2]:	<pre>import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout from keras.models import Sequential from keras.regularizers import 12 from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score, precision_score, accuracy_score from sklearn.metrics import confusion_matrix, fl_score, classification_report from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder, OneHotEncoder</pre>
	<pre>print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) Num GPUs Available: 1</pre>
	<pre># Set directory for source files ROOT = "all_samples_wav" folders = os.listdir(ROOT) # names of subfolders file_data = [] # filenames in each of the 58 folders TARGET_SECONDS = 2 sr = 22050 target_num_samples = sr*TARGET_SECONDS n_fft = 1024 hop_length = 512 n_mfcc = 13</pre> Statistics about the dataset
4]: [<pre>for label in tqdm(range(len(folders))): sub_dir = os.listdir(f'{ROOT}/{folders[label]}') file_data.append(sub_dir) 100%[amounts = [] for i in range(len(file_data)): amounts.append(len(file_data[i])) col1 = np.array(folders) col2 = np.array(amounts) merge = {'folder': col1, 'amount': col2}</pre>
5]: _	df = pd.DataFrame(merge, columns=['folder', 'amount']) print(f'Total amount of samples: (sum(amounts))') df Total amount of samples: 13681
6]:	Load audio data # audio_data = [] # for dirname, _, filenames in tqdm(os.walk(ROOT)): # for filename in filenames: # src = f'{dirname}/{filename}' # audio_data.append(lr.load(src)) Save/Load audio_waves array # Save # with open('audio_data.pickle', 'wb') as f: # pickle.dump(audio_data, f)
9]:	<pre># Load with open('audio_data.pickle', 'rb') as f: audio_data = pickle.load(f) Create dataframe overview fname = [] classID = [] num_samples = [] df1 = pd.DataFrame(np.array(audio_data, dtype=object), columns=['signal', 'samplerate']) for i in range(df1.shape[0]): num_samples.append(len(df1['signal'].iloc(i])) num_samples = np.array(num_samples) for dirname, _, filenames in os.walk(ROOT): for filename in filenames: fname.append(dirname[16:]) fname = np.array(fname) classID.append(dirname[16:]) fname = np.array(classID) df1['num_samples'] = num_samples df1['seconds'] = df1['num_samples']/df1['samplerate'] df1['fname'] = fname df1['classID'] = classID # round seconds</pre>
9]: _	df1['seconds'] = df1['seconds'].apply(pd.to_numeric, errors='coerce').round(1) df1
1]:	<pre>%matplotlib inline x = dfi('seconds') plt.Mist(x, density=False, bins=150, range=(0,5)) # density=False would make counts plt.ylabel('Amount of files') plt.xlabel('Seconds'); print(f"Shortest sample length: {np.min(dfl['num samples']))sm (~ {np.min(dfl['seconds'])} seconds), longest: print(f"Nerage length in seconds: {np.round(np.mean(dfl('seconds')), decimal=")}") Shortest sample length: 1728sm (~ 0.1 seconds), longest: 1711296sm (~ 77.6 seconds) Average length in seconds: 1.9 Bring all soundfiles to the desired length of 2 seconds processed_audio = [] for i in range(len(audio data)): signal = audio_data[i](0) # shorten if too long, right-pad if too short if len(signal) > target_num_samples: processed_audio.append(signal[:target_num_samples]) if len(signal) < target_num_samples = len(signal) last dim padding = (0, num missing samples) processed_audio.append(signal[samples), processed_audio.append(signal) last dim padding = (0, num missing samples)</pre>
: [processed_audio = np.array(processed_audio, dtype=float) Save/load processed_audio_data # Save # with open('processed_audio.pickle', 'wb') as f: # pickle.dump(processed_audio.pickle', 'rb') as f: processed_audio = pickle.load(f) processed_audio.shape (13681, 44100) Methods and extraction
