Hajee Mohammad Danesh Science and Technology University, Dinajpur

Department of Computer Science and Engineering

B. Sc (Engg) in Computer Science and Engineering

Semester Final Online Examination - 2019 (Jul-Dec)

Level: 3 Semester: II Credit Hours: 3.0 Course Code: CSE 353

Course Title: Operating System

Time: 1 Hour 30 Minutes Total Marks: 90

[NB: The figure in the right margin indicates the marks for the respective question. Split answer of any question is unacceptable]

Section-A

Answer any 3 (three) questions from the following

Draw the diagram of the Computer System Components. Explain the 4+41. a) difference between the System Programs and Application Programs. Describe the two general roles of an operating system, and elaborate why 7 b) these roles are important. 2. a) Draw the diagram for Operating System Services. 7 List Four resources that will be allocated by an operating system to users 4*2=8 b) and processes. Draw the diagram of the process parts in memory. List the information 3. a) 4+5 items stored in Process Control Block (PCB). Calculate the average waiting time for the First Come First Serve (FCFS), 3*2=6 b) Shortest Job First (SJF), and Priority Scheduling algorithm for the below processes table.

Process	Burst Time	Priority
PI	10	3
P2	1	.1
P3	2	4
P4	1	5
P5.	5	2

- 4. a) What resources are used when a thread is created? How do they differ 4+3 from those used when a process is created?
 - b) What do you mean by ready queue and device queue? Represent process 4+4 scheduling with the help of a queuing diagram.

<u>Section-B</u> <u>Answer any 3 (three) questions from the following</u>

5.	a)	What is <i>deadlock?</i> What is <i>starvation?</i> How do they differ from each other?	2+2+3
	b)	Consider three sets A, B and C for Process, Resource and Edges where $A=\{A1,A2,A3,A4\}$ $B=\{B1,B2\}$ $C=\{A1\rightarrow B1,A3\rightarrow B2,B1\rightarrow A2,B1\rightarrow A3,B2\rightarrow A1,B2\rightarrow A4\}$ Draw a resource allocation graph for these sets and find is there any deadlock or not? Explain your answer.	8
6.	a)	What must the <i>banker's algorithm</i> know a priori in order to prevent deadlock? Describe the general strategy behind <i>deadlock prevention</i> , and give an example of a practical deadlock prevention method.	4+4+2=10
	b)	Assuming the operating system detects the system is deadlocked, what can the operating system do to recover from deadlock?	5
7.	a)	What are the Benefits of Virtual Memory? Draw The General Layout of Virtual Memory.	4+4
	b)	What is swapping? Can swapping permit an application requiring 16M memory to run on a machine with 8M of RAM?	2+5
8.	a)	List and describe the four memory allocation algorithms. Which two of the four are more commonly used in practice?	8+2
	b)	Why are segmentation and paging sometimes combined into one scheme? Give an example where the contiguous allocation of file blocks on disks can be used in practice.	3+2