1-5、联结词的完备集

概念:

真值函数,异或,条件否定,与非,或非,联结词完备集

真值函数: 称 $F:\{0,1\}^n \to \{0,1\}$ 为n元真值函数.

 $\{0,1\}^n = \{00...0,00...1,...,11...1\}$,包含 2^n 个长为n的0,1符号串. 共有 2^{2^n} 个n元真值函数.

1元真值函数

p	$F_0^{(1)}$	$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$
0	0	0	1	1
1	0	1	0	1

2元真值函数

p	q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
p	\boldsymbol{q}	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
	<i>q</i> 0	$F_8^{(2)}$	$\frac{F_{9}^{(2)}}{1}$	$\frac{F_{10}^{(2)}}{1}$	$\frac{F_{11}^{(2)}}{1}$	$\frac{F_{12}^{(2)}}{1}$	$\frac{F_{13}^{(2)}}{1}$	$\frac{F_{14}^{(2)}}{1}$	$\frac{F_{15}^{(2)}}{1}$
				$F_{10}^{(2)} $		$F_{12}^{(2)}$ 1 1	$F_{13}^{(2)}$ 1 1	$rac{F_{14}^{(2)}}{1}$	
0	0	1	1	1	1	1	$F_{13}^{(2)}$ 1 1 0	$egin{array}{c} F_{14}^{(2)} \ \hline 1 \ 1 \ 1 \ 1 \ \end{array}$	1

公式与真值函数

任何一个含n个命题变项的命题公式A都对应惟一的一个n元真值函数 F, F 恰好为A的真值表.

等值的公式对应的真值函数相同.

例如: $p\rightarrow q$, $\neg p\lor q$ 都对应 $F_{13}^{(2)}$

异或
$$P \oplus Q \Leftrightarrow \neg (P \leftrightarrow Q)$$

条件否定
$$P \stackrel{c}{\rightarrow} Q \Leftrightarrow \neg (P \rightarrow Q)$$

注: 能构造多少联结词呢?

11个(二元以内)

联结词的完备集(Adequate Set of Connectives)

设C是联结词的集合,若对于任意一个合式公式均存在一个与之等价的公式,而后者只含有C中的联结词,则称C是联结词的完备集。

例如: (1) {¬, \land , \lor , \rightarrow , \leftrightarrow } 是联结词 的完备集。

证:由公式的定义可得。

(2) {¬, ∧, ∨} 是联结词的完备集。

证: 由范式存在定理可证。

联结词完备集

例: 以下都是联结词完备集

$$(1) S_1 = \{\neg, \land, \lor, \rightarrow\}$$

$$(1) S_1 = \{\neg, \land, \lor, \rightarrow\} \qquad (2) S_2 = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$$

$$(3) S_3 = {\neg, \land}$$

$$(4) S_4 = {\neg, \lor}$$

$$(5) S_5 = \{\neg, \rightarrow\}$$

证明: (1),(2) 在联结词完备集中加入新的联结词后仍为完备集。

- (3) $A \lor B \Leftrightarrow \neg(\neg A \land \neg B)$
- (4) $A \land B \Leftrightarrow \neg(\neg A \lor \neg B)$
- $(5) A \lor B \Leftrightarrow \neg A \rightarrow B$

联结词完备集

例: {↓}为联结词完备集.

证明: {¬, ∧, ∨}为完备集

$$\neg p \Leftrightarrow \neg p \land \neg p \Leftrightarrow \neg (p \lor p) \Leftrightarrow p \downarrow p$$

$$p \land q \Leftrightarrow \neg (\neg p \lor \neg q) \Leftrightarrow \neg p \downarrow \neg q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$$

$$p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \downarrow q) \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$

联结词完备集

 $\{\land,\lor,\to,\longleftrightarrow\}$ 不是联结词完备集, \bot 不能用它表示; 它的子集 $\{\land\},\{\lor\},\{\to\},\{\leftrightarrow\},\{\land,\lor\},\{\land,\lor,\to\}$ 等都不是。

总结

- 真值函数
- 异或
- 条件否定
- 与非
- 或非
- 联结词完备集