

Instytut Instytut Techniki Lotniczej i Mechaniki Stosowanej

Praca przejściowa inżynierska

na kierunku Lotnictwo i Kosmonautyka w specjalności Automatyka i Systemy Pokładowe

Wyznaczanie orbity statku kosmicznego na podstawie obserwacji naziemnych

Paweł Pietrzak

Numer albumu 304263

opiekun mgr inż. Mateusz Sochacki

Spis treści

1.	Wst	ęp	5
	1.1.	Definicja wektora stanu i elementów orbitalnych	5
	1.2.	Transformacja wektora stanu na elementy orbitalne	5
	1.3.	Metoda Gaussa	7
2.	Cel	i zakres projektu	10
3.	Wal	idacja działania metody	11
	3.1.	Wspólne stałe	11
	3.2.	Obserwacja w pobliżu górowania	12
		3.2.1. Dane obserwacyjne	12
		3.2.2. Wyniki	12
	3.3.	Obserwacja podczas pełnego przelotu	15
		3.3.1. Dane obserwacyjne	15
		3.3.2. Wyniki	15
	3.4.	Obserwacje zakłócone	18
		3.4.1. Dane obserwacyjne	18
		3.4.2. Wyniki	18
	3.5.	Obserwacja hipotetyczna	20
		3.5.1. Dane obserwacyjne	20
		3.5.2. Wyniki	20
	3.6.	Obserwacja rzeczywista	23
		3.6.1. Dane obserwacyjne	23
		3.6.2. Wyniki	23
4.	Pod	sumowanie	27
Bi	bliog	rafia	29
Sp	is ry	sunków	30
Sp	is tal	bel	30
Za	łączi	niki	30
		Warianty symulacji	30
	4.2.	Algorytm Gaussa	34
	4.3.	Uniwersalne równanie Keplera	38
	4.4.	Konwersja danych	39
	4.5.	Symulacja ISS	40
	4.6	Wyświetlanie wyników	42

1. Wstęp

Wyznaczenie orbity obiektu kosmicznego polega na określeniu wektora stanu (położenia oraz prędkości) obserwowanego ciała na podstawie zbioru obserwacji [1]. Zagadnienie to jest jednym z najważniejszych zadań mechaniki nieba już od początków istnienia tej dziedziny nauki. Pierwsze skuteczne metody zostały opracowane na przełomie XVIII i XIX wieku m.in. przez Laplace'a [2] oraz Gaussa, który wykorzystując swoją metodę wyznaczył orbite Ceres [3].

Współcześnie znajomość orbit potrzebna jest nie tylko do katalogowania Układu Słonecznego, ale również do planowania manewrów orbitalnych, korekcji orbit satelitów, unikania kosmicznych śmieci. Mimo upływu lat, historyczne metody w rozwiniętej wersji wciąż są wykorzystywane jako pierwsze przybliżenie dla metod numerycznych pozwalających wyznaczyć dokładniejsze rozwiązania [1].

1.1. Definicja wektora stanu i elementów orbitalnych

Wektor stanu orbitalnego statku kosmicznego składa się z wektorów położenia (**r**) i prędkości (**v**). Zgodnie z konwencją ruch statków kosmicznych w okolicy Ziemi opisuję się względem układu ECI (Earth-Centered Inertial). Jego środek znajduje się w środku Ziemi, płaszczyzna XY jest zgodna z płaszczyzną równika, oś X wskazuje na Punkt Barana, a oś Z jest zgodna z osią obrotu planety. Oś Y dopełnia układ tak, by był on prawoskrętny.

Korzystając z prawa powszechnego ciążenia oraz drugiej zasady dynamiki można wyznaczyć równania różniczkowe ruchu obiektu i je rozwiązać, używając wektora stanu jako warunku brzegowego. Prowadzi to do wyznaczenia orbity możliwej do opisania przy pomocy elementów orbitalnych, czyli zestawu sześciu wielkości, pięciu stałych w czasie opisujących jej tor oraz szóstej, zmiennej, wskazującej aktualne położenie obiektu na orbicie [4]. Klasyczne elementy orbitalne składają się z:

- półosi wielkiej (a)
- inklinacji (i)
- długości węzła wstępującego (Ω)
- mimośrodu (e)
- argumentu perygeum (ω)
- anomalii prawdziwej (v)

Elementy orbitalne oraz układ ECI ilustruje rysunek 1.1.

1.2. Transformacja wektora stanu na elementy orbitalne

Dysponując wektorem stanu (wektor położenia \mathbf{r} i wektor prędkości \mathbf{v} w układzie ECI) można wyznaczyć elementy orbitalne. Potrzebny jest też powiązany z prawem powszechnego ciążenia standardowy parametr grawitacyjny μ , będący iloczynem stałej grawitacyjnej i sumy mas ciała orbitującego i centralnego.

$$\mu = G(M+m) \stackrel{M>>m}{\approx} GM \tag{1.1}$$

Rysunek 1.1. Układ referencyjny ECI oraz część elementów orbitalnych: inklinacja i, długość węzła wstępującego Ω , argument perygeum ω i anomalia prawdziwa ν

Procedura wyznaczenia elementów orbitalnych z wektora stanu: Wyznaczenie momentu pędu:

$$\mathbf{h} = \mathbf{r} \times \mathbf{v} \tag{1.2}$$

Wyznaczenie inklinacji:

$$i = \cos^{-1}\left(\frac{h_z}{\|\mathbf{h}\|}\right) \tag{1.3}$$

Wyznaczenie: osi apsyd i długości węzła wstępującego:

$$\mathbf{N} = [0, 0, 1] \times \mathbf{h} \tag{1.4}$$

$$\Omega = \cos^{-1}\left(\frac{N_x}{\|\mathbf{N}\|}\right) \tag{1.5}$$

Wyznaczenie mimośrodu:

$$\mathbf{e} = \frac{1}{\mu} \left(\mathbf{v} \times \mathbf{h} - \mu \frac{\mathbf{r}}{\|\mathbf{r}\|} \right) \tag{1.6}$$

$$e = \|\mathbf{e}\| \tag{1.7}$$

Wyznaczenie argumentu perygeum:

$$\omega = \cos^{-1}\left(\frac{\mathbf{N} \cdot \mathbf{e}}{\|\mathbf{N}\| \|\mathbf{e}\|}\right) \tag{1.8}$$

Jeśli e_Z < 0:

$$\omega = 360^{\circ} - \omega \tag{1.9}$$

Wyznaczenie anomalii prawdziwej:

$$\theta = \cos^{-1}\left(\frac{\mathbf{e} \cdot \mathbf{r}}{\|\mathbf{e}\| \|\mathbf{r}\|}\right) \tag{1.10}$$

Jeśli $\mathbf{r} \cdot \mathbf{v} < 0$:

$$\theta = 360^{\circ} - \theta \tag{1.11}$$

Wyznaczenie półosi wielkiej:

$$r_p = \frac{h^2}{\mu} \frac{1}{1 + \|\mathbf{e}\| \cos(0^\circ)} \tag{1.12}$$

$$r_a = \frac{h^2}{\mu} \frac{1}{1 + \|\mathbf{e}\| \cos(180^\circ)} \tag{1.13}$$

$$a = \frac{r_p + r_a}{2} \tag{1.14}$$

1.3. Metoda Gaussa

Metoda Gaussa pozwala na wyznaczenie wektora stanu obiektu na podstawie trzech obserwacji [5]. Wymaga to pomiaru składającego się z się z czasu pomiaru t_i , wektora położenia obserwatora R_i oraz wersora kierunkowego obserwacji $\hat{\rho_i}$. Wersor kierunkowy można wyznaczyć na podstawie zaobserwowanych współrzędnych astronomicznych [6]. Schemat obserwacji pokazuje Rysunek. 1.2.

