Regresion - Entrega 2

2022-10-06

Regresion - MARIAJOSE MURILLO

En el 2021 fueron las elecciones presidenciales, cuya segunda vuelta fue disputada por Keiko Fujimori y Pedro Castillo, donde resulto ganador el segundo, sin embargo, que variables pudieron influenciar en su victoria?

- "dep": departamento del Peru
- "prov": provincia del Peru
- "habil": electores habiles tambien se usara como variable de control

Variable dependiente:

"casti": votos a Pedro Castillo

Variables independientes:

"gas": personas con acceso a gas GLP

"sis": personas con acceso al seguro de salud

"acsedu": personas con acceso a la educacion

Primero veamos los contenidos:

```
rm(list = ls())
knitr::knit_hooks$set(inline = as.character)
gitLink="https://github.com/MajoMurillo/Estadistica2---Trabajo/blob/main/dataCGSE.xlsx?raw=true"
dataCGSE=rio::import(gitLink)

library(magrittr)
dataCGSE%%
    rmarkdown::paged_table()
```

	Dep	Prov	casti	gas	sis	acsedu	habil
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Amazonas	Chachapoyas	25980	10641	3286	18668	62110
2	Amazonas	Bagua	8374	9917	54088	24452	20917
3	Amazonas	Bongara	15671	4659	18057	7536	40752
4	Amazonas	Condorcanqui	14024	1536	33802	16281	38273
5	Amazonas	Luya	12606	6339	36541	13777	35017
6	Amazonas	Rodriguez de Mendoza	7967	3781	20815	8693	22886
7	Amazonas	Utcubamba	36540	16078	80664	34334	86231
8	Ancash	Huaraz	2325	30307	90834	55893	5817
9	Ancash	Aija	5056	478	4542	1871	10921
10	Ancash	Antonio Raymondi	2860	776	11048	4966	5968
1-10	of 196 rows		Previous	1 2	3 4	5 6	20 Next

Vemos que toda las variables son numericas a excepcion de "departamento" y "provincia" por lo que primero se optara por una regresion lineal

```
str(dataCGSE)
```

```
## 'data.frame': 196 obs. of 7 variables:
## $ Dep : chr "Amazonas" "Amazonas" "Amazonas" ...
## $ Prov : chr "Chachapoyas" "Bagua" "Bongara" "Condorcanqui" ...
## $ casti : num 25980 8374 15671 14024 12606 ...
## $ gas : num 16641 9917 4659 1536 6339 ...
## $ sis : num 3286 54088 18057 33802 36541 ...
## $ acsedu: num 18668 24452 7536 16281 13777 ...
## $ habil : num 62110 20917 40752 38273 35017 ...
```

Nuestra primera hipotesis es: A nivel provincial, la cantidad de personas que votaron por Pedro Castillo estara afectada por si usan gas GLP

```
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 3 > 1' in coercion to 'logical(1)'
```

Tabla 1: Resumen de Regresion Lineal

OLS votantes de Castillo (1)

(Intercept) 43534.236***

OLS votantes de Castillo (1)

	(10500.202)	
gas	0.026	
	(0.078)	
Num.Obs.	196	
R2	0.001	
R2 Adj.	-0.005	
AIC	5217.7	
BIC	5227.5	
Log.Lik.	-2605.852	
F	0.112	
RMSE	143806.91	
+ p < 0.1, * p < 0.0	05, ** p < 0.01, *** p < 0.	.001

Como vemos en la Tabla 1, el predictor covariado (gas) salio con un valor negativo y no significativo (ya que sale sin asteriscos), mientras que su R2 ajustado sale tambien con valores negativos. Sin embargo no nos da un buen ajuste y dificilmente puede ser util :

```
par(mfrow = c(2, 2))
plot(rl1, 1,caption = '');title(main="Linealidad")
plot(rl1, 2, caption = '');title(main="Normalidad")
plot(rl1, 3, caption = '');title(main="Homocedasticidad")
plot(rl1, 5, caption = '');title(main="Influyentes")
```


