Ministère de	BLIQUE TUNISIENNE Concours Nationaux d'Entrée l'Enseignement Supérieur, de la Scientifique et de la Technologie Concours Nationaux d'Entrée de Formation d'Ingénie	and the second s	Signature des surveillants
We Have die led	Session : Juin 2007 Concours : Epreuve de : Sciences et Techniques de l'Ingénieur (S	ſ	Numéro de la double feuille
*	nstitution de rigine : dentifiant Sé :		Estal des doubles feuilles
Concours	Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs	Numero de la double feuille	Total des doubles feuilles
No lea bette let	Session :	1	4

DOCUMENT REPONSE

- ✓ Ce dossier comporte 13 pages numérotées de 1 à 13
- ✓ Un seul dossier document réponse est fourni au candidat et doit être rendu, totalité, même sans réponses à la fin de l'épreuve.
- ✓ Le renouvellement de ce dossier est interdit

Ministère de	BELIQUE TUNISIENNE Concours Nationaux d'Entrée aux Cycles l'Enseignement Supérieur, de la Ceientifique et de la Technologie Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs	Signature des surveillants
	Session: Juin 2007 Concours: MP & PC	
the feel being let	Epreuve de :Sciences et Techniques de l'Ingénieur (STI)	Numéro de la double feuille
We War	Nom: Prénoms:	2
Pr.	Institution d'origine ::	Total des doubles feuilles
*	Ic ntifiant	4
	Nur To de	otal des
Concours	Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs	doubles feuilles
when settle let	Session: Concours:	4
Me year	Epreuve de : Sciences et Techniques de l'Ingénieur (STI)	

A - TECHNOLOGIE DE CONCEPTION

A-1- ANALYSE FONCTIONNELLE

- A-1-2- L'organe « effecteur » est : 2 2 2 2 2 2 1 a ventouse 2 2 2 2 2 2 2
- A-1-3- Le vérin pneumatique est un : Préactionneur □ Actionneur ☑ Distributeur □
- A-1-4- La fonction principale d'un vérin pneumatique est : Convertir l'W. pneumatique en W. mécanique

A-2- LIAISONS MECANIQUES:

Liaisons mécaniques	Symboles normalisés			Danuéa da
ciaisons mecaniques	Plan de normale \vec{x}	Plan contenant \vec{x}	Spatial	Degrés de liberté
Pivot d'axe (M, \overrightarrow{x})	мф	M ou tou	DM X	Rx
Glissière d'axe (M, \vec{x})	MX		\vec{x}	Tx
Linéaire annulaire d'axe (M, \vec{x})	M.C.	\overrightarrow{x}	$\sqrt{\frac{1}{x}}$	Rx, Ry, Rz Tx

A-3- ETUDE GRAPHIQUE:

Signature des REPUBLIQUE TUNISIENNE Concours Nationaux d'Entrée aux Cycles surveillants Ministère de l'Enseignement Supérieur, de la de Formation d'Ingénieurs Recherche Scientifique et de la Technologie Session: Juin 2007 Concours: MP & PC Numero de la Epreuve de :... Sciences et Techniques de l'Ingénieur (STI) double feuille Prénoms:.... Total des doubles Institution d'origina feuilles entifiant Total des ouble reuille doubles feuilles Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Epreuve de : Sciences et Techniques de l'Ingénieur (STI)

B - MECANIQUE

B-I- IDENTIFICATION DES PARAMETRES DE MOUVEMENT :

B-I-1- Etude de la chaine 0-1-2-3-0 : Identification de $\dot{\beta}$ et de $\dot{\lambda}$:

B-I-1.1. Fermeture géométrique de la chaîne :

$$\overrightarrow{OO} = \dots \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{0} \dots$$

B-I-1.2. Torseurs cinématiques : (Les détails de calcul ne sont pas demandés)

Notation: première colonne vecteur rotation et deuxième colonne vecteur vitesse.

$$a - \{V(1/0)\} = \begin{cases} 0 & -r\dot{\alpha}Sin\alpha \\ 0 & r\dot{\alpha}Cos\alpha \\ \dot{\alpha} & 0 \end{cases}_{A}$$

$$b - \{V(2/0)\} = \begin{cases} 0 & -r\dot{\alpha}Sin\alpha - L_{2}\dot{\beta}Sin\beta \\ 0 & r\dot{\alpha}Cos\alpha - L_{2}\dot{\beta}Cos\beta \\ -\dot{\beta} & 0 \end{cases}_{B}$$

$$c - \{V(3/0)\} = \begin{cases} 0 & \dot{\lambda} \\ 0 & 0 \\ 0 & 0 \end{cases}_{B}$$

