Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}_{\alpha\beta}$		$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1^{-}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_1^{\#1} +^\alpha$	$\tau_1^{\#2} + \alpha$

ge generators	Multiplicities			8	3	8	9	16
Source constraints/gauge generators	reps	$ \tau_{0+}^{\#2} == 0 $	$ \tau_{0+}^{\#1} == 0 $	$t_1^{\#2}\alpha + 2 ik \sigma_1^{\#2}\alpha == 0$ 3	$t_1^{\#1}{}^{\alpha} == 0$	$t_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$ 3	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$	Total constraints:

$\sigma_{2^{ ext{-}}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$)	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{-}$ αeta_{X}	0	0	$\frac{t_1}{2}$
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
,	$\omega_{2}^{\#1} + \alpha^{eta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0^+}^{\#1}$	$6 k^2 r_3$	0	0	0
	$\omega_0^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{\#2}$ †	$\omega_{0}^{\#1}\dagger$

	_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2} f_{1^{+}\alpha\beta}^{\#1}$		$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1^{-}\alpha}^{^{\#2}}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{\#2}$
$\omega_1^{\scriptscriptstyle\#}$	$^{\pm 1}_+$ † lphaeta	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_1^{\#}$	$^{+2}_{+}$ † $^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_1^{\#}$	$^{+1}_{+}$ † $^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
					4.	<i>†</i> -		
ω	$p_{1}^{\#1} + \alpha$	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>ī kt</u> 3
	$p_1^{\#1} + \alpha$ $p_1^{\#2} + \alpha$	0	0	0	$\frac{k^2 (2r_3 + r_5) + \frac{\iota_1}{6}}{\frac{t_1}{3\sqrt{2}}}$	$ \frac{t_1}{3\sqrt{2}} $ $ \frac{t_1}{3} $		
ω						, , , , , , , , , , , , , , , , , , ,		3

Quadratic (free) action $S_{F} == \iiint (\frac{1}{\epsilon} (-2t_{1} \ \omega_{\kappa\alpha}^{\ \ \prime} - 6t_{1} \ \omega_{\kappa\lambda}^{\ \ \prime} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6$	$12r_3\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega^{\alpha}_{\alpha}-6r_5\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega^{\alpha}_{\kappa}+12r_3\partial_\alpha\omega^{\alpha}_{\alpha}\partial^\kappa\omega^{\beta\kappa}_{\alpha}$	$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} - 12 r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}$	$12 r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - 6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + 24 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^\kappa$	$12 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 3 t_1 \partial^\alpha f_{ \theta \kappa} \partial^\kappa f_{ \alpha}^{\ \theta} - 3 t_1 \partial^\alpha f_{ \kappa \theta} \partial^\kappa f_{ \alpha}^{\ \theta} -$	$3t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + 2t_1\omega_{\kappa\alpha}^{}\partial^{\kappa}f'_{} + 2t_1\omega_{\kappa\lambda}^{}\partial^{\kappa}f'_{} + 4t_1\partial^{\alpha}f_{}$	$2t_1 \partial_{\kappa} f^{\lambda}_{ \lambda} \partial^{\kappa} f^{\prime}_{ \prime} + 12t_1 \omega_{\prime \kappa \theta} \partial^{\kappa} f^{\prime \theta} - 2t_1 \omega_{\prime \alpha}^{ \alpha} \partial^{\kappa} f^{\prime}_{ \kappa} - 2t_1 \omega_{\prime \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} \partial^{\kappa} f^{\prime \kappa}_{ \kappa} + 2t_1 \omega_{\kappa \lambda}^{ \lambda} + 2t_1 $	$3t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + 3t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + 3t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f_{\lambda}^{\theta} - 2t_1 \partial^{\alpha} f^{\lambda}$	$24 r_3 \partial^{\beta} \omega_{,}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - 12 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + 6 r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \rho}$	$12r_3\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}-6r_5\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}))[t,\kappa,y,z]dzdyd$	
---	---	--	---	---	--	---	---	--	---	--

Massive and massless spectra

Unitarity conditions

 $r_5 < -2 r_3 \&\& t_1 < 0 \mid\mid t_1 > 0$