Task 3: Skeleton of an ML program: Transformer, Estimator, Parameters

Objective: Understand the building block of any ML application with the example of predicting the role of an IT professional is developer by looking at his experience and annual salary

#Read data

df = spark.read.csv("/home/s_kante/spark/data/developers_survey_training.csv", header='true')

#Replace IsDeveloper value with integer 1 or 0

df.createOrReplaceTempView("inputData")

df1 = spark.sql("SELECT CASE IsDeveloper WHEN 'Yes' THEN 1 ELSE 0 END AS label, CAST(YearsOfExp AS FLOAT) AS YearsOfExp, CAST(Salary AS FLOAT) AS Salary FROM inputData ");

#Create feature vector

from pyspark.ml.feature import VectorAssembler

assembler = VectorAssembler(inputCols=["Salary","YearsOfExp"], outputCol="features")

combined = assembler.transform(df1)

vector df = combined.select(combined.label, combined.features)

#Estimator: Create an instance LogisticRegression which is an estimator

from pyspark.ml.classification import LogisticRegression

Ir estimator = LogisticRegression(maxIter=10)

print str(LogisticRegression().explainParams())

#Train the model

model = Ir estimator.fit(vector df)

#Parameters: Check the parameters used to train the model

params = model.extractParamMap()

#Pass parameters explicitly while training the model

params = {Ir estimator.maxIter:15}

model = Ir estimator.fit(vector df, params)

#Transformer: test the model. Transform method will return a dataframe with predictions

prediction = model.transform(vector df)

#Save the model on disc

model.save("/home/s_kante/spark/data/trained_models/predict_emp_role")

#Load a trained model from disc to memory

from pyspark.ml.classification import LogisticRegressionModel

mymodel =
LogisticRegressionModel.load("/home/s_kante/spark/data/trained_models/predict_emp_role")
prediction = mymodel.transform(vector_df)

#QUESTION: How do we predict in actual production environment?