Първо контролно теория по ДС и ДМА спец. ИС, МИ 17.11.19 ВАРИАНТ А

 ${f 3}$ адача ${f 1}.$ Нека A и B са подмножества на U.

- а) Дефинирайте $A \cup B$ и релацията $A \subseteq B$.
- б) Покажете, че $A\subseteq B$ точно тогава, когато $A\cup B=B.$

Задача 2. С $3\mathbb{Z}$ означаваме всички цели числа, които се делят на 3. Нека R е релация над множеството на реалните числа \mathbb{R} , дефинирана чрез

$$(a,b) \in R \leftrightarrow a-b \in 3\mathbb{Z}.$$

- а) Докажете, че R е релация на еквивалентност.
- б) Напишете по три различни елемента, които принадлежат на класовете $[\frac{1}{3}]_R$ и $[3\pi]_R$.

Задача 3. Дефинирайте кога една релация R в множеството на естествените числа $\mathbb N$ е нестрога частична наредба. Проверете дали R е нестрога частична наредба в $\mathbb N^+$, където $(a,b)\in R\iff\exists k\in\mathbb N^+(b=a.k).$ Ако е, посочете минимални и максимални елементи относно R, ако има такива. Ако не е, обяснете защо.

Задача 4. Дефинирайте кога една функция $f: \mathbb{N} \longrightarrow \mathbb{N}$ е инекция. Проверете дали функцията f(n) = 3n+1 е инекция. Докажете, че множеството на нечетните числа е равномощно с $3\mathbb{N}+1=\{3n+1\mid n\in \mathbb{N}\}.$

Пожелаваме Ви успех: Екипът.

Първо контролно теория по ДС и ДМА спец. ИС, МИ 17.11.19 ВАРИАНТ В

Задача 1. Нека A и B са подмножества на U.

- а) Дефинирайте $A \cup B$ и релацията $A \subseteq B$.
- б) Покажете, че $A\subseteq B$ точно тогава, когато $A\cup B=B.$

Задача 2. С $3\mathbb{Z}$ означаваме всички цели числа, които се делят на 3. Нека R е релация над множеството на реалните числа \mathbb{R} , дефинирана чрез

$$(a,b) \in R \leftrightarrow a-b \in 3\mathbb{Z}.$$

- а) Докажете, че R е релация на еквивалентност.
- б) Напишете по три различни елемента, които принадлежат на класовете $[\frac{1}{3}]_R$ и $[3\pi]_R$.

Задача 3. Дефинирайте кога една релация R в множеството на естествените числа $\mathbb N$ е нестрога частична наредба. Проверете дали R е нестрога частична наредба в $\mathbb N^+$, където $(a,b)\in R\iff\exists k\in\mathbb N^+(b=a.k).$ Ако е, посочете минимални и максимални елементи относно R, ако има такива. Ако не е, обяснете защо.

Задача 4. Дефинирайте кога една функция $f: \mathbb{N} \longrightarrow \mathbb{N}$ е инекция. Проверете дали функцията f(n)=3n+1 е инекция. Докажете, че множеството на нечетните числа е равномощно с $3\mathbb{N}+1=\{3n+1\mid n\in \mathbb{N}\}.$

Пожелаваме Ви успех: Екипът.

Първо контролно теория по ДС и ДМА спец. ИС, МИ 17.11.19 ВАРИАНТ Б

 ${f 3}$ адача ${f 1}.$ Нека A и B са подмножества на U.

- а) Дефинирайте $A \cap B$ и релацията $A \subseteq B$.
- б) Покажете, че $A\subseteq B$ точно тогава, когато $A\cap B=A$.

Задача 2. С $5\mathbb{Z}$ означаваме всички цели числа, които се делят на 5. Нека R е релация над множеството на реалните числа \mathbb{R} , дефинирана чрез

$$(a,b) \in R \leftrightarrow a-b \in 5\mathbb{Z}.$$

- а) Докажете, че R е релация на еквивалентност.
- б) Напишете по три различни елемента, които принадлежат на класовете $[\frac{1}{5}]_R$ и $[5\pi]_R$.

Задача 3. Дефинирайте кога една релация R в множеството на естествените числа \mathbb{N} е нестрога частична наредба. Проверете дали R е нестрога частична наредба в \mathbb{N}^+ , където $(a,b)\in R\iff\exists k\in\mathbb{N}^+(a=b.k).$ Ако е, посочете минимални и максимални елементи относно R, ако има такива. Ако не е, обяснете защо.

Задача 4. Дефинирайте кога една функция $f:\mathbb{N}\longrightarrow\mathbb{N}$ е инекция. Проверете дали функцията f(n)=5n+1 е инекция. Докажете, че множеството $5\mathbb{N}+1=\{5n+1\mid n\in\mathbb{N}\}$ е равномощно с множеството на четните числа.

Пожелаваме Ви успех: Екипът.

Първо контролно теория по ДС и ДМА спец. ИС, МИ 17.11.19 ВАРИАНТ Γ

Задача 1. Нека A и B са подмножества на U.

- а) Дефинирайте $A \cap B$ и релацията $A \subseteq B$.
- б) Покажете, че $A\subseteq B$ точно тогава, когато $A\cap B=A.$

Задача 2. С $5\mathbb{Z}$ означаваме всички цели числа, които се делят на 5. Нека R е релация над множеството на реалните числа \mathbb{R} , дефинирана чрез

$$(a,b) \in R \leftrightarrow a-b \in 5\mathbb{Z}.$$

- а) Докажете, че R е релация на еквивалентност.
- б) Напишете по три различни елемента, които принадлежат на класовете $[\frac{1}{5}]_R$ и $[5\pi]_R$.

Задача 3. Дефинирайте кога една релация R в множеството на естествените числа $\mathbb N$ е нестрога частична наредба. Проверете дали R е нестрога частична наредба в $\mathbb N^+$, където $(a,b)\in R\iff \exists k\in \mathbb N^+(a=b.k).$ Ако е, посочете минимални и максимални елементи относно R, ако има такива. Ако не е, обяснете защо.

Задача 4. Дефинирайте кога една функция $f:\mathbb{N}\longrightarrow\mathbb{N}$ е инекция. Проверете дали функцията f(n)=5n+1 е инекция. Докажете, че множеството $5\mathbb{N}+1=\{5n+1\mid n\in\mathbb{N}\}$ е равномощно с множеството на четните числа.

Пожелаваме Ви успех: Екипът.