

ADIKAVI NANNAYA UNIVERSITY UNIVERSITY COLLEGE OF ENGINEERING RAJAMAHENDRAVARAM

AQUAFARM MONITORING SYSTEM USING IOT

Under the esteemed guidance of: Dr. D LATHA

Presented by:

CH B NEERAJ SINGH

178297601003

4th B Tech CSE

Index

Abstract

Introduction

Existing system

Proposed system

Software requirement specification

Hardware requirement specification

System analysis and design.

Implementation

Proof of work

Abstract

This system Monitors the quality parameters of the farm and alert the user.

This system collect data from the sensors that measures quality Parameters.

By integrating with the web server we can manage this devices

Introduction

Aqua farming (fishes, Prawns...)

Water quality directly proportional to growth of Aquatic Organisms .

Quality may be PH, Water level, Turbidity etc. Which influence the health of organisms

Due to poor monitoring they may end up with a huge loss for farmers

Existing system

At present they are checking all the parameters manually

Manually by chemist centers.

Manual work.

Lot of risks.

Proposed system

Using IoT in the domain of Aqua farming.

Continues Monitoring of Farm Using sensors

Alerting.

To decrease the human intervention.

Software requirement specification

OS:

Microsoft Windows 8/7/9/10, Linux, Mac OSX 10.8.5 or higher Wifi

IDE: Arduino IDE, Notepad.

Programming language: C/Python,PHP,sql,Js

Hardware requirement specification

Working System RAM:>3GB

ESP 32
Turbidity sensor
DO sensor
PH sensor
Water level Sensor
DTH11.

Bread board
Jumper wires

System Design And Analysis

System Architecture

UML Diagrams

Circuit diagram of system

Components of system

System Architecture

UML Diagram

Use Case Diagram

Sequence Diagram

Activity Diagram

Use Case Diagram

Sequence Diagram

Sequence Diagram

Activity Diagram

Activity Diagram

Esp 32

DTH 11 sensor

Turbidity sensor

PH sensor

DO sensor

Water level sensor

Tensilica Xtensa 32-bit LX6 microprocessor Clock Frequency up to 240 MHz

Wi-Fi:

Bluetooth

Ultra Low power consumption 5v and 3V

ROM: 448 KIB

SRAM:520KIB

ADCs (analog-to-digital converter), DACs (digital-to-analog converter), I²C (Inter-Integrated Circuit), UART (universal asynchronous receiver/transmitter),

39 pins3UART, External interrupt, 34 Gpio

Why Esp32 ???????

SPECS/BOARD	ESP32	ESP8266	ARDUINO UNO
Number of Cores	2	1	1
Architecture	32 Bit	32 Bit	8 Bit
CPU Frequency	160 MHz	80 MHz	16 MHz
WiFi	YES	YES	NO
BLUETOOTH	YES	NO	NO
RAM	512 KB	160 KB	2 KB
FLASH	16 MB	16 MB	32 KB
GPIO PINS	36	17	14
Busses	SPI, I2C, UART, I2S, CAN	SPI, I2C, UART, I2S	SPI, I2C, UART
ADC Pins	18	1	6
DAC Pins	2	0	0

VCC: Power supply 3.5V to 5.5V

Data: Outputs both Temperature and Humidity

Ground: Connected to the ground of the circuit

Temperature Range: 0°C to 50°C

Humidity Range: 20% to 90%

16bit

NTC Temp sensor(thermister)
Subtract electrodes.

Turbidity sensor

Operating Voltage: 5VDC

Operating temp: -30 ° C to 80 ° C

Nephelometric Turbidity Unit Total suspended solids

Light is passed through a sample of water.

Lens, Detector

Data

VCC

Ground

PH sensor

Operating voltage: 3.3V/5V Range:0-14PH

Hydrogen-ion activity in water-based solutions

Voltmeter

Electrodes

VCC

GND

NC

S10 or data

Do sensor

Operating voltage: 3.3V/5V

Detection Range: 0 -20mg/L

Electrolyte

Membrane

electrodes

VCC

GND

NC

S10 or data

Water level sensor

Operating voltage: 3.3V/5V

Humidity: 10% -90% non-condensing

Operating temperature: 10°C-30°C

Parallel conductors as variable resistor

Resistance is inversely proportional to the height of the water

VCC

GND

S10 or data

Circuit Diagram

Implementation

Setting up ESP32

Connecting to network

Setting SSL Certificate to client

Reading Sensor data.