Para mejorar este modelo, podemos incluir la variable de control ("habil")

Regresiones Lineales

OLS votantes de Castillo (1) OLS votantes de Castillo (2

(Intercept)	43534.236***	12076.167***
	(10500.202)	(1601.736)
gas	0.026	-0.001
	(0.078)	(0.012)
habil		0.259***
		(0.003)
Num.Obs.	196	196
R2	0.001	0.978
R2 Adj.	-0.005	0.978

OLS votantes de Castillo (1) OLS votantes de Castillo (2

AIC	5217.7	4472.6
BIC	5227.5	4485.7
Log.Lik.	-2605.852	-2232.276
F	0.112	4271.803
RMSE	143806.91	21380.24

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Se presenta una mejora en el R2 ajustado

```
par(mfrow = c(2, 2))
plot(r12, 1,caption = '');title(main="Linealidad")
plot(r12, 2, caption = '');title(main="Normalidad")
plot(r12, 3, caption = '');title(main="Homocedasticidad")
plot(r12, 5, caption = '');title(main="Influyentes")
```


Para entender mejor la naturaleza de la variable, hacemos un grafico de barras

```
library(ggplot2)
VarProv=dataCGSE$casti
descris=list(min=min(VarProv),
             max=max(VarProv),
             media=round(mean(VarProv),2),
             var=round(var(VarProv),2),
             asim=round(e1071::skewness(VarProv),2))
base=ggplot(data=dataCGSE, aes(x=casti)) + theme_classic()
hist=base + geom_histogram(bins=50)
histInfo=hist + annotate("text", x = 100000, y = 150, color='grey50',
                        label = paste0("Minimo: ",descris$min))
histInfo = histInfo + annotate("text", x = 100000, y = 150, color='grey50',
                        label = paste0("Máximo: ",descris$max))
histInfo = histInfo + annotate("text", x = 100000, y = 140,
                        color='grey50',
                        label = paste0("Media: ",descris$media))
histInfo = histInfo + annotate("text", x = 100000, y = 130,
                        color='grey50',
                        label = paste0("Varianza: ",descris$var))
histInfo = histInfo + annotate("text", x = 100000, y = 120,
                        color='grey50',
                        label = paste0("Sesgo: ",descris$asim))
histInfo
```


Nos muestra un distribucion con sesgo positivo, recordandonos que nuestra variable dependiente representa valores enteros positivos

REGRESION POISSON

Comparamos el resultado de la regresion lineal anterior controlada por los electores habiles con la regresion Poisson

OLS votantes de Castillo (2) POISSON votantes de Castillo

Regresiones OLS y Poisson

	OLO Votantes de Gastino (2)	i Olooon votantes de Oasti
(Intercept)	12076.167***	-1.017***
	(1601.736)	(0.000)
gas	-0.001	0.000***
	(0.012)	(0.000)
habil	0.259***	
	(0.003)	
Num.Obs.	. 196	196
R2	0.978	
R2 Adj.	0.978	
AIC	4472.6	160876328.1
BIC	4485.7	160876334.7
Log.Lik.	-2232.276	-80438162.051
F	4271.803	11244.777
RMSE	21380.24	56156.41

Alteraremos nuestra primera hipotesis, siendo ahora: A nivel provincial, la cantidad de personas que votaron por Pedro Castillo esta afectada por si cuentan con gas GLP, seguro de salud y acceso a la educacion

Regresiones Poisson anidadas

POISSON votantes de Castillo (1) POISSON votantes de Castillo (2) (Intercept) -1.017*** (0.000)(0.000)0.000*** 0.000*** gas (0.000)(0.000)sis 0.000*** (0.000)acsedu 0.000*** (0.000)Num.Obs 196 196 AIC 160876328.1 160790071.6 BIC 160876334 7 160790084 7 Log.Lik. -80438162.051 -80395031.808 34452 273 F 11244 777

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

56156.41

Equidispersion

Uno de los supuestos en la Regresión Poisson es que la media y la varianza sean iguales.

