Machine Learning model for gas-liquid interface reconstruction in CFD numerical simulations with unstructured grid

ML4CFD - DATAIA 2020

Tamon NAKANO¹, Michele Alessandro BUCCI¹, Jean-Marc GRATIEN², Thibault FANEY²

¹ INRIA Saclay, Équipe-projet TAU

² IFPEN, Direction Sciences et Technologie du numérique

Background

Static mixer*

- Multiphase flow (ex. gas-liquid phase):
 - pipeline, cooling system, mixer
- Numerical method is an effective approach
- The Volume of Fluid (VoF) method is widely used to model a free-surface
- The VoF reconstructs the surface (i.e., normal, location, curvature) from the volume fraction

Free surface

Navier - Stokes in multiphase flow

Additional terms in the Navier-Stokes equations to deal with multiphase flows:

Momentum equation $\frac{\partial
ho \mathbf{U}}{\partial t} + \nabla \cdot (
ho \mathbf{U} \mathbf{U}) = -\nabla p +
ho \mathbf{g} + \nabla \cdot (\mu \nabla \mathbf{U}) +
ho \mathbf{S} + \sigma \kappa \hat{\mathbf{n}}_S \delta(\mathbf{x} - \mathbf{x}_s)$ Advection Gravity Extra forces

Continuity equation $rac{\partial
ho}{\partial t} +
abla \cdot (
ho \mathbf{U}) = 0$

Surface tension force

The surface tension depends on **local geometrical features** of the interface:

interface

Discretization & Reconstruction

Discretization

Reconstruction

Volume fraction, pressure, velocity are stocked

Geometrical information (normal, curvature etc.) is lost Several methods of reconstruction (VoF, Level set)

Reconstruction by the VoF

The VoF is **accurate** (good at mass conservation) and performs well on **structured grids**.

State of art and limitations

- The bottlenecks of the VoF
 - High computation cost
 - Bad compatibility with unstructured grids (e.g. instabilities and residual currents)
- Neural network approach to reduce the cost
 - Qi et al.(2018): Curvature estimation on 2D surface with Neural Networks (NNs)
 - Patel et al.(2019): Curvature estimation on 3D surface with NNs. Their approach outer-formed the conventional methods

structured grid

unstructured grid

State of art and limitations

- Patel et al.(2019): Multi Layer Perceptron (MLP), emplayable on structured grids with constant discretization.
- Svyetlichnyy et al.(2017): MLP, estimate normal direction on 2D structured grid

	Structured grid	Unstructured grid	Other remarks
VoF	Good	Instability	Expensive
NN	Good	Not available	Less expensive

For industrial cases with complex geometry, unstructured grids are usually employed

Objective

- We propose a machine learning-based method which is accurate enough to replace conventional reconstruction methods, and is less computational-demanding.
- To that end, we study the use of Graph Neural Network architectures to recover interface properties (e.g., normal vector, curvature, face center, etc.) from the discretized concentration field.

Graph Neural Network (GNN)

GNN can handle a dataset based on graph (*i.e.* nodes and connections between nodes)

GNNs input:

- Node features: volume fraction α and vertices coordinates for each mesh element
- Edges: element connections

and predict the labels (normal, curvature etc.) on a new (unseen) features

We employ SAGEConv proposed by Hamilton et al.(2017)*

Message passing in SAGEConv

- 1) mean $j \in \mathcal{N}(i)$ \mathbf{x}_j
- 2) $\mathbf{W}_2 \cdot \text{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$
- 3) $\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \operatorname{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$
- 4) $\sigma\left(\mathbf{x}_{i}' = \mathbf{W}_{1}\mathbf{x}_{i} + \mathbf{W}_{2} \cdot \operatorname{mean}_{j \in \mathcal{N}(i)}\mathbf{x}_{j}\right)$

Synthetic dataset

Patel et al. used spherical surfaces

- Larger error at saddle points
- A paraboloid contains this geometry

A paraboloid is defined by

$$\frac{x^2}{2R_1} + \frac{y^2}{2R_2} = z$$

 R_1, R_2 are the radius on the two parabola at the center which is randomly chosen in space

Error on the prediction by ML by Patel et al.(2019)

Distribution in the dataset

Normalized histogram of R₁ and R₂

Normalized histogram of $rot_{x,y,z}$

- $(rot_x, rot_y, rot_z) = \cos^{-1}(2u_2 1), \pi u_2, 2\pi u_2$ (uniform rotation in 3D)
- Alpha distribution is uncontrollable in advance => quasi-uniform is generated

=> A non-biased dataset has been then generated

Normal (1k graphs displayed for the simplicity)

Alpha

Architecture

skip connection pood (128)(256)28) 256) 8 Input graph **Global mean** Input (64, Linear (256, Linear (256, Output: SAGEConv SAGEConv ELU ELU ELU Coordinate of vertices Normalize Linear Adjacency matrix normal vector Alpha

Training

- 100k graphs: each graph has 1 label and corresponding features
- Train/Validation ratio: 8:2
- Variable learning rate (min.1e-6)
- Adam optimiser weight decay: 0.0001
- Loss: L1,

$$Loss = \sum_{i=0}^{n} |y_{true} - y_{pred}| + \lambda \sum_{i=0}^{n} w_i$$
$$\lambda = 0.0001$$

The loss at 500th epoch

- Training: 1.30e-02

- Validation: 1.34e-02

Generalization

Predict the normal on a **new surface** different from the paraboloid for the training:

$$f(x,y) = 0.3\sin(3x)\cos(3y)$$

 $(R/\Delta x)_{max}=8.33$ (a bit smaller than the covering range)

$$(R/\Delta x)_{training} = \pm [10, 1000]$$

Sur Strong and included in the second in the

Generalization

Error on $||N_{label} - N_{pred}|| \approx N_{label} \cdot N_{pred}$

- Average error: 4.14e-2
- Uniform, no dependence on the geometry
- Smooth distribution, no outlier

Normalized histogram of the error

Predicted surface

error 0.0500

0.0375

0.0250

0.0125 0.00

Analysis on the error

Normalized histogram on the error on different ranges of Alpha

- Larger error at the extreme values of Alpha
- More samples at the extreme Alpha in the sinusoidal surface case
- Possible approach:
 Design an ad-hoc
 architecture to improve the
 prediction on the extreme
 Alpha values

Conclusions & Perspectives

Conclusion

- Graph Neural Network can be an alternative to the conventional surface reconstruction methods in terms of accuracy
- It is more stable than the standard VoF

Perspectives

- 1. Increase the amount of data to improve the accuracy of the model
- 2. Improve the prediction at the extreme value of Alpha
- 3. Prediction on the curvature and the center
- 4. Treatment of boundary conditions
- 5. Employ the model in a CFD code (i.e. OpenFOAM)
- 6. Assessment of time performance of the model

Analysis on error

Smallest error

Largest error

L1 error in norm 0.000604

