邏輯系統實習

實驗二

麵包板(二): 半加器與全加器實作

國立成功大學電機系

2016

大綱

- 半加器
- 全加器
- 指撥開關介紹
- 七段顯示器介紹
- IC 7447介紹

- 基礎題 (一)
 - □ 全加器
- 基礎題 (二)
 - □ 七段顯示器
- 挑戰題
 - □ **2bit** 加法器
- 實驗結報繳交

Α	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$Sum = \overline{A} \bullet B + A \bullet \overline{B} = A \oplus B$$

$$Carry = A \bullet B$$

Α	В	С	Carry	Sum		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1		

$$Sum = \overline{A} \bullet \overline{B} \bullet C + \overline{A} \bullet B \bullet \overline{C} + A \bullet \overline{B} \bullet \overline{C} + A \bullet B \bullet C$$

$$= \overline{A} \bullet (\overline{B} \bullet C + B \bullet \overline{C}) + A \bullet (\overline{B} \bullet \overline{C} + B \bullet C)$$

$$= \overline{A} \bullet (B \oplus C) + A \bullet (\overline{B} \oplus C)$$

$$= A \oplus B \oplus C$$

$$Carry = \overline{A} \bullet B \bullet C + A \bullet \overline{B} \bullet C + A \bullet B \bullet \overline{C} + A \bullet B \bullet C$$
$$= (\overline{A} \bullet B + A \bullet \overline{B}) \bullet C + A \bullet B \bullet (C + \overline{C})$$
$$= (A \oplus B) \bullet C + A \bullet B$$

指發開關介紹

■ 8bit的指撥開關等效於有8個開關,向上撥ON為短路、向下撥OFF為

斷路。

■ 若我們將指撥開關的一端接地,另一端接到TTLIC的輸入端時,向上 撥ON為短路(接地、邏輯0)、向下撥OFF為斷路(浮接、對於TTLIC等 效於邏輯1)。

七段顯示器介紹

■ 七段顯示器是由8個LED所構成(含小數點),分為共陽極與共陰極兩種,我們實驗課所使用的七段顯示器為共陽極。

□ 共陽極:要使某一劃發光,必須將邏輯0 (GND)輸入其對應接腳。

□ 共陰極:要使某一劃發光,必須將邏輯1 (VCC)輸入其對應接腳。

■ 因為我們是使用共陽極的七段顯示器,在實作時,請將VCC串 聯一個電阻,再接到七段顯示器的COM接腳。

七段顯示器的形式與接腳

- IC 7447的功能是將BCD碼轉至七段顯示器(共陽極)的控制電路。
 - \square 輸入接腳 $\{D, C, B, A\}$ 分別對應至BCD碼 $\{B_3, B_2, B_1, B_0\}$ 。
 - ex:若D、C接GND,B、A接VCC,則BCD碼為0011、七段顯示器 應顯示3。
 - □ 輸出接腳{a, b, c, d, e, f, g}分別對應至七段顯示器 a~g 對應接腳。
 - □ LAMP TEST: 七段顯示器測試接腳,接上邏輯0 (GND)後若七段顯示器 沒有錯誤,則會顯示數字8。

IC 7447介紹

功能	Mi				λ		BI/	各劃之炮亮							
	LT	RBI	D	C	В	A	RBO	а	b	с	d	e	f	g	示醒
0	1	1	0	0	0	0	1	ON	ON	ON	ON	ON	ON	OFF	0
1	1	X	0	0	0	1	1	OFF	ON	ON	OFF	OFF	OFF	OFF	1
2	1	X	0	0	1	0	1	ON	ON	OFF	ON	ON	OFF	ON	5
3	1	Х	0	0	1	1	1	ON	ON	ON	ON	OFF	OFF	ON	3
4	1	Х	0	1	0	0	1	OFF	ON	ON	OFF	OFF	ON	ON	4
5	1	X	0	1	0	1	1	ON	OFF	ON	ON	OFF	ON	ON	5
6	1	Х	0	1	1	0	1	OFF	OFF	ON	ON	ON	ON	ON	Ь
7	1	X	0	1	1	1	1	ON	ON	ON	OFF	OFF	OFF	OFF	7
8	1	X	1	0	0	0	1	ON	ON	ON	ON	ON	ON	ON	8
9	1	Х	1	0	0	1	1	ON	ON	ON	OFF	OFF	ON	ON	9
10	1	Χ	1	0	1	0	1	OFF	OFF	OFF	ON	ON	OFF	ON	С
11	1	X	1	0	1	1	1	OFF	OFF	ON	ON	OFF	OFF	ON	٥
12	1	X	1	1	0	0	1	OFF	ON	OFF	OFF	OFF	ON	ON	U
13	1	X	1	1	0	1	1	ON	OFF	OFF	ON	OFF	ON	ON	C
14	1	X	1	1	1	0	1	OFF	OFF	OFF	ON	ON	ON	ON	Ē
15	1	X	1	1	1	1	1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	熄滅
BI	Х	X	X	X	X	X	0	OFF	OFF	OFF	OFF	OFF	OFF	OFF	熄滅
RBI	1	0	0	0	0	0	0	OFF	OFF	OFF	OFF	OFF	OFF	OFF	熄滅
LT	0	X	X	X	Χ	X	1	ON	ON	ON	ON	ON	ON	ON	8

IC 7447介紹

無效零的遮沒電路(BI/RBO及RBI)

基礎題 (一) 全加器

- 請實現與驗證 全加器。
 - □ 實作時,請先將接線圖繪製於下一頁上,再依照該接線圖在麵包板上實現。
 - □ 驗證時,請利用LED與電阻檢測輸出之邏輯值。

$$Sum = A \oplus B \oplus C$$

$$Carry = (A \oplus B) \bullet C + A \bullet B$$

基礎題 (二)

七段顯示器

- 1) 請找出七段顯示器的LED與接腳對應關係。
 - □請記錄在下一頁。
- 2) 請將七段顯示器與IC 7447接線。
 - □ 實作時,請先將接線圖繪製於下一頁上,再依照該接線圖在麵包板上實現。
 - □ 驗證時,試給予IC 7447二進位輸入0000~1111,查看七段顯示器是否確實運作如下圖。

挑戰題

2bit 加法器

- 請實現下圖的2bit加法器。
 - 使用指撥開關作為2bit加法器的輸入,並且將 3bit加法器的輸出顯示在七段顯示器上。

7486

實驗結報繳交

- 基礎題 (一)
 - □ 請附上接線圖、實驗電路照片與解釋。
- 基礎題 (二)
 - □請附上七段顯示器的LED與接腳對應關係圖。
 - □ 請附上接線圖、實驗電路照片與解釋。
- 挑戰題
 - □ 請附上接線圖、實驗電路照片與解釋。
- 各自之心得報告