Transmission Cost Estimation Guide

For MTEP24

May 1, 2024

Purpose Statement

The MISO transmission planning process focuses on making the benefits of an economically efficient electricity market available to customers by identifying transmission projects that provide access to electricity at the lowest total electric system cost. As a part of this process, MISO identifies essential transmission projects that will improve the reliability and efficiency of energy delivery in its region. These projects are included in the annual MISO Transmission Expansion Plan (MTEP) publication, produced as a collaboration between MISO planning staff and stakeholders.

Certain types of projects, as identified in MTEP, require cost estimates to justify the business case for recommendation to MISO's Board of Directors. MISO provides cost estimates for these certain types of projects to evaluate alternatives. MISO's *Transmission Cost Estimation Guide* for MTEP24 describes the approach and cost data that MISO uses in developing its cost estimates. This document's assumptions and cost data are reviewed yearly with stakeholders.

All cost estimate data in this document are in 2024 U.S. dollars. Cost data was escalated from 2023 U.S. dollars to 2024 U.S. dollars at a rate of 5%. All applicable taxes are included within the cost subcategories.

<u>Disclaimer</u>: This document is prepared for informational purposes only to support MISO planning staff in developing cost estimates and deriving benefit-to-cost ratios for solutions proposed for inclusion in the MISO Transmission Expansion Plan (MTEP). MISO's cost estimation approach is based on staff experience, vendor consultation, industry practice, and stakeholder feedback. MISO makes every effort to develop its cost estimates from the most accurate and appropriate assumptions and information available at that time. However, MISO cannot and does not guarantee the accuracy of information, assumptions, judgments, or opinions contained herein or derived therefrom. MISO may revise or terminate this document at any time at its discretion without notice. MISO's cost estimation assumptions are not an indication or a direction for how any particular project shall be designed or built.

Executive Summary

In MISO's planning process, estimated project costs are necessary to evaluate alternatives and recommend projects. The MISO Transmission Expansion Plan (MTEP) may recommend a project as a Market Efficiency Project (MEP) or in a portfolio of Multi-value Projects (MVP). Eligibility for MEPs and MVPs include a benefit-to-cost ratio requirement — MISO determines the benefits through its planning process, and costs are estimated.

Estimating project costs requires review and coordination throughout the planning process. At the onset of the planning study solicitation, stakeholders submit solution ideas that contain their cost estimate for a potential project. MISO utilizes stakeholders' cost estimate for initial screening of potential projects.

If a potential project passes the initial screening phase, MISO evaluates the costs of a potential project, and provides its planning cost estimate. MISO's planning cost estimates allow all potential projects' costs to be compared to each other using the same cost data and indicative assumptions.

If a potential project continues to show benefits in excess of cost, MISO creates a more refined scoping cost estimate. For projects ineligible for the Competitive Transmission Process (CTP), the local Transmission Owner will provide the cost estimate and will discuss and review the project scope of work with MISO. For eligible CTP projects, MISO will provide the scoping cost estimate. MISO's scoping cost estimate is specific for that individual potential project and MISO may adjust any of its cost estimate assumptions and/or any of its unit costs as necessary for that specific potential project. For any facility upgrades included in the project, MISO will discuss its estimate assumptions with the facility owner.

*Scope of work reviewed and discussed with MISO

Figure 0-1: Overview of planning process and cost estimate development

Table of Contents

1.	Capital Cost	4
2.	Project Costs	6
	2.1 Common Cost Categories Among All Project Types	6
	2.2 AC and HVDC Transmission Lines	7
	2.3 AC Substations	21
	2.4 HVDC Converter Stations	28
3.		
	3.1 AC and HVDC Transmission Lines	31
	3.2 AC Substations	34
4.	Exploratory Costs	38
	4.1 AC and HVDC Transmission Lines	38
	4.2 AC Substations	
	4.3 HVDC Converter Stations	42
5.	Costs Over Time	43

1. Capital Cost

Cost estimates that MISO provides are intended to be inclusive of all costs required to implement the project – the capital cost for a potential project. The capital cost estimate includes the project cost (as further described in this guide), contingency, and Allowance for Funds Used During Construction (AFUDC) (Figure 1-1).

Figure 1-1: Formula for the capital cost estimate

Contingency

Contingency is a cost adder to account for all the uncertainties/unpredictability and level of scope definition at the time of estimation. As more investigation is completed for a cost estimate (and a project), less contingency is carried as a cost in the cost estimate. MISO has three cost estimates types it provides, with different levels of contingency (Figure 1-2).

Figure 1-2: Cost estimate types and related contingency adders

MISO researched industry practices for project cost estimating approaches and has included an instructive reference from the AACE (formerly the Association for the Advancement of Cost Engineering) International[©]. The cost estimates that MISO provides generally align with the classes in the table below as described:

Class 5: MISO's exploratory cost estimate

- Class 4: MISO's planning cost estimate
- Class 3: MISO's scoping cost estimate
- Class 2: Not used for MISO cost estimate
- Class 1: Not used for MISO cost estimate

	Primary Characteristic	Secondary Characteristic					
ESTIMATE CLASS	MATURITY LEVEL OF PROJECT DEFINITION DELIVERABLES Expressed as % of complete definition	END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges ^[a]			
Class 5	0% to 2%	Concept screening	Capacity factored, parametric models, judgment, or analogy	L: -20% to -50% H: +30% to +100%			
Class 4	1% to 15%	Study or feasibility	Equipment factored or parametric models	L: -15% to -30% H: +20% to +50%			
Class 3	10% to 40%	Budget authorization or control	Semi-detailed unit costs with assembly level line items	L: -10% to -20% H: +10% to +30%			
Class 2	30% to 75%	Control or bid/tender	Detailed unit cost with forced detailed take-off	L: -5% to -15% H: +5% to +20%			
Class 1	65% to 100%	Check estimate or bid/tender	Detailed unit cost with detailed take-off	L: -3% to -10% H: +3% to +15%			

Notes: [a] The state of process technology, availability of applicable reference cost data, and many other risks affect the range markedly. The +/- value represents typical percentage variation of actual costs from the cost estimate after application of contingency (typically at a 50% level of confidence) for given scope.

Figure 1-3: Cost estimate classes and characteristics

AFUDC

AFUDC is a cost adder to account for the cost of debt and/or the cost of equity required to develop and place the project in service. AFUDC is assumed to be the same value for all the cost estimates MISO provides and is assumed to be 7.5% of the sum of the project cost and contingency.

2. Project Costs

Project costs are the costs to construct and install a project. Project cost estimates are categorized into smaller subcategories of cost that are then estimated for each individual project. Some cost category unit costs are common to all project types, while some are unique to the project type. This section describes the unit costs MISO uses in its cost estimates and in general, align with the cost categories MISO uses in its Request for Proposals in its Competitive Transmission Process and all costs include applicable taxes within their subcategory.

2.1 Common Cost Categories Among All Project Types

Project Management

Project management includes project implementation scheduling, project management activities, and resources for the project. Project management costs are estimated to be 5.5% of the project cost.

Administrative and General Overhead

Administrative and general overhead costs (A&G) are allocated to the project for the period prior to placing the project in service. A&G is estimated to be 1.5% of the project cost.

Engineering, Environmental Studies, and Testing and Commissioning

Engineering (including route and site evaluation), environmental studies, and testing and commissioning for the project comprise a cost category. Engineering, environmental studies, and testing and commissioning costs are estimated to be 3% of the project cost.

Right-of-Way, Land Acquisition, and Regulatory and Permitting

Right-of-way and land acquisition costs cover land easements on yet-to-be-installed projects and are typically charged to FERC plant accounts 350 and 359. MISO assumes that new right-of-way is required for all projects except transmission line rebuild projects. MISO has three categories of land costs: pasture, crop, and urban/suburban. MISO utilizes the annual USDA Land Values summary to estimate the value of pastureland. MISO assumes that cropland is three times more expensive per acre than pastureland and that suburban/urban land is five times more expensive than pastureland. Based on its desktop analysis, MISO will determine the land type encountered for each potential project and estimate accordingly. Regulatory and permitting costs include application to state commission boards for approval for construction including public outreach and open houses.

All land costs are based upon the acreage of land that the new transmission line would traverse or the site of the substation or HVDC converter station would require. The total land affected for a transmission line is the line length multiplied by the right-of-way width of the line. The right-of-way widths that MISO considers are intended to be indicative of right-of-way widths for transmission lines in each voltage class and correlate with the number of structures per mile that MISO assumes. Different project conditions (e.g., more transmission line structures per mile) could result in a wider or narrower right-of-way width than the indicative value MISO assumes.

Finally, certain states have unique circumstances to be accounted for in their cost estimates. Wisconsin projects involving transmission lines with nominal voltage of $345 \, kV$ and above have a one-time environmental impact fee in the amount of 5% of the total implementation cost of the transmission line —

MISO will include this additional cost in its cost estimate for projects in Wisconsin. Minnesota has a "buy the farm" statute where additional land may be required to be purchased in addition to the right-of-way required for the transmission line; MISO may consider additional land requirements for projects in Minnesota.

Table 2.1: Land costs										
	Right-o	f-Way cost per	acre	Acquisition	Regulatory and					
State	Pasture	Crop	Suburban and Urban	cost per acre	permitting cost per acre					
Arkansas	\$3,045	\$9,135	\$15,225	\$14,247	\$2,968					
Illinois	\$4,011	\$12,033	\$20,055	\$14,247	\$2,968					
Indiana	\$2,993	\$8,978	\$14,963	\$14,247	\$2,968					
Iowa	\$3,570	\$10,710	\$17,850	\$14,247	\$2,968					
Kentucky	\$3,570	\$10,710	\$17,850	\$14,247	\$2,968					
Louisiana	\$3,350	\$10,049	\$16,748	\$14,247	\$2,968					
Michigan	\$3,255	\$9,765	\$16,275	\$14,247	\$2,968					
Minnesota	\$2,205	\$6,615	\$11,025	\$14,247	\$9,914					
Mississippi	\$2,909	\$8,726	\$14,543	\$14,247	\$2,968					
Missouri	\$2,625	\$7,875	\$13,125	\$14,247	\$2,968					
Montana	\$840	\$2,520	\$4,200	\$14,247	\$2,968					
North Dakota	\$1,124	\$3,371	\$5,618	\$14,247	\$4,957					
South Dakota	\$1,407	\$4,221	\$7,035	\$14,247	\$3,977					
Texas	\$2,310	\$6,930	\$11,550	\$14,247	\$2,968					
Wisconsin	\$3,308	\$9,923	\$16,538	\$14,247	\$9,914					

2.2 AC and HVDC Transmission Lines

This Transmission Cost Estimation Guide contains costs both for alternating current (AC) transmission lines and for high voltage direct current (HVDC) transmission lines. Both types of transmission lines rely on some similar project costs (e.g., land costs, conductor costs), and some unique costs dependent on the scope of work (e.g., structure costs).

MISO's AC and HVDC transmission line cost estimates are divided into smaller subcategories as shown below. The smaller subcategories of costs align with MISO's Request for Proposal for Competitive Transmission Projects. This Transmission Cost Estimation Guide includes estimated costs for AC transmission in voltage classes ranging from 69 kV to 765 kV, and HVDC transmission in voltage classes from ± 250 kV to ± 640 kV.

HVDC transmission has two major components: transmission lines and converter stations. With the advancement of technology, both components of HVDC transmission have many options and can be highly customized depending on the specific situation. For the purposes of creating a cost estimate, MISO assumes a bipole HVDC transmission system with a ground electrode return at each converter station. MISO makes

an exception for the 765 kV interchangeable line described below, in which the metallic return provides a return path. Ground electrodes are assumed to be located at each end of the transmission line and connected by a ground electrode line.

Structures

Structure costs estimate the procurement and installation of structures (inclusive of its required foundation) for new, potential transmission line projects. Costs shown in tables 2.2-1 to 2.2-8 encompass cost subcategories of material, foundations, hardware, and installation typically charged to FERC plant accounts 354 and 355. All structures are designed for the highest applicable National Electric Safety Code (NESC) loading criteria in the MISO region.

