Due: Oct 31st, 2019

Problem 1

$$\int_{x_0}^{x_2} f(x)dx = a_0 f(x_0) + a_1 f(x_1) + a_2 f(x_2) + k f^{(4)}(\xi)$$

Solving for $f(x) = x^n$, when n = 0, 1, and 2. We get 3 equations in 3 unknowns a_0, a_1 , and a_2 which can be represented by the matrix:

$$\begin{bmatrix} 1 & 1 & 1 \\ x_0 & x_1 & x_2 \\ x_0^2 & x_1^2 & x_2^2 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} x_2 - x_0 \\ \frac{1}{2}(x_2^2 - x_0^2) \\ \frac{1}{3}(x_2^3 - x_0^3) \end{bmatrix}$$
(1)

Substituting $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$, we get:

$$\begin{bmatrix} 1 & 1 & 1 \\ x_0 & x_1 & x_2 \\ x_0^2 & x_1^2 & x_2^2 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2h \\ 2x_0h + 2h^2 \\ 2x_0^2h + 4x_0h^2 + \frac{8}{3}h^3 \end{bmatrix}$$
 (2)

$$R_2 \leftarrow R_2 - x_0 R_1$$
 $R_3 \leftarrow R_3 - x_0^2 R_1$ $R_3 \leftarrow R_3 - (2x_0 + h)R_2$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & h & 2h \\ 0 & 0 & 2h^2 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2h \\ 2h^2 \\ \frac{2}{3}h^3 \end{bmatrix}$$
 (3)

Solving using back-substitution, we get:

$$a_0 = \frac{h}{3}$$
 $a_1 = \frac{4h}{3}$ $a_2 = \frac{h}{3}$

as we had expected. Now, when n = 4, i.e., $f(x) = x^4$, $f^{(4)}(x) = f^{(4)}(\xi(x)) = 4! = 24$. So,

$$\int_{x_0}^{x_2} x^4 dx = \frac{h}{3} [x_0^4 + 4x_1^4 + x_2^4] + 24k \tag{4}$$

Solving for k, we get:

$$\frac{x^5}{5} \bigg|_{x_0}^{x_0+2h} = \frac{h}{3} [1 \cdot x_0^4 + 4 \cdot (x_0 + h)^4 + 1 \cdot (x_0 + 2h)^4] + 24k \tag{5}$$

We can put $x_0 = 0$ for simplification to get:

$$\frac{(2h)^5}{5} = \frac{h}{3}[0 + 4h^4 + (2h)^4] + 24k$$
$$\frac{32h^5}{5} = \frac{20}{3}h^5 + 24k$$
$$k = -\frac{h^5}{90}$$

Due: Oct 31st, 2019

Problem 2

Romberg Integration

a)
$$f(x) = x^{1/3}$$

n	Function evaluations	Result	Trapezoidal Result
12	2049	0.749995	0.749989

b)
$$f(x) = x^2 e^{-x}$$

n	Function evaluations	Result	Trapezoidal Result
4	9	0.160602	0.161080

Problem 3

Gaussian Quadrature

a)
$$f(x) = x^{1/3}$$

Results for different values of n:

Function evaluations	n=2	n = 3	n = 4	n = 5
Result	0.75977	0.75385	0.75194	0.75113
Romberg Result	0.69580	0.73063	0.74250	0.74704
Romberg evaluations	3	5	9	17

b)
$$f(x) = x^2 e^{-x}$$

Results for different values of n:

Function evaluations	n=2	n = 3	n = 4	n = 5
Result	0.159410	0.160595	0.160602	0.160602
Romberg Result	0.162401	0.160610	0.160602	-
Romberg evaluations	3	5	9	17

Comparing the results, we can see that Gaussian outperforms Romberg in terms of accuracy, and in terms of the number of function evaluations required, it does even better (we could say exponentially better).

Due: Oct 31st, 2019

Problem 4

$$\frac{dy}{dt} = \frac{1}{t^2} - \frac{y}{t} - y^2 \qquad (1 \le t \le 2) \qquad y(1) = -1$$

Euler's method

The different plots for different values of n (step size $\Delta t = 0.1(2^{-n})$) are as follows:

Figure 1: Euler's method for different values of n

The values calculated for different n are given in the table (actual value is -0.5):

n	y(2)	Absolute error
0	-0.4431	0.0569
1	-0.4712	0.0288
2	-0.4855	0.0145
3	-0.4927	0.0073
4	-0.4964	0.0036

DS 288

Due: Oct 31st, 2019

Modified Euler's method

The different plots for different values of n (step size $\Delta t = 0.1(2^{-n})$) are as follows:

Figure 2: Modified Euler's method for different values of n

The values calculated for different n are given in the table (actual value is -0.5):

n	y(2)	Absolute error
0	-0.49555	0.00445
1	-0.49885	0.00115
2	-0.49971	0.00029
3	-0.49992	0.00008
4	-0.49998	0.00002

Let's compare the errors side by side

n	Error(Euler's)	Error(Modified Euler's)
0	0.0569	0.00445
1	0.0288	0.00115
2	0.0145	0.00029
3	0.0073	0.00008
4	0.0036	0.00002

Figure 3: loglog plot of $1/\Delta t$ vs Absolute error for Euler and Modified Euler's methods

As we had expected, the error in both methods decreases with decreasing step size. But, Modified Euler's performs better as it not only gives better approximation but also has a faster rate of decrease of error.