

2002' SWP Series
MC Based Digital Controllers

SWP 系列微处理器化数字仪表 通讯协议

(双路输入控制仪)

香港昌晖自动化系统有限公司

CHARM FAITH AUTOSYSTEM CO., LTD.

一、概述

1、通讯口设置

通讯方式 异步串行通讯接口,如 RS-485, RS-232, RS-422 等 波特率 300~9600bps (可由设定仪表二级参数自由更改,设定仪表二级参数 BT)

2、字节数据格式

- . 一位起始位
- . 八位数据位
- . 一位停止位
 - 无校弘

. 儿\双型							-			
1	*	*	*	*	*	*	*	*	1	
	起始	位			数	据位				停止位

3、通讯数据传输格式

1)、SWP 系列仪表参数地址格式:

地址:双字节(16进制,以高字节在前,低字节在后)

例: SWP显示控制仪 II 型

仪表参数AH1 的起始地址=15₁₆=30_{ASCII}+30_{ASCII}+31_{ASCII}+35_{ASCII},格式如下:

30	30	31	35
高字节高 4 位	高字节低 4 位	低字节高4位	低字节低4位

2)、SWP 系列仪表参数数据格式:

数据按地址传输,仪表数据传输格式分为以下四种(十六进制):

a、1 字节(定点数) = 字节高 4 位 ASCII 码 + 字节低 4 位 ASCII 码

XXXX	XXXX
高 4 位	低 4 位

例: 仪表参数AH1 的数据=50₁₀=32₁₆=33_{ASCII}+32_{ASCII},格式如下:

33	32
高 4 位	低 4 位

b、2 字节(定点数) = 低字节高 4 位 ASCII 码 + 低字节低 4 位 ASCII 码

+ 高字节高 4 位 ASCII 码 + 高字节低 4 位 ASCII

XXXX	XXXX	XXXX	XXXX
低字节高4位			位 高字节低 4 位

例: 仪表参数AL1 的数据=500₁₀=1F4₁₆=30_{ASCII}+31_{ASCII}+46_{ASCII}+34_{ASCII},格式如下:

46	34	30	31
低字节高4位	低字节低4位	高字节高4位	位 高字节低 4 位

c、3 字节(定点数) = 低字节高 4 位 ASCII 码 + 低字节低 4 位 ASCII 码

+ 高字节高 4 位 ASCII 码 + 高字节低 4 位 ASCII 码

+ 小数点高 4 位 ASCII 码 + 小数点低 4 位 ASCII 码

XXXX	XXXX	XXXX	XXXX	XXXX	XXXX
低字节高4位	低字节低 4 位	高字节高 4 位	高字节低 4 位	小数点高4位	小数点低 4 位

例: 仪表实时测量值(PV)的数据=50.0,小数点在第一位(从右至左)。 实际定点数= $500_{10} \times 10^{-1}$

> 整数部份=500₁₀=1F4₁₆=30_{ASCII}+31_{ASCII}+46_{ASCII}+34_{ASCII} 小数部份=1₁₀=01₁₆=30_{ASCII}+31_{ASCII} 格式如下:

传输格式如下:

第 1	第1字节低4位		2字节低4位	立 第3字	字节低 4 位 第 4		4 字节低 4 位	
	30	37	42	38	36	36	36	36
•	第1字节	高 4 位	第2字节高	54位	第3字节	高 4 位	第4字节語	哥 4 位

3)、注:

仪表内部数据为十六进制表示的十进制数。如:实时测量值为 500,则用十六进制表示为 1F4H。仪表通讯传输是将上述十六进制数据转化为标准 ASCII 码(即一字节的 16 进制数转化 为 2 个 ASCII 码——高 4 位 ASCII 码+低 4 位 ASCII 码)。

如:上述数据 1F4H (16 进制),转化为 ASCII 码则为 30H、31H、46H、34H。

4、仪表通讯帧格式

		T F V V	4 F.W. 4F						
(a)	DE	帧命令	帧数据	CRC	CR				
	说明: @—— 通讯命令起始符								
DE	DE—— 仪表设备号(双字节,参见仪表操作手册中之参数"DE")								
	帧命令—— 操作命令(双字节)								
帧数	据—— 各程	中操作命令	所对应的数	据(长度视	不同仪表型	」号而不同)			
C	CRC— 校验字节(除@外 CRC 字节之前其它几个字节的异或值								
— 即DE(ASII)与帧类型 _{ASCII} 和帧数据 _{ASCII} 的异或值)									
CRC = DE _{ASCII} ⊕ 帧命令 _{ASCII} ⊕ 帧数据 _{ASCII}									
	CR——结束符								

