NASA CONTRACTOR REPORT

NASA CR-2439

EXPERIMENTAL EVALUATION OF STRESSES IN CYLINDRICALLY HOLLOW (DRILLED) BALLS

by L. J. Nypan

Prepared by
CALIFORNIA STATE UNIVERSITY
Northridge, Calif. 91324
for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . AUGUST 1974

				
1. Report No.	2. Government Access	on No.	3. Recipient's Catalog	No.
NASA CR 2439 4. Title and Subtitle			6 De D	
EXPERIMENTAL EVALUATION	M OF STDESSES	ny.	5. Report Date AUGUST 1974	
1		LN }-	6. Performing Organiz	ation Code
CYLINDRICALLY HOLLOW (D.	RILLED) BALLS		o. Forfolding Organiz	ation code
7. Author(s)			8. Performing Organiza	ation Report No.
L. J. Nypan			None	·
			10. Work Unit No.	· · · · · · · · · · · · · · · · · · ·
9. Performing Organization Name and Address				
California State University		<u> </u>	11. Contract or Grant	No
18111 Nordhoff Street			NGL-05-062-	
Northridge, California 91324		<u> -</u>		
12. Sponsoring Agency Name and Address			13. Type of Report an	
National Aeronautics and Space Administration			Contractor R	eport
Washington, D. C. 20546	ramminger actor	1	Sponsoring Agency	Code
Washington, D. C. 20040				
15. Supplementary Notes				
Final Report. Project Manager	r, Harold H. Coe	, Fluid System Com	nponents Divisio	n, NASA
Lewis Research Center, Cleve				,
10. Al				
16. Abstract				Ì
An experimental stress analysi	s was undertaken	to evaluate stresse	s within cylindr	ically hollow
(drilled) bearing balls proportion	oned for 40, 50,	and 60 percent mass	reductions. St	rain gage
rosettes were used to determin				
loaded in various orientations.				
(10,000 lb) loads. Similitude c				
stresses in actual size drilled	bearing balls prop	portioned to these m	ass reductions.	
				1
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
17. Key Words (Suggested by Author(s)) Bearings; Ball bearings; Drille	ed ball;	18. Distribution Statement Unclassified - u	nlimited	
	ed ball;	•	nlimited	
Bearings; Ball bearings; Drille	ed ball;	Unclassified - u	nlimited	
Bearings; Ball bearings; Drille	ed ball;	Unclassified - u	nlimited	
Bearings; Ball bearings; Drille Stress	,	Unclassified - u Category 15		an Print
Bearings; Ball bearings; Drille	20. Security Classif. (c	Unclassified - u Category 15	nlimited 21. No. of Pages 128	22. Price' \$4.75

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

		Page
I. Sumn	nary	1
II. Int	roduction	2
III. Mode	els	3
IV. Ins	trumentation	5
V. Resu	ults and Discussion	7
VI. Con	clusion	10
VII. Refe	erences	11
Appendix Al	Evaluation of Rectangular Cross Section Ring	116
Appendix A2	Curved Beam Stress Calculations for Cylindrically Hollow Balls	120

LIST OF FIGURES

Fig	gure	Page
1.	Model Dimensions	12
2.	Strain Gage Locations	15
3.	Photograph of Models Used	18
4.	Photograph of Model Positioned for Loading	19
5.	Circuit Diagram of Instrumentation	20
6.	Photograph of Apparatus	21
7.	Stresses on 40% Mass Reduction Model	22
8.	Stresses on 50% Mass Reduction Model	45
9.	Stresses on 60% Mass Reduction Model	68
A-1	Ring Dimensions	117
A-2	Strains Measured on Ring	118
A-3	Area Cross Section	123

LIST OF TABLES

Table	Page
1. Strain Gage Locations	91
2. Strain Data, Principal Strains, Principal Stress and Principal Angle for 40% Mass Reduction Model	
 Strain Data, Principal Strains, Principal Stress and Principal Angle for 50% Mass Reduction Model 	
4. Strain Data, Principal Strains, Principal Stress and Principal Angle for 60% Mass Reduction Model	
Al. Strain Measurements on Ring.	119
A2. Curved Beam Stress Calculations and Experimental Stress Values.	124

I. SUMMARY

An experimental stress analysis was undertaken to evaluate stresses within cylindrically hollow (drilled) bearing balls proportioned for 40, 50, and 60% mass reductions. Strain gage rosettes were used to determine principal strains and stresses in the steel ball models statically loaded in various orientations.

Results are reported for 127 mm (5 in) OD balls under 44,500 N (10,000 lb) loads. Similitude considerations permit these results to be applied to calculate stresses in actual size drilled bearing balls proportioned to these mass reductions.

II. INTRODUCTION

Aircraft gas turbine engines currently operate in a speed range of 1.5 to 2 million DN (bearing bore in mm times shaft speed in rpm). It is estimated that engine designs of the next decade will require bearings to operate at DN values of 3 to 4 million. In this DN range, the reduction in bearing fatigue life due to the high centrifugal forces developed between the rolling elements and outer race becomes prohibitive.

To solve the problem of reduced fatigue life in high-speed ball bearings various methods of reducing centrifugal force have been proposed. One of these is to reduce the ball mass by "drilling" a cylindrical hole through them using electrolytic machining techniques. Full-scale bearing tests with cylindrically hollow (drilled) balls have demonstrated that operation at speeds to 3 million DN is possible (1). Fracture of the drilled balls has also been experienced during the operation of the full-scale bearings.

Analysis of these failures and of the effect of changes in ball geometry on high speed bearing operation has been handicapped by the difficulty of application of theory to predict stresses existing in the balls under bearing loads and centrifugal forces.

Strain gage techniques were used to determine the surface stress distribution in drilled balls proportioned for mass reductions of 40, 50, and 60 per cent.

Numbers in parentheses designate references at end of report.

III. MODELS

Actual bearing balls dynamically loaded in a full scale ball bearing would be difficult to instrument for experimental stress analysis. The ball models used in this study were selected for ease of fabrication and instrumentation. They were turned from mild steel bar stock with a radius cutting tool to a 127 mm (5 in 0D) spherical contour, bored to an ID calculated to provide the desired mass reduction of 40, 50, and 60 per cent, and then chamfered as actual bearing balls. Figure 1 gives model dimensions. The mild steel material simplified metal cutting. Its lack of hardness and low value of yield stress were not problems as care was taken to insure that strains were always within the elastic range. The 127 mm (5 in) model size seemed to be compatible with available 1 mm gage length strain gage rosettes and proved easy to position and load in a universal testing machine. TML ZFRA-1 (1 mm gage length) 45° strain gage rosettes were mounted on the models in locations shown in Figure 2.

The rosettes were mounted with one strain gage of each rosette aligned parallel to the axis of the hole or bore of the model. Other strain gages on the rosette backing were then automatically aligned at 45° and 90° to the axis of the hole. A line of rosettes was thus established parallel to the bore axis on the interior and exterior of the model. As the models were symmetric about the ball mid plane perpendicular to the bore only one half of the model was strain gaged. The strain gaged half was repositioned to replace the ungaged half and reloaded to obtain a complete strain distribution. Table 1 gives actual gage locations.

The location of the rosettes relative to the vertically downward compression loads applied to the model is defined by two angles, θ and ϕ .

Theta was taken as an angle of rotation about the axis of the bore of the model from an initial orientation with the line of rosettes directly under the load ($\theta=0^{\circ}$ case). Data was taken at $\theta=0^{\circ}$, 30° , 60° and 90° orientations with the load. Phi was taken as an angle of inclination of the axis of the bore of the model with a horizontal plane imagined through the center of the model. Phi = 0° is the symmetrically loaded case, while $\phi=40^{\circ}$ resulted in the load being applied close to the edge of the hole as may be seen in Figure 4. Data was taken at $\phi=0^{\circ}$, 20° , and 40° orientations with the load.

A 44,500 N (10,000 lb) load was usually required to obtain a response sufficient for accurate measurement in the 40 and 50% mass reduction models. This load was reduced for some of the more highly stressed cases and for the 60% reduction model to maintain model strains within the elastic range. In these cases the applied load was set at a simple fraction of the 44,500 N (10,000 lb) load, for example, 8,900 N (2,000 lb) on the 60% mass reduction model, and the measured strain corrected by this factor in order to have a constant basis for comparison of the response of all three models.

Figure 3 shows the models used, and Figure 4 shows a model positioned in the testing machine. The models were positioned by protractor to lines scribed on the models with a dividing head and height gage. Strains measured were very sensitive to load orientation.

IV. INSTRUMENTATION

A Baldwin-Lima-Hamilton Model 120 strain indicator was used to power a Wheatstone strain gage bridge incorporating a temperature compensating strain gage as one of the bridge arms. The strain indicator scope output jack was used to drive a Mosely 7000 A XY plotter to amplify and record the strain indicator signal. The recorder pen deflection was found to be linear with strain indicator unbalance, and the recorder could be calibrated so that 25.4 mm (1 in) of pen deflection corresponded to 100 micro mm/mm (100 micro in/in) of strain indicator unbalance. With this calibration, the recorder could provide a $\frac{1}{2}$ 190.5 mm ($\frac{1}{2}$ 7.5 in) pen deflection. Standard commercial Baldwin-Lima-Hamilton and Budd switch and balance units were used to switch individual gages of the rosettes to the strain indicator and to provide initial zero adjustment for each gage. As each gage was switched to the strain indicator and the gage unbalance deflected the pen in the "X" direction a record was made by deflecting the pen 2.54 mm (.1 in) in the "Y" direction.

These records could later be read to .25 mm (.01 in) so that the resolution of the recording system was 1 micro mm/mm (1 micro in/in). Successive records of the gage readings while the model was undisturbed in the testing machine at constant load indicated an overall repeatability of $^{\pm}$ 5 micro mm/mm ($^{\pm}$ 5 micro in/in) for the overall instrumentation system under this condition.

When a supposedly identical series of data records were taken on different days discrepancies of $\frac{1}{2}$ 20 micro mm/mm ($\frac{1}{2}$ 20 micro in/in) could occasionally be detected. These were attributed to difficulty in obtaining identical

model-load orientation, and strain gage and adhesive hysteresis effects superimposed on the above switch contact-strain indicator-recorder variations.

Figure 5 is a circuit diagram of the instrumentation. Figure 6 is an overall view of the physical arrangement of the apparatus.

V. RESULTS AND DISCUSSION

Strains read from the recorder charts were used to compute principal strains, stresses and angles, for each rosette. These are given in Tables 2, 3 and 4.

In these tables epsilon A is the axial strain, read from the output of a strain gage mounted parallel to the axis of the nole (bore) in the model. Epsilon B is the strain 45° to epsilon A, and epsilon C is the hoop strain, read from the strain gage mounted at 90° to epsilon A. The data reads from the top down from the outermost rosette, closest to the point of load application inward past the ball center line and on out to the outermost rosette on the other side of the ball, away from the loaded point.

Epsilon 1 and epsilon 2 are the computed principal strains. All strains are given in micro mm/mm (micro in/in) with ε_1 always being the algebraically larger (most positive) of the principal strains. σ_1 and σ_2 are the computed principal stresses in mega Newtons per square meter and kilo pounds per square incn, with σ_1 always the algebraically larger of the principal stresses. Alpha is the angle between ε_Δ and ε_1 .

The stresses of Tables 2, 3 and 4 are plotted in Figures 7, 8 and 9 on an outline of the model with an indication of the location and direction of the load giving rise to these stresses. Exterior strains for the $\theta = 0^{\circ}$, $\phi = 0^{\circ}$ could not be obtained without disturbing the exterior gages by loading over them. This also prevented measurement of strains over half of the ball in the $\theta = 0^{\circ}$, $\phi = 20^{\circ}$, and 40° cases.

