

Mathematical Statistics and Data Analysis

Lecture 8: Parameter Estimation

Lyu Ni

DaSE@ECNU (Ini@dase.ecnu.edu.cn)

November 24, 2019

Outlines

- Point Estimation
- Methods of Finding an estimate Method of Moments Method of Maximum Likelihood
- 3 Property of Estimates
 Unbiasedness

Γπ: -: - - - · ·

Efficiency

Consistency

Asymptotic Normality

Mean Squared Error

Uniform Minimum Variance Unbiased Estimate, UMVUE

Cramér-Rao Inequality

4 Bayesian Approach

Reading Material

Textbook:

• Rice: Chapter 8;

Mao: Chapter 6;

Point Estimation

Example

On the Error of Counting with a Haemacytometer (1907) by Student.

- The famous statistician William Gosset, who worked for Guinness brewery, took measure of the number of yeast cells per square in a hemocytometer. The count of yeast cells could be model with a probability distribution known as 'Poisson distribution' $P(\theta)$.
- This distribution $P(\theta)$ has an unknown parameter θ .
- The data is shown as follows:

Containing	0	1	2	3	4	5
Actual	213	128	37	18	3	1

• Problem: What is a guess of θ ?

Point Estimation

Example (Con'd)

Definition

Suppose that x_1, x_2, \dots, x_n is a sample from a population with unknown parameter θ . The statistic $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ is called an **point estimate** of θ .

Point Estimation

Example (Con'd)

Definition

Suppose that x_1, x_2, \dots, x_n is a sample from a population with unknown parameter θ . The statistic $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ is called an **point estimate** of θ .

The kth moment of a random variable X is defined as

$$\mu_k = E(X^k).$$

Suppose that x_1, x_2, \dots, x_n is a sample. The kth sample moment is defined as

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$

Then, we can view a_k as an estimate of μ_k , and thus let $\hat{\mu}_k = a_k$.

Idea

The method of moments estimates parameters by finding expressions for them in terms of the lowest moments and then substitution sample moments into the expressions.

- The p.d.f. or p.m.f. of the population is $f(x:\theta_1,\cdots,\theta_k)$;
- $(\theta_1, \dots, \theta_k) \in \Theta$ is an unknown parameter vector;
- Θ is a parameter space.
- Suppose that the *i*th moment μ_i exists, $i=1,2,\cdots,k$;
- The parameters $\theta_1, \dots, \theta_k$ can be written as the functions of μ_1, \dots, μ_k , that is $\theta_j = \theta_j(\mu_1, \dots, \mu_k)$;
- The method of moments estimates of θ_i is

$$\hat{\theta}_j = \theta_j(\hat{\mu}_1, \cdots, \hat{\mu}_k), j = 1, \cdots, k$$

• Furthermore, if $\eta=g(\theta_1,\cdots,\theta_k)$ is to be estimated, the method of moment estimate of η is

$$\hat{\eta} = g(\hat{\theta}_1, \cdots, \hat{\theta}_k)$$

Example: Exponential Distribution

The p.d.f. of an exponential distribution is

$$f(x;\lambda) = \lambda e^{-\lambda x}, x > 0$$

and x_1, x_2, \cdots, x_n is a sample.

• Consider k=1. Since $EX=1/\lambda$, i.e. $\lambda=1/EX$, then the method of moment estimate of λ is

$$\hat{\lambda} = 1/\bar{x};$$

• Consider k=2. Since $Var(X)=1/\lambda^2$, i.e. $\lambda=1/\sqrt{Var(X)}$, then the moment of method estimate of λ is

$$\hat{\lambda} = 1/s$$
.

Remark

- The method of moment estimate is straight forward.
- The method of moment estimate is **not unique**.
- Problem: Which one is better?

Rule of thumb

The sample moments used in the method of moment should be as **low** as possible.

Example: Poisson Distribution

The p.d.f. of a Poisson distribution is

$$f(x; \lambda) = \frac{\lambda^x}{x!} e^{-\lambda}, x = 0, 1, 2, \dots$$

and x_1, x_2, \dots, x_n is a sample. Since $E(X) = \lambda$, the method of moment estimate of λ is

$$\lambda = \bar{x}$$

The data are shown as follows:

Containing	0	1	2	3	4	5
Actual	213	128	37	18	3	1

Example: Uniform Distribution

The p.d.f. of a uniform distribution is

$$f(x;\lambda) = \frac{1}{b-a} I_{(a,b)}(x)$$

with two unknown parameter a and b. Suppose that x_1, x_2, \cdots, x_n is a sample. Since

$$E(X) = \frac{a+b}{2}$$
 and $Var(X) = \frac{(b-a)^2}{12}$,

it is obvious that $a=EX-\sqrt{3Var(X)}$ and $b=EX+\sqrt{3Var(X)}$. Thus, the method of moment estimates of a and b are

$$\hat{a} = \bar{x} - \sqrt{3}s$$
 and $\hat{b} = \bar{x} + \sqrt{3}s$.

Example One

Suppose that it is difficult to distinguish two urns from the appearance. Urn A contains 99 white balls and 1 black ball while Urn B contains 1 white ball and 99 black balls. Here we randomly select an urn and then take a ball. If this ball is a white ball, which urn do you select?

Solution: Let the event

$$A = \{A \text{ white ball is taken}\}.$$

- If Urn A is chosen, the probability P(A) = 0.99.
- If Urn B is chosen, the probability P(A) = 0.01

If A occurs and then we may think that it is likely that this white ball is taken out of $Urn\ A$.

Example Two

We flip a coin and use a random variable X to represent the result. If it heads up, then X=1; otherwise, X=0. Then, X is distributed as a Bernoulli distribution B(p) with a unknown parameter p.

Suppose that x_1, x_2, \dots, x_n is a sample. The joint p.m.f. of (x_1, x_2, \dots, x_n) is

$$f(x_1, x_2, \dots, x_n; p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

Since p is unknown, this function could be thought to be a likelihood function of p, denoted as L(p). That is,

$$L(p) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}, p \in (0,1).$$

Example Two (Con'd)

- How to determine p?
- We would like to choose p so that the probability is as large as possible. Equivalently,

$$\hat{p} = \arg\max_{p} L(p)$$

Then,

$$\frac{\partial \ln L(p)}{\partial n} = \frac{\sum_{i=1}^{n} x_i}{n} - \frac{n - \sum_{i=1}^{n} x_i}{1 - n} = 0.$$

Thus, the maximum likelihood estimate of p is

$$\hat{p} = \hat{p}(x_1, x_2, \dots, x_n) = \frac{\sum_{i=1}^n x_i}{n} = \bar{x}.$$

Definition

Suppose that the p.m.f. or p.d.f. of the population is $p(x;\theta), \theta \in \Theta$, where θ is a unknown parameter (vector) and Θ is the parameter space. Let x_1, x_2, \cdots, x_n be a sample. The joint p.m.f. or p.d.f. of x_1, x_2, \cdots, x_n could be thought to be a function of θ , denoted as $L(\theta; x_1, \cdots, x_n)$ or $L(\theta)$.

- This function $L(\theta)$ is called as the **likelihood function**.
- A statistic $\hat{\theta} = \hat{\theta}(x_1, x_2, \cdots, x_n)$ is called **maximum likelihood estimate (MLE)** if this statistic $\hat{\theta}$ satisfies

$$L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta)$$

Example: Normal Distribution

Suppose that x_1, x_2, \cdots, x_n is a sample from a normal distribution $N(\mu, \sigma^2)$, where $\theta = (\mu, \sigma^2)$ is a two-dimensional parameter vector. The likelihood function is

$$L(\mu, \sigma^2) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(x_i - \mu)^2}{2\sigma^2} \right\} \right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right\},$$

and its log-likelihood function is

$$l(\mu, \sigma^2) = \ln L(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \ln \sigma^2 - \frac{n}{2} \ln(2\pi).$$

Example: Normal Distribution (Con'd)

The partials with respect to μ and σ^2 are

$$\frac{\partial(-l)}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$$

$$\frac{\partial(-l)}{\partial \sigma^2} = -\frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 + \frac{n}{2\sigma^2}.$$

Setting the first partial equal to zero and solving for the MLE, we obtain

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = s_*^2$.

Example: Normal Distribution (Con'd)

The second-order partial deviates are, respectively,

$$\frac{\partial^2(-l)}{\partial \mu^2} = \frac{n}{\sigma^2} \text{ and } \frac{\partial^2(-l)}{\partial (\sigma^2)^2} = \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2\sigma^4}$$

$$\frac{\partial^2(-l)}{\partial (\sigma^2)\partial \mu} = \frac{\partial^2(-l)}{\partial \mu \partial (\sigma^2)} = \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu).$$

It is easy to verify the matrix is negative definite since

$$\frac{\partial(-l)}{\partial\mu^2} \Big|_{\mu=\bar{x},\sigma^2=s_*^2} = \frac{n}{s_*^2} > 0$$

$$\left(\frac{\partial(-l)}{\partial\mu^2} \cdot \frac{\partial(-l)}{\partial(\sigma^2)^2} - \left(\frac{\partial(-l)}{\partial(\sigma^2)\partial\mu}\right)^2\right) \Big|_{\mu=\bar{x},\sigma^2=s_*^2} = \frac{n^2}{2s_*^6} > 0$$

Example: Uniform Distribution

Suppose that x_1, x_2, \cdots, x_n is a sample from a uniform distribution $U(0, \theta)$. Find the maximum likelihood estimate of θ .

