ORDER NO. VSD9404M245

Service Manual

Volume 2

Panasonic SVHS Hi-Fi

Editing Video Cassette Recorder

AG-DS850P

Sec. 6 Mechanism

Sec. 7 Electrical Adjustment

Sec. 8 Block Diagrams

Sec. 9 Supplement (Voltage table)

The Operating Instructions (Sec. 1), Disassembly Procedures (Sec. 2), Schematic Diagrams (Sec. 3), Circuit Board Diagrams (Sec. 4), and Exploded Viws & Replacement Parts Lists (Sec. 5), please refer to the Service Manual Volume 1 (Order No. VSD9404M244).

The detail circuit description for this model, please refer to the Supplement Service Manual (Order No. VSD9404D209).

Panasonic.

© 1994 Matsushita Electric Industrial Co., Ltd. All rights reserved. Unauthorized copying and distribution is a violation of law.

▲ WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advice non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service manual by anyone else could result in serious injury or death.

SPECIFICATIONS

ITEM		SPECIFICATION	ITEM	ITEM SPECIFICATION					
D	Source	$AC 120 V \pm 10\%$, $50-60 Hz$			Normal Audio Control; 1 stationary head				
Power	Consumption	Approx. 87 Watts (with AG-A750)	_	Heads	Hi-Fi Audio; 2 rotary heads $(42 \mu \text{ m} \times 2)$				
Television Format	EIA Standard	d (525 lines, 60fields) NTSC color signal			Erase; 1 full track erase, 1 Audio track erase Normal audio; 2 track (stereo)				
Tape Speed	33.35 mm∕s	(1-15/16 i.p.s)		Tracks	Hi-Fi Audio; 2 channels (stereo)				
Tape Forma	S-VHS, VHS]		LINE IN Hi-Fi (XLR):				
FF/REW	Approx. 2.5n	nin. (with 120 min. tape)			+4/0/-6dBs, Hi-imp, balanced				
	Head 2 rotary heads, helical scaning system 58μ m (NOR) \times 2, 58μ m (SS) \times 2 2 flying (rotary) erase heads 56μ m \times 2			Input level	LINE IN NORM/Hi-Fi(XLR): +4/0/-6dBs, Hi-imp. balanced MICROPHONE IN (1/4" PHONE×2);				
	Luminance	FM azimuth recording	_		-50dBv, 4.7kΩ unbalanced				
	Color signal Input level	Converted subcarrier phase shift recording LINE (BNC); 1.0Vp-p , 75Ω unbalanced S-VIDEO (4P); Y: 1.0Vp-p , 75Ω unbalanced C: 0.286Vp-p (burst), 75Ω unbalanced REF IN (BNC): 1.0Vp-p , 75Ω unbalanced	Audio	Output level	LINE OUT Hi-Fi (XLR): +4/0/-6dBs, Hi-imp. balanced LINE OUT NORM/Hi-Fi (XLR): +4/0/-6dBs, Hi-imp. balanced HEADPHONES (1/4" PHONE) -60dBv to -20dBv, 8Ω unbalanced AUDIO MONITOR OUT (PHONO);				
Video	Output level	LINE (BNC×2); 1.0Vp-p, 75 Ω unbalanced S-VIDEO (4P×2); Y: 1.0Vp-p, 75 Ω unbalanced C: 0.286Vp-p (burst), 75 Ω unbalanced COMPONENT OUT (BNC×3): Y: 1.0Vp-p, 75 Ω unbalanced		Frequency Response Dynamic Range	0dBv, 600 Ω unbalanced Normal; 50Hz to 12kHz Hi-Fi; 20Hz to 20kHz Hi-Fi; more than 90 dB 48dB (Normal) (with NR switch ON)				
		Pr: 0.486 Vp-p, 75 Ω unbalanced		Input Level	$1.0 \text{Vp-p}, 10 \text{k}\Omega$ unbalanced				
		Pb: 0.486 Vp-p, 75 Ω unbalanced VIDEO MONITOR OUT (BNC):	Time Code		2.4 Vp-p, low impedance unbalanced				
	Si1 to	1.0 Vp-p 75 Ω unbalanced	Standard Accessories	Power Cable					
	Signal-to- Noise Ratio	VHS; 46dB (color)	11000301165	S-VIDEO cable (4P)					
	Horizontal Resolution	S-VHS; more than 400 lines VHS; 240 lines		Editing contr	VW-CV2 (2 m) VW-CV1 (1.5 m) oller				
Operating	Temperature	5℃-40℃ (41°F to 104°F)]	AG-A800 AG-A770					
Condition	Humidity	35% - 80%	Optional						
Dimensions	16-11/16" (W)×5-3/16" (H)×16-5/16" (D) 424 mm(W) × 131.5 mm(H) × 415 mm(D)		Accessories	AG-A750 Siow-motion controller					
Weight	Approx. 12kg	g (Approx. 26.4 lbs)		34P Interface Board AG-IA834 TBC Remote Controller AU-ER65					

Weight and dimensions shown are approximate. Specifications are subject to change without notice.

INTRODUCTION

This Service Manual contains all the technical information which will allow service personnel to understand and service the Panasonic S-VHS editing video cassette recorder model AG-DS 850P.

This model is video cassette recorder for editing applications which was developed for applications in industry, educational establishments, studios and CATV transmissions. By the use of S-VHS system, a sharp picture quality with high resolution is obtained, and advanced editing by easy operation is realized by the introduction of highly dependable mechanisms.

Panasonic

CONTENTS

SPECIFICATIONS	1
SAFETY PRECAUTIONS	3
SECTION 6 MECHANISM ······	6-1
SECTION 7 ELECTRICAL ADJUSTMENTS	7-1
SECTION 8 BLOCK DIAGRAMS ······	8-1
SECTION 9 SUPPLEMENT	9_1

SAFETY PRECAUTIONS

GENERAL GUIDELINES

- When servicing observe the original lead dress. If a short circuit is found, replac all parts which have been overheated or damaged by the short circuit.
- After servicing, see to it that all the protectiv devices such as insulation barriers, insulation papers shields are properly installed.
- After servicing make the following leakage current checks to prevent the customer from being exposed to shock hazards.

LEAKAGE CURRENT COLD CHECK

- Unplug the AC cord and connect a jumper between the two prongs onthe plug.
- 2. Measur the resistance value, with an ohm meter, between the jumpered AC plug and each exposed metallic cabinet part on the equipment such as screwhead connectors, contri shafts, etc. When the exposed metallic part has a return path to the chassis, the reading shoulb be between $1\,M\,\Omega$ and $5.2\,M\,\Omega$.

When the exposed metal dose not have a return path to the chassis, the reading must be ∞ .

Figure 1

LEAKAGE CURRENT HOT CHECK (See Figure 1)

- Plug the AC cord directly into the AC outlet.
 Do not use an isolation transformer for this check.
- 2. Connect a 1.5 K Ω , 10W resistor, inparallel with 0.15 μ F capacitor, between each exposed metallic part on the set an a good earth ground such as a water pipe, as shown in Figure 1.
- 3. Use an AC voltmeter, with 1000 ohms/volt or more sensitivity, to measur the potential across the resistor.
- Check each exposed metallic part, and measure the voltage at each point.
- Reverse the AC plug in the AC outlet repeat each of the above measurements.
- 6. The potantial at any point should not exceed 0.75 volts RMS. A leakage current tester (Simpson Model 229 equivalent) may be used to make the hot checks, leakage current must not exceed 1/2 milliamp. In case a measurement is outside of the limits specified, there is a possiblity of a shock hazard, and the equipment should be repaired and rechecked before it is returned to the customer.

ELECTROSTATICALLY SENSITIVE(ES) DEVICES

Some semiconductor (solid state) devices can be damaged easily by static electricity. Such components commonly are called Electrostatically sensitive (ES) Devices. Examples of typical ES devices are integrated circuits and some field-effect transistors and semiconductor "chip" components. The following techniques should be used to help reduce the incidence of component damage caused by static electricity.

- Immediately before handling any semiconductor component or semiconductor-equipped assembly, drain off any electrostatic charge on your body by touching a known earth ground.
 - Alternatively, obtain and wear a commercially available discharging wrist strap device, which should be removed for potential shock reasons prior to applying power to the unit under test.
- 2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive surface such as aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
- Use only a grounded tip soldering iron to solder or unsolder ES devices.
- Use only an anti-static solder removal device classified as "anti-static" can generate electrical charges sufficient to damage ES devices.
- 5. Do not use freon-propelled chemicals. These can generate electrical charges sufficient to damage ES devices.
- 6. Do not remove a replacement ES device from its protective package untilimmediately before you are ready to install it. (most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or comparable conductive material).
- Immediately before removing the protective material from the leads of replacement ES device, touch the protective material to the chassis or circuit assembly into which the device will be installed.
 - CAUTION: Be sure no power is applied to the chassis or circuit, and observe all other asfety precautions.
- 8. Minimize bodily motions when handling unpackaged replacement ES devoces. (Otherwise harmless mother such as the brushing together of your clothes fabric or the lifting of your foor from a carpeted floor can generate static electricity sufficient to damage an ES device).

SECTION 6

MECHANISM

CONTENTS

	Parts Location	
	Servicing Fixtures and Tools ·····	
	How To Eject Manually	
6-4.	Maintenance Procedures 6-4-1. Regular Maintenance 6-4-2. Maintenance Chart 6-4-3. Lubrication Procedures of the Capstan Shaft 6-4-4. Procedures for Cleaning of the Cylinder Unit 6-4-5. Adjustments After Re-installing the Upper Cylinder, Lower Cylinder 6-4-6. Adjustments After Re-installing the A/C Head Unit	6-6 6-6 6-7 6-8
6-5.	Mechanical Parts Replacement Procedures	6-9
	6-5-1. Replacement of the Upper Cylinder Unit 6-5-2. Replacement of the Lower Cylinder Unit 6-5-3. Replacement of the A/C Head (1) Unit 6-5-4. Replacement of the Full Erase Head 6-5-5. Replacement of the Capstan Rotor and Capstan Stator 6-5-6. Replacement of the Capstan Housing Unit 6-5-7. Replacement of the Inclined Base (S), (T) 6-5-8. Replacement of the P5 Post 6-5-9. Replacement of the Reel Unit 6-5-10. Replacement of the Main Brake (S), (T) Unit 6-5-11. Replacement of the Pressure Roller Unit 6-5-12. Replacement of the Mode Switch 6-5-13. Replacement of the Pinch Solenoid 6-5-14. Replacement of the Head Cleaning Pad	6-9 6-10 6-10 6-10 6-11 6-12 6-12 6-13 6-13 6-14 6-14
6-6.	Adjustment Procedures	6-16
	6-6-1. Floe Chart of Tape Interchangeability Adjustment 6-6-2. Coarse Adjustment of the Tape Guide Post Heights (P2 and P3) 6-6-3. Fine Adjustment of the Guide Post Height (P2 and P3) (Linearity) 6-6-4. Adjustment of the Pull-out Post (P5) Height 6-6-5. Adjustment of the A/C Head 6-6-6. Coarse Adjustment of the A/C Horizontal Position (X-Value) 6-6-7. Fine Adjustment of the A/C Horizontal Position (X-Value) 6-6-8. Adjustment of Inclined Base (T) 6-6-9. Adjustment of Thrust Gap 6-6-10. Adjustment of FG Gap 6-6-11. Measurement and Adjustment of Back Tension 6-6-12. Height Adjustment of the Reel Tables 6-6-13. Measurement and Adjustment of the Brake Torque 6-6-14. Pressing Force Confirmation of Pressure Roller Unit 6-6-15. Adjustment of Rev Tension Sensor Position	6-16 6-17 6-18 6-18 6-19 6-21 6-22 6-22 6-22 6-23 6-23 6-24 6-25 6-25
6-7.	Assembly and Adjustment of Mechanism	6-27
	6-7-1. Confirmation of Alignment Condition 6-7-2. Assembly Procedures of Sub Cam Gear, Ring Gear and Detent Arm 6-7-3. Assembly Procedures of Main Cam Gear and Pinch Speed Down Gear 6-7-4. Assembly Procedures of Loading Cam Gear and Retainer Gear 6-7-5. Assembly Procedures of Center Gear 6-7-6. Assembly Procedures of Main Lever and Cam Follower Arm Unit 6-7-7. Assembly Procedures of Loading Gear (T), Loading Gear (S) Sector Gear 6-7-8. Assembly Procedures of Connection Gear 6-7-9. Assembly Procedures of Mode Switch and P5 Pull Out Sector Gear 6-7-10. Assembly Procedures of Finch Cam and Pressure Roller Unit 6-7-11. Assembly Procedures of Gear Base Unit 6-7-12. Re-installation of Cassette Compartment	6-28 6-28 6-28 6-29 6-29 6-29 6-30 6-30 6-30

6-1. PARTS LOCATION

Figure M1

Figure M2

6-2. SERVICING FIXTURES AND TOOLS.

The specified servicing fixture must be used to conduct adjustment.

The folloeing fixtures, tools and measuring equipments are required to conduct complete Mechanical Adjustments.

6-3. HOW TO EJECT MANUALLY

If the electrical circuit is defective and the action of unloading and front unloading don't work properly, it is possible to eject manually as follows.

- 1. Take out the Main AC.
- 2. Release the direction as shown in Figure M3.
- 3. Release the Wormshaft to clockwise unit cassette is ejected.

Figure M3 How to Eject Manually

6-4. MAINTENANCE PROCEDURES

6-4-1. REGULAR MAINTENANCE

The purpose of periodic maintenance is to preserve the functioning of this machine throughout its useful life. The user or service dealer should perform these maintenance regularly to ensure that maximum utility is obtained from the machine.

The VCR is a complicated place of equipment. It contains many belts, rollers, heads etc., which become worn, and deteriorate as time goes by, causing trouble. Dust and dirt will also impede the proper functioning of the machine. In light of this, it is very important that overall maintenance be done according to the maintenance chart to maintain the functions of the VCR, and to avoid accidental problems. This maintenance should also be performed after any repairs are done on the equipment.

The VCR used for business applications requires particular attention for several reasons. The installation conditions and applications are not always the best. Long use times, or poor environmental conditions may adversely affect the lifespan and performance of the machine. Regular maintenance assures that the purchaser obtains the maximum value for his expenditure. Accordingly, the necessity of regular maintenance should be fully explained at the time of sale, as well as during after-sale repairs.

6-4-2. MAINTENANCE CHART

The following periodic maintenance is required to prolong the life of the machine.

Ref. No.	Parts Name	Hour							Ref. No.	No	Hour												
		500	1000	1500	2000	2500	3000	3500	4000	4500	5000	1 m 6 / i	Parts Name	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
	Tape Transporter	•	•	•	•	•	•	•	•	•	•	2-1	Worm Shaft								A		
1-7	Loading Motor U								0			2-2	Loading Belt				0				0		
1-19	A / C Head U	•	•	•	•	•	•	•	0	•	•	2-3	Worm Wheel								A		
1-25	Pressure Roller U	•	•	•	0	•	•	•	0	•	•	2-8	Stator Base Unit								0		
1-36	Mode Switch								0			2-16	Main Brake (S)				0				0		
1-39	P5 Arm U								A			2-18	Main Brake (T)				0				0		
1-41	Upper Cylinder	•	0	•	0	•	0	•	0	•	0	2-23	Takeup Reel Tuble U								0		
1-42	Lower Cylinder U	•	•	•	•	•	•	•	0	•	•	2-24	Supply Real Table U								0		
1-45	Inclined (T) U								A		0	2-28	Capstan Roter U	•	•	•	Δ	•	•	•	Δ	•	•
1-48	Inclined (S) U								A		0	2-33	Main Cam Gear								A		
1-56	FE Head	•	•	•	•	•	•	•	0	•	•	2-39	Loading Cam Gear								A		
1-66	Head Cleaning U		0		0		0		0		0												

*NOTE:

Symbol	Maintenance	Requirement	Remark
•	Cleaning -	Ethyl-alcohol or Cleaning Liquid (Purchase locally)	Wipe dirt from the parts using soft cloth impregnated with Ethyl-Alcohol. Note: When cleaning rubber parts, avoid using excessive alcohol since it may accelerate deterioration of these parts. After cleaning with alcohol, wipe the alcohol quickly and thoroughly.
0	Replacement		
Δ	Lubrication	High Quality Spindle Oil (Purchase locally)	Supply one or two drops of oil.
A	Greasing	Molytone Grease (MOR265)	Wipe the old grease and apply new grease.
×	Greasing	S.C.R. Grease (VFK0680)	Wipe the old grease and apply new grease.

6-4-3. LUBRICATION PROCEDURES OF THE CAPSTAN SHAFT

- 1. Remove the Pressure rollerUnit.
- 2. Remove the Thrust Screw.
- 3. Apply two drops of the oil (VFK0906) on the top of Capsutan Shaft as shown in Fig M6-A.

Figure M6-A

- 4. Turn the Thrust Adjustment Screw slowly to clockwise until the Capstan Rotor just starts turning (separate from the Capustan Stator).
- 5. Turn the Thrust Adjustment Sscrew another 180° clockwise as shown in Figure M6-B.
- 6. Install the Pressure Roller Unit.
- 7. Wipe the extra oil.

FiguerM6-B

6-4-4. PROCEDURES FOR CLEANING OF THE CYLINDER UNIT

- Position the Video Head to permit access for cleaning and hold the upper cylinder to keep it from turning while cleaning.
- 2. Gently rub the Video Head in direction of tape travel with Head Cleaning Stick moistened with Cleaning.
- 3. Repeat for the other video heads (FigureM7).

Note: 1.Do not rub vertically.

2.Do not apply any pressure to heads.

FigureM7

6-4-5. ADJUSTMENTS AFTER RE-INSTALLING THE UPPER CYLINDER, LOWER CYLINDER

AFTER RE-INSTALLING THE UPPER CYLINDER OR LOWER CYLINDER

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT (P2 AND P3) LINEARITY

7-3-2. TRACKING FIX ADJUSTMENT

6-6-6. COARSE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE)

6-6-7. FINE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE)

7-3-1. PG SHIFTER ADJUSTMENT

7-4-5. CHROMA REC CORRENT ADJUSTMENT

7-4-6. S-VHS Y REC CURRENT ADJUSTMENT

7-4-7. VHS Y REC CURRENT ADJUSTMENT

7-5-1. PB RF CHROMA LEVEL ADJUSTMENT

7-5-2. PB Y LEVEL ADJUSTMENT

7-5-3. S-VHS NORMAL EQUALIZER ADJUSTMENT

7-5-4. S-VHS SS EQUALIZER ADJUSTMENT

7-5-5. VHS EQUALIZER ADJUSTMENT

7-5-6. VIDEO TRACKING METER ADJUSTMENT

7-7-11. Hi-Fi AUDIO HEAD SWITCHING SHIFTER ADJUSTMENT

7-5-15. Hi-Fi AUDIO REC CURRENT ADJUSTMENT

7-8-3. FLYING ERASE CORRENT ADJUSTMENT

6-4-6. ADJUSTMENTS AFTER RE-INSTALLING THE A/C HEAD UNIT

AFTER RE-INSTALLING THE A/C HEAD UNIT

MECHANICAL ADJUSTMENT 6-6-5. ADJUSTMENT OF A/C HEAD A. COARSE ADJUSTMENT OF THE A/C HEAD HEIGHT B. COARSE ADJUSTMENT OF THE A/C HEAD TILT C. ADJUSTMENT OF THE A/C HEAD AZIMUTH D. ADJUSTMENT OF THE A/C HEAD TILT & AZIMUTH E. ADJUSTMENT OF LOOK SCREW F. FINE ADJUSTMENT OF THE A/C **HEAD HEIGHT** 6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT (P2 AND P3) LINEARITY 6-6-6. COARSE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE) 6-6-7. FINE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE) 7-7-5. NORMAL AUDIO PLAYBACK FREQUENCY RESPONSE ADJUSTMENT 7-7-6. NORMAL AUDIO PB GAIN ADJUSTMENT 7-7-7. NORMAL AUDIO ERASE CURRENT **ADJUSTMENT** 7-7-8. NORMAL AUDIO BIAS CURRENT ADJUSTMENT 7-7-14. NORMAL AUDIO REC CURRENT ADJUSTMENT

6-5. MECHANICAL PARTS REPLACEMENT PROCEDURES

6-5-1. REPLACEMENT OF THE UPPER CYLINDER UNIT

First remove two screws as shown in Figure M10-A.
 Then unsolder of the soldered portions indicatedby arrows on the Upper Cylinder, and finally remove the Upper Cylinder.

Note: Soldered portion can be easily removed by using solder sucking wire, etc.

Figure M10-A

2. The Upper Cylinder unit can be reinstalled by reversing the removal procedure.

However, when Upper Cylinder is installed, be extremely carefully so that white portion of P.C.Board of Upper Cylinder correctly matches the white portion of bottom cylinder as shown in Figure M10-A.

Note: If the Upper Cylinder Unit is reversal installed, no color will appear when playing back pre-recorded tapes.

Figure M10-B

6-5-2. REPLACEMENT OF THE LOWER CYLINDER UNIT

- 1. Unscrew the 2 screws and remove the Head Amp.
- 2. Remove the Cleaning rod from bottom side.
- 3. Unscrew 3 screws (A). Since there is very little clearance between DD Cylinder (Lower Cylinder) Unit and Chassis, remove the Cylinder gently and carefully (Figure M11).

Figure M11

- 4. Reinstall the new DD Cylinder (Lower Cylinder) Unit in the chassis, tighten the 3 screws (A). Then connect a connectors and reinstall the Cleaning Rod.
- 5. Re-install the Head Amp C.B.A.

Note: After reinstall the Upper Cylinder Unit should be perform Mechanical and Electrical adjustment (Refer to 3-4-5. Maintenance Procedures).

6-5-3. REPLACEMENT OF THE A/C HEAD (1) UNIT

1. Disconnect a connector (H)(Figure M12).

Figure M12

- 2. Unscrew 3 (B)(C)(D) screws with spring and then remove the A/C Head Unit (Figure M12).
- 3. The A/C Head (1) Unit can be reinstalled by reversing the removal procedure.

Note: After reinstall the Upper Cylinder Unit should be perform Mechanical and Electrical adjustment (Refer to 6-4-6. Maintenance Procedures).

6-5-4. REPLACEMENT OF THE FULL ERASE HEAD

 Disconnect a connector (J) and unscrew a screw (E) and remove the Full Erase Head (Figure M13).

Figure M13

3. The new Full Erase Head can be reinstalled by reversing the removal procedure.

6-5-5. REPLACEMENT OF THE CAPSTAN ROTOR & STATOR

When replacing the Capstan stator unit the Center Fixing Tool must be used to fix the center of Capstan Stator Unit.

- 1. Remove the loading belt.
- 2. Unscrew the 4 (F) screws and remove Gear base Unit.
- 3. Carefully lift up the capstan rotor from the capstan housing, taking care so as not loose the 2 oil seals as shown in Figure M14-A.

Figure M14-A

- 4. Remove the 2 oil seals.
- 5. Unscrew the 3 (G) screws and remove Capstan Stator.
- 6. Place the capstan stator unit into position.
- 7. Loosely tighten the 3 (G) screws.
- 8. Insert the Center Fixing Tool as shown in Figure M14-B.

Figure M14-B

- 9. Tighten the 3 screws (G).
- 10. Remove the center fixing tool.
- 11. The new capstan rotor unit can be reinstalled by reversing the removal procedure.

Figure M14-C

6-5-6. REPLACEMENT OF THE CAPSTAN HOUSING UNIT

- 1. Remove the pressure Roller Unit.
- 2. Remove the Sub post spring from the hook of Capstan Housing.
- 3. Unscrew the 3 screws (H) and remove Capstan Housing.
- 4. Remove the 2 oil seals and thrust screw.
- 5. Replace the new Capstan Housing, 2 oil seals and thrust screw at same time.
- 6. Re-install the Capstan Housing Unit by reversing the remove procedure.

Note: After re-installing the thrust screw adjustment of the thrust screw are required. Replace the new Capstan Rotor, 2 oil seals and thrust screw at same time. After re-installing the capstan rotor or capstan stator confirmation of FG out put level and adjustment of FG head gap are required.

Figure M15

6-5-7. REPLACEMENT OF THE INCLINED BASE (S),(T)

(SUPPLY SIDE)

- 1. Unscrew a screw (I) and remove the head cleaning plate unit as shown in Figure M16-A.
- 2. Unscrew the 2 screws (J) and remove the post stopper.

Figure M16-A

3. Remove the P2 post unit from loading arm (S) as shown in Figure M16-B.

Figure M16-B

- 4. Pull out the Inclined base (S) from loading base.
- The new inclined base unit can be reinstalled by reversing the removal procedure.

Note: Install post stopper pushing the arrow direction (A), (B) as shown in Figure M16-A. After re-installing the inclined base (S) confirmation of tape interchangeability and P2, P3 posts adjustments are required.

《TAKE-UP SIDE》

- 1. Unscrew a screw (K) and remove the inclined base (T) as show in Figure M16-C.
- Install the inclined base (T) so that the tip of inclined base is center on the Plate Hole and then tighten screw (K).

Note: After re-installing the inclined base (T) confirmation of tape interchangeability and inclined base adjustment are required.

Figure M16-C

6-5-8. REPLACEMENT OF THE P5 POST

- 1. Remove the top cover and cassette holder.
- Rotate the loading motor to clockwise, until the stop mode.
- 3. Remove the pressure roller unit.
- 4. Remove the pinch cam (Ref. to Replacement of the mode switch) and P5 pull out sector gear as shown in Figure M17.

Figure M17

- 5. Unscrew a Nut (A) and Remove the P5 Post.
- 6. The new P5 post can be reinstalled by reversing the removal procedure.

Note: After-reinstalling the P5 post confirmation of tape waving and P5 post height adjustment are required.

6-5-9. REPLACEMENT OF THE REELUNIT

- Remove 6 screws (L) and carefully lift the DD Reel Unit
- 2. Disconnect a connector.

Figure M18-A

3. The Reel Motor Unit can be re-installed by reversing the removal procedure.

Figure M18-B

Note: When assembling the DD Reel Motor Unit, side the Main Rod to far left side by rotating a center Gear.

6-5-10. REPLACEMENT OF THE MAIN BRAKE (S),(T) UNIT

- Remove the Reel Unit (Refer to Replacement of the Reel Unit).
- 2. Remove a Retaining Ring (A).
- 3. Remove the Main Brake (S),(T) with a spring.

Figure M19

4. The new Main Brake (S),(T) Unit can be reinstalled by reversing the removal procedure.

Note: When assembling the DD Reel Motor Unit, slide the Main Rod to far left side by rotating a Center Gear (Figure M19).

6-5-11. REPLACEMENT OF THE PRESSURE ROLLER UNIT

- 1. Place the deck in or EJECT mode.
- 2. Remove the Pinch Can Cap.
- 3. Remove the Pressure Roller Unit.

Figure M20

4. The new Pressure Roller Unit can be re-installed by reversing the removal procedure.

6-5-12. REPLACEMENT OF THE MODE SWITCH

- 1. Place the deck in the STOP mode.
- 2. Remove the Cassette Compartment Unit. (Refer to Disassembly Procedures).
- 3. Remove the Pinch Cam Cap and Pressure Roller Unit.
- 4. Unscrew the 2 screws and remove the Head Amp.
- 5. Remove the Pinch Cam.
- Unscrew 2 screws (M) and remove the Loading Motor Base.
- Unscrew a screw (N) and unsolder 5 of soldered portions.
- 8. Finally remove the Mode Switch.

Figure M21-A

Figure M21-B

- Install a Mode Switch and tighten screw (N), then solder
 soldering portions.
- Install the Pinch Cam and Pressure Roller Unit. (Refer to "Assembly Procedures of Pinch Cam & Pressure Roller Unit.")
- 11. Install the Loading Motor Base and tighten screw (M).
- 12. Install the Head Amp and tighten 2 screws.
- 13. Install the Cassette Compartment. (Refer to Reinstallation of Cassette Compartment.)

6-5-13. REPLACEMENT OF THE PINCH SOLENOID

- Unscrew 2 screws (M) and remove the Loading Motor Base (Figure M21-A).
- 2. Unscrew 2 screws (O), Remove the Motor Pulley and Loading Motor (Figure M22-A).
- 3. Disconnect a connector (red) on the Motor Base C.B.A.
- Unscrew 2 screws (P)(Figure M22-B) and remove the Pinch Solenoid.
- 5. Install the Pinch Solenoid on to the Motor Base so that the hole of the Motor Base should be the large hole of the Solenoid Base (Figure M22-C).
- 6. Tighten 2 screws (P).
- 7. Install a Loading Motor and tighten 2 screws (O).
- 8. Install the Loading Motor Base and tighten 2 screws (M)(Figure M21-A).

Figure M22-A

Figure M22-B

Figure M22-C

Note: Pressure Adjustment of the Pinch Roller (Refer to Mechanical Adjustment procedures) should be performed after completion of reinstalling the Pinch Solenoid.

6-5-14. REPLACEMENT OF THE HEAD CLEANING PAD

- Remove a Cut Washer (N) and the Head Cleaning Pad Unit.
- 2. The Head Cleaning Pad Unit can be reinstalled by reversing the removal procedure.

Figure M23

6-6. MECHANICAL ADJUSTMENT PROCEDURES

6-6-1. FLOW CHART OF TAPE INTERCHANGEABILITY ADJUSTMENT

AFTER RE-INSTALLING THE UPPER OR LOWER CYLINDER

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT

6-6-6. COARSE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION

6-6-7. FINE ADJUSTMENT OF THE A/C
HEAD HORIZONTAL POSITION

AFTER RE-INSTALLING THE A/C HEAD

- 6-6-5. ADJUSTMENT OF THE A/C HEAD
 - A. COARSE ADJUSTMENT OF THE A/C HEAD HEIGHT
 - B. COARSE ADJUSTMENT OF THE A/C HEAD TILT
 - C. ADJUSTMENT OF THE A/C HEAD AZIMUTH
 - D. ADJUSTMENT OF THE A/C HEAD TILT AND AZIMUTH
 - E. ADJUSTMENT OF LOCK SCREW
 - F. FINE ADJUSTMENT OF THE A/C HEAD HEIGHT

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT

6-6-6. COARSE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION

6-6-7. FINE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION

AFTER RE-INSTALLING THE INCLINED BASE (S)

6-6-2. COARSE ADJUSTMENT OF THE P2, P3 POST HEIGHTS

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT

AFTER RE-INSTALLING THE INCLINED BASE (T)

6-6-2. COARSE ADJUSTMENT OF THE P2, P3 POST HEIGHTS

6-6-8. ADJUSTMENT OF THE INCLINED BASE (T)

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT

AFTER RE-INSTALLING THE PULL-OUT (P5) POST

6-6-4. ADJUSTMENT OF THE PULL-OUT POST (P5) HEIGHT

AFTER RE-INSTALLING THE P2, P3 POST

6-6-2. COARSE ADJUSTMENT OF THE P2, P3 POST HEIGHTS

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT

6-6-2. COARSE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHTS (P2 and P3)

Note: The Tape Guide Posts have been precisely adjusted at the factory. Therefore, normally do not change the height of the P2 and P3 Posts.

To prevent the alignment tape from being damaged, use a normal cassette tape for this procedure.

<< TOOL >>

Post Adjustment Plate ······V	FK1012
Reel Table Height Gauge ······V	FK0190
Post Adjustment Screwdriver ······V	FK0329
Check Light ······V	FK0948
L Type Screwdriver ·······V	FK0269

- Remove the cassette compartment (Refer to Disassembly Procedures).
- 2. Place the Post Adjustment Plate over the reel tables. Confirm that the Post Adjustment Plate is firmly seated as shown in Figure M25-A.

Figure M25-A

 Lower 2 tape guide posts (P2 and P3) by turning the Post Adjustment screwdriver so that the condition of post becomes as shown in Figure M25-B. That is the lower edge of Tape guide should be lower than surface of AdjustmentPlate.

Figure M25-B

Note: Before turning P2 and P3 slightly loosen the Lock Screw using the L Type Screwdriver.

 Place the scraper of Reel Table height Gauge as shown in Figure M25-C.

Set the gauge to zero, then raise the post slowly until the

lower tape guide just touches the bottom of the scraper. Use the gauge to determine the exact point at which the lower tape guide touches the scraper.

Figure M25-C

- 5. After the adjustment, install the cassette compartment referring to Reinstallation of cassette compartment.
- Play back the beginning portion of NV-T160 cassette tape, and confirm that tape travel as shown in Figure M25-D.

Figure M25-D

- Make sure that the edges of the tape are not curling or waving at the bottom or top end of the posts P2, P3 by using the Check Light.
- 8. If there are waving or filling at the lower or upper edge of the P2 and P3 posts, readjust the heights of P2 and P3 Posts correctly as shown in Figure M25-E.

And confirm that the tape runs along the Cylinder Lead Correctly.

6-6-3. FINE ADJUSTMENT OF THE TAPE GUIDE POST HEIGHT (P2 and P3)(LINEARITY)

<< TOOL >>

Alignment Tape VFM8080HQFP
Post Adjustment Screwdriver ·········VFK0329

Note: Before playing back the alignment tape playback a normal cassette tape and confirm correct transport.

- Connect the oscilloscope to the TP2 of the Video I/O C.B.A. (Video RF Envelope and the head switching pulse as a triggering signal.
- 2. Play back the 2-nd portion (Monoscope 2) of the alignment tape (VFM8080HQFP).
- 3. Adjust the tracking control on the front panel so that the RF envelope becomes maximum.
- If the RF envelope appears like example A or B in Figure M26-B then adjustment of the tape guide post (P2; Entrance) is necessary.

Figure M26-A

Figure M26-B

Figure M26-C

- 5. Adjust the tape guide post (P2) with the post adjustment screwdriver so that the RF envelope waveform at the entrance portion becomes flat as shown in Figure M26-B.
- If the RF envelope appears like example D or E in Figure M26-C, then adjustment of the tape guide post (P3; Exit) is necessary.
- 7. Adjust the tape guide post (P3) in the same manner as the P2 post so that the exit portion becomes flat as shown in Figure M26-C.
- 8. The output envelope should vary nearly parallel with other condition as shown in Figure M26-D.

Figure M26-D

9. If the RF envelope does not meet these specification,

 $V1/V0 \ge 0.7$ $V2/V0 \ge 0.8$

V3/V0 ≥ 0.7

then repeat steps 4-9 again.

Figure M26-F

6-6-4. ADJUSTMENT OF THE PULL-OUTPOST (P5) HEIGHT

< TOOL >> Post AdjustmentPlatee ·········VFK1012 Reel Table Height Gauge ······VFK0190 Nut Driver ·····Purchase locally

<< SPEC >> 0.03mm 0.01mm

Note: Unless the replacement or adjustment this post is required, the adjustment nut should not be turned.

- 1. Remove the cassette compartment (Refer to Disassembly procedures).
- 2. Place the Post Adjustment Plate over the reel tables as shown in Figure M27-A.
- 3. Turn the Worm Shaft counterclockwise (loading direction) until the mechanical condition becomes as shown in Figure M27-A.
- 4. Placethe Reel Table Height Gauge on the Post Adjustment Plate and set the gauge to zero 0 as shown in Figure M27-B.

Figure M27-A

Place the Reel Table Height Gauge as shown in Figure M27-C and turn the nut slowly until the gauge reads.

Figure M27-B

Figure M27-C

Figure M27-D

- 6. After the adjustment, install the cassette compartment (Refer to reinstallation of Cassette Compartment).
- 7. Play back a normal cassette tape on Review search mode, and make sure that the edges of the tape are not curling or waving at the bottom end of the P4 post by using the Check Light as shown in Figure M27-E.

Note: There is easy method to check Waving of Filling. If there is Waving or Filling in the lower edge, the white black pattern which is reflected on the tape will curve or not linear as shown in Figure M27-E.

Figure M-27-E

6-6-5. ADJUSTMENT OF THE A/C **HEAD**

A. COARSE ADJUSTMENT OF THE A/C HEAD **HEIGHT**

Note: This procedure should be performed only when the A/C Head is replaced.

<< TOOL >> Check Light ······VFK0948 Nut DriverPurchase locally VHS video Tape

- 1. With the tape running, look at the lower edge of the control head by using the check light.
- 2. Adjust the Nut (A) as shown in Figure M28-A by turning the Nut (A) clockwise to lower the head, and counterclockwise to raise it.

Figure M28-A

B. COARSE ADJUSTMENT OF THE A/C HEAD TILT

Note: This procedure should performed only when the A/C Head is replaced or posts heights are readjusted.

<< TOOL >>

Alignment Tape VFM8080HQFP
Check LightVFK0948
Screwdriver (+) Purchase locally
VHS Vide Tape

 Play back a VHS video tape which the amount of tape winding of a Take up Reel, Turn a screw (B) to clockwise until waving or Filling appears in the Lower edge of P4 post as Figure M28-B.

Note: There is easy method to check waving or Filling if there is waving or Filling in the lower edge. ZEBRA pattern which is reflected on the tape will curve or not linear (Figure M27-D).

2. Turn the screw (B) to counter-clockwise until waving or filling do not appear in the in the lower edge of P4 post.

Figure M28-B

C. ADJUSTMENT OF A/C HEAD AZIMUTH

- Connect the scope CH1 to TP40005 (Normal Audio out put CH1) and the scope CH2 to TP40007 (Normal Audio output CH2) on the Rear Jack.
- 2. Play back the 2-nd portion (Normal Audio 10KHz) of the alignment tape (VFM8080HQFP).
- 3. Adjust the screw (C) so that these phases of both channels match as shown in Figure M28-C.

D. TILT and AZIMUTH ADJUSTMENT OF A/C HEAD

Adjust the screw (C) and (B) so that CH1 and CH2 output levels become maximum, these phase of both channels much at the same time (Figure M28-D). During this adjustment the Lock screw (D) dose not touch the A/C Head Base as shown in Figures M28-E.

Figure M28-D

Figure M28-E

E. ADJUSTMENT OF LOCK SCREW

- 1. Turn the screw (C) to clockwise so that the difference of phase of both channels become 180 degrees as shown in Figure M28-F.
- 2. Tighten the Lock screw (D) so that these phase of both channels match as shown in Figure M28-F.

Figure M28-F

F. FINE ADJUSTMENT OF A/C HEAD HEIGHT

Note: Before this adjustment Coarse Adjustment of the A/C Head Height should be performed.

<< TOOL >>

Alignment Tape VFM8080HQFP Nut DriverPurchase locally

- Connect a scope CH1 to TP40005 (Normal Audio output CH1) and the scope CH2 to TP40007 (Normal Audio output CH2) on the Rear Jack C.B.A.
- 2. Play back the 2-nd portion (Normal Audio 10kHz) of the Alignment Tape (VFM8080HQFP).
- 3. Adjust the Nut (A)(Figure M28-A) so that the CH2 output level becomes maximum as shown in Figure M28-G.

Figure M28-G

6-6-6. COARSE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE)

Note: This procedure should be performed only when the A/C head is replaced, and after performing the tape interchangeability adjustment.

<< TOOL >>

H-Position Adjustment Screwdriver ··········VFK0328 Alignment Tape VFM8080HQFP

- Connect a scope CH1 to Video RF Test Terminal (TP2 of the Video I/O C.B.A.) and a scope CH2 to Normal Audio CH2 output on the Rear Jack.
- Play back the 4-the position (Monoscope 3 and Audio ∕ Every 10-the field is skipped) of the Alignment tape VFM8080HQFP.
- 3. Adjust the A/C head horizontal position screw so that the phase of audio drop out and video RF envelope drop-out becomes the same as shown in Figure M29.

Figure M29

Note: After completion the fine adjustment of the A/C head horizontal position, the phase of Audio drop-out and Video RF envelope drop- out may be changed slightly.

6-6-7. FINE ADJUSTMENT OF THE A/C HEAD HORIZONTAL POSITION (X-VALUE)

Note: This procedure should be performed only when the A/C head is replaced, and after performing the tape interchangeability adjustment.

<< TOOL >>

H-Position Adjustment Screwdriver ········VFK0328 Alignment Tape VFM8080HQFP

- 1. Set the Tracking Control VR to the center fix position.
- 2. Connect a oscilloscope to Video RF Test Terminal(TP2 of the Video I/O C.B.A.).
- 3. Play back the 2-nd portion (Monoscope 2) of the alignment tape (VFM8080HQFP).
- Adjust the Horizontal Position Screw (Figure M29) of A/C head so that the RF signal becomes maximum level as shown in Figure M30.

Figure M30

6-6-8. ADJUSTMENT OF INCLINED BASE (T)

<< TOOL >>

Check Light ··········VFM0948

Screwdriver (+) Purchase locally

VHS Video Tape

1. Play back the beginning portion of 120 minute normal cassette tape and confirm that waving or filling of P3 post is as shown in Figure M31-A.

Figure M31-A

2. If there are waving at the lower and upper edge of the P3 post, Adjustment the inclined base of P3 post as shown in Figure M31-B.

Figure M31-B

[When the inclined base is adjust to an arrow direction (B) tape becomes to lower edge.]

- 3. Confirm that tape position P3 post is upper edge and then tighten screw as shown in Figure M31-B.
- Confirm that waving is occurred between upper side of P3 post and A/C head. If there is waving adjust step 2.

Note: After adjust inclined base tapeinterchangea-bility and A/C head adjustment must be required.

6-6-9. ADJUSTMENT OF THRUST GAP

- Turn the thrust adjustment screw clockwise to until the capstan rotor just separate from the capstan stator whit rotating the capstan rotor by hand.
- 2. Turn the thrust adjustment screw clockwise to 180 degrees from paint at step 1.

3. Set the 2 oil seal to edge of the capstan housing as shown in Figure M32.

Figure M32

6-6-10, ADJUSTMENT OF FG GAP

<< TOOL >>
 Fine Adj. screwdriver·······VFK0330
 Screwdriver ······Porchase loclly
<< SPEC >>

0.13mm 0.02mm

- 1. Loosen screw (Q) and set the Fine Adjustment screw driver n the hole on the Capstan Stator Unit.
- Adjust the gap between FG head and the Capstan Stator unit.
- 3. After adjustment tighten a screw (Q).

Figure M33-A

Note: After adjust FG head gap, FG output level confirmation must be required.

Do not touch the surface of rotor and keep any magnetizable material away.

CONFIRMATION OF FG OUTPUT LEVEL

- Connect a oscilloscope to TP8009 (CAP FG output) on the Video 3 C.B.A.
- 2. Confirm that FG output level is within specification during PLAY/REC or PLAY mode.
- 3. If FG output level is out of specification Readjust the step 1 to 3 of FG GAP Adjustment.

Figure M33-B

6-6-11. MEASUREMENT AND ADJUSTMENT OF BACK TENSION

<< TOOL >>

Back Tension MeterVFK0132 VHS Cassette Tape (120min. tape except S-VHS tape)

A. FWD TENSION ADJUSTMENT

<< SPEC >> 23g ~ 27g

- Play back the cassette tape from the beginning and wait until the tape movement get the stabilization (for approx. 10 to 20 seconds).
- 2. Pull the Impedance Roller in the direction indicated the arrow in Figure M34-A secure it with a piece of adhesive tape.
- 3. Insert the Back Tension Meter into the path of a tape, and measure the back tension.
- 4. If it is out of specification, replace the Tension spring.

Figure M34-A

B. REV TENSION ADJUSTMENT

<< SPEC >> 30g ~ 60g

- 1. Play back the cassette tape on SP Reverse Play mode from the beginning and wait until the tape movement get the stabilization (for approx. 10 to 20 seconds).
- 2. Pull the Impedance Roller in the direction indicated by the arrow in Figure M34-A secure it with a piece of adhesive tape.
- 3. Insert the Back Tension Meter into the path of a tape, and measure the back tension.
- 4. If it is out of specification, replace the Tension spring.

Note: While measuring, make sure that the three probes of the meter are all in good contact with the tape.

As the tension meter is very sensitive, we recommend taking 3 separate readings.

Figure M34-B

6-6-12. HEIGHT ADJUSTMENT OF THE REEL TABLES

< TOOL >>

Post Adjustment Plate ··········VFK1012

Reel Table Height Gauge ······VFK0190

<< SPEC >> 0 ~ 0.15mm

- 1. Remove the cassette compartment.
- 2. Place the post Adjustment Plate on the reel tables.
- 3. Place the Reel Table Height Gauge on the plate so that the scraper of the gauge touches the cut- out portion of the plate, then set the gauge to zero 0 as shown in Figure M35-A.

Figure M35-A

4. Measure the height of the top surface of either Reel table and note the difference in height from the plate cut-out (Figure M35-A and M35-B). Repeat this procedures for the other Reel Table.

Figure M35-B

5. If the difference of Supply Reel table is more than 0.15mm higher or lower, replace the Supply Reel table. When the difference of Take Up Reel table is more than 0.15mm higher or lower, adjust nut (A)(Figure M35-C) so that measurement becomes the spec. If you can not adjust to the spec., replace Take Up Reel table.

Figure M35-C

Figure M35-D

Figure M35-E

Note: When replacing the tables, the DD Reel Unit needs to be removed from the chassis. Remove 6 screws and carefully lift it out as shown in Figure M35-D. When assembling the DD Reel Unit, slide a Main Rod to far left side by rotating the Center Gear, and then screw the 6 screws.

6-6-13. MEASUREMENTAND ADJUSTMENT OF THE BRAKE TORQUE

<< T00L >>	
Torque Gauge ······	VFK0133
Adaptor for Gauge	VFK0134

- 1. Remove the top cover and the cassette compartment.
- 2. Attach the adapter to the torque gauge and place the deck in STOP mode (Sub loading mode).
- 3. Place the torque gauge on the reel table as shown in Figure M36-A. The weight of the gauge should not rest on the reel table.
- 4. Turn the torque gauge in the direction indicated in Figure M36-B until the brake begins slipping and read the gauge.

Figure M36-A

Figure M36-B

5. If it is out of specification, replace the Brake Spring.

Note: If the proper brake torque cannot be obtained by replacing the Brake Spring, clean thbraking surface of the reel table with a soft cloth and re-measure the brake torque. If its still out of specification, replace the Main Brake (S) or (T) Unit.

6-6-14. PRESSING FORCE CONFIRMA TION OF PRESSURE ROLLER UNIT

<< TOOL >> Fan Type Tension Gauge ·······VFK66 VHS 120min, Cassette Tape

<< SPEC >> 1050g ± 230g

- 1. Remove the Cassette Compartment.
- 2. Play back the end portion of VHS (120min.) tape.
- Set the Fan Type Tension Gauge to the part (A) of Pinch Roller Unit.
- 4. Press the Arm with the Gauge, in the direction indicated by the arrow as show in Figure M37.
- 5. Adjust the Solenoid Base so that the reading of the Tension Gauge is 1050g \pm 230g at the moment of the tape running stop.
- 6. If it is out of specification, replace the Tension spring.

Figure M37

6-6-15. ADJUSTMENT OF REV TENSION SENSOR POSITION

<< T00L >>	
Tension Sensor Adj. Fixture·····	·····VFK0806
Tension Post Adj. Plate	·····VFK0236
Fine Adj. Screwdriver	·····VFK0330
Digital Volt Meter Purchase locally	

<< SPEC >> 2.3V ~ 2.7V

Note: Assemble a Tension Sensor Adjustment Fixture (VFK0806) and a Tension Post Adj. Plate (VFK0236) as shown in Figure M38-A.

Figure M38-A

- 1. Remove the Top Plate and Cassette Holder Unit. (refer to Disassemble Procedures)
- 2. Disconnect the 4pin and 2pin flat wire to the pin 3 and 4 of the connector P1508.
- 3. Connect two wires of 4pin flat wire to the pin 3 and 4 of the connector P1508 as shown in Figure M38-B.

Figure M38-B

- 4. Push the Sub Wiper Arm (R) to direction of Cassette loading. Then the Sub Wiper Arm (R) goes down it self and mode of machine change to STOP.
- 5. Turn the Power switch off.
- 6. Remove the Cassette Compartment (refer to Disassembly Procedures).
- 7. Connect the V.T.V.M. of D.V.M. to TP2502 on the SERVO/SYSCON C.B.A.
- 8. Place the Tension Post Position Adjustment Plate with the Fixture over the reel tables as shown in Figure M38-C.

Figure M38-C

- 9. Turn the Power switch on.
- 10. Slightly loosen 2 screws (C). Insert a Fine Adj. Screwdriver in the hole (D)(Figure M38-D).

Figure M38-D

- 11. Press the PLAY button.
- 12. Adjust the Rev Sensor Position so that measurement becomes D.C. 2.3V~2.7V.
- 13. Tighten the 2 Screws (C).14. Remove the Tension Sensor Fixture.
- 15. Reinstall the Cassette Compartment.
- 16. Confirm Playback picture (Rev Playback mode, Playback mode etc.)

6-7. ASSEMBLY AND ADJUSTMENT PROCEDURES OF MECHANISM

The mechanism of this model is mostly engaged to the System Control Circuit, through the mode select switch. Therefore the relation between the mode select switch and the cam gear decides all further mechanical movement of the mechanical parts such as levers, gears, rollers and so on. If these parts are not fixed properly, the unit will be unloaded or compulsorily stopped. And it will result being damaged at any mechanical or electrical parts. The overall mechanical condition (alignment) of bottom and top view are shown in Figure M39-A and Figure M39-B. This mechanical adjustment is performed in the STOP mode.

6-7-1. CONFIRMATION OF ALIGNMENT CONDITION

- 1. Remove the Loading Belt.
- Unscrew 4 screws (F) and remove the Gear Base Unit. (Figure M39-A)
- Turn the Center Gear to counter-clockwise until 2 big holes of Center Gear align with 2 big holes of Retainer Gear and Ring Gear and Chassis as shown in Figure M39-C.

Fiugre M39-A

- 4. Identification hole on the Mode Select Switch at 6 oclock position and aligned with small hole on Pinch Cam as shown in Figure M39-B.
- 5. P5 Arm is completely loading position and the Inclined Base (S) and (T) are completely unloading position.
- 6. Small hole on Sub Cam Gear should align with small hole on the Connection Gear and rectangular mark on the Connection Gear should be at a 3 oclock position.
- 7. Pressure Roller Unit is UP position.

