Project 3:

FINDING ROOTS METHODS

Bisection, Newton-Raphson, Secant, False-Position and Modified Secant

DAI VUONG

CS3010-01 FALL 2020

Professor: LAIPAT RAI RAHEJA

(a) $f(x) = 2x^3 - 11.7x^2 + 17.7x - 5$

• Root 1: 0.3651 BISECTION METHOD:

n	a_n	b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	0.0000	1.0000	0.5000	-5.0000	3.0000	1.1750	N/A
1	0.0000	0.5000	0.2500	-5.0000	1.1750	-1.2750	1.0000
2	0.2500	0.5000	0.3750	-1.2750	1.1750	0.0977	0.3333
3	0.2500	0.3750	0.3125	-1.2750	0.0977	-0.5503	0.2000
4	0.3125	0.3750	0.3438	-0.5503	0.0977	-0.2169	0.0909
5	0.3438	0.3750	0.3594	-0.2169	0.0977	-0.0573	0.0435
6	0.3594	0.3750	0.3672	-0.0573	0.0977	0.0208	0.0213
7	0.3594	0.3672	0.3633	-0.0573	0.0208	-0.0181	0.0108
,	0.555.						
8	0.3633	0.3672	0.3652	-0.0181	0.0208	0.0014	0.0053
8			<u>0.3652</u>	-0.0181	0.0208	0.0014	0.0053
8	0.3633			-0.0181 f(a_n)			0.0053 error
8 ALSE	0.3633 POSITION	METHOD:					
8 ALSE n	0.3633 POSITION a_n	METHOD: b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
8 ALSE n 0	0.3633 POSITION a_n 0.0000	METHOD: b_n 1.0000	c_n 0.6250	f(a_n) -5.0000	f(b_n) 3.0000	f(c_n) 1.9805	error N/A 0.3961
8 ALSE n 0 1	0.3633 POSITION a_n 0.0000 0.0000	METHOD: b_n 1.0000 0.6250	c_n 0.6250 0.4477	f(a_n) -5.0000 -5.0000	f(b_n) 3.0000 1.9805	f(c_n) 1.9805 0.7585	error N/A
8 ALSE n 0 1 2	0.3633 POSITION a_n 0.0000 0.0000 0.0000	METHOD: b_n 1.0000 0.6250 0.4477	c_n 0.6250 0.4477 0.3887	f(a_n) -5.0000 -5.0000 -5.0000	f(b_n) 3.0000 1.9805 0.7585	f(c_n) 1.9805 0.7585 0.2298	error N/A 0.3961 0.1517

NEWTON-RAPHSON METHOD:

n	x_n	fx_n	f'(x_n)	x_n+1	f(x_n+1)	error
1	0.1000	-3.3450	15.4200	0.3169	-0.5019	0.6845
2	0.3169	-0.5019	10.8866	0.3630	-0.0206	0.1270
3	0.3630	-0.0206	9.9958	0.3651	-0.0000	0.0057

SECANT METHOD:

		_					
n	x_n-1	x_n	f(x_n-1)	f(x_n)	x_n+1	f(x_n+1)	error
0	0.1000	1.0000	-3.3450	3.0000	0.5745	1.6861	N/A
1	1.0000	0.5745	3.0000	1.6861	0.0284	-4.5067	19.2286
2	0.5745	0.0284	1.6861	-4.5067	0.4258	0.5697	0.9333
3	0.0284	0.4258	-4.5067	0.5697	0.3812	0.1578	0.1170
4	0.4258	0.3812	0.5697	0.1578	0.3641	-0.0099	0.0469
5	0.3812	0.3641	0.1578	-0.0099	0.3651	0.0002	0.0028

MODIFIED SECANT METHOD:

n	x_n	x_n+1	f(x_n)	f(x_n+1)	error
0	0.1000	0.3171	-3.3450	-0.5002	N/A
1	0.3171	0.3632	-0.5002	-0.0192	0.1269
2	0.3632	0.3651	-0.0192	0.0000	0.0053

For the first root 0.3651, I choose

- $a_n = 0$ and $b_n = 1$ for bisection and false-position method,
- $x_n = 1$ for Newton-Raphson,
- $x_{n-1} = 0.1$ and $x_n = 1$ for Secant,
- $x_n = 0.1$ for modified-secant method.

The bisection method takes 8 iterations to reach the condition $e_a < 1\%$, it takes the most iteration to compare to all other methods, which means the bisection converges slowest. The false-position method takes 5 iterations to satisfy the error condition. And of course, it converges faster than bisection method. In this particular case, the Newton-Raphson method takes 3 iterations, a lot faster than bisection method. It converges pretty quickly. Secant method takes 5 iterations to satisfy the error, as same as false-position method, But the first error of secant method is a lot higher than all others. However, secant method converges faster than false-position method. Finally, modified-secant method is the fastest method. It takes 2 iterations to satisfy the error, it also converges fastest. Even all methods satisfy the error, but bisection method and false-position method don't get the exact root yet. Three other methods get the root exactly when they stop while the error condition satisfied.

