Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

After cleaning and preparing the data from the store sales data file and store information file, I used the K-centroids diagnostics tool to output the following report below, which concluded 3 as the optimal number of clusters by using the K-mean clustering method it showed that 3 clusters have the highest median and mean.

K-Means Cluster Assessment Report					
Summary Statistics					
Adjusted Rand Indices:					
	2	3	4	5	
Minimum	-0.036864	0.032448	0.077555	0.149577	
1st Quartile	0.038776	0.240477	0.217971	0.229861	
Median	0.296797	0.358115	0.290128	0.291951	
Mean	0.31175	0.351452	0.329904	0.304935	
3rd Quartile	0.508956	0.460754	0.425887	0.371086	
Maximum	0.952935	0.679984	0.854531	0.502971	
Calinski-Harabasz Indice	s:				
	2	3	4	5	
Minimum	9.293805	10.23213	9.870889	9.562864	
1st Quartile	14.167776	14.00758	12.501865	11.743082	
Median	16.786256	14.96242	13.237662	12.428188	
Mean	16.127872	14.72081	13.136804	12.265844	
3rd Quartile	17.996665	15.85662	13.878957	12.838332	
Maximum	19.845837	17.4659	15.176014	14.082295	

2. How many stores fall into each store format?

My clustering concluded that first cluster has 25 stores, second cluster has 35 stores, and the third cluster has 25 stores.

		Summary Report o	f the K-Means Cluste	aning Solution	on clusters		
Solutio	n Summary						
Call:							
stepFle	exclust(scale(model.r	matrix(~-1 + XDry_Groce	ery + XDairy + XFrozen	_Food + XMe	at + XProduce	+ XFloral +	XDeli +
XBak	ery + XGeneral.Me	rch, the.data)), $k = 3$, nrep	o = 10, FUN = kcca, family	= kccaFamily	("kmeans"))		
Cluster	Information:						
	Cluster	Size	Ave Distance	M	lax Distance		Separation
	1	25	2.099985		4.823871		2.19156
	2	35	2.475018		4.412367		1.94729
	3	25	2.289004	3.585931			1.7257
Conver	gence after 8 iterati	ons.					
	within cluster dista						
	XDry_Grocery	XDairy	XFrozen_Food	XMeat	XProduce	XFloral	XDe
1	0.528249	-0.215879	-0.261597	0.614147	-0.655028	-0.663872	0.82483
2	-0.594802	0.655893	0.435129	-0.384631	0.812883	0.71741	-0.4616
3	0.304474	-0.702372	-0.347583	-0.075664	-0.483009	-0.340502	-0.17848
	XBakery	XGeneral.Merch					
1	0.428226	-0.674769					
2	0.312878	-0.329045					
	-0.866255	1.135432					

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

One of the differences is that the 2^{nd} cluster seems to have higher sales than the other clusters

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

After generating a model comparison report, I have chosen the boosted model as it showed the highest accuracy results

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	1
S0087	2
S0088	3
S0089	2
S0090	2
S0091	3
S0092	2
S0093	3
S0094	2
S0095	2

 What are the three most important variables that help explain the relationship between demographic indicators and store formats? Please include a visualization.

Age0to9, HVal750KPlus, and Age65Plus are the most important variables.

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

After comparing the ETS and ARIMA model, the ETS (M,N,M) model showed best results of the forcast and lower error values. As observed in the plot below, there is no trend and seasonal is multiplicative and error is multiplicative.. Thus, by comparing, the ETS preformed better than the ARIMA model. In-sample error also showed better results on ETS unlike the ARIMA model interms of accurecy.

ETS (M,N,M)decomposition plot

ETS (M,A,M)decomposition plot

ETS

ARIMA

Method: ARIMA(1,0,0)(1,1,0)[12]				
Call: auto.arima(Sum_Produce)				
Coefficients: ar1 sar1 Value 0.79852 -0.700441 Std Err 0.126448 0.140181				
sigma^2 estimated as 1671079042075.49: log likelihood = -437.22224				
Information Criteria: AIC AICC BIC 880.4445 881.4445 884.4411				
In-sample error measures:				
ME RMSE MAE MPE MAPE MASE ACF1 -102530.8325034 1042209.8528363 738087.5530941 -0.5465069 3.3006311 0.4120218 -0.1854462				

accuracy measures/forecast error measurements against the holdout sample; ETS showed way better results than ARIMA

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Month	Existing Stores	New Stores
Jan-16	20,814,202.36	2491319
Feb-16	20,101,180.14	2408385
Mar-16	22,829,934.27	2833157

Apr-16	21,396,217.72	2679433
May-16	24,202,378.04	3054886
Jun-16	24,580,208.32	3106152
Jul-16	24,846,391.97	3132699
Aug-16	22,035,840.79	2776154
Sep-16	19,871,327.62	2451566
Oct-16	19,751,047.19	2401772
Nov-16	20,298,711.96	2477302
Dec-16	20,518,134.12	2452170

Existing stores workflow

New stores workflow

