

#11

SEQUENCE LISTING

<110> Barber, Elizabeth K

<120> Gene Expression Control Element DNA

<130> 896034605001

<140> US/09/966,264C

<141> 2001-09-28

<150> US/60/237,079

<151> 2000-09-30

<160> 61

<170> PatentIn version 3.1

<210> 1

<211> 137

<212> DNA

<213> human

<400> 1

at tat aaa gga aaa aga aaa taa cgc aat gga caa gtg gtg aag ctg 47
Tyr Lys Gly Lys Arg Lys Arg Asn Gly Gln Val Val Lys Leu
1 5 10

tga act cag gtg tgc aca att atc agg aac acc cca aaa cca aag tga 95
Thr Gln Val Cys Thr Ile Ile Arg Asn Thr Pro Lys Pro Lys
15 20 25

ggt aga aat agc atg aga agc cgt gtt tga tgt taa tta att 137
Gly Arg Asn Ser Met Arg Ser Arg Val Cys Leu Ile
30 35 40

<210> 2
<211> 996
<212> DNA
<213> human

<400> 2

gtg gtt tga ttg ata gta aaa aaa atg ttc gtt aat aca agt aga gag 48
Val Val Leu Ile Val Lys Lys Met Phe Val Asn Thr Ser Arg Glu
1 5 10 15

taa gta atc aat caa tca ctc ata gcc aag gtg gaa aag atg tat ccc 96
Val Ile Asn Gln Ser Leu Ile Ala Lys Val Glu Lys Met Tyr Pro
20 25 30

atc atg gaa tat tcc tgt tct gat aga aat ctt gtg ctt atc tat gga 144
Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn Leu Val Leu Ile Tyr Gly
35 40 45

att ctt ttg ata tat att tac att ggg aac ctg aat gta gct tga cat 192
Ile Leu Leu Ile Tyr Ile Gly Asn Leu Asn Val Ala His
50 55 60

ttt tcc atg taa aca cca gta gcc tga tcc aac att aag ctg ata cta 240
Phe Ser Met Thr Pro Val Ala Ser Asn Ile Lys Leu Ile Leu
65 70 75

aca aac aac gtg taa tgg ctt cat taa taa ggc ttt gct tct tcc tgg 288
Thr Asn Asn Val Trp Leu His Gly Phe Ala Ser Ser Trp
80 85

aaa ctg gtg aaa aat caa acc ttg ttg tgt aca ccc tcg atg cag ctt 336
Lys Leu Val Lys Asn Gln Thr Leu Leu Cys Thr Pro Ser Met Gln Leu
90 95 100

ctg tgt tgt ctt cac cca gaa atg ggg aat gat ttc cca aat ggc aaa 384
Leu Cys Cys Leu His Pro Glu Met Gly Asn Asp Phe Pro Asn Gly Lys
105 110 115 120

gaa aca gag tga tgc tat cta tct gca cct ttt gta aag tct gtc ttt 432
Glu Thr Glu Cys Tyr Leu Ser Ala Pro Phe Val Lys Ser Val Phe
125 130 135

ctt tct ctt tgt ttt cca gga cac aat gta gga agt ctt ttc cac atg 480
Leu Ser Leu Cys Phe Pro Gly His Asn Val Gly Ser Leu Phe His Met
140 145 150

gca gat gat ttg ggc aga gcg atg gag tcc tta gta tca gtc atg aca 528
Ala Asp Asp Leu Gly Arg Ala Met Glu Ser Leu Val Ser Val Met Thr
155 160 165

gat gaa gaa gga gca gaa taa atg ttt tac aac tcc tga ttc ccg cat 576
Asp Glu Glu Gly Ala Glu Met Phe Tyr Asn Ser Phe Pro His
170 175 180

ggt ttt tat aat att cat aca aca aag agg att aga cag taa gag ttt 624
Gly Phe Tyr Asn Ile His Thr Thr Lys Arg Ile Arg Gln Glu Phe
185 190 195

aca aga aat aaa tct ata ttt ttg tga agg gta gtg gta tta tac tgt 672
Thr Arg Asn Lys Ser Ile Phe Leu Arg Val Val Val Leu Tyr Cys
200 205 210

aga ttt cag tag ttt cta agt ctg tta ttg ttt tgt taa caa tgg cag 720
Arg Phe Gln Phe Leu Ser Leu Leu Phe Cys Gln Trp Gln
215 220 225

