

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ по лабораторной работе № <u>4</u> Вариант 12						
Название:	Мультивибратор н с интегрирующей Б	а основе операционн <u>RC – цепью</u>	ого усилителя			
Дисциплина:	Злектроника					
Студент	<u>ИУ6-43Б</u> (Группа)	(Подпись, дата)	В.К. Залыгин (И.О. Фамилия)			
Преподавате	ЛЬ	(Подпись, дата)	H.B. Аксенов (И.О. Фамилия)			

Задание

- I) Исследовать влияние постоянной времени, хронирующей *RC* цепи на период генерируемых колебаний, сопоставить между собой полученные экспериментально и рассчитанные длительности периода генерируемых импульсов.
- 2) Исследовать влияние коэффициента передачи β цепи положительной обратной *связи* на период генерируемых колебаний. Построить зависимость Т = f (β). Сравнить экспериментальные и теоретические значения периодов колебаний для четырех значений β.
- 3) Исследовать влияние емкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора. Определить постоянную времени, с которой перезаряжается нагрузочный конденсатор.

Выполнение Таблица 1 – Значения для варианта

1	рующа -цепь		Нагрузочный Делитель конденсатор напряжения		Хронирующа я RC-цепь		Делитель напряжения		
C1 nf	C2 nf	C3 µf	C4 µf	R1 kOm	R2 kOm	R3 kOm	R4 kOm	R5 kOm	R6 kOm
30	60	0,1	0,02	25	50	25	25	50	50

Рисунок 1 — Схема цепи

Исследование влияния постоянной времени хронирующей RC-цепи на период генерируемых колебаний

Период колебаний можно найти по формуле: T = 2*C1*R3*ln(1 + 2*R1/R5).

Таблица 2 – Полученные значения

	Графически	Аналитически		
	Т сек	τ=R3*C1 сек	Т сек	б%
C1	1,1830E-03	7,5000E-04	1,0397E-03	12,1090%
C2	3,5588E-03	1,5000E-03	3,2958E-03	7,3891%

Рисунок 2 — C1

Рисунок 3 — C2

Исследование влияния коэффициента передачи β цепи положительной обратной связи на период генерируемых колебаний

Формулы для расчета:

$$\beta = R1/(R1 + R5)$$

$$T = 2*C1*R3*ln(1+2*R1/R5)$$

Таблица 3 – Полученные значения

R1 kOm	R5 kOm	β	Твычисл сек	Тграф сек	б%
25	50	3,3333E-01	1,0397E-03	1,1830E-03	12,1090%
25	25	5,0000E-01	1,6479E-03	1,7747E-03	7,1438%
50	25	6,6667E-01	2,4142E-03	2,5272E-03	4,4731%
100	25	8,0000E-01	3,2958E-03	3,3980E-03	3,0066%

Рисунок 4 — 25 кОм и 50 кОм

Рисунок 5 — 25 кОм и 25 кОм

Рисунок 6 — 50 кОм и 25 кОм

Рисунок 7 — 100 кОм и 25 кОм

Исследование влияния ёмкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора

Таблица 4 – Полученные значения

C3 f	тконд сек	тф сек	тср сек
1,00E-07	1,000E-06	7,770E-05	7,770E-05
1,50E-07	1,500E-06	1,165E-04	1,165E-04
2,50E-07	2,500E-06	1,942E-04	1,942E-04
5,00E-07	5,000E-06	3,587E-04	3,885E-04

Рисунок 8 — 0,1 мкФ

Рисунок 9 — 0,15 мкФ

Рисунок 10 — 0,25 мкФ

Рисунок 11 — 0,5 мкФ

Вывод

Проведены исследования влияния постоянной времени, хронирующей RC цепи на период генерируемых колебаний, исследования влияния коэффициента передачи β цепи положительной обратной связи на период генерируемых колебаний, а также исследовано влияние емкости

нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора.

Нагрузочная ёмкость влияет на увеличение длительности переднего и заднего фронта.