

Nemko Test Report:	10213234RUS1		
Applicant:	Nokia Siemens Networks 6000 Connection Drive Irving, TX 75039 USA		
Equipment Under Test: (E.U.T.)	FXFB		
FCC ID:	VBNFXFB-01		
In Accordance With:	CFR 47, Part 24, Subpart E Broadband PCS Base Station		
Tested By:	Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136		
TESTED BY: David Light, Ser	nior Wireless Engineer	ATE:	25-Aug-2011
APPROVED BY:	Cartwell General Manager DA	ATE:	21-Sep-2011

Number of Pages: 87

Table of Contents

Section 1.	Summary of Test Results	. 3
Section 2.	General Equipment Specification	. 5
Section 3.	RF Power Output	. 6
Section 4.	Occupied Bandwidth	. 9
Section 5.	Spurious Emissions at Antenna Terminals	26
Section 6.	Field Strength of Spurious	75
Section 7.	Frequency Stability	76
Section 8.	Test Equipment List	78
ANNEX A -	- TEST DETAILS	79
ANNEX B -	- TEST DIAGRAMS	85

Nemko USA, Inc.

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

EQUIPMENT: FXFB

Section 1.	Summary of Test	Results	
Manufacturer	: Nokia Siemens Netwo	rks	
Model No.:	FXFB		
Serial No.:	N/A		
General:	All measurements ar	e traceable to na	ational standards.
	vere conducted on a sample og g compliance with FCC Part 2		for the purpose of
	New Submission		Production Unit
	Class II Permissive Change		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PART 24 PARA. NO.	SPEC.	RESULT
RF Power Output	24.232	1640 W	Complies
Occupied Bandwidth	24.238	6.5.1	Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	NT ¹
Frequency Stability	24.235	+/-1%	NT ¹

Footnotes:

These tests were originally performed on FXFA and were not re-tested since the FXFA and FXFB are electrically equivalent.

Note: For the purpose of this test, the FXFB is electrically equivalent to the FXFA. As such, no additional testing was performed for the FXFB. The data presented in this section was compiled for the FXFA from previous Nemko test reports 1026738RUS1 (GSM/EDGE/WCDMA) and 10213334RUS1 (LTE).

Section 2. General Equipment Specification

Supply Voltage Input: -48 Vdc nominal Frequency Band: 1930 to 1990 MHz Type of Modulation and Designator: 300KGXW GSM 300KG7W EDGE 5M00D7W QPSK/16QAM/WCDMA 5M00F9W / 10M0F9W / 15M0F9W / 20M0F9W LTE Maximum No. of Carriers: 6 **Output Impedance:** 50 ohms 60 .The RF output power must be reduced dBm on the first and last channel of each +47.8 RF Output (Rated): band when used for GSM, EDGE, QPSK or 16QAM modulations. Software Duplexer Fullband **Band Selection:**

System Description

The FXFB is an FXFA which has been modified to include a Remote Electrical Tilt (RET) antenna controller module and an external RET connector. Therefore the FXFA and FXFB are deemed to be electrically equivalent. The FXFB is a 1900 MHz multistandard multicarrier radio module that consists of three individual transceivers designed to support GSM/EDGE, WCDMA and LTE in dedicated or concurrent mode. Each module supports up to six GSM/EDGE carriers in GSM/EDGE dedicated mode, up to four WCDMA carriers in WCDMA dedicated mode and up to four 5 MHz LTE carriers in LTE dedicated mode with one radio branch. In concurrent mode, a combination of all three radio technologies is supported with a single radio branch. Each module is capable to serve three radio branches with multiradio multicarrier radios of up to 60 Watts output power per branch.

The transmitter test setup for LTE dedicated mode provided QPSK, 16 QAM and 64 QAM modulation types for single carrier operation only.

The transmitter test setup for GSM/EDGE dedicated mode provided GMSK and 8PSK modulation types for both single and multicarrier operation. The transmitter WCDMA dedicated mode provided QPSK and 16QAM modulation types for both single and multicarrier operation.

Nemko USA, Inc.

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

EQUIPMENT: FXFB

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: David Light DATE: 21 April 2011 and

23 August 2011

Test Results: Complies.

Measurement Data: Refer to table on next page.

