

Применение СПО для решения задач аэро- и газовой динамики

Семинар 3. Создание STL формы в пакете Salome. Построение сетки вокруг формы с использованием утилиты snappyHexMesh.

Преподаватель: Романова Дарья Игоревна

Институт системного программирования им. В.П. Иванникова РАН, Москва

2023

Установка пакета Salome

Выбираем нужную версию пакета Salome и скачиваем.

snappyHexMesh

snappyHexMesh

Изучим утилиту создания сетки snappyHexMesh, поставляемую с пакетом OpenFOAM. Утилита snappyHexMesh автоматически генерирует трехмерные сетки, содержащие шестигранники (hex) на основе геометрии триангулированной поверхности в формате стереолитографии (STL). Утилита позволяет дробить сетку в выделенных областях, создавать слои измельчения, мельчить сетку в соответствии с требованиями качества сетки. Все эти действия утилита snappyHexMesh может проводить в параллельном режиме.

Файлы необходимые для запуска

Для запуска утилиты snappyHexMesh необходимы:

- файлы данных поверхности в формате STL (двоичном или ASCII), расположенные в подкаталоге constant/triSurface каталога кейса;
- фоновую сетку из параллелепипедов, которая определяет протяженность расчетной области и плотность сетки базового уровня (обычно генерируется с использованием blockMesh);
- словарь snappyHexMeshDict с соответствующими записями, расположенный в подкаталоге system каталога кейса.

snappyHexMeshDict

Файл snappyHexMeshDict содержит в себе выключатели для контроля различных этапов создания сетки и также вложенные словари для описания этих этапов.

Ключевое слово	Описание	Пример
castellatedMesh	Создать зубчатую сетку?	true
snap	Есть ли стадия привязки к поверхности?	true
addLayers	Добавить слои у поверхности?	true
mergeTolerance	Допуск слияния как доля ограничивающей рамки	1e-06
	исходной сетки	
debug	Управляет записью промежуточных сеток и тра-	
	фаретной печатью	
	— Записывает только конечную сетку	0
	— Записывает промежуточные сетки	1
	— Записывает volScalarField с уровнем ячейки для	2
	постобработки	
	— Записывает текущие пересечения как .obj	4

$snappy \\ Hex \\ Mesh \\ Dict$

Ключевое слово	Описание
geometry	Подсловарь всей используемой геометрии поверхности
${\tt castellatedMeshControls}$	Подсловарь элементов управления для зубчатой сетки
snapControls	Подсловарь элементов управления для привязки к по-
	верхности
${\tt addLayersControls}$	Подсловарь элементов управления для добавления
	слоев
${\tt meshQualityControls}$	Подсловарь элементов управления качеством сетки

snappyHexMeshDict

Вся геометрия, используемая snappyHexMesh, указана в подсловаре geometry в словаре snappyHexMeshDict. Геометрию можно указать с помощью поверхности STL или объектов ограничивающей геометрии в blockMesh OpenFOAM.

```
o geometry {
      surface.stl { // STL filename
1
          type triSurfaceMesh;
          regions{
3
               secondSolid { // Named region in the STL file
                   name mySecondPatch; // User-defined patch name
8
      box1x1x1 { // User defined region name
          type searchableBox; // region defined by bounding box
10
          min (1.5 1 - 0.5):
11
          max (3.5 2 0.5);
12
13
14 };
```

snappyHexMeshDict

Полный список аналитических форм, например, для объектов ограничивающей геометрии можно найти в интернете: https://www.openfoam.com/documentation/cpp-guide/html/guide-meshing-snappyhexmesh-geometry.html

Создание фоновой сетки

Перед выполнением snappyHexMesh пользователь должен создать фоновую сетку из шестигранных ячеек, которая заполняет всю область внутри внешней границы.

Создание фоновой сетки с помощью утилиты blockMesh

Это можно сделать с помощью blockMesh. При создании фоновой сетки необходимо соблюдать следующие критерии:

- сетка должна состоять исключительно из шестигранников (желательно кубов);
- соотношение сторон ячеек должно быть приблизительно равно 1, по крайней мере вблизи поверхностей, к которым применяется последующая процедура привязки, иначе сходимость процедуры привязки будет медленной, а возможно приведёт к ошибке;
- должно быть хотя бы одно пересечение ребра ячейки с поверхностью STL,
 т.е. сетка из одной ячейки не подойдет.

