heemod

N Green 17/01/2020

R Markdown

```
# heemod TB population Markov model
# N Green
# Imperial College London
# see: https://cran.r-project.org/web/packages/heemod/vignettes/d_non_homogeneous.html
# transitions happen at the beginning of each year (equivalent to transition happening at
# the end + ignoring the first year) with method = "beginning".
# Since with this method the first year is actually the second,
# costs should be discounted from the start with the argument first = TRUE in discount().
library(heemod)
library(purrr)
library(dplyr)
# age-dependent probability of death, TB and QoL weighting
pdeath_QoL <-
  read.csv("C:/Users/ngreen1/Google Drive/MSc-MPH/projects/2017/LTBI-TST_Manabu/R/raw data/pdeath_QoL.c
head(pdeath_QoL)
##
           pDeath pDeath_TB QOL_weight
## 1 35 0.0008065
                       0.012
                                   0.91
## 2 36 0.0008710
                       0.012
                                   0.91
## 3 37 0.0009280
                       0.012
                                   0.91
## 4 38 0.0010540
                       0.012
                                   0.91
## 5 39 0.0011160
                       0.012
                                   0.91
## 6 40 0.0012320
                       0.012
                                   0.91
# probabilistic realisations of starting state probabilities
load(file = "data/init_states.RData")
head(init_states)
                                         noTx activeTB dead
    noLTBI completeTx incompleteTx
## 1 0.643 0.04429927 0.068075534 0.2446252
                                                          0
## 2 0.683 0.02576789 0.019090692 0.2721414
                                                          0
## 3 0.672 0.04943117 0.030844729 0.2477241
                                                     0
                                                          0
                                                          0
## 4 0.742 0.05223975 0.001835084 0.2039252
## 5 0.726 0.02743526 0.010678055 0.2358867
                                                          0
                                                     0
## 6 0.650 0.05570397 0.024181029 0.2701150
                                                          0
```

```
# define the model heemod parameters
param <- define_parameters(</pre>
  age init = 34,
                                    # starting age
  age = age_init + markov_cycle, # increment age annually
  # transition probabilities
  pReact_comp = 0.0006779,
                                   # TB after completed LTBI treatment
  pReact_incomp = 0.0015301,
                                  # TB after LTBI treatment dropout
  pReact = 0.0019369,
                                   # TB after no treatment
                                   # cost of TB treatment (£)
  TB_{cost} = 4925.76,
  d = 0.035,
                                    # annual discount factor
  # match prob death to age
  pdeath = look_up(data = pdeath_QoL,
                   value = "pDeath",
                   age = age),
  pdeathTB = look_up(data = pdeath_QoL,
                     value = "pDeath_TB",
                     age = age),
  # match QoL weight to age
  QoL = look_up(data = pdeath_QoL,
                value = "QOL_weight",
                age = age)
)
# create transition matrix
mat_trans <- define_transition(</pre>
  state_names = c(
   "noLTBI",
    "completeTx",
    "incompleteTx",
    "noTx",
    "activeTB",
    "dead"
  ),
  # from-to probability matrix
  # C represent complements
  C, 0, 0, 0, 0,
                             pdeath,
  0, C, 0, 0, pReact_comp, pdeath,
  0, 0, C, 0, pReact_incomp, pdeath,
  0, 0, 0, C, pReact,
                             pdeath,
  C, 0, 0, 0, 0,
                             pdeathTB,
  0, 0, 0, 0, 0,
# define starting state populations
init_states <- select(.data = init_states,</pre>
                      noLTBI,
                      completeTx,
                      incompleteTx,
```

```
noTx)
init_states <- data.frame(init_states, activeTB = 0, dead = 0)</pre>
# define cost and utility values associated with each state
noLTBI <- define state(</pre>
  cost = 0,
  utility = discount(QoL, d, first = TRUE)
completeTx <- define_state(</pre>
 cost = 0.
 utility = discount(QoL, d, first = TRUE)
incompleteTx <- define_state(</pre>
  cost = 0,
  utility = discount(QoL, d, first = TRUE)
noTx <- define_state(</pre>
 cost = 0,
 utility = discount(QoL, d, first = TRUE)
activeTB <- define_state(</pre>
 cost = discount(TB_cost, d, first = TRUE),
 utility = discount(QoL - 0.15, d, first = TRUE)
dead <- define_state(</pre>
  cost = 0,
  utility = 0
# combine all of the model elements to form
# a 'stratgey' consisting of a transition
# matrix and states states with properties attached
strat <- define_strategy(</pre>
 transition = mat_trans,
  noLTBI = noLTBI,
  completeTx = completeTx,
 incompleteTx = incompleteTx,
 noTx = noTx,
  activeTB = activeTB,
  dead = dead
)
# run a single simulation
res_mod <-
 run_model(
```

```
init = 1000 * init_states[1, ], # initial population sizes
    method = "end",
    strat,
    parameters = param,
   cycles = 66,
                                    # number of time steps
    cost = cost,
    effect = utility
# run multiple simulations
# using the sample of starting state probabilities
res_mod <- list()
for (i in 1:nrow(init_states)) {
  res_mod[[i]] <-
    run_model(
      # init = c(674.0588764, # hard-code values
                168.0253748,
      #
                42.42724895,
                115.4884998,
                0,0),
     init = 1000 * init_states[i, ],
     method = "end",
      strat,
      parameters = param,
     cycles = 66,
     cost = cost,
      effect = utility
    )
}
###########
# results #
##########
res_mod[[1]]
## 1 strategy run for 66 cycles.
##
## Initial state counts:
##
## noLTBI = 643
## completeTx = 44.2992721299233
## incompleteTx = 68.0755335064717
## noTx = 244.625194363605
## activeTB = 0
## dead = 0
##
```

