

Data Structure and Algorithms Design

Vincent Chau (周)

Summary

- Divide and Conquer √
- Dynamic programming √
- Greedy Algorithm
- Tree Structure

Greedy Algorithm

Greedy Algorithm Concept

- 1. A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems
- 2. The algorithm makes the optimal choice at each step as it attempts to find the overall optimal way to solve the entire problem
- 3. It usually does not revoke former decisions
- 4. Fast running time

- Weight capacity K
- Set of n items. Each item i has
 - weight w_i
 - value v_i

Goal: find subset of items such that

- total weight is less than K
- total value is maximized

0-1 Knapsack problem

Weight capacity K=25

item i	weight w _i	value v _i
1	22	12
2	10	9
3	9	9
4	7	6

Running time:

Recall that running time of DP is $2 \times K \times n = 2 \times 25 \times 4$

Improvement?

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Change order of items: sort by decreasing ratio v_i/w_i

Running time:

How bad it is?

Weight capacity K=25

item i	weight w _i	value v _i
1		
2		
3		
4		

Change order of items: sort by decreasing ratio v_i/w_i

```
S ← Ø; capacity ← 0;
for i = 1,...,n:
    | if w<sub>i</sub> + capacity ≤ K
    | S ← S ∪ {i}
    | capacity ← w<sub>i</sub> + capacity
    end if
end for
return S
```


How bad it is?

Weight capacity K=25

item i	weight w _i	value v _i
1	1	1
2	25	24.9999

Change order of items: sort by decreasing ratio v_i/w_i

```
S ← Ø; capacity ← 0;
for i = 1,...,n:
    if w<sub>i</sub> + capacity ≤ K
        | S ← S ∪ {i}
        | capacity ← w<sub>i</sub> + capacity
    end if
end for
return S
```


Fractional Knapsack

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Change order of items: sort by decreasing ratio v_i/w_i

```
S \leftarrow \emptyset; capacity \leftarrow 0;
for i = 1,...,n:
end for
return S
                       Take (K-capacity)/wi
                       of item i
```

Can choose a fraction of an item

A Special Case of Knapsack

Weight capacity K=3

item i	weight w _i	value v _i
1	1	12
2	1	9
3	1	9
4	1	6

Change order of items: sort by decreasing vi

$$w_i = 1 \ \forall i = 1, ..., n$$

This greedy algorithm is optimal for this special case

Vertex Cover

- Given a graph G=(V,E), find a subset S of vertices such that every edge in E
 has one endpoint in S
- and such that |S| is minimal
- Application: camera placement to cover all edges

This problem is NP-hard, it is unlikely to get a polynomial time algorithm

Vertex Cover

```
Input: G = (V, E)
C \leftarrow \emptyset
E' \leftarrow G.E
while E' \neq \emptyset:
     let (u,v) be an arbitrary edge of E'
    C = C \cup \{u, v\}
     remove from E^\prime every edge incident on either u or v
end while
return C
```


How bad is this algorithm?

Each edge has one of its endpoint in C

The algorithm may choose both

C is at most 2 times as large as the optimal vertex cover

How about special cases of graph?

Path


```
Input: G = (V, E)
C \leftarrow \varnothing
E' \leftarrow G.E
while E' \neq \varnothing:

let (u, v) be an arbitrary edge of E' such that u is a vertex of degree 1
C = C \cup \{v\}
remove from E' every edge incident on vertex v
end while
return C
Other special cases of graph?
```


Tree


```
Input: G = (V, E)
C \leftarrow \emptyset
E' \leftarrow G \cdot E
while E' \neq \emptyset:
```

let (u,v) be an arbitrary edge of E' such that u is a vertex of degree 1 $C=C\cup\{v\}$ remove from E' every edge incident on vertex v end while return C

Cycle

Cycle of size n: P_n

- all vertices have degree 2
- has *n* edges
- is connected

Optimal solution of the Vertex Cover has $\lceil n/2 \rceil$ vertices

Complete graph

Complete graph of size n: K_n

has edge between every pair of vertices

• has
$$\frac{n(n-1)}{2}$$
 edges

Optimal solution of the Vertex Cover has n-1 vertices

Vertex Cover Summary

- NP-hard problem for general case
- 2-approximation greedy algorithm
- optimal greedy algorithm for special class of graphs:
 - Tree (Path)
 - Cycle
 - Complete graph

