Foundations of Logic

Cemil Derman

October 10, 2025

1 Connections

Definition 1.1 (Implication/Condition). $P \implies Q$ is false when P is true and Q is false but true otherwise.

P	Q	$P \implies Q$
1	1	1
1	0	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1
0	0	1

Definition 1.2 (Biconditional). $P \iff Q$ is true only if both P and Q is false or both P and Q is true.

Definition 1.3 (Negation). $\neg P$

Definition 1.4 (Conjunction). $P \wedge Q$

Definition 1.5 (Disjunction). $P \vee Q$

Definition 1.6 (Exclusive Disjunction). $(P \oplus Q) = \neg (P \land Q) \land$

Definition 1.7 (True False). \top or 1 or T defined as true, \bot or 0 or F defined as false

Definition 1.8 (Quantifiers). \forall and \exists