Figure M39-B Top View of Overall IQ-Mechanical Condition

Figure M39-C Bottom View of Overall Mechanical Condition

6-7-2. ASSEMBLY PROCEDURES OF SUB CAM GEAR RING GEAR AND DETENT ARM

- Install the Ring Gear so that the two holes on the Ring Gear align with the two holes on the chassis as shown in Figure M40.
- Install the Sub Cam Gear so that the large hole on Sub Cam Gear aligns with the hole on chassis.
 Also the small hole (located just outside of large hole)
 - on Sub Cam Gear should align with the hole on Ring Gear as shown in Figure M40.
- Confirm that the small hole on Sub Cam Gear is aligned with the small hole on Connection Gear as shown in Figure M39-B (In case of the Connection Gear is already installed).
- Install the Detent Arm and make sure Detent Arm seats perfectly in detent of Sub Cam Gear as shown in Figure M40.

Figure M40

6-7-3. ASSEMBLY PROCEDURES OF MAIN CAM GEAR AND PINCH SPEED DOWN GEAR

- Install the Main Cam Gear on to the Sub Cam Gear so that the small hole on the Main Cam Gear aligns with small hole on the Ring Gear as shown in Figure M41.
- 2. Insert a retaining ring.
- Install the Pinch Speed Down Gear from top side of chassis so that the small hole on the Main Cam Gear as shown in Figure M41.

Figure M41

6-7-4. ASSEMBLY PROCEDURES OF LOADING CAM GEAR AND RETAINER GEAR

- Install the Retainer Gear onto the Ring Gear so that the two holes on the Retainer Gear align with the two holes on the Ring Gear, at this time, small hole on the Main Cam Gear should aligns with small hole on the Retainer Gear as shown in Figure M42.
- Install the Loading Cam Gear so that the small hole which is directly outside of the large hole on the Loading Cam Gear is aligned with the outside hole of the Retainer Gear as shown in Figure M42.

Figure M42

6-7-5. ASSEMBLY PROCEDURES OF CENTER GEAR

 Softly Install the Center Gear onto the Retainer Gear so that the two holes in the Center Gear align with the holes on the Retainer Gear, then install the cut washer as shown in Figure M43.

Figure M43

6-7-6. ASSEMBLY PROCEDURES OF MAIN LEVER AND CAM FOLLOWER ARM UNIT

- 1. Install the Main Rod and then insert the cut washers as shown in Figure M44.
- Install the Cam Follower Arm so that the pin of the Cam Follower Arm inserts into the groove of the Main Cam Gear and also inserts into the slot on the Main Rod, insert the retaining ring.

Figure M44

6-7-7. ASSEMBLY PROCEDURES OF LOADINGGEAR (T), LOADING GEAR (S) SECTOR GEAR

- 1. Set the P2 and P3 posts to fully unloaded position, then install the Loading Gear (T) and (S) so that the outer hole on the Loading Gear (T) aligns with the outer hole on the Loading Gear (S) as shown in Figure M45-A.
- Install the Sector Gear so that the outer hole in the Sector Gear aligns with the projection mark on Loading Gear (T).
- 3. Insert 3 retaining rings as shown in Figure M45-B.

Figure M45-A

Figure M45-B

6-7-8. ASSEMBLY PROCEDURES OF CONNECTION GEAR

Note: Before assembling, Sub Cam Gear position (and positions of bottom side gears) must be correct as described before (Figure M39-B).

 Install the Connection Gear so that the small hole on the Connection Gear aligns with the small hole on the Sub Cam Gear as shown in Figure M46.

Figure M46

6-7-9. ASSEMBLY PROCEDURES OF MODE SWITCH AND P5 PULL OUT SECTOR GEAR

- 1. Turn the Center Gear to unloading position.
- 2. Install the mode Select Switch and tighten the mounting screw, then solder the 5 soldering portions.
- 3. Install the P5 Pull Out Sector Gear so that the hole of P5 Pull Out Sector Gear aligns with the tip of gear at P5 Arm as shown in Figure M47.

Figure M47

6-7-10. ASSEMBLY PROCEDURES OF PINCH CAM AND PRESSURE ROLLER UNIT

- 1. Install the Pinch Cam while pushing the P5 post forward. The gear of the Pinch Cam should drop to a seated position. In this position make sure hole in the Mode Select Switch aligns with small hole on the Pinch Cam, also the small rift on the Pinch Cam should align with the hole on the Pinch Speed Down Gear sa shown in Figure M48.
- Install the Pressure Roller Unit. Make sure the seats perfectly onto the Pinch Cam, then install the Pinch Cam Cap.

Figure M48

6-7-11. ASSEMBLY PROCEDURES OF GEAR BASE UNIT

1. Install the Gear Base Unit and screw 4 screws (F) as shown in Figure M49.

Figure M49

Note: The Gear Base Unit has 2 gears and worm shaft. There is no adjustment for these gears.

6-6-12. REINSTALLATION OF CASSETTE COMPARTMENT

When you reinstall the cassette compartment, the position adjustment of mechanism is necessary for correct operation, as follows.

A. Confirmation of STOP Alignment Condition

- 1. Turn the Worm shaft counter-clockwise or clockwise until mechanism is placed into the Alignment Condition as following conditions.
 - a) Identification hole on the Mode Select Switch at 6 oclock position and aligned with small hole on Pinch Cam. (Figure M48)
 - b) P5 Arm is completely loading position and the Inclined Base (S) and (T) are completely unloading position.
 - c) Small hole on Sub Cam Gear should align with small hole on the Connection Gear (Figure M46) and rectangular mark on the Connection Gear should be at a 3 oclock position.
 - d) Pressure Roller Unit is UP position.

B. Confirmation of Cassette Compartment

 Confirm that the Cassette Compartment is aligned properly. In the EJECT position (Cassette Holder up and advanced to the front) the two V-shaped marks on the slide switch should align. The slide switch is located on the right side of the Cassette Assembly towards the rear as shown in Figure M50A.

Figure M50-A

- 2. Remove 3 screws (A) as shown in Figure M50-B.
- 3. Take the top plate out.
- 4. Take the cassette Holder unit out as shown in Figure M50-C.

Figure M50-B

Figure M50-C Removal of Cassette Holder Unit

5. Press the sub wiper arm (R) to direction indicated by arrow so that the sub wiper arm (R) comes to cassette down position (STOP) completely as shown in Figure M50-D and keepit. In this position, the arrow on the Sub Wiper Arm (R) should align with the arrow on the Rack (A)(1) Unit as shown in Figure M50-E.

Figure M50-D

Figure M50-E

6. If the Cassette Compartment is not aligned, realignment may be accomplished by pushing the Main Shaft Unit to the right (gently) and pushing the front of the Rack Unit to the left. This procedure will disengage the teeth of the Rack Gear from the teeth on Sub Wiper Arm assembly.

This will allow you to change the positional relationship between the Sub Wiper Arm Assembly and Rack Unit. This procedure is best attempted in the EJECT position. Once this is done, check for smooth operation of the compartment by inserting a cassette, and pushing in, and down.

C. Installation Procedure

- Bring loading mechanism to the STOP (Sub-load) position.
- Confirm that the chassis is aligned properly for Alignment Condition as shown in Figure M39-B and M39-C.
- 3. Put the Sub Wiper Arm (R) in its full down position (Sub Wiper Arm should rest on plastic protrusion on the bottom of the right side plate).
- 4. Install the cassette compartment (without cassette holder) to chassis so that the rectangular marking (or slot) on the connection gear should be line up with first tooth of the Rack Gear as shown in Figure M50-F and M50-G.

Figure M50-F

Figure M50-G

Figure M50-H

- 5. Tighten the 4 screws (D) as shown in Figure M50-H.
- Manually move the loading mechanism toward the EJECT position.
- 7. Stop the manual eject procedure just before completion, so that the Sub Wiper Arms straight up. This position is also characterized by the channel guides (in the Wiper Arms) being directly under the cut outs on the top of the Cassette Compartment base (Figure M50-I).
- 8. Install the Cassette Holder Unit in the Cassette Compartment Base. The Cassette holder should drop into place if the Sub Wiper Arms are portioned as called for in step 7.

Figure M50-I

Note: For proper front loading, the guide pin on the opener lever should follow the upper track of the right side panel as shown in Figure M50-J.

Figure M50-J Right Side Plate

- 9. Install the top plate on the Cassette Compartment Base and tighten the 3 screws (A) as shown in Figure M50-B.
- Manually confirm that front loading and main loading run smoothly. Also confirm EJECT before power is applied.

ELECTRICAL ADJUSTMENTS

CONTENTS

7-1.	TEST & SERVICE EQUIPMENT7-	-4
7-2.	HOW TO READ THE ADJUSTMENT PROCEDURE TABLE7-	-4
7-3.	SERVO SECTION7	-5
. •	7-3-1 PG Shifter Adi7-	5
	7-3-1. PG Shifter Adj	5
7-4	VIDEO REC SECTION7	-5
<i>1</i> 7.	7-14 B 0 11 1 A 1:	5
	- 5 4 6 BEB - L. F	n
	7.4.0 CDC [mout] avai Adi	0
	4 A - 0 \/ 10 D 4 i	n
	7-4-4. S-VHS Deviation Adj7- 7-4-5. Chroma Rec Current Adj7-	7
	7-4-5. Chroma Rec Current Adj. 7-4-6. S-VHS Y Rec Current Adj. 7-4-7. VHS Y Rec Current Adj. 7-	
	7-4-7. VHS Y Rec Current Adj7- 7-4-8. Video Level Meter Adj7-	.a
7-5.	VIDEO PB SECTION ·······7	-8
	7-5-1. PB RF Chroma Level Adj	8
	7-5-2. PB Y Level Adj.	8
	7-5-2. PB Y Level Adj	·δ n
	7-5-5. VHS Equalizer Adj7-5-6. Video Tracking Meter Adj7-	-10
	7-0-0. Video iracking motor Adj.	
7 C	TBC SECTION7	-10
7-0.	7.04 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-10
	7 6 9 V Output Loyal Adi/-	-11
	7 C F C A / D 3 = 1.1 (1) Adi	-17
	7 6 6 C A / D Output Level Adi/-	-12
	767 C A /D Innut Adi	-12
	7-6-7. C A / D Imput Adj	-12
	7-6-8. E-E Chroma Adj	-13 -12
	7-6-10. CAC PB Level Adj	-14
	7.6.10 Named Chromo Adi	-14
	7.6.49 Carrier Bolones Adi	-14
	7.6.14 Durat Laval Adi	-15
	7.C.4E. Characa Vocator Bolonos Adi	-15
	7.6.46 Durat Dhaga Adi	-1b
	7-6-10. Burst Position Adj	-16 16
	7-6-17. Barst 7 Ostron Adj. 7-6-18. Y/C Timing Adj	-10
	7-6-19. PB S-VHS Y/C Delay Adj	-17
	7.6.21 Narmal V /C Timing A Di	-1/
	7 6 22 CACV/C Timing Adi	-18
	7.6.22 V Clock Phase Adi	-18
	7 6 24 PLL Look Adi	-18
	7.6.25 C. Clook Phone Adi	'-18
	7 6 26 Head Switch Adi	-19
	7 6 27 C / U Adi	-19
	7-6-28. 14.3MHz VCO Adj	-19 -20
	7-6-29. Ref. SCH Adj	-20 -20
	7.6.21 System H Phase Adi	'-20
	7.6.93 Video Phoco Adi	′-21
	7-6-33. System SC Phase Adj	7-21

7-7.	AUDIO SECTION	·7-22
	7-7-1. Normal Audio Input Level Adj	.7-22
	7-7-2. Hi-Fi Audio Input Level Adj.	.7-22
	7-7-3. Audio Jack Output Balance Adj.·····	·7-22
	7-7-3. Audio Jack Output Balance Adj	·7-23
	7-7-5. Normal Audio Playback Frequency Response Adi	·7-23
	7-7-6. Normal Audio PB Gain Adj	·7-24
	7-7-7. Normal Audio Erase Current Adj	·7-24
	7-7-8. Normal Audio Bias Current Adj	·7-24
	7-7-9. Normal Audio General Frequency Responce Adj	·7-25
	7-7-10. Normal Audio Time Code Meter Adj	·7-25
	7-7-11. Hi-Fi Audio Head Switching Shifter Adj	·7-25
	7-7-12. Hi-Fi Audio Carrier Frequency Adj. ····································	·7-26
	7-7-13. Hi-Fi Audio Deviation Adj	·7-26
	7-7-14. Normal Audio Rec Current Adj	·7~27
	7-7-15. Hi-Fi Audio Rec Current Adj. ·····	·7-27
7-8.	OTHER SECTION	7-28
-	7-8-1 VITC Mute Pulse Adi	7.20
	7-8-1. VITC Mute Pulse Adj	7-28
	7-8-3. Flying Erase Current Adj.	7-28
	7 0 0. 1 tying Erast Outrent Auj.	7-28

7-1. TEST & SERVICE EQUIPMENT

No.	EQUIPMENT	CAPACITY
1	D.V.M. (Digital Volt Meter)	0.001 to 50V
2	Dual-Trace Oscilloscope (with Probes)	0.005 to 50V/div, DC to 100MHz (50MHz)
3	Frequency Counter	0 to 10MHz
4	Sinewave Signal Generator (RC Oscillator)	0 to 10MHz
5	Video Sweep Generator	0 to 10MHz
6	Waveform Monitor	
7	Video Signal Generator (Composite, Y/C)	video signal with 7.5% set-up
8	Spectrum Analyzer	
9	Vector Scope	
10	SCH Meter	
11	Color Monitor TV	
12	VHS Alignment Tape (VFM8080HQFP)	
13	Extender Board (VFK0941)	

7-2. HOW TO READ THE ADJUSTMENT PROCEDURES TABLE

7-3. SERVO SECTION

7-3-1. PG SHIFTER ADJ.

≪ NOTE ≫

Tape Interchangeability Adjustment should be always completed before this adjustment.

BOARD	SERVO & SYSTEM CTL C.B.A. (E3)
ТР	TP41003 (G-1):AUDIO (2) C.B.A.(CH2.TRIG) TP3307 (B-1):VIDEO I/O C.B.A.(CH1)
ADJ.	VR2001 (H-5)
TAPE	VFM8080HQFP PORTION:2
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	T=7.5H±0.25H

≪ SET UP ≫

SYNC: NORM (MENU NO.1001)

FRAME SERVO: OFF (MENU NO.6005)

TRACKING VR: CENTER (FIX)

- 1. Playback the adjustment tape the portion 2.
- 2. Connect the oscilloscope to TP3307 for CH-1 and TP41003 for CH-2.(Trigger)
- 3. Adjust VR2001 so that "T" becomes 7.5H \pm 0.25H as shown in Figure E1.

Figure E1

7-3-2. TRACKING FIX ADJ.

BOARD	SERVO & SYSTEM CTL C.B.A. (E3)
ТР	TP41003 (G-1):AUDIO (2) C.B.A. TP61004 (D-1):INTERFACE C.B.A.
ADJ.	VR2003 (H-6):SERVO&SYSTEM CTL C.B.A.
TAPE	VFM8080HQFP PORTION:2
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	$T=0.4$ msec. ± 0.1 msec.

≪ SET UP ≫

SYNC: NORM (MENU NO.1001)

FRAME SERVO: OFF (MENU NO.6005)

TRACKING VR : CENTER (FIX)

- 1. Playback the adjustment tape the portion 2.
- 2. Connect the oscilloscope to TP61004 for CH-1 and TP41003 for CH-2.
- 3. Adjust VR2003 so that the "T" becomes 0.4msec \pm 0.1msec as shown in Figure E2.

•

7-4. VIDEO REC SECTION

7-4-1. DROP OUT LEVEL ADJ.

BOARD	VIDEO DIGITAL C.B.A. (E6)
TP	TP3772 (F-1)
ADJ.	VR3771 (F-1)
TAPE	S-VHS BLANK TAPE
INPUT	COLOR BAR SIGNAL (LINE)
MODE	REC
M. EQ	OSCILLOSCOPE (more than 100MHz)
SPEC.	700mVp-p±70mVp-p

≪ NOTE ≫

Use a oscilloscope that is more than 100MHz range and increase the intensity.

≪ SET UP ≫

IMAGE MODE SELECT: NORMAL (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002) S-VHS REC: ON (MENU NO.2006) CH2 METER SW: VIDEO TRACKING VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW: LINE

- 1. Place the deck in the REC mode with S-VHS mode.
- 2. Connect the oscilloscope to TP3772.
- 3. Adjust VR3771 so that the level becomes 700mVp-p ± 70mV as shown in Figure E3.

Figure E3

7-4-2, RF PEAK FREQUENCY ADJ.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3003 (F-1)
ADJ.	VR3015 (E-1)
TAPE	
INPUT	TP3002: VIDEO SWEEP SIGNAL (150mVp-p)
MODE	STOP
M. EQ	OSCILLOSCOPE
SPEC.	7MHz±0.1MHz (FIG. E4-B)

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)

- 1. Connect a jumper wire between TP3001 and GND (TPG3001).
- Supply a 150mVp-p (in connected) sweep signal to TP3002 as shown in Figure E4-A.
- 3. Connect the oscilloscope to TP3003 and adjust VR3015 so that the peak frequency becomes 7.0MHz \pm 0.1MHz as shown in Figure E4-B.

Figure E4-A

7-4-3, CPS INPUT LEVEL ADJ.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3008 (A-1)
ADJ.	VR3001 (A-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	1.5Vp-p±0.05Vp-p

≪ SET UP ≫

VIDEO MODE : COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the oscilloscope to TP3008.
- 2. Adjust VR3001 so that the level becomes 1.5Vp-p \pm 0.05Vp-p as shown in Figure E5.

Figure E5

7-4-4. S-VHS DEVIATION ADJ.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3201 (D-3)
ADJ.	VR3003 (f0)(B-1), VR3006 (DEV)(A-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	1.5Vp-p ± 0.1Vp-p (FIG. E6)

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001)

VIDEO MODE : COLOR (MENU NO.2002)

S-VHS REC: ON (MENU NO.2006)

VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW : LINE

USE EXTENDER BOARD forVIDEO I/O C.B.A.

- 1. Connect the oscilloscope to TP3201.
- 2. Adjust VR3003 so that the white peak (100%) level becomes maximum and the beat on the sync tip portion of the color bar signal becomes minimum as shown in Figure E6.
- 3. Adjust VR3006 so that the level of color bar signal becomes 1.5Vp-p±0.1Vp-p as shown in Figure E6.

Figure E6

7-4-5. CHROMA REC CURRENT ADJ.

BOARD	HEAD AMP C.B.A. (E15)
TP	TP5003 (HOT)(B-4), TP5002 (GND)(B-4)
ADJ.	VR5002 (B-4)
TAPE	S-VHS BLANK TAPE
INPUT	COLOR BAR SIGNAL (LINE)
MODE	REC
M. EQ	OSCILLOSCOPE
SPEC.	50mVp-p±2mVp-p

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001) VIDEO MODE : COLOR (MENU NO.2002)

S-VHS REC: ON (MENU NO.2006)

VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW: LINE

- 1. Turn VR5001 fully clockwise to eliminate Y carrier.
- 2. Connect the oscilloscope to TP5003 with an 1:1 probe.
- Adjust VR5002 so that the cyan level becomes 50mVp-p
 2mV as shown in Figure E7.

Figure E7

≪ NOTE ≫

After this adjustment is finished, adjust 7-4-6. S-VHS Y REC Current Adj.

7-4-6. S-VHS Y REC CURRENT ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-4-5. Chroma REC Current Adj.

BOARD	HEAD AMP C.B.A. (E15)	
TP	TP5003 (HOT)(B-4), TP5002 (GND)(B-4)	
ADJ.	VR5001 (B-4)	
TAPE	S-VHS BLANK TAPE	
INPUT	COLOR BAR SIGNAL (LINE)	
MODE	REC	
M. EQ	OSCILLOSCOPE	
SPEC.	175mVp-p±5mVp-p	

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002) S-VHS REC: ON (MENU NO.2006)

VIDEO LEVEL control : PUSH (AGC : ON)

INPUT SW: LINE

- 1. Connect the oscilloscope to TP5003 with an 1:1 probe.
- 2. Adjust VR5001 so that the sync tip level becomes $175 \text{mVp-p} \pm 5 \text{mV}$ as shown in Figure E8.

Figure E8

7-4-7. VHS Y REC CURRENT ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-4-5. Chroma REC Current Adj. and 7-4-6. S-VHS Y REC Current Adj.

	,
BOARD	HEAD AMP C.B.A. (E15)
TP	TP5003 (HOT)(B-4), TP5002 (GND)(B-4)
ADJ.	VR3305 (F-1): VIDEO I/O C.B.A.
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	REC
M. EQ	OSCILLOSCOPE
SPEC.	180mVp-p±5mVp-p

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001) VIDEO MODE: COLOR (MENU NO.2002)

PB/EE SELECT: EE (MENU NO.2004)
S-VHS REC: OFF (MENU NO.2006)
VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW: LINE

- 1. Connect the oscilloscope to TP5003 with an 1:1 probe..
- 2. Adjust VR3305 so that the sync tip level becomes $180 mVp-p \pm 5 mVp-p$ as shown in Figure E9.

Figure E9

7-4-8, VIDEO LEVEL METER ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-4-4. S-VHS Deviation Adj.

BOARD	VIDEO I/O C.B.A. (E5)
TP	VIDEO LEVEL METER
ADJ.	VR3301 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (S-VIDEO)
MODE	EJECT (E-E)
M. EQ	
SPEC.	REFER TO FIG E10

≪ SET UP. ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)

PB/EE SELECT : EE (MENU NO.2004) VIDEO LEVEL control : PUSH (AGC : ON)

INPUT SW: S-VIDEO

 Adjust VR3301 so that the needle of VIDEO LEVEL METER becomes at point as shown in Figure E10.

Figure E10

7-5. VIDEO PB SECTION

7-5-1. PB RF CHROMA LEVEL ADJ.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3005 (B-1)
ADJ.	VR3201 (D-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	-
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	0.7Vp-p ± 0.05Vp-p

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)
VIDEO MODE: COLOR (MENU NO.2002)
PB/EE SELECT: EE (MENU NO.2004)
S-VHS REC: ON (MENU NO.2006)

VIDEO LEVEL control: PUSH (AGC: ON)

1. Connect the oscilloscope to TP3005.

 Adjust VR3201 so that the cyan level becomes 0.7Vp-p ± 0.05Vp-p as shown in Figure E11.

Figure E11

7-5-2, PB Y LEVEL ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-4-4. S-VHS Deviation Adj.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3307 (B-1)
ADJ.	VR3202 (D-3)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	COLOR BAR SIGNAL
MODE	PLAYBACK, STOP (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	PLAY LEVEL = E-E LEVEL ± 0.05Vp-p

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

S-VHS REC: ON (MENU NO.2006)

VIDEO LEVEL control: PUSH (AGC: ON)

- Playback the color bar signal self recorded tape by S-VHS mode.
- 2. Connect the oscilloscope to TP3307.
- 2. Adjust VR3202 so that the playback Y level becomes the same (\pm 0.05Vp-p) as the stop (EE) Y level as shown in Figure E12.

Figure E12

7-5-3. S-VHS NORMAL EQUALIZER ADJ.

BOARD	VIDEO I∕O C.B.A. (E5)
TP	TP3307 (B-1)
ADJ.	VR3010 (L CH), VR3011 (R CH)
TAPE	30% VIDEO SWEEP (B/W) SIGNAL SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	100KHz:4MHz = 5:3.5±0.5

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001)

S-VHS REC: ON (MENU NO.2006)
VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Play back the 30% sweep signal (Figure E13-A) self recorded tape by S-VHS mode. (Vary the vertical scope setting until the 100KHz level reaches 5 divisions)
- 2. Connect the oscilloscope to TP3307.
- 3. Adjust VR3010 (L CH) and VR3011(R CH) so that the level becomes as shown in Figure E13-B.

Figure E13-A

Figure E13-B

7-5-4. S-VHS SS EQUALIZER ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-5-3. S-VHS Normal Equalizer Adj.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3307 (B-1), TP8502 (E-1): TBC (1) C.B.A.
ADJ.	VR3008 (L' CH)(E-1), VR3009 (R' CH)(E-1)
TAPE	30% VIDEO SWEEP (B/W) SIGNAL SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	JOG
M. EQ	OSCILLOSCOPE
SPEC.	FIG. E14-A, B

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001)

S-VHS REC: ON (MENU NO.2006)

DIGITAL SLOW SW: OFF

- Play back the 30% sweep signal (Figure E13-A) self recorded tape by S-VHS mode.
- Connect the oscilloscope to TP8502 for CH1 and TP3307 for CH2.
- 3. Place the deck in the JOG mode.
- 4. Rotate the JOG DIAL so that the high period of TP8502 becomes longest as shown in Figure E14-A.
- 5. Adjust VR3008 so that the L CH and L' CH frequency responces become same characteristics as shown in Figure E14-A.

Figure E14-A

- 6. Rotate the JOG DIAL so that the low period of TP8502 becomes longest as shown in Figure E14-B.
- 7. Adjust VR3009 so that the R CH and R' CH frequency responces become same characteristics as shown in Figure E14-B.

Figure E14-B

7-5-5. VHS EQUALIZER ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-5-3. S-VHS Normal Equalizer Adj.

When you record the 30% video sweep signal, set the IMAGE MODE SELECT to EDIT.

BOARD	VIDEO I/O C.B.A. (E5)
TP	TP3307 (B-1)
ADJ.	VR3007 (E-1)
TAPE	30% VIDEO SWEEP (B/W) SIGNAL SELF RECORDED TAPE (VHS)
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	$100KHz : 2MHz = 5 : 3.5 \pm 0.5$

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001)

VIDEO MODE: B/W (MENU NO.2002) S-VHS REC: OFF (MENU NO.2006) VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW: S-VIDEO

- Play back the 30% sweep signal (Figure E13-A) self recorded tape by VHS mode. (Vary the vertical scope setting until the 100KHz level reaches 5 divisions)
- 2. Connect the oscilloscope to TP3307.
- 3. Adjust VR3007 so that the level becomes as shown in Figure E15.

Figure E15

7-5-6. VIDEO TRACKING METER ADJ.

BOARD	VIDEO I/O C.B.A. (E5)
TP	VIDEO TRACKING METER
ADJ.	VR3014 (E-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	
SPEC.	REFER TO FIG. E16

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006) VIDEO LEVEL control: PUSH (AG

VIDEO LEVEL control: PUSH (AGC: ON) CH2 METER SW: VIDEO • TRACKING

- Play back the color bar signal self recorded tape by S-VHS mode.
- 2. Adjust VR3014 so that the needle of VIDEO TRACKING METER becomes at point as shown in Figure E16.

Figure E16

7-6. TBC SECTION

7-6-1. Y A/D INPUT (1) ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8201 (B-1)
ADJ.	VR8202 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	$1.5V \pm 0.05V$

≪ SET UP ≫

VIDEO MODE : COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the oscilloscope to TP8201.
- 2. Adjust VR8202 so that the level becomes 1.5V \pm 0.05V as shown in Figure E17.

Figure E17

7-6-2. Y A/D INPUT (2) ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	VIDEO OUT
ADJ.	VR8201 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	$0mV \pm 10mV$

≪ SET UP ≫

TBC CONTROL : CENTER POSITION (OSD) VIDEO MODE : COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the oscilloscope to VIDEO OUT.
- Adjust VR8201 so that the set-up level becomes 0mV ± 10mV as shown in Figure E18.

Figure E18

7-6-3. Y OUTPUT LEVEL ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8804 (F-2)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	0.734Vp-p ± 0.05Vp-p

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL: CENTER POSITION (OSD)
VIDEO MODE: COLOR (MENU NO.2002)
PB/EE SELECT: EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the oscilloscope to VIDEO OUT.
- 2. Adjust VR8804 so that the Y level becomes 0.734Vp-p \pm 0.05Vp-p as shown in Figure E19.

Figure E19

7-6-4. SYNC LEVEL ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-3. Y Output Level Adj. VIDEO OUT should be 75Ω terminated.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8803 (F-2)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	0.286Vp-p ± 0.03Vp-p

≪ SET UP ≫

TBC CONTROL: CENTER POSITION (OSD)
VIDEO MODE: COLOR (MENU NO.2002)
PB/EE SELECT: EE (MENU NO.2004)
VIDEO LEVEL control: PUSH (AGC: ON)

INPUT SW: LINE

- 1. Connect the oscilloscope to VIDEO OUT.
- 2. Adjust VR8804 so that the SYNC level becomes $0.286 \, \text{Vp-p} \pm 0.03 \, \text{V}$ as shown in Figure E20.

Figure E20

7-6-5. C A/D INPUT (1) ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8202 (R)(A-1), TP8203 (B)(A-1)
ADJ.	VR8204 (R-Y)(B-1), VR8205 (B-Y)(B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	1.5Vp-p ± 0.05Vp-p

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the oscilloscope to TP8202.
- 2. Adjust VR8204 so that the level becomes 1.5 Vp-p \pm 0.05Vp-p as shown in Figure E21-A.

Figure E21-A

- 3. Connect the oscilloscope to TP8203.
- 4. Adjust VR8205 so that the level becomes 1.5 Vp-p \pm 0.05Vp-p as shown in Figure E21-B.

Figure E21-B

7-6-6. C AD OUTPUT LEVEL ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8051 (E-3)
ADJ.	VR8002 (F-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	V.T.V.M. or D.V.M.
SPEC.	$3.5V \pm 0.05V$

≪ SET UP ≫

TBC CONTROL: CENTER POSITION (OSD) VIDEO MODE: COLOR (MENU NO.2002)

INPUT SW: LINE

- 1. Connect the V.T.V.M. or D.V.M. to TP8051.
- 2. Adjust VR8002 so that the DC voltage becomes 3.5V \pm 0.05V.

7-6-7. C A/D INPUT (2) ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	COMPONENT OUT (PB, PR)
ADJ.	VR8203 (B-1), VR8302 (F-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	$0mV \pm 10mV$

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the W.F.M. to Component PR OUT.
- 2. Adjust VR8203 so that the level becomes minimum $(0mV \pm 10mV)$ as shown in Figure E22-A.

Figure E22-A

- 3. Connect the W.F.M. to Component PB OUT.
- 4. Adjust VR8302 so that the level becomes minimum $(0mV \pm 10mV)$ as shown in Figure E22-B.

Figure E22-B

7-6-8. E-E CHROMA ADJ.

BOARD	VIDEO C C.B.A. (E13)
TP	COMPONENT OUT (PB, PR)(75Ω)
ADJ.	VR9401 (A-1), VR8810 (F-1), VR8811 (F-1) : TBC (2) C.B.A.
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	FIG. E23-A, B, C

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL: CENTER POSITION (OSD)
IMAGE MODE SELECT: EDIT (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

DNR : OFF INPUT SW : LINE

VIDEO LEVEL control: PUSH (AGC: ON)

1. Connect the W.F.M. to Component PB OUT.

2. Adjust VR9401 so that the waveform becomes as shown in Figure E23-A.

Figure E23-A

3. Adjust VR8810 so that the level becomes 0.486Vp-p \pm 0.05Vp-p as shown in Figure E23-B.

Figure E23-B

- 4. Connect the W.F.M. to Component PR out.
- 5. Adjust VR8811 so that the level becomes 0.486Vp-p \pm 0.05Vp-p as shown in Figure E23-C.

Figure E23-C

7-6-9. CAC PR LEVEL ADJ.

BOARD	VIDEO C C.B.A. (E13)
TP	COMPONENT PR OUT
ADJ.	VR9407 (B-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	$B = A \pm 2\%$

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002)

DNR: OFF

INPUT SW: S-VIDEO

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Play back the color bar signal (S-VIDEO) self recorded tape by S-VHS mode.
- 2. Connect the W.F.M. to Component PR OUT.
- Adjust VR9407 so that the levels "A" and "B" become the same at the EDIT mode and NORMAL mode (change the IMAGE MODE SELECT (MENU NO.2001)) as shown in Figure E24.

Figure E24

7-6-10. CAC PB LEVEL ADJ.

BOARD	VIDEO C C.B.A. (E13)
TP	COMPONENT PB OUT
ADJ.	VR9406 (C-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	$B = A \pm 2\%$

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002)

DNR: OFF

INPUT SW: S-VIDEO

VIDEO LEVEL control: PUSH (AGC: ON)

- Play back the color bar signal (S-VIDEO) self recorded tape by S-VHS mode.
- 2. Connect the W.F.M. to Component PB OUT.
- Adjust VR9406 so that the levels "A" and "B" become the same at the EDIT mode and NORMAL mode (change the IMAGE MODE SELECT (MENU NO.2001)) as shown in Figure E25.

Figure E25

7-6-11. EDIT CHROMA ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-8. E-E Chroma Adj.

BOARD	VIDEO C C.B.A. (E13)
TP	COMPONENT PB OUT (75Ω)
ADJ.	VR9405 (B-1), VR9410 (A-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	FIG. E26-A, B

≪ SET UP ≫

IMAGE MODE SELECT: EDIT (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

DNR: OFF INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Play back the color bar signal self recorded tape by S-VHS mode.
- 2. Connect the W.F.M. to Component PB OUT.
- 3. Adjust VR9410 so that the waveform become as shown in Figure E26-A.

Figure E26-A

4. Adjust VR9405 so that the level becomes 0.486Vp-p \pm 0.05Vp-p as shown in Figure E26-B.

Figure E26-B

7-6-12. NORMAL CHROMA ADJ.

BOARD	VIDEO C C.B.A. (E13)
TP	COMPONENT OUT (PB, PR)(75Ω)
ADJ.	VR9406 (C-1), VR9407 (B-1)
TAPE	C.B. SELF RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	FIG. E27-A, B

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-8. E-E Chroma Adj and 7-6-11. Edit Chroma Adj.

≪ SET UP ≫

IMAGE MODE SELECT: NORMAL (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

DNR: OFF INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Play back the color bar signal self recorded tape by S-VHS mode.
- 2. Connect the W.F.M. to Component PB OUT.
- 3. Adjust VR9406 so that the level becomes $0.486 \text{Vp-p} \pm$ 0.05Vp-p as shown in Figure E27-A.

Figure E27-A

- 4. Connect the W.F.M. to Component PR OUT.
- 5. Adjust VR9407 so that the level becomes $0.486 \text{Vp-p} \pm$ 0.05Vp-p as shown in Figure E27-B.

7-6-13. CARRIER BALANCE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8807 (E-1), VR8808 (E-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	VECTORSCOPE
SPEC.	FIG. E28

VIDEO OUT should be 75Ω terminated.

≪ SET UP ≫

TBC CONTROL: CENTER POSITION VIDEO MODE: COLOR (MENU NO.2002)

INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

1. Connect the vectorscope to VIDEO OUT and adjust VR8807 and VR8808 so that the point "C" becomes center of the vector scope as shown in Figure E28.

Figure E28

7-6-14. BURST LEVEL ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-13. Carrier Balance Adj.

VIDEO OUT should be 75 Ω terminated.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8806 (E-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	VECTORSCOPE
SPEC.	FIG. E29

≪ SET UP ≫

TBC CONTROL: CENTER POSITION VIDEO MODE: COLOR (MENU NO.2002)

INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Connect the vectorscope to VIDEO OUT.
- 2. Adjust VR8806 that the burst signal becomes 75% (180°) as shown in Figure E29.

Figure E29

7-6-15. CHROMA VECTOR BALANCE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8801 (E-1), VR8802 (E-1), VR8815 (D-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	VECTORSCOPE
SPEC.	FIG. E30

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL: CENTER POSITION
VIDEO MODE: COLOR (MENU NO.2002)

INPUT SW: LINE

VIDEO LEVEL control : PUSH (AGC : ON)

- 1. Connect the vectorscope to VIDEO OUT.
- 2. Adjust VR8801, VR8802 and VR8815 so that the all vectors except burst phase become correct position as shown in Figure E30.

Figure E30

7-6-16, BURST PHASE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8814 (D-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	VECTORSCOPE
SPEC.	FIG. E31

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL: CENTER POSITION VIDEO MODE: COLOR (MENU NO.2002)

INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Connect the vectorscope to VIDEO OUT.
- Adjust the vectorscope so that the burst signal becomes 75% (180°).
- 3. Adjust VR8814 so that the all vectors become correct position as shown in Figure E31.

Figure E31

7-6-17. BURST POSITION ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8805 (D-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	$5.3 \mu \sec \pm 0.1 \mu \sec$

≪ NOTE ≫

VIDEO OUT should be 75Ω terminated.

≪ SET UP ≫

TBC CONTROL : CENTER POSITION VIDEO MODE : COLOR (MENU NO.2002)

INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Connect the W.F.M. to VIDEO OUT.
- 2. Adjust VR8805 so that the period of H. Sync (down edge) to Burst signal (Burst start point) becomes 5.3 μ sec. \pm 0.1 μ sec. as shown in Figure E32.

Figure E32

7-6-18. Y/C TIMING ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	VIDEO OUT (75Ω)
ADJ.	VR8103 (C-1)
TAPE	
INPUT	SIN ² PULSE & BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	Onsec ± 50nsec

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL : CENTER POSITION VIDEO MODE : COLOR (MENU NO.2002)

INPUT SW: LINE

1. Connect the oscilloscope (W.F.M.) to VIDEO OUT and expanded the "A" portion as shown in Figure E33-A.

Figure E33-A

2. Adjust VR8103 so that the waveform becomes as shown in Figure E33-B.

Figure E33-B

7-6-19. PB S-VHS Y/C DELAY ADJ.

BOARD	VIDEO I/O C.B.A. (E10)
TP	VIDEO OUT
ADJ.	VR3205 (E-3)
TAPE	SIN ² PULSE & BAR SIGNAL OTHE RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILOSCOPE
SPEC.	100nsec ± 50nsec (FIG. E34)

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001) VIDEO MODE : COLOR (MENU NO.2002)

- 1. Connect the oscilloscope (W.F.M.) to VIDEO OUT and expanded the "A" portion as shown in Figure E33-A.
- 2. Play back the SIN² PULSE & BAR signal other recorded tape by S-VHS mode.
- 3. Adjust VR3205 so that the waveform becomes as shown in Figure E34.

Figure E34

7-6-20. PB VHS Y/C DELAY ADJ.

BOARD	VIDEO I/O C.B.A. (E10)
TP	VIDEO OUT
ADJ.	VR3204 (E-3)
TAPE	SIN ² PULSE & BAR SIGNAL OTHE RECORDED TAPE (VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILOSCOPE
SPEC.	100nsec ± 50nsec (FIG. E34)

≪ SET UP ≫

IMAGE MODE SELECT : EDIT (MENU NO.2001) VIDEO MODE : COLOR (MENU NO.2002)

- 1. Connect the oscilloscope (W.F.M.) to VIDEO OUT and expanded the "A" portion as shown in Figure E33-A.
- 2. Play back the SIN² PULSE & BAR signal other recorded tape by VHS mode.
- 3. Adjust VR3204 so that the waveform becomes as shown in Figure E34.

7-6-21. NORMAL Y/C TIMING ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-18. Y/C Timing Adj., 7-6-19. PB S-VHS Y/C Delay Adj. and 7-6-20. PB VHS Y/C Delay Adj.

	, ,
BOARD	VIDEO C C.B.A. (E13)
TP	VIDEO OUT
ADJ.	VR9403 (C-1), SW3921 (A-1)(DIGITAL C.B.A)
TAPE	SIN ² PULSE & BAR SIGNAL OTHE RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	100nsec ± 50nsec (FIG. E34)

≪ SET UP ≫

TBC CONTROL: CENTER POSITION

IMAGE MODE SELECT: NORMAL (MENU NO.2001)

VIDEO MODE : COLOR (MENU NO.2002)

DNR: OFF

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Connect a jumper wire between TP9405 and TPG9406.
- 2. Connect the oscilloscope (W.F.M.) to VIDEO OUT and expanded the "A" portion as shown in Figure E33-A.
- 3. Play back the SIN² PULSE & BAR signal other recorded tape by S-VHS mode.
- 4. Adjust VR9403 and SW3921 so that the waveform becomes as shown in Figure E34.

7-6-22. CAC Y/C TIMING ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-6-18. Y/C Timing Adj., 7-6-19. PB S-VHS Y/C Delay Adj. and 7-6-20. PB VHS Y/C Delay Adj.

BOARD	VIDEO C C.B.A. (E13)
TP	TP9407 (C-2), TP9404 (B-1)
ADJ.	VR9402 (C-1)
TAPE	SIN ² PULSE & BAR SIGNAL
IAFE	OTHER RECORDED TAPE (S-VHS)
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	70nsec ± 35nsec (FIG. E35)

≪ SET UP ≫

TBC CONTROL: CENTER POSITION

IMAGE MODE SELECT: NORMAL (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

DNR: OFF

VIDEO LEVEL control: PUSH (AGC: ON)

- Connect the oscilloscope to TP9407 for CH1 and TP9404 for CH2.
- 2. Set the vertical scope setting of both the channels (CH1 and CH2) to the same range.
- 3. Set the scope to ADD (CH1+CH2) mode.
- 4. Play back the SIN² PULSE & BAR signal other recorded tape by S-VHS mode.
- 5. Adjust VR9402 so that the waveform becomes as shown in Figure E35.

Figure E35

7-6-23. Y CLOCK PHASE ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8101 (C-3)
ADJ.	VR8101 (C-3)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	A=45±5

≪ SET UP ≫

INPUT'SELECT: LINE

- 1. Connect the oscilloscope to TP8101.
- 2. Adjust VR8101 so that the waveform becomes as shown in Figure E36.

Figure E36

7-6-24. PLL LOCK ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8105 (B-2), TP8103 (C-2)
ADJ.	VC8101 (B-3)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	840nsec ± 20nsec (FIG. E37)

≪ SET UP ≫

INPUT SELECT: LINE

- 1. Connect the oscilloscope to TP8105 for CH1 and TP8103 for CH2.
- 2. Adjust VC8101 so that the "T" becomes 840nsec. \pm 20 nsec. as shown in Figure E37.

Figure E37

7-6-25, C CLOCK PHASE ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP8301 (C-3)
ADJ.	VR8301 (B-3)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	A=45±5

≪ SET UP ≫

INPUT SELECT: LINE

- 1. Connect a scope to TP8301.
- 2. Adjust VR8301 so that the waveform becomes as shown in Figure E36.

7-6-26. HEAD SWITCH ADJ.

BOARD	TBC (1) C.B.A. (E11)
TP	TP41003 (G-1: AUDIO(2)), TP8501 (F-1)
ADJ.	VR8501 (E-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	REC
M. EQ	OSCILLOSCOPE
SPEC.	$T=32.5 \mu \sec \pm 2.5 \mu \sec (FIG. E38)$

≪ SET UP ≫

INPUT SELECT: LINE

- Connect a scope to TP41003 for CH-1 and TP8501 for CH-2.
- 2. Adjust VR8501 so that the "T" becomes 32.5 μ sec \pm 2. 5 μ sec as shown in Figure E38.

Figure E38-A

≪ NOTE ≫

You can adjust more easy by using the ADD (CH1 & CH2) feature on a scopeas shown in Figure E-38-B

Figure E38-B

7-6-27. S/H ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	TP8603 (A-4), TP8604 (B-1)
ADJ.	VR8601 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (REF. IN)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	A=B±10%

≪ SET UP ≫

INPUT SELECT: LINE

- 1. Supply a color bar signal to the REF. IN.
- Connect a scope to TP8603 for CH-1 and TP8604 for CH-2.
- 3. Adjust VR8601 so that the position of S/H pulse (TP8604) becomes as shown in Figure E39.

Figure E39

7-6-28. 14.3MHz VCO ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	TP8609 (C-2)
ADJ.	VC8671 (A-2)
TAPE	
INPUT	NO SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	FREQUENCY COUNTER
SPEC.	$f = 3,579,545$ Hz ± 5 Hz

≪ SET UP ≫

INPUT SELECT : LINE

- 1. Connect a counter to TP8609.
- 2. Adjust VC8671 so that the frequency becomes 3,579,545Hz \pm 5Hz.

7-6-29. REF. SCH ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	TP8609 (C-2), TP8610 (·C-2)
ADJ.	VR8603 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (REF. & LINE)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	$A = B \pm 10\%$

≪ NOTE ≫

SCH of a color bar signal (REF. & LINE) should be 0°.

≪ SET UP ≫

INPUT SELECT: LINE

- 1. Connect a scope to TP8609 for CH1 and TP8610 for CH2.
- Adjust VR8603 so that the up edge of H pulse becomes as shown in Figure E40.

Figure E40

7-6-30. SCH PHASE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	SW8701 (C-1), VR8602 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (REF. & LINE)
MODE	EJECT (E-E)
M. EQ	SCH METER -
SPEC.	0 ± 2°

≪ NOTE ≫

VIDEO OUT should be 75\Omega terminated. SCH of a color bar signal (REF. & LINE) should be 0°. Trigger of SCH METER should be EXT.

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002) PB/EE SELECT: EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect a SCH Meter as shown in Figure E41-A.
- 2. Adjust SW8701 and VR8602 so that the SCH phase becomes 0° \pm 2° as shown in Figure E41-B.

Figure E41-A

Figure E41-B

7-6-31. SYSTEM H PHASE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	REF VIDEO, VIDEO OUT (75Ω)
ADJ.	VR8701 (B-1)
TAPE	
INPUT	COLOR BAR SIGNAL (REF.)
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	FIG. E42-B

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated. SCH of color bar signal (REF.) should be 0°.

≪ SET UP ≫

VIDEO MODE: COLOR (MENU NO.2002)
TBC CONTROL (SYSTEM H PHASE): CENTER (OSD)

INPUT SW: LINE

- 1. Connect a scope as shown in Figure E42-A.
- 2. Adjust VR8701 so that the H phase of these signals are the same as shown in Figure E42-B.

VIDEO OUT

H. SYNC PORTION
MATCH HERE

-20 IRE---

-20 IRE--

Figure E42-B

H.RATE

7-6-32. VIDEO PHASE ADJ.

BOARD	TBC (1) C.B.A. (E-11)
TP	VIDEO OUT (75Ω)
ADJ.	VR8102 (C-1)
TAPE	
INPUT	COLOR BAR SIGNAL (LINE)
MODE	EJECT (E-E)
M. EQ	W.F.M. or OSCILLOSCOPE
SPEC.	FIG. E43

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

VIDEO MODE : COLOR (MENU NO.2002) PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the W.F.M. to VIDEO OUT.
- 2. Adjust VR8102 so that the waveform becomes as shown in Figure E43.

Figure E43

7-6-33. SYSTEM SC PHASE ADJ.

BOARD	TBC (2) C.B.A. (E12)
TP	VIDEO OUT (75Ω)
ADJ.	VR8671 (A-1)
TAPE	
INPUT	COLOR BAR SIGNAL (REF. & LINE)
MODE	EJECT (E-E)
M. EQ	SCH METER
SPEC.	0° ± 2°

≪ NOTE ≫

VIDEO OUT should be 75 Ω terminated.

≪ SET UP ≫

TBC CONTROL : CENTER POSITION PB/EE SELECT : EE (MENU NO.2004)

INPUT SW: LINE

- 1. Connect the SCH Meter as shown in Figure E41-A.
- 2. Adjust VR8671 so that the SYSTEM SC PHASE becomes $0^{\circ} \pm 2^{\circ}$ as shown in Figure E41-B.
- 3. If not, adjust the TBC CONTROL (SYSTEM SC COARSE), and repeat step 2.

7-7.AUDIO SECTION

Unless otherwise specified, the following connections are used to check the output and input levels from / to the AUDIO OUT and IN jacks (XLR) as shown in Figure E44.

Figure E44

And connect the AG-DS850 and Audio Meter (V.T.V.M. or D.V.M.) in parallel as shown in Figure E45 when you check the level of input signal.

(0dBm = 0.775Vrms = 2.19Vp-p)

Please note that the Audio Output Level Switch is located on the AUDIO (2) C.B.A. (C-1)

7-7-1. NORMAL AUDIO INPUT LEVEL ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
TP	NORM/Hi-Fi AUDIO OUT (CH1/CH2)
ADJ.	VR40011 (CH1)(E-1), VR40012 (CH2)(E-1)
TAPE	
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	EJECT (E-E)
M. EQ	V.T.V.M. (D.V.M.)
SPEC.	0dBm ± 0.2dBm

≪ SET UP ≫

S-VHS REC: OFF (MENU NO.2006) DOLBY NR: OFF (MENU NO.3001) AUDIO LIMITER: OFF (MENU NO.3002) AUDIO OUT SÈLECT SW: NORM

INPUT AUDIO LEVEL SW (NORM/Hi-Fi): 0dBs

OUTPUT AUDIO LEVEL SW: 0dBs CH1 REC: CH1 (MENU NO.3005) AUDIO CH2: AUDIO (MENU NO.3006)

NORM. AUDIO (CH1/2) LEVEL CONTROL: CENTER

- 1. Supply a 1KHz, 0dBm sine wave signal to the NORM/Hi-Fi AUDIO (CH1 & CH2) INPUTs.
- 2. Adjust VR40011 (CH1) and VR40012 (CH2) so that the level becomes 0dBm \pm 0.2dBm.

7-7-2. Hi-Fi AUDIO INPUT LEVEL ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
TP	Hi-Fi AUDIO OUT (CH1/CH2)
ADJ.	VR41008 (CH1)(D-1), VR41009 (CH2)(E-1)
TAPE	
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	EJECT (E-E)
M. EQ	V.T.V.M. (D.V.M.)
SPEC.	0dBm ± 0.2dBm

≪ SET UP ≫

S-VHS REC: OFF (MENU NO.2006)

Hi-Fi INPUT SELECT: Hi-Fi INPUT (MENU NO.3004)

INPUT AUDIO LEVEL SW (Hi-Fi): 0dBs OUTPUT AUDIO LEVEL SW: 0dBs

Hi-Fi AUDIO (CH1/2) LEVEL CONTROL : CENTER

- Supply a 1KHz, 0dBm sine wave signal to the Hi-Fi AUDIO (CH1 & CH2) INPUTs.
- 2. Adjust VR41008 (CH1) and VR41009 (CH2) so that the level becomes 0dBm \pm 0.2dBm.

