Boosting for Unlabelled Data

Steven Abney AT&T Labs-Research

Motivation

- Many classification problems in language, much unlabelled data
- Examples
 - Yarowsky: word-sense disambiguation
 - Blum & Mitchell: web page classification
 - Brin: author-title pairs
 - Collins & Singer: named entity classification
 - Hearst: "is-a" pairs
 - Roark & Charniak: cosiblings in taxonomy
- Holy grail: completely unsupervised language learning

- Like MaxEnt: can use any features
- Don't need constrained ordering
- Don't need independence
- Smoothing is not an issue
- Very resistant to overfitting
- Much more efficient than GIS
- But designed for supervised training

The setting

- Handful of positives, find me more
- Yarowsky: train on seed, label where confident, repeat
- AdaBoost provides confidence scores
- Differs from Yarowsky's, Collins & Singer's setting:
 - Binary
 - Highly skewed distribution
 - Only positives in seed

The Basic Idea

- Assume unlabelled = negative, treat as label noise
- Bayesian image reconstruction
 - Posterior from prior and likelihood (fit)

$$p(\mathbf{y}|\tilde{\mathbf{y}}) \propto p(\mathbf{y}, \tilde{\mathbf{y}}) = p(\mathbf{y})p(\tilde{\mathbf{y}}|\mathbf{y})$$

- Prior from classifier: p(y|x)
- Noise: probability u of being mislabelled

$$p(\tilde{\mathbf{y}}|\mathbf{y}) = \prod_{i} u^{\left[\tilde{y}_{i} \neq y_{i}\right]} (1 - u)^{\left[\tilde{y}_{i} = y_{i}\right]}$$

- AdaBoost doesn't give probabilities
- More general: loss combines classifier and fit components

- ullet Examples ${f x}$; individual example x_i
- ullet Labels ${f y}$; individual label y_i
- ullet Initial ("observed") labels $ilde{\mathbf{y}}$; individual label $ilde{y}_i$
- Predictors ("weak hypotheses") h_k

$$h_k(x) = \begin{cases} +y & \text{if } P(x) \\ -y & \text{otherwise} \end{cases}$$

ullet Prediction for example x_i

$$f(x_i) = \sum_k \alpha_k h_k(x_i)$$

- Predicted label = $sign(f(x_i))$
- Confidence = $|f(x_i)|$

• Measure difficulty (loss) of examples

$$L_c(x_i) = \begin{cases} e^{\text{confidence}} & \text{if prediction is wrong} \\ 1/e^{\text{confidence}} & \text{if prediction is right} \end{cases} = e^{-y_i f(x_i)}$$

• Objective: minimize total loss

$$L_c = \sum_i L_c(x_i)$$

Constructing Classifier

ullet For each predictor h_k , find optimal weight α_k

$$\alpha_k = \frac{1}{2} \log \frac{A}{B}$$

Compute what new loss will be

$$NewLoss = 2\sqrt{AB}$$

ullet Choose α_k, h_k that minimizes new loss, add it in

$$f(x_i) = \sum_k \alpha_k h_k(x_i)$$

• Repeat

Loss is Upper Bound on Error

• Classifier error: $cerr(x_i)$

if prediction is wrong
$$L_c(x_i) = e^{\text{confidence}} \geq 1 = \text{cerr}(x_i)$$

if prediction is right $L_c(x_i) = 1/e^{\text{confidence}} \geq 0 = \text{cerr}(x_i)$

• Loss is upper bound for error

$$L_c(x_i) \ge \operatorname{cerr}(x_i)$$

 $L_c \ge \operatorname{cerr}$

ullet AdaBoost minimizes errors by minimizing loss L_c

Loss is Upper Bound on Error

U-Boost

Input: attributes \mathbf{x} , observation $\tilde{\mathbf{y}}$, threshold g.

