Notes on Measure-Theoretic Probability

Paulo Eduardo Rauber 2022

1 Measure spaces

Definition 1.1. A set S contains s if $s \in S$. A set S includes F if $F \subseteq S$.

Definition 1.2. An algebra Σ_0 on a set S is a set of subsets of S such that

- $S \in \Sigma_0$,
- If $F \in \Sigma_0$, then $F^c \in \Sigma_0$, where $F^c = S \setminus F$,
- If $F, G \in \Sigma_0$, then $F \cup G \in \Sigma_0$.

Proposition 1.1. If Σ_0 is an algebra on S,

- $\emptyset \in \Sigma_0$,
- If $F, G \in \Sigma_0$, then $F \cap G \in \Sigma_0$.

Definition 1.3. A trivial algebra on S is given by $\{\emptyset, S\}$.

Definition 1.4. A σ -algebra Σ on S is an algebra on S such that

$$\bigcup_{n\in\mathbb{N}} F_n \in \Sigma$$

for any sequence $(F_n \in \Sigma \mid n \in \mathbb{N})$, which also implies

$$\bigcap_{n\in\mathbb{N}}F_n\in\Sigma.$$

Definition 1.5. A measurable space (S, Σ) is a pair composed of a set S and a σ -algebra Σ on S. An element of Σ is called a Σ -measurable subset of S.

Definition 1.6. Let \mathcal{C} be a set of subsets of S. The σ -algebra $\sigma(\mathcal{C})$ generated by \mathcal{C} is the smallest σ -algebra Σ on S such that $\mathcal{C} \subseteq \Sigma$. The σ -algebra $\sigma(\mathcal{C})$ is the intersection of all the σ -algebras on S that include \mathcal{C} .

Note that the set $\mathcal{P}(S)$ of all subsets of S is a σ -algebra on S that includes any set of subsets \mathcal{C} .

Definition 1.7. The Borel $\mathcal{B}(\mathbb{R})$ σ -algebra is the σ -algebra on \mathbb{R} generated by the set of open sets of real numbers.

Proposition 1.2. Let $\pi(\mathbb{R}) = \{(-\infty, x] \mid x \in \mathbb{R}\}$ be the set that contains every interval that contains every real number smaller or equal to every real number $x \in \mathbb{R}$. The σ -algebra generated by $\pi(\mathbb{R})$ is $\sigma(\pi(\mathbb{R})) = \mathcal{B}(\mathbb{R})$.

Proof. First, recall that $(-\infty, x] = \bigcap_{n \in \mathbb{N}^+} (-\infty, x + n^{-1})$. Because $\mathcal{B}(\mathbb{R})$ is a σ -algebra on \mathbb{R} that contains every $(-\infty, x + n^{-1})$, we have $(-\infty, x] \in \mathcal{B}(\mathbb{R})$. Because $\mathcal{B}(\mathbb{R})$ is a σ -algebra on \mathbb{R} that includes $\pi(\mathbb{R})$ and $\sigma(\pi(\mathbb{R}))$ is the smallest σ -algebra on \mathbb{R} that includes $\pi(\mathbb{R})$, we have $\sigma(\pi(\mathbb{R})) \subseteq \mathcal{B}(\mathbb{R})$.

Second, recall that every open set of real numbers is a countable union of open intervals. Because $\sigma(\pi(\mathbb{R}))$ is a σ -algebra on \mathbb{R} , if it contains every open interval, then it contains every open set of real numbers. This would also imply that $\mathcal{B}(\mathbb{R}) \subseteq \sigma(\pi(\mathbb{R}))$, since $\sigma(\pi(\mathbb{R}))$ is a σ -algebra on \mathbb{R} and $\mathcal{B}(\mathbb{R})$ is the the smallest σ -algebra on \mathbb{R} that contains every open set of real numbers. In order to show that $\sigma(\pi(\mathbb{R}))$ contains every open interval, first note that $(a, u] = (-\infty, u] \cap (-\infty, a]^c \in \sigma(\pi(\mathbb{R}))$ for any u > a and then note that $(a, b) = \bigcup_{n \in \mathbb{N}^+} (a, b - \epsilon n^{-1}]$ for $\epsilon = (b - a)/2$.

Definition 1.8. Consider an algebra Σ_0 on a set S. A function $\mu_0 : \Sigma_0 \to [0, \infty]$ is called additive if $\mu_0(\emptyset) = 0$ and, for any $F, G \in \Sigma_0$ such that $F \cap G = \emptyset$,

$$\mu_0(F \cup G) = \mu_0(F) + \mu_0(G).$$

Definition 1.9. A function $\mu_0: \Sigma_0 \to [0, \infty]$ is called countably additive if $\mu_0(\emptyset) = 0$ and, for any sequence $(F_n \in \Sigma_0 \mid n \in \mathbb{N})$ such that $F_n \cap F_m = \emptyset$ for $n \neq m$,

$$\mu_0\left(\bigcup_{n\in\mathbb{N}}F_n\right)=\sum_{n\in\mathbb{N}}\mu_0(F_n)$$

whenever $\bigcup_{n\in\mathbb{N}} F_n \in \Sigma_0$. This last requirement is always met when Σ_0 is a σ -algebra.

Definition 1.10. Let (S, Σ) be a measurable space. A countably additive function $\mu : \Sigma \to [0, \infty]$ is called a measure on (S, Σ) . The triple (S, Σ, μ) is called a measure space.

Proposition 1.3. A measure space (S, Σ, μ) has the following properties:

- If $\mu(S) < \infty$ and $A, B \in \Sigma$, then $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$,
- If $A, B \in \Sigma$, then $\mu(A \cup B) \le \mu(A) + \mu(B)$,
- $\mu\left(\bigcup_{n\in\mathbb{N}}F_n\right)\leq\sum_{n\in\mathbb{N}}\mu(F_n)$ for any sequence $(F_n\in\Sigma\mid n\in\mathbb{N}).$

Definition 1.11. A measure μ on the measurable space (S, Σ) is called finite if $\mu(S) < \infty$.

Definition 1.12. A measure μ on the measurable space (S, Σ) is called σ -finite if there is a sequence $(S_n \in \Sigma \mid n \in \mathbb{N})$ such that $\mu(S_n) < \infty$ and $\bigcup_{n \in \mathbb{N}} S_n = S$.

Definition 1.13. A measure μ on the measurable space (S, Σ) is called a probability measure if $\mu(S) = 1$. The triple (S, Σ, μ) is then called a probability triple. A set $F \in \Sigma$ is called μ -null if $\mu(F) = 0$. If a statement is false only for elements of a μ -null set $F \in \Sigma$, then the statement is said to be true almost everywhere.

Definition 1.14. A π -system \mathcal{I} on S is a set of subsets of S such that if $I_1, I_2 \in \mathcal{I}$, then $I_1 \cap I_2 \in \mathcal{I}$.

Proposition 1.4. Let $\Sigma = \sigma(\mathcal{I})$ be the σ -algebra generated by a π -system \mathcal{I} . If μ_1 and μ_2 are measures on the measurable space (S, Σ) such that $\mu_1(S) = \mu_2(S) < \infty$ and $\mu_1(I) = \mu_2(I)$ for any $I \in \mathcal{I}$, then $\mu_1(F) = \mu_2(F)$ for any $F \in \Sigma$. Therefore, if two probability measures agree on a π -system, then they agree on the σ -algebra generated by that π -system.

Theorem 1.1 (Carathéodory's extension theorem). If Σ_0 is an algebra on S and $\Sigma = \sigma(\Sigma_0)$ is the σ -algebra generated by Σ_0 and $\mu_0 : \Sigma_0 \to [0, \infty]$ is a countably additive function, then there exists a measure μ on the measurable space (S, Σ) such that $\mu(F) = \mu_0(F)$ for any $F \in \Sigma_0$. If $\mu_0(S) < \infty$, then μ is unique, since an algebra is a π -system.

Definition 1.15. Let Σ_0 be the algebra on the set S = (0,1] that contains every F such that

$$F = \bigcup_{k=1}^{r} (a_k, b_k],$$

where $r \in \mathbb{N}$ and $0 \le a_1 \le b_1 \le \ldots \le a_r \le b_r \le 1$.

Let $\mu_0: \Sigma_0 \to [0,1]$ denote the countably additive function given by

$$\mu_0(F) = \sum_{k=1}^r (b_k - a_k).$$

Let $\mathcal{B}((0,1]) = \sigma(\Sigma_0)$ be the σ -algebra generated by Σ_0 . The unique measure $\mu : \mathcal{B}((0,1]) \to [0,1]$ on the measurable space $((0,1],\mathcal{B}((0,1]))$ that agrees with μ_0 on the algebra Σ_0 is called the Lebesgue measure Leb on $((0,1],\mathcal{B}((0,1]))$. The σ -finite Lebesgue measure Leb on the measurable space $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ is similarly defined.

Intuitively, a Lebesgue measure Leb assigns lenghts.

Definition 1.16. Let $a_n \uparrow a$ denote that a sequence of real numbers $(a_n \mid n \in \mathbb{N})$ is such that $a_n \leq a_{n+1}$ and $a = \lim_{n \to \infty} a_n$. Similarly, let $a_n \downarrow a$ denote that a sequence of real numbers $(a_n \mid n \in \mathbb{N})$ is such that $a_{n+1} \leq a_n$ and $a = \lim_{n \to \infty} a_n$.

Definition 1.17. Let $A_n \uparrow A$ denote that a sequence of sets $(A_n \mid n \in \mathbb{N})$ is such that $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n \in \mathbb{N}} A_n$. Similarly, let $A_n \downarrow A$ denote that a sequence of sets $(A_n \mid n \in \mathbb{N})$ is such that $A_{n+1} \subseteq A_n$ and $A = \bigcap_{n \in \mathbb{N}} A_n$.

Proposition 1.5 (Monotone-convergence property of measure). Consider the measure space (S, Σ, μ) . For a sequence $(F_n \in \Sigma \mid n \in \mathbb{N})$, if $F_n \uparrow F$, then $\mu(F_n) \uparrow \mu(F)$. Similarly, for a sequence $(G_n \in \Sigma \mid n \in \mathbb{N})$, if $G_n \downarrow G$ and $\mu(G_k) < \infty$ for some k, then $\mu(G_n) \downarrow \mu(G)$.

2 Events

Definition 2.1. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. An element $\omega \in \Omega$ is called an outcome. The set Ω is called an outcome space. A set of outcomes $F \in \mathcal{F}$ is called an event. The probability measure $\mathbb{P} : \mathcal{F} \to [0, 1]$ is defined on a σ -algebra \mathcal{F} on the outcome space Ω .

A probability $\mathbb{P}(F)$ assigns a degree of belief to the statement that the outcome $\omega \in \Omega$ of an experiment belongs to the event $F \in \mathcal{F}$. For instance, a probability $\mathbb{P}(F) = 1$ indicates that $\omega \in F$ almost surely, while a probability $\mathbb{P}(F) = 0$ indicates that $\omega \notin F$ almost surely. In general, a statement about an outcome is said to be true almost surely if $\mathbb{P}(F) = 1$, where $F \in \mathcal{F}$ is the event that contains every outcome $\omega \in \Omega$ for which the statement is true.

Example 2.1. Consider an experiment where a coin is tossed twice. Let H=0 represent heads and T=1 represent tails. The outcome space Ω may be defined as $\Omega = \{(H,H),(H,T),(T,H),(T,T)\}$. The σ -algebra \mathcal{F} on the outcome space Ω may be defined as the set of all subsets of Ω , which is denoted by $\mathcal{F} = \mathcal{P}(\Omega)$. The event F where at least one head is observed is then given by $F = \{(H,H),(H,T),(T,H)\}$.

Example 2.2. Consider an experiment where a coin is tossed infinitely often. The outcome space Ω may be defined as the set of infinite binary sequences $\Omega = \{H, T\}^{\mathbb{N}}$. In order to at least assign probabilities to every event $F = \{\omega \in \Omega \mid \omega_n = W\}$ where $n \in \mathbb{N}$ and $W \in \{H, T\}$, the σ -algebra \mathcal{F} on the outcome space Ω may be generated as $\mathcal{F} = \sigma(\{\{\omega \in \Omega \mid \omega_n = W\} \mid n \in \mathbb{N}, W \in \{H, T\}\})$.

Proposition 2.1. Consider a sequence of events $(F_n \in \mathcal{F} \mid n \in \mathbb{N})$. If $\mathbb{P}(F_n) = 1$ for every $n \in \mathbb{N}$, then $\mathbb{P}(\cap_{n \in \mathbb{N}} F_n) = 1$.

Definition 2.2. The infimum $\inf_n x_n$ of a sequence of real numbers $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is the largest $r \in [-\infty, \infty]$ such that $r \leq x_n$ for every $n \in \mathbb{N}$. The supremum $\sup_n x_n$ of a sequence of real numbers $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is the smallest $r \in [-\infty, \infty]$ such that $r \geq x_n$ for every $n \in \mathbb{N}$.

Definition 2.3. The limit inferior of a sequence of real numbers $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is defined by

$$\liminf_{n \to \infty} x_n = \sup_{m} \inf_{n \ge m} x_n = \lim_{m \to \infty} \inf_{n \ge m} x_n.$$

Note that the sequence $(\inf_{n\geq m} x_n \mid m\in\mathbb{N})$ is non-decreasing. Let $z\in[-\infty,\infty]$. If $z<\liminf_{n\to\infty} x_n$, then $z< x_n$ for all sufficiently large $n\in\mathbb{N}$. If $z>\liminf_{n\to\infty} x_n$, then $z>x_n$ for infinitely many $n\in\mathbb{N}$.

Definition 2.4. The limit superior of a sequence of real numbers $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is defined by

$$\limsup_{n \to \infty} x_n = \inf_{m} \sup_{n \ge m} x_n = \lim_{m \to \infty} \sup_{n \ge m} x_n.$$

Note that the sequence $(\sup_{n\geq m} x_n \mid m\in\mathbb{N})$ is non-increasing. Let $z\in[-\infty,\infty]$. If $z>\limsup_{n\to\infty} x_n$, then $z>x_n$ for all sufficiently large $n\in\mathbb{N}$. If $z<\limsup_{n\to\infty} x_n$, then $z< x_n$ for infinitely many $n\in\mathbb{N}$.

Proposition 2.2. For any sequence $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$, the limit inferior and the limit superior are related by

$$-\liminf_{n\to\infty}x_n=\lim_{m\to\infty}-\inf_{n\geq m}x_n=\lim_{m\to\infty}\sup_{n\geq m}-x_n=\limsup_{n\to\infty}-x_n.$$

Definition 2.5. A sequence of real numbers $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ is said to converge in $[-\infty, \infty]$ if and only if

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = \lim_{n \to \infty} x_n.$$

Definition 2.6. The limit inferior of a sequence of sets $(E_n \mid n \in \mathbb{N})$ is defined by

$$\liminf_{n \to \infty} E_n = \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} E_n.$$

Let $F_m = \bigcap_{n \geq m} E_n$. Note that $F_m \subseteq F_{m+1}$. Furthermore, $\omega \in \liminf_{n \to \infty} E_n$ if and only if $\omega \in E_n$ for all sufficiently large $n \in \mathbb{N}$.

Definition 2.7. The limit superior of a sequence of sets $(E_n \mid n \in \mathbb{N})$ is defined by

$$\limsup_{n \to \infty} E_n = \bigcap_{m \in \mathbb{N}} \bigcup_{n > m} E_n.$$

Let $F_m = \bigcup_{n \geq m} E_n$. Note that $F_m \supseteq F_{m+1}$. Furthermore, $\omega \in \limsup_{n \to \infty} E_n$ if and only if $\omega \in E_n$ for infinitely many $n \in \mathbb{N}$.

Proposition 2.3. For any sequence of sets $(E_n \subseteq \Omega \mid n \in \mathbb{N})$, the limit inferior and the limit superior are related by

$$\left(\liminf_{n\to\infty} E_n\right)^C = \limsup_{n\to\infty} E_n^C.$$

Definition 2.8. Consider a measurable space (Ω, \mathcal{F}) . The indicator function $\mathbb{I}_F : \Omega \to \{0, 1\}$ of an event $F \in \mathcal{F}$ is defined by

$$\mathbb{I}_F(\omega) = \begin{cases} 1, & \text{if } \omega \in F, \\ 0, & \text{if } \omega \notin F. \end{cases}$$

Proposition 2.4. For any outcome $\omega \in \Omega$ and sequence of events $(E_n \in \mathcal{F} \mid n \in \mathbb{N})$,

$$\mathbb{I}_{\lim\inf_{n\to\infty}E_n}(\omega)=\liminf_{n\to\infty}\mathbb{I}_{E_n}(\omega),$$

$$\mathbb{I}_{\limsup_{n\to\infty} E_n}(\omega) = \limsup_{n\to\infty} \mathbb{I}_{E_n}(\omega).$$

Lemma 2.1 (Reverse Fatou Lemma). For a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence $(E_n \in \mathcal{F} \mid n \in \mathbb{N})$,

$$\mathbb{P}\left(\limsup_{n\to\infty} E_n\right) \ge \limsup_{n\to\infty} \mathbb{P}(E_n).$$

Proof. Let $F_m = \bigcup_{n \geq m} E_n$ such that $F_m \supseteq F_{m+1}$. By definition, $F_m \downarrow \limsup_{n \to \infty} E_n$, which implies $\mathbb{P}(F_m) \downarrow \mathbb{P}(\limsup_{n \to \infty} E_n)$. Because $A \subseteq (B \cup A)$ implies $\mathbb{P}(A) \leq \mathbb{P}(B \cup A)$ for any events $A, B \in \mathcal{F}$,

$$\mathbb{P}(F_m) = \mathbb{P}\left(\bigcup_{n \ge m} E_n\right) \ge \sup_{n \ge m} \mathbb{P}(E_n).$$

By taking the limit of both sides of the equation above when $m \to \infty$,

$$\lim_{m \to \infty} \mathbb{P}(F_m) = \mathbb{P}\left(\limsup_{n \to \infty} E_n\right) \ge \lim_{m \to \infty} \sup_{n \ge m} \mathbb{P}(E_n) = \limsup_{n \to \infty} \mathbb{P}(E_n).$$

Lemma 2.2 (Fatou Lemma for sets). For a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence $(E_n \in \mathcal{F} \mid n \in \mathbb{N})$,

$$\mathbb{P}\left(\liminf_{n\to\infty} E_n\right) \le \liminf_{n\to\infty} \mathbb{P}(E_n).$$

Proof. Let $F_m = \bigcap_{n \geq m} E_n$ such that $F_m \subseteq F_{m+1}$. By definition, $F_m \uparrow \liminf_{n \to \infty} E_n$, which implies $\mathbb{P}(F_m) \uparrow \mathbb{P}(\liminf_{n \to \infty} E_n)$. Because $(A \cap B) \subseteq B$ implies $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$ for any events $A, B \in \mathcal{F}$,

$$\mathbb{P}(F_m) = \mathbb{P}\left(\bigcap_{n \ge m} E_n\right) \le \inf_{n \ge m} \mathbb{P}(E_n).$$

By taking the limit of both sides of the equation above when $m \to \infty$,

$$\lim_{m \to \infty} \mathbb{P}(F_m) = \mathbb{P}\left(\liminf_{n \to \infty} E_n\right) \le \lim_{m \to \infty} \inf_{n \ge m} \mathbb{P}(E_n) = \liminf_{n \to \infty} \mathbb{P}(E_n).$$

Lemma 2.3 (First Borel-Cantelli Lemma). For a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of events $(E_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $\sum_{n=0}^{\infty} \mathbb{P}(E_n) < \infty$,

$$\mathbb{P}\left(\limsup_{n\to\infty} E_n\right) = 0.$$

Proof. Let $F_m = \bigcup_{n \geq m} E_n$ such that $F_m \supseteq F_{m+1}$. By definition, $F_m \downarrow \limsup_{n \to \infty} E_n$, which implies $\mathbb{P}(F_m) \downarrow \mathbb{P}(\limsup_{n \to \infty} E_n)$. Because $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ for any events $A, B \in \mathcal{F}$,

$$\mathbb{P}(F_m) = \mathbb{P}\left(\bigcup_{n \ge m} E_n\right) \le \sum_{n \ge m} \mathbb{P}(E_n).$$

By taking the limit of both sides of the equation above when $m \to \infty$,

$$\lim_{m \to \infty} \mathbb{P}(F_m) = \mathbb{P}\left(\limsup_{n \to \infty} E_n\right) \le \lim_{m \to \infty} \sum_{n > m} \mathbb{P}(E_n) = 0,$$

where the last equality comes from the fact that, for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that, for all $m - 1 \ge N$,

$$\epsilon > \left| \sum_{n=0}^{\infty} \mathbb{P}(E_n) - \sum_{n=0}^{m-1} \mathbb{P}(E_n) \right| = \sum_{n > m} \mathbb{P}(E_n).$$

3 Random variables

Definition 3.1. Consider a measurable space (S, Σ) and a function $h: S \to \mathbb{R}$. The function h^{-1} is defined as

$$h^{-1}(A) = \{ s \in S \mid h(s) \in A \}$$

for any $A \subseteq \mathbb{R}$. The function h is called Σ -measurable if $h^{-1}(A) \in \Sigma$ for every $A \in \mathcal{B}(\mathbb{R})$. In an extended definition, a function $h: S \to [-\infty, \infty]$ is called Σ -measurable if $h^{-1}(A) \in \Sigma$ for every $A \in \mathcal{B}([-\infty, \infty])$.

Definition 3.2. A $\mathcal{B}(\mathbb{R})$ -measurable function $h: \mathbb{R} \to \mathbb{R}$ is said to be Borel.

Definition 3.3. The set of Σ-measurable functions on S is denoted by mΣ. The set of non-negative Σ-measurable functions on S is denoted by $(mΣ)^+$. The set of bounded Σ-measurable functions on S is denoted by bΣ.

Proposition 3.1. Consider a function $h: S \to \mathbb{R}$. For any set $A \subseteq \mathbb{R}$,

$$h^{-1}(A^c) = \{ s \in S \mid h(s) \in A^c \} = \{ s \in S \mid h(s) \in A \}^c = (h^{-1}(A))^c.$$

Proposition 3.2. Consider a function $h: S \to \mathbb{R}$. For any sequence of sets $(A_n \subseteq \mathbb{R} \mid n \in \mathbb{N})$,

$$h^{-1}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \left\{s\in S\mid h(s)\in\bigcup_{n\in\mathbb{N}}A_n\right\} = \bigcup_{n\in\mathbb{N}}\left\{s\in S\mid h(s)\in A_n\right\} = \bigcup_{n\in\mathbb{N}}h^{-1}(A_n).$$

Similarly,

$$h^{-1}\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\left\{s\in S\mid h(s)\in\bigcap_{n\in\mathbb{N}}A_n\right\}=\bigcap_{n\in\mathbb{N}}\left\{s\in S\mid h(s)\in A_n\right\}=\bigcap_{n\in\mathbb{N}}h^{-1}\left(A_n\right).$$

Proposition 3.3. Consider a measurable space (S, Σ) and a function $h : S \to \mathbb{R}$. The set $\mathcal{E} = \{B \in \mathcal{B}(\mathbb{R}) \mid h^{-1}(B) \in \Sigma\}$ is a σ -algebra on \mathbb{R} .

Proof. First, note that $h^{-1}(\mathbb{R}) = \{s \in S \mid h(s) \in \mathbb{R}\} = S \text{ and } S \in \Sigma$. Therefore, $\mathbb{R} \in \mathcal{E}$. Consider an element $B \in \mathcal{E}$. In that case, $h^{-1}(B) \in \Sigma$, which implies $(h^{-1}(B))^c = h^{-1}(B^c) \in \Sigma$. Therefore, $B^c \in \mathcal{E}$. Finally, consider a sequence $(B_n \in \mathcal{E} \mid n \in \mathbb{N})$. In that case, $h^{-1}(B_n) \in \Sigma$ for every $n \in \mathbb{N}$, which implies $\cup_n h^{-1}(B_n) \in \Sigma$. Therefore, $h^{-1}(\cup_n B_n) \in \Sigma$ and $\cup_n B_n \in \mathcal{E}$.

Proposition 3.4. Consider a measurable space (S, Σ) , a function $h : S \to \mathbb{R}$, and a set \mathcal{C} of subsets of \mathbb{R} . If $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R})$ and $h^{-1}(C) \in \Sigma$ for every $C \in \mathcal{C}$, then h is Σ -measurable.

Proof. Note that the set $\mathcal{E} = \{B \in \mathcal{B}(\mathbb{R}) \mid h^{-1}(B) \in \Sigma\}$ is a σ -algebra on \mathbb{R} . Because $\mathcal{C} \subseteq \mathcal{E}$, $\mathcal{E} \subseteq \mathcal{B}(\mathbb{R})$, and $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra that includes \mathcal{C} , we know that $\mathcal{E} = \mathcal{B}(\mathbb{R})$, which implies that $h^{-1}(B) \in \Sigma$ for every $B \in \mathcal{B}(\mathbb{R})$.

Proposition 3.5. If a function $h: \mathbb{R} \to \mathbb{R}$ is continuous, then it is Borel.

Proof. First, consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and let \mathcal{C} be the set of open sets of real numbers. Recall that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$. Second, recall that a function h is continuous if $h^{-1}(A) \in \mathcal{C}$ is an open set for every open set $A \in \mathcal{C}$. Using the previous result, $h^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for every $B \in \mathcal{B}(\mathbb{R})$.

Proposition 3.6. Consider a measurable space (S, Σ) and a function $h: S \to \mathbb{R}$. For any $c \in \mathbb{R}$, define

$$\{h \le c\} = h^{-1}((-\infty, c]) = \{s \in S \mid h(s) \le c\}.$$

If $\{h \leq c\} \in \Sigma$ for every $c \in \mathbb{R}$, then h is Σ -measurable.

Proof. First, let $C = \{(-\infty, x] \mid x \in \mathbb{R}\}$ be the set that contains every interval that contains every real number smaller or equal to every real number $x \in \mathbb{R}$. Recall that $\mathcal{B}(\mathbb{R}) = \sigma(C)$. By assumption, $h^{-1}(C) \in \Sigma$ for every $C \in C$, and so h^{-1} is Σ -measurable.

Note that analogous results apply for $\{h \ge c\}$, $\{h < c\}$, and $\{h > c\}$.

Proposition 3.7. Consider a measurable space (S, Σ) . Let $h: S \to \mathbb{R}, h_1: S \to \mathbb{R}$, and $h_2: S \to \mathbb{R}$ be Σ -measurable functions and let $\lambda \in \mathbb{R}$ be a constant. In that case, $h_1 + h_2$ is a Σ -measurable function, h_1h_2 is a Σ -measurable function, and λh is a Σ -measurable function.

Proof. We will only show the first of these statements. Based on the previous result, if $\{h_1 + h_2 > c\} = \{s \in S \mid h_1(s) + h_2(s) > c\} \in \Sigma$ for every $c \in \mathbb{R}$, then $h_1 + h_2$ is Σ -measurable. Recall that $h_1(s) + h_2(s) > c$ if and only if there is a rational $q \in \mathcal{Q}$ such that $h_1(s) > q > c - h_2(s)$. Therefore,

$$\{h_1 + h_2 > c\} = \{s \in S \mid h_1(s) > q \text{ and } q > c - h_2(s) \text{ for some } q \in \mathcal{Q}\} = \bigcup_{q \in \mathcal{Q}} \{s \in S \mid h_1(s) > q \text{ and } q > c - h_2(s)\},$$

which is a countable union of elements of Σ given by

$$\{h_1 + h_2 > c\} = \bigcup_{g \in \mathcal{Q}} \{s \in S \mid h_1(s) > q\} \cap \{s \in S \mid q > c - h_2(s)\} = \bigcup_{g \in \mathcal{Q}} \{h_1 > q\} \cap \{h_2 > c - q\}.$$

Proposition 3.8. Consider a measurable space (S, Σ) and a Σ -measurable function $h : S \to \mathbb{R}$. Consider also the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and a $\mathcal{B}(\mathbb{R})$ -measurable function $f : \mathbb{R} \to \mathbb{R}$. For all $s \in S$, let $(f \circ h)(s) = f(h(s))$. For any $A \subseteq \mathbb{R}$,

$$(f \circ h)^{-1}(A) = \{s \in S \mid (f \circ h)(s) \in A\} = \{s \in S \mid f(h(s)) \in A\}.$$

Note that $f^{-1}(A) \subseteq \mathbb{R}$ for any $A \subseteq \mathbb{R}$, since $f^{-1}(A) = \{r \in \mathbb{R} \mid f(r) \in A\}$. Therefore,

$$(h^{-1} \circ f^{-1})(A) = h^{-1}(f^{-1}(A)) = \{s \in S \mid h(s) \in f^{-1}(A)\} = \{s \in S \mid f(h(s)) \in A\} = (f \circ h)^{-1}(A),$$

where we used the fact that $f(h(s)) \in A$ if and only if $h(s) \in f^{-1}(A)$, for all $s \in S$ and $A \subseteq \mathbb{R}$. Furthermore, since $f^{-1}(A) \in \mathcal{B}(\mathbb{R})$ for any $A \in \mathcal{B}(\mathbb{R})$ and $h^{-1}(f^{-1}(A)) \in \Sigma$ for any $f^{-1}(A) \in \mathcal{B}(\mathbb{R})$, the function $f \circ h$ is Σ -measurable.

Definition 3.4. Consider the measurable spaces (S_1, Σ_1) and (S_2, Σ_2) . A function $h: S_1 \to S_2$ is called Σ_1/Σ_2 -measurable if $h^{-1}(A) \in \Sigma_1$ for every $A \in \Sigma_2$. Therefore, a function on a measurable space (S, Σ) is Σ -measurable if it is $\Sigma/\mathcal{B}(\mathbb{R})$ -measurable.

Consider a measurable space (S, Σ) and a sequence of $\Sigma/\mathcal{B}([-\infty, \infty])$ -measurable functions $(h_n \mid n \in \mathbb{N})$.

Definition 3.5. For any $s \in S$, the function $\inf_n h_n : S \to [-\infty, \infty]$ is given by

$$\left(\inf_{n} h_{n}\right)(s) = \inf_{n} h_{n}(s).$$

Proposition 3.9. The function $\inf_n h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable.

Proof. Note that if $\{\inf_n h_n \ge c\} \in \Sigma$ for every $c \in \mathbb{R}$, then $\inf_n h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable. For every $c \in \mathbb{R}$,

$$\{\inf_n h_n \ge c\} = \{s \in S \mid \inf_n h_n(s) \ge c\} = \{s \in S \mid h_n(s) \ge c \text{ for all } n \in \mathbb{N}\},$$

where we used the fact that $\inf_n h_n(s) \ge c$ if and only if $h_n(s) \ge c$ for all $n \in \mathbb{N}$, for all $s \in S$ and $c \in \mathbb{R}$. Therefore,

$$\{\inf_{n} h_n \ge c\} = \bigcap_{n \in \mathbb{N}} \{s \in S \mid h_n(s) \ge c\} = \bigcap_{n \in \mathbb{N}} \{h_n \ge c\},$$

which is a countable intersection of elements of Σ .

Definition 3.6. For any $s \in S$, the function $\sup_n h_n : S \to [-\infty, \infty]$ is given by

$$\left(\sup_{n} h_{n}\right)(s) = \sup_{n} h_{n}(s).$$

Proposition 3.10. The function $\sup_n h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable.

Proof. Note that if $\{\sup_n h_n \leq c\} \in \Sigma$ for every $c \in \mathbb{R}$, then $\sup_n h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable. For every $c \in \mathbb{R}$,

$$\{\sup_{n} h_n \le c\} = \{s \in S \mid \sup_{n} h_n(s) \le c\} = \{s \in S \mid h_n(s) \le c \text{ for all } n \in \mathbb{N}\},$$

where we used the fact that $\sup_n h_n(s) \leq c$ if and only if $h_n(s) \leq c$ for all $n \in \mathbb{N}$, for all $s \in S$ and $c \in \mathbb{R}$. Therefore,

$$\{\sup_{n} h_n \le c\} = \bigcap_{n \in \mathbb{N}} \{s \in S \mid h_n(s) \le c\} = \bigcap_{n \in \mathbb{N}} \{h_n \le c\},$$

which is a countable intersection of elements of Σ .

Definition 3.7. For any $s \in S$, the function $\lim \inf_{n \to \infty} h_n : S \to [-\infty, \infty]$ is given by

$$\left(\liminf_{n\to\infty} h_n\right)(s) = \liminf_{n\to\infty} h_n(s).$$

Proposition 3.11. The function $\liminf_{n\to\infty} h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable.

Proof. Each function in the sequence $(L_n = \inf_{r \geq n} h_r \mid n \in \mathbb{N})$ is $\Sigma/\mathcal{B}([-\infty, \infty])$ -measurable, which implies that $\sup_n L_n$ is $\Sigma/\mathcal{B}([-\infty, \infty])$ -measurable. Also,

$$\left(\liminf_{n\to\infty}h_n\right)(s)=\liminf_{n\to\infty}h_n(s)=\sup_n\inf_{r\geq n}h_r(s)=\sup_n\left(\inf_{r\geq n}h_r\right)(s)=\sup_nL_n(s)=\left(\sup_nL_n\right)(s).$$

Definition 3.8. For any $s \in S$, the function $\limsup_{n \to \infty} h_n : S \to [-\infty, \infty]$ is given by

$$\left(\limsup_{n\to\infty} h_n\right)(s) = \limsup_{n\to\infty} h_n(s).$$

Proposition 3.12. The function $\limsup_{n\to\infty} h_n$ is $\Sigma/\mathcal{B}([-\infty,\infty])$ -measurable.

Proof. Each function in the sequence $(L_n = \sup_{r \geq n} h_r \mid n \in \mathbb{N})$ is $\Sigma/\mathcal{B}([-\infty, \infty])$ -measurable, which implies that $\inf_n L_n$ is $\Sigma/\mathcal{B}([-\infty, \infty])$ -measurable. Also,

$$\left(\limsup_{n\to\infty}h_n\right)(s)=\limsup_{n\to\infty}h_n(s)=\inf_n\sup_{r\geq n}h_r(s)=\inf_n\left(\sup_{r\geq n}h_r\right)(s)=\inf_nL_n(s)=\left(\inf_nL_n\right)(s).$$

Proposition 3.13. Consider the set $F = \{s \in S \mid \lim_{n \to \infty} h_n(s) \text{ exists in } \mathbb{R}\}$. Recall that $\lim_{n \to \infty} h_n(s)$ exists in \mathbb{R} if and only if

$$-\infty < \liminf_{n \to \infty} h_n(s) = \limsup_{n \to \infty} h_n(s) < \infty.$$

Therefore, $F \in \Sigma$, since F is an intersection of elements of Σ :

$$F = \{s \in S \mid \liminf_{n \to \infty} h_n(s) > -\infty\} \cap \{s \in S \mid \limsup_{n \to \infty} h_n(s) < \infty\} \cap \{s \in S \mid \left(\limsup_{n \to \infty} h_n - \liminf_{n \to \infty} h_n\right)(s) = 0\}.$$

7

Definition 3.9. Consider a measurable space (Ω, \mathcal{F}) . An \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$ is a random variable. By definition, for any $B \in \mathcal{B}(\mathbb{R})$, $X^{-1}(B) \in \mathcal{F}$.

Proposition 3.14. The indicator function $\mathbb{I}_F:\Omega\to\{0,1\}$ of any event $F\in\mathcal{F}$ is a random variable.

Proof. The function \mathbb{I}_F is defined by

$$\mathbb{I}_F(\omega) = \begin{cases} 1, & \text{if } \omega \in F, \\ 0, & \text{if } \omega \notin F. \end{cases}$$

Recall that if $\{\omega \in \Omega \mid \mathbb{I}_F(\omega) \leq c\} \in \mathcal{F}$ for every $c \in \mathbb{R}$, then \mathbb{I}_F is \mathcal{F} -measurable. For every c < 1, we have $\{\omega \in \Omega \mid \mathbb{I}_F(\omega) \leq c\} = \{\omega \in \Omega \mid \omega \notin F\} = F^c$. For every $c \geq 1$, we have $\{\omega \in \Omega \mid \mathbb{I}_F(\omega) \leq c\} = \Omega$.

Example 3.1. Once again consider an experiment where a coin is tossed infinitely often. Let H=0 represent heads and T=1 represent tails. The outcome space Ω may be defined as the set of infinite binary sequences $\Omega=\{H,T\}^{\mathbb{N}^+}$. Let $F_{n,W}=\{\omega\in\Omega\mid\omega_n=W\}$ be the set of infinite binary sequences whose n-th element is W. The σ -algebra \mathcal{F} on the outcome space Ω may be generated as $\mathcal{F}=\sigma(\{F_{n,W}\mid n\in\mathbb{N}^+,W\in\{H,T\}\})$. Note that $\mathbb{I}_{F_{n,W}}$ is a random variable, since $F_{n,W}\in\mathcal{F}$. Therefore, for any $n\in\mathbb{N}^+$, the function $A_{n,W}$ given by

$$A_{n,W}(\omega) = \left(n^{-1} \sum_{i=1}^{n} \mathbb{I}_{F_{i,W}}\right)(\omega) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{F_{i,W}}(\omega)$$

is also a random variable. For a given sequence $\omega \in \Omega$, $A_{n,W}(\omega)$ is the fraction of the first n tosses resulting in W. For a given $p \in [0,1]$, consider the set $\Lambda_W = \{\omega \in \Omega \mid \lim_{n \to \infty} A_{n,W}(\omega) = p\}$. Clearly,

$$\Lambda_W = \{ \omega \in \Omega \mid \liminf_{n \to \infty} A_{n,W}(\omega) = p \} \cap \{ \omega \in \Omega \mid \limsup_{n \to \infty} A_{n,W}(\omega) = p \},$$

which can be rewritten as

$$\Lambda_W = \left(\liminf_{n \to \infty} A_{n,W} \right)^{-1} (\{p\}) \cap \left(\limsup_{n \to \infty} A_{n,W} \right)^{-1} (\{p\}).$$

Note that $\Lambda_W \in \mathcal{F}$, since both the limit inferior and the limit superior of the sequence of \mathcal{F} -measurable functions $(A_{n,W} \mid n \in \mathbb{N}^+)$ are \mathcal{F} -measurable functions. Therefore, a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ would define the probability $\mathbb{P}(\Lambda_W)$ that the fraction of tosses with result W tends to a given $p \in [0, 1]$.

Definition 3.10. Consider a function $X : \Omega \to \mathbb{R}$. The σ -algebra $\sigma(X)$ on Ω is defined as $\sigma(X) = \sigma(\{X^{-1}(B) \mid B \in \mathcal{B}(\mathbb{R})\})$.

Note that if X is a random variable on a measurable space (Ω, \mathcal{F}) , then $\sigma(X) \subseteq \mathcal{F}$.

Definition 3.11. Consider a set of functions $\{Y_{\gamma} \mid \gamma \in \mathcal{C}\}$ where $Y_{\gamma} : \Omega \to \mathbb{R}$. The σ -algebra $\sigma(\{Y_{\gamma} \mid \gamma \in \mathcal{C}\})$ is defined by

$$\sigma(\{Y_{\gamma} \mid \gamma \in \mathcal{C}\}) = \sigma(\{Y_{\gamma}^{-1}(B) \mid \gamma \in \mathcal{C}, B \in \mathcal{B}(\mathbb{R})\}).$$

Note that if $Y_{\gamma}: \Omega \to \mathbb{R}$ is a random variable on a measurable space (Ω, \mathcal{F}) for every γ , then $\sigma(\{Y_{\gamma} \mid \gamma \in \mathcal{C}\}) \subseteq \mathcal{F}$.

Proposition 3.15. Consider a measurable space (Ω, \mathcal{F}) and a random variable $Y : \Omega \to \mathbb{R}$. For a set \mathcal{E} of subsets of \mathbb{R} , let $Y^{-1}(\mathcal{E}) = \{Y^{-1}(E) \mid E \in \mathcal{E}\}$. By definition, $\sigma(Y) = \sigma(Y^{-1}(\mathcal{B}(\mathbb{R})))$. In that case, $\sigma(Y) = Y^{-1}(\mathcal{B}(\mathbb{R}))$.

Proof. By definition, $Y^{-1}(\mathcal{B}(\mathbb{R})) = \{Y^{-1}(B) \mid B \in \mathcal{B}(\mathbb{R})\}$. Because $\mathbb{R} \in \mathcal{B}(\mathbb{R})$, $Y^{-1}(\mathbb{R}) \in Y^{-1}(\mathcal{B}(\mathbb{R}))$, where $Y^{-1}(\mathbb{R}) = \Omega$. Consider an element $Y^{-1}(B) \in Y^{-1}(\mathcal{B}(\mathbb{R}))$. Because $B^c \in \mathcal{B}(\mathbb{R})$, $Y^{-1}(B^c) \in Y^{-1}(\mathcal{B}(\mathbb{R}))$, where $Y^{-1}(B^c) = (Y^{-1}(B))^c$. Finally, consider a sequence $(Y^{-1}(B_n) \in Y^{-1}(\mathcal{B}(\mathbb{R})) \mid n \in \mathbb{N})$. Because $\cup_n B_n \in \mathcal{B}(\mathbb{R})$, $Y^{-1}(\cup_n B_n) \in Y^{-1}(\mathcal{B}(\mathbb{R}))$, where $Y^{-1}(\cup_n B_n) = \cup_n Y^{-1}(B_n)$. Therefore, $Y^{-1}(\mathcal{B}(\mathbb{R}))$ is a σ-algebra on Ω. Because $\sigma(Y)$ is the smallest σ-algebra on Ω that includes $Y^{-1}(\mathcal{B}(\mathbb{R}))$, we know that $\sigma(Y) = Y^{-1}(\mathcal{B}(\mathbb{R}))$.

Proposition 3.16. Additionally, consider the π -system $\pi(\mathbb{R}) = \{(-\infty, x] \mid x \in \mathbb{R}\}$ and let $\pi(Y) = Y^{-1}(\pi(\mathbb{R}))$. In that case, $\sigma(Y) = \sigma(\pi(Y))$.

Proof. By definition, $\sigma(\pi(Y)) = \sigma(\{Y^{-1}((-\infty, x]) \mid (-\infty, x] \in \pi(\mathbb{R})\})$. Clearly, $\pi(\mathbb{R}) \subseteq \mathcal{B}(\mathbb{R})$ implies $\sigma(\pi(Y)) \subseteq \sigma(Y)$, since $\sigma(Y) = \sigma(\{Y^{-1}(B) \mid B \in \mathcal{B}(\mathbb{R})\})$. Because $\{Y \leq x\} \in \sigma(\pi(Y))$ for every $x \in \mathbb{R}$, Y is $\sigma(\pi(Y))$ -measurable. Therefore, $\sigma(Y) \subseteq \sigma(\pi(Y))$.

Proposition 3.17. If $Y: \Omega \to \mathbb{R}$, then $Z: \Omega \to \mathbb{R}$ is a $\sigma(Y)$ -measurable function if and only if there is a Borel function $f: \mathbb{R} \to \mathbb{R}$ such that $Z = f \circ Y$.

Proposition 3.18. If Y_1, Y_2, \ldots, Y_n are functions from Ω to \mathbb{R} , then a function $Z : \Omega \to \mathbb{R}$ is $\sigma(\{Y_1, Y_2, \ldots, Y_n\})$ measurable if and only if there is a Borel function $f : \mathbb{R}^n \to \mathbb{R}$ such that $Z(\omega) = f(Y_1(\omega), Y_2(\omega), \ldots, Y_n(\omega))$ for every $\omega \in \Omega$.

Definition 3.12. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$. For any $B \in \mathcal{B}(\mathbb{R})$, $X^{-1}(B) \in \sigma(X)$, $\sigma(X) \subseteq \mathcal{F}$, and $\mathbb{P}(X^{-1}(B)) \in [0,1]$. For any $B \in \mathcal{B}(\mathbb{R})$, this allows defining the law $\mathcal{L}_X : \mathcal{B}(\mathbb{R}) \to [0,1]$ of X as

$$\mathcal{L}_X(B) = \mathbb{P}(X^{-1}(B)).$$

Proposition 3.19. The law \mathcal{L}_X is a probability measure on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Proof. First, note that

$$\mathcal{L}_X(\mathbb{R}) = \mathbb{P}(X^{-1}(\mathbb{R})) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in \mathbb{R}\}) = \mathbb{P}(\Omega) = 1,$$

$$\mathcal{L}_X(\emptyset) = \mathbb{P}(X^{-1}(\emptyset)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in \emptyset\}) = \mathbb{P}(\emptyset) = 0.$$

Second, consider a sequence of sets $(B_n \in \mathcal{B}(\mathbb{R}) \mid n \in \mathbb{N})$ such that $B_n \cap B_m = \emptyset$ for $n \neq m$ and note that

$$\mathcal{L}_X\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \mathbb{P}\left(X^{-1}\left(\bigcup_{n\in\mathbb{N}}B_n\right)\right) = \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}X^{-1}(B_n)\right) = \sum_{n\in\mathbb{N}}\mathbb{P}(X^{-1}(B_n)) = \sum_{n\in\mathbb{N}}\mathcal{L}_X(B_n),$$

where we used the fact that $X^{-1}(B_n) \cap X^{-1}(B_m) = X^{-1}(B_n \cap B_m) = X^{-1}(\emptyset) = \emptyset$ for $n \neq m$.

Definition 3.13. The (cumulative) distribution function $F_X: \mathbb{R} \to [0,1]$ of the random variable X is defined by

$$F_X(c) = \mathcal{L}_X((-\infty, c]) = \mathbb{P}(X^{-1}((-\infty, c])) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le c\}) = \mathbb{P}(\{X \le c\}).$$

Proposition 3.20. Recall that the σ -algebra generated by $\pi(\mathbb{R}) = \{(-\infty, x] \mid x \in \mathbb{R}\}$ is $\sigma(\pi(\mathbb{R})) = \mathcal{B}(\mathbb{R})$. Consider a probability measure μ on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu((-\infty, c]) = F_X(c) = \mathcal{L}_X((-\infty, c])$ for every $c \in \mathbb{R}$. Because μ and \mathcal{L}_X agree on the π -system $\pi(\mathbb{R})$, we have $\mu = \mathcal{L}_X$. Therefore, F_X fully determines the law \mathcal{L}_X of X.

Consider a random variable $X : \Omega \to \mathbb{R}$ carried by a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the distribution function $F_X : \mathbb{R} \to [0, 1]$.

Proposition 3.21. If $a \leq b$, then $F_X(a) \leq F_X(b)$.

Proof. Clearly,
$$\{X \leq a\} \subseteq \{X \leq b\}$$
, which implies $\mathbb{P}(\{X \leq a\}) \leq \mathbb{P}(\{X \leq b\})$.

Proposition 3.22. $\lim_{x\to-\infty} F_X(x)=0$.

Proof. Recall that $f: \mathbb{R} \to \mathbb{R}$ is a function such that $\lim_{x \to -\infty} f(x) = L$ for some $L \in \mathbb{R}$ if and only if $\lim_{n \to \infty} f(x_n) = L$ for all non-increasing sequences $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n \to \infty} x_n = -\infty$.

Consider a non-increasing sequence $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n\to\infty} x_n = -\infty$ and the sequence of sets $(A_n = (-\infty, x_n] \mid n \in \mathbb{N})$. Because $A_n \downarrow \emptyset$, $\mathcal{L}_X(A_n) \downarrow 0$. Therefore, $\lim_{n\to\infty} \mathcal{L}_X((-\infty, x_n]) = 0$, which implies

$$\lim_{x \to -\infty} F_X(x) = \lim_{x \to -\infty} \mathcal{L}_X((-\infty, x]) = 0.$$

Proposition 3.23. $\lim_{x\to\infty} F_X(x) = 1$.

Proof. Recall that $f: \mathbb{R} \to \mathbb{R}$ is a function such that $\lim_{x \to \infty} f(x) = L$ for some $L \in \mathbb{R}$ if and only if $\lim_{n \to \infty} f(x_n) = L$ for all non-decreasing sequences $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n \to \infty} x_n = +\infty$.

Consider a non-decreasing sequence $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n\to\infty} x_n = +\infty$ and the sequence of sets $(A_n = (-\infty, x_n] \mid n \in \mathbb{N})$. Because $A_n \uparrow \mathbb{R}$, $\mathcal{L}_X(A_n) \uparrow 1$. Therefore, $\lim_{n\to\infty} \mathcal{L}_X((-\infty, x_n]) = 1$, which implies

$$\lim_{x \to \infty} F_X(x) = \lim_{x \to \infty} \mathcal{L}_X((-\infty, x]) = 1.$$

Proposition 3.24. The function F_X is right-continuous.

Proof. Recall that $f: \mathbb{R} \to \mathbb{R}$ is right continuous if and only if $\lim_{n\to\infty} f(x_n) = f(x)$ for every $x \in \mathbb{R}$ and every non-increasing sequence $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n\to\infty} x_n = x$ and $x_n > x$ for every $n \in \mathbb{N}$.

Consider $x \in \mathbb{R}$ and a non-increasing sequence $(x_n \in \mathbb{R} \mid n \in \mathbb{N})$ such that $\lim_{n\to\infty} x_n = x$ and $x_n > x$ for every $n \in \mathbb{N}$. Consider also the sequence of sets $(A_n = (-\infty, x_n] \mid n \in \mathbb{N})$. Because $A_n \downarrow (-\infty, x]$, $\mathcal{L}_X((-\infty, x_n]) \downarrow \mathcal{L}_X((-\infty, x])$. Therefore, $\lim_{n\to\infty} \mathcal{L}_X((-\infty, x_n]) = \mathcal{L}_X((-\infty, x])$, which implies

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathcal{L}_X((-\infty, x_n]) = \mathcal{L}_X((-\infty, x]) = F_X(x).$$

Proposition 3.25. Consider a right-continuous function $F: \mathbb{R} \to [0,1]$ such that if $a \leq b$, then $F(a) \leq F(b)$; $\lim_{x \to -\infty} F(x) = 0$; and $\lim_{x \to \infty} F(x) = 1$. There is a unique probability measure \mathcal{L} on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathcal{L}((-\infty, x]) = F(x)$ for every $x \in \mathbb{R}$.

Proof. Consider the probability triple $((0,1),\mathcal{B}((0,1)),\text{Leb})$ and a function $X^-:(0,1)\to\mathbb{R}$ given by

$$X^{-}(\omega) = \inf\{z \in \mathbb{R} \mid F(z) \ge \omega\}.$$

In words, $X^{-}(\omega)$ is the infimum $z \in \mathbb{R}$ such that F(z) reaches $\omega \in (0,1)$.

First, note that $\omega \leq F(c)$ if and only if $X^-(\omega) \leq c$ for every $c \in \mathbb{R}$. Clearly, if $\omega \leq F(c)$, then $X^-(\omega) \leq c$. Now suppose $X^-(\omega) \leq c$. Because F is non-decreasing, $F(X^-(\omega)) \leq F(c)$. Because F is also right-continuous, $F(X^-(\omega)) \geq \omega$. Therefore, $\omega \leq F(c)$. This also implies that X^- is a random variable since, for every $c \in \mathbb{R}$,

$$\{X^- \le c\} = \{\omega \in (0,1) \mid X^-(\omega) \le c\} = \{\omega \in (0,1) \mid \omega \le F(c)\} = (0,F(c)].$$

For every $c \in \mathbb{R}$, the distribution function F_{X^-} on the probability triple $((0,1),\mathcal{B}((0,1)),\text{Leb})$ is given by

$$F_{X^{-}}(c) = \mathcal{L}_{X^{-}}((-\infty, c]) = \text{Leb}(\{X^{-} \le c\}) = \text{Leb}((0, F(c)]) = F(c).$$

Finally, recall that the distribution function F_{X^-} fully determines the law \mathcal{L}_{X^-} of X^- , which is the desired unique probability measure on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathcal{L}_{X^-}((-\infty, x]) = F(x)$ for every $x \in \mathbb{R}$.

Theorem 3.1 (Monotone-class theorem). If

- \mathcal{H} is a set of bounded functions from a set S into \mathbb{R} ,
- \mathcal{H} is a vector space over \mathbb{R} ,
- The constant function 1 is an element of \mathcal{H} ,
- If $(f_n \in \mathcal{H} \mid n \in \mathbb{N})$ is a sequence of non-negative functions in \mathcal{H} such that $f_n \uparrow f$, where f is a bounded function on S, then $f \in \mathcal{H}$,
- \mathcal{H} contains the indicator function of every set in some π -system \mathcal{I} ,

then \mathcal{H} contains every bounded $\sigma(\mathcal{I})$ -measurable function on S.

4 Independence

Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 4.1. The sub- σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of \mathcal{F} are called independent if, for every choice of distinct indices i_1, i_2, \ldots, i_n and events $G_{i_1}, G_{i_2}, \ldots, G_{i_n}$ such that $G_{i_k} \in \mathcal{G}_{i_k}$ for every i_k ,

$$\mathbb{P}\left(\bigcap_{k=1}^{n} G_{i_k}\right) = \prod_{k=1}^{n} \mathbb{P}(G_{i_k}).$$

Definition 4.2. The random variables $X_1, X_2, ...$ are called independent if the σ -algebras $\sigma(X_1), \sigma(X_2), ...$ are independent.

Definition 4.3. The events E_1, E_2, \ldots are called independent if the σ -algebras $\mathcal{E}_1, \mathcal{E}_2, \ldots$ are independent, where $\mathcal{E}_k = \{\emptyset, E_k, E_k^c, \Omega\}$.

Proposition 4.1. The events E_1, E_2, \ldots are called independent if and only if the random variables $\mathbb{I}_{E_1}, \mathbb{I}_{E_2}, \ldots$ are independent.

Proof. We have already shown that each indicator function \mathbb{I}_{E_k} is \mathcal{E}_k -measurable. Since $\mathbb{I}_{E_k}^{-1}(\{1\}) = E_k$, we know that $E_k \in \sigma(\mathbb{I}_{E_k})$, which implies $\mathcal{E}_k = \sigma(\mathbb{I}_{E_k})$.

Proposition 4.2. The events E_1, E_2, \ldots are independent if and only if, for every choice of distinct indices i_1, i_2, \ldots, i_n ,

$$\mathbb{P}\left(\bigcap_{k=1}^{n} E_{i_k}\right) = \prod_{k=1}^{n} \mathbb{P}(E_{i_k}).$$

Proposition 4.3. If $X_1, X_2, ...$ are independent random variables, then the events $\{X_1 \leq x_1\}, \{X_2 \leq x_2\}, ...$ are independent for every $x_1, x_2, ... \in \mathbb{R}$, since $X_n^{-1}((-\infty, x_n]) \in \sigma(X_n)$ for every $n \in \mathbb{N}^+$.

Proposition 4.4. Suppose that \mathcal{G} and \mathcal{H} are sub- σ -algebras of \mathcal{F} . Furthermore, let \mathcal{I} and \mathcal{J} be π -systems such that $\sigma(\mathcal{I}) = \mathcal{G}$ and $\sigma(\mathcal{I}) = \mathcal{H}$. If $\mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J)$ for every $I \in \mathcal{I}$ and $J \in \mathcal{J}$, we say that \mathcal{I} and \mathcal{J} are independent. The sub- σ -algebras \mathcal{G} and \mathcal{H} are independent if and only if \mathcal{I} and \mathcal{J} are independent.

Proof. Suppose that \mathcal{G} and \mathcal{H} are independent. In that case, $\mathbb{P}(G \cap H) = \mathbb{P}(G)\mathbb{P}(H)$ for every $G \in \mathcal{G}$ and $H \in \mathcal{H}$. Since $\mathcal{I} \subseteq \mathcal{G}$ and $\mathcal{J} \subseteq \mathcal{H}$, \mathcal{I} and \mathcal{J} are independent.

Suppose that \mathcal{I} and \mathcal{J} are independent. For every $I \in \mathcal{I}$ and $H \in \mathcal{H}$, let $\mu_I(H) = \mathbb{P}(I \cap H)$ and $\eta_I(H) = \mathbb{P}(I)\mathbb{P}(H)$. Clearly, $\mu_I(\emptyset) = 0 = \eta_I(\emptyset)$. Also, $\mu_I(\Omega) = \mathbb{P}(I) = \eta_I(\Omega)$. Finally, if $(H_n \in \mathcal{H} \mid n \in \mathbb{N})$ is a sequence of events such that $H_n \cap H_m = \emptyset$ for $n \neq m$,

$$\mu_{I}\left(\bigcup_{n}H_{n}\right) = \mathbb{P}\left(I \cap \left(\bigcup_{n}H_{n}\right)\right) = \mathbb{P}\left(\bigcup_{n}(I \cap H_{n})\right) = \sum_{n}\mathbb{P}(I \cap H_{n}) = \sum_{n}\mu_{I}(H_{n}),$$

$$\eta_{I}\left(\bigcup_{n}H_{n}\right) = \mathbb{P}(I)\mathbb{P}\left(\bigcup_{n}H_{n}\right) = \mathbb{P}(I)\sum_{n}\mathbb{P}(H_{n}) = \sum_{n}\mathbb{P}(I)\mathbb{P}(H_{n}) = \sum_{n}\eta_{I}(H_{n}).$$

Considered together, these results imply that μ_I and η_I are finite measures on (Ω, \mathcal{H}) . By assumption, $\mu_I(J) = \mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J) = \eta_I(J)$ for every $I \in \mathcal{I}$ and $J \in \mathcal{J}$. Therefore, μ_I and η_I agree on the π -system \mathcal{J} , which implies that they agree on the σ -algebra $\sigma(\mathcal{J}) = \mathcal{H}$. In other words, for every $I \in \mathcal{I}$ and $H \in \mathcal{H}$, we have $\mathbb{P}(I \cap H) = \mu_I(H) = \eta_I(H) = \mathbb{P}(I)\mathbb{P}(H)$.

