Mathematical analysis

1 | Numeric series

Series convergence

Definition 1.1. Let (a_n) be a sequence of real numbers. A *numeric series* is an expression of the form

$$\sum_{n=1}^{\infty} a_n.$$

We call a_n general term of the series and $S_N = \sum_{n=1}^N a_n$, for all $N \in \mathbb{N}$, N-th partial sum of the series¹.

Definition 1.2. We say the series $\sum a_n$ is convergent if the sequence of partial sums is convergent, that is, if $S = \lim_{N \to \infty} S_N$ exist and it's finite. In that case, S is called the sum of the series. If the previous limit doesn't exists or it is infinite we say the series is divergent².

Proposition 1.3. Let (a_n) be a sequence such that $\sum a_n < \infty$. Then $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ such that

$$\left| \sum_{n=1}^{N} a_n - \sum_{n=1}^{\infty} a_n \right| < \varepsilon$$

if $N \geq n_0$.

Theorem 1.4 (Cauchy's test). Let (a_n) be a sequence. $\sum a_n < \infty$ if and only if $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ such that

$$\left| \sum_{n=N}^{M} a_n \right| < \varepsilon$$

if $M \geq N \geq n_0$.

Corollary 1.5. Changing a finite number of terms in a series has no effect on the convergence or divergence of the series.

Corollary 1.6. If $\sum a_n < \infty$, then $\lim_{n \to \infty} a_n = 0$.

Theorem 1.7 (Linearity). Let $\sum a_n, \sum b_n$ be two convergent series with sums A and B respectively and let λ be a real number. The series

$$\sum_{n=1}^{\infty} (a_n + \lambda b_n)$$

is convergent and has sum $A + \lambda B$.

Theorem 1.8 (Associative property). Let $\sum a_n$ be a convergent series with sum A. Suppose (n_k) is a strictly increasing sequence of natural numbers. The series $\sum b_n$, with $b_k = a_{n_{k-1}+1} + \cdots + a_{n_k}$ for all $i \in \mathbb{N}$, is convergent and its sum is A.

Non-negative terms series

Theorem 1.9. Let $\sum a_n$ be a series of non-negative terms $a_n \geq 0^3$. The series converges if and only if the sequence (S_N) of partial sums is bounded.

Theorem 1.10 (Comparison test). Let $(a_n), (b_n) \geq 0$ be two sequences of real numbers. Suppose that exists a constant C > 0 and a number $n_0 \in \mathbb{N}$ such that $a_n \leq Cb_n$ for all $n \geq n_0$.

1. If
$$\sum b_n < \infty \implies \sum a_n < \infty$$
.

2. If
$$\sum a_n = +\infty \implies \sum b_n = +\infty$$
.

Theorem 1.11 (Limit comparison test). Let (a_n) , $(b_n) \geq 0$ be two sequences of real numbers. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists.

1. If
$$0 < \ell < \infty \implies \sum a_n < \infty \iff \sum b_n < \infty$$
.

2. If
$$\ell = 0$$
 and $\sum b_n < \infty \implies \sum a_n < \infty$.

3. If
$$\ell = \infty$$
 and $\sum a_n < \infty \implies \sum b_n < \infty$.

Theorem 1.12 (Root test). Let $(a_n) \geq 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$
.

Theorem 1.13 (Ratio test). Let $(a_n) \geq 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$
.

Theorem 1.14 (Raabe's test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n}\right)$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$
.

Theorem 1.15 (Condensation test). Let $(a_n) \ge 0$ be a decreasing sequence. Then:

$$\sum a_n < \infty \iff \sum 2^n a_{2^n} < \infty.$$

Theorem 1.16 (Logarithmic test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{\log \frac{1}{a_n}}{\log n}$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$
.

¹From now on we will write $\sum a_n$ to refer $\sum_{n=1}^{\infty} a_n$.

²We will use the notation $\sum a_n < \infty$ or $\sum_{n=1}^{n-1} a_n = +\infty$ to express that the series converges or diverges, respectively.

³Obviously the following results are also valid if the series is of non-positive terms or has a finite number of negative or positive terms.

Theorem 1.17 (Integral test). Let $f:[1,\infty)\to(0,\infty)$ Analogously, we define the negative part of x as be a decreasing function. Then:

$$\sum f(n) < \infty \iff$$

$$\iff \exists C > 0 \text{ such that } \int_{1}^{n} f(x) dx \le C \ \forall n.$$

Alternating series

Definition 1.18. An alternating series is a series of the form $\sum (-1)^n a_n$, with $(a_n) \geq 0$.

Theorem 1.19 (Leibnitz's test). Let $(a_n) \geq 0$ be a decreasing sequence such that $\lim_{n\to\infty} a_n = 0$. Then, $\sum (-1)^n a_n$ is convergent.

Theorem 1.20 (Abel's summation formula). Let $(a_n),(b_n)$ be two sequences of real numbers. Then,

$$\sum_{n=N}^{M} a_n (b_{n+1} - b_n) = a_{M+1} b_{M+1} - a_N b_N -$$

$$- \sum_{n=N}^{M} b_{n+1} (a_{n+1} - a_n).$$

Theorem 1.21 (Dirichlet's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

- 1. $\exists C > 0$ such that $\left| \sum_{n=1}^{N} a_n \right| \leq C$ for all $N \in \mathbb{N}$.
- 2. (b_n) is monotone and $\lim_{n\to\infty} b_n = 0$.

