Filmina 4 MD2

Lautaro Bachmann

Contents

Flujos Y Networks.								2
Grafos Dirigidos			 	 		 	 	. 2
Definición: diferencia c	on un grafo			 		 • •	 	. 2
			 	 		 	 	. 2
Notación:			 	 		 	 	. 2
Vecinos Notación:			 	 		 	 	. 2
			 	 		 	 	. 2
Network			 	 		 	 	. 2
Definición:			 	 		 	 	. 2
"capacidad"								
Flujos								
Notación para agil P								
-			 	 		 	 	. 3
Notación para fund	ciones sobre	lados	 	 		 	 	. 3
in y out								
Definición								
propiedades:								
Explicación			 	 	•	 	 	
r			 	 		 	 	. 4
Valor de un flujo Definición			 	 		 	 	. 4
			 	 		 	 	. 4
Flujos maximales Definición								
Propiedad			 	 		 	 	. 4
Υ				 		 	 	. 4

Flujos Y Networks.

Grafos Dirigidos

Definición:

Un Grafo dirigido es un par G = (V, E) donde V es un conjunto cualquiera (finito para nosotros) y $E \subseteq V \times V$

diferencia con un grafo no dirigido

$$E \subseteq V \times V$$

ahora los lados son pares ordenados en vez de conjuntos.

no es lo mismo (x, y) que (y, x)

Notación:

 $- \to xy$ Denotaremos el lado (x, y) como $- \to xy$.

Vecinos

Pero ahora como podemos tener lados tanto (x, y) como (y, x) deberiamos diferenciar entre "vécinos hacia adelante" y "vécinos hacia atras"

Notación:

$$-\to xy\ \Gamma+(x)=\{y\in V|\ -\to xy\in E\}$$

$$- \to yx \Gamma - (x) = \{ y \in V | - \to yx \in E \}$$

Network

Definición:

Un Network es un grafo dirigido con pesos positivos en los lados, es decir, un triple (V, E, c) donde (V, E) es un grafo dirigido y c : E \rightarrow R>0

"capacidad"

En este contexto, c
($-\to xy$) se llamará la "capacidad" del lado
 $-\to xy$.

Flujos

Notación para agilizar lecturas de sumatorias

Ρ

Si P es una propiedad que puede ser verdadera o falsa, [P] denota el número 1 si P es verdadera, y 0 si P es falsa.

Supongamos que tenemos una variable x, y queremos sumar una función f(x) sobre todos los x que satisfagan una propiedad P(x)

podemos simplemente escribir x f(x)[P(x)]

o incluso f(x)[P(x)] si queda claro que sumamos sobre x.

Notación para funciones sobre lados

Si g es una función definida en los lados y A y B son subconjuntos de vertices, entonces $g(A,\,B)$ denotará la suma:

$$g(A,\,B) = \ [x \in A][y \in B][\, - \to xy \in E]g(\, - \to xy \,\,) \quad x,y$$

in y out

Dada una función g sobre lados y un vértice x, definimos:

 $\operatorname{outg}(x)$ es todo lo que "sale" de x por medio de g.

ing(x) es todo lo que "entra" a x por medio de g.

$$\operatorname{outg}(x) = v[v \in \Gamma + (x)]g(- \to xv) = g(\{x\}, \Gamma + (x))$$

$$\mathrm{ing}(x) = \ y[y \in \Gamma - (x)]g(\ - \rightarrow yx\) = g(\Gamma - (x),\ \{x\})$$

Definición

Dado un network (V, E, c), y un par de vertices s, $t \in V$, un \in flujo de s a t es una función $f: E \to R$ con las siguientes

propiedades:

 $0 \le f(- \to xy) \le c(- \to xy) \ \forall - \to xy \in E$. ("feasability") $2 \inf(x) = \text{outf}(x) \ \forall x \in V - \{s, t\}$. ("conservación") $3 \text{ outf}(s) \ge \inf(s)$. (s es productor) $4 \inf(t) \ge \text{outf}(t)$. (t es consumidor)

Explicación

la primera propiedad dice que no vamos a transportar una cantidad negativa de un bien

ni vamos a tranportar por encima de la capacidad de transporte de un lado.

La segunda propiedad dice que el network no tiene "pérdidas".

La tercera especifica que s es un vértice donde hay una producción neta de bienes, pues produce mas de lo que consume.

y la cuarta que t es un vértice donde se consumen los bienes pues consume mas de lo que produce.

En algunos libros en vez de 3) se pide directamente $\inf(s) = 0$ y en vez de 4) se pide $\operatorname{outf}(t) = 0$.

en todos los ejemplos que usaremos, $\Gamma - (s) = \Gamma + (t) =$

s se llama tradicionalmente la "fuente" (source)

y t el "resumidero" (sink).

Valor de un flujo

Definición

Dado un network (V, E, c) el valor de un flujo f de s a t es:

$$v(f) = outf(s) - inf(s)$$

el valor de un flujo es la cantidad neta de bienes producidos.

Flujos maximales

Definición

Dado un network N y vertices s, t, **un flujo maximal de s a t** es un flujo f de s a t tal que $v(g) \le v(f)$ para todo flujo g de s a t.

Propiedad

Propiedades 1,2 y 3 implican la 4), y $v(f) = \inf(t) - \operatorname{out} f(t)$.