

Keras (2)

고려대학교 INI Lab

Contents

01 Introduction to CNN

02 CNN structure

03 Image Processing

Introduction to CNN

이런 경우에 횡단보도를 건너도 되는가?

① 신호등이 빨간불이다.

③ 좌우에서 차가 안 온다.

두 사진은 같은 동물의 사진인가?

Feature의 특색을 학습할 수 있다면, feature의 유사성을 통해 새로운 데이터로 쉽게 학습 가능

Idea of CNN

현실 세계의 실제 데이터에는 불필요한 정보가 많다.

- ▶ 전체 데이터를 통해 판단을 내리는 것보다, 부분 데이터를 통해 판단을 내리는 것이 불필요한 정보를 제 거할 수 있다.
- ▶ 데이터마다 불필요한 정보는 제각각 다르기 때문에, 사람이 불필요한 정보를 지정해주는 것은 비효율적
- ▶ 전체에서 특징을 추출하는 것이 아니라 지역적인 부분으로부터 특징을 추출하도록 모델 구축

Review FFNN

이전의 모든 layer로부터 정보를 받아서 판단을 내림

- ▶ 불필요한 정보까지 입력을 받기 때문에, overfit(과적합)될 가능성이 다분함
- ▶ 인접한 Layer끼리 모두 연결되어 있기 때문에, Fully-Connected Neural Network라고도 부름

Convolutional Neural Network

전체 데이터를 보지 않고, 일부분 데이터만을 가져와서 다음 layer에 값을 전달

Convolutional Neural Network

전체 데이터를 보지 않고, 일부분 데이터만을 가져와서 다음 layer에 값을 전달

▶ 일부 데이터만 보는 대신, 동일한 데이터에 대해서 다양한 정보를 학습

Convolutional Neural Network

Convolutional Neural Network

낮은 층에서는 단순한 feature 학습 단순한 feature를 조합하여 복잡한 구조 학습

CNN Structure

CNN's Basic structure

CNN's Basic structure

Convolution Calculation

Kernel: Local feature를 추출하는 weight 값

Convolution Calculation

Kernel: Local feature를 추출하는 weight 값

- ▶ Kernel이 많다 : 다양한 특징을 뽑아낼 수 있다
- ▶ 다음 번에 생성되는 feature map의 개수는 kernel의 개수와 동일

Stride

Convolution 계산 시, kernel이 움직이는 단위

- ▶ Stride 값이 작다 : 촘촘하게 데이터를 학습한다. Overfitting이 일어날 가능성이 높아진다.
- ▶ Stride 값이 크다 : 느슨하게 데이터를 학습한다. 생성되는 Feature map의 크기가 작아진다. Underfitting이 일어날 가능성이 높아진다.

Padding

Convolution 연산 시 테두리에 추가적인 공간 할당

- ▶ 가장자리에 위치한 데이터도 균등하게 학습하기 위해
- ▶ 일반적으로 padding에는 잘못된 학습을 방지하기 위해 0을 넣음

Pooling Layer

파라미터를 줄여 overfitting을 방지

▶ Max Pooling : 가장 의미있는 데이터만을 선별해서 학습

▶ Average Pooling : 데이터를 평균내어서 학습

1	0	2	3			
4	6	6	8	Max pooling	6	8
3	1	1	0	_	3	4
1	2	2	4			

Image Processing

Well-refined Image vs Real Image

<CIFAR-10>

<Real Data>

Image Processing

Image Selection

수집한 데이터 중, 잘못된 데이터, 무의미한 데이터 등, 필요로 하는 데이터에 적합하지 않은 데이터를 제 거하고 학습에 유의미한 데이터만을 선별

Image Selection

수집한 데이터 중, 잘못된 데이터, 무의미한 데이터 등의 불필요한 데이터를 제거하고 학습에 유의미한 데 이터만을 선별

Image Resizing

학습 모델에 맞춰 이미지 데이터의 크기를 변환

► Stretch

Image Resizing

학습 모델에 맞춰 이미지 데이터의 크기를 변환

► Crop

Image Resizing

학습 모델에 맞춰 이미지 데이터의 크기를 변환

► Padding

Image Augmentation

한정된 data set으로부터 가능한 많은 data set 생성

- ▶ Overfitting 방지 기능
- ▶ 모델이 noise를 잘 처리할 수 있게 됨

https://github.com/aleju/imgaug

Shift

Zoom

Brightness

Rotation

Flip

Shear

