Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 11 - Конечные поля

Конечные поля

Пусть G - непустое множество, * - бинарная операция, определенная $\forall a,b \in G.$ (G,*) - rpynna , если:

- $\forall a, b \in G \ a * b \in G \ ($ замкн.)
- $\forall a, b, c \in G (a * b) * c = a * (b * c)$ (ассоц.)
- $\exists e \in G : \forall a \in G \ a * e = e * a = a \ (сущ. нейтр.эл.)$
- $\forall a \in G \ \exists a^{-1} \in G : a*a^{-1} = a^{-1}*a = e$ (сущ. обратного эл.)

Опр.

Абелева (коммутативная) группа: a * b = b * a

Порядок группы (G,*) - мощность G, обозн. |G|

Опр.

Возведение в степень: $a \in G, i \in N$ $a^i = (a*...*a)$ і раз. $a^0 = 1$ (1 - это e)

Опр.

Порядок элемента $a \in G$ - это $min \ n \neq 0$: $a^n = 1$.

Опр.

Подгруппа группы G - подмножество G, которое является группой относительно *.

Смежный класс множества H по элементу a - это $aH = \{ax | x \in H\}$

Пример

 \mathbb{Z}_{10}^+ - группа. Пример подгруппы и смежных классов.

Теорема 1 (Т. Лагранжа)

Пусть H - подгруппа G. Тогда |G| = |H| * (количество смежных классов по <math>H) Без док-ва.

Пример

- Группа вычетов по модулю N по сложению: $\mathbb{Z}_N = \{0,1,..N-1\}$
- Группа по умножению на \mathbb{Z}_N : $\mathbb{Z}_N^* = \{i \in \mathbb{Z}_N | \mathsf{HOД}(i, N) = 1\}$

Утверждение

Группа по умножению на \mathbb{Z}_N : $\mathbb{Z}_N^* = \{i \in \mathbb{Z}_N | \mathsf{HOД}(i,N) = 1\}$ Доказать.

Следствие: если G - группа конечного порядка k, то порядок k_1 любой ее подгруппы G_1 является делителем порядка группы.

Опр.

Группа наз. *циклической*, если $\exists a \in G: \forall b \in G \ \exists i \in N: \ b=a^i.$ а наз. *генератором* (порождающим элементом) группы. Обозн. G=< a>.

<u>Следствие:</u> порядок любого элемента - делитель порядка группы.

Следствие: Пусть m=|G|. Тогда $\forall a \in G \ a^m=1$

Задача

$$5^{38} \mod 9 = ?$$

 $3^{663} \mod 7 = ?$

Кольцо (R, +, *) (или просто R):

- R абелева группа по +
- $\forall a, b \in G \ a * b \in G \ ($ замкн. *)
- $\forall a, b, c \in G (a * b) * c = a * (b * c) (ассоц. *)$
- $\forall a,b,c \in G \ a(b+c) = ab + ac$ и (b+c)a = ba + ca (дистр. справа и слева)

Если * комм., то это коммутативное кольцо.

Опр.

Делители нуля: если a*b=0 в кольце.

Поле (F, +, *) (или просто F):

- (*F*,+,*) кольцо
- (F \ {0}, ∗) абелева группа

Нейтральный элемент по + обозн. 0.

Нейтральный элемент по * обозн. 1.

Поле - коммутативное кольцо с $1 \neq 0$ без делителей нуля.

Характеристика поля - $min\ n\in\mathbb{N}$ такое, что сумма n копий единицы равна нулю: $n\cdot 1=0$ Если такого числа не существует, то характеристика равна 0.

Опр.

 $H\subseteq F$ - подполе поля (F,+,*), если H замкнуто отн. +, *.

Опр.

 $H\supset F$ - расширение поля F, если H - поле и F - подполе H.

Опр.

Поле Галуа - конечное поле. Обозн. GF(q), q - порядок поля. (Эварист Галуа, 1811 - 1832).

Опр.

Простое поле - поле, не содержащее собственных подполей.

Свойства поля:

- Характеристика конечного поля простое число.
 Док. от противного.
- Пусть F конечное поле, k его порядок. Тогда $k=p^n$, p простое, $n\in N$. Причем p характеристика поля. Без док-ва.
- Для любого p^n (p простое) существует единственное (с точностью до изоморфизма) поле порядка p^n , обозн. F_{p^n} . Без док-ва.
- Мультипликативная группа F_q^* поля F_q циклическая группа порядка (q-1). Ее генератор наз. примитивным элементом поля. Без док-ва.

