$\Omega_c(2770)^0$

$$I(J^P) = O(\frac{3}{2}^+)$$
 Status: ***

The natural assignment is that this goes with the $\Sigma_c(2520)$ and $\Xi_c(2645)$ to complete the lowest mass $J^P=\frac{3}{2}^+$ SU(3) sextet, part of the SU(4) 20-plet that includes the $\Delta(1232)$. But J and P have not been measured.

$\Omega_c(2770)^0$ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

2765.9±2.0 OUR FIT Error includes scale factor of 1.2.

$\Omega_c(2770)^0 - \Omega_c^0$ MASS DIFFERENCE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

 $70.7^{+0.8}_{-0.9}$ OUR FIT

 $70.7^{+0.8}_{-1.0}$ OUR AVERAGE

 $70.7\pm0.9^{\,+\,0.1}_{\,-\,0.9}$ 54 \pm 9 SOLOVIEVA 09 BELL $\varOmega^0_{\,c}\gamma$ in $e^+\,e^ightarrow$ $\varUpsilon(4S)$

70.8 \pm 1.0 \pm 1.1 105 \pm 22 AUBERT,BE 061 BABR $e^+e^-\approx~ \varUpsilon$ (4S)

$\Omega_c(2770)^0$ DECAY MODES

The $\varOmega_c(2770)^0 - \varOmega_c^0$ mass difference is too small for any strong decay to occur.

Mode Fraction (Γ_i/Γ)

 $\Gamma_1 = \Omega_c^0 \gamma$ presumably 100%

$\Omega_c(2770)^0$ REFERENCES

SOLOVIEVA 09 PL B672 1 E. Solovieva et al. (BELLE Collab.) AUBERT,BE 06I PRL 97 232001 B. Aubert et al. (BABAR Collab.)

Created: 5/30/2017 17:23