Instructions

Instructions:

For the remainder of class, you will work through a series of questions to help you understand LTL better. In each part, you will answer a few questions about a single LTL formula. In some parts we provide an additional explanation of the formula. You may use any other resources you feel appropriate during this class session, just make a note of what resources you use as we will ask you to document them at the end of the worksheet. This is not a test. You will be evaluated only on your thoughtful participation. We will provide answers to the questions at the end of class (available on Moodle).

Cheat Sheet:

Logical Operator	Meaning	Example
AND (&)	Both conditions must be true.	a & b <i>means</i> 'Both "a" AND "b" must be true.'
OR ()	At least one condition must be true.	a b <i>means</i> 'Either "a" OR "b" (or both) must be true.'
NOT (!)	The condition must be false.	!a <i>means</i> "a" must be false' or 'NOT "a"'
IMPLIES (⇒)	If the first condition is true, then the second must also be true.	$a \Rightarrow b \textit{means}$ 'IF "a" is true, THEN "b" must be true'
Temporal Operator	Meaning	Example
Next (X)	A statement must be true in the next time step.	X d <i>means</i> 'In the next moment, "d" must be true.'
Globally (G)	A statement must always be true in every future step.	G b means ""b" must always hold.'
Eventually (F)	A statement must be true at some future point.	F a <i>means</i> 'At some point, "a" must hold.'

Until (U)

One statement must hold until another becomes true.

b U a means "b" must hold until "a" eventually holds.'

Please enter your full name to continue:

Formula-A

For each of the questions on this page, consider the formula below.

G(!a)

Given a sequence where "a" is true at some future point, what happens to the formula?

- O The formula is satisfied.
- O The formula is violated.
- O The satisfaction of the formula depends on values after "a" becomes true.

Does the following sequence of values for "a" satisfy the formula? Why or Why not?

a:T T T T F F F (false from now on) ..

For a sequence to **satisfy** the formula, what is required of "a"?

\bigcirc	"a" must always be false.
0	"a" must be false at least once.
0	"a" can be true at some point, but it must always be followed by false.
0	"a" must eventually become false.

Give an example of a sequence of values for "a" that satisfies this formula.

Formula-B

For each of the questions on this page, consider the formula and explanation below.

Do you think the explanation of the formula above is correct (Yes/No)? Why or Why not?

Which of these sequences satisfies the formula?

```
e:TTTTTTTT (true from now on) ..

e:TTTTTTTTT (true from now on) ..

e:FFFTFFFF (false from now on) ..
```

O Both option 2 and 3

Given a sequence where "e" is always true, what happens to the formula?

- O The formula is satisfied.
- O The formula is violated.

True or False: For a sequence to **satisfy** the formula, "e" must be **permanently false** after some point.

- O False
- O True

Formula-C

For each of the questions on this page, consider the formula and explanation below.

G(!p⇒Xs)

```
Formula:

G(!p → Xs)

Breakdown:
```

```
G: "Globally" — this must hold at all times.

!p: "p does not hold."

x: "Next" — in the immediate next step.

s: "s holds."

⇒: "Implication" — if the left side holds, then the right must hold.

Rebuilding meaning from the bottom up:

!p means "p does not hold."

xs means "in the next step, s must hold."

!p ⇒ xs means "If p does not hold, then in the next moment, s must hold."

G(!p ⇒ xs) means "At all times, if p is false, then in the next moment s must hold."

Refined phrasing:

"Whenever p does not hold, s must hold in the next step."
```

Do you think the explanation of the formula above is correct (Yes/No)? Why or Why not?

Which of these sequences satisfies the formula?

```
      p: T T T F F F T T T F T T ...

      s: F F F T T T F F F T T T T ...

      p: T T T F F F T T T T T T T ...

      s: F F F T T T T T T T T F F T ...

      p: T T T F F F T T T F F T T ...

      s: F F F T F T T T F F F T T ...
```

Given a sequence where "p" is always false and "s" is always false, what happens to the formula?

- O The formula is satisfied.
- O The formula is violated.

True or False: For a sequence to **satisfy** the formula, "p" must eventually be set to false.

