Roots of Equations: Bracketing Methods

CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with bracketing methods for finding the root of a single nonlinear equation. Specific objectives and topics covered are

- Understanding what roots problems are and where they occur in engineering and science.
- Knowing how to determine a root graphically.
- Understanding the incremental search method and its shortcomings.
- Knowing how to solve a roots problem with the bisection method.
- Knowing how to estimate the error of bisection and why it differs from error estimates for other types of root location algorithms.
- Understanding false position and how it differs from bisection.

How to Solve?

$$ax^2 + bx + c = 0$$
 \rightarrow $x = \frac{-b \mp \sqrt{b^2 - 4ac}}{2a}$

$$ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f = 0 \quad \rightarrow x = ?$$

$$\sin x + x = 0 \quad \rightarrow x = ?$$

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh \left(\sqrt{\frac{gc_d}{m}} t \right)$$

$$t = 4$$

$$v = 36$$

$$g = 9.81$$

$$c_d = 0.25$$

$$m = ?$$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2} + \frac{\sin(\pi x)}{10} = 0$$

Techniques for Finding Roots

- Graphical Methods
- Bracketing Methods : $[x_l, x_u]$
- Open Methods : x₀

Graphical Methods

• Good : easy

• Bad : precision (used as initial point)

예제 5.1

Q. 자유낙하 4초 후의 속도를 36 m/s로 되게 하는 번지 점프하는 사람의 질량을 그래프적인 접근법으로 구하라.

(항력계수는 0.25 kg/m이고, 중력가속도는 9.81 m/s²이다.)


```
>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)-v

ans =

0.0456

>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)

ans =

36.0456
```

y = linspace(a,b) generates a row vector y of 100 points linearly spaced between and including a and b. y = linspace(a,b,n) generates a row vector y of n points linearly spaced between and including a and b. For n < 2, linspace returns b.

grid on adds major grid lines to the current axes.

Bracketing Methods (Or, two point methods for finding roots)

- Find roots between a lower bound $[x_{l_{j}} x_{l_{j}}]$
- Initial guess needed (incremental search).
- Always work if roots exist between the two limits.
- Converge slower than open methods

Conditions

- a) $f(x_1)^*f(x_{11}) > 0$, no root.
- b) $f(x_i) * f(x_{ij}) < 0$, one root.
- c) $f(x_l)^* f(x_u) > 0$, even number of roots.
- d) $f(x_l)^*f(x_u) < 0$, odd number of roots.

Two roots (might work for a while!!)

Discontinuous function (need special method)

• MANY-MANY roots. What do we do?

Incremental Search

- Goal : find x_l and x_u such that $f(x_l)*f(x_u)<0$
- Range of search must be decided.
- Large step size may miss some roots.
- Small step size increases computation time.

Example

- Cases where roots could be missed because the incremental length of the search procedure is too large.
- Note that the last root on the right is multiple and would be missed regardless of the increment length.

Example

- sin(10x) + cos(3x)
- 50 subintervals from [3,6]
 - by MATLAB incremental search
 - 5 subintervals to have opposite sign

```
3.2449, 3.3061
```

3.3061, 3.3673

3.7347, 3.7959

4.6531, 4.7143

5.6327, 5.6939

```
function xb = incsearch(func, xmin, xmax, ns)
```

ns = number of subintervals (default = 50)

MATLAB: inline

inline(expr) constructs an inline function object from expression contained in the string expr

Example (cont.)

- *sin(10x)+cos(3x)*
- 100 subintervals;
 - 9 subintervals to have opposite sign

```
3.2424, 3.2727
3.3636, 3.3939
3.7273, 3.7576
4.2121, 4.2424
4.2424, 4.2727
4.6970, 4.7273
5.1515, 5.1818
5.1818, 5.2121
5.6667, 5.6970
```

```
>> incsearch(inline('sin(10*x)+cos(3*x)'),3,6,100)
nb =
0
number of brackets:
9
ans =
3.2424    3.2727
3.3636    3.3939
3.7273    3.7576
4.2121    4.2424
4.2424    4.2727
4.6970    4.7273
5.1515    5.1818
5.1818    5.2121
5.6667    5.6970
```


