Entalpia

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

2A01

Assinale a alternativa que mais se aproxima do valor absoluto do trabalho realizado por um gás que se expande em $500\,\mathrm{mL}$ contra uma pressão de $1,20\,\mathrm{atm}$.

- **A** 54 J
- **B** 60 J
- **c** 66 J

- **D** 72 J
- **E** 70 J

PROBLEMA 1.2

2A02

Assinale a alternativa que mais se aproxima do valor absoluto do trabalho realizado no congelamento de 100 g de água a 0 °C e 1070 atm.

- **A** 720 J
- **B** 790 J
- **c** 860 J

- **D** 880 J
- **E** 910 J

PROBLEMA 1.3

2A03

Assinale a alternativa que mais se aproxima do valor absoluto do trabalho realizado quando $50\,\mathrm{g}$ de ferro reagem com ácido clorídrico formando gás hidrogênio e cloreto de ferro (II) a $25\,^{\circ}\mathrm{C}$.

- **A** 2,20 kJ
- **B** 4,40 kJ
- **c** 6,60 kJ

- **D** 8,80 kJ
- **E** 5,30 kJ

PROBLEMA 1.4

2A04

Assinale a alternativa que mais se aproxima do valor absoluto do trabalho realizado na eletrólise de $50\,\mathrm{g}$ de água formando gás hidrogênio e oxigênio a $25\,^{\circ}\mathrm{C}$.

- **A** 10 kJ
- **B** 12 kJ
- **C** 18 kJ

- **D** 15 kJ
- **E** 20 kJ

PROBLEMA 1.5

2A05

Em um calorímetro foram adicionados $20\,\mathrm{g}$ de um metal a $100\,^\circ\mathrm{C}$ e $50\,\mathrm{g}$ de água a $22\,^\circ\mathrm{C}$. A temperatura final registrada foi $25\,^\circ\mathrm{C}$.

Assinale a alternativa que mais se aproxima da capacidade calorífica do metal.

- \mathbf{A} 0,100 J K⁻¹ g⁻¹
- $\mathbf{B} = 0.200 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{g}^{-1}$
- $\begin{array}{ccc} \textbf{C} & 0.300\,\mathrm{J\,K^{-1}\,g^{-1}} \\ \textbf{E} & 0.500\,\mathrm{J\,K^{-1}\,g^{-1}} \end{array}$
- ${f D}$ 0,400 J K $^{-1}$ g $^{-1}$

PROBLEMA 1.6

2A06

Em um calorímetro adiabático foram adicionados 300 g de gelo a 0 °C e 400 g de água a 55 °C.

Assinale a alternativa que mais se aproxima da temperatura final do sistema.

- **A** −4 °C
- \mathbf{B} $-3\,^{\circ}\mathrm{C}$
- **c** 0 ° C

- **D** 3 °C
- **E** 4 °C

- $\Delta H_{\rm f}({\rm H_2O,s}) = -292 \,{\rm kJ \, mol}^{-1}$
- $C_P(H_2O, s) = 37.8 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(H_2O, l) = 75.3 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

2A07

A expansão de um gás ideal em um recipiente de $1\,\mathrm{L}$ a $10\,\mathrm{atm}$ é realizada de duas maneiras diferentes em temperatura constante.

- 1. Expansão contra pressão constante de $1\,\mathrm{atm}$, levando o volume final do recipiente a $10\,\mathrm{L}$.
- 2. Expansão contra pressão constante de $5\,\mathrm{atm}$ até atingir um volume de $2\,\mathrm{L}$, seguida de expansão contra pressão constante de $1\,\mathrm{atm}$ atingindo o volume final de $10\,\mathrm{L}$.

Assinale a alternativa correta.

- A O trabalho realizado pelo gás é igual nos dois processos de expansão.
- B O trabalho realizado no primeiro processo é metade do trabalho realizado no segundo processo.
- C A variação de energia interna do gás é igual em ambos os processos.
- A variação de energia interna do gás no primeiro processo é metade da do segundo processo.
- **E** O calor trocado pelo gás é igual em ambos os processos.

PROBLEMA 1.8

2A08

Considere os processos químicos realizados em temperatura constante.

- 1. Dissolução do nitrato de potássio.
- 2. Ebulição da água.
- 3. Conversão da grafita em diamante.
- 4. Oxidação do sódio metálico.

Assinale a alternativa com os processos que apresentam variação de energia interna não nula.

