

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transient Solution

Embedded MC of a CTMC

Classification of States

Steady State

Semi-Markov Process

Finite Absorbing

Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern Universitat Politècnica de Catalunya Departament d'Arquitectura de Computadors llorenc@ac.upc.edu

Parts

- Introduction
- Discrete Time Markov Chains (DTMC)
- Continuous Time Markov Chains (CTMC)
- Queuing Theory

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Continuous Time Markov Chains (CTMC)

Part III

Continuous Time Markov Chains (CTMC)

Outline

- Definition of a CTMC
- Transient Solution
- Embedded MC of a CTMC
- Classification of States

- Steady State
- Semi-Markov Process
- Finite Absorbing Chains

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

State Transition
Diagram
Sojourn Time
Exponential Jumps
Description of a CTMC

Transier Solution

Embedded M of a CTMC

Classification of States

Steady Sta

Semi-Marko Process

Finite

Properties of a continuous time MC

- The states must be a numerable set.
- Let *X*(*t*) be the event {at time *t* the system is in state *i*}, then it must hold the memoryless property:

$$P(X(t_n) = i \mid X(t_1) = j, X(t_2) = k,...) =$$

 $P(X(t_n) = i \mid X(t_1) = j) \text{ for any } t_n > t_1 > t_2 > t_3...$

Continuous Time Markov Chains (CTMC)

Transition Matrix

Transition Matrix

Transition probabilities:

$$p_{ij}(t_1, t_2) = P(X(t_2) = j \mid X(t_1) = i)$$

For an homogeneous chain:

$$p_{ij}(t) = P(X(t_1 + t) = j \mid X(t_1) = i) =$$

= $P(X(t) = j \mid X(0) = i), \forall t_1$

• In matrix form (transition probability matrix):

$$\mathbf{P}(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \cdots \\ p_{21}(t) & p_{22}(t) & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}, t \ge 0$$

- Notes:
 - Compare with the n-step prob. matrix of a DTMC: P(n).
 - P(t) must be a stochastic matrix (all rows add to 1).

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transition Matrix
State Transition
Diagram
Sojourn Time

Exponential Jumps
Description of a CTMC
Example: Pure Aloha
System

Transien Solution

Embedded M of a CTMC

Classification of States

Steady Stat

Semi-Marko Process

Finite

Transition Matrix

$$p_{ij}(t) = P(X(t) = j \mid X(0) = i), t \ge 0$$

- We look for an equivalent 1-step prob. matrix **P** of DTMCs.
- For consistency: $\lim_{t\to 0} p_{ij}(t) = \delta_{ij}$. In matrix form:

$$\lim_{t\to 0} \mathbf{P}(t) = \mathbf{I}.$$

And assume that the following transition rates exist:

$$q_{ij} = \lim_{t \to 0} \frac{p_{ij}(t)}{t}, i \neq j; \quad q_{ii} = \lim_{t \to 0} \frac{p_{ii}(t) - 1}{t}$$

- In matrix form: $\mathbf{Q} = \lim_{t \to 0} \frac{\mathbf{P}(t) \mathbf{I}}{t}$
- Note that $\sum_{j} p_{ij}(t) = 1 \Rightarrow p_{ii}(t) = 1 \sum_{j \neq i} p_{ij}(t)$, thus:

$$q_{ii} = \lim_{t \to 0} \frac{p_{ii}(t) - 1}{t} = \lim_{t \to 0} \frac{-\sum_{j \neq i} p_{ij}(t)}{t} = -\sum_{j \neq i} q_{ij}$$

Continuous Time Markov Chains (CTMC)

Transition Matrix

Transition Matrix

- The matrix **Q** is called the transition rate or infinitesimal generator of the chain.
- Since $q_{ii} = -\sum q_{ij}$, all the rows of **Q** add to 0.
- The rate q_{ij} , $i \neq j$ measures "how fast" the chain moves from state i to j: the higher is q_{ij} , the faster it moves from i to j.
- For $q_{ii} = -\sum_{i \neq i} q_{ij}$, the higher $-q_{ii}$ is, the faster the chain leaves state i.
- If $q_{ij} = 0$, $\forall j \Rightarrow q_{ii} = 0$, then *i* is an absorbing state: the chain "moves with rate 0 from *i* to other states", i.e. never leaves *i*.

Continuous Time Markov Chains (CTMC)

State Transition Diagram

State Transition Diagram

- A continuous MC is characterized by the transition rate or infinitesimal generator: the Q-matrix.
- The state transition diagram is now represented as:

- Note that now we have transition rates $(0 \le q_{ij} < \infty, i \ne j)$ and not probabilities.
- The rates q_{ii} are not written in the diagram, no self transitions.

