大语言模型

解码效率分析与加速算法

《大语言模型》编写团队: 唐天一

解码与键值缓存

每生成一个词,重 新计算所有查询、 键、值矩阵

新生成词的查询向 量与之前词缓存的 键值计算注意力

解码与键值缓存

> 基于键值缓存优化的贪心解码算法示意图

```
输入: 模型 M, 输入词元序列 u
输出: 输出词元序列 y
                                                        Attention(q, K, V) = softmax(\frac{qK}{\sqrt{L}}
1: P, K_{past}, V_{past} = M(u)

2: u' = \arg \max P

3: u \leftarrow u \oplus [u']

全量解码
 4: while u' 不是结束词元且 u 的长度不超过预设长度 do
 5: P, K, V = \mathcal{M}(u', K_{past}, V_{past}) # 利用键值缓存计算新生成词元状态
 6: u' = \arg \max P
                     解码加速的两个关键
                                                                                    增量解码
    \boldsymbol{u} \leftarrow \boldsymbol{u} \oplus [u']
     K_{past}, V_{past} \leftarrow K_{past} \oplus K, V_{past} \oplus V # 更新键值缓存
 9: end while
10: \mathbf{y} \leftarrow \mathbf{u}
```

解码效率的定量评估指标

GPU 评估指标

算力: 每秒的浮点运算次数, FLOP/s

带宽: 每秒的显存读写量, byte/s

计算强度上限: 算力和带宽的比值

模型评估指标

运算量:所需总浮点运算数,FLOP

访存量:所需总显存读写量, byte

计算强度:运算量和访存量的比值

A100 (80G): 算力为312 TFLOP/s, 带宽为2039 GB/s, 计算强度上限

NVIDIA。约为142.51 FLOP/byte

解码效率的定量评估指标

- > 效率问题分析
 - > 带宽瓶颈
 - ▶ 模型计算强度 < GPU 计算强度上限
 - > 运行效率主要受显存读写速度的影响
 - > 计算瓶颈
 - ▶ 模型计算强度 > GPU 计算强度上限
 - ▶运行效率主要受运算速度的影响

- > 矩阵乘法的运算量
 - ▶ 矩阵 $A \in \mathbb{R}^{n \times m}$ 和矩阵 $B \in \mathbb{R}^{m \times p}$ 相乘所需的运算量为 2nmp
- > 矩阵乘法的访存量
 - ▶ 矩阵 $A \in \mathbb{R}^{n \times m}$ 和矩阵 $B \in \mathbb{R}^{m \times p}$ 相乘所需的访存量为 O(nm + mp + np)
- > 矩阵乘法的计算强度
 - \triangleright 运算量比访存量为 $O(\frac{1}{\frac{1}{n} + \frac{1}{m} + \frac{1}{p}})$

- \triangleright 张量 $X \in \mathbb{R}^{B \times T \times H}$ 与矩阵 $B \in \mathbb{R}^{H \times H}$ 相乘
 - ▶ 运算量: 2BTH²
 - ▶ 访存量: O(BTH + H²)
 - ightharpoonup 计算强度: $O(\frac{1}{\frac{1}{H} + \frac{1}{BT}})$
- \triangleright 注意力计算 softmax $\left(\frac{QK^{\mathsf{T}}}{\sqrt{D}}\right) V$, $Q, K, V \in \mathbb{R}^{B \times T \times N \times D}$
 - \triangleright 运算量: 两次矩阵乘法各 $2BT^2ND$, softmax运算和 \sqrt{D} 放缩共 $4BT^2N$
 - \triangleright 访存量: 两次矩阵乘法 $O(BTND + BT^2N)$, 其他运算 $O(BT^2N)$
 - ightharpoonup 计算强度: $O(\frac{1+\frac{1}{D}}{\frac{1}{D}+\frac{1}{T}})$

- > 全量解码阶段的计算强度(推导见教材)
 - ▶ 线性变换强度约为 2730.7
 - > 公式 ① 468
 - ▶ 多头注意力强度约为 114.7
 - >公式③
 - ▶其余操作强度约为1
 - > 公式 2579