Equipment Used: 2071-2072-1082-1054-1064-1065 (April)

1767-1082-1054-1064-1065 (August)

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Note: Measurement made with power meter

Test Data - RF Power Output (April 2011)

Modulation Type	Frequency (MHz)	Measured Output Power		Deviation from rated	
,		(dBm)	(W)	(dB)	
GMSK	1930.2	35	3.2	2.0	
GMSK	1930.4	48.6	72.4	0.8	
GMSK	1960	49.1	81.3	1.3	
GMSK	1989.6	48.8	75.9	1.0	
GMSK	1989.8	34.7	3.0	1.7	
8PSK	1930.2	33.1	2.0	0.1	
8PSK	1930.4	48.9	77.6	1.1	
8PSK	1960	49.2	83.2	1.4	
8PSK	1989.6	48.9	77.6	1.1	
8PSK	1989.8	32.7	1.9	-0.3	
QPSK	1932.4	34.2	2.6	1.2	
QPSK	1932.6	46.4	43.7	-1.4	
QPSK	1960	49.2	83.2	1.4	
QPSK	1987.4	47.1	51.3	-0.7	
QPSK	1987.6	34	2.5	1.0	
16QAM	1932.4	34.2	2.6	1.2	
16QAM	1932.6	48.7	74.1	0.9	
16QAM	1960	49.2	83.2	1.4	
16QAM	1987.4	48.4	69.2	0.6	
16QAM	1987.6	33.9	2.5	0.9	

Note: The power needs to be lowered at the lowest and highest frequencies per above to ensure compliance at the band edges.

The FXFB is compliant at the other frequencies operating at full power.

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

Test Data – RF Power Output (August 2011)

	Channel		Measured Output Power		Deviation from
Modulation Type	Bandwidth (MHz)	Frequency (MHz)	(dBm)	(W)	rated (dB)
QPSK	5	1932.5	48.3	67.6	0.5
QPSK	5	1960.0	47.6	57.5	-0.2
QPSK	5	1987.4	47.7	58.9	-0.1
16 QAM	5	1932.5	48.0	63.1	0.2
16 QAM	5	1960.0	47.5	56.2	-0.3
16 QAM	5	1987.4	47.8	60.0	0
64QAM	5	1932.5	47.9	61.7	0.1
64QAM	5	1960.0	47.8	60.0	0
64QAM	5	1987.4	47.7	58.9	-0.1
QPSK	10	1935.0	47.8	60.0	0
QPSK	10	1960.0	48.2	66.1	0.4
QPSK	10	1984.9	48.4	69.2	0.6
16 QAM	10	1935.0	48.0	63.1	0.2
16 QAM	10	1960.0	48.1	64.6	0.3
16 QAM	10	1984.9	48.5	70.8	0.7
64QAM	10	1935.0	48.3	67.6	0.5
64QAM	10	1960.0	48.2	66.1	0.4
64QAM	10	1984.9	48.4	69.2	0.6
QPSK	15	1937.5	48.2	66.1	0.4
QPSK	15	1960.0	48.0	63.1	0.2
QPSK	15	1982.4	48.2	66.1	0.4
16 QAM	15	1937.5	48.3	67.6	0.5
16 QAM	15	1960.0	47.9	61.7	0.1
16 QAM	15	1982.4	48.2	66.1	0.4
64QAM	15	1937.5	48.3	67.6	0.5
64QAM	15	1960.0	48.0	63.1	0.2
64QAM	15	1982.4	48.2	66.1	0.4
QPSK	20	1940.0	48.2	66.1	0.4
QPSK	20	1960.0	47.9	61.7	0.1
QPSK	20	1979.9	48.1	64.6	0.3
16 QAM	20	1940.0	48.1	64.6	0.3
16 QAM	20	1960.0	47.8	60.0	0
16 QAM	20	1979.9	48.0	63.1	0.2
64QAM	20	1940.0	48.2	66.1	0.4
64QAM	20	1960.0	47.9	61.7	0.1
64QAM	20	1979.9	48.1	64.6	0.3

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

Nemko USA, Inc.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

TESTED BY: David Light DATE: 21 April 2011 and

23 August 2011

Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1767-1054-1082-1065-1064 (April)

1767-1054-1082-1065-1064 (August)

Measurement Uncertainty: +/- 1.6 dB

Temperature: 22 °C

Relative Humidity: 35 %

Spectrum analyzer settings:

Detector: Peak Sweep: Auto

Span 1 MHz

Test Data – Occupied Bandwidth (April 2011)

