Internet Protocol version 6

Yvan Peter

IUT A - Université Lille 1

Internet Protocol version 6 1 / 74

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

- 3. En-tête IPv6
- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Généralités

- spécification issue des travaux de l'IETF sur IPng (nouvelle génération)
- première spécification adoptée en 1994
- réseau de production à partir de juin 2006 (fin du réseau expérimental 6bone)
- actuellement > 40000 préfixes IPv6 annoncés par BGP

Source: http://bgp.potaroo.net/v6/as2.0

Motivation

- faire face à l'épuisement des adresses IPv4
- faire face à l'augmentation de la taille des tables de routage
- permettre une transition sur la durée
- intégrer l'expérience acquise en terme de fonctionnement et de déploiement
 - nettoyage des en-têtes
 - prise en compte de la sécurité
 - prise en compte de la qualité de service
 - généralisation du multicast

Motivation : épuisement des adresses IPv4

Prévision d'épuisement des adresses

Source: http://www.potaroo.net/tools/ipv4

Motivation : optimiser le routage inter-domaines

Évolution de la taille des tables de routage BGP

Source:http://bgp.potaroo.net/

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

- 3. En-tête IPv6
- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Adressage IPv6

RFC 4291

Adresse IPv6

1 octet 2001:0db8:3003:0001:0000:0000:6543:210f 1011|1000

Représentation

- adresse sur 128 bits, découpée en 8 blocs de 16 bits
- représentation en hexadécimal (blocs séparés par :)

Adresse IPv6

 on peut abréger la notation en enlevant les zéro en premier dans un bloc

• et on peut supprimer une (et une seule) série de blocs à zéro

 une adresse IPv6 peut être utilisée directement avec la notation [] si nécessaire

```
http://[2001:db8:3003:1::6543:210f]:80/index.html
```


Adresse IPv6

Conventions de notation (RFC 5957)

• enlever les 0 sur les bits de poids fort de chaque bloc de 16 bits

```
2001:\underline{0}db8::\underline{000}1 \rightarrow 2001:db8::1
```

• :: ne doit pas être appliqué pour un seul bloc.

```
\rightarrow 2001:db8:\underline{0}:1:1:1:1:1
```

 : doit être appliqué sur toute la suite de blocs et sur la plus grande suite possible. En cas d'égalité, on l'appliquera à la première suite de blocs nuls

```
2001:db8:\underline{0:0:0:0}:2:1 \rightarrow 2001:db8::2:1

2001:0:0:1:\underline{0:0:0}:1 \rightarrow 2001:0:0:1::1

2001:0:0:1:0:0:a:1 \rightarrow 2001::1:0:0:a:1
```

utiliser des caractères minuscules

```
2001:DB8::AB:CDEF \rightarrow 2001:db8::ab:cdef
```

1UT

1. Généralités

2. Adressage IPv6

Adresses unicast

Adresses multicast

3. En-tête IPv6

- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Types d'adresses

Adresses unicast

- adresse non spécifiée : ::/128
- adresse de bouclage:::1/128
- adresses de lien local:fe80::/10
- adresses locales uniques: fc00::/7
- adresses unicast globales: 2000::/3

Adresses multicast

Adresses anycast

Format d'adresse unicast

64 bits 64 bits

préfixe de réseau interface ID

Interface ID

L'interface ID identifie de manière unique une interface sur un réseau physique.

Il respecte un format dérivé de IEEE EUI-64.

Adresse de lien local

préfixe fe80::/8

- permet de communiquer sur le réseau local
- un paquet avec cette adresse destination ne sort jamais du réseau local
- cette adresse est configurée automatiquement par la machine
- utiliser les adresses de lien local impose de préciser quelle est l'interface utilisée pour émettre le paquet

```
petery@nostradomus:~$ ip -6 addr show
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536
   inet6 ::1/128 scope host
      valid lft forever preferred lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
   inet6 fe80::224:e8ff:fec2:e961/64 scope link
      valid_lft forever preferred_lft forever
peterv@nostradomus:~$ ping6 fe80::224:e8ff:fec2:e961
connect: Invalid argument
petery@nostradomus:~$ ping6 -Ieth0 fe80::224:e8ff:fec2:e961
:e961 eth0: 56 data bytes
64 bytes from fe80::224:e8ff:fec2:e961: icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from fe80::224:e8ff:fec2:e961: icmp seq=2 ttl=64 time=0.026 ms
 -- fe80::224:e8ff:fec2:e961 ping statistics ---
 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.020/0.023/0.026/0.003 ms
petery@nostradomus:~$
```


