which converges in $\mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{L-\mathrm{la}}(U)$. Later we will show $D_i(s)$ acturally lies in the smaller subspace $\mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{L-\mathrm{la},\mathfrak{m}^0=0}(U)$. Using $E_{d,i}(x_i-x_{i,n})=1$, a direct computation shows $E_{d,i}.D_i(s)=0$ for all $s\in\mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{L-\mathrm{la},\mathfrak{m}^0=0}(U)$, and

$$s = \sum_{l=0}^{\infty} a_{i,l} (x_i - x_{i,n})^l$$

with $a_{i,l} = D_i(\frac{(E_{d,i})^l \cdot s}{l!})$. Here we note the coefficients $a_{i,l}$ are determined by s. From the construction we know the coefficients $a_{i,l}$ are killed by $E_{d,i}$ for all l. For $j \neq i$, we furthure express the coefficients $a_{i,l}$ along $E_{d,j}$, namely

$$a_{i,l} = \sum_{k=0}^{\infty} b_{i,l,j,l'} (x_j - x_{j,n})^{l'}$$

with $b_{i,l,j,l'} = D_j(\frac{(E_{d,j})^{l'}.a_{i,l}}{l'!})$. As $[E_{d,i}, E_{d,j}] = 0$ for i, j = 0, 1, ..., d-1, we see $b_{i,l,j,l'}$ is killed by $E_{d,i}$ and $E_{d,j}$. After we expand s along each derivation $E_{d,i}$ for i = 0, 1, ..., d-1, we arrive at an expression

$$s = \sum_{i_0=0}^{\infty} \sum_{i_1=0}^{\infty} \cdots \sum_{i_{d-1}=0}^{\infty} c_{i_0...i_{d-1}} (x_0 - x_{0,n})^{i_0} \cdots (x_{d-1} - x_{d-1,n})^{i_{d-1}}$$

such that $E_{d,i}c_{i_0...i_{d-1}}=0$ for all i=0,1,...,d-1. As \mathfrak{m}^0 acts trivially on $\mathcal{O}_{\mathscr{F}\ell}$, we know \mathfrak{m}^0 acts trivially on $x_i-x_{i,n}$ for any i=0,...,d-1. Therefore,

$$0 = \sum_{i_0, \dots, i_{d-1}} (\mathfrak{m}^0 c_{i_0 \dots i_{d-1}}) (x_0 - x_{0,n})^{i_0} \cdots (x_{d-1} - x_{d-1,n})^{i_{d-1}}$$

This implies $\mathfrak{m}^0 c_{i_0...i_{d-1}} = 0$. Indeed, the coefficients $c_{i_0...i_{d-1}}$ are determined by s. Combined this with the fact that $\mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{L-\mathrm{la}}$ is killed by $\pi^{-1}\mathfrak{n}^0$, we see \mathfrak{p}^0 kills $c_{i_0...i_{d-1}}$. Hence there is an induced action of $\overline{\mathfrak{n}}^0 = \mathfrak{g}^0/\mathfrak{p}^0$ on $c_{i_0...i_{d-1}}$. On U, $\overline{\mathfrak{n}}^0$ is generated by $E_{d,i}$ for i=0,1,...,d-1. Indeed, on the open locus $V_o=\{[z_0:z_1:\dots:z_{d-1}:1]\}$ $\subset \mathbb{P}^d$, the matrix $Z=\begin{pmatrix} I_{d\times d} & 0\\ (z_0,z_1,...,z_{d-1}) & 1 \end{pmatrix}$ is a lifting of the point $z=[z_0:z_1:\dots:z_{d-1}:1]$ as oZ=z where $o=[0:0:\dots:0:1]$. Then $Z^{-1}E_{d,i}Z=E_{d,i}$ for i=0,1,...,d generates $\overline{\mathfrak{n}}^0$ on V_o . From the construction we know $c_{i_0...i_{d-1}}$ is killed by $E_{d,i}$ for all i=0,1,...,d-1, hence it is killed by $\overline{\mathfrak{n}}^0$. This shows that \mathfrak{g}^0 acts tryially on $c_{i_0...i_{d-1}}$, which implies $c_{i_0...i_{d-1}} \in \mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{\mathfrak{M}}(U)$.

