Likelihood

Likelihood

가능도(可能度, 영어: likelihood) 또는 우도(尤度)는 확률 분포의 모수가, 어떤 확률변수의 표집값과 일관되는 정도를 나타내는 값이다. (출처: 위키백과)

약간의 왜곡이 있는 표현이지만, 관측된 데이터가 주어졌을 때 어떤 수가 모수일 확률이라고 생각하면 편하다.

(원래 모수는 상수이지만 모수를 하나의 변수라고 생각하고 접근하는 방식이라고 생각하자.)

MLE(Maximum Likelihood Estimation)

Likelihood를 최대화하는 값을 모수의 추정값으로 바라보는 것.

Probability VS Likelihood

Probability란 모수가 주어졌을 때, 표본의 등장 확률. Likelihood란 표본이 주어졌을 때, 모수의 확률.

간단하게 표현하면 Probability: $P(X|\theta)$ Likelihood: $L(\theta|X)$

Likelihood의 계산

Qusetion

동전을 4번 던져서 앞면이 나오는 횟수를 X라고 하자. 4번의 시행 중 앞면은 총 3번 나왔다. 이때 $p=rac{1}{2}$ 의 Likelihood는?

Solution

이항분포의 PMF(Probability Mass Function):

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$

현재 n=4, x=3, p=?

$$L(P = p|X = 3) = {4 \choose 3}p^3(1-p)^1$$

p를 x축에 놓고 위 식의 그래프를 그려보면

위 수식에 $p=rac{1}{2}$ 을 대입하면 답을 구할 수 있다.

해당 풀이를 잘 보면 하나 더 알 수 있는 것.

$$L(\theta|X) = P(X|\theta)$$

연속확률 분포에서는 조금 오해의 소지가 있는 표현이지만 이렇게 이해해도 크게 상관 없다.

MLE의 계산

Question

위 경우에 MLE를 통해 Likelihood를 최대화하는 모수 p를 계산해보자.

Solution

$$L(P=p|X=3) = {4 \choose 3} p^3 (1-p)^1$$

위 식을 최대화하는 p를 찾으면 된다. 어떻게? 위 수식의 미분값을 0으로 만드는 p를 찾으면 된다.

$$\frac{\mathrm{d}}{\mathrm{d}p} \Big(\binom{4}{3} p^3 (1-p)^1 \Big) = 0$$

$$rac{\mathrm{d}}{\mathrm{d}p}\Big(rac{1}{4}(p^3-p^4)\Big)=0$$

$$p^2(3-4p)=0$$

$$\therefore p = \frac{3}{4}$$

Sample이 여러개일 때 Likelihood & MLE

위 예시에서는 관측값이 오직 1개였다. (X=3) 하지만 현실에서 샘플을 하나만 뽑는 일은 거의 없다.

샘플을 여러개 뽑았을 때의 Likelihood를 Gaussian(Normal) Distribution에서 계산해보자

Question

A학교 학생들의 시험점수 $X \sim N(\mu, \sigma^2)$ 이라고 알려져있다. 10명 학생의 점수를 무작위하게 뽑았을 때 그 점수가 다음과 같았다.

 $\{5, 40, 60, 45, 70, 85, 90, 100, 30, 80\}$

이 때, MLE로 계산한 μ 의 추정값은?

Solution (1)

PDF(Probability Density Function) of Gaussian Distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

앞선 이항분포 문제의 풀이처럼 접근한다면 x에 주어진 표본 10개 값을 모두 넣고 해당 값들을 모두 곱한 값을 최대로 만드는 μ 를 찾으면 된다. (곱하는 이유는 표본의 추출은 독립을 가정하기 때문.)

$$\prod_{x \in X} \left(\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \right)$$

where $X = \{5, 40, 60, 45, 70, 85, 90, 100, 30, 80\}$

이걸 μ 에 대해 편미분한다? 계산이 너무 힘들다.

Solution (2) - Negative Log Likelihood

위 식에 마이너스와 로그를 취해보자. 그리고 해당 값을 최소로 만드는 값을 찾으면 된다.

$$-\ln\left(\prod_{x\in X}\left(\frac{1}{\sigma\sqrt{2\pi}}\exp\Big(-\frac{(x-\mu)^2}{2\sigma^2}\Big)\right)$$

$$=-\sum_{x\in X}\ln\left(rac{1}{\sigma\sqrt{2\pi}}
ight)+\sum_{x\in X}rac{(x-\mu)^2}{2\sigma^2}$$

$$\frac{\partial}{\partial \mu} \left(-\sum_{x \in X} \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right) + \sum_{x \in X} \frac{(x-\mu)^2}{2\sigma^2} \right) = 0$$

$$-\sum_{x\in X}\frac{(x-\mu)}{\sigma^2}=0$$

$$\sum_{x \in X} (x - \mu) = 0$$

$$\therefore \mu = \overline{X}$$

결국 모수 μ 의 추정값은 표본평균 \overline{X} 이다.

정규분포에서 MLE를 통한 모수 μ 의 추정값은 표본 X의 평균임을 증명했다.

(중요한 것은 결과 ($\mu = \overline{X}$) 가 아니라 과정.)

여기까지 이해했다면 딥러닝에서 흔히 사용하는 NLLLoss 가 어떤 생각으로 만들어졌는지 알 수 있다.

주의

실제 접하게 될 대부분의 data sample은 $x \in \mathbb{R}$ 이 아니다.

보통 sample은 $x \in \mathbb{R}^n$ 이다.

즉 x는 Joint Distribution을 따르는 경우가 대부분이고 달라지는 점이 조금 생길 수 있다.

또한 given 되는 값이 모수만이 아닐 수도 있다.

하지만 대부분 위 내용을 통해 이해 가능하다.