COMP9332 Network Routing & Switching

Multicast Routing

■www.cse.unsw.edu.au/~cs9332

This lecture

- Multicast Routing
 - What
 - Why
- Group membership management
- IP Multicast routing

IP Unicast and Broadcast

■ IP Unicast

- One sender and one receiver
- Destination address in the IP packet = Unicast IP address of the receiver

■ IP Broadcast

- The message is sent to ALL hosts in a subnet or network
- Destination identified by a broadcast IP address

What is Multicast?

- Multicast
 - A sender sends to many receivers
- Multicast groups
 - Only the group members receive packets from that group
- Multicast groups can be dynamic or static
 - Dynamic: Hosts can dynamically join or leave a group

Multicast Applications

- Webcast of live events on the Internet
 - Sports events/seminars/e-learning
 - TV or radio stations on the Internet
 - One sender, many receivers
- Teleconferencing
 - Example: vic (next slide)
 - Many senders, many receivers
- And many others

vic—A Video Conferencing Tool

CSE. UNSW

IP Multicast address

- IP multicast address
 - Class D addresses (starts with 1110)
 - Each address identifies a group of receivers
 - Placed in the IP destination address field
- 32-4=28 bits to define a multicast address
 - 2^28 possible groups!
- Multicast addresses allocation can be
 - Static / Permanent
 - Dynamic

Some Permanent Multicast Addresses

- Some examples are
 - 224.0.0.2: All routers on this subnet
 - 224.0.0.5: All OSPF routers
 - 224.0.0.9: RIP2 routers

Dynamic multicast address allocation

- Need to avoid collision
 - A multicast group may have members in multiple networks and autonomous systems
 - A multicast address may be used in another network/domain already
- Intra-domain address allocations
 - Multicast address allocation protocol (AAP)
 - A group of multicast address allocation servers coordinate the address allocation

Unicast versus multicast

- Unicast [Next slide]
 - Destination address is a unicast IP address
 - A path from source to destination
 - Forward packet through only one interface

- Multicast [The slide after]
 - Destination address is
 a multicast IP address
 - A tree rooted at the source to all receivers
 - May forward packet to multiple interfaces
 - Routers at the branching point make copies of the packets

Unicast delivery mechanism

Multicast delivery mechanism

CSE,

Unicast: A path from source to destination.

Multicast: A tree rooted at the source. Receivers are nodes of the tree.

Can we support multicast with unicasting?

- In theory we can
- We can use separate unicast connections to separate receivers
- The problem is bandwidth overhead
 - does not scale for large number of receivers

Multicasting versus multiple unicasting

a. Multicasting

Multicasting versus multiple unicasting

b. Multiple unicasting

Multicast delivery

- Three cases
 - Within a network
 - Within an autonomous system
 - Within the Internet
- We begin with multicast within a network (Ethernet specifics)

Unicast Ethernet frame delivery

- All hosts hear the message
- Ethernet interface checks whether the destination hardware address corresponds to its own hardware address
 - Yes, pass it onto the upper layer
 - No, drop it.

Broadcast & Multicast in Ethernet

■ Broadcast

- Destination Ethernet address: All 1's
 - » Ethernet address are 48-bit long
- All hosts accept the frame

■ Multicast

- Low order bit of the high order octet
 - » 0 means unicasting, 00:00:00:00:00:00 (hex)
 - » 1 means multicasting, 91:00:00:00:00:00 (hex)

High-order octet

Low-order octet

Multicast in the Ethernet

- By default (no configuration needed), an Ethernet interface accepts
 - Unicast frames with its own Ethernet address
 - All broadcast frames
- The interface software can be configured to recognise one or more Ethernet multicast addresses
 - After this configuration, the interface accepts frames with these Ethernet multicast addresses

Multicast prefix for MAC

- 48-bit Ethernet is grouped into two 24-bit
 - First 24-bit is organisationally unique identifier (OUI)
- The OUI of "01:00:5E" is used to identify multicasting (at MAC layer)
 - Could be for Ethernet/IP or any other protocols
- 25th bit is set to ZERO for IP multicast over Ethernet (25 bits gone!)
- 48-25 = 23 MAC bits left to carry IP multicast addresses
- But an IP multicast can be defined by 32-4=28 bits!

Mapping multicast IP address to multicast Ethernet address

CSE, UNSW

IP multicast in Ethernet

■ If a host belongs to an IP multicast group, it will ask its Ethernet interface to pick up the frames with the corresponding Ethernet multicast address

Exercise

- (a) How many IP multicast groups are mapped to one Ethernet multicast address?
- (b) What is the effect of this many-to-one mapping?

