EAiIB	Pęcak Tomasz		Rok	Grupa	Zespół
Informatyka	Bielech Maciej		II	3a	II
Pracownia FIZYCZNA WFiIS AGH	Temat:	nr ćwiczenia:			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
11.11.2017	14.11.2017				

1 Wstęp

Celem ćwiczenia było wyznaczenie wartości modułu Younga dla stali i mosiądzu przy wykorzystaniu prawa Hooke'a.

Prawo Hooke'a definiuje, że odkształcenie sprężyste jest wprost proporcjonalne do przyłożonej siły.

W ćwiczeniu badaliśmy przypadek, gdy siła jest prostopadła do przekroju poprzecznego drutu. W skutek tej siły zmienia się jego długość, co można opisać wzorem:

$$\Delta l = \frac{Fl}{SE}.\tag{1}$$

Moduł Younga (E) to współczynniki sprężystości podłużnej. Określa on własności sprężyste ciała stałego, charakteryzując podatność materiału na odkształcenia podłużne: rozciąganie, ściskanie, zgniatanie. Jego jednostką jest pascal. Możemy go obliczyć znając naprężenie σ występujące w danym obszarze ciała oraz względne odształcenie liniowe ε , co opisuje wzór:

$$E = \frac{\sigma}{\varepsilon}.$$
 (2)

Wartość modułu Younga mówi nam jak duże naprężenie należaoby przyłożyć, aby zwiększyć dwukrotnie długość drutu. Taka zależność nie ma jednak odwzierciedlenia w praktyce, ponieważ już przy mniejszych naprężeniach ciało ulega nieodwracalnym zmianom. Tę charakterystykę dla metali przedstawia wykres (1). Jak widzimy początkowo wydłużenie zależy liniowo od przyłożonej siły. Po uzyskaniu naprężenia, zwanego

Wykres 1: Charakterystyka Modułu Younga. Źródło: pl.wikipedia.org

granicą sprężystości, ciało traci własności sprężyste i nie wraca do poprzedniego kształtu.

W naszym doświadczeniu badamy wydłużenia, które spełniają prawo Hooke'a. Ma to przełożenie na dobierane obciążenie w zależności od wybranego materiału, ponieważ dla ciał o niższym module Younga granica sprężystości jest mniejsza.

Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ jest liniowa, dlatego można ją opisać jako: $\Delta l(F) = aF + b$. Współczynnik kierunkowy to tangens kąta nachylenia prostej do osi OX, co opisujemy jako $a = \frac{\Delta l}{mg}$. Jest to równoznaczne z $a = \frac{l}{ES}$ (na podstawie Prawa Hooke'a, wzór 1), więc $E = \frac{l}{aS}$. Podstawiając do równania $S = \frac{\pi d^2}{4}$ otrzymujemy wzór roboczy na moduł Younga:

$$E = \frac{4l}{\pi d^2 a}. (3)$$

Wartość współczynnika a oraz jego niepewność u(a) wyznaczymy korzystając z regresji liniowej.

2 Wykonanie ćwiczenia

Ćwiczenie wykonywaliśmy dla drutów: mosiężnego i stalowego. Dla każdego z nich wykonaliśmy nastepujące czynności:

- W pierwszym kroku dokonaliśmy pomiaru długości drutu przy użyciu przymiaru milimetrowego z dokładnością 1 mm.
- Następnie, po wcześniejszym obciążeniu drutu masą około 2kg, zmierzyliśmy średnicę drutu za pomocą śruby mikrometrycznej z dokładnością 0,01 mm. Pomiaru tego dokonaliśmy w pięciu miejscach, aby sprawdzić czy drut ma stałą średnicę.
- Kolejnym krokiem było opróżnienie szalki z odważników i wyzerowanie czujnika mikrometrycznego.
- Po tym obciążaliśmy szalkę przez dokładanie kolejnych odważników, notując w tabeli sumaryczną masę odważników i wydłużenie drutu. Dla lepszej dokładności pomiary wykonywaliśmy przy dokładaniu odważników (↑) i przy ich zdejmowaniu (↓).
- Wykonując ćwiczenie dbaliśmy o to, aby odkształcenie drutu było sprężyste, gdyż po przekroczeniu granicy sprężystości drut uległ by odkształceniu nieodwracalnemu.
- Wartosci odczytane z czujnika przenieśliśmy do tabel: (1, 2) dla mosiądzu i (3) dla stali. Dla mosiądzu
 wykonaliśmy dwie serie pomiarów ze względu na błąd systematyczny, o który podejrzewaliśmy wyniki
 pierwszych pomiarów po ich wstępnej analizie.

Tabela 1: Pomiary dla drutu mosiężnego

Tabela 2: Druga seria pomiarów dla drutu mosiężnego

Tabela 3: Pomiary dla drutu stalowego

3 Opracowanie danych pomiarowych

3.1 Pomiary i ich niepewności.

Wszystkie wielkości mierzyliśmy niewielką ilość razy, dlatego dla każdej z nich przyjmujemy ocenę niepewności typu B, co w naszym przypadku będzie odpowiadać dokładności przyrządu pomiarowego.

