

Universidad Simón Bolívar

Valor: 40 puntos

Puntuación:

Nombre y Apellidos:		
No. Carnet:	Sección:	

Primera parte: Selección simple. Para cada planteamiento seleccione sólo una respuesta marcando una equis en el espacio a la izquierda que le corresponda. No se requiere justificar las respuestas.

Valor: 2 puntos cada pregunta.

1. Una partícula se mueve sobre el eje x bajo la acción de una fuerza. Se muestra el gráfico de la energía potencial correspondiente en función de la posición. Si la partícula se lanza desde el punto A de tal forma que su energía cinética es 4 J, el mayor valor de x que puede alcanzar la partícula es

() 14 m

() 18 m

() 20 m

() 28 m

() 32 m

2. En la figura, los bloques de masa m y M, m < M, están inicialmente en reposo y m está a una altura h. m se suelta y desliza sobre la pista hasta que choca inelásticamente con M. Justo después de la colisión m permanece en reposo. No hay fricción en la pista. Luego de este choque, la altura máxima a la cual sube M es

() < h,

 $(\quad) = h\,,$

() > h

() no se puede establecer ninguna de las relaciones anteriores,

() M también permanecerá en reposo, ya que la colisión es inelástica.

3.	U	na	masa oscila al extremo de un resorte. Podemos afirmar que
	()	en las posiciones extremas del movimiento, las magnitudes de las velocidades y de las aceleraciones son cero,
	()	en la posición de equilibrio la magnitudes de la velocidad y de la aceleración son máximas,
	()	en las posiciones extremas del movimiento, las magnitudes de las velocidades son cero y las magnitudes de las aceleraciones son distintas a cero,
	()	en la posición de equilibrio la magnitudes de la velocidad y de la aceleración son distintas a cero,
	()	en la posición de equilibrio las magnitudes de la velocidad y de la aceleración son iguales a cero
4.	tie	em	partícula de 2 Kg de masa tiene una velocidad dada por $\vec{v}=(t^3+1)\hat{\jmath}$ donde t es el po y todas las unidades pertenecen al S.I. El trabajo, en Joules, realizado por la fuerza sobre la partícula entre $t=0$ y $t=1$
	()	es 1,
	()	es 3,
	()	es 9,
	()	no es posible calcularlo con los datos suministrados,
	()	no es ninguno de los anteriores.
5.			istema masa-resorte de masa M oscila con un período τ y una amplitud A . La fuerza ma F_{max} que el resorte le aplica a la partícula
	()	es $F_{max} = 4\pi^2 AM/\tau^2$,
			es $F_{max} = AM/\tau^2$,
	()	es $F_{max} = 2\pi AM/\tau$,
	()	no es posible calcularla con los datos suministrados,
	()	no es ninguna de las anteriores.
6.	F		partícula se mueve en forma unidimensional bajo la acción de una fuerza dada por $-cx^3$, donde c es una constante positiva. Si la partícula se suelta desde el reposo en un distinto de $x=0$, podemos afirmar que la partícula
	()	permanecerá en reposo,
	()	se alejará cada vez más de $x=0$,
	()	realizará oscilaciones en torno a $x=0$,
	()	realizará un movimiento armónico simple en torno a $x=0$,
	()	llegará a $x=0$ y permanecerá en reposo allí.

Segunda parte: Desarrollo. Resuelva los problemas planteados de forma organizada, clara y concisa.

1. (Valor total: 14 ptos.)

La figura muestra a una partícula de masa M que está en reposo inicial y es impulsada por un resorte de constante elástica k que está comprimido una distancia x. La pista tiene un rizo circular de radio R y sólo es rugosa en el plano inclinado. El plano inclinado tiene una inclinación α y su coeficiente de roce dinámico con la la partícula es μ_D . Llamaremos L a la distancia sobre el plano inclinado que recorre la partícula antes de detenerse.

- (a) Halle el trabajo realizado por el roce en función de L y de los datos del problema. (3 ptos.)
- (b) Encuentre el valor de L. (5 ptos.)
- (c) Determine el máximo valor que puede tener el radio R del rizo de modo que la partícula complete una vuelta. (6 ptos.)

2. (Valor total: 14 ptos.)

Un bloque de masa M=6 Kg está en reposo, descansa sobre una superficie horizontal sin roce y está atado a un resorte de constante elástica k=8 N/m (figura superior). En el instante t=0 el bloque estalla en dos pedazos. Un pedazo de masa $M_2=4$ Kg sale disparado hacia la derecha con una rapidez V_2 desconocida. El otro pedazo de masa $M_1=2$ Kg queda atado al resorte y se mueve de tal modo que el tramo que recorre durante sus oscilaciones es de longitud D=(2/5) m (figura inferior).

- (a) Determine la frecuencia angular de las oscilaciones, su amplitud y la rapidez máxima de M_1 . (4 ptos.)
- (b) Tomaremos el origen en el punto de equilibrio del resorte y llamaremos x(t) a la posición de M_1 en función del tiempo para $t \ge 0$.

Lande the threaten has blood took to be a part of the contract of the contract

- i. Diga cuanto valen x(0) y $\dot{x}(0)$. (2 ptos.)
- ii. Halle x(t). (4 ptos.)
- (c) Determine V_2 . (4 ptos.)

Educate This content reserve that the same of the light of the same of the light of the same of the sa