

Op Amps Positive Feedback

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 21

Negative vs Positive Feedback

Consider this circuit — negative feedback

and this — positive feedback

What's the difference?

Consider what happens when there is a pertubation... Positive feedback drives op amp into saturation:

$$v_{OUT} \rightarrow \pm V_S$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture Static Analysis of Positive Feedback Ckt

Representing dynamics of op amp...

Representing dynamics of op amp...

Consider this circuit and let's analyze its dynamics to build insight.

Let's develop equation representing time behavior of v_o .

Dynamics of op amp...

$$v_{o} = Av^{*}$$
 or $v^{*} = \frac{v_{o}}{A}$

$$RC\frac{dv^{*}}{dt} + v^{*} = v^{+} - v^{-}$$

$$\frac{RC}{A}\frac{dv_{o}}{dt} + \frac{v_{o}}{A} = v^{+} - v^{-}$$

$$= (\dot{\gamma}^{+} - \bar{\gamma}^{-}) v_{o}$$

$$|v^{+} = \frac{v_{o}R_{1}}{R_{1} + R_{2}} = \dot{\gamma}^{+} v_{o}$$

$$|v^{-} = \frac{v_{o}R_{3}}{R_{3} + R_{4}} = \bar{\gamma}^{-} v_{o}$$

or
$$\frac{dv_o}{dt} + \left[\frac{1}{RC} + \frac{A}{RC}(\overline{\gamma} - \dot{\gamma})\right]v_o = 0$$

$$\frac{dv_o}{dt} + \underbrace{\frac{A}{RC}(\overline{\gamma} - \overset{+}{\gamma})}_{\text{time}^{-1}} v_o = 0$$

or
$$\frac{dv_o}{dt} + \frac{v_o}{T} = 0$$
 where $T = \frac{RC}{A(\overline{\gamma} - \frac{1}{\gamma})}$

$$v_o(0) = 0$$

Consider a small disturbance to v_o (noise).

Now, let's build some useful circuits with positive feedback.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

stable

disturbance

One use for instability: Build on the basic op amp as a comparator

Now, use positive feedback

Now, use positive feedback

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lea

Lecture

21

Why is hysteresis useful?

Without hysteresis

Oscillator — can_R create a clock

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture

Clocks in Digital Systems

We built an oscillator using an op amp.

■ Why do we use a clock in a digital system? (See page 735 of A & L)

- (a) 1,1,0?
- When is the signal valid?
 common timebase -- when to "look" at a signal (e.g. whenever the clock is high)
- → Discretization of time one bit of information associated with an interval of time (cycle)