B-I-1.3. Relations entre $\dot{\alpha}$, $\dot{\beta}$ et $\dot{\lambda}$:

$$\vec{V}(B \in 2/0) = ...\vec{V}(B \in 2/3) + \vec{V}(B \in 3/0)....$$
 et $...\vec{V}(B \in 2/3) = \vec{0}$ (C.L. Pivot)

Ce qui donne : $\dot{\beta} = \dots - r\dot{\alpha}Sin\alpha - L_2\dot{\beta}Sin\beta \dots (1)$ $\dot{\beta} = \dots \frac{r}{L_2}\dot{\alpha}\frac{\cos\alpha}{\cos\beta} \dots (2)$

B-I-2- Etude de la chaine 0-4-6-7-3-0 : Identification $\dot{\theta}$ et de $\dot{\phi}$:

B-I-2.1. Torseurs cinématiques : (Les détails de calcul ne sont pas demandés)

$$a - \{V(4/0)\} = \begin{cases} 0 & -L_4 \dot{\gamma} Cos \gamma \\ 0 & -L_4 \dot{\gamma} Sin \gamma \\ \dot{\gamma} & 0 \end{cases}_D$$

$$b - \{V(6/0)\} = \begin{cases} 0 & -L_4 \dot{\gamma} Cos \gamma - L_6 (\dot{\gamma} - \dot{\theta}) Sin (\gamma - \theta) \\ 0 & -L_4 \dot{\gamma} Sin \gamma + L_6 (\dot{\gamma} - \dot{\theta}) Cos (\gamma - \theta) \\ 0 & 0 \end{cases}_E$$

$$c - \{V(7/0)\} = \begin{cases} 0 & \lambda + b_7 \dot{\phi} Cos \phi \\ -b_7 \dot{\phi} Sin \phi \\ 0 & 0 \end{cases}_E$$

B-I-2.2. Relations entre $\dot{\lambda}$, $\dot{\gamma}$, $\dot{\theta}$ et $\dot{\varphi}$:

$$\vec{V}(E \in 7/0) = \dots \vec{V}(E \in 7/6) + \vec{V}(E \in 6/0) \dots et \dots \vec{V}(E \in 7/6) = \vec{0}$$
 (C.L. Pivot)

Ce qui donne : $\dot{\lambda} + b_7 \dot{\varphi} Cos \varphi = -L_4 \dot{\gamma} Cos \gamma - L_6 (\dot{\gamma} - \dot{\theta}) Sin(\gamma - \theta) \qquad (1)$ $-b_7 \dot{\varphi} Sin \varphi = -L_4 \dot{\gamma} Sin \gamma + L_6 (\dot{\gamma} - \dot{\theta}) Cos(\gamma - \theta) \qquad (2)$

B-I-3- Etude de la chaine 3-7-8-9-3 : Identification de $\dot{\delta}$ et de $\dot{\psi}$:

B-I-3-1. Fermeture géométrique de la chaîne :

$$\overrightarrow{FI} = \dots \overrightarrow{FK} + \overrightarrow{KJ} + \overrightarrow{JI} = a_3 \overrightarrow{x}_0 - b_3 \overrightarrow{y}_0 \dots$$

Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs

Signature des surveillants

Session: Juin 2007 Concours: MP & PC

	.,	
preuve de :Sciences et T	echniques de l'Ingénieur (STI)	
√om:	Prénoms :	

Numéro de la double feuille

Institution d'origine :..

Total des doubles feuilles

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingén

Epreuve de : Sciences et Techniques de l'Ingénieur (STI)

- Carrier -	1
4	4

Ce qui donne :

$$\dots a_7 \cos \varphi - a_8 \cos \psi - b_9 \sin \delta = a_3 \dots (1)$$

$$...-a_7Sin\varphi+a_8Sin\psi-b_9Cos\delta\ =\ -b_3.....(2)$$

B-I-3.2. Relations entre $\dot{\psi}$, $\dot{\delta}$ et $\dot{\phi}$:

$$\dots -a_7 \dot{\varphi} Sin\varphi + a_8 \dot{\psi} Sin\psi - b_9 \dot{\delta} Cos\delta = 0 \dots (1)$$

$$\dots -a_7 \dot{\varphi} \cos \varphi + a_8 \dot{\psi} \cos \psi + b_9 \dot{\delta} \sin \delta = 0 \dots (2)$$

B-II- EQUILIBRAGE STATIQUE ET DYNAMIQUE DU PLATEAU (1):