Kolejne kroki metody to:

Wyznaczenie międzyczasów:

$$\tau_1 = t_1 - t_2 \tag{1.15}$$

$$\tau = t_3 - t_1 \tag{1.16}$$

$$\tau_3 = t_3 - t_2 \tag{1.17}$$

Wyznaczenie iloczynów:

$$\mathbf{p}_1 = \hat{\boldsymbol{\rho}}_2 \times \hat{\boldsymbol{\rho}}_3 \tag{1.18}$$

$$\mathbf{p}_2 = \hat{\boldsymbol{\rho}}_1 \times \hat{\boldsymbol{\rho}}_3 \tag{1.19}$$

$$\mathbf{p}_3 = \hat{\boldsymbol{\rho}}_1 \times \hat{\boldsymbol{\rho}}_2 \tag{1.20}$$

$$D_0 = \hat{\boldsymbol{\rho}}_1 \cdot \mathbf{p}_1 \tag{1.21}$$

Rysunek 1.2. Schemat wektorów używanych do wyznaczenia orbity metodą Gaussa

Wyznaczenie macierzy D_{3x3} :

$$D_{ij} = \mathbf{R}_i \cdot \mathbf{p}_i \tag{1.22}$$

Wyznaczenie współczynników A i B:

$$A = \frac{1}{D_0} \left(-D_{12} \frac{\tau_3}{\tau} + D_{22} + D_{32} \frac{\tau_1}{\tau} \right) \tag{1.23}$$

$$B = \frac{1}{6D_0} \left(D_{12} (\tau_3^2 - \tau^2) \frac{\tau_3}{\tau} + D_{32} (\tau^2 - \tau_1^2) \frac{\tau_1}{\tau} \right)$$
 (1.24)

Wyznaczenie współczynnika E:

$$E = \mathbf{R}_2 \cdot \hat{\boldsymbol{\rho}}_2 \tag{1.25}$$

Wyznaczenie współczynników a, b i c:

$$a = -(A^2 + 2AE + \|\mathbf{R}_2\|^2) \tag{1.26}$$

$$b = -2\mu B(A+E) \tag{1.27}$$

$$c = -\mu^2 B^2 \tag{1.28}$$

Wyznaczenie rzeczywistego, nieujemnego pierwiastka wielomianu i przyjęcie go jako wartość $\|r_2\|$:

$$x^8 + ax^6 + bx^3 + c = 0 ag{1.29}$$

Wyznaczenie wartości wektora obserwacji:

$$\|\boldsymbol{\rho}_2\| = A + \frac{\mu B}{\|\mathbf{r}_2\|^3} \tag{1.30}$$

$$\|\boldsymbol{\rho}_1\| = \frac{1}{D_0} \left(\frac{6\left(D_{31}\frac{\tau_1}{\tau_3} + D_{21}\frac{\tau}{\tau_3}\right) \|\mathbf{r}_2\|^3 + \mu D_{31}(\tau^2 - \tau_1^2)\frac{\tau_1}{\tau_3}}{6\|\mathbf{r}_2\|^3 + \mu(\tau^2 - \tau_3^2)} - D_{11} \right)$$
(1.31)

$$\|\boldsymbol{\rho}_{3}\| = \frac{1}{D_{0}} \left(\frac{6 \left(D_{13} \frac{\tau_{3}}{\tau_{1}} + D_{23} \frac{\tau}{\tau_{1}} \right) \|\mathbf{r}_{2}\|^{3} + \mu D_{13} (\tau^{2} - \tau_{3}^{2}) \frac{\tau_{3}}{\tau_{1}}}{6 \|\mathbf{r}_{2}\|^{3} + \mu (\tau^{2} - \tau_{3}^{2})} - D_{33} \right)$$
(1.32)

(1.33)

Wyznaczenie wektora położenia:

$$\mathbf{r}_1 = \mathbf{R}_1 + \|\boldsymbol{\rho}_1\|\hat{\boldsymbol{\rho}}_1 \tag{1.34}$$

$$\mathbf{r}_2 = \mathbf{R}_2 + \|\boldsymbol{\rho}_2\|\hat{\boldsymbol{\rho}}_2 \tag{1.35}$$

$$\mathbf{r}_3 = \mathbf{R}_3 + \|\boldsymbol{\rho}_3\|\hat{\boldsymbol{\rho}}_3 \tag{1.36}$$

Wyznaczenie współczynników Lagrange'a

$$f_1 = 1 - \frac{1}{2} \frac{\mu}{\|\mathbf{r}_2\|^3} \tau_1^2 \tag{1.37}$$

$$f_3 = 1 - \frac{1}{2} \frac{\mu}{\|\mathbf{r}_2\|^3} \tau_3^2 \tag{1.38}$$

$$f_1 = \tau_1 - \frac{1}{6} \frac{\mu}{\|\mathbf{r}_2\|^3} \tau_1^3 \tag{1.39}$$

$$g_3 = \tau_3 - \frac{1}{6} \frac{\mu}{\|\mathbf{r}_2\|^3} \tau_3^3 \tag{1.40}$$

(1.41)

Wyznaczenie wektora prędkości:

$$\mathbf{v}_2 = \frac{1}{f_1 g_3 - f_3 g_1} \left(-f_3 \mathbf{r_1} + f_1 \mathbf{r_3} \right) \tag{1.42}$$

2. Cel i zakres projektu

Celem pracy było wykorzystanie wybranej metody wyznaczania orbity statku kosmicznego na podstawie obserwacji naziemnych. Zaimplementowano metodę Gaussa wraz z poprawką iteracyjną. Do sprawdzenia poprawności działania metody stworzono generator obserwacji, który na podstawie modelu keplerowskiego i założonych elementów orbitalnych wyznacza dane obserwacyjne. Wykonano również walidację korzystając z danych wygenerowanych przy pomocy zewnętrznego programu do symulacji nocnego nieba Stellarium [7].

