Math 241 C8

Name:

Quiz # 4

March 5, 2013

No electronic devices, notes, or interpersonal communication allowed. Show work to get credit.

(1) [10pts] Use an appropriate path integral to find the flow of $\mathbf{F}(x,y)=(xy,-x)$ along the part of the parabola $y=x^2$ from (0,0) to (2,4).

- (2) Consider the vector field $\mathbf{F}(x,y) = (y,x+e^y)$.
 - (a) [4pts] Find a potential function for \mathbf{F} . (Remember, that means an f such that $\nabla f = \mathbf{F}$.)

If
$$\nabla f = \vec{F}$$
, then $\partial_x f = y \oplus and \partial_y f = x + e^{y} \oplus and \partial_y f = x + e^$

- (b) [2pts] Find $\int_C \mathbf{F} \cdot \mathbf{dr}$, where C is the unit circle, counterclockwise.
 - (a) shows \vec{F} is a gradient field, and C is a closed curve, so $\int_{C} \vec{F} \cdot d\vec{r} = 0$.
- (c) [4pts] Find $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the first-quadrant part of the unit circle going from (0,1) to (1,0).

The fundamental theorem of path integrals, together with (a), gives
$$\int_{C} \vec{F} \cdot d\vec{r} = f(1,0) - f(0,1)$$

$$= 1 - e$$