Лекция №1 (11.02.09)

Двойной интеграл Римана.

Обозначение:

$$\Pi = [a, b] \times [c, d] \subset R^2.$$

Определение:

Пусть f(x,y) определена на Π , T_x — разбиение отрезка [a,b], T_y — разбиение отрезка [c,d]. Тогда $T = T_x \times T_y = \left\{ [x_{i-1},x_i] \times \left[y_{j-1},y_j \right] \right\}_{i=1,j=1}^{n,m}$ называется разбиением прямоугольника Π .

Если разбиения T_x и T_y — размеченные: $T_x(\xi)$ и $T_y(\eta)$, то $T(\xi,\eta) = T_x(\xi) \times T_y(\eta)$ называется раз меченным разбиением П.

Введём обозначения: $\Delta x_i = x_i - x_{i-1}$, $\Delta y_i = y_i - y_{i-1}$.

Определение:

Пусть на прямоугольнике П выбрано размеченное разбиение $T(\xi,\eta)$ и определена f(x,y).

Тогда сумма $\sigma_f \big(T(\xi,\eta) \big) = \sum_{i=1,\ j=1}^{} f \big(\xi_i,\eta_j \big) \, \Delta x_i \Delta y_j \,$ называется интегральной суммой функции f(x,y) на размеченном разбиении $T(\xi,\eta)$.

Определение:

Величина $d(T) = \max \{d(T_x), d(T_v)\}$ называется диаметром разбиения T.

Определение:

Если для f(x,y), определенной на Π , существует $I \in R$, что $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$, что $\forall T(\xi,\eta)$, такого, что $d(T(\xi,\eta)) < \delta_{\varepsilon}$

$$|\sigma_f(T(\xi,\eta)) - I| < \varepsilon$$
,

то f(x,y) называется интегрируемой по Риману на Π , и это обозначается так: $f(x,y) \in R(\Pi)$, а число I называется интегралом Римана функции f(x,y) на П. Обычно записывают, что:

$$\lim_{d(T)\to 0}\sum_{i=1, j=1}^{n, m} f(\xi_i, \eta_j) \Delta x_i \Delta y_j = I,$$

и этот предел записывается так:

$$I = \iint_{\Pi} f(x, y) \, dx dy.$$

Замечание:

Далее полагаем, что f(x, y) ограничена на Π .

Определение:

Обозначим через $\Pi_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$. Пусть $M_{ij} = \sup_{\Pi_{ij}} f(x, y)$, а $m_{ij} = \inf_{\Pi_{ij}} f(x, y)$. Тогдаверх —

ней суммой Дарбу f(x,y) на разбиении T называется $\underline{\underline{S}}(T) = \sum_{i=1,\ j=1}^{n,\ m} M_{ij} \ \Delta x_i \Delta y_j$, а нижней суммой

Дарбу f(x,y) на разбиении T называется $\overline{\overline{S}}(T) = \sum_{i=1}^{n, m} m_{ij} \, \Delta x_i \Delta y_j$.

Лемма:

$$\overline{\overline{S}}(T) \le \sigma_f(T(\xi,\eta)) \le \underline{\underline{S}}(T)$$

Доказательство:

$$\forall i, j \quad m_{ij} \leq f\left(\xi_{i}, \eta_{j}\right) \leq M_{ij} \implies m_{ij} \Delta x_{i} \Delta y_{j} \leq f\left(\xi_{i}, \eta_{j}\right) \Delta x_{i} \Delta y_{j} \leq M_{ij} \Delta x_{i} \Delta y_{j} \implies \sum_{i=1, j=1}^{n, m} m_{ij} \Delta x_{i} \Delta y_{j} \leq \sum_{i=1, j=1}^{n, m} f\left(\xi_{i}, \eta_{j}\right) \Delta x_{i} \Delta y_{j} \leq \sum_{i=1, j=1}^{n} M_{ij} \Delta x_{i} \Delta y_{j} \implies \overline{\overline{S}}(T) \leq \sigma_{f}\left(T(\xi, \eta)\right) \leq \underline{\underline{S}}(T) \quad \blacksquare$$

 $\overline{\forall arepsilon>0}$ \exists такая разметка $(\xi^{'},\eta^{'})$ разбиения T, что $\underline{S}(T)-\sigma_{\!f}ig(T(\xi^{'},\eta^{'})ig)<arepsilon$ и \exists такая разметка $(\xi^{''},\eta^{''})$ разбиения T, что $\sigma_f \left(T(\xi^{''},\eta^{''})\right) - \overline{\overline{S}}(T) < \varepsilon$.

<u>Доказательство:</u>

По свойству точной верхней грани, $\forall i,j \quad \forall \varepsilon > 0 \ \exists \left(\xi_{i}^{'},\eta_{j}^{'}\right) \in \Pi_{ij}$, что $M_{ij} - f\left(\xi_{i}^{'},\eta_{j}^{'}\right) < \frac{\varepsilon}{(b-a)(d-c)}$.

Следовательно,
$$M_{ij} \Delta x_i \Delta y_j - f\left(\xi_i^{'}, \eta_j^{'}\right) \Delta x_i \Delta y_j < \frac{\varepsilon \Delta x_i \Delta y_j}{(b-a)(d-c)},$$

$$\sum_{i=1,\ j=1}^{n,\ m} M_{ij} \ \Delta x_i \Delta y_j - \sum_{i=1,\ j=1}^{n,\ m} f\left(\xi_i^{'}, \eta_j^{'}\right) \Delta x_i \Delta y_j < \frac{\varepsilon}{(b-a)(d-c)} \sum_{i=1,\ j=1}^{m} \Delta x_i \Delta y_j = \varepsilon \implies \underline{\underline{S}}(T) - \sigma_f\left(T(\xi^{'}, \eta^{'})\right) < \varepsilon$$

По свойству точной нижней грани, $\forall i,j \ \forall \varepsilon > 0 \ \exists \left(\xi_i^{''},\eta_j^{''}\right) \in \Pi_{ij}$, что

$$f\left(\xi_{i}^{''},\eta_{j}^{''}\right)-m_{ij}<rac{arepsilon}{(b-a)(d-c)}$$
 Следовательно, $f\left(\xi_{i}^{''},\eta_{j}^{''}
ight)\!\Delta x_{i}\Delta y_{j}-m_{ij}\,\Delta x_{i}\Delta y_{j}<rac{arepsilon\Delta x_{i}\Delta y_{j}}{(b-a)(d-c)}$

$$\sum_{i=1, j=1}^{n, m} f\left(\xi_{i}^{"}, \eta_{j}^{"}\right) \Delta x_{i} \Delta y_{j} - \sum_{i=1, j=1}^{n, m} m_{ij} \Delta x_{i} \Delta y_{j} < \frac{\varepsilon}{(b-a)(d-c)} \sum_{i=1, j=1}^{n, m} \Delta x_{i} \Delta y_{j} = \varepsilon \Longrightarrow$$
$$\Rightarrow \sigma_{f}\left(T\left(\xi^{"}, \eta^{"}\right)\right) - \overline{\overline{S}}(T) < \varepsilon \quad \blacksquare$$

Определение:

Если $T_x^{'}$ является измельчением T_x и $T_y^{'}$ является измельчением T_y , то $T^{'}=T_x^{'}\times T_y^{'}$ называется измельчением T.

<u>Лемма:</u>

Если $T^{'}$ — измельчение T, то $\overline{\overline{S}}(T) \leq \overline{\overline{S}}(T^{'}) \leq \underline{S}(T^{'}) \leq \underline{S}(T)$.

Рассмотрим $T^* = T_x^{'} \times T_y$. Докажем для простоты лемму для T^* (вместо $T^{'}$). Обозначим через $m_{ij} = \inf_{\Pi_{ij}} f(x,y)$, $m_{ij}^{'} = \inf_{\Pi_{ij}} f(x,y)$, $M_{ij}^{'} = \sup_{\Pi_{ij}} f(x,y)$, $M_{ij}^{'} = \sup_{\Pi_{ij}^{'}} f(x,y)$ $\forall j \quad \sum_{i=1}^{n} m_{ij} \, \Delta x_i \leq \sum_{i=1}^{n-1} m'_{ij} \, \Delta x_i' \leq \sum_{i=1}^{n-1} M'_{ij} \, \Delta x_i' \leq \sum_{i=1}^{n} M_{ij} \, \Delta x_i$ $\sum_{i} m_{ij} \Delta x_i \Delta y_j \leq \sum_{i} m'_{ij} \Delta x'_i \Delta y_j \leq \sum_{i} M'_{ij} \Delta x'_i \Delta y_j \leq \sum_{i} M_{ij} \Delta x_i \Delta y_j$ $\sum_{i=1}^{n} m_{ij} \Delta x_i \Delta y_j \leq \sum_{i=1}^{n+1} m'_{ij} \Delta x'_i \Delta y_j \leq \sum_{i=1}^{n+1} M'_{ij} \Delta x'_i \Delta y_j \leq \sum_{i=1}^{n} M_{ij} \Delta x_i \Delta y_j$

$$\overline{\overline{S}}(T) \le \overline{\overline{S}}(T') \le \underline{S}(T') \le \underline{S}(T)$$

<u>Лемма:</u>

$$\forall T_1, T_2 \quad \overline{\overline{S}}(T_1) \leq \underline{S}(T_2)$$

<u>Доказательство:</u>

$$T = (T_{1x} \cup T_{2x}) \times (T_{1y} \cup T_{2y})$$

T является измельчением и T_1 , и T_2 , следовательно:

$$\overline{\overline{S}}(T_1) \le \overline{\overline{S}}(T) \le \underline{\underline{S}}(T) \le \underline{\underline{S}}(T_2)$$

Следствие:

Множество $\left\{\overline{\overline{S}}(T)\right\}$ ограничено сверху, а множество $\left\{\underline{\underline{S}}(T)\right\}$ ограничено снизу.

Определение:

$$\sup_{T} \frac{\Xi}{S}(T) = I_*$$
 – нижний интеграл Дарбу, $\inf_{T} \underline{S}(T) = I^*$ – верхний интеграл Дарбу.

Лемма:

$$I_* \leq I^*$$

Доказательство:

$$\overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2) \implies \sup_{T_1} \overline{\overline{S}}(T_1) \leq \underline{\underline{S}}(T_2) \implies I_* \leq \underline{\underline{S}}(T_2) \implies I_* \leq \inf_{T_2} \underline{\underline{S}}(T_2) \implies I_* \leq I^* \quad \blacksquare$$

Теорема (критерий Дарбу интегрируемости по Риману):

$$f(x,y) \in R(\Pi) \iff \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \forall T \ d(T) < \delta_{\varepsilon} \qquad \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

Доказательство:

1)
$$f(x,y) \in R(\Pi) \implies \forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 \quad \forall T(\xi,\eta) \quad d(T(\xi,\eta)) < \delta_{\varepsilon} \quad \left| \sigma_f(T(\xi,\eta)) - I \right| < \frac{\varepsilon}{2} \implies I - \frac{\varepsilon}{2} < \sigma_f(T(\xi,\eta)) < I + \frac{\varepsilon}{2}$$

По доказанной ранее лемме \exists разбиение $(\xi^{'},\eta^{'})$, что $\sigma_{f}(T(\xi^{'},\eta^{'})) - \overline{\overline{S}}(T) < \frac{\varepsilon}{2}$ и \exists разбиение $(\xi^{''},\eta^{''})$, что $\underline{\underline{S}}(T) - \sigma_{f}(T(\xi^{''},\eta^{''})) < \frac{\varepsilon}{2}$ (причём диаметры разбиений $(\xi^{'},\eta^{'})$ и $(\xi^{''},\eta^{''})$ меньше δ_{ε})

$$\underline{\underline{S}}(T) - \sigma_f \left(T(\xi'', \eta'') \right) < \frac{\varepsilon}{2}, \quad \sigma_f \left(T(\xi'', \eta'') \right) < I + \frac{\varepsilon}{2} \implies \underline{\underline{S}}(T) < I + \varepsilon
\sigma_f \left(T(\xi', \eta') \right) - \overline{\underline{\overline{S}}}(T) < \frac{\varepsilon}{2}, \quad I - \frac{\varepsilon}{2} < \sigma_f \left(T(\xi', \eta') \right) \implies I - \varepsilon < \overline{\underline{\overline{S}}}(T)$$

Таким образом, $I - \varepsilon < \overline{\overline{S}}(T) < \underline{\underline{S}}(T) < I + \varepsilon \implies \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < 2\varepsilon$.

2) $\forall \varepsilon > 0 \;\; \exists \delta_{\varepsilon} > 0 \;\; \forall T \;\; d(T) < \delta_{\varepsilon} \qquad \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon, \;\; \text{но} \;\; \overline{\overline{S}}(T) \leq I_{*} \leq \underline{\underline{S}}(T) \implies I^{*} - I_{*} < \varepsilon$ так как неравенство верно для любых сколь угодно малых ε , то $I^{*} = I_{*} = I$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon, \ \overline{\overline{S}}(T) \le I \implies \underline{\underline{S}}(T) - I < \varepsilon \implies \exists \lim_{d(T) \to 0} \underline{\underline{S}}(T) = I$$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon, \ I \leq \underline{\underline{S}}(T) \implies I - \overline{\overline{S}}(T) < \varepsilon \implies \exists \lim_{d(T) \to 0} \overline{\overline{S}}(T) = I$$

$$\overline{\overline{S}}(T) \leq \sigma_f \left(T(\xi, \eta) \right) \leq \underline{\underline{S}}(T), \quad \lim_{d(T) \to 0} \underline{\underline{S}}(T) = I, \quad \lim_{d(T) \to 0} \overline{\overline{S}}(T) = I \quad \Longrightarrow \quad \lim_{d(T) \to 0} \sigma_f \left(T(\xi, \eta) \right) = I \quad \Longrightarrow \quad f(x, y) \in R(\Pi) \quad \blacksquare$$

Теорема:

Если $f(x,y) \in C(\Pi)$, то $f(x,y) \in R(\Pi)$.