Continuous Time Markov Chains (CTMC)

Sojourn Time

Sojourn Time

Sojourn or holding time: Is the RV H_k equal to the sojourn time in state k:

 The Markov property implies that the sojourn time is exponentially distributed with parameter q_{ii} :

$$P(H_i \le x) = 1 - e^{q_{ii}x} \Rightarrow P(H_i > x) = e^{q_{ii}x}, q_{ii} = -\sum_{j \ne i} q_{ij}, x \ge 0$$

Continuous Time Markov Chains (CTMC)

Sojourn Time

The exponential distribution satisfies the Markov property

Markov property (memoryless):

$$P(X(t_2) = i \mid X(t_1) = i, X(0) = i) =$$

 $P(X(t_2) = i \mid X(t_1) = i), t_2 > t_3 > 0$

 $P(X(t_2) = i \mid X(t_1) = i)$, $t_2 > t_1 > 0$ • In terms of the sojourn time:

$$P(H_i > t_2 \mid H_i > t_1) = P(H_i > t_2 - t_1)$$

But:

$$\begin{split} P\big(H_i > t_2 \mid H_i > t_1\big) &= \\ \frac{P(H_i > t_2, H_i > t_1)}{P(H_i > t_1)} &= \frac{P(H_i > t_2)}{P(H_i > t_1)} = \frac{\mathrm{e}^{q_{ii} t_2}}{\mathrm{e}^{q_{ii} t_1}} = \mathrm{e}^{q_{ii} (t_2 - t_1)} = \\ P(H_i > t_2 - t_1) & \Box \end{split}$$

 The exponential distribution is the only one satisfying the memoryless property.

Continuous Time Markov Chains (CTMC)

Exponential Jumps Description of a CTMO

Exponential Jumps Description of a CTMC

Assume a process built as follows:

- Upon reaching a state i
 - 1 the process can jump to a state $j \in \{1, 2, \dots l\}$
 - A set of independent exponential RVs, $\{H_{i1}, H_{i2}, \cdots H_{il}\}$, with parameters $\{q_{i1},q_{i1},\cdots q_{il}\}$ are triggered. That is, $P(H_{ii} \le t) = 1 - e^{-q_{ij}t}, t \ge 0.$

Theorem: This process is a CTMC with transition rates q_{ii} .

Continuous Time Markov Chains (CTMC)

Exponential Jumps Description of a CTMC

Exponential Jumps Description of a CTMC

$$P(H_{ij} \le t) = 1 - e^{-q_{ij}t}$$
.

Theorem: This process is a CTMC with transition rates q_{ii} .

Proof:

- The RV $H_i = \min\{H_{i1}, H_{i2}, \dots H_{il}\}$ (so journ time in state *i*) is exponentially distributed with parameter $q_i = \sum_i q_{ij}$: $P(H_i \le t) = 1 - e^{-q_i t}$
- $P(\min\{H_{i1}, H_{i2}, \dots H_{il}\} = H_{ij}) = q_{ij} / \sum_i q_{ij}$. Thus, the transition rate to state *j* is:

$$\begin{split} \lim_{t \to 0} \frac{p_{ij}(t)}{t} &= \lim_{t \to 0} \frac{P(\min\{H_{i1}, H_{i2}, \cdots H_{il}\} = H_{ij}) \times P(H_i \le t)}{t} = \\ &\frac{q_{ij}}{\sum_j q_{ij}} \left. \frac{\partial P(H_i \le t)}{\partial t} \right|_{t=0} &= \frac{q_{ij}}{\sum_j q_{ij}} \sum_j q_{ij} = \frac{q_{ij}}{q_{ij}} \end{split}$$

Continuous Time Markov Chains (CTMC)

Definition of a CTMC

Transition Matrix State Transition Diagram Sojourn Time

Exponential Jumps
Description of a CTM
Example: Pure Aloha

System

Embedded M

Classification of States

Steady Stat

Semi-Marko Process

Finite

Example: Pure Aloha System

- Consider a Pure Aloha System with 2 nodes:
 - Nodes in thinking state Tx a packet in a time exponentially distributed with rate λ.
 - Transmission time is exponentially distributed with rate μ .
 - If two transmissions overlap, the packet is lost and stations become backlogged (after the packet transmission) until the packet is successfully transmitted.
 - Nodes in backlogged state Tx a packet in a time exponentially distributed with rate α .

Questions

• Build the state transition diagram.

Continuous Time Markov Chains (CTMC)

Example: Pure Aloha System

State	Condition	Le	Legend	
1	T,T	\overline{T}	Thinking	
2	X,T	X	Transmitting	
3	C,C	C	Collided transmission	
4	B,C	B	Backlogged	
5	B,B			
6	X, B			
7	T, B			