Sprawozdanie

Implementacja sortowania przez scalanie "mergesort"

Zadaniem było zaimplementować funkcję sortującą "mergesort" w programie sąsiedniego kolegi. Następnie należało zmierzyć czas sortowania dla tablic o różnych rozmiarach i o różnych rozkładach danych(uporządkowane rosnąco, malejąco oraz losowo). Z wyników powinniśmy się spodziewać złożoności obliczeniowej równej O(n*logn).

Na potrzeby pomiarów, w programie kolegi oprócz zaimplementowania funkcji sortowania przez scalanie, dodałem nowe pole do klasy tablica. Pełni ona rolę tablicy pomocniczej tworzonej dynamicznie w konstruktorze. Dzięki temu obejściu zamiast tworzyć dynamicznie tablicę w funkcji, mogłem zmierzyć czasy sortowania dla większych rozmiarów tablic.(Podczas tworzenia tablicy dynamicznie przy wywołaniu funkcji, przy rzędzie 10⁵ danych funkcja wyrzucała błąd "bad_alloc"). Reszta programu pozostała bez zmian.

Poniżej znajdują się tabela pomiarów, dla 3 rodzajów tablic oraz prezentujący je wykres.

	Czas[s] zmierzony dla tablic wypełnionych:		
Ilość danych	malejąco	rosnąco	losowo
1	0,000104	0,0001	0,000104
10	0,000117	0,000104	0,000113
100	0,000124	0,000198	0,000133
1000	0,00031	0,000337	0,000384
10000	0,003824	0,003538	0,004801
100000	0,053121	0,040313	0,06734
1000000	0,424474	0,41156	0,621739
10000000	4,61591	3,99603	6,54439
10000000	57,529	45,15	73,4261

Wykres czasu sortowania dla poszczególnych tablic w zależności od ilości danych.

Jak widać na prezentowanym wykresie, funkcja przedstawiająca omawiane dane przypomina zależność n*logn. Najlepiej widać to dopiero od wielkości tablicy rzędu 10³, ponieważ wtedy działanie systemu operacyjnego wpływające na dokładność pomiaru wprowadza mniejsze zakłócenia.

Porównując tę metodę z metodą quicksort, można łatwo stwierdzić, że jest ona bardziej wszechstronna. Uporządkowanie tablicy nie ma większego wpływu na szybkość jej działania. Jej asymptotyczny czas działania wynosi O(n*logn). Sortowanie szybkie co prawda również wykazuje taką złożoność obliczeniową, jednak można natrafić na sytuację krytyczną, w której złożoność ta osiąga zależność kwadratową.