Then, $\sum a_n b_n$ is convergent.

Theorem 1.22 (Abel's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

- 1. The series $\sum a_n$ is convergent.
- 2. (b_n) is monotone and bounded

Then, $\sum a_n b_n$ is convergent.

Absolute convergence and rearrangement of series

Definition 1.23. We say a series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent.

Theorem 1.24. If a series converges absolutely, it converges.

Definition 1.25. We say a sequence (b_n) is a rearrangement of the sequence (a_n) if exists a bijective map $\sigma: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{\sigma(n)}$. A rearrangement of the series $\sum a_n$ is the series $\sum a_{\sigma(n)}$ for some bijection $\sigma: \mathbb{N} \to \mathbb{N}$.

Definition 1.26. Let $x \in \mathbb{R}$. We define the *positive part* of x as

$$x^+ = \begin{cases} x & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

$$x^{-} = \begin{cases} 0 & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Note that we can write $x = x^+ - x^-$ and $|x| = x^+ + x^-$.

Theorem 1.27. A series $\sum a_n$ is absolutely convergent if and only if positive and negative terms series, $\sum a_n^+$ and $\sum a_n^-$, converge. In this case,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

Theorem 1.28. Let $\sum a_n$ be an absolutely convergent series. Then, for all bijection $\sigma: \mathbb{N} \to \mathbb{N}$, the rearranged series $\sum a_{\sigma(n)}$ is absolutely convergent and $\sum a_n = \sum a_{\sigma(n)}$.

Theorem 1.29 (Riemann's theorem). Let $\sum a_n$ be a convergent series but not absolutely convergent. Then, $\forall \alpha \in \mathbb{R} \cup \{\infty\}$, there exists a bijective map $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum a_{\sigma(n)}$ converges and $\sum a_{\sigma(n)} = \alpha$.

Theorem 1.30. A series $\sum a_n$ is absolutely convergent if and only if any rearranged series converges to the same value of $\sum a_n$.

Sequences and series of functions $\mathbf{2}$

Sequences of functions

Definition 1.31. Let $D \subseteq \mathbb{R}$. A set

$$(f_n(x)) = \{f_1(x), f_2(x), \dots, f_n(x), \dots\}$$

is a sequence of real functions if $f_i:D\to\mathbb{R}$ is a realvalued function. In this case we say the sequence $(f_n(x))$, or simply (f_n) , is well-defined on D.

Definition 1.32. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges pointwise to f on D if $\forall x \in D$, $\lim_{n \to \infty} f_n(x) = f(x)$

Definition 1.33. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges uniformly to f on D if $\forall \varepsilon > 0$, $\exists n_0 : |f_n(x) - f(x)| < \varepsilon$ $\forall n \geq n_0 \text{ and } \forall x \in D.$

Lemma 1.34. Let (f_n) be an uniform convergent sequence of functions defined on $D \subseteq \mathbb{R}$ and let f be a function such that (f_n) converges pointwise to f. Then, (f_n) converges uniformly f on D.

Lemma 1.35. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. (f_n) converges uniformly a f en D if and only if $\lim_{n\to\infty} \sup \{|f_n(x) - f(x)| : x \in D\} = 0.$

Corollary 1.36. A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if there is a sequence (a_n) , with $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$, and a number $n_0 \in \mathbb{N}$ such that $\sup \{|f_n(x) - f(x)| : x \in D\} \leq a_n, \forall n \geq n_0$.

Theorem 1.37 (Cauchy's test). A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if $\forall \varepsilon > 0 \ \exists n_0 : \sup \{ |f_n(x) - f_m(x)| : x \in D \} < \varepsilon$ if $n, m \geq n_0$.

Theorem 1.38. Let (f_n) be a sequence of continuous functions defined on $D \subseteq \mathbb{R}$. If (f_n) converges uniformly to f on D, then f is continuous on D, that is, for any $x_0 \in D$, it satisfies:

$$\lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} f(x).$$

Theorem 1.39. Let (f_n) be a sequence of functions defined on $I = [a, b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and (f_n) converges uniformly to f on I, then f is Riemann-integrable on I and

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Theorem 1.40. Let (f_n) be a sequence of functions defined on $I = (a,b) \subset \mathbb{R}$. If (f_n) are derivable on I, $(f'_n(x))$ converges uniformly on I and $\exists x_0 \in I : \lim_{n \to \infty} f_n(x_0) \in \mathbb{R}$, then there is a function f such that (f_n) converges uniformly to f on I, f is derivable on I and $(f'_n(x))$ converges uniformly to f' on I.

Series of functions

Definition 1.41. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. The expression

$$\sum_{n=1}^{\infty} f_n(x)$$

is the series of functions associated with (f_n) .

Definition 1.42. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges pointwise on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges pointwise. If the pointwise limit of (F_N) is F(x), we say F is the sum of the series in a pointwise sense.

