# Aula-11 Teoria Cinética dos Gases - 2



Física Geral II - F 228 1º semestre, 2021

• Notar que a função distribuição  $f(\mathbf{v})$  não depende de  $\mathbf{r}$ ; depende somente do módulo de  $\mathbf{v}$ , ou seja,  $f(\mathbf{v}) = f(v)$ .

Expressando por unidade de volume: (Distribuição de velocidades)

$$f(\mathbf{v})d^3\mathbf{v} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}e^{-\frac{mv^2}{2kT}}d^3\mathbf{v}$$

• O Nº médio de partículas por unidade de volume cujo módulo da velocidade,

ou rapidez (speed), está entre v e v + dv será:

$$F(v)dv = \int_{v}^{v+dv} f(v)d^{3}v = f(v)4\pi v^{2}dv$$

$$F(v) dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} 4\pi v^2 dv$$

Normalização: 
$$\int_{0}^{\infty} F(v) dv = n = \frac{N}{V}$$



Probabilidade: 
$$P_r(v) = F(v)/n$$

$$P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 dv$$

• Velocidade mais provável (máximo!):

Velocidade mais provavel (maximo!):
$$\frac{dF(v)}{dv} = \frac{d}{dv} \left[ 4\pi n \left( \frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 \right] = 0$$



$$2v e^{-\frac{mv^2}{2kT}} - v^2 \left(\frac{m}{kT}v\right) e^{-\frac{mv^2}{2kT}} = 0 \quad \to \quad v_{mp}^2 = \frac{2kT}{m} \quad \to \quad v_{mp} = \sqrt{\frac{2kT}{m}}$$

• Velocidade média:  $\overline{v} = \int_{0}^{\infty} v P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \int_{0}^{\infty} e^{-\frac{mv^2}{2kT}} v^3 dv$ 

$$\overline{v} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \left[\frac{1}{2} \left(\frac{m}{2kT}\right)^{-2}\right] = \sqrt{\frac{8}{\pi} \frac{kT}{m}} P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 dv$$

$$P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}} v^2 dv$$

• Velocidade mais provável (*máximo!* ):

$$v_{mp} = \sqrt{\frac{2kT}{m}}$$

• Velocidade média:  $\overline{v} = \int_{0}^{\infty} v P_r(v) dv = \sqrt{\frac{8}{\pi} \frac{kT}{m}}$ 



• Velocidade média quadrática: 
$$\overline{v^2} = \int_0^\infty v^2 P_r(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \int_0^\infty e^{-\frac{mv^2}{2kT}} v^4 dv$$

$$\overline{v^2} = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \left[\frac{3}{8}\sqrt{\pi} \left(\frac{m}{2kT}\right)^{-\frac{5}{2}}\right] = \frac{3kT}{m} = \frac{3RT}{M_{mol}} \implies v_{rms} = \sqrt{\frac{3RT}{M_{mol}}}$$

$$\longrightarrow |v|$$

$$v_{rms} = \sqrt{\frac{3RT}{M_{mol}}}$$

$$R = N_A k$$



$$P_r(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp(-\frac{mv^2}{2kT})$$

$$F(v_1, v_2) = \int_{v_1}^{v_2} P_r(v) dv$$

$$\int_{0}^{\infty} P_r(v) dv = 1$$

$$F(v_1, v_2) = \int_{v_1}^{v_2} P_r(v) dv$$

$$\int_{0}^{\infty} P_r(v) \, dv = 1$$

Para 1 mol:

$$dQ = C dT$$



SE for a pressão constante:

$$dQ_P = C_P dT$$

Calor específico molar a pressão constante

**SE** for a volume constante:

$$dQ_{V} = C_{V} dT$$

Calor específico molar a volume constante

$$dV = 0$$

$$dE_{\rm int} = dQ_{\rm V} - dW$$

$$dE_{\rm int} = dQ_{\rm V} = C_{\rm V} dT$$

$$C_V = \frac{\partial E_{\text{int}}}{\partial T}$$

Então: 
$$C_V = \frac{3}{2}R = 12,5 \text{ J/(mol \cdot K)}$$

#### • A *Volume* constante



1 mol de gás ideal monoatômico:

$$E_{\rm int} = \langle K \rangle = \frac{3}{2} N_A kT = \frac{3}{2} RT$$

$$R = N_A k$$

• A *Pressão* constante

$$dE_{\rm int} = dQ_p - dW$$

$$dE_{\rm int} = C_p dT - p dV$$

Mas  $dE_{int}$  pode ser expresso apenas em termos de dT, independendo do processo:



$$dE_{\text{int}} = C_p dT - p dV = C_V dT \implies C_p dT - R dT = C_V dT$$

$$C_p = C_V + R$$

Usando (para 1 mol):

$$pV = RT \rightarrow pdV = RdT$$

$$C_P = C_V + R$$

• Para 1 mol de um gás ideal MONOATÔMICO:

$$C_{v} = \frac{3}{2}R$$

$$C_P = \frac{5}{2}R$$

$$C_{V} = \frac{3}{2}R$$

$$C_{P} = \frac{5}{2}R$$

$$\gamma \equiv \frac{C_{P}}{C_{V}} = \frac{5}{3}$$

• Onde  $\gamma$  é a razão entre os calores específicos molares do gás.