7-7-3. AUDIO JACK OUTPUT BALANCE ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-7-1. Normal Audio Input Level Adj. and 7-7-2. Hi-Fi Audio Input level Adj.

BOARD	REAR AMP C.B.A. (E28)
ТР	NORM/Hi-Fi AUDIO OUT (CH1, CH2) Hi-Fi AUDIO OUT (CH1, CH2)
ADJ.	NOR: VR4007(CH1)(C-1), VR4008(CH2)(C-1) Hi-Fi: VR4005(CH1)(C-2), VR4006(CH2)(C-1)
TAPE	
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	EJECT (E-E)
M. EQ	V.T.V.M.(D.V.M.)
SPEC.	LESS THAN 68mVrms

- Supply a 1KHz, 0dB sine wave signal to the NORM /Hi-Fi (CH1 & CH2) Audio Inputs.
- 2. Connect the V.T.V.M.(D.V.M.) to NORM/Hi-Fi AUDIO OUT (CH1/CH2) as shown in Figure E46.
- 3. Adjust VR4007 (CH1) and VR4008 (CH2) so that the level becomes minimum (less than 68mVrms).
- 4. Connect the V.T.V.M.(D.V.M.) to the Hi-Fi AUDIO OUT (CH1/CH2) as shown in Figure E46.
- 5. Adjust VR4005 (CH1) and VR4006 (CH2) so that the level becomes minimum (less than 68mVrms).
- Perform 7-7-1. Normal Audio Input Level Adj. and/or 7-7-2. Hi-Fi Audio Input Level Adj. again if VR4007 (CH1) VR4008 and/or VR4005 (CH1), VR4006 (CH2) are adjustted.

Figure E46

7-7-4. AUDIO LEVEL METER ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-7-1. Normal Audio Input Adj.

BOARD	AUDIO (2) C.B.A. (E8)
TP	AUDIO METER (CH1, CH2)
ADJ.	VR41012 (CH1)(B-1), VR41013 (CH2)(B-1)
TAPE	
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	EJECT (E-E)
M. EQ	
SPEC.	0 ± 0.5

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006)
DOLBY NR: OFF (MENU NO.3001)
AUDIO LIMITER: OFF (MENU NO.3002)

Hi-Fi REC : ON (MENU NO.3003) CH1 REC : CH1 (MENU NO.3005) AUDIO CH2 : AUDIO (MENU NO.3006)

CH2 METER: AUDIO CH2 AUDIO METER SW: NORM

INPUT AUDIO LEVEL SW (NORM/Hi-Fi): 0dBs NORM. AUDIO (CH1/2) LEVEL CONTROL: CENTER

- Supply a 1KHz, 0dBm sine wave signal to the NORM/Hi-Fi AUDIO (CH1 & CH2) INPUTs.
- Adjust VR41012 (CH1) and VR41013 (CH2) so that the needle of Audio Level Meter (CH1 & CH2) reaches "0 ± 0.5" as shown in Figure E47.

Figure E47

7-7-5. NORMAL AUDIO PLAYBACK FREQUENCY RESPONSE ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
TP	TP40005 (CH1)(G-1), TP40007 (CH2)(E-1)
ADJ.	VR40002 (CH1)(F-1), VR40007 (CH2)(D-1)
TAPE	VFM8080HQFP, PORTION: 5
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	$400Hz=5KHz (0dB \pm 0.5dB)$

≪ NOTE ≫

After this adjustment is finished, adjust 7-7-6. Normal Audio PB Gain Adj.

≪ SET UP ≫

DOLBY NR: OFF (MENU NO.3001) AUDIO CH2: AUDIO (MENU NO.3006)

- 1. Set the VR40003 and VR40008 to the center position.
- 2. Play back the alignment tape at portion 5.
- 3. Connect a oscilloscope to TP40005 and TP40007.
- Adjust VR40002(CH1) and VR40007(CH2) so that the 400Hz and 5KHz levels become the same (0dBm ± 0.5dBm) as shown in Figure E48.

Figure E48

7-7-6. NORMAL AUDIO PB GAIN ADJ.

≪ NOTE ≫

This Adjustment should be performed only after completion of 7-7-5. Normal Audio PB Frequency Response Adj.

BOARD	AUDIO (1) C.B.A. (E7)
TP	TP40005 (CH1)(G-1), TP40007 (CH2)(E-1)
ADJ.	VR40003 (CH1)(F-1), VR40008 (CH2)(D-1)
TAPE	VFM8080HQFP, PORTION: 5
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	CH1: 300mVp-p±15mVp-p CH2: 310mVp-p±15mVp-p

≪ SET UP ≫

DOLBY NR: OFF (MENU NO.3001) AUDIO CH2: AUDIO (MENU NO.3006)

 Connect a scope to TP40005 (CH1) and TP40007 (CH2), and adjust VR40003 (CH1) and VR40008 (CH2) so that the levels become 300mVp-p±15mVp-p (CH1) and 310 mVp-p±15mVp-p (CH2) as shown in Figure E49.

Figure E49

7-7-7. NORMAL AUDIO ERASE CURRENT ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
TP	TP40002 (CH1)(A-3), TP40004 (CH2)(E-3)
ADJ.	TL40002 (A-3), TL40003 (CH1)(A-3), TL40004 (CH2)(B-3)
TAPE	BLANK TAPE
INPUT	
MODE	REC
M. EQ	FREQUENCY COUNTER, OSCILLOSCOPE
SPEC.	70KHz ± 1KHz

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006) CH1 REC: CH1 (MENU NO.3005) AUDIO CH2: AUDIO (MENU NO.3006)

- 1. Connect a frequency counter to TP40002 and adjust TL40002 so that the frequency becomes 70KHz±1KHz.
- 2. Connect the oscilloscope to TP40002 (CH1) and TP40004 (CH2), and adjust TL40003 (CH1) and TL40004 (CH2) so that the level becomes maximum.

7-7-8. NORMAL AUDIO BIAS CURRENT ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
ТР	A/C HEAD
ADJ.	S-VHS: TL40001(CH1)(A-2), TL40005(CH2)(B-2) VHS: VR40004(CH1)(A-1), VR40009(CH2)(B-2)
TAPE	VHS, S-VHS BLANK TAPE
INPUT	NO SIGNAL
MODE	REC
M. EQ	V.T.V.M. (D.V.M.)
SPEC.	S-VHS: 6.5 mVrms \pm 0.1 mVrms VHS: 5.0 mVrms \pm 0.1 mVrms

≪ SET UP ≫

S-VHS REC : ON (MENU NO.2006) CH1 REC : CH1 (MENU NO.3005) AUDIO CH2 : AUDIO (MENU NO.3006)

- 1. Insert the S-VHS blank tape and place the deck in the REC mode.
- 2. Connect the V.T.V.M.(D.V.M.) to the A/C Head as shown in Figure E50.
- 3. Adjust TL40001 (CH1) and TL40005 (CH2) so that the level becomes $6.5 \text{mVrms} \pm 0.1 \text{mVrms}$.
- Insert the VHS blank tape and place the deck in the REC mode.
- 5. Adjust VR40004 (CH1) and VR40009 (CH2) so that the level becomes 5.0mVrms \pm 0.1mVrms.

Figure E50

7-7-9. NORMAL AUDIO FREQUENCY RESPONSE ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
TP	TP40005 (G-1), TP40007 (E-1)
ADJ.	VHS; J40004 (CH1)(B-1), J40003 (CH2)(C-1) S-VHS: C40053 (CH1)(F-1), C40118 (CH2)(C-2)
TAPE	VHS, S-VHS BLANK TAPE
∕INPUT	1K, 5K, 8K, 10K -20dBm SINE WAVE SIGNAL
MODE	PLAYBACK
M. EQ	V.T.V.M. (D.V.M.)
SPEC.	WITHIN ±2dBm

≪ SET UP ≫

S-VHS REC: OFF (MENU NO.2006)
AUDIO CH2: AUDIO (MENU NO.3006)
DOLBY NR: OFF (MENU NO.3001)
AUDIO LIMITER: OFF (MENU NO.3002)

CH1 REC : CH1 (MENU NO.3005) AUDIO CH2 : AUDIO (MENU NO.3006)

INPUT AUDIO LEVEL SW (NORM/Hi-Fi): 0dBs NORM. AUDIO (CH1/2) LEVEL CONTROL: CENTER

- Record 20dBm sine wave signal (1KHz, 5KHz, 8KHz, 10KHz) on both S-VHS and VHS tapes, with the machine in the respective mode.
- Read the level at TP40005 (CH1) and TP40007 (CH2) while playing back the 1KHz section of VHS tape. These are the reference level.
- 3. Play back the 5KHz, 8KHz and 10KHz sections.
- Confirm that these higher frequency playback level match that of the 1KHz level to within ±2dB.
- If the 8KHz playback level is more than +2dB higher than the 1KHz level, remove jumpers J40004 (CH1) and/or J40003 (CH2).
- 6. Repeat step 2 to 4, playing back the S-VHS tape.
- If the 8KHz playback level is more than +2dB higher than the 1KHz level, remove C40053 (CH1) and/or C40118 (CH2).

7-7-10. NORMAL AUDIO TIME CODE METER ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
ΤP	AUDIO LEVEL CH2 METER
ADJ.	VR41014 (A-1)
TAPE	BLANK TAPE
INPUT	TIME CODE SIGNAL (or 300Hz, 1Vp-p sine wave signal)
MODE	REC
M. EQ	
SPEC.	0 ± 0.5

≪ SET UP ≫

S-VHS REC: OFF (MENU NO.2006) AUDIO CH2: LTC (MENU NO.3006)

CH2 METER : AUDIO CH2

- Supply a Time Code Signal (or 300Hz, 1Vp-p sine wave signal) to the TIME CODE IN connector.
- 2. Adjust VR41014 so that needle of Audio level CH2 Meter reaches "0 \pm 0.5" as shown in Figure E51.

Figure E51

7-7-11. Hi-Fi AUDIO HEAD SWITCHING SHIFTER ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-3-1. PG Shifter Adj.

	· · · · · · · · · · · · · · · · · · ·
BOARD	AUDIO (2) C.B.A. (E8)
TP	TP41004 (F-1), TP41006 (F-1)
ADJ.	VR41004 (G-1)
TAPE	VFM8080HQFP, PORTION: 1
INPUT	
MODE	PLAYBACK
M. EQ	OSCILLOSCOPE
SPEC.	FIG. E52

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006)

- Adjust VR41004 so that disappear the drop-out at the (a) and (b) positions as shown in Figure E52.
- 2. Turn the Tracking VR and then confirm that disappear the drop-out at the (a) and (b) positions.
- If not, repeat the steps 1 and 2 until that disappear the drop-out.

Figure E52

7-7-12. Hi-Fi AUDIO CARRIER FREQUENCY ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
BOARD	AUDIO (2) C.B.A. (E0)
TP	TP41005 (CH1)(E-2), TP41008 (CH2)(F-3)
ADJ.	VR41002 (CH1)(C-1), VR41006 (CH2)(F-3)
TAPE	
INPUT	NO SIGNAL
MODE	EJECT (E-E)
M. EQ	FREQUENCY COUNTER
SPEC.	CH1 : 1.3MHz ± 10KHz CH2 : 1.7MHz ± 10KHz

≪ NOTE ≫

If the signal level is too low to trigger frequency counter, adjust VR41003 (L CH) and VR41007 (R CH) clockwise. And then refer to 7-7-14. Hi-Fi Audio Rec Current Adj. for the correct setting of these VRs, after this adjustment.

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006)

Hi-Fi INPUT SELECT: Hi-Fi INPUT (MENU NO.3004)

- 1. Ground the Hi-Fi Audio Inputs (CH1 & CH2).
- 2. Connect the frequency counter to TP41005 (CH1) and adjust VR41002 (CH1) so that the frequency becomes $1.3 MHz \pm 10 KHz$.
- 3. Connect the frequency counter to TP41008 (CH1) and adjust VR41006 (CH2) so that the frequency becomes $1.7 MHz \pm 10 KHz$.

7-7-13. Hi-Fi AUDIO DEVIATION ADJ.

≪ NOTE ≫

This adjustment should be performed only after completion of 7-7-2. Hi-Fi Audio Input Level Adj.

A. FACTORY & LEAGAL ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
TP	TP41005 (CH1)(F-1), TP41008 (CH1)(F-1)
ADJ.	VR41001 (CH1)(F-1), VR41005 (CH2)(E-1)
TAPE	
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	EJECT (E-E)
M. EQ	SPECTRUM ANALYZER
SPEC.	$fw = 100KHz \pm 5KHz$

≪ SET UP ≫

INPUT AUDIO LEVEL SW (Hi-Fi): 0dBs

Hi-Fi INPUT SELECT: Hi-Fi INPUT (MENU NO.3004)

Hi-Fi REC: ON (MENU NO.3003)

Hi-Fi AUDIO (CH1/2) LEVEL CONTROL: CENTER

 Supply a 1KHz, 0dBm sine wave signal to the Hi-Fi AUDIO (CH1 & CH2) INPUTs.

- 2. Connect the spectrum analyzer to TP41005 (CH1) and set the center frequency to 1.3MHz.
- Adjust VR41001 (CH1) so that the width of the "fw" portion becomes 100KHz ± 5KHz as shown in Figure F53
- Change the probe of spectrum analyzer from TP41005 (CH1) to TP41008 (CH2) and set the center frequency to 1.7MHz.
- 5. Adjust VR41005 (CH2) so that the width of the "fw" portion becomes 100KHz \pm 5KHz as shown in Figure E53.

Figure E53

B. FIELD ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
TP	Hi-Fi AUDIO OUTPUT (CH1)(CH2)
ADJ.	VR41001 (CH1)(F-1), VR41005 (CH2)(E-1)
TAPE	VFM8080HQFP, PORTION: 5
INPUT	
MODE	PLAYBACK
M. EQ	V.T.V.M. (D.V.M.) or OSCILLOSCOPE
SPEC.	-4 dBm \pm 0.5dBm

≪ SET UP ≫

OUTPUT AUDIO LEVEL SW (Hi-Fi): 0dBs

- 1. Playback the alignment tape VFM8080HQFP portion 5.
- Connect a V.T.V.M to the Hi-Fi Audio Outputs (CH1, CH2)
- 3. Adjust VR41001 so that the level becomes -4dBm ± 0.5 dBm.
- 4. Adjust VR41005 (CH2) so that the level becomes -4dBm ± 0.5 dBm.

7-7-14. NORMAL AUDIO REC CURRENT ADJ.

BOARD	AUDIO (1) C.B.A. (E7)
ТР	NORM/Hi-Fi AUDIO OUT, Hi-Fi AUDIO OUT TP40003 (CH1)(B-1), TP40006 (CH2)(C-1)
ADJ.	VR40005 (CH1)(E-1), VR40010 (CH2)(D-1)
TAPE	S-VHS BLANK
INPUT	1KHz, 0dBm SINE WAVE SIGNAL
MODE	REC & PLAY
M. EQ	V.T.V.M. (D.V.M.)
SPEC.	0dBm ± 1dBm

≪ SET UP ≫

S-VHS REC: ON (MENU NO.2006)
DOLBY NR: OFF (MENU NO.3001)
AUDIO LIMITER: OFF (MENU NO.3002)
CH1 REC: CH1 (MENU NO.3005)
AUDIO CH2: AUDIO (MENU NO.3006)

INPUT AUDIO LEVEL SW (NORM/Hi-Fi): 0dBs NORM. AUDIO (CH1/2) LEVEL CONTROL: CENTER

- Connect the V.T.V.Ms to the deck as shown in Figure E54. Note that only one channel will be adjusted at a time.
- 2. Supply a 1KHz, 0dBm sine wave signal to NORM/Hi-Fi AUDIO INPUT (CH1).
- 3. Place the deck in the REC mode with S-VHS mode.
- Adjust VR40005 (CH1) so that V.T.V.M. (2) reads approximately 0.8Vrms (2.26Vp-p). Suppose that the indicated value on V.T.V.M. (1) is 0dBm.
- 5. Play back the recorded portion, and note the amount of difference between V.T.V.M. (1) and (2).
- Place the deck in the REC mode again, and re-adjust VR40005 (CH1) slightly, and repeat step 5, nothing the new difference.
- 7. Repeat this step 3 to 6 until record and playback difference is minimized (0dBm \pm 1dBm).
- 8. Repeat the above procedure again for channel 2, using the other set of test point (TP40006) and VR (VR40010).

Figure E54

7-7-15. Hi-Fi AUDIO REC CURRENT ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
TP	TP5001 (HEAD AMP C.B.A.)
ADJ.	VR41007 (B-1), VR41003 (B-1)
TAPE	S-VHS RECORDED TAPE
INPUT	NO SIGNAL
MODE	REC
M. EQ	OSCILOSCOPE
SPEC.	CH1: 290mVp-p ± 5mVp-p CH2: 210mVp-p ± 5mVp-p

≪ SET UP ≫

S-VHS REC : ON (MENU NO.2006) Hi-Fi REC : ON (MENU NO.3003)

Hi-Fi INPUT SELECT: Hi-Fi INPUT (MENU NO.3004)

- 1. Ground the Hi-Fi AudioInput.
- 2. Turn VR41003 fully counter-clockwise.
- 3. Adjust VR41007 so that the level becomes $210 \text{mVp-p} \pm 5 \text{mVp-p}$ as shown in Figure E55.
- 4. Adjust VR41003 so that the level becomes 290mVp-p \pm 5mVp-p as shown in Figure E56.

Figure E55

Figure E56

7-8.OTHER SECTION

7-8-1. VITC MUTE PULSE ADJ.

BOARD	TIME CODE C.B.A.
TP	TP68003 (B-14) TP3004 (C-3): VIDEO I/O C.B.A.
ADJ.	VR68001 (B-14)
TAPE	S-VHS BLANK
INPUT	COLOR BAR SIGNAL (LINE)
MODE	REC
M. EQ	OSCILLOSCOPE
SPEC.	$T=1 \mu \sec \pm 0.3 \mu \sec$.

≪ SET UP ≫

VITC REC: ON (MENU NO.7003)

INPUT SW: LINE

ALL DEL SW (SW68001: TC C.B.A.): ON

- Connect a scope to TP3004 for CH-1 and TP68003 for CH-2 and expand V-Sync portion as shown in Figure E57.
- 2. Adjust VR68001 so that the "T" becomes $1 \mu \sec \pm 0.3 \mu \sec$ as shown in Figure E57.

Figure E57

7-8-2. OSD CHARACTER WIDTH ADJ.

BOARD	REAR AMP C.B.A. (E28)
TP	VIDEO MONITOR OUT
<u> </u>	
ADJ.	CT6601 (B-5)
TAPE	
INPUT	NO SIGNAL
MODE	EJECT (E-E)
M. EQ	OSCILLOSCOPE
SPEC.	$T=52 \mu \sec \pm 0.5 \mu \sec$.

≪ SET UP ≫

DIAL MODE: MENU

- 1. Connect the oscilloscope to VIDEO MONITOR OUT.
- 2. Turn the JOG dial so that the SETUP-MENU NO. becomes 1001 (flash).
- 3. Adjust CT6601 so that the "T" becomes $52 \mu \sec \pm 0.5 \mu \sec$ as shown in Figure E58.

Figure E58

7-8-3. FLYING ERASE CURRENT ADJ.

BOARD	AUDIO (2) C.B.A. (E8)
TP	TP41009 (HOT)(A-1), TP41010 (GNE)(A-1)
ADJ.	VR41015 (B-1), VR41016 (B-1)
TAPE	S-VHS RECORDED TAPE
INPUT	COLOR BAR SIGNAL (LINE)
MODE	VIDEO INSERT EDIT
M. EQ	OSCILOSCOPE
SPEC.	150mVp-p ± 10mVp-p

≪ SET UP ≫

IMAGE MODE SELECT: NORMAL (MENU NO.2001)

VIDEO MODE: COLOR (MENU NO.2002)

S-VHS REC: ON (MENU NO.2006)

INPUT SW: LINE

VIDEO LEVEL control: PUSH (AGC: ON)

- 1. Place the deck in the video insert edit node.
- 2. Connect the GND of oscilloscope to TP41010.
- 3. Connect a scope to TP41009 (HOT), TP41010 (GND) and adjust VR41015 and VR41016 so that the "A" and "B" levels become 150mVp-p \pm 10mVp-p as shown in Figure E59.

Figure E59

BLOCK DIAGRAMS

CONTENTS

OVERALL BLOCK DIAGRAMBLK-3
FRONT BLOCK DIAGRAM ······BLK-4
SYSTEM CONTROL BLOCK DIAGRAMBLK-5
SERVO BLOCK DIAGAMBLK-6
VIDEO OVERALL BLOCK DIAGRAMBLK-6
VIDEO C BLOCK DIAGRAMBLK-7
VIDEO DIGITAL BLOCK DIAGRAM······BLK-8
VIDEO I/O BLOCK DIAGRAM·····BLK-9
NORMAL AUDIO BLOCK DIAGRAMBLK-10
Hi-Fi AUDIO BLOCK DIAGAM ······BLK-11
TBC (1) BLOCK DIAGRAMBLK-12
TBC (2) BLOCK DIAGRAMBLK-13
INTERFACE BLOCK DIAGRAM ····································

OVERALL BLOCK DIAGRAM

FRONT BLOCK DIAGRAM

SYSTEM CONTROL BLOCK DIAGRAM

SERVO BLOCK DIAGRAM

VIDEO OVERALL BLOCK DIAGRAM

VIDEO I/O BLOCK DIAGRAM

LUMINANCE MAIN

NORNAL AUDIO BLOCK DIAGRAM

Hi-Fi AUDIO BLOCK DIAGRAM

TBC (1) BLOCK DIAGRAM

TBC (2) BLOCK DIAGRAM

INTERFACE BLOCK DIAGRAM

SECTION 9

SUPPLEMENT

CONTENTS

VOL.	TAGE TABLE	
	POWER 1,2 9-2 REEL DRIVE C.B.A. 9-2 MIC JACK C.B.A. 9-2	<u>, </u>
	REEL DRIVE C.B.A9-2	<u> </u>
	MIC JACK C.B.A9-2	<u>)</u>
	HEAD AMP C.B.A. 9-2 VIDEO C C.B.A. 9-3	<u> </u>
	VIDEO C C.B.A9-3	}
	VIDEO DIGITAL C.B.A9-6	}
	SERVO & SYSTEM CONTROL C.B.A.·····9-1	1
	SERVO & SYSTEM CONTROL C.B.A. 9-1 VIDEO I/O C.B.A. 9-1 TBC (1) C.B.A. 9-2	8
	TBC (1) C.B.A9-2	2
	TBC (2) C.B.A9-2	9
	TBC (2) C.B.A. 9-2 AUDIO (1) C.B.A. 9-3 AUDIO (2) C.B.A. 9-3	2
	AUDIO (2) C.B.A9-3	11
	INTERFACE C.B.A. 9-3 FRONT C.B.A. 9-4	17
	FRONT C.B.A9-4	0
	REAR AMP C B A	1

POWER 1, 2

Ref. No.			IC10	01 (SC	M-5)			IC10	02 (SC	M-5)	(Q1001 ((SCM-5)	Q10	02 (SC	M-5)		
Mode	1	1 2 3 4 5 6						К	R	Α	1	2	3	4	E	С	В		
STOP	-86.7	-0.1	-0.2	-0.2	14.9	0.2	0.1	4.3	2.3	-0.2	5.4	4.4	0.2	14.9	11.6	13.4	12.2		
REC	-100.8	-0.1	-0.2	-0.2	15.2	0.2	0.1	4.3	2.3	-0.2	5.4	4.4	0.2	15.1	11.3	13.2	12.2		

REEL DRIVE C.B.A.

								IC	2701 (SCM-78)								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1.4	0.1	1.3	1.4	2.5	2.4	2.5	2.4	2.4	2.5	0	0	4.7	3.4	2.4	2.1	4.1	0.6	1.7	0.1
2.3	0.1	2.5	1.4	2.5	2.5	2.5	2.5	2.5	2.5	0	0	4.7	3.4	2.4	2.2	4.1	0.6	0.7	0.1
10	C2701	(SCM-78	3)		·					1.						1			
21	22	23	24																
0	0.7	0.5	5.1																
0	0.7	1.4	5.2																
					•			IC	2702 (SCM-78)			·					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0.5	0.1	2.3	1.4	2.4	2.5	2.5	2.5	2.5	2.4	0	0 .	4.7	3.4	2.6	2.3	4.1	0.6	0.5	0.1
1.5	0.1	1.5	1.4	2.5	2.5	2.5	2.5	2.5	2.5	0	0	4.7	3.4	2.5	2.3	4.1	0.6	0.5	0.1
10	22702	SCM-78	3)			10	2703 (SCM-78	3)										
21	22	23	24	1	2	3	4	5	6	7	8								
0	0.7	2.3	5.2	0	0.2	0.1	0	0.1	0.1	3.0	4.7								
0	0.7	1.7	5.2	3.5	0.1	0.1	0	0.1	0.1	2.9	4.7								
						IC	2704 (SCM-78	3)										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
2.6	2.4	0	0	0	0	0	0	0	4.7	0.1	2.4	2.4	2.4	2.6	4.7				
2.5	2.4	0	0	0	0	0	0	0	4.7	0.1	2.4	3.1	2.4	2.6	4.7				
					IC	2705 (SCM-78	3)											
1	2	3	4	5	6	7	8	9	10	11	12	13	14						
0.1	0.1	4.7	2.2	2.1	2.2	2.1	2.9	2.4	1.8	2.4	0	4.7	0.1						
2.4	2.8	4.7	2.1	2.1	2.1	2.1	2.9	2.4	1.8	2.4	0	4.7	0.1						
		I	C2706 (SCM-78	1)			O270	1 (SCN	<i>I</i> I-78)	QR27	01 (SC	VI-78)						
1	2	3	4	5	6	7	8	Е	С	В	Е	С	В						
4.6	4.6	4.6	0	2.4	2.4	2.4	11.7	2.8	3.8	3.4	0	4.7	0.1						
4.6	4.6	4.6	0	2.4	2.4	2.4	11.7	2.8	3.8	3.4	0	4.7	0.1						
	1 1.4 2.3 21 0 0 1 0.5 1.5 10 21 0 0 1 2.6 2.5	1 2 1.4 0.1 2.3 0.1 IC2701 21 22 0 0.7 0 0.7 1 2 0.5 0.1 1.5 0.1 IC2702 21 22 0 0.7 0 0.7 1 2 2.6 2.4 2.5 2.4 1 2 0.1 0.1 2.4 2.8	1.4 0.1 1.3 2.3 0.1 2.5 IC2701 (SCM-78 21 22 23 0 0.7 0.5 0 0.7 1.4 1 2 3 0.5 0.1 2.3 1.5 0.1 1.5 IC2702 (SCM-78 21 22 23 0 0.7 2.3 0 0.7 1.7 1 2 3 2.6 2.4 0 2.5 2.4 0 2.5 2.4 0 2.5 2.4 0 1 2 3 0.1 0.1 4.7 2.4 2.8 4.7 IC2 3 4.6 4.6 4.6	1 2 3 4 0.5 0.1 2.3 1.4 1.5 0.1 1.5 1.4 1.5 0.1 2.3 1.4 1.5 0.1 2.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.5 1.4 1.5 0.1 1.4 1.4 1.5 0.1 1.4 1.4 1.5 0.1 1.	1	1 2 3 4 5 6 1.4 0.1 1.3 1.4 2.5 2.4 2.3 0.1 2.5 1.4 2.5 2.5 ICZ701 (SCM-78) 21 22 23 24 0 0 0.7 0.5 5.1 0 0 0.7 1.4 5.2 0	1 2 3 4 5 6 7 1.4 0.1 1.3 1.4 2.5 2.4 2.5 2.3 0.1 2.5 1.4 2.5 2.5 2.5 IC2701 (SCM-78) 21 22 23 24 0 0 0.7 0.5 5.1 0 0.7 1.4 5.2 0 0 0 0.7 1.4 5.2 0	1 2 3 4 5 6 7 8 1.4 0.1 1.3 1.4 2.5 2.4 2.5 2.4 2.3 0.1 2.5 1.4 2.5 2.5 2.5 2.5 IC2701 (SCM-78) 21 22 23 24 0 0 0.7 0.5 5.1 0 0.7 1.4 5.2 0 0 1 2 3 4 5 6 7 8 0.5 0.1 2.3 1.4 2.4 2.5 2.5 2.5 2.5 1.5 0.1 1.5 1.4 2.5 2.5 2.5 2.5 2.5 1.5 0.1 1.5 1.4 2.5 2.5 2.5 2.5 2.5 1.5 0.1 1.5 1.4 2.5 2.5 2.5 2.5 2.5 1.5 0.1 1.5 1.4 2.5 2.5 2.5 2.5 2.5 1.5 0.1 1.5 1.4 2.5 2.5 2.5 2.5 2.5 1 2 3 2.4 1 2 3 4 5	1	C2701 (1 2 3 4 5 6 7 8 9 10	C2701 (SCM-78 C2701 (SCM-7	C2701 (SCM-78) 1	C2701 (SCM-78) 1	C2701 (SCM-78) SCM-78 SC	1	1	1	1	1

MIC JACK C.B.A.

Ref. No.			10	C43Q1 (SCM-54)			Q430	1 (SCN	<i>I</i> I-54)					
Mode	1	2	3	4	5	6	7	8	E	С	В					
STOP	5.5	5.5	5.5	0	5.6	5.7	5.7	10.9	10.9	11.6	11.6					
REC	5.5	5.5	5.5	0	5.6	5.7	5.7	10.9	10.9	11.6	11.6					

HEAD AMP C.B.A.

11670 7		O.D.																		
Ref. No.									10	25001 (SCM-77)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.3	0.8	0.6	0	0.6	0.8	4.9	0.8	0.6	0	0.6	0.8	0	0	0	0	0	0	0.6	1.7
REC	2.3	0	0	0	0	0	0.3	0	0	0	0	0	0	5.9	5.8	5.9	11.2	0	2.7	0
Ref. No.				10	C5001 (SCM-7	7)	•								.!			·	
Mode	21	22	23	24	25	26	27	28	29	30			ĺ							
STOP	0	0	0	4.6	4.9	1.8	3.1	0	1.9	1.9										
REC	4.6	0	4.6	0	0.3	0.3	0.1	0	11.1	3.9								_		
Ref. No.								·	IC	5002 (SCM-77)							<u> </u>	···
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0.3	0	2.8	1.2	3.7	4.9	2.9	2.3	4.9	0	0	2.5	0	0	0	0.8	0.7	0	0.7	0.8
REC	4.0	1.3	2.7	1.3	0.1	4.9	3.7	2.3	4.9	0	0	2.5	0	0	0	0	0	0	0	0
Ref. No.	I	C5002 (SCM-77	7)	Q500)1 (SCI	A-77)	Q500	2 (SCN	1-77)			25003 (SCM-77)		Q500	4 (SCI	VI-77)	
Mode	21	22	23	24	E	С	В	Ε	С	В	1	2	3	4	5	6	Е	С	В	
STOP	0	0	0	0	2.4	0	1.8	0	0	0	0	0	0	0	0	0	0	0	0	
REC	0	7.3	0	0.6	0.3	0	0	0	0	0.8	0	0.7	0	0	0.7	0	0	0	0.8	
Ref. No.	Q500	5 (SCI	1-77)	QR50	01 (SC	M-77)					L					·		l		
Mode	E	С	В	Е	С	В														
STOP	0	0	0.8	0	0	5.0				-										
REC	0	0	0	0	2.5	0.3							1							

VIDEO C C.B.A.

VIDEO	<u>C C.</u>	B.A.																		
Ref. No.		.,							Į(09101 (SCM-17	') '								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	1.8	3.4	1.4	3.1	0	0	0	5.0	2.4	5.0	2.2	2.4	2.8	2.3	2.0	2.3	2.0	2.1	5.0	2.4
REC	1.8	3.4	1.4	2.9	0 -	0	0	5.0	2.4	5.0	2.2	2.4	2.8	2.3	2.0	2.3	2.0	2.1	5.0	2.4
Ref. No.			1	C9101	(SCM-1	7)	,		<u></u>											
Mode	21	22	23	24	25	26	27	28												
STOP	5.0	0	0	0	2.3	1.3	3.2	1.6												
REC	5.0	Q	0	0	2.3	1.3	3.2	1.6			l									
Ref. No.									10	29102 (SCM-17)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	1.6	3.2	1.3	2.3	0	0	0	5.0	2.4	5.0	2.1	2.0	2.3	2.0	2.1	2.3	2.0	2.2	5.0	2.4
REC	1.6	3.2	1.3	2.3	0	0	0	5.0	2.4	5.0	2.1	2.0	2.3	2.0	2.1	2.3	2.0	2.2	5.0	2.4
Ref. No.				C9102	SCM-17	7)		,							,					
Mode	21	22	23	24	25	26	27	28												
STOP	5.0	0	0	0	2.3	1.2	3.2	1.6												
REC	5.0	0	0	0	2.3	1.3	3.2	1.6										l		
Ref. No.								,	IC	9103 (SCM-17)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	5.0	1.7	1.4	2.8	1.5	2.4	1.8	2.0	1.6	1.4	1.8	3.5	1.4	3.3	2.4	3.2	2.6	2.4	1.6	3.3
REC	5.0	1.6	1.5	3.1	1.6	2.1	1.7	1.7	1.9	1.7	1.9	3.5	1.3	3.2	2.3	3.0	3.2	2.4	1.6	3.2
Ref. No.		,		,					IC	9103 (SCM-17)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	1.2	3.0	2.3	2.9	2.4	2.1	0.1	5.0	2.4	5.0	0.1	2.4	2.4	0.3	5.0	0.1	5.0	0.1	0.4	4.9
REC	1.2	2.4	2.2	2.5	2.6	2.1	0.1	5.0	2.7	5.2	0	2.5	2.5	0.3	5.1	0.1	5.1	0.1	0	5.0
Ref. No.											SCM-17)	-					,	<u> </u>	
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	4.7	0.5	0.1	0.1	5.0	0.3	0.3	0.3	0.3	0	5.0	0.1	1.9	3.4	2.7	2.6	2.6	2.4	2.4	2.4
REC Ref. No.	4.8	0.4	0.1	0.1	5.1	0.3	0.3	0.3	0.3	0	5.1	0.1	1.9	3.4	2.5	2.4	2.4	2.5	2.4	2.4
	24				A.F.			1			SCM-17				·		T			
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	2.4	2.4	3.7	3.2	3.1	3.2	3.1	2.6	3.1	1.2	3.6	2.0	0.1	0.1	0.1	0.1	2.8	5.1	5.1	5.1
REC Ref. No.	2.4	2.4	2.4	2.6	2.4	3.2	2.9	2.6	3.2	1.2	3.5	1.9	0.1	0.1	0.1	0.1	2.8	5.1	5.1	5.1
	0.1	00	00	0.4	0.5	0.0	07	- 00			SCM-17	·	00		0.5	1 00				
Mode	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
STOP	0.1	2.4	0.1	0	0	0	0	0.3	0.3	0.3	0.3	0	0	0	0	0	0	0	0	0
Ref. No.	U	2.4	0.1	0	0	0	0	0.3	0.3	0.3	0.3	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9		SCM-17		10		4.5	10	T 47	40	40	
Mode	1.9	3.4	1.3	3.0	2.4	2.5	3.1	2.4	2.5	2.4	11	12 2.4	13	14	15	16	17	18	19 0	20
REC	1.9	3.4	1.3	3.0	2.4	2.5	3.1	2.4	2.5	2.4	2.4		2.4	2.4	2.4	2.4	2.4	2.4	0	5.0
Ref. No.	1.0	3.4	1.0	3.0	2.4	2.0			SCM-17		2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	U	5.0
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36				
STOP	3.3	4.8	3.8	3.8	3.5	0	4.3	0	4.2	0	4.8	5.0	0	0	0	0				
REC	3.3	4.8	3.8	3.8	3.5	0	4.3	0	4.2	0	4.8	5.0	0	0	0	0				
Ref. No.											SCM-17		Ţ					L		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	2.6	2.4	5.0	0	2.3	0	2.8	2.4	2.2	3.0	1.4	3.4	0	1.9	2.1	2.3	2.0	2.0	2.2
REC	0	2.6	2.4	5.0	0	2.3	0	2.8	2.4	2.2	3.0	1.4	3.4	0	1.9	2.1	2.3	2.0	2.0	2.2
Ref. No.											SCM-17			-					2.0	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	1.3	3.2	1.6	0	3.8	2.6	0	5.0	0	5.0	0	0	0	5.0	5.0	5.0	5.0	2.5	2.3	1.4
REC	1.3	3.2	1.6	0	3.8	2.6	0	5.0	0	5.0	0	0	0	5.0	5.0	5.0	5.0	2.5	2.3	1.4
Ref. No.					IC	9105 (SCM-17	7)												
Mode	41	42	43	44	45	46	47	48	49	50	51	52								
STOP	5.0	5.0	0.3	0.1	4.9	4.8	0.5	0	0	0.2	4.0	5.0					-			
REC	5.0	5.0	0.3	0.1	4.9	4.8	0.4	0	0	0.2	4.0	5.0								
Ref. No.									IC	9201 (SCM-18)			·	I		1	L	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	3.2	0	5.0	2.7	0	0.1	2.3	5.0	0	2.3	5.0	0	1.5	1.8	1.6	1.6	2.0	5.0	0	1.0
REC	3.2	0	5.0	2.7	0	0.1	2.3	5.0	0	2.3	5.0	0	1.5	1.8	1.6	1.6	2.0	5.0	0	1.0
																·				

Ref. No.	10	C9201 (SCM-18	B)																
Mode	21	22	23	24						T	,			Γ			Τ	Т	Π-	T
STOP	2.8	1.5	0.2	2.4	<u> </u>								İ		 			·		<u> </u>
REC	2.8	1.5	0.2	2.4	<u> </u>			ļ —					-			 	-	 	<u> </u>	-
Ref. No.				1	-	L		L	10	09202 (SCM-18	.)		1	I	1		1	J	<u> </u>
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.9	4.7	2.4	3.0	1.0	4.2	2.1	2.3	2.6	0	2.8	2.8	3.2	4.8	4.7	3.1	0	3.5	0	4.0
REC	2.9	4.7	2.4	3.0	1.0	4.2	2.1	2.3	2.6	0	2.8	2.8	3.2	4.8	4.7	3.1	0	3.5	0	4.0
Ref. No.					l		<u> </u>	C9202 (SCM-18	3)			1				† <u>-</u>		1	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		1		Ϊ
STOP	4.0	0.2	3.8	0.2	4.7	3.1	2.6	3.6	3.6	0	0	0	4.0	2.8	3.8	2.8				<u> </u>
REC	4.0	0.2	3.8	0.2	4.7	3.1	2.6	3.6	3.6	0	0	0	4.0	2.8	3.8	2.8	 			
Ref. No.		IC920	04 (SCI	W-18)		IC92	22 (SC	VI-18)			IC	29401	SCM-19)	<u> </u>				·	
Mode	1	2	3	4	5	1	G	0	1	2	3	4	5	6	7	8				
STOP	0.2	3.8	0	0.1	4.7	11.5	0	5.0	2.8	0.1	2.8	0	0	4.7	2.1	0				
REC	0.2	3.8	0	0.1	4.7	11.5	0	5.0	2.8	0.1	2.8	0	0	4.7	2.1	0				
Ref. No.			10	C9402 (SCM-19)							•	*				<u>' </u>		
Mode	1	2	3	4	5	6	7	8												
STOP	4.7	2.8	2.5	4.0	0	2.8	0	4.0								T				
REC	4.7	2.8	2.5	4.0	0	2.8	0	4.0											Ĺ	
Ref. No.								,	IC	9403 (SCM-19)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	2.7	2.5	2.9	2.3	2.7	3.0	1.6	1.8	2.4	2.4	1.8	2.2	2.2	2.8	0	0	1.9	2.8	2.0
REC Ref. No.	0	2.7	2.5	2.9	2.3	2.7	3.0	1.6	1.8	2.4	2.4	1.8	2.1	2.1	2.8	0	0	1.9	2.8	2.0
	04		-00								SCM-19				T				Г	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP REC	2.3	0	5.0	2.8	2.5	2.5	0	0	0	0	0	0	0	0	0	0	2.9	0	2.9	2.7
Ref. No.	2.3		5.0	2.8	2.5	2.5	0	0	0	0	0	0	0	0	0	0	2.9	0	2.9	2.7
	41	42	43	44	45	46	47	48	SCM-19	50	F4	F0		F.4		- FO	ļ	T	1	
Mode STOP	2.7	0	2.4	0	0	3.5	2.1	2.1	49 2.4	3.5	51 0	52 3.1	53 3.1	54 3.1	55 3.1	56	-			
REC	2.7	2.7	2.4	0	0	3.5	2.1	2.1	2.4	3.5	0	3.1	3.1	3.1	3.1	0	<u> </u>			
Ref. No.	,							L	SCM-19		U		3.1	3.1	3.1		ICOAL	05 (SCI	W_10\	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1004	G (30)	0	
STOP	2.3	0.1	1.6	0	1.6	1.6	4.9	2.3	2.3	0	2.3	5.0	4.7	2.3	0	2.3	11.4	0	5.0	
REC	2.3	0.1	1.6	0	1.6	1.6	4.9	2.3	2.3	0	2.3	4.9	4.7	2.3	0	2.3	11.4	0	5.0	
Ref. No.									IC	9410 (SCM-19)	1				1			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	5.0	3.2	3.2	2.9	2.9	4.0	3.5	5.0	4.0	1.7	4.3	0.1	2.1	2.5	2.4	4.9	0	3.0	2.6	3.0
REC	5.0	3.2	3.2	2.9	2.9	4.0	3.5	5.0	4.0	1.7	4.3	0.1	2.1	2.5	2.4	4.9	0	3.0	2.6	3.0
Ref. No.					IC	9421 (SCM-19)												
Mode	21	22	1	2	3	4	5	6	7	8										
STOP	3.5	3.0	3.9	1.8	2.3	0	0	0	0.3	5.0										
REC No.	3.5	3.0	3.9	1.8	2.3	0	0	0	0.3	5.0				l	<u> </u>					
Ref. No.		1 (SCN			2 (SCN			3 (SCN			1 (SCIV			2 (SCN	<i>I</i> -18)		3 (SCN	<i>(</i> 1-18)		
Mode	E	C	В	E 2.7	C	B	E	C	В	E	C	B	E	C	В	E	С	В		
STOP REC	3.6	11.4	4.2	3.7	11.4	4.3	2.2	4.7	3.0	0.9	4.8	1.6	-0.2	4.8	0.5	1.8	4.8	2.4		
Ref. No.		11.4 4 (SCN	4.2	3.7	11.4 5 (SCN	4.3	2.2	4.7	3.0	0.9	4.8	1.6	-0.2	4.8	0.5	1.8	4.8	2.4		
	E E	C	В	E	C	B	E	6 (SCN	1-16) B	E	1 (SCN	1-1 9) B	E	2 (SCN		E C940	3 (SCN			
Mode STOP	0	0	0.6	0	0	0	1.8	0	1.2	-1.8	1.6	-1.0	-0.5	-4.9	-1.2	2.6	4.7	3.2		
REC	0	0	0.6	0	0	0	1.8	0	1.2	-1.8	1.6	-1.0	-0.5	-4.9	-1.2	2.6	4.7	3.2		
Ref. No.		4 (SCN			7 (SCN			8 (SCN			0 (SCM			1 (SCN			13 (SCI	<u> </u>		
Mode	E	c	В	Е	С	В	E	С	В	E	c (55.1	В	E	C	В	E	c (55)	В		
STOP	0.9	-4.9	0.2	2.1	4.7	2.8	2.2	4.7	2.8	2.6	4.8	3.2	-1.0	4.7	-0.3	-0.8	4.7	-0.1		
REC	0.9	-4.9	0.2	2.1	4.7	2.8	2.2	4.7	2.8	2.6	4.8	3.2	-1.0	4.7	-0.3	-0.8	4.7	-0.1		
Ref. No.	IC941	5 (SCN	1-19)	Q941	6 (SCN	l-19)	Q941	8 (SCN	1-19)	O941	9 (SCM	l-19)	Q942	0 (SCN	<i>I</i> -19)		1 (SCN			
Mode	E	С	В	E	С	В	E	С	В	Е	С	В	Е	С	В	Е	С	В		
STOP	-0.4	-4.9	-1.0	0.7	3.2	1.4	-1.2	-4.9	-1.8	-1.0	0.9	-0.3	-1.8	-1.8	-2.5	-1.8	-1.8	-4.8		
REC	-0.4	-4.9	-1.0	0.7	3.2	1.4	-1.2	-4.9	-1.8	-1.0	0.9	-0.3	-1.8	-1.8	-2.5	-1.8	-1.8	4.8		
							-													

Ref. No.	QR94	02 (SC	M-19)	QR94	03 (SC	M-19)	QR94	04 (SC	M-19)	QR94	05 (SC	M-19)	QR94	06 (SC	M-19)	QR94	07 (SC	M-19)		
Mode	E	С	В	E	С	В	Е	С	В	E	С	B	Е	С	В	Е	С	В		
STOP	4.7	0	5.4	0	2.9	0.1	0	2.8	0.1	0	0	0.1	4.8	4.8	0.1	4.8	-2.5	4.8		
REC	4.7	0	5.4	0	2.9	0.1	0	2.8	0.1	0	0	0.1	4.8	4.8	0.1	4.8	-2.5	4.8		
Ref. No.	QR94	08 (SC	M-19)		-	,		·									4		<u>L</u>	
Mode	Е	С	В												· · · · ·					
STOP	0	4.8	0.1																	<u> </u>
REC	0	4.8	0.1																	

VIDEO DIGITAL C.B.A.

