BEGINNER LEVEL TASK

NAME: KIRUTHIKAS

Iris Flowers Classification ML Project

LANGUAGE: PYTHON

IMPORTING LIBRARIES
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

dataset = pd.read_csv("/Iris.csv - Iris.csv (3).csv")
dataset

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

(150, 5)

dataset.head()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

dataset.describe()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

[#] We'll use this to make a scatterplot of the Iris features.

dataset.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")

<matplotlib.axes._subplots.AxesSubplot at 0x7f706b28ced0>

A seaborn jointplot shows bivariate scatterplots and univariate histograms in the same figures.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=dataset, size=5)

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2182: UserWarning: The `size` warnings.warn(msg, UserWarning)

<seaborn.axisgrid.JointGrid at 0x7f706ad2f990>


```
sns.FacetGrid(dataset, hue="Species", size=5) \
   .map(plt.scatter, "SepalLengthCm", "SepalWidthCm") \
   .add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The `size` warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid at 0x7f70610f9f90>

ax = sns.boxplot(x="Species", y="PetalLengthCm", data=dataset)
ax = sns.stripplot(x="Species", y="PetalLengthCm", data=dataset, jitter=True, edgecolor="gray")

import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x='Species', data=dataset,)
plt.show()


```
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt
```

plt.show()


```
import seaborn as sns
import matplotlib.pyplot as plt
def graph(y):
    sns.boxplot(x="Species", y=y, data=dataset)
plt.figure(figsize=(10,10))
# Adding the subplot at the specified
# grid position
plt.subplot(221)
graph('SepalLengthCm')
plt.subplot(222)
graph('SepalWidthCm')
plt.subplot(223)
graph('PetalLengthCm')
plt.subplot(224)
graph('PetalWidthCm')
plt.show()
```