$$C_V = \frac{\partial E_{\text{int}}}{\partial T}$$

• A *Volume* constante

Monoatômicos Molécula $C_V$  (J/mol.K)He12,5Ar12,6

20,8

 $\approx \frac{3}{2}R = 12,5$ 

Diatômicos  $I_2$  20,7

 $\Rightarrow \approx \frac{5}{2}R = 20.8$ 

Poliatômicos NH<sub>4</sub> 29,0

> 3R = 24.9!

$$CO_2$$
 29,7

#### Teorema da equipartição de energia (J. C. Maxwell)

IONO ATÔMICO

Graus de liberdade

Energia Interna (por molécula)

MONOATÔMICO

Gás ideal



Translação 3D: 3

 $E_{int} = 3\frac{1}{2}kT$ 

DIATÔMICO



Translação 3D: 3
Rotação 2 eixos: 2
Vibração 2 modos: 2
(em altas temperaturas!)

→ 5 ou 7 (T alta)

 $E_{int} = 5\frac{1}{2}kT$ ou:  $E_{int} = 7\frac{1}{2}kT$ 

POLIATÔMICO



q

 $E_{\rm int} = q \frac{1}{2} kT$ 

 $C_{v} = \frac{q}{2}R$ 

• Efeitos Quânticos:  $E_{\rm int}$  assume valores discretos acima de determinadas temperaturas.



• Generalizando para 1 mol de gás ideal, com q graus de liberdade:

$$E_{\rm int}(T) = \frac{1}{2}qRT$$

$$R = N_A k$$

$$R = N_A k$$

$$C_{V} = \left(\frac{\partial E_{\text{int}}}{\partial T}\right)_{V} \qquad C_{p} = C_{V} + R \qquad \gamma = \frac{C_{p}}{C_{V}}$$

$$C_p = C_V + R$$

$$\gamma = \frac{C_p}{C_V}$$

$$C_V = \frac{q}{2}R$$
,  $C_P = \left[\frac{q}{2} + 1\right]R$ ,  $\gamma = \frac{q+2}{q}$ 

## Livre caminho médio

Movimento aleatório das moléculas de um gás: há colisões entre as moléculas





Distância média entre colisões:

Livre Caminho Médio





#### Livre caminho médio

$$\overline{\ell} = \frac{1}{(\sqrt{2})\pi d^2(N/V)}$$

$$\frac{N}{V} = \frac{p}{kT}$$

$$\overline{\ell} = \frac{kT}{(\sqrt{2})\pi d^2 p}$$

Gases a

T = 300 K

| Pressão (Pa)         | 10 <sup>-6</sup> | 10-3             | 1                | 10³  | 10 <sup>5</sup> |
|----------------------|------------------|------------------|------------------|------|-----------------|
| Livre percurso médio | km               | m                | mm               | μm   | nm              |
| Ar                   | 6.8              | 6.8              | 6.8              | 6.8  | 68              |
| Argon                | 7.2              | 7.2              | 7.2              | 7.2  | 72              |
| CO₂                  | 4.5              | 4.5              | 4.5              | 4.5  | 45              |
| Hidrogênio           | 12.5             | 12.5             | 12.5             | 12.5 | 125             |
| Vapor de água        | 4.2              | 4.2              | 4.2              | 4.2  | 42              |
| Hélio                | 19.6             | 19.6             | 19.6             | 19.6 | 196             |
| Azoto                | 6.7              | 6.7              | 6.7              | 6.7  | 67              |
| Neon                 | 14.0             | 14.0             | 14.0             | 14.0 | 140             |
| Oxigênio             | 7.2              | 7.2              | 7.2              | 7.2  | 72              |
| Pressão (mbar)       | 10 <sup>-8</sup> | 10 <sup>-5</sup> | 10 <sup>-2</sup> | 10   | 1000            |



## Processos adiabáticos

(Quase equilíbrio!)

$$dQ = 0 \longrightarrow dE_{int} = -dW = -p \, dV$$

$$n \text{ mols}: dE_{\text{int}} = n C_V dT \longrightarrow n dT = \frac{dE_{\text{int}}}{C_V} = -\frac{p}{C_V} dV$$

$$pV = nRT \implies pdV + Vdp = nRdT \implies n dT = \frac{pdV + Vdp}{R}$$

$$\frac{pdV + Vdp}{R} = \frac{-pdV}{C_V}$$

$$pdV + Vdp = -pdV(\gamma - X)$$

$$C_p = C_V + R \implies \frac{R}{C_V}$$

## Processos adiabáticos (Quase equilíbrio!)

$$\frac{dp}{p} = -\gamma \frac{dV}{V}$$

$$\Rightarrow \ln p + \gamma \ln V = cte$$

$$pV^{\gamma} = p_0 V_0^{\gamma} = cte$$



Isolamento



$$p_{\scriptscriptstyle 1}V_{\scriptscriptstyle 1}^{\scriptscriptstyle \gamma}=p_{\scriptscriptstyle 2}V_{\scriptscriptstyle 2}^{\scriptscriptstyle \gamma}=Cte$$

