TÓM TẮT NGẮN (Executive summary)

Bạn đang dùng **PhoBERT-large** (kiểu RoBERTa-large) cho **phân loại cảm xúc nhị phân** (pos/neg) trên tiêu đề tài chính tiếng Việt. Pipeline hoạt động như sau:

- 1. Word segmentation: tách từ đa âm tiếng Việt (ví dụ Ngân_hàng, nợ_xấu).
- 2. **Tokenization (BPE)**: biến câu đã tách từ thành các **subword**, chèn token đặc biệt <s> và </s>, rồi **pad/truncate** về đô dài cố đinh (128).
- 3. Mã hoá đầu vào: tạo input_ids (ID token) và attention_mask (đánh dấu pad).
- Embedding: mỗi token → vector 1024 chiều (token embedding + positional embedding).
- Encoder 24 lớp Transformer: qua 24 khối Self-Attention → FFN để tạo vector ngữ cảnh hoá cho từng token.
- 6. Đại diện câu: lấy vector của <s> ở lớp cuối như tóm tắt toàn câu.
- 7. **Head phân loại**: *Dropout* → *Dense*(1024→1024)+tanh → *Dropout* → *Dense*(1024→2) → **logits**.
- 8. Softmax & quyết đinh: chuyển logits thành xác suất pos/neg; argmax để ra nhãn.
- 9. **Huấn luyện**: tối ưu Cross-Entropy có **class weights**, AdamW, warmup, FP16, early-stopping; chọn mô hình theo **F1-macro** trên validation.

GIẢI THÍCH CHI TIẾT THEO BƯỚC

Bước 1 — Word segmentation (tách từ)

- Vì sao cần? Tiếng Việt dùng khoảng trắng giữa âm tiết, không phải "từ". Từ đa âm (như Ngân hàng) sẽ bị chia nhỏ nếu không ghép lại → mô hình hiểu sai ngữ nghĩa.
- Cách làm: dùng bộ tách từ (thường là VnCoreNLP / RDRSegmenter).
- Kết quả: "Ngân hàng báo lỗ do nợ xấu tăng cao" → "Ngân_hàng báo_lỗ do nợ_xấu tăng_cao".

• **Ånh hưởng**: giúp quá trình tokenization BPE sau đó tạo **subword hợp lý**, sát hơn với dữ liệu mà PhoBERT đã được pretrain.

Thuật ngữ liên quan

- Word segmentation: ghép các âm tiết thành từ đa âm có nghĩa.
- Token: đơn vị xử lý (từ hoặc subword).
- Subword: mảnh con của từ dùng trong BPE để xử lý từ hiếm/chuỗi chưa gặp.

Bước 2 — Tokenization BPE + token đặc biệt + pad/truncate

- Tokenizer (BPE): thuật toán Byte-Pair Encoding học từ kho ngữ liệu lớn một bảng gộp ký tự/chuỗi ký tự thường đi cùng (bpe.codes). Nhờ đó, mọi từ (kể cả lạ) đều có thể biểu diễn thành vài subword quen.
- Token đặc biệt (chuẩn RoBERTa):
 - <s>: bắt đầu câu (tương tự [CLS] của BERT),
 - o </s>: kết thúc câu,
 - <pad>: token đệm, để câu ngắn đủ dài.
- Chuẩn hoá độ dài:
 - Truncation: n\u00e9u >128 token thì c\u00e9t b\u00f3t (thur\u00f3ng gi\u00far d\u00e7\u00e9u c\u00e7u).
 - o Padding: nếu <128, chèn <pad> cho đủ 128.
- Đầu ra:
 - input_ids (mång số ID của token),
 - o attention_mask (1: token thật, 0: pad).

Thuật ngữ liên quan

- BPE (bpe.codes): bảng luật gộp để tạo subword.
- vocab.txt: từ điển ánh xa subword → ID.
- Padding/Truncation: đệm/cắt để mọi câu có cùng độ dài L=128.
- Attention mask: cho Transformer biết bỏ qua phần pad khi tính attention.

Bước 3 — Embedding: từ ID → vector 1024 chiều

Mỗi token tại vị trí *i* được biểu diễn bằng token_embedding[id] + positional_embedding[i] → vector 1024.

