Evolution of Cooperation

Alex Joseph, Marc Domingo, Jaden Suh, Austin Simpson

What is the Prisoner's Dilemma?

- Two prisoners must choose between remaining silent or betraying the other
 - Cooperate (C) vs Defect (D)

- 4 possible outcomes to the game:
 - Both cooperate: 2 years in prison for both
 - o Both defect: 5 years in prison for both
 - 1 cooperate and 1 defect: Defector goes free, cooperator serves 10 years in prison

Prisoner B Prisoner A	Prisoner B stays silent (cooperates)	Prisoner B betrays (defects)
Prisoner A stays silent (cooperates)	Each serve 2 years	Prisoner A: 10 years Prisoner B: goes free
Prisoner A betrays (defects)	Prisoner A: goes free Prisoner B: 10 years	Each serve 5 years

- Rationally, cooperation makes no sense
 - Many human players choose to cooperate anyway

Why is it Interesting?

- Examines human biases towards cooperation
- Why do we trust each other even when it makes no logical sense to do so?
- When do the benefits of betrayal outweigh the negatives for humans?
- The Dark Knight (2008)

Literature Review

Regarding the Prisoner's Dilemma

Effective Choice in the Prisoner's Dilemma (Axelrod 1980)

- Social Psychology
 - The Prisoner's Dilemma encapsulates the struggle between individual and group rationality in humans
 - Individual Rationality of selfishness to be able to reap the most benefit
 - Group Rationality of mutual cooperation to benefit all actors
 - Applications of Iterative variations of the Prisoner's Dilemma to analyze the concept of "Effective Choice" in:
 - Relationships between conflicting entities (Axelrod used the US and Soviet Union)
 - The effects of Westernization in Central Africa
 - The difference in effects of learning using abstract vs concrete thinking styles

An Overview of the First Axelrod Tournament

Effective Choice in the Prisoner's Dilemma (Axelrod 1980)

- Tournament Details
 - 15 Submitted Strategies by economists, psychologists, sociologists, mathematicians, and political scientists
 - Tournament itself was styled as a Round Robin Competition, meaning that each strategy competed against each other at some point of the tournament
 - Each match between strategies were 200 rounds
 - Point Breakdown:
 - 3 points for Mutual Cooperation (<u>C</u>, <u>C</u>)
 - 1 point for Mutual Defection (<u>D</u>, <u>D</u>)
 - 5 points for a successful Defection (<u>D</u>, C)
 - 0 points for an unsuccessful Cooperation (D, **C**)

A Look Into Successful Strategies in the First Tournament

Effective Choice in the Prisoner's Dilemma (Axelrod 1980)

- Strategies that were the most successful in the Tournament were:
 - Nice in that they did not Defect (D) during the first turn or were not the first strategy to Defect (D) before the match ended
 - Effective when in a match with special strategies
 - DOWNING was a strategy that attempted to predict the opponent's move based on its own previous move
 - GRAASKAMP was a strategy that played Tit-For-Tat for the first 50 turns,
 Defects (D) once, and then attempts to determine whether it's playing against itself, Tit-For-Tat or some similar variant, or the Random strategy
 - Forgiving in that they did not excessively punish an opponent after the opponent Defects (D)
- Out of all of the strategies, the basic Tit-For-Tat strategy won the tournament, even against opponents who made variations to attempt to improve Tit-For-Tat
 - Strategy Cooperates (C) with the opponent until the opponent Defects (D).
 Tit-For-Tat then Defects (D) next turn and goes back to Cooperating (C) following turns

Observations from other Prisoners' Dilemma Strategy Papers

Probabilistic Tit-for-Tat Strategy vs Nash Equilibrium for Infinitely Repeating Games (Madhumidha et al. 2017)

- Nash Equilibrium concept that every player within a game has selected a strategy and cannot perform better by changing the strategy
 - When players obtain equal end results in a game or repeated game, Nash Equilibrium becomes less optimal
 - Does not provide conclusive results when multiple solutions to Nash Equilibria are found
- The Tit-for-Tat strategy is not optimal when "noise" caused by players deviating from their typical behavior due to mistakes and misconceptions exists