8PSK (EDGE) 3 kHz RF Att 30 dB Delta 1 [T1] RBW Ref Lvl 1.13 dB VBW 3 kHz 60 dBm 284.56913828 kHz SWT 280 ms Unit 52.5 dB Offset **▼**1 [T1] 18.21 dBm Α 1.95985<mark>872 GHz</mark> 50 1.13 dB 284.56913828 kHz 40 white the same 30 1VIEW 1MA 20 10 -10 -20

100 kHz/

Date: 21.APR.2011 10:01:03

Center 1.96 GHz

Test Data – Occupied Bandwidth (April 2011)

Test Data – Occupied Bandwidth (April 2011)QPSK

Test Data – Occupied Bandwidth (April 2011)

Test Data – Occupied Bandwidth (August 2011)

5 MHz Channel QPSK Center Channel 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

5 MHz Channel Center Channel 16 QAM 20 dB BW

Test Data – Occupied Bandwidth (August 2011)

5 MHz Channel 64 QAM Center Channel 20 dB BW

Test Data – Occupied Bandwidth (August 2011)

10 MHz Channel QPSK Center Channel 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

10 MHz Channel Center Channel 16 QAM 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

10 MHz Channel 64 QAM Center Channel 20 dB BW

Test Data – Occupied Bandwidth (August 2011)

15 MHz Channel QPSK Center Channel 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

15 MHz Channel Center Channel 16 QAM 20 dB BW

Test Data – Occupied Bandwidth (August 2011)

15 MHz Channel 64 QAM Center Channel 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

20 MHz Channel QPSK Center Channel 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

20 MHz Channel Center Channel 16 QAM 20 dB BW

Test Data - Occupied Bandwidth (August 2011)

20 MHz Channel 64 QAM Center Channel 20 dB BW

Nemko USA, Inc.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna PARA. NO.: 2.1051

Terminals

TESTED BY: David Light DATE: April 2011 and

23 August 2011

Test Results: Complies.

Test Data: Refer to plots below

Equipment Used: 1767-1082-1064-1065-1054-1054-1058 (April)

1767-1082-1064-1065-1054-1054-1058 (August)

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

Spectrum analyzer settings:

Detector: Peak Sweep: Auto Nemko USA, Inc.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

Test Data – Spurious Emissions (April 2011)

Low Band Edge 8PSK (EDGE)

Transmit Frequency: 1930.2 MHz

Transmit power reduced

Test Data – Spurious Emissions (April 2011)

Low Band Edge Intermodulation 8PSK (EDGE)

Transmit power maximum

Test Data - Spurious Emissions (April 2011)

Upper Band Edge 8PSK (EDGE)

Date:

Transmit Frequency: 1989.8 MHz

Transmit power reduced

Test Data – Spurious Emissions(April 2011)

Upper Band Edge Intermodulation 8PSK (EDGE)

Transmit power maximum

Test Data - Spurious Emissions(April 2011)

8PSK (EDGE)

Spurs

Test Data – Spurious Emissions(April 2011)

GMSK (GSM)

Lower Edge

Transmit 1930.2 MHz reduced power

Test Data – Spurious Emissions(April 2011)

GMSK (GSM) Lower band edge Intermodulation Maximum power

Test Data – Spurious Emissions(April 2011)

GMSK (GSM) Upper band edge Transmit 1989.8 MHz reduced power

Test Data – Spurious Emissions(April 2011)

GMSK (GSM)

Upper band edge intermodulation

Transmit maximum power

Test Data - Spurious Emissions(April 2011)

GMSK (GSM)

Test Data - Spurious Emissions(April 2011)

QPSK (WCDMA) Lower band edge Transmit 1932.4 MHz reduced power

Test Data – Spurious Emissions(April 2011)

QPSK (WCDMA)
Lower band edge intermodulation
Transmit maximum power

Test Data - Spurious Emissions(April 2011)

QPSK (WCDMA) Upper band edge Transmit 1987.6 MHz reduced power

Test Data - Spurious Emissions (April 2011)

QPSK (WCDMA) Upper band edge Intermodulation Transmit maximum power

Page 41 of 87

Test Data – Spurious Emissions (April 2011)

QPSK (WCDMA)

Transmit Spurs

Test Data – Spurious Emissions (April 2011)

16QAM (WCDMA) Lower band edge Transmit 1932.4 MHz reduced power

Test Data - Spurious Emissions (April 2011)