Definition 1.43. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges uniformly. If the uniform limit of (F_N) is F(x), we say F is the sum of the series in an uniform sense.

Theorem 1.44 (Cauchy's test). A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly if and only if $\forall \varepsilon > 0 \ \exists n_0$ such that

$$\sup \left\{ \left| \sum_{n=N}^{M} f_n(x) \right| : x \in D \right\} < \varepsilon$$

if $M \geq N \geq n_0$.

Corollary 1.45. If $\sum f_n(x)$ is a series of continuous functions on $D \subseteq \mathbb{R}$, then (f_n) converges uniformly to zero on D.

Theorem 1.46. If $\sum f_n(x)$ is uniformly convergent series of functions on $D \subseteq \mathbb{R}$, then its sum function is also continuous on D.

Theorem 1.47. Let (f_n) be a sequence of functions defined on $I = [a, b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and $\sum f_n(x)$ converges uniformly on I, then $\sum f_n(x)$ is Riemann-integrable on I and

$$\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx.$$

Theorem 1.48. Let (f_n) be a sequence of functions defined on $I = (a,b) \subset \mathbb{R}$. If (f_n) are derivable on $I, \sum f'_n(x)$ converges uniformly on I and $\exists c \in I : \sum f_n(c) < \infty$, then $\sum f_n(x)$ converges uniformly on $I, \sum f_n(x)$ is derivable on I and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Theorem 1.49 (Weierstraß M-test). Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ such that $|f_n(x)| \le M_n \ \forall x \in D$ and suppose that $\sum M_n$ is a convergent numeric series. Then, $\sum f_n(x)$ is converges uniformly on D.

Theorem 1.50 (Dirichlet's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

1.
$$\exists C > 0 : \sup \left\{ \left| \sum_{n=1}^{N} f_n(x) \right| : x \in D \right\} \le C, \forall N.$$

2. $(g_n(x))$ is a monotone sequence for all $x \in D$ and $\lim_{n \to \infty} \sup\{|g_n(x)| : x \in D\} = 0$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

Theorem 1.51 (Abel's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

- 1. The series $\sum f_n(x)$ converges uniformly on D.
- 2. $(g_n(x))$ is a monotone and bounded sequence for all $x \in D$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

Power series

Definition 1.52. Let (a_n) be a sequence of real numbers and $x_0 \in \mathbb{R}$. A power series centred on x_0 is a series of functions of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Proposition 1.53. Let $\sum a_n(x-x_0)^n$ be a power series. Suppose there exists an $x_1 \in \mathbb{R}$ such that $\sum a_n(x_1-x_0)^n < \infty$. Then, $\sum a_n(x-x_0)^n$ converges uniformly on any closed interval $I \subset A = \{x \in \mathbb{R} : |x-x_0| < |x_1-x_0|\}$.

Theorem 1.54. Let $\sum a_n(x-x_0)^n$ be a power series and consider

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty].$$

Then:

- 1. If $|x x_0| < R \implies \sum a_n (x x_0)^n$ converges absolutely.
- 2. If $0 \le r < R \implies \sum a_n(x x_0)^n$ converges uniformly on $[x_0 r, x_0 + r]$.
- 3. If $|x-x_0| > R \implies \sum a_n(x-x_0)^n$ diverges.

The number R is called radius of convergence of the power series.

Theorem 1.55 (Abel's theorem). Let $\sum a_n x^n$ be a power series⁴ with radius of convergence R satisfying $\sum a_n R^n < \infty$. Then the series $\sum a_n x^n$ converges uniformly on [0, R]. In particular, if $f(x) = \sum a_n x^n$,

$$\lim_{x \to R^{-}} f(x) = \sum_{n=0}^{\infty} a_n R^n.$$

Corollary 1.56. Let f be the sum function of a power series $\sum a_n x^n$. Then f is continuous on the domain of convergence of the series.

Corollary 1.57. If the series $\sum a_n x^n$ has radius of convergence $R \neq 0$ and f is its sum function, then f is Riemann-integrable on any closed subinterval on the domain of convergence of the series. In particular, for |x| < R,

$$\int_0^x f(t)dt = \sum_{n=0}^\infty a_n \frac{x^{n+1}}{n+1}^5.$$

Corollary 1.58. Let f be the sum function of the power series $\sum a_n x^n$. Then f is derivable within the domain of convergence of the series and

$$f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}.$$

Corollary 1.59. Any function f defined as a sum of a power series $\sum a_n x^n$ is indefinitely derivable within the domain of convergence of the series and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k},$$

for all $k \in \mathbb{N} \cup \{0\}$. In particular $f^{(k)}(0) = k!a_k$.

Definition 1.60. A function is *analytic* if it can be expressed locally as a power series.

Stone-Weierstraß approximation theorem

Definition 1.61. Let f be a real-valued function. We say f has $compact \ support^6$ if exists an M > 0 such that f(x) = 0 for all $x \in \mathbb{R} \setminus [-M, M]$.