- 1. Długość drutu: u(l) = 1 mm.
 - mosiężny: l = 1,073 m
 - stalowy: l = 1,069 m
- 2. Wydłużenie drutu: $u(\Delta l) = 0.01$ mm.
- 3. Średnica drutu: u(d) = 0.01 mm.
 - mosiężny: d = 0,77 mm
 - stalowy: d = 0,69 mm

3.2 Opracowanie danych dla drutu mosiężnego.

Wykres 2: Wykres zależności wydłużenia od siły dla drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (2) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Wykorzystując regresję liniową, obliczamy wartość współczynnika a prostej i jej dokładność u(a):

$$a = 1,86 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{4}$$

$$u(a) = 3.91 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{5}$$

Następnie wyznaczamy moduł Younga ze wzoru roboczego (3).

$$E = 124 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = \sqrt{\left[\frac{4}{\pi d^2 a} u(l)\right]^2 + \left[-\frac{8l}{\pi d^3 a} u(d)\right]^2 + \left[-\frac{4l}{\pi d^2 a^2} u(a)\right]^2}$$

$$u_c(E) = 4,13 \text{ GPa},$$
(6)

$$U(E) = k \cdot u_c(E)$$
 (7)
 $U(E) = 2 \cdot 4,13 \text{ GPa} = 8,26 \text{ GPa}$

Niepewość względna złożona (8) jest równa:

$$\frac{u_c(E)}{E} = \sqrt{\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(d)}{d}\right]^2 + \left[-\frac{u(a)}{a}\right]^2}$$

$$\frac{u_c(E)}{E} = 3,34\%$$
(8)

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=123,58~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |124 \text{ GPa} - 100 \text{ GPa}| = 24 \text{ GPa}.$$
 (9)
 $|E - E_0| > U(E)$

Wyniki pomiarów w przybliżeniu liniowe i niezgodny wynik mogą świadczyć o błędzie systematycznym. Było to złe wyzerowanie czujnika, dlatego każdy z pomiarów wskazuje niższą wartość wydłużenia drutu niż spodziewana. Błąd ten zauważyliśmy podczas wstępnej analizy pomiarów, dlatego wykonaliśmy kolejną serię pomiarów dla drutu mosiężnego.

3.3 Opracowanie danych dla drutu mosiężnego. Wyniki drugiej serii pomiarów.

Wykres 3: Wykres zależności wydłużenia od siły dla drugiej serii pomiarów drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (3) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Analogicznie jak w podsekcji 3.2 wyznaczamy współczynnik a i wartość modułu Younga:

$$a = 2,00 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{10}$$

$$u(a) = 3.50 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{11}$$

$$E = 116 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = 3{,}01 \text{ GPa},$$

$$U(E) = 2 \cdot 3,01 \text{ GPa} = 6,02 \text{ GPa}$$

Niepewość względna złożona (8) jest równa:

$$\frac{u_c(E)}{E} = 2,6\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga (E = 116 GPa), a wartością tabelaryczną wynosi:

$$|E - E_0| = |116 \text{ GPa} - 100 \text{ GPa}| = 16 \text{ GPa}.$$
 (12)

$$|E-E_0|>U(E)$$

3.4 Opracowanie danych dla drutu stalowego.

Wykres 4: Wykres zależności wydłużenia od siły dla drutu stalowego.

a) Analiza błędów.

Stwierdziliśmy wystąpienie dwóch pomiarów odstających, które możemy utożsamiać z błędami grubymi. Błędy te zaznaczylismy na wykresie (4). Mogły one zostać spowodowane niewystarczającym wydłużeniem dla pierwszego pomiaru, a dla ostatniego pomiaru zbyt dużym naprężeniem, zbliżonym do granicy sprężystości, lub błędnym odczytem pomiaru z czujnika.

b) Prawo przenoszenia niepewności.

Podobnie jak dla drutu mosiężnego w podsekcji 3.2 wyznaczamy współczynnik *a* i wartość modułu Younga:

$$a = 1,60 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{13}$$

$$u(a) = 4,55 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{14}$$

$$E = 176 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = 7,13 \text{ GPa},$$

$$U(E) = 2 \cdot 7,13 \text{ GPa} = 14,26 \text{ GPa}$$

Niepewość względna złożona jest równa:

$$\frac{u_c(E)}{E} = 4,03\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=176,47~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |176 \text{ GPa} - 215 \text{ GPa}| = 39 \text{ GPa}.$$
 (15)
 $|E - E_0| > U(E)$

4 Podsumowanie

Opis wielkości	E_0 [GPa]	E [GPa]	U(E) [GPa]	$\frac{u(E)}{E}$	$(0,9E_0-U(E);1,1E_0+U(E))$
Pomiary drutu mosiężnego I	100	124	8	3,34 %	(82;118)
Pomiary drutu mosiężnego II	100	116	6	2,6 %	(84; 116)
Pomiary drutu stalowego	210-220	176	14	4,03 %	(175; 256)

- Określenie poprawności wyników naszych doświadczeń jest trudne, ponieważ nie da się jednoznacznie określić wartości tabelarycznej dla danego metalu. Wynika to z nieznajomości dokładnego składu metalu (stopu), a także ze zużycia drutu. W naszych badaniach przyjmujemy rozrzut rzędu ±10% dla wartości odczytanych z tabel fizycznych.
- Zarówno dla pierwszych jak i drugich pomiarów dla mosiądzu obliczona wartość modułu wykracza poza przedział $(E_0 U(E), E_0 + U(E))$. Po uwzględnieniu dziesięcioprocentowego rozrzutu drugą serię pomiarów możemy uznać za poprawną w zakresie wyznaczonej niepewności. Pierwsza seria pomiarów nadal daje wynik niepoprawny, co potwierdza nasze obawy co do błędu systematycznego.
- Podobnie jak w przypadku drugiej serii pomiarów dla mosiądzu wartość modułu Younga dla stali wykracza poza $E_0 \pm U(E)$, lecz po uwzględnieniu dziesięcioprocentowego rozrzutu od wartości tablicowej możemy uznać obliczoną wartość za poprawną w zakresie wyznaczonej niepewności.