A100 (80G) 的计算强度上限为 142.5 全量解码是**计算瓶颈**的

计算公式	计算强度
$\bigcirc Q, K, V = XW^{Q,K,V}$	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{RT}}\right)$
@Q,K = RoPE(Q,K)	O(1)
	$O\left(\frac{1+\frac{1}{D}}{\frac{1}{D}+\frac{1}{T}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{BT}}\right)$
	$O\left(\frac{1}{1+\frac{1}{BT}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{BT}}\right)$
$\mathcal{O} \boldsymbol{D} = \operatorname{Swish}(\boldsymbol{G}) \cdot \boldsymbol{U}$	O(1)
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{BT}}\right)$
	$O\left(\frac{1}{1+\frac{1}{BT}}\right)$

$$B = 8$$
 $T = 1024$ $H = 4096$ $D = 128$

- > 增量解码阶段的计算强度(推导见教材)
 - ▶ 将全量解码公式(注意力除外)中T变为1
 - >线性变换的计算强度约为8.0
 - > 公式①⑤⑦⑨
 - ▶ 多头注意力的计算强度约为 1.0
 - >公式④

A100 (80G) 的计算强度上限为 142.5 增量解码是带宽瓶颈 ("内存墙"问题)

计算公式	计算强度
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{R}}\right)$
@ q, k = RoPE(q, k)	O(1)
$\Im K, V = \operatorname{Cache}(k, v)$	-
$\textcircled{4} o = \operatorname{Attn}(q, K, V)$	$O\left(\frac{1+\frac{1}{D}}{1+\frac{1}{D}+\frac{1}{T}}\right)$
	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{B}}\right)$
	$O\left(\frac{1}{1+\frac{1}{B}}\right)$
$\mathcal{O} g, u = x[W^G, W^U]$	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{B}}\right)$
\otimes $d = Swish(g) \cdot u$	O(1)
$ x = dW^D$	$O\left(\frac{1}{\frac{1}{H} + \frac{1}{H'} + \frac{1}{B}}\right)$
	$O\left(\frac{1}{1+\frac{1}{B}}\right)$

B = 8 T = 1024 H = 4096 D = 128

系统级优化

> FlashAttention

- ightharpoonup 改进注意力计算 softmax $\left(\frac{QK^{\mathsf{T}}}{\sqrt{D}}\right)V$
- > 通过矩阵分块和算子融合,减少中间结果读写,减少访存量

将QKV分块计算, 在SRAM中直接计 算得到最终结果

系统级优化

> PagedAttention

- \triangleright 优化键值缓存更新操作 $K' = K \oplus (x_{n'}W^K)$ 和 $V' = V \oplus (x_{n'}W^V)$
- > 通过显存分页减少拼接时显存反复分配,同时提升注意力计算效率

Key and value vectors

查询与多个键值块 并行计算

显存分页

系统级优化

- >传统批次推理:一个批次全部推理完成才进行下一个
- ▶ 批次管理优化:将每个请求进行分割,提升实际运行批次
 - > 连续批处理
 - > 分割为一个全量解码和若干个单步增量解码
 - ▶ 启发式选择部分请求全量解码或单步增量解码
 - > 动态分割
 - ▶ 将全量解码进一步拆分
 - ▶ 同时进行全量解码和增量解码

传统批次推理

批次管理优化

- > 推测解码
 - ▶ 先用小且高效的模型自回归地生成 3~5 个词元
 - ▶ 再由大模型对这个片段进行一次验证,进行拒绝与修改
 - >不会降低大模型解码质量,一般带来两倍左右加速

> 推测解码流程示例 (视频演示)