gtt tta cac gtc tat gca att gta caa aaa agt tat aag aaa act aca 768
Val Leu His Val Tyr Ala Ile Val Gln Lys Ser Tyr Lys Lys Thr Thr
230 235 240

tgt aaa atc ttg ata gct aaa taa ctt gcc att tct tta tat gga acg 816
Cys Lys Ile Leu Ile Ala Lys Leu Ala Ile Ser Leu Tyr Gly Thr
245 250 255

cat ttt ggg ttg ttt aaa aat tta taa cag tta taa aga aag aat tat 864
His Phe Gly Leu Phe Lys Asn Leu Gln Leu Arg Lys Asn Tyr
260 265 270

aaa gga aaa aga aaa taa cgc aat gga caa gtg gtg aag ctg tga act 912
Lys Gly Lys Arg Lys Arg Asn Gly Gln Val Val Lys Leu Thr
275 280

cag gtg tgc aca att atc agg aac acc cca aaa cca aag tga ggt aga 960
Gln Val Cys Thr Ile Ile Arg Asn Thr Pro Lys Pro Lys Gly Arg
285 290 295

aat agc atg aga agc cgt gtt tga tgt taa tta att 996
Asn Ser Met Arg Ser Arg Val Cys Leu Ile
300 305

<210> 3

<211> 13

<212> PRT

<213> human

<400> 3

Met Tyr Pro Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn
1 5 10

<210> 4
<211> 13
<212> PRT
<213> human

<400> 4
Tyr Ile Tyr Ile Gly Asn Leu Asn Val Ala Asp Thr Met
1 5 10

<210> 5
<211> 18
<212> PRT
<213> human

<400> 5
Asp Asp Leu Gly Arg Ala Met Glu Ser Leu Val Ser Val Met Thr Asp
1 5 10 15
Glu Glu

<210> 6
<211> 10
<212> DNA
<213> human

<400> 6
acttacacctgt 10
<210> 7
<211> 22
<212> DNA
<213> human

<400> 7
ttataaaagaa agaattataa ag 22

<210> 8
<211> 42
<212> DNA
<213> human

<400> 8
ccttggctat gagtgattga ttgattactt actctctact tg 42

<210> 9
<211> 20
<212> DNA
<213> human

<400> 9
gattgatagt aaaaaaaaaatg 20

<210> 10
<211> 21
<212> DNA
<213> human

<400> 10
caatggcagg ttttacacgt c 21

<210> 11
<211> 20
<212> DNA
<213> human

<400> 11
gaaaaagact tccacattgt 20

<210> 12

<211> 22

<212> DNA

<213> human

<400> 12
cttttcctt tataattctt tc 22

<210> 13

<211> 22

<212> DNA

<213> human

<400> 13
catcaaacac ggcttctcat gc 22

<210> 14

<211> 9

<212> PRT

<213> human

<220>

<221> MISC_FEATURE

<222> (1) .. (3)

<223> histone methylation site

<220>

<221> MISC_FEATURE

<222> (7) .. (9)