- **A** 1, 2 e 3
- **B** 1, 2 e 4
- **C** 1, 3 e 4

- **D** 2, 3 e 4
- **E** 1, 2, 3 e 3

São descritos abaixo dois experimentos em que há sublimação completa de uma mesma quantidade de dióxido de carbono no estado sólido a $25\,^{\circ}\mathrm{C}$:

- O processo é realizado em um recipiente hermeticamente fechado, de paredes rígidas e indeformáveis.
- 2. O processo é realizado em cilindro provido de um pistão, cuja massa e desprezível e se desloca sem atrito.

Assinale a alternativa *incorreta*.

- A O primeiro processo ocorre com absorção de calor.
- **B** O valor absoluto do trabalho realizado é maior no primeiro.
- C A variação de energia interna é maior no primeiro processo.
- D Há realização de trabalho no segundo processo.
- A variação de energia interna é igual ao calor no segundo processo.

PROBLEMA 1.10

2A10

Um sistema termicamente isolado é composto por dois balões idênticos resistentes, porém não inquebráveis, **A** e **B**, conectados por um tubo com uma válvula fechada. O balão **A** contém um mol de um gás ideal monoatômico e **B** encontra-se perfeitamente evacuado. Em um dado instante a válvula é aberta.

Assinale a alternativa correta.

- A O balão B quebrar-se-á devido ao impacto do gás ideal
- **B** O trabalho gerado pela expansão do gás aquecerá o sistema.
- C O gás em expansão absorverá calor da vizinhança, resfriando o sistema.
- A variação da energia interna da expansão será nula.
- A variação da energia interna do sistema será negativa.

PROBLEMA 1.11

2A11

Assinale a alternativa que mais se aproxima da variação de entalpia quando um mol de um gás pressurizado em 1 MPa e 300 K se expande adiabaticamente contra pressão de 0,100 MPa até atingir o equilíbrio.

- **A** 15 kJ
- **B** 17 kJ
- **C** 20 kJ

- **D** 22 kJ
- **E** 25 kJ

Assinale a alternativa que mais se aproxima da variação de entalpia quando 500 J de energia são transferidos em volume constante a uma amostra contendo 0,900 mol de oxigênio.

- $-700 \, J$
- $-500 \, \text{J}$
- **c** 300 J

- **D** 500 J
- **E** 700 J

Dados

• $C_P(O_2, g) = 29.4 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

PROBLEMA 1.13

2A13

Considere a curva de aquecimento para uma substância sólida com apenas uma fase cristalina.

Considere as proposições.

Assinale a alternativa que relaciona as proposições *incorretas*.

- A Na região entre P e Q ocorre aumento da energia
- **B** Na região entre Q e R ocorre aumento da energia potencial.
- C O calor de fusão da substância é menor que o seu calor de vaporização.
- O calor específico do sólido é maior que o calor específico do líquido.

Amostras de massas iguais de duas substâncias, \mathbf{A} e \mathbf{B} , foram submetidas independentemente a um processo de aquecimento em atmosfera inerte e sob pressão constante. A curva de aquecimento das amostras é apresentado a seguir.

Assinale a alternativa incorreta.

- A A entalpia de fusão de A é menor que a de B.
- B A entalpia de vaporização de A é menor que a de B.
- f C A capacidade calorífica na fase sólida de f A é menor que na de f B.
- f D A capacidade calorífica na fase líquida de f A é maior que na de f B.
- f E A capacidade calorífica na fase gasosa de f A é maior que na de f B.

Considera a variação da capacidade calorífica de uma substância com a temperatura.

Assinale a alternativa incorreta.

- A substância apresenta mais de uma estrutura cristalina.
- **B** A capacidade calorífica da substância é menor no estado gasoso do que no estado líquido.
- C A capacidade calorífica para qualquer fase da substância aumenta com o aumento da temperatura.
- Caso a substância se mantenha no estado líquido em temperaturas inferiores a T_f , a capacidade calorífica da substância líquida é maior que a capacidade calorífica da fase sólida metaestável em temperaturas inferiores à T_f .
- A variação de entalpia quando essa substância sofre uma reação química no estado líquido aumenta com o aumento da temperatura.

PROBLEMA 1.16

2A16

Aminoácidos são oxidata: no organismo formando ureia (H_2NCONH_2) , dióxido de carbono e água.