For every $H \in \mathcal{H}$ and $G \in \mathcal{G}$, let $\mu'_H(G) = \mathbb{P}(H \cap G)$ and $\eta'_H(G) = \mathbb{P}(H)\mathbb{P}(G)$. Analogously, μ'_H and η'_H are finite measures on (Ω, \mathcal{G}) . From our previous result, for every $I \in \mathcal{I}$ and $H \in \mathcal{H}$, we have $\mathbb{P}(I \cap H) = \mu'_H(I) = \eta'_H(I) = \mathbb{P}(I)\mathbb{P}(H)$. Therefore, μ'_H and η'_H agree on the π -system \mathcal{I} , which implies that they agree on the σ -algebra $\sigma(\mathcal{I}) = \mathcal{G}$. In other words, for every $G \in \mathcal{G}$ and $H \in \mathcal{H}$, we have $\mathbb{P}(G \cap H) = \mu'_H(G) = \eta'_H(G) = \mathbb{P}(G)\mathbb{P}(H)$.

Proposition 4.5. Consider the random variables X and Y on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. For every $A \in \mathcal{B}(\mathbb{R})$ and $B \in \mathcal{B}(\mathbb{R})$ such that $\mathbb{P}(Y^{-1}(B)) > 0$, let $\mathbb{P}(X^{-1}(A) \mid Y^{-1}(B)) = \mathbb{P}(X^{-1}(A) \cap Y^{-1}(B)) / \mathbb{P}(Y^{-1}(B))$. If X and Y are independent, then $\mathbb{P}(X^{-1}(A) \mid Y^{-1}(B)) = \mathbb{P}(X^{-1}(A))$, since $X^{-1}(A) \in \sigma(X)$ and $Y^{-1}(B) \in \sigma(Y)$.

In what follows, we will employ a common abuse of notation. Consider the random variables X and Y on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. For every $x \in \mathbb{R}$, we will let $\mathbb{P}(X \leq x)$ denote $\mathbb{P}(\{X \leq x\})$. Furthermore, for every $x, y \in \mathbb{R}$, we will let $\mathbb{P}(X \leq x, Y \leq y)$ denote $\mathbb{P}(\{X \leq x\} \cap \{Y \leq y\})$. We will employ analogous notation when there are more random variables and different predicates.

Proposition 4.6. Consider the random variables X and Y on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that, for every $x, y \in \mathbb{R}$, $\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$. The random variables X and Y are independent.

Proof. Recall that $\pi(\mathbb{R}) = \{(-\infty, x] \mid x \in \mathbb{R}\}$ and $\pi(X) = \{X^{-1}((-\infty, x]) \mid (-\infty, x] \in \pi(\mathbb{R})\} = \{\{X \leq x\} \mid x \in \mathbb{R}\}$. Note that $\pi(X)$ is a π -system on Ω : for any $x_1, x_2 \in \mathbb{R}$, if $\{X \leq x_1\} \in \pi(X)$ and $\{X \leq x_2\} \in \pi(X)$, then $\{X \leq x_1\} \cap \{X \leq x_2\} = \{\omega \in \Omega \mid X(\omega) \leq x_1 \text{ and } X(\omega) \leq x_2\} = \{\omega \in \Omega \mid X(\omega) \leq \min(x_1, x_2)\} = \{X \leq \min(x_1, x_2)\}$. By assumption, $\mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) = \mathbb{P}(\{X \leq x\})\mathbb{P}(\{Y \leq y\})$ for any $\{X \leq x\} \in \pi(X)$ and $\{Y \leq y\} \in \pi(Y)$. By definition, the π -systems $\pi(X)$ and $\pi(Y)$ are independent. Therefore, $\sigma(\pi(X))$ and $\sigma(\pi(Y))$ are independent. Based on a previous result, we know that $\sigma(\pi(X)) = \sigma(X)$ and $\sigma(\pi(Y)) = \sigma(Y)$.

Proposition 4.7. In general, the random variables $X_1, X_2, ..., X_n$ are independent if and only if, for every $x_1, x_2, ..., x_n \in \mathbb{R}$,

$$\mathbb{P}(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n) = \mathbb{P}\left(\bigcap_{k=1}^n \{X_k \le x_k\}\right) = \prod_{k=1}^n \mathbb{P}(X_k \le x_k).$$

Lemma 4.1 (Second Borel-Cantelli Lemma). Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent events $(E_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $\sum_{n=0}^{\infty} \mathbb{P}(E_n) = \infty$. In that case,

$$\mathbb{P}\left(\limsup_{n\to\infty} E_n\right) = 1.$$

Proof. Because the events are independent, for any $m, r \in \mathbb{N}$ such that $m \leq r$,

$$\mathbb{P}\left(\bigcap_{m \le n \le r} E_n^c\right) = \prod_{m \le n \le r} \mathbb{P}(E_n^c) = \prod_{m \le n \le r} (1 - \mathbb{P}(E_n)).$$

Let e denote Euler's number. For any $x \ge 0$, recall that $1 - x \le e^{-x}$. Therefore,

$$\mathbb{P}\left(\bigcap_{m\leq n\leq r} E_n^c\right) \leq \prod_{m\leq n\leq r} e^{-\mathbb{P}(E_n)} = e^{-\sum_{m\leq n\leq r} \mathbb{P}(E_n)}.$$

Because both sides of the inequation above are non-increasing with respect to r, we may take the limit of both sides when $r \to \infty$ and use the fact that $\sum_{n=0}^{\infty} \mathbb{P}(E_n) = \infty$ to conclude that

$$\lim_{r \to \infty} \mathbb{P}\left(\bigcap_{m \le n \le r} E_n^c\right) = \mathbb{P}\left(\bigcap_{n \ge m} E_n^c\right) \le \lim_{r \to \infty} e^{-\sum_{m \le n \le r} \mathbb{P}(E_n)} = 0.$$

Using the relationship between the limit superior and the limit inferior,

$$\mathbb{P}\left(\left(\limsup_{n\to\infty}E_n\right)^c\right) = \mathbb{P}\left(\liminf_{n\to\infty}E_n^C\right) = \mathbb{P}\left(\bigcup_{m}\bigcap_{n\geq m}E_n^c\right) \leq \sum_{m}\mathbb{P}\left(\bigcap_{n\geq m}E_n^c\right) = 0.$$

Definition 4.4. A valid distribution function $F: \mathbb{R} \to [0,1]$ is a right-continuous function such that if $a \leq b$, then $F(a) \leq F(b)$; $\lim_{x \to -\infty} F(x) = 0$; and $\lim_{x \to \infty} F(x) = 1$.

Proposition 4.8. For any sequence of valid distribution functions $(F_n \mid n \in \mathbb{N})$, there is a sequence of independent random variables $(X_n \mid n \in \mathbb{N})$ on the probability triple $([0,1], \mathcal{B}([0,1]), \text{Leb})$ such that F_n is the distribution function of X_n .

Definition 4.5. Let $(X_n \mid n \in \mathbb{N})$ be a sequence of independent random variables on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. If $\mathbb{P}(X_n \leq x) = F(x)$ for every $n \in \mathbb{N}$, $x \in \mathbb{R}$, and a distribution function $F : \mathbb{R} \to [0, 1]$, then the random variables are considered independent and identically distributed.

Example 4.1. As an application of the Borel-Cantelli lemmas, consider a sequence $(X_n \mid n \in \mathbb{N}^+)$ of independent random variables on the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that each random variable X_n is exponentially distributed with rate 1 such that $\mathbb{P}(X_n > x_n) = 1 - \mathbb{P}(X_n \le x_n) = e^{-x_n}$ for every $x_n \ge 0$. If $x_n = \alpha \log n$ for some $\alpha > 0$, then

$$\mathbb{P}(X_n > \alpha \log n) = e^{-\alpha \log n} = (e^{\log n})^{-\alpha} = \frac{1}{n^{\alpha}}.$$

For some $\alpha > 0$, consider the sequence of independent events $(\{X_n > \alpha \log n\} \in \mathcal{F} \mid n \in \mathbb{N}^+)$ and recall that

$$\sum_{n=1}^{\infty} \mathbb{P}(X_n > \alpha \log n) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty$$

if and only if $\alpha > 1$. Using the Borel-Cantelli lemmas,

$$\mathbb{P}\left(\limsup_{n\to\infty} \{X_n > \alpha \log n\}\right) = \begin{cases} 0, & \text{if } \alpha > 1, \\ 1, & \text{if } \alpha \leq 1. \end{cases}$$

Recall that $\omega \in \limsup_{n \to \infty} \{X_n > \alpha \log n\}$ if and only if $X_n(\omega) > \alpha \log n$ for infinitely many $n \in \mathbb{N}$. Furthermore, consider the random variable $\limsup_{n \to \infty} X_n / \log n$. It is also possible to show that

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{X_n}{\log n}=1\right)=\mathbb{P}\left(\left\{\omega\in\Omega\mid \limsup_{n\to\infty}\frac{X_n(\omega)}{\log n}=1\right\}\right)=1.$$

Definition 4.6. For any set \mathcal{C} , a set (or sequence) of random variables $Y = (Y_{\gamma} \mid \gamma \in \mathcal{C})$ on a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a stochastic process parameterized by \mathcal{C} .

Proposition 4.9. Consider a measurable space (Ω, \mathcal{F}) and a function $X : \Omega \to C$, where $C \subseteq \mathbb{N}$. If $\{X = c\} \in \mathcal{F}$ for every $c \in C$, then X is \mathcal{F} -measurable.

Proof. For any $B \in \mathcal{B}(\mathbb{R})$, let $A = B \cap C$ and note that

$$X^{-1}(B) = \{\omega \in \Omega \mid X(\omega) \in B\} = \{\omega \in \Omega \mid X(\omega) \in B \text{ and } X(\omega) \in C\} = X^{-1}(B \cap C) = X^{-1}(A).$$

Furthermore, note that

$$X^{-1}(A) = X^{-1}\left(\bigcup_{a \in A} \{a\}\right) = \bigcup_{a \in A} X^{-1}(\{a\}) = \bigcup_{a \in A} \{X = a\}.$$

Because $A \subseteq C$, we have $\{X = a\} \in \mathcal{F}$ for every $a \in A$. Because \mathcal{F} is a σ -algebra, we have $X^{-1}(A) \in \mathcal{F}$. Therefore, for every $B \in \mathcal{B}(\mathbb{R})$, we have $X^{-1}(B) \in \mathcal{F}$.

Definition 4.7. Consider a set $E \subseteq \mathbb{N}$. Let P be a stochastic matrix whose (i,j)-th element is given by $p_{i,j} \geq 0$ and suppose that $\sum_{k \in E} p_{i,k} = 1$ for every $i, j \in E$. Let μ be a probability measure on the measurable space $(E, \mathcal{P}(E))$, where $\mathcal{P}(E)$ is the set of all subsets of E, and let μ_i denote $\mu(\{i\})$ for every $i \in E$. A time-homogeneous Markov chain $Z = (Z_n \mid n \in \mathbb{N})$ on E with initial distribution μ and 1-step transition matrix P is a stochastic process parameterized by \mathbb{N} such that, for every $n \in \mathbb{N}^+$ and $i_0, i_1, \ldots, i_n \in E$,

$$\mathbb{P}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \mu_{i_0} p_{i_0, i_1} \dots p_{i_{n-1}, i_n} = \mu_{i_0} \prod_{k=1}^n p_{i_{k-1}, i_k}.$$

Proposition 4.10. A probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ carrying the aforementioned stochastic process Z exists.

Proof. First, for any set of valid distribution functions $\{F_n \mid n \in \mathbb{N}\}$, recall that there is a set of independent random variables $\{X_n \mid n \in \mathbb{N}\}$ on a certain probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ such that F_n is the distribution function of X_n . Using this result, for every $i, j \in E$ and $n \in \mathbb{N}^+$, let $Z_0 : \Omega \to E$ and $Y_{i,n} : \Omega \to E$ be independent random variables on a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{P}(Z_0 = i) = \mu_i$ and $\mathbb{P}(Y_{i,n} = j) = p_{i,j}$.

For every $\omega \in \Omega$ and $n \in \mathbb{N}^+$, let $Z_n(\omega) = Y_{Z_{n-1}(\omega),n}(\omega)$. Using induction, we will show that the function $Z_n : \Omega \to E$ is a random variable for every $n \in \mathbb{N}$. We already know that Z_0 is a random variable. Suppose that Z_{n-1} is a random variable. We will show that $\{Z_n = i_n\} \in \mathcal{F}$ for every $i_n \in E$. By definition,

$$\{Z_n=i_n\}=\{\omega\in\Omega\mid Z_n(\omega)=i_n\}=\{\omega\in\Omega\mid Y_{Z_{n-1}(\omega),n}(\omega)=i_n\}=\bigcup_{i\in E}\{\omega\in\Omega\mid Z_{n-1}(\omega)=i\text{ and }Y_{i,n}(\omega)=i_n\},$$

which implies

$${Z_n = i_n} = \bigcup_{i \in E} {Z_{n-1} = i} \cap {Y_{i,n} = i_n}.$$

Because Z_{n-1} and $Y_{i,n}$ are random variables for every $i \in E$, $\{Z_n = i_n\} \in \mathcal{F}$, as we wanted to show. Using induction, we will now show that, for every $n \in \mathbb{N}$ and $i_0, \ldots, i_n \in E$,

$$\bigcap_{k=0}^{n} \{Z_k = i_k\} = \{Z_0 = i_0\} \cap \bigcap_{k=1}^{n} \{Y_{i_{k-1},k} = i_k\}.$$

The statement above is true when n=0, so suppose it is true for some $n-1 \in \mathbb{N}$. Using a previous result,

$$\bigcap_{k=0}^{n} \{Z_k = i_k\} = \left(\bigcap_{k=0}^{n-1} \{Z_k = i_k\}\right) \cap \{Z_n = i_n\} = \left(\bigcap_{k=0}^{n-1} \{Z_k = i_k\}\right) \cap \left(\bigcup_{i \in E} \{Z_{n-1} = i\} \cap \{Y_{i,n} = i_n\}\right).$$

By distributing the intersection over the union,

$$\bigcap_{k=0}^{n} \{Z_k = i_k\} = \bigcup_{i \in E} \left(\bigcap_{k=0}^{n-1} \{Z_k = i_k\}\right) \cap \{Z_{n-1} = i\} \cap \{Y_{i,n} = i_n\}.$$

Because $\{Z_{n-1} = i_{n-1}\} \cap \{Z_{n-1} = i\} = \emptyset$ whenever $i \neq i_{n-1}$,

$$\bigcap_{k=0}^{n} \{Z_k = i_k\} = \left(\bigcap_{k=0}^{n-1} \{Z_k = i_k\}\right) \cap \{Y_{i_{n-1},n} = i_n\} = \{Z_0 = i_0\} \cap \bigcap_{k=1}^{n} \{Y_{i_{k-1},k} = i_k\},$$

where the last equation follows from the inductive hypothesis.

The event above is the intersection of events from the σ -algebras of independent random variables, which implies

$$\mathbb{P}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \mathbb{P}\left(\bigcap_{k=0}^n \{Z_k = i_k\}\right) = \mathbb{P}(Z_0 = i_0) \prod_{k=1}^n \mathbb{P}(Y_{i_{k-1}, k} = i_k) = \mu_{i_0} \prod_{k=1}^n p_{i_{k-1}, i_k}.$$

Example 4.2. Consider a time-homogeneous Markov chain $Z = (Z_n \mid n \in \mathbb{N})$ on E with initial distribution μ and 1-step transition matrix P. Consider also a finite sequence of elements of E given by $I = i_0, i_1, \ldots i_n$. We say that the sequence I appears in outcome $\omega \in \Omega$ at time t if $Z_{t+k}(\omega) = i_k$ for every $k \leq n$. We will now show how several interesting events related to the appearance of the sequence I may be defined.

The event M_t composed of outcomes where the sequence I appears at time t is given by

$$M_t = \bigcap_{k=0}^{n} \{ Z_{t+k} = i_k \} = \bigcap_{k=0}^{n} \{ \omega \in \Omega \mid Z_{t+k}(\omega) = i_k \}.$$

The event S_t composed of outcomes where the sequence I appears at least once at or after time t is given by

$$S_t = \bigcup_{t'>t} M_{t'}.$$

The event $L_{t,m}$ composed of outcomes where the sequence I appears at least m times up to time t is given by

$$L_{t,m} = \bigcup_{l_1,\dots,l_m} \bigcap_{k=1}^m M_{l_k},$$

where l_1, \ldots, l_m is a finite sequence of distinct elements of E such that $l_k \leq t$ for every $k \leq m$.

The event L_m composed of outcomes where I appears at least m times is given by $L_{t,m}$ when $t=\infty$.

The event E composed of outcomes where the sequence I appears infinitely many times is given by

$$E = \limsup_{t \to \infty} M_t.$$

5 Integration

Consider a measure space (S, Σ, μ) . The integral with respect to μ of a Σ -measurable function $f: S \to \mathbb{R}$ is denoted by $\mu(f)$.

Definition 5.1. For any set $A \in \Sigma$, the integral with respect to μ of the indicator function $\mathbb{I}_A : S \to \{0,1\}$ is defined as

$$\mu(\mathbb{I}_A) = \mu(A).$$

Definition 5.2. A simple function is a Σ -measurable function $f: S \to [0, \infty]$ that can be written as

$$f(s) = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}(s)$$

for every $s \in S$, for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \Sigma$.

Intuitively, when A_1, A_2, \ldots, A_m partition S, each set A_k is assigned a value a_k .

Definition 5.3. The integral with respect to μ of the simple function $f: S \to [0, \infty]$ as written above is defined as

$$\mu(f) = \sum_{k=1}^{m} a_k \mu(A_k).$$

It is possible to show that the right side of the equation above is equivalent for every choice of sets and constants used to write the simple function f. Therefore, the integral $\mu(f)$ with respect to μ of a simple function f is well-defined. Intuitively, when A_1, A_2, \ldots, A_m partition S, the integral with respect to μ accumulates the measure $\mu(A_k)$ of each set A_k multiplied by the value a_k assigned to it.

Proposition 5.1. If $f: S \to [0, \infty]$ and $g: S \to [0, \infty]$ are simple functions, then

- f + g is a simple function and $\mu(f + g) = \mu(f) + \mu(g)$,
- if c > 0, then cf is a simple function and $\mu(cf) = c\mu(f)$,
- if $\mu(f \neq g) = \mu(\{s \in S \mid f(s) \neq g(s)\}) = 0$, then $\mu(f) = \mu(g)$,
- if $f \leq g$ such that $f(s) \leq g(s)$ for every $s \in S$, then $\mu(f) \leq \mu(g)$,
- if $h = \min(f, g)$ such that $h(s) = \min(f(s), g(s))$ for every $s \in S$, then h is a simple function,
- if $h = \max(f, g)$ such that $h(s) = \max(f(s), g(s))$ for every $s \in S$, then h is a simple function.

Definition 5.4. The integral with respect to μ of a Σ -measurable function $f: S \to [0, \infty]$ is defined as

$$\mu(f) = \sup \{ \mu(h) \mid h \text{ is simple and } h \leq f \}.$$

Proposition 5.2. Consider a Σ -measurable function $f: S \to [0, \infty]$. If $\mu(f) = 0$, then $\mu(\{f > 0\}) = 0$.

Proof. Because the measure μ is non-negative, this is equivalent to showing that if $\mu(\{f>0\}) > 0$, then $\mu(f) > 0$. For every $n \in \mathbb{N}^+$, let $A_n = \{f > n^{-1}\} = \{s \in S \mid f(s) > n^{-1}\}$ and note that

$$\{f > 0\} = \{s \in S \mid f(s) > 0\} = \bigcup_{n \in \mathbb{N}^+} \{s \in S \mid f(s) > n^{-1}\} = \bigcup_{n \in \mathbb{N}^+} A_n.$$

For every $s \in S$ and $n \in \mathbb{N}^+$, if $f(s) > n^{-1}$, then $f(s) > (n+1)^{-1}$. Therefore, $A_n \subseteq A_{n+1}$ and $A_n \uparrow \{f > 0\}$. Furthermore, the monotone-convergence property of measure guarantees that $\mu(A_n) \uparrow \mu(\{f > 0\})$.

Suppose that $\mu(\{f>0\})>0$. In that case, there is an $n\in\mathbb{N}^+$ such that

$$\mu(\mathbb{I}_{\{f>n^{-1}\}}) = \mu(\{f>n^{-1}\}) = \mu(A_n) > 0.$$

For such an $n \in \mathbb{N}^+$, consider now the simple function $g = n^{-1} \mathbb{I}_{\{f > n^{-1}\}}$ given by

$$g(s) = n^{-1} \mathbb{I}_{\{f > n^{-1}\}}(s) = \begin{cases} n^{-1} & f(s) > n^{-1}, \\ 0 & f(s) \le n^{-1}. \end{cases}$$

The fact that $f \geq g$ implies that $\mu(f) \geq \mu(g)$ even if f is not simple. Therefore,

$$\mu(f) \ge \mu(g) = \mu(n^{-1} \mathbb{I}_{\{f > n^{-1}\}}) = n^{-1} \mu(\mathbb{I}_{\{f > n^{-1}\}}) > 0,$$

where the last inequality follows from the fact that $n^{-1} > 0$.

Definition 5.5. Let $f_n \uparrow f$ denote that a sequence of functions $(f_n : S \to \mathbb{R} \mid n \in \mathbb{N})$ is such that $f_n(s) \uparrow f(s)$ for every $s \in S$. Similarly, let $f_n \downarrow f$ denote that a sequence of functions $(f_n : S \to \mathbb{R} \mid n \in \mathbb{N})$ is such that $f_n(s) \downarrow f(s)$ for every $s \in S$.

Theorem 5.1 (Monotone-convergence theorem). If $(f_n : S \to [0, \infty] \mid n \in \mathbb{N})$ is a sequence of Σ -measurable functions such that $f_n \uparrow f$, then $\mu(f_n) \uparrow \mu(f)$.

Before showing how the integral with respect to μ of a given Σ -measurable function is the limit of a sequence of integrals with respect to μ of simple functions, it is convenient to introduce staircase functions.

Definition 5.6. Let $\alpha_n : [0, \infty] \to [0, n]$ denote the *n*-th staircase function given by $\alpha_n(x) = \min(n, \lfloor 2^n x \rfloor / 2^n)$ for every $n \in \mathbb{N}$ and $x \in [0, \infty]$.

Intuitively, the *n*-th staircase function partitions its domain into a sequence of intervals of length $1/2^n$. The value assigned to the first interval is zero, and the value of each following interval is $1/2^n$ plus the value of the previous interval, with values truncated at n.

Proposition 5.3. Let $h:[0,\infty]\to[0,\infty]$ denote the identity function given by h(x)=x for every $x\in[0,\infty]$. In that case, $\alpha_n\uparrow h$.

Proof. We will start by showing that $\min(n, \lfloor 2^n x \rfloor/2^n) = \alpha_n(x) \le \alpha_{n+1}(x) = \min(n+1, \lfloor 2^{n+1} x \rfloor/2^{n+1})$, for every $n \in \mathbb{N}$ and $x \in [0, \infty]$. When $x = \infty$, we have $\alpha_n(x) = n \le n+1 = \alpha_{n+1}(x)$. When $x < \infty$, the fact that $n \le n+1$ implies that we only need to show that $\lfloor 2^n x \rfloor/2^n \le \lfloor 2^{n+1} x \rfloor/2^{n+1}$. Note that $\lfloor 2^n x \rfloor \le 2^n x$, which implies $2\lfloor 2^n x \rfloor \le 2^{n+1}x$. By the monotonicity of the floor function, $\lfloor 2\lfloor 2^n x \rfloor \le \lfloor 2^{n+1} x \rfloor$. Because the floor of an integer is itself an integer, $2\lfloor 2^n x \rfloor \le \lfloor 2^{n+1} x \rfloor$. Dividing both sides of the previous inequation by 2^{n+1} completes the proof.

In order to show that $\alpha_n \uparrow h$, it remains to show that, for every $x \in [0, \infty]$,

$$\lim_{n \to \infty} \alpha_n(x) = x.$$

The case where $x = \infty$ is trivial, since $\alpha_n(x) = n$. When $x < \infty$, note that $2^n x \ge \lfloor 2^n x \rfloor$ implies $x \ge \lfloor 2^n x \rfloor / 2^n$, and so n > x implies $n > \lfloor 2^n x \rfloor / 2^n$. Therefore, for every sufficiently large $n \in \mathbb{N}$, we know that $\alpha_n(x) = \lfloor 2^n x \rfloor / 2^n$ when $x < \infty$. It remains to show that $\lim_{n \to \infty} \lfloor 2^n x \rfloor / 2^n = x$. By noting that $2^n x - 1 \le \lfloor 2^n x \rfloor \le 2^n x$ and dividing each term by 2^n ,

$$x - \frac{1}{2^n} = \frac{2^n x - 1}{2^n} \le \frac{\lfloor 2^n x \rfloor}{2^n} \le \frac{2^n x}{2^n} = x.$$

Using the squeeze theorem with $n \to \infty$ completes the proof that $\alpha_n \uparrow h$.

Proposition 5.4. Consider a Σ -measurable function $f: S \to [0, \infty]$. For every $n \in \mathbb{N}$, consider $f_n: S \to [0, n]$ such that

$$f_n(s) = \alpha_n(f(s)) = \sum_{k=1}^m a_k \mathbb{I}_{\{f_n = a_k\}}(s),$$

where $a_1, \ldots, a_m \in [0, n]$ are the (distinct) elements of the (finite) image of f_n . In that case, $\mu(f_n) \uparrow \mu(f)$.

Proof. Because f is Σ -measurable and α_n is $\mathcal{B}([0,\infty])$ -measurable, we know that $f_n = \alpha_n \circ f$ is Σ -measurable, which implies that f_n is also simple. For every $s \in S$, we have $f(s) \in [0, \infty]$ and $(\alpha_n \circ f)(s) \uparrow f(s)$. Therefore, $f_n \uparrow f$. From the monotone-convergence theorem, $\mu(f_n) \uparrow \mu(f)$.

In other words, the integral with respect to μ of a given Σ -measurable function $f: S \to [0, \infty]$ is the limit of a sequence of integrals with respect to μ of simple functions $(f_n : S \to [0, n] \mid n \in \mathbb{N})$.

Proposition 5.5. Let $f: S \to [0, \infty]$ and $g: S \to [0, \infty]$ be Σ -measurable functions. If $\mu(\{f \neq g\}) = 0$, then $\mu(f) = \mu(g).$

Proof. Recall that we already have the analogous result for simple functions. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$ and $g_n = \alpha_n \circ g$, where α_n is the *n*-th staircase function. Note that

$$\{f_n \neq g_n\} = \{s \in S \mid f_n(s) \neq g_n(s)\} \subseteq \{s \in S \mid f(s) \neq g(s)\} = \{f \neq g\},\$$

which implies $\mu(\{f_n \neq g_n\}) \leq \mu(\{f \neq g\}) = 0$. Because f_n and g_n are simple functions such that $\mu(\{f_n \neq g_n\}) = 0$, we know that $\mu(f_n) = \mu(g_n)$. From the monotone-convergence theorem, $\mu(f_n) \uparrow \mu(f)$ and $\mu(g_n) \uparrow \mu(g)$, so

$$\mu(f) = \lim_{n \to \infty} \mu(f_n) = \lim_{n \to \infty} \mu(g_n) = \mu(g).$$

Proposition 5.6. Consider a Σ -measurable function $f: S \to [0, \infty]$ and a sequence of Σ -measurable functions $(f_n:S\to [0,\infty]\mid n\in\mathbb{N})$ such that $f_n(s)\uparrow f(s)$ for every $s\in S\setminus N$ for some μ -null set $N\subseteq S$. In that case, $\mu(f_n) \uparrow \mu(f)$.

Proof. Consider the Σ -measurable function $f\mathbb{I}_{S\setminus N}$ such that $(f\mathbb{I}_{S\setminus N})(s)=f(s)\mathbb{I}_{S\setminus N}(s)$ for every $s\in S$. Clearly, $\{f\mathbb{I}_{S\setminus N}\neq f\}\subseteq N.$ Therefore, $\mu(\{f\mathbb{I}_{S\setminus N}\neq f\})\leq \mu(N)=0$ and $\mu(f\mathbb{I}_{S\setminus N})=\mu(f).$

Analogously, consider the Σ -measurable function $f_n \mathbb{I}_{S \setminus N}$ such that $(f_n \mathbb{I}_{S \setminus N})(s) = f_n(s) \mathbb{I}_{S \setminus N}(s)$ for every $s \in S$ and $n \in \mathbb{N}$. Clearly, $\{f_n \mathbb{I}_{S \setminus N} \neq f_n\} \subseteq N$. Therefore, $\mu(\{f_n \mathbb{I}_{S \setminus N} \neq f_n\}) \leq \mu(N) = 0$ and $\mu(f_n \mathbb{I}_{S \setminus N}) = \mu(f_n)$. Note that $(f_n \mathbb{I}_{S \setminus N})(s) \uparrow (f \mathbb{I}_{S \setminus N})(s)$, whether $s \in N$ or $s \in S \setminus N$. Therefore, $\mu(f_n \mathbb{I}_{S \setminus N}) \uparrow \mu(f \mathbb{I}_{S \setminus N})$, which

implies $\mu(f_n) \uparrow \mu(f)$.

Lemma 5.1 (Fatou lemma). For a sequence of Σ -measurable functions $(f_n: S \to [0, \infty] \mid n \in \mathbb{N})$,

$$\mu\left(\liminf_{n\to\infty} f_n\right) \le \liminf_{n\to\infty} \mu(f_n).$$

Proof. For any $m \in \mathbb{N}$, consider the function $g_m = \inf_{n > m} f_n$ such that

$$\liminf_{n \to \infty} f_n = \lim_{m \to \infty} \inf_{n \ge m} f_n = \lim_{m \to \infty} g_m.$$

Because $g_{m+1} \geq g_m$ for every $m \in \mathbb{N}$, we have that $g_m \uparrow \liminf_{n \to \infty} f_n$. Because $g_m : S \to [0, \infty]$ is also Σ -measurable for every $m \in \mathbb{N}$, the monotone-convergence theorem guarantees that $\mu(g_m) \uparrow \mu(\liminf_{n \to \infty} f_n)$.

For any $n \geq m$, note that $g_m \leq f_n$ and $\mu(g_m) \leq \mu(f_n)$, which also implies $\mu(g_m) \leq \inf_{n > m} \mu(f_n)$. By taking the limit of both sides of the previous inequation when $m \to \infty$,

$$\mu\left(\liminf_{n\to\infty} f_n\right) = \lim_{m\to\infty} \mu(g_m) \le \lim_{m\to\infty} \inf_{n\ge m} \mu(f_n) = \liminf_{n\to\infty} \mu(f_n).$$

Proposition 5.7. For a Σ -measurable function $f: S \to [0, \infty]$ and a constant $c \geq 0$, we have $\mu(cf) = c\mu(f)$.

Proof. Recall that we already have the analogous result for simple functions. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$, where α_n is the *n*-th staircase function. Because $f_n \uparrow f$, we know that $cf_n \uparrow cf$. Because cf_n is Σ -measurable for every $n \in \mathbb{N}$, the monotone-convergence theorem guarantees that $\mu(cf_n) \uparrow \mu(cf)$. Because $\mu(cf_n) = c\mu(f_n)$, we have $\mu(cf_n) \uparrow \mu(cf)$. Because $\mu(cf_n) \uparrow \mu(cf)$.

Proposition 5.8. Consider a Σ -measurable function $f: S \to [0, \infty]$ and a Σ -measurable function $g: S \to [0, \infty]$. In that case, $\mu(f+g) = \mu(f) + \mu(g)$.

Proof. Recall that we already have the analogous result for simple functions. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$ and $g_n = \alpha_n \circ g$, where α_n is the *n*-th staircase function. Because $f_n \uparrow f$ and $g_n \uparrow g$, we know that $f_n + g_n \uparrow f + g$. Because $f_n + g_n$ is Σ -measurable for every $n \in \mathbb{N}$, the monotone-convergence theorem guarantees that $\mu(f_n + g_n) \uparrow \mu(f + g)$. Because $\mu(f_n + g_n) \uparrow \mu(f) + \mu(g)$, we have $\mu(f + g) = \mu(f) + \mu(g)$.

Lemma 5.2 (Reverse Fatou lemma). Consider a sequence of Σ -measurable functions $(f_n : S \to [0, \infty] \mid n \in \mathbb{N})$ such that $f_n \leq g$ for every $n \in \mathbb{N}$ and some Σ -measurable function $g : S \to [0, \infty]$ such that $\mu(g) < \infty$. In that case,

$$\mu\left(\limsup_{n\to\infty} f_n\right) \ge \limsup_{n\to\infty} \mu(f_n).$$

Proof. For every $n \in \mathbb{N}$, consider the function $h_n = g - f_n$. Because g and f_n are Σ -measurable and $f_n \leq g$, we know that $h_n : S \to [0, \infty]$ is Σ -measurable. From the Fatou lemma,

$$\mu\left(\liminf_{n\to\infty}(g-f_n)\right) \le \liminf_{n\to\infty}\mu(g-f_n).$$

By using the fact that $\mu(g) = \mu(g - f_n) + \mu(f_n)$ and moving g and $\mu(g)$ outside the corresponding limits,

$$\mu\left(g + \liminf_{n \to \infty} -f_n\right) \le \mu(g) + \liminf_{n \to \infty} -\mu(f_n).$$

By using the relationship between limit inferior and limit superior,

$$\mu\left(g - \limsup_{n \to \infty} f_n\right) \le \mu(g) - \limsup_{n \to \infty} \mu(f_n).$$

By using the fact that $\mu(g) = \mu(g - \limsup_{n \to \infty} f_n) + \mu(\limsup_{n \to \infty} f_n)$,

$$\mu(g) - \mu\left(\limsup_{n \to \infty} f_n\right) \le \mu(g) - \limsup_{n \to \infty} \mu(f_n).$$

The proof is completed by reorganizing terms in the inequation above.

Definition 5.7. For a Σ -measurable function $f: S \to \mathbb{R}$, the Σ -measurable function $f^+: S \to [0, \infty]$ is given by

$$f^{+}(s) = \max(f(s), 0) = \begin{cases} f(s), & \text{if } f(s) > 0, \\ 0, & \text{if } f(s) \le 0. \end{cases}$$

Definition 5.8. For a Σ -measurable function $f: S \to \mathbb{R}$, the Σ -measurable function $f^-: S \to [0, \infty]$ is given by

$$f^{-}(s) = \max(-f(s), 0) = \begin{cases} 0, & \text{if } f(s) > 0, \\ -f(s), & \text{if } f(s) \le 0. \end{cases}$$

Proposition 5.9. For a Σ -measurable function $f: S \to \mathbb{R}$, whether f(s) > 0 or $f(s) \leq 0$,

$$f(s) = f^{+}(s) - f^{-}(s).$$

Furthermore, whether f(s) > 0 or $f(s) \le 0$,

$$|f(s)| = f^+(s) + f^-(s).$$

In other words, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Definition 5.9. A function $f: S \to \mathbb{R}$ is μ -integrable if it is Σ -measurable and $\mu(|f|) = \mu(f^+ + f^-) = \mu(f^+) + \mu(f^-) < \infty$.

Definition 5.10. The set of all μ -integrable functions in the measure space (S, Σ, μ) is denoted by $\mathcal{L}^1(S, \Sigma, \mu)$. The set of all non-negative μ -integrable functions in the measure space (S, Σ, μ) is denoted by $\mathcal{L}^1(S, \Sigma, \mu)^+$.

Definition 5.11. The integral $\mu(f)$ with respect to μ of a μ -integrable function $f: S \to \mathbb{R}$ is defined as

$$\mu(f) = \mu(f^+) - \mu(f^-).$$

Alternatively, the integral $\mu(f)$ with respect to μ of a μ -integrable function $f: S \to \mathbb{R}$ is denoted by

$$\int_{S} f d\mu = \int_{S} f(s)\mu(ds) = \mu(f).$$

Proposition 5.10. If a function $f: S \to \mathbb{R}$ is μ -integrable, then $\mu(f^+) < \infty$ and $\mu(f^-) < \infty$. By the triangle inequality,

$$|\mu(f)| = |\mu(f^+) + (-\mu(f^-))| \le |\mu(f^+)| + |-\mu(f^-)| = \mu(f^+) + \mu(f^-) = \mu(|f|).$$

Proposition 5.11. Consider a μ -integrable function $f: S \to \mathbb{R}$. Because $-f: S \to \mathbb{R}$ is Σ -measurable and $\mu(|-f|) = \mu(|f|) < \infty$, we know that -f is μ -integrable. Furthermore, $\mu(-f) = -\mu(f)$.

Proof. For every $s \in S$, $(-f)^+(s) = \max(-f(s), 0) = f^-(s)$ and $(-f)^-(s) = \max(f(s), 0) = f^+(s)$. Therefore,

$$\mu(-f) = \mu((-f)^+) - \mu((-f)^-) = -(\mu((-f)^-) - \mu((-f)^+)) = -(\mu(f^+) - \mu(f^-)) = -\mu(f).$$

Proposition 5.12. Consider a μ -integrable function $f: S \to \mathbb{R}$ and a constant $c \in \mathbb{R}$. Because $cf: S \to \mathbb{R}$ is Σ -measurable and $\mu(|cf|) = \mu(|c||f|) = |c|\mu(|f|) < \infty$, we know that cf is μ -integrable. Furthermore, $\mu(cf) = c\mu(f)$.

Proof. Because $f = f^+ - f^-$, we know that $cf = cf^+ - cf^-$. Furthermore, $(cf) = (cf)^+ - (cf)^-$. Therefore,

$$(cf)^+ - (cf)^- = cf^+ - cf^-.$$

By rearranging negative terms,

$$(cf)^+ + cf^- = (cf)^- + cf^+.$$

We will now consider the case where $c \geq 0$. By the linearity of the integral of non-negative functions,

$$\mu((cf)^+) + \mu(cf^-) = \mu((cf)^-) + \mu(cf^+).$$

By rearranging terms,

$$\mu((cf)^+) - \mu((cf)^-) = \mu(cf^+) - \mu(cf^-).$$

Because cf is μ -integrable and by the linearity of the integral of non-negative functions,

$$\mu(cf) = c\mu(f^+) - c\mu(f^-) = c(\mu(f^+) - \mu(f^-)) = c\mu(f).$$

When c < 0, note that $\mu(cf) = \mu(-|c|f) = |c|\mu(-f) = -|c|\mu(f) = c\mu(f)$.

Proposition 5.13. Consider a μ -integrable function $f: S \to \mathbb{R}$ and a μ -integrable function $g: S \to \mathbb{R}$. Because $f+g: S \to \mathbb{R}$ is Σ -measurable and $|f+g| \le |f| + |g|$ implies $\mu(|f+g|) \le \mu(|f|) + \mu(|g|) < \infty$, we know that f+g is μ -integrable. Furthermore, $\mu(f+g) = \mu(f) + \mu(g)$.

Proof. We know that $f + g = (f^+ - f^-) + (g^+ - g^-)$. Furthermore, $(f + g) = (f + g)^+ - (f + g)^-$. Therefore, $(f + g)^+ - (f + g)^- = (f^+ - f^-) + (g^+ - g^-)$.

By rearranging negative terms,

$$(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+.$$

By the linearity of the integral of non-negative functions,

$$\mu((f+g)^+) + \mu(f^-) + \mu(g^-) = \mu((f+g)^-) + \mu(f^+) + \mu(g^+).$$

By rearranging terms,

$$\mu((f+g)^+) - \mu((f+g)^-) = (\mu(f^+) - \mu(f^-)) + (\mu(g^+) - \mu(g^-))$$

Because f + g is μ -integrable,

$$\mu(f+g) = \mu(f) + \mu(g).$$

Proposition 5.14. Let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ be μ -integrable functions. If $\mu(\{f \neq g\}) = 0$, then $\mu(f) = \mu(g)$.

Proof. Recall that we already have the analogous result for non-negative Σ -measurable functions. First, note that if $f^+(s) \neq g^+(s)$ or $f^-(s) \neq g^-(s)$ for some $s \in S$, then $f(s) \neq g(s)$. Therefore,

$$\{s \in S \mid f^+(s) \neq g^+(s)\} \cup \{s \in S \mid f^-(s) \neq g^-(s)\} \subseteq \{s \in S \mid f(s) \neq g(s)\},\$$

so that $\mu(\{f^+ \neq g^+\}) + \mu(\{f^- \neq g^-\}) \leq \mu(\{f \neq g\})$. Because $\mu(\{f \neq g\}) = 0$, we know that $\mu(\{f^+ \neq g^+\}) = 0$ and $\mu(\{f^- \neq g^-\}) = 0$. Because f^+, f^-, g^+ , and g^- are non-negative Σ -measurable functions, we know that $\mu(f^+) = \mu(g^+)$ and $\mu(f^-) = \mu(g^-)$. Therefore,

$$\mu(f) = \mu(f^+) - \mu(f^-) = \mu(g^+) - \mu(g^-) = \mu(g).$$

Definition 5.12. The integral with respect to μ of a μ -integrable function $f: S \to \mathbb{R}$ over the set $A \in \Sigma$ is defined as

$$\mu(f;A) = \mu(f\mathbb{I}_A).$$

Because $f\mathbb{I}_A$ is Σ -measurable and $|f\mathbb{I}_A| \leq |f|$ implies $\mu(|f\mathbb{I}_A|) \leq \mu(|f|) < \infty$, we know that $f\mathbb{I}_A$ is μ -integrable. Alternatively, the integral $\mu(f;A)$ with respect to μ of f over the set $A \in \Sigma$ is denoted by

$$\int_{A} f d\mu = \int_{A} f(s)\mu(ds) = \mu(f; A).$$

Proposition 5.15. Consider a sequence of real numbers $(x_n \mid n \in \mathbb{N})$ and the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, where $\mu(\{n\}) = 1$ for every $n \in \mathbb{N}$. Furthermore, consider a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = x_n$. In that case, f is μ -integrable if and only if $\sum_n |x_n| < \infty$. Also, if f is μ -integrable, then $\mu(f) = \sum_n x_n$.

Proof. Suppose that $f(n) \geq 0$ for every $n \in \mathbb{N}$. For every $k \in \mathbb{N}$, consider the function $f_k : \mathbb{N} \to [0, \infty]$ given by

$$f_k(n) = \sum_{i=0}^k f(i) \mathbb{I}_{\{i\}}(n) = \begin{cases} f(n), & \text{if } n \le k, \\ 0, & \text{if } n > k. \end{cases}$$

Clearly, if $k \to \infty$, then $f_k \to f$. Because f_k is a simple function,

$$\mu(f_k) = \sum_{i=0}^k f(i)\mu(\{i\}) = \sum_{i=0}^k f(i) = \sum_{i=0}^k x_i.$$

Because $f_k \leq f_{k+1}$, we have $f_k \uparrow f$. By the monotone-convergence theorem, $\mu(f_k) \uparrow \mu(f)$. Therefore,

$$\mu(f) = \lim_{k \to \infty} \sum_{i=0}^{k} x_i = \sum_{n} x_n.$$

Now suppose $f(n) \in \mathbb{R}$ for every $n \in \mathbb{N}$. Based on our previous result,

$$\mu(|f|) = \mu(f^+) + \mu(f^-) = \sum_n \max(x_n, 0) + \max(-x_n, 0) = \sum_n |x_n|.$$

By definition, f is integrable if and only if $\mu(|f|) = \sum_{n} |x_n| < \infty$, in which case

$$\mu(f) = \mu(f^+) - \mu(f^-) = \sum_n \max(x_n, 0) - \max(-x_n, 0) = \sum_n x_n.$$

Theorem 5.2 (Dominated convergence theorem). Consider a sequence of Σ -measurable functions $(f_n : S \to \mathbb{R} \mid n \in \mathbb{N})$ and a Σ -measurable function $f : S \to \mathbb{R}$ such that $\lim_{n\to\infty} f_n = f$. Furthermore, suppose there is a μ -integrable non-negative function $g \in \mathcal{L}^1(S, \Sigma, \mu)^+$ that dominates this sequence of functions such that $|f_n| \leq g$ for every $n \in \mathbb{N}$. In that case, f is μ -integrable and $\lim_{n\to\infty} \mu(f_n) = \mu(f)$.

Proof. Because g is μ -integrable and non-negative, $\mu(g) = \mu(|g|) < \infty$. Because $|f_n| \leq g$ for every $n \in \mathbb{N}$, we know that $\mu(|f_n|) \leq \mu(g) < \infty$, which implies that f_n is μ -integrable. Because the function $|\cdot|$ is continuous, we know that $\lim_{n\to\infty} |f_n| = |f|$, which implies $|f| \leq g$. Because $\mu(|f|) \leq \mu(g) < \infty$, we know that f is μ -integrable.

Because $|f_n| \leq g$ and $|f| \leq g$, we know that $|f_n| + |f| \leq 2g$. By the triangle inequality,

$$|f_n - f| = |f_n + (-f)| \le |f_n| + |f| \le 2g.$$

Because $|f_n - f| : S \to [0, \infty]$ is a Σ -measurable function and $|f_n - f| \le 2g$ for every $n \in \mathbb{N}$, where $2g : S \to [0, \infty]$ is a Σ -measurable function such that $\mu(2g) = 2\mu(g) < \infty$, the reverse Fatou lemma states that

$$\mu\left(\limsup_{n\to\infty}|f_n-f|\right)\geq \limsup_{n\to\infty}\mu(|f_n-f|).$$

Since the function $|\cdot|$ is continuous, we know that $\lim_{n\to\infty} |f_n - f| = 0$, where 0 is the zero function. Therefore,

$$\lim_{n \to \infty} \sup_{n \to \infty} |f_n - f| = \lim_{n \to \infty} \inf_{n \to \infty} |f_n - f| = \lim_{n \to \infty} |f_n - f| = 0.$$

By taking the integral with respect to μ of these non-negative functions,

$$\mu\left(\limsup_{n\to\infty}|f_n-f|\right) = \mu\left(\liminf_{n\to\infty}|f_n-f|\right) = \mu\left(\lim_{n\to\infty}|f_n-f|\right) = \mu(0) = 0.$$

Because $f_n - f$ is μ -integrable for every $n \in \mathbb{N}$ and $|\mu(f_n - f)| \le \mu(|f_n - f|)$,

$$0 \ge \limsup_{n \to \infty} \mu(|f_n - f|) \ge \limsup_{n \to \infty} |\mu(f_n - f)| \ge \liminf_{n \to \infty} |\mu(f_n - f)| \ge 0.$$

Because the limit superior and limit inferior in the inequation above must be equal to zero, we know that $\lim_{n\to\infty} |\mu(f_n-f)| = 0$, which implies $\lim_{n\to\infty} \mu(f_n-f) = 0$. By the linearity of the integral with respect to μ ,

$$\lim_{n \to \infty} \mu(f_n) = \mu(f).$$

Lemma 5.3 (Scheffé's lemma for non-negative functions). Consider a sequence of μ -integrable non-negative functions $(f_n: S \to [0, \infty] \mid n \in \mathbb{N})$ and a μ -integrable non-negative function $f: S \to [0, \infty]$ such that $\lim_{n\to\infty} f_n = f$ (almost everywhere). In that case,

$$\lim_{n\to\infty}\mu(|f_n-f|)=0 \text{ if and only if } \lim_{n\to\infty}\mu(f_n)=\mu(f).$$

Proof. First, suppose $\lim_{n\to\infty} \mu(|f_n-f|) = 0$. Since $0 \le |\mu(f_n-f)| \le \mu(|f_n-f|)$, the squeeze theorem implies that $\lim_{n\to\infty} |\mu(f_n-f)| = 0$, which also implies that $\lim_{n\to\infty} \mu(f_n-f) = 0$. By the linearity of the integral with respect to μ , we conclude that $\lim_{n\to\infty} \mu(f_n) = \mu(f)$.

Now suppose $\lim_{n\to\infty} \mu(f_n) = \mu(f)$ and consider the function $(f_n - f)^-: S \to [0, \infty]$ given by

$$(f_n - f)^-(s) = \max(-(f_n - f)(s), 0) = \max((f - f_n)(s), 0) = (f - f_n)^+(s) = \begin{cases} f(s) - f_n(s), & \text{if } f(s) > f_n(s), \\ 0, & \text{if } f(s) \le f_n(s). \end{cases}$$

Note that $(f_n - f)^- \le f$ for every $n \in \mathbb{N}$. Because $\lim_{n \to \infty} f_n = f$, we know that for every $s \in S$ and $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that n > N guarantees that $|f(s) - f_n(s)| < \epsilon$. Note that, for every n > N, if $f(s) > f_n(s)$, then $|(f_n - f)^-(s)| = |f(s) - f_n(s)| < \epsilon$. If $f(s) \le f_n(s)$, then $|(f_n - f)^-(s)| = 0 < \epsilon$. Therefore, for every $s \in S$ and $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that n > N guarantees that $|(f_n - f)^-(s)| < \epsilon$. By definition, $\lim_{n \to \infty} (f_n - f)^- = 0$, where 0 denotes the zero function.

Consider the sequence of Σ -measurable functions $((f_n - f)^- : S \to \mathbb{R} \mid n \in \mathbb{N})$ and the Σ -measurable function $0: S \to \mathbb{R}$ such that $\lim_{n\to\infty} (f_n - f)^- = 0$. Furthermore, consider the μ -integrable non-negative function $f \in \mathcal{L}^1(S, \Sigma, \mu)^+$ such that $|(f_n - f)^-| = (f_n - f)^- \le f$ for every $n \in \mathbb{N}$. By the dominated convergence theorem, we know that $\lim_{n\to\infty} \mu((f_n - f)^-) = \mu(0) = 0$.

For every $n \in \mathbb{N}$, recall that $(f_n - f)^+ = (f_n - f) + (f_n - f)^-$. By the linearity of the integral with respect to μ ,

$$\lim_{n \to \infty} \mu((f_n - f)^+) = \lim_{n \to \infty} \mu(f_n) - \mu(f) + \mu((f_n - f)^-) = \mu(f) - \mu(f) + \lim_{n \to \infty} \mu((f_n - f)^-) = 0.$$

For every $n \in \mathbb{N}$, recall that $|f_n - f| = (f_n - f)^+ + (f_n - f)^-$. By the linearity of the integral with respect to μ ,

$$\lim_{n \to \infty} \mu(|f_n - f|) = \lim_{n \to \infty} \mu((f_n - f)^+) + \mu((f_n - f)^-) = 0.$$

Lemma 5.4 (Scheffé's lemma). Consider a sequence of μ -integrable functions $(f_n : S \to \mathbb{R} \mid n \in \mathbb{N})$ and a μ -integrable function $f : S \to \mathbb{R}$ such that $\lim_{n\to\infty} f_n = f$ (almost everywhere). In that case,

$$\lim_{n\to\infty}\mu(|f_n-f|)=0 \text{ if and only if } \lim_{n\to\infty}\mu(|f_n|)=\mu(|f|).$$

Proof. First, suppose $\lim_{n\to\infty} \mu(|f_n-f|)=0$. By the triangle inequality,

$$|f_n| = |(f_n - f) + f| \le |f_n - f| + |f|,$$

$$|f| = |(f - f_n) + f_n| \le |f_n - f| + |f_n|.$$

Because the integral with respect to μ is non-decreasing and linear,

$$\mu(|f_n - f|) \ge \mu(|f_n|) - \mu(|f|),$$

$$\mu(|f_n - f|) \ge \mu(|f|) - \mu(|f_n|).$$

Because $\mu(|f_n - f|) \ge a$ and $\mu(|f_n - f|) \ge -a$ for $a = \mu(|f_n|) - \mu(|f|)$,

$$\mu(|f_n - f|) \ge |\mu(|f_n|) - \mu(|f|)| \ge 0.$$

By the squeeze theorem, $\lim_{n\to\infty} |\mu(|f_n|) - \mu(|f|)| = 0$, which implies $\lim_{n\to\infty} \mu(|f_n|) - \mu(|f|) = 0$. By the linearity of the integral with respect to μ , we conclude that $\lim_{n\to\infty} \mu(|f_n|) = \mu(|f|)$.

Now suppose $\lim_{n\to\infty}\mu(|f_n|)=\mu(|f|)$. Because the function $g:\mathbb{R}\to\mathbb{R}$ given by $g(x)=\max(x,0)$ is continuous,

$$\lim_{n \to \infty} f_n^+(s) = \lim_{n \to \infty} \max(f_n(s), 0) = \max(f(s), 0) = f^+(s),$$
$$\lim_{n \to \infty} f_n^-(s) = \lim_{n \to \infty} \max(-f_n(s), 0) = \max(-f(s), 0) = f^-(s).$$

Because $(f_n^+:S\to [0,\infty]\mid n\in\mathbb{N})$ and $(f_n^-:S\to [0,\infty]\mid n\in\mathbb{N})$ are sequences of Σ -measurable functions, the Fatou lemma guarantees that

$$\begin{split} \mu(f^+) &= \mu\left(\lim_{n\to\infty} f_n^+\right) = \mu\left(\liminf_{n\to\infty} f_n^+\right) \leq \liminf_{n\to\infty} \mu(f_n^+),\\ \mu(f^-) &= \mu\left(\lim_{n\to\infty} f_n^-\right) = \mu\left(\liminf_{n\to\infty} f_n^-\right) \leq \liminf_{n\to\infty} \mu(f_n^-). \end{split}$$

Consider the integrals $\mu(f_n^+)$ and $\mu(f_n^-)$ written as

$$\mu(f_n^+) = \mu(f_n^+) + \mu(f_n^-) - \mu(f_n^-),$$

$$\mu(f_n^-) = \mu(f_n^-) + \mu(f_n^+) - \mu(f_n^+).$$

By taking the limit superior of both sides,

$$\limsup_{n \to \infty} \mu(f_n^+) = \limsup_{n \to \infty} \left(\mu(f_n^+) + \mu(f_n^-) - \mu(f_n^-) \right),$$
$$\limsup_{n \to \infty} \mu(f_n^-) = \limsup_{n \to \infty} \left(\mu(f_n^-) + \mu(f_n^+) - \mu(f_n^+) \right).$$

By the subadditivity of the limit superior,

$$\begin{split} &\limsup_{n\to\infty}\mu(f_n^+) \leq \limsup_{n\to\infty}\left(\mu(f_n^+) + \mu(f_n^-)\right) + \limsup_{n\to\infty}-\mu(f_n^-) \\ &\limsup_{n\to\infty}\mu(f_n^-) \leq \limsup_{n\to\infty}\left(\mu(f_n^-) + \mu(f_n^+)\right) + \limsup_{n\to\infty}-\mu(f_n^+). \end{split}$$

From our assumption that $\lim_{n\to\infty} \mu(|f_n|) = \mu(|f|)$,

$$\limsup_{n\to\infty}\left(\mu(f_n^+)+\mu(f_n^-)\right)=\limsup_{n\to\infty}\left(\mu(f_n^-)+\mu(f_n^+)\right)=\limsup_{n\to\infty}\mu(|f_n|)=\lim_{n\to\infty}\mu(|f_n|)=\mu(|f|).$$

Therefore, by the relationship between the limit inferior and the limit superior,

$$\limsup_{n \to \infty} \mu(f_n^+) \le \mu(|f|) - \liminf_{n \to \infty} \mu(f_n^-),$$
$$\limsup_{n \to \infty} \mu(f_n^-) \le \mu(|f|) - \liminf_{n \to \infty} \mu(f_n^+).$$

By non-decreasing the right sides of the previous inequations using our previous result,

$$\lim_{n \to \infty} \sup \mu(f_n^+) \le \mu(|f|) - \mu(f^-) = \mu(f^+) + \mu(f^-) - \mu(f^-) = \mu(f^+),$$

$$\lim_{n \to \infty} \sup \mu(f_n^-) \le \mu(|f|) - \mu(f^+) = \mu(f^+) + \mu(f^-) - \mu(f^+) = \mu(f^-).$$

By noting that the limit superior is at least as large as the limit inferior and combining the previous results,

$$\mu(f^+) \le \liminf_{n \to \infty} \mu(f_n^+) \le \limsup_{n \to \infty} \mu(f_n^+) \le \mu(f^+),$$

$$\mu(f^-) \le \liminf_{n \to \infty} \mu(f_n^-) \le \limsup_{n \to \infty} \mu(f_n^-) \le \mu(f^-).$$

Because the previous inequations imply that the limits must match,

$$\lim_{n \to \infty} \mu(f_n^+) = \mu(f^+),$$
$$\lim_{n \to \infty} \mu(f_n^-) = \mu(f^-).$$

Because $(f_n^+:S\to [0,\infty]\mid n\in\mathbb{N})$ and $(f_n^-:S\to [0,\infty]\mid n\in\mathbb{N})$ are sequences of μ -integrable nonnegative functions and $f^+:S\to [0,\infty]$ and $f^-:S\to [0,\infty]$ are μ -integrable nonnegative functions such that $\lim_{n\to\infty}f_n^+=f^+$ and $\lim_{n\to\infty}f_n^-=f^-$, Scheffé's lemma for non-negative functions guarantees that

$$\lim_{n \to \infty} \mu(|f_n^+ - f^+|) = 0,$$

$$\lim_{n \to \infty} \mu(|f_n^- - f^-|) = 0.$$

By the triangle inequality,

$$|f_n - f| = |(f_n^+ - f_n^-) - (f^+ - f^-)| = |(f_n^+ - f^+) + (f^- - f_n^-)| \le |f_n^+ - f^+| + |f_n^- - f^-|.$$

Because the integral with respect to μ is non-negative for non-negative functions, non-decreasing, and linear,

$$0 \le \mu(|f_n - f|) \le \mu(|f_n^+ - f^+|) + \mu(|f_n^- - f^-|).$$

By the squeeze theorem, and as we wanted to show,

$$\lim_{n \to \infty} \mu(|f_n - f|) = 0.$$

Proposition 5.16. Consider the measure space (S, Σ, μ) . For a set $A \in \Sigma$, consider the triple (A, Σ_A, μ_A) such that $\Sigma_A = \{B \in \Sigma \mid B \subseteq A\}$ and $\mu_A(B) = \mu(B)$ for every $B \in \Sigma_A$. In that case, (A, Σ_A, μ_A) is a measure space restricted to A.