Observations from other Prisoners' Dilemma Strategy Papers (Continued)

No Strategy Can Win in the Repeated Prisoner's Dilemma: Linking Game Theory and Computer Simulations (García and Veelen 2018)

- Argues that cooperation is inherently unstable due to mutants and deviations
- Regardless of strategy, no equilibrium is fundamentally more stable than any other

Evolution of cooperation through cumulative reciprocity (Li et al. 2022)

- Traditional models of cooperation use strategies with restricted memory.
- Strategies where players only remember the last encounter they had are mathematically convenient, but they miss important aspects of human reciprocity, where defections can have lasting effects.

Design

Axelrod API

- Python library created by Dr. Vince Knight at Cardiff University (Wales, UK).
- Research tool for the iterated Prisoner's Dilemma.
 - o Includes strategies from literature and Axelrod's tournament.
- Generates reproducible results of iterative round robin tournaments.
- Features tools to model population dynamics with the tournaments.
 - Strategies that perform better reproduce more between iterations
 - Players are randomly removed between iterations.
 - Better performing strategies are more likely to "survive"
- Documentation with examples of the library's capabilities.
- Lack of intuitive output format and difficult to add custom strategies.

Project Scope

- Goal: Create a UI that makes the Axelrod API much easier to use for those without coding experience
 - Curated list of strategies with strategy explanations that remove the need to look at the algorithm
 - Tournament output that is less confusing and presented in a cleaner way
 - User control over various parameters like number of rounds, strategy selected, number of participants, etc.
 - Ability to code a custom strategy and add it to the game.
 - Allow user to run multiple tournaments back to back without restarting the program.
 - o Inclusion of "Advanced Mode" that expands the strategy list and adds more complex parameters for the user to manipulate, as well as more detailed output

Design Decisions

- Chose to use Python as our programming language
 - Originally had intended on using Java for its greater focus on object-oriented programming and classes, but switched focus to Python upon discovering the exhaustive Axelrod API
- Built off of the Axelrod API as a foundation
 - Originally had intended to create our own tournament program from scratch
 - Discovery of the API meant we had an opportunity to improve upon the large amount of work already done
- User Experience focused direction
 - Experimentation with the API revealed that it's clunky to use and difficult to understand for non-programmers
 - Streamlining the experience would allow for a greater range of access to researchers and enthusiasts

Workflow & Contributions

- Weekly agile structure used to adapt to project needs on a short-term basis
- Weekly meetings to check in on progress and alter direction/tasks
- Overall contributions:
 - Alex Project leader, ensured tasks were completed and kept project on track, assisted with output and program logic
 - Marc Implemented curated strategy list with explanations and assisted with program logic
 - Jaden Created logic surrounding input of user parameters and chose which parameters to make available
 - Austin Implemented the ability to add custom strategies and streamlined API output for readability

Algorithms Involved

- Algorithms classified by properties
 - Depth of memory
 - Randomization (stochasticity)
 - Strategies that are known to increase tournament run-time
- Tit-for-tat: Simple strategy with a memory depth of 1
 - Only looks at the opponent's last move
 - Strategy wasn't dominant in every match it played but scored well on average
 - Variations of Tit-for-tat: Tit-for-2-tats, 2-tits-for-tat, dynamic
- Custom strategies: Creatable by users
 - Chaotic Clairvoyant: Demonstrates higher memory depth usage.
 - FibTitForTat: Tit for Tat with random chance to defect based on fibonacci sequence.

Results & Future Development

- What do we have to show for it?
 - Much easier to use/simplified version of the Axelrod python API
 - Custom strategy implementation
- How can we continue to develop this project in the future?
 - Sleeker and further streamlined GUI
 - Custom strategy implementation that doesn't require scripting knowledge
 - Further simplifying the output for easier interpretation
 - Adding additional games, like the closed-bag exchange or the Guardian's Dilemma
 - Incorporation of randomized player evolution feature
 - Turning the tournament into a simple game that takes user input
 - Players input their moves each turn. See scores and which strategies their moves were most similar to

Questions?