AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) An optical information recording medium, comprising:
- a <u>first</u> record layer which is formed on a substrate and <u>eause-indicates</u> a reversible change between an amorphous phase and a crystalline phase <u>when irradiated</u> by <u>a laser beam-irradiation</u>, the change being optically detectable;
- a first dielectric layer which is formed between the <u>first</u> record layer and the substrate, and mainly composed of niobium oxide-or silicon dioxide; and
- a second dielectric layer which is formed between the <u>first</u> record layer and the first dielectric layer, and mainly composed of titanium oxide.
- 2. (Original) The optical information recording medium according to claim 1, wherein the second dielectric layer contains 51 mol% or more of titanium oxide.
- 3. (Original) The optical information recording medium according to claim 1, wherein the second dielectric layer has a thickness in the range of 10 to 40 nm.
- 4. (Currently Amended) The optical information recording medium according to claim 1, <u>further comprising:</u>wherein a second record layer is provided on the opposite side to the record layer from the substrate.
- a first information layer having the first record layer, the first dielectric layer and the second dielectric layer; and
 - a second information layer,
 - wherein the first information layer is provided on the second information layer.
- 5. (Currently Amended) The optical information recording medium according to claim 1, wherein a reflection layer is provided between the second dielectric layer and the <u>first</u> record layer.

6. (Currently Amended) A method for manufacturing an optical information recording medium, comprising the steps of:

forming a first dielectric layer mainly composed of niobium oxide or silicon dioxide on a substrate;

forming a second dielectric layer mainly composed of titanium oxide on the first dielectric layer formed; and

forming a <u>first</u> record layer on the second dielectric layer formed, on which a reversible and optically detectable change <u>ean-may</u> be made <u>to be-between</u> an amorphous phase and a crystalline phase <u>when irradiated</u> by <u>a laser beam-irradiation</u>.

- 7. (Original) The method for manufacturing an optical information recording medium according to claim 6, wherein the second dielectric layer contains not less than 51 mol% of titanium oxide.
- 8. (Currently Amended) The method for manufacturing an optical information recording medium according to claim 6, wherein the second dielectric layer is formed in a thickness of 10 to 40 nm-as a transmittance adjustment layer and acts to adjust transmittance.
- 9. (Original) The method for manufacturing an optical information recording medium according to claim 6, wherein when the first dielectric layer, the second dielectric layer and the record layer are formed on a substrate, water and oxygen are removed from the substrate before the formation of the first dielectric layer or the second dielectric layer.

10. (Cancelled)

11. (Currently Amended) The method for manufacturing an optical information recording medium according to claim 6, comprising a step of forming a reflection layer between the second dielectric layer and the <u>first</u> record layer.