CS & IT ENGINEERING

Theory of Computation Finite Automata: DFA-3

Lecture No. 7

By- DEVA Sir

TOPICS TO BE COVERED

construction of DFA

Model-I

Model-II

Model - III

Model - IV

Model _ I

Model - II

(1)
$$L = \phi$$
 over $\Sigma = \{a\}$

Minimize DFA

DFA

For every regular language, unique min DFA exist (only one)

$$\frac{\mathcal{E}_{X}}{\mathcal{A}_{X}}$$

$$\frac{\mathcal{E}_{X}}{\mathcal{A}_{X}}$$

$$\frac{\mathcal{E}_{X}}{\mathcal{A}_{X}}$$

$$\frac{\mathcal{E}_{X}}{\mathcal{A}_{X}}$$

$$\frac{\mathcal{E}_{X}}{\mathcal{A}_{X}}$$

Stak

State

$$\rightarrow \bigcirc$$

$$a^2 = a \cdot a = aa$$

(4)
$$L=\Sigma^*$$
 over $\Sigma=\{a\}$

$$=\alpha^*$$

S
$$L = \Sigma^* \text{ over } \Sigma = \{a,b\}$$

 $= (a+b)^*$

$$L = \Sigma^* \text{ over } \Sigma = \{a,b\}$$
 (6) $L = \Sigma^* \text{ over } \Sigma = \{a,b,c\}$

 $\rightarrow \bigcirc$

Min DFA

Dead state (Teap state) (special nonfinal)

There is no palt from I this non final

E X Q X X Q Q X X Q Q X X X X X

DFA

min DFA X

$$\rightarrow 0$$

$$\Rightarrow \bigcirc a,b,C$$
 a,b,C
 a,b,C

$$L = a = \{a, aa, aaa, ...\}$$

Note: Dead state is always non-final.

But non-final may or may not-dead state

$$\rightarrow \bigcirc a,b,c$$

$$L_3 = \{\epsilon\}$$
 $L_4 = \Sigma^+$

I : Interchange finals and nonfinals in DFA that accepts L

$$\rightarrow (A)^{a,b}$$

If L is regular and min DFA that accepts L has (n) states then

no. of States in min DFA that accepts L

=

If (n, finals) and (n₂ non finals) in Min DFA that a cepts L then M₂ finals and M₁ non finals in voin DFA that a cepts I

(3)
$$L = \{ \omega \mid \omega \in \{a, b\}^{\sharp}, |\omega| = [2]\} \rightarrow 4$$
 States in MinDFA
= Set of all 2 length strongs over $\Sigma = \{a, b\}$
= $\{aa, ab, ba, bb\}$

Note: If |W| = Kthey (K+2) States in Min DFA

- (13) fw WE {a,b}*, 12=2} => 4 States in min DFA
- (14) {w|w={a,b}, |w|=100} +> 102 states
- *** (15) {w|we |a,6}, |w| = K } + K+2 States

Gerre: (a+b). (a+b). ... n times exactly or length string

= (a+b) => N+2 States in DFA
fixed N

1 final K+1 non Gnal

lω1 ≤ 2 } Lenglt of ω is atmost 2

Finite language

By no loop in DFA

(except dead state)

$$(\varepsilon+a+b)^2$$

E+a+b+aa+ab+ba+bb

Note:

If IWI <= K

then K+2 states
in DFA

Infrite language
Libopexist in DFA
(except dead state)

(a+b) (a+b)

If $|\omega| \ge K$ then K+1 states in DFA Check 6 Firit a,b Infinit

IS L = \$ 9

LX d on b On part exist

179

Final exist

Languay is empty => l= \$

String is empty =) W= E

(8)
$$\{\omega \mid \omega \in \{a,b\}^*, |\omega| \leq 2\} \Rightarrow 3 \text{ states}$$

$$\rightarrow 0$$
 α, β α, β α, β

fω | ω ∈ da, by*, | ω | > 2 } + states

$$\frac{1}{20} \frac{a,b}{a,b} \frac{a,b}{\omega} \frac{1}{23} \frac{a,b}{a,b} \frac{1}{23} \frac{a,b}{\omega} \frac{1}{23} \frac{a,b}{$$

Model-III [No.05 as: =, <, >, +]

(21)
$$\{\omega \mid \omega \in \{a,b\}^*, n_a(\omega) = 2\}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$$

$$|\omega|=2$$
 $(a+b)^2$

$$\#a(\omega)=2$$
 | Latat

- (22) $\{\omega | \omega \in \{a,b\}^*, \#_a(\omega) \leq 2\} \Rightarrow 4 \text{ States}$ $\Rightarrow 0 \Rightarrow a \Rightarrow 0 \Rightarrow a \Rightarrow 0 \Rightarrow a \Rightarrow 0$
- - (24) {w|w \ (a, b)*, #a(w) < 2 } =) 3 states
 - (25) dw/we la,bit, #a(w) >2 7 => 4 States
 - (26) (W) WE (a, b)*, #a(w) # 2 4) 4 States

DFA			00
		ur. ı	ЮП

we hard No. of states in

- 10 161=K → K+2
- (2) | W | ≤ K + 2
- 3) IWI = K+1
- (4) IWI < K -> K+1
- (5) (WI>KF) K+2
- (6) |W1 ≠ K => K+2

(7) na(w)=K → K+2

No. of Staty

in MinDFA

- (8) $Na(\omega) \leq K \rightarrow K+2$
- (9) Na(w) ≥K → K+1
- (10) Na (W) < K K+
- (11) Na(W) >K A K+2
- (12) Na(W) #K >K+2

Model-II [language over 1 symbol, forms Aritmetic program]

$$(27) a^{\dagger} = \{a^{\circ} | n \ge 0\}$$

$$(28) (aa)^* = |a^n|_{n \ge 0}$$

(29)
$$a(aa)^* = \{a^{2n+1} | n \ge 0\}$$

Summary

Model-I:
$$\phi, \Sigma^*, \{\epsilon\}, \Sigma^*$$

1 state 1 state 2 states

