Predictive Analysis On Revenue Per Available Room

The AirBnB Approach

Team 21

Anto Frederic Henry Mohan dass Gautam Raghu Rahul Kunku Sai Mona Duvvapu

Agenda

Introduction

Value Chain

Platform Business

Problem Statement

About the Dataset

Dallas, TX

4,490

9,599

Listing Type	Properties	Avg. Nightly Rate	Avg. Discount	Avg. Occupancy Rate	Avg. rating
Entire home/apt	7,245	186	18.5%	20.6%	4.75
Private room	2,029	72	22.6%	18.7%	4.81
Shared room	302	39	27.5%	15.1%	4.69
Hotel room	23	180	33.2%	17.6%	4.78

RevPAR?

Data Preprocessing

Feature Selection

Missing Values

Drop rows, Check for rows with same base statistic **Missing Primary column values** i.e, revenue, available days **Host & Year Dependent** Median based on **Host ID & Year Host Statistic** Median based on **Neighbourhood Statistic Host ID Leftover Revenue Missing Values** Median Based on Neighbourhood

Zero

Outliers

Activity						
01	Data	Data after filling in the missing values				
02	Outliers 1	Filtered values that are above 99 percentile				
03	Outliers 2	Removed values that are beyond the maximum and minimum bound based on boxplot	8			
04	Outliers 3	Removed values that are beyond +3 and -3 Standard Deviation from the mean	÷():			
Processed Data						

Aggregation of Data: Host & Evaluation Period

Data aggregated at host level for each evaluation period before modelling

Modelling

Results

Bathrooms*_1_2_Guests: **0.819**

_7__Guests*superhost_percentage: **0.0229**

num_properties_private*num_properties private: **0.6363**

Number_of_Reviews*Rating_Overall: **0.00154**

available_days_aveListedPrice*num_properties_private: **0.0405**

Number_of_Reviews*available_days_aveListedPrice: **0.00059**

Implications

THANK YOU

What is RevPAR?

Mathematically calculated as:

Total Revenue

Available Rooms

Selected Features

- 'rating ave pastYear'
- 'numCancel pastYear'
- 'numReviews pastYear'
- 'prop_5_StarReviews_pastYear'
- 'available days aveListedPrice'
- 'booked_days_avePrice'
- 'Bedrooms'
- 'Bathrooms'
- 'Number of Photos'
- 'Nightly Rate'
- 'Number of Reviews'
- 'Rating Overall'
- 'occupancy_rate'

- numReserv_pastYear' 'available_days'
- 'booked_days'
- 'Cleaning Fee (USD)'
- 'superhost_percentage'
- 'num_properties_home'
- 'num properties hotel'
- 'num_properties_private'
- 'num_properties_shared'
- 'num_properties_stay_1-2_days'
- 'num_properties_max_3-10_days'
- 'num_properties_max_10+_days'

Code Snippets – Missing Variables

```
# Assuming your dataset is named 'airbnb data'

# Fill NaN values in 'Neighborhood' based on associated zip codes

df'Neighborhood'] = df.groupby('zipcode')['Neighborhood'].transform(lambda x: x.fillna(x.mode().iloc[0]))

# Werify if NaN values in 'Neighborhood' have been replaced
missing_neighborhoods = df[df['Neighborhood'].isnull()]

# If there are still missing values, check the unique Zipcodes with NaN Neighborhoods

missing_zipcodes = missing_neighborhoods ['zipcode'].unique()

# Fill NaN values in 'Neighborhood' based on common Zipcodes

for zipcode in missing_zipcodes:

common_neighborhood = df.loc[df['Zipcode'] == zipcode, 'Neighborhood'].dropna().unique()

df.loc[df['Zipcode'] == zipcode) & (df['Neighborhood'].isnull()), 'Neighborhood'] = common_neighborhood[0]

# Verify if all NaN values in 'Neighborhood' have been replaced

final_missing_neighborhoods = df[df['Neighborhood'].isnull()]
```

```
# Replace missing values within each 'Airbnb Host ID' and "Year'"

df['Rating Overall'] = df.groupby(['Airbnb Host ID', 'Year'])['Rating Overall'].transform(replace_missing_with_median)

# Replace missing values within each 'Airbnb Host ID'

df['Rating Overall'] = df.groupby(['Airbnb Host ID'])['Rating Overall'].transform(replace_missing_with_median)

# Replace missing values within each 'Neighbourhood'

df['Rating Overall'] = df.groupby(['Neighborhood'])['Rating Overall'].transform(replace_missing_with_median)
```

```
# Replace na values with the mean of the non-na values of the particular host ID and year
def replace_missing_with_median(group):
    non_null_values = group.dropna() # Filter non-null values
    if non_null_values.empty:
        return group # Return as is if no non-null values present
    else:
        median_val = non_null_values.median() # Calculate median of non-null values
        return group.fillna(median_val) # Fill missing values with median
```

Code Snippets – SAS EM

Results

References

- https://6sense.com/tech/reservation-and-online-booking/airbnb-market-share
- https://bmtoolbox.net/stories/airbnb/
- https://www.investopedia.com/
- https://chat.openai.com/