Mathematical Logic

homework 4

Problem 1 Can you derive the rule of contradiction from the modified contradiction?

Solution:

Problem 2 Prove: (a) $\frac{\Gamma \quad \varphi}{\Gamma \quad \neg \neg \varphi}$ (b) $\frac{\Gamma \quad \neg \neg \varphi}{\Gamma \quad \varphi}$

Solution: (a)

Author(s): 于峥

Mathematical Logic

Problem 3 *Is the following derivable?*

$$\overline{\Gamma \ \exists x \varphi \ \forall x \varphi}$$

Solution: We let

$$\mathfrak{I} = \{\{0^{\mathfrak{I}}, 1^{\mathfrak{I}}\}, R^{\mathfrak{I}}, \beta\}$$

and $0^{\mathfrak{I}} \in R^{\mathfrak{I}}, 1^{\mathfrak{I}} \notin R^{\mathfrak{I}}$. if $\varphi := Rx$.

Then
$$\Im \frac{0}{v_0} \frac{1}{v_1} \models \Gamma \wedge \exists x \varphi. \ \Im \frac{0}{v_0} \frac{1}{v_1} \not\models \forall x \varphi.$$

So $\{\Gamma \exists x \varphi\} \not\models \forall x \varphi$, it is not correct, so it is not derivable.

Problem 4 Let $S = \{R\}$ with unary relation symbol R.

$$\Phi = \{\exists x R x\} \cup \{\neg R y | \text{for every variable } y\}$$

Prove that:

- Φ is consistent.
- There is no term $t \in T^S$, with $\Phi \vdash Rt$.

Solution: (1) We construct

$$\mathfrak{I} = \{\{0^{\mathfrak{I}}, 1^{\mathfrak{I}}\}, R^{\mathfrak{I}}, \beta\}$$

where $\beta(v_i) = 1^{\Im}$, and $0^{\Im} \in R^{\Im}$, $1^{\Im} \notin R^{\Im}$.

(i) because $0^{\Im} \in \mathbb{R}^{\Im}$, so $\exists x Rx$ is satisfiable.

(ii) and $\beta(v_i) = 1 \notin \mathbb{R}^3$, so $\{\neg Ry | \text{for every variable } y\}$ is satisfiable.

 Φ is satisfiable $\Rightarrow \Phi$ is consistent (**Lemma 2.5**).

(2) We construct

$$\mathfrak{I} = \{\{1^{\mathfrak{I}}\}, R^{\mathfrak{I}}, \beta\}$$

Where $\beta(v_i) = 1^{\Im}$, and $1^{\Im} \notin R^{\Im}$. Because $\{1\}$ is universe.

So no term $t \in T^S$, with $\Phi \vdash Rt$. It is satisfiable.

Problem 5 Let $S = \{R\}$ with unary relation symbol R. and

$$\Phi = \{Rx \vee Ry\}$$

Prove that:

 $-\Phi$ is consistent.

 $-\Phi \not\vdash Rx, \Phi \not\vdash Ry.$

- $\mathfrak{I}^\Phi \not\models \Phi$

Solution: (1) Because $\Phi \not\vdash Rx \land Ry$, so Φ is not inconsistent.

(2) Construct

$$\mathfrak{I} = \{\{0^{\mathfrak{I}}, 1^{\mathfrak{I}}\}, R^{\mathfrak{I}}, \beta\}\}$$

and $0^{\mathfrak{I}} \in \mathbb{R}^{\mathfrak{I}}$, $1^{\mathfrak{I}} \notin \mathbb{R}^{\mathfrak{I}}$.

Then $\Im \frac{0}{x} \frac{1}{y} \models \Phi$, and $\Im \frac{0}{x} \frac{1}{y} \not\models Ry$.

 $\Phi \not\models Ry \Rightarrow \Phi \vdash Ry$ is not correct, so $\Phi \not\vdash Ry$.

same as $\Phi \not\vdash Rx$.

(3) Because $\Phi \not\vdash Rx$, so does not exist $\bar{t} \in R^{\mathfrak{I}^{\Phi}}$. then $\mathfrak{I}^{\Phi} \not\models Rx$ and $\mathfrak{I}^{\Phi} \not\models Ry \Rightarrow \mathfrak{I}^{\Phi} \not\models Rx \lor Ry$