The principal stresses were calculated from the measured strains using equations from Dally and Riley. (2)

$$\varepsilon_{1,2} = \frac{1}{2} \left(\varepsilon_{A} + \varepsilon_{C} \right) + \frac{1}{2} \sqrt{\left(\varepsilon_{A} - \varepsilon_{C} \right)^{2} + \left(2\varepsilon_{B} - \varepsilon_{A} - \varepsilon_{C} \right)^{2}}$$
 (1)

$$\sigma_1 = \frac{E}{1 - v^2} \left(\varepsilon_1 + v \varepsilon_2 \right) \tag{2}$$

$$\sigma_2 = \frac{E}{1 - v^2} \qquad (\varepsilon_2 + v\varepsilon_1) \tag{3}$$

with values for modulus of elasticity, E, of 207 X 10^9 N/m² (30 X 10^6 lb/in²) and a Poisson's ratio v of 0.3. A test recalculation of the data with values of 200 X 10^9 N/m² (29 X 10^6 lb/in²) and a 0.28 showed that maximum stresses are reduced by 2 to 5% when these smaller values are used.

In the course of loading the models, strain was observed to be proportional to load. From equations (1), (2), and (3) above, the calculated principal stresses are then proportional to load. As stress = $force/(length)^2$ and all dimensions of a model of specified mass reduction are proportional to model outer diameter, the data in tables 1, 2, and 3 may be used to calculate stresses for similar balls as

$$\frac{Stress_1}{Stress_2} = \frac{Force_1}{Force_2} \times \left(\frac{OD_2}{OD_1}\right)^2$$
 (4)

Examination of the data shows that the models can be very highly stressed by loads applied close to the edge of the hole. While this is not unexpected, the magnitudes of the principal stresses and their signs would seem to indicate that full scale bearings incorporating drilled balls should be designed with special attention to the prevention of edge loading.

The data suggest that the 40% mass reduction ball while having a mass and expected centrifugal loading of .6/.5 = 1.2 times that of the 50% mass

reduction ball, might actually experience lower stresses than the 50% mass reduction ball. At load angles of $\phi=20^{\circ}$ and 0° , the 40% mass reduction model indicated maximum stresses only 58% and 62.5% as high as those of the 50% mass reduction model. The net effect of substituting a 40% mass reduction ball for a 50% mass reduction ball in a bearing then might be to reduce maximum stresses to 69.6% and 75% of the stresses previously existing in the bearing balls.

A similar comparison of the 60% mass reduction model indicates an expected centrifugal force of .4/.5 = .8 times that of the 50% mass reduction ball, but maximum stresses that are 152% and 158% of those in the 50% mass reduction ball with loads at $\phi = 20^{\circ}$ and 0° . The net effect of substituting a 60% mass reduction ball for a 50% mass reduction ball might be to increase maximum stresses to 122% and 127% of the stresses previously existing.

Contact stresses will still be greatest for the 40% mass reduction ball in a high-speed bearing as these stresses are determined largely by the centrifugal force.

VI. CONCLUSION

The stress distribution in cylindrically hollow balls proportioned for mass reductions of 40, 50, and 60 per cent has been determined. Stresses are largest when loads are applied close to the edge of the hole. If cylindrically nollow balls are used in ball bearings it seems advisable to limit load applications to less than 20° from the ball center line. When load applications are held to angles less than 20° a 40% mass reduction ball should experience bending stresses due to centrifugal loading that are 75% of those experienced by a 50% mass reduction ball.

REFERENCES

- 1. Holmes, P. W. Evaluation of Drilled Ball Bearings at DN Values to Three Million, Volumes I and II, NASA CR-2004 and CR-2005, 1972.
- Dally, J. W., and Riley, W. F., Experimental Stress Analysis, McGraw-Hill Book Company, New York, 1965

40% MASS REDUCTION JIMENSIONS mm (IN)

FIG 1a

FIG1b

50% MASS REDUCTION
DIMENSIONS mm (IN)

FIG 1c

PRINCIPAL
60% MASS REDUCTION
DIMENSIONS mm (IN)

FIG2b STRAIN GAGE LOCATION 50% MASS REDUCTIONS

FIG2c STRAIN GAGE LOCATIONS 60% MASS REDUCTION

CIRCUIT DIAGRAM OF INSTRUMENTATION FIG 5

TABLE I STRAIN GAGE LOCATIONS DISTANCE FROM BALL MIDPLANE TO GAGES

40%	MASS	REDUCTION	MODEL

Interior Axial & Gages	45 ⁰	Hoop Gages		Exterior Axial & Gages	45 ⁰	Hoop Gages	
mm	IN	mm	IN	mm	IN	mm	IN
- 6.9	27	-4.6	18	0.0	0.0	2.3	.09
2.3	.09	4.6	.18	11.4	. 45	13.7	.54
11.4	.45	13.7	.54	22.9	.90	25.1	.99
20.6	.81	22.9	.90	34.3	1.35	36.6	1.44
29.8	1.17	32.0	1.26	45.7	1.80	48.0	1.89
38.8	1.53	40.9	1.61				
50% MASS	REDUCT	ION MODEL					
Interior Axial & Gages	45 ⁰	Hoop Gages		Exterior Axial & Gages	45 ⁰	Hoop Gages	
mm	IN	mm	IN	mm	IN	mm	IN
0.0	0.00	2.3	.09	0.0	0.00	2.3	.09
9.7	.38	11.9	. 47	9.9	.39	12.2	.48
19.3	.76	17.0	.67	19.6	.77	21.6	.85
29.0	1.14	26.7	1.05	28.7	1.13	30.8	1.21
				36.8	1.45	39.2	1.54
60% MASS	REDUCT	ION MODEL					
Interior Axial & Gages	45 ⁰	Hoop Gages		Exterior Axial & Gages	45 ⁰	Hoop Gages	
mm	IN	mm	IN	mm	IN	mm	IN
8	03	1.5	.06	.8	.03	3.1	.12
8.1	.32	10.4	.41	15.0	.59	17.0	.68
17.0	.67	19.3	.76	38.7	1.13	31.0	1.22
25.9	1.02	28.3	1.11	40.2	1.58	42.4	1.67
34.8	1.37	37.1	1.46				

TABLE 2a

DATO, BOTTCTBAL STOLING, STOFSSES, AND ARGIE FOR A 4450H W (1904) LEA LOAD ON 127 PM (5 IN) DO AT PROFEST MASS WEDUCTION MODEL INFERIOR

9:0		 —	5°0	~ · · · ·	₫ • ©	-1.3	10.0	π •	₹ • €	0.6			ALPMA	0 F G	1.0	•	•	3. 5.	•	•	•	-1. c.l.		•		a		ċ	•	•	•	•	•	= -		ئ ئ	
0	(/ .x	7	7	1777°	٠٧٠	. 55	- 1	3	2,5	. 15	• 5.G		α -	XS I	1.773	_	Τ.	770.7	-	. 25	۰، ۱	c	۶۲.	0.331		۸.	Z Y	5.	TC CT	4.35	4.75	3.07	. 95	67.	-c. n66	٠ ع	
AMP 1.2	•	4.1	7,9	15.3	32.4.	50.1	C • 7 t	32.4	.2	6.7	4.1		6 I G 4 A	MSDM	12.2	35.1	1.1.4	47.9	۶۱۰۶	\$. \$.	10.	0 • 0	1.7	2•3		SIGMA	S.	6	•	4.	ď		13,	•	-3.9	•	•
-	· ¥	64.	℃	0.41	÷15	* O * E	. 71	2.15	. 4]	4	3		٧	I SY	۲.	7.85	5.12	15.045	2.00	0.57	20.	. 41	ď	α,		~	x	.33	• •	• 45	. 11	.67	2.	.77	7.423	23	\sim
é ∵		α.		_	•	٠,	04.4	٠,		4			S16W	2014	67.0	α	4	104.0	ď	ť	ď	Ġ	α	44.0		SIGM	Z. ∑	147.0	ς.	o	ď	•	o	•	51.5	•	6 ዓ ዓ
C - 1 V	5	٠,	4	- 30	35.	103.	100	" "	C	31.	r		C NUTISCE	30	- 3B.	41.	129.	4 J.	-24.	- 74.	-10-	-86.	-77.	-47.		110	CRO Z	C	7	ξ,	240	-140.	٠ <u>٠</u>	_	-03·	_	- 41.
100 tt 08 1	· \$	77	310.	* 7 C F	44.7	* 7 C C	386.	35.K	327.	310.	~		20118	NICHO W/W	304.	2.7H.	r	433.	O.	343.		X	٧.	S.		FPSTLON 1	K ()	α	-	1	ĩ	343.	C	~	E5d	**	-
) (C)	277.	310.	375	35A.	342.	376.	35A	3/5.	310.	211.	C	FDSILON C	5	304.	37R.	C	432.	J.	343.	302.	7	^ ,	2-7-5	C	FPSIL ON C	TCHO MY	540.	648	5/3.	417	353.	309.	270.	253.	242	216.
11 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15	_	- C - C	- ~ C -	144	.100	294.	244.	-100	144.	122.	100	5 T II	pri	w/. uauln	130.	. J U Z	5	224.	164.	130.	112.	177.	900	۵. • د د د		EPSTLON A	MICEO M/M	300	-23.	.96		. 24	72.	٩2.	r G	o d	• 0 6
	* X * C * U 1 ×	f 1	• • • • •	- 2n.	• .C. fr	* 2	110.	2.5		ਕ ਹ 1	. f.s.	1 45 7 4 11	A MOJISHIA	MICOURAL	.35	4 .		Α.	~	-74.	-10-	• 4a-	-77.		THETA :	FPSTLON A	MICHO W/M	102	-125	_	•	00	0	-110.	, co -	_ 7.T.	-41.

TABLE 2b

DATA, PRINCIPAL STRAINS, STRESSES, AME ANGLE FOR A 44460 M (1000 LB) LOAD ON 127 MM (5 IN) OU 40 PERCENT MASS PERUCIION MODEL INTERIOR

IGMA S ALPHA	1) F	0.014	€ 560°U	0.411 -13	1.050 42	0- 340.0	0.427 -15	1.050 42	3 0.411 -13.1	500°C	c		GMA P	1 DF	0.040	-1.375 -2H.	-1.805 -24.	-2.254 -	-2.064 42.	-1.622 29.	-0.921 -20.	.0- alp.o.	10.35	-0.083 0.		GMA 2 ALPHA	KSI DE	-0.284	-11,460 -3	-9.214 -41.	-6.727 37.	-4.385 27.	-2,425 19.	*] . 70H * 14.	5. c6x.0.	-0.510 2.	-0.115
S	MNSM	•	0.7	A, S	7.0	t.	o. €.	7.8	α• ~	0.7	0.1		IS	MUSM	E*0	•		J.	Ø• ₹ I I	-11.5	•	•		10 t		IS	MSNE	4		-63.5	-	•			-4.1		ar C
	KSI	T	۳.	·	3	•	-	•		44.	α.		MA 1	1sx	1 7	ur.	C	7.944	2.450	7.765	3.107	3.175	3.316	a. 72h		MA 1	I S X	С. •	ហ	•	1.569		2.547	•	3,592		50°6.
SIGMA	えいろう	10.7	16.2	14.0	13.1	1. A. A.	14.8	13.1	14.0	14.2	19.7		SJGMA	2025	۲.	11.0	18.4	20.3	16.0	š	21.4	_		ı,		SIGMA	2 U Z :	7.7-	7.4	α.	11.5	S	~	4	A. 46	ď	27.1
EPSILON 2	/w 0801	. A.V.	-20	-7-	16.	•	-7.	16.	.7.	-20.	• \$\pi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		EPSTLON 2	ICHO M.	0	-69-	- A -	-102	"ცტ -	-77.	・シー	.69-	145.	-40.		EPSILON ?	MICHO MIN	-566-	-347,	-320.	-741.	-170.	-150.	-65.	166.	์ 4.	-43.
FPSTLOW 1	-		77.	£.	π. •	44.	67.	វេ	\$ 6.	77.	95.		FPSTLON 1	-	v.	67.	107.	7	302.	• 65	113.	111.	4	124		STLON	MICGO NIM	વ	13%	134.	123.		114.	136	120.	- 50	132.
O. FDSILON C	Σ	or Co	77.	, 00	33.	•6	?	33,	60	77.	95.	٠٥.	EDSILON C	THO TH	_:	-33	-43	-33,	12.	52.	• ده		114.		.04	PSTLC	MICHO MIM	-500-	-253	-1.0.	-13.	۴.	• 0 a	121.	α	129.	132.
30. PHT =	MICOU MIN	30.	~ ~	44.	î.	37.		ب ب	. 44	73.	٠ ن	30. PHT #	FPCTLON H	MICOU WIN	ų.	-15-	-71.	-47.	.03.	-44.	а. С	1.	٠ د د	40.	# ina .or	PSTLC	MICHO W/W	-120	- 75F-	•01c-	-245	-143.	-74.	77.	* * *		4
THETA = 3	MICHO PIM	# C -	-20-	. 3	3.0°	3.A.	F. 2.	, Y.	۳.	-20	1 7 E	THETA = 3	EPSILON A	MIN Dable	4	, H	۴,	• 6 7	er. 1	-17.	-41.	- 45.	-44	-40.	THETA = 3	EPSTLON A	MICOU MIM	αí	٠,	-77.	-105°	-10H.	• s a •	-7H.	-64-		. F 9 1

TABLE 2c

DATA, PRINCTPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OU 40 PERCENT "ASS PEDUCTION MODEL INTERIOR

	a	် ၁ ၁	٠	•	6	_	-	•	•	(با) •		•		ALPHA	<u>-</u>	0.6	a.	-10.8	10		-10.9	0.0	3.5	c. 0-	o •		ALPHA	OEG	•	3	Œ	-10.9	-	ċ	•	4	ت• ۲ ن	1.5
	۷.	ν ς Η υ	ָ ר	.33	.50	4 C .	44.	46	4.0	3	.33	. n 5		٧.	X.S	35.	.70	A.505	8.359	.850	.054	.77	-5.027	. 73	.46		A 2	S	96.0	1,239	10,197	-8-794	7.231	5.80	4.46	3.84	.52	25.
	SIGM	S S	•	•	44	φ.	-51.4	•		4	6			SIGM	¥	-50.7	60.	~	,		ά	•	-34.7	2	23.		SIGM	MNSM	5			C	•		ċ	26.	*	ហំ
	' 	χ ν υ υ υ	70.	. 73	•56	58	.60	19.	ar ar	•	.73	•		•	KSI	.61	Ç	.53	-0.484	.93	-1.089	.86	e .	æ	e G		Ø	KSI	ق	1,0	03	-1.192	30	-1.354	.97	.91	₩	.0.493
	7 NU IS	v. r	G 173 18	14°0	ŗ	•	•		•	•	•	ď		SIGM	¥VN5	5.4-		۲.	7	4		c	-4.1		•		SIGM	2	2.0-	-7.6	_	1 a . 2	F. 0	£0°3	1.4-	= 4°3	7.91	-3.4
	Q.	MICHO MIM		-406-		U.	4	-245-	5	-211,	40	£.		PSTLON	MICGO MIN	239.	-283	278	-272.	N	-224.	-184.	-150.	-149.	O T		S	ICRO M/	•	4	-330.	-281.	-227.	-180.		-119.	-10A.	-10.
	NO.	/M ORDI	90	30.	46.	Υ	n.	5.5	۶).	£	30.	€		ρ	7	53.	62.		<u>.</u>		34.	• 50	21.	а. •	-		PSI	300	æ	£	£Α.	4	, ,	13.	12.	στ.	£.	·
ć	SILO	1000 M/	-	N	N	ヘ	-242.	V.	ſ.	-210.	\sim	_	20.	EPSILON C	MICHO WIN	239	-276.	-266	-240.	-240.	-215.	-17A.	-158.	-149.	110	• 0	EPSILON C	E 0 ₩2	.352.	_341.	-290	-243.	-194.	-156.	-123.	-111.	-105.	-10-
	FPSTLON H	MICRO M/N	• : c	• # O •	-66-	<u>។</u>	-102.	-100.	. 95.	-66-	-68.	-60.	H THG .0	Epoti on B		-00-		, o.	-167.	52.	•		•	-47.		9. PHJ =	EPCTLON A	•	_	-241.	-250.	727	_	-147.	-17.		~	C
THETA = 60		WICEO W/W	•	B.	4.5°	٠1،	n.	ر د د	ا	45.	2A.	33.	11	FPSTLOM A	MIN ORDIN	٠ ۲		S.	• 0 7	35.	25.	23.	٠٥٥	R.		THETA = 40	STLONA	M/W Cally	4.5	IK	Œ	$\overline{}$	-7-			c c		٠,٠

TABLE 2d

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (1900 LR) LOAD ON 127 MM (5 IN) OO 40 FECENT MASS REDUCTION MODEL INTERIOR

Ω	ئ دا دا	0		ċ	-0-1	ď	٠	•	-n.5		•		ALPHA	1	•	-3.0	•	•	6.9-	•	•	4 • 1	•	•		ALPHA		0.3	•	•	ċ	ċ	è	-	•		•
·	¥	0	58	9.03	96.	9.40	.61	96	C	A.68	33		۵ د	¥	30	A.21	00° W	9.56	9,55	. 42	5.0	•	42.	a a		۷ ک	X	.68	7.55	7.89	143	9.219	.312	R.65	.72	.08	. 4 B
, to	3 3	50.		52	64.	67.		54	N	59.	•		SIGMA	Σ	4.05-		-	63.	65	•	ī.	-64.2	8	•		IGM			-55.1	54.	•	56	57.	6	ċ	n.	-
-	. Y	-0.461	0.83	06	1.01	.16	• 14	.01	6.	(4)	.46		٨	S	32	0.57	.78	1.01	. 11	• 07	.07	ċ	.91	0.63		4	×	.29	0.63	48.0	• 02	1.2	• 15	.1.	1.04	1,03	. 65
0	, Z			•	•				-6.3				SIGM		•	•	•		-7.7	•		16.7	-6.3	•		SIGM		0.6-	•	•	-7.1	-B.6		~			6.5
1 V 0 0 V 0 V	Z Z	740	-281.	202	303	Œ	309	-303.	N	ď	0		PSTLON	2	U.	æ	-289.	r	-307.	-303-	C	-301.	66	V.		PSILON	MICHO M/M		2	25	•	2	£	~	ď	O	4
0.7	10	T T	3	£0.	•09	464	J.B.	60.	C	405	જ પ		PSTLO	MICRO M/M	42°	53 .	63.	**************************************	±.	α. •	40°	61.	62.			PSTLO		57.	54.	51.	47.	40.	. 44		п •		* E
)	C KO K	240	241	O.	30	.	309	6	-262-	ď	4	C	2	100	2	257	I.	Œ	30	3	E	-568-	Š	ſ	C		TCPO M	-220.	2	2	T.	25	25	2	_	œ.	3
and and	MICEO W/W	00-	-104.	-110.	ď	-133.	-124.	-122.	-119.	-104-	• 00	DHT II	EPSTLOM H	AZW OGDIM	- u u	-120.	-145.	-145.	-148.	-170.	• Ω Ω •	- 764	-95.	-100.	o. orr	FPSTLON R	MICOO N/M	.08-	-122.	<u>-</u> 130	-142.	-163.	-17A.	. 22.	-45.	-11-	.00
THETA = 0(MICEO MIN	. T	• 0 h	F.O.	ή. • υψ	я. ф.	X.	ب ں •	40.	o, n	т Т	THETA = 00	ر ا	MICPO M/M	ج ج	٠,	۴٥.	F.7.	, 15 15 15 15 15 15 15 15 15 15 15 15 15 1	52.	ម ម	т С	٠,	е С	σ	EPSTI, ON A	MICHO MIM	57.	بر م	43	37.	٩.	• 6 C	37.	45.	ें दे	٠ ٣ ٢

TABLE 2e

DATA, DRINCTPAL STRAINS, STRESSES, AND ANALE FOR A 44500 N (1000) LR) LOAD ON 127 MM (5 IN) OD 40 PERCENT MASS REDUCTION MODEL EXTERIOR

•uc # 1Hd

• C

THETA =

ALPHA			24°B									ALPHA	946		37.0						37.0	
C AM	I S	0.469	764.6-	-3.168	-4.547	EE6"5-	145.41	-3.162	-2.795	695.0		MA 2	KSI	0.529	-2,316	-2,313	-2.964	-3.63H	-2.964	-2.313	-2.316	0.529
SIGMA	MYSM	3.9	-19.3	-21.8	-31.4	6.04-	-31.4	-21.A	-19.3	6 . €		SIGMA	MSNM	3.6	-16.0	-15.9	4.02-	-25.1	4.02-	-15.9	-16.0	3.6
MA 1	KSI	3.160	-1.191	-0.224	-0.639	-0.967	-0.639	-0.224	-1.191	3.160		SIGMA 1	KSI	2.045	668.0-	a 6.5.0	0.821	1.195	0.821	10°0	-0.899	2.085
SIGMA	N S N N	21.8	۵.	-1. 5.	4.4-	14.7	4.4-	-1.5	- B - 2	٦. ه		91S	かいへい	14.4	-4.2	4.1	5.7	α α	4.1	4.)	7.4-	14.4
EPSILON 2	MICRO M/M	-13.	- H 1 .	-103.	-145.	. משני	-145.	-103.	. [a-	-13.		EDSTLON 2	MICHO WIM	-3.	. 6.A.	-83.	-107.	-133.	-107.	-83.	1 A B .	-3.
FPSTLON 1	MICAO M/M	100	-25	. 7%	24.	. 7.5	24.	24.	-12.	100		EPS11 0M 1	MICAG M/W	64.	-7.	43.	57.	74.	57،	• E 4	-7.	. 44
EPSILON C	MICHO MIM	87.	-64-	-103.	-145.	-188.	-145.	-103.	-64-	R7.	40.	EPSILON C	MIN OHOTH	α \$	-46.	-k3	-107-	-133.	-107	-83.	- 4V	.8c
FPC110" H	MICEO W/M	x	-20.	-44-	- 55.	-14.	*45.	-44.	-50.	œ.	, c	H WOTLE	WINDONIN	-	٠ ٦	-23.	-23.	-35	-23.	-23.	4	
EDSTLON A	W/W OBOIM	c I	-24.	24.	24.	37.	24.	24.	. 56-	٠, ١	THETA	<	MICOO MIN	۳,	50-	43	57.	74.	57.	47.	624	

TAULE 2f

The putrition Storing Storing Storing on 127 km (5 14) OD at the child on 127 km (5 14) OD at the child on 00 Extension

1 1		41.1	39.7	F. 7 E. 2	14.7	?	14.2	23.H	300	7 · ·		Ano IA		30.4	33.6	25.5	10.x	26.5	٦. ٠	a . 08	# °E 4	25.1		AHG 14	oE6	25.x	1. 4	0.4%	τ 	71.0	- *	22.5	₹	2.4
^		, O	17. K45	764.21	7,93	-2.960	-2,934	764.6-	10.E4S	-1.929		<u>ر</u>		200	50	-4,123	.40	•	00.	.67	-2.062	. 1		۸.			•	140.4-		-1,832	.03		-1.589 -	.324
A MARIE CA	- 1 - 1 - 1 - 1	2	-17.5	-18.6	-19.5	-20.5	-19.5	-18.4	-17.5	-12.6		STGMA	MSZM	6.02-	8.12-	4.8%	-23.4	_			114.2			1 BI GM	MNOM		-40,1		-17.8	-12.4	-7.1	_	-11.6	2.2
		TO (£	0.081	ı.	e. 0	n,	·	0.689	ας.		٦ ،			0,555	-0.119	-0.286	105.0	0.020	0.479	0.733	1.596		1 4		1,357	3,293	2,627	1.551	0.932	0.602	0.758	•	1.820
A 1 0 4 4	N W W	ສະ	6.5	¥.°	A.6.	-4.1	g. 6.	0.0	6.5	α •		ST S	E C N N	3.7		C .					٦.	11.0		SIGM	MSNM	4.0	22.7	18.1	10.7	4.4	4.1	5	4.5	12.6
0 NO 21 VOL	10001	69-	-01.	-01.	-84.	.001	• 7α I	-91.	-61	. 69°		FPSTION 2	ICRO M/M		-140.	-136.	-110.	-120.	-67.	-61.	-76.	-12.		F PSILON 2	MICPO M/M	.243.	-227.	-161.	-101.	-10-	-40.	140.	. + 4 .	-7.
E PO T		4.5	47.	• U.E.	٠٥-	ů C	10.	. C.E.	47.	4. •		F PSTI ON 1	_	4 X 4	• 0'U	37.	24.	45.	2	33.	45.	, %		FPSTLON 1	MICHU MIN	117.	168.	124.	17.	* 0 *	30.	35.	47.	57.
. c. a. c. a	2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	139	-36.	-7],	*63*	-06-	* K.3.	-71.	-36.	-18,	• • • •	FPS11 ON C	MICHO MIM	.E.4.	-79.	- 104.	-95-	· 65-	-68.	• • •	٠ ٣	• 0 •	*0*	EDSILON C	MICHO MIM	-1H3.	-105	-113.	.[8]	-46.	-40	-62-	. 4.	V
FOSTION R	`	# # # # # # # # # # # # # # # # # # #	4 f.	14.	-, 4.	- 77 71	115.] 4.	47.	¢5.	# THG •0	FPCTTOME	WICOLW	47.	٠.	.8.	-	25.	-10-	17.	45.	4.5°	# THG .0F	7	W/W CHUIN	77.	153	· - 5	45°		÷	. 54.	* 4 4 °	4 3.
THETE NO. N.		, r	Ţ	1 o •	• •	: :	‡	0.7	T.	٠ ا	THETA = 30	FPSTI ON A	_	1. r.	٥.	'n	¢	17.	-6-	.12	-13.	· c	THFTD = 30	EPSTLOW &	MICHU MIM	1.7.	¢ 2 •	e o a	F.7.	44.	40.	24.	<u>.</u> .	3

TABLE 2g

DATA, POINCIPAL STPAINS, STRESSES, AND ANGLE FOR A 44500 M (10000 LM) LOAD ON 127 MM (5 IN) OD 40 PERCENT MASS VEDUCTION MODEL EXTERIOR

An. PHT =	n. Epsilon c	EPSTLON 1	EPSILON	STGMA		AMBIS.	ر م	AHO
MICEO TAN	•	ICAO M	/w OdoI	N V V S	, Y	MAN	I V X	DEG
نۍ	٠ -	4. F.	*65°	r.r	0.045	S. 5 -	-1,374	42.1
• Մ	51.	. €.	-43.	•	2.314	-4.1	-0.4.60	-30.3
45.	56.	7.2	-24.	•	2.245	7.0-	10.050	2.45-
·.	57.	62.	-10.	•	1.953	1.9	0.275	-15.8
7.	50.	م	\ \ \	•	1.633	5.9	0.424	e. e.
۶.	57.	.29	01-	7.5	1.953	3.9	•	-15.E
•	56.	74.	-24.	•	•	4.0-	. 0.5	-26.2
75.	51.	G	-43.	•	•	-4.1	-0.600	-30.3
٠,	-10.	4 ۶.	- 55	۴.۶	•	-9.5	-1.374	42.1
II L D	20.							
FPSTLOW A	EPSILON C	EPSTLON 1	EPSILON 2	SIGMA		S16 ^A		ALPHA
W/w OnoIn	MICHO MIM	WICHO WIN	-	MSW	IVX	MNSM	KSI	DE6
33.	-37.	34.	- 2 d -	٠ و	0.259	-17.4	7.53	40.0
63.	4	69.	-26.	13.9	2.019	-1.2	-0.176	-24.1
7.	ser.	£.	· 0 -	15.0	2,183	4 .0	0.646	-20.7
33.	51.	E	α.	11.5	1.665	٦.	9	-10.1
13.	4 a	n 0	-6.	10.0	1.57R	2.1	0	•
50°	65.	70.	-10.	15.3	2.216	2.5	0.355	-14.9
71.	۴1.	• س ت	-25.		2.455	10-1	Ξ	•
76.	56.	# *	-43.	14.5	2.410	6.8-	.56	œ.
• 0	12.	, Or	A:	•	1,226	-6-1	ao ar	0.04-
H F H	• 0 4							
FPC1LOM R	FPSILON C	FPSTLON 1	EPSTLON 2	SIGNA	1. A 1	SIG	7. 47	ALPHA
MIN CANTA	•	W/W OCUIM	MICRO M/M	2025	KSI	MNSM		DFG
20.	- Ba-	.50	-132.	4.6-	-0.344	-29.1	4	31.2
ης.	52.	÷	15.	14.7	2.132	7.5	1.083	S
្ត ជ	73.	78.	-21.	16.3	2.362	9.0	0.181	-12.9
317.	78.	74.	-14.	16.P	2.434	2.1	408.0	N .
14.	_የ አ	67.	-14.	14.3	2.070	1.4	•	0
٠.	72.	77.	•	18.1	2.519	7.4	1.167	t
79.	63.	° c a	-36-	19.0	2.617	-2.1	نعا	-27.7
р.Э.	6 4	я 6.		17.8	7.585	-0.1	٠,	ທ
. 4	23,	n n	-28.	•	1,539	-2.b	-0.381	- 34.4

TABLE 2h

DATA+ PRINCIPAL STRAINS, STRESSES+ AND ANGLE FOR A 44500 N (1900 LR) LOAD ON 127 MM (5 IN) OD 40 PEPCENT MASS RFDUCTION MODEL EXTERIOR

AL PHA	빌	•	Ġ		•	•	•	1.3	o.	•		O.	-	ę	•	•	•	•		•	5.1	•		Œ	띰	9	ŝ	ហ	ıÇ.	4	_;	'n	-17.8	÷
م <u>ح</u>	X S I	9	4	45	57	.56	57	0.450	2.4	96		1A 2	X	-0.595	35	. 23	.47	4	.50	,33	1,535	.17		2 4	X	6.	.37	.28	0.05	,16	70.0	15	4.0	47
SIGMA	MYN X	-6.6	•		•	3.9	•	3.1	•	•		SIGMA	MZSZ	•		•		3,1		•		00		SIGMA	MNSM	-6.2	2.6	-2.0	-0.3	-1.1	-0.5	-1.0	-3.2	-10.1
	X	• 19	• 0 •	.40	• 66	.38	.66	3.407	40.	• 19		<4	×	~	9	€.		ស	۲.	4.		0			S	2	.83	.54	96.	•46	.84	.62	2.740	.39
SIGMA	Σ	4.[-	-	•	Š	•	ŝ	23.5	•	•		SIGM	Σ	-		3.	·	74.4	÷	4		c		SIGMA	Σ	_	9	4	÷		9	•	18.9	•
PSILON	2	-30	11.	- 19.		-15.	~	σ	_	-30		PSILON	MICRO M/M	-18.	-15.	-56.	-22.	-21.	-57	-24.	22.	-40-		EPSILON 2	ICRO M	821	-56.	-45.	-41.	-40.	-41,		-43.	-53.
STLON	ICRO	e,	• 6 &	C		107.		C	ď	e es		S	MICHO M/M		8 V.	_	~	114.	σ.	-	83.	14.		EPSTLON 1	MICRO M/W	~*	4	121.	(7)	_	~	σ.	96.	a
0 • ES	RO M	7	80.	Ç	•	07	7	O	9	(*)	C	SILC	5	18	76.	107.	115.	110.	120.	110.	E.	C	C	SILON	TCF	-22-	(7)	100.	118.	107.	122,	_	83,	• SQ.
0. PHJ = EPSTLON H		c.	25.	42.	43.	43.	43.	42.	25.		BHI =	EPSILON A	TCRO M	-10.	'n	25.	74.	25.	61.	64.	47.	13.	# IHd •00	EPSTLON R	MICRO M/M	175	-25.	.	• (; -	• U •	78.	A2.	67.	.96
0 <	MICOUMIN	-4-			-17.	-15	-17.	61.	70.	. 4.	THETA = 0	C	MICRO M/M	01	ម 1		-17.	-17.	-20.	-21.	22.	٠,		EPSTLON A	MICHO M/M	7-		-33	-2B.	-30	. 46-	-30	<u>-30</u>	· c -

TABLE 3a

ODIA: PRINCIPIL STRAIDS, STRESSES, AND ANGLE FUR A 44500 N (10000 LB) LOAD ON 127 MM (5 IN) OD 50 PRYCEN! MASS REDUCTION MODEL INTERIOR

THE TA	II IHA	•0							
EPSILOW A	EPSILON B	EPSILON C	EPSILON 1	EPSILON 2	\$16		SIGMA	1A 2	ALPHA
MICHO AZM	FICKO SYN	MICHO M/M	MICRO M/M	•	NS Z N	¥	MNNM	X	DEG
~ 76-	50¢•	506.	9	-92.	10A.7	5.77	13.6	್	
• + +-	.06%	562.	.295	-44-	124.8	8.0	28.3		
16.	324.	594.	3	72.	140.0	0.2	55.8	N	
ì 4.?•	382.	634.	3	142.	153.8	2.3	75.5	· 0	•
146.	346.	634.	634.	142.	153,8	22.307	75.5	0	1.0
,,,	324.	594.	3	72.	140.0	6.0	56.8	~	
-44	.06%	562.	562.	- 4 4 -	124.8	8.0	28.3		
·26-	- #OZ	500.	$\mathbf{\mathcal{I}}$	-95.	108.7	5.7	13.6	6	•
H AT AH	9. BHI	20 •							
# 20.154#	EPSILON 3	PSILON	EPSILON 1	EPSILUN 2	-	GMA 1	SIGMA	4 V	ALPHA
41C40 4/14	M1040 M/4	HICRO M/M	IC	MICRO M/M	MINON	KSI	MNNM		DEG
¥.	415.	748.	74B.	4	•	5.49		10.166	0.3
140	4 J O +	750.	750.	140.	180.1	.11		12.024	-1.4
• 17.	<	700.	702.	-96-	153.0	~ i	26.1	3,780	2.8
-185-	1/4.	586∙	587.	-141.	_	7.56	•	-0.167	2.3
■]5/€•	414.	543.	543.	-152.	•	6.40		0,350	-1.4
-144	•085		511.	-175.	•	5.11	•	-0.711	-9.5
•13%	I D.H.	484	484.	-136.	•	.52	5 •0	0.294	1.5
-11%	162•	438.	438•	-118.	91.5	13.273	•	0.445	-0.5
THETA =	#] Hd	• 0 •							
EPSTLON A	EPSILON B	EPSILON C	EPSILON 1	EPSILON 2	S16	GMA 1	SIGMA	1A 2	ALPHA
EZE CHÛIE	MICHO M/M	RO M/	2	\	MY NA	KSI	MNSM	KSI	1)EG
-1042.	45°	0	=	-1043.	169,1	6.5	-164.9	3,92	-1.0
-/30	* T.	748.	748.	-7 30.	120.3	7.4	-115.0	-16.674	7.0-
-460.	42.	670.	•019	-468.	120.4	7.4	7.09-	8,81	•
-3/5-	106.	560.	560.	-312.	106.1	5.3	-32.8	in	•
• · 67-	i 30•	• 86 ₹	•664	-291.	93.6	3,5	-32.2	S	•
•, 0.7-	143.	450.	451.	-508-	88.2	12.795	-16.7	-2.454	6.[-
-15.4	124.		43]•	-153.	87.6	2.7	-5.5	47.	•
-120-	132.	388.	388•	-120.	80.0	11.605	e • 0 •	-0.119	0.2

TABLE 3b

DATA+ PRINCIPAL STRAINS+ STRESSES+ AND ANGLE FUR A 445UU N (10000 LM) LOAD ON 127 MM (5 IN) OD 50 PERCENT MASS REDUCTION MODEL INTERIOR

	ALPHA	DEG	10.1	٩.	•	6.04-	•	24.1		•		ALPHA	DEG	-39.8	-41.1	-43.8	31,	28.0	17.5	.5.0	2.1		ALPHA	DFG	-43.6	37,3	-29.3	-19.7	20.1	11.5	₹ 2•3	2°8
	(1)	KS1	S.	1.191	ល	.023	.023	r	₹	9		Λ.	KSI	1.449	1,881	2.470	1.726	1.540	0.445	0,119	0.312		2	X	648.6	3,24	655.	4.004	~	1.59	0.38	0.14
	SIGMA	MNSM	•	я.1	ċ	•	•	•		•		SIGMA	₩SNE	-10.0	= 13.0	-17.0	-11.9	-10.6	-3.1	0.8	2.5		SIGMA	MSSM	-136.8 -	-01,3	-51.4	-27.6	6.42-	-11.0	-2.7	1.0
		KSI		3.447	~	عا		3.309	4	•		1	KS.	3.549	996.	5.484	260.5	7.069	7.045	019.9	5.805		~4	KSI	1.44	-7	7.963	v.C	_	10	'n	8.046
	SIGMA	ところ	ċ	23.8	å	÷	\$	å	е	ċ		S16 ^N	MSSA	4	-7	36.5		u.	48.6	45.6	46.9		SIGMA	MCNI	74.9	74.9	54.9	56.3	57.7	54.7	55.6	55.5
	EPSILON 2	MICRO M/M	-22.	ហ	19.	. 44	• † †	19.	ທ	-25.			MICRO M/M	-84.	-112.	-139.	-118.	-122.	-85.	-62.	-58°		~	Σ		-553	-328.	-215.	-204.	-135.	-46-	-16.
	EPSILON 1	MICHO M/M	140.	103.	. 8.0	8630	58.	45.	103.	140.		EPSILON 1	ICHO M/M								224.		EPSILON 1	\leftarrow	580.	504.	340.	312.	315.	288 ·	273.	267.
• 0	EPSTLUN C	MICHO M/M	3	103.	82.	50.	50.	88.	\circ	135.	20.	EPSILON C	CRO M	ູດ	16.	45.	128.	169.	210.	217.	223.	•0•	EPSILON C	MICHO M/M	-132.	116.	180.	252	254.	271.	272.	266.
30. PHI #		MICHU 3/4	.11.	57.	• 5°C	+ +	• •	• 60	٠/ς	31.	30. PHI =	EPSILON B	MICHO MYM	185	-111.	* * 1 ?	₹05	-06-	-16.	103.	/	30. PHI #	EPSILON A	MICKU M/M	-775.	-534.	<41.	-912	-112.	-6-	1:14•	• 2
THE TA = 3	EPSILOW A	EICHO M/M	-1/.	• (,	34.	٠ ٢٠	5.6.	37.	· .	-11.	THETA H S	EPSICO A A	MICRO MIN	* 7 *	و در	• 1 • 5	. CZ.	-64-	-50.	. 6-	-57.	14ETA # 3	4 7:(MICHAL WAN	. + 4	-169	-150.	• 641-	-143.	-114	• 5 D •	-13.

DATE PATACIPAL STRAINS STRESSES, AND ANGLE FOR A 44300 M (1000) LOAD ON 127 MM (5 IN) OD BE PROCENT MASS REDUCTION MODEL INTERTOR

	ALPHA	0F6	1.6-	•	5.5	1.4	1.4	2.5	•	-9.1		AL PHA	0EG	-13.0	-13.3	13.5	ě	-13.4	-11.7	3.1	-6.5		ALPHA	DEG	ċ	-23.1	٠,	ં	4	-10.4	3. 4	-17.8
	SIGMA	Ϋ́	•		-8.476	•	•					SIGMA	×		α	-10.644	-9.290	ď	-7.179	-6.463	_		5 A	KSI	5.6	4	5.06	9.76	4	55	.51	-2.597
		₹SO¥	-52.0	-57.5	-58.4	-40.8	•			-55.0			MNSM	-80°3	-77.5	-73.4	-64.1	4.09-	-49.5	4	-35.6		SIGMA	W SZ W	-114.7	-96.1	-83.2	-60.4	-48.6	-31.9	-54.6	-17.9
		KSI	0.211	-0.022	0.119	-0.180	-0.180	0.119	220.0-	0.211		۲ ا		.16	0.105	• 05	.31	3	• 19	556	-0.237		SIGMA 1	KSI	æ	0.615	<u>-</u>	Ç	~	-0.390	-0.469	-0.017
	SIGMA	XV NX	1.5	2.01	ar •	-1.2	-1.2	g. C	2.0-	1.5		SIGMA	MSS		•	4.0	-5.1	-1.6	-1.3	-3.9	-1.6			MSSA	3.6	4.2	-0.1	-1.9	-1.0	1.5-	14.6	-0-
	EPSILON 2	MICRO M/M	-253.	-278.	-284.	-292-	-292-	-284.	-278.	-253.		EPSILON 2	MICRO M/M	-360-	-376.	-355.	-307.	-590.	-237.	-210.	-170.		EPSILON 2	MICRO M/M	-560.	-471.	-405	-289.	-233.	-150.	-112.	-86.
	EPSILUN 1	AICRO M/M	82.	83.	8 6	82.	85°	89.	83.	٠ د د		EPSILON 1	MICHO M/M	122.	116.	108.	83•	80.	65.	46.	* 7 *		EPSILON 1	MICHO M/M			20.	T	5.	33.	13.	25.
• 0	EPSILOM C	MICHO MIM	-245.	-275.	-683-	-292-	-292-	-283.	-275	-245.	20.	EPSILON C	MICRO M/M	364	-350-	-330+	-645-	-270.	-225.	-508-	-167.	40.	EPSILON C	HICHO M/M	-473.	-374.	-325.	-234.	-184.	-130·	-112.	-76.
ь⊍. РнІ =	EPSILUN A	MICHU 4/4	-138.	-128.		- 46.	-96-	- H] •	-128.	-138.	BU. PHI	EPSILON B	MICAU MICH	-240-	• 0 + Z -	-18.	-23.	-188.	-140.	-58.	-27.	= IHd .0a	EPSILON B	MICHU M/M	-427.	-363.	• †	, 9.	-145.	-116.	-44.	-63.
THETA = 0	EPSICO + A	MICHO 4/M	74.	·	٠.,٥	• • •	*\%\tau	æ •	·	7 + •	T.4ET. = 0	EPSIL'3N A	MICAU 174	*C.A	9 0	83.	۴.	• 7 0	53.	42.	• [4	THETA = 0	EPSILUM A	F/M CHOIM	97.	61.	4.5	73.	15.	13.	15.	10.

FABLE 3d

-12,726 -13,883 -12,725 -12.096 -14.045 -14.499 -14.499 -12,708 -14.045 -13,883 -13,308 -14.042 -14,035 -14.069 -14.072 -13,772 -13.570 -12.605 -12,382 -12,692 -12,305 X S KS1 KS1 SIGMA 2 SIGMA 2 SIGMA 2 -91.8 -96.8 -95.0 -85.4 -87.7 -95.7 -97.0 -97.0 -87.6 -87.7 -85.2 -84.8 -77.8 8.96-8.96-8.96--100.0 -100.0 7.56--87.7 9.86--86.9 -87.5 -R3.4 MNSM MNSM -1.615 -1.117 -1.617 -1.186 KSI -1.075 -1.213 -1.213 -1.374 -1.429 -1.442 -1.087 -1.306 -1.160 -1.232 -1.409 -1.189 -1.117 -1.220 -1.307 -1.622 SIGMA 1 SIGMA 1 SIGMA 1 0.6-0.6-7.7-18.4 9.6 7.7--8.4 -11.2 6.6ζ. α. 7.5 -7.4 18.0 ر. د. -9.5 4.6--111.1 -11.2 7.6--11:1 MNSM EPSILON 2 MICRO M/M EPSILON 2 MICRO M/M EPSILON 2 -405--411. -413. -467. -424 -453. -455. -396. -431. -441. -407 -413. .044--413. -412. -391. -368. -456. -456. -644--455. -441. FOR A 44500 N (10000 LB) LOAD ON 127 MM (5 IN) OD DATA, PRINCIPAL STRAIMS, STRESSES, AND ANGLE EPSILON 1 EPSILUN 1 MICRO M/M EPSILON 1 50 PERCENT MASS REDUCTION MODEL INTERIOR 90. 88. 84. 93. 100. 91. 93. 93. 97. 87. 63. 66 89. 82. 73. • 86 MICHU M/M EPSILON C MICRO M/M EPSILON C MICHU M/M EPSILUN C -455. -413. -467. -467. -413. -431. -389. * 644--456. -456. -453. -453. -412. -400 -410. -406--393 -405-.644-· (+++--440. -0440 -393. -368. EPSILON B MICHO M/4 THETA = 90. PHI = EPSILUM B MICHU M/M PHI BH.IHd EPSILON B MICHO MIM -1/3. -180. -165. -165. -184. -188· -173. -1/4--179. -113 -174. -140. -138. -2113-·002--143. 151. -105. -103. 122. -501. -712. -178. • 06 906 EPSILON A MICRO MIM MICRO M/M EPSILUM A MICRO 4/M EPSILON A THETA = THETA = • 46 93. 100. . 0 91. · ~ 93. 50 £. .16 .16 π Ť 82. 70. s s 100. • 7 5.

00000 004 W 4

DEG

0 0 0 0 4 ALPHA

3.0

4.0

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD SO PEPCENT MASS RFDUCTION MODEL EXTERIOR

ALPHA	OEG	6.4-	0.0	-1.1	•	-0.1	-1.5	-1.1	0.0	0.4		ALPHA	DEG	-6.0	-1.2	-3.0	-4.2	9.2	-4.2	-3.0	-1.2	-6.0
ر ح	KSI	-0,353	0.046	0.340	0.456	0.719	0.456	0.340	0.046	-0.353		ر م	KSI	-0.712	-1.027	-1.495	-2,303	-3,208	-2,303	-1.495	-1.027	-0.712
SIGMA	XNNX	-2.4	0.3	2,3	3,1	5.0	3,1	2,3	D.0	-2.4		SIGMA	M Z S Z	0.4-	-7.1	-10,3	-15,9	-22.1	-15.9	-10,3	-7.1	6.4.
A 1	KSI	2.925	5.954	7.546	9.544	966.6	8.544	7.546	5.954	2.925		A 1	KSI	1.741	3,985	5.095	5.817	6.808	5.817	5.095	3.985	1.741
SIGMA	MSNM	20.5	41.1	52.0	7A.0	6A.0	5A.9	52.0	41.1	20.5		SIGMA	NS NS	12.0	27.5	35.1	40.1	46.9	40.1	35.1	27.5	12.0
EPSILON 2	MICRO M/M	-41.	-58·	-64.	-70.	-76.	-70-	-64.	. 53.8.	-41.		EPSILON 2	MICHO MIM	-41,	-74.	-101-	-135,	-175.	-135.	-101.	-74.	-41.
EPSILON 1	MICRO M/M	101.	198.	24 P.	280°	324.	. 0 RS	24B.	198.	101.		EPSTI ON 1	MICRO M/M	65.	143.	185	717.	. 652	217.	145.	143.	65.
20. EPSILON C	MICRO M/M	100.	198.	24B.	280.	326.	280.	248.	198.	1001	40.	EPSILON C	MICEO MIM	64.	143.	184.	215.	258.	215.	184.	143.	64.
0. PHT # EPSTLON B	MICHO M/M	42.	70.	9 H O	114.	126.	114.	• &	70.	42.	DHT H	FPSTLON H	MICHO MIN	23.	30.	57.	67.	63.	67.	57.	30.	23.
	MICOO M/M	-40	« « r	-44.	-70.	-76.	-70-	-64.	- A.A.	-40.	THETA =	EPSJLON A	MICDO M/M	-40	-74	-100	-133.	-174	-133	-100	-74-	-40-

