Molecular dynamics study of ideal polymer chains with variable persistence length Results report

Yahor Paromau, Holger Merlitz

ITP@IPF

23.05.2023

Outline

Introduction

Experiment 1: Fully flexible chain

Experiment 2: Semi-flexible chain, vary persistence length

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored

Experiment 4: EEA1/EEA1+Rab5-like chain, free

References

Definitions, notations, units

Mostly: following [Svaneborg and Everaers, 2020]

Units: LJ

Notations and definitions:

- Contour length: L
- ▶ End to End distance (ETE): \vec{R}
- ► Change of ETE: $[\Delta R(t)]^2 := [\vec{R}(t) \vec{R}(0)]^2$
- ► Friction coefficient of bead, viscosity: $\zeta\left[\frac{\text{mass}}{\text{time}}\right]$, $\eta\left[\frac{\text{mass}}{\text{time}*\text{distance}}\right]$
- ▶ subscript "b" to denote bead specific properties to distinguish these from Kuhn units:
 - ► Kuhn lenght, bond length: *I_K*, *I_b*
 - Number of Kuhn segments, number of beads: N_K , N_b
- Friction coefficient of center of mass: $\zeta_{CM} = N_b \zeta$
- ▶ Rouse relaxation time [Svaneborg and Everaers, 2020]:

$$au_R = rac{1}{3\pi^2} rac{\zeta_{CM} \langle R^2
angle}{k_B T} = rac{1}{3\pi^2} rac{\zeta N_b^2 l_b^2}{k_B T}$$

• Relaxation time of single bead: $\tau_0 = \frac{3\pi^2\tau_R}{N^2}$

Definitions, notations, units

Notations and definitions:

• index "e" for variables referring end-monomer of the chain: m_e , ζ_e

Conventions:

► Confidence interval specification: $\pm 3\sigma$

Common simulation settings and values

- Only bonded beads interract (ideal chain)
- \triangleright Chain parameters: 64 monomers, monomer mass m=1
- ► Ensemble size ≥ 500 chains
- **Environment parameters**: $\zeta = 1$
- ► Time step 0.0025 LJ

Assumptions

Variation of 0.2% of I_b is neglectible [Svaneborg and Everaers, 2020] $\Rightarrow I_b = const$, $L = (N_b - 1)I_b = const$

...

Rouse model

$$\langle R^2 \rangle = N_b I_b^2 \tag{1}$$

$$g_4(t) := \langle (\Delta R(t))^2 \rangle = 2N_b I_b^2 (1 - \frac{8}{\pi^2} \sum_{p=1,3,...} e^{\frac{-tp^2}{\tau_R}})$$
 (2)

Experiment 1: Fully flexible chain Settings

Same potentials used as in [Svaneborg and Everaers, 2020, Section 2.1], except:

- ▶ Bending potential: $U_{bend}(\theta) = 0$
- Only bonded beads interract

 au_R calculated analytically

Figure: MSD - compare simulation and Rouse model with τ_R calculated analytically.

τ_R as free parameter

Figure: MSD - compare simulation and Rouse model with τ_R estimated from fit of $g_4(t)$ to simulation data.

 au_R as free parameter

Figure: MSD - compare simulation and Rouse model with τ_R estimated from fit of $g_4(t)$ to simulation data.

 au_R analytcal/free values

Analytical: $\tau_R = 130.16$, $\tau_0 = 0.941$

Free parameter: $\tau_R = 582.3 \pm 28.6,~\tau_0 = 4.21 \pm 0.07$

Define adjustment factor $\alpha := \frac{\tau_{0, \text{empirical}}}{\tau_{0, \text{analytical}}} \approx 4.47$

Conclusions / Results

- ▶ Boundary conditions of Rouse model must be adjusted to describe dynamics on short/interim time-scales.
- Prouse model with τ_R as free parameter is introduced to account for boundary conditions. Based on τ_R estimate the adjustment factor for τ_0 is calculated. This allows to use the model on chains with different number of segments.

Experiment 2: Semi-flexible chain, vary persistence length Settings

Same potentials used as in [Svaneborg and Everaers, 2020, Section 2.1], except:

Only bonded beads interract

Experiment 2: Semi-flexible chain, vary persistence length Used equations

Kuhn length [Svaneborg and Everaers, 2020]:

$$I_{K} = I_{b} \frac{2\kappa + e^{-2\kappa} - 1}{1 - e^{-2\kappa}(2\kappa + 1)}$$
 (3)

Number of Kuhn segments:

$$N_K = \frac{L}{I_K} \tag{4}$$

Rouse time:

$$\tau_R = \frac{1}{3\pi^2} \frac{\zeta_K \langle R^2 \rangle}{k_B T} = \frac{1}{3\pi^2} \frac{\zeta N_b N_K I_K^2}{k_B T} \tag{5}$$

