ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη

Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

19^η σειρά ασκήσεων: Δικτυώματα (απλές εφαρμογές με τη μέθοδο των κόμβων)

Ασκηση 1

Να επιλυθούν τα δικτυώματα του Σχ.1.

Σχήμα 1

Άσκηση 2

Να επιλυθούν τα δικτυώματα του Σχ.2.

Άσκηση 3

Το δικτύωμα του Σχ.3 στηρίζεται με άρθρωση στο Α και κύλιση στο Β. Στην τροχαλία κέντρου Γ αναρτάται μάζα 100 kgr. Να επιλυθεί το δικτύωμα ($g=10 \text{ m/s}^2$).

Άσκηση 4

Αν οι ράβδοι του δικτυώματος του Σχ.4 έχουν μέγιστη φέρουσα ικανότητα σε εφελκυσμό ίση με 20 kN και σε θλίψη 30 kN να υπολογισθεί η μέγιστη επιτρεπτή τιμή της παραμέτρου P.

Άσκηση 5

Να υπολογισθεί η τιμή της γωνίας θ ώστε η ράβδος AB να δέχεται την ελάχιστη δυνατή φόρτιση $(0<\theta<45^\circ)$.

Ασκηση 6

Να επιλυθεί το δικτύωμα του Σχ.6.

Άσκηση 7

Το δικτύωμα του Σχ.7 στηρίζεται με άρθρωση στο Α και κύλιση στο Ε. Οι κόμβοι Α, Δ, Ε ευρίσκονται επί τόξου κύκλου (O,R=7.5m) και η ράβδος ΔΒ εκτείνεται κατά την αντίστοιχη ακτίνα ΟΔ. Στους κόμβους Β και Γ ισορροπεί δοκός ιδίου βάρους q=250 kN/m. Το υλικό των ράβδων έχει φέρουσα ικανότητα 300 N/mm². Θεωρώντας ότι όλες οι ράβδοι είναι κυλινδρικές να ευρεθεί η ελάχιστη επιτρεπτή διάμετρός τους.

Fxw p 9 p var 6 u dpa 9=2.6.3 10x5E. Frans Exw repaidson zpysom don 20 fruzista Evar 8EPES vila var ompyonan and dofourn var willow do - Elvar Janus

EFY=0=>V+R=4

EFY=0=> H=0

EMA=0=>>·2+>·4=6R=12=>R=2mw

EMA=0=>>·2+>·4=6R=12=>R=2mw

Fig		(1) 14 14 14 14 14 14 14 14 14 14 14 14 14	
Koplos Erektruors: A JEany	Pales	Divot NEN]	1 E, Sos
Fra JFary Ear T	AF	2,24	Murring
J Fra FAIX FAUX	AB	2,24	Exednosina
FATX JULY JULY	50	2	Danzind
FAT	LB	1	GAMPINA
(A)	BD	0	Mrov n
FEM FEH	BE		Epelwound
FABY FAB FABY	SE	1	(Dinnuh
FASX P PEHX	AH	2,24	@ Aimins
Vfro Vfse	1 EH		

EFAGEOS) FARSING FABSING V = 2 PAR = V = 2,24AV

Apa IFArx 1 = 2 KN = FABX LOW FARY 1 = 12N = IFARY

EFFX=0=> FTO=FAGY=2KN EFFY=0=> FTR+ FAGY=2=> FTB=1KN Frasi FABy=FrB der acrossa konfra koranspropr dalafur vor rifbo B Apa n parbos Bo Errae d zou y. EFEX=0=> FABX=FBE= 2KN ¿FOX=0=> FOH. COSY = FID=> FOHEOSY=2=> FIDH= 2,24KN Apa | FAHX = 2 nas | FAHy = 1 EFAy =0 => FOE + FSHy = 2 => FOE = 1 RN EFEX=0=> FEAX= 24N => FAEH= 2 = 224 Apa FEHN - 2 Whai FEHY = ENN Effer => FEN=FOR IOXE.

Exw spollon non 6 rothers and nopolition region de 20 dingunt a Esvan aspect sinta, non agai surplieran sursin le appoison non simplyer esvan han sarrivà.

 $2f_{x=0} =)H-R= 2P+5P\cdot (os(30°)=)H-R=6,33P$ (1) $2f_{y=0} =)V=8P-5Psin(20°)=80-2,s)P=5,5P=5V=5,5P$ (2) $2f_{y=0} =)4R+2P\cdot 4+5P\cdot sin(30°)\cdot 4=4P\cdot 2+4P\cdot 4=)4R+8P+10P=8P+16P=)4R=6P=)$ $2f_{y=0} =)4R+2P\cdot 4+5P\cdot sin(30°)\cdot 4=4P\cdot 2+4P\cdot 4=)4R+8P+10P=8P+16P=)4R=6P=)$ $2f_{y=0} =)4R+2P\cdot 4+5P\cdot sin(30°)\cdot 4=4P\cdot 2+4P\cdot 4=)4R+8P+10P=8P+16P=)4R=6P=)$

$(1) \stackrel{(3)}{=} H = 7,83P(4)$					
Palsa	Sovata [N]	I EISOS	Opene doin àv:		
48	5,5P	Fyel no or and	35,5P ± 20		
Ar	7,83P	Egglavorium	-2017, 83/520		
BT	6,15 P	Mintim	-651,25PE 20/		
30	1,25 P	Epelnoon	-1055,08 < 20 > 0 - 2,55 5 P < 2,5 × E N		
LE	5,08 P	Epelusiun	-70 = 5,5P = 20		
rs.	5,5 P	Epedonorun	-10 = 2P \le 20 (=) -255 \le P \le 2,55		
DE	1,68P		-2054 P \ 20]		
02	2P	Epednoorm	-3086,15P 530 G => -3,255P = 3,25		
EZ.	4P	Egglavonun -	-305. 1,68PE 30)		