> 级联解码

- >引入一系列模型,按照效率从高到低排序
- ▶依次让模型生成答案,由二分类器判断
- > 如果结果可靠则不需要后续生成

通过优先让相对较小模型进行解码, 减少更大模型的调用开销

- ▶非(半)自回归解码
 - ▶ 非自回归解码:基于输入一次性生成所有词元
 - ▶半自回归解码:组内非自回归生成,组间自回归生成

- ▶非(半)自回归解码
 - ▶ 非自回归解码:基于输入一次性生成
 - ▶半自回归解码:组内非自回归,组间自回归

> Medusa

- ▶额外训练两个预测头分别预测第二个词和第三个词
- >结合推测解码,加速原始大模型生成
- ▶不影响生成质量, 推理加速 2.2 倍

- ▶早退机制
 - > 不需要所有层计算,满足条件跳过后续层计算
 - > 每层得到输出概率分布, 计算分布的熵值; 如果熵值较低, 则提前退出

Model	MNLI-m		MN	MNLI-mm		QQP		QNLI		ST-2	MRPC		RTE		Manna
	Acc	Spd-up	Acc	Spd-up	F1/Acc	Spd-up	Acc	Spd-up	Acc	Spd-up	F1/Acc	Spd-up	Acc	Spd-up	Macro
						BERT									
BERT-base (Devlin et al., 2019)	84.6	1.00×	83.4	1.00×	71.2/ -	1.00×	90.5	1.00×	93.5	1.00×	88.9/ -	1.00×	66.4	1.00×	-
BERT-6L	80.8	2.00×	79.9	2.00×	69.7/88.3	2.00×	86.7	2.00×	91.0	2.00×	85.1/78.6	2.00×	63.9	2.00×	80.5
DeeBERT (Xin et al., 2020)	-		-	-	69.4/ -	$1.96 \times$	87.9	$1.79 \times$	91.5	$1.89 \times$	85.2/ -	$1.79 \times$	-	-	-
DeeBERT	74.4	$1.87 \times$	73.1	$1.88 \times$	70.4/88.8	$2.13 \times$	85.6	$2.09 \times$	90.2	$2.00 \times$	84.4/77.4	$2.07 \times$	64.3	$1.95 \times$	74.7
PABEE	79.8	$2.07 \times$	78.7	$2.08 \times$	70.4/88.6	$2.09 \times$	88.0	$1.87 \times$	89.3	1.95×	84.4/77.4	$2.01 \times$	64.0	1.81×	80.0
Ours	83.3	1.96×	82.7	$1.96 \times$	71.2/89.4	$2.18 \times$	89.8	$1.97 \times$	92.8	$2.02 \times$	87.0/81.8	$1.98 \times$	64.5	$2.04 \times$	82.5
•	•••••		••••	•••••		RoBERT	à						•••••	•••••	
RoBERTa-base (Xin et al., 2020)	87.0	1.00×	86.3	1.00×	71.8/ -	1.00×	92.4	1.00×	94.3	1.00×	90.4/ -	1.00×	67.5	1.00×	-
RoBERTa-6L	84.4	2.00×	83.4	2.00×	71.6/89.2	2.00×	90.4	2.00×	93.5	2.00×	89.3/85.5	2.00×	58.0	2.00×	82.5
DeeBERT	64.2	$1.87 \times$	64.7	$1.87 \times$	72.0/89.3	$2.05 \times$	83.8	$2.01 \times$	86.9	$2.02 \times$	88.7/84.3	1.86×	60.8	1.90×	75.4
Ours	86.6	1.92×	86.2	1.93×	72.0/89.3	$2.54 \times$	91.7	2.11×	94.5	1.98×	89.3/85.5	1.95×	58.0	2.11×	83.6
	•••••				•••••	ALBER	ľ	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	
ALBERT-base	85.2	$1.00 \times$	84.7	$1.00 \times$	70.5/88.7	$1.00 \times$	92.0	$1.00 \times$	93.3	$1.00 \times$	89.0/84.8	$1.00 \times$	72.0	$1.00 \times$	84.8
ALBERT-6L	82.4	2.00×	81.7	2.00×	69.8/88.3	2.00×	90.0	2.00×	91.8	2.00×	87.0/82.4	2.00×	65.8	2.00×	82.2
PABEE	84,2	1.90×	83.5	1.81×	70,7/88.9	$2.11 \times$	90.9	1.98×	92.4	$1.80 \times$	87.6/82.6	1.91×	66.8	2.06×	83.2
Ours	84.8	1.94×	84.1	1.95×	70.4/88.6	$2.35 \times$	91.9	1.97×	92.8	2.13×	88.3/84.6	1.95×	72.0	1.93×	84.5

> 早退机制

- > 不需要所有层计算,满足条件跳过后续层计算
- > 每层得到输出概率分布, 计算分布的熵值
- > 如果熵值较低,则提前退出
- ▶ 混合深度方法(借鉴 MoE)
 - ▶ 每层根据路由网络判定是否进行该层计算
 - ▶ 可以平衡时间开销, 最多减少 50% 计算开销

大语言模型

谢谢