Machine Learning 2019 Spring - HW6 Report

學號: B06902029 系級: 資工二姓名: 裴梧鈞

- 1. (1%) 請說明你實作之 RNN 模型架構及使用的 word embedding 方法,回報模型的正確率並繪出訓練曲線。
 - RNN Model

EmbeddingLayer
Dropout(0.4)
BidirectionalLSTM(128)
Dropout(0.4)
Dense(1)

- Word Embedding
 - 1. 使用 Jieba 進行分詞
 - 2. Train 一個 Word2Vec 的 model 並算出 embedding matrix
 - 3. 藉由 embedding matrix 將輸入轉乘 model 的 input
- 訓練曲線 (epoch = 20)

■ 正確率 (epoch = 10) 為避免 overfitting 的發生,使用 10 個 epoch 的 model 作為繳交的 model。

Validation Accuracy	Public Score	Private Score
0.7450	0.74230	0.73490

- 2. (1%) 請實作 BOW+DNN 模型, 敍述你的模型架構, 回報模型的正確率並繪出訓練曲線。
 - BOW

為了避免因字典詞太多而造成維度過多、Memory Error 等問題,我僅使用出現次數十次以上的詞。出現次數十次以下的詞將被視為0。

DNN

Dense(256)
Dropout(0.4)
Dense(16)
Dropout(0.4)
Dense(1)

■ 訓練曲線 (epoch = 20)

■ 正確率 (epoch = 3) 與 Problem 1 相同,為避免 overfitting 的發生,使用 3 個 epoch 的 model 作為 繳交的 model。

Validation Accuracy	Public Score	Private Score
0.6878	0.72540	0.72380

- 3. (1%) 請敍述你如何 improve performance (preprocess, embedding, 架構等) ,並解釋為何這些做 法可以使模型進步。
 - Preprocess & Jieba
 - 標點符號 我發現分詞會切出標點符號,我覺得標點符號大部分的時候都沒有太大的用處,於是 把以下全形標點符號以及空白刪除了。

- 英文大小寫 雖然在 Dcard 的資料中英文出現的不多,但我還是把所有英文字串藉由 str.lower()轉成小寫。如此一來可以讓詞的數量降低一點,而那些大小寫的英文詞的意思應 該不會差太多,總體而言讓我的 model 表現略好一點。
- Embedding 沒有做特別的更動,如果將 trainable 設成 True,則可以讓 Training 所需的 epoch 變小相當多(約 5 個 epoch 就到 validation loss 的最低了)。

- 架構 我有嘗試在 LSTM 的 Layer 前後加 Dense 的 Layer,發現這樣會讓 model 些為變好,但相當 容易 overfit。
- Ensemble 藉由以上所述幾點(特別是架構),我設計出一些 model,並藉由 Ensemble 預測。我 的單一 Model 都不能過 Strong Baseline,Ensemble 起來有過 Strong 過,但是我把 Model 删掉了 沒辦法 Reproduce 回來......
- 4. (1%) 請比較不做斷詞 (e.g., 以字為單位) 與有做斷詞,兩種方法實作出來的效果差異,並解釋為何有此差別。

Model	Validation Accuracy	Public Score	Private Score
分詞RNN	0.7450	0.74230	0.73490
分詞BOW	0.6878	0.72540	0.72380
不分詞RNN	0.7405	0.73830	0.73430
不分詞BOW	0.6725	0.70870	0.70760

不分詞的 Model 大概略差於有分詞的 Model,Accuracy 大概差個 $0.5 \sim 1.5\,\%$,差距並不是很大。我認為最主要的問題是因為惡意言論可能都跟某些字 / 詞有關係,而我的 Model 則是藉由那些字 / 詞判斷是否為惡意言論。

5. (1%) 請比較 RNN 與 BOW 兩種不同 model 對於 "在說別人白痴之前,先想想自己"與"在說別人之前先想想自己,白痴" 這兩句話的分數 (model output),並討論造成差異的原因。

Model	第一句 Output	第二句 Output
RNN	0.76684	0.76656
BOW	0.78075	078075

從表格可以發現 BOW 的結果和 RNN 的結果差不多,都是呈現這是惡意言論;另外,可以發現 BOW 的特性,句子組成相同(分詞結果相同)時,Input 的 vector 會一樣而導致兩個 Output 一樣。

令我比較意外的是 RNN 的第一句 Output 略大於第二句的 Output,但就我的弱弱國文能力判斷來說,第一句其實比較沒有惡意的成分。這或許是因為 training data 之中較少這樣的句子或者 training data 將這類的語句標成惡意的 label 導致的。