1990 年全国高中数学联赛

第一试

(10月14日上午8:00-10:00)

 冼择题	(本题满分	30分.	每小55	4
ノレコモ ルツ		30 71 ,	747 J MAX J	''''''

1. 设
$$a \in (\frac{\pi}{4}, \frac{\pi}{2})$$
,则 $(\cos \alpha)^{\cos \alpha}$, $(\sin \alpha)^{\cos \alpha}$, $(\cos \alpha)^{\sin \alpha}$ 的大小顺序是

- A. $(\cos\alpha)^{\cos\alpha} \langle (\sin\alpha)^{\cos\alpha} \langle (\cos\alpha)^{\sin\alpha} \rangle$
- B. $(\cos\alpha)^{\cos\alpha} < (\cos\alpha)^{\sin\alpha} < (\sin\alpha)^{\cos\alpha}$
- C. $(\sin\alpha)^{\cos\alpha} \langle (\cos\alpha)^{\cos\alpha} \langle (\cos\alpha)^{\sin\alpha} \rangle$
- $D. (\cos \alpha)^{\sin \alpha} < (\cos \alpha)^{\cos \alpha} < (\sin \alpha)^{\cos \alpha}$

2. 设 f(x)是定义在实数集上的周期为 2 的函数,且是偶函数,已知当 x∈ [2,3]时, f(x)=x,则当 x∈ [-2,0]时,f(x)的解析式是(-

A f(x) = x+4

B. f(x)=2-x C. f(x)=3-|x+1| D. f(x)=2+|x+1|

3. 设双曲线的左右焦点是 F、F。左右顶点是 M 若 \ PF.F.的顶点 P 在双曲线上。 则 🛆 🎮 所内切圆与边 🚜 的切点位置是()

A. 在线段 **m**内部

B. 在线段 F.II内部或在线段 IE.内部

C. 点 II或点 II

D. 不能确定的

4. 点集{(x, y)|1g(x³+¹/₃y³+¹/₉)=1gx+1gy}中元素个数为(

A. 0

5. 设非零复数 x、y满足 $x^2+xy+y^2=0$,则代数式 $\left(\frac{x}{x+y}\right)^{1990}+\left(\frac{y}{x+y}\right)^{1990}$ 的值是(

A. 2^{-1989}

B. −1

D. 以上答案都不对

6. 已知椭圆 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{h^{2}}=1$ (a>b>0)通过点(2,1),所有这些椭圆上满足|y|>1 的点的集合用阴 影表示是下面图中的(

二. 填空题(本题满分3.0分,每小题5分)

- 1. 设 n 为自然数,a、b 为正实数,且满足 a+b=2,则 $\frac{1}{1+a''}+\frac{1}{1+b''}$ 的最小值是_
- 2. 设 A(2,0) 为平面上一定点, $P(\sin(2t-60^\circ),\cos(2t-60^\circ))$ 为动点,则当 t由 15° 变到 45°时,线段 AP 扫过的面积是
- 3. 设 n 为自然数,对于任意实数 x, y, z, 恒有 $(x^2+y^2+z^2)^2 \le n(x^4+y^4+z^4)$ 成立,则 n 的 最小值是
 - 4. 对任意正整数 n_1 连结原点 0与点 $A_n(n_1, n_1+3)$,用 f(n) 表示线段 OA_n 上的整点个数(不

计端点), 试求 $f(1)+f(2)+\cdots+f(1990)$.

5. 设 n=1990,则

6.8 个女孩与 25 个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有种不同和排列方法.(只要把圆旋转一下就能重合的排法认为是相同的).

三. (本题满分 20 分)

已知 a, b均为正整数,且 a>b, $\sin \theta = \frac{2ab}{a^2 + b^2}$,(其中 $0 < \theta < \frac{\pi}{2}$), $A_n = (a^2 + b^2)^n \sin n \theta$.求证:对于一切自然数 n, A_n 均为整数.

