RL: Partially Observable Markov Decision Process

План

- □ Что не так с MDP
 - MDP процесс
- □ Детали POMDP
 - Байесовская фильтрация
- □ Приближенное обучение
 - Глубокое рекуррентное Q-обучение
 - Глубокий рекуррентный градиент политики
- □ Явная память
 - Нейронная карта

MDP

Definition of Markov Decision Process

MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$, where

- \circ S set of states of the world
- \bigcirc A set of actions
- **3** $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \triangle(\mathcal{S})$ state-transition function, giving us $p(s_{t+1} | s_t, a_t)$

Markov property

$$p(r_t, s_{t+1} | s_0, a_0, r_0, ..., s_t, a_t) = p(r_t, s_{t+1} | s_t, a_t)$$

(next state, expected reward) depend on (previous state, action)

Беспилотный автомобиль

- Имеет точные датчики зрения
- Имеет точную карту местности
- Имеет совершенную механику
- Должен безаварийно и оптимально перемещаться

Беспилотный автомобиль

- Имеет точные датчики зрения
- Имеет точную карту местности
- Имеет совершенную механику
- Должен безаварийно и оптимально перемещаться

Как можно смоделировать автомобиль с помощью mdp?

Причина неопределенности

Обычно состояние автономного агента состоит из

- □ измерений окружающей среды
- и самого агента
- □ В реальной системе существует еще больше неопределенности:
 - 1 несовершенное самоощущение (положение, крутящий момент, скорость и т.д.)
 - 2 несовершенное восприятие окружающей среды
 - 3 неполное наблюдение за (нестационарной?) средой

Как включить неопределенность в процесс принятия решений?

Проблемы MDP

В каком состоянии игры мы находимся?

Проблемы MDP

В каком состоянии игры мы находимся?

128 байт ненаблюдаемой оперативной памяти симулятора Atari

POMDP – мощная математическая абстракция

- □ Промышленные приложения
 - Техническое обслуживание машин (Shani et al., 2009)
 - Беспроводные сети (Pajarinen et al., 2013)
 - Управление ветряными электростанциями (Memarzadeh et al., 2014)
 - Избежание столкновения самолетов (Bai et al., 2012)
 - Выбор продавцов на электронных торговых площадках (Irissappane et al., 2016)
- □ Вспомогательное лечение
- Робототехника
- □ Системы разговорного диалога

Детали POMDP: Байесовская фильтрация

Mecto POMDP в модели мира

Markov Models		Do we have control over the state transitions?			
		NO	YES		
Are the states completely observable?	YES	Markov Chain	MDP Markov Decision Process		
	NO	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process		

Модель POMDP

□ Определение

- POMDP это кортеж $\langle S, A, P, R, \Omega, O \rangle$
 - 1. S, A, P, R такие же как в MDP
 - 2. Ω конечное множество наблюдений
 - 3. $0: S \times A \to \Delta(\Omega)$ функция наблюдения, которая дает для каждого состояния и действия распределение вероятности по Ω , т.е. $p(o \mid s_{t+1}, a_t) \ \forall o \in \Omega$

Модель POMDP

□ Определение

- POMDP это кортеж $\langle S, A, P, R, \Omega, O \rangle$
 - 1. S, A, P, R такие же как в MDP
 - 2. Ω конечное множество наблюдений
 - 3. $0: S \times A \to \Delta(\Omega)$ функция наблюдения, которая дает для каждого состояния и действия распределение вероятности по Ω , т.е. $p(o \mid s_{t+1}, a_t) \ \forall o \in \Omega$

но как понять, в каком состоянии мы сейчас находимся?

Рассуждения о неопределенности состояния

Состояние убежденности (Belief state)

Распределение по пространству состояний, $P_{s \in S}b(s) = 1, \ 0 \le b(s) \le 1$

$$A = \{left, right\}$$
 $p(\bar{A}|do(A)) = 0.1$

Рассуждения о неопределенности состояния

- 1. Состояние убеждений является достаточной статистикой: содержит всю информация, необходимая для принятия решения (Striebel, 1965)
- 2. POMDP это MDP над правильно обновленными состояниями убеждений (Astrom, 1965)

Обновление убеждений (фильтр Байеса)

Хорошие новости: обновление убеждений довольно простое (правило Байеса)

$$b'(s') = p(s'|o', a, b) = \frac{p(o'|s', a)p(s'|a, b)}{\sum_{o} p(o|s', a)p(s'|a, b)}$$

$$\propto p(o'|s', a)p(s'|a, b) \propto p(o'|s', a) \sum_{s} p(s'|a, b, s)p(s|a, b)$$

$$\propto p(o'|s', a) \sum_{s} p(s'|a, s)b(s)$$

Обновление убеждений (фильтр Байеса)