Solution

- **■** (a) 32
- (b) Some host interfaces may receive multicast packets that are not destined for that host.
 - Isn't this inefficient?
 - Isn't this wrong delivery?

Solution (cont'd)

- The probability that 2 multicast addresses with identical low-order 23 bits in the same network is small.
- The Ethernet accepts the frame but IP will discard the packet if the host is not a group member

IP multicast - internetwork

The multicast framework

■ Two aspects:

- A router needs to know whether there are group members behind its interfaces
- How to efficiently deliver a multicast packet to all its group member?
- First aspect addressed by Internet Group Management Protocol (IGMP)
- Second aspect dealt with multicast routing

IGMP

Membership management

Are there members of multicast group 225.1.5.7 in my network?

- Host can join and leave a multicast group at any time
 - The membership information has to be up to date
- Overheads
 - Number and frequency of management packets
 - Amount of state information

Understanding state information: State information - possibility 1

States maintained by the router

Active	Active
Multicast	group
groups	members
225.1.1.1	D,C,B
229.1.2.4	A,C
230.5.1.2	D,C

 \mathbf{R}

Δ

State information - possibility 2

States maintained by the router

Active multicast groups

225.1.1.1

229.1.2.4

230.5.1.2

Internet group management protocol (IGMP)

- IETF standard for managing multicast group memberships in a network
- With IGMP, a host can dynamically join and leave a multicast group
- State information
 - Each router interface maintains a list of multicast groups that are currently active
 - These states are soft.
 - » Soft states expire if not renewed.

IGMP message type

- For joining a group
 - Use Membership Report
- For leaving a group
 - Use Leave Report
- For a router to maintain group memberships in the network
 - Query (Specific or General)

IGMP message format

Type	Value
Membership report	0×16
Leave report	Ox17
General or special query	Ox11

Response time is in tenths of a second (0.1s).

Joining a group

- Routers add the group address to its database of active groups if it is not already there
- Membership report is sent twice, one after another - for reliability

Leaving a group

- If a host is no longer interested in a group, it sends a leave report message to the router.
- Question: If a router receives a leave report message for group G, should it remove G from its active list of multicast group?

Answer: No, because other hosts in the network may still be interested.

Router sends special query to check whether there're still active group members

Case 1: There're active members

Case 2: No active member.

IGMP: Membership Monitoring

- Imagine only one host in a group, and the host died
 - Router will never receive leave message!
- Router periodically sends general query message
- Router expects response for each group
- Hosts intentionally delay the response (random delay) to avoid unnecessary traffic
 - A distributed algorithm!

The general query message does not define a particular group

Max. response time

Case 1: There're active members

Case 2: No active member.

IGMP: Delayed Response (1)

- A network may contain multiple members of a group
 - Too much traffic if all members of a group respond
- Solution: response is randomly delayed
- The host chooses a random response time for each group it belong to
 - The random time is between zero and maximum response time
 - maintains a timer for each group

IGMP: Delayed Response (2)

- If a host belongs to a group G and sees a membership report for G
 - It no longer has to send a response
 - It cancels its timer
 - Note: The membership report for G is addressed to the group so all members will see it.

Exercise

■ Imagine 3 hosts as shown. A query message was received at time 0; the random timers (tenths of sec) are shown next to group ids. Show the sequence of report messages on the network.

Solution

- Only 4 reports (instead of 7 reports)
- Time 12: A sends for 228.42.0.0, B cancels
- Time 30 : A sends for 225.140.0, C cancels
- Time 50: B sends for 251.71.0.0
- Time 70: C sends for 230.430.0.0, A cancels

Grou	p Ti	mer	Group	Timer	Group	Timer	
225.1	4.0.0	30	228.42.0	0.0 48	225.14.0	0.0 62	
228.4	2.0.0	12	251.71.0	0.0 50	230.43.0	0.0 70	
230.4	3.0.0	80					
	Α		В		С		To other networks
_							D
<u></u>		1		-		0	K

Encapsulation (1)

- IGMP messages are directly encapsulated in IP datagrams
- TTL=1 ⇒should not travel beyond LAN

Encapsulation (2)

- IP destination address
 - query: to all hosts and routers (224.0.0.1)
 - leave: to all routers (224.0.0.2)
 - membership report: to the multicast group

Multicast Routing

Multicast routing problem IGMP provides only a local solution

Multicast routing problem

- With IGMP, router knows existence of group members in *immediate* subnets
 - Solves local problem
- How can a router in the Internet know through which interfaces it should forward multicast packets so all members in the Internet receive it?
 - This knowledge is gained from multicast routing
 - Solves global problem

