Homework 5

- 2.1 Suppose a parent and child play the following game, first analyzed by Becker (1974). First, the child takes an action, A, that produces income for the child, $I_C(A)$, and income for the parent $I_P(A)$. (Think of $I_C(A)$ as the child' income net of any costs of the action A.) Second, the parent observes the incomes I_C and I_P and then chooses a bequest, B, to leave to the child. The child' payoff is $U(I_C + B)$; the parent's is $V(I_P B) + kU(I_C + B)$, where k > 0 reflects the parent's concern for the child's well-being. Assume that: the action is a nonnegtive number, $A \ge 0$; the income functions $I_C(A)$ and $I_P(A)$ are strictly concave and are maximized at $A_C > 0$ and $A_P > 0$, respectively; the bequest B can be positive or negative; and the utility functions U and V are increasing and strictly concave. Prove the "Rotten Kid" Theorem: in the bacwards induction outcome, the child chooses the action that maximizes the family' aggregate income, $I_C(A) + I_P(A)$, even though only the parent's payoff exhibits altruism.
- **2.2** Now suppose the parent and child play a different game, first analyzed by Buchanan (1975). Let the incomes I_C and I_P be fixed exogenously. First, child decides how much of the income I_C to save (S) for the future, consuming the rest $(I_C S)$ today. Second, the parent observes the child's choice of S and chooses a bequest, B. The child's payoff is the sum of current and future utilities: $U_1(I_C S) + U_2(S + B)$. The parent's payoff is $V(I_P B) + k[U_1(I_C S) + U_2(S + B)]$. Assume that the utility functions U_1 , U_2 , and V are increasing and strictly concave. Show that there is a "Samaritan's Dilemma": in the backwards-induction outcome, the child saves too little, so as to induce the parent to leave a larger bequest (i.e., both the parent's and child's payoffs could be increased if S were suitably larger and S suitably smaller).