Solution: The likelihood function is

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n I_{\{0 < x_i \le \theta\}} = \frac{1}{\theta^n} I_{\{0 < x_{(n)} \le \theta\}}$$

To maximize the likelihood,

- let $I_{\{x_{(n)} < \theta\}}$ be 1;
- let $1/\theta^n$ be as large as possible.

Since $\frac{1}{\theta^n}$ is decreasing in $\theta,$ the maximum likelihood estimate of θ is

$$\hat{\theta} = x_{(n)}$$

Theorem: Invariance Property

If $\hat{\theta}$ is the MLE of θ , then for any function of $g(\theta)$, the MLE of $g(\theta)$ is $g(\hat{\theta})$.

Example: Normal Distribution (Revisit)

Suppose that x_1, x_2, \dots, x_n is a sample from $N(\mu, \sigma^2)$. The MLE of μ and σ^2 are respectively

$$\hat{\mu} = \bar{x}$$
 and $\hat{\sigma^2} = s_*^2$.

From the invariance property, find the MLE:

- The standard deviation σ :
- The probability $P(X < 3) = \Phi\left(\frac{3-\mu}{\sigma}\right)$.;
- The 90% quantile $x_{0.90} = \mu + \sigma u_{0.90}$, where $u_{0.90}$ is the 90% quantile of a standard normal r.v.

Theorem: Invariance Property

If $\hat{\theta}$ is the MLE of θ , then for any function of $g(\theta)$, the MLE of $g(\theta)$ is $g(\hat{\theta})$.

Example: Normal Distribution (Revisit)

Suppose that x_1, x_2, \dots, x_n is a sample from $N(\mu, \sigma^2)$. The MLE of μ and σ^2 are respectively

$$\hat{\mu} = \bar{x}$$
 and $\hat{\sigma^2} = s_*^2$.

From the invariance property, we have

- The MLE of σ is $\hat{\sigma} = s_*$:
- The MLE of P(X < 3) is $\Phi\left(\frac{3-\bar{x}}{s_*}\right)$;
- The MLE of the 90% quantile $x_{0.90}$ is $\bar{x} + s_* u_{0.90}$.

Example

Suppose that a trial has four results and the probabilities are respectively $\frac{1}{2}-\frac{\theta}{4}$, $\frac{1-\theta}{4}$, $\frac{1+\theta}{4}$ and $\frac{\theta}{4}$, $\theta\in(0,1).$ Among 197 trials, the numbers of four results are 75,18,70,34. Find the MLE of $\theta.$

Solution: Let y_1, y_2, y_3, y_4 be the numbers of four results. $\boldsymbol{y} = (y_1, y_2, y_3, y_4)$ is a multinomial distribution and the likelihood function is

$$L(\theta; \boldsymbol{y}) \propto \left(\frac{1}{2} - \frac{\theta}{4}\right)^{y_1} \left(\frac{1-\theta}{4}\right)^{y_2} \left(\frac{1+\theta}{4}\right)^{y_3} \left(\frac{\theta}{4}\right)^{y_4}$$
$$\propto (2-\theta)^{y_1} (1-\theta)^{y_2} (1+\theta)^{y_4} \theta^{y_4}$$

It is difficult to find the maximizer of $L(\theta; y)$.

Example (Con'd)

Two variable z_i and z_2 are introduced and are called latent variables.

- Suppose that the first result is divided into two parts with the probabilities $\frac{1-\theta}{4}$ and $\frac{1}{4}$. Let z_1 and y_1-z_1 be respectively the number of two parts.
- Suppose that the third result is divided into two parts with the probabilities $\frac{\theta}{4}$ and $\frac{1}{4}$. Let z_2 and y_3-z_2 be respectively the number of two parts.

Example (Con'd)

The likelihood function could be written as

$$L(\theta; \boldsymbol{y}) \propto \left(\frac{1}{4}\right)^{y_1 - z_1} \left(\frac{1 - \theta}{4}\right)^{z_1 + y_2} \left(\frac{1}{4}\right)^{y_3 - z_2} \left(\frac{\theta}{4}\right)^{z_2 + y_4}$$
$$\propto \theta^{z_2 + y_4} (1 - \theta)^{z_1 + y_2}$$

The log-likelihood function is

$$l(\theta; \mathbf{y}, \mathbf{z}) = (z_2 + y_4) \ln \theta + (z_1 + y_2) \ln(1 - \theta).$$

Note that

- If (y, z) is known, then it is easy to obtain the MLE of θ ;
- y is known but z is unknown;
- If ${m y}$ and ${m heta}$ is known, $z_1 \sim b(y_1, \frac{1-\theta}{2-\theta})$ and $z_2 \sim b(y_3, \frac{\theta}{1-\theta})$.

Example (Con'd)

We use **Expectation-Maximization (EM)** Algorithm to find the solution.

• E step: Given the observed data y and the ith estimate $\theta = \theta^{(i)}$, find the expectation of the log-likelihood function, that is,

$$Q(\theta|\mathbf{y},\theta^{(i)}) = E_{\mathbf{z}}(l(\theta;\mathbf{y},\mathbf{z}))$$

• M step: Find the maximizer of $Q(\theta|\mathbf{y},\theta^{(i)})$, that is

$$\theta^{(i+1)} = \arg\max_{\theta} Q(\theta|\boldsymbol{y}, \theta^{(i)})$$

Example (Con'd)

In this example,

• E step:

$$Q(\theta|\boldsymbol{y},\theta^{(i)}) = \left(E(z_2|\boldsymbol{y},\theta^{(i)}) + y_4\right)\ln\theta + \left(E(z_1|\boldsymbol{y},\theta^{(i)}) + y_2\right)\ln(1-\theta)$$

M step: Let the first-order deviate be zero.

$$\frac{\frac{\theta^{(i)}}{1+\theta^{(i)}}y_3 + y_4}{\theta^{(i+1)}} + \frac{\frac{1-\theta^{(i)}}{2-\theta^{(i)}}y_1 + y_2}{1-\theta^{(i+1)}} = 0$$

Thus, the iterative formula is

$$\theta^{(i+1)} = \frac{\frac{\theta^{(i)}}{1+\theta^{(i)}} y_3 + y_4}{\frac{\theta^{(i)}}{1+\theta^{(i)}} y_3 + y_4 + \frac{1-\theta^{(i)}}{2-\theta^{(i)}} y_1 + y_2}$$

Example (Con'd)

The result is $\hat{\theta} = 0.6067466$.

Definition

Suppose that $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ is an estimate of θ and Θ is the parameter space of θ .

- The bias of an estimate $\hat{\theta}$ of the parameter θ is the difference between the expectation of $\hat{\theta}$ and θ , that is $E(\hat{\theta}) \theta$;
- The estimate $\hat{\theta}$ is **unbiased** for θ if

$$E(\hat{\theta}) = \theta,$$

for any $\theta \in \Theta$;

• The estimate $\hat{\theta}$ is asymptotically unbiased for θ if

$$E(\hat{\theta}) \to \theta$$
 as $n \to \infty$,

for any $\theta \in \Theta$.

Example

For an unknown population, μ is the expectation/population mean, σ^2 is the variance and μ_k is the kth moment. Suppose that x_1, x_2, \dots, x_n is a sample. We have

- The sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n}$ is unbiased for μ ;
- The kth sample moment $\hat{\mu}_k = a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$ is unbiased for μ_k ;
- The sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$ is unbiased for σ^2 ;
- The sample variance $s_*^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$ is asymptotically unbiased for σ^2 since

$$E(s_*^2) = \frac{n-1}{n}\sigma^2 \to \sigma^2 \quad \text{as} \quad n \to \infty.$$

Is $g(\hat{\theta})$ an unbiased estimate of $g(\theta)$, for any function $g(\cdot)$, if $\hat{\theta}$ is an unbiased estimate of θ ?

Example

Suppose that x_1, x_2, \cdots, x_n is a sample from $N(\mu, \sigma^2)$. It is well-known that s^2 is an unbiased estimate of σ^2 . We wonder whether s is an unbiased estimate of σ or not.

We know

$$Y = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1),$$

and the p.d.f. is

$$f_Y(y) = \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} y^{\frac{n-1}{2} - 1} e^{-\frac{y}{2}}, y > 0$$

Example (Con'd)

Thus,

$$E(Y^{1/2}) = \int_0^\infty y^{1/2} f_Y(y) dy$$

$$= \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} \int_0^\infty y^{\frac{n}{2} - 1} e^{-\frac{y}{2}} dy$$

$$= \frac{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} = \sqrt{2} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}.$$

Therefore.

$$E(s) = \frac{\sigma}{\sqrt{n-1}} E(Y^{1/2}) = \sqrt{\frac{2}{n-1}} \frac{\Gamma(n/2)}{\Gamma((n-1)/2)} \sigma \stackrel{\text{def}}{=} \frac{\sigma}{c_n}$$

Remark

- s is not an unbiased estimate of σ
- $c_n \cdot s$ is an unbiased estimate, where $c_n = \sqrt{\frac{n-1}{2}} \cdot \frac{\Gamma((n-1)/2)}{\Gamma(n/2)}$;
- s is asymptotically unbiased for σ since $c_n \to \infty$ as $n \to \infty$.

Definition

If there exist an unbiased estimate $\hat{\theta}$ for a parameter θ , that is,

$$E(\hat{\theta}) = \theta,$$

the parameter θ is called as **estimable**; otherwise, this parameter is **inestimable**.

Example

Suppose that x_1, x_2, \dots, x_n is a sample from a Bernoulli distribution $B(p), 0 . We next explain why the parameter <math>\theta = \frac{1}{n}$ is inestimable.

