## Unidad 8 – Representación matricial de una transformación lineal

#### Matriz asociada a una transformación lineal

Existe una relación importante entre las matrices y las transformaciones lineales. En esta unidad conoceremos aspectos de esta vinculación. Dada cualquier matriz A de mxn, se puede definir una transformación lineal de  $R^n$  en  $R^m$  como:

$$T(x) = Ax$$

Dejamos para vos la demostración de que efectivamente la transformación así definida es lineal y comencemos ahora a explorar como asociar una matriz a una transformación lineal.

Vamos a distinguir dos casos posibles con el objeto de facilitar un primer acercamiento a este tópico. Si bien los procedimientos y los conceptos puestos en juego en ambos casos son los mismos, se ha adoptado la decisión de separar las situaciones que pueden presentarse a la hora de construir la matriz asociada a una transformación lineal atendiendo a la transposición didáctica que los docentes debemos hacer a la hora de la enseñanza.

# Caso uno: $T: \mathbb{R}^n \to \mathbb{R}^m$ con respecto a las bases canónicas de V y W

Sea T una transformación lineal de  $R^n$  en  $R^m$  y sean  $B_1$  y  $B_2$  las bases canónicas de  $R^n$  y  $R^m$  respectivamente, entonces:  $B_1 = \{ {\boldsymbol e}_1, {\boldsymbol e}_2, ..., {\boldsymbol e}_n \}$  donde  ${\boldsymbol e}_j = (0, \cdots, 1, \cdots, 0)$ .

# Definición 8.1 | Se denomina matriz asociada a la transformación lineal o representación matricial de $T: \mathbb{R}^n \to \mathbb{R}^m$ con respecto a las bases canónicas, a la matriz de mxn cuyas columnas son los transformados de los vectores de la base $B_1$ . A dicha matriz la denotaremos por $A_T$ .

En símbolos:

$$A_T = \begin{bmatrix} T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & T \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} & \cdots & T \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \end{bmatrix}$$

Dicho de otro modo: la primera columna de  $A_T$  es el transformado a través de T de  $\mathbf{e}_1$  (primer vector de  $B_1$ ), la segunda columna de  $A_T$  es el transformado a través de T de  $\mathbf{e}_2$  (segundo vector de  $B_1$ ), etc.

Ejemplo 8.1

Encontrar la matriz asociada a 
$$T: \mathbb{R}^2 \to \mathbb{R}^3 / T(x, y) = \begin{pmatrix} x \\ y \\ x + y \end{pmatrix}$$
.

Consideremos que  $B_1$  es la base canónica de  $R^2$ . Entonces  $B_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ . Calculando los transformados de los vectores de dicha base y haciendo que dichos vectores sean las columnas de la representación matricial de T, se obtiene:

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad \text{Entonces } A_T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad T \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

En el siguiente teorema se explicita como emplear  $A_T$  en este primer caso:

**Teorema 8.1** Sea  $T: \mathbb{R}^n \to \mathbb{R}^m$  una transformación lineal y sea  $A_T$  la matriz asociada a T con respecto a las bases canónicas de  $\mathbb{R}^n$  y  $\mathbb{R}^m$  respectivamente. Entonces  $\forall \ x \in \mathbb{R}^n$  se verifica que:

$$T(\mathbf{x}) = A_T \mathbf{x}$$

$$Sea A_T = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Ejemplo 8.2 Calculamos T(5,8) empleando la matriz asociada obtenida en el ejemplo 8.1 y el teorema recién demostrado:

$$T\binom{5}{8} = A_T\binom{5}{8} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}\binom{5}{8} = \begin{pmatrix} 5 \\ 8 \\ 13 \end{pmatrix}$$

**Observación** Hasta aquí la matriz asociada a una transformación lineal  $T: \mathbb{R}^n \to \mathbb{R}^m$  está definida empleando las bases canónicas de dichos espacios. Más adelante veremos cómo se define y se emplea la matriz asociada a T si se consideran otras bases en  $\mathbb{R}^n$  y  $\mathbb{R}^m$ .

