Frühjahr 23 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $U \subset \mathbb{C}$ offen mit $\pi \in U$.

a) Die Funktion $f:U\to\mathbb{C}$ sei holomorph mit $f(\pi)=0=f'(\pi)$ und $f''(\pi)=1$. Bestimmen Sie für

$$g: U \to \mathbb{C}, \ z \mapsto \sin(z) \cdot f(z)$$

die Nullstellenordnung in π .

b) Geben Sie an für welche natürlichen Zahlen $n \in \mathbb{N}$ eine holomorphe Funktion $h: U \setminus \{\pi\} \to \mathbb{C}$ mit $(h(z))^n = (z - \pi)^6$ für alle $z \in U \setminus \{\pi\}$ existiert. Begründen Sie Ihre Antwort.

Hinweis: Wenn es ein derartiges h gibt, welchen Typ hat dann die isolierte Singularität von h bei π ?

Lösungsvorschlag:

a) Nach den Voraussetzungen ist g holomorph und hat bei π eine Nullstelle, deren Ordnung durch Ableiten bestimmt werden kann. Aus der Potenzreihendarstellung folgt nämlich, dass die Ordnung der Nullstelle die kleinste natürliche Zahl mit $f^{(n)}(\pi) \neq 0$ ist. Wir berechnen

$$g'(z) = \cos(z) \cdot f(z) + \sin(z) \cdot f'(z), \quad g'(\pi) = 0$$

$$g''(z) = -\sin(z) \cdot f(z) + 2\cos(z) \cdot f'(z) + \sin(z) \cdot f''(z), \quad g''(\pi) = 0$$

$$g'''(z) = -\cos(z) \cdot f(z) - 3\sin(z) \cdot f'(z) + 3\cos(z) \cdot f''(z) + \sin(z) \cdot f'''(z), \quad f'''(\pi) = 3$$

woraus folgt, dass die Nullstelle von dritter Ordnung ist.

b) Dies ist genau für $n \in \{1,2,3,6\}$ der Fall. Für diese $n \in \mathbb{N}$ ist auch $\frac{6}{n} \in \mathbb{N}$ und $h(z) \coloneqq (z-\pi)^{\frac{6}{n}}$ holomorph mit der gewünschten Eigenschaft. Nun zur Umkehrung. Sei $n \in \mathbb{N}$ und h eine holomorphe Funktion und sie erfülle obige Gleichung, dann ist h nahe π beschränkt, denn es gibt ein $\varepsilon > 0$ mit $B_{\varepsilon}(\pi) \subset U$ und für alle $z \in B_{\varepsilon}(\pi) \setminus \{\pi\}$ ist $|h(z)|^n = |z-\pi|^6 \le \varepsilon^6$, also $|h(z)| \le \varepsilon^{\frac{6}{n}}$. Nach dem Riemannschen Hebbarkeitssatz ist die Singularität hebbar und die stetige Fortsetzung von h in π ist holomorph auf U. Wegen $(\lim_{z \to \pi} h(z))^n = \lim_{z \to \pi} (x-\pi)^6 = 0$ erfüllt die stetige Fortsetzung \hat{h} also $\hat{h}(\pi) = 0$. Für die Nullstellenordnung gilt nun analog

$$\operatorname{Ord}_{\hat{h}}(\pi) \cdot n = \operatorname{Ord}_{(z-\pi)^6}(\pi) = 6,$$

also ist n ein Teiler von 6 und damit $n \in \{1,2,3,6\}$ wie behauptet.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$