Mean

Question: 1

Find 10 positive Numbers

Mean of discerete data

Question: 2

Question 1: Find the mean of the following distribution, which contains the quiz results of the students.

Marks	25	43	38	42	33	28	29	20
Number of students	20	1	4	2	15	24	28	6

Marks (xi)	Number of students	fixi
25	20	500
43	1	43
38	9-10-1	152
42	2	284
33	15	498
28	24	672
29	28	812
20	6	120
ime	100	2878

Mean of continuous data

Question No:3

Question 2: The table below shows the results of an examination taken by 110 students.

Class	0-10	10-20	20-30	30-40	40-50
Frequency	12	28	32	25	13

Solution:

		Solution		
classical	Frequency (Fi)	Class Mark (xi)	di=Xi-a	fidi
0-10	12	5	5-25=-20	-240
10-20	28	15	15-25 =-10	- 280
20-30	32	25=0	25-25 = 0	0
30-40	25	35	35-25= 10	250
40-50	13	45	45-25= 20	260
Total	Efi= 110			Efidi=-10

Assumed mean =
$$\alpha = 25$$

Mean of data:

 $\bar{\chi} = \alpha + \xi \text{ fidi} = 25 + (-10/10)$
 fi
 $= 25 - (18/10)$
 $= 275 - 1$
 $= 24.9$

Ans

Median

Question 1:

Find the Median of following.

End median of the following
2,31,55,3,5,3,7,8,11,27,37,49
golution
Ascending Order
2,3,3,3,85,7,8,11,27,31,37,49,55
n = 12
n/2 = 64h value = 8
1/2+1= 7th value = 11
Median = 8+11/2 = 9.5

Median of discerete data

Question 2:

The following data are the weights of students in a class. Find the median weights of the students

Weight(kg)	10	20	30	40	50	60	70
Number of Students	4	7	12	15	13	5	4

Median of continuous data

Question: 3

The following data attained from a garden records of certain period Calculate the median weight of the apple

Weight in grams	410 – 420	420 - 430	430 - 440	440 – 450	450 – 460	460 - 470	470 - 480
Number of apples	14	20	42	54	45	18	7

eight in	number of apples	Graguenes
ans (100)	14	frequency 14
20-430	20	34
30 - 440	42	76
40-450	54	130
180 - 460	45	175
60 - 470	18	193
70 - 480	7	200
Total	N = 200	
$\frac{N}{2} = \frac{200}{2}$	= 100	

Median	= 1 + N/2-m + c
L = 440	, N/2 = 100 , m = 76, f = 54, C=10
Median	= 444.44g

Mode

Question No: 1

Mode of discrete data

Question: 2

Example 5.24

Calculate the mode from the following data

Days of Confinement	6	7	8	9	10
Number of patients	4	6	7	5	3

Mode of continuous data

Question No:3

The following data relates to the daily income of families in an urban area. Find the modal income of the families

Income (`)	0-100	100-200	200-300	300-400	400-500	500-600	600-700
No.of persons	5	7	12	18	16	10	5

Solu	tion
Income 0-100 100-200 200-300 300-400 400-500 600-600	12 18 16
Mode = 1 + ffo 2ffo-f. The highest freq. is 300-400 Here 1 = 300, fo = 12, Mode = 300+ (18.	18, the modal class in $f_1 = 18$, $f_2 = 16$
2×18 $= 300 + 6$ $= 375$	-12-16
Le modal income &	families is 375

Probability

Question: 1

- Out of 300 students in a school, 95 play cricket only, 120 play football only, 80 play volleyball only and 5 play no games. If one student is chosen at random, find the probability that
- (i) he plays volleyball
- (ii) he plays either cricket or volleyball
- (iii) he plays neither football nor volleyball.

(ii) The probablity of getting a player who plays either cricket or volleybell = no. of times a cricket or volleyball Player can be choosen Total no. of trials 95 + 80 300 300 12 Ans (iii) The probability of getting a player who plays neither football nor volleyball 300-120-80 300 100 306

Question:2

2. The blood group of 60 students of a class recorded as below.

Blood Group	Α	В	AB	0
Number of Students	12	20	10	18

A student of the class is selected at random.