Proof. First, we will show that Σ_A is a σ -algebra on A. Because $A \in \Sigma$ and $A \subseteq A$, we have $A \in \Sigma_A$. If $B \in \Sigma_A$, then $B \in \Sigma$ and $A \cap B^c \in \Sigma$. Because $A \cap B^c \subseteq A$, we have $A \setminus B \in \Sigma_A$. For any sequence $(B_n \in \Sigma_A \mid n \in \mathbb{N})$, the fact that $B_n \in \Sigma$ guarantees that $\cup_n B_n \in \Sigma$. Because $B_n \subseteq A$ for every $n \in \mathbb{N}$, we know that $\cup_n B_n \subseteq A$, which implies $\cup_n B_n \in \Sigma_A$.

Second, we will show that the non-negative function $\mu_A: \Sigma_A \to [0, \infty]$ is a measure on the measurable space (A, Σ_A) . Because $\emptyset \in \Sigma$ and $\emptyset \in \Sigma_A$, we know that $\mu_A(\emptyset) = \mu(\emptyset) = 0$. For any sequence $(B_n \in \Sigma_A \mid n \in \mathbb{N})$ such that $B_n \cap B_m = \emptyset$ for every $n \neq m$, we know that $\cup_n B_n \in \Sigma$ and $\cup_n B_n \in \Sigma_A$ and

$$\mu_A\left(\bigcup_n B_n\right) = \mu\left(\bigcup_n B_n\right) = \sum_n \mu(B_n) = \sum_n \mu_A(B_n).$$

Proposition 5.17. Consider the measure space (S, Σ, μ) and a Σ -measurable function $f: S \to \mathbb{R}$. Consider also the measure space (A, Σ_A, μ_A) restricted to $A \in \Sigma$ and the function $f|_A: A \to \mathbb{R}$ restricted to A given by $f|_A(a) = f(a)$ for every $a \in A$. The function $f|_A$ is Σ_A -measurable because, for every $B \in \mathcal{B}(\mathbb{R})$,

$$(f|_A)^{-1}(B) = \{a \in A \mid f(a) \in B\} = \{s \in S \mid f(s) \in B\} \cap A = f^{-1}(B) \cap A.$$

Proposition 5.18. Consider the measure space (S, Σ, μ) , a Σ -measurable function $f: S \to \mathbb{R}$, and a set $A \in \Sigma$. Then $f|_A$ is μ_A -integrable if and only if $f\mathbb{I}_A$ is μ -integrable, in which case $\mu_A(f|_A) = \mu(f\mathbb{I}_A) = \mu(f; A)$.

Proof. First, suppose $f = \mathbb{I}_B$ for some set $B \in \Sigma$. Clearly, $\mu(f\mathbb{I}_A) = \mu(\mathbb{I}_B\mathbb{I}_A) = \mu(\mathbb{I}_{B\cap A}) = \mu(B\cap A)$ and $\mu_A(f|_A) = \mu_A(\mathbb{I}_B|_A) = \mu_A(\mathbb{I}_{B\cap A}) = \mu_A(B\cap A)$. Because $B\cap A\subseteq A$, we have $\mu_A(B\cap A) = \mu(B\cap A)$, which implies $\mu_A(f|_A) = \mu(f\mathbb{I}_A)$. Because $\mu(|f\mathbb{I}_A|) = \mu(f\mathbb{I}_A) = \mu_A(f|_A) = \mu_A(|f|_A)$, we know that $f|_A$ is μ -integrable if and only if $f\mathbb{I}_A$ is μ -integrable.

Next, suppose f is a simple function that can be written as $f = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \Sigma$. In that case, the integral with respect to μ of the function $f\mathbb{I}_A$ is given by

$$\mu(f\mathbb{I}_A) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k} \mathbb{I}_A\right) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k \cap A}\right) = \sum_{k=1}^m a_k \mu(A_k \cap A).$$

Furthermore, the integral of the function $f|_A$ with respect to μ_A is given by

$$\mu_{A}(f|_{A}) = \mu_{A}\left(\left(\sum_{k=1}^{m} a_{k} \mathbb{I}_{A_{k}}\right) \Big|_{A}\right) = \mu_{A}\left(\sum_{k=1}^{m} a_{k} \mathbb{I}_{A_{k} \cap A}\right) = \sum_{k=1}^{m} a_{k} \mu_{A}(\mathbb{I}_{A_{k} \cap A}) = \sum_{k=1}^{m} a_{k} \mu_{A}(A_{k} \cap A).$$

Because $A_k \cap A \subseteq A$ for every $k \leq m$, we have $\mu_A(A_k \cap A) = \mu(A_k \cap A)$, which implies $\mu_A(f|_A) = \mu(f\mathbb{I}_A)$. Because $\mu(|f\mathbb{I}_A|) = \mu(f\mathbb{I}_A) = \mu_A(|f|_A) = \mu_A(|f|_A)$, we know that $f|_A$ is μ_A -integrable if and only if $f\mathbb{I}_A$ is μ -integrable.

Next, suppose f is non-negative. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$, where α_n is the n-th staircase function. Because $(f_n \mathbb{I}_A \mid n \in \mathbb{N})$ is a sequence of Σ -measurable functions such that $f_n \mathbb{I}_A \uparrow f \mathbb{I}_A$, we know that $\mu(f_n \mathbb{I}_A) \uparrow \mu(f \mathbb{I}_A)$. Because $(f_n|_A \mid n \in \mathbb{N})$ is a sequence of Σ_A -measurable functions such that $f_n|_A \uparrow f|_A$, we know that $\mu_A(f_n|_A) \uparrow \mu_A(f|_A)$. For every $n \in \mathbb{N}$, the fact that f_n is a simple function implies $\mu(f_n \mathbb{I}_A) = \mu_A(f_n|_A)$. Therefore, $\mu_A(f_n|_A) \uparrow \mu(f \mathbb{I}_A)$, and $\mu(f_n \mathbb{I}_A) \uparrow \mu_A(f|_A)$, and $\mu(f_n \mathbb{I}_A) = \mu_A(f|_A)$, and $\mu(f_n \mathbb{I}_A) = \mu_A(f|_A)$. Because $\mu(|f \mathbb{I}_A|) = \mu(f \mathbb{I}_A) = \mu_A(|f|_A) = \mu_A(|f|_A)$, we know that $f|_A$ is μ_A -integrable if and only if $f \mathbb{I}_A$ is μ -integrable.

Finally, suppose $f: S \to \mathbb{R}$. By definition,

$$\mu(|f\mathbb{I}_A|) = \mu((f\mathbb{I}_A)^+) + \mu((f\mathbb{I}_A)^-) = \mu(f^+\mathbb{I}_A) + \mu(f^-\mathbb{I}_A) = \mu_A(f^+|_A) + \mu_A(f^-|_A) = \mu_A((f|_A)^+) + \mu_A((f|_A)^-) = \mu(|f|_A|).$$

Therefore, $f|_A$ is μ_A -integrable if and only if $f\mathbb{I}_A$ is μ -integrable. In that case,

$$\mu(f\mathbb{I}_A) = \mu((f\mathbb{I}_A)^+) - \mu((f\mathbb{I}_A)^-) = \mu(f^+\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) = \mu_A(f^+|_A) - \mu_A(f^-|_A) = \mu_A((f|_A)^+) - \mu_A((f|_A)^-) = \mu(f^+\mathbb{I}_A) - \mu_A(f^-|_A) = \mu_A((f|_A)^+) - \mu_A((f|_A)^-) = \mu(f^+\mathbb{I}_A) - \mu_A(f^-|_A) = \mu_A((f|_A)^+) - \mu_A((f|_A)^-) = \mu(f^+\mathbb{I}_A) - \mu_A((f|_A)^-) = \mu(f^+\mathbb{I}_A) - \mu_A((f|_A)^-) = \mu(f^+\mathbb{I}_A) - \mu_A((f^-|_A)^-) = \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) = \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^-\mathbb{I}_A) - \mu(f^$$

Ш

Proposition 5.19. Consider a Σ -measurable function $f: S \to [0, \infty]$ and the function $(f\mu): \Sigma \to [0, \infty]$ defined by

$$(f\mu)(A) = \mu(f;A) = \mu(f\mathbb{I}_A) = \mu_A(f|_A).$$

In that case, $(f\mu)$ is a measure on (S, Σ) .

Proof. Clearly, $(f\mu)(\emptyset) = \mu(f\mathbb{I}_{\emptyset}) = \mu(0) = 0$. Consider a sequence $(B_n \in \Sigma \mid n \in \mathbb{N})$ such that $B_n \cap B_m = \emptyset$ for $n \neq m$. First, suppose f is a simple function that can be written as $f = \sum_{k=1}^m a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \Sigma$. In that case,

$$(f\mu)(\cup_n B_n) = \mu(f\mathbb{I}_{\cup_n B_n}) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k} \mathbb{I}_{\cup_n B_n}\right) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k \cap (\cup_n B_n)}\right) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{\cup_n (A_k \cap B_n)}\right).$$

By the definition of integral with respect to μ of a simple function and countable additivity,

$$(f\mu)(\cup_n B_n) = \sum_{k=1}^m a_k \mu (\cup_n (A_k \cap B_n)) = \sum_{k=1}^m a_k \sum_n \mu (A_k \cap B_n) = \sum_n \sum_{k=1}^m a_k \mu (A_k \cap B_n).$$

By the definition of integral with respect to μ of a simple function,

$$(f\mu)(\cup_n B_n) = \sum_n \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k \cap B_n}\right) = \sum_n \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k} \mathbb{I}_{B_n}\right) = \sum_n \mu\left(f\mathbb{I}_{B_n}\right) = \sum_n \mu\left(f(B_n)\right) = \sum_n \mu\left(\int_{a_n}^{b_n} a_k \mathbb{I}_{A_k \cap B_n}\right) = \sum_n \mu\left(\int_{a_$$

Now suppose f is non-negative. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$, where α_n is the n-th staircase function. For every set $B \in \Sigma$, we know that $(f_n \mathbb{I}_B : S \to [0, \infty] \mid n \in \mathbb{N})$ is a sequence of Σ -measurable functions such that $f_n \mathbb{I}_B \uparrow f \mathbb{I}_B$, which implies that $\mu(f_n \mathbb{I}_B) \uparrow \mu(f \mathbb{I}_B)$. Therefore,

$$(f\mu)(\cup_j B_j) = \mu(f\mathbb{I}_{\cup_j B_j}) = \lim_{n \to \infty} \mu(f_n \mathbb{I}_{\cup_j B_j}) = \lim_{n \to \infty} \sum_j \mu(f_n \mathbb{I}_{B_j}) = \sum_j \lim_{n \to \infty} \mu(f_n \mathbb{I}_{B_j}) = \sum_j \mu(f\mathbb{I}_{B_j}) = \sum_j \mu(f\mathbb{I}_{B_$$

Proposition 5.20. Consider a Σ -measurable function $f: S \to [0, \infty]$ and the measure space $(S, \Sigma, (f\mu))$. By definition, the integral with respect to $(f\mu)$ of a Σ -measurable function $h: S \to \mathbb{R}$ over the set A is given by

$$(f\mu)(h\mathbb{I}_A) = (f\mu)(h; A) = (h(f\mu))(A).$$

In that case, $(f\mu)(h\mathbb{I}_A) = \mu(fh\mathbb{I}_A)$.

Proof. First, suppose $h = \mathbb{I}_B$ for some set $B \in \Sigma$. In that case, the integral with respect to $(f\mu)$ of h over the set A is given by

$$(f\mu)(h\mathbb{I}_A) = (f\mu)(\mathbb{I}_B\mathbb{I}_A) = (f\mu)(\mathbb{I}_{B\cap A}) = (f\mu)(B\cap A) = \mu(f\mathbb{I}_{B\cap A}) = \mu(f\mathbb{I}_B\mathbb{I}_A) = \mu(fh\mathbb{I}_A).$$

Next, suppose h is a simple function that can be written as $h = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \dots, a_m \in [0, \infty]$ and $A_1, A_2, \dots, A_m \in \Sigma$. In that case, the integral with respect to $(f\mu)$ of h over the set A is given by

$$(f\mu)(h\mathbb{I}_A) = (f\mu)\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k} \mathbb{I}_A\right) = (f\mu)\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k \cap A}\right) = \sum_{k=1}^m a_k (f\mu)(A_k \cap A) = \sum_{k=1}^m a_k \mu(f\mathbb{I}_{A_k \cap A}).$$

By the linearity of the integral with respect to μ ,

$$(f\mu)(h\mathbb{I}_A) = \mu\left(\sum_{k=1}^m a_k f \mathbb{I}_{A_k \cap A}\right) = \mu\left(f\mathbb{I}_A \sum_{k=1}^m a_k \mathbb{I}_{A_k}\right) = \mu(fh\mathbb{I}_A).$$

Next, suppose h is non-negative. For any $n \in \mathbb{N}$, let $h_n = \alpha_n \circ h$, where α_n is the n-th staircase function. Because $(h_n \mathbb{I}_A : S \to [0, \infty] \mid n \in \mathbb{N})$ is a sequence of Σ -measurable functions such that $h_n \mathbb{I}_A \uparrow h \mathbb{I}_A$, we know that $(f\mu)(h_n \mathbb{I}_A) \uparrow (f\mu)(h \mathbb{I}_A)$. Furthermore, because $(fh_n \mathbb{I}_A : S \to [0, \infty] \mid n \in \mathbb{N})$ is a sequence of Σ -measurable

functions such that $fh_n\mathbb{I}_A \uparrow fh\mathbb{I}_A$, we know that $\mu(fh_n\mathbb{I}_A) \uparrow \mu(fh\mathbb{I}_A)$. Therefore, the integral with respect to $(f\mu)$ of h over the set A is given by

$$(f\mu)(h\mathbb{I}_A) = \lim_{n \to \infty} (f\mu)(h_n\mathbb{I}_A) = \lim_{n \to \infty} \mu(fh_n\mathbb{I}_A) = \mu(fh\mathbb{I}_A).$$

Finally, suppose $h: S \to \mathbb{R}$. By definition,

$$(f\mu)(|h\mathbb{I}_A|) = (f\mu)((h\mathbb{I}_A)^+) + (f\mu)((h\mathbb{I}_A)^-) = (f\mu)(h^+\mathbb{I}_A) + (f\mu)(h^-\mathbb{I}_A) = \mu(fh^+\mathbb{I}_A) + \mu(fh^-\mathbb{I}_A)$$

By the linearity of the integral with respect to μ .

$$(f\mu)(|h\mathbb{I}_A|) = \mu(fh^+\mathbb{I}_A + fh^-\mathbb{I}_A) = \mu(f\mathbb{I}_A(h^+ + h^-)) = \mu(f|h|\mathbb{I}_A) = \mu(|fh\mathbb{I}_A|).$$

Therefore, $h\mathbb{I}_A$ is $(f\mu)$ -integrable if and only if $fh\mathbb{I}_A$ is μ -integrable. In that case,

$$(f\mu)(h\mathbb{I}_A) = (f\mu)((h\mathbb{I}_A)^+) - (f\mu)((h\mathbb{I}_A)^-) = (f\mu)(h^+\mathbb{I}_A) - (f\mu)(h^-\mathbb{I}_A) = \mu(fh^+\mathbb{I}_A) - \mu(fh^-\mathbb{I}_A)$$

By the linearity of the integral with respect to μ ,

$$(f\mu)(h\mathbb{I}_A) = \mu(fh^+\mathbb{I}_A - fh^-\mathbb{I}_A) = \mu(f\mathbb{I}_A(h^+ - h^-)) = \mu(fh\mathbb{I}_A).$$

Proposition 5.21. By considering integrals over the set S, if $f: S \to [0, \infty]$ and $h: S \to \mathbb{R}$ are Σ -measurable functions, then h is $(f\mu)$ -measurable if and only if fh is μ -measurable, in which case $(f\mu)(h) = \mu(fh)$.

Definition 5.13. Consider a measure space (S, Σ, μ) , a Σ -measurable function $f: S \to [0, \infty]$, and the measure $\lambda = (f\mu)$ on (S, Σ) . We say that λ has density f relative to μ , which is denoted by $d\lambda/d\mu = f$.

Proposition 5.22. In that case, for every $A \in \Sigma$, if $\mu(A) = 0$, then $\lambda(A) = (f\mu)(A) = \mu(f\mathbb{I}_A) = 0$.

Proof. The fact that $\{f\mathbb{I}_A \neq 0\} \subseteq A$ implies $\mu(\{f\mathbb{I}_A \neq 0\}) \leq \mu(A) = 0$. Because $f\mathbb{I}_A$ and 0 are Σ-measurable functions such that $\mu(\{f\mathbb{I}_A \neq 0\}) = 0$, we know that $\mu(f\mathbb{I}_A) = \mu(0) = 0$.

Theorem 5.3 (Radon-Nykodým theorem). If μ and λ are σ -finite measures on (S, Σ) such that if $\mu(A) = 0$ then $\lambda(A) = 0$ for every $A \in \Sigma$, then $\lambda = (f\mu)$ for some Σ -measurable function $f : S \to [0, \infty]$.

6 Expectation

Definition 6.1. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. The expectation $\mathbb{E}(X)$ of a \mathbb{P} -integrable random variable $X : \Omega \to \mathbb{R}$ is defined as the integral of X with respect to the probability measure \mathbb{P} . Therefore,

$$\mathbb{E}(X) = \mathbb{P}(X) = \int_{\Omega} X d\mathbb{P} = \int_{\Omega} X(\omega) \mathbb{P}(d\omega).$$

Definition 6.2. The expectation $\mathbb{E}(X)$ of a non-negative random variable $X:\Omega\to[0,\infty]$ is also defined as the integral of X with respect to the probability measure \mathbb{P} .

Consider a sequence of random variables $(X_n:\Omega\to\mathbb{R}\mid n\in\mathbb{N})$ and a random variable $X:\Omega\to\mathbb{R}$ such that

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\left\{\omega\in\Omega\mid\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

The integration results discussed in the previous section can be restated as follows.

Theorem 6.1 (Monotone-convergence theorem). If $X_n \geq 0$ and $X_n \leq X_{n+1}$ for every $n \in \mathbb{N}$, then $\mathbb{E}(X_n) \uparrow \mathbb{E}(X)$.

Lemma 6.1 (Fatou lemma). If $X_n \geq 0$ for every $n \in \mathbb{N}$, then $\mathbb{E}(X) \leq \liminf_{n \to \infty} \mathbb{E}[X_n]$.

Theorem 6.2 (Dominated convergence theorem). If there is a \mathbb{P} -integrable non-negative function $Y: \Omega \to [0, \infty]$ such that $|X_n| \leq Y$ for every $n \in \mathbb{N}$, then X is \mathbb{P} -integrable and $\lim_{n\to\infty} \mathbb{E}(X_n) = \mathbb{E}(X)$.

Lemma 6.2 (Scheffé's lemma). If X and X_n are \mathbb{P} -integrable for every $n \in \mathbb{N}$, then $\lim_{n\to\infty} \mathbb{E}(|X_n-X|)=0$ if and only if $\lim_{n\to\infty} \mathbb{E}(|X_n|)=\mathbb{E}(|X|)$.

Theorem 6.3 (Bounded convergence theorem). If there is a $K \in [0, \infty)$ such that $|X_n| \leq K$ for every $n \in \mathbb{N}$, then $\lim_{n \to \infty} \mathbb{E}(X_n) = \mathbb{E}(X)$ and $\lim_{n \to \infty} \mathbb{E}(|X_n - X|) = 0$.

Proof. Note that the simple function Y = K is \mathbb{P} -integrable, since $\mathbb{P}(|Y|) = \mathbb{P}(Y) = \mathbb{P}(K\mathbb{I}_{\Omega}) = K\mathbb{P}(\Omega) = K$. Therefore, X is \mathbb{P} -integrable and $\lim_{n\to\infty} \mathbb{E}(X_n) = \mathbb{E}(X)$. The dominated convergence theorem also guarantees that $\lim_{n\to\infty} \mathbb{E}(|X_n - X|) = 0$.

Definition 6.3. The expectation $\mathbb{E}(X; F)$ of the \mathbb{P} -integrable random variable $X : \Omega \to \mathbb{R}$ over the set $F \in \mathcal{F}$ is defined as

$$\mathbb{E}(X;F) = \mathbb{E}(X\mathbb{I}_F) = \mathbb{P}(X;F) = \mathbb{P}(X\mathbb{I}_F) = \int_F Xd\mathbb{P} = \int_F X(\omega)\mathbb{P}(d\omega).$$

Proposition 6.1. Consider a random variable $Z: \Omega \to \mathbb{R}$ and a $\mathcal{B}(\mathbb{R})$ -measurable non-negative function $g: \mathbb{R} \to [0,\infty]$ such that $a \leq b$ implies $g(a) \leq g(b)$. Recall that the function $g(Z): \Omega \to [0,\infty]$ defined by $g(Z) = g \circ Z$ is also a random variable. For every $c \in \mathbb{R}$, Markov's inequality states that

$$\mathbb{E}(g(Z)) \ge g(c)\mathbb{P}(Z \ge c),$$

since $g(Z) \ge g(Z)\mathbb{I}_{\{Z>c\}} \ge g(c)\mathbb{I}_{\{Z>c\}}$ implies $\mathbb{E}(g(Z)) \ge \mathbb{E}(g(c)\mathbb{I}_{\{Z>c\}}) = g(c)\mathbb{P}(Z \ge c)$.

Proposition 6.2. Consider a non-negative random variable $Z: \Omega \to [0, \infty]$ and let $g(c) = \max(c, 0)$. For $c \ge 0$, Markov's inequality implies that $\mathbb{E}(Z) \ge c\mathbb{P}(Z \ge c)$.

Proposition 6.3. Consider a random variable $Z: \Omega \to \mathbb{R}$ and let $g(c) = e^{\theta c}$ for some $\theta > 0$. Markov's inequality implies that $\mathbb{E}(e^{\theta Z}) \ge e^{\theta c} \mathbb{P}(Z \ge c)$.

Proposition 6.4. Consider a non-negative random variable $X: \Omega \to [0, \infty]$. If $\mathbb{E}(X) < \infty$, then $\mathbb{P}(X < \infty) = 1$. Note that $\infty \mathbb{I}_{\{X = \infty\}} \leq X$, such that $\infty \mathbb{P}(X = \infty) \leq \mathbb{E}(X)$. Therefore, $\mathbb{P}(X = \infty) > 0$ implies $\mathbb{E}[X] = \infty$.

Proposition 6.5. Consider a sequence $(Z_n:\Omega\to[0,\infty]\mid n\in\mathbb{N})$ of non-negative random variables. In that case,

$$\mathbb{E}\left(\sum_{k} Z_{k}\right) = \sum_{k} \mathbb{E}(Z_{k}).$$

Proof. For any $n \in \mathbb{N}$, let $Y_n = \sum_{k=0}^n Z_k$, such that $\mathbb{E}(Y_n) = \sum_{k=0}^n \mathbb{E}(Z_k)$. Clearly, $Y_n \geq 0$, $Y_n \leq Y_{n+1}$, and $\lim_{n \to \infty} Y_n = \sum_k Z_k$. Therefore, $Y_n \uparrow \sum_k Z_k$. By the monotone-convergence theorem, $\mathbb{E}(Y_n) \uparrow \mathbb{E}(\sum_k Z_k)$.

Proposition 6.6. Consider a sequence $(Z_n : \Omega \to [0, \infty] \mid n \in \mathbb{N})$ of non-negative random variables such that $\sum_k \mathbb{E}(Z_k) < \infty$. In that case, $\sum_k Z_k < \infty$ almost surely and $\lim_{n\to\infty} Z_n = 0$ almost surely, where 0 denotes the zero function.

Proof. Because $\mathbb{E}(\sum_k Z_k) < \infty$, we know that $\mathbb{P}(\sum_k Z_k < \infty) = 1$. Because the *n*-th term test implies that $\{\sum_k Z_k < \infty\} \subseteq \{\lim_{n \to \infty} Z_n = 0\}$, we know that $1 = \mathbb{P}(\sum_k Z_k < \infty) \leq \mathbb{P}(\lim_{n \to \infty} Z_n = 0)$.

Lemma 6.3 (Borel-Cantelli lemma). Consider a sequence of events $(F_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $\sum_n \mathbb{P}(F_n) < \infty$. Let $(\mathbb{I}_{F_n} \mid n \in \mathbb{N})$ be the corresponding sequence of indicator functions. Because $\mathbb{E}(\mathbb{I}_{F_k}) = \mathbb{P}(F_k)$, we know that $\sum_n \mathbb{E}(\mathbb{I}_{F_n}) < \infty$, which implies $\sum_n \mathbb{I}_{F_n} < \infty$ almost surely. Because $\sum_n \mathbb{I}_{F_n}(\omega)$ is the number of times that the outcome $\omega \in \Omega$ belongs to an event in the sequence, we know that the outcome ω almost surely belongs to a finite number of events in the sequence, which implies that $\mathbb{P}(\limsup_{n\to\infty} F_n) = 0$.

Definition 6.4. A function $\phi : \mathbb{R} \to \mathbb{R}$ is convex if $\lambda \phi(x) + (1 - \lambda)\phi(y) \ge \phi(\lambda x + (1 - \lambda)y)$, for every $x \in \mathbb{R}$, $y \in \mathbb{R}$, and $\lambda \in [0, 1]$. If $\phi : \mathbb{R} \to \mathbb{R}$ is convex, it is also continuous and therefore $\mathcal{B}(\mathbb{R})$ -measurable.

Important examples of convex functions include $x \mapsto |x|, x \mapsto x^2$, and $x \mapsto e^{\theta x}$ for $\theta \in \mathbb{R}$.

Proposition 6.7. If $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function, for every $z \in \mathbb{R}$ there is a function $g : \mathbb{R} \to \mathbb{R}$ given by g(x) = ax + b for every $x \in \mathbb{R}$ and some $a \in \mathbb{R}$ and $b \in \mathbb{R}$ such that $g(z) = \phi(z)$ and $g(x) \le \phi(x)$ for every $x \in \mathbb{R}$.

In other words, for every point in the domain of a convex function, there is a linear function that never surpasses the convex function such that the value of the linear function at that point matches the value of the convex function at that point.

Proposition 6.8 (Jensen's inequality). Consider a random variable $X : \Omega \to \mathbb{R}$ such that $\mathbb{E}(X) < \infty$ and a convex function $\phi : \mathbb{R} \to \mathbb{R}$. In that case, $\mathbb{E}(\phi(X)) \ge \phi(\mathbb{E}(X))$.

Proof. Consider a function $g: \mathbb{R} \to \mathbb{R}$ such that $g(\mathbb{E}(X)) = \phi(\mathbb{E}(X))$ and $g(x) = ax + b \le \phi(x)$ for every $x \in \mathbb{R}$ and some $a, b \in \mathbb{R}$. Clearly $g(X) = g \circ X \le \phi \circ X = \phi(X)$. Therefore,

$$\mathbb{E}(\phi(X)) \ge \mathbb{E}(g(X)) = \mathbb{E}[aX + b] = a\mathbb{E}(X) + b = g(\mathbb{E}(X)) = \phi(\mathbb{E}(X)).$$

Definition 6.5. For every $p \in [1, \infty)$, the set $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ contains exactly each random variable $X : \Omega \to \mathbb{R}$ such that $\mathbb{E}(|X|^p) < \infty$.

Definition 6.6. If $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$, the *p*-norm $||X||_p$ of the random variable X is given by $||X||_p = \mathbb{E}(|X|^p)^{1/p}$.

Proposition 6.9 (Monotonicity of norm). For every $p \in [1, \infty)$ and $r \in [1, \infty)$ such that $p \leq r$, if $Y \in \mathcal{L}^r(\Omega, \mathcal{F}, \mathbb{P})$ then $Y \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ and $||Y||_p \leq ||Y||_r$.

Proof. For every $n \in \mathbb{N}$, consider the function $X_n = \min(|Y|, n)^p$. Clearly, $0 \le X_n \le n^p$, so $0 \le \mathbb{E}(|X_n|) = \mathbb{E}(X_n) \le n^p$. Consider also the convex function $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = |x|^{r/p}$ such that $\phi(X_n) = |X_n|^{r/p} = X_n^{r/p}$. Clearly, $0 \le X_n^{r/p} = \min(|Y|, n)^r \le n^r$, so $0 \le \mathbb{E}(|X_n^{r/p}|) = \mathbb{E}(X_n^{r/p}) \le n^r$. Using Jensen's inequality,

$$\mathbb{E}(X_n^{r/p}) = \mathbb{E}(\phi(X_n)) \ge \phi(\mathbb{E}(X_n)) = |\mathbb{E}(X_n)|^{r/p} = \mathbb{E}(X_n)^{r/p}.$$

Because $X_n^{r/p} \ge 0$ and $X_n^{r/p} \uparrow |Y|^r$, the monotone-convergence theorem guarantees that $\mathbb{E}(X_n^{r/p}) \uparrow \mathbb{E}(|Y|^r)$. Because $X_n \ge 0$ and $X_n \uparrow |Y|^p$, the monotone-convergence theorem guarantees that $\mathbb{E}(X_n) \uparrow \mathbb{E}(|Y|^p)$. By taking the limit of both sides of the previous inequation,

$$\mathbb{E}(|Y|^r) = \lim_{n \to \infty} \mathbb{E}(X_n^{r/p}) \ge \lim_{n \to \infty} \mathbb{E}(X_n)^{r/p} = \left(\lim_{n \to \infty} \mathbb{E}(X_n)\right)^{r/p} = \mathbb{E}(|Y|^p)^{r/p}.$$

By taking the r-th root of both sides of the previous inequation,

$$\infty > \mathbb{E}(|Y|^r)^{1/r} \ge \mathbb{E}(|Y|^p)^{1/p}.$$

Proposition 6.10. For every $p \in [1, \infty)$, the set $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space over the field \mathbb{R} .

Proof. First, recall that the set of all functions from Ω to \mathbb{R} is a vector space over the field \mathbb{R} when scalar multiplication and addition are performed pointwise. Because such set includes $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$, it is sufficient to show that $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ is non-empty and closed under scalar multiplication and addition. Because $0: \Omega \to \mathbb{R}$ is a random variable and $\mathbb{E}(|0|^p) = \mathbb{E}(0) = 0$, we know that $0 \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$. If $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ and $c \in \mathbb{R}$, then $cX : \Omega \to \mathbb{R}$ is a random variable and $\mathbb{E}(|cX|^p) = \mathbb{E}(|c|^p|X|^p) = |c|^p\mathbb{E}(|X|^p)$, we know that $cX \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$. Finally, if $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$, then

$$|X + Y|^p \le (|X| + |Y|)^p \le (2\max(|X|, |Y|)^p \le 2^p(|X|^p + |Y|^p),$$

which implies $X + Y \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ since

$$\mathbb{E}(|X+Y|^p) \le \mathbb{E}(2^p(|X|^p + |Y|^p)) = 2^p \mathbb{E}(|X|^p) + 2^p \mathbb{E}(|Y|^p) < \infty.$$

Proposition 6.11 (Schwarz inequality). Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. In that case, $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathbb{E}(|XY|) \leq ||X||_2 ||Y||_2$.

Proof. First, consider the case where $||X||_2 \neq 0$ and $||Y||_2 \neq 0$. Let $Z = |X|/||X||_2$ and $W = |Y|/||Y||_2$. Clearly, $\mathbb{E}(Z^2) = \mathbb{E}(|X|^2)/||X||_2^2 = 1$. Analogously, $\mathbb{E}(W^2) = 1$. Because $(Z - W)^2 \geq 0$, we know that

$$0 \le \mathbb{E}((Z - W)^2) = \mathbb{E}(Z^2) + \mathbb{E}(W^2) - \mathbb{E}(2ZW) = 2 - \mathbb{E}(2ZW).$$

Because the previous inequation implies that $\mathbb{E}(ZW) \leq 1$,

$$1 \ge \mathbb{E}(ZW) = \mathbb{E}(|X||Y|/||X||_2||Y||_2) = \mathbb{E}(|XY|)/||X||_2||Y||_2.$$

Using the fact that $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$,

$$\mathbb{E}(|XY|) \le ||X||_2 ||Y||_2 < \infty.$$

Finally, consider the case where $||X||_2 = \mathbb{E}(X^2)^{1/2} = 0$, which will prove analogous to the case where $||Y||_2 = 0$. Because X^2 is a non-negative random variable, the fact that $\mathbb{E}(X^2) = 0$ implies that $\mathbb{P}(X^2 > 0) = \mathbb{P}(X \neq 0) = 0$. Therefore, $\mathbb{P}(X = 0) = 1$. Because $\{X = 0\} \subseteq \{XY = 0\}$, we know that $\mathbb{P}(X = 0) \le \mathbb{P}(XY = 0)$, which implies $\mathbb{P}(XY = 0) = \mathbb{P}(|XY| = 0) = 1$. Because $\{|XY| = 0\}$ happens almost surely, we know that $\mathbb{E}(|XY|) = \mathbb{E}(0) = 0$. Therefore, $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $0 = \mathbb{E}(|XY|) \le ||X||_2 ||Y||_2 = 0$.

Proposition 6.12 (Triangle law). Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Because $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space over \mathbb{R} , we know that $X + Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. In that case, $||X + Y||_2 \le ||X||_2 + ||Y||_2$.

Proof. Since $|X + Y| \le |X| + |Y|$, we know that $|X + Y|^2 \le (|X| + |Y|)^2 = |X|^2 + 2|X||Y| + |Y|^2$. Therefore,

$$\mathbb{E}(|X+Y|^2) \le \mathbb{E}(|X|^2) + 2\mathbb{E}(|X||Y|) + \mathbb{E}(|Y|^2) = \mathbb{E}(|X|^2) + 2\mathbb{E}(|XY|) + \mathbb{E}(|Y|^2).$$

Using the Schwarz inequality,

$$\mathbb{E}(|X+Y|^2) \le \mathbb{E}(|X|^2) + 2\|X\|_2\|Y\|_2 + \mathbb{E}(|Y|^2) = (\|X\|_2 + \|Y\|_2)^2$$

By taking the square root of both sides,

$$||X + Y||_2 = \mathbb{E}(|X + Y|^2)^{1/2} \le ||X||_2 + ||Y||_2.$$

Definition 6.7. Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Recall that $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$. Because $(X - \mu_X) \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $(Y - \mu_Y) \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, we know that $(X - \mu_X)(Y - \mu_Y) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. The covariance Cov(X, Y) between X and Y is defined by

$$Cov(X,Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y)) = \mathbb{E}(XY) - \mathbb{E}(X\mu_Y) - \mathbb{E}(Y\mu_X) + \mathbb{E}(\mu_X\mu_Y) = \mathbb{E}(XY) - \mu_X\mu_Y.$$

Definition 6.8. Consider the random variable $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. The variance Var(X) of X is defined by

$$Var(X) = Cov(X, X) = \mathbb{E}((X - \mu_X)^2) = \mathbb{E}(X^2) - \mu_X^2.$$

Definition 6.9. Consider the random variables $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. The inner product $\langle U, V \rangle$ between U and V is given by $\langle U, V \rangle = \mathbb{E}(UV)$.

Definition 6.10. In that case, If $||U||_2 \neq 0$ and $||V||_2 \neq 0$, the cosine of the angle θ between U and V is defined as

$$\cos \theta = \frac{\langle U, V \rangle}{\|U\|_2 \|V\|_2}.$$

Because $|\langle U, V \rangle| = |\mathbb{E}(UV)| \le \mathbb{E}(|UV|) \le ||U||_2 ||V||_2$, we know that $|\cos \theta| \le 1$.

Proposition 6.13. Consider the random variables $U, V, W, Z \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. The following are properties of the inner product:

- $\langle U, U \rangle = \mathbb{E}(U^2) = ||U||_2^2$.
- $\bullet \ \langle U,V\rangle = \mathbb{E}(UV) = \mathbb{E}(VU) = \langle V,U\rangle.$
- $\langle aU, V \rangle = \mathbb{E}(aUV) = a\mathbb{E}(UV) = a\langle U, V \rangle$, for any $a \in \mathbb{R}$.

- $\langle U, aV \rangle = \mathbb{E}(UaV) = a\mathbb{E}(UV) = a\langle U, V \rangle$, for any $a \in \mathbb{R}$.
- $\langle U + V, W \rangle = \mathbb{E}((U + V)W) = \mathbb{E}(UW + VW) = \langle U, W \rangle + \langle V, W \rangle$.
- $\langle U, V + W \rangle = \mathbb{E}(U(V + W)) = \mathbb{E}(UV + UW) = \langle U, V \rangle + \langle U, W \rangle.$
- $\bullet \ \langle U+V,W+Z\rangle = \langle U,W+Z\rangle + \langle V,W+Z\rangle = \langle U,W\rangle + \langle U,Z\rangle + \langle V,W\rangle + \langle V,Z\rangle.$

Definition 6.11. Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$. The correlation ρ between X and Y is defined as the cosine of the angle between $X - \mu_X$ and $Y - \mu_Y$, which is given by

$$\rho = \frac{\langle X - \mu_X, Y - \mu_Y \rangle}{\|X - \mu_X\|_2 \|Y - \mu_Y\|_2} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}.$$

Proposition 6.14. Consider the random variables $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Because $U + V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$,

$$\|U+V\|_2^2 = \mathbb{E}(|U+V|^2) = \mathbb{E}((U+V)^2) = \mathbb{E}(U^2) + 2\mathbb{E}(UV) + \mathbb{E}(V^2) = \|U\|_2^2 + \|V\|_2^2 + 2\langle U, V \rangle.$$

Definition 6.12. If $\langle U, V \rangle = 0$, we say that U and V are orthogonal, which is denoted by $U \perp V$. In that case,

$$||U + V||_2^2 = ||U||_2^2 + ||V||_2^2.$$

Proposition 6.15. Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Note that $X + Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and

$$Var(X + Y) = \mathbb{E}((X + Y)^2) - \mathbb{E}(X + Y)^2 = \mathbb{E}(X^2 + 2XY + Y^2) - (\mathbb{E}(X)^2 + 2\mathbb{E}(X)\mathbb{E}(Y) + \mathbb{E}(Y)^2).$$

By the linearity of expectation and reorganizing terms,

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).$$

Therefore, if Cov(X, Y) = 0, then Var(X + Y) = Var(X) + Var(Y).

Proposition 6.16. More generally, if $X_1, \ldots, X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, then

$$\operatorname{Var}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(X_{k}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j}).$$

Proposition 6.17 (Parallelogram law). Consider the random variables $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. In that case,

$$||U + V||_2^2 + ||U - V||_2^2 = 2||U||_2^2 + 2||V||_2^2$$

Proof. Using the relationship between the inner product and the 2-norm,

$$||U + V||_2^2 + ||U - V||_2^2 = \langle U + V, U + V \rangle + \langle U - V, U - V \rangle.$$

By the bilinearity of the inner product,

$$||U+V||_2^2 + ||U-V||_2^2 = \langle U,U\rangle + \langle U,V\rangle + \langle V,U\rangle + \langle V,V\rangle + \langle U,U\rangle + \langle U,U\rangle + \langle U,-V\rangle + \langle -V,U\rangle + \langle -V,-V\rangle.$$

By cancelling terms,

$$\|U+V\|_2^2 + \|U-V\|_2^2 = 2\langle U,U\rangle + 2\langle V,V\rangle = 2\|U\|_2^2 + 2\|V\|_2^2$$

Proposition 6.18. For some $p \in [1, \infty)$, consider a sequence of random variables $(X_n \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) \mid n \in \mathbb{N})$ such that

$$\lim_{k \to \infty} \sup_{r,s > k} ||X_r - X_s||_p = 0.$$

In that case, there is a random variable $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$\lim_{n\to\infty} ||X_n - X||_p = 0.$$

30

Proof. By definition, for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $k \geq N$ implies $\sup_{r,s > k} \|X_r - X_s\|_p < \epsilon$. Therefore, there is a sequence $(k_n \in \mathbb{N} \mid n \in \mathbb{N})$ such that $k_{n+1} \ge k_n$ and $\sup_{r,s \ge k_n} \|X_r - X_s\|_p < 1/2^n$ for every $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$, the monotonicity of the norm implies that

$$\mathbb{E}(|X_{k_{n+1}} - X_{k_n}|) = ||X_{k_{n+1}} - X_{k_n}||_1 \le ||X_{k_{n+1}} - X_{k_n}||_p < \frac{1}{2^n}.$$

Because $|X_{k_{n+1}} - X_{k_n}|$ is a non-negative random variable for every $n \in \mathbb{N}$

$$\sum_{n} \mathbb{E}(|X_{k_{n+1}} - X_{k_n}|) = \mathbb{E}\left(\sum_{n} |X_{k_{n+1}} - X_{k_n}|\right) \le \sum_{n} \frac{1}{2^n} < \infty.$$

Because the expectation above is finite.

$$\mathbb{P}\left(\sum_{n} |X_{k_{n+1}} - X_{k_n}| < \infty\right) = 1.$$

Suppose $\sum_{n} |X_{k_{n+1}}(\omega) - X_{k_n}(\omega)| < \infty$ for some $\omega \in \Omega$. For every $\epsilon > 0$, the Cauchy test guarantees that there is an $N \in \mathbb{N}$ such that j > i > N implies

$$\left| \sum_{n=i}^{j} |X_{k_{n+1}}(\omega) - X_{k_n}(\omega)| \right| = \sum_{n=i}^{j} |X_{k_{n+1}}(\omega) - X_{k_n}(\omega)| < \epsilon.$$

Furthermore, for every j > i,

$$|X_{k_j}(\omega) - X_{k_i}(\omega)| = \left| X_{k_j}(\omega) - X_{k_i}(\omega) + \sum_{n=i+1}^{j-1} X_{k_n}(\omega) - \sum_{n=i+1}^{j-1} X_{k_n}(\omega) \right| = \left| \sum_{n=i+1}^{j} X_{k_n}(\omega) - \sum_{n=i}^{j-1} X_{k_n}(\omega) \right|.$$

By shifting indices and using the triangle inequality, for j > i > N,

$$|X_{k_j}(\omega) - X_{k_i}(\omega)| = \left| \sum_{n=i}^{j-1} X_{k_{n+1}}(\omega) - X_{k_n}(\omega) \right| \le \sum_{n=i}^{j-1} \left| X_{k_{n+1}}(\omega) - X_{k_n}(\omega) \right| < \epsilon.$$

For j=i>N, note that $|X_{k_j}(\omega)-X_{k_i}(\omega)|=0<\epsilon$. Therefore, for every $\epsilon>0$ there is an $N\in\mathbb{N}$ such that j > N and i > N implies $|X_{k_i}(\omega) - X_{k_i}(\omega)| < \epsilon$, such that $(X_{k_n}(\omega) \mid n \in \mathbb{N})$ is a Cauchy sequence of real numbers. Because every Cauchy sequence of real numbers converges to a real number, consider the random variable $X = \limsup_{n \to \infty} X_{k_n} \text{ such that } \lim_{n \to \infty} X_{k_n}(\omega) = \limsup_{n \to \infty} X_{k_n}(\omega) = X(\omega).$ Since $\{\sum_n |X_{k_{n+1}} - X_{k_n}| < \infty\} \subseteq \{\lim_{n \to \infty} X_{k_n} = X\},$

$$\mathbb{P}\left(\lim_{n\to\infty} X_{k_n} = X\right) \ge \mathbb{P}\left(\sum_n |X_{k_{n+1}} - X_{k_n}| < \infty\right) = 1.$$

Suppose $\lim_{n\to\infty} X_{k_n}(\omega) = X(\omega)$ for some $\omega \in \Omega$. For every $r \in \mathbb{N}$,

$$\left| \lim_{n \to \infty} X_{k_n}(\omega) - X_r(\omega) \right|^p = \lim_{n \to \infty} |X_{k_n}(\omega) - X_r(\omega)|^p = |X(\omega) - X_r(\omega)|^p.$$

Because $\{\lim_{n\to\infty}X_{k_n}=X\}\subseteq\{\lim_{n\to\infty}|X_{k_n}-X_r|^p=|X-X_r|^p\}$ for every $r\in\mathbb{N},$

$$\mathbb{P}\left(\lim_{n\to\infty}|X_{k_n}-X_r|^p=|X-X_r|^p\right)\geq \mathbb{P}\left(\lim_{n\to\infty}X_{k_n}=X\right)=1.$$

Because $|X_{k_n} - X_r|^p \ge 0$ for every $n \in \mathbb{N}$, by the Fatou lemma,

$$\mathbb{E}(|X - X_r|^p) \le \liminf_{n \to \infty} \mathbb{E}(|X_{k_n} - X_r|^p).$$

For any $t \in \mathbb{N}$, suppose $r \geq k_t$ and recall that $k_n \geq k_t$ whenever $n \geq t$. In that case,

$$\mathbb{E}(|X_{k_n} - X_r|^p) = ||X_{k_n} - X_r||_p^p < \frac{1}{2^{tp}}.$$

For any $\epsilon > 0$, choose $t \in \mathbb{N}$ such that $1/2^{tp} < \epsilon$. In that case, for any $r \geq k_t$,

$$\mathbb{E}(|X - X_r|^p) \le \liminf_{n \to \infty} \mathbb{E}(|X_{k_n} - X_r|^p) \le \frac{1}{2^{tp}} < \epsilon.$$

Because $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space over the field \mathbb{R} , the fact that $(X - X_r) \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ and $X_r \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ implies that $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$. The previous inequality also shows that

$$\lim_{r \to \infty} \mathbb{E}(|X - X_r|^p) = \lim_{r \to \infty} ||X - X_r||_p^p = 0.$$

Definition 6.13. A vector space $\mathcal{K} \subseteq \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ is said to be complete if for every sequence $(V_n \in \mathcal{K} \mid n \in \mathbb{N})$ such that

$$\lim_{k \to \infty} \sup_{r,s > k} ||V_r - V_s||_p = 0$$

there is a $V \in \mathcal{K}$ such that

$$\lim_{n\to\infty} \|V_n - V\|_p = 0.$$

Proposition 6.19. If the vector space $\mathcal{K} \subseteq \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is complete, then for every $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ there is a so-called version $Y \in \mathcal{K}$ of the orthogonal projection of X onto \mathcal{K} such that $||X - Y||_2 = \inf\{||X - W||_2 \mid W \in \mathcal{K}\}$ and $X - Y \perp Z$ for every $Z \in \mathcal{K}$. Furthermore, if Y and \tilde{Y} are versions of the orthogonal projection of X onto \mathcal{K} , then $\mathbb{P}(Y = Y) = 1$.

Proof. For some $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, let $\Delta = \inf\{\|X - W\|_2 \mid W \in \mathcal{K}\}$. First, we will show that it is possible to choose a sequence $(Y_n \in \mathcal{K} \mid n \in \mathbb{N})$ such that $\lim_{n \to \infty} \|X - Y_n\|_2 = \Delta$. Recall that for every $\epsilon > 0$ there is a $W \in \mathcal{K}$ such that $\|X - W\|_2 < \Delta + \epsilon$. Choose Y_n such that $\|X - Y_n\|_2 < \Delta + \frac{1}{n+1}$. For every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $\|X - Y_n\|_2 < \Delta + \epsilon$, which is equivalent to $\|X - Y_n\|_2 - \Delta + \epsilon$ since $\Delta \leq \|X - Y_n\|_2$. Let $U = X - \frac{1}{2}(Y_r + Y_s)$ and $V = \frac{1}{2}(Y_r - Y_s)$ such that $U + V = X - Y_s$ and $U - V = X - Y_r$. Because $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, the parallelogram law guarantees that

$$||X - Y_s||_2^2 + ||X - Y_r||_2^2 = 2 ||X - \frac{1}{2}(Y_r + Y_s)||_2^2 + 2 ||\frac{1}{2}(Y_r - Y_s)||_2^2.$$

Therefore.

$$2\left\|\frac{1}{2}(Y_r - Y_s)\right\|_2^2 = 2\left\langle\frac{1}{2}(Y_r - Y_s), \frac{1}{2}(Y_r - Y_s)\right\rangle = \|X - Y_s\|_2^2 + \|X - Y_r\|_2^2 - 2\left\|X - \frac{1}{2}(Y_r + Y_s)\right\|_2^2.$$

Using properties of the inner product and reorganizing terms,

$$||Y_r - Y_s||_2^2 = 2||X - Y_s||_2^2 + 2||X - Y_r||_2^2 - 4||X - \frac{1}{2}(Y_r + Y_s)||_2^2.$$

Because $(Y_r + Y_s)/2 \in \mathcal{K}$, we know that $||X - (Y_r + Y_s)/2||_2^2 \ge \Delta^2$. Therefore

$$||Y_r - Y_s||_2^2 \le 2||X - Y_s||_2^2 + 2||X - Y_r||_2^2 - 4\Delta^2.$$

For every $\epsilon > 0$, since $\lim_{n \to \infty} \|X - Y_n\|_2^2 = \Delta^2$, there is a k such that $n \ge k$ implies $\|X - Y_n\|_2^2 - \Delta^2\| < \frac{\epsilon}{4}$, which is equivalent to $\|X - Y_n\|_2^2 < \frac{\epsilon}{4} + \Delta^2$. Therefore, whenever $r, s \ge k$,

$$||Y_r - Y_s||_2^2 \le 2||X - Y_s||_2^2 + 2||X - Y_r||_2^2 - 4\Delta^2 < 2\left(\frac{\epsilon}{4} + \Delta^2\right) + 2\left(\frac{\epsilon}{4} + \Delta^2\right) - 4\Delta^2 = \epsilon,$$

which implies

$$\lim_{k \to \infty} \sup_{r,s \ge k} ||Y_r - Y_s||_2 = 0.$$

Because \mathcal{K} is complete, there is an $Y \in \mathcal{K}$ such that

$$\lim_{n\to\infty} ||Y_n - Y||_2 = 0.$$

Let $U = X - Y_n$ and $V = Y_n - Y$ such that U + V = X - Y. Because $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$,

$$\Delta \le ||X - Y||_2 \le ||X - Y_n||_2 + ||Y_n - Y||_2.$$

Using the squeeze theorem when $n \to \infty$ shows that $||X - Y||_2 = \Delta = \inf\{||X - W||_2 \mid W \in \mathcal{K}\}.$

For some $Z \in \mathcal{K}$ and $t \in \mathbb{R}$, let U = X - Y and V = -tZ such that U + V = X - Y - tZ. Because $U \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $V \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and considering the bilinearity of the inner product,

$$||X - Y - tZ||_2^2 = ||X - Y||_2^2 + ||-tZ||_2^2 + 2\langle X - Y, -tZ \rangle = ||X - Y||_2^2 + t^2||Z||_2^2 - 2t\langle X - Y, Z \rangle.$$

Because $(Y + tZ) \in \mathcal{K}$, we know that $||X - Y||_2^2 \le ||X - (Y + tZ)||_2^2$. Therefore, for every $Z \in \mathcal{K}$ and $t \in \mathbb{R}$,

$$t^2 ||Z||_2^2 \ge 2t\langle X - Y, Z \rangle.$$

We will now show that the previous inequation can only be true for every $Z \in \mathcal{K}$ and $t \in \mathbb{R}$ if $\langle X - Y, Z \rangle = 0$ for every $Z \in \mathcal{K}$, which implies $X - Y \perp Z$ for every $Z \in \mathcal{K}$.

In order to find a contradiction, suppose that $\langle X - Y, Z \rangle \neq 0$ for some $Z \in \mathcal{K}$. Because $(X - Y) \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Z \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, the Schwarz inequality implies that

$$||X - Y||_2 ||Z||_2 \ge \mathbb{E}(|(X - Y)Z|) \ge |\mathbb{E}((X - Y)Z)| \ge 0.$$

Clearly, $|\mathbb{E}((X-Y)Z)| = 0$ when $||Z||_2 = 0$, which implies $\mathbb{E}((X-Y)Z) = \langle X-Y,Z \rangle = 0$. Therefore, we can suppose that $||Z||_2 > 0$. If $\langle X-Y,Z \rangle > 0$, then choose a $t \in \mathbb{R}$ such that $0 < t < 2\langle X-Y,Z \rangle / ||Z||_2^2$. If $\langle X-Y,Z \rangle < 0$, then choose a $t \in \mathbb{R}$ such that $2\langle X-Y,Z \rangle / ||Z||_2^2 < t < 0$. In either case, $t^2 ||Z||_2^2 < 2t\langle X-Y,Z \rangle$, which is a contradiction. Suppose that Y and \tilde{Y} are versions of the orthogonal projection of X onto K. Because $(\tilde{Y}-Y) \in K$,

$$\langle X - Y, \tilde{Y} - Y \rangle = \langle X - \tilde{Y}, \tilde{Y} - Y \rangle = 0.$$

By the bilinearity of the inner product,

$$\langle X, \tilde{Y} - Y \rangle + \langle -Y, \tilde{Y} - Y \rangle - \langle X, \tilde{Y} - Y \rangle - \langle -\tilde{Y}, \tilde{Y} - Y \rangle = \langle -Y, \tilde{Y} - Y \rangle - \langle -\tilde{Y}, \tilde{Y} - Y \rangle = \langle \tilde{Y} - Y, \tilde{Y} - Y \rangle = 0$$

Because $\langle \tilde{Y} - Y, \tilde{Y} - Y \rangle = \mathbb{E}((\tilde{Y} - Y)^2) = 0$ and $(\tilde{Y} - Y)^2$ is a non-negative random variable, we know that $\mathbb{P}((\tilde{Y} - Y)^2 \neq 0) = 0$, which implies that $\mathbb{P}(\tilde{Y} = Y) = 1$.

Proposition 6.20. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$. Recall that $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda_X)$ is also a probability triple, where $\Lambda_X : \mathcal{B}(\mathbb{R}) \to [0, 1]$ is the law of X given by $\Lambda_X(B) = \mathbb{P}(X^{-1}(B))$ for every $B \in \mathcal{B}(\mathbb{R})$. If $h : \mathbb{R} \to \mathbb{R}$ is a Borel function, then $(h \circ X) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ if and only if $h \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda_X)$. Furthermore, in that case,

$$\int_{\Omega} (h \circ X) \ d\mathbb{P} = \mathbb{P}(h \circ X) = \Lambda_X(h) = \int_{\mathbb{R}} h \ d\Lambda_X.$$

Proof. First, suppose $h = \mathbb{I}_B$ for some $B \in \mathcal{B}(\mathbb{R})$. For every $\omega \in \Omega$,

$$(h \circ X)(\omega) = \mathbb{I}_B(X(\omega)) = \mathbb{I}_{X^{-1}(B)}(\omega) = \begin{cases} 1, & \text{if } X(\omega) \in B, \\ 0, & \text{if } X(\omega) \notin B. \end{cases}$$

Therefore, $\mathbb{P}(h \circ X) = \mathbb{P}(\mathbb{I}_{X^{-1}(B)}) = \mathbb{P}(X^{-1}(B)) = \Lambda_X(B) = \Lambda_X(B) = \Lambda_X(h) < \infty$. Because h is $\mathcal{B}(\mathbb{R})$ -measurable and $(h \circ X)$ is \mathcal{F} -measurable, this step is complete.

Next, suppose h is a simple function that can be written as $h = \sum_{k=1}^m a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \mathcal{B}(\mathbb{R})$. For every $\omega \in \Omega$,

$$(h \circ X)(\omega) = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}(X(\omega)) = \sum_{k=1}^{m} a_k \mathbb{I}_{X^{-1}(A_k)}(\omega).$$

Therefore, $\mathbb{P}(h \circ X) = \sum_{k=1}^{m} a_k \mathbb{P}(X^{-1}(A_k)) = \sum_{k=1}^{m} a_k \Lambda_X(A_k) = \Lambda_X(\sum_{k=1}^{m} a_k \mathbb{I}_{A_k}) = \Lambda_X(h)$. Because h is $\mathcal{B}(\mathbb{R})$ -measurable and $(h \circ X)$ is \mathcal{F} -measurable, this step is complete since $\Lambda_X(h) < \infty$ if and only if $\mathbb{P}(h \circ X) < \infty$.