Multicast Routing requirements

■ Requirements

- Every group member should receive only one copy of the multicast packet
- Non-members must not receive a copy
- No routing loops
- Either one of the following [next slide]
 - » Least cost path to all members
 - » Least cost multicast tree
 - Tree cost = sum of all link costs in the tree

Shortest path tree versus Steiner tree

Multicast Routing Algorithms

- Multicast routing can be
 - Intra-AS i.e. IGP
 - Inter-AS i.e. EGP
- We will only focus on IGP multicast
- Two classes of algorithms
 - Source based tree
 - Group shared tree
- To motivate source based algorithm, we begin with flooding

Flooding

- A router forwards a packet out of all of its interfaces except the one from which the packet arrives
 - We will use this definition of flooding in this lecture
 - An improved version checks for duplicates and discard them
 - » Improved version is used in OSPF for LSA updates
 - » Duplicate detection is difficult in general purpose multicast

Exercise

- Assume flooding is used in the following network, does it meet the following requirements
 - Each member receives only one packet
 - Non-members do not receive any copy
 - No routing loops

Solution

Each member receives only one packet? NO Non-members do not receive any copy? NO Can you identify any loops? YES

Flooding as multicast

- In flooding, all routers and networks receive at least one copy of the packet
- Pros:
 - Simple to implement
 - Router do not need to maintain group information
- Cons:
 - Duplicate and unnecessary packets
 - Routing loops
- Tradeoff between simplicity and resource usage

How to improve flooding?

- Too many redundant packets
- In flooding with duplicate detection, how many times does a node forward a packet?
- We can reduce the number of redundant packets by making sure that each node forwards a packet only once

Reverse path forwarding (RPF)

- Each node forwards a multicast packet only once
- Forwarding algorithm
 - Given:
 - » Router R has interfaces if-1, if-2, ..., if-n
 - » Router R uses interface if-k to reach the node S
 - I.e. Interface if-k is on the shortest path from R to S
 - When a multicast packet whose source address is S reaches router R
 - » If the packet arrives at interface if-k, forward the packets to other interfaces
 - » Otherwise, discard it.

Exercise

A multicast router receives a packet with source address 195.34.23.7 and destination address 227.45.9.5 from interface 2. Should the router discard or forward the packet based on the following unicast routing table?

-	Destination	Interface
-	121.0.0.0	1
-	185.67.0.0	2
_	195.34.0.0	3

CSE, UNSW

Solution

- Discard the packet because it has not arrived through the shortest path interface
- It would have been accepted if it has arrived through interface 3
- Note: RPF routing decision depends on both source and destination addresses

Does RPF meet our multicast routing requirements?

■ Requirements

- Every group member should receive only one copy of the multicast packet NO [next slide]
- Non-members must not receive a copy NO
- No routing loops YES

Problem with RPF: Duplicate packets

Reverse path broadcasting (RPB)

- An improvement to RPF
- RPB ensures that each network receives only one copy of the multicast message
- If a network has multiple routers
 - A designated router is chosen
 - Only the designated router forwards multicast packets into the network

RPF versus RPB

R2 is the designated router for Net3

Choice of designated router

■ Given

- Multicast source S
- Routers R1, R2, ..., Rn attached to the same network
- Distance(Ri,S) = routing cost from Ri to S
- \blacksquare Rx is the designated router for multicast packets from S if Distance(Rx,S) is the smallest
- Question: In the example on the previous page, how can R1 know that it shouldn't send to Net3?

Does RPB meet our multicast routing requirements?

■ Requirements

- Every group member should receive only one copy of the multicast packet YES
 - » RPB gives a broadcast tree [The slide after]
- Non-members must not receive a copy NO
- No routing loops YES

Given: (1) S =source of the multicast

(2) The shortest path from R to S uses interface ifx.

If routes are symmetrical,

Shortest path from S to R (forward path)

= shortest path from R to S (reverse path)

RPB gives a broadcast tree = it delivers to all networks

but what we need is a multicast tree

Pruning of broadcast tree

Pruning and grafting

- Downstream routers send "prune" messages to upstream routers when no group members exist downstream
- Prune messages help upstream routers to "crossout" specific interfaces to form a multicast tree
- If new members join on a pruned branch, downstream routers send "graft" message to reestablish a branch ==> tree is dynamic

Reverse path multicasting (RPM)

- RPM (Reverse path multicasting)
 - First builds a per-source broadcast tree (RPB)
 - » The first packet sent by the source creates this tree
 - » Note: The tree is rooted at the source
 - Then prunes the broadcast tree to a multicast tree
- Note that for a given multicast group, the multicast trees for 2 different sources can be different.

Does RPM meet our multicast routing requirements?

