State of Missouri Toxics Release Inventory

Summary Report: 2002 Data

December 2004

Missouri Department of Natural Resources

Environmental Assistance Office 1-800-361-4827 or (573) 526-6627 Printed on Recycled Paper

For a copy of this document, please contact:

MISSOURI DEPARTMENT OF NATURAL RESOURCES Outreach and Assistance Center Document Distribution Services P. O. Box 176 Jefferson City, MO 65102-0176 (573) 526-6627 or 1-800-361-4827

Hearing or speech-impaired individuals may call 1-800-735-2966

Ask for the Missouri 2002 TRI Report.

This report may also be accessed at http://www.dnr.mo.gov/oac/mo02tri.pdf

STATE OF MISSOURI TOXICS RELEASE INVENTORY

SUMMARY REPORT: 2002 Data

December 2004

STATE OF MISSOURI

DEPARTMENT OF NATURAL RESOURCES

www.dnr.mo.gov

Dear Fellow Missourians:

The Missouri Department of Natural Resources is pleased to provide the following *State of Missouri Toxics Release Inventory Summary Report* – 2002 *Data*. This report presents the most current data available for the release and management of toxic chemicals by Missouri manufacturing and processing facilities. This data is made available as part of the reporting requirement under Section 313 of the Emergency Planning and Community Right-to-Know Act.

For reporting year 2002, 602 facilities reported releasing a total of 113,227,139 pounds of toxic chemicals to the environment in Missouri. This was a decrease of 4,505,807 pounds, or 3.8 percent less than the amount reported in 2001 and reflects a second year in a row that we have seen a downward trend in total releases. This year we also saw a very significant decrease in total wastes managed, down by 88.4 million pounds or 13.3 percent less than in 2001. This indicates that companies are either using fewer toxic chemicals or are using them more efficiently, and therefore managing less through recycling, energy recovery or treatment. Releases of persistent, bioaccumulative and toxic (PBT) chemicals such as lead, mercury and dioxin showed both decreases and increases. See the attached report for details.

The Toxics Release Inventory report is published to better inform Missouri citizens about the environment in their communities. To that purpose, the department intends to continue to provide this report and to make it more meaningful for Missouri citizens. We encourage you to read this report for a greater understanding of the Toxics Release Inventory information and how the reported releases may impact you or your community. Over the years, we have seen a continued downward trend in the total amount of chemicals released to the environment. By making this report available to Missouri citizens, the department hopes the public will become more involved with the reporting facilities in their communities and help reduce the amount of releases even further.

As you read this report, if you have questions or need more information, feel free to contact Gene Nickel of the department's Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

Thank you for your interest in the Toxics Release Inventory. We hope this information will be of benefit to you and will help make your environment better.

Sincerely,

DEPARTMENT OF NATURAL RESOURCES

Original signed by Sara Parker

Sara Parker Director, Outreach and Assistance Center

SP/eh

Table of Contents

EXECUTIVE SUMMARY	4
INTRODUCTION	8
What is the Toxics Release Inventory?	8
Reporting Requirements	
Uses of the TRI	9
Limitations of the TRI	9
Source Reduction	10
CHANGES TO THE TRI	11
Industry Expansion	11
Chemical List Changes	11
Persistent, Bioaccumulative and Toxic (PBT) Chemicals	11
Lead and Lead Compounds	12
No Changes for RY2002	12
2002 TRI DATA SUMMARY	13
On-site and Off-site Releases.	
Off-site Waste Management	
On-site Waste Management	
Total Wastes Managed	
TRI DATA ANALYSIS	18
Releases by Industry Sector	
Releases by Media	
Top Forty (40) Chemicals	
Top Forty (40) Facilities	
Top Forty (40) Reports of On-site and Off-site Waste Management	
Water Releases	
PERSISTENT, BIOACCUMULATIVE AND TOXIC CHEMICALS	30
Lead and Lead Compounds	
Mercury and Mercury Compounds	
Organic PBT Chemicals	
Dioxin and Dioxin Like Compounds	
•	
TRENDS ANALYSIS	
Original Industries	
Niconal Landon Antica a	1.1

SOURCE REDUCTION IN MISSOURI	49
On-site and Off-site Waste Management	
Future Projections	
Projection Data	
Source Reduction Methods	
PBT Source Reduction.	
SUMMARY	57
Index of Tables	
TABLE 1 – 2002 Covered TRI Industries	9
TABLE 2 – PBT Chemicals and Thresholds	12
TABLE 3 – Missouri 2002 TRI Data Summary	15
TABLE 4 – Total Production-Related Wastes Managed by Year	
TABLE 5 – On-site and Off-site Releases by Industry Sector	
TABLE 6 - On-site and Off-site Releases Sorted by Total Releases	
TABLE 7 – Missouri 2002 Summary of Releases by Media	
TABLE 8 – Top Forty (40) Chemicals Reported in Missouri in RY2002	
TABLE 9 – Top Forty (40) Facilities Showing Greatest Releases in RY2002	
TABLE 10 – Top Forty (40) Reports of On- and Off-site Waste Management in RY2002	
TABLE 11 – Listing of Largest Releases to Surface Waters by Facility by Chemical	
TABLE 12 – Total Lead Releases by Media	
TABLE 13 – Top Forty (40) Facilities Reporting Lead or Lead Compound Releases	
TABLE 14 – Releases of Lead or Lead Compounds to Surface Waters	
TABLE 15 – Facilities Reporting Releases of Mercury or Mercury Compounds	
TABLE 16 – Releases of Mercury and Mercury Compounds to Surface Waters	35
TABLE 17 – Organic PBT Release Comparisons by Media by Year	
TABLE 18 – Facilities Reporting Releases of Organic PBT Chemicals	
TABLE 19 – Facilities Reporting Releases of Dioxin and Dioxin Like Compounds	
TABLE 20 – Reported Releases of Dioxin and Dioxin Like Compounds Surface Waters	
TABLE 21 – Original Industry Releases by Year	
TABLE 22 – New Industry Releases by Year	
TABLE 23 – Projections of Releases and Waste Management for RY2003 and RY2004	
TABLE 24 – Source Reduction by Year	
TABLE 25 – Reported Source Reduction Codes for RY2002	54
TABLE 26 – Top 30 Facilities Reporting Source Reduction Activity in RY2002	
TABLE 27 – Facilities Reporting Source Reduction Activity for PBT Chemicals	

Index of Figures

FIGURE 1 – Missouri Total Production Related Wastes Managed	16
FIGURE 2 - Total Releases & Off-site Waste Management	17
FIGURE 3 - Missouri 2002 Total Releases by Media - Both Industries	22
FIGURE 4 - Missouri 2002 Total Releases by Media - Original Industries	23
FIGURE 5 - Missouri 2002 Total Releases by Media - New Industries	23
FIGURE 6 – Tetrachlordibenzo-p-dioxin	38
FIGURE 7 – Tetrachlorodibenzofuran	38
FIGURE 8 – Total Releases by Year – Original Industries	42
FIGURE 9 – Total Releases by Year – Original Industries	43
FIGURE 10 – Water Releases by Year – Original Industries	44
FIGURE 11 – Total Releases by Year – New Industries	45
FIGURE 12 – Releases by Media by Year – New Industries	47
FIGURE 13 – Air Releases by Year – New Industries	
FIGURE 14 – Water Releases by Year – New Industries	48
FIGURE 15 – Off-site Disposal by Year – New Industries	48
FIGURE 16 – Waste Management Hierarchy	49
FIGURE 17 – Source Reduction Codes by Year	53

List of Appendices

- A Toxic Chemical Release Inventory Reporting Forms R and A
- B Standard Industrial Classification Codes
- C 2002 TRI Releases and Transfers by County by Company
- D Common Uses of Toxic Chemicals and Their Potential Hazards
- E Source Reduction Activity Codes
- F Source Reduction Activity by County by Company

Explanation of Terms

Energy Recovery - Recovery of useful energy from waste mainly through combustion of chemical waste.

Facility - Defined for the purposes of TRI reporting as all buildings, equipment, structures and other stationary items which are located on a single site or on contiguous or adjacent sites and which are owned or operated by the same person (entity).

Fugitive (Non-Point) Air Releases – TRI chemical emissions to the air that are not conveyed through stacks, vents, ducts, pipes or other confined air streams. Examples include equipment leaks from valves, pump seals, flanges, compressors, sampling connections, open-ended lines and evaporative losses from open tanks, surface impoundments and spills.

Manufacture - To produce, prepare, import or compound a toxic chemical.

Off-site Locations - Locations outside the boundaries of a facility to which TRI chemicals are transported for treatment, energy recovery, recycling or disposal.

Off-site Releases – Refers to TRI chemicals sent off-site for disposal in permitted hazardous waste landfills and water discharges of metals and metal compounds to publicly owned treatment works (POTWs), also known as the local sanitary sewer system.

Off-site Transfers - Refers to TRI chemicals sent off-site for energy recovery, recycling, treatment or disposal. They are reported as transfers to either publicly owned treatment works (POTWs) or other off-site locations (non-POTWs) such as incinerators, landfills, other treatment, recycling, energy recovery or disposal facilities not part of the reporting facility. Off-site transfers for disposal are included in total releases to the environment.

Off-site Waste Management – Refers to TRI chemicals sent off-site for recycling, energy recovery or treatment. May also include chemicals sent to brokers for further waste management.

On-site Releases – Refers to on-site discharges of TRI chemicals to the air, water, land and disposal in underground injection wells (none in Missouri). They include permitted, accidental and non-permitted discharges.

On-site Releases to Air - See Fugitive (Non-Point) Air Releases and Stack (Point Source) Air Releases.

On-site Releases to Land - Refers to landfilling, surface impoundment, land treatment/application/ farming or any other release of a TRI chemical to land within the boundaries of a facility.

On-site Releases to Water - Refers to discharging of TRI chemicals to surface waters such as rivers, lakes, ponds and streams or unnamed tributaries within the physical boundaries of the facility.

On-site Waste Management – Refers to TRI chemicals recycled, used for energy recovery or treated on-site.

Otherwise Use - Any use of a toxic chemical at a facility which is not covered by the definitions of manufacture or process. This includes any activities in which a listed toxic chemical does not become intentionally incorporated into the final product for distribution in commerce. Examples of otherwise use include degreasers, solvents in paints that are applied to a product, chemicals used in water treatment and refrigerants or coolants.

Publicly Owned Treatment Works (POTW) - A wastewater treatment facility that is owned by a unit of government, also referred to as the local sanitary sewer system.

Processed - Refers to the preparation of a listed toxic chemical after its manufacture for distribution in commerce. Processing is usually the intentional incorporation of a toxic chemical into a product. It includes making mixtures, repackaging and using a toxic chemical as a feedstock, raw material or starting material for making another chemical.

Production Related Wastes – Refers to TRI chemicals managed in wastes that are created from production related processes and are managed either on-site or off-site through energy recovery, recycling or treatment.

Recycle - The process of capturing a useful product from a waste stream. Solvent recovery, metals recovery and acid regeneration are examples of recycling.

Source Reduction/Pollution Prevention - Activities that reduce the quantity or toxicity of wastes in a process before they are generated. Improved operation and maintenance, process and equipment modification, conservation practices, material substitution, product modification and inprocess recycling are examples of pollution prevention.

Stack (Point Source) Air Releases – TRI chemical emissions to the air that are conveyed through stacks, vents, ducts, pipes or other confined air streams. Examples include storage tank emissions and emissions from air pollution control equipment.

Standard Industrial Classification (SIC) Code - A four digit number code designated by the Federal Office of Management and Budget to describe the type of activity(ies) at a facility. The first two numbers of the code define a major business sector and the last two numbers define a facility's specialty within the major sector.

Total On-site Releases – Total releases to air, land and water within the physical boundaries of the facility.

Total Off-site Releases – Total transfers off-site for disposal, including metals and metal compounds sent off-site to POTWs.

Total Production Related Wastes – Includes total of all TRI chemicals managed on- or off-site through recycling, energy recovery or treatment and includes total on- and off-site releases as defined above. Non-metals sent to POTWs are included in off-site treatment and metals and metal compounds sent to POTWs are included in off-site releases.

Total Releases – Refers to total of on-site releases of TRI chemicals to air, land and water and those sent off-site for disposal including metals and metal compounds sent to POTWs.

Toxic - A substance that produces or causes a systemic damage to an organism.

Toxics Release Inventory (TRI) – The state or national database that collects and tracks the reported releases of toxic chemicals by manufacturing and other covered SIC code industries.

Executive Summary

In reporting year (RY) 2002, 602 companies reported releasing a total of 113,227,139 pounds of toxic chemicals into the Missouri environment. This was a decrease of 4,505,807 pounds, or 3.8 percent less than the amount reported in RY2001. The major portion of this reduction was due to decreased land releases by the original industries and reduced air and land releases by the new industry sector. The original industries are the manufacturing sectors that have been reporting to the Toxics Release Inventory (TRI) since 1988. The new industries are the industries that were added in 1998. In Missouri, the new industry sector consists primarily of the electric utilities and the metal mining industries.

For RY2002, the original industries reported releasing a total of 57,739,123 pounds of TRI chemicals to the Missouri environment. This was 51 percent of the total releases for both the original and new industries and was 1.5 percent more than they reported in RY2001. The new industries reported releasing 55,488,016 pounds, which accounts for 49 percent of the total, and was 8.9 percent less than they reported in RY2001. Combined, both groups reported releasing 30,664,220 pounds to the air, 71,327,877 pounds to the land and 4,499,495 pounds to the water. Except for the water releases, these were all decreases from RY2001. The two industry groups reported transferring 6,656,338 pounds off-site for disposal, which is considered a release to the environment. This was a decrease of 635,050 pounds, or 8.7 percent less than the amount reported in RY2001.

For RY2002, production-related wastes managed by both industry groups totaled 578,140,177 pounds. This was a decrease of 88,345,455 pounds, or 13.3 percent less than that reported in RY2001. This number includes total on- and off-site releases. This decrease is very significant. It indicates that companies are managing decreased amounts of TRI chemicals and therefore must be either using less or using them more efficiently, generating less waste. Thus they are managing fewer toxic chemicals through recycling, energy recovery and treatment and are releasing less to the environment.

The reported production-related wastes are managed either on-site or off-site through recycling, energy recovery or treatment. The major portion of production-related wastes are managed by the original manufacturing sector. Their wastes for RY2002, including total releases, totaled 515,297,571 pounds, a decrease of 70,198,467 or 12 percent less than in RY2001. In the new industry sector, again including total releases, production-related wastes totaled 62,842,606 pounds, a decrease of 18,146,988 pounds or 22.4 percent less than their RY2001 amount. These downward trends are both significant and encouraging.

The 2002 reporting year is the third year that the original and new industries have reported for persistent, bioaccumulative and toxic (PBT) chemicals. It is the second year lead and lead compounds have been reported as PBT chemicals with the lower threshold of 100 pounds. Missouri companies reported releasing a total of 25,990,032 pounds of

lead and lead compounds in RY2002. This was a decrease of 5,967,977 pounds or 18.7 percent less than in RY2001. Most of this decrease was due to decreased land releases by the four Doe Run Company lead mines in southeast Missouri. The reasons for this decrease are unclear. They may be due to decreased production, improved processing or higher grade ore, but the exact causes are not able to be determined from the TRI data.

There were also significant reductions in air releases of lead and lead compounds for RY2002. Overall, these were down by 133,948 pounds or 30.3 percent. The greatest reduction was by the Doe Run Company's smelter in Herculaneum. Although they generated the greatest amount of air releases of lead for RY2002, at 117,626 pounds, they also reduced their air emissions by 108,887 pounds or 48.1 percent less than RY2001. It is noteworthy that this is the second year in a row that the Herculaneum smelter has reported lower air releases of lead or lead compounds to the TRI. These reductions were required by the Department of Natural Resources to meet the National Ambient Air Quality standards for lead. Construction and operation of the air pollution control facilities were required by the Herculaneum lead State Implementation Plan (SIP) under the Clean Air Act (CAA). The SIP controls were reiterated in an Administrative Order on Consent which was negotiated between the company, EPA and the department, and also included measures to address other lead releases to the environment. A later Settlement Agreement between the company and the department further reduced lead exposure to the local population through a property buyout program for homes near the smelter and other measures.

Other PBT chemicals showed decreases as well as increases. For RY2002, companies reported a total of 7,418 pounds of mercury and mercury compounds releases. This was an increase over the RY2001 total of 7,347 pounds, an increase of 71 pounds, or 1 percent. If the off-site disposal by one company, which was actually off-site storage, was disregarded, there was actually a decrease of 229 pounds or 5 percent. However, it should also be noted that there was a significant increase in air releases totaling 251 pounds. This increase was due mainly to a few of the electric utilities. The increase was 7 percent greater than the total of 3,572 pounds reported in RY2001.

Releases of organic PBTs in RY2001 totaled 10,956.54 pounds. In RY2002, companies reported releasing only 6,331 pounds of these compounds. This was a decrease of 4,625 pounds or 42.2 percent. Air releases of these compounds showed a similar decrease.

Releases of dioxin and dioxin like compounds, another PBT chemical, were reported to be 68.0862 grams in RY2002. The reporting threshold for dioxins is 0.1 grams, a very small fraction of a pound. For RY2001, reported releases were 81.0657 grams. The difference equates to a decrease of 12.9795 grams or 16 percent. However, essentially all of this decrease was by one company, International Paper in Joplin, which in RY2001 reported 20.3881 grams as water releases and 25.6252 grams as POTW releases. In RY2002 it reported only 5.6820 grams total. The rest of the difference was due to significant increases in air releases. Air releases of dioxins in RY2001 were 33.5097 grams. In RY2002, they totaled 59.6882 grams, a 21.1812-gram increase, or a 78.1 percent increase. Most of this increase was attributable to three cement manufacturers. See the full report for more details. These increases may have been due to improved data

by the cement kilns or due to increased production. The exact reason is not discernable from the TRI data.

Looking at trends over several years, we have seen a continued downward trend in air releases for both the original and the new industry sectors. Since 1988, the air releases by the original industries have decreased by 55.8 percent. The air releases for the new industries have decreased by 42.5 percent since they began reporting in 1998. These downward trends show very positive progress.

There have been large increases and then large decreases for water releases over the same periods of time. A large increase in water releases, which occurred in 1995, was due to reporting changes, made by EPA. The change that contributed most to this increase was the newly required reporting of nitrate compounds. Water releases of nitrate compounds peaked in 1997 and then steadily decreased through 2001. In RY2002, there was a large increase, approximately 4 million pounds. This entire increase was due to one company, Tyson Foods, in Sedalia. Prior to RY2001, Tyson had not reported for nitrate compounds. Then in RY2002 they reported a release of 3,398,063 pounds. Tyson is currently in discussions with EPA to determine if they are reporting correctly.

About 14.6 percent of Missouri facilities are still reporting source reduction activities. Source reduction activities are efforts to reduce pollution at the source. Or, in other words, trying not to create pollution in the first place. For reporting year 2002, 88 companies reported some type of source reduction activity. These 88 companies reported a total of 460 source reduction activities, which was 12.2 percent less than the number reported in RY2001. This continues a downward trend seen since source reduction reporting began in RY1991. Originally, 206 facilities reported source reduction activities. Of 2,215 Form R reports in 1991, 53.3 percent showed some type of source reduction. This year, RY2002, only 20 percent of 2,300 reports showed source reduction. This decrease is understandable, however, because implementing new source reduction activity naturally tends to be more difficult with every passing year.

However, companies that initiate or implement a source reduction activity should see continued reductions in the amount of pollution generated, if the activity is continued. As an example, source reduction code W42 is "substituted raw materials," or replacing a more toxic chemical with a less or even non-toxic one. If this change permanently eliminates a TRI chemical, the company will realize the benefits of this source reduction activity in future years, although the activity is only reported the year it is implemented.

As part of the source reduction requirements, companies also report projections of TRI chemical activity for two future years. Total production-related wastes are projected to decrease slightly in RY2003 and then increase again slightly in RY2004. However, the projected increases reported in RY2001 for RY2002 were significantly over estimated. Therefore, we may expect to see decreases in total releases and total production-related wastes again in RY2003 and RY2004. See the Source Reduction section for more details.

The department hopes that Missouri citizens will find the information in this report beneficial. If you have questions or want additional information about the Toxics Release Inventory or need more information about an individual company, please contact the Missouri Department of Natural Resources' Environmental Assistance Office at 1-800-361-4827 or locally at (573) 526-6627.

Introduction

What is the Toxics Release Inventory?

The Toxics Release Inventory, or TRI, is a national database maintained by the U.S. Environmental Protection Agency (EPA) that contains information about the releases of toxic chemicals by manufacturing industries. In 1998, seven new non-manufacturing industries were required to start reporting their releases to the TRI.

The TRI was established under the federal Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986. The TRI is sometimes referred to as Title III, Section 313 of the Superfund Amendments and Re-Authorization Act (SARA Title III). The purpose of the TRI is to provide local communities information about routine releases of toxic chemicals to the air, land and water in their communities so that they can be informed and take action where necessary.

For 2002, the list of reportable chemicals included 582 individual chemicals and 30 chemical categories. Three of the chemical categories list an additional 58 individually identified chemicals bringing the total to 667 (i.e., 582+27+58) chemicals. The list includes new reportable persistent, bioaccumulative and toxic chemicals known These PBT chemicals will be as PBTs. discussed in the next section of this report, "Changes to the TRI," and are a focus of later sections of this report.

Facilities report TRI information to EPA and to the state in which the facility is located. The TRI reports are due each July 1 for the prior reporting year. A reporting year is January 1 through December 31.

Reporting Requirements

A facility is required to submit a report for a listed toxic chemical if the facility meets all three of the following criteria:

- 1. Employs the equivalent of 10 or more full time employees;
- 2. Is a covered industry, based on SIC code, or is a federal facility; and
- 3. Manufactures or processes more than 25,000 pounds, otherwise uses more than 10,000 pounds of a listed toxic chemical, or manufactures, processes or otherwise uses a PBT chemical over the listed threshold during the course of the calendar year.

Facilities that meet these criteria must submit one report, known as a Form R, for each toxic chemical manufactured, processed or otherwise used above the thresholds. The original Form R report is submitted to EPA and a copy is sent to the The Form R report contains state. information about the quantity of releases of each chemical to the air, land or water and off-site transfers. (A copy of a Form R is provided in Appendix A, entitled "Toxic Chemical Release Inventory Reporting Forms.") A facility may need to report even if it has no releases, because reporting is based on the amount manufactured, processed or otherwise used and not on the amount released.

Table 1 provides a list of covered industries along with the corresponding two or four digit Standard Industrial Classification (SIC) codes. Appendix B, entitled "Standard Industrial Classification Codes," has a more complete list of SIC codes that report under the TRI. SIC codes are used to identify the type of activities performed at a facility. Originally only manufacturing and federal facilities were covered under the TRI. All of the other industries shown in Table 1 were added to the TRI beginning with the 1998 reporting year.

Table 1 2002Covered TRI Industries (1)

SIC Code	Industry Description
10xx	Metal Mining (2)
12xx	Coal Mining (2)
20xx-39xx	Manufacturing
4911	Oil and Coal Fired Electric
4931	Utilities
4939	
4953	Hazardous Waste
	Treatment Facilities
	(RCRA Subtitle C)
5169	Wholesale Chemical
	Distributors
5171	Petroleum Bulk Terminals
7389	Solvent Recovery Services
9711 ⁽³⁾	Federal Facilities

Prior to 1998, only manufacturing and federal facilities were covered under TRI

The standard Form R report contains general facility information and detailed data about on-site releases, off-site transfers and on-site waste management activities. In lieu of a Form R, a short form (Form A) may be used if the facility meets certain criteria. After determining the need to report, a facility may use a Form A for a given non-PBT chemical if:

- 1. The sum of the total releases, transfers and wastes managed on- or off-site does not exceed 500 pounds; and
- 2. The total annual amount of the chemical manufactured, processed or otherwise used does not exceed 1,000,000 pounds.

The Form A is a two-page report that has the same general facility information and identification of the listed chemical, but it does not provide any release, transfer or waste management data. (See Appendix A for a copy of the Form A.) In 2002, 371 Form As were submitted out of a total of

2,295 reports filed. These Form As were submitted by 93 facilities out of a total of 594.

Uses of the TRI

The Toxics Release Inventory can be used in a variety of ways. One of Congress' main purposes in enacting EPCRA was to provide citizens with information they can use to target potential health risks in their communities. This has been a common use the TRI. Public interest and environmental media, groups, news community organizations, educators. researchers, industry, students and private citizens have all made use of the TRI in a variety of ways.

Because the TRI covers all media (i.e., air, land and water), federal, state and local governments can use the data to compare facilities or geographic areas, evaluate existing environmental programs, or target technical assistance efforts.

Facilities themselves can use the data to identify problem areas, establish reduction targets, reduce costs associated with the purchase and disposal of toxic chemicals, and monitor progress towards pollution prevention goals.

Limitations of the TRI Data

The user of TRI data should be aware of its limitations in order to accurately interpret its significance. The TRI represents a relatively small fraction of the businesses in This is due to the reporting Missouri. criteria listed previously. There are numerous other sources not covered under the TRI that release toxic chemicals. These sources include small businesses, motor vehicles and agricultural operations. some chemicals, the use of consumer products can be a significant source of releases to the environment.

⁽²⁾ Certain qualifiers apply

⁽³⁾ Multiple SICs may apply to federal facilities

Furthermore, facilities are only required to base TRI data on the best available information. They are encouraged to use and monitoring measurements however, if these are not available, amounts may be estimated based on published emission factors, mass balance calculations, or good engineering judgment. methods of estimating or calculating data used by different facilities, or even the same facility, may vary over time. Thus, the accuracy of the reported quantities may vary as well.

The TRI does not provide an indication of potential exposure to the reported releases. Therefore, it cannot be used by itself to determine the impact on public health. This is especially true in Missouri where many of the top releases are reported as land releases by the mining and electric utilities industries. An equivalent release to the air considered be much would detrimental. Furthermore, the chemical's release rate, toxicity and environmental fate, as well as the local weather conditions and proximity of nearby communities to the release, must all be considered when assessing exposures. Despite limitations, the TRI can serve as a screening tool to identify areas of concern that may warrant further investigation.

Due to the fact that several new industries were added to the TRI in 1998, the data from 1998 onward cannot be directly compared to the data from 1988 through 1997. In order to compare these data years, the new and old industry sectors need to be looked at separately.

Source Reduction

In 1990, Congress passed a law known as the Pollution Prevention Act (PPA). The purpose of this law was to prevent pollution

through reduced generation or elimination of waste at the point of origin, also known as source reduction. Prior to this time, most environmental laws dealt with regulating wastes after they were generated. The PPA established a national policy stating that the best way to manage pollution was through source reduction. Source reduction, in part, was defined as any activity that reduced the generation of a pollutant prior to it entering a waste stream. Some states further defined source reduction as the reduced use of toxic chemicals. Use reduction is part of the PPA definition, but these states mandated use reduction as part of their regulation. This is not the case in Missouri.

The PPA did establish a hierarchy of preferred waste management options with source reduction being first, reuse or recycle being second, treatment being third, and disposal being last. Through the Toxics Release Inventory, the PPA now required facilities to report how they managed wastes both on-site and off-site. Several sections were added to the Form R to allow for these reporting requirements. Companies were also required to project what they would release or manage for two future years and to report what methods they were using to reduce the generation of wastes. information is summarized in Section 8 of Companies first started the Form R. reporting this information in 1991. More details about source reduction will be provided in a later section of this report entitled "Source Reduction in Missouri."

Changes to the TRI

The TRI reporting requirements may change as EPA seeks to improve the program through changes to the list of reportable chemicals or through program expansions.

Industry Expansion

On May 1, 1997, EPA added seven industries to the list of covered facilities required to report under the TRI. These industries were required to start reporting for the 1998 reporting year. Prior to 1998, only manufacturers with SIC codes 20 – 39 and federal facilities were required to report (see Table 1). EPA included these seven new industries because facilities within these industry sectors manufacture, process or otherwise use substantial quantities of TRI chemicals and engage in activities similar to those conducted by manufacturing facilities.

This seven industry expansion increased the total amount of reported releases in Missouri by 79.9 million pounds in 1998, more than doubling the amount reported in 1997. Two industry sectors accounted for more than 99 percent of these increases in Missouri: the metal mining sector and the electric utilities sector. These two industries have continued to dominate the reported releases for the new industries since 1998 through 2002. These industries will be discussed in more detail later in this report. However, it should be remembered that these are not new releases to the environment but only newly reported releases. Many of these new industry sector facilities have been regulated under air pollution and hazardous waste regulations for many years.

Chemical List Changes

EPA periodically changes the list of reportable chemicals by adding, deleting or qualifying chemicals, as new information

about these chemicals becomes available. For example, in 1999, phosphoric acid was deleted as a TRI reportable chemical. Also, the number of reportable chemicals was significantly increased for the 1995 reporting year and beyond. This increase included more than 200 chemicals and six chemical categories. A chemical category under TRI may include a discrete list of chemicals or may represent any chemical that possesses the category's characteristics. In response to the increased reporting burden resulting from the 1995 chemical expansion, EPA initiated the use of the Form A previously described.

Persistent, Bioaccumulative and Toxic (PBT) Chemicals

In an Oct. 29, 1999, ruling, EPA established substantially lower reporting thresholds for 15 chemicals and three chemical categories that are highly persistent, bioaccumulate in the environment and are toxic. These are called PBT chemicals. PBT chemicals are of particular concern not only because they are highly toxic but because they remain in the environment for long periods of time, are not easily destroyed, and build up or accumulate in body tissues.

A list of these chemicals and their reporting thresholds are listed in Table 2. EPA believed that the current reporting thresholds of 25,000 and 10,000 pounds excluded important information about these chemicals. Therefore, the thresholds were lowered to those shown. The reporting thresholds for the PBT chemicals are the same regardless of whether they are manufactured, processed, or otherwise used.

Not all of the chemicals listed in Table 2 were currently reportable under TRI. Under this ruling, EPA added four chemicals, one

chemical category, and two chemicals to an existing category.

Table 2
PBT Chemicals and Thresholds

Chemical	Threshold *
Aldrin	100
Benzo (g,h,i) perylene (1)	10
Chlordane	10
Dioxin and Dioxin-Like Compounds (1)	0.1 grams
Heptachlor	10
Hexachlorobenzene	10
Isodrin	10
Lead and Lead Compounds ⁽³⁾	100
Mercury	10
Mercury Compounds	10
Methoxychlor	100
Octachlorosytrene (1)	10
Pendimethalin	100
Pentachlorobenzene (1)	10
Polycyclic Aromatic Compounds	100
Polychlorinated Biphenyls (PCBs) (2)	10
Tetrabromobisphenol A (1)	100
Toxaphene	10
Trifluralin	100

- * Pounds per year unless otherwise noted.
- (1) Added to the TRI List for RY2000.
- (2) Two new chemicals were added to this category for RY2000, 3-methylcholanthrene and Benzo (j, k) fluorine.
- Lead and Lead Compounds were added as PBTs for RY2001.

Certain reporting exemptions, such as the de minimis exemption, do not apply to PBT chemicals, and facilities are no longer allowed to use range codes or the Form A for PBT chemicals. Range codes allow facilities to provide a letter code for releases ranging from 0 to 1,000 pounds.

Reporting for PBT chemicals began with the 2000 reporting year. Individual sections of

this report will discuss these chemicals and their reported releases in more detail.

Dioxin and dioxin like compounds (DLCs) are a unique category of PBT chemicals. As seen in Table 2, their reporting threshold is 0.1 grams. A gram is equal to 0.002205 pounds, or one pound equals 453.6 grams. Dioxin and DLCs are created in very small amounts during various manufacturing processes. They are primarily created or manufactured during combustion processes, such as at power plants. More detailed discussion of dioxin and DLCs will be provided later in this report.

Lead and Lead Compounds

On Jan. 17, 2001, EPA issued a ruling in the Federal Register that lowered the reporting threshold for lead and lead compounds to 100 pounds. The ruling also added lead and lead compounds as PBT chemicals. The reporting for lead and lead compounds became effective for the 2001 reporting year. Special emphasis will be given in this report to the reporting of lead and lead compounds.

No Changes for RY2002

There were no chemical additions or deletions for the reporting year (RY) 2002.

2002 TRI Data Summary

In reporting year (RY) 2002, a total of 602 facilities submitted 2,300 Form R or Form A reports. This is a decrease of 16 facilities and a decrease of seven reports compared to RY2001. These changes are fairly insignificant and should not be due to any changes in the reporting requirements. Small shifts in the number of facilities reporting and the number of reports filed are typical.

All of the TRI data submitted for RY2002 are summarized in Table 3. This table differentiates between the original manufacturing industries and the new nonmanufacturing industries to show some of their differences. It also shows a breakdown of all the on-site and off-site releases; offsite transfers for recycling, energy recovery and treatment: and all on-site waste management. The volume of TRI chemicals managed on-site through recycling, energy recovery or treatment stands out in this More details about on-site waste management will be provided later in this section.

To make it more understandable, the data presented in Table 3 will be discussed in sections by types of wastes managed for both industries and then by each industry separately. The data will be compared to RY2001 to see what trends may be occurring. Data trends over a longer period of time are discussed in a later section of this report.

On-site and Off-site Releases

As seen in Table 3, total on-site and off-site releases for RY2002 totaled 113,227,139 pounds. This was a decrease of 4,505,807 pounds or 3.8 percent less than the amount

reported in RY2001. Comparing the data for RY2001 and RY2002, this decrease was due primarily to decreased land releases by the original industries and decreased air and land releases by the new industry sector. The original industries decreased their land releases by 2 million pounds, or 7.8 percent, for RY2002. The new industries reported 9.2 million pounds of air releases and 51.3 million pounds of land releases in RY2001. This compares with 7.5 million and 47.8 million, respectively, for RY2002. Table 3. This was a decrease of 1.7 million pounds, or 18.6 percent, for air releases and 3.5 million pounds, or 6.9 percent, for land releases.

These decreases are very positive trends, however, not all the trends were positive. The original industry sector showed a 2.3 percent increase in air releases, or 523,528 pounds, over the RY2001 values. The largest increase by the original industries was in water releases. Their water releases for RY2002 increased by 193 percent, going from 1.5 million in RY2001 to 4.5 million in RY2002. Possible causes for this increase will be discussed later in this report.

Off-site Waste Management

Off-site waste management totals showed a decrease for RY2002 of 6.3 million pounds, or 7.9 percent. This is in addition to the 2 percent decrease between RY2000 and RY2001, reported last year. While the new industry totals stayed approximately the same, there were significant changes in the original industry totals. For the original industries. off-site energy recovery decreased by 4.6 million pounds or 27.1 percent. There were decreases of just under a million pounds in their off-site recycling and off-site treatment. These decreases

combined account for the total decrease seen.

On-site Waste Management

Table 3 shows that on-site recycling, energy recovery and treatment are the methods used most to manage TRI chemicals. RY2002, these totals equaled 391.4 million pounds, which dwarfs the values for total releases and off-site waste management. However, this total was a decrease of 77.5 million pounds, or 16.5 percent, over the RY2001 total. All three categories; recycling, energy recovery and treatment, showed significant decreases. recycling showed a decrease of 50.8 million pounds or 16.7 percent. On-site energy recovery had a 14.4 million pound decrease or 14.5 percent. And for on-site treatment there was a 17.7 million pound decrease or 27.1 percent.

Most of these decreases were by the original They showed a 49.0 million industries. pound decrease, 16.2 percent, in on-site recycling and a 14.5 million pound decrease, 14.6 percent, in on-site energy recovery. The new industries also showed a significant decrease in on-site treatment. In RY2001 they had reported 16.3 million pounds as treated on-site. In RY2002 they reported 5.5 million pounds, a decrease of 10.8 million pounds or 66.3 percent. Percentage wise, the new industries made the largest change in on-site recycling. In RY2001 they reported recycling 1.8 million pounds. In RY2002 they reported only 631 pounds, essentially a 100 percent decrease.

Although we, of course, want to encourage recycling, energy recovery and treatment, the fact that both the new and original industries have decreased the amounts of onsite wastes managed is still a positive trend. It indicates that they are managing fewer toxic wastes, which indicates they are either using a decreased amount of toxic chemicals

or are using them more efficiently. Both conclusions are positive.

Total Wastes Managed

The final category to be discussed in Table 3 the total production-related wastes managed. For RY2002, this sum, which is all of the on-site and off-site releases and all the wastes managed on-site and off-site, came to 578,140,177 pounds. This is a decrease of 88.4 million pounds, or 13.3 percent lower than the total of 666,485,632 pounds in RY2001. This change is significant. As concluded above, this large decrease indicates companies are either using a decreased amount of toxic chemicals or are using them more efficiently, generating less wastes. This is a positive trend. Figure 1 provides a graph of the values listed in Table 4 for total production related wastes over the past several years. As can be seen, this number was showing a steady increase through RY2001. RY2002 it has taken a sharp downward slope.

Because the scale is so large in Figure 1 due to the Total Production Related Waste and Total On-site Wastes Managed, the trends in the On- and Off-site Releases and Total Offsite Wastes Managed are not easily seen. These two sets of data are re-drawn in Figure 2. Here one can readily see that there are significant downward trends in both of these values. Note especially the downward trend in Total On- and Off-site Releases since the addition of the new industry sectors in 1998. Except for the increase in RY2000, this downward trend has been fairly consistent. The reason for this trend will be discussed more fully in the Trends Analysis section of this report.

Table 3 Missouri 2002 TRI Data Summary

	Original Industry	New Industry	Totals
No. of Facilities	543	59	602
No. of Form Rs	1567	362	1929
No. of Form As	289	82	371
Total Submissions	1856	444	2300
On-site Releases (pounds)			
Air	23,157,152	7,507,068	30,664,220
Land	23,524,774	47,803,103	71,327,877
Water	4,461,136	38,359	4,499,495
Dioxin and DLCs ⁽⁵⁾ (grams)	(52.7867)	(13.7921)	(66.5788)
Off-site Releases (pounds)			
Transfer for Disposal	6,516,873	139,465	6,656,338
Dioxin and DLCs ⁽⁵⁾ (grams)	(0.1578)	0.00	(0.1578)
POTW ⁽¹⁾ (Metals) ⁽²⁾	79,188	21	79,209
POTW ⁽¹⁾ (Dioxin and DLCs) ⁽²⁾ (grams)	(1.3496)	0.00	(1.3496)
Total Releases ⁽⁶⁾	57,739,123	55,488,016	113,227,139
Off-site Waste Management (pounds)			
Recycle	46,209,960	1,427,509	47,637,469
Energy Recovery	12,516,074	245,123	12,761,197
Treatment (includes non-metals to POTWs) ⁽³⁾	12,908,688	231,145	13,139,833
Dioxin and DLCs ⁽⁵⁾ (grams)	(326.4254)	0.00	(326.4254)
Total Off-site Waste Management ⁽⁶⁾	71,634,722	1,903,777	73,538,499
On-site Waste Mgmt. (pounds)			
Recycle	253,368,325	631	253,368,956
Energy Recovery	84,874,264	0	84,874,264
Treatment	47,681,137	5,450,182	53,131,319
Dioxin and DLCs ⁽⁵⁾ (grams)	0.00	0.00	0.00
Total On-site Waste Management ⁽⁶⁾	385,923,726	5,450,813	391,374,539
Total Production-Related Wastes Managed (4)(6)	515,297,571	62,842,606	578,140,177

Source: Missouri TRI Database - 2002 data

⁽¹⁾ POTW stands for publicly owned treatment works. This is the sewage plant.

⁽²⁾ Metals, metal compounds and dioxins and DLCs cannot be treated at POTWs and therefore are considered releases to the environment.

 $⁽³⁾ Organic \ chemicals \ (non-metals) \ can \ be \ treated \ or \ broken \ down \ at \ POTWs \ and \ are \ considered \ off-site \ treatment \ .$

⁽⁴⁾ The sum of Total Releases and Total On- and Off-site Waste Management.

⁽⁵⁾ These are the totals of dioxin and DLCs for the on-site releases, off-site disposal, off-site management or on-site waste management.

⁽⁶⁾ These totals do not include dioxin and dioxin-like compounds (DLCs).

Table 4
Missouri
Total Production Related Wastes Managed by Year

(Units are in pounds) Total On- and Total On-site Total Off-site Off-site Wastes Wastes **Total Production** RY Releases Managed Managed Related Wastes 1995 53,829,304 356,732,648 91,802,509 502,340,245 60,433,432 328,995,276 92,029,025 1996 481,197,359 94,235,096 1997 64,329,223 398,560,754 555,946,511 130,967,091 395,439,319 78,531,012 604,836,187 1998 1999 75,561,492 125,400,449 412,385,880 613,347,821 2000 130,835,669 628,349,855 416,063,072 81,451,114 2001 117,732,946 468,912,732 79,839,955 666,485,633 2002 391,374,539 73,538,499 578,140,177 113,227,139

Source: Missouri TRI Database

TRI Data Analysis

There are many ways to look at the TRI data. One can look at releases by industry sector, by media, by the largest releases by chemical or by facility, or total wastes managed, to name a few. Some of these different ways are discussed in the following sections of this report. It is hoped that these discussions will help citizens understand the TRI data, how it can be used, and how it impacts their communities.

Appendix C, entitled "2002 TRI Releases and Waste Management by County by Company," provides a listing of all on-site and off-site releases and all on- and off-site waste management by county, by company and then by chemical. If more information about releases or waste management by an individual company is desired, please review this appendix or call the Environmental Assistance Office (EAO) at (573) 526-6627 or 1-800-361-4827.

Releases by Industry Sector

Table 5 provides a summary listing of all the on-site and off-site releases by industry sector. The data is sorted by SIC code. The original industries are those with SIC codes 20 through 39 including 9711 (federal facilities). The new industries are segregated at the top (10 and 12) and bottom (49-73) simply because this is where their SIC codes fall.

By looking at the sub-totals at the bottom of Table 5, it can be seen that a large percentage of releases are to the air and land; 30,664,220 pounds (27.1 percent) and 73,327,877 pounds (64.8 percent) respectively. A relatively small percentage are water releases (4,499,495 pounds or 3.98 percent).

In order to make it easier to see, the data in Table 5 is re-tabulated in Table 6. In this table the Total On- & Off-site Releases are sorted in descending order. This makes it very clear which industry sectors are reporting the greatest releases.

Table 6 shows that a relatively few industry sectors are responsible for the majority of releases. Three industry sectors stand out, with reported releases in the tens of millions of pounds. These are the metal mining (SIC 10xx) industry, the primary metal products industry (SIC 33xx) and the electric utilities (SIC 49xx). These three sectors together account for 83,383,778 pounds of releases, or 73.6 percent of the total. Note that most of these releases are "land" releases for the metal mines and the primary metal products sectors. The electric utilities reported about the same amount for both air and land.

Two of these industries are closely related. The metal mining industry, which this year is made up of four lead mines located in southeast Missouri, supply the lead ore that is processed in the Doe Run Company smelters located in Herculaneum and Glover, Mo. The Doe Run Company smelters are not the only facilities in the primary metals industry (SIC 33xx), but they contribute a major portion of this industry's releases.

There are six other industry sectors that make up a significant portion of the releases with reported releases over a million pounds each. These are the next six industries in Table 6. They are listed here as follows:

•	Chemical and Allied Products	9,157,362 lbs.
•	Transportation Equipment	5,939,097 lbs.
•	Food Products	5,521,727 lbs.
•	Rubber & Plastic Products	3,334,017 lbs.
•	Stone, Clay, Glass & Concrete	2,011,198 lbs.
•	Fabricated Metal Products	1 634 336 lbs

Together, these six industry sectors account for an additional 27,597,737 pounds, or 24.4 percent of the total. Thus, these six industries, combined with the electric utilities, metal mining and primary metal product industries, account for 98.0 percent of all the releases reported.

Note also in Tables 5 and 6 that the metal mining industry (SIC 10xx) and the electric utilities (SIC 49xx) account for more than 99.6 percent of all the releases for the new industry sector. As was shown previously in Table 3, the total on- and off-site releases for totaled the new industry sectors approximately 55.5 million pounds. totals for the metal mines and electric utilities total just over 55.3 million pounds. And the metal mines contribute a major portion of this sum, 40.1 million. More details about the releases by the metal mines and the electric utilities will be discussed later in this report.

Table 5
Missouri 2002
On-site & Off-site Releases by Industry Sector

				On-site Releases			Off-site	Releases	On- & Off-site
		No. of	No. of Reports				POTW -		
SIC Code	Industry Sector Description	Facilities	(2)	AIR	LAND	WATER	METALS ⁽³⁾	DISPOSAL	TOTAL
10	Metal Mining (1)	4	15	140,428	39,983,953	19,165	0	C	40,143,546
12	Coal Mining (1)	0	0	0	0	0	0	C	0
20	Food Products	61	133	1,758,164	15,639	3,737,805	290	9,829	5,521,727
21	Tobacco Products	0	0	0	0	0	0	C	0
22	Textile Products	1	1	306	0	0	0	C	306
23	Apparel & Other Finished Fabric Products	0	0	0	0	0	0	C	0
24	Lumber & Wood Products	10	24	55,847	0	15	0	750	56,612
25	Furniture & Fixtures	7	14	13,571	5	0	0	5	13,581
26	Paper & Allied Products	2	2	9	0	3	4	2	18
27	Printing, Publishing & Allied Products	6	12	42,328	0	0	0	1,124	43,452
28	Chemical and Allied Products	90	491	8,059,102	156,923	664,442	3,059	273,836	9,157,362
29	Petroleum Refining & Related Industries	15	43	36,369	2,750	5	0	9,820	48,944
30	Rubber & Plastic Products	59	132	2,914,756	750	11	211	418,289	3,334,017
31	Leather & Leather Products	3	8	341	0	20	28,250	76,787	105,398
32	Stone, Clay, Glass & Concrete Products	37	166	1,246,462	723,346	0	0	41,390	2,011,198
33	Primary Metal Products	56	171	1,391,770	22,318,214	1,221	2,225	4,324,178	28,037,608
34	Fabricated Metal Products	65	220	1,274,149	6,831	57,440	3,115	292,801	1,634,336
35	Industrial & Commercial Machinery	34	92	533,303	19	18	3,223	27,938	564,501
36	Electrical Equipment & Components	44	104	249,922	26	24	26,565	599,747	876,284
37	Transportation Equipment	41	218	5,494,130	0	126	12,235	432,606	5,939,097
38	Measurement, Analytical, Photographic Equip.	5	6	0	0	0	7	C	7
39	Miscellaneous Manufacturing	3	8	86,015	0	0	0	7,750	93,765
9711	Federal Facilities	3	6	561	300,269	0	5	21	300,856
49	Electric Utilities (4911, 4931 & 4939 only) (1)	22	171	7,233,104	7,819,150	19,194	12	131,164	15,202,624
4953	Treatment, Storage, Disposal Facilities (1)	2	2	1	0	0	7	6,548	6,556
5169	Chemical Distributors (1)	18	142	102,645	0	0	0	1,690	104,335
5171	Petroleum Bulk Plants/Terminals (1)	10	85	30,857	0	0	1	63	30,921
7389	Solvent Recovery Facilities (1)	5	14	18	0	0	0	C	18
Source: Misse	ouri TRI Database - 2002 data	-	Sub Totals=	30,664,220	71,327,877	4,499,495	79,209	6,656,338	113,227,139

⁽¹⁾ New Industry Sectors that started reporting in 1998.

⁽²⁾ Number of Form Rs or Form As submitted.

⁽³⁾ Discharges of metals to POTWs are considered releases to the environment.

Table 6
Missouri 2002
On-site & Off-site Releases by Industry Sector

Sorted by Total Releases

				On-site Releases				On- & Off-site	
SIC Code	Industry Sector Description	No. of Facilities	No. of Reports	AIR	LAND	WATER	POTW - METALS ⁽³⁾	DISPOSAL	TOTAL
10	Metal Mining (1)	4	15	140,428	39,983,953	19,165	0	0	40,143,546
33	Primary Metal Products	56	171	1,391,770	22,318,214	1,221	2,225	4,324,178	28,037,608
49	Electric Utilities (4911, 4931 & 4939 only) (1)	22	171	7,233,104	7,819,150	19,194	12	131,164	15,202,624
28	Chemical and Allied Products	90	491	8,059,102	156,923	664,442	3,059	273,836	9,157,362
37	Transportation Equipment	41	218	5,494,130	0	126	12,235	432,606	5,939,097
20	Food Products	61	133	1,758,164	15,639	3,737,805	290	9,829	5,521,727
30	Rubber & Plastic Products	59	132	2,914,756	750	11	211	418,289	3,334,017
32	Stone, Clay, Glass & Concrete Products	37	166	1,246,462	723,346	0	0	41,390	2,011,198
34	Fabricated Metal Products	65	220	1,274,149	6,831	57,440	3,115	292,801	1,634,336
36	Electrical Equipment & Components	44	104	249,922	26	24	26,565	599,747	876,284
35	Industrial & Commercial Machinery	34	92	533,303	19	18	3,223	27,938	564,501
9711	Federal Facilities	3	6	561	300,269	0	5	21	300,856
31	Leather & Leather Products	3	8	341	0	20	28,250	76,787	105,398
5169	Chemical Distributors (1)	18	142	102,645	0	0	0	1,690	104,335
39	Miscellaneous Manufacturing	3	8	86,015	0	0	0	7,750	93,765
24	Lumber & Wood Products	10	24	55,847	0	15	0	750	56,612
29	Petroleum Refining & Related Industries	15	43	36,369	2,750	5	0	9,820	48,944
27	Printing, Publishing & Allied Products	6	12	42,328	0	0	0	1,124	43,452
5171	Petroleum Bulk Plants/Terminals (1)	10	85	30,857	0	0	1	63	30,921
25	Furniture & Fixtures	7	14	13,571	5	0	0	5	13,581
4953	Treatment, Storage, Disposal Facilities (1)	2	2	1	0	0	7	6,548	6,556
22	Textile Products	1	1	306	0	0	0	0	306
26	Paper & Allied Products	2	2	9	0	3	4	2	18
7389	Solvent Recovery Facilities (1)	5	14	18	0	0	0	0	18
38	Measurement, Analytical, Photographic Equip.	5	6	0	0	0	7	0	7
12	Coal Mining (1)	0	0	0	0	0	0	0	0
21	Tobacco Products	0	0	0	0	0	0	0	0
23	Apparel & Other Finished Fabric Products	0	0	0	0	0	0	0	0
Source: Miss	souri TRI Database - 2002 data		Sub Totals=	30,664,220	71,327,877	4,499,495	79,209	6,656,338	113,227,139
						(A 11 valto one in .			

⁽¹⁾ New Industry Sectors that started reporting in 1998.

⁽²⁾ Number of Form Rs or Form As submitted.

⁽³⁾ Discharges of metals to POTWs are considered releases to the environment.

Releases by Media

Table 7 provides a summary of the data for all on-site and off-site releases by media and by industry group. Totals for both groups are also shown. This data is shown graphically in Figures 3, 4 and 5.

The releases by media for both industry groups are shown in Figure 3. When viewed in this manner it can be seen that the releases to land is 63.0 percent, to air is 27.1 percent, to water is 4.0 percent. Releases to POTW and Disposal equaled 0.1 percent and 5.9 percent, respectively.

Figure 4 shows the releases by media when only the original industries are included. It is interesting to note that there is an almost perfect split between air (40. percent) and land (40.7 percent) releases. However the precentages for water (7.7 percent) and off-site disposal (11.3 percent) are significantly higher than in Figure 3.

There is a very large shift to land releases when looking only at the new industry facilities (see Figure 5). This is primarily due to the large land releases by the metal mining and electric utility industries (refer back to Tables 5 and 6.) As can be seen, the new industry releases are primarily air (13.5 percent) and land (86.2 percent) with very little water, POTW or disposal releases. Air and land releases together equal 99.7 percent.

Table 7 Missouri 2002 Summary of Releases by Media

Summa	if y of iteleas	cs by Micuia	,
Media ⁽¹⁾	Original	New	Totals
Air	23,157,152	7,507,068	30,664,220
Land	23,524,774	47,803,103	71,327,877
Water	4,461,136	38,359	4,499,495
POTW	79,188	21	79,209
Disposal	6,516,873	139,465	6,656,338
Total Releases	57.739.123	55 488 016	113,227,139

(1) Releases to POTWs are for metals and metal compounds only

Top Forty (40) Chemicals

Another way to look at the TRI data is by the types and numbers of chemicals reported. In Missouri, companies reported for a total of 194 different chemicals. Table 8 is a listing of the top 40 of these chemicals. The table shows the sum total for a given chemical reported by all facilities for RY2002. The chemicals are sorted in descending order by the total pounds reported.

As seen in Table 8, the top two chemicals are zinc compounds (32,636,492 pounds) and lead compounds (25,783,084 pounds). These two greatly exceed the amounts of the other chemicals by tens of millions of pounds. Review of the data shows that these compounds are primarily land releases reported by the mining (SIC10xx) and metal products primary (SIC33xx) industries. The barium compounds (6,997,008 pounds) and hydrochloric acid (4,514,868 pounds) are land and air releases, respectively, by the electric utilities industry (SIC49xx). Methanol is an air emission reported primarily by the charcoal kilns (SIC2861) in southeast Missouri. Table 9 for this SIC code.) A single food processor in Sedalia, Missouri, reported the of the nitrate compounds, majority 4,341,983 pounds which are reported primarily as water releases. For more details about different chemicals see Appendix C or call the EAO at 1-800-361-4827.

These 40 chemicals account for 99.2 percent of the total releases reported in RY20002. They account for 98 percent of the air releases, 99.6 percent of the land releases and 99.9 percent of the water releases.

Top Forty (40) Facilities

Table 9 shows the top 40 facilities that reported the greatest amount of releases for RY2002. (Remember, the greatest volume does not always equate with the greatest risk.) This table sums all of the chemicals

reported by a given facility and then sorts the facilities in descending order by total onsite and off-site releases. As can be seen, many of the top ranked facilities are either mines (SIC1031), primary metal products (SIC33xx) or electric utilities (SIC49xx). Mine releases are primarily land releases, as are the primary metal products facilities and electric utilities report both air and land releases. The companies designated by the SIC code of 2861 are the charcoal manufacturers. Their releases are primarily air releases of methanol.

These 40 companies account for more than 75.6 percent of all the air releases, 98.5 percent of all the land releases and 92.2 percent of all the water releases. For details on the chemicals released by individual companies in your county, see Appendix C. This appendix sorts releases by county, by company and then by chemical.

Top Forty (40) Reports of On- and Off-site Waste Management

Table 10 provides a listing of the top 40 reports that show companies doing on-site or off-site recycling, energy recovery or treatment. For RY2002, there were a total of 461 companies that reported some amount of on-site or off-site waste management. This means that 76.6 percent of all companies reporting to the TRI are doing some type of beneficial waste management. (This is up by 15.8 percent from RY2001.) Although these methods are not source reduction, they are much preferred over releases to the environment or off-site disposal.

In Table 10, some companies are listed more than once. This is simply because they reported on- or off-site waste management for more than one chemical. For additional information about individual companies, contact the Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

Table 8
Top Forty (40) Chemicals Reported in Missouri in RY2002

	ON-	SITE RELEAS	ES	OFF-SITE	OFF-SITE RELEASES		
CHEMICAL NAME	AIR	LAND	WATER	POTW ⁽¹⁾	DISPOSAL	TOTAL	
ZINC COMPOUNDS	565,548	31,420,262	15,253	11,983	668,447	32,636,493	
LEAD COMPOUNDS	299,821	21,761,737	4,749	1,256	3,715,521	25,783,084	
BARIUM COMPOUNDS	188,215	6,671,369	12,743	0	124,681	6,997,008	
METHANOL	6,925,208	5	10	0	11,984	6,937,207	
COPPER COMPOUNDS	22,646	5,321,289	1,532	1,010	81,874	5,428,350	
HYDROCHLORIC ACID ("ACID AEROSOLS")	4,514,863	5	0	0	0	4,514,868	
NITRATE COMPOUNDS	1,039	4,604	4,272,616	0	63,725	4,341,984	
ALUMINUM (FUME OR DUST)	29,161	3,852,844	2	0	110,378	3,992,385	
HYDROGEN FLUORIDE	2,369,563	0	0	0	0	2,369,563	
XYLENE (MIXED ISOMERS)	2,330,350	137	0	0	1,495	2,331,982	
CERTAIN GLYCOL ETHERS	1,825,014	2,505	5	0	52,783	1,880,307	
SULFURIC ACID - ("ACID AEROSOLS")	1,443,722	5	0	0	0	1,443,727	
1-CHLORO-1,1-DIFLUOROETHANE	1,317,354	0	0	0	0	1,317,354	
TOLUENE	1,175,579	38	28	0	637	1,176,282	
N-HEXANE	1,052,376	0	0	0	500	1,052,876	
MANGANESE COMPOUNDS	11,832	298,582	4,039	58,296	517,053	889,802	
AMMONIA	675,114	11,223	182,663	0	15,241	884,241	
METHYL ETHYL KETONE	880,913	0	0	0	305	881,218	
STYRENE	802,696	0	0	0	1,500	804,196	
NICKEL COMPOUNDS	8,476	588,505	599	2,070	95,007	694,657	
METHYL ISOBUTYL KETONE	659,894	17	5	0	695	660,611	
COBALT COMPOUNDS	2,442	644,533	292	0	10	647,277	
ANTIMONY COMPOUNDS	1,294	25,673	291	25	604,409	631,692	
N-BUTYL ALCOHOL	554,374	8	0	0	577	554,959	
CHLORODIFLUOROMETHANE	491,758	0	0	0	250	492,008	
1,2,4-TRIMETHYLBENZENE	439,156	5	5	0	2,678	441,844	
ETHYLBENZENE	438,322	44	0	0	493	438,859	
TRICHLOROETHYLENE	416,529	0	0	0	434	416,963	
CHROMIUM COMPOUNDS	4,827	97,187	364	785	158,397	261,560	
COPPER	19,256	132,331	657	1,432	85,649	239,324	
VANADIUM COMPOUNDS	8,192	213,794	32	0	5	222,023	
LEAD	8,043	178,982	109	157	19,659	206,949	
BENZENE	155,696	0	0	0	0	155,696	
N-METHYL-2-PYRROLIDONE	142,563	5	5	0	85	142,658	
DI(2-ETHYLHEXYL) PHTHALATE	14,490	750	5	0	112,820	128,065	
CHLORINE	86,677	5	928	0	0	87,610	
ZINC (FUME OR DUST)	5,391	68,381	0	0	2,433	76,205	
DICHLOROMETHANE	65,794	5	120	0	500	66,419	
NAPHTHALENE	59,389	5	6	0	87	59,487	
CUMENE	46,731	0	0	0	66	46,797	
Source: Missouri TRI Database - 2002 data Sub Totals=	30,060,306	71,294,835	4,497,057	77,013	6,450,378	112,334,590	

⁽¹⁾ These releases are for metals only, transfers of non-metals to POTWs are considered off-site treatment.

