IAP20 RGC'd FOTFYO 1 6 DEC 2005

WO 2004/113519

1/15

SEQUENCE LISTING

5 <110> Devgen N.V.

<120> Amino acid sequences useful for developing compounds for the prevention and/or treatment of metabolic diseases and nucleotide sequences encoding such amino acid sequences.

15 <130> P 02/003 PCT

<160> 9

20

<170> PatentIn version 3.1

25

<210> 1

<211> 465

30

<212> PRT

<213> Caenorhabditis elegans

35

<400> 1

Met Ser Ala Ser Leu Ala Arg Gly Ile Leu Ser Lys Met Gly Gly Ser 40 1 5 15

Cys Cys Pro His His Ala Pro Ala Thr Asn Pro Phe Lys Leu Ala Lys 20 25 30

45

Leu His Gly Asn Asn Lys Ser Thr Asp Tyr Ala Phe Glu Met Val Cys 35 40 45

50

Ser Thr Leu Arg Phe Gly Lys Gly Val Thr Leu Glu Ile Gly Tyr Asp 50 60

Val Arg Asn Leu Gly Ala Lys Lys Thr Leu Leu Ile Thr Asp Lys Asn 65 70 75 80

	Val	Gln	Asn	Thr	Ile 85	Ala	Phe	Lys	Asn	Ala 90	Glu	Gln	Ala	Leu	Lys 95	Met
5	Val	Asn	Ile	Glu 100	Tyr	Glu	Val	Phe	Asp 105	Asp	Val	Leu	Ile	Glu 110	Pro	Thr
10	Val	Asn	Ser 115	Met	Gln	Lys	Ala	Ile 120	Ala	Phe	Ala	Lys	Ser 125	Lys	Gln	Phe
15	Asp	Ser 130	Phe	Ile	Ala	Val	Gly 135	Gly	Gly	Ser	Val	Ile 140	Asp	Thr	Thr	Lys
20	Ala 145	Ala	Ala	Leu	Tyr	Ala 150	Ser	Asn	Pro	Glu	Ala 155	Asp	Phe	Leu	Asp	Phe 160
	Val	Gly	Pro	Pro	Phe 165	Gly	Lys	Ser	Met	Gln 170	Pro	Lys	Asn	Pro	Met 175	Leu
25	Pro	Leu	Ile	Ala 180	Val	Pro	Thr	Thr	Ala 185	Gly	Thr	Gly	Ser	Glu 190	Thr	Thr
30	Ala	Ala	Ala 195	Ile	Met	Asp	Leu	Pro 200	Glu	His	Lys	Cys	Ьуs 205	Thr	Gly	Ile
35	Arg	Leu 210	Arg	Cys	Ile	Lys	Pro 215	Tyr	Leu	Ala	Val	Val 220	Asp	Pro	Leu	Asn
40	Val 225	Met	Ser	Met	Pro	Arg 230	Asn	Val	Ala	Ile	Tyr 235	Ser	Gly	Phe	Asp	Val 240
	Leu	Cys	His	Ala	Leu 245	Glu	Ser	Phe	Thr	Ala 250	Leu	Pro	Phe	Asp	Gln 255	Arg
45	Ser	Pro	Arg	Pro 260	Glu	Asn	Pro	Gly	Val 265	Arg	Pro	Leu	Tyr	Gln 270	Gly	Ser
50	Asn	Pro	Ile 275	Ser	Asp	Val	Trp	Ser 280	Lys	Glu	Ala	Leu	Arg 285	Ile	Ile	Gly
55	Lys	Tyr 290	Phe	Arg	Arg	Ser	Ile 295	Phe	Asp	Pro	Thr	Asp 300	Glu	Glu	Ala	Arg