3. Walidacja działania metody

Do wygenerowania danych użyto informacji z TLE (Two Line Element) Międzynarodowej Stacji Kosmicznej z 19 grudnia 2022, pobranych ze strony archiwizującej informacje o satelitach CelesTrak [8]:

```
1 25544U 98067A 22353.42711160 .00011227 00000-0 20403-3 0 9992 2 25544 51.6432 138.9346 0003592 174.7295 234.7524 15.50052736373915
```

Format TLE nie zawiera informacji o elementach orbitalnych zdefiniowanych tak jak w rozdziale 1.1. Zamiast półosi wielkiej podaje dodatkowe informacje takie jak średnia częstość kołowa, jej pierwszą i drugą pochodną, współczynnik ciśnienia promieniowania, anomalię średnią oraz informacje o obiekcie i orbicie [9].

Półoś wielką można wyznaczyć na podstawie częstości kołowej zgodnie ze wzorem:

$$a = \frac{\mu^{\frac{1}{3}}}{\left(\frac{2\pi}{24\cdot60\cdot60}n\right)^{\frac{2}{3}}} \tag{3.1}$$

Gdzie:

- n częstość kołowa [obr/dzień]
- μ GM standardowy parametr grawitacyjny dla Ziemi

Na podstawie danych TLE uzyskano klasyczne elementy orbitalne. Następnie wygenerowano trzy zestawy danych obserwacyjnych i wykonano 5 porównań:

- trzy obserwacje w pobliżu górowania, o niewielkich różnicach czasu między obserwacjami
- trzy obserwacje dokonane podczas wschodu, górowania i zachodu obserwowanego obiektu
- powyższe dwa przypadki z symulowanym błędem pomiaru
- sytuacja hipotetyczna obserwacje równomiernie oddzielone na całej orbicie
- obserwacje dokonane w symulatorze nocnego nieba Stellarium

3.1. Wspólne stałe

Podczas wszystkich porównań przyjęto następujące wspólne stale:

$$\phi = 51^{\circ}23'15.49''$$

$$H = 153m$$

$$R_E = 6378km$$

$$f = 0.003353$$

$$\mu = 3,986004418 \cdot 10^{14} \frac{m^3}{s^2}$$

Gdzie:

- φ szerokość geograficzna obserwatora
- *H* wysokość nad poziomem morza obserwatora
- *R_E* promień Ziemi
- *f* spłaszczenie Ziemi
- θ lokalny czas gwiazdowy obserwacji

Współrzędne kartezjańskie obserwatora dla każdej obserwacji wyznaczono ze wzoru:

$$\mathbf{R} = \left[\frac{R_e}{\sqrt{1 - (2f - f^2)\sin^2\phi}} + H \right] \cdot \cos\phi(\cos\theta \,\hat{I} + \sin\theta \,\hat{J})$$

$$+ \left[\frac{R_e(1 - f)^2}{\sqrt{1 - (2f - f^2)\sin^2\phi}} + H \right] \cdot \sin\phi$$
(3.2)

3.2. Obserwacja w pobliżu górowania

3.2.1. Dane obserwacyjne

Czas obserwacji odpowiada zmianie anomalii o kąt 10°:

$$t_1 = 0s$$
$$t_2 = 77s$$
$$t_3 = 154s$$

Czas gwiazdowy obserwacji:

$$\theta_1 = 301.7692^{\circ}$$

 $\theta_2 = 302.0933^{\circ}$
 $\theta_3 = 302.4175^{\circ}$

Wykorzystane pozycje [km]:

$$\begin{bmatrix} R_{1x} & R_{1y} & R_{1z} \\ R_{2x} & R_{2y} & R_{2z} \\ R_{3x} & R_{3y} & R_{3z} \end{bmatrix} = \begin{bmatrix} 338 & -5050 & 4530 \\ 843 & -5216 & 4269 \\ 1342 & -5342 & 3975 \end{bmatrix}$$

3.2.2. Wyniki

Wszystkie błędy są mniejsze niż 1e-06. Jest to zgodne z oczekiwaniami, ponieważ model obserwacyjny i metoda wyznaczania korzystają z idealnego modelu keplerowskiego.

Parametr 1	Wartość referencyjna	Wartość wyznaczona	Błąd
Moduł położenia w 2 pozycji	6793 km	6793 km	1e-09 km
Moduł prędkości w 2 pozycji	7.7 km/s	7.7 km/s	5e-11 km/s
Mimośród	3.6e-04	3.6e-04	2e-12
Półoś wielka	6794 km	6794 km	2e-08
Inklinacja	51.64°	51.64°	3e-11°
Rektascensja węzła wstępującego	138.9°	138.9°	4e-11°
Argument perycentrum	174.7°	174.7°	4e-07
Anomalia prawdziwa	312°	312°	4e-07

Tabela 3.1. Krótki czas między obserwacjami - porównanie wyników

Rysunek 3.1. Krótki czas między obserwacjami - wizualizacja

Rysunek 3.2. Krótki czas między obserwacjami - rzut na płaszczyznę równikową

3.3. Obserwacja podczas pełnego przelotu

3.3.1. Dane obserwacyjne

Czas obserwacji odpowiada zmianie anomalii o kąt 30°:

$$t_1 = 0s$$

$$t_2 = 309s$$

$$t_3 = 619s$$

Czas gwiazdowy obserwacji:

$$\theta_1=300.7965^\circ$$

$$\theta_2 = 302.0933^{\circ}$$

$$\theta_3 = 303.3900^{\circ}$$

Wykorzystane pozycje [km]:

$$\begin{bmatrix} R_{1x} & R_{1y} & R_{1z} \\ R_{2x} & R_{2y} & R_{2z} \\ R_{3x} & R_{3y} & R_{3z} \end{bmatrix} = \begin{bmatrix} -1177 & -4328 & 5101 \\ 843 & -5216 & 4269 \\ 2762 & -5474 & 2922 \end{bmatrix}$$

3.3.2. Wyniki

Wszystkie błędy są mniejsze niż 1e-06, podobnie jak dla obserwacji o krótkich odstępach między pomiarami.

Tabela 3.2. Obserwacje rozproszone - porównanie wyników

Parametr 1	Wartość referencyjna	Wartość wyznaczona	Błąd
Moduł położenia w 2 pozycji	6793 km	6793 km	1e-09 km
Moduł prędkości w 2 pozycji	7.7 km/s	7.7 km/s	5e-11 km/s
Mimośród	3.6e-04	3.6e-04	1e-11
Półoś wielka	6794 km	6794 km	9e-08
Inklinacja	51.64°	51.64°	3e-11°
Rektascensja węzła wstępującego	138.9°	138.9°	7e-13°
Argument perycentrum	174.7°	174.7°	1e-06
Anomalia prawdziwa	312°	312°	1e-06

Rysunek 3.3. Obserwacje rozproszone - wizualizacja

Rysunek 3.4. Obserwacje rozproszone - rzut na płaszczyznę równikową

3.4. Obserwacje zakłócone

Wyniki uzyskane w podrozdziałach 3.2 i 3.3 sugerują, że rozkładanie obserwacji w czasie może nie mieć wpływu na wyniki, ponieważ nawet dla krótkich obserwacji błędy praktycznie nie istnieją. Jest to jednak spowodowane tym, że dane obserwacyjne są generowane w sposób idealny na podstawie idealnego modelu. Poniżej przedstawiono wyniki dla pomiarów nieidealnych.

