Artificial Intelligence

B.Tech(AIDS)_V Semester

Academic Year: 2024-2025

Dr D. L. Sreenivasa Reddy

Email: dlsrinivasareddy_aids@cbit.ac.in

Unit-III-Syllabus

Knowledge & Reasoning:

Knowledge-Based Logic Agents

Logic

First-Order Logic

Syntax-Semantics in FOL

Simple usage, Inference Procedure

Inference in FOL

Reduction

Inference Rules

Forward Chaining

Backward Chaining

Resolution.

Logical Agents (Knowledge Based Agents)

"Logical AI:

The idea is that an agent can represent knowledge of its world, its goals and the current situation by sentences in logic and decide what to do by inferring that a certain action or course of action is appropriate to achieve its goals."

Search problems Markov decision processes Adversarial games Reffex States States Constraint satisfaction problems Bayesian networks Variables "High-level intelligence"

Main Components of Knowledge base system

- Knowledge base: A knowledge base is a centralized repository of data specific Models to a given field.
- A knowledge base is a set of sentences
- Sentence is not identical to the sentences of English and other natural languages.
- Knowledge representation: Knowledge representation language and represents some assertion about the world.
- Sometimes we dignify a sentence with the name axiom, when the sentence is taken as given without being derived from other sentences.
- Inference: Deriving new sentences from old.
- Inference must obey the requirement that when one ASKs a question of the knowledge base, the answer should follow from what has been told (or TELLed) to the knowledge base previously
- Inference engine: Is set of Logic rules to retrieve conclusions from the combination of Models to execute inputs with less complexity

Knowledge-based agents

- Intelligent agents need knowledge about the world to choose good actions/decisions.
- Knowledge = {sentences} in a knowledge representation language (formal language).
- A sentence is an assertion about the world.
- A knowledge-based agent is composed of:
 - Knowledge base: domain-specific content.
 - 2. Inference mechanism: domain-independent algorithms.

Knowledge based Agent

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

Representation language are hidden inside three functions that implement the interface between the sensors and actuators on one side and the core representation and reasoning system on the other

- 1. MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent perceived the given percept at the given time
- 2. MAKE-ACTION-QUERY constructs a sentence that asks what action should be done at the current time
- 3. MAKE-ACTION-SENTENCE constructs a sentence asserting that the chosen action was executed

The details of the inference mechanisms are hidden inside **TELL and ASK**

Logical Concepts

- Mathematical foundations=**symbolic** representation to help statements and arguments through the study of formal systems and inferences.
- Formal logic deals with symbolic abstractions.
 - A) Propositional logic: Declarative statement(either true/false, not both)
 - B)Predicate Logic(First Order Logic): (Getting proposition from propositions using logic)(consistency/inconsistency/validity)

Propositional Calculus:

- 1. Is a language of propositions
- 2. It uses a set of rules and connectors called operators (~(Not), v(OR), ^(And), ->(Implies), <->(equivalence)

Logic

- Knowledge base: a set of sentences in a formal representation, logic
- Logics: are formal languages for representing knowledge to extract conclusions
 - Syntax: defines well-formed sentences in the language
 - Semantic: defines the truth or meaning of sentences in a world
- Inference: a procedure to derive a new sentence from other ones.
- Logical entailment: is a relationship between sentences. It means that a sentence follows logically from other sentences

$$KB \models \alpha$$

Propositional logic

- Propositional logic (PL) is the simplest logic.
- Syntax of PL: defines the allowable sentences or propositions.
- Definition (Proposition): A proposition is a declarative statement that's either True or False.
- Atomic proposition: single proposition symbol. Each symbol is a proposition. Notation: upper case letters and may contain subscripts.
- Compound proposition: constructed from from atomic propositions using parentheses and logical connectives.

