2014年 臺灣資料分析競賽 預測房屋價格模型之分析 組別名稱:62531

摘要

近年來政府建立了實價登錄系統,而每個人皆可取得實價登錄系統之資料, 而此份資料與實價登錄資料相類似,我們希冀藉由此份分析可應用於實價登錄系 統之資料上,並提供對於欲購買住宅、商用住宅之消費者提供一個可預測欲購建 物之每平方公尺單價。

對於樣本的選擇,我們選定只有建物單價之資料做為我們主要的分析目標,希望透過線性模型建立房價預測模型以供購屋者參考。我們使用了兩種估計方式 OLS 與 group lasso 進行估計,並以 AIC 與 ten-fold CV 進行模型評估,結果顯示在差不多好的預測能力下,group lasso 展現了較佳的稀疏性,且模型估計結果希望能用來幫助評估影響房價的因素。

目錄

摘要	2
目錄	
資料整理及變數說明	
Model-free graphical data analysis	
分析過程與模型建立	
模型	5
結論	12
附錄:R 程式碼	12

資料整理及變數說明

原始資料共有 682724 筆,變數共有 28 個,我們挑選或經過轉換後,變數剩下 17 個,我們設定目標變數為單價(元/平方公尺)。此份報告目的為找出影響房價 之因素,進而建立房價預測模型以供購屋者參考。因此,我們剔除下列變數,茲 建說明如下:

 土地區段位置/建物區段門牌:此項變數過於詳細,以「縣市」此變數描述即可。(註: 「縣市」為一新轉換之變數,見下面說明。)

- 主要用途:與變數「使用分區或編定」類似,因此擇「使用分區或編定」作為解釋 變數。
- 3. 移轉層次:變數目的不清且填寫規格未統一。
- 4. 非都市土地使用分區:所提供的資訊太少。
- 5. 非都市土地使用地:所提供的資訊太少。
- 6. 總價(元):由於總價與坪數大小有關,故考慮以「單價(元/平方公尺)」此項變數描述。
- 7. 車位類別:此處我們僅考慮有無車位。
- 8. 車位總價(元):與報告目的無關。
- 9. 因為「建築完成年月」遺失值的比例過高,因此,我們不考此變數。

其中「交易筆棟數」、「建築完成年月」及「鄉鎮市區」皆做下列之調整:

- 1. 「交易筆棟數」利用 R 的程式將此變數分割為 3 個新變數,分別為該筆交易的土地數目、建物數目及車位數,例如:若交易筆棟數為土地 9 建物 1 車位 0,則轉為土地數目 9、建物數目 1 以及車位數目 0 等三個變數。
- 2. 交易年月以民國1年1月做基準設定為1,例如:若「交易年月」為99年6月 月則轉成1194。
- 3. 將所有鄉鎮做合併,僅以「縣市」做為地區之劃分。

經由上面的變數調整,我們先透過主觀想法討論為何考慮其他變數,說明如下:

- 土地移轉總面積(平方公尺)、建物移轉總面積(平方公尺)及總樓層數:我們 認為土地面積或建物面積影響消費者購買意願以及購買者願付價格,因此納 入模型之中。
- 2. 交易標的:我們只考慮有含蓋建物的標的,這個變數僅用來篩選資料,不納入模型之中。
- 3. 使用分區或編定:用途主要為三種,住、商以及其他,政府對於不同土地編 定的稅額不同,因此此變數會影響目標變數單價。
- 4. 建物型態:消費者可以根據自己所需要選擇不同建物類型,如公寓或住宅大樓等。
- 5. 主要建材:在此我們將建物型態分成鋼筋混凝土與其他兩類,因台灣易發生地震且 颱風頻繁,故消費者在購屋時會特別考量建材,故對其成交價亦有影響。
- 6. 建物現況格局-房、建物現況格局-廳、建物現況格局-衛、建物現況格局-隔 間等建物格局影響消費者需求。
- 7. 有無管理組織:有無管理組織亦是消費者考量的重點之一,此變數對於住宅 安全、公共建物之維護有影響。

8. 車位移轉總面積(平方公尺):車位大小影響有車之消費者的購屋意願。

最終的資料筆數為 463591 筆,因為資料遺失比例低,因此只要該筆資料有遺失值便予以刪除,並因為目標變數為 0 為不合理之情形,因此刪除出現該情形之資料。小結以上述標準篩選後,剩下變數之整理如下:

變數名稱	變數代號
單價(元/平方公尺)	Y
縣市	V_1
土地移轉總面積(平方公尺)	V_2
使用分區或編定	V_3
交易年月	V_4
總層數	V_5
建物型態	V_6
主要建材(是否為鋼筋混凝土造)	V ₇
建物移轉總面積(平方公尺)	V_8
建物現況格局-房	V_9
建物現況格局-廳	V ₁₀
建物現況格局-衛	V ₁₁
建物現況格局-格局	V ₁₂
有無管理組織	V ₁₃
車位移轉總面積(平方公尺)	V ₁₄
土地數目	V ₁₅
建物數目	V ₁₆
車位數目	V ₁₇

Model-free graphical data analysis

根據下張圖,我們可以看到台北市(編號 1)的房價相對較高的,其他圖形由於資料複雜度較高,無法提供直接的訊息。

各縣市對房價之箱形圖

分析過程與模型建立

模型

我們對目標變數 Y 與解釋變數 V's 建立以下 log-linear 模型:

$$\log(y_{i} + 0.1) = \beta_{0} + \sum_{i=1}^{17} \beta_{i} V_{i} + \epsilon_{i}$$

其中反應變數多加 0.1 的原因為避免反應變數過小時造成的問題。

接下來我們針對該模型考慮兩種不同的估計方式,分別為常見的最小平方法 (OLS)以及 group lasso。在最小平方法中,我們使用了 stepAIC 進行模型選取,並以 ten-fold cross-validation 驗證其預測能力。在 group lasso 中,我們同樣以 ten-fold cross-validation 進行 sparsity parameter 的選擇以及驗證其預測能力。

1. OLS

首先由假設 ϵ_i 為獨立同分配之常態分配,其變異數為 σ^2 。(註:此處為表示式,若 V_i 為類別型變數,則轉為dummy variable 做配適)。在使用 OLS 建立模型後,

我們使用 R function: "stepAIC" 進行下一步模型選擇。但 stepAIC 的結果(下表)顯示我們最初配適的模型就具有最低的 AIC,因此所有解釋變數皆被納入模型。

Start:AI0	C=-741134				
log(Y+ 0.1)~ V1 +V2 + V3 +V4 + V5					
+V6+V8+V7+V9+V10+ V11 + V12 + V13+V14+V15 + V16					
+V17	+V17				
	Df	Su m of Sq	RSS	AIC	
<none></none>			93675	-741134	
0	1	3	93678	-741120	
0	1	39	93714	-740942	
0	1	60	93735	-740839	
0	1	123	93798	-740528	
0	1	125	93800	-740518	
0	1	149	93824	-740400	
0	1	168	93842	-740308	
0	1	184	93859	-740226	
0	1	315	93990	-739581	
0	1	423	94098	-739048	
0	1	562	94237	-738363	
0	1	905	94580	-736677	
0	1	1080	94755	-735822	
0	1	1586	95261	-733352	
0	8	6004	99679	-712353	
0	5	6872	100547	-78327	
0	21	108258	201933	-385127	

其相對應的參數估計結果如下:有關於 V1,由於我們選擇 V1 中的 baseline 組別為台北市,因此可看到其他縣市的參數估計值都是負的。這些 V1 的參數估計值提供了跨縣市房價的比較。其餘類別變數的性質符號提供了它們與 baseline 的相對影響力大小關係,而估計值則進一步展現該關係。

* * * * * * * * * * * * * * * * * * *				,		
Call:						
lm(formula = as. form	nula(paste('	log(Y+0.1)	", paste00	("V", c(1	:7,
9:18), collapse = "-	+"))), data	= da	t4. sub))		
Coefficients	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	3. 28E+00	1.	22E-01	26, 993	< 2e-16	***