3.4.1. Dane obserwacyjne

Takie jak w rozdziałach 3.2 i 3.3. Wersory kierunkowe zaszumiono dodając do każdej współrzędnej losowe liczby z przedziału [0; 0,002] i ponowownie normalizując.

3.4.2. Wyniki

Wyznaczone orbity zostały jakościowo porównane na wykresie 3.5. Zgodnie z oczekiwaniami przeprowadzenie pomiarów z większymi interwałami czasowymi pozwala na wyznaczenie orbity mimo nieidealnych danych.

Rysunek 3.5. Porównanie wpływu dodanego błędu do wersora kierunkowego obserwacji na określoną orbitę w dla dwóch częstości dokonywania pomiarów

3.5. Obserwacja hipotetyczna

3.5.1. Dane obserwacyjne

Czas obserwacji odpowiada zmianie anomalii o kąt 162:°:

$$t_1 = 0s$$
$$t_2 = 1269s$$
$$t_3 = 2538s$$

Czas gwiazdowy obserwacji:

$$\theta_1 = 296.7743^{\circ}$$

 $\theta_2 = 302.0933^{\circ}$
 $\theta_3 = 307.4090^{\circ}$

Wykorzystane pozycje [km]:

$$\begin{bmatrix} R_{1x} & R_{1y} & R_{1z} \\ R_{2x} & R_{2y} & R_{2z} \\ R_{3x} & R_{3y} & R_{3z} \end{bmatrix} = \begin{bmatrix} -5590 & 934 & 3750 \\ 843 & -5216 & 4269 \\ 5821 & -2385 & -2560 \end{bmatrix}$$

3.5.2. Wyniki

Ponieważ wyprowadzenie metody Gaussa wykorzystuje założenie, że czas między pomiarami jest niewielki względem okresu orbity [5], to jest ona nieskuteczna dla długich obserwacji. Zastosowanie poprawki iteracyjnej pozwala na powiększenie zakresu stosowalności, ale ostatecznie i ona zawodzi, gdy metoda podstawowa przestaje generować wystarczająco zbliżone wyniki. Dla przeprowadzonych symulacji maksymalna zmiana anomalii prawdziwej, dla których metoda zwracała poprawne wyniki, wynosiła 160°.

Rysunek 3.6. Obserwacje hipotetyczne - wizualizacja

Rysunek 3.7. Obserwacje hipotetyczne - rzut na płaszczyznę równikową

3.6. Obserwacja rzeczywista

Do obserwacji wykorzystano program Stellarium. Interfejs aplikacji pokazuje Rys. 3.8. Obserwatora umieszczono na współrzędnych 51°23′ 15"N, 18°34′ 10"E. Zaobserwowano przelot, który odbył się 19 grudnia 2022 między godziną 8:52 i 8:57 UTC. Czas wybrano z uwagi na zgodność daty z TLE i długi okres widoczności.

3.6.1. Dane obserwacyjne

Czas obserwacji:

$$t_1 = 52'24$$
"
 $t_2 = 54'26$ "
 $t_3 = 56"35'$

Czas gwiazdowy obserwacji:

$$\theta_1 = 15^{\circ}28'27.1"$$

 $\theta_2 = 16^{\circ}00'29.8"$
 $\theta_3 = 16^{\circ}02'39.0"$

Wykorzystane pozycje [km]:

$$\begin{bmatrix} R_{1x} & R_{1y} & R_{1z} \\ R_{2x} & R_{2y} & R_{2z} \\ R_{3x} & R_{3y} & R_{3z} \end{bmatrix} = \begin{bmatrix} -2854 & -3102 & 5302 \\ -2127 & -3692 & 5284 \\ -1317 & -4237 & 5136 \end{bmatrix}$$

3.6.2. Wyniki

Pozycja wyznaczona przez program Stellarium pochodzi z bardziej zaawansowanego modelu, niż ten wykorzystywany do aproksymacji, co tłumaczy brak zgodności wyników. Mimo tego orbita została wyznaczone w przybliżeniu poprawnie, chociaż jest ona bardziej ekscentryczna.

Parametr 1	Wartość referencyjna	Wartość wyznaczona	Błąd
Moduł położenia w 2 pozycji	6788 km	6789	0.77 km
Moduł prędkości w 2 pozycji	7.7 km/s	7.7 km/s	0.04 km/s
Mimośród	0.0004	0.0123	0.0119
Półoś wielka	6794 km	6873 km	78 km
Inklinacja	51.64°	51.63°	-0.018°
Rektascensja węzła wstępującego	138.9°	139.2°	0.23 °
Argument perycentrum	174.7°	97.6°	-76.9
Anomalia prawdziwa	282°	356°	74

Tabela 3.3. Obserwacja rzeczywista - porównanie wyników

Rysunek 3.8. Interfejs symulatora nocnego nieba Stellarium wykorzystanego do dokonania obserwacji

Rysunek 3.9. Obserwacja na podstawie symulatora nieba

Rysunek 3.10. Obserwacja na podstawie symulatora nieba - rzut na płaszczyznę równikową

4. Podsumowanie

W ramach przedstawionego zagadnienia sprawdzono stosowalność metody Gaussa do wstępnego wyznaczania orbit obiektów kosmicznych na podstawie obserwacji naziemnych. W tym celu zaimplementowano metodę w formie programu oraz przygotowano zbiory danych walidacyjnych. Metoda wykorzystuje założenie, że czasy między kolejnymi pomiarami są niewielkie względem okresu orbity i dla przypadków zgodnych z założeniami jest skuteczna. Jeśli międzyczasy są zbyt małe, to nawet drobne błędy w obserwacji mogą spowodować duże rozbieżności w obliczonej orbicie. Wykonanie pomiarów w trakcie jednego przebiegu orbity - podczas wschodu, zenitu i zachodu obiektu pozwala uzyskać optymalne wyniki, jednocześnie zachowując pewność, że obserwowany jest ten sam obiekt.