Доказательство:

 $f(x,y) \in \mathcal{C}(\Pi), \Pi$ — компакт $\implies f(x,y)$ равномерно непрерывна на Π , то есть $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$ $\forall (x_1,y_1), (x_2,y_2),$ что $\max \{|x_1-x_2|, |y_1-y_2|\} < \delta_{\varepsilon}, \ |f(x_1,y_1)-f(x_2,y_2)| < \varepsilon.$ Для любого разбиения T введём обозначения: $M_{ij} = \max_{\Pi_{ij}} f(x,y)$, а $m_{ij} = \min_{\Pi_{ij}} f(x,y)$; так как $f(x,y) \in \mathcal{C}(\Pi)$, то $\forall i,j \ \exists (x_{imin},y_{jmin}) \in \Pi_{ij}$, что $f(x_{imin},y_{jmin}) = m_{ij}$ и $\exists (x_{imax},y_{jmax}) \in \Pi_{ij}$, что $f(x_{imax},y_{jmax}) = M_{ij}$. Тогда для любого разбиения T с диаметром меньше δ_{ε} верно, что $M_{ij} - m_{ij} = f(x_{imax},y_{jmax}) - f(x_{imin},y_{jmin}) < \varepsilon$; из критерия Дарбу:

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1, j=1}^{n, m} (M_{ij} - m_{ij}) \Delta x_i \Delta y_j < \varepsilon \sum_{i=1, j=1}^{n, m} \Delta x_i \Delta y_j = \varepsilon (b-a)(d-c). \quad \blacksquare$$

Теорема:

Пусть f(x, y) ограничена на Π : $\exists M$, что |f(x, y)| < M, и пусть множество точек разрыва f(x, y) (обозначим его за A) имеет меру ноль: $\mu(A) = 0$; тогда $f(x, y) \in R(\Pi)$.

Доказательство:

 $\mu(A) = 0 \implies \forall \varepsilon > 0 \quad \exists P_{\varepsilon} \supset A \quad \mu(P_{\varepsilon}) < \frac{\varepsilon}{128}$. Тогда (как было доказано во втором семестре) $\exists T_h^{'} = T_{xh} \times T_{yh}$, где T_{xh} и T_{yh} — разбиения с шагом h (то есть $\forall i \quad \Delta x_i = h \quad$ и $\forall j \quad \Delta y_j = h$), что $\exists \bigcup_{(i,j)\in I} \Pi_{ij} \supset P_{\varepsilon}$, что $\mu\left(\bigcup_{(i,j)\in I} \Pi_{ij}\right) < 32 * \frac{\varepsilon}{128} = \frac{\varepsilon}{4} \; (I$ — это некоторое множество наборов пар ин — дексов (i,j))

Далее, для любого разбиения T с диаметром d(T) < h $\exists \bigcup_{(i,j) \in I^{'}} \Pi_{ij}^{'} \supset A$, что $\mu \left(\bigcup_{(i,j) \in I^{'}} \Pi_{ij}^{'}\right) < 4 * \frac{\varepsilon}{4} = 0$

Так как $f(x,y) \in C\left(\bigcup_{(i,j)\notin I^{'}}\Pi_{ij}\right)$, то $\forall (i,j)\notin I^{'}$ на прямоугольнике Π_{ij} f(x,y) достигает своего

максимума и минимума. Запишем критерий Дарбу для $\forall T$ с диаметром d(T) < h:

$$\underline{\underline{S}}(T) - \overline{\underline{S}}(T) = \sum_{(i,j) \in I'} \left(\sup_{\Pi_{ij}} f(x,y) - \inf_{\Pi_{ij}} f(x,y) \right) \Delta x_i \Delta y_j + \sum_{(i,j) \notin I'} \left(\max_{\Pi_{ij}} f(x,y) - \min_{\Pi_{ij}} f(x,y) \right) \Delta x_i \Delta y_j$$
 так как $f(x,y) \in C \left(\bigcup_{(i,j) \notin I'} \Pi_{ij} \right)$, а $\bigcup_{(i,j) \notin I'} \Pi_{ij}$ — компакт, то $f(x,y)$ равномерно непрерывна на $\bigcup_{(i,j) \notin I'} \Pi_{ij} \implies \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0$, что $\forall (x_1,y_1), (x_2,y_2)$, что $\max\{|x_1 - x_2|, |y_1 - y_2|\} < \delta_{\varepsilon}$,
$$|f(x_1,y_1) - f(x_2,y_2)| < \varepsilon$$

Пусть $\delta_{\varepsilon} < h$ и $d(T) < \delta_{\varepsilon}$; тогда:

$$\sum_{(i,j)\in I'} \left(\sup_{\Pi_{ij}} f(x,y) - \inf_{\Pi_{ij}} f(x,y) \right) \Delta x_i \Delta y_j + \sum_{(i,j)\notin I'} \left(\max_{\Pi_{ij}} f(x,y) - \min_{\Pi_{ij}} f(x,y) \right) \Delta x_i \Delta y_j < 2M\varepsilon + \varepsilon(b-a)(d-c) = \varepsilon \left(2M + (b-a)(d-c) \right) \quad \blacksquare$$

Определение:

Пусть $G \subset R^2$ — замкнутая ограниченная область, и пусть f(x,y) определена и ограничена на G. Пусть Π — прямоугольник, содержащий G. Введём функцию $\hat{f}(x,y)$:

$$\hat{f}(x,y) = \begin{cases} f(x,y), & (x,y) \in G \\ 0, & (x,y) \in \Pi \setminus G \end{cases}$$

Будем называть f(x,y) интегрируемой по Риману на G и обозначать это так: $f(x,y) \in R(G)$, если $\hat{f}(x,y) \in R(\Pi)$.

Число $\iint\limits_{\Pi} \hat{f}(x,y) \, dx dy$ будем называть интегралом f(x,y) по G и обозначать так:

$$\iint\limits_C f(x,y)\ dxdy$$

Теорема (геометрический смысл двойного интеграла):

Пусть G — замкнутая ограниченная область, пусть $\mu(\partial G)=0$. Тогда $\iint\limits_G 1\, dx dy=\mu(G)$.

Доказательство:

Пусть $\Pi \supset G$ и пусть $\hat{1} - \varphi$ ункция на Π из предыдущего определения (то есть $\hat{1} - \varphi$ ункция $\hat{f}(x,y)$ для φ ункции f(x,y) = 1).

$$\forall T$$
 прямоугольника Π введём $Q(T) \subset G$: $Q(T) = \bigcup_{(i,j) \in I} \Pi_{ij}$ и $P(T) \supset G$: $P(T) = \bigcup_{(i,j) \in J} \Pi_{ij}$ \Rightarrow

 \implies так как $\mu(\partial G)=0$, то G- квадрируема (по второму критерию квадрируемости), то по пер — вому критерию квадрируемости:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 \quad \forall T \ c \ d(T) < \delta_{\varepsilon} \quad \mu(P(T)) - \mu(Q(T)) < \varepsilon$$

но в свою очередь, $\mu(P(T)) = \underline{\underline{S}}(T)$ для функции $\hat{1}$, а $\mu(Q(T)) = \overline{\overline{S}}(T)$ для функции $\hat{1}$; значит:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 \quad \forall T \ \ c \ \ d(T) < \delta_{\varepsilon} \quad \ \underline{\underline{S}}(T) - \overline{\overline{\overline{S}}}(T) < \varepsilon,$$

значит, $\widehat{1} \in R(\Pi)$, и $1 \in R(G)$; кроме того, $\lim_{d \to 0} \mu(P(T)) = \lim_{d \to 0} \overline{\mu(Q(T))} = \mu(G)$; а так как

$$\lim_{d\to 0} \underline{\underline{S}}(T) = \lim_{d\to 0} \overline{\overline{S}}(T) = \iint_{G} 1 \, dx dy,$$

$$\text{To } \iint_{G} 1 \, dx dy = \mu(G). \quad \blacksquare$$

Теорема:

Пусть f(x,y) ограничена на G, $\mu(\partial G)=0$ и пусть множество точек разрыва f(x,y) имеет пло — щадь $0 \implies f(x,y) \in R(G)$.

Доказательство:

У $\hat{f}(x,y)$ на $\Pi \supset G$ множество точек разрыва лежит в объединении ∂G и точек разрыва функции f(x,y), а так как $\mu(\partial G)=0$ и множество точек разрыва f(x,y) имеет площадь 0, то множество точек разрыва функции $\hat{f}(x,y)$ имеет меру 0; кроме того, $\hat{f}(x,y)$ ограничена на $\Pi \supset G$, следова — тельно, $\hat{f}(x,y) \in R(\Pi)$, а по определению, тогда и $f(x,y) \in R(G)$.

Лекция №3 (20.02.09)

п-кратный интеграл Римана.

Общий план введения п-кратного интеграла Римана:

- 0) определения граничных, внутренних, внешних точек, точек прикосновения, предельных точек в \mathbb{R}^n полностью аналогичны определениям в \mathbb{R}^2 ;
- 1) определение объёма (меры) n мерного параллелепипеда Π ;
- 2) определение многогранной фигуры как конечного объединения n- мерных параллелепи педов и объёма многогранной фигуры как суммы объёмов этих параллелепипедов;
- 3) определение нижней меры произвольного $A \subset \mathbb{R}^n$ как точной верхней грани множества мер всех n — мерных фигур, являющимися подмножествами A:

$$\mu_*(A) = \sup_{Q \subset A} \mu(Q)$$

и определение верхней меры произвольного $A \subset \stackrel{\cdot}{R}^n$ как точной нижней грани множества мер всех n — мерных фигур, подмножеством которых является A:

$$\mu^*(A) = \inf_{A \subset P} \mu(P)$$

- 4) если $\mu_*(A) = \mu^*(A)$, то A называется кубируемой, число $\mu(A) = \mu_*(A) = \mu^*(A)$ называется мерой А, и аналогично двумерному случаю доказываются два критерия кубируемости:
 - $\forall \varepsilon > 0 \quad \exists Q_{\varepsilon} \subset A \quad \mathsf{u} \ \exists A \subset P_{\varepsilon} \quad |\mu(P_{\varepsilon}) \mu(Q_{\varepsilon})| < \varepsilon \quad \Longleftrightarrow \quad A \mathsf{кубируема};$
 - A кубируема $\iff \mu(\partial A) = 0$ (где ∂A граница множества A);
- 5) даются определения: интегральной суммы на Π по разбиению T (обозначается $\sigma_f(T,\Pi)$), ин тегрируемости f на Π (существование предела $\lim_{d(T)\to 0} \sigma_f(T,\Pi)$), обозначаемой так: $f\in R(\Pi)$; этот предел обозначается так:

$$\int_{\Pi} \dots \int f(x_1, \dots, x_n) dx_1 \dots dx_n$$

6) аналогично двукратному интегралу, даётся определение интегралу по произвольной замкнутой области из R^n , и обозначается он так:

$$\int_{G} \dots \int f(x_1, \dots, x_n) dx_1 \dots dx_n$$

7) доказываются несколько теорем о классах интегрируемых функций, одна из них:

Если $f(x_1, ..., x_n)$ ограничена на G, объём множества точек её разрыва равен нулю, то $f \in R(G)$.

Свойства п-кратного интеграла Римана.

- 1) $f(x_1, ..., x_n) \in R(G) \implies f(x_1, ..., x_n)$ ограничена на G;
- $(x_1, ..., x_n) \in R(G)$, G_1 и G_2 ограниченные замкнутые области, такие, что $G_1 \cup G_2 = G$, G_1 и G_2 не имеют общих внутренних точек, а $\mu(G_1 \cap G_2) = 0 \implies f \in R(G_1)$, $f \in R(G_2)$ и

$$\int_{G} ... \int f(x_{1},...,x_{n}) dx_{1} ... dx_{n} = \int_{G_{1}} ... \int f(x_{1},...,x_{n}) dx_{1} ... dx_{n} + \int_{G_{1}} ... \int f(x_{1},...,x_{n}) dx_{1} ... dx_{n}$$

3) если $f \in R(G), g \in R(G)$, то $\forall \alpha, \beta \in R$ $\alpha f + \beta g \in R(G)$ и

$$\int_{G} \dots \int (\alpha f + \beta g) dx_1 \dots dx_n = \alpha \int_{G} \dots \int_{G} f dx_1 \dots dx_n + \beta \int_{G} \dots \int_{G} g dx_1 \dots dx_n$$

- 4) $f \in R(G), g \in R(G) \implies fg \in R(G);$ 5) $f \in R(G) \implies |f| \in R(G);$
- 6) $f \in R(G), f \ge \varepsilon > 0$ на $G \implies \frac{1}{f} \in R(G);$

7)
$$f \in R(G) \implies \left| \int_{G} \dots \int_{G} f(x_1, \dots, x_n) dx_1 \dots dx_n \right| \le \int_{G} \dots \int_{G} |f(x_1, \dots, x_n)| dx_1 \dots dx_n$$

8)
$$f \in R(G), g \in R(G), f \leq g$$
 Ha $G \implies \int_{G} \dots \int_{G} f \, dx_1 \dots dx_n \leq \int_{G} \dots \int_{G} g \, dx_1 \dots dx_n$

9) если $f \in R(G)$, A — множество точек, где $g \neq f$, g ограничена на G и $\mu(A) = 0$, то $g \in R(G)$ и

$$\int_{G} \dots \int f \, dx_1 \dots dx_n = \int_{G} \dots \int g \, dx_1 \dots dx_n$$

10)
$$G$$
 — замкнута и ограничена, $\mu(\partial G) = 0 \implies \int_G ... \int 1 \, dx_1 \, ... \, dx_n = \mu(G)$

Сведение п-кратного интеграла Римана к повторному.

