Tutorial 8

Research Methods for Political Science - PO3110

Andrea Salvi

19 & 20 November 2019

Trinity College Dublin,

https://andrsalvi.github.io/research-methods/

Table of contents

- 1. Correlation by hand
- 2. Correlation in SPSS
- 3. Project Work

Correlation by hand

Preliminary Steps

1. Correlation and co-variation measure the association between two interval-ratio variables

Preliminary Steps

- Correlation and co-variation measure the association between two interval-ratio variables
- 2. Before you start, always create a scatter-plot!

Behold! The datasaur!

¹https://www.autodeskresearch.com/publications/samestats

$$\cdot \ \sigma^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{\sum (x - \overline{x})(x - \overline{x})}{n - 1}$$

$$\cdot \sigma^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{\sum (x - \overline{x})(x - \overline{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$$

Interpretation:

• $\sigma_{xy} = 0$: variables not related

$$\cdot \sigma^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{\sum (x - \overline{x})(x - \overline{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$$

Interpretation:

- $\sigma_{xy} = 0$: variables not related
- $\sigma_{xy} > 0$: variables vary in the same direction

$$\cdot \sigma^2 = \frac{\sum (x - \bar{x})^2}{n - 1} = \frac{\sum (x - \bar{x})(x - \bar{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{n - 1}$$

Interpretation:

- $\sigma_{xy} = 0$: variables not related
- $\sigma_{xy} > 0$: variables vary in the same direction
- $\sigma_{xy} <$ 0: variables vary in the opposite direction

$$\cdot \sigma^2 = \frac{\sum (x - \bar{x})^2}{n - 1} = \frac{\sum (x - \bar{x})(x - \bar{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{n - 1}$$

Interpretation:

- $\sigma_{xy} = 0$: variables not related
- $\sigma_{xy} > 0$: variables vary in the same direction
- $\sigma_{xy} <$ 0: variables vary in the opposite direction

Problem of co-variation? It depends on the scales of the variables of interest!

$$\cdot \sigma^2 = \frac{\sum (x - \bar{x})^2}{n - 1} = \frac{\sum (x - \bar{x})(x - \bar{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{n - 1}$$

Interpretation:

- $\sigma_{xy} = 0$: variables not related
- $\sigma_{xy} > 0$: variables vary in the same direction
- σ_{xy} < 0: variables vary in the opposite direction

Problem of co-variation? It depends on the scales of the variables of interest!

•
$$\sigma_{x}\sigma_{y} \leq \sigma_{xy} \leq \sigma_{x}\sigma_{y}$$

$$\cdot \sigma^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{\sum (x - \overline{x})(x - \overline{x})}{n - 1}$$

$$\cdot \sigma_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$$

Interpretation:

- $\sigma_{xy} = 0$: variables not related
- $\sigma_{xy} > 0$: variables vary in the same direction
- σ_{xy} < 0: variables vary in the opposite direction

Problem of co-variation? It depends on the scales of the variables of interest!

- $\sigma_{x}\sigma_{y} \leq \sigma_{xy} \leq \sigma_{x}\sigma_{y}$
- · Solution?

Divide the co-variation by the standard deviations of \boldsymbol{x} and \boldsymbol{y} .

Divide the co-variation by the standard deviations of \boldsymbol{x} and \boldsymbol{y} .

• correlation = $\frac{\text{covariance}}{\text{sd x} \times \text{sd y}}$

Divide the co-variation by the standard deviations of x and y.

• correlation =
$$\frac{\text{covariance}}{\text{sd x} \times \text{sd y}}$$

•
$$r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y}$$

Divide the co-variation by the standard deviations of \boldsymbol{x} and \boldsymbol{y} .

• correlation =
$$\frac{\text{covariance}}{\text{sd x} \times \text{sd y}}$$

•
$$r = \frac{\sigma_{xy}}{\sigma_x \times \sigma_y}$$

•
$$-1 \le r \le 1$$

Х	У
1	1
2	3
4	5
5	7

Steps:

1. Calculate mean of each variable:

Х	У
1	1
2	3
4	5
5	7

Steps:

- 1. Calculate mean of each variable:
- 2. Calculate standard deviations of x and y: $\sigma = \sqrt{\frac{\sum (x \bar{x})^2}{n-1}}$
- 3. Calculate co-variance: $\sigma_{xy} = \frac{\sum (x \bar{x})(y \bar{y})}{n-1}$

Х	У
1	1
2	3
4	5
5	7

Steps:

- 1. Calculate mean of each variable:
- 2. Calculate standard deviations of x and y: $\sigma = \sqrt{\frac{\sum (x \bar{x})^2}{n-1}}$
- 3. Calculate co-variance: $\sigma_{xy} = \frac{\sum (x \bar{x})(y \bar{y})}{n-1}$
- 4. Divide co-variance by the product of standard deviations!

