COSMIC

Commonsense knowledge for eMotion Identification in Conversations

In this conversation model, only the utterances can be observed as the conversation unfolds, while other variables such as speaker state and intent remain latent as they are not directly observed by the other participants.

```
[(u1, p1),(u2, p2), . . . ,(uN, pN)]
  ui = [ui,1, ui,2, . . . , ui,T] pi
```

- 1. Context independent feature extraction from pretrained transformer language models.
- Commonsense feature extraction from a commonsense knowledge graph.
- Incorporating commonsense knowledge to design better contextual representations and using it for the final emotion classification.

Figure 2: Illustration of COSMIC framework. *CSK*: Commonsense knowledge from COMET. In practice we use Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

Context Independent Feature Extraction

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Commonsense Feature Extraction

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction

ATOMIC Input Template and ConceptNet Relation-only Input Template

ConceptNet Relation to Language Input Template

s tokens m	nask tokens	r tokens	mask tokens	o tokens
------------	-------------	----------	-------------	----------

go to mall [MASK] [MASK] has prerequisite [MASK] have money

Figure 1: COMET | learns from an existing knowledge base (solid lines) to be able to generate novel nodes and edges (dashed lines).

Commonsense Feature Extraction

$$\{S, r, \rightarrow 0\}$$

Commonsense Feature Extraction

 $\{U, r, \rightarrow 0\}$

Commonsense Feature	Notation	Nature	Causal Relation	
Intent of speaker Effect on speaker Reaction of speaker Effect of listeners Reaction of listeners	$\mathcal{IS}_{cs}(.) \ \mathcal{ES}_{cs}(.) \ \mathcal{RS}_{cs}(.) \ \mathcal{EL}_{cs}(.) \ \mathcal{RL}_{cs}(.)$	Mental state Mental state Event Mental state Event	Cause Effect Effect Effect	

State	Influenced By			
Context State	Utterance, Internal state, External state			
Internal State	Context state, Effect on speaker, listener			
External State	Context state, Utterance, Reaction of speaker, listener			
Intent State	Internal state, Intent of speaker			
Emotion State	Utterance, Intent state Internal state, External state			

Table 2: Different states and the respective variables they are influenced by. *Italic* variables are forms of commonsense knowledge from Table 1.

c Context state

q Internal state
r External state
i Intent state

e Emotion state

Context state

Figure 2: Illustration of COSMIC framework. *CSK*: Commonsense knowledge from COMET. In practice we use Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

Internal state

Figure 2: Illustration of COSMIC framework. *CSK*: Commonsense knowledge from COMET. In practice v Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

External state

Figure 2: Illustration of COSMIC framework. *CSK*: Commonsense knowledge from COMET. In practice we Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

Intent state

Figure 2: Illustration of COSMIC framework. CSK: Commonsense knowledge from COMET. In practice v Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

Emotion state

Figure 2: Illustration of COSMIC framework. *CSK*: Commonsense knowledge from COMET. In practice we use Bidirectional GRU cells. However, for clarity unidirectional cells are shown in the sketch.

Dataset

4.1 Datasets

Dataset	#	dialogue	es	# utterances			
Dataset	train	val	test	train	val	test	
IEMOCAP	120	12	31	5810		1623	
DailyDialog	11,118	1,000	1,000	87,832	7,912	7,863	
MELD	1,039	114	280	9,989	1,109	2,610	
EmoryNLP	659	89	79	7,551	954	984	

Dataset	# classes	Metric	
IEMOCAP	6	Weighted Avg. F1	
DailyDialog	7*	Macro F1 and Micro F1	
MELD	3 and 7	Weighted Avg. F1 over 3 and 7 classes	
EmoryNLP	3 and 7	Weighted Avg. F1 over 3 and 7 classes	

Table 3: Statistics of splits and evaluation metrics used in different datasets. In MELD and EmoryNLP evaluation is performed for 3 class (broad) and 7 class (finegrained) classification. *Neutral** classes constitutes to 83% of the DailyDialog dataset. These are excluded when calculating the Micro F1 score.

IEMOCAP

happy sad neutral angry excited frustrated state

Result

		ІЕМОСАР	DailyDialog		MELD		EmoryNLP	
	Methods	W-Avg F1	Macro F1	Micro F1	W-Avg F1 (3-cls)	W-Avg F1 (7-cls)	W-Avg F1 (3-cls)	W-Avg F1 (7-cls)
eq	CNN	52.04	36.87	50.32	64.25	55.02	38.05	32.59
bas	ICON	58.54	-	-	-	-	-	-
GloVe-based	KET	59.56	-	53.37	-	58.18	-	34.39
10	ConGCN	-	-	-	-	57.40	-	-
9	DialogueRNN	62.57	41.80	55.95	66.10	57.03	48.93	31.70
р	BERT DCR-Net	-	48.90	-	-	-	-	-
ased	BERT+MTL	-	-	-	-	61.90	-	35.92
	RoBERTa	54.55	48.20	55.16	72.12	62.02	55.28	37.29
(Ro)BERT(a)-b	RoBERTa DialogueRNN	64.76	49.65	57.32	72.14	63.61	55.36	37.44
ER	COSMIC	65.28	51.05	58.48	73.20	65.21	56.51	38.11
<u>B</u>	w/o Speaker CSK	63.27	50.18	57.45	72.94	64.41	55.46	37.35
Ro	w/o Listener CSK	65.05	48.67	58.28	72.90	64.76	56.57	38.15
	w/o Speaker, Listener CSK	63.05	48.68	56.16	72.62	64.28	55.34	37.10

PersonX went to see her headstone

Predict

Try: PersonX acts quickly, PersonX is a big deal, My boss is very good

Ses01F_impro06_M000	I'm sorry, Joy.
Ses01F_impro06_F000	It's okay.
Ses01F_impro06_M001	Is there anything I can get you? Do you want n
Ses01F_impro06_F001	No, no, no.
Ses01F_impro06_M002	pick up anything?
Ses01F_impro06_F002	No.
Ses01F_impro06_M003	You know you are welcome to stay at my house
Ses01F_impro06_F003	That's sweet.
Ses01F_impro06_F004	Thank you.
Ses01F_impro06_F005	I went to see her headstone a week or two ago.
	I used to go to cemeteries a lot before she died
Ses01F_impro06_F006	is always this green in the city.
Ses01F_impro06_M004	Hmm.

Oh. She was there?

So I was like wandering around before. It takes

So I was looking at this other one and there was

this woman came up and, you know, it was here

Yeah. And she was like, that's pathetic, I hope

candy and put it on her headstone. And-

Ses01F_impro06_F007

Ses01F_impro06_F008

Ses01F_impro06_F009

Ses01F_impro06_M005

Ses01F_impro06_F010

Select one or more relations.

Select all

- PersonX is seen as
 Before, PersonX needed
 As a result, PersonX wants
 As a result, others want
 Is hindered by
- □ PersonX then✓ As a result, PersonX feels
- Others thenHappens before
- Causes

- Because PersonX wanted
- As a result, PersonX reasons
- As a result, others feel
- ✓ Happens after

COMeT Predictions Graph

he model has predicted these relationships for 'PersonX went to see her headstone'

COMeT Predictions Graph

The model has predicted these relationships for 'PersonX went to see her headstone'

