TUGAS KECERDASAN KOMPUTASIONAL EVOLUTIONER COMPUTATION PART 3

Disusun Oleh:

Muhammad Hilmy Naufal (M0521052)

Muhammad Rama Diennova S (M0521056)

PROGRAM STUDI S1 INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI DAN SAINS DATA

UNIVERSITAS SEBELAS MARET

1. Jelaskan karakteristik dari masalah kombinatorial?

- 1. Masalah dengan kompleksitas komputasi tinggi sering memerlukan waktu yang sangat lama untuk diselesaikan, terutama saat ukuran masalah besar.
- 2. Seiring bertambahnya ukuran masalah, kompleksitas perhitungan juga meningkat dengan cepat.
- 3. Karena kompleksitas ini, metode heuristik atau metaheuristik sering diterapkan untuk menemukan solusi yang cukup baik dalam waktu singkat, meskipun tidak selalu optimal.
- 4. Interaksi antar variabel saling mempengaruhi opsi yang tersedia bagi variabel lainnya, menciptakan hubungan yang rumit di antara komponen solusi.
- 5. Solusi juga harus memenuhi batasan-batasan yang mempersempit ruang solusi yang dapat dieksplorasi.
- 2. Untuk studi kasus TSP pada **Slide 5**, misal terdapat chromosome *P*=[3 4 2 1 5]. Hitung nilai total jarak dan fitnessnya!

	Chromosome	Total Jarak (C)	$fitness = \frac{100}{C}$
P	[3 4 2 1 5]	13+7+14+16+15=65	1.538

3. Tentukan chromosome child untuk crossover pada representasi permutasi berikut!

Child

2	1	5	4	3

Maka, chromosome child untuk crossover pada representasi permutasi adalah child = [2 1 5 4 3]

4. Tentukan chromosome child untuk *insertion mutation* pada representasi permutas Serikut!

Parent	1	4	2	5	3
Child					

Parent

Maka, chromosome child untuk crossover pada representasi permutasi adalah child = [1 5 4 2 3]

5. Tentukan chromosome child untuk *reciprocal exchange mutation* pada representasi permutasi berikut!

Lakukan penukaran posisi untuk nila
i XP_1 menjadi di posisi XP_2 dan nila
i XP_2 menjadi di posisi XP_I

Maka, chromosome child setelah dilakukan reciprocal exchange mutation adalah $P = \begin{bmatrix} 1 & 5 & 2 & 4 & 3 \end{bmatrix}$

6. Untuk dua individu pada permasalahan transportasi berikut tentukan *offspring* yang terbentuk dari proses *crossover*!

$$\begin{split} P_1 = \begin{bmatrix} 0 & 0 & 0 & 10 \\ 10 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad P_2 = \begin{bmatrix} 5 & 0 & 0 & 5 \\ 0 & 5 & 5 & 5 \\ 5 & 0 & 0 & 0 \end{bmatrix} \\ P = \begin{bmatrix} 0 & 0 & 0 & 10 \\ 10 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \end{bmatrix} \end{split}$$

P1

0	0	0	10
10	5	0	0
0	0	5	0

P2

5	0	0	5
0	5	5	5
5	0	0	0

Perhitungan rata-rata tiap elemen dari 2 kromosom.

 \mathbf{C}

					a_i
	3	0	0	8	11
	5	5	3	3	16
	3	0	3	0	6
b_{j}	11	5	6	11	

Perbaikan kromosom menjadi feasible.

C'

					a_i
	2	0	0	8	10
	5	5	3	2	15
	3	0	2	0	5
b_{j}	10	5	5	10	

7. Untuk individu pada permasalahan transportasi berikut tentukan *offspring* yang terbentuk dari proses mutasi dengan menggunakan titik sudut yang diberi warna kuning!

	0	0	0	10	10
	10	5	0	0	15
	0	0	5	0	5
b_{j}	10	5	5	10	

P'

					a_i
	0	0	0	10	10
	10	0	5	0	15
	0	5	0	0	5
b_j	10	5	5	10	

8. Konversikan representasi permutasi P=[215127941083611] untuk menjadi solusi permasalah transportasi!

$$P = [2 \ 1 \ 5 \ 12 \ 7 \ 9 \ 4 \ 10 \ 8 \ 3 \ 6 \ 11]$$

Konversi representasi permutasi=

• Alokasikan jumlah maksimum unit pada kolom sel nomor 2, di mana unit maksimum yang bisa dialokasikan adalah 5.

					a'_i	a_i
		5			5	10
						15
						5
b'_{j}		5				
b_j	10	5	5	10		

Isi sel nomor 1 dengan nilai 5 untuk mendapatkan nilai maksimum dari [a']
 _i, yaitu 10.

				a'_i	a_i
	5	5		10	10
					15
					5
b'_{j}		5			

5 5 10	
--------	--

• Isi sel nomor 5 dengan nilai 5 untuk mencapai nilai maksimum dari [b'] _j, yaitu 10.

					a'_i	a_i
	5	5			10	10
	5				5	15
						5
b'_{j}	10	5				
b_{j}	10	5	5	10		

• Alokasikan jumlah maksimum unit pada kolom sel nomor 12, di mana jumlah maksimum unit yang dapat dialokasikan adalah 5.

					a'_i	a_i
	5	5			10	10
	5				5	15
				5	5	5
b'_{j}	10	5		5		
b_{j}	10	5	5	10		

• Alokasikan jumlah maksimum unit pada kolom sel nomor 7, di mana unit maksimum yang bisa dialokasikan adalah 5.

					a'_i	a_i
	5	5			10	10
	5		5		10	15
				5	5	5
b'_j	10	5	5	5		
b_j	10	5	5	10		

• Isi sel nomor 9 dengan nilai 0 karena [b'] _j sudah mencapai nilai maksimum 10.

a'_i	a_i
α_l	α_l

	5	5			10	10
	5		5		10	15
	0			5	5	5
b'_{j}	10	5	5	5		
b_{j}	10	5	5	10		

• Isi sel nomor 4 dengan nilai 0 karena 〖a'〗_i sudah mencapai nilai maksimum 10.

					a'_i	a_i
	5	5		0	10	10
	5		5		10	15
	0			5	5	5
b'_{j}	10	5	5	5		
b_{j}	10	5	5	10		

• Isi sel nomor 10 dengan nilai 0 karena [b'] _j sudah mencapai nilai maksimum 10.

					a'_i	a_i
	5	5		0	10	10
	5		5		10	15
	0	0		5	5	5
b'_j	10	5	5	5		
b_j	10	5	5	10		

• Isi sel nomor 8 dengan nilai 5 agar nilai [a'] _i dan [b'] _j mencapai nilai maksimum.

					a'_i	a_i
	5	5		0	10	10
	5		5	5	15	15
	0	0		5	5	5
b'_j	10	5	5	10		
b_j	10	5	5	10		

• Karena nilai <code>[a']</code> _i dan <code>[b']</code> _j sudah mencapai nilai maksimum, isi semua sel yang masih kosong dengan nilai 0.

					a'_i	a_i
	5	5	0	0	10	10
	5	0	5	5	15	15
	0	0	0	5	5	5
b'_j	10	5	5	10		
b_j	10	5	5	10		