PROJEKT "NISKOLATENCYJNY, SYNCHRONICZNY I SKALOWALNY SYSTEM SDR" (NESTER)

Raport z pracy o dzieło z prawami autorskimi pt.: "Opracowanie schematów i PCB modułu EEM z układem FPGA" zrealizowanej w okresie od 13.01.2020 r. do 26.02.2020 r. Pracę wykonał Piotr Zdunek Celem pracy było opracowanie schematów i PCB modułu EEM z układem FPGA Realizacja pracy obejmowała:

- Analizę wymagań
- Analiza opóźnienia systemu ADC-FPGA-DAC
- Dobór komponentów
- Realizację schematów

Wynikiem pracy jest:

 Zbiór wymagań pozwalających na realizację systemu <u>https://github.com/sinara-hw/Fast Servo/wiki/Requirements</u>

System requirements:

- FastServo shall resemble the Stabilizer architecture and mechanical design
- FastServo shall support PoE, Ethernet, USB interfaces (the same as Stabilizer)
- FastServo shall support Trenz FPGA modules e.g. TE0710-02-35-2CF or TE0712-02-100-2C
- FastServo shall support 2x fast ADC channels
- FastServo shall support 2x fast DAC channels
- FastServo shall support 1 or 2 EEM connectors routed to the FPGA (to be discussed)

DAC subsystem requirements:

- DAC channel shall have latency + BW suitable for 3MHz closed-loop applications (including latency of loop filter on FPGA)
- DAC channel shall have fixed +-1V input/output range
- DAC channel bandwidth shall be 100 MHz or 125MHz 16bit

ADC channel requirements

- ADC channel AFE shall be based on FmcAdc100M14 design
- ADC channel shall use LTC2195 as an ADC
- ADC channel bandwidth shall be 100 or 125MHz 16bit
- Analiza opóźnienia toru danych ADC-FPGA-DAC (prace jeszcze trwają) https://docs.google.com/document/d/1A6bej79ME2-iZy]6t FZ-XkVyk64ExRZh2u]X7Lg3b4/edit?usp=sharing
- Dobór komponentów
 - ADC LTC2195 porównanie różnych układów https://docs.google.com/spreadsheets/d/1j0nTGpnnnBx4UXwtZIGYXvdnvVj7PuF5
 h2WQjEc7hA4/edit?usp=sharing

MFN Part number	No. CH	Sample rate [GSPS]	Bits	INL	DNL	Latency	Price [USD]	Project used
DAC3xJ82	2	1.6/2.5	16	6	4		100	
DAC5682Z	2	1	16	4	2		54	
LTC2000	1	2.5	16	1	0,5	11 cycles (DAC clk - up to 2500 MHz), for 500 MHz, latency = 11*2 = 22 ns	127	Shuttler
AD9125	2	4	16	3,7	2,1	64 cycles (1 x interpolation fdac up to 1 GHz) + FIFO delay, depending on the mode(8 reg deep), for 500 MHz fdac, latency = 64*2 + 8*2 = 144 ns	50	
MAX5898	2	0,5	16	3	1	2.9 ns (tpd) + 1.4 ns (td) + 22 cycles (500 MHz) = 2.9 + 1.4 + 44 = 48.3 ns (for 1 x interpolation)	27	
AD9783	2	0,5	16	4	2	7 cycles (7 ns * 2ns = 14 ns) + SET/HLD setup (to be analysed) approx. 2.4 ns = 16.4 ns	43	NIST servo
AD9747	2	0.25	16	4	2	7 cycles (250 MHz DAC CLK), latency = 7*4 = 28 ns		
MAX5875/	2	0.2	16	3	2	1.1 ns + 9 cycles *5 ns = 46.1 ns		
MAX5878	2	0.25	16	3	2	9 cycles (500 MHz clk) latency = 9*2 = 18 ns		
AD9788	2	0.8	16	3.7	2.1	40 cycles (800 MHz clk) latency = 40*1.25 ns = 50 ns		
AD9117	2	0.125	14	1.2 (precalib ration), 0.6 (postcali bration)	1.4 (precal ibratio n), 0.6 (postc alibrati on)	4 cycles for 1 channel, 3.5 cycles for second channel (input latched on falling edge), data clock = 125 MHz, latency = 4*8ns = 32 ns	15	

MFN Part number	Channels	Sample rate [MSPS]	Bits	INL	DNL	Latency	SFDR dBc (fin=10MHz)	Price [USD]	Project used
AD9461	1	130	16	5	0,6		90	107	
LTC2107	1	210	16	1,6	0,4		103 (for fin=5 MHz)	140	CCD GK camera
LTC2195	2	125	16	2	0,5	1.1ns+2*tser + 4ns + 7*4 ns pipeline delay = 34 ns	90	160	NIST servo
ADS42LB69	2	250	16	3	0,6		Not sure.	240	
ADS5483	1	135	16	3	0,5		98	135	
LTC2209	1	160	16	5,5	1		100	116	

- o FPGA moduł TE07020
- schemat elektryczny urządzenia zawierający dobrane komponenty (prace jeszcze trwają).
 Załączam dwa zrzuty schematów z projektu.
 - Układ DAC