Definition 1.62. Let f, g be real-valued functions with compact support. We define the convolution of f with g as

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t)dt^{7}.$$

Definition 1.63. We sap a sequence of functions (ϕ_{ε}) with compact support is an approximation of unity if

- 1. $\phi_{\varepsilon} \geq 0$.
- $2. \int_{\mathbb{R}} \phi_{\varepsilon} = 1.$
- 3. For all $\delta > 0$, $\phi_{\varepsilon}(t)$ converges uniformly to zero when $\varepsilon \to 0$ if $|t| > \delta$.

Lemma 1.64. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with compact support. Let (ϕ_{ε}) be an approximation of unity. Then $(f * \phi_{\varepsilon})$ converges uniformly to f on \mathbb{R} when $\varepsilon \to 0$.

Theorem 1.65 (Stone-Weierstraß theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then, there exists polynomials $p_n \in \mathbb{R}[x]$ such that the sequence (p_n) converge uniformly to f on [a,b].

3 | Improper integrals

Locally integrable functions

Definition 1.66. Let $f : [a, b) \to \mathbb{R}$, with $b \in \mathbb{R} \cup \{\infty\}$. We say f is locally integrable on [a, b) if f is Riemann-integrable on [a, x] for all $a \le x < b$.

Definition 1.67. Let $f:[a,b)\to\mathbb{R}$ be a locally integrable function. If there exists

$$\lim_{x \to b^{-}} \int_{a}^{x} f$$

and it's finite, we say that the improper integral of f on [a,b), $\int_a^b f$, is convergent.

Theorem 1.68 (Cauchy's test). Let $f:[a,b) \to \mathbb{R}$ be a locally integrable function. The improper integral $\int_a^b f$ is convergent if and only if $\forall \varepsilon > 0 \ \exists b_0, \ a < b_0 < b$, such that

$$\left| \int_{x_1}^{x_2} f \right| < \varepsilon$$

if $b_0 < x_1 < x_2 < b$.

$$(f * g)(x) = \int_a^b f(t)g(x - t)dt.$$

⁴From now on we will suppose, for simplicity, $x_0 = 0$.

⁵The formula is also valid for |x| = R if the series $\sum a_n R^n$ (or $\sum a_n (-R)^n$) is convergent.

⁶In general, the support of a function is the adherence of the set of points which are not mapped to zero.

Alternatively if f, g are Riemann-integrable functions on [a, b] we can define the convolution of f and g as

Improper integrals of non-negative functions

Theorem 1.69. Let $f:[a,b)\to\mathbb{R}$ be a locally integrable non-negative function. A necessary and sufficient condition for $\int_a^b f$ to be convergent is that the function

$$F(x) = \int_{a}^{x} f(t) dt$$

must be bounded for all x < b.

Theorem 1.70 (Comparison test). Let $f, g : [a, b) \to [0, +\infty)$ be two locally integrable non-negative functions. Then:

- 1. If $\exists C > 0$ such that $f(x) \leq Cg(x) \ \forall x$ on a neighborhood of b and $\int_a^b g < \infty \implies \int_a^b f < \infty$.
- 2. Suppose the limit $\ell = \lim_{x \to b} \frac{f(x)}{g(x)}$ exists. Then,

i) If
$$\ell \in (0, \infty) \implies \int_a^b f < \infty \iff \int_a^b g < \infty$$
.

ii) If
$$\ell = 0$$
 and $\int_a^b g < \infty \implies \int_a^b f < \infty$.

iii) If
$$\ell = \infty$$
 and $\int_a^b f < \infty \implies \int_a^b g < \infty$.

Theorem 1.71 (Integral test). Let $f:[1,\infty)\to(0,\infty)$ be a locally integrable decreasing function. Then:

$$\sum f(n) < \infty \iff \int_{1}^{\infty} f(x) dx < \infty^{8}.$$

Absolute convergence of improper integrals

Definition 1.72. Let $f:[a,b)\to (0,\infty)$ be a locally integrable function. We say $\int_a^b f$ converges absolutely if $\int_a^b |f|$ is convergent.

Theorem 1.73 (Dirichlet's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions Suppose:

- 1. $\exists C > 0$ such that $\left| \int_a^x f(t) dt \right| \leq C$ for all $x \in [a, b)$.
- 2. g is monotone and $\lim_{x \to b} g(x) = 0$.

Then, $\int_{a}^{b} fg$ is convergent.

Theorem 1.74 (Abel's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions. Suppose:

- 1. $\int_a^b f$ is convergent.
- 2. q is monotone and bounded.

Then, $\int_a^b fg$ is convergent.

Differentiation under integral sign

Theorem 1.75. Let $f:[a,b] \times [c,d] \to \mathbb{R}$ be a continuous function on $[a,b] \times [c,d]$. Consider the function $F(y) = \int_a^b f(x,y) dx$ defined on [c,d]. Then, F is continuous, that is, if $c < y_0 < d$,

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx =$$
$$= \int_a^b f(x, y_0) dx = F(y_0).$$

Theorem 1.76. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a Riemann-integrable function and let $F(y)=\int_a^b f(x,y)\mathrm{d}x$. If f is differentiable with respect to y and $\partial f/\partial y$ is continuous on $[a,b]\times[c,d]$, then F(y) is derivable on (c,d) and its derivative is

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx,$$

for all $y \in (c, d)$.

