1er Cuatrimestre- 1er Parcial - 26/04/2021

****** ****** *****

Todas las hojas entregadas deben tener Apellido y Nombre, Legajo y Carrera. También deben indicar el número de hoja sobre el total.

- 1. Sea A una matriz de tamaño 3×3 y $U = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & g \end{bmatrix}$ la forma escalonada a la que se llega luego de aplicar eliminación de Gauss, sin intercambios de filas, con los siguientes multiplicadores: $\ell_{21} = \ell_{31} = \ell_{32} = -2$. (ℓ_{ij} multiplica la fila pivote j cuando se resta de la fila i).
 - a) Determinar A.
 - b) ¿Existen valores de g para los cuales rg(A) = 1? Justificar.
 - c) Determinar los valores de g para los cuales rg(A) = 2. Justificar.
 - d) Describir N(A) para un valor de g en que rg(A) = 2.
 - e) Para el valor de g usado en el ítem anterior, encontrar la solución general del sistema $Ax = (1, -1, -2)^T$.
 - f) Describir C(A) para un valor de g tal que rg(A) = 3.
- 2. a) ¿Cuáles de los siguientes conjuntos de vectores son subespacios vectoriales de \mathbb{R}^3 ? Justificar.
 - 1) $A = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y + 3z \le 0\}.$

2)
$$B = \left\{ b \in \mathbb{R}^3 : \begin{bmatrix} 3 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} x = b \text{ para algún } x \in \mathbb{R}^3 \right\}.$$

- b) Elegir un subespacio vectorial entre los conjuntos de los ítems anteriores y dar una base del mismo.
- 3. Sea $\mathbb{R}_2[x]$ el espacio vectorial de los polinomios de grado a lo sumo 2, incluyendo el polinomio nulo.
 - a) Sean $\mathcal{B}_1 = \{2 + x, x^2 + 3, -2\}$ y $\mathcal{B}_2 = \{x, 0, x^2\}$. Determinar cuál de estos conjuntos es una base de $\mathbb{R}_2[x]$.
 - b) Determinar una base ordenada \mathcal{B}_3 que contenga el máximo número de vectores l.i. del conjunto del ítem anterior que no resultó base.
 - c) Encontrar la matriz de cambio de base desde la base del ítem a) a \mathcal{B}_3 .
- 4. Las siguientes matrices definen, respectivamente, transformaciones lineales T_1 y T_2 del plano en si mismo, con base canónica.

$$A_1 = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right] \quad y \quad A_2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right].$$

- a) Describir la ley de T_1 y de T_2 sobre un vector arbitrario de \mathbb{R}^2 , en función de sus componentes.
- b) Justificar por qué T_1 es un isomorfismo y calcular la matriz asociada a T_1^{-1} .
- c) Determinar la matriz asociada a $T_1 \circ T_2$.
- *d*) Describir qué operación geométrica del plano representan T_1 , T_2 , T_1^{-1} y $T_1 \circ T_2$.
- 5. Sean $\mathcal{B}_1 = \{(0,0,1),(0,1,1),(1,0,1)\}$ y $\mathcal{B}_2 = \{1,x\}$ bases ordenadas de \mathbb{R}^3 y $\mathbb{R}_1[x]$ respectivamente. Sea $T \in \mathcal{L}(\mathbb{R}^3,\mathbb{R}_1[x])$ cuya matriz asociada, con respecto a las bases \mathcal{B}_1 y \mathcal{B}_2 , es $A_T = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$.
 - a) Explicitar la ley de la transformación lineal T para un vector arbitrario de \mathbb{R}^3 con componentes (a,b,c) en la base canónica.
 - b) Obtener la matriz B_T asociada a T con respecto a la base canónica ordenada de \mathbb{R}^3 y \mathscr{B}_2 .