Estimativa

UNIP - Araraquara

Curso: Ciências da Computação

Disciplina: Qualidade de Software

Profo: João Paulo Moreira dos Santos

O processo de administração de projetos de software iniciase com um conjunto de atividades que são coletivamente denominadas Planejamento de Projetos.

→ A primeira dessas atividades é a realização de estimativas.

Qual característica é a mais importante num gerente de projetos?

→ A capacidade para saber o que acontecerá de errado antes que isso de fato aconteça.

- → A estimativa dos recursos, custo e programação de atividades para um esforço de desenvolvimento de software exige:
 - ► Experiência.
 - Acesso a boas informações históricas.
 - Coragem para se comprometer com medidas quantitativas.

- Dilema inicial de um projeto de desenvolvimento.
 - São exigidas estimativas quantitativas, mas não existem informações sólidas disponíveis.
 - Uma análise detalhada dos requisitos de software forneceria as informações necessárias, mas a análise demora semanas ou meses para ser concluída.

- Qual é o objetivo do planejamento de projetos?
 - ► Fornecer uma estrutura que possibilite ao gerente fazer estimativas de recursos, custos e prazos.
 - ■Realizada no início de um projeto.
 - Devem ser atualizadas com o tempo.

- Modelo de estimativa usa fórmulas empiricamente derivadas para prognosticar informações de planejamento do projeto.
- Os dados empíricos que sustentam a maioria dos modelos derivam de uma amostra limitada de projetos.
- Nenhum modelo de estimativa é apropriado para todas as classes de software e em todos os ambientes de desenvolvimento.

- Modelos de recursos consistem de uma ou mais equações empiricamente derivadas que prognosticam o:
 - esforço (em pessoas-mês);
 - duração do projeto (em meses cronológicos);

- Modelos de recursos são classificados em quatro classes:
 - Modelos estáticos de variável simples;
 - Modelos estáticos de múltiplas variáveis;
 - Modelos dinâmicos de múltiplas variáveis; e
 - Modelos teóricos.

► Modelo estático de variável simples:

■ Recurso = $c_1 \times (características estimadas)^{c2}$

■ Modelo de Custo Construtivo.

- Constructive Cost Model
 - → Proposto por Barry Boehm em 1981.
 - É um modelo de estimativa de software.
 - **■**Esforço
 - **→**Prazo
 - **■**Custo
 - COCOMO II: University of Southern California.

- ➡ Hierarquia do modelo COCOMO
 - Básico: modelo estático de valor simples que computa o esforço (e custo) de desenvolvimento de software com uma função do tamanho de programa expresso em linhas de código estimadas.
 - Intermediário: computa o esforço de desenvolvimento de software como uma função do tamanho do programa e de um conjunto de "direcionadores de custo" que incluem avaliações subjetivas do produto, do hardware, do pessoal e dos atributos do projeto.
 - Avançado: incorpora todas as características da versão intermediária, com uma avaliação do impacto dos direcionadores de custo sobre cada passo (análise, projeto, etc.) do processo de engenharia de software.

- O COCOMO considera três modos de desenvolvimento:
 - ► Modo orgânico: projetos simples, relativamente pequenos, nos quais pequenas equipes com boa experiência em aplicações trabalham num conjunto de requisitos não tão rígidos.
 - Modo semidestacado: um projeto intermediário (em tamanho e complexidade) no qual equipes com níveis de experiência mistos devem atingir uma combinação de requisitos rígidos e não tão rígidos.
 - ► Modo embutido: um projeto de software que deve ser desenvolvido dentro de um conjunto rígido de restrições operacionais, de hardware e de software.

- As equações COCOMO básicas assumem a forma:
- \blacksquare E = a_b (KLOC) exp(b_b)
- ightharpoonup D = $c_b(E \exp(d_b))$

► Tabela COCOMO básico

Projeto de software	a_b	b _b	c _b	d_b
Orgânico	2,4	1,05	2,5	0,38
Semidestacado	3,0	1,12	2,5	0,35
Embutido	3,6	1,20	2,5	0,32

- Atributos direcionadores do custo
- 1- Atributos do produto
 - Confiabilidade exigida do software.
 - Tamanho do banco de dados da aplicação.
 - Complexidade do produto.
- 2- Atributos do hardware
 - Restrições ao desempenho de run-time.
 - Restrições de memória.
 - Volatilidade do ambiente de máquina virtual.
 - Tempo de turnaround (tempo para completar o ciclo) exigido.

- Atributos direcionadores do custo
- 3- Atributos de pessoal
 - Capacidade de análise.
 - Capacidade em engenharia de software.
 - Experiência em aplicações.
 - Experiência em máquina virtual.
 - Experiência em linguagens de programação.
- 4- Atributos de projeto
 - Uso de ferramentas de software.
 - → Aplicação de métodos de engenharia de software.
 - Cronograma de atividades de desenvolvimento exigido.

- Cada um dos quinze atributos é classificado de acordo com uma escala de 6 pontos que varia de "muito baixo" a "extremamente elevado" (em importância e valor).
- Baseando-se na classificação, um multiplicador de esforços é determinado.
 - O produto de todos os resultados de multiplicadores de esforços tornase um **fator de ajustamento de esforço** (EAF). Variam de 0,9 a 1,4.

As equações COCOMO intermediário assume a forma:

 \blacksquare E = $a_i(LOC)$ exp(b_i) x EAF

► Tabela COCOMO intermediário

Projeto de software	a _i	b _i
Orgânico	3,2	1,05
Semidestacado	3,0	1,12
Embutido	2,8	1,20

- Exemplo projeto de nível básico semidestacado:
 - **►** LOC = 33,3