Table 9
Missouri
Top Forty (40) Facilities Showing Greatest Releases in RY2002

				ON-SITE RELEASES			OFF-SITE		
			SIC						
FACILITY NAME	CITY	COUNTY	CODE	AIR	LAND	WATER	POTW ⁽¹⁾	DISPOSAL	TOTAL
THE DOE RUN COMPANY - HERCULANEUM SMELTER	HERCULANEUM	JEFFERSON	3339	136,881	15,434,024	158	1,230	37,344	15,609,637
BRUSHY CREEK MINE/MILL	BUNKER	REYNOLDS	1031	39,810	13,248,801	4,223	0	0	13,292,834
BUICK MINE/MILL	BOSS	IRON	1031	55,254	12,670,473	9,003	0	0	12,734,730
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	34,039	9,937,126	2,397	0	0	9,973,562
THE DOE RUN COMPANY - GLOVER SMELTER	GLOVER	IRON	3339	37,172	6,811,766	103	0	282	6,849,323
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	33,813	0	557	0	4,131,877	4,166,247
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS	1031	11,325	4,127,553	3,542	0	0	4,142,420
TYSON FOODS INC SEDALIA COMPLEX	SEDALIA	PETTIS	2015	18,152	3,014	3,398,516	0	2,904	3,422,586
ROYAL OAK ENTERPRISES INC.	ELLSINORE	CARTER	2861	3,374,496	0	0	0	0	3,374,496
CRAIG INDUSTRIES	SUMMERSVILLE	SHANNON	2861	2,905,632	0	0	0	0	2,905,632
AMERENUE LABADIE POWER PLANT	LABADIE	FRANKLIN	4931	620,339	1,886,214	0	0	0	2,506,553
AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	2,141,945	296,987	2	0	0	2,438,934
FORD MOTOR COMPANY - KANSAS CITY PLANT	CLAYCOMO	CLAY	3711	2,087,464	0	0	6,510	68,321	2,162,295
AMERENUE MERAMEC POWER STATION	ST. LOUIS	ST. LOUIS	4931	1,136,339	997,260	26	0	0	2,133,626
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	352,513	1,464,600	6,947	0	285	1,824,345
THE DOW CHEMICAL CO RIVERSIDE SITE	PEVELY	JEFFERSON	3086	1,590,889	0	0	0	0	1,590,889
THOMAS HILL ENERGY CENTER - POWER DIVISION	CLIFTON HILL	RANDOLPH	4911	392,968	925,564	3,497	0	30	1,322,059
HOLCIM (U.S.) INC CLARKSVILLE PLANT	CLARKSVILLE	PIKE	3241	553,073	405,565	0	0	0	958,638
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	253,677	639,626	5,006	0	0	898,309
GENERAL MOTORS - WENTZVILLE ASSEMBLY	WENTZVILLE	ST. CHARLES	3713	747,562	0	0	510	50,640	798,712
FORD MOTOR COMPANY - ST. LOUIS ASSEMBLY	HAZELWOOD	ST. LOUIS	3711	731,854	0	0	1,995	16,980	750,829
DAIMLERCHRYSLER CORP NORTH ASSEMBLY PLANT	FENTON	ST. LOUIS	3711	673,381	0	0	1,610	34,141	709,132
ASBURY GENERATING STATION	ASBURY	JASPER	4911	259,512	417,401	0	0	0	676,913
3M COMPANY - NEVADA	NEVADA	VERNON	3081	558,260	0	5	99	21,690	580,054
COLUMBIA MUNICIPAL POWER PLANT	COLUMBIA	BOONE	4911	574,027	1,061	0	0	0	575,088
DYNO NOBEL INC LOMO PLANT	LOUISIANA	PIKE	2873	119,000	0	403,600	0	0	522,600
IATAN GENERATING STATION	WESTON	PLATTE	4911	177,276	341,911	0	0	0	519,187
PLASTENE SUPPLY CO.	PORTAGEVILLE	NEW MADRID	3471	238,514	0	55,183	0	166,269	459,966
ANHEUSER-BUSCH INC.	SAINT LOUIS	ST. LOUIS CITY	2082	451,783	1,437	0	0	325	453,545
MONTROSE	CLINTON	HENRY	4911	147,266	302,511	1	0	2	449,780
AG PROCESSING INC.	ST. JOSEPH	BUCHANAN	2075	443,000	0	0	290	0	443,290
BASF CORPORATION - HANNIBAL PL ANT	PALMYRA	MARION	2879	174,237	1,153	251,957	0	4,879	432,226
AMERENUE RUSH ISLAND POWER STATION	FESTUS	JEFFERSON	4931	268,489	155,952	69	0	0	424,510
EFCO CORP.	MONETT	BARRY	3354	392,035	0	0	17	15,526	407,578
EVEREADY BATTERY CO. INC.	MARYVILLE	NODAWAY	3692	270	0	0	105	391,551	391,926
DAIMLERCHRYSLER CORP SOUTH ASSEMBLY PLANT	FENTON	ST. LOUIS	3711	310,232	0	0	1,430	39,817	351,479
JAMES RIVER POWER STATION	SPRINGFIELD	GREENE	4931	333,112	844	2,806	0	.	336,762
SIKESTON POWER STATION	SIKESTON	SCOTT	4911	180,490	149,010	0	0	0	329,500
MISSISSIPPI LIME COMPANY - STE. GENEVIEVE	STE GENEVIEVE	GENEVIEVE	3274	328,563	799	0	0	0	329,362
TEVA PHARMACEUTICALS U.S.A. INC.	MEXICO	AUDRAIN	2834	313,362	0	0	0	5,700	319,062
Source: Missouri TRI Database - 2002 data	1	Su	ıb Totals =	23,198,004	70,220,654	4.147.599	13,796	4,988,563	102,568,616

(1) Releases to POTWs of metals or metal compounds only.

27

Table 10 Missouri Top Forty (40) Reports of On- and Off-site Waste Management in RY2002

		On-site Waste Management			Off-site Waste Management			<u></u>
FAC_NAME	CHEM_NAME	RECYCLE ENERGY		TRTMT	RECYCLE	ENERGY	TRTMT	TOTAL
DYNO NOBEL INC LOMO PLANT	NITRATE COMPOUNDS	52,000,000	0	108,000	0	0	0	52,108,000
THE DOE RUN COMPANY - GLOVER SMELTER	LEAD COMPOUNDS	46,841,620	0	0	266,907	0	0	47,108,527
THE DOE RUN COMPANY - HERCULANEUM SMELTER	LEAD COMPOUNDS	21,666,555	0	0	0	0	0	21,666,555
MALLINCKRODT INC.	METHANOL	17,070,251	0	0	0	280,392	1,117,128	18,467,771
HOLCIM (U.S.) INC CLARKSVILLE PLANT	TOLUENE	0	15,727,200	0	0	0	0	15,727,200
BAYER CROPSCIENCE	METHYL ISOBUTYL KETONE	14,276,129	0	1,152,319	0	0	156	15,428,604
THE DOE RUN COMPANY - GLOVER SMELTER	ZINC COMPOUNDS	14,304,925	0	0	737,025	0	0	15,041,950
CONTINENTAL CEMENT CO. LLC	TOLUENE	0	11,997,000	0	0	367,936	0	12,364,936
HAWKER ENERGY PRODUCTS INC.	LEAD COMPOUNDS	10,040,536	0	0	1,933,119	0	0	11,973,655
TEVA PHARMACEUTICALS U.S.A. INC.	TOLUENE	9,713,174	0	199,787	1,877,631	0	117	11,790,709
HOLCIM (U.S.) INC CLARKSVILLE PLANT	XYLENE (MIXED ISOMERS)	0	8,665,300	0	0	0	0	8,665,300
TEVA PHARMACEUTICALS U.S.A. INC.	METHANOL	5,898,510	0	127,454	0	2,285,246	3,268	8,314,478
MALLINCKRODT INC.	CHLOROFORM	7,962,845	0	0	0	0	282,120	8,244,965
JOHNSON CONTROLS BATTERY GROUP INC.	LEAD COMPOUNDS	0	0	0	8,142,351	0	0	8,142,351
SPORLAN VALVE CO PLANT#1	TRICHLOROETHYLENE	7,840,000	0	0	0	0	11,427	7,851,427
CONTINENTAL CEMENT CO. LLC	M-XYLENE	0	6,656,600	0	0	203,238	0	6,859,838
NORANDA ALUMINUM INC.	HYDROGEN FLUORIDE	5,905,005	0	0	0	0	0	5,905,005
3M COMPANY - NEVADA	XYLENE (MIXED ISOMERS)	3,000,000	0	1,700,000	0	1,800	920,000	5,621,800
HOLCIM (U.S.) INC CLARKSVILLE PLANT	METHYL ETHYL KETONE	0	5,132,000	0	0	0	0	5,132,000
3M COMPANY - NEVADA	METHYL ETHYL KETONE	2,900,000	0	1,000,000	0	2,100	1,000,000	4,902,100
ESSEX ELECTRIC INC.	COPPER	0	0	0	4,428,979	0	0	4,428,979
TEVA PHARMACEUTICALS U.S.A. INC.	DICHLOROMETHANE	3,669,708	0	572	0	0	592,350	4,262,630
BAYER CROPSCIENCE	HYDROCHLORIC ACID ("ACID AEROSOLS")	0	0	4,166,275	0	0	0	4,166,275
BAYER CROPSCIENCE	TOLUENE	3,245,957	0	891,118	0	0	613	4,137,688
BAYER CROPSCIENCE	N-BUTYL ALCOHOL	3,715,491	0	371,922	0	0	17	4,087,430
SIMMONS FOODS INC.	NITRATE COMPOUNDS	0	0	4,082,397	0	0	0	4,082,397
THE DOE RUN COMPANY - GLOVER SMELTER	ALUMINUM (FUME OR DUST)	3,620,054	0	0	223,015	0	0	3,843,069
LONE STAR INDUSTRIES INC.	TOLUENE	0	3,734,300	0	0	0	0	3,734,300
NEXANS MAGNET WIRE U.S.A. INC.	COPPER	0	0	0	3,300,000	0	0	3,300,000
KINGSFORD MANUFACTURING CO.	METHANOL	0	3,119,078	0	0	0	0	3,119,078
LAKE CITY ARMY AMMUNITION PLANT	COPPER	0	0	0	3,047,655	0	0	3,047,655
TYSON FOODS INC SEDALIA COMPLEX	NITRATE COMPOUNDS	0	0	3,014,237	0	0	0	3,014,237
LONE STAR INDUSTRIES INC.	METHYL ETHYL KETONE	0	2,937,000	0	0	0	0	2,937,000
SIGMA-ALDRICH CO.	METHANOL	0	0	0	678,061	2,102,072	82,800	2,862,933
THOMAS HILL ENERGY CENTER - POWER DIVISION	SULFURIC ACID - ("ACID AEROSOLS")	0	0	2,850,000	0	0	0	2,850,000
BASF CORPORATION - HANNIBAL PL ANT	METHANOL	0	0	2,600,000	0	0	0	2,600,000
CONNECTOR CASTINGS INC.	COPPER COMPOUNDS	2,297,793	0	0	195,305	0	0	2,493,098
HOLCIM (U.S.) INC CLARKSVILLE PLANT	VINYL ACETATE	0	2,433,300	0	0	0	0	2,433,300
BCP INGREDIENTS INC.	METHANOL	2,404,137	0	0	0	0	1,813	2,405,950
CONTINENTAL CEMENT CO. LLC	METHYL ETHYL KETONE	0	2,141,700	0	0	65,388	0	2,207,088
Source: Missouri TRI Database - 2001 data	Sub Totals =	238,372,690	62,543,478	22,264,081	24,830,048	5,308,172	4,011,809	357,330,278

Water Releases

Although water releases are a relatively small percentage of the total releases reported, they are significant in that water greatly influences our environment and our lives. Table 11 lists some of the largest releases to Missouri streams by facility and then by chemical.

Note in Table 11 that all of the releases over 10,000 pounds are for nitrate compounds or ammonia. Also, one reported release stands out over the rest. This is the 3,398,063 pounds release to the Little Muddy Creek reported by Tyson Foods in Sedalia. In RY2001 Tyson Foods had only reported air and land releases of ammonia and nothing for nitrate compounds. Discussions with Tyson Foods indicate that these nitrate compounds are formed during their wastewater treatment process. treat animal wastes and these wastes form ammonia which, Tyson said, breaks down into nitrite and nitrate compounds in the water. Tyson said that before RY2002 they were not aware they were suppose to report for this chemical category to the TRI. They said they are currently in discussions with EPA to get an official determination. Depending on the outcome, this reported release may have to be withdrawn or they may have to amend several previous year reports.

Other relatively large releases were from BASF Corporation (SIC 2879), a fertilizer plant in Hannibal, Mo., who reported 250,000 pounds of nitrate compounds, and an animal food processor, Biokyowa Inc. (SIC 2028), in Cape Girardeau, Mo., who reported 171,000 pounds of ammonia releases.

Three other facilities that reported significant water releases of nitrate compounds were Simmons Foods Inc. in Southwest City, Premium Standard Farms in Milan, Mo. and Plastene Supply Co. in Portageville, Mo.

Barium compounds also show up in Table 11. All the companies that reported water releases of barium are the electric utilities (SIC 49xx). Lead and zinc compounds also show up in the list as water releases and are from the metal mines (SIC1031). These mines are located in the southeast part of the state in Iron and Reynolds counties.

Again, as in Table 10, some companies are listed more than once. This is because they reported water releases for more than one chemical.

The facilities and chemicals shown in Table 11 account for over 90.8 percent of all the water releases reported in Missouri (refer to Tables 3, 5 and 6.) For more details about water releases in your county see Appendix C or call the Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

Table 11 Missouri Listing of Largest Releases to Surface Waters by Facility by Chemical in RY2002

EACH ITY NAME	CITY	COLINTY	SIC	CHEMICAL NAME	CTDE AM NAME	DELEAGEG
FACILITY NAME	CITY	COUNTY	CODE	CHEMICAL NAME	STREAM NAME	RELEASES
TYSON FOODS INC SEDALIA COMPLEX	SEDALIA	PETTIS	2015	NITRATE COMPOUNDS	TRIBUTARY TO LITTLE MUDDY CREEK	3,398,063.0
BASF CORPORATION - HANNIBAL PL ANT	PALMYRA	MARION	2879	NITRATE COMPOUNDS	MISSISSIPPI RIVER	250,000.0
BIOKYOWA INC.	CAPE GIRARDEAU	CAPE GIRARDEAU	2048	AMMONIA	MISSISSIPPI RIVER	171,000.0
SIMMONS FOODS INC.	SOUTHWEST CITY	MCDONALD	2015	NITRATE COMPOUNDS	UNNAMED TRIBUTARY TO CAVE SPRINGS BRANCH	83,744.0
PREMIUM STANDARD FARMS - MILAN	MILAN	SULLIVAN	2011	NITRATE COMPOUNDS	TRIB. ELMWOOD BRANCH, EAST FORK LOCUST CREEK	71,197.0
PLASTENE SUPPLY CO.	PORTAGEVILLE	NEW MADRID	3471	NITRATE COMPOUNDS	PORTAGE OPEN BAY DITCH	54,441.0
BIOKYOWA INC.	CAPE GIRARDEAU	CAPE GIRARDEAU	2048	NITRATE COMPOUNDS	MISSISSIPPI RIVER	11,000.0
BUICK MINE/MILL	BOSS	IRON	1031	ZINC COMPOUNDS	STROTHER CREEK	5,744.0
DYNO NOBEL INC CARTHAGE PLANT	CARTHAGE	JASPER	2892	NITRATE COMPOUNDS	CENTER CREEK	4,959.0
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	BARIUM COMPOUNDS	MISSISSIPPI RIVER	4,800.0
BRUSHY CREEK MINE/MILL	BUNKER	REYNOLDS	1031	ZINC COMPOUNDS	BILLS CREEK	3,843.0
JAMES RIVER POWER STATION	SPRINGFIELD	GREENE	4931	BARIUM COMPOUNDS	JAMES RIVER	2,773.0
BAYER CROPSCIENCE	KANSAS CITY	JACKSON	2879	AMMONIA	MISSOURI RIVER	2,533.0
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	BARIUM COMPOUNDS	MISSOURI RIVER	2,491.0
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS	1031	ZINC COMPOUNDS	ADAIR CREEK	1,915.0
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	MANGANESE COMPOUNDS	MISSOURI RIVER	1,899.0
BASF CORPORATION - HANNIBAL PL ANT	PALMYRA	MARION	2879	AMMONIA	MISSISSIPPI RIVER	1,700.0
THOMAS HILL ENERGY CENTER	CLIFTON HILL	RANDOLPH	4911	BARIUM COMPOUNDS	MIDDLE FORK OF THE LITTLE CHARITON RIVER	1,500.0
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	LEAD COMPOUNDS	BEE FORK CREEK	1,397.0
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS	1031	LEAD COMPOUNDS	ADAIR CREEK	1,377.0
SIMMONS FOODS INC.	SOUTHWEST CITY	MCDONALD	2015	AMMONIA	UNNAMED TRIBUTARY TO CAVE SPRINGS BRANCH	1,071.0
ΓHOMAS HILL ENERGY CENTER	CLIFTON HILL	RANDOLPH	4911	MANGANESE COMPOUNDS	MIDDLE FORK OF THE LITTLE CHARITON RIVER	1,050.0
DYNO NOBEL INC CARTHAGE PLANT	CARTHAGE	JASPER	2892	AMMONIA	CENTER CREEK	947.0
PREMIUM STANDARD FARMS - MILAN	MILAN	SULLIVAN	2011	CHLORINE	TRIB. ELMWOOD BRANCH, EAST FORK LOCUST CREEK	923.0
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	ZINC COMPOUNDS	MISSISSIPPI RIVER	750.0
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	ZINC COMPOUNDS	BEE FORK CREEK	750.0
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	MANGANESE COMPOUNDS	MISSISSIPPI RIVER	620.0
LAKE ROAD STATION	ST. JOSEPH	BUCHANAN	4931	BARIUM COMPOUNDS	MISSOURI RIVER	589.0
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	ZINC COMPOUNDS	MISSOURI RIVER	524.0
TYSON FOODS INC SEDALIA COMPLEX	SEDALIA	PETTIS	2015	AMMONIA	TRIBUTARY TO LITTLE MUDDY CREEK	453.0
BUICK MINE/MILL	BOSS	IRON	1031	LEAD COMPOUNDS	STROTHER CREEK	372.0
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	ANTIMONY COMPOUNDS	CROOKED CREEK	277.0
PLASTENE SUPPLY CO.	PORTAGEVILLE	NEW MADRID	3471	NICKEL COMPOUNDS	PORTAGE OPEN BAY DITCH	276.0
PURE-FLO PRECISION	SPRINGFIELD	GREENE	3443	MANGANESE	JORDAN CREEK	250.0
PURE-FLO PRECISION	SPRINGFIELD	GREENE	3443	NICKEL	JORDAN CREEK	250.0
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	COPPER COMPOUNDS	BEE FORK CREEK	250.0
BUICK MINE/MILL	BOSS	IRON	1031	COPPER COMPOUNDS	STROTHER CREEK	250.0
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS	1031	COPPER COMPOUNDS	ADAIR CREEK	250.0
PURE-FLO PRECISION	SPRINGFIELD	GREENE	3443	CHROMIUM	JORDAN CREEK	250.0
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	NICKEL COMPOUNDS	MISSISSIPPI RIVER	250.0
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	ARSENIC COMPOUNDS	CROOKED CREEK	250.0
PAUL MUELLER CO.	SPRINGFIELD	GREENE	3443	MANGANESE	JORDAN CREEK	250.0
PLASTENE SUPPLY CO.	PORTAGEVILLE	NEW MADRID	3471	FORMALDEHYDE	PORTAGE OPEN BAY DITCH	250.0
PAUL MUELLER CO.	SPRINGFIELD	GREENE	3443	CHROMIUM	JORDAN CREEK	250.0
WARRENTON COPPER LLC	WARRENTON	WARREN	3341	COPPER	NORTH FORK CHARETTE CREEK	250.0
PAUL MUELLER CO.	SPRINGFIELD	GREENE	3443	COPPER	JORDAN CREEK	250.0
Source: Missouri TRI Database - 2002 data	1	·		(All units are in pounds.)	Sub Total =	4,088,228.00

Persistent, Bioaccumulative and Toxic Chemicals

RY2000 was the first year that this class or category of chemicals was reported. Although some of these chemicals had been on the TRI chemical list previously, EPA determined that their reporting thresholds were too high to capture significant releases. The following section will discuss the releases of these chemicals and which companies reported the greatest releases.

Rather than grouping all of the PBT chemicals together, they will be discussed separately in categories. Currently, there are two metals listed as PBT chemicals. These are mercury and mercury compounds, and lead and lead compounds. These two metals will be discussed first. A group of PBT chemicals that are not metals, but are various organic compounds, will be discussed next as organic PBT chemicals. Finally, dioxin and dioxin like compounds will be discussed.

General information about PBT chemicals can be found on EPA's web site at http://www.epa.gov/pbt/aboutpbt.htm.

Lead and Lead Compounds

Lead was first considered a PBT chemical for RY2001. It had been on the TRI list previously but its reporting threshold was now lowered to 100 pounds.

Prior to 2001, the threshold for lead and lead compounds had been either 10,000 or 25,000 pounds, depending on the use. The lowered threshold has greatly impacted the number of facilities that have reported for lead and lead compounds. In RY2000, 50 companies reported some level of releases of lead or lead compounds. In RY2001, 168

companies reported and in RY2002, 211 companies reported. Between RY2000 and RY2001 there had been a three fold increase (336 percent) in the number of companies reporting for lead. For RY2001 to 2002 there was another 25.6 percent increase. These increases appear to be due solely to the lowered threshold.

Table 12 shows the totals for all 211 facilities. Note that of the 211, only 174 companies actually reported "releases" of lead or lead compounds. This is understandable due to the fact that some companies may "process" lead in some way, but there is not always a release of that lead to the environment. For example, a manufacturer of wire rope may have lead in trace amounts in the wire they purchase but during the rope forming "process" there are virtually no "releases" of that lead. Their only waste stream of lead would be in scrap wire that then could be sent off-site for However, because lead is a PBT recycling. chemical and because they trip the "processing" threshold they still have to report.

Table 13 (see page 33) provides a list of the companies that reported the greatest volume of lead or lead compound releases. Due to space limitations, only the top 40 facilities, based on total releases, are shown. As can be seen in both Tables 12 and 13, the greatest releases are to

Table 12 Missouri, 2002 Total LEAD Releases by Media

20002 222	2122 2101000000 0 11200200
Air	307,863.68
Land	21,940,719.66
Water	4,857.42
POTW	1,412.68
Disposal	3,735,179.45
Total	25,990,032.90

on-site land, followed by off-site disposal. The 40 facilities shown in Table 13 account for 98.1 percent of all the air releases, 99.9 percent of all the land releases and 99.8 percent of all the off-site disposal for RY2002. More information on lead releases is available in Appendix C or by calling the Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

The total releases of lead decreased from 31,958,009 pounds in RY2001 25,990,032 pounds in RY2002, a decrease of 5,967,977 pounds. This equates to an 18.7 percent decrease, which is significant. Review and comparison of the data for RY2001 and RY2002 show that this decrease was due to lower reported land releases by the four lead mines in southeast Missouri: Fletcher, Buick, Brushy Creek and Sweetwater (see Table 13). Decreases by these four mines totaled 5,892,086 pounds. This is very close to the number listed above. The reasons for this decrease are unclear. They may be due to decreased production, improved processing at the mines or higher grade ore. The reasons cannot be determined from the TRI data.

As seen in Table 13, the greatest volume of releases are reported by the lead mines (SIC 1031). These are the same mines listed above. The Doe Run Company smelters in Herculaneum and Glover, Mo. are also significant contributors, as is their recycling facility in Boss, Mo.

Table 13 also shows that the vast majority of these releases are land releases. Although land releases are the greatest by total quantity, air and water releases are also of significant concern. Air releases are perhaps the greatest concern because this is a pathway that can rapidly affect a large number of people. The Doe Run smelter in Herculaneum is the largest reporter of lead

releases to air at 117,626 pounds (see Table 13). However, this is down from their RY2001 air releases, which was 226,513 pounds. This is a decrease of 108,887 pounds or 48.1 percent. This is a significant decrease. It is also noteworthy that this is the second year in a row that Doe Run has reported a decrease in their lead air emissions based on the TRI data. These reductions were required by the Department of Natural Resources to meet the National Ambient Air Quality standards for lead. Construction and operation of the air pollution control facilities were required by the Herculaneum lead State Implementation Plan (SIP) under the Clean Air Act (CAA). The SIP controls were reiterated in an Administrative Order on Consent which was negotiated between the company, EPA and the department, and also included measures to address other lead releases to the environment. A later Settlement Agreement between the company and the department further reduced lead exposure to the local population through a property buyout program for homes near the smelter and other measures.

However, an additional concern in the city of Herculaneum is the lead contamination that has occurred during the transport of the lead ore from the mines to the smelter. These releases are not reported under the TRI because they are transportation related and are outside the boundaries of the reporting facilities. However, the fact that they are not reported under the TRI does not mean these releases are not a concern.

The Department of Natural Resources and EPA are continuing to work with the Doe Run Company to reduce their air, land and water releases. Questions about lead contamination in the Herculaneum area can be directed to the Department of Natural Resources at 1-800-361-4827 or (573) 526-6627, or EPA at 1-800-223-0425.

An Internet site that has information about the lead contamination in Herculaneum can be found at: http://www.dnr.mo.gov/env/herc.htm.

Lead releases to water are also a significant concern. Table 14 (see page 30) shows all of the companies that reported releases of lead and lead compounds to Missouri surface waters for RY2002. The water releases are up from RY2001 by 1,300 pounds, an increase of 36.5 percent. This increase is due to increases by the metal mines listed at the top of the table. In RY2001, these three mines reported 1,042 pounds, 770 pounds and 20 pounds, respectively.

Mercury and Mercury Compounds

RY2002 is the third year since the reporting mercurv threshold for and mercury compounds was lowered to 10 pounds. Prior to 2000, the reporting thresholds were 25,000 or 10,000 pounds, depending on the use. This change initially had a significant impact on the number of companies that reported. In the first year, RY2000, the number went from zero to 32. However, in RY2001, there was very little change. The number only increased to 37. In RY2002 the number of companies reporting for mercury went up to 48, a 29 percent increase.

Table 15 (see page 31) lists all the companies that reported releases of mercury for RY2002. As can be seen, almost all of them are electric utilities. One facility does stand out, however. Eagle-Picher Technologies in Joplin, Mo., reported an off-site disposal of 3,100 pounds which is much greater than any of the other reported releases. As was found from the TRI data in RY2001, Eagle-Picher is sending this waste to an out-of-state facility for "storage only." Although this is technically considered an off-site "release," it is obvious the material has not yet been introduced to the environment and therefore is not actually a "release" at this point.

If the off-site disposal by Eagle-Picher is disregarded, Table 15 shows that the major portion of the releases of mercury and mercury compounds are reported as air releases. As stated above, these releases are

mainly from the electric utilities (SIC Code 4911 or 4931). The electric utilities burn very large volumes of coal, and coal by nature contains trace amounts of mercury, resulting in the quantities shown.

It should be noted that the total of 7,418.2 pounds shown in Table 15 is only 71.2 pounds greater than the amount reported in RY2001, a small 1 percent increase. If the off-site disposal by Eagle-Picher is discounted from both years, there was actually a decrease of 229 pounds, or a 5 percent decrease.

As may also be noted in Table 15, the total releases of mercury and mercury compounds are relatively low compared to releases of lead or lead compounds or other TRI chemicals. However, due to the persistent, bioaccumulative and toxic nature of mercury, these levels of releases are still considered significant and need to be taken into consideration when evaluating potential health impacts. However, that is out of the scope of the TRI.

More information about mercury and mercury compounds can be found on the Internet at the EPA web site, http://www.epa.gov/mercury/index.html.

Table 16 provides a listing of reported releases of mercury compounds to Missouri streams. These were the only reported releases of mercury to waters of the state. A fact sheet about mercury impaired waters in Missouri can be accessed on the Internet at http://www.dnr.mo.gov/wpscd/wpcp/tmdl/info/mercury-info.pdf.

A fish advisory published by the Missouri Department of Health and Senior Services can be accessed at http://www.dhss.state.mo.us/NewsReleases/FishAdvisory04.html. This advisory, in part, deals with fish that are contaminated with mercury in Missouri.

Table 13 Missouri Top Forty (40) Facilities Reporting LEAD or LEAD COMPOUND Releases in RY2002

				C	n-Site Releaess		Off-site	e Releases	
EA CH ITIN	CITTLE	COLDITAL	SIC	4.10	Y 437D	XX A TEED	роти	Diabouti	mom . r
FACILITY	CITY	COUNTY	CODE	AIR	LAND	WATER	POTW	DISPOSAL	TOTAL
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	29,829.00	5,711,733.00	1,397.00	0.00	0.00	5,742,959.00
BUICK MINE/MILL	BOSS	IRON	1031	36,818.00	5,037,064.00	1,544.00	0.00	0.00	5,075,426.00
BRUSHY CREEK MINE/MILL	BUNKER	REYNOLDS	1031	30,863.00	5,011,644.00	130.00	0.00	0.00	5,042,637.00
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	31,032.00	0.00	30.00	0.00	3,493,077.00	3,524,139.00
THE DOE RUN COMPANY - HERCULANEUM SMELTER	HERCULANEUM	JEFFERSON	3339	117,626.00	2,177,123.00	21.00	983.00	26,833.00	2,322,586.00
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS	1031	9,937.00	1,847,224.00	1,377.00	0.00	0.00	1,858,538.00
THE DOE RUN COMPANY - GLOVER SMELTER	GLOVER	IRON	3339	30,243.00	1,710,236.00	10.00	0.00	282.00	1,740,771.00
US ARMY MANEUVER SUPPORT CENTER - RANGE	FORT LEONARD WOOD	PULASKI	9711	0.00	169,217.70	0.00	0.00	0.00	169,217.70
GENERAL ELECTRIC CO ST. LOUIS LAMP PLANT	ST. LOUIS	ST. LOUIS	3641	0.00	0.00	0.00	1.00	123,000.00	123,001.00
HOLCIM (U.S.) INC CLARKSVILLE PLANT	CLARKSVILLE	PIKE	3241	350.00	58,800.00	0.00	0.00	0.00	59,150.00
EXIDE TECHNOLOGIES- CANON HOLLOW PLANT	FOREST CITY	HOLT	3341	560.00	53,040.00	1.00	0.00	0.00	53,601.00
CONTINENTAL CEMENT CO. LLC	HANNIBAL	RALLS	3241	405.00	39,169.00	0.00	0.00	822.00	40,396.00
MISSOURI CHEMICAL WORKS	LOUISIANA	PIKE	2869	50.00	8,100.00	0.00	0.00	27,001.00	35,151.00
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	800.00	20,700.00	16.00	0.00	0.00	21,516.00
RIVER CEMENT CO.	FESTUS	JEFFERSON	3241	4,877.00	9,684.00	0.00	0.00	0.00	14,561.00
LONE STAR INDUSTRIES INC.	CAPE GIRARDEAU	CAPE GIRARDEAU	3241	5.00	14,150.00	0.00	0.00	0.00	14,155.00
THOMAS HILL ENERGY CENTER - POWER DIVISION	CLIFTON HILL	RANDOLPH	4911	1,000.00	13,000.00	70.00	0.00	0.00	14,070.00
AMERENUE LABADIE POWER PLANT	LABADIE	FRANKLIN	4931	381.20	13,287.10	0.00	0.00	0.00	13,668.30
AMERENUE MERAMEC POWER STATION	ST. LOUIS	ST. LOUIS	4931	477.90	12,471.20	0.00	0.00	0.00	12,949.10
3M COMPANY - NEVADA	NEVADA	VERNON	3081	0.00	0.00	2.00	1.00	10,000.00	10,003.00
BECTON DICKINSON ACCU-GLASS	ST. LOUIS	ST. LOUIS	3229	69.60	0.00	0.00	0.00	9,743.40	9,813.00
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	291.00	7,487.00	54.00	0.00	0.00	7,832.00
ICI EXPLOSIVES ENVIRONMENTAL CO.	JOPLIN	JASPER	4953	1.00	0.00	0.00	0.00	6,548.00	6,549.00
ASBURY GENERATING STATION	ASBURY	JASPER	4911	3,866.00	2,674.00	0.00	0.00	0.00	6,540.00
H-J ENTERPRISES INC.	High Ridge	JEFFERSON	3643	93.00	0.00	0.00	0.00	5,572.00	5,665.00
LAKE CITY ARMY AMMUNITION PLANT	INDEPENDENCE	JACKSON	3482	1.00	0.00	38.00	69.00	5,549.00	5,657.00
BROWNING	ARNOLD	JEFFERSON	3484	11.12	5,282.00	0.00	0.00	0.00	5,293.12
CITY OF INDEPENDENCE	INDEPENDENCE	JACKSON	4911	33.20	5,243.00	0.00	12.30	0.00	5,288.50
BASF CORPORATION - HANNIBAL PL ANT	PALMYRA	MARION	2879	70.60	19.10	0.00	0.00	4,779.00	4,868.70
ESSEX ELECTRIC INC.	SIKESTON	SCOTT	3357	0.00	0.00	0.00	0.00	4,565.00	4,565.00
IATAN GENERATING STATION	WESTON	PLATTE	4911	150.00	2,800.00	0.00	0.00	0.00	2,950.00
MONTROSE	CLINTON	HENRY	4911	390.00	2,500.00	0.00	0.00	1.00	2,891.00
AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	810.80	1,559.10	0.00	0.00	0.00	2,369.90
MARSHALL MUNICIPAL UTILITIES POWER PLANT	MARSHALL	SALINE	4911	263.00	0.00	0.00	0.00	2,022.00	2,285,00
LAKE ROAD STATION	ST. JOSEPH	BUCHANAN	4931	54.00	1,111.00	0.00	0.00	1,111.00	2,276.00
PERMACEL SAINT LOUIS INC.	SAINT LOUIS	ST. LOUIS CITY	2891	0.00	0.00	0.00	0.00	2,209.00	2,209.00
HAYES LEMMERZ INTERNATIONAL INC.	SEDALIA	PETTIS	3714	0.00	0.00	0.00	10.00	2,179.00	2,189.00
ANHEUSER-BUSCH INC.	SAINT LOUIS	ST. LOUIS CITY	2082	61.64	1,417.46	0.00	0.00	289.72	1,768.82
GILMOUR MANUFACTURING	EXCELSIOR SPRINGS	CLAY	3052	0.00	0.00	0.00	0.00	1.641.00	1,641.00
MISSISSIPPI LIME COMPANY - STE. GENEVIEVE	STE GENEVIEVE	STE. GENEVIEVE	3274	529.54	797.56	0.00	0.00	0.00	1,327.10
Source: Missouri TRI Database - 2002 data			Totals =	301,949.60		4,690.00	1,076.30	3,727,224.12	25,972,473.24
Douice. 1911550ati TAI Database - 2002 data		Sut	i otais =	301,777.00		(All units are in	,	5,121,227.12	20,712,713.24

(All units are in pounds.)

Table 14 Missouri Releases of LEAD or LEAD COMPOUNDS to Surface Waters in RY2002

	T DELIE VI DELIE	001111 0 01 12 0		lace waters in K12002	10
EACH ITW NAME	CITY	COLINTY	SIC	CTDE AM NAME	DELEAGEG
FACILITY NAME	CITY	COUNTY	CODE	STREAM NAME	RELEASES
BUICK MINE/MILL	BOSS	IRON		STROTHER CREEK	1,544.00
FLETCHER MINE/MILL	BUNKER	REYNOLDS	1031	BEE FORK CREEK	1,397.00
SWEETWATER MINE/MILL	ELLINGTON	REYNOLDS		ADAIR CREEK	1,377.00
BRUSHY CREEK MINE/MILL	BUNKER	REYNOLDS	1031	BILL'S CREEK	130.00
THOMAS HILL ENERGY CENTER - POWER DIVISION	CLIFTON HILL	RANDOLPH	4911	MIDDLE FORK OF THE LITTLE CHARITON RIVER	70.00
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	MISSOURI RIVER	54.00
MODINE MANUFACTURING CO.	JEFFERSON CITY	COLE	3714	UNNAMED TRIBUTARY TO NORTH MOREAU CREEK	48.00
FEDERAL MOGUL CORP.	MALDEN	DUNKLIN	3365	UNNAMED TRIB. TO DITCH B (LITTLE RIVER BASIN)	42.00
LAKE CITY ARMY AMMUNITION PLANT	INDEPENDENCE	JACKSON	3482	W. FIRE PRARIE CREEK TRIB. TO LITTLE BLUE RIVER	38.00
MODINE MANUFACTURING CO.	TRENTON	GRUNDY	3714	UNNAMED TRIBUTARY TO THOMPSON RIVER	32.00
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	CROOKED CREEK	30.00
THE DOE RUN COMPANY - HERCULANEUM SMELTER	HERCULANEUM	JEFFERSON	3339	MISSISSIPPI RIVER	21.00
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	MISSISSIPPI RIVER	16.00
THE DOE RUN COMPANY - GLOVER SMELTER	GLOVER	IRON	3339	SCOGGINS BRANCH	10.00
ENGINEERED COIL CO DBA MARLO COIL	HIGH RIDGE	JEFFERSON	3585	ANTIRE CREEK	9.978
GKN AEROSPACE SERVICES INC.	HAZELWOOD	ST. LOUIS	3728	COLDWATER CREEK	7.5000
LITTON SYSTEMS INC INTERCONNECT TECH. DIV.	SPRINGFIELD	GREENE	3672	CLEAR CREEK	6.8500
EAGLE-PICHER TECHNOLOGIES LLC	JOPLIN	JASPER	2816	LONE ELM CREEK	4.6800
THE PROCTOR & GAMBLE PAPER PRODUCTS CO.	CAPE GIRARDEAU	JACKSON	2621	MISSISSIPPI RIVER	3.4000
PLASTENE SUPPLY CO.	PORTAGEVILLE	NEW MADRID	3471	PORTAGE OPEN BAY DITCH	3.3000
TRINITY MARINE PRODUCTS INC PLANT #75	CARUTHERSVILLE	PEMISCOT	3732	MISSISSIPPI RIVER	2.5900
EAGLEPICHER TECHNOLOGIES LLC	SENECA	NEWTON	3691	LOST CREEK (ELK RIVER BASIN)	2.0000
3M COMPANY - NEVADA	NEVADA	VERNON	3081	BIRCH CREEK	2.0000
KINGSFORD MANUFACTURING CO.	BELLE	MARIES	2861	UNNAMED TRIBUTARY OF DRY FORK CREEK	1.1380
GETS GLOBAL SIGNALING	GRAIN VALLEY	JACKSON	3669	SNI A BAR CREEK	1.1000
EXIDE TECHNOLOGIES- CANON HOLLOW PLANT	FOREST CITY	HOLT	3341	CANON CREEK	1.0000
JEFFERSON PRODUCTS CO.	WASHINGTON	FRANKLIN	3499	TRIBUTARY OF BUSCH CREEK	1.0000
GETS GLOBAL SIGNALING	WARRENSBURG	JOHNSON	3672	BLACKWATER RIVER	0.9000
SIERRA BULLETS LLC	SEDALIA	PETTIS	3482	SEWER BRANCH (LAMINE RIVER BASIN)	0.6800
LOXCREEN CO. INC.	HAYTI	PEMISCOT	3354	LITTLE RIVER DITCHES BASIN (DITCH #6)	0.3000
HOLCIM (U.S.) INC CLARKSVILLE PLANT	CLARKSVILLE	PIKE	3241	MISSISSIPPI RIVER	0.0000001
Source: Missouri TRI Database - 2002 data	•	(All units are in pounds.))	Total =	4,857.416

35

Table 15 Missouri Facilities Reporting Releases of MERCURY and MERCURY COMPOUNDS in RY2002

Tuesday Reporting Refuses of Milkeon Tunk Milkeon				On-site Releases Off-site Releases				1	
	1	1	ara		Jii-site Keieas	es	OII-site	Releases	
FACILITY NAME	CITY	COUNTY	SIC CODE	AIR	LAND	WATER	POTW	DISPOSAL	TOTAL
EAGLEPICHER TECHNOLOGIES LLC	JOPLIN	JASPER	3691	0.00	0.00	0.00	1.00	3,100.00	3,101.00
AMERENUE LABADIE POWER PLANT	LABADIE	FRANKLIN	4931	762.60	65.10	0.00	0.00	0.00	827.70
AMERENUE RUSH ISLAND POWER STATION	FESTUS	JEFFERSON	4931	501.60	3.00	0.00	0.00	0.00	504.60
THOMAS HILL ENERGY CENTER - POWER DIVISION	CLIFTON HILL	RANDOLPH	4931	263.00	40.00	0.00	0.00	0.00	303.00
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	280.00	0.00	0.00	0.00	0.00	280.00
HOLCIM (U.S.) INC CLARKSVILLE PLANT	CLARKSVILLE	PIKE	3241	225.00	15.00	0.00	0.00	0.00	240.00
AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	216.90	3.30	0.00	0.00	0.00	220.30
IATAN GENERATING STATION	WEST ALTON	PLATTE	4931	190.00	11.00	0.10	0.00	0.00	201.00
AMERENUE MERAMEC POWER STATION	ST. LOUIS	ST. LOUIS	4931	168.20	27.10	0.00	0.00	0.00	195.30
LONE STAR INDUSTRIES INC.	CAPE GIRARDEAU	CAPE GIRARDEAU	3241	180.00	15.00	0.00	0.00	0.00	195.00
SIKESTON POWER STATION	SIKESTON	SCOTT	4911	191.00	0.00	0.00	0.00	0.00	191.00
RIVER CEMENT CO.	FESTUS	JEFFERSON	3241	141.57	8.50	0.00	0.00	0.00	150.07
MISSOURI CHEMICAL WORKS	LOUISIANA	PIKE	2869	10.00	10.00	0.00	0.00	130.00	150.00
HAWTHORN GENERATING FACILITY	KANSAS CITY	JACKSON	4911	125.00	7.00	0.00	0.00	0.00	132.00
MONTROSE	CLINTON	HENRY	4911	110.00	11.00	0.00	0.00	1.00	122.00
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	79.00	34.00	0.00	0.00	0.00	113.00
SOUTHWEST POWER STATION	BROOKLINE STATION	GREENE	4931	66.00	26.00	0.10	0.00	0.00	92.10
JAMES RIVER POWER STATION	SPRINGFIELD	GREENE	4931	71.00	1.00	1.00	0.00	0.00	73.00
CONTINENTAL CEMENT CO. LLC	HANNIBAL	RALLS	3241	48.00	5.00	0.00	0.00	8.00	61.00
LAFARGE NORTH AMERICA	SUGAR CREEK	JACKSON	3241	48.00	0.00	0.00	0.00	2.00	50.00
MISSISSIPPI LIME COMPANY	STE. GENEVIEVE	STE. GENEVIEVE	3274	33.41	1.83	0.00	0.00	0.00	35.24
LAKE ROAD STATION	ST. JOSEPH	BUCHANAN	4931	16.00	7.00	1.00	0.00	7.00	31.00
LAKE CITY ARMY AMMUNITION PLANT	INDEPENDENCE	JACKSON	3482	29.00	0.00	0.00	0.00	0.00	29.00
ASBURY GENERATING STATION	ASBURY	JASPER	4911	21.00	8.00	0.00	0.00	0.00	29.00
ANHEUSER-BUSCH INC.	SAINT LOUIS	ST. LOUIS CITY	2082	0.84	19.81	0.00	0.00	0.00	20.65
CITY OF INDEPENDENCE	INDEPENDENCE	JACKSON	4911	6.10	12.00	0.00	0.10	0.00	18.20
CHAMOIS POWER PLANT	CHAMOIS	OSAGE	4911	14.00	0.00	0.00	0.00	0.00	14.00
CHEMICAL LIME CO.	STE. GENEVIEVE	STE. GENEVIEVE	3274	13.10	0.00	0.00	0.00	0.00	13.10
COLUMBIA MUNICIPAL POWER PLANT	COLUMBIA	BOONE	4911	2.89	7.55	0.00	0.00	0.00	10.44
MALLINCKRODT INC.	SAINT LOUIS	ST. LOUIS	2833	8.80	0.00	0.00	0.00	0.40	9.20
POLY ONE CORP.	SAINT LOUIS	ST. LOUIS CITY	3087	0.00	0.00	0.00	0.00	2.17	2.17
BOEHRINGER INGELHEIM VETMEDICA INC.	ST. JOSEPH	BUCHANAN	2836	0.00	0.00	0.00	0.00	2.05	2.05
ARTCO - NORTH TERMINAL	ST LOUIS	ST. LOUIS CITY	5171	1.034	0.000	0.000	1.000	0.000	2.034
PROCTER & GAMBLE MANUFACTURING CO.	ST. LOUIS	ST. LOUIS CITY	2841	0.040	0.000	0.000	0.000	0.000	0.040
CONCRETE COMPANY OF SPRINGFIELD	SPRINGFIELD	GREENE	3273	0.004	0.000	0.000	0.000	0.000	0.004
CHRISTIAN COUNTY CONCRETE	NIXA	CHRISTIAN	3273	0.002	0.000	0.000	0.000	0.000	0.002
CONCRETE COMPANY OF THE OZARKS	HOLLISTER	TANEY	3273	0.002	0.000	0.000	0.000	0.000	0.002
CONCRETE COMPANY OF SPRINGFIELD	REPUBLIC	GREENE	3273	0.001	0.000	0.000	0.000	0.000	0.001
Source: Missouri TRI Database - 2002 data	!	1	Totals =	3,823.095	338.190	2.200	2.100	3,252.620	7,418.205
				.,	223.270	200	00	-,520	.,

(All units are in pounds.)

Table 16 Missouri

Releases of MERCURY and MERCURY COMPOUNDS to Surface Waters in RY2002

			SIC		
FACILITY NAME	CITY	COUNTY	CODE	STREAM NAME	RELEASES
JAMES RIVER POWER STATION	SPRINGFIELD	GREENE	4931	JAMES RIVER	1
LAKE ROAD STATION	ST. JOSEPH	BUCHANAN	4931	MISSOURI RIVER	1
SOUTHWEST POWER STATION	BROOKLINE STATION	GREENE	4931	WILSON CREEK	0.1
AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	MISSISSIPPI RIVER	0.1
C Mi TDI D-+-1 2002 4-+-		(A11 t t d-	- \	Total -	2 200

Source: Missouri TRI Database - 2002 data (All units are in pounds.)

Organic PBT Chemicals

The PBT chemicals to be discussed in this section are all of the PBT chemicals other than lead, mercury or dioxin and their compounds. These PBT chemicals are organic compounds, which are chemicals made up of carbon and hydrogen, and include pesticides such as pendimethalin, trifluralin or methoxychlor.

For RY2002, there were a total of 54 companies that reported for organic PBT chemicals. However, only 33 reported releases greater than zero. A list of these 33 companies is provided in Table 18. For RY2001 a total of 40 companies reported releases greater than zero of organic PBT chemicals. This decrease will be reflected in a decrease in total releases as shown in the following table.

Table 17, shown below, provides a comparison for the releases by media between RY2001 and RY2002. Positive numbers indicate increases and negative numbers indicate decreases. As can be seen, there were decreases in all media. However, the really significant changes were in air and offsite disposal. The large percentage changes in the Land, Water and POTW are not really significant because of the small values in both reporting years.

Table 17
Missouri
Organic PBT Release Comparisons by Media by Year

	RY2001	RY2002	#CHG	%CHG
AIR	6,961.14	5,366.04	-1,595.10	-22.9%
LAND	1.20	1.00	-0.20	-16.7%
WATER	24.40	4.00	-20.40	-83.6%
POTW	6.22	2.05	-4.17	-67.0%
DISPOSAL	3,963.58	960.10	-3,003.48	-75.8%
TOTAL	10,956.54	6,331.14	-4,625.40	-42.2%

The reporting requirement for the PBT chemicals discussed in this section is 0.1 pounds. However, facilities are encouraged to report the smallest decimal place that the

data or estimation techniques allow. As can be seen in Table 18, some companies reported releases down to the fifth decimal place.

The data in Table 18 is sorted in descending order based on total releases. Based on this, Noranda Aluminum in New Madrid, Mo., is at the top of the list. For RY2002, they reported releasing 4,558 pounds of polycyclic aromatic compounds, or PACs, to the air. This is an increase of 770 pounds or 20.3 percent, over their RY2001 release of 3,788 pounds. Excel Corporation had reported 2,006 pounds of air releases of PACs in RY2001. In RY2002 they reported zero releases. This decrease accounts for much of the decreased air releases shown in Table 17.

Performance Roof Systems in Kansas City, Mo., had reported 2,550.0 pounds of PACs as off-site disposal in RY2001. They reported zero pounds for off-site disposal in RY2002. This decrease accounts for most of the change shown in Table 17.

Based on the above changes the total releases for RY2002 decreased by 4,625.4 pounds or 42.2 percent. The releases to land, water and POTW are essentially zero. These overall trends are very positive.

Note, if you desire additional information about these releases, either see Appendix C or contact the Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

Table 18
Missouri
Facilities Reporting Releases of ORGANIC PBT CHEMICALS in RY2002

FACILITY NAME				SIC						OFF-SITE	
TAMKO ROOFING PRODUCTS INC. OPILIN JASPER 9952 BENZOGH, DPERYLENE 5.00 0.00 0.00 0.00 432.00 437.00	FACILITY NAME	CITY	COUNTY		CHEMICAL NAME	AIR	LAND	WATER	POTW		TOTAL
APAC INN CEREK ASPHALT PLANT	NORANDA ALUMINUM INC.	NEW MADRID	NEW MADRID	3334	POLYCYCLIC AROMATIC CMPDS	4,558.00	0.00	0.00	0.00	0.00	4,558.00
APAC LINN CREEK ASPHALT PLANT	TAMKO ROOFING PRODUCTS INC.	JOPLIN	JASPER	2952	BENZO(G,H,I)PERYLENE	5.00	0.00	0.00	0.00	432.00	437.00
HARBISON WALKER REFRACTORIES VANDALIA ALDRAIN 3255 POLYCYCLIC AROMATIC CMPDS 0.00 0.00 0.00 196.00 196.00 196.00 MICHELIN AIRCRAFT TIRE CORP. KANSAS CITY PLATTE 3011 POLYCYCLIC AROMATIC CMPDS 0.00 0.00 0.00 0.00 160.00 1	APAC ROCKY FORK ASPHALT PLANT	COLUMBIA	BOONE	2951	POLYCYCLIC AROMATIC CMPDS	269.66	0.00	0.00	0.00	0.00	269.66
MICHELIN AIRCRAFT TIRE CORP. KANSAS CITY PLATTE 3011 POLYCYCLIC AROMATIC CMPDS 0.00 0.00 0.00 0.00 160.00 1	APAC LINN CREEK ASPHALT PLANT	LINN CREEK	CAMDEN	2951	POLYCYCLIC AROMATIC CMPDS	213.07	0.00	0.00	0.00	0.00	213.07
BRIGGS & STRATTON CORP. POPLAR BLUFE BUTLER 3519 POLYCYCLIC AROMATIC CMPDS 144.00 0.00 0.00 0.00 0.00 144.00 TAMKO ROOFING JOPLIN JASPER 2952 POLYCYCLIC AROMATIC CMPDS 23.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MISSOURI TIE & TIMBER INC. REYNOLDS REYNOLDS 2491 POLYCYCLIC AROMATIC CMPDS 85.81 0.00 0.00 0.00 0.00 0.00 0.00 8.8.81 TAMKO ROOFING PRODUCTS INC. JOPLIN JASPER 2952 BENZOG, H, IPPERVLENE 0.00 0.00 0.00 0.00 0.00 0.00 60.00 BASF CORPORATION - HANNIBAL PLANT PALMYRA MARION 2879 POLYCYCLIC AROMATIC CMPDS 0.00 0.	HARBISON WALKER REFRACTORIES	VANDALIA	AUDRAIN	3255	POLYCYCLIC AROMATIC CMPDS	0.00	0.00	0.00	0.00	196.00	196.00
TAMKO ROOFING	MICHELIN AIRCRAFT TIRE CORP.	KANSAS CITY	PLATTE	3011	POLYCYCLIC AROMATIC CMPDS	0.00	0.00	0.00	0.00	160.00	160.00
MISSOURI TIE & TIMBER INC. REYNOLDS REYNOLDS 2491 POLYCYCLIC AROMATIC CMPDS 85.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.00	BRIGGS & STRATTON CORP.	POPLAR BLUFF	BUTLER	3519	POLYCYCLIC AROMATIC CMPDS	144.00	0.00	0.00	0.00	0.00	144.00
TAMKO ROOFING PRODUCTS INC. IOPLIN JASPER 2952 BENZO(G,H,DPERYLENE 0.00 0.00 0.00 0.00 60.00	TAMKO ROOFING	JOPLIN	JASPER	2952	POLYCYCLIC AROMATIC CMPDS	23.00	0.00	0.00	0.00	92.00	115.00
BASF CORPORATION - HANNIBAL PLANT	MISSOURI TIE & TIMBER INC.	REYNOLDS	REYNOLDS	2491	POLYCYCLIC AROMATIC CMPDS	85.81	0.00	0.00	0.00	0.00	85.81
TAMKO ROOFING PRODUCTS INC. JOPLIN JASPER 2952 POLYCYCLIC AROMATIC CMPDS 0.00 0.00 0.00 0.00 0.00 13.00 3M COMPANY - SPRINGFIELD GREENE 2891 TETRABROMOBISPHENDL A 10.00 0.	TAMKO ROOFING PRODUCTS INC.	JOPLIN	JASPER	2952	BENZO(G,H,I)PERYLENE	0.00	0.00	0.00	0.00	60.00	60.00
3M COMPANY - SPRINGFIELD GREENE 2891 TETRABROMOBISPHENOL A 10.00 0.00 0.00 0.00 0.00 10.00	BASF CORPORATION - HANNIBAL PLANT	PALMYRA	MARION	2879	PENDIMETHALIN	36.00	1.00	4.00	0.00	0.00	41.00
ROCH MATERIALS CO. KANSAS CITY JACKSON 2951 POLYCYCLIC AROMATIC CMPDS 0.00 0.00 0.00 0.00 0.00 7.10 7.10	TAMKO ROOFING PRODUCTS INC.	JOPLIN	JASPER	2952	POLYCYCLIC AROMATIC CMPDS	0.00	0.00	0.00	0.00	13.00	13.00
A. P. GREEN INDUSTRIES INC. FULTON CALLAWAY 3255 POLYCYCLIC AROMATIC CMPDS 3.54 0.00 0.00 0.00 0.00 0.00 0.00 3.54 ALBAUGH INC. ST. JOSEPH BUCHANAN 2879 TRIFLURALIN 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54 AMERENUE RISHAND POWER STATION WEST ALTON ST. CHARLES 4931 POLYCYCLIC AROMATIC CMPDS 2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 CONOCOPHILLIPS CO JEFF CITY TERMINAL JEFFERSON CITY COLE 5171 POLYCYCLIC AROMATIC CMPDS 2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 CONOCOPHILLIPS CO JEFF CITY TERMINAL JEFFERSON CITY COLE 5171 POLYCYCLIC AROMATIC CMPDS 2.10 0.0	3M COMPANY - SPRINGFIELD	SPRINGFIELD	GREENE	2891	TETRABROMOBISPHENOL A	10.00	0.00	0.00	0.00	0.00	10.00
ALBAUGH INC.	KOCH MATERIALS CO.	KANSAS CITY	JACKSON	2951	POLYCYCLIC AROMATIC CMPDS	0.00	0.00	0.00	0.00	7.10	7.10
AMERENUE RUSH ISLAND POWER STATION FESTUS JEFFERSON 4931 POLYCYCLIC AROMATIC CMPDS 2.80 0.00 0.00 0.00 0.00 0.00 2.80 AMERENUE SIOUX POWER STATION WEST ALTON ST. CHARLES 4931 POLYCYCLIC AROMATIC CMPDS 2.40 0.00 0.00 0.00 0.00 0.00 2.40 CONOCOPHILLIPS CO JEFF CITY TERMINAL JEFFERSON CITY COLE 5171 POLYCYCLIC AROMATIC CMPDS 2.10 0.00 0.00 0.00 0.00 0.00 0.00 2.10 HOWARD JOHNSON'S ENTERPRISES INC. NEOSHO NEWTON 2875 TRIFLURALIN 2.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 PERFORMANCE ROOF SYSTEMS INC. KANSAS CITY JACKSON 2952 POLYCYCLIC AROMATIC CMPDS 1.85 0.00 0.00 0.00 0.00 0.00 0.00 1.85 ARTCO - NORTH TERMINAL ST LOUIS ST. LOUIS CITY 5171 POLYCYCLIC AROMATIC CMPDS 1.00 0.00 0.00 0.00 0.00 0.00 1.000 1.008 ARTCO - NORTH TERMINAL ST LOUIS ST. LOUIS CITY 5171 POLYCYCLIC AROMATIC CMPDS 1.008 0.000 0.000 1.000 0.000 1.000 1.000 INTERNATIONAL PAPER JOPLIN JASPER 2491 POLYCYCLIC AROMATIC CMPDS 0.200 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	A. P. GREEN INDUSTRIES INC.	FULTON	CALLAWAY	3255	POLYCYCLIC AROMATIC CMPDS	3.54	0.00	0.00	0.00	0.00	3.54
AMERENUE SIOUX POWER STATION WEST ALTON ST. CHARLES 4931 POLYCYCLIC AROMATIC CMPDS 2.40 0.00 0.00 0.00 0.00 0.00 2.40 CONOCOPHILLIPS CO. JEFF CITY TERMINAL JEFFERSON CITY COLE 5171 POLYCYCLIC AROMATIC CMPDS 2.10 0.00 0.00 0.00 0.00 0.00 0.00 2.10 HOWARD JOHNSON'S ENTERPRISES INC. NEOSHO NEWTON 2875 TRIFLURALIN 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ALBAUGH INC.	ST. JOSEPH	BUCHANAN	2879	TRIFLURALIN	3.00	0.00	0.00	0.00	0.00	3.00
CONCOPHILLIPS CO JEFF CITY TERMINAL JEFFERSON CITY COLE 5171 POLYCYCLIC AROMATIC CMPDS 2.10 0.00 0.00 0.00 0.00 0.00 0.00 2.10 HOWARD JOHNSON'S ENTERPRISES INC. NEOSHO NEWTON 2875 TRIFLURALIN 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	AMERENUE RUSH ISLAND POWER STATION	FESTUS	JEFFERSON	4931	POLYCYCLIC AROMATIC CMPDS	2.80	0.00	0.00	0.00	0.00	2.80
HOWARD JOHNSON'S ENTERPRISES INC. NEOSHO NEWTON 2875 TRIFLURALIN 2.00 0.00 0.00 0.00 0.00 0.00 2.00	AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	POLYCYCLIC AROMATIC CMPDS	2.40	0.00	0.00	0.00	0.00	2.40
PERFORMANCE ROOF SYSTEMS INC. KANSAS CITY JACKSON 2952 POLYCYCLIC AROMATIC CMPDS 1.85 0.00 0.00 0.00 0.00 0.00 1.85	CONOCOPHILLLIPS CO JEFF CITY TERMINAL	JEFFERSON CITY	COLE	5171	POLYCYCLIC AROMATIC CMPDS	2.10	0.00	0.00	0.00	0.00	2.10
ARTCO - NORTH TERMINAL ST LOUIS ST. LOUIS CITY 5171 POLYCYCLIC AROMATIC CMPDS 1.008 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000	HOWARD JOHNSON'S ENTERPRISES INC.	NEOSHO	NEWTON	2875	TRIFLURALIN	2.00	0.00	0.00	0.00	0.00	2.00
ARTCO - NORTH TERMINAL ST LOUIS ST. LOUIS CITY 5171 BENZO(G,H,I)PERYLENE 1.004 0.000 0.000 1.000 0.000 1.000 1.004 1.004 1.000 0.000 0.000 1.000 1.004 1.000 1.004 1.000	PERFORMANCE ROOF SYSTEMS INC.	KANSAS CITY	JACKSON	2952	POLYCYCLIC AROMATIC CMPDS	1.85	0.00	0.00	0.00	0.00	1.85
J.R. SIMPLOT CO.	ARTCO - NORTH TERMINAL	ST LOUIS	ST. LOUIS CITY	5171	POLYCYCLIC AROMATIC CMPDS	1.008	0.000	0.000	1.000	0.000	1.008
INTERNATIONAL PAPER JOPLIN JASPER 2491 POLYCYCLIC AROMATIC CMPDS 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.200	ARTCO - NORTH TERMINAL	ST LOUIS	ST. LOUIS CITY	5171	BENZO(G,H,I)PERYLENE	1.004	0.000	0.000	1.000	0.000	1.004
SAFETY-KLEEN SYSTEMS (503001) CAPE GIRARDEAU CAPE GIRARDEAU 7389 POLYCYCLIC AROMATIC CMPDS 0.17527 0.00000 <	J.R. SIMPLOT CO.	ST. LOUIS	ST. LOUIS CITY	2875	TRIFLURALIN	1.000	0.000	0.000	0.000	0.000	1.000
PERFORMANCE ROOF SYSTEMS INC. KANSAS CITY JACKSON 2952 BENZO(G,H,I)PERYLENE 0.15000 0.00000	INTERNATIONAL PAPER	JOPLIN	JASPER	2491	POLYCYCLIC AROMATIC CMPDS	0.200	0.000	0.000	0.000	0.000	0.200
SAFETY-KLEEN SYSTEMS (508502) INDEPENDENCE JACKSON 7389 POLYCYCLIC AROMATIC CMPDS 0.12153 0.00000 0.0000	SAFETY-KLEEN SYSTEMS (503001)	CAPE GIRARDEAU	CAPE GIRARDEAU	7389	POLYCYCLIC AROMATIC CMPDS	0.17527	0.00000	0.00000	0.00000	0.00000	0.17527
CARROLLTON STATION & TERMINAL CARROLLTON CARROLL 5171 POLYCYCLIC AROMATIC CMPDS 0.09000 0.00000<	PERFORMANCE ROOF SYSTEMS INC.	KANSAS CITY	JACKSON	2952	BENZO(G,H,I)PERYLENE	0.15000	0.00000	0.00000	0.00000	0.00000	0.15000
ASA ASPHALT INC. ADVANCE STODDARD 2951 POLYCYCLIC AROMATIC CMPDS 0.03410 0.00000 0.00000 0.00000 0.00000 0.03410 0.00000 0.00000 0.00000 0.03410 0.00000 0.00000 0.00000 0.03410 0.00000 0.00	SAFETY-KLEEN SYSTEMS (508502)	INDEPENDENCE	JACKSON	7389	POLYCYCLIC AROMATIC CMPDS	0.12153	0.00000	0.00000	0.00000	0.00000	0.12153
OMNIUM ST. JOSEPH BUCHANAN 2879 TRIFLURALIN 0.02000 0.00000 0.00000 0.05000 0.00000 0.02000 CARROLLTON STATION & TERMINAL CARROLLTON CARROLL 5171 BENZO(G,H,I)PERYLENE 0.00900 0.00000	CARROLLTON STATION & TERMINAL	CARROLLTON	CARROLL	5171	POLYCYCLIC AROMATIC CMPDS	0.09000	0.00000	0.00000	0.00000	0.00000	0.09000
CARROLLTON STATION & TERMINAL CARROLLTON CARROLL 5171 BENZO(G,H,I)PERYLENE 0.00900 0.000000	ASA ASPHALT INC.	ADVANCE	STODDARD	2951	POLYCYCLIC AROMATIC CMPDS	0.03410	0.00000	0.00000	0.00000	0.00000	0.03410
ASA ASPHALT INC. ADVANCE STODDARD 2951 BENZO(G,H,I)PERYLENE 0.00381 0.00000 0.00000 0.00000 0.00000 0.00381	OMNIUM	ST. JOSEPH	BUCHANAN	2879	TRIFLURALIN	0.02000	0.00000	0.00000	0.05000	0.00000	0.02000
	CARROLLTON STATION & TERMINAL	CARROLLTON	CARROLL	5171	BENZO(G,H,I)PERYLENE	0.00900	0.00000	0.00000	0.00000	0.00000	0.00900
Source: Missouri TRI Database - 2002 data	ASA ASPHALT INC.	ADVANCE	STODDARD	2951	BENZO(G,H,I)PERYLENE	0.00381	0.00000	0.00000	0.00000	0.00000	0.00381
	Source: Missouri TRI Database - 2002 data	-	-		Totals =	5,366.04	1.00	4.00	2.05	960.10	6,331.14

(All units are in pounds.)