V IDEO			<u> </u>	, ···													,			
Ref. No.		γ						C3602	SCM-2	1)	,				,					
Mode	1	2	3	4	.5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	4.9	5.1	5.0	0.1	0.1	5.0	0.1	0	5.0	5.0	5.0	0.1	0.1	5.0	5.0				
REC	0	4.9	5.0	5.0	-0.1	0	5.0	0.1	0.1	5.0	5.0	5.0	0.1	0.1	5.0	5.0			<u> </u>	1 1
Ref. No.	 			L		L		(SCM-2	<u> </u>			1	L					1	<u> </u>	4
	1	2	3	1	T 5	6	7	8	<u> </u>	10	1.1	12	10	14			Г	1	т-	
Mode				4	5				9	10	11	12	13	14			ļ			
STOP	5.1	5.1	0.1	5.1	0.1	5.1	0.1	5.0	0.1	5.0	0.5	5.0	5.0	5.0				L		
REC	5.0	5.1	0.1	5.0	0.1	5.0	0.1	0.1	5.0	5.0	0.2	0.1	5.0	5.0			1			
Ref. No.				IC37	01 (SCF	VI-27)														
Mode	1	2	3	4	5	6	7	8	9											
STOP	0	0	0	0	0	0	0.1	0	0					1						+
REC	0	0	0	0	0	0	0.1	0	0									 		
Ref. No.	ٺ						·	<u> </u>		l			L	L	-	L	<u></u>	.l	L	<u></u>
			-					(SCM-27												
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						<u> </u>
STOP	5.0	5.0	0	2.5	2.5	0	0	0.1	5.0	5.0	0	4.9	5.0	5.0						
REC	5.0	5.0	0	2.5	2.5	0	0	0.1	5.0	5.0	0	5.0	5.0	5.1				1		
Ref. No.						I	C3703 ((SCM-27	7)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14				T		T
STOP	5.0	0	0	5.0	0	5.0	0	0	5.0	5.0	0	5.0	5.0	5.0						
REC	5.0	0.1	0.1	5.1	0	5.1	0	0									-	ļ		
Ref. No.	0.0	0.1	0.1	0.1			<u> </u>		5.1	5.1	0.1	5.1	5.1	5.1			<u> </u>	L		<u> </u>
nei. No.								1-27)(SC									T			,
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	5.0	5.0	0	5.0	0	5.0	0	5.0	0	5.0	5.0	0	0	5.0						
REC	5.0	5.0	0	5.0	0.1	5.0	0	5.0	0	5.0	5.0	0	0	5.0						
Ref. No.							10	C3771 (SCM-29)						·				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		T	1	$\overline{}$
STOP	1.1	0	0	-0.8	-0.8	0	-4.9		-											
-								0	0.1	0.1	0.1	-0.8	0	-0.8	0	4.8				
REC	1.1	0	0	-0.8	-0.8	0	-4.9	0	0.1	0.1	0.1	-0.8	0	-0.8	0	4.8				
Ref. Na.								IC	23781 (SCM-29	<u>) </u>									
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
STOP	4.8	0	1.9	3.6	0	3.7	1.9	3.1	3.6	4.1	4.6	1.7	3.1	0	0.3	2.2	2.4	2.8		
REC	4.7	0	1.9	3.6	0	3.6	1.9	3.1	3.6	4.1	4.6	1.7	3.1	0	0.3	2.3	2.5	2.8		
Ref. No.			.,,,			L	L	SCM-29		•••	1.0	1.,	0.1	_	0.0	2.0	2.0	2.0	l	
l	1	2	3	4	5	6	7			10	4.4	40	40	4.4						
Mode								8	9	10	11	12	13	14						
STOP	5.0	2.5	2.4	5.0	2.5	2.5	0	2.5	2.5	5.0	2.5	2.5	5.0	5.0					ļ	
REC	5.0	2.5	2.4	5.0	2.5	2.5	0	2.5	2.5	5.0	2.5	2.5	5.0	5.0						
Ref. No.							. 10	C3783 (SCM-29)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0	5.0	2.5	0.3	5.0	0.3	0.1	0.4	0.3	0.3	2.5	0.1	0.2	0.2	5.0				
REC	0	0	5.0	2.5	0.3	5.0	0.3	0.1	0.4	0.3	0.3	2.5	0.1	0.2	0.3	5.0		-		
Ref. No.							****	1			SCM-23		0.1	U.L	0.0	0.0		l		
	1	2	3	4	5	6	7	8					10	44	4.5	40	47	40	40	
Mode						6			9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.3	2.7	2.1	0.9	2.8	3.4	2.9	4.6	2.3	2.3	2.7	2.2	0.9	2.8	3.4	2.9	0.1	4.9	4.9	2.3
REC	2.3	2.7	2.3	1.2	2.9	3.3	3.0	4.6	2.4	2.3	2.8	2.4	1.2	2.9	3.3	3.0	0.1	4.6	0.2	2.4
Ref. No.				-					IC	3801 (SCM-23)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.3	0.1	2.7	2.2	0.9	2.8	3.4	2.1	0.1	2.0	2.8	1.1	1.1	3.8	3.8	3.9	4.1	4.9	0.1	2.3
REC	2.3	0.1	2.8	2.4	1.2	2.9	3.3	2.1	0.1	1.8	3.5	1.1	1.1	3.9	3.8	4.0	4.2	5.0	0.1	2.4
Ref. No.	2.0	5.1	2.0		1.2	2.0	0.0	2.1					1.1	5.5	3.0	4.0	4.2	1 5.0	0.1	2.4
	14	40	40				4				SCM-23									
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	2.3	2.7	2.2	0.9	2.9	3.4	2.9	2.3	2.3	0.1	2.7	2.3	0.9	2,8	3.4	0.1	2.9	4.6	4.7	3.0
REC	2.2	2.9	2.4	1.2	2.9	3.3	3.0	2.4	2.2	0.1	2.8	2.4	1.2	2.9	3.3	0.1	3.0	4.6	4.7	3.0
Ref. No.					-				IC	3801 (SCM-23)						•		
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	3.4	2.8	0.9	2.2	2.7	2.3	2.3	1.6	2.5	2.1	0.7	1.4	2.0	1.5			2.7			
REC	3.3														1.5	0.6		2.6	2.6	0.9
	3.3	2.9	1.2	2.4	2.8	2.3	2.4	1.6	2.4	2.2	8.0	1.5	2.1	1.7	1.6	0.6	2.8	2.7	2.7	0.9
Ref. No.		,							IC	3801 (SCM-23)								
Mode	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
STOP	0.9	1.9	1.4	0.8	0.9	0.8	0.9	5.0	0.1	0.9	0.9	1.0	1.2	1.7	0.1	0.1	2.3	2.3	2.4	2.3
REC	0.9	2.3	1.3	0.8	0.8	0.8	0.8	5.0	0.1	0.8	0.8	0.9	1.1	1.7	0.1	0.1	2.3	2.4	2.4	2.4
·																				

Ref. No.	Т										·									
	1	2	3	4	5	6	7				(SCM-23		1 40	44	45	1 40	1 45	1 40		T
Mode	1.8	0.7	1.9	0.1	1.8	1.2	+	8	9	10	11	12	13	14	15	16	17	18	19	20
REC	1.9	0.7	1.9	0.1	1.7	1.0	0.9	0.9	0.8	0.8	0.8	0.8	0.8	4.2	4.6	0.1	0.1	0.1	2.4	2.4
Ref. No.	1.5	0.0	1.0	0.1	1 '''	Ь	0.9	0.9	1		SCM-23		4.9	4.9	4.9	0.1	0.1	0.1	2.3	2.4
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.3	2.3	2.4	0.1	0.1	2.8	2.3	2.3	4.9	2.3	2.7	4.1	3.9	3.7	3.8	1.1	1.1	4.9	0.1	1.5
REC	2.3	2.3	2.3	0.1	0.1	2.8	2.3	2.3	4.9	2.3	2.7	4.1	3.9	3.8	3.8	1.1	1.1	4.9	0.1	3.4
Ref. No.						1		1	IC	3802 (SCM-23)							1	
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	3.1	4.6	3.0	3.4	3.0	0.7	1.9	2.3	2.2	2.3	0.1	0.1	0.1	0.1	0.1	4.5	0.1	0.1	4.9	4.5
REC	1.8	4.5	2.9	3.2	2.8	1.2	2.4	2.7	2.2	2.3	0.1	0.1	0.1	0.1	0.1	4.5	0.1	0.1	4.9	4.5
Ref. No.				,					ic	3802 (SCM-23)							••••	
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	4.5	4.5	0.1	4.5	4.5	4.5	4.5	0.4	0.4	0.1	0.1	0.1	0.1	1.0	0.1	2.5	1.6	1.3	1.7	1.5
REC No.	4.5	4.5	0.1	4.5	4.5	4.5	4.5	0.4	0.5	0.1	0.1	0.1	0.1	1.0	0.1	2.5	1.5	1.7	2.1	1.5
Ref. No.	-	T 00	100		7.5	1 00	^=				SCM-23				I	T =:			1	
Mode STOP	0.6	2.1	2.5	1.6	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
REC	0.8	2.1	2.5	1.6	1.8	1.6	4.9	0.1	1.3	1.3	1.3	1.3	1.3	1.3	0.1	0.3	0.1	0.1	0.2	4.8
Ref. No.	1 0.0	1 1	2.4	1.0	1/	1.4	4.3	0.1			SCM-24	1.2	1.1	1.2	0.1	0.4	0.1	0.1	0.2	4.7
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.1	1.9	1.7	3.7	4.9	0.1	5.0	0.1	0.1	2.3	2.3	0.1	0.1	0.1	4.9	4.9	1.0	2.3	2.3	2.7
REC	2.1	2.1	1.8	3.7	4.9	0.1	4.9	0.1	0.1	2.3	2.3	0.1	0.1	0.1	4.5	0.2	1.0	2.3	2.3	2.7
Ref. No.				1					IC		SCM-24									
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0.1	2.3	0.1	0.9	2.8	0.1	3.4	0.1	2.9	0.1	0.1	2.3	2.3	2.8	2.2	0.9	2.8	3.4	0.1	3.0
REC	0.1	2.3	0.1	1.1	2.9	0.1	3.2	0.1	2.9	0.1	0.1	2.3	2.2	2.8	2.2	1.1	2.9	3.3	0.1	2.9
Ref. No.									IC	3803 (SCM-24)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	4.9	0.1	0.1	0.3	5.0	0.1	0.1	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	0.1	2.0	2.5	2.3
REC Ref. No.	4.9	0.1	0.1	0.4	5.0	0.1	0.1	2.3	2.2	2.2	2.2	2.2	2.3	2.3	2.2	2.3	0.1	2.1	2.5	2.4
		C3803 (T		· ·											,	
Mode STOP	2.3	62 2.5	63 2.4	2.3																
REC	2.4	2.6	2.4	2.3			-													
Ref. No.	2.7	2.0	2.7	2.0	<u> </u>	l	L	L		3804 (SCM-24	`							-	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.0	2.3	2.3	2.3	2.3	2.3	5.0	0.1	0.1	2.3	2.3	2.3	2.3	4.9	0.1	4.9	3.7	1.7	2.0	2.1
REC	2.0	2.3	2.2	2.2	2.2	2.2	4.9	0.1	0.1	2.2	2.2	2.2	2.2	4.9	0.1	4.9	3.7	1.7	2.1	2.1
Ref. No.								·	IC	3804 (SCM-24)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.3	2.4	2.6	2.3	2.3	4.8	4.9	0.1	4.5	4.2	1.9	0.1	3.4	2.8	0.9	2.3	2.7	2,7	4.9	0.1
REC	2.2	2.4	2.6	2.3	2.3	4.8	4.9	0.1	4.5	0.2	2.0	0.1	3.3	2.9	1.1	2.3	2.8	2.2	4.9	0.1
Ref. No.											SCM-24								,	
Mode	41	42	43	44	_ 45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	2.3	2.3	2.3	2.3	0.1	2.3	2.3	2.2	2.1	2.1	0.1	2.3	0.1	2.3	0.1	1.6	2.5	2.1	0.7	1.4
Ref. No.		2.2 23804 (2.3 SCM-24	2.3	0.1	2.3	2.2	2.2	2.1	2.1	0.1	2.3	0.1	2.4	0.1	1.6	2.4	2.2	0.8	1.4
Mode	61	62	63	64								· · · · · · · · · · · · · · · · · · ·			-					
STOP	2.0	1.5	1.5	0.1		-														
REC	2.1	1.5	1.5	0.1									-							
Ref. No.		·						L	IC	3805 (SCM-24	l)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0.1	2.0	1.9	1.9	1.9	0.1	1.9	0.1	5.0	0.1	1.8	0.1	2.3	2.3	0.1	0.1	0.1	3.0	1.9	1.8
REC	0.1	1.6	1.6	1.5	1.5	0.1	1.5	0.1	4.9	0.1	1.4	0.1	2.3	2.3	0.1	0.1	0.1	3.4	1.5	1.5
Ref. No.									IC.	3805 (SCM-24)	<u>.</u>				I	l		-
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0.1	1.8	1.8	1.8	0.1	1.8	0.1	1.8	1.9	1.6	1.3	1.3	0.1	1.3	1.3	1.3	1.3	2.7	2.4	5.0
	0.1	1.5	1.5	1.5	0.1	1.5	0.1	1.5	1.6	1.3	1.3	1.3	0.1	1.3	1.3	1.3	1.2	2.7	2.4	4.9
REC	<u> </u>																		2.7	,,,,

.....

Ref. No.	l								10	23805 (SCM-24	<u> </u>								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0.1	2.3	2.2	2.2	2.3	2.3	2.4	0.1	4.9	4.9	5.0	0.1	0.1	0.1	0.1	4.7	2.5	0.1	0.2	5.0
REC	0.1	2.3	2.3	2.3	2.3	2.3	2.3	0.1	2.8	4.9	4.9	0.1	0.1	0.1	0.1	4.7	2.5	0.1	0.2	4.9
Ref. No.		<u> </u>	(SCM-24			2.0	2.0	0.1	2.0	7.0	4.0	0.1	0.1	0.1	0.1	4.7	2.0	0.1	0.2	4.5
Mode	61	62	63	64				ſ		Γ	Γ	ſ ····	ı —		Ι		l			
STOP	0.3	2.6	0.1	2.0	ļ			 												
REC	0.4	2.7	0.1	2.0		······											-			
Ref. No.	0.4	2.7	0.1	2.0	<u> </u>		<u></u> _		10	2206 /	SCM-22	١				<u> </u>	L			L
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Mode STOP	0	1.5	1.3	1.8	1.4	0.6	2.1	2.5	1.6	2.3	0	0	4.8	4.8	3.8	3.8	2.9	4.8	4.8	0
REC	0	1.5	1.7	2.1	1.4	0.8	2.1	2.4	1.6	2.3	0	0	4.8	4.8	3.8	3.8	2.9	4.8	4.8	0
Ref. No.	_	1	1 '''		1	0.0		T	<u> </u>	L	SCM-22		7.0	7.0	0.0	0.0	2.0	7.0	4.0	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	1.6	1.6	0.9	0.9	2.6	2.6	2.7	0.6	2.3	0	0	4.8	4.8	3.8	3.7	2.9	4.8	4.8	0
REC	0	1.4	2.2	0.9	0.9	2.7	2.6	2.7	0.7	2.3	0	0	4.8	4.8	3.7	3.7	2.9	4.8	4.8	0
Ref. No.		1.1		0.0	1 0.0		2.0	2.,		<u> </u>	SCM-22		7.0	7.0	0.7	0.7	2.0	7.0	7.0	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.0	2.0	2.0	2.7	2.3	0	4.8	2.3	2.3	2.3	2.3	2.3	2.3	2.2	2.1	2.3	4.8	4.8	2.2	2.2
REC	2.0	2.0	1.9	2.6	2.3	0	4.8	2.3	2.3	2.3	2.3	2.3	2.3	2.2	2.1	2.3	4.8	4.8	2.2	2.2
Ref. No.			1		1 2.0		7.5	L 2.0			SCM-22	l e	2.0	4.6	4.1		1.0	7.0	4.4	٤٠٤
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.2	1.9	4.2	0	4.3	0	3.4	0	0	2.3	2.3	2.7	2.2	0.9	2.8	3.4	2.1	2.3	0	4.8
REC	2.2	1.9	4.2	0	4.3	0	3.4	0	0	2.3	2.3	2.7	2.2	1.1	2.9	3.3	2.1	2.3	0	4.8
Ref. No.		L	(SCM-22		1.15					2.0						0.0		2.0		
Mode	41	42	43	44	 			T		1										
STOP	1.8	1.9	2.0	2.0	 			 												
REC	1.7	1.8	1.9	1.9		,		 												
Ref. No.					1	IC	23810 (SCM-22	2)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.4	3.4	2.4	3.5	1.9	1.6	0	2.3	1.3	1.9	3.5	3.5	3.5	4.8						
REC	2.4	3.4	2.4	0.3	1.9	1.6	0	2.3	1.3	1.9	3.5	3.5	3.5	4.8		-				
Ref. No.		0		0.0	1.0		L	SCM-22		1	0.0	<u> </u>	0.0	7.0		l				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.4	2.4	2.4	2.4	0.2	4.6	0	0.2	4.6	2.4	2.4	2.4	2.4	4.8						
REC	2.4	2.4	2.4	2.4	0.3	4.6	0	0.2	4.6	2.4	2.4	2.4	2.4	4.8						
Ref. No.					I			L	23812 (!					
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
STOP	4.7	3.5	4.2	1.8	3.0	0	0	2.1	4.7	3.2	0	3.0	0	1.6	2.2	2.3	3.9	3.9		
REC	4.8	3.5	4.3	1.9	3.1	0	0	2.1	4.8	3.2	0	3.1	0	1.6	2.2	2.4	4.0	4.0		
Ref. No.			10	23813	(SCM-23)		·	IC38	14 (SC!	/ 1-23)									
Mode	1	2	3	4	5	6	7	8	G	V	0									
STOP	4.9	0.1	4.9	0.1	0.1	4.9	0.1	5.0	0.1	5.0	4.9									
REC	4.9	0.1	4.9	0.1	0.1	4.9	0.1	5.0	0.1	5.0	4.9									
Ref. No.									IC	23815 (SCM-24)								
Mode	1	2	3	_4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	1.3	1.2	1.3	1,3	1.3	1.3	1.7	1.9	2.5	5.0	5.0	4.7	2.4	2.5	2.4	2.6	0.1	2.2	0.8	2.9
REC	1.2	1.1	1.2	1.2	1.2	1.2	1.5	1.7	2.5	4.9	5.0	4.6	2.3	2.3	2.2	2.8	0.1	2.3	1.2	2.9
Ref. No.									IC	C3815 (SCM-24)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	3.4	2.9	3.0	3.4	2.9	0.8	2.1	2.6	2.3	2.3	0.1	0.1	4.9	0.1	4.9	1.9	1.7	1.3	5.0	1.3
REC	3.2	2.9	2.9	3.3	2.9	1.2	2.3	2.8	2.2	2.3	0.1	0.1	4.9	0.1	4.9	2.0	1.6	1.3	5.0	1.2
Ref. No.	16	C3815	(SCM-24)																
Mode	41	42	43	44																
STOP	1.3	1.3	1.3	1.3																
REC	1.3	1.2	1.1	1.2																
Ref. No.			IC	23816	(SCM-23)	_													
Mode	1	2	3	4	5	6	7	8	ļ											
STOP	4.5	4.7	2.9	0	2.0	0.1	0.4	4.8												
REC	4.5	4.7	2.9	0	2.0	0.1	0.4	4.8					L							

Ref. No.								C3817	(SCM-23	1)				5			<u></u>	·		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	4.5	4.9	4.9	4.2	0.4	4.6	0.6	0.1	0.2	4.9	4.9	4.5	0.2	4.9	0.9	5.0				
REC	4.5	5.0	5.0	4.2	0.4	4.6	0.6	0.1	0.2	4.9	4.9	4.5	0.2	4.9	0.9	5.0				
Ref. No.			,			· I	C3818 (SCM-2	3)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14				<u> </u>		<u> </u>
STOP	4.5	5.0	0.5	0.1	4.9	4.9	0.1	4.9	0.2	4.5	4.6	5.0	0.5	5.0	<u> </u>			ļ		
REC Ref. No.	4.5	5.0	0.5	0.1	5.0	5.0	0.1	4.9	0.1	4.5	4.5	5.0	0.5	5.0		<u> </u>	<u> </u>	<u></u>		
Mode	1	2	3	4	5	6	7	8	9	10	SCM-26	12	13	14	15	16	17	18	19	20
STOP	5.0	4.6	4.5	0	5.0	0	0	5.1	0	0	0	0	5.0	5.0	0	0	5.0	0	0	0
REC	4.9	4.6	4.5	0	4.9	0	0	5.1	0	0	0	0	5.0	5.0	0	0	4.9	0	0	0
Ref. Na.								1	10	3901 (SCM-26)	l .	1			J.,		<u> </u>	<u>. </u>
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	0	0	0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0	0	0	0	0	0	0	0
REC	0	0	0	0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0	0	0	0	0	0	0	0
Ref. No.		40	- 10			- 40		1 40			SCM-26					1			r	T
Mode	41	42 0	43	0	45 0	46 0	47	48	49	50 0	51 5.0	52 0	53 4.9	54 0	55	2.3	57 5.0	58	59	60
REC	0	0	0	0	0	0	0	0	0	0	4.9	0	4.9	0	1.8	2.3	5.0	0	4.6	0.9
Ref. No.		_	SCM-24		-)2 (SCI		- "			C3903 (1.0	2.0	1 0.0	1	1.0	0.3
Mode	61	62	63	64	G	V	0	1	2	3	4	5	6	7	8					T
STOP	0	4.9	4.9	0.1	0.1	5.0	5.0	5.0	5.0	5.0	0.1	0.1	0.1	0.1	5.0					
REC	0	4.9	4.9	0.1	0.1	5.0	5.0	5.0	5.0	5.0	0.1	0.1	0.1	0.1	5.0					
Ref. No.							10	C3921 (SCM-25)				,	, -					
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	5.0	0.1	5.0	5.0	5.0	5.0	5.0	0.1	5.0	5.0	5.0	5.0	5.0	0.1	0.1	5.0				
REC Ref. No.	5.0	0.1	5.1	5.1	5.1	5.1	5.1	0.1	5.1 SCM-25	5.1	5.0	5.1	5.1	0.1	0.1	5.1	-	L		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Γ		
STOP	5.0	2.1	5.0	5.0	5.0	5.0	5.0	0.1	2.3	5.0	2.4	2.4	2.4	2.4	2.4	5.0				
REC	5.0	2.1	5.0	5.0	5.0	5.0	5.0	0.1	2.5	5.0	2.4	2.4	2.4	2.4	2.4	0.8				
Ref. No.					_	10	3923 (SCM-25)								<u></u>			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.2	2.3	2.3	2.2	2.2	2.3	0.1	0.1	0.1	0.1	2.4	2.4	2.4	5.0						
REC Ref. No.	2.3	2.3	2.4	2.3	2.3	2.4	0.1	0.1	0.1	0.1	2.4	2.4	2.4	5.0		<u> </u>		L		
	1	2	3	4	5	6	7	8	9	10	SCM-25	12	12	14	15	16	1 17	10	10	20
Mode STOP	0.1	2.5	2.4	2.3	2.3	2.7	2.1	0.9	2.8	3.4	2.0	0.1	13 4.1	0.1	15 4.1	16 4.1	2.0	18 2.5	19 2.7	20 0.6
REC	0.1	2.5	2.4	2.3	2.2	2.7	2.2	1.0	3.0	3.3	2.1	0.1	4.1	0.1	4.1	4.1	2.0	2.4	2.8	0.8
Ref. No.					SCM-25					L	25 (SCN					1	1	1		
Mode	21	22	23	24	25	26	27	28	1	2	3	4	5	-						
STOP	1.9	2.4	1.9	1.9	0	4.1	0.1	5.0	0	2.3	0.1	2.5	5.0							
REC Ref. No.	1.9	2.4	1.9	1.9	0	4.1	0.1	5.0	0	2.3	0.1	2.5	5.0							
	1	2	2		-		-				SCM-25	_	40		4.5	1.0	T 45	1 40	- 10	
Mode STOP	1.9	1.9	2.0	3.0	₋ 5	6	7 4.8	8	9	10	11 0	12 0	13 0	14	15 0	16	17	18	19	20
REC	1.7	1.7	1.9	3.1	2.4	0	4.8	0	0	0	0	0	0	0	0	0	4.8	4.8	2.2	2.1
Ref. No.			1.0	0.1	2		4.0				SCM-25						4.0	4.0	2.2	2.1
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.2	1.9	2.2	0	4.3	0	3.8	0	0	1.9	1.9	2.4	1.9	0.7	2.6	2.5	2.0	2.4	0	4.8
REC	2.2	1.9	2.2	0	4.3	0	3.8	0	0	1.9	1.9	2.5	2.1	0.9	2.6	2.4	2.0	2.4	0	4.8
Ref. No.		3951 (
Mode	41	42	43	44					ļ											
STOP	1.9	1.9	1.9	1.9						_						<u> </u>				
REC Ref. No.	1.7	1.7 1 (SCN	1.7	1.7	3 (SCN	L21\	0270	1 /204	4 27\	097	02 (50	4 97 \	0070	2 (50	4 07 \	0077	1 (00	100		
Mode	E	C	1-21) B	E	C	1-21 <i>)</i> B	E	1 (SCN	<i>n-27)</i> B	037 E	02 (SCI	W-27) B	Q370 E	3 (SCN	/I-27)	Q377	1 (SCN	Л-29) В		1
STOP	0.7	0	0	2.2	0	1.6	2.5	4.9	2.2	0	11.5	0	-5.0	4.8	-4.2	-0.8	4.8	-0.2		
REC	0.7	0	0	2.2	0	1.6	3.0	4.9	2.2	0	11.5	0.5	-5.0	4.8	-4.2	-0.8	4.8	-0.2		
								<u> </u>		<u> </u>										

Ref. Na.	Q377	2 (SCN	/l-29)	Q377	3 (SCN	f-29)	Q377	4 (SC	/i-29)	Q378	3 (SCN	A-29)	0378	4 (SCI	A-29)	Q380	1 (SCN	A-22)	
Mode	E	С	В	E	С	В	E	С	В	Е	С	В	E	С	В	E	С	В	
STOP	-0.8	4.8	-0.2	-1.1	4.8	-0.5	-0.2	-4.9	-0.8	0	0	0.6	-0.6	4.8	0	1.3	4.8	1.9	
REC	-0.8	4.8	-0.2	-1.1	4.8	-0.5	-0.2	-4.9	-0.8	0	0	0.6	-0.6	4.8	0	1.3	4.9	1.9	
Ref. No.	Q380	2 (SCN	A-22)	Q380	3 (SCN	1-22)	Q380	4 (SCN	1-22)	Q380	5 (SCN	/ I-22)	Q.38)6 (SCI	VI-22)	Q380	7 (SCN	1-22)	<u></u>
Mode	E	С	В	Е	С	В	Е	С	В	E	С	В	E	С	В	E	С	В	
STOP	0.9	3.3	1.6	3.1	4.8	3.2	0.7	3.1	1.4	3.4	4.8	3.1	3.2	4.8	3.8	2.8	4.8	3.4	
REC	0.9	3.3	1.6	3.2	4.8	3.3	0.7	3.1	1.4	3.4	4.8	3.1	3.2	4.8	3.8	2.8	4.8	3.4	
Ref. No.	O380	8 (SCN	M-22)	Q380	9 (SCN	1-22)	Q395	1 (SCN	/ -25)	Q395	2 (SCN	M-25)							
Mode	Ε	С	В	Ε	С	В	Е	С	В	E	С	В				-			
STOP	3.7	4.8	4.3	3.5	4.8	4.2	3.2	4.8	3.8	3.7	4.8	4.3							
REC	3.7	4.8	4.3	3.5	4.8	4.2	3.2	4.8	3.8	3.7	4.8	4.3							
Ref. No.	QR37	04 (SC	M-27)	QR37	05 (SCI	VI-27)	QR37	72 (SC	M-29)	QR38	10 (SC	M-23)						'	
Mode	Е	С	В	E	С	В	E	С	В	Е	С	В							
STOP	0	0	4.5	0.1	0.1	4.1	0.1	5.0	0.1	0.1	0.1	4.9							
REC	0	0	4.5	0.1	0.1	4.1	0.1	5.0	0.1	0.1	0.1	4.9							

SERVO & SYSTEM CONTROL C.B.A.

SERVO Ref. No.	& S	1016							1 1045	/		1	/		T	(
	1	2	3	C1501	5 SCIM-1		T -,-		 	02 (SCI	,	_	03 (SCI		 	05 (SC			06 (SC	
Mode STOP	4.7	0.1	2.7	0	2.7	5.3	7	8	G	14.7	0	G	7.0	0	K	A	R	K	A	R
REC	4.7	0.1	2.7	0	+	 	0.1	5.3	0	-14.7	-12.2	0	-7.0	-5.0	7.7	0	2.5	5.9	0	2.5
FF	4.7	0.1	2.7	0	2.7	5.3	0.1	5.3	0	-14.8	-12.2	0	-7.0	-5.0	7.7	0	2.5	5.9	0	2.5
Ref. No.	4.7	0.1	2.7		2.7	3.3	0.1	5.3		-14.7 C2001	-12.2 (SCM-9	0	-6.9	-5.0	7.7	0	2.5	5.9	0	2.5
	1	2	3	4	5	6	7	8	9	10			1 12	14	15	10	17	10	1 10	1 00
Mode	0	5.0	4.6	2.5	2.5	5.1	0	0	0	0	2.5	2.6	13	5.1	15	16	5.1	18	19	20
REC	3.1	5.0	4.6	2.5	2.5	5.1	10	0	0	0	2.6	0	0	5.1	0	4.1	5.1		5.1	2.6
FF	0.,	5.0	4.6	2.5	2.5	5.2	0	5.2	0	0	2.6	2.6	0	5.2	0	4.1	5.2	0	5.1	2.6
Ref. No.		0.0	1.0	2.0	1 2.0	0.2		0.2	L		(SCM-9			5.4		4.1	0.2		5.2	2.6
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	0	0	0	5.1	0	2.6	0	0	0	0	5.1	0.1	2.4	0	0	0	0	5.1	0
REC	0	0	0	0	5.1	0	2.6	0	0	0	0	5.1	0.5	2.4	0	0	0	0	5.1	0
FF	0	0	0	0	5.2	0	2.6	0	0	0	0	5.2	0.5	2.4	0	0	0	0	5.2	0
Ref. No.	<u> </u>				0.2		2.0				(SCM-9		0.5	2.4		0		0	5.2	
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0	0	5.1	0	0	0	0	2.5	2.5	0	0.2	0	0	0	0	0	0	1.9	5.1	60
REC	0	0	5.1	0	0	5,1	0	2.5	2.5	0	3.1	0	0	0	0	0	0	1.9	5.1	0
FF	0	0	5.2	0	0	5.2	0	2.5	2.5	0	0	0	0	0	0	0	0	1.9	5.1	0
Ref. No.			(SCM-9			02 (SC	l	2.5	2.0		C2003		L			U		1.9	0.2	_ <u>u</u>
Mode	61	62	63	64	V	G	0	1	2	3	4	5	6	7	8		1			Ι
STOP	1.1	3.1	5.1	0	5.1	0	5.1	2.3	0.5	2.5	0	0	0	0	5.0					-
REC	1.1	3.1	5.1	0	5.1	0	5.1	2.3	0.5	2.5	0	0	0	0	0					-
FF	1.1	3.1	5.2	0	5.2	0	5.2	2.3	0.5	2.6	0	0	0	0	5.0					
Ref. Na.							l	<u> </u>	(SCM-9			•			0.0					L
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0	0	0	0	0	0	0	0	0	2.6	2.6	2.5	2.6	2.6	5.1				
REC	0	0	0	0	0	0	0	0	0	0	2.6	2.6	2.6	2.6	2.6	5.1				
FF	0	0	0	0	0	0	0	0	5.2	0	2.6	2.6	2.6	2.6	2.6	5.2				
Ref. No.							COUNT	(SCM-9	\							1000				
							C2005	(OCIAI-2	,							1020	06 (SCI	VI-9)		ľ
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	06 (SC	M-9)	5	
Mode STOP	2.6	2 2.6	3 2.1	4	5 2.6					10	11	12	13 5.1	14 5.1	1 2.6				5 5.1	
						6	7	8	9							2	3	4		
STOP REC FF	2.6	2.6	2.1	0	2.6	6	7	8	9	0	0	0	5.1	5.1	2.6	2 2.6	3	4 0	5.1	
STOP REC	2.6	2.6 2.6	2.1	0	2.6	6 0 0	7 0 0	8 0 0	9 0 0	0	0	0	5.1 5.1	5.1 5.1	2.6 2.6	2 2.6 2.6	3 0 0	4 0 0	5.1 5.1	
STOP REC FF Ref. No.	2.6 2.6 2.6	2.6 2.6 2.6	2.1 2.1 2.1	0 0 0	2.6	6 0 0	7 0 0	8 0 0	9 0 0	0	0 0	0	5.1 5.1	5.1 5.1	2.6 2.6	2 2.6 2.6	3 0 0	4 0 0	5.1 5.1	20
STOP REC FF Ref. No. Mode STOP	2.6 2.6 2.6 1 0	2.6 2.6 2.6 2	2.1 2.1 2.1 3 0	0 0 0	2.6 2.6 2.6 5 5.1	6 0 0 0 0	7 0 0 0 7	8 0 0 0 0 8 5.1	9 0 0 0	0 0 0 C2007 (0 0 0 (SCM-9)	0 0	5.1 5.1 5.2	5.1 5.1 5.2	2.6 2.6 2.6	2 2.6 2.6 2.6	3 0 0	0 0 0	5.1 5.1 5.2	20 5.1
STOP REC FF Ref. No. Mode STOP REC	2.6 2.6 2.6 1 0	2.6 2.6 2.6 2 0	2.1 2.1 2.1 3 0	0 0 0 4 0	2.6 2.6 2.6 5 5.1 4.5	6 0 0 0	7 0 0 0	8 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 C2007 (0 0 0 (SCM-9)	0 0 0	5.1 5.1 5.2	5.1 5.1 5.2	2.6 2.6 2.6	2 2.6 2.6 2.6 16	3 0 0 0	4 0 0 0 0	5.1 5.1 5.2	
STOP REC FF Ref. No. Mode STOP REC FF	2.6 2.6 2.6 1 0	2.6 2.6 2.6 2	2.1 2.1 2.1 3 0	0 0 0	2.6 2.6 2.6 5 5.1	6 0 0 0 0	7 0 0 0 7	8 0 0 0 0 8 5.1	9 0 0 0 0 9 5.1	0 0 0 0 C2007 (0 0 0 (SCM-9) 11	0 0 0	5.1 5.1 5.2 13 0	5.1 5.1 5.2 14 5.1	2.6 2.6 2.6 15 5.1	2 2.6 2.6 2.6 16 0	3 0 0 0 17 5.1	4 0 0 0 0	5.1 5.1 5.2 19 0	5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0	2.6 2.6 2.6 2.0 0 0	2.1 2.1 2.1 3 0 0	0 0 0 0	2.6 2.6 2.6 5 5.1 4.5 4.5	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0	8 0 0 0 8 5.1 5.1 5.2	9 0 0 0 0 5.1 5.1 5.2	0 0 0 0 0 22007 (10 0 0 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2	2.6 2.6 2.6 15 5.1 5.1 5.2	2 2.6 2.6 2.6 0 0	3 0 0 0 0 17 5.1 5.1 5.2	18 0 0 0 0	5.1 5.1 5.2 19 0 0	5.1 5.1 5.2
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode	2.6 2.6 2.6 1 0 0	2.6 2.6 2.6 2.0 0 0	2.1 2.1 2.1 3 0 0	0 0 0 0 4 0 0 0	2.6 2.6 2.6 5 5.1 4.5 4.5	6 0 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0	8 0 0 0 0 8 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2	0 0 0 0 22007 (10 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2	2.6 2.6 2.6 5.1 5.1 5.2	2 2.6 2.6 2.6 16 0 0	3 0 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0	5.1 5.1 5.2 40
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP	2.6 2.6 2.6 1 0 0	2.6 2.6 2.6 2 0 0 0	2.1 2.1 2.1 3 0 0 0	0 0 0 0 0 0 0	2.6 2.6 2.6 5 5.1 4.5 4.5	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0	8 0 0 0 0 8 5.1 5.1 5.2	9 0 0 0 1 9 5.1 5.1 5.2 1 29	0 0 0 0 22007 (10 0 0 0 0 0 22007 (30	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31	0 0 0 12 0 0 0 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1	2.6 2.6 2.6 5.1 5.1 5.2	2 2.6 2.6 2.6 2.6 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP	2.6 2.6 2.6 1 0 0 0	2.6 2.6 2.6 0 0 0	2.1 2.1 2.1 3 0 0 0	0 0 0 0 0 0 0 0	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1	0 0 0 0 22007 (10 0 0 0 0 22007 (30 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31 0	0 0 0 12 0 0 0 0 32 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF FF FF FF FF	2.6 2.6 2.6 1 0 0 0	2.6 2.6 2.6 0 0 0 0	2.1 2.1 2.1 3 0 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6	2.6 2.6 2.6 5 5.1 4.5 4.5	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0	8 0 0 0 0 8 5.1 5.1 5.2	9 0 0 0 1 9 5.1 5.1 5.2 1 29	0 0 0 0 22007 (10 0 0 0 0 0 22007 (30	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31	0 0 0 12 0 0 0 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1	2.6 2.6 2.6 5.1 5.1 5.2	2 2.6 2.6 2.6 2.6 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0	2.6 2.6 2.6 0 0 0 0 0 0 0 0	2.1 2.1 2.1 3 0 0 0 0 0 0 (SCM-9	0 0 0 0 0 0 0 24 2.6 2.6 2.6	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1	0 0 0 0 22007 (10 0 0 0 0 22007 (30 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31 0	0 0 0 12 0 0 0 0 32 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF	2.6 2.6 2.6 1 0 0 0 0	2.6 2.6 2.6 0 0 0 0 0 C2007 (2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9	0 0 0 0 0 0 0 2.6 2.6 2.6 2.6	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1	0 0 0 0 22007 (10 0 0 0 0 22007 (30 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31 0	0 0 0 12 0 0 0 0 32 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0 0 21 0 0 0	2.6 2.6 2.6 0 0 0 0 0 C2007 (42 5.1	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43	0 0 0 0 0 0 0 24 2.6 2.6 2.6)	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1	0 0 0 0 22007 (10 0 0 0 0 22007 (30 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31 0	0 0 0 12 0 0 0 0 32 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode	2.6 2.6 2.6 1 0 0 0 21 0 0 0 1 41 5.1 5.1	2.6 2.6 2.6 0 0 0 0 0 0 C2007 (42 5.1 5.1	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.6)	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1	0 0 0 0 22007 (10 0 0 0 0 22007 (30 0	0 0 0 (SCM-9) 11 0 0 0 (SCM-9) 31 0	0 0 0 12 0 0 0 0 32 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0 0 21 0 0 0	2.6 2.6 2.6 0 0 0 0 0 C2007 (42 5.1	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43	0 0 0 0 0 0 0 24 2.6 2.6 2.6)	2.6 2.6 2.6 5 5.1 4.5 4.5 0	6 0 0 0 5.1 5.1 5.2	7 0 0 0 7 0 0 0 0 0	8 0 0 0 0 5.1 5.1 5.2	9 0 0 0 9 5.1 5.1 5.2 29 5.1 5.1 5.2	0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0	0 0 0 12 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1	2.6 2.6 2.6 5.1 5.1 5.2 35 0	2 2.6 2.6 2.6 2.6 0 0 0	3 0 0 0 5.1 5.1 5.2	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0 21 0 0 0 1 41 5.1 5.1	2.6 2.6 2.6 0 0 0 0 0 0 C2007 (42 5.1 5.1	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0	6 0 0 0 5.1 5.1 5.2 26 0 0	7 0 0 0 7 0 0 0 0 27 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0	0 0 0 12 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2	2.6 2.6 2.6 15 5.1 5.1 5.2 35 0 0	2 2.6 2.6 2.6 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0 21 0 0 0 1 41 5.1 5.1	2.6 2.6 2.6 0 0 0 0 0 C2007 (42 5.1 5.1	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.6)	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0	6 0 0 0 5.1 5.1 5.2 26 0 0	7 0 0 0 0 7 0 0 0 0 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0	9 0 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0	0 0 0 12 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0	5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0	2 2.6 2.6 2.6 0 0 0 0 0	3 0 0 0 0 17 5.1 5.1 5.2 37 0 0	4 0 0 0 0 18 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2
STOP REC FF Ref. No. Mode	2.6 2.6 2.6 1 0 0 0 21 0 0 0 1 5.1 5.1 5.2	2.6 2.6 2.6 0 0 0 0 0 0 22 0 0 0 C2007 (42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.6 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0	6 0 0 0 5.1 5.1 5.2 26 0 0 0	7 0 0 0 0 7 0 0 0 0 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0 0	9 0 0 0 9 5.1 5.2 10 29 5.1 5.1 5.2	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9) 11	0 0 0 0 12 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0	3 0 0 0 0 17 5.1 5.1 5.2 37 0 0 0	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1
STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	2.6 2.6 2.6 1 0 0 0 0 0 1 41 5.1 5.1 5.2	2.6 2.6 2.6 0 0 0 0 0 C2007 (42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0	0 0 0 0 0 0 0 2.6 2.6 2.6 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 0	6 0 0 0 5.1 5.1 5.2 26 0 0 0	7 0 0 0 0 7 0 0 0 0 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0 0	9 0 0 0 1 9 5.1 5.2 1 29 5.1 5.1 5.2 1 9 5.1	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9) 11 0	0 0 0 0 12 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0 0 13 0 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0 0	18 0 0 0 0 18 18 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 0 19 0 0 0	5.1 5.1 5.2 40 5.1 5.1 5.2 20 5.1 5.1
STOP REC FF Ref. No. Mode	2.6 2.6 2.6 0 0 0 0 0 1 41 5.1 5.1 5.2	2.6 2.6 2.6 0 0 0 0 0 0 C2007 42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 _ 0	6 0 0 0 5.1 5.1 5.2 26 0 0 0	7 0 0 0 0 7 0 0 0 0 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0 0	9 0 0 0 1 9 5.1 5.2 1 29 5.1 5.1 5.2 1 9 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9) 11 0 0	0 0 0 0 12 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0	3 0 0 0 0 17 5.1 5.1 5.2 37 0 0 0	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1
STOP REC FF Ref. No. Mode	2.6 2.6 2.6 0 0 0 0 0 1 41 5.1 5.1 5.2	2.6 2.6 2.6 0 0 0 0 0 0 C2007 42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0	0 0 0 0 0 0 0 2.6 2.6 2.6 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 0	6 0 0 0 5.1 5.1 5.2 26 0 0 0	7 0 0 0 0 0 0 0 0 0 0 5.1 5.1 5.2	8 0 0 0 0 8 5.1 5.1 5.2 28 0 0 0	9 0 0 0 9 5.1 5.1 5.2 10 29 5.1 5.1 5.2 10 9 5.1 5.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0 13 0 0 0 0	5.1 5.1 5.2 14 5.1 5.1 5.2 34 5.1 5.1 5.2 14 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0 0	18 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 19 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1 5.1 5.2
STOP REC FF Ref. No. Mode STOP REC FF Ref. No. FF	2.6 2.6 2.6 1 0 0 0 0 21 0 0 0 1 41 5.1 5.2 1 0 0	2.6 2.6 2.6 0 0 0 0 0 0 C2007 (42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0	0 0 0 0 0 0 0 2.6 2.6 2.6 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 0 5 0.2 0	6 0 0 0 6 5.1 5.1 5.2 26 0 0 0	7 0 0 0 0 7 0 0 0 0 5.1 5.1 5.2	8 0 0 0 8 5.1 5.1 5.2 28 0 0 0	9 0 0 0 9 5.1 5.2 10 29 5.1 5.2 10 9 5.1 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9) 11 0 0 0 SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0 13 0 0 0 0	5.1 5.2 14 5.1 5.2 34 5.1 5.1 5.2 14 5.1 5.2 34 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0 0 0	18 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 19 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1 5.1 5.2
STOP REC FF Ref. No. Mode	2.6 2.6 2.6 1 0 0 0 0 1 41 5.1 5.1 5.2	2.6 2.6 2.6 0 0 0 0 0 0 0 0 22 0 0 0 0 0 25.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.5 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 - 0	6 0 0 0 6 5.1 5.1 5.2 26 0 0 0 0	7 0 0 0 0 0 0 0 0 0 5.1 5.1 5.2	8 0 0 0 0 8 5.1 5.1 5.2 28 0 0 0 0 4.7	9 0 0 0 1 9 5.1 5.2 1 29 5.1 5.2 1 5.2 29 5.1 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 SCM-9) 11 0 0 SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.2 14 5.1 5.2 34 5.1 5.2 14 5.1 5.2 14 5.1 5.2 34 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0 0 0	18 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1 5.1 5.2 40 5.1
STOP REC FF Ref. No. Mode STOP	2.6 2.6 2.6 1 0 0 0 0 1 41 5.1 5.1 5.2 1 0 0	2.6 2.6 2.6 0 0 0 0 0 22 0 0 0 0 22007 (42 5.1 5.1 5.2	2.1 2.1 2.1 3 0 0 0 0 0 (SCM-9 43 0 0 0 0 0	0 0 0 0 0 0 0 24 2.6 2.6 2.6 2.5 2.5 2.5 2.5	2.6 2.6 2.6 5 5.1 4.5 4.5 0 0 0 0 0 0.3	6 0 0 0 6 5.1 5.1 5.2 26 0 0 0 0	7 0 0 0 0 0 0 0 0 0 5.1 5.1 5.2	8 0 0 0 0 8 5.1 5.1 5.2 28 0 0 0 0	9 0 0 0 9 5.1 5.2 10 29 5.1 5.2 10 9 5.1 5.1 5.2	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 (SCM-9) 11 0 0 (SCM-9) 31 0 0 0 SCM-9) 11 0 0 0 SCM-9)	0 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 13 0 0 0 0 0 13 0 0 0 0	5.1 5.2 14 5.1 5.2 34 5.1 5.1 5.2 14 5.1 5.2 34 5.1 5.2	2.6 2.6 2.6 2.6 5.1 5.1 5.2 35 0 0 0	2 2.6 2.6 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 17 5.1 5.1 5.2 37 0 0 0 0	18 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0	5.1 5.1 5.2 19 0 0 0 0 0 19 0 0 0 0	5.1 5.2 40 5.1 5.1 5.2 20 5.1 5.1 5.2

Ref. No.		IC2008	(SCM-9	<u> </u>	<u> </u>			C2009	(SCM-9)			ĺ							
Mode	41	42	43	44	1	2	3	4	5	6	7 ′	8								
STOP	5.1	5.1	0	2.5	2.6	0	0	0	5.1	2.6	2.6	5.1	-		-					
REC	5.1	5.1	0	2.5	2.6	0	0	0	5.1	2.6	2.6	5.1								
FF	5.2	5.2	0	2.5	- 2.6	0	0	0	5.2	2.6	2.6	5.2		-						
Ref. No.			····			I	C2010	(SCM-9)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	0.5	0.1	5.0	0.5	2.5	0.2	2.5	0	0	0.1	0.3	0	5.1	0						
REC	0.5	0.2	5.0	0.5	2.5	0.2	2.5	0	0	0.1	0.4	0	5.1	0						
FF	0.5	0.2	5.0	0.5	2.5	0.2	2.5	0	0	0.1	0.5	0	5.2	0						
Ref. No.		,						(SCM-9			,									
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.5	2.6	2.6	2.6	2.6	2.6	0	2.4	2.3	2.5	2.4	8.0	3.7	5.1				-		
REC	2.5	2.6	2.6	2.6	2.6	2.6	0	2.4	2.3	2.5	2.4	0.8	3.6	5.1						
FF Ref. No.	2.6	2.6	2.6	2.6	2.6	2.6	0	2.4	2.3	2.5	2.4	0.8	3.6	5.2						
	1	1 0			(SCM-9 5	6	7	8	1	2	14 (SCI	4	5							
Mode	0	0	0	0	2.4	2.4	2.4	11.7	2.6	2.6	0	2.5	5.0							
STOP	0	0	0	0	2.4	2.4	2.4	11.7	2.6	2.6	0	2.5	5.0			<u> </u>				
FF	0	0	0	0	2.4	2.4	2.4	11.7	2.6	2.6	0	2.5	5.0							
Ref. No.	-				∠.→	4.7	4.4	1			SCM-13		1 0.0							
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	5.1	5.1	0	0	0	0	3.1	2.4	2.6	2.1	2.4	5.1	5.1	5.1	5.1	4.9	3.1	4.2
REC	0	0	5.1	5.1	0	0	0	0	3.1	2.4	2.6	2.1	2.4	5.1	5.1	5.1	5.1	4.9	2.8	3.9
FF	0	0	5.2	5.2	0	0	0	0	3.1	2.5	2.7	2.1	2.4	5.2	5.2	5.2	5.2	5.0	3.2	4.3
Ref. No.							· · · · · · · · · · · · · · · · · · ·	<u></u>	IC	2201 (SCM-13)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	0	0	5.1	5.1	5.1	0	0	5.1	0	0	0	0	0	0	0	0	0	0	0
REC	0	0	0	5.1	5.1	5.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FF	0	0	0	5.2	5.2	5.2	0	5.2	5.2	0	0	0	0	0	0	0	0	0	0	0
Ref. No.							1				SCM-13					·				
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0	0	5.1	3.9	4.7	4.3	3.5	4.3	3.5	3.6	3.6	3.1	3.6	3.1	4.9	4.7	4.1	3.4	3.9	5.1
REC	0	0	5.1	2.7	2.7	3.6	3.6	3.6	3.7	3.7	3.5 3.5	4.5 3.4	3.5	2.6 3.3	3.7 4.1	3.5 2.6	3.7 2.8	3.8	4.2 2.8	5.1 5.2
FF Ref. No.	U	1 0	5.2	2.6	3.3	3.9	3.3	3.3	4.0	l	SCM-13	L	3.4	3.3	4.1	2.0	2.0	3.5	2.0	0.2
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Mode	5.1	5.1	0	0	0	0	0	5.1	5.1	5.1	0	0.9	0.9	0.8	0.9	4.1	4.6	3.8	4.7	4.7
REC	5.1	5.1	0	0	0	0	0	5.1	5.1	5.1	0	2.4	2.8	3.2	2.1	1.9	1.5	3.9	4.6	4.6
FF	5.2	5.2	0	0	0	0	0	5.2	5.2	5.2	0	0.3	0	1.0	0.8	4.5	4.7	3.9	4.7	4.7
Ref. No.	ı	C2201	(SCM-13	3)				1		·	<u> </u>									
Mode	81	82	83	84																
STOP	0	0	0.5	5.1																
REC	0	0	0.5	5.1			<u> </u>													
FF	0	0	0.5	5.2							<u> </u>									l
Ref. No.				-				,			SCM-12	· -	1			1	T		T	r
Mode	1	2	3	_4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	4.0	3.9	0	5.0	0	0	4.0	0	2.6	5.1	5.1	5.1	0	0	5.1	4.5	5.0	0	0	4.6
REC	0	2.7	0	2.6	2.6	2.5	2.5	0	2.5	5.1	0	5.1	0	0	0	4.5	5.0	0	0	4.6
FF Ref. No.	3.3	2.6	0	5.0	0	0	4.1	0.4	2.6	0		5.2			U	4.6	5.0	0	U	4.0
	21	22	23	24	25	26	27	28	29	30	SCM-12	32	33	34	35	36	37	38	39	40
Mode	4.5	4.5	0	5.1	5.1	0.2	0	0	0	0	0	0	5.1	0	0	5.1	5.1	5.1	5.1	5.1
REC	2.3	2.3	0	5.1	0	0.2	0	0	0	0	0	0	5.1	0	5.1	5.1	0	0	5.1	2.2
FF	0.1	4.5	0	5.2	5.2	0.1	0	0	0	0	0	0	5.2	5.2	0	0	0	0	0	0
Ref. No.	 	1				1	<u> </u>				SCM-12	l		·				·		L
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	5.1	2.3	5.1	5.1	5.1	5.1	0	5.1	0	0	0	0	5.1	1.9	1.9	2.2	5.0	3.2	0.5	4.1
REC	2.9	2.3	5.1	2.7	2.7	2.6	2.7	2.6	2.7	2.6	2.7	0	5.1	1.9	1.9	2.2	5.0	2.8	0.6	1.9
FF	0	0	5.2	0	0	0	0	0	0	0	0	0	5.2	1.9	1.9	2.2	5.0	3.2	0.5	4.5
<u> </u>							·		1			·	·		·					

