正交與對稱

吳昱良

2015年6月5日

交通大學電機工程學系 108 級

大綱

- 1. 什麼是內積?什麼是正交?
- 2. 如何找正交基底?
- 3. 對稱矩陣的特徵向量是什麼?
- 4. 什麼是 SVD?它的的座標軸?定義域?值 域?

內積與正交

定義

設
$$\mathbf{v} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^\mathsf{T}, \mathbf{w} = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^\mathsf{T} \in \mathbf{R}^n$$

內積

$$v \cdot w = v^T w = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

標準定量 (norm)

$$||v|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{v^T v}$$

正交 (orthogonal)

若
$$V \cdot W = 0$$
,則 V, W 正交

性質

- 1. 若且唯若 u, v 正交, $||u + v||^2 = ||u||^2 + ||v||^2$
- 2. $|u \cdot v| \le ||u|| ||v||$
- 3. $||u|| + ||v|| \ge ||u + v||$

Figure 1: 不等式

集合的正交

設
$$S = \{v_1, v_2 \cdots, v_n\}$$
, $\forall i, v_i \neq 0$

正交集 (orthogonal set)

若對於任意 $i \neq j$ 有 $v_i \cdot v_j = 0$,則 S 為 正交集合

正交規範集 (orthonormal set)

若 S 為正交集且 $||v_i|| = 1$,則 S 為正交規範集

Gram Schimidt **過程**

目標

希望將一個子空間的基底轉換成正交基底,方便 映射與計算長度。因此我們的問題是:

- ·可以將一個基底轉成正交基底嗎?
- ·如果可以怎麼轉?

Gram Schimidt 過程

考慮
$$\{S = \{u_1, u_2, \dots, u_n\}$$
 為一基底,令:

$$V_{1} = U_{1}$$

$$V_{2} = U_{2} - \frac{u_{2} \cdot v_{1}}{\|v_{1}\|^{2}} V_{1}$$

$$\vdots$$

$$V_{i} = U_{i} - \frac{u_{i} \cdot v_{1}}{\|v_{1}\|^{2}} V_{1} - \frac{u_{i} \cdot v_{2}}{\|v_{2}\|^{2}} V_{2} \cdot \cdot \cdot - \frac{u_{i} \cdot v_{i-1}}{\|v_{i-1}\|^{2}} V_{i-1}$$

$$\vdots$$

則
$$S' = \{v_1, v_2, \dots, v_n\}$$
 為一正交基底。

性質

設S為一正交集,則S線性獨立。

Figure 2: 圖像化

正交補餘 Orthogonal Complement

定義

非空集合 S 的正交補餘定義為

$$S^{\perp} = \{ v \in \mathbb{R}^n : u \cdot v = 0, \forall u \in S \}$$

意義

非空集合 S 為矩陣 A 的列空間,則其正交補餘為 A 的零空間。

正交投影 Orthogonal Projection

定義

令 $W \subset \mathbb{R}^n$,對於 $v \in \mathbb{R}^n$ 存在的唯一向量 $w \in W$ 有 $(v - w) \in W^{\perp}$,則稱 w 為 v 的正交投影,並可定義運算子 $P : \mathbb{R}^n \to W$, $P(v) = w \in W^{\perp}$

問題

給定一子空間 $W \subset \mathbb{R}^n$,要怎麼找到任意向量 $V \in \mathbb{R}^n$ 的正交投影? 如果是正交規範基底,問題會不會比較簡單?

正交投影 Orthogonal Projection

Figure 3: 圖像化

正交規範基底 Orthonormal Basis

令
$$W = \{z_1, z_2, \cdots, z_n\}$$
 為正交規範基底。

對於
$$v \in \mathbb{R}^n$$
, $v = w + u, w \in W, u \in W^{\perp}$,考慮:

$$W = (V^T Z_1)Z_1 + (V^T Z_2)Z_2 + \cdots + (V^T Z_2)Z_2$$

對於任意 $Z_i \in Z$:

$$z_{i}^{T}(V - W)$$

$$=z_{i}^{T}(V - (V^{T}z_{1})z_{1} - (V^{T}z_{2})z_{2} - \cdots - (V^{T}z_{2})z_{2})$$

$$=z_{i}^{T}V - (V_{i}^{T}z_{i})(z_{i}^{T}z_{i})$$

$$=0$$

正交規範基底

故 $(v - w) \in W^{\perp}$,故 $w \neq v$ 的正交投影。

$$W = \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} \begin{bmatrix} z_1 & v \\ z_2 & v \\ \vdots \\ z_n & v \end{bmatrix}$$

$$= \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} \begin{bmatrix} z_1 & v \\ z_2 & v \\ \vdots \\ z_n & v \end{bmatrix}$$

