Analog Electronic Circuits Lab (EC2.103, Spring 2023)

TAs: Adithya, Shiva, Swarnim, Deeksha, Nitin, Prasanth; Lab Admin: Prashant Instructor: Prof. Abhishek Srivastava, CVEST, and Prof. P. Ubaidulla, SPCRC

Instructions:

- 1. Systematically record all your observations in the lab book (mandatory)
- 2. Save results in USB or take pictures
- 3. Make meaningful tables to summarize your findings and show it to the instructor(s) during the lab session only
- 4. Bring your calculators and DMM (if available)
- 5. Handle equipment carefully and report in case of any incidence
- 6. Enjoy your time in lab and strengthen your understanding about circuits

Experiment-7 Common Source Amplifier

1. Effect of Body effect on gain of CS amplifier

Fig. 1 shows a CS amplifier using an NMOS (CD4007BE). Realize the circuit on breadboard and connect the body terminal (V_{SS}) to ground.

It is given that Vdd = 5V, $V_{BIAS} = 2.5 V$, $V_T = 1.8 V$, $R_L = 4.7 k\Omega$.

Figure 1: Common source NMOS based amplifier with resistive load

- (a) Measure the DC value of V_{DS} . Find drain current $I_{DS} = \frac{VDD V_{DS}}{R_L}$ and using saturation region drain current equation find $\mu_n C_{ox} \frac{W}{L}$ for the given transistor. Also calculate $g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)$.
- (b) Apply an ac signal (v_{in} with 50 mV_{pp} amplitude and 1 kHz frequency). Report gain $(A_v = \frac{v_{out}}{v_{in}} = g_m \times R_L)$ and calculate g_m (effective) (does it match closely with the value obtained in previous step?).

(c) In order to see the body effect, connect V_{SS} to a DC supply. (Caution: Before connecting to the supply, ensure that the voltage is near 0 V). As shown in table 3, use given values of V_{SS} and report the corresponding amplitude of v_{out} , gain and g_m (effective). Note that due to the body effect, g_m (effective) = $g_m + g_{mb}$. Comment on the effect of body-effect over gain.

$Body\ Voltage\ (V_{SS})$	v_{out}	Gain	$g_m(effective)$
0			
0.4			
-0.4			

Table 1

2. Effect of BIAS points on Gain of common source amplifier

- (a) For different values of input BIAS voltage and a fixed small signal input voltage (v_{in} with $100~mV_{pp}$ amplitude and 1 kHz frequency), $V_{DD}=5~V$, plot the output and find the gain for each value of V_{BIAS} .
- (b) Calculate the value of g_m for each value of V_{BIAS} from gain $(gain = -g_m R_L)$, where $R_L = 4.7 \ k\Omega$.
- (c) Using the measured values, plot g_m vs V_{GS} (BIAS) in your notebook.
- (d) Tabulate the corresponding values of V_{out} for each value of V_{BIAS}

$V_{BIAS}\left(V ight)$	V_{out}	Gain	g_m
1.5			
1.8			
2.5			
3.1			
4			

Table 2

3. Effect of small signal input swing on gain of common source amplifier

- (a) For a $V_{BIAS} = 2.5 \ V$, apply the input signal (100 mV) with step size of 100 mV between the different inputs until clipping can be observed. Find the output swing and the corresponding gain value.
- (b) Tabulate the corresponding values of gain and output swing for each v_{in} .
- (c) Explain the reason of clipping and trend of gain values.

$V_{input\ ac}$	$V_{output\ ac}$	Gain	g_m

Table 3

4. CS amplifier with external coupling

Figure 2: CS amplifier with external coupling capacitance and resistor

- (a) To the CS amplifier as in figure.1 instead of giving a sinusoidal signal with a DC offset we bias the amplifier with external DC source. We connect an external coupling capacitance C_c of value around 10 μ F in series with V_{in} and a bias resistor R_{BIAS} of value around few 100 Ω in series with V_{BIAS} as shown in figure.2.
- (b) We give a sinusoidal input signal v_{in} of amplitude 100 mV V_{p-p} , V_{BIAS} of value 2.5 V and load resistance R_L of value 4.7 K Ω for supply voltage (V_{DD}) of 5 V. Measure the value of gain $(\frac{V_{out}}{V_{in}})$ and from gain calculate the value of g_m . Do you observe any difference in the values of gain and g_m from the values you obtained from previous results.
- (c) Measure the value of V_{DS} and determine the value of I_{DS} and $\mu C_{ox} \frac{W}{L}$.
- (d) As shown in Fig. 2(b), connect a load capacitor $C_L = 470 \ pF$ and plot the frequency response of the amplifier gain. Find the 3-dB bandwidth from measured plots and verify it with the estimated pole of the transfer function $(\frac{v_{out}}{v_{in}}(s))$. (hint: To plot, use analyze option in DSO, in frequency response analysis chart, set start frequency as 100 Hz, stop frequency as 20 MHz, Amplitude as 10 mV, Output load as High-Z and points as 50. Select the gain channel and move the marker to get the readings)