EXPERIMENT REPORT

of

Digital Signal Processing

TYPICAL DIGITAL SIGNALS:

GENERATION AND ITS FREQUENCY ANALYSIS BY USING MATLAB

SUBMITTED BY

Zhang San	2013222050123
Li Si	2013222050234
Wang Wu	2013222050122
Wang Xizhi	2013222050121
Bai Juyi	2013222050120

Professor He Peiyu

School of Electronic and Information Engineering, Sichuan University November, 2015

1 Generation of Typical Signals

1.1 Unit Sampling Sequence

EXAMPLE: Unit sampling signal, or also can be thought as a unit sampling sequence in digital signal processing, is very unique and fundamental. After an ideal sampling, we can simply treat any sampled signals as a linear combination of a set of shifted unit sampling sequence with different amplitude scalar.

1.1.1 Signal Expression

EXAMPLE:

signals as a linear combination of a set of shifted unit amplitude scalar.
$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$
 (1.1)

As shown in Eq(1.1), a unit sampling sequence $\delta[n]$ equals 1 only at n = 0

1.1.2 MATLAB Codes (with Notes)

% This is an EXAMPLE
clear; % Clear workspace
clc; % Clear message queue
k=0; % Shifted Time Index
N=50; % Total number of samples
delta=zeros(N); % Generate a N-length zero sequence

1.1.3 Simulation Results and Illustrations

1.2 Unit Step Sequence **Signal Expression** 1.2.1 1.2.2 MATLAB Codes (with Notes) Jon Processins 1.2.3 **Simulation Results and Illustrations** 1.3 Real Exponential Sequence 1.3.1 **Signal Expression** MATLAB Codes (with Notes) 1.3.2 **Simulation Results and Illustrations** 1.3.3 1.4 Complex Exponential Sequence **Signal Expression** 1.4.1 1.4.2 MATLAB Codes (with Notes **Simulation Results and Illustrations** 1.4.3 1.5 Sinusoidal Sequence **Signal Expression** 1.5.2 MATLAB Codes (with Notes)

- 1.5.3 Simulation Results and Illustrations
- 1.6 Summary and Discussion

2 Frequency Analysis

2.1 D	Discrete Time Fourier Transform (DTFT)					
2.1.1	Concept of DTFT					
2.1.2	Signal Expression in Frequency Domain MATLAB Codes (with Notes)					
2.1.3	MATLAB Codes (with Notes)					
2.1.4	Simulation Results and Illustration					
2.2 D	Discrete Fourier Transform (DFT)					
2.2.1	Concept of DFT					
2.2.2	MATLAB Codes (with Notes and Different Signal Length N)					
2.2.2.1	Unit Sampling Sequence					
2.2.2.2	Unit Step Sequence					
2.2.2.3	Real Exponential Sequence					
2.2.2.4	Complex Exponential Sequence					
2.2.2.5	Sinusoidal Sequence					
2.2.3	Simulation Results and Illustrations (with Different Signal Length N)					

2.3 Summary and Discussion

Speech Signal Analysis

- 3.1 MATLAB Codes (with Notes)

3.2 Simulation Results and Illustrations (both Male and Female Speech Signals)

3.3 Summary and Discussion

3.6 Signal And Introduction

Signal An

Additional Tasks

4.1	Plot the	Complex	Exponential	Sequenc	e in	3-D

- 4.1.1 MATLAB Codes (with Notes)
- L'ION Process Simulation Results and Illustration (with Different ω) 4.1.2
- **Summary and Discussion** 4.1.3
- 4.2 Realize the DFT
- 4.2.1 MATLAB Codes (with Notes)
- **Simulation Results and Illustrations** 4.2.2
- 4.2.3 Summary and Discussion
- 4.3 Compare the performance of DFT realized above and FFT
- MATLAB Codes (with Notes) 4.3.1
- **Simulation Results and Illustrations** 4.3.2
- 4.3.3 Summary and Discussion

5 Experience and Overview

Bedarthent of Signal and Information Processins