RMSE

```
overdispersion=AER::dispersiontest(rp2,alternative='greater')$ p.value<0.05
underdispersion=AER::dispersiontest(rp2,alternative='less')$ p.value<0.05
# tabla
testResult=as.data.frame(rbind(overdispersion,underdispersion))
names(testResult)='Es probable?'
testResult%%kable(caption = "Test de Equidispersión")%%kableExtra::kable_styling()</pre>
```

39294.45

Test de Equidispersión

	Es probable?
overdispersion	TRUE
underdispersion	FALSE

Haciendo la equidispersion nos damos cuenta que es improbable que la varianza sea igual a la media, por lo que intentaremos hacer la Quasi Poisson para tratar la presencia de la sobredispersion

REGRESION QUASIPOISSON

Regresion Poisson y QuasiPoisson

	POISSON votantes de Castillo (2)	QUASIPOISSON votantes de Castillo
(Intercept)	-1.039***	-1.039***
	(0.000)	(0.029)
gas	0.000***	0.000*
	(0.000)	(0.000)
sis	0.000***	0.000**
	(0.000)	(0.000)
acsedu	0.000***	0.000
	(0.000)	(0.000)
Num.Obs.	196	196
AIC	160790071.6	
BIC	160790084.7	
Log.Lik.	-80395031.808	
F	34452.273	5.949

POISSON votantes de Castillo (2) QUASIPOISSON votantes de Castillo

RMSE	39294.45	39294.45
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001		

Nos muestra que los coeficientes son los mismos para ambos modelos.

Sin embargo (por recomendacion del profesor), usaremos la regresion Binomial Negativa como otra forma de tratar la sobredispersion, ademas porque es la mas utilizada para estos casos

REGRESION BINOMIAL NEGATIVA

```
h2off=formula(casti~gas + sis + acsedu + offset(log(habil)))
rbn=MASS::glm.nb(h2off,data=dataCGSE)
summary(rbn)
```

```
##
## Call:
## MASS::glm.nb(formula = h2off, data = dataCGSE, init.theta = 8.611336358,
##
      link = log)
##
## Deviance Residuals:
                               3Q
##
     Min
               1Q Median
## -4.7852 -0.6969 -0.0637 0.5161 1.8346
##
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.904e-01 3.071e-02 -25.737 <2e-16 ***
## gas 4.441e-07 1.109e-06 0.400 0.689
## sis -8.028e-07 7.209e-07 -1.114 0.265
## acsedu 2.494e-07 9.529e-07 0.262 0.793
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
\#\# (Dispersion parameter for Negative Binomial(8.6113) family taken to be 1)
##
##
       Null deviance: 202.42 on 195 degrees of freedom
## Residual deviance: 199.87 on 192 degrees of freedom
## AIC: 4026.7
##
## Number of Fisher Scoring iterations: 1
##
##
##
                 Theta: 8.611
##
            Std. Err.: 0.855
##
## 2 x log-likelihood: -4016.723
```

EXP() de la Regresiones Poisson, Quasi Poisson y Binomial Negativa

POISSON votantes de Castillo (2) QuasiPoisson votantes de Castillo (2) Binomial Negativa votantes de Castillo (2)

(Intercept)	0.3538***	0.3538***	0.4537***
	[0.3535, 0.3541]	[0.3343, 0.3742]	[0.4271, 0.4822]
gas	1.0000***	1.0000*	1.0000
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.0000, 1.0000]
sis	1.0000***	1.0000**	1.0000
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.0000, 1.0000]
acsedu	1.0000***	1.0000	1.0000
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.0000, 1.0000]
Num.Obs.	196	196	196
AIC	160790071.6		4026.7
BIC	160790084.7		4043.1
Log.Lik.	-80395031.808		-2008.361
F	34452.273	5.949	0.929
RMSE	39294.45	39294.45	117675.53

```
anova(rp2,rqp,rbn, test = "Chisq") %>%
kable(caption = "Tabla ANOVA para comparar modelos")%>%kableExtra::kable_styling(full_width = FALSE)
```