Assinale a alternativa do valor mais próximo da entalpia de oxidação da glicina (NH₂CH₂COOH).

- **A** $620 \, \text{kJ} \, \text{mol}^{-1}$
- **B** $650 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $C 680 \, kJ \, mol^{-1}$
- \mathbf{D} 710 kJ mol⁻¹
- \mathbf{E} 740 kJ mol⁻¹

Dados

- $\Delta H_{\rm f}({\rm ureia, s}) = -334 \,{\rm kJ \, mol}^{-1}$
- $\Delta H_{\rm f}({\rm CO}_2, {\rm g}) = -394 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm H_2O}, {\rm l}) = -286 \,{\rm kJ \, mol^{-1}}$

PROBLEMA 1.17

Assinale a alternativa que mais se aproxima da entalpia de formação do metano.

- $B -75 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{C} 75 kJ mol⁻¹
- D 150 kJ mol⁻¹
- \mathbf{E} 225 kJ mol⁻¹

Dados

- $\Delta H_{\rm f}({\rm CO_2,g}) = -394\,{\rm kJ\,mol^{-1}}$
- $\Delta H_{\rm f}({\rm H_2O,g}) = -242 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm c}({\rm CH_4,g}) = -890 \,{\rm kJ \, mol^{-1}}$

PROBLEMA 1.18

2A18

Assinale a alternativa que mais se aproxima da razão entre a energia liberada por átomo de hidrogênio na combustão completa do octano gasoso e na célula de combustível de hidrogênio e oxigênio.

- **A** 0, 2
- \mathbf{B} 0,5
- **c** 1,0
- D 2,5
- **E** 5,0

Dados

- $\Delta H_{\rm L}({\rm C-C}) = 348 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C-H}) = 412 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C=O}) = 743 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm O}_2) = 496 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

PROBLEMA 1.19

2A19

Assinale a alternativa que mais se aproxima da entalpia de bromação de um mol de propeno (CH₃CHCH₂), formando 1,2—dibromopropano (CH₃CHBrCH₂Br, $\Delta H_{\rm vap} = 35.61 {\rm kJ.mol}^{-1}$).

- **A** −101 kJ
- lacksquare $-401\,\mathrm{kJ}$
- **C** −302 kJ

- \mathbf{D} $-130\,\mathrm{kJ}$
- $-202 \,\mathrm{kJ}$

- $\Delta H_{\text{vap}}(Br_2) = 30.9 \,\text{kJ} \,\text{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C=C}) = 612 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm Br}_2) = 193 \,{\rm kJ \, mol}^{-1}$

Assinale a alternativa que mais se aproxima da entalpia de formação do metanol.

- $-260 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $-200 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $-130 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- D 130 kJ mol⁻¹
- $E 260 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Dados

- $\Delta H_{\text{sub}}(\text{grafite}) = 712 \,\text{kJ mol}^{-1}$
- $\Delta H_{\rm L}({\rm O}_2) = 496 \,{\rm kJ \, mol}^{-1}$
- $\Delta H_{\rm L}({\rm C-H}) = 412 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C-O}) = 360 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm O-H}) = 463 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

PROBLEMA 1.21

2A21

A hidrogenação do monóxido de carbono libera 131 kJ por mol de grafita formado.

Assinale a alternativa que mais se aproxima da entalpia de reforma de 1 mol de metano com vapor d'água, método industrial para produção de hidrogênio.

- \mathbf{A} 207 kJ mol⁻¹
- $-204 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{C} 302 kJ mol⁻¹
- D $-197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $E 250 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Dados

- $\Delta H_{\rm f}({\rm CO_2,g}) = -394\,{\rm kJ\,mol}^{-1}$
- $\Delta H_{\rm f}({\rm H_2O}, {\rm l}) = -286 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm c}({\rm CH_4,g}) = -890 \,{\rm kJ \, mol^{-1}}$

PROBLEMA 1.22

2A22

Assinale a alternativa que mais se aproxima da entalpia de desidrogenação de 1 mol de propano, formando propeno.

- **A** $-3,50\,{\rm MJ}$
- **B** $-2,20\,{\rm MJ}$
- **c** 2,20 MJ
- **D** 125 kJ
- **E** 114 kJ

Dados

- $\Delta H_{\rm f}(\text{propeno, g}) = 20.4 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm f}({\rm CO_2,g}) = -394 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_c(\text{propano}, g) = -2220 \,\text{kJ mol}^{-1}$

Uma amostra de 0,113 g de benzeno é queimada em um calorímetro isobárico (C = $551\,\mathrm{J}\,^{\circ}\mathrm{C}^{-1}$) com excesso de oxigênio. A elevação de temperatura registrada foi de $8.60\,^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima da entalpia de combustão do benzeno.

