Machine Learning Course basic track

Machine Learning Lecture 8: Feature engineering & feature importances

Harbour.Space University February 2020

Radoslav Neychev

Outline

- 1. Word representations and categorical features
- 2. Missing data
- 3. Feature importances estimation

How to represent text in a computer?

Use a taxonomy like WordNet that has hypernyms (is-a) relationships and synonym sets

How to represent text in a computer: WordNet

Discrete representations: problems

- Missing new words
- Subjective
- Requires human labor to create and adapt
- Hard to compute accurate word similarity

Discrete representations: one-hot encoding

TF-IDF

TF - term frequency

IDF - Inversed Document Frequency

TF-IDF: make it simple

$$ext{tf("this",}\ d_1)=rac{1}{5}=0.2$$
 $ext{tf("this",}\ d_2)=rac{1}{7}pprox 0.14$ $ext{idf("this",}\ D)=\log\Bigl(rac{2}{2}\Bigr)=0$

$\mathrm{tfidf}("this",d_1,D) = 0.2 imes 0 = 0$
$ ext{tfidf}(" ext{this}",d_2,D)=0.14 imes0=0$

Document 1

Term	Term Count		
this	1		
is	1		
a	2		
sample	1		

Document 2

Term	Term Count		
this	1		
is	1		
another	2		
example	3		

Word 'this' is not very informative

Words cooccurrences

One of the most successful ideas of statistical NLP:

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

Words cooccurrences

Finding N-grams in a text

Word-document cooccurrence matrix

Window around each word

Word-document cooccurrence matrix

		I	like	enjoy	deep	learning	NLP	flying	•
	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1 0	
X =	deep	0	1	0	0	1	0	0	0
Λ —	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0

Words cooccurrences: sliding window

Words cooccurrences: n-grams

Cooccurrence vectors: problems

- Increase in size with vocabulary
- Very high dimensional: require a lot of storage
- Subsequent classification models have sparsity issues

Models are less robust

Feature importance estimation

$$)=-1-0.9=-1.9$$

Feature importance estimation

- 1. Permutation importance
- 2. Partial Dependence Plots (PDP)
- 3. Tree specific:
 - a. Gain
 - b. Frequency (Split Count)
 - c. Cover (weighted Split Count)
- 4. Shap

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
•••		
156	142	 8
153	130	 24

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
	(A	
156	142	 8
153	130	 24

Train model

Observe changes caused by feature random permutations

Partial Dependence Plots

PDP for feature "Goal Scored"

Number of unique grid points: 6

Importance estimation problems

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

SHAP values are the only consistent and locally accurate individualized feature attributions

Outro

- 1. Remember the bias-varience decomposition
- 2. Consider using SHAP values to estimate feature importances.