Tabla ANOVA para comparar modelos

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
192	1054200.7853	NA	NA	NA
192	1054200.7853	0	0	NA
192	199.8725	0	1054001	NA

Regresion - MARIA HERRARA

```
library(rio)
```

lkXLSX="https://github.com/MajoMurillo/Estadistica2---Trabajo/blob/main/indeppp.xlsx?raw=true" indps=import(lkXLSX)

 $lkXLSY="https://github.com/MajoMurillo/Estadistica2---Trabajo/raw/main/dependiente2.csv" \\ dep=import(lkXLSY)$

str(dep)

```
## 'data.frame': 196 obs. of 3 variables:

## $ Provincia: chr "Bagua" "Bongara" "Chachapoyas" "Condorcanqui" ...

## $ casti : int 25980 8374 15671 14024 12606 7967 36540 2325 5056 2860 ...

## $ habil : int 62110 20917 40752 38273 35017 22886 86231 5817 10921 5968 ...
```

dep\$casti=as.numeric(dep\$casti)

 ${\tt dep\$habil=as.numeric(dep\$habil)}$

hist(dep\$casti)

Histogram of dep\$casti


```
Vemos que tiene una asimetría positiva marcada
 indps$Código=NULL
 library(stringr)
 library(magrittr) # para %>%
 indps$depar=str_split(string = indps$Provincia,
                           pattern = ', provincia:',
simplify = T)[,1]
 indps$provin=str_split(string = indps$Provincia,
                            pattern = ', provincia:',
                             simplify = T)[,2]
 indns$Provincia=NULL
 indps=indps[,c(10:16)]
 depProvincia =trimws(depProvincia, which=c("both"), whitespace = "[\\\\]") # el espacio en blanco se determina "\\h\\v", o
 también "\t\r\n"
 indps provin = trimws (indps prov, which = c ("both"), white space = "[\h\v]") # el espacio en blanco se determina "\h\v", o tam
 bién "\t\r\n"
 names(indps)[7]=c("Provincia")
 str(dep)
 ## 'data.frame':
                     196 obs. of 3 variables:
 ## $ Provincia: chr "Bagua" "Bongara" "Chachapoyas" "Condorcanqui" ...
 ## $ casti
                : num 25980 8374 15671 14024 12606 ...
                : num 62110 20917 40752 38273 35017 ...
 ## $ habil
 indps=indps[,c(7,6,1:5)]
 basefinal=merge(indps,dep)
 str(basefinal)
                    193 obs. of 9 variables:
 ## 'data.frame':
 ## $ Provincia: chr "Abancay" "Acobamba" "Acomayo" "Aija" ...
## $ depar : chr "Apurímac" "Huancavelica" "Cusco" "Áncash" ...
 ## $ Ln
                 : num 55045 30231 18698 2517 12869 ...
 ## $ Luz
                : num 29588 8968 5364 1528 20021 ...
 ## $ LuzN
                : num 3050 2256 1541 413 7946 ...
 ## $ AgS
                : num 28019 7308 5593 1392 10980 ..
 ## $ AgN
                : num 2583 1914 472 111 3316 ...
               : num 43244 19060 13 2325 37196 ...
: num 82538 33498 19229 5817 90033 ...
 ## $ casti
 ## $ habil
 names(basefinal)
```

Número de personas que votaron por Castillo -> VD Personas que tienen Luz electrica en casa -> VI Personas que tienen Agua en casa -> VI Etniticidad ->VI

"AgS"

"LuzN"

Regresión:

[7] "AgN"

[1] "Provincia" "depar"

"casti"

"Ln"

"habil"

A nivel provincial, el voto hacia el postulante a presidencia Castillo está afectada por el acceso a bienes básicos como luz

"Luz"

Resumen de Regresion Lineal

OLS asegurados (I)