- $-6,55\,\mathrm{MJ}$
- **B** $-7.05 \, \text{MJ}$
- $-8,90\,\mathrm{MJ}$

 $-5,50\,\mathrm{MJ}$

PROBLEMA 1.23

 $-9,75\,\mathrm{MJ}$

PROBLEMA 1.24

2A24

Um calorímetro foi calibrado pela queima de $0.825\,\mathrm{g}$ de ácido benzoico com excesso de oxigênio. A elevação de temperatura registrada foi de $8.60\,^{\circ}\mathrm{C}$. Quando uma amostra com $0.725\,\mathrm{g}$ de ribose $(\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_5)$ é queimada no mesmo calorímetro, a temperatura aumenta de $21.8\,^{\circ}\mathrm{C}$ para $22.7\,^{\circ}\mathrm{C}$. Assinale a alternativa que mais se aproxima da energia de combustão da ribose.

- \mathbf{A} 220 kJ mol⁻¹
- **B** $4700 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $c 580 \, kJ \, mol^{-1}$
- D 740 kJ mol⁻¹
- \mathbf{E} 850 kJ mol⁻¹

Dados

• $\Delta H_c(C_6H_5COOH, s) = -3230 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

PROBLEMA 1.25

2A25

Uma amostra de 1 mol de glicose é que imada em um calorímetro isocórico ($C=512\,\mathrm{J}\,^\circ\mathrm{C}^{-1}$) com excesso de oxigênio. A variação de temperatura registra da foi de 5 °C.

Assinale a alternativa que mais se aproxima da entalpia de combustão da glicose.

- **A** $-2580 \, \text{kJ}$
- **B** $-2560 \, \text{kJ}$
- $-2550 \, kJ$
- **D** 2550 kJ
- **E** 2560 kJ

Em um cilindro, provido de um pistão móvel sem atrito, é realizada a combustão completa de carbono. A temperatura no interior do cilindro é mantida constante desde a introdução dos reagentes até o final da reação.

- 1. A variação da energia interna do sistema é igual a zero.
- 2. O sistema não realiza trabalho.
- 3. A quantidade de calor trocada entre o sistema e a vizinhança é igual a zero.
- 4. A variação da entalpia do sistema é igual à variação da energia interna.

Assinale a alternativa que relaciona as proposições corretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 3
- **C** 1, 2 e 3

- **D** 1, 2 e 3
- **E** 1, 2 e 3

PROBLEMA 1.27

2A27

2A26

Assinale a alternativa que mais se aproxima da massa de butano necessária para aquecer 1 L de água de 17 °C a 100 °C.

Resposta: [B]

- **A** 3 g
- **B** 7g
- **C** 14 g

- **D** 21 g
- **E** 28 g

Dados

- $\Delta H_c(\text{butano}, g) = -2880 \,\text{kJ} \,\text{mol}^{-1}$
- $C_P(H_2O, l) = 75.3 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $\rho(\mathrm{H_2O}) = 1 \,\mathrm{g \, cm}^{-3}$

PROBLEMA 1.28

2A28

O poder calorífico superior (PCS) e o poder calorífico inferior (PCI) são definidos como a energia liberada na combustão completa de uma substância formando água líquida e gasosa, respectivamente.

Assinale a alternativa que mais se aproxima do PCI do etanol (PCS = $30 \,\mathrm{MJ\,kg^{-1}}$).

- \mathbf{A} 21 MJ kg⁻¹
- m B $27\,MJ\,kg^{-1}$
- \mathbf{C} 30 MJ kg⁻¹
- \mathbf{D} 33 MJ kg⁻¹
- \mathbf{E} 39 MJ kg⁻¹

Dados

Nível II

PROBLEMA 2.1

2A29

Uma substância de massa molar $200\,\mathrm{g}\,\mathrm{mol}^{-1}$ foi colocada em um recipiente equipado com uma serpentina de aquecimento resistivo, a $80\,^{\circ}\mathrm{C}$ e $1\,\mathrm{bar}$. Para a manutenção da temperatura, foi utilizada uma fonte de $30\,\mathrm{V}$ e $900\,\mathrm{mA}$ durante $30\,\mathrm{s}$, vaporizando $2\,\mathrm{g}$ da substância.