MISO's transmission line cost estimates are comprised of four different structure types:

- Tangent structures are the most commonly used structures where the transmission line alignment
 is relatively straight and the line angle is between 0° and 2°. Tangent structures support the
 conductor using a suspension insulator assembly. The suspension insulator assembly consists of
 insulator and hardware to provide necessary electrical insulation and strength for load transfer. The
 optical groundwire (OPGW) shieldwire attaches to the shieldwire suspension assembly near the top
 of the structure.
- Running angle structures are used where the line alignment changes direction and the line angle is between 2° and 45°. Running angle structures support the conductor with a suspension insulator assembly similar to tangent structures. The OPGW shieldwire attaches to a shieldwire suspension assembly near top of structure.
- Non-angled deadend structures are partial deadend structures and not designed for full terminal loads. The line angle is between 5° to 45°. They are designed to withstand some unbalanced wire tensions in one direction of one or all wires on one face of the structure.
- Angled deadend structures are designed for full terminal loads for all wires and the line angle is between 0° and 90°

The steel weights and foundation sizes MISO considers for its steel pole and steel tower structure unit costs are intended as indicative for structures at different voltage classes and are not tied directly to any one structure design for that structure type.

The single- and double-circuit wood pole structures are included in this guide to address some of the project-specific needs involving wood pole construction. The wood pole structure costs that MISO considers for its unit costs are intended as an indicative value for the structures at different voltage classes and are not tied directly to any one structure design for that structure type.

All structure costs are comprised of the following unit costs (Tables 2.2-1 to 2.2-8):

- Material cost includes the cost of design, manufacture (material, labor, equipment) and delivery of the structure to the site (laydown yard) and is based on the estimated steel weight
- Installation costs are the costs to haul, assemble, and install the structure, insulators, and grounding assemblies. This cost includes access to the structure location, and restoration.
- Hardware cost includes material cost for insulator, line hardware and grounding assemblies

 Foundation cost includes material and installation of the foundations including the cost to procure and install anchor bolts and is based on the estimated foundation size

Steel structures are assumed to be supported on a concrete drilled pier foundation. Wood pole structures are assumed to be embedded directly in the ground and embedment cost is included in the installation cost. Drilled pier foundation size for a structure is indicated as concrete volume required per structure in cubic yards.

Interchangeable Transmission Lines (765 kV AC and \pm 640 kV HVDC)

Acquisition of new rights-of-way (ROW) for transmission lines has many regulatory, economic and environmental constraints. These constraints could create uncertainty in terms of time and cost for some projects, especially for extra high voltage lines with wider rights-of-ways. MISO acknowledges these constraints and therefore developed an interchangeable HVAC/HVDC transmission design for the purposes of creating a cost estimate in which transmission lines can be operated at 765 kV AC initially, and then if conversion to 640 kV DC is pursued later, the transmission line design would work with few modifications at \pm 640 kV DC also. The outside phases act as direct current poles and center phase provides return path for the DC transmission, which would eliminate need for separate return path. In tables 2.2-7 and 2.2-8, the costs of interchangeable structure costs are provided under \pm 640 kV HVDC transmission line. The costs for interchangeable structures are higher than regular 765 kV transmission structures due to increased insulation and taller structures to achieve HVDC clearance requirements.

	Table 2.2-1: AC transmission – steel pole – single circuit											
Tangent structure												
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV				
Steel weight (lbs.)	7,000	7,900	8,400	9,300	11,100	22,300	35,100	52,800				
Foundation size (Cu. Yd)	5.5	6.0	8.0	9.0	13.0	21.0	41.0	60.0				
Material	\$18,162	\$20,498	\$21,795	\$24,130	\$28,800	\$57,860	\$91,071	\$136,997				
Installation	\$27,244	\$30,746	\$32,692	\$36,195	\$43,200	\$86,790	\$136,259	\$205,493				
Hardware	\$4,783	\$5,580	\$5,979	\$6,776	\$7,970	\$10,665	\$11,676	\$23,428				
Foundation	\$8,556	\$9,334	\$12,445	\$14,001	\$20,223	\$32,668	\$63,780	\$93,336				
			Runn	ing angle str	ucture							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV				
Steel weight (lbs.)	11,600	13,000	13,900	15,300	18,300	37,900	59,700	\$149,000				
Foundation size (Cu. Yd)	9.0	10.5	13.0	14.0	19.5	30.0	54.5	85.0				
Material	\$30,098	\$33,730	\$36,065	\$39,698	\$47,482	\$98,336	\$154,899	\$386,602				
Installation	\$45,146	\$50,595	\$54,098	\$59,547	\$71,222	\$147,504	\$232,349	\$579,895				
Hardware	\$4,783	\$5,580	\$5,979	\$6,776	\$7,970	\$10,665	\$11,676	\$23,428				
Foundation	\$14,001	\$16,335	\$20,223	\$21,779	\$30,335	\$46,668	\$84,782	\$132,225				

			Non-ang	led deadend	structure			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	14,000	15,800	16,800	18,600	22,200	42,400	66,700	154,675
Foundation size (Cu. Yd)	11.0	12.0	15.0	16.5	22.5	33.5	60.0	160.0
Material	\$36,325	\$40,995	\$43,590	\$48,260	\$57,601	\$110,012	\$173,061	\$401,327
Installation	\$54,487	\$61,493	\$65,385	\$72,390	\$86,401	\$165,018	\$259,592	\$601,982
Hardware	\$9,430	\$11,002	\$11,788	\$13,359	\$15,717	\$38,332	\$60,298	\$93,712
Foundation	\$17,112	\$18,667	\$23,334	\$25,668	\$35,002	\$52,114	\$93,337	\$248,895
			Angle	d deadend st	tructure			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	20,400	23,000	24,500	27,100	32,400	48,100	80,700	154,675
Foundation size (Cu. Yd)	15.0	16.5	20.0	21.5	29.0	41.5	72.0	160.0
Material	\$52,930	\$59,676	\$63,568	\$70,314	\$84,066	\$124,801	\$209,386	\$401,327
Installation	\$79,395	\$89,515	\$95,352	\$105,471	\$126,099	\$187,202	\$314,079	\$601,982
Hardware	\$9,430	\$11,002	\$11,788	\$13,359	\$15,717	\$38,332	\$60,298	\$93,712
Foundation	\$23,334	\$25,668	\$31,112	\$33,446	\$45,113	\$64,559	\$112,004	\$248,895

	Table	2.2-2: AC	Transmis	sion – ste	el tower -	single circ	cuit	
			Tang	gent structu	re			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	6,100	6,900	7,300	8,100	10,100	20,300	27,000	34,320
Foundation size (Cu. Yd)	8.5	11.5	13.5	14.5	15.5	19.5	33.5	39.0
Material	\$13,213	\$14,946	\$15,812	\$17,545	\$21,877	\$43,971	\$58,483	\$89,049
Installation	\$19,820	\$22,419	\$23,719	\$26,318	\$32,816	\$65,957	\$87,725	\$133,570
Hardware	\$4,783	\$5,580	\$5,979	\$6,776	\$7,970	\$10,665	\$11,676	\$23,428
Foundation	\$13,223	\$17,890	\$21,001	\$22,557	\$24,113	\$30,335	\$52,114	\$60,668
			Running	g angle struc	tures			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	9,200	10,400	11,000	12,200	15,200	30,500	39,800	89,400
Foundation size (Cu. Yd)	16.0	19.0	19.5	22.0	24.5	39.0	72.5	81.0
Material	\$19,928	\$22,527	\$23,827	\$26,426	\$32,924	\$66,064	\$86,209	\$231,962
Installation	\$29,891	\$33,790	\$35,740	\$39,639	\$49,386	\$99,097	\$129,313	\$347,937
Hardware	\$4,783	\$5,580	\$5,979	\$6,776	\$7,970	\$10,665	\$11,676	\$23,428
Foundation	\$24,890	\$29,557	\$30,335	\$34,224	\$38,113	\$60,669	\$112,783	\$126,003
			Non-angle	d deadend s	tructure			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	10,400	11,700	12,400	13,800	17,200	34,500	45,900	108,273
Foundation size (Cu. Yd)	21.5	25.0	25.5	28.5	34.0	48.5	96.0	180.0
Material	\$22,527	\$25,343	\$26,859	\$29,891	\$37,256	\$74,729	\$99,422	\$280,929
Installation	\$33,790	\$38,015	\$40,288	\$44,837	\$55,884	\$112,094	\$149,133	\$421,387
Hardware	\$9,430	\$11,002	\$11,788	\$13,359	\$15,717	\$38,332	\$60,298	\$23,428
Foundation	\$33,446	\$38,890	\$39,669	\$44,336	\$52,891	\$75,448	\$149,339	\$248,895
			Angled	deadend stru	ıcture			
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Steel weight (lbs.)	13,400	15,200	16,100	17,800	22,200	44,700	59,400	108,273
Foundation size (Cu. Yd)	33.5	38.0	39.0	43.0	52.0	90.0	176.0	180.0

Transmission Cost Estimation Guide for MTEP24

Material	\$29,025	\$32,924	\$34,873	\$38,556	\$48,086	\$96,822	\$128,663	\$280,929
Installation	\$43,538	\$49,386	\$52,311	\$57,833	\$72,129	\$145,234	\$192,995	\$421,387
Hardware	\$9,430	\$11,002	\$11,788	\$13,359	\$15,717	\$38,332	\$60,298	\$23,428
Foundation	\$52,114	\$59,113	\$60,669	\$66,891	\$80,892	\$140,005	\$273,788	\$248,895

1	Table 2.2-3:	AC transmis	sion – steel	pole – doubl	e circuit					
		Tang	gent structure							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	11,300	12,700	13,500	14,900	18,600	36,000				
Foundation size (Cu. Yd)	8.0	10.0	14.5	17.5	23.0	46.5				
Material	\$29,319	\$32,952	\$35,027	\$38,660	\$48,260	\$93,406				
Installation	\$43,979	\$49,428	\$52,541	\$57,990	\$72,390	\$140,110				
Hardware	\$9,311	\$10,863	\$11,638	\$13,190	\$15,518	\$20,881				
Foundation	\$12,445	\$15,556	\$22,557	\$27,224	\$35,779	\$72,337				
Running angle structure										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	15,000	16,800	17,900	19,700	24,600	47,700				
Foundation size (Cu. Yd)	13.0	15.5	21.5	25.5	32.5	61.0				
Material	\$38,919	\$43,590	\$46,444	\$51,114	\$63,828	\$123,764				
Installation	\$58,379	\$65,385	\$69,666	\$76,671	\$95,742	\$185,645				
Hardware	\$9,311	\$10,863	\$11,638	\$13,190	\$15,518	\$20,881				
Foundation	\$20,223	\$24,113	\$33,446	\$39,669	\$50,558	\$94,893				
		Non-angle	d deadend stru	icture						
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	16,700	18,700	19,900	22,000	27,400	54,000				
Foundation size (Cu. Yd)	15.5	18.5	25.0	29.5	37.0	68.5				
Material	\$43,330	\$48,519	\$51,633	\$57,082	\$71,093	\$140,110				
Installation	\$64,995	\$72,779	\$77,450	\$85,623	\$106,639	\$210,165				
Hardware	\$18,598	\$21,699	\$23,249	\$26,348	\$30,998	\$76,240				
Foundation	\$24,113	\$28,779	\$38,890	\$45,891	\$57,558	\$106,560				
			leadend struct							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	26,000	29,200	31,100	34,300	42,800	84,600				
Foundation size (Cu. Yd)	20.0	24.0	32.0	37.0	46.0	81.5				
Material	\$67,460	\$75,763	\$80,693	\$88,996	\$111,050	\$219,505				
Installation	\$101,190	\$113,645	\$121,039	\$133,493	\$166,575	\$329,258				
Hardware	\$18,598	\$21,699	\$23,249	\$26,348	\$30,998	\$76,240				
Foundation	\$31,112	\$37,335	\$49,780	\$57,558	\$71,558	\$126,783				