Определение:

Пусть $f(x_1,...,x_n)$ определена на $\Pi=[a_1,b_1]\times...\times[a_n,b_n]$, и пусть $\forall i=1,...,n$ $\forall \left(x_{1}^{0}, \dots, x_{i-1}^{\bar{0}}, x_{i+1}^{0}, \dots x_{n}^{\bar{0}}\right) \in [a_{1}, b_{1}] \times \dots \times [a_{i-1}, b_{i-1}] \times [a_{i+1}, b_{i+1}] \times \dots \times [a_{n}, b_{n}]$

$$f(x_1^0, \dots, x_{i-1}^0, x_i, x_{i+1}^0, \dots x_n^0) \in R[a_i, b_i]$$

$$b_{i_n} / b_{i_{n-1}} / b_{i_2} / b_{i_1}$$

 $f\left(x_{1}^{0},...,x_{i-1}^{0},x_{i},x_{i+1}^{0},...,x_{n}^{0}\right)\in R[a_{i},b_{i}]$ Тогдачисло вида $\int\limits_{a_{i_{n}}}^{b_{i_{n}}} \left(\int\limits_{a_{i_{n-1}}}^{b_{i_{n-1}}} \left(...\int\limits_{a_{i_{2}}}^{b_{i_{2}}} \left(\int\limits_{a_{i_{1}}}^{b_{i_{1}}} f(x_{1},...,x_{n})\,dx_{i_{1}}\right) dx_{i_{2}}...\right) dx_{i_{n-1}}\right) dx_{i_{n}}$ называется пов —

торным интегралом от функции f по Π (т. е. $(i_1 \ i_2 \ ... \ i_{n-1} \ i_n)$ — перестановка из $(1 \ 2 \ ... \ n-1 \ n)$)

Теорема:

$$\overline{\Pi = [a_1,b_1]} \times ... \times [a_n,b_n], \ \Pi_i = [a_1,b_1] \times ... \times [a_{i-1},b_{i-1}] \times [a_{i+1},b_{i+1}] \times ... \times [a_n,b_n]$$
 пусть $f(x_1,...,x_n) \in R(\Pi)$ и пусть $\forall (x_1^0,...,x_{i-1}^0,x_{i+1}^0,... x_n^0) \in \Pi_i \ \exists \int\limits_{a_i}^b f(x_1^0,...,x_{i-1}^0,x_i,x_{i+1}^0,... x_n^0) dx_i$ тогда $\exists \int\limits_{\Pi_i}^b ... \int\limits_{\Pi_i}^b \left(\int\limits_{a_i}^b f(x_1,...,x_n) \, dx_i \, dx_1 \, ... \, dx_{i-1} \, dx_{i+1} \, ... \, dx_n \, dx_n \, dx_1 \, ... \, dx_n \, dx_1 \, ... \, dx_n \right)$

Доказательство:

Рассмотрим двумерный случай: $\Pi = [a,b] \times [c,d], \ \exists \int_{c}^{d} f(x,y) dy \ \forall x \in [a,b]$

 $\Pi_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ — прямоугольники разбиения Π , ξ_i — разметка разбиения [a, b]

$$m_{ij} \Delta y_{j} \leq \int_{y_{j-1}}^{y_{j}} f(\xi_{i}, y) dy \leq M_{ij} \Delta y_{j}$$

$$\sum_{j} m_{ij} \Delta y_{j} \leq \int_{c}^{c} f(\xi_{i}, y) dy \leq \sum_{j} M_{ij} \Delta y_{j}$$

$$\sum_{j} m_{ij} \Delta y_{j} \Delta x_{i} \leq \int_{c}^{d} f(\xi_{i}, y) dy \Delta x_{i} \leq \sum_{j} M_{ij} \Delta y_{j} \Delta x_{i}$$

$$\sum_{i,j} m_{ij} \Delta y_{j} \Delta x_{i} \leq \sum_{i} \int_{c}^{d} f(\xi_{i}, y) dy \Delta x_{i} \leq \sum_{i,j} M_{ij} \Delta y_{j} \Delta x_{i}$$

$$\overline{S}_{f}(\Pi) \leq \sigma_{\int_{c}^{d} f(x, y) dy} (T(\xi)) \leq \underline{S}_{f}(\Pi) \implies \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \forall T \ c \ d(T) < \delta_{\varepsilon}$$

$$\left| \sigma_{\int_{c}^{d} f(x, y) dy} (T(\xi)) - \iint_{\Pi} f(x, y) dx dy \right| < \varepsilon \implies \iint_{\Pi} f(x, y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \quad \blacksquare$$

Теорема

Пусть G — замкнутая ограниченная область в R^{n-1} , $\varphi: G \to R$, $\psi: G \to R$, $\varphi, \psi \in C(G)$, $\varphi \leq \psi$ на G, и пусть $\Omega = \{(x_1, \ldots, x_n): (x_1, \ldots, x_{n-1}) \in G, \varphi(x_1, \ldots, x_{n-1}) \leq x_n \leq \psi(x_1, \ldots, x_{n-1})\};$ пусть $\psi(x_1, \ldots, x_{n-1})$

$$f(x_1, \dots, x_n) \in R(\Omega) \text{ и } \forall (x_1, \dots, x_{n-1}) \in G \quad \exists \int\limits_{\varphi(x_1, \dots, x_{n-1})} f(x_1, \dots, x_n) \, dx_n. \text{ Тогда}$$

$$\exists \int\limits_{G} \dots \int \left(\int\limits_{\varphi(x_1, \dots, x_{n-1})}^{\psi(x_1, \dots, x_{n-1})} f(x_1, \dots, x_n) \, dx_n \right) dx_1 \dots dx_{n-1} = \int\limits_{\Omega} \dots \int\limits_{\Omega} f(x_1, \dots, x_n) \, dx_1 \dots dx_n$$

Доказательство:

Опять ограничимся рассмотрением двумерного случая: $G:[a,b]\subset R, \ \varphi(x)\leq y\leq \psi(x)$ на G

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in \Omega \\ 0, & (x,y) \in \Pi \setminus \Omega \end{cases} \implies \int\limits_{c}^{d} F(x,y) dy \quad \forall x \in [a,b]$$
 по определению $\iint\limits_{\Omega} f(x,y) \, dx dy = \iint\limits_{\Pi} F(x,y) \, dx dy$, а по предыдущей теореме:

$$\iint_{\Pi} F(x,y) \, dx dy = \int_{a}^{b} \left(\int_{c}^{d} F(x,y) dy \right) dx = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx \quad \blacksquare$$

Теорема:

Пусть $f(x_1, ..., x_n) \in R(G)$, $g(x_1, ..., x_n)$ ограничена на G и $\mu(\{(x_1, ..., x_n) \in G, f(x_1, ..., x_n) \neq g(x_1, ..., x_n)\}) = 0.$ Тогда $g(x_1, ..., x_n) \in R(G)$.

Определение:

$$\overline{f(x_1,...,x_n)} \in R(\Pi), g(x_1,...,x_n)$$
 ограничена на Π и
$$\mu(\{(x_1,...,x_n) \in \Pi, f(x_1,...,x_n) \neq g(x_1,...,x_n)\}) = 0$$
 пусть $\forall (x_1,...,x_{i-1},x_{i+1},...,x_n) \; \exists \int\limits_{a_i}^{a_i} g(x_1,...,x_n) dx_i \, .$ Тогда:
$$\int_{\Pi_i} ... \int\limits_{a_i} \left(\int\limits_{a_i}^{b_i} g(x_1,...,x_n) \, dx_i \, \right) dx_1 \, ... \, dx_{i-1} dx_{i+1} \, ... \, dx_n = \int_{\Pi_i} ... \int\limits_{a_i} \left(\int\limits_{a_i}^{b_i} f(x_1,...,x_n) \, dx_i \, \right) dx_1 \, ... \, dx_{i-1} dx_{i+1} \, ... \, dx_n$$

Теорема (о среднем):

Пусть
$$f(x_1, ..., x_n) \in R(G)$$
, $M = \sup_G f(x_1, ..., x_n)$, $m = \inf_G f(x_1, ..., x_n)$, $g(x_1, ..., x_n) \in R(G)$, $g(x_1, ..., x_n) \ge 0$ на $G \implies \exists \mu \in [m, M]$, что $\int ... \int fg \, dx_1 \, ... \, dx_n = \mu \int ... \int g \, dx_1 \, ... \, dx_n$ если помимо того $f(x_1, ..., x_n) \in C(G)$, то $\exists (x_1^0, ..., x_n^0) \in G$, что $\mu = f(x_1^0, ..., x_n^0)$.

$$\overline{m\sum_{(i)}g(\bar{\xi}_{i_{1},..,i_{n}})\Delta x_{i_{1}}\ldots\Delta x_{i_{n}}}\leq \sum_{(i)}f(\bar{\xi}_{i_{1},..,i_{n}})g(\bar{\xi}_{i_{1},..,i_{n}})\Delta x_{i_{1}}\ldots\Delta x_{i_{n}}\leq M\sum_{(i)}g(\bar{\xi}_{i_{1},..,i_{n}})\Delta x_{i_{1}}\ldots\Delta x_{i_{n}}$$
 (под (i) подразумевается набор индексов i_{1},\ldots,i_{n}) переходим в неравенстве к пределу $d\to 0$:

$$m \int_{G} \dots \int g \, dx_1 \dots dx_n \leq \int_{G} \dots \int fg \, dx_1 \dots dx_n \leq M \int_{G} \dots \int_{G} g \, dx_1 \dots dx_n$$

Так как $g(x_1, ..., x_n) \ge 0$ на G, то $\int ... \int g \, dx_1 \, ... \, dx_n \ge 0$. Если $\int ... \int g \, dx_1 \, ... \, dx_n = 0$, то из двой —

ного неравенства следует, что $\int \ldots \int fg \ dx_1 \ldots dx_n = 0$, и тогда под равенство

$$\int_{G} \dots \int fg \, dx_1 \dots dx_n = \mu \int_{G} \dots \int g \, dx_1 \dots dx_n$$

подходит любое μ , поэтому в качестве μ можно выбрать любое число из отрезка [m,M]; если же

$$\int\limits_G ... \int\limits_G g \, dx_1 \, ... \, dx_n > 0$$
, то поделим двойное неравенство на $\int\limits_G ... \int\limits_G g \, dx_1 \, ... \, dx_n$:

$$m \le \left(\int_G ... \int fg \, dx_1 ... dx_n \right) / \left(\int_G ... \int_G g \, dx_1 ... dx_n \right) \le M$$

то есть число
$$\mu = \left(\int_G ... \int fg \ dx_1 ... dx_n\right) / \left(\int_G ... \int_G g \ dx_1 ... dx_n\right)$$
, лежит на отрезке $[m,M]$.

А если ещё $f(x_1, ..., x_n) \in C(G)$, то по свойству непрерывной на компакте функции, функция $f(x_1, ..., x_n)$ принимает все промежуточные значения из отрезка [m, M], а следовательно, и μ .

Лекция №5 (06.03.09)

Определение:

Для замкнутой ограниченной области G с $\mu(\partial G)=0$ назовём обобщённым разбиением следующее представление:

$$G = \bigcup_{k=1}^N G_k$$
 , где $\ orall k \ \mu(\partial G_k) = 0$, G_k — замкнуто и $\ orall k_1, k_2 \ G_{k_1} \cap G_{k_2} \subset \partial G_{k_1} \cap \partial G_{k_2}$ набор точек $\{\overline{\xi_k}\}, \overline{\xi_k} \in G_k \ orall k$ назовём разметкой обобщённого разбиения, $T(G)$ — размеченное разбиение

Определение:

Пусть $f(\bar{x})$ ограничена на G, $\forall T(G)$ назовём обобщённой интегральной суммой следующую сумму:

$$\sigma_{06}(f) = \sum_{k=1}^{N} f(\overline{\xi_k}) \mu(G_k)$$

Диаметром обобщённого разбиения T(G) назовём: $d\big(T(G)\big) = \max_{1 \leq k \leq N} \left(\max_{\substack{\bar{x} \in G_k \\ \bar{y} \in G_k}} \rho(\bar{x}, \bar{y})\right)$

Будем говорить, что $f(\bar{x})$ обобщённо интегрируема и называть число I_{06} обобщённым интегралом $f(\bar{x})$ по G, если $\exists \lim_{d(T(G))\to 0} \sigma_{06}(f) = I_{06}$ (интегрируемость обозначается так: $f(\bar{x}) \in R_{06}(G)$)

Теорема:

$$f \in R(G)$$
 \iff $f \in R_{06}(G)$ и $I_{06} = I$.

