Numerical Algorithms - Second implementation Simas Jose Vonala Morero

Nonero

2

IMPLEMENTATION. LEAST SQUARES

The aim of the implementation is to show the behaviour of the three kinds of Q factorizations for a matrix A given theoretically.

First, we will factorize Hilbert matrix in several dimensions and we compare the error in the orthogonality of Q by means of $\|Q^t Q - I\|_F$ with respect to the condition number of matrix H_n for different values of n, when Q is computed with the three considered procedures. We complete the following table:

•			$\ Q^t Q - I\ _F$		
•	n	μ(H _n)	Householder	Gram-Schmidt	Modified Gram-Schmidt
•				0	
10 -	→ :	1,6025 1013	0,0156 . 10-14	6,2869	9.002
	15	2,4960 1017	5'12 · 12,17	9.7515	1,7090

We will present a figure with the three methods in log scale with the errors. We plot condition number against error.

Second, we will compare the operative cost, with random matrixes factorizations with size $n \times n$. We fill the table

_				
	n	Reflectores	Gram-Schmidt	Gram-Schmidt modificado
-	16	0,0009	0,0001	0,3001
	32	0,0009	0,0004	0,0003
64-	າ:	0,0019	0,0003	0,0004
	512	1,1328	0,1350	0,4260

And a second figure in log scale. We plot the dimension of the matrix against the spent CPU-time.

FUNCTIONS ON MATLAB

- rand, create a random matrix.
- ncond, compute the condition number, each norm.
- norm, compute the norm of a vector ('fro', means Fröbenius norm).
- hilb, create the Hilbert matrix.
- loglog, equivalent to plot with log scale both axes.
- subplot, divides the figure window in several graphics.

4

C