Next, suppose h is a non-negative Borel function. For any $n \in \mathbb{N}$, consider the simple function $h_n = \alpha_n \circ h$, where α_n is the n-th staircase function. Because $h_n \uparrow h$, the monotone-convergence theorem implies that $\Lambda_X(h_n) \uparrow \Lambda_X(h)$. Similarly, consider the simple function $\alpha_n \circ (h \circ X) = (\alpha_n \circ h) \circ X = h_n \circ X$. Because $(h_n \circ X) \uparrow (h \circ X)$, the monotone-convergence theorem implies that $\mathbb{P}(h_n \circ X) \uparrow \mathbb{P}(h \circ X)$. Because our previous result implies that $\mathbb{P}(h_n \circ X) = \Lambda_X(h_n)$, the limit when $n \to \infty$ shows that $\mathbb{P}(h \circ X) = \Lambda_X(h)$. Because h is Borel and $(h \circ X)$ is \mathcal{F} -measurable, this step is complete since $\Lambda_X(h) < \infty$ if and only if $\mathbb{P}(h \circ X) < \infty$.

Finally, suppose h is a Borel function. Recall that $h = h^+ - h^-$, where h^+ and h^- are non-negative Borel functions. Therefore, if either $\mathbb{P}(|h \circ X|) < \infty$ or $\Lambda_X(|h|) < \infty$, then

$$\mathbb{P}(h \circ X) = \mathbb{P}((h \circ X)^+) - \mathbb{P}((h \circ X)^-) = \mathbb{P}(h^+ \circ X) - \mathbb{P}(h^- \circ X) = \Lambda_X(h^+) - \Lambda_X(h^-) = \Lambda_X(h) < \infty,$$

where the second equality follows from associativity. Because h is $\mathcal{B}(\mathbb{R})$ -measurable and $(h \circ X)$ is \mathcal{F} -measurable, this completes the proof, since $\mathbb{P}(|h \circ X|) = \Lambda_X(|h|) = \infty$ implies $(h \circ X) \notin \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $h \notin \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda_X)$. \square

Definition 6.14. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable $X : \Omega \to \mathbb{R}$ has a probability density function f_X if $f_X : \mathbb{R} \to [0, \infty]$ is a Borel function such that the law Λ_X of X is given by

$$\Lambda_X(B) = \mathbb{P}(X^{-1}(B)) = \operatorname{Leb}(f_X; B) = \operatorname{Leb}(f_X \mathbb{I}_B) = \int_B f_X \ d\operatorname{Leb},$$

for every $B \in \mathcal{B}(\mathbb{R})$, where Leb is the Lebesgue measure on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Proposition 6.21. In that case, since $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \text{Leb})$ is a measure space and $f_X : \mathbb{R} \to [0, \infty]$ is $\mathcal{B}(\mathbb{R})$ -measurable, recall that the measure $(f_X \text{ Leb})$ on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is given by $(f_X \text{ Leb})(B) = \text{Leb}(f_X; B)$ for every $B \in \mathcal{B}(\mathbb{R})$, so that $\Lambda_X = (f_X \text{ Leb})$. Therefore, using the terminology introduced in the previous section, the law Λ_X of X has density f_X relative to the Lebesgue measure Leb, which is denoted by

$$\frac{d\Lambda_X}{d \text{ Leb}} = f_X.$$

Proposition 6.22. Consider a random variable $X: \Omega \to \mathbb{R}$ that has a probability density function $f_X: \mathbb{R} \to [0, \infty]$. Furthermore, consider a Borel function $g_X: \mathbb{R} \to [0, \infty]$ such that $\text{Leb}(\{f_X \neq g_X\}) = 0$. Because these two functions are non-negative and $\text{Leb}(\{f_X \mathbb{I}_B \neq g_X \mathbb{I}_B\}) = 0$, we know that $\text{Leb}(f_X \mathbb{I}_B) = \text{Leb}(g_X \mathbb{I}_B)$, which implies that the random variable X also has a probability density function g_X .

Proposition 6.23. Consider a measure space (S, Σ, μ) , a Σ -measurable function $f: S \to [0, \infty]$, and the measure $\lambda = (f\mu)$ on (S, Σ) . Recall that we say that λ has density f relative to μ , which is denoted by $d\lambda/d\mu = f$. If $h: S \to \mathbb{R}$ is a Σ -measurable function, then $h \in \mathcal{L}^1(S, \Sigma, \lambda)$ if and only if $hf \in \mathcal{L}^1(S, \Sigma, \mu)$. Furthermore, in that case,

$$\int_{S} h \ d\lambda = \lambda(h) = \mu(hf) = \int_{S} hf \ d\mu.$$

Proof. First, note that if h is Σ -measurable then hf is also Σ -measurable.

Next, let $h = \mathbb{I}_A$ for some $A \in \Sigma$. In that case, $\mu(hf) = \mu(\mathbb{I}_A f) = \mu(f; A) = \lambda(A) = \lambda(A) = \lambda(h)$. This step is complete since $\mu(|hf|) < \infty$ if and only if $\lambda(|h|) < \infty$.

Next, suppose h is a simple function that can be written as $h = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \Sigma$. By the linearity of the integral and considering the previous step,

$$\mu(hf) = \mu\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k} f\right) = \sum_{k=1}^m a_k \mu(\mathbb{I}_{A_k} f) = \sum_{k=1}^m a_k \lambda(\mathbb{I}_{A_k}) = \lambda\left(\sum_{k=1}^m a_k \mathbb{I}_{A_k}\right) = \lambda(h).$$

This step is complete since $\mu(|hf|) < \infty$ if and only if $\lambda(|h|) < \infty$.

Next, suppose h is a non-negative Σ -measurable function. For any $n \in \mathbb{N}$, consider the simple function $h_n = \alpha_n \circ h$, where α_n is the n-th staircase function. Because $h_n \uparrow h$, the monotone-convergence theorem implies that $\lambda(h_n) \uparrow \lambda(h)$. Similarly, because $h_n f \uparrow h f$, the monotone-convergence theorem implies that $\mu(h_n f) \uparrow \mu(h f)$. Because our previous result implies that $\lambda(h_n) = \mu(h_n f)$, the limit when $n \to \infty$ shows that $\mu(h f) = \lambda(h)$. This step is complete since $\mu(|h f|) < \infty$ if and only if $\lambda(|h|) < \infty$.

Finally, suppose $h: S \to \mathbb{R}$ is a Σ -measurable function. Recall that $h = h^+ - h^-$, where h^+ and h^- are non-negative Σ -measurable functions. If either $\lambda(|h|) < \infty$ or $\mu(|hf|) < \infty$, then

$$\mu(hf) = \mu((h^+ - h^-)f) = \mu(h^+f) - \mu(h^-f) = \lambda(h^+) - \lambda(h^-) = \lambda(h) < \infty.$$

Since $\lambda(|h|) = \mu(|hf|) = \infty$ implies $h \notin \mathcal{L}^1(S, \Sigma, \lambda)$ and $hf \notin \mathcal{L}^1(S, \Sigma, \mu)$, the proof is complete.

Proposition 6.24. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$ with a probability density function $f_X : \mathbb{R} \to [0, \infty]$. Recall that the law $\Lambda_X = (f_X \text{ Leb})$ of X has density f_X relative to Leb, which is denoted by $d\Lambda_X/d \text{ Leb} = f_X$. If $h : \mathbb{R} \to \mathbb{R}$ is a Borel function, the fact that $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \text{Leb})$ is a measure space implies that $h \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda_X)$ if and only if $hf_X \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \text{Leb})$. Furthermore, in that case,

$$\int_{\mathbb{R}} h \ d\Lambda_X = \Lambda_X(h) = \operatorname{Leb}(hf_X) = \int_{\mathbb{R}} hf_X \ d\operatorname{Leb}.$$

Definition 6.15. Consider a measure space (S, Σ, μ) . For every $p \in [1, \infty)$, the set $\mathcal{L}^p(S, \Sigma, \mu)$ contains exactly each Σ -measurable function $f: S \to \mathbb{R}$ such that $\mu(|f|^p) < \infty$. If $f \in \mathcal{L}^p(S, \Sigma, \mu)$, the p-norm $||f||_p$ of the function f is given by $||f||_p = \mu(|f|^p)^{1/p}$.

Proposition 6.25. Suppose that p > 1 and $p^{-1} + q^{-1} = 1$. Furthermore, suppose $f, g \in \mathcal{L}^p(S, \Sigma, \mu)$ and $h \in \mathcal{L}^q(S, \Sigma, \mu)$. Hölder's inequality states that $fh \in \mathcal{L}^1(S, \Sigma, \mu)$ and $\mu(|fh|) \leq ||f||_p ||h||_q$. Minkowski's inequality states that $||f + g||_p \leq ||f||_p + ||g||_p$.

Proof. First, note that $fh \in \mathcal{L}^1(S, \Sigma, \mu)$ and $\mu(|fh|) \leq ||f||_p ||h||_q$ if and only if $|f||h| \in \mathcal{L}^1(S, \Sigma, \mu)$ and $\mu(||f||h||) \leq ||f||_p ||h||_q$. Therefore, we only need to consider the case where f and h are non-negative. In that case, if $\mu(f^p) = 0$, then $0 = \mu(\{f^p > 0\}) = \mu(\{f \neq 0\}) \geq \mu(\{fh \neq 0\})$ and $\mu(fh) = 0$, so that Hölder's inequality is trivial.

Consider the case where f and h are non-negative and $0 < \mu(f^p) < \infty$. Let $\mathbb{P}: \Sigma \to [0,1]$ be given by

$$\mathbb{P}(A) = \frac{(f^p \mu)(A)}{\mu(f^p)} = \frac{\mu(f^p; A)}{\mu(f^p)} = \frac{\mu(f^p \mathbb{I}_A)}{\mu(f^p)} = \mu\left(\frac{f^p}{\mu(f^p)}\mathbb{I}_A\right) = \mu\left(\frac{f^p}{\mu(f^p)}; A\right).$$

The function \mathbb{P} is a probability measure on (S, Σ) . Clearly, $\mathbb{P}(S) = 1$ and $\mathbb{P}(\emptyset) = 0$. Because $(f^p \mu)$ is a measure on (S, Σ) , for any sequence $(A_n \in \Sigma \mid n \in \mathbb{N})$ such that $A_n \cap A_m = \emptyset$ for $n \neq m$,

$$\mathbb{P}\left(\bigcup_{n} A_{n}\right) = \frac{(f^{p}\mu)(\cup_{n} A_{n})}{\mu(f^{p})} = \frac{\sum_{n} (f^{p}\mu)(A_{n})}{\mu(f^{p})} = \sum_{n} \frac{(f^{p}\mu)(A_{n})}{\mu(f^{p})} = \sum_{n} \mathbb{P}(A_{n}).$$

Note that the probability measure \mathbb{P} has density $f^p/\mu(f^p)$ relative to μ , so that $d\mathbb{P}/d\mu = f^p/\mu(f^p)$. Therefore, if $v: S \to \mathbb{R}$ is a Σ -measurable function, then $v \in \mathcal{L}^1(S, \Sigma, \mathbb{P})$ if and only if $vf^p/\mu(f^p) \in \mathcal{L}^1(S, \Sigma, \mu)$. In that case,

$$\int_{S} v \ d\mathbb{P} = \mathbb{P}(v) = \mu \left(\frac{vf^{p}}{\mu(f^{p})} \right) = \int_{S} \frac{vf^{p}}{\mu(f^{p})} \ d\mu.$$

Consider the Σ -measurable function $u: S \to [0, \infty]$ given by

$$u(s) = \begin{cases} \frac{h(s)}{f(s)^{p-1}}, & \text{if } f(s) > 0, \\ 0, & \text{if } f(s) = 0. \end{cases}$$

By inspecting the pointwise definition of uf^p .

$$\mathbb{P}(u) = \mu\left(\frac{uf^p}{\mu(f^p)}\right) = \frac{\mu\left(uf^p\right)}{\mu(f^p)} = \frac{\mu(hf)}{\mu(f^p)}.$$

Similarly, by inspecting the pointwise definition of $u^q f^p$ and using the fact that q(p-1) = p,

$$\mathbb{P}(u^q) = \mu\left(\frac{u^q f^p}{\mu(f^p)}\right) = \frac{\mu\left(u^q f^p\right)}{\mu(f^p)} = \frac{\mu(h^q \mathbb{I}_{\{f>0\}})}{\mu(f^p)}.$$

Suppose $\mathbb{P}(u) = \infty$. In that case, $\mathbb{P}(u) = \mathbb{P}(u\mathbb{I}_{\{u < 1\}}) + \mathbb{P}(u\mathbb{I}_{\{u \ge 1\}}) = \infty$. The fact that $\mathbb{P}(u\mathbb{I}_{\{u < 1\}}) \le \mathbb{P}(\mathbb{I}_{\{u < 1\}}) = \mathbb{P}(\{u < 1\}) \le 1$ implies that $\mathbb{P}(u\mathbb{I}_{\{u \ge 1\}}) = \infty$. Consequently, $\mathbb{P}(u^q) \ge \mathbb{P}(u^q\mathbb{I}_{\{u \ge 1\}}) \ge \mathbb{P}(u\mathbb{I}_{\{u \ge 1\}}) = \infty$, so that

 $\mathbb{P}(u^q) \geq \mathbb{P}(u)^q$. In contrast, suppose $\mathbb{P}(u) < \infty$. Consider the convex function $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = |x|^q$. Jensen's inequality also guarantees that $\mathbb{P}(u^q) \geq \mathbb{P}(u)^q$. Therefore,

$$\frac{\mu(h^q \mathbb{I}_{\{f>0\}})}{\mu(f^p)} \ge \frac{\mu(hf)^q}{\mu(f^p)^q}.$$

By multiplying both sides of the previous inequality by $\mu(f^p)^q$,

$$\mu(h^q\mathbb{I}_{\{f>0\}})\frac{\mu(f^p)^q}{\mu(f^p)} = \mu(h^q\mathbb{I}_{\{f>0\}})\mu(f^p)^{q-1} \geq \mu(hf)^q.$$

Because $\mu(h^q) \ge \mu(h^q \mathbb{I}_{\{f>0\}}),$

$$\mu(h^q)\mu(f^p)^{q-1} \ge \mu(hf)^q$$
.

From the definition of norm and using the fact that p(q-1) = q,

$$||h||_q^q ||f||_p^q \ge \mu(hf)^q,$$

which completes the proof of Hölder's inequality.

In order to show Minkowski's inequality, recall that $|f + g| \le |f| + |g|$. Therefore,

$$|f+g|^p = |f+g||f+g|^{p-1} \le |f||f+g|^{p-1} + |g||f+g|^{p-1}.$$

By integrating both sides of the previous inequality with respect to μ and employing Hölder's inequality,

$$\mu(|f+g|^p) \le \mu(|f||f+g|^{p-1}) + \mu(|g||f+g|^{p-1}) \le ||f||_p ||f+g|^{p-1}||_q + ||g||_p ||f+g|^{p-1}||_q.$$

Note that $||f+g|^{p-1}||_q = \mu(||f+g|^{p-1}|^q)^{1/q} = \mu(|f+g|^p)^{1/q} < \infty$ because q(p-1) = p. Therefore,

$$\mu(|f+g|^p) \le (||f||_p + ||g||_p)\mu(|f+g|^p)^{1/q}.$$

By dividing both sides of the previous inequality by $\mu(|f+g|^p)^{1/q}$ and using the fact that $p^{-1}=1-q^{-1}$,

$$||f + g||_p = \mu(|f + g|^p)^{1/p} \le ||f||_p + ||g||_p.$$

7 Strong law

Proposition 7.1. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. If X and Y are independent, then $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Proof. First, suppose that X and Y are non-negative and let α_n denote the n-th staircase function. For any $n \in \mathbb{N}$, consider the simple function $X_n = \alpha_n \circ X = \sum_{k_x=1}^{m_x} a_{k_x} \mathbb{I}_{A_{k_x}}$, where $a_1, \ldots, a_{m_x} \in [0, n]$ are distinct and $A_1, \ldots, A_{m_x} \in \mathcal{F}$ partition Ω . Similarly, consider the simple function $Y_n = \alpha_n \circ Y = \sum_{k_y=1}^{m_y} b_{k_y} \mathbb{I}_{B_{k_y}}$, where $b_1, \ldots, b_{m_y} \in [0, n]$ are distinct and $B_1, \ldots, B_{m_y} \in \mathcal{F}$ partition Ω . In that case,

$$\mathbb{E}(X_n) = \mathbb{E}\left(\sum_{k_x=1}^{m_x} a_{k_x} \mathbb{I}_{A_{k_x}}\right) = \sum_{k_x=1}^{m_x} a_{k_x} \mathbb{P}(A_{k_x}),$$

$$\mathbb{E}(Y_n) = \mathbb{E}\left(\sum_{k_y=1}^{m_y} b_{k_y} \mathbb{I}_{B_{k_y}}\right) = \sum_{k_y=1}^{m_y} b_{k_y} \mathbb{P}(B_{k_y}).$$

Because $X_n \uparrow X$, the monotone-convergence theorem guarantees that $\mathbb{E}(X_n) \uparrow \mathbb{E}(X)$. Similarly, because $Y_n \uparrow Y$, the monotone-convergence theorem guarantees that $\mathbb{E}(Y_n) \uparrow \mathbb{E}(Y)$. Because $\mathbb{E}(X) < \infty$ and $\mathbb{E}(Y) < \infty$, we also know that $\mathbb{E}(X_n)\mathbb{E}(Y_n) \uparrow \mathbb{E}(X)\mathbb{E}(Y)$. By distributing terms and using the fact that $\mathbb{E}(X_n) \mathbb{E}(X_n) = \mathbb{E}(X_n) \mathbb{E}($

$$\mathbb{E}(X_n Y_n) = \mathbb{E}\left[\left(\sum_{k_x=1}^{m_x} a_{k_x} \mathbb{I}_{A_{k_x}}\right) \left(\sum_{k_y=1}^{m_y} b_{k_y} \mathbb{I}_{B_{k_y}}\right)\right] = \mathbb{E}\left(\sum_{k_x=1}^{m_x} \sum_{k_y=1}^{m_y} a_{k_x} b_{k_y} \mathbb{I}_{A_{k_x} \cap B_{k_y}}\right) = \sum_{k_x=1}^{m_x} \sum_{k_y=1}^{m_y} a_{k_x} b_{k_y} \mathbb{P}(A_{k_x} \cap B_{k_y}).$$

Recall that if $f: \mathbb{R} \to \mathbb{R}$ is a Borel function and $Z: \Omega \to \mathbb{R}$ is a random variable, then

$$\sigma(f \circ Z) = \{ (f \circ Z)^{-1}(B) \mid B \in \mathcal{B}(\mathbb{R}) \} = \{ Z^{-1}(f^{-1}(B)) \mid B \in \mathcal{B}(\mathbb{R}) \} \subseteq \{ Z^{-1}(A) \mid A \in \mathcal{B}(\mathbb{R}) \} = \sigma(Z).$$

Recall that X and Y are independent if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for every $A \in \sigma(X)$ and $B \in \sigma(Y)$. Therefore, X_n and Y_n are also independent. Because $A_{k_x} = X_n^{-1}(\{a_{k_x}\})$, we know that $A_{k_x} \in \sigma(X_n)$. Because $B_{k_y} = Y_n^{-1}(\{b_{k_y}\})$, we know that $B_{k_y} \in \sigma(Y_n)$. Therefore,

$$\mathbb{E}(X_n Y_n) = \sum_{k_x = 1}^{m_x} \sum_{k_y = 1}^{m_y} a_{k_x} b_{k_y} \mathbb{P}(A_{k_x}) \mathbb{P}(B_{k_y}) = \left(\sum_{k_x = 1}^{m_x} a_{k_x} \mathbb{P}(A_{k_x})\right) \left(\sum_{k_y = 1}^{m_y} b_{k_y} \mathbb{P}(B_{k_y})\right) = \mathbb{E}(X_n) \mathbb{E}(Y_n).$$

Since $X_n \uparrow X$ and $Y_n \uparrow Y$ imply $X_n Y_n \uparrow XY$, the monotone-convergence theorem guarantees that $\mathbb{E}(X_n Y_n) \uparrow \mathbb{E}(XY)$. Since $\mathbb{E}(X_n Y_n) = \mathbb{E}(X_n) \mathbb{E}(Y_n)$, taking the limit when $n \to \infty$ shows that $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y) < \infty$, which completes the proof when X and Y are non-negative.

Finally, let $X = X^+ - X^-$, where $X^+ \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X^- \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ are non-negative. Analogously, let $Y = Y^+ - Y^-$. Because the absolute value function is Borel, we know that $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Therefore,

$$\mathbb{E}(XY) = \mathbb{E}\left((X^{+} - X^{-})(Y^{+} - Y^{-})\right) = \mathbb{E}(X^{+}Y^{+}) - \mathbb{E}(X^{+}Y^{-}) - \mathbb{E}(X^{-}Y^{+}) + \mathbb{E}(X^{-}Y^{-}).$$

Since X and Y are independent, each pair of variables inside an expectation above is independent. Therefore,

$$\mathbb{E}(XY) = \mathbb{E}(X^{+})\mathbb{E}(Y^{+}) - \mathbb{E}(X^{+})\mathbb{E}(Y^{-}) - \mathbb{E}(X^{-})\mathbb{E}(Y^{+}) + \mathbb{E}(X^{-})\mathbb{E}(Y^{-}) = (\mathbb{E}(X^{+}) - \mathbb{E}(X^{-}))(\mathbb{E}(Y^{+}) - \mathbb{E}(Y^{-})),$$

which completes the proof.

Proposition 7.2. Consider the random variables $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. If X and Y are independent, the previous result guarantees that Cov(X,Y) = 0 and Var(X+Y) = Var(X) + Var(Y).

Proposition 7.3. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X : \Omega \to \mathbb{R}$, and the random variables Y_1, \ldots, Y_n , where $n \in \mathbb{N}^+$. Suppose that X, Y_1, \ldots, Y_n are independent. If $f : \mathbb{R}^n \to \mathbb{R}$ is a Borel function and $Z : \Omega \to \mathbb{R}$ is a random variable given by $Z(\omega) = f(Y_1(\omega), \ldots, Y_n(\omega))$, then X and Z are independent.

Proof. First, recall that a previous result establishes that Z is $\sigma(\{Y_1,\ldots,Y_n\})$ -measurable, so that

$$\sigma(Z) \subseteq \sigma(\{Y_1, \dots, Y_n\}) = \sigma(\{Y_i^{-1}(B) \mid i \in \{1, \dots, n\}, B \in \mathcal{B}(\mathbb{R})\}) = \sigma\left(\bigcup_{i=1}^n \sigma(Y_i)\right).$$

Therefore, if $\sigma(X)$ and $\sigma(\{Y_1,\ldots,Y_n\})$ are independent, then X and Z are independent.

Consider the set $\mathcal{I} = \{ \bigcap_{i=1}^n A_i \mid (A_1, \dots, A_n) \in \sigma(Y_1) \times \dots \times \sigma(Y_n) \}$. If $B \in \mathcal{I}$ and $C \in \mathcal{I}$, then $B = \bigcap_{i=1}^n A_i$ and $C = \bigcap_{i=1}^n A_i'$, where $A_i \in \sigma(Y_i)$ and $A_i' \in \sigma(Y_i)$ for every $i \in \{1, \dots, n\}$. Because

$$B \cap C = \left(\bigcap_{i=1}^{n} A_i\right) \cap \left(\bigcap_{i=1}^{n} A_i'\right) = \bigcap_{i=1}^{n} (A_i \cap A_i')$$

and $(A_i \cap A_i') \in \sigma(Y_i)$ for every $i \in \{1, ..., n\}$, we know that $(B \cap C) \in \mathcal{I}$. Therefore, \mathcal{I} is a π -system on Ω .

Let $\mathcal{J} = \sigma(X)$ and note that \mathcal{J} is also a π -system on Ω . Consider a set $(\cap_{i=1}^n A_i) \in \mathcal{I}$, where $A_i \in \sigma(Y_i)$ for every $i \in \{1, \ldots, n\}$, and a set $B \in \mathcal{J}$. Since X, Y_1, \ldots, Y_n are independent,

$$\mathbb{P}\left(\left(\bigcap_{i=1}^{n} A_{i}\right) \cap B\right) = \left(\prod_{i=1}^{n} \mathbb{P}(A_{i})\right) \mathbb{P}(B) = \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) \mathbb{P}(B),$$

which implies that \mathcal{I} and \mathcal{J} are independent. Because $\sigma(\mathcal{I})$ and $\sigma(\mathcal{J})$ are then independent from a previous result and $\sigma(\mathcal{J}) = \sigma(X)$, the proof will be complete if $\sigma(\mathcal{I}) = \sigma(\{Y_1, \dots, Y_n\})$, which we will now show.

Note that $\Omega \in \sigma(Y_i)$ for every $i \in \{1, ..., n\}$, which implies $\sigma(Y_i) \subseteq \mathcal{I}$ for every $i \in \{1, ..., n\}$. Therefore, $\bigcup_{i=1}^n \sigma(Y_i) \subseteq \mathcal{I}$ and $\sigma(\bigcup_{i=1}^n \sigma(Y_i)) = \sigma(\{Y_1, ..., Y_n\}) \subseteq \sigma(\mathcal{I})$.

Consider a set $(\cap_{i=1}^n A_i) \in \mathcal{I}$, where $A_i \in \sigma(Y_i)$ for every $i \in \{1, \ldots, n\}$. Clearly, $A_i \in \cup_{j=1}^n \sigma(Y_j)$. Because $\sigma(\cup_{j=1}^n \sigma(Y_j)) = \sigma(\{Y_1, \ldots, Y_n\})$ is a σ -algebra, we know that $(\cap_{i=1}^n A_i) \in \sigma(\{Y_1, \ldots, Y_n\})$, which implies $\mathcal{I} \subseteq \sigma(\{Y_1, \ldots, Y_n\})$ and $\sigma(\mathcal{I}) \subseteq \sigma(\{Y_1, \ldots, Y_n\})$.

Theorem 7.1 (Strong law of large numbers for a finite fourth moment). Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent random variables $(X_k : \Omega \to \mathbb{R} \mid k \in \mathbb{N}^+)$. Furthermore, suppose $\mathbb{E}(X_k) = 0$ and $\mathbb{E}(X_k^4) \leq K$ for some $K \in [0, \infty)$, for every $k \in \mathbb{N}^+$. In that case,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = 0\right) = 1.$$

Proof. Consider the random variable $S_n = \sum_{k=1}^n X_k$. From the multinomial theorem,

$$S_n^4 = \left(\sum_{k=1}^n X_k\right)^4 = \sum_{(k_1, \dots, k_n) \in I_4^{(n)}} \frac{4!}{k_1! \cdots k_n!} \prod_{t=1}^n X_t^{k_t},$$

where $I_p^{(n)} = \{(k_1, \dots, k_n) \mid k_i \in \{0, \dots, p\} \text{ for every } i \in \{1, \dots, n\} \text{ and } \sum_i k_i = p\}$. By the linearity of expectation,

$$\mathbb{E}(S_n^4) = \sum_{(k_1, \dots, k_n) \in I_4^{(n)}} \frac{4!}{k_1! \cdots k_n!} \mathbb{E}\left(\prod_{t=1}^n X_t^{k_t}\right).$$

From the restrictions imposed on $(k_1, \ldots, k_n) \in I_4^{(n)}$, the expectation $\mathbb{E}\left(\prod_{t=1}^n X_t^{k_t}\right)$ can be written as either $\mathbb{E}(X_i^4)$, $\mathbb{E}(X_i^3 X_j)$, $\mathbb{E}(X_i^2 X_j^2)$, $\mathbb{E}(X_i^2 X_j X_k)$, or $\mathbb{E}(X_i X_j X_k X_l)$, where $i, j, k, l \in \{1, \ldots, n\}$ are distinct indices.

Consider the expectation $\mathbb{E}(X_i^3 X_j)$. Because X_i and X_j are independent, X_i^3 and X_j are independent. By the monotonicity of the norm, $X_i^3 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X_j \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Therefore, $\mathbb{E}(X_i^3 X_j) = \mathbb{E}(X_i^3) \mathbb{E}(X_j) = 0$.

monotonicity of the norm, $X_i^3 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X_j \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Therefore, $\mathbb{E}(X_i^3 X_j) = \mathbb{E}(X_i^3) \mathbb{E}(X_j) = 0$. Consider the expectation $\mathbb{E}(X_i^2 X_j X_k)$. Because X_i^2, X_j, X_k are independent, $X_i^2 X_j$ and X_k are independent. By the monotonicity of the norm, $X_i^2 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, $X_j \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, and $X_k \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Due to independence, $X_i^2 X_j \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Therefore, $\mathbb{E}(X_i^2 X_j X_k) = \mathbb{E}(X_i^2 X_j) \mathbb{E}(X_k) = 0$.

Consider the expectation $\mathbb{E}(X_iX_jX_kX_l)$. Because X_i,X_j,X_k,X_l are independent, $X_iX_jX_k$ and X_l are independent. By the monotonicity of the norm, $X_i,X_j,X_k,X_l\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$. Because X_i and X_j are independent, $X_iX_j\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$. Because X_iX_j and X_k are independent, $X_iX_jX_k\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$. Therefore, $\mathbb{E}(X_iX_jX_kX_l)=\mathbb{E}(X_iX_jX_k)\mathbb{E}(X_l)=0$.

These observations allow rewriting the expectation $\mathbb{E}(S_n^4)$ as

$$\mathbb{E}(S_n^4) = \sum_{i=1}^n \mathbb{E}(X_i^4) + 6 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \mathbb{E}(X_i^2 X_j^2).$$

For every $k \in \mathbb{N}^+$, recall that $\|X_k\|_2 = \mathbb{E}(X_k^2)^{1/2} \le \mathbb{E}(X_k^4)^{1/4} = \|X_k\|_4$. Therefore, $\mathbb{E}(X_k^2) \le \mathbb{E}(X_k^4)^{1/2} \le K^{1/2}$. For every $i \ne j$, X_i^2 and X_j^2 are independent and X_i^2 , $X_j^2 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ by the monotonicity of the norm. Therefore,

$$\mathbb{E}(X_i^2 X_j^2) = \mathbb{E}(X_i^2) \mathbb{E}(X_j^2) \leq \mathbb{E}(X_i^4)^{1/2} \mathbb{E}(X_j^4)^{1/2} \leq K.$$

Consequently,

$$\mathbb{E}(S_n^4) \le \sum_{i=1}^n K + 6 \sum_{i=1}^{n-1} \sum_{j=i+1}^n K = nK + 3n(n-1)K = K(3n^2 - 2n) \le 3Kn^2.$$

Because $\mathbb{E}(S_n^4/n^4) \leq 3K/n^2$ for every $n \in \mathbb{N}^+$,

$$\sum_{n=1}^{k} \mathbb{E}\left(\frac{S_n^4}{n^4}\right) \le 3K \sum_{n=1}^{k} \frac{1}{n^2}.$$

Because the summation on the right of the inequality above converges to a real number when $k \to \infty$,

$$\sum_{n} \mathbb{E}\left(\frac{S_n^4}{n^4}\right) < \infty.$$

Since S_n^4/n^4 is a non-negative random variable for every $n \in \mathbb{N}^+$, a previous result guarantees that

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n^4}{n^4}=0\right)=\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=0\right)=\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nX_k=0\right)=1.$$

Proposition 7.4. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent random variables (X_k) $\Omega \to \mathbb{R} \mid k \in \mathbb{N}^+$). Furthermore, suppose $\mathbb{E}(X_k) = \mu$ and $\mathbb{E}(X_k^4) \leq K$ for some $\mu \in \mathbb{R}$ and $K \in [0, \infty)$, for every $k \in \mathbb{N}^+$. As a corollary, the strong law of large numbers for a finite fourth moment guarantees that

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = \mu\right) = 1.$$

Proof. For every $k \in \mathbb{N}^+$, let $Y_k = X_k - \mu$. By the monotonicity of the norm, $X_k \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, so that $\mathbb{E}(Y_k) = \mathbb{E}(Y_k)$ $\mathbb{E}(X_k) - \mu = 0$. Furthermore, $(Y_k : \Omega \to \mathbb{R} \mid k \in \mathbb{N}^+)$ is a sequence of independent random variables, since $\sigma(Y_k) \subseteq \sigma(X_k)$. Using Minkowski's inequality and the fact that $X_k \in \mathcal{L}^4(\Omega, \mathcal{F}, \mathbb{P})$,

$$\infty > \|X_k\|_4 + |\mu| = \|X_k\|_4 + \|-\mu\mathbb{I}_{\Omega}\|_4 \ge \|X_k - \mu\mathbb{I}_{\Omega}\|_4 = \|X_k - \mu\|_4 = \|Y_k\|_4.$$

Therefore, $\mathbb{E}(Y_k^4) \leq K'$ for some $K' \in [0, \infty)$. Using the strong law of large numbers for a finite fourth moment,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}Y_{k}=0\right)=\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}X_{k}=\mu\right)=1$$

Proposition 7.5 (Chebyshev's inequality). Consider a random variable $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mu = \mathbb{E}(X)$. For $c \ge 0$,

$$Var(X) = \mathbb{E}(|X - \mu|^2) \ge c^2 \mathbb{P}(|X - \mu| \ge c),$$

which is a consequence of Markov's inequality.

Example 7.1. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent and identically distributed random variables $(X_k : \Omega \to \{0,1\} \mid k \in \mathbb{N}^+)$. Let $p = \mathbb{E}(X_k) = \mathbb{E}(\mathbb{I}_{\{X_k=1\}}) = \mathbb{P}(X_k = 1)$. Since $X_k^2 = X_k$, $X_k \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\operatorname{Var}(X_k) = \mathbb{E}(X_k^2) - \mathbb{E}(X_k)^2 = p - p^2$, so that $\operatorname{Var}(X_k) \le 1/4$. Let $S_n = \sum_{k=1}^n X_k$. so that $\mathbb{E}(S_n) = \sum_{k=1}^n \mathbb{E}(X_k) = np$. Due to independence,

$$\operatorname{Var}(S_n) = \operatorname{Var}\left(\sum_{k=1}^n X_k\right) = \sum_{k=1}^n \operatorname{Var}(X_k) = \sum_{k=1}^n p - p^2 = n(p - p^2) \le \frac{n}{4}.$$

For any $Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $a \in \mathbb{R}$, $\operatorname{Var}(aY) = \mathbb{E}((aY)^2) - \mathbb{E}(aY)^2 = a^2\mathbb{E}(Y^2) - a^2\mathbb{E}(Y)^2 = a^2\operatorname{Var}(Y)$. Therefore, $\mathbb{E}(S_n/n) = p$ and $\text{Var}(S_n/n) \le 1/4n$. Using Chebyshev's inequality, for any $\delta > 0$,

$$\mathbb{P}\left(\left|\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\right)-p\right|\geq\delta\right)\leq\frac{1}{4n\delta^{2}}.$$

8 Product measure

Consider a measurable space (S_1, Σ_1) and a measurable space (S_2, Σ_2) . Let $S = S_1 \times S_2$.

Proposition 8.1. Consider the functions $\rho_1: S \to S_1$ and $\rho_2: S \to S_2$ given by $\rho_1(s_1, s_2) = s_1$ and $\rho_2(s_1, s_2) = s_2$. For $B_1 \in \Sigma_1$ and $B_2 \in \Sigma_2$, let

$$\rho_1^{-1}(B_1) = \{(s_1, s_2) \in S \mid \rho_1(s_1, s_2) \in B_1\} = \{(s_1, s_2) \in S \mid s_1 \in B_1\} = B_1 \times S_2,$$
$$\rho_2^{-1}(B_2) = \{(s_1, s_2) \in S \mid \rho_2(s_1, s_2) \in B_2\} = \{(s_1, s_2) \in S \mid s_2 \in B_2\} = S_1 \times B_2.$$

For $i \in \{1, 2\}$, let $\mathcal{A}_i = \{\rho_i^{-1}(B_i) \mid B_i \in \Sigma_i\}$. In that case, \mathcal{A}_i is a σ -algebra on S.

Proof. First, note that $\rho_i^{-1}(S_i) = S$ and $S_i \in \Sigma_i$. Therefore, $S \in \mathcal{A}_i$. Consider an element $\rho_i^{-1}(B_i) \in \mathcal{A}_i$. Note that $B_i^c \in \Sigma_i$ and $\rho_i^{-1}(B_i^c) = \rho_i^{-1}(B_i)^c$. Therefore, $\rho_i^{-1}(B_i)^c \in \mathcal{A}_i$. Finally, consider a sequence of sets $(\rho_i^{-1}(B_{i,j}) \in \mathcal{A}_i \mid j \in \mathbb{N})$. Note that $\cup_j B_{i,j} \in \Sigma_i$ and $\rho_i^{-1}(\cup_j B_{i,j}) = \cup_j \rho_i^{-1}(B_{i,j})$. Therefore, $\cup_j \rho_i^{-1}(B_{i,j}) \in \mathcal{A}_i$. \square

Definition 8.1. Considering the previous result, let $\sigma(\rho_1)$ and $\sigma(\rho_2)$ denote the σ -algebras on S given by

$$\sigma(\rho_1) = \mathcal{A}_1 = \{ \rho_1^{-1}(B_1) \mid B_1 \in \Sigma_1 \} = \{ B_1 \times S_2 \mid B_1 \in \Sigma_1 \},$$

$$\sigma(\rho_2) = \mathcal{A}_2 = \{ \rho_2^{-1}(B_2) \mid B_2 \in \Sigma_2 \} = \{ S_1 \times B_2 \mid B_2 \in \Sigma_2 \}.$$

Definition 8.2. The product Σ between the σ -algebras Σ_1 and Σ_2 is a σ -algebra on S denoted by $\Sigma_1 \times \Sigma_2$ but defined by

$$\Sigma = \Sigma_1 \times \Sigma_2 = \sigma(\{\rho_1, \rho_2\}) = \sigma(\sigma(\rho_1) \cup \sigma(\rho_2)),$$

which should not be confused with the Cartesian product between Σ_1 and Σ_2 .

Proposition 8.2. If $\mathcal{I} = \{B_1 \times B_2 \mid B_1 \in \Sigma_1 \text{ and } B_2 \in \Sigma_2\}$ and $\Sigma = \Sigma_1 \times \Sigma_2$, then $\sigma(\mathcal{I}) = \Sigma$.

Proof. For any $B_1 \in \Sigma_1$ and $B_2 \in \Sigma_2$, note that

$$B_1 \times B_2 = (B_1 \cap S_1) \times (S_2 \cap B_2) = (B_1 \times S_2) \cap (S_1 \times B_2).$$

Suppose $B_1 \times B_2 \in \mathcal{I}$ and $B_1' \times B_2' \in \mathcal{I}$. In that case, $(B_1 \times B_2) \cap (B_1' \times B_2') = (B_1 \cap B_1') \times (B_2 \cap B_2')$. Because $(B_1 \cap B_1') \in \Sigma_1$ and $(B_2 \cap B_2') \in \Sigma_2$, this implies that \mathcal{I} is a π -system on S.

For any $B_1 \times B_2 \in \mathcal{I}$, we know that $B_1 \times B_2 \in \Sigma$ because $(B_1 \times S_2) \in \sigma(\rho_1)$ and $(S_1 \times B_2) \in \sigma(\rho_1)$. Since Σ is a σ -algebra, $\sigma(\mathcal{I}) \subseteq \Sigma$. For any $B_1 \in \Sigma_1$ and $B_2 \in \Sigma_2$, we know that $B_1 \times S_2 \in \mathcal{I}$ and $S_1 \times B_2 \in \mathcal{I}$. Therefore, $\sigma(\rho_1) \cup \sigma(\rho_2) \subseteq \mathcal{I}$. Because $\sigma(\mathcal{I})$ is a σ -algebra, $\Sigma \subseteq \sigma(\mathcal{I})$.

Proposition 8.3. Consider a measurable space (S_1, Σ_1) and a measurable space (S_2, Σ_2) . Furthermore, consider the measurable space (S, Σ) , where $S = S_1 \times S_2$ and $\Sigma = \Sigma_1 \times \Sigma_2$. Let \mathcal{H} denote a set that contains exactly each bounded Σ -measurable function $f: S \to \mathbb{R}$ for which there is a Σ_2 -measurable function $f_{s_1}: S_2 \to \mathbb{R}$ and a Σ_1 -measurable function $f_{s_2}: S_1 \to \mathbb{R}$ such that $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$ for every $s_1 \in S_1$ and $s_2 \in S_2$. In that case, \mathcal{H} contains every bounded Σ -measurable function on S, so that $\mathcal{H} = b\Sigma$.

Proof. Note that the set of bounded Σ -measurable functions $b\Sigma$ is a vector space over the field $\mathbb R$ when scalar multiplication and addition are performed pointwise, Because $\mathcal H\subseteq b\Sigma$, showing that $\mathcal H$ is a vector space only requires showing that $\mathcal H$ is non-empty and closed under scalar multiplication and addition. For every $s_1\in S_1$ and $s_2\in S_2$, let $f=\mathbb I_S$, $f_{s_1}=\mathbb I_{S_2}$, and $f_{s_2}=\mathbb I_{S_1}$, so that that $\mathbb I_S(s_1,s_2)=\mathbb I_{S_2}(s_2)=\mathbb I_{S_1}(s_1)=1$. Clearly, $f\in \mathcal H$. Now suppose $f\in \mathcal H$ and $a\in \mathbb R$. Note that $af\in b\Sigma$. For every $s_1\in S_1$ and $s_2\in S_2$, also note that af_{s_1} is Σ_2 -measurable, af_{s_2} is Σ_1 -measurable, and $(af)(s_1,s_2)=(af_{s_1})(s_2)=(af_{s_2})(s_1)$. Therefore, $af\in \mathcal H$. Finally, suppose that $g,h\in \mathcal H$. Note that $g+h\in b\Sigma$. For every $s_1\in S_1$ and $s_2\in S_2$, note that $g_{s_1}+h_{s_1}$ is Σ_2 -measurable, $g_{s_2}+h_{s_2}$ is Σ_1 -measurable, and $g_{s_1}+g_{s_2}=g_{s_2}+g_{s_3}=g_{s_2}+g_{s_3}=g_{s_3}+g_{s_3}=g_{s_$

Suppose $(f_n \in \mathcal{H} \mid n \in \mathbb{N})$ is a sequence of non-negative functions in \mathcal{H} such that $f_n \uparrow f$, where $f : S \to [0, \infty)$ is a bounded function. Note that $f \in b\Sigma$, since f is the limit of a sequence of (bounded) Σ -measurable functions. For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $f_{s_1} = \lim_{n \to \infty} f_{n,s_1}$ is Σ_2 -measurable, $f_{s_2} = \lim_{n \to \infty} f_{n,s_2}$ is Σ_1 -measurable, and $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$. Therefore, $f \in \mathcal{H}$.

Consider the π -system $\mathcal{I} = \{B_1 \times B_2 \mid B_1 \in \Sigma_1 \text{ and } B_2 \in \Sigma_2\}$ and the indicator function $f = \mathbb{I}_{B_1 \times B_2}$ of a set $B_1 \times B_2 \in \mathcal{I}$. Note that f is a bounded Σ -measurable function, since $B_1 \times B_2 \in \Sigma$. For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $f_{s_1} = \mathbb{I}_{B_1}(s_1)\mathbb{I}_{B_2}$ is Σ_2 -measurable, $f_{s_2} = \mathbb{I}_{B_2}(s_2)\mathbb{I}_{B_1}$ is Σ_1 -measurable, and $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$. Therefore, $f \in \mathcal{H}$. Since $\sigma(\mathcal{I}) = \Sigma$, the monotone-class theorem completes the proof.

Proposition 8.4. Consider a measure space (S_1, Σ_1, μ_1) , a measure space (S_2, Σ_2, μ_2) , and the measurable space (S, Σ) , where $S = S_1 \times S_2$ and $\Sigma = \Sigma_1 \times \Sigma_2$. Furthermore, suppose μ_1 and μ_2 are finite measures.

For any bounded Σ -measurable function $f: S \to \mathbb{R}$, let $I_1^f: S_1 \to \mathbb{R}$ and $I_2^f: S_2 \to \mathbb{R}$ be given by

$$I_1^f(s_1) = \int_{S_2} f(s_1, s_2) \mu_2(ds_2) = \int_{S_2} f_{s_1}(s_2) \mu_2(ds_2) = \mu_2(f_{s_1}),$$

$$I_2^f(s_2) = \int_{S_1} f(s_1, s_2) \mu_1(ds_1) = \int_{S_1} f_{s_2}(s_1) \mu_1(ds_1) = \mu_1(f_{s_2}),$$

where $f_{s_1}: S_2 \to \mathbb{R}$ is a Σ_2 -measurable function, $f_{s_2}: S_1 \to \mathbb{R}$ is a Σ_1 -measurable function, and $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$, for every $s_1 \in S_1$ and $s_2 \in S_2$. Note that $\mu_2(|f_{s_1}|) < \infty$ because μ_2 is finite and $|f_{s_1}| \in b\Sigma_2$. Similarly, $\mu_1(|f_{s_2}|) < \infty$ because μ_1 is finite and $|f_{s_2}| \in b\Sigma_1$. Therefore, I_1^f and I_2^f are bounded.

Let \mathcal{H} denote a set that contains exactly each function $f \in b\Sigma$ such that $I_1^f \in b\Sigma_1$ and $I_2^f \in b\Sigma_2$ and

$$\mu_1(I_1^f) = \int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2) = \mu_2(I_2^f).$$

In that case, \mathcal{H} contains every bounded Σ -measurable function on S, so that $\mathcal{H} = b\Sigma$.

Proof. Because $\mathcal{H} \subseteq b\Sigma$, showing that \mathcal{H} is a vector space only requires showing that \mathcal{H} is non-empty and closed under scalar multiplication and addition. For every $s_1 \in S_1$ and $s_2 \in S_2$, let $f = \mathbb{I}_S$, $f_{s_1} = \mathbb{I}_{S_2}$, and $f_{s_2} = \mathbb{I}_{S_1}$, so that $I_1^f(s_1) = \mu_2(\mathbb{I}_{S_2}) = \mu_2(S_2)\mathbb{I}_{S_1}(s_1)$ and $I_2^f(s_2) = \mu_1(\mathbb{I}_{S_1}) = \mu_1(S_1)\mathbb{I}_{S_2}(s_2)$. Because $S_1 \in \Sigma_1$, we have $I_1^f \in b\Sigma_1$. Similarly, because $S_2 \in \Sigma_2$, we have $I_2^f \in b\Sigma_2$. In that case, $f \in \mathcal{H}$, since

$$\mu_1(I_1^f) = \int_{S_1} \mu_2(S_2) \mathbb{I}_{S_1}(s_1) \mu_1(ds_1) = \mu_1(S_1) \mu_2(S_2) = \int_{S_2} \mu_1(S_1) \mathbb{I}_{S_2}(s_2) \mu_2(ds_2) = \mu_2(I_2^f).$$

Now suppose that $f \in \mathcal{H}$ and $a \in \mathbb{R}$. Note that $af \in b\Sigma$. For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $I_1^{af}(s_1) = \mu_2(af_{s_1}) = a\mu_2(f_{s_1}) = aI_1^f(s_1)$ and $I_2^{af}(s_2) = \mu_1(af_{s_2}) = a\mu_1(f_{s_2}) = aI_2^f(s_2)$. Clearly, $I_1^{af} \in b\Sigma_1$ and $I_2^{af} \in b\Sigma_2$. Therefore, $af \in \mathcal{H}$, since the fact that $\mu_1(I_1^f) = \mu_2(I_2^f)$ implies

$$\mu_1(I_1^{af}) = \int_{S_1} aI_1^f(s_1)\mu_1(ds_1) = a\mu_1(I_1^f) = a\mu_2(I_2^f) = \int_{S_2} aI_2^f(s_2)\mu_2(ds_2) = \mu_2(I_2^{af}).$$

Finally, suppose that $g, h \in \mathcal{H}$. Note that $g + h \in b\Sigma$. For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $I_1^{g+h}(s_1) = \mu_2(g_{s_1} + h_{s_1}) = \mu_2(g_{s_1}) + \mu_2(h_{s_1}) = I_1^g(s_1) + I_1^h(s_1)$ and $I_2^{g+h}(s_2) = \mu_1(g_{s_2} + h_{s_2}) = \mu_1(g_{s_2}) + \mu_1(h_{s_2}) = I_2^g(s_2) + I_2^h(s_2)$. Clearly, $I_1^{g+h} \in b\Sigma_1$ and $I_2^{g+h} \in b\Sigma_2$. Therefore, $g + h \in \mathcal{H}$, since $\mu_1(I_1^g) = \mu_2(I_2^g)$ and $\mu_1(I_1^h) = \mu_2(I_2^h)$ imply

$$\int_{S_1} \left[I_1^g(s_1) + I_1^h(s_1) \right] \mu_1(ds_1) = \mu_1(I_1^g) + \mu_1(I_1^h) = \mu_2(I_2^g) + \mu_2(I_2^h) = \int_{S_2} \left[I_2^g(s_2) + I_2^h(s_2) \right] \mu_2(ds_2).$$

Suppose $(f_n \in \mathcal{H} \mid n \in \mathbb{N})$ is a sequence of non-negative functions in \mathcal{H} such that $f_n \uparrow f$, where $f : S \to [0, \infty)$ is a bounded function. Note that $f \in b\Sigma$, since f is the limit of a sequence of (bounded) Σ -measurable functions.

For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $f_{n,s_1} \uparrow f_{s_1}$ and $f_{n,s_2} \uparrow f_{s_2}$, so that the monotone-convergence theorem implies that $\mu_2(f_{n,s_1}) \uparrow \mu_2(f_{s_1})$ and $\mu_1(f_{n,s_2}) \uparrow \mu_1(f_{s_2})$. Therefore,

$$I_1^f(s_1) = \mu_2(f_{s_1}) = \lim_{n \to \infty} \mu_2(f_{n,s_1}) = \lim_{n \to \infty} I_1^{f_n}(s_1),$$

$$I_2^f(s_2) = \mu_1(f_{s_2}) = \lim_{n \to \infty} \mu_1(f_{n,s_2}) = \lim_{n \to \infty} I_2^{f_n}(s_2).$$

Because I_1^f is the limit of (bounded) Σ_1 -measurable functions, $I_1^f \in b\Sigma_1$. Similarly, because I_2^f is the limit of (bounded) Σ_2 -measurable functions, $I_2^f \in b\Sigma_2$. Furthermore, $I_1^{fn} \uparrow I_1^f$ and $I_2^{fn} \uparrow I_2^f$, since $f_{n+1} \geq f_n$ implies

$$I_1^{f_{n+1}}(s_1) = \mu_2(f_{n+1,s_1}) \ge \mu_2(f_{n,s_1}) = I_1^{f_n}(s_1),$$

$$I_2^{f_{n+1}}(s_2) = \mu_1(f_{n+1,s_2}) \ge \mu_1(f_{n,s_2}) = I_2^{f_n}(s_2).$$

Therefore, $f \in \mathcal{H}$, since the monotone-convergence theorem implies that

$$\mu_1(I_1^f) = \lim_{n \to \infty} \mu_1(I_1^{f_n}) = \lim_{n \to \infty} \mu_2(I_2^{f_n}) = \mu_2(I_2^f).$$

Consider the π -system $\mathcal{I} = \{B_1 \times B_2 \mid B_1 \in \Sigma_1 \text{ and } B_2 \in \Sigma_2\}$ and the indicator function $f = \mathbb{I}_{B_1 \times B_2}$ of a set $B_1 \times B_2 \in \mathcal{I}$. Note that f is a bounded Σ -measurable function, since $B_1 \times B_2 \in \Sigma$. For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $I_1^f(s_1) = \mu_2(\mathbb{I}_{B_1}(s_1)\mathbb{I}_{B_2}) = \mathbb{I}_{B_1}(s_1)\mu_2(B_2)$ and $I_2^f(s_2) = \mu_1(\mathbb{I}_{B_2}(s_2)\mathbb{I}_{B_1}) = \mathbb{I}_{B_2}(s_2)\mu_1(B_1)$. Clearly, $I_1^f \in b\Sigma_1$ and $I_2^f \in b\Sigma_2$. Therefore, $f \in \mathcal{H}$, since

$$\mu_1(I_1^f) = \mu_1(\mu_2(B_2)\mathbb{I}_{B_1}) = \mu_1(B_1)\mu_2(B_2) = \mu_2(\mu_1(B_1)\mathbb{I}_{B_2}) = \mu_2(I_2^f).$$

Because $\sigma(\mathcal{I}) = \Sigma$, the monotone-class theorem completes the proof.

Consider a measure space (S_1, Σ_1, μ_1) , a measure space (S_2, Σ_2, μ_2) , and the measurable space (S, Σ) , where $S = S_1 \times S_2$ and $\Sigma = \Sigma_1 \times \Sigma_2$. Furthermore, suppose μ_1 and μ_2 are finite measures.

Definition 8.3. For any $F \in \Sigma$, define $\mu(F)$ by

$$\mu(F) = \mu_1(I_1^{\mathbb{I}_F}) = \int_{S_1} I_1^{\mathbb{I}_F}(s_1)\mu_1(ds_1) = \int_{S_2} I_2^{\mathbb{I}_F}(s_2)\mu_2(ds_2) = \mu_2(I_2^{\mathbb{I}_F}).$$

The function μ is called the product measure of μ_1 and μ_2 and denoted by $\mu = \mu_1 \times \mu_2$.

Proposition 8.5. The function $\mu = \mu_1 \times \mu_2$ is the unique measure on (S, Σ) such that $\mu(B_1 \times B_2) = \mu_1(B_1)\mu_2(B_2)$ for every $B_1 \in \Sigma_1$ and $B_2 \in \Sigma_2$.

Proof. Consider the π -system $\mathcal{I} = \{B_1 \times B_2 \mid B_1 \in \Sigma_1 \text{ and } B_2 \in \Sigma_2\}$, the indicator function $f = \mathbb{I}_{B_1 \times B_2}$ of a set $B_1 \times B_2 \in \mathcal{I}$, and recall that $\mu_1(I_1^f) = \mu_1(B_1)\mu_2(B_2) = \mu_2(I_2^f)$. Therefore, $\mu(\emptyset) = \mu_1(\emptyset)\mu_2(\emptyset) = 0$.

Consider a sequence $(F_n \in \Sigma \mid n \in \mathbb{N})$ such that $F_n \cap F_m = \emptyset$ for $n \neq m$. Furthermore, consider the sequence of non-negative (bounded) Σ -measurable functions $(f_n: S \to \{0,1\} \mid n \in \mathbb{N})$ given by

$$f_n = \mathbb{I}_{\bigcup_{k=0}^n F_k} = \sum_{k=0}^n \mathbb{I}_{F_k}.$$

Let $f = \mathbb{I}_{\bigcup_k F_k}$ so that $f_n \uparrow f$. Because f is a bounded function,

$$\mu\left(\bigcup_{k} F_{k}\right) = \mu_{1}(I_{1}^{f}) = \lim_{n \to \infty} \mu_{1}(I_{1}^{f_{n}}) = \lim_{n \to \infty} \mu_{2}(I_{2}^{f_{n}}) = \mu_{2}(I_{2}^{f}).$$

By the linearity of the integral with respect to μ_2 ,

$$I_1^{f_n}(s_1) = \int_{S_2} \sum_{k=0}^n \mathbb{I}_{F_k}(s_1, s_2) \mu_2(ds_2) = \sum_{k=0}^n \int_{S_2} \mathbb{I}_{F_k}(s_1, s_2) \mu_2(ds_2) = \sum_{k=0}^n I_1^{\mathbb{I}_{F_k}}(s_1).$$

By the linearity of the integral with respect to μ_1 ,

$$\mu\left(\bigcup_{k} F_{k}\right) = \lim_{n \to \infty} \mu_{1}(I_{1}^{f_{n}}) = \lim_{n \to \infty} \int_{S_{1}} \sum_{k=0}^{n} I_{1}^{\mathbb{I}_{F_{k}}}(s_{1})\mu_{1}(ds_{1}) = \lim_{n \to \infty} \sum_{k=0}^{n} \int_{S_{1}} I_{1}^{\mathbb{I}_{F_{k}}}(s_{1})\mu_{1}(ds_{1}) = \sum_{k} \mu(F_{k}),$$

which completes the proof that μ is a measure on (S, Σ) . The measure μ is also finite since $\mu(S_1 \times S_2) = \mu_1(S_1)\mu_2(S_2)$. Notably, μ is the unique measure on (S,Σ) such that $\mu(B_1 \times B_2) = \mu_1(B_1)\mu_2(B_2)$ for every $B_1 \in \Sigma_1$ and $B_2 \in \Sigma_2$, since \mathcal{I} is a π -system on S such that $\sigma(\mathcal{I}) = \Sigma$ and μ is a finite measure on (S, Σ) .