Thr Glu Met Leu Lys Ala Ser Ser Phe Ala Gly Ile Gly Phe Gly Asn 320

Ala Gly Val His Leu Cys His Gly Leu Ser Tyr Pro Ile Ser Ser Gln 335

Ala Lys Ser Cys Val Ala Asp Asp Tyr Pro Lys Glu Lys Asn Leu Ile 10 340 345 350

Pro His Gly Leu Ser Val Met Thr Thr Ala Val Ala Asp Phe Glu Phe 355 360 365

Thr Thr Ala Ala Cys Pro Asp Arg His Leu Ile Ser Ala Gln Thr Leu 370 375 380

20
Gly Ala Asp Ile Pro Asn Asn Ala Ser Asn Glu Tyr Ile Ser Arg Thr
385
390
395
400

25 Leu Cys Asp Arg Leu Arg Gly Tyr Met Arg Asp Phe Gly Val Pro Asn 405 415

Gly Leu Lys Gly Met Gly Phe Glu Phe Ser Asp Ile Glu Met Leu Thr 420 425 430

Glu Ala Ala Ser His Ser Val Pro Asn Ile Ala Ile Ser Pro Lys Ser 435 440 445

Ala Asp Arg Glu Ile Ile Ser Thr Leu Tyr Glu Lys Ser Leu Thr Val 450 455 460

40 Tyr 465

35

50

15

45 <210> 2

<211> 1398

<212> DNA

<213> Caenorhabditis elegans

55 <400> 2 atgagtgcaa gtctggcacg tggaatactg agcaagatgg gcggctcatg ctgtcctcac 60

	catgccccag 120	ctacaaatcc	attcaaactt	gcaaagcttc	atggaaataa	caagtcaaca
5	gattacgcgt 180	tcgagatggt	gtgctcaact	cttcgtttcg	gaaaaggagt	cacgttggag
10	attggatacg 240	acgtccgtaa	tctcggagca	aagaaaacgt	tgcttatcac	tgataagaat
	gtgcagaata 300	cgatcgcttt	taaaaacgcc	gagcaagcct	taaaaatggt	gaatatcgag
15	tatgaggtgt 360	ttgatgatgt	gctcattgag	ccaaccgtca	acagtatgca	gaaagcaatc
	gcatttgcca 420	aatcgaagca	attcgatagt	ttcatcgctg	ttggtggagg	atctgtgatc
20	gacacgacga 480	aggctgcagc	tctatatgct	tctaatccag	aagcggactt	cctcgacttt
25	gttggaccac 540	cattcggaaa	atccatgcaa	ccaaagaacc	caatgctccc	attgatcgct
	gtgccaacaa 600	ctgctggaac	tggatccgag	actaccgcgg	ctgcaatcat	ggatcttcca
30	gagcacaagt 660	gcaagactgg	aatcagactt	cgttgcatca	agccgtactt	ggcagttgtg
	gatccgttga 720	atgtgatgag	tatgcctcga	aacgtggcaa	tctattctgg	tttcgatgtt
35	ctctgtcacg 780	cgttggaaag	cttcacagct	ttgccattcg	atcaaagatc	tccacgccct
40	gagaatccag 840	gagttcgtcc	actttatcaa	ggttccaacc	cgatcagtga	tgtctggagt
	aaagaggctt 900	tgagaatcat	tggaaaatac	ttccgccgtt	ctatcttcga	tccaaccgac
45	gaagaagctc 960	gtacagaaat	gctcaaggct	agttcatttg	ctgggattgg	attcggaaac
	gctggggttc 1020	atctttgcca	cggactctcc	tacccaatca	gctcccaggc	gaaaagctgt
50	gtggctgatg 1080	attatccaaa	ggagaagaac	ttgattccac	atggactctc	tgtaatgaca
55	accgcagtgg 1140	ctgatttcga	gtttacaact	gccgcgtgcc	cagatagaca	tttgatttct
	gcacagactc 1200	ttggtgcaga	tattccgaac	aatgccagca	atgagtacat	ttcccgaact

```
ctttgtgatc ggctgagagg ttatatgcga gactttggag ttccaaatgg actgaaagga
 5
     atgggattcg aattttctga tattgaaatg cttactgaag cagccagcca ctccgtccca
     aatattgcaa tototocaaa gtotgcggat cgtgaaatta toagcactot gtacgagaag
     1380
10
     tcccttacgg tttattag
     1398
15
     <210> 3
     <211> 23
     <212> DNA
20
     <213> Artificial sequence
25
    <220>
    <223> primer
    <400> 3
30
    gatgatgtgc tcattgagcc aac
    <210> 4
35
    <211> 21
    <212> DNA
40
    <213> Artificial sequence
    <220>
45
    <223> primer
    <400> 4
    atatttggga cggagtggct g
50
    <210> 5
```

