BERT

컴퓨터공학과 손수현

BERT

: Pre-training of Deep Bidirectional Transformers for language understanding

Attention Is All You Need

CONTENTS

01

02

03

기존 모델과의 차이

- ELMo
- OpenAI GPT
- BERT

BERT 구조

- Attention
- Masking

Experiment

- GLUE
- SQuAD v1.1
- NER

01 기존 모델과의 차이점

BERT

01. ELMo, OpenAl GPT

- * NLP에서 Pre-training model을 사용하는 방법 2가지
- 1. Feature based ELMo
- Task-specific한 architecture
- Pre-train한 representation을 additional feature로 넣는 방법
 (=2개의 network를 붙여서 사용)
- 2. fine-tuning OpenAl GPT
- BERT 이전 SOTA를 달성한 model인 GPT가 사용한 방법
- Task-specific한 parameter를 최소화하여 fine-tuning
- bidirectional하려고 노력했으나, 결국은 [단방향 concat 단방향]

BERT

- 1) unidirectional이 아닌 bidirectional
- 2) pretraining의 새로운 방법론 2가지 제시
- 3) 대규모 dataset으로 pre-training, 적은 양의 labeled dataset에 대해 fine-tuning

- 1) unidirectional이 아닌 bidirectional
 - -기존
 - : 앞의 단어 n개의 단어를 가지고 뒤의 단어를 예측 → unidirectional
 - -BERT
 - : 주변 단어들을 보고 Masked 단어를 예측 → bidirectional
- 2) BERT의 Pre-training의 새로운 방법론 2가지
 - 1. Masked Language Model
 - : 주변 단어들을 보고 Masked 단어를 예측
 - 2. Next Sentence Prediction Task
 - : 문장들 사이의 관계를 학습하기 위해 "다음 문장이라는 Label" 추가

2-1. Masked Language Model

- : input 에서 random하게 몇 개의 Token을 Mask
- : Mask 처리한 sequence를 Transformer의 Encoder에 넣어서 <mark>주변 단어 Context</mark>를 보고 Mask 된 Token을 예측하는 Model

2-2. Next Sentence Prediction Task

- : 두 문장을 Pre-training때 함께 넣어서 두 문장이 이어지는 문장인지 아닌지 맞추게 하는 → 문장내의 상관성을 위해
- : Pre-training시,

실제로 이어지는 두 문장: 랜덤한게 추출한 두 문장 = 50:50

- 3) unlabeled data(wiki, book data 등)으로 model을 pre-training한 후 특정 Task를 가진 labeled data로 fine-tuning
 - → 특정 Task를 위한 network 붙일 필요 X
 - → pre-trained BERT Model은 1개의 output layer로 fine-tuning할수있다

02 BERT 구조

BERT

Output Probabilities

Preprocessing

→ [CLS]: Task-specific한 정보를 주기위한 Token

→ [SEP]: Token A,B를 구분하는 Token

→ [SEP]: Token B의 끝을 알리는 Token

→[MASK] : 예측하는 Target

3가지의 Embedding

- 1) Input embedding
- 2) Positional embedding
- 3) Segment embedding

1) Input embedding

:각 token의 one-hot vector를 Weight matrix랑 곱한다.

: 그 결과 → embedding vector

[CLS] I am looking for happiness [SEP] B type sentence [SEP]

2) Positional encoding

: 각 단어의 위치정보를 저장하기 위해 단어의 embedding vector + 위치정보

: position에 대한 one-hot vector를 weight matrix와 곱한다.

[CLS] I am looking for happiness [SEP] B type sentence [SEP]

0	1	2	3	4	5
0	0	1	0	0	0

3) Segment embedding (Token embedding)

: Token A group, Token B group을 구분하는 정보

: BERT에서 추가된 embedding

[CLS] I am looking for happiness [SEP] B type sentence [SEP]

Α	В	А		 0.1	0.1	0.1	0.3
1	0	В					

Embed size

Segment embedding 결과

Input embedding 결과

- + Positional encoding 결과
- + Segment embedding 결과
- → Encoder의 입력

* Multi-Head Attention

: Attention(Q*K)을 scaling

Attention (transformer)