Adresses locales uniques

préfixe fc00::/7, RFC 4

- ce type d'adresse est analogue aux adresses privées IPv4 (utilisation interne)
- elles sont uniques globalement (génération pseudo-aléatoire)
- elles permettent une communication entre un nombre limité de sites (réseaux d'une organisation)
- ces adresses ne sont pas censées être annoncées à l'extérieur et les paquet de/vers ces préfixes doivent être filtrés

Internet Protocol version 6 A

Adresses unicast globales

préfixe 2000::/3

- format général des adresses sur Internet (RFC 3587)
- pour l'instant seul 2000 : :/3 est distribué par l'IANA
- les adresses commençant par 000 ne sont pas concernées (formats spéciaux)

Adresses unicast globales : allocation

Identifiant d'interface

- identifiant sur 64 bits
- des mécanismes *ad hoc* sont spécifiés pour générer cet identifiant :
 - basé sur une fonction aléatoire (RFC 7217)
 - Cryptographically Generated Addresses (CGA) (RFC 3972)
 - Hash-Based Addresses (HBA) (RFC 5535)
 - ...
 - identifiant basé sur l'adresse MAC (voir RFC 8064)

Identifiant d'interface : basé sur IEEE 802 48-bit MAC

Format IEEE EUI-64 modifié

Le bit u (universel/local) est inversé : facilite l'écriture manuelle d'identifiant local (u=0) dans le cas où il n'y a pas d'identifiant matériel.

Internet Protocol version 6 Adressage IPv6 20 / 74

Identifiant d'interface : basé sur IEEE 802 48-bit MAC

```
Terminal - petery@neuvilloise: ~
                                                                           Fichier Éditer Affichage Terminal Onglets Aide
petery@neuvilloise:~$ ip addr show
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
      valid lft forever preferred lft forever
    inet6 :: 1/128 scope host
      valid lft forever preferred lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP gr
oup default glen 1000
    link/ether c4:34:6b:24:e8:0c brd ff:ff:ff:ff:ff
    inet 134.200.17.3/10 bru 134.206.255.255 scope global dynamic eth0
      valid lft 11464sec preferred lft 11464sec
    inet6 fe80: c634:6bff:fe24:e80c/64 scope link
      valid lft forever preferred lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc mq state UP group def
ault glen 1000
    link/ether ac:7b:a1:a3:2f:37 brd ff:ff:ff:ff:ff
    inet 172.19.3.133/19 prg 1/2.19.31.255 scope global dynamic wlan0
       valid lft 13041sec preferred lft 13041sec
    inet6 fe80: ae7b:alff:fea3:2f37 64 scope link
      valid lft Torever preferred lft forever
petery@neuvilloise:~$
```

Identifiant d'interface - autres méthodes

Cette méthode pourrait être abandonnée car elle pose des problèmes de protection de la vie privée (Internet Draft) :

- suivi des activités / de la localisation d'un utilisateur (suivi de l'interface ID)
- exploitation des vulnérabilité d'un matériel (détection du type de matériel à partir de l'adresse physique)

• ...

1. Généralités

2. Adressage IPv6

Adresses multicast

Adresses anycast

3. En-tête IPv6

4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Types d'adresses

Adresses unicast

Adresses multicast

- adresses de multicast:ff00::/8
- adresse de multicast sollicitée : ff02 : : 1 : ff00 : 0/104

Adresses anycast

Adresse de Multicast

- Une adresse permanente correspond à un groupe de multicast prédéfini réservé par l'IANA
- il existe différentes techniques pour la génération de l'identifiant de groupe
- ces techniques définissent des champs supplémentaires dans la partie identifiant

Internet Protocol version 6 Adressage IPv6 25 / 74

Adresse de Multicast

Quelques adresses permanentes:

- tous les nœuds
 - étendue nœud:ff01::1
 - étendue lien:ff02::1
- tous les routeurs
 - étendue nœud:ff01::2
 - étendue lien:ff02::2
 - étendue site:ff05::2

