IN THE CLAIMS:

The text of all pending claims, (including withdrawn claims) is set forth below. Cancelled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with <u>underlining</u> and deleted text with <u>strikethrough</u>. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (new), (previously presented), or (not entered).

1. (Original) A naphthalenetetracarboxylic acid diimide derivative represented by the following formula:

$$\begin{bmatrix} R_1 \\ R_3 \\ R_4 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_3 \\ R_4 \end{bmatrix}$$

in which, R_1 , R_2 , and R_3 are each independently any one selected from the group consisting of hydrogen; halogen; substituted or unsubstituted alkyl of C_1 to C_{20} ; substituted or unsubstituted alkoxy of C_1 to C_{20} ; substituted or unsubstituted aryl of C_6 to C_{30} ; and substituted or unsubstituted aralkyl of C_7 to C_{30} .

- 2. (Original) The naphthalenetetracarboxylic acid diimide derivative according to claim 1, wherein the substituted alkyl, substituted alkoxy and substituted aralkyl are independently substituted with any one selected from the group consisting of alkyl, aryl, halogen and alkoxy.
- 3. (Original) The naphthalenetetracarboxylic acid diimide derivative according to claim 1, wherein the substituted aryl is substituted with any one selected from the group consisting of alkyl, alkoxy, nitro and halogen.
- 4. (Original) An electrophotographic photoconductive material comprising a substrate and a photosensitive layer formed on the substrate, in which the photosensitive layer comprises

a charge generating material and a charge transferring material, the charge transferring material is an electron transferring material and the electron transferring material comprises a naphthalenetetracarboxylic acid diimide derivative represented by the following formula:

$$\begin{array}{c|c} R_3 & O & \begin{array}{c} R_1 \\ \hline \\ R_3 \\ \hline \\ R_1 \end{array} \end{array}$$

in which, R_1 , R_2 , and R_3 are each independently any one selected from the group consisting of hydrogen; halogen; substituted or unsubstituted alkyl of C_1 to C_{20} ; substituted or unsubstituted alkoxy of C_1 to C_{20} ; substituted or unsubstituted aryl of C_6 to C_{30} ; and substituted or unsubstituted aralkyl of C_7 to C_{30} .

- 5. (Original) The electrophotographic photoconductive material according to claim 4, wherein the substituted alkyl, substituted alkoxy and substituted aralkyl are independently substituted with any one selected from the group consisting of alkyl, aryl, halogen and alkoxy.
- 6. (Original) The electrophotographic photoconductive material according to claim 4, wherein the substituted aryl is substituted with any one selected from the group consisting of alkyl, alkoxy, nitro and halogen.
- 7. (Original) The electrophotographic photoconductive material according to claim 4, wherein the electrophotographic photoconductive material contains the electron transferring material of the above formula in a ratio of 20 wt% to 40 wt% based on the total solid components.
- 8. (Original) The electrophotographic photoconductive material according to claim 4, wherein the electrophotographic photoconductive material further comprises a hole transferring material.

Serial No. 10/768,083

9. (Original) The electrophotographic photoconductive material according to claim 4, wherein the photosensitive layer has a single-layer structure comprising the charge generating material and the charge transferring material dispersed in an binder resin.

- 10. (Original) The electrophotographic photoconductive material according to claim 4, wherein the photosensitive layer has a layered structure comprising a charge generating layer comprising the charge generating material and a charge transferring layer comprising the charge transferring material.
- 11. (Original) The electrophotographic photoconductive material according to claim 4, wherein