K-means

总体步骤

- 1. 初始化 cluster centroids
- 2. 循环:
 - Step 1 Cluster assignment (根据"距离"染色)
 - Step 2 Move centroid (根据所分配样本的均值移动簇中心)
- What if no points assigned to a cluster centroid?

Eliminate it. (Most common case)

or: Reinitialize it.

优化目标 (代价函数)

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

其中 $c^{(1)}$,..., $c^{(m)}$ 为 m 个样本各自的对应的簇的 index; μ_1 ,..., μ_K 为 K 个簇的 positon.

● Also called "Distortion cost function" ("损失代价函数")

随机初始化 Random Initialization

步骤:

Step 1 根据簇的个数 K,从 m 个样本中随机抽取 K 个

Step 2 将该 K 个样本分配给初始的 K 个 cluster centroid: $\mu_1, ..., \mu_K$

● 如何避免坏的局部最优解?

多次初始化(即多次 K-means),取其最小。

具体地,运行 i 次 K-means, i 一般取 50-1000。

注: K=2~10 时有效。K 太大时不需要多次初始化。

簇的数量(K)的选取

1. 一般地: 手动选取

2. Elbow method 肘部法则

* 一般 K 越大 J 越小,如果反而增大,是由于卡在了坏的局部最优解上。

3. 根据 later purpose 的表现而定

Dimensionality Reduction 维数约简

Motivation 1: 数据压缩

作用: 节省内存、存储空间; 提高算法运行速度

Motivation 2: 数据可视化

Data Vi	sualizatio	n		XE BEO	× (c) .		
Country	GDP (trillions of US\$)	Per capita GDP (thousands of intl. \$)	Human Develop- ment Index	Life expectancy	Poverty Index (Gini as percentage)	Mean household income (thousands of US\$)	
→Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Data Visualization			> " ETR2
Country	z_1	z_2	_
Canada	1.6	1.2	
China	1.7	0.3	Reduce dot
India	1.6	0.2	
Russia	1.4	0.5	40 5D
Singapore	0.5	1.7	
USA	2	1.5	

Principle Component Analysis (PCA) 主成分分析

原理

寻找一个低维"平面"来对数据进行投影,使得投影误差(平均平方映射误差 Average Squared Projection Error)最小。

也即:

从 n 维降至 k 维: 寻找一组向量 $u^{(1)}$, $u^{(2)}$,..., $u^{(k)}$ (其中各个 u 都是 n 维的),将数据投影到这 k 个向量展开的低维线性子空间上。

● 主成分分析不是线性回归!

步骤

Step 1 数据预处理: mean normalization; feature scaling (optinal)

Step 2 计算 feature 的协方差矩阵 sigma

Step 3 计算协方差矩阵的特征向量(构成的矩阵 U),取前 k 个得到约简后的矩阵 U_{reduce} ,即各个投影方向向量(方法: svd/eig)

Step 4 与原 feature 相乘

$$z = U_{reduce}^{T} * x$$

Reconstruction 原始数据重构

$$x_{approx} = U_{reduce} * z$$

Choosing "k"

从 1 开始尝试不同 k 值,使得"平均平方映射误差"与"总变差"之 商小于某值(0.01,0.05等)

(Choose k by % of variance retained)

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \stackrel{?}{\gtrsim} ||_{x^{(i)}} = \frac{1}{\sqrt{n}} ||_{x^{(i)}}$ Total variation in the data: $\frac{1}{m} \stackrel{?}{\lesssim} ||_{x^{(i)}}||_{x^{(i)}}$

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

Andrew N

实际应用时,借助 svd 函数中返回的 S 矩阵来求。

应用建议

- 1. 用于加快监督学习时,仅仅在 training set 上做,不在 cross valiation set 或 test set 上做。
- 2. 不应该用于:避免过拟合。过拟合就只用正则化来解决,PCA 仅用于节省空间、加快速度。