Ref. No.	T									C2202	(SCM-12))								
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	0.9	0.8	0.9	0.9	3.9	4.2	4.1	3.8	4.9	3.1	3.6	3.1	5.1	0	3.5	3.5	4.3	4.3	3.5	4.3
REC	2.1	3.2	2.8	2.4	4.2	3.8	3.7	3.5	3.6	2.6	0	4.4	5.1	0	3.6	3.7	3.6	3.6	3.7	3.7
FF	0.8	1.0	0.5	0.3	2.7	3.9	4.1	2.8	4.1	3.3	3.4	3.4	5.2	0	3.3	3.3	4.0	3.3	3.3	3.3
Ref. No.		,							I	C2203 (SCM-12	2)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	5.1	5.1	5.1	5.1	0	5.1	5.1	0	5.1	5.1	0	0	5.1	0	1.6	1.6	0	0
REC	0	5.1	5.1	0	0	5.1	3.8	2.2	2.6	2.7	2.7	2.7	2.7	2.7	2.7	2.7	0.6	0.6	0	0
FF Ref. No.	5.2	0 C2203	0 (SCM-1:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mode	21	22	23	24	1	2	3	4	5	6	7	8	SCM-12	10	11	12	13	14	15	16
STOP	0	0	5.1	-5.0	5.1	5.1	4.6	0	0	5.0	5.0	0	0	0	0	0	0	4.6	5.1	16
REC	0	0	5.1	-5.0	5.1	2.5	2.3	0	0	5.0	5.0	0	0	0	0	0	0	2.3	2.6	0
FF	0	0	0	-5.0	5.2	0	0.1	2.8	2.4	5.1	5.1	0	0	0	0	0	0	0.1	0	0
Ref. No.			ŀ	C2207 ((SCM-12	2)	'		<u> </u>		j(C2302 (SCM-10	1)	l	·				L
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	1.6	1.6	1.6	-5.0	0.3	0.3	4.0	5.1	0.1	0	0	-5.0	0	0	-0.1	5.0				
REC	2.1	1.6	1.6	-5.0	0.3	0.3	4.0	5.1	0	0	0	-5.0	0	0	-0.1	5.0				
FF TO THE	2.4	1.6	1.6	-5.0	0.3	0.3	4.0	5.2	0.6	0	0	-5.0	0	0	-0.1	5.0				
Ref. No.	<u> </u>		· · · · · · · · · · · · · · · · · · ·	C2303 (T 2						SCM-10	 	r	,				
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	-0.2	0	0	-5.0	0.3	0.2	3.9	5.0	4.9	0.1	0.9	-5.0	0.9	-0.2	4.9	5.0				
FF	-1.5	-0.1	0	-5.0 -5.0	0.3	0.3	3.9	5.0	3.6	0	0.9	-5.0	0.9	0	4.9	5.0				
Ref. No.	-1.0	0.1		-5.0	0.3	1 0.3	<u> </u>		SCM-10	<u> </u>	0.7	-5.0	0.7	-1.4	1.4	5.0		L		L
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	5.0				
REC	0	0	0.1	0.1	0.1	0	0	0	0	0	4.6	0	3.1	3.0	0	5.0				
FF	1.9	2.7	0.1	0.1	0.1	0	0	0	0	0	0	0.4	0	2.0	0.4	5.0				
Ref. No.							IC	C2310 (SCM-10	1)		····	·			L				<u></u>
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	1.3	0.2	0	0.9	4.4	0	0	0	0	0	5.0	3.4	2.6	1.7	5.1				
REC	0	1.3	0.2	0	0.9	4.4	0	0	0	0	2.5	0.3	0.4	2.6	3.8	5.1				
FF Ref. No.	0	1.3	0.2	0	0.9	4.4	0	0	0	0	0	5.0	3.4	2.6	1.7	5.0				
	1	2	3	4	5	6	7	2 2311 (SCM-10	10	11	12	12	14	15	16				
Mode	0	0	0	0	0	0	-5.0	.0	0	0	11 0	12 0	13 5.9	14 0	15 0	16 11.7				
REC	0	0	0	0	0	0	-5.0	0	11.7	0	11.7	0	0.0	0	0	11.7				
FF	0	0	0	0	0	0	-5.0	0	0	0	0	0	5.9	0	0	11.7				
Ref. No.						10	2312 (SCM-10))							l				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	O	11.6	11.6	11.6	11.7	0	0	0	0	0	0	0	11.7	11.7						
REC	11.7	0	4.6	0	11.7	0	0	0	0	0	0	0	11.7	11.7						
FF Ref. No.	0	11.6	11.6	11.6	11.7	0	0	0	0	0	0	0	11.7	11.7		L				
		2			-			SCM-11												
Mode STOP	0	2 5.1	3	4 5.1	_5 5.1	6 0	7	8	9	10	11	12	13	14						
REC	5.1	0	3.1	0.1	5.1	0	0	0	0	0	0	0 5.1	5.1 0	5.1 5.1				-		
FF	0	5.1	0	5.2	5.2	0	0	2.7	0	1.9	0	2.0	3.1	5.1						
Ref. No.		44.1		22402 (2.7	<u> </u>		3 (SCN		3.1	0.1	IC240)4 (SCN	<i>I</i> -11)			
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	1	2	3	4	5		
STOP	0	0	0	0	5.1	0	0	5.1	5.1	0	0	0	5.1	5.1	0	0	0	5.1		
REC	3.1	0	0	0	0	0	3.1	5.1	0.1	2.1	0	3.1	5.1	0.4	3.1	0	2.1	5.1		
FF	3.1	0	0	0	5.2	3.2	0	5.2	5.2	0	0	0	5.2	0	5.2	0	0	5.2		
Ref. No.		IC240	5 (SCN	<i>I</i> I-11)													·	1		
Mode	1	2	3	4	5															
STOP	5.1	5.1	0	5.1	5.1															
REC FF	3.1	1.8	0	0.4	5.1															
	3.2	0	0	0	5.2										ļ				ì	- 1

Ref. Na.	T								10	22406 (SCM-11)								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Mode STOP	5.1	5.1	0	0	5.1	0	5.1	5.1	5.1	3.6	0	5.1	0	0	0	5.1	5.1	5.1	0	5.1
	5.1	3.1	0	0	5.1	0	5.1	5.1	5.1	3.3	0	1.8	3.1	0	0	0	5.1	3.1	0	5.1
REC						-			-					0	0	5.2	5.2		0	5.2
FF Ref. No.	5.2	3.1	0	0	5.1	0	5.2	5.1	5.1	5.1	0	5.2	5.2	U	U	5.2	3.2	3.2	U	0.2
nei. Nu					2406 (,								r					
Mode	21	22	23	24	25	26	27	28	29	30										
STOP	4.8	0	0	0	0	0	2.5	2.5	0	5.1						ļ				
REC	4.8	0	0	0	0	0	2.5	2.5	0	5.1										
FF	4.8	0	0	0	0	0	2.5	2.5	0	5.2										
Ref. No.							C2501	(SCM-8)	,										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	3.2	3.2	3.1	11.7	2.4	2.4	2.0	4.6	4.6	4.6	0	2.4	2.4	2.4						
REC	2.5	2.5	2.5	11.7	2.4	2.4	2.2	4.6	4.6	4.6	0	2.4	2.4	2.4						
FF	2.4	2.4	2.3	11.7	2.4	2.4	2.3	0.6	0.6	0.6	0	0.2	0.2	0.2						
Ref. No.							C2502	(SCM-8)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.4	2.4	2.4	11.7	2.4	2.4	2.4	2.4	2.4	2.4	0	1.6	1.7	1.7						
REC	2.4	2.4	2.3	11.7	2.4	2.4	2.4	2.4	2.4	2.4	0	1.0	1.0	1.0						
FF	3.8	3.8	3.8	11.7	2.4	2.4	1.5	2.8	2.7	2.7	0	1.6	1.6	1.5						
Ref. No.			ı	C2503	(SCM-8)						· · · · · ·								
Mode	1	2	3	4	5	6	7	8												
STOP	11.6	2.2	2.4	0	0.5	0.5	0	11.7												
REC	11.6	2.2	2.4	0	0.5	0.5	0	11.7												
FF	11.6	2.3	2.4	0	0.5	0.5	0	11.7												
Ref. No.							١	C2505	(SCM-8)										
Mode	1	2	က	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	2.4	2.4	2.0	2.0	2.4	0	0	0	11.6	0	11.6	2.4	2.4	2.4	2.4	11.7				
REC	2.4	2.4	2.2	2.2	2.4	0	0	0	11.6	0	11.6	2.4	2.4	2.4	2.4	11.7				
FF	2.4	2.4	2.3	2.3	2.4	0	0	0	11.6	0	0	2.4	2.4	2.4	2.4	11.7				
Ref. No.							ı	C2506	(SCM-8)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	2.3	2.1	2.1	2.3	2.3	0	0	0	11.6	0	2.6	2.6	2.4	2.5	2.4	11.7				
REC	2.3	2.2	2.2	2.3	2.3	0	0	0	11.6	0	2.5	2.5	2.4	2.5	2.4	11.7				
FF	2.3	2.3	2.3	2.3	2.3	0	0	0	0	0	2.3	2.4	2.4	2.3	2.3	11.7				
Ref. No.								C2507	(SCM-8)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	1.4	0.1	0.3	0.3	0.3	0	0	0	0	0	0	0.2	0.2	0.2	0.1	11.7				
REC	0.8	0.1	0.3	0.3	0.3	0	0	0	0	0	0	0.3	0.3	0.3	0.1	0				
FF	0.1	1.8	0.3	0.3	0.3	0	0	0	0	11.6	0	0.3	0.3	0.3	0	11.7				
Ref. No.									IC	2701 (SCM-15)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	14.9	2.9	3.3	3.0	18.9	2.9	3.2	3.2	14.1	0	0.2	0	1.8	2.7	0.5	0.2	0.5	0.4	0	0
REC	14.9	2.9	3.3	3.0	18.1	2.9	3.2	3.2	14.5	0.4	0.4	0	2.1	2.8	0.5	0.4	0.5	0.4	0	0
FF	14.9	2.8	2.9	2.9	17.8	2.7	2.7	2.7	10.1	0.3	0.4	0	1.8	2.7	0.5	0.3	0.5	0.3	0	0
Ref. No.		C2701 (SCM-15	<u>;).</u>					,						,	, <u> </u>				
Mode	21	22	23	24																
STOP	2.6	2.5	2.9	2.7																
REC	2.6	2.5	2.9	2.7																
FF	2.6	2.5	2.9	2.8																
Ref. No.								I	C2703 (SCM-14	1)									
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
STOP	14.7	14.7	0.4	1.1	0	2.5	2.4	0.6	0.5	2.6	5.0	3.6	3.6	3.6	1.1	14.9	14.7	0.1		
REC	14.7	14.7	0.4	1.1	0	2.5	2.4	0.6	0.5	2.6	5.0	3.6	3.6	3.6	1.1	15.0	14.7	0.1		
FF	14.7	14.8	0.4	1.1	0	2.5	2.4	0.6	0.5	2.6	5.0	3.6	3.6	3.6	1.1	14.9	14.7	0.1		
Ref. No.	1								Į.	C2704 i	SCM-14)								
1		,						8	9	10	11	12	13	14	15	16	17	18	19	20
Mode	1	2	3	4	5	6	7	0	3	10								,,,		
	9.4	2	3 9.4	1.4	5 1.9	6 1.9	1.9	1.9	1.9	1.9	2.6	0	4.7	3.4	2.4	2.4	0.2	0	0	0
Mode								1	 		ļ					2.4				0 0.1
Mode STOP	9.4	0	9.4	1.4	1.9	1.9	1.9	1.9	1.9	1.9	2.6	0	4.7	3.4	2.4		0.2	0	0	

Ref. No.	т	102704	(SCM-	41	T			100705	/2011 4											·
Mode	21	22	23	24	1	2	3	IC2705	(SCM-1	,	1 7		 			IC2706			T	T -
STOP	0	0	9.4	4.0	0	3.2	1.7	0	2.2	6	7	8	1	2	3	4	5	6	7	8
REC	0	0.7	1.0	4.0	2.6	2.0	2.0	0	2.0	2.0	2.6	5.0	2.0	1.9	1.9	0	1.9	1.9	0.5	5.0
FF	0	0	9.4	16.5	5.0	0.6	2.2	1 0	2.2	1.0	5.0	5.0	0.6	1.9	1.9	0	1.9	1.9	1.0	5.0
Ref. Na.				IC2707					1	1.0	<u> </u>	C2708	4	-l	1.5		1.9	1.9	1.0	5.0
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	+	T	· -	T
STOP	4.2	2.5	2.5	0	2.4	2.5	0	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	 	-	+	<u> </u>
REC	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	 	 	 	-
FF	4.1	2.5	2.5	0	2.5	2.5	0	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0		 		
Ref. No.			- 1	C2709	(SCM-1	4)	1	<u> </u>	<u> </u>			C2710	<u> </u>				_			
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	 			T
STOP	0.1	2.5	2.4	0	2.4	2.5	4.5	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	 	-	<u> </u>	-
REC	2.3	2.5	2.5	0	2.5	2.5	2.3	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0			† · · · · ·	-
FF	0.1	2.5	2.4	0	2.4	2.5	4.5	5.0	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0		_		
Ref. No.			į l	C2711	(SCM-1	4)			IC27	15 (SCI	M-14)						·	·		
Mode	1	2	3	4	5	6	7	8	I	G	0			l.						
STOP	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	18.4	0	12.0									
REC	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	18.4	0	12.0									
FF Pof No.	2.5	2.5	2.5	0	2.5	2.5	2.5	5.0	18.3	0	12.0									
Ref. No.	<u> </u>		T :		1			C60001	(SCM-6	5)	,			,						
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0	0.1	0	0	0	0	0	0	11.5	4.6	0.2	0.2	5.0	1.7	0				
REC	0	0	0.1	0	0	0	0	0	0	0	4.6	0.2	0.2	5.0	1.7	5.0				
FF Ref. No.	0	0	0.1	0	0	0	0	0	0	11.5	4.6	0.4	0.4	5.0	1.7	5.0		<u> </u>		
	 	1 0	1 0	T				T _			(SCM-6						·	,	,	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REC	0.8	4.8	0	0	0	0	0	0	0	0	0	0	4.9	0	0	4.9	0	4.7	4.9	0
FF	0.9	0	0	0	0	0	4.8	4.7	4.8	0	3.2	3.2	4.9	0	0	4.9	0	4.7	4.9	0
Ref. No.	0.3			U		U	0	0	0	0	0	0	4.9	0	0	4.9	0	4.8	4.9	0
Mode	21	22	23	24	25	26	27	28	29	30	31		22	24	25	00				
STOP	4.5	0	0	0.1	4.7	0.1	2.5	0	4.9	4.9	1.5	32	33	34 0	35	36	37	38	39	40
REC	4.5	0	0	0	2.8	2.3	2.6	2.5	4.9	4.9	1.5		0	0	4.8	4.9	4.9	0	0	0
FF	4.6	0	0	0.1	2.5	2.2	2.6	5.2	0	0	0		0	0	4.8	4.9	4.9	0	0	0
Ref. No.	*****	L									(SCM-6				4.9	4.9	4.9		0	4.9
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	4.8	4.8	4.8	4.8	0	4.8	0	5.0	4.6	0.2	0.3	4.7	4.5	4.9	4.8	0	0	0	0	0
REC	4.8	4.8	4.8	4.8	0	4.8	0	5.0	4.6	0.2	0.2	4.8	4.5	4.9	4.8	0	0	0	0	0
FF	4.9	0	4.9	4.9	4.9	4.9	4.9	5.0	4.7	0.2	0.2	4.8	4.5	4.9	0	4.9	0	0	0	0
Ref. No.									IC	60002	(SCM-6)								٠٠٠
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	1.1	0.9	1.6	2.3	2.3	2.5	4.6	2.4	2.6	0.6	3.8	4.8	4.8	4.7	0.5	4.2	0	0.1	0	0
REC	1.1	0.9	1.0	2.3	2.3	2.5	4.6	2.4	2.6	0.6	3.8	4.9	4.9	4.8	0.5	4.3	0	0.1	0	0
FF Def No.	0.7	0.9	1.0	3.7	3.1	0	0.6	0.2	2.6	0.6	3.8	4.9	4.9	4.9	0.5	4.3	0	0.1	0	. 0
Ref. No.			(SCM-6	·		03 (SC				IC	60007	(SCM-6)							
Mode	81	82	83	84	V	G	0	1	2	3	4	5	6	7	8					
STOP	0	0	0	4.5	4.9	0	4.9	1.6	0.3	0.3	0	1.6	1.1	4.0	5.1					
REC	0	0	0	4.5	4.8	0	4.8	1.5	0.3	0.3	0	1.6	1.1	4.0	5.1					
FF Ref. No.	0	0	0	4.6	4.9	0	4.9	1.5	0.3	0	0	1.6	1.1	4.0	5.2					
	1	2	,	, 1	E 1			(SCM-6	`	45	44		·]
Mode STOP	3.8	3.8	3	11.5	5	6	7	8	9	10	11	12	13	14						
REC	3.8	3.8	3.8	11.5	1.0	1.0	1.0	2.4	2.4	2.4	0	0.3	0.3	11.4						
FF	3.8	3.8	3.8	11.5	1.0	1.0	1.0	2.4	2.4	2.4	0	0.4	0.4	10.3						
Ref. No.	J.0	3.0	3.8	11.5	1.0	1.0	1.0	2.4	2.4	2.4	0	0.3	0.3	10.3						
	1	2	3	260501 4	(SCM-7									(SCM-7						
Mode STOP	4.9	2.9	3.2	0	5	6	7	8	1	2	3	4	5	6	7	8	9	10		
REC	4.8	2.9	3.2	0	3.2	2.9	4.9	5.1	0	0.2	0.2	0	0	0	12.9	10.3	12.9	0.2		
FF	4.9	2.9	3.2	0	3.2	2.9	4.8	5.1	0	0.2	0.2	0	0	0	12.9	10.3	12.9	0.2		
<u> </u>		د.ن	J.2	U	٥.۷	2.9	4.9	5.2	0	0.2	0.2	0	0	0	12.9	10.3	12.9	0.2		

Ref. No.	ICENE	03 (SC	84.7)							CYLSER	VO IC	2016 (SCM-7)							
\	V	G G	0	1	2	3	4	5	6	7	8 7	9	10	11	12	13	14	15	16	
Mode STOP	5.0	0	5.0	0	5.1	0	0	0	0	5.1	0	5.1	0	5.1	2.6	2.6	5.1	0	5.1	
REC	5.0	0	5.0	0	5.1	0	0	0	0	5.1	0	5.1	0	5.1	2.6	2.6	5.1	0	5.1	-
FF	0	5.2	5.2	0	-5.2	0	0	0	0	5.2	0	5.2	0	5.2	2.6	2.6	5.2	0	5.2	
Ref. No.	Q150	1 (SCN		Q150	2 (SCN	<i>N</i> -16)	Q150	3 (SCN	1-16)	Q150	4 (SCIV	1-16)	Q150	5 (SCN	1-16)	Q200)1 (SCI	vi-9)		
Mode	E	c	В	Е	С	В	E	С	В	E	С	В	Е	С	В	Е	С	В		
STOP	5.1	5.4	5.7	0	5.3	-3.0	14.8	18.3	15.4	13.0	13.6	13.5	12.0	13.0	12,3	3.5	5.1	3.8		
REC	5.1	5.4	5.7	0	5.6	-3.0	15.0	18.5	15.5	13.0	13.4	13.5	12.0	12.9	12.3	3.5	5.1	3.8		
FF	5.1	5.4	5.7	0	4.7	-3.0	15.0	18.1	15.4	13.0	13.5	13.5	12.0	12.9	12.3	3.5	5.1	3.8		
Ref. No.	Q230	2 (SCN	1-10)	O230	3 (SCN	1P10)	O230	4 (SCN	1-10)	O230	5 (SCN	1-10)	Q270	3 (SCN	1 -15)	O270	4 (SCN	1-15)		
Mode	Е	С	В	Е	С	В	E	С	В	Е	С	В	E	С	В	Е	С	В		
STOP	0	11.7	0	0	0	0.6	0	3.5	0.5	1.2	5.0	1.7	4.0	2.8	4.0	18.2	18.4	18.0		
REC	0	5.6	0.3	0	0	0.3	0.7	0.8	1.3	3.2	5.0	3.7	4.0	2.8	4.0	18.5	11.0	18.3		
FF	0	11.7	0	0	0	0.6	0	3.5	0.5	1.2	5.0	1.7	16.4	2.8	15.8	18.3	4.2	17.7		
Ref. No.	Q270	5 (SCN	1-15)	Q270	6 (SCN	<i>I</i> -15)	Q270	7 (SCN	<i>I</i> -15)	O270	9 (SCN	1-15)	Q271	0 (SCN	1-15)	0271	1 (SCN	1-15)		
Mode	E	С	В	Е	С	В	Ш	С	В	Е	С	В	E	С	В	Е	С	В		
STOP	0	15.5	0.2	0	0.2	0.4	0	17.5	0.1	18.2	12.0	18.0	18.2	12.1	18.0	17.5	3.7	17.5		
REC	0	17.8	0.1	0	0.1	0.5	0	17.5	0.1	18.5	15.7	18.3	18.5	12.5	18.3	17.5	4.0	17.5		
FF	0	17.1	0	0	0	0.7	0	17.4	0.1	18.4	17.0	18.0	18.3	8.0	17.9	17.4	4.0	17.4		
Ref. No.	O271	3 (SCN	1 -15)	Q271	4 (SCN	N-15)	0271	5 (SCN	/l-15)	0271	6 (SCN	1-15)	ļ ———	01 (SC			02 (SC			,
Mode	Е	С	В	E	С	В	E	С	В	Е	С	В	E	С	В	E	С	В		
STOP	2.9	2.9	2.4	2.9	2.9	2.4	5.2	2.9	5.2	5.1	2.9	5.3	0.5	13.0	0.4	12.2	0	12.7		
REC	3.0	3.0	2.4	3.0	2.9	2.4	5.2	2.9	5.1	5.2	2.9	5.7	0.5	13.0	0.4	12.1	0	12.6		
FF	15.0	2.6	15.3	9.7	2.7	8.2	15.3	2.9	15.9	10.0	2.7	9.7	0.6	13.0	0.4	12.1	0	12.6		
Ref. No.		03 (SC	M-6)	——	004 (SC	,		05 (SC	· · · · ·		06 (SC			07 (SC			08 (SC			
Mode	Е	С	В	E	С	В	Е	С	В	E	С	В	E	С	В	E	С	В		
STOP	12.8	0	12.3	0	0	0	0	0.1	0	0	4.9	0.1	0	4.6	0.1	0	0.1	0.1		
REC	12.8	0	12.3	0	0	0	0	0	0	0	4.9	0	0	4.6	0.1	0	12.3	-0.7		
FF	12.8	0	12.3	l 0	1 0	1 0	0	1 0	1 0	0 1		10	1 0			l 0	0.2	0.2		i
			L			<u> </u>	<u> </u>				4.9			4.6	0.2					
Ref. No.		01 (SC	M-7)	Q608	02 (SC	M-7)	Q605	03 (SC	M-7)	Q605	04 (SC	M-7)	Q605	05 (SC	:M-7)	Q605	06 (SC	M-7)		I
Mode	E	С	M-7)	Q605 E	02 (SC	M-7)	Q605	03 (SC	M-7)	O605	04 (SC	M-7)	Q605	05 (SC	M-7)	Q605	06 (SC	M-7)		
Mode STOP	E 0.6	C 0.6	M-7) B	Q60 5 E 0.6	02 (SC C 1.2	B 0.4	Q605 E 4.2	03 (SC C 4.8	B 4.8	0605 E 5.0	04 (SC C 4.8	M-7) B 4.2	Q605 E 0	05 (SC	M-7) B 0.8	Q605 E	06 (SC	M-7) B 0.7		
Mode STOP REC	0.6 0.6	0.6 0.6	B 1.2 1.2	O605 E 0.6 0.6	C 1.2	B 0.4 0.4	Q605 E 4.2 4.2	03 (SC C 4.8 4.8	B 4.8 4.8	CA605 E 5.0 5.0	04 (SC C 4.8 4.8	M-7) B 4.2 4.2	Q605 E 0	05 (SC C 0	B 0.8 0.8	0 0 0	06 (SC C 0	M-7) B 0.7 0.7		
Mode STOP REC FF	0.6 0.6 0.6	0.6 0.6 0.6	M-7) B 1.2 1.2 1.2	O608 E 0.6 0.6 0.6	C 1.2 1.2 1.2	B 0.4 0.4 0.4	Q605 E 4.2 4.2 0	03 (SC C 4.8 4.8 0.4	B 4.8 4.8 0	0605 E 5.0	04 (SC C 4.8	M-7) B 4.2	Q605 E 0	05 (SC	M-7) B 0.8	Q605 E	06 (SC	M-7) B 0.7		
Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 Q60 5	C 0.6 0.6 0.6	B 1.2 1.2 1.2 1.2 EM-7)	O608 E 0.6 0.6 0.6 O.6 O608	502 (SC C 1.2 1.2 1.2 508 (SC	B 0.4 0.4 0.4 CM-7)	Q605 E 4.2 4.2 0 Q605	03 (SC 4.8 4.8 0.4 609 (SC	B 4.8 4.8 0 CM-7)	CA605 E 5.0 5.0	04 (SC C 4.8 4.8	M-7) B 4.2 4.2	Q605 E 0	05 (SC C 0	B 0.8 0.8	0 0 0	06 (SC C 0	M-7) B 0.7 0.7		
Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 Q605 E	C 0.6 0.6 0.6 0.7 (SC	B 1.2 1.2 1.2 EM-7) B	O608 E 0.6 0.6 0.6 O608 E	502 (SC C 1.2 1.2 1.2 508 (SC	B 0.4 0.4 0.4 CM-7) B	Q605 E 4.2 4.2 0 Q605 E	C 4.8 4.8 0.4 609 (SC C	B 4.8 4.8 0 CM-7) B	CA605 E 5.0 5.0	04 (SC C 4.8 4.8	M-7) B 4.2 4.2	Q605 E 0	05 (SC C 0	B 0.8 0.8	0 0 0	06 (SC C 0	M-7) B 0.7 0.7		
Mode STOP REC FF Ref. No. Mode STOP	E 0.6 0.6 0.6 Q605 E	C 0.6 0.6 0.6 07 (SC C 14.8	B 1.2 1.2 1.2 1.2 EM-7) B 0	O608 E 0.6 0.6 0.6 O608 E 14.9	502 (SC 1.2 1.2 1.2 1.2 1.4	B 0.4 0.4 0.4 0.4 CM-7) B 14.8	0605 E 4.2 4.2 0 0605 E	03 (SC C 4.8 0.4 609 (SC C 4.9	B 4.8 4.8 0 CM-7) B 0.2	CA605 E 5.0 5.0	04 (SC C 4.8 4.8	M-7) B 4.2 4.2	Q605 E 0	05 (SC C 0	B 0.8 0.8	0 0 0	06 (SC C 0	M-7) B 0.7 0.7		
Mode STOP REC FF Ref. No. Mode STOP REC	E 0.6 0.6 0.6 Q605 E 0 0	C 0.6 0.6 0.6 C C 14.8 14.8	M-7) B 1.2 1.2 1.2 1.2 8M-7) B 0	O608 E 0.6 0.6 0.6 O608 E 14.9	502 (SC C 1.2 1.2 1.2 1.2 1.4 C 1.4	B 0.4 0.4 0.4 0.4 CM-7) B 14.8	0605 E 4.2 4.2 0 0605 E 0	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8	B 4.8 4.8 4.8 0 CM-7) B 0.2	CA605 E 5.0 5.0	04 (SC C 4.8 4.8	M-7) B 4.2 4.2	Q605 E 0	05 (SC C 0	B 0.8 0.8	0 0 0	06 (SC C 0	M-7) B 0.7 0.7		
Mode STOP REC FF Ref. No. Mode STOP REC FF	E 0.6 0.6 0.6 Q605 E 0 0	C 0.6 0.6 0.6 C C 14.8 14.8 14.8	M-7) B 1.2 1.2 1.2 EM-7) B 0 0	O608 E 0.6 0.6 O.6 O608 E 14.9 14.9	502 (SC C 1.2 1.2 1.2 508 (SC C 1.4 1.4	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 14.8	Q605 E 4.2 4.2 0 Q605 E 0 0	C 4.8 0.4 0.9 (SC C 4.9 4.8 4.9	B 4.8 4.8 0 EM-7) B 0.2 0.2	O605 E 5.0 5.0 5.2	04 (SC C 4.8 4.8 -0.4	M-7) B 4.2 4.2 5.2	0605 E 0 0	C 0 0 14.9	M-7) B 0.8 0.8 0	0 0 0 0	06 (SC C 0 0 0 0 0 0	M-7) B 0.7 0.7 0		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 O.6 O.6 O.6 O.6 O.6 O.6 O.6 O.6 O.6 O	C 0.6 0.6 0.6 C C 14.8 14.8 14.8 02 (SC	M-7) B 1.2 1.2 1.2 1.2 2M-7) B 0 0 M-16)	O608 E 0.6 0.6 O.6 O608 E 14.9 14.9	502 (SC C 1.2 1.2 1.2 508 (SC C 1.4 1.4 0	B 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q605 E 4.2 0 Q605 E 0 0 0 QR20	03 (SC C 4.8 0.4 609 (SC C 4.9 4.8 4.8 0.0 (SC C C 4.9 4.8 4.9 0.0 (SC C C C C C C C C C C C C C C C C C C	B 4.8 4.8 0 CM-7) B 0.2 0.2 0.2 CM-9)	O605 E 5.0 5.0 5.2	04 (SC C 4.8 4.8 -0.4	M-7) B 4.2 4.2 5.2	0605 E 0 0 0	05 (SC C 0 0 14.9	M-7) B 0.8 0.8 0	0605 E 0 0 0	06 (SC 0 0 0 0	M-7) B 0.7 0.7 0		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode	E 0.6 0.6 0.6 Q605 E 0 0 0 QR15	C 0.6 0.6 0.6 C C 14.8 14.8 14.8 C C C C C C C C C C C C C C C C C C C	M-7) B 1.2 1.2 1.2 1.2 1.2 0 0 0 M-16) B	Q609 E 0.6 0.6 0.6 Q609 E 14.9 14.9 QR15 E	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 003 (SC	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 M-16) B	Q605 E 4.2 4.2 0 Q605 E 0 0 QR20	C 4.8 0.4 609 (SC 4.9 4.8 4.9 003 (SC C	B 4.8 4.8 0 CM-7) B 0.2 0.2 0 CM-9) B	O605 E 5.0 5.0 5.2 OR20 E	04 (SC C 4.8 4.8 -0.4	M-7) B 4.2 4.2 5.2 SM-9) B	O605 E 0 0 0	C 0 0 14.9	M-7) B 0.8 0.8 0	0 0 0 0	06 (SC C 0 0 0 0 0 0	M-7) B 0.7 0.7 0		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP	E 0.6 0.6 0.6 0.6 0.0 0 0 0 0 0 0 0 0 0 0	C 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1	M-7) B 1.2 1.2 1.2 1.2 1.2 6M-7) B 0 0 0 M-16) B 4.7	C608 E 0.6 0.6 0.6 C608 E 14.9 14.9 CR15 E 0	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC 0	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 14.8 M-16) B 0	Q605 E 4.2 4.2 0 Q605 E 0 0 Q720 E 0	C 4.8 4.8 0.4 609 (SC 4.9 4.8 4.9 003 (SC C 2.0	B 4.8 4.8 0 CM-7) B 0.2 0.2 0 CM-9) B 0.8	O605 E 5.0 5.0 5.2 OR20 E 0	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9	M-7) B 4.2 4.2 5.2 SM-9) B 0.6	0605 E 0 0 0	0 0 0 14.9 04 (SCI	M-7) B 0.8 0.8 0 M-10) B	Q605 E 0 0 0	06 (SC 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 0.6 0.0 0 0 0 0 0 0 0 0 0 0	C 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.1	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 M-16) B 4.7	C608 E 0.6 0.6 0.6 C608 E 14.9 14.9 CR15 E 0	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 003 (SC	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 M-16) B	Q605 E 4.2 4.2 0 Q605 E 0 0 QR20	C 4.8 0.4 0.9 (SC 4.9 4.8 4.9 0.3 (SC C 2.0 2.0	B 4.8 0 0 CM-7) B 0.2 0.2 0 CM-9) B 0.8 0.8	O605 E 5.0 5.0 5.2 OR20 E	04 (SC C 4.8 4.8 -0.4	M-7) B 4.2 4.2 5.2 SM-9) B	Q605 E 0 0 0 0	0 0 0 14.9 04 (SC) C	M-7) B 0.8 0.8 0 M-10) B 4.9	Q605 E 0 0 0 0	06 (SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP	E 0.6 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0	C 0.6 0.6 0.6 C C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 M-16) B 4.7 4.7	Q608 E 0.6 0.6 Q608 E 14.9 14.9 QR15 E 0 0	502 (SC C 1.2 1.2 1.2 1.2 508 (SC 1.4 1.4 0 003 (SC 0 0	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 M-16) B 0 0	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0	C 4.8 4.8 0.4 609 (SC 4.9 4.8 4.9 003 (SC C 2.0	B 4.8 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8	O605 E 5.0 5.0 5.2 OR20 E 0 0	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6	Q608 E 0 0 0 0 0 QR23 E 5.0 5.0 5.0	05 (SC C 0 0 14.9 04 (SC C 0	M-7) B 0.8 0.8 0 M-10) B 4.9 4.9 -0.2	QR23 E 0 0 0 0 QR23 E 5.0 5.0	06 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode FF Ref. No. Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0	C 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.1	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 M-16) B 4.7 4.7	0608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0 0R23	502 (SC C 1.2 1.2 1.2 1.2 508 (SC C 1.4 1.4 0 003 (SC C	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 M-16) B 0 0	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0	03 (SC C 4.8 4.9 4.8 4.9 003 (SC C 2.0 2.0 2.0	B 4.8 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8	O605 E 5.0 5.0 5.2 OR20 E 0 0	04 (SC C 4.8 4.8 -0.4 05 (SC C C 4.9 4.9	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6	Q608 E 0 0 0 0 0 QR23 E 5.0 5.0 5.0	05 (SC C 0 0 14.9 04 (SC C 0 0	M-7) B 0.8 0.8 0 M-10) B 4.9 4.9 -0.2	QR23 E 0 0 0 0 QR23 E 5.0 5.0	06 (SC C 0 0 0 0 05 (SC C 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. FF	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C C 0.5 C C C 0.1 0.2 06 (SC C C C C C C C C C C C C C C C C C C	M-7) B 1.2 1.2 1.2 1.2 M-7) B 0 0 M-16) B 4.7 4.7 M-10)	Q608 E 0.6 0.6 Q608 E 14.9 14.9 QR15 E 0 0	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 14.8 M-16) B 0 0 0 0 CM-10)	O605 E 4.2 0 O605 E 0 0 OR20 E 0 OR20 C C OR20 OR23	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC 2.0 2.0 2.0 9 (SC	B 0.2 0.2 0 CM-9) B 0.8 0.8 0.8 MM-10)	O605 E 5.0 5.0 5.2 OR20 E 0 0 0 QR23	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10)	OR05 E 0 0 0 0 CR23 E 5.0 CR23	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10)	O605 E 0 0 0 0 CR23 E 5.0 CR23	06 (SC C 0 0 0 0 05 (SC C 0 0 1.9	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10)		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. No. Mode	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 C 14.8 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C C C C C C C C C C C C C C C C C C	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 M-16) B 4.7 4.7 M-10) B	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0R23	502 (SC C 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC C 0 0 0	B 0.4 0.4 0.4 0.4 CM-7) B 14.8 14.8 14.8 M-16) B 0 0 0 0 0 CM-10) B 14.8 B 0 0 0 0 0 CM-10)	O605 E 4.2 0 O605 E 0 0 OR20 E 0 OR20 E 0 OR23 E	03 (SC C 4.8 0.4 09 (SC C 4.9 4.8 4.9 03 (SC 2.0 2.0 2.0 09 (SC	B 4.8 4.8 0 0 CM-7) B 0.2 0.2 0 CM-9) B 0.8 0.8 M-10) B	O605 E 5.0 5.0 5.2 OR20 E 0 0 QR23 E	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9	M-7) B 4.2 4.2 5.2 M-9) B 0.6 0.6 0.6 M-10) B	OR23 E 5.0 CR23 E 5.0 CR23 E	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B	OR23 E 5.0 CR23 E 5.0 CR23 E	06 (SC C 0 0 0 0 0 0 0 0 1.9 12 (SC C	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B		
Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 C 14.8 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0R23 E	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.4 0.4 0.4 0.4 0.4 EM-7) B 14.8 14.8 14.8 M-16) B 0 0 0 EM-10) B 0	O605 E 4.2 0 O605 E 0 0 0 OR20 E 0 OR23 E 5.0	03 (SC C 4.8 0.4 09 (SC C 4.9 4.8 4.9 03 (SC 2.0 2.0 2.0 09 (SC	B 4.8 4.8 0 0 EM-7) B 0.2 0.2 0 EM-9) B 0.8 0.8 EM-10) B 5.0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0	04 (SC C 4.8 4.8 -0.4 05 (SC C 4.9 4.9 4.9 10 (SC C	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 M-10) B	OR05 E 0 0 0 0 OR23 E 5.0 5.0 GR23 E 0	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7 11 (SC	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6	O605 E 0 0 0 0 OR23 E 5.0 5.0 OR23 E 0	06 (SC C 0 0 0 0 0 0 0 1.9 12 (SC C 11.6	M-10) B 4.9 1.4 M-10) B 0.7		
Mode STOP REC FF Ref. No. Mode	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 C 14.8 14.8 14.8 14.8 02 (SC 0.1 0.1 0.2 06 (SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 1.2 1.2 1.2 1.2 M-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0 0R23 E 0 0	502 (SC C 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.4 0.4 0.4 0.4 2M-7) B 14.8 14.8 14.8 M-16) B 0 0 0 0 M-10) B 0 2.4	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0 0 QR23 E 5.0 5.0	03 (SC C 4.8 0.4 0.9 (SC C 4.9 4.8 4.9 0.0 (SC C 2.0 2.0 0.9 (SC C 1.0 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	B 4.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 0 0	04 (SC C 4.8 4.8 -0.4 05 (SC C 4.9 4.9 4.9 10 (SC C	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 M-10) B 0 3.1	OG05 E 0 0 0 0 OR23 E 5.0 5.0 OR23 E 0 0 0	05 (SC C 0 0 14.9 04 (SC C 0 2.7 11 (SC C	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 0	06 (SC C 0 0 0 1.9 12 (SC C 11.6 0	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8		
Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C 0 0 0 2.6 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	M-7) B 1.2 1.2 1.2 1.2 M-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0 0R23 E 0 0	502 (SC 1.2 1.2 1.2 1.2 1.4 0 033 (SC 0 0 0 0 0 0 0 0 0 1.8	B 0.4 0.4 0.4 0.4 2M-7) B 14.8 14.8 14.8 M-16) B 0 0 0 0 M-10) B 0 2.4	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0 0 QR23 E 5.0 5.0	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC C 2.0 2.0 09 (SC C 1.0 1.1 3.3	B 4.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 0 0	04 (SC C 4.8 4.8 -0.4 05 (SC C 4.9 4.9 4.9 10 (SC C 0.3	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 M-10) B 0 3.1	OG05 E 0 0 0 0 OR23 E 5.0 5.0 OR23 E 0 0 0	05 (SC C 0 0 14.9 C C 0 0 2.7 11 (SC C 0 0 0.3 0 0	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 0	06 (SC C 0 0 1.9 12 (SC C 11.6 0 11.6	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8		
Mode STOP REC FF Ref. No. FF	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10)	Q608 E 0.6 0.6 Q608 E 14.9 14.9 QR15 E 0 0 QR23 E 0 QR23	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 0 0 0 0 0 0 0 0 0 0 1.8 1.8	B 0.4 0.4 0.4 0.4 0.4 0.4 14.8 14.8 14.8 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0 QR20 E 5.0 QR23	03 (SC C 4.8 0.4 6.09 (SC C 4.9 4.8 4.9 0.03 (SC C 2.0 2.0 0.9 (SC C 1.0 1.1 3.3 0.1 (SC C C 1.0 1.1 3.3 0.1 (SC C C C 1.0 1.1 3.3 0.1 (SC C C C C C C C C C C C C C C C C C C	B 4.8 0 0 CM-7) B 0.2 0.2 0 CM-9) B 0.8 0.8 0.8 CM-10) B 5.0 4.9 3.4 CM-11)	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 OR24	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9 10 (SC C 0 0.3 0	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10) B 0 3.1 0 M-11)	O608 E 0 0 0 0 OR23 E 5.0 5.0 OR23 E 0 OR26 OR27	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7 11 (SC C 0 0.3	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8)	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 OR26	06 (SC C 0 0 0 1.9 12 (SC C 11.6 0 11.6 502 (SC	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8 0		
Mode STOP REC FF Ref. No. Mode	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C 0 0 0 0 2.6 13 (SC C C C C C C C C C C C C C C C C C C	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B	Q608 E 0.6 0.6 0.6 Q608 E 14.9 14.9 QR15 E 0 0 QR23 E 0 QR23 E	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 003 (SC 0 0 0 0 0 0 0 1.4 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0 QR20 E 5.0 QR24 E	03 (SC C 4.8 0.4 6.09 (SC C 4.9 4.8 4.9 0.03 (SC C 2.0 2.0 2.0 1.1 3.3 01 (SC C C C C C C C C C C C C C C C C C C	B 4.8 0 0 0.2 0.2 0 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 OR24 E	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9 10 (SC C 0 0.3 0	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10) B 0 M-11) B	O608 E 0 0 0 0 CR23 E 5.0 5.0 QR23 E 0 QR23 E 0 QR28	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7 11 (SC C 0 0.3 0 501 (SC	M-7) B 0.8 0.8 0 M-10) B 4.9 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B	O605 E 0 0 0 0 0 CR23 E 5.0 5.0 QR23 E 0 0 QR21 E	06 (SC C 0 0 0 1.9 12 (SC C 11.6 0 11.6 502 (SC C C	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8 0 EM-8) B		
Mode STOP REC FF Ref. No. Mode STOP	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.7 (SC C 14.8 14.8 14.8 02 (SC C 0.1 0.1 0.2 06 (SC C C 0 0 0 2.6 13 (SC C C C C C C C C C C C C C C C C C C	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 0R15 E 0 0 0 0R23 E 0 0 0R23	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC 0 0 0 0 0 0 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	B 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Q608 E 4.2 4.2 0 Q608 E 0 0 QR20 E 0 0 QR20 E 5.0 5.0 QR24 E 0	03 (SC C 4.8 0.4 6.09 (SC C 4.9 4.8 4.9 0.03 (SC C 2.0 2.0 0.9 (SC C 1.0 1.1 3.3 0.1 (SC C 5.1	B 4.8 0 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 O OR24 E 5.1	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9 10 (SC C 0 0.3 0 0 02 (SC C	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10) B 0 M-11) B 4.0	O608 E 0 0 0 0 0 CR23 E 5.0 5.0 QR23 E 0 0 QR28 E 0 0 QR28	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7 11 (SC C 0 0.3 0 501 (SC C	M-7) B 0.8 0.8 0 M-10) B 4.9 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B	O605 E 0 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 CR24 E 0	06 (SC C 0 0 1.9 12 (SC C 11.6 0 11.6 5002 (SC C 0 0 0 1.9 12 (SC C 0 0 1.6 5002 (SC C 0 0 0 1.9 1.9 1.6 5002 (SC C 0 0 0 1.9 1.9 1.6 5002 (SC C 0 0 1.9 1.9 1.9 1.9 1.6 5002 (SC C 0 0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8 0 CM-8) B 4.9		
Mode STOP REC FF Ref. No. Mode STOP REC FF Ref. Ref. Ref. No. Mode STOP REC FF	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 M-7) B 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B 0 11.7	O608 E 0.6 0.6 0.6 O608 E 14.9 14.9 14.9 OR15 E 0 0 OR23 E 0 OR23 E 0 O OR23	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC 0 0 0 0 0 0 1.8 314 (SC 1.6 4.6	DM-7 B	O608 E 4.2 4.2 0 O608 E 0 0 OR20 E 0 OR20 E 0 OR22 E 0 OR24 E 0 O OR24	03 (SC C 4.8 0.4 6.09 (SC C 4.9 4.8 4.9 0.03 (SC C 2.0 2.0 0.9 (SC C 1.0 1.1 3.3 0.1 (SC C 5.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	B 4.8 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 O OR24 E 5.1 5.1 5.2	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9 10 (SC C 0 0.3 0 02 (SC C C	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10) B 0 3.1 0 M-11) B 4.0 4.0	O608 E 0 0 0 0 CR23 E 5.0 5.0 QR23 E 0 0 QR24 E 0 0 0 OR29	05 (SC C 0 0 14.9	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B 0 4.9	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 QR24 E 0 0 0 0 0 0 0 0 0	06 (SC C 0 0 1.9 12 (SC C 11.6 0 11.6 502 (SC C 0 0 0 0 1.9 1.9 1.6 502 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 1.4 M-10) B 0 4.8 0 CM-8) B 4.9 4.9		
Mode STOP REC FF Ref. No. FF	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 M-7) B 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B 0 11.7	O608 E 0.6 0.6 0.6 O608 E 14.9 14.9 14.9 OR15 E 0 0 OR23 E 0 OR23 E 0 O OR23	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC 0 0 0 0 0 0 1.8 1.6 1.6 1.6	DM-7 B	O608 E 4.2 4.2 0 O608 E 0 0 OR20 E 0 OR20 E 0 OR22 E 0 OR24 E 0 O OR24	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC C 2.0 2.0 2.0 C 1.0 1.1 3.3 01 (SC C 5.1 0.1 5.2	B 4.8 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 O OR24 E 5.1 5.1 5.2	04 (SC C 4.8 4.8 -0.4 05 (SC C 4.9 4.9 4.9 0 (SC C 0 0.3 0 0 (SC C C 0 0.3 0 0 (SC C 0 1 (SC) 0 1 (SC) 0 0 (SC) 0 (SC) 0 0 (SC) 0 0 (SC) 0 0 (SC) 0 (SC) 0 0 (SC) 0 (SC	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 M-10) B 0 3.1 0 M-11) B 4.0 4.0	O608 E 0 0 0 0 CR23 E 5.0 5.0 QR23 E 0 0 QR24 E 0 0 0 OR29	05 (SC C 0 0 14.9 04 (SC) C 0 0.3 0 501 (SC) C 0 0.3	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B 0 4.9	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 QR24 E 0 0 0 0 0 0 0 0 0	06 (SC C 0 0 0 1.9 12 (SC C 11.6 0 11.6 502 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 1.4 M-10) B 0 4.8 0 CM-8) B 4.9 4.9		
Mode STOP REC FF Ref. No.	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B 0 0 M-10) C M	O608 E 0.6 0.6 0.6 O608 E 14.9 14.9 14.9 OR15 E 0 0 OR23 E 0 OR23 E 0 OR23 E 0 OR23	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC C 0 0 0 0 0 1.8 11.6 504 (SC	B 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	O608 E 4.2 4.2 0 O608 E 0 0 OR20 E 0 OR23 E 5.0 5.0 CR24 E 0 OR24 C C C C C C C C C C C C C C C C C C C	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC C 2.0 2.0 2.0 C 1.0 1.1 3.3 01 (SC C 5.1 0.1 5.2 505 (SC C)	B 4.8 0 0.2 0.2 0 0.2 0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 OR24 E 5.1 5.1 5.2 OR27	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 4.9 10 (SC C 0 0.3 0 02 (SC C 4.1 4.1 5.1 01 (SC	M-7) B 4.2 4.2 5.2 SM-9) B 0.6 0.6 0.6 0.6 M-10) B 0 3.1 0 M-11) B 4.0 4.0 4.0 M-14)	OG05 E 0 0 0 0 OR23 E 5.0 5.0 CR23 E 0 0 OR25 E 0 OR27 OR27 OR27	05 (SC C 0 0 14.9 04 (SC) C 0 0 2.7 11 (SC C 0 0.3 0 501 (SC C 0 0.3 0 0 11.6 11.6 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B 0 4.9 M-15)	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 CR25 E 0 OR25 CR25 CR25 CR25 CR26 CR27 CR27 CR27 CR27 CR27 CR27 CR27 CR27	06 (SC C 0 0 1.9 11.6 0 11.6 502 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 4.9 1.4 M-10) B 0 4.8 0 :M-8) B 4.9 4.9 4.9		
Mode STOP REC FF Ref. No. Mode	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 SM-7) B 0 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10) B 0 0 M-10) B 0 0 M-10) B B 0 0 B B B B B B B B B B B B B B B	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 00 00 00 00 00 00 00 00 00 00 00 00 00	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 03 (SC C 0 0 0 0 0 1.8 314 (SC 11.6 504 (SC C	DM-7 B	O608 E 4.2 0 O608 E 0 0 0 OR20 E 0 0 OR23 E 5.0 5.0 QR24 E 0 OR22 E E	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC 2.0 2.0 2.0 2.0 1.1 3.3 01 (SC C 5.1 0.1 5.2 605 (SC	B 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 O OR24 E 5.1 5.1 5.2 OR27 E	04 (SC C 4.8 4.8 -0.4 005 (SC C 4.9 4.9 10 (SC C 0 0.3 0 02 (SC C 4.1 4.1 5.1 01 (SC	M-7) B 4.2 4.2 5.2 M-9) B 0.6 0.6 0.6 0.6 M-10) B 0 3.1 0 M-11) B 4.0 4.0 4.0 M-14) B	OG05 E 0 0 0 0 OR23 E 5.0 5.0 OR23 E 0 0 OR27 E 0 OR27 E 0 OR27	05 (SC C 0 0 14.9 04 (SC C 0 0.3 0 0.3 0 501 (SC C 0 0.3 0 0 11.6 11.6 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.8 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B 0 4.9 M-15) B	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 CR25 E 0 CR27 E 0 CR27 E E	06 (SC C 0 0 0 11.6 C C C C C C C C C	M-7) B 0.7 0.7 0 M-10) B 4.9 1.4 M-10) B 0 4.8 0 :M-8) B 4.9 4.9 M-15) B		
Mode STOP REC FF Ref. No. Mode STOP	E 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	C 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	M-7) B 1.2 1.2 1.2 1.2 1.2 M-7) B 0 0 M-16) B 4.7 4.7 M-10) B 0 0 M-10)	O608 E 0.6 0.6 0.6 0.6 14.9 14.9 14.9 00 00 00 00 00 00 00 00 00 00 00 00 00	502 (SC 1.2 1.2 1.2 1.2 1.4 1.4 0 0 0 0 0 0 0 0 0 0 1.8 11.6 4.6 11.6 504 (SC 0	B 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	O608 E 4.2 0 O608 E 0 0 0 OR20 E 0 0 OR23 E 5.0 5.0 QR24 E 0 OR22 E 0 OR22 E 0 OR22	03 (SC C 4.8 4.8 0.4 609 (SC C 4.9 4.8 4.9 003 (SC 2.0 2.0 2.0 1.1 3.3 01 (SC C 5.1 0.1 5.2 605 (SC C	B 4.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O605 E 5.0 5.0 5.2 OR20 E 0 0 OR23 E 0 O OR24 E 5.1 5.1 5.2 OR27 E 0 0	04 (SC C 4.8 4.8 -0.4 05 (SC C 4.9 4.9 10 (SC C 0 0.3 0 02 (SC C 4.1 4.1 5.1 01 (SC	M-7) B 4.2 4.2 5.2 M-9) B 0.6 0.6 0.6 0.8 M-10) B 0 3.1 0 M-11) B 4.0 4.0 M-14) B 5.1	OG05 E 0 0 0 0 CR23 E 5.0 CR23 E 0 0 CR25 E 0 CR27 E 5.0 CR27 E 5.0	05 (SC C 0 0 14.9 04 (SC C 0 0 2.7 11 (SC C 0 0.3 0 501 (SC C 11.6 11.6 0 002 (SC C 1.4	M-7) B 0.8 0.8 0 B 0.8 0 M-10) B 4.9 -0.2 M-10) B 11.6 0 11.6 CM-8) B 0 4.9 4.9 4.9	O605 E 0 0 0 0 CR23 E 5.0 5.0 CR23 E 0 0 CR27 E 0 0 CR27	06 (SC C 0 0 0 0 0 0 0 0 1.9 12 (SC C 11.6 0 11.6 0 0 0 0 0 1.9 0 11.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M-7) B 0.7 0.7 0 M-10) B 4.9 1.4 M-10) B 0 4.8 0 EM-8) B 4.9 4.9 B 0 D D D D D D D D D D D D D D D D D D		

