Beyond Classical Search

Learning Goals

- Local search algorithms
 - Hill-climbing search
 - Simulated annealing (SA) search
 - Local beam search
 - Genetic algorithms (GA)
- Searching with nondeterministic actions
- Searching with partial observations
- Online search agents and unknown environments

Local search algorithm and optimization problem

Local search algorithm and optimization problem

- Local search algorithms operate using a single current node (rather than multiple paths) and generally move only to neighbors of that node.
- Typically, the **paths** followed by the search are **not retained**.
- Not systematic
- Key advantages:
 - they use very little memory—usually a constant amount;
 - they can often find reasonable solutions in large or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

Local search algorithms

- In many **optimization problems**, the **path** to the goal is irrelevant; the **goal state** itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints,

```
e.g.,
```

- (1) find optimal configuration (e.g., TSP), or,
- (2) find configuration satisfying constraints (n-queens)
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Hill-climbing search

Hill-climbing search

- state-space landscape
 - both "location" (defined by the state) and "elevation" (defined by the value of the heuristic cost function or objective function)
 - Global minimum/maximum

Hill-climbing search

- steepest-ascent version/does not maintain a search tree
- It is simply a loop that continually moves in the direction of increasing value—that is, uphill.
- "Like climbing Everest in thick fog with amnesia (健忘症)"
- Problem: depending on initial state, can get stuck in local maxima

```
\begin{array}{l} \textbf{function} \ \text{Hill-Climbing}(\textit{problem}) \ \textbf{returns} \ \text{a state that is a local maximum} \\ \textit{current} \leftarrow \text{Make-Node}(\textit{problem}. \text{Initial-State}) \\ \textbf{loop do} \\ \textit{neighbor} \leftarrow \text{a highest-valued successor of } \textit{current} \\ \textbf{if neighbor}. \text{Value} \leq \text{current}. \text{Value} \ \textbf{then return} \ \textit{current}. \text{State} \\ \textit{current} \leftarrow \textit{neighbor} \end{array}
```

Example: *n*-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
- Complete-state formulation

Heuristic function h for 8-queen problem

h = number of pairs of queens that are attacking each other

Hill Climbing Often Gets Stuck

- Hill climbing is sometimes called **greedy local search** because it grabs a **good** neighbor state without thinking ahead about where to go next.
- Hill climbing often gets stuck
 - Local maxima: a local maximum is a peak that is higher than each of its neighboring states but lower than the global maximum.
 - **Ridges** (山脊): Ridges result in a sequence of local maxima that is very difficult for greedy algorithms to navigate.
 - Plateaux (高原): a plateau is a flat area of the state-space landscape. It can be a flat local maximum, from which no uphill exit exists, or a **shoulder**, from which progress is possible.
- 86% get stuck

Hill-climbing difficulties

Note: these difficulties apply to all local search algorithms, and usually become much worse as the search space becomes higher dimensional

- •Ridge problem: every neighbor appears to be downhill
 - But, search space has an uphill (just not in neighbors)

Ridge:

 Fold a piece of paper and hold it tilted up at an unfavorable angle to every possible search space step. Every step leads downhill; but the ridge leads uphill.

Modify Hill-Climbing

 Sideway move for shoulder/may cause infinite loop=>94% success

Stochastic hill climbing

 chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move.

First-choice hill climbing

 by generating successors randomly until one is generated that is better than the current state.

Random-restart hill climbing

- "If at first you don't succeed, try, try again."
- It conducts a series of hill-climbing searches from randomly generated initial states, until a goal is found.

Simulated annealing (SA)

Boltzmann machines

- The Boltzmann Machine of
 Hinton, Sejnowski, and Ackley (1984)
 uses simulated annealing to escape local minima.
- To motivate their solution, consider how one might get a ballbearing traveling along the curve to "probably end up" in the deepest minimum.
- The idea is to shake the box "about h hard" then the ball is more likely to go from D to C than from C to D. So, on average, the ball should end up in C's valley.

Simulated annealing

- From current state, pick a random successor state;
- If it has better value than current state, then "accept the transition," that is, use successor state as current state;
- Otherwise, do not give up, but instead flip a coin and accept the transition with a given probability (that is lower as the successor is worse).
- So we accept to sometimes "un-optimize" the value function a little with a non-zero probability.