55

<211> 1163

<212> DNA

<213> Caenorhabditis elegans

5

25

40

55

<400> 5 gatgatgtgc tcattgagcc aaccgtcaac agtatgcaga aagcaatcgc atttgccaaa

10 tcgaagcaat tcgatagttt catcgctgtt ggtggaggat ctgtgatcga cacgacgaag 120

gctgcagctc tatatgcttc taatccagaa gcggacttcc tcgactttgt tggaccacca $15 \hspace{0.2in} 180$

ttcggaaaat ccatgcaacc aaagaaccca atgctcccat tgatcgctgt gccaacaact 240

20 gctggaactg gatccgagac taccgcggct gcaatcatgg atcttccaga gcacaagtgc 300

aagactggaa tcagacttcg ttgcatcaag ccgtacttgg cagttgtgga tccgttgaat 360

gtgatgagta tgcctcgaaa cgtggcaatc tattctggtt tcgatgttct ctgtcacgcg 420

ttggaaaget teacagettt gecattegat caaagatete caegeeetga gaateeagga 480

gttcgtccac tttatcaagg ttccaacccg atcagtgatg tctggagtaa agaggctttg 540

35 agagtgagtt ggaatttcaa ccatgaagct ctaaatgaat ttatataatt tcagatcatt 600

ggaaaatact teegeegtte tatettegat eeaacegaeg aagaageteg tacagaaatg 660

ctcaaggeta gttcatttgc tgggattgga ttcggaaacg ctggggttca tctttgccac´720

ggacteteet acceaateag eteceaggeg aaaagetgtg tggetgatga ttatecaaag 45 780

gagaagaact tgattccaca tggactctct gtaatgacaa ccgcagtggc tgatttcgag 840

50 tttacaactg ccgcgtgccc agatagacat ttgatttctg cacagactct tggtgcagat 900

attccggtat gtaaattggc caccaagatg gttctgaact aactagatat ttccagaaca 960

atgccagcaa tgagtacatt tcccgaactc tttgtgatcg gctgagaggt tatatgcgag 1020

130

actttggagt tccaaatgga ctgaaaggaa tgggattcga attttctgat attggtagaa cacctetete tagttgaact geettatatt atactatttt cagaaatget taetgaagea gccagccact ccgtcccaaa tat 1163 10 <210> 6 <211> 467 15 <212> PRT <213> Homo sapiens 20 <400> 6 Met Ala Ala Ala Arg Ala Arg Val Ala Tyr Leu Leu Arg Gln Leu 25 10 Gln Arg Ala Ala Cys Gln Cys Pro Thr His Ser His Thr Tyr Ser Gln 20 30 Ala Pro Gly Leu Ser Pro Ser Gly Lys Thr Thr Asp Tyr Ala Phe Glu 40 35 Met Ala Val Ser Asn Ile Arg Tyr Gly Ala Ala Val Thr Lys Glu Val Gly Met Asp Leu Lys Asn Met Gly Ala Lys Asn Val Cys Leu Met Thr 40 70 Asp Lys Asn Leu Ser Lys Leu Pro Pro Val Gln Val Ala Met Asp Ser 45 Leu Val Lys Asn Gly Ile Pro Phe Thr Val Tyr Asp Asn Val Arg Val 100 105 50 Glu Pro Thr Asp Ser Ser Phe Met Glu Ala Ile Glu Phe Ala Gln Lys 115 55 Gly Ala Phe Asp Ala Tyr Val Ala Val Gly Gly Gly Ser Thr Met Asp

135

140

5	Thr 145	Cys	s Lys	s Ala	a Ala	150	Let	ı Tyr	: Ala	Ser	Ser 155		His	s Ser	Asp	Phe 160
	Leu	Asp	туг	· Val	Ser 165	Ala	Pro	lle	Gly	Lys 170		Lys	Pro	Val	. Ser 175	Val
10	Pro	Leu	Lys	180	Leu	Ile	Ala	Val	Pro 185		Thr	Ser	Gly	Thr 190		Ser
15	Glu	Thr	Thr 195	Gly	Val	Ala	Ile	Phe 200	Asp	Tyr	Glu	His	Leu 205		Val	Lys
20	Ile	Gly 210	Ile	Thr	Ser	Arg	Ala 215	Ile	Lys	Pro	Thr	Leu 220		Leu	Ile	Asp
25	Pro 225	Leu	His	Thr	Leu	His 230	Met	Pro	Ala	Arg	Val 235	Val	Ala	Asn	Ser	Gly 240
	Phe	Asp	Val	Leu	Cys 245	His	Ala	Leu	Glu	Ser 250	Tyr	Thr	Thr	Leu	Pro 255	Tyr
30	His	Leu	Arg	Ser 260	Pro	Cys	Pro	Ser	Asn 265	Pro	Ile	Thr	Arg	Pro 270	Ala	Tyr
35	Gln	Gly	Ser 275	Asn	Pro	Ile	Ser	Asp 280	Ile	Trp	Ala	Ile	His 285	Ala	Leu	Arg
40	Ile	Val 290	Ala	Lys	Туг	Leu	Lys 295	Arg	Ala	Val	Arg	Asn 300	Pro	Asp	Asp	Leu
45	G1u 305	Ala	Arg	Ser	His	Met 310	His	Leu	Ala	Ser	Ala 315	Phe	Ala	Gly	Ile	Gly 320
	Phe	Gly	Asn	Ala	Gly 325	Val	His	Leu	Cys	His 330	Gly	Met	Ser	Tyr	Pro 335	Ile
50	Ser	Gly	Leu	Val 340	Lys	Met	Tyr	Lys	Ala 345	Lys	Asp	Tyr	Asn	Val 350	Asp	His
55	Pro	Leu	Val 355	Pro	His	Gly	Leu	Ser 360	Val	Val	Leu	Thr	Ser 365	Pro	Ala	Val