Bibliografia

- [1] J. Vetter, "Fifty Years of Orbit Determination: Development of Modern Astrodynamics Methods", *J. Hopkins Appl. Tech. D*, t. 27, sty. 2007.
- [2] "Laplacian Orbit Determination and Differential Corrections", *Celestial Mechanics and Dynamical Astronomy 2005* 93:1, t. 93, s. 53–68, 1 wrz. 2005, ISSN: 1572-9478. DOI: 10.1007/S10569-005-3242-6.
- [3] D. Teets i K. Whitehead, "The Discovery of Ceres: How Gauss Became Famous", *Mathematics Magazine*, t. 72, s. 83, 2 kw. 1999, ISSN: 0025570X. DOI: 10.2307/2690592.
- [4] H. D. Curtis, *Orbital Mechanics for Engineering Students*. Elsevier Ltd, 2013, s. 159–161, ISBN: 9780080977478. DOI: 10.1016/C2011-0-69685-1.
- [5] H. D. Curtis, *Orbital Mechanics for Engineering Students*. Elsevier Ltd, 2013, s. 238–250, ISBN: 9780080977478. DOI: 10.1016/C2011-0-69685-1.
- [6] H. Bradt, *Astronomy Methods: A Physical Approach to Astronomical Observations*. Cambridge University Press, 2004, s. 34–44, ISBN: 9780521535519.
- [7] Stellarium a free open source planetarium for your computer, Dostęp zdalny (14.12.2022): https://stellarium.org/, 2022.
- [8] CelesTrak: Current GP Element Sets, Dostęp zdalny (14.12.2022): https://celestrak.org/NORAD/elements/, 2022.
- [9] F. R. Hoots i R. L. Roehrich, "SPACETRACK REPORT NO. 3 Models for Propagation of NORAD Element Sets", 1980.

Spis rysunków

1.1	Układ referencyjny ECI oraz część elementów orbitalnych: inklinacja i , długość	
	węzła wstępującego $\Omega,$ argument perygeum ω i anomalia prawdziwa $v . \ . \ . \ .$	6
1.2	Schemat wektorów używanych do wyznaczenia orbity metodą Gaussa	8
3.1	Krótki czas między obserwacjami - wizualizacja	13
3.2	Krótki czas między obserwacjami - rzut na płaszczyznę równikową	14
3.3	Obserwacje rozproszone - wizualizacja	16
3.4	Obserwacje rozproszone - rzut na płaszczyznę równikową	17
3.5	Porównanie wpływu dodanego błędu do wersora kierunkowego obserwacji na	
	określoną orbitę w dla dwóch częstości dokonywania pomiarów	19
3.6	Obserwacje hipotetyczne - wizualizacja	21
3.7	Obserwacje hipotetyczne - rzut na płaszczyznę równikową	22
3.8	Interfejs symulatora nocnego nieba Stellarium wykorzystanego do dokonania	
	obserwacji	24
3.9	Obserwacja na podstawie symulatora nieba	25
3.10	Obserwacja na podstawie symulatora nieba - rzut na płaszczyznę równikową	26
Spi	s tabel	
9 1	Vrátki ozos miodzy obsorzacioni, porázmania uzmikáw	13
3.1	Krótki czas między obserwacjami - porównanie wyników	
3.2	Obserwacje rozproszone - porównanie wyników	15
3.3	Obserwacja rzeczywista - porównanie wyników	23

Załączniki

4.1. Warianty symulacji

```
ISS = ISSClass(TLE_first_line, TLE_second_line);
  ISS_OE = ISS.getOrbitalElements;
16 %% Observer's data
  phi = deg*(51 + 13/60 + 15.49/3600); % geodetic longtitude east
  lambda = deg*(18 + 34/60 + 10.70/3600); % latitude
  H = 153; % [m] local altitude
  %% Generated test data
21 cla
  improvement = true; % iterative improvement
  central_anomaly = 312;
26 danomaly = [5, 15, 82]; %
  anomalies_sets = ...
      [central_anomaly-danomaly(1) central_anomaly central_anomaly+
           danomaly(1); ...
      central_anomaly-danomaly(2) central_anomaly central_anomaly+
           danomaly(2); ...
      central_anomaly-danomaly(3) central_anomaly central_anomaly+
           danomaly(3)].*deg;
  %%= Test cases solving
  for test_case = 1:height(anomalies_sets)
      clf
      anomalies = anomalies_sets(test_case, :);
      % Memory allocation
      t = zeros(1, 3);
      theta = zeros(3, 1);
      R = zeros(3, 3);
      ISS_rho = zeros(3, 3);
      rho = zeros(3, 3);
      % Observer's position vector at each observation
46
            R = findStationPosition(phi, theta, Re, f, H);
            R = ones(3)*100;
      first_obs_time = datetime("19-Dec-2022 9:30:00");
      \% Time and direction cosines of each observation
      for i = 1:3
51
          t(i) = anomaly2time(anomalies(i), ISS_OE, mu);
          currentState = ISS.getStateVector(anomalies(i));
          ISS_position = currentState(:, 1);
          theta(i) = date2siderealTime(first_obs_time+seconds(t(i)),
          R(:,i) = findStationPosition(phi, theta(i), Re, f, H);
          rho(:, i) = position2dirCosine(ISS_position, R(:,i));
          ISS.setAnomaly(anomalies(i));
```

```
if i == 2
          %
61
          ISS.plot(sprintf("Observation %d", i), i==2);
      end
      t = t-t(1);
      % Proper calculations
      [r,v] = observation2state(R, rho, t, mu, improvement);
      orbitalElements = state2orbitalElements(r, v, mu);
71
      %% Displays
      % Plots
      %
            cla
      hold on
76
      axis equal
      plotEarth();
      plotFromOE(orbitalElements, mu, r, "Calculated position", true);
      ISS.setAnomaly(anomalies(2));
                 ISS.plot();
81
      hold on
            plot3(R(1,3), R(2,3), R(3,3), 'o', 'MarkerFaceColor', 'red
           ', 'DisplayName', 'Observer')
      plot3(R(1,2), R(2,2), R(3,2), 'o', 'MarkerFaceColor', 'blue', '
           DisplayName', 'Observer')
            plot3(R(1,1), R(2,1), R(3,1), 'o', 'MarkerFaceColor', 'red
           ', 'DisplayName', 'Observer')
86
      % Data display
      measuredValues = [norm(r), norm(v), orbitalElements];
      trueValues = [vecnorm(ISS.state), ISS.orbitalElements];
      displayData("Measured", convertOE(measuredValues));
      displayData("True", convertOE(trueValues));
91
      displayData("Error [measured-true]", (convertOE(measuredValues)-(
           convertOE(trueValues))));
  end
1 clc
  clear
  cla
  %% Constants
  improvement = true;
  mu = 3.986004418E14 /1000^3;
  deg = pi/180;
  Re = 6378; % Earth Radius
  f = 0.003353; % Earth oblateness
11 %% ISS model
```

```
% Values from the web
  TLE_first_line = {1 '25544U' '98067A' 22353.42711160 .00011227
      00000-0 20403-3 0 9992}:
  TLE_second_line = [2 25544 51.6432 138.9346 0003592 174.7295
       234.7524 15.50052736373915];
16 ISS = ISSClass(TLE_first_line, TLE_second_line);
  ISS_OE = ISS.getOrbitalElements;
  %% Observer's data
  phi = deg*(51+23/60+15.49/60/60); % geodetic longtitude east
  H = 153; % [m] local altitude
  theta = deg*[...
      15+28/60+27.1/3600; ...
      16+00/60+29.8/3600;...
      16+02/60+39.0/3600]/24*360; % local (mean) sidereal time [deg]
  R = findStationPosition(phi, theta, Re, f, H);
  %% Observation
  t = [52*60+24, 54*60+26, 56*60+35]; % time [seconds]
31
  real_R = [-2854, -3102, 5320; ...
      -2127, -3692, 5284; ...
      -1317, -4237, 5136];
  real_R_norm = vecnorm(real_R(:, 2));
36
  real_V = [5.74, -5.08, 0.12; ...]
      6.13, -4.55, -0.71; ...
      6.41, -3.90, -1.57;
  real_V_norm = vecnorm(real_V(:, 2));
41
  real_state_vector = [real_R_norm, real_V_norm];
  ISS.setAnomaly(deg*(-78+16/60+7.4/3600));
_{46} rho = zeros(3,3);
  for i=1:3
      rho(:, i) = position2dirCosine(real_R(:,i), R(:,i));
51 [r,v] = observation2state(R, rho, t, mu, improvement);
  orbitalElements = state2orbitalElements(r, v, mu);
  %% Data display
  measuredValues = [norm(r), norm(v), orbitalElements];
56 trueValues = [real_state_vector, ISS.orbitalElements];
  displayData("Measured", convertOE(measuredValues));
  displayData("True", convertOE(trueValues));
  displayData("Error [measured-true]", (convertOE(measuredValues)-(
      convertOE(trueValues))));
```

```
61 % Plots
  hold on
  plotEarth();
  plotFromOE(orbitalElements, mu, r, 'Calculated position', true)
  hold on
  axis equal
  ISS.plot("Observation 2", true);
71
  plot3(R(1,2), R(2,2), R(3,2), 'o', 'MarkerFaceColor', 'blue', '
      DisplayName', 'Observer')
  plot3(real_R(1,3), real_R(2,3), real_R(3,3), ...
      'o', 'MarkerFaceColor', 'red', 'DisplayName', 'Observation 1')
76 % plot3(real_R(1,2), real_R(2,2), real_R(3,2), ...
        'o', 'MarkerFaceColor', 'red', 'DisplayName', 'Observation 2')
  plot3(real_R(1,1), real_R(2,1), real_R(3,1), ...
      'o', 'MarkerFaceColor', 'red', 'DisplayName', 'Observation 3')
```