Simulated annealing algorithm

• Idea: Escape local extrema by allowing "bad moves," but gradually decrease their size and frequency.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
  for t = 1 to \infty do
                                                           Note: goal here is to
      T \leftarrow schedule(t)
                                                           maximize E.
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow next. Value - current. Value
                                                            Cooling achedule
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
                    http://aima.cs.berkeley.edu/figures.html
```

simulated annealing: limit cases

- Boltzmann distribution: accept "bad move" with $\Delta E < 0$ (goal is to maximize E) with probability $P(\Delta E) = \exp(\Delta E/T)$
- If T is large: $\Delta E < 0$

 $\Delta E/T < 0$ and very small

 $\exp(\Delta E/T)$ close to 1

accept bad move with high probability

• If T is near $0:\Delta E < 0$

 $\Delta E/T < 0$ and very large

 $\exp(\Delta E/T)$ close to 0

accept bad move with low probability

$$F(x)=exp(-x)$$

Code example of SA

- Simulated annealing algorithm
- Find the global minimum of the function
- $x \mapsto x^2$ on [-10,10]
- https://perso.crans.org/besson/publis/notebooks/Simulate d_annealing_in_Python.html
- Please reference code example SA.py

Local Beam Search (局部剪枝搜尋)

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.
- In a local beam search, useful information is passed among the parallel search threads.
- The algorithm quickly abandons unfruitful searches and moves its resources to where the most progress is being made.
- Drawback: the k states tend to regroup very quickly in the same region → lack of diversity.

Stochastic Beam Search

- Chooses k successors at random, with the probability of choosing a given successor being an increasing function of its value.
- Bears some resemblance to the process of natural selection, whereby the "successors" (offspring) of a "state" (organism) populate the next generation according to its "value" (fitness) -> genetic algorithm (GA).

Genetic Algorithm (GA)

Genetic Algorithm (GA)

- Successor states are generated by combining two parent states rather than by modifying a single state.
- State = a string over a finite alphabet (an individual) /Encoding
 - A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- Evaluation function (fitness function).
 - Higher values for better states.
- Select individuals for next generation based on fitness
 - P(indiv. in next gen) = indiv. fitness / total population fitness
- Crossover: fit parents to yield next generation (offspring)
- Mutate the offspring randomly with some low probability

Flowchart of GA


```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to SIZE(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          child \leftarrow \mathsf{REPRODUCE}(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
  inputs: x, y, parent individuals
  n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n
  return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

Applying GA to train a Machine Learning model

Data

x_1	x_2	x_3	x_4	x_5	x_6	y
4	-2	7	5	11	1	44.1

44.1=
$$y = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + w_5x_5 + w_6x_6$$

• Goal is to find the set of parameters $(w_1:w_6)$ that maps the following input to its output.

$$y' = 4w_1 - 2w_2 + 7w_3 + 5w_4 + 11w_5 + w_6$$

Solution 1

w_1	w_2	w_3	w_4	w_5	w_6
2.4	0.7	8	-2	5	1.1

$$y' = 4w_1 - 2w_2 + 7w_3 + 5w_4 + 11w_5 + w_6$$

 $y' = 110.3$ $error = |y - y'|$
 $error = |44.1 - 110.3|$
 $error = 66.2$

What are the Genes?

- Gene is anything that is able to enhance the results when changed.
- By exploring the following model, the 6 weights are able to enhance the results. Thus each weight will represent a gene in GA.

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$$

Gene 0 Gene 1		Gene 2	Gene 3	Gene 4	Gene 5	
w_1	w_2	w_3	w_4	w_5	w_6	

Solution 2

w_1	w_2	w_3	w_4	w_5	w_6
-0.4	2.7	5	-1	7	0.1

$$y' = 100.1$$

Absolute Error

$$error = |y - y'|$$

 $error = |44.1 - 100.1|$
 $error = 56$

Solution 3

W	w_1	w_3	w_4	w_5	w_6
-:	1 2	2	-3	2	0.9

$$y' = 13.9$$

Absolute Error

$$error = |y - y'|$$

 $error = |44.1 - 13.9|$
 $error = 30.2$

Initial Population of Solutions (Generation 0)

2.4	0.7	8	-2	5	1.1	
-0.4	2.7	5	-1	7	0.1	
-1	2	2	-3	2	0.9	Population Size = 6
4	7	12	6.1	1.4	-4	
3.1	4	0	2.4	4.8	0	
-2	3	-7	6	3	3	Chromosome
					1	
					Gene	

						<i>y</i> ′	F(C)
2.4	0.7	8	-2	5	1.1	110.3	0.015
-0.4	2.7	5	-1	7	0.1	100.1	0.018
-1	2	2	-3	2	0.9	13.9	0.033
4	7	12	6.1	1.4	-4	127.9	0.012
3.1	4	0	2.4	4.8	0	69.2	0.0398
-2	3	-7	6	3	3	3	0.024

$$F(c) = \frac{1}{error} = \frac{1}{|y - y'|}$$

$$y' = 4w_1 - 2w_2 + 7w_3 + 5w_4 + 11w_5 + w_6$$

 $y' = 4 * 2.4 - 2 * 0.7 + 7 * 8 + 5 * -2 + 11 * 5 + 1.1$
 $y' = 110.3$

$$F(c) = \frac{1}{error} = \frac{1}{|44.1 - 110.3|} = \frac{1}{66.2} = 0.015$$

Mating Pool

 Add best 3 individuals to the mating pool for producing the next generation of solutions.

