Lecture 04, Math 447

Marius Junge

University of Illinois at Urbana-Champaign

What is \mathbb{R} ?

- $oxed{A1} \mathbb{R}$ is the (unique) totally ordered complete field s.t. \mathbb{Q} is dense.
- A2 Construction...

$$egin{aligned} \mathbb{Q} &= G(\mathbb{Q}^+,+,0) \ \mathbb{Q}^+ &= G(\mathbb{N},\cdot) \ o & ext{totally ordered field.} \end{aligned}$$

Def A Dedekind cut is a subset $A \subseteq \mathbb{Q}$ such that

1)
$$a \in A$$
, $b \le a \Rightarrow b \in A$

-///////

2)
$$\forall a \in A \exists a' > a \quad a' \in A$$

"Example":

1) Define $R = \{D \subset \mathbb{Q} \mid D \text{ Dedekind}\}.$

We have $\varphi:\mathbb{Q}\to R$ defined as $\varphi(q)=\{a\mid a< q\}.$ φ is injective.

2) $A_{\sqrt{2}} = \{x \in \mathbb{Q} \mid x^2 < 2 \text{ or } x \le 0\}$ is Dedekind.

timestamp: 00:00

Proof of "Example" 2

Trivial for
$$x \leq 0$$
. Let $0 < \frac{p}{q} \in A_{\sqrt{2}}$. Let $\frac{p'}{q'} < \frac{p}{q}$. Claim: $(\frac{p'}{q'})^2 < 2$. Monotonicity $\Rightarrow (\frac{p'}{q'})^2 < (\frac{p}{q})^2 < 2$. \checkmark Claim: let $\frac{p}{q}$ such that $(\frac{p}{q})^2 < 2$ $(\iff p^2 < 2q^2)$. then $\exists \frac{p'}{q'} > \frac{p}{q}$ $p'^2 < 2(q')^2$.

Intuitively, we want a number still $<\sqrt{2}$ just a little bigger than $\frac{p}{q}$. How would we do that? Take decimal expansions. Since $\frac{p}{q}<\sqrt{2}$, at some point the expansion must reflect this and you have some room.

$$rac{p'}{q'} = rac{p}{q} + rac{d}{q^m} < \sqrt{2}.$$
 $(rac{p}{q} + rac{d}{q^m})^2 < 2.$
Need $(pq^{m-1} + d)^2 < 2(q^{2m}).$

...find d and make m large enough so this works....

Proof continued

Take
$$d=1$$
:
$$p^2q^{2(m-1)}+2pq^{(m-1)}+1<2q^{2m}.$$

$$p^2+2pq^{-(m-1)}+\frac{1}{q^{2(m-1)}}<2q^2.$$
 Now, $\frac{1}{q^{2(m-1)}}<\frac{1}{q^{m-1}}$ so
$$p^2+2pq^{-(m-1)}+\frac{1}{q^{2(m-1)}}< p^2+\frac{2p+1}{q^{m-1}}.$$

Solution: Assume q>1, choose m so that $\frac{2p+1}{q^{m-1}}<2q^2-p^2$.

Then
$$\frac{p'}{q'} = \frac{p}{q} + \frac{1}{q^m}$$
 works.

Prove for homework: Claim $\sup D_{\sqrt{2}} = \sqrt{2}$

R is complete

Def $D_{1,2} \in R$. Define $D_1 \leq D_2$ if $D_1 \subseteq D_2$.

Lemma 1 *R* is complete.

Proof Let
$$S \subseteq R$$
 and $D \in R$ $\forall s \in S$ $s \leq D$ $(s \subseteq D)$.

Define sup
$$S = \bigcup_{s \in S} s$$
 Note $\bigcup_{s \leq D} s \subseteq D$.

D is a D-cut: 1)
$$a \in D$$
 $b \le a \Rightarrow b' \in D$

2)
$$\forall a \in D \exists a' > a \quad a \in D$$
.

Obviously sup $S \in R$ (check two cndtns above) and sup $S \leq D$.

Claim sup *S* is the smallest upper bound.

Indeed let $D' \in R$ such that $\forall s \quad s \leq D'$.

$$\implies \forall s \quad s \subseteq D' \implies \bigcup_{s \in S} s \subseteq D' \implies \sup S \leq D'.$$
 note correction.

timestamp: 24:23

Definition of \mathbb{R} (as a set)

R cannot be the real numbers... just a bit too big:

 \mathbb{Q} is a Dedekind cut $(\in R)$ that corresponds to ∞ $(\notin \mathbb{R})$.

Def
$$\mathbb{R} = \{ D \subseteq \mathbb{Q} \mid D \neq \mathbb{Q} \}.$$

If $D \neq \mathbb{Q}$ take $q \notin D$. Then no q' > q can be in D, so also

$$\mathbb{R} = \{ D \in R \mid \exists \ q \in \mathbb{Q} \mid D < \varphi(q) \}.$$

Claim \mathbb{R} is complete.

If $D \in \mathbb{R}$ then $\exists q_0$ such that $D < \varphi(q_0)$.

$$\implies \sup D < \varphi(q_0) \implies \sup D \neq \infty \implies \sup D \in \mathbb{R}.$$

Rest of proof is the same for \mathbb{R} as for R.

timestamp: 31:13

Field operations of $\mathbb R$

$$\mathbb{R}^+ = \{ D \in \mathbb{R} \mid (-\infty, 0] \subseteq D \}.$$

Define
$$D_1 + D_2 = \bigcup \{d_1 + d_2 \mid d_1 \in D_1^+ \mid d_2 \in D_2^+ \}.$$
 $D_1D_2 = \bigcup \{d_1d_2 \mid d_1 \in D_1^+ \mid d_2 \in D_2^+ \}.$

Since negative # s complicate multiplication slightly, assume each $D \in \mathbb{R}^+$ is $\subset \mathbb{Q}^+$ (they start at 0, not $-\infty$). View as $\mathbb{R}^+ = \{D \subset \mathbb{Q}^+ \mid D \cup (-\infty, 0] \text{ is Dedekind}\}$.

Properties:
$$D_1 + (D_2 + D_3) = (D_1 + D_2) + D_3$$

 $D_1(D_2 + D_3) = D_1D_2 + D_1D_3$
etc. (associativity, commutativity...)

 \mathbb{R}^+ semigroup under + with cancellation (lacks "-"s and 0).

Final answer: $\mathbb{R} = G(\mathbb{R}^+)$.

\mathbb{R} is totally ordered

 \mathbb{R}^+ totally ordered: D_1 and D_2 D-cuts $\implies D_1 \subseteq D_2$ or $D_2 \subseteq D_1$.

Lemma \mathbb{R} is totally ordered.

Proof D_1 and $D_2 \in \mathbb{R}$.

Case 1: $D_1 \subseteq D_2$. Then done.

Case 2: $D_1 \nsubseteq D_2$. Then $\exists d_1 \in D_1 \quad d_1 \notin D_2$

$$\implies D_2 < d_1 \implies D_2 \subseteq D_1.$$

(this is a sketch; stated for \mathbb{R} but proven for \mathbb{R}^+ .)

Next time:

 \mathbb{R} uncountable

 \mathbb{Q} dense in \mathbb{R} .