Considere el proceso $X_t = \delta + X_{t-1} + \epsilon_t$, donde $t = 1, 2, ..., \epsilon_t$ es una secuencia de variables aleatorias iid con media cero y varianza σ^2 .

1. Escriba la ecuación del proceso X_t como sigue

$$X_t = \delta t + \sum_{j=1}^t \epsilon_j. \tag{0.1}$$

Solución. Observe que X_t puede escribirse como (0.1). En efecto,

- Para t = 1, se tendrá $X_t = \delta + \epsilon_1$.
- Suponga que la igualdad se tiene para t-1. Luego para t se tendrá

$$X_t = \delta + X_{t-1} + \epsilon_t = \delta + \delta(t-1) + \sum_{j=1}^{t-1} \epsilon_j + \epsilon_t = \delta t + \sum_{j=1}^t \epsilon_j,$$

probando la equivalencia de las ecuaciones.

2. Calcule
$$\mu(t) = \mathbb{E}[X_t] \text{ y } V(t) = \mathbb{V}[X_t]$$
.

Solución. Observe que

$$\mu(t) = \mathbb{E}[X_t] = \mathbb{E}[\delta t] + \sum_{j=1}^{t} \mathbb{E}[\epsilon_j] = \delta t.$$

Además,

$$V(t) = \mathbb{V}[X_t] = \mathbb{E}[X_t^2] - \mathbb{E}[X_t]^2$$

$$= \mathbb{E}\left[\delta^2 t - 2\delta t \sum_{j=1}^t \epsilon_j + \left(\sum_{j=1}^t \epsilon_j\right)^2\right] - (\delta t)^2$$

$$= \delta^2 t - 2\delta t \sum_{j=1}^t \mathbb{E}[\epsilon_j] + \sum_{i=1}^t \sum_{j=1}^t \mathbb{E}[\epsilon_i \cdot \epsilon_j] - \delta^2 t^2.$$

$$= \delta^2 t + \sum_{j=1}^t \mathbb{E}\left[\epsilon_j^2\right] + \sum_{i=1}^t \sum_{\substack{j=1\\i\neq j \text{ independencia}}}^t \mathbb{E}\left[\epsilon_j\right] - \delta^2 t^2.$$

$$= \delta^2 t + \sigma^2 t - \delta^2 t^2.$$

3. ¿Es el proceso X_t débilmente estacionario?

Solución. Se define un proceso débilmente estacionario como

Definición 0.1. Sea $\{Z_t : t \in T\}$ un proceso de segundo orden. Se dice que el proceso es **débilmente estacionario** si su función de media es constante y la función de covarianza entre Z_t y Z_s depende solo de la diferencia t-s. Es decir,

- $\blacksquare \mathbb{E}[Z_t] = \mu, \ \forall \ t \in T.$
- $C(t,s) = Cov(Z_t, Z_s) = C(t-s), \ \forall \ t, s \in T.$

Observe que la función de medias no es constante, por tanto no es débilmente estacionario. \Box