V1 台中市	-1.39E+00	2.84E-03	-490. 288 <	2e-16	***
V1 基隆市	-1.59E+00	5. 05E-03	-315. 216 <	2e-16	***
V1 台南市	-1. 77E+00	3. 44E-03	-513. 815 <	2e-16	***
V1 高雄市	-1.57E+00	2. 94E-03	-534. 691 <	2e-16	***
V1 新北市	-7. 06E-01	2.65E-03	-266. 201 <	2e-16	***
V1 宜蘭縣	-1. 46E+00	5. 22E-03	-278. 966 <	2e-16	***
V1 桃園縣	-1.34E+00	2.87E-03	-467. 142 <	2e-16	***
V1 嘉義市	-1.87E+00	6. 70E-03	-278. 581 <	2e-16	***
V1 新竹縣	-1. 30E+00	4. 34E-03	-300.806 <	2e-16	***
V1 苗栗縣	-1.66E+00	5.85E-03	-284. 117 <	2e-16	***
V1 南投縣	-1.83E+00	7. 31E-03	-250. 436 <	2e-16	***
V1 彰化縣	-1.69E+00	5. 22E-03	-323. 252 <	2e-16	***
V1 新竹市	-1. 25E+00	4. 52E-03	-277. 354 <	2e-16	***
V1 雲林縣	-1.89E+00	6.55E-03	-289.14 <	2e-16	***
V1 嘉義縣	-1. 99E+00	7. 79E-03	-254. 897 <	2e-16	***
V1 屏東縣	-2. 04E+00	5. 60E-03	-364. 044 <	2e-16	***
V1 花蓮縣	-1. 71E+00	6. 26E-03	-273. 333 <	2e-16	***
V1 台東縣	-2. 07E+00	9.85E-03	-209.812 <	2e-16	***
V1 金門縣	-1.14E+00	2. 04E-02	-55. 89 <	2e-16	***
V1 澎湖縣	-1. 72E+00	2. 01E-02	-85. 732 <	2e-16	***
V1 台中市	-2. 54E+00	1.84E-01	-13.811 <	2e-16	***
V2 土地移轉總面積 (平方公尺)	4. 74E-05	1.65E-06	28. 791 <	2e-16	***
V3 エ	4. 00E-01	5. 99E-03	66. 725 <	2e-16	***
V3 住	4. 74E-01	2.69E-03	176. 497 <	2e-16	***
V3 其他	3. 96E-01	4. 09E-03	96.848 <	2e-16	***
V3 商	5. 59E-01	3. 33E-03	167. 747 <	2e-16	***
V3 農	3. 27E-01	9.39E-03	34. 796 <	2e-16	***
V4 交易年月	6. 60E-03	9.87E-05	66. 933 <	2e-16	***
V5 總樓層數	1.63E-02	1.84E-04	88. 596 <	2e-16	***
V6 公寓(5 樓含以下無電梯)	9. 01E-02	3. 33E-03	27. 087 <	2e-16	***
V6 店面(店鋪)	1. 27E-01	8. 77E-03	14. 452 <	2e-16	***
V6 透天厝	6. 44E-01	5. 26E-03	122. 444 <	2e-16	***
V6 華廈(10 層含以下 有電梯)	5. 01E-02	4. 19E-03	11. 964 <	2e-16	***
V7 主要建材為 CRT	3. 35E-01	2. 68E-03	124. 943 <	2e-16	***

V8 建物移轉面積	2.80E-02	3. 01E-03	9. 313	< 2e-16	***
V4 交易年月	6. 52E-02	1.16E-02	5. 624	1.87E-08	***
V5 總樓層數	1.06E-02	7. 46E-03	1.42	0.156	
V6 公寓(5 樓含以下無電梯)	-1.65E-01	2. 25E-03	-73. 1	< 2e-16	***
V6 店面(店鋪)	-9.18E-05	2. 01E-06	-45. 749	< 2e-16	***
V9 建物現況格局-房	-1.75E-02	7. 08E-04	-24. 658	< 2e-16	***
V10 建物現況格局廳 數	2. 47E-02	9. 93E-04	24. 869	< 2e-16	***
V11 建物現況格局衛 浴數	3.86E-02	7. 31E-04	52. 739	< 2e-16	***
V12 建物現況格局-格 局	9. 78E-02	3. 61E-03	27. 132	< 2e-16	***
V13 有無管理組織	-8. 53E-03	2.14E-03	-3. 988	6. 65E-05	***
V14 車位面積	2. 97E-04	1.72E-05	17. 243	< 2e-16	***
V15 交易土地數	8. 72E-03	6. 25E-04	13. 943	< 2e-16	***
V16 交易建物數	-2. 71E-02	8. 97E-04	-30. 185	< 2e-16	***
V17 交易車位數	2. 78E-02	7. 04E-04	39. 47	< 2e-16	***