Proposition 8.6. If $f: S \to \mathbb{R}$ is a bounded Σ -measurable function, then

$$\mu(f) = \mu_1(I_1^f) = \int_{S_1} I_1^f(s_1)\mu(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2) = \mu_2(I_2^f).$$

Proof. Let \mathcal{H} denote a set that contains exactly each function $f \in b\Sigma$ such that $\mu(f) = \mu_1(I_1^f) = \mu_2(I_2^f)$.

Consider the π -system $\mathcal{I} = \{B_1 \times B_2 \mid B_1 \in \Sigma_1 \text{ and } B_2 \in \Sigma_2\}$. Suppose that $f = \mathbb{I}_{B_1 \times B_2}$ is the indicator function of a set $B_1 \times B_2 \in \mathcal{I}$. In that case, $\mu(f) = \mu(B_1 \times B_2) = \mu_1(I_1^f) = \mu_2(I_2^f)$, so that $f \in \mathcal{H}$. In particular, $\mathbb{I}_S \in \mathcal{H}$, since $S_1 \times S_2 \in \mathcal{I}$.

Because $\mathcal{H} \subseteq b\Sigma$ and \mathcal{H} is non-empty, showing that \mathcal{H} is a vector space only requires showing that \mathcal{H} is closed under scalar multiplication and addition.

Suppose that $f \in \mathcal{H}$ and $a \in \mathbb{R}$. Note that $af \in b\Sigma$ and $af \in \mathcal{L}^1(S,\Sigma,\mu)$, so that $\mu(af) = a\mu(f)$. Because

 $f \in \mathcal{H}$, we have $\mu(af) = \mu_1(aI_1^f) = \mu_1(I_1^{af})$ and $\mu(af) = \mu_2(aI_2^f) = \mu_2(I_2^{af})$, so that $af \in \mathcal{H}$. Now suppose that $g, h \in \mathcal{H}$. Note that $g + h \in b\Sigma$ and $g + h \in \mathcal{L}^1(S, \Sigma, \mu)$, so that $\mu(g + h) = \mu(g) + \mu(h)$. Because $g, h \in \mathcal{H}$, we have $\mu(g + h) = \mu_1(I_1^g + I_1^h) = \mu_1(I_1^{g+h})$ and $\mu(g + h) = \mu_2(I_2^g + I_2^h) = \mu_2(I_2^{g+h})$, so that $g+h\in\mathcal{H}$.

Finally, suppose $(f_n \in \mathcal{H} \mid n \in \mathbb{N})$ is a sequence of non-negative functions in \mathcal{H} such that $f_n \uparrow f$, where $f: S \to [0, \infty)$ is a bounded function. By the monotone-convergence theorem, $\mu(f_n) \uparrow \mu(f)$. Since $f_n \in \mathcal{H}$,

$$\mu(f) = \lim_{n \to \infty} \mu(f_n) = \lim_{n \to \infty} \mu_1(I_1^{f_n}) = \lim_{n \to \infty} \mu_2(I_2^{f_n}) = \mu_1(I_1^f) = \mu_2(I_2^f),$$

which implies $f \in \mathcal{H}$. Because $\sigma(\mathcal{I}) = \Sigma$, the monotone-class theorem completes the proof.

Proposition 8.7. If $f: S \to [0, \infty]$ is a Σ -measurable function, then

$$\mu(f) = \mu_1(I_1^f) = \int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2) = \mu_2(I_2^f),$$

where the Σ_1 -measurable function $I_1^f: S_1 \to [0, \infty]$ and the Σ_2 -measurable function $I_2^f: S_2 \to [0, \infty]$ are given by

$$I_1^f(s_1) = \int_{S_2} f(s_1, s_2) \mu_2(ds_2) = \int_{S_2} f_{s_1}(s_2) \mu_2(ds_2) = \mu_2(f_{s_1}),$$

$$I_2^f(s_2) = \int_{S_1} f(s_1, s_2) \mu_1(ds_1) = \int_{S_1} f_{s_2}(s_1) \mu_1(ds_1) = \mu_1(f_{s_2}),$$

where $f_{s_1}: S_2 \to [0, \infty]$ is a Σ_2 -measurable function, $f_{s_2}: S_1 \to [0, \infty]$ is a Σ_1 -measurable function, and $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$, for every $s_1 \in S_1$ and $s_2 \in S_2$.

Proof. For any $n \in \mathbb{N}$, let $f_n = \alpha_n \circ f$, where α_n is the n-th staircase function. Because $f_n : S \to [0, n]$ is bounded and Σ -measurable, there is a bounded Σ_2 -measurable function $f_{n,s_1} : S_2 \to [0, n]$ and a bounded Σ_1 -measurable function $f_{n,s_2} : S_1 \to [0, n]$ such that $f_n(s_1, s_2) = f_{n,s_1}(s_2) = f_{n,s_2}(s_1)$ for every $s_1 \in S_1$ and $s_2 \in S_2$. Since $f_n \uparrow f$, consider the Σ_2 -measurable function $f_{s_1} = \lim_{n \to \infty} f_{n,s_1}$ and the Σ_1 -measurable function $f_{s_2} = \lim_{n \to \infty} f_{n,s_2}$. Note that $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$.

For every $s_1 \in S_1$ and $s_2 \in S_2$, note that $f_{n,s_1} \uparrow f_{s_1}$ and $f_{n,s_2} \uparrow f_{s_2}$, so that the monotone-convergence theorem implies that $\mu_2(f_{n,s_1}) \uparrow \mu_2(f_{s_1})$ and $\mu_1(f_{n,s_2}) \uparrow \mu_1(f_{s_2})$. Therefore,

$$I_1^f(s_1) = \mu_2(f_{s_1}) = \lim_{n \to \infty} \mu_2(f_{n,s_1}) = \lim_{n \to \infty} I_1^{f_n}(s_1),$$

$$I_2^f(s_2) = \mu_1(f_{s_2}) = \lim_{n \to \infty} \mu_1(f_{n,s_2}) = \lim_{n \to \infty} I_2^{f_n}(s_2).$$

Since $f_n \in b\Sigma$, recall that $I_1^{f_n} \in b\Sigma_1$ and $I_2^{f_n} \in b\Sigma_2$. Because I_1^f is the limit of Σ_1 -measurable functions, $I_1^f \in m\Sigma_1$. Similarly, because I_2^f is the limit of Σ_2 -measurable functions, $I_2^f \in m\Sigma_2$. Furthermore, $I_1^{f_n} \uparrow I_1^f$ and $I_2^{f_n} \uparrow I_2^f$, since $f_{n+1} \geq f_n$ implies

$$I_1^{f_{n+1}}(s_1) = \mu_2(f_{n+1,s_1}) \ge \mu_2(f_{n,s_1}) = I_1^{f_n}(s_1),$$

$$I_2^{f_{n+1}}(s_2) = \mu_1(f_{n+1,s_2}) \ge \mu_1(f_{n,s_2}) = I_2^{f_n}(s_2).$$

Because $f_n \uparrow f$, the monotone-convergence theorem implies that $\mu(f_n) \uparrow \mu(f)$. Because $I_1^{f_n} \uparrow I_1^f$ and $I_2^{f_n} \uparrow I_2^f$, the monotone-convergence theorem implies that $\mu_1(I_1^{f_n}) \uparrow \mu_1(I_1^f)$ and $\mu_2(I_2^{f_n}) \uparrow \mu_2(I_2^f)$. Because $f_n \in b\Sigma$,

$$\mu(f) = \lim_{n \to \infty} \mu(f_n) = \lim_{n \to \infty} \mu_1(I_1^{f_n}) = \mu_1(I_1^f) = \lim_{n \to \infty} \mu_2(I_2^{f_n}) = \mu_2(I_2^f).$$

Consider the measure spaces (S_1, Σ_1, μ_1) and (S_2, Σ_2, μ_2) and suppose that μ_1 and μ_2 are finite measures. Let $(S, \Sigma, \mu) = (S_1, \Sigma_1, \mu_1) \times (S_2, \Sigma_2, \mu_2)$ denote the measure space where $S = S_1 \times S_2$, $\Sigma = \Sigma_1 \times \Sigma_2$, and $\mu = \mu_1 \times \mu_2$.

Theorem 8.1 (Fubini's theorem). Consider a function $f \in \mathcal{L}^1(S, \Sigma, \mu)$, and recall that $f = f^+ - f^-$ and $|f| = f^+ + f^-$, where $f^+: S \to [0, \infty]$ and $f^-: S \to [0, \infty]$ are non-negative Σ -measurable functions. Therefore, for every $s_1 \in S_1$ and $s_2 \in S_2$,

$$f(s_1, s_2) = f^+(s_1, s_2) - f^-(s_1, s_2) = f^+_{s_1}(s_2) - f^-_{s_1}(s_2) = f^+_{s_2}(s_1) - f^-_{s_2}(s_1),$$

$$|f(s_1, s_2)| = f^+(s_1, s_2) + f^-(s_1, s_2) = f^+_{s_1}(s_2) + f^-_{s_1}(s_2) = f^+_{s_2}(s_1) + f^-_{s_2}(s_1),$$

where $f_{s_1}^+: S_2 \to [0, \infty]$ and $f_{s_1}^-: S_2 \to [0, \infty]$ are non-negative Σ_2 -measurable functions and $f_{s_2}^+: S_1 \to [0, \infty]$ and

For every $s_1 \in S_1$ and $s_2 \in S_2$, let $f_{s_1} = f_{s_1}^+ - f_{s_1}^-$ and $f_{s_2} = f_{s_2}^+ - f_{s_2}^-$, so that $f(s_1, s_2) = f_{s_1}(s_2) = f_{s_2}(s_1)$. Note that f_{s_1} is Σ_2 -measurable and f_{s_2} is Σ_1 -measurable. Furthermore, $|f_{s_1}| = f_{s_1}^+ + f_{s_1}^-$ and $|f_{s_2}| = f_{s_2}^+ + f_{s_2}^-$.

Finally, let $F_1^f = \{s_1 \in S_1 \mid \mu_2(|f_{s_1}|) < \infty\}$ and $F_2^f = \{s_2 \in S_2 \mid \mu_1(|f_{s_2}|) < \infty\}$. In that case,

$$\mu(f) = \mu_1(I_1^f; F_1^f) = \int_{F_1^f} I_1^f(s_1)\mu_1(ds_1) = \int_{F_2^f} I_2^f(s_2)\mu_2(ds_2) = \mu_2(I_2^f; F_2^f),$$

where $I_1^f: S_1 \to \mathbb{R}$ and $I_2^f: S_2 \to \mathbb{R}$ are given by

$$I_1^f(s_1) = \int_{S_2} f(s_1, s_2) \mu_2(ds_2) = \int_{S_2} f_{s_1}(s_2) \mu_2(ds_2) = \mu_2(f_{s_1}),$$

$$I_2^f(s_2) = \int_{S_1} f(s_1, s_2) \mu_1(ds_1) = \int_{S_1} f_{s_2}(s_1) \mu_1(ds_1) = \mu_1(f_{s_2}),$$

for every $s_1 \in F_1^f$ and $s_2 \in F_2^f$.

Proof. Because $|f|: S \to [0, \infty]$ is a non-negative Σ -measurable function such that $\mu(|f|) < \infty$,

$$\mu(|f|) = \mu_1(I_1^{|f|}) = \mu_1(I_1^{f^+ + f^-}) = \mu_1(I_1^{f^+} + I_1^{f^-}) < \infty,$$

$$\mu(|f|) = \mu_2(I_2^{|f|}) = \mu_2(I_2^{f^+ + f^-}) = \mu_2(I_2^{f^+} + I_2^{f^-}) < \infty.$$

For every $s_1 \in S_1$, note that $I_1^{f^+}(s_1) + I_1^{f^-}(s_1) = \mu_2(f_{s_1}^+) + \mu_2(f_{s_1}^-) = \mu_2(|f_{s_1}|)$. Because $\mu_1(I_1^{f^+} + I_1^{f^-}) < \infty$, we know that $\mu_1(S_1 \setminus F_1^f) = \mu_1(\{s_1 \in S_1 \mid \mu_2(|f_{s_1}|) = \infty\}) = 0$. Similarly, for every $s_2 \in S_2$, note that $I_2^{f^+}(s_2) + I_2^{f^-}(s_2) = \mu_1(f_{s_2}^+) + \mu_1(f_{s_2}^-) = \mu_1(|f_{s_2}|)$. Because $\mu_2(I_2^{f^+} + I_2^{f^-}) < \infty$, we know that $\mu_2(S_2 \setminus F_2^f) = \mu_2(\{s_2 \in S_2 \mid \mu_1(|f_{s_2}|) = \infty\}) = 0$. Therefore, by the linearity of the integral,

$$\mu(f) = \mu(f^+) - \mu(f^-) = \mu_1(I_1^{f^+}) - \mu_1(I_1^{f^-}) = \mu_1(I_1^{f^+} \mathbb{I}_{F_1^f}) - \mu_1(I_1^{f^-} \mathbb{I}_{F_1^f}) = \mu_1((I_1^{f^+} - I_1^{f^-}) \mathbb{I}_{F_1^f}) = \mu_1(I_1^f; F_1^f),$$

$$\mu(f) = \mu(f^+) - \mu(f^-) = \mu_2(I_2^{f^+}) - \mu_2(I_2^{f^-}) = \mu_2(I_2^{f^+} \mathbb{I}_{F_2^f}) - \mu_2(I_2^{f^-} \mathbb{I}_{F_2^f}) = \mu_2((I_2^{f^+} - I_2^{f^-}) \mathbb{I}_{F_2^f}) = \mu_2(I_2^f; F_2^f).$$

Proposition 8.8. Fubini's theorem is also valid when μ_1 and μ_2 are σ -finite measures.

Proposition 8.9. Consider the measure space $(S, \Sigma, \mu) = (\Omega, \mathcal{F}, \mathbb{P}) \times ([0, \infty), \mathcal{B}([0, \infty)), \text{Leb})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability triple. Furthermore, consider a random variable $X:\Omega\to [0,\infty]$. In that case,

$$\mathbb{E}(X) = \int_{[0,\infty)} \mathbb{P}(X \ge x) \operatorname{Leb}(dx).$$

Proof. First, let $A = \{(\omega, x) \in S \mid x \leq X(\omega)\}$ and $f(\omega, x) = x - X(\omega) = \rho_2(\omega, x) - X(\rho_1(\omega, x))$. Because f is Σ -measurable and $f^{-1}((-\infty, 0]) = A$, we know that $A \in \Sigma$. For every $(\omega, x) \in S$, note that

$$\mathbb{I}_A(\omega,x) = \mathbb{I}_{\{\omega \in \Omega \mid x \leq X(\omega)\}}(\omega) = \mathbb{I}_{\{x \in [0,\infty) \mid x \leq X(\omega)\}}(x).$$

Because \mathbb{I}_A is a bounded Σ -measurable function,

$$I_1^{\mathbb{I}_A}(\omega) = \operatorname{Leb}(\{x \in [0, \infty) \mid x \le X(\omega)\}) = X(\omega),$$

$$I_2^{\mathbb{I}_A}(x) = \mathbb{P}(\{\omega \in \Omega \mid x \le X(\omega)\}) = \mathbb{P}(X \ge x).$$

By the definition of the product measure μ ,

$$\mu(A) = \mathbb{P}(I_1^{\mathbb{I}_A}) = \mathbb{E}(X) = \operatorname{Leb}(I_2^{\mathbb{I}_A}) = \int_{[0,\infty)} P(X \ge x) \operatorname{Leb}(dx).$$

Definition 8.4. Let \mathcal{C} denote the set of open subsets of \mathbb{R}^2 . The Borel σ -algebra $\mathcal{B}(\mathbb{R}^2)$ on \mathbb{R}^2 is defined as $\mathcal{B}(\mathbb{R}^2) = \sigma(\mathcal{C}).$

Proposition 8.10. Let $\mathcal{B}(\mathbb{R})^2 = \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$ denote the product between the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ on \mathbb{R} and itself. In that case, $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R})^2$.

Proof. Because the functions $\rho_1: \mathbb{R}^2 \to \mathbb{R}$ and $\rho_2: \mathbb{R}^2 \to \mathbb{R}$ given by $\rho_1(x,y) = x$ and $\rho_2(x,y) = y$ for every $(x,y) \in \mathbb{R}^2$ are continuous, recall that $\rho_1^{-1}(A) \in \mathcal{C}$ and $\rho_2^{-1}(A) \in \mathcal{C}$ for every open set $A \subseteq \mathbb{R}$, so that a previous result guarantees that ρ_1 and ρ_2 are $\mathcal{B}(\mathbb{R}^2)$ -measurable. Therefore, $\sigma(\rho_1) \cup \sigma(\rho_2) \subseteq \mathcal{B}(\mathbb{R}^2)$. Because $\mathcal{B}(\mathbb{R})^2 = \mathcal{B}(\mathbb{R}^2)$ $\sigma(\sigma(\rho_1) \cup \sigma(\rho_2))$, we know that $\mathcal{B}(\mathbb{R})^2 \subseteq \mathcal{B}(\mathbb{R}^2)$.

Recall that every open subset $C \subseteq \mathbb{R}^2$ can be written as $C = \bigcup_n (a_n, b_n) \times (c_n, d_n)$, where $a_n \leq b_n$ and $c_n \leq d_n$ for every $n \in \mathbb{N}$. Because $\mathcal{B}(\mathbb{R})$ contains every open interval and $\mathcal{B}(\mathbb{R})^2 = \sigma(\{B_1 \times B_2 \mid B_1, B_2 \in \mathcal{B}(\mathbb{R})\})$, we know that $\mathcal{C} \subseteq \mathcal{B}(\mathbb{R})^2$, so that $\mathcal{B}(\mathbb{R}^2) \subseteq \mathcal{B}(\mathbb{R}^2)$. Therefore, $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R})^2$.

Proposition 8.11. The set $\mathcal{I} = \{(-\infty, x] \times (-\infty, y] \mid x, y \in \mathbb{R}\}$ is a π -system on \mathbb{R}^2 such that $\sigma(\mathcal{I}) = \mathcal{B}(\mathbb{R})^2$.

Proof. Let $A_1 = (-\infty, x_1] \times (-\infty, y_1]$ and $A_2 = (-\infty, x_2] \times (-\infty, y_2]$ be elements of \mathcal{I} . In that case,

$$A_1 \cap A_2 = ((-\infty, x_1] \cap (-\infty, x_2]) \times ((-\infty, y_1] \cap (-\infty, y_2]) = (-\infty, \min(x_1, x_2)] \times (-\infty, \min(y_1, y_2)],$$

so that $A_1 \cap A_2 \in \mathcal{I}$. Therefore, \mathcal{I} is a π -system.

Because $(-\infty, x] \in \mathcal{B}(\mathbb{R})$ and $(-\infty, y] \in \mathcal{B}(\mathbb{R})$ for every $x, y \in \mathbb{R}$ and $\mathcal{B}(\mathbb{R})^2 = \sigma(\{B_1 \times B_2 \mid B_1, B_2 \in \mathcal{B}(\mathbb{R})\})$, we know that $\mathcal{I} \subseteq \mathcal{B}(\mathbb{R})^2$, so that $\sigma(\mathcal{I}) \subseteq \mathcal{B}(\mathbb{R})^2$.

Note that $(a, b] \times (c, d] \in \sigma(\mathcal{I})$ for every $a \leq b$ and $c \leq d$, since

$$(a,b]\times(c,d]=((-\infty,b]\times(-\infty,d])\cap(((-\infty,b]\times(-\infty,c])\cup((-\infty,a]\times(-\infty,d]))^c.$$

Also note that $(a, b) \times (c, d] \in \sigma(\mathcal{I})$ for every $a \leq b$ and $c \leq d$, since

$$(a,b)\times(c,d] = \left(\bigcup_{n\in\mathbb{N}^+} (a,b-\epsilon_1n^{-1}]\right)\times(c,d] = \bigcup_{n\in\mathbb{N}^+} (a,b-\epsilon_1n^{-1}]\times(c,d],$$

where $\epsilon_1 = (b-a)/2$.

Finally, note that $(a, b) \times (c, d) \in \sigma(\mathcal{I})$ for every $a \leq b$ and $c \leq d$, since

$$(a,b) \times (c,d) = (a,b) \times \bigcup_{n \in \mathbb{N}^+} (c,d-\epsilon_2 n^{-1}] = \bigcup_{n \in \mathbb{N}^+} (a,b) \times (c,d-\epsilon_2 n^{-1}],$$

where $\epsilon_2 = (d-c)/2$.

Because every open set $C \in \mathcal{C}$ can be written as $C = \bigcup_n (a_n, b_n) \times (c_n, d_n)$, where $a_n \leq b_n$ and $c_n \leq d_n$ for every $n \in \mathbb{N}$, we know that $\mathcal{C} \subseteq \sigma(\mathcal{I})$. Since $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R})^2$, we know that $\mathcal{B}(\mathbb{R})^2 \subseteq \sigma(\mathcal{I})$.

Proposition 8.12. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Let $Z: \Omega \to \mathbb{R}^2$ be given by $Z(\omega) = (X(\omega), Y(\omega))$. The function Z is $\mathcal{F}/\mathcal{B}(\mathbb{R})^2$ -measurable.

Proof. Let $\rho_1: \mathbb{R}^2 \to \mathbb{R}$ be given by $\rho_1(x,y) = x$ and $\rho_2: \mathbb{R}^2 \to \mathbb{R}$ be given by $\rho_2(x,y) = y$. Note that $X = \rho_1 \circ Z$ and $Y = \rho_2 \circ Z$, so that $X^{-1}(B) = (\rho_1 \circ Z)^{-1}(B) = Z^{-1}(\rho_1^{-1}(B))$ and $Y^{-1}(B) = (\rho_2 \circ Z)^{-1}(B) = Z^{-1}(\rho_2^{-1}(B))$ for every $B \in \mathcal{B}(\mathbb{R})$. Because X and Y are \mathcal{F} -measurable, $Z^{-1}(C) \in \mathcal{F}$ for every $C \in (\sigma(\rho_1) \cup \sigma(\rho_2))$.

Note that $\mathcal{E} = \{\Gamma \in \mathcal{B}(\mathbb{R})^2 \mid Z^{-1}(\Gamma) \in \mathcal{F}\}$ is a σ -algebra on \mathbb{R}^2 . Because $(\sigma(\rho_1) \cup \sigma(\rho_2)) \subseteq \mathcal{B}(\mathbb{R})^2$, we know that

 $\sigma(\sigma(\rho_1) \cup \sigma(\rho_2)) = \mathcal{B}(\mathbb{R})^2 \subseteq \mathcal{E}$, so that $\mathcal{E} = \mathcal{B}(\mathbb{R})^2$. Therefore, Z is $\mathcal{F}/\mathcal{B}(\mathbb{R})^2$ -measurable.

Definition 8.5. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. For any $\Gamma \in \mathcal{B}(\mathbb{R})^2$, the joint law $\mathcal{L}_{X,Y}: \mathcal{B}(\mathbb{R})^2 \to [0,1]$ of X and Y is defined by

$$\mathcal{L}_{X|Y}(\Gamma) = \mathbb{P}(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in \Gamma\}) = \mathbb{P}((X, Y) \in \Gamma).$$

Proposition 8.13. The function $\mathcal{L}_{X,Y}$ defined above is a probability measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$.

Proof. Clearly, $\mathcal{L}_{X,Y}(\mathbb{R}^2) = \mathbb{P}(\Omega) = 1$ and $\mathcal{L}_{X,Y}(\emptyset) = \mathbb{P}(\emptyset) = 0$. Furthermore, for any sequence of sets $(\Gamma_n \in \mathcal{B}(\mathbb{R})^2 \mid n \in \mathbb{N})$ such that $\Gamma_n \cap \Gamma_m = \emptyset$ for $n \neq m$,

$$\mathcal{L}_{X,Y}\left(\bigcup_{n}\Gamma_{n}\right) = \mathbb{P}\left(\left\{\omega \in \Omega \mid (X(\omega),Y(\omega)) \in \bigcup_{n}\Gamma_{n}\right\}\right) = \mathbb{P}\left(\bigcup_{n}\{\omega \in \Omega \mid (X(\omega),Y(\omega)) \in \Gamma_{n}\}\right) = \sum_{n}\mathcal{L}_{X,Y}(\Gamma_{n}).$$

Definition 8.6. The joint distribution $F_{X,Y}: \mathbb{R}^2 \to [0,1]$ of X and Y is defined by

$$F_{X,Y}(x,y) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le x \text{ and } Y(\omega) \le y\}) = \mathbb{P}(X \le x, Y \le y) = \mathcal{L}_{X,Y}((-\infty, x] \times (-\infty, y]).$$

Proposition 8.14. Because the π -system $\mathcal{I} = \{(-\infty, x] \times (-\infty, y] \mid x, y \in \mathbb{R}\}$ generates $\mathcal{B}(\mathbb{R})^2$, the joint law $\mathcal{L}_{X,Y}$ of X and Y is the unique measure on the measurable space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$ such that $\mathcal{L}_{X,Y}((-\infty, x] \times (-\infty, y]) = F_{X,Y}(x, y)$ for every $(x, y) \in \mathbb{R}^2$. Therefore, the joint distribution $F_{X,Y}$ completely determines the joint law $\mathcal{L}_{X,Y}$.

Definition 8.7. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Consider also the measure space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2, \text{Leb}^2) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \text{Leb})^2$. The random variables X and Y have a joint probability density function $f_{X,Y}$ if $f_{X,Y} : \mathbb{R}^2 \to [0, \infty]$ is a $\mathcal{B}(\mathbb{R})^2$ -measurable function such that the joint law $\mathcal{L}_{X,Y}$ is given by

$$\mathcal{L}_{X,Y}(\Gamma) = \int_{\Gamma} f_{X,Y}(z) \operatorname{Leb}^2(dz) = \int_{\mathbb{R}^2} \mathbb{I}_{\Gamma}(z) f_{X,Y}(z) \operatorname{Leb}^2(dz).$$

In that case, the joint law $\mathcal{L}_{X,Y}$ has density $f_{X,Y}$ relative to Leb², which is denoted by $d\mathcal{L}_{X,Y}/d \operatorname{Leb}^2 = f_{X,Y}$. Furthermore, because $\mathbb{I}_{\Gamma} f_{X,Y}$ is a non-negative $\mathcal{B}(\mathbb{R})^2$ -measurable function,

$$\mathcal{L}_{X,Y}(\Gamma) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{\Gamma}(x,y) f_{X,Y}(x,y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{\Gamma}(x,y) f_{X,Y}(x,y) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dy).$$

Proposition 8.15. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Note that

$$\mathcal{L}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\}) = \mathbb{P}(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in (B \times \mathbb{R})\}) = \mathcal{L}_{X,Y}(B \times \mathbb{R}),$$

$$\mathcal{L}_Y(B) = \mathbb{P}(Y^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid Y(\omega) \in B\}) = \mathbb{P}(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in (\mathbb{R} \times B)\}) = \mathcal{L}_{X,Y}(\mathbb{R} \times B),$$

for every $B \in \mathcal{B}(\mathbb{R})$, where \mathcal{L}_X is the law of X and \mathcal{L}_Y is the law of Y. Therefore,

$$\mathcal{L}_{X}(B) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{B \times \mathbb{R}}(x, y) f_{X,Y}(x, y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{B}(x) f_{X,Y}(x, y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx),$$

$$\mathcal{L}_{Y}(B) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{\mathbb{R} \times B}(x, y) f_{X,Y}(x, y) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dy) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{B}(y) f_{X,Y}(x, y) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dy),$$

for every $B \in \mathcal{B}(\mathbb{R})$. By the linearity of the integral with respect to Leb,

$$\mathcal{L}_{X}(B) = \int_{\mathbb{R}} \mathbb{I}_{B}(x) \left[\int_{\mathbb{R}} f_{X,Y}(x,y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx) = \int_{\mathbb{R}} \mathbb{I}_{B}(x) f_{X}(x) \operatorname{Leb}(dx) = \int_{B} f_{X}(x) \operatorname{Leb}(dx),$$

$$\mathcal{L}_{Y}(B) = \int_{\mathbb{R}} \mathbb{I}_{B}(y) \left[\int_{\mathbb{R}} f_{X,Y}(x,y) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dy) = \int_{\mathbb{R}} \mathbb{I}_{B}(y) f_{Y}(y) \operatorname{Leb}(dy) = \int_{B} f_{Y}(y) \operatorname{Leb}(dy),$$

where $f_X: \mathbb{R} \to [0, \infty]$ and $f_Y: \mathbb{R} \to [0, \infty]$ are Borel functions given by

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \operatorname{Leb}(dy),$$

$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) \operatorname{Leb}(dx).$$

By definition, f_X is a probability density function for X and f_Y is a probability density function for Y.

Proposition 8.16. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Let $\mathcal{L}_{X,Y}$ denote the joint law of X and Y, \mathcal{L}_X denote the law of X, \mathcal{L}_Y denote the law of Y, Y denote the joint distribution function of Y and Y, Y denote the distribution function of Y. The following are equivalent: Y and Y are independent; Y and Y and Y and Y and Y are independent; Y and Y are independent Y and Y are independe

Proof. Suppose X and Y are independent. In that case, for every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$,

$$\mathcal{L}_{X,Y}(B_1 \times B_2) = \mathbb{P}(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in (B_1 \times B_2)\}) = \mathbb{P}(X^{-1}(B_1) \cap Y^{-1}(B_2)) = \mathcal{L}_X(B_1)\mathcal{L}_Y(B_2).$$

Because $\mathcal{L}_X \times \mathcal{L}_Y$ is the unique measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$ such that $(\mathcal{L}_X \times \mathcal{L}_Y)(B_1 \times B_2) = \mathcal{L}_X(B_1)\mathcal{L}_Y(B_2)$ for every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$ and $\mathcal{L}_{X,Y}$ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$, we know that $\mathcal{L}_{X,Y} = \mathcal{L}_X \times \mathcal{L}_Y$.

Suppose $\mathcal{L}_{X,Y} = \mathcal{L}_X \times \mathcal{L}_Y$. In that case, for every $x, y \in \mathbb{R}$,

$$F_{X,Y}(x,y) = (\mathcal{L}_X \times \mathcal{L}_Y)((-\infty,x] \times (-\infty,y]) = \mathcal{L}_X((-\infty,x])\mathcal{L}_Y((-\infty,y]) = F_X(x)F_Y(y).$$

Finally, suppose that $F_{X,Y} = F_X F_Y$. In that case, for every $x, y \in \mathbb{R}$,

$$\mathbb{P}(X \le x, Y \le y) = F_{X,Y}(x,y) = F_X(x)F_Y(y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y),$$

so that a previous result implies that X and Y are independent, which completes the proof.

Proposition 8.17. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Suppose $f_{X,Y}$ is a joint probability density function for X and Y, f_X is a probability density function for X, and f_Y is a probability density function for Y. Furthermore, let $F = \{(x,y) \in \mathbb{R}^2 \mid f_X(x)f_Y(y) \neq f_{X,Y}(x,y)\}$. In that case, Leb²(F) = 0 if and only if X and Y are independent random variables.

Proof. Suppose $\text{Leb}^2(F) = 0$. For every $\Gamma \in \mathcal{B}(\mathbb{R})^2$, let $F_{\Gamma} = \{z \in \mathbb{R}^2 \mid \mathbb{I}_{\Gamma}(z) f_X(\rho_1(z)) f_Y(\rho_2(z)) \neq \mathbb{I}_{\Gamma}(z) f_{X,Y}(z) \}$, so that $F_{\Gamma} \subseteq \Gamma$. Because $F_{\Gamma} \subseteq F_{\mathbb{R}^2} = F$, we know that $\text{Leb}^2(F_{\Gamma}) = 0$. Therefore, because $\mathbb{I}_{\Gamma}(f_X \circ \rho_1)(f_Y \circ \rho_2)$ and $\mathbb{I}_{\Gamma} f_{X,Y}$ are non-negative $\mathcal{B}(\mathbb{R})^2$ -measurable functions,

$$\mathcal{L}_{X,Y}(\Gamma) = \int_{\mathbb{R}^2} \mathbb{I}_{\Gamma}(z) f_{X,Y}(z) \operatorname{Leb}^2(dz) = \int_{\mathbb{R}^2} \mathbb{I}_{\Gamma}(z) f_X(\rho_1(z)) f_Y(\rho_2(z)) \operatorname{Leb}^2(dz).$$

For every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$, since $\mathbb{I}_{\Gamma}(f_X \circ \rho_1)(f_Y \circ \rho_2)$ is a non-negative $\mathcal{B}(\mathbb{R})^2$ -measurable function,

$$\mathcal{L}_{X,Y}(B_1 \times B_2) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{B_1 \times B_2}(x, y) f_X(x) f_Y(y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx).$$

Using the fact that $\mathbb{I}_{B_1 \times B_2}(x, y) = \mathbb{I}_{B_1}(x)\mathbb{I}_{B_2}(y)$ and the linearity of the integral with respect to Leb,

$$\mathcal{L}_{X,Y}(B_1 \times B_2) = \left[\int_{\mathbb{R}} \mathbb{I}_{B_1}(x) f_X(x) \operatorname{Leb}(dx) \right] \left[\int_{\mathbb{R}} \mathbb{I}_{B_2}(y) f_Y(y) \operatorname{Leb}(dy) \right] = \mathcal{L}_X(B_1) \mathcal{L}_Y(B_2).$$

Because $\mathcal{L}_X \times \mathcal{L}_Y$ is the unique measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$ such that $(\mathcal{L}_X \times \mathcal{L}_Y)(B_1 \times B_2) = \mathcal{L}_X(B_1)\mathcal{L}_Y(B_2)$ for every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$ and $\mathcal{L}_{X,Y}$ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$, we know that X and Y are independent.

Suppose X and Y are independent. Let $f = (f_X \circ \rho_1)(f_Y \circ \rho_2)$. Because f is a $\mathcal{B}(\mathbb{R})^2$ -measurable non-negative function, recall that $(f \operatorname{Leb}^2)$ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$ given by

$$(f \operatorname{Leb}^{2})(\Gamma) = \int_{\Gamma} f d \operatorname{Leb}^{2} = \int_{\mathbb{R}^{2}} \mathbb{I}_{\Gamma}(z) f_{X}(\rho_{1}(z)) f_{Y}(\rho_{2}(z)) \operatorname{Leb}^{2}(dz) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{\Gamma}(x, y) f_{X}(x) f_{Y}(y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx).$$

By the linearity of the integral with respect to Leb, for every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$,

$$\mathcal{L}_X(B_1)\mathcal{L}_Y(B_2) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{B_1 \times B_2}(x, y) f_X(x) f_Y(y) \operatorname{Leb}(dy) \right] \operatorname{Leb}(dx) = (f \operatorname{Leb}^2)(B_1 \times B_2).$$

Because $\mathcal{L}_X \times \mathcal{L}_Y$ is the unique measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$ such that $(\mathcal{L}_X \times \mathcal{L}_Y)(B_1 \times B_2) = \mathcal{L}_X(B_1)\mathcal{L}_Y(B_2)$ for every $B_1, B_2 \in \mathcal{B}(\mathbb{R})$ and $(f \operatorname{Leb}^2)$ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R})^2)$, we know that $\mathcal{L}_X \times \mathcal{L}_Y = (f \operatorname{Leb}^2)$. Since X and Y are independent, $\mathcal{L}_{X,Y} = (f \operatorname{Leb}^2)$. Therefore, f is a joint probability density function for X and Y.

Y are independent, $\mathcal{L}_{X,Y} = (f \operatorname{Leb}^2)$. Therefore, f is a joint probability density function for X and Y. Let $F_1 = \{z \in \mathbb{R}^2 \mid f(z) - f_{X,Y}(z) > 0\}$ and $F_2 = \{z \in \mathbb{R}^2 \mid f_{X,Y}(z) - f(z) > 0\}$, so that $F = F_1 \cup F_2$. Since $F_1 \cap F_2 = \emptyset$, we have $\operatorname{Leb}^2(F) = \operatorname{Leb}^2(F_1) + \operatorname{Leb}^2(F_2)$. In order to find a contradiction, suppose $\operatorname{Leb}^2(F) > 0$, so that $\operatorname{Leb}^2(F_1) > 0$ or $\operatorname{Leb}^2(F_2) > 0$. Because $(f - f_{X,Y})\mathbb{I}_{F_1}$ and $(f_{X,Y} - f)\mathbb{I}_{F_2}$ are non-negative $\mathcal{B}(\mathbb{R})^2$ -measurable functions, a previous result then implies that $\operatorname{Leb}^2((f - f_{X,Y})\mathbb{I}_{F_1}) > 0$ or $\operatorname{Leb}^2((f_{X,Y} - f)\mathbb{I}_{F_2}) > 0$. The linearity of the integral with respect to Leb^2 then implies that $\mathcal{L}_{X,Y}(F_1) = \operatorname{Leb}^2(f\mathbb{I}_{F_1}) > \operatorname{Leb}^2(f_{X,Y}\mathbb{I}_{F_1}) = \mathcal{L}_{X,Y}(F_1)$ or $\mathcal{L}_{X,Y}(F_2) = \operatorname{Leb}^2(f_{X,Y}\mathbb{I}_{F_2}) > \operatorname{Leb}^2(f_{F_2}) = \mathcal{L}_{X,Y}(F_2)$, which is a contradiction. Therefore, $\operatorname{Leb}^2(F) = 0$.

The results in this section can be generalized to products between any number of measure spaces.

Theorem 8.2 (Kolmogorov's extension theorem). Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and a sequence of probability measures $(\Lambda_n \mid n \in \mathbb{N})$. Let $\Omega = \prod_n \mathbb{R}$, so that each $\omega \in \Omega$ corresponds to a sequence $(\omega_n \in \mathbb{R} \mid n \in \mathbb{N})$. For every $n \in \mathbb{N}$, let $X_n : \Omega \to \mathbb{R}$ be given by $X_n(\omega) = \omega_n$. Furthermore, consider the σ -algebra \mathcal{F} on Ω given by $\mathcal{F} = \sigma(\cup_n \sigma(X_n))$. In that case, there is a unique probability measure \mathbb{P} on the measurable space (Ω, \mathcal{F}) such that, for every sequence $(B_n \in \mathcal{B}(\mathbb{R}) \mid n \in \mathbb{N})$,

$$\mathbb{P}\left(\prod_n B_n
ight) = \prod_n \Lambda_n(B_n).$$

The measure space $(\Omega, \mathcal{F}, \mathbb{P})$ is denoted by $(\Omega, \mathcal{F}, \mathbb{P}) = \prod_n (\mathbb{R}, \mathcal{B}(\mathbb{R}), \Lambda_n)$. The sequence $(X_n : \Omega \to \mathbb{R} \mid n \in \mathbb{N})$ is composed of independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ so that Λ_n is the law of X_n .

9 Conditional expectation

Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$. For every $\omega \in \Omega$, note that knowing $\mathbb{I}_{\{X=x\}}(\omega)$ for every $x \in \mathbb{R}$ is equivalent to knowing $X(\omega)$. Furthermore, from a previous result,

$$\sigma(X) = \left\{ X^{-1} \left(\bigcup_{x \in B} \{x\} \right) \mid B \in \mathcal{B}(\mathbb{R}) \right\} = \left\{ \bigcup_{x \in B} X^{-1}(\{x\}) \mid B \in \mathcal{B}(\mathbb{R}) \right\} = \left\{ \bigcup_{x \in B} \{X = x\} \mid B \in \mathcal{B}(\mathbb{R}) \right\}.$$

Let $F = \bigcup_{x \in B} \{X = x\}$ for some $B \in \mathcal{B}(\mathbb{R})$. For every $\omega \in \Omega$, note that $\mathbb{I}_F(\omega) = \sum_{x \in B} \mathbb{I}_{\{X = x\}}(\omega)$, since F is a union of disjoint sets. Finally, note that $\{X = x\} \in \sigma(X)$ for every $x \in \mathbb{R}$. Therefore, for every $\omega \in \Omega$, knowing $\mathbb{I}_{\{X = x\}}(\omega)$ for every $x \in \mathbb{R}$ is also equivalent to knowing $\mathbb{I}_F(\omega)$ for every $F \in \sigma(X)$.

In conclusion, for every $\omega \in \Omega$, knowing $X(\omega)$ is equivalent to knowing $\mathbb{I}_F(\omega)$ for every $F \in \sigma(X)$.

More generally, consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a set of random variables $\{Y_{\gamma} \mid \gamma \in \mathcal{C}\}$ where $Y_{\gamma} : \Omega \to \mathbb{R}$ for every $\gamma \in \mathcal{C}$. Suppose that an unknown outcome $\omega \in \Omega$ results in a known value $Y_{\gamma}(\omega) \in \mathbb{R}$ for every $\gamma \in \mathcal{C}$. The σ -algebra $\sigma(\{Y_{\gamma} \mid \gamma \in \mathcal{C}\})$ contains exactly each event $F \in \mathcal{F}$ such that it is possible to state whether $\omega \in F$. In other words, for every $\omega \in \Omega$, knowing $Y_{\gamma}(\omega) \in \mathbb{R}$ for every $\gamma \in \mathcal{C}$ is equivalent to knowing $\mathbb{I}_{F}(\omega)$ for every $F \in \sigma(\{Y_{\gamma} \mid \gamma \in \mathcal{C}\})$.

Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$. Suppose $\sigma(Y) \subseteq \sigma(X)$. For every $\omega \in \Omega$, knowing $X(\omega)$ allows knowing $\mathbb{I}_F(\omega)$ for every $F \in \sigma(Y)$. Therefore, knowing $X(\omega)$ allows knowing $Y(\omega)$.

Proposition 9.1. For every function $Z: \Omega \to \mathbb{R}$, a function $Y: \Omega \to \mathbb{R}$ is $\sigma(Z)$ -measurable if and only if there is a Borel function $f: \mathbb{R} \to \mathbb{R}$ such that $Y = f \circ Z$. Furthermore, if Z_1, Z_2, \ldots, Z_n are functions from Ω to \mathbb{R} , then a function $Y: \Omega \to \mathbb{R}$ is $\sigma(\{Z_1, Z_2, \ldots, Z_n\})$ -measurable if and only if there is a Borel function $f: \mathbb{R}^n \to \mathbb{R}$ such that $Y(\omega) = f(Z_1(\omega), Z_2(\omega), \ldots, Z_n(\omega))$ for every $\omega \in \Omega$.

Definition 9.1. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X : \Omega \to \mathbb{R}$ such that $\mathbb{E}(|X|) < \infty$, and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. A random variable $Y : \Omega \to \mathbb{R}$ is called a version of the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$ of X given \mathcal{G} if and only if Y is \mathcal{G} -measurable, $\mathbb{E}(|Y|) < \infty$, and, for every set $G \in \mathcal{G}$,

$$\int_{G} Y d\mathbb{P} = \int_{G} X d\mathbb{P}.$$

In that case, we say that $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proposition 9.2. Given the definition above, a version Y of the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$ of X given \mathcal{G} always exists. Furthermore, if Y and \tilde{Y} are such versions, then $\mathbb{P}(Y = \tilde{Y}) = 1$.

Proof. First, suppose $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and recall that $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a complete vector space. Because $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P}) \subseteq \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, there is a version $Y \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ of the orthogonal projection of X onto $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ such that $\|X - Y\|_2 = \inf\{\|X - W\|_2 \mid W \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})\}$ and $\mathbb{E}((X - Y)Z) = 0$, for every $Z \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$. Clearly, Y is \mathcal{G} -measurable. By the monotonicity of norm, $\mathbb{E}(|Y|) < \infty$. For every $G \in \mathcal{G}$, we have $\mathbb{I}_G \in \mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$, so that $\mathbb{E}((X - Y)\mathbb{I}_G) = 0$. Therefore, by the linearity of expectation, $\mathbb{E}(X\mathbb{I}_G) = \mathbb{E}(Y\mathbb{I}_G)$, which completes this step.

Suppose that X is a bounded non-negative random variable, so that $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. As an auxiliary step, we will now show that if $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely, then $\mathbb{P}(Y \geq 0) = 1$. In order to find a contradiction, suppose

that $\mathbb{P}(Y \geq 0) < 1$, so that $\mathbb{P}(Y < 0) > 0$. Let $A_n = \{Y < -n^{-1}\} = Y^{-1}((-\infty, -n^{-1}))$, so that $A_n \subseteq A_{n+1}$ and $\bigcup_n A_n = \{Y < 0\}$. Since $A_n \uparrow \{Y < 0\}$, the monotone-convergence property of measure guarantees that $\mathbb{P}(A_n) \uparrow \mathbb{P}(Y < 0)$. Because we supposed that $\mathbb{P}(Y < 0) > 0$, there is an $n \in \mathbb{N}$ such that $\mathbb{P}(A_n) = \mathbb{P}(Y < -n^{-1}) > 0$. Consider the random variable $Y\mathbb{I}_{A_n}$ given by

$$(Y\mathbb{I}_{A_n})(\omega) = Y(\omega)\mathbb{I}_{A_n}(\omega) = \begin{cases} Y(\omega), & \text{if } Y(\omega) < -n^{-1}, \\ 0, & \text{if } Y(\omega) \ge -n^{-1}. \end{cases}$$

Because $Y\mathbb{I}_{A_n} < -n^{-1}\mathbb{I}_{A_n}$, we know that $\mathbb{E}(Y\mathbb{I}_{A_n}) \leq -n^{-1}\mathbb{P}(A_n) < 0$. Because $X \geq 0$, we know that $\mathbb{E}(X\mathbb{I}_{A_n}) \geq 0$. However, $A_n \in \mathcal{G}$, so that $\mathbb{E}(X\mathbb{I}_{A_n}) = \mathbb{E}(Y\mathbb{I}_{A_n})$. Because this is a contradiction, we know that $\mathbb{P}(Y \geq 0) = 1$.

Next, suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ is non-negative. For every $n \in \mathbb{N}$, let $X_n = \alpha_n \circ X$, where α_n is the *n*-th staircase function, so that $X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Furthermore, let $Y_n = \mathbb{E}(X_n \mid \mathcal{G})$ almost surely. Because X_n is a bounded non-negative random variable, we know that $\mathbb{P}(Y_n \geq 0) = 1$. For every $n \in \mathbb{N}$ and $G \in \mathcal{G}$, note that

$$\mathbb{E}((Y_{n+1}-Y_n)\mathbb{I}_G)=\mathbb{E}(Y_{n+1}\mathbb{I}_G)-\mathbb{E}(Y_n\mathbb{I}_G)=\mathbb{E}(X_{n+1}\mathbb{I}_G)-\mathbb{E}(X_n\mathbb{I}_G)=\mathbb{E}((X_{n+1}-X_n)\mathbb{I}_G).$$

Because $Y_n \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$ and $Y_{n+1} \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$, we know that $Y_{n+1} - Y_n = \mathbb{E}(X_{n+1} - X_n \mid \mathcal{G})$ almost surely. Because $X_{n+1} - X_n$ is non-negative and bounded for every $n \in \mathbb{N}$, we know that $\mathbb{P}(Y_{n+1} - Y_n \ge 0) = 1$.

Consider the set $A^c = \bigcup_n \{Y_n < 0\} \cup \{Y_{n+1} - Y_n < 0\}$. Note that $A \in \mathcal{G}$ and $\mathbb{P}(A) = 1$, since

$$\mathbb{P}(A^c) = \mathbb{P}\left(\bigcup_n \{Y_n < 0\} \cup \{Y_{n+1} - Y_n < 0\}\right) \le \sum_n \mathbb{P}(Y_n < 0) + \mathbb{P}(Y_{n+1} - Y_n < 0) = 0.$$

For every $n \in \mathbb{N}$, note that $Y_n \mathbb{I}_A \geq 0$ and $Y_{n+1} \mathbb{I}_A \geq Y_n \mathbb{I}_A$. Let $Y = \limsup_{n \to \infty} Y_n \mathbb{I}_A$. For every $G \in \mathcal{G}$, because every non-decreasing sequence of real numbers converges (possibly to infinity), we know that $Y_n \mathbb{I}_A \mathbb{I}_G \uparrow Y \mathbb{I}_G$. By the monotone-convergence theorem, we know that $\mathbb{E}(Y_n \mathbb{I}_A \mathbb{I}_G) \uparrow \mathbb{E}(Y \mathbb{I}_G)$.

For every $n \in \mathbb{N}$ and $G \in \mathcal{G}$, we have $(A \cap G) \in \mathcal{G}$ and $\mathbb{P}(X_n \mathbb{I}_G \mathbb{I}_{A^c} \neq 0) = 0$, so that

$$\mathbb{E}(Y_n \mathbb{I}_A \mathbb{I}_G) = \mathbb{E}(Y_n \mathbb{I}_{A \cap G}) = \mathbb{E}(X_n \mathbb{I}_{A \cap G}) = \mathbb{E}(X_n \mathbb{I}_A \mathbb{I}_G) + \mathbb{E}(X_n \mathbb{I}_{A^c} \mathbb{I}_G) = \mathbb{E}(X_n \mathbb{I}_G),$$

which implies $\mathbb{E}(X_n\mathbb{I}_G) \uparrow \mathbb{E}(Y\mathbb{I}_G)$. Since $X_n\mathbb{I}_G \uparrow X\mathbb{I}_G$, we also know that $\mathbb{E}(X_n\mathbb{I}_G) \uparrow \mathbb{E}(X\mathbb{I}_G)$, so that $\mathbb{E}(Y\mathbb{I}_G) = \mathbb{E}(X\mathbb{I}_G)$. Because Y is \mathcal{G} -measurable and $\Omega \in \mathcal{G}$, we know that $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Finally, suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $X = X^+ - X^-$, where $X^+ : \Omega \to [0, \infty]$ and $X^- : \Omega \to [0, \infty]$. Let $Y^+ = \mathbb{E}(X^+ \mid \mathcal{G})$ almost surely and $Y^- = \mathbb{E}(X^- \mid \mathcal{G})$ almost surely. For every $G \in \mathcal{G}$,

$$\mathbb{E}(X\mathbb{I}_G) = \mathbb{E}((X^+ - X^-)\mathbb{I}_G) = \mathbb{E}(X^+\mathbb{I}_G) - \mathbb{E}(X^-\mathbb{I}_G) = \mathbb{E}(Y^+\mathbb{I}_G) - \mathbb{E}(Y^-\mathbb{I}_G) = \mathbb{E}((Y^+ - Y^-)\mathbb{I}_G),$$

so that $Y^+ - Y^- = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

It remains to show that if $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely and $\tilde{Y} = \mathbb{E}(X \mid \mathcal{G})$ almost surely then $\mathbb{P}(Y = \tilde{Y}) = 1$. For the purpose of finding a contradiction, suppose that $\mathbb{P}(Y = \tilde{Y}) < 1$, so that $\mathbb{P}(Y \neq \tilde{Y}) > 0$. In that case, $\mathbb{P}(Y > \tilde{Y}) + \mathbb{P}(\tilde{Y} > Y) > 0$, so that $\mathbb{P}(Y > \tilde{Y}) > 0$ or $\mathbb{P}(\tilde{Y} > Y) > 0$. Suppose $\mathbb{P}(Y > \tilde{Y}) > 0$. Let $A_n = \{Y > \tilde{Y} + n^{-1}\} = (Y - \tilde{Y})^{-1}((n^{-1}, \infty))$, so that $A_n \subseteq A_{n+1}$ and $\bigcup_n A_n = \{Y > \tilde{Y}\}$. By the monotone-convergence property of measure, we know that $\mathbb{P}(A_n) \uparrow \mathbb{P}(Y > \tilde{Y})$. Because $\mathbb{P}(Y > \tilde{Y}) > 0$, there is an $n \in \mathbb{N}$ such that $\mathbb{P}(A_n) = \mathbb{P}(Y > \tilde{Y} + n^{-1}) > 0$. Note that $(Y - \tilde{Y})\mathbb{I}_{A_n} > n^{-1}\mathbb{I}_{A_n}$, since

$$(Y - \tilde{Y})(\omega)\mathbb{I}_{A_n}(\omega) = \begin{cases} (Y - \tilde{Y})(\omega), & \text{if } (Y - \tilde{Y})(\omega) > n^{-1}, \\ 0, & \text{if } (Y - \tilde{Y})(\omega) \le n^{-1}. \end{cases}$$

Therefore, $\mathbb{E}((Y-\tilde{Y})\mathbb{I}_{A_n}) \geq \mathbb{E}(n^{-1}\mathbb{I}_{A_n}) = n^{-1}\mathbb{P}(A_n) > 0$. However, for every $G \in \mathcal{G}$, note that $\mathbb{E}(Y\mathbb{I}_G) = \mathbb{E}(\tilde{Y}\mathbb{I}_G)$, so that $\mathbb{E}((Y-\tilde{Y})\mathbb{I}_G) = 0$. Because $A_n \in \mathcal{G}$, we arrived at a contradiction. An analogous contradiction is found by supposing that $\mathbb{P}(\tilde{Y} > Y) > 0$. Therefore, $\mathbb{P}(Y = \tilde{Y}) = 1$.

Definition 9.2. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X : \Omega \to \mathbb{R}$ such that $\mathbb{E}(|X|) < \infty$, and a random variable $Z : \Omega \to \mathbb{R}$. A random variable $Y : \Omega \to \mathbb{R}$ is called a version of the conditional expectation $\mathbb{E}(X \mid Z)$ of X given Z if and only if it is a version of the conditional expectation $\mathbb{E}(X \mid \sigma(Z))$ of X given $\sigma(Z)$. An analogous definition applies when Z is a set of random variables.

Suppose $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $Z : \Omega \to \mathbb{R}$ are random variables and let $Y = \mathbb{E}(X \mid Z)$ almost surely. Recall that for every $W \in \mathcal{L}^2(\Omega, \sigma(Z), \mathbb{P})$ there is a Borel function $f : \mathbb{R} \to \mathbb{R}$ such that $W = f \circ Z$ and that $\mathbb{E}((X - Y)^2) \le \mathbb{E}((X - W)^2)$. In this sense, if $g : \mathbb{R} \to \mathbb{R}$ is a Borel function such that $Y = g \circ Z$, then $Y(\omega) = g(Z(\omega))$ is almost surely the best prediction about $X(\omega)$ that can be made given $Z(\omega)$.

The next three examples illustrate the definition of conditional expectation.

Proposition 9.3. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathcal{X}$ and $Z : \Omega \to \mathcal{Z}$, where $\mathcal{X} = \{x_1, \dots, x_m\}$ and $\mathcal{Z} = \{z_1, \dots, z_n\}$. Furthermore, suppose $\mathbb{P}(Z = z) > 0$ for every $z \in \mathcal{Z}$.

Let $\mathcal{P}(\mathcal{Z})$ denote the set of all subsets of \mathcal{Z} and consider the $\mathcal{P}(\mathcal{Z})$ -measurable function $E: \mathcal{Z} \to \mathbb{R}$ given by

$$E(z) = \sum_{i} x_i \frac{\mathbb{P}(X = x_i, Z = z)}{\mathbb{P}(Z = z)}.$$

In that case, $Y = E \circ Z$ is a $\sigma(Z)$ -measurable function such that

$$\int_{G} Y d\mathbb{P} = \int_{G} X d\mathbb{P},$$

for every $G \in \sigma(Z)$, so that $Y = \mathbb{E}(X \mid Z)$ almost surely.

Proof. For every $B \in \mathcal{B}(\mathbb{R})$, recall that $Y^{-1}(B) = Z^{-1}(E^{-1}(B))$. Because $E^{-1}(B) \in \mathcal{P}(\mathcal{Z})$ and $\mathcal{P}(\mathcal{Z}) \subseteq \mathcal{B}(\mathbb{R})$, we know that $Y^{-1}(B) \in \sigma(Z)$. Therefore, Y is $\sigma(Z)$ -measurable.

