Homework for Math 351-003

Individual Homework: Due Wednesday, March 6

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin\left(\frac{1}{x}\right)$ if $x \neq 0$ and f(0) = 0. Prove that f is not continuous at 0.
- 2. Suppose that $f:D\to\mathbb{R},\,g:D\to\mathbb{R}$ and $h:D\to\mathbb{R}$ are 3 functions and that

$$f(z) \le g(z) \le h(z)$$

for all $z \in D$. Show that if f and h are both continuous at $x \in D$ and f(x) = h(x), then g is also continuous at x.

- 3. Exhibit a continuous function $f:(0,1]\to \mathbf{R}$ so that f((0,1]) is not bounded. Prove all your claims.
- 4. Prove that if $f: D \to \mathbf{R}$ is continuous and $C \subset D$ is compact, then f(C) is bounded (i.e. there exists R so that $|f(x)| \leq R$ for all $x \in C$).