

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

C05.570\R25\R01\R14\RE\E\{ ∈ 05.570 25 01 14 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?
- Valor de cada pregunta:
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Activitat 1 (15+15%)

- a) Formalitzeu utilitzant la lògica d'enunciats les següents frases. Feu servir els àtoms que s'indiquen.
 - 1) L'estudiant està content quan ha estudiat i no ha suspès.

$$\mathsf{E} \wedge \neg \mathsf{S} \to \mathsf{C}$$

2) Perquè l'estudiant estigui content és necessari que el professor l'ensenyi bé

$$C \rightarrow B-\parallel - \neg B \rightarrow \neg C$$

3) Si el professor ensenya bé a l'estudiant, aquest està content i riu quan no suspèn $B \to (\neg S \to C \land R)$

Àtoms:

- C: l'estudiant està content
- E: l'estudiant ha estudiat
- S: l'estudiant suspèn
- R: l'estudiant riu
- B: el professor ensenya bé a l'estudiant
- b) Formalitzeu utilitzant la lògica de predicats les següents frases. Feu ús dels predicats que s'indiquen
 - 1) Tots els vaixells de gran tonatge presenten un alt risc de naufragi $\forall x[B(x) \land T(x) \rightarrow R(x)]$
 - 2) Els vaixells vigilats per un guardacostes estan prou segurs $\forall x \{B(x) \land \exists y [G(y) \land V(y,x)] \rightarrow S(x)\}$
 - 3) L'Anna és una guardacostes que no vigila tots els vaixells de gran tonatge $G(a) \land \neg \forall x [B(x) \land T(x) \rightarrow V(a,x)]$

Predicats:

- B(x): x és un vaixell
- T(x): x és de gran tonatge
- R(x): x presenta un alt risc de naufragi
- V(x,y): x vigila y (y és vigilat per x)
- S(x): x està prou segur
- G(x): x és un guardacostes

Constants:

- a: L'Anna

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Activitat 2 (15+15%)

Demostreu, utilitzant la deducció natural, que els següents raonaments són correctes. No podeu fer servir equivalents dedictius, només podeu fer servir les regles primitives.

a)
$$C \lor A \to \neg B \land D$$
, $\neg A \lor \neg D \to B \land C$ \therefore $\neg B \lor D$

(1)	$C \lor A \rightarrow \neg B \land D$		Р
(2)	$\neg A \lor \neg D \to B \land C$		Р
(3)		$\neg D$	Н
(4)		¬A∨¬D	l∨ 3
(5)		B∧C	E→ 4,2
(6)		С	E∧ 5
(7)		C∨A	l∨ 6
(8)		⊣B∧D	E→ 7,1
(9)		В	E∧ 5
(10)		¬В	E∧ 8
(11)	$\neg\neg D$		I¬ 3,9,10
(12)	D		E¬ 11
(13)	¬B∨D		l∨ 12

b) $P \rightarrow \neg S$, $D \rightarrow \neg C$, $S \rightarrow C$ \therefore $S \rightarrow \neg D \land \neg P$

(1)	P→¬S			Р
(2)	D→¬C			Р
(3)	s→c			Р
(4)		S		Н
(5)			D	Н
(6)			С	E→3,4
(7)			¬С	E→2,5
(8)		¬D		I¬5,6,7
(9)			Р	Н
(10)			S	it 4
(11)			¬S	E→1,9
(12)		¬P		I¬9,10,11
(13)		¬D∧¬P		I ∧ 8,12
(14)	S→¬D∧¬P			I → 4,13

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Activitat 3 (15+15%)

a) El raonament següent és vàlid. Utilitzeu el mètode de resolució amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla se subsumpció o la regla del literal pur, apliqueu-les i indiqueuho.

```
M \rightarrow S.
         S→T,
         W \rightarrow T
         \neg W \rightarrow M
          \therefore \neg T \rightarrow \neg (\neg T \lor S)
FNC [M \rightarrow S] = \neg M \lor S
FNC [S \rightarrow T] = \neg S \lor T
FNC [W \rightarrow T] = \neg W \lor T
FNC [\neg W \rightarrow M] = W \lor M
FNC \neg [\neg T \rightarrow \neg (\neg T \lor S)] = \neg T \land (\neg T \lor S)
```

El conjunt de clàusules que s'obté és:

 $S = {\neg M \lor S, \neg S \lor T, \neg W \lor T, W \lor M, \neg T, \neg T \lor S}$ Les dues darreres (negreta) són el conjunt de suport Es pot observar que la clàusula ¬T subsumeix la clàusula ¬T∨S la qual cosa redueix el conjunt a S'= $\{\neg M \lor S, \neg S \lor T, \neg W \lor T, W \lor M, \neg T\}$

La regla del literal pur no és aplicable

Troncals	laterals
¬T	¬S∨T
¬S	⊣M∨S
¬M	W√M
W	$\neg W \lor T$
Т	¬T

b) El següent raonament no és vàlid. Trobeu el conjunt de clàusules que se'n deriva i raoneu la impossibilitat d'obtenir la clàusula buida (□).

```
\forall xL(x) \rightarrow \exists x\exists yN(x,y)
\exists x \exists y \neg N(x,y)
∴∃x¬L(x)
La FNS de \forall xL(x) \rightarrow \exists x\exists yN(x,y) és \neg L(a) \lor N(b,c)
La FNS de \exists x \exists y \neg N(x,y) és \neg N(d,e)
La FNS de \neg \exists x \neg L(x) és \forall x L(x)
El conjunt de clàusules resultant és
S = {\neg L(a) \lor N(b,c), \neg N(d,e), L(x)}
```

Podem observar que el literal N(b,c) de la primera clàusula no es podrà eliminar mai perquè les discrepàncies amb ¬N(d,e) no es poden solucionar (són discrepàncies de la forma constant/constant)

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Això redueix el conjunt a S' = $\{ \neg N(d,e), L(x) \}$ i és obvi que d'aquest conjunt no se'n podrà obtenir la clàusula buida.

Activitat 4 (10%)

Considereu el següent raonament (incorrecte)

 $\forall x L(x)$ $\forall x [L(x) \rightarrow \exists y N(x,y)]$ $\therefore \forall x \forall y N(x,y)$

Doneu una interpretació en el domini {1,2} que en sigui un contraexemple

Un contraexemple ha de fer certes les premisses i falsa la conclusió.

En el domini $\{1,2\}$ la primera premissa és equivalent a $L(1) \wedge L(2)$. Perquè aquest enunciat sigui cert ha de passar que L(1)=V i L(2)=V

La segona premissa és equivalent a $[L(1) \rightarrow \exists yN(1,y)] \land [L(2) \rightarrow \exists yN(2,y)]$. Amb L(1) = V i L(2) = V això és equivalent a $[V \rightarrow \exists yN(1,y)] \land [V \rightarrow \exists yN(2,y)]$ i això darrer ho és a $\exists yN(1,y) \land \exists yN(2,y)$. Aquest enunciat es equivalent a $[N(1,1) \lor N(1,2)] \land [N(2,1) \lor N(2,2)]$ una manera de fer cert aquest enunciat és amb N(1,1) = V i N(2,2) = V

La conclusió és equivalent a $N(1,1) \land N(1,2) \land N(2,1) \land N(2,2)$. Per fer fals aquest enunciat n'hi ha prou amb fer fals qualsevol conjuntand. Per exemple N(1,2)=F

Així, un contraexemple d'aquest raonament és:

<{1,2}, {L(1)=V, L(2)=V, N(1,1)=V, (1,2)=F, N(2,1)=V, N(2,2)=V}, ∅>

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	09:00