Assinale a alternativa que mais se aproxima da entalpia de vaporização dessa substância.

- \mathbf{A} 8 kJ mol⁻¹
- \mathbf{B} 40 kJ mol⁻¹
- \mathbf{C} 80 kJ mol⁻¹
- \mathbf{D} 400 kJ mol⁻¹
- \mathbf{E} 800 kJ mol⁻¹

PROBLEMA 2.2

2A30

Um calorímetro foi calibrado aplicando uma corrente de $1\,\mathrm{A}$ de uma fonte de $9\,\mathrm{V}$ por $150\,\mathrm{s}$, sendo registrada uma variação de temperatura de $5\,^\circ\mathrm{C}$. Em um segundo experimento, um mol de uma substância foi queimado nesse calorímetro e a variação de temperatura registrada foi de $3\,^\circ\mathrm{C}$.

Assinale a alternativa que mais se aproxima da entalpia de vaporização dessa substância.

- $\mathbf{A} \quad 510 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{B} 610 kJ mol⁻¹
- $\overline{\mathbf{C}}$ 710 kJ mol⁻¹
- **D** 810 kJ mol⁻¹
- \mathbf{E} 910 kJ mol⁻¹

PROBLEMA 2.3

2A31

6

O perclorato de amônio (PA) é um dos componentes mais utilizados em propelentes de foguetes. Para aperfeiçoar seu desempenho, hidrogênio pode ser utilizado como aditivo. Considere o poder calorífico dessa mistura em função da fração mássica de hidrogênio.

Fração mássica (%) | Poder calorífico (kJ g $^{-1}$) | --: | --: | 2 | 3 | 5 | 8,70 |

- a. Determine a entalpia de combustão do perclorato de amônio.
- b. Determine a entalpia de combustão do hidrogênio.

Uma mistura de metano e eteno foi queimada em um reator de 3 L a 25 °C, em presença de excesso de oxigênio. O reator é equipado com uma jaqueta externa, preenchida com 1 L de água, que mantém a temperatura constante em seu interior. A combustão foi realizada a 25 °C, liberando 243 kcal, e reduzindo a pressão em 16.3 atm.

- a. **Determine** a energia interna de combustão do metano e do eteno.
- b. Determine a massa de metano na mistura inicial.

Dados

- $C_P(H_2O, l) = 75.3 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm H_2O}, {\rm l}) = -286 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm CO_2,g}) = -394 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm f}({\rm eteno,g}) = 52.3 \, {\rm kJ \, mol}^{-1}$
- $\Delta H_{\rm f}({\rm metano,g}) = -74.8 \,{\rm kJ \, mol}^{-1}$

PROBLEMA 2.5

2A33

Determine a energia liberada durante a precipitação pluviométrica de $20\,\mathrm{mm}$ de chuva sobre uma área de $100\,\mathrm{km}2$.

Dados

- $\Delta H_{\text{vap}}(\text{H}_2\text{O}) = 40.7 \,\text{kJ} \,\text{mol}^{-1}$
- $\rho(H_2O) = 1 \text{ g cm}^{-3}$

PROBLEMA 2.6

2A34

O consumo global anual de energia é cerca de 100 terawatts sendo 30% desse valor proveniente da queima de combustíveis fósseis. Considere que os combustíveis fósseis são compostos majoritariamente por octano, contendo 10 ppm de enxofre. Apenas 80% da energia liberada na combustão completa pode ser aproveitada.

- a. Apresente a reação de combustão completa do octano com ar atmosférico.
- b. **Determine** a massa de dióxido de enxofre formada por hora devido à queima de combustíveis fósseis.

Dados

- $\Delta H_{\rm f}({\rm H}_2{\rm O}, {\rm l}) = -286 \,{\rm kJ \, mol}^{-1}$
- $\Delta H_{\rm f}({\rm CO}_2, {\rm g}) = -394 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm octano}, 1) = -250 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Considere os processos químicos a seguir.

- 1. Reação de formação da água gasosa.
- 2. Reação de formação da água líquida.

Assinale a alternativa incorreta.