(i) What is the probability that the selected student has blood group O?

(ii) What is the probability that the selected student does not have blood group O?

Question: 3

4. A bag contains 8 red balls and some white balls. If the probability of drawing a white ball is half of the probability of drawing a red ball then find the number of white balls in the bag.

Distribution

Normal Distribution

Question No:1

 Most graduate schools of business require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112. What is the probability of an individual scoring above 500 on the GMAT?

Question No:2

The length of human pregnancies from conception to birth approximates a normal distribution with a mean of 266 days and a standard deviation of 16 days. What proportion of all pregnancies will last between 240 and 270 days (roughly between 8 and 9 months)?

Question No:3

The average number of acres burned by forest and range fires in a large New Mexico county is 4,300 acres per year, with a standard deviation of 750 acres. The distribution of the number of acres burned is normal. What is the probability that between 2,500 and 4,200 acres will be burned in any given year?

Binomial Distribution

Question No:1

Let's say that 80% of all business startups in the IT industry report that they generate a profit in their first year. If a sample of 10 new IT business startups is selected, find the probability that exactly seven will generate a profit in their first year.

Solution

we know that

$$n=10, x=7, P=080, y=0.20$$
 $P(x=7) = 10! (0.80)^{7} (1-080)^{10-7}$
 $7!(10-7)!$
 $= 0.2013 08 20.13.96$

Question No: 2

Your basketball team is playing a series of 5 games against your opponent. The winner is those who wins more games (out of 5).

Let assume that your team is much more skilled and has 75% chances of winning. It means there is a 25% chance of losing.

What is the probability of your team get 3 wins?

Solution

we know that:

$$n=5 \circ p=0.75 \circ q=0.25 \circ x=3$$
 $P(x=3) = 5! (0.75)^3 (1-0.7)^{5-3}$
 $3!(5-3)!$
 $= 0.264 o 26.46$

Question No:3

A box of candies has many different colors in it. There is a 15% chance of getting a pink candy. What is the probability that exactly 4 candies in a box are pink out of 10?

Binomial Distribution

Question No:1

Example 1: In a cafe, the customer arrives at a mean rate of 2 per min. Find the probability of arrival of 5 customers in 1 minute using the Poisson distribution formula.

Solution

Solution

Civen
$$\lambda = 2$$
, and $x = 5$

$$P(x=x) = (e^{x} \lambda^{x})$$

$$\chi!$$

$$P(x=5) = e^{-2} \lambda^{5}$$

$$5!$$

$$= 0.036 0 \times 3.6\%$$
The propheblity of arrival of 5 customers per minute is 3.6%

Question No:2

Example 2: Find the mass probability of function at x = 6, if the value of the mean is 3.4.

Solution:

Solution

Civen
$$\lambda = 3.4$$
, $x = 6$

$$P(x=6) = e^{-3.4} \times 3.4^{6}$$

$$= 0.072 \text{ or } 7.2.7.$$

Question No:3

Example 3: If 3% of electronic units manufactured by a company are defective. Find the probability that in a sample of 200 units, less than 2 bulbs are defective.

Solution:

Solution

Probablity of defective unit =
$$p = 3/100 = 0.03$$

Criven $n = 200$

Mean = $(\lambda) = np = 200 \times 0.03 = 60$
 $\chi = \langle 2 \rangle$

$$P(\chi \langle 2 \rangle) = P(\chi = 0) + P(\chi = 1)$$

$$= \left(\frac{e^{-6} \times 6^{\circ}}{0!}\right) + \left(\frac{e^{-6} \times 6^{\circ}}{1!}\right)$$

$$= 0.00247 + 0.0148$$

$$P(\chi \langle 2 \rangle) = 0.01727 + 0.0148$$

$$P(\chi \langle 2 \rangle) = 0.01727 + 0.0148$$