Luneoli 11/10/202

Dim Sim (1) - NON ESISTE CASO 1: XO, Q = + (x -7+60) $\frac{1}{2} = \frac{1}{2} \cdot \frac{1}$ Fisso N grande a piacere (più grande scelgo N, più piccolo é il bersaglio / Instormo V). Cerco N & R t.c. exy M pee xy N. (1) Se $M \leq 0$, osservo che e* 70 $\forall x \in \mathbb{R}$. Quimoli posso scegliere M orbitrario. (2) Se M zo, osserviamo che ex 7 M equivale a: ln ex 7 ln M (=7 x 7 ln M. Quindi se scelpo N = lm M, la comolizione $x \in V$ (overo $x \in U = (N, +\infty)$) implica e^{\times} 7 \mathcal{M} $(\times \in V) = (\mathcal{M}, +\infty)$. CASO 2: X0 = -00, L = M. (R-7-00 fx) = e = M) VETO, INERt.c. If(x)-l| < E, ∀ xe dominiof, con x < N

· ES: lim e x = 0	
X -7 - ∞	
ES: Qim lm x = -0	
$\lim_{X \to 7 + \infty} \ln x = + \infty$	
(LAPORTARTE PER LESANE)	
TEOREMA: Se il limite esiste, allora c'unico.	
DIMOSTANZIQUE: Supponiamo per ossurdo che esistomo due valori, l, lz e la	
com $l_1 \neq l_2$ † c. l_{im} $f(x) = l_1$ e l_{im} $f(x_0) = l_2$.	
V2 \ \ \ell_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
, Ao	
=> Dolla definizione: olato V, intereno di li, I V, intereno di xo t.z.	
$f(x) \in V, \forall x \in dom. f(V, \{x, 3\}).$	
=> Dalla definizione: dato Vz, interno di lz, J Uz interno di X. t.c.	
$f \times e V_2$, $\forall \times e \text{ dom. } f \wedge (U_2 \setminus \{ \times_0 \})$.	
Se scelpo V, e Vz abhastanza piccoli, in modo che	
$V_1 \wedge V_2 = \emptyset$, e definisco $U = U_1 + U_2$, atempo die	
per $x \in \text{dom}$, $f(V \mid x \circ \xi)$ vale the $f(x) \in V$, $f(x) \neq \emptyset$.	
Contraddizione.	
LIMITE DESTRO/SINISTRO	
· ES: La funcione sqn (x) si awicina ad "1" perz X-70 da destra; si awicina a "-1" perz x-70 da simistra.	
SI awiama a - 1 pet x -7 0 da Simistra.	

ESERCIELD:
$$l_{im}$$
 $x imes z^{\pm}$ $(x-3)^2$

=7 l_{im}
 $x imes z^{\pm}$ $(x-3)^2$

=8 l_{im}
 $l_{$

Scrivo: $f(x) = x^2 - 2x + 3 = x^2 \left(1 - \frac{2}{x} + \frac{3}{x^2}\right) = f_1(x) f_2(x), com x \neq 0$.

$$\Rightarrow \int_{1}^{1} (x) = x^{2} \rightarrow +\infty \quad \text{per} \quad x \rightarrow +\infty$$

$$\Rightarrow \int_{1}^{1} (x) = 1 - 2 + 3 \quad \Rightarrow 1 \quad \text{per} \quad x \rightarrow +\infty$$

(on una piccola estensione della proposizione (nel caso in cui $l_1 = +\infty$, $l_2 = 1$) Ottempo:

$$\lim_{x \to +\infty} x^2 - 2x + 3 = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x) \cdot \lim_{x \to +\infty} f_2(x) = +\infty \cdot 1 = +\infty.$$

· ES: Pim Simx, f 1 (x1 = Sim x ; lim f 1 (x1 = 0 f 2 (x1 = x ; lim f 2 (x1 =0 Quindi l., le sono entrambi o e mon posso applicare la proprieta precedente per calcolare lim $\frac{f_1(x)}{x \to 0}$. => Si tratta di una forma indeterminata: " a " A preima vista mon sappioumo calcolare il limite, ma lo farumo con strumenti più raffinati. · Es (Per casa) · lim $\frac{x^3 + 2x}{x^2 + x - 5} = \lim_{x \to \pm \infty} \frac{x^3 \left(1 + \frac{27}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} - \frac{5}{x^2}\right)} = \begin{cases} \pm \infty & \text{per } x \to \pm \infty \\ - \infty & \text{per } x \to -\infty \end{cases}$ · lim ln x + $\frac{1}{x^2}$ = lim ln x + lim $\frac{1}{x^2}$ = + ∞ +0 = + ∞ ESERUZI: $\frac{2^{x}-1}{3^{x}-3} \leq 0$ $0 \quad 2^{x} - 1 \leq 0 \quad c = 7 \quad 2^{x} \leq 1 \quad c = 7 \quad 2^{x} \leq 2^{\circ} \quad c = 7 \quad (x \leq 9)$ $(appun) \qquad ap_{2} \quad 2^{x} \leq ap_{2} \quad 1 = 0 \quad c = 7 \quad (x \leq 9)$

$$\begin{array}{ccccccccc} 8^{-3} < 0 & < 7 & 8^{+} < 3 & < 7 & \log_{3} & 5^{+} < \log_{3} & 3 & < 7 & \log_{3} & 3^{27} < \log_{3}$$

ATTEUZIONE de Dominio della Suntione (3) Affinche la garagne (
$$\log_3(\log_3(x+i))$$
) sia definita, souve che:

(a) $x+z$ 70 (z^2 $x > 7-z$
(b) $\log_3(x+z)$ 70 (z^2 $x > 7-z$
(c) $\log_3(x+z)$ 70 (z^2 $x > 7-z$
(d) $\log_3(x+z)$ 70 (z^2 $x > 7-z$
(e) $\log_3(x+z)$ 70 (z^2 $x > 7-z$
(finite delle solution) e data della intersercone trace ($-\infty$, $-\frac{1}{2}$) $A(-2,-1)$; insieme salution: : $x \in (-2,-\frac{1}{3})$.

(fic): $f(x) = \frac{\sqrt{x-3}}{x}$

(finite consistence solution) e data della intersercone trace ($-\infty$, $-\infty$) and $-\infty$.

(finite consistence solution): $f(x) = \frac{\sqrt{x-2}}{x^2+1}$

(finite consistence solution): $f(x) = \frac{$