What is claimed is:

1. A compound represented by Formula (1):

wherein R¹ is phenyl in which optional hydrogen may be 5 replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional $-CH_2$ which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen; Q1 is hydrogen, halogen, alkyl having 1 to 10 carbon atoms, 10 cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 10 carbon atoms and the alkyl 15 having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂- which is not adjacent to each other may be replaced by -O-, -CH=CH- or $-C\equiv C-$, and optional hydrogen may be replaced by halogen; and Q2 is a group represented by Formula (2):

20

$$<-Z^{0}$$
 $-(-A^{1}-Z^{1})$ $-(-A^{2}-Z^{2})$ $-(-A^{3}-Z^{3})$ $-(-A^{4})$ $-(-2)$

wherein the code < represents a bonding point with

silicon; 1, m, n and p are independently 0, 1, 2 or 3; A¹, A^2 , A^3 and A^4 are independently a single bond, 1,4cyclohexylene, 1,4-cyclohexenylene, a condensed ring group having 6 to 10 carbon atoms which is a divalent group, or 1,4-phenylene; in these rings, optional -CH₂which is not adjacent to each other may be replaced by -O-, and optional -CH= may be replaced by -N=; optional hydrogen in all rings may be replaced by halogen, -CN, -NO2 or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional $-CH_2$ — which is not 10 adjacent to each other may be replaced by -O-, -CH=CH- or -C≡C-, and optional hydrogen may be replaced by halogen; Z^{0} , Z^{1} , Z^{2} and Z^{3} are independently a single bond, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, or alkylene in which the number of carbon atoms is 1 to 20, and optional $-CH_2$ - may be 15 replaced by -O-, -S-, -NH-, $-SiR^2_2$ -, $-SiR^2_2$ O-, $-OSiR^2_2$ -, - $OSiR^2_2O$ -, $-SiR^2_2OSiR^2_2$ -, -COO-, -OCO-, -CH=CH- or -C $\equiv C$ -; R^2 is halogen, alkyl having 1 to 10 carbon atoms, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 20 cyclohexenyl, or phenyl in which optional hydrogen may be replaced by halogen, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 10 carbon atoms and the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂- which is not adjacent to each other may be replaced by -O-, -CH=CH- or $-C\equiv C-$, and 25 optional hydrogen may be replaced by halogen; Z4 is a single bond, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH₂- which is not adjacent to each other may be replaced

by -O-, -COO-, -OCO-, -CH=CH- or -C \equiv C-; and Y¹ is halogen, -OM¹-, -SM¹-, -CHO, -COOR³-, -CSOR³-, -CSSR³-, -NHR⁴-, -COX¹-, -CSX¹-, -OCOX¹-, -OCOOR³-, -N=C=O, -CN, -C \equiv CH, -CR⁵=CH₂, -CR⁵=CR⁶COOR³, -CH=CR⁵CR⁶=CH₂, -SO₂X¹, -SiR²₂X¹, -SiR²₂OCOR⁷, -SiR²₂OC(CH₃)=CH₂, -SiR²₂ON=CR⁷R⁸, -SiR²₂NR⁷R⁸, or any one of groups shown below:

in these groups related to Y1, M1 is hydrogen or alkaline metal; R³ is hydrogen, alkaline metal, or alkyl in which 10 the number of carbon atoms is 1 to 10, optional $-CH_2$ which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen; R4 is hydrogen, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, alkyl in which the number of 15 carbon atoms is 1 to 10, optional $-CH_2$ - which is not adjacent to each other may be replaced by -O- and optional hydrogen may be replaced by halogen, or phenyl in which optional hydrogen may be replaced by halogen or 20 alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced by $\equiv O-$, -CH=CH- or -C , and optional hydrogen

may be replaced by halogen; X¹ is halogen; R⁵, R⁶ and X² are independently hydrogen, halogen, -CN, or alkyl in which the number of carbon atoms is 1 to 10 optional - CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen; R¹ and R⁶ are independently alkyl having 1 to 10 carbon atoms; G¹ is a trivalent organic group; R⁶ is hydrogen or alkyl having 1 to 5 carbon atoms; q is 1 or 0; r is an integer of 0 to 5; and t is an integer of 1 to 5.

