Latent Outlier Exposure for Anomaly Detection with Contaminated Data

Chen Qiu *1,2 , Aodong Li *3 , Marius Kloft 2 , Maja Rudolph 1 , Stephan Mandt 3

Motivation & Problem Setup

Anomaly Detection with Contaminated Training Data.

Industrial failure

- → Common assumption: clean training data.
- → What if the training data contains unnoticed anomalies?

Normality

Anomaly

 ∇ Fig. Anomaly score in input space

Tissue tumor

[Hendrycks et al., 2018] (assumes synthetic,

labeled anomalies)

△ Supervised learning characterizes boundaries well.

- → However, labels are expensive. Can we have a cheaper way?
- → Contribution: Unsupervised latent outlier exposure (LOE).

Refine

Soft LOE (ours)

Hard LOE (ours)

Problem Setup. Contaminated training data.

 \rightarrow Training sets contain many normal samples and a few anomalies.

Method: Latent Outlier Exposure

Proposed Loss.

$$\mathcal{L}(\theta, \mathbf{y}) = \sum_{i=1}^{N} (1 - y_i) \mathcal{L}_n^{\theta}(\mathbf{x}_i) + y_i \mathcal{L}_a^{\theta}(\mathbf{x}_i)$$

- \rightarrow Label assignments **y** are binary variables to be optimized.
- $\to \mathcal{L}_n^{\theta}(\mathbf{x})$: a normal loss that is designed to be minimized over normal data.
- $\to \mathcal{L}^{\theta}_{a}(\mathbf{x})$: an abnormal loss that is designed to have the opposite effect.
- o E.g., for deep SVDD, $\mathcal{L}_n^{\theta}(\mathbf{x}) = ||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$ and $\mathcal{L}_a^{\theta}(\mathbf{x}) = 1/||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$.

Constrained Optimization Problem. Hard LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y} = \left\{ \mathbf{y} \in \{0, 1\}^{N} : \sum_{i=1}^{N} y_i = \alpha N \right\}$

- $\rightarrow \alpha$ is an assumed contamination ratio.
- \rightarrow Block coordinate descent (EM fashion):
 - \triangleright (M-step) Perform SGD on θ given current label assignments **y**;
- \triangleright (E-step) Rank data points by score $\mathcal{L}_n^{\theta}(\mathbf{x}_i) \mathcal{L}_a^{\theta}(\mathbf{x}_i)$ and label top α fraction data as anomalies.

Model Extension. Soft LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}'} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y}' = \left\{ \mathbf{y} \in \{0, 0.5\}^N : \sum_{i=1}^N y_i = 0.5 \alpha N \right\}$

Anomaly Score. $S_i^{\text{test}} = \mathcal{L}_n^{\theta}(\mathbf{x}_i)$

 \rightarrow Drop $\mathcal{L}_{a}^{\theta}(\mathbf{x}_{i})$ to account for unknown anomaly types.

Experiment Setup & Findings

For various contamination ratio, compare LOE's performance with baselines.

- \rightarrow One vs. the rest.
- → Corruption of training set:
 - \triangleright Mix abnormal samples to have an anomaly ratio of α_0 .

Baselines.

- \rightarrow Blind: ignore anomaly labels and train on all the data.
- → Refine: remove likely anomalies then re-train the model.

Findings. With multiple backbone models (NTL/MHRot/ICL),

- \rightarrow LOE improve over the best baseline by 2.3% AUC on image data.
- \rightarrow LOE significantly improves the detector based on 30 tabular datasets.
- \rightarrow LOE achieves the-state-of-the-art performance on a video benchmark.

Experiments

F1-score on 30 tabular

Results.

Table. Image benchmark 86.4±0.5 (-1.8) 91.4±0.2 (-2.3 LOE_S (ours) | 86.3 ± 0.2 (-1.9) | 91.2 ± 0.4 (-2.5)

	datas	ets ($\alpha = 1$	$\alpha_0 =$	10%	(o)	
			NTL				ICL
	Blind	Refine	LOE_H (ours)	LOE_S (ours)	Blind	Refine	LOE
abalone	37.9±13.4	55.2±15.9	42.8±26.9	59.3±12.0	50.9±1.5	54.3±2.9	53
annthyroi	d 29.7±3.5	42.7 ± 7.1	47.7 ± 11.4	50.3 ± 4.5	29.1±2.2	38.5 ± 2.1	48
arrhythmi	a 57.6±2.5	59.1 ± 2.1	62.1 ± 2.8	62.7 ± 3.3	53.9±0.7	60.9 ± 2.2	62
breastw	84.0±1.8	93.1 ± 0.9	95.6 ± 0.4	95.3 ± 0.4	92.6±1.1	93.4 ± 1.0	96
cardio	21.8 ± 4.9	45.2 ± 7.9	73.0 ± 7.9	57.8 ± 5.5	50.2±4.5	56.2 ± 3.4	71
ecoli	0.0 ± 0.0	88.9 ± 14.1	$100 {\pm} 0.0$	$100 {\pm} 0.0$	17.8±15.1	46.7 ± 25.7	75
forest cov	er 20.4±4.0	56.2 ± 4.9	61.1 ± 34.9	67.6 ± 30.6	$9.2{\pm}4.5$	8.0 ± 3.6	6.
glass	11.1±7.0	15.6 ± 5.4	17.8 ± 5.4	20.0 ± 8.3	8.9±4.4	11.1 ± 0.0	11
ionospher	e 89.0±1.5	91.0 ± 2.0	91.0 ± 1.7	91.3 ± 2.2	86.5±1.1	85.9 ± 2.3	85

_	Гable.	MVTec	benchm	nark	
	Dete	ection	Segmentation		
	10%	20%	10%	20%	
Blind	94.2±0.5	89.4 ± 0.3	96.17 ± 0.08	95.09 ± 0.17	
	(-3.2)	(-8.0)	(-0.78)	(-1.86)	
Refine	95.3±0.5	93.2 ± 0.3	96.55 ± 0.04	96.09 ± 0.06	
	(-2.1)	(-4.2)	(-0.40)	(-0.86)	
LOE_H	95.9±0.9	92.9 ± 0.4	95.97 ± 0.22	93.29 ± 0.21	
(ours)	(-1.5)	(-4.5)	(-0.98)	(-3.66)	
LOE_S	95.4±0.5	93.6 ± 0.3	96.56 ± 0.04	96.11 ± 0.05	
(ours)	(-2.0)	(-3.8)	(-0.39)	(-0.84)	

Table. UCSD Peds1 video benchmark (Tudor Ionescu et al., 2017) (Liu et al., 2018) (Del Giorno et al., 2016) (Sugiyama & Borgwardt, 2013) (Pang et al., 2020) 85.2 ± 1.0 76.0 ± 2.7 66.6 ± 2.6 74.9 ± 2.4 69.3 ± 0.7 LOE_H (ours) 59.6 ± 3.8 56.8 ± 9.5 LOE_S (ours) 79.2 ± 1.3 71.5 ± 2.4 *Default setup in (Pang et al., 2020), corresponding to $\alpha_0 \approx 30\%$.

5 95.0 93.6 92.7 91.5
 10
 93.8
 94.9
 94.7
 94.0
 型 15- 92.8 93.6 94.8 95.2
20 - 91.8
92.4
93.5
94.5
assumed contamination ratio

Sensitivity study: CIFAR-10