# ANALOG MULTIPLEXERS/ DEMULTIPLEXERS

## **DESCRIPTION**

The UTC **4053** are Triple SPDT analog multiplexers for application as digitally–controlled analog switches.

#### **FEATURES**

- \* Analog Voltage Range ( $V_{DD} V_{EE}$ ) = 3.0 ~ 18 V Note:  $V_{EE}$  must be  $\leq V_{SS}$
- \* Linearized Transfer Characteristics
- \* Pin-to-Pin Replacement for CD4053



\*Pb-free plating product number: 4053L

#### **PIN CONFIGURATIONS**



## UTC 4053 Triple 2-Channel Analog Multiplexer/Demultiplexer



Note: Control Inputs referenced to  $V_{SS}$ , Analog Inputs and Outputs reference to  $V_{EE}$ .  $V_{EE}$  must be  $\leq V_{SS}$ .

#### **ABSOLUTE MAXIMUM RATINGS\***

| PARAMETER                                                                                                                       | SYMBOL            | RATINGS                     | UNIT                   |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|------------------------|
| DC Supply Voltage (Referenced to V <sub>EE</sub> , V <sub>SS</sub> ≧V <sub>EE</sub> )                                           | $V_{DD}$          | -0.5 ~ +18.0                | V                      |
| Input or Output Voltage (DC or Transient) (Referenced to V <sub>SS</sub> for Control Inputs and V <sub>EE</sub> for Switch I/O) | $V_{in}, V_{out}$ | -0.5 ~ V <sub>DD</sub> +0.5 | V                      |
| Input Current (DC or Transient), per Control Pin                                                                                | l <sub>in</sub>   | ±10                         | mA                     |
| Switch Through Current                                                                                                          | $I_{\sf SW}$      | ±25                         | mA                     |
| Power Dissipation. Per Package**                                                                                                | $P_D$             | 500                         | mW                     |
| Storage Temperature                                                                                                             | $T_{stg}$         | -65 ~ +150                  | $^{\circ}\!\mathbb{C}$ |
| Lead Temperature (8 - Second Soldering)                                                                                         | $T_Lead$          | 260                         | $^{\circ}\mathbb{C}$   |

<sup>\*</sup> Maximum Ratings are those values beyond which damage to the device may occur. \*\* Temperature Derating: "DIP and SOP" Packages: – 7.0 mW/ $^{\circ}$  From 65 $^{\circ}$  ~ 125 $^{\circ}$ 

#### **ELECTRICAL CHARACTERISTICS**

(Ta=25°C, unless otherwise indicated.)

| PARAMETER                                                     | SYMBOL             | TEST CONDITIONS                                                                                                                                                                        | MIN                                                                                                                 | TYP#                    | MAX             | UNIT |  |
|---------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|------|--|
| SUPPLY REQUIREMENTS (Voltages Referenced to V <sub>EE</sub> ) |                    |                                                                                                                                                                                        |                                                                                                                     |                         |                 |      |  |
| Power Supply Voltage Range                                    | $V_{DD}$           | $V_{DD}$ – $3.0 \ge V_{SS} \ge V_{EE}$                                                                                                                                                 | 3.0                                                                                                                 |                         | 18              | V    |  |
| Quiescent Current per Package                                 | I <sub>DD</sub>    | Control Inputs: Vin = $V_{SS}$ or $V_{DD}$<br>Switch I/O: $V_{EE} \le V_{I/O} \le V_{DD}$ ,<br>and $\Delta V$ switch $\le 500$ mV*<br>$V_{DD}$ =5.0V<br>$V_{DD}$ =10V<br>$V_{DD}$ =15V |                                                                                                                     | 0.005<br>0.010<br>0.015 | 5.0<br>10<br>20 | μΑ   |  |
| Total Supply Current (Dynamic Plus Quiescent, Per Package)    | I <sub>D(AV)</sub> | $T_a$ =25°C only (The channel component, (Vin - Vout)/Ron, is not included.) $V_{DD}$ =5.0V $V_{DD}$ =10V $V_{DD}$ =15V                                                                | (0.07 μA/kHz) f + I <sub>DD</sub> Typical<br>(0.20 μA/kHz) f + I <sub>DD</sub><br>(0.36 μA/kHz) f + I <sub>DD</sub> |                         |                 | μΑ   |  |

UNISONIC TECHNOLOGIES CO., LTD.