First, $T = \sum_{i=1}^{n} x_i$ is a sufficient statistic for p and $T \sim b(n, p)$. Suppose that an estimate $\hat{\theta} = \hat{\theta}(t)$ is unbiased for θ . Then,

$$E(\hat{\theta}) = \sum_{i=0}^{n} \binom{n}{i} \hat{\theta}(i) p^{i} (1-p)^{n-i} = \frac{1}{p}$$

and equivalently,

$$\sum_{i=0}^{n} \binom{n}{i} \hat{\theta}(i) p^{i+1} (1-p)^{n-i} - 1 = 0$$

Example (Con'd)

Let

$$g(p) = \sum_{i=0}^{n} \binom{n}{i} \hat{\theta}(i) p^{i+1} (1-p)^{n-i} - 1,$$

which is a n+1th order polynomial function of p. Then, there exist at most n+1 roots of g(p). For any $p\in (0,1)$, it is impossible that p is a root of the function g(p). Therefore, $\theta=1/p$ is inestimable.

Efficiency

Definition

Suppose that $\hat{\theta}_1$ and $\hat{\theta}_2$ are two unbiased estimate of θ .

• The efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$ is defined to be

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{Var(\hat{\theta}_2)}{Var(\hat{\theta}_1)}.$$

• $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if

$$Var(\hat{\theta}_1) \le Var(\hat{\theta}_2)$$

holds for all $\theta \in \Theta$ with strict inequality holding somewhere.

Efficiency

Example

Suppose that x_1, x_2, \dots, x_n is a sample from an unknown population with the mean μ and the variance σ^2 . We know,

- The 1st estimate: $\hat{\mu}_1 = x_1$;
- The 2nd estimate: $\hat{\mu}_2 = \bar{x}$;

Since

$$E(\hat{\mu}_1) = E(x_1) = \mu$$
 and $E(\hat{\mu}_2) = E(\bar{x}) = \mu$

and

$$Var(\hat{\mu}_1) = Var(x_1) = \sigma^2$$
 and $Var(\hat{\mu}_2) = Var(\bar{x}) = \frac{\sigma^2}{n}$,

two estimates $\hat{\mu}_1$ and $\hat{\mu}_2$ are both unbiased for μ and then $\hat{\mu}_2$ is more efficient than $\hat{\mu}_1$ if n > 1.

Efficiency

Example

Suppose that x_1, x_2, \dots, x_n is a sample from a uniform $U(0, \theta)$. On one hand, we often use the MLE $x_{(n)}$ to estimate θ . Since

$$E(x_{(n)}) = \frac{n}{n+1}\theta,$$

 $x_{(n)}$ is not unbiased for θ , but it is asymptotically unbiased for θ . Then, we could obtain an unbiased estimate

$$\hat{\theta}_1 = \frac{n+1}{n} x_{(n)}$$

and

$$Var(\hat{\theta}_1) = \frac{(n+1)^2}{n^2} \frac{n}{(n+2)(n+1)^2} \theta^2 = \frac{1}{n(n+2)} \theta^2$$

Efficiency

Example (Con'd)

On the other hand, we consider the method of moment estimate. Since $E(x_1)=\frac{\theta}{2}.$ Another unbiased estimate of θ is $\hat{\theta}_2=2\bar{x}$ and

$$Var(\hat{\theta}_2) = 4Var(\bar{x}) = \frac{4}{n}Var(x_1) = \frac{4}{n} \cdot \frac{\theta^2}{12} = \frac{\theta}{3n}$$

Thus, $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$.

Definition

Let θ_n be an estimate of a parameter θ based on a sample of size n. Then $\hat{\theta}_n$ is said to be **consistent** in probability if $\hat{\theta}_n$ converges in probability to θ as n approaches infinity; that is, for any $\epsilon>0$,

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| \ge \epsilon) = 0.$$

Example

Suppose that x_1, x_2, \dots, x_n is a sample from $N(\mu, \sigma^2)$. From the Central Limit Theorem.

- \bar{x} is consistent for μ ;
- s_*^2 is consistent for σ^2 ;
- s^2 is consistent for σ^2 :

Theorem One

Suppose that $\hat{\theta}_n = \hat{\theta}_n(x_1, x_2, \cdots, x_n)$ is an estimate of θ . If

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta \quad \text{and} \quad \lim_{n\to\infty} Var(\hat{\theta}_n) = 0,$$

then $\hat{\theta}_n$ is consistent for θ .

Proof: For any $\epsilon > 0$, from the Chebyshev's Inequality,

$$P(|\hat{\theta}_n - E(\hat{\theta}_n)| \ge \frac{\epsilon}{2}) \le \frac{4}{\epsilon^2} Var(\hat{\theta}_n)$$

Since $\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$, when n is sufficiently large, we have

$$\left| E(\hat{\theta}_n) - \theta \right| < \frac{\epsilon}{2}.$$

Theorem One(Con'd) Note that if $\left|\hat{\theta}_n - E(\hat{\theta}_n)\right| < \frac{\epsilon}{2}$, then

$$\left|\hat{\theta}_n - \theta\right| \le \left|\hat{\theta}_n - E(\hat{\theta}_n)\right| + \left|E(\hat{\theta}_n) - \theta\right| < \epsilon.$$

Thus,

$$\left\{ \left| \hat{\theta}_n - E(\hat{\theta}_n) \right| < \frac{\epsilon}{2} \right\} \subset \left\{ \left| \hat{\theta}_n - \theta \right| < \epsilon \right\}.$$

Equivalently,

$$\left\{ \left| \hat{\theta}_n - E(\hat{\theta}_n) \right| \ge \frac{\epsilon}{2} \right\} \supset \left\{ \left| \hat{\theta}_n - \theta \right| \ge \epsilon \right\}.$$

Therefore, as $n \to \infty$,

$$P(|\hat{\theta}_n - \theta| \ge \epsilon) \le P(|\hat{\theta}_n - E(\hat{\theta}_n)| \ge \epsilon/2) \le \frac{4}{\epsilon^2} Var(\hat{\theta}_n) \to 0.$$

Example

Suppose that x_1, x_2, \dots, x_n is a sample from $U(0, \theta)$. Prove that $x_{(n)}$ is consistent for θ .

Solution: The p.d.f. of $x_{(n)}$ is

$$f(y) = ny^{n-1}/\theta^n, y < \theta$$

Then, as $n \to \infty$, we have

$$E(\hat{\theta}) = \int_0^{\theta} ny^n dy / \theta^n = \frac{n}{n+1} \theta \to \theta$$

$$E(\hat{\theta}^2) = \int_0^{\theta} ny^{n+1} dy / \theta^n = \frac{n}{n+2} \theta^2$$

$$Var(\hat{\theta}) = \frac{n}{n+2}\theta^2 - \frac{n^2}{(n+1)^2}\theta^2 = \frac{n}{(n+1)^2(n+2)}\theta^2 \to 0.$$

Theorem Two

Suppose that $\hat{\theta}_{n1},\cdots,\hat{\theta}_{nk}$ are respectively consistent for θ_1,\cdots,θ_k and $\eta=g(\theta_1,\cdots,\theta_k)$ is a continuous function of θ_1,\cdots,θ_k . Then, $\hat{\eta}_n=g(\hat{\theta}_{n1},\cdots,\hat{\theta}_{nk})$ is consistent for η .

Proof: Since the function $g(\cdot)$ is continuous, for any $\epsilon>0$ and some $\delta>0$, when $|\hat{\theta}_j-\theta_j|<\delta, j=1,2,\cdots,k$, we have

$$\left|g(\hat{\theta}_{n1},\cdots,\hat{\theta}_{nk})\right|<\epsilon.$$
 (1)

Since $\hat{\theta}_{n1},\cdots,\hat{\theta}_{nk}$ are consistent, for the $\delta>0$ and any $\nu>0$, there exists a positive integer N such that

$$P(|\hat{\theta}_{nj} - \theta_j| \ge \delta) < \frac{\nu}{k}, j = 1, 2, \dots, k.$$

Theorem Two (Con'd)

Then,

$$P\left(\bigcap_{j=1}^{k} \left\{ |\hat{\theta}_{nj} - \theta_j| < \delta \right\} \right) = 1 - P\left(\bigcup_{j=1}^{k} \left\{ |\hat{\theta}_{nj} - \theta_j| \ge \delta \right\} \right)$$

$$\ge 1 - \sum_{j=1}^{k} P\left(|\hat{\theta}_{nj} - \theta_j| \ge \delta \right)$$

$$> 1 - k \cdot \frac{\nu}{k} = 1 - \nu$$

According to the equation (1), we have

$$\bigcap_{j=1}^{k} \left\{ |\hat{\theta}_{nj} - \theta_j| < \delta \right\} \subset \left\{ |\hat{\eta}_n - \eta| < \epsilon \right\}$$

Then, $P(|\hat{\eta}_n - \eta| < \epsilon) > 1 - \nu$. Since ν is arbitrary, it is proved.

Remark

From the CLT.

- The method of moment estimate is consistent;
- The sample mean is consistent for the population mean;
- The sample standard deviation is consistent for the standard deviation;
- The sample coefficient of variation is consistent for the coefficient of variation;

Definition

Suppose that an estimate $\hat{\theta}_n$ is consistent for the parameter θ . The estimate $\hat{\theta}_n$ is called to be **asymptotically normal** if there exists such a sequence of non-negative constants $\sigma_n(\theta)$ which approaches to zero that

$$\frac{\hat{\theta}_n - \theta}{\sigma_n(\theta)} \stackrel{L}{\longrightarrow} N(0, 1).$$

Then, $\hat{\theta}_n$ is also called to be distributed as **asymptotic normal distribution** $N(\theta, \sigma_n(\theta))$. That is, $\hat{\theta}_n \sim AN(\theta, \sigma_n^2(\theta))$, where $\sigma_n^2(\theta)$ is the asymptotic variance of $\hat{\theta}_n$.