Adresse de Multicast sollicitée

Une alternative aux diffusions

- une adresse de multicast valide sur le lien local uniquement
- utilisée dans le protocole de découverte de voisins pour obtenir les adresses de niveau 2 (remplacement d'ARP)

Internet Protocol version 6 Adressage IPv6 27 / 74

Adresses de multicast : exemple

Internet Protocol version 6 Adressage IPv6 28 / 74

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast

Adresses anycast

3. En-tête IPv6

4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

6. Planification de l'adressage

7. Transition IPv4 – IPv6

Types d'adresses

Adresses unicast

Adresses multicast

Adresses anycast

- une adresse qui désigne plusieurs interfaces
- un paquet à destination d'une adresse anycast est transmis à une seule des interfaces (la plus proche).
- utilisé par les routeurs
- applicable aux services pour la redondance (e.g., DNS)

Adresses écoutées

Pour un hôte

- son adresse de lien local
- les adresses unicast et anycast configurées
- l'adresse de bouclage
- les adresses multicast du groupe des nœuds
- l'adresse de multicast sollicitée
- les adresses de multicast éventuelles des groupes auxquels appartient l'hôte

Pour un routeur on ajoute

- les adresses de multicast des routeurs
- l'adresse anycast des routeurs du sous-réseau
- les adresses anycast éventuelles configurées

IUU

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

3. En-tête IPv6

- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

En-tête IPv6

RFC 2460 RFC 8200, juillet 2017

Simplification de l'en-tête IP

- taille d'en-tête fixe
- champs alignés sur 64 bits
- suppression du contrôle d'erreur
- suppression des options (gérées hors en-tête)
- prise en charge de la QoS (flots)
- prise en charge de la sécurité

Format de l'en-tête IPv6

Format de l'en-tête IPv6

version

classe de trafic

label de flot

Classe de trafic

- définir différents niveaux de qualité de service (en fonction d'un contrat)
- taille: 8 octets
- définition: RFC 2474

version classe de traffic label de flot

Label de flot

- permet d'identifier une séquence de paquets entre une source et une destination.
- un flot peut être associé à un chemin (en cas de chemins multiples ou utilisé par un protocole externe (e.g. RSVP))
- taille: 20 octets
- définition: RFC 6437

Taille des données

- indique la taille des données (hors en-tête)
- taille: 16 bits
- si cette taille est supérieure à 65536, elle sera indiquée dans une extension

Internet Protocol version 6 En-tête IPv6 38 / 74

Prochain en-tête

- indique le prochain en-tête : extension, ICMP, UDP, TCP...
- taille: 8 bits

Nombre de sauts

- limite la durée de vie du paquet dans le réseau (ex. TTL)
- taille: 8 bits

- les champs optionnels sont placés dans des extensions suivant l'en-tête IP
- les extensions sont chaînées dans un ordre prédéfini
- le destinataire doit traiter les extensions dans l'ordre

rochain en-tête : Prochain en-tête : TCP	En-tête IPv6 rochain en-tête : TCP	En-tête TCP	Données		
rochain en-tête : Prochain en-tête : Prochain en-tête : TCP En-tête TCP Données	En-tête IPv6 Prochain en-tête : routage	J	En-tête TCP	Données	
	En-tête IPv6 Prochain en-tête : routage	Prochain en-tête :	·	En-tête TCP	Données

Ordre des extensions

- de proche en proche
- destination
- outage
- fragment
- authentification (RFC 4302)
- o chiffrement des données (RFC 4303)
- destination

Format des extensions

- prochain en-tête (sur 8 bits) : extension, ICMP, UDP, TCP...
- longueur de l'en-tête (sur 8 bits) : en unités de 8 octets (ne comprend pas les 8 premiers octets)

 Internet Protocol version 6
 En-tête IPv6
 43 / 74

Extensions de proche en proche et destination : options

- représentée sous forme type, longueur des données, valeur
 - type: 1 octet
 - longueur: 1 octet
 - valeur : variable
- des options de bourrage (Pad1, PadN, pour aligner les extensions)

Extension de proche en proche

- options de bourrage
- une option Jumbogramme pour les paquets de grande taille (> 65535) (RFC 2675)
 - type d'option : 0xC2
 - longueur (unités de 8 octets) : 4
 - taille des données : entier sur 32 bits
 - utilisé uniquement pour des nœuds raccordés à un réseau de MTU > 65535 octets
 - incompatible avec l'option de fragmentation