Atomic proposition

Examples of atomic propositions:

- 2+2=4 is a true proposition
- $W_{1,3}$ is a proposition. It is true if there is a Wumpus in [1,3]
- "If there is a stench in [1,2] then there is a Wumpus in [1,3]" is a proposition
- "How are you?" or "Hello!" are not propositions. In general, statement that are questions, commands, or opinions are not propositions.

Compound proposition

Examples of compound/complex propositions:

Let p, p_1 , and p_2 be propositions

- Negation $\neg p$ is also a proposition. We call a **literal** either an atomic proposition or its negation. E.g., $W_{1,3}$ is a positive literal, and $\neg W_{1,3}$ is a negative literal.
- Conjunction $p_1 \wedge p_2$. E.g., $W_{1,3} \wedge P_{3,1}$
- Disjunction $p_1 \vee p_2$ E.g., $W_{1,3} \vee P_{3,1}$
- Implication $p_1 \rightarrow p_2$. E.g., $W_{1,3} \wedge P_{3,1} \rightarrow \neg W_{2,2}$
- If and only if $p_1 \leftrightarrow p_2$. E.g., $W_{1,3} \leftrightarrow \neg W_{2,2}$

Truth tables

- The semantics define the rules to determine the truth of a sentence.
- Semantics can be specified by truth tables.
- Boolean values domain: T,F
- n-tuple: $(x_1, x_2, ..., x_n)$
- Operator on n-tuples : $g(x_1 = v_1, x_2 = v_2, ..., x_n = v_n)$
- Definition: A truth table defines an operator g on n- tuples by specifying a boolean value for each tuple
- Number of rows in a truth table? $R = 2^n$

Building Truth Tables

Negation:

p	¬р	
Т	F	
F	Т	

Conjunction:

	_		
P	₽ q	$p \wedge q$	
T	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

Disjunction:

	p	9.	p∨q	
	T	Т	Т	
	Т	F	T	
	F	T	T	
Interpretation \rightarrow	F	F	F	

- 1. Formula/model=Compound Statement/Proposition= $\acute{\alpha}$
- 2. If a formula contains n atoms, it requires 2 power n interpretations

Exclusive or:

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication:

p	q	$p \rightarrow q$
Т	Т	Т
T	F	F.
F	Т	T
F	F	Т

Biconditional or If and only if (IFF):

p	q	$p \leftrightarrow q$
T	Т	T
T	F	F
F	Т	F
F	F	Т

Truth Tables for connectives

Summary:

P	Q	$\bigcirc P$	$P(\wedge)Q$	$P(\vee)Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Building Truth tables

Precedence of operators

- Just like arithmetic operators, there is an operator precedence when evaluating logical operators as follows:
 - Expressions in parentheses are processed (inside to outside)
 - 2. Negation
 - 3. AND
 - 4. OR
 - 5. Implication
 - 6. Biconditional
 - 7. Left to right
- Use parentheses whenever you have any doubt!

Building Truth tables

Building propositions

Р	q	r	¬r	pvq	$\mathbf{p} \vee \mathbf{q} \rightarrow \neg \mathbf{r}$
Т	Т	Т	F	Т	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	F
F	т	F	Т	Т	Т
F	F	Т	F	F	Т
F	F	F	Т	F	Т

Logical equivalence

- Two propositions p and q are logically equivalent if and only if the columns in the truth table giving their truth values agree.
- We write this as $p \Leftrightarrow q$ or $p \equiv q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	
T	Т	F	T	T	
Т	F	F	F	F	
F	T	T	T	T	
F	F	Т	Т	Т	

$$\mathrm{show}\, p \wedge (\sim q \vee p) \equiv p$$

Properties of operators

- Commutativity: $p \wedge q = q \wedge p$ $p \vee q = q \vee p$
- Associativity: $(p \land q) \land r = p \land (q \land r)$ $(p \lor q) \lor r = p \lor (q \lor r)$
- Identity element: $p \wedge True = p$ $p \vee True = True$
- $\bullet \neg (\neg p) = p$
- $p \wedge p = p$ $p \vee p = p$
- Distributivity:

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$$

- $p \wedge (\neg p) = False \text{ and } p \vee (\neg p) = True$
- DeMorgan's laws:

$$\neg(p \land q) = (\neg p) \lor (\neg q)$$
$$\neg(p \lor q) = (\neg p) \land (\neg q)$$

Properties of Operators

TABLE 6 Logical Equivalences.				
Equivalence	Name			
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws			
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws			
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws			
$\neg(\neg p) \equiv p$	Double negation law			
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws			
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws			
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws			
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws			

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Inference (Modus Ponens)

Inference (Modus Ponens)

Horn clauses: a proposition of the form:

$$p_1 \wedge \ldots \wedge p_n \to q$$

Modus Ponens deals with Horn clauses:

$$p_1,\ldots,p_n \qquad (p_1\wedge\ldots\wedge p_n)\to q$$

Inference (Modus Tollens)

$$\frac{\neg q \quad p \to q}{\neg p}$$

$$\frac{\neg beach \quad hot \to beach}{\neg hot}$$

$$\frac{\neg hot}{\neg beach}$$
beach.

Common Rules

• Addition:
$$\frac{p}{p \vee q}$$

Disjunctive-syllogism:

$$\frac{p \to q}{q \to r}$$

$$\frac{q \to r}{p \to r}$$

Tautology and contradiction

- Tautology is a proposition which is always true
- Contradiction is a proposition which is always false
- Contingency is a proposition which is neither a tautology or a contradiction

P	$\neg p$	$p \lor \neg p$	$p \land \neg p$
Т	F	T	F
F	Т	Т	F

Contrapositive, inverse, etc.

- Given an implication $p \rightarrow q$
- The converse is: $q \rightarrow p$
- The contrapositive is: $\neg q \rightarrow \neg p$
- The inverse is: $\neg p \rightarrow \neg q$

Example: Hot is a sufficient condition for my going to the beach.

- The implication is:
- The converse is:
- The contrapositive is:
- The inverse is:

Entailment and Inference

Semantics: Determine entailment by Model Checking, that
is enumerate all models and show that the sentence α must
hold in all models.

$$KB \models \alpha$$

• Syntax: Determine entailment by Theorem Proving, that is apply rules of inference to KB to build a proof of α without enumerating and checking all models.

$$KB \vdash \alpha$$

But how are entailment and inference related?

Soundness & Completeness

- We want an inference algorithm that is:
 - Sound: does not infer false formulas, that is, derives only entailed sentences.

$$\{\alpha|KB \vdash \alpha\} \subseteq \{KB \models \alpha\}$$

Complete: derives ALL entailed sentences.

$$\{\alpha | KB \vdash \alpha\} \supseteq \{KB \models \alpha\}$$

Validity & satisfiability

- A sentence is valid (aka tautology) if it is true in all models,
 e.g., True, p ∨ p, p ⇒ p, (p ∧ (p ⇒ q)) ⇒ q
- Validity is connected to inference via the Deduction Theorem: $KB \models \alpha \ IFF \ (KB \Rightarrow \alpha)$ is valid
- A sentence is satisfiable if it is true in some model e.g., p ∨ q,r
- A sentence is unsatisfiable if it is true in no models e.g., p ∧ ¬p
- Satisfiability is connected to inference via the following: $KB \models \alpha \ IFF \ (KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by contradiction

Determining entailment

- Given a Knowledge Base (KB) (set of sentences in PL), given a query α , output whether KB entails α , noted: $KB \models \alpha$
- We will see two ways of doing proofs in PL:
 - Model checking enumerate the models (truth table enumeration, exponential).
 - Application of inference rules (proof checking/theorem proving): Syntactic derivations with rules like Modus Ponens (Backward chaining and forward chaining). A proof is a sequence of inference rule applications.