Corollary 0.3.2. For any $U \in \mathfrak{B}_{LT}$, the image of $\mathcal{O}^{\mathrm{sm}}_{\mathcal{M}_{\mathrm{LT},\infty}}(U) \otimes_C \pi^{-1} \mathcal{O}_{\mathscr{F}\ell}(U)$ inside $\mathcal{O}^{L-\mathrm{la},\mathfrak{m}^0=0}_{\mathcal{M}_{\mathrm{LT},\infty}}(U)$ is dense. *Proof.* This follows directly from Theorem 0.3.1.

To simplify the notation, we denote $\mathcal{O}_{\mathrm{LT}}$ by the sheaf $\mathcal{O}_{\mathrm{M_{LT},\infty}}^{L\text{-la},\mathfrak{m}^0=0}$ on $\mathcal{M}_{\mathrm{LT},\infty}$. Put $\mathcal{O}_{\mathrm{LT}}^{\mathrm{sm}}:=\mathcal{O}_{\mathcal{M}_{\mathrm{LT},\infty}}^{G\text{-sm}}$. Let $\Omega_{\mathcal{M}_{\mathrm{LT},n}}^k$ be the sheaf of k-differential forms on $\mathcal{M}_{\mathrm{LT},n}$ for k=0,1,...,d and put $\Omega_{\mathrm{LT}}^{k,\mathrm{sm}}:=\varinjlim_n \pi_n^{-1}\Omega_{\mathcal{M}_{\mathrm{LT},n}}^k$ with $\pi_n:\mathcal{M}_{\mathrm{LT},\infty}\to\mathcal{M}_{\mathrm{LT},n}$. Clearly $\mathcal{O}_{\mathrm{LT}}^{\mathrm{sm}}=\Omega_{\mathrm{LT}}^{0,\mathrm{sm}}$ and $\Omega_{\mathrm{LT}}^{k,\mathrm{sm}}=\wedge_{\mathcal{O}_{\mathrm{LT}}^{\mathrm{sm}}}^k\Omega_{\mathrm{LT}}^{1,\mathrm{sm}}$.

Proposition 0.3.3. There exists a differential operator $d: \mathcal{O}_{LT} \to \mathcal{O}_{LT} \otimes_{\mathcal{O}_{LT}^{sm}} \Omega_{LT}^{1,sm}$, such that

- (i) d is given by the usual derivation on \mathcal{O}_{LT}^{sm} ,
- (ii) d is $\pi^{-1}\mathcal{O}_{\mathscr{F}\ell}$ -linear.

Moreover, d is uniquely determined by these two properties up to constants.

Proof. Define $d|_{\mathcal{O}_{\mathrm{LT}}^{\mathrm{sm}}}$ as the differential map on finite levels $\mathcal{O}_{\mathrm{LT}}^{\mathrm{sm}} \to \Omega_{\mathrm{LT}}^{1,\mathrm{sm}}$, and define $d|_{\pi^{-1}\mathcal{O}_{\mathscr{F}\ell}}$ to be the zero map. By Theorem 0.3.1, for any $U \in \mathfrak{B}_{\mathrm{LT}}$ such that $z_d \neq 0$ on U, we may write any section $s \in \mathcal{O}_{\mathrm{LT}}(U)$ of the form for some sufficiently large n:

$$s = \sum_{i_0=0}^{\infty} \sum_{i_1=0}^{\infty} \cdots \sum_{i_{d-1}=0}^{\infty} c_{i_0...i_{d-1}} (x_0 - x_{0,n})^{i_0} \cdots (x_{d-1} - x_{d-1,n})^{i_{d-1}}$$