Student Information

Full Name : Beste Burhan Id Number : 2171395

Answer 1

a.

Table 1: Membership Table for $A \cap B \subseteq (A \cup \overline{B}) \cap (\overline{A} \cup B)$

A	B	\overline{A}	\overline{B}	$A \cap B$	$A \cup \overline{B}$	$\overline{A} \cup B$	$(A \cup \overline{B}) \cap (\overline{A} \cup B)$
1	1	0	0	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	0	1	0
0	0	1	1	0	1	1	1

b.

Table 2: Membership Table for $\overline{A} \cap \overline{B} \subseteq (A \cup \overline{B}) \cap (\overline{A} \cup B)$

A	В	\overline{A}	\overline{B}	$\overline{A} \cap \overline{B}$	$A \cup \overline{B}$	$\overline{A} \cup B$	$(A \cup \overline{B}) \cap (\overline{A} \cup B)$
1	1	0	0	0	1	1	1
1	0	0	1	0	1	0	0
0	1	1	0	0	0	1	0
0	0	1	1	1	1	1	1

Answer 2

Suppose that $A \cap B = \emptyset$, $f^{-1}((A \cap B) \times C) = \emptyset$. Since f is a bijection, there are no two elements with same image (so for f^{-1}). Therefore,

$$f^{-1}(A \times C) \cap f^{-1}(B \times C)) = \emptyset = f^{-1}((A \cap B) \times C)$$

Suppose that $t \in f^{-1}(A \times C) \cap f^{-1}(B \times C)$, then $y \in f^{-1}(A \times C)$ and $y \in f^{-1}(B \times C)$ Hence, there exist x_1, x_2 such that $f^{-1}(\{x_1, x_2\}) = y$ and there exist x_3, x_4 such that $f^{-1}(\{x_3, x_4\}) = y$. Since f is a bijection, $x_1 = x_3$, $x_2 = x_4$ and $x_1, x_3 \in A \cap B$. $f^{-1}(\{x_1, x_2\}) = y \in f^{-1}((A \cap B) \times C)$. Therefore, $f^{-1}((A \cap B) \times C) \subseteq f^{-1}(A \times C) \cap f^{-1}(B \times C)$) and so $f^{-1}((A \cap B) \times C) = f^{-1}(A \times C) \cap f^{-1}(B \times C)$)

Answer 3

a.

Since $f(-2) = f(2) = \ln 9$, f is not one-to-one. $(-1) \in R$ but $\ln(x^2 + 5)$ can not be equal to -1 for any value of x, so f is not onto.

b.

To show that f is one to one, $f(x) = f(y) \rightarrow x = y$ should be shown

$$e^{e^{x^7}} = e^{e^{y^7}}$$
$$e^{x^7} = e^{y^7}$$
$$x^7 = y^7$$
$$x = y$$

so f is one to one.

 $(-1) \in R$ but $e^{e^{x^7}}$ can not be equal to -1. Therefore, f is not onto.

Answer 4

a.

Since A and B are countable, $A \to N$ and $B \to N$ are injections. Therefore, there exist an injection $f: A \times B \to N^2$

if I take $g:N^2\to N$ and $g(x,y)=3^x.5^y$, assume that $a,b,c,d\in N$

$$f(a,b) = f(c,d)$$

 $3^a.5^b = 3^c.5^d$

if and only if when a = c, b = d, so g is an injection.

Therefore, $f \circ g : A \times B \to N$ is an injection.

b.

Assume that B is countable.Because $A \subseteq B$ and B is countable, I can list elements of A. It means that A is countable, but it is not. There is a contradiction. Hence, B is uncountable.

c.

There is an injection $f: B \to N$. Assume that $g: A \to B$, then g is an injection. Since f and g are injections, then $f \circ g: A \to N$ is an injection.

Answer 5

$$f_1(x) \leq C f_2(x)$$

Assume that $f_1(x)$, $f_2(x) = x$ as a increasing functions when $x > 1$
 $0 < f_1(x) \leq cx$

a.

$$0 < ln(f_1(x)) \le ln(cx) = lnc + lnx$$
 since lnc is a constant $ln(f_1(x))$ is $\mathcal{O}(lnx)$

b.

$$0 < 3^{f_1(x)} \le 3^{cx} \le 3^c \cdot 3^x \ (C = 3^c) \text{ so } 3^{f_1(x)} \text{ is } \mathcal{O}(3^x)$$

Answer 6

a.

$$(3^{x} - 1) mod(3^{y} - 1) = 3^{(xmody)} - 1$$

$$(3^{x} - 1 - 3^{xmody} + 1) mod(3^{y} - 1) = 0$$

$$(3^{x} - 3^{xmody}) mod(3^{y} - 1) = 0$$

$$3^{y} - 1 \mid (3^{x} - 3^{xmody})$$

$$x = ty + d \quad (for \quad x \quad mod \quad y)$$

$$3^{y} - 1 \mid 3^{ty+d} - 3^{d}$$

$$3^{y} - 1 \mid 3^{d}(3^{ty} - 1)$$

$$(3^{y} - 1) \mid 3^{d}((3^{y} - 1).(3^{t-1} + 3^{t-2} + ..1))$$

b.

$$277 = 2.123 + 31$$
$$123 = 3.31 + 30$$
$$31 = 1.30 + 1$$
$$30 = 30.1$$

since 1 divides 30, gcd(277,123) = gcd(123,31) = gcd(31,30) = gcd(30,1) = 1.