Dioxin and Dioxin Like Compounds

The dioxin and dioxin-like compounds (DLCs) category was first added to the TRI in RY2000. However, information about dioxin and DLCs has been available for several years. Many Missourians will relate to these chemicals because of the dioxin contamination and clean-up project in Times Beach, Mo. Times Beach was a small river town just outside of St. Louis where dioxin contaminated oil was spread on roads as a dust suppressant. Due to the toxicity of the dioxin contamination, the whole town had to be evacuated. The clean up took several years, and the area is now a state park.

Dioxin and DLCs are a family of chemicals that have two benzene rings connected by a third oxygenated ring. If there is a single oxygen atom in the connecting ring, the chemical is known as a dibenzofuran (DF). If there are two oxygen atoms, it is known as a dibenzop-dioxin (DD). See Figures 6 and 7. Furthermore, the dioxins and furans of concern have chlorine atoms at one or more of the hydrogen atoms in the outer benzene rings and are known as chlorinated dibenzo-p-dioxins or furans. The most toxic and most highly studied dioxin is the one with four chlorine atoms, one each at the 2,3,7,8 positions. A diagram of this dioxin is shown in Figure 6. The similar dibenzofuran is shown in Figure 7.

A total of 75 dioxins and 175 furans can exist. However, there are only

17 that are included in the dioxin and dioxin-like compounds category required to be reported under the TRI. These are the dioxins and furans that are considered the most toxic. They have chlorine atoms at the 2,3,7,8 positions, as well as other positions.

2,3,7,8 Tetrachlorodibenzo-p-dioxin

Figure 6

2,3,7,8 Tetrachlorodibenzofuran

Figure 7

It is beyond the scope of this report to list all of the dioxins and furans here or differentiate which ones reported. However, this detailed data is available. The Form R requires that the reporting facility report what percentage of each type of dioxin is being released, if that data is available, because each dioxin and furan has a different level of toxicity. If more information is needed about the specific dioxins reported, you Environmental can contact the Assistance Office at 1-800-361-4837 or (573)526-6627.

Table 19 lists all of the reported releases of dioxin and DLCs in Missouri for RY2002. Note that these units are in grams. The reporting threshold for dioxin and DLCs is 0.1 grams. Grams are a very small fraction of a pound. One pound equals 453.6 grams, or one gram equals 0.002205 pounds.

Dioxins and furans are not manufactured intentionally but typically are by-products of high temperature processes. Electric utilities that combust coal or fuel oil can be a major source of dioxin and dioxin-like compounds (see Table 19). Dioxins can also be formed when household trash is burned or during forest fires. Chlorine bleaching of pulp and paper, certain types of chemical manufacturing and processing, and other high temperature industrial processes can all create small quantities of dioxins. Cigarette smoke even contains small amounts of dioxins.

As seen in Table 19, many of the facilities reporting dioxins or DLCs are electric utilities (SIC 4911 or 4931). Companies like Continental Cement, Holcim Inc. and River Cement Company are all cement manufacturers (SIC 3241) and reported some of the greatest releases. These companies burn fuels such as coal and waste chemicals at very high temperatures to form cement. Dioxins and DLCs form during these combustion processes or during the cooling of the hot combustion gases.

In RY2001, International Paper in Joplin, Mo., had reported the greatest volume of dioxin releases for that reporting year. Their value of 46.013 grams was an order of magnitude greater than any other reports. Discussions with the technical contact for International Paper revealed that these releases were generated during the treatment of utility poles. They treat utility poles with a chemical called

pentachlorophenol so that the wood resists decay. During the high temperature and high-pressure treatment, dioxins and DLCs are created. During storage outside, rainwater washes the surface chemicals off the poles and eventually into nearby streams. For RY2002, International Paper reported releasing only 5.682 grams to water and POTW, combined. It is unknown whether this decrease is due to improved processing or lower production but this is a very positive trend.

As shown in Table 19, in RY2002, the total dioxin releases came to 68.0862 grams. In RY2001, the total was 81.06557 grams. The majority of this decrease was due to the decreased releases reported by International Paper. cement kilns (SIC3241), those mentioned above and listed at the top of Table 19, did show significant increases. In RY2001 their combined releases totaled 11.528 grams. In RY2002 their total was 38.680 grams. Again, it is unknown whether this change is due to processing changes or production, but it is a undesirable trend.

Although the quantities of dioxins and DLCs releases are very low, much less than a pound total, and especially as compared to other TRI chemicals, these releases are still of concern because of the nature and toxicity of these compounds.

In Missouri, there were only two reported releases of dioxin and dioxin-like compounds to Missouri streams. These releases are shown in Table 20.

Additional information about dioxin and dioxin like compounds can be accessed on the Internet at:

http://cfpub2.epa.gov/ncea/cfm/part1and 2.cfm or at:

http://www.epa.gov/tri/lawsandregs/pbt/pbtrule.htm.

Table 19
Missouri
Facilities Reporting Releases of DIOXIN and DIOXIN-LIKE COMPOUNDS in RY2002

				Or	-site Releas	ses	Off-sit	e Releases	i
FACILITY NAME	CITY	COUNTY	SIC CODE	AIR	LAND	WATER	POTW	DISPOSAL	TOTAL
CONTINENTAL CEMENT CO. LLC	HANNIBAL	RALLS	3241	17.09	1.1	0	0	0	18.19
HOLCIM (U.S.) INC CLARKSVILLE PLANT	CLARKSVILLE	PIKE	3241	13	0	0	0	0	13
RIVER CEMENT CO.	FESTUS	JEFFERSON	3241	6.54	0	0	0	0	6.54
INTERNATIONAL PAPER	JOPLIN	JASPER	2491	0	0	4.5347	1.1473	0	5.682
DOE RUN RECYCLING FACILITY	BOSS	IRON	3341	5	0	0	0	0	5
NEW MADRID POWER PLANT	MARSTON	NEW MADRID	4911	3.3	0	0	0	0	3.3
MOST INC.	TROY	LINCOLN	3341	2.0288	0	0	0	0	2.0288
THOMAS HILL ENERGY CENTER - POWER DIVISION	CLIFTON HILL	RANDOLPH	4911	1.6	0	0	0	0	1.6
EXIDE TECHNOLOGIES- CANON HOLLOW PLANT	FOREST CITY	HOLT	3341	0.11	1.25	0	0	0	1.36
ASBURY GENERATING STATION	ASBURY	JASPER	4911	1.1	0	0	0	0	1.1
AMERENUE LABADIE POWER PLANT	LABADIE	FRANKLIN	4931	1.064	0	0	0	0	1.064
IATAN GENERATING STATION	WESTON	PLATTE	4911	1.0245	0	0	0	0	1.0245
HAWTHORN GENERATING FACILITY	KANSAS CITY	JACKSON	4911	0.931372	0	0	0	0	0.931372
SIKESTON POWER STATION	SIKESTON	SCOTT	4911	0.85	0	0	0	0	0.85
MONTROSE	CLINTON	HENRY	4911	0.698529	0	0	0	0	0.698529
CLARIANT LSM (MISSOURI) INC.	SPRINGFIELD	GREENE	2833	0.4865	0	0	0.20227	0	0.68877
SIBLEY GENERATING STATION	SIBLEY	JACKSON	4911	0.65	0	0	0	0	0.65
AMERENUE RUSH ISLAND POWER STATION	FESTUS	JEFFERSON	4931	0.5558	0	0	0	0	0.5558
AMERENUE SIOUX POWER STATION	WEST ALTON	ST. CHARLES	4931	0.4681	0	0	0	0	0.4681
JAMES RIVER POWER STATION	SPRINGFIELD	GREENE	4931	0.4	0	0	0	0	0.4
AMERENUE MERAMEC POWER STATION	ST. LOUIS	ST. LOUIS	4931	0.3598	0	0	0	0	0.3598
CHEMICAL LIME CO.	STE. GENEVIEVE	STE. GENEVIEVE	3274	0.2876	0	0	0	0	0.2876
SOUTHWEST POWER STATION	BROOKLINE STATION	GREENE	4931	0.26	0	0	0	0	0.26
HYDRO ALUMINUM	MONETT	BARRY	3354	0.25	0	0	0	0	0.25
LONE STAR INDUSTRIES INC.	CAPE GIRARDEAU	CAPE GIRARDEAU	3241	0.24	0	0	0	0	0.24
ALUMAX FOILS INC.	SAINT LOUIS	ST. LOUIS CITY	3353	0.06783	0	0	0	0.15784	0.22567
CHAMOIS POWER PLANT	CHAMOIS	OSAGE	4911	0.22	0	0	0	0	0.22
ANHEUSER-BUSCH INC.	SAINT LOUIS	ST. LOUIS CITY	2082	0.215	0	0	0	0	0.215
MISSOURI CHEMICAL WORKS	LOUISIANA	PIKE	2869	0.19	0	0	0	0	0.19
LAKE ROAD STATION	ST. JOSEPH	BUCHANAN	4931	0.19	0	0	0	0	0.19
LOXCREEN CO. INC.	HAYTI	PEMISCOT	3354	0.15	0	0	0	0	0.15
MISSISSIPPI LIME COMPANY - STE. GENEVIEVE	STE GENEVIEVE	STE. GENEVIEVE	3274	0.14	0	0	0	0	0.14
CITY OF INDEPENDENCE	INDEPENDENCE	JACKSON	4911	0.12	0	0	0	0	0.12
BASF CORPORATION - HANNIBAL PL ANT	PALMYRA	MARION	2879	0.1	0	0	0	0	0.1
THE PROCTOR & GAMBLE PAPER PRODUCTS CO.	CAPE GIRARDEAU	JACKSON	2621	0.0004	0	0.0059	0	0	0.0063
ALBAUGH INC.	ST. JOSEPH	BUCHANAN	2879	0	0	0	0	0	0
ARNESON TIMBER CO. INC.	STEELVILLE	CRAWFORD	2421	0	0	0	0	0	0
Source: Missouri TRI Database - 2002 data	1	1	Totals =	59.6882	2.3500	4.5406	1.3496	0.1578	68.0862
boures missour Tri Bunbuse 2002 unu			i otais =	07.0002		(All units are		0.1070	00.0002

(All units are in grams.)

Table 20 Missouri

Reported Releases of DIOXIN and DIOXIN LIKE COMPOUNDS to Surface Waters in RY2002

FACILITY NAME	CITY	COUNTY	STREAM NAME #1	REL #1	STREAM NAME #2	REL #2	TOTAL
INTERNATIONAL PAPER	JOPLIN	JASPER	UNNAMED TRIB. TO SILVER CREEK	0.0779	UNNAMED TRIB. TO JOPLIN CREEK	4.4568	4.5347
PROCTOR & GAMBLE PAPER PROD.	CAPE GIRARDEAU	JACKSON	MISSISSIPPI RIVER	0.0059		0	0.0059
(Units are in grams)							4.5406

Trends Analysis

As it is important to look at TRI releases in a given year, it is also important to look at trends over time. Since the new industries have only been reporting since 1998 and their releases so markedly affect the total releases, the new industries and the original industries will be discussed separately in this section.

Original Industries

Table 21 lists all of the releases by media for the original industries since 1988. The data from this table is shown graphically in Figures 8 and 9. Releases to POTWs are not included in these figures. This is because, prior to 1999, all transfers to POTWs were summed together. Transfers of metals to POTWs were first separated out in 1999 and were, since that time, considered releases to the environment. Therefore, only the data since 1999 would be valid, so this category of releases was left out of the data analysis.

Table 21 Missouri Original Industry Releases by Year

	1	Units are in pour		D. Taboa i T
RY	AIR	LAND	WATER	DISPOSAL
1988	52,409,588	43,009,771	2,168,982	32,183,480
1989	49,644,776	27,574,966	1,262,148	3,373,873
1990	47,338,161	22,964,681	1,519,020	3,134,723
1991	36,936,375	23,829,449	1,230,181	2,501,763
1992	37,313,346	17,338,852	1,115,179	2,704,083
1993	33,348,689	18,101,934	1,438,746	3,997,018
1994	30,561,446	16,631,294	1,305,204	5,229,292
1995	31,808,470	14,585,213	3,740,978	3,762,984
1996	35,571,579	17,033,956	3,634,629	4,255,946
1997	33,850,727	20,171,157	5,010,714	5,350,115
1998	30,454,406	19,826,686	3,070,223	4,340,370
1999	29,375,844	19,575,095	3,343,958	4,598,664
2000	26,602,028	24,186,007	1,793,810	5,798,400
2001	22,633,624	25,513,675	1,517,734	7,156,967
2002	23,157,152	23,524,774	4,461,136	6,516,873

Source: Missouri TRI Database

Figure 8 is a stacked bar graph that shows the general pattern of total releases for the original industries since 1988. One can see in Figure 8 that there was a strong downward trend in total releases from 1988 through 1994. This reflects the large impact TRI reporting had on the manufacturing industry in general. Between 1994 and 1997, there was a significant increase in total releases. This was due to two factors. First, there was a large number of chemicals added to the TRI list in 1995. Plus, nitrate compounds, one of the chemicals added, had a major impact on This chemical releases. significantly increased the water releases reported in 1995 through 1997.

The second factor was that the Missouri charcoal kilns were required to start reporting their air releases of methanol in 1996. This increase can be seen in Figure 8 between the years 1995 and 1996.

Between 1998 and 2002 total releases have remained fairly constant with only slight ups and downs, see Figure 8. there have been fairly However, significant changes within specific media. For example, between 1996 and 2001 there has been a consistent downward trend in air releases (see the bottom hashed bar). Between 1998 and 2001 there has been a fairly large increasing trend in on-site land releases (see the dark gray bar, the second from the bottom). The other two media, offsite disposal and water, are more difficult to see in Figure 8.

Because it is difficult to differentiate the trends by media in Figure 8, the data is

re-plotted in Figure 9. This figure is a line graph that makes it easier to see how the releases vary by media.

As can again be seen in Figure 9, the air releases have increased slightly for RY2002, with a corresponding decrease in land releases such that they both fall at the same spot on the graph. The change in air releases from RY2001 to RY2002, was just over 0.6 million pounds, whereas the land releases decreased by approximately 2.0 million pounds. The change in air releases is pretty small such that the general downward trend since 1996 can be considered to be continuing. The off-site disposal also decreased slightly between RY2001 and RY2002 (see Figure 9 and Table 21).

The major change seen in Figure 9 was to water releases. This can be seen in Figure 9 as well as Table 21. The water releases increased between 2001 and 2002 by 2,943,402 pounds. This large increase is also shown in Figure 10. As was discussed previously in this report, this increase resulted from a large increase in water releases of nitrate compounds reported by Tyson Foods in Sedalia, Mo.

In 2001, Tyson had reported zero releases of nitrate compounds. In RY2002 they reported 3,398,063 pounds. Tyson indicated they were not aware that they should have been reporting for nitrate compounds and that they are still in discussions with EPA to make a final determination. Thus we may have to wait to see if this value is correct and whether Tyson perhaps should have been reporting this amount for previous years.

If Tyson's reported amount is subtracted from the value in Table 21 for RY2002, the number would have been 1,063,073 pounds and would have been a significant decrease from RY2001. As was reported last year, several companies have reported significant decreases in reported nitrate compounds over the last several years and this is reflected in the sharp downward trend between 1997 and 2001 seen in Figure 10.

For more details about these trends contact the Environmental Assistance Office at 1-800-361-4827.

TRI Annual Report – 2002 Data

Missouri
Figure 9. Total Releases by Year
Original Industries

New Industries

Table 22 shows the data for the new industry releases by year. Because the new industries have only been reporting since 1998, there are only five years of data available. A stacked bar graph of this data is shown in Figure 11. As can be seen, total releases remained about the same for the first three years but has shown a marked decrease since RY2000. Figure 10 shows that the releases are almost entirely land and air releases with little water or off-site disposal. This is also confirmed by the data in Table 22.

Table 22 Missouri New Industry Releases by Year

(Units are in pounds.)									
	RY	AIR	LAND	WATER	DISPOSAL				
	1998	13,051,529	60,126,561	159,888	6,708				
	1999	12,770,665	55,442,754	154,369	406				
	2000	11,774,909	60,501,275	152,879	111,194				
	2001	9,220,852	51,336,647	142,209	134,421				
	2002	7,507,068	47,803,103	38,359	139,465				

Source: Missouri TRI Database

Figure 12 shows a line graph that further illustrates that the new industry releases are almost entirely air and land releases. Because the land releases are so high, the scale in Figure 12 is so large that one can not discern if there were any increases or decreases in water or off-site disposal. These two media will be re-plotted and discussed later in this section.

The decrease in on-site land releases from RY2001 to RY2002, shown in Figure 12. is a decrease approximately 3.5 million pounds or 6.9 Last year there was a 9.2 percent. million-pound decrease or 15.2 percent. Review of the data shows that both the metal mines and the electric utilities had similar decreases in on-site land releases. As was mentioned previously, the metal mines and electric utilities make up 99.6 percent of all the air and land releases by the new industry sector and therefore have the biggest impact.

The electric utilities showed a decrease in on-site land releases of 1.73 million pounds and the metal mines had a decrease of 1.81 million pounds. The biggest change by the electric utilities was by the AmerenUE Sioux power plant in West Alton, Mo. which showed a decrease of 1.26 million pounds. The Meramec power station in St. Louis showed a decrease of 0.58 million Together these two plants pounds. 1.84 million-pound account for a The biggest change by the decrease. metal mines was the Fletcher mine in Bunker, Mo., which had a decrease of 1.73 million pounds. Although it is not clear whether these decreases were due to production, a change in coal or ore auality. or process changes, continued downward trend is positive.

The other area where the new industries have shown significant changes is in air releases. As shown in Figure 12 and then again in Figure 13, the new industries have shown significant decreases since 1999. Each year they have shown between a one to two million-pound decrease (see Table 22). These decreases are essentially entirely due to the electric utilities. The metal mines have relatively low air releases at around 140,000 pounds for both RY2001 and RY2002.

Between RY2001 and RY2002, the electric utilities showed an overall decrease of 1.72 million pounds. The total change in air releases in Table 22 was 1.71 million pounds. As in RY2001, further review of the data shows that the bulk of this change was

due to decreased air emissions of hydrochloric acid aerosols. The biggest reductions in these emissions were reported by three power plants. These were; the Meramec Plant in St. Louis (902,000 pounds), the Labadie Plant in Labadie, Mo. (289,000 pounds) and the Sioux Plant in West Alton (191,000 pounds). These three plants and their reductions in hydrochloric acid emissions account for 80.7 percent of the total air releases reduction.

These plants are all owned and operated by AmerenUE. Discussions with AmerenUE last year indicated that these decreases were due to the use of a different grade of coal that contains less chlorine. Chlorine in the coal is what combines chemically with hydrogen in the flew gases to form the hydrochloric acid aerosols. It is a byproduct of the combustion process. It is assumed that this cleaner coal contributed to these reductions again this year.

The final areas to be discussed are the water and off-site disposal releases. Because these releases are so small, relatively speaking, their values cannot be seen in Figure 12. The data for these two media are re-plotted in Figures 14 and 15, respectively.

Figure 14 shows the water releases since 1998. As can be seen there is a pronounced drop between RY2001 and RY2002. This drop equates to a change of 103,850 pounds (see Table 22). This decrease is a result of decreased water releases by the electric utilities. Their total decrease between these two years was 113,055 pounds. The metal mines showed a small increase of 9,205 pounds. The difference is the value shown above of 103,850 pounds.

Further review of the data from the electric utilities showed that the majority of reduced water releases resulted from reduced releases of barium compounds. Almost all of the power plants showed significant decreases in compounds as well as smaller amounts of other metal compounds. Two of the largest decreases of barium compounds were by the Labadie plant, a reduction of 32,000 pounds, and the Rush Island plant in Festus, Mo., of 42,935 pounds. Both of these plants were able to essentially eliminate their releases of barium compounds, as were some of the others.

The data for the off-site disposal is replotted in Figure 15. As can be seen there has been a slight upward trend. Between RY2001 and RY2002 there was an increase of only 5,044 pounds. The metal mines showed no off-site disposal for both years and the electric utilities showed an increase of 13,526 pounds. Apparently, other new industry facilities had significant sector decreases. Review of the data showed that one utility accounted for the majority of these releases. Lake Road Station in St. Joseph, Mo., reported 115,082 pounds of off-site disposal in and 128,820 pounds RY2001 RY2002. This accounts for 98.2 percent of the releases reported by the electric utilities and 92.4 percent of the total shown in Table 22. The bulk of these off-site releases were again barium compounds.

Source Reduction in Missouri

In 1990, Congress passed the Pollution Prevention Act (PPA). This law established the national policy that the best way to manage pollution was to prevent or reduce the generation of the wastes that cause pollution. This is known as source reduction. Up until that time, most of the environmental laws dealt with managing wastes or pollution after it was created. The PPA focused on reducing the amount of pollution generated.

The PPA defines source reduction as any practice that:

- Reduces the amount of any hazardous substance, pollutant or contaminant entering any waste stream or otherwise released into the environment (including fugitive emissions) prior to recycling, treatment or disposal; and
- Reduces the hazards to public health and the environment associated with the release of such substances, pollutants or contaminants.

The PPA stated that, through source reduction, the risks to people and the environment could be reduced and financial and natural resources could be saved that would otherwise be spent on environmental clean-up or pollution control. Industrial processes could also be made more efficient. Source reduction practices were defined as including modifications in equipment, processes, procedures or technology; reformulation or redesign products; of substitution of raw materials; or improvements in maintenance and inventory controls. All of these practices affect the generation of wastes. Management practices, such as recycling, treatment or disposal, which deal with the wastes after they are generated are not considered source reduction.

Although source reduction is the preferred management method, the PPA recognized that recycling or reuse and treatment were viable options when source reduction was not feasible. Thus, the PPA established a hierarchy of waste

management options with source reduction first, recycling or reuse second and treatment third. Disposal, which is also considered a release to the environment, is viewed only as a last resort, to be employed only if the preferred methods cannot be used. However, disposal must still be in permitted landfills.

The PPA did not specifically address the combustion of wastes for energy recovery. However, because this option aspects beneficial similar to recycling or treatment, the EPA chose to list activity this in the waste management hierarchy. Energy recovery is preferred over treatment. Figure illustrates 16 the management hierarchy used in the TRI.

On-site and Off-site Waste Management

The PPA required that facilities report the quantities of wastes they manage both on- and off-site through recycling, energy recovery or treatment. This information is reported in Section 8 of the TRI Form R (see Appendix A). Although these methods of waste management are not source reduction, they are preferred over disposal or other releases to the environment.

Future Projections

The PPA also required industries to report the quantities of wastes managed in the current reporting year and provide projections for releases and waste management for the two following years. The PPA required these projections to encourage facilities to consider their future waste generation, opportunities for source reduction and potential improvements in waste management options. However, future year estimates

are not commitments that facilities reporting to the TRI must meet.

Projection Data

Table 23 provides a summary of the projections data for both the original industries and the new industries combined. The current year data corresponds to the RY2002 data, which is the focus of this report. The RY2001 projections for 2002 are presented as "Projected 2002." These are the values that companies projected they would manage in RY2002. This data will help indicate how close the industry projections were to their actual values.

The first thing to note in Table 23 is that all of the current values, except for Offsite Recycling, came in under their respective "projected" values. (See the first two columns in Table 23.) Although it is a positive thing for companies to do on-site and off-site recycling, energy recovery treatment, decreases in these values show an even more positive trend. As was mentioned previously in the TRI Data Summary section, decreases in the amount of wastes managed indicate that companies are using decreased amounts of toxic chemicals overall. This is a positive outcome. Not only are there decreased amounts of toxic chemicals being released to the environment there also a decreased potential for accidental releases during handling or transport. These are positive aspects of the reduced wastes managed.

Note in Table 23 that not only was the Total Related Wastes managed in RY2002 lower than the "projected" value by about 48.8 million pounds, it

Table 23
Missouri
Projections of Releases and Waste Management for RY2003 and RY2004
(All Industries)

Waste Management Activity	Projected 2002	Current Year 2002	Projected 2003	Projected 2004
Recycling On-site	264,461,391	253,368,956	259,439,215	260,056,604
Recycling Off-site	46,729,576	47,637,469	44,363,265	44,498,137
Energy Recovery On-site	104,725,724	84,874,264	86,524,449	86,557,149
Energy Recovery Off-site	17,743,139	12,761,197	12,452,045	12,695,817
Treatment On-site	64,787,463	53,131,319	48,461,860	53,849,734
Treatment Off-site	13,252,558	13,139,833	11,023,535	11,126,820
Total On- and Off-site Releases	115,221,140	113,227,139	114,425,460	114,959,198
Total Production Related Wastes	626,920,991	578,140,177	576,689,829	583,743,459

Source: Missouri TRI Database - 2002 data

(All units are in pounds.)

was lower than the actual in RY2001 by 88.4 million pounds. Again, this is a positive outcome.

The projected values in Table 23 for the 2003 and 2004 reporting years indicate slight decreases in RY2003 and then a fairly significant increase in RY2004. The increases are projected to be primarily in on-site recycling, energy recovery and treatment. However, based on the estimates in RY2001, we may be able to expect lower actual numbers in RY2003 and RY2004 than are shown. As was also stated above, it is still a positive thing for companies to do recycling, energy recovery and treatment, especially on-site, which reduces the risk of releases during transport. Therefore increases in these numbers is not altogether bad.

Source Reduction Methods

The PPA also required companies to begin reporting what types of methods or source reduction activities they were using to achieve or implement source reduction. They report these activities using source reduction codes. The source reduction codes they are allowed to use are shown in Appendix E, entitled "Source Reduction Activity Codes." These codes cover various source

reduction activities from good operating practices to product modifications. Companies are allowed to report up to four source reduction codes for each chemical.

Doing source reduction is not mandatory, nor is it always feasible. TRI reporting of source reduction activities is also voluntary, so not all companies report source reduction activities.

Furthermore, implementation of new source reduction generally gets more difficult with time. Covered facilities have been reporting source reduction activities since 1991. Over the years, fewer and fewer source reduction

Table 24 Missouri Source Reduction by Year

		Total SR		
	No. Facilites	Codes	Total	Percent
RY	Reporting SR	Reported	Reports	(SR/Reports)
1991	206	1181	2215	53.3%
1992	197	911	2083	43.7%
1993	201	828	2018	41.0%
1994	174	627	1873	33.5%
1995	140	469	1908	24.6%
1996	135	477	1843	25.9%
1997	108	484	1889	25.6%
1998	143	605	2242	27.0%
1999	112	522	2102	24.8%
2000	105	477	2255	21.2%
2001	102	524	2305	22.7%
2002	88	460	2300	20.0%

Source: Missouri TRI Database

activities have been reported. This general trend is shown in Table 24 and graphically in Figure 17. In RY2001, there had been a slight increase in source reduction activities but the numbers then decreased again in RY2002. For this reporting year, 88 facilities reported 460 source reduction activities. This was a decrease of 64 source reduction codes or 12.2 percent less than that reported in RY2001. Appendix F, entitled "Source Reduction Activity By County By Company," lists all of the companies that reported one or more source reduction code activities for RY2002.

Table 25 (page 54) shows a list of all of the source reduction codes reported for RY2002. The "SR" fields show the number of times a particular code was used as the first, second, third or fourth source reduction code. The total column, of course, sums these numbers. The source reduction codes are listed in descending order based on the "total" field. The code description gives an idea of what type of activity was used to reduce the source of pollution.

Three codes in Table 25 are, in a way, more significant than the others. These are W42, "Substituted Raw Materials," W82, "Modified Design or Composition of Product," and W49, "Other Raw Material Modifications." Although all of the activity codes are important, these three codes are significant because they involve eliminating or minimizing the use of toxic chemicals in the raw materials or in the final product. They, therefore, directly reduce the amount of toxic chemicals that can be released into the environment.

Table 26 shows the top 30 companies that reported source reduction activity in

2002. These companies are listed in descending order based on the "Total" column. The "SR" fields indicate the level of source reduction activity. Each count indicates a chemical for which some type of source reduction was reported. One company, Continental Cement, stands out because of their large amount of source reduction activity, see Table 26. Review of their data shows that they reported up to four source activity codes for 42 different chemicals. Many of the codes were the same for all chemicals (see Appendix Continental is unique in that it accepts waste chemicals from other companies and then burns these wastes as fuel in their cement manufacturing process. source reduction codes they reported were: W24, W39, W52 and W58. As can be seen in Table 25, these are primarily process modifications, which understandably, could affect all of the chemicals they manage. This same reasoning applies to many of the companies that report the same source reduction methods for multiple chemicals.

For a more detailed review of the source reduction codes reported by companies, see Appendix F.

PBT Source Reduction

For RY2002, 23 companies reported source reduction for PBT chemicals (see Table 27). This is slightly less than the 28 that reported in 2001. In 2000, only eight companies had reported source reduction for PBTs. So this is still a significant increase. Table 27 shows the list of companies and the chemicals for which they reported source reduction. It is significant that companies are reporting source reduction for PBT chemicals. RY2000 was the first year

PBT chemicals were required to be reported. This, in part, shows the positive impact that the TRI reporting requirement has had on reporting facilities. These companies are to be commended for their efforts. For the types of source reduction activities these facilities are reporting, refer to Table 25 or see Appendix E.

Table 25
Missouri
Reported Source Reduction Codes for RY2002

CODE#	CODE DESCRIPTION	SR#1	SR#2	SR#3	SR#4	TOTAL
W58	OTHER PROCESS MODIFICATIONS	16	5	4	42	67
W52	MODIFIED EQUIPMENT, LAYOUT, OR PIPING	3	5	53	2	63
W13	IMPROVED MAINTENANCE SCHEDULING, RECORDKEEPING, OR PROCEDURES	59		1		60
W39	OTHER SPILL OR LEAK PREVENTION	7	47			54
W24	INSTITUTED BETTER LABELING PROCEDURES	41	2			43
W42	SUBSTITUTED RAW MATERIALS	25	2	2	1	30
W19	OTHER CHANGES IN OPERATING PRACTICES	15	8			23
W82	MODIFIED DESIGN OR COMPOSITION OF PRODUCT	11	9	1		21
W14	CHANGED PRODUCTION SCHEDULE TO MINIMIZE EQUIPMENT AND FEEDSTOCK CHANGEOVERS	15				15
W32	IMPROVED PROCEDURES FOR LOADING, UNLOADING, AND TRANSFER OPERATIONS	3	3	2	1	9
W35	INSTALLED VAPOR RECOVERY SYSTEMS	1	7			8
W49	OTHER RAW MATERIAL MODIFICATIONS	6	2			8
W31	IMPROVED STORAGE OR STACKING PROCEDURES	1	4	1		6
W36	IMPLEMENTED INSPECTION OR MONITORING PROGRAM OF POTENTIAL SPILL OR LEAK SOURCES	2	3	1		6
W51	INSTITUTED RECIRCULATION WITHIN A PROCESS	1	3	1		5
W71	OTHER CLEANING AND DEGREASING MODIFICATIONS	2		1	1	4
W73	SUBSTITUTED COATING MATERIALS USED	3	1			4
W22	BEGAN TO TEST OUTDATED MATERIAL - CONTINUE TO USE IF STILL EFFECTIVE	1	2			3
W29	OTHER CHANGES IN INVENTORY CONTROL		2	1		3
W33	INSTALLED OVERFLOW ALARMS OR AUTOMATIC SHUTOFF VALVES		3			3
W41	INCREASED PURITY OR RAW MATERIALS	3				3
W72	MODIFIED SPRAY SYSTEMS OR EQUIPMENT	1	2			3
W81	CHANGED PRODUCT SPECIFICATIONS	3				3
W83	MODIFIED PACKAGING	1			2	3
W21	INSTITUTED PROCEDURES TO ENSURE THAT MATERIALS DO NOT STAY IN INVENTORY BEYOND	2				2
W54	INSTITUTED BETTER CONTROLS ON OPERATING BULK CONTAINERS TO MINIMIZE DISCARDING		1	1		2
W55	CHANGED FROM SMALL VOLUME CONTAINERS TO BULK CONTAINERS TO MINIMIZE DISCARDING	1		1		2
	IMPROVED RINSE EQUIPMENT DESIGN	2				2
W68	IMPROVED RINSE EQUIPMENT OPERATION		2			2
	IMPROVED APPLICATION TECHNIQUES			1	1	2
W89	OTHER PRODUCT MODIFICATIONS			1		1

Source: Missouri TRI Database - 2002 data

Total = 46

Table 26
Missouri
Top 30 Facilites Reporting Source Reduction Activity in RY2002

	_	_		CODE C	OUNTS		
FACILITY NAME	CITY	COUNTY	SR 1	SR 2	SR 3	SR 4	TOTAL
CONTINENTAL CEMENT CO. LLC	HANNIBAL	RALLS	42	42	41	41	166
THE DOE RUN COMPANY - GLOVER SMELTER	GLOVER	IRON	10	10	10	0	30
EMERSON ELECTRIC CO.	KENNETT	DUNKLIN	10	4	3	2	19
3M COMPANY - NEVADA	NEVADA	VERNON	12	4	0	0	16
DYNO NOBEL INC CARTHAGE PLANT	CARTHAGE	JASPER	5	4	1	0	10
TRUE MANUFACTURING CO. INC.	O'FALLON	ST. CHARLES	4	3	2	0	9
ADCO INC.	SEDALIA	PETTIS	4	3	1	1	9
OMNIUM	ST. JOSEPH	BUCHANAN	8	0	0	0	8
DOUGLAS PRODUCTS & PACKAGING CO.	LIBERTY	CLAY	2	2	2	2	8
SILGAN CONTAINERS MANUFACTURING CORP.	ST. JOSEPH	BUCHANAN	7	0	0	0	7
PERMACEL SAINT LOUIS INC.	SAINT LOUIS	ST. LOUIS CITY	5	1	1	0	7
HAYES LEMMERZ INTERNATIONAL INC.	SEDALIA	PETTIS	3	3	1	0	7
ESSEX ELECTRIC INC.	SIKESTON	SCOTT	3	3	0	0	6
DAVIS PAINT CO.	NORTH KANSAS CITY	CLAY	5	0	0	0	5
MISSOURI METALS LLC	ST LOUIS	ST. LOUIS	2	2	1	0	5
MODINE MANUFACTURING CO.	JEFFERSON CITY	COLE	2	2	1	0	5
MID-STATES PAINT & CHEMICAL CO.	ST. LOUIS	ST. LOUIS	4	0	0	0	4
BUCKHORN RUBBER PRODUCTS INC.	HANNIBAL	RALLS	3	1	0	0	4
DYNO NOBEL INC LOMO PLANT	LOUISIANA	PIKE	3	1	0	0	4
HILLYARD INDUSTRIES INC.	ST. JOSEPH	BUCHANAN	2	2	0	0	4
ZOLTEK CORP.	SAINT CHARLES	ST. CHARLES	2	2	0	0	4
CLARIANT LSM (MISSOURI) INC.	SPRINGFIELD	GREENE	2	2	0	0	4
ALUMAX FOILS INC.	SAINT LOUIS	ST. LOUIS CITY	2	2	0	0	4
EVEREADY BATTERY CO. INC.	MARYVILLE	NODAWAY	2	2	0	0	4
CONAGRA FOODS	MARSHALL	SALINE	1	1	1	1	4
PROCTER & GAMBLE MANUFACTURING CO ST. LOUIS	ST. LOUIS	ST. LOUIS CITY	1	1	1	1	4
HAWKER ENERGY PRODUCTS INC.	WARRENSBURG	JOHNSON	1	1	1	1	4
MARCHEM COATED FABRICS INC.	NEW HAVEN	FRANKLIN	1	1	1	1	4
PRECISION/MASTER MADE PAINTS	CARL JUNCTION	JASPER	3	0	0	0	3
CATERPILLAR - BOONVILLE FACILITY	BOONVILLE	COOPER	3	0	0	0	3

Source: Missouri TRI Database - 2002 data

Table 27
Missouri
Facilities Reporting Source Reduction Activity for PBT Chemicals in RY2002

			So	Source Reduction Codes					
FACILITY NAME	COUNTY	CHEMICAL	SR1	SR2	SR3	SR4			
HAWKER ENERGY PRODUCTS INC.	JOHNSON	LEAD COMPOUNDS	W13	W24	W36	W42			
HAYES LEMMERZ INTERNATIONAL INC.	PETTIS	LEAD COMPOUNDS	W13	W33	W42				
NORTHSTAR BATTERY COMPANY LLC	GREENE	LEAD COMPOUNDS	W13						
ESSEX ELECTRIC INC.	SCOTT	LEAD COMPOUNDS	W13	W19					
THE DOE RUN COMPANY - GLOVER SMELTER	IRON	LEAD COMPOUNDS	W13	W35	W52				
OMNIUM	BUCHANAN	TRIFLURALIN	W14						
CATERPILLAR - BOONVILLE FACILITY	COOPER	LEAD COMPOUNDS	W14						
EMERSON ELECTRIC CO.	DUNKLIN	LEAD	W19						
CLARIANT LSM (MISSOURI) INC.	GREENE	DIOXIN AND DIOXIN-LIKE COMPOUNDS	W19	W52					
WIRE ROPE CORPORATION OF AMERICA INC.	LIVINGSTON	LEAD	W41						
WIRE ROPE CORPORATION OF AMERICA INC.	BUCHANAN	LEAD	W41						
WIRE ROPE CORPORATION OF AMERICA INC.	PETTIS	LEAD	W41						
MODINE MANUFACTURING CO.	COLE	LEAD	W42	W58	W82				
PERMACEL SAINT LOUIS INC.	ST. LOUIS CITY	LEAD COMPOUNDS	W42						
MID-STATES PAINT & CHEMICAL CO.	ST. LOUIS	LEAD COMPOUNDS	W42						
CHRISTY MINERALS CO.	MONTGOMERY	LEAD COMPOUNDS	W42						
SERICOL INC.	CLAY	LEAD COMPOUNDS	W42						
ROTO-DIE COMPANY INC.	ST. LOUIS	LEAD	W58						
DIVERSIFIED DIEMAKERS - DBA INTERMET	MONROE	LEAD	W58						
CONTINENTAL CEMENT CO. LLC	RALLS	DIOXIN AND DIOXIN-LIKE COMPOUNDS	W58	W72					
COLT TECHNOLOGY INC.	JACKSON	LEAD	W73	W58					
COPELAND CORP.	LACLEDE	LEAD COMPOUNDS	W81						
3M COMPANY - NEVADA	VERNON	LEAD COMPOUNDS	W82						

Source: Missouri TRI Database - 2002 data

Summary

Chemicals are a part of our lives. We use chemicals in our homes, in our cars and in our industries. Chemicals are used to make many of the products that we use and enjoy every day. The Toxics Release Inventory was mandated by Congress to help ensure that toxic chemicals are managed and used safely and responsibly by our manufacturing industries. The fact that companies have been required to report on how much toxic chemicals they are releasing into the environment has by itself prompted significant reductions in environmental releases over the years. These reductions have continued through the 2002-reporting year. For RY2002 companies reported releasing 4,505,807 fewer pounds than they did in RY2001. This was a 3.8 percent decrease. This year we also saw significant reductions in the amounts of toxic chemicals being managed as wastes indicating companies are either using fewer toxic chemicals or are using them more efficiently and therefore generating less wastes. This is a positive trend. We have also seen decreased releases of some of the persistent, bioaccumulative and toxic (PBT) chemicals. This is also positive. However, as good as these results are, there are probably still many reductions that can be made. It is hoped that, with the help of interested citizens, the reductions in the amounts of releases of all of the TRI chemicals will continue. The department hopes that the information presented in this report will benefit Missouri citizens by improving their awareness and promoting their involvement in environmental issues in their communities.

If you have questions, need further information, need help in addressing or understanding some of these issues, or have comments about this report, please contact the Department of Natural Resources' Environmental Assistance Office at 1-800-361-4827 or (573) 526-6627.

APPENDIX A

TOXIC CHEMICAL RELEASE INVENTORY REPORTING FORMS

FORM R and FORM A

Page 1 of 5

MIPORTAINT. Type of print, read instructions before completing form,

FORM R

TOXIC CHEMICAL RELEASE INVENTORY REPORTING FORM

United States Environmental Protection Agency

Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986, also known as Title III of the Superfund Amendments and Reauthorization Act

WHE	RE TO SEND COM	P.O Mer	1 0					_					is a re	"X" here i evision use only	this				
Imp	ortant: See i	nstruc	tions	to dete	rmine	whe	en "No	ot Ap	plic	able (NA) "	boxe	s sho	oulc	l be d	checke	d.		
			PA	ART I.	FACI	LITY	/ IDEI	NTIF	FICA	TION IN	FC)RM	ATIO	N					
SEC	TION 1. REPO	ORTING	YEA	R															
SEC	TION 2. TRAE	DE SEC	RET II	NFORM	ATION														
2.1	Are you claiming the toxic chemical identified on page 2 trade secret? Yes (Answer question 2.2; Attach substantiation forms) No (Do not answer 2.2; Go to Section 3) Is this copy Sanitized Unsanitized (Answer only if "YES" in 2.1)												ed						
SEC	SECTION 3. CERTIFICATION (Important: Read and sign after completing all form sections.)																		
I hereby certify that I have reviewed the attached documents and that, to the best of my knowledge and belief, the submitted information is true and complete and that the amounts and values in this report are accurate based on reasonable estimates using data available to the preparers of this report. Name and official title of owner/operator or senior management official: Signature: Date Signed:																			
Name	and official title of o	owner/ope	rator or s	senior man	agement	officia	al:				Si	ignature	e:					Date	Signed:
	TION 4. FACI	LITY ID	ENTIF	ICATIO	N			TDL	1116	ID Noveles									
4.1	y or Establishment Na	ıme								ID Number stablishment N	l ame	or Maili	ina Addre	ess(if	differen	t from stree	t add	ress)	$\overline{}$
	,								,									,	_
Street								Mailing Address											
City/C	ounty/State/Zip Code							City/County/State/Zip Code											
4.2	This report contai)	a.		An er facilit		b.			art of a		c. [ede eility	eral	
4.3	Technical Contac	t Name												Telep	hone N	umber (incl	ıde a	rea co	ode)
4.4	Public Contact Na	ame												Telep	hone N	umber (incl	ıde a	rea co	ode)
4.5	SIC Code (s) (4 d	ligits)		a.		b.			c.			d.	•		e.		f	-	
4.6	Latitude	Deg	grees	M	linutes		Secor	nds		Longitude	-	D	egrees			Minutes		Se	econds
4.7	Dun & Bradstreet Number(s) (9 digi			EPA Identif (RCRA I.D.				4.9		ity NPDES P ber(s) (9 cha			4.10		_	und Injection Number(s			
a. a. b. b.								a. b.					a. b.						
	TION 5. PARE	ENT CO		NY INFO	RMAT	ION		JD.					₁ 0.						
5.1	Name of Parent C			NA [
5.2	Parent Company's	s Dun & B		L		NA		$\frac{1}{1}$											

EPA FORM R

TRI Facility ID Number
Toxic Chemical, Category or Generic Name

	D. D. T												
	PART II. CHEMICA	AL-SPEC	IFIC INFORMATION Toxic Chemical, Category or Generic Nam	ie									
SEC	TION 1. TOXIC CHEMICAL	L IDENTIT	(Important: DO NOT complete this section if you completed Section 2 below.)										
1.1	CAS Number (Important: Enter only one	e number exactly	it appears on the Section 313 list. Enter category code if reporting a chemical category.)										
	T : 0 : 1 0 : 10 : 10 : 1												
1.2	Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)												
4.0	Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.)												
1.3	1.3												
SECTION 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section 1 above.)													
2.4	Generic Chemical Name Provided by S	Supplier (Importa	nt: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.)										
2.1													
SEC	SECTION 3. ACTIVITIES AND USES OF THE TOXIC CHEMICAL AT THE FACILITY (Important: Check all that apply.)												
3.1	Manufacture the toxic che	emical:	.2 Process the toxic chemical: 3.3 Otherwise use the toxic chemical	l:									
a.	Produce b. Imp	ort											
	If produce or import:												
C.	For on-site use/processing		a. As a reactant a. As a chemical processing aid										
d.	For sale/distribution		b. As a formulation component b. As a manufacturing aid										
e.	As a byproduct		c. As an article component c. Ancillary or other use										
f.	As an impurity		d. Repackaging										
SEC	ΓΙΟΝ 4. MAXIMUM AMOU	NT OF THE	TOXIC CHEMICAL ONSITE AT ANY TIME DURING THE CALENDAR Y	EAR									
4.1	(Enter two-d	ligit code fr	om instruction package.)										
SEC	TION 5. QUANTITY OF TH	IE TOXIC (HEMICAL ENTERING EACH ENVIRONMENTAL MEDIUM ONSITE										
			A. Total Release (pounds/year) B. Basis of Estimate (Enter range code or estimate*) C. % From Stormwater										
5.1	Fugitive or non-point air emissions	NA											
5.2	Stack or point	NA [
5.3	air emissions Discharges to receiving streams or												
	water bodies (enter one name per better Stream or Water Body Name 1997)	,											
5.3.1	Stream of Water Body Nai												
5.3.2													
5.3.3													
5.4.1	Underground Injection onsite to Class I Wells	NA											
5.4.2	Underground Injection onsite	NA _											
	ional pages of Part II, Section 5.3		indicate the total number of pages in this box (example: 1.2.3. etc.)										

EPA FORM R PART II. CHEMICAL - SPECIFIC INFORMATION (CONTINUED)

TRI Facility ID Number
Toxic Chemical, Category, or Generic Name

PAR	PART II. CHEMICAL - SPECIFIC INFORMATION (CONTINUED) Toxic Chemical, Category, or Generic Name												
SECTIO	SECTION 5. QUANTITY OF THE TOXIC CHEMICAL ENTERING EACH ENVIRONMENTAL MEDIUM ONSITE(Continued)												
		NA	A. Total F		(pounds/ye code* or e	, .	range	B. Basis (enter	of Estimate code)				
5.5	Disposal to land onsite												
5.5.1A	RCRA Subtitle C landfills												
5.5.1B	Other landfills												
5.5.2	Land treatment/application farming	n											
5.5.3	Surface Impoundment												
5.5.4	Other disposal												
SECTION 6. TRANSFERS OF THE TOXIC CHEMICAL IN WASTES TO OFF-SITE LOCATIONS													
6.1 DIS	CHARGES TO PUB	LICLY OWN	ED TRE	ATMEN	T WOR	KS (PO	TWs)						
6.1.A To	otal Quantity Transfer	red to POTW	s and Ba	sis of Es	timate								
6.1.A.1.	Total Transfers (pour				6.1.A.	2 Basis	of Estin	nate					
	(enter range code* or e	estimate)				(enter	code)						
6.1.B	POTW Name												
POTW A	ddress												
City				State		County				Zip			
6.1.B	POTW Name												
POTW A	ddress												
City	•			State	(County				Zip			
If additio	nal pages of Part II, Secti	on 6.1 are attac he Part II, Section						ample: 1,2	2,3, etc.)				
SECTION	ON 6.2 TRANSFERS	TO OTHER	OFF-SI	TE LOC	ATIONS	3							
6.2	Off-Site EPA Identifica	ation Number	(RCRA IC	No.)									
Off-Site L	ocation Name					•							
Off-Site A	Address												
City	•		State	C	ounty					Zip			
Is location	n under control of reporting	facility or parent	company?		•				Yes		No		

		-	IRI Facility ID Numbe	<u> </u>										
	HEMICAL-SI		FORM R	TION (C	ONTINUED)	-	Toxic Chemical, Categ	ory or Generic Name						
PART II. C	HEIVIICAL-SI	FECIFIC	INFORMA	VIION (C	ONTINUED)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
SECTION 6	2 TRANSFERS	TO OTH	ER OFF-SITE	FLOCATION	ONS (Continue	۰۹/								
A. Total Transfe			B. Basis of E		ons (Continue		Type of Waste Treati	ment/Disposal/						
	code* or estimate)		(enter code				Recycling/Energy Recovery (enter code)							
1.			1.			1.	1. M							
2.			2.			2.	2. M							
3.			3.			3.	3. M							
4.			4.			4.	M							
6.2. Off-S	Site EPA Identifica	ition Numb	er (RCRA ID N	No.)										
Off-Site location Name														
Off-Site Address														
City	•			State	County			Zip						
Is location under control of reporting facility or parent company? Yes No														
A. Total Tra	"		B.	Basis of Esti	mate		C. Type of Waste Trea	•						
(enter ra	inge code* or estimat	re)		(enter code)			Recycling/Energy Recovery (enter code)							
1.			1.			1.								
2.			2.			2.								
3.			3.			3.								
4.			4.			4.	M							
SECTION 7	A. ON-SITE WA	STE TRI	EATMENT MI	ETHODS A	AND EFFICIENC	Υ								
Not A	pplicable (NA) -		no on-site waste to containing the tox		pplied to any chemical category.									
a. General			ethod(s) Sequenc		c. Range of Influer									
Waste Stream (enter code)	[enter 3-	character co	ode(s)]		Concentration		Efficiency Estimate	Operating Data ?						
7A.1a	7A.1b	1	2		7A.1c		7A.1d	7A.1e						
	3	4	5				%	Yes No						
	6	7	8				70							
7A.2a	7A.2b	1	2		7A.2c		7A.2d	7A.2e						
	3	4	5				%	Yes No						
	6	7	8				76							
7A.3a	7A.3b	1	2		7A.3c		7A.3d	7A.3e						
	3	4	5				%	Yes No						
	6	7	8				%							
7A.4a	7A.4b	1	2		7A.4c		7A.4d	7A.4e						
	3	4	5				0/	Yes No						
	6	7	8				%							
7A.5a	7A.5b	1	2		7A.5c		7A.5d	7A.5e						
	3	4	5				0/	Yes No						
	6	7	8				% 							
	es of Part II, Section				umber of pages in the		х							

EPA FORM R PART II. CHEMICAL-SPECIFIC INFORMATION (CONTINUED)

TRI Facility ID Number
Toxic Chemical, Category or Generic Name

РΔ	ART II. CHEMICAI	I -SPFCIF	IC INFORM	ΔΤΙ(ON (CO	NTINU	IED)							
		_ 00		,	Toxic	c Chemical,	Category	or G	Generic Name					
SECT	ION 7B. ON-SITE E	NERGY RE	COVERY PRO	CES	SES									
	Net Assalts also (NIA)	Check here	if no on-site energy	recov	ery is applie	ed to any w	aste							
	Not Applicable (NA) -	stream cont	aining the toxic che	mical o	or chemical	category.								
E	nergy Recovery Methods [er	nter 3-character	code(s)]											
1	2			3				4						
SECT	SECTION 7C. ON-SITE RECYCLING PROCESSES													
	Not Applicable (NA) - Check here if no on-site recycling is applied to any waste													
stream containing the toxic chemical or chemical category.														
Recycling Methods [enter 3-character code(s)]														
1.	2.		3.				4.				5.			
6.	7.		8.				9.] 1	10.			
SECT														
OLO:	SECTION 8. SOURCE REDUCTION AND RECYCLING ACTIVITIES Column A Column B Column C Column D													
			Prior Year				Year	F	ollowing Ye	ar	S	econd Following	g Year	
	-		(pounds/year)		(po	unds/year)			(pounds/year)		(pounds/year	-)	
8.1	Quantity released **													
8.2	Quantity used for energy re onsite	ecovery												
8.3	Quantity used for energy re offsite	ecovery												
8.4	Quantity recycled onsite													
8.5	Quantity recycled offsite													
8.6	Quantity treated onsite													
8.7	Quantity treated offsite													
8.8	Quantity released to the en catastrophic events, or one processes (pounds/year)													
8.9	Production ratio or activity in	ndex												
8.10	Did your facility engage in a enter "NA" in Section 8.10.	any source redu 1 and answer S	uction activities for t Section 8.11.	his che	emical durir	ng the repo	orting ye	ar? If	not,					
	Source Reduction Activ [enter code(s)]	vities		Me	ethods to Id	entify Activ	vity (ente	er cod	es)					
8.10.1			b.				c.							
8.10.2			a.			b.				c.	_			
8.10.3		a.			b.				c.					
8.10.4			a.			b.				c.				
8.11	Is additional information on included with this report?			llution	control activ	vities					YES	S NO		
** Report	releases pursuant to EPCRA Section	on 329(8) including	"any spilling, leaking, pu	ımpina. ı	pouring, emitti	na. emptvina.	dischargi	na.		1				

injecting, escaping, leaching, dumping, or disposing into the environment." Do not include any quantity treated onsite or offsite.

