$\Delta a = \Delta Y^{d} (MPC)$

When Taxes drop, Disposable Income increase by the same amount

When Disposable Income changes (rise or fall), Consumption changes:

The change in consumption cause a change in Equilibrium GDP:

The change in Disposable Income is the opposite of the change in Taxes

 ΛY^{α} +50 VC

 Λ

 Λ

When Taxes rise, Disposable Income drop by the same amount

Replace $\Delta Y^d = -\Delta T$:

 $\Delta a = -\Delta T (MPC)$

Replace $\Delta a = -\Delta T$ (MPC)

 $\Delta Y = -\Delta T(MPC)$

When Taxes rise, Disposable Income drop by the same amount
$$\Delta T = +70 \longrightarrow \Delta Y^d = -70$$

The change in Disposable Income is the opposite of the change in Taxes

$$\Delta Y^{d} = -\Delta T$$

When Disposable Income changes (rise or fall), Consumption changes: $\Delta a = \Delta Y^d$ (MPC)

$$\Delta a = \Delta Y^{\alpha} (MPC)$$

Replace $\Delta Y^d = -\Delta T$:

The change in consumption cause a change in Equilibrium GDP:

$$\Delta a = -\Delta T (MPC)$$

$$\Delta Y = \Delta a \left(\frac{1}{1-MPC}\right)$$

Replace $\Delta a = -\Delta T$ (MPC)

$$\Delta Y = -\Delta T(MPC) \left(\frac{1}{1-MPC}\right)$$

$$\Delta Y = -\Delta T(MPC) \left(\frac{1}{1-MPC}\right)$$