Phe Thr Phe Thr Ala Gln Met Phe Pro Glu Arg His Leu Glu Met Ala 370 375 380

5
Glu Ile Leu Gly Ala Asp Thr Arg Thr Ala Arg Ile Gln Asp Ala Gly
385
390
395
400

10 Leu Val Leu Ala Asp Thr Leu Arg Lys Phe Leu Phe Asp Leu Asp Val 405 415

Asp Asp Gly Leu Ala Ala Val Gly Tyr Ser Lys Ala Asp Ile Pro Ala 420 425 430

Leu Val Lys Gly Thr Leu Pro Gln Glu Arg Val Thr Lys Leu Ala Pro 435 440 445

20

35

Cys Pro Gln Ser Glu Glu Asp Leu Ala Ala Leu Phe Glu Ala Ser Met 450 460

Lys Leu Tyr 465

30 <210> 7

<211> 1831

<212> DNA

<213> Homo sapiens

40 <400> 7
gaagaggact ccaagegeca tggccgetge cgcccgagec cgggtcgegt acttgctgag

gcaactgcaa cgcgcagcgt gccagtgccc aactcattct catacttact cccaagcccc 45 120

tggactttca ccttctggga aaacaacaga ttatgccttt gagatggctg tttcaaatat 180

50 tagatatgga gcagcagtta caaaggaagt aggaatggac ctaaaaaaca tgggtgctaa 240

aaatgtgtgc ttgatgacag acaagaacct ctccaagctc cctcctgtgc aagtagctat 300

55 ggattcccta gtgaagaatg gcatcccctt tacggtttat gataatgtga gagtggaacc 360

	aacggattca 420	agcttcatgg	aagctattga	gtttgcccaa	aagggagctt	ttgatgccta
5	tgttgctgtc 480	ggtggtggct	ctaccatgga	cacctgtaag	gctgctaatc	tgtatgcatc
10	cageceteat 540	tctgatttcc	tagattatgt	cagtgccccc	attggcaagg	gaaagcctgt
ró	gtctgtgcct 600	cttaagcctc	tgattgcagt	gccaactacc	tcaggaaccg	ggagtgaaac
15	tactggggtt 660	gccatttttg	actatgaaca	cttgaaagta	aaaattggta	tcacttcgag
	agccatcaaa 720	cccacactgg	gactgattga	tectetgeac	accctccaca	tgcctgcccg
20	agtggtegee 780	aacagtggct	ttgatgtgct	ttgccatgcc	ctggagtcat	acaccaccct
25	gccctaccac 840	ctgcggagcc	cctgcccttc	aaatcccatc	acacggcctg	cgtaccaggg
25	cagcaaccca 900	atcagtgaca	tttgggctat	ccacgcgctg	cggatcgtgg	ctaagtatct
30	gaagagggcc 960	gtcagaaatc	ccgatgatct	tgaagcaagg	tctcatatgc	acttggcaag
	tgcttttgct 1020	ggcatcggct	ttggaaatgc	tggtgttcat	ctgtgccatg	gaatgtctta
35	cccaatttca 1080	ggtttagtga	agatgtataa	agcaaaggat	tacaatgtgg	atcacccact
40	ggtgccccat 1140	ggcctttctg	tggtgctcac	gtccccagcg	gtgttcactt	tcacggccca
	gatgtttcca 1200	gagcgacacc	tggagatggc	agaaatattg	ggagccgaca	cccgcactgc
45	caggatccaa 1260	gatgcagggc	tggtgttggc	agacacgctc	cggaaattct	tattcgatct
	ggatgttgat 1320	gatggcctag	cagctgttgg	ttactccaaa	gctgatatcc	ccgcactagt
50	gaaaggaacg 1380	ctgccccagg	aaagggtcac	caagcttgca	ccctgtcccc	agtcagaaga
55	ggatctggct 1440	gctctgtttg	aagcttcaat	gaaactgtat	taattgtcat	tttaactgaa
	agaattaccg 1500	ctggccattg	tagtgctgag	agcaagagct	gatctagcta	gggctttgtc