(Intercept)	11995.834***
	(1501.760)
Luz	0.939***
	(0.010)
Num.Obs.	193
R2	0.980
R2 Adj.	0.980
AIC	4381.5
BIC	4391.3
Log.Lik.	-2187.771
F	9522.276
RMSE	20265.22

summary(rl1)

```
##
## Call:
## lm(formula = h1, data = basefinal)
##
## Residuals:
##
    Min
           10 Median
                          30
                               Max
## -42273 -9441 -5629 3762 171295
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.200e+04 1.502e+03 7.988 1.26e-13 ***
## Luz
              9.395e-01 9.628e-03 97.582 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20370 on 191 degrees of freedom
## Multiple R-squared: 0.9803, Adjusted R-squared: 0.9802
## F-statistic: 9522 on 1 and 191 DF, p-value: < 2.2e-16
```

Vemos que la variable se valida (p-value menor a 0.05) y el R es alto, pero hacemos más pruebas, por ello procedemos a los supuestos:

```
par(mfrow = c(2, 2))
plot(rl1, 1,caption = '');title(main="Linealidad")
plot(rl1, 2, caption = '');title(main="Normalidad")
plot(rl1, 3, caption = '');title(main="Homocedasticidad")
plot(rl1, 5, caption = '');title(main="Influyentes")
```


Vemos que la linealidad esta cayendo, igualmente vemos casos atípicos y la homocedasticidad no cumple la recta. Por lo tanto vemos que los supuestos de la RLM caen.

Agregamos la variable habil(como variable control y hacemos otro RLM):

Regresiones Lineales

	OLS votos casti (I)	OLS votos casti (II)
(Intercept)	11995.834***	11768.166***
	(1501.760)	(1437.724)
Luz	0.939***	2.683***
	(0.010)	(0.404)
habil		-0.483***
		(0.112)
Num.Obs.	193	193
R2	0.980	0.982
R2 Adj.	0.980	0.982
AIC	4381.5	4365.4
BIC	4391.3	4378.5
Log.Lik.	-2187.771	-2178.724
F	9522.276	5211.024
RMSE	20265.22	19337.25

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Aunque el poder explicativo no aumento, podemos ver una posible multicolinealidad.

```
par(mfrow = c(2, 2))
plot(rl2, 1,caption = '');title(main="Linealidad")
plot(rl2, 2, caption = '');title(main="Normalidad")
plot(rl2, 3, caption = '');title(main="Homocedasticidad")
plot(rl2, 5, caption = '');title(main="Influyentes")
```


Vemos que aún fallan los supuestos , por lo que procedemos a hacer una revisión gráfica:

```
hist(basefinal$casti)
```

Histogram of basefinal\$casti


```
summary(basefinal$casti)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 13 8579 20001 43636 39090 1938450
```

Es histograma de la Figura 1.3 nos muestra una distrubución con asimetría positiva. Ello nos hace reflexionar que nuestra variable dependiente representa conteos, valores enteros positivos. La regresión lineal tendrá problemas pues asume que la variable dependiente tiene valores reales y no acotados. Por lo que procedemos a trabajar con Poisson. Además la media y la mediana no son iguales por lo que tendremos que ver el caso de equidispersión.

Regresiones OLS y Poisson

	OLS (II)	POISSON	
(Intercept)	11768.166***	-0.873***	
	(1437.724)	(0.000)	
Luz	2.683***	0.000***	
	(0.404)	(0.000)	
habil	-0.483***		
	(0.112)		
Num.Obs.	193	193	
R2	0.982		
R2 Adj.	0.982		
AIC	4365.4	155991169.8	
BIC	4378.5	155991176.3	
Log.Lik.	-2178.724	-77995582.909	
F	5211.024	341931.450	
RMSE	19337.25	18696.47	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			

```
par(mfrow = c(1, 2)) \  \  \# \  divide \  \  screen \  \  1 \  row \  \  2 \  columns \\ plot(basefinal\$casti,fitted(rp1),ylim=c(0,365000));title(main="Original versus Poisson") \\ plot(basefinal\$casti,fitted(rl2),ylim=c(0,365000));title(main="Original versus OLS \ncontrolando población") \\
```

