Minimum Spanning Tree

Important Terms

Spanning Tree

Given an undirected and connected graph, a spanning tree of the graph is a tree that includes every vertex of the graph

• It is a subgraph of the graph, ie every edge in the tree belongs to

graph

Minimum Spanning Tree

- In a connected, weighted, undirected graph, the cost of the spanning tree is the sum of the weights of all the edges in the tree.
- There can be many spanning trees.
- Minimum spanning tree is the spanning tree where the cost is minimum among all the spanning trees.

Suppose we have an undirected graph with 4 vertices

Spanning Tree
Cost= 11 (4+5+2)

Spanning Tree
Cost= 8 (4+3+1)

Minimum Spanning Tree Cost= 7 (4+1+2)

Application of MST problem

Network design

N stations to be linked using a communication network & laying of communication links between any two stations involves a cost.

The ideal solution would be to extract a subgraph termed as minimum cost spanning tree.

Connecting Cities

To construct highways or railroads spanning several cities then we can use the concept of minimum spanning trees.

Supply of power lines

To supply a set of houses with

- Electric Power
- Water
- Telephone lines
- Sewage lines

Kruskal's algorithm

- Kruskal's Algorithm builds the spanning tree by adding edges one by one into a growing spanning tree.
- Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has least weight and add it to the growing spanning tree.

An MST has N-1 edges

Tree by definition is acyclic.

An MST can not have cycles

Steps

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

9 | 19 | 31 | 42 | 51 | 75 | 95

Parent array

 0
 1
 2
 3
 4

 0
 1
 2
 3
 4

Count = 0

$$9+19+31+51=110$$

Parent array

Count =
$$4 = V-1$$

Pseudo Code

```
// intialise parent array
for each vertex: make set
sort each edge in non decreasing order by weight
for each edge (u,v) do:
   if findSet(u)!=findSet(v)
       Union(u,v)
       cost=cost+edge(u,v)
```

Time & Space Complexity

```
for each vertex: make set

Sort each edge in non decreasing order by weight

O(ElogE)

for each edge(u,v) do:

O(E)

if findSet(u)!=findSet(v)

Union(u,v)

Cost=cost+edge(u,v)

O(V)
```

Time Complexity: O(V+ElogE+E.V)

O(ElogE+E.V)

Space Complexity: O(V+E)

: O(E)

Optimise Time Complexity

- The union find method can take upto O(V) time to find and change the parent array.
- Union by Rank and path compression is an optimised algorithm which will at worst take O(logV) time for union find operations.
- Hence the time complexity will then be: O(ElogE+ElogV)
 = O(ElogE)

Q: Min cost to connect all points

https://leetcode.com/problems/min-cost-to-connect-all-points