Boolean Algebra

Instructor: Dr. Vinicius Prado da Fonseca (vpradodafons@online.mun.ca)

Boolean Algebra Introduction

- Modern digital systems use 0 and 1 to describe values and boolean equations to describe behaviours.
- Algebra to simplify arithmetic equations
- Boolean algebra to simplify Boolean equations.
- Rules Boolean algebra are much like those of ordinary algebra
- In some cases simpler, because variables have only two possible values: 0 or 1.

Boolean Algebra Introduction - Axioms

- Boolean algebra is based on a set of axioms we assume are correct.
- Axioms are unprovable.
- Set of definitions.
- From these axioms, we prove all the theorems of Boolean algebra.

Boolean Algebra Introduction - Axioms

- Duality of Boolean Algebra.
- AND and OR are duals of each other.

NOT
$$\overline{0} = 1 \text{ and } \overline{1} = 0$$
 AND
$$0 \cdot 0 = 0, 0 \cdot 1 = 0, 1 \cdot 0 = 0, \text{ and } 1 \cdot 1 = 1,$$
 OR
$$0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, \text{ and } 1 + 1 = 1,$$

Boolean Algebra Introduction - Axioms

- Duality of Boolean Algebra
- AND and OR are duals of each other

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1+1=1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

Identity for AND

$$a \cdot 1 = a$$

a	1	a · 1
0	1	0
1	1	1

• Identity for OR

$$a + 0 = a$$

Annihilator for AND

$$a \cdot 0 = 0$$

Annihilator for OR

$$a + 1 = 1$$

Identity for AND

$$a \cdot 1 = a$$

• Identity for OR

$$a + 0 = a$$

$$a \cdot 0 = 0$$

Annihilator for OR

$$a + 1 = 1$$

а	0	a + 0
0	0	0
1	0	1

Identity for AND

$$a \cdot 1 = a$$

Identity for OR

$$a + 0 = a$$

Annihilator for AND

$$a \cdot 0 = 0$$

Annihilator for OR

$$a + 1 = 1$$

а	0	a · 0
0	0	0
1	0	0

Identity for AND

$$a \cdot 1 = a$$

• Identity for OR

$$a + 0 = a$$

Annihilator for AND

$$a \cdot 0 = 0$$

Annihilator for OR

$$a + 1 = 1$$

а	1	a + 1
0	1	1
1	1	1

You may want to test all these properties for longer values of input a (e.g., a = 100101)

Idempotent law (no change) for AND and OR

$$a \cdot a = a$$

$$a + a = a$$

а	а	a·a
0	0	0
1	1	1

а	а	a + a	
0	0	0	
1	1	1	

Complement for AND and OR

$$a \cdot \bar{a} = 0$$

$$a + \bar{a} = 1$$

а	ā	a·ā
0	1	0
1	0	0

а	ā	a + ā
0	1	1
1	0	1

Involution (double NOT)

$$\overline{a} = a$$

- "Double negation" cancel each other
 - Not over operators (DeMorgan's):

$$\overline{\overline{A} + \overline{B}} \neq A + B$$

Multi variable Theorems

Commutativity of AND

$$a \cdot b = b \cdot a$$

Commutativity of OR

$$a+b=b+a$$

Associativity of AND

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Associativity of OR

$$(a + b) + c = a + (b + c)$$

Boolean Algebra Theorems

Distributivity of AND over OR

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

The operation inside goes to outside

а	b	С	b+c	a(b+c)	а	b	С	ab	ac	ab+ac	
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	1	0	0	0	1	0	0	0	77
0	1	0	1	0	0	1	0	0	0	0	7
0	1	1	1	0	0	1	1	0	0	0	
1	0	0	0	0	1	0	0	0	0	0	×2
1	0	1	1	1	1	0	1	0	1	1	
1	1	0	1	1	1	1	0	1	0	1	97
1	1	1	1	1	1	1	1	1	1	1	

Boolean Algebra Theorems

Distributivity of OR over AND

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

The operation inside goes to outside

a	b	С	bc	a+bc	а	b	С	a+b	a+c	х
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	1	0
0	1	0	0	0	0	1	0	1	0	0
0	1	1	1	1	0	1	1	1	1	1
1	0	0	0	1	1	0	0	1	1	1
1	0	1	0	1	1	0	1	1	1	1
1	1	0	0	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1

More Simplification Boolean Algebra Theorems

Covering (Absorption) of AND and OR (Truth tables)

- $a \cdot (a + b) = a$
 - \circ 0. (0 + b) = 0 (annihilator of AND)
 - \circ 1. (1 + b) = 1 (annihilator of OR)
- $a + (a \cdot b) = a$ (Same truth table as above, simplification turns this on the other)

