NOTES ON PERSISTENT HOMOLOGY

VAIBHAV KARVE

These notes were last updated October 12, 2018. They are notes taken from my reading of Computational Topology: An Introduction by Herbert Edelsbrunner and John L. Harer.

1. Definitions

- (1) Let \mathbb{X} : connected topological space, $f: \mathbb{X} \to \mathbb{R}$ be a continuous function. The sublevel sets of f form a 1-parameter family of nested subspaces $\mathbb{X}_a \subset \mathbb{X}_b$ whenever $a \leq b$.
- (2) The *merge tree* denoted G(f) is generated by increasing the threshold for f-values and keeping track of components. Components will merge but won't split. When merging, we preserve the older branch.
- (3) Letting $a \leq b$ be two thresholds, denote by $\beta(a,b)$ the number of components in \mathbb{X}_b that have a nonempty intersection with \mathbb{X}_a . In the merge tree this is the number of subtrees with topmost points at value b that reach down to level a or below.
- (4) **Filtrations.** K: simplicial complex, $f: K \to \mathbb{R}$ monotonic (which means f is non-decreasing along increasing chains of faces that is, $f(\sigma) \leq f(\tau)$ whenever σ is a face of τ). Monotonicity implies that the sublevel set $K(a) = f^{-1}(-\infty, a]$ is a subcomplex of K for every $a \in \mathbb{R}$. Letting $a_1 < \cdots < a_n$ be the function values of the simplices in K and setting $a_0 = -\infty$, we get an increasing sequence of subcomplexes

$$\emptyset = K_0 \subseteq \cdots \subseteq K_n = K$$

where $K_i = K(a_i)$, $\forall i$. This is called the *Itration* of f.

- (5) Examples of Itrations: Cech complexes, alpha complexes, lower star Itration of a piecewise linear function.
- (6) For every $i \leq j$ we have inclusion map $K_i \hookrightarrow K_j$ and therefore an induced homomorphism $f_p^{i,j}: H_p(K_i) \to H_p(K_j)$, for each dimension p. The Itration thus results in a sequence of homology groups connected by homomorphisms |

$$0 = H_p(K_0) \to \cdots \to H_p(K_n) = H_p(K)$$

for each p: dimension.

- (7) The p^{th} persistent homology groups are the images of the homomorphisms induced by the inclusion map. They are denoted $H_p^{i,j} = \operatorname{im} f_p^{i,j}$ for $0 \le i \le j \le n$. The corresponding p^{th} persistent Betti numbers are the ranks of these groups, $\beta_p^{i,j} = \operatorname{rank} H_p^{i,j}$.
- (8) Each persistent homology group $H_k^{i,j}$ consists of the homology classes of K_i that are still alive at K_j . Hence for every $i \leq j$ we have |

$$H_p^{i,j} = Z_p(K_i)/(B_p(K_j) \cap Z_p(K_i))$$

- (9) Note that $H_p^{i,i} = H_p(K_i)$.
- (10) Let γ be a class in $H_p(K_i)$. We say γ is born at K_i if $\gamma \notin H_p^{i-1,i}$. Ig γ is born at K_i then it dies entering K_j if it merges with an older class as we go from K_{j-1} to K_j , that is, $f_p^{i,j-1}(\gamma) \notin H_p^{i-1,j-1}$ but $f_p^{i,j}(\gamma) \in H_p^{i-1,j}$. Said di erently, $\gamma \in H_p(K_i)$ is born at K_i if it is not in the image of $H_p(K_{i-1})$, that is, it is not in $H_p^{i-1,i}$. γ dies aentering K_j if that is the rst time its image merges into the image of $H_p(K_{i-1})$.
- (11) If γ is born at K_i and dies entering K_j then the *persistence* is defined to be $pers(\gamma) = a_i a_i$

that is, the dierence in the function values. If γ is born at K_i but never dies then it has persistence ∞ .