

Model Optimization and Tuning Phase Template

Date	27 October 2024
Team ID	739949
Project Title	Bird Species Classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
Model 1	history = model.fit(train_generator, validation_data=val_generator, epochs=10 # Adjust the number of epochs as needed) Epoch 1/10 /usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDatas selfwarn_if_super_not_called() 112/112


```
from tensorflow.keras import layers, models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(210, activation='softmax'))
model.summary()
/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an
super()._init_(activity_regularizer=activity_regularizer, **kwargs)
Model: "sequential 2"
  Layer (type)
                                          Output Shape
                                                                                 Param #
  conv2d_3 (Conv2D)
                                          (None, 222, 222, 32)
                                                                                     896
  max_pooling2d_2 (MaxPooling2D)
                                          (None, 111, 111, 32)
  conv2d_4 (Conv2D)
                                          (None, 109, 109, 64)
                                                                                  18,496
  max_pooling2d_3 (MaxPooling2D)
                                          (None, 54, 54, 64)
                                                                                       0
  flatten_1 (Flatten)
                                          (None, 186624)
                                                                                       0
                                                                              23,888,000
  dense_3 (Dense)
                                          (None, 128)
  dropout_1 (Dropout)
                                          (None, 128)
                                                                                       0
  dense_4 (Dense)
                                          (None, 210)
                                                                                  27,090
 import os
 # Path to the train and validation directories
 train_dir = '/content/drive/MyDrive/Bird Species Classification/manasa/train'
 val_dir = '/content/drive/MyDrive/Bird Species Classification/manasa/val'
 # Check the structure
 print("Training Classes:", os.listdir(train_dir))
 print("Validation Classes:", os.listdir(val_dir))
Training Classes: ['002.Laysan_Albatross', '001.Black_footed_Albatross', '003.Sooty_Albatross', '004.Gr Validation Classes: ['002.Laysan_Albatross', '001.Black_footed_Albatross', '003.Sooty_Albatross', '004.Gr
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	Preprocessing: Resizing and Normalization
Model	Data Augmentation: Random rotation, flipping, zooming
	Loss Function: Categorical Crossentropy

Optimizer: Adam Optimizer

Learning Rate Scheduler: ReduceLROnPlateau

Epochs 10

Batch Size: 32

Evaluation Metric: Accuracy