Clase nº32

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

19 de Noviembre 2021

Objetivo de la clase

▶ Determinar la convergencia o divergencia de las integrales impropias de primera y segunda clase.

Ejemplo 101

Determinar si la integral

$$\int_{1}^{2} \frac{1}{x - 1} dx$$

diverge o converge.

Ejemplo 102

Determinar si la integral

$$\int_0^2 \frac{1}{\sqrt{|1-x|}} dx$$

diverge o converge.

Las propiedades básicas de la integral de Riemann pueden extenderse a las integrales impropias, mediante procesos de pasar al límite.

Propiedades

1. **Linealidad:** Si f y g son integrables en [a,b[y sus respectivas integrales impropias son convergentes, entonces también existe, es decir, es convergente la integral impropia cf + dg sobre [a,b[; cualquiera sea $c,d \in \mathbb{R}$ y se tiene:

$$\int_{a}^{b^{-}} (cf(x) + dg(x)) dx = c \int_{a}^{b^{-}} f(x) dx + d \int_{a}^{b^{-}} g(x) dx.$$

Propiedades

2. **Regla de Barrow:** Si $f:[a,b[\to\mathbb{R}$ es una función continua en [a,b[y si $F:[a,b[\to\mathbb{R}$ es una primitiva de f en [a,b[y si existe el límite:

$$\int_{a}^{b^{-}} f(x) dx = \lim_{t \to b^{-}} (F(t) - F(a)).$$

Entonces este límite es el valor de $\int_a^{b^-} f(x) dx$ lo cual lo podemos abreviar como:

$$F(x)|_a^{b^-}$$
.

Propiedades

3. **Cambio de variable:** Si $f:[a,b[\to \mathbb{R} \text{ es una función continua} \text{ en } [a,b[\text{ y si } \varphi:[\alpha,\beta[\to \mathbb{R} \text{ es una función con derivada continua en su dominio, } -\infty < \alpha < \beta \leq +\infty \text{ tal que}$ $\varphi(\alpha)=a, \ \varphi(t)\to b^-, \text{ cuando } t\to \beta^- \text{ y si } \varphi([\alpha,\beta[)=[a,b[,\text{ entonces:}]$

$$\int_{a}^{b^{-}} f(x) dx = \int_{a}^{\beta^{-}} f(\varphi(t)) \varphi'(t) dt.$$

Si una de las integrales es convergente (divergente), la otra también lo es.

Propiedades

4. **Integración por partes:** Si *u*, *v* son dos funciones con derivadas continuas en [*a*, *b*[y son convergentes dos de los tres términos siguientes, entonces el tercero también lo es y se tienen la igualdad:

$$\int_{a}^{b^{-}} u(x)v'(x) dx = u(x)v(x)|_{a}^{b^{-}} - \int_{a}^{b^{-}} u'(x)v(x) dx.$$

Observación

Todas las propiedades anteriores son válidas para integrales sobre intervalos de la forma]a, b], cambiando a por a^+ y b^- por b.

Criterio de comparación

Sean f, g funciones positivas, integrables en [x, b], para todo $x \in]a, b[$ tales que $g(x) \le f(x)$ para todo $x \in]a, b[$. Entonces:

Si $\int_a^b f(x) dx$ converge, entonces $\int_a^b g(x) dx$ converge. Además, se cumple que

$$\int_a^b g(x)\,dx \le \int_a^b f(x)\,dx.$$

▶ Si $\int_{-b}^{b} g(x) dx$ diverge, entonces $\int_{-b}^{b} f(x) dx$ diverge.

Criterio de comparación al límite

Sean f, g funciones positivas e integrables en [x, b] para todo $x \in]a, b[$, tales que

$$K = \lim_{x \to a^+} \frac{f(x)}{g(x)}.$$

Se tiene que:

a) Si $K \neq 0$, entonces las integrales impropias $\int_a^b f(x) dx$ y $\int_a^b g(x) dx$ ambas convergen o ambas divergen.

Criterio de comparación al límite

- b) Si K = 0, entonces la convergencia de $\int_a^b g(x) dx$ implica la convergencia de $\int_a^b f(x) dx$.
- b) Si $K = +\infty$, entonces la divergencia de $\int_a^b g(x) dx$ implica la divergencia de $\int_a^b f(x) dx$.

Ejemplo 103

Utilizando criterio de comparación al límite, mostrar que

$$\int_{1}^{2} \frac{1}{x^3 - x^2 + 2x - 2} dx$$

diverge.

Ejemplo 104

Utilizando criterio de comparación al límite, mostrar que

$$\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin\!x}} dx$$

es convergente.

Ejemplo 105

Utilizando criterio de comparación al límite, mostrar que

$$\int_0^{+\infty} \frac{e^x}{\sqrt{x^3}} dx$$

diverge.

Convergencia absoluta

Definición

Si $a,b\in\overline{\mathbb{R}}$, la integral impropia $\int_a^b f(x)\,dx$ se dice absolutamente convergente si la integral $\int_a^b |f(x)|\,dx$ es convergente.

Convergencia absoluta

Ejemplo 106

Muestre que

$$\int_{1}^{+\infty} \frac{\cos x}{x^3} \, dx$$

es absolutamente convergente.

Otro criterio

Teorema

Si f y g son funciones tales que:

- 1. f es continua en $[a, \infty[$.
- 2. g' es continua en $[a, \infty[, g'(x) \le 0 \text{ y lím}_{x \to +\infty} g(x) = 0.$
- 3. $F(x) = \int_{a}^{x} f(t) dt$ es acotada para $x \ge a$,

entonces

$$\int_{a}^{+\infty} f(x)g(x) dx,$$

es convergente.

Otro criterio

Ejercicio

Utilizando el teorema anterior, muestre que

$$\int_0^{+\infty} \frac{\sin x}{\sqrt{x}} \, dx$$

es convergente.

Ejercicios Propuestos

$$=\frac{x+1}{x^3},$$

$$=\frac{x+1}{x^3},$$

1. Si
$$f(x) = \frac{x+1}{x^3}$$
,

b) Determine

1. Si
$$f(x) = \frac{x+2}{x^3}$$
,
a) Determine

$$(x) = \frac{1}{x^3}$$
, Determine

$$0 = \frac{x+1}{x^3}$$

$$=\frac{\overline{x_3}}{x^3},$$
 sermine

$$=\frac{x+1}{x^3},$$

$$=\frac{x+1}{x^3},$$

 $\int_0^{+\infty} f(x) \, dx.$

 $\int_{2}^{+\infty} f(x) dx.$

c) Calcule $\int_L f(x) dx$, donde $L = \{x \in \mathbb{R} : |x| > 2\}$.

Ejercicios propuestos

- 2. Sea $f(x) = \frac{1}{2}e^{|x|}, x \in \mathbb{R}$.
 - a) Calcule, si es que existe, $\int_{-\infty}^{+\infty} f(x) dx$.
 - b) Calcule, si es que existe:

$$\int_{\mathbb{D}} x f(x) dx.$$

- 3. Demuestre que las siguientes integrales convergen e interprete geométricamente.

 - a) $\int_{0}^{+\infty} \frac{1}{x^2 + 1} dx$ b) $\int_{0}^{+\infty} \frac{1}{x^4 + 1} dx$ c) $\int_{0}^{+\infty} \frac{x}{e^{x^2}} dx$

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.