Probabilistic models for ecological networks

Sophie Donnet, Pierre Barbillon & Avner Bar-Hen

14/06/17

Outline

- 1 Introduction
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Network data

Networks can account for

- Food web,
- Co-existence networks,
- Host-parasite interactions,
- Plant-pollinator interactions,
- ...

Networks may be or not bipartite: Interactions between nodes belonging to the same or to different functional group(s).

Terminology

A network consists in:

- nodes/vertices which reprensent individuals / species which may interact or not,
- links/edges/connections which stand for an interaction between a pair of nodes / dyad.

A network may be

- directed / oriented (e.g. food web...),
- symmetric / undirected (e.g. coexistence network),
- with or without loops.

This distinction only makes sense for simple networks (not bipartite).

Available data and goal

Available data:

- the network provided as:
 - an adjacency matrix (for simple network) or an incidence matrix (for bipartite network),
 - a list of pair of nodes / dyads which are linked.
- some additional covariates on nodes, dyads which can account for sampling effort.

Goal:

- Unraveling / describing / modeling the network topology.
- Discovering particular structure of interaction between some subsets of nodes.
- Understanding network heterogeneity.
- Not inferring the network!

Network representation and adjacency matrix

$$X = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

- n rows and n columns,
- symmetric or not.

Bipartite network and incidence matrix

- n rows and m columns, rectangular matrix.
- corresponding adjacency matrix $(n+m) \times (n+m)$:

$$\left(\begin{array}{cc} 0 & X \\ X^T & 0 \end{array}\right)$$

Some common features studied on networks

- Degree distribution, can be viewed as a measure of heterogeneity,
- Nestedness: a network is said to be nested when its nodes that have the smallest degree, are connected to nodes with the highest degree, Rodríguez-Gironés & Santamaria (2006)
- Betweenness centrality: for a node, numbers of shortest paths between any pair of nodes passing through this node. Freeman (1979)
- Modularity: is a measure for a given partition of its tendency of favoring intra-connection over inter-connection. ⇒ Finding the best partition with respect to modularity criterion. Clauset, Newman & Moore (2004)

All this criterion shall be adapted to:

- directed network,
- bipartite network.

R packages: igraph, sna, vegan.

Introduction

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Example Chilean food web

- \blacksquare n = 106 species / nodes,
- density of edges: 12.1%.

Kéfi, Miele, Wieters, Navarrete & Berlow (2016)

Degree distribution

Nestedness

- more generally used on incidence matrices,
- significance of the nestedness index computed by random permutations of the matrix,
- this food web is found to be nested.

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Betweenness

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 0.000 0.000 6.604 6.929 59.570

Introduction

Stochastic Block Model for classical networks Latent Block Model for bipartite networks Some possible extensions

Modularity

	1	2	3	4
	69	17	7	13

very low modularity.

A first random graph model for network: Null model

Erdős-Rényi (1959) Model for n nodes

$$\forall 1 \leq i, j \leq n, \quad X_{ij} \stackrel{i.i.d.}{\sim} b(p),$$

where b is the Bernoulli distribution and $p \in [0, 1]$ a probability for a link to exist.

Limitations of an ER graph to describe real networks

- Degree distribution too concentrated, no high degree nodes,
- all nodes are equivalent (no nestedness...),
- no modularity.

Outline

- 1 Introduction
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Stochastic Block Model

Stochastic Block Model

Let n nodes divided into

$$\mathbb{Q} = \{ \bullet, \bullet, \bullet \}$$
 classes

$$\bullet \alpha_{\bullet} = \mathbb{P}(i \in \bullet), \bullet \in \mathcal{Q}, i = 1, \ldots, n$$

$$\blacksquare \pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_{i} = \mathbf{1}_{\{i \in \bullet\}} \sim^{\text{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q},$$

$$X_{ii} \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Some remarkable structure generated with SBM : networks with hubs

Some remarkable structure generated with SBM : community network

Some remarkable structure generated with SBM : nestedness

Statistical inference

Stochastic Block Model

Let n nodes divided into

- $\mathbb{Q} = \{\bullet, \bullet, \bullet\}, \operatorname{card}(\mathcal{Q}) \operatorname{known}$
- $\alpha_{\bullet} = ?$
- \blacksquare $\pi_{\bullet \bullet} = ?$

Nowicki, & Snijders (2001), Daudin et al. (2008)

R package: blockmodels.

Statistical inference

From....

Statistical inference

... to

Statistician job

- Find the clusters
- Find the number of clusters
- Practical implementation
- Theoretical results

Latent Block Model for bipartite networks
Some possible extensions

Application to the Chilean food web

7 groups/blocks/clusters found.

	_	•				,		
-	1	2	3	4	5	6	7	
	28	15	12	19	12	14	6	

Application to the Chilean food web

Another example for food web in Allesina & Pascual (2009).

Outline

- 1 Introduction
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Latent Block Model

Latent Block Model

- \blacksquare *n* row nodes $\mathcal{Q}_1 = \{\bullet, \bullet, \bullet\}$ classes
- m column nodes $Q_2 = \{ \bullet, \bullet \}$ classes
- $\beta_{\bullet} = \mathbb{P}(j \in \bullet), \bullet \in \mathcal{Q}_2, j = 1, \dots, m$

$$\blacksquare \ \pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$$

$$Z_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\text{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}_1,$$

$$W_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\text{iid}} \mathcal{M}(1,\beta), \quad \forall \bullet \in \mathcal{Q}_2,$$

$$X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Govaert & Nadif (2008) and R package: blockmodels as well.

Incidence matrix point of view

LBM for ant-plant data

- 2 blocks found over the 41 ant species,
- 3 blocks found over the 51 plant species.

Blüthgen, Stork & Fiedler (2004)

Outline

- 1 Introduction
- 2 Stochastic Block Model for classical networks
- 3 Latent Block Model for bipartite networks
- 4 Some possible extensions

Valued-edge networks or multiplex-edge networks

Information on edges can be something different from presence/absence. It can be:

- 1 a count of the number of observed interactions,
- 2 a quantity interpreted as the interaction strength,
- several kind of interactions between nodes (Multiplex networks).

Natural extensions of SBM and LBM for these three cases:

- **1** Poisson distribution: $X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{P}(\lambda_{\bullet \bullet}),$
- **2** Gaussian distribution: $X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{N}(\mu_{\bullet \bullet}, \sigma^2),$
- **3** Bivariate Bernoulli: $(X_{ij}, X'_{ij}) \mid \{i \in \bullet, j \in \bullet\} \sim^{\text{ind}} \mathcal{B}^2(\pi_{\bullet \bullet}).$

Remark: a particular case of multiplex network is dynamic network, Matias & Miele (2015).

Multipartite networks

Incidence matrix

$$X = (X_1 \mid X_2 \mid X_3),$$

where

- X_1, X_2, X_3 correspond to the bipartite networks with the same functional groups in rows,
- for instance, X_1 is plant-pollinator network, X_2 is plant-ant network and X_3 is plant-seed dispersers network.
- LBM is for bipartite networks,
- When there are more than two functional groups involved in interactions ⇒ Multipartite networks.
- Extension of LBM but choice of the number of blocks is more challenging.

Taking into account covariates

Sometimes covariates are available. They may be on:

- nodes,
- edges,
- both.
- They can be used a posteriori to explain blocks inferred by SBM.
- Extension of the SBM which takes into account covariates. Blocks are structure of interaction which is not explained by covariates!

If covariates are sampling conditions, case 2 may more interesting.

Probabilistic model for networks in a nutshell

SBM/I BM

- generative models,
- flexible,
- comprehensive models which can be linked to a lot of classical descriptors.

Extension of the binary SBM model are quite natural:

- all the one presented above,
- missing data in the network,
- multi-layers?