Theorem 1.77. Let $f:[a,b]\times [c,d]\to \mathbb{R}$ be a continuous function on $[a,b]\times [c,d]$. Let $a,b:[c,d]\to \mathbb{R}$ be to differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every $y\in [c,d]$. Suppose that $\partial f/\partial y$ is continuous on $\{(x,y)\in \mathbb{R}^2: a(y)\leq x\leq b(y),\ c\leq y\leq d\}$. Then $F(y)=\int_{a(y)}^{b(y)}f(x,y)\mathrm{d}x$ is derivable on (c,d) and its derivative is

$$F'(y) = b'(y)f(b(y), y) - a'(y)f(a(y), y) + \int_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x, y) dx,$$

for all $y \in (c, d)$.

Theorem 1.78. Let $f:[a,b)\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b)\times[c,d]$. We consider $F(y)=\int_{-a}^{b}f(x,y)\mathrm{d}x$. Suppose that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $[a,b) \times [c,d]$.
- 2. Given $y_0 \in [c, d]$, $\exists \delta > 0$ such that the integral

$$\int_{a}^{b} \sup \left\{ \left| \frac{\partial f}{\partial y}(x, y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

Then, F(y) is derivable at y_0 and

$$F'(y_0) = \int_a^b \frac{\partial f}{\partial y}(x, y_0) dx.$$

⁸This is another way of formulating theorem 1.17.

Theorem 1.79. Let $f:[a,b)\times [c,d]\to \mathbb{R}$ be a continuous function on $[a,b)\times [c,d]$. Let $a,b:[c,d]\to \mathbb{R}$ be two differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every $y\in [c,d]$. We consider $F(y)=\int_{a(y)}^{b(y)}f(x,y)\mathrm{d}x$. Suppose that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $\{(x,y)\in\mathbb{R}^2:a(y)\leq x\leq b(y),\ c\leq y\leq d\}$.
- 2. Given $y_0 \in [c, d]$, $\exists \delta > 0$ such that the integral

$$\int_{a(y)}^{b(y)} \sup \left\{ \left| \frac{\partial f}{\partial y}(x, y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

The, F(y) is derivable at y_0 and

$$F'(y_0) = b'(y_0)f(b(y_0), y_0) - a'(y_0)f(a(y_0), y_0) + \int_{a(y_0)}^{b(y_0)} \frac{\partial f}{\partial y}(x, y_0) dx.$$

Gamma function

Definition 1.80. For x > 0, Gamma function is defined as

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Theorem 1.81. Gamma function is a generalization of the factorial. In fact, for x > 0 we have

$$\Gamma(x+1) = x\Gamma(x).$$

In particular, $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$.

Theorem 1.82. Gamma function satisfies:

$$\lim_{x \to \infty} \frac{\Gamma(x+1)}{(x/e)^x \sqrt{2\pi x}} = 1.$$

Corollary 1.83 (Stirling's formula).

$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1.$$

4 | Fourier series

Periodic functions

Definition 1.84. Let $f: \mathbb{R} \to \mathbb{C}$ be a function. We say that f is T-periodic, or is periodic with period T, being T > 0, if f(x + T) = f(x) for all $x \in \mathbb{R}$.

Lemma 1.85. Let $f: \mathbb{R} \to \mathbb{C}$ be a T-periodic function. Then f(x+T')=f(x) for all $x\in \mathbb{R}$ if and only if T'=kT for some $k\in \mathbb{Z}$.

Proposition 1.86. Let $f: \mathbb{R} \to \mathbb{C}$ be a T-periodic function. Then

$$\int_{a}^{a+T} f(x) \mathrm{d}x = \int_{0}^{T} f(x) \mathrm{d}x,$$

where $a \in \mathbb{R}$. In particular,

$$\int_{a}^{a+kT} f(x) dx = k \int_{0}^{T} f(x) dx.$$

Lemma 1.87. Let $f : \mathbb{R} \to \mathbb{C}$ be a T-periodic continuous function. Then, |f| is bounded.

Proposition 1.88. Given a T-periodic function f, there is no power series uniformly convergent to f on \mathbb{R} .

Orthogonal systems

Definition 1.89. Let $f: \mathbb{R} \to \mathbb{C}$ be a function. Then $f \in L^p(I), p \geq 1$, if

$$||f||_p := \left(\int_I |f(t)|^p dt\right)^{1/p} < \infty.$$

Definition 1.90. Let $f, g : [a, b] \to \mathbb{C}$ be Riemann-integrable functions. We define the *inner product of* f and g as

$$\langle f, g \rangle := \int_a^b f(x) \overline{g(x)} dx,$$

where \overline{g} is the complex conjugate of g. Now, it's natural to define the *norm of* f as

$$||f|| := \langle f, f \rangle^{1/2} = \left(\int_a^b |f(x)|^2 dx \right)^{1/2} = ||f||_2.$$

And the distance between f and g as

$$d(f,g) := ||f - g||.$$

Proposition 1.91. Let $f,g:[a,b]\to\mathbb{C}$ be Riemann-integrable functions and let $\alpha\in\mathbb{C}$. Then we have:

- 1. $\langle f, f \rangle \geq 0$.
- 2. $\langle f+h,g\rangle=\langle f,g\rangle+\langle h,g\rangle$ and $\langle f,g+h\rangle=\langle f,g\rangle+\langle f,h\rangle.$
- 3. $\langle f, q \rangle = \overline{\langle q, f \rangle}$.
- 4. $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$ and $\langle f, \alpha g \rangle = \overline{\alpha} \langle f, g \rangle$.

