

Institutt for matematiske fag

Eksamensoppgave i TMA4125/30/35 Matematikk 4N/D

Faglig kontakt under eksamen: Tlf:		
Eksamensdato:		
Eksamenstid (fra-til):		
Hjelpemiddelkode/Tillatte hjelpemidler: Kode (Bestemt, enkel kalkulator Et stemplet gult A5-ark med egne håndskrevne n Vedlagt formelark		e sider)
Annen informasjon: Alle svar må begrunnes og skal inneholde nok d framkommet. Lykke til!	letaljer til at det komme	r klart fram svar har
Målform/språk: bokmål		
Antall sider: ??		
Antall sider vedlegg: 0		
		Kontrollert av:
Informasjon om trykking av eksamensoppgave Originalen er:		
1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ skal ha flervalgskjema □	Dato	Sign

Oppgave 1 La u være heavisidefunksjonen

$$u(t) = \begin{cases} 0 & \text{for } t < 0\\ 1 & \text{for } t \ge 0 \end{cases}$$

a) Vis at

$$\mathcal{L}(u(t-a)) = \frac{e^{-as}}{s}, \text{ for } a \ge 0.$$

b) Løs initialverdiproblemet

$$y''(t) + y(t) = u(t-1)$$
 $y(0) = y'(0) = 0$

og skisser løsningen.

Oppgave 2 Denne teller som totalt en deloppgave.

a) Finn fourierrekken til funksjonen

$$f(x) = \sin(3x) + \sin(x) + 1$$

på intervallet $[-\pi, \pi]$.

- b) KUN 4N: Finn fouriertransformen til funksjonen $f(x) = 6x \exp(-5x^2)$.
- c) KUN 4D: Gitt funksjonen

$$u(x,y) = xy + y^2 + e^{2x} + \sin y.$$

Beregn gradienten til u.

Oppgave 3

Finn løsningen til bølgelikningen

$$u_{tt} = u_{xx},$$

for $0 \le x \le \pi$ og $t \ge 0$, med randkrav

$$u(0,t) = u(\pi,t) = 0$$

og initialkrav

$$u(x,0) = \sin x, \quad u_t(x,0) = 0.$$

Side 2 av ??

Oppgave 4 Utled løsningsformelen

$$u(x,t) = \frac{1}{2c\sqrt{\pi t}} \int_{-\infty}^{\infty} f(v)e^{\frac{-(x-v)^2}{4c^2t}} dv, \quad t > 0,$$

for varmelikningen

$$u_t = c^2 u_{xx},$$

på hele x-aksen med initialkrav

$$u(x,0) = f(x)$$
.

Oppgave 5 Finn polynomet av grad 3 som interpolerer $f(x) = e^x$ i punktene x = 0, x = 1, x = 2 og x = 3.

Oppgave 6 Vis at

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

er en andre ordens approksimasjon til f''(x). Hint: Bruk Taylor-rekker. Du kan forutsette at f er tilstrekkelig glatt.

Oppgave 7 La Q[f] være en kvadraturregel som beregner en tilnærmelse til integralet

$$I[f] = \int_{a}^{b} f(x)dx.$$

Om denne kvadraturregelen vet vi følgende: Det finnes en $s \in (a, b)$ slik at

$$I[f] - Q[f] = -\frac{(b-a)^5}{6480} f^{(4)}(s).$$

Forklar hva en kvadraturregels presisjonsgrad er, og finn presisjonsgraden til ovennevnte kvadraturregel.

Oppgave 8

a) Gitt initialverdiproblemet

$$y' = \sqrt{y}, \quad y(0) = 1.$$

Skriv ned en fullstending algoritme for å finne en tilnærmelse til y(2) ved bruk av implisitt (baklengs) Eulers metode, med steglengde h = 1/N.

Utfør et steg med algoritmen med h = 0.1, dvs. finn en tilnærmelse til y(0.1).

NB! Algoritmen må gjerne skrives i form av kode i f.eks. MATLAB eller Python. Den skal være tilstrekkelig detaljert til at den kan implementeres.

b) Vi antar nå at ligningen over løses med en ikke oppgitt metode. Feilen $e_N = |y(2) - y_N|$ er målt for ulike skrittlengder h = 2/N, og resultatet er presentert i følgende konvergensplott:

Hva mener vi med en metodes orden, og hvordan kan ordenen leses av et konvergensplott som dette?

Hva er denne metodens orden?

Oppgave 9 Vi skal løse varmeligningen

$$u_t = u_{xx},$$

Side 4 av ??

for $0 \le x \le 1$ og $t \ge 0$ med randkrav

$$u(0,t) = u(1,t) = 0$$

og initialkrav

$$u(x,0) = x - x^2$$

Skriv en fullstendig algoritme som løser problemet numerisk med et eksplisitt skjema for $t \in [0,1]$. Bruk skrittlengder h=1/M og k=1/N i henholdsvis x- og t-retning.

La h = 0.2 og k = 0.02 og finn en approximasjon til løsningen u(0.4, 0.02).

Anta at du bruker algoritmen med steglengder h = k. Hvordan vil du forvente at den numeriske løsningen oppfører seg over tid? Begrunn svaret.

Fouriertransform

$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w)e^{iwx} dw$	$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx$
e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-w^2/4a}$
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{w^2 + a^2}$
$\frac{1}{x^2 + a^2}$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$
$\begin{cases} 1 & \text{for } x < a \\ 0 & \text{otherwise} \end{cases}$	$\sqrt{\frac{2}{\pi}} \frac{\sin wa}{w}$

Laplace transform

f(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
t^n	$\frac{\Gamma(n+1)}{s^{n+1}},$
	for $n = 0, 1, 2,, \Gamma(n+1) = n!$
e^{at}	$\frac{1}{s-a}$
$\delta(t-a)$	e^{-as}

$$\int x^n \cos ax \, dx = \frac{1}{a} x^n \sin ax - \frac{n}{a} \int x^{n-1} \sin ax \, dx$$
$$\int x^n \sin ax \, dx = -\frac{1}{a} x^n \cos ax + \frac{n}{a} \int x^{n-1} \cos ax \, dx$$