Travaux dirigés

Déterminer le générateur équivalent de Thévenin (E_0, R_{eq}) du dipôle AB représenté sur la figure ci-dessous. Maintenant, on branche aux bornes AB une résistance $R=10\Omega$. Calculer l'intensité du courant qui la traverse.

Déterminer le générateur équivalent de Thévenin (E_0, R_{eq}) du dipôle AB représenté sur la figure ci-dessous. Maintenant, on branche aux bornes AB une résistance $R=10\Omega$. Calculer l'intensité du courant qui la traverse.

Déterminer le générateur équivalent de Norton (I_0, R_{eq}) du dipôle AB représenté sur la figure ci-dessous. Maintenant, on branche aux bornes AB une résistance $R=10\Omega$. Calculer l'intensité du courant qui la traverse.

On considère le montage représenté sur la figure ci-dessous. On cherche à déterminer la condition sur les quatre résistances R_1 , R_2 , R_3 , R_4 , de manière à ce que le courant I dans R_5 soit nul. En considérant que I est nul, déterminer l'expression de V_A . Puis déterminer l'expression de V_B . En déduire la condition recherchée.

Le montage de la figure ci-dessous représente un générateur de tension réel de tension continue (de force électromotrice E et de résistance interne r) qui alimente une résistance variable R. Donner l'expression de la puissance dissipée P dans la résistance R. Pour quelle valeur de R cette puissance estelle maximale?

