Tutorial 1: problem Solving 1

Week 2: 5/10/2020

TA: Hisham Ashraf Amer

Email: s-hisham.amer@zewailcity.edu.eg

Number of basis states

Single Qubit $\rightarrow 2$ $|0\rangle or |1\rangle$

A 2 qubit system $\rightarrow |0\rangle \otimes |0\rangle$

A 2 qubit system in terms of linear Algebra:

Examples:

$$|0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
;
$$|0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Orthonormal basis spanning the entire 2 qubit state space

QUESTION 1: if
$$|\psi^{AB}\rangle = \begin{bmatrix} 1/\sqrt{4} \\ 0 \\ \sqrt{3}/\sqrt{4} \\ 0 \end{bmatrix}$$
 expand it in terms of the standard basis, first by using dirac notation then using explicit vector algebra:

The most general 2 qubit state is
$$|\psi^{AB}\rangle = \sum_{i,j} C_{ij} |i,j\rangle = C_{00} |0,0\rangle + C_{01} |0,1\rangle + C_{10} |1,0\rangle + C_{11} |1,1\rangle$$

Recall in real space when we defined the dot product:

$$A \cdot B = A^T B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}^T \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + a_2 b_2 + \dots \cdot a_n b_n$$

This is related to the concept of "overlap/projection" between vectors and by extension "length"

Where length of
$$\bar{A} = \sqrt{\bar{A} \cdot \bar{A}}$$

And the projection of \bar{A} along basis \hat{e}_1 for example \hat{e}_x is $\bar{A} \cdot \hat{e}_1$ Unit vector along the x

but we are dealing here with a complex space, and the more general operation is the "inner product"

$$\begin{bmatrix} a_1^* \\ a_2^* \\ \vdots \\ a_n^* \end{bmatrix}^T \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \langle A | B \rangle$$
Dagger = conjugate transpose
$$\langle A | = \begin{bmatrix} a_1^* \\ a_2^* \\ \vdots \\ a_n^* \end{bmatrix}^T = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

$$|\psi^{AB}\rangle = \sum_{i=0,j=0}^{1} C_{ij}|i,j\rangle = C_{00}|0,0\rangle + C_{01}|0,1\rangle + C_{10}|1,0\rangle + C_{11}|1,1\rangle$$

$$C_{ij} = \langle i, j | \psi^{AB} \rangle$$
 so for example $C_{01} = \langle 01 | \psi^{AB} \rangle$

$$C_{01} = \langle 01|\psi^{AB}\rangle = \langle 01|\left(\sqrt{\frac{1}{4}}|0,0\rangle + 0|0,1\rangle + \sqrt{\frac{3}{4}}|1,0\rangle + 0|1,1\rangle\right)$$

$$C_{01} = \sqrt{\frac{1}{4}} \langle 01|00 \rangle + \sqrt{\frac{3}{4}} \langle 01|10 \rangle = 0 \quad \text{Remember orthogonality} : \left\langle \hat{e}_i \middle| \hat{e}_j \right\rangle = \delta_{i,j}$$

$$C_{00} = \langle 00|\psi^{AB} \rangle = \langle 00|\sqrt{\frac{1}{4}}|00 \rangle) = \sqrt{\frac{1}{4}}$$

$$C_{10} = \langle 10|\psi^{AB} \rangle = \langle 10|\sqrt{\frac{3}{4}}|10 \rangle) = \sqrt{\frac{3}{4}}$$

$$C_{11} = \langle 11|\psi^{AB} \rangle = \langle 11|0|11 \rangle) = 0$$

To do C_{10} explicitly:

$$C_{10} = \langle 10|\psi^{AB}\rangle = \langle 10|(\sqrt{\frac{1}{4}}|0,0\rangle + 0|0,1\rangle + \sqrt{\frac{3}{4}}|1,0\rangle + 0|1,1\rangle)$$

$$= \sqrt{\frac{1}{4}} \langle 10|00\rangle + \sqrt{\frac{3}{4}} \langle 10|10\rangle$$

$$= \sqrt{\frac{1}{4}} \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \sqrt{\frac{3}{4}} \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \sqrt{\frac{3}{4}}$$

Projection Operators:

we showed that Generally
$$|\psi^{A_1,A_2,...A_n}\rangle = \sum_{a_1,a_2,...a_n} |a_1,a_2,...a_n\rangle C_{a_1a_2...a_n}$$

and since
$$C_{a_1,a_2,...a_n} = \langle a_1, a_2, ... a_n | \psi^{A_1,A_2,...A_n} \rangle$$

SO

$$|\psi^{A_1,A_2,\dots A_n}\rangle = \sum_{a_1,a_2,\dots a_n} |a_1,a_2,\dots a_n\rangle\langle a_1,a_2,\dots a_n| \ \psi^{A_1,A_2,\dots A_n}\rangle$$

