

DESIGN OF A MULTI-SCALE FLIGHT PARAMETER DATA ANOMALY DETECTION ALGORITHM

Zichang Lan¹; Junpeng Bao*²; Yifeng Huang³

¹Xi'an Jiaotong University, ²*Xi'an Jiaotong University, ³Air Force Engineering University

ABSTRACT

Anomaly detection in flight parameter time-series data is crucial for aircraft operation. While the DCdetector model excels at detecting long-duration anomalies with its dual-attention contrastive structure, it underperforms for short-duration anomalies. This paper proposes two multi-scale optimized models based on DCdetector: a multi-scale segmentation model and a multi-scale concatenation model. The segmentation model divides input data into multiple scales using pooling layers for separate feature extraction, while the concatenation model merges multi-scale features before processing. Experiments on flight datasets show both models improve short-duration anomaly detection without compromising long-duration anomaly performance.

METHODOLOGY

Fig 1 presents the architecture of our multi-scale segmentation model based on DCdetector. The key innovation is a multi-scale feature extraction mechanism where input time-series data undergoes multi-scale downsampling through varying pooling windows, generating subsequences at different temporal resolutions, enabling simultaneous capture of macro trends and micro anomalies.

Fig. 1. Multi-scale segmentation model.

The enhanced multi-scale concatenation model (Fig. 2) extends the segmentation model by introducing cross-scale feature fusion. After multi-scale decomposition and dual-branch feature extraction, it concatenates all scale features with original representations for joint processing through dual-attention and difference representation modules.

Fig. 2. Multi-scale concatenation model.

EXPERIMENTS

The DCdetector model demonstrates strong performance in detecting long-duration anomalies in flight data but fails to identify short-duration anomalies, as shown across multiple datasets. Table I presents the model's detection performance on unmodified UCR, UCR_AUG and MSL datasets, where average precision and recall rates represent means across all test sequences.

Table. I. Anomaly Detection Performance Across

Original Datasets

Dataset	Average	Average	Average	Average
	Anomaly Length	Prediction Count	Precision	Recall Rate
UCR	10	212.66	0.56%	14.0%
UCR_AUG	2434.4	2407.73	91.22%	84.53%
UCR_AUG	10	207.26	2.13%	13.3%
MSL	7716	8285	92.17%	98.33%
MSL	10	665	0%	0%

The multi-scale partitioning model greatly improves short anomaly detection. Fig. 3 compares results between the original DCdetector (without multi-scale pooling) and the multi-scale partitioning model on the UCR_1 dataset, and Fig. 4 illustrates the detection results under varying pooling scale combinations.

Fig. 4. Comparative Performance of Multi-scale Segmentation Model at Different Scales

Comparative experiments (Fig. 5) evaluate the multi-scale concatenation model against the partitioning model and original DCdetector on UCR_1 across varying anomaly lengths. Fig. 6 shows performance varying scale combinations.

Fig. 5. Comparative Performance of Different Anomaly Detection Models

Fig. 6. Comparative Performance of Multi-scale Concatenation Model at Different Scales