§ 3直线的方程 直线、平面间的相关位置

1.直线的方程

在仿射坐标系 $\left[O,\bar{e}_{1},\hat{e}_{2},\bar{e}_{3}\right]$ 下,已知点 $M_{0}(x_{0},y_{0},z_{0})$,非零向量 $\vec{V}=(X,Y,Z)$,求过 M_{0} 且与 \vec{V} 平行的直线.

$$\vec{r}_0 = (x_0, y_0, z_0), \quad \vec{r} = (x_0, y_0, z_0)$$

 $\vec{r} - \vec{r}_0 = tV$ 称为向量式参数方程(t 为参数)

$$\begin{cases} x = x_0 + tX \\ y = y_0 + tY,$$
称为直线的参数方程.
$$z = z_0 + tZ$$

$$\frac{x-x_0}{X} = \frac{y-y_0}{Y} = \frac{z-z_0}{Z}$$
 称为点向式方程(标准方

程),其中(X, Y, Z) 称为直线l的方向系数.

已知直线上两点 $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$,

过 M_1, M_2 的直线l:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

设直线 l 是相交平面 π_1 和 π_2 的交线 π_1 , $A_ix+B_iy+C_iz+D_i=0$, i=1, 2,它们的一次系数不成比例,则 $\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$ 称为直线的普

通方程.

例 1: 已给直线 g 经过点 $M_0(2,-1,0)$ 平行于向量

$$\vec{v} = \{-1,2,1\}.$$

例 2: 求经过 $M_0(-5,2,-2)$ 平行于 x 轴的直线方程.

例 3: 设直线 p 经过 $P_1(1,-2,4)$ 和 $P_2(4,1,6)$; 直线 q

经过点 **Q** (1, -3, -1) 并平行于向量
$$\bar{a} = \left\{-1, -\frac{2}{3}, 1\right\}$$

验证: p, q 相交并有交点 S(-2, -5, 2).

例4:证明:平行六面体的三个对角线交于一点而且互相平分。

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

直线的普通方程.

$$\frac{x - x_0}{X} = \frac{y - y_0}{Y} = \frac{z - z_0}{Z}$$

标准方程.

由普通方程转化为标准方程:

(找一个点和直线的方向)

例5 用标准方程及参数方程表示直线

$$\begin{cases} x + y + z + 1 = 0 \\ 2x - y + 3z + 4 = 0 \end{cases}$$

2.两条直线的相关位置

在仿射坐标系中,设直线 l_i 过点 $M_i(x_i, y_i, z_i)$ 方向向量为 $\bar{v}_i(X_i, Y_i, Z_i)$,i = 1,2.

- l_1 与 l_2 平行 $\Leftrightarrow \vec{v}_1 / / \vec{v}_2$ 且 $M_1 M_2$ 不平行 \vec{v}_1 ;
- l_1 与 l_2 重合 $\Leftrightarrow \vec{v}_1 / / \vec{v}_2$ 且 $M_1 M_2$ 平行 \vec{v}_1 ;
- l_1 与 l_2 相交⇔ $\overline{M_1M_2}$, $\overline{v_1}$, $\overline{v_2}$ 共面且 $\overline{v_1}$ 不平行 $\overline{v_2}$, 即 $\Delta = \begin{vmatrix} x_2 x_1 & X_1 & X_2 \\ y_2 y_1 & Y_1 & Y_2 \\ z_2 z_1 & Z_1 & Z_2 \end{vmatrix} = 0$ 且对一切实数 λ ,都有 $\overline{v_i} \neq \lambda \overline{v_1}$.
 - l_1 与 l_2 异面 \Leftrightarrow M_1M_2 , \vec{v}_1 , \vec{v}_2 不共面,即 $\Delta \neq 0$.

3.直线和平面的相关位置

在仿射坐标系中,设直线l 过点 $M_0(x_0, y_0, z_0)$ 与向量 $\bar{v} = (X, Y, Z)$ 平行,平面 $\pi: Ax+By+Cz+D=0$.

- ① $l 与 \pi$ 平行 $\Leftrightarrow \vec{v} // \pi (AX+BY+CZ=0)$ 且 M_0 不在 π 上 (即 $Ax_0+By_0+Cz_0+D\neq 0$);
- ② l 在 π 上 ⇔ \vec{v} // π (AX+BY+CZ=0) 且 M_0 在 π 上 (即 $Ax_0+By_0+Cz_0+D_=0$);
- ③l与 π 相交一点 $\Leftrightarrow \bar{v}$ 不平行于 π ($AX+BY+CZ\neq 0$).

例 1: 求经过点(2,3,1) 且与两直线

相交的直线

例 2: 在仿射坐标系中,求过点 M_0 (0, 0, -2),

与平面 π_1 : 3x - y + 2z - 1 = 0 平行,且与直线 l_1 :

$$\frac{x-1}{4} = \frac{y-3}{-2} = \frac{z}{1}$$
 相交的直线 *l* 的方程.