O False

O True

Formula-D

For each of the questions on this page, consider the formula below.

G(c⇒X G r)

In a sequence, if "c" is false now, what can be said about "r"?

- O "r" must be true from now on.
- O "r" must be true in the next step and can then become false later.
- O The formula says nothing about "r".

Which of these sequences violate the formula?

```
c: F F T F F T F F ..
r: T F F T T T T T T ..

c: T T T F F F F F F ..
r: F F F T T T F F F F ..
r: T T T F T T T T T ..
```

Qualtrics Survey Software
O The first and third options.
The second and third options.
O All of the options.
7 iii o'i allo opadillo.
True or False: In a sequence where "r" is always false, the
formula is violated .
Tommand Professor.
O False
O True
O mue
Please explain the meaning of the formula in your own words
(I sentence).
(i sentence).
Formula-E
rormula-e
For each of the questions on this page, consider the formula below.
F(!p & !u)
1 (1P & 14)

Which of these sequences **violates** the formula?

```
p: T T T F T T T T ...
u: F F F T T T F T ...
```

0	p: T u: F								
0	p: T	Т	Т	F	Т	Т	Т	Т	
	u: F	F	F	F	Τ	Τ	F	Τ	

- O Both the first and second options.
- O Both the first and third options.

True or False: Given a sequence where "p" is always false, the formula is **violated**.

- O False
- O True

Please explain the meaning of the formula in your own words (1 sentence).

Give an example of a sequence that **satisfies** this formula.

Formula-F

For each of the questions on this page, consider the formula and explanation below.

G(!q) | G(!m)

Formula:

G(!q) | G(!m)

```
Breakdown:

G(!q): "Always, q does not hold."

G(!m): "Always, m does not hold."

|: "Or" — at least one of these conditions must be true.

Rebuilding meaning from the bottom up:

G(!q) means "q never holds."

G(!m) means "m never holds."

G(!q) | G(!m) means "Either q never holds, or m never holds (or both)."

Refined phrasing:

"At least one of the following must be true: q is always false, or m is always false."
```

Do you think the explanation of the formula above is correct (Yes/No)? Why or Why not?

Which of these sequences satisfies the formula?

```
q:TTTFTTTT...
m:FFFTTTTTT...

q:TTTTTTTTT...
m:FFFFFFF...

q:TTTTTTTTT...
m:TFFTTTTTT...
```

- O Both the first and second options.
- O Both the second and third options.
- O All of the options.
- O None of the options.

True or False: The formula is **violated**, if "q" is sometimes true in a sequence.

O False
O True

Please explain the meaning of the formula in your own words (1 sentence).

Formula-G

For each of the questions on this page, consider the formula and explanation below.

G(!a⇒F z)

```
Formula:

G(!a → F z)

Breakdown:

G(...): "Globally" (G) — this must hold at all times.
!a: "a does not hold."

F(...): "Finally" (F) — at some point in the future.

z: "z holds."

⇒: "Implication" — if the left side holds, then the right must hold.

Rebuilding meaning from the bottom up:

!a means "a does not hold."

F z means "At some point in the future, z must hold."

!a → F z means "If a is false, then z must eventually hold."

G(!a → F z) means "At all times, if a is false, then z must eventually hold in the future."

Refined phrasing:

"Whenever a is false, z must eventually become true."
```

Do you think the explanation of the formula above is correct (Yes/No)? Why or Why not?
For a sequence to satisfy the formula, what is required of "z"?
O "z" must always be true.
O Whenever "a" is false, "z" must eventually be true.
None of the above. Please explain:
True or False: The following sequence satisfies the formula.
a:TTTFTTT
z:TTFFFFFT
O False O True Please explain the meaning of the formula in your own words (1 sentence).
Give an example of a sequence that satisfies this formula.