: decoder에서 매 시점마다 Encoder의 전체 입력문장을 다시한번 참고하는 것

: 문장 전체 참고 X → 해당 시점에서 예측해야 할 단어와 연관이 있는 부분만

{Key:Value}

Q: Query→ t시점의 decoder 셀에서의 은닉상태

K: Key → 모든 시점의 encoder 셀의 은닉상태

V: Value → 모든 시점의 encoder 셀의 은닉 상태

: Query에 대한 모든 Key와의 유사도 구함

: 구한 유사도를 Key와 Mapping되어 있는 Value에 반영

: 그 Value를 모두 더한 것 → attention value

• Input sentence를 입력 받으면 3가지 종류의 차원으로 변환 → query, key, value

Self-Attention

: attention을 자기 자신에게 수행하는 것

: 효과

→ self-attention은 입력문장내의 단어들끼리 유사도를 구할 수 있음

• Query, Key, Value

문장 행렬에 가중치 행렬을 곱해서 Q, K, V 행렬을 구함

1) 각 Q 벡터는 모든 K 벡터에 대한 Attention score 계산

: dk → key vector의 dimension

: dk로 나누는 이유

→벡터의 차원이 커질수록 내적 값이 커질 가능성이 높고, 여기에 Softmax 를 만들면 극단적인 값들이 만들어지기 때문 (일종의 scaling)

2) Attention distribution 계산

: 앞의 결과를 이용하여 모든 단어에 대한 Attention 값을 구해야 함

: Attention Score에 Softmax를 적용하면 그 결과가 Attention distribution

3) Attention value Matrix 계산

: Attention distribution에 V행렬 을 곱하면 그 결과가 Attention Value Matrix

softmax (
$$\frac{Q}{\sqrt{dk}}$$
) \times V =

- Multi-head Attention

: 한번의 Attention보다 여러 번 하는 것이 더 효율적

: 다양한 시각으로 볼 수 있다.

"The animal didn't cross the street because it was too tired"

-첫번째 Attention head: it과 animal의 연관도를 높게

-두번째 Attention head: it과 tired의 연관도를 높게

: dmodel의 차원을 num_heads개로 나누어 Q, K, V에 대해 num_heads개의 병렬 Attention 수행

: 가중치 행렬 W^Q , W^K , W^V 도 Attention head마다 다 다름

*Attention head

: num_heads가 8이면, 8개의 병렬 Attention

→ 이때 각각의 Attention 값 행렬: Attention head

- Multi-head Attention

- Multi-head Attention

: 병렬 Attention을 모두 수행했으면 모든 Attention head를 concatenate

: concat한 행렬을 또 다른 가중치 W와 곱한다

:(Multi-Attention head결과 matrix * linear projection)

+원래의 input

: 위의 결과 matrix에 layer_normalization

: Transformer에서는 Relu BERT에서는 보다 부드러운 Gelu

: Multi Head Attention에서 각 head가 자신의 관점으로만 문장을 self-Attention

- → 각 head에 따라 Attention이 치우침
- : 각 head가 만들어낸 Self-Attention을 치우치지 않게, 균등하게 하는 역할

▶ : dropout한 후 이전의 Add&Norm에서 나온 값과 더함

: 더한 결과에 layer_normalization

03 Experiment

BERT

04. Experiment

- Pre-trained BERT model에, 하나의 output layer로 fine-tuning한 experiment
 - 1) SQuAD dataset
 - : paragraph와 question pair가 주어지면 정답을 포함하는 text span을 찾는 문제
 - 2) GLUE dataset
 - : 입력 sentence가 비문인지 아닌지
 - 3) CoNLL-2003 dataset
 - : bio tagging된 data를 이용한 NER(Named Entity recognition)
 - : 우리의 과제 → NER

04. Experiment

NER

- : 이름을 가진 개체(named entity)를 인식하겠다는 것
- : 어떤 이름을 의미하는 단어를 보고는 그 단어가 어떤 유형인지를 인식하는 것
- : [해리포터 보러 메가박스 가자]라는 문장이 있을 때 →
- BERT NER
 - : biobert(BIO tagging을 이용한 NER) → NER task로 fine-tuning 진행
 - → NER을 위한 output layer 추가하여 fine-tuning

해 B-movie

리 I-movie

포 I-movie

터 I-movie

보 0

러 0

메 B-theater

가 I-theater

박 I-theater

스 I-theater

가 0

자 0

04. Experiment

```
def get_bert_finetuning_model(model):
    inputs = model.inputs[:2] #segment, token 年光의 input
    dense = model.output
    out = keras.layers.Dropout(0.2)(dense)
    output_layer=keras.layers.Dense(7, activation='softmax')(out)
    model = keras.models.Model(inputs, output_layer)
    model.compile(

    optimizer=RAdam(learning_rate=LR, weight_decay=0.001),
    loss="categorical_crossentropy",
    metrics=["categorical_accuracy"])

return model
```

Thank you