MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Statistics

Statistical Inference

- Statistical Inference methods deal with drawing inference about an unknown model/**random variable**/random process from observations/data.
- There is an unknown quantity θ^* that we would like to estimate using data \mathcal{D} . eg: ML, communication systems.
- For the purpose of this course \mathcal{D} will contain samples of a random variable and θ^* could be mean, variance, moments or parameters of the underlying random variable.
- ▶ Broadly, you can give 3 types of estimates for θ^* .
 - 1. Point Estimation: Here you want to give a point estimate which is a single numerical value that is your best guess for θ^* .
 - 2. Interval Estimation: here you give an interval on say \mathbb{R} where θ^* is bound to lie with some certainty.
 - 3. Hypothesis testing: In binary hypothesis testing, you have two hypothesis ($H_0: \theta = \alpha_1$ and $H_1: \theta = \alpha_2$) and you use data \mathcal{D} to decide which is true.

Statistical Inference

- ► There are two approaches to Statistical Inference:
 - 1) Bayesian 2) Frequentist (or classical)
- In Bayesian Inference, the unknown quantity is modelled as a random variable with a distribution that keeps changing as more and more data becomes available.
- Bayesian inference assumes a prior distribution $p_{\Theta}(\theta)$ on the unknown parameter θ^* and uses the likelihood $p_{X|\Theta}(x|\theta)$ for observing data x to obtain the posterior $p_{\Theta|X}(\theta|x)$
- In Bayesian inference, prior and posterior distribution reflect our state of knowledge.

Frequentist or Classical Inference

- ➤ Classical Inference models the unknown quantity as a constant and come up with estimators that are deterministic functions of the observed data.
- Given data, these estimators are deterministic functions of the data, but in reality are also random variables.
- For example sample mean as an estimator for the mean.

Classical Inference: Point Estimation

- Let θ^* denote the unknown parameter of a random variable X (typically mean, variance, scale, shape etc) and suppose we observe i.i.d samples of X which are recorded in the dataset $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$.
- In frequentist approach, we estimate θ^* , by defining a point estimator $\hat{\Theta}$ as a function of the random samples $X_1, \ldots X_n$ as $\hat{\Theta} = h(X_1, \ldots X_n)$.
- While $\hat{\Theta}$ is a random variable, given \mathcal{D} the estimator takes the value $\hat{\Theta} = h(x_1, \dots x_n)$.
- Example : Sample mean $\hat{\mu}_n = \frac{\sum_{i=1}^n X_i}{n}$.

Point Estimators: Properties

▶ The Bias $B(\hat{\Theta})$ of an estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta^*$$

- Unbiased estimators are estimators with zero bias, i.e., $B(\hat{\Theta}) = 0$ and hence $E[\hat{\Theta}] = \theta^*$
- Are all unbiased estimators good ? Let $\hat{\Theta}_1 = X_1$ and $\hat{\Theta}_2 = \frac{\sum_{i=1}^n X_i}{n}$. Which estimator is better?
- Var $(\hat{\Theta}_1) = \sigma^2$ while $Var(\hat{\Theta}_2) = \frac{\sigma^2}{n}$.
- ► We need other measures to determine how good an estimator is, something that looks at the variance of these estimators.

Mean square error of Point Estimators

ightharpoonup The mean squared error of an estimator $\hat{\Theta}$ is defined as

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta^*)^2]$$

Note that

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta^*)^2]$$

= $Var(\hat{\Theta} - \theta^*) + E[\hat{\Theta} - \theta^*]^2$
= $Var(\hat{\Theta}) + Bias(\hat{\Theta})^2$

- This means that biased estimators could possibly have lower MSE error if they have extremely low variance!
- ▶ Find MSE of $\hat{\Theta}_1 = X_1$ and $\hat{\Theta}_2 = \hat{\mu}_n + 1$.
- Bias-Variance tradeoff talks a lot in machine learning!

Consistency of estimators

- What happens to estimators as the size of the data set $(|\mathcal{D}| = n)$ increases? Do all estimators converge to θ^* ?
- Not necessarily! For examples $\hat{\Theta}_1 = X_i$ where X_i is picked random from \mathcal{D} does not converge.
- \triangleright What about $\hat{\mu}_n$. Using SLLN, we see that this does.
- Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ^* (here n denotes the size of the dataset). We say that $\hat{\Theta}_n$ is a **consistent estimator** of θ , if

$$\lim_{n\to\infty} P(|\hat{\Theta}_n - \theta^*| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0$$

- ► This is convergence in probability. If almost sure convergence holds, it is called strongly consistent.
- ► Clearly, $\hat{\Theta}_n = \hat{\mu}_n$ is strongly consistent and hence consistent.