 Internet Protocol version 6
 En-tête IPv6
 45 / 74

Extension de fragmentation

- déplacement (13 bits) : en unités de 8 octets par rapport au début du paquet initial
- M: 1 = more fragment, 0 = last fragment
- identification: identique dans tous les fragments

La fragmentation n'est effectuée que par la source

 Internet Protocol version 6
 En-tête IPv6
 46 / 74

Autres extensions

- extension de routage
 - pour IP mobile et réseaux de capteurs

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

3. En-tête IPv6

4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Fonctionnement

Protocole de découverte de voisin

Propriétés

- intégré au protocole ICMPv6
- utilise les adresses de multicast sollicitées

Objectifs

- découvrir les adresses de niveau 2 (remplace les requêtes ARP)
- permettre l'auto-configuration
 - s'assurer de l'unicité d'une adresse avant de l'utiliser
 - apprendre les préfixes à utiliser pour les adresses
 - apprendre les paramètres de liaison (e.g. MTU) et Internet (e.g., nombre de sauts)
 - trouver les routeurs sur le lien local
- choisir le routeur de sortie pour une destination donnée
- s'assurer que les voisins sont accessibles

Découvrir les adresses de niveau 2


```
ac:7b:a1:a3:2f:37
fe80::ae7b:a1ff:fea3:2f37/64
ff02::1:ffa3:2f37
```

fe80::c634:6bff:fe24:e80c/64 → ff02::1:ffa3:2f37
Sollicitation de voisin (ICMPv6 type 135)
cible:fe80::ae7b:alff:fea3:2f37/64
source MAC:c4:34:6b:24:e8:0c

fe80::ae7b:a1ff:fea3:2f37/64 → fe80::c634:6bff:fe24:e80c/64 Annonce de voisin (ICMPv6 type 136) cible: fe80::ae7b:a1ff:fea3:2f37/64 cible MGC: ac7b:a1f3:3-2f.37

Sollicitation / Annonce de voisin

- IPv6 utilise le multicast
- remplace le protocole ARP d'IPv4

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

- 3. En-tête IPv6
- 4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Auto-configuration

Auto-configuration

Sans état (RFC 4862)

- Stateless address autoconfiguration (SLAAC)
- pas de configuration à faire sur les hôtes
- informations fournies par les routeurs

Avec état

- pas de configuration à faire sur les hôtes
- utilisation d'un serveur DHCPv6

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

3. En-tête IPv6

- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état

Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Auto-configuration (sans état)

Étapes de l'autoconfiguration sans état

- 1'hôte constitue son adresse de lien local
- il vérifie son unicité via le mécanisme de détection d'adresse dupliquée
- si l'adresse est unique, il va envoyer une sollicitation de routeur pour obtenir la configuration
- le routeur lui fournit : les préfixes, le MTU par défaut...
- o l'hôte configure les adresses globales

Auto-configuration (sans état)

Détection d'adresse dupliquée

- réalisé pour toute adresse unicast
- repose sur l'envoi d'un message de sollicitation de voisin à destination de l'adresse de multicast sollicitée
- si on a une réponse (annonce de voisin), alors l'adresse est déjà utilisée. On arrête l'auto-configuration

Auto-configuration (sans état)

```
c4:34:6b:24:e8:0c
fe80::c634:6bff:fe24:e80c/64
ff02::1:ff24:e8:0c
ff02::1:ff24:e8:0c
ff02::1:ff24:e8:0c
ff02::1
2001:db8::c634:6bff:fe24:e80c/64 (tentative)

fe80::c634:6bff:fe24:e80c → ff02::2
sollicitation de routeur (ICMPv6 type 133)
option:fe80::c634:6bff:fe24:e80c/64

fe80::ae7b:alff:fea3:2f37 → ff02::2
Annonce de routeur (ICMPv6 type 134)
nombre de sauts: 128
durée de vie routeur: x secondes
accessiblité de voisin: x secondes
sollicitation de voisins: x secondes
option: 2001:db8::/64 - durée validité - durée préférence
```

Sollicitation / Annonce de routeur

- permet à un hôte d'obtenir les informations pour l'auto-configuration
- fournit des paramètres pour les protocoles sur le lien (nombre de sauts, MTU, sollicitation de routeur, voisinage...)
- fournit les préfixes utilisables ainsi que leurs durées de vie