## Processos adiabáticos

(Quase equilíbrio!)

$$pV^{\gamma} = p_0 V_0^{\gamma} = cte$$

$$pV = nRT$$

$$TV^{\gamma-1} = cte^*$$

$$T p^{\frac{1-\gamma}{\gamma}} = cte^{**}$$

## Processos adiabáticos

(Quase equilíbrio!)

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} = p V^{\gamma} = C$$

$$W_{i\to f} = \int_{V_i}^{V_f} p dV = \int_{V_i}^{V_f} CV^{-\gamma} dV$$



$$W_{i \to f} = \left[\frac{CV^{-\gamma+1}}{-\gamma+1}\right]_{V_i}^{V_f}$$

$$W_{i \to f} = \frac{CV_f^{-\gamma+1} - CV_i^{-\gamma+1}}{-\gamma+1} = \frac{p_f V_f - p_i V_i}{-\gamma+1}$$

$$W_{i \to f} = -\frac{(p_f V_f - p_i V_i)}{\gamma - 1}$$

## Expansão Adiabática de um Gás Ideal

#### Expansão Adiabática Livre:



$$p_i V_i = nRT_i$$
 ;  $p_f V_f = nRT_f$ 

$$\Delta T = T_f - T_i = 0$$



$$p_i V_i = p_f V_f$$

- Processo envolve situações fora de equilíbrio
- Não é descrito pela termodinâmica

#### Expansão Adiabática Lenta:



$$p_i V_i^{\gamma} = p_f V_f^{\gamma}$$

$$T_i V_i^{\scriptscriptstyle \gamma-1} = T_f V_f^{\scriptscriptstyle \gamma-1}$$

- Processo de quase equilíbrio
- É descrito pela termodinâmica

## Energia interna

Gás ideal monoatômico

Energia interna ( $E_{int}$ ) = Energia cinética total média < K >

$$E_{\rm int} = \langle K \rangle = \frac{3}{2} NkT = \frac{3}{2} nRT$$

$$R = N_A k$$

## Livre caminho médio

#### Trajetória do volume de exclusão



Seção transversal do tubo percorrido pelo volume de exclusão:

$$\sigma = \pi d^2$$

Volume varrido num tempo  $\Delta t$ :

$$V_{t} = \sigma \, \overline{v}_{rel} \Delta t$$

Espaço percorrido pelo centro da esfera de exclusão

## Livre caminho médio

$$V_{t} = \sigma \, \overline{v}_{rel} \, \Delta t$$

Número médio de colisões: (por unidade de volume)

$$\eta = \frac{N}{V}V_{t} = \frac{N}{V}\sigma\overline{v}_{rel}\Delta t$$

Frequência média de colisões: 
$$\bar{f} = \frac{\eta}{\Delta t} = \frac{N}{V} \sigma \bar{v}_{rel}$$

Livre Caminho Médio (supondo: $\overline{v}_{recipiente} \approx \overline{v}_{rel-molec}$ ):  $\overline{\ell} = \frac{\overline{v}_{rec}}{\overline{\epsilon}}$ 

$$\overline{\ell} = \frac{\overline{v}_{rec}}{\overline{f}}$$

$$\overline{\ell} = \overline{v}_{rec} \left( \frac{\Delta t}{\eta} \right) = \frac{\overline{v}_{rec} V}{N \sigma \overline{v}_{rel}} \approx \frac{1}{(N/V)\pi d^2}$$

$$\sigma = \pi d^2$$

$$\sigma = \pi d^2$$

## Distribuição de velocidades de Maxwell

$$P(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$

Fração de moléculas com módulo de velocidade (*rapidez*) entre  $v_1$  e  $v_2$ :  $F(v_1, v_2) = \int_{-v_2}^{v_2} P(v) dv$ 

$$F(v_1, v_2) = \int_{v_1}^{v_2} P(v) dv$$

Condição de Normalização: 
$$\int_{0}^{\infty} P(v) dv = 1$$

Velocidade média:

$$\langle v \rangle = v_{m\acute{e}dia} = \int_{0}^{\infty} vP(v) dv = \sqrt{\frac{8RT}{\pi M_{mol}}}$$

Velocidade média quadrática:

$$< v^{2} > = \int_{0}^{\infty} v^{2} P(v) dv = \frac{3RT}{M_{mol}} = v_{rms}^{2}$$