

## Economic Impact of Flooding on Vulnerable Communities

Floods are becoming more frequent and more catastrophic with changing climate. Are they hitting our more vulnerable communities harder? Does this reinforce cycles of under-resourced communities?



ML translation: Can we predict median income using flood occurrence?

#### **Data Sources**

#### NOAA storm event database

(https://www.ncdc.noaa.gov/stormevents/ftp.jsp)

Features: flood type, date, location, duration, property damage, human injury/death



#### **US Census Data**

Features: median income, public assistance, state



#### USGS National Hydrography Dataset

Streamlines → proxy for proximity to flood source



## Geospatial Transformation: Zip Code Tabulation Area

Zip Code: list of addresses, not an area

US Census Bureau create Zip Code Tabulation Areas (ZCTAs) (https://www2.census.gov/geo/tiger/TIGER2020/ZCTA520/)



# **Data Cleaning**

#### Missing Data

- Flood location not consistently recorded until 2006 → dropped
- Some floods in rural areas outside of mapped ZCTA → dropped
- Analysis for lower 48 states only

#### Data suggests:

- Many floods occur first of the month; might also mean unknown → not used
- Injury/death data mostly zero; zero might also be unknown → not used

## **Data Summary**

Number of floods heavily skewed; most ZCTAs have only a few floods, a few ZCTAs have lots of floods



## **Data Summary**

Skewed flood data means low correlation with other individual features





## Feature Engineering



## Feature Engineering

Number of floods in each season (fall, winter, spring) and decade (2000 - 2010, 2010 - 2020)

Mean, median, max flood duration

Sum stream channel length in ZCTA

Power transform features to address heavy tails

Note: Census Gini index is a measure of how far the Lorenz curve is from line of equality, ranges from 0 to 1 and higher values indicate higher income inequality.



Step 1: Remove correlated features

Target: Median household income Test/Train Split: 20/80



#### Step 1: Remove correlated features



### Step 2: Transform heavy-tailed data



Step 3: Where are the model misses?



Highest error for lowest/highest incomes



# Model: Random Forest Step 3: Remove outliers



## Things to try:

- Limit to ZCTA with more floods (>10)
- 250k max income, limit max income (<200k)</li>
- Low channel lengths have all incomes; perhaps not applicable to study of where flood impacts income (<100km)</li>



#### Step 3: Remove outliers



Train R<sup>2</sup>: 0.52

Test R<sup>2</sup>: 0.14

Model overfitting, not enough data

Step 4: Model score without flood features?

First model Train R<sup>2</sup>: 0.17

Optimized hyperparameter model R<sup>2</sup>: 0.19 (grid search)

Without flood features and optimized hyperparameters R<sup>2</sup>: 0.16

So flood features explain 1% of income variability... not great

## Summary

At ZCTA level, flood occurrence does not seem to affect median household income

(also tried Gradient Boost → model overfit)

(similar results with Neural Network Model)

## **Next Steps**

Try at Census Tract level