

Water storage capacity of compliant plant leaves

Arnaud REMI & Victor MANGELEER

Under the supervision of Tristan GILET

Introduction

Goal of the study?

- Establish a relationship that links leaf storage capacity to leaf compliance
- Verify it through experiments

Which leaves?

→ Compliant petiole and rigid planar blade

What is the storage capacity?

$$\mu$$
 = Maximum volume of water per surface area \sim Mean height of water on the leaf

Model

Parameters involved

- μ = storage capacity
- k = leaf torsional stiffness
- m = leaf mass
- l = leaf lever arm
- S = leaf surface
- \tilde{l} = drops lever arm
- g = gravity acceleration
- ρ = water density
- σ = surface tension
- V = drop volume

2D linear torsion spring model

Petiole clamped horizontally

$$\frac{\rho\mu_{\star}S}{m} = \frac{\alpha_{\star}}{\cos(\alpha_{\star})} \frac{k}{mlg} - 1$$

Eq. 1: Torque balance at roll off for a uniform leaf loading $(\tilde{l} = l)$.

Key parameters

Ratio between petiole torsional stiffness and blade torque

Roll-off inclination angle, the angle at which the drops slip

Dimensionless fluid mass

Experimental approach

1 mm

Fig. 1: Experimental setup for the roll-off angle measurement.

Roll-off angle measurement

- Droplet placed on a rotative support (cf. Fig. 1)
- → Roll-off angle measured
- → Experiment repeated for different droplet volumes

Model verification

- Droplets are loaded quasistatically on an artificial leaf made of Kapton (cf. Fig. 2)
- → Experiment stops when the first droplet slips
- → Storage capacity deduced from mass measurement

Results

Model validation

Fig. 3: Validation of linear torsion spring model.

Petiole torque deduced from $m \cdot l \cdot g \cdot \cos(\alpha)$ measurement

→ Artificial leaves behave like linear torsion spring

Roll-off angle measurement

Fig. 4: $\sin(\alpha_{\star})$ vs. volume of a water droplet on kapton.

- $\sin(\alpha_{\star}) = A^2 \cdot V^{-2/3}, A \approx \sqrt{6} \text{ [mm]}$
 - \rightarrow Valid for $V > V_S \approx 15 [\mu L]$
- $\Delta \alpha_{\star} \gg \Delta V$
 - → Droplet geometry has an influence
- α_{\star} decreases as V increases
 - $\rightarrow \frac{\rho \mu_{\star} S}{m}$ decreases as V increases

Saturation phenomenon $\rightarrow \mu_S = B \cdot V^{1/3} \rightarrow \frac{\rho \mu S}{m} = \min\left(\frac{\rho \mu_\star S}{m}, \frac{\rho \mu_S S}{m}\right)$

Fig. 5: $\frac{\rho\mu S}{m}$ vs. volume of a water droplet on kapton for different values of $\frac{k}{mlg}$.

Maximum capacity and leaf compliance

Defining
$$C = \frac{\rho SAB}{m}$$
 and $x = \frac{\rho \mu_{\text{m}} S}{m}$

$$\Rightarrow \frac{k}{mlg} = \frac{\sqrt{1 - (C/x)^4}}{\sin^{-1}((C/x)^2)} (ABx + 1)$$

- Hemisphere approximation $\rightarrow B \approx 0.47$
- Existence of an optimal volume V such that $\mu_{\star} = \mu_{S} \rightarrow \mu = \mu_{m}$

$$\frac{k}{mlg} \ll 1 \to \frac{\rho \mu_{\rm m} S}{m} \approx C \to \mu_{\rm m} \approx AB$$

$$\frac{k}{mlg} \gg 1 \to \frac{\rho \mu_{\rm m} S}{m} \propto \left(\frac{k}{mlg}\right)^{1/3}$$

Fig. 2: Experimental setup for the validation of the theoretical model.

Conclusion

- The roll-off angle varies with:
 - → The size of the droplets
 - → The geometry of the droplet which may be slightly different even if the volume is constant
- Model verified through experiments

$$\begin{array}{c}
\frac{\rho \mu_{\star} S}{m} \searrow \text{as } V \nearrow \\
\frac{\rho \mu_{S} S}{m} \nearrow \text{as } V \nearrow
\end{array}$$

• $\frac{\rho \mu_{\rm m} s}{m}$ lower-bounded, scales with k/mlg

Future work

- Establish $\mu_s(V)$ properly
- Extend the model to non rigid or curved plant leaves