Counting method: 'end'.

```
##
## Values:
##
##
       cost utility
## I 62739.3 18900.67
# extract the cost and utility values
c1 <- map_df(res_mod, "run_model")$cost</pre>
h1 <- map_df(res_mod, "run_model") $utility
get_counts(res_mod[[1]])
## # A tibble: 396 x 4
     .strategy_names markov_cycle state_names count
     <chr>
                             <int> <chr>
                                               <dbl>
## 1 I
                                 1 noLTBI
                                                643
## 2 I
                                 2 noLTBI
                                                642.
## 3 I
                                 3 noLTBI
                                                643.
## 4 I
                                 4 noLTBI
                                                643.
## 5 I
                                 5 noLTBI
                                                642.
## 6 I
                                 6 noLTBI
                                                642.
## 7 I
                                 7 noLTBI
                                                642.
## 8 I
                                 8 noLTBI
                                                642.
## 9 I
                                                642.
                                 9 noLTBI
## 10 I
                                10 noLTBI
                                                641.
## # ... with 386 more rows
get_values(res_mod[[1]])
```

##		markov_cycle	.strategy_names	value_names	value
##	1	1	I	cost	0.000000
##	2	2	I	cost	2795.769776
##	3	3	I	cost	2694.172518
##	4	4	I	cost	2596.099603
##	5	5	I	cost	2501.453976
##	6	6	I	cost	2409.954523
##	7	7	I	cost	2321.657828
##	8	8	I	cost	2236.336172
##	9	9	I	cost	2153.994737
##	10	10	I	cost	2074.430343
##	11	11	I	cost	1997.642736
##	12	12	I	cost	1923.381158
##	13	13	I	cost	1851.604428
##	14	14	I	cost	1782.312318
##	15	15	I	cost	1715.343104
##	16	16	I	cost	1650.671596
##	17	17	I	cost	1588.062876
##	18	18	I	cost	1527.462285
##	19	19	I	cost	1468.888781
##	20	20	I	cost	1412.237940
##	21	21	I	cost	1357.362057
##	22	22	I	cost	1304.188468
##	23	23	I	cost	1252.628015