www.unisonic.com.tw QW-R502-036,A

| PARAMETER                                                                            | SYMBOL           | TEST CONDITIONS                                                                                                                                                                                                   | MIN              | TYP#                 | MAX                | UNIT            |  |
|--------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|--------------------|-----------------|--|
| CONTROL INPUTS – INHIBIT A, B, C (Voltages Referenced to V <sub>SS</sub> )           |                  |                                                                                                                                                                                                                   |                  |                      |                    |                 |  |
| Low – Level Input Voltage V <sub>IL</sub>                                            |                  | Ron= per spec, loff = per spec<br>$V_{DD}$ =5.0V<br>$V_{DD}$ =10V<br>$V_{DD}$ =15V                                                                                                                                |                  | 2.25<br>4.50<br>6.75 | 1.5<br>3.0<br>4.0  | ٧               |  |
| High – Level Input Voltage                                                           | V <sub>IH</sub>  | Ron= per spec, loff = per spec<br>$V_{DD}$ =5.0V<br>$V_{DD}$ =10V<br>$V_{DD}$ =15V                                                                                                                                | 3.5<br>7.0<br>11 | 2.75<br>5.50<br>8.25 |                    | ٧               |  |
| Input Leakage Current                                                                | lin              | Vin= 0 or V <sub>DD</sub> , V <sub>DD</sub> =15V                                                                                                                                                                  |                  | ±0.00001             | ±0.1               | μΑ              |  |
| Input Capacitance                                                                    | Cin              |                                                                                                                                                                                                                   |                  | 5.0                  | 7.5                | pF              |  |
| SWITCHES IN/OUT AND COMMONS OUT/IN X, Y, Z (Voltages Referenced to V <sub>EE</sub> ) |                  |                                                                                                                                                                                                                   |                  |                      |                    |                 |  |
| Recommended Peak-to-Peak Voltage Into or Out of the Switch                           | V <sub>I/O</sub> | Channel On or Off                                                                                                                                                                                                 | 0                |                      | $V_{DD}$           | V <sub>PP</sub> |  |
| Recommended Static or Dynamic Voltage Across the Switch** (Figure 3)                 | ΔVswitch         | Channel On                                                                                                                                                                                                        | 0                |                      | 600                | mV              |  |
| Output Offset Voltage                                                                | V <sub>oo</sub>  | Vin = 0V, No Load                                                                                                                                                                                                 |                  | 10                   |                    | μV              |  |
| ON Resistance                                                                        | Ron              | $\Delta V$ switch $\leq 500$ mV*<br>Vin = $V$ <sub>IL</sub> or $V$ <sub>IH</sub> (Control), and<br>Vin = 0 to $V$ <sub>DD</sub> (Switch)<br>V <sub>DD</sub> =5.0V<br>V <sub>DD</sub> =10V<br>V <sub>DD</sub> =15V |                  | 250<br>120<br>80     | 1050<br>500<br>280 | Ω               |  |
| $\triangle$ ON Resistance Between Any Two Channels in the Same Package               | ΔRon             | $V_{DD}$ =5.0V<br>$V_{DD}$ =10V<br>$V_{DD}$ =15V                                                                                                                                                                  |                  | 25<br>10<br>10       | 70<br>50<br>45     | Ω               |  |
| Off–Channel Leakage Current (Figure 8)                                               | loff             | Vin = V <sub>IL</sub> or V <sub>IH</sub> (Control)<br>Channel to Channel or Any<br>One Channel, V <sub>DD</sub> =15V                                                                                              |                  | ±0.05                | ±100               | nA              |  |
| Capacitance, Switch I/O                                                              | C <sub>I/O</sub> | Inhibit = V <sub>DD</sub>                                                                                                                                                                                         |                  | 10                   |                    | pF              |  |
| Capacitance, Common O/I                                                              | C <sub>O/I</sub> | Inhibit = V <sub>DD</sub>                                                                                                                                                                                         |                  | 17                   |                    | pF              |  |
| hapacitance, Feedthrough hannel Off)                                                 |                  | Pins Not Adjacent Pins Adjacent                                                                                                                                                                                   |                  | 0.15<br>0.47         |                    | pF              |  |

<sup>#</sup>Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

www.unisonic.com.tw

<sup>\*</sup> For voltage drops across the switch ( $\Delta$ Vswitch) > 600 mV ( > 300 mV at high temperature), excessive V<sub>DD</sub> current may be drawn, i.e. the current out of the switch may contain both V<sub>DD</sub> and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See second page of this data sheet.)

