Data Mining:

2. Assoziationsanalyse

C) Non-Standard Data

Sequence Data

Sequence Database:

Object	Timestamp	Events
Α	10	2, 3, 5
Α	20	6, 1
A	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital_Cameras} {Canon_Digital_Camera}
 {Shopping_Cart} {Order_Confirmation} {Return_to_Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:
 - < {clogged_resin} {outlet_valve_closure} {loss_of_feedwater}
 {condenser_polisher_outlet_valve_shut} {booster_pumps_trip}
 {main_waterpump_trips} {main_turbine_trips} {reactor_pressure_increases}>
- Sequence of books checked out at a library:
 - <{Fellowship_of_the_Ring} {Hobbit The_Two_Towers} {Return_of_the_King}>
- Sequence of courses taken by a student ...

Formal Definition of a Subsequence

A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i2}, ..., a_n ⊆ b_{in}

Data sequence	Subsequence	Contains?	
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes	
< {1,2} {3,4} >	< {1} {2} >	No	
< {2,4} {2,4} {2,5} >	< {4} {2} >	Yes	

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup

Task:

Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {d g h}>
 - Examples of subsequences:
 <{a} {c d} {f} {g} >, < {c d e} >, < {b} {d} >, etc.
- How many k-subsequences can maximally be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Object	Timestamp	Events
A	1	1,2,4
A	2	2,3
A	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Minsup = 50%

Examples of Frequent Subsequences:

Generating Sequential Patterns

- Given n events (lex.sorted): i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:

$$\{i_1\}>, \{i_2\}>, \{i_3\}>, ..., \{i_n\}>$$

Candidate 2-subsequences:

$$\{i_1, i_2\}$$
>, $\{i_1, i_3\}$ >, ..., $\{i_1\} \{i_1\}$ >, $\{i_1\} \{i_2\}$ >, ..., $\{i_n\} \{i_n\}$ >

Candidate 3-subsequences:

$$<\{i_1, i_2, i_3\}>, <\{i_1, i_2, i_4\}>, ..., <\{i_1, i_2\} \{i_1\}>, <\{i_1, i_2\} \{i_2\}>, ..., \\ <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1, i_3\}>, ..., <\{i_1\} \{i_1\} \{i_1\}>, <\{i_1\} \{i_2\}>, ...$$

- Etc. This would be brute-force.
- But the Apriori principle holds for k-subsequences.

Generalized Sequential Pattern (GSP) Algorithm

Step 1:

 Make the first pass over the sequence database D to yield all the frequent 1-sequences

Step 2:

Repeat until no new frequent sequences are found:

– Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

– Candidate Pruning:

◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences

– Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

– Candidate Elimination:

Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $<\{i_x\}>$ and $<\{i_y\}>$ will produce 1-2 candidate 2-sequences: $<\{i_x\}$ $\{i_y\}>$ and $(if i_x<i_y)$ $<\{i_x i_y\}>$
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged* with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - ◆ If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element
 - ◆ Otherwise, the last event in w₂ becomes a separate appended element

*) here noncommutative operation!

Candidate Generation Examples

Merging the sequences

$$w_1$$
=<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element

Merging the sequences

$$w_1$$
=<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element

We do not have to merge the sequences

$$w_1 = <\{1\} \{2 \ 6\} \{4\} >$$
 and $w_2 = <\{1\} \{2\} \{4 \ 5\} >$ to produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\} >$, because if the latter is a viable candidate, then it can be obtained by merging $w_1 = <\{1\} \{2 \ 6\} \{4\} >$ with $<\{2 \ 6\} \{4 \ 5\} >$

GSP Example

Frequent 3-sequences

- < {1} {2} {3} >
- < {1} {2 5} >
- < {1} {5} {3} >
- < {2} {3} {4} >
- < {2 5} {3} >
- < {3} {4} {5} >
- < {5} {3 4} >

Candidate Generation

- < {1} {2} {3} {4} >
- < {1} {2 5} {3} >
- < {1} {5} {3 4} >
- < {2} {3} {4} {5} >
- < {2 5} {3 4} >

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints for Subsequences

x_g: max-gap n_g: min-gap

m_s: maximum span

These parameters induce constraints on time differences of adjacent or start-end events in subsequences (as indicated). Here, we assume elements of given data sequences to be timestamped by 1,2,3, ...

Let
$$x_g = 2$$
, $n_g = 0$, $m_s = 4$.

Data sequence	Subsequence	Supports ?	
		(Data sequence contains subsequence and subseq. satisfies constraints wrt data seq.)?	
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes	
< {1} {2} {3} {4} {5}>	< {1} {4} >	No	
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes	
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No	

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$
 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

<{2}{3}{5}> must not be pruned due to <{2}{5}>!

Contiguous Subsequences

s is a contiguous* subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions holds:

- s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of{1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of < {1} {3} {2}> and < {1,2} {3} {2}>

*) zusammenhängend

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - The following reduced Apriori principle still holds:
 If a k-sequence is frequent, then all of its contiguous subsequences (all gaps =1!) must be frequent.
 - Thus a candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent.
 - Already then support counting must be applied.

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Supports?	
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No	
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes	
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes	

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 5$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Supports?
< {DBS} {Statistics} {Data Mining} >	< {DBS,Statistics} {Data Mining} >	Yes
< {Statistics} {DBS} {Data Mining} >	< {DBS,Statistics} {Data Mining} >	Yes
< {Statistics} {X} {Y} {DBS} {Data Mining} >	< {DBS,Statistics} {Data Mining} >	No

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - All data sequences

```
<... {a c} ... >,
<... {a} ... {c}...> (where time({c}) – time({a}) ≤ ws)
<...{c} ... {a} ...> (where time({a}) – time({c}) ≤ ws)
```

will contribute to the support count of the candidate pattern

- Note! Using min-gap and window size constraints, the original subsequence condition need not hold and need not be checked any more; actually, the original condition becomes a special case of constraint satisfaction:
 - x_g / m_s arbitrary
 - ws=0 (only simultaneous events per element)
 - n_g=0 (no nonpositive "gaps", i.e. no order inversion nor simultaneity of elements)

Possible Support Counting Schemes

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for web mining, semantic web mining (XML documents), computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

We focus on undirected, connected graphs.

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

A graph is considered as a set of edges represented by its vertex and edge labels. This works only, if these edge representations are unique.

Challenges

- Nodes may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?

Figure 7.10. Computing the support of a subgraph from a set of graphs.

Challenges...

- Support:
 - number of graphs in a given graph DB that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approaches:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Vertex Growing

Figure 7.13 Vertex-growing strategy.

?: try no edge or arbitrary edge label

Edge Growing

But this is not so simple !!!

Edge Growing: General rules

The merging depends on whether a/c are topologically equivalent("a=c") and b/d have identical labels (b=d)

Figure 7.17. Candidate subgraphs generated via edge growing.

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - ◆ Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues.

Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining with vertex/edge growing:
 - Merging two frequent k-subgraphs may produce multiple candidate (k+1)-subgraphs

Example: Dataset

Example

Minimum support count = 2

k=1 (vertices)
Frequent
Subgraphs

 $\langle \mathbf{c} \rangle$

 $\langle \mathbf{e} \rangle$

k=2 Frequent Subgraphs

c d

k=3 Candidate Subgraphs

(Infrequent candidate)

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a new candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000