Page 1 of

Ω.	United States
	Environmental Protection Agency

TOXIC CHEMICAL RELEASE INVENTORY

\$	Environment		tection	Agency		IOAIC	CHEN	_	ORM A	E IIVV	ENIC	KΊ			
WHE	RE TO SEND COM	PLETED	FORMS:	P.O Box 3 Merrifield,	348 VA 2	ing Center 2116-3348 CHEMICAL		(See ins	PRIATE STA	_	-	F	Enter "X" he is a revision or EPA use or	1	3
Imp	ortant: See ii	nstruct	tions t	o determin	e w	hen "No	ot Ap	plicat	ole (NA)"	boxe	s sh	oulc	l be chec	ked.	
			PΑ	RTI. FAC	:II I	TY IDFI	VTIF	ICAT	ON INF	ORM	ATIC	N			
SEC	TION 1. REPO	ORTING													
	TION 2. TRAD														
2.1	Are you claiming the	ne toxic ch	emical ide	entified on page	2 trac	de secret? not answer 2 o Section 3)		2.2	Is this copy (Answer on			Saniti 1)	zed	Uns	anitized
SEC	TION 3. CERT	TIFICAT	ION ((Important:	Rea	ıd and si	gn af	ter co	mpleting	all for	m se	ction	าร.)		
amou manu	by certify that to the nt as defined in 40 0 factured, processed	CFR 372.2 , or otherv	27 (a), did vise used	I not exceed 500 I in an amount no	pour	nds for this receding 1 mi	eporting	g year ar	nd that the ch	emical v	vas	rtable			
Name	e and official title of c	wner/ope	rator or se	enior manageme	ent off	icial:				Signatur	e:				Date Signed:
	TION 4. FACI	LITY ID	ENTIF	ICATION											
4.1	E . I								Number				1100		1
Facility	y or Establishment Na	me					Facility	or Estab	lishment Nam	e or Mail	ing Addi	ress(if	different from s	street add	iress)
Street]						Mailing	g Address	;]						
City/C	ounty/State/Zip Code						City/St	ate/Zip C	ode					С	Country (Non-US)
4.2	This report contain	ns informa	ation for:	(Important : c	heck	c or d if app	licable)			с.		A Fed	ا ام		GOCO
4.3	Technical Contact	t Name										Telep	hone Number	(include a	area code)
4.4	Intentionally left bl	ank	·												
4.5	SIC Code (s) (4 d	ligits)		Primary a.		b.		c.		d.			e.	1	f.
4.6	Latitude	Deg	grees	Minutes		Secon	ds	Lo	ongitude	D	egrees		Minutes	S	Seconds
4.7	Dun & Bradstreet Number(s) (9 digi		4.8 (F	PA Identification			4.9	•	NPDES Perr r(s) (9 charac		4.10		derground Inj C) I.D. Numb		
a. b.			a. b.				a. b.				a. b.				
	TION 5. PARE	ENT CO		Y INFORMA	TIO	N	ı				1				
5.1	Name of Parent C	ompany		NA 🔲											
5.2	Parent Company's	s Dun & B	radstreet	Number	N	ıa 🗍] [

_		
Page	ot	

EPA FORM A PART II. CHEMICAL IDENTIFICATION

٦	ΓR	IF	ID:
		••	ıv.

	Do not use this form for reporting PBT chemicals including Dioxin and Dioxin-like Compounds*		
SECTION	ON 1. TOXIC CHEMICAL IDENTITY	Report	_of
	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.)		
1.1			
1.2	Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)		
1.2			
1.3	Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.)		
1.3			
SECTION	ON 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section	1 above.)	
2.1	Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.)		
2.1			
SECTION	ON 1. TOXIC CHEMICAL IDENTITY	Report	_of
	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.)		
1.1			
1.2	Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)		
1.2			
1.3	Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.)		
1.5			
SECTION	ON 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section	1 above.)	
2.1	Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.)		
2.1			
SECTION	ON 1. TOXIC CHEMICAL IDENTITY	Report	_of
	DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.)	Report	_of
SECTION 1.1		Report	_of
1.1		Report _	_of
	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)	Report	_of
1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.)	Report	_of
1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)	Report	_of
1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)		_of
1.1 1.2 1.3 SECTIO	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.)		_of
1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section of the Se		_of
1.1 1.2 1.3 SECTIO	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section of the Se		
1.1 1.2 1.3 SECTIO	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) ON 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section of Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.)	1 above.)	
1.1 1.2 1.3 SECTIO	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY	1 above.)	
1.1 1.2 1.3 SECTIO	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY	1 above.)	
1.1 1.2 1.3 SECTION 2.1 SECTION 1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)	1 above.)	
1.1 1.2 1.3 SECTION 2.1 SECTION 1.1 1.2	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section of Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.)	1 above.)	
1.1 1.2 1.3 SECTION 2.1 SECTION 1.1	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)	1 above.)	
1.1 1.2 1.3 SECTION 2.1 SECTION 1.1 1.2 1.3	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.)	1 above.) Report	
1.1 1.2 1.3 SECTION 2.1 SECTION 1.1 1.2 1.3	CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.) DN 2. MIXTURE COMPONENT IDENTITY (Important: DO NOT complete this section if you completed Section Generic Chemical Name Provided by Supplier (Important: Maximum of 70 characters, including numbers, letters, spaces, and punctuation.) DN 1. TOXIC CHEMICAL IDENTITY CAS Number (Important: Enter only one number exactly as it appears on the Section 313 list. Enter category code if reporting a chemical category.) Toxic Chemical or Chemical Category Name (Important: Enter only one name exactly as it appears on the Section 313 list.) Generic Chemical Name (Important: Complete only if Part 1, Section 2.1 is checked "yes". Generic Name must be structurally descriptive.)	1 above.) Report	

APPENDIX B

STANDARD INDUSTRIAL CLASSIFICATION CODES

Appendix B

STANDARD INDUSTRIAL CLASSIFICATION CODES

10	Metal Mining (except 1011, 108	1
	and 1094)	

- 1021 Copper Ores
- 1031 Lead and Zinc Ores
- 1041 Gold Ores
- 1044 Silver Ores
- 1061 Ferroalloy Ores, Except Vanadium
- 1099 Miscellaneous Metal Ores, Not Elsewhere Classified

12 Coal Mining (except 1241)

- 1221 Bituminous Coal and Lignite Surface Mining
- 1222 Bituminous Coal Underground Mining
- 1231 Anthracite Mining

20 Food and Kindred Products

- 2011 Meat packing plants
- 2013 Sausages and other prepared meat products
- 2015 Poultry slaughtering and processing
- 2021 Creamery butter
- 2022 Natural, processed and imitation cheese
- 2023 Dry, condensed and evaporated dairy products
- 2024 Ice cream and frozen desserts
- 2026 Fluid milk
- 2032 Canned specialties
- 2033 Canned fruits, vegetables, preserves, jams and iellies
- 2034 Dried and dehydrated fruits, vegetables and soup mixes
- 2035 Pickled fruits and vegetables, vegetable sauces and seasonings, and salad dressings
- 2037 Frozen fruits, fruit juices and vegetables
- 2038 Frozen specialties, n.e.c.*
- 2041 Flour and other grain mill products
- 2043 Cereal breakfast foods
- 2044 Rice milling
- 2045 Prepared flour mixes and doughs
- 2046 Wet corn milling
- 2047 Dog and cat food
- 2048 Prepared feeds and feed ingredients for animals and fowls, except dogs and cats
- 2051 Bread and other bakery products, except cookies and crackers
- 2052 Cookies and crackers
- 2053 Frozen bakery products, except bread
- 2061 Cane sugar, except refining
- 2062 Cane sugar refining
- 2063 Beet sugar
- 2064 Candy and other confectionery products

- 2066 Chocolate and cocoa products
- 2067 Chewing gum
- 2068 Salted and roasted nuts and seeds
- 2074 Cottonseed oil mills
- 2075 Soybean oil mills
- 2076 Vegetable oil mills, n.e.c.*
- 2077 Animal and marine fats and oils
- 2079 Shortening, table oils, margarine, other edible fats and oils, n.e.c.*
- 2082 Malt beverages
- 2083 Malt
- 2084 Wines, brandy and brandy spirits
- 2085 Distilled and blended liquors
- 2086 Bottled and canned soft drinks and carbonated waters
- 2087 Flavoring extracts and flavoring syrups, n.e.c.*
- 2091 Canned and cured fish and seafoods
- 2092 Prepared fresh or frozen fish and seafoods
- 2095 Roasted coffee
- 2096 Potato chips, corn chips and similar snacks
- 2097 Manufactured ice
- 2098 Macaroni, spaghetti, vermicelli and noodles
- 2099 Food preparations, n.e.c.*

21 Tobacco Products

- 2111 Cigarettes
- 2121 Cigars
- 2132 Chewing and smoking tobacco and snuff
- 2141 Tobacco stemming and redrying

22 Textile Mill Products

- 2211 Broadwoven fabric mills, cotton
- 2221 Broadwoven fabric inills, manmade fiber and silk
- 2231 Broadwoven fabric mills, wool (including dyeing and finishing)
- 2241 Narrow fabric and other small wares mills: cotton, wool, silk and manmade fiber
- 2251 Women's full length and knee length hosiery, except socks
- 2252 Hosiery, n.e.c.*
- 2253 Knit outerwear mills
- 2254 Knit underwear and nightwear mills
- 2257 Weft knit fabric mills
- 2258 Lace and warp knit fabric mills
- 2259 Knitting mills, n.e.c.*
- 2261 Finishers of Broadwoven fabrics of cotton
- 2262 Finishers of Broadwoven fabrics of manmade fiber and silk
- 2269 Finishers of textiles, n.e.c.*
- 2273 Carpets and rugs

- 2281 Yarn spinning nulls
- 2282 Yarn texturizing, throwing, twisting and winding mills
- 2284 Thread mills
- 2295 Coated fabrics, not rubberizid
- 2296 Tire cord and fabrics
- 2297 Nonwoven fabrics
- 2298 Cordage and twine
- 2299 Textile goods, n.e.c.*

23 Apparel and Other Finished Products made from Fabrics and Other Similar Materials

- 2311 Men's and boys' suits, coats and overcoats
- 2321 Men's and boys' shirts, except work shirts
- 2322 Men's and boys' underwear and nightwear
- 2323 Men's and boys' neckwear
- 2325 Men's and boys' separate trousers and slacks
- 2326 Men's and boys' work clothing
- 2329 Men's and boys' clothing, n.e.c.*
- 2331 Women's, misses' and juniors' blouses and shirts
- 2335 Women's, misses' and juniors' dresses
- 2337 Women's, misses' and juniors' suits, skirts and coats
- 2338 Women's, misses' and juniors', outerwear, n.e.c.*
- 2341 Women's, misses', children's and infants' underwear and nightwear
- 2342 Brassieres, girdles and allied garments
- 2353 Hats, caps and millinery
- 2361 Girls', children's and infants' dresses, blouses and shirts
- 2369 Girls', children's and infants' outerwear, n.e.c.*
- 2371 Furgoods
- 2381 Dress and work gloves, except knit and all leather
- 2384 Robes and dressing gowns
- 2385 Waterproof outerwear
- 2386 Leather and sheep lined clothing
- 2387 Apparel belts
- 2389 Apparel and accessories, n.e.c.*
- 2391 Curtains and draperies
- 2392 House furnishings, except curtains and draperies
- 2393 Textile bags
- 2394 Canvas and related products
- 2395 Pleating, decorative and novelty stitching and tucking for the trade
- 2396 Automotive trimmings, apparel findings and related products
- 2397 Schiffli machine embroideries
- 2399 Fabricated textile products, n.e.c.*

24 Lumber and Wood Products, Except Furniture

- 2411 Logging
- 2421 Sawmills and planing mills, general
- 2426 Hardwood dimension and flooring mills
- 2429 Special product sawmills, n.e.c.*
- 2431 Millwork
- 2434 Wood kitchen cabinets
- 2435 Hardwood veneer and plywood
- 2436 Softwood veneer and plywood
- 2439 Structural wood members, n.e.c.*
- 2441 Nailed and lock corner wood boxes and shook
- 2448 Wood pallets and skids
- 2449 Wood containers, n.e.c.*
- 2451 Mobile homes
- 2452 Prefabricated wood buildings and components
- 2491 Wood preserving
- 2493 Reconstituted wood products
- 2499 Wood products, n.e.c.*

25 Furniture and Fixtures

- 2511 Wood household furniture, except upholstered
- 2512 Wood household furniture, upholstered
- 2514 Metal household furniture
- 2515 Mattresses, foundations and convertible beds
- 2517 Wood television, radio, phonograph and sewing machine cabinets
- 2519 Household furniture, n.e.c.*
- 2521 Wood office furniture
- 2522 Office furniture, except wood
- 2531 Public building and related furniture
- 2541 Wood office and store fixtures, partitions, shelving, and lockers
- 2542 Office and store fixtures, partitions, shelving and lockers, except wood
- 2591 Drapery hardware and window blinds and shades
- 2599 Furniture and fixtures, n.e.c.*

26 Paper and Allied Products

- 2611 Pulp mills
- 2621 Paper mills
- 2631 Paperboard mills
- 2652 Setup paperboard boxes
- 2653 Corrugated and solid fiber boxes
- 2655 Fiber cans, tubes, drums and similar products
- 2656 Sanitary food containers, except folding
- 2657 Folding paperboard boxes, including sanitary
- 2671 Packaging paper and plastics film, coated and laminated

2672	Coated and laminated paper, n.e.c.*
2673	Plastics, foil and coated paper bags
2674	Uncoated paper and multi-wall bags
2675	Die-cut paper and paperboard and cardboard
2	

- 2676 Sanitary paper products
- 2677 Envelopes
- 2678 Stationery tablets, and related products
- 2679 Converted paper and paperboard products, n.e.c.*

Printing, Publishing and Allied Industries

2711	Newspapers: publishing, or publishing and printing
2721	Periodicals: publishing, or publishing and printing

- 2731 Books: publishing, or publishing and printing
- 2732 Book printing
- 2741 Miscellaneous publishing
- 2752 Commercial printing, lithographic
- 2754 Commercial printing, gravure
- 2759 Commercial printing, n.e.c.*
- 2761 Manifold business forms
- 2771 Greeting cards
- 2782 Blank books, looseleaf binders and devices
- 2789 Bookbinding and related work
- 2791 Typesetting
- 2796 Plate making and related services

28 Chemicals and Allied Products

- 2812 Alkalies and chlorine
- 2813 Industrial gases
- 2816 Inorganic pigments
- 2819 Industrial inorganic chemicals, n.e.c.*
- 2821 Plastics materials, synthetic resins and nonvulcanizable elastomers
- 2822 Synthetic rubber (vulcanizable elastomers)
- 2823 Cellulosic manmade fibers
- 2823 Manmade organic fibers, except cellulosic
- 2833 Medicinal chemicals and botanical products
- 2834 Pharmaceutical preparations
- 2834 In vitro and in vivo diagnostic substances
- 2836 Biological products, except diagnostic substances
- 2841 Soap and other detergents, except specialty cleaners
- 2842 Specialty cleaning, polishing and sanitation preparations
- 2843 Surface active agents, finishing agents, sulfonated oils and assistants
- 2844 Perfumes, cosmetics and other toilet preparations

- 2851 Paints, varnishes, lacquers, enamels and allied products
- 2861 Gum and wood chemicals
- 2865 Cyclic organic crudes and intermediates, and organic dyes and pigments
- 2869 Industrial organic chemicals, n.e.c.*
- 2873 Nitrogenous fertilizers
- 2874 Phosphatic fertilizers
- 2875 Fertilizers, mixing only
- 2879 Pesticides and agricultural chemicals, n.e.c.*
- 2891 Adhesives and sealants
- 2892 Explosives
- 2893 Printing ink
- 2895 Carbon black
- 2899 Chemicals and chemical preparations, n.e.c.*

Petroleum Refining and Related **Industries**

- 2911 Petroleum refining
- 2951 Asphalt paving mixtures and blocks
- 2952 Asphalt felts and coatings
- 2992 Lubricating oils and greases
- 2999 Products of petroleum and coal, n.e.c.*

Rubber and Miscellaneous Plastics 30 Products

- 3011 Tires and inner tubes
- 3021 Rubber and plastic footwear
- 3052 Rubber and plastic hose and belting
- 3053 Gaskets, packing, and sealing devices
- 3061 Molded, extruded and lathe cut mechanical rubber products
- 3069 Fabricated rubber products, n.e.c.*
- 3081 Unsupported plastic film and sheet
- 3082 Unsupported plastic profile shapes
- 3083 Laminated plastic plate, sheet and profile shapes
- 3084 Plastic pipe
- 3085 Plastic bottles
- 3086 Plastic foam products
- 3087 Custom compounding of purchased plastics resins
- 3088 Plastic plumbing fixtures
- 3089 Plastic products, n.e.c.*

31 Leather and Leather Products

- 3111 Leather tanning and finishing
- 3131 Boot and shoe cut stock and findings
- 3142 House slippers
- 3143 Men's footwear, except athletic

- 3144 Women's footwear, except athletic
- 3149 Footwear, except rubber, n.e.c.*
- 3151 Leather gloves and mittens
- 3161 Luggage
- 3171 Women's handbags and purses
- 3172 Personal leather goods, except women's handbags and purses
- 3199 Leather goods, n.e.c.*

32 Stone, Clay, Glass and Concrete Products

- 3211 Flat glass
- 3221 Glass containers
- 3241 Cement, hydraulic
- 3251 Brick and structural clay tile
- 3253 Ceramic wall and floor tile
- 3255 Clay refractories
- 3259 Structural clay products, n.e.c.*
- 3261 Vitreous china plumbing fixtures, and china and earthenware fittings,7 and bathroom accessories
- 3262 Vitreous china table and kitchen articles
- 3263 Fine earthenware (whiteware) table and kitchen articles
- 3264 Porcelain electrical supplies
- 3269 Pottery products, n.e.c.*
- 3271 Concrete block and brick
- 3272 Concrete products, except block and brick
- 3273 Ready mixed concrete
- 3274 Lime
- 3275 Gypsum products
- 3281 Cut stone and stone products
- 3291 Abrasive products
- 3292 Asbestos products
- 3295 Minerals and earths, ground or otherwise treated
- 3296 Mineral wool
- 3297 Nonclay refractories
- 3299 Nonmetallic mineral products, n.e.c.*

33 Primary Metal Industires

- 3312 Steel works, blast furnaces (including coke ovens) and rolling mill
- 3313 Electrometallurgical products, except steel
- 3315 Steel wire drawing and steel nails and spikes
- 3316 Cold-rolled steel sheet, strip and bars
- 3317 Steel pipe and tubes
- 3321 Gray and ductile iron foundries

- 3322 Malleable iron foundries
- 3324 Steel investment foundries
- 3325 Steel foundries, n.e.c.*
- 3331 Primary smelting and refining of copper
- 3334 Primary production of aluminum
- 3339 Primary smelting and refining of nonferrous metals, except copper and aluminum
- 3341 Secondary smelting and refining of nonferrous metals
- 3351 Rolling, drawing and extruding of copper
- 3353 Aluminum sheet, plate and foil
- 3354 Aluminum extruded products
- 3355 Aluminum rolling and drawing, n.e.c.*
- 3356 Rolling, drawing and extruding of nonferrous metals, except copper and aluminum
- 3357 Drawing and insulating of nonferrous wire
- 3363 Aluminum die-castings
- 3364 Nonferrous die-castings, except aluminum
- 3365 Aluminum foundries
- 3366 Copper foundries
- 3369 Nonferrous foundries, except aluminum and copper
- 3398 Metal heat treating
- 3399 Primary metal products, n.e.c.*

32 Fabricated Metal Products, except Machinery and Transportation Equipment

- 3411 Metal cans
- 3412 Metal shipping barrels, drums, kegs and pails
- 3421 Cutlery
- 3423 Hand and edge tools, except machine tools and handsaws
- 3425 Handsaws and saw blades
- 3429 Hardware, n.e.c.*
- 3431 Enameled iron and metal sanitary ware
- 3432 Plumbing fixture fittings and trim
- 3433 Heating equipment, except electric and warm air furnaces
- 3441 Fabricated structural metal
- 3442 Metal doors, sash, frames, molding and trim
- 3443 Fabricated plate work (boiler shops)
- 3444 Sheet metal work
- 3446 Architectural and ornamental metal work
- 3448 Prefabricated metal buildings and components
- 3449 Miscellaneous structural metal work
- 3451 Screw machine products
- 3452 Bolts, nuts, screws, rivets and washers
- 3462 Iron and steel forgings
- 3463 Nonferrous forgings
- 3465 Automotive stampings
- 3468 Crowns and closures
- 3469 Metal starnpings, n.e.c.*
- 3471 Electroplating, plating, polishing, anodizing and coloring

3479	Coating, engraving and allied services, n.e.c.*	3563	Air and gas compressors
3482	Small arms ammunition	3564	Industrial and commercial fans and blowers and air
3483	Ammunition, except for small arms		purification equipment
3484	Small arms		Packaging equipment
3489	Ordnance and accessories, n.e.c.*	3566	Speed changers, industrial high speed drives
	Industrial valves	25.5	and gears
	Fluid power valves and hose fittings		Industrial process furnaces and ovens
3493	Steel springs, except wire		Mechanical power transmission equipment, n.e.c.* General industrial machinery and equipment, n.e.c.*
	Valves and pipe fittings, n.e.c.*		Electronic computers
	Wire springs		Computer storage devices
	Miscellaneous fabricated wire products		Computer terminals
3497	Metal foil and leaf		Computer peripheral equipment, n.e.c.*
			Calculating and accounting machines, except electronic
	Fabricated pipe and pipe fittings		computers
3499	Fabricated metal products, n.e.c.*	3579	Office machines, n.e.c.*
25	Industrial and Commercial		Automatic vending machines
35		3582	Commercial laundry, dry-cleaning and pressing
	Machinery and Computer		machines
	Equipment	3585	Air conditioning and warm air heating equipment, and commercial and industrial refrigeration equipment
3511	Steam, gas and hydraulic turbines, and turbine		Measuring and dispensing pumps
	generator set units		Service industry machinery, n.e.c.*
	Internal combustion engines, n.e.c.*		Carburetors, pistons, piston rings and valves
	Farm machinery and equipment		Fluid power cylinders and actuators
3524	Lawn and garden tractors, and home lawn and garden equipment		Fluid power pumps and motors
3531			Scales and balances, except laboratory
		2500	Industrial and commercial machinery and equipment
	Construction machinery and equipment except oil and gas	3599	• 1 1
	Mining machinery and equipment, except oil and gas	3599	Industrial and commercial machinery and equipment, n.e.c*
3532	Mining machinery and equipment, except oil and gas field machinery and equipment	3599 36	
35323533	Mining machinery and equipment, except oil and gas		n.e.c* Electronic and Other Electrical Equipment and Components, except
3532 3533 3534	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment		n.e.c*
3532 3533 3534 3535	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways	36	Electronic and Other Electrical Equipment and Components, except Computer Equipment
3532 3533 3534 3535	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems	36	n.e.c* Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers
3532 3533 3534 3535 3536 3537	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers	36 3612 3613	n.e.c* Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus
3532 3533 3534 3535 3536 3537 3541	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types	36 12 3613 3621	n.e.c* Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators
3532 3533 3534 3535 3536 3537 3541 3542	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types	3612 3613 3621 3624	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products
3532 3533 3534 3535 3536 3537 3541 3542 3543	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns	3612 3613 3621 3624 3625	n.e.c* Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls
3532 3533 3534 3535 3536 3537 3541 3542 3543	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and	3612 3613 3621 3624 3625 3629	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.*
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds	3612 3613 3621 3624 3625 3629 3631	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and	3612 3613 3621 3624 3625 3629 3631 3632	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices	3612 3613 3621 3624 3625 3629 3631 3632 3633	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment	3612 3613 3624 3625 3629 3631 3632 3633 3634 3635	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3639	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.*
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3639 3641	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549 3552	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment Metalworking machinery, n.e.c.* Textile machinery Woodworking machinery	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3639 3641 3643	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes Current carrying wiring devices
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549 3552 3553 3554	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment Metalworking machinery, n.e.c.* Textile machinery Woodworking machinery Paper industries machinery	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3641 3643 3644	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes Current carrying wiring devices Noncurrent carrying wiring devices
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549 3552 3553 3554 3555	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment Metalworking machinery, n.e.c.* Textile machinery Woodworking machinery Paper industries machinery Printing trades machinery and equipment	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3641 3643 3644	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes Current carrying wiring devices
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549 3552 3553 3554 3555 3556	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment Metalworking machinery, n.e.c.* Textile machinery Woodworking machinery Paper industries machinery Printing trades machinery and equipment Food products machinery	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3641 3643 3644	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes Current carrying wiring devices Noncurrent carrying wiring devices
3532 3533 3534 3535 3536 3537 3541 3542 3543 3544 3545 3546 3547 3548 3549 3552 3553 3554 3555 3556 3559	Mining machinery and equipment, except oil and gas field machinery and equipment Oil and gas field machinery and equipment Elevators and moving stairways Conveyors and conveying equipment Overhead traveling cranes, hoists and monorail systems Industrial trucks, tractors, trailers and stackers Machine tools, metal cutting types Machine tools, metal forming types Industrial patterns Special dies and tools, die sets, jigs and fixtures, and industrial molds Cutting tools, machine tool accessories and machinists' measuring devices Power driven handtools Rolling mill machinery and equipment Electric and gas welding and soldering equipment Metalworking machinery, n.e.c.* Textile machinery Woodworking machinery Paper industries machinery Printing trades machinery and equipment	3612 3613 3621 3624 3625 3629 3631 3632 3633 3634 3635 3641 3643 3644	Electronic and Other Electrical Equipment and Components, except Computer Equipment Power, distribution and specialty transformers Switchgear and switchboard apparatus Motors and generators Carbon and graphite products Relays and industrial controls Electrical industrial appliances, n.e.c.* Household cooking equipment Household refrigerators and home and farm freezers Household laundry equipment Electrical housewares and fans Household vacuum cleaners Household appliances, n.e.c.* Electric lampbulbs and tubes Current carrying wiring devices Noncurrent carrying wiring devices

3562 Ball and roller hearings

3647 3648	Commercial, industrial and institutional electric lighting fixtures Vehicular lighting equipment Lighting equipment, n.e.c.* Household audio and video equipment Phonograph records and pre-recorded audio tapes and disks	38	Measuring, Analyzing and Controlling Instruments; Photographic, Medical and Optical Goods; Watches and Clocks
3661 3663	Telephone and telegraph apparatus Radio and television broadcasting and communications	3812	
3669	equipment Communications equipment, n.e.c.*		aeronautical and nautical systems and instruments
3671	Electron tubes	3821	Laboratory apparatus and furniture
3672	Printed circuit boards		Automatic controls for regulating residential
3674	Semiconductors and related devices	3022	and commercial environments and appliances
	Electronic capacitors	2022	
	Electronic resistors	3823	Industrial instruments for measurement,
	Electronic coils, transformers and other inductors		display and control of process variables; and
	Electronic connectors	2024	related products
			Totalizing fluid meters and counting devices
	Electronic components, n.e.c.*	3825	Instruments for measuring and testing of
3691	Storage batteries		electricity and electrical signals
3692	Primary batteries, dry and wet	3826	Laboratory analytical instruments
3694		3827	•
3695	Magnetic and optical recording media	3829	Measuring and controlling devices, n.e.c.*
3699	Electrical machinery, equipment and supplies, n.e.c.*	3841 3842	Surgical and medical instruments and apparatus Orthopedic, prosthetic and surgical appliances
37	Transportation Equipment		and supplies
	• • •	3843	Dental equipment and supplies
3711 3713	Motor vehicles and passenger car bodies Truck and bus bodies	3844	X-ray apparatus and tubes, and related irradiation apparatus
3714		3845	Electromedical and electrotherapeutic apparatus
3715	Truck trailers		Ophthalmic goods
	Motor homes		Photographic equipment and supplies
	Aircraft		Watches, clocks, clockwork operated devices
			and parts
	Aircraft engines and engine parts		1
	Aircraft parts and auxiliary equipment, n.e.c.*	39	Missallaneous Manufacturing
3731		39	Miscellaneous Manufacturing
	Boat building and repairing		Industries
	Railroad equipment	2011	Javiales, measions motal
	Motorcycles, bicycles and parts		Jewelry, precious metal
	Guided missiles and space vehicles		Silverware, plated ware and stainless steel ware
3/64	Guided missile and space vehicle propulsion units, and	3915	Jewelers' findings and materials, and lapidary
	propulsion unit parts		work
3769	Guided missile and space vehicle parts, and auxiliary	3931	
	equipment, n.e.c.*		Dolls and stuffed toys
	Travel trailers and campers	3944	Games, toys and children's vehicles; except
	Tanks and tank components		dolls and bicycles
3799	Transportation equipment, n.e.c.*	3949	Sporting and athletic goods, n.e.c.*
		3951	Pens, mechanical pencils and parts
			Lead pencils, crayons and artists' materials
			Marking devices
			Carbon paper and inked ribbons
			Costume jewelry and costume novelties, except precious metal
		3965	Fasteners, buttons, needles and pins
		5705	1 actions, cattoris, needles and pins

- 3991 Brooms and brushes
- 3993 Signs and advertising specialties
- 3995 Burial caskets
- 3996 Linoleum, asphalted-felt-base and other hard surface floor coverings, n.e.c.*
- 3999 Manufacturing industries, n.e.c.*

49 Electric, Gas and Sanitary Services (limited to 4911, 4931, 4939 and 4953)

- 4911 Electric Services (limited to facilities that combust coal or oil for the purpose of generating electricity for distribution in commerce)
- 4931 Electric and Other Services Combined (limited to facilities that combust coal or oil for the purpose of generating electricity for distribution in commerce)

- 4939 Combination utilities, Not Elsewhere Classified (limited to facilities that combust coal or oil for the purpose of generating electricity for distribution in commerce)
- 4953 Refuse Systems (limited to facilities regulated under the RCRA Subtitle C, 42 U.S.C. section 6921 *et seq.*)

51 Wholesale Trade-Nondurable Goods (limited to 5169 and 5171)

- 5169 Chemical and Allied Products, Not Elsewhere Classified
- 5171 Petroleum Terminals and Bulk Stations

73 Business Services (limited to 7389)

7389 Business Services, Not Elsewhere Classified (limited to facilities primarily engaged in solvents recovery services on a contract or fee basis)

APPENDIX C

2002 TRI RELEASES and WASTE MANAGEMENT by COUNTY by COMPANY

			On- and	Off-site Rel	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY C	HEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
AUDRAIN										
ADM - SOYBEAN PROCESSING PA	LANT				MEXICO					
N-HEXANE	112,055	5.0	0.0	0.0	0.0	0.0	0.0	0.0	702.0	
CERRO COPPER CASTING CO.					MEXICO					
COPPER COMPOUNDS	1,900	0.0	0.0	2.0	0.0	7.0	0.0	0.0	0.0	
LEAD COMPOUNDS	26	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HARBISON WALKER REFRACTO	RIES				VANDAL	IA				
CHROMIUM COMPOUNDS	89	9.0	0.0	0.0	0.0	10,944.0	0.0	0.0	0.0	
ETHYLENE GLYCOL	(0.3	0.0	0.0	0.0	286.0	0.0	0.0	0.0	
POLYCYCLIC AROMATIC COMPOUNDS	(0.0	0.0	0.0	0.0	196.0	0.0	0.0	0.0	
NEXANS MAGNET WIRE U.S.A. IN	VC.				MEXICO					
1,2,4-TRIMETHYLBENZENE	7,000	0.0	0.0	0.0	0.0	0.0	0.0	78,900.0	70,000.0	
COPPER	(0.0	0.0	0.0	19.0	0.0	3,300,000.0	0.0	0.0	
CRESOL (MIXED ISOMERS)	19,300	0.0	0.0	0.0	0.0	0.0	0.0	136,000.0	79,000.0	
ETHYLBENZENE	3,500	0.0	0.0	0.0	0.0	0.0	0.0	17,400.0	32,000.0	
M-CRESOL	15,000	0.0	0.0	0.0	0.0	0.0	0.0	102,000.0	27,000.0	
N-METHYL-2-PYRROLIDONE	20,800	0.0	0.0	0.0	0.0	0.0	0.0	117,000.0	130,000.0	
P-CRESOL	10,800	0.0	0.0	0.0	0.0	0.0	0.0	105,000.0	17,000.0	
PHENOL	28,000	0.0	0.0	0.0	0.0	0.0	0.0	268,000.0	64,000.0	
XYLENE (MIXED ISOMERS)	13,200	0.0	0.0	0.0	0.0	0.0	0.0	61,000.0	130,000.0	
TEVA PHARMACEUTICALS U.S.A	. INC.				MEXICO					
AMMONIA	104,725	5.0	0.0	0.0	0.0	5,700.0	0.0	0.0	17,724.0	
DICHLOROMETHANE	30,098	3.0	0.0	0.0	0.0	0.0	3,669,708.0	0.0	592,922.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" C			0.0	0.0	0.0	0.0	0.0	0.0	161.0	
METHANOL	67,189		0.0	0.0	0.0	0.0	5,898,510.0	2,285,246.0	130,722.0	
NITRATE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PERACETIC ACID	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Page 1 of 101

				On- and	Off-site Rel	leases	On- and Off-site Waste Mgmt			
COUNTY FACILITY C	TTY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
SULFURIC ACID - ("ACID AEROS	OLS" ON	ILY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE		110	,350.0	0.0	0.0	0.0	0.0	11,590,805.0	0.0	199,904.0
TRIETHYLAMINE			500.0	0.0	0.0	0.0	0.0	0.0	0.0	276,337.0
TRUE MANUFACTURING	G CO. 1	INC.				MEXICO				
CHLORODIFLUOROMETHANE		32	,818.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES			10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BARRY										
DAIRY FARMERS OF AM	MERIC.	A INC.				MONETT				
NITRATE COMPOUNDS			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID			0.0	0.0	0.0	0.0	0.0	0.0	0.0	87,348.0
EFCO CORP.						MONETT				
CERTAIN GLYCOL ETHERS		148	,361.0	0.0	0.0	0.0	0.0	41,218.0	137,050.0	0.0
CHROMIUM COMPOUNDS			0.0	0.0	0.0	14.0	6,604.0	138,069.0	0.0	0.0
COPPER COMPOUNDS			0.0	0.0	0.0	2.0	8,922.0	27,185.0	0.0	0.0
DIISOCYANATES			1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIMETHYL PHTHALATE		34	,208.0	0.0	0.0	0.0	0.0	9,505.0	31,601.0	0.0
ETHYLBENZENE		17	,501.0	0.0	0.0	0.0	0.0	4,861.0	16,167.0	0.0
LEAD			0.0	0.0	0.0	1.0	0.0	1,414.0	0.0	0.0
MANGANESE			0.0	0.0	0.0	0.0	0.0	14,849.0	0.0	0.0
METHYL ETHYL KETONE		39	,016.0	0.0	0.0	0.0	0.0	10,838.0	36,042.0	0.0
NITRATE COMPOUNDS			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE		61	,061.0	0.0	0.0	0.0	0.0	11,125.0	36,987.0	0.0
XYLENE (MIXED ISOMERS)		91	,887.0	0.0	0.0	0.0	0.0	25,532.0	84,884.0	0.0
FASCO INDUSTRIES						CASSVIL	LE			
CHROMIUM COMPOUNDS			0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0
COPPER COMPOUNDS			0.0	0.0	0.0	3.0	21.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)		7	,157.0	0.0	0.0	0.0	0.0	0.0	7,157.0	0.0
GEORGE'S PROCESSING	G INC.	OF MISSOUR	Ī			BUTTERF	FIELD			
AMMONIA			250.0	7,344.0	0.0	0.0	0.0	0.0	0.0	66,096.0
NITRATE COMPOUNDS			0.0	3,844.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and Off-site Waste Mgmt					
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
HYDRO ALUMINUM				Monett				
1,2,4-TRIMETHYLBENZENE	24,240.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALUMINUM (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	150,000.0	0.0	0.0
CERTAIN GLYCOL ETHERS	43,260.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	5.0	0.0	0.0	0.0	0.0	0.0	0.0	190,112.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	11,110.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	255.0	0.0	0.0	0.0	0.0	200.0	0.0	0.0
XYLENE (MIXED ISOMERS)	52,950.0	0.0	0.0	0.0	0.0	0.0	184,000.0	0.0
INTERNATIONAL DEHYDRATE	ED FOODS			MONETT				
AMMONIA	17,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MONETT METALS INC.				MONETT				
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TYSON FOODS INC.				MONETT				
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WILLOW BROOK FOODS				PURDY				
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BARTON								
O'SULLIVAN INDUSTRIES INC.				LAMAR				
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENTON								
PHOENIX MANUFACTURING I	NC.			COLE CA	MP			
LEAD	0.0	0.0	0.0	0.0	0.0	200.0	0.0	0.0
BOONE								

		On- and	Off-site Re	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
3M COMPANY - COLUMBIA		COLUMBIA						
COPPER COMPOUNDS	0.0	0.0	0.0	330.0	3,600.0	270,000.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	39.0	158.0	650.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	25,000.0	248.0	3.0	0.0	0.0
A. B. CHANCE CO.				CENTRA	LIA			
CHROMIUM	0.0	0.0	0.0	0.0	53.0	34,580.0	0.0	0.0
COPPER	0.0	0.0	0.0	5.0	0.0	19,737.0	0.0	0.0
LEAD	47.0	0.0	0.0	0.0	219.0	77,816.0	0.0	0.0
MANGANESE	70.0	0.0	0.0	0.0	889.0	32,061.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	39,540.0	0.0	0.0
ZINC COMPOUNDS	971.0	0.0	0.0	0.0	1,488.0	16,363.0	0.0	0.0
A.B. CHANCE - EAST ST/PLASTICS								
COPPER	250.0	0.0	0.0	7.0	0.0	408,112.0	0.0	0.0
LEAD COMPOUNDS	1.0	0.0	0.0	0.0	156.0	1,837.0	0.0	0.0
AAF INTERNATIONAL				COLUMB	IA			
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APAC ROCKY FORK ASPHALT PLANT	COLUMBIA							
POLYCYCLIC AROMATIC COMPOUNDS	269.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COLLINS & AIKMAN				COLUMB	IA			
DIISOCYANATES	5.0	0.0	0.0	0.0	0.0	9,520.0	0.0	20.0
COLUMBIA MUNICIPAL POWER PLANT				COLUMB	IA			
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY) 8	3,649.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	3.6	416.7	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	2.9	7.5	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS 49	0,371.0	637.0	0.0	0.0	0.0	0.0	0.0	0.0
SAFETY-KLEEN SYSTEMS (504201)				COLUMB	IA			
ETHYLENE GLYCOL	2.0	0.0	0.0	0.0	0.0	52,096.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	0.0	1,008.0	0.0	0.0

			On- and		On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
POLYCYCLIC AROMATIC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	2,620.0	0.0	0.0
SQUARE D CO.					COLUMB	IA			
CHROMIUM		0.0	0.0	0.0	1.4	0.0	266,658.0	0.0	0.0
COPPER		0.0	0.0	0.0	1.0	0.0	413,018.0	0.0	0.0
MANGANESE		0.0	0.0	0.0	0.0	0.0	16,260.0	0.0	0.0
NICKEL		0.0	0.0	0.0	10.7	0.0	147,071.0	0.0	0.0
BUCHANAN									
AG PROCESSING INC.					ST. JOSE	PH			
N-HEXANE	443,	0.000	0.0	0.0	0.0	0.0	0.0	0.0	1,300.0
NICKEL		0.0	0.0	0.0	290.0	0.0	51,000.0	0.0	0.0
ALBAUGH INC.					ST. JOSE	PH			
1,2,4-TRIMETHYLBENZENE		10.0	0.0	0.0	0.0	0.0	0.0	0.0	2,454.0
2,4-D		33.0	395.0	5.0	0.0	0.0	0.0	0.0	460.0
2,4-D 2-ETHYLHEXYL ESTER		395.0	0.0	0.0	0.0	0.0	0.0	0.0	1,380.0
2,4-D BUTOXYETHYL ESTER		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2,4-DB		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARSENIC COMPOUNDS		36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATRAZINE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	130.0
BROMOXYNIL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS		3.0	0.0	0.0	0.0	0.0	0.0	0.0	6,657.0
CUMENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DICAMBA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIMETHYLAMINE	2,	293.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIMETHYLAMINE DICAMBA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHOXONE		4.0	51.0	0.0	0.0	0.0	0.0	0.0	33.0
N-BUTYL ALCOHOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM DICAMBA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rel		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TRIFLURALIN	3.0	0.0	0.0	0.0	0.0	0.0	0.0	1,837.0
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALTEC INDUSTRIES INC.				SAINT J	OSEPH			
LEAD	11.0	0.0	0.0	0.0	88.0	0.0	0.0	0.0
STYRENE	6,400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BOEHRINGER INGELHEIM VETMEDIC	CA INC.			ST. JOS	EPH			
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	2.0	1.1	0.0	0.0
HILLYARD INDUSTRIES INC.				ST. JOS	EPH			
CERTAIN GLYCOL ETHERS	747.0	0.0	0.0	0.0	0.0	0.0	0.0	3,396.0
ETHYLENE GLYCOL	50.0	0.0	0.0	0.0	0.0	0.0	0.0	252.0
HPI PRODUCTS INC.				ST. JOS	EPH			
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2,4-D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACEPHATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIAZINON	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIETHANOLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIMETHYLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MALATHION	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
QUINTOZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JOHNSON CONTROLS BATTERY GROU	P INC.			SAINT J	OSEPH			
ANTIMONY COMPOUNDS	1.0	0.0	0.0	0.0	0.0	5,506.0	0.0	0.0
ARSENIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	412.0	0.0	0.0
LEAD COMPOUNDS	335.0	0.0	0.0	3.0	0.0	8,142,351.0	0.0	0.0
JOHNSON CONTROLS DISTRIBUTION	CENTER			SAINT J	OSEPH			
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	8,505.0	0.0	0.0
ARSENIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	383.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	2.0	0.0	642,144.0	0.0	0.0
LAKE ROAD STATION				ST. JOS	EPH			
BARIUM COMPOUNDS	5,778.0	119,549.0	589.0	0.0	119,549.0	166,203.0	0.0	0.0

		On- and Off-site Releases					ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	31,920.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	54.0	1,111.0	0.0	0.0	1,111.0	1,544.0	0.0	0.0
MANGANESE COMPOUNDS	390.0	8,153.0	0.0	0.0	8,153.0	11,335.0	0.0	0.0
MERCURY COMPOUNDS	16.0	7.0	1.0	0.0	7.0	14.0	0.0	0.0
NESTLE PURINA PETCARE CO).			ST. JOSI	EPH			
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<i>OMNIUM</i>				ST. JOSI	EPH			
ATRAZINE	59.0	0.0	0.0	0.0	0.0	0.0	0.0	8,041.0
BROMOXYNIL OCTANOATE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	1,810.0
CYFLUTHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIURON	10.0	0.0	0.0	0.0	0.0	0.0	0.0	2,309.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	120,540.0
N-METHYL-2-PYRROLIDONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROMETRYN	250.0	0.0	0.0	0.0	0.0	0.0	0.0	3,763.0
SIMAZINE	255.0	0.0	0.0	0.0	0.0	0.0	0.0	158.0
TRICHLORFON	0.0	0.0	0.0	0.0	0.0	0.0	0.0	350.0
TRIFLURALIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24,116.0
XYLENE (MIXED ISOMERS)	36.0	0.0	0.0	0.0	0.0	0.0	0.0	803.0
PRIME TANNING CORP.				ST. JOSI	EPH			
AMMONIA	217.0	0.0	5.0	0.0	602.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	103.0	0.0	5.0	0.0	17,139.0	0.0	0.0	25,315.0
CHROMIUM COMPOUNDS	6.0	0.0	5.0	750.0	34,618.0	356,938.0	0.0	0.0
LEAD COMPOUNDS	0.1	0.0	0.0	0.0	125.7	0.0	0.0	0.0
POTASSIUM N-METHYLDITHIOCARBAMA	ATE 5.0	0.0	5.0	0.0	24,302.0	0.0	0.0	0.0
PURINA MILLS LLC				SAINT JO	OSEPH			
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and		On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ROSEWOOD FARMS LLC					ST JOSE	PH			
AMMONIA		250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SILGAN CONTAINERS MAN	UFACTURING CO	ORP.			ST. JOSE	PH			
1,2,4-TRIMETHYLBENZENE	14,	980.0	0.0	0.0	0.0	0.0	0.0	21,127.0	18,989.0
CERTAIN GLYCOL ETHERS	176,	197.0	0.0	0.0	0.0	0.0	0.0	169,021.0	110,641.0
ETHYLBENZENE	4,	569.0	0.0	0.0	0.0	0.0	0.0	6,516.0	5,874.0
METHYL ETHYL KETONE	53,	064.0	0.0	0.0	0.0	0.0	0.0	29,740.0	0.0
METHYL ISOBUTYL KETONE	6,	306.0	0.0	0.0	0.0	0.0	0.0	9,523.0	8,108.0
N-BUTYL ALCOHOL	27,	465.0	0.0	0.0	0.0	0.0	0.0	66,993.0	62,492.0
XYLENE (MIXED ISOMERS)	22,	690.0	0.0	0.0	0.0	0.0	0.0	32,321.0	29,148.0
WIRE ROPE CORPORATION	OF AMERICA IN	C.			ST. JOSE	PH			
BARIUM COMPOUNDS		5.0	0.0	0.0	0.0	750.0	0.0	0.0	0.0
LEAD		0.0	0.0	0.0	2.1	0.0	35.7	0.0	0.0
BUTLER									
BRIGGS & STRATTON CORP					POPLAR	BLUFF			
COPPER		9.6	0.0	0.0	12.5	0.1	143,039.0	0.0	0.0
HYDROGEN FLUORIDE		159.0	0.0	0.0	0.0	0.0	0.0	0.0	13,906.0
LEAD COMPOUNDS		0.0	0.0	0.0	8.0	1.0	8,473.0	0.0	0.0
N-BUTYL ALCOHOL	12,	200.0	0.0	0.0	0.0	0.0	0.0	80.0	0.0
NITRATE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	101,608.0
NITRIC ACID		400.0	0.0	0.0	0.0	0.0	0.0	0.0	103,485.0
POLYCYCLIC AROMATIC COMPOUND	os	144.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	2,	014.0	0.0	0.0	0.0	0.0	0.0	19.0	0.0
ZINC COMPOUNDS		233.0	0.0	0.0	118.0	22,365.0	0.0	0.0	0.0
NORDYNE INC.					POPLAR	BLUFF			
CHLORODIFLUOROMETHANE	24,	209.0	0.0	0.0	0.0	0.0	3,729.0	0.0	0.0
COPPER		0.0	0.0	0.0	0.0	0.0	100,236.0	0.0	0.0
MANGANESE		0.0	0.0	0.0	0.0	0.0	12,574.0	0.0	0.0
PIERCE PETROLEUM CO.					POPLAR	BLUFF			
1,2,4-TRIMETHYLBENZENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	l Off-site Rei	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AI	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
BENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CUMENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CYCLOHEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ROWE FURNITURE				POPLAR	BLUFF				
METHANOL	750.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
THE GATES CORP.				POPLAR	BLUFF				
CERTAIN GLYCOL ETHERS	162.0	0.0	0.0	0.0	8,393.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	1.0	30.0	64,530.0	0.0	0.0	0.0	
CALLAWAY									
A. P. GREEN INDUSTRIES INC.				FULTON					
POLYCYCLIC AROMATIC COMPOUNDS	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ABB INC.				JEFFERS	SON CITY				
CERTAIN GLYCOL ETHERS	34,610.0	0.0	0.0	0.0	0.0	0.0	0.0	18,188.0	
CHROMIUM	5.0	0.0	0.0	5.0	0.0	8,407.0	0.0	0.0	
COPPER	250.0	0.0	0.0	5.0	0.0	91,768.0	0.0	0.0	
METHYL ETHYL KETONE	35,195.0	0.0	0.0	0.0	0.0	43,552.0	0.0	0.0	
NICKEL	5.0	0.0	0.0	250.0	0.0	10,808.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	12,200.0	0.0	0.0	0.0	0.0	8,599.0	0.0	0.0	
CAMDEN									
APAC LINN CREEK ASPHALT	PLANT			LINN CR	EEK				
POLYCYCLIC AROMATIC COMPOUNDS	213.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHARGER INC.				RICHLAN	ND .				
STYRENE	12,750.0	0.0	0.0	0.0	750.0	0.0	0.0	0.0	
MODINE MANUFACTURING C	0.			CAMDEN	ITON				
MANGANESE	0.0	0.0	0.0	0.0	0.0	4,168.0	0.0	0.0	

Page 9 of 101

		On- a	nd Off-site R		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CH	EMICAL .	AIR LANI) WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
SPEEDLINE TECHNOLOGIES ELE	CTROVERT			CAMDEN	NTON			
LEAD	0	.0 0.0	0.0	0.0	0.0	3,450.0	0.0	0.0
CAPE GIRARDEAU								
ATLAS ALCHEM PLASTICS INC.				CAPE GI	RARDEAU			
LEAD COMPOUNDS	0	.0 0.0	0.0	0.0	20.0	45.0	0.0	0.0
BIOKYOWA INC.				CAPE GI	RARDEAU			
AMMONIA	2,170	.0 0.0	171,000.0	0.0	4,800.0	366,000.0	0.0	0.0
NITRATE COMPOUNDS	0	.0 0.0	11,000.0	0.0	500.0	0.0	0.0	0.0
NITRIC ACID	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
FOAMEX L.P.				CAPE GI	RARDEAU			
THIRAM	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0	.0 0.0	0.0	0.0	0.0	530.0	0.0	0.0
HORIZON MUSIC INC.				CAPE GI	RARDEA			
LEAD COMPOUNDS	0	.0 0.0	0.0	0.0	22.2	0.0	0.0	0.0
LONE STAR INDUSTRIES INC.				CAPE GI	RARDEAU			
BARIUM COMPOUNDS	250	.0 16,000.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	10	.0 0.0	0.0	0.0	0.0	0.0	17,330.0	0.0
CHROMIUM COMPOUNDS	250	.0 1,900.0	0.0	0.0	0.0	9,000.0	0.0	0.0
CRESOL (MIXED ISOMERS)	10	.0 0.0	0.0	0.0	0.0	0.0	184,200.0	0.0
DIAMINOTOLUENE (MIXED ISOMERS)	255	.0 0.0	0.0	0.0	0.0	0.0	493,500.0	0.0
DICHLOROMETHANE	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0	.2 0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	10	.0 0.0	0.0	0.0	0.0	0.0	80,800.0	0.0
ETHYLENE GLYCOL	500	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ON	ILY) 36,700	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	5	.0 14,150.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	180	.0 15.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	500	.0 0.0	0.0	0.0	0.0	0.0	2,937,000.0	0.0
METHYL ISOBUTYL KETONE	500	.0 0.0	0.0	0.0	0.0	0.0	569,000.0	0.0
NICKEL COMPOUNDS	250	.0 1,700.0	0.0	0.0	0.0	0.0	0.0	0.0

		On-	and Off-sit	e Releases	On- and C	On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR LAN	D WAT	ER POTV	V DISP	RCYCLE	ENERGY	TRMT	
PHENOL	10	.0 (0.0	0.0	0.0	0.0	141,600.0	0.0	
STYRENE	500	.0 (0.0	0.0	0.0	0.0	721,500.0	0.0	
TOLUENE	500	.0 (0.0	0.0	0.0	0.0	3,734,300.0	0.0	
TRICHLOROETHYLENE	C	.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	500	.0	0.0	0.0	0.0	0.0	870,200.0	0.0	
NORDENIA U.S.A. INC.				JACKS	SON				
N-METHYL-2-PYRROLIDONE	22,298	.0	0.0	0.0	0.0	536,440.0	4,524.0	0.0	
OZONE	1,735	.0	0.0	0.0	0.0	0.0	0.0	0.0	
RAPCO INTERNATIONAL INC				JACKS	SON				
LEAD COMPOUNDS	C	.0 (0.0	0.0	25.0	0.0	0.0	0.0	
SAFETY-KLEEN SYSTEMS (50.	3001)			CAPE	GIRARDEAU				
LEAD	C	.0 (0.0	0.0	0.0	1,547.0	0.0	0.0	
POLYCYCLIC AROMATIC COMPOUNDS	C	.2	0.0	0.0	0.0	4,012.0	0.0	0.0	
SPARTECH				CAPE	GIRARDEAU				
ANTIMONY COMPOUNDS	C	.0 (0.0	0.0	5.0	448.0	0.0	0.0	
CHROMIUM COMPOUNDS	C	.0	0.0	0.0	1,000.0	1,150.0	0.0	0.0	
LEAD COMPOUNDS	1	.0	0.0	19.0	45.0	3,560.0	0.0	0.0	
ZINC COMPOUNDS	C	.0	0.0	0.0	250.0	2,180.0	0.0	0.0	
TORQUE-TRACTION MANUFA	CTURING TECH	NOLOGIES	INC.	CAPE	GIRARDEAU				
COPPER	C	.0 (0.0	0.5	0.0	0.0	0.0	0.0	
METHANOL	250	.0 (0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL	C	.0	0.0	1.4	0.0	0.0	0.0	0.0	
CARROLL									
CARROLLTON STATION & TE	RMINAL - SINCLA	AIR OIL CO	RP.	CARRO	OLLTON				
1,2,4-TRIMETHYLBENZENE	500	.0 (0.0	0.0	0.0	3,576.0	0.0	4.0	
BENZENE	1,000	.0	0.0	0.0	0.0	1,737.0	0.0	70.0	
BENZO(G,H,I)PERYLENE	(.0 (0.0	0.0	0.0	0.2	0.0	0.0	
ETHYLBENZENE	500	.0	0.0	0.0	0.0	1,913.0	0.0	0.0	
LEAD COMPOUNDS	C	.0	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	1,730	.0 (0.0	0.0	0.0	1,673.0	0.0	0.0	

Page 11 of 101

		On- and	Off-site Re	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
POLYCYCLIC AROMATIC COMPOUNDS	0.1	0.0	0.0	0.0	0.0	1.6	0.0	0.0	
TOLUENE	1,905.0	0.0	0.0	0.0	0.0	8,982.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	1,000.0	0.0	0.0	0.0	0.0	11,505.0	0.0	0.0	
DEXTER AXLE				CARROL	LTON				
MANGANESE	500.0	0.0	0.0	0.0	0.0	2,000.0	0.0	0.0	
RICHARD COX MANUFACTUR	PING			CARROL	LTON				
XYLENE (MIXED ISOMERS)	19,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CARTER									
ROYAL OAK ENTERPRISES IN	<i>C</i> .			ELLSINO	RE				
METHANOL	3,374,496.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CASS									
EAGLEPICHER PHARMACEUT	TICAL SERVICES LL	\boldsymbol{C}		HARRISO	ONVILLE				
DICHLOROMETHANE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	13,000.0	
METHANOL	17,200.0	0.0	0.0	0.0	0.0	0.0	48,000.0	3,400.0	
N,N-DIMETHYLFORMAMIDE	1,950.0	0.0	0.0	0.0	0.0	0.0	16,000.0	400.0	
LONE WOLF ENTERPRISES IN	VC.			HARRISO	ONVILLE				
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SOUTHEAST WOOD				PLEASA	NT HILL				
ARSENIC COMPOUNDS	5.0	0.0	5.0	0.0	250.0	23.0	0.0	0.0	
CHROMIUM COMPOUNDS	5.0	0.0	5.0	0.0	250.0	26.0	0.0	0.0	
COPPER COMPOUNDS	5.0	0.0	5.0	0.0	250.0	15.0	0.0	0.0	
UNIVERSAL FOREST PRODUC	CTS INC WESTERN	DIVISION		HARRISC	ONVILLE				
ARSENIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CEDAR									

