

Third Eye: Blind Spot Detection System for Cyclists

Sarah Allan¹, Saleh Almuqbil², James Mackenzie³

Faculty of Engineering, University of Victoria

¹B.Eng, Electrical Engineering ²B.Eng, Software Engineering ³B.Eng, Computer Engineering

Objective

To design a robust, low-cost, and user-friendly traffic detection and collision avoidance system for cyclists.

Background

A major concern for commuting cyclists is that their safety depends on the actions of other road users.

- Around 7,500 cyclists are injured every year in Canada.
- 92% of all bicycle-related fatalities involve motor vehicles and 94% of those fatalities were due to driver inattention.

Third Eye works to lower these statistics by allowing cyclists to be aware of potential dangers.

Third Eye provides automated alerts and lowers the headphone volume in cases of dense traffic.

Sensor Beam Characteristics

The detection pattern is shown for dowels of various diameters placed in front of the sensor. The scale is 1 inch per square.

Figure 1 The beam patterns produced by the sensor during detection of various objects.

Results & Prototype

The system is able to detect large objects from 3 meters away and determine whether an object is moving towards or away from the cyclist. The prototype system uses a Blend Micro microcontroller paired with a MaxBotix MB1000 ultrasonic sensor.

Figure 2 The Third Eye prototype during testing.

Operating Concept

Custom software processes the data from the sensor by averaging and smoothing the data.

A linear trend is fit to several data points, and the trend's slope is used to find the closing speed of the object.

The microcontroller uses the closing speed and distance to determine if the object is a danger to the cyclist.

An alert is sent to the companion app on the iPhone, and the iPhone either plays an alert or lowers the headphone volume to warn the cyclist.

Figure 3 A situation where Third Eye would be useful.

Alert Conditions

Condition	Distance (metres)	Speed Difference (km/h)	Time until Collision (s)	Alert Class
Moving				
towards and	3	10.8	1	Alert 1
close				
Moving				
towards and	3	5.4	2	Alert 2
close				
Moving				
towards and	3	3.6	3	Alert 3
close				
Moving				
towards and	2	7.2	1	Alert 1
close				
Moving				
towards and	2	3.6	2	Alert 2
close				
Moving				
towards and	2	2.4	3	Alert 3
close				
Moving				
towards and	1	3.6	1	Alert 1
close				
Moving		4.0		
towards and	1	1.8	2	Alert 2
close				
Moving		1.2	2	A.L. (2
towards and	l	1.2	3	Alert 3
close				
Not	2.5	NI/A	NI/A	A I 4
moving and	2.5	N/A	N/A	Alert 4
close				
Moving away	N/A	N/A	N/A	Alert 5
and close				

the iPhone app

the iPhone app

screen of the iPhone app