Original versus Poisson

Original versus OLS controlando población

basefinal\$casti

Regresiones Poisson anidadas

POISSON votos casti (I) POISSON votos casti (II)

(Intercept)	-0.873***	-0.923***
	(0.000)	(0.001)
Luz	0.000***	0.000***
	(0.000)	(0.000)
AgS		0.000***
		(0.000)
Ln		0.000***
		(0.000)
Num.Obs.	193	193
AIC	155991169.8	155601895.2
BIC	155991176.3	155601908.3
Log.Lik.	-77995582.909	-77800943.603
F	341931.450	258227.365
RMSE	18696.47	10949.49

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

```
overdispersion=AER::dispersiontest(rp2,alternative='greater')$ p.value<0.05
underdispersion=AER::dispersiontest(rp2,alternative='less')$ p.value<0.05
# tabla
testResult=as.data.frame(rbind(overdispersion,underdispersion))
names(testResult)='Es probable''
testResult%>%kable(caption = "Test de Equidispersión")%>%kableExtra::kable_styling()
```

Test de Equidispersión

Es	pro	ba	Ы	е?

	·	
overdispersion	TRUE	
underdispersion	FALSE	

Regresiones Poisson y QuasiPoisson

POISSON votos casti (II) QUASIPOISSON votos casti (II)

(Intercept)	-0.923***	-0.923***
	(0.001)	(0.023)
Luz	0.000***	0.000***
	(0.000)	(0.000)
AgS	0.000***	0.000**
	(0.000)	(0.000)
Ln	0.000***	0.000***
	(0.000)	(0.000)
Num.Obs.	193	193
AIC	155601895.2	
BIC	155601908.3	
Log.Lik.	-77800943.603	
F	258227.365	143.980
RMSE	10949.49	10949.49

library(arm)

```
## Loading required package: MASS
```

```
## Loading required package: Matrix
```

```
## Loading required package: lme4
```

```
##
## Attaching package: 'lme4'
```

```
## The following object is masked from 'package:rio':
```

factorize

```
##
## arm (Version 1.13-1, built: 2022-8-25)
```

Working directory is C:/Users/jenni/Downloads/PUCP/Estadistica 2/TODO JUNTO AAAA

cbind(coefPoi=coef(rp2),coefQuasiPoi=coef(rqp))

```
## coefPoi coefQuasiPoi
## (Intercept) -9.234752e-01 -9.234752e-01
## Luz -7.552308e-06 -7.552308e-06
## AgS 6.562992e-06 6.562992e-06
## Ln 4.727818e-06
```

cbind(sePoi=se.coef(rp2),seQuasiPoi=se.coef(rqp))

```
## sePoi seQuasiPoi
## (Intercept) 5.313366e-04 2.250191e-02
## Luz 4.760398e-08 2.016011e-06
## AgS 5.461933e-08 2.313109e-06
## Ln 8.436558e-09 3.572852e-07
```

 $\verb|summary(rqp)$dispersion; summary(rp2)$dispersion|\\$

```
## [1] 1793.492
```

```
## [1] 1
```

EXP() de la Regresión Quasi Poisson (II) para Interpretación

QuasiPoisson votos casti (II) exponenciado

(Intercept)	0.3971***	
	[0.3799, 0.4149]	
Luz	1.0000***	
	[1.0000, 1.0000]	
AgS	1.0000**	
	[1.0000, 1.0000]	
Ln	1.0000***	
	[1.0000, 1.0000]	
Num.Obs.	193	
Log.Lik.		
F	143.980	
RMSE	10949.49	

EXP() de la Regresiones Poisson, Quasi Poisson y Binomial Negativa

Poisson asegurados (II)	QuasiPoisson asegurados (II)	Binomial Negativa asegurados (II)
-------------------------	------------------------------	-----------------------------------