四. 点个正数排成 点行 点列

$$a_{11}$$
 a_{12} a_{13} a_{14} a_{1n}
 a_{21} a_{22} a_{23} a_{24} a_{2n}
 a_{31} a_{32} a_{33} a_{34} a_{3n}
 a_{41} a_{42} a_{43} a_{44} a_{4n}
 a_{n1} a_{n2} a_{n3} a_{n4} a_{nn}

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知 $a_n=1$, $a_{n=1}$ $a_{n=1}$

五. 设棱锥 IF-ABCD 的底面为正方形,且 IDA=ID, IDA=ID, IDA=ABCD 的面积为 1,试求能够放入这个棱锥的最大球的半径.

第二试

(10月14日上午10:30-12:30)

一. (本题满分 35 分)

四边形 ABCD 内接于圆 O,对角线 AC 与 BD 相交于 P,设三角形 ABP、BCP、CDP 和 DAP 的外接圆圆心分别是 O、O2、O3、O4、O4、O5、O50、O60、O60、O70 是 O80。O80 是 O80 是 O

二. (本题满分35分)

设 *E*={1, 2, 3, ·····, 200},

 $G=\{a_1, a_2, \ldots, a_{100}\} \subseteq E.$

且 G具有下列两条性质:

 対任何 1≤i<j≤100, 恒有 a_i+a_j≠201;

(2)
$$\sum_{I=1}^{100} a_i = 10080.$$

试证明: G中的奇数的个数是 4 的倍数. 且 G中所有数字的平方和为一个定数.

三. (本题满分35分)

某市有 n 所中学,第 i 所中学派出 C_i 名代表 $(1 \le C_i \le 39, 1 \le i \le n)$ 来到体育馆观看球赛,全部学生总数为 $\sum\limits_{i=1}^{n} C_i = 1990$. 看台上每一横排有 199 个座位,要求同一学校的学生必须坐在同一横排,问体育馆最少要安排多少横排才能够保证全部学生都能坐下.

1990 年全国高中数学联赛解答

第一试

- 一. 选择题(本题满分30分,每小题5分)
 - 1. 设 $a \in (\frac{\pi}{4}, \frac{\pi}{2})$,则 $(\cos \alpha)^{\cos \alpha}$, $(\sin \alpha)^{\cos \alpha}$, $(\cos \alpha)^{\sin \alpha}$ 的大小顺序是
 - A. $(\cos\alpha)^{\cos\alpha} \langle (\sin\alpha)^{\cos\alpha} \langle (\cos\alpha)^{\sin\alpha} \rangle$
 - B. $(\cos\alpha)^{\cos\alpha} < (\cos\alpha)^{\sin\alpha} < (\sin\alpha)^{\cos\alpha}$
 - C. $(\sin\alpha)^{\cos\alpha} < (\cos\alpha)^{\cos\alpha} < (\cos\alpha)^{\sin\alpha}$
 - $D. (\cos \alpha)^{\sin \alpha} < (\cos \alpha)^{\cos \alpha} < (\sin \alpha)^{\cos \alpha}$

【答案】D

【解析】 $a \in (\frac{\pi}{4}, \frac{\pi}{2}) \Rightarrow 0 < \cos a < \sin a < 1$,

- $: (\cos\alpha)^{\cos\alpha} \langle (\sin\alpha)^{\cos\alpha}; (\cos\alpha)^{\sin\alpha} \langle (\cos\alpha)^{\cos\alpha}; \mathcal{L} D.$
- 2. 设 f(x) 是定义在实数集上的周期为 2 的函数,且是偶函数,已知当 $x \in [2,3]$ 时, f(x) = x, 则当 $x \in [-2, 0]$ 时, f(x)的解析式是(
- A. f(x) = x+4 B. f(x) = 2-x C. f(x) = 3-|x+1| D. f(x) = 2+|x+1|

【答案】C

【解析】设 x∈ [-2,-1],则 x+4∈ [2,3],于是 f(x+4)=x+4,但 f(x)=f(x+4)=x+4 (x $\in [-2,-1]),$

又设 x∈[-1,0),则-x∈(0,1],故 f(-x)=-x+2,由 f(x)=f(-x)=-x+2 (x∈[-1, 0).

$$f(x)=3-|x+1|=\begin{cases}3-(-x-1)=x+4 & (x\in[-2,-1]),\\3-(x+1)=-x+2 & (x\in(-1,0)).\end{cases}$$
 故选 \mathcal{E} .

