

XXXXXX & XXXXXX XXXXXX

XXXXXXXX xxxxxx@mail2.sysu.edu.cn

School of Electronics And Information Technology Sun Yat-Sen University

April 11, 2024

Contents

- 1. Background
 - 1.1 Reinforcement Learning
- 2. Multi-task & Continual
 - 2.1 Representations
- 3. Conclusion

1. Background

1.1 Reinforcement Learning

Section 1.1 xxxxxx & xxxxxx xxxxxxx XXXXXXXX

Introduction of MARL

中山大學 sun yat-sen university

In a nutshell

Agents

 $MARL\ ^{[1]}$

^[1] S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press, 2023.

Introduction of MARL

中山大學 sun yat-sen university

In a nutshell

Agents

MARL [1]

Assumptions about the agents' rewards:

- Fully cooperative (Warehouse Management)
- Competitive (Go)
- Mixed (Automated Trading)

^[1] S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press, 2023.

Introduction of MARL

In a nutshell

Agents

MARL [1]

Assumptions about the agents' rewards:

- Fully cooperative (Warehouse Management)
- Competitive (Go)
- Mixed (Automated Trading)

Type of solution concept the algorithm is designed:

- Minimax/Nash/Correlated equilibrium
- Pareto-optimality/social welfare/fairness
- No-regret
- etc.

^[1] S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. MIT Press, 2023.

2. Multi-task & Continual

2.1 Representations

aaa

3. Conclusion

xxxxxxx xxxxxxx xxxxxxx Section 3

Challenges

Most

How

• Practicality

Thanks for Listening!