TABLE 3f

ALPHA

DEG -38.2 -28.7

X SI

-5.040 -38.0 -4.473 -33.0 -1.329 -1,535 -0.554 -0.526 -0.150 -1,926 -0.625 -0.682 -4.473 -2,260 -0.032 0.542 0.757 0.542 -0.032 -1,535 -0.482 -0.563 -3,433 -1.066 -0.682 -0.292 -0.231 -1,002 -1.361 SIGMA 2 SIGMA 2 SIGMA 2 -10.6 0 m m m o 0 4 m m -1.0 -1.6 -34.7 -30.8 -15.6 -13.3 .3.8 .6.9 7.4--2.0 MNNM XS ZX 2.697 4.129 4.258 4.196 6.472 3,289 3,592 3.592 6.532 5.926 4.235 8.897 5.148 2.425 2.140 4.196 4.258 4.939 3,536 3.092 4.146 4.146 3.402 2.261 6.788 5.609 KS I KSI **KSI** SIGMA 1 SIGMA 1 SIGMA 1 61.3 46.8 22.7 18.6 24.B 28.9 28.6 28.6 44.6 45.0 40.9 23.5 21.3 18.0 16.7 4.62 28.5 29.4 28.9 24.8 20.5 24.4 35.5 14.8 34.1 **ENSW** MUSK EPSILON 2 Micro W/M MICRO M/M EPSILON 2 MICRO M/M EPSILON 2 -87. -257. -65. -43 -54. -16. -43. -65. -87. -80 -77--65 -52. -40. -50 -91 -62. -45. -24. -108. -40. -166. -42 DATA. PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10100 LR) LOAD ON 127 MM (5 IN) OD EPSILON 1 MICRO M/M 229. EPSILON 1 MICRO M/M EPSILON 1 MICRO M/M 50 PERCENT MASS REDUCTION MODEL EXTERIOR 135. 147. 139. 36. 30. 136. 139. 47. 225. 203. .69 144. 119. 116. 109. 347. 271. 206. 132. 109. 98 87. 77. FPSILON C MICRO M/M MTCRO M/M 120. EPSILON C MICRO M/M EPSILON C 98. 146. 118. 126. 112. 128. 130. 48 118. 98. 128. 98. 138. 138. 119. 107. 85. 46 96 86. 67. 16. 30. PHI # EPSILON B MICRO M/M EPSILON A MICHO M/M MICOU MIN II Li EPSILON A PH) 218. 132. 96. 338. 130. 112. 92 60. 92. 112. 130. 204. 174. 132. 80. 73. 178. 96 33.25 906 THETA # 30. MICPO M/M EPSILON A MICHO M/M EPSTLON A EPSILON A MICHO MIM THETA = THETA = 178. -34. -7A. -16. -10--22. -46. -26. -74 4 -16. -16. -16. -16. -40. -33. -72. -74. -69--16. -16. -44.

ALPHA 0E6

KSI

-28.7

-22.5

-1.2

-25.5 -13.3 -13.3 ALPHA

DEG

KSI

-29.1 -22.2 -16.0

-16.9

5.8

-22.8

-13.6

-2.7

-21.5 -10.1

-26.3 -30.1

TABLE 3g

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD 50 PERCENT MASS PEDUCTION MODEL EXTERIOR

	A 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24.5	ď	.	•	•	•	-	œ	•		O.	OE			ò	19.1	9	ċ	ċ	ທໍ	۲.		σ.	30	4	•		•	ċ	9	21.6	÷	œ.
	ν: -	.5	-2.179	3,05	.27	3.41	3.27	.05	2,17	2.51		5 A1	X	3.86	3,63	.43	-3.225	2.07	. 55	.47	.48	6		1A 2	Š	5.07	• 39	3,88	3,35	2.00	3,63	-3,519	• 46	. 11
•	ANSE MNSE	17.	15	1:	22.	23.	22.	1.	15.			SIGM	NSZ	26.	25.	23.	-25.2	14.	4	24.	24.	20.		SIGM	Š	35.	30.	26.	23.	13.	25.	-24.3	23.	21.
	- ×	.31	O.	• 44	• 1 4	90.	• 14	44.	.97	•31		◂	X	5 4	0.26	.17	0.653	.21	• 04	•43	.91	.31		_ A	SI	9.	•36	• 10	00.	.32	.07	0.562	• 06	• 39
	AND IN MANAGEMENT OF THE PROPERTY OF THE PROPE		4.7									SIGM	Σ	•		•	4.0	•	•			•		SIGM	Σ	•	•	•	•	•	•	3.9	•	•
	MICRO MIK	-97.	Œ	9	111	$\overline{}$	111	106	-82·			SIL	ICR	15		116	14	8	Œ	-120.	-125,	13		SILON	ICA	175	15	30	1	80	122	-123.	126	-
; ;	MICRO R/A	69	4.	45.	38.	36.	38.	45.	54.	.69		SILON	ICP		27.	4 0	54.	٠1،	34.	40.		74.		psi	α	71.	56.	42.	34.	64.	39.	54.	70.	74.
	÷ α.	.69	•	-100-	~	_	_	0	-68	•69 -	C	S	T CR	12	~	C	-96-	S	-113.	0	-91,	-73.		S	TCRO M/	13	4	127	_	(ന	-66-	- 8 6	-73.
IHO .	MICRO MIN		28.	U.	-56.	-46.	-56.	• U •	28.		- 0	EPSILON B	MICRO M/M	-60.	- 3B.	5.	22.	47.	-15.	17.	43.	57.	.0. PHI =	EPSILON A	_	4 0.	æ	-00-		-71.	ď	26.	51.	6 29
н .	MICRO MIN	41.	40.	3 00°	37.		37.	30.	4 0.	41.	THETA = 6	EPSTLON A	MICHO M/M	20.	27.	3	36.	3	. 6¢	31.	41.		THETA = 6	EPSTLON A	MICRO M/M	30.	C	Φ		27.			C	33.

TABLE 3h

DATA: PRINCIPAL STRAINS, STRESSES: AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD 50 PEPCENT MASS REDUCTION MODEL EXTERIOR

ALPHA	PE	•	4.0		_	•	•	•	•	•		α.	E	ູທ		-7.9	•	ıç.	•		•	•		σ.	Ę	•	-15.7	4	3.	-	-	e,	ທີ	7.
ر ح	X	3,58	S	6.24	7.01	.33	10.	24	.73	58		1A 2	X	3,55	5,63	-6.426	66.	7.40	8.85	ee.	5.57	3,41		1A 2	X	92	-5,927	68	7.24	69.	.77	•36	.67	.59
MSIS	Σ	4	-36.5	6	8	•		•	6	•		SIGM	NSN		8	4	•	•	•	e	•	6		SIGMA	- 5	-27,1	6.04-	-46.1	6.64-	+53.1	-46.7	G,	-39.1	-24.8
	X	• 06	-0.399	. 52	0.78	.93	.78	52	.39	• 00		MA 1	X	52	0.06	-0.217	• 46	• 69	,34	.13	œ	.28		•	KSI	. A 4	4	.33	.12	.10	.34	• 58	• 79	66.
SIGMA	Σ	4.0-	-2.7	-3.6	-5.4	-6.5	4.4	*3.5	15.7	•		IG	Σ		-	-1.5	•		4.2-	•	•			SIGM	¥NN¥	•	3,3		•	•	•	•	•	•
EPSILON 2	ICRO M/	7	-187.	20	-226.	235	•	-203	~	-119.		PSILC	2	122.	Œ	212	N	24	~	_	Œ	17		PSILON	œ	13	-202-	22	2	5	N	_	-197.	
EPSILON 1	ICRO M/	34.	* 7 *	45.	44.	42.	44.	45.	44.	34.		SILON	MICRO M/M	46.	54.	57.	54.	51.	57.	59.	59.	. 44		EPSILON 1	2	67.	75.	78.	77.	74.	79.	93.	λ 3.	67.
o o	CRO M/	_	-187.	2	2	23	226	2	187]	20.	SILO	5	109.	$\overline{}$	-207	N	-237.	~	C	-183.	-115.	4 0.	EPSILON C	TCRO M/	_	-182.	2	22	2	2	20	1	_
O. PHI H	/M 0431	.53.	-10.	-83.	-46.	-63		1 P 33	0		# IHG •0	EPSILON	MICRO M/M	-85.	-102.	-114.	-126.	-123.	-60.	-48.		0	DH1 H	PCILON	ICAO M/	1	-136.	-146.	-156.	-154.	-15.	•0•	17.	.92
Œ	ICPO	m	44.	45.		N		45	* 7 7	33.	THETA = 9	⋖	MICRO M/M	B.	64	52.	49.	48.	55.	n S		42.	HETA = 9	S	ICHO M/	.a.s.	55.	, 0,	, 64	61.	67.	67.	62.	.64

TABLE 42

DATA: PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LB) LOAD ON 127 MM (5 IN) OD 60 PERCENT MASS REDUCTION MODEL INTERIOR

MICRO M/M - 1	27.20						•	٠ ع	4
	こくに つとうて	EVE CYUIT	MICRO M/M	œ	SZ	X	MNNM	Υ Υ	1 6
	258.	646.	47.	173.	135.2	09.6	4	70	5.5
	300.	4	4	σ	56	9	7.5	90.	-1.4
	388•	S	2	S	77.	5.78	-	60.	6
	540.	S	S	2°	17.	1.53	9	.61	•
	522.	~	-	194.	43.	5.35	ě	. 41	-
	74H.	S	55		17.	1.53		9.61	4
	488.	Q.	~	S	77.	5.78	-	60.	-3.0
	300.	4	4	-191.	56.	2.66	,	0.08	•
	258. •	646.	4	73	35.	09.6	•	0.706	
Š	H IHd	40.							
	EPSILON B	EPSILON C	SI	ILON	16	¥ ¥	SIG	GMA 2	AH PHA
MICAU M/M #	MICHU M/M	MICRO M/M	ICR	ICR	S	KSI	Σ	Y	י ב
	370.	792.	194.	140.	170.9	4.79	C	23	2.6
	.065	1022.	20	CP.	σ	~		3.7	•
	.000	1146.	Ŝ	180.	6	9.70	6	29	
	176.	1098.	105	-171.	ċ	4.74	•	5.28	
	,56,	934•	37	59		7.98	8	46	
	334.	832.	S)	596	•	4.62	0	1.48	•
	270°	748.	4	26	•	2.08	æ	1,25	-
	258.	692.	93	-223.	ò	0.63	6	0.48	-
	236.	• 009	601.	17	•	8.05	•	.11	-
ɔ̈́	n Iri	• 0							
∢	EPSILON A	EPSILON C	SILON	EPSILON 2	W91S	⋖	16	MA 2	Q.
4 L/E	MICHU M/M	ICE	ICR	CRO M/	Σ	X	Σ	X	w
	-36-	3190.		Ð	•	3.31	157.	2.81	6.6
	-330.	1835.	879	174	æ	4.70	8	38,91	•
	-041	1260.	569	9	•	1.36	154.	2.36	•
	225.	1065.	990	-686.	ı,	8.35	83.	12.06	•
	170.	895.	Q.	-481.	0	4.78	48	66.9	•
	261.	795.	97	-371 .	5	2.60	30.	4.34	•
	74p•	•669	0	-287.	Φ	20.261	-	2.5	ċ
	225.	618.	-	-520.	ş.	8.22	7	1.12	-
	-88	504.	C	4	c	70		0	•

TABLE 4b

DATA+ PRINCIPAL STRAIMS+ STRESSES+ AND ANGLE FOR A 44500 N (10000 LM) LOAD ON 127 MM (5 IN) OD 60 PEPCEMI MASS REDUCTION MODEL INTERIOR