Graph Coloring Problem

- Given a graph G(V,E)
- Color (Label) the vertices such that:
 - two adjacent vertices does not have the same color
 - use the minimum number of colors

NP-hard problem

Greedy Algorithm for Graph Coloring

```
Input: G = (V, E)

color[v] \leftarrow 0 for v in V

for each vertex v in V:

color[v] \leftarrow next_color_available(v,color,E)

end for

return color
```



```
next_color_available(v,color,E): S \leftarrow \emptyset, i \leftarrow 1 for each edge (u,v) in E:

S \leftarrow S \cup \{color[u]\}
end for while not found:

if i \notin S
color[u]
end if i \leftarrow i + 1
end while return i
```


Path

- 2 colors are enough for this graph
- Worst case of greedy algorithm uses 3 colors

Tree

- 2 colors are enough for this graph
- Worst case of greedy algorithm in this graph uses 4 colors

Cycle

Cycle of size n: P_n

- all vertices have degree 2
- has n edges
- is connected

- 2 colors are enough for cycle of even length
- Worst case of greedy algorithm in this graph uses 3 colors

Cycle

Cycle of size n: P_n

- all vertices have degree 2
- has n edges
- is connected

• 3 colors are enough for cycle of odd length

Bipartite Graph

- Two sets of vertices U and V
- No edges between vertices in U (resp. V)

Properties

- Does not contain odd cycle
- 2 colors are enough for bipartite graphs

Example of bipartite graphs: Path, Even Cycle, Tree

Complete graph

Complete graph of size n: K_n

has edge between every pair of vertices

has
$$\frac{n(n-1)}{2}$$
 edges

• Complete graph needs *n* colors

Interval Graph

One interval ⇔ One vertex

 If two intervals overlap, add an edge between the corresponding vertices

• Remarks: cycle with length ≥4 is not an interval graph

Summary

- Greedy algorithms are fast and simple
- Do not always return the optimal solution
- But can perform well in some case

Exercises

Scheduling problem (1)

Let $E = \{\sigma_1, ..., \sigma_n\}$ be a set of intervals such that for each interval σ_i is defined as follows $\sigma_i = [a_i, b_i)$ with $a_i \le b_i$. A schedule is feasible if for any two intervals σ_a, σ_b we have $\sigma_a \cap \sigma_b = \emptyset$. We consider the profit of a solution as the total length of the interval. If S is feasible, then the profit is $P(S) = \sum_{i \in S} (b_i - a_i)$. The goal is to find a feasible solution S such that

p(S) is maximized.

```
For example, E = \{[0,3), [1,4), [3,7), [8,10)\}

S = \{[0,3), [3,7)\} is a feasible schedule with p(S) = (3-0) + (7-3) = 7

S = \{[0,3), [1,4)\} is not a feasible schedule.
```

- 1. Design a greedy algorithm to select the intervals according to the input
- 2. Is this algorithm optimal? If it is not, find a counter example (bonus: find the worst case of the algorithm)
- 3. Try different order of the inputs and run the greedy algorithm again
- 4. Design a dynamic programming algorithm to solve this problem

Scheduling problem (1)

Data set

- $E = \{[0,3), [1,4), [3,7), [8,10)\}$
- $E = \{[8,10), [1,3), [4,5), [6,7), [9,15), [1,10), [5,8)\}$
- $E = \{[10,19), [13,23), [0,9), [4,19), [6,9), [7,12), [1,14), [15,35)\}$

Scheduling problem (2)

We consider the following scheduling problem. Given a set of n jobs. Each job i has processing time p_i , all available at the beginning.

The goal is to assign jobs on two processors such that the maximum load is minimized.

Example of 5 jobs with processing times $\{5,2,7,2,9\}$

maximum load=16

Scheduling problem (2)

- 1. Design a greedy algorithm to assign jobs to processors
- 2. Is this algorithm optimal? If it is not, find a counter example (bonus: find the worst case of the algorithm)
- 3. Try different order of the inputs and run the greedy algorithm again
- 4. Design a dynamic programming algorithm to solve this problem
- 5. Suppose now we have 3 processors. Answer questions 1-4 again

Scheduling problem (2)

Data set

•
$$E = \{1,1,2,3,7,10,12\}$$

•
$$E = \{5,8,3,1,8,20\}$$

•
$$E = \{2,3,2,3,2\}$$

