MATHEMATICAL ANALYSIS 1 HOMEWORK 6

- (1) In this problem we prove the **Squeeze Theorem** for a finite point x_0 , and three functions f, g, hsatisfying $f \leq g \leq h$ near x_0 , with f and h having the limit ℓ as $x \to x_0$ (you are guided in the steps
 - (a) State the theorem (and state that you shall prove it only in the case $x_0 \in \mathbb{R}$).
 - (b) Fix $\varepsilon > 0$.
 - (c) With this ε write the definition of what it means that $\lim_{x\to x_0} f(x) = \ell$.
 - (d) Write the definition of what it means that $\lim_{x\to x_0} h(x) = \ell$.
 - (e) Using the previous two steps, find a neighborhood of x_0 (depending on ε) for which you can write a condition for convergence to ℓ for the function g.
 - (f) Conclude that, since $\varepsilon > 0$ was arbitrary, the theorem follows by the definition of the limit (applied to q).
- (2) Prove that

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Hint: multiply both the numerator and denominator by $1 + \cos x$.

(3) Compute the following limits:

(a)
$$\lim_{x\to+\infty} \frac{\cos x}{\sqrt{x}}$$

(b)
$$\lim_{x\to+\infty}\frac{\lfloor x\rfloor}{x}$$

(b)
$$\lim_{x \to +\infty} \frac{|x|}{x}$$

(c) $\lim_{x \to 0} \frac{x - \tan x}{x^2}$ (hint: Squeeze Theorem)
(d) $\lim_{x \to e} \frac{\ln x - 1}{x - e}$ (hint: take $y = x - e$)

(d)
$$\lim_{x\to 0} \frac{\ln x - 1}{x^2}$$
 (hint: take $y = x - e$)

(e)
$$\lim_{x \to +\infty} \frac{x+3}{x^3-2x+5}$$

(f)
$$\lim_{x\to 0} \frac{\sin^2 x}{x}$$

$$\begin{array}{ll} \text{(g)} & \lim_{x\to 1} \frac{\cos(\frac{\pi}{2}x)}{1-x} \; (hint: \; take \; y=1-x) \\ \text{(h)} & \lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1-\tan x}}{\sin x} \\ \text{(i)} & \lim_{x\to 0+} \frac{2^{2x}-1}{2x} \\ \text{(j)} & \lim_{x\to 1} \frac{\ln x}{e^x-e} \; (hint: \; take \; y=x-1) \\ \text{(k)} & \lim_{x\to 0} \frac{e^x-e^{-x}}{\sin x} \\ \text{(l)} & \lim_{x\to -\infty} xe^{\sin x} \end{array}$$

(h)
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1-\tan x}}{\sin x}$$

(i)
$$\lim_{x\to 0+} \frac{2^{2x}-1}{2x}$$

(j)
$$\lim_{x\to 1} \frac{\ln x}{e^x - e}$$
 (hint: take $y = x - 1$)

(k)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$

(1)
$$\lim_{x\to-\infty} xe^{\sin x}$$

(4) Determine how the following sequences $\{a_n\}_{n\in\mathbb{N}}$ behave for large n:

(a)
$$a_n = n - \sqrt{n}$$

(b) $a_n = \frac{(2n)!}{n!}$
(c) $a_n = \frac{(2n)!}{(n!)^2}$

(b)
$$a_n = \frac{(2n)!}{n!}$$

(c)
$$a_n = \frac{(2n)!}{(n!)^2}$$

(d)
$$a_n = \binom{n}{3} \frac{6}{n^3}$$

(d)
$$a_n = \binom{n}{3} \frac{6}{n^3}$$

(e) $a_n = 2^n \sin(2^{-n}\pi)$
(f) $a_n = n \cos(\frac{n+1}{n} \cdot \frac{\pi}{2})$

(f)
$$a_n = n \cos\left(\frac{n+1}{n} \cdot \frac{\pi}{2}\right)$$

(5) Use the fact that $\lim_{x\to\pm\infty} (1+\frac{1}{x})^x = e$ to prove that for $a\neq 0$

$$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x} \right)^x = e^a.$$

- (6) Let $f, g : \mathbb{R} \to \mathbb{R}$. Show that $f \sim g$ as $x \to x_0$ if and only if f = g + o(g) as $x \to x_0$.
- (7) Let $f: \mathbb{R} \to \mathbb{R}$ be infinite or infinitesimal at x_0 .
 - (a) State the definition of the order α of f at x_0 with respect to a function $\varphi: \mathbb{R} \to \mathbb{R}$.
 - (b) Prove that the order α is unique.
- (8) Determine the order and the principal part with respect to $\varphi(x) = \frac{1}{x}$ as $x \to +\infty$ of the function $f(x) = \sin(\sqrt{x^2 - 1} - x).$
- (9) As $x \to +\infty$, the function $f(x) = \ln(9 + \sin\frac{2}{x}) 2\ln 3$ can be written as $f(x) = \frac{b}{x^{\alpha}} + o(x^{-\alpha})$. Find b and α .
- (10) Determine the order and the principal part with respect to $\varphi(x) = x$ as $x \to 0$ of the function $f(x) = \frac{e^x}{1+x^2} - 1.$

1