Formula-H

For each of the questions on this	s page, consider the formula below.
G(a⇒F(vUv	w))
to the formula? The formula is satisfied. The formula is violated.	ere "a" is false throughout, what happens
Given a sequence whe happens to the formulo	ere "a" is true and "w" never occurs, what a?
The formula is satisfied. The formula is violated. The satisfaction of the formula	la depends on the value of "v" over time.
Please explain the med	aning of the formula in your own words

Give an example of a sequence that satisfies this formula.
Wrap-Up
Final Step - Feedback
In the final step of today's class, we ask for your feedback on this activity.
Did you have any prior knowledge of, or experience with, LTL before today's class? If so, in what context?
○ No ○
Did you use any additional resources to answer these
questions (e.g., the internet, the presented slides, an Al assistant, a peer, etc.)? If so, please give details.
O No
Yes
How did this topic relate to other topics in this course?
LTL was more challenging than other topics in CSC250
LTL was similarly challenging than other topics in CSC250 LTL was less challenging than other topics in CSC250

When comparing the questions that provided explanations with those that did not, to what extent were the explanations helpful in understanding the LTL formula? O Not at all helpful O Slightly helpful O Moderately helpful O Very helpful O Extremely helpful Which aspect(s) made the questions **challenging** to answer? (Select all that apply.) Understanding the syntax of LTL Understanding the meaning of temporal operators (e.g., G, F, X, U) ☐ Interpreting the implications of formulae ☐ Applying the formula to sequences Other (please specify): None, I did not find the questions challenging Which temporal operator was the most challenging to understand (e.g., X (Next), G (Globally), F (Eventually), or U (Until))? If they were all equally challenging, respond "ALL".

How would **you improve the explanations** (e.g., shorter, longer, more visual, more step-by-step breakdowns)?

How could you **use LTL** (or this kind of reasoning) in a computer science **project**?

Comments / Corrections / Suggestions:

Excluded

Refined phrasing:

"At least once during execution, e must be false."

Formula: F(!e) Breakdown: F(...): "Finally" (F) — at some point in the future !e: "e does not hold" Rebuilding meaning from the bottom up: !e means "e does not hold." F(!e) means "At some point in the system's future, e should not hold."

```
Formula:

G(!p ⇒ Xs)

Breakdown:

G: "Globally" — this must hold at all times.

!p: "p does not hold."

X: "Next" — in the immediate next step.

s: "s holds."

⇒: "Implication" — if the left side holds, then the right must hold.
```

Rebuilding meaning from the bottom up:

```
!p means "p does not hold."

xs means "in the next step, s must hold."

!p \Rightarrow Xs means "If p does not hold, then in the next moment, s must hold."

G(!p \Rightarrow Xs) means "At all times, if p is false, then in the next moment s must hold."
```

Refined phrasing:

"Whenever p does not hold, s must hold in the next step."

Formula:

```
G(!q) | G(!m)
```

Breakdown:

```
G(!q): "Always, q does not hold."
```

G(!m): "Always, m does not hold."

| : "Or" — at least one of these conditions must be true.

Rebuilding meaning from the bottom up:

```
G(!q) means "q never holds."
```

 ${\tt G}$ (${\tt !\,m})$ $\;$ means "m never holds."

 $\texttt{G}\,(\,!\,q)\quad |\quad \texttt{G}\,(\,!\,m)\quad \text{means "Either q never holds, or m never holds (or both)."}$

Refined phrasing:

"At least one of the following must be true: q is always false, or m is always false."

Formula:

```
G(!a \Rightarrow Fz)
```

Breakdown:

```
G(\ldots): "Globally" (G) — this must hold at all times.
```

!a : "a does not hold."

 $\mathbb{F}\left(\ldots\right)$: "Finally" (F) — at some point in the future.

z : "z holds."

 $\,\Rightarrow\,$: "Implication" — if the left side holds, then the right must hold.

Rebuilding meaning from the bottom up:

- !a means "a does not hold."
- ${\mathbb F}^-{\mathbb Z}^-$ means "At some point in the future, z must hold."
- $!a \Rightarrow Fz$ means "If a is false, then z must eventually hold."
- $\texttt{G}\,(\,!\,\texttt{a}\,\Rightarrow\,\texttt{F}\,\,\texttt{z}\,)\quad\text{means "At all times, if a is false, then z must eventually hold in the future."}$

Refined phrasing:

"Whenever a is false, z must eventually become true."

Powered by Qualtrics