2.5 随机变量的函数的分布

■背景

在许多实际问题中,常常需要研究随机变量的函数的分布问题,例:

☆ 测量圆轴截面的直径 \mathbf{d} ,而关心的却是截面积: $\mathbf{S} = \frac{1}{4}\pi \mathbf{d}^2$

d为随机变量,S就是随机变量d的函数。

☆ 在统计物理中,已知分子的运动速度x的分布,求 其动能:

$$y = \frac{1}{2}mx^2$$
 的分布。

一般地,设**y=g(X)**是一元实函数,**X**是一个随机变量,若**X**的取值在函数**y=g(X)**的定义域内,则**Y=g(X)**也为一随机变量。

密度函数

随机变量

分布函数

$$f_X(x)$$
 — $F_X(x)$

$$f_{Y}(y) - - - Y = g(X) - - F_{Y}(y)$$

随机变量的函数

离散型随机变量的函数的分布

(p50) 设X一个随机变量,分布律为

$$X \sim P\{X = x_k\} = p_k, k = 1, 2, ...$$

若y = g(x)是一元单值实函数,则Y = g(X)也是一个

随机变量。求Y的分布律。

求: Y=X²的分布律

例:已知

X	-1	0 1		Y	1	0
$\overline{P_k}$	1/3	$\frac{1}{3}$	1/3	P_k	2/3	1/3

一般地

	X	x_1	$x_2 \cdots$	$x_k \cdots$
	P_k	p_1	$p_2 \cdots$	$p_k \cdots$
Y=	g(X)	$g(x_1)$	$g(x_2)$.	$\cdots g(x_k) \cdots$

如果 $\mathbf{g}(\mathbf{x_i})$ 与 $\mathbf{g}(\mathbf{x_j})$ 相同,此时将两项合并,对应概率相加

炒 设随机变量X的分布律为

解 由题设可得如下表格

X	-1	0	1	2
$Y=(x-1)^2$	4	1	0	1
概率	0.2	0.3	0.1	0.4

所以, y=(x-1)²的分布律为

Y	0	1	4	
$\mathbf{p_k}$	0.1	0.7	0.2	

엥 设随机变量X的分布律为

解 由题设可得如下表格

X	-1	0	1	2
$Y = 2x^2 + 1$	3	1	3	9
概率	0.2	0.3	0.4	0.1

所以,**y=2x²+1**的分布律为

Y	1	3	9	
$\mathbf{p_k}$	0.3	0.6	0.1	

连续型随机变量的函数的分布

设X为一个连续型随机变量,其概率密度函数为f(x)。 y = g(x)为一个连续函数,求随机变量Y = g(X)的概率密度函数

1、一般方法

(1) 求Y的分布函数 $F_Y(y)$

$$F_{Y}(y)$$
 是据分布函数的定义
$$P\{Y \leq y\} = P\{g(X) \leq y\}$$

$$= \int_{g(x) \leq y} f(x) dx$$

(2) 对 $F_Y(y)$ 求导,得到 $f_Y(y)$

$$f_{Y}(y) = (F_{Y}(y))'$$

侧。设随机变量X的密度函数为

$$f_X(x) = \begin{cases} \frac{x}{8}, 0 < x < 4 \\ 0, \cancel{\sharp} \stackrel{\text{re}}{=} \end{cases}$$

求随机变量Y=2X+8的概率密度。

$$F_Y(y) = P\{Y \le y\} = P\{2X + 8 \le y\}$$

$$= P\{X \le \frac{y-8}{2}\} = F_X(\frac{y-8}{2})$$

(2) 求Y=2X+8的概率密度

$$f_{Y}(y) = (F_{Y}(y))' = (F_{X}(\frac{y-8}{2}))'$$

$$= f_{X}(\frac{y-8}{2})(\frac{y-8}{2})' = f_{X}(\frac{y-8}{2})\frac{1}{2}$$

$$= \begin{cases} \frac{1}{8}(\frac{y-8}{2})\cdot\frac{1}{2}, & 0 < \frac{y-8}{2} < 4 \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases} = \begin{cases} \frac{y-8}{32}, & 8 < y < 16 \\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

例 设随机变量X服从正态分布的概率密度。

$$N(\mu,\sigma^2), \stackrel{\mathcal{R}}{=} Y = X^2$$

 \mathbf{g} (1)先求Y=X²的分布函数 $\mathbf{F}_{\mathbf{Y}}$ (y).

