Random Passwords Aren't Good Enough

Rob Yoder // @rauxyo
Weaver of Webs at 1Password

Where we started

oBjyrXnzqqvDnxB

43

/}+

username
superadmin
password
oBj4y/rXn}zq+q3vDnxB

secret

Suggest in browser 💠

Where we started

oBj4y/rXn}zq+q3vDnxB

$$H(n) = l \lg |L| + d \lg |D| + s \lg |S|$$

$$+ \lg {l+d \choose d} + \lg {l+d+s \choose s}$$

username
superadmin
password
oBj4y/rXn}zq+q3vDnxB

display

Suggest in browser 💠

Simplifying

- One slider
- Random mix
- Simpler entropy

$$H(n) = n \lg |A|$$

There are rules!

Password Length: 16 ✓ (e.g. 123456) Include Numbers: Include Lowercase Characters: (e.g. abcdefgh) Include Uppercase Characters: (e.g. ABCDEFGH) Begin With A Letter: (don't begin with a number or symbol) ✓ !";#\$%&'()*+,-./:;<=>?@[]^_`{|}~ Include Symbols: No Similar Characters: (don't use characters like i, I, 1, L, o, 0, O, etc.) (don't use the same character more than once) No Duplicate Characters: No Sequential Characters: (don't use sequential characters, e.g. abc, 789) Auto Generate On The First Call: (generate passwords automatically when you open this page) Quantity: (save all the settings above in cookies) Save My Preference: Generate Passwords S:5gz>MZ4H&t%,VA Your New Passwords:

What we want

- Required characters
- Uniform distribution
- Accurate entropy
- Simple interface

The obvious dumb approach

The obvious dumb approach

An equation for entropy is easily derived:

$$H(n) = \lg(|L \cup D|^n - |L|^n - |D|^n)$$

Two drawbacks:

- Generator not guaranteed to terminate
- Entropy function operates on giant integers

I can do better.


```
oBjy/rXnzq+q3vDnxB
4
```

oBj4y/rXn}zq+q3vDnxB

```
oBj4y/rXn}zq+q3vDnxB
a1
```

1

oBj4y/rXn}zq+q3vDnxB


```
oBj4y/rXn}zq+q3vDnxB
a11
```

```
oBj4y/rXn}zq+q3vDnxB
a11
```

X Uniform distribution

oBjyr3X}nzqqvD+nxB

oBjyrXnzqqvDnxB

3

}+

oBjyrXnzqqvDnxB

43

/}+

oBj4y/rXn}zq+q3vDnxB

```
oBj4y/rXn}zq+q3vDnxB
a1
```

```
oBj4y/rXn}zq+q3vDnxB
```

a

1

```
oBj4y/rXn}zq+q3vDnxB
```

a

11

```
oBj4y/rXn}zq+q3vDnxB
a11 1a1 11a
```

```
oBj4y/rXn}zq+q3vDnxB
a1 1a1 11a
aa a1 1a 11
```

aa	a1	1a	11
aa1	a11	a11	111
a1a	1a1	1a1	
1aa	11a	11a	

aa	a1 1a	11
aa1	a11	111
a1a	1a1	
1aa	11a	
1/12	1/6	1/4

```
oBj4y/rXn}zq+q3vDnxB
a11 1a1 11a
aa a1 1a 11
```

X Uniform distribution

Ok, I give up.

The obvious dumb approach

The obvious dumb approach

Recall our entropy equation:

$$H(n) = \lg(|L \cup D|^n - |L|^n - |D|^n)$$

And the drawbacks:

- Generator not guaranteed to terminate
- Entropy function operates on giant integers

Notation update

Entropy in bits

$$H(n) = \lg(|L \cup D|^n - |L|^n - |D|^n)$$

Number of possible results

$$N(n) = |L \cup D|^n - |L|^n - |D|^n$$

$$H(n) = \lg N(n)$$

What about symbols?

Two required sets:

$$N(n) = |L \cup D|^n - |L|^n - |D|^n$$

Three required sets:

$$N(n) = |L \cup D \cup S|^{n} - |L|^{n} - |D|^{n} - |S|^{n}$$
$$-|L \cup D|^{n} - |L \cup S|^{n} - |D \cup S|^{n}$$

What's wrong?