- 3. 设双曲线的左右焦点是 F_1 、 F_2 ,左右顶点是 M_1 N_2 若 $\triangle PF_1F_2$ 的顶点 P在双曲线上, 则△PFE的内切圆与边 FEE的切点位置是(
- A. 在线段 MV 内部 B. 在线段 FM 内部或在线段 NF_2

内部

- C. 点 M或点 N D. 不能确定的

【答案】C

【解析】设内切圆在三边上切点分别为 D. E. F, 当 P在右支 上时, PF₁-PF₂=2a.

但 $PF_1 - PF_2 = F_1D - F_2D = 2a$, 即 D = N 重合, 当 P 在左支上时, D与 M 重合. 故选 C.

- 4. 点集 $\{(x, y) | 1g(x^3 + \frac{1}{3}$ 错误!未指定书签。 $y^3 + \frac{1}{9}) = 1gx + 1gy\}$ 中元素个数为(
 - *A*. 0
- *B*. 1
- C. 2
- D. 多于 2

【答案】B

【解析】 $x^3 + \frac{1}{3}y^3 + \frac{1}{9} = xy > 0$. 但 $x^3 + \frac{1}{3}y^3 + \frac{1}{9} \ge 3\sqrt[3]{x^3 \cdot \frac{1}{3}y^3 \cdot \frac{1}{9}} = xy$ 错误! 未指定书签。**,等号**

当且仅当 $x^3 = \frac{1}{3}y^3 = \frac{1}{9}$ 时,即 $x = \frac{\sqrt[3]{3}}{3}$, $y = \frac{\sqrt[3]{9}}{3}$ 时成立.故选 B.

5. 设非零复数
$$x_1 y$$
 满足 $x^2 + xy + y^2 = 0$,则代数式 $\left(\frac{x}{x^2 + y}\right)^{1990} + \left(\frac{y}{x^2 + y}\right)^{1990}$ 的值是()

$$A. 2^{-1989}$$

C. 1

【答案】B

【解析】 $\frac{x}{y} = \omega$ 或 ω^2 ,其中 $\omega = \cos 120^\circ + i \sin 120^\circ$. $1 + \omega + \omega^2 = 0$. 且 $\omega^3 = 1$.

若
$$_{y}^{x}=\omega$$
,则得 $(\frac{\omega}{1+\omega})^{1990}+(\frac{1}{\omega+1})^{1990}=-1$. 若 $_{y}^{x}=\omega^{2}$,则得 $(\frac{\omega^{2}}{1+\omega^{2}})^{1990}+(\frac{1}{\omega^{2}+1})^{1990}=-1$. 选

В.

6. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)通过点(2, 1),所有这些椭圆上满足|y| > 1 的点的集合用阴影表示是下面图中的()

【答案】C

【解析】 $\frac{4}{a^2} + \frac{1}{b^2} = 1$,由 $a^2 > b^2$,故得 $\frac{1}{b^2} < 1 < \frac{4}{b^2} + \frac{1}{b^2} = \frac{5}{b^2}$, $1 < b < \sqrt{5}$. $\frac{4}{a^2} + \frac{1}{b^2} = 1 \Rightarrow \frac{5}{a^2} < 1$, $a^2 > 5$.故选 C.

- 二. 填空题(本题满分30分,每小题5分)

【答案】1

【解析】 $ab \le (\frac{a+b}{2})^2 = 1$,从而 $a^nb^n \le 1$,故 $\frac{1}{1+a^n} + \frac{1}{1+b^n} = \frac{1+a^n+1+b^n}{1+a^nb^n+a^nb^n} \ge 1$. 等号当且仅当 a=b=1 时成立.即所求最小值=1.

2. 设 A(2,0)为平面上一定点, $P(\sin(2t-60^\circ),\cos(2t-60^\circ))$ 为动点,则当 t由 15°变到 45°时,线段 AP 扫过的面积是

【答案】
$$\frac{1}{6}\pi$$

【解析】点 P 在单位圆上, $\sin(2t-60^\circ) = \cos(150^\circ - 2t)$, $\cos(2t-60^\circ) = \sin(150^\circ - 2t)$. 当 t 由 15° 变到 45° 时,点 P 沿单位圆从 $(-\frac{1}{2}, \frac{\sqrt{3}}{2})$

运动到 $(\frac{1}{2},\frac{\sqrt{3}}{2})$. 线段 AP 扫过的面积=扇形面积 $\frac{1}{6}\pi$.