EFzy=0 => Fza=H = 3(OSD-SINDAI) EFzy=0 => Fza=V = 43SIND

EFAX=0 => FABX = FZA = 4-301ND => FAB = 4,47-31,125IND => FABX=FAB. (0)(63,430)= 2-4,55IND EFAX=0 => FAT+FABX = R => FAT= R-FABX= 2-35IND-2 to SSIND => FAT= -2,55IND

EFBx=0=) FBr=FABx= 4-351nD EFBx=0=) FBg=FZB-FABx=3cosD-351nD+3-2+0,551nD=3cosD-4,550nD+1

2Fry=0=> Fray = FBr-2 = 2351nd= 2,24 31,1251nd=> Frax=1-0,551nd 2Frx=0=> Frax=FAr-Fre=> Fre=-2,551nd-1+9551nd=-251nd-1

Efax=0=> FBO= Frax + 3cos0=> 3cos0-1, srin0+1 = 1-4 ssin0+3cos0 10xih

Apa FARD - 4,47-3,36510

EFX=0=> H=Px=> P= # => P=3,86 H (1)

EFy =0 => V+Ry= W->V= W-Rcos(5°) = W-997R (2)

EMA=0=> 5,75 Ry+ 3,68 Rx= 2 W=> 6,24 R=2W=> R= W== 600×N €3

 $(1)^{3}H = 155,44 \text{ k}$ (2) =) V = 1875-582 = 1293 k

 $E_{X}ω: O(0,0)$ $\overrightarrow{AB} = 1,25^{0} + 4,83^{\circ} = |\overrightarrow{AB}| = 5 \text{ m}, tang = \frac{4,83}{1,25} = 3,86 =)$ $\varphi_{1} = 75,49^{\circ}$ A(-5,76,82) $\overrightarrow{AB} = 2,58^{\circ} + 1,98^{\circ} = |\overrightarrow{AB}| = 3,25 \text{ m}, tang = \frac{1,90}{2,59} = 0,77 =)(\varphi_{2} = 37,5^{\circ})$ B(-4,5,9,65) $\overrightarrow{AB} = -1,33^{\circ} + 2,85^{\circ} = |\overrightarrow{AB}| = 3,15 \text{ m}, tang = 2,14 =)(\varphi_{3} = 64,98^{\circ})$ $\Gamma(-2,9,65)$ $\overrightarrow{AF} = 1,17^{\circ} + 2,85^{\circ} = |\overrightarrow{AF}| = 3,08 \text{ m}, tang = 2,44 =)(\varphi_{4} = 67,68^{\circ})$ A(-3,17,6,0) $\overrightarrow{AE} = 3,17^{\circ} + 0,79^{\circ} = |\overrightarrow{AE}| = 3,25 \text{ m}, tang = 0,22 =)(\varphi_{5} = 12,45^{\circ})$ E(0,7,5) $\overrightarrow{BF} = 2,5^{\circ} + 0^{\circ} = |\overrightarrow{BF}| = 2,5 \text{ m}$ $\overrightarrow{EF} = -2^{\circ} + 2,15^{\circ} = |\overrightarrow{FF}| = 2,94 \text{ m}, tang = 1,08 = 1,08 = 1,08 = 1,07^{\circ}$

EFBy=0=> FBDy=FABy-FB=526,77=>FBD=526,77=576,87KN=>FBDX=244,82W

EFBX = 0 => FBT = FABX + FBAX = 377,39+244, BZ => FBT = 622,21KN

E FOX=0=> FOEX+ FOTX = FAXX+ FBOX=> FOE COSQ3 + FOT COSQ4 = 222,65+244,82 >>

=) 998 FOE+ 938 For = 467,47 (1)

EFBY=000> FAGY + FAFY = FADY-FBBY => FAGGING + FARSING4 = 171,92-52677=)

= 1 0,22 FOE + 0,93 FOR = -354,85 => FOE = -354,85 _ 0,22 FOR => FOE = -1612,95-4,18 FOR (2)

(1) => 0,98 (-1612,95-4,18 For) + 938 For= 467,47=) -4,1 For- 1580,69 + 938 For= 467,47=)

=> For = - 2048,16 => For = - 350,58 KN => FOE = 688,47 KN

|Forx = 209,22 kN |Foex = 674,71 kN |Fory = 512,04 kN |Foey = 151,46 kN

2Frx=0=>Frex=FBr+Forx=> Frex=622,21+209,22=> Frex=831,43=> Fre=831,43=1220716N

Apa FrEy = Fresings = 893, 79 KN

Pablos	Sivota [KN]	Erfox	Form or or public Exort auriva P. agan n Enigerera
AB	1509,56	9	our order done see swoth Exer Ethal's Mp? He poiledes
AD	281,84	E	for on topologen gaprion even in colless AB, to Fag-1003000
Br	622,24	0	300 N/mm2 = 0,3KN/mm2. Potra 0,307p2 > 1509,56 =>
BA	578,87	E	=>p=1601,69=)p=40,02mm
Dr	550,58	0	Apa n Edagiorn Enispensu austra errar Pmint 40,02 mm
SE	688,47	E	var apa n Eddyrom Engenth Sidfergos encer Sminzemin
rF	122071	0	=> Smin=8004mm