ı	a.		•	•	_	7	4	•		7.5	•		Q.	DE	38	-37.5	• 0 •	2	Ġ	6	•	•	•		Œ	DE	27.	0	•	•	<u>.</u>	۲.	0.6-	ċ	•
	ر ا	S	• 59	0.12	.73	•61	.58	.61	.73	0	.59		A 2	S	5.09	-5.492	5.77	4,95	3.37	.20	1.19	96.0	0.60		A 2	S	31,72	26,76	60.6	12,13	7.21	4.61	-2.481	1,15	0.47
	•	Σ	4	•	'n		ċ		ທ	8.0-	•		SIGM	S	35.	-37.9	39.	34.	23.	15.	•	9	4.		SIGM	SZZ	218.	84	131	83.	64	31.	-17.1	œ	9
	۱ .	S	. 12	.60	,36	•31	.40	.31	.36	9	.12		đ	S	•60	3,778	64.	.60	•23	.26	•31	52	• 66		MA 1	X	.61	53	.02	.70	.31	• 1 1	9.156	٠ 4	34
		S	ě.	œ	•	~	•	Ĉ	•	•	42.2		SIGM	S	α.	26.0	-	-	Ġ	ċ		œ	•		9	Σ	•	•	ċ	o	ë	ò	63.2	Ġ	4
	ILON	ICRO M/	8	0	19	_	S.		19	0	-81.		PSILON	ũ	19	-221.	237	211	155	14	123	118	107		PSILON	3	106	897	•	462	304	245	-174.	3	0
	110	ICRO M/	=	188.	3	. 46	64.	94.	3	88	210.		PSILU	$\boldsymbol{\mathbf{x}}$	(4)	181.	0	0		Ð	30	ው	295.		PSILU	T.	338.	œ	O.	~	T)	ur)	330.	(*)	~
•	I CS	ICRO M/	σ	184.	38	30	0	88.	38	84	197.	_	2	ICHO M/	.5	72	4	_	4	20	∞	46		+0.	PSILON	\propto	16	426	0.7	_	7.0	O.	3)8.	™	~
30. PHI #	EPSILON B	MICHO M/M	• 4	34.	63.	æ/	63.	78.	63.	38.	4	u. PH] "	EPSILON A	MICRO M/M	-192.	-514.	-234.	-612-	-135	186.	128.	жO.	50•	30. PHI #	EPSILON H	•	• 68.6	_A85_	-660	-414.	-207.	222.	156.	102.	81.
	EPSICON A	MICKU M/M	-64.	. 5.7	-13.	27.	in W	2/•	7.	* 5.5°	. 63	THETA # 30	EPSILON A	MICRU MIM	.	32.	24.	-56.	-14.	-102.	-114.	-113.	-104-	THETA H	EPSILON A	`	36.	-185	-792-	-261.	-429.	-197-	-162.	-135.	•10H•

TABLE 4c

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LB) LOAD ON 127 MM (5 IN) OD 60 PERCENT MASS REDUCTION MODEL INTERIOR

4 4 4	DEG	-11.4		ŝ	2			S.		-11.4		AL PHA	DEG	7.6-	0.6-		-7.3	•	1.5	•		•		ALPHA	w	.6	6	•	ċ	9	•	2	15.	œ
α Σ	X X	0.61	2.89	4.37	5,76	5,95	5.76	4.3	2.49	61		ر A1	X	5,38	-17,161	7.37	7.29	5,73	3.68	1.47	9.5	53		1A 2	S:	21,08	2.80	20.66	18,62	15.67	11,09	-8,220	5,99	.07
-	Σ	-73.2	Œ	66	œ	1.0	9	66	8	_		SIGM	Σ	\$	-118,3	·	ċ	an.	•	÷	.0	•		SIGM	Σ	'n	7	ċ	•	.	•	7.95-	1:	•
GMA 1	S.	• 35	0.68	0.83	₹ 2.	1.09	1.24	Œ	0.68	.35		Μ 1	ΑS	.47	-0.668	0.88	• 55	1.67	.57	•29	• A5	• 16		GMA 1	KSI	0.77	.74	1,96	2.58	2.58	2.05	-1,551	69.0	C)
•	Σ	-2.5	•	'n	•	۲.	ά	5	•	•		16	-	_	-4.6	-	_	_	_	_	_	-1		\vdash	Σ	ŝ	ċ	3	7	7	6	-10.7	4	1.5
SI	CRO M/	-350.	N.	~	-	52	13	7	53	20		PSILON	MICRO M/M	O	-565-	~	56	0	4	~	0	4		ILON	1	6	4	•	O.	G.	S	-258,	13	(4)
EPSILON	ICE	• 46	90	-	1,5	2		•	0	94.		SIL	ICE	S)	149.	4 4	~	20	4	72.	_	~		PSILON	3	85.	170.	4	00	_	4	30.	^	48.
O. EPSILOW C	CRU M	-333.	4	.0	_	Δ.	_	.0	$\overline{}$		20.	EPSILON C	MICRO M/M	-490	-548.	-555	-550	-504.	• 0 * * -	-368.	-300-	-216.	•0•		MICRO M/M	-672.	-720.	-639-	-573.	-489.	-345-	-258.	-177.	•96-
60. PHI =	CHO MY	-214.	-427.	~	-225-	-177	-525-	-231.	\sim	-214.	60. PHI =	EPSILON B	MICRO M/M	-262-	-318.	-326.	-306-	-250.	-164.	-176.	-178.	-1/5.	eu. PHI =	EPSILOW B	M/M OFC	-346-					-1111.	-126.	-136.	-123.
THETA = 6 EPSILON A	MICHU M/M		• 16		115.	123.	115.			77.	THETA = 6	EPSILON A	MICRO MIN	120.	132.	120.	110.	• "KO	84.	70.	ري بدي	• > +	THETA = 6	EPSILUM A	MICRO M/M	16%	141.	111.	70.	63.	34.	3.4.	• " ~	e •

DATA, PRINCIPAL STRAIMS, STRESSES, AND ANGLE FOR a 44500 N (10000 LH) LOAD ON 127 MM (5 IN) OD BO PERCENT MASS REDUCTION MODEL INTERIOR

	ALPHA	w	-1.9	•	-1.4	•	•	-1.3	•	•	-1.9		ALPHA	DE	•	-1.0		•			٠		•		ALPHA	nEG	•	4.0-	•	•		•	-0.6	-	2.4-
	1A 2	KSI	34	34	96.	19	61	-21.676	96	34	-15,343		1A 2	X	14.81	-17,781	19,38	21.08	21,16	21,51	20.09	8,70	12,68		1A 2	KSI	9	8	\exists	Ξ	3	9	-18,921	7	\overline{z}
	SIGMA	MNSM	-105.8	-126.5	-137.7		4	-	•	-126.5	-105.8		SIGM	NS.	02.	-122,6	33,	45.	46.	48.	•	29.	7		SIGM	~			•		•	_	-130,5	_	_
	4A 1	S.	.47	•64	06.	.51	.31	.51	.90	5.	4.		∢	¥	0.36	0.6	0.84	1.54	.37	.71	• 16	. 92	5		MA 1	¥	•17	.47	00.	• 58	.82	₽. A.4	-1.264	66.	+77.0-
	N 2 SIGMA	MNSM	-3.8	4.4-	14.N	-10.4	-9.1	-10.4	2.41	7.7-	-3.2		SIGM	MNSA	ις. (1)	-4.5	8°5"	-10.6	5.6	-11.8	C . & .	16.4	3.5		N 2 SIGMA	¥S.Z.E.	-1·2	#3.3	6.9-	-11.6	-12.6	-12.7	-8.7	J. C.	-5.3
	SILO		07.	605.	657.	07.	707.	07.	57.	9.	07.		NC J	1	4	- 586.	Ð	-688	-692.	-1007-	-658.	-614.	-458.		EPSILON 2	MICRO M/M	468.	58,	04.	47.	49.	57.	-618.	82.	φ.
	2	CRO M	3	9	-	9	~	166.	~	62	~)		PSILUN	MICHO M/M	136.	156.	166.	О	9	20	162.	9	144.		a.	\circ	135.	153.	151.	143.	139.	141.	147.	144.	123.
0•	EPSILON C	ICHO M∕	-50¢-	-605-	-656.	-707-	-707-	-707-	-656-	-605-	<u>-508-</u>	₹ 0 •	SILON	MICHO MIM	- 064-	- 586.	-636.	-686.	•069-	-7007-	-658.	_	-416.	40.	EPSILON C	MICHU M/M	-468.	-558	-603.	-645.	-648-	-657.	-618.		- t H5.
= IHd •06	EPSILON B	MICHU M/M	->06.	-238-	-564.	•0401	- 488-	•062-	-505-	-232.	-200-	U. PHI II	EPSILOW B	MICHO MIN	-186.	-828-	-413-	-300	-303.	-272.	-756.	-245-	-224.	. PHI =	EPSILON A	WICHO W/W	-159.	- / n / -	· 5.4.7-	- 160-	* 12 12 12 1	・ハサイー	· 543.	-/3/·	-828-
THETA = 9(EPSILON A	MICKO 474	13/.	162.	169.	166.	172.	165.	167.	- 29 T	137.	THETA = 90	EPSILUM A	MICRU 47M	135.	150.	164.	150	164.	158·	164	150.	134.	THETA = 90	EPSILON A	MICHO M/M	135.	15.3	.50.	141.	1 3.5.	141.	141.	• + + 1	- c 2 -

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD 60 PERCENT MASS PEDUCTION MODEL EXTERIOR

_	Ha .								•
EPSILON A	FPSILON A	EPSILON C	FPS1LON 1	EPSILON 2	SIS	SIGMA 1	SIG	SIGMA 2	ALPHA
	MICRO M/M	MICHO MIM	MICRO W/M	MICRO M/M	X S S S	KSI	MNNM	KSI	nEG
. 8	4-	56.		-18.	11.6	1.676	£ 0 =	-0.047	3.8
-116.	-130	-316	• 40-	-34B.	-42.B	-6.213	184.8	-12,301	20.3
-150.	-16P	-490	-62.	-548	.58.3	-8,452	-130,8	-14,977	20.9
-162.	-234.	-638	-110.	-690	-72.0	-10.447	-164.4	-23,839	17.4
150,	4.4	-490	-05	- F4B.	.5A.3	-8.452	-130.8	-18,977	20.9
-116.	906	-316.	40.1	-348	147.8	-6.213	8.48.	-12,301	20.3
9 1	14.	.96	n T	-18.	11.6	1.676	-0.3	-0.047	æ • m
THFTA = 0	0. PHT #	• 0 4							
٧	ď	FPSIL ON C	EPSILON 1	EPSILON 2	SIG	SIGMA 1	SIG	SIGMA 2	ALPHA
MIN COLLE	MAT COULT	MICRO MIN	MICRO W/W	MICRO M/M	N N N	KSI	MSNE	ISX	DEG
		0. 4 0. 4	40	-16.	10.0	1.454	-0.3	040-0-	4.7
-124	-87.	25.5	- X	-111.		-5,314	-75,3	-10.929	28.7
		000	.65	-547.		-7.450	-128.6	-19,650	33.5
- 100	, d	531.	-72	-786.	70.0	-10,150	-183.6	-26,622	36.7
	• c	399	-42	-547		-7.450	-128,6	-18,650	33,5
124	- C	255	69	-311.	-36.6	-5,314	-75,3	-10,929	28,7
	, a	. €	•64	-16.	10.0	1.454	-0 -3	-0.040	6.7

TABLE 4f

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LB) LOAD ON 127 MM (5 IN) OO SO PERCENT MASS REDUCTION MODEL EXTFRIOR

O.	DEG	ċ	•	•		_	Ģ	39.6		ALPHA	OFG	•		34.1	9	-		ç		ALG	OFG	-7.2	4	4	_		2	•
× 4 €	¥	r.	8.4	•	a.	0.3	4			4A 2	X	4.5	1.3	~	9.0	6.8	6.7	1.9		4A 2	X	12.52	22,685	6.88	1,70	-5,681	6.23	90.
SIGMA	S	•	8	-	ď	_	00			SIGMA	- 3	•		-78.2						S16N	MNSM	4.86.4		•		-39.2	•	-7.4
6MA 1	X	• 62	66.	-1.456	53	.45	66				X	æ	9	-1.256	0	6	4.	•			X	04.	.29	.23	.36	-3,233	.13	4.410
	Σ	11.2	ŝ	ċ	4	ċ	•			SIGMA	MNSW	-19.4		a.	•	6	-3.1	•		SIGMA	~	.51.0	_	_	_	-22.3	_	30.4
SILO	ICR	-102.	271	31	47	E	-271.	0		SILON	ICA	2	Œ	-366.	4	4	2	C		PSILON	MICHO M/M	-343	-R29.	-575-	-377.	-157,	-196.	-80.
	MICRO M/M	• 0 a	51.		-35.	55.	n.	A 0 A		Z	MICRO M/M	-47.	136.	72.	4 0.	-55	59.	140.		EPSILON 1	MICRO M/M	-122,	470.	21 r.	72.	-51.	. \$0	158.
• SILO	$\overline{}$	٠,	S	Q.	4	n.	-158.	•	C	EPSIL'ON C	7	1	-194.	-228.	-228.	-200-	-128,		C	ILON	1 C.	_340.	•	Th	an.	C	-96-	72.
30. PHI #		-100.	44.	34.	-114.	34.	**	-100-	H IHO OF	EPSILON	MICRO M/M	-112.	126.	56.	24.	-36.	n4.	-96-	O. PHI	EPSILON A	MICRO M/M	-260	47n.	210.	20.	-51.	. 4%	-75.
THETA = 3 EPSILON A	MICHO M/M	-28.	-62.	. 57.0 •	- 3B	- no	-42	-58-		EPSTLON A	WICEO M/M		- 54.	-46.	-16.	-86.	-54.	-16.	(F)	EPSILON A	MICRO M/M	-125.		^	\sim	-102.	-16.	ę.