T.	able 2.2-4: <i>A</i>	AC transmiss	sion – steel t	ower – doub	ole circuit					
		Tang	gent structure							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	9,200	10,400	11,000	12,200	15,200	36,000				
Foundation size (Cu. Yd)	13.0	17.0	19.5	21.0	22.0	31.5				
Material	\$19,928	\$22,527	\$23,827	\$26,426	\$32,924	\$77,978				
Installation	\$29,891	\$33,790	\$35,740	\$39,639	\$49,386	\$116,967				
Hardware	\$9,311	\$10,863	\$11,638	\$13,190	\$15,518	\$20,881				
Foundation	\$20,223	\$26,445	\$30,335	\$32,668	\$34,224	\$49,002				
Running angle structure										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	13,800	15,600	16,500	18,300	22,800	53,100				
Foundation size (Cu. Yd)	22.5	28.0	34.5	37.5	46.5	59.0				
Material	\$29,776	\$33,790	\$35,740	\$39,639	\$49,386	\$115,017				
Installation	\$44,837	\$50,686	\$53,610	\$59,459	\$74,079	\$172,526				
Hardware	\$9,311	\$10,863	\$11,638	\$13,190	\$15,518	\$20,881				
Foundation	\$35,002	\$43,557	\$53,669	\$58,336	\$72,337	\$91,781				
		Non-angle	d deadend stru	ıcture						
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	16,100	18,200	19,300	21,400	26,600	61,200				
Foundation size (Cu. Yd)	28.5	34.5	43.0	48.5	70.5	86.5				
Material	\$34,873	\$39,422	\$41,805	\$46,353	\$57,617	\$132,562				
Installation	\$52,311	\$59,133	\$62,708	\$69,530	\$86,425	\$198,843				
Hardware	\$18,598	\$21,699	\$23,249	\$26,348	\$30,998	\$76,240				
Foundation	\$44,336	\$53,669	\$66,891	\$75,448	\$109,671	\$134,561				
		=	leadend struct	ure						
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV				
Steel weight (lbs.)	21,200	23,900	25,300	28,100	35,000	79,200				
Foundation size (Cu. Yd)	43.0	50.5	61.5	68.5	99.0	125.0				
Material	\$45,920	\$51,769	\$54,801	\$60,866	\$75,812	\$171,551				
Installation	\$68,880	\$77,653	\$82,202	\$91,299	\$113,717	\$257,326				
Hardware	\$18,598	\$21,699	\$23,249	\$26,348	\$30,998	\$76,240				
Foundation	\$66,891	\$78,559	\$95,671	\$106,526	\$154,006	\$194,452				

	Table 2.2	-5: AC tran	smission -	wood pole	e – single ci	ircuit					
	Tangent structure										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$5,106	\$9,557	\$9,677	\$12,882	\$13,951	N/A	N/A				
Installation	\$14,247	\$14,841	\$16,622	\$23,745	\$35,618	N/A	N/A				
Hardware	\$4,987	\$5,640	\$6,174	\$6,827	\$8,905	N/A	N/A				
	Running angle structure										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$8,964	\$16,741	\$16,918	\$22,558	\$24,399	N/A	N/A				
Installation	\$24,933	\$26,002	\$29,089	\$41,555	\$62,332	N/A	N/A				
Hardware	\$8,727	\$9,855	\$10,805	\$11,932	\$15,613	N/A	N/A				
		Ang	gled deadend	structure							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$10,211	\$19,175	\$19,353	\$25,764	\$27,901	N/A	N/A				
Installation	\$28,495	\$29,682	\$33,244	\$47,491	\$71,236	N/A	N/A				
Hardware	\$9,973	\$11,280	\$12,348	\$13,654	\$17,809	N/A	N/A				

٦	Table 2.2-6: AC transmission – wood pole – double circuit										
Tangent structure											
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$8,430	\$15,791	N/A	N/A	N/A	N/A	N/A				
Installation	\$23,508	\$24,517	N/A	N/A	N/A	N/A	N/A				
Hardware	\$8,252	\$9,320	N/A	N/A	N/A	N/A	N/A				
	Running angle structure										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$14,781	\$27,604	N/A	N/A	N/A	N/A	N/A				
Installation	\$41,139	\$42,920	N/A	N/A	N/A	N/A	N/A				
Hardware	\$14,426	\$16,266	N/A	N/A	N/A	N/A	N/A				
		An	gled deadend	dstructure							
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV				
Material	\$16,859	\$31,641	N/A	N/A	N/A	N/A	N/A				
Installation	\$47,016	\$48,975	N/A	N/A	N/A	N/A	N/A				
Hardware	\$16,791	\$18,641	N/A	N/A	N/A	N/A	N/A				

Ta	able 2.2-7: HV	DC transmission	on – steel pole	- single circuit						
		Tangent s	tructure							
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV					
Steel weight (lbs.)	14,773	19,943	21,938	26,325	54,550					
Foundation size (Cu. Yd)	17.0	23.0	26.0	31.0	63.0					
Material	\$38,411	\$51,854	\$57,040	\$68,448	\$141,537					
Installation	\$57,617	\$77,782	\$85,560	\$102,673	\$212,305					
Hardware	\$5,183	\$6,602	\$7,182	\$7,529	\$29,286					
Foundation	\$26,498	\$35,772	\$39,855	\$47,827	\$98,003					
Running angle structure										
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV					
Steel weight (lbs.)	25,126	33,920	37,313	44,775	156,450					
Foundation size (Cu. Yd)	23.0	31.0	34.0	41.0	90.0					
Material	\$65,331	\$88,198	\$97,017	\$116,421	\$405,929					
Installation	\$97,997	\$132,296	\$145,526	\$174,631	\$608,893					
Hardware	\$6,480	\$8,253	\$8,977	\$9,411	\$29,286					
Foundation	\$35,676	\$48,162	\$52,978	\$63,574	\$140,027					
		Non-angled dead	dend structure							
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV					
Steel weight (lbs.)	28,072	37,898	41,688	50,025	162,409					
Foundation size (Cu. Yd)	25.0	34.0	38.0	45.0	168.0					
Material	\$72,991	\$98,539	\$108,393	\$130,072	\$421,390					
Installation	\$109,487	\$147,808	\$162,589	\$195,106	\$632,084					
Hardware	\$10,222	\$24,759	\$26,931	\$28,234	\$117,140					
Foundation	\$39,276	\$53,023	\$58,325	\$69,990	\$261,341					
		Angled deade								
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV					
Steel weight (lbs.)	33,965	45,852	50,438	60,525	162,409					
Foundation size (Cu. Yd)	30.0	41.0	45.0	54.0	168.0					
Material	\$88,312	\$119,222	\$131,144	\$157,372	\$421,390					
Installation	\$132,468	\$178,832	\$196,715	\$236,059	\$632,084					
Hardware	\$10,222	\$24,759	\$26,931	\$28,234	\$117,140					
Foundation	\$47,131	\$63,627	\$69,990	\$83,988	\$261,341					

Та	Table 2.2-8: HVDC transmission – steel tower – single circuit											
		Tangent s	tructure									
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV							
Steel weight (lbs.)	10,227	15,341	16,875	20,250	36,036							
Foundation size (Cu. Yd)	13.0	19.0	21.0	25.0	43.0							
Material	\$22,099	\$33,149	\$36,464	\$43,756	\$133,654							
Installation	\$33,149	\$49,724	\$54,696	\$65,636	\$200,482							
Hardware	\$5,183	\$6,602	\$7,182	\$7,529	\$19,211							
Foundation	\$19,737	\$29,604	\$32,565	\$39,078	\$79,400							
Running angle structure												
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV							
Steel weight (lbs.)	16,751	22,614	24,875	29,850	93,870							
Foundation size (Cu. Yd)	31.0	41.0	45.0	54.0	90.0							
Material	\$36,196	\$48,865	\$53,750	\$64,501	\$237,622							
Installation	\$54,294	\$73,297	\$80,626	\$96,752	\$356,427							
Hardware	\$6,480	\$8,253	\$8,977	\$9,411	\$20,341							
Foundation	\$47,458	\$64,069	\$70,475	\$84,571	\$167,910							
		Non-angled dea	dend structure									
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV							
Steel weight (lbs.)	19,318	26,080	28,688	34,425	113,687							
Foundation size (Cu. Yd)	40.0	55.0	60.0	72.0	176.0							
Material	\$41,743	\$56,353	\$61,989	\$74,387	\$287,780							
Installation	\$62,615	\$84,530	\$92,984	\$111,580	\$431,669							
Hardware	\$10,222	\$24,759	\$26,931	\$28,234	\$99,898							
Foundation	\$62,842	\$84,836	\$93,320	\$111,983	\$325,745							
		Angled deade										
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV							
Steel weight (lbs.)	25,000	33,750	37,125	44,550	113,687							
Foundation size (Cu. Yd)	74.0	100.0	110.0	132.0	176.0							
Material	\$54,021	\$72,929	\$80,221	\$96,265	\$287,780							
Installation	\$81,031	\$109,392	\$120,331	\$144,398	\$431,669							
Hardware	\$10,222	\$24,759	\$26,931	\$28,234	\$99,898							
Foundation	\$115,209	\$155,533	\$171,086	\$205,303	\$325,745							

Project-specific environmental circumstances of an individual project may lead to additional installation costs. MISO considers these additional costs for a new transmission line that traverses a forested area, wetland area, or mountainous terrain (Table 2.2-9).

Table 2.2-9: Additional structure installation costs						
Voltage class 69 kV – 765 kV						
Forested clearing cost (per acre)	\$5,995					
Wetland (per acre)	Matting and construction difficulties: \$69,975					
vvetiana (per aere)	Wetland mitigation credits: \$56,132					
Mountainous terrain (per acre)	\$7,794					

Removal cost of existing transmission line and/or substation involves complete removal or retirement of existing transmission line or substation equipment. The removal costs include all plant, tools, equipment, machinery, skill, supervision and labor (Table 2.2-10).

	Table 2.2-10: Transmission line removal/retirement												
\$/mile													
Voltage class	69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV												
Wood pole -	\$219,645	\$255,611	\$267,136	\$281,978	\$314,627	N/A	N/A						
single circuit	Ψ217,043	Ψ233,011	Ψ207,130	Ψ201,770	ψ31 4 ,027	11/7	IN/A						
Wood pole -	\$356,182	\$409,609	N/A	N/A	N/A	N/A	N/A						
double circuit	ψ550,102	ψ 1 07,007	IN/ A	IN/ A	IN/A	11/7	IN/A						

Conductor

Costs estimated to procure and install conductor required for transmission line projects are typically charged to FERC plant account 356. Conductor costs are based upon the conductor selected and the length of the transmission line. MISO assumes conductor length adder of 4% for sag and wastage per conductor. Conductor type and size are based on economic planning model considerations for the required ampacity and based on MISO Business Practice Manual 029 to assign appropriate conductor type. See Section 3: Initial Assumptions for MISO's indicative conductor selection and ratings for different voltage classes.

Potential projects may involve reconductoring or upgrading the existing conductor size to allow more power transfer by increasing the ampacity of the existing circuit. In providing cost estimates for reconductoring project scope, MISO assumes that the existing structures — including foundations, insulators and hardware — are adequate to support the new conductor size and configuration. MISO will discuss these assumptions with the Transmission Owner. The costs of new conductor and installation are considered for the estimate of the retrofit projects.

MISO primarily considers Aluminum Conductor Steel Reinforce (ACSR) and Aluminum Conductor Steel Supported (ACSS) conductor types in its cost estimates (Tables 2.2-11 and 2.2-12). MISO also includes costs for representative High-Temperature Low Sag conductor sizes (e.g. Aluminum Conductor Composite Core (ACCC)) for any project with specific needs (Table 2.2-13). Where required, MISO will consider the cost for T2 as equivalent to two conductors of that size to the same cost when creating its cost estimate.