Ref. No.	QR27	04 (SC	M-15)	QR60	001 (S	CM-6)	QR60	002 (S	CM-6)	QR60	003 (S	CM-6)	QR60	004 (S	CM-6)	QR60	006 (S	CM-6)	
Mode	Е	С	В	Ε	С	В	E	С	В	E	С	В	Ε	С	В	E	С	В	_
STOP	0	0.1	2.4	5.2	0.4	4.5	0	12.6	0	12.8	0.2	12.8	0	0.1	2.9	0	0	4.0	
REC	. 0	0.1	2.5	5.1	0.4	4.5	0	12.6	0	12.8	12.7	0	0	0	0	0	0	4.0	
FF	0	0.1	2.4	5.2	0.4	4.6	0	12.6	0	12.8	0.3	12.8	0	0.1	2.9	0	0	4.0	
Ref. No.	QR60	007 (S	CM-6)	QR60	008 (SC	CM-6)	QR60	010 (S	CM-6)	QR60	013 (S	CM-6)	QR60	012 (S	CM-6)	QR60	501 (S	CM-7)	
Mode	E	С	B	E	С	В	E	С	В	E	С	В	E	С	В	E	С	В	
STOP	0	5.3	0	0	13.0	0	0	3.7	0	0	4.8	0	0	1.6	0	0	10.3	0	
REC	0	5.3	0	0	0.1	4.8	0	0.1	4.9	0	4.8	0	0	1.6	0	0	10.2	0	
FF	0	5.3	0	0	13.0	0	0	3.7	0	0	4.9	0	0	1.6	0	0	10.2	0	
Ref. No.	QR60	502 (SC	CM-7)	QR60	503 (SC	CM-7)													
Mode	Е	C	В	E	С	В													
STOP	4.9	4.8	0	0	0	13.9							- 11						
REC	4.9	4.8	0	0	0	13.9													
FF	5.2	0.3	4.9	0	0	13.9													

VIDEO	1/0	C B	Δ																	
Ref. No.		<u> </u>				10	3001 (SCM-32	!)		-							-		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	4.5	3.0	5.1	1.8	1.6	2.2	2.9	0	2.9	3.6	2.7	3.0	2.9	1.6						
REC	4.5	3.0	5.1	1.8	-1.6	2.2	2.9	0	2.9	3.6	2.7	3.0	2.9	1.6						
Ref. No.								<u> </u>	IC	3002 (SCM-32)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	4.7	3.0	3.0	2.8	2.7	4.4	3.3	4.7	3.8	1.6	4.0	0	1.9	2.4	2.3	4.7	0	2.9	2.7	2.9
REC	4.7	3.0	3.0	2.8	2.7	4.4	3.3	4.7	3.8	1.6	4.0	0	1.9	2.4	2.3	4.7	0	2.9	2.7	. 2.9
Ref. No.									10	3003 (SCM-32)								
Mode	21	22	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
STOP	3.3	2.9	2.3	2.9	2.7	2.6	2.6	0	-4.9	0	0.1	0	0.1	4.5	4.5	4.5	2.9	4.7		
REC	3.3	2.9	2.4	2.9	2.7	2.6	2.6	0	-4.9	0	0.1	0.2	0.1	4.5	4.5	4.5	2.9	4.7		
Ref. No.			10	C3004 (SCM-32)														
Mode	1	2	3	4	5	6	7	8												
STOP	7.1	0.1	7.1	0	0	11.4	6.3	0												
REC	7.1	0.1	7.1	0	0	11.4	6.3	0												
Ref. No.							IC	3005 (SCM-32	.)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				<u></u>
STOP	0	4.8	5.1	0.3	4.5	0.1	4.9	0	4.4	0.5	0.1	0.3	5.1	4.2	0	5.1				
REC	0	4.8	5.1	0.3	4.5	0.1	4.9	0	4.4	0.5	0.1	0.3	5.1	4.2	0	5.1				
Ref. No.						10	23006 (SCM-31)						-					
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	0.1	3.6	4.6	4.6	0	4.5	0	2.3	2.5	0	0.1	0.4	0	4.6						
REC	0.1	0.1	0.3	0.2	0	0	0	2.3	2.5	0	0.1	0.4	0	4.6						
Ref. Na.									10	3007 (SCM-31)				r				1
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	3.5	1.9	4.6	2.9	2.6	2.6	0	2.0	0	0	0	0	2.5	3.5	1.1	0.2	2.8	2.8	2.3	4.6
REC	3.5	1.9	4.6	2.9	2.6	2.6	0	2.0	0	0	0	1.0	2.5	3.5	1.1	0.2	2.8	2.8	2.3	4.7
Ref. No.			1				SCM-31	-									,		·	
Mode	21	22	23	24	25	26	27	28	29	30	31	32								
STOP	0	4.5	0.2	2.1	3.7	0.1	4.9	2.4	2.7	3.4	0	4.6								<u> </u>
REC	0	4.6	0.2	2.1	3.7	0.1	4.9	2.4	2.7	3.5	0	4.7								<u> </u>
Ref. No.					-		ſ	SCM-31		10	11	10	12	14		ı	г —			T
Mode	1	2	3	4	5	6	7	8	9	10	11	12	-2.4	-2.4						
STOP	-0.9	-0.5	-0.4	4.9	-0.1	-0.1	0	1.5	1.5	1.5	-5.0 -5.0	-2.4 -2.4	-2.4	-2.4						
REC Ref. No.	-0.9	-0.5	-0.4	4.9	-0.1	-0.1	-0.1	C3009 (L	<u> </u>	-0.0	-2.4	-2.4	-2.4		!				
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-			1
Mode	1			 		0	0	0	0	2.5	0.2	0.2	0.2	0.2	0.2	4.9				
STOP	1.5	1.6	1.5	1.6	1.4	0	0	0	0	2.5	0.2	0.2	0.2	0.2	0.2	4.9		ļ		
Ref. No.	1.5	1.0		C3010 (L		1 0	, 0		11 (SCI		0.2	0.2			SCM-3	2)			
	1	2	3	4	5	6	7	8	1	G (55)	0	1	2	3	4	5	6	7	8	
Mode	2.9	3.6	2.8	0	0	4.7	2.1	0	11.6	0	5.1	2.0	1.2	1.2	-4.8	1.6	1.6	1.6	4.7	
REC	2.9	3.6	2.8	0	0	4.7	2.1	0	11.6	0	5.1	2.0	1.2	1.2	-4.8	1.6	1.6	1.6	4.7	
Ref. No.	<u> </u>	1	1	C3013 (<u> </u>						·		l		·	1	·	·	
Mode	1	2	3	4	5	6	7	8		I										
STOP	3.6	0	0	-4.8	1.5	1.5	1.6	4.7												
REC	3.6	0	0	-4.8	1.5	1.5	1.6	4.7												
Ref. No.	<u> </u>				•	•	· I	C3014 ((SCM-32	2)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	3.0	4.7	4.7	3.0	0	3.2	0	0	4.6	4.7	1.7	0.1	0	4.6	4.7				
REC	0	3.0	4.7	4.7	3.0	0	3.2	0	0	4.6	4.7	1.7	0.1	0	4.6	4.7				
Ref. No.						1	C3015	SCM-3	2)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	4.6	2.9	5.1	1.9	1.6	2.1	2.9	0	2.9	5.1	2.7	3.0	2.9	1.6						<u> </u>
REC	4.6	2.9	5.1	1.9	1.6	2.1	2.9	0	2.9	5.1	2.7	3.0	2.9	1.6			<u></u>	<u> </u>		
Ref. No.		IC30	17 (SC	M-34)			,	18 (SC		T		20 (SC		ļ				1		
Mode	1	2	3	4	5	1	2	3	4	5	1	G	0		ļ <u> </u>	<u> </u>	ļ	ļ		ļ
STOP	0.1	4.9	0	0	4.8	5.1	4.5	0	4.5	5,1	11.5	0	5.0		<u> </u>	-	ļ			ļ <u>.</u>
REC	0.1	4.9	0	0	4.8	5.1	4.5	1 0	4.5	5.1	11.5	0	5.0	1	ł	1	1	1	1	1

Ref. No.	1					· · ·		02452	(0011								,			
	1	2	3	4	5	6	7	8	(SCM-3 ⁻	10	11	12	13	14	1 4 5	1 40		1	1	
Mode	1,5	1.4	1.5	0.1	4.0	0	1.2	0	0.1	4.6	4.6	0.2	4.0	0	1.0	16 4.6				
REC	1.5	1.4	1.3	0.1	4.1	0	1.2	0	0.1	4.6	4.6	0.2	4.0	0	0.8	4.6	-		 	
Ref. No.	 				1				(SCM-3	J	1.0	0.2	7.0		0.0	4.0	 	<u> </u>	<u> </u>	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	 	<u> </u>	T	
STOP	2.5	0.3	2.4	1.9	0	2.6	1.9	2.4	4.6	2.0	0.3	4.1	0.5	3.2	0.4	0				
REC	2.5	0.3	2.4	1.9	0	3.4	1.9	2.4	4.6	2.0	0	4.1	0.4	3.2	0.3	0	1			
Ref. No.			IC32	02 (SC	M-33)		·			10	C3203 (SCM-3	3)					l		
Mode	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	1		T		
STOP	3.2	0	2.9	0	3.1	0.7	4.6	2.9	2.2	2.3	0	3.5	0	3.5	4.6			1		
REC	3.2	0	2.9	0	3.1	0.7	4.6	3.4	1.7	2.3	0	3.5	0	3.5	4.7			-		
Ref. No.									10	C3204 (SCM-33)							<u> </u>	
Mode	1	2	3	4	5	6	. 7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	1.0	1.9	1.0	1.0	2.3	1.7	0.9	1.9	2.0	4.7	4.7	2.0	2.0	0	2.5	4.7	2.6	2.4	2.4	2.4
REC	1.0	2.0	1.0	1.0	2.3	1.7	0.9	1.9	2.0	4.7	4.7	2.0	2.0	0	2.3	4.7	2.6	2.3	2.4	2.4
Ref. No.					, l	C3204 (SCM-3	3)	,						ŀ	C3205	(SCM-3	3)		
Mode	21	22	23	24	25	26	27	28	29	30	31	32	1	2	3	4	5	6	7	8
STOP	3.1	3.0	2.2	2.2	4.7	2.1	0	3.1	2.4	2.4	2.3	4.7	-1.0	-1.7	-4.8	2.4	2.4	4.7	-1.7	-1.0
REC Ref. No.	3.1	3.0	2.2	4.7	1.7	2.1	0	3.1	2.3	2.3	2.3	4.7	-1.0	-1.7	-4.9	2.4	2.4	4.8	-1.7	-1.0
					06 (SCI		T	Т.					,				T	,		,
Mode	1	2	3	4	5	6	7	8	9				<u> </u>							
STOP	2.6	3.3	7.4	4.2	0	0	0.2	0	8.2											
REC Ref. No.	2.6	3.3	7.3	4.2	0	0	0.2	0	8.2							l				
	1	2	3	1	T .				SCM-33		44	40			4.5	140			T	
Mode STOP	3.6	4.9	0.1	4.2	0.1	4.9	7	8	9	10	11	12	13	14	15	16				
REC	3.6	4.9	0.1	4.2	0.1	4.9	0.9	0	0.1	4.9	0.3	4.2	0.1	4.9	0.8	4.9		ļ		
Ref. No.	0.0	L	08 (SCI	1	0.1	4.5	0.5	L	C3209 (4.9		4.2	0.1	4.9	0.8	4.9 01 (SCI	14 24 \	L		
Mode	1	2	3	4	5	1	2	3	4	5	6	7	8	1	2	3	4	5		
STOP	0	0.4	0	4.5	4.8	2.8	0	2.8	0	0	4.6	2.0	0	0	4.5	0	0.4	4.9	-	
REC	0	0.4	0	4.5	4.9	2.8	0	2.8	0	0	4.6	2.0	0	0	4.5	0	0.4	4.9		
Ref. No.			L	1				SCM-34				2.0			7.0		0.4	7.0		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14		<u> </u>				
STOP	-0.1	0.9	0.9	0	4.9	0.4	0	2.5	3.2	2.8	3.2	0.2	0.1	4.9						
REC	-0.1	0.9	8.0	0.8	4.9	0.4	0	2.5	3.2	2.8	3.2	0.2	0.1	4.9						
Ref. No.				•		IC	3303 (SCM-34	1)		,:I						l			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	2.8	2.8	2.8	4.9	2.5	2.5	2.5	1.5	2.3	2.3	0	0.9	0.9	0.9						
REC	2.8	2.8	2.8	4.9	2.5	2.5	2.5	1.4	2.3	2.3	0	8.0	0.8	8.0						
Ref. No.			10	C3304 (SCM-34)														
Mode	1	2	3	4	5	6	7	8												
STOP	7.1	0.1	7.1	0	0	11.5	6.4	0												
REC Port No.	7.1	0.1	7.1	0	0	11.5	6.4	0												
Ref. No.								·	SCM-34	` ,										
Mode	1	2	3	4	_ 5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	3.3	4.0	3.3	0.2	2.8	0	2.9	2.4	4.8	4.6	0.7	0.1	1.2	3.7	3.5				
REC Ref. No.	0	3.3	4.0	3.2	0.2	2.8	0	2.9	2.4	4.8	4.6	0.7	0.1	1.3	3.7	3.5				
	4				SCM-34						1									
Mode	1	2	3	4	5	6	7	8		-								_		
STOP REC	2.9	4.5 4.5	2.8	3.6	2.9	4.8	2.1	0												
Ref. No.	2.8	4.5	2.0	0.8	2.9	4.8	2.1	0	COM 04				L							
Mode	1	2	3	4	5	6	7 7	8	SCM-34	-	11	10	40	4.4	4 5	10			- т	
STOP	0	2.4	4.8	0	0.9	3.4	1.6	0	9 4.7	0.4	11	12	13	14	15	16				
REC	0	2.4	4.8	0	0.9	3.4	1.6	0	4.7	0.4	3.5	0	4.8	4.6	0	4.8				
Ref. No.		2.7			SCM-34		1.0	٠	7.7	0.4			4.8 SCM-34		U	4.8				
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5 5	6	7	8		· I	Т	
STOP	4.8	4.5	2.4	2.4	0	2,4	0	2.4	0	0	0	-4.8	0	0	0	4.7				
REC	4.8	4.5	2.4	2.4	0	2.4	0	2.4	0	0	0	-4.8	0	0	0	4.7				\dashv
		٠,٠		,		7	· · ·	a., T	U	0	·	-+.0	U	0	υ	4./		:		i

Ref. No.			10	C3310 (SCM-34	1)				IC3311	(SCM-3	6) SUE	3		C3312	(SCM-3	6) SUE	3		
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	1	2	3	4	5		
STOP	4.8	3.6	2.4	2.5	0	2.5	0	2.5	2.5	2.5	0	0	4.8	0	0.9	0	0	4.8		
REC	4.8	0	2.4	2.5	0	2.5	0	2.5	2.5	2.5	0	0	4.8	0	0.9	0	0.1	4.8		
Ref. No.			23001 (SCM-32) -			C	23004 (SCM-32)		Q300	5 (SCN	1-32)	O300	6 (SCN	f-32)		, <u>.</u>
Mode	1	2	3	4	5	6	1	2	3	4	5	6	E	С	В	E	С	В		
STOP	5.1	2.4	3.1	0	3.0	2.4	3.1	0.1	3.1	4.1	0.1	4.1	1.9	9.7	2.6	1.9	5.3	0		
REC	5.1	2.4	3.1	0	3.0	2.4	3.1	0.1	3.1	4.1	0.1	4.1	1.9	9.6	2.6	1.9	5.4	0		Ĺ
Ref. No.		7 (SCM			8 (SCN					SCM-32						SCM-32				
Mode	E	C .	В	E	С	В	1	2	3	4	5	6	1	2	3	4	5	6		
STOP	10.3	5.4	9.7	6.0	0	5.4	4.7	3.4	3.0	4.7	2.9	2.3	11.4	4.1	3.5	11.4	3.5	2.9		<u> </u>
REC Ref. No.	10.3	5.4	9.6	6.0	0	5.4	4.7	3.4	3.0	4.7	2.9	2.3	11.4	4.1	3.5	11.4	3.5	2.9		<u> </u>
	E	1 (SCN		E	2 (SCN	n-32) B	1	2	2 3013 (SCM-32	5	6	Q301	7 (SCN	л- э т) В					
Mode	3.5	-4.9	2.9	2.6	11.4	3.2	-4.9	2.6	3.2	-4.9	3.2	3.8	5.0	5.0	5.7					
REC	3.5	-4.9	2.9	2.6	11.4	3.2	-4.9	2.6	3.2	-4.9	3.2	3.8	0.3	5.0	0					
Ref. No.		8 (SCN			9 (SCN			0 (SCN		Q302				2 (SCN		0302	4 (SCN	M-32)		<u> </u>
	D	G	s	E	C	В	E.	C	В	E	C	В	E	C C	В	E	C	В		
Mode STOP	1.2	0	1.6	2.3	6.8	2.9	11.5	0	11.5	2.3	4.9	2.8	2.8	0	2.3	0	4.9	0		
REC	1.2	0	1.6	2.3	6.8	2.9	11.5	11.4	10.8	2.3	4.9	2.8	2.8	0	2.3	0	4.9	0		
Ref. No.		5 (SCN	L		6 (SCN	L		7 (SCN		—	8 (SCN	L	Q302	9 (SCN		<u> </u>	0 (SCN			
Mode	E	С	В	E	С	В	E	С	В	E	С	В	E	С	В	Е	С	В		
STOP	0	5.0	0	0.9	2.7	1.6	1.6	3.0	2.3	4.7	0	4.7	2.1	4:7	1.9	1.7	2.9	2.4		
REC	0	4.6	0	0.9	2.7	1.6	0	3.0	2.3	4.7	0	4.7	2.1	4.7	1.9	1.7	2.9	2.4		
Ref. No.	Q303	1 (SCN	<i>I</i> -31)	Q303	2 (SCN	<i>I</i> -31)	Q303	3 (SCN	/I-31)	Q303	4 (SCN	M-32)	Q304	0 (SCN	M-32)	Q320	1 (SCN	1-33)		
Mode	D	G	S	Ε	С	В	Ε	С	В	E	С	В	E	С	В	E	C	В		
STOP	0	-0.7	0	2.3	0	1.7	1.6	4.6	2.3	2.0	5.1	2.7	0.9	4.7	1.5	-3.7	0.9	-2.9		
REC	0	-0.7	0	2.3	0	1.7	0	4.6	0	2.0	5.1	2.7	1.0	4.7	1.6	-3.7	0.9	-2.9		
Ref. No.	Q320	2 (SCN	A-33)	Q320	3 (SCN	M-33)	Q320	4 (SCN	A-33)	O320	5 (SCN	M-33)	Q320	6 (SCN	1-33)	Q320	7 (SCN	1-33)		
Mode	Е	С	В	Ε	С	В	Ε	С	В	Е	С	В	Е	С	В	Е	С	В		
STOP	0.3	4.6	0.9	-1.6	1.5	-0.8	1.9	4.6	1.0	1.8	4.6	2.4	1.9	4.7	0.6	1.8	4.7	0.6		
REC	0.3	4.6	0.9	-1.6	1.5	-0.8	0.2	0	0.7	0.1	4.6	0.2	1.9	4.7	0.6	1.9	4.7	0.6		İ
Ref. No.		8 (SCN	M-33)	-	9 (SCN	M-33)		0 (SCA	M-33)	Q321			Q321	2 (SCN		-	3 (SCN			
Mode	Е	С	В	E	С	В	E	С	В	E	С	В	Е	C	В	E	С	В		
STOP	1.8	7.7	2.5	7.4	11.5	7.7	0	2.2	0	-2.6	-0.1	-1.8	1.9	4.7	2.5	2.6	4.7	3.2		
REC Ref. No.	1.8	7.7	2.5	7.1	11.5	7.7	0	2.2	0	-2.6	0	-1.8	1.9	4.7	2.5	2.6	4.7	3.2		Щ
		4 (SCN			5 (SCN			6 (SCN		_	7 (SCN			8 (SCN			9 (SCN			
Mode STOP	-0.8	4.7	-0.2	1.6	C 1.5	-0.8	E 0	0	0.6	-0.6	4.7	B 0	-0.7	C 1.4	B 0	0.7	C 4.7	B 1,3		
REC	-0.8	4.7	-0.2	-1.5		-0.8	0	0	0.6	-0.6	4.7	0	-0.7	1.4	0	0.7	4.7			
Ref. No.		0 (SCN			1 (SCN			2 (SCN			3 (SCN	L		4 (SCN		ļ	5 (SCN			
Mode	E	С	В	E	C	В	E	c	В	E	С	В	E	C	В	E	C	В		
STOP	-0.7	1.2	0	1.3	4.7	1.9	3,1	4.8	3.5	2.4	4.8	2.8	1.6	4.8	2.2	-0.8	0.7	-0.1		
REC	-0.7	1.2	0	1.3	4.7	1.9	3.1	4.8	3.5	2.4	4.8	2.8	1.6	4.8	2.2	-0.8	0.6	0		
Ref. No.	Q322	6 (SCN	M-33)	Q322	7 (SCN	M-33)		Q322	8 (SC)	M-33)		Q322	9 (SCN	1-33)	Q323	0 (SCN	M-33)	Q323	1 (SCN	/ -33)
Mode	E	С	В	Ε	С	В	1	2	3	4	. 5	E	С	В	E	С	В	Е	С	В
STOP	-0.6	4.7	0	0_	-0.1	0	0.1	0.3	0	0	0	-0.8	4.7	-0.2	-1.5	1.4	-0.8	0	-4.8	-1.6
REC	-0.6	4.7	0	0	-0.1	0	0	0.3	0	0	0	-0.8	4.7	-0.2	-1,5	1.4	-0.8	-0.9	-4.8	-1.5
Ref. No.	Q323	2 (SCN	M-33)	Q323	3 (SCN	M-33)	Q323	4 (SCN	A-33)		Q323	5 (SCN	A-33)			Q323	6 (SCN	1-33)		
Mode	E	С	В	E	С	В	E	С	В	1	2	3	4	5	1	2	3	4	5	
STOP	-0.9	-4.8	-1.5	-0.9	-4.8	-1.6	8.2	11.5	8.8	0.4	0.4	1.8	0	2.0	-0.1	0.1	0.4	0	0.4	
REC	-0.8	-4.8	-1.5	-0.9	-4.8	-1.5	8.2	11.5	8.8	0.4	0.4	1.8	0	2.0	0	0	0.4	0	0.4	
Ref. No.		1 (SCN			2 (SCN	r		6 (SCN			7 (SCN			8 (SCN			9 (SCN			
Mode	E	С	В	E	С	В	E	C	В	E	С	В	E	С	В	E	С	В		
STOP	4.9	0.2	4.8	3.2	4.9	3.8	3.7	3.7	3.0	-0.6	4.7	0	2.9	4.7	2.8	2.2	4.7	2.9	ļ	
REC Per No.	4.9	0.2	4.8	3.2	4.9	3.8	0.8	0.1	0.2	-0.6	4.7	0	2.9	4.7	2.9	2.2	4.7	2.9		
Ref. No.	⊢—	0 (SCI		-	1 (SCN			2 (SCI		 	3 (SCN			4 (SCN			5 (SCN			
Mode	E 2.1	C	В	E	C	B	E	C	В	E	C	В	E	C	В	E	C	B		
STOP	3.1	4.8	3.8	0.9	4.8	1.5	-2.7	2.6	-2.1	1.9	4.8	2.6	1.9	4.8	2.5	1.4	3.4	2.1		
REC	3.1	4.8	3.8	0.9	4.8	1.5	-2.7	2.6	-2.1	1.9	4.8	2.6	1.9	4.8	2.4	1.3	3.5	2.1		لـــــا

Ref. No.	Q331	6 (SCN	M-34)	Q331	7 (SCN	/I-34)	Q331	8 (SCI	И-34)	Q331	9 (SCN	/I-34)	Q332	0 (SCN	Л-34)	Q332	21 (SCN	И-34)	
Mode	Е	С	В	Ε	С	В	E	С	В	Ε	С	B.	E	С	В	Е	С	В	
STOP	-0.5	4.8	0	-1.2	4.8	-0.6	-0.5	4.8	0	2.0	0	1.4	-0.8	1.4	0	1.1	4.7	1.7	
REC	-0.5	4.8	0	-1.2	4.8	-0.6	-0.5	4.8	0	2.0	0	1.4	-0.8	1.4	0	1.1	4.7	1.7	
Ref. No.	QR30	02 (SCI	M-31)	QR30	03 (SCI	M-31)	QR30	05 (SC	M-31)	QR30	06 (SCI	M-31)	QR30	07 (SC	M-32)	QR30	08 (SC	M-32)	
Mode	E	U	В	Е	С	В	Е	С	В	Ε	С	В	Е	С	В	E	С	В	
STOP	0	0	3.8	4.9	0	4.5	0	0	7.9	11.5	0	11.5	0	1.8	0	0	0	4.7	
REC	0	0	3.8	4.9	0	4.5	0	11.4	0.6	11.5	11.5	0	0	1.8	0	0	0	4.7	
Ref. No.	QR30	09 (SCI	M-31)	QR30	10 (SCI	M-31)	QR30	11 (SC	M-31)	QR30	12 (SCI	M-31)	QR30	13 (SC	M-31)	QR30	14 (SC	M-31)	
Mode	E	O	В	ш	U	В	E	С	В	E	С	В	Е	С	В	E	С	В	
STOP	0	5.7	0	0	4.9	0	4.9	4.9	5.3	4.9	3.5	5.4	4.9	3.5	4.8	0	0	0	
REC	0	0	7.9	0	4.9	0	4.9	4.9	5.4	4.9	3.5	5.4	4.9	3.5	4.8	0	0	0	
Ref. No.	QR30	15 (SCI	M-31)	QR30	16 (SCI	M-32)	QR30	17 (SC	M-32)	QR30	18 (SCI	M-32)	QR32	01 (SC	M-33)	QR32	04 (SC	M-33)	•
Mode	E	n	В	Ш	C	В	Ε	С	В	E	С	В	E	С	В	Е	С	В	
STOP	0	2.3	0.1	0	0.1	1.8	4.7	4.7	0.1	1.5	4.7	2.1	4.6	0	4.6	0	0	5.4	
REC	0	2.3	0.1	0	0.1	1.8	4.7	4.7	0.1	1.5	4.7	2.1	4.6	0	4.6	0	0	5.4	
Ref. No.	QR32	05 (SC	VI-33)	QR32	06 (SCI	M-33)	QR32	09 (SC	M-33)	QR32	11 (SCI	M-33)	QR32	12 (SC	VI-33)	QR33	01 (SC	M-34)	
Mode	E	С	В	Ε	С	В	Е	C	В	ш	С	В	Е	С	В	Е	С	В	
STOP	0	0	5.3	0	2.0	2.5	4.6	0	5.4	0	0	0	0	2.0	1.8	0	4.9	0.1	
REC	0	0	5.3	0	2.0	2.5	4.6	0	5.4	´ 0	0	0	0	2.0	1.8	0	4.9	0.1	
Ref. No.	QR32	13 (SCI	VI-33)																
Mode	E	С	В										•						
STOP	3.3	0.4	3.3																
REC	3.4	0.4	3.4																

TBC (1) C.B.A.

) C.	<u>B.A.</u>																		
Ref. Na.		,								28001 (SCM-56		r							,
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	1.5	1.5	2.6	1.1	2.8	2.1	1.6	1.4	4.9	1.1	4.9	4.9	4.9	2.6	2.6	4.9	1.3	0
REC	0	0	1.5	1.6	_ 2.4	1.1	2.6	2.1	1.6	1.4	4.9	1.1	4.9	4.9	4.9	2.6	2.6	4.9	1.3	0
Ref. No.		C8001 (SCM-56				,						, <u>.</u>		·			,		
Mode	21	22	23	24																
STOP	0	0.6	0.6	0																
REC	0	0.6	0.6	0																
Ref. No.		,						,	IC	8002 (SCM-56)								,
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	1.4	1.6	2.1	2.8	1.1	2.6	1.5	1.5	0	1.1	2.3	2.3	3.1	1.4	2.9	2.2	1.7	1.4	5.1
REC	0	1.4	1.6	2.1	2.6	1.1	2.4	1.6	1.5	0	1.1	2.3	2.3	2.9	1.3	2.8	2.2	1.7	1.4	5.1
Ref. No.			, ,						IC	8003 (SCM-56)					,			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	0	0	0	0	0	0	4.6	5.1	2.3	0	2.3	3.1	1.3	3.4	2.2	1.7	1.5	1.3
REC	0	0	0	0	0	0	0	0	4.6	5.1	2.2	0	2.3	2.8	1.3	3.4	2.2	1.7	1.5	1.3
Ref. No.	<u></u>	1	,								SCM-56									
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	1.4	1.9	3.0	1.1	2.6	2.0	2.0	0	0	0	0	0	5.1	0	0	0	0	1.5	1.7	2.2
REC	1.4	1.9	3.0	1.1	2.4	1.9	1.9	0	0	0	0	0	5.1	0	0	0	0	1.5	1.7	2.2
Ref. No.								,	IC		SCM-56						,			
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	3.4	1.3	3.0	2.3	2.3	1.5	1.7	2.2	3.4	1.3	3.1	0	2.3	5.1	2.3	0	0	0	0	0
REC	3.4	1.3	2.8	2.3	2.2	1.5	1.7	2.2	3.4	1.3	2.8	0	2.3	5.1	2.2	0	0	0	0	0
Ref. No.		т	· · · · · · · · ·				1				SCM-56									
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	0	0	0	0	0	0	5.1	1.2	5.1	1.2	0	0	5.1	5.1	0	4.6	0	0	0	0
REC No.	0	0	0	0	0	0	5.1	1.2	5.1	1.2	0	0	5.1	5.1	0	4.6	0	0	0	0
Ref. No.			SCM-56				,	1						-		1				
Mode	81	82	83	84																
STOP	0	0	0	0																
REC Ref. No.	0	0	0	0																
Nei. 144									IC		SCM-56									
																40	47	40	40	- 00
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0.4	0.3	0	2.0	2.0	2.0	3.0	1.2	0	0	0	0	0	0	0	0	2.0	0	5.1	0
STOP REC								1.2	0	0	0									
STOP REC Ref. No.	0.4	0.3	0	2.0	2.0	2.0	3.0 2.6	1.2 1.1	0 0 2 8004 (0 0 SCM-56	0 0	0	0	0	0	0	2.0	0	5.1	0
STOP REC Ref. No.	0.4	0.3 0.3	0 0	2.0	2.0 1.9 25	2.0	3.0 2.6 27	1.2 1.1 10 28	0 0 8004 (0 0 SCM-56 30	0 0	0 0 32	0 0	0 0 34	0 0 35	0 0	2.0 2.0 37	0 0 38	5.1	0
STOP REC Ref. No. Mode STOP	0.4 0.4 21 0	0.3 0.3 22 0	0 0	2.0 2.0 24 1.3	2.0 1.9 25 3.1	2.0 1.8 26 2.2	3.0 2.6 27 2.3	1.2 1.1 28 0	0 0 28004 (29 0	0 0 SCM-56 30 0	0 0 i) 31 5.1	0 0 32 1.1	0 0 33 2.9	0 0 34 1.9	0 0 35 2.0	0 0 36 2.4	2.0 2.0 37 0.3	0 0 38 0	5.1	0
STOP REC Ref. No. Mode STOP REC	0.4	0.3 0.3	0 0	2.0	2.0 1.9 25	2.0	3.0 2.6 27	1.2 1.1 10 28	0 0 28004 (29 0	0 0 SCM-56 30 0	0 0 3) 31 5.1	0 0 32 1.1 1.0	0 0	0 0 34	0 0 35	0 0	2.0 2.0 37	0 0 38	5.1	0
STOP REC Ref. No. Mode STOP REC Ref. No.	0.4 0.4 21 0	0.3 0.3 22 0	0 0 23 0 0	2.0 2.0 24 1.3 1.2	2.0 1.9 25 3.1 2.9	2.0 1.8 26 2.2 2.1	3.0 2.6 27 2.3 2.2	1.2 1.1 28 0	0 0 28004 (29 0 0	0 0 SCM-56 30 0 0	0 0 31 5.1 5.1 SCM-56	0 0 32 1.1 1.0	0 0 33 2.9 2.6	0 0 34 1.9 1.8	0 0 35 2.0 1.9	0 0 36 2.4 2.4	2.0 2.0 37 0.3 0.3	0 0 38 0	5.1	0
STOP REC Ref. No. Mode STOP REC	0.4 0.4 21 0	0.3 0.3 22 0	0 0	2.0 2.0 24 1.3	2.0 1.9 25 3.1	2.0 1.8 26 2.2	3.0 2.6 27 2.3	1.2 1.1 28 0	0 0 28004 (29 0	0 0 SCM-56 30 0	0 0 3) 31 5.1	0 0 32 1.1 1.0	0 0 33 2.9	0 0 34 1.9	0 0 35 2.0	0 0 36 2.4	2.0 2.0 37 0.3	0 0 38 0	5.1	0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0.4 0.4 21 0 0	0.3 0.3 22 0 0	0 0 23 0 0	2.0 2.0 24 1.3 1.2	2.0 1.9 25 3.1 2.9 5 3.1	2.0 1.8 26 2.2 2.1 6 2.0	3.0 2.6 27 2.3 2.2 7 1.5	1.2 1.1 10 28 0 0	0 0 0 28004 (29 0 0 0	0 0 SCM-56 30 0 0 8005 (0 0 31 5.1 5.1 SCM-56	0 0 32 1.1 1.0)	0 0 33 2.9 2.6	0 0 34 1.9 1.8	0 0 35 2.0 1.9	0 0 36 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0	0 0 38 0 0	5.1	0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0.4 0.4 21 0 0 1 0.4	0.3 0.3 22 0 0	23 0 0	2.0 2.0 24 1.3 1.2 4 2.0	2.0 1.9 25 3.1 2.9	2.0 1.8 26 2.2 2.1	3.0 2.6 27 2.3 2.2	1.2 1.1 10 28 0 0 0 8 1.2	0 0 0 28004 (29 0 0 0 10	0 0 SCM-56 30 0 0 C8005 (10 0	0 0 31 5.1 5.1 SCM-56 11 0	32 1.1 1.0)	0 0 33 2.9 2.6	0 0 34 1.9 1.8	0 0 35 2.0 1.9	0 0 36 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3	0 0 38 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Rec	0.4 0.4 21 0 0 1 0.4	0.3 0.3 22 0 0	23 0 0	2.0 2.0 24 1.3 1.2 4 2.0	2.0 1.9 25 3.1 2.9 5 3.1	2.0 1.8 26 2.2 2.1 6 2.0	3.0 2.6 27 2.3 2.2 7 1.5	1.2 1.1 10 28 0 0 0 8 1.2	0 0 28004 (29 0 0 0	0 0 SCM-56 30 0 0 C8005 (10 0	0 0 31 5.1 5.1 SCM-56 11 0	32 1.1 1.0)	0 0 33 2.9 2.6	0 0 1.9 1.8	0 0 35 2.0 1.9	0 0 36 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3 17 2.0	0 0 38 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0.4 0.4 21 0 0 1 0.4 0.4	0.3 0.3 22 0 0	0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5	1.2 1.1 10 28 0 0 0 8 1.2 1.2	0 0 28004 (29 0 0 0 10 9 0	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56	0 0 5) 31 5.1 5.1 SCM-56 11 0 0	32 1.1 1.0) 12 0	0 0 33 2.9 2.6	0 0 1.9 1.8	0 0 35 2.0 1.9	0 0 36 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0	0 0 38 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0.4 0.4 21 0 0 1 0.4 0.4 21	0.3 0.3 22 0 0 0	23 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5	1.2 1.1 10 28 0 0 0 8 1.2 1.2	0 0 0 28004 (29 0 0 0 9 0 0 0 28005 (29	0 0 8CM-56 30 0 0 0 8B005 (10 0 0 8CM-56	0 0 31 5.1 5.1 5.1 9 9 11 0 0	32 1.1 1.0) 12 0 0	33 2.9 2.6 13 0	0 0 1.9 1.8	0 0 35 2.0 1.9 15 0	0 0 36 2.4 2.4 16 0 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0	0 0 38 0 0 18 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0.4 0.4 0.4 0 0 1 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5	1.2 1.1 10 28 0 0 0 8 1.2 1.2 1.2 28 0	0 0 0 28004 (29 0 0 0 9 0 0 0 28005 (29 0	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56 30 0	0 0 31 5.1 5.1 SCM-56 11 0 0	32 1.1 1.0) 12 0 0 32 1.3	33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0	0 0 35 2.0 1.9 15 0 0	0 0 36 2.4 2.4 16 0 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0	0 0 38 0 0 18 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0.4 0.4 0.4 0 0 1 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5	1.2 1.1 10 28 0 0 0 8 1.2 1.2 1.2 28 0	0 0 0 28004 (29 0 0 0 9 0 0 0 28005 (29 0	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56 30 0	0 0 31 5.1 5.1 5.1 9 9 31 5.1 5.1	32 1.1 1.0) 12 0 0 32 1.3	33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0	0 0 35 2.0 1.9 15 0 0	0 0 36 2.4 2.4 16 0 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0	0 0 38 0 0 18 0 0	5.1 5.1 19 5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Ref. No.	0.4 0.4 21 0 0 1 0.4 0.4 0.4 0.0 0	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3	23 0 0 0 3 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4	1.2 1.1 10 28 0 0 0 8 1.2 1.2 1.2 28 0 0	0 0 0 28004 (29 0 0 0 9 0 0 28005 (29 0	0 0 8CM-56 30 0 0 88005 (10 0 0 8CM-56 30 0	0 0 31 5.1 5.1 SCM-56 11 0 0 0)	0 0 32 1.1 1.0) 12 0 0 32 1.3 1.3	0 0 33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0 2.0 2.0	0 0 35 2.0 1.9 15 0 0 35 3.1	0 0 36 2.4 2.4 16 0 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3	0 0 0 38 0 0 18 0 0	5.1 5.1 19 5.1 5.1	20 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0.4 0.4 21 0 0 1 0.4 0.4 0.4 0 0	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3 0.3	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 1.5 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3	3.0 2.6 27 2.3 2.2 7 1.5 1.5 3.4 3.4	1.2 1.1 10 28 0 0 0 8 1.2 1.2 1.2 28 0 0	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0	0 0 SCM-56 30 0 0 88005 (10 0 SCM-56 30 0 0	0 0 31 5.1 5.1 SCM-56 11 0 0) 31 5.1 5.1 5.1	0 0 32 1.1 1.0) 12 0 0 32 1.3 1.3)	0 0 33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0 2.0 2.0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1	0 0 36 2.4 2.4 16 0 0 2.4 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3	0 0 0 38 0 0 18 0 0	5.1 5.1 19 5.1 5.1	20 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0.4 0.4 21 0 0 1 0.4 0.4 0.4 1 0 0	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3 0.3	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 1.5 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 3.1 25 1.7 1.7	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5 3.4 3.4 7 2.9	1.2 1.1 10 28 0 0 8 1.2 1.2 1.2 10 28 0 0 8 1.1 1.1	0 0 0 28004 (29 0 0 0 0 28005 (29 0 0 0	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56 30 0 0 28006 (10 0	0 0 31 5.1 5.1 SCM-56 11 0 0 31 5.1 5.1 SCM-56 11 0	0 0 32 1.1 1.0) 12 0 0 0 32 1.3 1.3)	0 0 33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0 2.0 2.0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1	0 0 36 2.4 2.4 16 0 0 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3	0 0 0 38 0 0 18 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0.4 0.4 21 0 0 1 0.4 0.4 0.4 1 0 0	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3 0.3	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 1.5 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 3.1 25 1.7 1.7	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5 3.4 3.4 7 2.9	1.2 1.1 10 28 0 0 8 1.2 1.2 1.2 10 28 0 0 8 1.1 1.1	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 0 0 5.1	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56 30 0 0 28006 (10 0	0 0 31 5.1 5.1 SCM-56 11 0 0 31 5.1 5.1 SCM-56 11 0	0 0 32 1.1 1.0) 12 0 0 0 32 1.3 1.3)	0 0 33 2.9 2.6 13 0 0	0 0 1.9 1.8 14 0 0 2.0 2.0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1	0 0 36 2.4 2.4 16 0 0 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3	0 0 0 38 0 0 18 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Ref. No. Ref. No. Ref. No. Ref. No. Ref. No. Ref. No. Ref. No.	0.4 0.4 21 0 0 1 0.4 0.4 0 0 1 0.4 0.4	0.3 0.3 22 0 0 0 2 0.3 0.3 22 0 0 0	23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 1.5 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 3.1 25 1.7 1.7	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 8 1.2 1.2 1.2 10 28 0 0 1.1 1.1	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 0 5.1 5.1 5.1	0 0 SCM-56 30 0 0 28005 (10 0 SCM-56 30 0 0 28006 (10 0 SCM-56	0 0 0 5) 31 5.1 0 0 0 5) 31 5.1 5.1 SCM-56 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 32 1.1 1.0) 12 0 0 0 32 1.3 1.3)	0 0 0 33 2.9 2.6 13 0 0 0 33 1.5 1.5	0 0 1.9 1.8 14 0 0 2.0 2.0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1 15 0	0 0 36 2.4 2.4 16 0 0 2.4 2.4 16 0 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 17 2.0 2.0	0 0 0 38 0 0 18 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0.4 0.4 21 0 0 1 0.4 0.4 0.4 0.4 0.4 21 0	0.3 0.3 22 0 0 0 2 0.3 0.3 22 0 0 0	23 0 0 0 3 0 0 0 23 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 5 1.5 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7 1.7 2.0 2.0	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 0 0 0 29 0 0 0 29 0 0 0 0 0 0	0 0 0 SCM-56 30 0 0 28005 (10 0 0 SCM-56 30 0 0 58006 (10 0 0 SCM-56 30 30	0 0 0 5) 31 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.	0 0 32 1.1 1.0) 12 0 0 32 1.3 1.3) 12 0	0 0 0 33 2.9 2.6 13 0 0 0 33 1.5 1.5	0 0 1.9 1.8 14 0 0 2.0 2.0 14 0	0 0 0 35 2.0 1.9 15 0 0 35 3.1 3.1 15 0	0 0 36 2.4 2.4 2.4 16 0 0 36 2.4 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 0.3	38 0 0 0 18 0 0 38 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0.4 0.4 0.4 0 0 1 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0.3 0.3 22 0 0 0 2 0.3 0.3	23 0 0 0 3 0 0 0 23 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 5 1.5 2.0 2.0 2.4 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7 1.7 5 2.0 2.0 25 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9 1.8	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 1.2 1.2 1.2 1.2 1.2 1.3 0 0 8 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 0 0 29 0 0 0 29 0 0 0 0 0 0 0	0 0 0 SCM-56 30 0 0 0 8CM-56 30 0 0 0 8CM-56 30 0 0 0 8CM-56	0 0 0 1) 31 5.1 SCM-56 11 0 0 0 1) SCM-56 11 0 0 0 1) 31 5.1 SCM-56 11 0 0 0 1) 31 0 0 10 10 10 10 10 10 10 10 10 10 10 1	0 0 0 32 1.1 1.0) 12 0 0 32 1.3 1.3) 12 0 0	0 0 0 33 2.9 2.6 13 0 0 33 1.5 1.5 1.5	0 0 1.9 1.8 14 0 0 2.0 2.0 14 0 0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1 16 0	0 0 0 36 2.4 2.4 16 0 0 36 2.4 2.4 2.4 36 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 0.3	38 0 0 0 18 0 0 38 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. Ref. Ref. Ref. No.	0.4 0.4 0.4 0 0 1 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0.3 0.3 22 0 0 0 2 0.3 0.3	23 0 0 0 3 0 0 0 23 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 5 1.5 2.0 2.0 2.4 1.5	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7 1.7 5 2.0 2.0 25 3.1	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9 1.8	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 1.2 1.2 1.2 1.2 1.2 1.3 0 0 8 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 0 0 29 0 0 0 29 0 0 0 0 0 0 0	0 0 0 SCM-56 30 0 0 0 8CM-56 30 0 0 0 8CM-56 30 0 0 0 8CM-56	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 32 1.1 1.0) 12 0 0 32 1.3 1.3) 12 0 0	0 0 0 33 2.9 2.6 13 0 0 33 1.5 1.5 1.5	0 0 1.9 1.8 14 0 0 2.0 2.0 14 0 0	0 0 35 2.0 1.9 15 0 0 35 3.1 3.1 16 0	0 0 0 36 2.4 2.4 16 0 0 36 2.4 2.4 2.4 36 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 0.3	38 0 0 0 18 0 0 38 0 0	19 5.1 5.1 19 5.1 5.1	20 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3 22 0 0 0	23 0 0 0 3 0 0 0 23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 5 1.5 1.5 2.0 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7 1.7 5 2.0 2.0 2.0	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9 1.8	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 1.2 1.2 10 28 0 0 0	0 0 0 28004 (29 0 0 0 0 0 28005 (29 0 0 0 5.1 5.1 29 0 0	0 0 0 SCM-56 30 0 0 0 SCM-56 30 0 0 0 SCM-56 30 0 0 0 SCM-56 30 0 0 0 SCM-56	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 32 1.1 1.0) 12 0 0 0 32 1.3 1.3) 12 0 0	0 0 0 33 2.9 2.6 13 0 0 1.5 1.5 1.5	0 0 1.9 1.8 14 0 0 2.0 2.0 2.0 34 1.9 1.8	0 0 1.9 1.9 1.9 0 3.1 3.1 3.1 1.5 0 0	0 0 0 36 2.4 2.4 16 0 0 36 2.4 2.4 2.4 36 2.4 2.4	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 0.3	0 0 0 38 0 0 18 0 0 0	19 5.1 5.1 5.1 5.1 5.1 5.1	20 0 0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 22 0 0 0 2 0.3 0.3 22 0 0 0	23 0 0 0 3 0 0 0 23 0 0 0	2.0 2.0 24 1.3 1.2 4 2.0 2.0 2.1 5 1.5 1.5 2.0 2.0 2.0	2.0 1.9 25 3.1 2.9 5 3.1 3.1 25 1.7 1.7 5 2.0 2.0 2.0 2.5 3.1 2.9	2.0 1.8 26 2.2 2.1 6 2.0 1.9 26 2.3 2.3 6 1.9 1.8	3.0 2.6 27 2.3 2.2 7 1.5 1.5 27 3.4 3.4 3.4 7 2.9 2.6	1.2 1.1 10 28 0 0 1.2 1.2 1.2 10 28 0 0 0 8 1.1 1.1 1.1 10 28 0 0	0 0 0 28004 (29 0 0 0 0 28005 (29 0 0 0 5.1 5.1 28006 (29 0	0 0 0 SCM-56 30 0 0 0 88005 (10 0 0 8006 (10 0 0 SCM-56 30 0 0 0 8005 (10 0 0 0 8005 (10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 5) 31 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 0 0 5) 31 0 0 SCM-56 11	0 0 0 32 1.1 1.0) 12 0 0 0 32 1.3 1.3) 12 0 0 0	0 0 0 33 2.9 2.6 13 0 0 0 33 1.5 1.5 1.5	0 0 1.8 1.8 14 0 0 2.0 2.0 14 0 0	0 0 1.9 1.9 1.9 0 3.1 3.1 3.1 1.5 0 0	0 0 0 36 2.4 2.4 16 0 0 36 2.4 2.4 2.4 2.4 16 0	2.0 2.0 37 0.3 0.3 17 2.0 2.0 37 0.3 0.3 0.3 17 2.0	0 0 0 38 0 0 18 0 0 0	19 5.1 5.1 5.1 5.1 5.1	20 0 0 0 0 0

