zadanie 1

a)

pc_sel wybierze sumator+4.

rd_sel wybierze wyjście ALU.

rd_we będzie miało stan wysoki.

alu_bsel wybierze wyjście pliku rejestrów RS2. alus_asel wybierze wyjście pliku rejestrów RS1.

alu_func wybierze odpowiedni kod operacji dodawania dla ALU.

mem_we będzie miało stan niski.

b)

Licznik instrukcji, Sumator+4, Pamięć kodu, Plik rejestrów, ALU.

c) Pamięć danych, Sumator(ten drugi), Porównanie do zera, Generator stałych

zadanie 2

a)

Pamięć danych

Rodzaj operacji	Odsetek instrukcji jeśli używa
OP	Nie używa
I (bez LOAD)	Nie używa
LOAD	25%
STORE	10%
BRANCH	Nie używa
JAL	Nie używa
U	Nie używa
Łącznie	35%

b) Pamięć instrukcji: 100%, gdyż każda instrukcja musi zostać zczytana z pamięci instrukcji.

c) ALU

Odsetek instrukcji jeśli używa
24%
20%
25%
10%
11%
Nie używa
8%
98%

d)

Generator stałych

Rodzaj operacji	Odsetek instrukcji jeśli używa
OP	Nie używa
I (bez LOAD)	20%
LOAD	25%
STORE	10%
BRANCH	11%
JAL	2%
U	8%
Łącznie	76%

e)

Jego zachowanie nie jest dobrze zdefiniowane dla takich sytuacji, może np. generować jakieś śmieci, gdyż jego wyjście i tak jest ignorowane w dalszej części układu.

zadanie 3

a)

Jeśli stan wysoki alu_bsel oznacza wybranie wyjścia pliku rejestrów, to niepoprawnie działać będą operacje z rodzaju OP i BRANCH.

W przeciwnym wypadku źle działać będą instrukcje OP-IMM, STORE, LOAD, JALR i AUIPC.

b)

Jeśli stan rd_we będzie zawsze niski to niepoprawnie będą działać instrukcje z rodzaju OP, OP-IMM, LOAD, JAL, JALR, LUI, AUIPC.

c)

Jeśli stan alu_zero będzie zawsze niski, niepoprawnie będą działać instrukcje z rodzaju BRANCH.

zadanie 5

Nowe elementy nie są potrzebne, do obliczenia adresu wykorzystamy ALU, do odczytu i

b)

Nie potrzebne są żadne modyfikacje.

zapisu - pamięć danych.

c)

Nie potrzebne są nowe połączenia.

d)

Nie trzeba, do wybrania odpowiedniego wejścia do ALU wystarczą nam sygnały alu_bsel i alu_asel, sygnał alu_func wybierze dodawanie, rd_sel wybierze wyjście pamięci danych, sygnałem rd_we zapewnimy zapisanie wartości pod wskazany rejestr. Sygnał mem_we ustawiamy na niski, a sygnał pc_sel powinien wybrać wyjście sumatora+4.

zadanie 6

a) Będzie potrzebny nowy multiplekser podpięty w miejscu obecnego AD (późniejszego AD1).

b)

Plik rejestrów musiałby zostać rozszerzony o dodatkowy port do zapisu, w konsekwencji miałby on wejścia AS1, AS2, AD1, RD1, WE1, AD2, RD2, WE2 i tak jak poprzednio dwa wyjścia RS1 i RS2. Multiplekser obecnie podłączony do wejścia RD(w przyszłości do RD1) musiałby zostać rozszerzony o dodatkowe wejście.

c) Do multipleksera przy wejściu AD1 podpięte powinny zostać bity [7:11] wyjścia pamięci instrukcji (obecne połączenie) oraz bity [15:19] (adres rs1). Do rozszerzonego multipleksera przy RD1 dodatkowo doprowadzone powinno być wyjście pliku rejestrów RS2. Do wejścia AD2 podpinamy bity [20:24] (adres rs2). Na koniec do wejścia RD2 podpinamy wyjście RS1.

d)

Potrzebny będzie sygnał sterujący dla nowego multipleksera (np. ad1_sel) oraz sygnał

sterujący zapisem drugiego portu do zapisu (np. rd_we2).