Experiment 2: Semi-flexible chain, vary persistence length ETE in equilibrium

Experiment 2: Semi-flexible chain, vary persistence length ETE vs Kuhn length

Experiment 2: Semi-flexible chain, vary persistence length MSD: $\langle [\Delta R(t)]^2 \rangle$

Experiment 2: Semi-flexible chain, vary persistence length

MSD: $\langle [\Delta R(t)]^2 \rangle$ on log-log scale

Experiment 2: Semi-flexible chain, vary persistence length MSD: $\langle [\Delta R(t)]^2 \rangle$ by dimension

Experiment 2: Semi-flexible chain, vary persistence length MSD: $\langle [\Delta R(t)]^2 \rangle$ by dimension on log scale

Experiment 2: Semi-flexible chain, vary persistence length

- 1. The behavior of MSD for different I_K is roughly the same for $I_K/L \gtrsim 0.65$
- 2. The relaxation time grows non-linearly with rising I_K
- 3. MSD in z dimension is noticable different for $I_K \gtrsim 0.97$.
 - ▶ The relaxation time in z dimension gets smaller relative to x,y dimensions with increasing I_K . Explanation: chain has less freedom along z axis with rising I_K .
 - ► MSD is in z is smaller then in x,y on longer time scales. Explanation: same.

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$ vs Rouse with τ_R analytically

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$ vs Rouse with τ_R as free parameter

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$ vs Adjusted Rouse with τ_R , a as free parameter

$$\langle [\Delta R(t)]^2 \rangle = a \langle R \rangle [1 - \exp(-\frac{t}{\tau_R})]$$

0.0

Experiment 2: Semi-flexible chain, vary persistence length

 $\langle [\Delta R(t)]^2 \rangle$ vs Adjusted Rouse with au_R , a as free parameter on log scale

$$\langle [\Delta R(t)]^2 \rangle = a \langle R \rangle [1 - \exp(-\frac{t}{\tau_R})]$$

Experiment 2: Semi-flexible chain, vary persistence length

- Rouse model is not able to describe semi-flexible chain with ≥
 3 segments even with rouse time adjusted for boundary
 conditions. (Continuum assumption violated; ETE of
 worm-like chain is different.)
- 2. Rouse model with free τ_R doesn't work for small number of kuhn segments.
- 3. Introducion of Adjusted Rouse model helps to describe dynamics on interim and large time scales, however it's inaccurate on short time scales.

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored Settings

Same potentials used as in [Svaneborg and Everaers, 2020, Section 2.1], except:

► Only bonded beads interract

Modelling EEA1 and EEA1+Rab5:

- ► EEA1: $\kappa = 190.2 \Rightarrow I_K/L = 6.02$
- ► EEA1+Rab5: $\zeta_e = 10\zeta, 20\zeta; m_e = 1.5m$

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored MSD

MSD: EEA1 vs EEA1+Rab5($\zeta_e = 10 * \zeta$) vs EEA1+Rab5($\zeta_e = 20 * \zeta$) for $\kappa = 190.20$, L=61.11

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored MSD on log scale

MSD: EEA1 vs EEA1+Rab5($\zeta_e = 10 * \zeta$) vs EEA1+Rab5($\zeta_e = 20 * \zeta$) for $\kappa = 190.20$, L=61.11

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored MSD by dimension

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored MSD by dimension on log scale

Experiment 3: EEA1/EEA1+Rab5-like chain, anchored Conclusions / Results

- \blacktriangleright I_K of the EEA1-like- and EEA1+Rab5-like- anchored chain is the same.
- ▶ Increased diameter of end monomer changes short- and interim-time scale dynamics. Relaxation time of the chain increases. Likely because of slower diffusion of the end monomer and correspondingly of the part of the chain.

Experiment 4: EEA1/EEA1+Rab5-like chain, free MSD

Experiment 4: EEA1/EEA1+Rab5-like chain, free MSD on log scale

Experiment 4: EEA1/EEA1+Rab5-like chain, free MSD by dimension on log scale

Experiment 4: EEA1/EEA1+Rab5-like chain, free Conclusions / Results

- $ightharpoonup I_K$ of the EEA1-like- and EEA1+Rab5-like- free chain is the same.
- ▶ With increasing diameter of the end monomer short- and interim- time scale dynamics slightly changes. The relaxation time slightly uncreases. Change in relaxation time is smaller then in case of anchored chain.
- In difference to anchored chain MSD in z direction does not differ from x,y.

Problems and Questions

1. No analytical model for experiment 3 and 4, therefore precise description of the difference in dynamics is not possible.

References

[Svaneborg and Everaers, 2020] Svaneborg, C. and Everaers, R. (2020).

Characteristic time and length scales in melts of kremer–grest bead–spring polymers with wormlike bending stiffness.

Macromolecules, 53(6):1917-1941.