Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le début chapitre 18 : espaces vectoriels. Les exercices porteront sur le chapitre 17 : analyse asymptotique.

Chapitre 18: Espaces vectoriels

 \mathbb{K} est un corps fixé, la plupart du temps \mathbb{R} ou \mathbb{C} .

Espaces vectoriels

Opérations dans les espaces vectoriels, exemples

Axiomes des espaces vectoriels. (\star) Règles de calcul : soit $\lambda \in \mathbb{K}$, $x \in E$, alors $\lambda 0_E = 0E$, $0_K x = 0_E$, -x = (-1)x, $\lambda x = 0_E$ \iff ($\lambda = 0_K \lor x = 0_E$). Exemples fondamentaux, \mathbb{K}^n , $\mathcal{F}(X, E)$, $\mathcal{M}_{n,p}(\mathbb{K})$. Si $\mathbb{K} \subset L$ est une extension de corps, L est un K-ev. Produit d'espaces vectoriels.

Sous-espaces vectoriels

Notion de sous-espaces vectoriel. (\star) F est un sev de E ssi $0_E \in F$ et $\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, x + \lambda y \in F$. (\star) F est un sev de E ssi F est non vide et $\forall (x,y) \in F^2, \forall (\lambda,\mu) \in \mathbb{K}^2, \lambda x + \mu y \in F$. Exemples : plans vectoriels de \mathbb{R}^3 , suites à support fini, $\mathbb{K}_n[X]$, espaces fonctionnels, solutions d'équation différentielles homogènes, etc. Un intersection de sev est un sev. Sous-espace engendré par une partie $\operatorname{Vect}(A)$. (\star) $\operatorname{Vect}(A)$ est le plus petit sev contenent A. (\star) A est un sev ssi $A = \operatorname{Vect}(A)$, $A \subset B \Rightarrow \operatorname{Vect}(A) \subset \operatorname{Vect}(B)$.

Familles finies de vecteurs.

Combinaison linéaire de vecteurs. (\star) Vect $(x_1,...,x_n)$ est l'ensemble des combinaisons linéaires des $(x_i)_i$. (\star) Pour tout $\lambda \in \mathbb{K}^*$, $i \in [[1,p]]$, Vect $(x_1,...,x_p)$ = Vect $(x_1,...,x_p)$. Pour tout $\lambda \in \mathbb{K}$, $i \neq j$, Vect $(x_1,...,x_p)$ = Vect $(x_1,...,x_p)$.

- Familles finies génératrices. Toute sur-famille d'une famille génératrice est génératrice. Toute permutation d'une famille génératrice finie est génératrice.
- Famille finie libre, liée. Si l'un des vecteurs est CL des autres, la famille est liée. Toute sous-famille d'une famille libre est libre. (★) Toute famille de polynômes échelonnée est libre.
- Bases, exemples des bases canoniques de \mathbb{K}^n , $\mathbb{K}_n[X]$, $\mathcal{M}_{n,p}(\mathbb{K})$. (*) Existence et unicité de la décomposition dans une base donnée.

Familles infinies de vecteurs.

Extension des notions précédentes. Famille à support fini. (\star) La famille $(x_i)_{i \in I}$ est libre ssi $\forall J \subset I$ fini $(x_i)_{i \in J}$ est libre.

Somme de sous-espaces vectoriels.

Somme de sev. $F+G = \text{Vect}(F \cup G)$. Somme de n sev. Somme directe. (\star) F et G sont en somme directe ssi $F \cap G = \{0\}$.

Somme directe de n sev. Les sev F_1, \ldots, F_n sont en somme directe ssi $\forall i \in [[2, n]], F_i \cap \sum_{j=1}^{i-1} F_j = \{0\}.$

Dimension d'un espace vectoriel

Construction de bases.

Notion de dimension finie. (\star) Existence de base dans un ev de dimension finie. Théorème de la base extraite. (\star) Théorème de la base incomplète (ou complétion en base).

* * * *