- 1. At t = 0, initialize $\mathbf{y}^{(t)} = \tilde{\mathbf{y}}$
- 2. Repeat to convergence:
 - a. Boosting Step
 Use AdaBoost on $(\mathbf{x}, \mathbf{y}^{(t)})$ to choose $\alpha^{(t)}$
 - b. Relabelling Step Define $\mathbf{y}^{(t+1)}$ as:

$$y_i^{(t+1)} = \begin{cases} -\tilde{y}_i & \text{if } -\tilde{y}_i \text{ predicted and } |f(x_i)| > g \\ \tilde{y}_i & \text{otherwise} \end{cases}$$

Relabelling Error

• Relabelling error

$$\operatorname{lerr}(x_i) = [y_i \neq \tilde{y}_i]$$

• Relabelling loss

$$L_r(x_i) = \left\{ \begin{array}{ll} e^{\gamma} > 1 & \text{if } y_i \neq \tilde{y}_i \\ 1/e^{\gamma} > 0 & \text{if } y_i = \tilde{y}_i \end{array} \right\} = \operatorname{lerr}(x_i)$$

U-Boost Total Error

• Total error

$$\max(L_c(x_i), L_r(x_i)) \ge \max(\operatorname{cerr}(x_i), \operatorname{lerr}(x_i)) = \operatorname{err}(x_i)$$

- Sum of two positives upper bounds max
- Total loss is upper bound on total error

$$L(x_i) = L_c(x_i) + L_r(x_i) \ge \operatorname{err}(x_i)$$

U-Boost Minimizes Loss

- Loss $L = \sum_i L_c(x_i) + L_r(x_i)$
- In boosting step, labelling unchanged
 - So $L_r(x_i)$ is unchanged
 - AdaBoost decreases $L_c(x_i)$

U-Boost Minimizes Loss

• In relabelling step:

$$L(x_i) = e^{-f(x_i)y_i} + e^{-\gamma y_i \tilde{y}_i}$$

If keep label $L(x_i) = e^{-f(x_i)\tilde{y}_i} + e^{-\gamma}$
If flip label $L(x_i) = e^{f(x_i)\tilde{y}_i} + e^{\gamma}$

U-Boost Minimizes Loss

• So flip label just in case:

$$e^{-f(x_i)\tilde{y}_i} + e^{-\gamma} > e^{f(x_i)\tilde{y}_i} + e^{\gamma}$$

$$e^{-f(x_i)\tilde{y}_i} - e^{f(x_i)\tilde{y}_i} > e^{\gamma} - e^{-\gamma}$$

$$2\sinh(-f(x_i)\tilde{y}_i) > 2\sinh(\gamma)$$

$$-f(x_i)\tilde{y}_i > \gamma$$

ullet Relabelling step decreases loss, $g=\gamma$

Selecting γ

- ullet γ represents belief about target concept size
- Friedman et al. suggest normalizing boosting loss to get probability

$$p(y_i \neq \tilde{y}_i) = \frac{e^{-\gamma}}{e^{-\gamma} + e^{\gamma}}$$

• If seed set is iid from target

$$p(y_i \neq \tilde{y}_i) = \frac{M-n}{N}$$

• Ergo

$$\gamma = \frac{1}{2}\log(\frac{N}{M-n} - 1)$$

Application to Active Learning

- Choosing examples for humans to annotate
- ullet Choose initial value for γ , choose borderline examples

$$-f(x_i)\tilde{y}_i = \gamma$$

ullet If too many are negative, increase γ , vice versa

Geometric Interpretation

• AdaBoost loss function

$$L_c = \sum_i e^{-y_i \sum_k \alpha_k h_k(x_i)}$$

- ullet Dot product of weight vector $ec{lpha}$ and feature vector \mathbf{h}_i
- Weight vector defines hyperplane

Geometric Interpretation

- Dot product is distance; negative means negative side
- ullet Multiplying by y_i changes sign: negative means on wrong side
- Margin $y_i \vec{\alpha} \cdot \mathbf{h}_i$

Geometric Interpretation: U-Boost

- AdaBoost (boosting step) minimizes error by maximizing margin
- Relabelling step relabels examples deepest in wrong half-plane
- Allows hyperplane to move in next boosting step
- Seeks "fissure" that allows largest possible margin
- ullet Allow negative γ : keeps hyperplane moving even if separable
- Annealing