QUESTIONS:

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

ANSWERS:

Task 1

		and the same of the same	oggi in F , 03 Dicen				
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa

As the weather forecast shows above, we can have these data: $\phi = 75\%$, $T = 4^{\circ}C = 277K$, $P = 102.7 \, kPa$

From the Psychrometric Chart, when $T_{dry\;air} = 4^{\circ}C$ and $\phi = 75\%$, the $\omega = 0.00375$ and $T_{wb} = 2^{\circ}C$

From formula $\omega = \frac{0.622 * P_v}{P - P_v}$, we can know:

$$\rightarrow P_v = \frac{P * \omega}{0.622 + \omega} = 102.7 * 0.00375 \div (0.622 + 0.00375) \cong 0.62 \ kPa$$

We consider the size of aula A is 20m*10m*3m, $V = 20*10*3 = 600\text{m}^3$, From the class, we have $R_v = 0.4615$, $m_v = \frac{P_v * V}{T * R_v} = 0.62*600 \div (277*0.4615) = 2.91 \, kg$

$$\rightarrow m_v = \frac{P_v * V}{T * R_v} = 0.62 * 600 \div (277 * 0.4615) = 2.91 \, kg$$

Task 2

v: 99																
	WBAN	86-10	Period:	N)	(EUV	: 1.0	Time Zone:	9	101.2	StdP:	10	Elev:	17.95E on Design C		40.65N	
7	/PCWD	I Mcws	á .	h WS/MCD	t month	Cold			i P	MCDB and	dification DP	165	ion Design C			
	6% DB			1	- IIIOIIII	4%			99%	WICE DIST	UNICOUOUI DE	99.6%		g DB	Heatin	Coldest
	PCWD	MCWS	MCDB	WS	DB		WS	MCDB	HR	DP	MCDB	HR	DP	99%	99.6%	Month
	(0)	(n)	(m)	(1)	()	•	(1)	(1)	(h)	(9)	(1)	(0)	(d)	(c)	(b)	(0)
	250	3.4	10.6	12.4	0.2		13.4	7.4	3.0	-3.0	7.2	2.5	-5.1	4.1	2.9	2
											Conditions	lpy Design	n, and Entha	midificatio	oling, Dehu	Annual Co
	MCWS			WB/MCDB		Eva						Cooling D			Hottest	Hottest
4% DE		%			19	+	4%		110110	29		19	4%		Month	Month
_	MCWS	MCDB	WB	MCDB	/B	_	MCDB	WB	MCWB	DB	MCWB	DB	MCWB	DB	DB Range	200
- ((0)	(n)	(m)	(1)	()		(1)	(1)	(4)	(9)	(1)	(0)	(d)	(c)	(b)	(a)
1	4.2	28.3	25.6	29.0	5.3	- 2	29.7	27.2	24.3	29.9	24.3	31.1	23.6	32.8	7.1	8
Ho	a.t.	0 10	y/MCDB			575.125			1001.10		DB and HR	ation DP/M0	Dehumidific	120	10000	
8 to	%			- 1		4%			2%			1%			0.4%	
12.8	MCDB	Enth	MCDB	Enth	DB	_	Enth	MCDB	HR	DP	MCDB	HR	DP	MCDB	HR	DP
- ((0)	(n)	(m)	(1)	k)		(1)	(1)	(h)	(9)	(1)	(0)	(0)	(c)	(4)	(0)
12	28.3	78.5	29.1	82.2).1	- 3	86.0	27.9	19.7	24.7	28.5	20.7	25.4	29.2	21.8	26.3
													ons	n Conditio	nnust Desig	xtreme A
			Values of Ex			n-					Extreme A		Extreme	ws	eme Annual	Evtr
0 years		years			n=10 y	1	years			Standard		Me	Max	2457/2		
N	Min	Max	Min	Max	lin	-	Max	Min	Max	Min	Max	Min	WB	5%	2.5%	1%
- ((0)	(n)	(m)	(1)	k)		(1)	(1)	(h)	(9)	(1)	(0)	(d)	(c)	(6)	(4)
4	-3.2	42.8	-2.2	41.1	.4		39.4	-0.6	3.0	1.4	37.3	0.4	31.4	8.7	9.9	11.3

A building with a height of 2.5 m and an GOOD construction quality, is located in Brindisi, considering two occupants and one bed room calculate, and a conditioned floor area of 200m2, and wall area is 144 m2, calculate the internal gains, infiltration, and ventilation loads.

INTERNAL GAIN:

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 * A_{cf} + 22 \, N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 \, W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 * A_{cf} + 12 \, N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 \, W \end{split}$$

INFILTRATION:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

 $A_L = A_{es}A_{ul}$

where

 A_{es} = building exposed surface area, m² A_{ul} = unit leakage area, cm²/m² (from <u>Table 3</u>)

From Table 3, we can know:

Good quality
$$\rightarrow A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$$

Exposed surface = Wall area +roof area $A_{es} = 200 + 144 = 344 \text{ m}^2$
 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \text{cm}^2$

Table 5	Typical	IDF Values.	T /	(c.cm2)
Lable 5	I v Dicai	IDI values.	14/	S CIII

<i>Н</i> , т			ting Do peratu		Cooling Design Temperature, °C				
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

$$Q_i = A_L IDF$$

where

 $A_L=$ building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient $C_D=1$, cm²

IDF = infiltration driving force, $L/(s \cdot cm^2)$

From Table 5, we can know when $T_{heating design} = 4.1 \,^{\circ}C$, $T_{cooling design} = 31.1 \,^{\circ}C$,

_

$$IDF_{heating} = 0.065 L/(s \cdot cm^2)$$

 $IDF_{cooling} = 0.032 L/(s \cdot cm^2)$

VENTILATION:

Indoor Conditions.

Based on ASHRAE Standard 55 typical practices are the following:

✓ For cooling: 24°C db and a maximum of 50 to 65% rh.

✓ For heating: 20°C db and 30% rh

 $Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$

where

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

```
\begin{split} &Q_{ventilation} = 0.05 \ A_{cf} + 3.5 \ (N_{br} + 1) = 0.05*200 + 3.5* \ 2 = 17 \quad L/s \\ &\rightarrow \\ &Q_{inf-ventilation_{heating}} = 31.30 + 17 = 48.30 \ L/s \\ &Q_{inf-ventilation_{cooling}} = 15.41 + 17 = 32.41 \ L/s \end{split} We have already known: C_{sensible} = 1.23 \ , C_{latent} = 3010 \\ &\rightarrow \\ &\dot{Q}_{inf-ventilation_{cooling}} = C_{sensible} * Q_{inf-ventilation_{cooling}} * \Delta T_{cooling} \\ &= 1.23 \ * 32.41 * 7.7 = 306.96 \ W \\ &\dot{Q}_{inf-ventilation_{cooling}} = C_{latent} * Q_{inf-ventilation_{cooling}} * \Delta \omega_{cooling} \\ &= 3010 \ * 32.41 * 0.0039 = 380.46 \ W \\ &\dot{Q}_{inf-ventilation_{heating}} = C_{sensible} * Q_{inf-ventilation_{heating}} * \Delta T_{heating} \end{split}
```

= 1.23 * 48.30 * 15.9 = 944.60 W