10 2. The compound according to claim 1, wherein in Formula (1), R1 is phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional $-CH_2-$ which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen; 15 Q¹ is hydrogen, halogen, alkyl having 1 to 10 carbon atoms, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; 20 in the alkyl having 1 to 10 carbon atoms and the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced by -O-, -CH=CH- or $-C\equiv C-$, and optional hydrogen may be replaced by halogen; and Q2 is a 25 group represented by Formula (2);

in Formula (2), the code < represents a bonding point with silicon; l, m, n and p are independently 0, 1, 2 or 3; A^1 , A^2 , A^3 and A^4 are independently a single bond, 1,4-cyclohexylene, 1,4-cyclohexenylene, a condensed ring

group having 6 to 10 carbon atoms which is a divalent group, or 1,4-phenylene; in these rings, optional -CH₂which is not adjacent to each other may be replaced by -O-, and optional -CH= may be replaced by -N=; in all rings, optional hydrogen may be replaced by halogen, -CN, - NO_2 , or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional -CH2- which is not adjacent to each other may be replaced by -O-, -CH=CH- or -C≡C-, and optional hydrogen may be replaced by halogen; Z^0 , Z^1 , Z^2 and Z^3 are independently a single bond, -CH=CH-, 10 $-C \equiv C-$, -COO-, -OCO-, or alkylene in which the number of carbon atoms is 1 to 20, and optional $-CH_2$ - may be replaced by -O-, -S-, -NH-, $-SiR^2_2-$, $-SiR^2_2O-$, $-OSiR^2_2-$, - $OSiR^2_2O-$, $-SiR^2_2OSiR^2_2-$, -COO-, -OCO-, -CH=CH- or $-C\equiv C-$; R^2 15 is halogen, alkyl having 1 to 10 carbon atoms, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 10 carbon atoms and the alkyl 20 having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced by -O-, -CH=CH- or $-C\equiv C-$, and optional hydrogen may be replaced by halogen; Z4 is a single bond, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, or alkylene in 25 which the number of carbon atoms is 1 to 20, optional -CH2- which is not adjacent to each other may be replaced by -0-, -C00-, -OC0-, -CH=CH- or $-C\equiv C-$; and Y^1 is halogen, $-OM^{1}-$, $-SM^{1}-$, -CHO, $-COOR^{3}-$, $-CSOR^{3}-$, $-CSSR^{3}-$, $-NHR^{4}-$, - COX^{1} -, $-CSX^{1}$ -, $-OCOX^{1}$ -, $-OCOOR^{3}$ -, -N=C=O, -CN, $-C\equiv CH$, -

 $CR^5=CH_2$, $-CR^5=CR^6COOR^3$, $-CH=CR^5CR^6=CH_2$, $-SO_2X^1$, or any one of groups shown below:

in the above groups related to Y1, M1 is hydrogen or 5 alkaline metal; R³ is hydrogen, alkaline metal, or alkyl in which the number of carbon atoms is 1 to 10, optional -CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen; 10 R4 is hydrogen, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, alkyl in which the number of carbon atoms is 1 to 10, optional -CH2- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by halogen, or phenyl 15 in which optional hydrogen may be replaced by halogen, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced by $\equiv O-$, -CH=CH- or -C , and optional hydrogen may be replaced by halogen; X1 is halogen; R5, R6 and X2 20 are independently hydrogen, halogen, -CN, or alkyl in which the number of carbon atoms is 1 to 10, optional -CH2- which is not adjacent to each other may be replaced

by -O-, and optional hydrogen may be replaced by halogen; G^1 is a trivalent organic group; R^9 is hydrogen or alkyl having 1 to 5 carbon atoms; q is 1 or 0; r is an integer of 0 to 5; and t is an integer of 1 to 5.

- 5 3. The compound according to claim 1, wherein R^1 is phenyl in which optional hydrogen may be replaced by fluorine or chlorine.
- 4. The compound according to claim 1, wherein R¹ is phenyl in which optional hydrogen may be replaced by fluorine or chlorine; Q¹ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10, optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine.
- 5. The compound according to claim 1, wherein R¹ is phenyl in which optional hydrogen may be replaced by fluorine or chlorine; Q¹ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10, and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by