# **ELECTRICAL CHARACTERISTICS\***

(C<sub>L</sub> = 50pF,  $T_a$ =25°C,  $V_{EE} \le V_{SS}$ , unless otherwise indicated.)

| (OL OOD); Ta 20 C; VEE = VSS; WHOOD OTHER WHO HIGHOUGH.) |                                     |                       |                                                                                                                   |  |      |     |      |
|----------------------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|--|------|-----|------|
| PARAMETER                                                | SYMBOL                              | $V_{DD} - V_{EE} Vdc$ | TEST CONDITIONS                                                                                                   |  | TYP# | MAX | UNIT |
| Propagation Delay Times                                  |                                     | 5.0                   | $t_{PLH}$ , $t_{PHL}$ = (0.17 ns/pF) $C_L$ + 16.5 ns                                                              |  | 25   | 65  |      |
| (Figure 4) Switch Input to                               | t <sub>PLH</sub> , t <sub>PHL</sub> | 10                    | $t_{PLH}$ , $t_{PHL}$ = (0.08 ns/pF) $C_L$ + 4.0 ns                                                               |  | 8.0  | 20  | ns   |
| Switch Output ( $R_L = 10 \text{ k}\Omega$ )             |                                     | 15                    | $t_{PLH}$ , $t_{PHL}$ = (0.06 ns/pF) $C_L$ + 3.0 ns                                                               |  | 6.0  | 15  |      |
|                                                          |                                     | 5.0                   | $(R_L=10kΩ, V_{EE}=V_{SS})Output "1" or "0"$                                                                      |  | 275  | 550 |      |
| Inhibit to Output                                        | $t_{PHZ,} t_{PLZ}$                  | 10                    | to High Impedance, or High                                                                                        |  | 140  | 280 | ns   |
|                                                          | $t_{PZH,} t_{PZL}$                  | 15                    | Impedance to "1" or "0" Level                                                                                     |  | 110  | 220 |      |
| Control Input to Output                                  |                                     | 5.0                   |                                                                                                                   |  | 300  | 600 |      |
|                                                          | t <sub>PLH</sub> , t <sub>PHL</sub> | 10                    | $R_L = 10 \text{ k}\Omega, V_{EE} = V_{SS}$                                                                       |  | 120  | 240 | ns   |
|                                                          |                                     | 15                    |                                                                                                                   |  | 80   | 160 |      |
| Second Harmonic Distortion                               |                                     | 10                    | $R_L = 10K\Omega$ , $f = 1$ kHz, $Vin = 5$ $V_{PP}$                                                               |  | 0.07 |     | %    |
| Bandwidth (Figure 5)                                     | BW                                  | 10                    | $R_L = 1k\Omega$ , Vin = 1/2 (V <sub>DD</sub> -V <sub>EE</sub> ) p-p,<br>$C_L = 50pF$ , 20 Log (Vout/Vin) = -3dB) |  | 17   |     | MHz  |
| Off Channel Feedthrough Attenuation (Figure 5)           |                                     | 10                    | $R_L = 1K\Omega$ , $Vin = 1/2 (V_{DD} - V_{EE}) p-p$<br>fin = 55 MHz                                              |  | -50  |     | dB   |
| Channel Separation (Figure 6)                            |                                     | 10                    | $R_L = 1 \text{ k}\Omega$ , $Vin = 1/2 (V_{DD}-V_{EE}) p-p$<br>fin = 3.0 MHz                                      |  | -50  |     | dB   |
| Crosstalk, Control Input to Common O/I (Figure 7)        |                                     | 10                    | $R_1$ = 1 kΩ, $R_L$ = 10 kΩ Control<br>$t_{TLH}$ = $t_{THL}$ = 20 ns, Inhibit = $V_{SS}$ )                        |  | 75   |     | mV   |

<sup>\*</sup> The formulas given are for the typical characteristics only at  $25^{\circ}$ C.

<sup>#</sup> Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.



Figure 1. Switch Circuit Schematic

UTC UNISONIC TECHNOLOGIES CO., LTD.

QW-R502-036,A

#### **TRUTH TABLE**

| Control Inputs |        |   |   | ON Switches |  |  |
|----------------|--------|---|---|-------------|--|--|
| Inhibit        | Select |   |   | ON Switches |  |  |
| ITITIDIL       | СВА    |   | Α | UTC 4053    |  |  |
| 0              | 0      | 0 | 0 | Z0 Y0 X0    |  |  |
| 0              | 0      | 0 | 1 | Z0 Y0 X1    |  |  |
| 0              | 0      | 1 | 0 | Z0 Y1 X0    |  |  |
| 0              | 0      | 1 | 1 | Z0 Y1 X1    |  |  |
| 0              | 1      | 0 | 0 | Z1 Y0 X0    |  |  |
| 0              | 1      | 0 | 1 | Z1 Y0 X1    |  |  |
| 0              | 1      | 1 | 0 | Z1 Y1 X0    |  |  |
| 0              | 1      | 1 | 1 | Z1 Y1 X1    |  |  |
| 1              | х      | Х | Х | None        |  |  |





Figure 2. UTC 4053 Functional Diagram







UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO., LTD.

QW-R502-036,A

6

# This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.