BRAC UNIVERSITY

Department of Computer Science and Engineering CSE 260: Digital Logic Design

Examination: **Quiz 1**Duration: 25 Minutes

Semester: Spring 2025
Full Marks: 15

Answer the following questions. You **MUST** show your workings/calculations where applicable. Figures in the right margin indicate marks.

Name: Solue	tion	Section: 01	ID:

- 1. Perform the following conversion: $(\underline{100101110011011})_{\text{Excess-4}} = (?)_9$ Note: You must show all the necessary conversions. [4]
- Subtract (-11)₁₀ from 25₁₀ using 6-bit 2's complement system (show the conversion first).
 Justify whether there is an overflow or not.
- 3. Divide (111231)₄ by (123)₄. Find the quotient and remainder.

 Note: You must show the necessary calculations. [6]

1) (100101110011011) = 4	9/757
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$9 \boxed{84-1} \rightarrow L$ $9 \boxed{9-3}$ $9 \boxed{1-0}$ $0-1 \rightarrow M$
= (0×5×) ₁₀	(757) ₁₀ = (1031) ₉
= (\$\overline{7} \overline{9} \overline{7} \overline{9} \	

=> (100 | 101 | 1001 | 1011) = (1031) (Amz)

		75	
2) 25-(-11) = 25+11		00 (011	
2/11 2/5-1-L 2/2-1 2/1-0 0-1-M	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t 01 1001 10 0100 Here, we added two positive numbers but the amwer has negative sign.	
=> (11) = (1011)2	(25) ₁₀ = (11001) ₂	So, according to this rule,	
+ 11 = 0 (011	+25 = 01 1001	Adding two same signed numbers if amwer has different sign, then	
=00 1011		Overflow.	

Yes, we have overflow here.

3) 123 11231 000303	123 X0 = 0	1 1	4 6 1
-0	23 × = 23	(23 x2	2
		3 2	4 5 1
111 -0	23x2 =312		[9]
- 110	123×3 = 1101	123	u 1 0 10
113 -0 1131		123 x3 1101	4/9/2
-1101			
			4 8 2
Quotient = (303)y Remainder = (30)y			0
Kemainder = (30)y		1	