fluorine; A^1 , A^2 , A^3 and A^4 are independently a single bond, 1,4-cyclohexylene, 1,4-cyclohexenylene, a condensed ring group having 6 to 10 carbon atoms which is a divalent group, or 1,4-phenylene; in the above rings, 5 optional hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the above alkyl having 1 to 5 carbon atoms, optional -CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z⁰, Z¹, Z² and Z^3 are independently a single bond, -CH=CH-, $-C\equiv C-$, -10 COO-, -OCO- or alkylene which has a carbon number of 1 to 20 and in which optional $-CH_2$ - may be replaced by -O-, -NH-, $-SiR^2$, $-SiR^2$, $-SiR^2$, $-SiR^2$, $-SiR^2$, $-SiR^2$, -COO-, -OCO-, -CH=CH- or -C \equiv C-; R² is halogen, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of 15 carbon atoms is 1 to 10, and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 20 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; and Z^4 is a single bond, -CH=CH-, -C=C-, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20, and optional -CH₂- which is not adjacent to each 25 other may be replaced by -O-, -COO-, -OCO-, -CH=CH- or -C≡C-.

6. The compound according to claim 1, wherein R¹ is phenyl in which optional hydrogen may be replaced by

fluorine or chlorine; Q1 is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10, and optional hydrogen may be replaced by fluorine, or phenyl in which optional 5 hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; A¹, A², A³ and A⁴ are independently a single 10 bond, 1,4-cyclohexylene, 1,4-cyclohexenylene, a condensed ring group having 6 to 10 carbon atoms which is a divalent group, or 1,4-phenylene; in the above rings, optional hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the above alkyl 15 having 1 to 5 carbon atoms, optional $-CH_2$ - which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z⁰, Z¹, Z² and Z^3 are independently a single bond, -CH=CH-, $-C\equiv C-$, -COO-, -OCO-, or alkylene in which the number of carbon 20 atoms is 1 to 20, and optional -CH2- which is not adjacent to each other may be replaced by -O-, -NH-, - SiR^{2}_{2} -, $-SiR^{2}_{2}O$ -, $-OSiR^{2}_{2}$ -, $-SiR^{2}_{2}OSiR^{2}_{2}$ -, -COO-, -OCO-, -CH=CH- or $-C\equiv C-$; R^2 is halogen, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of 25 carbon atoms is 1 to 10, and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5

carbon atoms which is a substituent of phenyl, optional - CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z⁴ is a single bond, -CH=CH-, -C\(\exists C-\), -COO-,
5 OCO-, or alkylene in which the number of carbon atoms is 1 to 20, and optional -CH₂- which is not adjacent to each other may be replaced by -O-, -COO-, -OCO-, -CH=CH- or -C\(\exists C-\); and Y¹ is chlorine, bromine, -OM¹-, -SM¹-, -CHO, -COOR³-, -NHR⁴-, -COX¹-, -OCOX¹-, -N=C=O, -CN, -C\(\exists CH\),
10 CR⁵=CH₂, -CR⁵=CR⁶COOR³, -CH=CR⁵CR⁶=CH₂, -SO₂X¹, 2,3- epoxycyclohexyl, 3,4-epoxycyclohexyl, or any one of groups shown below:

in the above groups related to Y1, M1 is hydrogen or 15 alkaline metal; R³ is hydrogen, alkaline metal, or alkyl having 1 to 5 carbon atoms; R4 is hydrogen, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 5, optional -CH2- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may 20 be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine, or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2- which is not adjacent to each other may be replaced 25 by -O-, and optional hydrogen may be replaced by fluorine; X1 is chlorine or bromine; R5, R6 and X2 are

independently hydrogen, fluorine, chlorine, or alkyl in which the number of carbon atoms is 1 to 5, optional – CH_2 — which is not adjacent to each other may be replaced by –O-, and optional hydrogen may be replaced by fluorine; G^1 is a trivalent organic group; R^9 is hydrogen, methyl or ethyl; and q is 1 or 0.

- 7. The compound according to claim 6, wherein R^1 is phenyl.
- 8. The compound according to claim 6, wherein R¹ is phenyl; Q¹ is cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 5, and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine.
- 9. The compound according to claim 6, wherein R¹ is phenyl; Q¹ is cyclopentyl, cyclohexyl, alkyl in which the 120 number of carbon atoms is 1 to 5 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂- which is 125 not adjacent to each other may be replaced by -O-, and 126 optional hydrogen may be replaced by fluorine; A¹, A², A³ and A⁴ are independently a single bond or 1,4-phenylene in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the

alkyl having 1 to 5 carbon atoms which is a substituent for 1,4-phenylene, optional $-CH_2$ - which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; and Z^0 , Z^1 , Z^2 , Z^3 and Z^4 are independently a single bond, -COO-, -OCO-, or alkylene in which the number of carbon atoms is 1 to 20, and optional $-CH_2$ - which is not adjacent to each other may be replaced by -O-, -COO-, -OCO-, -CH-CH- or -C=C-.

