地球型惑星における南北熱輸送 その太陽定数への依存性

人見祥磨

学籍番号:20203069

* * * * *

北海道大学 大学院理学院 宇宙理学専攻 地球流体研究室 修士 2 年

指導教員:石渡正樹

* * * * *

2021年12月20日

目次

第1章	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
第2章	モデルの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.1	系の設定と基礎方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.2	実験設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
第3章	実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.1	$S = 1366 \mathrm{W/m^2}$ の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.2	??? の太陽定数依存性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.3	南北熱輸送の太陽定数依存性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第4章	結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
第 ₅ 章	謝辞 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
第6章	参考文献リスト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11

第1章 はじめに

- ハビタブルゾーンの説明
- 暴走温室状態の説明
- 1 次元計算は Nakajima et al. (1992) が行った。
- 3 次元計算を Ishiwatari et al. (2002) が行った。
- Ishiwatari et al. (2002) で利用したモデルにはバグが含まれていた。
- 問題はあるけど、これでいい。
- •現在、放射上限に関して3次元計算をしっかり行った論文はない状況である。
- 非灰色 3 次元で放射上限を検討した研究はまだない。
- 非灰色 3 次元計算を行って南北熱輸送に関して考察する。
- どうして南北熱輸送を考察するか。

第2章 モデルの概要

系の設定と基礎方程式 2.1

DCPAM₅ を利用している。

連続の式、静水圧の式、運動方程式は以下の通りである。

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}, \tag{2.1}$$

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma},\tag{2.2}$$

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}, \qquad (2.1)$$

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}, \qquad (2.2)$$

$$\frac{\partial}{\partial \zeta} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathfrak{D}[\zeta]. \qquad (2.3)$$

(2.4)

物理過程

2.2 実験設定

surface temperature

図 3.1 $S = 1366 \, \text{W/m}^2$ 30 年目の地表面温度

第3章 実験結果

実験結果(図を貼る)。

3.1 $S = 1366 \, \text{W/m}^2$ の結果

地表面温度、子午面温度分布、東西風、時系列

3.2 ??? の太陽定数依存性

3.3 南北熱輸送の太陽定数依存性

図 3.2 $S = 1366 \,\mathrm{W/m^2}$ 30 年目の子午面温度分布

eastward wind sigma at layer midpoints -60 -40 -20 0 20 40 60 80 -80 (1) (degrees_north) latitude CONTOUR INTERVAL = 1.000E+01 time=10950 day (mean) lon:0..357.188 -30 0 30 60 /usr/bin/gpview 2021-12-20 U.nc@U,time=10950

図 3.3 S = 1366 W/m² 30 年目の東西風

surface temperature

図 3.4 $S = 2000 \,\mathrm{W/m^2}$ 3 年目の地表面温度

図 3.5 $S = 2000 \,\mathrm{W/m^2}$ 3 年目の子午面温度分布: w

第4章 結論

結論。

第5章 謝辞

謝辞。

第6章 参考文献リスト

参考文献。

表目次

図目次

3.1	S = 1366 W/m ² 30 年目の地表面温度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.2	$S=1366\mathrm{W/m^2}$ 30 年目の子午面温度分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.3	S = 1366 W/m ² 30 年目の東西風 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3.4	$S = 2000 \mathrm{W/m^2}$ 3 年目の地表面温度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2 5	$S = 2000 \mathrm{W/m^2}$ 3 年目の子午面温度分布:w ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8