Journey to efficient sampling in multivariate normal latent variable models

Ed Merkle

StanCon 2023

Introduction

- ► Latent variable models overlap with item response models, mixed models, directed acyclic graphs, time series models, and more.
- ► Efficient estimation strategies are likely to transfer to many other models.

Model overview

Multivariate models with random effects, where random effects can predict one another.

$$egin{aligned} oldsymbol{y}_i &= oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_i + oldsymbol{\epsilon}_i \ oldsymbol{\eta}_i &= oldsymbol{lpha} + oldsymbol{B} oldsymbol{\eta}_i + oldsymbol{u}_i \end{aligned}$$

 ϵ_i , $oldsymbol{u}_i$ typically multivariate normal

length of η_i much smaller than length of y_i

Introduction

- ► Historically, functionality for model estimation has existed in closed source software like LISREL and Mplus
- ► Around 2010: R packages (lavaan, OpenMx) come online, provide functionality similar to closed source software
- ► Around 2015: blavaan starts, combining model specification of lavaan with MCMC estimation

Initial implementation

- ► Initial steps of blavaan development: estimate the models the way that everyone else estimates the models
 - Sample latent variables (η_i) as model parameters, so that the model becomes similar to multivariate regression
 - ▶ Benefits: univariate likelihoods instead of multivariate likelihoods; ability to model observed variables as non-normal; posterior distributions of latent variables
 - Start with JAGS, try to do a direct translation from JAGS to Stan

Initial implementation

- ► The initial implementation worked (and continues to work) well for some models. But:
 - Does not work well when we cannot condition away multivariate distributions (e.g., autocorrelated residuals)
 - Does not work well as the number of observations (people) increases (we keep adding more η_i)
 - ▶ Sometimes hours to usable results, which makes development a hassle
 - Stan and JAGS exhibit similar efficiency for many models

New implementation

New implementation

- Act more like a frequentist, avoid estimating latent variables as parameters (marginalize likelihood over latent variables)
- ▶ If you want posterior distribution of latent variables, sample them in generated quantities via rng functions
- Precompiled model

New implementation

Journal of Statistical Software

November 2021, Volume 100, Issue 6.

doi: 10.18637/jss.v100.i06

Efficient Bayesian Structural Equation Modeling in Stan

Edgar C. Merkle (D)
University of Missouri

James Uanhoro (D)
Ohio State University

Ellen Fitzsimmons (5)
University of Missouri

Ben Goodrich Columbia University

Multilevel SEM

- ► Multilevel SEM in blavaan (coming soon):
 - Like your usual "students in schools" multilevel model, except each student now has multiple variables, each of which may serve as both a predictor and response OR
 - Like your usual SEM (multiple variables within person), but each person is now clustered in a higher unit like school
 - These models result in multivariate normals of very high dimension, but psychometricians have developed efficient ways to compute the likelihoods

Multilevel SEM

- Example: Say that we observed 100 students in each of 20 schools. Each student is measured on 6 variables, with 1 student latent variable and 1 school latent variable.
 - Original approach: Sample 120 latent variables, so that we can evaluate 12k univariate normal likelihoods.
 - blavaan approach: Evaluate 20 multivariate normals, each of dimension 600. Using psychometrics results from the 1980s/90s, evaluate the 600-dimensional normal by computing inverses/determinants of 6×6 matrices.

Ordinal SEM

- ▶ SEM with ordinal variables has been available in blavaan for about 1 year.
 - Chib-Greenberg data augmentation approach.
 - ► This does not scale to large numbers of observations, because we need to augment more variables as we add extra people.
 - Frequentists have proposed many two-step approaches for handling these models, which may be merged into a single Bayesian model (ongoing work here).

Summary

- Over time, blavaan has continued to improve in sampling efficiency due to the flexibility of Stan.
- ► This has allowed us to provide reliable estimation methods for relatively complex models.
- ► And the Stan models provide a starting point for psychometricians to develop new models.

General takeaways

- ➤ To improve sampling efficiency in Stan, it can be worthwhile to reconsider the old frequentist literature on estimating complicated models.
- But there is also a tradeoff between efficiency and flexibility: tuning estimation to a focal model, vs using an estimation approach that can be applied to many models.

Acknowledgments

- ▶ blavaan has been partially funded by Institute of Education Sciences Grant R305D210044. Contributors and collaborators include
 - Ellen Fitzsimmons, Missouri
 - Mauricio Garnier-Villareal, Amsterdam (Vrije U)
 - ► Ben Goodrich, Columbia
 - Terrence Jorgensen, Amsterdam (UvA)
 - Yves Rosseel, Ghent
 - ► James Uanhoro, North Texas

Thank you!

```
In R:
install.packages("blavaan")

blavaan website:
https://ecmerkle.github.io/blavaan/
```

lavaan

▶ Model specification and maximum likelihood estimation in *lavaan*:

blavaan

► Model specification and estimation in *blavaan*: