Name: Mansi Panchal

Email: mansi130698@gmail.com

Contact no.: 8287376653

Linkeden: https://www.linkedin.com/in/mansipanchal98/

Report

Abstract

The customer churn prediction is one of the challenging problems, if customer churn continues to occur; the enterprise will gradually lose its competitive advantage. Hence it is relevant problem to be considered.

The objective of this assignment is to build a predictive model that can predict customer churn for a given company.

Here will use machine learning techniques to build the model and the procedure include feature selection, model evaluation, and performance metrics.

Problem statement

The classification goal is to predict if the client will subscribe a term deposit or not (variable y).

Dataset

The data is related with direct marketing campaigns of a Portuguese banking institution.

The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be (or not) subscribed.

Variable names

- 1. job
- 2. marital
- 3. education
- 4. default (has credit in default)
- 5. balance (average yearly balance, in euros)
- 6. housing (has housing loan)
- 7. loan (has personal loan)

- 8. contact (contact communication type)
- 9. day (last contact day of the month)
- 10. month (last contact month of year)
- 11. duration (last contact duration, in seconds)
- 12. campaign (number of contacts performed during this campaign and for this client)
- 13. pdays (number of days that passed by after the client was last contacted from a previous campaign)
- 14. previous (number of contacts performed before this campaign and for this client)
- 15. poutcome (outcome of the previous marketing campaign)
- 16. age

Data preprocessing

Checking for the missing values

Since there are no missing values we will further proceed with the analysis.

The descriptive statistics for the numerical variable is

Target variable analysis

Data is highly imbalanced, ratio = 88:11. So we analyse the data with other features while taking the target values separately to get some insights.

Data exploration

Univariate Analysis

Plot distribution of individual predictors by target variables

Heatmap for numeric columns

The features 'pdays' and 'previous' are moderately collinear. Since correlation for all variables is < 0.7 hence no 2 columns are multicollinear.

Converting categorical variables to numerical variables

Plots

Clearly the density around zero number of pdays is higher. Hence, pdays is linked to Churn.

By looking at the given heatmat we can say that poutcome_failure and pdays are highly correlated we will drop the poutcome_failure feature from the dummy variable dataset.

Feature selection

The features/columns dropped are 'days', 'poutcome_failure'

'days' does not provide any relevant information for prediction of churn customer

'poutcome_failure' is multicollinear with 'pdays'

Bivariate analysis

Now we will train a machine learning model over 49 column features ans 4521 data points

Model training

• Decision Tree Classifier

As it's an imbalanced dataset, we shouldn't consider Accuracy as our metrics to measure the model, as Accuracy is cursed in imbalanced datasets.

Hence, we need to check recall, precision & f1 score for the minority class, and it's quite evident that the precision, recall & f1 score is too low for Class 1, i.e. churned customers.

Hence, moving ahead to call SMOTEENN (UpSampling + ENN)

```
[ ] sm = SMOTEENN()
    X_resampled, y_resampled = sm.fit_resample(x,y)
[ ] xr_train,xr_test,yr_train,yr_test=train_test_split(X_resampled, y_resampled,test_size=0.2)
[ ] model_dt_smote=DecisionTreeClassifier(criterion = "gini",random_state = 100,max_depth=6, min_samples_leaf=8)
[ ] model_dt_smote.fit(xr_train,yr_train)
    yr_predict = model_dt_smote.predict(xr_test)
    model_score_r = model_dt_smote.score(xr_test, yr_test)
    print(model_score_r)
    print(metrics.classification_report(yr_test, yr_predict))
    0.9226240538267452
                 precision recall f1-score support
                       0.92 0.92 0.92
0.93 0.93 0.93
                                                       561
               0
                                                      628
                                            0.92
                                                      1189
    accuracy 0.92
macro avg 0.92 0.92 0.92
weighted avg 0.92 0.92 0.92
                                                      1189
                                                     1189
```

Now we can see quite better results, i.e. Accuracy: 92.2 %, and a very good recall, precision & f1 score for minority class.

Let's try with some other classifier.

• Random Forest Classifier


```
[ ] sm = SMOTEENN()
     X_resampled1, y_resampled1 = sm.fit_resample(x,y)
[ ] xr_train1,xr_test1,yr_train1,yr_test1=train_test_split(X_resampled1, y_resampled1,test_size=0.2)
[ ] model_rf_smote=RandomForestClassifier(n_estimators=100, criterion='gini', random_state = 100,max_depth=6, min_samples_leaf=8)
[ ] model_rf_smote.fit(xr_train1,yr_train1)
     RandomForestClassifier(max_depth=6, min_samples_leaf=8, random_state=100)
[ ] yr_predict1 = model_rf_smote.predict(xr_test1)
[ ] model_score_r1 = model_rf_smote.score(xr_test1, yr_test1)
[ ] print(model_score_r1)
    print(metrics.classification_report(yr_test1, yr_predict1))
     0.9451013513513513
                  precision recall f1-score support
                        0.94
                               0.94
                                            0.94
                0
                                  0.95
                                            0.95
                        0.95
                                                       1184
                        0.94
0.95
                                  0.94
                                            0.94
0.95
                                                       1184
                                  0.95
```

With RF Classifier, also we are able to get quite good results, infact better than Decision Tree ad after up sampling.

• Support Vector Classifier

Support Vector Classifier											
[] from sklearn.svm import SVC											
[] model_sv=SVC()											
[] model_sv.fit(x_train,y_train)											
SVC()											
[] y_pred=model_sv.predict(x_test)											
[] model_sv.score(x_test,y_test)											
0.89723756 9060 7735											
[] print(classification_report(y_test, y_pred, labels=[0,1]))											
precision recall f1-score support											
0 0.90 1.00 0.95 812											
1 0.00 0.00 0.00 93											
accuracy 0.90 905											
macro avg 0.45 0.50 0.47 905											
weighted avg 0.81 0.90 0.85 905											

```
[ ] sm = SMOTEENN()
     X_resampled2, y_resampled2 = sm.fit_resample(x,y)
[ ] xr_train2,xr_test2,yr_train2,yr_test2=train_test_split(X_resampled2, y_resampled2,test_size=0.2)
[ ] model_sv_smote=SVC()
[ ] model_sv_smote.fit(xr_train2,yr_train2)
[ ] yr_predict2 = model_sv_smote.predict(xr_test2)
[ ] model_score_r2 = model_sv_smote.score(xr_test2, yr_test2)
[ ] print(model_score_r2)
print(metrics.classification_report(yr_test2, yr_predict2))
    0.8540084388185654
                  precision recall f1-score support
                                          0.85
                       0.89
                                0.83
                                           0.86
                                                      635
                                                      1185
        accuracy
                                 0.86
        macro avg
                                                      1185
     weighted avg
                       0.86
                                 0.85
```

With SVM, we couldn't see any better results, hence finalise the model which was created by Random Forest Classifier

Model	Model accuracy score	Model accuracy score After upsampling
Decision Tree Classifier	0.906	0.922
Random Forest Classifier	0.908	0.945
Support Vector Classifier	0.897	0.854

Result

The approach used here as follows:

Firstly, we did data preprocessing followed by EDA (exploratory data analysis) where we did univariate and bivariate analysis.

The main insights we got are as

- The customer with secondary education are high churners.
- Those who were contacted last in May were high Churners
- Marital status as married are more among churners.
- customer not having credit in default are high churner

Finally, headed towards experimenting with different machine learning models to predict for the testing data whether client subscribed or churn.

After testing multiple classifiers with and without upsampling. Since the data was highly imbalanced we applied upsampling to improve the accuracy rate. Clearly we can see from the above table Random Forest Classifier performed best with an accuracy score of 0.945 and hence the most suitable model among the other classifiers we experimented with.

```
import numpy as np
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv("/content/bank.csv")
data
              age;"job";"marital";"education";"default";"balance";"housing";"loan";"contact";"day";"month";"duration";"campaign";"pdays";"prev
                                                                                                                                                    30; "unemployed"; "marrie
         0
         1
                                                                                                                                                     33; "services"; "married";
                                                                                                                                                     35;"management";"sing
         2
         3
                                                                                                                                                    30;"management";"marri
                                                                                                                                                      59; "blue-collar"; "marrie
         4
       4516
                                                                                                                                                     33; "services"; "married";
       4517
                                                                                                                                                       57;"self-employed";"n
       4518
                                                                                                                                                     57;"technician";"married
       4519
                                                                                                                                                      28;"blue-collar";"marrie
       4520
                                                                                                                                                       44;"entrepreneur";"sii
      4521 rows × 1 columns
       1
# creating list of column names in colmns variable
colmns = re.sub(";", " ", data.columns[0])
colmns = re.sub("\"", "", colmns)
colmns = colmns.split()
# cleaning each row of data
def clean_data(row):
    row = re.sub(";", " ", row)
row = re.sub("\"", "", row)
    row = row.split()
    return row
data1 = data.copy()
\label{eq:data1.iloc[:,0] = data1.iloc[:,0].map(lambda x: clean_data(x))} data1.iloc[:,0] = data1.iloc[:,0].map(lambda x: clean_data(x))
data1
```

0

```
age; "job"; "marital"; "education"; "default"; "balance"; "housing"; "loan"; "contact"; "day"; "month"; "duration"; "campaign"; "pdays"; "prev
[30, unemployed, marrie
```

```
# creating columns from "columns" list which we created above and filling values from row lists
idx = 0
for row in data1.iloc[:,0]:
    if len(row) == 17:
        i = 0
        for col in columns:
            data1.loc[idx,col] = row[i]
            i += 1
    idx += 1

data1.drop(data1.columns[0], axis=1, inplace=True)
df = data1.copy()
df
```

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	ро
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	oct	79	1	-1	0	uı
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	may	220	1	339	4	
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	apr	185	1	330	1	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	jun	199	4	-1	0	uı
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	may	226	1	-1	0	uı
4516	33	services	married	secondary	no	-333	yes	no	cellular	30	jul	329	5	-1	0	uı
4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	9	may	153	1	-1	0	uı
4518	57	technician	married	secondary	no	295	no	no	cellular	19	aug	151	11	-1	0	u
4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	6	feb	129	4	211	3	
4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	3	apr	345	2	249	7	

4521 rows × 17 columns

converting datatypes of numerical variables which were object dtypes
convert_dtype = {"age":int, "balance":int, "day":int, "duration":int, "campaign":int, "pdays":int, "previous":int }
df = df.astype(convert_dtype)
df.info()

```
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 17 columns):
# Column
               Non-Null Count Dtype
0
    age
               4521 non-null int64
    job
               4521 non-null
                              object
 2
    marital
               4521 non-null
                              object
    education 4521 non-null
                              object
    default
               4521 non-null
                              object
    balance
               4521 non-null
                              int64
    housing
               4521 non-null
                              object
    loan
               4521 non-null
                              object
 8
    contact
               4521 non-null
                              object
               4521 non-null
                              int64
    day
 10 month
               4521 non-null
                              object
 11 duration
               4521 non-null
                              int64
 12 campaign
               4521 non-null
                              int64
 13 pdays
               4521 non-null
                              int64
 14 previous
              4521 non-null
                              int64
 15 poutcome
               4521 non-null
                              object
16 y
               4521 non-null
                              object
dtypes: int64(7), object(10)
memory usage: 600.6+ KB
```

<class 'pandas.core.frame.DataFrame'>

df.head()

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutc
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	oct	79	1	-1	0	unkn
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	may	220	1	339	4	fai
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	apr	185	1	330	1	fai
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	jun	199	4	-1	0	unkno
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	may	226	1	-1	0	unkn
7	+															

The classification goal is to predict if the client will subscribe a term deposit (variable y).

import missingno as msno

msno.matrix(df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f349eacd1c0>

Check the descriptive statistics of numeric variables
df.describe()

	age	balance	day	duration	campaign	pdays	previous
count	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000
mean	41.170095	1422.657819	15.915284	263.961292	2.793630	39.766645	0.542579
std	10.576211	3009.638142	8.247667	259.856633	3.109807	100.121124	1.693562
min	19.000000	-3313.000000	1.000000	4.000000	1.000000	-1.000000	0.000000
25%	33.000000	69.000000	9.000000	104.000000	1.000000	-1.000000	0.000000
50%	39.000000	444.000000	16.000000	185.000000	2.000000	-1.000000	0.000000
75%	49.000000	1480.000000	21.000000	329.000000	3.000000	-1.000000	0.000000
max	87.000000	71188.000000	31.000000	3025.000000	50.000000	871.000000	25.000000

df['y'].value_counts().plot(kind='barh', figsize=(8, 6))

plt.xlabel("Count", labelpad=14)

plt.ylabel("Target Variable", labelpad=14)

plt.title("Count of TARGET Variable per category", y=1.02);

Count of TARGET Variable per category


```
100*df['y'].value_counts()/len(df['y'])
```

```
no 88.476001
yes 11.523999
Name: y, dtype: float64
```

df['y'].value_counts()

no 4000 yes 521

Name: y, dtype: int64

Data is highly imbalanced, ratio = 88:11 So we analyse the data with other features while taking the target values separately to get some insights.

Data Exploration

1. Plot distibution of individual predictors by target variables

Univariate Analysis

```
for i, predictor in enumerate(df.drop(columns=['y', 'age', 'balance', 'day' , 'duration', 'campaign', 'pdays', 'previous'])):
   plt.figure(i)
   sns.countplot(data=df, x=predictor, hue='y')
```



```
#segregating numerical columns
numerical_f=df.drop(['y'],axis=1).select_dtypes(include=np.number).columns
corr=df[numerical_f].corr()
sns.heatmap(corr, annot=True,linewidths=.8)
      <matplotlib.axes._subplots.AxesSubplot at 0x7f349b5fae50>
                      0.084 -0.018 -0.0024-0.0051-0.0089-0.0035
                                                               0.8
        balance - 0.084
                             0.0087
                                  -0.016
                                              0.0094
                                                    0.026
                                              -0.094
            day - -0.018
                      0.0087
                              1
                                   -0.025
                                                    -0.059
                                                              - 0.6
        duration --0.0024 -0.016
       campaign --0.0051
                                                               0.2
          pdays --0.0089 0.0094
        previous -0.0035 0.026
       T 800 1
```

the featues 'pdays' and 'previous' are moderatily collinear. since correlation for all variables is < 0.7 hence no 2 columns are multicollinear

400 4

Convert the target variable 'y' in a binary numeric variable i.e. Yes=1 ; No = 0

df['y'] = np.where(df.y =='yes',1,0)

Convert all the categorical variables into dummy variables

— yes

data_dummies = pd.get_dummies(df)
data_dummies.head(10)

	age	balance	day	duration	campaign	pdays	previous	у	job_admin.	job_blue- collar	•••	month_jun	month_mar	month_may	month_nov	mon
0	30	1787	19	79	1	-1	0	0	0	0		0	0	0	0	
1	33	4789	11	220	1	339	4	0	0	0		0	0	1	0	
2	35	1350	16	185	1	330	1	0	0	0		0	0	0	0	
3	30	1476	3	199	4	-1	0	0	0	0		1	0	0	0	
4	59	0	5	226	1	-1	0	0	0	1		0	0	1	0	
5	35	747	23	141	2	176	3	0	0	0		0	0	0	0	
6	36	307	14	341	1	330	2	0	0	0		0	0	1	0	
7	39	147	6	151	2	-1	0	0	0	0		0	0	1	0	
8	41	221	14	57	2	-1	0	0	0	0		0	0	1	0	
9	43	-88	17	313	1	147	2	0	0	0		0	0	0	0	
10 r	10 rows × 52 columns															

Relationship between Pdays and Previous

1

sns.scatterplot(data=data_dummies, x='pdays', y='previous')

Text(0.5, 1.0, 'pdays by churn')

Mth.set_title('pdays by churn')

pdays by churn


```
plt.figure(figsize=(12,12))
sns.heatmap(data_dummies.corr(), cmap="Paired")
```


by looking at the given heatmat we can say that poutcome_failure and pdays are highly correlated we will drop the poutcome_failure feature

data_dummies=data_dummies.drop(['day'], axis=1)

data_dummies.info()

default no

default_yes

26

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4521 entries, 0 to 4520 Data columns (total 50 columns): Column Non-Null Count # Dtype ---0 4521 non-null age int64 4521 non-null int64 1 balance 2 duration 4521 non-null int64 3 campaign 4521 non-null int64 4 pdays 4521 non-null int64 5 4521 non-null int64 previous 6 4521 non-null int64 7 job_admin. 4521 non-null uint8 8 job blue-collar 4521 non-null uint8 9 job_entrepreneur 4521 non-null uint8 10 job_housemaid 4521 non-null uint8 11 job_management 4521 non-null uint8 job_retired 4521 non-null 12 uint8 13 job_self-employed 4521 non-null uint8 job_services 14 4521 non-null uint8 job_student 15 4521 non-null uint8 16 job_technician 4521 non-null uint8 17 job_unemployed 4521 non-null uint8 18 job_unknown 4521 non-null uint8 19 marital_divorced 4521 non-null uint8 20 marital_married 4521 non-null uint8 21 marital_single 4521 non-null uint8 education_primary 4521 non-null uint8 22 23 education_secondary 4521 non-null uint8 24 education_tertiary 4521 non-null uint8 25 education_unknown 4521 non-null uint8

uint8

uint8

4521 non-null

4521 non-null

```
28 housing_no
                             4521 non-null
                                            uint8
     29 housing_yes
                             4521 non-null
                                            uint8
                             4521 non-null
                                            uint8
     30 loan_no
     31 loan_yes
                             4521 non-null
                                            uint8
     32 contact_cellular
                             4521 non-null
                                            uint8
     33 contact_telephone
                             4521 non-null uint8
     34 contact_unknown
                             4521 non-null
                                            uint8
     35 month_apr
                             4521 non-null
                                            uint8
     36 month_aug
                             4521 non-null uint8
                             4521 non-null
     37 month_dec
                                            uint8
     38 month_feb
                           4521 non-null uint8
     39 month_jan
                             4521 non-null
                                            uint8
     40 month_jul
                            4521 non-null
                                            uint8
     41 month jun
                            4521 non-null uint8
                            4521 non-null
     42 month_mar
                                            uint8
     43 month_may
                            4521 non-null
                                            uint8
     44 month_nov
                            4521 non-null uint8
                             4521 non-null uint8
     45 month_oct
     46 month_sep
                             4521 non-null
                                           uint8
     47 poutcome_other
                             4521 non-null uint8
     48 poutcome_success
                             4521 non-null
                                            uint8
     49 poutcome_unknown
                             4521 non-null uint8
    dtypes: int64(7), uint8(43)
    memory usage: 437.2 KB
new_df1_target0=df.loc[df["y"]==0]
new_df1_target1=df.loc[df["y"]==1]
def uniplot(df,col,title,hue =None):
   sns.set_style('whitegrid')
   sns.set_context('talk')
   plt.rcParams["axes.labelsize"] = 20
   plt.rcParams['axes.titlesize'] = 22
   plt.rcParams['axes.titlepad'] = 30
   temp = pd.Series(data = hue)
   fig, ax = plt.subplots()
   width = len(df[col].unique()) + 7 + 4*len(temp.unique())
   fig.set_size_inches(width , 8)
   plt.xticks(rotation=45)
   plt.yscale('log')
   plt.title(title)
   ax = sns.countplot(data = df, x= col, order=df[col].value_counts().index,hue = hue,palette='bright')
   plt.show()
uniplot(new_df1_target0,col='housing',title='Distribution of job for Churned Customers',hue='job')
```

Distribution of job for Churned Customers

uniplot(new_df1_target0,col='loan',title='Distribution of job for Churned Customers',hue='job')

Distribution of job for Churned Customers

uniplot(new_df1_target0,col='default',title='Distribution of job for Churned Customers',hue='job')

Distribution of job for Churned Customers

uniplot(new_df1_target0,col='loan',title='Distribution of job for Churned Customers',hue='education')

Distribution of job for Churned Customers

uniplot(new_df1_target0,col='housing',title='Distribution of job for Churned Customers',hue='education')

Distribution of job for Churned Customers

 $uniplot (\texttt{new_df1_target0}, \texttt{col='default'}, \texttt{title='Distribution of job for Churned Customers'}, \texttt{hue='education'})$

Distribution of job for Churned Customers

sns.relplot(data = df, x="age", y="pdays",hue= 'poutcome', col = 'y')

<seaborn.axisgrid.FacetGrid at 0x7f349b641070>

sns.relplot(data = df, x="age", y="duration", hue= 'poutcome', col = 'y')

data_dummies.to_csv('data.csv')

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

```
import pandas as pd
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.tree import DecisionTreeClassifier
from imblearn.combine import SMOTEENN

df=pd.read_csv("/content/data (1).csv")
df.head()
```

	Unnamed:	age	balance	duration	campaign	pdays	previous	у	job_adm	
0	0	30	1787	79	1	-1	0	0		
1	1	33	4789	220	1	339	4	0		
2	2	35	1350	185	1	330	1	0		
3	3	30	1476	199	4	-1	0	0		
4	4	59	0	226	1	-1	0	0		
5 rows × 51 columns										

1

df=df.drop(['Unnamed: 0'], axis=1)

df.head()

	age	balance	duration	campaign	pdays	previous	у	job_admin.	job_b co				
0	30	1787	79	1	-1	0	0	0					
1	33	4789	220	1	339	4	0	0					
2	35	1350	185	1	330	1	0	0					
3	30	1476	199	4	-1	0	0	0					
4	59	0	226	1	-1	0	0	0					
5 rc	5 rows × 50 columns												

x=df.drop('y',axis=1)

```
job_blue-
        age balance duration campaign pdays previous job_admin.
                                                         job_entrepreneur job_housemaid ... month_jul month_j;
                                                   collar
     0
        30
             1787
                     79
                                        0
                                               0
                                                       Λ
                                                                   0
                                                                                        0
                            1
                                -1
                                                                             0
        33
             4789
                    220
                            1
                               339
                                        4
                                               0
                                                       0
                                                                   0
                                                                             0
                                                                                        0
     1
y=df['y']
   0
        0
   1
        0
   2
        0
   3
        0
   4
        0
   4516
        0
   4517
        0
   4518
        a
   4519
        0
   4520
   Name: y, Length: 4521, dtype: int64
   402110W3 ^ 47 COIUIIII3
Train Test Split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
Decision Tree Classifier
model_dt=DecisionTreeClassifier(criterion = "gini",random_state = 100,max_depth=6, min_samples_leaf=8)
model_dt.fit(x_train,y_train)
   DecisionTreeClassifier(max_depth=6, min_samples_leaf=8, random_state=100)
y_pred=model_dt.predict(x_test)
y_pred
   0, 0, 0,
          0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                                      0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0,
                                      0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
                                            0, 0, 0,
        0, 0, 0,
              0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0,
              0, 0, 0,
                    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                                            0, 0,
          0, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                                  0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        0, 0, 0,
          0, 0,
              1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      0,
                                        1, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          1, 0,
                                      0, 1, 0,
                                            0, 1,
          1, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
        0, 0, 0,
          0, 0,
              0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                                            0, 0,
              0, 0,
          0, 0,
              0, 0, 0,
          0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
          0, 0,
                                            0, 0,
          0, 0,
              0, 0, 0,
                    0, 1, 0, 0, 0, 0, 1,
                                  0,0,
                                      0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0,
          1, 0,
              0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                      1, 0, 0,
                                            0, 0,
              0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

```
0, 0, 01)
model_dt.score(x_test,y_test)
    0.9060773480662984
print(classification_report(y_test, y_pred, labels=[0,1]))
                 precision
                            recall f1-score
                                             support
              0
                     0.93
                              0.97
                                       0.95
                                                 812
              1
                     0.58
                              0.32
                                       0.41
                                                  93
        accuracy
                                       0.91
                                                 905
       macro avg
                     0.75
                              0.65
                                       0.68
                                                 905
    weighted avg
                     0.89
                              0.91
                                       0.89
                                                 905
sm = SMOTEENN()
X_resampled, y_resampled = sm.fit_resample(x,y)
xr_train,xr_test,yr_train,yr_test=train_test_split(X_resampled, y_resampled,test_size=0.2)
model_dt_smote=DecisionTreeClassifier(criterion = "gini",random_state = 100,max_depth=6, min_samples_leaf=8)
model_dt_smote.fit(xr_train,yr_train)
yr_predict = model_dt_smote.predict(xr_test)
model_score_r = model_dt_smote.score(xr_test, yr_test)
print(model_score_r)
print(metrics.classification_report(yr_test, yr_predict))
    0.9226240538267452
                            recall f1-score
                precision
                                             support
              0
                     0.92
                              0.92
                                       0.92
                                                 561
                     0.93
                              0.93
                                       0.93
                                                 628
                                       0.92
                                                1189
        accuracy
       macro avg
                     0.92
                              0.92
                                       0.92
                                                1189
                     0.92
                              0.92
                                       0.92
                                                1189
    weighted avg
Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
model_rf=RandomForestClassifier(n_estimators=100, criterion='gini', random_state = 100,max_depth=6, min_samples_leaf=8)
model_rf.fit(x_train,y_train)
    RandomForestClassifier(max_depth=6, min_samples_leaf=8, random_state=100)
y_pred=model_rf.predict(x_test)
model_rf.score(x_test,y_test)
    0.9082872928176795
print(classification_report(y_test, y_pred, labels=[0,1]))
                 precision
                            recall f1-score
                                             support
              a
                     0.91
                              1.00
                                       0.95
                                                 812
                     0.81
                              0.14
                                       0.24
                                                  93
                                       0.91
                                                 905
        accuracy
       macro avg
                     0.86
                              0.57
                                       0.59
                                                 905
```

```
weighted avg 0.90 0.91 0.88 905
```

```
sm = SMOTEENN()
X_resampled1, y_resampled1 = sm.fit_resample(x,y)
xr_train1,xr_test1,yr_train1,yr_test1=train_test_split(X_resampled1, y_resampled1,test_size=0.2)
model_rf_smote=RandomForestClassifier(n_estimators=100, criterion='gini', random_state = 100,max_depth=6, min_samples_leaf=8)
model_rf_smote.fit(xr_train1,yr_train1)
           RandomForestClassifier(max_depth=6, min_samples_leaf=8, random_state=100)
yr_predict1 = model_rf_smote.predict(xr_test1)
model_score_r1 = model_rf_smote.score(xr_test1, yr_test1)
print(model_score_r1)
print(metrics.classification_report(yr_test1, yr_predict1))
          0.9451013513513513
                                       precision
                                                                   recall f1-score
                                                                                                            support
                                 0
                                                  0.94
                                                                        0.94
                                                                                             0.94
                                                                                                                     557
                                                  0.95
                                                                        0.95
                                                                                             0.95
                                                                                                                    627
                                 1
                   accuracy
                                                                                             0.95
                                                                                                                   1184
                                                                        0.94
                                                  0.94
                                                                                             0.94
                                                                                                                  1184
                macro avg
                                                  0.95
                                                                        0.95
                                                                                             0.95
                                                                                                                  1184
          weighted avg
Support Vector Classifier
from sklearn.svm import SVC
model sv=SVC()
model_sv.fit(x_train,y_train)
          SVC()
y_pred=model_sv.predict(x_test)
model_sv.score(x_test,y_test)
          0.8972375690607735
print(classification_report(y_test, y_pred, labels=[0,1]))
                                        precision
                                                                   recall f1-score
                                                                                                            support
                                  0
                                                  0.90
                                                                        1.00
                                                                                             0.95
                                                                                                                    812
                                  1
                                                  0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                      93
                                                                                             0.90
                                                                                                                    905
                  accuracv
                                                  0.45
                                                                        0.50
                 macro avg
                                                                                             0.47
                                                                                                                    905
                                                                        0.90
          weighted avg
                                                  0.81
                                                                                             0.85
          /usr/local/lib/python 3.8/dist-packages/sklearn/metrics/\_classification.py: 1318: \ Undefined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined Metric Warning: \ Precision \ and \ F-score \ are ill-defined \ Article Warning: \ Precision \ and \ P-score \ are ill-defined \ Article Warning: \ Precision \ and \ P-score \ Article Warning: \ Precision \ and \ P-score \ Article Warning: \ Precision \ and \ P-score \ Article Warning: \ Precision \ and \ P-score \ Article Warning: \ Precision \ Article Warning: \ Precision \ Article Warning: \ P-score \ Ar
               _warn_prf(average, modifier, msg_start, len(result))
           /usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-d
               _warn_prf(average, modifier, msg_start, len(result))
           /usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-d
              _warn_prf(average, modifier, msg_start, len(result))
         4
```

```
sm = SMOTEENN()
X_resampled2, y_resampled2 = sm.fit_resample(x,y)
xr_train2,xr_test2,yr_train2,yr_test2=train_test_split(X_resampled2, y_resampled2,test_size=0.2)
model_sv_smote=SVC()
model_sv_smote.fit(xr_train2,yr_train2)
    SVC()
yr_predict2 = model_sv_smote.predict(xr_test2)
model_score_r2 = model_sv_smote.score(xr_test2, yr_test2)
print(model_score_r2)
print(metrics.classification_report(yr_test2, yr_predict2))
    0.8540084388185654
                  precision
                              recall f1-score
                                                  support
                       0.82
                              0.88
                                           0.85
                                                      550
               1
                       0.89
                                0.83
                                          0.86
                                                     635
                                           0.85
                                                    1185
        accuracy
                       0.85
                                0.86
                                                    1185
        macro avg
                                          0.85
    weighted avg
                       0.86
                                 0.85
                                           0.85
                                                    1185
```

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.