We said...

$$N(n) = |L \cup D \cup S|^{n} - |L|^{n} - |D|^{n} - |S|^{n}$$
$$-|L \cup D|^{n} - |L \cup S|^{n} - |D \cup S|^{n}$$

But...

$$L \subseteq L$$

$$L \subseteq (L \cup D)$$

$$L \subseteq (L \cup S)$$

We need...

$$N(n) = |L \cup D \cup S|^{n} - |L|^{n} - |D|^{n} - |S|^{n}$$
$$-N_{\{L,D\}}(n) - N_{\{L,S\}}(n) - N_{\{D,S\}}(n)$$

Notation update

The set of distinct required character sets

$$\mathscr{R} = \{R_1, R_2, R_3, ..., R_k\}$$
e.g. $\mathscr{R} = \{\text{"abc"}, \text{"123"}, \text{"!@}\#"\}$

Possible passwords given ${\mathcal R}$ and length n

$$N_{\mathcal{R}}(n)$$

Finding a pattern

$$\begin{split} N_{\emptyset}(n) &= 0 \\ N_{\{R_1\}}(n) &= \left| R_1 \right|^n - \left(N_{\emptyset}(n) \right) \\ N_{\{R_1, R_2\}}(n) &= \left| R_1 \cup R_2 \right|^n - \left(N_{\emptyset}(n) + N_{\{R_1\}}(n) + N_{\{R_2\}}(n) \right) \\ N_{\{R_1, R_2, R_3\}}(n) &= \left| R_1 \cup R_2 \cup R_3 \right|^n - \left(N_{\emptyset}(n) + N_{\{R_1\}}(n) + N_{\{R_2\}}(n) + N_{\{R_3\}}(n) + N_{\{R_1, R_2\}}(n) + N_{\{R_1, R_3\}}(n) + N_{\{R_2, R_3\}}(n) \right) \end{split}$$

The power set

The set of all subsets of a set

$$\mathcal{P}(\mathcal{R}) = \{x : x \subseteq \mathcal{R}\}$$

$$\mathcal{P}(\{R_1, R_2, R_3\}) = \{\emptyset, \{R_1\}, \{R_2\}, \{R_3\}, \{R_1, R_2\}, \{R_1, R_3\}, \{R_2, R_3\}, \{R_1, R_2, R_3\}\}$$

The set of all proper subsets of a set

$$\{x: x \subset \mathcal{R}\} \to \mathcal{P}(\mathcal{R}) \setminus \{\mathcal{R}\}$$

To recurse, divine

$$N_{\{R_1,R_2,R_3\}}(n) = \left| R_1 \cup R_2 \cup R_3 \right|^n - \left(N_{\emptyset}(n) + N_{\{R_1\}}(n) + N_{\{R_2\}}(n) + N_{\{R_3\}}(n) + N_{\{R_1,R_2\}}(n) + N_{\{R_1,R_3\}}(n) + N_{\{R_2,R_3\}}(n) \right)$$

$$N_{\mathcal{R}}(n) = \left| \bigcup_{X \in \mathcal{R}} X \right|^{n} - \sum_{Y \in \mathcal{P}(\mathcal{R}) \setminus \{\mathcal{R}\}} N_{Y}(n)$$

A final touch

Let A be the set of other allowed characters

$$N_{\mathcal{R}}^{A}(n) = \left| \bigcup_{X \in \mathcal{R} \cup \{A\}} X \right|^{n} - \sum_{Y \in \mathcal{P}(\mathcal{R}) \setminus \{\mathcal{R}\}} N_{Y}^{A}(n)$$

$$N_{\emptyset}^{A}(n) = |A|^{n}$$

$$H_{\mathcal{R}}^{A}(n) = \lg N_{\mathcal{R}}^{A}(n)$$

Considering drawbacks

Probability of keeping a candidate

(lower + upper + digits – ambiguous)

Considering drawbacks

```
Probability of keeping a candidate
Size of values in memory (golang)
big.Int
float64
```

math.MaxFloat64 (1024 bits)

What we want

Required characters •

Uniform distribution

Accurate entropy

Simple interface

Good enough.

Get it

Code, slides, and demo CLI:
github.com/1password/spg
import "go.1password.io/spg"

In action:

"1Password X" on the Chrome App Store 1password.com/password-generator