UNIVERSIDADE FEDERAL DA FRONTEIRA SUL - UFFS/CHAPECÓ CIÊNCIA DA COMPUTAÇÃO - CIRCUITOS DIGITAIS AVALIAÇÃO DE CIRCUITOS DIGITAIS.

PROF: ADRIANO S. PADILHA E LUCIANO CAIMI	
ALUNO:	DATA:
1 - MAPAS DE KARNOLIGH	

Considere um robô, cuja plataforma possui um sistema de parachoques com 4 sensores, distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional para comandar os motores, a fim de que o robô se desvie toda vez que se chocar com um obstáculo. O controle deverá obedecer as seguintes regras:

- I- Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
- II- Se apenas F e D forem pressionados, giro para a esquerda;
- III- Se apenas F e E forem pressionados, giro para a direita;
- IV- Se apenas D ou E for pressionado, o movimento é para trás;
- VI- Caso nenhum sensor seja pressionado e para as demais combinações (consideradas inválidas), o movimento é para frente.

Sabendo que em cada roda existe um motor (motor direito MD e motor esquerdo ME), quando o comando do motor for igual a 1 o giro será para frente e quando o comando do motor for igual a zero o giro será para trás. Encontre as menores expressões booleanas para o circuito combinacional do seu projeto.

A	F	D	E	MD	ME	SENTIDO	CONDIÇÕES
0	0	0	0	1	1	PARA FRENTE	VI - Nenhum Sensor
0	0	0	1	0	0	PARA TRÁS	IV – Apenas E
0	0	1	0	0	0	PARA TRÁS	IV – Apenas D
0	0	1	1	1	1	PARA FRENTE	VI - Comb. Inválidas
0	1	0	0	0	0	PARA TRÁS	I – Apenas F
0	1	0	1	0	1	PARA DIREITA	III – Apenas F e E
0	1	1	0	1	0	PARA	II – Apenas F e D
						ESQUERDA	
0	1	1	1	0	0	PARA TRÁS	I – 3 Sensores Frontais
1	X	X	X	1	1	PARA FRENTE	VI - Comb. Inválidas

MAPAS DE KARNOUGH

MD	A'F'	A'F	AF	AF'
D'E'				
D'E				
DE				
DE'				

MD =

ME	A'F'	A'F	AF	AF'
D'E'				
D'E				
DE				
DE'				

ME=

2. CIRCUITOS DE CONEXÃO

A expressão algébrica que representa a saída S em função da seleção A, B e C.

3. CIRCUITOS ARITMÉTICOS

O circuito digital da figura abaixo foi projetado para realizar operações aritméticas entre dois números inteiros com sinal "A" e "B", representados em binário com 4 bits, e assumindo que números inteiros negativos estão em complemento de dois. Neste circuito, cada bloco referenciado por "SC" é um somador completo (também conhecido por *full adder*).

Considerando o circuito da figura, numere a Coluna 2 de modo a associar cada operação aritmética com a respectiva combinação de valores que deve ser aplicada nas entradas "op1" e "op0".

Coluna 1	Coluna 2
I. op1=0 e op0=0	() S=A-B
II. op1=0 e op0=1	() S=A+1
III. op1=1 e op0=0	() S=A+B
IV. op1=1 e op0=1	() S=A-1

4. CIRCUITOS SEQUENCIAIS E REGISTRADORES

4.1 Dado o diagrama temporal do circuito abaixo, quais os valores de $\mathbf{Q}_A\mathbf{Q}_B$ nos instantes $\mathbf{t1}$, $\mathbf{t2}$, $\mathbf{t3}$ e $\mathbf{t4}$ respectivamente:

4.2 Considere o seguinte circuito:

Considerando o circuito da figura acima, numere a Coluna 2 de modo a associar a função do registrador.

Coluna 1	Coluna 2
I. S2=0 e S1=0	() Carga paralela
II. S2=0 e S1=1	() Deslocamento à esquerda
III. S2=1 e S1=0	() Mantém o valor da saída
IV. S2=1 e S1=1	()Deslocamento à direita