Sahil Lindal 18CS10048 Page No. Assignment 5 (9) Arithmetic expression: Translation rules for grammar goes as: O 1-9 [S] n & Do nothing 0 1-35)n 3 5- id=E O E > E1+E2 BE-FI-EZ (D) E→E,*E,
(D) E→E,/E, B F→ (f1) (1) E-> - E, ⊕ E → id -> Assume all variables are declared Eplaced in symbol fable. Elor - denote location of Ein syntable num. real -> value of numeric constant gentempe, soletes new var bretwen its location in symbol table. >> Rule 3 → voyte (id.lec = E.loc) Rule (5), (6); breste temp variable for E L winte (E. lor = E, lor (operation) E, lor) Rule (5) Need to assign variable & to the same lor as Epile Color = Epilor -> Rule (2): Greate temp vanfor Ed wile -> Rule 60: Assign lowar to E & write (f.lic = my. -> Rule (1) -> F. lor = id. lox

 $(a+1)^{*}2$ En > ida : Enloc = Vola-loc (2) E5 -> num, : E5 = gentemp()
(3) E3 -> E4 + E5 : E3 = gentemp()
(4) E2 -> (E3) : E2 loc = E3 loc Final translated TAC t1 = 1 t2 = +1+9 t3 = 2 le = ty

	Page No.
(le)	Boolean expression: For boolean expression une
	mainten ? Out los carlo mullion to the
	to store quads having dangling true exits
	& falselist for false exits.
->	to store quads having dangling true exits be falselist for false exits. makelist(i): make a new list with i as the
	any a anend o lettern the not the
_	Tend ? I I I I I I I I I I I I I I I I I I
	P12 p & backpatch (p, i) insert i as the latel to all quads pointed by inhist p. Taking these translation rinles can be executed with
	to all quads pointed by inhist p-
->	Taking these translation rules can be executed with
	following instructions to generate TAC:
	B -> B, IIMB, & backpatch (B, falselist, M. inster)
	B. falsdist = B2 Jahelist
(5)	1 (2 > K & M R) hould potent (R) through of M (AND)
2	B. falselist = (B) falselist, B2. inch.)
	D 10 11 - K T8 1 V 1
(3)	B-1BS B- Jalulist = B, truelist
	B. I shelit = B, tomelist 9
(4)	B→1 B ≥ B-false list = B, truelist B→ B, { Betwell of = B, truelist } B→ B, { Betwell of = B, truelist }
(5)	B -> Exelop (& B. truelist = makelist (nextinstr) = B. Jalselst = makelist (nextinstr+1) = weight (y Ex. loc op Ez. loc got o
	B. Jalselt = notest (next instr+1)
	write (yt, loc optz. loc goto
	5 filled by B-truster,
	field by b- vicinity
	werte (else goto)
	· /
	Filled when B. Jalselet.
	Filled when B. Jalselet.

	Page No.
(7)	B ₅ → 1B ₆ : B ₅ - T _L = {10 7 } B ₆ - F _L = {106}
(8)	B3 -> Byll MB5: B3. TL=B5. TL= \$107 } B3. FL= B4-FL UB5. FL= \$106,104
(9)	B, ->B, 11MB3: B.TL = B2.TL VB3.TL = {107,100} B.FL = B3. FL = {106,104}
0 1	Final TAC:-
The state of the s	af a > le goto 102 If C==d goto 104 goto Jecf goto Arragreference: To handle array we use following variables - A log used for storight offset from array reference & A by pe for storing array type. A base for the pointer to the first element. An array expression can be translated using the following rules:
	The following suites: E -> E + TE \(\xi \) \

: Az array = ST [00] Az trype = To elen=int Az. Dec = ta E3 -> A2. Ez-type = Int : Etype = Ezatype Epoloc = Ez tiotype int

