0.1 Вопрос 1.

Числовой ряд $\sum\limits_{k=1}^{\infty}a_k$ называется **сходящимся**, если существует конечный предел последовательности частичных сумм $S=\lim\limits_{n\to\infty}S_n$. Если предел последовательности частичных сумм числового ряда не существует или бесконечен, то ряд $\sum\limits_{k=1}^{\infty}a_k$ называется **расходящимся**.

Суммой сходящегося числового ряда $\sum_{k=1}^{\infty} a_k$ называется предел последовательности его частичных сумм, то есть, $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = S$.

Арифметические свойства.

Пусть даны числовые последовательности $\sum\limits_{k=1}^{\infty}x_k\to a$ и $\sum\limits_{k=1}^{\infty}y_k\to b$, тогда верны следующие свойства:

1.
$$\lim_{n \to \infty} (c_1 \cdot x_n \pm c_2 \cdot y_n) = c_1 \cdot \lim_{n \to \infty} x_n \pm c_2 \cdot \lim_{n \to \infty} y_n = c_1 \cdot a \pm c_2 \cdot b$$

2.
$$\lim_{n \to \infty} ((c_1 \cdot x_n) \cdot (c_2 \cdot y_n)) = c_1 \cdot \lim_{n \to \infty} x_n \cdot c_2 \cdot \lim_{n \to \infty} y_n = c_1 \cdot a \cdot c_2 \cdot b$$

3.
$$\lim_{n \to \infty} \frac{c_1 \cdot x_n}{c_2 \cdot y_n} = \frac{c_1 \cdot \lim_{n \to \infty} x_n}{c_2 \cdot \lim_{n \to \infty} y_n} = \frac{c_1 \cdot a}{c_2 \cdot b}, b \neq 0, y_n \neq 0, c_2 \neq 0$$

Свойства остатков

Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то сходится и любой его остаток. Если сходится какой-нибудь остаток ряда, то сходится и сам ряд.

Свойства группировки

Если ряд $A=\sum\limits_{k=1}^{\infty}a_k$ сходится, то ряд $B=\sum\limits_{j=1}^{\infty}b_j$ полученный путем группировки членов ряда A без изменения порядка их расположения, также сходится и его сумма равна сумме ряда A.

Залача

Найдите n-ю частичную сумму и сумму ряда $\sum_{n=1}^{\infty} \ln{(1-n^{-2})}$.

Решение:

С помощью необходимого признака сходимости, проверим, не расходится ли ряд:

$$\lim_{n \to \infty} \ln(1 - n^{-2}) = \ln\lim_{n \to \infty} (1 - n^{-2}) = \ln 1 = 0$$

Рассмотрим, что сокращается при суммировании a_{n-1} , a_n и a_{n+1} :

$$a_{n-1} + a_n + a_{n+1} = \ln\left(1 - (n-1)^{-2}\right) + \ln\left(1 - n^{-2}\right) + \ln\left(1 - (n+1)^{-2}\right) =$$

$$= \ln\frac{(n-1)^2 - 1}{(n-1)^2} + \ln\frac{n^2 - 1}{n^2} + \ln\frac{(n+1)^2 - 1}{(n+1)^2} = \ln\frac{(n-1) - 1}{n-1} \cdot \frac{(n-1) + 1}{n-1} +$$

$$+ \ln\frac{n-1}{n} \cdot \frac{n+1}{n} + \ln\frac{(n+1) - 1}{n+1} \cdot \frac{(n+1) + 1}{n+1} = (\ln(n) - \ln(n-1) + \ln(n-2) - \ln(n-1)) +$$

$$+ (\ln(n+1) - \ln(n) + \ln(n-1) - \ln(n)) + (\ln(n+2) - \ln(n+1) + \ln(n) - \ln(n+1)) =$$

$$= \ln(n-2) - \ln(n-1) + \ln(n) - \ln(n+1)$$

Тогда

$$S_n = \sum_{k=2}^{n} \ln(1 - n^{-2}) = \ln(2 - 1) - \ln 2 + \ln(n + 1) - \ln(n) = \ln\frac{n + 1}{2n}$$

Откуда следует, что

$$\lim_{n \to \infty} \sum_{k=2}^{n} \ln(1 - n^{-2}) = \lim_{n \to \infty} \ln \frac{n+1}{2n} = \ln(\frac{1}{2}) = -\ln 2$$

0.2 Вопрос 3.

Критерий Коши.

Пусть $\sum\limits_{k=1}^{\infty}a_n$ неотрицательна, тогда $\lim\limits_{n\to\infty}\sqrt[n]{a_n}=\lambda$. При $\lambda>1$ ряд расходится, при $\lambda<1$ ряд сходится.

Доказательство расходимости гармонического ряда.