		On- and	Off-site Rei		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	IICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
DAIRICONCEPTS				EL DORA	DO SPRINGS			
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26,372.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19,552.0
CHRISTIAN								
CHRISTIAN COUNTY CONCRETE				NIXA				
LEAD COMPOUNDS	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FASCO INDUSTRIES				OZARK				
COPPER COMPOUNDS	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0
FIOCCHI OF AMERICA INC.				OZARK				
ANTIMONY COMPOUNDS	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	30.0	0.0	0.0	0.0	0.0	4,340.0	0.0	0.0
WILCORP INDUSTRIES INC.				BILLINGS	3			
CYCLOHEXANE	35.0	0.0	0.0	0.0	0.0	0.0	1.0	370.0
METHYL ETHYL KETONE	40.0	0.0	0.0	0.0	0.0	0.0	10.0	2,980.0
METHYL ISOBUTYL KETONE	10.0	0.0	0.0	0.0	0.0	0.0	1.0	170.0
N-HEXANE	20.0	0.0	0.0	0.0	0.0	0.0	1.0	130.0
TOLUENE	10.0	0.0	0.0	0.0	0.0	0.0	1.0	460.0
XYLENE (MIXED ISOMERS)	15.0	0.0	0.0	0.0	0.0	0.0	1.0	150.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	50.0	10.0	0.0	0.0
CLAY								
ADM MILLING CO.				NORTH K	KANSAS CITY			
BENZOYL PEROXIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ADM PROCESSING				NORTH K	KANSAS CITY			
N-HEXANE	241,155.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
CHEMCENTRAL - KANSAS CITY				KANSAS	CITY			
1,2,4-TRIMETHYLBENZENE	500.0	0.0	0.0	0.0	0.0	0.0	880.0	0.0
CERTAIN GLYCOL ETHERS	500.0	0.0	0.0	0.0	0.0	0.0	960.0	0.0

		On- and	Off-site Re	leases		On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CUMENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DI(2-ETHYLHEXYL) PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DICHLOROMETHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	1,000.0	0.0	0.0	0.0	0.0	0.0	460.0	0.0
METHYL ETHYL KETONE	255.0	0.0	0.0	0.0	0.0	0.0	300.0	0.0
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-METHYL-2-PYRROLIDONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	255.0	0.0	0.0	0.0	0.0	0.0	350.0	0.0
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COMPLETE HOME CONCEPT	S INC			NORTH P	KANSAS CITY			
STYRENE	11,384.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COOK COMPOSITES & POLYM	MERS CO.			NORTH P	KANSAS CITY			
1,2,4-TRIMETHYLBENZENE	10.0	0.0	0.0	0.0	0.0	0.0	2,575.0	3,339.0
ETHYLENE GLYCOL	4.9	0.0	0.0	0.0	0.0	0.0	2,520.0	33,095.0
MALEIC ANHYDRIDE	277.0	0.0	0.0	0.0	0.0	0.0	0.0	165.0
METHYL METHACRYLATE	6,667.0	0.0	0.0	0.0	0.0	0.0	11,252.0	554.0
STYRENE	20,736.3	0.0	0.0	0.0	0.0	0.0	145,685.0	2,605.0
XYLENE (MIXED ISOMERS)	26.4	0.0	0.0	0.0	0.0	0.0	78,314.0	33,154.0
DAVIS PAINT CO.				NORTH P	KANSAS CITY			
ETHYLBENZENE	1,188.0	0.0	0.0	0.0	0.0	0.0	6,090.0	0.0
ETHYLENE GLYCOL	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	1,510.0	0.0	0.0	0.0	0.0	0.0	6,090.0	0.0
TOLUENE	1,630.0	0.0	0.0	0.0	0.0	0.0	1,218.0	0.0
XYLENE (MIXED ISOMERS)	5,350.0	0.0	0.0	0.0	0.0	0.0	97,436.0	0.0
DOUGLAS PRODUCTS & PACE	KAGING CO.			LIBERTY				
MALATHION	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EARL CAMPBELL MANUFAC	TURING CO.			NORTH P	KANSAS CITY			

	On- and Off-site Releases					On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AII	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
METHYL ETHYL KETONE	311.0	0.0	0.0	0.0	0.0	1,000.0	290.0	0.0
METHYL ISOBUTYL KETONE	366.0	0.0	0.0	0.0	0.0	900.0	341.0	0.0
N-BUTYL ALCOHOL	396.0	0.0	0.0	0.0	0.0	600.0	370.0	0.0
TOLUENE	1,035.0	0.0	0.0	0.0	0.0	5,000.0	966.0	0.0
XYLENE (MIXED ISOMERS)	320.0	0.0	0.0	0.0	0.0	600.0	298.0	0.0
FORD MOTOR COMPANY - KA	ANSAS CITY ASSEMB	BLY PLANT		CLAYCO	МО			
1,2,4-TRIMETHYLBENZENE	120,610.0	0.0	0.0	0.0	210.0	15,000.0	11,000.0	58,000.0
BENZENE	289.0	0.0	0.0	0.0	0.0	0.0	0.0	1,400.0
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	331,900.0	0.0	0.0	0.0	170.0	0.0	11,000.0	49,000.0
CUMENE	36,180.0	0.0	0.0	0.0	66.0	15,000.0	11,000.0	5,000.0
CYCLOHEXANE	355.0	0.0	0.0	0.0	0.0	0.0	0.0	1,700.0
ETHYLBENZENE	170,850.0	0.0	0.0	0.0	300.0	44,000.0	34,000.0	56,000.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8,000.0
LEAD COMPOUNDS	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	191.0	0.0	0.0	140.0	15,000.0	0.0	0.0	0.0
METHANOL	11,056.0	0.0	0.0	0.0	34.0	15,000.0	0.0	8,400.0
METHYL ETHYL KETONE	44,220.0	0.0	0.0	0.0	55.0	0.0	11,000.0	0.0
METHYL ISOBUTYL KETONE	331,700.0	0.0	0.0	0.0	640.0	160,000.0	95,000.0	55,000.0
METHYL TERT-BUTYL ETHER	878.0	0.0	0.0	0.0	0.0	0.0	0.0	4,300.0
N-BUTYL ALCOHOL	180,910.0	0.0	0.0	0.0	310.0	15,000.0	11,000.0	98,000.0
N-HEXANE	3,835.0	0.0	0.0	0.0	0.0	0.0	0.0	1,700.0
N-METHYL-2-PYRROLIDONE	52,260.0	0.0	0.0	0.0	82.0	0.0	0.0	31,000.0
NAPHTHALENE	47,240.0	0.0	0.0	0.0	84.0	15,000.0	11,000.0	11,000.0
NICKEL COMPOUNDS	4.0	0.0	0.0	370.0	19,000.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	190,000.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	280,000.0
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62,000.0
TOLUENE	41,330.0	0.0	0.0	0.0	70.0	15,000.0	11,000.0	12,000.0
XYLENE (MIXED ISOMERS)	713,600.0	0.0	0.0	0.0	1,300.0	190,000.0	150,000.0	240,000.0
ZINC COMPOUNDS	55.0	0.0	0.0	6,000.0	31,000.0	0.0	0.0	0.0

		On- and Off-site Releases					On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
FORDYCE CONCRETE CO. INC RANDOLF	PH FACIL	ITY		KANSAS	CITY			_	
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
GILMOUR MANUFACTURING				EXCELSI	OR SPRINGS				
DI(2-ETHYLHEXYL) PHTHALATE	0.0	0.0	0.0	0.0	30,660.0	378,787.0	0.0	0.0	
LEAD	0.0	0.0	0.0	0.0	1,641.0	20,273.0	0.0	0.0	
JESCO RESOURCES INC.				NORTH P	KANSAS CITY				
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NATIONAL STARCH & CHEMICAL CO.				NORTH P	KANSAS CITY				
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NATIONAL STARCH AND CHEMICAL CO.				NORTH P	KANSAS CITY				
PROPYLENE OXIDE	2,287.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PRAXAIR SURFACE TECHNOLOGIES INC.				NORTH P	KANSAS CITY				
NITRIC ACID	334.9	0.0	0.0	0.0	0.0	0.0	0.0	17,345.2	
REMCO - DIVISION OF QUALSERY CORP.				NORTH P	KANSAS CITY				
CADMIUM	0.0	0.0	0.0	0.0	0.0	26,089.9	0.0	0.0	
CHROMIUM	0.0	0.0	0.0	0.0	0.0	26,089.0	0.0	0.0	
NICKEL	0.0	0.0	0.0	0.0	0.0	11,638.0	0.0	0.0	
SAMUEL BINGHAM CO.				NORTH P	KANSAS CITY				
DI(2-ETHYLHEXYL) PHTHALATE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SERICOL INC.				NORTH P	KANSAS CITY				
1,2,4-TRIMETHYLBENZENE	7,748.0	0.0	0.0	0.0	3.0	1,788.0	7,627.0	0.0	
CERTAIN GLYCOL ETHERS	6,439.0	0.0	0.0	0.0	200.0	0.0	1,073.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	58.0	0.0	0.0	0.0	
SOUTHWEST TECHNOLOGIES INC.				NORTH P	KANSAS CITY				
ACRYLAMIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
STAR BOARDS INC.				NORTH P	KANSAS CITY				

			On- and Off-site Waste Mgmt					
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
STYRENE	5,700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TNEMEC COMPANY INC.				NORTH P	KANSAS CITY			
1,2,4-TRIMETHYLBENZENE	234.0	0.0	0.0	0.0	0.0	0.0	5,142.0	0.0
BARIUM COMPOUNDS	23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	376.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	1,742.0	0.0	0.0	0.0	0.0	0.0	21,084.0	0.0
METHYL ETHYL KETONE	918.0	0.0	0.0	0.0	0.0	0.0	11,828.0	0.0
METHYL ISOBUTYL KETONE	3,782.0	0.0	0.0	0.0	0.0	0.0	54,896.0	0.0
N-BUTYL ALCOHOL	2,668.0	0.0	0.0	0.0	0.0	0.0	39,854.0	0.0
STYRENE	328.0	0.0	0.0	0.0	0.0	0.0	5,142.0	0.0
XYLENE (MIXED ISOMERS)	10,422.0	0.0	0.0	0.0	0.0	0.0	119,177.0	0.0
ZINC (FUME OR DUST)	110.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	34.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UNITED STATES GYPSUM CO.				NORTH P	KANSAS CITY			
LEAD COMPOUNDS	0.0	0.0	0.0	3.7	0.2	0.0	0.0	0.0
VARIFORM INC.				KEARNE	Υ			
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VERTEX PLASTICS INC.				KEARNE	Υ			
STYRENE	8,547.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CLINTON								
MID-AMERICA FRAME INC.				PLATTSE	BURG			
TOLUENE	12,713.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0
MIDWEST HANGER CO.				CAMERO	N			
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and	Off-site Re	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
COLE										
CONOCOPHILLLIPS CO JEFF	ERSON CITY T	ERMI.	NAL		JEFFERS	SON CITY				
1,2,4-TRIMETHYLBENZENE	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	87.0	
BENZENE	50	0.0	0.0	0.0	0.0	0.0	2.0	0.0	2,601.0	
BENZO(G,H,I)PERYLENE	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CYCLOHEXANE	1,00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4,400.0	
ETHYLBENZENE	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	300.0	
LEAD COMPOUNDS	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	1,00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,700.0	
POLYCYCLIC AROMATIC COMPOUNDS	:	2.1	0.0	0.0	0.0	0.0	0.1	0.0	0.1	
PROPYLENE	1,40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,200.0	
TOLUENE	1,00	0.0	0.0	0.0	0.0	0.0	1.0	0.0	4,400.0	
XYLENE (MIXED ISOMERS)	50	0.0	0.0	0.0	0.0	0.0	1.0	0.0	901.0	
DELONGS INC.					JEFFERS	SON CITY				
LEAD		0.4	0.0	0.0	0.0	10.4	0.0	0.0	0.0	
MANGANESE	1	4.2	0.0	0.0	2.2	152.0	15,048.0	0.0	0.0	
NICKEL		0.5	0.0	0.0	1.0	18.4	6,772.0	0.0	0.0	
PROPYLENE	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC (FUME OR DUST)	25	6.0	0.0	0.0	0.0	256.0	0.0	0.0	0.0	
JOHNSON CONTROLS INC HO	OOVER AUTOM	OTIV	E DIVISIO)N	JEFFERS	SON CITY				
DIETHANOLAMINE	2,20	5.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	
TOLUENE DIISOCYANATE (MIXED ISOME	RS) 18	5.0	5.0	0.0	0.0	0.0	0.0	0.0	130.0	
MODINE MANUFACTURING CO) .				JEFFERS	SON CITY				
COPPER	38.	2.0	0.0	8.0	12.0	1,454.0	242,645.0	0.0	0.0	
LEAD	15	4.0	0.0	48.0	9.0	1,076.0	74,050.0	0.0	0.0	
PORITE JEFFERSON CORP.					JEFFERS	SON CITY				
COPPER	1	0.0	0.0	0.0	0.0	0.0	33,600.0	0.0	0.0	
DI(2-ETHYLHEXYL) PHTHALATE		4.0	0.0	0.0	0.0	283.0	0.0	0.0	0.0	
UNILEVER HPC				-	JEFFERS		3.2			
ZINC COMPOUNDS		2.0	0.0	0.0	250.0	0.0	0.0	0.0	0.0	
ZIINO OCIVII OCINDO	•		0.0	0.0	230.0	0.0	0.0	0.0	0.0	

		On- and Off-site Releases						On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT			
VON HOFFMANN PRESS INC.				JEFFERS	SON CITY						
CERTAIN GLYCOL ETHERS	467.0	0.0	0.0	0.0	0.0	0.0	0.0	101.0			
COOPER											
CATERPILLAR				BOONVIL	LLE						
LEAD COMPOUNDS	59.0	0.0	0.0	0.0	1,011.0	0.0	0.0	0.0			
TOLUENE	9,638.0	0.0	0.0	0.0	0.0	0.0	567.0	0.0			
XYLENE (MIXED ISOMERS)	12,129.0	0.0	0.0	0.0	0.0	0.0	702.0	0.0			
ZINC COMPOUNDS	4.0	0.0	0.0	0.0	440.0	0.0	0.0	0.0			
FUQUA HOMES INC BOONV	ILLE			BOONVIL	LE						
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
NORDYNE INC.				BOONVIL	LE						
CHLORODIFLUOROMETHANE	23,000.0	0.0	0.0	0.0	0.0	44,000.0	0.0	0.0			
COPPER	0.0	0.0	0.0	0.0	0.0	108,000.0	0.0	0.0			
CRAWFORD											
ARNESON TIMBER CO. INC.				STEELVI	LLE						
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1			
B.W. FREEMAN INC.				CUBA							
DIISOCYANATES	35.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ETHYLENE GLYCOL	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
N-METHYL-2-PYRROLIDONE	144.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ENNIS PAINT INC.				CUBA							
METHANOL	10,934.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
GP GYPSUM FIREDOOR COM	PONENT FACILITY			CUBA							
LEAD	0.0	0.0	0.0	0.0	116.0	0.0	0.0	0.0			
PROPYLENE	0.0	0.0	0.0	0.0	0.0	0.0	145,393.0	0.0			
MAR-BAL INC.				CUBA							
STYRENE	7,646.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AI	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
OLIN CORP FINEWELD TUBE	E			CUBA				
COPPER	0.0	0.0	5.0	27.0	0.0	228.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DAVIESS								
LANDMARK MANUFACTURING	G CORP.			GALLATI	N			
MANGANESE	0.0	0.0	0.0	0.0	0.0	51,362.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	6,685.0	0.0	0.0
PREMIUM STANDARD FARMS	- COFFEY FEEDM	ILL		PATTON	SBURG			
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SELENIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DOUGLAS								
COPELAND CORP.				AVA				
LEAD	0.0	0.0	0.0	12.0	1.0	56.0	0.0	0.0
DUNKLIN								
AMERICAN RAILCAR INDUSTR	RIES			KENNET	Т			
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EMERSON ELECTRIC CO.				KENNET	Т			
CHROMIUM	0.0	5.0	0.0	5.0	5.0	3,685.0	0.0	0.0
COBALT	0.0	5.0	0.0	0.0	5.0	246.0	0.0	0.0
COPPER	0.0	5.0	5.0	5.0	5.0	159,193.0	0.0	0.0
DIISOCYANATES	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	2,234.0	0.0	0.0	0.0	0.0	0.0	1,900.0	0.0
LEAD	0.0	1.0	0.0	7.0	1.0	1,746.0	0.0	0.0
MANGANESE	0.0	5.0	0.0	0.0	5.0	737.0	0.0	0.0
N-BUTYL ALCOHOL	12,997.0	0.0	0.0	0.0	0.0	0.0	2,618.0	0.0

Page 20 of 101

		On- and	Off-site Rel		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY C	HEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NICKEL	0.0	5.0	0.0	5.0	5.0	3,316.0	0.0	0.0
XYLENE (MIXED ISOMERS)	71,452.0	0.0	0.0	0.0	0.0	0.0	15,253.0	0.0
FEDERAL MOGUL CORP.				MALDEN				
COPPER	149.0	0.0	5.0	6.0	193.0	123,545.0	0.0	0.0
LEAD COMPOUNDS	7.0	0.0	42.0	21.0	9.0	4,183.0	0.0	0.0
MANGANESE	51.0	0.0	16.0	25.0	66.0	30,617.0	0.0	0.0
NICKEL	26.0	0.0	7.0	22.0	34.0	15,893.0	0.0	0.0
OZARK WIRE LTD. INC.				MALDEN				
HYDROCHLORIC ACID ("ACID AEROSOLS" C	ONLY) 6,652.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PARKER HANNIFIN CORP ACD				KENNET	Т			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	1,252.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	5.0	4,435.0	0.0	0.0	0.0
STEEL TECHNOLOGIES INC.				KENNET	Т			
СНКОМІИМ	0.0	0.0	0.0	0.0	0.0	64,300.0	0.0	0.0
FRANKLIN								
AEROFIL TECHNOLOGY INC.				SULLIVA	N			
1,2,4-TRIMETHYLBENZENE	2,042.0	0.0	0.0	0.0	0.0	0.0	717.0	0.0
ACEPHATE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	127.0
CHLOROTHALONIL	0.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
CYCLOHEXANE	500.0	0.0	0.0	0.0	0.0	0.0	418.0	0.0
CYCLOHEXANOL	500.0	0.0	0.0	0.0	0.0	0.0	619.0	0.0
ETHYLBENZENE	255.0	0.0	0.0	0.0	0.0	0.0	0.0	154.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	750.0	0.0	0.0	0.0
MALATHION	500.0	0.0	0.0	0.0	0.0	0.0	0.0	2,193.0
METHANOL	500.0	0.0	0.0	0.0	0.0	0.0	112.0	0.0
N-HEXANE	5,837.0	0.0	0.0	0.0	0.0	0.0	1,532.0	3,575.0
N-METHYL-2-PYRROLIDONE	500.0	0.0	0.0	0.0	0.0	0.0	497.0	0.0
NAPHTHALENE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	635.0
PERMETHRIN	255.0	0.0	0.0	0.0	0.0	0.0	0.0	88.0
SODIUM NITRITE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	92.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TOLUENE	500.0	0.0	0.0	0.0	0.0	0.0	807.0	0.0
TRIFORINE	255.0	0.0	0.0	0.0	0.0	0.0	0.0	101.0
XYLENE (MIXED ISOMERS)	500.0	0.0	0.0	0.0	0.0	0.0	0.0	837.0
AMERENUE LABADIE POWER PLANT				LABADIE				
BARIUM COMPOUNDS	8,614.0	1,627,706.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM COMPOUNDS	540.0	24,009.0	0.0	0.0	0.0	0.0	0.0	0.0
COBALT COMPOUNDS	184.0	15,411.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	566.0	41,443.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	241,343.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	327,766.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	381.2	13,287.1	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	856.0	53,016.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	762.6	65.1	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL COMPOUNDS	650.0	24,797.0	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	36,127.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VANADIUM COMPOUNDS	506.0	51,722.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	2,042.0	34,758.0	0.0	0.0	0.0	0.0	0.0	0.0
CANAM STEEL CORP.				WASHING	GTON			
ALUMINUM (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BARIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PHOSPHORUS (YELLOW OR WHITE)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CONVENIENCE PRODUCTS				PACIFIC				
1,1-DICHLORO-1-FLUOROETHANE	1,485.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHLORODIFLUOROMETHANE	2,893.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GDX AUTOMOTIVE				NEW HAV	/EN			

		On- and	Off-site Rel	leases		On- and O	Mgmt	
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	1,380.0	0.0	0.0	0.0	3,219.0	0.0	1,110.0	0.0
XYLENE (MIXED ISOMERS)	12,926.0	0.0	0.0	0.0	0.0	0.0	2,792.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	26.0	96,008.0	17,061.0	0.0	0.0
GDX AUTOMOTIVE (FORMER	LY GENCORP)			BERGER	ł			
TOLUENE	19,008.0	0.0	0.0	0.0	0.0	0.0	10,778.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.4	0.0	20,526.0	8,531.0	0.0	0.0
INTEGRAM - ST. LOUIS SEATI	ING			PACIFIC				
DIISOCYANATES	4.0	0.0	0.0	0.0	0.0	0.0	0.0	2,046.0
JEFFERSON PRODUCTS CO.				WASHIN	GTON			
AMMONIA	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	0.0	1,016.0	1.0	10.0	0.0	145,074.0	0.0	0.0
LEAD	0.0	76.0	1.0	1.0	0.0	83.0	0.0	0.0
MANGANESE	0.0	72.0	3.0	1.0	0.0	11,430.0	0.0	0.0
NICKEL	0.0	370.0	2.0	5.0	0.0	12,372.0	0.0	0.0
TOLUENE	8,506.0	0.0	0.0	0.0	0.0	2,613.0	0.0	0.0
M & R PLATING				WASHIN	GTON			
CHROMIUM	5.0	0.0	0.0	5.0	3,600.0	0.0	0.0	0.0
COBALT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	0.0	0.0	0.0	2.0	1.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARCHEM COATED FABRICS	S INC.			NEW HA	VEN			
XYLENE (MIXED ISOMERS)	306.0	0.0	0.0	0.0	0.0	306.0	0.0	0.0
MERAMEC INDUSTRIES				SULLIVA	N			
DIBUTYL PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	263.0	393.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,852.0
ETHYLENE GLYCOL	2.0	0.0	0.0	0.0	0.0	0.0	8,220.0	83.0
LEAD	0.0	0.0	0.0	0.0	33.0	0.0	0.0	0.0
PAUWELS TRANSFORMERS I	NC.			WASHIN	GTON			
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	166,275.0	0.0	0.0

		On- a	and Off-site R	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL A	AIR LANI	D WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
PHARMA TECH INDUSTRIE	S INC.			UNION				
ZINC COMPOUNDS	0.	0 0.	0.0	0.0	750.0	0.0	0.0	0.0
PLAZE INC.				ST. CLAI	R			
CERTAIN GLYCOL ETHERS	250.	0 0.	0.0	0.0	0.0	0.0	126,557.0	0.0
DICHLOROMETHANE	250.	0 0.	0.0	0.0	0.0	0.0	5,378.0	0.0
N-HEXANE	51.	0 0.	0.0	0.0	0.0	0.0	3,986.0	0.0
XYLENE (MIXED ISOMERS)	5.	0 0.	0.0	0.0	0.0	0.0	2,278.0	0.0
POLYONE CORP.				SULLIVA	N			
LEAD COMPOUNDS	0.	0 0.	0.0	0.0	10.3	0.0	0.0	0.0
SIESCO VALLEY SCREW PR	ODUCTS INC.			UNION				
COPPER	0.	0 0.	0.0	0.0	0.0	75,230.0	0.0	0.0
SPORLAN VALVE CO PLA	NT#1			WASHIN	GTON			
COPPER	0.	0 0.	0.0	5.0	3,900.0	0.0	0.0	0.0
COPPER	0.	0 0.	0.0	5.0	7,700.0	0.0	0.0	0.0
LEAD	0.	0 0.	0.0	0.1	77.0	0.0	0.0	0.0
LEAD	0.	0 0.	0.0	0.0	154.0	0.0	0.0	0.0
NITRIC ACID	5.	0 0.	0.0	0.0	0.0	0.0	0.0	16,000.0
TRICHLOROETHYLENE	9,000.	0 0.	0.0	0.0	0.0	7,300,000.0	0.0	11,000.0
TRICHLOROETHYLENE	8,000.	0 0.	0.0	0.0	0.0	540,000.0	0.0	427.0
ST. CLAIR DIE CASTING LL	C			ST. CLAI	R			
COPPER	0.	0 0.	0.0	0.0	0.0	1,936.0	0.0	0.0
LEAD	0.	0 0.	0.0	0.0	0.0	204.0	0.0	0.0
NICKEL	0.	0 0.	0.0	0.0	0.0	1,162.0	0.0	0.0
TRADCO INC.				WASHIN	GTON			
HYDROGEN FLUORIDE	214.	0 0.	0.0	0.0	0.0	0.0	0.0	10,700.0
NITRATE COMPOUNDS	0.	0 0.	0.0	0.0	0.0	0.0	0.0	48,000.0
NITRIC ACID	259.	0 0.	0.0	0.0	0.0	0.0	0.0	49,000.0
TRANSACTION TECHNOLO	GIES INC.			Union				
LEAD	0.	0 0.	0.0	0.0	0.0	65,000.0	0.0	0.0
						•		

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY C	HEMICAL AI	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TRUE MANUFACTURING CO. INC	7.			PACIFIC				
CHLORODIFLUOROMETHANE	38,373.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GREENE								
3M COMPANY - SPRINGFIELD				SPRINGE	FIELD			
BUTYL ACRYLATE	10.0	0.0	0.0	0.0	0.0	0.0	0.0	210.0
CYCLOHEXANE	7,780.0	0.0	0.0	0.0	0.0	0.0	0.0	5,130.0
DI(2-ETHYLHEXYL) PHTHALATE	30.0	0.0	0.0	0.0	0.0	0.0	0.0	430.0
DIISOCYANATES	120.0	0.0	0.0	0.0	0.0	0.0	47,720.0	2,460.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	150.0	10.0	0.0	0.0
METHANOL	260.0	0.0	0.0	0.0	0.0	0.0	10.0	11,320.0
METHYL ETHYL KETONE	41,910.0	0.0	0.0	0.0	0.0	14,520.0	252,810.0	416,360.0
METHYL ISOBUTYL KETONE	4,150.0	0.0	0.0	0.0	0.0	0.0	50.0	30,860.0
N-HEXANE	10,960.0	0.0	0.0	0.0	0.0	5,130.0	20.0	14,610.0
TETRABROMOBISPHENOL A	10.0	0.0	0.0	0.0	0.0	0.0	0.0	320.0
TOLUENE	62,890.0	0.0	0.0	0.0	0.0	141,470.0	45,700.0	1,890,930.0
TOLUENE DIISOCYANATE (MIXED ISOMERS	60.0	0.0	0.0	0.0	0.0	0.0	20.0	13,910.0
XYLENE (MIXED ISOMERS)	240.0	0.0	0.0	0.0	0.0	0.0	0.0	2,100.0
ZINC COMPOUNDS	6,870.0	0.0	0.0	0.0	4,590.0	0.0	0.0	0.0
ACME STRUCTURAL INC.				SPRING	FIELD			
CHROMIUM COMPOUNDS	5.0	0.0	5.0	0.0	0.0	1,219.0	0.0	0.0
MANGANESE COMPOUNDS	250.0	0.0	250.0	0.0	0.0	3,586.0	0.0	0.0
NICKEL COMPOUNDS	5.0	0.0	5.0	0.0	0.0	32,277.0	0.0	0.0
ADM ALLIANCE NUTRITION				SPRINGE	FIELD			
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BRENNTAG MID-SOUTH INC.				SPRINGF	FIELD			

		On- and Off-site Releases				On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHE	MICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHYL ETHYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CARLISLE POWER TRANSMISSION	PRODUCTS IN	C .		SPRING	FIELD				
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIISOCYANATES	2,405.0	0.0	0.0	0.0	0.0	0.0	0.0	90.0	
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	16,400.0	0.0	0.0	0.0	0.0	0.0	519,250.0	0.0	
ZINC COMPOUNDS	3.0	0.0	0.0	14.0	45,000.0	69.0	0.0	0.0	
CLARIANT LSM (MISSOURI) INC.				SPRING	FIELD				
BROMINE	3,434.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHLOROFORM	963.0	0.0	0.0	0.0	0.0	0.0	115,534.0	16.0	
CHLOROMETHANE	5,406.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CYANIDE COMPOUNDS	5.0	0.0	0.0	0.0	0.0	0.0	23.0	501.0	
DICHLOROMETHANE	14,157.0	0.0	0.0	0.0	0.0	0.0	147,374.0	30.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY) 1,937.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHANOL	2,639.0	0.0	0.0	0.0	0.0	0.0	160,618.0	7,257.0	
N-HEXANE	2,067.0	0.0	0.0	0.0	0.0	0.0	9,501.0	1.0	
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	2,268.0	0.0	0.0	0.0	0.0	0.0	33,368.0	2.0	
CONCRETE COMPANY OF SPRINGF.	IELD			SPRING	FIELD				
LEAD COMPOUNDS	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DAIRY FARMERS OF AMERICA INC.				SPRING	FIELD				
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12,434.0	

COUNTY FACILITY CITY CHEMICAL AIR LAND WATER POTW DISP RCYCLE ENERGY TRAIT			On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COPPER 235.1 0.0 0.0 14.0 1.748.0 120,304.0 0.0 0.0 LEAD 5.9 0.0 0.0 1.0 25.0 1.197.0 0.0 0.0 NICKEDIN COMPOUNDS 29.0 0.0 0.0 68.0 18.0 5.968.0 0.0 0.0 INTERCONNECT TECHNOLOGIES LITTON SYSTEMS SYSTEMS SPRINGE SPRINGE SPRINGE SPRINGE 1.0 0.0 2.08.0 0.0 0.0 JAMES RIVER POWER STATION SPRINGE STATION SPRINGE STATION SPRINGE STATION SPRINGE STATION 18.44 0.0	COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
LEAD	GE INDUSTRIAL SYSTEMS				SPRINGF	FIELD			
NICKEL 29.0 0.0 1.0 1.1 121.0 5,986.0 0.0 0.0 INTERCONNECT TECHNOLOGIES LITTON SYSTEM SYSTEM SYSTEMS SPRINGER LEAD COMPOUNDS 2.0 0.0 0.0 1.0 0.0 2,026.0 0.0 0.0 JAMES RIVER POWER STATION SPRINGER POWER STATION SPRINGER POWER STATION BARIUM COMPOUNDS 510.0 488.0 2,773.0 0.0 <td< td=""><td>COPPER</td><td>235.1</td><td>0.0</td><td>0.0</td><td>14.0</td><td>1,748.0</td><td>120,304.0</td><td>0.0</td><td>0.0</td></td<>	COPPER	235.1	0.0	0.0	14.0	1,748.0	120,304.0	0.0	0.0
Thing compounds 0.0	LEAD	5.9	0.0	0.0	1.0	25.0	1,197.0	0.0	0.0
NTERCONNECT TECHNOLOGIES LITTUS SYSTEMS SSEMUSES SPRINGFICE LEAD COMPOUNDS 20 0.0 1.0 1.0 2.026.0 2.00 0.0 0.0 JAMES RIVER POWER STATION BARIUM COMPOUNDS 510.0 48.0 2.773.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NICKEL	29.0	0.0	0.0	1.0	121.0	5,986.0	0.0	0.0
Page	ZINC COMPOUNDS	0.0	0.0	0.0	68.0	182.0	0.0	0.0	0.0
SAMES RIVER POWER STATION \$10.0 488.0 2.773.0 0.0	INTERCONNECT TECHNOLOGIES LITT	TON SYSTEM	S-ASSEM	BLIES	SPRINGF	FIELD			
BARIUM COMPOUNDS 510.0 488.0 2,773.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	LEAD COMPOUNDS	2.0	0.0	0.0	1.0	0.0	2,026.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS 0.4 0.0	JAMES RIVER POWER STATION				SPRINGF	FIELD			
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY) 181,417.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BARIUM COMPOUNDS	510.0	488.0	2,773.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE 65,715.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS 71.0 1.0 1.0 0.0 0.0 137.0 0.0 28,145.0 0.0 0.0 0.0 0.0 0.0 0.0 28,382.0 28,382.0 0.0 0.0 0.0 0.0 28,382.0 0.0 0.0 0.0 0.0 28,382.0 0.0 <td>HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)</td> <td>181,417.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>915,408.0</td>	HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	181,417.0	0.0	0.0	0.0	0.0	0.0	0.0	915,408.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY) 85,145.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28,382.0 VANADIUM COMPOUNDS 254.0 355.0 32.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3,100.0 530,000.0 530,000.0 530,000.0 500,000.0 530,000.0 530,000.0 500,000.0 500,000.0 500,000.0 530,000.0 500,000.0 500,000.0 500,000.0 530,000.0 500,000.0	HYDROGEN FLUORIDE	65,715.0	0.0	0.0	0.0	0.0	0.0	0.0	65,273.0
VANADIUM COMPOUNDS 254.0 355.0 32.0 0.0 0.0 0.0 0.0 0.0 KERR MCGEE CHEMICAL LLC SPRINGE LLC CREOSOTE 2,900.0 0.0 0.0 0.0 0.0 530,000.0 \$30,000.0	MERCURY COMPOUNDS	71.0	1.0	1.0	0.0	0.0	137.0	0.0	0.0
KERR MCGEE CHEMICAL LLC CREOSOTE 2,900.0 0.0 0.0 0.0 530,000.0 19,000.0 530,000.0 POLYCYCLIC AROMATIC COMPOUNDS 0.0 0.0 0.0 0.0 0.0 0.0 3,100.0 0.0 KO MANUFACTURING INC. SPRINGFIELD CERTAIN GLYCOL ETHERS 0.0	SULFURIC ACID - ("ACID AEROSOLS" ONLY)	85,145.0	0.0	0.0	0.0	0.0	0.0	0.0	28,382.0
CREOSOTE 2,900.0 0.0 0.0 0.0 530,000.0 19,000.0 530,000.0 POLYCYCLIC AROMATIC COMPOUNDS 0.0 0.0 0.0 0.0 0.0 0.0 3,100.0 0.0 KO MANUFACTURING INC. SPRINGFIELD CERTAIN GLYCOL ETHERS 0.0 0.	VANADIUM COMPOUNDS	254.0	355.0	32.0	0.0	0.0	0.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS 0.0 0.0 0.0 0.0 3,100.0 0.0 KO MANUFACTURING INC. CERTAIN GLYCOL ETHERS 0.0	KERR MCGEE CHEMICAL LLC				SPRINGF	FIELD			
KO MANUFACTURING INC. CERTAIN GLYCOL ETHERS 0.0 0.	CREOSOTE	2,900.0	0.0	0.0	0.0	0.0	530,000.0	19,000.0	530,000.0
CERTAIN GLYCOL ETHERS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	3,100.0	0.0
HYDROGEN FLUORIDE 0.0	KO MANUFACTURING INC.				SPRINGF	TELD			
KRAFT FOODS NORTH AMERICA INC . NITRATE COMPOUNDS 0.0	CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRATE COMPOUNDS 0.0 0.	HYDROGEN FLUORIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33,813.0 LIBERTY INDUSTRIES STYRENE 5,850.0 0.0 0.0 0.0 750.0 0.0 0.0 0.0 LITTON SYSTEMS INC INTERCONNECT TECHNOLOGIES DIVISION SPRINGFIELD COPPER COMPOUNDS 0.0 0.0 0.0 0.0 57,662.0 0.0 0.0	KRAFT FOODS NORTH AMERICA INC .				SPRINGE	FIELD			
LIBERTY INDUSTRIES STYRENE 5,850.0 0.0 0.0 750.0 0.0 0.0 0.0 LITTON SYSTEMS INC INTERCONNECT TECHNOLOGIES DIVISION SPRINGFIELD COPPER COMPOUNDS 0.0 0.0 0.0 57,662.0 0.0 0.0	NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE 5,850.0 0.0 0.0 750.0 0.0 0.0 0.0 LITTON SYSTEMS INC INTERCONNECT TECHNOLOGIES DIVISION SPRINGFIELD COPPER COMPOUNDS 0.0 0.0 0.0 250.0 0.0 57,662.0 0.0 0.0	NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33,813.0
LITTON SYSTEMS INC INTERCONNECT TECHNOLOGIES DIVISION SPRINGFIELD COPPER COMPOUNDS 0.0 0.0 0.0 57,662.0 0.0 0.0	LIBERTY INDUSTRIES				OZARK				
COPPER COMPOUNDS 0.0 0.0 0.0 250.0 0.0 57,662.0 0.0 0.0	STYRENE	5,850.0	0.0	0.0	0.0	750.0	0.0	0.0	0.0
	LITTON SYSTEMS INC INTERCONNE	CT TECHNOI	LOGIES D	IVISION	SPRINGF	FIELD			
FORMALDEHYDE 1,664.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	COPPER COMPOUNDS	0.0	0.0	0.0	250.0	0.0	57,662.0	0.0	0.0
	FORMALDEHYDE	1,664.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEMI	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
LEAD COMPOUNDS	20.0	0.0	6.9	52.0	0.0	3,241.0	0.0	0.0
NITRIC ACID	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LOREN COOK CO.				SPRINGF	FIELD			
CHROMIUM	500.0	0.0	0.0	0.0	0.0	67,025.0	0.0	0.0
CHROMIUM	500.0	0.0	0.0	0.0	0.0	17,633.0	0.0	0.0
COPPER	500.0	0.0	0.0	0.0	0.0	33,897.0	0.0	0.0
COPPER	500.0	0.0	0.0	0.0	0.0	13,469.0	0.0	0.0
MANGANESE	500.0	0.0	0.0	0.0	0.0	76,610.0	0.0	0.0
MANGANESE	500.0	0.0	0.0	0.0	0.0	54,287.0	0.0	0.0
NICKEL	500.0	0.0	0.0	0.0	0.0	8,817.0	0.0	0.0
NICKEL	500.0	0.0	0.0	0.0	0.0	33,513.0	0.0	0.0
NORTHSTAR BATTERY COMPANY LLC	1			SPRINGF	FIELD			
LEAD COMPOUNDS	0.0	0.0	0.0	15.3	0.0	957,200.0	0.0	0.0
OZARKS CULTURED MARBLE				SPRINGF	TELD			
STYRENE	9,623.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAUL MUELLER CO.				SPRINGF	FIELD			
ALUMINUM (FUME OR DUST)	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	500.0	0.0	250.0	250.0	750.0	0.0	0.0	0.0
COPPER	500.0	0.0	250.0	250.0	250.0	0.0	0.0	0.0
MANGANESE	500.0	0.0	250.0	250.0	750.0	0.0	0.0	0.0
NICKEL	500.0	0.0	250.0	250.0	750.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	12,720.0	0.0	0.0	0.0	0.0	0.0	11,053.0	0.0
PURE-FLO PRECISION				SPRINGF	FIELD			
CHROMIUM	250.0	0.0	250.0	5.0	250.0	73,874.0	0.0	0.0
MANGANESE	5.0	0.0	250.0	5.0	5.0	7,372.0	0.0	0.0
NICKEL	250.0	0.0	250.0	5.0	250.0	54,303.0	0.0	0.0
RIDEWELL CORP.				SPRINGF	FIELD			
TOLUENE	22,920.0	0.0	0.0	0.0	0.0	0.0	675.0	0.0
SAFETY-KLEEN SYSTEMS (619302)				SPRINGF	FIELD			

	On- and Off-site Releases				On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ETHYLENE GLYCOL	2.0	0.0	0.0	0.0	0.0	59,279.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	0.0	1,126.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	2,922.0	0.0	0.0
SOUTHWEST POWER STATION				BROOKL	INE STATION			
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	21,600.0	0.0	0.0	0.0	0.0	0.0	0.0	84,660.0
HYDROGEN FLUORIDE	43,521.0	0.0	0.0	0.0	0.0	0.0	0.0	43,521.0
MERCURY COMPOUNDS	66.0	26.0	0.1	0.0	0.0	1.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	47,472.0	0.0	0.0	0.0	0.0	0.0	0.0	15,824.0
STAINLESS FABRICATION INC.				SPRINGE	FIELD			
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUPERIOR SOLVENTS & CHEMICALS				SPRINGE	FIELD			
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DICHLOROMETHANE	1,136.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TETRACHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRICHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SWEETHEART CUP CO. INC.				SPRINGF	FIELD			
AMMONIA	1,500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WEBCO INC.				SPRINGE	FIELD			
CHROMIUM	253.0	0.0	0.0	0.0	0.0	6,453.0	0.0	0.0
MANGANESE	126.0	0.0	0.0	0.0	0.0	13,660.0	0.0	0.0
NICKEL	250.0	0.0	0.0	0.0	0.0	5,190.0	0.0	0.0
TOLUENE	7,884.0	0.0	0.0	0.0	0.0	4,655.0	416.0	0.0

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
WILLOW BROOK FOODS				SPRINGF	FIELD			
AMMONIA	750.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRUNDY								
MODINE MANUFACTURING CO.				TRENTO	N			
COPPER	28.0	0.0	2.0	4.0	110.0	71,742.0	0.0	0.0
LEAD	59.0	0.0	32.0	7.0	66.0	53,318.0	0.0	0.0
MANGANESE	5.0	0.0	0.0	0.0	0.0	5,034.0	0.0	0.0
HENRY								
MONTROSE				CLINTON	I			
BARIUM COMPOUNDS	20,000.0	270,000.0	1.2	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	390.0	10,000.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	21,000.0	0.0	0.0	0.0	0.0	0.0	0.0	69,000.0
HYDROGEN FLUORIDE	92,000.0	0.0	0.0	0.0	0.0	0.0	0.0	64,000.0
LEAD COMPOUNDS	390.0	2,500.0	0.0	0.0	1.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	590.0	7,000.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	110.0	11.0	0.0	0.0	1.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	12,005.0	0.0	0.0	0.0	0.0	0.0	0.0	15,000.0
VANADIUM COMPOUNDS	780.0	13,000.0	0.0	0.0	0.0	0.0	0.0	0.0
SCHREIBER FOODS - CAPRI				CLINTON	I			
CERTAIN GLYCOL ETHERS	4,010.0	0.0	0.0	0.0	0.0	0.0	0.0	7,000.0
SHILOH LURE CO.				MONTRO	SE			
LEAD	400.0	0.0	0.0	0.0	0.0	8,000.0	0.0	0.0
THE HOLMES GROUP				CLINTON	I			
STYRENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRACKER MARINE - CLINTON				CLINTON	I			
METHYL METHACRYLATE	22,535.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	171,883.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Re	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CH	EMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
HOLT								
EXIDE TECHNOLOGIES- CANON I	HOLLOW PLANT			FOREST	CITY			
ANTIMONY COMPOUNDS	0.0	11,968.0	7.0	0.0	0.0	0.0	0.0	0.0
ARSENIC COMPOUNDS	0.0	6,111.0	1.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.1	1.3	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	560.0	53,040.0	1.0	0.0	0.0	0.0	0.0	0.0
GOLDEN TRIANGLE ENERGY LLC	•			CRAIG				
AMMONIA	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HOWARD								
BOB MONNIG INDUSTRIE INC.				GLASCO	W			
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	780.0	0.0	0.0	0.0	0.0	0.0	0.0	315,262.0
ZINC COMPOUNDS	1,695.0	0.0	0.0	0.0	400.0	394,131.0	0.0	0.0
HOWELL								
ARMSTRONG WOOD PRODUCTS				WEST PL	AINS			
LEAD	18.0	0.0	0.0	0.0	0.0	2,088.0	0.0	0.0
METHYL ISOBUTYL KETONE	16,624.0	0.0	0.0	0.0	0.0	0.0	8,760.0	0.0
N-BUTYL ALCOHOL	13,158.3	0.0	0.0	0.0	0.0	0.0	2,173.0	0.0
HIGH PERFORMANCE HOSE FAC	ILITY			POMONA	A			
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	4,700.0	11,800.0	0.0	0.0
MARATHON ELECTRONICS				WEST PL	_AINS			
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and	Off-site Rei	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
ROYAL OAK ENTERPRISES IN	IC.				WEST P	LAINS				
SODIUM NITRITE	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SYSTEMS & ELECTRONICS IN	IC.				WEST P	LAINS				
CHROMIUM COMPOUNDS		7.0	0.0	0.0	0.0	4,486.0	0.0	0.0	0.0	
IRON										
BUICK MINE/MILL					BOSS					
COBALT COMPOUNDS	755	5.0	342,905.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER COMPOUNDS	8,79	7.0 2	2,185,305.0	500.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	36,818	3.0 5	5,037,064.0	1,544.0	0.0	0.0	0.0	0.0	0.0	
NICKEL COMPOUNDS	1,000	0.0	432,412.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	7,884	4.0 4	1,672,787.0	6,959.0	0.0	0.0	0.0	0.0	0.0	
DOE RUN RECYCLING FACIL	ITY				BOSS					
ANTIMONY COMPOUNDS	770	6.0	0.0	277.0	0.0	599,050.0	244.0	0.0	0.0	
ARSENIC COMPOUNDS	500	0.0	0.0	250.0	0.0	27,648.0	543.0	0.0	0.0	
CHLORINE	1,500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	(0.0	0.0	0.0	0.0	12,102.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS		5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	31,032	2.0	0.0	30.0	0.0 3	3,493,077.0	17,664.0	0.0	0.0	
THE DOE RUN COMPANY - GI	LOVER SMELTER				GLOVER	₹				
ALUMINUM (FUME OR DUST)	479	5.0 1	1,114,324.0	2.0	0.0	0.0	3,843,069.0	0.0	0.0	
ANTIMONY COMPOUNDS	17	7.0	8,835.0	2.0	0.0	0.0	52,395.0	0.0	0.0	
ARSENIC COMPOUNDS	1:	2.0	4,592.0	2.0	0.0	0.0	25,345.0	0.0	0.0	
CADMIUM COMPOUNDS	969	5.0	6,752.0	5.0	0.0	0.0	1,320,813.0	0.0	0.0	
COBALT COMPOUNDS	44	4.0	90,896.0	2.0	0.0	0.0	315,808.0	0.0	0.0	
COPPER COMPOUNDS	392	2.0	170,955.0	3.0	0.0	0.0	863,884.0	0.0	0.0	
LEAD COMPOUNDS	30,243	3.0 1	,710,236.0	10.0	0.0	282.0	47,108,527.0	0.0	0.0	
NICKEL COMPOUNDS	6	1.0	21,369.0	3.0	0.0	0.0	98,830.0	0.0	0.0	
SILVER COMPOUNDS	(6.0	242.0	2.0	0.0	0.0	2,806.0	0.0	0.0	
ZINC COMPOUNDS	4,95	7.0 3	3,683,565.0	72.0	0.0	0.0	15,041,950.0	0.0	0.0	
JACKSON										

		On- and Off-site Releases					ff-site Wast	e Mgmt
COUNTY FACILITY CITY C	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
AERO TRANSPORTATION PROD	UCTS INC.			INDEPEN	IDENCE			
METHYL ETHYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	14,101.0	0.0	0.0	0.0	0.0	0.0	555.0	0.0
TOLUENE	1,065.0	0.0	0.0	0.0	0.0	0.0	871.0	0.0
AMERICAN INGREDIENTS CO.				GRANDV	TEW			
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AVENTIS				KANSAS	CITY			
METHANOL	500.0	0.0	5.0	0.0	1.0	0.0	1,320.0	9,968.0
BALL METAL BEVERAGE CONTA	AINER CORP.			KANSAS	CITY			
CERTAIN GLYCOL ETHERS	56,000.0	0.0	0.0	0.0	632.0	0.0	0.0	57,000.0
HYDROGEN FLUORIDE	87.0	0.0	0.0	0.0	0.0	0.0	0.0	18,619.0
LEAD	0.0	0.0	0.0	0.4	6.5	0.0	0.0	0.0
N-BUTYL ALCOHOL	14,680.0	0.0	0.0	0.0	260.0	0.0	0.0	55,550.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY	ý) 56.0	0.0	0.0	0.0	0.0	0.0	0.0	112,226.0
BAYER CROPSCIENCE				KANSAS	CITY			
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2,4-DICHLOROPHENOL	1.0	0.0	41.0	0.0	0.0	0.0	0.0	1,264.0
AMMONIA	43.0	0.0	2,533.0	0.0	0.0	0.0	0.0	21,867.0
BROMOMETHANE	3,029.0	0.0	0.0	0.0	0.0	0.0	0.0	68,020.0
CARBARYL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CARBON DISULFIDE	914.0	0.0	0.0	0.0	0.0	0.0	0.0	22,103.0
CHLORINE	980.0	0.0	0.0	0.0	0.0	0.0	0.0	2,619.0
CHLOROFORM	2,550.0	0.0	0.0	0.0	0.0	0.0	0.0	34,498.0
CYFLUTHRIN	0.0	0.0	26.0	0.0	0.0	0.0	0.0	6,021.0
ETHYLBENZENE	87.0	0.0	0.0	0.0	0.0	0.0	0.0	119,515.0
FORMALDEHYDE	49.0	0.0	74.0	0.0	0.0	0.0	0.0	1,168.0
HYDRAZINE	3.0	0.0	0.0	0.0	0.0	0.0	0.0	5,902.0
HYDROCHLORIC ACID ("ACID AEROSOLS"	ONLY) 11,858.0	0.0	0.0	0.0	0.0	0.0	0.0	4,166,275.0
MERPHOS	3.0	0.0	23.0	0.0	0.0	0.0	0.0	444.0
METHANOL	138.0	0.0	0.0	0.0	1.0	0.0	0.0	1,809,819.0
METHYL ISOBUTYL KETONE	1,471.0	0.0	0.0	0.0	0.0	14,276,129.0	0.0	1,152,475.0

	On- and Off-site Releases					On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
METRIBUZIN	8.0	0.0	7.0	0.0	14.0	0.0	0.0	11,976.0		
N-BUTYL ALCOHOL	197.0	0.0	0.0	0.0	0.0	3,715,491.0	0.0	371,939.0		
N-METHYL-2-PYRROLIDONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NAPHTHALENE	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1,229.0		
PROPICONAZOLE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S,S,S-TRIBUTYLTRITHIOPHOSPHATE	0.0	0.0	1.0	0.0	0.0	0.0	0.0	12,319.0		
TOLUENE	3,551.0	0.0	23.0	0.0	11.0	3,245,957.0	0.0	891,731.0		
TRIADIMEFON	2.0	0.0	0.0	0.0	0.0	0.0	0.0	592.0		
TRICHLORFON	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
VINYL CHLORIDE	91.0	0.0	0.0	0.0	0.0	0.0	0.0	171,469.0		
XYLENE (MIXED ISOMERS)	538.0	0.0	0.0	0.0	0.0	0.0	0.0	424,897.0		
BP PRODUCTS NORTH AMERICA INC.				SUGAR (CREEK					
1,2,4-TRIMETHYLBENZENE	208.0	0.0	0.0	0.0	0.0	95.0	0.0	28.0		
BENZENE	460.0	0.0	0.0	0.0	0.0	59.0	0.0	1,058.0		
ETHYLBENZENE	100.0	0.0	0.0	0.0	0.0	26.0	0.0	53.0		
LEAD COMPOUNDS	0.0	0.0	0.0	0.4	45.1	0.0	0.0	0.0		
MERCURY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
N-HEXANE	470.0	0.0	0.0	0.0	0.0	47.0	0.0	1,340.0		
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TOLUENE	1,010.0	0.0	0.0	0.0	0.0	280.0	0.0	1,385.0		
XYLENE (MIXED ISOMERS)	400.0	0.0	0.0	0.0	0.0	120.0	0.0	264.0		
BRENNTAG MID-SOUTH INC.				KANSAS	CITY					
ATRAZINE	2,026.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CHLORINE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DI(2-ETHYLHEXYL) PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DICHLOROMETHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
METHYL ETHYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TETRACHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

		On- and	Off-site Re	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	MICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
TOLUENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BROCK GRAIN & FEED				KANSAS	CITY				
ZINC COMPOUNDS	81.2	0.0	0.0	0.0	0.0	67,260.0	0.0	0.0	
CARGILL INC SOYBEAN PROCESS	ING PLANT			KANSAS	CITY				
N-HEXANE	200,000.0	0.0	0.0	0.0	250.0	0.0	0.0	25.0	
CENTURY CONCRETE INC LEE'S S	UMMIT FACIL	ITY		LEE'S SU	IMMIT				
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CITY OF INDEPENDENCE				INDEPEN	IDENCE				
CHLORINE	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY) 60,834.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	33.2	5,243.0	0.0	12.3	0.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	6.1	12.0	0.0	0.1	0.0	0.0	0.0	0.0	
COLT TECHNOLOGY INC.				KANSAS	CITY				
LEAD	0.0	0.0	0.0	7.0	0.0	240.0	0.0	240.0	
COOK BROTHERS INSULATION INC.				KANSAS	CITY				
1,1-DICHLORO-1-FLUOROETHANE	2,394.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1-CHLORO-1,1-DIFLUOROETHANE	1,354.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	868.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CURT BEAN LUMBER CO. INC.				BUCKNE	R				
ARSENIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FABTECH INC.				LEES SU	MMIT				
HYDROGEN FLUORIDE	173.0	0.0	0.0	0.0	0.0	0.0	0.0	24,719.0	
METHANOL	776.0	0.0	0.0	0.0	0.0	0.0	0.0	2,327.0	
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42,592.0	
NITRIC ACID	428.0	0.0	0.0	0.0	0.0	0.0	0.0	71,219.0	

		On- and Off-site Releases					ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEM	ICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
FORDYCE CONCRETE CO. INC 63RL	STREET FAC	CILITY		KANSAS	CITY			
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GENERAL MILLS OPERATIONS INC.				KANSAS	CITY			
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GETS GLOBAL SIGNALING				GRAIN V	ALLEY			
LEAD	0.0	0.0	1.1	0.0	9.3	130.0	0.0	0.0
HALLMARK CARDS INC.				KANSAS	CITY			
LEAD COMPOUNDS	264.0	0.0	0.0	0.0	0.0	81.0	0.0	0.0
NICKEL COMPOUNDS	0.0	0.0	0.0	0.0	18.0	12,598.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30,151.0
NITRIC ACID	22.0	0.0	0.0	0.0	672.0	0.0	0.0	29,337.0
HAVENS STEEL CO.				KANSAS	CITY			
ETHYLBENZENE	1,782.0	0.0	0.0	0.0	0.0	0.0	120.0	0.0
METHYL ETHYL KETONE	24,044.0	0.0	0.0	0.0	0.0	0.0	3,101.0	0.0
METHYL ISOBUTYL KETONE	726.0	0.0	0.0	0.0	0.0	0.0	48.0	0.0
TOLUENE	216.0	0.0	0.0	0.0	0.0	0.0	49.0	0.0
XYLENE (MIXED ISOMERS)	9,997.0	0.0	0.0	0.0	0.0	0.0	511.0	0.0
HAWTHORN GENERATING FACILITY	•			KANSAS	CITY			
AMMONIA	7,000.0	140.0	0.0	0.0	0.0	0.0	0.0	0.0
BARIUM COMPOUNDS	2,800.0	93,000.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	200.0	3,400.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	4,100.0	0.0	0.0	0.0	0.0	0.0	0.0	110,000.0
HYDROGEN FLUORIDE	15,000.0	0.0	0.0	0.0	0.0	0.0	0.0	200,000.0
LEAD COMPOUNDS	110.0	860.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	250.0	2,400.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	125.0	7.0	0.0	0.0	0.0	30.0	0.0	0.0
VANADIUM COMPOUNDS	220.0	4,300.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	600.0	2,000.0	0.0	0.0	0.0	0.0	0.0	0.0
KANSAS CITY SCREW PRODUCTS INC	C .			KANSAS	CITY			

		On- and	Off-site Rei	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	AL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
LEAD	0.0	0.0	0.0	0.0	0.0	28.4	0.0	0.0	
KOCH MATERIALS CO.				KANSAS	CITY				
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	7.1	2.5	0.0	0.0	
LAFARGE NORTH AMERICA				SUGAR (CREEK				
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	28,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	48.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LAFARGE NORTH AMERICA INC.				KANSAS	CITY				
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LAKE CITY ARMY AMMUNITION PLANT	•			INDEPEN	IDENCE				
ALUMINUM (FUME OR DUST)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ANTIMONY	1.0	0.0	2.0	85.0	386.0	10,929.0	0.0	0.0	
COPPER	0.0	0.0	50.0	582.0	1,822.0	3,047,655.0	0.0	0.0	
DIBUTYL PHTHALATE	0.0	0.0	0.0	0.0	0.0	2,418.0	10.0	59.0	
DIPHENYLAMINE	0.0	0.0	0.0	0.0	0.0	457.0	0.0	2.0	
LEAD COMPOUNDS	1.0	0.0	38.0	69.0	5,549.0	529,637.0	0.0	0.0	
MERCURY COMPOUNDS	29.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64,333.0	
NITRIC ACID	17.0	0.0	0.0	0.0	0.0	2,027.0	0.0	0.0	
NITROGLYCERIN	6.0	0.0	0.0	0.0	0.0	5,372.0	0.0	85.0	
TOLUENE	7,411.0	0.0	0.0	0.0	0.0	0.0	2,667.0	0.0	
ZINC COMPOUNDS	0.0	0.0	128.0	291.0	820.0	1,191,492.0	0.0	0.0	

		On- and Off-site Releases				On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
MARTIN FOUNDRY CO.				KANSAS	CITY				
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MIDWEST HANGER CO.				KANSAS	CITY				
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MILLER MATERIAL CO.				KANSAS	CITY				
LEAD	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MISSION PLASTICS NORTH				GRANDV	IEW				
DI(2-ETHYLHEXYL) PHTHALATE	0.0	750.0	0.0	0.0	750.0	21,981.0	0.0	0.0	
MISSOURI MPP CORP.				KANSAS	CITY				
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16,356.0	
MISSOURI PLATING CO.				KANSAS	CITY				
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	52.1	0.0	0.0	0.0	
NICKEL COMPOUNDS	129.0	0.0	0.0	13.0	687.0	0.0	0.0	0.0	
ZINC COMPOUNDS	195.0	0.0	0.0	310.0	5,520.0	0.0	0.0	0.0	
MONIERLIFETILE LLC				KANSAS	CITY				
LEAD	0.6	0.0	0.0	0.0	0.2	0.0	0.0	0.0	
MR. LONGARM INC.				GREENW	VOOD				
STYRENE	5,614.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NATIONAL ALUMINUM BRASS FOUNDRY I	NC.			INDEPEN	IDENCE				
COPPER	255.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	
NEW SURFACE LLC				KANSAS	CITY				
STYRENE 1	2,370.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NORTH AMERICAN GALVANIZING CO.	KANSAS CITY								
LEAD	10.0	0.0	0.0	0.0	90.0	0.0	0.0	0.0	
ZINC COMPOUNDS	1,071.0	0.0	0.0	0.0	25,504.0	0.0	0.0	0.0	