下圖為殘差圖。可見到有些違反假設,但此模型的預測能力極佳因此我們仍可接受此模型。

下圖為進行多次 ten-fold CV 的 MSE 直方圖。可看到 MSE 大部分介於 0.195~0.215 間,相較於原始反應變數的變動範圍可算是相當小,因此也說明了此模型的預測能力佳。

2. group lasso:

lasso的一項重要性質為,L1-penalty 會導致部分參數結果估計為(),因此同時達到了變數選取與參數估計的目的。但 lasso 的一項明顯缺點為當解釋變數間有高度共線性時,參數估計結果會傾向於只選擇其中一個解釋變數。這種結構的解釋變數常見於 categorical variable。在我們所考慮的模型中, categorical variable 占了大部分。因此我們應用了 group lasso 於此模型中。

下表為隨著 sparsity parameter 而變動的 CV error, ten-fold CV 建議 log(sparsity parameter)= - 4.75 達到了最低的 CV error=0.212,故我們採用此值。

其相對應的配適結果如下。由下表可知: V2, V9 and V13 被屏除於模型外,為較不重要的變數。此估計結果相較於 OLS 達到了較低稀疏性,且個估計值的結果與 OLS 相去不遠。

Glasso	
(Intercept)	6. 35
V1 台中市	-1.031
V1 基隆市	-1.227
V1 台南市	-1.377
V1 高雄市	-1.207
V1 新北市	-0.373
V1 宜蘭縣	-1.068
V1 桃園縣	-0.996
V1 嘉義市	-1.427

V1 新竹縣	-0. 935
V1 苗栗縣	-1.249
V1 南投縣	-1.394
V1 彰化縣	-1.272
V1 新竹市	-0.877
V1 雲林縣	-1.459
V1 嘉義縣	-1.535
V1 屏東縣	-1.624
V1 花蓮縣	-1.294
V1 台東縣	-1.572
V1 金門縣	-0.561
V1 澎湖縣	-1.137
V3 I	0. 227
V3 住	0.34
V3 其他	0. 256
V3 商	0.45
V3 農	0.108
V4 交易年月	0.004
V5 總樓層數	0.012
V6 公寓(5 樓含以下無電	-0.097
梯)	
V6 店面(店鋪)	0.452
V6 透天厝	0.103
V6 華廈(10 層含以下有電	-0.069
梯)	
V7 主要建材為 CRT	-0.146
V8 建物移轉面積	0
V10 建物現況格局廳數	0.006
V11 建物現況格局衛浴數	0.015
V12 建物現況有隔間	0.064
V14 車位面積	0
V15 交易土地數	0.006
V16 交易建物數	-0.013
V17 交易車位數	0.011

結論

我們考慮了地區、交易地區等變數,對於每平方公尺單價建立 log-linear 模型,我們嘗試用了兩種估計方式,第一種是 Ordinary Least Square,另一種為Grouped Lasso。最終我們選擇 Grouped Lasso 做為最終模型,此處因為我們參數的稀疏性,這裡使用 Grouped Lasso 相比於 Ordinary Least Square 減少解釋變數的數量,同時還保留模型較好的預測能力,這裡我們使用 10- fold cross validation 得到近似的 MSE。在 Grouped lasso 模型下,其中以下變數 V2(土地移轉總面積)、 V9(建物現況格局-房數)和 V13(有無管理組織)皆不顯著,而 V2 不顯著的原因為與 V8(建物移轉總面積)為高度相關,因為 grouped lasso 的特性,可將高度相關的變數予以刪除,而 V9 不顯著的原因與 V10(建物現況格局-廳)以及 V11(建物現況格局-衛)為高度相關,因此,V9 不顯著。我們選擇的最終模型

此處我們沒應用到交易標的縱坐標和橫坐標,可能以縣市做切割太過廣泛,可以使用 distance based linear model 去做處理,但是經過畫圖之後,發現資料點太過於稀疏,因此,我們並沒有納入考量,未來資料增加之後,可以將之納入考量之中。