• Root 2: 1.9217 BISECTION METHOD:

22020	0	-					
	 a_n	 b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	1.0000	2.0000	1.5000	3.0000	-0.4000	1.9750	N/A
1	1.5000	2.0000	1.7500	1.9750	-0.4000	0.8625	0.1429
2	1.7500	2.0000	1.8750	0.8625	-0.4000	0.2383	0.0667
3	1.8750	2.0000	1.9375	0.2383	-0.4000	-0.0806	0.0323
4	1.8750	1.9375	1.9063	0.2383	-0.0806	0.0791	0.0164
5	1.9063	1.9375	1.9219	0.0791	-0.0806	-0.0007	0.0081
FALSE	POSITION	METHOD:					
n	 a_n	 b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	1.0000	2.0000	1.8824	3.0000	-0.4000	0.2009	N/A
1	1.8824	2.0000	1.9217	0.2009	-0.4000	0.0003	0.0205
2	1.9217	2.0000	1.9217	0.0003	-0.4000	0.0000	0.0000
			<u> </u>				
NEWT0	N-RAPHSON	METHOD:					
n	x_n	fx_n		x_n+1	f(x_n+1)	error	
1	2.5000	-2.6250	-3.3000	1.7045	1.0814	0.4667	
2	1.7045	1.0814	-4.7535	1.9320		0.1178	
3	1.9320	-0.0527	-5.1131	<u>1.9217</u>	-0.0000	0.0054	
SECAN	T METHOD:						
n	x_n-1	x_n	f(x_n-1)	f(x_n)	x_n+1	f(x_n+1)	error
0	1.0000	2.0000	3.0000	-0.4000	1.8824	0.2009	N/A
1	2.0000	1.8824	-0.4000	0.2009	1.9217	0.0003	0.0205
2	1.8824	1.9217	0.2009	0.0003	<u>1.9217</u>	-0.0000	0.0000
MODIF	IED SECAN ⁻	Т МЕТНОD: 	_				
n	x_n	x_n+1	f(x_n)	f(x_n+1)	error		
0	1.5000	2.0013		-0.4064	N/A		
1	2.0013	1.9214	-0.4064	0.0015	0.0415		
2	1.9214	1.9217	0.0015	0.0000	0.0002		

The second root is 1.9217. I choose

- $a_n = 1$ and $b_n = 2$ for bisection and false-position method,
- $x_n = 2.5$ for Newton-Raphson
- $x_{n-1} = 1$ and $x_n = 2$ for Secant
- $x_n = 1.5$ for modified-secant method.

The bisection method takes 5 iterations to reach the error condition. As previous root, bisection takes the most iteration to compare to all other methods, so bisection still converges slowest.

The false-position method takes 2 iterations to satisfy the error condition. In this case, false-position and secant get the same error for 2 iterations, the line of secant method is over the line of false-position method, so we barely see the line of false-position method.

For this second root, the Newton-Raphson method also takes 3 iterations. Newton-Raphson is faster than false-position and secant method for the first root, but it is slower in this case.

Modified-secant method is the fastest method. It takes 2 iterations to satisfy the error

After all methods satisfy the error, only bisection method doesn't get the exact root yet (1.9219). And the rest get exactly the root when they stop while the error condition satisfied.

• Root 3: 3.5630

BISECTION METHOD:

n	a_n	b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	3.0000	4.0000	3.5000	-3.2000	6.6000	-0.6250	N/A
1	3.5000	4.0000	3.7500	-0.6250	6.6000	2.3125	0.0667
2	3.5000	3.7500	3.6250	-0.6250	2.3125	0.6867	0.0345
3	3.5000	3.6250	3.5625	-0.6250	0.6867	-0.0069	0.0175
4	3.5625	3.6250	3.5938	-0.0069	0.6867	0.3303	0.0087
FALSE	POSITION	METHOD:					
n	a_n	b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	3.0000	4.0000	3.3265	-3.2000	6.6000	-1 . 9689	N/A
1	3.3265	4.0000	3.4813	-1.9689	6.6000	-0.7959	0.0444
2	3.4813	4.0000	3.5371	-0.7959	6.6000	-0.2671	0.0158
3	3.5371	4.0000	<u>3.5551</u>	-0.2671	6.6000	-0.0840	0.0051
NEWTO	N-RAPHSON	METHOD:					
n	x_n	fx_n	f'(x_n)	x_n+1	f(x_n+1)	error	
1	4.0000	6.6000	20.1000	3.6716	1.2554	0.0894	
2	3.6716	1.2554	12.6693	3.5726		0.0277	
3	3.5726	0.0995	10.6811	3.5632	0.0008	0.0026	
C=C+1	IT METUOD						
SECAN	IT METHOD: 	_					
n	x_n-1	x_n	f(x_n-1)	f(x_n)	x_n+1	f(x_n+1)	error
0	3.0000	4.0000	-3.2000	6.6000	3.3265	-1.9689	N/A
1	4.0000	3.3265	6.6000	-1.9689	3.4813	-0.7959	0.0444
2	3.3265	3.4813	-1.9689	-0.7959	3.5863	0.2479	0.0293
3	3.4813	3.5863	-0.7959	0.2479	3.5613	-0.0191	0.0070
MODTE	FIED SECANT	METHOD:					
	TED SECULI		_				
n	x_n	x_n+1	f(x_n)	f(x_n+1)	error		
0	4.0000	3.6795	6.6000	1.3560	N/A		
1	3.6795	3.5769	1.3560	0.1465	0.0287		
2	3.5769	<u>3.5638</u>	0.1465	0.0063	0.0037		