 $\mathbb{P}_{a_1,a_2,\dots a_n}=|a_1,a_2,\dots a_n\rangle\langle a_1,a_2,\dots a_n|=$ projection operator on state $|a_1,a_2,\dots a_n\rangle\langle a_1,a_2,\dots a_n\rangle\langle a_1,a_$

QUESTION 2:

Prove that the vectors
$$|+\rangle = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 and $|-\rangle = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$ span the entire single qubit state space,

then expand
$$\left|\psi^{A_1}\right\rangle = \begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix}$$
 in terms of this non-standard basis:

Check orthogonality : do
$$\langle \hat{e}_i | \hat{e}_i \rangle = \delta_{i,j}$$
? $\langle + | + \rangle = \langle - | - \rangle = 1$; $\langle + | - \rangle = \langle - | + \rangle = 0$

Since this is a 2-D space, we have 2 projection operators and so

$$\left| \psi^{A_{1},A_{2},\dots A_{n}} \right\rangle = \sum_{a_{1},a_{2},\dots a_{n} = 0} |a_{1},a_{2},\dots a_{n}\rangle \langle a_{1},a_{2},\dots a_{n}| \ \psi^{A_{1},A_{2},\dots A_{n}}\rangle \ \rightarrow \ \left| \psi^{A_{1}} \right\rangle = \sum_{a_{1}} |a_{1}\rangle \langle a_{1}| \ \psi^{A_{1}}\rangle$$

$$= |+\rangle\langle +| \psi^{A_1}\rangle + |-\rangle\langle -| \psi^{A_1}\rangle$$
Projection operator \mathbb{P}_+

$$= |+\rangle \left[\frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \right] \left[\frac{1}{2} \\ \frac{\sqrt{3}}{2} \right] + |-\rangle \left[\frac{1}{\sqrt{2}} \quad -\frac{1}{\sqrt{2}} \right] \left[\frac{1}{2} \\ \frac{\sqrt{3}}{2} \right] = \frac{1+\sqrt{3}}{2\sqrt{2}} |+\rangle + \frac{1-\sqrt{3}}{2\sqrt{2}} |-\rangle$$

QUESTION 3:

Exercise 2.2: (Matrix representations: example) Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. Give a matrix representation for A, with respect to the input basis $|0\rangle, |1\rangle$, and the output basis $|0\rangle, |1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

Since this is a 2-D space, we have 2 projection operators and so

output basis $\begin{vmatrix} |0\rangle & |1\rangle \\ |0\rangle & |0\rangle & \langle 0|A|1\rangle \\ |1\rangle & |1\rangle & \langle 1|A|0\rangle & \langle 1|A|1\rangle \end{vmatrix} = \begin{bmatrix} \langle 0|1\rangle & \langle 0|0\rangle \\ \langle 1|1\rangle & \langle 1|0\rangle \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ output basis $\begin{vmatrix} \langle 1|A|0\rangle & \langle 1|A|1\rangle \\ \langle 0|A|0\rangle & \langle 0|A|1\rangle \end{vmatrix} = \begin{bmatrix} \langle 1|1\rangle & \langle 1|0\rangle \\ \langle 0|1\rangle & \langle 0|0\rangle \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

QUESTION 4: Parametrize the most general single qubit state such that it maps to the Bloch sphere,

then
$$locate\ the\ state\ \left|\psi^{A_1}\right>=\left|\begin{matrix} -1/2\\\sqrt{3/2}\end{matrix}\right|$$
 on the sphere and draw it

curious question: How many parameters does a typical c^2 vector have, how many does a single qubit have, why are they not the same

Remember:

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \frac{(i\theta)^8}{8!} + \cdots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \frac{\theta^8}{8!} + \cdots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \frac{\theta^8}{8!} - \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots\right)$$

$$= \cos\theta + i\sin\theta$$
Multiplying by $e^{i\theta}$ rotates
a vector in complex space

Multiplying by $e^{i\theta}$ rotates a vector in complex space $ir sin\theta$ $real \ axis$

So the most general Complex number $Z = re^{i\theta}$

$$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle={\alpha \choose \beta}\in C^2$$
 since α and β are complex

 C^2 is the Complex equivalent of R^2 a coordinate in C^2 has the form (a+bi,c+di) We have 4 parameters a, b, c & d

The Qubit has only 2, although it $\in C^2$ HOW?

$$|\psi\rangle = r_{\alpha}e^{i\phi_{1}}|0\rangle + r_{\beta}e^{i\phi_{2}}|1\rangle = e^{i\phi_{1}}(r_{\alpha}|0\rangle + r_{\beta}e^{i(\phi_{2}-\phi_{1})}|1\rangle)$$

$$Global\ phase$$

We can ignore it due to Global phase invariance If we define $\phi=\phi_2-\phi_1$ we now have 3 parameters r_{α} , r_{β} , ϕ instead of 4

Define
$$|\psi\rangle' = (r_{\alpha}|0\rangle + r_{\beta}e^{i(\phi_2 - \phi_1)}|1\rangle)$$