Validity of Formula

- Truth table method is a time waste and tedious process,
- Instead can check the same by the below methods
 - 1. Natural Deduction Systems
 - 2. Axiomatic System
 - 3. Semantic tableau method
 - 4. Resolution refutation method

First Order Logic

- Alternative to PL: Another more powerful language, First Order Logic (FOL).
- Syntax of FOL:
 - Terms are either:
 - Constants symbols (e.g., A, 10, Columbia),
 - * Variables (e.g., x, y)
 - * Functions of terms, e.g., sqrt(x), sum(1,2).
 - Atomic formulas: predicates applied to terms, e.g., brother(x,y), above(A,B)
 - Connectives: \land , \lor , \Rightarrow , \Leftrightarrow , \neg
 - Equality: =
 - Quantifiers: ∀ ∃
 - Connectives, equality, quantifiers can be applied to atomic formulas to create sentences in FOL.

First Order Logic

All squares are clean:

$$\forall x \ Square(x) \Rightarrow Clean(x)$$

There exists some dirty squares:

$$\exists x \ Square(x) \land \neg Clean(x)$$

Question: Now, can we express that some squares have chairs on top?

Note:

- $\forall x \ P(x)$ is like $P(A) \land P(B) \land \dots$
- $\exists x \ P(x)$ is like $P(A) \lor P(B) \lor \dots$
- $\neg \forall x \ P(x)$ is like $\exists \ x \ \neg P(x)$
- $\forall x \exists y \ likes(x,y)$ is NOT like $\exists y \ \forall x \ likes(x,y)$

First Order Logic

All birds fly:

$$\forall x \ bird(x) \Rightarrow Fly(x)$$

All birds except penguins fly:

$$\forall x \ bird(x) \land \neg penguin(x) \Rightarrow Fly(x)$$

Every kid likes candy:

$$\forall x \ Kid(x) \Rightarrow Likes(x, candy)$$

Some kids like candy:

$$\exists x \ Kid(x) \land Likes(x, candy)$$

Brothers are sibling:

$$\forall x, y \; Brothers(x, y) \Rightarrow Sibling(x, y)$$

One's mother is one's female parent:

$$\forall x, y \; Mother(x, y) \Leftrightarrow Female(x) \land Parent(x, y)$$

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - Syntax: formal structure of sentences
 - Semantics: truth of sentences wrt models
 - Entailment: necessary truth of one sentence given another
 - Inference: deriving sentences from other sentences
 - Soundness: derivations produce only entailed sentences
 - Completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Forward, backward chaining are linear in time, complete for Horn clauses Resolution is complete for propositional logic.

Natural Deduction System

- ND is based on the set of few deductive inference rules.
- The name natural deductive system is given because it mimics the pattern of natural reasoning.
- It has about 10 deductive inference rules.

Conventions:

- E for Elimination, I for Introducing.
- P, P_k , $(1 \le k \le n)$ are atoms.
- α_k , (1 \leq k \leq n) and β are formulae.

ND RULES:

Rule 1: I- Λ (Introducing Λ)

I- Λ : If $P_1, P_2, ..., P_n$ then $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$

Interpretation: If we have hypothesized or proved P_1 , P_2 , ... and P_n , then their conjunction $P_1 \wedge P_2 \wedge ... \wedge P_n$ is also proved or derived.

Rule 2: E- Λ (Eliminating Λ)

E- Λ : If P1 Λ P2 Λ ... Λ Pn then Pi (1 \leq i \leq n)

Interpretation: If we have proved P1 Λ P2 Λ ... Λ Pn , then any Pi is also proved or derived. This rule shows that Λ can be eliminated to yield one of its conjuncts.

Rule 3: I-V (Introducing V)

I-V: If P_i (1 \leq i \leq n) then $P_1VP_2V...VP_n$

Interpretation: If any Pi $(1 \le i \le n)$ is proved, then $P_1 \vee ... \vee P_n$ is also proved.

