import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

path_file = '_/content/delhivery_data.csv'

df = pd.read_csv(path_file)
df

₹		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
3	30046	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
3	30047	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
3	30048	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
3	30049	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
3	80050	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562

30051 rows × 24 columns

1. Data cleaning and exploration

#drop rows with missing values :

df_cleaned = df.dropna()

df_cleaned

⋺ᢆ	⇒ data		trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
	30045	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
	30046	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
	30047	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
	30048	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562
	30049	training	2018-09-16 06:21:40.370304	thanos::sroute:dca6268f- 741a-4d1a-b1b0- aab1309	FTL	trip- 153707890037004730	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND562

29902 rows × 24 columns

```
 \begin{tabular}{ll} $df['route_type'] = df['route_type'].fillna(df['route_type'].mode()[0]) \\ df['route_type'] \end{tabular}
```

,	
	route_type
0	Carting
1	Carting
2	Carting
3	Carting
4	Carting
144862	Carting
144863	Carting
144864	Carting
144865	Carting
144866	Carting
144867 rov	ws × 1 columns
dtyne: ohi	oct
∢	

1.b Analyze the structure of the data

df.info()

```
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 30051 entries, 0 to 30050
    Data columns (total 24 columns):
    #
        Column
                                        Non-Null Count Dtype
                                        _____
    0
                                        30051 non-null
        data
                                                       object
        trip_creation_time
                                        30051 non-null object
    1
    2
        route_schedule_uuid
                                        30051 non-null
                                        30051 non-null
        route_type
                                                       object
                                        30051 non-null
        trip uuid
                                                       object
     5
        source_center
                                        30051 non-null
                                                       object
         source_name
                                        29963 non-null
                                        30051 non-null
        destination center
                                                       object
    8
        destination_name
                                        29991 non-null
                                                       object
        od_start_time
                                        30050 non-null
     10 od_end_time
                                        30050 non-null
                                                       object
                                        30050 non-null
    11 start_scan_to_end_scan
                                                       float64
    12 is_cutoff
                                        30050 non-null
                                                       object
     13 cutoff_factor
                                        30050 non-null
     14
        cutoff timestamp
                                        30050 non-null
                                                       object
                                        30050 non-null
     15 actual_distance_to_destination
                                                       float64
     16 actual_time
                                        30050 non-null
                                                       float64
                                        30050 non-null
     17
        osrm_time
                                                        float64
        osrm_distance
                                        30050 non-null
                                                       float64
    18
     19
        factor
                                        30050 non-null
                                                       float64
     20
        segment_actual_time
                                        30050 non-null
                                                        float64
     21 segment_osrm_time
                                        30050 non-null float64
                                        30050 non-null float64
     22 segment_osrm_distance
     23 segment_factor
                                        30050 non-null float64
    dtypes: float64(11), object(13)
    memory usage: 5.5+ MB
```

df.isnull().sum()

```
₹
                                      0
                  data
                                      0
            trip_creation_time
                                      0
          route_schedule_uuid
                                      0
               route_type
                                      0
                trip_uuid
                                      0
             source_center
                                      0
              source_name
                                     88
            destination_center
                                      0
            destination_name
                                     60
             od_start_time
              od_end_time
                                      1
        start_scan_to_end_scan
                                      1
                is_cutoff
              cutoff_factor
            cutoff_timestamp
     actual_distance_to_destination
               actual_time
               osrm_time
             osrm_distance
                 factor
          segment_actual_time
           segment_osrm_time
        segment_osrm_distance
                                      1
             segment_factor
```

dtvne: int64

df.describe()

→		start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	factor	se
	count	30050.000000	30050.000000	30050.000000	30050.000000	30050.000000	30050.000000	30050.000000	
	mean	889.489651	217.402363	218.523992	386.967854	200.333145	266.046534	2.093752	
	std	988.504498	332.861350	333.068487	567.799670	298.138106	407.047990	1.435717	
	min	25.000000	9.000000	9.000267	9.000000	6.000000	9.101900	0.250000	
	25%	150.000000	22.000000	23.043696	50.000000	26.000000	29.089850	1.597958	
	50%	407.000000	55.000000	56.245459	120.500000	59.000000	72.470200	1.852459	
	75%	1377.000000	242.000000	244.387826	456.000000	229.000000	300.930325	2.222222	
	max	3702.000000	1722.000000	1722.009755	3382.000000	1611.000000	2191.166400	77.387097	