		On- and	l Off-site Re	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
PAULO PRODUCTS CO.				KANSAS	CITY			_
AMMONIA	2,100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PERFORMANCE ROOF SYSTEMS INC.				KANSAS	CITY			
BENZO(G,H,I)PERYLENE	0.1	0.0	0.0	0.0	0.0	0.0	0.0	294.0
POLYCYCLIC AROMATIC COMPOUNDS	1.9	0.0	0.0	0.0	0.0	0.0	0.0	2,624.0
PERMACEL KANSAS CITY INC.				KANSAS	CITY			
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	3,020.0	2,000.0	0.0	0.0
PETERSON MANUFACTURING CO.				GRAND	/IEW			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROGRESS INSTRUMENTS INC.				LEE'S SU	JMMIT			
LEAD	0.1	0.0	0.0	0.0	0.0	500.0	0.0	0.0
ROBERTS DAIRY CO.				KANSAS	CITY			
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10,663.0
ROTADYNE ROLL GROUP				KANSAS	CITY			
DI(2-ETHYLHEXYL) PHTHALATE	666.0	0.0	0.0	0.0	17,027.0	0.0	0.0	4.0
SAFETY-KLEEN SYSTEMS (508502)				INDEPE	NDENCE			
ETHYLENE GLYCOL	7.0	0.0	0.0	0.0	0.0	229,993.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	0.0	2,185.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	0.1	0.0	0.0	0.0	0.0	5,670.0	0.0	0.0
SIBLEY GENERATING STATION				SIBLEY				
BARIUM COMPOUNDS	17,218.0	421,842.0	2,491.0	0.0	0.0	421,842.0	0.0	0.0
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM COMPOUNDS	423.0	9,492.0	0.0	0.0	0.0	9,492.0	0.0	0.0
COPPER COMPOUNDS	600.0	14,705.0	38.0	0.0	0.0	14,705.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	74,040.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	122,480.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	291.0	7,487.0	54.0	0.0	0.0	7,487.0	0.0	0.0

Appendix C - 2002 TRI Releases/Waste Management By County By Company

Page 39 of 101

		On- and	Off-site Rei	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	MICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
MANGANESE COMPOUNDS	1,419.0	20,187.0	1,899.0	0.0	0.0	20,187.0	0.0	0.0	
MERCURY COMPOUNDS	79.0	34.0	0.0	0.0	0.0	69.0	0.0	0.0	
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	30,355.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
VANADIUM COMPOUNDS	1,087.0	26,630.0	0.0	0.0	0.0	26,630.0	0.0	0.0	
ZINC COMPOUNDS	5,684.0	139,249.0	524.0	0.0	0.0	139,249.0	0.0	0.0	
SIKA				GRANDV	IEW				
THIRAM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SUMMIT MACHINE PRODUCTS INC.				KANSAS	CITY				
LEAD	0.0	0.0	0.0	0.0	0.0	78.0	0.0	0.0	
TENNECO AUTOMOTIVE				KANSAS	CITY				
CHROMIUM	139.0	0.0	0.0	0.0	0.0	5,674.0	0.0	0.0	
COPPER	0.0	0.0	0.0	0.0	0.0	454.0	0.0	0.0	
MANGANESE	92.0	0.0	0.0	0.0	0.0	908.0	0.0	0.0	
NICKEL	48.0	0.0	0.0	0.0	0.0	908.0	0.0	0.0	
THE PROCTOR & GAMBLE PAPER P	RODUCTS CO.			CAPE GI	RARDEAU				
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD	8.9	0.0	3.4	0.0	1.6	0.0	0.0	0.0	
TIFFANY MARBLE,INC.				LEE'S SU	JMMIT				
STYRENE	13,109.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
U.S. DOE KANSAS CITY PLANT - HON	NEYWELL FM&	:T		KANSAS	CITY				
LEAD	1.8	0.0	0.0	5.0	21.3	2,660.3	0.0	0.0	
VANCE BROTHERS INC.				KANSAS	CITY				
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ANTHRACENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIBENZOFURAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PHENANTHRENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Appendix C - 2002 TRI Releases/Waste Management By County By Company

Page 40 of 101

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
TOLUENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WELD WHEEL INDUSTRIES					KANSAS	CITY				
CHROMIUM COMPOUNDS		5.0	0.0	0.0	0.0	0.0	121,597.0	0.0	0.0	
NICKEL COMPOUNDS		5.0	0.0	0.0	0.0	0.0	28,484.0	0.0	0.0	
NITRIC ACID		5.0	0.0	0.0	0.0	0.0	435,765.0	0.0	0.0	
WIRE ROPE CORPORATION OF	F AMERICA INC	·•			KANSAS	CITY				
BARIUM COMPOUNDS		5.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0	
LEAD		0.0	0.0	0.0	0.0	0.0	35.7	0.0	0.0	
JASPER										
ABLE MANUFACTURING & AS	SEMBLY LLC				JOPLIN					
METHYL ETHYL KETONE	2,40	05.0	0.0	0.0	0.0	0.0	0.0	2,925.0	0.0	
METHYL METHACRYLATE	12,08	39.0	0.0	0.0	0.0	0.0	0.0	4,136.0	0.0	
STYRENE	73,22	23.2	0.0	0.0	0.0	0.0	0.0	3,441.0	0.0	
STYRENE	67,10	0.80	0.0	0.0	0.0	0.0	0.0	3,780.0	0.0	
TOLUENE	3,86	62.0	0.0	0.0	0.0	0.0	0.0	12,126.0	0.0	
XYLENE (MIXED ISOMERS)	3,05	54.0	0.0	0.0	0.0	0.0	0.0	5,126.0	0.0	
ADM MILLING COMPANY - CA	RTHAGE FLOU	R MII	LL		CARTHA	GE				
CHLORINE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ASBURY GENERATING STATIO	ON .				ASBURY					
BARIUM COMPOUNDS	20,15	57.0	346,338.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS		1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS	S" ONLY) 155,72	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROGEN FLUORIDE	59,54	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	3,86	6.0	2,674.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	2	21.0	8.0	0.0	0.0	0.0	3,021.0	0.0	0.0	
SULFURIC ACID - ("ACID AEROSOLS" ON	LY) 16,32	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC (FUME OR DUST)	3,87	73.0	68,381.0	0.0	0.0	0.0	0.0	0.0	0.0	
CARDINAL SCALE MANUFACT	TURING CO.				WEBB CI	TY				
LEAD COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

		On- and Off-site Releases				On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
DYNO NOBEL INC CARTHA	GE PLANT			CARTHA	GE			_		
ALUMINUM (FUME OR DUST)	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
AMMONIA	20,063.0	0.0	947.0	0.0	155.0	0.0	0.0	3,183.0		
ETHYLENE GLYCOL	338.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NITRATE COMPOUNDS	1,001.0	0.0	4,959.0	0.0	43,888.0	0.0	0.0	44,546.0		
NITRIC ACID	347.0	0.0	0.0	0.0	4,726.0	899,413.0	0.0	4,826.0		
NITROGLYCERIN	0.0	0.0	0.0	0.0	0.3	2,459.0	0.0	150,783.0		
EAGLE-PICHER TECHNOLOG	GIES LLC			JOPLIN						
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
LEAD COMPOUNDS	210.0	0.0	4.7	3.5	0.0	64,383.0	0.0	0.0		
PHTHALIC ANHYDRIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
EAGLEPICHER TECHNOLOG	IES LLC			JOPLIN						
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	290.0	0.0	0.0		
MERCURY COMPOUNDS	0.0	0.0	0.0	1.0	3,100.0	0.0	0.0	0.0		
METHANOL	23,400.0	0.0	0.0	0.0	0.0	0.0	23,000.0	0.0		
NICKEL COMPOUNDS	5.0	0.0	3.0	1.0	1,600.0	4,600.0	0.0	0.0		
NICKEL COMPOUNDS	5.0	0.0	0.0	1.0	0.0	9,100.0	0.0	0.0		
NITRATE COMPOUNDS	5.0	0.0	0.0	0.0	0.0	0.0	0.0	3,300.0		
NITRATE COMPOUNDS	5.0	0.0	0.0	0.0	0.0	0.0	0.0	11,000.0		
EAGLEPICHER TECHNOLOG	IES LLC - ENERGETIC	C DEVICES	5	JOPLIN						
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0		
ICI EXPLOSIVES ENVIRONM	ENTAL CO.			JOPLIN						
LEAD COMPOUNDS	1.0	0.0	0.0	0.0	6,548.0	0.0	0.0	0.0		
INTERNATIONAL PAPER				JOPLIN						
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.0	0.0	4.5	0.0	0.0	0.0	290.7	35.4		
HEXACHLOROBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
PENTACHLOROPHENOL	15.0	0.0	0.0	0.0	0.0	0.0	653.0	80.0		
POLYCYCLIC AROMATIC COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0		
JASPER PRODUCTS LLC				JOPLIN						
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

		On- and Off-site Releases				On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
LEGGETT & PLATT WIRE MILE	L BR. 0400			CARTHA	GE				
LEAD	158.0	0.0	0.0	0.0	0.0	219,650.0	0.0	0.0	
ZINC COMPOUNDS	36.0	0.0	0.0	250.0	10,000.0	0.0	0.0	0.0	
MISSOURI STEEL CASTINGS I	NC.			JOPLIN					
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MODINE MANUFACTURING C	0.			JOPLIN					
CHROMIUM	168.0	0.0	0.0	0.0	2.0	195.0	0.0	0.0	
COPPER	82.0	0.0	0.0	2.0	51.0	11,573.0	0.0	0.0	
NICKEL COMPOUNDS	299.0	0.0	0.0	1.0	5.0	9.0	0.0	0.0	
PCS PHOSPHATE - JOPLIN				JOPLIN					
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PRECISION/MASTER MADE PA	AINTS			CARL JU	INCTION				
1,2,4-TRIMETHYLBENZENE	35.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLBENZENE	32.0	0.0	0.0	0.0	0.0	0.0	0.0	455.0	
XYLENE (MIXED ISOMERS)	139.0	0.0	0.0	0.0	0.0	0.0	0.0	1,820.0	
PROCTER & GAMBLE MANUFA	ACTURING CO.			JOPLIN					
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SPECIALTY BRANDS INC.				CARTHA	GE				
AMMONIA	19,026.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TAMKO ROOFING				JOPLIN					
POLYCYCLIC AROMATIC COMPOUNDS	23.0	0.0	0.0	0.0	92.0	0.0	0.0	0.0	
TAMKO ROOFING PRODUCTS	INC.			JOPLIN					
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	60.0	0.0	0.0	0.0	

Appendix C - 2002 TRI Releases/Waste Management By County By Company

Page 43 of 101

		On- and	Off-site Rei		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHI	EMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
BENZO(G,H,I)PERYLENE	5.0	0.0	0.0	0.0	432.0	0.0	0.0	0.0
DI(2-ETHYLHEXYL) PHTHALATE	0.0	0.0	0.0	0.0	5,711.0	0.0	0.0	0.0
FORMALDEHYDE	2,500.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	13.0	0.0	0.0	0.0
JEFFERSON								
ALCOA COMPOSITION FOIL FACIL	LIT Y			PEVELY				
LEAD	0.8	0.0	0.0	0.0	1.2	192,076.0	0.0	0.0
AMERENUE RUSH ISLAND POWER	STATION			FESTUS				
BARIUM COMPOUNDS	4,599.0	131,307.0	65.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM COMPOUNDS	322.0	2,382.0	4.0	0.0	0.0	0.0	0.0	0.0
COBALT COMPOUNDS	128.0	1,868.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	308.0	3,084.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONL	-Y) 59,032.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	183,444.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	243.9	994.2	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	573.0	6,256.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	501.6	3.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL COMPOUNDS	380.0	2,611.0	0.0	0.0	0.0	0.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	17,679.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VANADIUM COMPOUNDS	282.0	5,640.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	993.0	1,807.0	0.0	0.0	0.0	0.0	0.0	0.0
BROWNING				ARNOLD				
LEAD COMPOUNDS	11.1	5,282.0	0.0	0.0	0.0	0.0	0.0	0.0
CARONDELET CORP.				PEVELY				
1,2,4-TRIMETHYLBENZENE	20,400.0	0.0	0.0	0.0	1,800.0	0.0	0.0	0.0
CHROMIUM	5,250.0	0.0	0.0	0.0	1,400.0	178,253.0	0.0	0.0
COBALT	255.0	0.0	0.0	0.0	20.0	2,759.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	3,450.0	0.0	0.0	0.0	900.0	114,772.0	0.0	0.0

		On- and Off-site Releases					On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT			
PHENOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
TRIETHYLAMINE	3,000.0	0.0	0.0	0.0	0.0	8,100.0	0.0	11,100.0			
DPC ENTERPRISES				FESTUS							
CHLORINE	48,641.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
HYDROGEN FLUORIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ENGINEERED COIL CO DBA M	ARLO COIL			HIGH RII	DGE						
CHROMIUM	10.0	5.0	2.3	0.0	39.1	28,368.0	0.0	0.0			
COPPER	0.0	3.6	1.3	0.0	41.2	135,576.0	0.0	0.0			
LEAD	0.0	3.6	10.0	0.0	0.0	103.6	0.0	0.0			
MANGANESE	2.1	3.6	4.8	0.0	1.0	9,324.0	0.0	0.0			
NICKEL	0.3	3.6	0.0	0.0	6.2	18,674.0	0.0	0.0			
H-J ENTERPRISES INC.				High Rid	ge						
COPPER	1,420.0	0.0	0.0	0.0	49,000.0	0.0	0.0	0.0			
LEAD	93.0	0.0	0.0	0.0	5,572.0	0.0	0.0	0.0			
MASTERCHEM INDUSTRIES IN	<i>C</i> .			IMPERIA	AL.						
3-IODO-2-PROPYNYL BUTYLCARBAMATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ETHYLENE GLYCOL	204.0	0.0	0.0	0.0	0.0	0.0	0.0	931.0			
METAL CONTAINER CORP.				ARNOLE)						
CERTAIN GLYCOL ETHERS	103,192.0	0.0	0.0	0.0	0.0	0.0	149.0	178,482.0			
FORMALDEHYDE	2,745.0	0.0	0.0	0.0	0.0	0.0	0.0	22,823.0			
HYDROGEN FLUORIDE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	10,257.0			
MANGANESE	0.0	0.0	0.0	40.0	393.0	0.0	0.0	0.0			
N-BUTYL ALCOHOL	73,220.0	0.0	0.0	0.0	0.0	0.0	120.0	169,698.0			
RIVER CEMENT CO.				FESTUS							
CHROMIUM	9.0	1,678.0	0.0	0.0	0.0	0.0	0.0	0.0			
DIOXIN AND DIOXIN-LIKE COMPOUNDS	6.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
HYDROCHLORIC ACID ("ACID AEROSOLS"	ONLY) 139,507.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
LEAD	4,877.0	9,684.0	0.0	0.0	0.0	0.0	0.0	0.0			
MERCURY COMPOUNDS	141.6	8.5	0.0	0.0	0.0	0.0	0.0	0.0			
NICKEL	41.0	2,272.0	0.0	0.0	0.0	0.0	0.0	0.0			

		On- and	Off-site Rei	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CHEMICA	AL AII	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ZINC COMPOUNDS	1,036.5	53,400.0	0.0	0.0	0.0	0.0	0.0	0.0
SAINT-GOBAIN CONTAINERS				PEVELY				
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	396.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCORE				PEVELY				
CHROMIUM COMPOUNDS	4.0	0.0	0.0	0.0	0.0	3,900.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRIETHYLAMINE	7,320.0	0.0	0.0	0.0	0.0	17,000.0	0.0	0.0
SINCLAIR & RUSH INC.				ARNOLD	1			
BARIUM	0.0	0.0	0.0	0.0	13.0	0.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	16.3	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	14.0	0.0	0.0	0.0
THE DOE RUN COMPANY - HERCULANE	EUM SMEI	LTER		HERCUL	ANEUM			
ALUMINUM (FUME OR DUST)	158.0	2,738,520.0	0.0	0.0	0.0	694,115.0	0.0	0.0
ANTIMONY COMPOUNDS	339.0	1,095.0	5.0	0.0	0.0	6,571.0	0.0	0.0
ARSENIC COMPOUNDS	2,466.0	2,739.0	21.0	14.0	0.0	15,773.0	0.0	0.0
CADMIUM COMPOUNDS	2,680.0	6,846.0	33.0	49.0	0.0	699,342.0	0.0	0.0
COBALT COMPOUNDS	113.0	164,311.0	5.0	0.0	0.0	81,184.0	0.0	0.0
COPPER COMPOUNDS	1,471.0	369,700.0	5.6	42.0	1,023.0	595,349.0	0.0	0.0
LEAD COMPOUNDS	117,626.0	2,177,123.0	21.0	983.0	26,833.0	21,666,555.0	0.0	0.0
NICKEL COMPOUNDS	365.0	32,862.0	5.0	1.0	0.0	44,735.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	324.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	11,339.0	9,940,828.0	62.7	141.0	9,488.0	2,012,712.0	0.0	0.0
THE DOW CHEMICAL CO RIVERSIDE	SITE			PEVELY				
1-CHLORO-1,1-DIFLUOROETHANE	1,316,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHLORODIFLUOROMETHANE	271,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CUMENE	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	187.0	0.0	0.0	0.0	0.0	0.0	2,400.0	0.0
STYRENE	3,700.0	0.0	0.0	0.0	0.0	0.0	5,200.0	0.0
JOHNSON								

		On- and	Off-site Re	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CHEMICA	AL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
GETS GLOBAL SIGNALING				WARREN	ISBURG			
COPPER	0.0	0.0	5.0	250.0	1,650.0	32,000.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0
LEAD COMPOUNDS	0.2	0.0	0.9	0.8	120.2	2,800.0	0.0	0.0
SODIUM DIMETHYLDITHIOCARBAMATE	0.0	0.0	0.0	0.0	3,800.0	13,000.0	0.0	0.0
HAWKER ENERGY PRODUCTS INC.				WARREN	ISBURG			
LEAD COMPOUNDS	9.9	0.0	0.0	0.1	0.0	11,973,654.8	0.0	0.0
THYSSENKRUPP STAHL CO.				WARREN	ISBURG			
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LACLEDE								
COPELAND CORP.				LEBANO	N			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	368.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	2,993.0	1,445.0	320.0	0.0	0.0
DETROIT TOOL ENGINEERING				LEBANO	N			
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	250.0	0.0	0.0	5.0	74.0	1,697.0	0.0	0.0
DETROIT TOOL METAL PRODUCTS				LEBANO	N			
CHROMIUM	327.0	0.0	0.0	10.0	327.0	142,491.0	0.0	0.0
MANGANESE	324.0	0.0	0.0	10.0	324.0	98,853.0	0.0	0.0
NICKEL	438.0	0.0	0.0	5.0	438.0	175,874.0	0.0	0.0
PROPYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LOWE BOAT INC.				LEBANO	N			
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	52,605.0	0.0	0.0	0.0	0.0	0.0	5,690.0	0.0
XYLENE (MIXED ISOMERS)	64,860.0	0.0	0.0	0.0	0.0	0.0	2,845.0	0.0
MARTHON ELECTRIC				LEBANO	N			

			On- and	Off-site Re	leases		On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
COPPER		5.0	0.0	0.0	0.0	750.0	117,012.0	0.0	0.0
LAFAYETTE									
ADM ALLIANCE NUTRITION I	NC.				HIGGINS	VILLE			
MANGANESE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
KITCO INC.					ODESSA				
STYRENE	9,	400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LAWRENCE									
BCP INGREDIENTS INC.					VERONA				
2-METHOXYETHANOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHLOROACETIC ACID		0.0	0.0	0.0	0.0	0.0	33,579.0	0.0	0.0
CHLOROMETHANE	(600.0	0.0	0.0	0.0	0.0	2,980.0	0.0	0.0
ETHYLENE GLYCOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	191.0
ETHYLENE OXIDE	2,	660.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	135,	659.0	0.0	0.0	0.0	0.0	2,404,137.0	0.0	1,813.0
CONOCOPHILLIPS - MT. VERN	NON PRODUCT	S TERM	IINAL	MT. VERNON					
1,2,4-TRIMETHYLBENZENE	1,0	0.000	0.0	0.0	0.0	0.0	1.0	0.0	190.0
BENZENE	1,:	250.0	0.0	0.0	0.0	0.0	4.0	0.0	1,200.0
BENZO(G,H,I)PERYLENE		0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
CERTAIN GLYCOL ETHERS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE		500.0	0.0	0.0	0.0	0.0	1.0	0.0	580.0
ETHYLBENZENE	;	500.0	0.0	0.0	0.0	0.0	1.0	0.0	190.0
LEAD COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
N-HEXANE	1,	550.0	0.0	0.0	0.0	0.0	1.0	0.0	2,100.0
POLYCYCLIC AROMATIC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0
PROPYLENE		5.0	0.0	0.0	0.0	0.0	0.0	0.0	350.0
TOLUENE	3,	050.0	0.0	0.0	0.0	0.0	63.0	0.0	1,700.0
XYLENE (MIXED ISOMERS)	2,	650.0	0.0	0.0	0.0	0.0	4.0	0.0	580.0
SILGAN CONTAINERS MANUF	FACTURING CO	ORP.			MOUNT \	/ERNON			

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR I	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
CERTAIN GLYCOL ETHERS	35,780	.0	0.0	0.0	0.0	0.0	0.0	7,639.0	0.0	
TYSON FOODS INC AURORA I	FEED MILL				AURORA					
COPPER COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FORMALDEHYDE	1,752	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LINCOLN										
IEPPERT MACHINE & TOOL SC	REW PRODUCT	S INC.			MOSCOV	V MILLS				
COPPER	0	.0	0.0	0.0	0.0	0.0	26,870.0	0.0	0.0	
MOST INC.					TROY					
COPPER COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	577,590.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	2	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	6,824.0	0.0	0.0	
LIVINGSTON										
CHILLICOTHE MUNICIPAL UTI	LITIES				CHILLICO	OTHE				
CHLORINE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DONALDSON COMPANY INC.					CHILLICO	THE				
XYLENE (MIXED ISOMERS)	10,500	.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	
GLEN-GERY CORP.					UTICA					
BARIUM COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROGEN FLUORIDE	42,615	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HUDSON VALLEY POLYMERS					CHILLICO	THE				
ZINC COMPOUNDS	0	.0	0.0	0.0	0.0	520.0	2,754.0	0.0	0.0	
WIRE ROPE CORPORATION OF	AMERICA INC.				CHILLICO	THE				
HYDROCHLORIC ACID ("ACID AEROSOLS"	ONLY) 3,325	.0	0.0	0.0	0.0	0.0	0.0	0.0	131,260.0	
LEAD	0	.0	0.0	0.0	2.1	0.0	55.3	0.0	0.0	
ZINC COMPOUNDS	5	.0	0.0	0.0	250.0	0.0	9,369.0	0.0	0.0	

		On- and	l Off-site Re	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	IICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
MACON									
CONAGRA FROZEN FOODS				MACON					
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NORHTEAST MISSOURI GRAIN L.L.C				MACON					
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MARIES									
KINGSFORD MANUFACTURING CO.				BELLE					
LEAD COMPOUNDS	144.7	0.0	1.1	0.0	0.0	388.0	0.0	0.0	
METHANOL	616.0	0.0	0.0	0.0	0.0	0.0	3,119,078.0	0.0	
NITRATE COMPOUNDS	0.0	504.6	207.1	0.0	0.0	0.0	0.0	45,279.0	
MARION									
ALPHARMA INC.				PALMYR	RO				
AMMONIA	6,412.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BASF CORPORATION - HANNIBAL PL	ANT			PALMYR	RA				
1,2,4-TRIMETHYLBENZENE	255.0	5.0	5.0	0.0	0.0	0.0	0.0	70.0	
1,2-DICHLOROETHANE	22,300.0	5.0	38.0	0.0	0.0	0.0	0.0	1,200,098.0	
ACETONITRILE	1,440.0	5.0	5.0	0.0	0.0	0.0	0.0	250,000.0	
ACRYLONITRILE	255.0	5.0	5.0	0.0	0.0	0.0	0.0	210.0	
AMMONIA	370.0	725.0	1,700.0	0.0	0.0	0.0	0.0	550,000.0	
BROMINE	500.0	5.0	5.0	0.0	0.0	0.0	0.0	5,000.0	
CHLORINE	255.0	5.0	5.0	0.0	0.0	0.0	0.0	210.0	
CHLOROBENZENE	2,170.0	5.0	5.0	0.0	0.0	0.0	0.0	1,100,750.0	
CHLOROETHANE	2,990.0	5.0	5.0	0.0	0.0	0.0	0.0	71,000.0	
COPPER COMPOUNDS	10.0	43.0	5.0	0.0	100.0	0.0	0.0	0.0	
CYANIDE COMPOUNDS	25.0	5.0	5.0	0.0	0.0	0.0	0.0	63,000.0	
DICHLOROMETHANE	4,360.0	5.0	120.0	0.0	0.0	0.0	0.0	320,000.0	

		On- an	d Off-site Rel	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	ICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FORMALDEHYDE	255.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	54,250.0	5.0	0.0	0.0	0.0	0.0	0.0	1,300,000.0	
LEAD COMPOUNDS	70.6	19.1	0.0	0.0	4,779.0	0.0	0.0	0.0	
METHANOL	3,560.0	5.0	5.0	0.0	0.0	0.0	0.0	2,600,000.0	
METHYL ISOBUTYL KETONE	1,550.0	5.0	5.0	0.0	0.0	0.0	0.0	110,000.0	
N,N-DIMETHYLFORMAMIDE	465.0	5.0	5.0	0.0	0.0	0.0	0.0	390,000.0	
N-METHYL-2-PYRROLIDONE	255.0	5.0	5.0	0.0	0.0	0.0	0.0	19,000.0	
NAPHTHALENE	500.0	5.0	5.0	0.0	0.0	0.0	0.0	6,400.0	
NITRATE COMPOUNDS	5.0	255.0	250,000.0	0.0	0.0	0.0	0.0	0.0	
NITRIC ACID	4,750.0	5.0	5.0	0.0	0.0	0.0	0.0	8,300.0	
O-XYLENE	19,400.0	5.0	5.0	0.0	0.0	0.0	0.0	890,000.0	
PENDIMETHALIN	36.0	1.0	4.0	0.0	0.0	0.0	0.0	339,640.0	
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	41,250.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	11,900.0	5.0	5.0	0.0	0.0	0.0	0.0	1,500,000.0	
TRIETHYLAMINE	1,060.0	5.0	5.0	0.0	0.0	0.0	0.0	1,300,000.0	
DIELECTRIC COMMUNICATIONS INC				PALMYR	A				
COPPER	0.0	0.0	0.0	0.0	250.0	800.0	0.0	0.0	
MCDONALD									
SIMMONS FOODS INC.				SOUTHW	EST CITY				
AMMONIA	16,042.0	0.0	1,071.0	0.0	45.0	0.0	0.0	114,233.0	
CHLORINE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NITRATE COMPOUNDS	0.0	0.0	83,744.0	0.0	5.0	0.0	0.0	4,082,397.0	
TYSON FOODS INC.				NOEL					
AMMONIA	13,824.0	0.0	250.0	0.0	0.0	0.0	0.0	71,503.0	
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHLORINE DIOXIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCER									
PREMIUM STANDARD FARMS - PRIN	CETON FEEDN	MILL		PRINCET	ON				
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

			On- and		On- and Off-site Waste Mgmt				
COUNTY FACILITY C	TITY CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
COPPER COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SELENIUM COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MILLER									
FASCO					ELDON				
LEAD		0.0	0.0	0.0	0.0	31.4	2,829.0	0.0	0.0
XYLENE (MIXED ISOMERS)	14	1,344.0	0.0	0.0	0.0	0.0	13,510.0	0.0	0.0
MISSISSIPPI									
THE GATES RUBBER CO).				CHARLE	STON			
CERTAIN GLYCOL ETHERS		217.0	0.0	0.0	0.0	7,653.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	18.0	17,750.0	0.0	0.0	0.0
MONITEAU									
CARGILL TURKEY PROL	OUCTS				CALIFOR	NIA			
COPPER COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORDYNE INC.					TIPTON				
CHLORODIFLUOROMETHANE	6	6,600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER		0.0	0.0	0.0	0.0	0.0	200.0	0.0	0.0
MONROE									
DIVERSIFIED DIEMAKE	ERS - DBA INTERMI	ET			MONRO	CITY			
COPPER		500.0	0.0	0.0	5.0	500.0	26,773.0	0.0	0.0
LEAD		1.0	0.0	0.0	0.3	0.6	313.9	0.0	0.0
L&P ALUMINUM GROUI	D				MONRO	CITY			
COPPER		0.0	0.0	2.0	1.0	0.0	32,647.0	0.0	0.0
LEAD		0.0	0.0	0.0	0.0	0.0	1,160.0	0.0	0.0
NICKEL		0.0	0.0	0.0	0.0	0.0	4,282.0	0.0	0.0

		On- and	d Off-site Re	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CH	EMICAL A	IR LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
MONTGOMERY									
CARGILL INC.				MONTGO	OMERY CITY				
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHRISTY MINERALS CO.				HIGH HII	_L				
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	1,000.0	0.0	0.0	0.0	
PURINA MILLS LLC				MONTGO	OMERY CITY				
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
UNIQUE AUTOMOTIVE REB. INC.				JONESB	URG				
TRICHLOROETHYLENE	9,825.0	0.0	0.0	0.0	0.0	0.0	0.0	1,385.0	
MORGAN									
THE GATES RUBBER CO.				VERSAIL	LES				
LEAD	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	14.0	15,999.0	0.0	0.0	0.0	
NEW MADRID									
ALAN WIRE COMPANY INC.				SIKESTO	ON				
COPPER	0.0	0.0	0.0	0.0	0.0	1,952,433.0	0.0	0.0	
NEW MADRID POWER PLANT				MARSTO	DN				
AMMONIA	24,305.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
BARIUM COMPOUNDS	26,500.0	1,300,000.0	4,800.0	0.0	5.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	650.0	12,800.0	250.0	0.0	250.0	0.0	0.0	0.0	
COBALT COMPOUNDS	400.0	15,100.0	250.0	0.0	5.0	0.0	0.0	0.0	
COPPER COMPOUNDS	530.0	25,000.0	11.0	0.0	5.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" ON	ILY) 35,000.0	0.0	0.0	0.0	0.0	0.0	0.0	130,000.0	
HYDROGEN FLUORIDE	260,000.0	0.0	0.0	0.0	0.0	0.0	0.0	240,000.0	

		On- and	On- and Off-site Waste Mgmt					
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
LEAD COMPOUNDS	800.0	20,700.0	16.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	1,005.0	30,000.0	620.0	0.0	5.0	0.0	0.0	0.0
MERCURY COMPOUNDS	280.0	0.0	0.0	0.0	0.0	55.0	0.0	0.0
NICKEL COMPOUNDS	740.0	18,800.0	250.0	0.0	5.0	0.0	0.0	0.0
VANADIUM COMPOUNDS	500.0	23,700.0	0.0	0.0	5.0	0.0	0.0	0.0
ZINC COMPOUNDS	1,800.0	18,500.0	750.0	0.0	5.0	0.0	0.0	0.0
NORANDA ALUMINUM INC.				NEW MA	DRID			
COPPER	0.0	0.0	0.0	0.0	160.0	0.0	0.0	0.0
CYANIDE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31,930.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	2,062.0	0.0	0.0
HYDROGEN FLUORIDE	272,424.0	0.0	0.0	0.0	0.0	5,905,005.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	101.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	4,558.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PLASTENE SUPPLY CO.				PORTAG	EVILLE			
CHROMIUM COMPOUNDS	10.0	0.0	54.0	0.0	61,744.0	520,015.0	0.0	0.0
COPPER COMPOUNDS	255.0	0.0	159.0	0.0	53,195.0	13,625.0	0.0	0.0
FORMALDEHYDE	1,000.0	0.0	250.0	0.0	0.0	0.0	0.0	1,350.0
LEAD COMPOUNDS	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	121,930.0	0.0	0.0	0.0	0.0	0.0	114,700.0	0.0
METHYL ISOBUTYL KETONE	20,800.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL COMPOUNDS	255.0	0.0	276.0	0.0	51,330.0	16,350.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	54,441.0	0.0	0.0	0.0	0.0	48,124.0
NITRIC ACID	500.0	0.0	0.0	0.0	0.0	0.0	0.0	322,506.0
TOLUENE	93,764.0	0.0	0.0	0.0	0.0	0.0	2,900.0	0.0
SPECIALLOY METALS CO.				NEW MA	DRID			
COPPER COMPOUNDS	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NEWTON								
BASF CORP.				NEOSHO)			
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and	Off-site Rel		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EAGLEPICHER TECHNOLOGIE	ES LLC - COM	ERCIAL	PRODUC	TS DEPT.	SENECA				
LEAD		66.0	0.0	2.0	0.0	0.0	147,000.0	0.0	0.0
GAF BEARINGS CORP.					JOPLIN				
CHROMIUM		0.0	0.0	0.0	19.1	3,492.0	0.0	0.0	0.0
METHANOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HOWARD JOHNSON'S ENTERP	RISES INC.				NEOSHO	1			
TRIFLURALIN		2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LA-Z-BOY MIDWEST					NEOSHO	1			
CERTAIN GLYCOL ETHERS	10	,217.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS		4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NUTRA BLEND CORP.					NEOSHO	1			
COPPER COMPOUNDS		255.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
MANGANESE COMPOUNDS		250.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
SELENIUM COMPOUNDS		250.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
ZINC COMPOUNDS		250.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
PREMIER TURBINES					NEOSHO	1			
LEAD COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TALBOT INDUSTRIES INC.					NEOSHO	1			
LEAD COMPOUNDS		0.0	0.0	0.0	4.3	0.0	441.3	0.0	0.0
NICKEL COMPOUNDS	1	,514.0	0.0	0.0	25.0	0.0	5,880.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONL	-Y) 56	,561.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
THE MILNOT CO.					SENECA				
NITRATE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	39,000.0
NITRIC ACID		0.0	0.0	0.0	0.0	0.0	0.0	0.0	39,404.0
NODAWAY									
EVEREADY BATTERY CO. INC.					MARYVIL	LE			
COPPER		5.0	0.0	0.0	27.0	0.0	33,648.0	0.0	0.0

		On- and	Off-site Rei		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
MANGANESE COMPOUNDS	263.0	0.0	0.0	50.0	300,057.1	148,093.0	0.0	0.0
ZINC COMPOUNDS	2.0	0.0	0.0	28.0	91,494.2	17,274.0	0.0	0.0
KAWASAKI MOTORS MANUFACTURING	G CORP.			MARYV	ILLE			
COPPER	170.0	0.0	0.0	0.2	0.0	20,814.0	0.0	0.0
LEAD	31.3	0.0	0.0	0.0	0.0	346.9	0.0	0.0
NICKEL	0.0	0.0	0.0	6.9	0.0	12,505.0	0.0	0.0
TOLUENE	836.0	0.0	0.0	0.0	0.0	0.0	236.0	0.0
LACLEDE CHAIN MANUFACTURING				MARYV	ILLE			
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44,000.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LMP STEEL & WIRE CO.				MARYV	ILLE			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	413.2	0.0	0.0
OSAGE								
CHAMOIS POWER PLANT				СНАМО	IS			
BARIUM COMPOUNDS	2,000.0	0.0	250.0	0.0	5.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	84,000.0	0.0	0.0	0.0	0.0	0.0	0.0	23,000.0
HYDROGEN FLUORIDE	21,000.0	0.0	0.0	0.0	0.0	0.0	0.0	27,000.0
LEAD COMPOUNDS	82.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	18,000.0	0.0	0.0	0.0	0.0	0.0	0.0	50,000.0
QUAKER WINDOW PRODUCTS CO.				FREEBU	JRG			
COPPER	24.0	0.0	0.0	0.0	0.0	650.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	11,000.0	0.0	0.0	0.0	0.0	8,200.0	3,790.0	0.0

PEMISCOT

		On- and Off-site Releases					On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
LOXCREEN CO. INC.					HAYTI				
DIOXIN AND DIOXIN-LIKE COMPOUNDS	(0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD		1.4	0.0	0.3	1.2	33.0	94.2	0.0	0.0
NITRATE COMPOUNDS	(0.0	0.0	5.0	0.0	750.0	0.0	0.0	51,020.0
NITRIC ACID	513	3.0	0.0	0.0	0.0	0.0	0.0	0.0	51,843.0
TRINITY MARINE PRODUCTS	INC.				CARUTH	ERSVILLE			
STYRENE	283,47	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1,000.0
TRINITY MARINE PRODUCTS	INC PLANT #75	5			CARUTH	ERSVILLE			
CHROMIUM	21:	2.6	0.0	1.1	0.0	0.0	4,839.0	0.0	0.0
COPPER	69	9.2	0.0	3.7	0.0	0.0	1,613.0	0.0	0.0
LEAD	(0.0	0.0	2.6	0.0	0.0	0.4	0.0	0.0
MANGANESE COMPOUNDS	1,43	5.2	0.0	0.0	0.0	44,400.0	14,247.0	0.0	0.0
NICKEL	140	6.1	0.0	0.7	0.0	0.0	3,237.0	0.0	0.0
XYLENE (MIXED ISOMERS)	8,920	6.4	0.0	0.0	0.0	0.0	0.0	2,317.0	0.0
ZINC (FUME OR DUST)	90	1.6	0.0	0.0	0.0	2,177.0	42,000.0	0.0	0.0
PERRY									
H&G MARINE SERVICE INC.					PERRYV	ILLE			
DIISOCYANATES	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TG MISSOURI					PERRYV	ILLE			
ETHYLBENZENE	11,132	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	35,596	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE	28,969	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	103,949	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	26,424	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PETTIS									
ADCO INC.					SEDALIA	1			
1,2,4-TRIMETHYLBENZENE	369	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	14	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TETRACHLOROETHYLENE	1,960	0.0	0.0	0.0	0.0	0.0	5,472.0	0.0	0.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TRICHLOROETHYLENE	1,123.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALCAN CABLE				SEDALIA	١			
ACETOPHENONE	936.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	438.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	457.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	447.0	0.0	0.0	0.0	0.0	0.0	0.0	526.0
TOLUENE	17,140.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AMERICAN COMPRESSED ST	EEL INC.			SEDELIA	1			
ALUMINUM (FUME OR DUST)	5,452.0	0.0	0.0	0.0	0.0	5,457.0	0.0	0.0
BENZENE	750.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	14.7	0.0	0.0	0.0	0.0	13.1	0.0	0.0
CARGILL INC.				SMITHTO	ON			
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GARDNER DENVER INC.				SEDALIA	1			
NICKEL	0.0	0.0	0.0	10.0	71.0	9,656.0	0.0	0.0
HAYES LEMMERZ INTERNAT	IONAL INC.			SEDALIA	1			
LEAD COMPOUNDS	0.0	0.0	0.0	10.0	2,179.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	666.0	580,051.0	0.0	0.0
ZINC COMPOUNDS	19.0	0.0	0.0	118.0	57,663.0	0.0	0.0	0.0
MISSOURI PRESSED METALS	INC.			SEDALIA	١			
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRICHLOROETHYLENE	84,632.0	0.0	0.0	0.0	0.0	0.0	0.0	660.0
PITTSBURG CORNING CORP.				SEDALIA	٨			
MANGANESE	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SIERRA BULLETS LLC				SEDALIA	\			
ANTIMONY	0.0	0.0	1.3	0.0	1.3	5,864.0	0.0	0.0
COPPER	0.0	0.0	5.0	17.3	750.0	331,496.0	0.0	0.0
LEAD	0.0	0.0	0.7	7.8	50.7	238,535.0	0.0	0.0

		On- and Off-site Releases						On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
STARLINE INC					SEDALIA						
COPPER		0.0	0.0	0.0	5.0	250.0	212,691.0	0.0	0.0		
TYSON FOODS INC SEDAL	IA COMPLEX				SEDALIA						
AMMONIA	18,15	2.0	3,014.0	453.0	0.0	2,904.0	0.0	0.0	126,986.0		
CHLORINE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NITRATE COMPOUNDS		0.0	0.0 3,	398,063.0	0.0	0.0	0.0	0.0	3,014,237.0		
TYSON FOODS INC SEDALI	IA FEED MILL				SEDALIA						
COPPER COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
WATERLOO INDUSTRIES INC	C .				SEDALIA						
TOLUENE	4,25	1.0	0.0	0.0	0.0	0.0	0.0	7,150.0	0.0		
WIRE ROPE CORPORATION (OF AMERICA INC				SEDALIA						
BARIUM COMPOUNDS	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	974.0		
LEAD		0.0	0.0	0.0	0.0	0.0	38.7	0.0	0.0		
PHELPS											
BREWER SCIENCE INC.					Rolla						
N-METHYL-2-PYRROLIDONE	3	4.0	0.0	0.0	0.0	0.0	0.0	12,085.0	0.0		
BRIGGS & STRATTON CORP.					ROLLA						
COPPER		4.0	0.0	0.0	0.0	5.0	48,670.0	0.0	0.0		
LEAD		0.0	0.0	0.0	0.0	0.0	1,245.0	0.0	0.0		
TOLUENE	1,51	7.0	0.0	0.0	0.0	0.0	0.0	11.0	0.0		
PIKE											
BLACK THUNDER POWERBO	OAT .				BOWLING	G GREEN					
STYRENE	3,29	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DYNO NOBEL INC LOMO P.	LANT				LOUISIAN	NA					
AMMONIA	110,80	0.0	0.0	4,600.0	0.0	0.0	35,000.0	0.0	0.0		
	,						•				

		On- an	d Off-site Rel		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY C	HEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NITRATE COMPOUNDS	0.0	0.0	399,000.0	0.0	0.0	52,000,000.0	0.0	108,000.0
NITRIC ACID	8,200.0	0.0	0.0	0.0	0.0	229,000.0	0.0	170,000.0
HOLCIM (U.S.) INC CLARKSVIL	LE PLANT			CLARKS	VILLE			
1,4-DICHLOROBENZENE	10.0	0.0	0.0	0.0	0.0	0.0	37,900.0	0.0
ACETONITRILE	10.0	0.0	0.0	0.0	0.0	0.0	15,500.0	0.0
AMMONIA	212,400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BARIUM COMPOUNDS	250.0	40,600.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	150,605.0	0.0	0.0	0.0	0.0	0.0	73,950.0	0.0
CERTAIN GLYCOL ETHERS	10.0	0.0	0.0	0.0	0.0	0.0	48,300.0	0.0
CHLOROBENZENE	255.0	0.0	0.0	0.0	0.0	0.0	90,600.0	0.0
CHROMIUM COMPOUNDS	20.0	12,500.0	0.0	0.0	0.0	8,000.0	0.0	0.0
CYCLOHEXANE	10.0	0.0	0.0	0.0	0.0	0.0	386,800.0	0.0
CYCLOHEXANOL	10.0	0.0	0.0	0.0	0.0	0.0	187,900.0	0.0
DICHLOROMETHANE	1,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	13.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	500.0	0.0	0.0	0.0	0.0	0.0	2,181,700.0	0.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" C	ONLY) 180,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	350.0	58,800.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	250.0	250.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	225.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	500.0	0.0	0.0	0.0	0.0	0.0	1,783,600.0	0.0
METHYL ETHYL KETONE	500.0	0.0	0.0	0.0	0.0	0.0	5,132,000.0	0.0
METHYL ISOBUTYL KETONE	500.0	0.0	0.0	0.0	0.0	0.0	1,711,800.0	0.0
METHYL METHACRYLATE	10.0	0.0	0.0	0.0	0.0	0.0	153,400.0	0.0
METHYL TERT-BUTYL ETHER	500.0	0.0	0.0	0.0	0.0	0.0	737,900.0	0.0
N-BUTYL ALCOHOL	10.0	0.0	0.0	0.0	0.0	0.0	203,300.0	0.0
N-HEXANE	10.0	0.0	0.0	0.0	0.0	0.0	35,200.0	0.0
NAPHTHALENE	2,115.0	0.0	0.0	0.0	0.0	0.0	14,100.0	0.0
NICKEL COMPOUNDS	250.0	9,400.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	10.0	0.0	0.0	0.0	0.0	0.0	219,900.0	0.0
TETRACHLOROETHYLENE	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	500.0	0.0	0.0	0.0	0.0	0.0	15,727,200.0	0.0

		On- and	Off-site Rei		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
VINYL ACETATE	500.0	0.0	0.0	0.0	0.0	0.0	2,433,300.0	0.0
XYLENE (MIXED ISOMERS)	500.0	0.0	0.0	0.0	0.0	0.0	8,665,300.0	0.0
ZINC COMPOUNDS	750.0	284,000.0	0.0	0.0	0.0	0.0	0.0	0.0
LOUISIANA MANUFACTURING CO.				LOUISIA	NA			
COPPER	90.0	0.0	0.0	0.0	0.0	1,852.0	0.0	0.0
LEAD	2.0	0.0	0.0	0.0	0.0	47.0	0.0	0.0
MISSOURI CHEMICAL WORKS				LOUISIA	NA			
ACETALDEHYDE	220.0	0.0	0.0	0.0	0.0	0.0	0.0	110.0
CHLORINE	240.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FORMALDEHYDE	24,000.0	0.0	0.0	0.0	0.0	0.0	67,000.0	1,044,450.0
FORMIC ACID	5,520.0	0.0	0.0	0.0	0.0	0.0	3,000.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	48,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	50.0	8,100.0	0.0	0.0	27,001.0	15,000.0	0.0	0.0
MERCURY COMPOUNDS	10.0	10.0	0.0	0.0	130.0	70.0	0.0	0.0
METHANOL	120,000.0	0.0	0.0	0.0	0.0	0.0	230,000.0	640,000.0
ZINC COMPOUNDS	0.0	35,000.0	0.0	0.0	3,700.0	2,100.0	0.0	0.0
PLATTE								
ALLIED AVIATION SERVICE CO.				KANSAS	CITY			
1,2,4-TRIMETHYLBENZENE	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL TERT-BUTYL ETHER	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	14.0	0.0	0.0	0.0	0.0	0.0	0.0	203.0
TOLUENE	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CENTURY CONCRETE INC TIFFANY	SPRINGS FA	CILITY		KANSAS	CITY			
LEAD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IATAN GENERATING STATION				WESTON	1			
BARIUM COMPOUNDS	4,300.0	300,000.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	260.0	11,000.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
DIOXIN AND DIOXIN-LIKE COMPOUNDS	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	30,000.0	0.0	0.0	0.0	0.0	0.0	0.0	91,000.0
HYDROGEN FLUORIDE	130,000.0	0.0	0.0	0.0	0.0	0.0	0.0	77,000.0
LEAD COMPOUNDS	150.0	2,800.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	320.0	7,700.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	190.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	11,005.0	0.0	0.0	0.0	0.0	0.0	0.0	14,000.0
VANADIUM COMPOUNDS	300.0	14,000.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	750.0	6,400.0	0.0	0.0	0.0	0.0	0.0	0.0
MICHELIN AIRCRAFT TIRE CORP.				KANSAS	CITY			
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	160.0	1,950.0	0.0	0.0
ZINC COMPOUNDS	165.0	0.0	0.0	0.0	600.0	19,300.0	0.0	0.0
WOODBRIDGE CORP KANSAS CITY FO	OAM .			RIVERSII	DE			
DIETHANOLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE DIISOCYANATE (MIXED ISOMERS)	841.0	0.0	0.0	0.0	6.0	0.0	0.0	180.0
POLK								
H-H FARM PRODUCTS MANUFACTURI	NG INC.			BALWIN				
TOLUENE	18,164.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POLK COUNTY CONCRETE				BOLIVAR				
LEAD COMPOUNDS	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PULASKI								
US ARMY MANEUVER SUPPORT CENTE	ER & FORT I	LEONARD	WOOD	FORT LE	ONARD WOOD			
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
US ARMY MANEUVER SUPPORT CENTE	ER - RANGE			FORT LE	ONARD WOOD			
COPPER	0.0	131,051.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	0.0	169,217.7	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	559.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			On- and	Off-site Rei	On- and Off-site Waste Mgmt				
COUNTY FACILITY CIT	Y CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NITROGLYCERIN		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PUTNAM									
PREMIUM STANDARD FAR	RMS - LUCERNE F	EEDMI	'LL		LUCERN	E			
CHROMIUM COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SELENIUM COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RALLS									
BUCKHORN RUBBER PROI	DUCTS INC.				HANNIBA	AL			
TOLUENE	68,	984.0	0.0	0.0	0.0	0.0	0.0	0.0	7,576.0
XYLENE (MIXED ISOMERS)	31,	146.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	5,292.0	0.0	0.0	0.0
CENTERLINE INDUSTRIES	S INC.				HANNIBA	AL.			
METHANOL	18,	755.0	0.0	0.0	0.0	11,426.0	0.0	0.0	0.0
CONTINENTAL CEMENT C	O. LLC				HANNIBA	AL			
1,1,1-TRICHLOROETHANE		3.0	0.0	0.0	0.0	0.0	0.0	0.0	15,683.0
1,2,4-TRIMETHYLBENZENE		108.0	0.0	0.0	0.0	0.0	0.0	588,566.0	0.0
1,2-DICHLOROBENZENE		5.0	0.0	0.0	0.0	0.0	0.0	28,018.0	0.0
1,2-DICHLOROETHANE		4.0	0.0	0.0	0.0	0.0	0.0	23,301.0	0.0
1,4-DIOXANE		4.0	0.0	0.0	0.0	0.0	0.0	23,089.0	0.0
ACETONITRILE		47.0	0.0	0.0	0.0	0.0	0.0	257,688.0	0.0
ACETOPHENONE		29.0	0.0	0.0	0.0	0.0	0.0	155,749.0	0.0
BARIUM COMPOUNDS		5.0	11,565.0	0.0	0.0	3,893.0	0.0	0.0	0.0
BENZENE		2.0	0.0	0.0	0.0	0.0	0.0	10,696.0	0.0
CERTAIN GLYCOL ETHERS		69.0	0.0	0.0	0.0	0.0	0.0	370,658.0	0.0
CHLOROBENZENE		5.0	0.0	0.0	0.0	0.0	0.0	27,548.0	0.0
CHLOROFORM		13.0	0.0	0.0	0.0	0.0	0.0	71,319.0	0.0
CHROMIUM COMPOUNDS		1.0	6,020.0	0.0	0.0	653.0	18,622.0	0.0	0.0
COPPER COMPOUNDS		5.0	7,335.0	0.0	0.0	1,928.0	0.0	0.0	0.0

			On- and	Off-site Re	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CUMENE		7.0	0.0	0.0	0.0	0.0	0.0	39,884.0	0.0
CYCLOHEXANE		15.0	0.0	0.0	0.0	0.0	0.0	82,980.0	0.0
DICHLOROMETHANE		101.0	0.0	0.0	0.0	0.0	0.0	0.0	554,539.0
DIMETHYL PHTHALATE		2.0	0.0	0.0	0.0	0.0	0.0	11,793.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS		17.1	1.1	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE		214.0	0.0	0.0	0.0	0.0	0.0	1,174,432.0	0.0
ETHYLENE GLYCOL		3.0	0.0	0.0	0.0	0.0	0.0	15,420.0	0.0
LEAD COMPOUNDS		405.0	39,169.0	0.0	0.0	822.0	0.0	0.0	0.0
M-CRESOL		17.0	0.0	0.0	0.0	0.0	0.0	97,186.0	0.0
M-XYLENE	1,	,250.0	0.0	0.0	0.0	0.0	0.0	6,859,838.0	0.0
MERCURY COMPOUNDS		48.0	5.0	0.0	0.0	8.0	0.0	0.0	0.0
METHANOL		130.0	0.0	0.0	0.0	0.0	0.0	714,336.0	0.0
METHYL ETHYL KETONE		402.0	0.0	0.0	0.0	0.0	0.0	2,207,088.0	0.0
METHYL ISOBUTYL KETONE		240.0	0.0	0.0	0.0	0.0	0.0	1,316,151.0	0.0
METHYL METHACRYLATE		10.0	0.0	0.0	0.0	0.0	0.0	54,939.0	0.0
METHYL TERT-BUTYL ETHER		25.0	0.0	0.0	0.0	0.0	0.0	137,121.0	0.0
N,N-DIMETHYLANILINE		3.0	0.0	0.0	0.0	0.0	0.0	15,516.0	0.0
N,N-DIMETHYLFORMAMIDE		3.0	0.0	0.0	0.0	0.0	0.0	24,227.0	0.0
N-BUTYL ALCOHOL		71.0	0.0	0.0	0.0	0.0	0.0	388,142.0	0.0
N-HEXANE		45.0	0.0	0.0	0.0	0.0	0.0	243,340.0	0.0
N-METHYL-2-PYRROLIDONE		331.0	0.0	0.0	0.0	0.0	0.0	1,816,865.0	0.0
NAPHTHALENE		8.0	0.0	0.0	0.0	0.0	0.0	45,990.0	0.0
NICKEL COMPOUNDS		8.0	2,510.0	0.0	0.0	426.0	0.0	0.0	0.0
O-XYLENE		165.0	0.0	0.0	0.0	0.0	0.0	901,962.0	0.0
PHENANTHRENE		3.0	0.0	0.0	0.0	0.0	0.0	16,305.0	0.0
PHENOL		17.0	0.0	0.0	0.0	0.0	0.0	93,018.0	0.0
PYRIDINE		6.0	0.0	0.0	0.0	0.0	0.0	35,612.0	0.0
SEC-BUTYL ALCOHOL		19.0	0.0	0.0	0.0	0.0	0.0	105,667.0	0.0
STYRENE		134.0	0.0	0.0	0.0	0.0	0.0	733,305.0	0.0
TERT-BUTYL ALCOHOL		16.0	0.0	0.0	0.0	0.0	0.0	88,542.0	0.0

Appendix C - 2002 TRI Releases/Waste Management By County By Company

76.0

24.0

4.0

2,253.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

TETRACHLOROETHYLENE

TRICHLOROETHYLENE

TRIETHYLAMINE

TOLUENE

Page 64 of 101

417,144.0

134,169.0

0.0

0.0

0.0

0.0

22,150.0

0.0

0.0

0.0

0.0 12,364,936.0

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEM	MICAL AIR	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
ZINC COMPOUNDS	405.0	146,756.0	0.0	0.0	10,873.0	0.0	0.0	0.0		
COSMOFLEX INC.				HANNIBA	AL					
DI(2-ETHYLHEXYL) PHTHALATE	956.0	0.0	0.0	0.0	45,517.0	0.0	0.0	65.0		
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	105.0	0.0	0.0	0.0		
ENDURO INDUSTRIES INC.				HANNIB	AL					
CHROMIUM COMPOUNDS	82.4	0.0	0.0	0.0	15,783.0	8,402.0	0.0	0.0		
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	83.0	0.0	0.0	0.0		
WATLOW INDUSTRIES				HANNIB	٩L					
CHROMIUM	0.0	0.0	0.0	5.0	0.0	18,143.0	0.0	0.0		
NICKEL	0.0	0.0	0.0	5.0	0.0	13,607.0	0.0	0.0		
RANDOLPH										
CUSTOM COMPOSITES CO. INC.				CLIFTON	l HILL					
STYRENE	4,772.0	0.0	0.0	0.0	0.0	0.0	71.0	0.0		
MOBERLY BRAKE OPERATIONS				MOBERI	_Y					
METHANOL	28.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
THOMAS HILL ENERGY CENTER - P	OWER DIVISI	ON		CLIFTON	I HILL					
BARIUM COMPOUNDS	41,141.0	817,086.0	1,750.0	0.0	5.0	0.0	0.0	0.0		
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32,000.0		
CHROMIUM COMPOUNDS	700.0	9,200.0	35.0	0.0	5.0	0.0	0.0	0.0		
COBALT COMPOUNDS	500.0	11,118.0	35.0	0.0	5.0	0.0	0.0	0.0		
COPPER COMPOUNDS	560.0	16,000.0	45.0	0.0	5.0	0.0	0.0	0.0		
DIOXIN AND DIOXIN-LIKE COMPOUNDS	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY) 32,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HYDROGEN FLUORIDE	240,500.0	0.0	0.0	0.0	0.0	0.0	0.0	240,500.0		
LEAD COMPOUNDS	1,000.0	13,000.0	70.0	0.0	0.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS	1,400.0	20,000.0	1,270.0	0.0	5.0	0.0	0.0	0.0		
MERCURY COMPOUNDS	263.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0		
NICKEL COMPOUNDS	774.0	12,500.0	52.0	0.0	0.0	0.0	0.0	0.0		
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	71,648.0	0.0	0.0	0.0	0.0	0.0	0.0	2,850,000.0		
VANADIUM COMPOUNDS	630.0	14,220.0	0.0	0.0	0.0	0.0	0.0	0.0		

			On- and	Off-site Re	leases	On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ZINC COMPOUNDS	1,8	50.0	12,400.0	240.0	0.0	5.0	0.0	0.0	0.0
WILSON TRAILER SALES INC	7.				MOBERI	LY			
COPPER		0.0	0.0	0.0	0.0	0.0	1,847.0	0.0	0.0
MANGANESE		0.0	0.0	0.0	0.0	0.0	3,097.0	0.0	0.0
RAY									
PACIFIC EPOXY POLYMERS	INC.				RICHMC	DND			
4,4'-ISOPROPYLIDENEDIPHENOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EPICHLOROHYDRIN	2	55.0	0.0	0.0	0.0	0.0	0.0	290.0	0.0
N-BUTYL ALCOHOL		5.0	0.0	0.0	0.0	0.0	0.0	34,129.0	0.0
O-CRESOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PHENOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	2	55.0	0.0	0.0	0.0	0.0	0.0	141,376.0	0.0
XYLENE (MIXED ISOMERS)		10.0	0.0	0.0	0.0	0.0	0.0	25,337.0	0.0
U.S. GRANULES CORP ALM	EG DIVISION				HENRIE	TTA			
ALUMINUM (FUME OR DUST)	5	0.00	0.0	0.0	0.0	110,378.0	0.0	0.0	0.0
REYNOLDS									
BRUSHY CREEK MINE/MILL					BUNKER	₹			
COPPER COMPOUNDS	2	50.0	1,132,962.0	250.0	0.0	0.0	0.0	0.0	0.0
CYANIDE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	30,86	63.0	5,011,644.0	130.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	8,6	97.0	7,104,195.0	3,843.0	0.0	0.0	0.0	0.0	0.0
FLETCHER MINE/MILL					BUNKER	₹			
COPPER COMPOUNDS	2	55.0	744,680.0	250.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	29,82	29.0	5,711,733.0	1,397.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	3,9	55.0	3,480,713.0	750.0	0.0	0.0	0.0	0.0	0.0
MISSOURI TIE & TIMBER IN	C .				REYNOL	_DS			
BENZO(G,H,I)PERYLENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.3
CREOSOTE	10,3	18.0	0.0	0.0	0.0	0.0	0.0	0.0	7,956.0