So
$$|\psi\rangle' = |\psi\rangle$$

So $|\psi\rangle'=|\psi\rangle$ up to a global phase (i.e. the phase $e^{i\phi_1}$)

 $given \ \langle \psi | \psi \rangle = 1$ normalization condition which preserves probability

$$(r_{\alpha}^*\langle 0| + r_{\beta}^* e^{-i(\phi)}\langle 1|) \quad (r_{\alpha}|0\rangle + r_{\beta}e^{i(\phi)}|1\rangle)$$

$$(r_{\alpha}^*r_{\alpha}\langle 0||0\rangle + + r_{\beta}^*r_{\beta}e^{-i(\phi)}e^{i(\phi)}\langle 1||1\rangle) + (r_{\alpha}r_{\beta}^*e^{-i(\phi)}\langle 1||0\rangle + r_{\alpha}^*r_{\beta}e^{i(\phi)}\langle 0||1\rangle)$$

$$|r_{\alpha}|^2 + \left|r_{\beta}e^{i(\phi)}\right|^2 = 1$$

so $|\mathbf{r}_{\alpha}|^2 + |\mathbf{r}_{\beta}|^2 = 1$ since phases squared cancel under complex squaring

We now have TWO parameters $r_{\beta \ or \ \alpha} \ \& \ \phi$

From
$$|r_{\alpha}|^2 + |r_{\beta}e^{i(\phi)}|^2 = 1$$
 $since\ r_{\beta}e^{i(\phi)} = x + iy$ So $|r_{\alpha}|^2 + |x + iy|^2 = 1$; $|r_{\alpha}|^2 + (x + iy)(x - iy) = 1$
$$|r_{\alpha}|^2 + |x|^2 + |y|^2 = 1 \quad \text{maps to the surface of a sphere}$$
 $r_{\alpha} = 1 * cos\theta$; $x = 1 * sin\theta cos\phi$; $y = 1 * sin\theta sin\phi$ Now from $|\psi\rangle' = (r_{\alpha}|0\rangle + r_{\beta}e^{i(\phi_2 - \phi_1)}|1\rangle) = r_{\alpha}|0\rangle + (x + iy)|1\rangle$
$$|\psi\rangle' = cos\theta'|0\rangle + (sin\theta'cos\phi + isin\theta'sin\phi|1\rangle)$$

$$|\psi\rangle' = cos\theta'|0\rangle + sin\theta'(cos\phi + isin\phi|1\rangle)$$

$$|\psi\rangle' = cos\theta'|0\rangle + sin\theta'(e^{i\phi})|1\rangle$$

What about the angles

What about the angles

A point on the opposite side of the sphere has angles

$$\pi - \theta$$
 and $\phi + \pi$

$$|\psi'\rangle = \cos(\pi - \theta')|0\rangle + e^{i(\phi + \pi)}\sin(\pi - \theta')|1\rangle$$

$$= -\cos(\theta')|0\rangle + e^{i\phi}e^{i\pi}\sin(\theta')|1\rangle$$

$$= -\cos(\theta')|0\rangle - e^{i\phi}\sin(\theta')|1\rangle$$

$$|\psi'\rangle = -|\psi\rangle \qquad -1 \text{ is a global phase it's } e^{i\pi}$$

SO

we only need $\theta' = \frac{\theta}{2}$ to span all the physically equivalent states

$$|\psi\rangle' = \cos\theta' |0\rangle + \sin\theta'(e^{i\phi})|1\rangle$$
$$|\psi\rangle' = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}(e^{i\phi})|1\rangle$$

$$|\psi\rangle' = \begin{pmatrix} \cos\frac{\theta}{2} \\ (e^{i\phi})\sin\frac{\theta}{2} \end{pmatrix}$$
 where theta is the angle in real 3D space

so the state
$$|\psi^{A_1}\rangle = \begin{bmatrix} -1/2 \\ \sqrt{3}/2 \end{bmatrix}$$
 on the sphere is parametrized by 2 angles θ and ϕ

$$|\psi^{A_1}\rangle = -\begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix} = e^{i\pi} \begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix}$$
 ; $|\psi^{A_1}\rangle' = \begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix}$

$$\cos\frac{\theta}{2} = \frac{1}{2} \qquad ; \quad \theta = \frac{2\pi}{3}$$

$$(e^{i\phi})\sin\frac{2\pi}{3(2)} = -\frac{\sqrt{3}}{2}$$
 ; $\phi = \pi$

$$\left|\psi^{A_1}\right\rangle = \begin{bmatrix} -1/2\\ \sqrt{3}/2 \end{bmatrix}$$

$$|\psi^{A_1}\rangle' = \begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix}$$

$$|\psi\rangle' = \begin{pmatrix} \cos\frac{\theta}{2} \\ (e^{i\phi})\sin\frac{\theta}{2} \end{pmatrix}$$

$$\frac{\theta}{\theta} = \frac{2\pi}{3}$$
$$\phi = \pi$$

