

Prueba de Acceso a la Universidad (LOE)

Curso: 2014/2015 Convocatoria: Junio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

Estructura de la prueba

La prueba se compone de dos opciones, "A" y "B", cada una de las cuales consta de cuatro cuestiones teóricas y cuatro prácticas.

Instrucciones

El alumno debe elegir una de las dos opciones (A o B) y responder sólo a dos de las cuatro preguntas teóricas y dos de los cuatro problemas o aplicaciones prácticas.

<u>Puntuación</u>

La nota máxima que un alumno puede obtener en el examen es de 10 puntos, 5 correspondientes a las cuestiones teóricas y otros 5 a los problemas o aplicaciones prácticas.

Todas y cada una de las preguntas tienen el mismo valor de 2,5 puntos.

Duración de la prueba

La duración máxima de la prueba es de 1h 30m.

OPCIÓN A

PREGUNTAS TEÓRICAS

Pregunta nº 1.

Clasificación y tipos de ensayos según los tres criterios básicos. Atendiendo a la forma de realizar los ensayos, decir qué tipos de ensayos se pueden realizar.

Pregunta nº 2.

Decir que es el recocido, así mismo decir cuáles son los objetivos que se persiguen con este tratamiento y cuáles son las tres etapas fundamentales del proceso de recocido.

Pregunta nº 3.

Representar el esquema de un motor de corriente continua de derivación, y su circuito eléctrico equivalente. Explicar cómo se conectan el circuito inductor y el inducido de dicho motor.

Pregunta nº 4.

Álgebra de Boole. Definir, ayudándose con ejemplos si fuera necesario:

- a) Variable lógica
- b) Función lógica
- c) Tabla de verdad de la función lógica

PROBLEMAS O APLICACIONES PRÁCTICAS

Problema 1.

Para determinar la dureza Brinell de un acero se ha empleado una bola de 10 mm de diámetro y una carga de 3.000 kp. ¿Cuál será su valor si el diámetro de la huella es de 5,32 mm?

Problema 2.

Un muelle elástico se alarga 2 cm bajo la acción de una fuerza de 5 kp. Calcular la energía potencial elástica que almacena cuando se estira 5 cm.

Problema 3.

A un cilindro de 40 cm de radio se le aplica una fuerza tangencial constante de 5 N que le obliga a girar en torno a su eje principal. Hallar el trabajo realizado una vez que el cilindro haya girado 2 vueltas.

Problema 4.

Un motor térmico que describe el ciclo ideal de Carnot, presenta un rendimiento del 45% cuando la temperatura ambiente es de 10 °C, calcular:

- a) Temperatura del foco caliente.
- b) ¿En cuántos grados se tendría que aumentar la temperatura del foco caliente para alcanzar un rendimiento del 60%?
- c) ¿En cuántos grados tendría que disminuir la temperatura ambiente para conseguir un rendimiento del 75%?

OPCIÓN B

PREGUNTAS TEÓRICAS

Pregunta nº 1.

Enuncia la **ley de Pascal**. Si se tiene dos cilindros de diferente sección unidos entre sí por una conducción, y se aplica una fuerza F_1 sobre el émbolo de menor sección ¿cuánto vale la fuerza F_2 en el cilindro de mayor sección?

Pregunta nº 2.

En un sistema de automático, define: señal, sistema de control y unidad de control.

Pregunta nº 3.

Operaciones del álgebra de Boole. Definir que es una suma lógica o unión. Realizar la tabla de la verdad y el esquema eléctrico a la suma lógica.

Pregunta nº 4.

Dentro de los transductores de temperatura explicar cómo funcionan:

- A) Las termoresistencias
- B) Los termistores
- C) Los termopares

PROBLEMAS O APLICACIONES PRÁCTICAS

Problema 1.

Una probeta normal de acero de 13,8 mm de diámetro y 100 mm de distancia entre puntos, está sometida a una carga de 6.000 daN. ¿Cuál es la tensión unitaria? ¿Y los alargamientos unitario y total? (E = 21.000 daN/mm²)

Problema 2.

¿Qué trabajo realiza durante 2 horas una corriente de 0,5 amperios al circular por un conductor entre cuyos extremos existe una diferencia de potencial de 8 voltios?

Problema 3.

Confeccione el esquema de distribución, denomina las válvulas y numere las conexiones del circuito neumático que responda al siguiente planteamiento. Un cilindro de simple efecto y de diámetro grande deberá avanzar por efecto de una válvula provista de pulsador de accionamiento por presión. Una vez que se suelte el pulsador, el cilindro deberá retroceder.

Problema 4.

Un tribunal de oposición está formado por tres catedráticos A, B y C. Un alumno aprueba la oposición si se cumplen las siguientes condiciones:

- a) Los tres catedráticos votan favorablemente
- b) Dos profesores votan SI.

Se pide:

- a) Representar la tabla de verdad de la función
- b) Expresar la ecuación en su primera forma canónica
- c) Simplificar la ecuación
- d) Representar el circuito mediante puertas lógicas OR y NAND

Prueba de Acceso a la Universidad (LOE)

Curso: 2014/2015 Convocatoria: Junio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

Estructura de la prueba

La prueba se compone de dos opciones, "A" y "B", cada una de las cuales consta de cuatro cuestiones teóricas y cuatro prácticas.

Instrucciones

El alumno debe elegir una de las dos opciones (A o B) y responder sólo a dos de las cuatro preguntas teóricas y a dos de los cuatro problemas o aplicaciones prácticas.

<u>Puntuación</u>

La nota máxima que un alumno puede obtener en el examen es de 10 puntos, 5 correspondientes a las cuestiones teóricas y otros 5 a los problemas o aplicaciones prácticas.

Todas y cada una de las preguntas tienen el mismo valor de 2,5 puntos.

Duración de la prueba

La duración máxima de la prueba es de 1h 30m.

