DATA SCIENCE

Data Science Life Cycle and Methodology

OUTLINE

- 10 questions to ask
- Data Sciencelife cycle
- CRISP-DM methodology
- Other approaches
 - KDD, SEMMA

1. What is the business requesting?

- "Aggressively" figure out their exact requests
 - Not just fuzzily

2. What does the business need?

- Henry Ford: "If I had asked people what they wanted, they would have said faster horses."
- Don't just build a faster horse

3. Who are all of the stakeholders and what are their individual needs?

- Project's impact likely extends beyond the requester
- Pro-active stakeholder identification
 - Mitigates the risk of ignoring key stakeholders
 - Further value creation across the organization

4. Do the stakeholders have clear expectations?

- Not just another software project
- Set expectations for touch-points (e.g. review sessions), a highly visible project roadmap (will need to change!), ...

5. What is the simplest solution that adds value to the stakeholders?

- Start small and deliver something of value as quickly as possible
 - E.g., an analysis that establishes the baseline, a mockup dashboard, ...
- Opportunity to provide feedback => you know you're on the right path
- A "failed" deliverable adds value
 - "Fail fast", learn problems early
- A simple solution might even solve the problem

6. What is the value of this project? How will it be measured?

- Helps prioritize projects
- Focus on maximizing/minimizing the target variable(s) that are most important

7. Why do this project?

- Just focusing only on the "what" is not sufficient
- A clear and common vision of the project's impact and its "why"
 - Motivation for executive sponsorship, data science development team, ...

8. What are therisks?

- Fundamental process in any project
- "What could gowrong?"
 - Various perspectives: technical, market, societal, legal, security, ...
- Who is responsible for what

9. What people and resources are needed?

- Who do you need to develop the solution? How much time they'll need?
- What data sources will you need? Where are they? Can you purchase them? Can you start collecting the data? What security / firewall requests will you need? Computing resources? Systems integrations?
- Bring together IT, business, and data science project team to avoid a disjointed approach

10. What other questions should be answered?

- The meta-question
- Ask yourself, your team, and your stakeholders some variant of: "What other key questions do we need to answer before committing to this proposed project?"

DATA SCIENCE LIFE CYCLE

DATA SCIENCE LIFE CYCLE

- An iterative set of steps to deliver a data science project
 - Different data science projects / teams = specific data science life cycle
 - E.g., just the data, modeling, and assessment steps; from business understanding to deployment; ...
 - Most tend to flow through the same general life cycle
- Several steps
 - Typically not linear
 - The course depends on the particular DS project

CLASSICAL DATA SCIENCE LIFE CYCLES (FROM '90S)

- CRISP-DM: The CRoss Industry Structured Process for Data Mining
 - The most popular methodology
 - Broader-focused than the others
- Knowledge Discovery in Database (KDD) Process
 - General process of discovering knowledge in data through data mining, extraction of patterns, machine learning, statistics, and database systems.
- **SEMMA** (Sample, Explore, Modify, Model, and Assess)
 - Developed by SSAS.
 - To guide users through tools in SAS Enterprise Miner for data mining problems

OTHER DATA SCIENCE LIFE CYCLES

- OSEMN (Obtain, Scrub, Explore, Model, and iNterpret)
 - Steps: Business Understanding, Data Acquisition and Understanding, Modeling, Deployment, and Customer Acceptance
- Microsoft TDSP (the Team Data Science Process)
 - Combines many modern agile practices with a life cycle similar to CRISP-DM
- Domino Data Labs Life Cycle
 - Steps: Ideation, Data Acquisition and Exploration, Research and Development, Validation, Delivery, and Monitoring

• ...

Data Science Lifecycle

CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING (CRISP-DM)

CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING (CRISP-DM)

- The most widely used form of data-mining model
 - "de facto standard for developing data mining and knowledge discovery projects"
- Supported and promoted by
 - data mining software vendors
 - practitioners in data mining and in data warehousing
- Advantages:
 - Industry, tool, and application neutral
- Disadvantages:
 - Does not perform project management activities

CRISP-DW — HISTORY

- 1996 —created
- 1997 became a European Union project
 - Led by five companies with different experiences in data mining
- **1999** the first version was presented
- 2000 –published
- 2006 ... 2008 CRISP-DM 2.0 Special Interest Group was formed
 - Discussed updating of the CRISP-DM process model
 - Unknown status

CRISP-DW PHASES

- I. Business Understanding
- II. Data Understanding
- III. Data Preparation
- IV. Modeling
- v. Evaluation
- VI. Deployment

I. BUSINESS UNDERSTANDING

Understanding the objectives and requirements of the project.

Determine business objectives

- Understand, from a business perspective, what the customer wants to accomplish
- Define business success criteria

Assess situation

- Determine resources availability, project requirements, assess risks and contingencies
- Conduct a cost-benefit analysis

Determine data mininggoals

Define what success looks like from a technical data mining perspective

Produce project plan

- Select technologies and tools
- Define detailed plans for each project phase

II. DATA UNDERSTANDING

To identify, collect, and analyze the data sets

Collect initial data

Acquire the necessary data and (if necessary) load it into your analysis tool

Describe data

- Examine the data and document its surface properties
 - Data format, number of records, field identities, ...