- A As reações 1 e 2 são exotérmicas.
- B O valor absoluto da variação de entalpia é menor que o da variação de energia interna para a reação 1.
- C O valor absoluto da variação de energia interna da reação 1 é menor que o da 2.
- O valor absoluto da variação de entalpia da reação 1 é menor que o da 2.
- A capacidade calorífica do produto da reação 1 é menor que o da 2.

PROBLEMA 2.8

2A36

Considere os processos a seguir, em 298 K e 1 atm. Combustão de 1 g de etanol formando fuligem. Combustão de 1 g de etanol formando monóxido de carbono. **Assinale** a alternativa *correta*.

- A Os processos ocorrem com a mesma variação de energia interna.
- **B** Os processos ocorrem com a mesma variação de entalpia.
- C O valor absoluto da variação de energia interna é maior para o primeiro processo.
- O valor absoluto da variação de entalpia é maior que o valor absoluto da variação de energia interna para o primeiro processo.
- O valor absoluto da variação de entalpia é menor que o valor absoluto da variação de energia interna para o segundo processo.

PROBLEMA 2.9

2A37

Determine a entalpia de combustão do octano.

- $\Delta H_c(\text{pentano}, g) = -3540 \,\text{kJ} \,\text{mol}^{-1}$
- $\Delta H_{\rm c}({\rm butano,g}) = -2880 \,{\rm kJ \, mol^{-1}}$

Amostras de 5 g de etano e propano foram que
imadas independentemente em um calorímetro a 298 K e 1 atm, liberando 260 kJ e 250 kJ de energia, respectivamente.

- a. **Determine** a energia da ligação C–C.
- b. **Determine** a energia da ligação C-H.

Dados

- $\Delta H_{\rm f}({\rm CO}_2, {\rm g}) = -394 \,{\rm kJ \, mol}^{-1}$
- $\Delta H_{\text{sub}}(\text{grafite}) = 712 \,\text{kJ mol}^{-1}$
- $\Delta H_{\rm L}({\rm H}_2) = 436 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_f(H_2O, l) = -286 \, kJ \, mol^{-1}$

PROBLEMA 2.11

2A39

Assinale a alternativa que mais se aproxima da temperatura adiabática de chama para a combustão octano líquido com 300% de excesso de ar atmosférico.

- **A** 580 K
- **B** 680 K
- **c** 780 K

- **D** 880 K
- **E** 980 K

Dados

- $C_P(H_2O, g) = 33.6 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(CO_2, g) = 37.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(O_2, g) = 29.4 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $C_P(N_2, g) = 29.1 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $\Delta H_{\rm f}({\rm H_2O,g}) = -242 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm CO_2,g}) = -394\,\mathrm{kJ\,mol}^{-1}$
- $\Delta H_{\rm f}({\rm octano}, 1) = -250 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Uma mistura (1:15) de metano e ar atmosférico, a 298 K e 1 atm, entra em combustão em um reservatório adiabático, consumindo completamente o metano. O processo ocorre sob pressão constante e os produtos formados permanecem em fase gasosa. Considere os data: termodi-

 $\begin{array}{l} \mid H_{0}(1700\,\mathrm{K}) - H_{0}(298\,\mathrm{K}) \mid H_{0}(2000\,\mathrm{K}) - H_{0}(298\,\mathrm{K}) \mid \\ \mid :-\cdot \mid -\cdot : \mid -\cdot : \mid \mid CO_{2} \mid 17,6\,\mathrm{kcal}\,\mathrm{mol}^{-1} \mid 21,9\,\mathrm{kcal/mol}^{-1} \mid \mid \\ H_{2}O \mid 13,7\,\mathrm{kcal}\,\mathrm{mol}^{-1} \mid 17,3\,\mathrm{kcal}\,\mathrm{mol}^{-1} \mid \mid N_{2} \mid 10,9\,\mathrm{kcal}\,\mathrm{mol}^{-1} \\ \mid 13,4\,\mathrm{kcal}\,\mathrm{mol}^{-1} \mid \mid O_{2} \mid 11,4\,\mathrm{kcal}\,\mathrm{mol}^{-1} \mid 14,2\,\mathrm{kcal}\,\mathrm{mol}^{-1} \end{array}$

- a. Determine a temperatura final do sistema.
- b. Determine a concentração final de vapor d'água.

Dados

- $\Delta H_{\rm f}({\rm H_2O,g}) = -242 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm CO_2,g}) = -394\,{\rm kJ\,mol}^{-1}$
- $\Delta H_{\rm f}({\rm metano,g}) = -74.8 \,{\rm kJ \, mol}^{-1}$

PROBLEMA 2.13

PROBLEMA 2.12

nâmicos a seguir.

