

SIAM EX14 Workshop July 7, Chicago - IL

Preliminary Investigations on Resilient Parallel Numerical Linear Algebra Solvers

Luc GIRAUD

joint work with E. AGULLO, P. SALAS, E. F. YETKIN, M. ZOUNON funded by ANR RESCUE and G8-ECS

HiePACS Inria Project Joint Inria-CERFACS lab INRIA Bordeaux Sud-Ouest

Context

- ► HPC systems are not fault-free
- A faulty components (node, core, memory) loses all its data
- Simulations at exascale have to be resilient

Resilience: Ability to compute a correct output in presence of faults

- Context: Numerical linear algebra
- Goal: Keep converging in presence of fault
- ▶ Method: Recover-restart strategy without Checkpoint

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

Framework

Forecast for extreme scale systems

- ▶ Mean Time Between Failure (MTBF): less than one hour
- Checkpoint time might be larger than MTBF

Framework

Forecast for extreme scale systems

- Mean Time Between Failure (MTBF): less than one hour
- Checkpoint time might be larger than MTBF

Objectives

- Explore fault-tolerant schemes with less/no overhead
- Numerical algorithms to deal with overhead issue

Framework

Forecast for extreme scale systems

- Mean Time Between Failure (MTBF): less than one hour
- Checkpoint time might be larger than MTBF

Objectives

- Explore fault-tolerant schemes with less/no overhead
- Numerical algorithms to deal with overhead issue

Faults in this presentation

▶ Detected corrupted memory space (node crashes, damaged memory pages, uncorrected bit-flip, . . .)

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

$$Ax = b$$

We attempt to design fault tolerant solver for sparse linear system

Two classes of iterative methods

- ► Stationary methods (Jacobi, Gauss-Seidel, . . .)
- ► Krylov subspace methods (CG, GMRES, Bi-CGStab, ...)
- Krylov methods have attractive potential for Extreme-scale

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

- Static data
- Dynamic data

- Static data
- Dynamic data

- ► Static data
- Dynamic data

- ► Static data
- ▶ Dynamic data

- ► Static data
- ▶ Dynamic data

Let's assume that P_1 fails

- Static data
- Dynamic data

Let's assume that P_1 fails

- Static data
- Dynamic data

Let's assume that P_1 fails

- Failed processor is replaced
- Static data are restored

- Static data
- Dynamic data

Let's assume that P_1 fails

- Failed processor is replaced
- Static data are restored

Reset: Set (x_1) to initial value

- Static data
- Dynamic data

Let's assume that P_1 fails

- Failed processor is replaced
- Static data are restored

Our algorithms aim at recovering x_1 and restart

- ► Sequential simulations
- ► Simulation of parallel environment

- Sequential simulations
- Simulation of parallel environment

- ► Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- ► Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- ► Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- ► Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- ► Generation of fault trace
- ► Realistic probability distribution

- Sequential simulations
- Simulation of parallel environment

- Generation of fault trace
- ► Realistic probability distribution

Fault in linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Fault in linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} ? \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \text{ How to recover } x_1?$$

Fault in linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} ? \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
 How to recover x_1 ?

Linear Interpolation (LI) [Langou, Chen, Bosilca, Dongarra, SISC, 2007]

Solve
$$A_{11}x_1 = b_1 - A_{12}x_2$$

Fault in linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} ? \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \text{ How to recover } x_1?$$

Linear Interpolation (LI) [Langou, Chen, Bosilca, Dongarra, SISC, 2007]

Solve
$$A_{11}x_1 = b_1 - A_{12}x_2$$

Least Squares Interpolation (LSI)

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} x_1 + \begin{pmatrix} A_{21} \\ A_{22} \end{pmatrix} x_2 = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

$$x_1 = \underset{\times}{\operatorname{argmin}} \left\| \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} - \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \times - \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} x_2 \right\|_2$$

Main properties - basic linear algebra

Proposition

The initial guess generated by LI after a fault does ensure that the A-norm of the forward error associated with the iterates computed by restarted CG or PCG is monotonically decreasing

