Apprenticeship Learning via Inverse Reinforcement Learning

Daniel, Richard, and Omar

March 2019

What is the Gap?

- ▶ In MDPs, we usually know the reward function
- ▶ For some tasks, it is hard to formulate the reward function
- ► We can use behavioural cloning, but the biggest weakness is under-performance in new situations

Example

Teaching your kid how to drive

Summary

Introduction

- ▶ Algorithm which generates reward function to explain expert trajectories
- ▶ Reward function is compatible with arbitrary RL algorithms
- ► Algorithm terminates in finite time with exact information about the MDP

$$n = O\left(\frac{k}{(1-\gamma)^2\epsilon^2}\log\frac{k}{(1-\gamma)\epsilon}\right)$$

Performance guaranteed to be within a margin of the expert's demonstrations

Variables of Interest

Inputs

- ▶ State Set S
- ► Action Set A
- ▶ Discount Factor $\gamma \in [0, 1)$
- ▶ Initial-state distribution D
- ▶ Feature vector $\phi: S \to [0,1]^k$, where k is the number of features

Assumptions

- lacktriangle Reward is a linear combination of the ϕ and is bounded by ± 1
- ▶ Sum of absolute values of w_i must satisfy $||w^*||_1 \le 1$

Unknowns

- ▶ Weight of each feature $w_i \in \mathbb{R}$
- ▶ True Reward Function $R^*(s) = w^{*\intercal} \cdot \phi(s)$

$$R^* = \underbrace{\begin{bmatrix} W_{\text{Collided Car}} \\ W_{\text{Middle Lane}} \\ \vdots \\ W_{\text{Desire K}} \end{bmatrix}}_{\text{w*}} \cdot \underbrace{\begin{bmatrix} X_{\text{Collided Car}} \\ X_{\text{Middle Lane}} \\ \vdots \\ X_{\text{Desire K}} \end{bmatrix}}_{\phi(s)}$$

Feature Expectations

$$\mathbb{E}_{s_0 \sim D}[V^{\pi}(s_0)] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi\right]$$
$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t w \cdot \phi(s_t) | \pi\right]$$
$$= w \cdot \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi\right]$$

We define the expected discounted accumulated feature value vector as:

$$\mu(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | \pi\right] \in \mathbb{R}^{k}$$

Goal

Find a policy $\tilde{\pi}$ whose performance is within ϵ of the expert's, given feature vector ϕ , and we know the expert's feature expectation μ_E

Algorithm

- ▶ Recall it is assumed that ||R(x)|| is bounded by 1, $\phi: S \to [0,1]^k$, and $||w||_1 \le 1$
- ► Find policy $\tilde{\pi}$ whose performance is close to that of the expert's, on the unknown reward $R^* = w^{*T} \phi$
- ▶ Note that $|x^Ty| \le ||x||_2 ||y||_2$, and $||w||_2 \le ||w||_1 \le 1$

$$|E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi_{E}] - E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \tilde{\pi}]|$$

$$= |w^{T} \mu(\tilde{\pi}) - w^{T} \mu_{E}|$$

$$\leq ||w||_{2} ||\mu(\tilde{\pi}) - \mu_{E}||_{2}$$

$$\leq 1 \cdot \epsilon = \epsilon$$

Algorithm 1

- 1: Randomly pick some policy $\pi^{(0)}$, compute (or approximate via Monte Carlo) $\mu^{(0)} = \mu(\pi^{(0)})$, set i=1
- 2: **for** i = 1 to *N* **do**
- 3:

$$max_{t,w}t$$

 $s.t. \quad w^{T}\mu_{E} \geq w^{T}\mu^{(j)} + t, j = 0, ..., i - 1$
 $||w||_{2} \leq 1$

- 4: If $t^{(i)} \leq \epsilon$, then terminate
- 5: Using the RL algorithm, compute the optimal policy $\pi^{(i)}$ for the MDP using rewards $R = (w^{(i)})^T \phi$.
- 6: Compute (or estimate) $\mu^{(i)} = \mu(\pi^{(i)})$
- 7: end for

Algorithm 1: Max Margin Method

Algorithm 2

10: end for

Algorithm 2: Projection Method - Replace step 2 of Max Margin

Termination Point for Known μ_E

▶ If the expert's feature expectations vector is known, the algorithm will terminate with $t^{(i)} \le \epsilon$ after at most:

$$n = O\left(\frac{k}{(1-\gamma)^2\epsilon^2}\log\frac{k}{(1-\gamma)\epsilon}\right)$$