**Teorema 8.2** Sea  $T: \mathbb{R}^n \to \mathbb{R}^m$  lineally  $A_T$  la matriz asociada a T con respecto a las bases canónicas de  $\mathbb{R}^n$  y  $\mathbb{R}^m$  respectivamente entonces:

- $nu(T) = N_{A_T}$
- II.  $im(T) = im(A_T)$
- III.  $v(T) = v(A_T)$
- IV.  $\rho(T) = \rho(A_T)$

Ejemplo 8.3

Aplicar al ejemplo 8.1 los resultados del teorema anterior, sabiendo que  $A_T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  es la matriz asociada a  $T: \mathbb{R}^2 \to \mathbb{R}^3 / T(x, y) = \begin{pmatrix} x \\ y \\ x + y \end{pmatrix}$  con-

siderando las bases canónicas de  $R^2$  v  $R^3$  respectivamente:

Empleando operaciones elementales en  $A_T$ , se obtiene:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$A_T \qquad A$$

Como los pivotes en B están en las columnas uno y dos, las correspondientes columnas uno y dos de  $A_T$  forman una base del espacio imagen de  $A_T$ . Entonces, por el teorema 8.2:

$$im A_T = gen\{(1,0,1), (0,1,1)\} = im T \Rightarrow \rho(A_T) = 2 = \rho(T)$$

Ya que  $\rho(A_T) + v(A_T) = n^{\circ}$  columnas de  $A_T$ , resulta que  $v(A_T) = 0$ . Entonces  $v(T) = v(A_T) = 0$  y por lo tanto  $nu(T) = \{\mathbf{0}_{R^2}\} = \{(0,0)\}.$ 

Observación | Se sabe por el teorema 6.3 de este apunte que, en toda matriz, se verifica que la suma de la nulidad y el rango es igual a la cantidad de columnas de la misma.

Ahora si T es una transformación lineal definida de  $\mathbb{R}^n$  en  $\mathbb{R}^m$  entonces aplicando las igualdades III y IV del teorema 8.2 y recordando que la matriz asociada a T con respecto a las bases canónicas es de mxn se obtiene que

$$v(T) + \rho(T) = v(A_T) + \rho(A_T) = n = \dim R^n$$

Veremos en el teorema 8.4 que esta igualdad vuelve a aparecer: la suma de la nulidad más el rango de una transformación lineal es igual a la dimensión del espacio de salida de dicha transformación.

Caso dos:  $T: \mathbb{R}^n \to \mathbb{R}^m$  con  $V \vee W$  differentes

**2.1** |  $T: V \to W \ con \ V \neq R^n : W = R^m$ .

**2.2**  $IT: \mathbb{R}^n \to \mathbb{R}^m$  considerando bases distintas de las canónicas.

En 2.1 y 2.2 la definición de la matriz asociada, que seguimos llamando  $A_T$ , es la misma.

**Definición 8.2** Si  $B_1$  es la base del espacio de salida de T y  $B_2$  es una base del espacio de llegada de T, se denomina matriz asociada a la transformación lineal T con respectos a las bases  $B_1$  y  $B_2$  a la matriz que tiene por columnas los vectores de coordenadas de las imágenes de los vectores de la  $B_1$  con respecto a la  $B_2$ . En símbolos: si  $B_1 = \{v_1, v_2, ..., v_n\}$  es la base elegida para el espacio de salida y  $B_2$  es la base elegida para el espacio de llegada:

$$A_T = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ [T(v_1)]_{B_2} & [T(v_2)]_{B_2} & \cdots & [T(v_n)]_{B_2} \end{bmatrix}$$

Observación | En la definición precedente se consideró que la dimensión del espacio de salida de T es n, si la dimensión del espacio de llegada de T es m, entonces  $A_T$  es una matriz de mxn, tal como en el caso uno. Entonces:

- Cantidad de renglones de  $A_T$  = dimensión del espacio de llegada de T.
- Cantidad de columnas de  $A_T$  = dimensión del espacio de salida de T.

En resumen: para encontrar la matriz asociada a una transformación lineal  $T: V \to W \ o \ T: \mathbb{R}^n \to \mathbb{R}^m$  en las bases  $B_1$  (base del espacio de salida) y  $B_2$ (base del espacio de llegada) se sigue el siguiente procedimiento:



## Como encontrar una matriz asociada a una transformación lineal:

- 1) Encontrar la imagen a través de la transformación lineal de cada vector de  $B_1$ .
- 2) Determinar el vector de coordenadas de cada imagen con respecto a la base  $B_2$ .
- 3) Colocar los vectores de coordenadas obtenidos en 2) como columnas de la matriz  $A_{T}$ .