<223> histone methylation site

<400> 14

Arg Lys Asn Tyr Lys Gly Lys Arg Lys
1 5

<210> 15

<211> 18

<212> DNA

<213> human

<400> 15

gttcgttaat acaagtag

18

<210> 16

<211> 18

<212> DNA

<213> human

<400> 16

gccaagggtgg aaaagatg

18

<210> 17

<211> 18

<212> DNA

<213> human

<400> 17

ccagtagcct gatccaac

18

<210> 18

<211> 15

<212> DNA

<213> human

<400> 18

ggcttcattta ataag

15

<210> 19

<211> 17

<212> DNA

<213> human

<400> 19

ggcaaagaaa cagagtg

17

<210> 20

<211> 17

<212> DNA

<213> human

<400> 20

caggacacaa tgttagga

17

<210> 21

<211> 23

<212> DNA

<213> human

<400> 21

gttataaaga aagaattata aag

23

<210> 22

<211> 18

<212> DNA

<213> human

<400> 22
gaaaataacg caatggac 18

<210> 23

<211> 19

<212> DNA

<213> human

<400> 23
gatgggatac atctttcc 19

<210> 24

<211> 20

<212> DNA

<213> human

<400> 24
caagctacat tcagggtccc 20

<210> 25

<211> 18

<212> DNA

<213> human

<400> 25
ggactccatc gctctgcc 18

<210> 26

<211> 16

<212> DNA

<213> human

<400> 26
gacttagaaa ctactg 16

<210> 27

<211> 19

<212> DNA

<213> human

<400> 27
atagacgtgt aaaacctgc 19

<210> 28

<211> 18

<212> DNA

<213> human

<400> 28
aactgttata aattttta 18

<210> 29

<211> 22

<212> DNA

<213> human

<400> 29
cttttcctt tataattctt tc 22

<210> 30

<211> 117

<212> PRT

<213> human

<400> 30

Met Phe Val Asn Thr Thr Lys Val Glu Lys Met Tyr Pro Ile Met Glu
1 5 10 15

Tyr Ser Cys Ser Asp Arg Asn Leu Val Leu Ile Tyr Gly Ile Leu Leu
20 25 30

Ile Tyr Ile Tyr Ile Gly Asn Leu Asn Met Lys Lys Glu Gln Asn Lys
35 40 45

Cys Phe Thr Thr Pro Asp Ser Arg Met Val Phe Ile Ile Phe Ile Gln
50 55 60

Gln Arg Gly Leu Asp Ser Lys Ser Leu Gln Glu Ile Asn Leu Tyr Phe
65 70 75 80

Cys Glu Gly Phe Tyr Thr Ser Met Gln Leu Tyr Lys Lys Val Ile Arg
85 90 95

Lys Leu His Lys Ile Thr Gln Trp Thr Arg Thr Pro Gln Asn Gln Ser
100 105 110

Glu Val Glu Ile Ala
115

<210> 31

<211> 324

<212> PRT

<213> human

<220>

<221> MISC_FEATURE

<222> (33) .. (53)

<223> Certain membrane-spanning segment

<220>

<221> MISC_FEATURE

<222> (93) .. (113)

<223> Putative membrane-spanning segment

<220>

<221> MISC_FEATURE

<222> (124) .. (144)

<223> Certain membrane-spanning segment

<220>

<221> MISC_FEATURE

<222> (209) .. (229)

<223> Putative membrane-spanning segment

<220>

<221> MISC_FEATURE

<222> (246) .. (266)

