Zeitreihen vorhersagen (Statistik I): Exponentielle Glättung und **Holt-Winters**

Session 3 (Montag 13:30 – 15:00)

Zeitreihen vorhersagen (Statistik I): Exponentielle Glättung und Holt-Winters

- Naive Vorhersagen
- einfaches exponentielles Glätten (SES)
- Holt-Verfahren / Holt-Winters-Verfahren

Vorhersagen treffen

Naive Vorhersage

$$\widehat{x}_{t+h} = x_t$$

Wie können wir die verbessern?

Beispiel

Wie viel Solarstrom wird gerade auf dem Dach meines Hauses produziert?

Wenn ich Ihnen sagen würde, dass es vor einer Stunde 1,5 kW war?

Vorhersagen treffen

Naive Vorhersage II (Durchschnittsmethode)

$$\hat{x}_{t+h} = \frac{1}{t} \sum_{i=1}^{t} x_i$$

Wie können wir die verbessern?

Beispiel

Was ist der Preis von 1 MWh Strom an der Strombörse?

Was wäre Ihre Schätzung, wenn ich Ihnen sage, dass er durchschnittlich bei 42.6 Euro/MWh liegt?

Exponentielle Glättung

- 1. Idee: Neuere Beobachtungen stärker zu gewichten als Beobachtungen aus der fernen Vergangenheit
- Dies ist genau das Konzept hinter der einfachen exponentiellen Glättung.
- Prognosen werden mit gewichteten Mittelwerten berechnet, wobei die Gewichte exponentiell abnehmen, wenn die Beobachtungen weiter in der Vergangenheit liegen:

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

Einfache Exponentielle Glättung (SES)

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

- Glättungsparameter alpha zwischen null und eins
- Die einfachste der exponentiell glättenden Methoden wird natürlich als einfache exponentielle Glättung ("simple exponential smooting" SES) bezeichnet.
- Diese Methode eignet sich für die Prognose von Daten ohne klaren Trend oder saisonales Muster

- Holt Verfahren beinhaltet eine Trendkomponente
- Holt-Winter Verfahren: eine Trend- und eine Saisonkomponente

Holt's Methode (Double ES)

Alternative Schreibweise SES

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t \ \ell_t &= lpha y_t + (1-lpha)\ell_{t-1}, \end{aligned}$$

Holt Verfahren beinhaltet eine Trendkomponente

Manchmal wird die Trendkomponente auch **multiplikativ** ins Modell aufgenommen

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t \ \ell_t &= lpha y_t + (1-lpha)(\ell_{t-1} + b_{t-1}) \ b_t &= eta^*(\ell_t - \ell_{t-1}) + (1-eta^*)b_{t-1}, \end{aligned}$$

Holt-Winter's Methode

Holt Verfahren beinhaltet eine Trendkomponente

$$egin{aligned} ext{Forecast equation} & \hat{y}_{t+h|t} = \ell_t + hb_t \ & ext{Level equation} & \ell_t = lpha y_t + (1-lpha)(\ell_{t-1} + b_{t-1}) \ & ext{Trend equation} & b_t = eta^*(\ell_t - \ell_{t-1}) + (1-eta^*)b_{t-1}, \end{aligned}$$

Holt-Winter Verfahren: eine Trend- und eine Saisonkomponente

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \ \ell_t &= lpha(y_t - s_{t-m}) + (1-lpha)(\ell_{t-1} + b_{t-1}) \ b_t &= eta^*(\ell_t - \ell_{t-1}) + (1-eta^*)b_{t-1} \ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}, \end{aligned}$$

Holt-Winter's Methode

Saisonkomponente kann

- Additiv oder
- Multiplikativ

zum Modell hinzugefügt werden

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \ \ell_t &= lpha(y_t - s_{t-m}) + (1-lpha)(\ell_{t-1} + b_{t-1}) \ b_t &= eta^*(\ell_t - \ell_{t-1}) + (1-eta^*)b_{t-1} \ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m}, \end{aligned}$$

$$egin{aligned} \hat{y}_{t+h|t} &= (\ell_t + hb_t) s_{t+h-m(k+1)} \ \ell_t &= lpha rac{y_t}{s_{t-m}} + (1-lpha) (\ell_{t-1} + b_{t-1}) \ b_t &= eta^* (\ell_t - \ell_{t-1}) + (1-eta^*) b_{t-1} \ s_t &= \gamma rac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma) s_{t-m} \end{aligned}$$

Wie gut sind unsere Vorhersagen?

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

 \mathbf{MAE} = mean absolute error

 y_i = prediction

 x_i = true value

n = total number of data points

Wie gut sind unsere Vorhersagen?

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

Ab ins Jupyter Notebook