The Bisection Method

- Iterative: every iteration reduces the bound by half.
- For the arbitrary equation of one variable, f(x)=0
- 1. Pick x_1 and x_2 such that they bound the root of interest, check if $f(x_1) \cdot f(x_2) < 0$
- 2. Estimate the root by evaluating $f(x_1 + x_u)/2$
- 3. Find the pair (3-1) If $f(x_i)*f[(x_i+x_u)/2]<0$, (root lies in the lower interval), then $x_u=(x_i+x_u)/2$ and go to step 2.

(3-2) If
$$f(x_i)^* f[(x_i + x_u)/2] > 0$$
, (root lies in the upper interval), then $x_i = [(x_i + x_u)/2]$, go to step 2.

- (3-3) If $f(x_i)^* f[(x_i + x_u)/2] = 0$, then root is $[(x_i + x_u)/2]$ and terminate.
- 4. Compare e_s with e_a (e_s : error bound (stopping condition))

근의 참값을 모르므로
$$|\epsilon_t|$$
를 이용할 수 없다.
근사 상대오차,
$$\left|\epsilon_a\right| = \left|\frac{x_r^{new} - x_r^{old}}{x_r^{new}}\right| 100\% < \epsilon_s$$

$$\frac{\left|x_{l} - \frac{x_{l} + x_{u}}{2}\right|}{\left|\frac{x_{l} + x_{u}}{2}\right|} or \frac{\left|x_{u} - \frac{x_{l} + x_{u}}{2}\right|}{\left|\frac{x_{l} + x_{u}}{2}\right|}$$

5. If $e_a < e_{s_i}$ stop; otherwise repeat the process.

Evaluation of Method

Pros

- Easy
- Always find root
- Number of iterations required to attain an absolute error can be computed a priori.

 $n=1+\log_2 \frac{\Delta x^0}{E_{a,d}}$ Δx^0 : initial bound $E_{a,d}$: desired E_a

Cons

- Slow
- Must know a and b that bound root
- May multiple roots
- No account is taken of $f(x_{ij})$ and $f(x_{ij})$,
 - if $f(x_i)$ is closer to zero, it is likely that root is closer to x_i .

How Many Iterations will It Take?

- Length of the first Interval : $L_0 = b a$
 - After 1 iteration : $L_1 = L_0/2$
 - After 2 iterations : $L_2 = L_0/4$
 - After k iterations : $L_k = L_0/2^k$
- If $L_o = 2$ and the absolute magnitude of the error (L_k) is 10^{-4}

how many iterations will you have to do to get the required accuracy in the solution?

$$10^{-4} = \frac{2}{2^k} \to 2^k = 2 \times 10^4 \to k \cong 14.3 = 15$$

$$L_k/x_k = \varepsilon_a \rightarrow L_k = (\varepsilon_a)(x_k) = 10^{-4}$$

$$n=1+\log_2 \frac{\Delta x^0}{E_{a,d}}$$

 Δx^0 : initial bound $E_{a,d}$: desired E_a

```
function root = bisection(func,xl,xu,es,maxit)
% bisection(func,xl,xu,es,maxit):
    uses bisection method to find the root of a function
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = (optional) stopping criterion (%)
   maxit = (optional) maximum allowable iterations
% output:
    root = real root
if func(x1)*func(xu)>0 %if quesses do not bracket a sign
 error('no bracket') %change, display an error message
                       %and terminate
  return
end
% if necessary, assign default values
if nargin<5, maxit = 50; end %if maxit blank set to 50
if narqin<4, es = 0.001; end %if es blank set to 0.001
% bisection
iter = 0;
xr = xl:
while (1)
  xrold = xr;
 xr = (xl + xu)/2;
 iter = iter + 1;
  if xr \sim= 0, ea = abs((xr - xrold)/xr) * 100; end
  test = func(x1) *func(xr);
  if test < 0
   xu = xr;
  elseif test > 0
    xl = xr;
  else
    ea = 0;
  end
 if ea <= es | iter >= maxit, break, end
end
root = xr;
```

bisection('func', xl, xu, es, maxit)

```
>> function y = func(x)
y = sin(x); % save as func.m
```

```
Command Window
File Edit View Web Window Help
 >> bisection('func1', 50, 200, 0.001, 50)
    1 125
      162.5000
    3 143.7500
    4 134.3750
    5 139.0625
    6 141.4063
    7 142.5781
       142.7361
       142.7372
 ans =
  142.7372
```

bisection(inline('sin(10*x)+cos(3*x)'), 3.2, 3.3, 0.0001, 50)

