Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2015-16

Ψηφιακή Λογική και Σχεδίαση

(στοιχεία μνήμης και μέθοδοι χρονισμού)

http://di.ionio.gr/~mistral/tp/comparch/

Μ. Στεφανιδάκης

Πέρα από τη συνδυαστική λογική

• Ακολουθιακή λογική

- Βασικά ερωτήματα
 - Πώς εισάγω την έννοια της κατάστασης ενός λογικού τμήματος;
 - Που φυλάσσεται η κατάσταση;
 - Πότε ενημερώνεται;
 - Πώς συγχρονίζονται τα διάφορα τμήματα λογικής;

Ακολουθιακή λογική

• Ακολουθιακή λογική

•

Πότε τελειώνει η τρέχουσα και πότε αρχίζει η επόμενη κατάσταση;

Η έννοια της κατάστασης: οι έξοδοι
 εξαρτώνται από τις εισόδους ΚΑΙ από την προηγούμενη κατάσταση

Χρονισμός σε ακολουθιακή λογική

• Ακολουθιακή λογική

Το clock καθορίζει τη χρονική στιγμή αποθήκευσης στα στοιχεία μνήμης

Χρονισμός στις ακμές του ρολογιού

• Ακολουθιακή λογική

Η είσοδος πρέπει να είναι σταθερή λίγο **πριν** (setup) και λίγο **μετά** (hold) την ακμή του ρολογιού

- Η απλούστερη λύση: αποθήκευση στην ανερχόμενη (ή κατερχόμενη) ακμή του ρολογιού
 - Τη στιγμή αυτή η είσοδος αποθηκεύεται στο στοιχείο μνήμης
 - Και εμφανίζεται στην έξοδο μετά από την καθυστέρηση διάδοσης του στοιχείου μνήμης.

Χρονισμός και διάδοση σημάτων

• Ακολουθιακή λογική

Μπορεί η περίοδος του ρολογιού να γίνει όσο μικρή θέλουμε;

Ανάδραση και στοιχεία μνήμης

• Ακολουθιακή λογική

- Απολύτως επιτρεπτή συνδεσμολογία!
- Λόγω του σήματος ρολογιού δεν
 δημιουργείται πρόβλημα με την
 ανατροφοδότηση του σήματος εξόδου στην είσοδο

Συγχρονισμός τμημάτων

• Ακολουθιακή λογική

- Σύγχρονο σύστημα
 - Κοινή πολιτική χρονισμού
 - Κοινό ρολόι
 - Σχεδίαση τήρησης χρόνων διάδοσης
- Τμήματα με διαφορετικά ρολόγια
 - (ή ασύγχρονες είσοδοι)
 - Αδυναμία τήρησης χρόνων setup hold
 - Τα στοιχεία μνήμης μπορούν να περιέλθουν σε απροσδιόριστη κατάσταση (metastability)
 - Ειδικά κυκλώματα συγχρονισμού

Στοιχεία μνήμης

- Ακολουθιακή λογική
- Στοιχεία μνήμης
- Μαζί με λογικά κυκλώματα
 - Για αποθήκευση ενδιάμεσης κατάστασης μεταξύ συνδυαστικών συναρτήσεων
 - Μικρή χωρητικότητα
 - Παράδειγμα: οι καταχωρητές της ΚΜΕ
- Σε μεγάλες συστοιχίες μνήμης
 - Κύρια μνήμη συστήματος
 - Μεγάλη χωρητικότητα
 - Μεγαλύτερη ολοκλήρωση κυκλωμάτων

Απλά στοιχεία μνήμης χωρίς ρολόι

- Ακολουθιακή λογική
- Στοιχεία μνήμης

S	R	Q	Q'
0	0	Q	Q,
0	1	0	1
1	0	1	0
1	1	\cap	
	T	V	V

Τα S και R δεν επιτρέπεται να είναι ταυτόχρονα '1'

Ο "μανδαλωτής" (latch)

- Ακολουθιακή λογική
- Στοιχεία μνήμης

Το latch περνά την είσοδο στην έξοδο ανάλογα με τη στάθμη του G

D	G	Q	Q'
X	0	Q	Q,
0	1	0	1
1	1	1	0

D flip-flop

- Ακολουθιακή λογική
- Στοιχεία μνήμης

) Σε ποια ακμή του CLK αποθηκεύεται η είσοδος D; Αποθήκευση εισόδου στην ακμή του σήματος ρολογιού

Καταχωρητές (registers)

- Ακολουθιακή λογική
- Στοιχεία μνήμης

Ποιο το μήκος της λέξης που αποθηκεύεται σε έναν καταχωρητή;

Ομάδα στοιχείων flip-flop με κοινό σήμα ρολογιού αποθήκευση "λέξης" n bits (n = 8, 16, 32, 64...)

Register file

- Ακολουθιακή λογική
- Στοιχεία μνήμης
- Register File

Οι σύγχρονες ΚΜΕ διαθέτουν τουλάχιστον 32 καταχωρητές γενικού σκοπού

- Ομάδα καταχωρητών, βασικό στοιχείο μιας ΚΜΕ
- Ανάγνωση και εγγραφή
- Δυνατότητα ταυτόχρονης λειτουργίας σε περισσότερους από έναν καταχωρητές

Register file: ανάγνωση

- Ακολουθιακή λογική
- Στοιχεία μνήμης
- Register File

Πώς μπορούμε να διαβάσουμε ταυτόχρονα 2 καταχωρητές (σε διαφορετικές εξόδους);

Register file: εγγραφή

- Ακολουθιακή λογική
- Στοιχεία μνήμης
- Register File

Τα δεδομένα προς εγγραφή θα πρέπει να είναι σταθερά κατά τους χρόνους setup και hold!

- Προσοχή: "ακαδημαϊκή" σχεδίαση!
- Το "clock gating" δεν συνιστάται σε πραγματικές εφαρμογές