MATLAB 仿真实验实验报告

刘笑辰 2135052717

【MATLAB 绘图】

1.欠阻尼二阶系统不同系数变化下的对比图

2. 高阶系统对比图

【文字描述】

1.欠阻尼二阶系统不同系数变化下的对比图

样本选取 w_n=3;zeta=0.7;w_n*zeta=2.1;sqrt(1-zeta*zeta)*w_n=2.142;得到对应的欠阻尼阶跃响应曲线。

对比 1 选取 w_n=3.57;zeta=0.8;得到对应的欠阻尼阶跃响应曲线。

此时满足对比图 1 的要求,即 $w_n*zeta=2.856$ 变大, $sqrt(1-zeta*zeta)*w_n=2.142$ 不变。从对比图中可以看出超调量明显下降,调节时间下降。

对比 2 选取 w_n=3.5;zeta=0.6;得到对应的欠阻尼阶跃响应曲线。

此时满足对比图 2 的要求,即 sqrt(1-zeta*zeta)*w_n=2.8 变大,w_n*zeta=2.1 不变。从 对比图中可以看出超调量上升,调节时间基本不变。

对比 3 选取 w_n=3;zeta=0.6;得到对应的欠阻尼阶跃响应曲线。

此时满足对比图 3 的要求,即 zeta 变小(角度变大),w_n 不变。从对比图中可以看出超调量上升,调节时间也上升。

对比 4 选取 w_n=4;zeta=0.7;得到对应的欠阻尼阶跃响应曲线。

此时满足对比图 4 的要求,即 zeta 不变, w_n 变大。从对比图中可以看出超调量基本不变,调节时间下降。

3. 高阶系统对比图

202

MATLAB仿真实验

时域分析 Analysis in Time Domain

[要求2]绘制高阶系统对比图,观察零极点变化下的单位阶跃响应的区别

3	绕描述	系统闭环传递函数	上升时间	峰值时间	超调量	调节时间 (2%)
无	闭环零点	$\frac{1.05}{(0.125s+1)(0.5s+1)(s^2+s+1)}$	1.89	4.42	13.8%	8.51
远离	虚轴的闭环 零点	$\frac{1.05(0.4762s+1)}{(0.125s+1)(0.5s+1)(s^2+s+1)}$	1.68	3.75	15.9%	8.20
靠近	虚轴的闭环 零点	$\frac{1.05(s+1)}{(0.125s+1)(0.5s+1)(s^2+s+1)}$	1.26	3.20	25.3%	8.10
非主	导闭环极点	$\frac{1.05(0.4762s+1)}{(0.25s+1)(0.5s+1)(s^2+s+1)}$	1.73	4.09	15.0%	8.36
非主	导闭环极点	$\frac{1.05(0.4762s+1)}{(0.5s+1)(s^2+s+1)}$	1.66	3.64	16.0%	8.08
	极点对消	$\frac{1.05}{s^2+s+1}$	1.64	3.64	16.3%	8.08
27 - 67 / 101 / 82						

经分析表格中数据可知,增加有效闭环零点可以明显缩短上升时间,峰值时间和调节时间,但会增大超调量,并且闭环零点越靠近虚轴对系统性能的影响幅度越大,其中对调节时间的影响相对较小,整体相当于削弱阻尼。

