Naïve Bayes Classifier Additional Comments

Machine Learning A-Z

© SuperDataScience

Naïve Bayes

- 1. Q: Why "Naïve"?
- 2. P(X)
- 3. More than 2 features

Machine Learning A-Z

Naïve Bayes

Q: Why "Naïve"?

A: Independence assumption

Machine Learning A-Z

© SuperDataScience

Naïve Bayes

Machine Learning A-Z

Naïve Bayes

Machine Learning A-Z

© SuperDataScience

Naïve Bayes: Step 2

#2. P(X)

$$P(X) = \frac{Number\ of\ Similar\ Observations}{Total\ Observations}$$

$$P(X) = \frac{4}{30}$$

Machine Learning A-Z

Naïve Bayes: Step 2

© SuperDataScience

Step 1

Machine Learning A-Z

Read the vertical line as "given"

Machine Learning A-Z

© SuperDataScience

Step 3

$$P(Walks|X)$$
 v.s. $P(Drives|X)$

Machine Learning A-Z

$$\frac{P(X|Walks) * P(Walks)}{P(X)} v.s. \frac{P(X|Drives) * P(Drives)}{P(X)}$$

Machine Learning A-Z

© SuperDataScience

Step 3

$$\frac{P(X|Walks) * P(Walks)}{P(X)} v.s. \frac{P(X|Drives) * P(Drives)}{P(X)}$$

Naïve Bayes

More than 2 classes

Machine Learning A-Z

© SuperDataScience

Step 3

P(Walks|X) v.s. P(Drives|X)

Machine Learning A-Z

 $0.75 \ v.s. \ 0.25$

Machine Learning A-Z

© SuperDataScience

Step 3

 $0.75 \ge 0.25$

Machine Learning A-Z

P(Walks|X) > P(Drives|X)

Machine Learning A-Z