ИІТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.01 "Исследование распределения случайных величин"

Группа: 2.1

Студент: Денисова А.А., Пименова Е.А.,

Шнейдерис Г.Г.

Преподаватель: Рудель А.Е.

К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

• . Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2 Задачи, решаемые при выполнении работы

- Провести многократные измерения определенного интервала времени.
- Построить гистограмму распределения результатов измерения.
- Вычислить среднее значение и дисперсию полученной выборки.
- Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3 Метод экспериментального исследования

- отмеряем интервал времени длительностью 5 секунд 50 раз
- анализируем результаты
- строим гистограмму

4 Рабочие формулы и исходные данные

1) Плотность вероятности или закон распределения исследуемой величины

$$\rho(t) = \lim_{N \to \infty} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

2) Функция гаусса

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

3) Выборочное среднее как среднеарифметическое всех результатов измерений

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$

4) Выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

5) Максимальное значение плотности вероятности

$$\rho_{\rm max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

6) Соотношение для вероятности попадания результата измерения в интервал $[t_1;t_2]$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}.$$

7) среднеквадратичное отклонение среднего значения

$$\sigma(t) = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

8) Доверительный интервал для измеряемого в работе промежутка времени, где $t_{\alpha,\ N}$ это коэффициент Стьюдента для доверительной вероятности α

$$\Delta t = t_{\alpha,N} \cdot \sigma(t),$$

5 Измерительные приборы:

Nº	Наименование	Тип прибора	Используемый диапазон	$\Delta_{\scriptscriptstyle \mathrm{H}}$
1	Секундомер	цифровой	3-7 сек	5 мс
1	Часы настенные	механический	3-7 сек	0.1 c

Таблица 1: Измерительные приборы

6 Схема установки:

В состав установки входят:

- 1. Часы настенные со стрелками
- 2. Цифровой секундомер (на мобильном телефоне)

7 Результаты прямых измерений и их обработки:

Таблица	2.	Ланные	времени
таолипа	Z:	данные	времени

Nº	t_i , c	$t_i - \langle t \rangle_N$, c	$\frac{1}{ (t_i - \langle t \rangle_N)^2, c^2 }$
1	5,14	0,16	0,0256
$\frac{1}{2}$	4,78	-0,21	0,0441
3	5,86	0,88	0,7744
4	5,04	0,06	0,0036
5	$\frac{3,04}{4,56}$	-0,43	0,1849
6	$\frac{4,30}{4,27}$	-0,43	0,5184
7	5,10	0,56	0,3136
8	5,10	0.95	
9			0,9025
10	5,38	0,10 -0,28	0,0100
11	5,08		0,0784
	5,39	0,41	0,1681
12	4,71	-0,45	0,2025
13	5,43	0,45	0,2025
14	4,96	-0,03	0,0009
15	5,15	0,17	0,0289
16	5,30	0,12	0,0144
17	4,30	-0,69	0,4761
18	4,55	-0,44	0,1936
19	4,99	0,01	0,0001
20	4,01	-0,98	0,9604
21	4,47	-0,52	0,2704
22	5,27	0,29	0,0841
23	4,49	-0,50	0,25
24	4,89	-0,10	0,01
25	5,20	0,20	0,04
26	4,60	-0,59	0,3481
27	4,74	-0,25	0,0625
28	5,74	0,76	0,5776
29	5,51	0,53	0,2809
30	4,87	-0,12	0,0144
31	4,64	-0,35	0,1225
32	5,85	0,87	0,7569
33	4,84	-0,15	0,0225
34	5,09	0,11	0,0121
35	4,07	-0,92	0,8464
36	5,87	0,89	0,7921
37	4,08	-0,91	0,8281
38	5,56	0,58	0,3364
39	5,14	0,16	0,0256
40	4,18	-0,81	0,6561
41	4,71	-0,28	0,0784
42	5,85	0,87	0,7569
43	5,57	0,59	0,3481
44	4,82	-0,32	0,1024
45	5,65	0,67	0,4489
46	4,72	-0,40	0,1600
47	4,48	-0,66	0,4356
48	4,43	-0,71	0,5041
49	4,25	-0,89	0,7921
50	5,20	0,22	0,0484

7.1 Расчет некоторых величн для выборки

1) Выборочное среднее как среднеарифметическое всех результатов измерений

$$\langle t \rangle_N = 4.9824 \approx 4.98$$

2) Сумма отклонений как способ контроля правильности нахождения $\langle t \rangle_N$

$$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = -0.13$$

3) Среднеквадратичное отклонение среднего значения

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0,5373$$

4) Максимальное значение плотности распределения

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}} = 0.742446535095471$$

8 Расчёт результатов косвенных измерений

Таблица 3: Интервалы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N \cdot \Delta t}$, 1/c	t, c	$ ho_0,1/{ m c}$
4 - 4,3	7	0,51	4,15	0,224
4,3 - 4,6	6	0,44	4,45	0,454
4,6 - 4,9	11	0,80	4,75	0,676
4,9 - 5,2	11	0,80	5,05	0,737
5,2 - 5,5	4	0,29	5,35	0,588
5,5 - 5,8	6	0,44	5,65	0,343
5,8 - 6,1	5	0,36	5,95	0,147

8.1 Расчет погрешностей

Таблица 4: Погрешности

	Начало интервала, с	Конец интервала, с	dN	$\frac{dN}{N}$	P
$\langle t \rangle \pm \sigma N$	4,45	$5,\!52$	32	0,64	0,683
$\langle t \rangle \pm 2\sigma N$	3,91	$6,\!06$	50	1	0,954
$\langle t \rangle \pm 3\sigma N$	3,37	$6,\!59$	50	1	0,997

9 График

10 Окончательные результаты:

$$T=\langle t\rangle N=4.9824\approx 4.98\pm 1.07467$$

$$\varepsilon = \frac{2\sigma N}{4.9824} \cdot 100\% = 21{,}5693$$

$$\alpha = 0.95$$

11 Выводы и анализ результатов работы

Общий набор данных случайной величины всегда стремится к нормальному распределению. По мере увеличения числа замеров увеличивается точность определения погрешности. Гистограмма отражает распределение данных и может иметь отклонения от идеальной формы, потому что получена на основе конечного числа измерений. Кривая Гаусса представляет теоретическую модель нормального распределения, которая предполагает бесконечное количество замеров.