Ref. No.	T	-							C8007 (SCM-5	6·)								r	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		ı
STOP	0	0	0	1.5	1.7	2.3	3.4	0	0	0	0	1.3	1.5	2.0	3.1	2.4	0.3	0		
REC	0	0	0	1.5	1.7	2.2	3.4	0	0	0	0	1.3	1.5	2.0	3.1	2.4	0.3	0		
Ref. No.									IC	C8008 (SCM-56	5)			•	·				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	2.0	2.3	2.8	1.4	3.2	2.0	1.5	1.3	0	2.4	1.5	1.7	2.2	3.5	1.6	3.0	2.5	2.3	5.1
REC Ref. No.	0	1.9	2.1	2.9	1.3	3.1	2.0	1.5	1.3	0	2.4	1.5	1.7	2.2	3.4	1.4	3.0	2.3	2.2	5.1
		1 2	1 2	T			1 -	1 0			SCM-56		1.0		1 4 5	1 40			T	
Mode STOP	0	0.9	5.1	1,5	1.7	2.2	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REC	0	0.9	5.1	1.5	1.7	2.2	3.4	1.3	2.9	2.3	2.3	0.1	4.0	0	4.0	4.0	1.9	1.9	2.5	1.1
Ref. No.	<u> </u>	0.5			(SCM-5	L	0.0	1.7	2.5	2.0	2.4	0.1	4.0	1 0	4.0	4.0	2.0	2.2	2.4	1.4
Mode	21	22	23	24	25	26	27	28	ļ·	T	1					T		-	T	
STOP	2.9	2.0	1.4	1.3	0	3.9	0	5.1												
REC	3.0	1.9	1.4	1.3	0	3.9	0	5.1												
Ref. No.								•	IC	28010 (SCM-56	i)							·	l
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REC No.	0	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ref. No.				T	Т		T			,	SCM-56							,	r	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP REC	1.9	2.1	2.2	1.3	3.1	1.9	1.5	1.3	0	2.4	2.6	2.8	1.6	3.6	2.2	1.7	1.5	0	0	0
Ref. No.	2.0	2.2	2.4	1.4	3.0	1.9	1.4	1.3		L	SCM-56	2.9	1.7	3.6	2.2	1.7	1.5	0	0	0
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	5.1	0	5.1	5.1	0	0	0	1.5	1.7	2.2	3.9	1.3	2.7	2.6	2.3	1.5	1.7	2.2	3.8	1.6
REC	5.1	0	5.1	5.1	0	0	0	1.5	1.7	2.2	3.4	1.2	3.1	2.2	2.2	1.5	1.7	2.2	3.4	1.3
Ref. No.							L		IC	28010 (SCM-56)	1							
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	2.6	2.5	2.4	0	0	0	5.1	5.1	0	0	0	0	0	0	0	0	0	0	0	0
REC	3.0	2.2	2.3	0	0	0	5.1	5.1	0	0	0	0	0	0	0	0	0	0	0	0
Ref. No.								1			SCM-56	<u> </u>			,					
Mode	81 0	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
REC	0	0	0	0	0	0	0	0	0	0	5.1 5.1	0	0	5.1 5.1	0	1.2	5.1 5.1	5.1 5.1	5.1	5.4
Ref. No.	<u> </u>			, ,			(SCM	L			3.1			3.1		2 (SCN		5.1	5.1	5.4
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G	V	0			
STOP	1.9	0	2.4	2.0	0	1.9	0	4.5	5.1	0	4.6	0	5.1	5.1	0	5.1	5.1			
REC	1.9	0	2.4	2.1	0	1.9	0	4.6	5.1	0	4.6	0	5.1	5.1	0	5.1	5.1		-	
Ref. No.						Ī	C8013 (SCM-56	5)							-				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	5.1	4.6	0.9	5.1	5.1	0	0	2.6	2.6	5.1	0	2.6	5.1	5.1						
REC Ref. No.	5.1	4.6	0.9	5.1	5.1	0	0	2.6	2.6	5.1	0	2.6	5.1	5.1						
	1	2	3	A			C8014 (·	40		10	40				, ,			
Mode STOP	5.1	5.1	0.1	1.9	5	6 2.4	7	2.0	9 5.1	2.4	11 5.3	12	13	14						
REC	5.1	5.1	0.1	1.9	0	2.4	0	2.0	5.1	2.4	2.3	0	5.1 5.1	5.1 5.1		-				
Ref. No.					<u> </u>						SCM-56	L	0.1	0.1			<u></u>			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	2.3	2.4	2.7	1.6	3.6	2.2	1.7	1.5	0	2.4	1.5	1.7	2.2	3.6	1.6	2.9	2.4	2.3	5.1
REC	0	2.3	2.4	2.8	1.6	3.5	2.2	1.7	1.5	0	2.4	1.5	1.7	2.2	3.4	1.6	3.0	2.3	2.2	5.1
Ref. No.	IC801	16 (SCN	/ 1-56)	IC805	1 (SCN	<i>I</i> -57)	IC805	2 (SCN	<i>I</i> I-57)			IC	28053 (SCM-57)					
Mode	-	G	0	1	G	0	- 1	G	0	1	2	3	4	5	6	7	8			
STOP	11.6	0	4.9	11.6	0	9.1	11.6	0	5.1	0	0	0	-4.9	0	0	0	9.1			
REC Ref. No.	11.6	0	4.9	11.6	0	9.1	11.6	0	5.1	0	0	0	-4.9	0	0	0	9.1			
	1	2		C8054 (<u> </u>	-,		, 1				SCM-57				т	т		
Mode STOP	4.1	2.1	2.1	-4.9	5	6	7	8	1	2	3	4	5	6	7	8				
REC	4.1	2.1	2.1	-4.9	0	0	0	9.1	3.6	0	0	-4.9	0	0	0	9.1				
	7.1	4.1	4.1	-7.0			L . U	٥.١	3.0	U	U I	-4.9	U	U	U	9.1			•	

Ref. No.									10	2056 /	SCM-57	١								
	1	2	3	4	5	6	7	8	9		,		13	1.4	15	16	17	10	10	1 20
Mode							1		· · · · · · · · · · · · · · · · · · ·	10	11	12		14	15	-	17	18	19	20
STOP	1.2	1.5	1.7	2.2	4.0	1.5	2.5	2.4	2.4	0	1.2	1.9	2.0	3.2	1.3	4.1	2.1	1.6	1.4	5.1
REC	1.2	1.5	1.7	2.2	3.4	1.3	2.8	2.3	2.3	0	1.2	1.9	2.0	3.7	1.2	3.5	2.1	1.6	1.4	5.1
Ref. No.					-				K	28057 (SCM-57)		,		,				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	4.8	2.5	4.1	5.1	4.3	0	5.1	4.8	0	2.4	1.4	1.7	2.2	3.5	1.4	3.9	2.1	2.0	0
REC	0	4.8	2.5	4.1	5.1	4.3	0	5.1	4.8	0	2.4	1.4	1.7	2.2	3.5	1.3	3.8	1.9	2.0	0
Ref. No.									IC	28101 (SCM-58)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0.4	0	1.7	1.5	2.3	0	1.7	1.6	2.4	2.5	2.4	0	2.5	2.4	2.3	1.4	1.0	0	5.0	5.1
REC	0	0	1.7	1.5	2.3	0	1.6	1.5	2.3	2.5	2.3	0	2.5	2.4	2.2	1.5	1.0	0	5.0	5.1
Ref. No.								1	I		SCM-58)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	4.9	5.0	0.2	5.0	0	0	0	0	0	2.5	0	0	0	0	5.0	0	1.0	0	5.0	2.3
REC	4.9	5.0	0.2	5.0	0	0	0	0	0	2.5	0	0	0	0	5.0	0	1.0	0	5.0	2.3
Ref. No.	7.0	0.0			SCM-58				-	2.0					3.0		1.0	0	3.0	2.3
	41	42					1 47	40						i			Γ			
Mode	41	42	43	44	45	46	47	48												
STOP		0	5.0	0	5.0	2.5	0.4	0.4	ļ											
REC Per No.	0	0	5.0	0	5.0	2.5	0.4	0.4			L		l	l	l		ļ			L
Ref. No.								C8102 (,						<u> </u>	, ,		
Mode	1	2	3	4	5	6	7	8	9	10	.11	12	13	14	15	16				
STOP	0	5.1	5.1	4.5	0.1	0	1.3	0	0	5.0	5.1	4.4	0.1	0	1.6	5.1				
REC	0	5.1	5.1	4.5	0.1	0	1.3	0	0	5.0	5.1	4.4	0.1	0	1.6	5.1				
Ref. No.									IC	8104 (SCM-58)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	0	0	0	0.4	1.6	0.3	5.1	3.5	2.1	0	5.1	5.1	0	0	4.3	0	0	0
REC	0	0	0	0	0	0.4	1.6	0.3	5.1	3.5	2.1	0	5.1	5.1	0	0	4.2	0	0	0
Ref. No.									iC	8104 (SCM-58)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	0	2.2	5.1	4.2	1.7	5.1	1.6	5.1	1.6	0.2	5.1	5.1	5.1	0	5.1	0	0	0	0
REC	0	0	2.2	5.1	4.1	1.7	5.1	1.5	5.1	1.6	0.2	5.1	5.1	5.1	0	5.1	0	0	0	0
Ref. No.			10	C8104	SCM-58)														
Mode	41	42	43	44	45	46	47	48												
STOP	0	5.1	0	Ô	0	0	0	4.0						<u> </u>						
REC	0	5.1	0	0	0.1	0.1	1.6	4.0												
Ref. No.					L	IC8109		-61)(SC	M-58)		1					٠.	_			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14		<u> </u>				
STOP	2.3	0	2.5	2.4	2.5	2.3	0	2.5	2.0	0	0	5.1	5.1	5.1	<u> </u>					-
REC	2.3	0	2.5	2.4	2.5	2.3				0	0									
Ref. No.	2.5	0	2.0	2.4	2.5		0	2.5 SCM-58	2.0			5.1	5.1	5.1						
	1	2			F			`		- 10	44	40	40	1.1						
Mode		2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	5.1	0.4	4.6	5.1	5.1	0	0	2.4	5.1	2.5	2.4	2.4	5.1	5.1						
REC Ref. No.	5.1	0.4	4.6	5.1	5.1	0	0	2.4	5.1	2.5	2.4	2.4	5.1	5.1		<u> </u>				
Nei. No.				· · · ·				C8112 (.		-			
Mode	1	2	3	- 4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0.4	5.1	4.2	0.2	4.9	1.1	0	0	4.2	5.1	4.2	0.2	4.9	1.0	5.1				
REC	0	0.4	5.1	4.2	0.2	4.9	1.1	0	0	4.2	5.1	4.2	0.2	4.9	1.0	5.1				
Ref. No.							IC811	3 (SCM	-58)(SC	M-60)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0.4	5.1	1.3	4.4	0	- 1.2	0	1.4	5.1	5.1	0.2	3.2	0	1.5	5.1				
REC	0	0.4	5.1	1.4	4.4	0	1.2	0	1.4	5.1	5.1	0.2	3.2	0	1.5	5.1				
Ref. No.		IC811	4 (SCI	M-58)			IC81	15 (SC	VI-58)									-		
Mode	1	2	3	4	5	1	2	3	4	5										
STOP	0	4.6	0	0.4	5.1	0	0.4	0	5.0	5.1										
REC	0	4.6	0	0.4	5.1	0	0.4	0	5.0	5.1										
Ref. No.				<u> </u>			1		L	L	SCM-58)							L	·
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	5.4	5.4	5.4	0	2.5	0	0	0	0	5.1	5.1	0	0	0.4	2.6	4.9	0	0	0	0
REC	5.4	5.4	5.4	0	2.5	0	0	0	0	5.1	5.1	0	0	0.4	2.6	4.9	0	0	0	0
	J.7	J.7	J.7		4.0	V V		L		J. I	J. I		U	0.4	2.0	4.9		v	U	U

Ref. No.									10	28116 (SCM-58	1)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	5.1	0	0	0	0	2.6	0	5.1	0	0	5.1	5.1	1.6	4.5	2.5	5.1	2.3	4.4	2.7	0
REC	5.1	0	0	0	0	2.6	0	5.1	0	0	5.1	5.0	1.6	4.5	2.5	5.1	2.2	4.4	2.7	0
Ref. No.							•		ı	C8116(SCM-58)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0	5.1	0	0	0	4.6	5.0	5.1	4.6	0	0	0	0	0	0	1.8	0	0	0.1	2.4
REC	0	5.1	0	0	0	4.6	5.0	5.1	4.4	0	0	0	0	0	0	1.8	0	0	0.1	2.4
Ref. No.			(SCM-58	· · · · · · · · · · · · · · · · · · ·							,		SCM-58				· · · · · · ·			
Mode	61	62	63	64	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
STOP	2.4	5.1	0	0	1.2	0.8	8.0	4.4	0.2	0	1.2	0	0	4.2	5.1	4.3	0.1	5.1	0.3	5.1
REC Ref. No.	2.4	5.1	0.1	0	1.2	0.8	0.8	4.4	0.2	4.9	1.2	0	0	4.2	5.1	4.2	0.1	5.1	0.1	5.1
	1	2	3	4	5	6	7	(SCM-6	4) TB	C SUI	11	12	13	14	15	16				
Mode STOP	5.1	4.5	0	2.7	2.7	0	0	0	0	4.5	0	5.0	5.0	5.0	5.1	5.1				
REC	5.1	4.6	0	2.7	2.7	0	0	0	0	4.5	0	5.0	5.0	5.0	5.1	5.1				
Ref. No.		1		2.,	L	IC8120	(SCM-		BC SUB			0.0	0.0	0.0)1 (SCI	VI-59)			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	G	0			
STOP	0.1	0	0.1	0	0.1	0.1	0	0	0	0	0	0	0	5.1	11.6	0	9.2			
REC	0.1	0	0.1	0	0.1	0.1	0	0	0	0	0	0	0	5.1	11.6	0	9.2	-		
Ref. No.			ŀ	C8202 (SCM-59	9)	L			<u> </u>	10	28203 (SCM-59)	<u>. </u>	·			i	•
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	1.5	0.8	8.0	-4.8	0.7	0.7	0.7	4.7	0	0	0	-4.8	10	1.0	1.3	4.7				
REC	1.5	0.8	0.8	-4.8	0.7	0.7	0.7	4.7	0	0	0	-4.8	1.0	1.0	1.3	4.7				
Ref. No.			, le	C8204 (SCM-59)					10	28205 (SCM-59)	,					
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	4.0	3.5	3.5	-4.9	3.5	3.5	3.5	9.2	3.5	3.4	3.4	0	3.4	3.4	3.5	9.2				
REC	4.0	3.5	3.5	-4.9	3.5	3.5	3.5	9.2	3.5	3.4	3.4	0	3.4	3.4	3.5	9.2	<u></u>			
Ref. No.		,	10	C8206 (SCM-59	9)				IC82	07 (SCM	M-59)			IC820)8 (SCI	M-59)			
				I .				T .												
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	1	2	3	4	5		
STOP	4.0	3.5	3.5	-4.9	0	0	0	9.2	3.5	3.5	0	0.1	4.7	1.3	0.8	0	0.1	4.7		
STOP REC		3.5 3.5	3.5 3.5	-4.9 -4.9						3.5 3.5	0	0.1	4.7	1.3	0.8	 				
STOP REC Ref. No.	4.0	3.5 3.5 IC82	3.5 3.5 10 (SCI	-4.9 -4.9 M-59)	0	0	0	9.2 9.2	3.5 3.5	3.5 3.5 IC8	0 0 211 (SC	0.1 0.1 2M-58)(4.7 4.7 SCM-59	1.3 1.3)(SCM-	0.8 0.8 62)	0	0.1	4.7	14	
STOP REC Ref. No.	4.0	3.5 3.5 IC82 2	3.5 3.5 10 (SCI	-4.9 -4.9 VI-59)	0 0	0 0	0 0	9.2 9.2 3	3.5 3.5	3.5 3.5 IC8:	0 0 211 (SC	0.1 0.1 M-58)(4.7 4.7 SCM-59	1.3 1.3)(SCM- 9	0.8 0.8 62)	0 0	0.1	4.7 4.7	14	
STOP REC Ref. No. Mode STOP	4.0 4.0 1 3.5	3.5 3.5 IC82 2 3.5	3.5 3.5 10 (SCI	-4.9 -4.9 M-59) 4 0.1	0 0 5 4.7	0 0 1 0.4	0 0 2 0.4	9.2 9.2 3 0.2	3.5 3.5 4 5.0	3.5 3.5 IC8: 5	0 0 211 (SC 6 0.4	0.1 0.1 2M-58)(7 0	4.7 4.7 SCM-59 8 0.1	1.3 1.3)(SCM- 9 0.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	
STOP REC Ref. No.	4.0	3.5 3.5 IC82 2	3.5 3.5 10 (SCI 3	-4.9 -4.9 VI-59)	0 0 5 4.7 4.7	0 0 1 0.4 0.4	0 0 2 0.4 0.4	9.2 9.2 3	3.5 3.5 4 5.0 5.0	3.5 3.5 1C8: 5 0.4 0.4	0 0 211 (SC	0.1 0.1 M-58)(4.7 4.7 SCM-59	1.3 1.3)(SCM- 9	0.8 0.8 62)	0 0	0.1	4.7 4.7		
STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5	3.5 3.5 IC82 2 3.5	3.5 3.5 10 (SCI 3	-4.9 -4.9 M-59) 4 0.1	0 0 5 4.7 4.7	0 0 1 0.4 0.4	0 0 2 0.4 0.4	9.2 9.2 3 0.2 0.2	3.5 3.5 4 5.0 5.0	3.5 3.5 1C8: 5 0.4 0.4	0 0 211 (SC 6 0.4	0.1 0.1 2M-58)(7 0	4.7 4.7 SCM-59 8 0.1	1.3 1.3)(SCM- 9 0.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	
STOP REC Ref. No. Mode STOP REC	4.0 4.0 1 3.5 3.5	3.5 3.5 IC82 2 3.5 3.5	3.5 3.5 10 (SCF 3 0	-4.9 -4.9 M-59) 4 0.1 0.1	0 0 5 4.7 4.7	0 0 1 0.4 0.4 IC8212	0 0 2 0.4 0.4 (SCM-	9.2 9.2 3 0.2 0.2 64) T	3.5 3.5 4 5.0 5.0	3.5 3.5 IC8: 5 0.4 0.4	0 0 211 (SC 6 0.4 0.4	0.1 0.1 2M-58)(7 0	4.7 4.7 SCM-59 8 0.1 0.1	1.3 1.3)(SCM- 9 0.1 0.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	
STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5	3.5 3.5 1C82 2 3.5 3.5	3.5 3.5 10 (SCF 3 0 0	-4.9 -4.9 M-59) 4 0.1 0.1	0 0 5 4.7 4.7	0 0 1 0.4 0.4 IC8212 6	0 0 2 0.4 0.4 (SCM-0	9.2 9.2 9.2 0.2 0.2 64) T	3.5 3.5 4 5.0 5.0 8C SUB	3.5 3.5 1C8: 5 0.4 0.4	0 0 211 (SC 6 0.4 0.4	0.1 0.1 2M-58)(7 0 0	4.7 4.7 SCM-59 8 0.1 0.1	1.3 1.3)(SCM- 9 0.1 0.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	1 3.5 3.5 1 5.1	3.5 3.5 1C82 2 3.5 3.5 2 2.7	3.5 3.5 10 (SCI 3 0 0	-4.9 -4.9 M-59) 4 0.1 0.1	0 0 5 4.7 4.7	0 0 1 0.4 0.4 1C8212 6 5.1	0 0 2 0.4 0.4 (SCM-I	9.2 9.2 3 0.2 0.2 0.2 64) Ti	3.5 3.5 4 5.0 5.0 8C SUB 9 0	3.5 1C8: 5 0.4 0.4 10 5.1 5.1	0 0 211 (SC 6 0.4 0.4	0.1 0.1 2M-58)(7 0 0 12 5.1 5.1	4.7 4.7 SCM-59 8 0.1 0.1	1.3 1.3)(SCM- 9 0.1 0.1 14 5.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC	1 3.5 3.5 1 5.1	3.5 3.5 1C82 2 3.5 3.5 2 2.7	3.5 3.5 10 (SCI 3 0 0	-4.9 -4.9 M-59) 4 0.1 0.1	0 0 5 4.7 4.7	0 0 1 0.4 0.4 1C8212 6 5.1	0 0 2 0.4 0.4 (SCM-I	9.2 9.2 3 0.2 0.2 0.2 64) Ti	3.5 3.5 4 5.0 5.0 8C SUB 9 0	3.5 1C8: 5 0.4 0.4 10 5.1 5.1	0 0 211 (SO 6 0.4 0.4 11 0.1	0.1 0.1 2M-58)(7 0 0 12 5.1 5.1	4.7 4.7 SCM-59 8 0.1 0.1	1.3 1.3)(SCM- 9 0.1 0.1 14 5.1	0.8 0.8 62) 10 5.1	0 0 11 0.1	0.1 0.1 12 5.1	4.7 4.7 13 0.1	5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5 3.5 1 5.1 5.1 2.5	3.5 1C82 2 3.5 3.5 2 2.7 2.7 2.7	3.5 3.5 10 (SCF) 3 0 0	-4.9 -4.9 W-59) 4 0.1 0.1 4 5.1 5.1	0 0 5 4.7 4.7 5 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1	0 0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) Ti 8 5.1 5.1	3.5 3.5 4 5.0 5.0 8C SUB 9 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1	0 0 211 (SO 6 0.4 0.4 11 0.1 0.1 SCM-61	0.1 0.1 0.1 0.1 7 0 0 12 5.1 5.1)	4.7 4.7 SCM-59 8 0.1 0.1 0 0	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1	0.8 0.8 62) 10 5.1 5.1	0 0 11 0.1 0.1 16 2.0	0.1 0.1 12 5.1 5.1 7 0	4.7 4.7 13 0.1 0.1	5.1	20
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5 3.5 3.5 5.1 5.1	3.5 1C82 2 3.5 3.5 3.5 2 2.7 2.7	3.5 3.5 10 (SCP 3 0 0	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1	0 0 5 4.7 4.7 5 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1 5.1	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0	0.1 0.1 0.1 0.1 0.1 0.0 0 12 5.1 5.1 5.1 5.1	4.7 4.7 SCM-59 8 0.1 0.1 0.1	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1	0.8 0.8 62) 10 5.1 5.1	0 0 11 0.1 0.1	0.1 0.1 12 5.1 5.1	4.7 4.7 13 0.1 0.1	5.1	
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5 3.5 5.1 5.1 2.5 2.5	3.5 3.5 IC82 2 3.5 3.5 2 2.7 2.7 2.7 2.5 5.1	3.5 3.5 10 (SCF) 3 0 0 0 3 0 0 3 5.1 5.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1	0 0 5 4.7 4.7 5 0 0	0 0 1 0.4 0.4 IC8212 6 5.1 5.1	0 0 0 0.4 0.4 (SCM-I 7 0 0	9.2 9.2 3 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 K	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (5.1 5.1 28301 (0 0 211 (SC 6 0.4 0.4 11 0.1 0.1 SCM-61 11 0	0.1 0.1 0.1 0.1 0.1 0.0 0 12 5.1 5.1) 12 5.1	4.7 4.7 SCM-59 8 0.1 0.1 0 0	1.3 1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 14 2.2	0.8 0.8 62) 10 5.1 5.1 2.0 2.0	0 0 11 0.1 0.1 0.1 2.0	0.1 0.1 12 5.1 5.1 7 0 4.6	4.7 4.7 13 0.1 0.1 0.1 0.3	5.1 5.1 19 0	0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 3.5 5.1 5.1 2.5 2.5	3.5 3.5 IC82 2 3.5 3.5 2 2.7 2.7 2.7 2.7 2.2	3.5 3.5 10 (SC) 3 0 0 0 3 0 0 3 5.1 5.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1	0 0 5 4.7 4.7 5 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1	0 0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) Ti 8 5.1 5.1 9 9 9 9 9 9 9 9 9 9 9 9 9	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 2.0 2.0	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	13 0.1 0.1 0.1 0.3 0.3	5.1 5.1 19 0 0	0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC ROM STOP REC ROM STOP REC ROM STOP REC ROM STOP	4.0 4.0 1 3.5 3.5 5.1 5.1 2.5 2.5	3.5 3.5 IC82 2 3.5 3.5 3.5 2 2.7 2.7 2.7 2.7 2.0	3.5 3.5 10 (SC) 3 0 0 0 3 5.1 5.1 23	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 KC 9 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.	4.0 4.0 1 3.5 3.5 5.1 5.1 5.1 2.5 2.5 21 0	3.5 3.5 IC82 2 3.5 3.5 3.5 2 2.7 2.7 2.7 2.1 5.1 22 0	3.5 3.5 10 (SC) 3 0 0 0 3 5.1 5.1 23 0	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0	0 0 5 4.7 4.7 5 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1	0 0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) Ti 8 5.1 5.1 9 9 9 9 9 9 9 9 9 9 9 9 9	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 0 10	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 2.0 2.0	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	13 0.1 0.1 0.1 0.3 0.3	5.1 5.1 19 0 0	0 0
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. REC Ref. No. REC Ref. No. REC Ref. No. REC Ref. No.	4.0 4.0 1 3.5 3.5 5.1 5.1 5.1 2.5 2.5 21 0	3.5 3.5 IC82 2 3.5 3.5 2.7 2.7 2.7 2.1 5.1 22 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 3.5 10 (SC) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 KC 9 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 3.5 1 5.1 5.1 2.5 2.5 21 0 0	3.5 3.5 1C82 2 3.5 3.5 2.7 2.7 2.7 2 5.1 5.1 22 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 3.5 10 (SCI) 3 0 0 0 3 5.1 5.1 23 0 0 (SCM-61) 43	-4.9 -4.9 W-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 KC 9 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. REC Ref. No. REC Ref. No. REC Ref. No. REC Ref. No.	4.0 4.0 1 3.5 3.5 5.1 5.1 5.1 2.5 2.5 21 0	3.5 3.5 IC82 2 3.5 3.5 2.7 2.7 2.7 2.1 5.1 22 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 3.5 10 (SC) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 KC 9 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5 3.5 5.1 5.1 1 2.5 2.5 21 0 0 10 41 1.8	3.5 3.5 1C82 2 3.5 3.5 2 2.7 2.7 2 5.1 5.1 22 0 0 C8301 42 1.9	3.5 3.5 10 (SCI) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1	-4.9 -4.9 W-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 0 10 29 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 SCM-61 31	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 5.1 5.1 1 2.5 2.5 21 0 0 10 41 1.8	3.5 3.5 1C82 2 3.5 3.5 2 2.7 2.7 2 5.1 5.1 22 0 0 C8301 42 1.9	3.5 3.5 10 (SCI) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1	-4.9 -4.9 W-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0	0 0 0.4 0.4 (SCM-1 7 0 0	9.2 9.2 9.2 0.2 0.2 64) T 8 5.1 5.1 8 0	3.5 3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 0 10 29 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0	0 0 211 (SC 6 0.4 0.4 0.1 SCM-61 11 0 0 SCM-61 31 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3	1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1	0 0 11 0.1 0.1 0.1 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.3 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 1 5.1 5.1 2.5 2.5 21 0 0 14 1.8 1.8	3.5 3.5 1C82 2 3.5 3.5 3.5 2 2.7 2.7 2 5.1 5.1 22 0 0 0 C8301 42 1.9 1.9	3.5 3.5 3.5 10 (SCF) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1 2.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 1 4 0 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 IC8212 6 5.1 5.1 6 0 0	0 0 0 2 0.4 0.4 (SCM-I 7 0 0 0	9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1 8 0 0	3.5 3.5 3.5 4 5.0 5.0 BC SUB 9 0 0 0 10 29 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 0.1 SCM-61 11 0 SCM-61 31 0	0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	4.7 4.7 SCM-59 8 0.1 0.1 13 0 0 13 2.2 2.3 33 5.1 5.1	1.3 1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2 34 5.4 5.4	0.8 0.8 62) 10 5.1 5.1 2.0 2.0 35 5.1 5.1	10 0 0 11 0.1 0.1 0.1 16 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.1 38 0.3 0.3	5.1 5.1 19 0 0	0 0 40 1.6 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 1 5.1 5.1 2.5 2.5 21 0 0 10 41 1.8 1.8	3.5 3.5 1C82 2 3.5 3.5 3.5 2 2.7 2.7 2.7 2.7 2.7 2.7 2.7	3.5 3.5 3.5 10 (SCF) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1 2.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 4 4 0 0 4 4 4 4 4 4	5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 IC8212 6 5.1 5.1 0 0	0 0 0 2 0.4 0.4 (SCM-I 7 0 0 0	9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1 8 0 0	3.5 3.5 3.5 4 5.0 5.0 BC SUB 9 0 0 0 10 29 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0 0 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 0.1 SCM-61 11 0 0 SCM-61 31 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3 33 5.1 5.1	1.3 1.3 1.3)(SCM-9 0.1 0.1 14 5.1 5.1 2.2 2.2 34 5.4 5.4	0.8 0.8 62) 10 5.1 5.1 2.0 2.0 35 5.1 5.1	0 0 11 0.1 0.1 0.1 16 2.0 1.9	0.1 0.1 12 5.1 5.1 17 0 4.6	18 0.1 0.1 0.1 38 0 0 0	5.1 5.1 19 0 0 0	0 0 1.6 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	4.0 4.0 1 3.5 3.5 5.1 5.1 2.5 2.5 21 0 0 11 1.8 1.8	3.5 3.5 1C82 2 3.5 3.5 3.5 2 2.7 2.7 2.7 2.7 2.7 2.7 2.1 5.1 2.1 0 0 0 0 0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	3.5 3.5 3.5 10 (SCF) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1 2.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44 0 0 1 44 0 0 1 44 0 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 6 0 0	0 0 0 2 0.4 0.4 (SCM-I 7 0 0 0	9.2 9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1 8 0 0	3.5 3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 10 29 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 0 SCM-61 31 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3 5.1 5.1	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0.8 0.8 62) 10 5.1 5.1 2.0 2.0 2.0 35 5.1 5.1	0 0 11 0.1 0.1 0.1 16 2.0 1.9 36 0 0	0.1 0.1 12 5.1 5.1 17 0 4.6 37 0 0	18 0.1 0.1 0.1 38 0 0 0	5.1 5.1 19 0 0 39 0 0	0 0 1.6 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC	4.0 4.0 1 3.5 3.5 5.1 5.1 2.5 2.5 21 0 0 11 1.8 1.8	3.5 3.5 1C82 2 3.5 3.5 3.5 2 2.7 2.7 2.7 2.7 2.7 2.7 2.1 5.1 2.1 0 0 0 0 0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	3.5 3.5 3.5 10 (SCF) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1 2.1	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44 0 0 1 44 0 0 1 44 0 0 0	0 0 5 4.7 4.7 5 0 0 0	0 0 1 0.4 0.4 1C8212 6 5.1 5.1 6 0 0	0 0 0 2 0.4 0.4 (SCM-I 7 0 0 0	9.2 9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1 8 0 0	3.5 3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 10 29 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 0 SCM-61 31 0 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.7 4.7 SCM-59 8 0.1 0.1 0 0 13 2.2 2.3 5.1 5.1	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0.8 0.8 62) 10 5.1 5.1 2.0 2.0 2.0 35 5.1 5.1	0 0 11 0.1 0.1 0.1 16 2.0 1.9 36 0 0	0.1 0.1 12 5.1 5.1 17 0 4.6 37 0 0	18 0.1 0.1 0.1 38 0 0 0	5.1 5.1 19 0 0 39 0 0	0 0 1.6 1.6
STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	4.0 4.0 1 3.5 3.5 3.5 1 5.1 5.1 2.5 2.5 21 0 0 14 1.8 1.8 1.7 1.6	3.5 3.5 1C82 2 3.5 3.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.1 5.1 2.2 0 0 0 0 0 0 0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	3.5 3.5 3.5 10 (SCI) 3 0 0 3 5.1 5.1 23 0 0 (SCM-61 43 2.1 2.1 3 1.8 1.9	-4.9 -4.9 M-59) 4 0.1 0.1 5.1 5.1 4 0 0 0 1) 44 2.1 2.1	0 0 0 5 4.7 4.7 5 0 0 0 5 0 0	0 0 0 1 0.4 0.4 1C8212 6 5.1 5.1 0 0 0	0 0 0 2 0.4 0.4 (SCM-1 7 0 0 0	9.2 9.2 9.2 3 0.2 0.2 64) Ti 8 5.1 5.1 5.1 8 0 0	3.5 3.5 3.5 4 5.0 5.0 8C SUB 9 0 0 0 0 10 29 0 0	3.5 3.5 1C8: 5 0.4 0.4 10 5.1 5.1 28301 (30 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 211 (SC 6 0.4 0.4 0.1 0.1 SCM-61 11 0 0 SCM-61 31 0 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.7 4.7 SCM-59 8 0.1 0.1 13 0 0 13 2.2 2.3 5.1 5.1	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0.8 0.8 62) 10 5.1 5.1 15 2.0 2.0 35 5.1 5.1 15 3.5 3.5	10 0 0 11 0.1 0.1 0.1 16 2.0 1.9 36 0 0	0.1 0.1 12 5.1 5.1 17 0 4.6 37 0 0	18 0.1 0.1 0.3 0.3 18 0 0	5.1 5.1 19 0 0 39 0 0	0 0 1.6 1.6

Ref. No.			10	C8302 (SCM-61)														
Mode	41	42	43	44	45	46	47	48			,									
STOP	2.1	5.1	0	0	0.1	0.1	1.5	3.9												
REC	2.1	5.1	0	0	0.1	0.5	1.6	3.9												
Ref. No.									IC	8303 (SCM-61)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0.4	0	0	0	4.3	4.3	0	4.3	0	0	0	0	0	0	0	0	2.5	0	5.1	0
REC	0.4	0	0	0	0	4.3	0	4.3	0	0	0	0	0	0	0	0	2.5	0	5.1	0
Ref. No.										SCM-61	·						T 1		_	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		ļ
STOP	0	0	0	1.9	2.0	2.2	2.3	0	0	0	5.1	1.8	1.8	2.0	2.1	1.9	0.3	0		<u> </u>
REC Ref. No.	0	0	0	1.9	2.0	2.3	2.4	0	0	0	5.1	1.8	1.8	2.0	2.1	1.9	0.3	. 0		L
				1 4		0		_			SCM-61		10	4.4	4.5	10	17	18	19	20
Mode	1	2	0	0	5	6	7	8	9	10 0	11 0	12	13	14	15 0	16 0	17 2.5	0	5.1	0
STOP	0.4	0	0	0	4.3 0	4.3	0	4.3	0	0	0	0	0	0	0	0	2.5	0	5.1	
Ref. No.	0.4				U	U	0	l		SCM-61		U	<u> </u>	- 0	U		2.0		0.1	<u> </u>
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
Mode	0	0	0	2.0	2.0	2.2	2.3	0	0	0	0	1.8	1.8	2.0	2.1	1.9	0.3	0		
REC	0	0	0	2.0	2.0	2.2	2.3	0	0	0	0	1.8	1.8	2.0	2.1	1.9	0.3	0		
Ref. No.			<u></u>	1				SCM-61		-		-				8 (SCI				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	G	0			
STOP	5.1	2.5	2.4	2.4	2.4	2.4	0	5.1	0	5.1	2.5	2.4	5.1	5.1	11.6	0	5.1			
REC	5.1	2.5	2.4	2.4	2.4	2.4	0	5.1	0	5.1	2.5	2.4	5.1	5.1	11.6	0	5.1			
Ref. No.		· · · · · · · · · · · · · · · · · · ·		,			IC	28309 (SCM-61)							IC831	2 (SCN	<i>I</i> -61)	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	I	G	0	
STOP	1.0	1.0	0	0	0	0	0	0	0	1.0	1.0	0.9	0.9	0.9	1.0	5.1	11.6	0	5.1	
REC	1.0	1.0	0	0	0	0	0	0	0	1.0	1.0	0.9	0.9	0.9	1.0	5.1	11.6	0	5.1	
Ref. No.		,			,				IC	28401 (SCM-62) [;]								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
EJECT	0	5.1	0	5.1	5.1	5.1	5.1	5.1	5.1	5.1	0	5.4	5.1	4.9	0	0	0	5.1	0.1	0.4
REC Ref. No.	0	5.1	0	5.1	5.1	5.1	5.1	5.1	5.1	5.1	0	5.4	5.1	4.9	0	0.1	0	5.1	0.1	0.4
	21	20	22	24	25	26	27	20			SCM-62		22	24	25	26	27	20	20	40
Mode EJECT	21 0	5.1	23 5.1	1.0	25 0.2	26 0	27 5.1	28	29 0.1	30 0.1	31 5.1	32 5.1	33 5.1	34	35 0	36 0	37 5.1	38 0	39 5.1	40 5.1
REC	0	5.1	5.1	1.0	0.2	0	5.1	0	0.1	0.1	5.0	0	5.1	0	0	0	5.1	0	5.1	5.0
Ref. No.	"	5.1	0.1	1.0	0.1		0.1				SCM-62		0.1		0		0.1		0.1	<u> </u>
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
EJECT	5.1	0.1	5.1	0	0	5.1	5.4	5.1	5.1	0	5.0	5.1	0	2.6	0	5.1	0	0	0	0
REC	5.1	0.1	5.1	0	0.1	0.1	5.4	5.0	5.1	0	5.0	5.1	0.2	2.5	0.2	5.1	0	0	0	0
Ref. No.									ic	28401 (SCM-62)	L							1
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
EJECT	2.9	0	0	0	0	1.3	5.4	2.3	5.1	0	3.0	0	1.9	2.4	1.7	1.2	5.4	0	5.1	0
REC	5.1	0	0	0	5.1	5.1	5.0	2.3	2.3	2.0	2.7	0	2.1	2.4	1.6	1.3	5.4	0	0.2	0
Ref. No.										28401 (SCM-62									
Mode	81	82	83	_84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
EJECT	1.9	1.9	1.9	1.8	0	2.9	2.4	1.7	1,3	0.1	5.1	0	0.1	4.0	1.9	0	5.1	2.6	0	5.1
REC	1.9	1.9	1.5	2.1	0	3.1	2.4	1.6	1.3	0.1	5.1	0	0.1	4.1	2.0	0.2	5.1	0.2	0	0.1
Ref. No.	<u> </u>	1		104	105	400	1	1 400			SCM-62		140	444	445	140	1 447	440		100
Mode	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
EJECT	0.5	0	0.4	0.1	0.4	2.6	0	0	0	0	0	0	0	5.1 5.1	0	0	0	0	0	0
REC Ref. No.	0.5	0	0.4	0.2	0.4	2.6	0	0			SCM-62			0.1		L			U	L
	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Mode EJECT	0	0	0	0	0	0	0	0	0	0	5.1	0	5.1	0	0	0	0	5.1	5.1	0
REC	0	0	0	0	0	0	0	0	0	0	5.1	4.6	5.1	0	0	0	0	5.1	0	0
Ref. No.	Ť		<u>_</u>			L	L	1	J		SCM-62		1 3.1		<u> </u>	1	I		L	<u> </u>
Mode	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
EJECT	0	0	0	0	5.1	0.1	5.1	0.1	0.1	5.1	5.1	5.1	5.1	0	5.1	0	1.0	0	0	1.0
REC	0	0	5.1	0	0	0.1	5.1	0.1	5.1	5.1	5.1	0	5.1	0	0	0	1.0	0	0	0
	1					1	1	1		<u> </u>				·			L			

Ref. No.		·	-							20404										
	161	162	163	164	165	166	167	168	169	170	SCM-62	172	173	174	175	176	177	178	179	180
Mode	0	0	0	0	5.1	. 0	5.1	0	0	0	0	0	0	0	0	2.7	2.0	1.4	1.1	0
REC	0	0	0	0	5.1	0	5.1	5.1	0	0	0	0	0	0	0	0	2.1	1.4	0	1.0
Ref. No.	<u> </u>	1		1					IC		SCM-62	2)					1	1		
Mode	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
EJECT	0	5.1	5.1	5.1	5.1	0	0	0	0	0	0	0	0	0	0	5.3	5.2	5.2	5.4	5.1
REC	0	5.1	5.1	0	0	0	0	0	5.1	0	0	0	0	0	5.3	5.3	5.4	5.4	5.4	5.1
Ref. No.		1			(SCM-62	·						,		,	,	Ţ		η· · · · · · · · · · · · · · · · · · ·	·	
Mode	201	202	203	204	205	206	207	208												
EJECT REC	5.1	5.4	0	0	5.4	0	0	2.3												
Ref. No.	-	0	U	U	5.4			0 SCM-62) 	l				L		ICRAI)3 (SCI	M-62)		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	
STOP	0	0	0	0	0	0	0	1.0	1.0	0	1.0	0	1.0	5.1	0	0	0	0	5.1	
REC	0	0	0	0	0	0	0	1.0	1.0	0	1.0	0	1.0	5.1	0	0	0	0	5.1	
Ref. No.						IC840	(SCM	-62)(SC	M-58)		·									· · · · · · · · · · · · · · · · · · ·
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	0	0	0	0.2	0	0	0	0	0	5.1	0	0	5.1	5.1						
REC Ref. No.	0	0	0	0.2	0	0	0	0	0	5.1	0	0	5.1	5.1						
				T							SCM-60	_				T				
Mode	1 5.3	5.5	3 5.4	0	5	6	7 5.5	8	9 5.3	10 5.5	11	12	13	14	15	16	17	18	19	20
REC	5.2	5.4	5.4	0	0	0	0	0	5.2	5.4	0	5.4 5.4	0	5.4 0	5.5 5.4	4.4	0	0	5.5 0	5.4 5.4
Ref. No.	0.2								L		SCM-60				J 3.4	7.7				0,4
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	5.4	0	2.2	0	4.7	0	0	5.4	5.4	5.4	0	0	0	5.4	5.4	5.4	5.4	2.6	2.6	0
REC	5.4	0	2.2	0	4.7	0	0	5.4	5.4	5.4	0	0	5.1	0.3	0	0	0.3	2.6	2.6	0
Ref. No.		,					,		IC	8501 (SCM-60)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	2.6	2.4	0	0	0	0	0	0	0.3	0.3	0.3	0.3	4.7	5.0	0	0	0.3	0.3	0.3	2.7
REC Ref. No.	0	0	0	5.4	5.4	5.4	5.4	5.4	5.4	5.4	4.9	0	4.7	5.0	0	0	0	0	0	2.7
Mode	61	62	63	64	65	66	67	68	69	70	SCM-60 71	72	73	74	75	76	77	78	79	80
STOP	2.7	0	2.7	0	2.7	0	5.4	0	0	5.4	3.7	0	0	0.1	4.5	4.5	1.1	0	2.7	2.7
REC	2.7	0	2.7	0	2.7	0	5.4	0	0	5.4	3.7	0	0	2.3	2.3	1.1	0	0	2.7	2.7
Ref. Na								L	IC	8501 (SCM-60)	·				L	·		
Mode	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
STOP	1.1	1.1	0	5.4	0	0	0	0	0	2.9	0	5.4	5.4	5.4	5.4	0	0	2.5	2.6	0
REC Ref. No.	1.2	1.2	0	5.4	0	0	0	0	0	2.9	0	5.4	5.4	5.4	5.4	0	0	2.5	2.6	0
	101	100	102	104	105	100	407	100			SCM-60		440	444	445	440	447	440	110	100
Mode	101 2.7	102 4.0	103	104 5.1	105 0	106	107	108	109 5.4	110 5.4	111 5.4	112	113 0	114 5.4	115 0	116 0	117 5.4	118 5.4	119	120
REC	2.7	4.0	0	5.1	0	0	0	0	0	0	0	0	0	0	0	0	5.4	0	0	0
Ref. Na.		·			SCM-60						-		SCM-60	L			-,,	<u> </u>		<u> </u>
Mode	121	122	123	124	_ 125	126	127	128	1	2	3	4	5	6	7	8				
STOP	0	0	0	0	_0	5.4	0	0	2.7	2.7	2.7	0	0	0	0	5.4				
REC	0	0	5.4	0	0	0	5.4	0	2.7	2.7	2.7	0	0	0	0	5.4				
Ref. No.		T		1 .				SCM-60	-						IC850)4 (SCN	<i>I</i> -60)			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G	V	0			
STOP REC	5.1 5.1	5.4	0	2.7	0	2.5	0	2.7	2.7	0.6	2.7	2.7	5.4	5.4	0	4.7	4.7			
Ref. No.	φ. I	5.4		2.7	0 SCM-60	2.5	0	2.7	2.7	0.6	2.7	2.7	5.4	5.4	0	4.7	4.7		-	
Mode	1	2	3	4	5	6	7	8			1									
STOP	4.0	0.9	0.6	0	0	5.4	0	5.4							<u> </u>					
REC	4.0	0.9	0.6	0	0	5.4	0	5.4												
Ref. No.	Q810	1 (SCN	1-58)	Q810	2 (SCN	1 -58)	Q810	3 (SCN	1-58)	O820	1 (SCIV	1-59)	Q820	2 (SCN	1-59)	Q820	3 (SCN	1-59)		
Mode	Е	С	В	Е	С	В	Ε	С	В	E	С	В	Е	С	В	E	С	В		
STOP	9.0	11.5	9.6	9.6	0	9.0	2.3	2.4	0	-1.0	4.7	-0.4	0.9	4.7	1.5	-0.7	9.2	-0.1		
REC	9.0	11.5	9.6	9.6	0	9.0	2.3	2.4	0	-1.0	4.7	-0.4	0.9	4.7	1.5	-0.7	9.2	-0.1		

Ref. No.	Q820	4 (SCN	M-59)	Q820	5 (SCN	<i>I</i> -59)	Q820	6 (SCI	/ 1-59)	Q820	7 (SCN	/ 1-59)						
Mode	E	С	В	E	С	В	E	С	В	E	C	В						
STOP	3.4	9.2	4.0	-0.7	9.2	-0.1	3.4	9.2	4.0	-1.0	4.7	-0.4						
REC	3.4	9.2	4.0	-0.7	9.2	-0.1	3.4	9.2	4.0	-1.0	4.7	-0.4				T		
Ref. No.	QR81	01 (SCI	M-58)	QR81	02 (SCI	M-64)	QR85	01 (SC	M-60)	QR85	02 (SC	M-60)	QR85	03 (SC	M-60)	,		
Mode	E	С	В	E	С	В	Е	С	В	Е	С	В	Е	С	В			
STOP	0	5.0	0	0	0	0	0	0.1	4.1	0	5.4	0	0	2.3	0			
REC	0	5.0	0	0	0	0	0	5.4	0	0	5.4	0	0	2.3	0			

TBC (2	<u>) C.</u>	B.A.																		
Ref. No.	1	1		1 4	1 =	T .		1 0			SCM-65		1.0		1 45	10	1 4 7	1 40	10	
Mode	3.8	4.3	4.5	5.2	5.2	4.5	7 4.5	4.5	9 4.3	9.0	5.1	12	13	8.6	15 8.9	0.4	17	18	19	20
REC	4.0	4.5	4.6	5.4	5.3	4.6	4.6	4.6	4.4	9.2	5.3	0	0	8.8	9.1	0.4	6.7	2.4	5.2	0
Ref. No.		1	1	1 0.1	0.0		L.	1-65)(S	<u> </u>	0.2	0.0		-	0.0	3.1	0.4	0.5	2.0	1 0.0	\vdash
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14					T	
STOP	0.1	0.1	0	4.2	0	5.1	0	0	4.0	0	-0.5	0	-5.0	5.1			ĺ			
REC	0.1	0.1	0	4.4	0	5.1	0	0	4.0	0	-0.5	0	-5.0	5.1						
Ref. No.						,	ı	C8603	SCM-6	5)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	5.1	5.1	5.1	5.1	0	0	5.1	0	0	5.1	5.0	5.1	0	0	5.1	5.1				
REC Ref. No.	5.1	5.1	5.1	5.1	0	0	5.1	0	0	5.1	5.0	5.1	0	0	5.1	5.1	ļ			
	1	2	3	4	5	6	7	C8604	9	10	11	12	12	14	15	16		Γ		
Mode STOP	0	5.1	5.0	5.1	0	0	5.0	0	0	5.1	11 5.0	12 5.1	13	14	15 5.1	5.1	1			
REC	0	5.3	5.1	5.3	0	0	5.3	0	0	5.3	5.2	5.4	0	0	5.3	5.3				\vdash
Ref. No.			ь	J	(SCM-65	<u> </u>				0.0	0.2	U			1 0.0	0.0		L	l	
Mode	1	2	3	4	5	6	7	8								T				\Box
STOP	0	0	0	-5.0	0	0	0	11.6												
REC	0	0	0	-5.0	0	0	0	11.6												
Ref. No.								C8606 (SCM-65	5)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	- 15	16				
STOP	5.1	4.9	4.9	5.1	2.4	0	3.2	0	0	1.3	4.9	1.8	0	0	4.9	5.1				
REC Ref. No.	5.2	5.0	5.0	5.2	2.3	0	3.2	0	0	1.2	4.9	1.7	0	0	4.9	5.1				\Box
	1	2	3	4	5	6	7	(SCM-6!		10	11	10	12	174		1	1		1	
Mode STOP	0.3	5.1	0	5.1	5.1	0	0	5.0	0.2	10	11 5.1	12 5.1	13	14 5.1						<u> </u>
REC	0.4	5.1	0	5.1	5.1	0	0	5.0	0.2	0	5.3	5.3	0	5.3						
Ref. No.		L						SCM-6			0.0	0.0		0.0			l	_	<u> </u>	—
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	0	2.7	2.7	5.1	2.5	0.4	0	1.9	0	3.8	0	0	0	5.1						
REC	0	2.8	2.8	5.2	2.5	0.5	0	1.9	0	3.8	0	0	0	5.1						
Ref. No.		-	10	C8609 (SCM-65	i)			IC86	13 (SCI	M-65)									
Mode	1	2	3	4	5	6	7	8	1	2	3									
STOP	2.3	2.7	2.7	-5.0	0	0	0	4.9	9.1	0	11.6									
REC Ref. No.	2.3	2.7	2.7	-5.0	0	0	0	4.9	9.1	0	11.6									L
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Mode STOP	0	0	0	0	0	0	-5.0	0	0	0	0	0	0	0	0	4.9				
REC	0	0	0	0	0	0	-5.0	0	0	0	0	0	0	0	0	4.9	-			
Ref. No.			10	C8672 (SCM-66)							-							$\overline{}$
Mode	1	2	3	4	5	6	7	8												
STOP	0	0	0	-5.0	0	0.4	0	9.1												
REC	0	0	0	-5.0	0	0.4	0	9.1												
Ref. No.					-			SCM-66							IC867	4 (SCI	M-66)			
Mode	1	2	3	4	5	- 6	7	8	9	10	11	12	13	14	1	2	3			
STOP REC	0	0	0	2.2	5.1	5.1	0	3.8	2.2	0	2.2	1.9	-5.0	5.1	9.2	0	11.6			
Ref. No.	. 0	0	U	2.2	5.1	5.1	0	3.8	2.1	0	2.2 SCM-67	1.9	-5.0	5.1	9.2	0	11.6			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	5.1	0	5.1	0	0	0	0	0	0	3.4	3.4	0	0	0	0	2.6	5.1	0	2.6	5.1
REC	5.1	0	5.1	0	0	0	0	0	0	3.4	3.4	0	0	0	0	2.6	5.1	0	2.6	5.1
Ref. No.							-	· · · · · · · · · · · · · · · · · · ·			SCM-67	-			*					
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.6	5.1	0	5.1	0.5	0	0	0	0	0	5.1	2.5	5.1	5.1	0	5.1	0	0	0	5.1
REC	2.6	5.1	0	5.1	0.5	0	0	0	0	0	5.1	2.5	5.1	5.1	0	5.1	0	0	0	5.1
Ref. No.									IC	8701 (SCM-67)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	2.6	5.1	0	0	0	1.4	2.7	2.5	0	2.7	5.1	2.5	2.5	2.4	2.5	0	2.6	2.6	5.1	0
REC	2.5	5.1	0	0	0	1.4	2.7	2.5	0	2.7	5.1	2.5	2.5	2.4	2.5	0	2.6	2.6	5.1	0