Доказательство:

1) докажем сначала справа налево:

пусть $\exists \lim_{d \to 0} \sigma_{06}(f) = I_{06}$. рассмотрим тогда $\sigma(f)$ и оценим её:

$$|\sigma_{06}(f) - \sigma(f)| \leq \sum_{(i,j):\Pi_{ij}\cap\partial G\neq\emptyset} 2M_{ij}\,\mu\big(\Pi_{ij}\big) \leq 2M \sum_{(i,j):\Pi_{ij}\cap\partial G\neq\emptyset} \mu\big(\Pi_{ij}\big),$$
 где $M_{ij} = \sup_{\bar{x}\in\Pi_{ij}} f(\bar{x})$, $M = \sup_{\bar{x}\in G} f(\bar{x})$ при $d\to 0$
$$\sum_{(i,j):\Pi_{ij}\cap\partial G\neq\emptyset} \mu\big(\Pi_{ij}\big) \to \mu(\partial G) = 0 \implies 2M \sum_{(i,j):\Pi_{ij}\cap\partial G\neq\emptyset} \mu\big(\Pi_{ij}\big) \to 0 \implies \lim_{d\to 0} \sigma(f) = \lim_{d\to 0} \sigma_{06}(f) = I.$$

2) теперь докажем в обратную сторону: пусть $\exists \lim_{d\to 0} \sigma(f) = I$, пусть $\partial T - \exists f$ граница разбиения области G;

тогда $\partial T = (\partial G \cup \{\text{отрезки} - \text{стороны прямоугольников разбиения}\}) \implies \mu(\partial T) = 0 \implies \forall \varepsilon > 0$ Воткрытая многоугольная фигура Q, что $\mu(Q)<\frac{\varepsilon}{M}$ и $\partial T\subset Q$; пусть \overline{Q} — замыкание Q, то есть $\overline{Q}=Q\cup\partial Q$; тогда $\exists \delta=\inf_{\overline{x_1}\in\partial T}\rho(\overline{x_1},\overline{x_2})>0$ (то есть δ по определению является расстоянием между

множествами ∂T и $\Pi \setminus \overline{Q}$);

рассмотрим $\forall T(G)$ с $d(T(G)) < \delta$; тогда если для некоторого k $G_k \cap \partial T \neq \emptyset$, то $G_k \subset Q$; рассмотрим верхнюю обобщённую интегральную сумму:

$$\underline{\underline{S}}_{06} = \sum_{k=1}^{n} M_k \mu(G_k) = \sum_{k:G_k \cap \partial T \neq \emptyset} M_k \mu(G_k) + \sum_{k:G_k \cap \partial T = \emptyset} M_k \mu(G_k) \leq M \mu(Q) + \sum_{k:G_k \cap \partial T = \emptyset} M_k \mu(G_k),$$
где $M = \sup_{\bar{x} \in G} f(\bar{x})$

(мы заменили каждый $\mu(G_k)$ на $\mu(Q)$ и поставили знак \leq , так как если $G_k \cap \partial T \neq \emptyset$, то $G_k \subset Q$);

далее,
$$M\mu(Q) + \sum_{k:G_k \cap \partial T = \emptyset} M_k \mu(G_k) \le M \frac{\varepsilon}{M} + \sum_{i,j} \left(\sum_{\substack{k:G_k \cap \partial T = \emptyset \\ G_k \subset \Pi_{ij}}} M_k \mu(G_k) \right) \le \varepsilon + \sum_{i,j} M_{ij} \, \mu \big(\Pi_{ij} \big) \le \underline{\underline{S}} + \varepsilon$$

абсолютно аналогично доказываем, что $\overline{\overline{S}} - \varepsilon \leq \overline{\overline{S}}_{\text{o6}}$;

так как по условию $f \in R(G)$, то $\forall \varepsilon > 0$ $\exists \delta_{\varepsilon} > 0$, что $\forall T$ с $d(T) < \delta_{\varepsilon}$ $\underline{\underline{S}} - \overline{\overline{S}} < \varepsilon$; так как, кроме того, $\underline{\underline{S}}_{06} \leq \underline{\underline{S}} + \varepsilon$ и $\overline{\overline{S}} - \varepsilon \leq \overline{\overline{S}}_{06}$, следовательно, $\underline{\underline{S}}_{06} - \overline{\overline{S}}_{06} < 3\varepsilon$; а так как для любого размеченного обобщенного разбиения $\overline{\overline{S}}_{06} \leq \sigma_{06}(f) \leq \underline{\underline{S}}_{06}$, то мы можем сделать вывод, что

$$\forall \varepsilon > 0 \; \exists \delta_{1\varepsilon} > 0$$
, что $\forall T \; \mathrm{c} \; d(T) < \delta_{1\varepsilon} \qquad |\sigma_{06}(f) - I| < 3\varepsilon$, где $I = \lim_{d(T) \to 0} \sigma_f(T)$, следовательно, $\exists \lim_{d(T(G)) \to 0} \sigma_{06}(f) = I \quad \blacksquare$

Замена переменных в кратном интеграле.

Некоторые свойства гладких отображений в \mathbb{R}^n .

Утверждение 1:

Пусть $G \subset R^n$ — замкнутая ограниченная выпуклая область, пусть $\varphi: G \to R$ и $\varphi \in C^1(G)$; тогда: $\forall \overline{x_1}, \overline{x_2} \in G \quad \exists \bar{c} \in G, \ \,$ что $\varphi(\overline{x_2}) - \varphi(\overline{x_1}) = \langle \overline{x_2} - \overline{x_1}, \ \,$ $grad \ \, \varphi(\bar{c}) \rangle$

<u>Доказательство:</u>

рассмотрим $h(t) = \varphi(\overline{x_1} + t(\overline{x_2} - \overline{x_1})), t \in [0; 1]$ запишем теорему Лагранжа для h(t):

нем теорему лагранжа для
$$h(t)$$
: $h(1) - h(0) = h^{'}(c) * (1 - 0) = h^{'}(c), \quad c \in [0; 1]; \quad \text{кроме того, } h(0) = \varphi(\overline{x_1}), \quad h(1) = \varphi(\overline{x_2}):$ $\varphi(\overline{x_2}) - \varphi(\overline{x_1}) = \sum_{k=1}^{n} \frac{\partial \varphi}{\partial x_k} \frac{dx_k}{dt} \bigg|_{t=c} = \sum_{k=1}^{n} \frac{\partial \varphi}{\partial x_k} (x_{2k} - x_{1k}) \bigg|_{t=c} = \langle \overline{x_2} - \overline{x_1}, \quad \operatorname{grad} \varphi(\overline{c}) \rangle.$

Утверждение 2:

Пусть $G \subset R^n$ — замкнутая выпуклая ограниченная область, $\bar{\varphi}: G \to R^n$, $\bar{\varphi} \in C^1(G)$; тогда: $\exists c > 0 \ \forall \overline{x_1}, \overline{x_2} \in G \ \|\bar{\varphi}(\overline{x_1}) - \bar{\varphi}(\overline{x_2})\| \le C \|\overline{x_1} - \overline{x_2}\|$

Доказательство:

$$\begin{split} \|\bar{\varphi}(\overline{x_1}) - \bar{\varphi}(\overline{x_2})\| &= \sqrt{\sum_{k=1}^n \left(\varphi_k(\overline{x_1}) - \varphi_k(\overline{x_2})\right)^2} \leq \sum_{k=1}^n |\varphi_k(\overline{x_1}) - \varphi_k(\overline{x_2})| = \sum_{k=1}^n |\langle \overline{x_1} - \overline{x_2}, \ grad \ \varphi_k(\xi_k)\rangle| \leq \\ &\leq \sum_{k=1}^n \|\overline{x_1} - \overline{x_2}\| * \|grad \ \varphi_k(\xi_k)\| \leq C \|\overline{x_1} - \overline{x_2}\|, \ \text{ где } C = n * \max_{\substack{i=1,\dots,n\\ \bar{x} \in G}} \|grad \ \varphi_k(\bar{x})\| \end{split}$$

Определение:

Пусть $\bar{\varphi}(\bar{x})$: $G \to R^n$, $G \subset R^n$, $\bar{\varphi} \in C^1(G)$, $\mathfrak{A}_{\bar{\varphi}}$ — матрица Якоби отображения $\bar{\varphi}$; тогда: $\Delta \bar{y} = \mathfrak{A}_{\bar{\varphi}} \bigm|_{\bar{x} = \bar{x}_0} * \Delta \bar{x}$ — первый дифференциал отображения $\bar{\varphi}$ в точке \bar{x}_0 .

Утверждение 3:

 $G \subset R^n$ — замкнутая выпуклая ограниченная область, $\bar{\varphi} \colon G \to R^n$, $\bar{\varphi} \in C^1(G)$; тогда: $\exists \alpha(\Delta \bar{x}) \colon R^n \to R, \text{что } \lim_{\|\Delta \bar{x}\| \to 0} \alpha(\Delta \bar{x}) = 0 \text{ и } \left\| \bar{\varphi}(\bar{x} + \Delta \bar{x}) - \bar{\varphi}(\bar{x}) - \Re_{\bar{\varphi}} \right\|_{\bar{x}} * \Delta \bar{x} \right\| \le |\alpha(\Delta \bar{x})| * \|\Delta \bar{x}\|$

Доказательство:

$$\begin{split} \left\|\bar{\varphi}(\bar{x}+\Delta\bar{x})-\bar{\varphi}(\bar{x})-\mathfrak{A}_{\bar{\varphi}}\right|_{\bar{x}}*\Delta\bar{x}\right\| &\leq \sum_{k=1}^{n}|\varphi_{k}(\bar{x}+\Delta\bar{x})-\varphi_{k}(\bar{x})-\langle\Delta\bar{x}, \operatorname{grad}\,\varphi_{k}(\bar{x})\rangle| \\ &\text{ из доказательства утверждения 1, } \exists \bar{\xi}_{k}=\bar{x}+\theta_{k}\Delta\bar{x},\theta_{k}\in[0;1], \text{ что:} \\ \sum_{k=1}^{n}|\varphi_{k}(\bar{x}+\Delta\bar{x})-\varphi_{k}(\bar{x})-\langle\Delta\bar{x}, \operatorname{grad}\,\varphi_{k}(\bar{x})\rangle| &= \sum_{k=1}^{n}|\langle\Delta\bar{x}, \operatorname{grad}\,\varphi_{k}(\bar{\xi}_{k})\rangle-\langle\Delta\bar{x}, \operatorname{grad}\,\varphi_{k}(\bar{x})\rangle| = \\ &= \sum_{k=1}^{n}|\langle\Delta\bar{x}, \operatorname{grad}\,\varphi_{k}(\bar{\xi}_{k})-\operatorname{grad}\,\varphi_{k}(\bar{x})\rangle| &= \|\Delta\bar{x}\|\sum_{k=1}^{n}\|\operatorname{grad}\,\varphi_{k}(\bar{\xi}_{k})-\operatorname{grad}\,\varphi_{k}(\bar{x})\| \\ &\bar{\xi}_{k}=\bar{x}+\theta_{k}\Delta\bar{x}, \;\; G-\operatorname{компакт} \;\;\Rightarrow\;\; \exists \alpha(\Delta\bar{x}): \sum_{k=1}^{n}\|\operatorname{grad}\,\varphi_{k}(\bar{\xi}_{k})-\operatorname{grad}\,\varphi_{k}(\bar{x})\| = |\alpha(\Delta\bar{x})| \\ &\bar{\varphi}\in C^{1}(G) \;\;\Rightarrow\; \forall \varepsilon>0 \;\; \exists \delta_{\varepsilon}>0 \;\;\forall\; \Delta\bar{x}: \|\Delta\bar{x}\|<\delta_{\varepsilon}\;\;\sum_{k=1}^{n}\|\operatorname{grad}\,\varphi_{k}(\bar{\xi}_{k})-\operatorname{grad}\,\varphi_{k}(\bar{x})\|<\varepsilon\;\;\Rightarrow \\ &\;\;\Rightarrow\; \lim_{\|\Delta\bar{x}\|\to 0}\alpha(\Delta\bar{x})=0. \quad \blacksquare \end{split}$$

Теорема (свойство объёма при гладких отображениях):

Пусть $G \subset \mathbb{R}^n$ — замкнутая ограниченная выпуклая область, $\mu(\partial G) = 0$, $\bar{\varphi}: G \to \mathbb{R}^n$, $\bar{\varphi} \in C^1(G)$, $\Omega = \bar{\varphi}(G)$, $\bar{\varphi}$ — биекция; тогда:

$$\mu(\partial\Omega) = 0$$
 и $\mu(\Omega) \le \int_G ... \int |J_{\overline{\varphi}}| dx_1 ... dx_n$

Доказательство:

Доказываем опять же для двумерного случая:

$$ar{\varphi}(\partial G) = \partial \Omega; \Pi \supset G, \Pi$$
 — квадрат, Π_{ij} — квадраты, d — сторона Π_{ij} 1) I — множество индексов, $(i,j) \in I$, если $\Pi_{ij} \cap \partial G \neq \emptyset$, $(i,j) \notin I$, если $\Pi_{ij} \cap \partial G = \emptyset$ по утверждению 2, $\exists C > 0$, что $\forall \overline{x_1}, \overline{x_2} \in G \quad \| \bar{\varphi}(\overline{x_1}) - \bar{\varphi}(\overline{x_2}) \| \leq C \| \overline{x_1} - \overline{x_2} \|$, то есть при отображении $\bar{\varphi}$ расстояние между точками увеличивается не более чем в C раз;

 Π_{ij} лежит в круге радиусом $\frac{d}{\sqrt{2}} \Rightarrow \bar{\varphi} \big(\Pi_{ij} \big)$ лежит в круге радиусом $\frac{Cd}{\sqrt{2}}$, то есть площадью $\frac{\pi C^2 d^2}{2}$ $\mu(\partial G) = 0 \Rightarrow \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \forall \big\{ \Pi_{ij} \big\} \ \mathrm{c} \ d < \delta_{\varepsilon} \quad \sum_{(i,j) \in I} d^2 < \varepsilon \Rightarrow \bar{\varphi}(\partial G)$ лежит в множестве с площадью $\frac{\pi C^2 \varepsilon}{2}$

