Excited State Photoelectrochemical Production of H₂O₂ and Br₂

Gregory A. Neyhart, Janet L. Marshall, Walter J. Dressick, B. Patrick Sullivan, Penny A. Watkins, and Thomas J. Meyer*

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

An excited state photoelectrochemical cell has been designed in which H₂O₂ and Br₂ are produced in acetonitrile solution in separate cell compartments with a high per photon efficiency.

In earlier work a series of excited state photoelectrochemical cells have been described in which a photocurrent is produced, as well as H_2 , O_2 , or other chemicals in a separate cell compartment. The cells described so far have been based upon sacrificial reagents or have operated with low quantum efficiencies. We report here a cell where the chemicals H_2O_2 and Br_2 are

produced in acetonitrile solution with a high per photon quantum efficiency.

The cell is based on reductive quenching of the metal-to-ligand charge transfer (MLCT) excited state of (bpy)Os(das)₂²⁺ [bpy = 2,2'-bipyridine, das = o-phenylene-bis(dimethylarsine)] by N(p-C₆H₄Br)₃ (NAr₃) in acidic, aerated acetonitrile

solution. For the complex, $\lambda_{\max}^{\text{abs}} = 380 \text{ cm}$, $\lambda_{\max}^{\text{em}} = 575 \text{ nm}$, τ_0 (MeCN, 23.0 \pm 0 °C, Ar deaerated) = 1580 nsec. The estimated reduction potential for the (bpy)Os(das)₂^{2+*/+} excited state couple is $E_{\frac{1}{2}} = 1.14 \pm 0.08 \text{ V vs. S.C.E.}$ (standard calomel electrode). For the quencher, $E_{\frac{1}{2}}$ (NAr₃^{+/0}) = 1.07 \pm 0.02 V vs. S.C.E. The reactions which occur in the cell are shown in Scheme 1 below.

Photocathode

$$(bpy)Os(das)_2^{2+} \longrightarrow (bpy)Os(das)_2^{2+*}$$
 (1)

(bpy)Os(das)₂^{2+*} + NAr₃
$$\xrightarrow{k_q}$$
 (bpy)Os(das)₂⁺ + NAr₃⁺ (2)
 $k_q = (1.03 \pm 0.16) \times 10^8 \, \text{l mol}^{-1} \, \text{s}^{-1}$

$$(bpy)Os(das)_2^+ + O_2^- + H^+ \rightarrow (bpy)Os(das)_2^{2+} + HO_2^-$$
 (3)

$$HO_2$$
 + NAr_3 + $H^+ \rightarrow H_2O_2$ + NAr_3^+ (4)

$$O_2 + 2H^+ + 2NAr_3 \xrightarrow{hv} H_2O_2 + 2NAr_3^+$$
 (5)

$$2NAr_3^+ \xrightarrow{+2e^-} 2NAr_3$$
 (6)

Anode

$$2Br^{-} \xrightarrow{-2e^{-}} Br_{2} \tag{7}$$

Scheme 1

Following excitation and quenching [equations (1) and (2)], the reduced complex (bpy)Os(das)₂⁺ is captured by O₂ to give HO_2 . [equation (3)] before back electron transfer between NAr_3 ⁺ and (bpy)Os(das)₂⁺ can occur [equation (8)]. A rapid reaction between $Ru(bpy)_3$ ⁺ and O_2 has been shown to occur.²

(bpy)Os(das)₂⁺ + NAr₃⁺
$$\xrightarrow{k}$$
 (bpy)Os(das)₂²⁺ + NAr₃ (8)
 $k = 2.0 \times 10^9 \text{ l mol}^{-1} \text{ s}^{-1}$

The appearance of H₂O₂ as a product could occur either by oxidation of a second NAr₃ by HO₂· [equation (4)] or by disproportionation [equation (9)], a point which will be considered below. The net effect of the photochemical sequence in

$$HO_2$$
: $\rightarrow \frac{1}{2}H_2O_2 + \frac{1}{2}O_2$ (9)
 $[k(H_2O, 25 \, ^{\circ}C) = (8.6 \pm 0.6) \times 10^5 \, \text{l mol}^{-1} \, \text{s}^{-1}]^3$

the photocathode is the buildup of NAr_3^+ , which oxidizes Br^- to Br_2 in a separate cell compartment.