3. 设 n 为自然数,对于任意实数 x, y, z, 恒有 $(x^2+y^2+z^2)^2 \le n(x^4+y^4+z^4)$ 成立,则 n 的最小值是

【答案】3

【解析】 $(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$ $\leq x^4+y^4+z^4+(x^4+y^4)+(y^4+z^4)+(z^4+x^4)=3(x^4+y^4+z^4)$. 等号当且仅当 x=y=z 时成立. 故 n=3.

4. 对任意正整数 n. 连结原点 0与点 A.(n. n+3), 用 f(n)表示线段 0A上的整点个数(不 计端点), 试求 f(1)+f(2)+···+f(1990).

【答案】1326

【解析】 线段 OA 的方程为 $y = \frac{n+3}{n} x (0 \le x \le n)$,故 f(n) 等于该线段内的格点数.

若 n=3i·(i∈ x),则得 p= i+1 r (0≤ x≤n) (i∈ x+1, 其内有两个整点 (i, i+1), (2i, 2i+2), 此时 f(n)=2;

若 $n=3k\pm 1(k\in\mathbb{Z})$ 时,则由于 n与 n+3 互质,故 OA.内没有格点,此时 f(n)=0.

$$\therefore f(1)+f(2)+\cdots+f(1990)=2\left[\frac{1990}{3}\right]=1326.$$

5. 设 n=1990, 则

【答案】
$$-\frac{1}{2}$$

【解析】取 $(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{1990}$ 展开的实部即为此式. 而 $(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{1990}=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. 故原式= $-\frac{1}{2}$.

6.8 个女孩与 25 个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有种不同和排列方法。(只要把圆旋转一下就能重合的排法认为是相同的)。

【答案】 6:7! 25!

【解析】每个女孩与其后的两个男孩组成一组,共8组,与余下9个男孩进行排列,某个女孩始终站第一个位子,其余7组在8+9—1个位子中选择7个位子,得 $C_{n+1}=C_n^{\dagger}$ 种选法。

7 个女孩可任意换位,25 个男孩也可任意换位,故共得 c_* 7! 25!种排列方法。

三. (本题满分20分)

已知 a, b均为正整数,且 a>b, $\sin \theta = \frac{2ab}{a^2+b^2}$,(其中 $0 < \theta < \frac{\pi}{2}$), $A_n = (a^2+b^2)^n \sin n \theta$. 求证: 对于一切自然数 n, A_n 均为整数.

【解析】证明:由 $\sin \theta = \frac{2ab}{\hat{s}^2 + \hat{b}^2}$,得 $\cos \theta = \frac{\hat{s}^2 - \hat{b}^2}{\hat{s}^2 + \hat{b}^2}$.记 $A = (\hat{s}^2 + \hat{b}^2)^2 \cos \theta$.

当 a、b均为正整数时,A=2ab、B=a-bb为整数.

 $A_2 = 4ab(\hat{a} - \hat{b}), B_2 = 2(\hat{a} - \hat{b})^2 - (\hat{a} + \hat{b})^2$ 也为整数。

若 $A_k = (a^2 + b^2)^k \sin k \theta$ 、 $B_k = (a^2 + b^2)^k \cos k \theta$ 均为整数,

则 $A_{H^{\pm}}=(\hat{s^{\pm}}+\hat{b^{\pm}})^{H^{\pm}}\sin(\hat{t}+1)$ $\theta=(\hat{s^{\pm}}+\hat{b^{\pm}})^{H^{\pm}}\sin\hat{t}$ $\theta\cos\theta+(\hat{s^{\pm}}+\hat{b^{\pm}})\cos\hat{t}$ $\theta\sin\theta=A_{b}$ 股+A.B.为整数。

 $B_{k+1} = (\hat{s^2} + \hat{b^2})^{k+1} \cos(k+1) \theta = (\hat{s^2} + \hat{b^2})^{k+1} \cos(k \theta \cos \theta - (\hat{s^2} + \hat{b^2})^{k+1} \sin(k \theta \sin \theta - B_k B_l - A_k A_l)$ 为整数。

由数学归纳原理知对于一切血∈减,私、凡为整数。

四. n^2 个正数排成 n行 n列

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等. 已知 224=1,

$$a_{42} = \frac{1}{8}$$
, $a_{43} = \frac{3}{16}$,

求 a₁₁+a₂₂+······+a_{nn}. (1990 年全国高中_数学联赛)

分析 由 a42、a43 或求 a44, 由 a24, a44 可求公比.