A	В	С	D	E	F	G	Н
						m=	68.1
	gn	2 Г	7 1	T		9=	9.8
1)	_ 8"	_ 11 _	$e^{-(c/c)}$	m)t		t=	10
		Ľ	C	5		v=	40
-	C	1					
-	C						
	What is th	e value of c					

	xlow	xhigh	XF	flow	fhigh	f(xr)	ea(%)	et(%)
1	12	16	14	6.06694	-2.2688	1,5687		5.2787
2	14	16	15	1.5687	-2.2688	-0.4248	6.66667	1.4871
3	14	15	14.5	1.5687	-0.4248	0.55232	3.44828	1.8958
4	14.5	15	14.75	0.55232	-0.4248	0.05895	1.69492	0.20435
5	14.75	15	14.875	0.05895	-0.4248	-0.1841	0.84034	0.64137
6	14.75	14.875	14.8125	0.05895	-0.1841	-0.0629	0.42194	0.2185
7	14.75	14.8125	14.7813	0.05895	-0.0629	-0.002	0.21142	0.00708
8	14.75	14.7813	14.7656	0.05895	-0.002	0.02844	0.10582	0.09864
9	14.7656	14.7813	14.7734	0.02844	-0.002	0.01319	0.05288	0.04578
10	14.7734	14.7813	14.7773	0.01319	-0.002	0.00558	0.02643	0.01938
11	14.7773	14.7813	14.7793	0.00558	-0.002	0.00177	0.01322	0.00614
12	14.7793	14.7813	14.7803	0.00177	-0.002	-0.0001	0.00661	0.00047
13	14.7793	14.7803	14.7798	0.00177	-0.0001	0.00082	0.0033	0.00283
14	14.7798	14.7803	14.78	0.00082	-0.0001	0.00034	0.00165	0.00118
15	14.78	14.7803	14.7802	0.00034	-0.0001	0.0001	0.00083	0.00038
16	14.7802	14.7803	14.7802	0.0001	-0.0001	-2E-05	0.00041	5.8E-05
17	14.7802	14.7802	14.7802	0.0001	-2E-05	4.3E-05	0.00021	0.00015
18	14.7802	14.7802	14.7802	4.3E-05	-2E-05	1.3E-05	0.0001	4.5E-0
19	14.7802	14.7802	14.7802	1.3E-05	-2E-05	-2E-06	5.2E-05	6.4E-06
20	14.7802	14.7802	14.7802	1.3E-05	-2E-06	5.6E-06	2.6E-05	1.9E-0
21	14.7802	14.7802	14.7802	5.6E-06	-2E-06	1.9E-06	1.3E-05	6.5E-06
22	14.7802	14.7802	14.7802	1.9E-06	-2E-06	2.4E-08	6.5E-06	8.5E-08
23	14.7802	14.7802	14.7802	2.4E-08	-2E-06	-9E-07	3.2E-06	3.1E-0
24	14.7802	14.7802	14,7802	2.4E-08	-9E-07	-4E-07	1.6E-06	1.5E-0
25	14.7802	14.7802	14.7802	2.4E-08	-4E-07	-2E-07	8.1E-07	7.2E-0
26	14.7802	14.7802	14.7802	2.4E-08	-2E-07	-9E-08	4E-07	3.2E-07
27	14.7802	14.7802	14.7802	2.4E-08	-9E-08	-3E-08	2E-07	1.2E-07
28	14.7802	14.7802	14.7802	2.4E-08	-3E-08	-5E-09	1E-07	1.6E-08
29	14.7802	14.7802	14.7802	2.4E-08	-5E-09	9.6E-09	5E-08	3.5E-08
30	14.7802	14.7802	14.7802	9.6E-09	-5E-09	2.4E-09	2.5E-08	9.5E-05
31	14.7802	14.7802	14.7802	2.4E-09	-5E-09	-1E-09	1.3E-08	3.2E-09
32	14.7802	14.7802	14.7802	2.4E-09	-1E-09	5.4E-10	6.3E-09	3.2E-09
33	14.7802	14.7802	14.7802	5.4E-10	-1E-09	-4E-10	3.2E-09	(

