

Manual de fabricação

Índice

Instruções gerais	2
Lista de materiais necessários	3
Capa de proteção	4
Tampa da caixa protetora	5
Chapa central	6
Apoio telescópico (parte superior)	7
Suporte e espaçador do amortecedor	8
Apoio telescópico (parte inferior)	9
Espaçador da roda	10
Chapa de suporte do aspersor	11
Haste do aspersor	12
Suporte do motor superior	13
Placa de conexão	14
Base tubo L	15
Suporte do bico aspersor	16
Suporte de transporte	17
Suporte externo da roda	18
Suporte interno da roda	19
Tubo em L	20
Fixação do tanque	21
Suporte da solenoide	22
Suporte da camera	23
Suporte dos componentes eletrônicos	24
Capa do sensor ultrassônico	25
Case das baterias	26
Case do motor superior	27
Suporte sensor de rotação	28
Placas de circuito impresso	29

Instruções gerais

Nesse documento será apresentado a rotina de produção dos componentes que formam o StrongBerry. Portanto, após o fim desse documento todas as peças necessárias para montagem do produto estarão finalizadas. Com isso, deve-se proceder com a montagem utilizando o Manual de Montagem.

Além disso, o documento contém uma lista de ferramentas/equipamentos necessários para produção de todas as peças do produto e uma lista de Equipamentos Indivuais de Proteção (EPI) cuja utilização é recomendada durante os procedimentos de fabricação dos componentes.

Lista de materiais nescessários

Lista de equipamentos para produção das peças:

- Maquina de corte a laser ou jato d'água
- Serra fita ou Serra tico-tico ou Cortadora do tipo rotativa
- Maquina para solda do tipo MIG/MAG
- Furadeira de bancada
- Brocas de Aço rápido (4mm,6mm, 8mm, 10mm e 12mm)
- Torno mecânico (pode ser de bancada)
- Dobradeira de chapa (manual ou automática. Superior a 200mm de largura)
- Esmerilhadeira ou Jogo de limas
- Lixa ferro grão variados
- Paquímetro
- Esquadro metálico
- Caneta marcadora
- Impressora 3D

Lista dos principais EPI´s para a fabricação:

- Máscara de solda.
- Luva de soldagem
- Avental de raspa ou couro para soldagem
- Óculos de proteção
- Botas com bico metálico
- Luvas de borracha
- Tampões de ouvido
- Face shield

Capa de proteção

 Imprimir a peça utilizando uma impressora 3D.

 Confeccionar 1 unidade da Capa de proteção.

Tampa da caixa protetora

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	806,3x610x5	1

- Realizar os furos na peça 1 por meio de uma furadeira de bancada.
- Realizar o corte a laser.
- Confeccionar 1 unidade da peça.

Chapa central

CÓD.	Descrição	Dimensões (mm)	Quantidade
2	Chapa	800x600x3	1

- Faça os furos na chapa utilizando uma furadeira de bancada.
- Confeccionar 1 unidade da peça.

Apoio telescópico

(parte superior)

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Barra	105 com furos 12,7	4
2	Chapa 168x160x3mm	168x160x3	1
3	Chapa	30x20x3	2

- Una 1 e 2 por solda MIG em todo contorno do tubo.
- Repita o processo anterior 3 vezes.
- De modo análogo, una as peças 3 ao conjunto formado.
- Confeccionar 4 unidades da peça.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo)

Suporte e espaçador do amortecedor

CÓD). Descrição	Dimensões (mm)	Quantidade
1	Tarugo	Ø22,22; 50	1

- Realizar o furo na peça 1 por meio de uma furadeira de bancada.
- Desbaixar a peça 1.
- Realizar um corte transversal na região usinada.
- Confeccionar 8 unidades da peça.

Apoio telescópico

(parte inferior)

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Barra	105 com furos 12,7	4
2	Chapa 168x160x3mm	168x160x3	1
3	CHAQ11 25x19x3mm	25x19x3	4
4	Suporte do eixo de fixação dos amortecedores	50x22,22	2

- Una 1 e 2 por solda MIG em todo contorno do tubo.
- Repita o processo anterior 3 vezes.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo)

Espaçador da roda

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Tarugo	ø26; ø4; 10	1

- Faça o furo central utilizando um torno mecânico.
- Confeccionar 8 unidades da peça.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Chapa de suporte do aspersor

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	30x20x3; ø12	1

- Fure a peça conforme ilustrado utilizando uma furadeira.
- Confeccionar 4 unidades da peça.

Haste do aspersor

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	400x15x3; ø12,	1
		chanfro ø30	

- Utilizando-se de uma furadeira de bancada realize os 2 furos nas extremidades.
- Chanfrar as duas extremidades da barra.
- Confeccionar 2 unidades da peça.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Suporte do motor superior

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Perfil quadrado	50x50x35: ø4	1

- Realize o corte, com a serra fita ou tico tico, do perfil quadrado de acordo com a medida especificada.
- Realizar os furos na peça 1 por meio de uma furadeira de bancada.
- Confeccionar 4 unidades da peça.

