

K-mers

K-mers are contiguous subsequences of length k that are derived from a longer sequence, typically in genomics or bioinformatics.

Preprocessing

K-mer Extraction ➤ Function: extract_kmers(sequence, k) ➤ Input: Sequence and k ➤ Output: List of k-mers Reading & Combining Sequence Data ➤ mRNA and IncRNA sequences from FASTA files using SeqIO module. ➤ Combining Sequences: ➤ Combine mRNA and IncRNA sequences into combined_sequences.

03

Creating K-mer Matrices

- Function:
 create_kmer_matrix(sequence_data,
 unique_kmers, k)
- > Returns matrix with sequence rows, k-mer columns, and frequencies.

K-mer Matrices for Different k

➤ Create matrices for mRNA and IncRNA (k=1, 2, 3, 4).

Preprocessing for Different k:

06

- Normalize values in mRNA and IncRNA matrices.
- ➤ Add a column of ones for mRNA (mRNA=1) and a column of zeros for lncRNA (lncRNA=0).
- ➤ Apply preprocessing to k-mer matrices for each k (1, 2, 3, 4).
- Resulting DataFrames: df_mrna_1, df_lncRNA_1, ..., df_mrna_4, df_lncRNA_4.

K-mer Extraction and Set Creation

> Sets for unique k-mers (k=1, 2, 3, 4).

➤ Iterates over sequences, extracts k-mers, and updates sets.

Activity Diagram

Convolution Model

ROC curve for 3-mers (n=4^3=64)

N(k-F1 score Precision Recall accuracy mers) 16 0.9078 0.8516 0.9045 0.9644 64 0.9239 0.9771 0.8691 0.9199 256 0.9005 0.9223 0.8735 0.8972

Results and Output

ROC curve for 2-mers (n=4^2)

Comparison

CNN

Convolutional Neural Network (CNN) model can self-learn the characteristics of the sequence through continuous training without artificial intervention and efficiently calculate large amounts of data, no domain-expert knowledge or fine-tuning of parameters to increase accuracy are needed

model	model accuracy	precision rate(P)	recall rate(R)	F ₁ score
CNN	0.9872	0.9993	0.9955	0.9974
RF	0.8820	0.8949	0.8867	0.8925
LR	0.7020	0.7247	0.7183	0.7218
DT	0.8030	0.7873	0.7852	0.7869
SVM	0.7020	0.7245	0.7158	0.7179

ML methods

- The study used the maximum entropy algorithm for k-mer screening and support vector machines for classification, revealing high computational complexity and cost.
- Expert-driven pre-processing and feature selection were crucial, emphasizing parameter fine-tuning for accuracy in various conventional machine learning algorithms like SVM, logistic regression, decision trees, NN, BNs, GAs, HMMs, etc.

Conclusion

Objectives Achieved

Developed an effective model for lncRNA and mRNA classification.

Model Highlights

Utilized k-mer frequency matrix in a CNN, achieving high accuracy (0.9239) with 1-mers, 2-mers, 3-mers, and 4-mers.

Performance Boost

Outperformed traditional models (random forest, logistic regression, decision tree, SVM) based on ROC curve analysis.

Limitations & Future work

Acknowledged analysis simplicity, with plans for in-depth speciesspecific k-mer analysis. Future goal: Develop a user-friendly web server.

Conclusion

This study not only met its classification objectives but also identified avenues for improvement and broader applicability in bioinformatics.

Thank You