Multiple Linear Regression

Now you know how to build a model with one X (feature variable) and Y (response variable). But what if you have three feature variables, or may be 10 or 100? Building a separate model for each of them, combining them, and then understanding them will be a very difficult and next to impossible task. By using multiple linear regression, you can build models between a response variable and many feature variables.

Let's see how to do that.

Step_1: Importing and Understanding Data

```
In [1]:
         import pandas as pd
In [2]:
         # Importing advertising.csv
         advertising_multi = pd.read_csv('advertising.csv')
In [3]:
         # Looking at the first five rows
         advertising_multi.head()
Out[3]:
               TV Radio Newspaper Sales
          0 230.1
                    37.8
                               69.2
                                      22.1
              44.5
                    39.3
                               45.1
                                      10.4
          2
              17.2
                    45.9
                               69.3
                                      9.3
          3 151.5
                    41.3
                               58.5
                                      18.5
            180.8
                    10.8
                               58.4
                                      12.9
```

In [4]: # Looking at the last five rows
advertising_multi.tail()

Out[4]:

TV	Radio	Newspaper	Sales
38.2	3.7	13.8	7.6
94.2	4.9	8.1	9.7
177.0	9.3	6.4	12.8
283.6	42.0	66.2	25.5
232.1	8.6	8.7	13.4
	38.2 94.2 177.0 283.6	38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2

In [5]: # What type of values are stored in the columns?
advertising_multi.info()

dtypes: float64(4)
memory usage: 6.3 KB

In [6]: # Let's look at some statistical information about our dataframe.
advertising_multi.describe()

Out[6]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	14.022500
std	85.854236	14.846809	21.778621	5.217457
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	10.375000
50%	149.750000	22.900000	25.750000	12.900000
75%	218.825000	36.525000	45.100000	17.400000
max	296.400000	49.600000	114.000000	27.000000

Step_2: Visualising Data

In [8]: import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline

In [9]: # Let's plot a pair plot of all variables in our dataframe
sns.pairplot(advertising_multi)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1b1aac74128>

Out[9]: <seaborn.axisgrid.PairGrid at 0x204efb370b8>

Step_3: Splitting the Data for Training and Testing

```
In [10]: # Putting feature variable to X
X = advertising_multi[['TV','Radio','Newspaper']]

# Putting response variable to y
y = advertising_multi['Sales']
```

In [12]: #random_state is the seed used by the random number generator. It can be any
integer.
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7,
random_state=100)

Step_4: Performing Linear Regression

```
In [20]: from sklearn.linear_model import LinearRegression
```

```
In [14]: # Representing LinearRegression as Lr(Creating LinearRegression Object)
lm = LinearRegression()
```

```
In [15]: # fit the model to the training data
lm.fit(X_train,y_train)
```

Out[15]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Step_5 : Model Evaluation

```
In [14]: # print the intercept
print(lm.intercept_)
```

2.65278966888

```
In [16]: # Let's see the coefficient
    coeff_df = pd.DataFrame(lm.coef_,X_test.columns,columns=['Coefficient'])
    coeff_df
```

Out[16]: Coefficient TV 0.045426

Radio 0.189758

Newspaper 0.004603

From the above result we may infern that if TV price increses by 1 unit it will affect sales by 0.045 units.

Step_6: Predictions

```
In [17]: # Making predictions using the model
y_pred = lm.predict(X_test)
```

Step_7: Calculating Error Terms

```
In [18]: from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, y_pred)
r_squared = r2_score(y_test, y_pred)
```

```
In [19]: print('Mean_Squared_Error :' ,mse)
print('r_square_value :',r_squared)
```

Mean_Squared_Error : 1.8506819941636972 r_square_value : 0.9058622107532245

Optional Step: Checking for P-value Using STATSMODELS

```
In [22]: import statsmodels.api as sm
    X_train_sm = X_train
    #Unlike SKLearn, statsmodels don't automatically fit a constant,
    #so you need to use the method sm.add_constant(X) in order to add a constant.
    X_train_sm = sm.add_constant(X_train_sm)
    # create a fitted model in one line
    lm_1 = sm.OLS(y_train,X_train_sm).fit()

# print the coefficients
lm_1.params
```

Out[22]: const 2.652790 TV 0.045426 Radio 0.189758 Newspaper 0.004603

dtype: float64

In [22]: print(lm_1.summary())

OLS Regression Results

===========	=======================================		=======================================
Dep. Variable:	Sales	R-squared:	0.893
Model:	OLS	Adj. R-squared:	0.890
Method:	Least Squares	F-statistic:	377.6
Date:	Thu, 09 Aug 2018	<pre>Prob (F-statistic):</pre>	9.97e-66
Time:	11:07:15	Log-Likelihood:	-280.83
No. Observations:	140	AIC:	569.7
Df Residuals:	136	BIC:	581.4
Df Model·	3		

Df Model: 3 Covariance Type: nonrobust

=========	-=======	========	========	:========	========	========
	coef	std err	t	P> t	[0.025	0.975]
const TV Radio Newspaper	2.6528 0.0454 0.1898 0.0046	0.384 0.002 0.011 0.008	6.906 27.093 17.009 0.613	0.000 0.000 0.000 0.541	1.893 0.042 0.168 -0.010	3.412 0.049 0.212 0.019
Omnibus: Prob(Omnibus) Skew: Kurtosis:		40. 0. -1.	======================================	:======:: n-Watson: ue-Bera (JB) [JB):	========	1.862 83.622 6.94e-19
Kurtosis:		ɔ. 	873 Cond.			443.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the above we can see that Newspaper is insignificant.