2) пусть $\forall \Pi_{ij}$, состоящего только из внутренних точек G, $\overline{x_{ij}}$ — левый нижний угол Π_{ij} , а $\overline{x_{ij}}$ + $\overline{\Delta x}$ — произвольная точка Π_{ij} , тогда $P_{ij} = \overline{\varphi}(\overline{x_{ij}}) + \Im_{\overline{\varphi}} \Big|_{\overline{x_{ij}}} \overline{\Delta x}$ — параллелограмм площадью $\Big| J_{\overline{\varphi}} \Big|_{\overline{x_{ij}}} \Big| d^2$ (формула площади известна из курса линейной алгебры);

в утверждении 3 мы ввели функцию $\alpha(\Delta \bar{x})$, зависящую от вектора $\Delta \bar{x}$, но её можно определённым образом преобразовать, чтобы она зависела только от его нормы $\|\Delta \bar{x}\|$, в дальнейшем пользуемся именно этой новой функцией $\alpha(\|\Delta \bar{x}\|)$;

построим фигуру $\widetilde{P_{ij}}$ — множество точек, отстоящих от P_{ij} на расстояние $\leq \alpha(\sqrt{2}d)\sqrt{2}d$, тогда $\bar{\varphi}(\Pi_{ij}) \subset \widetilde{P_{ij}}$, и из утверждения 3:

$$\left\| \overline{\varphi}(\overline{x_{ij}} + \Delta \overline{x}) - \overline{\varphi}(\overline{x_{ij}}) - \mathfrak{A}_{\overline{\varphi}} \right\|_{\overline{x_{ij}}} * \Delta \overline{x} \right\| \leq |\alpha(\Delta \overline{x})| * \|\Delta \overline{x}\| \leq |\alpha(\sqrt{2}d)| * \sqrt{2}d$$

$$\Omega_{ij} = \overline{\varphi}(\Pi_{ij})$$

$$\mu(\Omega_{ij}) \leq \mu(\widetilde{P_{ij}}) \leq \left| J_{\overline{\varphi}} \right|_{\overline{x_{ij}}} \left| d^2 + 4|\alpha(\sqrt{2}d)| * \sqrt{2}d * c * d + 4\pi\alpha^2(\sqrt{2}d) * d^2 =$$

$$= \left| J_{\overline{\varphi}} \right|_{\overline{x_{ij}}} \left| d^2 + |\alpha(\sqrt{2}d)| * d^2 * c_1 \quad (c_1 = 4\sqrt{2}c + 4\pi)$$

$$\sum_{\substack{(i,j)\notin I\\\Pi_{ij}-\text{внутри }G}}\mu\big(\Omega_{ij}\big)\,\leq\,\sum_{\substack{(i,j)\notin I\\\Pi_{ij}-\text{внутри }G}}\bigg|J_{\overline{\varphi}}\,\big|_{\overline{\chi_{ij}}}\,\bigg|\,d^2+c_1\big|\alpha\big(\sqrt{2}d\big)\big|d^2\sum_{\substack{(i,j)\notin I\\\Pi_{ij}-\text{внутри }G}}1\leq\sum_{\substack{(i,j)\notin I\\\Pi_{ij}-\text{внутри }G}}\bigg|J_{\overline{\varphi}}\,\big|_{\overline{\chi_{ij}}}\bigg|\,d^2+c_1\big|\alpha\big(\sqrt{2}d\big)\big|d^2+c_2\big|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big(\sqrt{2}d\big)|\alpha\big(\sqrt{2}d\big$$

$$+c_2 \left|lpha\left(\sqrt{2}d
ight)
ight|$$
 $\sum_{\substack{(i,j)
otin I_{ij} - ext{внутри } G}} \mu(\Omega_{ij})
ightarrow \mu(\Omega)$ при $d
ightarrow 0$ $\sum_{\substack{(i,j)
otin I_{ij} - ext{внутри } G}} \left|J_{\overline{\varphi}} \left|_{\overline{x_{ij}}} \right| d^2
ightarrow \iint_G \left|J_{\overline{\varphi}} \left|dxdy
ight|$ при $d
ightarrow 0$ следовательно, $\mu(\Omega) \le \iint_G \left|J_{\overline{\varphi}} \left|dxdy
ight|$ \blacksquare

Следствие 1:

Теорема верна и для невыпуклых G.

<u>Доказательс</u>тво:

$$\Pi_{ij}$$
 — выпуклый; возьмём только внутренние $\Pi_{ij} \implies \mu(\Omega_{ij}) \leq \iint\limits_{\Pi_{ij}} |J_{\overline{\varphi}}| dx dy \implies \sum\limits_{\Pi_{ij} = \mathrm{внутри} \ G} \mu(\Omega_{ij}) \leq$ $\leq \sum\limits_{\Pi_{ij} = \mathrm{внутри} \ G} \left(\iint\limits_{G} |J_{\overline{\varphi}}| dx dy \right)$; устремим $d \ltimes 0 \implies \mu(\Omega) \leq \iint\limits_{G} |J_{\overline{\varphi}}| dx dy$

Следствие 2:

Если дополнительно
$$\big|\,J_{\overline{\varphi}}\,\,\big| \geq \delta > 0$$
 на G ; тогда $\mu(\Omega) = \int\limits_G \ldots \int \big|\,J_{\overline{\varphi}}\,\,\big|\,dx_1 \ldots dx_n$

Доказательство:

$$\{G_i\}_{i=1}^k - \text{ разбиение } G; \ \Omega_i = \overline{\varphi}(G_i), \ \overline{\overline{S}}(T) = \sum_{n=1}^k m_i \mu(G_i) \,, m_i = \min_{G_i} \big| \, J_{\overline{\varphi}} \, \big| \\ \big| \, J_{\overline{\varphi}} \, \big| \geq \delta > 0 \ \Longrightarrow \ \exists \, \overline{\varphi}^{-1}; \ \mu(G_i) \leq \int_{\Omega_i} \ldots \int \big| \, J_{\overline{\varphi}^{-1}} \, \big| \, d\widehat{x_1} \ldots d\widehat{x_n} \leq M_i \mu(\Omega_i), \ M_i = \max_{\Omega_i} \big| \, J_{\overline{\varphi}^{-1}} \, \big| \\ M_i = \max_{\Omega_i} \big| \, J_{\overline{\varphi}^{-1}} \, \big| = \left(\min_{G_i} \big| \, J_{\overline{\varphi}} \, \big| \right)^{-1} = \frac{1}{m_i} \\ \overline{\overline{S}}(T) = \sum_{n=1}^k m_i \mu(G_i) \leq \sum_{n=1}^k m_i \frac{1}{m_i} \mu(\Omega_i) = \mu(\Omega) \\ \mu(\Omega) \leq \int_G \ldots \int \big| \, J_{\overline{\varphi}} \, \big| \, dx_1 \ldots dx_n \leq \mu(\Omega) \\ \mu(\Omega) = \int_G \ldots \int \big| \, J_{\overline{\varphi}} \, \big| \, dx_1 \ldots dx_n \quad \blacksquare$$

Лекция №7 (25.03.09)

Теорема:

 $G \subset R^n$ — замкнутая ограниченная область, $\mu(\partial G) = 0$, $\bar{\varphi}: G \to R^n$, $\bar{\varphi} \in C^1(G)$, $\left|J_{\bar{\varphi}}\right| \ge \delta > 0$ на G, $\Omega = \bar{\varphi}(G)$; пусть $f(\bar{y}) \in R(\Omega)$ и $f\left(\bar{\varphi}(\bar{x})\right)\left|J_{\bar{\varphi}}\right| \in R(G)$; тогда

$$\int_{0} ... \int f(\bar{y}) d\bar{y} = \int_{0} ... \int f(\bar{\varphi}(\bar{x})) |J_{\bar{\varphi}}| d\bar{x}$$

<u>Доказательство:</u>

$$\overline{\{\Omega_i\}_{i=1}^k}$$
 — разбиение Ω , $\{G_i=ar{arphi}^{-1}(\Omega_i)\}_{i=1}^k$ — разбиение G , $m_i=\inf_{\Omega_i}f(ar{y})$, $M_i=\sup_{\Omega_i}f(ar{y})$ по предыдущей теореме:

$$m_{i}\mu(\Omega_{i}) \leq \int_{G_{i}} ... \int f(\bar{\varphi}(\bar{x})) \big| J_{\bar{\varphi}} \big| d\bar{x} \leq M_{i}\mu(\Omega_{i})$$

$$\overline{\overline{S}}(T) = \sum_{i=1}^{k} m_{i}\mu(\Omega_{i}) \leq \int_{G} ... \int f(\bar{\varphi}(\bar{x})) \big| J_{\bar{\varphi}} \big| d\bar{x} \leq \sum_{i=1}^{k} M_{i}\mu(\Omega_{i}) = \underline{\underline{S}}(T)$$
 устремляем $d(T)$ к 0 :
$$\int_{\Omega} ... \int f(\bar{y}) d\bar{y} \leq \int_{G} ... \int f(\bar{\varphi}(\bar{x})) \big| J_{\bar{\varphi}} \big| d\bar{x} \leq \int_{\Omega} ... \int f(\bar{y}) d\bar{y}$$

$$\int_{\Omega} ... \int f(\bar{y}) d\bar{y} = \int_{G} ... \int f(\bar{\varphi}(\bar{x})) \big| J_{\bar{\varphi}} \big| d\bar{x} \quad \blacksquare$$

Кратные несобственные интегралы

Определение:

 $\overline{\Pi}$ усть D — открытое связное множество в R^n , $n \ge 2$; последовательность $\{D_n\}_{n=1}^\infty$ из открытых ог — раниченных связных множеств, что $\overline{D_n} \subset D_{n+1} \ \, \forall n \ \, \text{и} \ \, \bigcup_{n=1}^\infty D_n = D$, называется исчерпыванием D.

Определение:

Пусть D- открытое связное множество в R^n , $f(\bar{x})$ определена на D, и для любого ограниченного замкнутого подмножества D, имеющего объём, $f(\bar{x})$ интегрируема по Риману на нём; если для

любого исчерпывания
$$\{D_n\}_{n=1}^\infty$$
, что $\exists \mu(\overline{D_n}), \quad \lim_{n \to \infty} \left(\int\limits_{\overline{D_n}} \dots \int\limits_{\overline{D_n}} f(\bar{x}) \, d\bar{x} \right) = I$, то говорят, что f несобс — твенно интегрируема на D , и пишут, что $I = \int\limits_{D} \dots \int\limits_{D} f(\bar{x}) \, d\bar{x}$

Теорема:

Пусть $f(\bar{x})$ из определения ≥ 0 на D; тогда существование несобственного интеграла

$$\int_D ... \int_D f(\bar x) \, d\bar x$$
 равносильно ограниченности последовательности $\left\{\int_{\overline{D_n}} ... \int_{\overline{D_n}} f(\bar x) \, d\bar x \right\}_{n=1}^\infty$ для какого — либо исчерпывания $\{D_n\}_{n=1}^\infty$.

Доказательство:

1) докажем сначала слева направо:

$$\exists \lim_{n o \infty} \left(\int_{\overline{D_n}} ... \int f(ar{x}) \, dar{x}
ight) \Rightarrow$$
 последовательность $\left\{ \int_{\overline{D_n}} ... \int f(ar{x}) \, dar{x}
ight\}_{n=1}^{\infty}$ ограничена

пусть
$$\left\{\int_{\overline{D_n}} ... \int f(\bar{x}) \, d\bar{x} \right\}_{n=1}^{\infty}$$
 ограничена; так как $f(\bar{x}) \geq 0$ на D , то эта последовательность моно —

тонна, следовательно, у неё есть предел I; рассмотрим теперь другое исчерпывание $\{D_m^{'}\}_{m=1}^{\infty}$;

если это не так, то получается, что $\exists m \ \forall n \ \exists \overline{x_n} \in \overline{D_m}, \overline{x_n} \notin D_n;$ так как $\overline{D_m}$ — компакт (потому что $\overline{D_m}$ замкнуто и ограничено), то \exists подпоследовательность $\overline{x_{n_k}}$,

что
$$\exists \lim_{k \to \infty} \overline{x_{n_k}} = \overline{x_0} \in \overline{D_m}; \ \overline{x_0} \in \overline{D_m},$$
 значит, $\overline{x_0} \in D$, а $D = \bigcup_{n=1}^{\infty} D_n \implies \exists n_1$, что $\overline{x_0} \in D_{n_1}$.

