Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа

GNU Radio

Выполнил студент гр. 3530901/80201 И.С. Иванов

Преподаватель: Н.В. Богач

Санкт-Петербург 2021

Содержание

1	Hep	едача сигнала	5
2	Доб	авление нарушений канала	8
3	Boco	становление timing	10
	3.1	ISI	10
	3.2	Разные clocks	11
	3.3	Блок синхронизации многофазных часов	12
	3.4	Использование блока многофазной синхронизации	15
4	Мно	оголучевость	17
5	Экв	алайзеры	19
	5.1	CMA	19
	5.2	LMS DD	20
6	Фаз	овая и точная частотная коррекция	22
7	Расшифровка		24
8	Вын	воды	26

Список иллюстраций

1	Flowgraph избыточной пропускной способности
2	Избыточная пропускная способность
3	Flowgraph созвездия QPSK
4	Созвездие QPSK
5	Flowgraph с добавлением нарушения канала
6	Добавление нарушения канала
7	Flowgraph проблемы ISI
8	Передача 4-ех символов без рассинхронизации
9	Flowgraph разные clocks
10	Передача 4-ех символов с рассинхронизации
11	Применение функции sample
12	Нет смещения часов
13	Есть смещение часов
14	Flowgraph с несколькими фазами
15	Несколько фаз
16	Flowgraph с блоком многофазной синхронизации
17	Использование блока многофазной синхронизации 16
18	Flowgraph многолучевость
19	Использование блока многофазной синхронизации
20	Flowgraph с эквалайзером СМА
21	Использование эквалайзера СМА
22	Использование эквалайзера LMS DD

23	Flowgraph для исправления сдвига фазы и частоты	22
24	Исправление сдвига фазы и частоты	23
25	Flowgraph декодирования	24
26	Сравнение данных	25

1 Передача сигнала

Первый этап - передача сигнала QPSK. Необходимо сгенерировать поток битов и смоделировать его на сложное созвездие. Для этого мы используем блок Constellation Modulator.

Объект созвездия позволяет нам определить, как кодируются символы. Затем блок модулятора может использовать эту схему модуляции с дифференциальным кодированием или без него. Модулятор созвездия ожидает упакованные байты, поэтому у нас есть генератор случайного источника, предоставляющий байты со значениями 0-255.

Количество выборок на символ должно быть минимальным для обеспечения желаемой скорости передачи данных. Мы будем использовать 4, что больше, чем нам нужно. Это необходимо для лучшей визуализации сигнала в различных областях.

Наконец, мы устанавливаем значение избыточной пропускной способности. Посмотрим на полученный flowgraph.

Рис. 1: Flowgraph избыточной пропускной способности

После запуска получаем график, показывающий различные значения избыточной пропускной способности. Типичные значения находятся в диапазоне от 0,2 (красная кривая) до 0,35 (зеленая кривая).

Рис. 2: Избыточная пропускная способность

Далее запустим файл mpsk_stage1.grc, передающий созвездие QPSK.

Рис. 3: Flowgraph созвездия QPSK

Рис. 4: Созвездие QPSK

На графике созвездия мы видим эффекты повышающей дискретизации и процесс фильтрации. В этом случае фильтр RRC добавляет преднамеренные самоинтерференции(ISI).

На стороне приема мы избавляемся от ISI с помощью другого фильтра RRC. В результате, мы сворачиваем два фильтра RRC вместе, и получаем фильтр с приподнятым косинусом.

Фильтрация представляет собой просто свертку, поэтому выходной сигнал RRC-фильтра на приемной стороне представляет собой сигнал в форме приподнятого косинусоидального импульса с минимизированным ISI. Другое преимущество состоит в том, что при отсутствии эффектов канала мы используем согласованный фильтр на приемнике.

2 Добавление нарушений канала

Теперь мы рассмотрим влияние канала на то, как сигнал искажается между передачей и приёмом. Для начала мы будем использовать самый простой блок модели канала GNU Radio, который позволит нам смоделировать несколько основных проблем связанных с приёмником.

Проблемы:

- 1. Шум. В нашем приемнике вызывается аддитивный белый гауссовский шум. Мы устанавливаем мощность этого шума, регулируя значение напряжения шума модели канала.
- 2. clock, определяющие частоту радиомодулей. Два радиомодуля имеют разные clock. Одно радио работает на частоте fc + f_delta_1. Другое радио имеет другие clock и его реальная частота равна fc + f delta 2.
- 3. Таким образом, полученный сигнал будет f_delta_1 + f_delta_2.
- 4. Идеальная точка выборки. Идеальная точка выборки связана с проблемой часов. Два радиомодуля работают с разной скоростью, поэтому идеальная точка выборки неизвестна.

Результат моделирования позволяет нам поработать с аддитивным шумом, сдвигом частоты и временным сдвигом.

Рис. 5: Flowgraph с добавлением нарушения канала

Рис. 6: Добавление нарушения канала

График созвездия показывает нам облако образцов, намного хуже того, с чего мы начали на последнем этапе. Теперь, исходя из полученного сигнала, мы должны отменить все эти эффекты.