The compound according to claim 6, wherein R1 is phenyl; Q1 is cyclopentyl, cyclohexyl, alkyl in which the 10 number of carbon atoms is 1 to 5, and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional hydrogen may 15 be replaced by fluorine; A^1 , A^2 , A^3 and A^4 are independently a single bond or 1,4-phenylene in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 20 1 to 5 carbon atoms which is a substituent for 1,4phenylene, optional -CH2- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z^0 , Z^1 , Z^2 , Z^3 and Z^4 are independently a single bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20, and 25 optional -CH2- which is not adjacent to each other may be replaced by -O-, -COO-, -OCO-, -CH=CH- or -C=C-; and Y^1 is $-OM^{1}$, -CHO, $-COOR^{3}$, $-NHR^{4}$, $-COX^{1}$, $-OCOX^{1}$, -N=C=O, - $CR^5=CH_2$, 2,3-epoxycyclohexyl, 3,4-epoxycyclohexyl, or any

one of groups shown below:

25

in the above groups related to Y1, M1 is hydrogen, sodium or potassium; R³ is hydrogen, sodium, potassium, or alkyl 5 in which the number of carbon atoms is 1 to 5, optional -CH2- which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; R4 is hydrogen, phenyl, or alkyl in which the 10 number of carbon atoms is 1 to 5, optional $-CH_2-$ which is not adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; X1 is chlorine or bromine; R5 and X2 are independently hydrogen, fluorine, chlorine, or alkyl in which the number of carbon atoms is 1 to 5, optional $-CH_2$ - which is not 15 adjacent to each other may be replaced by -O-, and optional hydrogen may be replaced by fluorine; G1 is a trivalent organic group; R9 is hydrogen, methyl or ethyl; and q is 1 or 0.

- 20 11. The compound according to claim 10, wherein Q^1 is alkyl having 1 to 5 carbon atoms, or phenyl.
 - 12. The compound according to claim 10, wherein Q^1 is alkyl having 1 to 5 carbon atoms or phenyl; A^1 , A^2 , A^3 and A^4 are independently a single bond or 1,4-phenylene in which optional hydrogen may be replaced by fluorine or methyl; Z^0 , Z^1 , Z^2 , Z^3 and Z^4 are independently a single

bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH $_2$ -, which is not adjacent to each other, may be replaced by -O-, -COO- or -OCO-.

13. The compound according to claim 10, wherein Q¹ is alkyl having 1 to 5 carbon atoms or phenyl; A¹, A², A³ and A⁴ are independently a single bond or 1,4-phenylene in which optional hydrogen may be replaced by fluorine or methyl; Z⁰, Z¹, Z², Z³ and Z⁴ are independently a single bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, -COO- or -OCO-; and Y¹ is -OM¹-, -COOR³-, -NHR⁴-, -COX¹-, -N=C=O, -CR⁵=CH₂, 2,3-epoxycyclohexyl, 3,4-epoxycyclohexyl, or any one of groups shown below:

in the above groups related to Y¹, M¹ is hydrogen, sodium or potassium; R³ is hydrogen, sodium, potassium, methyl or ethyl; R⁴ is hydrogen, methyl or phenyl; X¹ is chlorine or bromine; R⁵ and X² are independently hydrogen, fluorine or alkyl in which the number of carbon atoms is 1 to 5 and optional hydrogen may be replaced by fluorine; G¹ is a trivalent organic group; R⁹ is hydrogen, methyl or ethyl; and q is 1 or 0.

14. The compound according to claim 13, wherein Q1

is methyl or phenyl.

15. The compound according to claim 13, wherein Q^1 is methyl or phenyl; A^1 , A^2 , A^3 and A^4 are independently a single bond or 1,4-phenylene; and Z^0 , Z^1 , Z^2 , Z^3 and Z^4 are independently a single bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, -COO- or -OCO-.

