Insper

Robótica Computacional

Captura de Imagens

Segmentação e Morfologia

Segmentação - Aplicação

Identificação em visão computacional consiste em reconhecer e realçar carateriais especificas da imagem, removendo ruido e otimizando a interpretação.

Aplicações

- Imagens Medicas
- Automação do Industrial
- Automação do Checkout
- Agricultura
- Realidade Aumentada
- Vigilância

Transformação Morfológica

Em algumas ocasiões, não conseguimos ou não é possível filtrar completamente as partes de interesse da imagem, sobrando **ruídos**.

Transformação morfológica são técnicas que ajudam a limpar o ruido melhorando as máscaras.

Exemplo Relevante:

Morphological Transformations

Componentes conexos

Após a **segmentação** da imagem por mascaramento, podemos observar que os pixels de interesse podem formar um ou mais **grupos conectados** entre si, ou seja, conjuntos de pixels que se comunicam através de algum caminho que passa apenas por pixels de interesse (brancos).

Podemos utilizar bibliotecas do OpenCV para encontrar **o polígono que contorna esses componentes** (detectar contornos) e então desenhar com na imagem ao lado.

Projeção e Perspectiva

Modelo de câmera Pinhole

Os raios de luz passam por um único orifício pontual e são projetados no fundo da caixa, onde se encontra o sensor de imagem

Projeção perspectiva simplificada

Podemos calcular a distância de objetos na imagem através de semelhança de triângulos!

- Se tenho 3 entre f, h, H e D consigo encontrar os outros!
- Calibração de uma câmera: Encontrar distancia focal.

$$h = \frac{f}{D}H$$

Calibração da Câmera

Calibração da Câmera

Parâmetros Intrínsecos da Câmera

- Distância Focal (f)
 - Definição: Distância entre o centro óptico e a superfície de formação da imagem.
 - Nota: Em câmeras reais, essa distância pode variar entre os eixos X e Y.

Ponto Principal (c):

- Definição: Posição na imagem onde o eixo óptico atravessa o sensor.
- Nota: Idealmente, corresponde à posição do pixel central. No entanto, em sensores reais, pode haver um leve deslocamento.

Parâmetros Extrínsecos da Câmera

- Representados por:
 - Vetor de translação.
 - Matriz de rotação 3D.
- Função: Indicam o posicionamento da câmera em relação ao objeto ou cena.

Calibração da Câmera

Projeção 3D -> 2D

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

2D Image Coordinates Intrinsic properties (Optical Centre, scaling) Extrinsic properties (Camera Rotation and translation)

3D World Coordinates

Profundidade

Estereoscopia

Uma das imagens tiradas por uma par de câmeras apontando na mesma direção

Profundidade dois objetos na cena. As regiões vermelhas representam as disparidades encontradas entre duas imagens

Profundidade

Atividades Modulo 2

- <u>Atividade 01 Segmentação usando HSV</u>
- <u>Atividade 02 Morfologia Matemática</u>
- •Atividade 03 Componentes Conexos
- •<u>Atividade 04 Exemplo de Resolução de Problemas</u>
- •Atividade 05 Regressão Linear

Formulário de Avaliação do Modulo 1