5、SWP 系列仪表通讯命令集

		ı	
代码	说明	代 码	说明
RD	读仪表动态数据	Rb	读仪表第十二路动态数据(多路表)
R0	读仪表第一路动态数据(多路表)	Rc	读仪表第十三路动态数据(多路表)
R1	读仪表第二路动态数据(多路表)	Rd	读仪表第十四路动态数据(多路表)
R2	读仪表第三路动态数据(多路表)	Re	读仪表第十五路动态数据(多路表)
R3	读仪表第四路动态数据(多路表)	Rf	读仪表第十六路动态数据(多路表)
R4	读仪表第五路动态数据(多路表)	RE	读仪表内部参数资料
R5	读仪表第六路动态数据(多路表)	RR	读仪表内部参数全部资料
R6	读仪表第七路动态数据(多路表)	CO	手动/自动控制
R7	读仪表第八路动态数据(多路表)	W1	单字节写仪表内部参数资料
R8	读仪表第九路动态数据(多路表)	W2	双字节写仪表内部参数数据
R9	读仪表第十路动态数据(多路表)	W4	四字节写仪表内部参数数据
Ra	读仪表第十一路动态数据(多路表)		

6、读仪表动态数据(实时测量值)帧
发送命令帧—— @ DE RD CRC CR
正确: @ DE RD 帧数据 CRC CR —— 命令回送帧
错误: @ DE * * CRC CR —— 命令回送帧
★ 错误返回码 "**": 如 PC 机向仪表传输出的命令或 CRC 校验错误,则仪表命令回送时返回 一个 错误返回码 "**"— 2AH 2AH (ASCII 码)。
例:当前1号仪表—设备号DE=1(SWP显示控制仪II型)实时测量值PV=50.0 ₁₀ ,内部参数未修 改,AL1报警(上限)无动作,AL2报警(下限)动作。
欲读仪表实时测量值,方法如下:
30 ⊕31 ⊕ 52⊕44 =17(转为 ASCII 码则为 31、37) 发送命令——
7.2 m 2
仪表设备号 命令 校验码 30 ⊕ 31⊕52⊕ 44⊕30⊕30⊕30⊕32⊕46⊕34⊕30⊕31⊕30⊕31⊕30⊕30 ⊕30⊕31=66
30 ⊕ 31⊕32⊕ 44⊕30⊕30⊕30⊕32⊕46⊕34⊕30⊕31⊕30⊕31⊕30⊕30 ⊕30⊕31=06 (转为 ASCII 码则为 36,36)
命令回送 40 30 31 52 44 30 30 30 32 46 34
仪表设备号 命令 内部参数修改标志仪表类型 低字节
30 31 30 31 30 30 30 31 Xx xx 36 36 0D
高字节 小数点 AL1 状态 AL2 状态 保留字节 校验码
★仪表回送数据为一次回送动态数据表格中的所有数据。参见"仪表动态数据格式" ★保留完計、共立厂家保留完計、可收计不符。
★保留字节:生产厂家保留字节,可略过不管 ★上例中,测量值数据=1F4 ₁₆ =500 ₁₀
★实际测量值(PV)= $500 \times$ 小数点= 500×10^{-1} = 50.0 (如小数点为 2,则乘以 10^{-2} ,以此类推)
7、读多路巡检仪单路动态数据(实时测量值)帧
发送命令帧—— @ DE R0 CRC CR
@ DE RO 帧数据 CRC CR — 命令回送帧
★各路读取命令不同,这里 RO 表示读第一路动态数据。 ★帧数据依次为
内部参数修改标志 第一路实时测量值 小数点位置
★D0=1 内部参数修改标志有效,
D1=0,第一报警有效, D2=0,第二报警有效。
8、读仪表内部参数数据帧
发送命令帧——
正确: @ DE RE 帧数据 CRC CR —— 命令回送帧
错误: @ DE * * CRC CR — 命令回送帧

注:长度为数据字节长度代码,如单字节为1,双字节为2,四字节为4。

例: 2 号仪表(SWP 显示控制仪 II 型)当前第二报警设定值 AL2=500,欲读仪表 AL1 设定值,方法如下: 查表得AL2 的地址=13₁₆=30_{ASCII}+30_{ASCII}+31_{ASCII}+33_{ASCII}

