Digital Systems 18B11EC213

Combinational Circuits

Contents

- Multiplexer
- Demultiplexer
- Comparator
- Code Converter
 - 4 Bit Binary to Gray
 - BCD to Excess-3

Multiplexer

- A multiplexer is a device which has
 - (i) a number of *input* lines
 - (ii) a number of *selection* lines
 - (iii) one *output* line
- It steers one of 2^n inputs to a single output line, using n selection lines. Also known as a *data selector*.

Multiplexer

■ Truth table for a 4-to-1 multiplexer:

I_0	I_1	I_2	I_3	S_1	S_0	Y
$\overline{d_0}$	d_1	d_2	d_3	0	0	d_0
d_0	d_1	d_2	d_3	0	1	d_1
d_0	d_1	d_2	d_3	1	0	d_2
d_0	d_1	d_2	d_3	1	1	d_3

S_1	S_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Multiplexer

- Output of multiplexer is
 "sum of the (product of data lines and selection lines)"
- Example: the output of a 4-to-1 multiplexer is:

$$\begin{split} Y &= I_0.(S_1'.S_0') + I_1.(S_1'.S_0) + I_2.(S_1.S_0') + I_3.(S_1.S_0) \\ &= m_o I_o + m_1 I_1 + m_2 I_2 + m_3 I_3 \end{split}$$

- Larger multiplexers can be constructed from smaller ones.
- An 8-to-1 multiplexer can be constructed from smaller multiplexers like this (note placement of selector lines):

S_2	S_1	S_0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

■ Another implementation of an 8-to-1 multiplexer using smaller multiplexers:

S_2	S_1	S_0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

A 16:1 multiplexer can be constructed from five 4:1 multiplexers:

Multiplexers: Implementing Functions

- A Boolean function can be implemented using multiplexers.
- A 2^n -to-1 multiplexer can implement a Boolean function of n input variables, as follows:
 - ❖ (i) Express in sum-of-minterms form.

Example:
$$F(A,B,C) = A'B'C + A'BC + AB'C + ABC'$$

= $\Sigma m(1,3,5,6)$

- \diamondsuit (ii) Connect *n* variables to the *n* selection lines.
- ❖ (iii) Put a '1' on a data line if it is a minterm of the function, '0' otherwise.

Multiplexers: Implementing Functions

$$F(A,B,C) = \Sigma m(1,3,5,6)$$

This method works because:

Output =
$$m_0.I_0 + m_1.I_1 + m_2.I_2 + m_3.I_3 + m_4.I_4 + m_5.I_5 + m_6.I_6 + m_7.I_7$$

Supplying '1' to I_1 , I_3 , I_5 , I_6 , and '0' to the rest: Output = $m_1 + m_3 + m_5 + m_6$

Procedure

- 1) Express boolean function in "sum-of-minterms" form. e.g. $F(A,B,C) = \Sigma m(0,1,3,6)$
- 2) Reserve one variable (in our example, we take the least significant one) for input lines of multiplexer, and use the rest for selection lines.
 - e.g. C is for input lines, A and B for selection lines.
- 3) Draw the truth table for function, do grouping of selection line values, and then determine multiplexer inputs by comparing input line (C) and function (F) for corresponding selection line values.

A	В	C	F	Mux Input
0	0	0	1	1.
0	0	1	1	-1
0	1	0	0	_ C
0	1	1	1	
1	0	0	0	0
1	0	1	0	
1	1	0	1	-C'
1	1	1	0	

$$F(A,B,C) = \Sigma m(0,1,3,6)$$

Alternative: What if we use A for input lines, and B, C for selector lines? $F(A,B,C) = \Sigma m(0,1,3,6)$

				-	111011	
					Input	
	0	0	0	1	1	
	0	0	1	1	1	
	0	1	0	0	С	
	0	1	1	1	C	
	1	0	0	0	0	
	1	0	1	0	U	
	1	1	0	1	C'	
	1	1	1	0	C	
			\bigcup	١		
A -	lacktriangle	>~-	•		0	
			-	→	1	·
					mux	→ F
					2	
				→	3	
					/	
					ВС	
					20	

A B C F Mux

 $F(A,B,C) = \Sigma m(0,1,3,6)$

Implement the Boolean function by using $8x1 \text{ MUX} - F(A,B,C,D) = \sum m(0,1,3,4,8,9,14,15)$

Total number of variables , n=4 (A,B,C,D) Select line variable (n-1)=3 (B,C,D) Input variable =1 (A)

Implementation table –

	<u>I0</u>	I1	I2	I3	I4	I5	I6	I7
(A')0	0	1	2	3	4	5	6	7
(A)1	8	9	10	11	12	13	14	15

$F(A,B,C,D)=\sum m(0,1,3,4,8,9,14,15)$

Diagram corresponding to implementation table.

