Gas sensor datasheet

Features and applications

Applications

Detection of various gases:

- Nitrogen dioxide (NO₂)
- Carbon monoxide (CO)
- Hydrogen sulfide (SO₂)
- Dihydrogen (H₂)
- Methane (CH₄)
- Alcohols (-OH)

Temperature sensor

Main features

High sensitivity and selectivity Low power consumption Low cost Small and compact Easy to use Long lifetime

General description

This gas sensor was developed at the AIME laboratory of INSA Toulouse. The goal of the sensor is to detect outdoor or indoor air quality. The module's sense element consists of a heater element on a silicon-based structure and a metal-oxide chemiresistor. Tungsten trioxide nanoparticles (WO3) are integrated on carved aluminium elements and on temperature sensitive resistors.

The sensor module is optimized for the detection of traces of atmospheric gases, including for instance nitrogen dioxide, carbon monoxide and dihydrogen.

TABLE OF CONTENT

DEVICE OVERVIEW	2
Pin description	2
Dimensions and structure	3
GENERAL SPECIFICATIONS	4
Specification	4
Electrical characteristics of our sensor	5
Variations with temperature	7
TYPICAL CIRCUIT APPLICATION	9
Typical circuit connection	9
Typical values of the analog filters	9

1. **DEVICE OVERVIEW**

1.1. Pin description

FIGURE 1-1: PIN MAPPING

TABLE 1-2: PIN USAGE

Pin Number	Usage
1/6	Temperature sensor (Aluminium resistor)
2/4	Gas sensor (WO3 nanoparticles)
3/8	Polysilicon resistor
7/9	Gas sensor (WO3 nanoparticles)
5/10	Not connected

1.2. Dimensions and structure FIGURE 1-2: SENSOR DIMENSION

2. GENERAL SPECIFICATIONS

2.1. Specification

TABLE 2-1: GENERAL SPECIFICATIONS

Specification	Description
Туре	Semi-conductor
Materials	 Tungsten trioxide nanoparticles Aluminium Silicon N-doped poly-silicon
Packaging	10-Lead TO-5 metal
Typical measure precision	Resistive measure
Power supply requirement	Active sensor
Nature of output signals	Analog signal

TABLE 2-1: GENERAL SPECIFICATIONS (CONTINUED)

Specification	Description
Nature of measurands	Resistive measurement
Head diameter	<10mm
Head height	<5mm
Package height	<25mm
Pin diameter	<1mm
Mounting	Through hole fixed
Detectable gases	 Nitrogen dioxide (NO2) Carbon monoxide (CO) Hydrogen sulfide (SO2) Dihydrogen (H2) Methane (CH4) Alcohols (-OH)
Time response	Ethanol < 35s Ammonia < 20s
Aluminium resistance	80 Ω

TABLE 2-2: STANDARD USE CONDITION

	Unit	Typical Value	
Temperature	°C	25 +/- 5	
Relative Humidity	%	60 +/- 5	

TABLE 2-3: USE DOMAINS

	Nominal domain	Non deterioration domain	
Aluminium	[0V;5V]	[5V;10V]	
Polysilicium	[0V;7.5V]	[7,5;15V]	
Gas sensor	Up to 523K	Up to 623K	

2.2. Electrical characteristics of our sensor

FIGURE 2-1: I(V) characteristics of the sensor at 15V

FIGURE 2-2: I(V) characteristics of the aluminium at 10V

FIGURE 2-4: I(V) characteristics of the polysilicon at 15V

2.3. Variations with temperature

We realised test following this process:

TABLE 2-4: GAS INJECTED

120	120	120	120	120	120	120	120	120
Dry air	NH3	Dry air	NH3	Dry air	ethanol	dry air	ethanol	dry air

3. TYPICAL CIRCUIT APPLICATION

3.1. Typical circuit connection

The output current of the sensor is about 100 nanometres Ampere. It is very difficult to measure such small currents with a basic microcontroller, so we must amplify it. Moreover, because of the very high impedances of the sensor, we will have to adapt the impedance in the amplification stage to have a reliable measurement. The solution chosen is described in the following schema.

The gas sensor must be powered on pin 2/4 and the output (pin 7/9) must be filtered or amplified with the circuit below.

Then the value can be read with an Arduino or any device equipped with GPIO.

FIGURE 3-1: HARDWARE CONNECTION

3.2. Typical values of the analog filters

Analog filters can be added in the electronic circuit to improve sensor's performance. On the table below you will find the typical values used to build the filters at respectively 1kHz, 7.5kHz and 15kHz.

In the following table you can read the characteristics of the chosen components.

TABLE 3-1: TYPICAL VALUES

Variable	Typical Value			
Sensor				
R _{sensor}	≈1GHz			
$I_{ m sens}$	≈ 100 nA			
Sensor Bandwidth	1Hz			
AI	OC .			
$ m f_{ADC}$	[50kHz-200kHz]			
ADC Resolution	5mV			
$ m f_{mesure}$	15 kHZ			
f _{max (} shannon's criteria)	7.5 kHz			
Circuit				
V_{R1}	10mV			
Amplifier circuit gain	500			
Output Voltage	5V			
AO				
$ m V_{ m offset}$	10mV			
Input current	1nA			