B-II-1. Densité surfacique :

$$\sigma = \dots \frac{m_1}{S_1} \dots$$

$$\sigma = \dots \frac{m_1}{\pi (R^2 - r_1^2 - r_2^2)} \dots$$

B-II-2. Centre d'inertie du plateau :

$$S_1.\overrightarrow{OG}_1 = S.\overrightarrow{OG} - S'.\overrightarrow{OG'} - S''.\overrightarrow{OG''} \ \ \textcircled{2} \Leftrightarrow \ \ \pi \left(R^2 - r_1^2 - r_2^2\right) x_G = \pi R^2 d_1 - \pi r_1^2.0 - \pi r_2^2 d_2$$

$$\overrightarrow{OG}_1 = \frac{d_1 R^2 - d_2 r_2^2}{R^2 - r_1^2 - r_2^2} \ \overrightarrow{x}_1$$

B-II-3. Equilibrage statique:

.....

.....
$$d_0 = \frac{S_1}{S_0} x_G = \frac{\pi (R^2 - r_1^2 - r_2^2)}{\pi r_0^2} \frac{d_1 R^2 - d_2 r_2^2}{R^2 - r_1^2 - r_2^2} \dots$$

$$d_0 = \frac{d_1 R^2 - d_2 r_2^2}{r_0^2}$$

B-II-4. Eléments d'inertie qui doivent être nuls:

......D et E.....

B-II-5. Justification que ces éléments d'inertie sont effectivement nuls :

Disque mince $\Leftrightarrow \forall \ P \in (1), z_P = 0 \ \ \text{ou} \ (0, \vec{x}_1, \vec{y}_1) \ \text{plan de symétrie} \ \Leftrightarrow \textit{D} = \textit{E} = \textit{0}.$

Ou $(0, \vec{x}_1)$ est un axe de symétrie $\iff D = E = F = 0$.

B-II-6. Moment d'inertie $C = I_{0\vec{z}}(1)$:

$$I_{0\vec{z}}(1) = \left(\frac{mR^2}{2} + md_1^2\right) - \frac{m'r_1^2}{2} - \left(\frac{m''r_2^2}{2} + m''d_2^2\right) - \left(\frac{m_0r_0^2}{2} + m_0d_0^2\right)$$

$$I_{0\vec{z}}(1) = \pi\sigma \left[R^2(\frac{R^2}{2}+d_1^2) - \frac{r_1^4}{2} - r_2^2(\frac{r_2^2}{2}+d_2^2) - r_0^2(\frac{r_0^2}{2}+d_0^2)\right]$$

$$C = I_{0\vec{z}}(1) = \pi\sigma \left[R^2 \left(\frac{R^2}{2} + d_1^2 \right) - \frac{r_1^4}{2} - r_2^2 \left(\frac{r_2^2}{2} + d_2^2 \right) - r_0^2 \left(\frac{r_0^2}{2} + d_0^2 \right) \right].$$

B-III- CHOIX DU MOTOREDUCTEUR D'ENTRAINEMENT DU PLATEAU (1):

B-III-1. Energie cinétique du système (S) en mouvement par rapport à R₀ :

$$Ec(S/R_0) = Ec(1/R_0) + Ec(3/R_0) + Ec(8/R_0)$$

$$Ec(1/R_0) = \frac{1}{2}I_1\dot{\alpha}^2 \; ; \qquad Ec(3/R_0) = \frac{1}{2}m_3\dot{\lambda}^2 \; ; \qquad Ec(8/R_0) = \frac{1}{2}\big[I_8\dot{\psi}^2 + m_8(U_8^2 + V_8^2)\big]$$

$$Ec(S/R_0) = \frac{1}{2} \left[I_1 \dot{\alpha}^2 + m_3 \dot{\lambda}^2 + I_8 \dot{\psi}^2 + m_8 (U_8^2 + V_8^2) \right]$$

B-III-2. Actions mécaniques extérieures exercées sur le système (S) :

Actions de contact :

$$\{T(Moteur \rightarrow 1)\} = \begin{cases} \dots 0 \dots | \dots 0 \dots \\ \dots 0 \dots | \dots 0 \dots \\ \dots 0 \dots | \dots Cm. \end{cases} ; \{T(\mathbf{0} \rightarrow \mathbf{1})\} = \begin{cases} X_{01} | L_{01} \\ Y_{01} | M_{01} \\ Z_{01} | 0 \end{cases}$$

Actions à distance:

B-III-3. Puissance des actions mécaniques extérieures :

