Logic(s) for computer science - Week 11 Natural deduction Tutorial

1 Natural Deduction Rules

2 Solved exercises

1. Prove that the sequence $\{P(a), \neg P(a)\} \vdash P(b)$ is valid.

Proof:

1.
$$\{P(a), \neg P(a)\} \vdash P(a);$$
 (HYPOTHESIS)
2. $\{P(a), \neg P(a)\} \vdash \neg P(a);$ (HYPOTHESIS)
3. $\{P(a), \neg P(a)\} \vdash \bot;$ ($\neg e, 1, 2$)
4. $\{P(a), \neg P(a)\} \vdash P(b).$ ($\bot e, 3$)

2. Prove that the sequence $\{(P(a) \vee Q(a))\} \vdash (q \vee p)$ is valid.

Proof:

1.
$$\{(P(a) \lor Q(a)), P(a)\} \vdash P(a);$$
 (Hypothesis)
2. $\{(P(a) \lor Q(a)), P(a)\} \vdash (Q(a) \lor P(a));$ ($\lor i_2, 1$)
3. $\{(P(a) \lor Q(a)), Q(a)\} \vdash Q(a);$ (Hypothesis)
4. $\{(P(a) \lor Q(a)), Q(a)\} \vdash (Q(a) \lor P(a));$ ($\lor i_1, 1$)
5. $\{(P(a) \lor Q(a))\} \vdash (P(a) \lor Q(a));$ (Hypothesis)

 $(\forall e, 5, 2, 4)$

3. Prove that the sequence $\{\forall x.(P(x) \to Q(x)), P(a)\} \vdash \exists x.Q(x)$ is valid.

6. $\{(P(a) \lor Q(a))\} \vdash (Q(a) \lor P(a)).$

Proof:

1.
$$\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash \forall x.(P(x) \rightarrow Q(x))$$
 (Hypothesis)
2. $\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash P(a)$ (Hypothesis)
3. $\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash (P(a) \rightarrow Q(a))$ ($\forall e, 1, a$)
4. $\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash Q(a)$ ($\rightarrow e, 3, 2$)
5. $\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash \exists x.Q(x)$ ($\exists i, 4$)

4. Prove that the sequence $\{\forall x.(P(x) \to Q(x)), \exists x.P(x)\} \vdash \exists x.Q(x) \text{ is valid.}$

Proof:

1. $\{\forall x.(P(x) \to Q(x)), \exists x.P(x)\} \vdash \exists x.P(x)$	(Hypothesis)
$2. \ \{\forall \mathtt{x}.(\mathtt{P}(\mathtt{x}) {\to} \mathtt{Q}(\mathtt{x})), \exists \mathtt{x}.\mathtt{P}(\mathtt{x}), \mathtt{P}(\mathtt{x_0})\} \vdash \mathtt{P}(\mathtt{x_0})$	(Hypothesis)
$3. \ \{ \forall \mathtt{x}. (\mathtt{P}(\mathtt{x}) {\to} \mathtt{Q}(\mathtt{x})), \exists \mathtt{x}. \mathtt{P}(\mathtt{x}), \mathtt{P}(\mathtt{x_0}) \} \vdash \forall \mathtt{x}. (\mathtt{P}(\mathtt{x}) {\to} \mathtt{Q}(\mathtt{x}))$	(Hypothesis)
$4. \ \{\forall \mathtt{x}.(\mathtt{P}(\mathtt{x}) \rightarrow \mathtt{Q}(\mathtt{x})), \exists \mathtt{x}.\mathtt{P}(\mathtt{x}), \mathtt{P}(\mathtt{x}_0)\} \vdash (\mathtt{P}(\mathtt{x}_0) \rightarrow \mathtt{Q}(\mathtt{x}_0))$	$(\forall e, 3, \mathbf{x_0})$
5. $\{\forall x.(P(x) \rightarrow Q(x)), \exists x.P(x), P(x_0)\} \vdash Q(x_0)$	$(\rightarrow e, 4, 2)$
$6. \ \{\forall x. (P(x) \rightarrow Q(x)), \exists x. P(x), P(x_0)\} \vdash \exists x. Q(x)$	$(\exists i, 5)$
7. $\{ \forall x.(P(x) \rightarrow Q(x)), \exists x.P(x) \} \vdash \exists x.Q(x)$	$(\exists e, 1, 6)$

5. Prove that the sequence $\{\forall x.(P(x) \to Q(x)), P(x)\} \vdash \forall x.Q(x)$ is valid.

Proof:

1.
$$\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.(P(x) \to Q(x))$$
 (Hypothesis)
2. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.P(x)$ (Hypothesis)
3. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash (P(x_0) \to Q(x_0))$ ($\forall e, 1, x_0$)
4. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash P(x_0)$ ($\forall e, 2, x_0$)
5. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash Q(x_0)$ ($\rightarrow e, 3, 4$)
6. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.Q(x)$ ($\forall i, 5$)

3 Proposed exercises

Are the following sequences valid?

- 1. $\{((P(a) \land Q(a)) \land \forall x.P(x))\} \vdash (Q(a) \land \forall x.P(x));$
- 2. $\{((P(a) \land Q(a)) \land \forall x.P(x)), \forall x.Q(x)\} \vdash (\forall x.Q(x) \land Q(a));$
- 3. $\{((P(a) \land Q(a)) \land \forall x.P(x))\} \vdash (\forall x.P(x) \land (Q(a) \land P(a)));$
- 4. $\{((P(a) \land Q(a)) \rightarrow \forall x.P(x)), P(a), Q(a)\} \vdash \forall x.P(x);$
- 5. $\{(P(a) \rightarrow \forall x.P(x)), P(a), Q(a)\} \vdash (Q(a) \land \forall x.P(x));$
- 6. $\{(P(a) \rightarrow P(b)), (Q(a) \rightarrow P(b))\} \vdash ((P(a) \lor Q(a)) \rightarrow P(b));$
- 7. $\{\neg(P(a) \land Q(a))\} \vdash (\neg P(a) \lor \neg Q(a));$
- 8. $\{\neg(\neg P(a) \lor \neg Q(a))\} \vdash (P(a) \land Q(a));$
- 9. $\{\neg(\neg P(a) \land \neg Q(a))\} \vdash (P(a) \lor Q(a));$
- 10. $\{\forall x.(P(x) \land Q(x))\} \vdash \forall x.P(x);$
- 11. $\{\forall x.Q(x), P(a)\} \vdash P(a) \land Q(a);$
- 12. $\{\forall x.P(x), \forall x.Q(x)\}\} \vdash \forall x.(P(x) \land Q(x));$
- 13. $\{\exists x. \exists y. P(x, y)\} \vdash \exists y. \exists x. P(x, y);$
- 14. $\{\exists x. \forall y. P(x, y)\} \vdash \forall y. \exists x. P(x, y); \text{ But in the other direction: } \{\forall y. \exists x. P(x, y)\} \vdash \exists x. \forall y. P(x, y)?$
- 15. $\{\neg(\exists x.P(x))\} \vdash \forall x.\neg P(x);$
- 16. $\{\forall x. \neg P(x)\} \vdash \neg (\exists x. P(x));$