Natural language processing

обзор задач и некоторых эмбеддингов

Computer science

Artificial intelligence

Linguistics

More Deeper Application of NLP

Group 1	Group 2	Group 3
Cleanup, Tokenization	Information Retrieval and Extraction (IR)	Machine Translation
Stemming	Relationship Extraction	Automatic Summarization/ Paraphracing
Lemmatization	Named Entity Recognation (NER)	Natural Language Generation
Part of Speech Tagging	Sentiment Analysis/Sentance Boundary Dismbiguation	Reasoning over
Query Expansion	World sense and Dismbiguation	Knowledge Based
Parsing	Text Similarity	Quation Answering System
Topic Segmentationand Recognation	Coreference Resolution	Dialog System
Morphological Degmentation (Word/Sentences)	Discourse Analysis	Image Captioning & other Multimodel Tasks

Named entity recognition

Stanford Named Entity Tagger

Ontotext's Semantic Biomedical Tagger | use knowledge bases and information extraction algorithms

Sentiment analysis

I like my life!

I do not dislike my life.

http://elections.bdt.systems/#/how/introductory

Automatic summarization

Sifting through lots of documents can be difficult and time consuming.

By extracting important sentences and creating comprehensive summaries, it's possible to quickly assess whether or not a document is worth reading.

- calculating the word frequencies for the entire text document;
- the N most common words are stored and sorted;
- each sentence is then scored based on how many high frequency words it contains, with higher frequency words being worth more;
- the top X sentences are then taken, and sorted based on their position in the original text.

Natural language generation

the Associated Press uses NLG to create its corporate earnings reports.

word2vec

"words which are similar in meaning occur in similar contexts" (Rubenstein & Goodenough, 1965)

"words with similar meanings will occur with similar neighbors if enough text material is available" (Schutze & Pedersen, 1995)

Skip-gram

Given a specific word in the middle of a sentence (the input word), look at the words nearby and pick one at random. The network is going to tell us the probability for every word in our vocabulary of being the "nearby word" that we chose.

"nearby" parameter "window size"

Source Text

Training Samples

quick brown fox jumps over the lazy dog. -(the, quick) (the, brown) The quick brown fox jumps over the lazy dog. -(quick, the) (quick, brown) (quick, fox) quick brown fox jumps over the lazy dog. -The (brown, the) (brown, quick) (brown, fox) (brown, jumps) The quick brown fox jumps over the lazy dog. (fox, quick) (fox, brown) (fox, jumps) (fox, over)

Output Layer Softmax Classifier

Hidden Layer Weight Matrix

Word Vector Lookup Table!

Output weights for "car"

Continuous Bag of Words (CBOW)

OBJ

Male-Female

Verb tense

Country-Capital

Enriching Word Vectors with Subword Information

Each word w is represented as a bag of character n-gram. We also include the word w itself in the set of its n-grams, to learn a representation for each word (in addition to character n-grams).

In practice, we extract all the n-grams for n greater or equal to 3 and smaller or equal to 6

We represent a word by the sum of the vector representations of its n-grams

Why?

Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words

https://www.upwork.com/hiring/for-clients/artificial-intelligence-and-natural-language-processing-in-big-data/

http://www.informit.com/articles/article.aspx?p=2265404

https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1607.04606.pdf

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

https://blog.algorithmia.com/introduction-automatic-text-summarization/