16. The compound according to claim 13, wherein Q¹ is methyl or phenyl; A¹, A², A³ and A⁴ are independently a single bond or 1,4-phenylene; Z⁰, Z¹, Z², Z³ and Z⁴ are independently a single bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, -COO- or -OCO-; and Y¹ is -OM¹-, -COOR³-, -NHR⁴-, -COCl-, 2,3-epoxycyclohexyl, 3,4-epoxycyclohexyl, or any one of groups shown below:

in the above groups related to Y^1 , M^1 is hydrogen, sodium or potassium; R^3 is hydrogen, sodium, potassium, methyl or ethyl; R^4 is hydrogen or methyl; X^2 is hydrogen, fluorine or methyl; G^1 is a trivalent organic group; R^9 is hydrogen, methyl or ethyl; and q is 1 or 0.

25 17. The compound according to claim 16, wherein Y^1 is -OH, $-COOR^3$, $-NH_2$, -COCl, 2,3-epoxycyclohexyl, 3,4-

epoxycyclohexyl, or any one of groups shown below:

$$-G^{1}$$
O $(CH_2)_q$

in the above groups related to Y^1 , R^3 is hydrogen, methyl or ethyl; G^1 is a trivalent organic group; R^9 is hydrogen, methyl or ethyl; and q is 1 or 0.

18. A polymer having a structural unit represented by Formula (3):

10

15

20

wherein R^1 is phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional $-CH_2-$, which is not adjacent to each other, may be replaced by -0-, and optional hydrogen may be replaced by halogen; Q^1 is hydrogen, halogen, alkyl having 1 to 10 carbon atoms, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 10 carbon atoms and alkyl having 1 to 5 carbon atoms which is a substituent of phenyl,

optional $-CH_2-$, which is not adjacent to each other, may be replaced by -O-, -CH=CH- or $-C\equiv C-$, and optional hydrogen may be replaced by halogen; and Q^3 is a group represented by Formula (4):

$$<-Z^{0}-(-A^{1}-Z^{1})$$
 $(-A^{2}-Z^{2})$ $(A^{3}-Z^{3})$ (A^{4}) $(A^{5}-Z^{5}$

wherein a code < represents a bonding point with silicon; 1, m, n and p are independently 0, 1, 2 or 3; A^1 , A^2 , A^3 and A4 are independently a single bond, 1,4-cyclohexylene, 1,4-cyclohexenylene, a condensed ring group having 6 to 10 10 carbon atoms which is a divalent group, or 1,4phenylene; in these rings, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, and optional -CH= may be replaced by -N=; optional hydrogen 15 in all rings may be replaced by halogen, -CN, -NO2 or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, -CH=CH- or -C≡C-, and optional hydrogen may be replaced by halogen; Z⁰, Z¹, Z^2 and Z^3 are independently a single bond, -CH=CH-, -C \equiv C-, 20 -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional $-CH_2$ - may be replaced by -O-, -S-, -NH-, $-SiR^2_2-$, $-SiR^2_2O-$, $-OSiR^2_2-$, $-OSiR^2_2O-$, - $SiR^{2}_{2}OSiR^{2}_{2}$ -, -COO-, -OCO-, -CH=CH- or -C \equiv C-; R^{2} is halogen, 25 alkyl having 1 to 10 carbon atoms, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl

having 1 to 10 carbon atoms and alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, -CH=CH- or -C≡C-, and optional hydrogen may be replaced by halogen; Z^5 is a single bond, -CH=CH-, $-C \equiv C-$, -COO-, -OCO- or a group represented by $-W^1-T^1-$; W^1 is a single bond or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH2-, which is not adjacent to each other, may be replaced by -O-, -COO-, -OCO-, -CH=CH- or -C \equiv C-; and T¹ is -O-, -S-, -SiR²₂-, -10 $SiR^{2}_{2}O-$, $-OSiR^{2}_{2}-$, $-OSiR^{2}_{2}O-$, $-SiR^{2}_{2}OSiR^{2}_{2}-$, -CO-, -COO-, -OCO-, -CSO-, -OCS-, -CONR¹⁰-, -NR¹⁰CO-, -CONR¹⁰O-, -ONR¹⁰CO-, $-OCONR^{10}-$, $-NR^{10}CONR^{10}-$, $-NR^{10}COO-$, -OCOO-, $-CH(OH)CH_2-$, - $CH_2CH(OH) -$, -CH=CH-, $-CH_2CR^5=CR^6CH_2-$, $-C\equiv C-$, $-SO_2-$, $-SO_2O-$, $-OSO_2-$, $-SO_2S-$, $-SSO_2-$, $-SO_2NR^7-$, $-NR^{10}SO_2-$, or any one of 15 groups shown below:

above; R¹⁰ is hydrogen, cyclopropyl, cyclobutyl,

5 cyclopentyl, cyclohexyl, cyclohexenyl, alkyl in which the number of carbon atoms is 1 to 10, and optional hydrogen may be replaced by halogen, or phenyl in which optional hydrogen may be replaced by halogen or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms

10 which is a substituent of phenyl, optional -CH₂-, which is not adjacent to each other, may be replaced by -O-,
EB=CH- or -C , and optional hydrogen may be replaced by halogen; R⁵, R⁶ and X² are independently hydrogen, halogen, -CN or alkyl in which the number of carbon atoms is 1 to

10 optional -CH₂-, which is not adjacent to each other,

in the groups related to T^1 , R^2 is the same as described

may be replaced by -O-, and optional hydrogen may be replaced by halogen; G^1 is a trivalent organic group; G^2 is a part of tricarboxylic acid - derivative's residue or a part of tetracarboxylic acid - derivative's residue; R^9 is hydrogen or alkyl having 1 to 5 carbon atoms; q is 1 or 0; r is an integer of 0 to 5; and t is an integer of 1 to 5.

19. The polymer according to claim 18, wherein \mathbb{R}^1 is phenyl in which optional hydrogen may be replaced by fluorine or chlorine.

10

- 20. The polymer according to claim 18, wherein R¹ is phenyl in which optional hydrogen may be replaced by fluorine or chlorine; Q¹ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; and in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine.
- 21. The polymer according to claim 18, wherein R¹ is phenyl in which optional hydrogen may be replaced by fluorine or chlorine; Q¹ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl

having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine; A^1 , A^2 , A^3 and A^4 are independently a single bond, 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4phenylene or a condensed ring group having 6 to 10 carbon atoms which is a divalent group; in these rings, optional hydrogen may be replaced by fluorine, chlorine or alkyl 10 having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z^0 , Z^1 , Z^2 and Z^3 are independently a single bond, -CH=CH-, -C≡C-, -COO-, -OCO-15 or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH2-, which is not adjacent to each other, may be replaced by -O-, -NH-, $-SiR^2_2-$, $-SiR^2_2O-$, - $OSiR^{2}_{2}$ -, $-SiR^{2}_{2}OSiR^{2}_{2}$ -, -COO-, -OCO-, -CH=CH- or -C=C-; R^{2} is halogen, cyclopropyl, cyclobutyl, cyclopentyl, 20 cyclohexyl, alkyl in which the number of carbon atoms is 1 to 10 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH2-, which is not 25 adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z⁵ is a single bond, -CH=CH-, -C≡C-, -COO-, -OCO- or a group represented by $-W^1-T^1$; W^1 is a single bond or alkylene in

$$X^{2}$$

$$X^{2$$

in these groups related to T¹, R¹º is hydrogen, cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 5 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -

 CH_2- , which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine; X^2 is hydrogen, fluorine, chlorine or alkyl in which the number of carbon atoms is 1 to 5, optional -

5 CH₂-, which is not adjacent to each other, may be replaced by -O- and optional hydrogen may be replaced by fluorine; G¹ is a trivalent organic group; G² is a part of tricarboxylic acid - derivative's residue or a part of tetracarboxylic acid - derivative's residue; R9 is hydrogen, methyl or ethyl; q is 1 or 0; r is an integer

of 0 to 5; and t is an integer of 1 to 5.

- 22. The polymer according to claim 21, wherein \mathbb{R}^1 is phenyl.
- 23. The polymer according to claim 21, wherein R¹ is phenyl; Q¹ is cyclopentyl, cyclohexyl, alkyl in which the number of carbon atoms is 1 to 5 and optional hydrogen may be replaced by fluorine, or phenyl in which optional hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbon atoms; and in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine.
- 24. The polymer according to claim 21, wherein R¹ is phenyl; Q¹ is cyclopentyl, cyclohexyl, alkyl having 1 to 5 carbon atoms, or phenyl in which optional hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of phenyl, optional -CH₂-, which is not adjacent to each other, may be replaced by -O-, and

