Section V.1

Remark V.6 Previously, we defined a **vector space** V to be any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following eight properties for all $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ in V, and all scalars (i.e. real numbers) a, b.

- Addition is associative: $\vec{\mathbf{u}} \oplus (\vec{\mathbf{v}} \oplus \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) \oplus \vec{\mathbf{w}}$.
- Addition is commutative: $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$.
- Additive identity exists: There exists some \vec{z} where $\vec{v} \oplus \vec{z} = \vec{v}$.
- Additive inverses exist: There exists some $-\vec{\mathbf{v}}$ where $\vec{\mathbf{v}} \oplus (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.
- Scalar multiplication is associative: $a \odot (b \odot \vec{\mathbf{v}}) = (ab) \odot \vec{\mathbf{v}}$.
- Scalar multiplication identity exists: $1 \odot \vec{v} = \vec{v}$.
- Scalar mult. distributes over vector addition: $a \odot (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) = a \odot \vec{\mathbf{u}} \oplus a \odot \vec{\mathbf{v}}$.
- Scalar mult. distributes over scalar addition: $(a + b) \odot \vec{\mathbf{v}} = a\vec{\mathbf{v}} \oplus b\vec{\mathbf{v}}$.

Remark V.7 Every Euclidean space \mathbb{R}^n is a vector space, but there are other examples of vector spaces as well.

For example, consider the set \mathbb{C} of complex numbers with the usual defintions of addition and scalar multiplication, and let $\vec{\mathbf{u}} = a + b\mathbf{i}$, $\vec{\mathbf{v}} = c + d\mathbf{i}$, and $\vec{\mathbf{w}} = e + f\mathbf{i}$. Then

$$\vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (a + b\mathbf{i}) + ((c + d\mathbf{i}) + (e + f\mathbf{i}))$$

$$= (a + b\mathbf{i}) + ((c + e) + (d + f)\mathbf{i})$$

$$= (a + c + e) + (b + d + f)\mathbf{i}$$

$$= ((a + c) + (b + d)\mathbf{i}) + (e + f\mathbf{i})$$

$$= (\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}}$$

All eight properties can be verified in this way.

Remark V.8 The following sets are just a few examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- \mathbb{C} : Complex numbers.
- $M_{m,n}$: Matrices of real numbers with m rows and n columns.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Activity V.9 (~20 min) Consider the set $V = \{(x,y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

Part 1: Show that V satisfies the distribution property

$$(a+b)\odot \vec{\mathbf{v}} = (a\odot \vec{\mathbf{v}}) \oplus (b\odot \vec{\mathbf{v}})$$

by substituting $\vec{\mathbf{v}} = (x, y)$ and showing both sides simplify to the same expression. Part 2: Show that V contains an additive identity element satisfying

$$(x,y) \oplus \vec{\mathbf{z}} = (x,y)$$

for all $(x, y) \in V$ by choosing appropriate values for $\vec{z} = (?,?)$.

Remark V.10 It turns out $V = \{(x,y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

satisifes all eight properties.

- Addition is associative: $\vec{\mathbf{u}} \oplus (\vec{\mathbf{v}} \oplus \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) \oplus \vec{\mathbf{w}}$.
- Addition is commutative: $\vec{\mathbf{u}} \oplus \vec{\mathbf{v}} = \vec{\mathbf{v}} \oplus \vec{\mathbf{u}}$.
- Additive identity exists: There exists some \vec{z} where $\vec{v} \oplus \vec{z} = \vec{v}$.
- Additive inverses exist: There exists some $-\vec{\mathbf{v}}$ where $\vec{\mathbf{v}} \oplus (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.
- Scalar multiplication is associative: $a \odot (b \odot \vec{\mathbf{v}}) = (ab) \odot \vec{\mathbf{v}}$.
- Scalar multiplication identity exists: $1 \odot \vec{v} = \vec{v}$.
- Scalar mult. distributes over vector addition: $a \odot (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) = a \odot \vec{\mathbf{u}} \oplus a \odot \vec{\mathbf{v}}$.
- Scalar mult. distributes over scalar addition: $(a + b) \odot \vec{\mathbf{v}} = a\vec{\mathbf{v}} \oplus b\vec{\mathbf{v}}$.

Thus, V is a vector space.

Activity V.11 (~15 min) Let $V = \{(x,y) | x,y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that 1 is the scalar multiplication identity element by simplifying $1 \odot (x, y)$ to (x, y).

Part 2: Show that V does not have an additive identity element by showing that $(0,-1) \oplus \vec{z} \neq (0,-1)$ no matter how $\vec{z} = (z_1, z_2)$ is chosen.

Part 3: Is V a vector space?

Definition V.12 A linear combination of a set of vectors $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_m\}$ is given by $c_1\vec{\mathbf{v}}_1 + c_2\vec{\mathbf{v}}_2 + \dots + c_m\vec{\mathbf{v}}_m\}$ $c_m \vec{\mathbf{v}}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we can say $\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ since

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Definition V.13 The span of a set of vectors is the collection of all linear combinations of that set:

$$\operatorname{span}\{\vec{\mathbf{v}}_{1}, \vec{\mathbf{v}}_{2}, \dots, \vec{\mathbf{v}}_{m}\} = \{c_{1}\vec{\mathbf{v}}_{1} + c_{2}\vec{\mathbf{v}}_{2} + \dots + c_{m}\vec{\mathbf{v}}_{m} \mid c_{i} \in \mathbb{R}\}.$$

For example:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix} + b \begin{bmatrix} 1\\2\\1 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Activity V.14 ($\sim 10 \ min)$ Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
,

$$3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix},$$

$$0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Part 1: Sketch
$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$, $0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $-2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1 \\ 2 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$ in the xyplane.

Activity V.15 (~10 min) Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Part 1: Sketch the following linear combinations in the xy plane.

$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad 0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$-2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}-1\\1\end{bmatrix}\right\}$ in the xy plane.

Activity V.16 (~5 min) Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 6 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}$ in the xy plane.