Измельчение сетки выполняется в соответствии со спецификацией, предоставленной пользователем в подсловаре castellatedMeshControls в snappyHexMeshDict.

Ключевое слово	Описание	Пример
locationInMesh	Вектор указывающий на точку внутри сетки. Век-	(5 0 0)
	тор должен указывать внутрь какой-либо ячейки	
	(не на ребро или грань) как до, так и после про-	
	цедуры измельчения сетки	
maxLocalCells	Максимальное количество ячеек на процессор во	10^{6}
	время измельчения	
${\tt maxGlobalCells}$	Общий лимит ячеек во время процедуры измель-	$2 \cdot 10^6$
	чения (т.е. перед процедурой удаления)	
${\tt minRefinementCells}$	Минимальное количество ячеек для измельчения,	0
	по достижении этой величины процесс прекраща-	
	ется	

Ключевое слово	Описание	Пример
maxLoadUnbalance	Максимальный дисбаланс нагрузки процессо-	0.1
	ров во время процедуры измельчения (значе-	
	ние 0 задаёт абсолютный баланс)	
${\tt nCellsBetweenLevels}$	Количество буферных слоев ячеек между раз-	1
	ными уровнями измельчения	
${\tt resolveFeatureAngle}$	Применяет максимальный уровень измельче-	30
	ния к ячейкам, которые пересекаются с по-	
	верхностью STL под углом превышающим за-	
	данный	
${\tt allowFreeStandingZoneFaces}$	Разрешить создание граней отдельно стоящих	false
	зон	
features	Список особенностей для применения проце-	
	дуры измельчения	
refinementSurfaces	Словарь поверхностей требующих процедуры	
	измельчения	
refinementRegions	Словарь регионов требующих измельчения	13 / 3

Процесс измельчения начинается с ячеек пересекающихся с поверхностью STL, как показано на рисунке

Ячейки пересекающиеся с поверхностью STL перечисленны в файле features.eMesh. Подсловарь features содержит в себе имена файлов edgeMesh, содержащих в себе перечисления рёбер пересечения с поверхностью STL и уровень измельчения, который необходимо реализовать.

Файл edgeMesh может быть получен с помощью утилиты surfaceFeatureExtract:

```
o surfaceFeatureExtract -includedAngle 150 surface.stl features
```

Измельчённые ячейки, выбранные в соответствии с элементами, перечисленными в файле features.eMesh, показаны на рисунке

В подсловаре refinementSurfaces словаря castellatedMeshControls объявляются все поверхности STL с указанием уровня по умолчанию для минимального и максимального измельчения. Минимальный уровень наносится обычно по всей поверхности; максимальный уровень применяется к ячейкам, которые могут видеть пересечения, образующие угол, превышающий угол, указанный в resolveFeatureAngle.

Дополнительное измельчение может быть задано для одной или нескольких конкретных областей поверхности STL. Эти области перечисляются в подсловаре regions. Для каждой такой области создается подсловарик с указанием уровня измельчения.

```
o refinementSurfaces
1 {
       sphere.stl
2
3
            level (2 2); // default (min max) refinement for whole surface
            regions
                 secondSolid
                     level (3 3); // optional refinement for secondSolid region
10
11
12
13 }
```

Удаление ячеек

После окончания процедуры измельчения по подсловарям features и refinementSurfaces начинается процедура удаления ячеек. Для удаления необходима область полностью находящаяся внутри поверхности STL. Область, в которой сохраняются клетки, задаётся вектором указывающим внутрь этой области, заданным ключевым словом locationInMesh вcastellatedMeshControls. Ячейки сохраняются, если, примерно, 50% и более их объема приходится на область. Остальные ячейки удаляются.

Измельчение ячеек в регионах

Ячейки, находящиеся внутри некоторого региона могут быть дополнительно измельчены, как показано на рисунке (область закрашенная тёмным дополнительно измельчена).

Измельчение ячеек в регионах

Регионы для дополнительного измельчения перечислены в подсловаре refinementRegions словаря castellatedMeshControls. Дополнительное измельчение может быть применено к ячейкам

- находящимся внутри некоторого объёма,
- находящимся снаружи некоторого объёма,
- находящимся на некотором расстоянии от STL поверхности.