Example: Poisson distribution

Suppose that x_1, x_2, \dots, x_n is a sample from a Poisson distribution $P(\lambda)$.

- The method of moment estimate of λ ?
- The maximum likelihood estimate of λ ?

The estimate is

$$\hat{\lambda}_n = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

From CLT,

$$\frac{\hat{\lambda}_n - \lambda}{\sqrt{\lambda/n}} \xrightarrow{L} N(0, 1)$$

The asymptotic distribution of $\hat{\lambda}_n$ is $AN(\lambda, \lambda/n)$.

Example: Poisson distribution

Suppose that x_1, x_2, \dots, x_n is a sample from a Poisson distribution $P(\lambda)$.

- The method of moment estimate of λ ?
- The maximum likelihood estimate of λ ?

The estimate is

$$\hat{\lambda}_n = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

From CLT,

$$\frac{\hat{\lambda}_n - \lambda}{\sqrt{\lambda/n}} \xrightarrow{L} N(0,1)$$

The asymptotic distribution of $\hat{\lambda}_n$ is $AN(\lambda, \lambda/n)$.

Definition: Fisher Information

Suppose that the p.d.f. of a random variable X is $p(x;\theta), \theta \in \Omega$. The following conditions are satisfied:

- $\boldsymbol{\Theta}.$ The following conditions are satisfied:
 - The sample space Θ is an open interval;
 - The support $S = \{x : p(x; \theta) > 0\}$ is not related to θ ;
 - The deviate $\frac{\partial}{\partial \theta} p(x; \theta)$ exists for all the $\theta \in \Theta$;
 - For $p(x;\theta)$,

$$\frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} p(x;\theta) \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} p(x;\theta) \mathrm{d}x$$

• $E\left(\frac{\partial}{\partial \theta} \ln p(x;\theta)\right)^2$ exist.

Then,

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{\partial \ln p(x;\theta)}{\partial \theta} \right)^2 p(x;\theta) \mathrm{d}x = E \left(\frac{\partial}{\partial \theta} \ln p(x;\theta) \right)^2$$

is said to be Fisher Information.

Theorem

Suppose that the p.d.f. of a population X is $p(x;\theta)$, $\theta \in \Theta$, where Θ is a non-degenerate interval. Suppose that

- For any x, there exist the partials $\frac{\partial \ln p}{\partial \theta}$, $\frac{\partial^2 \ln p}{\partial \theta^2}$, $\frac{\partial^3 \ln p}{\partial \theta^3}$ for all the $\theta \in \Theta$;
- For all the $\theta \in \Theta$, there exist some functions $F_1(x), F_2(x)$ and $F_3(x)$ such that

$$\left| \frac{\partial p}{\partial \theta} \right| < F_1(x), \left| \frac{\partial^2 p}{\partial \theta^2} \right| < F_2(x), \left| \frac{\partial^3 \ln p}{\partial \theta^3} \right| < F_3(x),$$

where $\int_{-\infty}^{\infty}F_1(x)\mathrm{d}x<\infty,\ \int_{-\infty}^{\infty}F_2(x)\mathrm{d}x<\infty,\ \sup_{\theta\in\Theta}\int_{-\infty}^{\infty}F_3(x)p(x;\theta)\mathrm{d}x<\infty.$

• For all the $\theta \in \Theta$, $0 < I(\theta) < \infty$.

Suppose that x_1, x_2, \cdots, x_n is a sample of the population. Then, there exists the MLE of θ , denoted as $\hat{\theta}_n = \hat{\theta}_n(x_1, x_2, \cdots, x_n)$, and $\hat{\theta}_n$ is consistent and asymptotically normal, i.e. $\hat{\theta}_n \sim AN\left(\theta, \frac{1}{nI(\theta)}\right)$.

Revisit Example: Poisson Example

Suppose that a random variable X is distributed as a Poisson distribution $P(\lambda)$ with the p.m.f.

$$f(x;\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}, x = 0, 1, 2, \cdots$$

Then,

$$\ln f(x;\lambda) = x \ln \lambda - \lambda - \ln(x!), \quad \text{and} \quad \frac{\partial}{\partial \lambda} \ln f(x;\lambda) = \frac{x}{\lambda} - 1.$$

Thus,

$$I(\lambda) = E\left(\frac{x-\lambda}{\lambda}\right)^2 = \frac{1}{\lambda}.$$

Example

A trial has three outcomes with the probabilities are respectively

$$p_1 = \theta^2$$
 $p_2 = 2\theta(1-\theta)$ $p_3 = (1-\theta)^2$

The trials are conducted n times and these three outcomes are respectively n_1, n_2 and n_3 .

The likelihood function is

$$L(\theta) \propto (\theta^2)^{n_1} (2\theta(1-\theta))^{n_2} (1-\theta)^{2n_3} = 2^{n_2} \theta^{2n_1+n_2} (1-\theta)^{2n_3+n_2}$$

The MLE is

$$\hat{\theta}_{\mathsf{MLE}} = \frac{2n_1 + n_2}{2n}$$

which is also consistent for θ .

Example (Con'd)

A trial has three outcomes with the probabilities are respectively

$$p_1 = \theta^2$$
 $p_2 = 2\theta(1-\theta)$ $p_3 = (1-\theta)^2$

The trials are conducted n times and these three outcomes are respectively n_1, n_2 and n_3 .

• The method of moment estimates are consistent for θ .

$$\hat{\theta}_1 = \sqrt{n_1/n}, \quad \hat{\theta}_2 = 1 - \sqrt{n_3/n}, \quad \hat{\theta}_3 = (n_1 + n_2/2)/n$$
 since

$$\theta = \sqrt{p_1}, \quad \theta = 1 - \sqrt{p_3}, \quad \theta = p_1 + p_2/2$$

Example (Con'd)

All these method of moment estimates are asymptotically normal, that is

$$\frac{\sqrt{n}(\hat{\theta}_i - \theta)}{\sigma_i(\theta)} \xrightarrow{\mathsf{L}} N(0, 1), i = 1, 2, 3.$$

where

$$\sigma_1^2(\theta) = \frac{1 - \theta^2}{4}, \quad \sigma_2^2(\theta) = \frac{1 - (1 - \theta)^2}{4}, \quad \sigma_3^2(\theta) = \frac{\theta(1 - \theta)}{2}$$

Definition

The **Mean Squared Error** of $\hat{\theta}$ as an estimate of θ is

$$\mathsf{MSE}(\hat{\theta}) = E(\hat{\theta} - \theta)^2$$

Remark

• $MSE = Variance + Bias^2$. Equivalently,

$$\begin{aligned} \mathsf{MSE}(\hat{\theta}) &= E(\hat{\theta} - \theta)^2 = E((\hat{\theta} - E\hat{\theta}) - (E\hat{\theta} - \theta))^2 \\ &= E(\hat{\theta} - E\hat{\theta})^2 + E(E\hat{\theta} - \theta)^2 - 2E((\hat{\theta} - E\hat{\theta})(E\hat{\theta} - \theta)) \\ &= E(\hat{\theta} - E\hat{\theta})^2 + E(E\hat{\theta} - \theta)^2 = Var(\hat{\theta}) + (E\hat{\theta} - \theta)^2 \end{aligned}$$

• If $\hat{\theta}$ is an unbiased estimate of θ , then $\mathsf{MSE}(\hat{\theta}) = Var(\hat{\theta})$.

Example

Suppose that the population is $U(0,\theta)$ and x_1,x_2,\cdots,x_n is a sample. Find an estimate with minimum MSE.

- The maximum likelihood estimate of θ is $\hat{\theta}_{MLE} = x_{(n)}$;
- Based on the MLE, an unbiased estimate is $\hat{\theta}_1 = \frac{n+1}{n} x_{(n)}$ and the mean squared error of $\hat{\theta}_1$ is

$$\mathsf{MSE}(\hat{\theta}_1) = Var(\hat{\theta}_1) = \frac{\theta^2}{n(n+2)}.$$

• Consider an estimate $\hat{\theta}_{\alpha} = \alpha x_{(n)}$. The mean squared error of $\hat{\theta}_{\alpha}$ is

$$\mathsf{MSE}(\hat{\theta}_{\alpha}) = Var(\alpha x_{(n)}) + (\alpha E x_{(n)} - \theta)^{2}$$

Example (Con'd)

$$\begin{aligned} \mathsf{MSE}(\hat{\theta}_{\alpha}) &= Var(\alpha x_{(n)}) + (\alpha E x_{(n)} - \theta)^2 \\ &= \alpha^2 \cdot \frac{n}{(n+1)^2 (n+2)} \theta^2 + \left(\alpha \cdot \frac{n}{n+1} \theta - \theta\right)^2 \\ &= \frac{\alpha^2 n}{(n+1)^2 (n+2)} \theta^2 + \left(\frac{\alpha n}{n+1} - 1\right)^2 \theta^2 \end{aligned}$$

Then,

$$\alpha_0 = \arg\min_{\alpha} \mathsf{MSE}(\hat{\theta}_{\alpha}) = \frac{n+2}{n+1}.$$

and let $\hat{\theta}_0 = \frac{n+2}{n+1} x_{(n)}$ with the mean squared error

$$\mathsf{MSE}(\hat{\theta}_0) = \frac{\theta^2}{(n+1)^2} < \frac{\theta^2}{n(n+2)} = \mathsf{MSE}(\hat{\theta}_1)$$

Remark

- Indeed, there is no one "best MSE" estimate.
- For example, for a certain $\theta_0 \in \Theta$, the estimate $\hat{\theta} = \theta_0$ cannot be beaten in MSE at $\theta = \theta_0$ but is a terrible estimator otherwise;
- One way to make the problem of finding a "best" estimate tractable is to limit the class of estimates;
- A popular way of restricting the class of estimates is to consider only unbiased estimates.

