武汉大学 2018--2019 学年第 二 学期 大学物理 A(上)期末试卷 (A 卷)

学院	学号	姓名	成绩
	考试形式: 闭卷	考试时间长度	
一、选择题(每小题 3 分, 共 10 小题、30 分)			
1. 一质点	沿直线运动,已知其速度与时	间成反比,则加速度的大	小 ()
(A) 与速	度成正比 (B)与速	度成反比	
(C) 与速	度平方成正比 (D)与速	度平方成反比	
	量为 m 的猴子, 开始时抓住		
	突然脱落时,猴子沿杆竖直向 	上爬,以保持其离地面的	高度不变。则此时杆下落
	的大小为 ()		
(A) g	$(B) \frac{M+m}{M}g \qquad \qquad $	$(C) \frac{M-m}{M}g \qquad (D)$	$\frac{M+m}{M-m}g$
3. 劲度系统	数为 k 、原长为 l_0 的弹簧,其	弹力与形变的关系遵守胡克	瓦定律。在拉力 F 的作用
下, 当弹簧	簧的长度由 l_1 缓慢地变为 l_2 (l	$l_2 > l_1 > l_0$)的过程中,拉力	7做的功为()。
(A) $\frac{1}{2}k($	$(l_2 - l_1)(l_2 + l_1 - 2l_0)$ (B)	$\frac{1}{2}k\big(l_2-l_1\big)^2$	
(C) $\frac{1}{2}kl$	$l_2^2 - \frac{1}{2}k l_1^2 \tag{D}$	$\frac{1}{2}k l_2^2 - \frac{1}{2}k l_1^2 - \frac{1}{2}k l_0^2$	
4. 一质点值	故简谐振动的简谐运动曲线如		<i>x</i> ↑/cm
相位 φ 和频		4	.0
$(A) \qquad \frac{\pi}{3}$	$\frac{5}{6} \text{Hz} \qquad (B) \qquad -\frac{\pi}{3}$	$\frac{1}{2}$ Hz	$O \longrightarrow O \longrightarrow O$
(C) $-\frac{\pi}{3}$	$\frac{2}{3}$, $\frac{2}{3}$ Hz (D) $-\frac{\pi}{3}$	$\frac{5}{6}$ Hz	
5. 有一质量	量为 m 的物体以振幅为 A 做简	i谐运动,其最大加速度为	a_m ,则下列说法正确的是
()		
(A) 振动周	引期为 $2\pi\sqrt{A/a_{_{m}}}$	(B) 振动周期为 $\pi\sqrt{A/a}$	l m
(C) 通过平	产衡位置的总能量为 $\frac{1}{2}m\sqrt{a_mA}$	(D) 通过平衡位置的总	能量为 $m\sqrt{a_{_{m}}A}$
6. 如图所:	示,设 B 点发出的平面简谐波	设沿BP方向传播,它在B	点的 B. P /
振动方程为	$y_1 = 2 \times 10^{-3} \cos 2\pi t \text{ [SI]}; C$	点发出的平面简谐波沿 CP	
传播,它在	C 点的振动方程为 $y_2 = 2 \times 10^{-5}$	$e^{-3}\cos(2\pi t + \pi)$ [SI]。设 $BP =$	0.4 C

降低、不变、不确定), 气体的熵将_____(填:增大、减小、不变、不确定)。

16. $(4 \, \mathcal{O})$ 如图所示,真空中有一无限长、电荷线密度为 λ 的均匀带正电的直线,还有一长为l、电荷线密度为 λ 的均匀带正电的直线,二者在同一平面内且相互垂直,二者之间的最近距离为a,则无限长带电直线受到的库仑力大小为______,方向为_____。

三、计算题(共5题, 47分)

17. (本题 8 分) 如图所示,某星球半径为 R,质量为 M。在距离星球很遥远的地方有一艘飞船以速度 v_0 沿直线向星球方向飞行,其飞行的直线与星球中心的距离为 r。当飞船靠近星球时,由于引力作用使飞船的飞行轨迹发生偏

转。试求, 当 r 为多少时, 飞船恰好以平行于星球表面的速度着陆, 并求着陆时的速度。

18 (本题 8 分) 质量为 m 、长为 L 的匀质细棒,可绕通过棒的一端、并与棒垂直的水平固定轴 O 无摩擦地自由转动,在棒的另一端固定一个质量为 m/2 的小球(可视为质点)。开始时,棒直立于转轴上方。由于受到某种扰动,棒从静止开始倒下,如图所示。试求棒倒下的时角速度 ω 和 θ 的函数关系。

- **19.** (本题 10 分)某种单原子分子的理想气体作卡诺循环,已知循环效率 $\eta = 20\%$,试问气体在绝热膨胀时,气体体积增大到原来的几倍?
- **20.** (本题 10 分) 一带电球壳的内外半径分别为a 和b,壳体中的电荷密度按 $\rho=\rho_0r$ 的规律进行分布,式中 ρ_0 为大于 0 的常量,r 是球壳内部任一点到球心的距离。试求

- (1) 带电壳体内外的场强分布;
- (2) 球壳内外表面之间的电势差。
- **21.** (**本题 11 分**) 如图所示,三块平行金属板 A、B、C 面积均为 10 cm^2 ,A、B 间相距 $d_1 = 0.50 \text{ mm}$,A、C 间相距 $d_2 = 1.0 \text{ mm}$,其中 AB 和 BC 之间分别填充了相对电容率为 $\varepsilon_{r1} = 2.0$ 和 $\varepsilon_{r2} = 4.0$ 的均匀电介质。现假设 B、C 两板都接地,如果使 A 板带正电 3.0×10^{-8} C,忽略电场的边缘效应,试求:B、C 两板上感应电荷的电量。