2A41

Considere a variação da entalpia com a temperatura para os reagentes e produtos de uma reação.

Assinale a alternativa incorreta.

- **A** A reação ocorre com liberação de calor em T_1 .
- **B** A capacidade calorífica dos reagentes é maior que a dos produtos em T_1 .
- **C** A reação ocorre com absorção de calor entre T_1 e T_2 .
- O valor absoluto da entalpia de reação aumenta com o aumento de temperatura.
- A capacidade calorífica dos reagentes e dos produtos aumenta com o aumento da temperatura.

Assinale a alternativa que mais se aproxima da entalpia de formação da amônia a $450\,^{\circ}\mathrm{C}.$

 \mathbf{A} $-30 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 \mathbf{B} $-43\,\mathrm{kJ}\,\mathrm{mol}^{-1}$

 $-46 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 $-65 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 $-70 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Dados

- $\Delta H_{\rm f}({\rm NH_3,g}) = -46.1 \, {\rm kJ \, mol}^{-1}$
- $C_P(N_2, g) = 29.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(H_2, g) = 28.8 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $C_P(NH_3, g) = 35.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Nível III

PROBLEMA 3.1

2A43

O gráfico a seguir apresenta a taxa de liberação de calor para uma reação química. Ao final da reação é formado $1\,\mathrm{mol}$ de produto.

- a. Determine a quantidade de produto formada até 4 minutos de reação.
- b. Determine o calor liberado até 11 minutos de reação.

A técnica de calorimetria exploratória diferencial pode ser aplicada para determinar a entalpia de desnaturação uma proteína. Uma amostra contendo 1 g da proteína e uma amostra de alumínio são colocadas no equipamento. O alumínio recebe uma taxa constante de calor de forma que sua temperatura varia $1\,\mathrm{K\,s^{-1}}$. A taxa de calor fornecida à proteína varia de forma que a temperatura da proteína e do alumínio permanecem iguais em todo o processo. O termograma a seguir apresenta a taxa de calor fornecida à proteína em função de sua temperatura.

- a. Classifique a desnaturação como endotérmica ou exotérmica.
- b. Compare a capacidade calorífica da proteína antes e após a desnaturação.
- c. Estime a variação de entalpia da desnaturação.

PROBLEMA 3.3

2A45

Dados termodinâmicos podem ser utilizados para quantificar a estabilidade de compostos aromáticos.

- a. Determine a entalpia de hidrogenação do cicloexeno.
- b. Determine a entalpia de hidrogenação do benzeno.
- c. **Determine** a entalpia de ressonância do benzeno.

- $\Delta H_{\rm f}({\rm H_2O}, {\rm l}) = -286 \,{\rm kJ \, mol}^{-1}$
- $\Delta H_c(\text{cicloexano}, 1) = -3920 \,\text{kJ} \,\text{mol}^{-1}$
- $\Delta H_c(\text{cicloexeno}, l) = -3750 \,\text{kJ} \,\text{mol}^{-1}$
- ΔH_c (benzeno, l) = $-3270 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Considere a estrutura do fulereno, C_{60} , $\Delta H_{\rm fus}=1$, $\Delta H_{\rm vap}=1$.

images/2A46-1M.tex

- a. Determine a entalpia de formação do fulereno.
- b. **Determine** a entalpia de ressonância do fulereno.

Dados

- $\Delta H_{\rm f}({\rm CO_2,g}) = -394 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C=C}) = 612 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm L}({\rm C-C}) = 348 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

PROBLEMA 3.5

2A47

Uma massa de óxido ferroso é aquecida a 1270 K e, em seguida, exposta a uma mistura gasosa de monóxido de carbono e hidrogênio. O óxido é reduzido a metal sem qualquer fornecimento adicional de energia. O sistema perde 4,20 kJ de calor para a vizinhança por mol de óxido reduzido.

Determine a razão mínima entre as pressões parciais de monóxido de carbono e de hidrogênio na mistura gasosa inicial, para que o processo seja autossustentável.

