Spherelets

Stat 185 Term Paper

$Caleb\ Ren$

December 14, 2019

Contents

1	Introduction	2
2	Method	2
	2.1 Spherical PCA	2
	2.2 Local SPCA	2
	2.3 Assumptions	3
	2.4 Method	:
3	Strengths and Weaknesses	9
	3.1 Strengths	3
	3.2 Weaknesses	
4	Examples	9
	4.1 Euler Spiral	4
	4.2 Helix	4
	4.3 Cylinder	4
5	References	6

1 Introduction

Whereas principal component analysis (PCA) is an eigenvalue/eigenvector problem from an inherently *linear* dimension reduction problem,

2 Method

2.1 Spherical PCA

Given a set of data $\vec{x}_1, \ldots, \vec{x}_N \in \mathbb{R}^D$, we find the best approximating sphere $S_V(c,r)$, where c is the center, r is the radius, and $V \in \mathbb{R}^{(d+1)\times (d+1)}$ is the (d+1)th dimensional affine subspace the sphere lives on. For any point in the dataset \vec{x}_i , the closest point \vec{y}_i lying on the sphere $S_V(c,r)$ is the point that minimizes Euclidean distance $||x,y||^2$ between x and y. The optimal subspace V is given by $\hat{V} = (\vec{v}_1, \ldots, \vec{v}_{d+1})$, where $\vec{v}_i, i \in \{1, \ldots, d+1\}$ is the ith eigenvector ranked in descending order of $(\mathbf{X} - 1_N \mathbf{\bar{X}})^T (\mathbf{X} - 1_N \mathbf{\bar{X}})$.

If $\vec{z}_i = \vec{\mathbf{X}} + \hat{V}\hat{V}^T(\vec{x}_i - \vec{\mathbf{X}})$ are a change of basis to affine subspace V, then it can be shown that the minimizing pair $(\vec{\eta}^*, \vec{\xi}^*)$ of loss function $g(\vec{\eta}, \vec{\xi}) = \sum_{k=1}^N (\vec{z}_i^T \vec{z}_i + \vec{\eta}^T \vec{x}_i + \vec{\xi})^2$ is:

$$\vec{\eta} = -H^{-1}\omega$$

$$\vec{\xi} = -\frac{1}{N} \sum_{k=1}^{N} (\vec{z}_i^T \vec{z}_i + \vec{\eta}^T \vec{z}_i)$$

where H and ω are defined as:

$$H = \sum_{k=1}^{N} (\vec{z}_i - \overline{z})(\vec{z}_i - \vec{z})^T$$

$$\vec{\omega} = \sum_{k=1}^{N} \left(\|\vec{z}_i^T \vec{z}_i\| - \frac{1}{N} \sum_{j=1}^{N} \|\vec{z}_j^T \vec{z}_j\| \right) (\vec{z}_i - \overline{z})$$

The optimal parametrization $(\hat{V}, \hat{c}, \hat{r})$ of the projection of $\mathbf{X} \in \mathbb{R}^{N \times D}$ onto the sphere $S_V(c, r)$ is:

$$\hat{V} = (\vec{v}_1, \dots, \vec{v}_{d+1})$$

$$\hat{c} = -\frac{\vec{\eta}^*}{2}$$

$$\hat{r} = \frac{1}{N} \sum_{k=1}^{N} ||\vec{z}_i - \hat{c}||$$

The projection map $\hat{\Psi}$ of data matrix **X** onto sphere $S_{\hat{V}}(\hat{c},\hat{r})$ is the projection map onto affine subspace $\hat{c} + \hat{V}$, given by:

$$\hat{\Psi}(\vec{x}_i) = \hat{c} + \frac{\hat{r}}{\|\hat{V}\hat{V}^T(\vec{x}_i - \hat{c})\|}\hat{V}\hat{V}^T(\vec{x}_i - \hat{c})$$

2.2 Local SPCA

We have now defined spherical PCA (SPCA) to project the data **X** down to single sphere S_V . However, this single sphere will typically not be a sufficient approximation for the inherent manifold M. Instead, we partition the space \mathbb{R}^D into k disjoint subsets C_1, \ldots, C_k . For the kth disjoint subset, we can define a data matrix $\mathbf{X}_k = \{X_i : X_i \in C_k\}$ that is a partition of the original data that lies within C_k . After applying SPCA to \mathbf{X}_k , we obtain spherical volume,

center, and radius $(\hat{V}_k, \hat{c}_k, \hat{r}_k)$ alongside projection map Φ_k as a map from $x \in C_k$ to $y \in S_{\hat{V}_k}(\hat{c}_k, \hat{r}_k)$. A spherelets estimation \hat{M} of the manifold M can be obtained by setting $\hat{M} = \bigcup_{k=1}^K \hat{M}_k$, where \hat{M}_k is the local SPCA in the kth region and $\hat{M}_k = S_{\hat{V}_k}(\hat{c}_k, \hat{r}_k) \cap C_k$

2.3Assumptions

There are two main

2.4 Method

The algorithm is as follows:

Algorithm 1 Spherelets

Input: Data matrix X; intrinsic dimension d; partition $\{C_k\}_{k=1}^K$

Output: Local estimated manifolds \hat{M}_k and projection map $\hat{\Psi}_k, k \in \{1, ..., K\}$; global estimated manifold \hat{M} of intrinsic manifold M and projection map $\tilde{\Psi}$

- 1: **for** (k = 1 : K) **do**
- Define $\mathbf{X}_{[k]} = \mathbf{X} \cap C_k$ 2:
- 3:
- Calculate $\hat{\hat{V}}_k, \hat{c}_k, \hat{r}_k$ Calculate $\hat{\Psi}_k(x) = \hat{c}_k + \frac{\hat{r}_k}{\|\hat{V}_k\hat{V}_k^T(x-\hat{c}_k)\|}(x-\hat{c}_k)$
- Calculate $\hat{M}_k = S_{\hat{V}_k}(\hat{c}_k, \hat{r}_k) \cap C_k$
- 7: Calculate $\hat{\Psi}(x) = \sum_{k=1}^{K} \mathbf{1}_{\{x \in C_k\}} \hat{\Psi}_k(x)$, and $\hat{M} = \bigcup_{k=1}^{K} \hat{M}_k$.

3 Strengths and Weaknesses

3.1Strengths

- Performs well in areas with high curvature that local PCA can't approximate
- Can perform OOS assessments and returns the underlying manifold

3.2 Weaknesses

- Struggles with areas of non-uniform curvature
- Struggles with non-uniform dimensions
- Must specify inherent dimension d
- Computationally expensive
- Dependent on choice of manifold subsetting

4 Examples

To generate numerical examples, I used the SPCA and SS_calc functions written by co-author Minerva Mukhopadhyay (mmukhopadhyay 2019). The SPCA function takes in a matrix of N observations $\vec{x}_i \in \mathbb{R}^D, i \in 1, ..., N$ and returns the error given by spherical and local PCA (SS and SS_new), as well as the projected values Y_D.

4.1 Euler Spiral

Figure 1: Spherical PCA performed on an Euler spiral with k = 3, 8.

4.2 Helix

Figure 2: Spherical PCA performed on a helix with k=3,8.

4.3 Cylinder

[1] 0.00269493

[1] 7.353559e-05

Figure 3: Spherical PCA performed on a cylinder with k=3,8.

We see that SPCA is not fully capable of handling a cylinder.

5 References

mmukhopadhyay. 2019. "Efficient Manifold Learning Using Spherelets." Github. April 9.