ND RULES...

```
Rule 4: E-V (Eliminating V)
```

E-V: If $P_1 \vee ... \vee P_n, P_1 \rightarrow P, ..., P_n \rightarrow P$ then P

Interpretation: If $P_1 \vee ... \vee P_n$, $P_1 \rightarrow P$, ..., and $P_n \rightarrow P$ are proved, then P is proved.

Rule 5: I- \rightarrow (Introducing \rightarrow)

I- \rightarrow : If from α_1 , ..., α_n infer β is proved then $\alpha_1 \wedge ... \wedge \alpha_n \rightarrow \beta$ is proved

Interpretation: If given α_1 , α_2 , ...and α_n to be proved and from these we deduce β then $\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n \rightarrow \beta$ is also proved.

Rule 6: E- \rightarrow (Eliminating \rightarrow) - Modus Ponen E- \rightarrow : If P₁ \rightarrow P, P₁ then P

ND RULES...

```
Rule 7: I \rightarrow (Introducing \leftrightarrow)
    I \rightarrow : If P_1 \rightarrow P_2, P_2 \rightarrow P_1 then P_1 \leftrightarrow P_2
    Rule 8: E \rightarrow (Elimination \leftrightarrow)
    E \rightarrow : If P_1 \leftrightarrow P_2 then P_1 \rightarrow P_2, P_2 \rightarrow P_1
    Rule 9: I- ~ (Introducing ~)
    I- \sim : If from P infer P<sub>1</sub> \Lambda \sim P<sub>1</sub> is proved then
    ~P is proved
Rule 10: E- ~ (Eliminating ~)
   E-~ : If from ~P infer P1 A ~P1 is proved
   then P is proved
```

- If a formula β is derived / proved from a set of premises / hypotheses { α₁,..., α_n },
 - then one can write it as from $\alpha_1, ..., \alpha_n$ infer β .
- In natural deductive system,
 - a theorem to be proved should have a form from α1, ..., αn infer β.
- Theorem infer β means that
 - there are no premises and β is true under all interpretations i.e., β is a tautology or valid.

- If we assume that α → β is a premise, then we conclude that β is proved if α is given i.e.,
 - if 'from α infer β ' is a theorem then $\alpha \to \beta$ is concluded.
 - The converse of this is also true.
- Deduction Theorem: Infer $(\alpha_1 \Lambda \alpha_2 \Lambda ... \Lambda \alpha_n \rightarrow \beta)$ is a theorem of natural deductive system if and only if

from $\alpha_1, \alpha_2, \ldots, \alpha_n$ infer β is a theorem.

Useful tips: To prove a formula $\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n \rightarrow \beta$, it is sufficient to prove a theorem from $\alpha_1, \alpha_2, ..., \alpha_n$ infer β .

Example

Example1: Prove that $P\Lambda(QVR)$ follows from $P\Lambda Q$

Solution: This problem is restated in natural deductive system as "from P Λ Q infer P Λ (Q V R)". The formal proof is given as follows:

{Theorem}	from $P \land Q$ infer $P \land (Q \lor R)$	
{ premise}	PΛQ	(1)
$\{ E-\Lambda, (1) \}$	P	(2)
$\{ E-\Lambda , (1) \}$	Q	(3)
{ I-V , (3) }	QVR	(4)
{ I-Λ, (2, 4)}	P Λ (Q V R)	Conclusion

Axiomatic System

- AS is based on the set of only three axioms and one rule of deduction.
 - It is minimal in structure but as powerful as the truth table and natural deduction approaches.
 - The proofs of the theorems are often difficult and require a guess in selection of appropriate axiom(s) and rules.
 - These methods basically require forward chaining strategy where we start with the given hypotheses and prove the goal.
 - Only two logical operators not(~) and implies (->) are allowed.

(V , Λ , <-> can be converted into the above operators).

Example:

A
$$\Lambda$$
 B = \sim (A-> \sim B)
A \vee B = \sim A->B
A<-> B = (A->B) Λ (B->A) = \sim [((A->B) -> \sim ((B->A)]

Three axioms and one rule of deduction.