In a typical experiment, a solution containing (bpy)Os(das)₂²⁺ (6 × 10⁻⁵ M), NAr₃ (5 × 10⁻³ M), and LiClO₄ (ca. 0.1 M) in acidic ([HClO₄] ca. 0.3 M) acetonitrile was photolysed at 436 nm [$I^{\circ} = 3.0 \times 10^{-9}$ einstein s⁻¹, ϵ_{436} (Os¹¹) = 1784 \pm 25 l mol⁻¹ cm⁻¹] for 30 min, using a cell design previously described.⁴ The anode consisted of a Pt gauze electrode and a solution containing Buⁿ₄NBr and the electron transfer relay Ru(bpy)₂(PPh₃)Cl^{+†} [E_{+} (Ru²⁺/⁺) =

 $+0.92 \pm 0.03$ V vs. S.C.E.]. The output of the cell was monitored in three ways: (i) H_2O_2 produced in the photocathode was determined by a leuco-crystal violet analysis modified for use in MeCN.⁵ (ii) Br_2 produced in the anode was determined by reduction of Br_2 by N,N,N',N'-tetramethylbenzidine (TMBD), which occurs immediately upon addition of excess of solid TMBD [equation (10)], followed by spectrophotometric determination of TMBD⁺ ($\epsilon_{790} = 5620$ I mol⁻¹ cm⁻¹).[‡] (iii) The photocharge produced in the cell was

$$\frac{1}{2}Br_2 + TMBD \rightarrow Br^- + TMBD^+$$
 (10)

measured by connecting the cathode and anode through a 1000Ω resistor, and integrating photocurrent vs. time curves. The per photon quantum efficiency of the cell was calculated from equation (11):⁴

$$\phi_{\text{cell}} = \frac{q}{nFI^{\circ}10^{-A_{\text{e}}}(1-10^{-A_{\text{Os}}})t}$$
(11)

where q= integrated photocurrent, $I^{\circ}=$ incident light intensity, n=1 (the number of electrons transferred), $A_{\rm S}=$ absorbance of Pt screen, collector electrode which was attached to the front face of the cell, $A_{\rm Os}=$ absorbance of sensitizer, t= photolysis time, and F= the Faraday, 96 500 C mol⁻¹. The results of all three methods of analysis were internally consistent with the predictions of Scheme 1 in terms of the amounts of H_2O_2 and Br_2 produced and the magnitude of the integrated photocurrent. For example, the per photon efficiency of the cell, $\phi_{\rm cell}$, measured electrochemically was 0.75 ± 0.03 , $\phi_{\rm Br_2}$ was approximately half that (0.35 ± 0.12) , as expected from Scheme 1. Using the analogous 1,10-phenanthroline complex (phen)Os(das) $_2^{2+}$ ($\lambda_{\rm max}^{\rm em}=575$ nm, $\tau_0=3910$ nsec) as sensitizer gave $\phi_{\rm cell}=1.20\pm0.04$.

A point of concern with the proposed mechanistic scheme was the role of O_2 quenching, which occurs with $k(q,O_2)[O_2] = 1.20 \times 10^6 \, \mathrm{s^{-1}}$. In related systems, O_2 quenching is known to give singlet oxygen ($^{1}\Sigma_{g}$).⁶ A possible origin for HO_2 could lie in energy transfer between (bpy)Os(das) $_2^{2+*}$ and O_2 to give $^{1}O_2$ followed by electron transfer quenching of $^{1}O_2$, as shown in equation (12).

$$^{1}O_{2} + NAr_{3} + H^{+} \rightarrow HO_{2} \cdot + NAr_{3}$$
 (12)

