

Master seminar: Solving localization problem in first person computer games with deep learning

Yauheni Selivonchyk¹,

Prof. Dr. Christian Bauckhage²,

Prof. Dr. Stefan Wrobel².

Mr. Sc. Rafet Sifa²

¹Institute of Computer Science, University of Bonn

²Fraunhofer IAIS

April 25, 2017

Outline

Introduction

- Introduction
 - Unsupervised learning in Al
 - Localization problem
- 2 Approach
 - Model design
 - Metrics
- 3 Evaluation
 - Data collection
 - Results

Unsupervised learning in Al

Introduction

Recent progress in Al

Some of the recent advances in machine learning:

- Image classification
- Machine translation

Important attributes of it:

- Low cost and high processing abilities of modern computer chips
- Advances in machine learning algorithms
- Access to large labeled datasets

Unsupervised learning in Al

Importance of unsupervised learning for AI

Figure: Slide from "Predictive learning" opening address given by Yann Lecun at NIPS2016.

Unsupervised learning in Al

Introduction

Recent advances in Unsupervised learning

Some of the recent influential models:

- Word embedding (T. Mikolow, 2013)
- Variational autoencoders (D. Kingma, 2013)
- Generative Adversarial Networks (I. Goodfellow, 2014)

Introduction

Our goal

- Sufficient amount of training data
- Computational feasibility of the problem

Introduction

Localization

Localization as a task of extracting, tracking or predicting object's position in some environment from available sensory data.

Types of data:

- Visual data: images or video sequences
- Depth map
- Information about position/direction of the sensors
- etc.

Localization example: Tracking

Figure: Pedestrian tracking visualization ¹.

¹H. Cho et. al. "Real-Time Pedestrian and Vehicle Detection for Automotive Active Safety Systems"

Introduction

Localization example: SLAM

Figure: Example solution of SLAM problem on PC3 dataset (courtesy of University of Michigan).

Approach Evaluation Summary

Localization problem

Introduction

Localization example: surgery

Figure: Mapping the position of a tool in minimally invasive surgery [http://biorobotics.ri.cmu.edu/research/medicalSLAM.html].

Motivation. Continuied

Goal of this work: reconstruction of the actors trajectory in first-person shooter (games) from visual data.

Figure: Example visual data.

Introduction

Autoencoder model

Input video information:

Corresponding players path:

Autoencoder model

Autoencoders learn to project the input x into some embedding space $h \in H$ and simultaneously reconstruct the original information \hat{x} .

Predictive regularization

Try to estimate positional encoding of the next frame using last two frames of the video.

Data collection

Data collection

Evaluation

universität**bonn**

Results

Results

Definition

Summary

Introduction

■ The **first main message** of your talk in one or two lines.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.