Axiom1 (A1):
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$

Axiom2 (A2): $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
Axiom3 (A3): $(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \alpha)$
Modus Ponen (MP) defined as follows:

Hypotheses: $\alpha \rightarrow \beta$ and α *Consequent:* β

Definition: A *deduction* of a formula in Axiomatic System for Propositional Logic is a sequence of well-formed formulae $\alpha_1, \alpha_2, ..., \alpha_n$ such that for each i, $(1 \le i \le n)$, either

- Either α_i is an axiom or α_i is a hypothesis (given to be true)
- Or α_i is derived from α_j and α_k where j, k < i using modus ponen inference rule.
- We call α_i to be a deductive consequence of {α₁, ...,α_{i-1}}.
- It is denoted by {α₁, ..., α_{i-1} } |- α_i. More formally, deductive consequence is defined on next slide.

Examples

Establish the following:

Ex1:

 $\{Q\} \mid - (P \rightarrow Q) \text{ i.e.,} P \rightarrow Q \text{ is a deductive consequence of } \{Q\}.$

Ex2:

```
\{P \rightarrow Q, Q \rightarrow R\} \mid - (P \rightarrow R) \text{ i.e., } P \rightarrow R \text{ is a}
deductive consequence of \{P \rightarrow Q, Q \rightarrow R\}.
      {Hypothesis} P \rightarrow Q
                                                                         (1)
      {Hypothesis} Q \rightarrow R
                                                                                    (2)
      {Axiom A1} (Q \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R)) (3)
      \{MP, (2, 3)\} P \rightarrow (Q \rightarrow R)
                                                                                    (4)
      {Axiom A2} (P \rightarrow (Q \rightarrow R)) \rightarrow
                                        ((P \rightarrow Q) \rightarrow (P \rightarrow R))
                                                                                    (5)
      \{MP, (4, 5)\}\ (P \to Q) \to (P \to R)
      \{MP, (1, 6)\}\ P \to R
                                                              proved
```

Semantic Tableau System

Earlier approaches require

 construction of proof of a formula from given set of formulae and are called direct methods.

In semantic tableaux,

 the set of rules are applied systematically on a formula or set of formulae to establish its consistency or inconsistency.

Semantic tableau

- binary tree constructed by using semantic rules formula as a root
- Assume α and β be any two formulae.

- RULES
- Let α and β be any two formulae.

Rule 1: A tableau for a formula $(\alpha \land \beta)$ is constructed by adding both α and β to the same path (branch). This can be represented as follows:

- Semantic tableau
 - binary tree constructed by using semantic rules formula as a root
- Assume α and β be any two formulae.

Interpretation: $\alpha \land \beta$ is true if both α and β are true

Rule 2: A tableau for a formula $^{\sim}$ (α Λ β) is constructed by adding two alternative paths one containing $^{\sim}$ α and other containing $^{\sim}$ β

Interpretation: $\sim (\alpha \ \Lambda \ \beta)$ is true if either $\sim \alpha$ or $\sim \beta$ is true

Rule 3: A tableau for a formula (α V β) is constructed by adding two new paths one containing α and other containing β .

Interpretation: α V β is true if either α or β is true

Rule 4: A tableau for a formula $^{\sim}$ (α V β) is constructed by adding both $^{\sim}$ α and $^{\sim}$ β to the same path. This can be expressed as follows:

Rule 5: Semantic tableau for $\sim \alpha$

Rule 6: Semantic tableau for $\alpha \rightarrow \beta$

Rule 7: Semantic tableau for \sim ($\alpha \rightarrow \beta$)

$$\begin{bmatrix} \alpha & (\alpha \rightarrow \beta) \\ \alpha & \\ \alpha & \beta \end{bmatrix}$$

Rule 8: Semantic tableau for $\alpha \leftrightarrow \beta \alpha$ $\leftrightarrow \beta \cong (\alpha \land \beta) \lor (\alpha \land \alpha \land \beta)$

