Machine Learning

DPP: 1

Decision Tree

Q1 What does the following figure represent?

- (A) Decision tree for OR
- (B) Decision tree for AND
- (C) Decision tree for XOR
- (D) Decision tree for XNOR
- Q2 Consider the dataset given below where T and F represent True and False respectively. What is the entropy H (Rain)?

the entropy in the		
Temp eratur e	Clou d	Rain
Low	Т	Т
Low	Т	Т
Mediu m	Т	F
Mediu m	Т	Т
High	Τ	F
High	F	F

(A) 1

(B) 0.5

(C) 0.2

(D) 0.6

Q3 Given the entropy for a split, Esplit = 0.39 and the entropy before the split, Ebefore = 1. What is the Information Gain for the split?

(A) 1

(B) 0.39

(C) 0.61

(D) 2.56

Q4 What is the entropy at P = 0.5 from the given figure?

(A) 0.5

(B) - 0.5

(C)1

(D) -1

Q5 Given entropy of parent = 1, weights average = $\left(\frac{3}{4}, \frac{1}{4}\right)$ and entropy of children = (0.9, 0). What is the information gain?

(A) 0.675

(B) 0.75

(C) 0.325

(D) 0.1

- **Q6** Which of the following statements is not true about the Decision tree?
 - (A) A Decision tree is also known as a classification tree
 - (B) Each element of the domain of the classification in decision tree is called a class
 - (C) It is a tree in which each internal node is labeled with an input feature
 - (D) It cannot be used in data mining applications as it only classifies but not predicts anything

Answer I	Key
-----------------	-----

Q1 (B) Q4 (C)

Q2 (A) Q5 (C)

Q3 (C) Q6 (D)

Hints & Solutions

Q1 Text Solution:

The given figure represents the decision tree implementation of Boolean AND as per the following truth table.

А	В	A AND B
F	F	F
F	Т	F
Т	Т	Т
Т	F	F

Q2 Text Solution:

We know entropy = ∑

n

i=1

- Pi log2 Pi.

Entropy = -(3/6) * log2(3/6) - (3/6) * log2(3/6)

= -(1/2) * log2 (1/2) - (1/2) * log2 (1/2)

= - 0.5 * -1 - 0.5 * -1

= 0.5 + 0.5

= 1

Q3 Text Solution:

Information Gain is calculated for a split by subtracting the weighted entropies of each branch from the original entropy. We have Esplit = 0.39 and Ebefore = 1.

Then Information Gain, IG = Ebefore – Esplit = 1 - 0.39

= 0.61

Q4 Text Solution:

We know the entropy $E = -p \log 2p - q \log 2q$. Here p = 0.5 and q = 1 - p = 1 - 0.5 = 0.5. So we have p = 0.5 and q = 0.5. Entropy = $(-0.5 * \log 2 0.5) - (0.5 * \log 2 0.5)$

(05*1) (05*1)

= (-0.5 * -1) - (0.5 * -1)

= 0.5 + 0.5

= 1

Q5 Text Solution:

We know information gain = Entropy (parent) – Σ (weights average \times entorpy (child) information gain

$$= 1 - 1 - \left(\frac{3}{4} \times 0.9 + \frac{1}{4} \times 0\right)$$

= 1 - (0.675 + 0)

= 1 - 0.675

= 0.325

Q6 Text Solution:

Decision trees can be widely used in data mining applications because it is able to classify and predict as well. It is also known as a classification tree. Each element of the domain of the classification in the decision tree is called a class and each internal node is labeled with an input feature.

