:

```
segyread tape=1.sgy | suxwigb &
```

#Comando para ler um arquivo de dados no formato .sgy e salvar no formato do SU.

```
segyread tape=1.sgy | segyclean > 1.su suxwigb <1.su &
```

#Observações:

- # 1. O programa segyclean elimina campos (keywords) com valores nulos dos cabeçalhos dos traços. Não é de uso obrigatório, mas se houver o campo d1=0.000000 nos cabeçalhos, essa keyword (d1) precisa ser retirada para os dados serem utilizados no SU.
- # 2. Dependendo do sistema: Unix ou diferentes tipos de linux, é preciso consultar o help do programa **segyread** e utilizar alguns parâmetros de conversão, tais como **endian** e **conv**.

```
segvread tape=1.sgv endian= conv= | segvclean > 1.su
```

Entendo o formato dos dados sísmicos

Resumidamente: um arquivo, gravado em binário, com os dados sísmicos são as amplitudes de cada traço sísmico (os registros de cada geofone) separadas por um cabeçalho ("header"), armazenados em sequência.

1. Para visualizar em *ASCII* um arquivo de dados sísmicos gravado em binário (1.su), digite no terminal: suascii < nome_do_arquivo_de_dados | more

suascii < 1.su | more

As imagens a seguir são *prints* da informação apresentada no terminal.

A 1^a, linha é a informação escrita no cabeçalho (*header*) do traço 1. Sempre são palavras-chave (*keywords*) com um valor numérico atribuído.

As duas colunas a seguir: coluna 1, é o número da amostra em tempo (foi inserida pelo programa suascii, não faz parte dos dados sísmicos); coluna 2 são os valores das amplitudes das vibrações que chegam nos geofones, registradas em cada instante de tempo.

```
dt=500 afilf=833
    1.6656e+00
  2 -1.5720e+00
    1.2794e+00
  4 -5.8987e-01
  5 -9.5539e+00
  6 -1.9214e+00
    -4.7934e+01
  8 -8.2619e+01
    -9.8128e+01
 10 -6.4704e+01
 11 6.3857e+01
    9.9855e+01
 13
    7.9552e+01
    9.2488e+01
 14
   8.7140e+01
 15
 16 -8.6311e+00
 17 -9.8858e+01
 18 -8.3934e+01
 19 -8.8233e+01
 20 -9.1429e+01
-Mais--
```

```
593 6.7101e-01
 594
      1.8150e-01
 595 -3.5771e-01
 596 -4.1393e-01
 597 -3.2517e-01
 598 -5.8517e-01
 599 -8.9080e-01
600 -7.9120e-01
fldr=1 tracf=2 ep=1 trid=1 nvs=4 gx=50
ns=600 dt=500 afilf=833
   1 -8.1510e-02
   2
     5.0443e-02
   3 -1.0286e-01
  4 -5.0005e-03
  5 -2.0817e-02
  6 -1.4066e-01
    -2.1470e-01
  8 -3.5781e+00
  9 -2.8104e+00
  10 -1.1128e+01
  11 -4.3775e+01
-Mais--
```

2. Para verificar o significado de uma palavra-chave, digite no terminal:

```
sukeyword nome_da_palavra
```

sukeyword -o fornece uma listagem com as *keywords* que existem no formato SEGY

3. Para observar um resumo das palavras-chave (*keywords*) escritas nos cabeçalhos (*header*): surange < nome_do_arquivo_de_dados

Aparecerá na tela uma listagem das palavras-chave que existem nos cabeçalhos dos traços, com o menor e o maior valor encontrado para cada palavra, e entre parêntesis o valor da palavra no primeiro e no último traço do arquivo. Se só houver um valor significa que aquela palavra possui o mesmo valor em todos os cabeçalhos.

Edição do valor das keywords nos cabeçalhos

O programa "**sushw**" insere ou modifica **o valor** de uma ou mais palavras-chave nos cabeçalhos. Você pode digitar o nome do programa (sushw) no terminal para verificar o significado dos seguintes parâmetros: **key, a, b, c, j**

Abaixo segue uma descrição interpretada do significado desses parâmetros (*texto diferente do help do SU*):

key = nome da palavra-chave que será inserida no cabeçalho

- a = valor que será atribuído à palavra-chave no primeiro traço do arquivo
- **j = número de geofones** (números de traços em que o arquivo com todos os dados do levantamento será dividido para a edição do valor das palavras-chave); atua como um contador dentro do programa "sushw"
- b = Incremento no valor da palavra-chave definida no parâmetro "key" a cada traço, a partir do valor do parâmetro "a" no primeiro traço até contar "j" traços
- c = Incremento no valor do parâmetro "a" da mesma palavra-chave, após contar "j" traços; depois volta a somar o valor do incremento "b" (ou seja, "c" é o incremento no valor da palavra no primeiro traço de cada conjunto de "j" traços); para o uso que faremos aqui, o primeiro traço de um conjunto é sempre o primeiro geofone de cada tiro.

Exercício de Exemplo: Edição dos cabeçalhos para a inserção da geometria da técnica CMP

O arquivo modelo1c.su simula um conjunto de traços sísmicos de uma aquisição CMP convencional (não são dados reais).

- 1) Observe os cabecalhos e conclua qual o número de tiros e qual número de geofones em cada tiro:
- **2)** Insira nos cabeçalhos dos traços, as palavras-chave: **ep, cdp, offset** relacionadas a uma aquisição CMP convencional, com: afastamento mínimo e intervalo entre geofones iguais a 20m e o intervalo de deslocamento dos tiros igual ao intervalo de geofones.
- Complete a linha de comando no terminal:

```
sushw < modelo1c.su \ key= \ a= \ b= \ j= \ c= > modelo1c.geo.su
```

- Defina os valores dos parâmetros no terminal, criando variáveis, com um enter após cada parâmetro:

```
key=ep,cdp,offset
```

a=

OU

b=

j= c=

E execute o comando chamando as variáveis definidas antes

```
sushw <modelo1c.su key=$key a=$a b=$b j=$j c=$c >modelo1c.geo.su
```

3) Visualize a carta de empilhamento para a geometria de aquisição acima:

```
ng= #número de geofones
npt= #número de pontos de tiro
```

suchart < modelo1c.geo.su key1=ep key2=cdp | xgraph n=\$ng nplot=\$npt marksize=5 mark=0 linewidth=0 x1beg=0 x2beg=0 label1=ep label2=cdp &

Obs.: Crie e atribua valores às variáveis "ng" e "npt", e transfira o conteúdo dessas variáveis para os parâmetros "n=" e "nplot=" do programa suchart. OU, escreva diretamente os valores desses parâmetros na linha de comando do suchart, ou seja, substitua "\$ng" e \$npt por números.