<223> Putative membrane-spanning segment

<400> 31

Met Phe Val Asn Thr Ser Arg Glu Lys Val Ile Asn Gln Ser Leu Ile
1 5 10 15

Ala Lys Val Glu Lys Met Tyr Pro Ile Met Glu Tyr Ser Cys Ser Asp
20 25 30

Arg Asn Leu Val Leu Ile Tyr Gly Ile Leu Leu Ile Tyr Ile Tyr Ile
35 40 45

Gly Asn Leu Asn Val Ala Arg His Phe Ser Met Lys Thr Pro Val Ala
50 55 60

Arg Ser Asn Ile Lys Leu Ile Leu Thr Asn Asn Val Lys Trp Leu His
65 70 75 80

Lys Lys Gly Phe Ala Ser Ser Trp Lys Leu Val Lys Asn Gln Thr Leu
85 90 95

Leu Cys Thr Pro Ser Met Gln Leu Leu Cys Cys Leu His Pro Glu Met
100 105 110

Gly Asn Asp Phe Pro Asn Gly Lys Glu Thr Glu Arg Cys Tyr Leu Ser
115 120 125

Ala Pro Phe Val Lys Ser Val Phe Leu Ser Leu Cys Phe Pro Gly His
130 135 140

Asn Val Gly Ser Leu Phe His Met Ala Asp Asp Leu Gly Arg Ala Met
145 150 155 160

Glu Ser Leu Val Ser Val Met Thr Asp Glu Glu Gly Ala Glu Lys Met
165 170 175

Phe Tyr Asn Ser Arg Phe Pro His Gly Phe Tyr Asn Ile His Thr Thr
180 185 190

Lys Arg Ile Arg Gln Lys Glu Phe Thr Arg Asn Lys Ser Ile Phe Leu
195 200 205

Arg Arg Val Val Val Leu Tyr Cys Arg Phe Gln Lys Phe Leu Ser Leu
210 215 220

Leu Leu Phe Cys Lys Gln Trp Gln Val Leu His Val Tyr Ala Ile Val
225 230 235 240

Gln Lys Ser Tyr Lys Lys Thr Thr Cys Lys Ile Leu Ile Ala Lys Lys
245 250 255

Leu Ala Ile Ser Leu Tyr Gly Thr His Phe Gly Leu Phe Lys Asn Leu
260 265 270

Lys Gln Leu Lys Arg Lys Asn Tyr Lys Gly Lys Arg Lys Lys Arg Asn
275 280 285

Gly Gln Val Val Lys Leu Arg Thr Gln Val Cys Thr Ile Ile Arg Asn
290 295 300

Thr Pro Lys Pro Lys Arg Gly Arg Asn Ser Met Arg Ser Arg Val Arg
305 310 315 320

Cys Lys Leu Ile

<210> 32

<211> 15

<212> DNA

<213> human

<400> 32

tggctgcaag cccaa

<210> 33
<211> 234
<212> DNA
<213> human

<400> 33
ttt cct att caa tgt ata gtg cac caa agg tca att caa gag ttt att 48
Phe Pro Ile Gln Cys Ile Val His Gln Arg Ser Ile Gln Glu Phe Ile
1 5 10 15

att att att ttc aac cca agt aaa agc aga gag aaa ata gcc acc tcc 96
Ile Ile Ile Phe Asn Pro Ser Lys Ser Arg Glu Lys Ile Ala Thr Ser
20 25 30

acc ata gcc tca gaa gca agc caa cag cct gaa aca gct ttg aaa tga 144
Thr Ile Ala Ser Glu Ala Ser Gln Gln Pro Glu Thr Ala Leu Lys
35 40 45

aaa gtt ggt gtg gcg gtg atg gtg gca gtg ata atg gtg acc gat ggt 192
Lys Val Gly Val Ala Val Met Val Ala Val Ile Met Val Thr Asp Gly
50 55 60

tgg gtg ctg gtg atg gta gtg gta gtt gtg aag gtg gtg atg 234
Trp Val Leu Val Met Val Val Val Val Lys Val Val Met
65 70 75

<210> 34
<211> 6
<212> PRT
<213> human

<400> 34

Tyr Lys Gly Lys Arg Lys
1 5

<210> 35
<211> 8
<212> PRT
<213> human

<400> 35

Arg Asn Gly Gln Val Val Lys Leu
1 5

<210> 36
<211> 14

<212> PRT
<213> human

<400> 36

Thr Gln Val Cys Thr Ile Ile Arg Asn Thr Pro Lys Pro Lys
1 5 10

<210> 37
<211> 9
<212> PRT
<213> human

<400> 37

Gly Arg Asn Ser Met Arg Ser Arg Val
1 5

<210> 38
<211> 13
<212> PRT
<213> human

<400> 38

Leu Ile Val Lys Lys Met Phe Val Asn Thr Ser Arg Glu
1 5 10

<210> 39
<211> 45
<212> PRT
<213> human

<400> 39

Val Ile Asn Gln Ser Leu Ile Ala Lys Val Glu Lys Met Tyr Pro
1 5 10 15

Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn Leu Val Leu Ile Tyr
20 25 30

