Maths final notes

Statistics: a branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data.

Random variable is a variable whose value is unknown or a function that assigns values to each of an experiment's outcomes.

Joint PD: is a statistical measure that is used to calculate the probability of 2 events occurring together at the same time

Marginal PD: gives the probability of various values of the variable in the subset without reference to the value of the other variable

Probability mass function (PMF) is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete density function

probability density function (PDF), or density of a continuous random variable, is used to specify the probability of the random variable falling within a particular range of values, This probability is given by the integral of this variable's PDF over that range

Difference between Mutually exclusive and independent events		
Mutually exclusive events	Independent events	
When the occurrence is not simultaneous for two events then they are termed as Mutually exclusive events.	When the occurence of one event does not control the happening of the other event then it is termed as an independent event.	
The non-occurrence of an event will end up in the occurrence of an event.	There is no influence of an occurrence with another and they are independent of each other.	

The mathematical formula for mutually exclusive events can be represented as P(X and Y) = 0	The mathematical formula for independent events can be defined as P(X and Y) = P(X) P(Y)
The sets will not overlap in the case of mutually exclusive events.	The sets will overlap in the case of independent events.

Exhaustive events: In probability, a set of events is collectively exhaustive if they cover all of the probability space:

Discrete random variable: A discrete random variable has a countable number of possible values. The probability of each value of a discrete random variable is between 0 and 1, and the sum of all the probabilities is equal to 1. It has PMF(probability mass function)

Continous random variable: Continuous random variables, on the other hand, take on values that vary continuously within one or more real intervals, and have a cumulative distribution function (CDF) that is absolutely continuous. It has pdf (probabilty distribution function)

Mathematical expectation: Mathematical expectation, also known as the expected value, which is the summation of all possible values from a random variable.

It is also known as the product of the probability of an event occurring, denoted by P(x), and the value corresponding with the actually observed occurrence of the event.

Moments

		(Noilbain - Moan)	28
#	Moments	Contract from the contract of	*
Abt or	Moments	About mean	About any
the property	79	µ8	softwar har
es Ela-o)		Eca-M)	E(2-a)2
ges pho=1	dy 1	$\mu_0' = 1$	my = 1
wy y'= E(X)	= mean	µ=0	
		do do	pristing 4
ph = ECA	(2)	$\mu_2 = Varians$ $6^2 = E(n^2) - ($	01 12
120	S. C.	6?= E(x2)-(E(n))
			54 10 142

Skewness: Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis:

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution. That is, data sets with high kurtosis tend to have heavy tails, or outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. A uniform distribution would be the extreme case.

Change of origin in mgf

Changes the mean but variance remains same

Change in scale in mgf

Changes the mean and variance

Weak law of large numbers:

Central limit theorem:

The central limit theorem states that if you have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population <u>with</u> <u>replacement</u>, then the distribution of the sample means will be approximately normally distributed.

Population: it is the collection of all items of interest to our study and is usually denoted by an uppercase N, the numbers we have obtained when using a population are called parameters (u and sigma)

Sample:

Sample:		
	election of some	- section
from the who	le population 1	s known
as sample.		No to the second

Sampling terminology

Sampling:

Sampling :	process	ef	drawing	sample
Fundamentral	assum	ptio	2	
4) rando	m sam	plino	V W SANCI	t.L.
	3	-		

Simple sampling:

simple	sampling:	A	special	case	of
vandom	sampling	in	which	each	event
has the	chance chance	pro	balility.	el su	ccess
and the	chance	01.3	uccess	for de	diff
events	are inde	pend	erd :		1 11

Parameters and staistics:

12 8		ne parran	of the pop	
		30	US BRITYER	N. Inc.
40	nstants	San	uple das	\$ S (5)
			Sautes!	
			Roman -> 8	

Objective of sampling:

4	max	info	camp	boph	202	
				, time		
4	find	best	possi	be valu	e of the	e paramet
				cond".		
						bility of
4	here	Batin	sales.		,	5 0

Sampling error:

Sampling error is the difference between the sample.

measure and the corresponding population measure due to the fact that the sample is not a perfect representation of the population.