Плохая новость: обновление убеждений может быть вычислено точно только для

- 1. дискретных низкоразмерных пространства состояний
- 2. линейно-гауссовская динамика (приводящая к фильтру Калмана), т.е.

$$s' \sim N(s'|T_S s + T_a a, \Sigma_s), \qquad o' \sim N(o'|O_S s', \Sigma_o)$$
$$R(s, a) = s^T R_s s + a^T R_a a$$

Таксономия задач POMDP

- 1. Задача обучения / планирования
- 2. Конечный / бесконечный горизонт
- 3. Онлайн / офлайн подход
- 4. Приблизительный / точный алгоритм
- 5. Дискретные / непрерывные состояния
- 6. Дискретное / непрерывное действие
- 7. Дискретное / непрерывное время
- 8. Стационарная / нестационарная среда
- 9. Один / много агентов

План

- □ Приближенное обучение
 - Глубокое рекуррентное Q-обучение
 - Глубокий рекуррентный градиент политики

Глубокое рекуррентное Q-обучение

Проблема: мы не можем оценить $Q(s_t, a_t)$, т.к. мы не знаем s_t

DRQN решение: (Hausknecht et al., 2015)

- 1. Снабдить агента памятью h_t
- 2. Аппроксимировать $Q(s_t, a_t)$ на основе $Q(o_t, h_{t-1}, a_t)$
- 3. Устранить зависимость от o_t путем моделирования $h_t = LSTM(o_t, h_{t-1})$

Преимущества:

- 1. простой приближенный решатель POMDP с одним кадром на вход
- 2. необходимо только смоделировать $Q(s_t, a_t)$
- 3. незначительные изменения в архитектуре ванильной DQN

DRQN архитектура

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

ADRQN (Zhu et al., 2017)

Оптимальное обновление убеждений предполагает совершение действия

$$b'(s') = p(s'|o', \mathbf{a}, b) = \frac{p(o'|s', a)p(s'|\mathbf{a}, b)}{\sum_{o'} p(o'|s', \mathbf{a})p(s'|a, b)}$$

ADRQN алгоритм:

- Вход LSTM $\{a_{t-1}, o_t\}$
 - Встраивание one-hot действия в вектор размерности 512
- Сохранить $\langle \{a_{t-1}, o_t\}, a_t, r_t, o_{t+1} \rangle$ в Experience Replay
- Обрезать вознаграждения на [-1, 1], как это делает DQN
- Схема обновления как в DRQN

Рекуррентный Experience Replay (ER) - I

- □ При неограниченном взаимодействии с окружающей средой не требуется ER
 - асинхронно обучать несколько агентов
 - совместно использовать все параметры (включая параметры LSTM)
 - не делятся состояниями ячеек LSTM
 - приводит к быстрому, почти идентичному обучению
- ❖ Два оригинальных пути с ER (Хаускнехт и др., 2015)
 - 1. Последовательные обновления: случайная выборка полного эпизода из ER и выполнить последовательное обновление
 - Нарушается случайная выборка из ER
 - Обновления коррелируют
 - 2. Случайные обновления: выборка случайного момента времени в случайном эпизод из ER и обучение на k последующих кадрах
 - Скрытое состояние LSTM должно быть обнулено в начале сессии
 - Первые несколько обновлений потенциально ошибочны

Рекуррентный Experience Replay (ER) - II

□ Основано на истории: (Lample et al., 2016) то же самое, что и случайные обновления, но обновляются только последние кадры, т.е. кадры с признаками

$$t + k, ..., t + \tau - 1$$

• Эффективность выборки / корреляция

Рекуррентный ER в распределенной RL (Kapturowski et al.,

2019)

□ Два основных отличия от предыдущих работ:

- 1. Инициализация РНС с помощью хидденов, собранных при генерации опыта
- 2. Ввод в РНС: действие, вознаграждение, наблюдения от каждый шаг
 - LSTM
 - N-шаговая оценка TD
 - Изменение масштаба вознаграждения
 - Двойной DQN
 - Дуэльный DQN

Рекуррентный Advantage Actor Critic

$$\nabla J(\pi_{\theta}) \approx (r + \gamma V(s') - V(s)) \cdot \nabla_{\theta} \log \pi_{\theta}(a|s)$$

Каждая функция состояния s заменяется скрытым состоянием RNN (LSTM/GRU)

