Visualization for Data Science in R

Angela Zoss
Data Matters 2017

http://bit.ly/RVisDay2

Shiny

What is Shiny?

An interactive interface onto an R program

Iris k-means clustering

http://shiny.rstudio.com/

How can you use Shiny for visualization?

- Use Shiny to control some kind of simulation interactively, visualize the results
- Use Shiny to change components within the chart (e.g., switch the mappings)
- Use Shiny to filter data to subsets to highlight patterns
- Change type of regression, plot results

Shiny examples

Gallery

Interactive visualizations

Shiny is designed for fully interactive visualization, using JavaScript libraries like d3, Leaflet, and Google Charts.

Start simple

If you're new to Shiny, these simple but complete applications are designed for you to study.

Single-file shiny app

https://shiny.rstudio.com/gallery/

How do you build a Shiny app?

User Interface (UI)

the website people will see and interact with

Server

takes values from the interface, does some calculations, and creates more content for the interface

Step 1: Create the interface

What to put in the UI?

- Layout elements
- HTML elements
- Control widgets
- Placeholders for reactive output

Page layout

- fluidPage
 - titlePanel
 - sidebarLayout
 - sidebarPanel
 - mainPanel
 - fluidRow
 - column
 - wellPanel
 - tabsetPanel
 - navlistPanel

- fixedPage
 - fixedRow
- navbarPage
 - tabPanel
 - navbarMenu
 - tabPanel

http://shiny.rstudio.com/articles/layout-guide.html

HTML elements

 Shiny has special wrapper functions for this – e.g., h2(), p()

Control widgets

- Button
- Checkboxes
- Date, date range input
- File input
- Numeric input
- Radio buttons
- Drop-down (select) box
- Slider bar
- Text input
- Text

http://shiny.rstudio.com/tutorial/lesson3/
http://shiny.rstudio.com/gallery/widget-gallery.html

Anatomy of a widget

- Name for the widget (internal only)
- Label (will be visible)
- Check documentation for other required arguments

Reactive output objects

UI	Server
htmlOutput	renderUI
imageOutput	renderImage
plotOutput	renderPlot
tableOutput	renderTable
textOutput	renderText
uiOutput	renderUI
verbatimTextOutput	renderPrint

Step 2: Set up server to create dynamic objects

What to put in the server

- R code
- Render objects with same names and types as the ones listed in UI
- Input objects with the same names as the control widgets

```
UI:
sliderInput("slider1")
textOutput("text1")
```

```
Server:

output$text1 <- renderText({
    input$slider1
    })</pre>
```

Step 3: Test

Running the app

Set options in RStudio:

- Window
- Viewer
- External

Sharing an app

- Shiny Apps http://www.shinyapps.io/
- Shiny Server (free)
 https://github.com/rstudio/shiny-server/blob/master/README.md
- Shiny Server Pro (fee)
 https://www.rstudio.com/products/shiny/shiny-server/

Shiny resources

- http://shiny.rstudio.com/gallery/
- http://shiny.rstudio.com/tutorial/
- http://shiny.rstudio.com/articles/
- https://shiny.rstudio.com/reference/shiny/latest/
- https://www.rstudio.com/wpcontent/uploads/2016/01/shiny-cheatsheet.pdf
- http://www.shinyapps.io/

ggplot2: Output

ggplot2: Mapping