

On the Sensitivity of Finite Elements to Mesh Distortions

Manfred Bischoff, Benjamin Schneider Deepak Ganapayya, Nagesh Chilakunda

Institute of Structural Mechanics University of Stuttgart

bischoff@ibb.uni-stuttgart.de

motivation

- locking phenomena in structural and solid finite elements
- "optimal" technologies available for rectangular element shapes
- different technologies are identical for rectangular element shapes
- ⇒ sensitivity to mesh distortions is one of the last open problems (further challenges in non-linear analysis and 3d-shells)

How to Deal with this Problem

1. avoid mesh distortions

complex geometries adaptive (re-) meshing

How to Deal with this Problem

1. avoid mesh distortions

complex geometries adaptive (re-) meshing

2. develop finite elements which are insensitive to mesh distortions

two-dimensional elasticity four-node elements

Measuring Distortion Sensitivity

the most popular test: bending of a cantilever

various versions in the literature

Element Types under Investigation

four-node plane stress elements

Q1

standard Galerkin formulation

suffers from shear locking and volumetric locking

selective reduced integration of shear part

no shear locking, o.k. for small Poisson's ratio

Qm6

method of incompatible modes (= Q1-E4)

locking-free (?)

Taylor, Wilson (1973, 1976), Simo et al. (1990)

Two Element Bending Test

typical results

Two Element Bending Test

how meaningful is this test setup?

is this a distorted mesh?

undistorted elements – different results

are identically zero!

Measuring Distortion Sensitivity

Two Element Bending Test

how meaningful is this test setup?

numerical experiment is restricted to

- specific loads and boundary conditions
- constant-linear stress distribution
- principal stresses aligned to edges
- "exact" solution = beam solution

may be a **hint** toward optimization of element technology but not a **guideline**

Element Quality ↔ Tendency to Locking

eigenvalues as "objective" measure of element quality

$$m{K} \cdot m{D} = m{F}$$
 $m{K} \cdot m{D_i} = m{\lambda_i} \cdot m{D_i}$ (no sum on i) $m{K} \cdot m{D_i} - m{\lambda} \cdot m{D_i} = (m{K} - m{\lambda_i} \cdot m{I}) \cdot m{D_i} = m{0}$ eigenvalue λ = stiffness eigenvector $m{D}$ = deformation mode

- no need to choose specific loads and boundary conditions
- eigenvalue spectrum = element deformation spectrum

Eigenvalue Analysis

shear locking

trapezoidal mode
$$m{D}_i = egin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$
 optimal: $\lambda_i = c \cdot h^3$

volumetric locking

optimal: only **one** eigenvalue with $\lim_{
u o 0.5} \lambda_i o \infty$

distortion sensitivity

what are the "correct" values of $\lambda_1 \dots \lambda_8$ for arbitrary element shapes?

Measuring Element Quality

Considering a Patch of Finite Elements

9 elements, 16 nodes, 32 d.o.f. ⇒ spectrum of 32 eigenvalues

undistorted, "optimal" mesh provides reference solution

$$\lambda_1 \dots \lambda_{32}$$

$$D_1 \dots D_{32}$$

distorted mesh perturbed eigenvalue spectrum

$$\tilde{\lambda}_1 \dots \tilde{\lambda}_{32}$$

$$ilde{m{D}}_1 \dots ilde{m{D}}_{32}$$

Distortion Patch Test

removing internal d.o.f. via static condensation

$$m{K} = \left[egin{array}{ccc} m{K}_{(1..24),(1..24)} & m{K}_{(1..24),(25..32)} \ m{K}_{(25..32),(1..24)} & m{K}_{(25..32),(25..32)} \end{array}
ight]$$

$$= \left[egin{array}{cc} oldsymbol{K}_{11} & oldsymbol{K}_{12} \ oldsymbol{K}_{21} & oldsymbol{K}_{22} \end{array}
ight]$$

macro element with

$$m{K}_{red} = m{K}_{11} - m{K}_{12} \cdot m{K}_{22}^{-1} \cdot m{K}_{21}$$

Distortion Patch Test

properties of macro element

- 24 eigenpairs $\lambda_1 \dots \lambda_{24}, \boldsymbol{D}_1 \dots \boldsymbol{D}_{24}$
- $\tilde{\lambda}_1 \dots \tilde{\lambda}_{24}, \tilde{D_1} \dots \tilde{D}_{24}$ depend on locations of "invisible" nodes 13-16
- comparison of $\tilde{\lambda}_i$ and λ_i yields objective measure for distortion sensitivity

Element Distortion

8 generic distortion modes = 8 single element modes

Application of Distortion Patch Test

numerical experiments with Q1, Q1-SRI and Qm6

- trapezoidal type of distortion
- plotting $\tilde{\lambda}_i$ versus d
- comparing eigenvalue spectra for different values of d

Eigenvalues versus Distortion Parameter

Eigenvalues versus Distortion Parameter

modes 1 - 4

Eigenvalue Spectra

standard Galerkin finite element Q1

Application to "Thin" Structure

more sensitive to locking

Application to "Thin" Structure

Eigenvalue Spectrum of Thin Structure

standard Galerkin finite element Q1

Eigenvalue Spectrum of Thin Structure

standard Galerkin finite element Q1

Eigenvalue Spectrum of Thick Structure

for comparison

Element Type Q1

eigenvalue spectrum

eigenvalue spectrum

eigenvalue spectra

35

eigenvalue spectra

eigenvalues of mode 1 in dependence of mesh distortion d

eigenvalues of mode 1 in dependence of mesh distortion d

eigenvalues of mode, thick structure (square)

Conclusions

measuring distortion sensitivity

- bending test is not so bad
- eigenvalues may provide objective measure

newly proposed distortion patch test

- objective measure for distortion sensitivity
- universal locking test
- applicable to arbitrary problems
 (thin and curved structures, near incompressibility, etc.)

numerical results

- distortion sensitivity is related to locking
- Q1 and Q1-SRI equally sensitive to distortion
- Qm6 significantly better than Q1-SRI (more than bending test implies)

 $\nu \rightarrow 0.5$