	-1	2	2	-3	2	0.9
	3.1	4	0	2.4	4.8	0
1	-2	3	-7	6	3	3

Selection

 GA is a random-based optimization technique. There is no guarantee that the new individuals will be better than the previous individuals. Keeping the old individuals at least saves the results from getting worse.

New Population (Generation 1)

Old Individuals

-1	2	2	-3	2	0.9
3.1	4	0	2.4	4.8	0
-2	3	-7	6	3	3
-1	2	2	2.4	2.4	0
3.1	4	0	6	1.5	3
-2	3	-7	-3	1	0.9

New Individuals

New Population (Generation 1)

						y '	F(C)
-1	2	2	-3	2	0.9	13.9	0.033
3.1	4	0	2.4	4.8	0	69.2	0.04
-2	3	-7	6	3	3	3	0.024
-1	2	2	2.4	2.4	0	44.4	3.333
3.1	4	0	6	1.5	3	53.9	0.102
-2	3	-7	-3	1	0.9	-66.1	0.009

New Population (Generation 2)

						y '	F(C)
3.1	4	0	2.4	4.8	0	69.2	0.04
-1	2	2	2.4	2.4	0	44.4	3.333
3.1	4	0	6	1.5	3	53.9	0.102
3.1	4	0	2.4	1.2	0	29.6	0.069
-1	2	2	6	0.75	3	47.25	0.318
3.1	4	0	2.4	2.4	0	42.8	0.77

Code Example for GA

- https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6
- The tutorial starts by presenting the equation that we are going to implement. The equation is shown below:

$$Y = W_1X_1 + W_2X_2 + W_3X_3 + W_4X_4 + W_5X_5 + W_6X_6$$

- The equation has 6 inputs $(x_1 \text{ to } x_6)$ and 6 weights $(w_1 \text{ to } w_6)$ as shown and inputs values are $(x_1, x_2, x_3, x_4, x_5, x_6) = (4, -2, 7, 5, 11, 1)$.
- We are looking to find the parameters (weights) that maximize such equation.

```
1 import numpy
 2 import ga
  .....
 5 The y=target is to maximize this equation ASAP:
      V = W1x1+W2x2+W3x3+W4x4+W5x5+6Wx6
      where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)
      What are the best values for the 6 weights w1 to w6?
      We are going to use the genetic algorithm for the best
      possible values after a number of generations.
10
11 """
12
13 # Inputs of the equation.
14 equation inputs = [4, -2, 3.5, 5, -11, -4.7]
15
16# Number of the weights we are looking to optimize.
17 \text{ num weights} = 6
18
19 """
20 Genetic algorithm parameters:
21 Mating pool size
      Population size
22
23 """
24 \, \text{sol per pop} = 8
25 num parents mating = 4
26
27 # Defining the population size.
28 pop_size = (sol_per_pop,num_weights)
```

```
28 pop_size = (sol_per_pop,num_weights)
29 # The population will have sol per pop chromosome where
30 # each chromosome has num weights genes.
31 #Creating the initial population.
32 new population = numpy.random.uniform(low=-4.0, high=4.0, size=pop size)
33 print(new population)
34
35 num generations = 5
36 for generation in range(num generations):
      print("Generation : ", generation)
37
      # Measing the fitness of each chromosome in the population.
38
      fitness = ga.cal pop fitness(equation inputs, new population)
39
40
41
      # Selecting the best parents in the population for mating.
42
      parents = ga.select mating pool(new population, fitness,
43
                                         num parents mating)
44
      # Generating next generation using crossover.
45
46
      offspring crossover = ga.crossover(parents,\
47
          offspring size=(pop size[0]-parents.shape[0], num weights))
48
49
      # Adding some variations to the offsrping using mutation.
      offspring mutation = ga.mutation(offspring crossover)
50
51
52
      # Creating the new population based on the parents and offspring.
                                                                              &В
53
      new population[0:parents.shape[0], :] = parents
      new population[parents.shape[0]:, :] = offspring mutation
54
55
56
      # The best result in the current iteration.
57
      print("Best result : ",\
58
            numpy.max(numpy.sum(new population*equation inputs, axis=1)))
                                                                               37
```

```
59
60 # Getting the best solution after iterating finishing all generations.
61 #At first, the fitness is calculated for each solution in the final generation
62 fitness = ga.cal pop fitness(equation inputs, new population)
63# Then return the index of that solution corresponding to the best fitness.
64 best_match_idx = numpy.where(fitness == numpy.max(fitness))
66 print("Best solution : ", new_population[best_match_idx, :])
67 print("Best solution fitness: ", fitness[best match idx])
[[ 0.44914368 -3.68276722 -3.28688763 -2.51142983 -3.64088132 -1.95845449]
 [-0.71403688 0.55629491 -2.91976592 -1.07344219 0.39909999 -0.66709182]
 [-0.40454659 1.53022263 -0.77733991 -2.56663068 1.98915243 -1.82231662]
 [-1.66459878 2.98133991 -2.09794521 0.52346122 -1.68002539 -2.88114995]
 [-3.32598056 -2.7915747    1.72678859    1.89099232 -2.83302684    3.09768898]
 [ 2.91902592  0.0623401  2.95717192 -1.52771546  3.25655068  2.2282033 ]
 [-1.60688609 -1.84650636 -1.0702571 3.66832867 -1.30358346 3.25418259]
 [ 3.54387828 -3.00561578 -3.79383594 2.34597843 -2.9657875 0.12516974]]
Generation: 0
Best result : 50.673575759562205
Generation : 1
Best result : 54.36619169370305
Generation: 2
Best result : 61.41518272205099
Generation: 3
Best result: 62.22627484711039
Generation: 4
Best result : 71.64046402522752
Best solution: [[[ 3.54387828 -3.00561578 -3.79383594 2.34597843 -4.87186825
   0.12516974]]]
Best solution fitness: [71.64046403]
```