Definition

An estimator $\hat{\theta}$ is a **best unbiased estimate** of θ if

it satisfies

$$E(\hat{\theta}) = \theta$$

for all θ ;

- for any other unbiased estimate $\tilde{\theta}$ with $E(\tilde{\theta})=\theta$, we have

$$Var(\hat{\theta}) \le Var(\tilde{\theta})$$

for all θ .

The estimator $\hat{\theta}$ is also called a **uniform minimum variance unbiased estimate**, **UMVUE** of θ .

Theorem

Suppose that $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ is a sample. Let $\hat{\theta}=\hat{\theta}(\boldsymbol{x})$ be an unbiased estimate with $Var(\hat{\theta})<\infty$. Then, the necessary and sufficient condition for $\hat{\theta}$ to be a UMVUE of θ is, for every estimate $\varphi(\boldsymbol{x})$ with $E(\varphi(\boldsymbol{x}))=0$ and $Var(\varphi(\boldsymbol{x}))<\infty$, we have

$$Cov(\hat{\theta}, \varphi) = 0, \quad \forall \theta \in \Theta.$$

Proof: (\Leftarrow) For an unbiased estimate $\tilde{\theta}$, let $\varphi = \tilde{\theta} - \hat{\theta}$. Then,

$$E(\varphi) = E(\tilde{\theta}) - E(\hat{\theta}) = 0$$

Thus,

$$Var(\tilde{\theta}) = E(\tilde{\theta} - \theta)^2 = E\left((\tilde{\theta} - \hat{\theta}) + (\hat{\theta} - \theta)\right)^2$$
$$= E(\varphi^2) + Var(\hat{\theta}) + 2Cov(\varphi, \hat{\theta}) \ge Var(\hat{\theta})$$

Theorem

Suppose that $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ is a sample. Let $\hat{\theta}=\hat{\theta}(\boldsymbol{x})$ be an unbiased estimate with $Var(\hat{\theta})<\infty$. Then, the necessary and sufficient condition for $\hat{\theta}$ to be a UMVUE of θ is, for every estimate $\varphi(\boldsymbol{x})$ with $E(\varphi(\boldsymbol{x}))=0$ and $Var(\varphi(\boldsymbol{x}))<\infty$, we have

$$Cov(\hat{\theta}, \varphi) = 0, \quad \forall \theta \in \Theta.$$

Proof: (\Leftarrow) For an unbiased estimate $\tilde{\theta}$, let $\varphi = \tilde{\theta} - \hat{\theta}$. Then,

$$E(\varphi) = E(\tilde{\theta}) - E(\hat{\theta}) = 0$$

Thus,

$$Var(\tilde{\theta}) = E(\tilde{\theta} - \theta)^2 = E\left((\tilde{\theta} - \hat{\theta}) + (\hat{\theta} - \theta)\right)^2$$
$$= E(\varphi^2) + Var(\hat{\theta}) + 2Cov(\varphi, \hat{\theta}) \ge Var(\hat{\theta}).$$

Theorem (Con'd)

 (\Rightarrow) We show the proof by contradiction. Suppose that $\hat{\theta}$ is a UMVUE of θ and $\varphi(\boldsymbol{x})$ is an unbiased estimate of 0 with $Var(\varphi(x)) < \infty$. If there exists such $\theta_0 \in \Theta$ that

$$Cov_{\theta_0}(\hat{\theta}, \varphi(\boldsymbol{x})) \stackrel{\mathsf{def}}{=} a \neq 0.$$

• Let $b = -\frac{a}{Var_{\theta_0}(\varphi(x))}$. Then,

$$b^{2}Var_{\theta_{0}}(\varphi(\mathbf{x})) + 2ab = b(-a+2a) = ab = -\frac{a^{2}}{Var_{\theta_{0}}(\varphi(\mathbf{x}))} < 0$$

Let $\tilde{\theta} = \hat{\theta} + b\varphi(\boldsymbol{x})$. Then $E(\tilde{\theta}) = E(\hat{\theta}) + bE(\varphi(\boldsymbol{x})) = \theta$. This means that $\tilde{\theta}$ is an unbiased estimate of θ .

Theorem (Con'd)

The variance is

$$Var_{\theta_0}(\tilde{\theta}) = E_{\theta_0}(\hat{\theta} + b\varphi(\boldsymbol{x}) - \theta)^2$$

$$= E_{\theta_0}(\hat{\theta} - \theta)^2 + b^2 E_{\theta_0}(\varphi^2(\boldsymbol{x}))$$

$$+2bE_{\theta_0}((\hat{\theta} - \theta)\varphi(\boldsymbol{x}))$$

$$= Var_{\theta_0}(\hat{\theta}) + b^2 Var_{\theta_0}(\varphi(\boldsymbol{x})) + 2ab$$

$$< 0.$$

Thus, $\hat{\theta}$ is not a UMVUE of θ . It is proved that

$$Cov(\hat{\theta}, \varphi(\boldsymbol{x})) = 0$$

for all $\theta \in \Theta$.

Example

Suppose that x_1, x_2, \dots, x_n is a sample from an exponential distribution $Exp(1/\theta)$. From the factorization theorem,

$$T = x_1 + x_2 + \dots + x_n$$

is a sufficient statistic for θ . Since $E(T) = n\theta$,

$$\bar{x} = \frac{T}{n}$$

is an unbiased for θ . Suppose that $\varphi = \varphi(x_1, x_2, \dots, x_n)$ is an unbiased estimate of 0. Then,

$$E\varphi = \int_0^\infty \cdots \int_0^\infty \varphi(x_1, x_2, \cdots, x_n) \prod_{i=1}^n \left\{ \frac{1}{\theta} e^{-x_i/\theta} \right\} dx_1 \cdots dx_n = 0$$

Example

Suppose that x_1, x_2, \dots, x_n is a sample from an exponential distribution $Exp(1/\theta)$. From the factorization theorem,

$$T = x_1 + x_2 + \dots + x_n$$

is a sufficient statistic for θ . Since $E(T) = n\theta$,

$$\bar{x} = \frac{T}{n}$$

is an unbiased for θ . Suppose that $\varphi = \varphi(x_1, x_2, \dots, x_n)$ is an unbiased estimate of 0. Then,

$$E\varphi = \int_0^\infty \cdots \int_0^\infty \varphi(x_1, x_2, \cdots, x_n) \prod_{i=1}^n \left\{ \frac{1}{\theta} e^{-x_i/\theta} \right\} dx_1 \cdots dx_n = 0$$

Example (Con'd)

That is,

$$E\varphi = \int_0^\infty \cdots \int_0^\infty \varphi(x_1, x_2, \cdots, x_n) e^{-(x_1 + \cdots + x_n)/\theta} dx_1 \cdots dx_n = 0,$$

Differentiating both sides with respect to θ , i.e.

$$\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{n\bar{x}}{\theta^{2}} \varphi(x_{1}, x_{2}, \cdots, x_{n}) e^{-(x_{1} + \cdots + x_{n})/\theta} dx_{1} \cdots dx_{n} = 0.$$

This means $E(\bar{x} \cdot \varphi) = 0$. Thus,

$$Cov(\bar{x}, \varphi) = E(\bar{x} \cdot \varphi) - E(\bar{x})E(\varphi) = 0 - 0 = 0$$

Therefore, \bar{x} is a UMVUE of θ .

Theorem (Rao-Blackwell Theorem)

Suppose that $f(x;\theta)$ is the population density function and x_1,x_2,\cdots,x_n is a sample. Let $\hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n)$ be any unbiased estimate of θ , and let $T=T(x_1,x_2,\cdots,x_n)$ be a sufficient statistic for θ . Define $\tilde{\theta}=E(\hat{\theta}|T)$. Then $E(\tilde{\theta})=\theta$ and

$$Var(\tilde{\theta}) \leq Var(\hat{\theta})$$

for all θ .

Proof: We follow the three steps:

- $\tilde{\theta} = E(\hat{\theta}|T)$ is an estimate of θ . Since $T = T(x_1, x_2, \cdots, x_n)$ is a sufficient statistic, $\tilde{\theta} = E(\hat{\theta}|T)$ does not depend on θ .
- $\tilde{\theta}$ is unbiased for θ . From the property of iterated conditional expectation,

$$E(\tilde{\theta}) = E(E(\hat{\theta}|T)) = E(\hat{\theta}) = \theta.$$

Theorem (Rao-Blackwell Theorem)

Suppose that $f(x;\theta)$ is the population density function and x_1,x_2,\cdots,x_n is a sample. Let $\hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n)$ be any unbiased estimate of θ , and let $T=T(x_1,x_2,\cdots,x_n)$ be a sufficient statistic for θ . Define $\tilde{\theta}=E(\hat{\theta}|T)$. Then $E(\tilde{\theta})=\theta$ and

$$Var(\tilde{\theta}) \le Var(\hat{\theta})$$

for all θ .

