### Outline

# Intermediate Mass T-Tauri stars (IMTTS):

- > characteristics
- > relevance for the study of fossil fields origin
- > IMTTS sample

#### **Observations**

> CRIRES @VLT data

# Spectrum synthesis methods:

- > VALD/MARCS/SYNMAST
- > Improvement of oscillator strengths
- > Determination of vsini

# Magnetic field strength constraints Conclusion

in stellar evolution context

#### T-Tauri stars:

- > pre-main sequence stars
- > roughly between 0.5 and 3.5 solar masses
- > accreting material from surrounding protoplanetary disc
- > fueled by gravitational energy from star's contraction

### Intermediate Mass T-Tauri Stars:

- > around 2 solar masses
- > precursors of Herbig Ae/Be stars and ultimately A/B type stars

in stellar evolution context

# The PMS Evolution



in stellar evolution context



in stellar evolution context



in stellar evolution context



and their magnetic field



Low-Mass T-Tauri Stars

both large scale and complex magnetic fields

#### Science case:

Studying the topologies of magnetic fields in IMTTS to discriminate between two scenarios:

- > fossil fields are leftovers from dynamo processes
- > fossil fields are remnants of the galactic magnetic field captured during stellar formation

# **CRIRES** observations



# **CRIRES** observations

in the K-band



# Spectrum synthesis

method and assumptions



# Improving oscillator strengths

with the Sun as a benchmark



# Improving oscillator strengths

with the Sun as a benchmark



# vsini determination

using CO lines in the K-band



# *v*sin*i* determination

using CO lines in the K-band

| Star       | Vsini (km/s) |
|------------|--------------|
| CHX 10     | 8.3          |
| COUP 107   | 6.5          |
| V 2062 Oph | 15.9         |
| YLW 19     | 11.0         |

- → vsini determined for the 4 stars with enough signal in the K-band
- → *v*sin*i* from the litterature available for the other stars

# magnetic field strength constraint

using Fe 1 15648.510 in the H-band





# Conclusion

#### Done

- > Learned how to use spectrum synthesis tools
- > Correction of oscillator strengths
- > Better determination of vsini for 4 stars

# Work in progress

> Put constraints on magnetic field strengths

# Thanks for your attention