Gly Ile Leu Leu Ile Tyr Ile Tyr Ile Gly Asn Leu Asn Val Ala
35 40 45

<210> 40
<211> 11
<212> PRT
<213> human

<400> 40
Ser Asn Ile Lys Leu Ile Leu Thr Asn Asn Val
1 5 10

<210> 41
<211> 41
<212> PRT
<213> human

<400> 41

Gly Phe Ala Ser Ser Trp Lys Leu Val Lys Asn Gln Thr Leu Leu
1 5 10 15

Cys Thr Pro Ser Met Gln Leu Leu Cys Cys Leu His Pro Glu Met
20 25 30

Gly Asn Asp Phe Pro Asn Gly Lys Glu Thr Glu
35 40

<210> 42
<211> 50
<212> PRT
<213> human

<400> 42

Cys Tyr Leu Ser Ala Pro Phe Val Lys Ser Val Phe Leu Ser Leu
1 5 10 15

Cys Phe Pro Gly His Asn Val Gly Ser Leu Phe His Met Ala Asp
20 25 30

Asp Leu Gly Arg Ala Met Glu Ser Leu Val Ser Val Met Thr Asp
35 40 45

Glu Glu Gly Ala Glu
50

<210> 43
<211> 5
<212> PRT
<213> human

<400> 43

Met Phe Tyr Asn Ser
1 5

<210> 44
<211> 16
<212> PRT
<213> human

<400> 44

Phe Pro His Gly Phe Tyr Asn Ile His Thr Thr Lys Arg Ile Arg Gln

1

5

10

15

<210> 45
<211> 10
<212> PRT
<213> human

<400> 45

Glu Phe Thr Arg Asn Lys Ser Ile Phe Leu
1 5 10

<210> 46
<211> 10
<212> PRT
<213> human

<400> 46

Arg Val Val Val Leu Tyr Cys Arg Phe Gln
1 5 10

<210> 47
<211> 8
<212> PRT
<213> human

<400> 47

Phe Leu Ser Leu Leu Leu Phe Cys
1 5

<210> 48
<211> 26
<212> PRT
<213> human

<400> 48

Gln Trp Gln Val Leu His Val Tyr Ala Ile Val Gln Lys Ser Tyr
1 5 10 15

Lys Lys Thr Thr Cys Lys Ile Leu Ile Ala Lys
20 25

<210> 49
<211> 16
<212> PRT
<213> human

<400> 49

Leu Ala Ile Ser Leu Tyr Gly Thr His Phe Gly Leu Phe Lys Asn Leu
1 5 10 15

<210> 50
<211> 9
<212> PRT
<213> human

<400> 50

Arg Lys Asn Tyr Lys Gly Lys Arg Lys
1 5

<210> 51

<211> 1233

<212> DNA

<213> human

<400> 51

tag ttt cct att caa tgt ata gtg cac caa agg tca att caa gag 45
Phe Pro Ile Gln Cys Ile Val His Gln Arg Ser Ile Gln Glu
-75 -70 -65

ttt att att att att ttc aac cca agt aaa agc aga gag aaa ata gcc 93
Phe Ile Ile Ile Ile Phe Asn Pro Ser Lys Ser Arg Glu Lys Ile Ala
-60 -55 -50

acc tcc acc ata gcc tca gaa gca agc caa cag cct gaa aca gct ttg 141
Thr Ser Thr Ile Ala Ser Glu Ala Ser Gln Gln Pro Glu Thr Ala Leu
-45 -40 -35

aaa tga aaa gtt ggt gtg gcg gtg atg gtg gca gtg ata atg gtg acc 189
Lys Lys Val Gly Val Ala Val Met Val Ala Val Ile Met Val Thr
-30 -25 -20

gat ggt tgg gtg ctg gtg atg gta gtg gtt gtg aag gtg gtg atg 237
Trp Val Leu Val Met Val Val Val Val Lys Val Val Met Asp Gly
-15 -10 -5

gtg gtt tga ttg ata gta aaa aaa atg ttc gtt aat aca agt aga gag 285
Val Val Leu Ile Val Lys Lys Met Phe Val Asn Thr Ser Arg Glu
1 5 10 15

taa gta atc aat caa tca ctc ata gcc aag gtg gaa aag atg tat ccc 333
Val Ile Asn Gln Ser Leu Ile Ala Lys Val Glu Lys Met Tyr Pro
20 25 30

atc atg gaa tat tcc tgg tct gat aga aat ctt gtg ctt atc tat gga 381
Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn Leu Val Leu Ile Tyr Gly

35

40

45

att ctt ttg ata tat att tac att ggg aac ctg aat gta gct tga cat 429
 Ile Leu Leu Ile Tyr Ile Tyr Ile Gly Asn Leu Asn Val Ala His
 50 55 60

ttt tcc atg taa aca cca gta gcc tga tcc aac att aag ctg ata cta 477
 Phe Ser Met Thr Pro Val Ala Ser Asn Ile Lys Leu Ile Leu
 65 70 75

aca aac aac gtg taa tgg ctt cat taa taa ggc ttt gct tct tcc tgg 525
 Thr Asn Asn Val Trp Leu His Gly Phe Ala Ser Ser Trp
 80 85

aaa ctg gtg aaa aat caa acc ttg ttg tgt aca ccc tcg atg cag ctt 573
 Lys Leu Val Lys Asn Gln Thr Leu Leu Cys Thr Pro Ser Met Gln Leu
 90 95 100

ctg tgt tgt ctt cac cca gaa atg ggg aat gat ttc cca aat ggc aaa 621
 Leu Cys Cys Leu His Pro Glu Met Gly Asn Asp Phe Pro Asn Gly Lys
 105 110 115 120