Combining of AND and OR

- $(a \cdot b) + (a \cdot \overline{b}) = a \cdot (b + \overline{b}) = a \cdot 1 = a$
- $(a + b) \cdot (a + b) = a + (b \cdot b) = a + 0 = a$

More Simplification Boolean Algebra Theorems

- Consensus (Redundancy)
 - The consensus or resolvent of the terms AB and A'C is BC
 - It is the conjunction of all the unique literals of the terms
 - excluding the literal that appears unnegated in one term and negated in the other.
- $(AB) + (\bar{A}C) + (BC) = AB + \bar{A}C$
- $(A + B) \cdot (\bar{A} + C) \cdot (B + C) = (A + B) \cdot (\bar{A} + C)$

More Simplification Boolean Algebra Theorems

- DeMorgan's Law
- Invert the operations and invert literals

Sum of Products

How to write a Boolean equation for any logic function given its truth table.

OR

SOP	Α	В	х
$\overline{A} \cdot \overline{B}$	0	0	0
A · B	0	1	1
A · B	1	0	1
A · B	1	1	1

Sum of Products

How to write a Boolean equation for any logic function given its truth table.

OR

SOP	Α	В	х
$\overline{A} \cdot \overline{B}$	0	0	0
Ā · B	0	1	1
A · B	1	0	1
A · B	1	1	1

Sum of Products

- Boolean expression contain AND, OR, and NOT operators
- The Canonical form contain all the variables, ANDed. Products are ORed together
- Any Boolean function can be described using a SOP expression
- Non minimal form/canonical form

$$\overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

SOP	Α	В	х
$\overline{A} \cdot \overline{B}$	0	0	0
A · B	0	1	1
A · B	1	0	1
A · B	1	1	1

Minterms

- A truth-table can be specified by listing its minterms that are true
- Equivalent to a SOP expression
- Function f has minterms

$$\circ$$
 m_3, m_5, m_6, m_7

$$\sum (m_3, m_5, m_6, m_7)$$
 or $\sum (3, 5, 6, 7)$

Minterms	SOP	Α	В	С	f
m _O	$\overline{A} \cdot \overline{B} \cdot \overline{C}$	0	0	0	0
m ₁	$\overline{A} \cdot \overline{B} \cdot C$	0	0	1	0
m ₂	$\overline{A} \cdot B \cdot \overline{C}$	0	1	0	0
m ₃	A · B · C	0	1	1	1
m ₄	$A \cdot \overline{B} \cdot \overline{C}$	1	0	0	0
m ₅	A · B · C	1	0	1	1
m ₆	$A \cdot B \cdot \overline{C}$	1	1	0	1
m ₇	A · B · C	1	1	1	1

Product of Sums

- Boolean expression contain AND, OR, and NOT operators
- ANDed (product) a collection of OR terms (sum)

AND

POS	Α	В	х
(A+B)	0	0	0
$(A + \overline{B})$	0	1	0
(A+B)	1	0	0
$(\overline{A} + \overline{B})$	1	1	1

Product of Sums

- Boolean expression contain AND, OR, and NOT operators
- ANDed (product) a collection of OR terms (sum)

$$(A + B) \cdot (A + \overline{B}) \cdot (\overline{A} + B)$$

AND

POS	Α	В	х
(A+B)	0	0	0
$(A + \overline{B})$	0	1	0
(A +B)	1	0	0
$(\overline{A} + \overline{B})$	1	1	1

Maxterms

- A truth-table can be specified by listing its maxterms that are false
- equivalent to a POS expression
- Function f has maxterms

 $\prod (m_1, m_2)$ or $\prod (1, 2)$

				_
Maxterms	POS	Α	В	f
M _O	(A+B)	0	0	1
M ₁	$(A + \overline{B})$	0	1	0
M ₂	(A+B)	1	0	0
M ₃	$(\overline{A} + \overline{B})$	1	1	1

$$F = ((\sim b \& \sim a) | (b \& a))$$

а	b	F
0	0	
0	1	
1	0	
1	1	

$$F = ((\sim b \& \sim a) | (b \& a))$$

а	b	F
0	0	1
0	1	0
1	0	0
1	1	1

 $F = ((a \& c) | (b \& a \& \sim c) | (b \& c) | (b \& \sim a))$

а	b	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

www.mun.ca

 $F = ((a \& c) | (b \& a \& \sim c) | (b \& c) | (b \& \sim a))$

а	b	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
4	4	4	_

Simplification examples

Extra video lecture

Questions?

- Next class
- K-Maps
- Simplification of boolean expressions