1. Calculate mean of each variable: $\bar{x}=3$, $\bar{y}=4$

- 1. Calculate mean of each variable: $\bar{x} = 3$, $\bar{y} = 4$
- 2. Calculate standard deviations: $\sigma_{\rm X}$ = 1.83 and $\sigma_{\rm y}$ = 2.58

- 1. Calculate mean of each variable: $\bar{x} = 3$, $\bar{y} = 4$
- 2. Calculate standard deviations: σ_X = 1.83 and σ_Y = 2.58
- 3. Calculate co-variance: σ_{xy} = $((13) \times (14) + (23) \times (34) + (43) \times (54) + (53) \times (74))/(41) = 4.66$

- 1. Calculate mean of each variable: $\bar{x} = 3$, $\bar{y} = 4$
- 2. Calculate standard deviations: σ_X = 1.83 and σ_V = 2.58
- 3. Calculate co-variance: σ_{xy} = $((13) \times (14) + (23) \times (34) + (43) \times (54) + (53) \times (74))/(41) = 4.66$
- 4. Divide co-variance by the product of standard deviations: $4.66/(1.83 \times 2.58)$

- 1. Calculate mean of each variable: $\bar{x} = 3$, $\bar{y} = 4$
- 2. Calculate standard deviations: $\sigma_{\rm X}$ = 1.83 and $\sigma_{\rm V}$ = 2.58
- 3. Calculate co-variance: σ_{xy} = $((13) \times (14) + (23) \times (34) + (43) \times (54) + (53) \times (74))/(41) = 4.66$
- 4. Divide co-variance by the product of standard deviations: $4.66/(1.83 \times 2.58)$

Correlation, r = 0.99

Х	У
1	1
2	3
4	5
5	7

Х	У
1	1
2	3
4	5
5	7

1. Insert dataset into SPSS

Х	У
1	1
2	3
4	5
5	7

- 1. Insert dataset into SPSS
- 2. Create scatter-plot of x and y

Х	У
1	1
2	3
4	5
5	7

- 1. Insert dataset into SPSS
- 2. Create scatter-plot of x and y
- 3. Estimate correlation

Let's check manually!

• The sampling distribution of *r* is approximately normal (but bounded at -1.0 and +1.0) when N is large

Let's check manually!

- The sampling distribution of *r* is approximately normal (but bounded at -1.0 and +1.0) when N is large
- It distributes t when N is small!

Let's check manually!

- The sampling distribution of *r* is approximately normal (but bounded at -1.0 and +1.0) when N is large
- It distributes t when N is small!
- DF = N 2

Let's check manually!

- The sampling distribution of *r* is approximately normal (but bounded at -1.0 and +1.0) when N is large
- It distributes t when N is small!
- DF = N 2
- $t = r\sqrt{\frac{n-2}{1-r^2}}$

Let's check manually!

- The sampling distribution of *r* is approximately normal (but bounded at -1.0 and +1.0) when N is large
- It distributes t when N is small!
- DF = N 2
- $t = r\sqrt{\frac{n-2}{1-r^2}}$
- $H_0: r = 0$

g

Project Work

Which test should I use?

· Ultimately depend on your data!

Which test should I use?

- · Ultimately depend on your data!
- When in doubt, have a look at this link: https: //stats.idre.ucla.edu/other/mult-pkg/whatstat/

Which test should I use?

- · Ultimately depend on your data!
- When in doubt, have a look at this link: https: //stats.idre.ucla.edu/other/mult-pkg/whatstat/
- Further resources have been included the tutorial website!

Furthering your project

Team up and discuss (some of) the following aspects:

- 1. Research question + relevance
- 2. Theoretical argument + hypothesis
- 3. Type of data + operationalisation of variables
- 4. Ways of analysing your data

I am available for further questions/feedback!