The value of $\phi_{\rm cell}$ was measured as a function of the partial pressure of O_2 (pp O_2) in $Ar-O_2$ mixtures, and the following results were obtained: $\phi_{\rm cell}=1.40\pm0.04$ (pp $O_2=10^{-3}$), $\phi_{\rm cell}=1.60\pm0.04$ (pp $O_2=5\times10^{-3}$), $\phi_{\rm cell}=0.75\pm0.03$ (aerated), and $\phi_{\rm cell}=0.17\pm0.03$ (O_2 saturated). The trend of the data is consistent with O_2 quenching as the dominant process at high $[O_2]$, but without the production of a significant photocurrent or of redox products. The maximum cell efficiency of ca. 1.6 is reached at low $[O_2]$, where reductive quenching by NAr_3 is the only important quenching process, but sufficient O_2 is still present to capture (bpy)Os(das)₂+ before back electron transfer with NAr_3 + [equation (8)] can occur. Maximum cell efficiencies exceeding 1 show that, at least in part, the fate of HO_2 · is further reduction by NAr_3 [equation (4)] rather than disproportionation [equation (9)].

Over a sustained photolysis period (>1 h), the observed photocurrent gradually begins to fall, apparently because of

[†] The role of the electron transfer relay is to overcome overvoltage problems associated with the oxidation of Br^- to Br_2 . In the cell, NAr_3^+ oxidizes $Ru(bpy)_2(PPh_3)Cl^+$ to $Ru(bpy)_2(PPh_3)Cl^2^+$, which, in turn, rapidly oxidizes Br^- to Br_2 .

 $[\]ddagger$ The spectrophotometric analysis was carried out using only a slight excess of Bu $^{\rm a}_4$ NBr in the anode compartment. Excess of Br $^{\rm -}$ interferes with the spectrophotometric analysis.

oxidation of H₂O₂ by NAr₃⁺ as the concentration of H₂O₂ rises. The net reaction in the cell involves the production of H₂O₂ and Br₂ as in equation (13), a reaction that is energy storing. In water, $\Delta G^{\circ} = +0.4 \text{ V}$; in acetonitrile, simple

$$O_2 + 2H^+ + 2Br^- \rightarrow H_2O_2 + Br_2$$
 (13)

mixing experiments show that the reaction between Br₂ and H₂O₂ remains spontaneous. More importantly, the cell, as operated, becomes an excited state photoelectrochemical synthesis cell for the production of the useful chemicals H₂O₂ and Br₂ with a high per photon efficiency.

Acknowledgements are made to the Department of Energy for support of this research, the National Science Foundation for a fellowship for W.J.D., and GTE Laboratories of Waltham, Mass., for financial support during the summer of 1980 for J.L.M.

Received, 28th April 1982; Com. 484

References

- 1 B. Durham, W. J. Dressick, and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1979, 381; D. P. Rillema, W. J. Dressick, and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1980, 247; M. Neumann-Spallart and K. Kalyanasundarum, J. Chem. Soc., Chem. Commun., 1981, 437; M. Neumann-Spallart, K. Kalyanasundarum, M. Grätzel, and C. Grätzel, Helv. Chim. Acta, 1980, 63, 1112; S. Kobayashi, N. Furuta, and O. Simamura, Chem. Lett., 1976, 503.
- 2 C. P. Anderson, D. J. Salmon, T. J. Meyer, and R. C. Young, J. Am. Chem. Soc., 1977, 99, 1980.
 B. H. J. Bielski, 'Reevaluation of the Spectral and Kinetic
- Properties of HO₂ and O₂- Free Radicals, Proceedings of the International Conference on Singlet Oxygen and Related Species in Chemistry and Biology, Pinawa, Manitoba, Canada, August 21—26, 1977.
- 4 W. J. Dressick, Ph.D. Dissertation, University of North Carolina, 1981; W. J. Dressick and T. J. Meyer, Isr. J. Chem.,
- 5 H. A. Mottola, B. E. Simpson, and G. Gorin, Anal. Chem.,
- 1970, 42, 410.
 J. N. Demas, E. W. Harris, and R. P. McBride, J. Am. Chem. Soc., 1977, 99, 3547.