FUNCIÓN DELTA -PROPIEDADES

irlamn@uni.edu.pe

INTRODUCCION A LA TEORIA DE DISTRIBUCIONES MEDIANTE LAS FUNCIONES DE PRUEBA

1) La Delta de Dirac como límite de una secuencia.

Consideremos la ec. diferencial lineal inhomogénea $\frac{du}{dt} - au = f(t)$. Desde un punto de vista intuitivo, parecería razonable representar la inhomogeneidad f(t) como una suma de términos impulsivos concentrados en intervalos de tiempo muy pequeños, y obtener luego la solución como suma de las soluciones particulares para cada uno de estos términos. La formalización de esta idea requiere el concepto de *distribución* o función generalizada, que discutiremos a continuación.

Consideremos la función

$$g_{\varepsilon}(x) = \begin{cases} 1/\varepsilon & |x| \le \varepsilon/2 \\ 0 & |x| > \varepsilon/2 \end{cases} \quad \varepsilon > 0$$

Se cumple $\int_{-\infty}^{\infty} g_{\varepsilon}(x) dx = 1 \ \forall \ \varepsilon > 0$. Además, si f es una función continua arbitraria,

$$\int_{-\infty}^{\infty} g_{\varepsilon}(x)f(x)dx = \varepsilon^{-1} \int_{-\varepsilon/2}^{\varepsilon/2} f(x)dx = \frac{F(\varepsilon/2) - F(-\varepsilon/2)}{\varepsilon}$$

donde F es una primitiva de f. Para $\varepsilon \to 0^+$, $g_{\varepsilon}(x)$ estará concentrada cerca del origen y obtenemos

$$\lim_{\varepsilon \to 0^+} \int_{-\infty}^{\infty} g_{\varepsilon}(x) f(x) dx = \lim_{\varepsilon \to 0^+} \frac{F(\varepsilon/2) - F(-\varepsilon/2)}{\varepsilon}$$
$$= F'(0) = f(0)$$

 $\exists \ \forall \ f \ \text{continua en un entorno de } x = 0,$

Podemos entonces definir la distribución o función generalizada $\delta(x)$ (delta de Dirac) como el límite

$$\delta(x) = \lim_{\varepsilon \to 0^+} g_{\varepsilon}(x)$$

que satisface
$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$$

(es
$$0$$
 si $x \neq 0$ y ∞ si $x = 0$)

Se puede encontrar una buena aproximación de la función Delta?. Veamos: Sea

 ε mucho menor que la longitud en la cual f varía apreciablemente. Físicamente, $\delta(x)$ puede interpretarse como la densidad lineal de masa correspondiente a una masa puntual de magnitud 1 localizada en el origen.

Notemos también que si $ab \neq 0$ y a < b,

$$\int_{a}^{b} \delta(x)f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b} g_{\varepsilon}(x)f(x)dx = \begin{cases} f(0) & a < 0 < b \\ 0 & a < b < 0 \text{ o} \end{cases}$$

Consideraremos en lo sucesivo funciones de prueba f, que son funciones acotadas y derivables a cualquier orden, y que se anulan fuera de un intervalo finito I (recordemos ante todo que tales funciones existen: si f(x) = 0 para $x \le 0$ y $x \ge 1$, y $f(x) = e^{-1/x^2}e^{-1/(1-x)^2}$ para |x| < 1, f es derivable a cualquier orden en x = 0 y x = 1). En tal caso existen muchas otras funciones $g_{\varepsilon}(x)$ que convergen a $\delta(x)$, que pueden ser derivables a cualquier orden. Un conocido ejemplo es

La función delta δ (x) está definida por lím $_{\epsilon \to 0} \delta$ (\varepsilon) (x).

Aproximación de la función Delta de Dirac

$$\delta(x) = \lim_{\varepsilon \to 0^+} \frac{e^{-x^2/2\varepsilon^2}}{\sqrt{2\pi}\varepsilon}$$

En efecto,
$$\frac{1}{\sqrt{2\pi}\varepsilon} \int_{-\infty}^{\infty} e^{-x^2/2\varepsilon^2} dx = 1 \ \forall \varepsilon > 0 \ y$$

$$\lim_{\varepsilon \to 0^+} \frac{1}{\sqrt{2\pi}\varepsilon} \int_{-\infty}^{\infty} e^{-x^2/2\varepsilon^2} f(x) dx = f(0)$$

La gráfica de $g_{\varepsilon}(x) = \frac{1}{\sqrt{2\pi\varepsilon}}e^{-x^2/2\varepsilon^2}$ es la "campana" de Gauss, con área 1 y dispersión $\int_{-\infty}^{\infty} g_{\varepsilon}(x)x^2dx = \varepsilon^2$. Para $\varepsilon \to 0^+$, $g_{\varepsilon}(x)$ se concentra alrededor de x = 0, pero mantiene su área constante.

En general, si $g_{\varepsilon}(x)$ está definida $\forall x \in \Re \ y \varepsilon > 0$, diremos que

$$\lim_{\varepsilon \to 0^+} g_{\varepsilon}(x) = \delta(x) \sin \lim_{\varepsilon \to 0^+} \int_{-\infty}^{\infty} g_{\varepsilon}(x) f(x) dx = f(0)$$

 \forall función de prueba f.

Por ejemplo, si $g(x) \ge 0 \ \forall x \ y \int_{-\infty}^{\infty} g(x) dx = 1 \Rightarrow$

$$\lim_{\varepsilon \to 0^+} \varepsilon^{-1} g(x/\varepsilon) = \delta(x)$$

En efecto, si
$$\varepsilon > 0$$
, $\varepsilon^{-1} \int_{-\infty}^{\infty} g(x/\varepsilon) dx = \int_{-\infty}^{\infty} g(u) du = 1$ y $\lim_{\varepsilon \to 0^{+}} \varepsilon^{-1} \int_{a}^{b} g(x/\varepsilon) dx = \lim_{\varepsilon \to 0^{+}} \int_{a/\varepsilon}^{b/\varepsilon} g(u) du = 1$ $\{\int_{0}^{1} a < 0 < b < 0 < 0 < a < b}$. Por lo tanto, si $|f(x)| \le M \ \forall x \ y \ ab > 0$, $\lim_{\varepsilon \to 0^{+}} \varepsilon^{-1} |\int_{a}^{b} g(x/\varepsilon) f(x) dx| \le 1$

 $M\lim_{\varepsilon\to 0^+} \varepsilon^{-1} \int_a^b g(x/\varepsilon) dx = 0$. De este modo, si t>0 y f es continua y acotada,

$$I_f \equiv \lim_{\varepsilon \to 0^+} \varepsilon^{-1} \int_{-\infty}^{\infty} g(x/\varepsilon) f(x) dx = \lim_{\varepsilon \to 0^+} \varepsilon^{-1} \int_{-t}^{t} g(x/\varepsilon) f(x) dx$$

Si $m_t \le f(x) \le M_t$ para $x \in [-t, t] \Rightarrow m_t \le I_f \le M_t \ \forall t > 0$, pero por continuidad de f, $\lim_{t \to 0^+} M_t = \lim_{t \to 0^+} m_t = f(0)$, por lo que $I_f = f(0)$.

Propiedades (ver aquí)

https://www.youtube.com/watch?v=bq3uxH7op18

Otro ejemplo muy utilizado es también

$$\delta(x) = -\frac{1}{\pi} \lim_{\varepsilon \to 0+} \operatorname{Im}\left[\frac{1}{x + i\varepsilon}\right] = \frac{1}{\pi} \lim_{\varepsilon \to 0^+} \frac{\varepsilon}{x^2 + \varepsilon^2}$$

$$\delta(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0^+} \varepsilon \frac{\sin^2(x/\varepsilon)}{x^2}$$

que corresponden a $g(x) = \frac{1}{\pi(1+x^2)}$ y $g(x) = \frac{\sin^2(x)}{\pi x^2}$. No obstante, existen también funciones g(x) no siempre positivas que satisfacen $\lim_{\varepsilon \to 0^+} \varepsilon^{-1} g(x/\varepsilon) = \delta(x)$. Por ejemplo la fórmula de Dirichlet,

$$\lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \frac{\sin(x/\varepsilon)}{x} dx = f(0)$$

corresponde a $g(x) = \sin(x)/(\pi x)$ e implica

$$\lim_{\varepsilon \to 0^+} \frac{\sin(x/\varepsilon)}{\pi x} = \delta(x)$$

aún cuando $\lim_{\varepsilon \to 0^+} \sin(x/\varepsilon)/x$ es no nulo (no existe) para $x \neq 0$ (sólo es nulo el promedio: $\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon t} \int_{x_0 - t}^{x_0 + t} g(x/\varepsilon) dx = 0$ si $0 < t < |x_0|$).

