MECH467 Prelab #3

Ratthamnoon Prakitpong #63205165

Fig A1: X and Y position of sample trajectory

A2.

Fig A2: Displacement, feedrate, and tangential acceleration of sample trajectory

Fig A3: Axis position, velocity, and acceleration of sample trajectory

Fig B1: Lead-Lag-Integrator of X and Y axis motors, for LBW and HBW

The parameters of LLI controllers are written in the plot. They can be used in the equations like shown here:

Lead-Lag =
$$K \frac{1 + \alpha Ts}{1 + Ts}$$

Integrator = $\frac{K_i + s}{s}$

Fig B2.1: Open loop system of X axis with LBW and HBW controllers, in z domain

Fig B2.2: Close loop system of X axis with LBW and HBE controllers, in s domain

ВЗ.					
System	Domain	Bandwidth(rad/s) Zero	Pole	RiseTime(s)	Overshoot(%)
LBW-X	z	67.6374 [-1;1;1]	[1;1+0.0026i;1-0.0026i;0.96]	0.0259	23.0245
LBW-X	S	67.4119 [-34;-13]	[-4.3e+02;-24+26i;-24-26i;-14]	0.025995	22.9486
LBW-Y	Z	90.1982 [-1;1;1]	[1;1+0.0012i;1-0.0012i;0.96]	0.0202	13.9894
LBW-Y	s	89.8381 [-34;-13]	[-4e+02;-43+13i;-43-13i;-16]	0.020406	13.949
HBW-X	z	40.4458 [-1;1;0.99]	[1+0.0025i;1-0.0025i;1;0.91]	0.041	67.1054
HBW-X	S	40.4492 [-67;-25]	[-9.3e+02;-23;-3.4+25i;-3.4-25i]	0.04174	66.9174
HBW-Y	Z	55.572 [-1;1;0.99]	[1+0.0032i;1-0.0032i;1;0.91]	0.0305	47.9008
HBW-Y	S	55.5764 [-67;-25]	[-9.2e+02;-9.9+32i;-9.9-32i;-28]	0.030648	47.6812

Table B3: Bandwidth, zeros, poles, rise time, and overshoot for each combination of bandwidth, axis, and domain in a closed loop system

Fig C1.1: Simulink model

Fig C1.2: Input and simulated toolpath

Controllers has some issues at the point where the circle starts due to overshoot of P2-to-P3 path, and consequently causes misalignment in the rest of the tool path. To reduce error, it is recommended that gain is increased. Likely that the rule-of-thumb used to get Ki (Ki = wc / 10) resulted in Ki that is not large enough to eliminate steady state error.

Fig C2: Custom toolpath

The toolpath takes multiple cuts around the circles to ensure nicer finish.

Appendix:

- 1. Part A Matlab code
- 2. Part B Matlab code
- 3. Part C Matlab code
- 4. myTraj.m (attached separately to this pdf)