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

path_file = '/content/delhivery_data.csv'

df = pd.read_csv(path_file)

df

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388
14486	32 training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	IND131028AAB	Sonipat_Kundli_H (Haryana)	IND000
14486	3 training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	IND131028AAB	Sonipat_Kundli_H (Haryana)	IND000
14486	64 training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	IND131028AAB	Sonipat_Kundli_H (Haryana)	IND000
14486	55 training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	IND131028AAB	Sonipat_Kundli_H (Haryana)	IND000
14486	66 training	2018-09-20 16:24:28.436231	thanos::sroute:f0569d2f- 4e20-4c31-8542- 67b86d5	Carting	trip- 153746066843555182	IND131028AAB	Sonipat_Kundli_H (Haryana)	IND000

144867 rows × 24 columns

```
# List unique values for categorical columns :
df['source_name'].unique()
'Dwarka_StnRoad_DC (Gujarat)', 'Bengaluru_Nelmngla_L (Karnataka)',
           'Kulithalai_AnnaNGR_D (Tamil Nadu)'], dtype=object)
df['route_type'].unique()
→ array(['Carting', 'FTL'], dtype=object)
1.C Merging
# Group by 'Trip_uuid', 'Source_ID', and 'Destination_ID'
grouped = df.groupby(['trip_uuid', 'source_center', 'destination_center'])
⇒ <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f7ba0752680>
# Aggregation
aggregated_df = grouped.agg({'start_scan_to_end_scan':'sum',
 'is_cutoff':'max',
 'cutoff factor':'sum'
  'cutoff_timestamp': 'max',
    'actual_distance_to_destination': 'min',
    'actual_time': 'sum',
   'osrm_time': 'sum',
    'osrm_distance': 'sum',
    'factor': 'mean',
    'segment_actual_time': 'sum',
    'segment_osrm_time': 'sum',
    'segment_osrm_distance': 'sum',
    'segment_factor': 'mean',
    'source_name': 'first',
    'destination_name': 'first',
    'od_start_time': 'first',
    'od_end_time': 'last',
    'trip_creation_time': 'first',
    'route_schedule_uuid': 'first',
    'route_type': 'first'
}).reset_index()
aggregated_df.info()
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 26368 entries, 0 to 26367
    Data columns (total 23 columns):
     # Column
                                       Non-Null Count Dtype
    --- -----
     0 trip_uuid
                                       26368 non-null object
     1 source_center
                                      26368 non-null object
                                   26368 non-null object
26368 non-null float64
     2 destination_center
        start_scan_to_end_scan
     4 is_cutoff
                                       26368 non-null bool
                                       26368 non-null int64
         cutoff factor
                                       26368 non-null object
     6 cutoff_timestamp
         actual_distance_to_destination 26368 non-null float64
                                        26368 non-null float64
                                       26368 non-null float64
         osrm_time
                                       26368 non-null float64
     10 osrm_distance
     11 factor
                                       26368 non-null float64
                                      26368 non-null float64
     12 segment actual time
                                     26368 non-null float64
26368 non-null float64
     13 segment_osrm_time
     14 segment_osrm_distance
     15 segment_factor
                                      26368 non-null float64
                                       26302 non-null object
     16 source_name
     17 destination_name
                                       26287 non-null object
     18 od_start_time
                                       26368 non-null object
     19 od end time
                                       26368 non-null object
     20 trip_creation_time
                                       26368 non-null object
     21 route_schedule_uuid
                                        26368 non-null object
```

```
22 route_type 26368 non-null object dtypes: bool(1), float64(10), int64(1), object(11) memory usage: 4.5+ MB
```

aggregated_df.describe()

₹		start_scan_to_end_scan	cutoff_factor	${\tt actual_distance_to_destination}$	actual_time	osrm_time	osrm_distance	factor	S
	count	26368.000000	26368.000000	26368.000000	26368.000000	26368.000000	26368.000000	26368.000000	
	mean	5281.222884	1279.709231	18.015383	2290.618932	1175.002086	1564.546549	2.366245	
	std	24795.814754	6497.610268	20.376645	11238.249896	5893.392945	7966.272378	2.165496	
	min	22.000000	9.000000	9.000045	9.000000	6.000000	9.072900	0.338322	
	25%	204.000000	46.000000	9.638582	91.000000	47.000000	56.434800	1.565830	
	50%	462.000000	81.000000	22.001099	181.000000	90.000000	100.604350	1.907209	
	75%	1272.000000	201.000000	22.803610	450.000000	219.000000	251.385750	2.461538	
	max	341880.000000	84757.000000	1722.045544	167920.000000	76953.000000	102415.868000	70.000000	

