

Welcome

- Video: Welcome to Machine Learning!
 1 min
- Reading: Machine Learning
 Honor Code
 8 min

Introduction

- Video: Welcome
 6 min
- Video: What is Machine Learning?
 7 min
- Reading: What is Machine Learning?
 5 min
- Reading: How to Use Discussion Forums
 4 min
- Video: Supervised Learning
 12 min
- Reading: Supervised Learning 4 min
- Video: Unsupervised Learning
 14 min
- Reading: Unsupervised Learning
 3 min
- Reading: Who are Mentors?
- Reading: Get to Know Your Classmates
 8 min
- Reading: Frequently Asked
 Questions
 11 min

Review

- Reading: Lecture Slides 20 min
- **Quiz:** Introduction 5 questions

Model and Cost Function

- Video: Model Representation 8 min
- Reading: Model Representation

<u>°=</u>

Cost Function

We can measure the accuracy of our hypothesis function by using a **cost function**. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 = rac{1}{2m} \sum_{i=1}^m (h_ heta(x_i) - y_i)^2$$

To break it apart, it is $\frac{1}{2}$ \bar{x} where \bar{x} is the mean of the squares of $h_{\theta}(x_i)-y_i$, or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved $\left(\frac{1}{2}\right)$ as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the $\frac{1}{2}$ term. The following image summarizes what the cost function does:

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples (x,y)

Minimize $J(\Theta_0, \Theta_1)$ O_0, Θ_1 Lost function

well error faction

✓ Complete

Go to next item