gaa aca gag tga tgc tat cta tct gca cct ttt gta aag tct gtc ttt 669
 Glu Thr Glu Cys Tyr Leu Ser Ala Pro Phe Val Lys Ser Val Phe
 125 130 135

ctt tct ctt tgt ttt cca gga cac aat gta gga agt ctt ttc cac atg 717
 Leu Ser Leu Cys Phe Pro Gly His Asn Val Gly Ser Leu Phe His Met
 140 145 150

gca gat gat ttg ggc aga gcg atg gag tcc tta gta tca gtc atg aca 765
 Ala Asp Asp Leu Gly Arg Ala Met Glu Ser Leu Val Ser Val Met Thr
 155 160 165

gat gaa gaa gca gaa taa atg ttt tac aac tcc tga ttc ccg cat 813
 Asp Glu Glu Gly Ala Glu Met Phe Tyr Asn Ser Phe Pro His
 170 175 180

ggt ttt tat aat att cat aca aca aag agg att aga cag taa gag ttt 861
 Gly Phe Tyr Asn Ile His Thr Thr Lys Arg Ile Arg Gln Glu Phe
 185 190 195

aca aga aat aaa tct ata ttt ttg tga agg gta gtg gta tta tac tgt 909
 Thr Arg Asn Lys Ser Ile Phe Leu Arg Val Val Val Leu Tyr Cys
 200 205 210

aga ttt cag tag ttt cta agt ctg tta ttg ttt tgt taa caa tgg cag 957
 Arg Phe Gln Phe Leu Ser Leu Leu Phe Cys Gln Trp Gln
 215 220 225

gtt tta cac gtc tat gca att gta caa aaa agt tat aag aaa act aca 1005
 Val Leu His Val Tyr Ala Ile Val Gln Lys Ser Tyr Lys Lys Thr Thr
 230 235 240

tgt aaa atc ttg ata gct aaa taa ctt gcc att tct tta tat gga acg 1053
 Cys Lys Ile Leu Ile Ala Lys Leu Ala Ile Ser Leu Tyr Gly Thr
 245 250 255

cat ttt ggg ttg ttt aaa aat tta taa cag tta taa aga aag aat tat 1101
His Phe Gly Leu Phe Lys Asn Leu Gln Leu Arg Lys Asn Tyr
260 265 270

aaa gga aaa aga aaa taa cgc aat gga caa gtg gtg aag ctg tga act 1149
Lys Gly Lys Arg Lys Arg Asn Gly Gln Val Val Lys Leu Thr
275 280

cag gtg tgc aca att atc agg aac acc cca aaa cca aag tga ggt aga 1197
Gln Val Cys Thr Ile Ile Arg Asn Thr Pro Lys Pro Lys Gly Arg
285 290 295

aat agc atg aga agc cgt gtt tga tgt taa tta att 1233
Asn Ser Met Arg Ser Arg Val Cys Leu Ile
300 305