			_		
##		24	I		1202.657685
	25	25	I	cost	1154.094094
##	26	26	I	cost	1107.023286
##	27	27	I	cost	1061.252042
##	28	28	I	cost	1016.691493
##	29	29	I	cost	973.447557
##	30	30	I	cost	931.402075
##	31	31	I	cost	890.504538
##	32	32	I	cost	850.762316
##	33	33	I	cost	812.160065
##	34	34	I	cost	774.833496
##	35	35	I	cost	738.342870
##	36	36	I	cost	702.646295
##	37	37	I	cost	667.662025
##	38	38	I	cost	633.435905
##	39	39	I	cost	599.927304
##	40	40	I	cost	566.751238
##	41	41	I	cost	534.205724
##	42	42	I	cost	502.145143
##	43	43	I	cost	470.828332
##	44	44	I	cost	440.103590
##	45	45	I	cost	410.024029
##	46	46	I	cost	380.448985
	47	47	I	cost	351.321854
##	48	48	I	cost	322.365674
	49	49	I	cost	294.060165
##	50	50	I	cost	266.105785
##	51	51	I	cost	238.872856
##	52	52	I	cost	212.372972
##	53	53	I	cost	186.726035
##	54	54	I	cost	162.356251
##	55	55	I	cost	139.261868
##	56	56	I	cost	117.704591
##	57	57	I	cost	97.860681
##	58	58	I	cost	79.882174
##	59	59	Ī	cost	64.069459
##		60	I	cost	50.160404
##		61	Ī	cost	38.227267
	62	62	Ī	cost	28.538763
	63	63	Ī	cost	20.760109
	64	64	I	cost	14.777203
	65	65	I	cost	10.152295
	66	66	I	cost	6.720050
	67	1	I	utility	879.227053
	68	2	I	utility	
	69	3	I	utility	819.304004
	70	4	I	utility	790.858282
	71	5	I	utility	763.303962
	72	6	I	utility	736.663978
	73	7	I	•	
	73 74	8	I	utility utility	710.871244
	74 75	9	I	•	
				utility	
	76 77	10	I	utility	
##	77	11	I	utility	575.208045

##	70	12	I	utility	554.729804
	79	13	I	utility	534.729004
##		14	I	•	515.741419
				utility	
##		15	I	utility	497.182389
##		16	I	utility	479.178165
##		17	I	utility	461.715353
##		18	I	utility	444.802694
##		19	I	utility	428.411635
	86	20	I	utility	412.500293
	87	21	Ι	utility	373.691000
	88	22	I	utility	359.559078
	89	23	I	utility	345.832962
	90	24	I	utility	332.462205
	91	25	I	utility	319.473575
	92	26	I	utility	306.813466
	93	27	I	utility	294.458043
	94	28	I	utility	282.439678
	95	29	I	utility	270.725985
##	96	30	I	utility	259.303999
##	97	31	I	utility	241.972384
##	98	32	I	utility	231.391989
##	99	33	I	utility	221.138738
##	100	34	I	utility	211.088924
##	101	35	I	utility	201.231673
##	102	36	I	utility	191.544620
##	103	37	I	utility	182.041830
##	104	38	I	utility	172.712621
##	105	39	I	utility	163.447144
##	106	40	I	utility	154.331660
##	107	41	I	utility	136.008177
##	108	42	I	utility	127.751249
##	109	43	I	utility	119.626485
##	110	44	I	utility	111.649013
##	111	45	I	utility	103.781322
##	112	46	I	utility	96.008548
##	113	47	I	utility	88.255520
##	114	48	I	utility	80.653575
##	115	49	I	utility	73.121352
##	116	50	I	utility	65.760865
##	117	51	I	utility	58.576148
##	118	52	I	utility	51.601109
##	119	53	I	utility	44.953942
##	120	54	I	utility	38.635842
##	121	55	I	utility	32.721061
##	122	56	I	utility	27.260682
##	123	57	I	utility	22.299453
##	124	58	I	utility	17.923894
##	125	59	I	utility	14.063995
##	126	60	I	utility	10.742899
##	127	61	I	utility	8.039178
##	128	62	I	utility	5.862318
##	129	63	I	utility	4.183370
##	130	64	I	utility	2.881664
##	131	65	I	utility	1.912731
				- J	

```
## 132 66 I utility 1.230143
```

```
summary(res_mod[[4]])
```

hist(c1, breaks = 30)

```
## 1 strategy run for 66 cycles.
## Initial state counts:
##
## noLTBI = 742
## completeTx = 52.2397525531171
## incompleteTx = 1.83508364108649
## noTx = 203.925163805796
## activeTB = 0
## dead = 0
##
## Counting method: 'end'.
##
## Values:
##
##
      cost utility
## I 44682 18903.23
# plots
```

Histogram of c1

Histogram of h1

plot(res_mod[[4]])


```
# state-edge graph
plot(mat_trans, arr.type = "simple")
```