False Position Method

- Similar to bisection but determine the next bound by line equation.
 - Use more information
- Algorithm: repeat the following

$$y - f(b_k) = \frac{f(b_k) - f(a_k)}{b_k - a_k} (x - b_k).$$

We now choose c_k to be the root of this line, so c is chosen such that

$$f(b_k) + \frac{f(b_k) - f(a_k)}{b_k - a_k} (c_k - b_k) = 0.$$

Solving this equation gives the above equation for c_k .

$$c_k = \frac{f(b_k)a_k - f(a_k)b_k}{f(b_k) - f(a_k)}$$

False Position (cont.)

- Usually converge faster than bisection
 - but not always.
 - Example: $f(x) = x^{10} 1$

Bisection과 False position 을 사용해서 x=0과 1.3 사이에서 $f(x)=x^{10}-1$ 의 근을 구하라.

Bisection

반복	x_l	\mathbf{x}_{u}	X_r	ε_a (%)	$\varepsilon_t(\%)$
1	0	1.3	0.65	100.0	35.0
2	0.65	1.3	0.975	33.3	2.5
3	0.975	1.3	1.1375	14.3	13.8
4	0.975	1.1375	1.05625	7.7	5.6
5	0.975	1.05625	1.015625	4.0	1.6

False position

반복	x_l	\boldsymbol{x}_{u}	X_r	ε_a (%)	$\varepsilon_t(\%)$
1	0	1.3	0.09430		90.6
2	0.09430	1.3	0.18176	48.1	81.8
3	0.18176	1.3	0.26287	30.9	73.7
4	0.26287	1.3	0.33811	22.3	66.2
5	0.33811	1.3	0.40788	17.1	59.2

Roots of Equations: Open Methods

CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with open methods for finding the root of a single nonlinear equation. Specific objectives and topics covered are

- Recognizing the difference between bracketing and open methods for root location.
- Understanding the fixed-point iteration method and how you can evaluate its convergence characteristics.
- Knowing how to solve a roots problem with the Newton-Raphson method and appreciating the concept of quadratic convergence.
- Knowing how to implement both the secant and the modified secant methods.
- Knowing how to use MATLAB's fzero function to estimate roots.
- Learning how to manipulate and determine the roots of polynomials with MATLAB.

Open Methods

- One initial guess.
- Convergence not guaranteed.
- Usually faster than bracketing methods.

Open Methods

- Simple Fixed-Point Iteration
- Newton-Raphson Method
- Secant Methods
- Modified Secant Method

Simple Fixed-point Iteration

 Rearrange the function so that x is on the left side of the equation:

$$f(x) = 0 \rightarrow g(x) = x$$

 $x_k = g(x_{k-1})$ x_o given, $k = 1, 2, ...$

- gent"
- Bracketing methods are "convergent".
- Fixed-point methods may sometime "diverge", depending on the stating point (initial guess) and how the function behaves.

Example

$$f(x) = x^2 - x - 2$$

 $x \ge 0$

$$g(x) = x^2 - 2$$

Or

$$g(x) = \sqrt{x+2}$$

or

$$g(x) = 1 + \frac{2}{x}$$

:

Henon Map Melody Generator

black = fixed point ending or goes out of bounds
red = 1 point cycle
orange=3 point cycle
yellore=4 point cycle
green = 5 point cycle
blue = 6 point cycle
indigo=7-11 point cycle
violet = 11-20 point cycle
white = no repetition (through 10,000 iterations)

the root of $f(x) = e^{-x} - x$.

