

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.315.6494
Attorney Docket No. 14088/299978

FIGURE 1-1 SYSTEM BLOCK DIAGRAM

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-2
TRANSMITTER WITH KNOWN OUTPUT FUNCTION

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-3
TRANSMITTER WITH MAGNETIC FIELD MONITOR

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-4A
RESIDUAL MAGNETIC FIELD NULLING
USING A NULING MAGNETIC FIELD

FIGURE 1-4B
VOLTAGE NULLING OF RESIDUAL FIELD SENSOR OUTPUT

FIGURE 1-5A
TRANSMITTER COIL CROSS SECTION FOR SINGLE WIRE COIL
SHOWING SENSOR POSITION AND RESIDUAL FIELD

FIGURE 1-5B
TRANSMITTER COIL CROSS SECTION FOR NORMAL RECTANGULAR COIL
SHOWING SENSOR POSITION AND RESIDUAL FIELD

FIGURE 1-5C
TRANSMITTER COIL CROSS SECTION FOR SHAPED COIL
SHOWING SENSOR POSITION AND RESIDUAL FIELD

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-6
GRADIENT SENSING USING A MATCHED SENSOR PAIR

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-7
SENSOR PAIR CALIBRATION
USING TWO TRANSMITTER EQUAL COILS

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-8
SENSOR PAIR CALIBRATION
USING A LARGE SOLENOID COIL

FIGURE 1-9
SYSTEM WITH MULTIPLE SENSOR PAIRS
AND SYNCHRONOUS DETECTION
BASED ON DSP PROCESSORS

U.S. Patent Application Serial No. 10/827,089
Filed: April 19, 2004
Inventor: James Wagner Larsen
For: Systems and Methods Useful For Detecting Presence
And/Or Location Of Various Materials
Attorney: James L. Ewing, IV
Telephone: 404.815.6494
Attorney Docket No. 14088/299978

FIGURE 1-10
AN 8 SECTION (+ - + + - + - -)
TIME ENCODED WAVEFORM

FIGURE 2-1
SYNCHRONOUS PULSE WIDTH MODULATION AMPLIFIER

FIGURE 2-2
TYPICAL PULSE WIDTH MODULATION WAVEFORMS

FIGURE 3-1
STANDARD TANK CIRCUIT

FIGURE 3-2
AT RESONANCE TOTAL CURRENT IS ZERO
BECAUSE, $I_L = -I_C$

FIGURE 3-3
TANK CIRCUIT WITH SERIES CAPACITOR
AND INDUCTOR TO LIMIT OFF RESONANCE I_C

FIGURE 3-4
TANK CIRCUIT WITH TWO RESONANCES

FIGURE 3-5
TANK CIRCUIT WITH
SINGLE FREQUENCY BLOCKING CIRCUIT

FIGURE 3-6
TANK CIRCUIT WITH
A MULTIPLE FREQUENCY BLOCKING CIRCUIT
FOR N DISCRETE FREQUENCIES

FIGURE 4-1
WHEN SWITCH IS CLOSED CIRCUIT OSCILLATES
AT RESONANT FREQUENCY, w_R

FIGURE 4-2
AN H-BRIDGE SWITCH NETWORK
CONNECTINT THE CHARGED CAPACITOR
TO THE LOAD COIL

FIGURE 4-3
SWITCHED CAPACITOR CIRCUIT WAVEFORMS

FIGURE 4-4
PULSE WIDTH MODULATED
SWITCHED CAPACITOR RESONATOR

FIGURE 4-5
SWITCHED CAPACITOR RESONATOR
WITH INTEGRAL SWITCHING POWER SUPPLY

FIGURE 5-1
SENSE COIL EQUIVALENT CIRCUIT

FIGURE 5-2
OPERATIONAL AMPLIFIER BASED
VOLTAGE TO CURRENT CONVERSION CIRCUIT

SENSITIVITY FOR #32 WIRE WITH Rf+10MOhm

FIGURE 5-3

NOTE: AN INTEGER NUMBER OF CYCLES PER TIME STEP
(3 IN THIS PATTERN)

FIGURE 6-1
A 4 SEGMENT (+ - - +)
TIME ENCODED WAVEFORM

NOTE: THE INTEGRAL OF THIS WAVEFORM WITH A CONTINUOUS SINE WAVE IS ZERO

FIGURE 6-2
CORRELATION OF THE 4 SEGMENT (+ - - +)
ENCODED WAVEFORM WITH ITSELF

NOTE: THE INTEGRAL OF THIS WAVEFORM WITH A CONTINUOUS SINE WAVE IS 0.0526

FIGURE 6-3
CORRELATION OF THE 19 SEGMENT
(++++--++-++---+-+)
ENCODED WAVEFORM WITH ITSELF

NOTE: THE INTEGRAL OF THIS WAVEFORM WITH A CONTINUOUS SINE WAVE IS -0.1

FIGURE 6-4
CORRELATION OF THE 20 SEGMENT
 $(+---++--+-+--++-+-+--)$
ENCODED WAVEFORM WITH ITSELF

NOTE: THE INTEGRAL OF THIS WAVEFORM WITH A CONTINUOUS SINE WAVE IS ZERO

FIGURE 6-5
CORRELATION OF THE 22 SEGMENT
(++++---+---+-+++-++-)
ENCODED WAVEFORM WITH ITSELF

FIGURE 7-1
LOCAL MAGNETIC FIELD GENERATION
FOR RESIDUAL FIELD CANCELLATION