Digitalna topologija na grafih Predstavitev diplomskega dela

Jakob Drusany

Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Univerza v Ljubljani

16. september 2024

Mentor: prof. dr. Petar Pavešić

- Uvod
 - Motivacija
 - Teoretične osnove
- Končne topologije, delne urejenosti in celični kompleksi
 - Povezava končnih topologij in delnih urejenosti
 - Simplicialni kompleksi
 - Povezava topoloških prostorov in simplicialnih kompleksov
- Oigitalni prostori
 - Topologije na grafih
 - Kompatibilne topologije na dvodelnih grafih
 - Obstoj kompatibilne topologije na grafu
 - Celični kompleksi

- Uvod
 - Motivacija
 - Teoretične osnove
- Končne topologije, delne urejenosti in celični kompleks
 - Povezava končnih topologij in delnih urejenosti
 - Simplicialni kompleksi
 - Povezava topoloških prostorov in simplicialnih kompleksov
- Operation of the property o
 - Topologije na grafih
 - Kompatibilne topologije na dvodelnih grafih
 - Obstoj kompatibilne topologije na grafu
 - Celični kompleksi

Motivacija

Zakaj hočemo topologije na slikah?

Definicija

Topologija (ali topološka struktura) na množici X je družina \mathcal{T} podmnožic X, ki zadošča naslednjim zahtevam:

- (1) prazna množica in X sta elementa \mathcal{T} ;
- (2) unija poljubne poddružine \mathcal{T} je element \mathcal{T} ;
- (3) presek poljubne končne poddružine \mathcal{T} je element \mathcal{T} .

Elemente $\mathcal T$ imenujemo odprte množice v X. Topološki prostor $(X, \mathcal T)$ je množica X, opremljena s topologijo $\mathcal T$

Okolica točke $x \in X$ je vsaka podmnožica $V \subseteq X$, ki vsebuje odprto množico U, ki vsebuje x.

Definicija

Topologija (ali topološka struktura) na množici X je družina \mathcal{T} podmnožic X, ki zadošča naslednjim zahtevam:

- (1) prazna množica in X sta elementa \mathcal{T} ;
- (2) unija poljubne poddružine \mathcal{T} je element \mathcal{T} ;
- (3) presek poljubne končne poddružine \mathcal{T} je element \mathcal{T} .

Elemente $\mathcal T$ imenujemo odprte množice v X. Topološki prostor $(X, \mathcal T)$ je množica X, opremljena s topologijo $\mathcal T$

Okolica točke $x \in X$ je vsaka podmnožica $V \subseteq X$, ki vsebuje odprto množico U, ki vsebuje x.

Definicija

Topologija Aleksandrova na množici X je družina \mathcal{T} podmnožic X, ki zadošča naslednjim zahtevam:

- (1) prazna množica in X sta elementa \mathcal{T} ;
- (2) unija poljubne poddružine \mathcal{T} je element \mathcal{T} ;
- (3) presek poljubne končne poddružine \mathcal{T} je element \mathcal{T} .

Presek vseh odprtih množic, ki vsebujejo točko x je najmanjša odprta okolica točke x, ki jo označimo z U_x .

Definicija

Topologija Aleksandrova na množici X je družina \mathcal{T} podmnožic X, ki zadošča naslednjim zahtevam:

- (1) prazna množica in X sta elementa \mathcal{T} ;
- (2) unija poljubne poddružine \mathcal{T} je element \mathcal{T} ;
- (3) presek poljubne končne poddružine $\mathcal T$ je element $\mathcal T$.

Presek vseh odprtih množic, ki vsebujejo točko x je najmanjša odprta okolica točke x, ki jo označimo z U_x .

TODO?

Dodamo lahko še sekcijo o ločitvenih aksiomih

- Uvod
 - Motivacija
 - Teoretične osnove
- Končne topologije, delne urejenosti in celični kompleksi
 - Povezava končnih topologij in delnih urejenosti
 - Simplicialni kompleksi
 - Povezava topoloških prostorov in simplicialnih kompleksov
- Operation of the property o
 - Topologije na grafih
 - Kompatibilne topologije na dvodelnih grafih
 - Obstoj kompatibilne topologije na grafu
 - Celični kompleksi

TODO

Delna urejenost \longrightarrow Končna topologija \longrightarrow Celični kompleks

NO TRANSPARENCY

TODO

FIRST LEFT

TODO

FIRST RIGHT

TOD_O

SECOND LEFT

TOD0

Delna urejenost Končna topologija Celični kompleks

SECOND RIGHT

- Uvod
 - Motivacija
 - Teoretične osnove
- Končne topologije, delne urejenosti in celični kompleks
 - Povezava končnih topologij in delnih urejenosti
 - Simplicialni kompleksi
 - Povezava topoloških prostorov in simplicialnih kompleksov
- Oigitalni prostori
 - Topologije na grafih
 - Kompatibilne topologije na dvodelnih grafih
 - Obstoj kompatibilne topologije na grafu
 - Celični kompleksi

Outline