Dados

- $\Delta H_{\rm f}({\rm CO,g}) = -111 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm f}({\rm H_2O,g}) = -242 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm FeO,s}) = -824 \,\mathrm{kJ \, mol}^{-1}$

PROBLEMA 3.6

2A48

A ustulação da blenda de zinco é conduzida a 1270 K em um reator do tipo leito fluidizado. Sulfeto de zinco misturado com sílica e ar são adicionados em fluxo contínuo a 273 K. A reação libera 460 kJ de calor por mol de sulfeto a 1270 K, formando óxido de zinco e dióxido de enxofre.

Determine a fração molar máxima da sílica na mistura com sulfeto de zinco para que o processo seja autossustentável a $1270\,\mathrm{K}.$

PROBLEMA 3.7

Monóxido de carbono a 473 K é queimado com 90% de excesso de ar seco, a 773 K e 1 atm. Os produtos da combustão abandonam a câmara de reação a 1270 K.

Determine o calor liberado por mol de monóxido de carbono formado.

Dados

- $\Delta H_{\rm f}({\rm CO,g}) = -111 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_f(CO_2, g) = -394 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $C_P(CO, g) = 29.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(CO_2, g) = 37.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(O_2, g) = 29.4 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $C_P(N_2, g) = 29.1 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

PROBLEMA 3.8

2A50

Um carro comum possui quatro cilindros, que totalizam um volume de $1,60\,\mathrm{L}$ e um consumo de combustível de $9,50\,\mathrm{L}$ por $100\,\mathrm{km}$ quando viaja a $80\,\mathrm{km}\,\mathrm{h}^{-1}$. Cada cilindro sofre 20 ciclos de queima por segundo. O combustível, octano, e ar são introduzidos a $390\,\mathrm{K}$ no cilindro quando seu volume é máximo, até que a pressão seja $1\,\mathrm{atm}$. Na combustão, 10% do carbono é convertido em monóxido e o restante em dióxido. Ao final do ciclo, o cilindro se expande novamente até o volume máximo, sob pressão final de $20\,\mathrm{atm}$.

- a. Determine a vazão de entrada de ar no motor.
- b. **Determine** a composição da mistura gasosa de saída.
- c. **Determine** a temperatura dos gases imediatamente após a combustão.
- d. Determine a temperatura de saída dos gases.

Dados

- $C_P(CO, g) = 29.1 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $C_P(CO_2, g) = 37.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $C_P(O_2, g) = 29.4 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $C_P(N_2, g) = 29.1 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm CO_2,g}) = -394 \, {\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm CO,g}) = -111 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\Delta H_{\rm f}({\rm H_2O,g}) = -242 \,{\rm kJ \, mol^{-1}}$
- $\Delta H_{\rm f}({\rm octano}, 1) = -250 \,{\rm kJ}\,{\rm mol}^{-1}$

Gabarito

4.1 Nível I

- 1. B
- 2. C
- 3. A
- 5. D 10. D

25. C

- 6. C 11. D
- 7. C 12. **E**

17. B

- 8. E
- 13. D

- 14. B

24. C

15. E 19. A 20. A

16. B 21. A

26. B

- 22. E
- 18. D 23. A
- 27. B 28. B

4.2 Nível II

- 1. C
- 2. D
- **3.** a. $-190 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. $-286 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **4.** a. metano: $-891 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$; eteno: $-1410 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. 12 g
- **5.** $4.90 \times 10^{15} \,\mathrm{J}$
- **6.** a. ???
 - b. 7 toneladas por hora
- 7. B
- 8. E
- **9.** 6340 kJ
- **10.** a. ???
 - b. ???
- 11. E
- **12.** a. 1730 K
 - b. $5,20\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- 13. C
- 14. C

Nível III 4.3

- **1.** a. $n = 60 \, \text{mmol}$
 - b. $Q = 8,25 \,\mathrm{J}\,\mathrm{mol}^{-1}$.
- 2. a. Endotérmica
 - b. Aumenta
 - c. $3 J g^{-1}$
- **3.** a. $-120 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. $-208 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - c. $18 \, \text{kJ} \, \text{mol}^{-1}$
- **4.** a. $-39.6 \,\mathrm{MJ} \,\mathrm{mol}^{-1}$
 - b. ???
- **5.** 1,50

- **6.** 2/3
- **7.** $-193 \,\mathrm{kJ}$
- **8.** a. $40 \, \mathrm{L \, s^{-1}}$
 - b. 75% N₂, 4% O₂, 1% CO, 9% CO₂, 11% H₂O
 - c. $2000\,^{\circ}\mathrm{C}$
 - $\mathsf{d.}\ 750\,\mathrm{K}$