Data Science Capstone project

Monu Bhagat 04/06/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

• Project background and context

• Problems you want to find answers

Methodology

- Data collection methodology:
 - Data collection using API
 - Data collection using web scraper
- Perform data wrangling
 - Data wrangling using Auxiliary Functions
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Predictive analysis using Machine Learning

Methodology

Data collection

• Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

Data collection – SpaceX API

Data collection – Web scraping

Web Scraping

Data wrangling

Data wrangling is the process of cleaning and unifying messy complex data sets for easy access and analysis. With the amount of data and data sources rapidly growing and expanding, it is getting increasingly essential for amounts of available data to be organized for analysis. This process typically includes manually converting and mapping data from one raw form into another format to allow for convenient more consumption and organization of the data.

EDA with data visualization

• To find out the relationship between features

EDA with SQL

- Import the data into database
- Querying the data you want to find out

Build an interactive map with Folium

• Map objects such as markers, circles, lines, etc. as a marker for the launch site

• To find out the details of the location of the launch site

Build a Dashboard with Plotly Dash

• Dropdown filter and chart

• To find out each launch site

Predictive analysis (Classification)

Using Machine
 Learning for
 predictive analysis
 with KNN, SVM,
 Decision Tree, and
 Logistic Regression,
 evaluated with Jaccard
 Score and F1 Score

 https://github.com/Mon uBhagat11/Machine_le arning_with_python

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

EDA with Visualization

Flight Number vs. Launch Site

The highest success rate is in CCAPS SLC-40 launch site

Payload vs. Launch Site

The highest pay load mass is in CCAPS SLC-40 launch site

Success rate vs. Orbit type

ES-L1, GEO, HEO, and SSO orbit has highest success rate

Flight Number vs. Orbit type

LEO, ISS, PO, and GEO orbit has highest flight number

Payload vs. Orbit type

GEO orbit has highest pay load mass

Launch success yearly trend

Every year the launch success rate increases

EDA with SQL

All launch site names

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Theres four launch site

Launch site names begin with 'CCA'

launch_site

CCAFS LC-40

CCAFS SLC-40

Theres two launch site names begin with 'CCA'

Total payload mass

payload_mass

56479

Total pay load mass 56479 kg

Average payload mass by F9 v1.1

avg_payload_mass

3676

Average payload mass by F9 v1.1 is 3676

First successful ground landing date

first_succesful_landing

First successful ground landing on 2017-01-05

2017-01-05

Successful drone ship landing with payload between 4000 and 6000

booster version

F9 FT B1022

F9 FT B1031.2

Successful drone ship landing with payload between 4000 and 6000 is F9 FT B1022 and F9 FT B1031.2

Total number of successful and failure mission outcomes

total_success	total_failure
46	0

Total number of successful is 46 and failure is 0

Boosters carried maximum payload

booster_version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

Boosters carried maximum payload is F9 B5 B1048.4, F9 B5 B1049.4, F9 B5 B1049.5, F9 B5 B1060.2, and F9 B5 B1058.3

2015 launch records

month_name	landing_outcome	booster_version	launch_site
October	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40

In 2015 the launch was carried out in october at the ccafs lc-40 launch site with booster version f9 v1.1 B1012 and landing outcome is failure (drone ship)

Rank success count between 2010-06-04 and 2017-03-20

landing_outcome	successful_landing_outcomes
No attempt	7
Failure (drone ship)	3
Success (drone ship)	2
Success (ground pad)	2
Controlled (ocean)	1
Failure (parachute)	1

landing outcome with no attempt status was ranked first with a total of 7 times and landing outcome with controlled (ocean) and failure (parachute) status was ranked last with a total of 1 time

Interactive map with Folium

All Launch Sites

Theres 3 location launch site

Color-labeled Launch Records

Launch Site to its Proximities Such as Railway, Highway, Coastline

to find out how far is the distance between the launch site and the railway, highway, coastline

Build a Dashboard with Plotly Dash

Launch Success Count for All Sites, in a Piechart

SpaceX Launch Records Dashboard

Piechart for The Launch Site With Highest Launch Success Ratio

Payload vs. Launch Outcome Scatter Plot for All Sites

Predictive analysis (Classification)

Classification Accuracy

The highest classification accuracy is Decision Tree with accuracy = 88,75%

Confusion Matrix

The best perfoming nodel is Decision Tree with accuracy = 88.75%

CONCLUSION

• The best classification model in this case is Decision Tree with 88,75% accuracy

APPENDIX

 https://github.com/MonuBhagat11/Da ta_Science_Capstone_Project_ppt

Thank You