Proof: We follow the three steps:

- $\tilde{\theta} = E(\hat{\theta}|T)$ is an estimate of θ . Since $T = T(x_1, x_2, \cdots, x_n)$ is a sufficient statistic, $\tilde{\theta} = E(\hat{\theta}|T)$ does not depend on θ .
- $\tilde{\theta}$ is unbiased for θ . From the property of iterated conditional expectation,

$$E(\tilde{\theta}) = E(E(\hat{\theta}|T)) = E(\hat{\theta}) = \theta.$$

Theorem (Rao-Blackwell Theorem)

Suppose that $f(x;\theta)$ is the population density function and x_1,x_2,\cdots,x_n is a sample. Let $\hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n)$ be any unbiased estimate of θ , and let $T=T(x_1,x_2,\cdots,x_n)$ be a sufficient statistic for θ . Define $\tilde{\theta}=E(\hat{\theta}|T)$. Then $E(\tilde{\theta})=\theta$ and

$$Var(\tilde{\theta}) \le Var(\hat{\theta})$$

for all θ .

Proof: We follow the three steps:

- $\tilde{\theta} = E(\hat{\theta}|T)$ is an estimate of θ . Since $T = T(x_1, x_2, \cdots, x_n)$ is a sufficient statistic, $\tilde{\theta} = E(\hat{\theta}|T)$ does not depend on θ .
- $\tilde{\theta}$ is unbiased for θ . From the property of iterated conditional expectation,

$$E(\tilde{\theta}) = E(E(\hat{\theta}|T)) = E(\hat{\theta}) = \theta.$$

Theorem (Rao-Blackwell Theorem)(Con'd)

• $Var(\tilde{\theta}) \leq Var(\hat{\theta})$. The variance is

$$Var(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = E(\hat{\theta} - \tilde{\theta} + \tilde{\theta} - \theta)^2$$

$$= E(\hat{\theta} - \tilde{\theta})^2 + E(\tilde{\theta} - \theta)^2 + 2E((\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta))$$

$$= E(\hat{\theta} - \tilde{\theta})^2 + E(\tilde{\theta} - \theta)^2 \ge Var(\tilde{\theta})$$

where the third equality holds since

$$E((\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta)) = E(E((\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta)|T))$$
$$= E((\tilde{\theta} - \theta)E((\hat{\theta} - \tilde{\theta})|T)) = 0$$

Example

Suppose that x_1, x_2, \cdots, x_n is a sample from B(p). It is known that \bar{x} is a sufficient for p. We would like to estimate $\theta = p^2$. Let

$$\hat{\theta}_1 = \begin{cases} 1, & x_1 = 1, x_2 = 1, \\ 0, & \text{otherwise} \end{cases}$$

Since

$$E(\hat{\theta}_1) = P(x_1 = 1, x_2 = 1) = p \cdot p = \theta,$$

 $\hat{\theta}_1$ is an unbiased estimate of θ . However, it is not good enough because it only involves two observations. We would like to improve it.

UMVUE

Example (Con'd)

Let $T = \sum_{i=1}^n x_i$ be a sufficient statistic. From the Rao-Blackwell Theorem,

$$\hat{\theta} = E(\hat{\theta}_1|T=t) = P(\hat{\theta}_1 = 1|T=t)
= \frac{P(x_1 = 1, x_2 = 1, T=t)}{P(T=t)}
= \frac{P(x_1 = 1, x_2 = 1, \sum_{i=3}^n x_i = t-2)}{P(T=t)}
= \frac{p^2 \binom{n-2}{t-2} p^{t-2} (1-p)^{n-t}}{\binom{n}{t} p^t (1-p)^{n-t}} = \frac{\binom{n-2}{t-2}}{\binom{n}{t}} = \frac{t(t-1)}{n(n-1)}.$$

- In searching for a "best" estimate, we might ask whether there is a lower bound for the MSE of any estimate.
- If such a lower bound existed, it would function as a benchmark against which estimates could be compared.
- If an estimate achieved this lower bound, we would know that it could not be improved upon.
- In the case in which the estimate is unbiased, the Cramér-Rao inequality provides such a lower bound.

- In searching for a "best" estimate, we might ask whether there is a lower bound for the MSE of any estimate.
- If such a lower bound existed, it would function as a benchmark against which estimates could be compared.
- If an estimate achieved this lower bound, we would know that it could not be improved upon.
- In the case in which the estimate is unbiased, the Cramér-Rao inequality provides such a lower bound.

- In searching for a "best" estimate, we might ask whether there is a lower bound for the MSE of any estimate.
- If such a lower bound existed, it would function as a benchmark against which estimates could be compared.
- If an estimate achieved this lower bound, we would know that it could not be improved upon.
- In the case in which the estimate is unbiased, the Cramér-Rao inequality provides such a lower bound.

- In searching for a "best" estimate, we might ask whether there is a lower bound for the MSE of any estimate.
- If such a lower bound existed, it would function as a benchmark against which estimates could be compared.
- If an estimate achieved this lower bound, we would know that it could not be improved upon.
- In the case in which the estimate is unbiased, the Cramér-Rao inequality provides such a lower bound.

Theorem: Continuous Case

Suppose that the p.d.f. is $f(x;\theta)$ and the Fisher information $I(\theta)$ exists. Let x_1,x_2,\cdots,x_n be a sample, and let $T=T(x_1,x_2,\cdots,x_n)$ be an unbiased estimate of $g(\theta)$, that is,

$$g(\theta) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(x_1, \cdots, x_n) \prod_{i=1}^{n} f(x_i; \theta) dx_1 \cdots dx_n.$$

lf

- the (partial) derivative $g'(\theta) = \frac{\partial g(\theta)}{\partial \theta}$ exists;
- the integration and differentiation could be interchanged:

$$g'(\theta) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(x_1, \cdots, x_n) \frac{\partial}{\partial \theta} \left(\prod_{i=1}^{n} f(x_i; \theta) \right) dx_1 \cdots dx_n;$$

Theorem: Continuous Case (Con'd)

Then,

$$Var(T) \ge \frac{(g'(\theta))^2}{nI(\theta)},$$

which is said to be Cramér-Rao Inequality.

Remark

- $\frac{(g'(\theta))^2}{nI(\theta)}$ is called as Cramér-Rao bound on the variance of any unbiased estimate of $g(\theta)$.
- If $Var(T) = \frac{(g'(\theta))^2}{nI(\theta)}$, $T = T(x_1, x_2, \dots, x_n)$ is an efficient estimate of $q(\theta)$ and it is also a UMVUE.
- Special Case: If $\hat{\theta}$ is an unbiased estimate of θ , then

$$Var(\hat{\theta}) \ge (nI(\theta))^{-1}$$
.

Theorem: Continuous Case (Con'd)

Proof: Since $\int_{-\infty}^{\infty} f(x_i; \theta) dx_i = 1, i = 1, \dots, n$ and take the derivative from both sides,

$$0 = \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x_i; \theta) dx_i$$
$$= \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial \theta} \ln f(x_i; \theta) \right) f(x_i; \theta) dx_i$$
$$= E\left(\frac{\partial}{\partial \theta} \ln f(x_i; \theta) \right),$$

where the first equality holds since the integration and differentiation could be interchanged, the second equality holds since $\frac{\partial}{\partial \theta} \ln f(x_i; \theta) = (f(x_i; \theta))^{-1} \cdot \frac{\partial}{\partial \theta} f(x_i; \theta)$.

Theorem: Continuous Case (Con'd)

Let
$$Z = \frac{\partial}{\partial \theta} \ln \prod_{i=1}^n f(x_i; \theta) = \sum_{i=1}^n \frac{\partial}{\partial \theta} \ln f(x_i; \theta)$$
. Then,

$$E(Z) = \sum_{i=1}^{n} E\left(\frac{\partial}{\partial \theta} \ln f(x_i; \theta)\right) = 0$$

and

$$E(Z^{2}) = Var(Z) = \sum_{i=1}^{n} Var\left(\frac{\partial}{\partial \theta} \ln f(x_{i}; \theta)\right)$$
$$= \sum_{i=1}^{n} E\left(\frac{\partial}{\partial \theta} \ln f(x_{i}; \theta)\right)^{2} = nI(\theta)$$

Theorem: Continuous Case (Con'd) Thus.

$$g'(\theta) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(x_1, \dots, x_n) \frac{\partial}{\partial \theta} \left(\prod_{i=1}^n f(x_i; \theta) \right) dx_1 \cdots dx_n$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(x_1, \dots, x_n) \left(\frac{\partial}{\partial \theta} \ln \prod_{i=1}^n f(x_i; \theta) \right) \prod_{i=1}^n f(x_i; \theta) dx_1 \cdots dx_n$$

$$= E(T \cdot Z)$$

From the Schwarz's inequality,

 $= E(T \cdot Z) - E(T)E(Z)$

 $=E((T-q(\theta))Z).$

$$[q'(\theta)]^2 < E((T - q(\theta))^2) \cdot E(Z^2) = Var(T)Var(Z).$$

Remark

• Since the integration and differentiation could be interchanged, it is proved that $E\left(\frac{\partial}{\partial \theta} \ln f(x;\theta)\right) = 0$. Then,

$$I(\theta) = E\left(\frac{\partial}{\partial \theta} \ln f(x;\theta)\right)^2 = Var\left(\frac{\partial}{\partial \theta} \ln f(x;\theta)\right).$$

• If the second derivative $\frac{\partial^2}{\partial \theta^2} f(x;\theta)$ exists for all $\theta \in \Theta$, The Fisher information is

$$I(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2} \ln f(x; \theta)\right).$$

Cramér-Rao Inequality still holds in the discrete case.