30 ⊕ 32⊕52⊕45⊕30⊕30⊕31⊕33⊕30⊕32=15 (转为 ASCII 码则为 31,35)

30 ⊕ 32⊕52⊕ 45⊕30⊕31⊕46⊕34⊕30⊕31 =67(转为 ASCII 码则为 36,37)

接收命令回送 40 30 32 52 45 46 34 30 31 36 37 0D 仪表设备号 命令 低字节 高字节 校验码

★ 仪表内部参数数据: 仪表内部设定参数值

★ 参数地址: 仪表内部参数的地址,参见"参数地址表"

9、读仪表内部参数全部数据帧

- ★读仪表内部参数全部数据帧:一次性将仪表内部所有参数的设定值全部读取。
- ★仪表将按内部参数的排列顺序一次全部回送的所在的数据。(仪表内部参数排列顺序参见"仪表内部参数地址表"

例:读取3号仪表(SWP显示控制仪Ⅱ型)所有内部参数设定值,方法如下:

- ★命令中"xx"为内部参数设定值(实际见仪表当前设定值)
 - ★命令中"yy""zz"为校验值(实际见仪表数据校验值)

10、单字节写仪表内部参数数据帧

发送命令帧---(a) 参数地址 数据 | CRC | DE W1CR 正确: (a) —— 命令回送帧 DE ## CRC CR 错误: (a) —— 命令回送帧 DE CRC CR

★ 正确返回码 "##": 如 PC 机向仪表传输出的命令或数据正确,则仪表命令回送时返回一个数据正确返回码 "##"—ASCII 码=23H, 23H。

SWP 系列仪表通讯协议 例: 欲将 4 号仪表(SWP显示控制仪II型)参数锁定CLK改为 5010。方法如下: $50_{10} = 32_{16} = 33_{ASCII} + 32_{ASCII}$ 查表得CLK的地址=1016=30(ASCII1)+31ASCII+30ASCII+30ASCII 30 ⊕ 34 ⊕ 57⊕31⊕30⊕30⊕31⊕30⊕33⊕32=62 (转为 ASCII 码则为 36,32) 发送命令— 57 30 34 31 30 30 31 0D30 33 36 仪表设备号 参数值 校验码 命令 参数地址 30 ⊕ 34⊕ ⊕23⊕23 =4 (转为 ASCII 码则为 30.34) 接收命令回送 34 40 30 23 23 30 0D 仪表设备号 返回码 校验码 11、双字节写仪表内部参数数据帧 发送命令帧-(a) 参数起始位地址 数据 DE W2 CRC CR 正确: @ DE ## CRC CR - 命令回送帧 错误: (a) —— 命令回送帧 DE **CRC** CR 例: 欲将 5 号仪表(SWP显示控制仪)第二报警值AL1 改为 500₁₀,方法如下: $500_{10} = 1F4_{16} = 46_{ASCII} + 34_{ASCII} + 30_{ASCII} + 31_{ASCII}$ 查表得AL1 的地址=11₁₆~12₁₆=30_{ASCII}+30_{ASCII}+31_{ASCII}+31_{ASCII}~30_{ASCII}+30_{ASCII}+31_{ASCII}+32_{ASCII} 30 ⊕ 35⊕57⊕ 32⊕30⊕30⊕31⊕31⊕46⊕34⊕30⊕31=13 (转为 ASCII 码则为 31,33) 发送命令— | 40 32 31 46 34 0D30 35 57 30 30 31 33 仪表设备号 参数起始位地址 低字节 命令 高字节 校验码 30 ⊕ 35⊕ ⊕23⊕23 =5(转为 ASCII 码则为 30,35) 接收命令回送 30 35 23 23 仪表设备号 返回码 校验码 12、四字节写仪表内部参数数据帧 发送命令帧-(a) 参数起始位地址 数据 DE W4 CRC CR @ CRC CR - 命令回送帧 DE ## 正确:

例: 欲将 6 号仪表(SWP流量积算控制仪)补偿系数K1 改为 100.2_{10} ,方法如下: 100.2_{10} =(07C86666)4 字节浮点数

CRC

错误:

DE

 $= 30_{ASCII} + 37_{ASCII} + 43_{ASCII} + 38_{ASCII} + 36_{ASCII} + 36_{ASCII} + 36_{ASCII} + 36_{ASCII}$

CR

- 命令回送帧

查表得K1 的地址=34₁₆~37₁₆=30_{ASCII}+30_{ASCII}+33_{ASCII}+34_{ASCII}~30_{ASCII}+30_{ASCII}+33_{ASCII}+37_{ASCII}
30 ⊕ 36⊕ 57⊕ 34 ⊕30⊕30⊕33⊕34⊕30⊕37⊕43⊕38⊕36⊕36⊕36⊕36=1E
(转为 ASCII 码则为 31,45)

二、通讯流程

例: PC 机欲从 RS-485 总路线挂接的仪表中读取 1 号单显 I 型仪表的 AL1 设定(当前设定值为 1598)。 通讯流程如下:

PC 机

上例中, AL1 设定值 = 063E₁₆ = 1598

三、仪表通讯接线

1、1、PC 机(RS-232)与仪表(RS-485)通讯接线(加装 SWP 公司 RS-232/RS-485 转换接头)

- T/R(A)、T/R(B)接至SWP仪表的T/R(A)、T/R(B)端。
 - 将通讯转换接头插入 PC 机的 9 针串行通讯口。
 - SWP 通讯转换接头为选件。
- SWP 公司 RS232/RS485 转换接头 RTS 置高, DTR 置低。详情见"RS232/RS485 转换器使用说明"。
 - 2、仪表与 PC 机 9 针 RS-232 接口接线方法:

3、仪表与 PC 机 25 针 RS-232 接口接线方法:

4、PC 机 (RS-422) 与仪表 (RS-422) 通讯接线

	T/R(B)	RS - 422	T/R(A)	
т	T/R(B)))	T/R(A)	1 ₹ 2 ×
Č∜.	T/R(A)))	T/R(B)	हिज़ा (3
	T/R(A)))	T/R(B)	4 微
		7(

四、部份标准 ASCII 代码表

字符	ASCII 码						
0	30	CR	0D	J	4A	T	54
1	31	A	41	K	4B	U	55
2	32	В	42	L	4C	V	56
3	33	C	43	M	4D	W	57
4	34	D	44	N	4E	X	58
5	35	Е	45	О	4F	Y	59
6	36	F	46	P	50	Z	5A
7	37	G	47	Q	51	@	40
8	38	Н	48	R	52	#	23
9	39	I	49	S	53		

五、SWP 智能化仪表参数地址表

- **★**仪表参数地址如下。视仪表型号不同,无以下所述之地址功能时,同时地址也为空。
- ★采用"读仪表内部参数全部数据帧"的命令时,将按上表所列顺序一次传输所有数据。
 - ★仪表 DE 设定范围 = 0~250。
 - ★仪表 BT 设定代码如下:

代 码	0	1	2	3	4	5
波特率 (bps)	300	600	1200	2400	4800	9600

SWP 系列单回路双屏显示控制仪参数地址、仪表动态数据格式

仪表动态数据格式

编号	参数名称	数据格式	类型	备注
1	E ² PROM参数修改标志	单字节定点数	只读	
2	仪表类型	单字节定点数	只读	
3	第一屏实时显示值	三字节浮点数	只读	
4	第二屏实时显示值	三字节浮点数	只读	
5	第一报警(AL1)	单字节定点数	只读	
6	第二报警(AL2)	单字节定点数	只读	
7	第三报警(AL3)	单字节定点数	只读	
8	第四报警(AL4)	单字节定点数	只读	