Rule 9: Semantic tableau for $(\alpha \leftrightarrow \beta)$ $(\alpha \leftrightarrow \beta) \cong (\alpha \land \beta) \lor (\alpha \land \beta)$

$$\alpha \wedge \beta$$
 $\alpha \wedge \beta$
 $\alpha \wedge \beta$
 $\alpha \wedge \beta$

Consistency and Inconsistency: Satisfiability and Unsatisfiability

If an atom P and ~ P appear on a same path of a semantic tableau,

- then inconsistency is indicated and such path is said to be contradictory or closed (finished) path.
- Even if one path remains non contradictory or unclosed (open), then the formula α at the root of a tableau is consistent.

Valuation

- A valuation v is said to be a model of α (or v satisfies α) iff v (α) = T.
- In tableaux approach, model for a consistent formula α is constructed as follows:
 - On an open path, assign truth values to atoms (positive or negative) of α which is at the root of a tableau such that α is made to be true.
 - It is achieved by assigning truth value T to each atomic formula (positive or negative) on that path.

Example: Show that

 $\alpha: (P \land Q \rightarrow R) \land (^P \rightarrow S) \land Q \land ^R \land ^S$ is inconsistent(Unsatisfiable) using tableaux method.

Problem: Show that α : (Q Λ ^R) Λ (R \rightarrow P) is consistent(satisfiable) and find its model.

Solution:

- Since tableau for α has open paths, we conclude that α is consistent.
- The models are constructed by assigning T to all atomic formulae appearing on open paths.
 - Assign Q = T and ~ R = T i.e., R = F.
 - So { Q = T, R = F } is a model of α.
 - Assign Q = T and ~ R = T and P = T.
 - So { P = T, Q = T, R = F } is another model.

Useful Tip:

 Thumb rule for constructing a tableau is to apply non branching rules before the branching rules in any order

Soundness and Completeness

Theorem: (Soundness)

If α is tableau provable ($|-\alpha|$), then α is valid ($|=\alpha|$) i.e., $|-\alpha| \Rightarrow |=\alpha$.

Theorem: (Completeness)

If α is valid, then α is tableau provable i.e., $|= \alpha \implies |- \alpha$.

- If S is a set of formulae. The formula α is said to be tableau provable from $S(S|-\alpha)$ if there is a contradictory tableau from S with $\sim \alpha$ as root/
- A formula lpha is said to be logical consequence of a set S if and only if lpha is tableau provable from S
- If α is tableau provable (|- α) then it is also valid(|= α) and vice versa
- Clause: it is used to denote a formula containing the Boolean operators ~ and V. can be Ck=(L1vL1VL3.....)
- A formula is said to be in **normal form**, if it is constructed using only natural connectives {~, V, ^}
- Literal Lij is a positive or negative atoms

Example - Validity

Example: Show that $\alpha : P \rightarrow (Q \rightarrow P)$ is valid

Solution: In order to show that α is a valid, we will try to show that α is tableau provable i.e., α is inconsistent.

$$\begin{array}{lll} \{ \mbox{T-root} \} & \mbox{$^{\sim}$} (\mbox{P} \rightarrow (\mbox{Q} \rightarrow \mbox{P})) & (1) \\ \{ \mbox{Apply rule 7 to 1} \} & \mbox{P} & \mbox{\sim} (\mbox{Q} \rightarrow \mbox{P}) & (2) \\ \{ \mbox{Apply rule 7 to 2} \} & \mbox{Q} & \mbox{\sim} \\ & \mbox{$Closed $\{P, \mbox{$\sim$} P\}$} \\ \end{array}$$

Hence $P \rightarrow (Q \rightarrow P)$ is valid.

