

CS326 – Systems Security

Lecture 7 Modes of Operation in Block Ciphers

Elias Athanasopoulos athanasopoulos.elias@ucy.ac.cy

Sections of this Lecture

- More on Block Ciphers
- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Counter Mode (CTR)

MORE ON BLOCK CIPHERS

Block Ciphers Usage

- Build different types of block-based encryption schemes
- Realize stream ciphers
- Construct cryptographic hash functions
- Make message authentication codes (MACs)
- Build key establishment protocols
- Make a pseudo-random number generator

Modes of Operation

In practice, someone needs to transmit a message that contains several blocks (e.g., a PDF document, or an e-mail)

Problem

Assume that we cut the message in blocks, how the blocks are then encrypted?

ELECTRONIC CODE BOOK (ECB)

ECB Overview

ECB Description

- ECB serves as a gigantic codebook
- For a fixed key, every block of plaintext maps to a particular block of ciphertext
- Vulnerable to attacks

Substitution Attack

- Suppose an electronic bank transfer
 - The encryption key between the two banks does not change too frequently

Block 1	Block 2	Block 3	Block 4	Block 5
Sending	Sending	Receiving	Receiving	Amount
Bank A	Account ID	Bank B	Account ID	(euros)

Substitution Attack

- The attacker sends 1-euro transfers from their account at bank A to their account at bank B repeatedly
- They can check for ciphertext blocks that repeat, and they store blocks 1, 3 and 4 of these transfers
- They now simply replace block 4 of other transfers with the block 4 that they stored before
 - All transfers from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

CIPHER BLOCK CHAINING (CBC)

Cipher Block Chaining (CBC)

- Chain all blocks together
- For decrypting the Nth block, you need to decrypt all previous blocks
- For just the first block, generate a random number (nonce), usually called Initialization Vector (IV)
 - Apply XOR with IV and the first block of plaintext before encryption
- For all other blocks
 - Apply XOR with the previous block of ciphertext and the current block of plaintext before encryption

CBC Overview

Initialization Vector (IV)

- If the IV is kept the same for several encryptions, the attacker can infer cipher blocks
- If we choose a new IV every time we encrypt, the CBC mode becomes a probabilistic encryption scheme
 - Two encryptions of the same plaintext look entirely different
- It is not needed to keep the IV secret!
- Typically, the IV should be a non-secret nonce (value used only once)

CBC Encryption/Decryption

Encryption

- First block: $c_1 = e_k (p_1 \oplus IV)$
- General block: $c_i = e_k (p_i \oplus c_{i-1})$, $i \ge 2$

Decryption

- First block: $p_1 = \mathbf{d_k}(c_1) \oplus IV$
- General block : $p_i = \mathbf{d_k}(c_i) \oplus c_{i-1}$, $i \ge 2$

COUNTER MODE (CTR)

Counter Mode (CTR)

- Transforms a block cipher to a stream cipher
- The key stream is computed in a blockwise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block
- Can be parallelized

CTR Overview

CTR Encryption/Decryption

Encryption

$$c_i = e_k (IV \mid | CTR_i) \bigoplus p_i, i \ge 1$$

Decryption

$$p_i = e_k (IV \mid | CTR_i) \bigoplus c_i, i \ge 1$$

 Notice we do not use the decryption part of the symmetric cipher!

Resources

- This lecture was built using material that can be found at
 - Chapter 5, Understanding Cryptography,
 http://www.crypto-textbook.com
 - Chapter 7, Handbook of Applied Cryptography, http://cacr.uwaterloo.ca/hac/
 - Chapter 4, Serious Cryptography,https://nostarch.com/seriouscrypto