Exercices tirés de l'examen partiel H2002

Question no. 1 (10 points)

Une source de tension v_s alimente trois éléments R, L, C connectés en parallèle.

Le courant i_C dans le condensateur est donné dans la figure suivante.

Déterminer et tracer en fonction du temps le courant i_R , la puissance p_R et l'énergie w_R dans la résistance R.

Question no. 2 (10 points)

Soit le circuit résistif suivant.

Calculer la tension v_{ab} en appliquant le principe de superposition.

Question no. 3 (10 points)

Soit le circuit suivant.

- a) Déterminer l'équivalent Thévenin de la partie gauche du circuit (bornes a-b).
- b) Utilisant le résultat de la partie a, calculer la tension v_{ab}.

Question no. 4 (10 points)

Soit le circuit suivant.

- a) Écrire directement sous forme matricielle les équations d'équilibre en utilisant la méthode des noeuds.
- b) Écrire directement sous forme matricielle les équations d'équilibre en utilisant la méthode des mailles.

Question no. 5 (10 points)

Soit le circuit suivant.

Calculer la tension v_2 en fonction de v_s .

Question no. 6 (10 points)

a) Décomposer la fonction $v_s(t)$ suivante en une somme de fonctions singulières.

b) Calculer la composante continue C_0 et les composantes harmoniques C_n de la fonction périodique $i_s(t)$ suivante.

Exprimer $i_s(t)$ sous la forme d'une somme de fonctions sinusoïdales.

$$\int e^{x} dx = e^{x}$$

$$\cos x \,=\, \frac{1}{2}[\,e^{jx}+e^{-jx}\,]$$

$$sin x = \frac{1}{2j} [e^{jx} - e^{-jx}]$$