2) Propiedades básicas de la delta.

La composición de $\delta(x)$ con otras funciones se define de modo tal que se sigan cumpliendo las reglas usuales de integración. Por ejemplo,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) - x_0 f(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) + x_0 f(u) du = f(x_0)$$

Asimismo, si $a \neq 0$,

$$\int_{-\infty}^{\infty} \delta(ax)f(x)dx = \frac{1}{|a|} \int_{-\infty}^{\infty} \delta(u)f(\frac{u}{a})du = \frac{1}{|a|}f(0)$$

por lo que

$$\delta(ax) = \frac{1}{|a|}\delta(x), \quad a \neq 0$$

En particular, $\delta(-x) = \delta(x)$.

Para una función invertible y derivable g(x) que posee una sóla raíz x_1 ($g(x_1) = 0$), con $g'(x_1) \neq 0$, obtenemos

$$\int_{-\infty}^{\infty} \delta(g(x))f(x)dx = \int_{r_{-}}^{r_{+}} \delta(u) \frac{f(g^{-1}(u))}{|g'(g^{-1}(u))|} du = \frac{f(x_{1})}{|g'(x_{1})|}$$

donde $(r_-, r_+) \subset$ en la imagen $g(\Re)$, con $r_{\pm} \gtrsim 0$ y $g^{-1}(0) = x_1$. Por lo tanto, en este caso,

$$\delta(g(x)) = \frac{\delta(x - x_1)}{|g'(x_1)|}$$

En general, para una función g(x) derivable con raíces aisladas x_n y $g'(x_n) \neq 0$ tenemos

$$\delta(g(x)) = \sum_{n} \frac{\delta(x - x_n)}{|g'(x_n)|}$$

Sin embargo $\delta(x^2)$ y en general, $\delta(x^n)$, n > 1, no están definidas para funciones de prueba arbitrarias. Tampoco lo está el producto $\delta(x)\delta(x) = [\delta(x)]^2$. Notemos también que si g(x)

es una función de prueba,

$$g(x)\delta(x) = g(0)\delta(x)$$

Derivadas de $\delta(x)$. Si queremos que se siga cumpliendo la integración por partes, podemos definir también la derivada $\delta'(x)$ t.q. (recordar que f se anula fuera de un intervalo finito)

$$\int_{-\infty}^{\infty} \delta'(x)f(x)dx = -\int_{-\infty}^{\infty} \delta(x)f'(x)dx = -f'(0)$$

y en general, la derivada enésima $\delta^{(n)}(x)$ t.q.

$$\int_{-\infty}^{\infty} \delta^{(n)}(x)f(x)dx = (-1)^n f^{(n)}(0)$$

De este modo,

$$f'(x_0) = -\int_{-\infty}^{\infty} \delta'(x - x_0) f(x) dx$$

$$f^{(n)}(x_0) = (-1)^n \int_{-\infty}^{\infty} \delta^{(n)}(x - x_0) f(x) dx$$

Notemos también que si $a \neq 0$,

$$\delta^{(n)}(ax) = \frac{1}{a^n|a|}\delta^{(n)}(x)$$

En particular, $\delta^{(n)}(-x) = (-1)^n \delta^{(n)}(x)$.

Ejercicios: Probar que

1.
$$g(x)\delta'(x)=g(0)\delta'(x)-g'(0)\delta(x),$$

2. $[\delta(x)g(x)]'=\delta'(x)g(x)+\delta(x)g'(x)=g(0)\delta'(x),$
3. $[\delta(g(x))]'=\delta'(g(x))g'(x).$

4. Dada la función de Heaviside

$$H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$H'(x) = \delta(x)$$

Mostraremos que efectivamente $H'(x) = \delta(x)$ (lo que es intuitivamente razonable) de modo que H(x) representa la "primitiva" de $\delta(x)$, al menos en forma simbólica. En efecto, para una función de prueba f(x), obtenemos, integrando por partes,

$$\int_{-\infty}^{\infty} H'(x)f(x)dx = -\int_{-\infty}^{\infty} H(x)f'(x)dx = -\int_{0}^{\infty} f'(x)dx = f(0)$$

Mediante H(x) podemos escribir una integral en un intervalo finito como una integral en toda la recta, donde los límites quedan determinados por el integrando:

$$\int_{-\infty}^{b} f(x)dx = \int_{-\infty}^{\infty} H(b-x)f(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{-\infty}^{\infty} [H(b-x) - H(a-x)]f(x)dx$$