50.007 Machine Learning

Lu, Wei

Generative Models, Naive Bayes

A linear decision boundary

The same linear decision boundary

The same linear decision boundary

Can we have another model that is able to say/capture something about the inputs?

p(x,y)

We will assume there is an underlying "generative process" for both input and output!

Generative Process Gaussian

Each point is generated from the same underlying Gaussian distribution.

Generative Process Gaussian

The likelihood for each point:

a b c d

 \boldsymbol{a}

What is the probability of "generating" this document with the above 4 words?

p(a)

a b

$$p(a) \times p(b|a)$$

abc

$$p(a) \times p(b|a) \times p(c|a,b)$$

a b c d

$$p(a) \times p(b|a) \times p(c|a,b) \times p(d|a,b,c)$$

a b c d

What is the problem with such an assumption on generating this document?

$$p(a) \times p(b|a) \times p(c|a,b) \times p(d|a,b,c)$$

a b c d

What is the problem with such an assumption on generating this document?

$$p(a) \times p(b|a) \times p(c|a,b) \times p(d|a,b,c)$$

a b c d

There is now a multinomial distribution!

$$p(a,b,c,d) = p(a) imes p(b) imes p(c) imes p(d)$$

a a b

There is now a multinomial distribution!

$$p(a,a,b) = p(a) \times p(a) \times p(b)$$

D

Assume we have a vocabulary

$$V=\{w_1,w_2,\ldots,w_{|V|}\}$$

$$p(D) = ?$$

How do we rewrite the above probability in terms of w's?

D

Assume we have a vocabulary
$$V = \{w_1, w_2, \dots, w_{|V|}\}$$

$$egin{aligned} p(D) &= p(w_1)^{\operatorname{count}(w_1,D)} imes p(w_2)^{\operatorname{count}(w_2,D)} imes \ & \cdots imes p(w_{|V|})^{\operatorname{count}(w_{|V|},D)} \end{aligned}$$

D

Assume we have a vocabulary

$$V = \{w_1, w_2, \dots, w_{|V|}\}$$

$$p(D) = \prod_{j} p(w_j)^{\operatorname{count}(w_j,D)}$$

The number of times you see this word w_i in the document D.

$$D_1 \quad \dots \quad D_i \quad \dots \quad D_n$$

Assume we have a vocabulary
$$V = \{w_1, w_2, \dots, w_{|V|}\}$$

$$p(D_i) = \prod_j p(w_j)^{\operatorname{count}(w_j,D_i)}$$

What is the overall objective defined over the entire training set?

$$D_1 \quad \dots \quad D_i \quad \dots \quad D_n$$

Assume we have a vocabulary
$$V = \{w_1, w_2, \dots, w_{|V|}\}$$

$$p(D_i) = \prod_j p(w_j)^{\operatorname{count}(w_j, D_i)}$$

The overall objective defined at the entire training set:

$$\prod_i p(D_i) = \prod_i \prod_j p(w_j)^{\operatorname{count}(w_j,D_i)}$$

$$egin{align} \prod_i p(D_i) &= \prod_{i=1}^n \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,D_i)} \ &= \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,\mathcal{D})}
onumber \ \end{pmatrix}$$

$$egin{array}{lll} \max & \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\log \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\sum_{j=1}^{|V|} \log p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\sum_{j=1}^{|V|} \operatorname{count}(w_j,\mathcal{D}) imes \log p(w_j) \end{array}$$

We arrived at this minimization problem now. What shall we do next?

$$egin{array}{lll} \max & \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\log \prod_{j=1}^{|V|} p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\sum_{j=1}^{|V|} \log p(w_j)^{\operatorname{count}(w_j,\mathcal{D})} \ \min & -\sum_{j=1}^{|V|} \operatorname{count}(w_j,\mathcal{D}) imes \log p(w_j) \ rac{\partial \ell}{\partial p(w_j)} ? \end{array}$$

$$\min \quad -\sum_{j=1}^{|V|} \operatorname{count}(w_j, \mathcal{D}) imes \log p(w_j)$$

One constraint: $\sum_{j} p(w_j) = 1$

$$\min \quad -\sum_{j=1}^{|V|-1} \operatorname{count}(w_j, \mathcal{D}) imes \log p(w_j)$$

$$-\mathrm{count}(w_{|V|}, \mathcal{D}) imes \log ig(1 - \sum_{k=1}^{n} p(w_k)ig)$$

$$p(w_{|V|}) = 1 - \sum_{k=1}^{|V|-1} p(w_k)$$

contains w_j

$$egin{array}{ll} egin{array}{ll} egi$$

$$rac{\partial \ell}{\partial p(w_j)} = -rac{\mathrm{count}(w_j,\mathcal{D})}{p(w_i)} + rac{\mathrm{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})}$$

$$egin{array}{ll} egin{array}{ll} egi$$

$$rac{\partial \ell}{\partial p(w_j)} = -rac{\mathrm{count}(w_j,\mathcal{D})}{p(w_j)} + rac{\mathrm{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})} = \mathbf{0}$$

$$egin{array}{ll} egin{array}{ll} egi$$

$$rac{\partial \ell}{\partial p(w_j)} = -rac{\mathrm{count}(w_j,\mathcal{D})}{p(w_j)} + rac{\mathrm{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})} = \mathbf{0}$$