我們認為這個方法不只可以提供購屋者一個參考,亦可提供房地產業者對於不同地區、不同格局等有一個簡單方便的估價機制。

附錄:R 程式碼

```
##Read data
setwd("E:\\new\\main_code")
dat = lapply(paste0("data\\List_", LETTERS[LETTERS!="L" & LETTERS!="R" & LETTERS!="S" &

LETTERS!="Y"], ".csv"), read.csv) # read CSV file
dat2 = do.call("rbind", dat) # combind CSV file
region = unlist(lapply(1:length(dat), function(i) rep(i, nrow(dat[[i]]))))
dat2 = data.frame(dat2, region = region) #combined into CSV file
# Data Preprocessing
# 將不合理的交易年月份刪去
```

```
dat2[dat2[,8] < 5510, ] = NA # 把年份太小的都去掉
dat2$year.trading = sapply(dat2[,8], function(v) substr(as.character(v), 0, nchar(
as. character(v))-2))
dat2$month. trading = sapply(dat2[,8], function(v) substr(as. character(v),
nchar(as. character(
v))-1, nchar(as.character(v))))
#將不合理的建築年份刪去
dat2$year.construction = sapply(dat2[, 15], function(v){
if(nchar(v) == 2)
as. integer(v)
else if(nchar(v) == \frac{4}{8} substr(as. character(v), \frac{1}{1}) == \frac{0}{1}
as. integer(substr(as. character(v), 1, 2))
else if(nchar(v) == \frac{4}{8} substr(as. character(v), \frac{1}{1}) == \frac{1}{1})
as. integer(substr(as. character(v), 1, 3))
else if(nchar(v) == 5 & substr(as. character(v), 1, 1) != 0 & substr(as. character(v), 1, 1)
as. integer(substr(as. character(v), 1, 2))
else if(nchar(v) == 5 \& (substr(as. character(v), 1, 1) == 0 | substr(as. character(v), 1, 1) == 0 | subst
1, 1)
== 1))
as. integer(substr(as. character(v), 1, 3))
else if(nchar(v) == 6 \& substr(as. character(v), 1, 1) == 0)
as. integer(substr(as. character(v), 1, 2))
else if(nchar(v) == 6 \& substr(as. character(v), 1, 1) == 1)
as. integer(substr(as. character(v), 1, 3))
else if(nchar(v) == 7)
as. integer(substr(as. character(v), 1, 3))
else
NA
})
dat2$year.construction[dat2$year.construction > 103] = NA
# dat2[dat2$year.construction==10 & !is.na(dat2$year.construction), 15]
dat2$month.construction = sapply(dat2[, 15], function(v){
if(nchar(v) == 4)
as. integer(substr(as. character(v), nchar(as. character(v))-1,
nchar(as. character(v))))
else if(nchar(v) == 5 & substr(as. character(v), 1, 1) != 0 & substr(as. character(v), 1, 1)
```

```
!= 1)
as. integer(substr(as. character(v), nchar(as. character(v))-2,
nchar(as. character(v))-2
))
else if(nchar(v) == 5 \& (substr(as. character(v), 1, 1) == 0 | substr(as. character(v), 1, 1) == 0 | subst
== 1))
as. integer(substr(as. character(v), nchar(as. character(v))-1,
nchar(as. character(v))))
else if(nchar(v) == 6)
as. integer(substr(as. character(v), nchar(as. character(v))-3,
nchar(as. character(v))-2
))
else if(nchar(v) == 7)
as. integer(substr(as. character(v), nchar(as. character(v))-3,
nchar(as. character(v))-2
))
else
NA
1)
dat2$month.construction[dat2$month.construction == 0] = NA
dat2$month.construction[dat2$month.construction == 20] = NA
#建物個數
dat2$building = sapply(dat2[, 2], function(v) grep1("建物", v))
#車位數量
dat2$parking_lot = sapply(dat2[, 2], function(v) grepl("单位", v) & grepl("建物", v))