The formula for conductor costs includes the following unit costs:

- Material cost: the cost of manufacturing and deliver conductor to the site (laydown yard)
- Installation cost: the cost to haul conductor reels, install, and sag and clip conductor on transmission structures
- Accessories: the sleeves, spacers, and dampers material and installation cost required for a transmission line

Table 2.2-11: Conductor costs (<1,000 kcmil)										
Conductor	Material cost	per 1000 feet	Installation cost	Accessories cost						
Conductor	ACSR	ACSS	per 1,000 feet	per 1,000 feet						
266.8 kcmil "Waxwing"	\$640	\$623	\$870	\$277						
266.8 kcmil "Partridge"	\$772	\$798	\$1,079	\$277						
336.4 kcmil "Merlin"	\$683	\$761	\$989	\$277						
336.4 kcmil "Linnet"	\$786	\$911	\$1,162	\$277						
336.4 kcmil "Oriole"	\$981	\$1,010	\$1,367	\$277						
397.5 kcmil "Chickadee"	\$842	\$886	\$1,186	\$277						
397.5 kcmil "Ibis"	\$1,012	\$1,079	\$1,434	\$277						
397.5 kcmil "Lark"	\$998	\$1,198	\$1,502	\$277						
477 kcmil "Pelican"	\$987	\$1,085	\$1,421	\$277						
477 kcmil "Flicker"	\$947	\$1,135	\$1,425	\$277						
477 kcmil "Hawk"	\$1,179	\$1,260	\$1,673	\$277						
477 kcmil "Hen"	\$1,313	\$1,348	\$1,828	\$277						
556.5 kcmil "Osprey"	\$1,185	\$1,198	\$1,637	\$277						
556.5 kcmil "Parakeet"	\$1,390	\$1,384	\$1,909	\$277						
556.5 kcmil "Dove"	\$1,314	\$1,447	\$1,894	\$277						
636 kcmil "Kingbird"	\$1,145	\$1,348	\$1,706	\$277						
636 kcmil "Rook"	\$1,298	\$1,559	\$1,954	\$277						
636 kcmil "Grosbeak"	\$1,486	\$1,622	\$2,132	\$277						
666.6 kcmil "Flamingo"	\$1,533	\$1,796	\$2,253	\$277						
795 kcmil "Coot"	\$1,517	\$1,684	\$2,194	\$277						
795 kcmil "Tern"	\$1,434	\$1,708	\$2,151	\$277						
795 kcmil "Cuckoo"	\$1,597	\$1,921	\$2,406	\$277						
795 kcmil "Condor"	\$1,659	\$1,921	\$2,451	\$277						
795 kcmil "Drake"	\$1,796	\$1,807	\$2,477	\$277						
900 kcmil "Canary"	\$2,034	\$1,983	\$2,763	\$277						
954 kcmil "Rail"	\$1,895	\$1,928	\$2,627	\$277						
954 kcmil "Cardinal"	\$2,075	\$2,138	\$2,895	\$277						

2.2-12: Conductor costs (>1,000 kcmil)											
Conductor	Material cos	t per 1000 feet	Installation cost	Accessories cost							
Conductor	ACSR ACSS		per 1,000 feet	per 1,000 feet							
1,033.5 kcmil "Ortolan"	\$2,078	\$2,569	\$3,177	\$277							
1,033.5 kcmil "Curlew"	\$2,291	\$2,170	\$3,072	\$277							
1,113 kcmil "Bluejay"	\$2,208	\$2,757	\$3,392	\$277							
1,192.5 kcmil "Bunting"	\$2,059	\$2,308	\$2,993	\$277							
1,272 kcmil "Bittern"	\$2,385	\$2,470	\$3,334	\$277							
1,272 kcmil "Pheasant"	\$2,607	\$2,855	\$3,746	\$277							
1,351.5 kcmil "Dipper"	\$2,580	\$3,131	\$3,905	\$277							
1,351.5 kcmil "Martin"	\$3,197	\$2,782	\$4,126	\$277							
1,431 kcmil "Bobolink"	\$2,924	\$3,255	\$4,236	\$277							
1,590 kcmil "Lapwing"	\$3,016	\$3,194	\$4,262	\$277							
1,590 kcmil "Falcon"	\$3,559	\$3,563	\$4,897	\$277							
1,780 kcmil "Chukar"	\$3,879	\$4,154	\$5,513	\$277							
2,156 kcmil "Bluebird"	\$4,569	\$5,077	\$6,613	\$277							
2,167 kcmil "Kiwi"	\$4,138	\$6,050	\$6,932	\$277							
2,312 kcmil "Thrasher"	\$4,740	\$5,426	\$6,963	\$277							
2,515 kcmil "Joree"	\$5,038	\$5,688	\$7,350	\$277							

High-Temperature Low Sag Conductors (e.g. Aluminum Conductor Composite Core)

Alternatives to conventional ACSS and ACSR conductors include High-Temperature Low Sag (HTLS) conductors, an example of which being Aluminum Conductor Composite Core (ACCC) which is similar in construction to ACSS and ACSR conductor, except the ACCC uses a composite core of hybrid carbon and glass fibers rather than a steel core. The ACCC conductor is only available in a trapezoidal stranding configuration. This trapezoidal stranding configuration provides about one third more aluminum for a given diameter/size versus round wire conductor, and enables up to two times the power flow versus the comparably-sized round wire ACSR and ACSS conductors. The carbon composite core has a lower thermal expansion than the steel cores of other conductors, allowing higher temperature operation.

This ACCC conductor information provided (Tables 2.2-13) is intended for retrofitting/reconductoring projects, but ACCC conductors could be considered for new transmission line construction as well. ACCC conductors can be evaluated for ACSR conductor replacement as a same-size conductor or same-ampacity conductor replacement. However, conductor type and configuration should be analyzed and selected on a case-by-case basis. The structure and foundation data provided in previous tables are based on conventional ACSR and ACSS conductors. The ACCC conductors used in new projects have potential for fewer structures and foundations compared to conventional conductors, but such optimization is out of scope for this cost guide. Costs for representative ACCC conductor sizes commonly used in projects are based on discussions with ACCC stranders/suppliers. Other High-Temperature, Low Sag conductor options are available.

Tabl	Table 2.2-13: ACCC conductor costs and round wire comparisons												
ACCC conductor size	Comparable ACSR/ACSS round wire conductor	Maximum amperage	Material cost per 1,000 feet	Installation cost per 1,000 feet	Accessories cost per 1,000 feet								
821 kcmil	795 kcmil "Drake"	1,468	\$3,800	\$2,365	\$277								
1,026 kcmil		1,708	\$5,090	\$2,365	\$277								
1,011 kcmil	954 kcmil "Cardinal"	1,681	\$4,680	\$3,045	\$277								
1,222 kcmil		1,902	\$5,190	\$3,045	\$277								
1,300 kcmil	1,272 kcmil "Bittern"	1,975	\$5,030	\$3,145	\$277								
1,582 kcmil		2,228	\$6,190	\$3,145	\$277								
2,242 kcmil	2,156 kcmil "Bluebird"	2,785	\$8,405	\$7,215	\$277								
2,741 kcmil		3,130	\$9,880	\$7,215	\$277								

OPGW and Shieldwire

The costs estimated to procure and install OPGW and/or shieldwire required for transmission line projects (Table 2.2-14) are typically charged to FERC plant account 356. Unless otherwise specified by the solution idea, MISO assumes one OPGW and one steel shieldwire per transmission circuit. MISO assumes a conductor and shieldwire length adder of 4% for sag and wastage per conductor, OPGW, and shieldwire. OPGW and shieldwire are installed at the top of structures to protect the conductors below from direct lightning strikes and includes fiber optic cable.

The unit costs for the OPGW and shield wires include:

- Material cost: the cost of manufacturing and delivery of the OPGW or shieldwire to the site (laydown yard)
- Installation cost: the cost to haul the OPGW and shieldwire reels, install, and sag and clip conductor on transmission structures

Table 2.2-14: OPGW and shieldwire costs								
Wire type	Wire type Material cost per 1,000 Installation cost per 1,000 feet							
Shieldwire	\$623	\$936						
OPGW	\$2,819	\$4,229						

2.3 AC Substations

Substation cost estimates are sub-divided into cost categories. MISO provides cost estimates for both substation upgrades and for new substation sites. For planning cost estimates, MISO assumes size (acreage) requirements and equipment quantities based on general assumptions for the project area – see section 3 for initial assumptions. Both the size of the substation facilities and the equipment quantities are dependent upon the voltage class of the facility and the number of new line/transformer positions being considered. For scoping cost estimates that are upgrades of existing substations, MISO discusses its scope of work

assumptions with the existing substation owner. If the substation is a new facility, MISO follows requirements in its Business Practice Manual 029 (BPM-029).

Site Work

Site work unit costs estimate the price to prepare the land for a substation including clearing, grading, grounding and physical security (Table 2.3-1). Additional costs may occur, depending on the terrain encountered for a specific substation site (e.g., forested area, or wetlands). MISO will add specialized site components costs (e.g. specialized gates, access protection, import/export of soil), if required, to its cost estimate and will call them out separately.

Table 2.3-1: Site work unit costs							
Voltage class 69 kV - 765 kV							
Level ground with light vegetation (per acre)	\$403,539						
Forested land (per acre)	+\$5,995						
Wetland (per acre)	+\$69,975 for matting and construction difficulties +\$56,132 for wetland mitigation credits						

Access Road

Access road costs are estimated based on the length of the road. Access roads allow entry to the substation site from the nearest drivable public road. For the access road into a substation, MISO uses Google Earth to estimate the length of the access road required. Access road costs are estimated to be \$593,636 per mile.

Electrical Equipment Material, Electrical Equipment Installation, Steel Structure Material, Steel Structure Installation, and Substation Foundation

Costs estimated to procure and install material and steel structures (Tables 2.3-2 to 2.3-6) are divided into the following subcategories:

- Material: the cost to procure and deliver electrical equipment materials to the site (laydown yard).
- Installation: the cost to assemble and place on foundation or steel structure.
- As applicable: the cost of jumpers, conduit, wiring, and grounding cost includes material and
 installation of the electrical jumpers and fittings to connect to adjacent electrical equipment, above
 grade conduit, landing control cables on terminal block in equipment, and the above grade ground
 grid connection
- Steel structure material: includes the cost of design, manufacture (material, labor, equipment) and delivery of the structure to the site (laydown yard) and is based on the estimated steel weight
- Steel structure installation: the cost to place the steel stand on the foundation
- Foundation: the cost includes material and installation for the foundations including the cost to procure and install anchor bolts and is based on the estimated foundation size

	Table 2.3-2: Circuit breaker unit costs												
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Foundation size (Cu. Yd)	3.6	4.5	5.3	6.7	8.0	8.8	19.8	39.6					
Material cost	\$47,491	\$59,364	\$62,332	\$65,300	\$112,791	\$373,398	\$491,531	\$1,433,250					
Installation cost	\$8,905	\$9,498	\$10,092	\$10,685	\$11,873	\$17,809	\$23,745	\$71,663					
Jumpers, conduit, wiring, grounding	\$9,498	\$10,685	\$11,873	\$14,247	\$17,809	\$23,745	\$29,682	\$85,996					
Foundation cost	\$5,600	\$7,001	\$8,245	\$10,423	\$12,445	\$13,689	\$30,801	\$61,601					

	Table 2.3-3: Disconnect switch (3-phase) unit costs												
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Foundation size (Cu. Yd)	3.4	4.2	5.2	6.5	7.8	8.0	18.0	27.0					
Steel stand weight (pounds)	1,500	1,750	2,000	2,500	3,500	4,000	5,000	7,500					
Material cost	\$11,873	\$14,841	\$17,809	\$20,778	\$23,745	\$41,555	\$59,364	\$178,091					
Installation cost	\$7,124	\$8,311	\$9,498	\$10,685	\$11,873	\$17,809	\$23,745	\$71,663					
Jumpers, and grounding	\$4,749	\$5,343	\$5,936	\$7,124	\$8,905	\$11,873	\$14,841	\$42,998					
Steel stand material cost	\$3,892	\$4,541	\$5,189	\$6,487	\$9,081	\$10,378	\$12,973	\$19,460					
Steel stand installation cost	\$4,476	\$5,222	\$5,968	\$7,460	\$10,443	\$11,977	\$14,919	\$22,379					
Foundation cost	\$5,289	\$6,534	\$8,090	\$10,112	\$12,133	\$12,445	\$28,001	\$42,002					