Пример (Не циклическая группа)

$$\mathbb{Z}_8^* = (\{1,3,5,7\},*).$$

$$|G| = 4.$$

$$g_i^2 = e$$
.

Пример (Циклическая группа)

 \mathbb{Z}_7^*

Пример (Поле)

GF(2),
$$\{0,1\}$$
, + это XOR, * это AND.

<u>Обозн.:</u> $F_p[x]$ - кольцо полиномов не ограниченной степени с коэффициентами из поля F_p . $a_n * x^n + ... + a_0$, $a_i \in F_p$, x - формальный символ.

 $f(x) \cdot g(x)$ в $F_p[x]$: как обычно: степени x складываются в кольце \mathbb{Z} ; операции над коэффициентами - из F_p .

Деление полиномов с остатком: "в столбик" $(GF(2)[x], x^3 + x + 1 \text{ на } x + 1)$

Опр.

Неприводимый многочлен - не имеет делителей в $F_p[x]$, т.е. не разлагается в произведение других многочленов.

$$x^4 + x^2 + 1 = (x^2 + 1)(x^2 + 1)$$
 не имеет корней.

Корни многочленов

$$q = p^n$$

 $\forall a \in GF(q)$ одночлен x-a имеет корень a.

Рассмотрим многочлен $f(x) = x^q - x$ над GF(q). По основной теореме алгебры, полином степени q имеет не более q корней.

В поле нет делителей нуля, поэтому $|\mathit{GF}^*(q)| = q-1$. $\Rightarrow \forall a \in \mathit{GF}^*(q) \ a^{q-1} = 1$.

$$\Rightarrow f(x)$$
 имеет q различных корней, т.е. $f(x) = \prod_{a \in GF(q)} (x-a)$.

Построим расширение конечного поля.

Опр.

Vдеал кольца R - подкольцо $I \subset R$: $\forall i \in I \ \forall r \in R \ ir \in I \ (правый идеал).$

Опр.

Изоморфизм - биекция, сохраняющая операции.

Пример

- $\{5k|k\in\mathbb{Z}\}=<5>$ подкольцо \mathbb{Z} , идеал. Факторкольцо $Z/<5>\cong (\mathbb{Z}_5,+,*)$ поле.
- $\{6k|k\in\mathbb{Z}\}=$ < 6 > подкольцо \mathbb{Z} , идеал. Факторкольцо Z/ < 6 > \cong $(\mathbb{Z}_6,+,*)$ кольцо.

Пусть GF(p)[x] - кольцо многочленов. Расширение поля GF(p) - это факторкольцо $R(p^n)$ - кольцо классов вычетов GF(p)[x] по модулю его идеала.

$$R(p^n) = GF(p)[x] / < f_n(x) >,$$

где $f_n(x)$ - многочлен степени n над GF(p), и $< f_n(x) >$ - подкольцо всех мночленов, кратных $f_n(x)$.

Утверждение

Если $f_n(x)$ - неприводимый многочлен, то $GF(p^n) = GF(p)[x]/< f_n(x)>$ - поле, расширение поля GF(p). (Проверим, что аксиомы поля вып-ся.)

В F[x]/< g> все операции над полиномами - по модулю g. Так же, как в $\mathbb{Z}_n=\mathbb{Z}/< n>$ все операции - по модулю n.

Пример (Для семинара)

- 1) $f(x) = x^2 + 1$. Построить $F_2/ < f(x) >$. Найти делители нуля.
- $f(x) = x^2 + x + 1$. Построить $F_2/< f(x)>$. Показать, что это поле. (См. слайд 24.)

 F_p - поле, p - простое.

Пусть
$$F=F_p[x]/< g>$$
, где $g=g_n(x)=\sum\limits_{i=0}^n a_i x^i\in F_p[x]$ - неприводимый над полем F_p .

Тогда для элемента $[x] \in F$ верно

$$g([x]) = \sum_{i=0}^{n} a_i([x]^i) = \left[\sum_{i=0}^{n} a_i(x^i)\right] = [g] = [0] \text{ B F.}$$

T.е. элемент $\alpha = [x] \in F$ - корень многочлена g(x) в поле F.

$$g_n(x)$$
 - неприводимый. $F_q = F_p[x]/ < g >$.