- Two alternative graphical methods for determining the root
 - Root at the point where it crosses the x axis;
 - Root at the intersection of the component functions.
 - x=g(x) can be expressed as a pair of equations: $y_1=x$ and $y_2=g(x)$
 - Plot them separately.

i	x_i	$ \varepsilon_a $, %	$ \varepsilon_t $, %	$ arepsilon_t _i/ arepsilon_t _{i-1}$
0	0.0000		100.000	
9	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533
5	0.6062	17.447	6.894	0.586
6	0.5454	11.157	3.835	0.556
7	0.5796	5.903	2.199	0.573
8	0.5601	3.481	1.239	0.564
9	0.5711	1.931	0.705	0.569
10	0.5649	1.109	0.399	0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Convergence

- (a) and (b) : convergence
- (c) and (d) : divergence
- (a) and (c) : monotone
- (b) and (c) : oscillating
- Convergence occurs when

 When the method converges, the error is roughly proportional to or less than the error of the previous step, therefore it is called "linearly convergent."

Newton-Raphson Method

- Most widely used method.
- Based on Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i) \Delta x + f''(x_i) \frac{\Delta x^2}{2!} + O\Delta x^3$$
The root is the value of x_{i+1} when $f(x_{i+1}) = 0$
Rearranging,
$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson Method

• Determine the next guess by the intersection of the line tangential to the current guess and the *xaxis*.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

```
function root = newtraph(func,dfunc,xr,es,maxit)
% newtraph (func, dfunc, xquess, es, maxit):
    uses Newton-Raphson method to find root of a function
% input:
   func = name of function
% dfunc = name of derivative of function
% xquess = initial guess
% es = (optional) stopping criterion (%)
   maxit = (optional) maximum allowable iterations
% output:
   root = real root
% if necessary, assign default values
if nargin<5, maxit = 50; end %if maxit blank set to 50
if nargin<4, es = 0.001; end %if es blank set to 0.001
% Newton-Raphson
iter = 0;
while (1)
  xrold = xr;
 xr = xr - func(xr)/dfunc(xr);
  iter = iter + 1:
  if xr \sim= 0, ea = abs((xr - xrold)/xr) * 100; end
  if ea <= es | iter >= maxit, break, end
end
root = xr;
```

Find the root of $f(x) = e^{-x} - x$ (initial guess $x_0 = 0$)

$$f'(x) = -e^{-x} - 1$$

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

i	x_i	$ \varepsilon_t $, %
0	0	100
]	0.500000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	< 10 ⁻⁸

Quadratic convergence

$$E_{t,i+1} = \frac{g''(\xi)}{2} E_{t,i}^2, \ g(\xi) = x - \frac{f(x)}{f'(x)}$$

May Slow Convergence

• Find the root of $f(x) = x^{10} - 1$ (initial guess $x_0 = 0.5$)

i	x_i	$ \varepsilon_a $, %
0	0.5	
]	51.65	99.032
2	46.485	11.111
3 4	41.8365	11.111
4	37.65285	11.111
•		
•		
40	1.002316	2.130
41	1.000024	0.229
42		0.002

Poor Convergence Examples

Secant Methods

- A slight variation of Newton-Raphson method for functions whose derivatives are difficult to evaluate.
 - Derivative can be approximated by a backward finite divided difference.
 - Need two initial points

$$\frac{1}{f'(x_i)} \cong \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} \qquad i = 1, 2, 3, \dots$$

- Requires two initial estimates of x
- However, because f(x) is not required to change signs between estimates, it is not classified as a "bracketing" method.
- The secant method has the same properties as Newton's method.
 Convergence is not guaranteed for all x_o, f(x).