Les liaisons avec (0) sont supposées parfaites \Rightarrow $P(0 \rightarrow 1/R_0) = P(0 \rightarrow 3/R_0) = P(0 \rightarrow 4/R_0) = 0$. $P(\vec{g} \rightarrow 1/R_0) = P(\vec{g} \rightarrow 3/R_0) = 0$. $P(\vec{S} \rightarrow S/R_0) = C_m \dot{\alpha} - m_8 g V_8$.

$$P(\overline{S} \to S/R_0) = C_m \dot{\alpha} - m_8 g V_8$$

B-III-4. Couple moteur:

$$\frac{dEc(S/R_0)}{dt} = P(\overline{S} \to S/R_0) + P(int \grave{a} S)$$

Les liaisons internes sont supposées parfaites $\rightarrow P(int \ a \ S) = 0$.

$$C_{m} = I_{1} \ddot{\alpha} + \frac{1}{\dot{\alpha}} \left[m_{3} \dot{\lambda} \ddot{\lambda} + I_{8} \dot{\psi} \ddot{\psi} + m_{8} (U_{8} \dot{U_{8}} + V_{8} \dot{V_{8}} + g V_{8}) \right]$$

B-IV- CHOIX DE LA VENTOUSE:

B-IV-1. Accélération de centre d'inertie G du verre (10) :

$$\vec{\Gamma}(G \in 10/R_0) = \frac{d\vec{V}(G \in 10/R_0)}{dt} /_{R_0} = \frac{d\vec{V}(G \in 10/R_0)}{dt} /_{R_8} + \vec{\Omega}(R_8/R_0) \Lambda \vec{V}(G \in 10/R_0)$$

$$\vec{\Gamma}(G \in \mathbf{10}/R_0) = \dot{U}\vec{x}_8 + \dot{V}\vec{y}_8 - U\dot{\psi}\vec{y}_8 + V\dot{\psi}\vec{x}_8$$

$$\vec{\Gamma}(G \in 10/R_0) = (\dot{U} + V\dot{\psi})\vec{x}_8 + (\dot{V} - U\dot{\psi})\vec{y}_8$$

B-IV-2. Torseur dynamique:

$$\{D(10/R_0)\} = \begin{cases} m(\dot{U} + V\dot{\psi}) & 0 \\ m(\dot{V} - U\dot{\psi}) & 0 \\ 0 & -I_8\ddot{\psi} \end{cases}_G$$

B-IV-3. Torseur des actions mécaniques extérieures :

$$\{T(\mathbf{8} \to \mathbf{10})\} = \begin{cases} X \mid L \\ Y \mid M \\ Z \mid N \end{cases} = \begin{cases} X \mid L \\ Y \mid M + bZ \\ Z \mid N - bY \end{cases} ; \qquad \{T(\vec{g} \to \mathbf{10})\} = \begin{cases} mgSin\psi & 0 \\ -mgCos\psi & 0 \\ 0 & 0 \end{cases}$$

$$\left\{T(\overline{10} \to 10)\right\} = \begin{cases} X + mgSin\psi & L \\ Y - mgCos\psi & M + bZ \\ Z & N - bY \end{cases}_{G}$$

B-IV-4. PFD et détermination de l'action exercée par la ventouse sur le verre :

 R_0 est supposé galiléen $\Leftrightarrow \left\{T(\overline{10} \to 10)\right\}_P = \{D(10/R_0)\}_P \ \forall \ P \in (10) \ \text{et} \ \forall \ t$

$$X = m(\dot{U} + V\dot{\psi} - gSin\psi)$$

$$Y = m(\dot{V} - U\dot{\psi} + gCos\psi)$$

$$Z = 0$$

$$L = 0$$

$$M = 0$$

$$N = bm(\dot{V} - U\dot{\psi} + gCos\psi) - I_8\ddot{\psi}$$

B-IV-4. Condition sur le coefficient d'adhérence pour le choix de la ventouse :

Adhérence entre la ventouse et le verre (10) $\Leftrightarrow \frac{\|\vec{T}(8\to10)\|}{\|\vec{N}(8\to10)\|} \le f$

Avec

$$\|\overrightarrow{N}(8 \to 10)\| = |X| = m |(\dot{U} + V\dot{\psi} - gSin\psi)|$$
$$\|\overrightarrow{T}(8 \to 10)\| = |Y| = m |(\dot{V} - U\dot{\psi} + gCos\psi)|$$

$$f \geq \frac{|\dot{V} - U\dot{\psi} + gCos\psi|}{|\dot{U} + V\dot{\psi} - gSin\psi|}$$

C - AUTOMATIQUE

C.1. Modélisation du moteur

C.1.1.

