Chapter 2: Getting to Know Your Data

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Contents

- Data Objects and Feature Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets

Ta	bι	ار	ar
···		4	ωι

- Data matrix / table
 - E.g.> a set of term-frequency vectors
- Transaction data

Graph and network

- Social networks
- World Wide Web
- Molecular structures

y vectors	3	h		ı	Ф	lе		t	out	on
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Data matrix

Time-series (ordered)

- Video data: sequence of images
- Temporal data: time-series of trajectories
- Sequential data: transaction sequences
- Genetic sequence data

Spatial, image, and multimodal:

- Spatial data: maps
- Image data
- Multimodal data (video + image + text +)

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Transaction data

Characteristics of Data

Dimensionality

- # of features
- Curse of dimensionality: 처원이 매크경우 발생하는 문제 → Jiffilcult to measure the meaningful distance between data objects
- Sparsity density of the data is very small
 - Only a small portion of presence ex) hate matrix

Resolution

Patterns depend on the scale

Distribution

Centrality and dispersion

	$\alpha \alpha \cdots \alpha$
other	missing value
(-	

> The rating matrix is very sparse And the data also becomes very difficult to analyze appropriatly

l	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Data Objects

- Data sets are made up of data objects
 - □ A data object represents a real-world entity
- **□** Examples:
 - Sales database: customers, store items, sales
 - Medical database: patients, treatments
 - University database: students, professors, courses
- Also called tuples, samples, examples, instances, data points, etc
- Data objects are typically described by features
 - Database rows -> data objects; columns -> features

Features

- □ Features (or dimensions, attributes, variables, etc):
 - A measurable property or characteristics of each data object
 - □ E.g., customer ID, name, address, age, occupation, etc
- ■Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Ratio-scaled
 - Interval-scaled

Feature Types

- Nominal: categories, states, or "names of things"
 - Has a finite number of values
 - e.g., Hair_color = {black, blond, brown, grey, red, white, ... }
 - marital status, occupation, ID numbers, zip codes,

Binary

- Special case of a nominal feature with only 2 states (0 and 1)
- Symmetric case and asymmetric case (will be mentioned later)

Ordinal

- Values have a meaningful order (ranking)
- Magnitude between successive values is not known though
- E.g.> Size = {small, medium, large}

Numeric Feature Types

Numeric (integer or real-valued)

- Ratio-scaled
 - Ratio is meaningful
 - Inherent zero-point (0 means absence)
 - We can speak of values as being an order of magnitude larger than the unit of measurement
 - 6kg is twice as high as 3kg
 - e.g., temperature in Kelvin, length, counts, money, etc...

Interval-scaled

- Only difference is meaningful
- Measured on a scale of equal-sized units
- Values have order
 - e.g., *temperature in C°or F°*
- No true zero-point

Contents

- Data Objects and Feature Types
- **■** Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

Motivation

To better understand the data: central tendency, variation and spread

Data dispersion characteristics

Median, max, min, quartiles, outliers, variance, etc.

Measuring the Central Tendency

■ Mean (sample vs. population):

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

Note: n is sample size and N is population size.

■ Weighted arithmetic mean:

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- □ Trimmed mean:
 - Taking mean after chopping extreme values

Measuring the Central Tendency

■ Median:

- Middle value if there are odd number of values, or average of the middle two values otherwise
- Simple median requires sorting, not good at a dynamic situation
- □ Solution: estimation via interpolation (for grouped data):

 approximation method → 새 데이터 왁/삭제 될때마다 Gorting 발길로 뛰어짐

median =
$$L_1 + (\frac{n/2 - (\sum freq/)}{freq_{median}}) * width$$

Example

Example

•
$$n = 3194$$
, $n/2 = 1597$, $freq_{median} = 1500$, $L1 = 21$

• Numerator =
$$1597 - (200 + 450 + 300) = 647$$

ગા	11 71/4 M 2010	ry borting of Bu way
	age	frequency
	1-5	200
	6 - 15	450
	16-20	300
	21-50	1500
	51-80	700
	81–110	44
	\	•

Median is located in this group: 21 ~ 50. Within this range, we approximate the exact position of median.

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
 - Usually defined on discrete features
- □ Unimodal (1), bimodal (2), trimodal (3)

Symmetric vs. Skewed Data

Median, mean, and mode of symmetric, positively and negatively skewed data

how the data points are distributed over the all range Quartiles, outliers and boxplots

- **Quartiles**: Q_1 (25th percentile), Q_3 (75th percentile)
- □ Inter-quartile range (IQR): $IQR = Q_3 Q_1$
- \square Five number summary: min, Q_1 , median, Q_3 , max
- **Boxplot**: visualization of the above five numbers
 - Each end of the box is Q₃ and Q₁; median is marked; add whiskers to express min & max; and plot outliers individually
- Outlier: usually, a value higher/lower than 1.5 x IQR

- Box plot: Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum
- Boxplot
 - Data is represented with a box
 - The ends of the box are at Q1 and Q3.
 - => The height of the box is IQR
 - The **median** is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually

- Variance and standard deviation (sample: s, population: σ)
 - Variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

□ **Standard deviation** s (or, σ) is the square root of variance s^2 (or, σ^2)

Using the normal distribution property

- □ From $\mu \sigma$ to $\mu + \sigma$: contains about 68% of the measurements (μ : mean, σ : standard deviation)
- □ From $\mu 2\sigma$ to $\mu + 2\sigma$: contains about 95% of it
- □ From $\mu 3\sigma$ to $\mu + 3\sigma$: contains about 99.7% of it

Thank You