Применим доказательство от противного , предположим, что гармонический ряд сводится к сумме S:

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = S$$

Гармонический ряд можно представить в виде суммы 2х рядов:

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots\right)$$

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \frac{1}{2} \cdot \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots\right)$$

$$S = \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots\right) + \frac{1}{2}S$$

$$\frac{1}{2}S = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots \neq 0$$

Отсюда получаем, что наше предположение не верно, а значит гармонический ряд расходится.

Вопрос 5. 0.3

Доказательства сами придумайте, я их в уши еб.

 $\sum_{k=1}^{\infty} a_n$ неотрицательна, тогда $\lim_{n\to\infty} \sqrt[n]{a_n} = \lambda$. При $\lambda>1$ ряд расходится, при $\lambda<1$ ряд сходится.

Интрегральный признак сходимости

Пусть f(x) монотона на $[1,\infty]$. $\sum_{n=1}^{\infty}f(x)$ сходится \Leftrightarrow сходится $\int\limits_{1}^{\infty}f(x)dx$.

<u>Признак Даламбера</u> Пусть $\sum\limits_{k=1}^{\infty}a_n$ неотрицательна, $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=\lambda$. При $\lambda>1$ ряд расходится, при $\lambda<1$ ряд сходится.

Исследуйте на сходимость ряд $\sum_{n=1}^{\infty} \frac{(2n)!!}{n!} \arcsin(3^{-n})$

Так как 3^{-n} , при $n \to \infty$ стремится к 0, то $\arcsin x \sim x$. Еще можно заметить, что $\frac{(2n)!!}{n!} = 2^n$. Воспользуемся признаком сходимости Коши:

$$\lim_{n \to \infty} \sqrt[n]{\frac{(2n)!!}{n!} \arcsin{(3^{-n})}} = \lim_{n \to \infty} \sqrt[n]{2^n \cdot 3^{-n}} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2}{3}\right)^n} = \frac{2}{3} < 1$$

0.4 Вопрос 20

Измеримое по Жордану множество в \mathbb{R}^n

Множество $\Pi = \{(x_1, x_2, ..., x_n) : a_i \leq x_i < b_i, i = 1, ..., n\}$ будем называть клеткой в R^n . Пустое множество тоже считается клеткой. Множество $A \in R^n$ клеточное, если оно является объединением конечного числа попарно непересекающихся клеток. Мерой $m(\Pi)$ клетки называется число

$$m(\Pi) = (b_1 - a_1) \times \dots \times (b_n - a_n)$$

Если непересекающиеся клетки $\Pi_1,...,\Pi_n$ образуют разбиение клеточного множества A, то мерой клеточного множества A назовем число

$$m(A) = \sum_{i=1}^{n} m(\Pi_i)$$

Множество $\Omega \subset \mathbb{R}^n$ называется измеримым по Жордану, если для любого $\varepsilon > 0$ найдутся два клеточных множества A и B такие, что $A \subset \Omega \subset B$ и $m(B) - m(A) < \varepsilon$. (По сути, измерить множество по Жордану - значит попробовать воссоздать его с помощью прямоугольников)

Задача

Пайдите два клеточных множества A и B таких, чтобы $A \subset \Omega \subset B, m(B) - m(A) \le 1.5,$ если $\Omega = \{(x,y): 0 \le y \le x, 0 \le x \le 3\}.$

Решение

Чтобы понять решение, необходимо нарисовать все 3 множества на плоскости XOY.

Пусть множество A - объединение клеток:

 $\begin{cases} (x,y): 0.5 \leq x \leq 1, 0 \leq y \leq 0.5 \}, \\ \{(x,y): 1 \leq x \leq 3, 0 \leq y \leq 1 \}, \\ \{(x,y): 1.5 \leq x \leq 2, 1 \leq y \leq 1.5 \}, \\ \{(x,y): 2.5 \leq x \leq 3, 2 \leq y \leq 2.5 \}, \\ \{(x,y): 2 \leq x \leq 3, 1 \leq y \leq 2 \}. \end{cases}$

$$m(A) = 3\frac{3}{4}$$

Пусть множество B - объединение клеток: $\{(x,y): 0 \le x \le 1, 0 \le y \le 0.5\}$,

$$\{(x,y): 0.5 \le x \le 1, 0.5 \le y \le 1\},\$$

$$\{(x,y): 1 \le x \le 3, 0 \le y \le 1\},\$$

$$\{(x,y): 1 \le x \le 2, 1 \le y \le 1.5\},$$

$$\{(x,y): 1.5 \le x \le 2, 1.5 \le y \le 2\},\$$

$$\{(x,y): 2 \le x \le 3, 2 \le y \le 2.5\},\$$

$$\{(x,y): 2 \le x \le 3, 1 \le y \le 2\},\$$

$$\{(x,y): 2.5 \le x \le 3, 2.5 \le y \le 3\}.$$

$$m(B) = 5\frac{1}{4}$$

$$m(B) - m(A) = 1.5$$