Та	Table 2.3-4: Bus support, bus, and fittings (3-phase) unit costs												
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Foundation size (Cu. Yd)	3.1	3.9	4.8	6.0	7.2	9.6	14.4	21.6					
Steel stand weight (pounds)	1,000	1,250	1,500	1,750	2,000	3,000	4,500	6,750					
Material cost	\$6,827	\$8,548	\$9,855	\$10,359	\$10,864	\$12,853	\$14,811	\$22,218					
Installation cost	\$8,193	\$10,258	\$11,825	\$12,431	\$13,037	\$15,423	\$17,773	\$26,660					
Steel stand material cost	\$2,595	\$3,243	\$3,892	\$4,541	\$5,189	\$7,784	\$11,676	\$17,514					
Steel stand installation cost	\$2,984	\$3,730	\$4,476	\$5,222	\$5,968	\$8,951	\$13,427	\$20,141					
Foundation cost	\$4,822	\$6,067	\$7,466	\$9,334	\$11,201	\$14,934	\$22,401	\$33,602					

	Table 2.3-5: Voltage transformer (set of 3) unit costs												
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Foundation size (Cu. Yd)	1.8	2.3	2.7	3.4	4.0	8.0	12.1	18.2					
Steel stand weight (pounds)	1,250	1,350	1,425	1,500	1,750	2,000	2,500	3,750					
Material cost	\$23,745	\$26,714	\$29,682	\$32,651	\$41,555	\$49,865	\$94,982	\$142,473					
Installation cost	\$2,375	\$2,671	\$2,969	\$3,265	\$3,562	\$4,749	\$5,936	\$8,905					
Jumpers, conduit, wiring, grounding	\$7,124	\$8,014	\$8,905	\$10,685	\$13,357	\$17,809	\$22,258	\$33,387					
Steel stand material cost	\$3,243	\$3,503	\$3,697	\$3,892	\$4,541	\$5,189	\$6,487	\$9,730					
Steel stand installation cost	\$3,730	\$4,029	\$4,252	\$4,476	\$5,222	\$5,968	\$7,460	\$11,189					
Foundation cost	\$2,800	\$3,578	\$4,200	\$5,289	\$6,222	\$12,445	\$18,823	\$28,234					

	Table	2.3-6: Cı	ırrent tra	nsformer	(set of 3)	unit costs		
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Foundation size (Cu. Yd)	1.8	2.3	2.7	3.4	4.0	8.0	12.1	18.2
Steel stand weight (pounds)	1,250	1,350	1,425	1,500	1,750	2,000	2,500	3,750
Material cost	\$73,284	\$91,598	\$124,783	\$137,249	\$149,775	\$249,595	\$436,798	\$655,197
Installation cost	\$2,375	\$2,671	\$2,969	\$3,265	\$3,562	\$4,749	\$5,936	\$8,905
Jumpers, conduit, wiring, grounding	\$7,124	\$8,014	\$8,905	\$10,685	\$13,357	\$17,809	\$22,258	\$33,387
Steel stand material cost	\$3,243	\$3,503	\$3,697	\$3,892	\$4,541	\$5,189	\$6,487	\$9,730
Steel stand installation cost	\$3,730	\$4,029	\$4,252	\$4,476	\$5,222	\$5,968	\$7,460	\$11,189
Foundation cost	\$2,800	\$3,578	\$4,200	\$5,289	\$6,222	\$12,445	\$18,823	\$28,234

Deadend structure unit cost is the cost associated with one angled deadend structure. The unit cost utilized for a deadend structure installed in a substation is same unit cost is used for transmission line estimates (Tables 2.2-1 to 2.2-8).

Removal cost of existing substation equipment includes all plant, tools, equipment, machinery, skill, supervision and labor. For any substation equipment that is required to be removed, MISO will utilize its installation cost for that item and consider it equivalent as the cost of removal.

Power transformer unit cost is the cost associated with one power transformer (Table 2.3-7). Power transformer cost varies based on the low-side voltage winding and high-side voltage winding. Unit cost includes all material, shipping, foundation, and installation costs with that transformer. For a scoping cost estimate, MISO will discuss power transformer pricing with vendors.

		Table 2.	3-7: Powe	er transfo	rmer (\$/N	1VA)		
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
69 kV	\$5,606	\$4,564	\$5,050	\$5,317	\$5,896	\$7,239	\$9,336	\$13,135
115 kV	\$4,564	\$6,209	\$5,050	\$5,317	\$5,896	\$6,880	\$8,444	\$10,807
138 kV	\$5,050	\$5,050	\$6,880	\$5,606	\$5,896	\$6,880	\$8,444	\$10,807
161 kV	\$5,317	\$5,317	\$5,606	\$7,622	\$6,209	\$7,239	\$8,884	\$10,807
230 kV	\$5,896	\$5,896	\$5,896	\$6,209	\$8,444	\$7,239	\$8,884	\$10,807
345 kV	\$7,239	\$6,880	\$6,880	\$7,239	\$7,239	\$10,286	\$9,336	\$11,340
500 kV	\$9,336	\$8,444	\$8,444	\$8,884	\$8,884	\$9,336	\$13,784	\$12,510
765 kV	\$13,135	\$10,807	\$10,807	\$10,807	\$10,807	\$11,340	\$12,510	\$18,475

Grid supporting devices unit costs are the costs associated to procure and install devices to support the grid (Table 2.3-8). Unit costs include all material, shipping, foundation, and installation costs. Additional

substation upgrades to add a bus position for interconnection of grid supporting devices are not included in the costs shown in Table 2.3-8 and will be included in a cost estimate if needed.

Certain grid supporting devices are nominally rated less than transmission voltage (i.e., less than 69 kV). In order to connect those devices to the transmission system, they must be stepped-up to a transmission voltage. Energy storage costs are focused on transmission applications, which historically tend to be smaller with less economies of scale than large wholesale installations. MISO researches energy storage costs annually in order to stay up-to-date with market costs, which historically have declined year-over-year. For a scoping cost estimate, MISO will discuss grid supporting device pricing with vendors.

	Та	ble 2.3-8:	Grid sup	porting d	evices un	it costs		
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Reactor (\$/MVAr)	\$16,117	\$16,117	\$16,117	\$16,117	\$16,117	\$19,950	\$24,806	\$35,831
Capacitor bank (\$/MVAr)	\$11,873	\$11,873	\$11,873	\$11,873	\$11,873	\$11,873	\$11,873	\$11,873
Static VAr Compensator (\$/MVAr)	\$114,185	\$114,185	\$114,185	\$114,185	\$114,185	\$114,185	\$114,185	\$114,185
STATCOM (\$/MVAr)	\$226,013	\$226,013	\$226,013	\$226,013	\$226,013	\$226,013	\$226,013	\$226,013
Synchronous condenser (\$/MVAr)			\$169,500/1	\$169,50 MW (\$169.5	0/MVAr+ 5/kw) (step-	-up to 69 k\	/)	
Energy storage (lithium ion)			Invert	tem: \$236,0 er: \$71,500 MW (\$169.5	/MW (\$71.	5/kw) +		
APFC (Advanced Power Flow Control) / SSSC (Static Series Synchronous Condensers)				\$159,75	50/MVAr			

Control Enclosure and Communication System

The cost of the control enclosure and communication system is estimated for one control enclosure of approximately 500 square feet (Table 2.3-9). Material and installation costs include the cost to procure and deliver one control enclosure to the site (laydown yard); the offload and placement of the control enclosure on the foundation; and wiring of the AC/DC systems to field equipment. A control enclosure includes AC panels, DC panels, a cable tray, and all other typical components. Relay panels are considered separately. Battery and battery charger costs includes the material and installation cost for the batteries in the control enclosure and their associated battery charger. Communication equipment costs account for communication equipment placed inside the substation (e.g., fiber patch panel, remote terminal unit, human

machine interface). Station service power is the cost to provide station service power to the control enclosure. Foundation size is the amount of cubic yards of concrete required for the foundation. Foundation cost is the combination of the material and installation cost for the foundation and is based on the estimated foundation size.

		Table 2.3	3-9: Contr	ol enclosi	ıre unit co	osts		
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV
Foundation size (Cu. Yd)	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
Material and								
installation	\$356,182	\$356,182	\$356,182	\$356,182	\$356,182	\$356,182	\$356,182	\$356,182
cost								
Battery and battery	\$118,727	\$118,727	\$118,727	\$118,727	\$118,727	\$118,727	\$118,727	\$118,727
charger								
Communicatio n equipment	\$118,727	\$118,727	\$118,727	\$118,727	\$118,727	\$178,091	\$178,091	\$178,091
Station service power	\$130,600	\$130,600	\$130,600	\$130,600	\$130,600	\$154,345	\$154,345	\$154,345
Foundation cost	\$28,001	\$28,001	\$28,001	\$28,001	\$28,001	\$28,001	\$28,001	\$28,001

Relay Panels

Relay panel estimated unit costs are for one relay panel per voltage class (Table 2.3-10). Material cost is the cost to procure and deliver one relay panel to the site (laydown yard). Procurement of the relay panel includes all the relays and devices in the panel, and all the internal wiring for the devices in each individual relay panel. Installation cost includes placement of relay panel in a control enclosure; wiring from field equipment; and inter-panel wiring to other relay panels inside the control enclosure.

Table 2.3-10: Relay panel unit costs										
Voltage class 69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV										
Material cost	\$22,262	\$27,752	\$34,727	\$39,180	\$43,336	\$57,880	\$72,424	\$90,529		
Installation cost	\$44,523	\$55,505	\$69,456	\$78,360	\$86,671	\$115,760	\$144,847	\$181,060		

Control Cable, Conduit, and Cable Trench

Control cable unit costs are the costs associated with 1,000 feet of control cable (Table 2.3-11). Material cost is the cost to procure and deliver 1,000 feet of control cable to the site (laydown yard). Installation cost includes placing and pulling the control cable in conduit and/or in a cable trench and bringing the control cable to its end point where it will be landed. The final wiring of landing on terminal blocks is included in other unit costs.

	Table 2.3-11: Control cable unit costs											
Voltage class 69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV												
Material cost per 1,000 feet	\$3,562	\$3,562	\$3,562	\$3,562	\$3,562	\$4,749	\$4,749	\$4,749				
Installation cost per 1,000 feet	\$5,936	\$5,936	\$5,936	\$5,936	\$5,936	\$5,936	\$5,936	\$5,936				

Conduit unit cost is the cost associated with 1,000 feet of conduit (Table 2.3-12). Material cost is the cost to procure and deliver 1,000 feet of conduit to the site (laydown yard). Included in the material cost is the conduit along with applicable fittings and connectors. Installation cost includes excavation, placement of conduit, and utilizing all applicable fittings and connectors.

Table 2.3-12: Conduit unit costs											
Voltage class	e class 69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV										
Material cost per 1,000 feet	\$3,562	\$3,562	\$3,562	\$3,562	\$3,562	\$3,562	\$3,562	\$3,562			
Installation cost per 1,000 feet	\$47,491	\$47,491	\$47,491	\$47,491	\$47,491	\$47,491	\$47,491	\$47,491			

Cable trench unit cost is the cost associated with 1 foot of cable trench inclusive of a lid/cover (Table 2.3-13). Material cost is the cost to procure and deliver 1 foot of cable trench to the site (laydown yard). Installation cost includes excavation, and placement of cable trench. Placement of control cables in cable trench is included in the control cable installation cost.

Table 2.3-13: Cable trench unit costs											
Voltage class	Voltage class 69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV										
Material cost per foot	\$59	\$59	\$59	\$59	\$59	\$59	\$59	\$59			
Installation cost per foot	\$237	\$237	\$237	\$237	\$237	\$237	\$237	\$237			

2.4 HVDC Converter Stations

Converter stations are required at each endpoint of an HVDC transmission line in order to interconnect with the AC transmission system. MISO includes in its guide two converter station design types — line-commutated converter thyristor valve technology (LCC) and voltage-source converter transistor technology (VSC).

In addition to only a converter station, there would also be AC substation equipment needed to interconnect. Typical interconnection voltages are 230 kV AC for a ± 250 kV HVDC transmission line; 345 kV AC for a ± 400 kV HVDC transmission line; 500 kV AC for a ± 500 kV and ± 600 kV HVDC transmission line; and 765 kV AC for a ± 640 kV HVDC transmission line. For the purposes of creating a cost estimate, as shown in tables 2.4-1 and 2.4-2, MISO assumes a new four-position, breaker-and-a-half substation for the AC substation costs connected with a new converter station.