When μ_E is Unknown

- ▶ We only have access to expert's policy π_E . Can we estimate μ_E ?
- ► Given *m* trajectories generated by the expert or using Monte Carlo, we define the estimated feature expectation of the expert as:

$$\hat{\mu_E} = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{\infty} \gamma^t \phi(s_t^{(i)})$$

For the algorithm to terminate in the same number of time-steps as in the previous slide with probability $1-\delta$, the number of trajectories needs to be:

$$m \ge \frac{2k}{(\epsilon(1-\gamma))^2} \log \frac{2k}{\delta}$$

OpenAl Gym Cartpole Example

▶ Observation Space

- Cart Position
- Cart Velocity
- ► Pole Angle
- Pole Velocity at Tip

► Action Space

- ▶ Push Cart To Left
- ► Push Cart to Right

► Episode Termination

- ▶ Pole Angle is more than 12
- center of the cart reaches the edge of the display
- ▶ Episode length is greater than 200
- ▶ **Reward:** 1 for each step Taken

Tabular Q-Learning

- Used traditional Q-learning with tabular form
- Discretized observations and encoded into states
- Non-linear mapping of observation into features
- Training example: https://youtu.be/Wd1xfNNo9kc
- ► Google Colab Code: https://colab. research.google.com/drive/ 1Tmc5fPHP9JOs-vQukLDzRywe47BNni37

State	Action: 0	Action: 1
0001	0.3824	0.7245
0002	0	0
:		
9998	3.4252	0.2341
9999	-0.1234	0.2452

Figure: Q-Table

Tabular Q-Learning - Performance

Figure: Performance of tabular Q-learning on cart-pole task

Tabular Q-Learning

- Reach similar performance to expert in small number of iterations
- Each student performs consistently through the episodes
- Consistent performance from students to students
- Difficult to extend to high dimension observation space

Figure: Policy progress of tabular

Double Deep Q Network

- Multi Layer Perceptron to approximate Q function
- Double Q formulation to reduce Q function bias
- Determine if method is still viable for noisy approximators
- Tuned reward function in order to aid convergence
- ► Training example: https://youtu.be/COAyi4-V1Ew

Double Deep Q Network - Performance

Figure: Performance of DDQN on cart-pole task

Double Deep Q Network

- MLP able to reach similar performance to expert
- Imperative to follow authors suggestion to examine the real performance of students
- Steady convergence of the models to the expert does not mean steady performance gains

Figure: Policy progress of DDQN

Contributions

- Ability to define reward function from examples
- ▶ Worst case number of iterations, n, of algorithm with known μ_E

$$n = O\left(\frac{k}{(1-\gamma)^2 \epsilon^2} \log \frac{k}{(1-\gamma)\epsilon}\right)$$

▶ Number of expert samples, m for $\hat{\mu}_F$ in order to gain convergence after n iterations with probability p

$$m \ge \frac{2k}{(\epsilon(1-\gamma))^2} \log \frac{2k}{\delta}$$

Contributions

- Strong empirical results show usability and robustness
- Excellent starting point to extend existing imitation learning algorithms

Figure: Using simulator defined in [2], can extend end to end training with learned reward function

Criticisms

- ► Cost of expert samples can be high for tasks requiring experts
- ► Feature mean requires full distribution support
 - Difficult for high dimensional input
 - Random starts not feasible in real world
- Suggested policy optimization over convex hull not practical
- ► Linear reward function is very restrictive
 - No clear indication on extension to non-linear case
 - ▶ Average feature results no longer applicable in non-linear cases
- Alternative algorithms take into account many of these issues.

Criticisms

- ▶ Feature selection is difficult.
 - Convolutional Networks are not clearly applicable
 - ► Tuning basis functions / feature functions is expensive
- Overall algorithm very expensive bounds indicate how many times an RL agent must be fully retrained

W

Conclusion

- ▶ Method of apprenticeship learning based on inverse RL
- ► Algorithm converges in a small number of iterations
- ► Policy found will have comparable to the expert performance within a margin
- A couple of practical examples we developed based on the algorithm

References I

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, "End to end learning for self-driving cars," *CoRR*, vol. abs/1604.07316, 2016. [Online]. Available: http://arxiv.org/abs/1604.07316

http://doi.acm.org/10.1145/1015330.1015430