API Request to server

Storing Data into Database

Alert User

Setting up ESP32

```
#include <WiFiClientSecure.h>
#include <DHT.h>
```

```
pinMode(33,INPUT);
pinMode(35,INPUT);
pinMode(32,INPUT);
pinMode(26,INPUT);
pinMode(27,INPUT);
```

Serial.begin(115200);

Importing libraries

Setting pin modes

Initializing variables

Setting data transmission speed

Connecting network

```
const char* ssid = "Galaxy A5185DB";
const char* password = "1234567890"; // ;
```

```
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
WiFi.begin(ssid, password);
// attempt to connect to Wifi network:
while (WiFi.status() != WL_CONNECTED) {
    Serial.print(".");
    // wait 1 second for re-trying
    delay(1000);
}
Serial.print("Connected to ");
Serial.println(ssid);
```

Initializing network parameters

request to connect

Setting SSL to client

```
const char* test_root_ca= \
    "----BEGIN CERTIFICATE----\n" \
 "MIIDrzCCApegAwIBAgIQCDvgVpBCRrGhdWrJWZHHSjANBgkqhkiG9w0BAQUFADBh\n" \
 "MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQqSW5jMRkwFwYDVQQLExB3\n" \
 "d3cuZGlnaWNlcnQuY29tMSAwHgYDVQQDExdEaWdpQ2VydCBHbG9iYWwgUm9vdCBD\n" \
 "QTAeFw0wNjExMTAwMDAwMDBaFw0zMTExMTAwMDAwMDBaMGExCzAJBqNVBAYTA1VT\n" \
"MRUwEwYDVQQKEwxEaWdpQ2VydCBJbmMxGTAXBqNVBAsTEHd3dy5kaWdpY2VydC5j\n" \
 "b20xIDAeBqNVBAMTF0RpZ21DZXJ0IEdsb2JhbCBSb290IENBMIIBIjANBqkqhkiG\n" \
 "9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4jvhEXLeqKTTo1eqUKKPC3eQyaKl7hLOllsB\n" \
 "CSDMAZOnTjC3U/dDxGkAV53ijSLdhwZAAIEJzs4bg7/fzTtxRuLWZscFs3YnFo97\n" \
 "nh6Vfe63SKMI2tavegw5BmV/Sl0fvBf4g77uKNd0f3p4mVmFaG5cIzJLv07A6Fpt\n" \
"43C/dxC//AH2hdmoRBBYMgl1GNXRor5H4idg9Joz+EkIYIvUX7Q6hL+hgkpMfT7P\n" \
"T19sdl6gSzeRntwi5m3OFBqOasv+zbMUZBfHWymeMr/y7vrTC0LUq7dBMtoM1O/4\n" \
 "qdW7jVq/tRvoSSiicNoxBN33shbyTApOB6jtSj1etX+jkMOvJwIDAQABo2MwYTAO\n" \
"BqNVHQ8BAf8EBAMCAYYwDwYDVR0TAQH/BAUwAwEB/zAdBqNVHQ4EFqQUA95QNVbR\n" \
"TLtm8KPiGxvDl7I90VUwHwYDVR0jBBgwFoAUA95QNVbRTLtm8KPiGxvDl7I90VUw\n" \
 "DQYJKoZIhvcNAQEFBQADggEBAMucN6pIExIK+t1EnE9SsPTfrgT1eXkIoyQY/Esr\n" \
 "hMAtudXH/vTBH1jLuG2cenTnmCmrEbXjcKChzUyImZOMkXDiqw8cvpOp/2PV5Adg\n" \
"060/nVsJ8dW041P0jmP6P6fbtGbfYmbW0W5BjfIttep3Sp+dW0IrWcBAI+0tKIJF\n" \
 "PnlUkiaY4IBIqDfv8NZ5YBber0q0zW6sRBc4L0na4UU+Krk2U886UAb3LujEV0ls\n" \
 "YSEY1QSteDwsOoBrp+uvFRTp2InBuThs4pFsiv9kuXclVzDAGySj4dzp30d8tbQk\n" \
 "CAUw7C29C79Fv1C5qfPrmAESrciIxpg0X40KPMbp1ZWVbd4=\n" \
 "----END CERTIFICATE----";
client.setCACert(test root ca);
//client.setCertificate(test client key); // for client verification
//client.setPrivateKey(test client cert); // for client verification
Serial.println("\nStarting connection to server...");
if (!client.connect(server, 443))
  Serial.println("Connection failed!");
else
  Serial.println("Connected to server!");
  // Make a HTTP request:
```