Because Y is a bounded \mathcal{F} -measurable function and $\{Z=z\}\in\mathcal{F}$ for every $z\in\mathcal{Z}$,

$$\int_{\{Z=z\}} Y d\mathbb{P} = \int_{\Omega} \mathbb{I}_{\{Z=z\}}(\omega) E(Z(\omega)) \mathbb{P}(d\omega) = \int_{\Omega} \mathbb{I}_{\{Z=z\}}(\omega) E(z) \mathbb{P}(d\omega) = E(z) \mathbb{P}(Z=z) = \sum_{i} x_{i} \mathbb{P}(X=x_{i},Z=z).$$

By the definition of the integral of a simple function with respect to \mathbb{P} ,

$$\int_{\{Z=z\}} Y d\mathbb{P} = \int_{\Omega} \left(\sum_i x_i \mathbb{I}_{\{X=x_i,Z=z\}} \right) d\mathbb{P} = \int_{\Omega} \left(\mathbb{I}_{\{Z=z\}} \sum_i x_i \mathbb{I}_{\{X=x_i\}} \right) d\mathbb{P} = \int_{\Omega} \mathbb{I}_{\{Z=z\}} X d\mathbb{P} = \int_{\{Z=z\}} X d\mathbb{P}.$$

Because $Z(\omega) \in \mathcal{Z}$ for every $\omega \in \Omega$ and $\mathcal{P}(\mathcal{Z}) \subseteq \mathcal{B}(\mathbb{R})$,

$$\sigma(Z) = \left\{ \bigcup_{z \in B} \{Z = z\} \mid B \in \mathcal{B}(\mathbb{R}) \right\} = \left\{ \bigcup_{z \in B} \{Z = z\} \mid B \in \mathcal{P}(\mathcal{Z}) \right\}.$$

Let $G = \bigcup_{z \in B} \{Z = z\}$ for some $B \in \mathcal{P}(\mathcal{Z})$. For every $\omega \in \Omega$, note that $\mathbb{I}_G(\omega) = \sum_{z \in B} \mathbb{I}_{\{Z = z\}}(\omega)$, since G is a union of disjoint sets. Therefore, because Y is a bounded \mathcal{F} -measurable function and $G \in \mathcal{F}$,

$$\int_G Y d\mathbb{P} = \int_\Omega \sum_{z \in B} \mathbb{I}_{\{Z = z\}}(\omega) Y(\omega) \mathbb{P}(d\omega) = \sum_{z \in B} \int_\Omega \mathbb{I}_{\{Z = z\}}(\omega) Y(\omega) \mathbb{P}(d\omega) = \sum_{z \in B} \int_\Omega \mathbb{I}_{\{Z = z\}}(\omega) X(\omega) \mathbb{P}(d\omega).$$

By the linearity of the integral with respect to \mathbb{P} and the fact that $\mathbb{I}_G(\omega) = \sum_{z \in B} \mathbb{I}_{\{Z=z\}}(\omega)$,

$$\int_G Y d\mathbb{P} = \int_{\Omega} \mathbb{I}_G(\omega) X(\omega) \mathbb{P}(d\omega) = \int_G X d\mathbb{P}.$$

Proposition 9.4. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P}) = ([0,1], \mathcal{B}([0,1]), \text{Leb}) \times ([0,1], \mathcal{B}([0,1]), \text{Leb})$ and the bounded random variables $X : \Omega \to \mathbb{R}$ and $Z : \Omega \to [0,1]$, where Z(a,b) = a. Furthermore, consider the bounded $\mathcal{B}([0,1])$ -measurable function $I_1^X : [0,1] \to \mathbb{R}$ given by

$$I_1^X(a) = \int_{[0,1]} X(a,b) \operatorname{Leb}(db).$$

In that case, $Y = I_1^X \circ Z$ is a $\sigma(Z)$ -measurable function such that

$$\int_{G} Y d\mathbb{P} = \int_{G} X d\mathbb{P},$$

for every $G \in \sigma(Z)$, so that $Y = \mathbb{E}(X \mid Z)$ almost surely.

Proof. Recall that $\sigma(Z) = \{A \times [0,1] \mid A \in \mathcal{B}([0,1])\}$. For every $B \in \mathcal{B}(\mathbb{R})$, note that $Y^{-1}(B) = Z^{-1}((I_1^X)^{-1}(B))$. Because $(I_1^X)^{-1}(B) \in \mathcal{B}([0,1])$, we know that Y is $\sigma(Z)$ -measurable.

Let $G = A \times [0,1]$ for some $A \in \mathcal{B}([0,1])$. Because Y is a bounded \mathcal{F} -measurable function and $G \in \mathcal{F}$,

$$\int_{G} Y d\mathbb{P} = \int_{[0,1]} \left[\int_{[0,1]} \mathbb{I}_{A \times [0,1]}(a,b) Y(a,b) \operatorname{Leb}(db) \right] \operatorname{Leb}(da) = \int_{[0,1]} \left[\int_{[0,1]} \mathbb{I}_{A}(a) I_{1}^{X}(a) \operatorname{Leb}(db) \right] \operatorname{Leb}(da).$$

By the linearity of the integral with respect to Leb and using the fact that Leb([0,1]) = 1,

$$\int_G Y d\mathbb{P} = \left[\int_{[0,1]} \operatorname{Leb}(db) \right] \left[\int_{[0,1]} \mathbb{I}_A(a) I_1^X(a) \operatorname{Leb}(da) \right] = \int_{[0,1]} \mathbb{I}_A(a) \left[\int_{[0,1]} X(a,b) \operatorname{Leb}(db) \right] \operatorname{Leb}(da).$$

Therefore, using the fact that $\mathbb{I}_A(a) = \mathbb{I}_{A \times [0,1]}(a,b) = \mathbb{I}_G(a,b)$,

$$\int_G Y d\mathbb{P} = \int_{[0,1]} \left[\int_{[0,1]} \mathbb{I}_G(a,b) X(a,b) \operatorname{Leb}(db) \right] \operatorname{Leb}(da) = \int_G X d\mathbb{P}.$$

Proposition 9.5. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $X : \Omega \to \mathbb{R}$ and $Z : \Omega \to \mathbb{R}$. Suppose that $f_{X,Z}:\mathbb{R}^2\to[0,\infty]$ is a joint probability density function for X and Z. Let $f_X:\mathbb{R}\to[0,\infty]$ be a probability density function for X and $f_Z: \mathbb{R} \to [0, \infty]$ be a probability density function for Z such that

$$f_X(x) = \int_{\mathbb{R}} f_{X,Z}(x,z) \operatorname{Leb}(dz),$$

 $f_Z(z) = \int_{\mathbb{R}} f_{X,Z}(x,z) \operatorname{Leb}(dx).$

Furthermore, consider the elementary conditional probability density function $f_{X|Z}: \mathbb{R}^2 \to [0, \infty]$ given by

$$f_{X|Z}(x,z) = \begin{cases} 0, & \text{if } f_Z(z) = 0, \\ f_{X,Z}(x,z)/f_Z(z), & \text{if } 0 < f_Z(z) < \infty, \\ 0, & \text{if } f_Z(z) = \infty. \end{cases}$$

Let $h: \mathbb{R} \to \mathbb{R}$ be a Borel function such that $\mathbb{E}(|h \circ X|) < \infty$, so that

$$\mathbb{E}(h \circ X) = \int_{\Omega} (h \circ X) d\mathbb{P} = \int_{\mathbb{R}} h \ d\mathcal{L}_X = \int_{\mathbb{R}} h(x) f_X(x) \operatorname{Leb}(dx),$$

where \mathcal{L}_X is the law of X. Finally, consider the function $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(z) = \begin{cases} 0, & \text{if } z \notin F_2^g, \\ \int_{\mathbb{R}} h(x) f_{X|Z}(x, z) \operatorname{Leb}(dx), & \text{if } z \in F_2^g, \end{cases}$$

where $F_2^g=\{z\in\mathbb{R}\mid\int_{\mathbb{R}}|h(x)f_{X|Z}(x,z)|\operatorname{Leb}(dx)<\infty\}.$ In that case, $Y=g\circ Z$ is a $\sigma(Z)$ -measurable function such that $\mathbb{E}(|Y|)<\infty$ and

$$\int_{G} Y d\mathbb{P} = \int_{G} (h \circ X) d\mathbb{P}$$

for every $G \in \sigma(Z)$, so that $Y = \mathbb{E}((h \circ X) \mid Z)$ almost surely.

Proof. First, we will show that $(h \circ \rho_1) f_{X|Z}$ is $\mathcal{B}(\mathbb{R})^2$ -measurable. Let $A_1 = \{z \in \mathbb{R} \mid f_Z(z) > 0\} \cap \{z \in \mathbb{R} \mid f_Z(z) < 0\}$ ∞ }. Because f_Z is Borel, we know that $\mathbb{R} \times A_1 \in \mathcal{B}(\mathbb{R})^2$. Furthermore, note that

$$f_{X|Z}(x,z) = \mathbb{I}_{\mathbb{R}\times A_1}(x,z) \frac{f_{X,Z}(x,z)}{f_Z(\rho_2(x,z)) + \mathbb{I}_{\mathbb{R}\times A_1^c}(x,z)}.$$

Because the function $u:(0,\infty]\to [0,\infty)$ given by u(r)=1/r is Borel, we know that $f_{X|Z}$ is $\mathcal{B}(\mathbb{R})^2$ -measurable. Because h is Borel, we also know that $(h \circ \rho_1) f_{X|Z}$ is $\mathcal{B}(\mathbb{R})^2$ -measurable.

We will now show that g is Borel. Because $|(h \circ \rho_1)f_{X|Z}|$ is non-negative and $\mathcal{B}(\mathbb{R})^2$ -measurable, we know that the function $I_2: \mathbb{R} \to [0, \infty]$ given by $I_2(z) = \int_{\mathbb{R}} |h(x)f_{X|Z}(x, z)| \operatorname{Leb}(dx)$ is Borel, so that $F_2^g \in \mathcal{B}(\mathbb{R})$. Furthermore,

$$g(z) = \mathbb{I}_{F_2^g}(z) \int_{\mathbb{R}} ((h \circ \rho_1) f_{X|Z})^+(x, z) \operatorname{Leb}(dx) - \mathbb{I}_{F_2^g}(z) \int_{\mathbb{R}} ((h \circ \rho_1) f_{X|Z})^-(x, z) \operatorname{Leb}(dx).$$

Since $((h \circ \rho_1)f_{X|Z})^+$ and $((h \circ \rho_1)f_{X|Z})^-$ are non-negative and $\mathcal{B}(\mathbb{R})^2$ -measurable, we know that g is Borel, which also implies that $Y = g \circ Z$ is a $\sigma(Z)$ -measurable function.

We will now show that $\mathbb{E}(|Y|) < \infty$. Because $|g(z)| \leq I_2(z)$ for every $z \in \mathbb{R}$,

$$|g(z)|f_Z(z) \le I_2(z)f_Z(z) = \int_{\mathbb{R}} |h(x)f_{X|Z}(x,z)|f_Z(z) \operatorname{Leb}(dx) = \int_{\mathbb{R}} |h(x)|\mathbb{I}_{A_1}(z)f_{X,Z}(x,z) \operatorname{Leb}(dx).$$

Because $|g|f_Z$ and I_2f_Z are non-negative and Borel,

$$\int_{\mathbb{R}} |g(z)| f_Z(z) \operatorname{Leb}(dz) \leq \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |h(x)| \mathbb{I}_{A_1}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

Because a previous result for probability density functions extends to joint probability density functions,

$$\int_{\mathbb{R}} |g(z)| f_Z(z) \operatorname{Leb}(dz) \leq \int_{\mathbb{R}^2} |h \circ \rho_1| (\mathbb{I}_{A_1} \circ \rho_2) f_{X,Z} \ d \operatorname{Leb}^2 = \mathbb{E}(|h \circ X| \mathbb{I}_{Z^{-1}(A_1)}) < \infty,$$

since $(\mathbb{I}_{A_1} \circ Z) = \mathbb{I}_{Z^{-1}(A_1)}$. Because $\text{Leb}(|g|f_Z) = \mathbb{E}(|g \circ Z|)$, we know that $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{L}_{X,Z} : \mathcal{B}(\mathbb{R})^2 \to [0,1]$ denote the joint law of X and Z.

We will now show that $\mathcal{L}_{X,Z}(\mathbb{I}_{\mathbb{R}\times A_1^c})=0$. Because a previous result for laws extends to joint laws,

$$\int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_1^c} d\mathcal{L}_{X,Z} = \int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_1^c} f_{X,Z} d \operatorname{Leb}^2 = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{A_1^c}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

By rearranging terms.

$$\int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_1^c} \ d\mathcal{L}_{X,Z} = \int_{\mathbb{R}} \mathbb{I}_{A_1^c}(z) \left[\int_{\mathbb{R}} f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz) = \int_{\mathbb{R}} \mathbb{I}_{A_1^c}(z) f_Z(z) \operatorname{Leb}(dz).$$

Because $A_1^c = \{f_Z = 0\} \cup \{f_Z = \infty\}$ is a union of disjoint sets, we know that $\mathbb{I}_{A_1^c} = \mathbb{I}_{\{f_Z = 0\}} + \mathbb{I}_{\{f_Z = \infty\}}$. Therefore,

$$\int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_1^c} d\mathcal{L}_{X,Z} = \int_{\mathbb{R}} \mathbb{I}_{\{f_Z = 0\}}(z) f_Z(z) \operatorname{Leb}(dz) + \int_{\mathbb{R}} \mathbb{I}_{\{f_Z = \infty\}}(z) f_Z(z) \operatorname{Leb}(dz) = 0,$$

since $\mathbb{I}_{\{f_Z=0\}}f_Z=0$ and $\mathrm{Leb}(f_Z)<\infty$. Let $A_2=\{z\in\mathbb{R}\mid \int_{\mathbb{R}}|h(x)|f_{X,Z}(x,z)\,\mathrm{Leb}(dx)<\infty\}$, so that $A_2\in\mathcal{B}(\mathbb{R})$. We will now show that $\mathcal{L}_{X,Z}(\mathbb{I}_{\mathbb{R}\times A_2^c})=0$ 0. From a previous result about probability density functions,

$$\mathbb{E}(|h \circ X|) = \int_{\mathbb{R}} |h(x)| f_X(x) \operatorname{Leb}(dx) = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} |h(x)| f_{X,Z}(x,z) \operatorname{Leb}(dz) \right] \operatorname{Leb}(dx) = \int_{\mathbb{R}^2} |h \circ \rho_1| f_{X,Z} \ d \operatorname{Leb}^2.$$

Because $\mathbb{E}(|h \circ X|) < \infty$, we know that $\text{Leb}(A_2^c) = 0$. Because a previous result about laws extends to joint laws,

$$\int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_2^c} \ d\mathcal{L}_{X,Z} = \int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_2^c} f_{X,Z} \ d \operatorname{Leb}^2 = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{I}_{A_2^c}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

By rearranging terms and the using fact that $\text{Leb}(\mathbb{I}_{A_2^c})=0$ implies $\text{Leb}(\{\mathbb{I}_{A_2^c}f_Z>0\})\leq \text{Leb}(\{\mathbb{I}_{A_2^c}>0\})=0$,

$$\int_{\mathbb{R}^2} \mathbb{I}_{\mathbb{R} \times A_2^c} \ d\mathcal{L}_{X,Z} = \int_{\mathbb{R}} \mathbb{I}_{A_2^c}(z) f_Z(z) \operatorname{Leb}(dz) = 0.$$

Finally, we will show that $\mathbb{E}(Y\mathbb{I}_G) = \mathbb{E}((h \circ X)\mathbb{I}_G)$ for every $G \in \sigma(Z)$. Note that, for every $G \in \sigma(Z)$,

$$\mathbb{I}_{G}(\omega) = \mathbb{I}_{Z^{-1}(B)}(\omega) = (\mathbb{I}_{B} \circ Z)(\omega) = \begin{cases} 1, & \text{if } Z(\omega) \in B, \\ 0, & \text{if } Z(\omega) \notin B, \end{cases}$$

for some $B \in \mathcal{B}(\mathbb{R})$. Let $S = (\mathbb{R} \times A_1) \cap (\mathbb{R} \times A_2)$, so that $S^c = (\mathbb{R} \times A_1^c) \cup (\mathbb{R} \times A_2^c)$ and $\mathcal{L}_{X,Z}(\mathbb{I}_{S^c}) = 0$. Note that

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\Omega} (h \circ X) (\mathbb{I}_B \circ Z) \ d\mathbb{P} = \int_{\mathbb{R}^2} (h \circ \rho_1) (\mathbb{I}_B \circ \rho_2) \ d\mathcal{L}_{X,Z} = \int_{\mathbb{R}^2} (h \circ \rho_1) (\mathbb{I}_B \circ \rho_2) \mathbb{I}_S \ d\mathcal{L}_{X,Z},$$

since $(h \circ \rho_1)(\mathbb{I}_B \circ \rho_2)$ and $(h \circ \rho_1)(\mathbb{I}_B \circ \rho_2)\mathbb{I}_S$ are $\mathcal{L}_{X,Z}$ -integrable and equal almost everywhere.

Because a previous result for probability density functions extends to joint probability density functions,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G d\mathbb{P} = \int_{\mathbb{R}^2} (h \circ \rho_1) (\mathbb{I}_B \circ \rho_2) \mathbb{I}_S f_{X,Z} d \operatorname{Leb}^2.$$

Because $\mathbb{I}_S(x,z) = \mathbb{I}_{A_1}(z)\mathbb{I}_{A_2}(z)$ for every $(x,z) \in \mathbb{R}^2$.

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_F \left[\int_{\mathbb{R}} h(x) \mathbb{I}_B(z) \mathbb{I}_{A_1}(z) \mathbb{I}_{A_2}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz),$$

where $F = \{z \in \mathbb{R} \mid \int_{\mathbb{R}} |h(x)| \mathbb{I}_B(z) \mathbb{I}_{A_1}(z) \mathbb{I}_{A_2}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) < \infty \}$. Because $A_2 \subseteq F$, we know that $\mathbb{I}_F \mathbb{I}_{A_2} = \mathbb{I}_{A_2}$. Therefore,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} h(x) \mathbb{I}_B(z) \mathbb{I}_{A_1}(z) \mathbb{I}_{A_2}(z) f_{X,Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

Because $f_{X,Z}(x,z)\mathbb{I}_{A_1}(z)=f_{X|Z}(x,z)f_Z(z)\mathbb{I}_{A_1}(z)$ for every $(x,z)\in\mathbb{R}^2,$

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{P}} \left[\int_{\mathbb{P}} h(x) \mathbb{I}_B(z) \mathbb{I}_{A_1}(z) \mathbb{I}_{A_2}(z) f_{X|Z}(x,z) f_Z(z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

By rearranging terms,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{R}} \mathbb{I}_B(z) f_Z(z) \mathbb{I}_{A_1 \cap A_2}(z) \left[\int_{\mathbb{R}} h(x) f_{X|Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

For any $z \in (A_1 \cap A_2)$, by the linearity of the integral with respect to Leb,

$$\mathbb{I}_{A_1}(z) \int_{\mathbb{R}} |h(x)| f_{X,Z}(x,z) \operatorname{Leb}(dx) = f_Z(z) \int_{\mathbb{R}} |h(x)| f_{X|Z}(x,z) \operatorname{Leb}(dx) < \infty.$$

Because $f_Z(z)>0$, we know that $\int_{\mathbb{R}}|h(x)|f_{X|Z}(x,z)\operatorname{Leb}(dx)<\infty$, so that $z\in F_2^g$. Because $(A_1\cap A_2)\subseteq F_2^g$ implies $\mathbb{I}_{A_1\cap A_2}=\mathbb{I}_{A_1\cap A_2}\mathbb{I}_{F_2^g}$,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{P}} \mathbb{I}_B(z) f_Z(z) \mathbb{I}_{A_1 \cap A_2}(z) \mathbb{I}_{F_2^g}(z) \left[\int_{\mathbb{P}} h(x) f_{X|Z}(x,z) \operatorname{Leb}(dx) \right] \operatorname{Leb}(dz).$$

By the definition of q,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{R}} \mathbb{I}_B(z) f_Z(z) \mathbb{I}_{A_1 \cap A_2}(z) g(z) \operatorname{Leb}(dz).$$

By once again applying results about probability density functions and joint laws,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\Omega} (\mathbb{I}_B \circ Z) (\mathbb{I}_{A_1 \cap A_2} \circ Z) (g \circ Z) \ d\mathbb{P} = \int_{\mathbb{R}^2} (\mathbb{I}_B \circ \rho_2) (\mathbb{I}_{A_1 \cap A_2} \circ \rho_2) (g \circ \rho_2) \ d\mathcal{L}_{X,Z}.$$

Because $\mathbb{I}_S(x,z) = \mathbb{I}_{A_1}(z)\mathbb{I}_{A_2}(z)$ for every $(x,z) \in \mathbb{R}^2$,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{R}^2} (g \circ \rho_2) (\mathbb{I}_B \circ \rho_2) \mathbb{I}_S \ d\mathcal{L}_{X,Z}.$$

Because $(g \circ \rho_2)(\mathbb{I}_B \circ \rho_2)$ and $(g \circ \rho_2)(\mathbb{I}_B \circ \rho_2)\mathbb{I}_S$ are $\mathcal{L}_{X,Z}$ -integrable functions that are equal almost everywhere,

$$\int_{\Omega} (h \circ X) \mathbb{I}_G \ d\mathbb{P} = \int_{\mathbb{R}^2} (g \circ \rho_2) (\mathbb{I}_B \circ \rho_2) \ d\mathcal{L}_{X,Z} = \int_{\Omega} (g \circ Z) (\mathbb{I}_B \circ Z) \ d\mathbb{P} = \int_{\Omega} Y \mathbb{I}_G \ d\mathbb{P}.$$

Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. For the remainder of this text, we let $\mathbb{E}(X \mid \mathcal{G})$ denote an arbitrary version of the conditional expectation of X given \mathcal{G} .

Proposition 9.6. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. Note that $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(X \mid \mathcal{G})\mathbb{I}_{\Omega} = \mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X \mid \mathcal{G})$.

Proposition 9.7. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. Note that if X is \mathcal{G} -measurable, then $X = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proposition 9.8. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and let $Y = \mathbb{E}(X)\mathbb{I}_{\Omega}$. In that case, $Y = \mathbb{E}(X \mid \{\emptyset, \Omega\})$ almost surely.

Proof. For every $B \in \mathcal{B}(\mathbb{R})$, we have $Y^{-1}(B) = \emptyset$ if $\mathbb{E}(X) \notin B$ and $Y^{-1}(B) = \Omega$ if $\mathbb{E}(X) \in B$. Furthermore, $\mathbb{E}(|Y|) = \mathbb{E}(|\mathbb{E}(X)\mathbb{I}_{\Omega}|) = \mathbb{E}(|X|) < \infty$. Therefore, $Y \in \mathcal{L}^1(\Omega, \{\emptyset, \Omega\}, \mathbb{P})$. Finally, $\mathbb{E}(Y\mathbb{I}_{\Omega}) = \mathbb{E}(\mathbb{E}(X)\mathbb{I}_{\Omega}\mathbb{I}_{\Omega}) = \mathbb{E}(X\mathbb{I}_{\Omega})$ and $\mathbb{E}(Y\mathbb{I}_{\emptyset}) = 0 = \mathbb{E}(X\mathbb{I}_{\emptyset})$.

Proposition 9.9. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X : \Omega \to \mathbb{R}$, and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. If X = 0 almost surely, then $0 = \mathbb{E}(X \mid \mathcal{G})$ almost surely, where 0 denotes the zero function.

Proof. Clearly, $0 \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$. For every $G \in \mathcal{G}$, because $\mathbb{P}(X\mathbb{I}_G = 0) = 1$, we know that $\mathbb{E}(X\mathbb{I}_G) = 0 = \mathbb{E}(0\mathbb{I}_G)$. \square

Proposition 9.10. Consider the random variables $X_1 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X_2 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. In that case, $a_1\mathbb{E}(X_1 \mid \mathcal{G}) + a_2\mathbb{E}(X_2 \mid \mathcal{G}) = \mathbb{E}(a_1X_1 + a_2X_2 \mid \mathcal{G})$ almost surely for every $a_1, a_2 \in \mathbb{R}$.

Proof. Because $\mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$ is a vector space, we know that $a_1\mathbb{E}(X_1 \mid \mathcal{G}) + a_2\mathbb{E}(X_2 \mid \mathcal{G}) \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$. For every $G \in \mathcal{G}$,

$$\mathbb{E}((a_1\mathbb{E}(X_1 \mid \mathcal{G}) + a_2\mathbb{E}(X_2 \mid \mathcal{G}))\mathbb{I}_G) = a_1\mathbb{E}(\mathbb{E}(X_1 \mid \mathcal{G})\mathbb{I}_G) + a_2\mathbb{E}(\mathbb{E}(X_2 \mid \mathcal{G})\mathbb{I}_G).$$

From the definition of a version of the conditional expectation,

$$\mathbb{E}((a_1\mathbb{E}(X_1\mid\mathcal{G})+a_2\mathbb{E}(X_2\mid\mathcal{G}))\mathbb{I}_G)=a_1\mathbb{E}(X_1\mathbb{I}_G)+a_2\mathbb{E}(X_2\mathbb{I}_G)=\mathbb{E}((a_1X_1+a_2X_2)\mathbb{I}_G).$$

Proposition 9.11. Consider the random variables $X_1 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X_2 \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. If $X_1 = X_2$ almost surely, then $\mathbb{E}(X_1 \mid \mathcal{G}) = \mathbb{E}(X_2 \mid \mathcal{G})$ almost surely.

Proof. Because $\mathbb{P}(X_1 - X_2 = 0) = 1$, we know that $\mathbb{P}(\mathbb{E}(X_1 - X_2 \mid \mathcal{G}) = 0) = 1$. Therefore, by linearity, $\mathbb{P}(\mathbb{E}(X_1 \mid \mathcal{G}) = \mathbb{E}(X_2 \mid \mathcal{G})) = 1$.

Proposition 9.12. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. If $X \geq 0$, then $\mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) \geq 0) = 1$.

Proof. In order to find a contradiction, suppose that $\mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) \geq 0) < 1$, so that $\mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) < 0) > 0$. Let $A_n = \{\mathbb{E}(X \mid \mathcal{G}) < -n^{-1}\} = \mathbb{E}(X \mid \mathcal{G})^{-1}((-\infty, -n^{-1}))$, so that $A_n \subseteq A_{n+1}$ and $\bigcup_n A_n = \{\mathbb{E}(X \mid \mathcal{G}) < 0\}$. Since $A_n \uparrow \{\mathbb{E}(X \mid \mathcal{G}) < 0\}$, the monotone-convergence property of measure guarantees that $\mathbb{P}(A_n) \uparrow \mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) < 0)$. Because we supposed that $\mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) < 0) > 0$, there is an $n \in \mathbb{N}$ such that $\mathbb{P}(A_n) = \mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) < -n^{-1}) > 0$. Consider the random variable $\mathbb{E}(X \mid \mathcal{G})\mathbb{I}_{A_n}$ given by

$$(\mathbb{E}(X\mid\mathcal{G})\mathbb{I}_{A_n})(\omega) = \mathbb{E}(X\mid\mathcal{G})(\omega)\mathbb{I}_{A_n}(\omega) = \begin{cases} \mathbb{E}(X\mid\mathcal{G})(\omega), & \text{if } \mathbb{E}(X\mid\mathcal{G})(\omega) < -n^{-1}, \\ 0, & \text{if } \mathbb{E}(X\mid\mathcal{G})(\omega) \geq -n^{-1}. \end{cases}$$

Because $\mathbb{E}(X \mid \mathcal{G})\mathbb{I}_{A_n} < -n^{-1}\mathbb{I}_{A_n}$, we know that $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})\mathbb{I}_{A_n}) \leq -n^{-1}\mathbb{P}(A_n) < 0$. Because $X \geq 0$, we know that $\mathbb{E}(X\mathbb{I}_{A_n}) \geq 0$. However, $A_n \in \mathcal{G}$, so that $\mathbb{E}(X\mathbb{I}_{A_n}) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{G})\mathbb{I}_{A_n})$. Because this is a contradiction, we know that $\mathbb{P}(\mathbb{E}(X \mid \mathcal{G}) \geq 0) = 1$.

Proposition 9.13. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. In that case, $|\mathbb{E}(X \mid \mathcal{G})| \leq \mathbb{E}(|X| \mid \mathcal{G})$ almost surely.

Proof. By the linearity of conditional expectation,

$$\begin{split} & \mathbb{P}\left(\left|\mathbb{E}(X\mid\mathcal{G})\right| = \left|\mathbb{E}(X^+ - X^-\mid\mathcal{G})\right| = \left|\mathbb{E}(X^+\mid\mathcal{G}) - \mathbb{E}(X^-\mid\mathcal{G})\right|\right) = 1, \\ & \mathbb{P}\left(\mathbb{E}(|X|\mid\mathcal{G}) = \mathbb{E}(X^+ + X^-\mid\mathcal{G}) = \mathbb{E}(X^+\mid\mathcal{G}) + \mathbb{E}(X^-\mid\mathcal{G})\right) = 1. \end{split}$$

By the triangle inequality, $|\mathbb{E}(X^+ \mid \mathcal{G}) - \mathbb{E}(X^- \mid \mathcal{G})| \leq |\mathbb{E}(X^+ \mid \mathcal{G})| + |\mathbb{E}(X^- \mid \mathcal{G})|$. Because $\mathbb{P}(|\mathbb{E}(X^+ \mid \mathcal{G})| = \mathbb{E}(X^+ \mid \mathcal{G})) = 1$ and $\mathbb{P}(|\mathbb{E}(X^- \mid \mathcal{G})| = \mathbb{E}(X^- \mid \mathcal{G})) = 1$,

$$\mathbb{P}\left(\left|\mathbb{E}(X\mid\mathcal{G})\right| \leq \left|\mathbb{E}(X^+\mid\mathcal{G})\right| + \left|\mathbb{E}(X^-\mid\mathcal{G})\right| = \mathbb{E}(X^+\mid\mathcal{G}) + \mathbb{E}(X^-\mid\mathcal{G}) = \mathbb{E}(|X\mid\mid\mathcal{G})\right) = 1.$$

Theorem 9.1 (Conditional monotone-convergence theorem). Consider a sequence of non-negative random variables $(X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \mid n \in \mathbb{N})$, a non-negative random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. If $X_n \uparrow X$, then $\mathbb{P}(\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A \uparrow \mathbb{E}(X \mid \mathcal{G})) = 1$, where $A \in \mathcal{G}$ is a set such that $\mathbb{P}(A) = 1$.

Proof. Because X_n is a non-negative random variable, $\mathbb{P}(\mathbb{E}(X_n \mid \mathcal{G}) \geq 0) = 1$. For every $n \in \mathbb{N}$, because $X_{n+1} - X_n$ is non-negative and $\mathbb{E}(X_{n+1} \mid \mathcal{G}) - \mathbb{E}(X_n \mid \mathcal{G}) = \mathbb{E}(X_{n+1} - X_n \mid \mathcal{G})$ almost surely, $\mathbb{P}(\mathbb{E}(X_{n+1} \mid \mathcal{G}) - \mathbb{E}(X_n \mid \mathcal{G}) \geq 0) = 1$. Let $A^c = \bigcup_n \{\mathbb{E}(X_n \mid \mathcal{G}) < 0\} \cup \{\mathbb{E}(X_{n+1} \mid \mathcal{G}) - \mathbb{E}(X_n \mid \mathcal{G}) < 0\}$. Note that $A \in \mathcal{G}$ and $\mathbb{P}(A) = 1$, since

$$\mathbb{P}(A^c) \le \sum_n \mathbb{P}(\mathbb{E}(X_n \mid \mathcal{G}) < 0) + \mathbb{P}(\mathbb{E}(X_{n+1} \mid \mathcal{G}) - \mathbb{E}(X_n \mid \mathcal{G}) < 0) = 0.$$

For every $n \in \mathbb{N}$, note that $\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A \geq 0$ and $\mathbb{E}(X_{n+1} \mid \mathcal{G})\mathbb{I}_A \geq \mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A$.

Let $Y = \limsup_{n \to \infty} \mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A$. For every $G \in \mathcal{G}$, because every non-decreasing sequence of real numbers converges (possibly to infinity), we know that $\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A\mathbb{I}_G \uparrow Y\mathbb{I}_G$, which also implies $\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A \uparrow Y$. By the monotone-convergence theorem, we know that $\mathbb{E}(\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A\mathbb{I}_G) \uparrow \mathbb{E}(Y\mathbb{I}_G)$.

For every $n \in \mathbb{N}$ and $G \in \mathcal{G}$, we have $(A \cap G) \in \mathcal{G}$ and $\mathbb{P}(X_n \mathbb{I}_G \mathbb{I}_{A^c} \neq 0) = 0$, so that

$$\mathbb{E}(\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_A\mathbb{I}_G) = \mathbb{E}(\mathbb{E}(X_n \mid \mathcal{G})\mathbb{I}_{A \cap G}) = \mathbb{E}(X_n\mathbb{I}_{A \cap G}) = \mathbb{E}(X_n\mathbb{I}_A\mathbb{I}_G) + \mathbb{E}(X_n\mathbb{I}_{A^c}\mathbb{I}_G) = \mathbb{E}(X_n\mathbb{I}_G),$$

which implies $\mathbb{E}(X_n\mathbb{I}_G) \uparrow \mathbb{E}(Y\mathbb{I}_G)$. Since $X_n\mathbb{I}_G \uparrow X\mathbb{I}_G$, we also know that $\mathbb{E}(X_n\mathbb{I}_G) \uparrow \mathbb{E}(X\mathbb{I}_G)$, so that $\mathbb{E}(Y\mathbb{I}_G) = \mathbb{E}(X\mathbb{I}_G)$. Because Y is \mathcal{G} -measurable and $\Omega \in \mathcal{G}$, we know that $Y = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Lemma 9.1 (Conditional Fatou lemma). Consider a sequence of non-negative random variables $(X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \mid n \in \mathbb{N})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. If $\mathbb{E}(\liminf_{n \to \infty} X_n) < \infty$, then

$$\mathbb{P}\left(\mathbb{E}\left(\liminf_{n\to\infty} X_n \mid \mathcal{G}\right) \leq \liminf_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G})\right) = 1.$$

Proof. For any $m \in \mathbb{N}$, consider the function $Z_m = \inf_{n \geq m} X_n$, such that

$$\liminf_{n \to \infty} X_n = \lim_{m \to \infty} \inf_{n > m} X_n = \lim_{m \to \infty} Z_m.$$

Because $Z_m \leq Z_{m+1}$ for every $m \in \mathbb{N}$, we have $Z_m \uparrow \liminf_{n \to \infty} X_n$. Furthermore, $Z_m \geq 0$ and $Z_m \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $m \in \mathbb{N}$. Therefore, by the conditional monotone-convergence theorem,

$$\mathbb{P}\left(\mathbb{E}(Z_m \mid \mathcal{G})\mathbb{I}_A \uparrow \mathbb{E}\left(\liminf_{n \to \infty} X_n \mid \mathcal{G}\right)\right) = 1,$$

where $A \in \mathcal{G}$ and $\mathbb{P}(A) = 1$.

For any $n \geq m$, note that $X_n \geq Z_m$. Therefore, $\mathbb{P}(\mathbb{E}(X_n - Z_m \mid \mathcal{G}) \geq 0) = 1$ and $\mathbb{P}(\mathbb{E}(X_n \mid \mathcal{G}) \geq \mathbb{E}(Z_m \mid \mathcal{G})) = 1$. Furthermore, for every $m \in \mathbb{N}$, because $\mathbb{P}(A^c) = 0$,

$$\mathbb{P}\left(\inf_{n\geq m}\mathbb{E}(X_n\mid\mathcal{G})\geq\mathbb{E}(Z_m\mid\mathcal{G})\mathbb{I}_A\right)=1.$$

By taking the limit of both sides of the previous inequation when $m \to \infty$,

$$\mathbb{P}\left(\liminf_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})\geq\mathbb{E}\left(\liminf_{n\to\infty}X_n\mid\mathcal{G}\right)\right)=1.$$

Lemma 9.2 (Reverse conditional Fatou lemma). Consider a sequence of non-negative random variables $(X_n \in$ $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \mid n \in \mathbb{N}$), a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, and a non-negative random variable $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $X_n \leq Y$ for every $n \in \mathbb{N}$. In that case,

$$\mathbb{P}\left(\mathbb{E}\left(\limsup_{n\to\infty} X_n \mid \mathcal{G}\right) \ge \limsup_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G})\right) = 1.$$

Proof. Because $X_n \leq Y$ for every $n \in \mathbb{N}$, we know that $\mathbb{E}(\limsup_{n \to \infty} X_n) \leq \mathbb{E}(Y) < \infty$. For every $n \in \mathbb{N}$, consider the non-negative function $Z_n = Y - X_n$, so that $Z_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. From the conditional Fatou lemma, since $\mathbb{E}(\liminf_{n\to\infty} Z_n) < \infty$,

$$\mathbb{P}\left(\mathbb{E}\left(\liminf_{n\to\infty}Y - X_n \mid \mathcal{G}\right) \le \liminf_{n\to\infty}\mathbb{E}(Y - X_n \mid \mathcal{G})\right) = 1.$$

For every $n \in \mathbb{N}$, by moving constants outside the corresponding limits and linearity,

$$\mathbb{P}\left(\mathbb{E}\left(Y\mid\mathcal{G}\right) + \mathbb{E}\left(\liminf_{n\to\infty} -X_n\mid\mathcal{G}\right) \leq \mathbb{E}(Y\mid\mathcal{G}) + \liminf_{n\to\infty} -\mathbb{E}(X_n\mid\mathcal{G})\right) = 1.$$

By the relationship between limit inferior and limit superior and linearity,

$$\mathbb{P}\left(\mathbb{E}\left(Y\mid\mathcal{G}\right)-\mathbb{E}\left(\limsup_{n\to\infty}X_n\mid\mathcal{G}\right)\leq\mathbb{E}(Y\mid\mathcal{G})-\limsup_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})\right)=1.$$

The proof is completed by reorganizing terms in the inequation above.

Theorem 9.2 (Conditional dominated convergence theorem). Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a sequence of random variables $(X_n \mid n \in \mathbb{N})$, a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, a random variable X, and a non-negative random variable $V \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $|X_n| \leq V$ for every $n \in \mathbb{N}$. If $\mathbb{P}(\lim_{n \to \infty} X_n = X) = 1$, then $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and

$$\mathbb{P}\left(\lim_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})\mathbb{I}_C=\mathbb{E}(X\mid\mathcal{G})\right)=1.$$

where $C \in \mathcal{G}$ is a set such that $\mathbb{P}(C) = 1$.

Proof. Because $|X_n| \leq V$ for every $n \in \mathbb{N}$, we know that $\mathbb{E}(|X_n|) \leq \mathbb{E}(V) < \infty$, which implies that $X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Because the function $|\cdot|$ is continuous, we know that $\mathbb{P}(\lim_{n\to\infty}|X_n|=|X|)=1$. Because $\mathbb{P}(\lim_{n\to\infty}|X_n|\leq V)=1$, we know that $\mathbb{P}(|X| \leq V) = 1$. Because $\mathbb{P}(|X| \neq |X|\mathbb{I}_{\{|X| \leq V\}}) = 0$, we know that $\mathbb{E}(|X|) = \mathbb{E}(|X|\mathbb{I}_{\{|X| \leq V\}}) \leq 0$ $\mathbb{E}(V) < \infty$, so that $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

Since $\mathbb{P}(|X_n| \leq V) = 1$ and $\mathbb{P}(|X| \leq V) = 1$, we have $\mathbb{P}(|X_n| + |X| \leq 2V) = 1$. By the triangle inequality,

$$|X_n - X| = |X_n + (-X)| \le |X_n| + |X|,$$

which implies that $\mathbb{P}(|X_n - X| \leq 2V) = 1$.

Let $A = \{|X_n - X| \le 2V\}$, so that $\mathbb{P}(|X_n - X| = |X_n - X|\mathbb{I}_A) = 1$ and $\mathbb{E}(|X_n - X|) = \mathbb{E}(|X_n - X|\mathbb{I}_A)$. Because $|X_n - X|\mathbb{I}_A$ is an \mathcal{F} -measurable function and $|X_n - X|\mathbb{I}_A \leq 2V$ for every $n \in \mathbb{N}$, where $2V : \Omega \to [0, \infty]$ is an \mathcal{F} -measurable function such that $\mathbb{E}(2V) = 2\mathbb{E}(V) < \infty$, the reverse conditional Fatou lemma states that

$$\mathbb{P}\left(\mathbb{E}\left(\limsup_{n\to\infty}|X_n-X|\mathbb{I}_A\mid\mathcal{G}\right)\geq \limsup_{n\to\infty}\mathbb{E}\left(|X_n-X|\mathbb{I}_A\mid\mathcal{G}\right)\right)=1.$$

Since $|\cdot|$ is continuous, we have $\mathbb{P}(\lim_{n\to\infty} |X_n - X|\mathbb{I}_A = 0) = 1$, where 0 is the zero function. Therefore,

$$\mathbb{P}\left(\limsup_{n\to\infty}|X_n-X|\mathbb{I}_A=\liminf_{n\to\infty}|X_n-X|\mathbb{I}_A=\lim_{n\to\infty}|X_n-X|\mathbb{I}_A=0\right)=1.$$

Because each of the random variables above is almost surely equal to zero,

$$\mathbb{P}\left(\mathbb{E}\left(\limsup_{n\to\infty}|X_n-X|\mathbb{I}_A\mid\mathcal{G}\right)=\mathbb{E}\left(\liminf_{n\to\infty}|X_n-X|\mathbb{I}_A\mid\mathcal{G}\right)=\mathbb{E}\left(\lim_{n\to\infty}|X_n-X|\mathbb{I}_A\mid\mathcal{G}\right)=1.$$

Since $(X_n - X)\mathbb{I}_A \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}$, we have $\mathbb{P}(|\mathbb{E}((X_n - X)\mathbb{I}_A \mid \mathcal{G})| \leq \mathbb{E}(|X_n - X|\mathbb{I}_A \mid \mathcal{G})) = 1$. By taking the limit superior of both sides of the previous inequation and employing the previous results,

$$\mathbb{P}\left(0 \leq \limsup_{n \to \infty} |\mathbb{E}((X_n - X)\mathbb{I}_A \mid \mathcal{G})| \leq \limsup_{n \to \infty} \mathbb{E}\left(|X_n - X|\mathbb{I}_A \mid \mathcal{G}\right) \leq \mathbb{E}\left(\limsup_{n \to \infty} |X_n - X|\mathbb{I}_A \mid \mathcal{G}\right) = 0\right) = 1.$$

Therefore, by the relationship between limits,

$$\mathbb{P}\left(\liminf_{n\to\infty}\mathbb{E}((X_n-X)\mathbb{I}_A\mid\mathcal{G})=\limsup_{n\to\infty}\mathbb{E}((X_n-X)\mathbb{I}_A\mid\mathcal{G})=0\right)=1.$$

Because $\mathbb{P}((X_n - X)\mathbb{I}_A = (X_n - X)) = 1$ implies $\mathbb{P}(\mathbb{E}((X_n - X)\mathbb{I}_A \mid \mathcal{G}) = \mathbb{E}(X_n - X \mid \mathcal{G})) = 1$.

$$\mathbb{P}\left(\liminf_{n\to\infty}\mathbb{E}(X_n-X\mid\mathcal{G})=\limsup_{n\to\infty}\mathbb{E}(X_n-X\mid\mathcal{G})=0\right)=1.$$

By the linearity of conditional expectation,

$$\mathbb{P}\left(\liminf_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})=\limsup_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})=\mathbb{E}(X\mid\mathcal{G})\right)=1.$$

Let $C = \{\omega \in \Omega \mid \lim_{n \to \infty} \mathbb{E}(X_n \mid \mathcal{G})(\omega) \text{ exists in } \mathbb{R}\}$. Because $\mathbb{E}(X_n \mid \mathcal{G})$ is \mathcal{G} -measurable for every $n \in \mathbb{N}$, recall that $C \in \mathcal{G}$. Because $\mathbb{E}(|\mathbb{E}(X \mid \mathcal{G})|) < \infty$, recall that $\mathbb{P}(|\mathbb{E}(X \mid \mathcal{G})| < \infty) = 1$, so that $\mathbb{P}(C) = 1$. Furthermore,

$$\mathbb{P}\left(\lim_{n\to\infty}\mathbb{E}(X_n\mid\mathcal{G})\mathbb{I}_C=\mathbb{E}(X\mid\mathcal{G})\right)=1.$$

Proposition 9.14 (Conditional Jensen's inequality). Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, and a convex function $\phi : \mathbb{R} \to \mathbb{R}$. If $(\phi \circ X) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, then $\mathbb{P}((\phi \circ \mathbb{E}(X \mid \mathcal{G})) \leq \mathbb{E}((\phi \circ X) \mid \mathcal{G})) = 1$.

Proof. Because ϕ is a convex function, it is possible to show that there is a sequence $((a_n, b_n) \in \mathbb{R}^2 \mid n \in \mathbb{N})$ such that $\phi(x) = \sup_n a_n x + b_n$ for every $x \in \mathbb{R}$. Therefore, $\phi(x) \geq a_n x + b_n$ for every $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Furthermore, if $(\phi \circ X) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, then $(\phi \circ X) - a_n X - b_n \geq 0$ for every $n \in \mathbb{N}$ and

$$\mathbb{P}\left(\mathbb{E}((\phi \circ X) - a_n X - b_n \mid \mathcal{G}\right) \ge 0\right) = 1.$$

For every $n \in \mathbb{N}$, by the linearity of conditional expectation,

$$\mathbb{P}\left(\mathbb{E}((\phi \circ X) \mid \mathcal{G}) \geq a_n \mathbb{E}(X \mid \mathcal{G}) + b_n\right) = 1.$$

By taking the supremum of both sides of the previous inequation,

$$\mathbb{P}\left(\mathbb{E}((\phi \circ X) \mid \mathcal{G}) \ge \sup_{n} a_{n} \mathbb{E}(X \mid \mathcal{G}) + b_{n} = (\phi \circ \mathbb{E}(X \mid \mathcal{G}))\right) = 1.$$

Proposition 9.15. Consider a random variable $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$, where $p \in [1, \infty)$, and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. In that case, $\|\mathbb{E}(X \mid \mathcal{G})\|_p \leq \|X\|_p$.

Proof. From the monotonicity of norm, we know that $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Consider the convex function $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = |x|^p$, so that $(\phi \circ X) = |X|^p$. Because $\mathbb{E}(|X|^p) < \infty$, we know that $|X|^p \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. From the conditional Jensen's inequality, $\mathbb{P}(|\mathbb{E}(X \mid \mathcal{G})|^p \leq \mathbb{E}(|X|^p \mid \mathcal{G})) = 1$. Let $A = \{|\mathbb{E}(X \mid \mathcal{G})|^p \leq \mathbb{E}(|X|^p \mid \mathcal{G})\}$.

Because $|\mathbb{E}(X \mid \mathcal{G})|^p$ is non-negative and \mathcal{G} -measurable and $\mathbb{E}(|X|^p \mid \mathcal{G}) \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$,

$$\mathbb{E}\left(|\mathbb{E}(X\mid\mathcal{G})|^p\right) = \mathbb{E}\left(|\mathbb{E}(X\mid\mathcal{G})|^p\mathbb{I}_A\right) \leq \mathbb{E}\left(\mathbb{E}(|X|^p\mid\mathcal{G})\mathbb{I}_A\right) = \mathbb{E}\left(\mathbb{E}(|X|^p\mid\mathcal{G})\right) = \mathbb{E}(|X|^p).$$

Proposition 9.16 (Tower property). Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, and a σ -algebra $\mathcal{H} \subseteq \mathcal{G}$. In that case, $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H})$ almost surely.

Proof. Because $\mathbb{E}(X \mid \mathcal{G}) \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$, we know that $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) \in \mathcal{L}^1(\Omega, \mathcal{H}, \mathbb{P})$. For every $H \in \mathcal{H}$, since $H \in \mathcal{G}$,

$$\int_{\Omega} \mathbb{E}(\mathbb{E}(X\mid \mathcal{G})\mid \mathcal{H})\mathbb{I}_{H} \ d\mathbb{P} = \int_{\Omega} \mathbb{E}(X\mid \mathcal{G})\mathbb{I}_{H} \ d\mathbb{P} = \int_{\Omega} X\mathbb{I}_{H} \ d\mathbb{P}.$$

For the remainder of this text, we let $\mathbb{E}(X \mid \mathcal{G} \mid \mathcal{H})$ denote $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})$.

Proposition 9.17 (*Taking out what is known*). Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, and a \mathcal{G} -measurable random variable $Z : \Omega \to \mathbb{R}$. If $\mathbb{E}(|ZX|) < \infty$, then $\mathbb{E}(ZX \mid \mathcal{G}) = Z\mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proof. We will start by assuming that $X \geq 0$.

First, suppose that $Z = \mathbb{I}_A$, where $A \in \mathcal{G}$. For every $G \in \mathcal{G}$, since $ZX \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $A \cap G \in \mathcal{G}$,

$$\mathbb{E}(ZX\mathbb{I}_G) = \mathbb{E}(X\mathbb{I}_{A\cap G}) = \mathbb{E}(\mathbb{E}(X\mid \mathcal{G})\mathbb{I}_{A\cap G}) = \mathbb{E}(Z\mathbb{E}(X\mid \mathcal{G})\mathbb{I}_G).$$

Because $Z\mathbb{E}(X \mid \mathcal{G})$ is \mathcal{G} -measurable and $\mathbb{E}(Z\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(ZX) < \infty$, we know that $Z\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(ZX \mid \mathcal{G})$ almost surely.

Next, suppose that Z is a simple function that can be written as $Z = \sum_{k=1}^{m} a_k \mathbb{I}_{A_k}$ for some fixed $a_1, a_2, \ldots, a_m \in [0, \infty]$ and $A_1, A_2, \ldots, A_m \in \mathcal{G}$. By the linearity of the conditional expectation and the previous step,

$$\mathbb{P}\left(\mathbb{E}(ZX\mid\mathcal{G}) = \mathbb{E}\left(\sum_{k=1}^{m} a_{k}\mathbb{I}_{A_{k}}X\mid\mathcal{G}\right) = \sum_{k=1}^{m} a_{k}\mathbb{E}\left(\mathbb{I}_{A_{k}}X\mid\mathcal{G}\right) = \sum_{k=1}^{m} a_{k}\mathbb{I}_{A_{k}}\mathbb{E}\left(X\mid\mathcal{G}\right) = Z\mathbb{E}(X\mid\mathcal{G})\right) = 1,$$

where we also used the fact that $\mathbb{E}(\mathbb{I}_{A_k}X) \leq \mathbb{E}(X) < \infty$.

Next, suppose that Z is a non-negative \mathcal{G} -measurable function. For any $n \in \mathbb{N}$, consider the simple function $Z_n = \alpha_n \circ Z$, where α_n is the n-th staircase function.

For every $G \in \mathcal{G}$, since $Z_n \uparrow Z$ and $X\mathbb{I}_G \geq 0$, note that $Z_n X\mathbb{I}_G \uparrow ZX\mathbb{I}_G$. For every $G \in \mathcal{G}$, since $Z_n \uparrow Z$ and $|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G \geq 0$, note that $Z_n|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G \uparrow Z|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G$. Therefore, by the monotone-convergence theorem, we know that $\mathbb{E}(Z_n X\mathbb{I}_G) \uparrow \mathbb{E}(ZX\mathbb{I}_G)$ and $\mathbb{E}(Z_n|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G) \uparrow \mathbb{E}(Z|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G)$.

Because Z_n is a simple \mathcal{G} -measurable function and $\mathbb{E}(Z_nX) \leq \mathbb{E}(ZX) < \infty$, note that $\mathbb{E}(Z_nX \mid \mathcal{G}) = Z_n\mathbb{E}(X \mid \mathcal{G})$ almost surely. Because $Z_n\mathbb{E}(X \mid \mathcal{G}) = Z_n|\mathbb{E}(X \mid \mathcal{G})|$ almost surely, $\mathbb{E}(Z_nX\mathbb{I}_G) = \mathbb{E}(Z_n|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G)$ for every $G \in \mathcal{G}$. Therefore, the previous result implies that $\mathbb{E}(ZX\mathbb{I}_G) = \mathbb{E}(Z|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G)$ for every $G \in \mathcal{G}$, so that $Z|\mathbb{E}(X \mid \mathcal{G})| = \mathbb{E}(ZX \mid \mathcal{G})$ almost surely. Because $Z|\mathbb{E}(X \mid \mathcal{G})| = Z\mathbb{E}(X \mid \mathcal{G})$ almost surely, this step is complete.

Next, suppose that Z is a \mathcal{G} -measurable function. Recall that $Z = Z^+ - Z^-$, where Z^+ and Z^- are non-negative \mathcal{G} -measurable functions. By the linearity of the conditional expectation and the previous step,

$$\mathbb{P}\left(\mathbb{E}(ZX\mid\mathcal{G}) = \mathbb{E}(Z^{+}X\mid\mathcal{G}) - \mathbb{E}(Z^{-}X\mid\mathcal{G}) = Z^{+}\mathbb{E}(X\mid\mathcal{G}) - Z^{-}\mathbb{E}(X\mid\mathcal{G}) = Z\mathbb{E}(X\mid\mathcal{G})\right) = 1,$$

where we have also used the fact that $\mathbb{E}(Z^+X) + \mathbb{E}(Z^-X) = \mathbb{E}((Z^+ + Z^-)X) = \mathbb{E}(|ZX|) < \infty$.

Finally, suppose that $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Recall that $X = X^+ - X^-$, where X^+ and X^- are non-negative \mathcal{F} -measurable functions By the linearity of the conditional expectation,

$$\mathbb{P}\left(\mathbb{E}(ZX\mid\mathcal{G}) = \mathbb{E}(ZX^+\mid\mathcal{G}) - \mathbb{E}(ZX^-\mid\mathcal{G}) = Z\mathbb{E}(X^+\mid\mathcal{G}) - Z\mathbb{E}(X^-\mid\mathcal{G}) = Z\mathbb{E}(X\mid\mathcal{G})\right) = 1,$$

where we have also used the fact that $\mathbb{E}(|Z|X^+) + \mathbb{E}(|Z|X^-) = \mathbb{E}(|Z|(X^+ + X^-)) = \mathbb{E}(|ZX|) < \infty$.

Proposition 9.18 (Role of independence). Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, and a σ -algebra $\mathcal{H} \subseteq \mathcal{F}$. If \mathcal{H} and $\sigma(\sigma(X) \cup \mathcal{G})$ are independent, then $\mathbb{E}(X \mid \sigma(\mathcal{G} \cup \mathcal{H})) = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Proof. We will start by assuming that $X \geq 0$.

For every $G \in \mathcal{G}$, note that $|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G$ is \mathcal{G} -measurable. Consider the Borel function $f : \mathbb{R}^2 \to \mathbb{R}$ given by f(a,b) = ab. Since $(X\mathbb{I}_G)(\omega) = f(X(\omega), \mathbb{I}_G(\omega))$ for every $\omega \in \Omega$, we also know that $X\mathbb{I}_G$ is $\sigma(\sigma(X) \cup \mathcal{G})$ -measurable. For every $G \in \mathcal{G}$ and $H \in \mathcal{H}$, we know that $X\mathbb{I}_G$ and \mathbb{I}_H are independent, since \mathbb{I}_H is \mathcal{H} -measurable. We also know that $|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G$ and \mathbb{I}_H are independent, since $\mathcal{G} \subseteq \sigma(\sigma(X) \cup \mathcal{G})$.

For every $G \in \mathcal{G}$ and $H \in \mathcal{H}$, because $X\mathbb{I}_G \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, $|\mathbb{E}(X \mid \mathcal{G})|\mathbb{I}_G \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathbb{I}_H \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$,

$$\mathbb{E}(X;G\cap H) = \mathbb{E}(X\mathbb{I}_G\mathbb{I}_H) = \mathbb{E}(X\mathbb{I}_G)\mathbb{E}(\mathbb{I}_H) = \mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|\mathbb{I}_G)\mathbb{E}(\mathbb{I}_H) = \mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|\mathbb{I}_G\mathbb{I}_H) = \mathbb{E}(|\mathbb{E}(X\mid$$

Consider the set $\mathcal{I} = \{G \cap H \mid G \in \mathcal{G} \text{ and } H \in \mathcal{H}\}$. Suppose that $(G_1 \cap H_1) \in \mathcal{I}$ and $(G_2 \cap H_2) \in \mathcal{I}$, and note that $(G_1 \cap H_1) \cap (G_2 \cap H_2) = (G_1 \cap G_2) \cap (H_1 \cap H_2)$. Because $(G_1 \cap G_2) \in \mathcal{G}$ and $(H_1 \cap H_2) \in \mathcal{H}$, we know that $((G_1 \cap H_1) \cap (G_2 \cap H_2)) \in \mathcal{I}$, so that \mathcal{I} is a π -system.

Since $\Omega \in \mathcal{G}$, we know that $\mathcal{H} \subseteq \mathcal{I}$. Since $\Omega \in \mathcal{H}$, we know that $\mathcal{G} \subseteq \mathcal{I}$. Therefore, $\mathcal{G} \cup \mathcal{H} \subseteq \mathcal{I}$, so that $\sigma(\mathcal{G} \cup \mathcal{H}) \subseteq \sigma(\mathcal{I})$. For every $G \in \mathcal{G}$ and $H \in \mathcal{H}$, we know that $(G \cap H) \in \sigma(\mathcal{G} \cup \mathcal{H})$. Therefore $\mathcal{I} \subseteq \sigma(\mathcal{G} \cup \mathcal{H})$, so that $\sigma(\mathcal{I}) \subseteq \sigma(\mathcal{G} \cup \mathcal{H})$. In conclusion, $\sigma(\mathcal{I}) = \sigma(\mathcal{G} \cup \mathcal{H})$.

Consider the measure $(X\mathbb{P}): \mathcal{F} \to [0,\infty]$ given by $(X\mathbb{P})(A) = \mathbb{E}(X;A)$ and the measure $(|\mathbb{E}(X\mid\mathcal{G})|\mathbb{P}): \mathcal{F} \to [0,\infty]$ given by $(|\mathbb{E}(X\mid\mathcal{G})|\mathbb{P})(A) = \mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|;A)$. For every $I\in\mathcal{I}$, we know that $(X\mathbb{P})(I) = (|\mathbb{E}(X\mid\mathcal{G})|\mathbb{P})(I)$. In particular, we know that $(X\mathbb{P})(\Omega) = \mathbb{E}(X) = (|\mathbb{E}(X\mid\mathcal{G})|\mathbb{P})(\Omega) < \infty$. Therefore, from a previous result, we know that $\mathbb{E}(X\mathbb{I}_A) = \mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|\mathbb{I}_A)$ for every $A\in\sigma(\mathcal{G}\cup\mathcal{H})$. Because $|\mathbb{E}(X\mid\mathcal{G})|$ is $\sigma(\mathcal{G}\cup\mathcal{H})$ -measurable and $\mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|) = \mathbb{E}(X) < \infty$, we know that $|\mathbb{E}(X\mid\mathcal{G})| = \mathbb{E}(X\mid\sigma(\mathcal{G}\cup\mathcal{H}))$ almost surely. Since $|\mathbb{E}(X\mid\mathcal{G})| = \mathbb{E}(X\mid\mathcal{G})$ almost surely, this step is complete.