Ejemplo 8.4 | Encontrar la matriz asociada a la transformación lineal de:

$$T: P_2 \to P_1 / T(ax^2 + bx + c) = (a - b)x - c$$

Para determinar la matriz asociada a T se elige  $B_1$  como base canónica de  $P_2 = \{x^2, x, 1\}$  y  $B_2$  como base canónica de  $P_1 = \{x, 1\}$ . Entonces:

$$T(x^2) = T(1x^2 + 0x + 0) = (1 - 0)x - 0 \Rightarrow [T(x^2)]_{B_2} = [x]_{B_2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$T(x) = T(0x^2 + 1x + 0) = (0 - 1)x - 0 \Rightarrow [T(x)]_{B_2} = [-x]_{B_2} = \begin{bmatrix} -1\\0 \end{bmatrix}$$

$$T(1) = T(0x^2 + 0x + 1) = (0 - 0)x - 1 \Rightarrow [T(1)]_{B_2} = [-1]_{B_2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Como  $A_T$  es la matriz cuyas columnas son los vectores de coordenadas obtenidos:

$$A_T = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

**Observación** Tal como se mencionó,  $A_T$  es de 2x3, pues 2 la dimensión del espacio de salida de T y 3 la dimensión del espacio de llegada de T.

Ejemplo 8.5

Hallar la matriz 
$$A_T$$
 con respecto a la base  $B_1=\{(3,1),(5,2)\}$  de  $R^2$  y  $B_1=\{\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}-1\\2\\2\end{bmatrix},\begin{bmatrix}0\\1\\2\end{bmatrix}\}$  de  $R^3$ , de  $T$ :  $R^2\to R^3$  /  $T\binom{x}{y}=\begin{bmatrix}y\\-5x+13y\\-7x+16y\end{bmatrix}$ .

Se calcula la imagen de cada vector de  $B_1$ :

$$T\begin{pmatrix} 3\\1 \end{pmatrix} = \begin{pmatrix} 1\\-2\\-5 \end{pmatrix} \qquad \qquad T\begin{pmatrix} 5\\2 \end{pmatrix} = \begin{pmatrix} 2\\1\\-3 \end{pmatrix}$$

Luego se tiene que obtener el vector de coordenadas de las trasformaciones de los vectores  $B_1$  con respecto a  $B_2$ :

$$\left[T \begin{pmatrix} 3 \\ 1 \end{pmatrix}\right]_{B_2} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} \Rightarrow \begin{bmatrix} \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} \end{bmatrix}_{B_2} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

$$\left[T\begin{pmatrix}5\\2\end{pmatrix}\right]_{B_2} \Rightarrow \begin{bmatrix}1 & -1 & 0\\0 & 2 & 1\\-1 & 2 & 2\end{bmatrix}\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix} = \begin{pmatrix}2\\1\\-3\end{pmatrix} \Rightarrow \begin{bmatrix}\begin{pmatrix}2\\1\\-3\end{pmatrix}\end{bmatrix}_{B_2} = \begin{pmatrix}3\\1\\-1\end{pmatrix}$$

De modo que:

$$A_{T} = \left[ \begin{bmatrix} T \begin{pmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \end{bmatrix}_{B_{2}} \quad \left[ T \begin{pmatrix} 5 \\ 2 \end{bmatrix} \right]_{B_{2}} \right] = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

es la representación matricial de T con respecto a las bases  $B_1$  y  $B_2$ .

- **Observación** | Como puedes observar la matriz asociada a una transformación lineal depende de las bases empleadas en el espacio de salida y de llegada de la transformación, es decir, de lo que venimos denotando  $B_1$  y  $B_2$ .
- **Teorema 8.3** Sea V un espacio vectorial de dimensión n,W un espacio vectorial de dimensión m y  $T\colon V\to W$  una transformación lineal. Sean  $B_1$  una base para V y  $B_2$  una base para W. Entonces existe una única matriz  $A_T$  de mxn tal que  $\forall~v\in V$ , se tiene que:

$$[T(v)]_{B_2} = A_T [v]_{B_1}$$

- Ejemplo 8.6 Continuaremos con los ejemplos 8.4 y 8.5 analizando como emplear la matriz  $A_T$  en el cálculo de imágenes:
  - a) Calcular T(p(x)) con T definida en el *ejemplo 8.4* siendo  $p(x) = 5x^2 2x + 8$ :

$$\left[T(p(x))\right]_{B_2} = A_T [p(x)]_{B_1} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ -2 \\ 8 \end{bmatrix} = \begin{bmatrix} 7 \\ -8 \end{bmatrix}$$

**Entonces:** 

$$T(p(x)) = 7 \cdot x - 8 \cdot 1 = 7x - 8$$

b) Calcular T(v) para v = (22.8) y T definida en el *ejemplo 8.5*:

$$T(v) = 10 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} - 10 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \\ -26 \end{pmatrix}$$

La igualdad del teorema anterior se emplea cuando se quiere calcular la imagen a través de T de algún elemento del espacio de salida, conociendo la matriz asociada a T con respecto a bases conocidas del espacio de salida y del espacio de llegada, pero no se conoce la definición algebraica de la transformación lineal T.

