

EE2022 Electrical Energy Systems

Lecture 7: Three-Phase Circuit Analysis Summary and Problem Solving

Advantages of Balanced 3-Phase Systems

- When compared to three single-phase circuits, threephase circuits have better use of equipment and materials
 - More power can be transmitted per conductor
 - Lesser power losses in the conductors
- This implies reduced capital and operating costs of transmission and distribution.
- We can calculate voltage and current for only one phase and refer to other phases easily.

An Additional Advantage of Balanced 3-Phase Circuit

- Constant power transfer to load.
 - This also implies constant mechanical power input for a generator.
 - When mechanical power input is constant, mechanical shaft torque is also constant.
 - This helps to reduce shaft vibration and noise, extending the machine's lifetime.

1.4. Paul proces has donte-frequency (2 w)

Three-Phase Voltage Sources

$$v_{a} = \sqrt{2}|V|\cos(\omega t)$$

$$v_{b} = \sqrt{2}|V|\cos(\omega t - \frac{2\pi}{3})$$

$$v_{c} = \sqrt{2}|V|\cos(\omega t - \frac{4\pi}{3})$$

All three voltage sources have the same voltage magnitude, with 120 degrees apart.

Balanced Three-Phase Circuit

Positive and Negative sequence

Line-To-Neutral (Phase) Voltage

 V_{an} , V_{bn} , V_{cn} are called line-to-neutral voltage or phase voltage.

Line-To-Line Voltage

Vab > Van - Von

 Voltage is given as line-to-line voltage by convention.

1. A balanced three-phase Y load has one phase voltage of $V_{cn}=277 \angle 45^{\circ} \text{ V}$. If the phase sequence is negative sequence i.e. acb, find the line voltages V_{ca} V_{ab} , and V_{bc}

(Answer: $V_{ca}=480 \angle 15^{\circ} V$, $V_{ab}=480 \angle 135^{\circ} V$, and $V_{bc}=480 \angle -105^{\circ} V$)

Vca = Vcn - Van

= 13. Vcn (-36)

= 13. × 277 (45) (-36)

= 13. × 277 (45) (-36)

Vals = 13. Van /90° = 13 x 277 /45° /90° = 13 x 277 / 135°.

Line Current VS Phase Current

Wye Connection

Delta Connection

Currents through the three-phase conductor lines are called 'Line currents'.

Currents carried by the load impedance are called 'Phase currents' or 'Load Current.

Delta-Wye Load Transformation

Summary

- Three-phase voltage sources
 - Positive and negative sequences
- Balanced three-phase circuit
 - Conditions
 - Advantages
- Balanced three-phase circuit
 - Line-to-neutral (phase) voltage
 - Line-to-line (line) voltage

- Line current
- Wye-Delta connection
- Delta-Wye load transformation

$$Z_{\Delta} = 3Z_{Y}$$

Three Phase Power Calculation

 Three phase power is found from summation of each phase power.

$$S_{3\Phi} = V_{an}I_a^* + V_{bn}I_b^* + V_{cn}I_c^*$$

Balanced Three-Phase Power

From three phase power,

$$S_{3\Phi} = V_{an}I_a^* + V_{bn}I_b^* + V_{cn}I_c^*$$

 When the system is balanced, (assume positive sequence) we can write,

$$S_{3\Phi} = V_{an}I_a^* + V_{an} \angle -120^{\circ} (I_a \angle -120^{\circ})^* + V_{an} \angle 120^{\circ} (I_a \angle 120^{\circ})^*$$

Positive
$$V_{cn} = 1 \angle + 120^{\circ}$$
 Positive
$$V_{an} = 1 \angle 0^{\circ}$$
 sequence,
$$V_{bn} = 1 \angle -120^{\circ}$$

Delta/Wye Connected 3-Phase Load

$$I_{a} = \sqrt{3}I_{ab} \angle -30^{\circ}$$
$$|S_{3\Phi}| = 3|V_{ab}I_{ab}^{*}| = \sqrt{3}|V_{ab}|I_{a}|$$

$$|S_{3\Phi}| = 3|V_{an}I_a^*| = \sqrt{3}|V_{ab}|I_a|$$

$$|S_{3\Phi}| = \sqrt{3}|V_{\text{Line-To-Line}}|I_{\text{Line}}|$$

Assumption
Single-line diagram
Example example example...

PER PHASE ANALYSIS

Per Phase Analysis: Assumption

It must be balanced three-phase circuit.

$$I_n = I_a + I_b + I_c = 0$$

Steps of Per Phase Analysis

- Make sure that the three-phase system is balanced.
 - The three-phase sources need to have the same
 magnitude with 120 degree phase difference.
 - The three-phase impedances must be of the same value (both phase and magnitude).
- Convert all Delta-connected sources/loads to Wye-connected sources/loads.
- Per phase analysis reduce three-phase circuit to single-phase circuit. We can apply the same concept used in single-phase.

2/2/2015

Example

Given a one-line diagram, j5 j2.5 3 Load 2, Y-Connected Inductive: ZL = j10 Source,∆-Connected Load 1, Δ-Connected Capacitor: ZC ≠ -j15 Positive sequence j2.5 j5 j10 -j15 15 ab caj10 j10 -j15 **2**c 3b11b 2b 1c 3c j5 j2.5 EE2022: Electrical Energy Systems j_{hree} phase Circuit Analysis

Example 2: 1-Phase diagram

Example 2: 1-Phase diagram

$$V_{2a} = V_{an} - j2.5 \times I_S = 1.5 \angle -30^{\circ}$$
 We will use this to find I_C

Example 2: Final Calculation

$$V_{2b} = V_{2a} \angle -120^{\circ}$$

$$\underbrace{I_C} = \underbrace{V_{2a} - V_{2b}}_{-j15} = \underbrace{1.5 \angle -30^{\circ} - 1.5 \angle (-30^{\circ} - 120^{\circ})}_{15 \angle -90^{\circ}} = \underbrace{\frac{\sqrt{3}}{10}}_{20} \angle 90^{\circ} A$$

Ans: $I_{S} = 0.2 \angle 60^{\circ}, I_{C} = 0.1732 \angle 90^{\circ}$

Practice Problem 1

- (Final EE2022 AY2011/12 semester 1) Find the voltage
 V1 and current I2)
 - Hint: remove the impedances that are in neutral line (why can we do this?) and transform delta to wye connection.

Ans: $V_1 = 125.37 \angle 0^{\circ}, I_2 = 103.41 \angle 120^{\circ}$

8. In a 208-V three-phase circuit a balanced Δ load absorbs 2 kW at a 0.7 leading power factor. Find Z Δ.

(Answer: 51.9 ∠-36.87° Ω)

208 / 22 22

Vu = 208 V. \ Za = 51.9/-36.88

P.f.: 0.8 leadif

207

Pour cosumed by each element 15 $\rho_{ip} = \frac{2000}{3}$.

With a avery can dust = 208V $\rho = |S| \times p.f. = V.(I)(p.f.) = V.V.p.f. = |VP.p.f.|$