Demultiplexer

- Given an input line and a set of selection lines, the demultiplexer will direct data from input to a selected output line.
- An example of a 1-to-4 demultiplexer:

S_1	So	Y_0	\mathbf{Y}_1	\mathbf{Y}_2	Y ₃
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Demultiplexer

■ The demultiplexer is actually identical to a decoder with enable, as illustrated below:

Code Converters

■ Code converters – take an input code, translate to its equivalent output code.

Example: BCD to Excess-3 Code Converter.

Input: BCD digit

Output: Excess-3 digit

4 Bit Binary to Gray Code Converter

$$B3 \oplus \rightarrow B2 \oplus \rightarrow B1 \oplus \rightarrow B0$$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $G3 \qquad G2 \qquad G1 \qquad G0$

Based on this

$$G3 = B3$$

$$G2 = B2 \oplus B3$$

$$G1 = B1 \oplus B2$$

$$G0 = B0 \oplus B1$$

BCD-to-Excess-3 Code Converter

■ Truth table:

		BCD				Exc	ess-	3
	A	В	C	D	W	X	Y	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0
10	1	0	1	0	X	X	X	X
11	1	0	1	1	X	X	X	X
12	1	1	0	0	X	X	X	X
13	1	1	0	1	X	X	X	X
14	1	1	1	0	X	X	X	X
15	1	1	1	1	X	X	X	X

K-maps:

BCD-to-Excess-3 Code Converter

Comparator

A comparator compares two n-bit values to determine which is greater, or if they are equal.

1 bit comparator: $A = A_0$, $B = B_0$

$$A0 < B0$$
: $L = \overline{A0} B0$

$$A0 = B0$$
: $E = \overline{A0} \overline{B0} + A0 B0$

$$A0 > B0$$
: $G = A0 \overline{B0}$

It is to be noted that E can be realized $\underline{as}(L+G)$.

$\mathbf{A_0}$	\mathbf{B}_0	L	E	G
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

2-bit Magnitude Comparator

The logic for a 2-bit magnitude comparator: Let the two 2-bit numbers be $A = A_1A_0$ and $B = B_1B_0$.

- 1. If $A_1 = 1$ and $B_1 = 0$, then A > B or
- 2. If A_1 and B_1 coincide and $A_0 = 1$ and $B_0 = 0$, then A > B. So the logic expression for A > B is

$$A > B : G = A_1 \overline{B}_1 + (A_1 \odot B_1) A_0 \overline{B}_0$$

- 1. If $A_1 = 0$ and $B_1 = 1$, then A < B or
- If A₁ and B₁ coincide and A₀ = 0 and B₀ = 1, then A < B. So the expression for A < B is

$$A < B : L = \overline{A}_1 B_1 + (A_1 \odot B_1) \overline{A}_0 B_0$$

If A_1 and B_1 coincide and if A_0 and B_0 coincide then A = B. So the expression for A = B is

$$A = B : E = (A_1 \odot B_1)(A_0 \odot B_0)$$

The logic diagram for a 2-bit comparator is as shown in Figure

Extending to Multibit Numbers

- Compare the most significant bits.
 - If they are not equal, no need to compare the other bits.
 - If they are equal, we must check the next bit.
- Continue until one number if found to be greater than the other, or all bits are checked and the numbers are found equal.

Arithmetic Circuits: Comparator

- Magnitude comparator: compares 2 values A and B, to see if A>B, A=B or A<B.</p>
- Classical method requires 2²ⁿ rows in truth table!
- How do we compare two 4-bit values A $(a_3a_2a_1a_0)$ and B $(b_3b_2b_1b_0)$?

```
If (a_3 > b_3) then A > B
If (a_3 < b_3) then A < B
If (a_3 = b_3) then if (a_2 > b_2) ....
```

Arithmetic Circuits: Comparator

Let $A = A_3A_2A_1A_0$, $B = B_3B_2B_1B_0$; $x_i = A_i.B_i + A_i'.B_i'$

References

1. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Fourth Edition.

2. S. Salivahanan and S. Arivazhagan, "Digital circuits and design", Vikas Publishing House PVT Limited, Fifth edition.