**Teorema 8.4** Sean V y W espacios vectoriales tales que  $\dim V = n$ ,  $\dim W = m$ ,  $B_1$  es base de V,  $B_2$  es base de W y  $A_T$  es la matriz asociada a la transformación lineal  $T: V \to W$  con respecto a las bases  $B_1$  y  $B_2$ . Entonces se verifica que:

$$1. \quad \upsilon(A_T) = \upsilon(T)$$

II. 
$$\rho(A_T) = \rho(T)$$

III. 
$$\upsilon(T) + \rho(T) = \dim V$$

Ejemplo 8.7 Encontrar la matriz de transición de T, su nulidad y su rango. Siendo T:

$$T: P_2 \to P_3 / T(p(x)) = x p(x)$$

Se eligen las bases canónicas en los espacios involucrados en T,  $B_1 = \{1, x, x^2\}$  y  $B_2 = \{1, x, x^2, x^3\}$  y se calculan las imágenes de cada uno de los vectores de  $B_1$  y sus vectores de coordenadas con respecto a  $B_2$  ya que dichos vectores de coordenadas serán las columnas de la matriz buscada  $A_T$ :

$$T(1) = x \cdot 1 = x \Rightarrow [T(1)]_{B_2} = [x]_{B_2} = (0,1,0,0)$$

$$T(x) = x \cdot x = x^2 \Rightarrow [T(x)]_{B_2} = [x^2]_{B_2} = (0,0,1,0)$$

$$T(x^2) = x \cdot x^2 = x^3 \Rightarrow [T(x^2)]_{B_2} = [x^3]_{B_2} = (0,0,0,1)$$

Por lo tanto, la matriz asociada a T que se obtiene es:

$$A_T = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Aplicando operaciones elementales a dicha matriz, se halla la matriz *B*:

$$A_T = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\substack{R_1 \leftrightarrow R_2 \\ R_2 \leftrightarrow R_3 \\ R_3 \leftrightarrow R_4 \\ 0 & 0 & 1}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = B$$

Como B es equivalente a  $A_T$  por renglones y B tiene tres pivotes:  $\rho(B)=3$ . Por lo que conocemos del tema "Espacios asociados a una matriz",  $\rho(A_T)=\rho(B)=3$ , y por el teorema 8.2 resulta que  $\rho(T)=3$ . Como  $\upsilon(T)+\rho(T)=dim\,P_2$ , resulta que  $\upsilon(T)=0$ .

No es posible, en el caso dos, emplear de manera directa el espacio nulo y el espacio imagen de la matriz asociada a la transformación lineal ya que ambos espacios vectoriales estarán conformados por vectores de  $\mathbb{R}^n$  mientras que el núcleo y la imagen de la trasformación lineal son subespacios del espacio de salida y de llegada de T respectivamente. En el ejemplo 8.7,  $nu\ T$  debe ser subespacio de  $P_2$  y  $im\ T$  de  $P_3$ .

Veamos si, aún, podemos continuar usando la matriz B para determinar el núcleo y el espacio imagen de la transformación definida. Los pivotes de B están en la primera, segunda y tercera columna. Trasladémonos a la primera, segunda y tercera columna de  $A_T$  y analicemos de que elementos de  $B_2$  son vectores de coordenadas esas columnas de  $A_T$ :

(0,1,0,0) es el vector de coordenadas del polinomio x con respecto a  $B_2$ . (0,0,1,0) es el vector de coordenadas del polinomio  $x^2$  con respecto a  $B_2$ . (0,0,0,1) es el vector de coordenadas del polinomio  $x^3$  con respecto a  $B_2$ .

