Report

Homework – 1

Nikhil Saji 50592329

Task 1 - Linear Regression

- 1) Packages Used:
 - a) Pandas
 - b) Sklearn
- 2) Steps followed to find mislabeled data.
 - a) Loaded the linear_regression CSV file.
 - b) Got the description of the dataset using 'describe'.
 - c) Checked for outliers.
 - d) Created two data frames X and y, one is for training and other one for testing.
 - e) Used Linear Regression model to fit the training dataset.
 - f) Using the trained model, predicted the target value for the entire dataset.
 - g) Found the **residual** between y and y_predict
 - h) Checked for minimum residual value and the mean residual value
 - i) The mean was around 3.44 whereas the minimum was -21 which meant there are mislabeled samples

j) After checking the graph and I created a threshold for filtering the data based on standard deviation of the residual values

- k) I found 32 mislabeled samples after filtering the dataset
- l) Labelled them as 1 and stored it in new column Outliers

Task 2 – Image Editing using k-means and kNN

- 1) Packages Used
 - a) PIL
 - b) Numpy
 - c) Sklearn
 - d) Matplotlib
 - e) Tqdm
- 2) Steps followed to create the compressed image 1 and 2
 - a) Used Image function from package PIL to open image
 - b) Converted the image to numpy array
 - c) Used k values ranging from 2 to 20

d) Using Elbow method, I found out that $\mathbf{k} = \mathbf{9}$ had the minimum sum of squared distance and beyond that point the difference was minor.

- e) Used K_Means to fit the image1
- f) Using kNN, k-value and the centroid from K_Means, I fitted the model
- g) Compressed the image2 and here is the output
- h) Image 1 Compressed

i) Image 2 compressed using the same color palate

- j) If we had used a higher k value (for instance $k \ge 60$), we could have got a vibrant image
- k) But using elbow method we determine that increasing k yields will have diminishing returns in terms of SSE reduction, hence adding more k (cluster value) does not significantly improve the quality of the clusters thus helping to avoid overfitting and unnecessary complexity.