Understanding Tokens in LLMs

The Fundamental Units of Language Models

Created by Daniel Zaldaña https://x.com/ZaldanaDaniel

What is a Token?

A token is the smallest unit of text that an LLM processes. It can be:

• Complete words: "elephant", "the"

• Word pieces: "ing", "pre", "post"

• Characters: "a", "?"

• Special tokens: [START], [END], [PAD]

Mathematical Foundation

Vocabulary Space:

$$\mathcal{V} = \{t_1, t_2, ..., t_{|V|}\}$$

where |V| is vocabulary size (typically 32K-50K) **Token Embedding:**

$$E(t_i) = \vec{e_i} \in R^d$$

where d is embedding dimension

Tokenization Process

BPE Algorithm:

- 1. Start with character vocabulary
- 2. Iteratively merge most frequent pairs
- 3. Stop at target vocabulary size

Mathematical Formulation:

$$score(x, y) = \frac{count(xy)}{\sum_{a,b \in V} count(ab)}$$

Probabilistic Framework

Next Token Prediction:

$$P(t_k|t_{1:k-1}) = \frac{\exp(h_k^T W t_k)}{\sum_{j \in V} \exp(h_k^T W t_j)}$$

where:

- h_k is the context vector
- \bullet W is the token embedding matrix
- t_k is the candidate token

Information Content

Token Information:

$$I(t_i) = -\log_2 P(t_i)$$

Sequence Entropy:

$$H(T) = -\sum_{i=1}^{n} P(t_i) \log_2 P(t_i)$$

Practical Impact

Context Window Size:

$$C_{tokens} = \max_{\text{position}} \times \text{batch_size}$$

Memory Usage:

$$M = C_{tokens} \times d_{model} \times \text{bytes_per_parameter}$$