Entonces:  $im T = gen \{x, x^2, x^3\}.$ 

Por otro lado, ya que v(T) = 0, resulta que:

$$nu T = \{0_{P_2}\} = \{0x^2 + 0x + 0\}$$

### **OBSERVACIONES:**

- 1) Es posible determinar una representación matricial asociada a una transformación lineal que sea una matriz diagonal. Esta idea se desarrolla en el *ejemplo 7.3.9* y *teorema 7.3.5* de *Grossman (7ma Ed.).* Esta cátedra decide no ahondar en este procedimiento.
- 2) Notemos que si T es una transformación lineal de  $R^n$  en  $R^m$  (Caso 1) o de V en W (Caso 2) y, además, n=m o  $\dim V=\dim W$  entonces la matriz asociada a T, es decir,  $A_T$  es cuadrada. Si esta matriz es invertible, se pueden obtener otras igualdades a partir de dos teoremas de esta Sección:

| En el teorema 7.1<br>se afirma que:                                                       | En el teorema 8.3<br>se asegura que                                       |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| $T(x) = A_T x$                                                                            | $[T(\boldsymbol{v})]_{B_2} = A_T[\boldsymbol{v}]_{B_1}$                   |  |
| Pre multiplicando miembro a miembro por $A_T^{-1} \;\;$ resulta                           |                                                                           |  |
| $A_T^{-1}T(\boldsymbol{x}) = A_T^{-1}(A_T\boldsymbol{x})$                                 | $A_T^{-1}[T(\boldsymbol{v})]_{B_2} = A_T^{-1}(A_T[\boldsymbol{v}]_{B_1})$ |  |
| Y aplicando propiedad asociativa del producto de matrices y definición de matriz inversa: |                                                                           |  |
| $A_T^{-1} T(\boldsymbol{x}) = (A_T^{-1} A_T) \boldsymbol{x}$                              | $A_T^{-1}[T(\boldsymbol{v})]_{B_2} = (A_T^{-1}A_T)[\boldsymbol{v}]_{B_1}$ |  |
| $A_T^{-1} T(\mathbf{x}) = \mathbf{x}$                                                     | $A_T^{-1}[T(v)]_{B_2} = [v]_{B_1}$                                        |  |

# Cuadro de resumen: Matriz asociada a una transformación lineal.

|                                                         | CASO 1                                                                                                                                                                                                                                                                                                                   | CASO 2                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Condiciones                                             | La transformación lineal está definida de $\mathbb{R}^n$ en $\mathbb{R}^m$ y en cada uno de los dichos espacios vectoriales se emplea la base canónica.                                                                                                                                                                  | La transformación está definida:<br>- De $\mathbb{R}^n$ en $\mathbb{R}^m$ con bases distintas de bases canónicas.<br>- Entre dos espacios vectoriales $V$ y $W$ distintos de $\mathbb{R}^n$ y $\mathbb{R}^m$ respectivamente.                                                                                                                                               |
| $\begin{array}{c} Como \\ construir \\ A_T \end{array}$ | $A_T$ es la matriz cuyas columnas son las imágenes de los vectores de la base canónica de $\mathbb{R}^n$ .                                                                                                                                                                                                               | Sean: $\dim V = n$ ; $\dim W = m$ ; $B_1$ una base de $V$ ; $B_2$ una base de $W$ . Entonces $A_T$ es la matriz cuyas columnas son las coordenadas de las imágenes de los vectores de $B_1$ con respecto a $B_2$ . En símbolos la j-ésima columna de $A_T$ es $\left[T(v_j)\right]_{B_2}$ donde $v_j$ es el j-ésimo vector de $B_1$ .                                       |
| Como emplear $A_T$                                      | Para calcular la imagen a tra-<br>vés de $T$ de cualquier vector $\boldsymbol{v}$ de $R^n$ , ya que por teorema $\forall \ v \in R^n$ se verifica que: $T(\boldsymbol{v}) = A_T \boldsymbol{v}$                                                                                                                          | Con $A_T$ en estos casos se calcula el vector de coordenadas de la imagen de cada vector de $B_1$ respecto a $B_2$ , ya que: $[v]_{B_2} = A_T [v]_{B_1}$                                                                                                                                                                                                                    |
| Observaciones                                           | ¿Cómo emplear la matriz $A_T$ para la transformación $T$ ?  - El espacio nulo de $A_T$ es el núcleo de $T$ .  - El espacio imagen de $A_T$ es el espacio imagen de $T$ .  Como los espacios vectoriales anteriores son iguales, sus dimensiones también y, por lo tanto: $\upsilon(A_T)=\upsilon(T)$ $\rho(A_T)=\rho(T)$ | ¿Cómo emplear la matriz $A_T$ para la transformación $T$ ?  Para la transformación $T$ y para la matriz asociada solo son iguales la nulidad y el rango. Recuerda que si una transformación lineal va de un espacio vectorial llamémosle $V$ , en otro espacio vectorial, digamos $W$ , entonces:  - $nu\ T$ es un subespacio de $V$ .  - $im\ T$ es un subespacio de $W$ . |