<210> 52

<211> 47

<212> PRT

<213> human

<400> 52

Phe Pro Ile Gln Cys Ile Val His Gln Arg Ser Ile Gln Glu Phe
1 5 10 15

Ile Ile Ile Ile Phe Asn Pro Ser Lys Ser Arg Glu Lys Ile Ala
20 25 30

Thr Ser Thr Ile Ala Ser Glu Ala Ser Gln Gln Pro Glu Thr Ala
35 40 45

Leu Lys

<210> 53

<211> 32

<212> PRT

<213> human

<400> 53

Lys Val Gly Val Ala Val Met Val Ala Val Ile Met Val Thr Asp
1 5 10 15

Gly Trp Val Leu Val Met Val Val Val Val Lys Val Val Met
20 25 30

Val Val

<210> 54

<211> 1044

<212> DNA

<213> mouse

<400> 54

ttcacaggct taagcagcca gtaaatgaca atttatgtgg tagtcaggc 50
actgtgctgg taatggtgat ctttagcaggc agagaaggtg gtatgtattt 100
gatagtaaaaa gtgttagacta tacaacagaa taaatacaag tatagtaaat 150
ccaacaaagt gtgaaaggtg tgtgccattha cacatcttc tcggtgataa 200
gagcccttgc tatgaagttc tgagatgtgt taggaagatg aatcatcaat 250
ttacatttct ccccatcaaa tgacaccatg ctgatccagt attaagctaa 300
tactaacacc atgcaatgct tcattaacaa ggatttgctt cttgctagaa 350
atgggtaaaaa acggactgtg gtctgtatac cttcaatgca gcttatgtgt 400
tgtcttttcc tgaaaatggta atgactccca atagtgccaa ccaggggtac 450
aataacttgca cactttgtaa actctttctt tctctttgtt ttccaggaca 500
caatgttagga agcctttcc acatggcaga tgatttgggc agagcgatgg 550
agtccttagt ttcaagtcatg acagatgaag aaggaggcaga ataaatgttt 600
tacaactcct gattcccgca tggttttat aatattcgta caacaaagag 650
gatttagacag taagagtttca aagaaataa aatctatatt tttgtgaagg 700
gtatgtgtac tatactgttag atttcagtag tttctaagtc tgttattgtt 750
ttgttaacaa tggcagggttt tacacgtctt tgcaattgtt caaaaaagtt 800
aaaagaaaaac atgtaaaatc ttgatagctt aataacttgc catttcttta 850
tatggAACGC attttgggtt gttaaaaat ttataacagt tataaagaaa 900
gattgtaaac taaagtgtgc tttataaaaaa aagtgttttca aaaaaacccc 950
taaacaaaca cacacgcaca cacacacaca cacacacaca cacacacaca 1000
ctgaggcagc acattgtttt gcattacttt agcgtgtatc atat 1044

<210> 55

<211> 1234

<212> DNA

<213> human

<400> 55

ctagttcct attcaatgta tagtgcacca aaggtcaatt caagagttt 50
ttattattat ttcaaccca agtaaaagca gagagaaaat agccacctcc 100
accatagcct cagaagcaag ccaacagcct gaaacagctt tgaaatgaaa 150
agttggtgatgg gcggtgatgg tggcagtat aatggtgacc gatggttggg 200
tgctggtgat ggttagtggta gttgtgaagg tggtgatggt ggtttgattt 250
atagtaaaaa aaatgttcgt taatacaagt agagagtaag taatcaatca 300
atcactcata gccaaaggatgg aaaagatgta tcccatcatg gaatattcct 350
gttctgatag aaatcttgcgt cttatctatg gaattctttt gatatatattt 400
tacattggga acctgaatgt agcttgacat tttccatgt aaacaccagt 450
agcctgatcc aacattaagc tgatactaacc aaacaacgtg taatggcttc 500
attaataagg ct当地cttct tc当地ggaaac tggtgaaaaa tcaaaccctt 550
ttgtgtacac cctcgatgca gcttctgtgt tgtcttcacc cagaaatggg 600
gaatgatttc ccaaattggca aagaaacaga gtgatgctat ctatctgcac 650
ctttgtaaa gtctgtcttt ct当地cttctt gtttccagg acacaatgta 700
ggaagtcttt tccacatggc agatgatttgc ggcagagcga tggagtcctt 750
agtatcagtc atgacagatg aagaaggagc agaataaatg ttttacaact 800
cctgattccc gcatggtttt tataatattc atacaacaaa gaggattaga 850
cagtaagagt ttacaagaaa taaatctata ttttggtaaa gggttagtgg 900
attataactgt agatttcagt agtttctaag tctgttatttgc ttttggtaac 950
aatggcaggt tttacacgtc tatgcaatttgc tacaaaaaaag ttataagaaa 1000
actacatgta aaatcttgcgt agctaaataa cttgccattt ct当地tatgg 1050
aacgcatttt ggggtgttta aaaattata acagttataa agaaagaattt 1100
ataaaaggaaa aagaaaataa cgcaatggac aagtggtaaa gctgtgaact 1150
caggtgtgca caattatcag gaacacccca aaacccaaagt gaggtagaaa 1200
tagcatgaga agccgtgtttt gatgttaattt aattt 1234

<210> 56
<211> 303
<212> PRT
<213> human

<400> 56

Met Tyr Pro Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn Leu Val
1 5 10 15