At each converter station, MISO assumes the installation of a ground electrode except in the instance of an interchangeable transmission line. Historically, HVDC electrodes have been installed to provide a low-resistance path during both monopolar and bipolar operations, using earth as a conductive medium. Although this return path option in HVDC is less expensive, there are environmental and regulatory implications. For the purpose of the cost estimate, MISO assumes that those concerns are permitted by respective authorities and addressed by the developer.

The ground electrode is a structure with a conductor, or a group of conductors embedded in the soil directly or surrounded by conductive medium providing an electric path to ground. The electrodes are generally located relatively close to the converter stations. MISO's unit cost of a ground electrode includes the engineering study, permitting, material, labor and land. In addition to the ground electrode, there is also the ground electrode line, which is an electrical connection between conversions and ground electrode. The cost of overhead ground electrode line includes supporting structures, foundations, conductor material and labor. MISO assumes 20 miles of ground electrode line at each of the HVDC transmission line.

LCC stations are composed of thyristor valves and are located indoors to provide a safe, clean and controlled operating environment. The cost of a bipolar converter station valve hall includes land and land acquisition, the building, and DC switching station equipment including DC filters, converter transformer, insulation, control devices and services. LCC stations require AC filters which are included in the converter station costs. Reactive power compensation is assumed to be a Static Var Compensator, which the costs are shown in section 3.2.

Table 2.4-1: C	Converter stat	ion line comn	nutated conve	erter (LCC) - c	ne end
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV
Power Transfer	500 MW	1,500 MW	2,000 MW	2,400 MW	3,000 MW
Assumed Reactive Power Need	167 MVAR	500 MVAR	667 MVAR	800 MVAR	1,000 MVAR
Ground electrode line length	20 miles	20 miles	20 miles	20 miles	20 miles
Valve hall	\$34.7M	\$127.4M	\$173.7M	\$214.3M	\$267.9M
AC filters	\$3.5M	\$12.7M	\$17.4M	\$21.4M	\$26.8M
Reactive power	\$19.1M	\$57.1M	\$76.2M	\$91.4M	\$114.2M
AC Substation	\$12.4M	\$18.2M	\$26.4M	\$26.4M	\$35.3M
Ground electrode	\$3.1M	\$4.2M	\$4.3M	\$4.5M	\$4.7M
Ground electrode line	\$4.6M	\$11.6M	\$13.9M	\$17.4M	\$18.8M

Voltage source converter (VSC) stations are composed of insulated-gate bipolar transistor (IGBT) valves and are located indoors to provide a safe, clean and controlled operating environment. The cost of a bipolar converter station valve hall includes land and land acquisition, building, and DC switching station equipment including DC filters, converter transformer, insulation, control devices and services. It is assumed that VSC converter stations do not require any additional reactive power support and they can inherently provide power with a 0.95 leading to a 0.95 lagging power factor.

Table 2.4-2:	Converter sta	ntion voltage s	source conver	ter (VSC) – on	e end
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV
Power Transfer	500 MW	1,500 MW	2,000 MW	2,400 MW	3,000 MW
Ground electrode	20 miles	20 miles	20 miles	20 miles	20 miles
line length	20 1111165	20 Illies	20 Illiles	20 Illiles	201111165
Valve hall	\$83.4M	\$266.4M	\$359.1M	\$440.2M	\$535.7M
AC Substation	\$12.4M	\$18.2M	\$26.4M	\$26.4M	\$35.3M
Ground electrode	\$3.1M	\$4.2M	\$4.3M	\$4.5M	\$4.7M
Ground electrode	\$4.6M	\$11.6M	\$13.9M	\$17.4M	\$18.8M
line					

3. Initial Assumptions

To create a cost estimate, MISO makes initial assumptions about the scopes of work for potential projects. As more information becomes known, scope of work assumptions is refined. The assumptions are not an indication of how a potential project should be built, but merely an instrument to provide a cost estimate.

3.1 AC and HVDC Transmission Lines

Line Length

The transmission line length is a consideration for determining its cost estimate for a potential project. For exploratory and planning cost estimates, the line length is determined by the straight-line distance between the two substations plus a 30% line length adder. This 30% line length adder accounts for routing constraints that will be determined upon further development of the potential transmission line project. For scoping cost estimates, the line length is determined by a MISO-created proxy route based upon a desktop study. For new potential projects, MISO considers new right-of-way. For retrofit/reconductor projects, MISO assumes an adequate existing right-of-way. MISO does not share its assumed proxy route information with stakeholders, as the route could be perceived as a MISO-endorsed or preferred route. MISO's proxy route is merely an instrument to support the MISO's transmission line cost estimate. MISO utilizes Google Earth to determine route length, land types, and terrain types encountered.

Right-of-Way Width

The right-of-way widths that MISO assumes are intended to be indicative of right-of-way widths for transmission lines in each voltage class (Table 3.1-1). Different project conditions in different locations may have a wider or narrower right-of-way width than the indicative value MISO assumes.

	Table 3.1-1: Right-of-way width										
	AC Transmission (single and double circuit)										
Voltage	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	50	0 kV	765 kV		
class	07 K V	TIDKA	130 KV	101 KV	230 KV	343 KV	50	OKV	703 KV		
Feet	et 80 90 95 100 125 175 200 225										
			HVDC trans	mission (sin	gle circuit)					
Voltage	+ 2501	۸/	± 400 kV	+ 50	10 kV	+ 600 k)/	,	+	640 kV		
class	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								040 K V		
Feet	130		180	20	00	215			225		

Structures Per Mile

MISO makes indicative assumptions about the quantity of structures per mile required in transmission line cost estimates (Tables 3.1-2, 3.1-3 and 3.1-4). The indicative assumptions are not connected to any specific project. For AC transmission, MISO assumes a steel pole structure type for $69 \, \text{kV} - 765 \, \text{kV}$. For HVDC, MISO assumes a steel pole structure type for $250 \, \text{kV}$, and a steel tower structure for $400 \, \text{kV} - 600 \, \text{kV}$.

	Та	ble 3.1-2:	Structure	s per mile	- AC tran	smission						
steel tower and steel pole (single circuit/double circuit)												
Voltage class	69 kV	69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV										
Tangent structures	9/9.5	8.5/9	8/8.5	7/7.5	5/7	4.5/6	3.0/N/A	3.5/N/A				
Running angle structures	1/1	1/1	1/1	1/1	1/1	1/1	1/N/A	0.25/N/A				
Non-angled deadend structures	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/N/A	0.125/N/A				
Angled deadend structures	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/N/A	0.125/N/A				

Table 3.1-3: Structures per mile – AC transmission wood pole (single circuit/double circuit)									
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV	
Tangent structures	15.5/18.5	13.5/16.5	13.5/N/A	10.5/N/A	7.5/N/A	N/A	N/A	N/A	
Running angle structures	1/1	1/1	1/N/A	1/N/A	1/N/A	N/A	N/A	N/A	
Angled deadend structures	0.5/0.5	0.5/0.5	0.5/N/A	0.5/N/A	0.5/N/A	N/A	N/A	N/A	

Table 3.1-4: Structures per mile – HVDC transmission										
steel tower and steel pole (single circuit)										
Voltage class ± 250 kV ± 400 kV ± 500 kV ± 600 kV ± 640 kV										
Tangent structures	4.5	4.0	3.5	3.0	3.5					
Running angle structures	0.5	0.25								
Non-angled structures 0.25 0.25 0.25 0.125										
Angled structures	0.25	0.25	0.25	0.25	0.125					

Conductor Selection

Conductor selection for MISO's exploratory cost estimates are shown in tables 3.1-5 and 3.1-6. The conductor selected is intended to be typical for a circuit in the voltage class. Specific solution ideas may necessitate different conductors from those shown.

Table 3.1-5: Conductor selection per circuit - AC Transmission									
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV	
Conductor size	477	795	795	795	795	795	954	795	
Conductor size	kcmil	kcmil	kcmil	kcmil	kcmil	kcmil	kcmil	kcmil	
Conductor	ACSS	ACSS	ACSS	ACSS	ACSS	ACSS	ACSR	ACSR	
type	ACSS	AC33	ACSS	ACSS	ACSS	ACSS	ACSIN	ACSI	
Conductor	1	1	1	1	1	2	3	6	
quantity	T	1	1	1	1	2	3	O	
Amp rating	1,175	1,650	1,650	1,650	1,650	3,000	3,000	5,000	
Power rating (MVA)	140	329	394	460	657	1,792	2,598	6,625	

Table 3.1-6: Conductor selection per circuit - HVDC Transmission									
Voltage class	± 250 kV	± 400 kV	± 500 kV	± 600 kV	± 640 kV				
Conductor size	1,590 kcmil	1,590 kcmil	1,590 kcmil	1,590 kcmil	795 kcmil				
Conductor type	ACSR	ACSR	ACSR	ACSR	ACSR				
Conductor quantity per pole	1	2	2	2	6				
Power transfer	500 MW	1,500 MW	2,000 MW	2,400 MW	6,000 MW				

Land and Terrain Type

A significant cost driver for transmission line projects is the land and terrain types encountered. MISO's cost estimates account for differences between states in MISO's footprint by using different assumptions for each state's unique land and terrain (Table 3.1-7). The indicative assumptions are not tied to any specific project and are intended for the sole purpose of providing MISO's exploratory cost estimate.

Table 3.1-7: Land and terrain type per state									
		Land type		Terrain type					
	(pasture, cro	p, and suburba	n/urban land	(level grou	ınd, forested, a	nd wetland			
State	sum	to 100% per st	tate)	terrain	sum to 100% p	er state)			
	Pasture-	Cropland	Suburban/	Level	Forested	Wetland			
	land	Cropiand	Urban	ground	Forested	vvetiand			
Arkansas	25%	65%	10%	40%	55%	5%			
Illinois	25%	65%	10%	55%	40%	5%			
Indiana	25%	65%	10%	80%	15%	5%			
lowa	10%	80%	10%	80%	15%	5%			
Kentucky	25%	65%	10%	65%	25%	10%			
Louisiana	25%	65%	10%	55%	25%	20%			
Michigan	25%	65%	10%	50%	40%	10%			
Minnesota	10%	80%	10%	70%	25%	5%			
Mississippi	25%	65%	10%	55%	25%	20%			
Missouri	25%	65%	10%	40%	55%	5%			
Montana	70%	20%	10%	85%	10%	5%			
North Dakota	70%	20%	10%	90%	5%	5%			
South Dakota	50%	40%	10%	90%	5%	5%			
Texas	65%	25%	10%	50%	30%	20%			
Wisconsin	25%	65%	10%	70%	25%	5%			

3.2 AC Substations

MISO's substation exploratory cost estimates use indicative assumptions for the ratings and quantity of equipment required for substation upgrades and for new substations (Tables 3.2-1 through 3.2-5). The indicative assumptions for substation equipment are not tied to any specific project and are intended for the sole purpose of providing MISO's exploratory cost estimate.