optional hydrogen may be replaced by fluorine; A1, A2, A3 and A4 are independently a single bond or 1,4-phenylene in which optional hydrogen may be replaced by fluorine, chlorine or alkyl having 1 to 5 carbon atoms; in the alkyl having 1 to 5 carbon atoms which is a substituent of 1,4-phenylene, optional -CH2-, which is not adjacent to each other, may be replaced by -O-, and optional hydrogen may be replaced by fluorine; Z^0 , Z^1 , Z^2 and Z^3 are independently a single bond, -COO-, -OCO- or alkylene 10 in which the number of carbon atoms is 1 to 20 and optional -CH2-, which is not adjacent to each other, may be replaced by -0-, -C00- or -0C0-; Z^5 is a single bond, -COO-, -OCO- or a group represented by $-W^1-T^1$; W^1 is a single bond or alkylene in which the number of carbon atoms is 1 to 20 and optional $-CH_2-$, which is not 15 adjacent to each other, may be replaced by -O-, -COO- or -OCO-; and T^1 is -O-, -COO-, -CONR¹⁰-, -NR¹⁰CO-, or any one of groups shown below:

10

in these groups related to T^1 , R^{10} is hydrogen, alkyl having 1 to 5 carbon atoms, or phenyl; X^2 is hydrogen, fluorine or alkyl having 1 to 5 carbon atoms; G^1 is a trivalent organic group; G^2 is a part of tricarboxylic acid - derivative's residue or a part of tetracarboxylic acid - derivative's residue; R^9 is hydrogen, methyl or ethyl; q is 1 or 0; r is an integer of 0 to 5; and t is an integer of 1 to 5.

- 25. The polymer according to claim 24, wherein Q^1 is methyl or phenyl.
- 26. The polymer according to claim 24, wherein Q¹ is methyl or phenyl; A¹, A², A³ and A⁴ are independently a single bond or 1,4-phenylene; Z⁰, Z¹, Z² and Z³ are independently a single bond, -COO-, -OCO- or alkylene in which the number of carbon atoms is 1 to 20 and optional -CH₂-, which is not adjacent to each other, may be

replaced by -O-, -COO- or -OCO-; Z^5 is a single bond, -COO-, -OCO- or a group represented by $-W^1-T^1$; W^1 is a single bond or alkylene in which the number of carbon atoms is 1 to 20 and optional $-CH_2-$, which is not adjacent to each other, may be replaced by -O-, -COO- or -OCO-; and T^1 is -O-, -COO-, -OCO-, $-CONR^{10}-$, $-NR^{10}CO-$, or any one of groups shown below:

- in these groups related to T¹, R¹⁰ is hydrogen or methyl;

 X² is hydrogen or methyl; G¹ is a trivalent organic

 group; G² is a part of tricarboxylic acid derivative's

 residue or a part of tetracarboxylic acid derivative's

 residue; R⁹ is hydrogen, methyl or ethyl; q is 1 or 0; r

 15 is an integer of 0 to 5; and t is an integer of 1 to 5.
 - 27. The polymer according to claim 26, wherein T^1 is -O-, -COO-, -OCO-, -CONR¹⁰-, -NR¹⁰CO-, or any one of groups shown below:

$$-N$$
 G^2 $-G^1$ N R^9 $(CH_2)_0$

15

- 28. A composition comprising the compound as described in claim 1.
- 5 29. A polymer obtained by using at least one of the compounds as described in claim 1.
 - 30. The polymer according to claim 29, obtained by using only the compound as described in claim 1.
- 31. The polymer according to claim 29, obtained by
 10 using at least one of the compounds as described in claim
 1 and at least one of compounds other than the compound
 as described in claim 1.
 - 32. The polymer according to claim 29, wherein the polymer is polyimide, polyamic acid, polyester, an epoxy resin, polyacrylate or polymethcylate.
 - 33. A composition comprising at least one of the polymers as described in claim 29.
 - 34. A coating agent comprising the polymer as described in claim 29.
- 20 35. A varnish composition comprising the polymer as described in claim 29.
 - 36. A thin film formed by using the varnish composition according to claim 35.
- 37. A multilayer thin film formed by using the 25 varnish composition as described in claim 35 and at least one of compositions of other polymers.

- 38. A structural matter, wherein a part or the whole of a structural unit thereof is comprised with at least one of the polymer as described in claim 29.
- 39. A plastic substrate having the thin film as described in claim 36.
 - 40. An optical material having the thin film as described in claim 36.