Тогда из — за того, что $\overline{D_n} \subset D_{n+1}$, $\forall n \geq n_1 \ \overline{x_0} \in D_n$; учитывая, что D_n — открытое множество, полу — чим, что $\exists B_\delta(\overline{x_0}) \subset D_n$; тогда получается, что в $B_\delta(\overline{x_0})$ бесконечно много элементов $\overline{x_{n_k}} \in D_n$, что противоречит нашему предположению о том, что $\exists m \ \forall n \ \exists \overline{x_n} \in \overline{D_m}, \overline{x_n} \notin D_n$;

так как
$$\overline{D_m} \subset D_n$$
 и $f(\bar x) \geq 0$ на D , то
$$\int_{\overline{D_m}} \dots \int_{\overline{D_n}} f(\bar x) \, d\bar x \leq \int_{\overline{D_n}} \dots \int_{\overline{D_n}} f(\bar x) \, d\bar x \leq I$$
; тогда, так как пос —

ледовательность
$$\int_{\overline{D_m}} \dots \int f(\bar{x}) \, d\bar{x} \quad \text{ограничена и монотонна, то} \ \exists \lim_{n \to \infty} \left(\int_{\overline{D_m}} \dots \int f(\bar{x}) \, d\bar{x} \right) =$$

 $I' \leq I$; но проведя рассуждения аналогичным образом, взяв в качестве первого исчерпывания $\{D_m^{'}\}_{m=1}^{\infty}$, а в качестве второго $-\{D_n\}_{n=1}^{\infty}$, получим, что $I^{'}\leq I \implies I^{'}=I$

Теорема (признак сравнения):

Пусть $0 \le f(\bar{x}) \le g(\bar{x})$ на D; тогда:

1) если
$$\exists \int\limits_{D} \ldots \int g(ar{x}) \, dar{x}$$
 , то $\exists \int\limits_{D} \ldots \int f(ar{x}) \, dar{x}$;

2) а если
$$\exists \int_{D} ... \int f(\bar{x}) \, d\bar{x}$$
 , то $\exists \int_{D} ... \int g(\bar{x}) \, d\bar{x}$

<u>Доказательс</u>тво:

по теореме для собственных интегралов, если $0 \le f(\bar{x}) \le g(\bar{x})$ на D, то:

$$\int_{\overline{D_n}} \dots \int f(\bar{x}) \, d\bar{x} \le \int_{\overline{D_n}} \dots \int g(\bar{x}) \, d\bar{x}$$

переходим к пределу $n \to \infty$

если
$$\exists \int_{\overline{D_n}} ... \int g(\bar{x}) \, d\bar{x}$$
 , то последовательность $\int_{\overline{D_n}} ... \int f(\bar{x}) \, d\bar{x}$ ограничена и возрастает,

(возрастает из — за условия $f(\bar{x}) \geq 0$), следовательно, у неё есть предел; а если

$$\int_{\overline{D_n}} ... \int f(\bar{x}) \, d\bar{x}$$
 расходится, то расходится к $+\infty$, значит и $\int_{\overline{D_n}} ... \int g(\bar{x}) \, d\bar{x}$ расходится к $+\infty$

Если $f(ar{x})$ удовлетворяет условиям, заданным в определении несобственного кратного интеграла и $\exists \int_{\mathbb{R}^n} \int |f(\bar{x})| d\bar{x}$, тогда $\exists \int_{\mathbb{R}^n} \int f(\bar{x}) d\bar{x}$.

Доказательство:

так как по условию $\forall D_n \; \exists \; \int_{\overline{D_n}} \dots \int f(\bar{x}) \, d\bar{x}$, следовательно, $\; \exists \; \int_{\overline{D_n}} \dots \int |f(\bar{x})| \, d\bar{x}$, $\; \exists \; \int_{\overline{D_n}} \dots \int f_+ \, d\bar{x} \; \mathsf{u} \; \mathsf{u} \; \mathsf{d} \; \mathsf{u} \; \mathsf{d} \; \mathsf{u} \; \mathsf{d} \; \mathsf{u} \; \mathsf$

Теорема:

Если $f(\bar{x})$ удовлетворяет условиям, заданным в определении несобственного кратного интеграла и $\exists \int_{D} ... \int_{D} f(\bar{x}) \, d\bar{x}$, то $\exists \int_{D} ... \int_{D} |f(\bar{x})| \, d\bar{x}$.

Доказательство:

докажем от противного:

пусть для
$$\{D_n\}_{n=1}^{\infty}$$
 $\int_{\overline{D_n}} ... \int |f(\bar{x})| \, d\bar{x} \to +\infty$, D_n — такие, что
$$\int_{\overline{D_{n+1}}} ... \int |f(\bar{x})| \, d\bar{x} \geq 3 \quad \int_{\overline{D_n}} ... \int f(\bar{x}) \, d\bar{x} + 2n + 4 \implies \int_{\overline{Q_n}} ... \int |f(\bar{x})| \, d\bar{x} \geq 2 \quad \int_{\overline{D_n}} ... \int |f(\bar{x})| \, d\bar{x} + 2n + 4$$
 $(Q_n = D_{n+1} \backslash D_n);$ $|f| = f_+ + f_- \quad (f_+ \, \text{и} \, f_- \, \text{из доказательства предыдущей теоремы), и пусть$

$$\int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} \geq \int_{\overline{Q_n}} \dots \int f_-(\bar{x}) \, d\bar{x} \quad (*)$$
 тогда:
$$2 \quad \int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} \geq 2 \quad \int_{\overline{D_n}} \dots \int |f(\bar{x})| \, d\bar{x} + 2n + 4$$

$$\int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} \geq \int_{\overline{D_n}} \dots \int |f(\bar{x})| \, d\bar{x} + n + 2$$

Вспомогательная мысль:

пусть
$$m_i = \inf_{ar{x} \in Q_{n_i}} f_+(ar{x})$$
 , тогда:

$$0 \leq \int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} - \sum_i m_i \mu(Q_{n_i}) \leq 1$$
 (если выбрать достаточно мелкое разбиение), так как
$$\sum_i m_i \mu(Q_{n_i}) = \inf_{T(Q_n)} \sigma_{06}(f)$$
, следовательно, уменьшая диаметр разбиения, мы можем уменьшить разность
$$\int_{\overline{Q}} \dots \int f_+(\bar{x}) \, d\bar{x} - \sum_i m_i \mu(Q_{n_i})$$
 меньше любого положительного числа, в том числе и 1;

следовательно, из двух неравенств:

$$\int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} - \sum_i m_i \mu \big(Q_{n_i} \big) \leq 1$$

$$\int_{\overline{Q_n}} \dots \int f_+(\bar{x}) \, d\bar{x} \geq \int_{\overline{D_n}} \dots \int |f(\bar{x})| \, d\bar{x} + n + 2$$
 получаем:

$$\sum_{i} m_{i} \mu(Q_{n_{i}}) \geq \int_{\overline{D_{n}}} ... \int |f(\bar{x})| d\bar{x} + n + 1$$

тогда убираем нулевые слагаемые из суммы $\sum_i m_i \mu(Q_{n_i})$ (они получились из — за того, что на тех Q_{n_i} , где $\exists \bar{x}$, что $f(\bar{x}) < 0$, $f_+(\bar{x})$ принимает нулевое значение, а следовательно, и $m_i = 0$), убираем из Q_{n_i} те, где $m_i = 0$, и рассматриваем функцию $f_+(\bar{x})$ на оставшемся множестве;

пусть
$$\widetilde{Q_n} = \bigcup_{m_i > 0} Q_{n_i}$$
;

тогда делаем в неравенстве предельный переход d o 0:

$$\int_{\widetilde{Q_n}} .. \int f(\bar{x}) \, d\bar{x} \ge \int_{\overline{D_n}} .. \int |f(\bar{x})| \, d\bar{x} + n + 1$$
 пусть $\widetilde{D_n} = D_n \cup \widetilde{Q_n}$;

заметим, что $\int_{\overline{D}} ... \int (f(\overline{x}) + |f(\overline{x})|) \, d\overline{x} \ge 0,$ следовательно, $\int_{\overline{D}} ... \int f(\overline{x}) \, d\overline{x} \ge - \int_{\overline{D}} ... \int |f(\overline{x})| \, d\overline{x} ;$

сложим неравенства и получим, что $\left|\int\limits_{\overline{\widehat{D_n}}} ... \int f(\bar{x}) \, d\bar{x} \geq n+1 \right| \Rightarrow \left|\int\limits_{\overline{\widehat{D_n}}} ... \int f(\bar{x}) \, d\bar{x} \right| \geq n+1,$

если бы на месте, отмеченном звёздочкой, неравенство было бы таким: $\int_{\overline{x}} ... \int f_{+}(\bar{x}) \, d\bar{x} \leq 1$

теперь осталось сделать наши $\widetilde{D_n}$ связными множествами, чтобы их набор действительно был

так как $\widetilde{D_n}$ состоит из конечного набора связных областей, то соединим их множеством P_n так, чтобы $\widetilde{D_n} \cup P_n = D_n^*$ было связным и $\mu(\overline{P_n}) \leq \frac{1}{\sup\limits_{\overline{D_{n+1}}} |f(\bar{x})|}$, тогда получим, что

$$\left| \int_{\overline{D_n^*}} \dots \int f(\bar{x}) \, d\bar{x} \right| \ge n \; \; \text{и} \quad \int_{\overline{D_n^*}} \dots \int f(\bar{x}) \, d\bar{x} \to \infty, \text{что противоречит условию.} \quad \blacksquare$$

Лекция №8 (27.03.09)

Криволинейные интегралы.

Определение:

 $\overline{ar{\gamma}(t)}: [a,b] o l \subset R^n$, $a=t_0 < t_1 < \cdots < t_{n-1} < t_n = b$, $\{\bar{\gamma}(t_i)\}_{i=0}^n$ — разбиение кривой, $\{\xi_i\}$, $t_{i-1} \le \xi_i \le t_i$; $\{\bar{\gamma}(\xi_i) = \zeta_i\}_{i=1}^n$ — разметка разбиения; $\Delta l_i = [l_{i-1}, l_i]$ — часть кривой от $\bar{\gamma}(t_{i-1})$ до $\bar{\gamma}(t_i)$; $T_l(\zeta) = \{\{l_i\}_{i=1}^k, \{\zeta_i\}_{i=1}^k\}$ — размеченное разбиение l.

Определение:

Пусть $l \subset R^n$ — простая спрямляемая кривая, $\exists \bar{\gamma}(t) \colon [a,b] \to l, \bar{\gamma}(t) \in \mathcal{C}^1[a,b], \bar{\gamma}^{'}(t) \neq 0$, пусть $f(\bar{x})$ определена на l; если $\forall \ T_l(\zeta) \ \exists \lim_{\max |\Delta l_i| \to 0} \sum_{i=0}^{\kappa} f(\zeta_i) \, |\Delta l_i| = I$, то говорят, что существует криволи нейный интеграл первого рода от $f(\bar{x})$ по кривой l, равный l, и обозначается это так:

$$\int_{I} f(\bar{x})dl = I$$

пусть $l = \bigcup_{j=1}^m l_j$; l_j удовлетворяет условиям предыдущего определения $\forall j$; тогда:

$$\int_{l} f(\bar{x})dl = \sum_{j=1}^{m} \int_{l_{j}} f(\bar{x})dl$$

Определение:

Пусть $l \subset R^n$ — простая спрямляемая кривая, $\exists \bar{\gamma}(t) : [a,b] \to l, \bar{\gamma}(t) \in \mathcal{C}^1[a,b], \bar{\gamma}^{'}(t) \neq 0$, $ar{\gamma}(t) = ig(x_1(t),\dots,x_n(t)ig);$ пусть $\{f_i(ar{x})\}_{i=1}^n$ определены на l; если $\forall \ T_l(\zeta)$

$$\exists \lim_{\max |\Delta l_j| \to 0} \sum_{j=1}^k (f_1(\zeta_j) \Delta x_{1j} + \dots + f_n(\zeta_j) \Delta x_{nj}) = I,$$

где Δx_{ij} — приращение i — ой координаты при прохождении j — го отрезка кривой:

$$\Delta x_{ij} = x_i(t_i) - x_i(t_{i-1});$$

 $\Delta x_{ij} = x_i(t_j) - x_i(t_{j-1});$ то говорят, что существует криволинейный интеграл второго рода по кривой в направлении от $A = \bar{\gamma}(a)$ до $B = \bar{\gamma}(b)$ от дифференциальной формы $f_1(\bar{x})dx_1 + \dots + f_n(\bar{x})dx_n$, равный I:

$$\int_{A}^{B} f_1(\bar{x})dx_1 + \dots + f_n(\bar{x})dx_n = I$$

Утверждение:

- 1) криволинейный интеграл первого рода не зависит от направления обхода,
- 2) криволинейный интеграл второго рода меняет знак при смене направления обхода.

<u>Доказательство:</u>

- 1) при смене направления обхода в интегральной сумме меняется лишь порядок слагаемых, что не меняет её значения, и, как следствие, не меняет и значение интеграла;
- 2) при смене направления обхода в интегральной сумме все Δx_{ii} меняют знак на противоположный, следовательно, и интеграл меняет знак на противоположный.

Определение:

пусть $l = \bigcup_{j=1}^{n} l_j$; l_j удовлетворяет условиям предыдущего определения $\forall j$; тогда:

$$\int_{l} \sum_{s=1}^{n} f_{s}(\bar{x}) dx_{s} = \sum_{j=1}^{m} \int_{l_{j}} \sum_{s=1}^{n} f_{s}(\bar{x}) dx_{s}$$

<u>Определение:</u>

пусть l — простая замкнутая кривая: $\bar{\gamma}(a) = \bar{\gamma}(b)$; тогда $\oint f(\bar{x})dl$ называется криволинейным ин тегралом первого рода от функции f по замкнутой кривой l.

<u>Определение:</u>

пусть l — простая замкнутая кривая: $\bar{\gamma}(a) = \bar{\gamma}(b)$; A (начало кривой) — любая точка l, положи тельное направление обхода — направление того касательного вектора из двух, который образует с внешней нормалью согласованный с системой координат базис; тогда $\oint \sum_{k=1}^{\infty} f_k(\bar{x}) dx_k$ назы вается криволинейным интегралом второго рода от дифференциальной формы $\sum f_k(ar{x})dx_k$ по замкнутой кривой l.

