MATH6321 - Theory of functions of a real variable Homework 8

Joel Sleeba

April 2, 2025

1. **Solution:** Let X_n be a countable collection of finite measurable sets such that $X = \bigcup_{n=1}^{\infty} X_n$. Additionally assume that $X_n \subset X_{n+1}$ for each $n \in \mathbb{N}$. If this is not the case, then we can modify the collection by taking $Y_i = \bigcup_{n=1}^{i} X_n$. Let $E_n = \{x \in X_n : |g(x)| < n\}$. Clearly each E_n is measurable and $E_n \subset E_{n+1}$. Let $g_n = g\chi_{E_n}$ and define linear functionals

$$T_n: L^p(X) \to \mathbb{C} := f \mapsto \int f g_n \ d\mu$$

Since

$$\int |g_n|^q d\mu = \int |g\chi_{E_n}|^q d\mu = \int |g|^q \chi_{E_n} d\mu \le n^q \mu(E_n)$$

 $||g_n||_q \leq n\mu(E_n)^{\frac{1}{q}} < \infty$. Thus by Holder's inequality, $||T_n|| \leq n\mu(E_n)^{\frac{1}{q}}$ and thus T_n are bounded linear functionals on $L^p(X)$.

Now we claim that $\sup_n |T_n(f)| < \infty$, for all $f \in L^p(X)$. Let $f \in L^p(X)$, then

$$|T_n(f)| = \left| \int fg_n \ d\mu \right| \le \int |fg\chi_{E_n}| \ d\mu \le \int |fg| \ d\mu < \infty$$

where the last inequality is by our assumption. Thus by uniform boundedness principle, we get that

$$\sup_{n} \|T_n\| < \infty$$

Let $\sup_n ||T_n|| = M$. Again since $fg_n \to fg$ pointwise in n, and since $fg \in L^p(X)$, by dominated convergence theorem,

$$T_n(f) = \int f g_n \ d\mu \to \int f g \ d\mu = T(f)$$

Now let $f \in L^p(X)$. Since $T(f) = \lim_{n \to \infty} T_n(f)$

$$|T(f)| = |\lim_{n \to \infty} T_n(f)| = \lim_{n \to \infty} |T_n(f)| \le \lim_{n \to \infty} M ||f||_p = M ||f||_p$$

Thus $||T|| \leq M$, and hence we see that T is a bounded linear functional on $L^p(X)$.

By the duality of $L^p(X)$ and $L^q(X)$, there exist a unique $h \in L^q(X)$, such that

$$T(f) = \int fg \ d\mu = \int fh \ d\mu = \Lambda_h$$

We claim that the set $E = \{x \in X : h \neq g\}$ has measure zero. If not, then for some $n \in \mathbb{N}$, $\mu(E \cap X_n) \neq 0$. Let $f = \chi_{E \cap X_n} \frac{\overline{g-h}}{|g-h|}$. Then clearly $f \in L^p(X)$, and

$$T(f) - \Lambda(f) = \int \chi_{E \cap X_n} \frac{\overline{g - h}}{|g - h|} (g - h) \ d\mu = \int_{E \cap X_n} |g - h| \ d\mu$$

Since |g - h| is a positive function on $\chi_{E \cap X_n}$ and $\mu(E \cap X_n) \neq 0$, by a result we proved in the first semester mid-term exam

$$T(f) - \Lambda(f) = \int_{E \cap X} |g - h| \ d\mu > 0$$

But this contradicts our assumption that $T = \Lambda_h$. Thus $\mu(E) = 0$, and h = g almost everywhere forcing $g \in L^q(X)$

2. **Solution:** Since the following result seems plays an integral role, we state is separately.

Proposition 0.1. If $\{f_n\}$ is uniformly integrable, then $\{|f_n|\}$ is uniformly integrable.

Proof. We'll show that $\{|f_n|\}$ is uniformly integrable whenever $\{f_n\}$ is uniformly integrable. Since

$$\left| \int f \ d\mu \right| = \left| \int \operatorname{Re}(f) \ d\mu + i \int \operatorname{Im}(f) \ d\mu \right| \ge \left| \int \operatorname{Re}(f) \ d\mu \right|, \left| \int \operatorname{Im}(f) \ d\mu \right|$$

we see that if

$$\left| \int_{E} f \ d\mu \right| < \varepsilon$$

then

$$\left| \int_{E} \operatorname{Re}(f) \ d\mu \right|, \left| \int_{E} \operatorname{Im}(f) \ d\mu \right| < \varepsilon$$

Thus we see that if $\{f_n\}$ is uniformly integrable, then $\{\text{Re}(f_n)\}, \{\text{Im}(f_n)\}$ are uniformly integrable with the same (ε, δ) pair as in $\{f_n\}$.

Now assume $\{f_n\}$ is a set of real valued functions with $f_n=f_n^+-f_n^-$, where $f_n^+(x)=\max\{f_n(x),0\}, f_n^-(x)=\max\{-f_n(x),0\}$. Notice that for $P_n=\{x\in X: f_n(x)\geq 0\}$ and $N_n=X\setminus P_n, f_n^+=f_n\chi_{P_n}$ and $f_n^-=f_n\chi_{N_n}$. Now let $\varepsilon>0$ be given. Then there is a $\delta>0$ such that for all f_n

$$\mu(E) < \delta \implies \left| \int_E f_n \ d\mu \right| < \varepsilon$$

But since

$$\left| \int_{E} f_{n}^{+} d\mu \right| = \left| \int_{E} f_{n} \chi_{P_{n}} d\mu \right| = \left| \int_{E \cap P_{n}} f_{n} d\mu \right|$$

and $\mu(E \cap P_n) \leq \mu(E)$, we get that

$$\mu(E) < \delta \implies \left| \int_E f_n^+ \ d\mu \right| < \varepsilon$$

Thus we see that $\{f_n^+\}$ is uniformly integrable when $\{f_n\}$ is uniformly integrable with again the same (ε, δ) pair as in $\{f_n\}$. Using a similar reasoning, we can show that $\{f_n^-\}$ is also uniformly integrable with the same (ε, δ) pair as $\{f_n\}$.

