NEPAL EARTHQUAKE DATA ANALYSIS

GENERAL DATA INFORMATION

Data taken from Central Bureau of Statistics,
 Nepal

Time period is April 2015

Area analysed is Gorkha District of Nepal

PRESENTATION OBJECTIVE

How much damage did the earthquake cause?

 How did different building materials and combinations survive the earthquake?

 How does building age relate to damage caused?

HOW MUCH DAMAGE DID THE EARTHQUAKE CAUSE?

DAMAGE LEVELS

- Highest grade is 2(Medium) 5636
- Lowest grade is 1(Low) 938

BUILDING MATERIAL TYPES

Building Materials Bar Chart

BUILDING AGES OVERALL

Age of the building

HOW DID DIFFERENT BUILDING MATERIALS AND COMBINATIONS SURVIVE THE EARTHQUAKE?

AVERAGE DAMAGE CALCULATED FOR BUILDINGS THAT USE EACH MATERIAL TYPE

Highest: Stone (2.42); Lowest: Reinforced Concrete (1.32)

Mean Damage based on building materials

	Material Type	Not_Used	Used
0	Adobe/Mud	2.24	2.36
1	Mud Mortar - Stone	1.94	2.34
2	Stone	2.24	2.42
3	Cement Mortar - Stone	2.25	1.93
4	Mud Mortar - Brick	2.24	2.25
5	Cement Mortar - Brick	2.29	1.74
6	Timber	2.28	2.16
7	Bamboo	2.26	2.10
8	Non-engineered Reinforced Concrete	2.27	1.78
9	Engineered Reinforced Concrete	2.26	1.32
10	Any Other Material	2.25	2.15

COMPARISON OF AVERAGE DAMAGE

Table illustrating average damage for each building material

HOW DOES BUILDING AGE RELATE TO DAMAGE CAUSED?

LOW DAMAGE GETTING LESS WITH AGE INCREASE

POSITIVE SKEW FOR MEDIUM DAMAGE

POSITIVE SKEW FOR COMPLETE DAMAGE

CONCLUSIONS

SUMMARY POINTS

 Medium level earthquake damage count are the highest

 Overall, mud mortar stone material is most vulnerable to all damage levels

 Most damages are concentrated on buildings aged 10 to 20 years old

Predicted Class 19.7% 79.8% 0.5% Actual Class 2 1.8% 90.3% 7.9% 0.7% 12.7% 3 86.6%

RECOMMENDATIONS

Design and implement machine learning model to predict building vulnerability

 Prediction results will allow Nepalese authorities to plan and do advance preventive works

THANK YOU