4.2. Algorytm Gaussa

```
1 function [r2, v2] = observation2state(R, rho, t, mu,
                         iterativeImprovementOn)
        % returns state vector
        % R - observer's position vectors
        % rho - direction cosine vectors
        % t - observation times
        % time intervals
        tau = [t(1)-t(2); t(3)-t(1); t(3)-t(2)];
        % cross products p
        p = [cross(rho(:,2), rho(:,3)), cross(rho(:,1), rho(:,3)), cross(rho(:,1), rho(:,3))]
                         (:,1), rho(:,2))];
11 % weird D
        D0 = dot(rho(:,1), p(:,1));
         D = R. *p;
        % A and B
         A = 1/D0 * (-D(1,2) * tau(3)/tau(2) + D(2,2) + D(3,2) * tau(1)/tau(2)
                        );
B = 1/6/D0 * (D(1,2)*(tau(3)^2-tau(2)^2)*tau(3)/tau(2) + D(3,2)*(tau(3)^2-tau(2)^2)*tau(3)/tau(2) + D(3,2)*(tau(3)^2-tau(2)^2)*tau(3)/tau(2) + D(3,2)*(tau(3)^2-tau(2)^2)*tau(3)/tau(3)/tau(2) + D(3,2)*(tau(3)^2-tau(2)^2)*tau(3)/tau(3)/tau(3)/tau(3)*tau(3)/tau(3)*tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(3)/tau(
                         (2)^2-tau(1)^2*tau(1)/tau(2);
        % E
        E = dot(R(:,2), rho(:,2));
        % abc coefficients
        a = -(A^2+2*A*E+dot(R(:,2), R(:,2)));
b = -2*mu*B*(A+E);
        c = -mu^2*B^2;
```

```
% roots
  r = roots([1, 0, a, 0, 0, b, 0, 0, c]);
  r2Norm = max(r(real(r)>0 & imag(r) == 0)); % real solutions larger
      than Earth Radius
26
  if length(r2Norm) > 1
      error ("More than one solution to the 8th order polynomial
           calculated. Proceeding is not supported.")
  else
      if isempty(r2Norm)
          error("No solution found.");
31
      end
  end
  % lengths of cosine directions
_{36} rhoNorm(1) = 1/D0 * ( (6*(D(3,1)*tau(1)/tau(3) + D(2,1)*tau(2)/tau(3)
      )*r2Norm^3
      + mu*D(3,1)*(tau(2)^2 - tau(1)^2)*tau(1)/tau(3) ) ...
      / (6*r2Norm^3 + mu*(tau(2)^2 - tau(3)^2)) - D(1,1));
  rhoNorm(2) = A + mu*B/r2Norm^3;
  rhoNorm(3) = 1/D0 * ( (6*(D(1,3)*tau(3)/tau(1) - D(2,3)*tau(2)/tau(1) 
      )*r2Norm^3
      + mu*D(1,3)*(tau(2)^2 - tau(3)^2)*tau(3)/tau(1) ) ...
      / (6*r2Norm^3 + mu*(tau(2)^2 - tau(3)^2)) - D(3,3));
  % r vector
  r = R + rho .* rhoNorm;
  % Langrage coefficients
f(1) = 1 - 0.5 * mu/r2Norm^3 * tau(1)^2;
  f(3) = 1 - 0.5 * mu/r2Norm^3 * tau(3)^2;
  g(1) = tau(1) - mu/r2Norm^3*tau(1)^3/6;
  g(3) = tau(3) - mu/r2Norm^3*tau(3)^3/6;
  % v2
v2 = (f(1)*r(:,3)-f(3)*r(:,1))/(f(1)*g(3)-f(3)*g(1));
  r2 = r(:,2);
  if iterativeImprovementOn == true
      iter = 0;
      iterMax = 1000;
      maxError = 1E-8;
      error = [1,1,1];
      fgNew = [f(1), f(3), g(1), g(3)];
      while sum(error < maxError) ~= 3 && iter < iterMax</pre>
           [r2, v2, newRhoNorm, fgNew] = refineStateMeasurement(r2, v2,
               tau, rho, R, D, DO, mu, fgNew);
          error = abs(newRhoNorm - rhoNorm);
          rhoNorm = newRhoNorm;
          iter = iter + 1;
      end
```

