International

Rectifier

SMPS MOSFET

PD - 93938B

IRF3708 IRF3708S IRF3708L

Applications

- High Frequency DC-DC Isolated Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Fully Characterized Avalanche Voltage and Current

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	ΙD
30V	12m Ω	62A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±12	V
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	62	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	52	Α
I _{DM}	Pulsed Drain Current①	248	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation 3	87	W
P _D @T _C = 70°C	Maximum Power Dissipation®	61	W
	Linear Derating Factor	0.58	W/°C
T_J , T_{STG}	Junction and Storage Temperature Range	-55 to + 175	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.73	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface @	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient@		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)*		40	

^{*} When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.028		V/°C	Reference to 25°C, I _D = 1mA
			8	12.0		V _{GS} = 10V, I _D = 15A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		9.5	13.5	mΩ	V _{GS} = 4.5V, I _D = 12A ③
			14.5	29		$V_{GS} = 2.8V, I_D = 7.5A$ ③
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
	Design to Course I agles as Course			20	μA	$V_{DS} = 24V$, $V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			100	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 12V$
^I GSS	Gate-to-Source Reverse Leakage			-200	''^	V _{GS} = -12V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	49			S	$V_{DS} = 15V, I_D = 50A$
Qg	Total Gate Charge		24			I _D = 24.8A
Q _{gs}	Gate-to-Source Charge		6.7		nC	$V_{DS} = 15V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		5.8		Ī	V _{GS} = 4.5V ③
Q _{oss}	Output Gate Charge		14	21		$V_{GS} = 0V$, $I_D = 24.8A$, $V_{DS} = 15V$
t _{d(on)}	Turn-On Delay Time		7.2			$V_{DD} = 15V$
t _r	Rise Time		50		ns	$I_D = 24.8A$
t _{d(off)}	Turn-Off Delay Time		17.6		113	$R_G = 0.6\Omega$
t _f	Fall Time		3.7			$V_{GS} = 4.5V$ 3
C _{iss}	Input Capacitance		2417			V _{GS} = 0V
Coss	Output Capacitance		707			$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		52		pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		213	mJ
I _{AR}	Avalanche Current①		62	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current					MOSFET symbol
	(Body Diode)			62	A	showing the
I _{SM}	Pulsed Source Current			248		integral reverse
	(Body Diode) ①			240		p-n junction diode.
V _{SD}	Diode Forward Voltage		0.88	1.3	V	$T_J = 25$ °C, $I_S = 31A$, $V_{GS} = 0V$ ③
* SD	Diode Forward Vollage		0.80			$T_J = 125$ °C, $I_S = 31A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		41	62	ns	$T_J = 25$ °C, $I_F = 31$ A, $V_R = 20$ V
Q _{rr}	Reverse Recovery Charge		64	96	nC	di/dt = 100A/µs ③
t _{rr}	Reverse Recovery Time		43	65	ns	$T_J = 125$ °C, $I_F = 31A$, $V_R = 20V$
Q _{rr}	Reverse Recovery Charge		70	105	nC	di/dt = 100A/µs ③

International TOR Rectifier

IRF3708/3708S/3708L

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

(S) 8 V_{DS} = 15V O 10 20 30 40 50 Q_G, Total Gate Charge (nC)

ID = 24.8A

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF3708/3708S/3708L

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

0.017 0.015 0.013 0.010 0.009 0.009 0.00009 0.00009 0.00009 0.00009 0.00009

Fig 13. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

Fig 14a&b. Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

www.irf.com

6

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 WITH ASSEMBLY

LOT CODE 9B1M

INTERNATIONAL
RECTIFIER
LOGO
IRF1010
DATE CODE
(YYWW)
LOT CODE
WW = WEEK

International

TOR Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

International TOR Rectifier

IRF3708/3708S/3708L

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

LEAD ASSIGNMENTS

1 = GATE 3 = SOURCE 2 = DRAIN 4 = DRAIN

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

International
Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.7 mH $R_G = 25\Omega$, $I_{AS} = 24.8$ A.
- ③ Pulse width \leq 300µs; duty cycle \leq 2%.
- This is only applied to TO-220AB package

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-lkebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 8/00

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/