ttttcatctt tgtgcataac ttacctgtta ccagtatagg tgggatatac atttatcttg 1560

- 5 caggaaattc cccaaagctc agagtccagt tccttccata aaacaggctg gacaaatgac 1620
 - cactatgtta gacccccagg ctcgacttca ggggtcagtg ttcctgtccc aaaccccaca 1680
- 10 cagaatactc tgcctctgtt tcatgtagca aatgagcaaa aactcagtat ctatcaaaag 1740
- tgtaaattat atttcctatg cctagtaatt cacttcatgt ctaaaaattt atctgataga 15 1800
 - aacactagca ccagtacata cagaagcatg g 1831
- 20 <210> 8
 - <211> 419
- 25 <212> PRT
 - <213> Homo sapiens
- 30 <400> 8
- Met Ala Val Ser Asn Ile Arg Tyr Gly Ala Ala Val Thr Lys Glu Val 1 5 10 15 35
 - Gly Met Asp Leu Lys Asn Met Gly Ala Lys Asn Val Cys Leu Met Thr 20 25 30
- 40
 Asp Lys Asn Leu Ser Lys Leu Pro Pro Val Gln Val Ala Met Asp Ser
 . 35 40 45
- 45 Leu Val Lys Asn Gly Ile Pro Phe Thr Val Tyr Asp Asn Val Arg Val 50 55 60
- Glu Pro Thr Asp Ser Ser Phe Met Glu Ala Ile Glu Phe Ala Gln Lys 65 70 75 80
- Gly Ala Phe Asp Ala Tyr Val Ala Val Gly Gly Gly Ser Thr Met Asp 85 90 95
 - Thr Cys Lys Ala Ala Asn Leu Tyr Ala Ser Ser Pro His Ser Asp Phe

12/15

				100					105					110		
5	Leu	Asp	Tyr 115	Val	Ser	Ala	Pro	Ile 120	Gly	Lys	Gly	Lys	Pro 125	Val	Ser	Val
10	Pro	Leu 130	Lys	Pro	Leu	Ile	Ala 135	Val	Pro	Thr	Thr	Ser 140	Gly	Thr	Gly	Ser
	Glu 145	Thr	Thr	Gly	Val	Ala 150	Ile	Phe	Asp	Tyr	Glu 155	His	Leu	Lys	Val	Lys 160
15	Ile	Gly	Ile	Thr	Ser 165	Arg	Ala	Ile	Lys	Pro 170	Thr	Leu	Gly	Leu	Ile 175	Asp
20	Pro	Leu	His	Thr 180	Leu	His	Met	Pro	Ala 185	Arg	Val	Val	Ala	Asn 190	Ser	Gly
25	Phe	Asp	Val 195	Leu	Cys	His	Ala	Leu 200	Glu	Ser	Tyr	Thr	Thr 205	Leu	Pro	Tyr
30	His	Leu 210	Arg	Ser	Pro	Суѕ	Pro 215	Ser	Asn	Pro	Ile	Thr 220	Arg	Pro	Ala	Tyr
	Gln 225	Gly	Ser	Asn	Pro	Ile 230	Ser	Asp	Ile	Trp	Ala 235	Ile	His	Ala	Leu	Arg 240
35	Ile	Val	Ala	Lys	Tyr 245	Leu	Lys	Arg	Ala	Val 250	Arg	Asn	Pro	Asp	Asp 255	Leu
40	Glu	Ala	Arg	Ser 260	His	Met	His	Leu	Ala 265	Ser	Ala	Phe	Ala	Gly 270	Ile	Gly
45	Phe	Gly	Asn 275	Ala	Gly	Val	His	Leu 280	Cys	His	Gly	Met	Ser 285	Tyr	Pro	Ile
50	Ser	Gly 290		Val	Lys	Met	Tyr 295	Lys	Ala	Lys	Asp	Tyr 300	Asn	Val	Asp	His
	Pro 305	Leu	Val	Pro	His	Gly 310	Leu	Ser	Val	Val	Leu 315	Thr	Ser	Pro	Ala	Val 320
55	Phe	Thr	Phe	Thr	Ala 325	Gln	Met	Phe	Pro	Glu 330	Arg	His	Leu	Glu	Met 335	Ala

