Proposition 1. in der Kategorie der R-Algeben existieren Coprodukte und Differenzenkokerne, wobei:

- 1. Das Coprodukt $\varinjlim_{i \in \Lambda} (\mathcal{F} : \{B_i\}_{i \in \Lambda} \hookrightarrow R Agebren einer endlichen Familie von <math>R Algebren entspricht deren Tesorprodukt \bigotimes_{i \in \Lambda} B_i$.
- 2. Seien $f,g:C_1 \longrightarrow C_2$ R-Algebra-Homomorphismen, setze $Q:=\{f(x)-g(x)\mid x\in C_2\}$.

 Dann ist $g:C_2 \longrightarrow C_2/Q$, $y\longmapsto [y]$ der Differenzenkokern von f,g.

Beweis. Zu 1.:

Nutze die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials. Es sind also der Morphismus $\psi: (\mathcal{F}: \{B_i\} \hookrightarrow (R-Algebren)) \longrightarrow \varinjlim \mathcal{F}$ und die bilineare Abbildung $g: \oplus_i B_i \longrightarrow \otimes_i B_i$ gegeben.

Konstruieren den Morphismus $\psi': \mathcal{F} \longrightarrow \otimes_i B_i$ durch $\psi'_i: B_i \longrightarrow \otimes_i B_i$, $b_i \longmapsto g(1,...,1,b_i,1,...,1)$ für $i \in \lambda$. Konstruiere außerdem die bilineare Abbildung $f: \oplus_i B_i \longrightarrow \varinjlim \mathcal{F}, \ b \longmapsto \prod_i \psi_i b_i$.

Durch die universellen Eigenschaften erhalten wir die R-Algebra-Homomorphismen $\varphi: \lim_{i} \mathcal{F} \longrightarrow \bigotimes_{i} B_{i}$ und $\phi: \bigotimes_{i} B_{i} \longrightarrow \lim_{i} \mathcal{F}$.

Weiter ergeben sich auch durch die universellen Eigenschaften $id_{\lim \mathcal{F}} = \phi \circ \varphi \ und \ id_{\bigotimes_i B_i} = \varphi \circ \phi.$

Zu 2.:

$$q \circ f = q \circ g$$
 gilt, da $kern(q) = Q = \{f(x) - g(x) \mid x \in C_2\}$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(C_2, T')$ mit $q' \circ f = q' \circ$ gegeben.

$$q' \circ (f - g) = 0 \Rightarrow Q \text{ ist Untermodul von } Q' := kern(q').$$

Nach HOMOMORPHIESATZ [kommutative Algebra 2.10] gilt $C_2/Q' \simeq (C_2/Q)/(Q'/Q)$). \Rightarrow für $q': C_2 \longrightarrow (C_2/Q)/(Q'/Q)$), $y \longmapsto [y]'$ ist eine isomorphw Darstellung von $q': C_2 \longrightarrow T'$ $\Rightarrow \exists ! \varphi: C_2/Q \longrightarrow (C_2/Q)/(Q'/Q)$, $[y] \longmapsto [y]'$ mit $(\varphi \circ q) = q'$.