Linearne transformacije

- 1. Za date funkcije ispitati da li su linearne transformacije i za one koje jesu naći matricu i rang.
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x, y) = (x^2 y, x + y)$;
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, f(x,y) = (2x y, 3x, y + 1);
 - (c) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, f(x, y, z) = (x y + 2z, -x + 3y + z);
 - (d) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, f(x, y, z) = 3x + 2y z;
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, f(x, y, z) = (x + y, 0);
 - (f) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x,y) = (x,\cos(xy))$;
 - (g) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x,y) = \sqrt{x}$;
 - (h) $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = 5x;
 - (i) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $f(x,y) = \left(x, y, \sqrt{x^2 + y^2}\right)$;
 - (j) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x,y) = (\ln 2 \cdot x, x + y)$.
- Za sledeće funkcije diskutovari po realnim parametrima kada su linearne transformacije i u slučaju kada jesu naći njihove matrice i odrediti rang.
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $f(x, y, z) = (ax + y^b, bx z)$;
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, f(x,y) = ax + bxy + cy;
 - (c) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $f(x, y, z) = (2^{ay}x + yz^b, ax + by + cz)$;
 - (d) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, f(x,y) = ((ax b)y, x + ab);
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $f(x, y, z) = \left(\frac{ax+b}{bx+a} + y, \sin(bx) + az\right)$;
 - (f) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $f(x,y) = (x \cdot 5^{(a-1)y+b}, (\ln b) y^2, ax + cy)$.
- 3. Za date funkcije ispitati da li su linearne transformacije i za one koje jesu naći jezgro, sliku, rang i matricu.
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, f(x,y) = (x 3y, -2x + 6y, 3x 9y);
 - (b) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, f(x, y, z) = (x + y + z, 2x 3y + 5z, -2x 7y + z).
- 4. Neka su linearne transformacije $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definisane sa f(x,y) = (2x-y, x+3y) i g(x,y) = (-x+y, 3x-2y).
 - (a) Odrediti kopoziciju $f \circ g$.
 - (b) Napisati matrice M_f i M_g linearnih transformacija f i g.
 - (c) Naći linearnu transformaciju h koja odgovara matrici $M_f \cdot M_g$ i uporediti je sa $f \circ g$.
 - (d) Odrediti f^{-1} i g^{-1} ako postoje.
- 5. Neka su linearne transformacije $f,g:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definisane sa f(x,y,z)=(x-2y,y+z,-2x+y-z) i g(x,y,z)=(x+2y+3z,x-z,2y+4z).
 - (a) Napisati matrice M_f i M_g linearnih transformacija f i gi odrediti njihov rang.
 - (b) Odrediti $f \circ g$., f^{-1} , ker(g) i Img(g).
- 6. Dati su vektori $\vec{a}=(1,2,-1), \vec{b}=(3,-1,1)$ i $\vec{v}=(x,y,z)$. Neka su f,g i h funkcije date sa:
 - $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ f(x, y, z) = \vec{a} \times \vec{v} + (\vec{a} \cdot \vec{v}) \cdot \vec{b};$
 - $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ g(x, y, z) = (y, z);$
 - $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, h(x,y) = (x-2y, 2x+y, -y).

Dokazati da je funkcija $F = h \circ g \circ f$ linearna transformacija i odrediti njenu matricu.

7. Za sledeće funkcije ispitati, odnosno diskutovati po parametrima da li su linearne transformacije i u slučajevima kada jesu naći njihovu matricu, jezgro, sliku i rang.

(a)
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $f(\vec{v}) = \frac{\vec{n} \times \vec{v}}{|\vec{n}|}$, $\vec{v} \in \mathbb{R}^3$, $\vec{n} = (-1, 1, 2)$;

(b)
$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ g(\vec{v}) = (\vec{n} \cdot \vec{v}) \cdot \vec{m}, \ \vec{v} \in \mathbb{R}^3, \ \vec{n} = (1, 1, q), \ \vec{m} = (0, 1, 0);$$

(c)
$$h: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $h(\vec{v}) = (\vec{n} \times \vec{v}) \cdot \vec{n} \cdot \vec{m} + 2(\vec{v} \cdot \vec{n}) \cdot \vec{j}$, $\vec{v} \in \mathbb{R}^3$, $\vec{n} = (1, 1, 2)$, $\vec{m} = (0, p)$, $\vec{j} = (0, 1)$.

- 8. Linearna transformacija $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ data je sa f(1,-1) = (-3,6) i f(-2,1) = (2,-4). Odrediti f(x,y) i odgovarajuću matricu M_f linearne transformacije f, a zatim naći njen rang. Da li postoji f^{-1} ?
- 9. Linearna transformacija $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ data je sa $f(1,-1,1)=(0,2,1), \ f(2,0,3)=(-2,13,3)$ i f(-1,2,0)=(-2,5,-1). Odrediti f(x,y,z), a zatim naći ker(f) i Img(f).
- 10. Linearna transformacija $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ data je sa f(1, -1, 0) = (1, 0, 1), f(1, 2, -4) = (0, -1, 2) i f(-2, 0, 3) = (-1, 1, 0). Odrediti f(x, y, z) i odgovarajuću matricu M_f linearne transformacije f, a zatim izračunati f(-1, 3, 0).

ZA VEŽBU IZ SKRIPTE

Zadatak 12.1; 12.2; 12.7; 12.8 (uzeti da je $g\left(x,y,z\right)=\left(x,y\right)\right)$