正交規範基底

Figure 4: 圖像化

任意基底

設子空間 $W \subset \mathbb{R}^n$ 的基底構成矩陣 $A \in \mathbb{R}^{m \times n}$ 與 設 $W = Au \in W$ 為 $v \in \mathbb{R}^n$ 的正交投影。考慮:

$$W^{\perp} = (\operatorname{col} A)^{\perp} = (\operatorname{row} A^{T})^{\perp} = \operatorname{null} A^{T}$$

$$\Rightarrow A^{T}(w - v) = A^{T}Au - Av = 0$$

$$\Rightarrow A^{T}Au = A^{T}v$$

$$\Rightarrow u = (A^{T}A)^{-1}A^{T}v$$

$$\Rightarrow w = Au = A(A^{T}A)^{-1}A^{T}v$$

任意基底

Figure 5: 圖像化

正交矩陣 Orthogonal Matrix

定義

正交矩陣:若 Q 的行向量構成一正交規範基底,則 Q 為正交矩陣

定理

若且 $Q \in \mathbb{R}^{n \times n}$,則:

- 1. $Q^TQ = I ⇔ Q$ 為正交矩陣
- 2. $(Qu)^T(Qv) = u^Tv \Leftrightarrow Q$ 為正交矩陣

對稱矩陣與特徵空間

對稱矩陣

問題

為甚麼想找對稱矩陣?

因為對稱矩陣可以對角化,且其特徵向量相互正 交。

對稱矩陣 Symmetric Matrix

定義

對稱:若矩陣 $A \in A^T$,則稱 A 對稱

定理

- 1. 若 $A = [a_{ij}] \in \mathbb{R}^{n \times n}, a_{ij} \in \mathbb{R}, \forall i, j$,則 $f_A(t) = \det(A t \cdot I) = 0$ 有 n 實根。
- 2. $A \in \mathbb{R}^{n \times n}, A = A^T \Leftrightarrow$ 存在正交矩陣 P 與對角 矩陣 D 使 $A = PDP^T$

光學分解 Spectral Decomposition

光學分解:考慮正交矩陣 P 與對角矩陣 D 使 $A = PDP^T$,令:

$$P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}, D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

則:

$$A = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{v}_2^T + \dots + \lambda_n \mathbf{v}_n \mathbf{v}_n^T$$

問題

問題

- 為甚麼要考慮對稱矩陣?
 對稱矩陣可以對角化,且其不同特徵空間的 向量相互正交。
- 2. **為甚麼要考慮特徵空間?** 特徵值可以告訴我們長度的變化。

什麼是對角化?

如果把矩陣 A 想像成一個函數,且 A 可以寫成 $A = PDP^{-1}$,則:

SVD 是什麼?

Figure 6: 圖像化

Singular Value Decomposition (SVD)

定理

設 $A \in \mathbb{R}^{m \times n}$,Rank A = k,則存在 \mathbb{R}^n 的正交規 範基底 $\{v_1, v_2, \dots, v_n\}$ 與 \mathbb{R}^m 的正交規範基底 $\{u_1, u_2, \dots, u_n\}$,以及 $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_k > 0$, 使得:

$$Av_i = \begin{cases} \sigma_i u_i, 1 \le i \le k \\ 0, i > k \end{cases}, A^T u_i = \begin{cases} \sigma_i v_i, 1 \le i \le k \\ 0, i > k \end{cases}$$

Singular Value Decomposition (SVD)

Figure 7: 圖像化

問題

利用前頁的定理,令
$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$
, $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_m \end{bmatrix}$, $\Sigma = \begin{bmatrix} a_{ij} \end{bmatrix}, a_{ij} = \begin{cases} 0, i \neq 0 \\ \sigma_i, i = j \end{cases}$ 則: $AV = U\Sigma$ 或記為: $A = U\Sigma V^T$