Properties os sampling means and variance

Properties of the Distribution of Sample Means.

The mean of the Sample means will be the Same as the population mean.

The Standard deviation of the Sample means will be smaller than the Standard deviation of the population, and will be equal to the population standard deviation deviated by the Square root of the Sample Size.

Satistical interference

Statistical interference

Is the logic of sompting theory is
the logic of induction in which we
have the from a particular (sample)
to general (population). Such generalisation a from sample to population is
Statistical interference.

sampling distribution

	# Simple Sampling A special cone
H	campling distribution the distribution
12	of frequencies of mon of all possible
	Sine samples of size n is sampling
2	Vishibution of meany (similar fors)
	paper drawing each cample we put
	back the sample so that pop remains
1	

Standard error

	L 3 & ONE POTOMETERA.	
#	Standard error (SE)	-601
	4 Standard deviation of sampling	
	distribution.	4
C 9 33 2-1	Is used to assess the difference sow	
	expected and observed values.	101
	4 _ = precision. (reciprocal)	
	4 1 = précision. (réciprocal) SÉ	
	4 n > 30 (large sample)	اصلاف
Demoni	14 n > 30 (large sample) n < 30 (small sample)	
-	Is sampling distribution of large	-
34 16	Sample = normal (assumption)	-

Statistical hypothesis

	Daw.
Xof	ineral (SH2) the restant of the original
#	Statistical hypothesis assumption about
MALE	the population which may or may not
	be true are called SU.

Testing hypothesis

*	Testing hypothesis: The methods consists in
tolly s	assuming the hypothesis is correct and
6 900	then computing the p of getting
	the observed cample.
	1) If this p'is less team a preasigned
	value then hypothesis is wrong.
	rejection - false.

Errors type1 and type2

#	Essop	
	Type I Type II	
1035 3	rejected while it accepted to while	
	should be accepted it should be rejected	
A real	the st majore with controls within the	
	aims at limiting to aims to minimise	
6:1 b	aims at limiting to aims to minimise see preassigned value	
	forman lanviour to some	
-	best way to minimise both is to increase	-
060	Rample Size (n)	

Hull to hypothesis: The hypothesis formulated for the sake of rejecting it under the assumption that it is true.

I denoted by the mean that on the basis of dististing calculated from the sample we do not reject it.

Level of significance and critical region

1	
#	level of light comce.
glister =	level of significance: 1) the p revel below which we reject
9198 ad	hypothesis believed stand
#	sample value falling is rejected
NEW MIN	sample value falling is rejected
	generally take 2 regions (5% and 1:0)
	area of normal curve)
ADMINI	as i stack szimminin at unou that
	give a of both sides are considered - & double
	tail terme eg: coin toss
Selmon L	area of I side (right) - single tail.

Test of significance

-		Date:
軒	test of significance: procedur	a which enable
	us to accept or reject.	-
	4 diff blu sample and p	roph values.
	4 large difference - again	inst hypothesis
	4 small - fluctuations of	sampling
	31 18	

Fitting to straight line, parabola, exponential

	C	Circle State	AT THE THE THE
#	fitting ob		Ti
	St. line	parabola	exponent
y =	atbu	y=a+bx+cn2	y=as2
Zy :	at ben	0	0
Eny	= 0501+6522	Same	logy = logat
0	9 (0)	# B B B	nulogy
	3 3 3 3 3		YZA+BX
	5 2 35		Came

Tchebycheffs

#	Tcheby cheff's	
	3 0	
	P[
	K2	

Markov

Attribute sampling refers to a statistical sampling tool used by the auditors to analyze the features of a particular population

Confidence limits for the mean are an interval estimate for the mean. Confidence limits tell you how accurate your estimate of the mean is likely to be.

The chi-square compares the size any discrepancies between the expected results and the actual results, given the size of the sample and the number of variables in the relationship.

Degrees of Freedom refers to the maximum number of logically independent values, which are values that have the freedom to vary, in the data sample.

Goodness of fit test helps you see if your sample data is accurate or somehow skewed

The significance level, also denoted as alpha, is a measure of the strength of the evidence that must be present in your sample before rejecting the null.