Theorem 1.92 (Cauchy–Schwarz inequality). Let $f, g : [a, b] \to \mathbb{C}$ be Riemann-integrable functions. Then,

$$|\langle f, g \rangle| \le ||f|| \cdot ||g||,$$

which can be written as

$$\int_a^b f\overline{g} \leq \left(\int_a^b |f|^2\right)^{1/2} \left(\int_a^b |g|^2\right)^{1/2}.$$

Theorem 1.93 (Minkowski inequality). Let $f, g: [a, b] \to \mathbb{C}$ be Riemann-integrable functions. Then,

$$\|f + g\| \le \|f\| + \|g\|.$$

Definition 1.94. Let $f,g:[a,b]\to\mathbb{C}$ be Riemann-integrable functions with $f\neq g$. We say f and g are orthogonal if $\langle f,g\rangle=0$. We say f and g are orthogonal if they are orthogonal and ||f||=||g||=1.

Definition 1.95. Let $S = \{\phi_0, \phi_1, \ldots\}$ be a collection of Riemann-integrable functions on [a, b]. We say S is an orthonormal system if $\|\phi_n\| = 1 \ \forall n \ \text{and} \ \langle \phi_n, \phi_m \rangle = 0 \ \forall n \neq m$.

Proposition 1.96. Let

$$S_1 = \left\{ \frac{1}{T} e^{\frac{2\pi i n x}{T}}, n \in \mathbb{Z} \right\},$$

$$S_2 = \left\{ \frac{1}{\sqrt{T}}, \frac{\cos\left(\frac{2\pi n x}{T}\right)}{\sqrt{T/2}}, \frac{\sin\left(\frac{2\pi m x}{T}\right)}{\sqrt{T/2}}, n, m \in \mathbb{N} \right\}.$$

Then S_1 and S_2 orthonormal systems on [-T/2, T/2].

Definition 1.97. A collection of functions $S = \{\phi_0, \phi_1, \ldots, \phi_n\}$ is *linearly dependent* on [a, b] if there exist $c_0, c_1, \ldots, c_n \in \mathbb{R}$ not all zero, such that

$$c_0\phi_0 + c_1\phi_1 + \dots + c_n\phi_n = 0, \quad \forall x \in [a, b].$$

Otherwise we say S is linearly independent. If the collection S has an infinity number of functions, we say S is linearly independent on [a,b] if any finite subset of S is linearly independent on [a,b].

Theorem 1.98. Let $S = \{\phi_0, \phi_1, \ldots\}$ be an orthonormal system on [a, b]. Suppose that $\sum c_n \phi_n(x)$ converges uniformly to a function f on [a, b]. Then, f is Riemann-integrable on [a, b] and, moreover,

$$c_n = \langle f, \phi_n \rangle = \int_a^b f(x) \overline{\phi_n(x)} dx, \quad \forall n \ge 0.$$

Fourier coefficients and Fourier series

Definition 1.99. Let $S = \left\{\frac{1}{T}e^{\frac{2\pi i n x}{T}}, n \in \mathbb{Z}\right\}$ be an orthonormal system on [-T/2, T/2] and let $f \in L^1([-T/2, T/2])^9$ be a T-periodic function L^{10} . We define the n-th Fourier coefficient of f as

$$\widehat{f}(n) = \left\langle f, \frac{1}{T} e^{\frac{2\pi i n x}{T}} \right\rangle = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-\frac{2\pi i n x}{T}} dx,$$

for all $n \in \mathbb{Z}$.

Proposition 1.100. Let $f,g \in L^1([-T/2,T/2])$. The following properties are satisfied:

1. For all $\lambda, \mu \in \mathbb{C}$,

$$\widehat{\lambda f + \mu g}(n) = \lambda \widehat{f}(n) + \mu \widehat{g}(n).$$

2. Let $\tau \in \mathbb{R}$. We define $f_{\tau}(x) = f(x - \tau)$. Then,

$$\widehat{f}_{\tau}(n) = e^{-\frac{2\pi i n \tau}{T}} \widehat{f}(n).$$

4. If $f \in \mathcal{C}^k$, then

$$\widehat{f^{(k)}}(n) = \left(\frac{2\pi i n}{T}\right)^k \widehat{f}(n).$$

5.
$$\widehat{(f * g)}(n) = \widehat{f}(n)\widehat{g}(n)$$
.