- **Token embedding**: bảng tra cứu học được trong pretrain (mang ý nghĩa từ/subword).
- **Positional embedding**: thêm thông tin **thứ tự** (Transformer không tự biết trật tự như RNN).
- **Dang tensor**: với batch size **B**, câu dài **128**, hidden **1024** → **[B, 128, 1024]**.

Thuật ngữ liên quan

- Embedding: biểu diễn dense nhiều chiều của token/vị trí.
- Hidden size: số chiều của không gian biểu diễn (PhoBERT-large: 1024).
- Batch size: số câu xử lý song song trong một bước (ví dụ B=16/32).

Bước 4 — 24 lớp Transformer Encoder: "ngữ cảnh hoá" token

Mỗi **lớp** gồm hai khối chính:

1. Multi-Head Self-Attention

 "Self-Attention" cho phép mỗi token "nhìn" toàn bộ các token khác để học quan hệ phụ thuộc (ai liên quan ai, mức độ bao nhiêu).

- Multi-Head: tách không gian 1024 thành 16 "đầu" (head), mỗi đầu học một kiểu quan hệ khác (cú pháp, ngữ nghĩa, phủ định, thời gian...).
- Mask bảo đảm pad không ảnh hưởng: những vị trí pad bị chặn ra khỏi tính attention.

2. Feed-Forward Network (FFN)

• Hai lớp tuyến tính (thường $1024 \rightarrow 4096 \rightarrow 1024$) với kích hoạt **GELU**, đóng vai trò "trộn" và "phi tuyến hoá" đặc trưng sau attention.

Cả hai khối đều kèm:

- Residual connection (nối tắt) giúp gradient ổn định,
- LayerNorm (chuẩn hoá) giúp hội tụ tốt,
- **Dropout** giảm overfitting.

Vì sao "ngữ cảnh hoá"?

Sau nhiều lớp, **vector của mỗi token** không chỉ chứa nghĩa "bản thân" nó, mà còn "nghĩa trong **bối cảnh**" cả câu (ai bổ nghĩa cho ai, phủ định, nguyên nhân-hậu quả, ...). Do đó, vector của các token **khác nhau** và **giàu ngữ cảnh**.

Tại sao PhoBERT-large dùng 24 lớp & 16 heads?

- Sâu hơn / nhiều head hơn → khả năng mô hình hoá quan hệ phức tạp tốt hơn, đặc biệt hữu ích cho câu dài/ý phức.
- Đánh đối: tài nguyên (VRAM) và thời gian huấn luyện tăng.

Thuật ngữ liên quan

- Self-Attention: cơ chế tính "ai chú ý đến ai" trong câu.
- Multi-Head: nhiều "góc nhìn" song song.
- Residual/Skip connection: cộng đầu vào với đầu ra lớp con để giữ thông tin & ổn định gradient.
- LayerNorm: chuẩn hoá kích hoạt theo feature để học dễ hơn.
- **GELU**: hàm kích hoạt mượt, hiệu quả cho Transformer.

Bước 5 — Đại diện câu: vector <s> ở lớp cuối

- Theo chuẩn RoBERTa/BERT, lấy vector của token <s> (vị trí đầu tiên) ở lớp cuối cùng làm đại diện toàn câu.
- Lý do: trong huấn luyện phân loại, head đặt trực tiếp lên vector <s>, loss back-prop
 "ép" vector này học cách tóm tắt toàn bộ nội dung câu để phục vụ phân loại.
- **Kích thước**: **[B, 1024]** (mỗi câu → 1 vector 1024 chiều).

Ghi chú: có các chiến lược pooling khác (mean/max pooling toàn chuỗi), nhưng chuẩn RoBERTa dùng <s> và hoạt động rất tốt trên nhiều tác vụ.

Bước 6 — Head phân loại nhị phân

Chuỗi thao tác (trên vector <s>):

Dropout → Dense(1024→1024) + tanh → Dropout → Dense(1024→2) → thu được logits [logit_neg, logit_pos].

- Dropout: chống overfitting.
- Dense 1024→1024 + tanh: học biến đổi phi tuyến để phân tách tốt hơn.
- **Dense 1024**→**2** (*Out proj*): gom đặc trưng thành 2 điểm số (neg/pos).
- Softmax trên logits → xác suất P(neg), P(pos); dự đoán = argmax.