In [23]: import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline

```
In [24]: plt.figure(figsize = (5,5))
    sns.heatmap(advertising_multi.corr(),annot = True)
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1b1acdf7e10>

Step_8: Implementing the results and running the model again

From the data above, you can conclude that Newspaper is insignificant.

```
In [27]: # Removing Newspaper from our dataset
    X_train_new = X_train[['TV','Radio']]
    X_test_new = X_test[['TV','Radio']]

In [28]: # Model building
    lm.fit(X_train_new,y_train)

Out[28]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

In [29]: # Making predictions
    y_pred_new = lm.predict(X_test_new)
```

```
In [29]: #Actual vs Predicted
    c = [i for i in range(1,61,1)]
    fig = plt.figure()
    plt.plot(c,y_test, color="blue", linewidth=2.5, linestyle="-")
    plt.plot(c,y_pred, color="red", linewidth=2.5, linestyle="-")
    fig.suptitle('Actual and Predicted', fontsize=20)  # Plot heading
    plt.xlabel('Index', fontsize=18)  # X-label
    plt.ylabel('Sales', fontsize=16)  # Y-label
```

Out[29]: Text(0,0.5,'Sales')

Actual and Predicted


```
In [30]: # Error terms
    c = [i for i in range(1,61,1)]
    fig = plt.figure()
    plt.plot(c,y_test-y_pred, color="blue", linewidth=2.5, linestyle="-")
    fig.suptitle('Error Terms', fontsize=20)  # Plot heading
    plt.xlabel('Index', fontsize=18)  # X-label
    plt.ylabel('ytest-ypred', fontsize=16)  # Y-label
```

Out[30]: Text(0,0.5,'ytest-ypred')


```
In [32]: from sklearn.metrics import mean_squared_error, r2_score
   mse = mean_squared_error(y_test, y_pred_new)
   r_squared = r2_score(y_test, y_pred_new)
```

```
In [32]: print('Mean_Squared_Error :' ,mse)
    print('r_square_value :',r_squared)
```

Mean_Squared_Error : 1.78474005209 r_square_value : 0.909216449172

```
In [33]: X train final = X train new
         #Unlike SKLearn, statsmodels don't automatically fit a constant,
         \#so you need to use the method sm.add\_constant(X) in order to add a constant.
         X train final = sm.add constant(X train final)
         # create a fitted model in one line
         lm_final = sm.OLS(y_train,X_train_final).fit()
         print(lm final.summary())
```

Sales

OLS Regression Results

R-squared:

0.893

Model: Method:		Least Squ	OLS	_	R-squared: atistic:		0.891 568.8
Date:	Sa	t, 23 Feb			(F-statistic)		4.46e-67
Time:		-	6:22		Likelihood:		-281.03
No. Observation	ons:		140	AIC:			568.1
Df Residuals:			137	BIC:			576.9
Df Model:			2				
Covariance Typ	oe:	nonro	bust				
=========			=====	=====		[0 025	0.0751
	coef	std err		t	P> t	[0.025	0.975]
const	2.7190	0.368	7	.392	0.000	1.992	3.446
TV	0.0455	0.002	27	.368	0.000	0.042	0.049
Radio	0.1925	0.010	18	.860	0.000	0.172	0.213
Omnibus:		 Δ1	===== .530	Durb	======== in-Watson:		1.862
Prob(Omnibus):	•		.000		ue-Bera (JB):		90.544
Skew:			.255	Prob	, ,		2.18e-20
Kurtosis:		6	.037	Cond	• •		419.

Warnings:

Dep. Variable:

[1] Standard Errors assume that the covariance matrix of the errors is correctl y specified.

Model Refinement Using RFE

The goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and the importance of each feature is obtained either through a coef_ attribute or through a feature importances attribute. Then, the less important features are pruned from the the current set of features. This procedure is recursively repeated on the pruned dataset until the desired number of features to select is reached.

```
from sklearn.feature_selection import RFE
In [32]:
In [33]:
        rfe = RFE(lm, 2)
```

```
In [34]: rfe = rfe.fit(X_train, y_train)
In [35]: print(rfe.support_)
    print(rfe.ranking_)
    [ True True False]
    [1 1 2]
```

Simple Linear Regression: Newspaper(X) and Sales(y)

```
In [34]:
         import pandas as pd
         import numpy as np
         # Importing dataset
         advertising multi = pd.read csv('advertising.csv')
         x_news = advertising_multi['Newspaper']
         y_news = advertising_multi['Sales']
         # Data Split
         from sklearn.cross_validation import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(x_news, y_news,
                                                              train size=0.7,
                                                              random state=110)
         # Required only in the case of simple linear regression
         X_train = X_train[:,np.newaxis]
         X_test = X_test[:,np.newaxis]
         # Linear regression from sklearn
         from sklearn.linear_model import LinearRegression
         lm = LinearRegression()
         # Fitting the model
         lm.fit(X_train,y_train)
         # Making predictions
         y pred = lm.predict(X test)
         # Importing mean square error and r square from sklearn library.
         from sklearn.metrics import mean squared error, r2 score
         # Computing mean square error and R square value
         mse = mean_squared_error(y_test, y_pred)
         r_squared = r2_score(y_test, y_pred)
         # Printing mean square error and R square value
         print('Mean_Squared_Error :' ,mse)
         print('r_square_value :',r_squared)
```

Mean_Squared_Error : 23.84732008485191 r_square_value : 0.08182413570736657

In []:		