UM-SJTU JI 2024FA VE215 Lab #2

We will evaluate the Thehevenin equivalent in this lab.

- Please hand in your post-lab assignment before the due date. Please do your post-lab assignment following the requirements in each problem. Both hand-written and printed are accepted.
- You are encouraged to print this lab manual and then finish the post-lab questions on it. For pictures or diagrams, you may print it in a paper, cut it down and paste on this worksheet.

Instruments

DC power supply

Multimeter

Breadboard and Wires

Resistors of 50Ω and 100Ω

Rheostat of 200Ω (or 500Ω)

Instruments Introduction

For the **rheostats**, please connect the middle port and one of the sided ports inside the circuit (refer to the diagram). Please rotate the button at the top of rheostat using a mini-screwdriver to change its resistance.

Problem #1 Thevenin Equivalent

Please connect the circuit on your breadboard based on the schematic.

After the connection, please turn on the voltage source and measure the open-circuit voltage V_{ab} between port a and port b by multi-meter. Then, please turn off the voltage source and measure the equivalent resistance R_{ab} between port a and port b by multi-meter. Please record your data in the table:

Term	Open-circuit voltage V _{ab}	Equivalent resistance R _{ab}
Value	[, 4}8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100.35

Post-Lab Questions for (P1)

(1) Please calculate the theoretical values of the Thevenin's equivalent voltage and the equivalent resistance between port **a** and port **b**. Then, please compare the experimental values with the theoretical ones and explain how this experiment verifies the Thevenin theorem.

$$2-V_{Th} = 10011100 + 50 = 100 SL$$
.

In our measurement, Rab = (00.31.5km,

Vab = 1,498 V 5 V7m.

Therefore, it verifies the Theorem,

Problem #2 Application of Thevenin Equivalent

Based on Thevenin theorem, most of linear circuits could be replaced by equivalent models composed of an equivalent voltage source V_{TH} connected in series with equivalent resistance R_{TH} , which is represented by the following diagram:

By adopting Thevenin transformation, the amount of calculation could be reduced significantly when analyzing complex circuits. For a linear

circuit, suppose the Thevenin equivalent voltage is V_{TH} and the equivalent resistance is R_{TH} . If we connect a load resistance R_L between the two reference ports (please refer to the following schematics), the load voltage V_L will be:

$$V_L = V_{TH} \frac{R_L}{R_L + R_{TH}}$$

$$R_{TH}$$

$$V_{TH}$$

$$R_L > V_L$$

Please connect a 50Ω resistor and an 100Ω resistor respectively between port a and port b as the load in the following circuit (same as the circuit in problem 1). Then, please turn on the source, measure the load voltage V_{ab} (the voltage between port a and port b) by multi-meter and fill in the table next page:

050°, 250°,

61 N- 300 N.

Load Resistance	50Ω	100Ω
V _{ab}	6.4874	0.7461.

Post-Lab Questions for (P2)

(1) Please calculate the theoretical values of the load voltage V_{ab} for the 50Ω and 100Ω loads. Then, please compare the experimental results with the theoretical ones.

Problem #3 Maximum Power Transfer

According to the maximum power transformation theorem, for a linear circuit with Thevenin voltage V_{TH} and equivalent resistance R_{TH} , the power transformed to the load will reaches its maximum if the load resistance $R_L = R_{TH}$ and the maximum power absorbed by the load is:

$$P_{max} = \frac{V_{TH}^2}{4R_{TH}}$$

In order to evaluate the maximum power transformation theorem, please connect a 200Ω (or 500Ω) rheostat between port a and port b in the schematic.

Please set your rheostat at its minimum resistance (about 0Ω) at first, use multi-meter to measure the load resistance (resistance of rheostat) R_L and the load voltage V_L . Then, please increase the resistance by 10Ω or 20Ω each time, measure R_L and V_L following the same procedure. Please record the data of R_L , V_L in the table and calculate the power transformed to the load P_L for each R_L .

Rheostat Resistance	Load Voltage	Power absorbed by load
R_L	$\mathbf{V_L}$	P_{L}
0Ω		0 W
(0 /	0.[3]/	0.00193
211	0,245 V	- 0,00300.
2,0,0	03240,	0.00350
40 V	0,4690,	Ο, οος ο φ

Sol	0,5020.	0,00504
6052	0.556V-	0.00515
701	0.6140.	0.00538
g on	0,667	0,00560
701	0,7080,	0.0056
1001	0,7491	0.00557
((0)	0.7841.	0.0076-1
	0.81411	0.005]?
1300	0,847, V.	0,005]
1401	0.876 V	0.00548
1501	08961	0.00535
No.	0. 21),	0.00526
()00	0.929V.	0.00507.
(Bor	0.7591	0.0051
1200	0.280	0.00507
200Ω	0.7771	0.00477,

Post-Lab Questions for (P3)

(1) Please calculate the theoretical values of the maximum power transferred to the load and the corresponding load resistance.

Prox =
$$\frac{\sqrt{2}}{4RTh} = \frac{1.5^{1}}{4x100} = .5.625x10^{3}$$

ι

(2) Please plot the curve of P_L and R_L . What is the maximum power transferred to the load and the corresponding load resistance based on the curve you obtained? Is it consistent with the expected?

when R=100s2, Pe number the maxim, about 5.6×10-3 w, which weets the expectation.