Implementation of static and dynamic semantics for a calculus with algebraic effects and handlers using PLT Redex

Maciej Buszka

Instytut Informatyki UWr

04.10.2019

Formalizacja języków programowania

Wspiera:

- Przewidywalność
- Ortogonalność
- Spójność

Wynik: łatwiejsze utrzymanie i rozwój programów

Narzędzie: rachunki formalne

Efekty obliczeniowe (side effects)

- Zjawisko powszechne i znane każdemu programiście print "Hello World!"
- Zrozumienie działania programu wymaga nielokalnego wnioskowania
- Wpływ programu na otoczenie
- Dwie ogólne kategorie:
 - Modyfikacja lub odczytanie stanu

Efekty obliczeniowe (side effects)

- Zjawisko powszechne i znane każdemu programiście print "Hello World!"
- Zrozumienie działania programu wymaga nielokalnego wnioskowania
- Wpływ programu na otoczenie
- Dwie ogólne kategorie:
 - Modyfikacja lub odczytanie stanu
 - Alternatywne ścieżki sterowania

Efekty obliczeniowe - podejścia konwencjonalne

- Ignorowanie efektów
 - C, C++, Java, OCaml, Scala
 - Poważne błędy programów
 - Niemożliwość wnioskowania równościowego
 - Niejawne zależności między modułami

Efekty obliczeniowe - podejścia konwencjonalne

- Ignorowanie efektów
 - C, C++, Java, OCaml, Scala
 - Poważne błędy programów
 - Niemożliwość wnioskowania równościowego
 - Niejawne zależności między modułami
- Podzielenie języka na dwie części
 - Nieprzyjazne dla nowych programistów
 - Łączenie różnych efektów jest skomplikowane (np transformatory monad)
 - Problem z dodaniem efektów post-factum

Efekty algebraiczne

- Jednolita składnia
- Pomocny system typów
- Kompozycja efektów
- Modelowanie obu kategorii
- Definicja własnych efektów
- Nowe, aktualnie rozwijane zagadnienie

Cel pracy

- Stworzenie formalnego rachunku
 - Efekty algebraiczne
 - Konstrukcje bazowe
- Implementacja modelu
 - Algorytmiczna inferencja typu i efektów
 - Obrazowanie wykonania krok po kroku

Rachunek

- Abstrakcyjne operacje
 - Nie muszą być zdefiniowane a priori
 - Przyjmują jeden argument, zwracają jedną wartość
- Wyrażenia obsługujące (handler)
 - Dostęp do wznowienia
 - Semantyka tzw. głębokiej obsługi
 - Obsługa wielu operacji naraz
 - Klauzula return
- Wyrażenia podnoszące (lift)
 - 'przeskoczenie' najbliższego wyrażenia obsługującego
- Wartości bazowe oraz operacje na nich

Model

- Zaimplementowany za pomocą biblioteki PLT Redex
- Składnia abstrakcyjna
 - Dodatkowo: przyjazny język
- System typów
 - Algorytmiczna inferencja typu i efektów wyrażenia
- Relacja redukcji
 - Wykonanie krok po kroku
- Maszyna abstrakcyjna
 - Jawne środowisko
 - Zgodność z relacją redukcji
- Testy

Podsumowanie

Wynik:

- Formalny rachunek z efektami algebraicznymi
- Wykonywalny model rachunku
 - Wizualizacja przekształceń
 - Inferencja typu i efektów

Możliwości modelu:

- Iteracyjna rozbudowa rachunku
- Testowanie semantyki

Kontekst Cel Wynik Podsumowanie

Dziękuję za uwagę

Implementation of static and dynamic semantics for a calculus with algebraic effects and handlers using PLT Redex

Maciej Buszka

Instytut Informatyki UWr

04.10.2019