WHAT IS CLAIMED IS:

1		1. An apparatus comprising:
2		a metal alloy surface in contact with a liquid phosphorous precursor
3		compound;
4		said metal alloy having less than 5% nickel.
) }		
i		2. The apparatus of claim 1 wherein said metal alloy is a stainless steel
2	alloy with a	t least 15% chromium.
1	1900	3. The apparatus of claim 1 wherein said metal alloy is stainless steel
2	having less t	chan 1% nickel.
	,	
1		4. The apparatus of claim 1 wherein said metal alloy is one of stainless
2	steel alloys 4	430, 440 and 446.
1		5. The apparatus of claim 1 wherein said phosphorous precursor
2	compound is	TEPO, TMP or TEP.
	· .	
1	Carlos Carlos	6. The apparatus of claim 1 wherein said phosphorous precursor is TMP.
1		7. The apparatus of claim 1 wherein said phosphorous precursor
2	compound is	TEP.
1		8. An apparatus for delivering a liquid phosphorous precursor compound,
2	comprising:	
3 . `	S	a container for holding said liquid phosphorous precursor
4 1	,	compound;
3. 4. j		a conduit for delivering said liquid phosphorous precursor
6		compound or a gaseous product of said liquid phosphorous precursor
7		compound;
8		a heating surface coupled to at least one of said container and a
9		portion of said conduit;

10	wherein at least a portion of said container or said conduit is
11	composed of an alloy having less than 5 percent nickel.
1	9. The apparatus of claim 8 wherein said metal alloy is a stainless steel
2	alloy with at least 15% chromium.
1	10. The apparatus of claim 8 wherein said metal alloy is stainless steel
2	having less than 1% nickel.
1	11. The apparatus of claim 8 wherein said metal alloy is one of stainless
2	steel alloys 430, 440 and 446.
1,	12. The apparatus of claim 8 further comprising a heater for heating said
2	12. The apparatus of claim 8 further comprising a heater for heating said heating surface to a temperature of 160-170 degrees Celsius.
1	13. The apparatus of claim 8 wherein said apparatus is a bubbler system
2	for delivering gases to a chemical reaction chamber for semiconductor wafers.
1	14. The apparatus of claim 8 wherein said apparatus is a boiler system for
2	delivering gases to a chemical reaction chamber for semiconductor wafers.
ſ	15. The apparatus of claim 8 wherein said apparatus is an injection system
2	for delivering gases to a chemical reaction chamber for semiconductor wafers, and
3	wherein said portion composed of an alloy is an injection valve.
1	. 16. The apparatus of claim 8 wherein said portion composed of an alloy is
2	one of a gasket and a seal.
1	17. The apparatus of claim 8 wherein said phosphorous precursor
2	compound is TEPO, TMP or TEP.
1	18. The apparatus of claim 8 wherein said phosphorous precursor is TMP.

7	a liquid TEPO, TMP or TEP injection line coupling said container
8	to said injection valve;
9	a carrier gas source line coupled to said injection valve; and
10	an outlet line coupling said injection valve to said CVD chamber.
1	27. The system of claim 26 wherein said stainless steel alloy is one of
2	stainless steel alloys 430, 440 and 446.
1	28. A method for injecting gaseous phosphorous precursor into a CVD
2	chamber comprising the steps of:
3 4 5	providing a liquid TEPO, TMP or TEP through an injection valve
4	including a metal alloy having less than 10% nickel;
3	providing a carrier gas through said valve;
6	creating a pressure differential in said valve; and
7	heating said injection valve.
1	29. The method of claim 28 further comprising the step of heating said
2	valve to a temperature of 160-170 degrees Celsius.
1	30. The method of claim 29 wherein said valve is heated to approximately
2	165 degrees Celsius.
1	31. An apparatus comprising:
2	a sealer in contact with a liquid phosphorous precursor compound;
3	said sealer being a polyamide.
1	32. The apparatus of claim 31 wherein said phosphorous precursor
2	compound is one of TEPO, TMP or TBP.
1	33. The apparatus of claim 31 wherein said sealer is a shut-off or control
2	plug in a valve.
1	34. The apparatus of claim 31 wherein said sealer is a gasket.

