Zach Andreas	(12004790)
--------------	------------

Datum der Messung

Inhaltsverzeichnis

Versuchsname

1	Aufgabenstellung	3
2	Grundlagen und Voraussetzungen	3
	2.1 Unsicherheitsberechnungen	3
3	Versuchsanordnung	4
4	Geräteliste	4
5	Versuchsdurchführung und Messergebnisse	4
6	Auswertung	4
7	Diskussion	4
8	Zusammenfassung	4
$\mathbf{p}_{\mathbf{v}}$	thon-Skript	4

1 Aufgabenstellung

2 Grundlagen und Voraussetzungen

 $\text{Text}1^1$

 $\text{Text}2^2$

 $\text{Text}3^3$

 Text4^4

$$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3} \tag{1}$$

Inline math: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$

Inline math: $\lim_{n\to\infty} \frac{1}{2n} = 0$

$$\sqrt[3]{27} = 3 \implies \vec{\mathbf{A}} \times \vec{\mathbf{B}} \implies (30.0 \pm 0.2) \,\mathrm{m\,s^{-1}}$$

Display math:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\int \frac{1}{x} dx = \ln|x| \quad \text{quad text, additionaly:} \quad \frac{df}{dx} \wedge \frac{\partial g}{\partial y}$$

$$\pmb{F} = m \cdot \pmb{a} = \dot{\mathbf{p}}$$

Test: typewriter

2.1 Unsicherheitsberechnungen

Die explizit angegebenen Unsicherheiten der ermittelten Messgrößen basieren auf Berechnungen durch die Unsicherheitsangabe nach den Datenblättern der verwendeten Messgeräte. Diese sind in Tabelle 1 vermerkt beziehungsweise referenziert.

Die Fehlerfortpflanzung der berechneten Werte basiert auf der verallgemeinerten Methode der Gauß'schen Fehlerfortpflanzung.

$$\mathbf{\Sigma}_{m{y}} = \mathbf{J}(m{x}) \, \mathbf{\Sigma}_{m{x}} \, \mathbf{J}^*(m{x})$$

 $^{^{1}\}mathrm{Demtr\ddot{o}der},\,2018,\,\mathrm{S.}\,\,1000.$

²Knoll, o. D. Kapitel 74.

³https://online.uni-graz.at/kfu_online/ee/ui/ca2/app/desktop/#/login?\$ctx=&redirect=Li4vLi4vLi4vZWUvdWkvY2EyL2FwcC9kZXNrdG9wLyMvc2xjLnRtLmNwL3N0dWRlbnQvY291cnNlcy82Mjg3OTk=

⁴ "ProduktInformationen Motoröle: Genol Rasenmäheröl", 2013.

Dabei beschreibt Σ_i die Kovarianzmatrix des Vektors i und J(i) die Jakobi-Matrix desselben. Die zweite Matrix $J^*(i)$ beschreibt die Hermetisch-konjungierte der Jakobi-Matrix. Um diese Berechnungen effizient auszuführen, wird für jeden Unterpunkt der Laborübung ein Skript in der Programmiersprache Python implementiert. Kernstück dessen ist das package uncertainties⁵, dass intern die Matrixmultiplikationen berechnet. Gerundet wird nach den Angaben des Skriptums der Lehrveranstaltung "Einführung in die physikalischen Messmethoden" in der gültigen Version 7.6

3 Versuchsanordnung

4 Geräteliste

Tabelle 1: Verwendete Geräte und wichtige Materialien

Gerät	Hersteller	Modell	Modell Unsicherheit Ann								
Gerät 1	ich	meins	0,01	quasi perfekt genau							
Gerät 2		passt so	21,4	quasi perfekt genau							
Gerät 3	-		•	∇							
Gerät 4	-	pass	st so	Alle meine Entchen							

5 Versuchsdurchführung und Messergebnisse

6 Auswertung

7 Diskussion

8 Zusammenfassung

Python-Skript

 $^{^5}$ Lebigot, o. D.

 $^{^6}$ Dämon et al., 2021.

```
1 """A python library for LU Experimentalphysik 2"""
3 # dunders
4 __author__ = "Andreas Zach"
5 __version__ = "0.2.1"
7 try:
      # 3rd party library imports
8
      import numpy as np
9
      import pandas as pd
10
      import matplotlib.pyplot as plt
11
12
      import uncertainties as u
13
      import uncertainties.unumpy as unp
14
15 except ImportError:
     raise ImportError("Requirements not satisfied!")
16
17
18 else:
     # own library imports
19
      from .src.classes import *
20
      from .src.functions import *
21
      from .src import monkeypatch uncertainties
22
23
      # define all
^{24}
      from .src.classes import __all__ as cls_all
25
26
      from .src.functions import __all__ as func_all
27
      __all__ = sorted(cls_all +
                        func_all +
28
                        ["np", "pd", "plt", "u", "unp"])  # type: ignore
29
      del cls_all, func_all
30
31
      # apply monkey patches
32
      monkeypatch_uncertainties.display()
33
      # monkeypatch uncertainties.init()
```

Literaturverzeichnis

- Dämon, R., Ditlbacher, H., Hauser, A. W., Koch, M., Lammegger, R., Leitner, A., Schweighart, M. & Schultze-Bernhardt, B. (2021). Einführung in die physikalischen Messmethoden. 7.
- Demtröder, W. (2018). Experimentalphysik 1: Mechanik und Wärme (8. Aufl.) [eBook]. Springer Spektrum.
- Knoll, P. (o. D.). Mechanik und Wärme (Mechanics and Heat): Skriptum zur Vorlesung. Lebigot, E. O. (o. D.). Uncertainties: a Python package for calculations with uncertainties. https://pythonhosted.org/uncertainties/
- ProduktInformationen Motoröle: Genol Rasenmäheröl. (2013). https://cdn.lagerhaus.at/rwa/lh3/media/download/2014.07.08/1404820306140132.pdf

Abbildungsverzeichnis

Tabellenverzeichnis

1	Geräteliste																			