ttt = do. call("rbind", lapply(dat2[, 9], function(v){
if(!is.na(v)){
temp = strsplit(as.character(v), "土地")[[1]][2]
temp2 = strsplit(as.character(temp), "建物")[[1]]
temp3 = strsplit(as.character(temp2[2]), "单位")[[1]]
as. integer(c(temp2[1], temp3))
}
else{
rep(NA, 3)
}
}))
dat2$n. land = ttt[, 1]
```

```
dat2$n. building = ttt[, 2]
dat2$n.parking_lot = ttt[, 3]
dat2[which(dat2[, 14] == ""), 14] = NA
#建築材料
dat2$CRC = sapply(dat2[, 14], function(v){
if(grepl("混凝土", v))
TRUE
else if(grepl("鋼骨構造", v))
TRUE
else if(is.na(v))
NA
else
FALSE
1)
#交易年份
dat2$trading = sapply(1:nrow(dat2), function(v){
if( !is. na(dat2[v, 30]) & !is. na(dat2[v, 31]))
as. integer(dat2[v, 30]) * 12 + as. integer(dat2[v, 31])
else
NA
})
#屋齡
dat2$age_building = sapply(1:nrow(dat2), function(v){
if( !is. na(dat2[v, 32]) & !is. na(dat2[v, 33]))
dat2[v, 40] - dat2[v, 32] * 12 + dat2[v, 33]
else if(!is.na(dat2[v, 32]) & is.na(dat2[v, 33]))
dat2[v, 40] - dat2[v, 32] * 12 + 6
else
NA
})
save(dat2, file = "dat2.RData")
dat3 = dat2[dat2$building, ]
dat3 = dat3[, c(23, 29, 4, 5, 40, 11, 12, 39, 41, 16:21, 25, 36:38)]
names(dat3) = c("Y", paste0("V", 1:(ncol(dat3)-1)))
dat3$V5 = as.numeric(dat3$V5)
dat3$V1 = as. factor(dat3$V1)
dat3$V7 = as. factor(dat3$V7)
dat4 = dat3[-9]
```

```
dat4 = dat4[dat4$Y!=0,]
dat4 = dat4[!is.na(dat4\$Y),]
dat4 = dat4[which(apply(dat4, 1, function(vec)(!any(is.na(vec))))), ]
save(dat4, file = "dat4.RData")
###########################
#### Model-free plots
dat4. sub<-dat4[-which(rownames(dat4)%in%c(425940, 470677, 613622)), ]
lm. fit\langle -lm(log(Y+0.1) \rangle, data=dat4. sub)
png("E:\\plot1.png", 640, 480)
par(mfrow=c(2, 2))
boxplot(log(Y+0.1)~V1, data=dat4. sub, xlab="V1", ylab="log(單價+0.1)", main=
"各縣市對房價之箱形圖")
plot(dat4. sub$V2, log(dat4. sub$Y+0.1), xlab="V2", ylab="log(單價+0.1)", main=
"土地轉移面積對房價之散布圖")
boxplot(log(Y+0.1)~V3, data=dat4. sub, xlab="V3", ylab="log(單價+0.1)", main=
"使用分區對房價之箱形圖")
plot(dat4. sub$V4, log(dat4. sub$Y+0.1), xlab="V4", ylab="log(單價+0.1)", main=
"交易年月對房價之散布圖")
dev. of f()
png("E:\\plot2.png", 640, 480)
par(mfrow=c(2,2))
plot(dat4. sub$V5, log(dat4. sub$Y+0.1), xlab="V5", ylab="log(單價+0.1)", main=
"總樓層數對房價之散布圖")
boxplot(log(Y+0.1)~V6, data=dat4. sub, xlab="V6", ylab="log(單價+0.1)", main=
"建物型態對房價之箱形圖")
boxplot(log(Y+0.1)~V7, data=dat4. sub, xlab="V7", ylab="log(單價+0.1)", main=
"主要建材對房價之箱形圖")
plot(dat4. sub$V9, log(dat4. sub$Y+0.1), xlab="V9", ylab="log(單價+0.1)", main=
"建物移轉面積對房價之散布圖")
dev. of f()
png("E:\\plot3.png", 640, 480)
par(mfrow=c(2, 2))
plot(dat4. sub$V10, log(dat4. sub$Y+0. 1), xlab="V10", ylab="log(單價+0. 1)", main=
"建物現況格局-房數對房價之散布圖")
plot(dat4. sub$V11, log(dat4. sub$Y+0. 1), xlab="V11", ylab="log(單價+0. 1)", main=
"建物現況格局-廳數對房價之散布圖")
plot(dat4. sub$V12, log(dat4. sub$Y+0. 1), xlab="V12", ylab="log(單價+0. 1)", main=
"建物現況格局-衛浴數對房價之散布圖")
```

```
boxplot(log(Y+0.1)~V13, data=dat4. sub, xlab="V13", ylab="log(單價+0.1)", main=
"建物現況是否有隔間對房價之箱形圖")
E:\\plot4.png", 640, 480)
par(mfrow=c(2, 2))
