AI4EU ROBOTICS PILOT

AI4EU model + ROS Interface

AI4EU Platform goals

Deployment of models

- The model is deployed directly on the robot, respectively its controller unit.
- The model is deployed centrally on-site.
- The model is deployed in a cloud environment

Platform architecture

gRPC - Remote Procedure Call (RPC) framework.

- At the core of gRPC, we need to define the messages and services using protocol buffers
- The rest of the gRPC code will be generated and we will have to provide an implementation for it.
- One .proto file works for over 12 programming languages and allows to scale to millions of RPC per second

Platform architecture

Protocol Buffers

- Language agnostic
- Easy to write message definition
- Code can be generated for pretty much any language
- payload is binary and efficiently serialized efficient
- Very convenient for transporting lot of data

Conceptual Architecture

Motivation

- Al4EU platform should be made accessible for robotics community
 - ROS is a de-facto standard for robot application developement

ROS does not have a nice way to use ML models

- Trained model and ingestion pipelines are hardcoded
 - Model update needs rebuild of ROS pkgs
- No model version control
- No means to monitor model performance

gRPC model deployment as microservice

- Independent from ROS system
 - ROS pkgs does not need build after each model update
- Model version control with docker
- Model monitoring can be made possible
- Access to open source ML models from marketplace*

Platform architecture

gRPC - Remote Procedure Call (RPC) framework.

Conceptual Architecture

ROS + gRPC server

End of Presentation Thank You