Reliability of stock-recruitment function estimation in state space assessment models

Gregory L. Britten¹, Elizabeth Brooks², and Timothy Miller²

¹Woods Hole Oceanographic Institution ²Northeast Fisheries Science Center

September 2023

1 Abstract

- 2 Stock-recruitment functions are important but difficult to estimate.
- 3 Many assessment models do not estimate stock-recruitment functions.
- 4 Maybe state space models help.
- 5 Here we ...
- 6 We find ...
- 7 This has implications for ...

8 Introduction

Methods

- We used the WHAM package (ref, commit 77bbd94)
- We performed a simulation study with 96 operating models that differed in the stock recruitment function
- 12 used to simulate the population and a variety of additional variance parameter settings. Variance parameter
- 13 settings were determined by a review of the range of estimates from recent applications of WHAM in
- management of stocks of haddock, butterfish, and American plaice in the NE US.
- We simulated 100 data sets for each operating model.
- ¹⁶ For each simulated data set we fit a set of 4 estimating models.

17 Operating Models

- 18 The general operating model structure follows that of Project 0, reviewed briefly here. The population
- model tracks 10 age classes: ages 1 to 10+, assuming spawning occurs 1/4 of the way through the year.
- The maturity at age was a logistic curve with a50 = 2.89 and slope = 0.88, assumed known in all estimation
- 21 models.
- Weight at age was generated with a LVB growth function

$$L_a = L_{\inf} \left(1 - e^{-k(a - t_0)} \right)$$

with $t_0 = 0$, $L_{\text{inf}} = 85$, and k = 0.3. The length-weight relationship is

$$W_a = \theta_1 L_a^{\theta_2}$$

24 with
$$\theta_1 = e^{-12.1}$$
 and $\theta_2 = 3.2$.

We assume a Beverton-Holt stock-recruitment of the form

$$N_{1,y} = \frac{\alpha SSB_{y-1}}{1 + \beta SSB_{y-1}}$$

- where α is referred to as the density-independent recruitment and β sets the strength of density-dependence.
- We specified unfished recruitment at $R_0 = e^{19}$ and $F_{MSY} = F_{\%40} = 0.348$ which corresponds to a steepness of 0.69, $\alpha = 0.60$, and $\beta = 2.4 * 10^{-5}$.
- **Estimating Models**
- Results
- Discussion
- Appendix A
- References