16QAM (WCDMA) Lower band edge intermodulation Transmit maximum power

Test Data – Spurious Emissions (April 2011)

16QAM (WCDMA) Upper band edge Transmit 1987.6 MHz reduced power

26.APR.2011 09:21:10

Date:

Test Data – Spurious Emissions (April 2011)

16QAM (WCDMA) Upper band edge intermodulation Transmit maximum power

Test Data - Spurious Emissions (April 2011)

16QAM (WCDMA)

Transmit spurs

Date:

Test Data - Spurious Emissions (August 2011)

5 MHz Channel QPSK

Low Band Edge

Test Data - Spurious Emissions (August 2011)

5 MHz Channel QPSK

Upper Band Edge

Date: 23.AUG.2011 14:12:53

Test Data – Spurious Emissions (August 2011)

5 MHz Channel 16 QAM Low Band Edge

Date:

23.AUG.2011 13:56:41

Test Data – Spurious Emissions (August 2011)

5 MHz Channel 16 QAM Upper Band Edge

Test Data - Spurious Emissions (August 2011)

5 MHz Channel 64 QAM Low Band Edge

Test Data – Spurious Emissions (August 2011)

5 MHz Channel 64 QAM Upper Band Edge

Test Data – Spurious Emissions (August 2011)

10 MHz Channel QPSK

Low Band Edge

Test Data - Spurious Emissions (August 2011)

10 MHz Channel QPSK

Upper Band Edge

Test Data – Spurious Emissions (August 2011)

10 MHz Channel 16 QAM Low Band Edge

Test Data – Spurious Emissions (August 2011)

23.AUG.2011 14:57:05

Date:

10 MHz Channel 16 QAM Upper Band Edge

Test Data – Spurious Emissions (August 2011)

23.AUG.2011 14:43:00

Date:

10 MHz Channel 64 QAM Low Band Edge

Test Data – Spurious Emissions (August 2011)

10 MHz Channel 64 QAM **Upper Band Edge**

Date:

Test Data - Spurious Emissions (August 2011)

15 MHz Channel QPSK

Low Band Edge

Test Data - Spurious Emissions (August 2011)

15 MHz Channel QPSK

Upper Band Edge

Test Data – Spurious Emissions (August 2011)

15 MHz Channel 16 QAM Low Band Edge

Date:

Test Data – Spurious Emissions (August 2011)

15 MHz Channel 16 QAM Upper Band Edge

Test Data – Spurious Emissions (August 2011)

15 MHz Channel 64 QAM Low Band Edge

Test Data – Spurious Emissions (August 2011)

15 MHz Channel 64 QAM Upper Band Edge

Test Data - Spurious Emissions (August 2011)

20 MHz Channel QPSK

Low Band Edge

Test Data - Spurious Emissions (August 2011)

20 MHz Channel QPSK

Upper Band Edge

Test Data – Spurious Emissions (August 2011)

20 MHz Channel 16 QAM Low Band Edge

Date:

Test Data - Spurious Emissions (August 2011)

20 MHz Channel 16 QAM Upper Band Edge

Test Data - Spurious Emissions (August 2011)

20 MHz Channel 64 QAM Low Band Edge

Test Data – Spurious Emissions (August 2011)

20 MHz Channel 64 QAM Upper Band Edge

Test Data – Spurious Emissions (August 2011)QPSK

Spurs

Carrier notched.

Test Data – Spurious Emissions (August 2011)

16 QAM

Spurs

Carrier notched.

Test Data – Spurious Emissions (August 2011)

64 QAM Spurs

Carrier notched.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.1051

TESTED BY: David Light DATE: 21 April 2011

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least 20

dB below the specification limit.

RBW/VBW=1 MHz Detector = Peak Sweep Time = Auto

.