2.Build some features to prepare the data for actual analysis. Extract features from the below fields:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
path_file = '/content/delhivery_data.csv'
df = pd.read_csv(path_file)
# Function to extract city, place code, and state
def extract location info(df, column name, prefix):
    # Extract city
    df[f'{prefix}_city'] = df[column_name].str.extract(r'([^\-]+)')
    # Extract place code
    df[f'{prefix}_place_code'] = df[column_name].str.extract(r'\-([A-Za-z0-9]+)')
    # Extract state
    df[f'\{prefix\}\_state'] = df[column\_name].str.extract(r'\setminus((\setminus w+)\setminus)')
    return df
# Extract features from source_name
df = extract_location_info(df, 'source_name', 'source')
# Extract features from destination_name
df = extract location info(df, 'destination name', 'destination')
# Convert trip_creation_time to datetime
df['trip_creation_time'] = pd.to_datetime(df['trip_creation_time'])
# Extract year, month, and day
df['trip_year'] = df['trip_creation_time'].dt.year
df['trip_month'] = df['trip_creation_time'].dt.month
df['trip_day'] = df['trip_creation_time'].dt.day
# Display the DataFrame with new features
print(df[['source_city', 'source_place_code', 'source_state',
           'destination city', 'destination place code', 'destination state',
          'trip_year', 'trip_month', 'trip_day']])
₹
                            source_city source_place_code source_state \
             Anand_VUNagar_DC (Gujarat)
     a
                                                       NaN
                                                                 Gujarat
             Anand_VUNagar_DC (Gujarat)
                                                                 Gujarat
                                                       NaN
             Anand_VUNagar_DC (Gujarat)
                                                                Gujarat
     2
                                                       NaN
             Anand_VUNagar_DC (Gujarat)
     3
                                                       NaN
                                                                 Gujarat
     4
             Anand_VUNagar_DC (Gujarat)
                                                       NaN
                                                                Gujarat
```

```
144862
       Sonipat_Kundli_H (Haryana)
                                                 NaN
                                                           Harvana
       Sonipat_Kundli_H (Haryana)
144863
                                                 NaN
                                                           Haryana
       Sonipat_Kundli_H (Haryana)
                                                           Haryana
                                                  NaN
144865
        Sonipat_Kundli_H (Haryana)
                                                  NaN
                                                           Haryana
       Sonipat_Kundli_H (Haryana)
144866
                                                 NaN
                                                           Haryana
                     destination city destination place code \
0
        Khambhat_MotvdDPP_D (Gujarat)
1
        Khambhat_MotvdDPP_D (Gujarat)
2
        Khambhat_MotvdDPP_D (Gujarat)
                                                          NaN
3
        Khambhat_MotvdDPP_D (Gujarat)
                                                          NaN
        Khambhat_MotvdDPP_D (Gujarat)
                                                          NaN
4
144862
       Gurgaon_Bilaspur_HB (Haryana)
                                                          NaN
       Gurgaon_Bilaspur_HB (Haryana)
                                                          NaN
144863
144864
       Gurgaon_Bilaspur_HB (Haryana)
                                                          NaN
144865 Gurgaon_Bilaspur_HB (Haryana)
144866 Gurgaon_Bilaspur_HB (Haryana)
                                                          NaN
       destination_state trip_year trip_month trip_day
0
                 Gujarat
                               2018
                                                        20
                 Gujarat
                               2018
                                              9
                                                        20
1
2
                 Gujarat
                               2018
                                               9
                                                        20
3
                 Gujarat
                               2018
                                              9
                                                        20
                               2018
                                              9
4
                 Gujarat
                                                        20
144862
                 Haryana
                               2018
                                              9
                                                        20
144863
                 Haryana
                               2018
                                               9
                                                        20
                                              9
                 Haryana
                               2018
144864
                                                        20
144865
                 Haryana
                               2018
                                              9
                                                        20
                               2018
144866
                 Haryana
```

[144867 rows x 9 columns]

3.In-depth analysis and feature engineering