1	19	. The apparatus of claim 8 wherein said phosphorous precursor
2	compound is TE	P.
Į	20	A liquid flow injection valve for supplying TEPO, TMP or TEP to a
2	chemical vapor d	eposition (CVD) chamber comprising:
3,	7	an injection orifice for connecting to a source of liquid TEPO,
4	TN	IP or TEP; and
2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		a valve outlet for delivering a gaseous mixture generated from said
6		uid TEPO, TMP or TEP to said CVD chamber;
7		said injection orifice including a metal alloy having less than 5%
8	nic	kel.
1 2	21. at least 15% chro	The valve of claim 20 wherein said metal is a stainless steel alloy with mium.
1	22.	The valve of claim 20 wherein said metal is one of stainless steel
2	alloys 430, 440 a	nd 446.
1 2	, , , ,	The valve of claim 20 further comprising a heater for heating said ature of 160-170 degrees Celsius.
1	24.	The valve of claim 20 further comprising a plug in said valve
2	composed of a po	lyamide.
	`.	
1	25.	The valve of claim 24 wherein said polyamide is Vespel.
1	26.	A liquid injection system for a CVD chamber comprising:
2		a container for holding liquid TEPO, TMP or TEP;
3	into	an injection valve for converting said liquid TEPO, TMP or TEP
4	into	gaseous form, said injection valve having portions in contact with said
5		tid TEPO, TMP or TEP composed of a stainless steel alloy having less
5	thai	n 5% nickel and at least 15% chromium;

1	35. An apparatus for delivering a liquid phosphorous precursor
2	compound, comprising:
3	a container for holding said liquid phosphorous precursor
4	compound;
5	a conduit for delivering said liquid phosphorous precursor
6	compound or a gaseous product of said liquid phosphorous precursor
7	compound;
8	wherein at least a portion of said container or said conduit includes
9	a sealer composed of a polyamide.
1	36. The apparatus of claim 35 wherein said sealer is a shut-off or control
2	plug in a valve.
1	37. The apparatus of claim 35 wherein said polyamide is Vespel.
1	38. The apparatus of claim 35 wherein said apparatus is a bubbler system
2	for delivering gases to a chemical reaction chamber for semiconductor wafers.
1	39. The apparatus of claim 35 wherein said apparatus is a boiler system
2	for delivering gases to a chemical reaction chamber for semiconductor wafers.
1	40. The apparatus of claim 35 wherein said apparatus is an injection
2	system for delivering gases to a chemical reaction chamber for semiconductor wafers,
3	and wherein said sealer is a plug in an injection valve.
1	41. The apparatus of claim 35 wherein said sealer is a gasket.
2	
3	42. The apparatus of claim 35 wherein said phosphorous precursor
1	compound is one of TEPO, TMP or TEP.
l	43. The apparatus of claim 35 wherein a portion of said container or said
2	conduit is composed of a stainless steel alloy having less than 5% nickel.

1	44. An liquid flow injection valve for supplying a liquid phosphorous
2	precursor source to a chemical vapor deposition (CVD) chamber comprising:
3	a container of said liquid phosphorous precursor, said liquid
4	phosphorous precursor being one of TEPO, TMP or TEP:
5	an injection orifice for connecting to said container; and
6	a valve outlet for delivering a gaseous mixture generated from said
7	liquid phosphorous precursor compound to said CVD chamber;
8	a shut-off or control plug in said valve, said plug being composed
9	of Vespel.
1	45. A liquid injection system for a CVD chamber comprising:
2	a container for holding liquid phosphorous precursor compound,
3	said liquid phosphorous precursor compound being one of TEPO, TMP or
4	TEP;
5	an injection valve for converting said liquid phosphorous precursor
6	into gaseous form, said injection valve having portions in contact with said
7	liquid phosphorous precursor compound composed of a stainless steel alloy
8	having less than 5% nickel and at least 15% chromium;
9	a shut-off or control plug in said injection valve, said plug being
10	composed of a polyamide;
11	a liquid phosphorous precursor compound injection line coupling
12	said container to said injection valve;
13	a carrier gas source line coupled to said injection valve; and
14	an outlet line coupling said injection valve to said CVD chamber.