Zad. 1. Niech dany będzie model postaci

$$v = \frac{V_{max}[S]}{K_M + [S]}$$

Niech będą dane wyniki postaci:

S	V
3,6	0,004408
1,8	0,004192
0,9	0,003554
0,45	0,002577
0,225	0,001662
0,1125	0,001064
3,6	0,004836
1,8	0,004671
0,9	0,0039
0,45	0,002857
0,225	0,00175
0,1125	0,001057
3,6	0,004907
1,8	0,004521
0,9	0,00375
0,45	0,002764
0,225	0,001857
0,1125	0,001121
0	0

Zastosować:

- 1. dwuparametryczny model Michaelisa Mentena z pakietu drc
- 2. funkcję nls.

Przedstawić otrzymane wyniki oraz wykonać odpowiednie rysunki.

Zad. 2. Dla danych "Woods.txt" zastosować funkcję nls dla modelu Woodsa postaci

$$y = a * x^b * exp^{-cx}$$

Następnie wykonać rysunek przedstawiający dane oraz wyznaczoną funkcję.

- **Zad. 3.** Dla danych "dataset1.txt" i "dataset2.txt" dopasować różne funkcje z pakietu drc (np. wykładniczy, Gompertza, logistyczny, log-logistyczny i Weibulla).
- **Zad. 4.** Dla danych ryegrass z pakietu drc zastosować funkcje log-logistyczne oraz funkcje Weibulla. Oszacować parametry i wykonać rysunki.