TABLE 4g

DATA, PRINCIPAL STRAINS, STRESSES, AND ANGLE FOR 4 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD 60 PERCENT MASS REDUCTION MODEL EXTERIOR

	ALPHA	ū	44.3	9	•	6		9	4		ALPHA	ш	-33,2	\$	9	ċ		4	7.		ALPHA	w	•	•	č	6	-16.1	ċ	ċ
	~	S	44.	.58		.42	.32	.58	44		٦.	×	.42	.01	O	.27	96.	90.	.80		2	KSI	٥ú.	.17	12	٠ ع	3,705	.01	.31
	SIGMA	Σ	-16.8		n,	~	•	•	•		SIGMA	Σ	•	•	27.0	ς.	•		•		SIGMA	Σ	'n.		æ	ď	25,5	•	•
		X	. R6	69.	7.687	.58	• 68	69.	.86			×	. 45	• 75		.24	.26	9.	• 62		MA 1		.07	.40	0.78	.95	8.123	.21	• 68
	SIGMA	Ĭ	10.8	÷	43.0	•	•	ċ	ō		SIGMA	*	3.1	ŝ		•	ċ	4	•		16	Σ		•	4	ŝ	S	ċ	•
	U:	•	110,	-14.	34.	, 85°	34.	-14.	-110.		PSILON	MICRO M/M	•	33,	47.	17.	-41.	23.	40.		PSILON	MICRO M/M	-	65	30.	-	42.	-38.	-144.
	P.S.T	a	120.	C	æ	r.	v	C	٧.		O.	MICRO M/M	(a)	0	~	~		6	250.		PSILON	C	54.	C	_	•	234.	•	4
· c	PSILON	MICRO MIM		£	220.	4	2	•	œ.	20.	SILON	MICHO MIM	-48	Œ	238.	4	N	9	*	C	S	TCRO M	108	204	16	79	219.	•	Œ
n. PHI =	EPCILON R	MICEO M/M	-110.	185.	152.	•00	152.	184.	-110.	# IHd *0	EPSTI ON	MICRO M/M	A.O.	Œ	130.	£	212.	α	118.	n Ind	FPCTI ON P	M/W CGULT	4	123	12.	4.0	189	213.	-141.
_	٩			30.	37.	40.	37.	30.		THETA = 60	A NO.	Σ			4 A .	46.		220.	246.	THETA = 60	٧	N/N COULT			72.	4.00	5.7.	30.	R.

14.855 KSI 1,922 11,395 16.124 13.785 16.528 18.754 10.280 14.855 11,395 KSI 1,321 2.522 1.922 1,563 14,431 SIGMA 1 SIGMA 1 SIGMA 1 MNSM 13.3 4.60 78.6 86.3 1111.2 1120.3 08.1 75.4 0.45. 07.4 13.3 9,1 99.5 70.9 10.8 95.0 MSNM EPSILON 2 MICRO M/M -33. EPSILON 2 MICRO M/M EPSILON 2 MICRO M/M 18. 73. 72. 0 8 4 0 8 4 -23. -11. 112. 98 DATA. PRINCTPAL STRAINS, STRESSES, AND ANGLE FOR A 44500 N (10000 LR) LOAD ON 127 MM (5 IN) OD EPSTLON 1 MICRO M/M EPSILON 1 MICPO M/M EPSILON 1 MICRO M/M SO PERCENT MASS REDUCTION MODEL EXTERIOR 68. 325. 429. 451. 429. 325. 371. 478. 508. 408 286. 42 428. 508. 578. EPSILON C MTCRO M/M 12. 305. EPSILON C MICRO M/M 18. EPSILON C MICRO M/M 30 401. 401. 305. 12. 304 404 446 404. 286. 300. 378 435 396 FPSTLON R MICRO M/M -33. EPSTLON B PHT H EPSTLON B MICRO M/M D I Ha 127. 94. 156. 60. 156. c. 64. 42. 216. 188. 72. C. 27. 33. 90 90 00 EPSTLON A EPSTLON A MICHO MIM EPSTLON A MICPO M/M THETA # THETA = THETA # 96. 112. 25 30° 126. ر. در ه 102 102. 101 6 4 102 101 9,4 126.

ALPHA DEG

KS I

0,393 4.620 5.990

26.3 21.3

42.7 **6.** 4

7.255 5.663 -0.941

ALPHA

0.0 0.0 31.9

1,009 3.444 4.915 5,288 7.628 5.386

IS.

30.5 29.0

-15.4 -44.3

0.943

3.611

-105.

39R. 311.

25.0

114. A7.

2.068

ALPHA

6.844

6.560 5.448

0.422

-0.422 5.448 6.660

X S I

A cylindrical steel ring was fabricated and strain gaged with two Micro-Measurements type EA 06-125 BB-120 gages (0.125 inch gage length) mounted with Eastman 910 cement along and perpendicular to the ring axis. Diametrically opposite to these gages a TML ZFRA-1 strain gage rosette (1 mm gage length) was mounted with a polyester cement. Ring dimensions are shown in figure A-1.

The cylindrical ring model was subjected to 7,000 lb. compressive loads with the gages vertically under the load, and oriented at 30° , 60° , and 90° to the line of the load. Strain measurements were made in a succession of these tests. A Budd model P-350 strain indicator and a Baldwin model 120-B strain indicator were used in tests on successive days. The average of the MM and TML strain measurements are plotted in figure A-2. The TML and MM gages gave substantially identical results. The strain indicators differed significantly only in the 30° measurement, which might be accounted for by a 2-1/4 degree difference in alignment of the ring in the two tests. Data values measured are given in Table A-1.

Ripperger and Davids in "Critical Stresses in a Circular Ring" Trans ASCE Vol. 112 pp 619-628, 1947, give a theory of elasticity solution for a ring of these proportions. Strains calculated from their result for a modulus of 203.5 x 109 N/m² (29.5 x 10^6 lb/in²) are +992 x 10^{-6} M/M at $\beta = 0^{\circ}$, and -776 x 10^{-6} M/M at $\beta = 90^{\circ}$.

TABLE A-1
STRAIN MEASUREMENTS ON RING MICRO M/M

Angle to Vertical	Maximum MM Strai Budd E			mum Strain Strain Gage Baldwin
90 ⁰	-785	- 772	-793	-786
60 ⁰	-539	-535	-556	-532
30 ⁰	+191	+134	+187	+138
00	+982	+986	+998	+992

It may be convenient to consider a closed form solution to estimate stresses in a wide range of ball hollowness proportions. Using the formulations and notations of Timoshenho, "Strength of Materials," Part I, 3rd edition, Van Nostrand, New York, 1956.

Bending stresses are given by:

$$\sigma_{A} = \frac{M(h_{1} - e)}{Aer_{1}}, \quad \sigma_{B} = \frac{-M(h_{2} + e)}{Aer_{2}}$$
(A1)

where

 $\sigma_{\Delta}\text{, }\sigma_{\mathrm{B}}\text{ = stress at inner and outer surfaces}$

M = bending moment

 h_1 , h_2 = distance from centroid of cross section to inner and outer surfaces

A = cross section area

 r_1, r_2 = radii of curvature of inner and outer surfaces

$$e = \overline{r} \frac{m}{m+1}$$

 \overline{r} = radius of curvature of centroidal axis

m = cross section area constant

For each cross section the quantity m must be evaluated by performing an integration

$$mA = \int_{\Lambda} \frac{y dA}{r - y}$$
 (A2)

From Figure A3 this integral may be written

$$mA = \int_{r_1}^{r_2} (\vec{r}_{-v}) \frac{dA}{v} = \vec{r} \int_{r_1}^{r_2} 2\sqrt{\frac{r_2^2 - v^2}{v}} dv - A$$
 (A3)

and

$$m = \frac{\overline{r}}{A} \begin{bmatrix} r_2 \\ r_1 \end{bmatrix} - 1 \quad d_V \end{bmatrix} - 1 \tag{A4}$$

for the cross section of a cylindrically hollow ball. The integral form indicated may be found in a table of integrals and evaluated at r_1 and r_2 to obtain

$$m = \frac{\overline{r}}{A} - 2r_2 \left[\ln \left(\frac{1 + \sqrt{1 - \left(\frac{r_1}{r_2} \right)^2}}{\frac{r_1}{r_2}} \right) - \sqrt{1 - \left(\frac{r_1}{r_2} \right)^2} \right] - 1 \quad (A5)$$

Timoshenho gives the bending moment in a ring due to a vertical point load as

$$M = \frac{P\overline{r}}{2} \left(\cos \beta - \frac{2}{\pi} \right) \tag{A6}$$

where β is the angle from the horizontal, so that the angle beta is 90° -9 as used in the report body. P is the vertical load. In addition to the bending stresses given by equation Al, direct stress P/A also acts on the 9 = 90° cross section.

These equations have been programmed to calculate the stresses in the drilled balls. Results are shown in Table A2. The calculated values may be compared with measured values from Tables 2, 3 and 4 of this report.

Comparison of measured values with calculated values indicates that values measured with strain gage rosettes may be 24 to 41% higher than values calculated from curved beam theory for models proportioned for mass reductions of 40 to 60%. It would seem that the above theory is not an accurate predictor of measured stress values. It may still be useful for comparative studies.

TABLE A2

CURVED BEAM STRESS CALCULATIONS

AND EXPERIMENTAL STRESS VALUES

T IOR KSI		-9.803	-14.499	-21.676	
MEASURED STRESS AT θ = 90° INTERIOR MNSM K [°]		-67.5	6*66-	-149.4	
S (SI		13.945 -67.5	22.307 -99.9	35.356 -149.4	
MEASURED STRESS AT $\theta = 0$ INTERIOR MNSM K		1.96	7.813 153.8	243.7	
	2,553	4.469	7.813	14.196	28.225
AT θ = 5 EXTERIC MNSM	-17.60	30,81	53,86	97.87	194.5 28.222
:D STRESS KSI	-5.666 -17.60	-7.821	-11.292	-17.428	-29.939
CALCULATED STRESS AT θ = 90 ⁰ INTERIOR EXTERIOR MNSM KSI MNSM KS	-5.810 -39.06	-53,92	-16.123 -77.85 -11.292	-120.1	-206.4
0° KSI	-5.810	-9.629	-16.123	194.86 -28.261 -120.1 -17.428	375.34 -54.439 -206.4 -29.939
S AT 0 = 0 ⁰ EXTERIOR MNSM KSI	7.020 -40.06	-66.38	-111.17	-194.86	-375.34
ED STRES	7.020	10.353	15.779	25.517	315.27 45.726 -
CALCULATED STRESS A INTERIOR EX MNSM KSI MA	48.40	71.38	108.79	175.93	315.27
MASS REDUCTION	30	40	20	09	70