■ Requirements

- Every group member should receive only one copy of the multicast packet YES
- Non-members must not receive a copy YES
- No routing loops YES

Distance vector multicast routing protocol (DVMRP)

- IETF standard for IGP multicast routing
- Based on RPM
- DVMRP is a separate routing protocol
 - The routers run either RIP or OSPF for unicast routing
 - DVMRP builds its own routing table for it to make multicast routing decision. It doesn't use the unicast routing table from RIP nor OSPF.

Multicast forwarding table

- Each row of the multicast routing table has the following entries
 - Source address
 - Multicast group
 - The interfaces over which the node must forward the packets
- Need to match both source and multicast addresses

Correction for Forouzan 3rd Ed. (pages 442-444)

- Figs 15.5, 15.6: Right hand columns in the multicast forwarding tables should have interface numbers instead of next-hops (next hops are used in unicast forwarding tables)
- Top textbox in Page 444: all routers ARE involved in multicast routing in groupshared tree approach

Multicast OSPF (MOSPF)

- An extension to OSPF, thus an IGP
- Recall in OSPF
 - Each router has the complete network topology
 - Each router finds the shortest path tree rooted at itself

Unicast tree and multicast tree

a. Unicast tree for D

b. Unicast tree for B

c. Multicast tree for all routers

Problem:

Shortest path tree rooted at D different from Shortest path tree rooted at B

Can't use the unicast tree as multicast tree

MOSPF (cont'd)

- Since each router has the complete network topology, they can all compute the shortest path tree rooted at the source
 - All routers will have the same tree
 - Each router can compute a tree for each (source, group)
- However, the shortest path tree reaches all network

MOSPF (cont'd)

- Group membership LSA
 - A router knows where the group members are
- A router prunes the broadcast tree to obtain the multicast tree
- Both DVMRP and MOSPF form source based trees, each (source, multicast group) has its own tree.

MOSPF - example A = source. B & F are in the multicast group

All routers compute the shortest path tree rooted at source node A:

Core Based Tree (CBT)

- One multicast tree per group
- The root of the multicast tree is called rendezvous router (RR)

Shared Tree

Sending a Multicast Packet in CBT

- Source encapsulates multicast packet into unicast packet and sends it to RR
- RR decapsulates and sends the multicast packet to relevant interfaces
- Downstream routers do the same, i.e., forward the multicast packet to relevant interfaces

Sending a multicast packet to the rendezvous router

Tree Formation in CBT

- First RR is selected
- Every router is notified of the unicast address of the RR
- A router wishing to join the group, sends a unicast join message to the RR
- Each intermediate router learns upstream and downstream router from the join message
- Tree is now formed

CBT - example

Note: Link cost in black.

Router interface number in magenta

A is the Rendezvous router.

F is the first member to join the multicast group G.

Multicast forwarding	
table for D	
Group	Interfaces
G	3

Multicast forwarding table for E
Group Interfaces
G 2

CBT - example (cont'd)

C is the second member to join the multicast group G.

Multicast forwarding table for D

Group Interfaces

2

Multicast forwarding table for E
Group Interfaces
G 2,1

Leaving a group in CBT

- A router sends a leave message to its upstream router
- The link is pruned at the upstream router if there are no other downstream routers
- The states in the multicast forwarding table are soft. They will expire if not refreshed.

DVMRP versus CBT

DVMRP

- one tree per (source, multicast group) pair
- Tree built from root
- Build a broadcast tree which covers all networks and then prune broadcast to multicast
- Any node can release a multicast packet to the network
- An example of "source based tree" method

CBT

- one tree per group
- Tree built from leaves
- Add a branch only when it is required
- Only a designated router can generate a multicast packet to the network
- An example of the "group shared tree" method

Protocol independent multicast (PIM)

■ Two protocols

- Dense mode (PIM-DM)
- Sparse mode (PIM-SM)

■ PIM-DM

- Source based tree similar to DVMRP
- Works with the unicast routing protocol found in the AS
- Works best when there are many receivers

PIM (cont'd)

■ PIM-SM

- Similar to core based tree
- Works best when there are few receivers
- If there is a lot of traffic, the root of the tree can move from the rendezvous point to the source

Multicast in the Internet

- Many routers in the Internet do not run multicast routing protocols
 - they drop IP datagrams with Class D address in the destination field
- How can two hosts in two distant networks participate in multicasting if one or more intermediate routers do not support multicasting?

Routers R1 & R3 run multicast but R2 doesn't. R2 drops multicast packets

Have you seen similar problem before?

References

- Chapter 6 (IBM Redbook)
- Chapters 10 and 15 (Forouzan, 3rd Ed.)