Leu Ile Tyr Gly Ile Leu Leu Ile Tyr Ile Tyr Ile Gly Asn Leu
20 25 30

Asn Val Ala Arg His Phe Ser Met Lys Thr Pro Val Ala Arg Ser
35 40 45

Asn Ile Lys Leu Ile Leu Thr Asn Asn Val Lys Trp Leu His Lys
50 55 60

Lys Gly Phe Ala Ser Ser Trp Lys Leu Val Lys Asn Gln Thr Leu
65 70 75

Leu Cys Thr Pro Ser Met Gln Leu Leu Cys Cys Leu His Pro Glu
80 85 90

Met Gly Asn Asp Phe Pro Asn Gly Lys Glu Thr Glu Arg Cys Tyr
95 100 105

Leu Ser Ala Pro Phe Val Lys Ser Val Phe Leu Ser Leu Cys Phe
110 115 120

Pro Gly His Asn Val Gly Ser Leu Phe His Met Ala Asp Asp Leu
125 130 135

Gly Arg Ala Met Glu Ser Leu Val Ser Val Met Thr Asp Glu Glu
140 145 150

Gly Ala Glu Lys Met Phe Tyr Asn Ser Arg Phe Pro His Gly Phe
155 160 165

Tyr Asn Ile His Thr Thr Lys Arg Ile Arg Gln Lys Glu Phe Thr
170 175 180

Arg Asn Lys Ser Ile Phe Leu Arg Arg Val Val Val Leu Tyr Cys
185 190 195

Arg Phe Gln Lys Phe Leu Ser Leu Leu Phe Cys Lys Gln Trp
200 205 210

Gln Val Leu His Val Tyr Ala Ile Val Gln Lys Ser Tyr Lys Lys
215 220 225

Thr Thr Cys Lys Ile Leu Ile Ala Lys Lys Leu Ala Ile Ser Leu
230 235 240

Tyr Gly Thr His Phe Gly Leu Phe Lys Asn Leu Lys Gln Leu Lys
245 250 255

Arg Lys Asn Tyr Lys Gly Lys Arg Lys Lys Arg Asn Gly Gln Val
260 265 270

Val Lys Leu Arg Thr Gln Val Cys Thr Ile Ile Arg Asn Thr Pro
275 280 285

Lys Pro Lys Arg Gly arg Asn Ser Met Arg Ser Arg Val Arg Cys
290 295 300

Lys Leu Ile

<210> 57

<211>

111

<212> DNA

<213> human

<400> 57

tttataaacag ttataaaagaa agattgtaaa ctaaagtgtg cttaataaaaa 50

aaaagttgtt tataaaaacc cctaaaaaca aaacaaacac acacacacac 100

acatacacacac a 111

<210> 58

<211> 260

<212> DNA

<213> human

<400> 58

AATTAGCTTT TGGAGAGTGG GTTTGTCCA TTATTAATAA TTAATTAATT 50

AACATCAAAC ACGGCTTCTC ATGCTATTTC TACCTCACTT TGGTTTGAGG 100

GTGTTCCCTGA TAATTGTGCA CACCTGAGTT CACAGCTTCA CCACCTGTCC 150

ATTGCGTTAT TTTCTTTTTC CTTTATAATT CTTTCTTTT CCTTCATAAT 200

TAACAGTTAT AAAGAAAGAA TTATAAAGGA AAAAGAAAAT AACGCAATGG 250

ACAAGTGGTG 260

<210> 59

<211> 17

<212> DNA

<213> human

<400> 59

gccctcattc tggagac 17

<210> 60

<211> 17

<212> DNA

<213> human

<400> 60

gcgggtatgg tggcagt 17

<210> 61

<211> 107

<212> PRT

<213> human

<400> 61

Met Tyr Pro Ile Met Glu Tyr Ser Cys Ser Asp Arg Asn Leu Val
1 5 10 15

Leu Ile Tyr Gly Ile Leu Leu Ile Tyr Ile Tyr Ile Gly Asn Leu
20 25 30

Asn Met Lys Lys Glu Gln Asn Lys Cys Phe Thr Thr Pro Asp Ser
35 40 45

Arg Met Val Phe Ile Ile Phe Ile Gln Gln Arg Gly Leu Asp Ser
50 55 60

Lys Ser Leu Gln Glu Ile Asn Leu Tyr Phe Cys Glu Gly Phe Tyr
65 70 75

Thr Ser Met Gln Leu Tyr Lys Lys Val Ile Arg Lys Leu His Lys
80 85 90

Ile Thr Gln Trp Thr Arg Thr Pro Gln Asn Gln Ser Glu Val Glu

95 100 105

Ile Ala