EJERCICIOS 2

(1) Calcular los tres autovalores de la matriz

$$A := \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

(2) Calcular los tres autovalores distintos λ_1 , λ_2 , λ_3 de la matriz

$$A := \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix}.$$

Resolver las ecuaciones $(\lambda_j I_3 - A) x_j = 0$, j = 1, 2, 3, para obtener tres autovectores $\{x_1, x_2, x_3\}$ de A. Sea $P := [x_1 \ x_2 \ x_3]$. Verificar que la matriz $P^{-1}AP$ es diagonal y que sus elementos diagonales son los autovalores de A.

(3) Calcular los autovalores de la matriz

$$A := \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}.$$

Obtener una matriz inversible P cuyas columnas son autovectores de A y verificar que las transpuestas de las filas de P^{-1} son autovectores de A^t .

(4) Un "cuadrado mágico" de lado n es una matriz $n \times n$ cuyas entradas son los enteros $1, 2, ..., n^2$ dispuestos de tal manera que la suma de las entradas de cada fila y de cada columna es la misma. Verificar que $\frac{1}{2}n(n^2+1)$ es un autovalor de esta matriz.

(5) Calcular los polinomios característicos y determinar los autovalores de las matrices

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \qquad B = \begin{bmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix},$$

donde $-\pi < \theta \le \pi$, $t \in \mathbb{R}$, $y \omega = e^{2\pi i/3} = \frac{1}{2}(-1 + i\sqrt{3})$.

(6) Calcular el polinomio característico de la matriz

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}$$

y concluir que todo polinomio f(t) es el polinomio característico de alguna matriz.

(7) (a) Si $P^{-1}AP = D$ es una matriz diagonal, demostrar que $A^k = PD^kP^{-1}$ para todo $k \in \mathbb{N}$.

(b) Calcular los dos autovalores de la matriz $A = \begin{bmatrix} -5 & 3 \\ -6 & 4 \end{bmatrix}$ y obtener un par de autovectores correspondientes.

(c) Usar los resultados de las partes (a) y (b) para comprobar que

$$\begin{bmatrix} -5 & 3 \\ -6 & 4 \end{bmatrix}^9 = \begin{bmatrix} -1025 & 513 \\ -1026 & 514 \end{bmatrix}.$$

2 EJERCICIOS 2

- (8) Supongase que
 - V es un espacio vectorial finitodimensional sobre un cuerpo \mathbb{F} ;
 - $W_1, \ldots, W_k \le V$ (es decir, son subespacios);
 - $W_1 + \cdots + W_k = V$;
 - $\dim(W_1) + \cdots + \dim(W_k) = V$.

Demostrar que

- $V = W_1 \oplus \cdots \oplus W_k$;
- Si β_i es una base para W_i (i = 1, ..., k), entonces

$$\beta_1 \cup \cdots \cup \beta_k$$

es una base para V.

(Este ejercicio da una manera alternativa a demostrar Teorema 2.1. ¿Es la condición que V es finitodimensional necesaria?)

(9) Supongase que V es un espacio vectorial de dimensión 2 sobre \mathbb{R} , y $T:V\to V$ es una transformación lineal. Sea β una base de V tal que

$$(T)_{\beta} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Demostrar que T tiene sólo un valor propio si y sólo si

$$a^2 + d^2 - 2ad + 4bc = 0.$$

(En particular, si $a^2 + d^2 - 2ad + 4bc \neq 0$, entonces T es diagonalizable. Podemos concluir que "casi todo" 2×2 matrices sobre \mathbb{R} son diagonalizables. Una declaración similar es verdad para $n \times n$ matrices sobre \mathbb{R} .)

- (10) Supongase que V es un espacio vectorial finitodimensional sobre un cuerpo \mathbb{F} , y $T:V\to V$ es una transformación lineal con polinomio característico f. Supongase que c es una raiz de f de multiplicidad d. Demostrar que, si W es el espacio propio de T asociado a c, entonces $\dim(W) \leq d$.
- (11) Supongase que V es un espacio de dimensión $n < \infty$ sobre un cuerpo \mathbb{F} , y $T: V \to V$ es una transformación lineal con polinomio característico

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0.$$

Escribe $\lambda_1, \dots, \lambda_n$ para los valores propios de T contado con multiplicidad, finalmente sea β una base de V y escribe $A = (T)_{\beta}$. Demostrar que

- $a_0 = (-1)^n \det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- $a_{n-1} = -(A_{11} + A_{22} + \cdots + A_{nn}) = -(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$. El número $A_{11} + A_{22} + \cdots + A_{nn}$ se llama *la traza* de A. Concluir que, si $A \sim B$, la traza de A es igual a la traza de B y, entonces, podemos definir *la traza* de A ser la traza de A donde A es cualquiera base de A.
- ¿ Puede obtenir mas fórmulas para a_{n-2}, a_{n-3}, \dots ? En particular, sea n = 3, y calcular a_1 .