SSL Certificate key

Assign to client

Request to connect

Reading Data

```
float te() (
   float t=dht.readTemperature();
   Serial.println("temp:");
   Serial println(t);
   return ty
float hum()(
   float h=dht.readHimidity();
   Serial.println("humidity:");
   Serial printin(h);
   return h;
float waterlevel()(
   int k-analogRead (35);
   int p=0;
   Serial.println("Waterlevel");
   if(k>=1400) (
     p=90;
     Serial.println("high");
     )else if(k>=800 && k<1400){
       Serial println ("normal");
       p=50;
       }else(
         p=20;
         Serial .println ("Low");
```

Check for condition

Read data

Map into its values.

API Request to server

```
while (client.connected()) {
   String line = client.readStringUntil('\n');
   if (line == "\r") {
      Serial.println("headers received");
      break;
   }
}
// if there are incoming bytes available
// from the server, read them and print them:
while (client.available()) {
   char c = client.read();
   b[i]=c;
   i=i+1;
   Serial.write(c);
}
client.stop();
```

Create API URL

Initialize API request

Receive response

Storing Data into Database

/public_html/test.php

```
28
29
30
          //// reading sensor data////
31
32 -
        if(isset($ GET['ph'])){
33
            $ph=$ GET['ph'];
            $sql="UPDATE data SET val=".$ph." where id=5; ";
34
            $result =mysqli query($mysqli,$sql);
            echo "ph". $ph. "\n";
36
37
        else{
38 +
           // echo"no ph";
40
41
42
43
        if(isset($ GET['tur'])){
            $tur=$ GET['tur'];
45
            $sql="UPDATE data SET val=".$tur." where id=7; ";
            $result =mysqli query($mysqli,$sql);
47
            echo "tur". $tur. "\n";
        }else{
49 -
50
            //echo"no tur";
51
```

```
echo "{a:".$a.",i:".$i.",o:".$o.",t:".$t."}";
```

Receive Data from URL

Initialize database connection

Fire query to save data

Close database connection

Send response to esp32

Alert user

Read the values

Check with Limit value

Alert user when abnormal

(Connection)

Uploading data from esp32 serial monitor)

```
COM4
            17:00:25.463 -> 6.00
            17:00:25.463 -> 14.00
            17:00:25.463 -> 7.00
            17:00:25.463 ->
            17:00:25.463 -> Starting connection to server...
            17:00:27.282 -> Connected to server!
            17:00:27.607 -> headers received
            17:00:27.607 -> {a:0,i:0,o:0,t:0} humidity:
            17:00:27.747 -> 66.00
            17:00:27.747 -> temp:
            17:00:27.747 -> 31.90
            17:00:27.747 -> water level:
            17:00:27.747 -> 2
            17:00:27.747 -> 2.00
            17:00:27.793 -> PH:
            17:00:27.793 -> 14
            17:00:27.793 -> DO:
            17:00:27.793 -> 7
letwork SSID 17:00:27.793 -> 66.00
            17:00:27.793 -> 31.90
work password
            17:00:27.793 -> 2.00
com"; // Se 17:00:27.793 -> 14.00
            17:00:27.839 -> 7.00
to verify t 17:00:27.839 ->
            17:00:27.839 -> Starting connection to server...
            17:00:29.611 -> Connected to server!
            Autoscroll Show timestamp
                                                                                                                            Clear output
ANBgkghkiG9w0BAQUFADBh\n" \
```

OGSM5-MDFMFMVDVOOT.FVR3\n"

(Database)

(Website)

Proof of work (alert)

THANK YOU