```
from scipy import stats
# Calculate the time taken between od_start_time and od_end_time
df['od_start_time'] = pd.to_datetime(df['od_start_time'])
df['od_end_time'] = pd.to_datetime(df['od_end_time'])
df['od_time_diff'] = (df['od_end_time'] - df['od_start_time']).dt.total_seconds() / 60 # in minutes
# Drop the original columns
df.drop(columns=['od_start_time', 'od_end_time'], inplace=True)
#Compare `od_time_diff` and `start_scan_to_end_scan` using hypothesis testing
t_stat, p_value = stats.ttest_rel(df['od_time_diff'], df['start_scan_to_end_scan'])
print(f"T-statistic: {t_stat}, P-value: {p_value}")
→ T-statistic: 651.1832057297116, P-value: 0.0
# Visual analysis (Box plot)
plt.figure(figsize=(10, 5))
sns.boxplot(data=df[['od_time_diff', 'start_scan_to_end_scan']])
plt.title('Boxplot of od_time_diff and start_scan_to_end_scan')
plt.show()
```

- /usr/local/lib/python3.10/dist-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to p data_subset = grouped_data.get_group(pd_key)
 - /usr/local/lib/python3.10/dist-packages/seaborn/categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be remov positions = grouped.grouper.result_index.to_numpy(dtype=float)
 - /usr/local/lib/python3.10/dist-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to p data_subset = grouped_data.get_group(pd_key)
 - /usr/local/lib/python3.10/dist-packages/seaborn/categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be remov positions = grouped.grouper.result_index.to_numpy(dtype=float)


```
# Aggregation and hypothesis testing for time and distance comparisons
```

```
# Aggregate by trip_uuid
aggregated_df = df.groupby('trip_uuid').agg({
    'actual_time': 'sum',
    'osrm time': 'sum',
    'segment_actual_time': 'sum',
    'osrm_distance': 'sum',
    'segment_osrm_distance': 'sum',
    'segment_osrm_time': 'sum'
}).reset_index()
# Actual time vs OSRM time
t_stat_osrm, p_value_osrm = stats.ttest_rel(aggregated_df['actual_time'], aggregated_df['osrm_time'])
print(f"T-statistic (actual vs osrm time): {t_stat_osrm}, P-value: {p_value_osrm}")
# Actual time vs Segment actual time
t_stat_seg_time, p_value_seg_time = stats.ttest_rel(aggregated_df['actual_time'], aggregated_df['segment_actual_time'])
print(f"T-statistic (actual vs segment actual time): {t_stat_seg_time}, P-value: {p_value_seg_time}")
# OSRM distance vs Segment OSRM distance
t_stat_osrm_dist, p_value_osrm_dist = stats.ttest_rel(aggregated_df['osrm_distance'], aggregated_df['segment_osrm_distance'])
print(f"T-statistic (osrm vs segment osrm distance): {t_stat_osrm_dist}, P-value: {p_value_osrm_dist}")
T-statistic (actual vs osrm time): 32.468089449426905, P-value: 1.8633294618952604e-223
     T-statistic (actual vs segment actual time): 30.75550616001704, P-value: 2.077325421800874e-201
     T-statistic (osrm vs segment osrm distance): 30.03031541377046, P-value: 2.1753879024067997e-192
# Visual analysis (scatter plots or box plots)
plt.figure(figsize=(10, 5))
sns.boxplot(data=aggregated_df[['actual_time', 'osrm_time', 'segment_actual_time']])
plt.title('Boxplot of Time Comparisons')
plt.show()
```

- /usr/local/lib/python3.10/dist-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to p data_subset = grouped_data.get_group(pd_key)
 - /usr/local/lib/python3.10/dist-packages/seaborn/categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be remov positions = grouped.grouper.result_index.to_numpy(dtype=float)
 - /usr/local/lib/python3.10/dist-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to p data_subset = grouped_data.get_group(pd_key)
 - /usr/local/lib/python3.10/dist-packages/seaborn/categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be remov positions = grouped.grouper.result_index.to_numpy(dtype=float)
 - /usr/local/lib/python3.10/dist-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to p data_subset = grouped_data.get_group(pd_key)
 - /usr/local/lib/python3.10/dist-packages/seaborn/categorical.py:640: FutureWarning: SeriesGroupBy.grouper is deprecated and will be remov positions = grouped.grouper.result_index.to_numpy(dtype=float)