Internet Protocol version 6 Auto-configuration 58 / 74

Etat des adresses

la distinction entre adresse préférée et durée de vie totale facilite la renumérotation des interfaces

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

3. En-tête IPv6

4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Auto-configuration (avec état)

DHCPv6

- l'auto-configuration avec état repose sur l'utilisation de DHCPv6
- au moment de la sollicitation de routeur, celui-ci peut indiquer dans l'annonce de routeur :
 - une configuration avec état (via DHCPv6)
 - un complément de configuration par DHCPv6 (e.g. configuration DNS)
- tenté également quand aucun routeur ne répond aux sollicitations

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

3. En-tête IPv6

4. Fonctionnement

5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

6. Planification de l'adressage

7. Transition IPv4 - IPv6

Planification de l'adressage RFC 5735

Les règles du jeu

Ce qui change

- la taille de l'espace d'adressage élimine le besoin de calculer des sous-réseau «au plus juste»
- les matériels sont susceptibles d'avoir plusieurs adresses unicast

Quelques possibilités d'allocation

- en se basant sur l'existant
 - en intégrant les identifiants de sous-réseaux IPv4
 - en intégrant le numéro de VLAN
- par agrégation
 - géographique : un préfixe commun pour tous les sous réseaux d'une même région
 - organisationnelle : un préfixe commun pour une organisation ou un service
 - par type de service : VoIP, réseaux sans-fils, accès Internet...

IUL

Découpage en sous-réseaux

Nibble boundary

Il est conseillé de découper les sous réseaux par blocs de 4 bits (nibble) pour faciliter la lecture du découpage (un bloc de 4 bits \rightarrow un caractère hexadécimal).

En partant d'un préfixe 2001 : db8 : babe/48, on peut représenter 16 sous réseaux avec un /52 :

- 2001:db8:babe:1000/52
 - 2001:db8:babe:2000/52
- 2001:db8:babe:3000/52
- ...
- 2001:db8:babe:e000/52
- 2001:db8:babe:f000/52

Préfixes courants et sous-réseaux

Préfixe	nombre de sous réseaux				
	/52	/56	/60	/64	
/48	16	256	4096	65536	
/52		16	256	4096	
/56			16	256	
/60				16	
/64				1	

Quelques règles à respecter

- allouer les préfixes de manière à favoriser l'agrégation dans les tables de routage
- prévoir la croissance des réseaux (voir RFC 3531)
- pour une grosse infrastructure avec des adresses locales uniques
 - préférer un seul préfixe et identifier les sous réseaux avec les 16 bits restants pour faciliter l'aggrégation
- pour une petite infrastructure : utiliser une numérotation compacte
 - utiliser les bits de poids faible pour numéroter les sous-réseaux
 - ainsi si le préfixe réseau s'allonge lors d'une renumérotation (/48 \rightarrow /56), l'impact sera plus faible
- prévoir plusieurs /64 par site pour faciliter la numérotation de plusieurs réseaux (/48 ou /56 typiquement)

1. Généralités

2. Adressage IPv6

Adresses unicast Adresses multicast Adresses anycast

- 3. En-tête IPv6
- 4. Fonctionnement
- 5. Auto-configuration

Auto-configuration sans état Auto-configuration avec état

- 6. Planification de l'adressage
- 7. Transition IPv4 IPv6

Transition IPv4 – IPv6

Transition IPv4 – IPv6

Double pile IPv4 / IPv6

les hôtes utilisent les deux protocoles

Tunnels - relier les ilots IPv6

Les paquets IPv6 sont encapsulés dans des paquets IPv4

Translation - IPv4 vers IPv6

- réécriture de l'en-tête
- relais TCP
- passerelles applicatives

Double pile IPv4 / IPv6

- le nœud possède deux piles et deux adresses IP (v4 et v6)
- il choisi le protocole en fonction de son destinataire
 - si le DNS fournit un enregistrement AAAA, on utilise de préférence IPV6
 - l'hôte tente une connexion IPv4 et IPv6, si cette dernière ne répond pas dans un certain délai, on utilise IPv4 (RFC 8305)

Tunnels

Types de tunnels

- configuration manuelle (par ex. RFC 4213)
- semi-automatique
- automatique
 - 6to4 RFC 3056
 - 6rd RFC 5969

Tunnels

Translation