Example: Bernoulli distribution

Suppose that the population is a Bernoulli distribution $B(\theta).$ The p.m.f. is

$$f(x;\theta) = \theta^{x}(1-\theta)^{1-x}, x = 0, 1$$

The Fisher's Information is

$$I(\theta) = \frac{1}{\theta(1-\theta)}.$$

Suppose that x_1, x_2, \cdots, x_n is a sample. Then, Cramér-Rao bound is $(nI(\theta))^{-1} = \theta(1-\theta)/n$. We know that $\bar{x} = n^{-1} \sum_{i=1}^n x_i$ is unbiased for θ and its variance is $\theta(1-\theta)/n$. Since \bar{x} achieves the Cramér-Rao bound, \bar{x} is efficient for θ and thus it is also a UMVUE.

Example: Exponential distribution

Suppose that the population is an Exponential distribution $Exp(1/\theta)$. The p.m.f. is

$$f(x;\theta) = \theta^{-1} \exp\left\{-\frac{x}{\theta}\right\}, x > 0$$

The Fisher's Information is

$$I(\theta) = \frac{1}{\theta^2}.$$

Suppose that x_1, x_2, \dots, x_n is a sample. Then, Cramér-Rao bound is $(nI(\theta))^{-1} = \theta^2/n$. We know that $\bar{x} = n^{-1} \sum_{i=1}^n x_i$ is unbiased for θ and its variance is θ^2/n . Since \bar{x} achieves the Cramér-Rao bound, \bar{x} is efficient for θ and thus it is also a UMVUE.

Remark

- An efficient estimate is a UMVUE;
- A UMVUE may not be an efficient estimate.

Example

Suppose that the population is a Normal distribution $N(0,\sigma^2)$. The p.d.f. is

$$f(x;\sigma^2) = (2\pi\sigma)^{-1/2} \exp\left\{-\frac{x^2}{2\sigma^2}\right\}.$$

Note that $\frac{x^2}{\sigma^2} \sim \chi^2(1)$. Then,

$$I(\sigma^2) = E\left(\frac{\partial}{\partial \sigma^2} \ln f(x; \sigma^2)\right)^2 = E\left(\frac{x^2}{2\sigma^4} - \frac{1}{2\sigma^2}\right)^2 = \frac{1}{2\sigma^4}$$

Example (Con'd)

Let x_1, x_2, \cdots, x_n be a sample. Then the Cramér-Rao bound on the variance of σ^2 is $\frac{2\sigma^2}{n}$. We know that $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n x_i^2$ is unbiased for σ^2 and its variance achieves the Cramér-Rao bound. So, $\hat{\sigma}^2$ is a UMVUE of σ^2 .

Let $\sigma = g(\sigma^2) = \sqrt{\sigma^2}$. Then, the Cramér-Rao bound on the variance of σ is

$$\frac{g'(\sigma^2)^2}{nI(\sigma^2)} = \frac{(1/(2\sigma))^2}{n/(2\sigma^4)} = \frac{\sigma^2}{2n}$$

The unbiased estimate of σ is

$$\hat{\sigma} = \sqrt{\frac{n}{2}} \cdot \frac{\Gamma(n/2)}{\Gamma((n+1)/2)} \sqrt{n^{-1} \sum_{i=1}^{n} x_i^2}$$

Example (Con'd)

It is can be proved that

- $\hat{\sigma}$ is a UMVUE of σ ;
- The variance of $\hat{\sigma}$ is larger than $\frac{\sigma^2}{2n}$. Thus, $\hat{\sigma}$ is not an efficient estimate.

Definition

Let $f(t;\theta)$ be p.d.f. or p.m.f for a statistic T(x). T(x) is called a **complete statistic** if

$$E(g(T))=0$$
 for all $\theta \Rightarrow P(g(T)=0)=1$ for all $\theta.$

Example

Suppose that $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ is a sample from a Bernoulli distribution B(p) with an unknown parameter $p\in(0,1)$. The sufficient statistic $T=\sum_{i=1}^n x_i$ for the parameter p. The distribution of T is binomial distribution b(n,p). Let g be a function such that E(g(T))=0. Then,

Example (Con'd)

$$0 = E(g(T)) = \sum_{t=0}^{n} g(t) \binom{n}{t} p^{t} (1-p)^{n-t}$$
$$= (1-p)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} \left(\frac{p}{1-p}\right)^{t}$$

for all $p, 0 . The factor <math>(1 - p)^n$ is not 0 for any p in this range. Thus it must be that

$$0 = \sum_{t=0}^{n} g(t) \binom{n}{t} \left(\frac{p}{1-p}\right)^{t} = \sum_{t=0}^{n} g(t) \binom{n}{t} r^{t}$$

for all $r, 0 < r < \infty$.

Example (Con'd)

But the last expression is a polynomial of degree n in r, where the coefficient of r^t is $g(t) \binom{n}{t}$. For the polynomial to be 0

for all r, each coefficient must be 0. Since none of the $\binom{n}{t}$ terms is 0, this implies that g(t)=0 for $t=0,1,\cdots,n$. Since T takes on the values $0,1,\cdots,n$ with probability 1, this yields that P(g(T)=0)=1 for all p, the desired conclusion. Hence, T is a complete statistic.

Theorem

Let $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ be a sample from an exponential family with p.d.f. or p.m.f. of the form

$$f(x;\theta) = h(x) \exp\{\eta(\theta)^{\tau} T(x) - \zeta(\theta)\}.$$

The joint p.d.f. or p.m.f. of $oldsymbol{x}$ is

$$f(\boldsymbol{x};\theta) = \prod_{i=1}^{n} h(x_i) \cdot \exp\left\{\eta(\theta)^{\tau} \sum_{i=1}^{n} T(x_i) - n\zeta(\theta)\right\}.$$

Thus, $\sum_{i=1}^{n} T(x_i)$ is a complete and sufficient statistic.

Remark

There are three methods to find a UMVUE of $g(\theta)$:

- If E(T) is an unbiased estimate of $g(\theta)$ for all θ and Var(T) achieves Cramér-Rao bound. Then T is a UMVUE of $g(\theta)$;
 - Note that a UMVUE may not attain Cramér-Rao bound.
- If S is a complete and sufficient statistic, and T=h(S) satisfies $E(T)=g(\theta)$ for all θ . Then T is a UMVUE of $g(\theta)$;
- If U is an unbiased estimate for $g(\theta)$ and S is a complete and sufficient statistic for θ . Then, T=E(U|S) is a UMVUE of $g(\theta)$.

Example: Normal Distribution

Suppose that x_1, x_2, \cdots, x_n is a sample from $N(\mu, \sigma_0^2)$ where σ_0^2 is known, but μ is unknown.

First, We would liket to find an UMVUE of $\theta_1 = \mu$. Then

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

is sufficient and complete statistics for θ_1 . Note that

$$E(\bar{x}) = \mu$$

Since it depends only on the sufficient and complete statistic, \bar{x} is an UMVUE of θ_1 .

Example: Normal Distribution(Con'd)

Next, we would like to find a UMVUE of

$$\theta_2 = P(X_1 \le c) = \Phi\left(\frac{c-\mu}{\sigma}\right)$$

where c is a known constant. It is a fact that $I_{(-\infty,c]}(x_1)$ is an unbiased estimate of θ_2 . Then, the UMVUE of θ_2 is

$$E(I_{(-\infty,c)}(x_1)|\bar{x}) = P(x_1 \le c|\bar{x}) = P(x_1 - \bar{x} \le c - \bar{x}|\bar{x})$$

$$\stackrel{\textcircled{1}}{=} P(x_1 - \bar{x} \le c - \bar{x}) \stackrel{\textcircled{2}}{=} \Phi\left(\frac{c - \bar{x}}{\sqrt{1 - 1/n}}\right),$$

- $\stackrel{\textcircled{1}}{=}$ holds since $x_1 \bar{x}$ and \bar{x} are independent;
- $\stackrel{\text{(2)}}{=}$ holds since $x_1 \bar{x} \sim N(0, 1 1/n)$.

Frequentists' Idea

Example

- A freshly minted coin has a certain probability of coming up heads if it is spun on its edge, but that probability is not necessarily equal to ¹/₂.
- Now suppose that it is spun n times and comes up heads k times. What has been learned about the chance the coin comes up heads?
- How to solve this problem?
 - Let x_1, x_2, \dots, x_n be a sample from a Bernoulli distribution $B(\theta)$ with an unknown parameter θ .
 - A reasonable estimate of p is $\hat{\theta} = \frac{k}{n}$.
- Note that
 - The parameter θ is an unknown, but **fixed** quantity;
 - The sample x_1, x_2, \dots, x_n are i.i.d random variables.

Frequentists' Idea

Example

- A freshly minted coin has a certain probability of coming up heads if it is spun on its edge, but that probability is not necessarily equal to ¹/₂.
- Now suppose that it is spun n times and comes up heads k times. What has been learned about the chance the coin comes up heads?
- How to solve this problem?
 - Let x_1, x_2, \dots, x_n be a sample from a Bernoulli distribution $B(\theta)$ with an unknown parameter θ .
 - A reasonable estimate of p is $\hat{\theta} = \frac{k}{n}$.
- Note that
 - The parameter θ is an unknown, but **fixed** quantity;
 - The sample x_1, x_2, \dots, x_n are i.i.d random variables.

In the Bayesian approach,

- θ is considered to be a random variable, which can be described by a probability distribution (called the prior distribution).
- A sample is taken from a population indexed by θ ;
- Given a prior probability about a hypothesis and the observed information, the Bayes rule is used to obtain the posterior probability which is the conditional probability on the observed evidence.

Review: Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Basic concepts

Given a hypothesis (denoted as H), the Bayes theorem is used to update our beliefs about it once the data (denoted as D) have been observed:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

where

- P(H): is the **prior probability** on the hypothesis;
- P(D|H): is **likelihood** given that hypothesis is true;
- P(D) is the marginal likelihood;
- P(H|D) is the posterior probability for H once the data have been observed.