```
# Outlier detection using IQR method
def handle_outliers(df, column):
   Q1 = df[column].quantile(0.25)
   Q3 = df[column].quantile(0.75)
   IQR = Q3 - Q1
   lower bound = Q1 - 1.5 * IQR
   upper_bound = Q3 + 1.5 * IQR
    df[column] = np.where((df[column] < lower_bound) \mid (df[column] > upper_bound), np.nan, df[column]) 
# Apply on all numerical variables (replace 'column_name' with actual columns)
for column in ['actual_time', 'osrm_time', 'segment_actual_time', 'osrm_distance', 'segment_osrm_distance']:
   df = handle_outliers(df, column)
from sklearn.preprocessing import OneHotEncoder
# One-hot encoding for categorical variables (e.g., route_type)
encoder = OneHotEncoder(sparse_output=False)
route_type_encoded = encoder.fit_transform(df[['route_type']])
route_type_df = pd.DataFrame(route_type_encoded, columns=encoder.get_feature_names_out(['route_type']))
df = pd.concat([df, route_type_df], axis=1)
df.drop(columns=['route_type'], inplace=True)
from sklearn.preprocessing import MinMaxScaler
# Normalize/Standardize numerical features
scaler = MinMaxScaler()
numerical_columns = ['actual_time', 'osrm_time', 'segment_actual_time', 'osrm_distance', 'segment_osrm_distance']
df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
# Result
print(df.head())
```

```
trip_creation_time \
    0 training 2018-09-20 02:35:36.476840
    1 training 2018-09-20 02:35:36.476840
      training 2018-09-20 02:35:36.476840
    3 training 2018-09-20 02:35:36.476840
    4 training 2018-09-20 02:35:36.476840
                                      route_schedule_uuid
                                                                         trip_uuid \
    0 thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3... trip-153741093647649320
       thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3... trip-153741093647649320
       thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3... trip-153741093647649320
        thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3... trip-153741093647649320
    4 thanos::sroute:eb7bfc78-b351-4c0e-a951-fa3d5c3... trip-153741093647649320
                                     source_name destination_center
       source center
      IND388121AAA Anand_VUNagar_DC (Gujarat)
                                                       IND388620AAB
       IND388121AAA Anand_VUNagar_DC (Gujarat)
                                                       IND388620AAB
                                                       TND388620AAB
    2
       IND388121AAA Anand_VUNagar_DC (Gujarat)
       IND388121AAA Anand_VUNagar_DC (Gujarat)
                                                       IND388620AAB
       IND388121AAA Anand_VUNagar_DC (Gujarat)
                                                       IND388620AAB
                     destination_name start_scan_to_end_scan is_cutoff
       Khambhat_MotvdDPP_D (Gujarat)
                                                                    True
                                                         86.0
                                                                          . . .
       Khambhat_MotvdDPP_D (Gujarat)
                                                         86.0
                                                                    True
    1
                                                                          . . .
       Khambhat_MotvdDPP_D (Gujarat)
                                                         86.0
                                                                    True
                                                                          . . .
        Khambhat_MotvdDPP_D (Gujarat)
                                                         86.0
                                                                    True
                                                                          . . .
       Khambhat_MotvdDPP_D (Gujarat)
                                                         86.0
                                                                   False
                                                                         . . .
                                   destination_city destination_place_code \
        source state
    0
             Gujarat Khambhat_MotvdDPP_D (Gujarat)
             Gujarat Khambhat_MotvdDPP_D (Gujarat)
                                                                        NaN
    1
            Gujarat Khambhat_MotvdDPP_D (Gujarat)
    2
                                                                        NaN
    3
            Gujarat Khambhat_MotvdDPP_D (Gujarat)
    4
             Gujarat Khambhat_MotvdDPP_D (Gujarat)
                                                                        NaN
        destination_state trip_year trip_month trip_day od_time_diff \
    0
                 Gujarat
                                2018
                                               9
                                                        20
                                                               86.213637
                                                               86.213637
                 Gujarat
                                2018
                                               9
                                                        20
    1
    2
                  Gujarat
                                2018
                                               9
                                                        20
                                                               86.213637
    3
                                2018
                                               9
                                                        20
                                                               86.213637
                  Gujarat
                                                               86.213637
    4
                 Gujarat
                                2018
                           route_type_FTL
        route_type_Carting
    0
                      1.0
                       1.0
                                       0.0
    1
    2
                       1.0
                                       0.0
    3
                       1.0
                                       0.0
                                       0.0
                       1.0
    [5 rows x 33 columns]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
path_file = '/content/delhivery_data.csv'
df = pd.read_csv(path_file)
# Most frequent sources:
most_orders_from_source = df['source_name'].value_counts().head(10)
print("Most orders from source:\n", most_orders_from_source)
# Most frequent destinations:
most_orders_from_destination = df['destination_name'].value_counts().head(10)
print("Most orders to destination:\n", most_orders_from_destination)

