

Disaggregation of space and water heating from real life 10-minute load curves

NILM 2016 May 14th 2016

Romain Benassi

- Ph.D. since 2013
 - Optimization
 - Bayesian statistics
 - Signal processing
- Researcher at Homepulse in Paris since 2013
 - Load curve disaggregation research
 - Statistical analyses of residential electricity consumption

Smart metering in France

By 2021, "Linky" smart meters should be installed in almost every home. They are foreseen, so far, to deliver 10-minutes consumption averages.

★ What kind of **information** can 10-minute data deliver?
A important issue for the next few months and years!

Electric space and water heating in France

Electric heating

o 31% of French homes (principal residences) use electric heating

Electric water heating

- ~45% of French homes (12 millions)
- Most are set automatically by a load control switch
 a low frequency message send via the grid turns them on at off peak hours
- Some water heaters are running on an "as needed" basis these heaters are not addressed by the scope of this presentation

Validation sample:

12 households with "ground truth" readings

- Aggregate consumption read at the meter
 - Uno® sensor reads the meter's flashing light (1 flash per Wh)

- Disaggregate Readings from some individual plug loads
 - Plugwise® sensing plugs on each heater and on the water heater

We downgrade data to 10-minutes averages, in order to simulate future Linky data

Illustration 1: Household #12

Illustration 2: Household #2

Description

• At each 10 minute-data value (t_k, P_k) , we try to find the disaggregated consumption values X_i which optimize a cost function J

$$argmin_{X_i}J(X_1,X_2,...,X_n) = \sum_{i=0}^n (E_i - X_i)^2 / Var_i$$
 subject to $\sum_{i=0}^n X_i = P_k$

- The expectations E_i and the variances Var_i are themselves estimated from specific treatments on each household 10-minute dataset
 - Regarding heating, a "thermal gradients model" relating consumption to external temperatures, delivers heating expectations; we use the spread of residuals on cold days as a basis to estimate variance.
 - Regarding water heating, we use the time-profile of the non-thermal estimated consumption (i.e. the "intercept" of the thermal gradients model) as a basis to estimate water heating expectations; we use the spread of residuals at the same time of days with neutral temperature, in order to estimate variance.

Thermal gradient

General principles

Looking for a linear relationship between electric consumption and outside

temperatures

- Lagged temperature variables catch the thermal inertia of the building
- An additional dummy day/night variable prevents confusion of heating (thermal gradient) with lighting the issue is esp. relevant around 19:00.
- Heating strongly depends on the hour of the day => 144 models computed, one for each 10-minute slot. Triangular smoothing is performed on 30' slots.

Thermal gradient

Results illustration

Results: Household #3

Results: Household #12

Results: Household #1

Accuracy

Household n°	Heating bias W	Heating RMSE W	Water heating bias W	Water heating RMSE W
#1	-79	379	37	305
#2	16	492	-26	373
#3	-13	522	-112	414
#4	-667	1020	-225	636
#5	284	556	283	404
#6	-115	712	98	389
#7	540	957	-92	679
#8	95	405	-46	633
#9	-475	1081	55	1000
#10	467	910	-90	508
#11	39	271	51	235
#12	-96	446	-35	512

What for

Disaggregating the 10 or 15 minute load curve as a flow

Disaggregation of costs: a strong demand from utilities

Evaluation of heating performance: implications for insulation policies/subsidizing

Smarter thermostat without additional heating consumption measurements

Anomaly detection – monitoring of homes, especially when not occupied by owners

Currently working on...

Other appliances:

- HVAC
- Lighting
- Off-peak-hours triggered water heaters at other times of day
- Other kinds of water heaters
- Pool pump
- •

• Dynamic consumption forecast:

- Withdrawing the assumption that 10' time slots are independent from each other
- Combining the statistical approach in the present paper, with dynamic modeling.

A Unique Positioning

From energy consumption data to meaningful technology and marketing events

STATISTICS, MATHS, MODELS

ALGORITHMS

- 5" DATA
- 10'+ DATA

AD HOC ANALYSES

ENERGY MANAGEMENT SERVICES

CUSTOMER INTERFACES

MONITORING TOOLS FOR ENERGY SUPPLIERS

MEASUREMENT ON HOUSEHOLDS SAMPLES, TARGETING

- ENERGY CONSUMPTION
- USAGES
- ELECTRICITY / GAS, 1"... 1h

- Load curve disaggregation
- Thermal 'gradients' model
- Forecast (30', month, years)
- Anticipation of peaks
- Prediction of churn,...
- Detection of devices
- Demand response potential

- Customer engagement
- Interactive advice
- Simulation tools
- Comparison vs. references
- Consumer databases creation
- Gaming

- Permanent households panel "PowerMetrix"
- Ad hoc samples recruitment, equipment and measurement
- Demand Response Testing
- Evaluation of the savings impact of a new equipment
- Before/after & with/without

Our Assets

From energy consumption data to meaningful technology and marketing events

- ✓ Patented disaggregation algorithms: meter load curve / electrical appliances load curve
- ✓ IT Big Data architecture (Cassandra, MongoDB, Akka Streams, Google cloud,...)
- ✓ Hardware experience from the last 3 years' projects (meter sensors, smart plugs, electricity & gas)
- ✓ **Team** of high level data scientists, big data engineers and seasoned entrepreneurs

References