Explore data

- Dig deeper into the data
- Query, visualize, identify relationships

Verify data quality

- How clean/dirty is the data?
- Document any quality issues

III. DATA PREPARATION

- Prepares the final data set(s) for modeling
- Select data
 - Which data sets will be used
 - Document reasons for inclusion/exclusion

Clean data

Correct, impute, or remove erroneous values

Construct data

- Derive new attributes that will be helpful
 - E.g., derive someone's BMI from height and weight

Integrate data

Create new data sets by combining data from multiple sources

Format data

- Re-format data as necessary.
 - E.g., Convert string values that store numbers to numeric values

Often the lengthiest task

IV. MODELING

- Build and assess various models using different modeling techniques
- Select modeling techniques
 - Which algorithms to try (e.g. regression, neural network, ...)
- Generate test design
 - E.g., split the data into training, test, and validation sets
- Build model
 - E.g., reg = LinearRegression().fit(X, y)
- Assess model
 - Interpret the model results based on domain knowledge, pre-defined success criteria, and test design
- CRISP-DM guide: "iterate model building and assessment until you strongly believe that you have found the best model(s)"
- Practice: ... until you find a "good enough" model, proceed through the CRISP-DM lifecycle, then further improve the model in future iterations

V. EVALUATION

Looks more broadly at which model best meets the business

Evaluate results

- Do the models meet the business success criteria?
- Which one(s) should we approve for the business?

Review process

- Review the work accomplished
- Was anything overlooked? Were all steps properly executed?
- Summarize findings and correct anything if needed

Determine next steps

 Based on the previous three tasks, determine whether to proceed to deployment, iterate further, or initiate new projects

VI. DEPLOYMENT

- Complexity of this phase varies widely
- Plan deployment
 - Develop and document a plan for deploying the model
- Plan monitoring and maintenance
 - Develop a monitoring and maintenance plan
- Produce final report
 - A summary of the project which might include a final presentation of data mining results
- Review project
 - Conduct a project retrospective about how to improve in the future
- CRISP-DM does not outline what to do after the project ("operations")

HOW POPULAR IS CRISP-DM?

RECOMMENDATIONS

- Iterate quickly
 - Don't fall into a waterfall trap by working thoroughly across layers of the project
 - Deliver thin vertical slices of end-to-end value.
- Document enough...but not too much
- Don't forget modern technologies
 - E.g., Add steps to leverage cloud architectures, git version control, ...
- Set expectations
 - CRISP-DM lacks communication strategies with stakeholders
- Combine with a project management approach
 - CRISP-DM is not truly a project management approach

KDD PROCESS

KDD (KNOWLEDGE DISCOVERY IN DATABASES) PROCESS

- **1989**
- Overall process of collecting data and methodically refining it
- Term "data mining" is often interchanged with KDD
- Use cases:
 - Market forecasting consumer trends, product focus, …
 - Anomaly identification "holes" in a process, security vulnerabilities, …
- Cons:
 - Not a full project management approach
 - Outdated does not address modern realities of data science projects
 - Big Data, ethics, ...

Fayyad, U. M. et al. 1996. From data mining to knowledge discovery: an overview. In Advances in knowledge discovery and data mining. AAAI Press / The MIT Press.

KDD PROCESS

- **Selection**: Targeted data is determined, variables for knowledge discovery are determined
- **Pre-processing:** Improving the data being worked (cleaning)
 - Predictive models are established to predict similarly faulty, missing, attributional mismatched data to remove
- Transformation: Converting the pre-processed data to the fully utilizable kind
 Narrowing the variety, establishing data attributes for forthcoming evaluation, organization
 - (sorting) of the information
- Data Mining: Sifting through the transformed data to seek out patterns of interest
 - Patterns are graphed, trended, and charted
 - Involves grouping, clustering, and regression
- Interpretation/Evaluation: Data is handed off for interpretation and documentation
 Cleaned, converted, picked apart based on relevant attributes, and framed into visual
 - representations

SEMINA

SEMMA (SAMPLE, EXPLORE, MODIFY, MODEL, AND ASSESS)

- Developed by the SAS Institute as the process of data mining
 - "to uncover previously unknown patterns which can be utilized as a business advantage"
 - Logical organization of the functional tool set of SAS Enterprise Miner
 - Enables to carry out the core tasks of data mining
- SAS Institute producer of statistics and business intelligence software
- Use cases: fraud identification, customer retention and turnover, database marketing, customer loyalty, bankruptcy forecasting, market segmentation, risk, affinity, and portfolio analysis

SEMMA

- Sample: Vast input dataset => choose a subset of the appropriate volume
 - Large enough to contain the significant information, small enough to process
 - Identify variables or factors (both dependent and independent) influencing the process
- Explore: Study relationships between data elements, identify gaps in the data
 - Multivariate analysis studies the relationships between variables
 - Univariate analysis looks at each factor individually to understand its part in the overall scheme
- Modify: Data is parsed and cleaned
- Model: Applies a variety of data mining techniques in order to produce a projected model
- Access: Model is evaluated for how useful and reliable it is for the studied topic

SUMMARY OF THE CORRESPONDENCES BETWEEN KDD, SEMMA AND CRISP-DM

KDD	SEMMA	CRISP-DM
Pre KDD		Business understanding
Selection	Sample	- Data Understanding
Pre processing	Explore	
Transformation	Modify	Data preparation
Data mining	Model	Modeling
Interpretation/Evaluation	Assessment	Evaluation
Post KDD		Deployment

REFERENCES

- https://www.datascience-pm.com/
- Ana Azevedo, Manuel Filipe Santos. KDD, SEMMA and CRISP-DM: a parallel overview. IADIS European Conference on Data Mining 2008, Amsterdam, 2008.
- CRISP-DM 1.0 Step-by-step data mining guide https://www.the-modelingagency.com/crisp-dm.pdf
- https://www.datascience-pm.com/kdd-and-data-mining/
- https://www.datascience-pm.com/semma/
- https://mbi.vse.cz/public/cs/obj/METHOD-113