Finally, suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Recall that $X = X^+ - X^-$, where $X^+ \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $X^- \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ are non-negative. By the linearity of the conditional expectation,

$$\mathbb{P}\left(\mathbb{E}(X\mid\sigma(\mathcal{G}\cup\mathcal{H}))=\mathbb{E}(X^+\mid\sigma(\mathcal{G}\cup\mathcal{H}))-\mathbb{E}(X^-\mid\sigma(\mathcal{G}\cup\mathcal{H}))=\mathbb{E}(X^+\mid\mathcal{G})-\mathbb{E}(X^-\mid\mathcal{G})=\mathbb{E}(X\mid\mathcal{G})\right)=1,$$

where we used the fact that $\sigma(\sigma(X^+) \cup \mathcal{G}) \subseteq \sigma(\sigma(X) \cup \mathcal{G})$ and $\sigma(\sigma(X^-) \cup \mathcal{G}) \subseteq \sigma(\sigma(X) \cup \mathcal{G})$.

Proposition 9.19. Consider a random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{H} \subseteq \mathcal{F}$. If \mathcal{H} and $\sigma(X)$ are independent, then $\mathbb{E}(X \mid \mathcal{H}) = \mathbb{E}(X)$ almost surely.

Proof. Let $\mathcal{G} = \{\emptyset, \Omega\}$. Using the previous result, we know that $\mathbb{E}(X \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{G})$ almost surely. Based on a previous result, we know that $\mathbb{E}(X) = \mathbb{E}(X \mid \mathcal{G})$ almost surely.

Definition 9.3. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a σ -algebra $\mathcal{G} \subseteq \mathcal{F}$. For every $F \in \mathcal{F}$, we let $\mathbb{P}(F \mid \mathcal{G})$ denote a version of the conditional expectation $\mathbb{E}(\mathbb{I}_F \mid \mathcal{G})$ of \mathbb{I}_F given \mathcal{G} , so that $\mathbb{P}(F \mid \mathcal{G}) = \mathbb{E}(\mathbb{I}_F \mid \mathcal{G})$ almost surely. Note that $\mathbb{P}(F \mid \{\emptyset, \Omega\}) = \mathbb{E}(\mathbb{I}_F \mid \{\emptyset, \Omega\}) = \mathbb{E}(\mathbb{I}_F) = \mathbb{P}(F)$ almost surely.

Proposition 9.20. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the random variables $\mathbb{I}_F : \Omega \to \{0, 1\}$ and $Z : \Omega \to \mathcal{Z}$, where $F \in \mathcal{F}$ and $\mathcal{Z} = \{z_1, \ldots, z_n\}$. Furthermore, suppose $\mathbb{P}(Z = z) > 0$ for every $z \in \mathcal{Z}$. Recall that if $E : \mathcal{Z} \to [0, 1]$ is given by

$$E(z) = \frac{\mathbb{P}(\mathbb{I}_F = 1, Z = z)}{\mathbb{P}(Z = z)} = \frac{\mathbb{P}(F \cap \{Z = z\})}{\mathbb{P}(Z = z)},$$

then $E \circ Z = \mathbb{E}(\mathbb{I}_F \mid Z) = \mathbb{P}(F \mid Z)$ almost surely.

Proposition 9.21. Consider a sequence of events $(F_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $F_n \cap F_m = \emptyset$ for every $n \neq m$. In that case, $\mathbb{P}(\bigcup_n F_n \mid \mathcal{G}) = \sum_n \mathbb{I}_A \mathbb{P}(F_n \mid \mathcal{G})$ almost surely, where $A \in \mathcal{G}$ is a set such that $\mathbb{P}(A) = 1$.

Proof. For every $k \in \mathbb{N}$, by the linearity of conditional expectation,

$$\mathbb{P}\left(\mathbb{P}\left(\bigcup_{i=0}^{k} F_{i} \mid \mathcal{G}\right) = \mathbb{E}\left(\mathbb{I}_{\bigcup_{i=0}^{k} F_{i}} \mid \mathcal{G}\right) = \mathbb{E}\left(\sum_{i=0}^{k} \mathbb{I}_{F_{i}} \mid \mathcal{G}\right) = \sum_{i=0}^{k} \mathbb{E}\left(\mathbb{I}_{F_{i}} \mid \mathcal{G}\right) = \sum_{i=0}^{k} \mathbb{P}\left(F_{i} \mid \mathcal{G}\right) = 1.$$

Because $\mathbb{I}_{\bigcup_{i=0}^k F_i} \uparrow \mathbb{I}_{\bigcup_n F_n}$ with respect to k, by the conditional monotone-convergence theorem,

$$\mathbb{P}\left(\sum_{n}\mathbb{I}_{A}\mathbb{P}\left(F_{n}\mid\mathcal{G}\right)=\lim_{k\to\infty}\sum_{i=0}^{k}\mathbb{I}_{A}\mathbb{P}\left(F_{i}\mid\mathcal{G}\right)=\lim_{k\to\infty}\mathbb{E}\left(\mathbb{I}_{\bigcup_{i=0}^{k}F_{i}}\mid\mathcal{G}\right)\mathbb{I}_{A}=\mathbb{E}\left(\mathbb{I}_{\bigcup_{n}F_{n}}\mid\mathcal{G}\right)=\mathbb{P}\left(\bigcup_{n}F_{n}\mid\mathcal{G}\right)\right)=1,$$

where $A \in \mathcal{G}$ is a set such that $\mathbb{P}(A) = 1$.

Definition 9.4. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a σ-algebra $\mathcal{G} \subseteq \mathcal{F}$. A function $\mathbb{P}_{\mathcal{G}} : \Omega \times \mathcal{F} \to [0, 1]$ is called a regular conditional probability given \mathcal{G} if

• There is a set $A \in \mathcal{F}$ such that $\mathbb{P}(A) = 1$ and, for every $\omega \in A$, the function $\mathbb{P}_{\mathcal{G}}(\omega, \cdot) : \mathcal{F} \to [0, 1]$ is a probability measure on (Ω, \mathcal{F}) .

• For every $F \in \mathcal{F}$, the function $\mathbb{P}_{\mathcal{G}}(\cdot, F) : \Omega \to [0, 1]$ is a version of the conditional expectation $\mathbb{E}(\mathbb{I}_F \mid \mathcal{G})$ of \mathbb{I}_F given \mathcal{G} , so that $\mathbb{P}_{\mathcal{G}}(\cdot, F) = \mathbb{P}(F \mid \mathcal{G}) = \mathbb{E}(\mathbb{I}_F \mid \mathcal{G})$ almost surely.

It can be shown that a regular conditional probability given \mathcal{G} exists under very permissive assumptions.

Proposition 9.22. Consider the probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a bounded Borel function $h : \mathbb{R}^n \to \mathbb{R}$, and the independent random variables X_1, X_2, \dots, X_n . Let $h(X_1, X_2, \dots, X_n) : \Omega \to \mathbb{R}$ be given by

$$h(X_1, X_2, \dots, X_n)(\omega) = h(X_1(\omega), X_2(\omega), \dots, X_n(\omega)).$$

Furthermore, for every $x_1 \in \mathbb{R}$, let $h(x_1, X_2, \dots, X_n) : \Omega \to \mathbb{R}$ be given by

$$h(x_1, X_2, \dots, X_n)(\omega) = h(x_1, X_2(\omega), \dots, X_n(\omega)).$$

Finally, let $\gamma: \mathbb{R} \to \mathbb{R}$ be given by

$$\gamma(x_1) = \mathbb{E}(h(x_1, X_2, \dots, X_n)).$$

In that case, $\gamma(X_1) = \mathbb{E}(h(X_1, X_2, \dots, X_n) \mid X_1)$ almost surely, where $\gamma(X_1) = \gamma \circ X_1$.

Proof. For every $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, let $h_{x_1} : \mathbb{R}^{n-1} \to \mathbb{R}$ be given by $h_{x_1}(x_2, ..., x_n) = h(x_1, x_2, ..., x_n)$, and recall that h_{x_1} is a bounded Borel function. Furthermore, recall that the function $Z : \Omega \to \mathbb{R}^n$ given by $Z(\omega) = (X_1(\omega), X_2(\omega), ..., X_n(\omega))$ is $\mathcal{F}/\mathcal{B}(\mathbb{R})^n$ -measurable and that the function $Y : \Omega \to \mathbb{R}^{n-1}$ given by $Y(\omega) = (X_2(\omega), ..., X_n(\omega))$ is $\mathcal{F}/\mathcal{B}(\mathbb{R})^{n-1}$ -measurable.

For every $x_1 \in \mathbb{R}$, note that $h(X_1, X_2, \dots, X_n) = h \circ Z$ and $h(x_1, X_2, \dots, X_n) = h_{x_1} \circ Y$. Because h and h_{x_1} are Borel, for every $B \in \mathcal{B}(\mathbb{R})$, we know that $Z^{-1}(h^{-1}(B)) \in \mathcal{F}$ and $Y^{-1}(h_{x_1}^{-1}(B)) \in \mathcal{F}$. Because h and h_{x_1} are bounded, $h(X_1, X_2, \dots, X_n) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $h(x_1, X_2, \dots, X_n) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. For every $k \in \{1, \dots, n\}$, let $\mathcal{L}_k : \mathcal{B}(\mathbb{R}) \to [0, 1]$ denote the law of X_k . Because the random variables

For every $k \in \{1, ..., n\}$, let $\mathcal{L}_k : \mathcal{B}(\mathbb{R}) \to [0, 1]$ denote the law of X_k . Because the random variables $X_1, X_2, ..., X_n$ are independent, recall that the joint law of $X_i, X_{i+1}, ..., X_n$ is given by $\mathcal{L}_i \times \mathcal{L}_{i+1} \times \cdots \times \mathcal{L}_n$. For every $x_1 \in \mathbb{R}$, because a previous result for laws extends to joint laws,

$$\gamma(x_1) = \int_{\Omega} h(x_1, X_2, \dots, X_n) \ d\mathbb{P} = \int_{\Omega} (h_{x_1} \circ Y) \ d\mathbb{P} = \int_{\mathbb{R}^{n-1}} h_{x_1} \ d(\mathcal{L}_2 \times \dots \times \mathcal{L}_n).$$

Because h_{x_1} is a bounded Borel function,

$$\gamma(x_1) = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} h(x_1, x_2, \dots, x_n) \mathcal{L}_n(dx_n) \cdots \mathcal{L}_2(dx_2),$$

which also implies that γ is $\mathcal{B}(\mathbb{R})$ -measurable, so that $\gamma(X_1)$ is $\sigma(X_1)$ -measurable. For every $B \in \mathcal{B}(\mathbb{R})$, recall that $\mathbb{I}_{X_1^{-1}(B)} = \mathbb{I}_B(X_1)$. Therefore, for every $X_1^{-1}(B) \in \sigma(X_1)$,

$$\int_{\Omega} h(X_1, X_2, \dots, X_n) \mathbb{I}_{X_1^{-1}(B)} d\mathbb{P} = \int_{\mathbb{R}^n} h \mathbb{I}_B(\rho_1) d(\mathcal{L}_1 \times \dots \times \mathcal{L}_n).$$

Because $h\mathbb{I}_B(\rho_1)$ is bounded Borel function,

$$\int_{\Omega} h(X_1, X_2, \dots, X_n) \mathbb{I}_{X_1^{-1}(B)} d\mathbb{P} = \int_{\mathbb{R}} \mathbb{I}_B(x_1) \left[\int_{\mathbb{R}} \dots \int_{\mathbb{R}} h(x_1, x_2, \dots, x_n) \mathcal{L}_n(dx_n) \dots \mathcal{L}_2(dx_2) \right] \mathcal{L}_1(dx_1).$$

Using the previous expression for $\gamma(x_1)$ and a previous result for laws,

$$\int_{\Omega} h(X_1, X_2, \dots, X_n) \mathbb{I}_{X_1^{-1}(B)} d\mathbb{P} = \int_{\mathbb{R}} \mathbb{I}_B(x_1) \gamma(x_1) \mathcal{L}_1(dx_1) = \int_{\Omega} \gamma(X_1) \mathbb{I}_{X_1^{-1}(B)} d\mathbb{P}.$$

Because $\mathbb{E}(\gamma(X_1)) = \mathbb{E}(h(X_1, X_2, \dots, X_n)) < \infty$, the proof is complete.

Proposition 9.23. Consider a measurable space (Ω, \mathcal{F}) and the sequence of σ -algebras $(\mathcal{F}_n \subseteq \mathcal{F} \mid n \in \mathbb{N}^+)$. For every $n \in \mathbb{N}^+$, let $\mathcal{I}_n = \{\bigcap_{i=1}^n F_i \mid F_i \in \mathcal{F}_i \text{ for every } i \in \{1, \dots, n\}\}$. In that case, $\mathcal{I} = \bigcup_n \mathcal{I}_n$ is a π -system on Ω such that $\sigma(\mathcal{I}) = \sigma(\mathcal{F}_1, \mathcal{F}_2, \dots)$, where $\sigma(\mathcal{F}_1, \mathcal{F}_2, \dots) = \sigma(\{\mathcal{F}_1, \mathcal{F}_2, \dots\}) = \sigma(\bigcup_n \mathcal{F}_n)$.

Proof. For some $n \in \mathbb{N}^+$, consider the sets $B \in \mathcal{I}_n$ and $C \in \mathcal{I}_n$ such that $B = \bigcap_{i=1}^n F_i$ and $C = \bigcap_{i=1}^n F_i'$, where $F_i \in \mathcal{F}_i$ and $F_i' \in \mathcal{F}_i$ for every $i \in \{1, \ldots, n\}$. In that case,

$$B \cap C = \left(\bigcap_{i=1}^{n} F_i\right) \cap \left(\bigcap_{i=1}^{n} F_i'\right) = \bigcap_{i=1}^{n} (F_i \cap F_i').$$

Because $(F_i \cap F_i') \in \mathcal{F}_i$ for every $i \in \{1, ..., n\}$, we know that $(B \cap C) \in \mathcal{I}_n$. Therefore, \mathcal{I}_n is a π -system on Ω . Because $\Omega \in \mathcal{F}_n$ for every $n \in \mathbb{N}^+$, we know that $\mathcal{I}_n \subseteq \mathcal{I}_{n+1}$. Therefore, $\mathcal{I} = \bigcup_n \mathcal{I}_n$ is also a π -system on Ω .

Since $\Omega \in \mathcal{F}_n$ for every $n \in \mathbb{N}^+$, we also know that $\mathcal{F}_n \subseteq \mathcal{I}$ for every $n \in \mathbb{N}^+$. Therefore, $\bigcup_n \mathcal{F}_n \subseteq \mathcal{I}$ and $\sigma(\bigcup_n \mathcal{F}_n) \subseteq \sigma(\mathcal{I})$. Consider a set $(\bigcap_{i=1}^m F_i) \in \mathcal{I}$, where $m \in \mathbb{N}^+$ and $F_i \in \mathcal{F}_i$ for every $i \in \{1, \ldots, m\}$. Clearly, $F_i \in \bigcup_n \mathcal{F}_n$ for every $i \in \{1, \ldots, m\}$. Because $\sigma(\bigcup_n \mathcal{F}_n)$ is a σ -algebra, we know that $(\bigcap_{i=1}^m F_i) \in \sigma(\bigcup_n \mathcal{F}_n)$, which implies $\mathcal{I} \subseteq \sigma(\bigcup_n \mathcal{F}_n)$ and $\sigma(\mathcal{I}) \subseteq \sigma(\bigcup_n \mathcal{F}_n)$.

Proposition 9.24. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and the sequence of independent σ -algebras $(\mathcal{F}_n \subseteq \mathcal{F} \mid n \in \mathbb{N}^+)$. In that case, $\sigma(\mathcal{F}_1, \dots, \mathcal{F}_k)$ and $\sigma(\mathcal{F}_{k+1}, \mathcal{F}_{k+2}, \dots)$ are independent for every $k \in \mathbb{N}^+$.

Proof. From the previous proof, we know that $\mathcal{I} = \{ \cap_{i=1}^k F_i \mid F_i \in \mathcal{F}_i \text{ for every } i \in \{1, \dots, k\} \}$ is a π -system on Ω such that $\sigma(\mathcal{I}) = \sigma(\mathcal{F}_1, \dots, \mathcal{F}_k)$. We also know that $\mathcal{J} = \bigcup_n \{ \cap_{i=k+1}^{k+n} F_i \mid F_i \in \mathcal{F}_i \text{ for every } i \in \{k+1, \dots, k+n\} \}$ is a π -system on Ω such that $\sigma(\mathcal{J}) = \sigma(\mathcal{F}_{k+1}, \mathcal{F}_{k+2}, \dots)$.

Consider a set $(\bigcap_{i=1}^k F_i) \in \mathcal{I}$, where $F_i \in \mathcal{F}_i$ for every $i \in \{1, \dots, k\}$, and a set $(\bigcap_{i=k+1}^{k+n} F_i) \in \mathcal{I}$, where $n \in \mathbb{N}^+$ and $F_i \in \mathcal{F}_i$ for every $i \in \{k+1, \dots, k+n\}$. Because $\mathcal{F}_1, \dots, \mathcal{F}_{k+n}$ are independent,

$$\mathbb{P}\left(\left(\bigcap_{i=1}^{k}F_{i}\right)\cap\left(\bigcap_{i=k+1}^{k+n}F_{i}\right)\right)=\left(\prod_{i=1}^{k}\mathbb{P}\left(F_{i}\right)\right)\left(\prod_{i=k+1}^{k+n}\mathbb{P}\left(F_{i}\right)\right)=\mathbb{P}\left(\bigcap_{i=1}^{k}F_{i}\right)\mathbb{P}\left(\bigcap_{i=k+1}^{k+n}F_{i}\right),$$

which implies that \mathcal{I} and \mathcal{J} are independent. Because $\sigma(\mathcal{I})$ and $\sigma(\mathcal{J})$ are then independent, the proof is complete.

Proposition 9.25. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence of independent identically distributed random variables $(X_n : \Omega \to \mathbb{R} \mid n \in \mathbb{N}^+)$, each of which has the same law \mathcal{L}_X as the random variable $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $S_n : \Omega \to \mathbb{R}$ be a random variable given by $S_n = X_1 + \cdots + X_n$. In that case,

$$\mathbb{E}(X_k \mid S_n) = \mathbb{E}(X_k \mid S_n, S_{n+1}, \ldots) = \frac{S_n}{n}$$

almost surely, where $n \in \mathbb{N}^+$ and $k \in \{1, ..., n\}$.

Proof. We will start by showing that $\sigma(S_n, S_{n+1}, \ldots) = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$ for every $n \in \mathbb{N}^+$. For every $i \in \mathbb{N}^+$, note that $S_{n+i} = S_n + X_{n+1} + \cdots + X_{n+i}$, so that $\sigma(S_{n+i}) \subseteq \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$. Therefore, $\sigma(S_n, S_{n+1}, \ldots) \subseteq \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$. For every $i \in \mathbb{N}^+$, note that $X_{n+i} = S_{n+i} - S_{n+i-1}$, so that $\sigma(X_{n+i}) \subseteq \sigma(S_n, S_{n+1}, \ldots)$. Therefore, $\sigma(S_n, X_{n+1}, X_{n+2}, \ldots) \subseteq \sigma(S_n, S_{n+1}, \ldots)$.

Next, we will show that $\sigma(S_n, X_k)$ and $\sigma(X_{n+1}, X_{n+2}, \ldots)$ are independent for every $n \in \mathbb{N}^+$ and $k \in \{1, \ldots, n\}$. Note that $\sigma(S_n) \subseteq \sigma(X_1, \ldots, X_n)$. Therefore, $\sigma(S_n, X_k) \subseteq \sigma(X_1, \ldots, X_n)$. From a previous result, we know that $\sigma(X_1, \ldots, X_n)$ and $\sigma(X_{n+1}, X_{n+2}, \ldots)$ are independent, so that $\sigma(S_n, X_k)$ and $\sigma(X_{n+1}, X_{n+2}, \ldots)$ are independent. By considering this independence, for every $n \in \mathbb{N}^+$ and $k \in \{1, \ldots, n\}$,

$$\mathbb{E}\left(X_{k}\mid S_{n}, S_{n+1}, \ldots\right) = \mathbb{E}\left(X_{k}\mid S_{n}, X_{n+1}, X_{n+2}, \ldots\right) = \mathbb{E}\left(X_{k}\mid S_{n}\right)$$

almost surely.

For every $n \in \mathbb{N}^+$, recall that $\mathbb{I}_{S_n^{-1}(B)} = \mathbb{I}_B(S_n)$ for all $B \in \mathcal{B}(\mathbb{R})$. Since $X_k \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $k \in \{1, \dots, n\}$,

$$\int_{\Omega} X_k \mathbb{I}_{S_n^{-1}(B)} d\mathbb{P} = \int_{\Omega} X_k \mathbb{I}_B(S_n) d\mathbb{P} = \int_{\Omega} f_B(X_k, X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n) d\mathbb{P},$$

where $f_B: \mathbb{R}^n \to \mathbb{R}$ is a Borel function given by $f_B(x_1, \dots, x_n) = x_1 \mathbb{I}_B(x_1 + \dots + x_n)$.

Because a previous result for laws extends to joint laws and X_1, \ldots, X_n are independent,

$$\int_{\Omega} X_k \mathbb{I}_{S_n^{-1}(B)} d\mathbb{P} = \int_{\mathbb{R}^n} f_B d\mathcal{L}_{X_k, X_1, \dots, X_{k-1}, X_{k+1}, \dots, X_n} = \int_{\mathbb{R}^n} f_B d\mathcal{L}_X^n.$$

Therefore, for every $n \in \mathbb{N}^+$, $B \in \mathcal{B}(\mathbb{R})$, $S_n^{-1}(B) \in \sigma(S_n)$, and $i, j \in \{1, \dots, n\}$,

$$\int_{\Omega} \mathbb{E}(X_i \mid S_n) \mathbb{I}_{S_n^{-1}(B)} \ d\mathbb{P} = \int_{\Omega} X_i \mathbb{I}_{S_n^{-1}(B)} \ d\mathbb{P} = \int_{\mathbb{R}^n} f_B \ d\mathcal{L}_X^n = \int_{\Omega} X_j \mathbb{I}_{S_n^{-1}(B)} \ d\mathbb{P} = \int_{\Omega} \mathbb{E}(X_j \mid S_n) \mathbb{I}_{S_n^{-1}(B)} \ d\mathbb{P},$$

so that $\mathbb{E}(X_i \mid S_n) = \mathbb{E}(X_j \mid S_n)$ almost surely.

Finally, for every $n \in \mathbb{N}^+$ and $k \in \{1, \ldots, n\}$,

$$n\mathbb{E}(X_k \mid S_n) = \sum_{i=1}^n \mathbb{E}(X_k \mid S_n) = \sum_{i=1}^n \mathbb{E}(X_i \mid S_n) = \mathbb{E}\left(\sum_{i=1}^n X_i \mid S_n\right) = \mathbb{E}(S_n \mid S_n) = S_n$$

almost surely, so that $\mathbb{E}(X_k \mid S_n) = S_n/n$ almost surely.

10 Martingales

Definition 10.1. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. A filtration $(\mathcal{F}_n)_n$ is a sequence $(\mathcal{F}_n \subseteq \mathcal{F} \mid n \in \mathbb{N})$ of σ -algebras such that $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ for every $n \in \mathbb{N}$. In that case, we let $\mathcal{F}_{\infty} = \sigma(\mathcal{F}_0, \mathcal{F}_1, \ldots) = \sigma(\cup_n \mathcal{F}_n)$.

Definition 10.2. A filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$ is composed of a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $(\mathcal{F}_n)_n$.

Intuitively, at a given time $n \in \mathbb{N}$, for every $\omega \in \Omega$, recall that knowing $\mathbb{I}_{F_n}(\omega)$ for every $F_n \in \mathcal{F}_n$ allows knowing $Z_n(\omega)$ for every \mathcal{F}_n -measurable random variable Z_n .

For any set \mathcal{C} , recall that a set (or sequence) of random variables $Y = (Y_{\gamma} \mid \gamma \in \mathcal{C})$ on a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a stochastic process (parameterized by \mathcal{C}).

Definition 10.3. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. The natural filtration $(\mathcal{F}_n)_n$ of the stochastic process $(W_n \mid n \in \mathbb{N})$ is given by $\mathcal{F}_n = \sigma(W_0, \dots, W_n)$ for every $n \in \mathbb{N}$.

Intuitively, at a given time $n \in \mathbb{N}$, for every $\omega \in \Omega$, recall that knowing $\mathbb{I}_{F_n}(\omega)$ for every $F_n \in \sigma(W_0, \dots, W_n)$ is equivalent to knowing $W_0(\omega), \dots, W_n(\omega)$.

Definition 10.4. Consider a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$. A stochastic process $(X_n \mid n \in \mathbb{N})$ is called adapted (to the filtration $(\mathcal{F}_n)_n$) if X_n is \mathcal{F}_n -measurable for every $n \in \mathbb{N}$.

Note that if $(\mathcal{F}_n)_n$ is the natural filtration of the stochastic process $(W_n \mid n \in \mathbb{N})$, then there is a Borel function $f_n : \mathbb{R}^{n+1} \to \mathbb{R}$ such that $X_n = f_n(W_0, \dots, W_n)$.

Consider a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$.

Definition 10.5. A stochastic process $(X_n \mid n \in \mathbb{N})$ is called a martingale if $(X_n \mid n \in \mathbb{N})$ is adapted; $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$; and $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = X_{n-1}$ almost surely for every $n \in \mathbb{N}^+$.

Definition 10.6. A stochastic process $(X_n \mid n \in \mathbb{N})$ is called a supermartingale if $(X_n \mid n \in \mathbb{N})$ is adapted; $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$; and $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \leq X_{n-1}$ almost surely for every $n \in \mathbb{N}^+$.

Definition 10.7. A stochastic process $(X_n \mid n \in \mathbb{N})$ is called a submartingale if $(X_n \mid n \in \mathbb{N})$ is adapted; $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$; and $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \ge X_{n-1}$ almost surely for every $n \in \mathbb{N}^+$.

Proposition 10.1. Consider an adapted stochastic process $(X_n \mid n \in \mathbb{N})$ and suppose that $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}^+$, note that $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = X_{n-1}$ almost surely if and only if $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \le X_{n-1} \le \mathbb{E}(X_n \mid \mathcal{F}_{n-1})$ almost surely. Therefore, $(X_n \mid n \in \mathbb{N})$ is a martingale if and only if $(X_n \mid n \in \mathbb{N})$ is a supermartingale and a submartingale.

Proposition 10.2. If $(X_n \mid n \in \mathbb{N})$ is a supermartingale, then $(-X_n \mid n \in \mathbb{N})$ is adapted; $\mathbb{E}(|-X_n|) = \mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$; and $\mathbb{E}(-X_n \mid \mathcal{F}_{n-1}) \geq -X_{n-1}$ almost surely for every $n \in \mathbb{N}^+$. Therefore, $(-X_n \mid n \in \mathbb{N})$ is a submartingale.

Proposition 10.3. If $(X_n \mid n \in \mathbb{N})$ is a submartingale, then $(-X_n \mid n \in \mathbb{N})$ is adapted; $\mathbb{E}(|-X_n|) = \mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$; and $\mathbb{E}(-X_n \mid \mathcal{F}_{n-1}) \leq -X_{n-1}$ almost surely for every $n \in \mathbb{N}^+$. Therefore, $(-X_n \mid n \in \mathbb{N})$ is a supermartingale.

Proposition 10.4. Consider an adapted stochastic process $(X_n \mid n \in \mathbb{N})$ and suppose that $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$. Furthermore, consider the stochastic process $(X_n - X_0 \mid n \in \mathbb{N})$. Because $X_n - X_0$ is \mathcal{F}_n -measurable for every $n \in \mathbb{N}$, we know that $(X_n - X_0 \mid n \in \mathbb{N})$ is adapted. Because $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space, we know that $\mathbb{E}(|X_n - X_0|) < \infty$ for every $n \in \mathbb{N}$. By the linearity of conditional expectation,

$$\mathbb{E}(X_n - X_0 \mid \mathcal{F}_{n-1}) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) - \mathbb{E}(X_0 \mid \mathcal{F}_{n-1}) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) - X_0$$

almost surely for every $n \in \mathbb{N}^+$. Therefore:

- For every $n \in \mathbb{N}^+$, $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = X_{n-1}$ almost surely if and only if $\mathbb{E}(X_n X_0 \mid \mathcal{F}_{n-1}) = X_{n-1} X_0$ almost surely. Therefore, $(X_n \mid n \in \mathbb{N})$ is a martingale if and only if $(X_n X_0 \mid n \in \mathbb{N})$ is a martingale.
- For every $n \in \mathbb{N}^+$, $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \leq X_{n-1}$ almost surely if and only if $\mathbb{E}(X_n X_0 \mid \mathcal{F}_{n-1}) \leq X_{n-1} X_0$ almost surely. Therefore, $(X_n \mid n \in \mathbb{N})$ is a supermartingale if and only if $(X_n X_0 \mid n \in \mathbb{N})$ is a supermartingale.
- For every $n \in \mathbb{N}^+$, $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \ge X_{n-1}$ almost surely if and only if $\mathbb{E}(X_n X_0 \mid \mathcal{F}_{n-1}) \ge X_{n-1} X_0$ almost surely. Therefore, $(X_n \mid n \in \mathbb{N})$ is a submartingale if and only if $(X_n X_0 \mid n \in \mathbb{N})$ is a submartingale.

Consequently, it is common to assume that a stochastic process $(X_n \mid n \in \mathbb{N})$ has $X_0 = 0$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Proposition 10.5. If $(X_n \mid n \in \mathbb{N})$ is a martingale, $n \in \mathbb{N}^+$, and m < n, then

$$\mathbb{E}(X_n \mid \mathcal{F}_m) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1} \mid \mathcal{F}_m) = \mathbb{E}(\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \mid \mathcal{F}_m) = \mathbb{E}(X_{n-1} \mid \mathcal{F}_m)$$

almost surely. Therefore, almost surely,

$$\mathbb{E}(X_n \mid \mathcal{F}_m) = \mathbb{E}(X_{m-1} \mid \mathcal{F}_m) = \ldots = \mathbb{E}(X_{m+1} \mid \mathcal{F}_m) = \mathbb{E}(X_m \mid \mathcal{F}_m) = X_m.$$

Proposition 10.6. If $(X_n \mid n \in \mathbb{N})$ is a supermartingale, $n \in \mathbb{N}^+$, and m < n, then

$$\mathbb{E}(X_n \mid \mathcal{F}_m) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1} \mid \mathcal{F}_m) = \mathbb{E}(\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \mid \mathcal{F}_m) \le \mathbb{E}(X_{n-1} \mid \mathcal{F}_m)$$

almost surely. Therefore, almost surely,

$$\mathbb{E}(X_n \mid \mathcal{F}_m) \leq \mathbb{E}(X_{n-1} \mid \mathcal{F}_m) \leq \ldots \leq \mathbb{E}(X_{m+1} \mid \mathcal{F}_m) \leq \mathbb{E}(X_m \mid \mathcal{F}_m) = X_m.$$

Proposition 10.7. If $(X_n \mid n \in \mathbb{N})$ is a submartingale, $n \in \mathbb{N}^+$, and m < n, then

$$\mathbb{E}(X_n \mid \mathcal{F}_m) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1} \mid \mathcal{F}_m) = \mathbb{E}(\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) \mid \mathcal{F}_m) \ge \mathbb{E}(X_{n-1} \mid \mathcal{F}_m)$$

almost surely. Therefore, almost surely,

$$\mathbb{E}(X_n \mid \mathcal{F}_m) \ge \mathbb{E}(X_{n-1} \mid \mathcal{F}_m) \ge \ldots \ge \mathbb{E}(X_{m+1} \mid \mathcal{F}_m) \ge \mathbb{E}(X_m \mid \mathcal{F}_m) = X_m.$$

The next three examples illustrate the definition of martingales.

Proposition 10.8. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a sequence of independent random variables $(X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})) \mid n \in \mathbb{N}^+)$, and suppose that $\mathbb{E}(X_n) = 0$ for every $n \in \mathbb{N}^+$. Let $S_n = X_1 + \cdots + X_n$ for every $n \in \mathbb{N}^+$ and $S_0 = 0$. In that case, $(S_n \mid n \in \mathbb{N})$ is a martingale.

Proof. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ for every $n \in \mathbb{N}^+$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Clearly, $(S_n \mid n \in \mathbb{N})$ is adapted to the filtration $(\mathcal{F}_n)_n$. Because $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space, $S_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}^+$,

$$\mathbb{E}(S_n \mid \mathcal{F}_{n-1}) = \mathbb{E}(S_{n-1} + X_n \mid \mathcal{F}_{n-1}) = \mathbb{E}(S_{n-1} \mid \mathcal{F}_{n-1}) + \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = S_{n-1} + \mathbb{E}(X_n) = S_{n-1} + \mathbb{E}(X$$

almost surely, where we used the fact that $\sigma(X_n)$ is independent of \mathcal{F}_{n-1} for every $n \in \mathbb{N}^+$.

Proposition 10.9. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a sequence of independent random variables $(X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \mid n \in \mathbb{N}^+)$, and suppose that $\mathbb{E}(X_n) = 1$ for every $n \in \mathbb{N}^+$. Let $M_n = X_1 \cdot \dots \cdot X_n$ for every $n \in \mathbb{N}^+$ and $M_0 = 1$. In that case, $(M_n \mid n \in \mathbb{N})$ is a martingale.

Proof. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ for every $n \in \mathbb{N}^+$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Clearly, $(M_n \mid n \in \mathbb{N})$ is adapted to the filtration $(\mathcal{F}_n)_n$. Because X_1, \dots, X_n are independent, $M_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}^+$,

$$\mathbb{E}(M_n \mid \mathcal{F}_{n-1}) = \mathbb{E}(M_{n-1}X_n \mid \mathcal{F}_{n-1}) = M_{n-1}\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = M_{n-1}\mathbb{E}(X_n) = M_{n-1}$$

almost surely, where we used the fact that $\sigma(X_n)$ is independent of \mathcal{F}_{n-1} for every $n \in \mathbb{N}^+$.

Proposition 10.10. Consider a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$ and a random variable $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $M_n = \mathbb{E}(\xi \mid \mathcal{F}_n)$ almost surely for every $n \in \mathbb{N}$. In that case, $(M_n \mid n \in \mathbb{N})$ is a martingale.

Proof. Clearly, $(M_n \in \mathcal{L}^1(\Omega, \mathcal{F}_n, \mathbb{P}) \mid n \in \mathbb{N})$ is adapted to the filtration $(\mathcal{F}_n)_n$. For every $n \in \mathbb{N}^+$,

$$\mathbb{E}(M_n \mid \mathcal{F}_{n-1}) = \mathbb{E}(\mathbb{E}(\xi \mid \mathcal{F}_n) \mid \mathcal{F}_{n-1}) = \mathbb{E}(\xi \mid \mathcal{F}_n \mid \mathcal{F}_{n-1}) = \mathbb{E}(\xi \mid \mathcal{F}_{n-1}) = M_{n-1}$$

almost surely. \Box

Consider a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$.

Definition 10.8. A stochastic process $(C_n \mid n \in \mathbb{N})$ is called previsible if C_n is \mathcal{F}_{n-1} measurable for every $n \in \mathbb{N}^+$.

Note that if $(\mathcal{F}_n)_n$ is the natural filtration of the stochastic process $(W_n \mid n \in \mathbb{N})$, then there is a Borel function $g_n : \mathbb{R}^n \to \mathbb{R}$ such that $C_n = g_n(W_0, \dots, W_{n-1})$ for every $n \in \mathbb{N}^+$.

Definition 10.9. The martingale transform $(C \bullet X)$ of an adapted process $X = (X_n \mid n \in \mathbb{N})$ by a previsible process $C = (C_n \mid n \in \mathbb{N})$ is the adapted process $((C \bullet X)_n \mid n \in \mathbb{N})$, where $(C \bullet X)_0 = 0$ and

$$(C \bullet X)_n = \sum_{k=1}^n C_k (X_k - X_{k-1})$$

for every $n \in \mathbb{N}^+$.

Note that $(C \bullet X)_n = (C \bullet X)_{n-1} + C_n(X_n - X_{n-1})$ for every $n \in \mathbb{N}^+$.

The following example illustrates the definition of martingale transform.

Example 10.1. For every $\omega \in \Omega$, suppose that $X_n(\omega) - X_{n-1}(\omega)$ represents the profit per unit stake in round $n \in \mathbb{N}^+$ of a game. In that case, $C_n(\omega)$ can be interpreted as the amount stake in round $n \in \mathbb{N}^+$ by a particular gambling strategy C. For every $n \in \mathbb{N}^+$ and $\omega \in \Omega$, the amount stake $C_n(\omega)$ may rely on knowledge about $\mathbb{I}_{F_{n-1}}(\omega)$ for every $F_{n-1} \in \mathcal{F}_{n-1}$, which includes at the very least knowledge about $X_0(\omega), \ldots, X_{n-1}(\omega)$ and $X_0(\omega), \ldots, X_{n-1}(\omega)$. Finally, in this setting, $(C \bullet X)_n(\omega)$ represents the profit after $n \in \mathbb{N}^+$ rounds. Note that:

- If $(X_n \mid n \in \mathbb{N})$ is a martingale, then $\mathbb{E}(X_n X_{n-1} \mid \mathcal{F}_{n-1}) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) X_{n-1} = 0$ almost surely for every $n \in \mathbb{N}^+$.
- If $(X_n \mid n \in \mathbb{N})$ is a supermartingale, then $\mathbb{E}(X_n X_{n-1} \mid \mathcal{F}_{n-1}) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) X_{n-1} \leq 0$ almost surely for every $n \in \mathbb{N}^+$.
- If $(X_n \mid n \in \mathbb{N})$ is a submartingale, then $\mathbb{E}(X_n X_{n-1} \mid \mathcal{F}_{n-1}) = \mathbb{E}(X_n \mid \mathcal{F}_{n-1}) X_{n-1} \ge 0$ almost surely for every $n \in \mathbb{N}^+$.

Proposition 10.11. Consider an adapted process $X = (X_n \mid n \in \mathbb{N})$ and a previsible process $C = (C_n \mid n \in \mathbb{N})$. If $C_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}$, then $C_n(X_n - X_{n-1}) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}^+$.

Proof. Since $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space, $(X_n - X_{n-1}) \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}^+$. By the Schwarz inequality, $C_n(X_n - X_{n-1}) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 10.12. Consider an adapted process $X = (X_n \mid n \in \mathbb{N})$ and a previsible process $C = (C_n \mid n \in \mathbb{N})$. If $|C_n| \leq K$ and $\mathbb{E}(|X_n|) < \infty$ for every $n \in \mathbb{N}$ and some $K \in [0, \infty)$, then $C_n(X_n - X_{n-1}) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}^+$.

Proof. Since $|C_n||X_n - X_{n-1}| \le K|X_n - X_{n-1}|$ for every $n \in \mathbb{N}^+$, we know that $\mathbb{E}(|C_n(X_n - X_{n-1})|) \le K\mathbb{E}(|X_n - X_{n-1}|)$. Because $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ is a vector space, we know that $C_n(X_n - X_{n-1}) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 10.13. Consider an adapted process $X = (X_n \in \mathcal{L}^1(\Omega, \mathcal{F}_n, \mathbb{P}) \mid n \in \mathbb{N})$ and a previsible process $C = (C_n \mid n \in \mathbb{N})$. Furthermore, suppose that $C_n(X_n - X_{n-1}) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}^+$.

First, recall that $(C \bullet X)$ is adapted. Because $(C \bullet X)_0 = 0$ and $(C \bullet X)_n = (C \bullet X)_{n-1} + C_n(X_n - X_{n-1})$ for every $n \in \mathbb{N}^+$, we know that $(C \bullet X)_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ for every $n \in \mathbb{N}$. Finally, for every $n \in \mathbb{N}^+$,

$$\mathbb{E}((C \bullet X)_n \mid \mathcal{F}_{n-1}) = \mathbb{E}((C \bullet X)_{n-1} + C_n(X_n - X_{n-1}) \mid \mathcal{F}_{n-1}) = (C \bullet X)_{n-1} + C_n\mathbb{E}(X_n - X_{n-1} \mid \mathcal{F}_{n-1})$$

almost surely. Therefore:

- If $(X_n \mid n \in \mathbb{N})$ is a martingale, then, $\mathbb{E}((C \bullet X)_n \mid \mathcal{F}_{n-1}) = (C \bullet X)_{n-1}$ almost surely for every $n \in \mathbb{N}^+$, so that $(C \bullet X)$ is a martingale.
- If $(X_n \mid n \in \mathbb{N})$ is a supermartingale and C is non-negative, then $\mathbb{E}((C \bullet X)_n \mid \mathcal{F}_{n-1}) \leq (C \bullet X)_{n-1}$ almost surely for every $n \in \mathbb{N}^+$, so that $(C \bullet X)$ is a supermartingale.
- If $(X_n \mid n \in \mathbb{N})$ is a submartingale and C is non-negative, then $\mathbb{E}((C \bullet X)_n \mid \mathcal{F}_{n-1}) \geq (C \bullet X)_{n-1}$ almost surely for every $n \in \mathbb{N}^+$, so that $(C \bullet X)$ is a submartingale.

Consider a filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$.

Definition 10.10. A function $T: \Omega \to \mathbb{N} \cup \{\infty\}$ is called a stopping time if $\{T \le n\} \in \mathcal{F}_n$ for every $n \in \mathbb{N} \cup \{\infty\}$.

Intuitively, for every $\omega \in \Omega$ and $n \in \mathbb{N} \cup \{\infty\}$, knowing $\mathbb{I}_{F_n}(\omega)$ for every $F_n \in \mathcal{F}_n$ allows knowing whether $T(\omega) \leq n$.

Proposition 10.14. The function $T: \Omega \to \mathbb{N} \cup \{\infty\}$ is a stopping time if and only if $\{T = n\} \in \mathcal{F}_n$ for every $n \in \mathbb{N} \cup \{\infty\}$.

Proof. If T is a stopping time, then $\{T \leq n\} \in \mathcal{F}_n$ and $\{T \leq n-1\}^c \in \mathcal{F}_n$ for every $n \in \mathbb{N}$. Because $\{T = n\} = \{T \leq n\} \cap \{T > n-1\}$, we know that $\{T = n\} \in \mathcal{F}_n$. Furthermore, $\{T = \infty\} = \cap_n \{T \leq n\}^c$, so that $\{T = \infty\} \in \mathcal{F}_\infty$.

If $\{T=n\} \in \mathcal{F}_n$ for every $n \in \mathbb{N} \cup \{\infty\}$, the fact that $\{T \leq n\} = \bigcup_{k \leq n} \{T=k\}$ and $\{T=k\} \in \mathcal{F}_n$ for every $k \leq n$ implies that $\{T \leq n\} \in \mathcal{F}_n$.

The following example illustrates the definition of stopping time.

Proposition 10.15. Consider an adapted process $(A_n \mid n \in \mathbb{N})$ and a set $B \in \mathcal{B}(\mathbb{R})$. Let the function $T : \Omega \to \mathbb{N} \cup \{\infty\}$ be given by $T(\omega) = \inf\{n \in \mathbb{N} \mid A_n(\omega) \in B\}$, so that $T(\omega) = \inf\emptyset = \infty$ if $A_n(\omega) \notin B$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}$,

$$\{T \leq n\} = \{\omega \in \Omega \mid A_k(\omega) \in B \text{ for some } k \leq n\} = \bigcup_{k \leq n} \{\omega \in \Omega \mid A_k(\omega) \in B\} = \bigcup_{k \leq n} A_k^{-1}(B).$$

Because A_k is \mathcal{F}_n -measurable for every $k \leq n$ and $\{T \leq \infty\} \in \mathcal{F}_\infty$, we know that T is a stopping time.

Proposition 10.16. Consider an adapted process $(X_n \mid n \in \mathbb{N})$ and a stopping time T. For some $a \in \mathbb{R}$, consider the set A given by

$$A = \{ \omega \in \Omega \mid T(\omega) < \infty \text{ and } X_{T(\omega)}(\omega) \le a \}.$$

In that case, $A \in \mathcal{F}_{\infty}$.

Proof. By definition,

$$A = \bigcup_{k \in \mathbb{N}} \{ \omega \in \Omega \mid T(\omega) = k \text{ and } X_k(\omega) \le a \} = \bigcup_{k \in \mathbb{N}} \{ T = k \} \cap \{ X_k \le a \}.$$

Because $\{T=k\} \cap \{X_k \leq a\} \in \mathcal{F}_k$ for every $k \in \mathbb{N}$, we know that $A \in \mathcal{F}_{\infty}$.

Definition 10.11. Consider an adapted process $X = (X_n \mid n \in \mathbb{N})$ and a stopping time T. The stopped process X^T is the adapted process $(X_n^T \mid n \in \mathbb{N})$. For every $n \in \mathbb{N}$, the random variable $X_n^T : \Omega \to \mathbb{R}$ is given by

$$X_n^T(\omega) = X_{\min(T(\omega),n)}(\omega) = \begin{cases} X_n(\omega), & \text{if } n \le T(\omega), \\ X_{T(\omega)}(\omega), & \text{if } n > T(\omega). \end{cases}$$

Proposition 10.17. The stochastic process X^T defined above is indeed adapted to the filtration $(\mathcal{F}_n)_n$.

Proof. For every $n \in \mathbb{N}$ and $a \in \mathbb{R}$,

$$\{X_n^T \le a\} = \{\omega \in \Omega \mid n \le T(\omega) \text{ and } X_n(\omega) \le a\} \cup \{\omega \in \Omega \mid n > T(\omega) \text{ and } X_{T(\omega)}(\omega) \le a\}.$$

Let A_1 denote the first set on the right side of the previous equation and A_2 denote the second set. Because $\{n \leq T\} = \{n-1 \geq T\}^c \in \mathcal{F}_n$ and $\{X_n \leq a\} \in \mathcal{F}_n$, we know that $A_1 \in \mathcal{F}_n$. Regarding A_2 , note that

$$A_2 = \{n > T\} \cap \{\omega \in \Omega \mid T(\omega) < \infty \text{ and } X_{T(\omega)}(\omega) \le a\}.$$

Using a previous result,

$$A_2 = \{n > T\} \cap \bigcup_{k \in \mathbb{N}} \{T = k\} \cap \{X_k \le a\} = \bigcup_{k \in \mathbb{N}} \{n > T\} \cap \{T = k\} \cap \{X_k \le a\} = \bigcup_{k < n} \{T = k\} \cap \{X_k \le a\}.$$

Because $\{T = k\} \cap \{X_k \leq a\} \in \mathcal{F}_n$ for every k < n, we know that $A_2 \in \mathcal{F}_n$. Therefore, $\{X_n^T \leq a\} \in \mathcal{F}_n$ for every $n \in \mathbb{N}$ and $a \in \mathbb{R}$, so that X_n^T is \mathcal{F}_n -measurable.

Proposition 10.18. Consider the adapted process $X = (X_n \mid n \in \mathbb{N})$, the stopping time T, and the process $C = (C_n \mid n \in \mathbb{N})$, where $C_n = \mathbb{I}_{\{n \leq T\}}$ for every $n \in \mathbb{N}$. Note that C is previsible, since $\{n \leq T\} = \{n-1 \geq T\}^c$ and $\{n-1 \geq T\}^c \in \mathcal{F}_{n-1}$ for every $n \in \mathbb{N}^+$, which implies that $\mathbb{I}_{\{n \leq T\}}$ is \mathcal{F}_{n-1} -measurable.

Now consider the martingale transform $(C \bullet X) = ((C \bullet X)_n \mid n \in \mathbb{N})$, so that $(C \bullet X)_0 = 0$ and

$$(C \bullet X)_n(\omega) = \sum_{k=1}^n \mathbb{I}_{\{k \le T\}}(\omega)(X_k(\omega) - X_{k-1}(\omega)) = \sum_{k=1}^{\min(T(\omega), n)} X_k(\omega) - X_{k-1}(\omega)$$

for every $n \in \mathbb{N}^+$ and $\omega \in \Omega$. By reorganizing terms,

$$(C \bullet X)_n(\omega) = \sum_{k=1}^{\min(T(\omega),n)} X_k(\omega) - \sum_{k=0}^{\min(T(\omega),n)-1} X_k(\omega) = X_{\min(T(\omega),n)}(\omega) - X_0(\omega)$$

for every $n \in \mathbb{N}^+$ and $\omega \in \Omega$. Therefore, $(C \bullet X)_n = X_n^T - X_0 = X_n^T - X_0^T$ for every $n \in \mathbb{N}$.

Proposition 10.19. When combined with previous results, the result above implies the following:

- If $(X_n \mid n \in \mathbb{N})$ is a martingale and T is a stopping time, then $\mathbb{E}(X_n^T X_0^T \mid \mathcal{F}_{n-1}) = X_{n-1}^T X_0^T$ almost surely for every $n \in \mathbb{N}^+$, so that the stopped process X^T is a martingale.
- If $(X_n \mid n \in \mathbb{N})$ is a supermartingale and T is a stopping time, then $\mathbb{E}(X_n^T X_0^T \mid \mathcal{F}_{n-1}) \leq X_{n-1}^T X_0^T$ almost surely for every $n \in \mathbb{N}^+$, so that the stopped process X^T is a supermartingale.
- If $(X_n \mid n \in \mathbb{N})$ is a submartingale and T is a stopping time, then $\mathbb{E}(X_n^T X_0^T \mid \mathcal{F}_{n-1}) \geq X_{n-1}^T X_0^T$ almost surely for every $n \in \mathbb{N}^+$, so that the stopped process X^T is a submartingale.

Definition 10.12. Consider an adapted process $X = (X_n \mid n \in \mathbb{N})$ and a stopping time T. The function $X_T : \Omega \to \mathbb{R}$ is given by

$$X_T(\omega) = \begin{cases} X_{T(\omega)}(\omega), & \text{if } T(\omega) < \infty, \\ 0, & \text{if } T(\omega) = \infty. \end{cases}$$

Proposition 10.20. The function X_T defined above is \mathcal{F}_{∞} -measurable.

Proof. For every $a \in \mathbb{R}$,

$$\{X_T \leq a\} = \{\omega \in \Omega \mid T(\omega) < \infty \text{ and } X_{T(\omega)}(\omega) \leq a\} \cup \{\omega \in \Omega \mid T(\omega) = \infty \text{ and } 0 \leq a\}.$$

Let A_1 denote the first set on the right side of the previous equation and A_2 denote the second set. We have already shown that $A_1 \in \mathcal{F}_{\infty}$. If $a \geq 0$, then $A_2 = \{T = \infty\}$. Otherwise, if a < 0, then $A_2 = \emptyset$. In either case, $A_2 \in \mathcal{F}_{\infty}$. Therefore, $\{X_T \leq a\} \in \mathcal{F}_{\infty}$ for every $a \in \mathbb{R}$, so that X_T is \mathcal{F}_{∞} -measurable.

Proposition 10.21. Consider a supermartingale $X = (X_n \mid n \in \mathbb{N})$, a stopping time T, and suppose at least one of the following:

- 1. The stopping time T is bounded, so that $T \leq N$ for some $N \in \mathbb{N}$.
- 2. The stopping time T is almost surely finite, so that $\mathbb{P}(T < \infty) = 1$, and the stochastic process X is bounded, so that $|X_n| \leq K$ for every $n \in \mathbb{N}$ and some $K \in [0, \infty)$.
- 3. The stopping time T has finite expectation, so that $\mathbb{E}(T) < \infty$, and the stochastic process X has bounded increments, so that $|X_n X_{n-1}| \le K$ for every $n \in \mathbb{N}^+$ and some $K \in [0, \infty)$.

In that case, $\mathbb{E}(|X_T|) < \infty$ and $\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$.

Proof. First, recall that the stopped process X^T is a supermartingale. Therefore,

$$\mathbb{E}(X_n^T)\mathbb{I}_{\Omega} = \mathbb{E}(X_n^T \mid \{\emptyset, \Omega\}) = \mathbb{E}(\mathbb{E}(X_n^T \mid \mathcal{F}_{n-1}) \mid \{\emptyset, \Omega\}) \leq \mathbb{E}(X_{n-1}^T \mid \{\emptyset, \Omega\}) = \mathbb{E}(X_{n-1}^T)\mathbb{I}_{\Omega},$$

almost surely for every $n \in \mathbb{N}^+$, which implies that $\mathbb{E}(X_n^T) \leq \mathbb{E}(X_{n-1}^T) \leq \cdots \leq \mathbb{E}(X_1^T) \leq \mathbb{E}(X_0^T)$ for every $n \in \mathbb{N}^+$. Suppose that the stopping time T is bounded, so that $T \leq N$ for some $N \in \mathbb{N}$. In that case, for every $\omega \in \Omega$,

$$X_T(\omega) = X_{T(\omega)}(\omega) = X_{\min(T(\omega),N)}(\omega) = X_N^T(\omega).$$

Because $X_T = X_N^T$, we know that $\mathbb{E}(|X_T|) < \infty$. From the previous result, $\mathbb{E}(X_T) = \mathbb{E}(X_N^T) \le \mathbb{E}(X_0^T) = \mathbb{E}(X_0)$. Suppose that the stopping time T is almost surely finite, so that $\mathbb{P}(T < \infty) = 1$, and the stochastic process

Suppose that the stopping time T is almost surely finite, so that $\mathbb{P}(T < \infty) = 1$, and the stochastic process X is bounded, so that $|X_n| \leq K$ for every $n \in \mathbb{N}$ and some $K \in [0,\infty)$. Because $\mathbb{P}(T < \infty) = 1$, we know that $\mathbb{P}\left(\lim_{n\to\infty} X_n^T = X_T\right) = 1$. Therefore, by the bounded convergence theorem, we know that $\mathbb{E}(|X_T|) < \infty$ and $\lim_{n\to\infty} \mathbb{E}(X_n^T) = \mathbb{E}(X_T)$. Because $\mathbb{E}(X_n^T) \leq \mathbb{E}(X_0)$ for every $n \in \mathbb{N}^+$, we know that $\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$.

Finally, suppose that the stopping time T has finite expectation, so that $\mathbb{E}(T) < \infty$, and the stochastic process X has bounded increments, so that $|X_n - X_{n-1}| \le K$ for every $n \in \mathbb{N}^+$ and some $K \in [0, \infty)$.

Because $\mathbb{E}(T) < \infty$ implies $\mathbb{P}(T < \infty) = 1$, we know that $\mathbb{P}\left(\lim_{n \to \infty} X_n^T = X_T\right) = 1$. Therefore,

$$\mathbb{P}\left(\lim_{n\to\infty} X_n^T - X_0 = X_T - X_0\right) = 1.$$

Note that $|X_n^T - X_0| \leq KT$ for every $n \in \mathbb{N}$, since

$$|X_n^T(\omega) - X_0(\omega)| = \left| \sum_{k=1}^{\min(T(\omega), n)} X_k(\omega) - X_{k-1}(\omega) \right| \le \sum_{k=1}^{\min(T(\omega), n)} |X_k(\omega) - X_{k-1}(\omega)| \le \sum_{k=1}^{\min(T(\omega), n)} K \le KT(\omega).$$

Because $\mathbb{E}(KT) = K\mathbb{E}(T) < \infty$, the dominated convergence theorem guarantees that $\mathbb{E}(|X_T - X_0|) < \infty$ and

$$\lim_{n \to \infty} \mathbb{E}(X_n^T - X_0) = \mathbb{E}(X_T - X_0),$$

so that $\lim_{n\to\infty} \mathbb{E}(X_n^T) = \mathbb{E}(X_T)$. Because $\mathbb{E}(X_n^T) \leq \mathbb{E}(X_0)$ for every $n \in \mathbb{N}^+$, we know that $\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$.

Proposition 10.22. Consider a martingale $X = (X_n \mid n \in \mathbb{N})$, a stopping time T, and suppose at least one of the following:

- 1. The stopping time T is bounded, so that $T \leq N$ for some $N \in \mathbb{N}$.
- 2. The stopping time T is almost surely finite, so that $\mathbb{P}(T < \infty) = 1$, and the stochastic process X is bounded, so that $|X_n| \leq K$ for every $n \in \mathbb{N}$ and some $K \in [0, \infty)$.
- 3. The stopping time T has finite expectation, so that $\mathbb{E}(T) < \infty$, and the stochastic process X has bounded increments, so that $|X_n X_{n-1}| \le K$ for every $n \in \mathbb{N}^+$ and some $K \in [0, \infty)$.