		On- and	d Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY C	CHEMICAL A	IR LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
POLYCYCLIC AROMATIC COMPOUNDS	85.8	3 0.0	0.0	0.0	0.0	0.0	0.0	599.0
SWEETWATER MINE/MILL				ELLINGT	ON			
COPPER COMPOUNDS	250.0	562,691.0	250.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	9,937.0	1,847,224.0	1,377.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	1,138.0	1,717,638.0	1,915.0	0.0	0.0	0.0	0.0	0.0
SALINE								
CONAGRA FOODS				MARSHA	LL			
AMMONIA	5,961.	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0
EXCEL CORP.				MARSHA	LL			
AMMONIA	14,895.0	0.0	0.0	0.0	0.0	0.0	0.0	2,146.0
KENT FEEDS INC.				MARSHA	LL			
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARSHALL MUNICIPAL UTILIT	IES POWER PLA	NT		MARSHA	LL			
LEAD COMPOUNDS	263.0	0.0	0.0	0.0	2,022.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY	() 27,700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCOTT								
ESSEX ELECTRIC INC.				SIKESTO	N			
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	1,689.0	4,433.0	0.0	0.0
COPPER	0.0	0.0	40.0	10.0	0.0	4,428,979.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	4,565.0	11,973.0	0.0	0.0
GOOD HUMOR CORP.				SIKESTO	N			
AMMONIA	250.0	0.0	0.0	0.0	0.0	0.0	0.0	750.0
HERITAGE AMERICAN HOMES				SIKESTO	N			
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANAC TRAILERS U.S.A. INC.				ORAN				
ALUMINUM (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rel	leases		On- and Off-site Waste		e Mgmt	
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
BARIUM COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PHOSPHORUS (YELLOW OR WHITE)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZINC (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SIKESTON POWER STATION				SIKESTO	N				
BARIUM COMPOUNDS	3,100.0	140,000.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER COMPOUNDS	90.0	4,100.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	130,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
HYDROGEN FLUORIDE	47,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	18.0	810.0	0.0	0.0	0.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS	90.0	4,100.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY	191.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SHANNON									
CRAIG INDUSTRIES				SUMMER	SVILLE				
METHANOL	2,905,632.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SHELBY									
CERRO COPPER TUBE CO.				SHELBIN	A				
COPPER	0.0	0.0	14.0	1.0	0.0	0.0	0.0	0.0	
ST. CHARLES									
AMERENUE SIOUX POWER STATION				WEST AL	.TON				
ANTIMONY COMPOUNDS	153.0	3,775.0	0.0	0.0	0.0	0.0	0.0	0.0	
BARIUM COMPOUNDS	18,145.0	158,970.0	0.0	0.0	0.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	743.0	4,437.0	0.0	0.0	0.0	0.0	0.0	0.0	
COBALT COMPOUNDS	318.0	2,924.0	0.0	0.0	0.0	0.0	0.0	0.0	
COPPER COMPOUNDS	469.0	3,680.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Appendix C - 2002 TRI Releases/Waste Management By County By Company

Page 68 of 101

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Waste Mgmt		
COUNTY FACILITY CITY CHEMI	ICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	1,308,543.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HYDROGEN FLUORIDE	226,574.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
LEAD COMPOUNDS	810.8	1,559.1	0.0	0.0	0.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS	952.0	6,923.0	0.0	0.0	0.0	0.0	0.0	0.0		
MERCURY COMPOUNDS	216.9	3.3	0.1	0.0	0.0	0.0	0.0	0.0		
NICKEL COMPOUNDS	1,032.0	13,919.0	0.0	0.0	0.0	0.0	0.0	0.0		
POLYCYCLIC AROMATIC COMPOUNDS	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	576,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
VANADIUM COMPOUNDS	3,262.0	38,454.0	0.0	0.0	0.0	0.0	0.0	0.0		
ZINC COMPOUNDS	4,723.0	62,343.0	2.0	0.0	0.0	0.0	0.0	0.0		
BRAKING TECHNOLOGIES INC.				O'FALLC	N					
METHYL ETHYL KETONE	5,089.0	0.0	0.0	0.0	0.0	0.0	671.0	24,551.0		
COMPONENT BAR PRODUCTS				ST. CHA	RLES					
TRICHLOROETHYLENE	37,577.0	0.0	0.0	0.0	0.0	8,736.0	0.0	1,797.0		
DIDION & SONS FOUNDRY				ST. PETI	ERS					
COPPER	0.0	5.0	0.0	0.0	0.0	19,671.0	0.0	0.0		
MANGANESE COMPOUNDS	0.0	850.0	0.0	0.0	0.0	13,911.0	0.0	0.0		
EHV-WEIDMANN ELECTRIC PAPER D	IVISION			O'FALLC	N					
METHANOL	313.0	0.0	0.0	0.0	0.0	0.0	86.0	39,476.0		
METHYL ETHYL KETONE	1,661.0	0.0	0.0	0.0	0.0	0.0	892.0	212,257.0		
TOLUENE	1,432.0	0.0	0.0	0.0	0.0	0.0	2,117.0	182,917.0		
GENERAL MOTORS - WENTZVILLE AS	SSEMBLY			WENTZ	/ILLE					
1,2,4-TRIMETHYLBENZENE	38,950.0	0.0	0.0	0.0	0.0	5,400.0	0.0	54.0		
CERTAIN GLYCOL ETHERS	193,900.0	0.0	0.0	0.0	12,000.0	9,200.0	3,300.0	0.0		
ETHYLBENZENE	63,280.0	0.0	0.0	0.0	0.0	25,000.0	3.0	36.0		
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	63,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
LEAD	11.0	0.0	0.0	0.0	140.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS	340.0	0.0	0.0	230.0	5,700.0	0.0	0.0	0.0		
METHYL ISOBUTYL KETONE	43,001.0	0.0	0.0	0.0	0.0	6,000.0	30.0	0.0		
N-BUTYL ALCOHOL	51,000.0	0.0	0.0	0.0	0.0	2,700.0	1,100.0	0.0		
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	17,000.0	0.0	0.0	1,050.0		

Page 69 of 101

		On- and	Off-site Rei		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHE	MICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9,300.0
XYLENE (MIXED ISOMERS)	293,200.0	0.0	0.0	0.0	0.0	110,000.0	3.0	240.0
ZINC COMPOUNDS	880.0	0.0	0.0	280.0	15,800.0	0.0	0.0	0.0
HITCHINER MANUFACTURING CO.	INC.			O'FALLO	N			
AMMONIA	27,908.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LAFARGE NORTH AMERICA INC.				WENTZV	/ILLE			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEONARD'S METAL INC.				ST. CHAI	RLES			
ANTIMONY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MCDONNELL DOUGLAS CORP.				ST CHAR	RLES			
NITRIC ACID	264.0	0.0	0.0	0.0	0.0	0.0	0.0	19,680.0
MEMC ELECTRONIC MATERIALS IN	VC.			O'FALLO	N			
AMMONIA	7,786.0	0.0	0.0	0.0	0.0	0.0	0.0	99,521.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY	ý) 403.0	0.0	0.0	0.0	0.0	0.0	0.0	199,645.0
HYDROGEN FLUORIDE	5,306.0	0.0	0.0	0.0	0.0	0.0	0.0	262,194.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	869,228.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	773,326.0
OZONE	178.0	0.0	0.0	0.0	0.0	0.0	0.0	17,661.0
POLYONE CORP.				SAINT PI	ETERS			
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	193.2	0.0	0.0	0.0
RECKITT BENCKISER				ST. PETE	ERS			
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ROTADYNE ROLL GROUP				O'FALLO	N			
DI(2-ETHYLHEXYL) PHTHALATE	547.0	0.0	0.0	0.0	12,752.0	0.0	0.0	1.0

		On- and	Off-site Rei	leases		On- and Off-site Waste		e Mgmt
COUNTY FACILITY CITY CHE	MICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
SAFETY-KLEEN SYSTEMS (516003)				SAINT C	HARLES			_
ETHYLENE GLYCOL	7.0	0.0	0.0	0.0	0.0	209,987.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	0.0	929.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	2,405.0	0.0	0.0
SUPERIOR HOME PRODUCTS INC.				WENTZV	ILLE			
STYRENE	31,427.0	0.0	0.0	0.0	0.0	81.0	274.0	0.0
TRUE MANUFACTURING CO. INC.				O'FALLO	N			
CHLORODIFLUOROMETHANE	20,651.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	25,283.0	0.0	0.0	0.0	0.0	0.0	8,100.0	0.0
TOLUENE	30,105.0	0.0	0.0	0.0	0.0	0.0	16,278.0	0.0
UNIVERSAL GALVINIZING INC.				SAINT PE	ETERS			
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY	ý) 250.0	0.0	0.0	0.0	0.0	333,952.0	0.0	0.0
LEAD	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	250.0	0.0	0.0	0.0	0.0	232,726.0	0.0	0.0
WILSON MARBLE				O'FALLO	N			
STYRENE	4,289.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WOODBRIDGE CORP.				ST. PETE	RS			
DIETHANOLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE DIISOCYANATE (MIXED ISOMERS)	255.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
ZOLTEK CORP.				SAINT C	HARLES			
AMMONIA	2,365.0	0.0	0.0	0.0	0.0	0.0	0.0	44,600.0
CYANIDE COMPOUNDS	848.0	0.0	0.0	0.0	0.0	0.0	0.0	158,623.0
ST. FRANCOIS								
LITTLE TIKES COMMERCIAL PLAY	SYSTEMS INC.			FARMING	STON			
CERTAIN GLYCOL ETHERS	20,215.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ORICA U.S.A. INC.				BONNE 7	ERRE			
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

					On- and	Off-site Rei	leases		On- and O	ff-site Waste	Mgmt
COUNTY FAC	CILITY	CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NITRATE COMPOU	INDS			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S-R PRODUCT	S - FAR	MINGTO	ON				FARMING	STON			
AMMONIA			10	0,460.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
CHROMIUM COMP	OUNDS			10.0	0.0	0.0	12.0	0.0	102,439.0	0.0	0.0
COPPER COMPOU	INDS			10.0	0.0	0.0	9.9	0.0	6,831.0	0.0	0.0
LEAD COMPOUND	S			0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0
METHANOL				1,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KE	TONE			1,420.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYI	L KETONE			500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL COMPOUN	IDS			10.0	0.0	0.0	12.1	0.0	10,297.0	0.0	0.0
NITRATE COMPOU	INDS			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID				500.0	0.0	0.0	0.0	0.0	0.0	0.0	66,180.0
TOLUENE			!	5,450.0	0.0	0.0	0.0	0.0	0.0	1,130.0	0.0
XYLENE (MIXED IS	OMERS)		14	4,910.0	0.0	0.0	0.0	0.0	0.0	1,600.0	0.0
ST. LOUIS											
ABB INC.							ST. LOUI	S			
COPPER				0.0	0.0	0.0	0.0	0.0	440,000.0	0.0	0.0
ABC DAIRY IN	C DB	A PEVE	LY DAIRY CO.				ST. LOUI	S			
NITRIC ACID				0.0	0.0	0.0	0.0	0.0	0.0	0.0	15,960.0
ALCO CONTRO	OLS						MARYLA	ND HEIGHTS			
AMMONIA				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER				0.0	0.0	0.0	5.0	0.0	241,841.0	0.0	0.0
ALLIED AVIA	TION FU	U ELING	CO. INC.				ST LOUIS	5			
1,2,4-TRIMETHYLB	ENZENE			24.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE				115.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE				15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE				18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL TERT-BU	TYL ETHEF	२		91.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE				16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE				44.0	0.0	0.0	0.0	3.0	0.0	1,448.0	0.0

		On- and	Off-site Re	leases		On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY CHEM	IICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
TOLUENE	144.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
XYLENE (MIXED ISOMERS)	62.0	0.0	0.0	0.0	10.0	0.0	579.0	0.0		
ALLIED HEALTHCARE PRODUCTS				ST. LOUI	S					
COPPER	0.0	0.0	0.0	0.0	0.0	143,000.0	0.0	0.0		
AMERENUE MERAMEC POWER STAT	TION			ST. LOUI	S					
BARIUM COMPOUNDS	12,555.0	875,629.0	24.0	0.0	0.0	0.0	0.0	0.0		
CHROMIUM COMPOUNDS	390.0	13,692.0	1.0	0.0	0.0	0.0	0.0	0.0		
COPPER COMPOUNDS	286.0	15,206.0	0.0	0.0	0.0	0.0	0.0	0.0		
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY)	897,959.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HYDROGEN FLUORIDE	147,955.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
LEAD COMPOUNDS	477.9	12,471.2	0.0	0.0	0.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS	518.0	20,306.0	0.0	0.0	0.0	0.0	0.0	0.0		
MERCURY COMPOUNDS	168.2	27.1	0.0	0.0	0.0	0.0	0.0	0.0		
NICKEL COMPOUNDS	427.0	15,620.0	0.0	0.0	0.0	0.0	0.0	0.0		
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	73,976.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
VANADIUM COMPOUNDS	371.0	21,773.0	0.0	0.0	0.0	0.0	0.0	0.0		
ZINC COMPOUNDS	1,256.0	22,536.0	1.0	0.0	0.0	0.0	0.0	0.0		
ASHLAND DISTRIBUTION CO.				ST. LOUI	S					
1,2,4-TRIMETHYLBENZENE	94.0	0.0	0.0	0.0	0.0	0.0	467.0	0.0		
CERTAIN GLYCOL ETHERS	588.0	0.0	0.0	0.0	0.0	0.0	764.0	0.0		
CYCLOHEXANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ETHYLENE GLYCOL	272.0	0.0	0.0	0.0	0.0	0.0	4,614.0	0.0		
METHANOL	557.0	0.0	0.0	0.0	0.0	0.0	1,561.0	0.0		
METHYL ETHYL KETONE	475.0	0.0	0.0	0.0	0.0	0.0	972.0	0.0		
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
N-BUTYL ALCOHOL	194.0	0.0	0.0	0.0	0.0	0.0	371.0	0.0		
N-HEXANE	2,039.0	0.0	0.0	0.0	0.0	0.0	1,525.0	0.0		
SEC-BUTYL ALCOHOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TOLUENE	1,015.0	0.0	0.0	0.0	0.0	0.0	5,759.0	0.0		
XYLENE (MIXED ISOMERS)	808.0	0.0	0.0	0.0	0.0	0.0	15,310.0	0.0		

			On- and	Off-site Rel		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
BAUSCH & LOMB					ST. LOUI	S			
LEAD	0	.0	0.0	0.0	2.0	0.0	243.0	0.0	0.0
BAYER CROPSCIENCE					SAINT LC	DUIS			
CARBARYL	250	.0	0.0	0.1	0.0	0.0	4,575.0	0.0	850.0
THIODICARB	5	.0	0.0	0.1	0.0	0.0	250.0	0.0	200.0
BECTON DICKINSON ACCU-G	LASS				ST. LOUI	S			
LEAD	69	.6	0.0	0.0	0.0	9,743.4	0.0	0.0	0.0
BELTSERVICE CORP.					EARTH C	CITY			
4,4'-METHYLENEBIS(2-CHLOROANILINE) 0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	27,008	.0	0.0	0.0	0.0	0.0	0.0	509.0	0.0
TRICHLOROETHYLENE	22,978	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENTONITE PERFORMANCE	MINERALS				SAINT LC	DUIS			
ALUMINUM (FUME OR DUST)	5	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BODINE ALUMINUM INC.					ST. LOUI	S			
COPPER	0	.0	250.0	0.0	0.0	0.0	8,100.0	0.0	0.0
BRENNTAG MID-SOUTH INC.					SAINT LC	DUIS			
2-ETHOXYETHANOL	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DICHLOROMETHANE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIETHANOLAMINE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	4,698	.0	0.0	0.0	0.0	0.0	0.0	5,280.0	0.0
METHYL ETHYL KETONE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRICHLOROETHYLENE	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BUCKEYE INTERNATIONAL I	NC.				MARYLAI	ND HEIGHTS			

		On- and	Off-site Red	leases		On- and O	Mgmt	
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CERTAIN GLYCOL ETHERS	3,050.0	0.0	0.0	0.0	0.0	0.0	0.0	515.0
DIBUTYL PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CAMIE-CAMPBELL INC.				ST. LOUI	S			
DICHLOROMETHANE	6,000.0	0.0	0.0	0.0	0.0	0.0	0.0	1,000.0
N-HEXANE	5,800.0	0.0	0.0	0.0	0.0	0.0	2,400.0	0.0
CHARLES S. LEWIS & CO. IN	C.			ST. LOUI	S			
CHROMIUM	0.0	0.0	0.0	0.0	0.0	12,870.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	12,536.0	0.0	0.0
CHEMCENTRAL - ST. LOUIS				MARYLA	ND HEIGHTS			
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	500.0	0.0	0.0	0.0	0.0	0.0	70.0	0.0
CYCLOHEXANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DI(2-ETHYLHEXYL) PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIBUTYL PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIETHANOLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	500.0	0.0	0.0	0.0	0.0	0.0	28.0	0.0
METHYL ETHYL KETONE	1,550.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-BUTYL ALCOHOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	1,000.0	0.0	0.0	0.0	0.0	0.0	84.0	0.0
TRICHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	1,000.0	0.0	0.0	0.0	0.0	0.0	21.0	0.0
CHEMSICO				SAINT LO	DUIS			
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D-TRANS-ALLETHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
DIAZINON	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FLUAZIFOP BUTYL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LAMBDA CYHALOTHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MALATHION	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MYCLOBUTANIL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PERMETHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PHENOTHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PIPERONYL BUTOXIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TETRAMETHRIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COOPER BUSSMANN INC.				ELLISVIL	LE			
COPPER	0.0	0.0	0.0	113.0	10,294.0	936,717.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0
CRANE MERCHANDISING SY	YSTEMS			BRIDGE*	TON			
CHROMIUM	0.0	0.0	0.0	1.0	0.0	13,241.0	0.0	0.0
COPPER	0.0	0.0	0.0	3.0	0.0	560.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	4.0	0.0	9,346.0	0.0	0.0
DAIMLERCHRYSLER CORP.	- NORTH ASSEMBLY P	LANT		FENTON	I			
1,2,4-TRIMETHYLBENZENE	100,000.0	0.0	0.0	0.0	3.0	5,900.0	230.0	50,400.0
BENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	347,000.0	0.0	0.0	0.0	33.0	43.0	95,000.0	46,000.0
COPPER	9.0	0.0	0.0	0.0	3.0	7.0	0.0	0.0
CYCLOHEXANE	71.0	0.0	0.0	0.0	0.0	0.0	0.0	380.0
DIISOCYANATES	1.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0
ETHYLBENZENE	11,300.0	0.0	0.0	0.0	0.0	15,000.0	73.0	275.0
ETHYLENE GLYCOL	710.0	0.0	0.0	0.0	0.0	0.0	0.0	340.0
LEAD	1.6	0.0	0.0	0.0	9.9	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	350.0	7,100.0	0.0	0.0	0.0

		On- and	Off-site Re	leases		On- and O	Mgmt	
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
METHANOL	608.0	0.0	0.0	0.0	11.0	0.0	6.0	5.0
METHYL ISOBUTYL KETONE	35,600.0	0.0	0.0	0.0	0.0	53,000.0	160.0	98.0
METHYL TERT-BUTYL ETHER	182.0	0.0	0.0	0.0	0.0	0.0	0.0	950.0
N-BUTYL ALCOHOL	67,000.0	0.0	0.0	0.0	5.0	160.0	390.0	99,000.0
N-HEXANE	72.0	0.0	0.0	0.0	0.0	0.0	0.0	380.0
N-METHYL-2-PYRROLIDONE	40,400.0	0.0	0.0	0.0	3.0	83.0	110.0	47,000.0
NICKEL COMPOUNDS	0.0	0.0	0.0	940.0	6,700.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16,000.0
NITRIC ACID	16.0	0.0	0.0	0.0	0.0	0.0	0.0	1,600.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,900.0
TOLUENE	1,410.0	0.0	0.0	0.0	33.0	0.0	0.0	1,500.0
XYLENE (MIXED ISOMERS)	69,000.0	0.0	0.0	0.0	0.0	82,000.0	370.0	1,220.0
ZINC COMPOUNDS	0.0	0.0	0.0	320.0	20,240.0	0.0	0.0	0.0
DAIMLERCHRYSLER CORP.	- SOUTH ASSEMBLY F	PLANT		FENTON				
1,2,4-TRIMETHYLBENZENE	50,000.0	0.0	0.0	0.0	662.0	6,100.0	2,200.0	14,073.0
CERTAIN GLYCOL ETHERS	83,800.0	0.0	0.0	0.0	3,733.0	24.0	22,000.0	24,100.0
COPPER	730.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0
CYCLOHEXANE	48.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0
DIISOCYANATES	42.0	0.0	0.0	0.0	1,000.0	320.0	5.0	0.0
ETHYLBENZENE	12,200.0	0.0	0.0	0.0	33.0	15,000.0	310.0	4.0
ETHYLENE GLYCOL	71.0	0.0	0.0	0.0	0.0	0.0	0.0	370.0
LEAD	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	6.0	0.0	0.0	420.0	8,409.0	2.0	0.0	0.0
METHANOL	5,406.0	0.0	0.0	0.0	261.0	0.0	130.0	0.0
METHYL ISOBUTYL KETONE	42,300.0	0.0	0.0	0.0	55.0	56,000.0	410.0	23.0
METHYL TERT-BUTYL ETHER	161.0	0.0	0.0	0.0	0.0	0.0	51.0	0.0
N-BUTYL ALCOHOL	43,200.0	0.0	0.0	0.0	2.0	62.0	6.0	19,000.0
N-HEXANE	53.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0
N-METHYL-2-PYRROLIDONE	46.0	0.0	0.0	0.0	0.0	0.0	370.0	15.0
NICKEL COMPOUNDS	0.0	0.0	0.0	700.0	5,000.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	7.0	0.0	0.0	45,000.0
NITRIC ACID	2.0	0.0	0.0	0.0	0.0	0.0	0.0	160.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3,900.0

		On- and	Off-site Rel	leases		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
TOLUENE	5,462.0	0.0	0.0	0.0	273.0	0.0	98.0	0.0	
XYLENE (MIXED ISOMERS)	66,700.0	0.0	0.0	0.0	180.0	86,000.0	1,200.0	30.0	
ZINC COMPOUNDS	2.0	0.0	0.0	310.0	20,202.0	9.0	0.0	0.0	
EAGLE PACKAGING INC.				BRIDGE ⁻	TON				
DI(2-ETHYLHEXYL) PHTHALATE	74.0	0.0	0.0	0.0	0.0	0.0	1,355.0	0.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	46.0	0.0	0.0	
EATON/CUTLER-HAMMER				ST. LOUI	IS				
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ELEMENTIS SPECIALTIES IN	NC.			ST. LOUI	IS				
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CYCLOHEXANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N-BUTYL ALCOHOL	13.0	0.0	0.0	0.0	0.0	0.0	0.0	1,980.0	
TOLUENE	79.0	0.0	0.0	0.0	0.0	0.0	0.0	2,048.0	
XYLENE (MIXED ISOMERS)	1,596.0	0.0	0.0	0.0	0.0	0.0	0.0	23,340.0	
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FEDERAL MOGUL FRICTION	PRODUCTS			BERKEL	EY	0.0 0.0 0.0 0.0 0.0 0.0			
CERTAIN GLYCOL ETHERS	500.0	2,500.0	0.0	0.0	2,750.0	0.0	0.0	7,800.0	
ETHYLENE GLYCOL	255.0	250.0	0.0	0.0	255.0	0.0	0.0	213.0	
FINDLAY INDUSTRIES INC	ST. LOUIS DIVISION			CHESTE	RFIELD				
DIISOCYANATES	11,772.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FLEX-O-LITE INC.				FENTON					
CHROMIUM COMPOUNDS	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LEAD COMPOUNDS	121.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
METHYL ETHYL KETONE	19,093.0	0.0	0.0	0.0	0.0	0.0	1,515.0	468.0	
N-HEXANE	9,218.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	19,337.0	0.0	0.0	0.0	0.0	0.0	418.0	223.0	
XYLENE (MIXED ISOMERS)	6,550.0	0.0	0.0	0.0	0.0	0.0	418.0	223.0	
FOAM SUPPLIES INC.				EARTH (CITY				
1,1-DICHLORO-1-FLUOROETHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

		On- and	Off-site Re	leases		On- and O	Mgmt	
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CHLORODIFLUOROMETHANE	2,978.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FORD MOTOR COMPANY - ST	T. LOUIS ASSEMBLY			HAZELW	OOD			
1,2,4-TRIMETHYLBENZENE	37,190.0	0.0	0.0	0.0	0.0	27,000.0	0.0	6,300.0
BENZENE	46.0	0.0	0.0	0.0	0.0	0.0	0.0	910.0
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	131,200.0	0.0	0.0	0.0	0.0	140.0	0.0	14,820.0
CUMENE	9,447.0	0.0	0.0	0.0	0.0	27,000.0	0.0	420.0
CYCLOHEXANE	52.0	0.0	0.0	0.0	0.0	0.0	0.0	1,100.0
DI(2-ETHYLHEXYL) PHTHALATE	12,000.0	0.0	0.0	0.0	120.0	0.0	0.0	0.0
ETHYLBENZENE	63,530.0	0.0	0.0	0.0	160.0	80,000.0	0.0	10,000.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2,600.0
LEAD COMPOUNDS	0.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.3	0.0	0.0	95.0	8,400.0	0.0	0.0	0.0
METHANOL	12,057.0	0.0	0.0	0.0	0.0	27,000.0	0.0	1,100.0
METHYL ETHYL KETONE	42,220.0	0.0	0.0	0.0	0.0	45.0	0.0	2,200.0
METHYL ISOBUTYL KETONE	80,400.0	0.0	0.0	0.0	0.0	300,000.0	0.0	0.0
METHYL TERT-BUTYL ETHER	131.0	0.0	0.0	0.0	0.0	0.0	0.0	2,700.0
N-BUTYL ALCOHOL	32,160.0	0.0	0.0	0.0	0.0	27,000.0	0.0	6,400.0
N-HEXANE	1,422.0	0.0	0.0	0.0	0.0	0.0	0.0	1,100.0
NAPHTHALENE	7,336.0	0.0	0.0	0.0	0.0	27,000.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46,000.0
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24,000.0
TOLUENE	11,140.0	0.0	0.0	0.0	0.0	27,000.0	0.0	4,400.0
XYLENE (MIXED ISOMERS)	291,500.0	0.0	0.0	0.0	0.0	350,000.0	0.0	4,400.0
ZINC COMPOUNDS	22.0	0.0	0.0	1,900.0	8,300.0	0.0	0.0	0.0
FUTURA COATINGS INC.				HAZELW	OOD			
DIBUTYL PHTHALATE	5.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
DIISOCYANATES	250.0	0.0	0.0	0.0	0.0	0.0	17,585.0	0.0
METHYL ETHYL KETONE	500.0	0.0	0.0	0.0	0.0	1,591.0	6,968.0	0.0

		On- and	Off-site Re	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TOLUENE	1,500.0	0.0	0.0	0.0	0.0	17,042.0	74,658.0	0.0
TOLUENE DIISOCYANATE (MIXED ISOMER	RS) 5.0	0.0	0.0	0.0	0.0	0.0	147.0	0.0
XYLENE (MIXED ISOMERS)	1,500.0	0.0	0.0	0.0	0.0	12,930.0	56,644.0	0.0
GENERAL ELECTRIC CO ST. I	LOUIS LAMP PLANT			ST. LOU	IS			
COPPER	0.0	0.0	0.0	0.0	0.0	4,300.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	1.0	123,000.0	0.0	0.0	0.0
GENERAL MILLS				HAZELW	OOD			
CHLORODIFLUOROMETHANE	24,630.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	6,400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GKN AEROSPACE SERVICES IN	<i>'C</i> .			HAZELW	OOD			
COPPER	5.0	0.0	5.0	5.0	115.0	84,000.0	0.0	0.0
HYDROGEN FLUORIDE	2,205.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0
LEAD	0.0	0.0	7.5	2.7	76.3	508.4	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28,000.0
NITRIC ACID	4,405.0	0.0	0.0	0.0	0.0	0.0	0.0	69,000.0
TRICHLOROETHYLENE	11,000.0	0.0	0.0	0.0	0.0	42,000.0	4,800.0	0.0
HARCROS CHEMICALS INC.				ST. LOU	IS			
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HENKEL SURFACE TECHNOLO	OGIES			ST. LOU	IS			
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	80.0	0.0	0.0	972.0
HYDROGEN FLUORIDE	3.0	0.0	0.0	0.0	0.0	0.0	0.0	629.0
MANGANESE COMPOUNDS	7.0	0.0	0.0	12.0	160.0	0.0	0.0	0.0
NICKEL COMPOUNDS	48.0	0.0	0.0	1.0	1,019.0	0.0	0.0	0.0
NITRATE COMPOUNDS	23.0	0.0	0.0	0.0	1,575.0	0.0	0.0	4,612.0
NITRIC ACID	1.0	0.0	0.0	0.0	0.0	0.0	0.0	5,253.0
SODIUM NITRITE	9.0	0.0	0.0	0.0	90.0	0.0	0.0	1,826.0
ZINC COMPOUNDS	36.0	0.0	0.0	1.0	2,253.0	0.0	0.0	0.0
HERMANN OAK LEATHER CO.				ST. LOU	IS			
MANGANESE COMPOUNDS	0.0	0.0	0.0	27,500.0	0.0	0.0	0.0	0.0
HUNTSMAN PETROCHEMICAL	CORP.			ST. LOU	IS			

		On- and	l Off-site Re	leases		On- and O	Mgmt	
COUNTY FACILITY CITY	CHEMICAL	AIR LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
MALEIC ANHYDRIDE	13,376	.0 0.0	0.0	0.0	0.0	0.0	0.0	42,386.0
HUSSMANN CORP.				BRIDGET	ΓΟΝ			
CHLORODIFLUOROMETHANE	15,000	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	0	.0 0.0	0.0	1.0	20.0	160,000.0	0.0	0.0
COPPER	170	.0 0.0	0.0	17.0	330.0	56,000.0	0.0	0.0
DIISOCYANATES	5	.0 0.0	0.0	0.0	5.0	0.0	0.0	0.0
LEAD	0	.1 0.0	0.0	3.0	27.0	105.5	0.0	0.0
MANGANESE	7	.0 0.0	0.0	0.0	19.0	140,000.0	0.0	0.0
NICKEL	0	.0 0.0	0.0	4.0	47.0	120,000.0	0.0	0.0
J.D. STREETT & CO.				LEMAY S	T. LOUIS			
ETHYLENE GLYCOL	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	2,307.0
ZINC COMPOUNDS	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
JAMES VARLEY & SONS - PE	CKS PRODUCTS			ST. LOUI	S			
CERTAIN GLYCOL ETHERS	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
JOST CHEMICAL CO. INC.				ST. LOUI	S			
AMMONIA	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE COMPOUNDS	0	.0 0.0	0.0	130.0	400.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	266,700.0
NITRIC ACID	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	90	.0 0.0	0.0	350.0	920.0	0.0	0.0	0.0
LAIRD TECHNOLOGIES - DB	A ADVANCED PER	FORMANCE I	MATERIAL	$oldsymbol{S}$ EARTH $oldsymbol{C}$	CITY			
COPPER COMPOUNDS	0	.0 0.0	0.0	0.0	4,781.0	9,573.0	0.0	0.0
FORMALDEHYDE	2	.0 0.0	0.0	0.0	0.0	4,266.0	0.0	29,689.0
NICKEL COMPOUNDS	0	.0 0.0	0.0	0.0	2,812.0	15,984.0	0.0	0.0
NITRATE COMPOUNDS	0	.0 0.0	0.0	0.0	0.0	0.0	0.0	26,548.0
NITRIC ACID	0	.0 0.0	0.0	0.0	0.0	6,349.0	0.0	23,475.0
LHB INDUSTRIES				BERKELI	ΞY			
TOLUENE	755	.0 0.0	0.0	0.0	0.0	5,097.0	3,802.0	0.0
XYLENE (MIXED ISOMERS)	279	.0 0.0	0.0	0.0	0.0	1,480.0	1,320.0	0.0

		On- and	Off-site Re	leases		On- and O	ff-site Wast	e Mgmt
COUNTY FACILITY CITY CH	EMICAL AI	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
MAC MOLDING CO. INC.				ST. LOUI	S			
PHENOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	962.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MACLAN INDUSTRIES INC.				RIVERVII	EW			
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STYRENE	2,400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MALLINCKRODT INC.				SAINT LO	DUIS			
ACETONITRILE	317.0	0.0	0.0	0.0	0.0	0.0	43,670.0	170,772.0
AMMONIA	95.0	0.0	0.0	0.0	0.0	0.0	0.0	39,461.0
CHLORINE	9,156.0	0.0	0.0	0.0	0.0	0.0	0.0	39,565.0
CHLOROACETIC ACID	4.0	0.0	0.0	0.0	0.0	0.0	0.0	132,273.0
CHLOROBENZENE	65.0	0.0	0.0	0.0	0.0	0.0	0.0	17,083.0
CHLOROFORM	31,782.0	0.0	0.0	0.0	0.0	7,962,845.0	0.0	282,120.0
DICHLOROMETHANE	1,782.0	0.0	0.0	0.0	0.0	0.0	0.0	314,718.0
ETHYL CHLOROFORMATE	113.0	0.0	0.0	0.0	0.0	0.0	74.0	3,391.0
ETHYLENE GLYCOL	939.0	0.0	0.0	0.0	0.0	0.0	52.0	324,345.0
ETHYLENE OXIDE	17.0	0.0	0.0	0.0	0.0	0.0	0.0	99,804.0
FORMIC ACID	38.0	0.0	0.0	0.0	0.0	0.0	0.0	25,454.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ON	ILY) 39,053.0	0.0	0.0	0.0	0.0	0.0	0.0	1,076.0
LEAD COMPOUNDS	261.0	0.0	0.0	0.0	201.8	0.0	0.0	0.0
MANGANESE COMPOUNDS	226.0	0.0	0.0	250.0	4,464.0	0.0	0.0	0.0
MERCURY COMPOUNDS	8.8	0.0	0.0	0.0	0.4	0.0	0.0	0.0
METHANOL	64,317.0	0.0	0.0	0.0	0.0	17,070,251.0	280,392.0	1,117,128.0
METHYL ISOBUTYL KETONE	2,269.0	0.0	0.0	0.0	0.0	0.0	186,010.0	11,778.0
METHYL TERT-BUTYL ETHER	605.0	0.0	0.0	0.0	0.0	0.0	0.0	20,985.0
N,N-DIMETHYLANILINE	4,870.0	0.0	0.0	0.0	0.0	0.0	37,245.0	0.0
N,N-DIMETHYLFORMAMIDE	78.0	0.0	0.0	0.0	0.0	0.0	66,083.0	39,732.0
N-BUTYL ALCOHOL	38.0	0.0	0.0	0.0	0.0	0.0	60,568.0	10,635.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	90,690.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78,908.0
PERACETIC ACID	44.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PYRIDINE	42.0	0.0	0.0	0.0	0.0	0.0	0.0	20,970.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY CHEMICA	AL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TOLUENE	65,926.0	0.0	0.0	0.0	0.0	0.0	1,243,830.0	40,742.0
XYLENE (MIXED ISOMERS)	222.0	0.0	0.0	0.0	0.0	0.0	28,562.0	34,803.0
MARCHEM CORP.				MARYLA	ND HEIGHTS			
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,400.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	58.0	0.0	0.0	0.0	0.0	0.0	0.0	8,816.0
TOLUENE DIISOCYANATE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MCDONNELL DOUGLAS CORP.				HAZELW	OOD			
1,1-DICHLORO-1-FLUOROETHANE	27,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY	0.0	0.0	0.0	0.0	0.0	190.0	0.0	0.0
METHYL ETHYL KETONE	15,500.0	0.0	0.0	0.0	0.0	0.0	4,100.0	65.0
METHYL ISOBUTYL KETONE	11,100.0	0.0	0.0	0.0	0.0	0.0	9,000.0	0.0
NITRIC ACID	2,480.0	0.0	0.0	0.0	0.0	0.0	0.0	100,300.0
SEC-BUTYL ALCOHOL	5,780.0	0.0	0.0	0.0	0.0	0.0	5,100.0	0.0
TOLUENE	12,300.0	0.0	0.0	0.0	0.0	0.0	9,700.0	150.0
TRICHLOROETHYLENE	12,130.0	0.0	0.0	0.0	0.0	0.0	160.0	10.0
XYLENE (MIXED ISOMERS)	11,100.0	0.0	0.0	0.0	0.0	0.0	1,900.0	0.0
METAL RECOVERY SYSTEMS INC.				ST. LOUI	S			
ALUMINUM (FUME OR DUST)	22,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	2,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC (FUME OR DUST)	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MID STATES DAIRY				HAZELW	OOD			
AMMONIA	8,426.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MID-STATES PAINT & CHEMICAL CO.				ST. LOUI	S			
CERTAIN GLYCOL ETHERS	635.0	0.0	0.0	0.0	0.0	1,043.0	2,950.0	0.0
LEAD COMPOUNDS	25.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	744.0	0.0	0.0	0.0	0.0	5,866.0	0.0	0.0
XYLENE (MIXED ISOMERS)	744.0	0.0	0.0	0.0	0.0	5,866.0	738.0	0.0

		On- and	Off-site Re	leases		On- and Off-site Waste Mgn		
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
MIDCO PRODUCTS CO. INC.				CHESTE	RFIELD			
DICHLOROMETHANE	1,500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRICHLOROETHYLENE	580.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MIDLAND RESOURCES INC.				ST. LOUI	S			
CHLORINE	255.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MISSOURI METALS LLC				ST LOUIS	3			
CHROMIUM	0.0	0.0	0.0	5.0	0.0	7,258.0	0.0	0.0
NICKEL	0.0	0.0	0.0	5.0	0.0	17,594.0	0.0	0.0
MOZEL INC.				ST. LOUI	S			
1,2,4-TRIMETHYLBENZENE	12.0	0.0	0.0	0.0	0.0	0.0	1,627.0	12,119.0
CERTAIN GLYCOL ETHERS	26.0	0.0	0.0	0.0	0.0	0.0	1,221.0	9,089.0
ETHYLBENZENE	44.0	0.0	0.0	0.0	0.0	0.0	2,848.0	21,209.0
METHYL ETHYL KETONE	263.0	0.0	0.0	0.0	0.0	0.0	407.0	3,030.0
METHYL ISOBUTYL KETONE	66.0	0.0	0.0	0.0	0.0	0.0	2,848.0	21,209.0
TOLUENE	156.0	0.0	0.0	0.0	0.0	0.0	2,645.0	19,694.0
XYLENE (MIXED ISOMERS)	73.0	0.0	0.0	0.0	0.0	0.0	15,664.0	65,140.0
NEW WORLD PASTA				ST. LOUI	S			
BROMOMETHANE	17,600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORDYNE INC.				ST. LOUI	S			
CHLORODIFLUOROMETHANE	25,710.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORTH AMERICAN GALVANIZ	ZING CO.			SAINT LO	DUIS			
LEAD	10.0	0.0	0.0	0.0	119.0	0.0	0.0	0.0
ZINC COMPOUNDS	524.0	0.0	0.0	0.0	11,011.0	0.0	0.0	0.0
O'HARE FOUNDRY CORP.				MAPLEW	OOD			
COPPER	500.0	0.0	0.0	0.0	5.0	3,227.0	0.0	0.0
PENNZOIL-QUAKER STATE C	0.			MARYLA	ND HEIGHTS			
ZINC COMPOUNDS	0.0	0.0	5.0	0.0	250.0	0.0	0.0	0.0
PERFECT CIRCLE - DIVISION	OF DANA CORP.			MANCHE	STER			

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
LEAD COMPOUNDS	0.1	0.0	0.0	0.4	21.9	0.0	0.0	0.0
TRICHLOROETHYLENE	160,694.0	0.0	0.0	0.0	0.0	70,006.0	0.0	3.0
PERMEA				MARYLA	ND HEIGHTS			
N-METHYL-2-PYRROLIDONE	78.0	0.0	0.0	0.0	0.0	0.0	0.0	51,753.0
PHARMACIA - QUEENY PILO	T PLANT			ST. LOUI	S			
METHANOL	423.0	0.0	0.0	0.0	0.0	0.0	0.0	11,338.0
TOLUENE	423.0	0.0	0.0	0.0	0.0	0.0	0.0	21,655.0
PM RESOURCES INC.				BRIDGET	ΓΟΝ			
COPPER COMPOUNDS	60.0	0.0	0.0	50.0	1,630.0	0.0	0.0	0.0
ETHYLBENZENE	60.0	0.0	0.0	0.0	0.0	0.0	0.0	2,100.0
PHENOL	60.0	0.0	0.0	0.0	0.0	0.0	0.0	630.0
PHTHALIC ANHYDRIDE	650.0	0.0	0.0	0.0	0.0	0.0	0.0	6,800.0
TETRACHLORVINPHOS	550.0	0.0	0.0	0.0	5.0	0.0	0.0	1,300.0
TETRACYCLINE HYDROCHLORIDE	0.0	0.0	0.0	0.0	3,200.0	0.0	0.0	1,400.0
XYLENE (MIXED ISOMERS)	200.0	0.0	0.0	0.0	0.0	0.0	0.0	8,200.0
ZINC COMPOUNDS	1,300.0	0.0	0.0	450.0	7,300.0	0.0	0.0	0.0
POHLMAN				CHESTE	RFIELD			
COPPER	0.0	0.0	0.0	0.0	0.0	66,388.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	34,382.0	0.0	0.0
PRAXAIR DISTRIBUTION INC	•			ST. LOUI	S			
PROPYLENE	3,978.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PRECOAT METALS				ST. LOUI	S			
1,2,4-TRIMETHYLBENZENE	6,161.0	0.0	0.0	0.0	0.0	0.0	3,589.0	138,993.0
2-NITROPROPANE	437.0	0.0	0.0	0.0	0.0	0.0	255.0	9,871.0
CERTAIN GLYCOL ETHERS	32,995.0	0.0	0.0	0.0	0.0	0.0	19,221.0	744,265.0
ETHYLBENZENE	1,199.0	0.0	0.0	0.0	0.0	0.0	3,593.0	139,128.0
HYDROGEN FLUORIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13,835.0
METHYL ETHYL KETONE	7,996.0	0.0	0.0	0.0	0.0	0.0	6,610.0	181,271.0
METHYL ISOBUTYL KETONE	6,156.0	0.0	0.0	0.0	0.0	0.0	3,587.0	138,866.0
N-BUTYL ALCOHOL	4,795.0	0.0	0.0	0.0	0.0	0.0	2,794.0	108,170.0

		On- and	Off-site Rel	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
NAPHTHALENE	1,126.0	0.0	0.0	0.0	0.0	0.0	656.0	25,397.0
TOLUENE	4,857.0	0.0	0.0	0.0	0.0	0.0	2,829.0	109,568.0
XYLENE (MIXED ISOMERS)	24,420.0	0.0	0.0	0.0	0.0	0.0	106,207.0	575,538.0
PRO-TECT MANUFACTURING	INC.			ST. LOUI	S			
METHYL ETHYL KETONE	31,691.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE	8,804.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	26,390.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RAVEN INDUSTRIES INC.				EARTH C	CITY			
LEAD	0.0	0.0	0.0	0.0	0.0	1,500.0	0.0	0.0
REICHHOLD INC.				VALLEY	PARK			
4,4'-ISOPROPYLIDENEDIPHENOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	1,083.0	5.0	0.0	0.0	0.0	162.0	504.0	0.0
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	997.0	44.0	0.0	0.0	0.0	70.0	40,525.0	2.0
ETHYLENE GLYCOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MALEIC ANHYDRIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE	112.0	12.0	0.0	0.0	0.0	19.0	58.0	1.0
N-BUTYL ALCOHOL	82.0	8.0	0.0	0.0	0.0	13.0	40.0	0.0
N-METHYL-2-PYRROLIDONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PHTHALIC ANHYDRIDE	268.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SEC-BUTYL ALCOHOL	342.0	34.0	0.0	0.0	0.0	55.0	168.0	2.0
TOLUENE	813.0	33.0	0.0	0.0	0.0	52.0	1,842.0	0.0
TOLUENE DIISOCYANATE (MIXED ISOM	ERS) 2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	3,498.0	137.0	0.0	0.0	0.0	219.0	141,837.0	7.0
RELIABLE BIOPHARMACEUT	ICAL CORP.			OVERLA	ND			
ACETONITRILE	2,231.0	0.0	0.0	0.0	0.0	0.0	46,442.0	2,298.0
DICHLOROMETHANE	1,142.0	0.0	0.0	0.0	0.0	0.0	21,280.0	0.0
METHANOL	8,192.0	0.0	0.0	0.0	0.0	0.0	20,388.0	285,143.0
PYRIDINE	801.0	0.0	0.0	0.0	0.0	0.0	38,777.0	0.0
TOLUENE	269.0	0.0	0.0	0.0	0.0	0.0	10,077.0	0.0
ROCKWOOD PIGMENTS INC.				ST. LOUI	S			

		On- and	Off-site Rel	leases		On- and C	ff-site Wast	e Mgmt
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
AMMONIA	2,000.0	0.0	0.0	0.0	0.0	0.0	0.0	1,400,000.0
ZINC COMPOUNDS	0.0	0.0	0.0	300.0	17,000.0	33,000.0	0.0	0.0
ROTO-DIE COMPANY INC.				EUREKA				
COBALT COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	12.6	0.0	0.0	0.0
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SIGMA-ALDRICH CO.				ST. LOUI	S			
AMMONIA	500.0	0.0	0.0	0.0	500.0	0.0	0.0	98,500.0
ETHYLENE GLYCOL	5.0	0.0	0.0	0.0	500.0	0.0	0.0	163,950.0
METHANOL	97,700.0	0.0	0.0	0.0	0.0	678,061.0	2,102,072.0	82,800.0
SIGMA-ALDRICH CORP.				ST. LOUI	S			
AMMONIA	500.0	0.0	0.0	0.0	500.0	0.0	0.0	16,300.0
CHLOROFORM	4,150.0	0.0	0.0	0.0	0.0	0.0	23,070.0	5.0
DICHLOROMETHANE	550.0	0.0	0.0	0.0	0.0	0.0	11,843.0	5.0
ETHYLENE GLYCOL	5.0	0.0	0.0	0.0	0.0	0.0	0.0	12,550.0
METHANOL	4,850.0	0.0	0.0	0.0	0.0	0.0	102,542.0	1,400.0
TOLUENE	530.0	0.0	0.0	0.0	0.0	0.0	3,026.0	11,262.0
SINCLAIR & RUSH INC.				ST. LOUI	S			
DI(2-ETHYLHEXYL) PHTHALATE	208.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0
SOLUTIA INC JOHN F. QUE	EENY PLANT			ST. LOUI	S			
AMMONIA	3,965.0	0.0	0.0	0.0	0.0	0.0	0.0	161,515.0
MALEIC ANHYDRIDE	792.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	11,509.0	0.0	0.0	0.0	0.0	0.0	0.0	137,527.0
ST. LOUIS DIE CASTING LLC				BRIDGE ⁻	ΓΟΝ			
COPPER	0.0	0.0	0.0	0.0	0.0	9,000.0	0.0	0.0
LEAD	0.0	0.0	0.0	0.0	0.0	709.0	0.0	0.0
STERLING LACQUER MANUF	ACTURING CO.			ST. LOUI	S			
CERTAIN GLYCOL ETHERS	5,234.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	801.0	0.0	0.0	0.0	0.0	44,205.0	0.0	0.0

	On- and Off-site Releases				On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHEMIC	CAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
SWING-A-WAY MANUFACTURING CO.				ST. LOUI	S			_
NICKEL	0.0	0.0	0.0	42.0	0.0	1,965.0	0.0	42.0
THERMAL SCIENCE INC.				FENTON				
METHYL ETHYL KETONE	4,700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	18,200.0	0.0	0.0	0.0	0.0	0.0	1,200.0	0.0
TIFFANY HOME PRODUCTS				FENTON				
STYRENE	2,067.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TRANS CHEMICAL INC.				ST. LOUI	S			
CERTAIN GLYCOL ETHERS	29.0	0.0	0.0	0.0	0.0	0.0	12,000.0	1,317.0
DICHLOROMETHANE	1,341.0	0.0	0.0	0.0	0.0	0.0	2,514.0	89.0
ETHYLBENZENE	101.0	0.0	0.0	0.0	0.0	0.0	3,170.0	156.0
ETHYLENE GLYCOL	8.0	0.0	0.0	0.0	0.0	0.0	6,796.0	205.0
METHANOL	1,339.0	0.0	0.0	0.0	0.0	0.0	51,335.0	2,470.0
N-BUTYL ALCOHOL	38.0	0.0	0.0	0.0	0.0	0.0	1,317.0	2,807.0
SEC-BUTYL ALCOHOL	20.0	0.0	0.0	0.0	0.0	0.0	235.0	23.0
TRILLA-NESCO CORP.				FENTON				
METHYL ETHYL KETONE	10,180.0	0.0	0.0	0.0	0.0	0.0	6,497.0	0.0
TRUE MANUFACTURING CO. INC.				OLIVETT	E			
CHLORODIFLUOROMETHANE	3,896.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIISOCYANATES	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UNIVAR USA INC ST. LOUIS				BERKELI	ΞY			
CERTAIN GLYCOL ETHERS	67.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	136.0	0.0	0.0	0.0	0.0	0.0	8,804.0	15.0
NITRIC ACID	36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATLOW - ST. LOUIS				ST. LOUI	S			
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Rea	leases		On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY CHEM	MICAL AIR	R LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CUMENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WEXFORD LABS INC.				KIRKWO	OD			
2-PHENYLPHENOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WHITMIRE MICRO-GEN RESEARCH	LABARATOR:	Y INC.		ST. LOUI	S			
PIPERONYL BUTOXIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WILLERT HOME PRODUCTS				ST. LOUI	S			
1,4-DICHLOROBENZENE	987.0	0.0	0.0	0.0	0.0	1,500,000.0	0.0	3,069.0
ST. LOUIS CITY								
ADM MILLING CO.				ST. LOUI	S			
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALUMAX FOILS INC.				SAINT LO	DUIS			
CHLORINE	25,630.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY	28,950.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	340.0	0.0	0.0	56.0	87.0	44,874.0	0.0	0.0
ANHEUSER-BUSCH INC.				SAINT LO	DUIS			
AMMONIA	6,531.1	0.0	0.0	0.0	35.0	0.0	0.0	4,441.0
CHLORINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONLY	263,926.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROGEN FLUORIDE	31,949.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	61.6	1,417.5	0.0	0.0	289.7	0.0	0.0	0.0
MERCURY	0.8	19.8	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	149,314.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARTCO - NORTH TERMINAL				ST LOUIS	3			

		On- and Off-site Releases					On- and Off-site Waste Mgmt		
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
1,2,4-TRIMETHYLBENZENE		10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
BENZO(G,H,I)PERYLENE		1.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0
MERCURY		1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0
N-HEXANE		10.0	0.0	0.0	0.0	0.0	0.0	5.0	6.0
POLYCYCLIC AROMATIC COMPOUNDS		1.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
ASTARIS LLC					ST LOUIS	3			
PHOSPHORUS (YELLOW OR WHITE)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.0
BODYCOTE THERMAL PROCE	ESSING				ST LOUIS	3			
AMMONIA	1,9	987.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CLEAN CITY SQUARES INC.					ST. LOUI	S			
TOLUENE	7,4	479.0	0.0	0.0	0.0	0.0	0.0	6,916.0	0.0
COMMERCIAL PLATING CO.					ST. LOUI	S			
CYANIDE COMPOUNDS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	9,737.0
LEAD		0.0	0.0	0.0	5.0	0.0	112.0	0.0	0.0
CONNECTOR CASTINGS INC.					SAINT LC	DUIS			
COPPER COMPOUNDS	3,	708.0	0.0	0.0	250.0	1,137.0	2,493,098.0	0.0	0.0
CONTINENTAL FABRICATORS	S INC.				SAINT LC	DUIS			
CHROMIUM		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MANGANESE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DAZOR MANUFACTURING CO	ORP.				SAINT LC	DUIS			
TETRACHLOROETHYLENE	12,0	030.0	0.0	0.0	0.0	0.0	0.0	0.0	866.0
EQUILON ENTERPRISES LLC	- SOUTH ST. LO	OUIS TE	ERMINAL		ST. LOUI	S			
1,2,4-TRIMETHYLBENZENE		500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BENZENE	!	500.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0
BENZO(G,H,I)PERYLENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	;	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS		0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
METHYL TERT-BUTYL ETHER	!	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

			on- ana	Off-site Rel	On- and Off-site Waste Mgmt				
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
N-HEXANE	50	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POLYCYCLIC AROMATIC COMPOUNDS	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	50	0.00	0.0	0.0	0.0	0.0	0.0	0.0	29.0
XYLENE (MIXED ISOMERS)	50	0.00	0.0	0.0	0.0	5.0	0.0	0.0	24.0
FEDERAL MOGUL					ST. LOUI	S			
MANGANESE	50	0.00	200.0	0.0	0.0	0.0	0.0	0.0	0.0
G. S. ROBINS & CO.					ST. LOUI	S			
AMMONIA	2,75	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FORMIC ACID	•	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID		7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
INDUSTRIAL POWDER COAT	INGS				ST. LOUI	S			
LEAD		0.0	0.0	0.0	21.0	0.0	0.0	0.0	0.0
NICKEL	2	25.0	0.0	0.0	457.0	0.0	18,705.0	0.0	0.0
J. D. STREETT & CO. INC.					ST. LOUI	S			
1,2,4-TRIMETHYLBENZENE		5.0	0.0	0.0	0.0	0.0	0.0	0.0	193.0
BENZENE	15	51.0	0.0	0.0	0.0	0.0	0.0	0.0	9,656.0
ETHYLBENZENE	•	14.0	0.0	0.0	0.0	0.0	0.0	0.0	837.0
N-HEXANE	13	31.0	0.0	0.0	0.0	0.0	0.0	0.0	8,240.0
TOLUENE	18	36.0	0.0	0.0	0.0	0.0	0.0	0.0	11,652.0
XYLENE (MIXED ISOMERS)	Ę	55.0	0.0	0.0	0.0	0.0	0.0	0.0	3,154.0
J.R. SIMPLOT CO.					ST. LOUI	S			
TRIFLURALIN		1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
KILLARK					ST. LOUI	S			
LEAD		0.0	0.0	0.0	1.0	0.0	88.0	0.0	0.0
KOP-COAT INC.					ST. LOUI	S			
3-IODO-2-PROPYNYL BUTYLCARBAMA	TE 1,79	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE GLYCOL	80	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
MARQUETTE TOOL & DIE CO).			ST. LOUI	S			_	
TRICHLOROETHYLENE	48,840.0	0.0	0.0	0.0	0.0	95,282.0	0.0	0.0	
MID-WEST INDUSTRIAL CHE	MICAL CO.			ST. LOUI	S				
METHYL ETHYL KETONE	1,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	6,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOLUENE	5,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PAULO PRODUCTS CO.				ST. LOUI	S				
AMMONIA	496.0	0.0	0.0	0.0	0.0	0.0	0.0	16.0	
PERMACEL SAINT LOUIS INC	7.			SAINT LO	DUIS				
ANTIMONY COMPOUNDS	6.0	0.0	0.0	25.0	360.0	550.0	0.0	0.0	
BARIUM COMPOUNDS	0.0	0.0	0.0	0.0	224.0	700.0	0.0	0.0	
DECABROMODIPHENYL OXIDE	8.0	0.0	0.0	0.0	750.0	200.0	0.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	2,209.0	0.0	0.0	0.0	
ZINC COMPOUNDS	17.0	0.0	0.0	110.0	3,450.0	4,000.0	0.0	0.0	
POLY ONE CORP.				SAINT LO	DUIS				
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	185.0	0.0	0.0	0.0	
CHROMIUM COMPOUNDS	0.0	0.0	0.0	0.0	43.0	0.0	0.0	0.0	
DIISOCYANATES	5.0	0.0	0.0	0.0	461.0	0.0	19,159.0	0.0	
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	148.0	0.0	0.0	0.0	
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	
PROCTER & GAMBLE MANUI	FACTURING CO.			ST. LOUI	S				
AMMONIA	250.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CUMENE	95.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MERCURY	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	
NITRIC ACID	500.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SCHAEFFER MANUFACTURI	NG			ST. LOUI	S				
1,2,4-TRIMETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CERTAIN GLYCOL ETHERS	7,943.0	0.0	0.0	0.0	0.0	0.0	0.0	608.0	
CRESOL (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Appendix C - 2002 TRI Releases/Waste Management By County By Company