Equipment Used: 1783-1763-1025-1016-993-1767

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

EQUIPMENT: FXFB

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability

PARA. NO.: 2.1055

RSS 133 PARA. 6.3

TESTED BY: David Light

DATE:: 25 April 2011

Test Results: Complies

Measurement Data: Standard Test Frequency: 1960 MHz

Standard Test Voltage: -48 Vdc

Equipment Used: 1767-1082-1064-1065

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

Test Data – Frequency Stability

Temp	Measured	Rho	Test	Freqeuncy	Limit	Error	
(°C)	Frequency (MHz)		Voltage	Error (Hz)	(+/-Hz)	(ppm)	Comment
20	1960.000161	0.9999	-48.0	161	1960.0	0.1	
20	1960.000183	0.9999	-55.2	183	1960.0	0.1	
20	1960.000160	0.9999	-40.8	160	1960.0	0.1	
50	1960.000103	0.9999	-48.0	103	1960.0	0.1	
40	1960.000121	0.9999	-48.0	121	1960.0	0.1	
30	1960.000115	0.9999	-48.0	115	1960.0	0.1	
10	1960.000105	0.9999	-48.0	105	1960.0	0.1	
0	1960.000101	0.9999	-48.0	101	1960.0	0.1	
-10	1960.000099	0.9999	-48.0	99	1960.0	0.1	
-20	1960.000112	0.9999	-48.0	112	1960.0	0.1	
-30	1960.000103	0.9999	-48.0	103	1960.0	0.1	
Notes:		·	·				

Section 8. Test Equipment List

Test Equipments List for Aprilt 2011 Testing

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	09-Sep-2009	09-Sep-2011
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	19-Jun-2010	19-Jun-2011
1025	Preamplifier, 25dB	Nemko USA, Inc.	LNA25	399	23-Feb-2011	23-Feb-2012
1054	Directional Coupler, Dual	Narda	3020A	34366	N/R	
1064	Attenuator	Narda	776B-20		N/R	
1065	Attenuator	Narda	776B-10		N/R	
1082	Cable, 2m	Astrolab	32027-2- 29094-72TC		N/R	
1763	Antenna, Bilog	Schaffner	CBL 6111D	22926	11-Feb-2011	11-Feb-2012
1767	Receiver,	Rohde & Schwartz	ESIB26	837491/0002	01-Dec-2010	01-Dec-2011
1783	Cable Assy, 3m Chamber	Nemko	Chanmber		04-Oct-2010	04-Oct-2011
2071	Power Sensor	Agilent	E9304A	MY41495174	12-Oct-2010	12-Oct-2011
2072	Power Meter	Hewlett Packard	E4418B	GB39401848	23-Sep-2010	23-Sep-2011

Test Equipments List for August 2011 Testing

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
1054	Directional	Narda	3020A	34366	N/R	
	Coupler, Dual					
1064	Attenuator	Narda	776B-20		N/R	
1065	Attenuator	Narda	776B-10		N/R	
1082	Cable, 2m	Astrolab	32027-2-		N/R	
			29094-72TC			
1763	Antenna,	Schaffner	CBL 6111D	22926	11-Feb-2011	11-Feb-2012
	Bilog					
1767	Receiver,	Rohde &	ESIB26	837491/0002	01-Dec-2010	01-Dec-2011
		Schwartz				

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

ANNEX A - TEST DETAILS

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

EQUIPMENT: FXFB

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations with an emission bandwidth

of 1 MHz or less are limited to 1640 watts equivalent

isotropically radiated power (EIRP) with an antenna height up

to 300 meters HAAT.

Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300

meters HAAT.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFB PROJECT NO.: 10213234RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as

the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at

CFR 47, PART 24, SUBPART E

least 26 dB.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

NAME OF TEST: Spurious Emission at Antenna PARA. NO.: 2.1051

Terminals

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

CDMA Per ANSI/J-STD-014 GSM Per ANSI/J-STD-010

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $\begin{array}{ll} \mathsf{VBW:} \ \geq \mathsf{RBW} & \mathsf{VBW:} \ \geq \mathsf{RBW} \\ \mathsf{Sweep:} \ \mathsf{Auto} & \mathsf{Sweep:} \ \mathsf{Auto} \end{array}$

Video Avg: 6 Sweeps Video Avg: Disabled

NADC Per IS-136

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 kHz (< 1 MHz from Band Edge)

VBW: ≥ RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

EQUIPMENT: FXFB

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

BROADBAND PCS BASE STATIONS EQUIPMENT: FXFB PROJECT NO.: 10213234RUS1

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

CFR 47, PART 24, SUBPART E

authorized frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

EQUIPMENT: FXFB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 10213234RUS1

ANNEX B - TEST DIAGRAMS

Para. No. 2.985 - R.F. Power Output

Para. No. 2.989 - Occupied Bandwidth

Para. No. 2.991 Spurious Emissions at Antenna Terminals

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