	<pre>def mfcc_scale(mfcc): scaler = StandardScaler() mfcc = scaler.fit_transform(np.array(mfcc)) return mfcc def calc_mfcc(signal): return lr.feature.mfcc(y=signal, n_mfcc=n_mfcc, sr=sr) mfcc_features = [] for i in tqdm(range(len(processed_audio))): mfcc_features.append(mfcc_scale(calc_mfcc(processed_audio[i]))) mfcc_features = np.array(mfcc_features) 100% </pre>
	<pre># save with open('mfcc_features.pickle', 'wb') as f: pickle.dump(mfcc_features, f) # Load # with open('mfcc_features.pickle', 'rb') as f: # mfcc_features = pickle.load(f) print(processed_audio.shape) print(mfcc_features.shape) (13681, 44100) (13681, 13, 87) Extract and plot a single sound file ex. shortened file</pre>
	<pre>test_nr = 310 plt.figure(figsize=(12,2)) plt.plot(processed_audio[test_nr]) plt.title(f'{classID[test_nr]}') plt.show() plt.figure(figsize=(15, 2)) plt.imshow(mfcc_features[test_nr], vmin=0, vmax=1) plt.title(classID[test_nr]) plt.show() print(f'{fname[test_nr]}; original: {len(audio_data[test_nr][0])}sm -> {target_num_samples}sm') bassoon 02 01 00 -0.1 -0.2</pre>
0 0	<pre>bassoon bassoon bassoon bassoon bassoon_c4_long_forte_tremclo.wav; original: 101376sm -> 44100sm ex. padded file test_nr = 5001 plt.figure(figsize=(12,2)) plt.plot(processed_audio(test_nr)) plt.title(classID[test_nr)) plt.show() plt.figure(figsize=(15, 2)) plt.inshow(mfcc_features(test_nr), vmin=0, vmax=1) plt.title(classID[test_nr)) plt.show() print(f'(fname[test_nr]); original: {len(audio_data[test_nr][0])}sm -> {target_num_samples}sm') double_bass 01</pre>
	00
	<pre>label_encoder = LabelEncoder() label_encoded = label_encoded(;, np.newaxis] one_hot_encoder = OneHotEncoder(sparse=False) one_hot_encoded = one_hot_encoder.fit_transform(label_encoded) Create train and test sets Intuitive labelling for data, normalization of features, stratified splitting to account for the inbalances in the dataset X = mfcc_features y = one_hot_encoded X = (X-X.min())/(X.max()-X.min()) # Normalization X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, shuffle=True, random_state=8) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,</pre>
:	<pre>stratify=y_train,</pre>
	<pre>print("y_train shape: {}".format(y_train.shape)) print("y test shape: {}".format(y test.shape))</pre>
•	<pre>print("X val shape: {}".format(y_train.shape)) print("y_val shape: {}".format(y_test.shape)) X_train shape: (8208, 13, 87) X_test shape: (2737, 13, 87) y_train shape: (8208, 20) y_test shape: (2737, 20) X_val shape: (8208, 20) y_val shape: (2737, 20) **Training **Training parameters num_epochs = 100</pre>
	print("X_val shape: (".format(y_train.shape)) Frint("y_val shape: (#208, 13, 87) X_train shape: (#208, 13, 87) X_test shape: (#2737, 13, 87) Y_train shape: (#208, 20) y_test shape: (#2737, 20) Training * Training parameters num_epochs = 100 * num_steps = 1000 * straining lare = 1000 * num_steps = 1000 * num_ste
	<pre>print("X_val shape: {}".format(y_rest.shape)) print("y_val shape: {}".format(y_rest.shape)) X_train shape: (8208, 13, 87) X_test shape: (8208, 20) y_test shape: (8208, 20) y_test shape: (8208, 20) y_val shape: (2737, 20) **Training **Training parameters num_epochs = 100 **num_steps = 1000 **num_steps = 1000</pre>
	print! TW val abage: ".format(y_tesin.shape)) print! TW val abage: (2008, 13, 87) X. tesin shape: (2008, 13, 87) Y. tesin shape: (2008, 20) Y. tesi shape: (2008, 20) Y. vest shape: (2008, 20) X. val shape: (2008, 20) X. val shape: (2008, 20) Y. val shape: (2008, 20
	printing volume (1908), 33, 50) Quarte Paper (1908), 33, 50) Quarte Paper (1908), 32, 50) Quarte Paper (1908), 32, 50) Quarte Paper (1908), 32, 50) Your days (1908), 32, 50) Training **Training **Traini
	### Part
	Training
	### Committee Co
	Section Agent 1.50
	Training From Angel Angel (1) Company (1)
	Came