Modified Secant Methods

- Same as Secant Methods except replacing the derivative with approximation
 - Need judicious choice of δ

$$f'(x_i) \approx \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

Repeat

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

Convergence Criteria

- Simple Fixed-Point Iteration
 - initial value falls in a region that

$$|g'(x)| \le 1$$

- Newton Raphson Method
 - initial value falls in a region that

SOL	UT	ON
14	1.78	02

ij	Secant			
	С	f(c)	ea(%)	et(%)
1	5	29.42323		66.17097
2	8	17.65343	60	45.87355
3	12.49968	4.873897	56.24594	15,42962
4	14.21578	1.125146	13.72916	3.818813
5	14.73084	0.096416	3.623218	0.333959
6	14.77912	0.002118	0.327705	0.007348
7	14.7802	4.09E-06	0.007335	1.42E-05
8	14.7802	1.74E-10	1.42E-05	1.87E-09

	Newton Raphson		ton Raphson		
	С	f(c)	f'(c)	ea(%)	et(%)
1	10	11.3691	-2.8801		32.34193
2	13.94747	1.677831	-2.08193	39.47472	5.634103
3	14.75337	0.052361	-1.95365	5.778123	0.181526
4	14.78018	5.49E-05	-1.94955	0.181665	0.000191
5	14.7802	6.06E-11	-1.94955	0.000191	1.47E-09
6	14.7802	0	-1.94955	2.1E-10	1.26E-09
7	14.7802	0	-1.94955	0	1.26E-09
8	14.7802	0	-1.94955	0	1.26E-09

MATLAB's fzero Function

- Provides the best qualities of both bracketing methods and open methods.
 - Using an initial guess:

```
x = fzero(function, x0)
[x, fx] = fzero(function, x0)
```

- *function* is the name of the function being evaluated
- x0 is the initial guess
- x is the location of the root
- fx is the function evaluated at that root
- Using an initial bracket:

```
x = fzero(function, [x0 x1])

[x, fx] = fzero(function, [x0 x1])
```

- As above, except x0 and x1 are guesses that must bracket a sign change
 - x = fzero(inline('x^2-9'), -4) % inline : Matlab 함수정의
 - $x = fzero(inline('x^2-9'), [0 4])$

fzero Options

- Options may be passed to fzero as a third input argument
 - options = optimset('par1', val1, 'par2', val2,...)
 - parn is the name of the parameter to be set
 - valn is the value to which to set that parameter
 - The parameters commonly used with fzero are:
 - display: when set to 'iter' displays a detailed record of all the iterations
 - tolx: a positive scalar that sets a termination tolerance on x.
- options = optimset('display', 'iter');
- $[x, fx] = fzero(@(x) x^10-1, 0.5, options)$
 - Uses fzero to find roots of $f(x) = x^{10}-1$ starting with an initial guess of x=0.5.
 - MATLAB reports x=1, fx=0 after 35 function counts

Anonymous functions : a quick means of creating functions without having to store to a file each time. construct either at the MATLAB command line or in any function or script. The syntax for creating an anonymous function is

```
fhandle = @(arglist) expr
```

Polynomials

- MATLAB has a built in program called roots to determine all the roots of a polynomial - including imaginary and complex ones.
- x = roots(c)
 - x is a column vector containing the roots
 - c is a row vector containing the polynomial coefficients
- Example:
 - Find the roots of

$$f(x)=x^5-3.5x^4+2.75x^3+2.125x^2-3.875x+1.25$$

- x = roots([1 -3.5 2.75 2.125 -3.875 1.25])

Polynomials (cont)

- MATLAB's poly function can be used to determine polynomial coefficients if roots are given:
 - b = poly([0.5 -1])
 - Finds f(x) where f(x)=0 for x=0.5 and x=-1 (roots)
 - MATLAB reports b = [1.000 0.5000 -0.5000]
 - This corresponds to $f(x)=x^2+0.5x-0.5$
- MATLAB's polyval function can evaluate a polynomial at one or more points:
 - a = [1 -3.5 2.75 2.125 -3.875 1.25];
 - If used as coefficients of a polynomial, this corresponds to $f(x)=x^5-3.5x^4+2.75x^3+2.125x^2-3.875x+1.25$
 - polyval(a, 1)
 - This calculates f(1), which MATLAB reports as -0.2500

Chapter ends...

MATLAB Lab

Chapter Problems Report

