1 Problem statement

1.1 Verze 1

Vstupem je:

- Množina primárních procesorů $\mathcal{P} = (P_1, ..., P_n)$.
- Množina koprocesorů $\mathcal{G} = (G_1, ..., G_n)$.
- Množina úloh $\mathcal{T} = (T_1, ..., T_n)$.
- Hodnota MF.

Každý procesor $P \in \mathcal{P}$ a koprocesor $G \in \mathcal{G}$ je charakterizován počtem výpočetních jednotek u(P), resp. u(G).

Každá úloha $T \in \mathcal{T}$ je charakterizována:

- Délkou l(T).
- Přiřazením $p:T\mapsto P,P\in\mathcal{P},$ které udává primární procesor, na kterém musí být úloha vykonána.
- Přiřazením $g:T\mapsto G,G\in\mathcal{G},$ které udává koprocesor, na kterém musí být úloha vykonána.

Výstupem je množina rozvrhových oken $\mathcal{W} = (W_1, ... W_n)$. Každé rozvrhové okno $W \in \mathcal{W}$ je charakterizováno délkou k(W).

Cílem je rozhodnout, zdali existuje přiřazení $s:T\mapsto W,\ W\in\mathcal{W}$ pro všechny $T\in\mathcal{T}$ za následujících podmínek:

- $k(W) \ge 0.6 \cdot max(l(T)), T \in W$
- $\sum_{W \in \mathcal{W}} k(W) \leq MF$
- $PocetUlohNaPveW \leq u(P), \forall P \in \mathcal{P}$
- $PocetUlohNaGveW \leq u(G), \forall G \in \mathcal{G}$