仪表内部参数所对应地址

编号	参数符号	参数名称	地址	数据格式	类型	数值范围	备注
1	CLK	密码设置	00H	单字节	读/写	0~255	定点数
2	AL1	第一报警值	01H	双字节	读/写	-1999~9999	定点数
3	AL2	第二报警值	03H	双字节	读/写	-1999~9999	定点数
4	AH1	第一报警回差值	05H	双字节	读/写	0~9999	定点数
5	AH2	第二报警回差值	07H	双字节	读/写	0~9999	定点数
6	AL3	第三报警值	09H	双字节	读/写	-1999~9999	定点数
7	AL4	第四报警值	0BH	双字节	读/写	-1999~9999	定点数
8	AH3	第三报警回差值	0DH	双字节	读/写	0~9999	定点数
9	AH4	第四报警回差值	0FH	双字节	读/写	0~9999	定点数
10	DIP1	显示方式 1	11H	单字节	读/写	0~32	定点数
11	DE	设备地址	12H	单字节	读/写	0~255	定点数
12	BT	通讯波特率	13H	单字节	读/写	0~5	定点数
13	DIP2	显示方式 2	14H	双字节	读/写	0~32	定点数
14	DIP3	显示方式 3	16H	双字节	读/写	0~32	定点数
15	1SL0	第一通道分度号	18H	单字节	读/写	0~20	定点数
16	1SL1	第一通道小数点	19H	单字节	读/写	0~3	定点数
17	1SL2	第一通道报警方式 1	1AH	单字节	读/写	0~2	定点数
18	1SL3	第一通道报警方式 2	1BH	单字节	读/写	0~2	定点数
19	1SL4	第一通道冷补方式	1CH	单字节	读/写	0~1	定点数
20	1SL5	第一通道闪烁报警方式	1DH	単字节	读/写	0~1	定点数
21	1SL6 1SL7	第一通道滤波系数	1EH	単字节	读/写	0~250	定点数
22		第一通道报警延时方式	1FH	単字节	读/写	0~10	定点数
23	1PB1 1KK1	第一通道零点迁移 第一通道增益	20H	双字节	读/写	-1999~9999	定点数
24 25	1PB2		22H	双字节	读/写	0~1.999 -1999~9999	定点数
26	1KK2	第一通道冷补零点迁移 第一通道冷补增益	24H 26H	双字节 双字节	读/写	0~1.999	定点数 定点数
27	1PB3		28H	双字节	读/写	-1999~9999	定点数
28	1KK3		2AH	双字节	读/写	0~1.999	定点数
29	10UL		2CH	双字节	读/写	-1999~9999	定点数
30	10UH	第一变送量程上限	2EH	双字节	读/写	-1999~9999	定点数
31	1PVL	第一通道光柱显示下限	30H	双字节	读/写	-1999~9999	定点数
32	1PVH	第一通道光柱显示上限	32H	双字节	读/写	-1999~9999	定点数
33	1SLL	第一通道量程下限	34H	双字节	读/写	-1999~9999	定点数
34	1SLH	第一通道量程上限	36H	双字节	读/写	-1999~9999	定点数
35	1SLS	第一通道信号切除	38H	双字节	读/写	0~1000	定点数
36	2SL0	第二通道分度号	3AH	单字节	读/写	0~20	定点数
37	2SL1	第二通道小数点	3ВН	单字节	读/写	0~3	定点数
38	2SL2	第二通道报警方式1	3СН	单字节	读/写	0~2	定点数
39	2SL3	第二通道报警方式 2	3DH	单字节	读/写	0~2	定点数
40	2SL4	第二通道冷补方式	3EH	单字节	读/写	0~1	定点数
41	2SL5	第二通道闪烁报警方式	3FH	单字节	读/写	0~1	定点数
42	2SL6	第二通道滤波系数	40H	单字节	读/写	0~250	定点数
43	2SL7	第二通道报警延时方式	41H	单字节	读/写	0~10	定点数
44	2PB1	第二通道零点迁移	42H	双字节	读/写	-1999~9999	定点数
42	2KK1	第二通道增益	44H	双字节	读/写	0~1.999	定点数
43	2PB2	第二通道冷补零点迁移	46H	双字节	读/写	-1999~9999	定点数

编号	参数符号	参数名称	地址	数据格式	类型	数值范围	备注
44	2KK2	第二通道冷补增益	48H	双字节	读/写	0~1.999	定点数
45	2PB3	第二变送零点迁移	4AH	双字节	读/写	-1999~9999	定点数
46	2KK3	第二变送增益	4CH	双字节	读/写	0~1.999	定点数
47	2OUL	第二变送量程下限	4EH	双字节	读/写	-1999~9999	定点数
48	2OUH	第二变送量程上限	50H	双字节	读/写	-1999~9999	定点数
49	2PVL	第二通道光柱显示下限	52H	双字节	读/写	-1999~9999	定点数
50	2PVH	第二通道光柱显示上限	54H	双字节	读/写	-1999~9999	定点数
51	2SLL	第二通道量程下限	56H	双字节	读/写	-1999~9999	定点数
52	2SLH	第二通道量程上限	58H	双字节	读/写	-1999~9999	定点数
53	2SLS	第二通道信号切除	5AH	双字节	读/写	0~1000	定点数