Maka Dalama
Math Problem 1
$(1) f(x) = -x^2$
Taking derivative of f(x), we get
f'(x) = -2x
For $x < 0$, $f'(x)$ is negative positive
x>0, f'(x) is negative positive
Hence, f(x) is decreasing for x. It is not eventual
non decreasing because for all 2 >0, it keeps decreasing
and never is Stable.
(2) $f(x) = x^2 + 2x + 1$
Taking derivate, f(x)=2x+2
For 75-1 => f(12)<0
x > 1 =) f(x) > 0
It stops deaceoung is not increasing, but eventually nondere
(2) (2)
(3) $f(n) = y + x$
$f'(x) = 3x^2 + 1$
For -oscaco, f(1) is positive
Hence, it is increasing energethere, also eventually har

	Water Building
_	Math Problem 2
	$\frac{(1) f(x) - 2x^2}{\Rightarrow 0(x^2)}, g(x) = x^2 + 1$
	$\Rightarrow O(x^2) \Rightarrow O(x^2)$
	They are asymptotically equal.
	(2) $f(x) = x^2$, $g(x) = x^3$
	(2) f(x)=x2, g(x)=x3 Her.,23 grows factors than x2,
	(3) $f(x) = 4n+1$, $g(x) = x^2-1$
	22 grows faster than 42
	(3) f(x)= 4x+1, g(x)=x2-1 x2 grows faster than 4x Hence, f(x) grows no faster than g(n), not vice vs80
-	

Problem 1 GCD Algorithm Code:

```
public class GCDAlgorithm {
    1 usage
    public static int findGCD(int m, int n) {
        while (n != 0) {
            int temp = n;
            n = m % n;
            m = temp;
        }
        return m;
    }
    public static void main(String[] args) {
        System.out.println("GCD of 12 and 8: " + findGCD( m: 12, n: 8));
    }
}
```

Problem 2: Brute Force Solution:

```
no usages
public class SubsetProblem {
    no usages
    public static List<Integer> subsetSum(int[] set, int k) {
        return subset(set, [] 0, k, new ArrayList<>());
    }

    3 usages
    private static List<Integer> subset(int[] set, int i, int k, List<Integer> subset) {
        if (k == 0) return new ArrayList<>(subset);
        if (i == set.length || k < 0) return null;
        subset.add(set[i]);
        List<Integer> include = subset(set, [] i + 1, [] k k - set[i], subset);
        if (include != null) return include;
        subset.remove(index: subset.size() - 1);
        return subset(set, [] i + 1, k, subset);
    }
}
```

Problem 3: Greedy Strategy

Consider the sorted set of numbers: {1, 5, 7, 10, 15}, and the target sum is 12.

• **Greedy Output:** {1, 5} (Total = 6, which is incorrect!)

• Correct Subset: {5, 7} (since 5 + 7 = 12)

This shows that the greedy strategy doesn't always work. Here's why:

- The greedy approach fails because it picks the smallest numbers first, which blocks better combinations.
- In this case, by choosing 1 and 5, the algorithm misses the combination of 7 and 5, which would give the exact sum.
- The strategy of picking smaller elements doesn't always lead to the optimal solution, especially in cases where larger elements might be better suited for reaching the target sum.

Problem 4:

It really depends on the situation. If the subset T minus the smallest number (sn-1) still adds up to the target sum (k'), then removing sn-1 can still lead to a valid solution. However, sometimes sn-1 is crucial to reaching the target sum, and removing it could break the solution. So, removing sn-1 from the set T doesn't guarantee we still have a valid solution.