Resolution and Refutation

- Resolution refutation is another simple method to prove a formula by contradiction.
 - Here negation of goal to be proved is added to given set of clauses.
 - It is shown then that there is a refutation in new set using resolution principle.
- Resolution: During this process we need to identify
 - two clauses, one with positive atom (P) and other with negative atom (P) for the application of resolution rule.
- Resolution is based on modus ponen inference rule.
 - This method is most favoured for developing computer based theorem provers.
 - Automatic theorem provers using resolution are simple and efficient systems.
- Resolution is performed on special types of formulae called clauses.
 - Clause is propositional formula expressed using
 - {V, ~} operators.

Conjunctive and Disjunctive Normal Forms

- In Disjunctive Normal Form (DNF),
 - a formula is represented in the form
 - (L₁₁ Λ Λ L_{1n}) V V (L_{m1} Λ Λ L_{mk}), where all L_{ij} are literals. It is a disjunction of conjunction.
- In Conjunctive Normal Form (CNF),
 - a formula is represented in the form
 - $(L_{11} \ V \dots \ V \ L_{1n}) \ \Lambda \dots \dots \ \Lambda \ (L_{p1} \ V \dots \ V \ L_{pm})$,
 - where all L_{ij} are literals. It is a conjunction of disjunction.
- A clause is a special formula expressed as disjunction of literals. If a clause contains only one literal, then it is called unit clause.

Conversion of a Formula to its CNF

- Each formula in Propositional Logic can be easily transformed into its equivalent DNF or CNF representation using equivalence laws.
 - Eliminate → and ↔ by using the following equivalence laws.

$$P \rightarrow Q \simeq P \vee Q$$

 $P \leftrightarrow Q \simeq (P \rightarrow Q) \wedge (Q \rightarrow P)$

- Eliminate double negation signs by using

Use De Morgan's laws to push ~ (negation) immediately before atomic formula.

$$^{\sim}(P \Lambda Q) \cong ^{\sim}P V ^{\sim}Q$$

 $^{\sim}(P V Q) \cong ^{\sim}P \Lambda ^{\sim}Q$

Use distributive law to get CNF.

$$P V (Q \Lambda R) \cong (P V Q) \Lambda (P V R)$$

- We notice that CNF representation of a formula is of the form
 - (C₁ Λ..... ΛC_n), where each C_k, (1≤ k ≤ n) is a clause that is disjunction of literals.

Resolution of Clauses

- If two clauses C₁ and C₂ contain a complementary pair of literals {L, ~L}, then
 - these clauses can be resolved together by deleting L from C₁ and ~ L from C₂ and constructing a new clause by the disjunction of the remaining literals in C₁ and C₂.
- The new clause thus generated is called resolvent of C₁ and C₂.
 - Here C₁ and C₂ are called parents of resolved clause.
 - If the resolvent contains one or more set of complementary pair of literals, then resolvent is always true.

Resolution Tree

- Inverted binary tree is generated with the last node of the binary tree to be a resolvent.
- This also called resolution tree.

Example: Find resolvent of:

$$C_1 = P V Q V R$$

 $C_2 = Q V W$
 $C_3 = P V W$

Example-Resolution Tree

Thus Resolvent(C₁,C₂, C₃) = R V ~W

Example: "Mary will get her degree if she registers as a student and pass her exam. She has registered herself as a student. She has passed her exam". Show that she will get a degree.

Solution: Symbolize above statements as follows: R: Mary is a registered student
P: Mary has passed her exam D: Mary gets her degree

The formulae corresponding to above listed sentences are as follows:

Mary will get her degree if she registers as a student and pass her exam.

$$R \wedge P \rightarrow D \cong (R \vee P \vee D)$$

- She has registered herself as a student.
- She has passed her exam.
- Conclude "Mary will get a degree".
 D

Example – Cont...

- Set of clauses are:
 - S = {~R V ~ P V D, R, P}
- Add negation of "Mary gets her degree (= D)" to S.
- New set S' is:
 - S' = {~R V ~ P V D, R, P, ~D}
- We can easily see that empty clause is deduced from above set.
- Hence we can conclude that "Mary gets her degree"

Deriving Contradiction