Table 3.2-1: Initial assumptions – bus ratings										
Voltage class	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV		
Amp rating	1,200	3,000	3,000	3,000	3,000	3,000	3,000	4,000		
Power rating (MVA)	143	598	717	837	1195	1,793	2,598	5,300		

Table 3.2-2: Substation upgrade – add 1 position											
	(ring/breaker-and-a-half/double-breaker bus)										
Scope of work	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV			
Land required (acre)	0.4/0.5/0.6	0.5/0.6/0.7	0.5/0.6/0.8	0.6/0.7/0.8	0.6/0.8/0.9	0.8/0.9/1.1	1.3/1.6/1.9	1.6/2.0/2.3			
Access road (mile)	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0			
Circuit breakers (each)	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2			
Disconnect switches (each)	2/4/4	2/4/4	2/4/4	2/4/4	2/4/4	2/4/4	2/4/4	2/4/4			
Voltage transformers (set of 3)	1/1/2	1/1/2	1/1/2	1/1/2	1/1/2	1/1/2	1/1/2	1/1/2			
Bus support, bus, and fittings (3- phase)	4/4/6	4/4/6	4/4/6	4/4/6	4/4/6	6/6/8	8/8/10	12/12/14			
Deadend structure	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1			
Control enclosure	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0			
Relay panel(s)	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2	1/2/2			
Cable trench											
(foot),	50/	50/	50/	50/	60/	60/	70 /	88/			
conduit (10 feet),	70 /	70 /	80/	80/	80/	90/	110/	131/			
control cable (100 feet)	90	100	100	110	110	120	140	175			

	Tab	Table 3.2-3: Substation upgrade – add 2 positions											
	(ring/breaker-and-a-half/double-breaker bus)												
Scope of work	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Land required (acre)	0.8/1.0/1.2	0.9/1.1/1.4	1.0/1.3/1.5	1.1/1.4/1.7	1.2/1.5/1.8	1.5/1.9/2.3	2.5/3.1/3.8	3.1/3.9/4.7					
Access road (mile)	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0					
Circuit breakers (each)	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4					
Disconnect switches (each)	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8					
Voltage transformers (set of 3)	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2					
Bus support, bus, and fittings (3-phase)	8/8/12	8/8/12	8/8/12	8/8/12	8/8/12	12/12/16	16/16/20	20/20/24					
Deadend structure	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2	2/2/2					
Control enclosure	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0					
Relay panel(s)	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4	2/3/4					
Cable trench (foot), conduit (10 feet), control cable (100	90 / 135 / 180	95 / 143 / 190	100 / 150 / 200	105 / 158 / 210	110 / 165 / 220	120 / 180 / 240	140 / 210 / 280	175 / 263 / 350					
feet)						1							

	-	Гable 3.2-4	4: New sub	station -	4 positions	5							
	(ring/breaker-and-a-half/double-breaker bus)												
Scope of work	69 kV	69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV											
Land required (acre)	1.6/2.0/2.4	1.8/2.3/2.7	2.0/2.5/3.0	2.2/2.8/3.3	2.4/3.0/3.6	3.0/3.8/4.5	5.0/6.3/7.5	6.2/7.8/9.4					
Access road (mile)	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1					
Circuit breakers (each)	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8	4/6/8					
Disconnect switches (each)	8/12/16	8/12/16	8/12/16	8/12/16	8/12/16	8/12/16	8/12/16	8/12/16					
Voltage transformers (set of 3)	4/6/6	4/6/6	4/6/6	4/6/6	4/6/6	4/6/6	4/6/6	4/6/6					
Bus support, bus, and fittings (3-phase)	12/14/16	12/14/16	12/14/16	12/14/16	12/14/16	14/16/20	20/24/32	28/32/48					
Deadend structure	4/4/4	4/4/4	4/4/4	4/4/4	4/4/4	4/4/4	4/4/4	4/4/4					
Control enclosure	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1					
Relay panel(s)	6/8/10	6/8/10	6/8/10	6/8/10	6/8/10	6/8/10	6/8/10	6/8/10					
Cable trench (foot), conduit (10 feet), control cable (100 feet)	180 / 270 / 360	190 / 290 / 380	200 / 300 / 400	210 / 320 / 420	220 / 330 / 440	240 / 360 / 480	280 / 420 / 560	350 / 525 / 700					

		Table 3.2-	5: New sul	ostation -	6 position	S							
	(ring/breaker-and-a-half/double-breaker bus)												
Scope of work	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV					
Land required (acre)	2.0/2.5/3.0	2.3/2.8/3.4	2.5/3.1/3.8	2.8/3.4/4.1	3.0/3.8/4.5	3.8/4.7/5.6	6.3/7.8/9.4	7.8/9.8/11.7					
Access road (mile)	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1					
Circuit breakers	6/9/12	6/9/12	6/9/12	6/9/12	6/9/12	6/9/12	6/9/12	6/9/12					
Disconnect switches (each)	12/18/24	12/18/24	12/18/24	12/18/24	12/18/24	12/18/24	12/18/24	12/18/24					
Voltage transformers (set of 3)	6/8/8	6/8/8	6/8/8	6/8/8	6/8/8	6/8/8	6/8/8	6/6/8					
Bus support, bus, and fittings (3-phase)	14/16/20	14/16/20	14/16/20	14/16/20	14/16/20	16/20/24	24/32/40	32/48/60					
Deadend structure	6/6/6	6/6/6	6/6/6	6/6/6	6/6/6	6/6/6	6/6/6	6/6/6					
Control enclosure	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1	1/1/1					
Relay panel(s)	8/11/14	8/11/14	8/11/14	8/11/14	8/11/14	8/11/14	8/11/14	8/11/14					
Cable trench (foot), conduit (10 feet), control cable (100 feet)	270 / 410 / 540	290 / 430 / 570	300 / 450 / 600	320 / 470 / 630	330 / 500 / 600	360 / 540 / 720	420 / 630 / 840	525 / 788/ 1050					

4. Exploratory Costs

In the planning process, exploratory cost estimates allow quick assessment of many different project ideas to check potential viability. MISO provides high-level, exploratory cost estimates for projects with low levels of scope definition. MISO does not recommend using exploratory cost estimates for any solution idea in the regular planning cycle due to the breadth of the assumptions used to derive the unit costs and lower level of granularity regarding specific project components. The exploratory cost estimates provided in sections 4.1, 4.2 and 4.3 are based on the assumptions and cost data shown in this guide. Before a potential project is recommended for approval to MISO's Board of Directors, MISO completes a thorough scoping cost estimate, the details of which are shared with stakeholders for their review and comment. MISO provides its exploratory cost estimate in a \$/mile cost as defined by its voltage class and, in most cases, by the state in which the potential project would be developed.

4.1 AC and HVDC Transmission Lines

	Table 4	.1-1: Expl	oratory c	ost estima	ate - AC t	ransmissi	on				
	new single circuit transmission line \$/mile										
Location	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV			
Arkansas	\$1.7M	\$1.9M	\$2.0M	\$2.1M	\$2.2M	\$3.5M	\$4.4M	\$5.5M			
Illinois	\$1.8M	\$2.0M	\$2.0M	\$2.1M	\$2.2M	\$3.6M	\$4.5M	\$5.6M			
Indiana	\$1.7M	\$1.9M	\$2.0M	\$2.0M	\$2.1M	\$3.4M	\$4.3M	\$5.4M			
lowa	\$1.7M	\$1.9M	\$2.0M	\$2.1M	\$2.2M	\$3.5M	\$4.4M	\$5.6M			
Kentucky	\$1.8M	\$2.0M	\$2.1M	\$2.2M	\$2.3M	\$3.7M	\$4.6M	\$5.8M			
Louisiana	\$2.0M	\$2.2M	\$2.3M	\$2.4M	\$2.6M	\$4.1M	\$5.1M	\$6.3M			
Michigan	\$1.8M	\$2.0M	\$2.1M	\$2.2M	\$2.3M	\$3.7M	\$4.6M	\$5.8M			
Minnesota	\$1.8M	\$2.0M	\$2.1M	\$2.1M	\$2.3M	\$3.6M	\$4.5M	\$5.7M			
Mississippi	\$2.0M	\$2.2M	\$2.3M	\$2.4M	\$2.6M	\$4.1M	\$5.0M	\$6.3M			
Missouri	\$1.7M	\$1.9M	\$2.0M	\$2.0M	\$2.2M	\$3.5M	\$4.4M	\$5.5M			
Montana	\$1.6M	\$1.8M	\$1.9M	\$1.9M	\$2.0M	\$3.2M	\$4.1M	\$5.2M			
North	\$1.6M	\$1.8M	\$1.9M	\$1.9M	\$2.0M	\$3.3M	\$4.1M	\$5.2M			
Dakota											
South	\$1.6M	\$1.8M	\$1.9M	\$1.9M	\$2.0M	\$3.3M	\$4.1M	\$5.2M			
Dakota											
Texas	\$1.9M	\$2.2M	\$2.3M	\$2.3M	\$2.5M	\$4.0M	\$4.9M	\$6.1M			
Wisconsin	\$1.8M	\$2.0M	\$2.1M	\$2.2M	\$2.3M	\$3.7M	\$4.6M	\$5.8M			

Table 4.	1-2: Explo	ratory co	st estima	te - AC tr	ansmissio	n
n	ew doubl	e circuit t	ransmissi	on line \$/	mile	
Location	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV
Arkansas	\$2.5M	\$2.8M	\$2.9M	\$3.0M	\$3.6M	\$5.8M
Illinois	\$2.5M	\$2.8M	\$3.0M	\$3.0M	\$3.6M	\$5.9M
Indiana	\$2.4M	\$2.7M	\$2.9M	\$3.0M	\$3.5M	\$5.8M
lowa	\$2.5M	\$2.8M	\$2.9M	\$3.0M	\$3.6M	\$5.8M
Kentucky	\$2.6M	\$2.9M	\$3.0M	\$3.1M	\$3.7M	\$6.0M
Louisiana	\$2.8M	\$3.1M	\$3.3M	\$3.3M	\$4.0M	\$6.4M
Michigan	\$2.6M	\$2.9M	\$3.0M	\$3.1M	\$3.7M	\$6.0M
Minnesota	\$2.5M	\$2.8M	\$3.0M	\$3.1M	\$3.6M	\$6.0M
Mississippi	\$2.7M	\$3.1M	\$3.2M	\$3.3M	\$4.0M	\$6.4M
Missouri	\$2.5M	\$2.8M	\$2.9M	\$3.0M	\$3.5M	\$5.8M
Montana	\$2.3M	\$2.6M	\$2.8M	\$2.8M	\$3.3M	\$5.5M
North Dakota	\$2.4M	\$2.7M	\$2.8M	\$2.9M	\$3.4M	\$5.6M
South Dakota	\$2.4M	\$2.7M	\$2.8M	\$2.9M	\$3.4M	\$5.6M
Texas	\$2.7M	\$3.0M	\$3.2M	\$3.3M	\$3.9M	\$6.3M
Wisconsin	\$2.6M	\$2.9M	\$3.0M	\$3.1M	\$3.7M	\$6.0M

Includes contingency (30%) and AFUDC (7.5%)

	Table 4.1-3: Exploratory cost estimate – AC transmission										
rebuild and reconductor transmission line \$/mile											
Scope of Work	69 kV	69 kV 115 kV 138 kV 161 kV 230 kV 345 kV 500 kV 765 kV									
Rebuild - single circuit	\$1.5M	\$1.7M	\$1.8M	\$1.8M	\$1.9M	N/A	N/A	N/A			
Rebuild - double circuit	\$2.3M	\$2.6M	N/A	N/A	N/A	N/A	N/A	N/A			
Reconductor - per circuit	\$.33M	\$.39M	\$.39M	\$.39M	\$.39M	\$.62M	\$.83M	\$1.14M			

7	Гable 4.1-4: Ех _І	oloratory cost e	estimate – HVD	C transmissior	1
	nev	w bipole transn	nission line \$/m	ile	
Location	250 kV	400 kV	500 kV	600 kV	640 kV
Arkansas	\$2.3M	\$2.7M	\$2.8M	\$3.0M	\$5.5M
Illinois	\$2.3M	\$2.7M	\$2.9M	\$3.1M	\$5.6M
Indiana	\$2.2M	\$2.6M	\$2.7M	\$2.9M	\$5.4M
lowa	\$2.3M	\$2.7M	\$2.8M	\$3.0M	\$5.5M
Kentucky	\$2.4M	\$2.9M	\$3.0M	\$3.2M	\$5.8M
Louisiana	\$2.7M	\$3.3M	\$3.5M	\$3.7M	\$6.3M
Michigan	\$2.4M	\$2.9M	\$3.0M	\$3.2M	\$5.8M
Minnesota	\$2.4M	\$2.8M	\$2.9M	\$3.1M	\$5.7M
Mississippi	\$2.7M	\$3.2M	\$3.4M	\$3.7M	\$6.2M
Missouri	\$2.3M	\$2.6M	\$2.8M	\$2.9M	\$5.5M
Montana	\$2.1M	\$2.3M	\$2.5M	\$2.6M	\$5.1M
North Dakota	\$2.1M	\$2.4M	\$2.5M	\$2.7M	\$5.2M
South Dakota	\$2.1M	\$2.4M	\$2.5M	\$2.7M	\$5.2M
Texas	\$2.6M	\$3.1M	\$3.3M	\$3.5M	\$6.1M
Wisconsin	\$2.4M	\$2.9M	\$3.0M	\$3.2M	\$5.8M

Includes contingency (30%) and AFUDC (7.5%)

4.2 AC Substations

Substations have a variety of layouts and arrangements. MISO's exploratory cost estimates for substations capture the most common substation arrangements that are estimated in MISO's planning process. The arrangements selected for the exploratory indicative cost estimates are not an all-inclusive list for substation arrangements. Exploratory cost estimates are provided for both substation upgrades and new substations. Bus ratings per voltage class are included in the indicative assumptions and are aligned with the line ratings assumed by MISO for its transmission line project cost estimates. The 765 kV substations include shunt reactors for every line position.