Для регионов измельчения задаётся уровень необходимого измельчения.

Измельчение ячеек в регионах

```
o refinementRegions
1 {
       hox1x1x1
2
           mode inside;
5
           levels ((1.0 4));
                                       // refinement level 4 (1.0 entry ignored)
7
       sphere.stl
                                        // refinement level 5 within 1.0 m
                                        // refinement level 3 within 2.0 m
           mode distance:
           levels ((1.0 5) (2.0 3)); // levels must be ordered nearest first
10
11
12 }
```

Уровень измельчения всегда задаётся в формате ((<дистанция> <уровень>)), в случае режима измельчения внутри подобласти параметр <дистанция> игнорируется. На различном удалении от STL поверхности можно задать различный уровень измельчения, уровни перечисляются в порядке возрастания дистанции.

Следующий этап процесса создания сетки включает в себя перемещение точек вершин ячеек на STL поверхность, чтобы удалить зубчатую поверхность сетки.

Процесс привязки:

- 1. сместить вершины зубчатой границы на поверхность STL;
- 2. перераспределить более равномерно внутреннюю сетку в соответствии с перемещёнными вершинами;
- 3. найти вершины, смещение которых привело к нарушению параметров качества сетки;
- уменьшить смещение таких вершин и перераспределить внутреннюю сетку (повторяется до тех пор, пока требования к качеству сетки не будут удовлетворены).

Настройки для процедуры привязки вершин к поверхности перечислены в подсловаре snapControls словаря snappyHexMeshDict.

Ключевое слово	Описание	Пример
nSmoothPatch	Количество итераций сглаживания	3
tolerance	Отношение расстояния до точек от края к локаль-	4.0
	ной максимальной длине края	
nSolveIter	Количество итераций смещения внутренней сетки	30
nRelaxIter	Максимальное количество итераций перемещения	5
	точки с последующим смещением внутренней сет-	
	ки	
nFeatureSnapIter	Количество итераций создания новых ячеек с по-	10
	следующей привязкой вершин и смещением внут-	
	ренней сетки для удовлетворения критериев каче-	
	ства сетки	

Ключевое слово	Описание	Пример
implicitFeatureSnap	Локальный поиск вершин (по геометриче-	false
	ским параметрам)	
${\tt explicitFeatureSnap}$	Глобальный поиск вершин с использова-	true
	нием параметров castellatedMeshControls	
${\tt multiRegionFeatureSnap}$	Поиск вершин между несколькими по-	false
	верхностями с использованием глобаль-	
	ного поиска	

Сетка полученная после этапа привязки вершин может быть подходящей для использования, однако ячейки вдоль STL поверхностей в ней могут быть распределены неравномерно. Для исправления этого недостатка существует дополнительный этап создания слоя ячеек сетки выровненных вдоль поверхности STL, как показано на рисунке.

Процесс добавления слоя сетки включает в себя отодвигание ячеек от STL поверхности посредством сжатия и вставку дополнительных слоев ячеек следующим образом:

- 1. сетка отодвигается от поверхности на заданную толщину в направлении внешней нормали к поверхности;
- 2. перераспределение сетки для равномерности из-за перемещения;
- проверка удовлетворения критериев качества сетки, если критерии качества не удовлетворяются, то изменяется толщина смещения сетки и заново выполняется перераспределение сетки. В случае, если удовлетворить критерии качества не представляется возможным ни при какой величине смещения слои не вставляются;
- **4.** если критерии качества удовлетворены, вставляются дополнитльные слои сетки;
- проверка удовлетворения критериев качества сетки, если критерии качества не удовлетворяются, то слои удаляются и заново выполняется этап перераспределения сетки.

Процедура добавления слоя использует настройки из подсловаря addLayersControls в словаре snappyHexMeshDict.