Genetic Algorithm for 8-Queue

http://aima.cs.berkeley.edu/figures.html

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc.

- Fitness function: #non-attacking queen pairs
 - min = 0, max = $8 \times 7/2 = 28$
- Σ_{i} fitness_i = 24+23+20+11 = 78

How to convert a fitness value into a probability of being in the next generation.

- P(pick child_1 for next gen.) = fitness_1/(Σ _i fitness_i) = 24/78 = 31%
- P(pick child_2 for next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

Local Search in Continuous Spaces

Local Search in Continuous Spaces

- Infinite branching factor
- P-center problem / p=3 $f(x_1,y_1,x_2,y_2,x_3,y_3) = \sum_{i=1}^3 \sum_{c \in C_i} (x_i-x_c)^2 + (y_i-y_c)^2 \; .$
- Let the objective function $f(x_1, y_1, x_2, y_2, x_3, y_3)$ be a function on six continuous-valued variables
- Discretize/12 branching factor
- The gradient of the objective function $\nabla f = 0$ is a vector that gives the magnitude and the direction of the steepest slope

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

- In many cases, we cannot solve equation $\nabla f = 0$ in closed form (globally), but can compute the gradient locally.
- We can perform **steepest-ascent hill climbing** by updating the current state $\frac{1}{2}$ u via the formula $\frac{1}{2}$

$$\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{u})$$

• Where α is a small constant (Step size)

Empirical gradient 經驗梯度

- If the objective function is not differentiable, the empirical gradient can be determined by evaluating the response to small increments and decrements is each coordinate.
- Adjusting the value of constant α is a central;
 - if α is too small, too many steps are needed;
 - if α is too large, the search could overshoot the maximum.
- Line search repeatedly doubles the value of α until f starts to decrease again.
- Equations of the form g(x)=0 can be solved by using the Newton-Raphson method.
- It works by computing a new estimate for the **root x** according to the Newton's formula $x \leftarrow x \frac{g(x)}{g'(x)}$

Newton-Raphson method

Newton-Raphson method

- To find a maximum or minimum of f, we need to find x s.t. the gradient is zero; i.e., $\nabla f(x) = 0$
- Setting $g(\mathbf{x}) = \nabla f(\mathbf{x})$ in Newton's formula and writing it matrix-vector form, we have, $\mathbf{x} \leftarrow \mathbf{x} H_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$, where $H_f(\mathbf{x})$ is the Hessian matrix of second derivatives, $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- The Newton-Raphson becomes expensive in highdimensional spaces.
- Local search suffers from local maxima, ridges, and plateaus in continuous state spaces just as much as in discrete spaces.

Hessian matrix

$$f(x_1,x_2,\ldots,x_n)$$

$$\mathrm{H}_{ij} = rac{\partial^2 f}{\partial x_i \partial x_j}$$