Macro 1: Numerical Methods Assignment 2

Precautionary Savings

Assignment Due: 24/11/2013

Question 1

- Consider an individual who lives two periods. In the first period he has income A, and in the second period his income is stochastic and denoted by y
- His income can only take two values; either y = x > 0 (with probability $\frac{1}{2}$) or y = -x (with probability $\frac{1}{2}$)
- The discount rate and interest rate are both exogenous and equal to zero
- The individual chooses consumption in period 1 c_1 knowing A, but not the realisation of y [let c_2 denote consumption in period 2]
- It is always the case that A x > 0
- Let E denote the expectations operator
- The objective function of the individual is $V = u(c_1) + Eu(c_2)$
- You can assume that u(.) is concave and satisfies the Inada conditions

(a)

Write out the individual's inter-temporal budget constraint. (5 marks)

(b)

Write out the Euler Equation. (5 marks)

(c)

If x = 0, what is c_1 ? (2 marks)

(d)

If u(c) is a quadratic utility function, how does consumption in the first period respond to setting $x \neq 0$. Explain your answer. (3 marks)

(e)

Now consider the utility function:

$$u(c) = 1 - e^{-\lambda c} \tag{1}$$

Find u'(c), and define functions in an python notebook of the utility function and the marginal utility. (5 marks)

(f)

Find u'''(c), and the Coefficients of Relative and Absolute Risk Aversion (possibly as functions of c). What type of function is this? (5 marks)

(g)

Plot u'(c), with multiple values of λ on the same figure, and interpret. (5 marks)

(h)

For the case where $x \neq 0$, find c_1 . (10 marks)

(i)

Now define D as precautionary savings. i.e. Amount of savings made with risky income minus the level of savings made without risk.

Analyse how *D* responds to a change in λ , *A* or *x*, where a rise in *x* is equivalent to an increase in the variance of income.

Hint: You could possibly create a function in your ipython notebook called D(A,x), graph this in (x,y) space, and analyse for different values of the inputs and parameters, keeping the others fixed. (15 marks)

Question 2

Now consider the utility function:

$$u(c) = \frac{c^{1-\lambda} - 1}{1 - \lambda} \tag{2}$$

(a)

Repeat parts (e) to (i) of question 1 for this new utility function. (35 marks)

(b)

Compare your results to part(i) of question 1 to your equivalent results for the new utility function. [Hint: It is not necessary to plot the two precautionary savings functions for the different utility functions to compare](10 marks)