ML-based Convective Parameterization

Jawairia Ahmad, Collin Victor, Lloyd Villanueva, Siddharth

Rain or no rain?: A simple ML-model to predict rain.

ML model pipeline

Input:

- Temperature*
- Specific humidity*
- Surface Pressure
- Insolation
- Surface latent heat flux
- Surface sensible heat flux

*with 60 vertical levels 60th -> surface

124 total features resolution: 1.5 by 1.5 degree

Features selected:

- Temperature*
- Specific humidity*
- Surface Pressure
- Insolation
- Surface latent heat flux
- Surface sensible heat flux

25 total features *reduced levels

No rain

Perturbation Analysis

10³

10³

Perturbation Across Precipitation Percentiles

Perturbation Across Precipitation Percentiles

Rainfall prediction sensitivity to Latent and Sensible Heat Flux

Simple CNN model- ClimSim dataset

Layer (type)	Output Shape	Param #
conv1d_2 (Conv1D)	(None, 9, 32)	96
flatten_2 (Flatten)	(None, 288)	0
dense_4 (Dense)	(None, 10)	2,890
dense_5 (Dense)	(None, 1)	11

- Training with <u>constant</u> learning rate on >1million samples
- 2) Training with <u>changing</u> learning rate on >70K samples

Total params: 2,997 (11.71 KB)

Trainable params: 2,997 (11.71 KB)

Non-trainable params: 0 (0.00 B)

Inputs

- Temp surface
- 2. Temp mid
- 3. Temp top
- 4. Sp humidity surface
- 5. Sp humidity mid
- 6. Sp humidity top
- 7. Surface pressure
- 8. Insolation
- 9. Surface latent heat
- 10. Surface sensible heat

TargetRain rate

Sensitivity to latent and sensible heat flux

Predicted rain rate is more sensitive to latent heat!

Feature Selection for Precipitation

Parametrization- ERA5

Feature Selection for Precipitation Parametrization

Input: Temperature, Specific humidity, Winds (low, mid and upper troposphere), Solar insolation, Sensible heat, Latent heat, Surface Pressure

Method: Mutual Information and Non-linear Correlation (Chatterjee, 2020)

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
$$= \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$\xi_n(X,Y) := 1 - rac{3\sum_{i=1}^{n-1}|r_{i+1}-r_i|}{n^2-1}$$

Feature Importance based on Mutual Information and Nonlinear Correlations

Mutual Information among input variables

Thanks to Sara Shamekh!