1 Distance-Vector Routing

The nodes in the above network communicate with each other using distance-vector routing. Below are the initial routing tables for each node, and a table showing the costs for each of their neighboring links.

In the routing tables, each row represents a neighbor and a column represents a destination. Each cell entry is of the format (shortest known distance to dest, next hop).

Nbr	Cost
Α	0
В	2
С	1
D	7

Nbr

Cost

1	Node A				
Fron		Α	В	С	D
Α		0, A	2, B	1, C	7, D
В		1	0	·	
С		-	-	0	-
D		-	-	-	0

Node (r.		
To From	A	С	D
Α	0	-	-
С	1, A	0, C	2, D

Nbr	Cost	
Α	2	
В	0	
Е	5	

Node B				
To From	A	В	Е	
Α	0	1	-	
В	2, A	0, B	5,E	
Е	-	-	0	

Nbr	Cost
Α	7
С	2
D	0
Е	3

Node D				
To From	Α	С	D	Е
Α	0	-	-	-
С	-	0	-	-
D	7, A	2, C	0, D	3, E
Е	-	-	-	0

1

Nbr	Cost
В	5
D	3
Е	0

Node l	Node E				
To From	В	D	Е		
В	0				
D	-	0	-		
Е	5, B	3, D	0, E		

The following questions indicate events that happen consecutively. You can assume that there are no other packet exchanges than the ones specified.

EVENT: C sends its update to A and D.

(1) What do the routing tables for *A* and *D* look like after receiving *C*'s update? (You may not need to fill in all columns)

Node A

Neighbor	Cost
A	0
В	2
С	1
D	7

To From			
A			
В			
C			
D			

Node D

Neighbor	Cost
A	7
C	2
D	0
E	3

To From			
A			
C			
D			
E			

(2) Which nodes among A and D are expected to send routing updates after receiving C's update?

EVENT: A sends its update to B, C, and D.

(3) What do the routing tables for *B*, *C*, and *D* look like after receiving *A*'s update? (You may not need to fill in all columns)

Node B

Neighbor	Cost
A	2
В	0
E	5

To From			
A			
В			
E			

Node C

Neighbor	Cost
A	1
C	0
D	2

To From			
\boldsymbol{A}			
C			
D			

Node D

Neighbor	Cost
A	7
C	2
D	0
E	3

To From			
A			
C			
D			
E			

- (4) At this point, what route does *D* use to reach *B*? It knows that it can route to *A* via *C* with total distance 3 and that *A* can reach *B* with distance 2. Should it use this information to optimize the route to *B* or should it wait for an update from *C*?
- (5) Which nodes among B, C, and D are expected to send routing updates after receiving A's update?

2 Poison Reverse

Consider the following simple network topology:

(1) Assuming that poison reverse was used when exchanging route information, what does *B*'s routing table look like before the link from *A* to *B* goes down?

Node B

Neighbor	Cost
A	1
В	0
C	1

A		
В		
C		

EVENT: *B* detects a link outage between A and B and sends an update to C.

- (2) What information is contained in *B*'s update?
- (3) What does C's routing table look like after receiving the update?

Node C

Neighbor	Cost
В	1
C	0

3 Split Horizon and Poisoned Reverse

- (1) Assume that the routers use **split horizon**. Say that E sends its initial update (B: 1, D: 1) to E. Assuming that E has received no other updates, what does E now tell E about E's path to E?
- (2) Assume that the routers use **poisoned reverse**. Furthermore, assume that the routing tables haven't converged, and *D* believes its shortest path to *B* is *D-A-B* (length 3). *D* sends this update to *E*. Now, *E* sends its first update (*D*: 1, *B*: 1) to *D*. After recomputing its routes, *D* sends an update to *E*. In this update, what is the advertised distance to *B*?
- (3) Now assume that the routers use **split horizon** *and* **poisoned reverse**. After the same scenario as in (2), what distance to *B* does *D* advertise to *E*?
- (4) Consider the simple topology (A-B-C) from (2). After the routing tables have converged, link A-B goes down. When B sends C an update containing $(A: \infty)$, is this an act of **poisoning a route** or **poisoned reverse**?
- (5) **Poisoning a route** and **poisoned reverse** might sound similar, but actually we can think of one of them as being honest while the other one is lying. Which one tells the truth, and which one tells a white lie to keep the network functioning?