Definition 1.101. Let $f \in L^1([-T/2, T/2])$. We define the Fourier series of f as

$$Sf(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{\frac{2\pi i n x}{T}}.$$

Definition 1.102. Let $f \in L^1([-T/2, T/2])$ and Sf be the Fourier series of f. The N-th partial sum of Sf is

$$S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n) e^{\frac{2\pi i n x}{T}}.$$

Proposition 1.103. Let $f \in L^1([-T/2, T/2])$. Then

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right),$$

where

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx,$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx,$$

for $n \ge 0^{11}$. In particular, if f is even we have

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right),$$

and if f is odd we have

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nx}{T}\right).$$

Definition 1.104. Let $f:(0,L)\to\mathbb{C}$ be a function. We define the *even extension of* f as

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si} \quad x \in (0, L) \\ f(-x) & \text{si} \quad x \in (-L, 0) \end{cases}$$

Analogously, we define the odd extension of f as

$$\hat{f}(x) = \begin{cases} f(x) & \text{si} \quad x \in (0, L) \\ -f(-x) & \text{si} \quad x \in (-L, 0) \end{cases}$$

$$a_n = \widehat{f}(n) + \widehat{f}(-n)$$
 and $b_n = i \left[\widehat{f}(n) - \widehat{f}(-n) \right], \forall n \in \mathbb{N} \cup \{0\}.$

^{3.} If f is even, then $\widehat{f}(n) = \widehat{f}(-n), \forall n \in \mathbb{Z}$. If f is odd, then $\widehat{f}(n) = -\widehat{f}(-n), \forall n \in \mathbb{Z}$.

⁹Saying that $f \in L^1([-T/2, T/2])$ is equivalent to say that f is integrable on [-T/2, T/2].

¹⁰From now on, we will work only with functions defined on [-T/2, T/2] and extended periodically on \mathbb{R} .

¹¹The relation between a_n, b_n and $\widehat{f}(n)$ is given by:

Proposition 1.105. Let $f \in L^1([0, T/2])$. If we make the even extension of f^{12} , then

$$Sf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right),\,$$

where $a_n = \frac{4}{T} \int_0^{T/2} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx$ for $n \ge 0$. If we make the odd extension of f, then

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nx}{T}\right),$$

where
$$b_n = \frac{4}{T} \int_0^{T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx$$
 for $n \ge 1$.

Pointwise convergence

Definition 1.106 (Dirichlet kernel). We define the Dirichlet kernel of order N as

$$D_N(t) = \frac{1}{T} \sum_{n=-N}^{N} e^{\frac{2\pi i n t}{T}} = \frac{1}{T} \frac{\sin\left(\frac{(2N+1)\pi t}{T}\right)}{\sin\left(\frac{\pi t}{T}\right)}.$$

Proposition 1.107. The Dirichlet kernel has the following properties:

1. D_N is a T-periodic and even function.

$$2. \int_0^T D_N(t) dt = 1, \ \forall N.$$

Proposition 1.108. Let $f \in L^1([-T/2, T/2])$. Then

$$S_N f(x) = (f * D_N)(x) = \int_{-T/2}^{T/2} f(x - t) D_N(t) dt =$$
$$= \int_0^{T/2} [f(x + t) + f(x - t)] D_N(t) dt.$$

Lemma 1.109 (Riemann-Lebesgue lemma). Let $f \in L^1([-T/2, T/2])$ and $\lambda \in \mathbb{R}$. Then:

$$\lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \sin(\lambda t) dt = \lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \cos(\lambda t) dt = 0.$$

In particular, $\lim_{|n|\to\infty} \widehat{f}(n) = 0$.

Theorem 1.110. Let $f \in L^1([-T/2, T/2])$ be a function left and right differentiable at x_0 , that is, there exists the following limits

$$f'(x_0^+) = \lim_{t \to 0^+} \frac{f(x_0 + t) - f(x_0^+)}{t},$$

$$f'(x_0^-) = \lim_{t \to 0^-} \frac{f(x_0 + t) - f(x_0^-)}{t},$$

(supposing the existence of left- and right-sided limits). Then,

$$\lim_{N \to \infty} S_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$

Theorem 1.111 (Dini's theorem). Let

 $f \in L^1([-T/2, T/2]), x_0 \in (-T/2, T/2) \text{ and } \ell \in \mathbb{R} \text{ such that}$

$$\int_0^\delta \frac{|f(x_0+t) + f(x_0-t) - 2\ell|}{t} \mathrm{d}t < \infty$$

for some $\delta > 0$. Then $\lim_{N \to \infty} S_N f(x_0) = \ell$.

Theorem 1.112 (Lipschitz's theorem). Let $f \in L^1([-T/2, T/2])$ such that at a point $x_0 \in (-T/2, T/2)$ it satisfies

$$|f(x_0+t) - f(x_0)| \le k|t|$$

for some constant $k \in \mathbb{R}$ and for $|t| < \delta$. Then $\lim_{N \to \infty} S_N f(x_0) = f(x_0)$.

Uniform convergence

Definition 1.113. Let $\sum a_n$ be a series with partial sums S_k . The series $\sum a_n$ is called *Cesàro summable* with sum S if

$$\lim_{N \to \infty} \frac{S_1 + \dots + S_N}{N} = S.$$

Definition 1.114 (Fejer kernel). We define the Fejer kernel of order N as

$$K_N(t) = \frac{1}{N+1} \sum_{k=0}^{N} D_k(t) = \frac{1}{T(N+1)} \frac{\sin^2\left(\frac{(N+1)\pi t}{T}\right)}{\sin^2\left(\frac{\pi t}{T}\right)},$$

being $D_k(t)$ the Dirichlet kernel of order $k, 0 \le k \le N$.