(Intercept)	0.3971***	0.3971***	0.4109***
	[0.3967, 0.3976]	[0.3799, 0.4149]	[0.386, 0.4378]
_uz	1.0000***	1.0000***	1.0000*
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.000, 1.0000]
∖gS	1.0000***	1.0000**	1.0000+
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.000, 1.0000]
_n	1.0000***	1.0000***	1.0000***
	[1.0000, 1.0000]	[1.0000, 1.0000]	[1.000, 1.0000]
lum.Obs.	193	193	193
IC	155601895.2		3972.5
IIC	155601908.3		3988.9
.og.Lik.	-77800943.603		-1981.271
=	258227.365	143.980	20.182
RMSE	10949.49	10949.49	22582.72

```
anova(rp2,rqp,rbn, test = "Chisq") %>%
kable(caption = "Tabla ANOVA para comparar modelos")%>%kableExtra::kable_styling(full_width = FALSE)
```

Tabla ANOVA para comparar modelos

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
189	367015.3178	NA	NA	NA

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
189	367015.3178	0	0.0	NA
189	200.1307	0	366815.2	NA

Regresion - ANGELO PALOMINO

library(rio)

link="http://github.com/MajoMurillo/Estadistica2---Trabajo/blob/main/base%20de%20datos-Anelo.xlsx?raw=true"data=import(link)

```
library(summarytools)
library(kableExtra)
dfSummary(data,
    plain.ascii = FALSE,
    varnumbers = FALSE,
    style = "grid",
    graph.col=F,
    na.col = FALSE) %>%
    kable(caption = "Descriptivos Univariados")%>%
    kable_styling(full_width = F)
```

data was converted to a data frame

 $\label{eq:continuity} \textit{## Warning in seq_len(ncol(x)): first element used of 'length.out' argument}$

Descriptivos Univariados

Variable	Stats / Values	Freqs (% of Valid)	Valid
Provincia [character]	1. Abancay 2. Acobamba 3. Acomayo 4. Aija 5. Alto Amazonas 6. Ambo 7. Andahuaylas 8. Angaraes 9. Anta 10. Antabamba [186 others]	1 (0.5%) 1 (0.5%)	196 (100.0%)
casti [numeric]	Mean (sd): 44110.2 (144233.9) min < med < max: 12.6 < 19896 < 1938450 IQR (CV): 30502 (3.3)	196 distinct values	196 (100.0%)
habil [numeric]	Mean (sd): 123891.5 (549863.7) min < med < max: 3041 < 45547 < 7558581 IQR (CV): 70165.2 (4.4)	196 distinct values	196 (100.0%)
Jóvenes (18 - 29 años) [numeric]	Mean (sd): 29935 (133310.2) min < med < max: 489 < 9859.5 < 1823609 IQR (CV): 16398.8 (4.5)	196 distinct values	196 (100.0%)
Sí tiene conexión a internet [numeric]	Mean (sd): 11807.1 (84911.1) min < med < max: 3 < 659.5 < 1171306 IQR (CV): 3352.8 (7.2)	184 distinct values	196 (100.0%)
No tiene conexión a internet [numeric]	Mean (sd): 30296.4 (87639.1) min < med < max: 685 < 14894.5 < 1182644 IQR (CV): 20926.8 (2.9)	196 distinct values	196 (100.0%)
Ninguna [numeric]	Mean (sd): 6022.2 (33240) min < med < max: 38 < 1424 < 458304 IQR (CV): 3663.2 (5.5)	187 distinct values	196 (100.0%)
reliion [numeric]	Mean (sd): 112326.7 (482136.9) min < med < max: 1856 < 39675.5 < 6602456 IQR (CV): 60216.2 (4.3)	196 distinct values	196 (100.0%)