Ключевое слово	Описание	Пример
layers	Словарь перечисления дополнительных слоёв	
relativeSizes	Толщина слоя задаётся относительной вели-	true
	чиной к неискаженному размеру ячейки вне	
	слоя или абсолютной?	
expansionRatio	Коэффициент расширения для слоев сетки	1.0
finalLayerThickness	Толщина самого дальнего от поверхности	1
	слоя, относительная или абсолютная в соот-	
	ветствии с записью relativeSizes	
firstLayerThickness	Толщина ближайшего к поверхности слоя	0.3
thickness	Общая толщина всех слоев	0.3
minThickness	Минимальная общая толщина всех слоев, ни-	0.1
	же которой дополнительные слои не добавля-	
	ются	

Ключевое слово	Описание	Пример
nGrow	Количество связанных слоев, которые не	1
	утолщаются во время этапа перераспределе-	
	ния сетки	
${\tt featureAngle}$	Угол пересечения грани с поверхностью, выше	60
	которого измельчение происходить не будет	
${\tt maxFaceThicknessRatio}$	Максимальное отношение для поверхности	0.5
	грани, выше которого измельчения не проис-	
	ходит (полезно для деформированных ячеек)	
${\tt nSmoothSurfaceNormals}$	Количество итераций перераспределения	1
	(сглаживания) для нормалей к поверхности	
${\tt nSmoothThickness}$	Толщина слоя сглаживания (перераспределе-	10
	ния ячеек) от поверхности STL	
${\tt minMedialAxisAngle}$	Угол, используемый для захвата точек меди-	90
	альной оси	

Ключевое слово	Описание	Пример
maxThicknessToMedialRatio	Уменьшение растяжения слоя при перераспре-	0.3
	делении сетки там, где отношение толщины к	
	медиальному расстоянию велико	
nSmoothNormals	Количество итераций перераспределения	3
	внутренних нормалей сетки	
nRelaxIter	Максимальное количество итераций перерас-	3
	пределения сетки	
${\tt nBufferCellsNoExtrude}$	Создание буферного слоя на границе старого	0
	и нового слоёв сетки	
nLayerIter	Общее максимальное количество итераций	50
	добавления слоев	
nRelaxedIter	Максимальное количество итераций, после	20
	которых используются элементы управления	
	в подсловаре relaxed Словаря meshQuality	

Подсловарь layers содержит перечисление границ, требующих добавления дополнительных слоёв сетки.

Контроль качества сетки

Kачество сетки контролируется опциями в подсловаре meshQualityControls в snappyHexMeshDict.

Ключевое слово	Описание	Пример
maxNonOrtho	Максимально допустимая неортогональность;	65
	180 — отключено	
${\tt maxBoundarySkewness}$	Максимальная скошенность грани (0 — вы-	20
	ключено)	
${\tt maxInternalSkewness}$	Максимальная скошенность внутренней грани	4
	(0 — выключено)	
maxConcave	Максимально допустимая вогнутость грани	80
	(180 — выключено)	
minFlatness	Отношение минимальной проекции площади	0.5
	к фактической площади (-1 — выключено)	
minVol	Минимальный объём пирамиды (большое	10^{-13}
	негативное число -10^{30} — выключено)	

Контроль качества сетки

Ключевое слово	Описание	Пример	
minTetQuality	Минимальное качество тетраэдра, заданное отно-	10^{-13}	
	шением нормалей к граням из центра тетраэдра		
	(большое негативное число -10^{30} — выключено)		
minArea	Минимальная площадь грани (-1 — выключено)	-1	
minTwist	Минимальный поворот грани (-1 — выключено)	0.05	
minDeterminant	Минимальный определитель ячейки: 1 задаёт куб,	0.001	
	0 — вырожденную ячейку		
${ t minFaceWeight}$	от 0 до 0.5	0.05	
minVolRatio	от 0 до 1	0.01	
${\tt minTriangleTwist}$	положительное число (-1 — выключено)	-1	
nSmoothScale	Количество итераций распределения ошибок		
errorReduction	Величина уменьшения смещения в точках ошибки	0.75	
relaxed	Подсловарь, который может включать изменен-		
	ные значения для указанных выше записей ключе-		
	вых слов, которые будут использоваться при пре-		
	вышении nRelaxedIter в процессе добавления слоя		34 / 37

Задачи

- 1. Изменить уровень измельчения сетки на пересечении со сферой на 3
- 2. Создать область измельчения сетки с уровнем 2
- 3. Создать дополнительный слой сетки толщиной в 3 ячейки
- 4. Изучить влияние качества сетки на аэродинамические коэффициенты (python3 CdCl.py)

СПАСИБО ЗА ВНИМАНИЕ!

Список литературы