【解析】 设第一行等差数列的公差为 d, 各列的公比为 q.

$$a_{44} = 2 a_{43} - a_{42} = \frac{1}{4}.$$

由 a44=a24·q², 得,

$$q=\frac{1}{2}$$
.

$$a_{12}=a_{42}\cdot q^{-3}=1$$
.

$$d = \frac{a_{14} - a_{12}}{4 - 2} = \frac{1}{2},$$

$$a_{1k}=a_{12}+(k-2) d=\frac{1}{2}k(k-1, 2, 3, \dots, n)$$

$$a_{kk} = a_{1k}q^{k-1} = \frac{1}{2}k \cdot (\frac{1}{2})^{k-1} = (\frac{1}{2})^k \cdot k.$$

 $\diamondsuit S_n = a_{11} + a_{22} + \cdots + a_{nn}$.

则
$$S = \frac{1}{2}S = \sum_{k=1}^{n} \frac{k}{2^k} - \sum_{k=2}^{n+1} \frac{1}{2^k} = \frac{1}{2} + \sum_{k=2}^{n} \frac{1}{2^k} - \frac{n}{2^{n+1}}$$

$$= \frac{1}{2} + \frac{1}{2} - \frac{1}{2^n} - \frac{n}{2^{n+1}} = 1 - \frac{n+2}{2^{n+1}}.$$

:
$$S=2-\frac{n+2}{2^n}$$
.

五. 设棱锥 M—ABCD 的底面为正方形,且 MA=MD, $MA\perp AB$,如果 $\triangle AMD$ 的面积为 \Box 1,试求能够放入这个棱锥的最大球的半径.

【解析】取 AD、BC 中点 A. F. 则 MEL AD、ABL MA、ABL AD、⇒ABL 平面 MAD.

- ∴ 平面 MAD上平面 ABC. ∴ MELL 平面 ABC.
- ∴ 平面 MEF L 平面 ABC.
- ∵ EF// AB, 故 EF⊥平面 MAD, ∴ 平面 MEF⊥平面 MAD.
- ∵ BC⊥EF, BC⊥M, ∴ BC⊥平面 MEF,
- 二平面 亚红平面 亚化

取入mer的内切圆圆心 O,作 OP上EA、OQ上me,OR上me,由于平面 mer与平面 man、ABC、mec均垂直,则 OP、OQ、OR分别与平面 ABC、man、mec垂直,从而以此内切圆半径为半径的球与平面 man、ABC、mec都相切, 设此球的半径为 z,则

$$\therefore r = \frac{1}{2} (s + \frac{2}{s} - \sqrt{s^2 + \frac{4}{s^2}}) \le \frac{2}{s + \frac{2}{s} + \sqrt{s^2 + \frac{4}{s^2}}} \le \frac{1}{\sqrt{2+1}} = \sqrt{2} - 1.$$
 等号当且仅当 $s = \frac{2}{s}$,即 $s = \sqrt{2}$ 时

成立.

作 QH上 MA 由于 OQ// AB 故 OQ// 平面 MAB 故球心 O与平面 MAB的距离=QB

$$\exists AB=\sqrt{2}, \quad \blacksquare =\sqrt{2}, \quad \blacksquare =\sqrt{10}, \quad \blacksquare =\sqrt{2}=\sqrt{2}=(\sqrt{2}-1)=1.$$

即 o与平面 BAB的距离>xs 同理 o与平面 BCD的距离>x. 故球 o是放入此棱锥的最大球。

∴ 所求的最大球半径=√2-1.

第二试

(10月14日上午10:30—12:30)

一. (本题满分35分)

四边形 ABCD 内接于圆 O,对角线 AC与 BD 相交于 P,设三角形 ABP、BCP、CDP 和 DAP 的外接圆圆心分别是 O、O2、O3、O4、 求证 OP、 O_1O 3、 O_2O 4—三直线共点.