Placa de conexão

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	240x140	1
2	Suporto do motor	50x50x35; ø4, ø10	1
	superior		
3	Chapa Triangular	143x100	2

- Realizar os furos na peça 1 por meio de uma furadeira de bancada.
- Dobrar a peça 1 na região indicada.
- Unir as peças 3 a peça 1 por solda MIG.
- Unir a peça 2 a base da peça 1 por solda MIG.
- Confeccionar 4 unidades da peça.

Base tubo L

CÓD.DescriçãoDimensões (mm)Quantidade1Chapa160x160x31

- Realizar o furo na peça 1 por meio de um furadeira de bancada.
- Confeccionar 4 unidades da peça.

Suporte do bico aspersor

CÓE). Descrição	Dimensões (mm)	Quantidade
1	Chapa	90x60x3	1
2	Suporte do aspersor	30x20x3; ø12	2

- Soldar a peça 2 na peça por solda MIG.
- Confeccionar 1 unidade da peça.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Suporte de transporte

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	200x161x3	1
2	Tubo de transporte	600; R11,11;R10,21	1

- Dobrar a peça 1 conforme ilustrado.
- Unir a peça 1 a peça 2 por solda MIG nas duas faces.
- Confeccionar 2 unidades da peça.

Suporte externo da roda

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Suporte externo	450x160x3	1

- Realizar os furos na peça 1 por meio de uma furadeira de bancada.
- Cortar a laser a peça 1 para fazer o rasgo.
- Confeccionar 4 unidades da peça
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Suporte interno da roda

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Suporte externo	450x160x3	1

- Realizar os furos na peça 1 por meio de um torno mecânico.
- Cortar a laser a peça 1 para fazer o rasgo.
- Confeccionar 4 unidades da peça
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Tubo em L

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Tubo em L	350,32; ø33,7; ø28,4	1

- Realizar corte de 45° na peça 1.
- Unir por solda MIG as partes resultantes em ângulo de 90°.
- Confeccionar 4 unidades da peça.

Fixação do tanque

C	ÓD.	Descrição	Dimensões (mm)	Quantidade
1		Chapa	717x30x3; ø12	1

- Utilizar a dobradeira para dobrar a chapa.
- Furar a peça usando torno mecânico.
- Confeccionar 1 unidade da peça.
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Suporte da solenoide

Peça finalizada

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	33x28x3; ø3,9	1

- Fazer os furos usando uma furadeira de bancada.
- Confeccionar 1 unidade da peça
- Realizar tratamento de proteção (epóxi, pintura ou tinta óleo).

Suporte da camera

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	24x14x1,5; ø12; ø3	1
2	Chapa	116x14x1,5; ø12	1

- Dobrar a chapa em uma dobradeira
- Fazer os furos usando um torno mecânico
- Confeccionar 1 unidade de cada peça

Suporte dos componentes eletrônicos

- Imprimir a peça utilizando uma impressora 3D.
- Confeccionar 1 unidade da Base
- Confeccionar 2 unidades da Parte modular

Capa do sensor ultrassônico

Base

Tampa

- Imprimir a peça utilizando uma impressora 3D.
- Confeccionar 8 unidades da Base.
- Confeccionar 4 unidades da Tampa.

Case das baterias

- Imprimir a peça utilizando uma impressora 3D.
- 1 unidade da Tampa
- 1 unidade da Base

Case do motor superior

Peça finalizada

- Imprimir a peça utilizando uma impressora 3D.
- Confeccionar 4 unidades

Suporte sensor de rotação

CÓD.	Descrição	Dimensões (mm)	Quantidade
1	Chapa	130x10x1,5	1

- Fazer o furo usando uma furadeira de bancada.
- Utilizar uma dobradeira para dobrar a peça 1 em ângulos de 90°.
- Confeccionar 4 peças.

Placa de Circuito impresso

O StrongBerry conta com duas placas de circuito impresso (PCI), uma para conectar a Raspberry Pi 3B+ e outra para a ESP32, em que ambas devem ser feitas de fibra de vidro FR-04 de duas camadas utilizando uma espessura de cobre de 1 oz (onça). As trilhas devem ser de 0.5mm devido ao valor da corrente de operação e com um espaçamento mínimo para o isolamento do sistema de 0.13mm pelo padrão IPC2221. Sendo que para a PCI desenvolvida para a ESP32 esse afastamento foi aumentado para 0.54mm

PCI - Raspberry Pi 3B+

PCI - Camada superior

PCI - Camada inferior

PCI - Camada Superior de Seda

PCI - ESP32LoRa

PCI - Camada superior

PCI - Camada inferior

PCI - Camada superior de Seda

PCI - Camada inferior de Seda

