SS 2020 Shestakov

Übungsaufgaben zur Vorlesung "Analysis IIb"

Blatt 2

Aufgabe 1. Sei $f \colon \mathbb{R}^2 \to \mathbb{R}$ die Projekion auf die x-Achse. Beweisen oder widerlegen Sie:

- a) Ist $M \subset \mathbb{R}^2$ offen, so ist f(M) als Teilmenge von \mathbb{R} offen.
- b) Ist $M \subset \mathbb{R}^2$ abgeschlossen, so ist f(M) als Teilmenge von \mathbb{R} abgeschlossen.

Aufgabe 2. Zeigen Sie, dass folgende Funktionen stetig sind:

- a) $f_i: \mathbb{R}^n \to \mathbb{R}, f_i(x_1, ..., x_n) = x_i, i = 1, ..., n$
- b) $f \colon V \to \mathbb{R}, f(x) = \|x\|$, wobei $(V, \|\cdot\|)$ ein normierter Raum ist

Aufgabe 3. In Präsenzaufgabe 3 wird der Abstand eines Punktes x zu einer Teilmenge A eines metrischen Raumes definiert. Der Abstand zwischen zwei Teilmengen A, B ist definiert durch

$$dist(A, B) := \inf\{d(a, b) \colon a \in A, b \in B\}.$$

Beweisen oder widerlegen Sie:

- a) Ist K kompakt und $x \in X$, so gibt es einen Punkt $p \in K$ mit dist(x, K) = d(x, p).
- b) Ist A abgeschlossen, K kompakt und $A \cap K = \emptyset$, so ist dist(K, A) > 0.
- c) Sind A und K abgeschlossen und ist $A \cap K = \emptyset$, so ist dist(K, A) > 0.

Aufgabe 4. Sei (X, d) ein metrischer Raum. Beweisen Sie:

- a) Sind $K_1, K_2 \subset X$ kompakt, so ist $K_1 \cup K_2$ kompakt.
- b) Ist $K \subset X$ kompakt, so ist jede abgeschlossene Teilmenge von K auch kompakt.

Abgabe: Bis 21. Mai um 10 Uhr als PDF-Datei in StudIP in der Veranstaltung Übung Analysis IIb unter dem Reiter Dateien im dafür vorgesehenen Ordner.

Aufgabe	1		2		3			4		
	a	b	a	b	a	b	С	a	b	
Punkte	3	3	2	3	1	2	2	2	2	20

Präsenzaufgaben

- 1. Sei X ein metrischer Raum und $U \subset X$. Zeigen Sie, dass die Menge ∂U und die Menge aller Häufungspunkte von U abgeschlossen sind.
- 2. Sei $f : \mathbb{R}^2 \to \mathbb{R}$. Beweisen oder widerlegen Sie:
 - a) ? Ist $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = \lim_{y\to 0} \lim_{x\to 0} f(x,y) = 0$, so existiert der Grenzwert $\lim_{(x,y)\to 0} f(x,y)$. ?
 - b) ? Wenn $\lim_{(x,y)\to 0} f(x,y)=0$ ist, dann existieren die iterierten Grenzwerte $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ und $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$. ?
- 3. Sei (X, d) ein metrischer Raum und $A \subset X$, $A \neq \emptyset$. Der Abstand eines Punktes $x \in X$ von der Menge A wird definiert als

$$dist(x, A) := \inf\{d(x, a) \colon a \in A\}.$$

Zeigen Sie:

- a) Die Abbildung $x \mapsto \text{dist}(x, A)$ ist stetig auf X.
- b) Ist $x \in X \setminus A$ und dist(x, A) = 0, so ist $x \in \partial A$.
- c) Ist A abgeschlossen, so ist dist(x, A) = 0 genau dann, wenn $x \in A$.
- 4. Untersuchen Sie, ob die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{falls } x^2 + y^2 \neq 0, \\ 0, & \text{falls } x^2 + y^2 = 0, \end{cases}$$

im Ursprung

- a) stetig als Funktion von x
- b) stetig als Funktion von y
- c) stetig

ist.

Bemerkung/Extra-Aufgabe: Der Graph der Funktion f stellt das Plückersche Konoid dar. Recherchieren Sie, was das bedeutet. Skizzieren Sie den Graphen von f.

5. Sei (X, d) ein metrischer Raum mit der diskreten Metrik

$$d(x,y) = \begin{cases} 1, \text{ falls } x \neq y, \\ 0, \text{ falls } x = y. \end{cases}$$

2

Man zeige: Eine Teilmenge $A \subset X$ ist genau dann kompakt, wenn sie endlich ist.