Capítulo 6

- **5.** Elaborar una tabla de amortización con una tasa del 8 % periódica año vencido para la suma de \$100.000 en 4 pagos anuales con:
 - A. una cuota lineal creciente de \$12.000
 - B. una cuota lineal decreciente de \$12.000.

Solución literal A.

1. Declaración de Variables				
VP = \$100.000	i = 8 % pav	R = \$?		
L = \$12000	n = 4 pav			

2. Diagrama de Flujo de Caja

3. Declaraci´on de F´ormulas

$$VP = R \frac{1 - (1+i)^{-n}}{i} + \frac{L}{i} \left[\frac{1 - (1+i)^{-n}}{i} - 4(1+i)^{-n} \right]$$

• Rn = R1 + (n−1)L Valor flujo de un gradiente aritmético

4. Desarrollo matemático

$$100.000 = R \frac{1 - (1 + 0.08)^4}{i} + \frac{12.000}{0.08} \left[R \frac{1 - (1 + 0.08)^4}{0.08} - 4(1 + 0.08)^{-4} \right]$$
 Ecuación de

equivalencia

R1 = \$13.344, 56

Las demás cuotas se pueden calcular con la fórmula del último término del gradiente lineal o aritmético

R2 = 13.344,56 + 12.000 = 25.344,56

R3 = \$13.344, 56 + 2(\$12.000) = \$25.344, 56

R4 = \$13.344, 56 + 3(\$12.000) = \$25.344, 56

5. tabla de amortización

n (1)	Saldo Deuda (2)=(2)-(5)	Intereses (3)=(2)(i)	Pago (4)=\$R	Amortización (5)=(4)-(3)	
0	\$100.000,00				
1	\$94.655,44	\$8.000,00	\$13.344,56	\$5.344,56	
2	\$76.883,31	\$7.572,43	\$25.344,56	\$17.772,13	
3	\$45.689,41	\$6.150,66	\$37.344,56	\$31.193,90	
4	\$0,00	\$3.655,15	\$49.344,56	\$45.689,41	

Solución literal B.

1. Declaración de Variables				
VP = \$100.000	i = 8 % pav	R = \$?		
L = \$12000	n = 4 pav			

2. Diagrama de flujo de caja

3. Declaración de fórmulas

$$VP = R \frac{1 - (1+i)^{-n}}{i} + \frac{L}{i} \left[\frac{1 - (1+i)^{-n}}{i} - 4(1+i)^{-n} \right]$$

• Rn = R1 + (n-1)L Valor flujo de un gradiente aritmético

$$\frac{\textbf{4. Desarrollo matemático}}{100.000 = R \frac{1 - (1 + 0.08)^4}{i} + \frac{-12.000}{0.08} \left[R \frac{1 - (1 + 0.08)^4}{0.08} - 4(1 + 0.08)^{-4} \right] \text{ Ecuación de equivalencia}$$

Se obtiene sobre que R1 = \$47.039,60

5. tabla de amortización

n (1)	Saldo	Intereses	Pago	Amortización	
	Deuda	(3)=(2)(i)	(4)=\$R	(5)=(4)-(3)	
	(2)=(2)-(5)				
0	\$100.000,00				
1	\$60.960,40	\$ 8.000,00	\$47.039,60	\$39.039,60	
2	\$30.797,63	\$ 4.876,83	\$35.039,60	\$30.162,77	
3	\$10.221,84	\$2.463,81	\$23.039,60	\$20.575,79	
4	\$0,00	\$817,76	\$11.039,60	\$10.221,84	

6. Calcular el valor presente de una serie infinita de egresos que crecen en \$10, si el primer egreso es de \$200 y la tasa es del 3% periódica mes vencido.

	1. Declaración de	Variables			
L = \$10	i = 3 % pav	VP = \$?			
	$n = \infty \text{ pav}$	ff = 0			
	2. Diagrama de Flu	jo de Caja			
## O 1 2 3					
	3. Declaración de Fórmulas				
$vp = \frac{R}{l} + \frac{L}{l^2}$ Valor presente de un gradiente aritmético					
4. Desarrollo Matemático					
	$\frac{10}{100} = $17.777,78$	Ecuación de equivalencia			
	5 Degmaneste				

5. Respuesta

Esto significa que si colocamos \$17.777,78 al 3% pmv, podremos pagar \$200 al final del primer período, \$210 al final del segundo período, \$220 al final del tercer período y así sucesivamente.

7. Hallar el valor presente de 10 egresos anuales, si el primer egreso es de \$5.000 y cada egreso subsiguiente crece un 20%. Suponga una tasa del 20% periódica anual vencida

8. Hallar el valor presente de 15 egresos que crecen en un 25%, si el primer egreso es de \$800 y suponiendo una tasa del 20% periódica anual vencida.

- 9. Elaborar una tabla para amortizar la suma de \$100.000 en 4 pagos, suponiendo una tasa del 8% Periódica anual vencida y:
- a. Crecimiento geométrico periódico de 10% de los flujos
- b. Decrecimiento geométrico periódico de 10% de los flujos

Solució literal A.

5. tabla de amortización

Intereses

(3)=(2)(i)

Pago

(4)=R-L

Amortización

(5)=(4)-(3)

Saldo

Deuda

(2)=(2)-(5)

n (1)

0	\$100.000,00				
1	\$7.845,30	\$1.000,00	\$3.154,70	\$2.154,70	
2	\$5.475,13	\$784,53	\$3.154,71	\$2.370,17	
3	\$2.867,94	\$547,51	\$3.154,72	\$2.607,19	
4	\$0,03	\$286,79	\$3.154,73	\$2.867,91	

Solución literal B.

1. Declaración de Variables				
VP = \$100.000	i = 8 % pav	R = \$?		
g = -10%	n = 4 pav	ff = 0		

2. Diagrama de Flujo de Caja

3. Declaración de fórmulas

$$vp = \frac{R[(1+g)^{n}(1+i)^{-n}-1]}{Valor presente del gradiente aritmético}$$

 $R_n = R_1(1+g)^{n-1}$ Valor flujo de n gradiente geométrico

4. Desarrollo matemático

$$$100.000 = R \frac{1 - (1 + 0.1)^4 ((1 + 0.08)^4 - 1)}{-0.1 - 0.08}$$
 Ecuación de equivalencia

Se obtiene sobre que

R1 = \$34.766,02

R2 = \$34.766,02 + (1 + 0,1) = \$31.289,42

 $R3 = \$34.766,02 + (1+0,1)^2 = \$28.160,48$

 $R4 = \$34.766,02 + (1+0,1)^3 = \$25.344,43$

5. tabla de amortización

n (1)	Saldo Deuda (2)=(2)-(5)	Intereses (3)=(2)(i)	Pago (4)=\$R-\$L	Amortización (5)=(4)-(3)	
0	\$100.000,00				

1	\$7.845,30	\$ 1.000,00	\$3.154,70	\$2.154,70	
2	\$5.475,13	\$ 784,53	\$3.154,71	\$2.370,17	
3	\$2.867,94	\$547,51	\$3.154,72	\$2.607,19	
4	\$0,03	\$286,79	\$3.154,73	\$2.867,91	