The third root is 3.563. I choose

- $a_n = 3$ and $b_n = 4$ for bisection and false-position method,
- $x_n = 4$ for Newton-Raphson
- $x_{n-1} = 3$ and $x_n = 4$ for Secant
- $x_n = 4$ for modified-secant method.

The bisection method takes 4 iterations to reach the error condition. Similar to the previous roots, bisection method takes the most iteration, so bisection still converges slowest.

The false-position method takes 3 iterations to satisfy the error condition. In this particular case, secant also takes 3 iterations. It is kind of similar to the two previous cases above. However, false-position method seems converge faster than secant method.

Newton-Raphson method also takes 3 iterations for this third case, it takes 3 iterations as same as false-position and secant method. However, newton-raphson converges faster than false-position method.

Modified-secant method is the fastest method. It takes 2 iterations to satisfy the error. At the first iteration, the error is 0.0287, closes to the error condition.

After all methods stop while satisfy the error condition, only newton-raphson and modified-secant method get close to the root.

From the first root to the third root, the first error of each method get closer to the error condition.

(b) $f(x) = x + 10 - x*\cosh(50/x)$

• Root: 126.632

BISECTION METHOD:

n	a_n	b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	110.0000	130.0000	120.0000	-1.5606	0.2655	-0.5682	N/A
1	120.0000	130.0000	125.0000	-0.5682	0.2655	-0.1340	0.0400
2	125.0000	130.0000	127.5000	-0.1340	0.2655	0.0698	0.0196
3	125.0000	127.5000	<u>126.2500</u>	-0.1340	0.0698	-0.0311	0.0099

FALSE POSITION METHOD:

n	a_n	b_n	c_n	f(a_n)	f(b_n)	f(c_n)	error
0	110.0000	130.0000	127.0923	-1.5606	0.2655	0.0371	N/A
1	110.0000	127.0923	126.6952	-1.5606	0.0371	0.0051	0.0031

NEWTON-RAPHSON METHOD:

n	x_n	fx_n	f'(x_n)	x_n+1	f(x_n+1)	error
1	110.0000	-1.5606	0.1087	124.3569	-0.1879	0.1154
2	124.3569	-0.1879	0.0841	126.5900	-0.0034	0.0176
3	126.5900	-0.0034	0.0811	126.6324	-0.0000	0.0003

SECANT METHOD:

n	x_n-1	x_n	f(x_n-1)	f(x_n)	x_n+1	f(x_n+1)	error
0	110.0000	130.0000	-1.5606	0.2655	127.0923	0.0371	N/A
1	130.0000	127.0923	0.2655	0.0371	126.6197	-0.0010	0.0037

MODIFIED SECANT METHOD:

n	x_n	x_n+1	f(x_n)	f(x_n+1)	error
0	110.0000	124.5077	-1.5606	-0.1752	N/A
1	124.5077	126.6171	-0.1752	-0.0012	0.0167
2	126.6171	<u>126.6326</u>	-0.0012	0.0000	0.0001

The root of this function is 126.632. I choose

- $a_n = 110$ and $b_n = 130$ for bisection and false-position method,
- $x_n = 110$ for Newton-Raphson
- $x_{n-1} = 110$ and $x_n = 130$ for Secant
- $x_n = 110$ for modified-secant method.

Similar to the function a, bisection method in this function converges slowly. But it only takes 3 iterations to satisfy the error < 1%.

For this function, I choose $a_n = 110$ and $b_n = 130$ and false-position method only takes 1 iteration to satisfy the error condition. The error is 0.0031 < 0.01 at the first iteration.

Newton-Raphson method takes 3 iterations for this function as same as bisection method. However, we can see that, newton-raphson method converges a lot faster than bisection method. It is not accurate to say that because there is no general convergence criterion for newton-raphson method.

Secant method in this function is similar to false-position method. It stops right at the first iteration.

For the modified-secant method, it takes 2 iterations. The error of the first iteration is pretty close to the error condition. Because it converges rapidly so it satisfies after the second iteration.

Only newton-raphson and modified secant method get the exact root while the error is satisfied.

For the data type, I use double for all methods and starting point variables. I only use int for counter variable.