

The Hartree-Fock method / Preparation for Python exercises

Nuclear Physics Turtle Lecture Series 2025: Ab initio Hartree-Fock calculations of nuclei

Lecture 3

Matthias Heinz, ORNL

Work supported by:

Recap

- We have some $V_{NN},\,V_{3N}$
- We have the relevant one-, two-, and three-body matrix elements of our kinetic energy T and our interactions $V_{NN},\,V_{3N}$
- ullet We want to construct our many-body Hamiltonian H
- And we want to solve the Schrödinger equation

$$H|\Psi\rangle = E|\Psi\rangle$$

• This lecture: Finding the best Slater determinant approximation to $|\Psi\rangle$

Main messages

- Ground state $|\Psi\rangle$ has minimum energy E_{gs} of any A-particle state
- Hartree-Fock state $|\Phi_{
 m HF}\rangle$ has min. energy $E_{
 m gs}^{
 m HF}$ of any Slater determinant
- Need to find **best basis** $|\bar{p}\rangle$ to construct $|\Phi_{\mathrm{HF}}\rangle$
- Intuitively, HF ...
 - ... identifies average potential felt by particles (with interactions)
 - ... solves for eigenbasis of this average potential ightarrow HF basis $|ar{p}
 angle$

Hartree-Fock approximation on whiteboard

Intro to Python exercises on screen

Summary

- ullet Fock matrix F is **average potential** felt by all particles
- Diagonalizing Fock matrix gives "best basis" (lowest energy state $|\Phi\rangle$)
- Key steps:
 - Build 1-body density matrix ho_{pq} for current state $|\Phi_{
 m trial}
 angle$
 - Compute Fock matrix F_{pq} based on ρ_{pq}
 - Diagonalize Fock matrix and get new state $|\Phi_{\mathrm{trial}}\rangle$
 - The energy $\langle \Phi_{
 m trial} | H | \Phi_{
 m trial}
 angle$ decreases until we reach minimum $E_{
 m HF}$

6