SOLVING THE POISSON-EQUATION IN ONE DIMENSION FYS3150: COMPUTATIONAL PHYSICS

TRYGVE LEITHE SVALHEIM SEBASTIAN G. WINTHER-LARSEN GITHUB.COM/GREGWINTHER

 $\ensuremath{\mathsf{ABSTRACT}}.$ Lorem ipsum dolor sit amet, consectur adipiscing lit. Nullam ut lacus eget lorem...

Contents

1. Introduction	1
2. Theory	1
2.1. The Poisson Equation	1
2.2. Approximation of the Second Derivative	1
3. Algorithms	2
3.1. Tridiagonal Matrix Algorithm	2
References	2

1

1. Introduction

2. Theory

2.1. The Poisson Equation. The Poisson equation is a classical equation from electromagnetism. The electrostatic potential Φ is generated by a localized charge distribution $\rho(\mathbf{r})$. In three dimensions the equation reads

(1)
$$\nabla^2 \Phi = -4\pi \rho(\mathbf{r})$$

where ∇^2 is the Laplace operator. In three dimensions the Laplace operator can be expressed using spherical coordinates, but in this study I am assuming that Φ and ρ are spherically symmetric, thus reducing the equation to a one-dimensional problem. only dependent on radius r.

(2)
$$\nabla^2 = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right)$$

By substituting $\Phi(r) = \phi(r)/r$ the Poisson equation is reduced to

$$\frac{d^2\phi}{dr^2} = -4\pi r \rho(r)$$

and by letting $\phi \to u$ and $r \to x$ one is left with the very simple equation

$$-u''(x) = f(x)$$

The inhomogenous term f, or source term, is given by the charge distribution ρ multiplied by r and the constant -4π . In this study, however, the source term will be $f(x) = 100e^{-10x}$ and the results can be compared to the analytical solution $u(x) = 1 - (1 - e^{-10})x - e^{-10x}$.

2.2. Approximation of the Second Derivative. In this study the one-dimensional Poisson equation will be solved with Dirichlet boundary conditions by rewriting it as a set of linear equations. The discretized approximation of u is defined as v_i with grid points $x_i = ih$, step size of $h = \frac{1}{n+1}$, in the interval $x_0 = 0$ to $x_{n+1} = 1$ and with boundary conditions $v_0 = v_n + 1 = 0$. The interior solution $v_i \forall i \in 1, ..., n$ is to be found. The second order derivative is approximated with the three point formula such that equation 4 becomes

(5)
$$-\frac{v_{i+1} - 2v_i + v_i - 1}{h} = f_i$$

By defining $\mathbf{f} = h^2 f_i$ one can rewrite equation 5 as $-v_{i+1} - 2v_i + v_{i-1} = h^2 f_i$. If we ignore the end points, i = 0 and i = n + 1, this equation can be represented as a matrix equation.

$$A\mathbf{v} = \mathbf{f}$$

3. Algorithms

Two main methods are implemented and compared. The first method is gaussian elimination of the tridiagonal matrix A, also known as the *Thomas Algorithm* [1]. This is a simplified form of Gaussian elimination that can ve used to solve tridiagonal systems of equations. The method is improved upon in order to take into account the fact that the matrix we are dealing with has the same numbers along the diagonals. The second method is the LU-decomposition method.

3.1. **Tridiagonal Matrix Algorithm.** Our tridiagonal system can be represented by

(8)
$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = \mathbf{f}$$

with $a_i = -1, b_i = 2$ and $c_i = -1$, except for $a_1 = 0$ and $c_n = 0$. Row reducing a matrix will reveal how the algorithm functions. Limiting the problem to four dimensions for easier reading and to save the rainforest¹.

$$(9) \qquad \begin{bmatrix} b_1 & c_1 & 0 & 0 & | & f_1 \\ a_2 & b_2 & c_2 & 0 & | & f_2 \\ 0 & a_3 & b_3 & c_3 & | & f_3 \\ 0 & 0 & a_4 & b_4 & | & f_4 \end{bmatrix} \sim \begin{bmatrix} 1 & c_1/b_1 & 0 & 0 & | & b_1/b_1 \\ 0 & b_2 - \frac{c_1}{b_1}a_2 & c_2 & 0 & | & f_2 - \frac{f_1}{b_1}a_2 \\ 0 & a_3 & b_3 & c_3 & | & f_3 \\ 0 & 0 & a_4 & b_4 & | & f_4 \end{bmatrix}$$

Now let $\beta_1 = b_1$ and $\beta_2 = b_2 - \frac{c_1}{b_1}a_2$. As new elements start to appear in vector \mathbf{f} , right to the vertical bar in the augmented matrix, they are also relabeled to \tilde{f}_i . For example $\tilde{f}_1 = f_1/\beta_1$. One more iteration will reveal the pattern of the algorithm.

$$\begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 \\
0 & 1 & c_{2}/\beta_{2} & 0 \\
0 & a_{3} & b_{3} & c_{3} \\
0 & 0 & a_{4} & b_{4}
\end{bmatrix} = \begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 & | \tilde{f}_{1} \\
0 & 1 & c_{2}/\beta_{2} & 0 & | \tilde{f}_{2} \\
0 & a_{3} & b_{3} & c_{3} & | f_{3} \\
0 & 0 & a_{4} & b_{4}
\end{bmatrix} = \begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 & | \tilde{f}_{1} \\
0 & 1 & c_{2}/\beta_{2} & 0 & | \tilde{f}_{2} \\
0 & 0 & b_{3} - \frac{c_{2}}{\beta_{2}}a_{3} & c_{3} & | f_{3} - \tilde{f}_{2}a_{3} \\
0 & 0 & a_{4} & b_{4}
\end{bmatrix} \times \begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 & | \tilde{f}_{1} \\
0 & 1 & c_{2}/\beta_{2} & 0 & | \tilde{f}_{2} \\
0 & 0 & 1 & c_{3}/\beta_{3} & | (f_{3} - \tilde{f}_{2}a_{3})/\beta_{3} \\
0 & 0 & a_{4} & b_{4}
\end{bmatrix} \times \cdots \times \begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 & | \tilde{f}_{1} \\
0 & 1 & c_{2}/\beta_{2} & 0 & | \tilde{f}_{2} \\
0 & 0 & 1 & c_{3}/\beta_{3} & | f_{4}
\end{bmatrix}$$

$$\sim \cdots \times \begin{bmatrix}
1 & c_{1}/\beta_{1} & 0 & 0 & | \tilde{f}_{1} \\
0 & 1 & c_{2}/\beta_{2} & 0 & | \tilde{f}_{2} \\
0 & 0 & 1 & c_{3}/\beta_{3} & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & c_{3}/\beta_{3} & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\
0 & 0 & 0 & 0 & 1 & | \tilde{f}_{3} \\$$

This pattern can be summarized quite elegantly by the following difference equations.

(13)
$$\beta_i = b_i - \frac{c_{i-1}}{\beta_{i-1}}, \quad \tilde{f}_i = (\beta_i - \tilde{f}_{i-1}a_i)/\beta_i, \quad i \in [2, n],$$

References

Thomas, L.H. (1949), Elliptic Problems in Linear Differential Equations over a Network.
 Watson Sci. Comput. Lab Report, Columbia University, New York.

¹Writing out a general case will take up more paper space