data\$Provincia=as.factor(data\$Provincia)

```
library(ggplot2)
VarDep=data$casti
descris=list(min=min(VarDep),
            max=max(VarDep),
            media=round(mean(VarDep),2),
            var=round(var(VarDep),2),
            asim=round(e1071::skewness(VarDep),2))
base=ggplot(data=data, aes(x=casti)) + theme_classic()
hist=base + geom_histogram(bins=50)
histInfo=hist + annotate("text", x = 100 , y = 10 ,
                        color='grey50',
                       label = paste0("Minimo: ",descris$min))
histInfo = histInfo + annotate("text", x = 100 , y = 80 ,
                       color='grey50'
                      label = paste0("Máximo: ",descris$max))
histInfo = histInfo + annotate("text", x = 100 , y = 60 ,
                       color='grey50',
                       label = paste0("Media: ",descris$media))
histInfo = histInfo + annotate("text", x = 100 , y = 40 ,
                       color='grey50',
                       label = paste0("Varianza: ",descris$var))
histInfo = histInfo + annotate("text", x = 100 , y = 20 ,
                       color='grey50',
                      label = paste0("Sesgo: ",descris$asim))
histInfo
```



```
## Warning in dpois(y, mu, log = TRUE): non-integer x = 12.645000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 12.645000
```

```
## Warning in dpois(y, mu, log = TRUE): non-integer x = 12.645000
## Warning in dpois(y, mu, log = TRUE): non-integer x = 12.645000
```

Regresiones Poisson anidadas

```
(Intercept)
```

 ${\tt data.} \\ Jovenes(18-29a \\ \verb"""" os.) 0.000 *** < < td \\ > conexión a internet a internet a internet a internet$

data Notiene conexión a internet < tdstyle = "text-align: center;" > 0.000 * **

data\$reliion

Num Obs

F

RMSE

```
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
```

```
overdispersion=AER::dispersiontest(rp1,alternative='greater')$ p.value<0.05
underdispersion=AER::dispersiontest(rp1,alternative='less')$ p.value<0.05
# tabla
testResult=as.data.frame(rbind(overdispersion,underdispersion))
names(testResult)='Es probable?'
testResult%%kable(caption = "Test de Equidispersión")%>%kableExtra::kable_styling()
```

Test de Equidispersión

Es probable?

overdispersion	TRUE
underdispersion	FALSE

#binomial

```
h2off=formula(data$casti~data$`Jóvenes (18 - 29 años)`+data$`Sí tiene conexión a internet`+data$`No tiene conexión a interne t`+data$Ninguna+data$reliion+ offset(log(habil)))
library(MASS)
rbn=MASS::glm.nb(h2off,data=data)
```

```
## Warning in dpois(y, mu, log = TRUE): non-integer x = 12.645000
```

```
summary(rbn)
```

```
## Call:
## MASS::glm.nb(formula = h2off, data = data, init.theta = 6.654621408,
##
     link = log)
##
## Deviance Residuals:
             1Q Median
## Min
                                   30
## -8.2233 -0.5464 0.0357 0.4712 1.9813
##
## Coefficients:
                                        Estimate Std. Error z value Pr(>|z|)
                                      -8.460e-01 4.872e-02 -17.363 < 2e-16 ***
## (Intercept)
                                     4.490e-06 1.252e-05 0.359 0.71980
## data$`Jóvenes (18 - 29 años)`
## data$`Sî tiene conexión a internet` 4.272e-05 9.485e-06 4.504 6.67e-06 ***
## data$`No tiene conexión a internet` 3.311e-05 7.901e-06 4.191 2.78e-05 ***
                                       -2.014e-05 1.007e-05 -1.999 0.04556 *
## data$Ninguna
## data$reliion
                                       -1.342e-05 4.136e-06 -3.246 0.00117 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(6.6546) family taken to be 1)
##
##
      Null deviance: 225.54 on 195 degrees of freedom
## Residual deviance: 203.16 on 190 degrees of freedom
## AIC: 4072.2
##
## Number of Fisher Scoring iterations: 1
##
##
##
                 Theta: 6.655
##
           Std. Err.: 0.664
##
## 2 x log-likelihood: -4058.219
```

EXP() de la Regresiones Poisson, Quasi Poisson y Binomial Negativa

(Intercept)

${\tt data \it J\'ovenes}(18-29a\~nos) internet$	< td
	>< ,
data\$reliion	
Num.Obs.	
AIC	
BIC	
Log.Lik.	
F	
RMSE	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001	