In a **test of independence**, we state the null and alternative hypotheses in words. Since the contingency table consists of two factors, the null hypothesis states that the factors are independent and the alternative hypothesis states that they are not independent (dependent).

The **contingency coefficient** is a coefficient of association that tells whether two variables or data sets are independent or dependent of each other

Yates' correction is to prevent the overestimation of statistical significance for small data when 'zero cells' are present in a 2×2 contingency table.

Point estimation, in statistics, the process of finding an approximate value of some parameter—such as the mean (average)—of a population from random samples of the population

interval estimation is the use of sample data to calculate an interval of possible values of an unknown population parameter;

Maximum likelihood estimation is a method that determines values for the parameters of a model. The parameter values are found such that they maximise the likelihood that the process described by the model produced the data that were actually observed.

Test statistic	Null and alternative hypotheses	Statistical tests that use it
t-value	Null: The means of two groups are equal Alternative: The means of two groups are not equal	T-test Regression tests
z-value	Null: The means of two groups are equal Alternative:The means of two groups are not equal	Z-test
F-value	Null: The variation among two or more groups is greater than or equal to the variation between the groups Alternative: The variation among two or more groups is smaller than the variation between the groups	ANCOVA MANOVA
X2-value	Null: Two samples are independent Alternative: Two samples are not independent (i.e. they are correlated)	Chi-squared test Non- parametric correlation tests

Chi sqaure variate

Test of significance for large samples:

1) For a signle proportion

Sh.
Test of significance for large samples
p(1) for single proportion
7/1 62=mpa 82.0 slicts
18.1 27=02-4 88.5 Jist 1
6
z < 1.96 (5% significant) z < 2.58 (1% significant)

2) For difference between proportion

3) For single mean

	Page No.	Page No.
	Date:	Date:
	3) for single mean	
	law of lame numbers	# Weak
	Z = X - H	
0<34	0 - 135= 1 - 12/79	mil
	r In all	08(-N
	u - mean of poph	
	67 > Standard essor	of means
	= W AK DO	L'XJ3
	57 7 5	yar of popm
	Tr	
Digrama?	+25 garificance let longe	var of semple
	J m	
	100	1000

4) Difference between 2 proportionate

Gamma function properties

- #	gamma function properties
	$\frac{fa}{x^2} = \int x^{2-1} e^{-x^2} dx$
	Tati = asa
	丁= 丁元
	m = m!

Distributions

name	for)	Mar	cumulant	mean	variance
Binomial	Mex para	(q+pet)n		NP	npa
Poisson	286-2			2	2 2
Geometric	pan			TP	P
negative binomial	* C Par			T P	PP PP
Hypergeometric	a N-acn-		C+164)	na	Page
(exerción)	Non m) (p)	140	5 2. 22	nps	Page No.
(P(x=1, x=12)	The second secon	1 12 13 12 bul)			
Nome	M W		your mount) vorionce	73.
normal distribution	0 27	2 M)2 ent	tig 2	nent he	67
Bi	Sam 1 C			Mt	- I man 2 the
	N N	-1	1) (In-r) Y	n (m) $(m+n-1)$
B2	9 B(m,n)	ANA DIA	>0 Im70	m	1-1 (m-1) (m-2)
	0	othe	mise	1	(3/3 (1-050)
8	fam n	miean z	7,0	-	$\frac{n}{a}$
amion -		m	newise.	Skewon	
1	m - shape	parame		kurtos	3 3mr 6 5
	an scal	e param	etze		

Exponentio	De on (0) 10 + +t2 +t3 +	10	102
uniforn	my swape popola exer	1 (b+a)	(a-b)-
Adistribution	~ F(2, ,2,3)	7	$2\sqrt[3]{2}(\sqrt[3]{+\sqrt[3]{-2}})$
25	2, - of sample 1	2-2	2, (7-25 (2,-4)
bi	Cf. variance of S1 S2 - variance of S2	2N+N	Page N
Cauchy	(to 1+22) -00-2 200	ju	
	Replacife no neu		