end

```
function [r2, v2, rhoNorm, fgNew] = refineStateMeasurement(r2, v2,
      tau, rho, R, D, DO, mu, fgOld)
  % iterative improvement of the orbit determined by observation2state.
  % r2 - position vector of object in second observation
4 % v2 - velocity vector of object in second observation
  % mu - gravitational paremete
  % vector magnitudes
  rNorm = norm(r2);
9 vNorm = norm(v2);
  % semimajor axis reciprocal (1/a)
  alpha = 2/rNorm - vNorm^2/mu;
^{14} % radial component of v
  vRadial = dot(v2, r2/rNorm);
  % universal Kepler's equation (Algorithm 3.3, Equation 3.46)
  x1 = solveUniversalKepler(tau(1), rNorm, vRadial, alpha, mu);
19 x3 = solveUniversalKepler(tau(3), rNorm, vRadial, alpha, mu);
  % f, g, c
  z1 = alpha * x1^2;
  z3 = alpha * x3^2;
  f(1) = 1 - x1^2 / rNorm * StumpffC(z1);
  f(3) = 1 - x3^2 / rNorm * StumpffC(z3);
  g(1) = tau(1) - 1/sqrt(mu) * x1^3 * StumpffS(z1);
  g(3) = tau(3) - 1/sqrt(mu) * x3^3 * StumpffS(z3);
  f(1) = mean([f(1), fgOld(1)]);
  f(3) = mean([f(3), fgOld(2)]);
  g(1) = mean([g(1), fgOld(3)]);
  g(3) = mean([g(3), fgOld(4)]);
_{34} fgNew = [f(1), f(3), g(1), g(3)];
  c1 = g(3)/(f(1)*g(3) - f(3)*g(1));
  c3 = -g(1)/(f(1)*g(3) - f(3)*g(1));
39 % new rho
  rhoNorm(1) = 1/D0 * (-D(1,1) + D(2,1)/c1 - D(3,1)*c3/c1);
  rhoNorm(2) = 1/D0 * (-c1*D(1,2) + D(2,2) - D(3,2)*c3);
  rhoNorm(3) = 1/D0 * (-c1/c3*D(1,3) + D(2,3)/c3 - D(3,3));
_{44} r = R + rho .* rhoNorm;
  r2 = r(:, 2);
```

```
end
1 function orbitalElements = state2orbitalElements (r, v, mu)
  % returns orbital elements from the state vector
  % r = [x y z]
  % v = [vx vy vz]
  % Distance
  rNorm = norm(r);
  % Speed
  vNorm = norm(v);
11 % Radial velocity
  vr = dot(r, v) / rNorm;
  % Specific angular momentum
  h = cross(r, v);
  hNorm = norm(h);
16 % Inclination
  i = acos(h(3)/hNorm);
  % Node line vector
  N = cross([0 \ 0 \ 1], h);
  NNorm = norm(N);
21 % RA of ascending node
  if N(2) >= 0
      omega = acos(N(1)/NNorm);
  else
      omega = 2*pi - acos(N(1)/NNorm);
26 end
  % eccentricity
  e = 1/mu * (cross(v,h) - mu * r/rNorm);
  eNorm = norm(e);
  % perigee argument
_{31} if e(3) >= 0
      w = acos(dot(N, e)/NNorm/eNorm);
      w = 2*pi - acos(dot(N, e)/NNorm/eNorm);
  end
36 % true anomaly
  if vr >= 0
      theta = acos(dot(e, r)/eNorm/rNorm);
      theta = 2*pi - acos(dot(e, r)/eNorm/rNorm);
41 end
  orbitalElements = [hNorm, i, omega, eNorm, w, theta];
  % hNorm = specific angular momentum
  % i = inclination
_{46} % omega = RA of ascending node
```

v2 = (f(1)*r(:,3)-f(3)*r(:,1))/(f(1)*g(3)-f(3)*g(1));

```
% eNorm = eccentricity
% w = perigee argument
% theta = true anomaly
51 return
end
```

4.3. Uniwersalne równanie Keplera

```
function x = solveUniversalKepler(dt, r0, vr0, a, mu)
  %SOLVEUNIVERSALKEPLER Solves universal Kepler equation
3 % dt
  % r0 - radial position
  % vr0 - radial velocity
  % a - reciprocal of semimajor axis
  % mu - gravitational parameter
8 % x - universal anomaly
  error = 1E-8;
  maxIter = 1000;
13 % initial X estimate
  x = sqrt(mu)*abs(a)*dt;
  ratio = 1;
  iter = 0;
while abs(ratio) > error && iter <= maxIter</pre>
      % Stumpff functions
      z = a*x*x;
      C = StumpffC(z);
      S = StumpffS(z);
      F = r0*vr0/sqrt(mu)*x^2*C + (1 - a*r0)*x^3*S + r0*x - sqrt(mu)*dt
      dF = r0*vr0/sqrt(mu)*x*(1 - a*x^2*S) + (1 - a*r0)*x^2*C + r0;
      ratio = F/dF;
28
      x = x - ratio;
      iter = iter+1;
  end
  end
  function C = StumpffC(z)
2 %STUMPFFC calculates Stumpff C coefficient
  if z > 0
      C = (1 - \cos(\operatorname{sqrt}(z))) / z;
  elseif z < 0
```

4.4. Konwersja danych

```
function R = findStationPosition(phi, theta, Re, f, H)
2 %FINDSTATIONPOSITION converts from geocentral coordinates to
       cartesian (ECI)
  % phi = geodetic latitude
  % theta = local sidereal time
  % Re = equatorial radius
  \% f - oblateness = (Re - Rp) / Re where:
7 % Rp = polar radius
  % H = local altitude
  theta = theta.'; % to horizontal
  multiplier = Re / sqrt(1-(2*f - f*f)*sin(phi)^2);
  R = [(multiplier + H) * cos(phi) * cos(theta); ...
       (multiplier + H) * cos(phi) * sin(theta);...
       (\text{multiplier} * (1-f)^2 + H) * \sin(\text{phi}) .* \text{ones}(\text{length}(\text{theta}), 1)
           . '];
17 end
  function rho = angles2directionCosines(alfa, delta)
2 %ANGLES2DIRECTIONCOSINES converts astro coordinates angles (
       declination and RA) to direction
  % vectors
  rho = [cos(delta).*cos(alfa) cos(delta).*sin(alfa) sin(delta)].';
  end
```

```
function orbitalElements = convertOE(orbitalElements)
% CONVERTOE converts OE from h to semimajor axis (a)

4 mu = 3.986004418E14 /1000^3;
h = orbitalElements(3);
e = orbitalElements(6);

rp = h^2/mu * 1/(1+e*cos(0));
ra = h^2/mu * 1/(1+e*cos(pi));
orbitalElements(3) = 0.5*(ra+rp);
```