Page 92 of 101

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CH	HEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
CUMENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIETHANOLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-BUTYL ALCOHOL	1,881.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NAPHTHALENE	251.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VINYL ACETATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	22,521.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCHREIBER FOODS INC.				ST. LOU	IIS			
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28,379.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21,036.0
SENSIENT COLORS INC.				ST. LOU	IIS			
MANGANESE COMPOUNDS	0.0	111,436.0	0.0	1,126.0	111,436.0	0.0	0.0	0.0
N-BUTYL ALCOHOL	4,800.0	0.0	0.0	0.0	0.0	548,224.0	0.0	0.0
PHTHALIC ANHYDRIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12,668.0
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SIEGEL-ROBERT PLATING CO.				ST LOU	IS			
CHROMIUM COMPOUNDS	10.0	0.0	5.0	5.0	2,400.0	20,000.0	0.0	0.0
COPPER COMPOUNDS	10.0	0.0	5.0	5.0	5,000.0	0.0	0.0	0.0
LEAD COMPOUNDS	0.0	0.0	0.0	3.7	15.0	0.0	0.0	0.0
METHYL ETHYL KETONE	48,250.0	0.0	0.0	0.0	0.0	0.0	7,900.0	0.0
NICKEL COMPOUNDS	10.0	0.0	5.0	5.0	4,200.0	0.0	0.0	0.0
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40,000.0
NITRIC ACID	500.0	0.0	0.0	0.0	0.0	0.0	0.0	40,000.0
SINNETT-ELPACO COATINGS CO.	RP.			ST. LOU	IIS			
CERTAIN GLYCOL ETHERS	940.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	1,330.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ISOBUTYL KETONE	760.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-BUTYL ALCOHOL	1,180.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	2,270.0	0.0	0.0	0.0	0.0	0.0	40,580.0	0.0

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
XYLENE (MIXED ISOMERS)	2,350.0	0.0	0.0	0.0	0.0	0.0	40,580.0	0.0		
ST. LOUIS METALLIZING CO.				ST. LOUI	S					
СНКОМІИМ	250.0	0.0	0.0	0.0	0.0	3,261.0	0.0	0.0		
MANGANESE	250.0	0.0	0.0	0.0	0.0	731.0	0.0	0.0		
NICKEL	750.0	0.0	0.0	0.0	0.0	378.0	0.0	0.0		
TETRACHLOROETHYLENE	20,600.0	0.0	0.0	0.0	0.0	6,000.0	0.0	0.0		
STERIS CORP ST. LOUIS OPI	ERATIONS			ST. LOUI	S					
2-PHENYLPHENOL	0.0	0.0	0.0	0.0	4,965.0	0.0	0.0	5,284.0		
SUPERIOR SOLVENTS & CHE	MICALS			SAINT LO	DUIS					
CERTAIN GLYCOL ETHERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DIBUTYL PHTHALATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DICHLOROMETHANE	1,877.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0		
ETHYLBENZENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
METHANOL	1,727.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0		
METHYL ETHYL KETONE	500.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0		
METHYL ISOBUTYL KETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
N-BUTYL ALCOHOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
N-HEXANE	1,932.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0		
N-METHYL-2-PYRROLIDONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
STYRENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TETRACHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TOLUENE	1,445.0	0.0	0.0	0.0	250.0	0.0	0.0	0.0		
TRICHLOROETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TRIETHYLAMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
XYLENE (MIXED ISOMERS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
THE P.D. GEORGE CO.				ST. LOUI	S					
1,2,4-TRIMETHYLBENZENE	5,100.0	0.0	0.0	0.0	0.0	0.0	7,800.0	1,200.0		
2,4-DIMETHYLPHENOL	500.0	0.0	0.0	0.0	0.0	1,200.0	12,000.0	3,500.0		
4,4'-ISOPROPYLIDENEDIPHENOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
4,4'-METHYLENEDIANILINE	10.0	0.0	0.0	0.0	0.0	0.0	0.0	520.0		
BIPHENYL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

	On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHE	EMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
CERTAIN GLYCOL ETHERS	1,000.0	0.0	0.0	0.0	0.0	0.0	3,600.0	300.0	
CRESOL (MIXED ISOMERS)	500.0	0.0	0.0	0.0	0.0	18,000.0	81,000.0	50,000.0	
CUMENE	1,000.0	0.0	0.0	0.0	0.0	190.0	2,200.0	57.0	
DICYCLOPENTADIENE	1,505.0	0.0	0.0	0.0	0.0	1,900.0	5,000.0	50.0	
DIISOCYANATES	5.0	0.0	0.0	0.0	0.0	0.0	0.0	1,400.0	
ETHYLBENZENE	3,750.0	0.0	0.0	0.0	0.0	9,800.0	65,000.0	2,200.0	
ETHYLENE GLYCOL	255.0	0.0	0.0	0.0	0.0	5,200.0	3,900.0	9,500.0	
MALEIC ANHYDRIDE	255.0	0.0	0.0	0.0	250.0	0.0	0.0	1,100.0	
METHANOL	2,200.0	0.0	0.0	0.0	0.0	1,400.0	280.0	28,000.0	
METHYL ETHYL KETONE	4,050.0	0.0	0.0	0.0	0.0	0.0	13,000.0	530.0	
N-BUTYL ALCOHOL	1,000.0	0.0	0.0	0.0	0.0	0.0	5,600.0	7,400.0	
N-METHYL-2-PYRROLIDONE	2,100.0	0.0	0.0	0.0	0.0	2,000.0	52,000.0	2,400.0	
NAPHTHALENE	255.0	0.0	0.0	0.0	0.0	0.0	4,200.0	57.0	
PHENOL	6,500.0	0.0	0.0	0.0	0.0	6,100.0	37,000.0	16,000.0	
PHTHALIC ANHYDRIDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
STYRENE	6,250.0	0.0	0.0	0.0	0.0	11,000.0	730.0	4,000.0	
TOLUENE	1,850.0	0.0	0.0	0.0	0.0	1,500.0	5,000.0	61.0	
TOLUENE DIISOCYANATE (MIXED ISOMERS)	255.0	0.0	0.0	0.0	0.0	0.0	0.0	900.0	
TRIETHYLAMINE	1,750.0	0.0	0.0	0.0	0.0	0.0	50.0	380.0	
XYLENE (MIXED ISOMERS)	16,600.0	0.0	0.0	0.0	0.0	39,000.0	190,000.0	11,000.0	
TRANS CHEMICAL INC.				ST LOUIS	3				
1,2,4-TRIMETHYLBENZENE	23.0	0.0	0.0	0.0	0.0	0.0	3,733.0	143.0	
METHYL ETHYL KETONE	1,760.0	0.0	0.0	0.0	0.0	0.0	13,003.0	730.0	
METHYL ISOBUTYL KETONE	183.0	0.0	0.0	0.0	0.0	0.0	3,286.0	217.0	
N-METHYL-2-PYRROLIDONE	7.0	0.0	0.0	0.0	0.0	0.0	2,929.0	0.0	
TETRACHLOROETHYLENE	8.0	0.0	0.0	0.0	0.0	0.0	419.0	70.0	
TOLUENE	914.0	0.0	0.0	0.0	0.0	0.0	48,867.0	2,953.0	
XYLENE (MIXED ISOMERS)	130.0	0.0	0.0	0.0	0.0	0.0	15,093.0	741.0	
U. S. POLYMERS INC.				ST. LOUI	S				
1,2,4-TRIMETHYLBENZENE	331.0	0.0	0.0	0.0	0.0	2,693.0	655.0	0.0	
CERTAIN GLYCOL ETHERS	1,086.0	0.0	0.0	0.0	0.0	8,848.0	2,152.0	0.0	
DIISOCYANATES	103.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY CHE	EMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
ETHYLBENZENE	150.0	0.0	0.0	0.0	0.0	1,218.0	296.0	1.0
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PHTHALIC ANHYDRIDE	514.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	728.0	0.0	0.0	0.0	0.0	18,055.0	4,392.0	1.0
U.S. PAINT CORP.				SAINT LO	DUIS			
CERTAIN GLYCOL ETHERS	17,752.0	0.0	0.0	0.0	0.0	32,969.0	24,353.0	480.0
CHROMIUM COMPOUNDS	250.0	0.0	0.0	0.0	0.0	862.0	0.0	0.0
COPPER COMPOUNDS	750.0	0.0	0.0	0.0	0.0	5,600.0	0.0	0.0
ETHYLBENZENE	1,480.0	0.0	0.0	0.0	0.0	2,260.0	5,512.0	444.0
METHYL ETHYL KETONE	23,272.0	0.0	0.0	0.0	0.0	330,759.2	133,270.2	18.0
METHYL ISOBUTYL KETONE	1,849.0	0.0	0.0	0.0	0.0	1,410.0	4,537.0	10.0
N-BUTYL ALCOHOL	3,416.0	0.0	0.0	0.0	0.0	10,890.0	13,631.0	740.0
TERT-BUTYL ALCOHOL	750.0	0.0	0.0	0.0	0.0	0.0	1,127.0	150.0
TOLUENE	9,904.0	0.0	0.0	0.0	0.0	7,434.0	16,240.0	3,563.0
XYLENE (MIXED ISOMERS)	9,323.0	0.0	0.0	0.0	0.0	10,238.0	24,674.0	4,109.0
ZINC COMPOUNDS	250.0	0.0	0.0	0.0	0.0	2,545.0	0.0	0.0
U.S. RINGBINER				ST. LOUI	S			
TRICHLOROETHYLENE	10,126.0	0.0	0.0	0.0	434.0	0.0	0.0	0.0
STE. GENEVIEVE								
CHEMICAL LIME CO.				STE. GEN	NEVIEVE			
BARIUM COMPOUNDS	10.0	1,289.0	0.0	0.0	0.0	0.0	0.0	0.0
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONL	-Y) 32,314.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	0.2	25.0	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	13.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MISSISSIPPI LIME COMPANY				STE GEN	IEVIEVE			
DIOXIN AND DIOXIN-LIKE COMPOUNDS	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HYDROCHLORIC ACID ("ACID AEROSOLS" ONL	-Y) 156,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD COMPOUNDS	529.5	797.6	0.0	0.0	0.0	0.0	0.0	0.0
MERCURY COMPOUNDS	33.4	1.8	0.0	0.0	0.0	0.0	0.0	0.0
SULFURIC ACID - ("ACID AEROSOLS" ONLY)	172,000.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT		
STODDARD										
AMES TRUE TEMPER - IXL DI	IVISION			BERNIE						
STYRENE	3,648.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ARVINMERITOR - DEXTER FA	ACILITY			DEXTER						
CHROMIUM	819.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NICKEL	95.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ASA ASPHALT INC.				ADVANC	E					
BENZO(G,H,I)PERYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
POLYCYCLIC AROMATIC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
HORIZON MUSIC INC DBA	RAPCO			ADVANC	E					
LEAD COMPOUNDS	0.0	0.0	0.0	0.0	18.8	0.0	0.0	0.0		
TYSON FOODS INC DEXTER	R FEEDMILL			DEXTER						
COPPER COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
MANGANESE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ZINC COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
SULLIVAN										
PREMIUM STANDARD FARMS	S - MILAN			MILAN						
AMMONIA	577.0	0.0	104.0	0.0	0.0	0.0	0.0	35,920.0		
CHLORINE	0.0	0.0	923.0	0.0	0.0	0.0	0.0	6,080.0		
LEAD	0.0	0.0	0.0	0.0	0.0	442.0	0.0	0.0		
NITRATE COMPOUNDS	0.0	0.0	71,197.0	0.0	0.0	0.0	0.0	286,887.0		
TANEY										
CONCRETE COMPANY OF TH	E OZARKS			HOLLIST	ER					
LEAD COMPOUNDS	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
MERCURY COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ROYAL OAK ENTERPRISES IN	VC.			BRANSO	N					
SODIUM NITRITE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
TEXAS								
DAIRY FARMERS OF AMERIC	CA INC.			CABOOI	_			
NITRATE COMPOUNDS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NITRIC ACID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94,807.0
LAMSON & SESSIONS				MOUNT	AIN GROVE			
LEAD COMPOUNDS	0.5	0.0	0.0	0.0	193.2	0.0	0.0	0.0
VERNON								
3M COMPANY - NEVADA				NEVADA	4			
ANTIMONY COMPOUNDS	0.0	0.0	0.0	0.0	3,120.0	0.0	0.0	0.0
CERTAIN GLYCOL ETHERS	2,900.0	0.0	0.0	0.0	0.0	0.0	59.0	49,000.0
CHROMIUM COMPOUNDS	0.0	0.0	0.0	4.0	2,450.0	130.0	0.0	0.0
COPPER COMPOUNDS	0.0	0.0	3.0	63.0	20.0	4,600.0	0.0	0.0
ETHYLBENZENE	44,760.0	0.0	0.0	0.0	0.0	640,000.0	120.0	431,000.0
LEAD COMPOUNDS	0.0	0.0	2.0	1.0	10,000.0	580.0	0.0	0.0
METHANOL	730.0	0.0	0.0	0.0	0.0	0.0	49.0	32,800.0
METHYL ETHYL KETONE	204,100.0	0.0	0.0	0.0	0.0	2,900,000.0	2,100.0	2,000,000.0
METHYL ISOBUTYL KETONE	9,100.0	0.0	0.0	0.0	0.0	0.0	1.0	100,490.0
N-BUTYL ALCOHOL	5,600.0	0.0	0.0	0.0	0.0	0.0	0.0	100,000.0
N-METHYL-2-PYRROLIDONE	3,300.0	0.0	0.0	0.0	0.0	0.0	2.0	20,870.0
TOLUENE	75,170.0	0.0	0.0	0.0	0.0	9,500.0	150.0	1,377,000.0
XYLENE (MIXED ISOMERS)	212,600.0	0.0	0.0	0.0	0.0	3,000,000.0	1,800.0	2,620,000.0
ZINC COMPOUNDS	0.0	0.0	0.0	31.0	6,100.0	0.0	0.0	0.0
MURPHY-BROWN LLC FEED	MILL			NEVADA	4			
COPPER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZINC (FUME OR DUST)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WARREN								
HOLLAND U.S.A.				WARRE	NTON			
ETHYLBENZENE	6,446.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	838.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		On- and	Off-site Re		On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
MANGANESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANOL	10,521.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHYL ETHYL KETONE	1,006.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NICKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	18,154.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
XYLENE (MIXED ISOMERS)	18,154.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WARCO MANUFACTURING CO	. INC.			MARTHA	SVILLE			
COPPER	10.0	0.0	0.0	0.0	0.0	30,000.0	0.0	0.0
WARRENTON COPPER LLC				WARREN	ITON			
COPPER	10,394.0	0.0	250.0	0.0	4,313.0	379,473.0	0.0	0.0
WASHINGTON								
BUCKMAN LABORATORIES IN	<i>C</i> .			CADET				
1,2-DICHLOROETHANE	138.0	0.0	0.0	0.0	0.0	0.0	44,417.0	1,261.0
1,4-DIOXANE	24.0	0.0	20.0	0.0	0.0	0.0	70,586.0	1,769.0
AMMONIA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BIS(2-CHLOROETHYL) ETHER	67.0	0.0	7.0	0.0	0.0	0.0	3,788.0	829.0
BROMINE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CARBON DISULFIDE	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DAZOMET	10.0	0.0	0.0	0.0	0.0	0.0	0.0	9,250.0
DIMETHYLAMINE	217.0	0.0	0.0	0.0	0.0	0.0	0.0	565.0
DISODIUM CYANODITHIOIMIDOCARBONA	ATE 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EPICHLOROHYDRIN	9.0	0.0	0.0	0.0	0.0	0.0	0.0	62.0
FORMALDEHYDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHAM SODIUM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.0
OZONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POTASSIUM DIMETHYLDITHIOCARBAMA	TE 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
POTASSIUM N-METHYLDITHIOCARBAMA	TE 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SODIUM DIMETHYLDITHIOCARBAMATE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RED WING SHOE CO.				POTOSI				
DIISOCYANATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	620.0
N-METHYL-2-PYRROLIDONE	10.0	0.0	0.0	0.0	0.0	17,350.0	0.0	0.0

Page 99 of 101

		On- and Off-site Releases					On- and Off-site Waste Mgmt			
COUNTY FACILITY CITY	CHEMICAL	AIR	LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT	
WAYNE									_	
G. S. ROOFING PRODUCTS CO	o. INC.				PIEDMON	NT				
CHROMIUM COMPOUNDS		255.0	750.0	0.0	0.0	250.0	0.0	0.0	0.0	
ZINC COMPOUNDS		255.0	750.0	0.0	0.0	250.0	0.0	0.0	0.0	
WEBSTER										
HUTCHENS INDUSTRIES INC.					SEYMOU	R				
CERTAIN GLYCOL ETHERS	4	,750.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TYLER PIPE CO.					MARSHF	IELD				
CHROMIUM COMPOUNDS		0.0	5.0	0.0	0.0	5.0	105,113.0	0.0	0.0	
MANGANESE COMPOUNDS		0.0	5.0	0.0	0.0	5.0	10,350.0	0.0	0.0	
NICKEL COMPOUNDS		0.0	5.0	0.0	0.0	5.0	46,461.0	0.0	0.0	
WILCORP INDUSTRIES INC.					MARSHF	IELD				
METHYL ETHYL KETONE		60.0	0.0	0.0	0.0	0.0	0.0	110.0	56,200.0	
N-HEXANE		30.0	0.0	0.0	0.0	0.0	0.0	1.0	630.0	
TOLUENE		10.0	0.0	0.0	0.0	0.0	0.0	10.0	5,310.0	
ZINC COMPOUNDS		0.0	0.0	0.0	0.0	140.0	15.0	0.0	0.0	
YORK CASKET - MISSOURI					MARSHF	IELD				
CHROMIUM COMPOUNDS		0.0	0.0	0.0	0.0	4,800.0	0.0	0.0	0.0	
MANGANESE COMPOUNDS		250.0	0.0	0.0	0.0	750.0	0.0	0.0	0.0	
METHYL ETHYL KETONE	24	,900.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
NICKEL COMPOUNDS		250.0	0.0	0.0	0.0	2,200.0	0.0	0.0	0.0	
TOLUENE	25	,600.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
XYLENE (MIXED ISOMERS)	14	,400.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WRIGHT										
BEEHLER CORP.					MOUNTA	IN GROVE				
CHROMIUM		250.0	0.0	0.0	5.0	250.0	5,000.0	0.0	0.0	
MANGANESE		250.0	0.0	0.0	5.0	250.0	8,030.0	0.0	0.0	
NICKEL		250.0	0.0	0.0	5.0	250.0	5,500.0	0.0	0.0	

	_	On- and	l Off-site Rei	leases		On- and O	ff-site Waste	Mgmt
COUNTY FACILITY CITY	CHEMICAL A	AIR LAND	WATER	POTW	DISP	RCYCLE	ENERGY	TRMT
HUTCHENS INDUSTRIES INC.				MANSFIE	ELD			
CERTAIN GLYCOL ETHERS	14,806.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOLUENE	10,459.	0.0	0.0	0.0	0.0	0.0	0.0	0.0

APPENDIX D

COMMON USES OF TOXIC CHEMICALS and THEIR POTENTIAL HAZARDS

Appendix D

COMMON USES OF TOXIC CHEMICALS AND THEIR POTENTIAL HAZARDS

The following information is presented as a quick-reference summary of information for some of the toxic chemicals that are reported by TRI facilities. It is not a detailed discussion of the uses or potential hazards posed by the chemicals. This information is from *Hazardous Substance Fact Sheets* provided by the New Jersey Department of Health and distributed by the U. S. Environmental Protection Agency, Computer Aided Management of Emergency Operations and from *A Comprehensive Guide to the Hazardous Properties of Chemical Substances* by Dr. Pradyot Patnaik. The reader should consult chemicals or toxicology reference materials to learn more about the substances presented in this summary. This list of chemicals was compiled by the Minnesota Emergency Response Commission.

Acetaldehyde: Used as a liquid in making acetic acid, pyridine, pentaerythritol, peracetic acid and related chemicals. It occurs naturally in ripe fruit, coffee and cigarette smoke.

Hazard: Inhalation can irritate respiratory system, affect the cardiovascular system; liquid or vapor irritates skin and eyes.

Aluminum (Fume or Dust): Used as a powder in paints and protective coatings, as a catalyst and in rocket fuel.

Hazard: Fine powders form flammable and explosive mixtures in air and with powerful oxidants; moderately flammable by heat, flame or chemical reaction with oxidizers.

Ammonia: Used in making fertilizers, explosives, plastics, dyes and textiles.

Hazard: Moderately flammable; inhalation may irritate lungs; can irritate nose, eyes, mouth and throat; exposure to concentrated fumes can be fatal.

n-Butyl Alcohol: Liquid used as a solvent for fats, waxes, shellacs, resins, gums and varnishes.

Hazard: Flammable liquid and fire hazard; can damage liver, kidneys, hearing and sense of balance; can cause eye irritation and headaches, irritation to nose and throat may occur.

Carbon Disulfide: Liquid used to make rayon, agricultural fumigants, rubber chemicals and cellulose; clean metal surfaces and extract olive oil.

Hazard: Adversely effects the nervous system; dizziness, headaches, blurred vision, agitation, convulsions, coma and death; vapor irritates the nose and throat; liquid causes chemical burns, damage to eyes.

Chloroform: Used as a cleansing agent, manufacture of refrigerant and fire extinguishers.

Hazard: Dizziness, light-headedness, dullness, hallucination, nausea, headache, fatigue and anesthesia.

Copper and Compounds: Used in electrical wiring, plumbing, compounds used in fumigants, pesticides, electroplating, paint pigments and catalysts.

Hazard: Irritants; some compounds highly toxic; degree of toxicity dependent on compound, exposure and method of entry into the body.

Di (2-ethylhexyl) phthalate: Used to make plastics, products found in homes, automobiles, medical and packaging industries.

Hazard: It is a carcinogen and teratogen; short term exposure may cause irritation to eyes, nose and throat; long term exposure may cause liver cancer; may damage testes, kidneys and liver; may cause numbness and tingling in the arms and legs.

Dichloromethane: Industrial solvent and paint stripper; in aerosol and pesticide products; used in photographic film productions and in food, furniture and plastics processing.

Hazard: Carcinogen; lung irritant; inhalation can cause headaches, fatigue and drunk behavior.

Ethyl Benzene: A solvent, intermediate in the production of styrene.

Hazard: Has a mild toxicity by inhalation and intraperitoneal routes; an eye and skin irritant.

Ethylene Benzene: In anti-freeze, paints, laminates, auto brake fluids, ink, tobacco and wood stains and used to de-ice aircraft wings.

Hazard: Teratogen; highly toxic by ingestion or inhalation.

Formaldehyde: Used in manufacture of phenolic resins, cellulose esters, artificial silks, dyes, explosives and organic chemicals; also germicide, fungicide and disinfectant; in tanning, adhesives, waterproofing fabrics, and tonic and chrome printing in photography.

Hazard: Can injure eyes, skin and respiratory system; is a mutagen, teratogen and probably carcinogenic.

Glycol Ethers: Solvents.

Hazard: Toxic by inhalation, ingestion or skin absorption; irritating to eyes, nose, throat and skin.

Hexane: Chief constituent of petroleum ether, gasoline and rubber solvent; also solvent for adhesives, vegetable oils, in organic analysis; and denaturing alcohols.

Hazard: May produce distorted vision, hallucination, headache, dizziness, nausea and irritation of eyes and throat.

Hydrochloric Acid: Metal cleaning and pickling, food processing and general cleaners.

Hazard: Very corrosive, toxic by ingestion or inhalation; can irritate mouth, nose and throat.

Hydrogen Fluoride: Used as a catalyst in petroleum industry, fluorination process in aluminum industry, make fluorides, separation of uranium isotopes, making plastics and production of dyes.

Hazard: Is corrosive; can irritate nose, throat and lungs, can cause pulmonary edema, can cause severe burns to skin and eyes; may damage kidneys and liver.

Lead and Compounds: In batteries, gasoline additives, ammunition, piping and radiation shielding.

Hazard: Poison by ingestion, can cause brain damage, particularly in children; suspected carcinogen of the lungs and kidneys.

Manganese and Compounds: Used in aluminum production, steel making and dry cell batteries, compounds used for varnishes, fertilizers and food additives.

Hazard: Dust is flammable and moderately explosive; toxic by inhalation.

Methanol: Solvent, cleaner and fuel.

Hazard: Highly flammable, ingestion can cause blindness; has a mild toxicity by inhalation.

Methyl Ethyl Ketone: Solvent in making plastics, textiles, paint removers and adhesives.

Hazard: flammable, explosive; toxic by inhalation; a strong irritant; has a moderate toxicity by ingestion.

Methyl Isobutyl Ketone: Solvent for points, varnishes, nitrocellulose lacquers, gun and resins.

Hazard: Flammable, poison by intraperitoneal route, has a moderate toxicity by ingestion or inhalation; very irritating to eyes, skin and mucous membranes; narcotic in high concentrations.

Nickel and Compounds: Used in alloys and electroplating, catalysts, dyes and textile printing.

Hazard: Carcinogenic and poisonous.

Nitrate Compounds: Accelerates the burning of combustible materials; if involved in a fire an explosion may result, may react violently with fuels.

Hazard: May cause burns to skin and eyes; may produce irritating or poisonous gasses.

Nitric Acid: Used in making fertilizers, dyes, explosives, metallurgy and etching steel.

Hazard: Corrosive, powerful oxidizer; flammable by chemical reaction with reducing agent; produces toxic fumes when heated to decomposition; corrosive to eyes, skin, mucous membranes and teeth; experimental teratogen; delays pulmonary edema.

Styrene: Used in the manufacture or polystyrene, resins, protective coatings, plastics, synthetic rubber and an insulator.

Hazard: Toxic by ingestion and inhalation; can react vigorously with oxidizing agents; emits acrid smoke and irritating fumes when heated to decomposition.

Sulfuric Acid: In fertilizers, chemicals, dyes, rayon and film; widely used by metals industry.

Hazard: Moderately toxic by ingestion; a severe eye irritant, extremely irritating, corrosive and toxic to tissue.

Tetrachloroethylene: Used as a solvent, in dry-cleaning and metal degreasing.

Hazard: Can produce headaches, dizziness, drowsiness, incoordination, irritation to eyes, nose and throat; flushing of neck and face.

Toluene: Solvent for perfumes, medicines, dyes, explosives, detergents, aviation gasoline and other chemicals.

Hazard: Highly flammable and explosive; toxic by ingestion, inhalation and skin contact.

1,1,1-Trichloroethane: Solvent for cleaning precision instruments; also in pesticides and textiles.

Hazard: Suspected carcinogen, irritating to eyes and skin; has a mild toxicity by ingestion, inhalation and skin contact.

Trichloroethylene: Cleaning electronic parts and diluting paints; also in degreasers and fumigants; aerospace industries use it to flush liquid oxygen.

Hazard: Carcinogenic, has a mild toxicity by ingestion and inhalation.

1,2,4-Trimethyl Benzene: Used in the manufacture of dyes and pharmaceuticals.

Hazard: Moderately toxic by intraperitoneal route; mildly toxic by inhalation; can cause nervous system depression, anemia and bronchitis; flammable when exposed to heat, flame or oxidizers.

Xylene: Used as solvents and in making drugs, dyes, insecticides and gasoline.

Hazard: Flammable, mildly toxic by ingestion and inhalation.

Zinc and Compounds: Used as a coating on iron and steel, in making brass metal alloys, car parts, electroplating, batteries, electrical products, paints and fumigants.

Hazard: Zinc dust is flammable and a human skin irritant.

APPENDIX E SOURCE REDUCTION ACTIVITY CODES

Appendix E

SOURCE REDUCTION ACTIVITY CODES

		Proce	ess Modifications (cont.)
Good	Operating Practices	W52	Modified equipment, layout or piping
	-	W53	Use of a different process catalyst
W13	Improved maintenance scheduling, record	W54	Instituted better controls on operating bulk
	keeping or procedures		containers to minimize discarding of empty
W14	Changed production schedule to minimize		containers
	equipment and feedstock changeovers	W55	Changed from small volume containers to
W19	Other changes in operating practices		bulk containers to minimize discarding of
			empty containers
Inver	ntory Control	W58	Other process modifications
W21	Instituted procedures to ensure that materials	Clear	ning and Degreasing
	do not stay in inventory beyond shelf-life		
W22	Began to test outdated material – continue to	W59	Modified stripping/cleaning equipment
	use if still effective	W60	Changed to mechanical stripping/cleaning
W23	Eliminated shelf-life requirements for stable		devices (from solvents or other materials)
	materials	W61	Changed to aqueous cleaners (from solvents
W24	Instituted better labeling procedures		or other materials)
W25	Instituted clearinghouse to exchange	W63	Modified containment procedures for
	materials that would otherwise be discarded		cleaning units
W29	Other changes in inventory control	W64	Improved draining procedures
Spill	and Leak Prevention	W65	Redesigned parts racks to reduce drag out
•		W66	Modified or installed rinse systems
W31	Improved storage or stacking procedures	W67	Improved rinse equipment design
W32	Improved procedures for loading, unloading	W68	Improved rinse equipment operation
	and transfer operations	W71	Other cleaning and degreasing modifications
W33	Installed overflow alarms or automatic shut-		
	off valves	Surfa	ce Preparation and Finishing
W35	Installed vapor recovery systems		
W36	Implemented inspection or monitoring	W72	Modified spray systems or equipment
	program of potential spill or leak sources	W73	Substituted coating materials used
W39	Other changes made in spill and leak	W74	Improved application techniques
	prevention	W75	Changed from spray to other system
		W78	Other surface preparation and finishing
Raw	Material Modifications		modifications
W41	Increased purity of raw materials	Produ	uct Modifications
W42	Substituted raw materials		
W49	Other raw material modifications	W81	Changed product specifications
		W82	Modified design or composition of products
Proce	ess Modifications	W83	Modified packaging
W51	Instituted recirculation within a process	W89	Other product modifications
	*		

APPENDIX F

SOURCE REDUCTION ACTIVITY by COUNTY by COMPANY

Appendix F - Source Reduction Activity by County by Company

					SOUR	SOURCE REDUCTION ACTI		
FACILITY NAME	CITY	CHEMICA	L NAME	CLASS	FIRST	SECOND	THIRD	FOURTH
AUDRAIN								
TRUE MANUFACTURING C	CO. INC.	N	MEXICO					
	CHLORO	DIFLUOROMETHAN	E	TRI	W82			
	DIISOCY	ANATES		TRI	W13	W39		
BARRY								
GEORGE'S PROCESSING IN	VC. OF MISS	OURI E	BUTTERFIELD					
	AMMONI	A		TRI	W13			
	NITRATE	COMPOUNDS		TRI	W13			
BUCHANAN								
AG PROCESSING INC.		5	ST. JOSEPH					
	N-HEXAN	NE		TRI	W58			
HILLYARD INDUSTRIES IN	C.	5	ST. JOSEPH					
	ETHYLE	NE GLYCOL		TRI	W42	W82		
	CERTAIN	GLYCOL ETHERS		TRI	W42	W82		
OMNIUM		5	ST. JOSEPH					
	XYLENE	(MIXED ISOMERS)		TRI	W14			
	TRIFLUR	ALIN		PBT	W14			
	TRICHLO	ORFON		TRI	W14			
	SIMAZIN	E		TRI	W14			
	PROMET	RYN		TRI	W14			
	DIURON			TRI	W14			
	ATRAZIN	IE		TRI	W14			
	BROMO	(YNIL OCTANOATE		TRI	W14			

				SOURCE REDUCTION ACTIVITY CODE					
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH		
BUCHANAN									
SILGAN CONTAINERS M	<i>IANUFACTURING</i>	CORP. ST. JOSEPH							
	METHYL ETH	HYL KETONE	TRI	W13					
	METHYL ISC	BUTYL KETONE	TRI	W13					
	ETHYLBENZ	ENE	TRI	W13					
	N-BUTYL AL	COHOL	TRI	W13					
	CERTAIN GL	YCOL ETHERS	TRI	W13					
	XYLENE (MIX	KED ISOMERS)	TRI	W13					
	1,2,4-TRIME	THYLBENZENE	TRI	W13					
WIRE ROPE CORPORAT	TION OF AMERICA	INC. ST. JOSEPH							
	LEAD		PBT/METAL	W41					
CALLAWAY									
ABB INC.		JEFFERSON CITY	Y						
	METHYL ETH	HYL KETONE	TRI	W52	W72				
	XYLENE (MIX	KED ISOMERS)	TRI	W81					
CARROLL									
DEXTER AXLE		CARROLLTON							
	MANGANES	≣	METAL	W19					
CLAY									
ADM PROCESSING		NORTH KANSAS	CITY						
	N-HEXANE		TRI	W13					
DAVIS PAINT CO.		NORTH KANSAS	CITY						
	TOLUENE		TRI	W42					
	ETHYLBENZ	ENE	TRI	W42					
	METHYL ETH	HYL KETONE	TRI	W42					
	XYLENE (MIX	KED ISOMERS)	TRI	W42					
Appendix F - Source Red	luction Activity by	County by Company				Pa	ige 2 of 15		

				SOUR	SOURCE REDUCTION ACTIV			
FACILITY NAME C	ITY CH	EMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
CLAY								
DAVIS PAINT CO.		NORTH KANSAS	CITY					
	ETHYLENE GLYCOL	-	TRI	W42				
DOUGLAS PRODUCTS & PAC	CKAGING CO.	LIBERTY						
	MALATHION		TRI	W13	W31	W32	W83	
	METHANOL		TRI	W13	W31	W32	W83	
SERICOL INC.		NORTH KANSAS	CITY					
	LEAD COMPOUNDS	•	PBT/METAL	W42				
	1,2,4-TRIMETHYLBE	NZENE	TRI	W82				
COLE								
MODINE MANUFACTURING	CO.	JEFFERSON CITY	(
	LEAD		PBT/METAL	W42	W58	W82		
	COPPER		METAL	W58	W82			
VON HOFFMANN PRESS INC.		JEFFERSON CITY	(
	CERTAIN GLYCOL E	THERS	TRI	W42				
COOPER								
CATERPILLAR - BOONVILLE	FACILITY	BOONVILLE						
	XYLENE (MIXED ISC	DMERS)	TRI	W14				
	TOLUENE		TRI	W14				
	LEAD COMPOUNDS	;	PBT/METAL	W14				
DUNKLIN								
EMERSON ELECTRIC CO.		KENNETT						
	ETHYLBENZENE		TRI	W19	W29	W74		
	XYLENE (MIXED ISC	OMERS)	TRI	W19	W29	W52	W74	
	NICKEL		METAL	W13				

Page 3 of 15

Appendix F - Source Reduction Activity by County by Company

				SOUR	CE REDUCT	ION ACTIV	TTY CODES
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH
DUNKLIN							
EMERSON ELECTRIC CO.		KENNETT					
	N-BUTYL	_ ALCOHOL	TRI	W19	W22	W29	W52
	LEAD		PBT/METAL	W19			
	DIISOCY	ANATES	TRI	W13			
	COPPER	t	METAL	W13			
	COBALT		METAL	W31			
	CHROMI	UM	METAL	W13	W31		
	MANGAN	NESE	METAL	W13			
FRANKLIN							
CONVENIENCE PRODUC	TS	PACIFIC					
	CHLORO	DIFLUOROMETHANE	TRI	W14	W52		
JEFFERSON PRODUCTS (CO.	WASHINGTON					
	TOLUEN	E	TRI	W83			
MARCHEM COATED FABI	RICS INC.	NEW HAVEN					
	XYLENE	(MIXED ISOMERS)	TRI	W14	W73	W89	W71
TRUE MANUFACTURING		PACIFIC					
	DIISOCY	ANATES	TRI	W13	W39		
	CHLORC	DDIFLUOROMETHANE	TRI	W82			
GREENE							
CARLISLE POWER TRANS	MISSION PRO	ODUCTS INC. SPRINGFIELD					
	TOLUEN	E	TRI	W42	W49	W58	
CLARIANT LSM (MISSOUF	RI) INC.	SPRINGFIELD					
	CYANIDE	COMPOUNDS	TRI	W36	W58		
	DIOXIN A	AND DIOXIN-LIKE COMPOUNDS	DIOXIN	W19	W52		

RERENE KERR MCGEE CHEMICAL LLC CREOSOTE TRI W49 W58 NORTHSTAR BATTERY COMPANY LLC LEAD COMPOUNDS PBT/METAL TRI W52 HOWELL MARATHON ELECTRONICS COPPER MANGANESE METAL MANGANESE SILVER COMPOUNDS METAL NI3 W32 W52 RON THE DOE RUN COMPANY - GLOVER SMELTER SILVER COMPOUNDS NICKEL COMPOUNDS NICKEL COMPOUNDS ALUMINUM (FUME OR DUST) LEAD COMPOUNDS COPPER OMETAL METAL W13 W32 W52 NICKEL COMPOUNDS ALUMINUM (FUME OR DUST) LEAD COMPOUNDS COPPER OMETAL METAL W13 W32 W52 W52 W52 COPPER COMPOUNDS METAL W13 W32 W52 W52 COPPER COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS					SOUR	ION ACTIV	CTIVITY CODES		
NORTHSTAR BATTERY COMPANY LLC SPRINGFIELD SPRINGFIELD	FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
CREOSOTE TRI W49 W58	GREENE								
NORTHSTAR BATTERY COMPANY LLC LEAD COMPOUNDS PBT/METAL W13	KERR MCGEE CHEMICAL	LLC	SPRINGFIELD						
RIDEWELL CORP. SPRINGFIELD TRI W52 W52 W52 W54 W55		CREOSOTE		TRI	W49	W58			
RIDEWELL CORP. SPRINGFIELD TRI W52 W52 W52 W54 W55	NORTHSTAR BATTERY CO	OMPANY LLC	SPRINGFIELD						
TOLUENE TRI			DUNDS	PBT/METAL	W13				
TOLUENE TRI	RIDEWELL CORP		SPRINGFIELD						
MARATHON ELECTRONICS COPPER MANGANESE METAL W13 MANGANESE METAL W13 METAL W13 METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CODE C	MDEWELL COM.	TOI UENE	- · · · · · · · · · · · · · · · · · · ·	TRI	W52				
COPPER METAL W13 MANGANESE METAL W13 RON THE DOE RUN COMPANY - GLOVER SMELTER GLOVER SILVER COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS MATAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC	HOWELL	. 0 - 0 - 1. 1							
COPPER METAL W13 MANGANESE METAL W13 RON THE DOE RUN COMPANY - GLOVER SMELTER GLOVER SILVER COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS MATAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC	MARATHON ELECTRONIC	ES	WEST PLAINS						
### RON THE DOE RUN COMPANY - GLOVER SMELTER GLOVER SILVER COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARCKSON **COLT TECHNOLOGY INC.** LEAD PBT/METAL W73 W58 **THE DOE RUN COMPOUNDS W52 **THE DOE RUN COMPOUNDS W53 **THE DOE RUN COMPOUNDS W54 **THE DOE RUN COMPOUNDS W54 **THE DOE RUN COMPOUNDS W55 **THE DOE RUN COMPOUNDS **THE DOE RUN COMP	Maria 11101 / 2201110111			METAL	W13				
SILVER COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARCKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58		MANGANESE	•	METAL	W13				
SILVER COMPOUNDS ZINC COMPOUNDS METAL W13 W32 W52 ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 METAL W13 W35 W52 METAL M13 W35 W52 METAL M13 W35 W52 METAL M13 W35 W52 METAL M14 M15 W35 W52 METAL M15 M35 W52 METAL M16 M35 W58 METAL M17 M35 W58	IRON								
ZINC COMPOUNDS METAL W13 W32 W52 NICKEL COMPOUNDS METAL W13 W32 W52 ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 IACKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58	THE DOE RUN COMPANY	- GLOVER SMEI	CTER GLOVER						
NICKEL COMPOUNDS ALUMINUM (FUME OR DUST) LEAD COMPOUNDS COPPER COMPOUNDS COBALT COMPOUNDS METAL M13 M35 M52 COBALT COMPOUNDS METAL M13 M35 M52 COBALT COMPOUNDS METAL M13 M35 M52 CADMIUM COMPOUNDS METAL M13 M35 M52 CADMIUM COMPOUNDS METAL M13 M35 M52 CADMIUM COMPOUNDS METAL M13 M35 M52 ANTIMONY COMPOUNDS METAL M13 M35 M52 ARSENIC COMPOUNDS METAL M13 M35 M52 ARSENIC COMPOUNDS METAL M13 M35 M52 M52 ARSENIC COMPOUNDS METAL M13 M35 M52 M52 M64 M65 M65 M65 M65 M65 M65 M65		SILVER COM	POUNDS	METAL	W13	W32	W52		
ALUMINUM (FUME OR DUST) METAL W13 W35 W52 LEAD COMPOUNDS PBT/METAL W13 W35 W52 COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 METAL M13 W35 W52 METAL M13 W35 W52 METAL M13 W35 W52 METAL M35 W55 METAL M36 W55 METAL M37 W35 W55 METAL M37 W35 W56 METAL M37 M35 M58		ZINC COMPC	DUNDS	METAL	W13	W32	W52		
LEAD COMPOUNDS COPPER COMPOUNDS METAL W13 W35 W52 COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 IACKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58		NICKEL COM	POUNDS	METAL	W13	W32	W52		
COPPER COMPOUNDS COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 METAL W13 W35 W52 METAL W13 W35 W52 METAL W13 W35 W52 METAL M13 W35 W52 METAL M25 METAL M26 METAL M27 M35 W52 METAL M36 METAL M37 W58		ALUMINUM (F	FUME OR DUST)	METAL	W13	W35	W52		
COBALT COMPOUNDS METAL W13 W35 W52 CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 METAL W35 W52 METAL W35 W52 METAL W35 W52 METAL W35 W58		LEAD COMPO	DUNDS	PBT/METAL	W13	W35	W52		
CADMIUM COMPOUNDS METAL W13 W35 W52 ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 JACKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58		COPPER COI	MPOUNDS	METAL	W13	W35	W52		
ANTIMONY COMPOUNDS METAL W13 W35 W52 ARSENIC COMPOUNDS METAL W13 W35 W52 JACKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58		COBALT COM	//POUNDS	METAL	W13	W35	W52		
ARSENIC COMPOUNDS METAL W13 W35 W52 JACKSON COLT TECHNOLOGY INC. KANSAS CITY PBT/METAL W73 W58		CADMIUM CO	OMPOUNDS	METAL	W13	W35	W52		
JACKSON COLT TECHNOLOGY INC. KANSAS CITY LEAD PBT/METAL W73 W58		ANTIMONY C	OMPOUNDS	METAL	W13	W35	W52		
COLT TECHNOLOGY INC. KANSAS CITY PBT/METAL W73 W58		ARSENIC CO	MPOUNDS	METAL	W13	W35	W52		
LEAD PBT/METAL W73 W58	JACKSON								
	COLT TECHNOLOGY INC.		KANSAS CITY						
Appendix F - Source Reduction Activity by County by Company Page 5 of 15		LEAD		PBT/METAL	W73	W58			
	Appendix F - Source Redu	ction Activity by	County by Company				Po	ige 5 of 15	

				SOUR	URCE REDUCTION ACTIVITY CODES			
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
JACKSON								
NEW SURFACE LLC		KANSAS CITY						
	STYREN	E	TRI	W72				
PERMACEL KANSAS CITY	Y INC.	KANSAS CITY						
	ZINC CO	MPOUNDS	METAL	W22	W49	W54		
JASPER								
DYNO NOBEL INC CAR	THAGE PLAN	T CARTHAGE						
	NITRATE	COMPOUNDS	TRI	W19	W51			
	NITROGI	YCERIN	TRI	W19	W51	W58		
	ETHYLE	NE GLYCOL	TRI	W19	W33			
	AMMONI	A	TRI	W19	W36			
	NITRIC A	ACID	TRI	W19				
MODINE MANUFACTURI	NG CO.	JOPLIN						
	COPPER		METAL	W58				
PRECISION/MASTER MAI	DE PAINTS	CARL JUNCTIO	ON					
	ETHYLBI	ENZENE	TRI	W42				
	1,2,4-TR	METHYLBENZENE	TRI	W42				
	XYLENE	(MIXED ISOMERS)	TRI	W42				
SPECIALTY BRANDS INC.		CARTHAGE						
	AMMONI	A	TRI	W36				
JOHNSON								
GETS GLOBAL SIGNALIN	G	WARRENSBUF	RG					
	DIISOCY	ANATES	TRI	W58				
HAWKER ENERGY PROD	UCTS INC.	WARRENSBUF	RG					
	LEAD CO	OMPOUNDS	PBT/METAL	W13	W24	W36	W42	

				SOUR	ION ACTIV	TIVITY CODES		
FACILITY NAME	CITY CHE	EMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
LACLEDE								
COPELAND CORP.		LEBANON						
	LEAD COMPOUNDS		PBT/METAL	W81				
	MANGANESE COMPO	DUNDS	METAL	W58				
LAWRENCE								
BCP INGREDIENTS INC.		VERONA						
	METHANOL		TRI	W52				
SILGAN CONTAINERS MAN	NUFACTURING CORP.	MOUNT VERNON						
	CERTAIN GLYCOL ET	HERS	TRI	W13				
LIVINGSTON								
HUDSON VALLEY POLYME	ERS	CHILLICOTHE						
	ZINC COMPOUNDS		METAL	W58				
WIRE ROPE CORPORATIO	N OF AMERICA INC.	CHILLICOTHE						
	LEAD		PBT/METAL	W41				
MACON								
CONAGRA FROZEN FOOD	S	MACON						
	AMMONIA		TRI	W13				
MONROE								
DIVERSIFIED DIEMAKERS	- DBA INTERMET	MONROE CITY						
	COPPER		METAL	W58				
	LEAD		PBT/METAL	W58				
MONTGOMERY								
CHRISTY MINERALS CO.		HIGH HILL						
			PBT/METAL	W42				

				SOURCE REDUCTION ACTI			IVITY CODES		
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH		
MONTGOMERY									
UNIQUE AUTOMOTIVE REB	B. INC.	JONESBURG							
~		OROETHYLENE	TRI	W19					
NODAWAY									
EVEREADY BATTERY CO. IN	VC.	MARYVILLE							
	MANGA	NESE COMPOUNDS	METAL	W13	W19				
	ZINC CC	OMPOUNDS	METAL	W13	W19				
PEMISCOT									
TRINITY MARINE PRODUCT	TS INC PI	LANT #75 CARUTHERSVILL	E						
	MANGA	NESE COMPOUNDS	METAL	W51					
	ZINC (FU	UME OR DUST)	METAL	W55					
	XYLENE	(MIXED ISOMERS)	TRI	W71					
PETTIS									
ADCO INC.		SEDALIA							
	TRICHLO	OROETHYLENE	TRI	W13					
	TETRAC	CHLOROETHYLENE	TRI	W32	W36	W42	W52		
	CERTAI	N GLYCOL ETHERS	TRI	W32	W52				
	1,2,4-TR	RIMETHYLBENZENE	TRI	W32	W54				
HAYES LEMMERZ INTERNA	TIONAL IN	C. SEDALIA							
	ZINC CC	OMPOUNDS	METAL	W13	W33				
	LEAD C	OMPOUNDS	PBT/METAL	W13	W33	W42			
	MANGA	NESE COMPOUNDS	METAL	W13	W24				
WIRE ROPE CORPORATION	OF AMER	ICA INC. SEDALIA							
	LEAD		PBT/METAL	W41					

FACILITY NAME	CITY	CHEMICAL NAME	DD A TO				VITY CODES		
		CHEMICIETAM	CLASS	FIRST	SECOND	THIRD	FOURTH		
PIKE									
DYNO NOBEL INC LOM	O PLANT	LOUISIANA							
	NITRATE C	OMPOUNDS	TRI	W19	W39				
	NITRIC ACI	D	TRI	W58					
	AMMONIA		TRI	W39					
MISSOURI CHEMICAL WO	ORKS	LOUISIANA							
	ZINC COMP	POUNDS	METAL	W49					
RALLS									
BUCKHORN RUBBER PRO	ODUCTS INC.	HANNIBAL							
	TOLUENE		TRI	W73					
	ZINC COME	POUNDS	METAL	W21	W22				
	XYLENE (M	IIXED ISOMERS)	TRI	W73					
CONTINENTAL CEMENT	CO. LLC	HANNIBAL							
	TETRACHL	OROETHYLENE	TRI	W24	W39	W52	W58		
	NAPHTHAL	ENE	TRI	W24	W39	W52	W58		
	O-XYLENE		TRI	W24	W39	W52	W58		
	PHENANTH	IRENE	TRI	W24	W39	W52	W58		
	PHENOL		TRI	W24	W39	W52	W58		
	PYRIDINE		TRI	W24	W39	W52	W58		
	SEC-BUTY	L ALCOHOL	TRI	W24	W39	W52	W58		
	TERT-BUT	YL ALCOHOL	TRI	W24	W39	W52	W58		
	TRICHLOR	OETHYLENE	TRI	W24	W39	W52	W58		
	TRIETHYLA	AMINE	TRI	W24	W39	W52	W58		
	CERTAIN G	SLYCOL ETHERS	TRI	W24	W39	W52	W58		
	1,2-DICHLO	DROETHANE	TRI	W24	W39	W52	W58		
	N,N-DIMET	HYLANILINE	TRI	W24	W39	W52	W58		
	N-HEXANE		TRI	W24	W39	W52	W58		

				SOUR	SOURCE REDUCTION ACTIVITY CODES			
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
RALLS								
CONTINENTAL CEMENT	CO. LLC	HANNIBAL						
	STYREN	E	TRI	W24	W39	W52	W58	
	CYCLOH	EXANE	TRI	W24	W39	W52	W58	
	M-XYLEN	NE	TRI	W24	W39	W52	W58	
	METHYL	ETHYL KETONE	TRI	W24	W39	W52	W58	
	N-METH	YL-2-PYRROLIDONE	TRI	W24	W39	W52	W58	
	METHYL	ISOBUTYL KETONE	TRI	W24	W39	W52	W58	
	DIOXIN A	AND DIOXIN-LIKE COMPOUNDS	DIOXIN	W58	W72			
	1,2,4-TRI	METHYLBENZENE	TRI	W24	W39	W52	W58	
	1,2-DICH	LOROBENZENE	TRI	W24	W39	W52	W58	
	1,4-DIOX	ANE	TRI	W24	W39	W52	W58	
	ACETON	ITRILE	TRI	W24	W39	W52	W58	
	ACETOP	HENONE	TRI	W24	W39	W52	W58	
	BENZEN	E	TRI	W24	W39	W52	W58	
	CHLORO	BENZENE	TRI	W24	W39	W52	W58	
	N-BUTYL	ALCOHOL	TRI	W24	W39	W52	W58	
	CUMENE	<u> </u>	TRI	W24	W39	W52	W58	
	N,N-DIMI	ETHYLFORMAMIDE	TRI	W24	W39	W52	W58	
	DICHLOF	ROMETHANE	TRI	W24	W39	W52	W58	
	DIMETH	YL PHTHALATE	TRI	W24	W39	W52	W58	
	ETHYLBI	ENZENE	TRI	W24	W39	W52	W58	
	ETHYLEI	NE GLYCOL	TRI	W24	W39	W52	W58	
	M-CRES	OL	TRI	W24	W39	W52	W58	
	METHAN	IOL	TRI	W24	W39	W52	W58	
	METHYL	METHACRYLATE	TRI	W24	W39	W52	W58	
	METHYL	TERT-BUTYL ETHER	TRI	W24	W39	W52	W58	
	TOLUEN	E	TRI	W24	W39	W52	W58	

				SOURCE REDUCTION ACTIV			TTY CODES
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH
RALLS							
CONTINENTAL CEMENT CO	CONTINENTAL CEMENT CO. LLC						
	1,1,1-TRIC	CHLOROETHANE	TRI	W24	W39	W52	W58
	CHLORO	FORM	TRI	W24	W39	W52	W58
SALINE							
CONAGRA FOODS		MARSHALL					
	AMMONIA	A	TRI	W13	W31	W52	W58
SCOTT							
ESSEX ELECTRIC INC.		SIKESTON					
	COPPER		METAL	W13	W19		
	ANTIMON	IY COMPOUNDS	METAL	W13	W19		
	LEAD CO	MPOUNDS	PBT/METAL	W13	W19		
ST. CHARLES							
BRAKING TECHNOLOGIES	INC.	O'FALLON					
	METHYL I	ETHYL KETONE	TRI	W58			
TRUE MANUFACTURING C	CO. INC.	O'FALLON					
	TOLUENE		TRI	W14	W42	W58	
	CHLORO	DIFLUOROMETHANE	TRI	W82			
	DIISOCYA	ANATES	TRI	W13	W39		
	METHYL I	ETHYL KETONE	TRI	W14	W42	W58	
ZOLTEK CORP.		ST. CHARLES					
	AMMONIA	A	TRI	W13	W19		
	CYANIDE	COMPOUNDS	TRI	W13	W19		

				SOURCE REDUCTION ACTIVITY CODES			
FACILITY NAME (CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH
ST. LOUIS							
CAMIE-CAMPBELL INC.		ST. LOUIS					
	DICHLOF	ROMETHANE	TRI	W42			
FUTURA COATINGS INC.		HAZELWOOD					
	TOLUEN	E DIISOCYANATE (MIXED ISOMERS)	TRI	W49			
JOST CHEMICAL CO. INC.		ST. LOUIS					
	NITRATE	COMPOUNDS	TRI	W58			
LHB INDUSTRIES		BERKELEY					
	XYLENE	(MIXED ISOMERS)	TRI	W42			
	TOLUEN	Ε	TRI	W42			
MAC MOLDING CO. INC.		ST. LOUIS					
	STYREN	≣	TRI	W35	W52		
MCDONNELL DOUGLAS CO	RP.	HAZELWOOD					
	1,1-DICH	LORO-1-FLUOROETHANE	TRI	W71			
MID-STATES PAINT & CHEM	IICAL CO.	ST. LOUIS					
	LEAD CC	MPOUNDS	PBT/METAL	W42			
	CERTAIN	GLYCOL ETHERS	TRI	W42			
	TOLUEN	≣	TRI	W42			
	XYLENE	(MIXED ISOMERS)	TRI	W42			
MIDCO PRODUCTS CO. INC	'.	CHESTERFIELD					
	DICHLOR	ROMETHANE	TRI	W13			
MISSOURI METALS LLC		ST. LOUIS					
	CHROMI	JM	METAL	W67	W68		
	NICKEL		METAL	W67	W68	W71	
PENNZOIL-QUAKER STATE	CO.	MARYLAND HEIGH	TS				
	ZINC CO	MPOUNDS	METAL	W39			
Appendix F - Source Reducti	on Activity	by County by Company				Pag	ge 12 of 15

				SOUR	CE REDUCT	ION ACTIV	TITY CODES
FACILITY NAME	CITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH
ST. LOUIS							
PERMEA		MARYLAND HEIGHTS					
	N-METHY	'L-2-PYRROLIDONE	TRI	W42	W58		
ROTO-DIE COMPANY INC	··	EUREKA					
	LEAD		PBT/METAL	W58			
SINCLAIR & RUSH INC.		ST. LOUIS					
	DI(2-ETH	YLHEXYL) PHTHALATE	TRI	W42			
TRUE MANUFACTURING	CO. INC.	OLIVETTE					
	DIISOCY	ANATES	TRI	W13	W39		
	CHLORO	DIFLUOROMETHANE	TRI	W82			
ST. LOUIS CITY							
ALUMAX FOILS INC.		ST. LOUIS					
	CHLORIN	IE	TRI	W13	W82		
	HYDROC	HLORIC ACID ("ACID AEROSOLS" ONLY)	TRI	W13	W82		
ANHEUSER-BUSCH INC.		ST. LOUIS					
	AMMONIA	A	TRI	W13	W52		
BODYCOTE THERMAL PR	OCESSING	ST. LOUIS					
	AMMONIA	A	TRI	W19			
CLEAN CITY SQUARES IN	<i>C</i> .	ST. LOUIS					
	TOLUEN	≣	TRI	W21			
DAZOR MANUFACTURING	G CORP.	ST. LOUIS					
	TETRACH	HLOROETHYLENE	TRI	W13			
FEDERAL MOGUL		ST. LOUIS					
	MANGAN	ESE	METAL	W58			

			SOUR		URCE REDUCTION ACTIVITY CODES			
FACILITY NAME C	ITY	CHEMICAL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
ST. LOUIS CITY								
INDUSTRIAL POWDER COAT	TINGS	ST. LOUIS						
	NICKEL		METAL	W13	W39	W55		
MARQUETTE TOOL & DIE C	<i>O</i> .	ST. LOUIS						
~	TRICHLORO	DETHYLENE	TRI	W81				
PERMACEL SAINT LOUIS INC	C.	ST. LOUIS						
	BARIUM CO	MPOUNDS	METAL	W49				
	ANTIMONY	COMPOUNDS	METAL	W49				
	DECABRON	IODIPHENYL OXIDE	TRI	W13	W36	W51		
	ZINC COMP	OUNDS	METAL	W49				
	LEAD COMP	POUNDS	PBT/METAL	W42				
PROCTER & GAMBLE MANU	FACTURING	CO. ST. LOUIS						
	AMMONIA		TRI	W13	W19	W31	W32	
SULLIVAN								
PREMIUM STANDARD FARM	S - MILAN	MILAN						
	AMMONIA		TRI	W19				
VERNON								
3M COMPANY - NEVADA		NEVADA						
	METHYL ISO	DBUTYL KETONE	TRI	W82				
	XYLENE (MI	XED ISOMERS)	TRI	W39	W82			
	METHYL ET	HYL KETONE	TRI	W39	W82			
	N-METHYL-	2-PYRROLIDONE	TRI	W39	W82			
	ETHYLBENZ	ZENE	TRI	W39	W82			
	CERTAIN G	LYCOL ETHERS	TRI	W39				
	LEAD COMF	POUNDS	PBT/METAL	W82				
	ANTIMONY	COMPOUNDS	METAL	W58				

Page 14 of 15

Appendix F - Source Reduction Activity by County by Company

					SOURCE REDUCTION ACTIVITY CODES				
FACILITY NAME	CITY	СНЕМІС	AL NAME	CLASS	FIRST	SECOND	THIRD	FOURTH	
VERNON									
3M COMPANY - NEVADA			NEVADA						
	CHRON	MIUM COMPOUNDS		METAL	W82				
	ZINC C	OMPOUNDS		METAL	W82				
	METHA	NOL		TRI	W82				
	N-BUT	L ALCOHOL		TRI	W82				
WAYNE									
G. S. ROOFING PRODUCT	S CO. INC.		PIEDMONT						
	ZINC C	OMPOUNDS		METAL	W13				
	CHRON	MIUM COMPOUNDS		METAL	W13				
WEBSTER									
YORK CASKET - MISSOUR	I		MARSHFIELD						
	METHY	L ETHYL KETONE		TRI	W58	W51	W13		