→ Most orders from source:
     source name
    Gurgaon_Bilaspur_HB (Haryana)
                                          23347
    Bangalore_Nelmngla_H (Karnataka)
                                           9975
    Bhiwandi_Mankoli_HB (Maharashtra)
                                           9088
    Pune_Tathawde_H (Maharashtra)
                                           4061
    Hyderabad_Shamshbd_H (Telangana)
                                           3340
    Kolkata_Dankuni_HB (West Bengal)
                                           2612
    Chandigarh_Mehmdpur_H (Punjab)
                                           2450
    Surat_HUB (Gujarat)
                                           2189
```

```
Delhi_Airport_H (Delhi)
                                           2013
    Bengaluru_Bomsndra_HB (Karnataka)
                                           1958
    Name: count, dtype: int64
    Most orders to destination:
     destination_name
    Gurgaon_Bilaspur_HB (Haryana)
                                          15192
    Bangalore Nelmngla H (Karnataka)
                                          11019
    Bhiwandi_Mankoli_HB (Maharashtra)
                                           5492
    Hyderabad_Shamshbd_H (Telangana)
                                           5142
    Kolkata_Dankuni_HB (West Bengal)
                                           4892
    Delhi_Airport_H (Delhi)
                                           3769
    Pune_Tathawde_H (Maharashtra)
                                           3695
    Chandigarh_Mehmdpur_H (Punjab)
                                           2874
    Sonipat Kundli H (Haryana)
                                           2796
    Bhubaneshwar_Hub (Orissa)
                                           2524
    Name: count, dtype: int64
# Create a new column for corridors :
df['corridor'] = df['source_name'] + " - " + df['destination_name']
# Find the busiest corridor (Top 5)
busiest_corridors = df['corridor'].value_counts().head(5)
print("Busiest corridors:\n", busiest_corridors)
# Busiest corridor
busiest_corridor = busiest_corridors.idxmax()
print("Busiest corridor:", busiest_corridor)
→ Busiest corridors:
     corridor
    Gurgaon_Bilaspur_HB (Haryana) - Bangalore_Nelmngla_H (Karnataka)
                                                                          4976
    Bangalore_Nelmngla_H (Karnataka) - Gurgaon_Bilaspur_HB (Haryana)
                                                                          3316
    Gurgaon_Bilaspur_HB (Haryana) - Kolkata_Dankuni_HB (West Bengal)
                                                                          2862
    Gurgaon_Bilaspur_HB (Haryana) - Hyderabad_Shamshbd_H (Telangana)
                                                                          1639
    Gurgaon_Bilaspur_HB (Haryana) - Bhiwandi_Mankoli_HB (Maharashtra)
                                                                          1617
    Name: count, dtype: int64
    Busiest corridor: Gurgaon_Bilaspur_HB (Haryana) - Bangalore_Nelmngla_H (Karnataka)
# Filter data for the busiest corridor
busiest_corridor_data = df[df['corridor'] == busiest_corridor]
# Calculate average actual distance
average_distance_actual = busiest_corridor_data['actual_distance_to_destination'].mean()
print(f"Average actual distance for {busiest_corridor}: {average_distance_actual} km")
# Calculate average OSRM predicted distance
average_distance_osrm = busiest_corridor_data['osrm_distance'].mean()
print(f"Average OSRM predicted distance for {busiest_corridor}: {average_distance_osrm} km")
```