- Рекуррентная $\pi_{\theta}(a|s)$ (Mnih et al., 2016)
 - Дополнительные 256 ячеек LSTM поверх базовой архитектуры DQN
- Рекуррентная Deterministic Policy Gradient (Song et al., 2017)
 - Q(h, a) как в DRQN, но без ВРТТ в actor
- Глубокое вариативное обучение с подкреплением (Igl et al., 2018)

Явная память: нейронная карта

- □ Память существенна
- Память в RL имеет разные вкусы
 - 1. Темпоральная сверточная память (к последних кадров в DQN)
 - простая, но очень ограничивающая
 - 2. RNN-подобная память (слой LSTM в DRQN, DARQN)
 - емкая, но подходит только для простых задач
 - 3. Банкоподобная память вкраплений с преднамеренным доступом на чтение (Oh et al., 2016)
 - более интеллектуальная, но может быть избыточной, требует эксперта
 - 4 Человекоподобная пространственная память с преднамеренным доступом для чтения
 - (Parisotto et al., 2017)
 - имеет большой потенциал, но требует структурных предположений

Нейронная карта (HM): (Parisotto et al., 2017)

- Основные характеристики:
 - Структурированная память, разработанная специально для RLагентов в 3D
 - Размер и вычислительные затраты не растут с временным горизонтом среды
 - Обучающие алгоритмы: А2С с синхронными обновлениями

A2C с синхронными обновлениями

•
$$r_t = read(M_t)$$

•
$$c_t = contex(c_t, M_t, r_t)$$

•
$$w_{t+1}^{(x_t, y_t)} = write(s_t, r_t, c_t, M_t^{(x_t, y_t)})$$

$$M_{t+1} = update(M_t, w_{t+1}^{(x_t, y_t)})$$

$$\bullet o_t = \left[r_t, c_t, w_{t+1}^{(x_t, y_t)} \right]$$

•
$$\pi(a|s_t) = Softmax(f(o_t))$$

•
$$M_t$$
 – tensor $C \times H \times W$

$$lacktriangledown$$
 r_t - глобальная информация о NM

•
$$x_t \in \{1, ..., W\}, y_t \in \{1, ..., H\}$$
 положение

агента на карте

$$lacktriangledown w_{t+1}^{(x_t,y_t)}$$
 - характеристики для записи

$$lacktriangle$$
 o_t - выход NM в момент времени t

Нейронная карта (NM): подробности работы

- 1. Глобальное чтение, $r_t = CNN(M_t) 3$ -х слойная конволюционная сеть (3x3n8), 256fc, 32fc
- **2**. **Контекст**, c_t целевое изменение памяти
 - 1. $q_t = W[s_t, r_t]$ запрос (query), относящийся к текущему состоянию
 - 2. $\alpha_t^{(x,y)} \propto exp\left(q_t^T M_t^{(x,y)}\right)$ нормализованное (по оси (x, y)) сходство между признаками NM и запроса
 - 3. $c_t = \sum_{(x,y)} \alpha_t^{(x,y)} M_t^{(x,y)}$ средневзвешенное значение характеристик НМ
- 3. Локальная запись вычисляет новые характеристики $M_t^{(x,y)}$
 - 1. $w_{t+1}^{(x_t,y_t)} = g\left(\left[s_t,r_t,c_t,M_t^{(x,y)}\right]\right)$, где $g(\cdot)$ другая нейронная сеть (например GRU) с внутренним состоянием равным $M_t^{(x,y)}$
- 4. Обновление простое переписываются только характеристики, соответствующие текущему местоположению x_t, y_t $M_t^{(x,y)} = w_{t+1}^{(x,y_t)}$

Нейронная карта: эмпирические результаты

(a) Maze

- 1. Тест на 1000 невидимых лабиринтах
- 2. Эпизод заканчивается на train/test 100/500 тиков
- 3. Положительная награда за нахождение фонаря с правильным светом
- 4. Отрицательная награда за нахождение фонаря с неправильным светом

	Goal-Search							
Agent		Train		Test				
	7-11	13-15	Total	7-11	13-15	Total		
Random	41.9%	25.7%	38.1%	46.0%	29.6%	38.8%		
LSTM	60.6%	41.8%	59.3%	65.5%	47.5%	57.4%		
MemNN-32	85.1%	58.2%	77.8%	92.6%	69.7%	83.4%		
Neural Map	92.4%	80.5%	89.2%	93.5%	87.9%	91.7%		
Neural Map (GRU)	97.0%	89.2%	94.9%	97.7%	94.0%	96.4%		