1

Assignment 14

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment14

1 Problem

Let T be the linear operator on a n- dimensional vector space V and suppose that T has an n distinct characteristic values. Prove that T is diagonalizable.

2 RESULTS USED

Diagonalizable	A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an basis of V , consisting of eigen vectors of T
Theorem	If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator \mathbf{T} with distinct eigen values $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.
	Let $S_k = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.Let $P(k) : S_k$ is linearly independent. S_1 is linearly independent. So, $P(1)$ holds.Assume $P(k)$ holds for $1 \le k \le n$.Therefore, S_k is linearly independent.
	Let $\sum_{i=1}^{k+1} a_i \mathbf{v}_i = 0$ (2.0.1)
	Applying T on both sides, we get
	$\implies \mathbf{T}(\sum_{i=1}^{k+1} a_i \mathbf{v}_i) = 0 \tag{2.0.2}$
	$\implies \sum_{i=1}^{k+1} a_i \mathbf{T}(\mathbf{v}_i) = 0 \tag{2.0.3}$
	$\Longrightarrow \sum_{i=1}^{k+1} a_i \lambda_i \mathbf{v}_i = 0 \tag{2.0.4}$
	$\implies \sum_{i=1}^{k} a_i \lambda_i \mathbf{v}_i + a_{k+1} \lambda_{k+1} \mathbf{v}_{k+1} = 0 \qquad (2.0.5)$
	Multiplying (2.0.1) by λ_{k+1} , we get
	$\lambda_{k+1}(\sum_{i=1}^{k+1} a_i \mathbf{v}_i) = 0 {(2.0.6)}$
	$\implies \sum_{i=1}^{k+1} a_i \lambda_{k+1} \mathbf{v}_i = 0 \tag{2.0.7}$

$$\Rightarrow \sum_{i=1}^{k} a_i \lambda_{k+1} \mathbf{v}_i + a_{k+1} \lambda_{k+1} \mathbf{v}_{k+1} = 0 \qquad (2.0.8)$$
Subtracting (2.0.5) and (2.0.8),we get
$$\sum_{i=1}^{k} a_i (\lambda_i - \lambda_{k+1}) \mathbf{v}_i = 0 \qquad (2.0.9)$$
As λ_i are distinct $\forall i \leq k, a_i = 0 \qquad (2.0.10)$
Substituting this in (2.0.1)
$$\sum_{i=1}^{k+1} a_i \mathbf{v}_i = 0 \qquad (2.0.11)$$

$$\Rightarrow a_{k+1} \mathbf{v}_{k+1} = 0 \qquad (2.0.12)$$
As $\mathbf{v}_{k+1} \neq 0 \Rightarrow a_{k+1} = 0$
Since $\forall i \leq k+1, a_i = 0.S_{k+1}$ is linearly independent
By principle of mathematic induction, S_n is linearly independent.

TABLE 1: Definitions and theorem used

3 Solution

Given	T has an n distinct characteristic values and $dim(V) = n$
T is diagonalizable	Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct eigen values of T and let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be the eigen vectors of T From above results we can state that $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is linearly independent.And also given that $\dim(\mathbf{V}) = \mathbf{n}$.So,this set forms a basis of V . $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ is a basis for V consisting of eigen vectors of T . So, T is diagonalizable.

TABLE 2: Solution