而非主导闭环极点作用相当于增大系统的阻尼,相比于零极点对消,会使上升时间,峰 值时间以及调节时间滞后,并使得超调量下降。

通过分析两个非主导闭环极点的零极点分布图,也可以得出,零极点离得较近时,零点就会明显抵消掉极点的作用。

【MATLAB 代码】

1.欠阻尼二阶系统不同系数变化下的对比图

SecondOrderSystem.m:

```
clc;
clear;
close all;
t final=6;
figure(5);
w_n=3;zeta=0.7;G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
subplot(1,2,1);
step(G 2order2,t final);
legend('样本 w_n=3 zeta=0.7');
title("欠阻尼阶跃响应样本");
a=[1,2*zeta*w_n,w_n^2];
b=[1];
subplot(1,2,2);
pzmap(b,a);
axis([-5,5,-5,5]);
title("样本对应极点在复平面的分布图");
legend('w_n=3 zeta=0.7');
figure(1);
subplot(1,2,1);
w_n=3;zeta=0.7;G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
step(G_2order2,t_final);hold on;
w_n=3.57; zeta=0.8; G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
step(G 2order2,t final);hold off;
legend('样本 w_n=3 zeta=0.7','对比 1 w_n=3.57 zeta=0.8');
title("对比图 1");
a=[1,2*zeta*w_n,w_n^2];
b=[1];
subplot(1,2,2);
pzmap(b,a);
axis([-5,5,-5,5]);
title("对比1对应极点在复平面的分布图");
legend('w_n=3.57 zeta=0.8');
figure(2);
```

```
subplot(1,2,1);
w = 3; zeta = 0.7; G = 2 tf([1], [1 = 2*zeta*w n w n^2]);
step(G_2order2,t_final);hold on;
w = 3.5; zeta = 0.6; G = tf([1],[1 = 2*zeta*w = n = n^2]);
step(G_2order2,t_final);hold off;
legend('样本 w_n=3 zeta=0.7','对比 2 w_n=3.5 zeta=0.6');
title("对比图 2");
a=[1,2*zeta*w_n,w_n^2];
b=[1];
subplot(1,2,2);
pzmap(b,a);
axis([-5,5,-5,5]);
title("对比2对应极点在复平面的分布图");
legend('w n=3.5 zeta=0.6');
figure(3);
subplot(1,2,1);
w = 3; zeta=0.7; G 2order2 = tf([1],[1 2*zeta*w n w n^2]);
step(G_2order2,t_final);hold on;
w_n=3;zeta=0.6;G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
step(G_2order2,t_final);hold off;
legend('样本 w_n=3 zeta=0.7','对比 3 w_n=3 zeta=0.6');
title("对比图 3");
a=[1,2*zeta*w_n,w_n^2];
b=[1];
subplot(1,2,2);
pzmap(b,a);
axis([-5,5,-5,5]);
title("对比3对应极点在复平面的分布图");
legend('w n=3 zeta=0.6');
figure(4);
subplot(1,2,1);
w_n=3; zeta=0.7; G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
step(G 2order2,t final);hold on;
w_n=4; zeta=0.7; G_2order2 = tf([1],[1 2*zeta*w_n w_n^2]);
step(G_2order2,t_final);hold off;
legend('样本 w_n=3 zeta=0.7','对比 4 w_n=4 zeta=0.7');
title("对比图 4");
a=[1,2*zeta*w_n,w_n^2];
b=[1];
subplot(1,2,2);
pzmap(b,a);
axis([-5,5,-5,5]);
```

```
title("对比 4 对应极点在复平面的分布图");
legend('w_n=4 zeta=0.7');
```

2.高阶系统对比图

HighLevelSystem.m:

```
clc;
clear;
close all;
t_final=15;
figure(1);
G_2order1 = tf([1.05], [0.0625 \ 0.6875 \ 1.6875 \ 1.625 \ 1]);
G_2 order2 = tf([0.50001 \ 1.05], [0.0625 \ 0.6875 \ 1.6875 \ 1.625 \ 1]);
G_2 order3 = tf([1.05 \ 1.05], [0.0625 \ 0.6875 \ 1.6875 \ 1.625 \ 1]);
G_2order4 = tf([0.50001 \ 1.05],[0.125 \ 0.875 \ 1.875 \ 1.75 \ 1]);
G_2order5 = tf([0.50001 \ 1.05],[0.5 \ 1.5 \ 1.5 \ 1]);
G_2order6 = tf([1.05],[1 1 1]);
step(G_2order1,G_2order2,G_2order3,G_2order4,G_2order5,G_2order6,t_final);
grid on;hold on;
hold off; grid off;
legend('无闭环零点','远离虚轴的闭环零点','靠近虚轴的闭环零点','非主导闭环极点
1','非主导闭环极点 2','零极点对消');
figure(2);
p=roots([0.0625 0.6875 1.6875 1.625 1]);
s=roots([1.05]);
pzmap(s,p);
title('无闭环零点 零极点分布');
figure(3);
p=roots([0.0625 0.6875 1.6875 61.25 1]);
s=roots([0.50001 1.05]);
pzmap(s,p);
title('远离虚轴的闭环零点 零极点分布');
figure(4);
p=roots([0.0625 0.6875 1.6875 1.625 1]);
s=roots([1.05 1.05]);
pzmap(s,p);
title('靠近虚轴的闭环零点 零极点分布');
figure(5);
p=roots([0.125 0.875 1.875 1.75 1]);
s=roots([0.50001 1.05]);
```

```
pzmap(s,p);
title('非主导闭环极点 1 零极点分布');
figure(6);
p=roots([0.5 1.5 1.5 1]);
s=roots([0.50001 1.05]);
pzmap(s,p);
title('非主导闭环极点 2 零极点分布');
figure(7);
p=roots([1 1 1]);
s=roots([1.05]);
pzmap(s,p);
title('零极点对消 零极点分布');
```