Table 1: Distinguishing characteristics of the operating models

	Model	NAA_re	Ecov_obs_sig	Ecov_re_sig	obs_erro	r R_sig	Fhist	NAA_cor	Ecov_re_cor	Ecov_effect	Ecov_how
1	om_1	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.20	0.10	1
2	om_2	rec	0.10	0.10	L	1.00	H-MSY	0.20	0.20	0.10	1
3 4	om_3 om_4	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	MSY MSY	0.20 0.20	0.20 0.20	0.10 0.10	1 1
5	om_5	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	0.10	1
6	om6	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	0.10	1
7 8	om_7 om_8	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	MSY MSY	0.80 0.80	0.20 0.20	0.10 0.10	1 1
9	om_9	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.20	0.10	1
10	om_10	rec	0.10	0.10	L	1.00	$\operatorname{H-MSY}$	0.20	0.80	0.10	1
11	om_11	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	0.10	1
12 13	om_12 om_13	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.20 0.80	0.80 0.80	0.10 0.10	1 1
14	om_14	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	0.10	1
15	om_ 15	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	0.10	1
16	om_16	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	0.10	1
17 18	om_17 om_18	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.20 0.20	1.00 1.00	1 1
19	om_19	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	1.00	1
20	om_20	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	1.00	1
21	om_21	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	1.00	1
22 23	om_22 om_23	rec rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	H-MSY MSY	0.80 0.80	0.20 0.20	1.00 1.00	1 1
24	om_24	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	1.00	1
25	om_25	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.80	1.00	1
26 27	om_26 om_27	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	H-MSY MSY	0.20 0.20	0.80 0.80	1.00 1.00	1 1
28	om_28	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	1.00	1
29	om_29	rec	0.10	0.10	L	0.10	$\operatorname{H-MSY}$	0.80	0.80	1.00	1
30	om_30	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	1.00	1
31 32	om_31 om_32	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	MSY MSY	0.80 0.80	0.80 0.80	1.00 1.00	1 1
33	om_33	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.20	0.10	2
34	om_34	rec	0.10	0.10	L	1.00	$\operatorname{H-MSY}$	0.20	0.20	0.10	2
35	om_35	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	0.10	2
36 37	om_36 om_37	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.20 0.80	0.20 0.20	0.10 0.10	2 2
38	om_38	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	0.10	2
39	om_39	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	0.10	2
40	om_40	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	0.10	2
41 42	om_41 om_42	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.80 0.80	0.10 0.10	$\frac{2}{2}$
43	om_43	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	0.10	2
44	om_44	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	0.10	2
45 46	om_45	rec	0.10	0.10	L L	0.10	H-MSY H-MSY	0.80	0.80	0.10	2 2
47	om_46 om_47	rec	0.10 0.10	0.10 0.10	L	1.00 0.10	MSY	0.80 0.80	0.80 0.80	0.10 0.10	2
48	om_48	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	0.10	2
49	om_49	rec	0.10	0.10	L	0.10	$\operatorname{H-MSY}$	0.20	0.20	1.00	2
50 51	om_50	rec	0.10	0.10 0.10	L	1.00 0.10	H-MSY MSY	0.20	0.20	1.00	2 2
52	om_51 om_52	rec	0.10 0.10	0.10	L L	1.00	MSY	0.20 0.20	0.20 0.20	1.00 1.00	2
53	om_53	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.20	1.00	2
54	om_54	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	1.00	2
55 56	om_55 om_56	rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	MSY MSY	0.80 0.80	0.20 0.20	1.00 1.00	2 2
57	om_57	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.20	1.00	2
58	om_58	rec	0.10	0.10	L	1.00	H-MSY	0.20	0.80	1.00	2
59	om_59	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	1.00	2
60 61	om_60 om_61	rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.20 0.80	0.80 0.80	1.00 1.00	$\frac{2}{2}$
62	om_62	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	1.00	2
63	om_63	rec	0.10	0.10	L	0.10	MSY	0.80	0.80	1.00	2
64	om_64	rec	0.10	0.10	L	1.00	MSY H-MSY	0.80	0.80	1.00	2
65 66	om_65 om_66	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY	0.20 0.20	0.20 0.20	0.10 0.10	4 4
67	om_67	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	0.10	4
68	om_68	rec	0.10	0.10	L	1.00	MSY	0.20	0.20	0.10	4
69 70	om_69	rec	0.10 0.10	0.10	L L	0.10 1.00	H-MSY H-MSY	0.80 0.80	0.20 0.20	0.10 0.10	4 4
70	om_70 om_71	rec	0.10	0.10 0.10	L	0.10	MSY	0.80	0.20	0.10	4
72	om_72	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	0.10	4
73	om $_{-}73$	rec	0.10	0.10	L	0.10	H-MSY	0.20	0.80	0.10	4
74 75	om_74 om_75	rec rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	H-MSY MSY	0.20 0.20	0.80 0.80	0.10 0.10	4 4
76	om_76	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	0.10	4
77	om77	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.80	0.10	4
78	om_78	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.80	0.10	4
79 80	om_79 om_80	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	MSY MSY	0.80 0.80	0.80 0.80	0.10 0.10	4 4
81	om_80 om_81	rec	0.10	0.10	L	0.10	MSY H-MSY	0.80	0.80	1.00	4
82	om_ 82	rec	0.10	0.10	L	1.00	$\operatorname{H-MSY}$	0.20	0.20	1.00	4
83	om_83	rec	0.10	0.10	L	0.10	MSY	0.20	0.20	1.00	4
84 85	om_84 om_85	rec rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	MSY H-MSY	0.20 0.80	0.20 0.20	1.00 1.00	4 4
86	om_86	rec	0.10	0.10	L	1.00	H-MSY	0.80	0.20	1.00	4
87	om87	rec	0.10	0.10	L	0.10	MSY	0.80	0.20	1.00	4
88	om_88	rec	0.10	0.10	L	1.00	MSY	0.80	0.20	1.00	4
89 90	om_89 om_90	rec rec	0.10 0.10	0.10 0.10	L L	0.10 1.00	H-MSY H-MSY	0.20 0.20	0.80 0.80	1.00 1.00	4
91	om_90	rec	0.10	0.10	L	0.10	MSY	0.20	0.80	1.00	4
92	om_92	rec	0.10	0.10	L	1.00	MSY	0.20	0.80	1.00	4
93	om_93	rec	0.10	0.10	L	0.10	H-MSY	0.80	0.80	1.00	4
94 95	om_94 om_95	rec rec	0.10 0.10	0.10 0.10	L L	1.00 0.10	H-MSY MSY	0.80 0.80	0.80 0.80	1.00 1.00	4
96	om_96	rec	0.10	0.10	L	1.00	MSY	0.80	0.80	1.00	4
_											

Table 2: Distinguishing characteristics of the estimating models

	ecov_how	r_mod
1	0	BH
2	1	BH
3	2	BH
4	4	BH