In that case, $\mathbb{E}(|X_T|) < \infty$ and $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

Proof. Because X is a supermartingale, we know that $\mathbb{E}(|X_T|) < \infty$ and $\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$. Because X is a submartingale, we know that $-X = (-X_n \mid n \in \mathbb{N})$ is a supermartingale, so that $\mathbb{E}(|(-X)_T|) < \infty$ and $\mathbb{E}((-X)_T) \leq \mathbb{E}(-X_0)$. Since $(-X)_T = -X_T$, we know that $\mathbb{E}(X_T) \geq \mathbb{E}(X_0)$, which implies $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

Proposition 10.23. Consider a martingale $M = (M_n \mid n \in \mathbb{N})$ that has bounded increments, so that $|M_n - M_{n-1}| \le K_1$ for every $n \in \mathbb{N}^+$ and some $K_1 \in [0, \infty)$. Consider also a previsible process $C = (C_n \mid n \in \mathbb{N})$ that is bounded, so that $|C_n| \le K_2$ for every $n \in \mathbb{N}$ and some $K_2 \in [0, \infty)$. Finally, consider a stopping time T with finite expectation, so that $\mathbb{E}(T) < \infty$. In that case, $\mathbb{E}((C \bullet M)_T) = 0$.

Proof. Note that $|C_n(M_n-M_{n-1})| = |C_n||M_n-M_{n-1}| \le K_1K_2$ for every $n \in \mathbb{N}^+$, so that $\mathbb{E}(|C_n(M_n-M_{n-1})|) < \infty$. Therefore, using a previous result, we know that $(C \bullet M)$ is a martingale.

Because $|(C \bullet M)_n - (C \bullet M)_{n-1}| = |C_n(M_n - M_{n-1})| \le K_1 K_2$ for every $n \in \mathbb{N}^+$, we know that $(C \bullet M)$ has bounded increments. Therefore, using a previous result, we know that $\mathbb{E}(|(C \bullet M)_T|) < \infty$ and

$$\mathbb{E}((C \bullet M)_T) = \mathbb{E}((C \bullet M)_0) = \mathbb{E}(0) = 0.$$

Proposition 10.24. Consider a supermartingale $X = (X_n \mid n \in \mathbb{N})$ and a stopping time T. Furthermore, suppose that $X_n \geq 0$ for every $n \in \mathbb{N}$ and that $\mathbb{P}(T < \infty) = 1$. In that case, $\mathbb{E}(X_T) \leq \mathbb{E}(X_0)$.

Proof. Because $\mathbb{P}(T < \infty) = 1$, we have $\mathbb{P}\left(\lim_{n \to \infty} X_n^T = X_T\right) = 1$. By the Fatou lemma, $\mathbb{E}(X_T) \le \liminf_{n \to \infty} \mathbb{E}(X_n^T)$. Because $\mathbb{E}(X_n^T) \le \mathbb{E}(X_0)$ for every $n \in \mathbb{N}$, we know that $\mathbb{E}(X_T) \le \mathbb{E}(X_0)$.

Proposition 10.25. For a random variable $T: \Omega \to \mathbb{N} \cup \{\infty\}$,

$$\mathbb{E}(T) = \sum_{t=1}^{\infty} t \mathbb{P}(T=t) = \sum_{t=1}^{\infty} \mathbb{P}(T \ge t).$$

Proof. For every $n \in \mathbb{N}$, consider the simple function $T_n : \Omega \to \{0, \dots, n\}$ given by

$$T_n(\omega) = (T\mathbb{I}_{\{T \le n\}})(\omega) = \sum_{t=1}^n t\mathbb{I}_{\{T=t\}}(\omega) = \begin{cases} T(\omega), & \text{if } T(\omega) \le n, \\ 0, & \text{if } T(\omega) > n. \end{cases}$$

Because $T_n \uparrow T$, the monotone-convergence theorem guarantees that $\mathbb{E}(T_n) \uparrow \mathbb{E}(T)$. Therefore,

$$\mathbb{E}(T) = \lim_{n \to \infty} \mathbb{E}(T_n) = \lim_{n \to \infty} \sum_{t=1}^n t \mathbb{E}(\mathbb{I}_{\{T=t\}}) = \lim_{n \to \infty} \sum_{t=1}^n t \mathbb{P}(T=t) = \sum_{t=1}^\infty t \mathbb{P}(T=t).$$

Using the previous result and reordering summations,

$$\mathbb{E}(T) = \sum_{k=1}^{\infty} \left[\sum_{t=1}^{k} 1 \right] \mathbb{P}(T=k) = \sum_{k=1}^{\infty} \sum_{t=1}^{k} \mathbb{P}(T=k) = \sum_{t=1}^{\infty} \sum_{k=t}^{\infty} \mathbb{P}(T=k) = \sum_{t=1}^{\infty} \mathbb{P}\left(\bigcup_{k=t}^{\infty} \{T=k\} \right) = \sum_{t=1}^{\infty} \mathbb{P}(T \geq t).$$

Proposition 10.26. Suppose that T is a stopping time and that for some $N \in \mathbb{N}^+$ and some $\epsilon > 0$

$$\mathbb{P}(T \le n + N \mid \mathcal{F}_n) = \mathbb{E}(\mathbb{I}_{\{T < n + N\}} \mid \mathcal{F}_n) > \epsilon$$

almost surely for every $n \in \mathbb{N}$. In that case, $\mathbb{E}(T) < \infty$.

Proof. For every $k \in \mathbb{N}^+$,

$$\mathbb{P}(T > kN) = \mathbb{P}(\{T > kN\} \cap \{T > (k-1)N\}) = \mathbb{E}(\mathbb{I}_{\{T > kN\}} \mathbb{I}_{\{T > (k-1)N\}}) = \mathbb{E}(\mathbb{E}(\mathbb{I}_{\{T > kN\}} \mathbb{I}_{\{T > (k-1)N\}} \mid \mathcal{F}_{(k-1)N})).$$

Because $\{T \leq (k-1)N\}^c \in \mathcal{F}_{(k-1)N}$, we know that $\mathbb{I}_{\{T>(k-1)N\}}$ is $\mathcal{F}_{(k-1)N}$ -measurable. Therefore,

$$\mathbb{P}(T > kN) = \mathbb{E}(\mathbb{I}_{\{T > (k-1)N\}} \mathbb{E}(\mathbb{I}_{\{T > kN\}} \mid \mathcal{F}_{(k-1)N})).$$

Let n = (k-1)N, so that n + N = kN. From our assumption, $\mathbb{E}(\mathbb{I}_{\{T \leq kN\}} \mid \mathcal{F}_{(k-1)N}) > \epsilon$ almost surely. Therefore, $\mathbb{E}(\mathbb{I}_{\{T > kN\}} \mid \mathcal{F}_{(k-1)N}) < 1 - \epsilon$ almost surely, so that

$$\mathbb{P}(T > kN) \le (1 - \epsilon)\mathbb{E}(\mathbb{I}_{\{T > (k-1)N\}}) = (1 - \epsilon)\mathbb{P}(T > (k-1)N).$$

If k=1, then

$$\mathbb{P}(T>N) = 1 - \mathbb{P}(T \leq N) = 1 - \mathbb{E}(\mathbb{I}_{\{T < N\}}) = 1 - \mathbb{E}(\mathbb{E}(\mathbb{I}_{\{T < N\}} \mid \mathcal{F}_0)) \leq 1 - \epsilon.$$

By induction, for every $k \in \mathbb{N}^+$,

$$\mathbb{P}(T > kN) \le (1 - \epsilon)^k.$$

Because each $t \in \mathbb{N}$ can be uniquely written as t = kN + i for some $k \in \mathbb{N}$ and $i \in \{0, \dots, N-1\}$,

$$\mathbb{E}(T) = \sum_{t=1}^{\infty} \mathbb{P}(T \ge t) = \sum_{t=0}^{\infty} \mathbb{P}(T > t) = \sum_{k=0}^{\infty} \sum_{i=0}^{N-1} \mathbb{P}(T > kN + i).$$

Because $\{T > kN + i\} \subseteq \{T > kN\}$ for every $k \in \mathbb{N}$ and $i \in \{0, \dots, N - 1\}$,

$$\mathbb{E}(T) \leq \sum_{k=0}^{\infty} \sum_{i=0}^{N-1} \mathbb{P}(T > kN) = N \sum_{k=0}^{\infty} \mathbb{P}(T > kN) \leq N \sum_{k=0}^{\infty} (1 - \epsilon)^k = \frac{N}{\epsilon} < \infty.$$

Proposition 10.27. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a sequence of independent random variables (X_n) : $\Omega \to \{-1,1\} \mid n \in \mathbb{N}^+$), and a random variable $X: \Omega \to \{-1,1\}$. Suppose that $\mathbb{P}(X=1) = \mathbb{P}(X=-1) = 1/2$ and that X_n has the same distribution as X for every $n \in \mathbb{N}^+$. Furthermore, let $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for every $n \in \mathbb{N}^+$. Finally, let $T : \Omega \to \mathbb{N} \cup \{\infty\}$ be given by $T(\omega) = \inf\{n \in \mathbb{N} \mid S_n(\omega) = 1\}$. In that case, $\mathbb{P}(T < \infty) = 1$.

Proof. Consider the filtration $(\mathcal{F}_n)_n$ where $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ for every $n \in \mathbb{N}^+$. Because S_n is \mathcal{F}_n -measurable for every $n \in \mathbb{N}$, the process $(S_n \mid n \in \mathbb{N})$ is adapted, so that T is a stopping time. For every $n \in \mathbb{N}^+$ and $\theta \in (0, \infty)$, note that $e^{\theta X_n} = e^{\theta} \mathbb{I}_{\{X_n = 1\}} + e^{-\theta} \mathbb{I}_{\{X_n = -1\}}$. Therefore,

$$\mathbb{E}(e^{\theta X_n}) = e^{\theta} \mathbb{P}(X_n = 1) + e^{-\theta} \mathbb{P}(X_n = -1) = \frac{e^{\theta} + e^{-\theta}}{2}.$$

For every $n \in \mathbb{N}^+$ and $\theta \in (0, \infty)$, let $W_n = (2/(e^{\theta} + e^{-\theta}))e^{\theta X_n}$, so that

$$\mathbb{E}(W_n) = \mathbb{E}\left(\frac{2}{e^{\theta} + e^{-\theta}}e^{\theta X_n}\right) = \frac{2}{e^{\theta} + e^{-\theta}}\mathbb{E}(e^{\theta X_n}) = 1.$$

Because W_n is $\sigma(X_n)$ -measurable for every $n \in \mathbb{N}^+$, the sequence $(W_n \mid n \in \mathbb{N}^+)$ is composed of independent random variables. Now consider the stochastic process $M = (M_n \mid n \in \mathbb{N})$ where $M_0 = 1$ and

$$M_n = W_1 \cdot \dots \cdot W_n = \prod_{i=1}^n \frac{2}{e^{\theta} + e^{-\theta}} e^{\theta X_i} = \left(\frac{2}{e^{\theta} + e^{-\theta}}\right)^n e^{\theta S_n}$$

for every $n \in \mathbb{N}^+$. From a previous result, we know that M is a martingale. Let $Y_n = (2/(e^{\theta} + e^{-\theta}))^n$ and $Z_n = e^{\theta S_n}$ for every $n \in \mathbb{N}$, so that $M_n = Y_n Z_n$. Since $Y = (Y_n \mid n \in \mathbb{N})$ and $Z = (Z_n \mid n \in \mathbb{N})$ are adapted, the stopped processes $Y^T = (Y_n^T \mid n \in \mathbb{N})$ and $Z^T = (Z_n^T \mid n \in \mathbb{N})$ are given by

$$Y_n^T(\omega) = Y_{\min(T(\omega),n)}(\omega) = \left(\frac{2}{e^\theta + e^{-\theta}}\right)^{\min(T(\omega),n)} \text{ and } \qquad Z_n^T(\omega) = Z_{\min(T(\omega),n)}(\omega) = e^{\theta S_{\min(T(\omega),n)}(\omega)}$$

for every $n \in \mathbb{N}$ and $\omega \in \Omega$. Furthermore, the stopped process $M^T = (M_n^T \mid n \in \mathbb{N})$ is given by

$$M_n^T(\omega) = M_{\min(T(\omega),n)}(\omega) = Y_{\min(T(\omega),n)}(\omega) Z_{\min(T(\omega),n)}(\omega) = Y_n^T(\omega) Z_n^T(\omega)$$

for every $n \in \mathbb{N}$ and $\omega \in \Omega$. Since M^T is a martingale, $\mathbb{E}(M_n^T) = \mathbb{E}(M_0^T) = 1$ for every $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$ and $\omega \in \Omega$, note that $S_{\min(T(\omega),n)}(\omega) \leq 1$. Since $\theta \in (0,\infty)$, note that $Z_n^T \leq e^{\theta}$ and $Y_n^T \leq 1$, so that $M_n^T \leq e^{\theta}$. For every $\omega \in \Omega$, consider the limit

$$\lim_{n\to\infty} M_n^T(\omega) = \lim_{n\to\infty} \left(\frac{2}{e^\theta + e^{-\theta}}\right)^{\min(T(\omega),n)} e^{\theta S_{\min(T(\omega),n)}(\omega)}.$$

П

First, suppose that $T(\omega) < \infty$. In that case,

$$\lim_{n\to\infty} M_n^T(\omega) = \lim_{n\to\infty} \left(\frac{2}{e^\theta + e^{-\theta}}\right)^{T(\omega)} e^{\theta S_{T(\omega)}(\omega)} = \left(\frac{2}{e^\theta + e^{-\theta}}\right)^{T(\omega)} e^\theta,$$

since $S_{T(\omega)}(\omega) = 1$.

Second, suppose that $T(\omega) = \infty$. In that case, we know that $S_n(\omega) < 1$ for every $n \in \mathbb{N}$, so that

$$0 \le \left(\frac{2}{e^{\theta} + e^{-\theta}}\right)^n e^{\theta S_n(\omega)} \le \left(\frac{2}{e^{\theta} + e^{-\theta}}\right)^n e^{\theta}$$

for every $n \in \mathbb{N}$ and $\theta \in (0, \infty)$. Because $0 < (2/(e^{\theta} + e^{-\theta})) < 1$ for every $\theta \in (0, \infty)$,

$$\lim_{n\to\infty} \left(\frac{2}{e^\theta+e^{-\theta}}\right)^n e^\theta = e^\theta \lim_{n\to\infty} \left(\frac{2}{e^\theta+e^{-\theta}}\right)^n = 0.$$

Therefore, when $T(\omega) = \infty$,

$$\lim_{n\to\infty} M_n^T(\omega) = \lim_{n\to\infty} \left(\frac{2}{e^\theta + e^{-\theta}}\right)^n e^{\theta S_n(\omega)} = 0.$$

For every $\theta \in (0, \infty)$, let $Y_{\theta,T} : \Omega \to [0, \infty)$ denote a random variable given by

$$Y_{\theta,T}(\omega) = \begin{cases} \left(\frac{2}{e^{\theta} + e^{-\theta}}\right)^{T(\omega)}, & \text{if } T(\omega) < \infty, \\ 0, & \text{if } T(\omega) = \infty. \end{cases}$$

Using the previous result,

$$\lim_{n \to \infty} M_n^T = e^{\theta} Y_{\theta,T}.$$

Since $|M_n^T| \leq e^{\theta}$ for every $n \in \mathbb{N}$, by the bounded convergence theorem,

$$\lim_{n \to \infty} \mathbb{E}(M_n^T) = 1 = e^{\theta} \mathbb{E}(Y_{\theta,T}),$$

so that $\mathbb{E}(Y_{\theta,T}) = 1/e^{\theta}$.

Finally, consider a sequence $(\theta_n \in (0, \infty) \mid n \in \mathbb{N})$ so that $\theta_n \downarrow 0$. In that case,

$$\lim_{n\to\infty}Y_{\theta_n,T}(\omega)=\mathbb{I}_{\{T<\infty\}}(\omega)=\begin{cases} 1, & \text{if } T(\omega)<\infty,\\ 0, & \text{if } T(\omega)=\infty. \end{cases}$$

Since $|Y_{\theta_n,T}| \leq 1$ for every $n \in \mathbb{N}$, by the bounded convergence theorem,

$$\lim_{n\to\infty}\mathbb{E}(Y_{\theta_n,T})=\lim_{n\to\infty}\frac{1}{e^{\theta_n}}=1=\mathbb{E}(\mathbb{I}_{\{T<\infty\}})=\mathbb{P}(T<\infty).$$

Proposition 10.28. Consider a measurable space (Ω, \mathcal{F}) , a set $E \subseteq \mathbb{N}$, a stochastic process $(Z_n : \Omega \to E \mid n \in \mathbb{N})$, and let $\mathcal{F}_n = \sigma(Z_0, \ldots, Z_n)$ for every $n \in \mathbb{N}$. Furthermore, for every $n \in \mathbb{N}$, let \mathcal{G}_n be given by

$$G_n = \left\{ \bigcup_{i \in A} \{ Z_0 = i_0, \dots, Z_n = i_n \} \mid A \in \mathcal{P}(E^{n+1}) \right\},$$

where $i = (i_0, \dots, i_n)$ and $\mathcal{P}(E^{n+1})$ is the set of all subsets of E^{n+1} . In that case, $\mathcal{F}_n = \mathcal{G}_n$.

Proof. For some $n \in \mathbb{N}$, consider a set given by

$$\bigcup_{i \in A} \{ Z_0 = i_0, \dots, Z_n = i_n \} = \bigcup_{i \in A} \bigcap_{k=0}^n \{ Z_k = i_k \}$$

for some $A \in \mathcal{P}(E^{n+1})$. For every $k \in \mathbb{N}$, recall that

$$\sigma(Z_k) = \left\{ \bigcup_{i_k \in A_k} \{Z_k = i_k\} \mid A_k \in \mathcal{P}(E) \right\}.$$

The set A is countable, since it is a subset of the countable set E^{n+1} , which is a finite Cartesian product between countable sets. Because $\{Z_k = i_k\} \in \mathcal{F}_n$ for every $k \in \{0, ..., n\}$ and $i_k \in E$, we know that $\mathcal{G}_n \subseteq \mathcal{F}_n$.

For some $n \in \mathbb{N}$, let $A = A_0 \times \cdots \times A_n$, where $A_k \in \mathcal{P}(E)$ for every $k \in \{0, \dots, n\}$. In that case,

$$\bigcup_{i \in A} \bigcap_{k=0}^{n} \{Z_k = i_k\} = \bigcup_{i_0 \in A_0} \cdots \bigcup_{i_n \in A_n} \bigcap_{k=0}^{n} \{Z_k = i_k\} = \left(\bigcup_{i_0 \in A_0} \{Z_0 = i_0\}\right) \cap \cdots \cap \left(\bigcup_{i_n \in A_n} \{Z_n = i_n\}\right).$$

Since $E \in \mathcal{P}(E)$, note that $\sigma(Z_k) \subseteq \mathcal{G}_n$ for every $k \in \{0, \dots, n\}$. Because $\mathcal{F}_n = \sigma(\cup_{k=0}^n \sigma(Z_k))$ and $\mathcal{G}_n \subseteq \mathcal{F}_n$, showing that $\mathcal{F}_n = \mathcal{G}_n$ now only requires showing that \mathcal{G}_n is a σ -algebra on Ω .

For some $n \in \mathbb{N}$, let $A = E^{n+1}$. Using the previous result, we know that $\Omega \in \mathcal{G}_n$.

For some $n \in \mathbb{N}$, consider a sequence $(G_{n,m} \in \mathcal{G}_n \mid m \in \mathbb{N})$ where

$$G_{n,m} = \bigcup_{i \in A_m} \{Z_0 = i_0, \dots, Z_n = i_n\}$$

for some sequence $(A_m \in \mathcal{P}(E^{n+1}) \mid m \in \mathbb{N})$. Clearly,

$$\bigcup_{m} G_{n,m} = \bigcup_{m} \bigcup_{i \in A} \{Z_0 = i_0, \dots, Z_n = i_n\} = \bigcup_{i \in A} \{Z_0 = i_0, \dots, Z_n = i_n\},$$

where $A = \bigcup_m A_m$. Because $A \in \mathcal{P}(E^{n+1})$, we know that $\bigcup_m G_{n,m} \in \mathcal{G}_n$. For some $n \in \mathbb{N}$ and every $A \in \mathcal{P}(E^{n+1})$, note that $A^c \in \mathcal{P}(E^{n+1})$ and $A \cup A^c = E^{n+1}$, so that

$$\left\{ \bigcup_{i \in A} \{ Z_0 = i_0, \dots, Z_n = i_n \} \right\} \cup \left\{ \bigcup_{i \in A^c} \{ Z_0 = i_0, \dots, Z_n = i_n \} \right\} = \bigcup_{i \in E^{n+1}} \{ Z_0 = i_0, \dots, Z_n = i_n \} = \Omega.$$

Since the leftmost sets above are disjoint, if $G_n \in \mathcal{G}_n$, then $G_n^c \in \mathcal{G}_n$, so that \mathcal{G}_n is a σ -algebra on Ω .

Proposition 10.29. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $Z: \Omega \to \mathbb{N}$, and a non-negative function $h: \mathbb{N} \to [0, \infty]$. In that case,

$$\mathbb{E}(h(Z)) = \sum_{z \in \mathbb{N}} h(z) \mathbb{P}(Z = z).$$

Proof. For every $B \in \mathcal{B}(\mathbb{R})$, note that $h^{-1}(B) \in \mathcal{P}(\mathbb{N})$, where $\mathcal{P}(\mathbb{N})$ is the set of all subsets of \mathbb{N} . Because $\mathcal{P}(\mathbb{N}) \subseteq \mathcal{B}(\mathbb{R})$ and $Z^{-1}(h^{-1}(B)) \in \mathcal{F}$, we know that h(Z) is a random variable. For every $\omega \in \Omega$, note that

$$h(Z)(\omega) = h(Z(\omega)) = \sum_{z \in \mathbb{N}} h(z) \mathbb{I}_{\{Z=z\}}(\omega).$$

Since $h(z)\mathbb{I}_{\{Z=z\}}$ is a non-negative random variable for every $z \in \mathbb{N}$,

$$\mathbb{E}(h(Z)) = \mathbb{E}\left(\sum_{z \in \mathbb{N}} h(z) \mathbb{I}_{\{Z=z\}}\right) = \sum_{z \in \mathbb{N}} h(z) \mathbb{E}\left(\mathbb{I}_{\{Z=z\}}\right) = \sum_{z \in \mathbb{N}} h(z) \mathbb{P}\left(Z=z\right).$$

Proposition 10.30. Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $Z : \Omega \to \mathbb{N}$, and a function $h : \mathbb{N} \to \mathbb{R}$. If $\mathbb{E}(|h(Z)|) < \infty$, then

$$\mathbb{E}(h(Z)) = \sum_{z \in \mathbb{N}} h(z) \mathbb{P}(Z = z).$$

Proof. Note that $h(Z): \Omega \to \mathbb{R}$ is a random variable and let $h = h^+ - h^-$. Using the previous result,

$$\mathbb{E}(h(Z)) = \mathbb{E}(h^+(Z)) - \mathbb{E}(h^-(Z)) = \sum_{z \in \mathbb{N}} h^+(z) \mathbb{P}(Z=z) - \sum_{z \in \mathbb{N}} h^-(z) \mathbb{P}(Z=z) = \sum_{z \in \mathbb{N}} h(z) \mathbb{P}(Z=z).$$

Consider a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a set $E \subseteq \mathbb{N}$, a stochastic process $Z = (Z_n : \Omega \to E \mid n \in \mathbb{N})$, and let $\mathcal{F}_n = \sigma(Z_0, \ldots, Z_n)$ for every $n \in \mathbb{N}$.

Let P be a stochastic matrix whose (i, j)-th element is given by $p_{i,j} \geq 0$ and suppose that $\sum_{k \in E} p_{i,k} = 1$ for every $i, j \in E$. Let μ be a probability measure on the measurable space $(E, \mathcal{P}(E))$, where $\mathcal{P}(E)$ is the set of all subsets of E, and let μ_i denote $\mu(\{i\})$ for every $i \in E$.

Finally, suppose that Z is a time-homogeneous Markov chain on E with initial distribution μ and 1-step transition matrix P. Recall that, for every $n \in \mathbb{N}^+$ and $i_0, i_1, \ldots, i_n \in E$,

$$\mathbb{P}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \mu_{i_0} p_{i_0, i_1} \dots p_{i_{n-1}, i_n} = \mu_{i_0} \prod_{k=1}^n p_{i_{k-1}, i_k}.$$

Definition 10.13. For every $n \in \mathbb{N}$ and $i_{n+1} \in E$, let $p(Z_n, i_{n+1}) : \Omega \to [0, 1]$ be given by $p(Z_n, i_{n+1})(\omega) = p_{Z_n(\omega), i_{n+1}}$.

We will now show three propositions regarding such time-homogeneous Markov chain.

Proposition 10.31. First, for every $n \in \mathbb{N}$, $i_{n+1} \in E$, $p(Z_n, i_{n+1}) = \mathbb{E}(\mathbb{I}_{\{Z_{n+1}=i_{n+1}\}} \mid \mathcal{F}_n) = \mathbb{P}(Z_{n+1}=i_{n+1} \mid \mathcal{F}_n)$ almost surely.

Proof. For every $c \in \mathbb{R}$, note that

$$\{p(Z_n,i_{n+1}) \leq c\} = \bigcup_{i_n \in E} \{\omega \in \Omega \mid Z_n(\omega) = i_n \text{ and } p_{i_n,i_{n+1}} \leq c\} = \bigcup_{i_n \in E} \{Z_n = i_n\} \cap \{p_{i_n,i_{n+1}} \leq c\}.$$

Since $\{p_{i_n,i_{n+1}} \leq c\} \in \{\emptyset,\Omega\}$ for every $i_n \in E$, we know that $\{p(Z_n,i_{n+1}) \leq c\} \in \sigma(Z_n)$, so that $p(Z_n,i_{n+1})$ is $\sigma(Z_n)$ -measurable. Because $|p(Z_n,i_{n+1})| \leq 1$, we know that $\mathbb{E}(|p(Z_n,i_{n+1})|) \leq 1$.

For every $\omega \in \Omega$, $n \in \mathbb{N}$, and $i_0, \ldots, i_{n+1} \in E$, note that

$$(p(Z_n, i_{n+1})\mathbb{I}_{\{Z_0=i_0, \dots, Z_n=i_n\}})(\omega) = p_{i_n, i_{n+1}}\mathbb{I}_{\{Z_0=i_0, \dots, Z_n=i_n\}}(\omega) = \begin{cases} p_{Z_n(\omega), i_{n+1}}, & \text{if } Z_k(\omega)=i_k \text{ for } k \in \{0, \dots, n\}, \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, for every $n \in \mathbb{N}$, and $i_0, \ldots, i_{n+1} \in E$,

$$\mathbb{E}(p(Z_n,i_{n+1})\mathbb{I}_{\{Z_0=i_0,\dots,Z_n=i_n\}})=p_{i_n,i_{n+1}}\mathbb{E}(\mathbb{I}_{\{Z_0=i_0,\dots,Z_n=i_n\}})=p_{i_n,i_{n+1}}\mathbb{P}(Z_0=i_0,\dots,Z_n=i_n).$$

Clearly, for every $n \in \mathbb{N}$, and $i_0, \ldots, i_{n+1} \in E$,

$$\mathbb{E}(\mathbb{I}_{\{Z_{n+1}=i_{n+1}\}}\mathbb{I}_{\{Z_0=i_0,\dots,Z_n=i_n\}}) = \mathbb{P}(Z_0=i_0,\dots,Z_{n+1}=i_{n+1}) = p_{i_n,i_{n+1}}\mathbb{P}(Z_0=i_0,\dots,Z_n=i_n).$$

For every $n \in \mathbb{N}$, recall that every set $F_n \in \mathcal{F}_n$ can be written as

$$F_n = \bigcup_{i \in A} \{ Z_0 = i_0, \dots, Z_n = i_n \},$$

where $i = (i_0, ..., i_n)$ and $A \in \mathcal{P}(E^{n+1})$ is a countable set. Because F_n is a union of disjoint sets,

$$\mathbb{I}_{F_n} = \sum_{i \in A} \mathbb{I}_{\{Z_0 = i_0, \dots, Z_n = i_n\}}.$$

72

Therefore, for every $n \in \mathbb{N}$ and $F_n \in \mathcal{F}_n$, since $p(Z_n, i_{n+1}) \geq 0$ for every $i_{n+1} \in E$,

$$\mathbb{E}(p(Z_n, i_{n+1})\mathbb{I}_{F_n}) = \sum_{i \in A} \mathbb{E}\left(p(Z_n, i_{n+1})\mathbb{I}_{\{Z_0 = i_0, \dots, Z_n = i_n\}}\right) = \sum_{i \in A} p_{i_n, i_{n+1}} \mathbb{P}(Z_0 = i_0, \dots, Z_n = i_n),$$

where $i = (i_0, \dots, i_n)$ and $A \in \mathcal{P}(E^{n+1})$ is a countable set. Using our previous observation,

$$\mathbb{E}(p(Z_n, i_{n+1})\mathbb{I}_{F_n}) = \mathbb{E}\left(\mathbb{I}_{\{Z_{n+1}=i_{n+1}\}} \sum_{i \in A} \mathbb{I}_{\{Z_0=i_0, \dots, Z_n=i_n\}}\right) = \mathbb{E}(\mathbb{I}_{\{Z_{n+1}=i_{n+1}\}}\mathbb{I}_{F_n}),$$

so that $p(Z_n, i_{n+1}) = \mathbb{E}(\mathbb{I}_{\{Z_{n+1}=i_{n+1}\}} \mid \mathcal{F}_n) = \mathbb{P}(Z_{n+1}=i_{n+1} \mid \mathcal{F}_n)$ almost surely.

For every $n \in \mathbb{N}$ and $i_{n+1} \in E$, note that $p(Z_n, i_{n+1})$ is $\sigma(Z_n)$ -measurable and $\sigma(Z_n) \subseteq \mathcal{F}_n$. Therefore, we also know that $p(Z_n, i_{n+1}) = \mathbb{E}(\mathbb{I}_{\{Z_{n+1} = i_{n+1}\}} \mid Z_n) = \mathbb{P}(Z_{n+1} = i_{n+1} \mid Z_n)$ almost surely.

Proposition 10.32. Second, for every $n \in \mathbb{N}$ and $i_{n+1} \in E$,

$$\mathbb{P}(Z_{n+1} = i_{n+1}) = \sum_{i_n \in E} p_{i_n, i_{n+1}} \mathbb{P}(Z_n = i_n).$$

Proof. For every $n \in \mathbb{N}$ and $i_{n+1} \in E$, using a property of conditional expectations,

$$\mathbb{P}(Z_{n+1} = i_{n+1}) = \mathbb{E}(\mathbb{I}_{\{Z_{n+1} = i_{n+1}\}}) = \mathbb{E}(\mathbb{E}(\mathbb{I}_{\{Z_{n+1} = i_{n+1}\}} \mid \mathcal{F}_n)) = \mathbb{E}(p(Z_n, i_{n+1})) = \sum_{i_n \in E} p_{i_n, i_{n+1}} \mathbb{P}(Z_n = i_n),$$

where we have noted that $p(Z_n, i_{n+1}) = f_{i_{n+1}}(Z_n)$ if $f_{i_{n+1}} : \mathbb{N} \to [0, 1]$ is given by $f_{i_{n+1}}(i_n) = p_{i_n, i_{n+1}}$.

Proposition 10.33. Third, consider a function $h: E \to [0, \infty]$ and let $Ph: E \to [0, \infty]$ be given by

$$(Ph)(i) = \sum_{j \in E} p_{i,j}h(j).$$

Furthermore, suppose that $Ph \leq h$ (so that h is P-superharmonic) and that $\sum_{i \in E} \mu_i h(i) < \infty$. In that case, $(h(Z_n): \Omega \to [0, \infty] \mid n \in \mathbb{N})$ is a supermartingale adapted to the filtration $(\mathcal{F}_n)_n$.

Proof. For every $B \in \mathcal{B}(\mathbb{R})$, note that $h^{-1}(B) \in \mathcal{P}(E)$. For every $n \in \mathbb{N}$, because $\mathcal{P}(E) \subseteq \mathcal{B}(\mathbb{R})$ and $Z_n^{-1}(h^{-1}(B)) \in \sigma(Z_n)$, we know that $h(Z_n)$ is \mathcal{F}_n -measurable. Therefore, the stochastic process $(h(Z_n) \mid n \in \mathbb{N})$ is adapted. We will use induction to show that $\mathbb{E}(h(Z_n)) < \infty$ for every $n \in \mathbb{N}$. Using our assumption and a previous result,

$$\mathbb{E}(h(Z_0)) = \sum_{i_0 \in E} h(i_0) \mathbb{P}(Z_0 = i_0) = \sum_{i_0 \in E} \mu_{i_0} h(i_0) < \infty.$$

Suppose that $\mathbb{E}(h(Z_n)) < \infty$ for some $n \in \mathbb{N}$. Using a previous result,

$$\mathbb{E}(h(Z_{n+1})) = \sum_{i_{n+1} \in E} h(i_{n+1}) \mathbb{P}(Z_{n+1} = i_{n+1}) = \sum_{i_{n+1} \in E} h(i_{n+1}) \sum_{i_n \in E} p_{i_n, i_{n+1}} \mathbb{P}(Z_n = i_n).$$

By rearranging terms, since h is P-superharmonic,

$$\mathbb{E}(h(Z_{n+1})) = \sum_{i_n \in E} \mathbb{P}(Z_n = i_n) \sum_{i_{n+1} \in E} p_{i_n, i_{n+1}} h(i_{n+1}) \leq \sum_{i_n \in E} \mathbb{P}(Z_n = i_n) h(i_n) = \mathbb{E}(h(Z_n)) < \infty,$$

which completes the inductive step.

It remains to show that $\mathbb{E}(h(Z_{n+1}) \mid \mathcal{F}_n) \leq h(Z_n)$ almost surely for every $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$, note that $h(Z_{n+1}): \Omega \to [0, \infty]$ is given by

$$h(Z_{n+1})(\omega) = h(Z_{n+1}(\omega)) = \sum_{i_{n+1} \in E} h(i_{n+1}) \mathbb{I}_{\{Z_{n+1} = i_{n+1}\}}(\omega).$$

Therefore, if $(X_m:\Omega\to[0,\infty]\mid m\in\mathbb{N})$ is a sequence of random variables given by

$$X_m(\omega) = \sum_{i_{n+1} \in E \mid i_{n+1} \le m} h(i_{n+1}) \mathbb{I}_{\{Z_{n+1} = i_{n+1}\}}(\omega),$$

then $X_m \uparrow h(Z_{n+1})$. Since $\mathbb{E}(h(Z_{n+1})) < \infty$, by the conditional monotone-convergence theorem,

$$\mathbb{E}(h(Z_{n+1}) \mid \mathcal{F}_n) = \lim_{m \to \infty} \mathbb{I}_A \sum_{i_{n+1} \in E \mid i_{n+1} \le m} h(i_{n+1}) \mathbb{E}\left(\mathbb{I}_{\{Z_{n+1} = i_{n+1}\}} \mid \mathcal{F}_n\right) = \sum_{i_{n+1} \in E} h(i_{n+1}) p(Z_n, i_{n+1}) \mathbb{I}_A$$

almost surely, where $A \in \mathcal{F}_n$ is a set such that $\mathbb{P}(A) = 1$.

For every $n \in \mathbb{N}$, note that $(Ph)(Z_n): \Omega \to [0, \infty]$ is given by

$$(Ph)(Z_n)(\omega) = (Ph)(Z_n(\omega)) = \sum_{i_{n+1} \in E} p_{Z_n(\omega), i_{n+1}} h(i_{n+1}) = \sum_{i_{n+1} \in E} p(Z_n, i_{n+1})(\omega) h(i_{n+1}).$$

Therefore, for every $n \in \mathbb{N}$, because h is P-superharmonic,

$$\mathbb{E}(h(Z_{n+1}) \mid \mathcal{F}_n) = (Ph)(Z_n)\mathbb{I}_A = (Ph)(Z_n) \le h(Z_n)$$

almost surely, so that $(h(Z_n): \Omega \to [0,\infty] \mid n \in \mathbb{N})$ is a supermartingale adapted to the filtration $(\mathcal{F}_n)_n$.

Proposition 10.34. Consider a set $E \subseteq \mathbb{R}$, a measurable space $(\tilde{\Omega}, \tilde{\mathcal{F}})$, and a stochastic process $(\tilde{Z}_n : \tilde{\Omega} \to E \mid n \in \mathbb{N})$. Let $\tilde{Z} : \tilde{\Omega} \to E^{\infty}$ be given by $\tilde{Z}(\tilde{\omega}) = (\tilde{Z}_n(\tilde{\omega}) \mid n \in \mathbb{N})$. For every $n \in \mathbb{N}$, let $Z_n : E^{\infty} \to E$ be given by $Z_n(\omega) = \omega_n$ and let $\mathcal{F} = \sigma(\cup_n \sigma(Z_n))$. In that case, \tilde{Z} is $\tilde{\mathcal{F}}/\mathcal{F}$ -measurable.

Proof. For every $n \in \mathbb{N}$, note that $\tilde{Z}_n = Z_n \circ \tilde{Z}$, so that $\tilde{Z}_n^{-1}(B) = \tilde{Z}^{-1}(Z_n^{-1}(B))$ for every $B \in \mathcal{B}(\mathbb{R})$. Because \tilde{Z}_n is $\tilde{\mathcal{F}}$ -measurable for every $n \in \mathbb{N}$, we know that $\tilde{Z}^{-1}(C) \in \tilde{\mathcal{F}}$ for every $C \in \bigcup_n \sigma(Z_n)$.

Since $(E^{\infty}, \mathcal{F})$ is a measurable space, note that $\mathcal{E} = \{F \in \mathcal{F} \mid \tilde{Z}^{-1}(F) \in \tilde{\mathcal{F}}\}$ is a σ -algebra on E^{∞} . Because $\cup_n \sigma(Z_n) \subseteq \mathcal{F}$, we know that $\sigma(\cup_n \sigma(Z_n)) = \mathcal{F} \subseteq \mathcal{E}$, so that $\mathcal{E} = \mathcal{F}$. Therefore, \tilde{Z} is $\tilde{\mathcal{F}}/\mathcal{F}$ -measurable.

Proposition 10.35 (Existence of the canonical model). Consider a set $E \subseteq \mathbb{N}$ and a stochastic matrix P whose (i,j)-th element is given by $p_{i,j} \ge 0$ and suppose that $\sum_{k \in E} p_{i,k} = 1$ for every $i,j \in E$.

Let $\Omega = E^{\infty}$, so that every $\omega \in \Omega$ is a sequence $\omega = (\omega_n \in E \mid n \in \mathbb{N})$. For every $n \in \mathbb{N}$, consider the function $Z_n : \Omega \to E$ given by $Z_n(\omega) = \omega_n$ and let $\mathcal{F}_n = \sigma(Z_0, \ldots, Z_n)$. Furthermore, let $\mathcal{F} = \sigma(Z_0, Z_1, \ldots) = \sigma(\cup_n \mathcal{F}_n)$.

In that case, for every probability measure μ on the measurable space $(E, \mathcal{P}(E))$ there is a unique probability measure \mathbb{P}^{μ} on the measurable space (Ω, \mathcal{F}) such that, for every $n \in \mathbb{N}^+$ and $i_0, i_1, \ldots, i_n \in E$,

$$\mathbb{P}^{\mu}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \mu_{i_0} p_{i_0, i_1} \dots p_{i_{n-1}, i_n} = \mu_{i_0} \prod_{k=1}^n p_{i_{k-1}, i_k}.$$

The probability triple $(\Omega, \mathcal{F}, \mathbb{P}^{\mu})$ is called the canonical model for the time-homogeneous Markov chain $Z = (Z_n : \Omega \to E \mid n \in \mathbb{N})$ on E with initial distribution μ and 1-step transition matrix P.

Proof. We have already shown that there is a probability triple $(\tilde{\Omega}^{\mu}, \tilde{\mathcal{F}}^{\mu}, \tilde{\mathbb{P}}^{\mu})$ carrying the stochastic process $(\tilde{Z}_{n}^{\mu} : \tilde{\Omega}^{\mu} \to E \mid n \in \mathbb{N})$ such that, for every $n \in \mathbb{N}^{+}$ and $i_{0}, i_{1}, \ldots, i_{n} \in E$,

$$\tilde{\mathbb{P}}^{\mu}(\tilde{Z}_{0}^{\mu}=i_{0},\tilde{Z}_{1}^{\mu}=i_{1},\ldots,\tilde{Z}_{n}^{\mu}=i_{n})=\mu_{i_{0}}p_{i_{0},i_{1}}\ldots p_{i_{n-1},i_{n}}.$$

Consider the function $\tilde{Z}^{\mu}: \tilde{\Omega}^{\mu} \to \Omega$ given by $\tilde{Z}^{\mu}(\tilde{\omega}) = (\tilde{Z}_{n}^{\mu}(\tilde{\omega}) \mid n \in \mathbb{N})$. Because \tilde{Z}^{μ} is $\tilde{\mathcal{F}}^{\mu}/\mathcal{F}$ -measurable, the function $\mathbb{P}^{\mu}: \mathcal{F} \to [0,1]$ defined by

$$\mathbb{P}^{\mu}(F) = \tilde{\mathbb{P}}^{\mu}((\tilde{Z}^{\mu})^{-1}(F)) = \tilde{\mathbb{P}}^{\mu}(\{\tilde{\omega} \in \tilde{\Omega}^{\mu} \mid \tilde{Z}^{\mu}(\tilde{\omega}) \in F\})$$

is a probability measure on the measurable space (Ω, \mathcal{F}) . Clearly, $\mathbb{P}^{\mu}(\Omega) = \tilde{\mathbb{P}}^{\mu}((\tilde{Z}^{\mu})^{-1}(\Omega)) = \tilde{\mathbb{P}}^{\mu}(\tilde{\Omega}^{\mu}) = 1$ and $\mathbb{P}^{\mu}(\emptyset) = \tilde{\mathbb{P}}^{\mu}((\tilde{Z}^{\mu})^{-1}(\emptyset)) = \tilde{\mathbb{P}}^{\mu}(\emptyset) = 0$. For any sequence of sets $(F_n \in \mathcal{F} \mid n \in \mathbb{N})$ such that $F_n \cap F_m = \emptyset$ for $n \neq m$,

$$\mathbb{P}^{\mu}\left(\bigcup_{n}F_{n}\right) = \tilde{\mathbb{P}}^{\mu}\left((\tilde{Z}^{\mu})^{-1}\left(\bigcup_{n}F_{n}\right)\right) = \tilde{\mathbb{P}}^{\mu}\left(\bigcup_{n}(\tilde{Z}^{\mu})^{-1}\left(F_{n}\right)\right) = \sum_{n}\tilde{\mathbb{P}}^{\mu}\left((\tilde{Z}^{\mu})^{-1}\left(F_{n}\right)\right) = \sum_{n}\mathbb{P}^{\mu}\left(\tilde{Z}^{\mu}\right)^{-1}\left(F_{n}\right)$$

where we have used the fact that $(\tilde{Z}^{\mu})^{-1}(F_n) \cap (\tilde{Z}^{\mu})^{-1}(F_m) = (\tilde{Z}^{\mu})^{-1}(F_n \cap F_m) = \emptyset$ for $n \neq m$. For every $n \in \mathbb{N}^+$ and $i_0, i_1, \ldots, i_n \in E$,

$$\mathbb{P}^{\mu}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \tilde{\mathbb{P}}^{\mu}(\{\tilde{\omega} \in \tilde{\Omega}^{\mu} \mid \tilde{Z}^{\mu}(\tilde{\omega}) \in \{\omega \in \Omega \mid Z_0(\omega) = i_0, Z_1(\omega) = i_1, \dots, Z_n(\omega) = i_n\}\}).$$

Because $\Omega = E^{\infty}$ and $Z_m(\omega) = \omega_m$ for every $m \in \mathbb{N}$,

$$\mathbb{P}^{\mu}(Z_0 = i_0, Z_1 = i_1, \dots, Z_n = i_n) = \tilde{\mathbb{P}}^{\mu}(\{\tilde{\omega} \in \tilde{\Omega}^{\mu} \mid \tilde{Z}_0^{\mu}(\tilde{\omega}) = i_0, \tilde{Z}_1^{\mu}(\tilde{\omega}) = i_1, \dots, \tilde{Z}_n^{\mu}(\tilde{\omega}) = i_n\}) = \mu_{i_0} p_{i_0, i_1} \dots p_{i_{n-1}, i_n},$$

so that a probability measure on (Ω, \mathcal{F}) with the desired properties exists.

Naturally, any two desired probability measures on (Ω, \mathcal{F}) must agree on the π -system $\mathcal{I} \subseteq \mathcal{F}$ given by

$$\mathcal{I} = \{\emptyset\} \cup \{\{Z_0 = i_0, \dots, Z_n = i_n\} \mid n \in \mathbb{N} \text{ and } i_0, \dots, i_n \in E\}\}.$$

Therefore, if $\sigma(\mathcal{I}) = \mathcal{F}$, then \mathbb{P}^{μ} will be the unique probability measure on (Ω, \mathcal{F}) with the desired properties. First, we will show that \mathcal{I} is indeed a π -system on Ω . Clearly, $I \cap \emptyset = \emptyset$ and $\emptyset \in \mathcal{I}$ for every $I \in \mathcal{I}$. For some $n \in \mathbb{N}$ and $i_0, \ldots, i_n \in E$, let $I_1 = \{Z_0 = i_0, \ldots, Z_n = i_n\}$. For some $m \geq n$ and $j_0, \ldots, j_m \in E$, let $I_2 = \{Z_0 = j_0, \ldots, Z_m = j_m\}$. In that case,

$$I_1 \cap I_2 = \{ \omega \in \Omega \mid Z_0(\omega) = i_0 = j_0, \dots, Z_n(\omega) = i_n = j_n, Z_n(\omega) = j_n, \dots, Z_m(\omega) = j_m \},$$

so that

$$I_1 \cap I_2 = \begin{cases} I_2, & \text{if } i_k = j_k \text{ for every } k \in \{0, \dots, n\}, \\ \emptyset, & \text{if } i_k \neq j_k \text{ for some } k \in \{0, \dots, n\}. \end{cases}$$

Therefore, $I_1 \cap I_2 \in \mathcal{I}$, so that \mathcal{I} is a π -system on Ω .

Finally, we will show that $\mathcal{F} \subseteq \sigma(\mathcal{I})$. For every $n \in \mathbb{N}$, recall that the σ -algebra \mathcal{F}_n is given by

$$\mathcal{F}_n = \left\{ \bigcup_{i \in A} \{ Z_0 = i_0, \dots, Z_n = i_n \} \mid A \in \mathcal{P}(E^{n+1}) \right\},$$

where $i = (i_0, \dots, i_n)$ and A is a countable set. For every $n \in \mathbb{N}$, because each $F_n \in \mathcal{F}_n$ is a countable union of elements of \mathcal{I} , we know that $F_n \in \sigma(\mathcal{I})$. Therefore, $\cup_n \mathcal{F}_n \subseteq \sigma(\mathcal{I})$, so that $\mathcal{F} = \sigma(\cup_n \mathcal{F}_n) \subseteq \sigma(\mathcal{I})$.

Consider a set $E \subseteq \mathbb{N}$. Let P be a stochastic matrix whose (i, j)-th element is given by $p_{i,j} \geq 0$ and suppose that $\sum_{k \in E} p_{i,k} = 1$ for every $i, j \in E$.

Let $(\Omega, \mathcal{F}, \mathbb{P}^{\mu})$ denote the canonical model for the time-homogeneous Markov chain $Z = (Z_n : \Omega \to E \mid n \in \mathbb{N})$ on E with initial distribution μ and 1-step transition matrix P, where μ is a probability measure on the measurable space $(E, \mathcal{P}(E))$. For every $i \in E$, let $\mathbb{P}^i = \mathbb{P}^{\mu}$ if $\mu(\{i\}) = 1$. Furthermore, consider the filtration $(\mathcal{F}_n)_n$, where $\mathcal{F}_n = \sigma(Z_0, \ldots, Z_n)$ for every $n \in \mathbb{N}$. Finally, for every $j \in E$, consider the stopping time $T_j : \Omega \to \mathbb{N} \cup \{\infty\}$ given by $T_j(\omega) = \inf\{n \in \mathbb{N}^+ \mid Z_n(\omega) = j\}$.

Definition 10.14. The stochastic matrix P is called irreducible recurrent if and only if $\mathbb{P}^i(T_j < \infty) = 1$ for every $i, j \in E$.

Definition 10.15. For every function $h: E \to [0, \infty]$, let $Ph: E \to [0, \infty]$ be given by

$$(Ph)(i) = \sum_{j \in E} p_{i,j}h(j).$$

The function h is called finite non-negative P-superharmonic if and only if $Ph \leq h < \infty$.

Proposition 10.36. The stochastic matrix P is irreducible recurrent if and only if every finite non-negative P-superharmonic function is constant.

Proof. First, suppose that the stochastic matrix P is irreducible recurrent. Consider a finite non-negative P-superharmonic function $h: E \to [0, \infty]$ and the stochastic process $h(Z) = (h(Z_n): \Omega \to [0, \infty] \mid n \in \mathbb{N})$. Because $h < \infty$, for every $i \in E$, a previous result guarantees that h(Z) is a supermartingale on the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P}^i)$.

For every $j \in E$, recall that the random variable $h(Z)_{T_j}: \Omega \to [0, \infty]$ is given by

$$h(Z)_{T_j}(\omega) = \begin{cases} h(j), & \text{if } T_j(\omega) < \infty, \\ 0, & \text{if } T_j(\omega) = \infty. \end{cases}$$

Because $h(Z_n) \geq 0$ for every $n \in \mathbb{N}$ and $\mathbb{P}^i(T_j < \infty) = 1$ for every $i, j \in E$, a previous result guarantees that $\mathbb{E}^i(h(Z)_{T_j}) \leq \mathbb{E}^i(h(Z_0))$ for every $i, j \in E$. This implies that h is constant because, for every $i, j \in E$,

$$h(j) = \mathbb{E}^i(h(Z)_{T_j}) \le \mathbb{E}^i(h(Z_0)) = \sum_{i_0 \in E} h(i_0) \mathbb{P}^i(Z_0 = i_0) = h(i).$$

Suppose that every finite non-negative P-superharmonic function is constant. For every $i, j \in E$, note that

$$\mathbb{P}^{i}(T_{j}=1) = \mathbb{P}^{i}(Z_{1}=j) = \sum_{k \in E} p_{k,j} \mathbb{P}^{i}(Z_{0}=k) = p_{i,j}.$$

For every $n \in \mathbb{N}^+$ and $i, j \in E$, we will now show that

$$\mathbb{P}^{i}(T_{j}=n+1) = \sum_{k \neq j} p_{i,k} \mathbb{P}^{k}(T_{j}=n).$$

For n = 1 and every $i, j \in E$,

$$\mathbb{P}^{i}(T_{j}=2) = \mathbb{P}^{i}(Z_{1} \neq j, Z_{2}=j) = \mathbb{P}^{i}\left(\bigcup_{k \neq j} \{Z_{1}=k\} \cap \{Z_{2}=j\}\right) = \sum_{k \neq j} \mathbb{P}^{i}(Z_{1}=k, Z_{2}=j).$$

Since $\mathbb{P}^i(Z_0=i)=1$,

$$\mathbb{P}^{i}(T_{j}=2) = \sum_{k \neq j} \mathbb{P}^{i}(Z_{0}=i, Z_{1}=k, Z_{2}=j) = \sum_{k \neq j} p_{i,k} p_{k,j} = \sum_{k \neq j} p_{i,k} \mathbb{P}^{k}(T_{j}=1).$$

For every $n \geq 2$ and $i, j \in E$,

$$\mathbb{P}^{i}(T_{j}=n+1) = \mathbb{P}^{i}(Z_{1} \neq j, \dots, Z_{n} \neq j, Z_{n+1}=j) = \mathbb{P}^{i}\left(\bigcup_{k_{0} \neq j} \dots \bigcup_{k_{n-1} \neq j} \{Z_{1}=k_{0}, \dots, Z_{n}=k_{n-1}, Z_{n+1}=j\}\right).$$

Since $\mathbb{P}^i(Z_0=i)=1$,

$$\mathbb{P}^{i}(T_{j}=n+1) = \sum_{k_{0} \neq j} \cdots \sum_{k_{n-1} \neq j} \mathbb{P}^{i}(Z_{0}=i, Z_{1}=k_{0}, \dots, Z_{n}=k_{n-1}, Z_{n+1}=j).$$

From the definition of \mathbb{P}^i ,

$$\mathbb{P}^{i}(T_{j}=n+1) = \sum_{k_{0} \neq j} p_{i,k_{0}} \sum_{k_{1} \neq j} \cdots \sum_{k_{n-1} \neq j} p_{k_{0},k_{1}} \cdots p_{k_{n-2},k_{n-1}} p_{k_{n-1}j}.$$

From the definition of \mathbb{P}^{k_0} ,

$$\mathbb{P}^{i}(T_{j} = n + 1) = \sum_{k_{0} \neq j} p_{i,k_{0}} \mathbb{P}^{k_{0}} \left(\bigcup_{k_{1} \neq j} \cdots \bigcup_{k_{n-1} \neq j} \{ Z_{1} = k_{1}, \dots, Z_{n-1} = k_{n-1}, Z_{n} = j \} \right) = \sum_{k \neq j} p_{i,k} \mathbb{P}^{k}(T_{j} = n),$$

which completes this step.

For every $i, j \in E$, we will now provide a recursive expression for $\mathbb{P}^i(T_i < \infty)$. First, note that

$$\mathbb{P}^i(T_j < \infty) = \mathbb{P}^i\left(\bigcup_{n \in \mathbb{N}^+} \{T_j = n\}\right) = \sum_{n \in \mathbb{N}^+} \mathbb{P}^i(T_j = n) = \mathbb{P}^i(T_j = 1) + \sum_{n \in \mathbb{N}^+} \mathbb{P}^i(T_j = n + 1).$$

Using the previous results,

$$\mathbb{P}^{i}(T_{j} < \infty) = p_{i,j} + \sum_{n \in \mathbb{N}^{+}} \sum_{k \neq j} p_{i,k} \mathbb{P}^{k}(T_{j} = n) = p_{i,j} + \sum_{k \neq j} p_{i,k} \sum_{n \in \mathbb{N}^{+}} \mathbb{P}^{k}(T_{j} = n).$$

Therefore,

$$\mathbb{P}^{i}(T_{j} < \infty) = p_{i,j} + \sum_{k \neq j} p_{i,k} \mathbb{P}^{k} \left(\bigcup_{n \in \mathbb{N}^{+}} \{ T_{j} = n \} \right) = p_{i,j} + \sum_{k \neq j} p_{i,k} \mathbb{P}^{k} (T_{j} < \infty),$$

which completes this step.

For every $i, j \in E$, let $h_j(i) = \mathbb{P}^i(T_j < \infty)$. Since $\mathbb{P}^j(T_j < \infty) \le 1$,

$$h_j(i) = p_{i,j} + \sum_{k \neq j} p_{i,k} h_j(k) \ge \sum_{k \in E} p_{i,k} h_j(k) = (Ph_j)(i),$$

so that $h_j: E \to [0, \infty]$ is finite non-negative P-superharmonic.

By assumption, for every $j \in E$ there is a constant ρ_j such that $h_j(i) = \rho_j$ for every $i \in E$. For every $i, j \in E$,

$$\rho_j = h_j(i) = p_{i,j} + \sum_{k \neq j} p_{i,k} \rho_j = p_{i,j} + \rho_j (1 - p_{i,j}).$$

By reordering terms, we know that $\rho_j p_{i,j} = p_{i,j}$ for every $i, j \in E$.

In order to complete the proof, we will show that for every $j \in E$ there is an $i \in E$ such that $p_{i,j} > 0$, which implies that $\rho_j = 1$. For every $i, j \in E$, let $f_j(i) = 1$ if i = j and $f_j(i) = 0$ if $i \neq j$, so that

$$(Pf_j)(i) = \sum_{k \in E} p_{i,k} f_j(k) = p_{i,j}.$$

If there is a $j \in E$ such that $p_{i,j} = 0$ for every $i \in E$, then $f_j(i) \ge (Pf_j)(i) = 0$, so that $f_j : E \to [0, \infty]$ is a finite non-negative P-superharmonic function. Because f_j is not constant, such $j \in E$ does not exist.

Because $\rho_j = 1$ for every $j \in E$ and $\rho_j = h_j(i) = \mathbb{P}^i(T_j < \infty)$ for every $i \in E$, the proof is complete.

Acknowledgements

I would like to thank Daniel Valesin for his guidance and the ideas behind many proofs found in these notes.

License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (1)(S)(6).

References

- [1] Williams, David. Probability with Martingales. Cambridge University Press, 1991.
- [2] Rosenthal, Jeffrey S. A First Look at Rigorous Probability Theory. World Scientific, 2006.
- [3] Pollard, D. A User's Guide to Measure Theoretic Probability. Cambridge University Press, 2011.
- [4] Snoo, Henk de and Winkler, Henrik. Measure and Integration, An Introduction.