Thuật ngữ liên quan

- Logits: điểm số thô trước softmax.
- Softmax: chuẩn hoá logits thành phân phối xác suất.
- Argmax: chọn nhãn có xác suất lớn nhất.

Bước 7 — Huấn luyện: tối ưu & chống lệch lớp

• Mục tiêu (loss): Cross-Entropy có class weights để bù lệch nhãn (pos ≫ neg).

$$\mathcal{L} = -w_y \log P(y \mid x)$$

 w_y lớn hơn cho $\mathbf{neg} \to \mathbf{mô}$ hình "quan tâm" hơn đến lỗi với tin xấu.

- Tối ưu: AdamW, weight decay 0.01, warmup một phần nhỏ bước đầu để LR tăng dần rồi giảm.
- FP16: rút ngắn thời gian và tiết kiệm VRAM.
- Early-Stopping: dừng sớm khi không cải thiện (giảm overfitting).
- Chọn mô hình: load_best_model_at_end=True, theo F1-macro trên validation.

Thuật ngữ liên quan

- Class imbalance: lệch lớp; class weights để cân bằng ảnh hưởng.
- AdamW: biến thể Adam có tách weight decay đúng cách.
- Warmup: khởi động LR mượt để ổn định huấn luyện.
- Overfitting: học quá kỹ train set → kém tổng quát; dùng dropout, early-stopping, regularization để tránh.

Bước 8 — Suy luận (Inference)

- Chuẩn bị: bật eval, tắt dropout, không tính gradient.
- Pipeline: word segmentation → BPE + <s>,</s> + pad/truncate → embedding →
 24 lớp Transformer → lấy <s> → head phân loại → softmax → pos/neg.
- Giải thích xác suất: bạn hay in prob_pos = P(pos). Cũng có thể điều chỉnh ngưỡng khác 0.5 nếu muốn ưu tiên phát hiện neg (ví dụ rủi ro tài chính).

VÍ DỤ MINH HOẠ

1) "FPT công bố lợi nhuận tăng mạnh quý 3/2024"

- Sau tách từ: "FPT công_bố lợi_nhuận tăng_mạnh quý 3/2024"
- Mô hình:
 - Tập trung (attention) vào lợi_nhuận, tăng_mạnh → vector <s> nghiêng về tích cực.
 - Kết quả: pos với prob_pos rất cao (~0.98).

2) "Ngân hàng báo lỗ do nợ xấu tăng cao"

- Sau tách từ: "Ngân_hàng báo_lỗ do nợ_xấu tăng_cao"
- Mô hình:
 - Attention liên kết báo_lỗ với nợ_xấu, tăng_cao → ngữ cảnh tiêu cực.
 - Kết quả: neg với prob_pos rất thấp (~0.03).

GHI CHÚ THỰC HÀNH & GIỚI HẠN

- Chất lượng tách từ ảnh hưởng trực tiếp đến đầu vào tokenizer → ảnh hưởng hiệu năng.
- Truncation ở 128 token: chú ý câu quá dài có thể mất thông tin cuối câu.
- Lệch lớp: nếu tin "neg" quá ít, dù đã dùng weights, vẫn nên bổ sung dữ liệu neg thực tế.
- Kiểm thử thực địa (tin mới ngoài test set) quan trọng để đánh giá tổng quát hoá.
- Khả năng giải thích: có thể dùng attention visualization / saliency để minh hoạ
 token nào ảnh hưởng nhiều.

TỔNG KẾT

PhoBERT-large xử lý headline theo chuỗi **chuẩn Transformer**:

segmentation \rightarrow BPE \rightarrow embeddings \rightarrow 24×(self-attention + FFN) \rightarrow sentence vector <s> \rightarrow head phân loại \rightarrow softmax.

Nhờ **tách từ** và **self-attention đa đầu sâu 24 lớp**, vector <s> mang đủ *nghĩa* + *ngữ cảnh* để phân biệt **pos/neg** hiệu quả; kết hợp **class weights** và tối ưu thích hợp đã giúp mô hình của bạn đạt **F1-macro** ~**0.86 trên test**, phù hợp với mục tiêu phân loại cảm xúc tiêu đề tài chính tiếng Việt.

•