<u> Теорема (выражение криволинейных интегралов через интегралы с параметром):</u>

Пусть $l \subset R^n$ — простая спрямляемая кривая, $\exists \bar{\gamma}(t) \colon [a,b] \to l, \bar{\gamma}(t) \in \mathcal{C}^1[a,b], \bar{\gamma}'(t) \neq 0$, пусть заданы функция $f(ar{x})$ и дифференциальная форма $\sum_{k=1}^\infty f_k(ar{x}) dx_k$, и от них существуют, соответственно, интегралы первого и второго рода по l; тогда:

1)
$$\int_{l} f(\bar{x})dl = \int_{a}^{b} f(\bar{y}(t)) \sqrt{\sum_{k=1}^{n} (x_{k}^{'2}(t))} dt$$

2)
$$\int_{A}^{B} \sum_{k=1}^{n} f_{k}(\bar{x}) dx_{k} = \int_{a}^{b} \sum_{k=1}^{n} f_{k}(\bar{y}(t)) x'_{k}(t) dt$$

1)
$$dl = \sqrt{\sum_{k=1}^{n} (dx_k)^2} = \sqrt{\sum_{k=1}^{n} (x_k^{'2}(t))} dt \implies \int_{l} f(\bar{x}) dl = \int_{a}^{b} f(\bar{y}(t)) \sqrt{\sum_{k=1}^{n} (x_k^{'2}(t))} dt$$

2) так как $\bar{\gamma}(t) \in \mathcal{C}^1[a,b]$, то верна формула

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{b} f(x)g'(x) dx$$
а, следовательно:

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{b} f(x)g'(x) dx$$
 а, следовательно:
$$\int_{A}^{B} \sum_{k=1}^{n} f_{k}(\bar{x}) dx_{k} = \int_{a}^{b} \sum_{k=1}^{n} f_{k}(\bar{y}(t)) x_{k}'(t) dt \quad \blacksquare$$

Теорема (формула Грина):

 $G \subset R^2$ — замкнутая ограниченная выпуклая область, $\partial G = \bar{\gamma}(t)$ — кусочно непрерывно диффе — ренцируема; пусть P(x,y) и Q(x,y) непрерывны на G, $\exists \frac{\partial P}{\partial y}$, $\exists \frac{\partial Q}{\partial x}$, непрерывные на G; тогда:

$$\oint_{\partial G} P(x, y) dx + Q(x, y) dy = \iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство:

пусть верхняя часть ∂G задана функцией $y=\psi(x)$, а нижняя — функцией $y=\varphi(x)$; правая часть — графиком $x=\theta(y)$, левая — функцией $x=\rho(y)$; в данном случае направление, согласованное с внешней нормалью — это направление против часовой стрелки; по второму пункту предыдущей теоремы:

Следствие 1:

Для конечного объединений областей G, удовлетворяющих условиям формулы Грина, также верна формула Грина.

Следствие 2:

Если A и B — области, удовлетворяющие условиям формулы Грина, $B \subset A$, то формула Грина верна и для $A \setminus B$.

Лекция №9 (03.04.09)

<u>Определение:</u>

 $\forall \gamma \subset R^n$, $n \geq 3$, γ — простая замкнутая кривая, определим направление обхода для интеграла второго рода следующим образом: $A, B, C \in \gamma$, направление обхода — ABCA или ACBA.

Теорема (о независимости криволинейного интеграла от пути):

Пусть область $\Omega \subset R^n$ ограниченная и выпуклая, и дан набор функций $\{Q_i(\bar{x})\}_{i=1}^n \ \forall i \ Q_i(\bar{x}) \in \mathcal{C}(\Omega);$

кроме того, дана кривая $\gamma \subset \Omega$, A и B — начало и конец γ ; тогда $\int \sum_{i=1}^n Q_i(\bar{x}) dx_i$ зависит только от A

и B и не зависит от γ (для любых A и $B) \iff \exists u(\bar{x}) \in \mathcal{C}^1(\Omega)$, что $du = \sum_{i=1}^{n} Q_i(\bar{x}) dx_i$

Доказательство:

1) доказываем слева направо:

дано, что $\forall A,B\in\Omega$ $\int\limits_{\mathcal{X}}\sum_{i=1}^{}Q_{i}(\bar{x})dx_{i}=I(A,B)$; фиксируем точку A, а $B=\bar{x}$; тогда:

$$\int\limits_{\gamma_{A\overline{x}}} \sum_{i=1}^{n} Q_{i}(\bar{x}) dx_{i} = u(\bar{x})$$
 тогда $\forall B_{1}, B_{2} \in \Omega$
$$\int\limits_{\gamma_{B_{1}B_{2}}} \sum_{i=1}^{n} Q_{i}(\bar{x}) dx_{i} = \int\limits_{\gamma_{AB_{1}B_{2}}} \sum_{i=1}^{n} Q_{i}(\bar{x}) dx_{i} - \int\limits_{\gamma_{AB_{1}}} \sum_{i=1}^{n} Q_{i}(\bar{x}) dx_{i} = u(B_{2}) - u(B_{1})$$
 возьмём две точки из Ω : $\bar{x}(x_{1}, \dots, x_{n})$ и $\bar{x} + \Delta x_{i}(x_{1}, \dots, x_{i} + \Delta x_{i}, \dots, x_{n})$:
$$\int\limits_{\gamma_{\overline{x}, \overline{x}} + \Delta x_{i}} \sum_{j=1}^{n} Q_{j}(\bar{x}) dx_{j} \text{ (используем выпуклость } \Omega) = \int\limits_{x_{i}} Q_{i}(\bar{x}) dx_{i} \text{ (так как изменяется только } x_{i}) = u(x_{1}, \dots, x_{n}) - u(x_{1}, \dots, x_{n})$$

$$\int\limits_{\gamma_{\overline{x},\overline{x}+\Delta x_i}} \sum_{j=1}^n Q_j(\bar{x}) dx_j \text{ (используем выпуклость } \Omega) = \int\limits_{x_i}^{x_i+\Delta x_i} Q_i(\bar{x}) dx_i \text{ (так как изменяется только } x_i) = u(x_1,\dots,x_i+\Delta x_i,\dots,x_n) - u(x_1,\dots,x_n)$$
 поделим обе части равенства на Δx_i и устремим его к нулю:

$$Q_i = \frac{\partial u}{\partial x_i} \implies du = \sum_{i=1}^n Q_i(\bar{x}) dx_i$$

2) доказываем справа налево:

дана
$$u(\bar{x})$$
, что $du = \sum_{i=1}^n Q_i(\bar{x}) dx_i$

тогда
$$\int\limits_{\gamma_{AB}} \sum_{i=1}^n Q_i(\bar{x}) dx_i = \int\limits_{t_0}^{t_1} \sum_{i=1}^n \Big(Q_i\big(x_1(t),\dots,x_n(t)\big) x_i^{'}(t)\Big) dt = \int\limits_{t_0}^{t_1} \sum_{i=1}^n \Big(u\big(x_1(t),\dots,x_n(t)\big)\Big)_t^{'} dt = u\big(x_1(t_1),\dots,x_n(t_1)\big) - u\big(x_1(t_0),\dots,x_n(t_0)\big) = u(B) - u(A).$$

В условиях теоремы
$$\oint\limits_{\gamma\subset\Omega}\sum_{i=1}^nQ_i(\bar{x})dx_i=0 \iff \exists u(\bar{x})\in\mathcal{C}^1(\Omega)$$
, что $du=\sum_{i=1}^nQ_i(\bar{x})dx_i$

Определение:

Пусть область $\Omega \subset R^2$ — замкнутая, ограниченная и выпуклая, $\mu(\partial\Omega)=0$; рассмотрим отображение $\bar{\varphi}:\Omega\to R^n, n\geq 3, \bar{\varphi}\in C^1(\Omega)$, и ранг матрицы Якоби $\bar{\varphi}$ равен 2 везде; тогда образ $\bar{\varphi}$ $\Phi\subset R^n$ назовём гладкой невырожденной поверхностью, а $\bar{\varphi}$ — параметризацией этой поверхности:

$$\bar{\varphi} = \big(x_1(u,v), \dots, x_n(u,v)\big)$$

Определение:

Пусть область $\Omega \subset R^2$ — замкнутая, ограниченная и выпуклая, $\mu(\partial\Omega) = 0$; $\bar{\varphi} \colon \Omega \to R^n$, рассмотрим произвольное разбиение Ω прямоугольной сеткой; пусть $\left\{\Omega_{ij}\right\}_{i,j=1}^n$ — прямоугольники разбиения, полностью лежащие в Ω, u_{ij} — левый нижний угол Ω_{ij} ; пусть Π_{ij} — параллелограмм в R^n , образо — ванный векторами $\left.\left(\frac{\partial x_1}{\partial u}, ..., \frac{\partial x_n}{\partial u}\right)\right|_{(u_i,v_j)} \Delta u_i$ и $\left.\left(\frac{\partial x_1}{\partial v}, ..., \frac{\partial x_n}{\partial v}\right)\right|_{(u_i,v_j)} \Delta v_j$ с началом в точке $\bar{\varphi}(u_i,v_j)$; если $\forall T$ области Ω с $d \to 0$ $\exists \lim_{d \to 0} \sum_{i,j} \mu(\Pi_{ij}) = S(\Phi)$, то $S(\Phi)$ называется площадью поверхности Φ .

Замечание:

так как $\mu(\partial\Omega)=0$, то определение корректно относительно выбора $\left\{\Omega_{ij}
ight\}_{i,j=1}^n$

Теорема:

У всех вышерассматриваемых $\Phi \exists S(\Phi)$ и

$$S(\Phi) = \iint\limits_{\Omega} \sqrt{EG - F^2} \ du \ dv,$$
 где $E = \sum_{i=1}^n \left(\frac{\partial x_i}{\partial u} \right)^2$, $G = \sum_{i=1}^n \left(\frac{\partial x_i}{\partial v} \right)^2$, $F = \sum_{i=1}^n \frac{\partial x_i}{\partial u} \frac{\partial x_i}{\partial v}$

Доказательство:

Распишем $\mu(\Pi_{ij})$ как площадь параллелограмма по формуле $S=ab\sin\alpha$, где a и b- стороны па — раллелограмма, а $\alpha-$ угол между ними, $\sin\alpha$ посчитаем по формуле $\sin\alpha=\sqrt{1-\cos^2\alpha}$, а $\cos\alpha$ найдем из определения скалярного произведения: $\cos\alpha=\frac{\langle \bar{x},\bar{y}\rangle}{\|\bar{x}\|\|\bar{y}\|}$:

$$\mu(\Pi_{ij}) = \left\| \frac{\partial x_k}{\partial u} \right\| \Delta u_i \left\| \frac{\partial x_k}{\partial v} \right\| \Delta v_j \int_{\Omega} 1 - \frac{\left(\sum_{k=1}^n \frac{\partial x_k}{\partial u} \frac{\partial x_k}{\partial v} \right)^2}{\left\| \frac{\partial x_k}{\partial v} \right\|^2} = \sqrt{\left\| \frac{\partial x_k}{\partial u} \right\|^2 \left\| \frac{\partial x_k}{\partial v} \right\|^2 - \left(\sum_{k=1}^n \frac{\partial x_k}{\partial u} \frac{\partial x_k}{\partial v} \right)^2} \Delta u_i \Delta v_j =$$

$$= \iint_{\Omega} \sqrt{E(u_i, v_j) G(u_i, v_j) - F^2(u_i, v_j)} \Delta u_i \Delta v_j$$

устремляем диаметр разбиения к нулю и получаем:

$$S(\Phi) = \iint\limits_{\Omega} \sqrt{EG - F^2} \, du \, dv \qquad \blacksquare$$

Лекция №10 (17.04.09)

Поверхностные интегралы

Определение:

Пусть область $\Omega \subset R^2$ — замкнутая, ограниченная и выпуклая, $\mu(\partial\Omega) = 0$; рассмотрим отображение $\bar{\varphi}: \Omega \to R^3, \bar{\varphi} \in \mathcal{C}^1(\Omega)$, и ранг матрицы Якоби $\bar{\varphi}$ равен 2 везде; $\bar{\varphi}(\Omega) = S$ — поверхность в R^3 , у S нет кратных точек, то есть $\bar{\varphi}$ — биекция.

 $\varphi(\partial\Omega)\equiv\partial S$ назовём границей $S,\partial S$ — простая замкнутая кривая в R^3 .

Определение:

Пусть $f(x,y,z) \in C(S)$, пусть Ω_{ij} — разбиение Ω на прямоугольники, взяты только те, что $\Omega_{ij} \subset \Omega$; (u_i,v_j) — левый нижний угол Ω_{ij} ; Π_{ij} — параллелограмм на векторах $\overline{\varphi}_u^{'}\mid_{(u_i,v_j)}\Delta u_i$ и $\overline{\varphi}_v^{'}\mid_{(u_i,v_j)}\Delta v_j$ с началом в точке $\overline{\varphi}(u_i,v_j)$; если $\exists \lim_{d\to 0} \sum_{i,j} f\left(x(u_i,v_j),y(u_i,v_j),z(u_i,v_j)\right) \mu(\Pi_{ij}) = I$, то говорят, что существует поверхностный интеграл первого рода от f(x,y,z) по поверхности S:

$$\iint\limits_{S} f(x,y,z)\,ds = I$$

Замечание:

Заметим, что
$$\sum_{i,j} f\left(\bar{\varphi}(u_i,v_j)\right) \mu(\Pi_{ij}) = \sum_{i,j} f\left(\bar{\varphi}(u_i,v_j)\right) \sqrt{EG-F^2} \Big|_{(u_i,v_j)} \Delta u_i \Delta v_j$$
; устремим $d \to 0$:
$$\sum_{i,j} f\left(\bar{\varphi}(u_i,v_j)\right) \sqrt{EG-F^2} \Big|_{(u_i,v_j)} \Delta u_i \Delta v_j \to \iint\limits_{\Omega} f\big(x(u,v),y(u,v),z(u,v)\big) \sqrt{EG-F^2} \, du \, dv$$

<u>Замечание.</u>

Пусть $\{S_k\}_{k=1}^n$ — поверхности, удовлетворяющие условию самого первого определения лекции;

пусть
$$(S_k \cap S_m) \subset (\partial S_k \cap \partial S_m) \ \ \forall k,m;$$
 пусть $S = \bigcup_{k=1}^n S_k$; тогда:

$$\iint\limits_{S} f(x,y,z) ds = \sum_{k=1}^{\kappa-1} \iint\limits_{S_k} f(x,y,z) ds_k$$

Определение:

пусть $\bar{\varphi}$: $\Omega \to S$, $\forall \left(x(u,v),y(u,v),z(u,v)\right) \in S$; тогда $\bar{n}\left(\bar{\varphi}(u,v)\right) = \frac{[\bar{\varphi}_u^{'},\bar{\varphi}_v^{'}]}{\|[\bar{\varphi}_u^{'},\bar{\varphi}_v^{'}]\|}$ — нормаль к поверх — ности S; заметим, что $\bar{n} \in C(\Omega)$ и что $\forall \bar{\psi}(t,s)$: $\Omega^{'} \to S$ $\bar{n}\left(\bar{\psi}(t,s)\right) = \pm \bar{n}\left(\bar{\varphi}(u,v)\right)$, $\langle \bar{n}\left(\bar{\psi}(t,s)\right),\bar{n}\left(\bar{\varphi}(u,v)\right)\rangle \equiv 1$ либо — 1 везде на S, поэтому говорят, что выбор нормали задает сторону поверхности S.