boxplot(log(Y+0.1)~V14, data=dat4. sub, xlab="V14", ylab="log(單價+0.1)", main=
"建物現況是否有管理組織對房價之箱形圖")
plot(dat4. sub$V15, log(dat4. sub$Y+0.1), xlab="V15", ylab="log(單價+0.1)", main=
"車位面積對房價之散布圖")
plot(dat4. sub$V16, log(dat4. sub$Y+0. 1), xlab="V16", ylab="log(單價+0. 1)", main=
"交易土地數對房價之散布圖")
plot(dat4. sub$V17, log(dat4. sub$Y+0. 1), xlab="V17", ylab="log(單價+0. 1)", main=
"交易建物數對房價之散布圖")
dev. of f()
png("E:\\plot5.png", 640, 480)
plot(dat4. sub$V18, log(dat4. sub$Y+0.1), xlab="V18", ylab="log(單價+0.1)", main=
"交易車位數對房價之散布圖")
dev. of f()
##########################
##### Modelling
#### OLS
lm. fit \leftarrow lm(as. formula(paste("log(Y+0.1)~", paste0("V", c(1:7,9:18), collapse =
"+"))), data =
dat4)
summary(lm. fit)
plot(lm. fit)
### delete outlier
dat4. sub <- dat4[-which(rownames(dat4) %in% c(425940, 470677, 613622)), ]
lm. fit. revised \leftarrow lm(as. formula(paste("log(Y+0.1)~", paste0("V", c(1:7, 9:18), collapse
= "+"
))), data = dat4. sub)
### residual plot
png("lm_residual.png", width =640, height =480)
par(mfrow = c(2, 2))
plot(lm. fit. revised)
dev. of f()
### StepAIC
library(MASS)
lm. AIC <- stepAIC(lm. fit)</pre>
```

```
# PRESS
fold = 10
# divide complete data into 10 fold cross validation set.
cv_index_f = function(n, fold = 10){
fold_n = floor(n / fold)
rem = n - fold n * fold
size = rep(fold_n, fold)
if(rem > 0)
size[1:rem] = fold_n + 1
cv_index = unlist(sapply(1:fold, function(i) rep(i, size[i])))
cv_index = sample(cv_index, length(cv_index))
return(cv_index)
}
index = cv_index_f(nrow(dat4. sub), fold)
lm. CV <- sapply(1:fold, function(v){</pre>
dat4. train = dat4. sub[index != v, ]
dat4. test = dat4. sub[index == v,]
-4-
E:\new\main_code\read_data_ori,r 2014年7月12日下午 04:10
lm. fit. train = lm(as. formula(paste("log(Y+0.1)~", paste0("V", c(1:7, 9:18), collapse = "log(Y+0.1)~"))
"+"
))), data = dat4. train)
sum((log(dat4.test$Y+0.1) - predict(lm.fit.train, dat4.test))^2)/nrow(dat4.test)
})
mean(1m. CV)
## histogram of 10 fold cross -validation
png("1m_CV. png", width =640, height=480)
hist(lm.CV, main = "MSE of 10 Fold Cross-Validation", xlab = "MSE")
dev. of f()
#### Lasso and Grouped Lasso
library(glmnet)
library(grpreg)
#删去有缺失值的樣本
index. v <- which(apply(dat4, 1, function(vec)(!any(is. na(vec)))))
dat4. sub <- dat4[index. v, ]</pre>
#產生放入"cv.glmnet"的公式
lasso. formula \leftarrow formula(paste0("log(Y+0.1)~", paste0("V", c(1:7, 9:18), collapse="+")))
X.m <- model.matrix(lasso.formula , data=dat4.sub)[,-1]
```

```
#Set groups for "grpreg".
group. v <- substring(colnames(X.m), 1, 2)
group. v[43:51] <- substring(colnames(X.m), 1, 3)[43:51]
group. v <- as. numeric(factor(group. v, levels=paste("V", c(1:7, 9:18), sep="")))
#Conduct Group Lasso
out. glasso <- cv. grpreg(X.m, log(dat4. sub$Y+0.1), group=group. v)
#Estimation Result
round(coef(out. glasso)[coef(out. glasso)!=0], 3)
round(coef(out. lasso)[, 1][coef(out. lasso)[, 1]!=0], 3)
#About C. V.
pdf("C:/GLasso_cv.pdf")
plot(out. lasso)
dev. off()</pre>
```