En appliquant la transformation de Laplace :

$$E(p) = U(p) - R.I(p).$$

$$E(p) = K_e \cdot \Omega(p)$$

$$C_m(p) = K_t \cdot I(p)$$

$$C_m(p) = J.p.\Omega(p).$$

C.1.2.

C.1.3.

$$H(p) = \frac{\Omega(p)}{U(p)} = \frac{\frac{K_t}{R.J.p}}{1 + \frac{K_t.K_e}{R.J.p}} = \frac{K_t}{R.J.p + K_e.K_t} \Rightarrow \boxed{H(p) = \frac{\frac{1}{K_e}}{1 + \frac{R.J}{K_t.K_e}}p}$$

C.1.4.

Ordre du système : premier .

Constante de temps : $\frac{1}{\tau} = 20 \text{ rad.s}^{-1} \implies \boxed{\tau = 0.05 \text{ s}}$.

Gain statique : $20.\log(K_S) = -6 \text{ dB}$ \Rightarrow $K_S = 0.5 \text{ rad.s}^{-1}.V^{-1}$.

Forme canonique: $H(p) = \frac{0.5}{1 + 0.05.p}$

C.1.5.
$$K_{S} = \frac{1}{K_{e}} \implies K_{e} = \frac{1}{K_{S}} \implies \boxed{K_{e} = 2 \text{ V.s.rad}^{-1}}$$

$$\tau = \frac{R.J}{K_{t}.K_{e}} \implies J = \frac{\tau.K_{t}.K_{e}}{R} \implies \boxed{J = 2,5.10^{-2} \text{ kg.m}^{2}}.$$

C.2. Asservissement de la vitesse de rotation du moteur

C.2.1. Cas d'un régulateur proportionnel $R(p) = K_a$:

$$F(p) = \frac{\Omega(p)}{\Omega_{C}(p)} = K_{C} \frac{K_{a}.H(p)}{1 + K_{a}.K_{C}.H(p)} = \frac{\frac{0.03.K_{a}}{1 + 0.05.p}}{1 + \frac{0.03.K_{a}}{1 + 0.05.p}} = \frac{0.03.K_{a}}{1 + 0.03.K_{a}}$$

$$\Rightarrow F(p) = \frac{\frac{0.03.K_{a}}{1 + 0.03.K_{a}}}{1 + \frac{0.03.K_{a}}{1 + 0.03.K_{a}}}$$

C.2.1.2.
$$K_a = 800 \implies F(p) = \frac{0.96}{1 + 0.002.p}$$

$$\omega(\omega) = \lim_{t \to \infty} \omega(t) = \lim_{p \to 0} p.\Omega(p) = \lim_{p \to 0} p.\Omega_C(p).F(p) = 96 \text{ rad.s}^{-1} \implies \boxed{\epsilon_S = 100 - 96 = 4 \text{ rad.s}^{-1}}$$

$$\epsilon_S \leq 2 \;\% \;\; \Rightarrow \;\; [\Omega_C - \lim_{t \to \infty} \omega(t)] \leq 2 \; \text{rad.s}^{\text{-1}} \;\; \Rightarrow \;\; \lim_{t \to \infty} \omega(t) \geq 98 \; \text{rad.s}^{\text{-1}} \;.$$

$$\lim_{t \to \infty} \omega(t) = \frac{0.03.K_a}{1 + 0.03.K_a}.\Omega_C \implies \frac{3.K_a}{1 + 0.03.K_a} \ge 98 \implies \boxed{K_a \ge 1633}.$$

C.2.2. Cas d'un régulateur proportionnel intégral $R(p) = K_p \left(1 + \frac{1}{T_i \cdot p}\right)$:

C.2.2.1.

$$F(p) = \frac{\Omega(p)}{\Omega_{C}(p)} = K_{C} \frac{R(p).H(p)}{1 + K_{C}.R(p).H(p)} = \frac{\frac{0.03.K_{p}.(1 + T_{i}.p)}{T_{i}.p.(1 + 0.05.p)}}{\frac{0.03.K_{p}.(1 + T_{i}.p)}{T_{i}.p.(1 + 0.05.p)}}$$

$$= \frac{0.03.K_{p}.(1 + T_{i}.p)}{0.03.K_{p}.(1 + T_{i}.p) + T_{i}.p(1 + 0.05.p)}$$

$$\Rightarrow F(p) = \frac{0.03.K_{p}.(1 + T_{i}.p)}{0.03.K_{p} + (0.03.K_{p} + 1).T_{i}.p + 0.05.T_{i}.p^{2}}$$

C.2.2.2

Le système est stable pour Kp >0 et Ti >0.

C.2.2.3

Le correcteur PI annule l'erreur statique.