Замечание:

$$(u, v) \rightarrow (v, u) \implies \bar{n}(u, v) = -\bar{n}(v, u)$$

Определение:

$$\frac{\overline{GR}(x,y,z)}{P(x,y,z),Q(x,y,z),R(x,y,z)} \in \mathcal{C}(S); \text{ если}$$

$$\exists \lim_{d\to 0} \sum_{i,j} \left(P\left(\overline{\varphi}(u_i,v_j)\right) \langle \overline{n}(u_i,v_j),\overline{e_x}\rangle + Q\left(\overline{\varphi}(u_i,v_j)\right) \langle \overline{n}(u_i,v_j),\overline{e_y}\rangle + R\left(\overline{\varphi}(u_i,v_j)\right) \langle \overline{n}(u_i,v_j),\overline{e_z}\rangle \right) \mu(\Pi_{ij}),$$

то говорят, что существует поверхностный интеграл второго рода по стороне поверхности S, заданной нормалью $\bar{n}(u,v)$ от дифференциальной формы P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy

и обозначается он так:

$$\iint\limits_{S(\overline{n})} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy$$

Примечание:

$$\langle \bar{n}(u_i, v_j), \overline{e_x} \rangle = \frac{\begin{vmatrix} y_u' & y_v' \\ z_u' & z_v' \end{vmatrix}}{\sqrt{EG - F^2}}$$

$$\langle \bar{n}(u_i, v_j), \overline{e_y} \rangle = \frac{\begin{vmatrix} z_u' & z_v' \\ y_u' & y_v \end{vmatrix}}{\sqrt{EG - F^2}}$$

$$\langle \bar{n}(u_i, v_j), \overline{e_x} \rangle = \frac{\begin{vmatrix} x_u' & x_v' \\ y_u' & y_v \end{vmatrix}}{\sqrt{EG - E^2}}$$

Замечание:

$$\iint\limits_{S^{(\overline{n})}} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy =$$

$$= \iint\limits_{S} \left(P\cos(\overline{n} \widehat{e_x}) + Q\cos(\overline{n} \widehat{e_y}) + R\cos(\overline{n} \widehat{e_z}) \right) ds =$$

$$= \iint\limits_{S} \left(P \begin{vmatrix} y'_u & y'_v \\ z'_u & z'_v \end{vmatrix} + Q \begin{vmatrix} z'_u & z'_v \\ x'_u & x'_v \end{vmatrix} + R \begin{vmatrix} x'_u & x'_v \\ y'_u & y_v \end{vmatrix} \right) du \, dv$$

Определение:

Пусть $\{S_k\}_{k=1}^n$ — поверхности, удовлетворяющие условию самого первого определения лекции; пусть $(S_k \cap S_m) \subset (\partial S_k \cap \partial S_m) \ \forall k, m$; выбор нормалей на S_k согласован; $\forall k, m \ \partial S_k \cap \partial S_m \neq \emptyset$;

пусть
$$S = \bigcup_{k=1}^{n} S_k$$
; тогда:

$$\iint\limits_{S^{(\overline{n})}}P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy=$$

$$= \sum_{k=1}^{n} \iint\limits_{S_{k}^{(\bar{n})}} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

Лекция №11 (24.04.09)

Теорема (формула Стокса):

Пусть область $\Omega \subset R^2$ — замкнутая, ограниченная и выпуклая, $\partial\Omega$ — кусочно — гладкая, простая, замкнутая, невырожденная кривая; $\bar{\varphi} \colon \Omega \to R^3$, $\bar{\varphi} \in C^1(\Omega)$, P, Q, $R \in C^1(S)$, пусть направление обхода на ∂S и нормаль к S согласованы с параметризацией; тогда:

$$\oint_{\partial S} P dx + Q dy + R dz = \iint_{S^{(\overline{n})}} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство:

Рассмотрим только случай $Q\equiv 0$, $R\equiv 0$ (всё остальное доказывается аналогично)

$$\partial\Omega = (u(t), v(t)), t \in [0,1]$$

распишем левую часть формулы:

$$\oint_{\partial S} P(x,y,z) dx = \int_{0}^{1} P\left(x(u(t),v(t)),y(u(t),v(t)),z(u(t),v(t))\right) dx(u(t),v(t)) =$$

$$= \oint_{\partial \Omega} P(x(u,v),y(u,v),z(u,v)) dx(u,v) = \oint_{\partial \Omega} Px'_{u} du + Px'_{v} dv$$

по формуле Грина:

$$\oint_{\partial\Omega} Px'_{u}du + Px'_{v}dv = \iint_{\Omega} ((Px'_{v})'_{u} - (Px'_{u})'_{v}) du dv = \iint_{\Omega} (Px''_{vu} + P'_{u}x'_{v} - Px''_{uv} - P'_{v}x'_{u}) du dv = \iint_{\Omega} (P'_{u}x'_{v} - P'_{v}x'_{u}) du dv = \iint_{\Omega} ((P'_{u}x'_{v} + P'_{v}y'_{u} + P'_{v}z'_{u})x'_{v} - (P'_{x}x'_{v} + P'_{y}y'_{v} + P'_{z}z'_{v})x'_{u}) du dv = \iint_{\Omega} (P'_{x}x'_{u}x'_{v} + P'_{y}y'_{u}x'_{v} + P'_{z}z'_{u}x'_{v} - P'_{x}x'_{v}x'_{u} - P'_{y}y'_{v}x'_{u} - P'_{z}z'_{v}x'_{u}) du dv = \iint_{\Omega} (P'_{y}y'_{u}x'_{v} + P'_{z}z'_{u}x'_{v} - P'_{y}y'_{v}x'_{u} - P'_{z}z'_{v}x'_{u}) du dv = \iint_{\Omega} (P'_{y}y'_{u}x'_{v} + P'_{z}z'_{u}x'_{v} - P'_{y}y'_{v}x'_{u} - P'_{z}z'_{v}x'_{u}) du dv$$

распишем правую часть формулы:

$$\iint\limits_{S^{(\overline{n})}} \frac{\partial P}{\partial z} dz \ dx - \frac{\partial P}{\partial y} dx \ dy = \iint\limits_{S} \left(\frac{\partial P}{\partial z} \cos(\overline{n} \widehat{e_y}) - \frac{\partial P}{\partial y} \cos(\overline{n} \widehat{e_z}) \right) ds =$$

$$= \iint\limits_{\Omega} \left(\frac{\partial P}{\partial z} \left| \begin{matrix} z_u^{'} & z_v^{'} \\ x_u^{'} & x_v^{'} \end{matrix} \right| - \frac{\partial P}{\partial y} \left| \begin{matrix} x_u^{'} & x_v^{'} \\ y_u^{'} & y_v^{'} \end{matrix} \right| \right) du \ dv, \text{что и равно расписанной левой части}$$

Определение:

Пусть V — замкнутая ограниченная выпуклая область в R^3 ; тогда ∂V — замкнутая поверхность.

Замечание:

Пусть l — простая замкнутая кривая $\subset \partial V$; тогда l разбивает ∂V на две поверхности с границей l, если параметризация на обеих частях согласована, то говорят, что на V задана нормаль.

Теорема (формула Гаусса-Остроградского):

пусть V- замкнутая, ограниченная, выпуклая область в R^3 , $\partial V-$ кусочно - гладкая невырож - денная поверхность, $P,Q,R\in C^1(V)$, пусть задана внешняя нормаль \overline{n} к V; тогда:

$$\iint\limits_{\partial V^{(R)}} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \, dy \, dz$$

Доказательство:

рассмотрим только случай $P\equiv 0, Q\equiv 0$, пусть $\Omega-$ проекция V на плоскость $Oxy; S_1^+-$ внешняя

сторона нижней части ∂V , является графиком функции $z = \psi_1(x,y)$; S_2^+ — внешняя сторона верх — ней части ∂V , является графиком функции $z = \psi_2(x,y)$; $S_3^+ = \partial V \setminus (S_1^+ \cup S_2^+)$, S_3^+ разбивает ∂V на две части; тогда распишем левую часть формулы:

$$\iint\limits_{\partial V^{(\overline{n})}} R \; dx \; dy = \iint\limits_{S_1^+} R \; dx \; dy + \iint\limits_{S_2^+} R \; dx \; dy + \iint\limits_{S_3^+} R \; dx \; dy =$$

$$= \iint\limits_{S_1} R \cos(\overline{n} \widehat{e}_{\overline{z}}) \; ds + \iint\limits_{S_2} R \cos(\overline{n} \widehat{e}_{\overline{z}}) \; ds + \iint\limits_{S_3} R \cos(\overline{n} \widehat{e}_{\overline{z}}) \; ds$$

$$\text{для } S_3 \; (\overline{n} \widehat{e}_{\overline{z}}) = \frac{\pi}{2}, \text{значит, } \cos(\overline{n} \widehat{e}_{\overline{z}}) = 0 \text{:}$$

$$\iint\limits_{S_1} R\cos(\bar{n}^{\smallfrown} \bar{e_z}) \, ds + \iint\limits_{S_2} R\cos(\bar{n}^{\smallfrown} \bar{e_z}) \, ds + \iint\limits_{S_3} R\cos(\bar{n}^{\smallfrown} \bar{e_z}) \, ds = \iint\limits_{S_1} R\cos(\bar{n}^{\smallfrown} \bar{e_z}) \, ds + \iint\limits_{S_2} R\cos(\bar{n}^{\smallfrown} \bar{e_z}) \, ds$$

посчитаем необходимые косинусы; для этого найдём нормали:

нормаль к
$$S_1 = \frac{\begin{vmatrix} 1 & 0 & \psi_{1_x} \\ 0 & 1 & \psi_{1_y} \\ \hline \frac{e_x}{e_x} & \overline{e_y} & \overline{e_z} \end{vmatrix}}{\sqrt{1 + \psi_{1_x}^{'2} + \psi_{1_y}^{'2}}}$$

косинус угла этой нормали с $\bar{e_z}$ равен $\frac{1}{\sqrt{1+{\psi_1}^{'}_{x}^{2}+{\psi_1}^{'}_{y}^{2}}}$, но на S_1 внешняя нормаль имеет

отрицательную компоненту z, поэтому наш косинус мы берём с минусом:

$$\cos(\bar{n}^{\hat{}} = \frac{1}{\sqrt{1 + \psi_{1_x}^{'2} + \psi_{1_y}^{'2}}}$$

аналогично, на верхней части (S_2):

$$\cos(\bar{n}^{\hat{}}\bar{e}_{z}) = \frac{1}{\sqrt{1 + \psi_{2_{x}}^{'2} + \psi_{2_{y}}^{'2}}}$$

для S_1 $ds = \sqrt{EG - F^2} \, dx \, dy$, в данном случае поверхность задана как $\left(x, y, \psi_1(x, y)\right)$ и $\sqrt{EG - F^2} = \sqrt{\left(1 + {\psi_1}_x^{'2}\right) \left(1 + {\psi_1}_y^{'2}\right) - {\psi_1}_x^{'2} \psi_1^{'2}} = \sqrt{1 + {\psi_1}_x^{'2} + {\psi_1}_y^{'2}}$

для
$$S_2$$
 аналогично:

$$\sqrt{EG - F^2} = \sqrt{1 + \psi_{2_x}^{'2} + \psi_{2_y}^{'2}}$$

$$\iint\limits_{S_1} R\cos(\bar{n}^{\hat{e}_z}) ds + \iint\limits_{S_2} R\cos(\bar{n}^{\hat{e}_z}) ds = -\iint\limits_{\Omega} R(x, y, \psi_1(x, y)) dx dy + \iint\limits_{\Omega} R(x, y, \psi_2(x, y)) dx dy =$$

$$= \iint_{\Omega} \left(R(x, y, \psi_2(x, y)) - R(x, y, \psi_1(x, y)) \right) dx dy = \iint_{\Omega} \left(\int_{\psi_1(x, y)}^{\psi_2(x, y)} \frac{\partial R}{\partial z} dz \right) dx dy = \iiint_{V} \frac{\partial R}{\partial z} dx dy dz \blacksquare$$

Замечание:

Формула Гаусса — Остроградского верна для конечного объединения выпуклых ограниченных областей, пересекающихся только по границе.