

How is risk transmitted across industries in the US?

Evidence from Covid-2019

Zhaoyang Chen

Perspectives on Computational Research in Economics
Spring 2020

Motivation

- Big events (financial crisis, natural disaster, epidemic) can produce negative impact (risk) to related industries.
- Risk can be transmitted among relative industries (finance, electronic, agriculture and so on).

Motivation

- Big events (financial crisis, natural disaster, epidemic) can produce negative impact (risk) to related industries.
- Risk can be transmitted among relative industries (finance, electronic, agriculture and so on).

Motivation

- Big events (financial crisis, natural disaster, epidemic) can produce negative impact (risk) to related industries.
- Risk can be transmitted among relative industries (finance, electronic, agriculture and so on).

Introduction

- Estimating global bank network connectedness (Mert Demirer et al., 2016)
 propose a Vector Auto Regression (VAR) model to estimated the risk
 connectedness among banks.
- Econometric measures of connectedness and systemic risk in the finance and insurance sectors (Monica Bilio et al., 2018) estimates the risk between finance and insurance sectors.
- How to deal with high-dimension data.

Data

• Source: Stock index (S&P500, DOW) in the past 10 years across hundreds of industries from Yahoo Finance.

Variable: OHLC Data → Return Rate

Time	Oil	Chemical	Petroche	Plastic	Rubber	Steel	
	extraction	Fiber	mical				
2007/10/12	2767.1	3104.8	6678.77	2299.23	2360.61	7429.9	•••
2007/10/15	2739.24	3133.56	7116.11	2304.99	2315.89	7859.34	•••
2007/10/16	2712.45	3176.3	7021.68	2360.13	2352.69	7752.97	•••
•••	•••	•••	•••	•••	•••	•••	•••

Contribution

- Estimate the risk connectedness from a broader perspective major industries in the society.
- Analyze the risk transmission mechanism both dynamically and statically.
- Handle the high-dimension data with a modified model.

Model: VAR-Lasso

- Build a VAR model: $y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + e_t$, a VAR model describes the evolution of a set of k variables over the same sample period as a linear function of only their past values.
- Estimate the VAR model with lasso penalty term: $\min_{\beta_0,\beta} \left\{ \sum_{i=1}^{N} (y_i \beta_0 x_i^T \beta)^2 \right\}$ subject to $\sum_{j=1}^{p} |\beta_j| \le t$. which can handle the high-dimension data.

Model: Network Analysis

- Variance Decomposition: To get the pairwise connectedness between different industries.
- Network Graph: To visualize the result of variance decomposition.

Potential result

- Static analysis of risk transmission mechanism at a certain time (empirical study based on Covid-2019)
- Dynamic analysis of risk transmission mechanism over a long time period (overall risk connectedness).