3 Восстановление timing

Теперь перейдём к процессу восстановления. Здесь мы будем использовать алгоритм восстановления многофазных clocks. Мы начнем с восстановления timing. Мы пытаемся найти наилучшее время для дискретизации входящих сигналов, что позволит максимизировать отношение сигнал/шум (SNR) каждой выборки, а также уменьшить влияние межсимвольных помех (ISI).

3.1 ISI

Проблему ISI мы можем увидеть на примере flowgraph symbol_sampling.grc, где мы создаем четыре отдельных символа, а затем фильтруем их.

Рис. 7: Flowgraph проблемы ISI

Рис. 8: Передача 4-ех символов без рассинхронизации

На графике видны различия между символами, отфильтрованными RC и RRC. Без фильтрации Найквиста (RRC - справа) мы можем увидеть, как в идеальной точке выборки каждого символа другие символы имеют некоторую энергию. Если мы суммируем эти символы вместе (как в непрерывном потоке), то энергия других выборок складывается вместе и искажает символ в этой точке. И наоборот, на выходе с RC-фильтром энергия от других выборок равна 0 в идеальной точке дискретизации для данного символа во времени. Это означает, что если мы делаем выборку точно в правильной точке выборки, мы получаем энергию только от текущего символа без помех от других символов в потоке. Это моделирование позволяет нам легко настроить количество выборок на символ, избыточную полосу пропускания фильтров RRC и количество ответвлений.

3.2 Pазные clocks

Затем мы посмотрим, как разные часы влияют на точки выборки между передатчиком и приемником. Используя пример потокового графа в symbol_sampling_diff., мы моделируем влияние разных часов в передатчике и приемнике.

Рис. 9: Flowgraph разные clocks

Все часы несовершенные, поэтому они:

1. начнут свою работу в разные моменты времени;

2. дрейфуют относительно других часов.

Рис. 10: Передача 4-ех символов с рассинхронизации

Наша задача - синхронизировать часы передачи и приемника, используя только информацию в приемнике из входящих выборок. Это задача известна как восстановление часов или времени.

3.3 Блок синхронизации многофазных часов

Блок вычисляет первый дифференциал входящего сигнала, который будет связан с его смещением тактовой частоты. В примере flowgraph symbol_differential_f можно увидеть графики с параметром скорости 1 (т.е. нет смещения часов).

Нам нужен образец 0,22 мс. Фильтр разности ([-1, 0, 1]) генерирует дифференциал символа, и выходной сигнал этого фильтра в правильной точке выборки равен 0. Затем мы можем инвертировать этот оператор и вместо этого сказать, когда выход дифференциального фильтра равен 0, мы нашли оптимальную точку выборки.

Рис. 11: Применение функции sample

Рис. 12: Нет смещения часов

У нас есть временное смещение там, где пик символа выключен, а производный фильтр не показывает нам нулевую точку.

Рис. 13: Есть смещение часов

Вместо использования одного фильтра мы можем создать серию фильтров, каждый с разной фазой. Если у нас достаточно фильтров на разных фазах, один из них имеет правильную фазу фильтра, которая даст нам желаемое значение синхронизации. Посмотрим на симуляцию, которая строит 5 фильтров, что означает 5 различных фаз.

Рис. 14: Flowgraph с несколькими фазами

Рис. 15: Несколько фаз

На графике мы можем видеть, что сигнал, помеченный как d(sym0)/dt+phi3, имеет точку отсчета в 0. Это говорит нам о том, что наша идеальная точка дискретизации находится при этом фазовом сдвиге. Следовательно, если мы возьмем RRC-фильтр нашего приемника и настроим его фазу на $phi3=3*2\pi/5$, то мы сможем исправить рассогласование по времени и выбрать идеальную точку дискретизации.

Итак, в данном примере мы использовали 5 фильтров в качестве идеальной точки выборки. Но этого недостаточно. Любое смещение выборки между этими

фазами по-прежнему приведет к несвоевременной выборке с добавленными ISI, как мы исследовали ранее.

Поэтому мы используем больше фильтров (32), чтобы получить максимальный коэффициент шума ISI, который меньше шума квантования 16-битного значения. То есть мы получим точность 16 бит. Для большей точность потребуется больше фильтров.

Затем мы используем контур управления 2-го порядка, который требуется, чтобы получить как правильную фазу фильтра, так и разницу в скорости между двумя тактовыми сигналами.

3.4 Использование блока многофазной синхронизации

Teпepь мы используем этот блок в нашей симуляции. Пример flowgraph mpsk_stage принимает выходные данные модели канала и передает их через наш блок.

Puc. 16: Flowgraph с блоком многофазной синхронизации

Рис. 17: Использование блока многофазной синхронизации

Видно два созвездия: слева - полученный сигнал до восстановления синхронизации и справа - после восстановления синхронизации.

4 Многолучевость

Сначала мы разберемся, что такое многолучевость. В большинстве коммуникационных сред у нас нет единственного пути для прохождения сигнала от передатчика к приемнику. Сигналы отражаются от различных поверхностей и приходят на приёмник в разное время в зависимости от длины пути. Их суммирование в приемнике вызывает искажения. Эти искажения вызывают внутрисимвольную и межсимвольную интерференции.