$$rac{\operatorname{count}(w_j,\mathcal{D})}{p(w_j)} = rac{\operatorname{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})}$$

$$egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} -\sum_{j=1}^{|V|-1} \operatorname{count}(w_j,\mathcal{D}) imes \log \left(1 - \sum_{k=1}^{|V|-1} p(w_k)
ight) \end{array} \end{array}$$

$$rac{\partial \ell}{\partial p(w_j)} = -rac{\mathrm{count}(w_j,\mathcal{D})}{p(w_j)} + rac{\mathrm{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})} = \mathbf{0}$$

$$rac{\operatorname{count}(w_j,\mathcal{D})}{p(w_j)} = rac{\operatorname{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})}$$

$$\frac{\operatorname{count}(w_j, \mathcal{D})}{p(w_j)} = \frac{\sum_k \operatorname{count}(w_k, \mathcal{D})}{\sum_k p(w_k)} = \frac{\sum_k \operatorname{count}(w_k, \mathcal{D})}{1}$$

$$egin{array}{ll} egin{array}{ll} egi$$

$$rac{\partial \ell}{\partial p(w_j)} = -rac{\mathrm{count}(w_j,\mathcal{D})}{p(w_j)} + rac{\mathrm{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})} = \mathbf{0}$$

$$rac{\operatorname{count}(w_j,\mathcal{D})}{p(w_j)} = rac{\operatorname{count}(w_{|V|},\mathcal{D})}{p(w_{|V|})}$$

$$p(w_j) = rac{\operatorname{count}(w_j, \mathcal{D})}{\sum_k^{|V|} \operatorname{count}(w_k, \mathcal{D})}$$

The number of times we see the word w_j in the training set \mathcal{D}

$$p(w_j) = rac{ ext{count}(w_j, \mathcal{D})}{\sum_k^{|V|} ext{count}(w_k, \mathcal{D})}$$

The total number of words that appear in the training set \mathcal{D}

Naive Bayes

Naive Bayes

Naive Bayes

$$\mathcal{D}_+$$
 \mathcal{D}_- Negative documents $Training\ Set\ \mathcal{D}$ $p(\mathcal{D}_+)$ $p(\mathcal{D}_-)$ $p(y=+1)^{\operatorname{count}(y=+1)}$ $\prod_w heta_w^{+n(w,+)}$ $\sum_{\operatorname{count}(w,+)}^{\operatorname{Negative}}$

Naive Bayes

$$\prod_w heta_w^{+n(w,+)} \qquad \prod_w heta_w^{-n(w,-)} \ p(y=+1)^{ ext{count}(y=+1)} \qquad p(y=-1)^{ ext{count}(y=-1)}$$

Learned model parameters $\theta_w^+, \theta_w^-, \, ext{and} \, p(y=+1)$

D

what should be the output y label for this new document D?

Learned model parameters $\overline{\theta_w^+, \theta_w^-}$, and p(y=+1)

$$p(y=+1|D)$$

$$p(y=-1|D)$$

Learned model parameters $\theta_w^+, \theta_w^-, \text{ and } p(y=+1)$

$$p(D| heta^+) imes p(y=+1)$$

$$p(D| heta^-) imes p(y=-1)$$

Learned model parameters $\theta_w^+, \theta_w^-, \, ext{and} \, \overline{p(y=+1)}$

$$\log rac{p(D| heta^+) imes p(y=+1)}{p(D| heta^-) imes p(y=-1)}$$

Learned model parameters θ_w^+, θ_w^- , and p(y=+1)

$$egin{aligned} \log rac{P(D| heta^+)}{P(D| heta^-)} &= \log P(D| heta^+) - \log P(D| heta^-) \ &= \sum_w n(w) (\log heta_w^+ - \log heta_w^-) \ &= \sum_w n(w) \log rac{ heta_w^+}{ heta_w^-} \ &= rac{1}{2} \sum_{w} n(w) \log rac{ heta_w^+}{ heta_w^-} \end{aligned}$$

Learned model parameters θ_w^+, θ_w^- , and p(y=+1)

$$\log rac{P(D| heta^+)}{P(D| heta^-)} = \Phi(D) \cdot heta = egin{bmatrix} n(w_1) \ dots \ n(w_{|V|}) \end{bmatrix} egin{bmatrix} heta_1 \ dots \ heta_{|V|} \end{bmatrix}$$

Learned model parameters θ_w^+, θ_w^- , and p(y=+1)

$$egin{aligned} \log rac{P(D| heta^+)P(y=+)}{P(D| heta^-)P(y=-)} &= \sum_w n(w) \log rac{ heta_w^+}{ heta_w^-} + \log rac{P(y=+)}{P(y=-)} \ &= \sum_w n(w) heta_w + heta_0 \end{aligned}$$

Question

What about a new word that did not appear in the training set?

Question

What about a new word that did not appear in the training set?

Ignore that word.

Question

What if a word only appears in the positive documents in the training set?

Use smoothing. Assume there is a small amount of times for each word to appear in positive/negative documents, as long as it appears in the training set.

Generative Process

What if the data looks like this?

Generative Process

What if the data looks like this?

Generative Process

What if the data looks like this?