Now let $\delta > 0$ be such that for all f_n

$$\mu(E) < \delta \implies \left| \int_E f_n \ d\mu \right| < \frac{\varepsilon}{4}$$

Then what we have done before, we see that

$$\left| \int_{E} \operatorname{Re}(f_{n}) \ d\mu \right|, \left| \int_{E} \operatorname{Im}(f_{n}) \ d\mu \right| < \frac{\varepsilon}{4}$$

and since $Re(f_n)$, $Im(f_n)$ are real valued functions, we get

$$\left| \int_{E} \operatorname{Re}(f_{n})^{+} d\mu \right|, \left| \int_{E} \operatorname{Re}(f_{n})^{-} d\mu \right|, \left| \int_{E} \operatorname{Im}(f_{n})^{+} d\mu \right|, \left| \int_{E} \operatorname{Im}(f_{n})^{-} d\mu \right| < \frac{\varepsilon}{4}$$

Since

$$\int_{E} |f_{n}| \ d\mu = \int_{E} \operatorname{Re}(f_{n})^{+} \ d\mu + \int_{E} \operatorname{Re}(f_{n})^{-} \ d\mu + \int_{E} \operatorname{Im}(f_{n})^{+} \ d\mu + \int_{E} \operatorname{Im}(f_{n})^{-} \ d\mu$$

by triangle inequality, we get that

$$\left| \int_{E} |f_{n}| \ d\mu \right| = \int_{E} |f_{n}| \ d\mu < \varepsilon$$

Thus we get that $\{|f_n|\}$ is uniformly integrable whenever $\{f_n\}$ is uniformly integrable.

Let $\varepsilon > 0$ be given. Since $\{|f_n|\}$ is uniformly integrable by the above proposition, let $\delta > 0$ be such that whenever $\mu(E) < \delta$,

$$\int_{E} |f_n| \ d\mu < \frac{\varepsilon}{3}$$

for all f_n . Since $f_n \to f$ pointwise almost everywhere, by Egoroff's theorem, there exists $E_{\varepsilon} \in \mathcal{M}$ such that f_n converges uniformly to f on E_{ε} and $\mu(E_{\varepsilon}^c) < \delta$. Now let $N \in \mathbb{N}$ such that for all n > N, $||f_n - f||_{\infty} < \frac{\varepsilon}{3\mu(E_{\varepsilon})}$ in E_{ε} . Then for all n > N,

$$\int |f_n - f| \ d\mu = \int_{E_{\varepsilon}} |f_n - f| \ d\mu + \int_{E_{\varepsilon}^c} |f_n - f| \ d\mu$$

$$\leq \frac{\varepsilon}{3} + \int_{E_{\varepsilon}^c} |f_n| \ d\mu + \int_{E_{\varepsilon}^c} |f| \ d\mu$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \int_{E_{\varepsilon}} |f| \ d\mu$$

where the last inequality is because $\mu(E_{\varepsilon}^c) < \delta$. Note that we'll be done, if we show that $\int_{E_{\varepsilon}^c} |f| d\mu < \frac{\varepsilon}{3}$. For this notice that since $f_n \to f$ almost everywhere,

$$|f| = \liminf |f_n|$$

almost everywhere. Thus

$$\int_{E_{\varepsilon}^{c}} |f| \ d\mu = \int_{E_{\varepsilon}^{c}} \liminf |f_{n}| \ d\mu \leq \liminf \int_{E_{\varepsilon}^{c}} |f_{n}| \ d\mu \leq \liminf \frac{\varepsilon}{3} = \frac{\varepsilon}{3}$$

due to Fatou's lemma and our choice of δ . Thus f_n converge to f in L_1 norm and by the completeness of the space, we get $f \in L^1(\mu)$.

3. **Solution:** Notice that because of problem 2, we'll be done if we show that $\{f_n\}$ is uniformly integrable. Again, see that by Holder inequality for f_n and the constant function 1

$$\left| \int_{E} f_{n} \ d\mu \right| \leq \int_{E} |f_{n}| \ d\mu \leq \left(\int_{E} |f_{n}|^{p} \ d\mu \right)^{\frac{1}{p}} \left(\int_{E} 1^{q} \ d\mu \right)^{\frac{1}{q}} \leq \|f_{n}\|_{p} \mu(E)^{\frac{1}{q}}$$

But since we know that $||f_n||_p^p < C$ for all $n \in \mathbb{N}$, we get

$$\left| \int_{E} f_n \ d\mu \right| \le C^p \mu(E)^{\frac{1}{q}}$$

Now let $\varepsilon > 0$ be given. Then for $E \in \mathcal{M}$ with $\mu(E) < \delta = (\frac{\varepsilon}{C^p})^q$ the above inequality gives

$$\left| \int_{E} f_n \ d\mu \right| \le C^p \mu(E)^{\frac{1}{q}} < \varepsilon$$

Thus we see that $\{f_n\}$ is uniformly integrable, and thus the result follows.