Glu Ile Leu Gly Ala Asp Thr Arg Thr Ala Arg Ile Gln Asp Ala Gly 345 5 Leu Val Leu Ala Asp Thr Leu Arg Lys Phe Leu Phe Asp Leu Asp Val 360 365 10 Asp Asp Gly Leu Ala Ala Val Gly Tyr Ser Lys Ala Asp Ile Pro Ala 375 15 Leu Val Lys Gly Thr Leu Pro Gln Glu Arg Val Thr Lys Leu Ala Pro 390 395 Arg Pro Gln Ser Glu Glu Asp Leu Ala Ala Leu Phe Glu Ala Ser Met 20 410 415 Lys Leu Tyr 25 <210> 9 <211> 1830 30 <212> DNA <213> Homo sapiens 35 aagaggactc caagcgccat ggccgctgcc gcccgagccc gggtcgcgta cttgcttagg 40 caactgcaac gcgcagcgtg ccagtgccca actcattctc atacttactc ccaagatggc 120 tgtttcaaat attagatatg gagcagcagt tacaaaggaa gtaggaatgg acctaaaaaa 45 catgggtgct aaaaatgtgt gcttgatgac agacaagaac ctctccaagc tccctcctgt 50 gcaagtagct atggattccc tagtgaagaa tggcatcccc tttacggttt atgataatgt gagagtggaa ccaacggatt caagcttcat ggaagctatt gagtttgccc aaaagggagc 55 ttttgatgcc tatgttgctg tcggtggtgg ctctaccatg gacacctgta aggctgctaa

420

tetgtatgea tecageeete attetgattt eetagattat gteagtgeee ceattggeaa 480 5 gggaaagcct gtgtctgtgc ctcttaagcc tctgattgca gtgccaacta cctcaggaac cgggagtgaa actactgggg ttgccatttt tgactatgaa cacttgaaag taaaaattgg 10 catcacttcg agagccatca aacccacact gggactgatt gatcctctgc acaccctcca catgcctgcc cgagtggtcg ccaacagtgg ctttgatgtg ctttgccatg ccctggagtc 15 atacaccacc ctgccctacc acctgcggag cccctgccct tcaaatccca tcacacggcc 780 20 tgcgtaccag ggcagcaacc caatcagtga catttgggct atccacgcgc tgcggatcgt ggctaagtat ctgaagaggg ctgtcagaaa tcccgatgat cttgaagcaa ggtctcatat 25 gcacttggca agtgcttttg ctggcatcgg ctttggaaat gctggtgttc atctgtgcca tggaatgtct tacccaattt caggtttagt gaagatgtat aaagcaaagg attacaatgt 30 1020 ggatcaccca ctggtgcccc atggcctttc tgtggtgctc acgtccccag cggtgttcac 1080 35 tttcaccgcc cagatgtttc cagagegaca cetggagatg gcagaaatac tgggageega caccegeact gecaggatee aagatgeagg getggtgttg geagaeacge teeggaaatt 40 cttattcgat ctggatgttg atgatggcct agcagctgtt ggttactcca aagctgatat 12.60 ccccgcacta gtgaaaggaa cgctgcccca ggaaagggtc accaagcttg caccccgtcc 45 ccagtcagaa gaggatctgg ctgctctgtt tgaagcttca atgaaactgt attaattgtc 50 attttaactg aaagaattac cgctggccat tgtagtgctg agagcaagag ctgatctagc tagggetttg tetttteate tttgtgeata acttacetgt taccagtata ggtgggatat 55 acatttatct tgcaggaaat tccccaaagc tcagagtcca gttccttcca taaaacaggc 1560

WO 2004/113519 PCT/GB2004/002628 15/15

tggacaaatg accactatgt tagaccccca ggctcgactt caggggtcag tgttcctgtc 1620

5 ccaaacccca cacagaatac tetgeetetg etteatgtag caaatgagca aaaactcagt 1680

atctatcaaa agtgtaaatt atattteeta tgeetagtaa tteaetteat gtetaaaaat 1740

10

ttatctgata gaaacactag caccagtaca tacagaagca tggcaaggat gtttctggca 1800

gcacttttct aataataaaa gatttgaaac

15 1830