Proposition 1.115. The Fejer kernel has the following properties:

- 1. K_N is a T-periodic, even and non-negative function.
- 2. $\int_{-T/2}^{T/2} K_N(t) dt = 1, \ \forall N.$
- 3. $\forall \delta > 0$, $\lim_{N \to \infty} \sup\{|K_N(t)| : \delta \le |t| \le T/2\} = 0$.

Definition 1.116. Let $f \in L^1([-T/2, T/2])$. We define the *Fejér means* $\sigma_N f$, for all $N \in \mathbb{N}$, as

$$\sigma_N f(x) = \frac{S_0 f(x) + \dots + S_N f(x)}{N+1}.$$

Proposition 1.117. Let $f \in L^{1}([-T/2, T/2])$. Then

$$\sigma_N f(x) = (f * K_N)(x) = \int_{-T/2}^{T/2} f(x - t) K_N(t) dt =$$

$$= \int_0^{T/2} [f(x + t) + f(x - t)] K_N(t) dt.$$

Theorem 1.118 (Fejér's theorem). Let

 $f \in L^1([-T/2, T/2])$ be a function having left- and right-sided limits at point x_0 . Then,

$$\lim_{N \to \infty} \sigma_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$

In particular, if f is continuous at x_0 , $\lim_{N\to\infty} \sigma_N f(x_0) = f(x_0)$.

¹² For simplicity, when we have a function f and make its even or odd extension, we will still call its even or odd extension f instead of \hat{f} or \hat{f} .

Theorem 1.119 (Fejér's theorem). Let f be a continuous function on [-T/2, T/2]. Then $\sigma_N f$ converges uniformly to f on [-T/2, T/2].

Corollary 1.120. Let f be a continuous function on [-T/2, T/2]. Then there exists a sequence of trigonometric polynomials that converge uniformly to f on [-T/2, T/2]. In fact,

$$\sigma_N f(x) = \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N+1} \right) \widehat{f}(k) e^{2\pi i kx}.$$

Corollary 1.121. Let f and g be continuous functions on [-T/2, T/2] such that Sf(x) = Sg(x). Then f = g.

Convergence in norm

Definition 1.122. We say a sequence (f_N) converge to f in norm L^p if $\lim_{N\to\infty} ||f_N - f||_p = 0$.

Theorem 1.123. Let $f \in L^2([-T/2, T/2])$. Then, $\lim_{N \to \infty} \|\sigma_N f - f\| = 0$.

Corollary 1.124. Let $f \in L^1([-T/2, T/2])$. Then $\lim_{N \to \infty} \|\sigma_N f - f\|_1 = 0$.

Corollary 1.125. Let $f,g \in L^1([-T/2,T/2])$ be functions such that Sf(x) = Sg(x). Then $\lim_{N \to \infty} \|g - f\|_1 = 0$.

Theorem 1.126 (Bessel's inequality). Let $f \in L^2(I)$, where I is any interval on the real line. Then:

$$T \sum_{n=-N}^{N} |\widehat{f}(n)|^2 \le ||f||^2,$$

$$\frac{T}{2} \left(\frac{|a_0|^2}{2} + \sum_{n=1}^{N} |a_n|^2 + |b_n|^2 \right) \le ||f||^2,$$

for all $N \in \mathbb{N}$.

Theorem 1.127. $S_N f$ is the trigonometric polynomial of degree N that best approximates f in norm L^2 .

Corollary 1.128. Let $f \in L^2([-T/2, T/2])$. Then, $\lim_{N \to \infty} ||S_N f - f|| = 0$.

Theorem 1.129 (Parseval's identity). Let $f,g \in L^2([-T/2,T/2])$ be bounded functions. Then

$$\langle f, g \rangle = T \sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}.$$

In particular, if f = g:

$$||f||^2 = T \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^2,$$
$$||f||^2 = \frac{T}{2} \left(\frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} |a_n|^2 + |b_n|^2 \right).$$

Applications of Fourier series

Theorem 1.130 (Wirtinger's inequality). Let f be a function such that f(0) = f(T), $f' \in L^2([0,T])$ and $\int_a^b f(t) dt = 0$. Then,

$$\int_0^T |f(x)|^2 dx \le \frac{T^2}{4\pi^2} \int_0^T |f'(x)|^2 dx,$$

with equality if and only if

$$f(x) = A\cos\left(\frac{2\pi x}{T}\right) + B\sin\left(\frac{2\pi x}{T}\right).$$

Theorem 1.131 (Wirtinger's inequality). Let $f \in C^1([a,b])$ with f(a) = f(b) = 0. Then,

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx.$$

Theorem 1.132 (Isoperimetric inequality). Let c be a simple and closed curve of class C^1 whose length is L. If A_c is the area enclosed by c, then

$$A_c \le \frac{L^2}{4\pi},$$

with equality if and only if c is a circle.