

FI-1101 FISIKA DASAR 1B INSTITUT TEKNOLOGI SUMATERA

Pertemuan ke - 10

Osilasi harmonik dan Elastisitas

Tujuan Instruksional Khusus

Setelah kuliah ini mahasiswa diharapkan:

- Mampu menyelesaikan persoalan Osilasi harmonik sederhana.
- Mampu menyelesaikan persoalan Elastisitas Bahan

Pegas Ideal

 Gaya yang dibutuhkan untuk menarik atau menekan sebuah pegas sebanding dengan perpindahan dapat dinyatakan sebagai berikut :

$$F_x^{\text{Applied}} = kx$$

• Dengan k sebagai konstanta pegas

x adalah jarak(perpindahan) dari posisi kesetimbangan pegas sebelum ditarik/ditekan

Gaya pemulih dari gas ideal

$$F_x = -kx$$

Note: Tanda minus bermakna gaya pemulih selalu berarah pada posisi setimbang

Pegas Ideal dan Osilasi Harmonik

- Rekaman grafik posisi terhadap waktu untuk sebuah objek yang berosilasi harmonik dapat digambarkan dalam fungsi sin atau fungsi cos (sinusoidal)
- Amplitudo A merupakan nilai maksimum dari perpindahan posisi benda relatif terhadap posisi setimbang.

Gerak Harmonik Sederhana

 Perpindahan dalam gerak harmonik dapat dinyatakan sebagai berikut :

$$x = A\cos\theta = A\cos\omega t$$

- ullet Periode adalah waktu yang dibutuhkan benda untuk menyelesaikan satu siklus, T
- Hubungan antara $\, \omega \,$ dan $\, T \,$

$$\omega = \frac{2\pi}{T}$$

• Frekuensi adalah jumlah siklus per detik,

$$f = \frac{1}{T}$$

Gerak Harmonik Sederhana

 Kecepatan benda yang bergerak dalam harmonik sederhana dapat dituliskan :

$$v_x = v_T \sin \omega t = -\omega A \sin \omega t$$

- Kecepatan maks, $v_{\rm max} = \omega A$
- Percepatan dalam gerak harmonik,

$$a_x = -a_c \cos \theta = -\omega^2 A \cos \omega t$$

- Percepatan maks, $a_{\rm max} = \omega^2 A$
- Frekuensi getaran, $\sum F_x = -kx = ma_x$ $-k(A\cos\omega t) = m(-\omega^2 A\cos\omega t)$ $\Longrightarrow \omega = \sqrt{\frac{k}{m}}$

Energi Gerak Harmonik Sederhana

• Energi Potensial Elastik dari benda yang melekat pada pegas ideal adalah

$$U_{\text{spring}} = \frac{1}{2}kx^2$$

- Gaya Pegas termasuk Gaya Konservatif
- Jika tidak ada gaya non konservatif luar seperti gaya gesek bekerja pada sistem maka total energi mekanik dari sistem tersebut adalah kekal.
- Dengan melibatkan energi potensial pegas dan energi kinetik gerak rotasi, total energi mekanik dari sistem dinamikanya

$$\underbrace{E}_{\substack{\text{total}\\ \text{mechanical}\\ \text{energy}}} = \underbrace{\frac{1}{2}mv^2}_{\substack{\text{translational}\\ \text{kinetic}\\ \text{energy}}} + \underbrace{\frac{1}{2}I\omega^2}_{\substack{\text{rotational}\\ \text{kinetic}\\ \text{energy}}} + \underbrace{\frac{1}{2}kx^2}_{\substack{\text{gravitational}\\ \text{potential}\\ \text{energy}}} + \underbrace{\frac{1}{2}kx^2}_{\substack{\text{elastic}\\ \text{potential}\\ \text{energy}}}$$

Energi Gerak Harmonik

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

$$v = \pm \sqrt{\frac{k}{m} \left(A^2 - x^2 \right)}$$

Benda Padat

- Benda padat terdiri dari atom-atom yang tersusun dalam ruang
- Tiap atom mempunyai posisi kesetimbangan yang jelas dan tetap
- Antar atom terdapat gaya interaksi yang dimodelkan sebagai sebuah pegas dengan konstanta yang besar (sehingga kondisi benda tegar dapat dipenuhi)

Benda Padat

 Benda padat dapat mengalami perubahan bentuk(deformasi) bila diberi gaya → tidak benar-benar tegar

a. Benda teregang karena gaya yang searah sumbu silinder

 a. Benda terdeformasi karena gaya yang tegak lurus sumbu silinder

 a. Benda tertekan dalam seluruh arah (arah radial)

Deformasi (perubahan bentuk)

- Untuk membicarakan deformasi benda digunakan konsep *stress* dan *strain*.
- Stress menyatakan gaya eksternal yang bekerja persatuan penampang lintang suatu permukaan
- Strain meruoakan ukuran perubahan bentuk (deformasi) benda bila dikenai stress
- Untuk stress yang relatif kecil, strain sebanding dengan stress yang diberikan

Modulus Elastisitas

Modulus elastisitas =
$$\frac{\text{stress}}{\text{strain}}$$

- Modulus Young (E) → perubahan dalam arah panjang benda
- Modulus Geser(G) → pergeseran antar bagian pada benda
- Modulus Bulk(B) → perubahan dalam volume

Modulus Elastisitas

- Stress adalah gaya persatuan luas
- Strain = $\Delta L/L$
- Bila stress terus bertambah, terdapat daerah deformasi permanen dan kemudian benda putus
- Untuk daerah linier (elastik):

$$\frac{F}{A} = E \frac{\Delta L}{L}$$
 E: modulus Young

Modulus Elastisitas

•
$$\frac{F}{A} = G \frac{\Delta x}{L}$$

 G: shear modulus (modulus geser)

•
$$\frac{F}{A} = p = B \frac{\Delta V}{V}$$

• B: bulk modulus

Properti Elastik Beberapa Bahan

	Young's Modulus	Shear Modulus	Bulk Modulus
Substance	(N/m^2)	(N/m^2)	(N/m^2)
Tungsten	35×10^{10}	$14 imes 10^{10}$	$20 imes 10^{10}$
Steel	20×10^{10}	$8.4 imes 10^{10}$	$6 imes 10^{10}$
Copper	11×10^{10}	4.2×10^{10}	$14 imes 10^{10}$
Brass	9.1×10^{10}	$3.5 imes 10^{10}$	6.1×10^{10}
Aluminum	7.0×10^{10}	2.5×10^{10}	$7.0 imes 10^{10}$
Glass	$6.5 – 7.8 \times 10^{10}$	$2.6 - 3.2 \times 10^{10}$	$5.0 – 5.5 \times 10^{10}$
Quartz	5.6×10^{10}	$2.6 imes 10^{10}$	2.7×10^{10}
Water	_	_	$0.21 imes 10^{10}$
Mercury	_	_	2.8×10^{10}

•The End of Slide Thank you