Нам нужно исправить это поведение, и мы можем сделать это, используя механизм, очень похожий на стереоэквалайзер. С помощью стереофонического эквалайзера мы можем изменить усиление определенных частот, чтобы либо подавить, либо усилить эти сигналы.

Рис. 18: Flowgraph многолучевость

Рис. 19: Использование блока многофазной синхронизации

Как мы можем видеть на графике, многолучевой канал создает некоторые искажения в сигнале. Задача эквалайзера - отменить искажение, вызванное ка-

налом, чтобы выходной сигнал эквалайзера был ровным. Но вместо того, чтобы настраивать каждый tap вручную, мы используем алгоритмы, которые обновляют эти taps за нас. Наша задача - использовать правильный алгоритм эквалайзера и настроить параметры.

Одним из важных параметров здесь является количество taps в эквалайзере. Как мы видим в нашем моделировании, пять taps дают довольно грубый контроль над частотной характеристикой. Чем больше taps, тем больше времени требуется как на вычисление ответвлений, так и на запуск эквалайзера против сигнала.

5 Эквалайзеры

GNU Radio имеет два эквалайзера.

5.1 CMA

CMA или алгоритм постоянного модуля - это слепой эквалайзер, который работает только с сигналами с постоянной амплитудой или модулем. В примере mpsk_stage4.grc мы используем алгоритм CMA с 11 taps. Изменим параметры и посмотрим, как это влияет на производительность как с точки зрения вычислений, так и с точки зрения сигналов.

Рис. 20: Flowgraph с эквалайзером СМА

Рис. 21: Использование эквалайзера СМА

На графиках мы можем увидеть эффект синхронизированного по времени многолучевого сигнала до и после эквалайзера. До эквалайзера у нас очень некрасивый сигнал даже без шумов. Эквалайзер понимает, как инвертировать и сократить канал, чтобы у нас снова был хороший, чистый сигнал. Мы также можем видеть сам канал и то, как он красиво выравнивается после эквалайзера.

5.2 LMS DD

Хорошей практикой является использование блока эквалайзера LMS DD. LMS или алгоритм наименьших квадратов требует знания принимаемого сигнала. Эквалайзеру необходимо знать точки созвездия для корректировки, и он использует решения о выборках, чтобы сообщить, как обновлять ответвления для эквалайзера.

Заменим эквалайзер CMA на LMS DD.

Рис. 22: Использование эквалайзера LMS DD

6 Фазовая и точная частотная коррекция

Мы выровняли канал, но у нас все еще есть проблема смещения фазы и частоты. Она выходит за пределами возможностей эквалайзера. Поэтому нам нужно исправить любой сдвиг фазы, а также любой сдвиг частоты.

На этом этапе мы будем использовать цикл второго порядка, чтобы мы могли отслеживать фазу и частоту. Тип восстановления, который мы здесь рассмотрим, предполагает, что мы выполняем точную частотную коррекцию. Поэтому мы должны находиться в приличном диапазоне идеальной частоты, чтобы цикл сошёлся.

Для этой задачи мы собираемся использовать цикл Костаса в примере mpsk_stage5.

Рис. 23: Flowgraph для исправления сдвига фазы и частоты

Рис. 24: Исправление сдвига фазы и частоты

Мы установили шум, временной сдвиг, простой многолучевой канал и частотный сдвиг. После эквалайзера мы видим, что все символы находятся на единичном круге, но вращаются из-за смещения частоты, которое еще не исправлено. На выходе блока цикла Костаса мы можем видеть заблокированное созвездие и дополнительный шум.

7 Расшифровка

Теперь мы можем декодировать сигнал. Используя пример flowgraph mpsk_stage6. мы вставляем Constellation Decoder после цикла Костаса, но наша работа еще не завершена. Мы передаём 4 дифференциальных символа, но мы не можем быть уверены, что у нас есть такое же отображение символов на точки созвездия, которое мы делали при передаче.

Рис. 25: Flowgraph декодирования

Flowgraph использует блок дифференциального декодера для преобразования кодированных дифференциальным кодом символов обратно в их исходные символы. Мы используем блок Мар для преобразования символов из дифференциального декодера в исходные символы, которые мы передали. На данный момент у нас теперь есть исходные символы от 0 до 3, поэтому мы распакуем эти 2 бита на символ в биты, используя блок unpack bits. Теперь у нас есть исходный битовый поток данных.

Но как мы узнаем, что это исходный битовый поток? Для этого нам нужно сравнить переданные данные с входным битовым потоком. Однако прямое сравнение ничего не даст. Так как в цепочке приемника много блоков и фильтров, которые задерживают сигнал, принятый сигнал отстает на некоторое количество бит. Чтобы это исправить, необходимо добавить задержку Delay.

Рис. 26: Сравнение данных

8 Выводы

В результате выполнения данной работы мы изучили основные этапы, необходимые для восстановления сигналов, а также научились строить PSK модулятор/демодулятор для работы с сигналом.