from pandas import read csv from sklearn.tree import DecisionTreeClassifier import numpy as np import matplotlib.pyplot as plt import seaborn as sns df=read csv("Travel.csv") df In [2]: Age EmploymentType GraduateOrNot AnnualIncome FamilyMembers ChronicDiseases FrequentFlyer EverTravelledAbroad TravelInsura Out[2]: Government 0 31 400000 6 1 No Yes No Sector Private Sector/Self 31 Yes 1250000 No No Employed Private Sector/Self 2 34 500000 4 Yes 1 No No Employed Private Sector/Self 3 28 700000 3 Yes No No Employed Private Sector/Self 8 4 28 700000 No Yes Yes Employed Private Sector/Self 1982 33 1500000 0 Yes Yes Yes Employed Private Sector/Self 1983 28 1750000 Yes No Yes Employed Private Sector/Self 1984 28 1150000 6 1 Yes No No Employed Private Sector/Self 1985 34 1000000 Yes Yes Yes Employed Private Sector/Self 1986 Yes 500000 4 0 No No Employed 1987 rows \times 9 columns

In [3]: features=['Age', 'AnnualIncome', 'FamilyMembers','ChronicDiseases']
 X=df[features]
 y=df['TravelInsurance']

print(X)

1986

In [4]:

Out[7]:

0

31

31

In [1]: **from** sklearn **import** tree

```
print(y)
                          FamilyMembers
                                           ChronicDiseases
      Age
            AnnualIncome
0
       31
                  400000
                                                           1
                                        7
                                                           0
1
       31
                 1250000
2
                                                           1
       34
                  500000
                                        4
       28
                                        3
                                                           1
3
                  700000
                                        8
                                                           1
4
       28
                  700000
                 1500000
                                                           0
1982
       33
                                        4
1983
                                        5
                                                           1
       28
                 1750000
                                        6
                                                           1
1984
       28
                 1150000
                                        6
                                                           0
1985
       34
                 1000000
1986
       34
                  500000
                                                           0
[1987 rows x 4 columns]
0
        0
        0
1
2
        1
3
        0
4
        0
1982
        1
1983
        0
1984
1985
        1
```

In [6]: le_EmploymentType=LabelEncoder()
 le_GraduateOrNot=LabelEncoder()
 le_FrequentFlyer=LabelEncoder()
 le EverTravelledAbroad=LabelEncoder()

In [5]: from sklearn.preprocessing import LabelEncoder

Name: TravelInsurance, Length: 1987, dtype: int64

inputs=df.drop('TravelInsurance',axis='columns')

]:	<pre>inputs['EmploymentType_n'] = le_EmploymentType.fit_transform(inputs['EmploymentType'])</pre>

Ves

<pre>inputs['GraduateOrNot_n']=le_GraduateOrNot.fit_transform(inputs['GraduateOrNot'])</pre>
<pre>inputs['FrequentFlyer_n']=le_FrequentFlyer.fit_transform(inputs['FrequentFlyer'])</pre>
<pre>inputs['EverTravelledAbroad_n']=le_EverTravelledAbroad.fit_transform(inputs['EverTravelledAbroad'])</pre>
inputs.head()

Government

Employed

Private Sector/Self

Private Sector/Self

Acuuracy 79.39698492462311

Sector

target=df['TravelInsurance']

_	54	Employed	163	300000	7	1	110	140
3	28	Private Sector/Self Employed	Yes	700000	3	1	No	No
4	28	Private Sector/Self Employed	Yes	700000	8	1	Yes	No

In [8]: inputs_n=inputs.drop(['EmploymentType','GraduateOrNot','FrequentFlyer','EverTravelledAbroad'],axis='columns')

400000

1250000

500000

Age EmploymentType GraduateOrNot AnnualIncome FamilyMembers ChronicDiseases FrequentFlyer EverTravelledAbroad EmploymentTy

6

7

4

No

No

Nο

No

No

	input	cs_n							
Out[8]:		Age	AnnualIncome	FamilyMembers	ChronicDiseases	EmploymentType_n	GraduateOrNot_n	FrequentFlyer_n	EverTravelledAbroad_n
	0	31	400000	6	1	0	1	0	0
	1	31	1250000	7	0	1	1	0	0
	2	34	500000	4	1	1	1	0	0
	3	28	700000	3	1	1	1	0	0
	4	28	700000	8	1	1	1	1	0
	•••								
	1982	33	1500000	4	0	1	1	1	1
	1983	28	1750000	5	1	1	1	0	1
	1984	28	1150000	6	1	1	1	0	0
	1985	34	1000000	6	0	1	1	1	1
	1986	34	500000	4	0	1	1	0	0
	1987 ra	714/5 ×	8 columns						

	•••										
	1982	33	1500000	4	0	1	1	1	1		
	1983	28	1750000	5	1	1	1	0	1		
	1984	28	1150000	6	1	1	1	0	0		
	1985	34	1000000	6	0	1	1	1	1		
	1986	34	500000	4	0	1	1	0	0		
1987 rows × 8 columns											
In [9]:	<pre>import sklearn.model_selection from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, random_state=1)</pre>										
In [10]:	<pre>from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(random_state=0) model.fit(X_train, y_train) prediction=model.predict(X_test)</pre>										
In [11]:	[11]: print("Acuuracy", accuracy_score(prediction, y_test) *100)										