F.M.F

Chapter 5: IDENTITY, INVERSE & WELL DEFINED MAPPINGS

Mphako-Banda

SCHOOL OF MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- give proofs of properties of inverses of mappings
- state the Invertibility Theorem
- prove the Invertibility Theorem
- ą,

Properties of the inverses of mapping

Theorem (5.3.1)

Let $\alpha : A \to B$ and $\beta : B \to C$ denote mappings

- (i) $1_A: A \to A$ is invertible and $(1_A)^{-1} = 1_A$
- (ii) If α is invertible, then α^{-1} is unique and is invertible with $(\alpha^{-1})^{-1} = \alpha$
- (iii) If α and β are both invertible, then $\beta \alpha$ is invertible and $(\beta \alpha)^{-1} = \alpha^{-1} \beta^{-1}$.

Proof:

- (i) Let $1_A: A \to A$ be the mapping with $1_A(a) = a \quad \forall a \in A$. Then $1_A 1_A(x) = x \quad \forall x \in A$. so $1_A = (1_A)^{-1}$ as it satisfies the conditions of inverse in definition 5.2.1 part(8).
- (ii) Let $\alpha : A \to B$ be invertible and assume both $\beta : B \to A$ and $\gamma : B \to A$ are inverses of α .

So $\gamma \alpha = 1_A$ and $\beta \alpha = 1_A$ by definition of inverse 5.2.1 part (8).

Also $\alpha \gamma = 1_B$ and $\alpha \beta = 1_B$ Thus $\gamma(\alpha \beta) = (\gamma \alpha)\beta = 1_A(\beta) = \beta$ but $\gamma(\alpha \beta) = \gamma(1_B) = \gamma$ so $\beta = \gamma$ and inverses are unique if they exist.

E.M.B

NOTE: $1_A\beta(x) = \beta(x) \quad \forall x \in B$ and $\gamma 1_B(y) = \gamma(y) \quad \forall y \in B$ That is two mappings are equal if they have the same value for all elements in the Domain.

$$\alpha^{-1}\alpha(\mathbf{a}) = \alpha^{-1}(\alpha(\mathbf{a})) = \mathbf{1}_{A}(\mathbf{a}) = \mathbf{a} = \alpha\alpha^{-1}(\mathbf{a})$$
$$\therefore \quad (\alpha^{-1})^{-1} = \alpha$$

(iii) Assume $\alpha:A\to B$ and $\beta:B\to C$ are both invertible $\beta\alpha:A\to C$ is a well defined mapping and $\alpha^{-1}\beta^{-1}:C\to A$ is a well defined mapping (since $\alpha^{-1}:B\to A$ and $\beta^{-1}:C\to B$.) Now $(\beta\alpha)(\alpha^{-1}\beta^{-1})=\beta(1_B)\beta^{-1}=\beta\beta^{-1}=1_C$ and $(\alpha^{-1}\beta^{-1})(\beta\alpha)=\alpha^{-1}(\beta^{-1}\beta)\alpha=\alpha^{-1}(1_B)\alpha=\alpha^{-1}\alpha=1_A$ $\therefore (\beta\alpha)^{-1}=\alpha^{-1}\beta^{-1}$ as it is unique if it exists.

Theorem (5.3.2 INVERTIBILITY THEOREM)

A mapping $\alpha: A \to B$ is invertible if and only if it is a bijection. Thus if $\alpha: A \to B$ is a bijection then α^{-1} exists as a mapping from B to A and this inverse is unique. Further if a mapping is invertible then it is a bijection.

nvertible=bijection=1-1 & surjective

f and only if is a double mplication.

prove the following:

(i) if α is invertible $\Rightarrow \alpha$ is 1-1 and surjective

ii) $\iff \alpha$ is 1-1 and surjective $\Rightarrow \alpha$ is a bijection

PROOF:

 \Rightarrow : Assume $\alpha: A \to B$ is invertible so $\exists \beta: B \to A$ such that $\beta \alpha = 1_A$ and $\alpha \beta = 1_B$ and $\beta = \alpha^{-1}$. Show that α is a bijection that is α is 1 - 1 and onto.

$$\underline{\alpha}$$
, $1-1$: Let $x, y \in A$.

$$\alpha(x) = \alpha(y)$$
 $\Rightarrow \beta(\alpha(x)) = \beta(\alpha(y))$ since β is well defined
 $\Rightarrow (\beta \alpha)(x) = (\beta \alpha)(y)$ definition of composition
 $\Rightarrow 1_A(x) = 1_A(y)$ since $\beta \alpha = 1_A$
 $\Rightarrow x = y$ since 1_A identity map

Therefore α is 1 – 1 map.

 $\underline{\alpha},$ onto :

Let $y \in B$ then $\beta(y) \in A$ since $D(\beta) = B$.

So $\alpha(\beta(y)) \in B$ since $D(\alpha) = A$.

But $\alpha(\beta(y)) = (\alpha\beta)(y) = 1_B(y) = y$ Since 1_B identity on B.

 \therefore α is onto B.

 \therefore α is a bijection of A to B.

 \Leftarrow : Assume α is a bijection (1 – 1 and onto)

Define $\beta: B \to A$ by $\beta(y) = x$ iff $\alpha(x) = y$.

since a is 1-1 and onto

well defined

We check β is (W.D) map, $\alpha\beta = 1_B$ and $\beta\alpha = 1_A$.

or any y_1 and y_2 in B, there exist x_1 and x_2 in A

- (i) $y_1 = y_2$ for $y_1, y_2 \in B \Rightarrow \exists x_1, x_2 \in A$ with $\alpha(x_1) = y_1, \alpha(x_2) = y_2$, and $\alpha(x_1) = \alpha(x_2)$ since α is onto
 - \Rightarrow $x_1 = x_2$ since α is 1 1
 - $\Rightarrow \beta(y_1) = \beta(y_2)$ by definition of β
 - $\Rightarrow \beta$ is well defined.

we show that $\alpha\beta=1_B$

(ii)
$$\alpha\beta(y) = \alpha(x)$$
 where $x = \beta(y)$. Thus $\alpha(x) = y$ by definition of β

$$\therefore$$
 $\alpha\beta(y) = \alpha(x) = y$ where $x = \beta(y)$

$$\therefore \quad \alpha\beta = \mathbf{1}_{B}.$$

(iii)
$$\beta \alpha(\mathbf{x}) = \mathbf{y}$$

 $\Rightarrow \beta(\alpha(x)) = y \Rightarrow \alpha(y) = \alpha(x) \text{ by definition of } \beta$ $\Rightarrow x = y \quad (\alpha \quad \text{is} \quad 1 - 1)$ Hence $\beta(\alpha(x)) = x \quad \forall x \in A$. Thus $\beta \alpha = 1_A$.

Hence $\beta(\alpha(X)) = X \quad \forall X \in A$. Thus $\beta\alpha = 1_A$.

Thus α is invertible iff α is a bijection.

we show that $\beta\alpha=1_A$