4.5. Symulacja ISS

```
classdef ISSClass < handle</pre>
      %ISSCLASS simulates ISS state based on TLE
      properties
          orbitalElements
          state
          epochTLE
          mu = 3.986004418E14 / 1000^3;
      end
      methods
          function obj = ISSClass(TLE_first_line, TLE_second_line)
                             TLE_first_line = {1 '25544U', '98067A'
                   22250.60379146 .00007699 00000-0 14232-3 0
                   9993};
              %
                             TLE_second_line = [2 25544 51.6443
                   288.2831 0002670 203.2971 293.6689
                   15.50084907357968];
               obj.updateOrbitalElements(TLE_second_line );
               obj.state = obj.getStateVector(obj.orbitalElements(6));
               obj.epochTLE = obj.readEpoch(convertStringsToChars(string
17
                   (TLE_first_line{4})));
          end
          function updateOrbitalElements(obj, TLE_second_line)
              deg = pi/180;
22
              inclination = TLE_second_line(3) * deg;
              RAofAscendingNode = TLE_second_line(4) * deg;
               eccentricity = TLE_second_line(5) * 10E-8;
              perigeeArgument = TLE_second_line(6) * deg;
              meanMotion = TLE_second_line(8) * 2*pi/24/60/60; %
                   revolutions/day -> rad/s
```

```
semiMajorAxis = (obj.mu / meanMotion^2)^(1/3);
               semiMinorAxis = semiMajorAxis * (1-eccentricity^2)^0.5;
               h = meanMotion * semiMajorAxis * semiMinorAxis;
32
               obj.orbitalElements = [h, inclination, RAofAscendingNode,
                    eccentricity, perigeeArgument, 0];
           end
           function epochTLE = readEpoch(obj, epoch)
37
               day = epoch(1:5);
               epochTLE = ...
                   datetime(day, 'InputFormat', 'yyDDD') + ...
                   days(mod(str2double(epoch), 1));
           end
42
           function plot(obj, point_name, plotAdditional)
               plotFromOE(obj.orbitalElements, obj.mu, obj.state(:,1),
                   point_name, plotAdditional);
           end
47
           function plotSinglePoint(obj)
               name = sprintf("ISS - true anomaly %f deg", obj.
                   orbitalElements(6)/pi*180);
               plot3(obj.state(1,1), obj.state(2,1), obj.state(3,1), 'o'
                   , 'DisplayName', name);
           end
52
           %% set
           function setAnomaly(obj, anomaly)
               obj.orbitalElements(6) = anomaly;
               obj.state = obj.getStateVector(obj.orbitalElements(6));
           end
57
           %% get
           function stateVector = getStateVector(obj, anomaly)
               obj.orbitalElements(6) = anomaly;
               [r,v] = orbitalElements2state(obj.orbitalElements, obj.mu
                   ):
               stateVector = [r,v];
           end
           function orbitalElements = getOrbitalElements(obj)
               orbitalElements = obj.orbitalElements;
           end
67
           function mu = getMu(obj)
               mu = obj.mu;
           end
72
      end
  end
```

4.6. Wyświetlanie wyników

```
function displayData(adjective, measuredValues)
  %DISPLAYDATA fprints vector in form of [rNorm, vNorm, orbitalElements
  % rad2deg
_{5} deg = 180/pi;
  measuredValues(4) = measuredValues(4) * deg;
  measuredValues(5) = measuredValues(5) * deg;
  measuredValues(7) = measuredValues(7) * deg;
  measuredValues(8) = measuredValues(8) * deg;
  fprintf(['----\n%s parameters:\n' ...
      'R(2): %g km \n' ...
      'V(2): %.2g km/s \n' ...
      'semimajor axis: %g km \n' ...
      'inclination: \%.4g deg \n' ...
15
      'RA of ascending node: \%.4g deg \n' ...
      'eccentricity: %g \n' ...
      'perigee argument: %.4g deg \n' ...
      'true anomaly(2): %.4g deg n------n', ...
      adjective, measuredValues);
  end
  function plotEarth()
2 %PLOTEARTH plots Earth
  % plotting Earth
  earthR = 6371; %km
7 [X,Y,Z] = sphere;
  X = X * earthR;
  Y = Y * earthR;
  Z = Z * earthR;
  surf(X,Y,Z, 'DisplayName', 'Earth', 'FaceAlpha', 0.1, 'EdgeAlpha',
      0.3);
12 % Equatorial plane
  % maxR = max(abs(R), [], 'all');
  maxR = max(abs(earthR*1.5), [], 'all');
  [x, y] = meshgrid(-maxR:maxR:maxR);
  z = zeros(size(x,1));
surf(x,y,z, 'FaceAlpha', 0.2, 'DisplayName', 'Equatorial plane', '
      FaceAlpha', 0.05);
  grid on
  legend()
```

```
function orbitPlot = plotFromOE(orbitalElements, mu, r, name,
      plotAdditional)
2 %PLOTFROMOE plots the orbit from orbirtal elements vector
  % orbitalElements:
  % (1) hNorm = specific angular momentum
  % (2) i = inclination
  % (3) omega = RA of ascending node
7 % (4) eNorm = eccentricity
  % (5) w = perigee argument
  % (6) theta = true anomaly
  % name - name of plotted point
  \% plotAdditional - true/false - should plot apse line and orbit?
12 h = orbitalElements(1);
  i = orbitalElements(2);
  omega = orbitalElements(3);
  e = orbitalElements(4);
  w = orbitalElements(5);
17
  % perigee
  rp = h^2/mu * 1/(1+e*cos(0));
  % apogee
  ra = h^2/mu * 1/(1+e*cos(pi));
22
  % perifocal r
  theta = linspace(0, 2*pi);
  R = h^2/mu * 1 ./ (1 + e * cos(theta)) .* [cos(theta); sin(theta); zeros]
      (1, length(theta))];
27 rotation = ...
      [\cos(w) \sin(w) 0; -\sin(w) \cos(w) 0; 0 0 1] * ...
      [1 0 0; 0 \cos(i) \sin(i); 0 -\sin(i) \cos(i)] * ...
      [cos(omega) sin(omega) 0; -sin(omega) cos(omega) 0; 0 0 1];
32 % geocentric R
  R = rotation. * R;
  %% plotting
  hold on
  if name == "Calculated position"
      plotstyle = 'b--';
      dotcolor = "green";
  else
      dotcolor = "red";
      plotstyle = 'r-';
  end
```

```
47 if plotAdditional
      % plotting the orbit
      plot3(R(1,:), R(2,:), R(3,:), plotstyle, 'DisplayName', strcat(")
           Orbit ", name), 'LineWidth', 1);
      % % Apse line
      % apsePoints = [ [rp*cos(0); 0; 0], [0; 0; 0], [ra*cos(pi); 0; 0]
            ];
      % apsePoints = rotation.' * apsePoints;
      % plot3(apsePoints(1,:), apsePoints(2,:), apsePoints(3,:), 'o--k
          ', 'MarkerFaceColor', 'black', ...
            'DisplayName', 'Apse line')
  end
62 % Initial state
  plot3(r(1), r(2), r(3), 'o', 'MarkerFaceColor', dotcolor, '
      DisplayName', name)
  % Axes
  axis equal
  xlabel('x [km]')
67 ylabel('y [km]')
  zlabel('z [km]')
  % Initial state geo
72
  end
```