因为 $Y=X^2 \ge 0$,所以 $y \le 0$ 时 $F_Y(y)=P\{Y \le y\}=0$ 。若y>0

$$F_Y(y) = P\{Y \le y\} = P\{X^2 \le y\}$$

$$= P\{-\sqrt{y} \le X \le \sqrt{y}\}$$

$$= P\{-\sqrt{y} < X \le \sqrt{y}\}$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

(2) 求Y=X²的概率密度
$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$f_Y(y) = F_Y'(y) = (F_X(\sqrt{y}) - F_X(-\sqrt{y}))'$$

$$= f_X(\sqrt{y})(\sqrt{y})' - f_X(-\sqrt{y})(-\sqrt{y})'$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{(\sqrt{y})^2}{2}} \frac{1}{\sqrt{y}}, \quad y > 0$$

$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}, & y > 0\\ 0 & \sharp \dot{\Xi} \end{cases}$$

设X~N(0,1), 其概率密度为:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

则 $Y = X^2$ 概率密度函数为:

$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, & y > 0\\ 0, & y \leq 0 \end{cases}$$

此时称Y服从自由度为1的 χ^2 分布,记作 $Y \sim \chi^2$ (1)

结论: 若 $X \sim N(0,1)$ 则 $X^2 \sim \chi^2(1)$

例 设随机变量X服从正态分布的概率密度。

$$N(\mu,\sigma^2), \stackrel{\Re}{=} Y = aX + b$$

解 先求分布函数 $F_{V}(y)$ 。

$$F_Y(y) = P\{Y \le y\} = P\{aX + b \le y\}$$

当a > 0时,

$$F_Y(y) = P\{X \le \frac{y-b}{a}\} = F_X(\frac{y-b}{a})$$

所以,

$$f_{Y}(y) = f(\frac{y-b}{a}) \cdot \frac{1}{a} = \frac{1}{\sqrt{2\pi\sigma a}} \cdot e^{-\frac{(y-b-a\mu)^{2}}{2(a\sigma)^{2}}}$$

当
$$a < 0$$
 时, $F_Y(y) = P\{X \ge \frac{y-b}{a}\}$

$$F_Y(y) = P\{X \ge \frac{y-b}{a}\} = 1 - P\{X < \frac{y-b}{a}\}$$

$$= 1 - F_X(\frac{y-b}{a})$$

$$f_{Y}(y) = -f(\frac{y-b}{a}) \cdot \frac{1}{a} = \frac{1}{\sqrt{2\pi\sigma|a|}} \cdot e^{-\frac{(y-b-a\mu)^{2}}{2(a\sigma)^{2}}}$$

所以,
$$Y \sim N(a\mu + b, (|a|\sigma)^2)$$

■ 定理 正态分布的线性函数仍服从正态分布

设
$$X \sim N(\mu, \sigma^2), Y = aX + b(a \neq 0),$$
则 $Y \sim N(a\mu + b, (a\sigma)^2)$

■推论

若
$$X \sim N(\mu, \sigma^2)$$
,则 $\frac{X - \mu}{\sigma} \sim N(0, 1)$

正态分布的标准化

习题课

一、填空:

1.设随机变量X服从参数为(2,p)的二项分布,

随机变量Y服从参数(3,p)的二项分布,若

- 17/22页 -

$$P\{X \ge 1\} = \frac{5}{9}$$
, $\emptyset P\{Y \ge 1\} = \underline{\hspace{1cm}}$

2.设随机变量**X**服从(0, **2**)上的均匀分布,则随机变量**Y**=**X** 2 在(0, **4**)内的密度函数为

$$f_Y(y) =$$

3.设随机变量X~N(2, σ²), 且P(2<X<4)=0.3, 则P(X<0)=

二. 从某大学到火车站途中有6个交通岗,假设在各个交通岗是否遇到红灯相互独立,并且遇到红灯的概率都是1/3. 以Y表示汽车在第一次停止之前所通过的交通岗数,求Y的分布律. (假定汽车只在遇到红灯或到达火车站时停止)

三、某射手对靶射击,单发命中概率都为**0.6**,现 他扔一个均匀的骰子,扔出几点就对靶独立射击 几发,求他恰好命中两发的概率。 四. 已知随机变量X的概率密度为

$$f(x) = \begin{cases} \frac{2}{9}(1-x) & -2 < x < 1 \\ 0 & others \end{cases}$$
(2)的概率密度

求: Y=1-X²的概率密度