	Table 4.2-1: Exploratory cost estimate – substation upgrade											
Scope of work	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV				
Add 1 position (ring bus)	\$1.3M	\$1.5M	\$1.7M	\$1.8M	\$2.2M	\$3.4M	\$5.3M	\$17.4M				
Add 1 position (breaker-and-a- half bus)	\$1.7M	\$2.0M	\$2.3M	\$2.6M	\$3.0M	\$4.9M	\$7.3M	\$21.9M				
Add 1 position (double-breaker bus)	\$2.0M	\$2.3M	\$2.6M	\$2.9M	\$3.4M	\$5.4M	\$8.0M	\$22.7M				
Add 2 positions(ring bus)	\$2.5M	\$3.0M	\$3.3M	\$3.7M	\$4.3M	\$6.8M	\$10.6M	\$26.7M				
Add 2 positions (breaker-and-a- half bus)	\$3.2M	\$3.7M	\$4.1M	\$4.6M	\$5.4M	\$8.6M	\$13.0M	\$31.7M				
Add 2 positions (double-breaker bus)	\$4.0M	\$4.6M	\$5.2M	\$5.8M	\$6.8M	\$10.7M	\$15.9M	\$37.3M				

Includes contingency (30%) and AFUDC (7.5%)

Tab	Table 4.2-2: Exploratory cost estimate – new substation										
Scope of work	69 kV	115 kV	138 kV	161 kV	230 kV	345 kV	500 kV	765 kV			
4 positions (ring bus)	\$7.5M	\$8.3M	\$9.1M	\$9.8M	\$11.1M	\$15.8M	\$22.9M	\$47.5M			
4 positions (breaker-and-a-half bus)	\$8.9M	\$10.0M	\$11.0M	\$11.9M	\$13.6M	\$19.8M	\$28.7M	\$58.8M			
4 positions (double-breaker bus)	\$10.3M	\$11.5M	\$12.7M	\$13.9M	\$15.9M	\$23.7M	\$34.6M	\$71.3M			
6 positions (ring bus)	\$9.4M	\$10.6M	\$11.6M	\$12.6M	\$14.5M	\$21.1M	\$30.8M	\$63.0M			
6 positions (breaker-and-a-half bus)	\$11.4M	\$12.9M	\$14.2M	\$15.5M	\$18.0M	\$26.9M	\$39.3M	\$80.8M			
6 positions (double-breaker bus)	\$13.4M	\$15.2M	\$16.8M	\$18.4M	\$21.3M	\$32.3M	\$47.4M	\$97.3M			

4.3 HVDC Converter Stations

	Table 4.2-3: Exploratory cost estimate – HVDC transmission										
converter Station (one end)											
Scope of work 250 kV 400 kV 500 kV 600 kV 640 kV											
Line Commutated Converter	Commutated \$119M \$355M \$479M \$577M \$718M										
Voltage Source Converter	/oltage Source \$159M \$461M \$620M \$750M \$914M										

5. Costs Over Time

MISO's yearly MTEP report may identify and recommend certain types of projects to its Board that are justified on a benefit-to-cost ratio requirement. In order to evaluate alternatives in the planning process, MISO estimates the net present value of costs over time of differing solution ideas that may also be differing technology types (e.g., energy storage project vs. transmission line project) (Figure 5-1).

Figure 5-1: Calculation of benefit-to-cost ratio for Market Efficiency Projects

In order to estimate costs over time, MISO estimates depreciation costs, expense factors, and return factors for transmission projects (Figure 5-2). Expense factors and return factors vary by state to account for differences in taxes (e.g., income taxes and property taxes).

Figure 5-2: Calculation of net present value of costs

In its estimate of costs over time, MISO makes assumptions about the cost inputs in Figure 5-3.

Year#	Gross Plant Project Cost ISD Yr.\$ (PI)	Net Plant Project Cost ISD Yr.\$ (PI)	Annual Depreciation Factor	Return Factor subject to decrease in net plant	Expense Factor	Annual Cost to be Recovered	Present Value Discount Rate	Net Present Value Cost
-------	--	--	----------------------------------	--	-------------------	--------------------------------	--------------------------------------	---------------------------

Figure 5-3: Cost inputs for calculation of net present value cost

Year(s)

MISO defines the Project Costs to be used in the benefit-to-cost ratio as the present value of the annual revenue requirements projected for the first 20 years of the project's life (Attachment FF Section II.C.7). For example, if a project takes five years to construct, then the first 20 annual revenue requirement years start at year six and end at year 25. The present value cost calculation is over the same period for which the project benefits are determined.

Gross Plant (Nominal Cost Estimate)

The nominal cost to construct the project is also the amount used for the annual revenue requirements calculation. The present year project cost estimate is converted to nominal cost by factoring in a construction spend per year and an annual inflation rate of 2.5%. Figure 5-4 shows an example of a \$100 million project expressed as a nominal cost estimate at an assumed five-year project development time span.

Example: Project cost \$100M, Contingency \$20M, AFUDC \$9M Present year capital cost = \$129M Nominal capital cost = \$149.8M

Estimated 5-year project spend										
Year	1	2	3	4	5	Subtotal				
Costs incurred per year	1%	4%	35%	35%	25%	<u>100%</u>				
Present year capital cost	\$1.3M	\$5.1M	\$45.2M	\$45.2M	\$32.2M	\$129.0M				
Convert to nominal dollars at 2.5% inflation rate (shown below) AFUDC calculated at 7.5% annually based on cumulative cost. Nominal cost = present year cost * (1 + inflation rate) ^ (project year)										
Nominal project implementation cost	\$1.3M	\$5.3M	\$47.4M	\$52.3M	\$43.5M	\$149.8M				

Figure 5-4: Example of conversion from present year capital cost to nominal capital cost

Table 5-1 shows estimated annual spend for projects with in-service dates of 5 to 8 years from the present year, based on a year-end in-service date.

Table 5-1: Estimated annual spend for projects with in-service dates of 5 to 8 years from present									
Year	1	2	3	4	5	6	7	8	
5-year	1%	4%	35%	35%	25%				
6-year	1%	4%	10%	30%	35%	20%			
7-year	1%	1%	3%	15%	30%	30%	20%		
8-year	1%	1%	3%	5%	15%	25%	30%	20%	

Net Plant and Annual Depreciation Factor

The net plant is the gross plant, less depreciation, and is based on a 40-year asset life which assumes 2.5% depreciation per year.

Return Factor and Expense Factor (by State)

The return factor accounts for the cost of equity and income taxes. The return factor changes annually as it is a factor of net gross plant, which is reduced annually as a result of depreciation. The expense factor accounts for property taxes, the cost of debt, and operations and maintenance.

For energy storage installations, in addition to the expense factor, MISO will assume replacement of the inverters every 10 years after project is in service, and replacement of the battery system every 15 years after the project is in service. Both factors are based on Attachment Os and GGs provided by MISO Transmission Owners and vary by state (Table 5-1).

Table 5.2: Expense factor and return factor (by state)					
State	Expense Factor	Return Factor (adjusted for the first year of depreciation)			
Arkansas	2.96%	8.10%			
Illinois	3.69%	8.29%			
Indiana	3.16%	8.23%			
lowa	3.42%	8.44%			
Kentucky	3.08%	8.07%			
Louisiana	2.76%	8.19%			
Michigan	3.62%	8.07%			
Minnesota	3.28%	8.31%			
Mississippi	2.96%	8.01%			
Missouri	3.20%	8.08%			
Montana	3.15%	8.12%			
North Dakota	3.50%	8.02%			
South Dakota	3.42%	7.70%			
Texas	3.74%	7.70%			
Wisconsin	3.71%	8.19%			

Present Value Discount Rate

MISO calculates the present value discount rate annually as the after-tax weighted average cost of capital of the Transmission owners that make up the Transmission Provider Transmission System. MISO's estimated costs over time will use the same discount rate as used to determine benefits.

Net Present Value Cost

Appling the discount rate to the first 20 years of the annual revenue requirement results in the net present value cost to be used in the benefit-to-cost ratio. Net Present Value Cost is calculated per year by multiplying the annual cost to be recovered by the Present Value Discount Rate for their respective years.

Example - Estimating Project Costs Over Time

For example, if estimating the costs over time for a project that had a nominal cost estimate of \$100 million, and using a discount rate of 6.9%, based on the approach described in this section, the net present value of cost over the first 20 years of in-service life would be \$96.2 million (Table 5-2).

Table 5-3: Methodology for calculating a project's net present value cost

Year#	Gross Plant Project Cost ISD Yr.\$ (PI)	Net Plant Project Cost ISD Yr.\$ (PI)	Annual Depreciation Factor	Return Factor subject to decrease in net plant	Expense Factor	Annual Cost to be Recovered	Present Value Discount Rate	Net Present Value Cost
MTEP Year							1.000	
1							0.935	
2							0.875	
3							0.819	
4							0.766	
5				8.42%			0.716	
6	\$100,000,000	\$97,500,000	2.50%	8.21%	3.41%	\$14,123,772	0.670	\$9,464,212
7	\$100,000,000	\$95,000,000	2.50%	8.00%	3.41%	\$13,913,259	0.627	\$8,721,374
8	\$100,000,000	\$92,500,000	2.50%	7.79%	3.41%	\$13,702,746	0.586	\$8,035,001
9	\$100,000,000		2.50%		3.41%	\$13,492,232	0.549	\$7,400,899
10	\$100,000,000	\$87,500,000	2.50%	7.37%	3.41%	\$13,281,719	0.513	\$6,815,179
11	\$100,000,000		2.50%	7.16%	3.41%	\$13,071,206	0.480	\$6,274,237
12	\$100,000,000	\$82,500,000	2.50%		3.41%	\$12,860,693	0.449	\$5,774,733
13	\$100,000,000	\$80,000,000	2.50%	6.74%	3.41%	\$12,650,179	0.420	\$5,313,571
14	\$100,000,000		2.50%	6.53%	3.41%	\$12,439,666	0.393	\$4,887,884
15	\$100,000,000	\$75,000,000	2.50%	6.32%	3.41%	\$12,229,153	0.368	\$4,495,011
16	\$100,000,000		2.50%		3.41%	\$12,018,640	0.344	\$4,132,492
17	\$100,000,000	\$70,000,000	2.50%	5.89%	3.41%	\$11,808,126	0.322	\$3,798,044
18	\$100,000,000		2.50%		3.41%	\$11,597,613	0.301	\$3,489,554
19	\$100,000,000		2.50%		3.41%	\$11,387,100	0.281	\$3,205,064
20	\$100,000,000	\$62,500,000	2.50%		3.41%	\$11,176,587	0.263	\$2,942,762
21	\$100,000,000		2.50%		3.41%		0.246	\$2,700,967
22	\$100,000,000		2.50%	4.84%	3.41%	\$10,755,560	0.230	\$2,478,127
23	\$100,000,000		2.50%		3.41%		0.216	\$2,272,800
24	\$100,000,000	\$52,500,000	2.50%	4.42%	3.41%	\$10,334,533	0.202	\$2,083,656
25	\$100,000,000	\$50,000,000	2.50%	4.21%	3.41%	\$10,124,020	0.189	\$1,909,459
								\$96,195,027