Main steps:

- Select a **prior distribution** for θ , denoted as $\pi(\theta), \theta \in \Theta$;
- In the Bayesian view, generate the sample $x = (x_1, x_2, \dots, x_n)$ in the following two steps:
 - Generate a parameter sample θ from the prior distribution $\pi(\theta)$, that is, $\theta \sim \pi(\theta)$;
 - Given the parameter θ , generate a sample from $f(x|\theta)$.

$$f(\boldsymbol{x}|\theta) = f(x_1, x_2, \cdots, x_n|\theta) = \prod_{i=1}^n f(x_i|\theta)$$

• Using Bayes' rule, obtain the **posterior probability** of θ :

$$\pi(\theta|\boldsymbol{x}) = \frac{f(\boldsymbol{x}|\theta)\pi(\theta)}{f(\boldsymbol{x})} = \frac{f(\boldsymbol{x}|\theta)\pi(\theta)}{\int_{\Theta} f(\boldsymbol{x}|\theta)\pi(\theta)d\theta}$$

Remark

The marginal likelihood

$$f(\boldsymbol{x}) = \int_{\Theta} f(\boldsymbol{x}|\theta)\pi(\theta)d\theta$$

is a constant to ensure that the posterior distribution of θ integrates up to 1 and does not depend on θ .

• The posterior distribution is usually expressed by

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

which means that the posterior distribution is proportional to the likelihood times the prior distribution.

Example

A freshly minted coin has a certain probability of coming up heads if it is spun on its edge, but that probability is not necessarily equal to $\frac{1}{2}$. Now suppose that it is spun n times and comes up heads k times. What has been learned about the chance the coin comes up heads?

Solution: Let θ be the chance that the coin comes up heads.

- First, we assume the prior distribution on θ is a Beta distribution with two **hyperparameters** α and β , i.e. $p \sim Be(\alpha, \beta)$.
- Second, let $x=(x_1,x_2,\cdots,x_n)$ be a sample and $k=\sum_{i=1}^n x_i$. It is obvious that $k|\theta \sim b(n,\theta)$.

Example (Con'd)

• Third, the joint distribution of k and θ is

$$f(k,\theta) = f(k|\theta)\pi(\theta)$$

$$= \binom{n}{k} \theta^{k} (1-\theta)^{n-k} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$= \binom{n}{k} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$$

• Forth, the marginal p.m.f. of k is

$$f(y) = \int_0^1 f(y,\theta) \mathrm{d}\theta = \binom{n}{k} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(k+\alpha)\Gamma(n-k+\beta)}{\Gamma(n+\alpha+\beta)}$$

Example (Con'd)

• Fifth, the posterior distribution, the distribution of θ given k, is

$$\pi(\theta|k) = \frac{f(k,\theta)}{f(y)}$$

$$= \frac{\Gamma(n+\alpha+\beta)}{\Gamma(k+\alpha)\Gamma(n-k+\beta)} \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$$

which is also distributed as a Beta distribution. Specifically, $\theta | k \sim Be(k + \alpha, n - k + \beta)$.

Definition

If the posterior distributions $\pi(\theta|x)$ are in the same probability distribution family as the prior probability distribution $\pi(\theta)$, then

- the prior and posterior are said to be conjugate distribution,
- the prior is said to be a conjugate prior for the likelihood function.

In the previous example,

Prior	Likelihood	Posterior
Beta	binomial	Beta

Loss function

Introduction

- After the data $x = (x_1, x_2, \dots, x_n)$ are observed, a decision regarding θ is made. The set of allowable decisions is the action space, denoted as A.
- The loss function in a point estimation problem reflects the fact that
 - if an action a is close to θ, then the decision a is reasonable and little loss is incurred;
 - f a is far from θ , then a large loss is incurred.
- The loss function is a non-negative function that generally increases as the distance between a and θ increases. For example, a common used loss function is

$$L(\theta, a) = (a - \theta)^2.$$

Loss function

Introduction (Con'd)

• In a loss function or decision theoretic analysis, the quality of an estimate is quantified in its **risk function**; that is, for an estimate $\hat{\theta} = \hat{\theta}(\boldsymbol{x})$ of θ , the **risk function**, a function of θ , is

$$R(\theta, \hat{\theta}) = E\left(L(\theta, \hat{\theta}(\boldsymbol{x}))\right)$$

At a given θ , the risk function is the average loss that will be incurred if the estimate $\hat{\theta}$ is used.

• Since the true value of θ is unknown, we would like to use an estimate that has a small value of $R(\theta, \hat{\theta})$ for all values of θ . This would mean that, regardless of the true value of θ , the estimate will have a small expected loss.

Bayes risk

Introduction

 In Bayesian view, we would use this prior distribution to compute an average risk

$$\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) \mathrm{d}\theta$$

known as the Bayes risk.

- Averaging the risk function gives us one number of assessing the performance of an estimate with respect to a given loss function.
- Moreover, we can attempt to find the estimate that yields the smallest value of the Bayes risk. Such an estimate is said to be the **Bayes rule with respect to a prior** π .

Bayes risk

Introduction (Con'd)

For $x \sim f(x|\theta)$ and $\theta \sim \pi(\theta)$, the Bayes risk of a decision rule $\hat{\theta}$ can be written as

$$\int_{\Theta} R(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) \pi(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} = \int_{\Theta} \left(\int_{\mathcal{X}} L(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}(\boldsymbol{x})) f(\boldsymbol{x}|\boldsymbol{\theta}) \mathrm{d}\boldsymbol{x} \right) \pi(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}$$

Let $f(\boldsymbol{x}|\theta)\pi(\theta) = \pi(\theta|\boldsymbol{\theta})f(\boldsymbol{x})$, where $\pi(\theta|\boldsymbol{x})$ is the posterior distribution of θ and $f(\boldsymbol{x})$ is the marginal distribution of \boldsymbol{x} , we can write the Bayes risk as

$$\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\mathcal{X}} \left(\int_{\Theta} L(\theta, \hat{\theta}(\boldsymbol{x})) \pi(\theta|\theta) d\theta \right) f(\boldsymbol{x}) d\boldsymbol{x}$$

which the quantity in square brackets is said to be the **posterior expected loss**.

Bayes risk

Introduction (Con'd)

Particularly, the loss function of θ could be written as

$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2.$$

which is said to be **quadratic loss or squared error loss**. In Frequentists' view, the risk function becomes the mean squared error of the estimate, that is,

$$\hat{\theta} = \arg\min_{\hat{\theta}} E(\theta - \hat{\theta})^2$$

The Bayes estimate is the expectation of the posterior distribution of θ , that is,

$$E(\theta|\boldsymbol{x}) = \int_{\Theta} \theta \pi(\theta|\boldsymbol{x}) d\theta$$

Example: Revisit

A freshly minted coin has a certain probability of coming up heads if it is spun on its edge, but that probability is not necessarily equal to $\frac{1}{2}$. Now suppose that it is spun n times and comes up heads k times. What has been learned about the chance the coin comes up head?

Let θ be the chance that coin comes up heads. Assume the prior distribution of θ is $Be(\alpha,\beta)$. The posterior distribution of θ given k is $Be(k+a,n-k+\beta)$.

The Bayes estimate of θ is

$$\hat{\theta}|k = \frac{k+\alpha}{n+\alpha+\beta}.$$

Example: Normal distribution

Suppose that $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ is sample from $N(\mu,\sigma_0^2)$ where σ_0^2 is known but μ is unknown. Assume that the prior distribution of μ is $N(\theta,\tau^2)$, where θ and τ^2 are both known. Find the Bayes estimate of μ .

Solution: The prior of μ is

$$\pi(\mu) = (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2}(\mu - \theta)^2\right\}$$

and the sample distribution of $oldsymbol{x}$ is

$$f(\boldsymbol{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2\right\}.$$

Example: Normal distribution (Con'd)

The posterior distribution of μ is

$$\begin{split} \pi(\mu|\boldsymbol{x}) &\propto f(\boldsymbol{x}|\mu)\pi(\mu) \\ &\propto \exp\left\{-\frac{1}{2}(A\mu^2 - B\mu + C)\right\} \\ &\propto \exp\left\{-\frac{1}{2}\frac{(\mu - B/A)^2}{2/A}\right\} \end{split}$$

where $A=\frac{n}{\sigma_0^2}+\frac{1}{\tau^2}$, $B=\frac{n\bar{x}}{\sigma_0^2}+\frac{\theta}{\tau^2}$ and $C=\frac{\sum_{i=1}^n x_i^2}{\sigma_0^2}+\frac{\theta^2}{\tau^2}$. Given $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$, the posterior of μ is distributed as

$$\mu | \boldsymbol{x} \sim N\left(\frac{n\bar{x}\sigma_0^{-2} + \theta\tau^{-2}}{n\sigma_0^{-2} + \tau^{-2}}, \frac{1}{n\sigma_0^{-2} + \tau^{-2}}\right)$$

Example: Normal distribution (Con'd)

The Bayes estimate of μ is

$$\hat{\mu} = \frac{n/\sigma_0^2}{n/\sigma_0^2 + 1/\tau^2} \bar{x} + \frac{1/\tau^2}{n/\sigma_0^2 + 1/\tau^2} \theta.$$

- It is a weighted average of the sample mean and prior mean;
- If the population variance σ_0^2 is small or the sample size n is large, it is dominated by the sample mean \bar{x} ;
- If the prior variance τ^2 is small, it is dominated by the prior mean θ .