- 1) $\alpha = [x] \in F$ корень g(x) в F_q
- 2) F_q^* циклическая. \exists генератор (образующий элемент) $\beta \in F_q \setminus \{0\}$. Порядок $\beta = |F_q^*|$.

$$\alpha = ?\beta$$

Неприводимый многочлен g(x) является *примитивным*, если его корень $\alpha=[x]$ - генератор (образующий элемент) мультипликативной группы поля $F_q=F_p[x]/< g>.$

 $\frac{\mathsf{C}$ ледствие: $\mathsf{g}(x)$.

Пример (Для семинара)

Неприводимый $g(x) = x^4 + x + 1$. $F = GF(16) = F_2/g(x)$.

$$\alpha = x \in F$$
 - корень $g(x)$.

 α - генератор поля? $|F^*|=15$. Проверим $\alpha^3=x^3\neq 1$. $\alpha^5=\alpha^4\cdot\alpha=(\alpha+1)\alpha=(x+1)x\neq 1$ Значит $ord(\alpha)=15$, α - генератор F.

Пример (Для семинара)

Неприводимый
$$g(x) = x^4 + x^3 + x^2 + x + 1$$
. $H = GF(16) = F_2/< g(x) >$. $H \cong F$.

$$\alpha = x \in H$$
 - корень $g(x)$.

$$lpha$$
 - генератор поля? $|H^*|=15$. Проверим $lpha^3=x^3
eq 1$. $lpha^5=lpha^4\cdotlpha=(lpha^3+lpha^2+lpha+1)lpha=1$ Т.к. $(x^3+x^2+x+1)x=1\ orall \gamma\in H$ Значит $ord(lpha)=5,\ lpha$ - не генератор F .

Сущ. другой генератор F - не корень g(x).

Поле как векторное линейное пространство

$$orall \gamma \in F_p/< g_n(x)> \ \gamma=b_{n-1}lpha^{n-1}+...+b_1lpha+b_0$$
где $b_i \in F_p \ orall i.$

$$\gamma \in \mathcal{F}_{p^n} \leftrightarrow (b_{n-1},..,b_1,b_0)$$

- Операция сложения элементов поля $F_p/< g_n(x)>$ это операция покоординатного сложения задающих их векторов.
- Абелева группа по +
- Умножение на скаляр элемент F_p ассоциативное, дистрибутивное.

Размерность лин. пр-ва равна n = deg(g).

$$\gamma \in \mathcal{F}_{p^n} \leftrightarrow (b_{n-1},..,b_1,b_0)$$
, где $b_i \in \mathcal{F}_p$.

Например, элементы $GF(2)/< x^4+x+1> = GF(16)$: (1011) кодирует x^3+x+1 и т.д.

Все 8-битные последовательности (байты) кодируют элементы поля $GF(256) = GF(2)[x]/< g_8(x)>,\ deg(g_8)=8.$

Опр.

Дискретный логарифм $log_ab=x$, где $a,b\in F,\ x\in \mathbb{Z}$ - это $x:a^x=b$.

 $\log b = \log_{\alpha} b$, где α - примитивный элемент поля.

$$F_2/< x^2+x+1>= GF(4)$$
:

Последовательность длины 2	Многочлен	Степень	Логарифм
00	0	0	$-\infty$
01	1	1	0
10	х	α	1
11	x + 1	α^2	2

Расширение поля $GF({\bf 2})$ по модулю многочлена $\pi(x) = x^2 + x + 1$.

Правила сложения и умножения в этом поле

+	0	1	α	α^2
0	0	1	α	α^2
1	1	0	α^2	α
α	α	α^2	0	1
α^2	α^2	α	1	0

Сложение в поле GF(4) по модулю $\pi(x) = x^2 + x + 1$.

Умножение в поле

GF(4) по модулю $\pi(x) = x^2 + x + 1$.

Замеч.: при построении расширения поля GF(q) само поле GF(q) может быть расширением некоторого поля, т.е. возможно $q=(p^m)^k$, р - простое.

Задача

Сколькими способами можно построить GF(n), n = 8, 9, 16, 18?

Литература к лекции

- 1. Лидл, Нидеррайтер. Конечные поля. Том 1, глава 1.
- 2. А.А.Болотов, С.Б.Гашков, А.Б.Фролов, А.А.Часовских. Алгоритмические основы эллиптической криптографии, глава 1.
- 3*. V. Shoup, A Computational Introduction to Number Theory and Algebra, 2008