Main properties - basic linear algebra

Proposition

The initial guess generated by LI after a fault does ensure that the A-norm of the forward error associated with the iterates computed by restarted CG or PCG is monotonically decreasing [LI might not be defined for non-SPD matrices as diagonal blocks might be singular]

Main properties - basic linear algebra

Proposition

The initial guess generated by LI after a fault does ensure that the A-norm of the forward error associated with the iterates computed by restarted CG or PCG is monotonically decreasing [LI might not be defined for non-SPD matrices as diagonal blocks might be singular]

Proposition

The initial guess generated by LSI after a fault does ensure the monotonic decrease of the residual norm of minimal residual Krylov subspace methods such as GMRES and MinRES after a restarting due to a failure

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

Figure: 4 faults

Figure: 8 faults

Figure: 17 faults

Figure: 40 faults

Preconditioned GMRES(100) (Averous/epb3 - 10 faults)

Figure: 3 % data lost

Preconditioned GMRES(100) (Averous/epb3 - 10 faults)

Figure: 0.8 % data lost

Preconditioned GMRES(100) (Averous/epb3 - 10 faults)

Figure: 0.2 % data lost

Preconditioned GMRES(100) (Averous/epb3 - 10 faults)

Figure: 0.001 % data lost

Penalty of restart strategy

- Recover-restart strategy
- When restarting, we lose the Krylov subspace built before the fault
- Consequence: delay of convergence due to restart
- Restarting mechanism is naturally implemented in GMRES to reduce the computational resource consumption
- CG does not need to be restarted

Penality of restart strategy on PCG

Figure: PCG on a 7-point stencil 3D Poisson equation with 70 faults - 5 % data lost

Penality of restart strategy on PCG

Figure: PCG on a 7-point stencil 3D Poisson equation with 70 faults - 5 % data lost

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

Recovery-restart for eigensolvers

Fault in eigenproblem

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Recovery-restart for eigensolvers

Fault in eigenproblem

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} ? \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} ? \\ x_2 \end{pmatrix} \text{ How to recover } x_1?$$

Linear Interpolation (LI)

Solve the linear system
$$(A_{11} - \lambda I_1) x_1 = -A_{12}x_2$$

Least Squares Interpolation (LSI)

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} x_1 + \begin{pmatrix} A_{21} \\ A_{22} \end{pmatrix} x_2 = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$x_1 = \underset{\times}{\operatorname{argmin}} \left\| \begin{pmatrix} A_{11} - \lambda I_1 \\ A_{21} \end{pmatrix} x + \begin{pmatrix} A_{12} \\ A_{22} - \lambda I_2 \end{pmatrix} x_2 \right\|_2$$

If $Ax = \lambda x$ with $x \neq 0$, where $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$, and $\lambda \in \mathbb{C}$, then,

- $ightharpoonup \lambda$: eigenvalue
- ► x : eigenvector
- \blacktriangleright (λ, x) : eigenpair

Two classes of methods

- ► Fixed Point Methods (Power Method, Subspace iteration)
- Subpace Methods (Jacobi-Davidson, Arnoldi, IRA/Krylov Schur)

Thermo-acoustic test example

Jacobi-Davidson method

Figure: Jacobi-Davidson method with 5 faults - 1 % lost data. Convergence history using LSI and Checkpoint of current iterate

Outline

Faults in HPC Systems

Sparse linear systems

Interpolation methods

Numerical experiments

Resilience in eigensolvers

Concluding remarks and perspectives

Concluding remarks

Summary

- ► We have designed techniques to interpolate meaningfull lost data based on simple linear algebra tools
- Our techniques preserve some of the key monotonicy of Krylov solvers but lack of robustness of LI for non-SPD problems
- ► The restarting effect remains reasonable within the GMRES context
- No fault, no overhead
- These techniques can be adpated to multiple faults
- What about silent soft-error CGPOP preliminary experiments?

Merci for your attention Questions?

https://team.inria.fr/hiepacs/