Esercizi per il Corso di ALGEBRA LINEARE

Dipendenza e indipendenza lineare

- 1. Sia V lo spazio vettoriale dei polinomi (a coefficienti reali) nella variable x di grado \leq 3. Si verifichi che gli insiemi seguenti sono delle basi di V:
 - (a) $\{1, x, x^2, x^3\}$
 - (b) $\{1, 1-x, x-x^2, x^2-x^3\}$
 - (c) $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$
- $2.^1$ Si dica se è possibile estrarre dal sottoinsieme C delle basi di V nei seguenti casi:
 - (a)¹ Lo spazio vettoriale V dei polinomi di grado ≤ 2 con sottoinsieme $C = \{p_1(x), p_2(x), p_3(x), p_4(x)\}$ dove

$$p_1(x) = x^2 + x(1-x) + (1-x)^2$$

$$p_2(x) = x^2 + (1-x)^2$$

$$p_3(x) = x^2 + 1 + (1-x)^2$$

$$p_4(x) = x(1-x).$$

- (a) Lo spazio vettoriale $V = \mathbb{R}^3$ con sottoinsieme $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$
- 3. Si studi la dipendenza o l'indipendenza lineare dei vettori seguenti, e si determini in ogni caso una base del sottospazio da essi generato.

(a)
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}$ in \mathbb{R}^3 .

(b)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ in \mathbb{R}^3 .

(c)
$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ in \mathbb{R}^5 .

4.¹ In
$$\mathbb{R}^4$$
 si considerino i sottospazi $U = \langle v_1, v_2, v_3 \rangle$ e $V = \langle v_4, v_5 \rangle$ dove $v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 6 \end{pmatrix}$,

$$v_3 = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 4 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$$
 e $v_5 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$. Si determino delle base dei sottospazi $U \cap V$, U , V e $U + V$.

¹Esercizio estratto/adattato dal libro F. Bottacin, Esercizi di Algebra Lineare e Geometria, Società Esculapio (2021)