Using the Laplace transform to solve IVPs

We learn to use the Laplace transform to solve IVPs with the initial condition including $x_0 = 0$.

Suppose we have a differential equation involving the unknown function y = y(t).

Loosely, our steps are as follows:

- Apply the Laplace transform \mathcal{L} to the entire IVP, transforming it into a function of Y(s).
 - \circ In doing so, there will be typically be many terms of s and Y(s) which occur.
- Solve for Y(s).
- Use the inverse Laplace transform \mathcal{L}^{-1} to transform back to
 - \circ To apply \mathcal{L}^{-1} to Y(s), it is common to need to use partial fraction decomposition in order to express Y(s) as a sum of expressions which we know what the inverse Laplace transform is.

We look at some examples in the video below.

Discussion, comments, and examples:

Click on each of the tabs below to view a different video.

Theory and set-up	Example One	Example Two	Theory and set-up:
-------------------	-------------	-------------	--------------------

WeBWorK module 16 exercises:

Problems 12, 13

Relevant Wikipedia articles:

Some applications of the Laplace transform