【解析】证明 :: 0为 △ABC 的外心, :. OA=OB.

- ∵ Q为 △ PAB 的外心, ∴ QA=QB.
- ∴ 00₁ ⊥ AB.

- ∴ ∠*PFB=*∠*EDP=*90°.
- ∴ PO₃ ⊥ AB, 即 OO₁ // PO₃.

同理, 00。// PO. 即 00,PO。是平行四边形.

- ∴ *QQ*与 *PO* 互相平分,即 *QQ*过 *PO* 的中点. 同理,*QQ*过 *PO* 中点.
- ∴ OP、O₁O₃、O₂O₄三直线共点.
- 二. (本题满分35分)

设 $E=\{1, 2, 3, \dots, 200\},$

 $G=\{a_1, a_2, \dots, a_{100}\}\subsetneq E.$

且 G具有下列两条性质:

 付 対任何 1≤i<j≤100, 恒有 a_i+a_i≠201;

100

(2) $\sum_{i=1}^{\infty} a_i = 10080$.

试证明: G中的奇数的个数是 4 的倍数. 且 G中所有数字的平方和为一个定数.

【解析】证明: (1)取 100 个集合: $\{a_i, b_i\}$: $a_i=i$, $b_i=201-i(i=1, 2, \dots, 100)$,于是每个集合中至多能取出 1 个数. 于是至多可以选出 00 个数. 现要求选出 100 个数,故每个集合恰选出 1 个数.

把这 100 个集合分成两类: ① {4.i+1, 200-4.i}; ② {4.i-1, 202-4.i}. 每类都有 50 个集合.

设第①类选出 量个奇数,50一量个偶数,第②类中选出 2个奇数,50一2个偶数。

于是 1·m+0·(50-m)+(-1)·m+2·(50-n)=10080=0 (mod 4)。即 m-3n=0 (mod 4)。即 m+n=0 (mod 4)

- 二 G中的奇数的个数是 4 的倍数.
- (2) 设选出的 100 个数为 x₁, x₂, ···, x₁₀₀, 于是未选出的 100 个数为 201—x₁, 201—x₂, ···, 201—x₂₀,

故 x1+x1+···+x100=10080.

 $=1^{2}+2^{2}+3^{2}+\cdots+200^{2}$

三. (本题满分35分)

某市有 n 所中学,第 i 所中学派出 C_i 名代表 $(1 \le C_i \le 39, 1 \le i \le n)$ 来到体育馆观看球

赛,全部学生总数为 $\sum_{i=1}^{n} C_i$ =1990. 看台上每一横排有 199 个座位,要求同一学校的学生必须

坐在同一横排,问体育馆最少要安排多少横排才能够保证全部学生都能坐下.

【解析】首先,199>39×5,故每排至少可坐 5 所学校的学生。

1990=199×10,故如果没有"同一学校的学生必须坐在同一模排"的限制,则全部学生只要坐在 10 排就够了。

现让这些学生先按学校顺序入坐,从第一排坐起,一个学校的学生全部坐好后,另一个学校的学生接下去坐,如果在某一行不够坐,则余下的学生坐到下一行。这样一个空位都不留,则坐 10 排,这些学生就全部坐完。这时,有些学校的学生可能分坐在两行,让这些学校的学生全部从原坐处起来,坐到第 11、12 排去。由于,这种情况只可能在第一行末尾与第二行开头、第二行末尾与第三行开头、……第九行末尾与第十行开头这 9 处发生,故需要调整的学校不超过 10 所,于是第 11、12 行至多各坐 5 所学校的学生,就可全部坐完。这说明 12 行保证够坐。

其次证明,11 行不能保证就此学生按条件全部入坐: 199=6×33+1. 1990=34×58+18. 取 59 所学校,其中 58 所学校 34 人,1 所学校 18 人. 则对前 58 所学校的学生,每排只能坐 5 所学校而不能坐 6 所学校. 故 11 排只能坐其中 55 所学校的学生。即 11 排不够坐。综上可知,最少要安排 12 横排才能保证全部学生都能坐下。