Ref. No.									10	28701 (SCM-67	<u>')</u>								
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	2.5	5.1	5.1	5.1	5.1	5.1	2.4	0	4.2	5.1	0	0	5.1	1.8	1.8	3.8	0	0	3.4	2.6
REC	2.5	5.1	5.1	5.1	5.1	5,1	2.4	0	4.2	5.1	0	0	5.1	1.8	1.8	3.8	0	0	3.4	2.6
Ref. No.			<u> </u>	0.7	-						SCM-67		0.1	1.0	1.0	0.0			0.4	2.0
Mode	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
STOP	2.6	5.1	5.1	0.4	5.1	0	0	0	0	5.1	5.1	0	5.1	0	0	5.1	3.4	5.1	0	0
REC	2.6	5.1	5.1	0.4	5.1	0	0	0	0	5.1	5.1	5.1	0	5.1	0	5.1	3.4	0	0	0
Ref. No.		l	<u></u>			L	I		; IC	28701 (SCM-67	')	1				L			
Mode	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
STOP	5.1	0.8	5.1	0	0	5.1	0	5.1	0	0	0	0	0.4	0.4	2.6	0.2	5.1	0.2	0	0.1
REC	5,1	0.8	5.1	0	0	5.1	5.1	5.1	0	0	0	0	0.4	2.6	0.2	1.0	0.4	0.2	0	0.1
Ref. No.									IC	28701 (SCM-67)				•				·
Mode	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
STOP	1.0	1.2	5.1	5.1	0.2	0.2	5.1	5.1	5.1	3.4	5.1	0	5.1	0	5.1	5.1	5.1	0	5.1	5.1
REC	1.0	1.2	0.8	5.1	0.2	5.1	5.1	5.1	5.1	3.4	5.1	0	5.1	0	5.1	5.1	0	0	5.1	5.1
Ref. No.			(SCM-67								IC	28702 (SCM-67)						
Mode	141	142	143	144	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
STOP	5.1	5.1	0	0	5.2	5.2	5.2	5.2	0	0	5.2	0	0	5.2	5.2	5.2	0	0	3.6	5.2
REC Ref. No.	5.1	5.1	0	0	5.1	5.1	5.1	5.1	0	0	5.1	0	0	5.1	5.1	5.1	0	0	3.6	5.1
			١.					SCM-67					- 10				14 (SCN			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	
STOP	1.0	4.1	2.5	2.7	2.5	2.5	0	2.6	2.6	2.4	2.7	2.5	2.5	5.1	0.2	0.2	0	0.1	5.2	<u> </u>
REC Ref. No.	1.0	4.1	2.5	2.6	2.5 SCM-67	2.5	0	2.6	2.6	2.4	2.6	2.5	2.5	5.1	0.2	0.2	0	0.1	5.1	l
	1	2	3	4	5	6	7	8	1	2	3	-8706 (4	SCM-67	6	7	8				
Mode STOP	0	0	0	-5.1	0	0	0	9.2	0.4	4.9	0.4	0	4.5	0	4.5	4.9				
REC	0	0	0	-5.1	0	0	0	9.1	0.4	4.9	0.4	0	4.5	0	4.5	4.9				
Ref. No.			<u></u>	·	SCM-68			J.,	0.4	7.0		L	SCM-68		7.0	4.5				
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8			-	
STOP	0	0	0	-4.8	0	0	0.1	4.8	2.7	3.4	2.1	0	2.1	3.4	2.7	4.8				
REC	0	0	0	-4.8	0	0	0.1	4.8	2.7	3.4	2.1	0	2.1	3.4	2.8	4.8			-	
Ref. No.				<u> </u>		·	I	C8803 (SCM-68	()			L							
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0.2	5.3	5.2	0.2	0	4.9	0	0.1	5.3	5.3	5.1	0.1	0	5.1	5.3				
REC	0	0.2	5.3	5.2	0.2	0	4.9	0	0.1	5.3	5.3	5.1	0.1	0	5.1	5.3				
Ref. No.			Į!	C8804 (SCM-68	3)					IC	28805 (SCM-68)						
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	0.3	0	0	-4.8	0	0	-0.5	-4.8	0.5	0	0	-4.8	0	0	0	4.8				
REC	0.4	0	0	-4.8	0	0	0	4.8	0.5	0	0	-4.8	0	0	0	4.8				
Ref. No.	-									·	SCM-68	,			45	1 40	4			
Mode	2.2	1.7	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REC	2.2	1.7	2.8	2.9	3.5 3.5	2.9	4.8	2.2	1.7	2.9	0	1.8	1.4	1.4	4.8	4.1	5.1 5.1	3.0 5.0	0	3.5
Ref. No.			SCM-68	1			7.0 7 (SCI		L	2.0		1.0	1.7	1.77	7.0	7.1	0.1	5.0	J	5.5
Mode	21	22	23	-24	1	2	3	4	5							<u> </u>				
STOP	2.9	2.8	1.7	2.2	0	0.1	0	5.1	5.3											
REC	3.2	2.8	1.7	2.2	0	0.1	0	5.1	5.3											
Ref. No.			1	! <u> </u>			10	28808 (SCM-68)		l								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0.1	-2.9	-3.1	-3.0	0	-4.9	0	2.6	1.0	4.8	0	0	0	0	4.8				
REC	0	0.1	-2.9	-3.1	-3.0	0	-4.9	0	2.6	1.0	4.8	0	0	0	0	4.8				
Ref. Na.						IC	28809 (SCM-68)											
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14						
STOP	0.2	5.1	1.0	0.5	5.3	0	0	0.2	0	0	5.1	4.3	1.0	5.3						
REC	0.2	5.1	1.0	0.4	5.3	0	0	0.2	0	0	5.1	4.3	1.0	5.3						
Ref. No.			r		SCM-68			r			11 (SCN			···	·					
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5							
STOP	3.5	1.0	1.0	-5.0	0	0	0	. 11.6	0.3	0	0	0.1	4.8							
REC	3.5	1.0	1.0	-5.0	0	0	0	11.6	0.3	0	0	0.1	4.8							

Ref. No.			1	C8812	(SCM-6	8)														
Mode	1	2	3	4	5	6	7	8	 	Τ	Τ	···	1	T		T	1	<u></u>	Т	т
STOP	0.1	0.1	0.1	-5.0	0.2	0.2	0.2	11.6		ļ	 		ļ	-	-		<u> </u>	ļ	 	+
REC	0.1	0.1	0.1	-5.0	0.2	0.2	0.2	11.6	 	-				-						-
Ref. No.	Q867	1 (SCN	A-66)		72 (SCI			73 (SCI	M-66)	087	01 (SC	A-67)	0880	1 (SCI	M-68 /	0000)2 (SCI	460)		
Mode	E	С	В	E	C	В	Е	C	В	E	C	В	E	C	В	E	C C	В		Τ
STOP	3.2	0	2.6	4.8	7.0	9.2	7.9	4.8	9.1	-0.4	4.9	0	0.7	4.8	1.3	-0.6	4.8	0.1		+
REC	3.2	0	2.6	4.8	7.0	9.2	7.9	4.8	9.1	-0.4	5.0	0	0.7	4.8	1.3	-0.6	4.8	0.1		┼
Ref. No.	Q880	3 (SCN	/-68)	Q8804	(SCM	-68)		05 (SCN	1		06 (SCA			8 (SCI			9 (SCI			J
Mode	E	С	В	Е	С	В	E	С	В	E	С	В	E	C	В	E	C	В		Τ
STOP	-0.6	4.8	0	0	-4.8	-0.6	-0.4	4.8	0.2	-0.1	4.8	0.5	-0.5	4.9	0.1	-0.5	4.9	0.1		+
REC	-0.6	4.8	0	0	-4.8	-0.6	-0.4	4.8	0.2	-0.1	4.8	0.5	-0.5	4.9	0.1	-0.5	4.9	0.1		┼
Ref. No.	Q881	0 (SCN	1-68)	Q881	1 (SCN	N-68)	Q881	2 (SCN			3 (SCN			4 (SCA			5 (SCN			
Mode	E	С	В	E	С	В	Е	C	В	E	С	В	E	С	В	E	C	В		
STOP	0.8	-1.8	0	0.2	4.9	0.8	0. 8	-1.8	0	0.2	4.9	0.8	-0.4	4.8	0	-0.3	4.8	0		
REC	8.0	-1.8	0	-0.5	4.9	0.1	0.8	-1.8	0	0.2	4.9	0.8	-0.4	4.9	0	-0.3	4.9	0		
Ref. No.	Q881	6 (SCN	1-68)	Q881	7 (SCN	M-68)	Q881	8 (SCN	/I-68)		9 (SCN			0 (SCN			1 (SCN			J
Mode	Ε	С	В	Ε	Ç	В	Е	С	В	Е	С	В	Е	C	В	E	С	В		T
STOP	-0.2	-4.9	0	0.6	2.7	0.1	0.2	-4.9	-0.1	0.1	-4.9	0	0.5	2.7	0.1	0.1	-4.9	-0.1		
REC	-0.2	-4.9	0	0.6	2.7	0.1	0.2	-0.1	-4.9	0.1	-4.9	0	0.5	2.7	0.1	0.1	-4.9	-0.1		
Ref. No.	Q882	2 (SCN	1-68)	Q882	3 (SCN	M-68)	Q882	4 (SCN	1 -68)	Q882	5 (SCN	1-68)	Q882	7 (SCN	1-68)	Q882	8 (SCN	1-68)		
Mode	Е	С	В	Е	С	В	Е	С	В	Е	С	В	Е	С	В	Е	С	В		
STOP	0.6	2.7	0.3	0.4	-4.9	0.1	2.6	11.6	3.3	0.3	10.6	0.9	0.4	11.6	1.0	0.1	11.6	-0.1		
REC	0.6	2.7	0.3	0.4	-4.9	0.1	2.7	11.6	3.3	0.3	11.6	0.9	0.4	11.6	1.0	0.1	11.6	-0.1		
Ref. No.		Q883	2 (SCN	1-68)						·										L
Mode	1	2	3	4	5						-									
STOP	0	0	5.1	0	5.1															
REC	0	0	5.1	0	5.1															

AUDIO (1) C.B.A. Ref. No. IC40001 (SCM-37) 14 15 16 6 8 9 11 12 13 2 3 4 5 7 10 Mode 4.9 4.9 9.8 4.8 4.9 -0.1 -0.2 8.9 STOP 0 48 4.9 4.9 4.9 4.9 10.3 4.9 4.9 4.9 4.8 4.9 0 0 8.9 REC 4.8 4.9 4.9 4.9 4.9 10.3 49 9.8 0 Ref. No IC40002 (SCM-37) 16 9 11 12 13 14 15 1 2 3 4 5 6 7 8 10 Mode 0 8.1 7.9 10.6 5.1 0 5.3 5.4 5.3 STOP 5.3 5.3 5.4 5.3 5.3 5.3 0 0 7.9 10.6 5.1 0 0 5.3 5.4 5.3 8.1 REC 5.3 5.3 5.4 5.3 5.2 5.3 Ref. No IC40003 (SCM-37) 16 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 Mode 8.9 10.3 4.9 9.8 4.9 4.9 -0.1 -0.1 STOP 0 4.8 4.9 4.9 4.9 4.9 4.9 4.9 0 0 8.9 10.3 4.9 4.9 4.9 9.8 4.9 4.9 REC 0 4.8 4.9 4.9 4.9 4.9 Ref. No. IC40004 (SCM-37) 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 Mode 5.3 0 8.1 7.9 0 STOP 5.3 5.3 5.4 5.3 5.3 5.3 5.1 0 0 5.3 5.4 0 8.1 7.9 10.6 REC 5.3 5.3 5.4 5.3 5.2 5.3 5.1 0 0 5.3 5.4 5.3 IC40007 (SCM-38) Ref. No. IC40005 (SCM-37) IC40006 (SCM-38) 1 2 3 4 5 6 7 8 1 2 3 1 2 3 Mode STOP 0 -12.1 0 0 0.1 11.5 4.7 4.7 0 5.1 5.1 0 0.1 REC 0 0 -12.1 0 0 0 11.5 4.7 4.7 0 5.1 5.1 0 0 Ref. No. IC40008 (SCM-38) 2 4 5 6 7 1 3 Mode 1.1 4.8 10.0 2.5 0.6 0.1 REC 1.1 4.8 9.8 2.5 0.7 0.1 0 Ref. No IC40009 (SCM-38) 7 9 12 13 14 15 16 3 5 6 8 10 11 Mode 0 0 6.0 STOP 0.5 0 0 0 0 0 -6.2 5.5 5.5 0 0.1 0 0 0 0 5.9 REC 0 0 0 0 0 0 -6.2 0.1 0.1 0 Ref. No. IC40010 (SCM-38) 14 15 16 2 3 4 5 6 8 9 10 11 12 13 1 Mode 5,1 0 0 0 0 0 5.2 5.1 4.2 0.5 5.1 5.2 0 0 0 STOP 5.1 5.1 5.1 5.1 5.1 0 5.1 5.0 4.3 0 0.4 5.1 0 5.1 0 5.1 REC Ref. No. IC40011 (SCM-38) 15 16 4 5 6 8 9 10 11 12 13 14 1 2 3 Mode 5.2 0 0 0 5.2 0 0 0 5.2 5.1 4.2 0 5.1 0 STOP 5.1 5.1 0 5.1 0 5.1 5.1 0 5,1 5.1 5.0 4.3 0 0 REC 5.1 0 Ref. No. IC40012 (SCM-38) 4 6 8 9 10 11 12 13 14 15 16 2 3 5 1 Mode 0 5.2 0 5.2 5.1 4.3 0 0 0 5.2 0 0 0 0.1 STOP 5.1 0 0.1 5.1 5.0 4.3 0 5.1 0 5.1 0 0 0 5.1 REC 5.1 5.1 Ref. No. IC40013 (SCM-38) 12 13 14 15 16 4 10 11 1 2 3 5 6 7 8 9 Mode 0 11.6 11.1 11.6 11.1 11.6 n 5.1 0 0 0 11.6 STOR 0 0 0 0 0 0 0 11.5 0 0 11.5 0 5.1 5.1 5.1 0 0 REC 5.1 5.1 Ref. No. IC40014 (SCM-38) 12 13 14 15 16 9 10 11 1 2 3 4 5 6 7 8 Mode 9.9 11.7 3.7 10.3 0 9.9 STOP 0 0 0 0 0 5.2 5.2 0 0 0 9.7 9.8 0 0.1 10.2 0 REC 0 5.1 5.1 0 0 5.1 5.1 0 0 0 Ref. No. IC40015 (SCM-38) 14 15 16 4 6 10 11 12 13 2 3 5 8 9 Mode 11.3 11.6 0 11.6 0.7 0.1 STOP 0 0 0 0 0 5.2 0 0 0 5.5 0.1 11.5 11.2 11.5 0.3 REC 0 0 0 0 0 5.1 5.1 0 0.1 0 0.7 Ref. No IC40016 (SCM-39) 14 3 4 5 6 8 9 10 11 12 13 Mode STOP 5.6 5.6 5.6 5.4 0 0 0 5.6 5.4 5.6 5.6 9.8 9.8 10.9 REC 5.6 5.6 5.6 5.4 0 0 0 5.6 5.4 5.6 5.6 9.8 9.8 10.8 Ref. No. IC40017 (SCM-39) 4 5 6 8 9 10 12 13 14 15 16 2 3 Mode STOP 5.4 5.6 5.6 0 0 0 5.6 5.4 5.6 5.6 10.9 5.5 5.7 5.7 0 0 REC 5.4 5.6 5.5 5.6 5.6 0 0 0 0 0 0 5.6 5.4 5.6 5.6 10.8

Ref. No.	Τ			040040	/00M				T				·							
Mode	1	2	3	C40018	5	6	7	8	1	2	3	4	(SCM-3	, 	7	Т.	 	T	Т	T
STOP	5.7	5.7	5.6	0	5.6	5.7	5.7	10.9	5.7	5.7	5,6	0	5.6	5.7	5.7	8	 			
REC	5.6	5.6	5.6	0	5.6	5.6	5.6	10.8	5.6	5.6	5.6	0	5.6	5.6	5.6	10.9	-			
Ref. No.			5.5		1 0.0		240020	(SCM-3			0.0		3.0	3.0	1 3.0	10.0				J
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	<u> </u>	7	Τ	T		T
STOP	10.8	4.8	4.3	5.5	10.7	0	0	2.7	0	2.7	0	0	4.3	4.8	-	-			 	
REC	10.8	4.8	4.2	5.5	10.6	0	0	2.7	0	2.7	0	0	4.3	4.8	 	<u> </u>	 			
Ref. No.		IC400	21 (SC	M-38)	1	<u> </u>		·		1	L				.[L	<u> </u>	
Mode	1	2	3	4	5				,						T					
STOP	4.8	4.7	0	5.1	5.2						<u> </u>		<u> </u>				<u> </u>			
REC	4.8	4.7	0	5.1	5.1										-	 	<u> </u>			<u> </u>
Ref. No.	Q400	01 (SC	M-37)	Q400	02 (SC	M-37)	Q400	03 (SCI	M-37)	Q400	04 (SC	M-37)	Q400	05 (SC	M-37)	Q400	06 (SC	M-37)		
Mode	E	С	В	E	С	В	E	С	В	E	С	В	Ε	С	В	E	С	В		
STOP	0	0	0	0	0	0.7	0	0	0.7	9.9	9.9	9.2	0	0	0	0	0.1	0		
REC	0	0	0.7	-5.4	0	-24.2	-5.2	0	-24.3	9.9	-25.6	9.9	0	0	0	0	0.3	0		
Ref. No.		07 (SC		 	08 (SC	·	 	09 (SCI			10 (SC		Q400	11 (SC	M-37)	Q400	12 (SC	M-37)		,
Mode	E	С	B	10.0	C 11.0	B	E	C	В	E	С	В	E	С	В	E	С	В	-	
STOP	5.3	0	4.7	10.6	11.6	11.3	0	0	0	11.6	0	11.6	0.2	0	0	11.6	0	11.6		
Ref. No.	5.3	0 13 (SCI	4.7 BA 27)	10.6	11.5	11.3	0.8	10.9	1.3	11.1	11.0	10.4	-4.1	1.2	-5.7	11.5	-6.1	11.5		<u> </u>
	E	13 (SCI	М-37)	E	14 (SC		 	15 (SCI			16 (SC			17 (SC		+	18 (SC			1
Mode	0.2	0	0	0	0.3	0.3	E 0	0.3	0.3	11.6	0.3	11.6	11.6	C 0	B	E	C	В		
REC	-4.1	0	-5.7	0.3	0.3	11.2	0.3	11.2	0.3	11.3	11.2	10.6	11.6	10.8	11.6	0	0	0		
Ref. No.		19 (SCI		 	20 (SC	1		21 (SCI		<u> </u>	22 (SCI	·	-	23 (SC	10.3 M-37\	0.6	10.7 24 (SC	1.0		
Mode	E	C	В	E	C	В	E	c (00)	В	E	C C	В	E	C C	В	E	C C	В	<u> </u>	l
STOP	-0.2	0	0	0	0	-0.1	0	0	0	0.2	7.8	0.7	0.2	7.8	0.7	0	0	0		
REC	10.8	10.8	10.1	0	0	0.4	0	0	0.4	0.2	7.7	0.7	0.2	7.7	0.7	0	0	-0.1		
Ref. No.	Q400	25 (SCI	M-37)	Q400	26 (SC	M-37)	Q400	27 (SCI	VI-37)	 	28 (SCI			29 (SC	<u> </u>		30 (SC			
Mode	E	С	В	E	С	В	E	С	В	E	С	В	E	С	В	E	С	В		,
CTOD																	1			1
STOP	0	0	0	0	0	0.7	9.8	9.8	9.1	0	0	0.7	0	0	0	0	0.1	0		
REC	0	0	0.7	-3.7	0	-22.7	9.8 9.8	9.8	9.1	-3.7	0	0.7 -22.3	0	0	0	0	0.1	0		
	0		0.7	-3.7		-22.7	9.8		9.8	-3.7		-22.3	0	-	0	0	1	0		
REC Ref. No. Mode	0 Q400 : E	0 31 (SC! C	0.7 M-37) B	-3.7	0	-22.7	9.8	-22.5	9.8	-3.7	0	-22.3	0	0	0	0	0.2	0		
REC Ref. No. Mode STOP	0 Ω4003 E 5.3	0 31 (SC) C	0.7 M-37) B 4.7	-3.7 Q400 E 10.6	0 32 (SCI C 11.6	-22.7 M-37) B 11.3	9,8 Q400 E 0.3	-22.5 33 (SC) C	9.8 M-37) B	-3.7 Q400 3 E 11.6	0 34 (SCI C	-22.3 M-37)	0 Q400:	0 35 (SCI	0 M-37)	0 Q400	0.2 36 (SC)	0 M-37)		
REC Ref. No. Mode STOP REC	0 Q4003 E 5.3 5.3	0 31 (SC) C 0	0.7 M-37) B 4.7 4.6	-3.7 Q400 E 10.6 10.6	0 32 (SCI C 11.6 11.6	-22.7 M-37) B 11.3	9.8 Q400 E 0.3 -4.3	-22.5 33 (SC) C 0 0.7	9.8 W-37) B 0 -5.9	-3.7 Q400 3 E 11.6 11.5	0 34 (SCI C 0 -5.8	-22.3 M-37) B 11.6 11.5	0 Q4003 E 11.6 11.1	0 35 (SCI C 0 11.0	0 M-37) B 11.6 10.4	0 Q400 E	0.2 36 (SC)	0 M-37) B		
REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003	0 31 (SCI 0 0 0 37 (SCI	0.7 M-37) B 4.7 4.6 M-37)	-3.7 Q400 E 10.6 10.6 Q400	0 32 (SCI C 11.6 11.6 38 (SCI	-22.7 M-37) B 11.3 11.3 M-37)	9.8 Q400 E 0.3 -4.3 Q400	-22.5 33 (SC) C 0 0.7 39 (SC)	9.8 M-37) B 0 -5.9 M-37)	-3.7 Q400: E 11.6 11.5 Q400-	0 34 (SCI C 0 -5.8 40 (SCI	-22.3 M-37) B 11.6 11.5 M-37)	0 Q4003 E 11.6 11.1 Q4004	0 35 (SCI C 0 11.0 41 (SCI	0 M-37) B 11.6 10.4 M-37)	0 Q400 E 0 0.8 Q400	0.2 36 (SC) C 0 10.9 42 (SC)	0 M-37) B 0 1.3 M-37)		
REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003	0 31 (SC) 0 0 0 37 (SC)	0.7 M-37) B 4.7 4.6 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E	0 32 (SCI C 11.6 11.6 38 (SCI	-22.7 M-37) B 11.3 11.3 M-37)	9.8 Q4000 E 0.3 -4.3 Q4000 E	-22.5 33 (SC) C 0 0.7 39 (SC)	9.8 M-37) B 0 -5.9 M-37)	-3.7 Q400 3 E 11.6 11.5 Q400 4	0 34 (SCI 0 -5.8 40 (SCI	-22.3 M-37) B 11.6 11.5 M-37)	0 Q4003 E 11.6 11.1 Q4004	0 35 (SCI 0 11.0 41 (SCI	0 M-37) B 11.6 10.4 M-37) B	0 Q400 E 0 0.8 Q400 E	0.2 36 (SC) C 0 10.9 42 (SC)	0 M-37) B 0 1.3 M-37)		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0 Q4003 E 5.3 5.3 Q4003 E -0.1	0 31 (SCF 0 0 0 37 (SCF C	0.7 M-37) B 4.7 4.6 M-37) B	-3.7 Q400 E 10.6 10.6 Q400 E	0 32 (SCI C 11.6 11.6 38 (SCI C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1	9.8 Q4003 E 0.3 -4.3 Q4003 E 0	-22.5 33 (SCF 0 0.7 39 (SCF 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1	-3.7 Q400 3 E 11.6 11.5 Q400 4 E 11.6	0 34 (SCI C 0 -5.8 40 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6	0 Q4003 E 11.6 11.1 Q4004 E 0.2	0 35 (SCI 0 11.0 41 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7	0 Q4000 E 0 0.8 Q4000 E 0.2	0.2 36 (SC) 0 10.9 42 (SC) C	0 M-37) B 0 1.3 M-37) B 0.7		
REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1	0 31 (SCF 0 0 0 837 (SCF C 0	0.7 M-37) B 4.7 4.6 M-37) B 0	-3.7 Q400 E 10.6 10.6 Q400 E 0	0 32 (SCI C 11.6 11.6 38 (SCI C 0	-22.7 M-37) B 11.3 11.3 M-37) B -0.1	9.8 Q4003 E 0.3 -4.3 Q4003 E 0	-22.5 C 0 0.7 SSP (SCF) C 0 0.7	9.8 M-37) B 0 -5.9 M-37) B -0.1	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2	0 Q400: E 11.6 11.1 Q400: E 0.2	0 35 (SCI 0 11.0 41 (SCI C 7.7	0 M-37) B 11.6 10.4 M-37) B 0.7	0 Q4000 E 0 0.8 Q4000 E 0.2	0.2 36 (SC) 0 10.9 42 (SC) C 7.7 7.7	0 M-37) B 0 1.3 M-37) B 0.7		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004	0 31 (SCF 0 0 0 37 (SCF C 0 10.8	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 0	0 32 (SCI 11.6 11.6 38 (SCI 0 0	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3	9.8 Q4003 E 0.3 -4.3 Q4003 E 0 0	-22.5 33 (SCN 0 0.7 39 (SCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004	0 34 (SCI 0 -5.8 40 (SCI C 0 10.8	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38)	0 Q4003 E 11.6 11.1 Q4004 E 0.2 0.2	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39)	0 Q400: E 0 0.8 Q400: E 0.2 0.2	0.2 36 (SC) 0 10.9 42 (SC) C 7.7 7.7 48 (SC)	0 M-37) B 0 1.3 M-37) B 0.7 0.7 M-39)		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC	0 Q4003 E 5.3 5.3 Q4003 E -0.1	0 31 (SCF 0 0 0 837 (SCF C 0	0.7 M-37) B 4.7 4.6 M-37) B 0	-3.7 Q400 E 10.6 10.6 Q400 E 0	0 32 (SCI C 11.6 11.6 38 (SCI C 0	-22.7 M-37) B 11.3 11.3 M-37) B -0.1	9.8 Q4003 E 0.3 -4.3 Q4003 E 0	-22.5 C 0 0.7 SSP (SCF) C 0 0.7	9.8 M-37) B 0 -5.9 M-37) B -0.1	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2	0 Q400: E 11.6 11.1 Q400: E 0.2	0 35 (SCI 0 11.0 41 (SCI 7.7 7.7 47 (SCI	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 V-39) B	0 Q4000 E 0 0.8 Q4000 E 0.2	0.2 36 (SC) C 0 10.9 42 (SC) C 7.7 7.7 48 (SC) C	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E	0 31 (SCF 0 0 0 0 57 (SCF 0 10.8	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 44(SCN C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B	9.8 Q4003 E 0.3 -4.3 Q4003 E 0 Q4004 E	-22.5 C 0 0.7 39 (SC) C 0 0 45 (SC)	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38)	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004 E	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38)	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39)	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E	0.2 36 (SC) 0 10.9 42 (SC) C 7.7 7.7 48 (SC)	0 M-37) B 0 1.3 M-37) B 0.7 0.7 M-39)		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0	0 31 (SCF 0 0 0 0 10.8 10.8 C C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 44(SCN C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 0 Q4000 E 5.1	-22.5 33 (SCF 0 0 0.7 39 (SCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0	-3.7 C4003 E 11.6 11.5 C4004 E 11.6 11.0 C4004 E 11.6	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6	0 Q400: E 11.6 11.1 Q400: E 0.2 0.2 Q400: E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E	0.2 36 (SCI 0 10.9 42 (SCI C 7.7 7.7 48 (SCI C 10.9	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0	0 31 (SCF 0 0 0 37 (SCF C 0 10.8 43 (SCF C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 44(SCN C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 0 Q4000 E 5.1	-22.5 33 (SCF 0 0 0.7 39 (SCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0	-3.7 C4003 E 11.6 11.5 C4004 E 11.6 11.0 C4004 E 11.6	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6	0 Q400: E 11.6 11.1 Q400: E 0.2 0.2 Q400: E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E	0.2 36 (SCI 0 10.9 42 (SCI C 7.7 7.7 48 (SCI C 10.9	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0 0	0 31 (SCF 0 0 0 37 (SCF 0 10.8 43 (SCF 0 0	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 W-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 44(SCN C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 0 Q4000 E 5.1	-22.5 33 (SCF 0 0 0.7 39 (SCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0	-3.7 C4003 E 11.6 11.5 C4004 E 11.6 11.0 C4004 E 11.6	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6	0 Q400: E 11.6 11.1 Q400: E 0.2 0.2 Q400: E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E	0.2 36 (SCI 0 10.9 42 (SCI C 7.7 7.7 48 (SCI C 10.9	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0 0 Q4004 E 0 0	0 31 (SC) 0 0 0 37 (SC) C 0 10.8 43 (SC) C 0 0 19 (SC) C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 44(SCN C	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 0 Q4000 E 5.1	-22.5 33 (SCF 0 0 0.7 39 (SCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0	-3.7 C4003 E 11.6 11.5 C4004 E 11.6 11.0 C4004 E 11.6	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6	0 Q400: E 11.6 11.1 Q400: E 0.2 0.2 Q400: E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E	0.2 36 (SCI 0 10.9 42 (SCI C 7.7 7.7 48 (SCI C 10.9	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0 0 Q4004 E 0 0 Q4004	0 31 (SC) 0 0 0 37 (SC) C 0 10.8 43 (SC) C 0 0 19 (SC) C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 VI-37) B 0 1.0 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 0 44(SCN C 0 0 0	-22.7 M-37) B 11.3 H-37) B -0.1 0.3 M-37) B 0 -5.8	9.8 Q4003 E 0.3 -4.3 Q4003 E 0 Q4004 E 5.1 5.1	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.45 (SCF C -0.1 -0.2)	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004 E 11.6 11.5	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5	0 Q4003 E 11.6 11.1 Q4006 E 0.2 0.2 Q4006 E 10.9	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 V-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E 4.9 4.8	0.2 36 (SCI 0 10.9 42 (SCI C 7.7 7.7 48 (SCI C 10.9	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q4003 E 5.3 5.3 Q4003 E -0.1 10.8 Q4004 E 0 0 Q4004 E 0 0,7 Q4004	0 31 (SC) 0 0 0 37 (SC) C 0 10.8 43 (SC) C 0 0 19 (SC) C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0 M-37) B	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 0 44(SCN C 0 0 0 0 1	-22.7 M-37) B 11.3 H-37) B -0.1 0.3 M-37) B 0 -5.8	9.8 Q4003 E 0.3 -4.3 Q4003 E 0 Q4004 E 5.1 5.1	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.7 45 (SCF C -0.1 -0.2)	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004 E 11.6 11.5 Q4004 E	0 34 (SCI C 0 -5.8 40 (SCI C 0 10.8 46 (SCI C 0 0	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5	0 Q4003 E 11.6 11.1 Q4006 E 0.2 0.2 Q4006 E 10.9	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 V-39) B 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0 Q4004 E 0 0.7 QR400 E	0 31 (SCF 0 0 0 37 (SCF 0 10.8 43 (SCF 0 0 10.7 01 (SC 0	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 V-37) B 0 1.0 M-37) B 6.9	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3 -4.3	0 32 (SCI C 11.6 11.6 38 (SCI C 0 0 0 044(SCN C 0 0 0 0 0 02 (SC C 6.9	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1	-22.5 33 (SCF) C 0 0.7 39 (SCF) C 0 0 45 (SCF) C -0.1 -0.2	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9	-3.7 Q4003 E 11.6 11.5 Q4000 E 11.6 11.0 Q4000 E 11.6 11.5 QR4000 E 9.8	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 10.9	0 Q400: E 11.6 11.1 Q400: E 0.2 Q400: E 10.9 10.9	0 35 (SCI 0 11.0 41 (SCI 7.7 7.7 47 (SCI 11.6 11.6	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6	0 Q4000 E 0 0.8 Q4000 E 0.2 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0 Q4004 E 0 0,7 QR400 E	0 31 (SCF 0 0 0 37 (SCF 0 10.8 43 (SCF 0 0 10.7 01 (SC C 0 0 10.7	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0 M-37) B 6.9	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3 -4.3	0 32 (SCI 11.6 11.6 38 (SCI 0 0 0 044(SCN C 0 0 0 0 02 (SC C 6.9 0	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1	-22.5 33 (SC) C 0 0.7 39 (SC) C 0 45 (SC) C -0.1 -0.2	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9	-3.7 Q4000 E 11.6 11.5 Q4000 E 11.6 11.0 Q4000 E 11.6 11.5 QR4000 E 9.8 9.8	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 0 04 (SC	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9	0 35 (SCI 0 11.0 41 (SCI 7.7 7.7 47 (SCI 11.6 11.6	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 W-39) B 11.6 11.6 M-37) B 0 9.8	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) C 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Ref. No. Mode STOP REC Ref. No.	0 Q40000 E 5.3 5.3 Q40000 E -0.1 10.8 Q40000 E 0 0 Q40000 E 0 0.7 QR4000 E 0 0 QR4000 E 0 0 QR4000 C QR4000 C C QR4000 C C QR4000 C C QR4000 C C QR4000 C C QR4000 C C QR4000 C C QR4000 C C C QR4000 C C Q Q C Q C Q C Q C Q C Q C Q C Q	0 31 (SC) 0 0 0 37 (SC) 0 10.8 43 (SC) 0 0 10.7 01 (SC 0 5.3	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0 M-37) B 6.9 0 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3 QR400 E 0 QR400	0 32 (SCI 11.6 11.6 11.6 38 (SCI 0 0 0 044(SCN C 0 0 0 0 002 (SC C 6.9 0 0 008 (SC	-22.7 M-37) B 11.3 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37)	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1	-22.5 33 (SC) 0 0.7 39 (SC) 0 0 45 (SC) C -0.1 -0.2	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37)	-3.7 Q4000 E 11.6 11.5 Q4000 E 11.6 11.0 Q4000 E 11.6 11.5 QR4000 E 9.8 9.8 QR4000	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37)	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC C 9.5 0	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6 M-37) B 0 9.8	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) C 7.7 7.7 48 (SC) C 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 VI-39) B 5.5 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0 0,7 QR400 E 0 0,7 QR400 E	0 31 (SC) 0 0 0 0 10.8 43 (SC) 0 0 10.7 01 (SC 0 5.3 07 (SC	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 W-37) B 0 1.0 M-37) B 6.9 0 M-37) B	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3 QR400 E 0 QR400 E	0 32 (SCI 11.6 11.6 11.6 38 (SCI 0 0 0 44(SCN C 0 0 0 0 6.9 0 0 008 (SC	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1 QR400 E 0 QR400 E	-22.5 33 (SC) 0 0.7 39 (SC) 0 0 45 (SC) 0 -0.1 -0.2	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004 E 11.6 11.5 QR4004 E 9.8 9.8 QR4006 E	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 0 9.8 10 (SC	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37) B	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9 QR400 E 0 QR400 E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC C 9.5 0	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6 M-37) B 0 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) C 7.7 7.7 48 (SC) C 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0.7 Q4004 E 0 0.7 QR400 E 0 0 QR400 E	0 31 (SC) 0 0 0 37 (SC) C 0 10.8 43 (SC) C 0 10.7 01 (SC) C 0 5.3 07 (SC)	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 W-37) B 0 1.0 M-37) B 6.9 0 M-37) B 3.9	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3 -4.3 -4.3 QR400 E 0 0 QR400 E 11.6	0 32 (SCI 11.6 11.6 11.6 38 (SCI 0 0 44(SCN C 0 0 0 0 44(SCN C 0 0 0 11.6 C C 11.6	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B 0	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1 QR400 E 0 QR400 E	-22.5 33 (SCP 0 0.7 39 (SCP 0 0 0.7 45 (SCN C -0.1 -0.2 03 (SCC C 0 9.8 09 (SCC C -0.1	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B 11.6	-3.7 Q4003 E 11.6 11.5 Q4004 E 11.6 11.0 Q4004 E 11.6 11.5 QR400 E 9.8 9.8 QR400 E 11.6	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 9.8 10 (SC	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37) B 11.6	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9 QR400 E 0 QR400 E	0 35 (SCI 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC 9.5 0 11 (SC	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6 11.6 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) C 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 M-39) B 5.5 5.5 5.5 M-37) B 0 9.8 M-37) B		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0.7 QR400 E 0 0 0 QR400 E	0 31 (SC) 0 0 0 37 (SC) 0 10.8 43 (SC) 0 0 10.7 01 (SC 0 0 5.3 07 (SC	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 W-37) B 0 1.0 M-37) B 6.9 0 M-37) B 3.9	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3 QR400 E 0 QR400 E 11.6 11.5	0 32 (SCI 11.6 11.6 38 (SCI 0 0 44(SCN C 0 0 0 002 (SC C 6.9 0 11.6 11.5	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B 0 0	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1 QR4000 E 0 QR4000 E 11.6 11.5	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.1 -0.1 -0.2 03 (SCF C 0 0 9.8 09 (SCF C -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B 11.6 11.5	-3.7 Q4000 E 11.6 11.5 Q4000 E 11.6 11.0 Q4000 E 11.6 11.5 QR4000 E 9.8 9.8 QR4000 E 11.6 11.5	0 34 (SCI 0 -5.8 40 (SCI C 0 10.8 46 (SCI C 0 0 0 41 (SCI C 0 0 0 5.8 40 (SCI C 0 0 0 0	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 10.9 4.7 M-37) B 11.6 11.5	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9 QR400 E 0 QR400 E	0 35 (SCI C 0 11.0 41 (SCI C 7.7 7.7 47 (SCI C 11.6 11.6 05 (SC C 9.5 0 11 (SC C 0 0	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6 M-37) B 0 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5 M-37) B 0 9.8 M-37) B		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0.7 QR400 E 0 0 0 QR400 E	0 31 (SC) 0 0 0 37 (SC) C 0 10.8 43 (SC) C 0 10.7 01 (SC) C 0 5.3 07 (SC)	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0 M-37) B 6.9 0 M-37) B 3.9 3.8 M-37)	-3.7 Q400 E 10.6 10.6 Q400 E 0 0 Q400 E 0.3 -4.3 -4.3 QR400 E 11.6 11.5 QR400	0 32 (SCI 11.6 11.6 38 (SCI 0 0 44(SCN C 0 0 0 44(SCN C 0 0 11.6 11.5 11.6 11.5	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B 0 0 M-37)	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1 QR4000 E 0 QR4000 E 11.6 11.5 QR4000	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.7 45 (SCF C 0 0.1 -0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B 11.6 11.5 M-37)	-3.7 Q4000: E 11.6 11.5 Q4000- E 11.6 11.0 Q4000- E 11.6 11.5 QR4000 E 9.8 9.8 QR4000 E 11.6 11.5 QR4000 CR4000	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 0 46 (SCI 0 0 0 10 (SCI 0 0 0	M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37) B 11.6 11.5 M-37)	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9 QR400 E 0 QR400 E 0 QR400 QR400	0 35 (SCI C 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC C 9.5 0 11 (SC C 0 0 17 (SCI	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 W-39) B 11.6 11.6 M-37) B 0 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5 M-37) B 0 9.8 M-37) B		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC REC Ref. No.	0 Q4003 E 5.3 5.3 Q4004 E -0.1 10.8 Q4004 E 0 0.7 QR400 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 31 (SC) 0 0 0 37 (SC) C 0 0 10.7 01 (SC C 0 0 5.3 07 (SC) C 0 0 13 (SC) C C 0 13 (SC) C C 0 0 13 (SC)	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 W-37) B 0 1.0 M-37) B 6.9 0 M-37) B 3.9	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3 QR400 E 0 QR400 E 11.6 11.5	0 32 (SCI 11.6 11.6 38 (SCI 0 0 44(SCN C 0 0 0 002 (SC C 6.9 0 11.6 11.5	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B 0 0 M-37) B	9.8 Q4003 E 0.3 -4.3 Q4005 E 0 Q4000 E 5.1 5.1 QR400 E 0 QR400 E 11.6 11.5 QR400 E	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.7 45 (SCF C 0 0.1 -0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B 11.6 11.5 M-37) B	-3.7 Q4000: E 11.6 11.5 Q4000: E 11.6 11.0 Q4000: E 11.6 11.5 QR4000: E 9.8 9.8 QR4000: E 11.6 11.5 QR4000: E 0R4000: E 0R4000: E 0R4000: E 0R4000: E	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 0 46 (SCI 0 0 10 (SCI 0 0 10 (SCI 0 0 10 (SCI 0 0	-22.3 M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37) B 11.6 11.5 M-37) B	0 Q4003 E 11.6 11.1 Q4004 E 0.2 0.2 Q4004 E 10.9 10.9 QR400 E 0 0 QR400 E 0 QR400 E	0 35 (SCI C 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC C 9.5 0 11 (SC C 0 0 17 (SCI C C C C C C C C C C C C C C C C C C	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 M-39) B 11.6 11.6 M-37) B 0 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5 M-37) B 0 9.8 M-37) B		
REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	0 Q40000 E 0 0 QR4000 E 0 QR400 0 QR4	0 0 31 (SC) 0 0 0 37 (SC) C 0 0 10.7 01 (SC C 0 0 5.3 07 (SC) C 0 0 13 (SC) C C 0 0 13 (SC) C C 0 0 0 0 13 (SC) C C C 0 0 0 0 13 (SC) C C C C C C C C C C C C C C C C C C	0.7 M-37) B 4.7 4.6 M-37) B 0 10.1 M-37) B -0.1 -0.1 M-37) B 0 1.0 M-37) B 6.9 0 M-37) B 3.9 3.8 M-37) B	-3.7 Q400 E 10.6 10.6 Q400 E 0 Q400 E 0.3 -4.3 -4.3 QR400 E 0 QR400 E 11.6 11.5 QR400 E	0 32 (SCI 11.6 11.6 38 (SCI 0 0 44(SCN 0 0 0 44(SCN 0 0 0 11.6 11.5 11.6 C C C C C C C C C C C C C C C C C C C	-22.7 M-37) B 11.3 M-37) B -0.1 0.3 M-37) B 0 -5.8 M-37) B 0 9.2 M-37) B 0 0 M-37)	9.8 Q4000 E 0.3 -4.3 Q4000 E 0 Q4000 E 5.1 5.1 QR4000 E 0 QR4000 E 11.6 11.5 QR4000	-22.5 33 (SCF C 0 0.7 39 (SCF C 0 0 0.7 45 (SCF C 0 0.1 -0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	9.8 M-37) B 0 -5.9 M-37) B -0.1 0.3 M-38) B 5.0 5.0 M-37) B 6.9 0 M-37) B 11.6 11.5 M-37)	-3.7 Q4000: E 11.6 11.5 Q4000- E 11.6 11.0 Q4000- E 11.6 11.5 QR4000 E 9.8 9.8 QR4000 E 11.6 11.5 QR4000 CR4000	0 34 (SCI 0 -5.8 40 (SCI 0 10.8 46 (SCI 0 0 0 46 (SCI 0 0 0 10 (SCI 0 0 0	M-37) B 11.6 11.5 M-37) B 11.6 10.2 M-38) B 11.6 11.5 M-37) B 109 4.7 M-37) B 11.6 11.5 M-37)	0 Q4003 E 11.6 11.1 Q4004 E 0.2 Q4004 E 10.9 10.9 QR400 E 0 QR400 E 0 QR400 QR400	0 35 (SCI C 0 11.0 41 (SCI C 7.7 7.7 47 (SCI 11.6 11.6 05 (SC C 9.5 0 11 (SC C 0 0 17 (SCI	0 M-37) B 11.6 10.4 M-37) B 0.7 0.7 W-39) B 11.6 11.6 M-37) B 0 9.8 M-37) B	0 Q4000 E 0 0.8 Q4000 E 0.2 Q4000 E 4.9 4.8	0.2 36 (SC) 0 10.9 42 (SC) 7.7 7.7 48 (SC) 10.9 10.8	0 M-37) B 0 1.3 M-37) B 0.7 0.7 V-39) B 5.5 5.5 5.5 M-37) B 0 9.8 M-37) B		

Ref. No.	QR400	19 (SC	M-37)	QR400	20 (SC	M-37)	QR400	21 (SC	M-37)	QR400	22 (SC	M-37)	QR400	23 (SC	M-37)	QR400	24 (SC	M-37)	
Mode	E	С	В	E	С	В	Е	С	В	Е	C ´	В	Е	C	В	Е	С	В	
STOP	0	9.5	0	11.6	11.6	0	11.6	0	11.5	11.6	0	11.5	0	0	0	0	0	0	
REC	0	0	9.8	11.5	11.5	0	11.5	0	11.5	11.5	0	11.5	0	0	0	0	0	0	
Ref. No.	QR400	25 (SC	M-37)	QR400	26 (SC	M-37)	QR400	27 (SC	M-37)	QR400	28 (SC	M-37)	QR400	29 (SC	M-39)	QR400	30 (SC	M-39)	
Mode	E	С	В	Ε	С	В	E	С	В	E	С	В	Ш	U	В	E	С	В	
STOP	0	11.6	0.7	0	0	0.7	0	0	0.9	0	0	0	9.9	0	9.8	9.9	0	9.8	
REC	0	11.5	0.7	0	0	0.6	0	0	0	0	0	9.8	9.9	0	9.8	9.8	0	9.7	
Ref. No.	QR400	31 (SC	M-39)	QR400	32 (SC	M-39)													
Mode	E	С	В	E	С	В													
STOP	9.9	0	9.8	9.9	0	9.8													
REC	9.8	0	9.8	9.9	0	9.8													

AUDIO	(2)	C.B.	<u>A.</u>																	
Ref. No.			,						IC	¥1001	(SCM-4	0) ′								
Mode	1	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	4.6	4.6	4.6	4.6	0	4.6	4.6	4.6	4.6	0.2	4.6	4.6	4.6	0	4.6	4.5	4.6	4.6	2.5	0
REC	4.6	4.6	4.6	4.6	0	4.6	4.6	4.6	4.6	0.2	4.6	4.6	4.6	0	4.6	2.5	4.6	4.6	2.5	0
Ref. Na	<u></u>								IC	¥1001	(SCM-4	0)		"				****	•	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	2.5	2.5	5.0	2.6	0	3.2	5.0	5.0	3.0	4.5	0	4.5	0	0	2.5	2.7	3.4	0	3.2	0
REC	2.5	2.5	5.0	2.6	0	3.2	5.0	5.0	3.0	4.5	0	4.5	0	0	2.5	2.7	3.4	0	3.2	0
Ref. No.		.,							IC	¥1001	(SCM-4	0)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	2.6	5.0	2.5	2.5	0	2.5	4.6	4.6	4.5	4.6	0	4.6	4.6	4.6	0.2	4.6	4.6	4.6	4.6	0
REC	2.6	5.0	2.5	2.5	0	2.5	4.6	4.6	4.5	4.6	0	4.6	4.6	4.6	0.2	4.6	4.6	4.6	4.6	0
Ref. No.					,				IC	41001	(SCM-4)	0)								
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	4.6	4.6	5.9	5.9	0	5.9	0.1	5.9	5.9	0.4	5.2	5.3	0	0	0.1	9.0	11.6	9.0	4.6	5.0
REC	4.6	4.6	5.9	5.9	0	5.9	-0.1	5.9	5.9	0.5	5.2	5.3	0	0	0.1	8.9	11.5	9.0	4.6	5.0
Ref. No.	IC410	02 (SC	M-40)			IC410	03 (SC	M-40)					IC	41004	(SCM-4	1)				
Mode	1	2	3	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8		
STOP	5.0	0	11.6	0	5.0	2.5	0	1.4	2.0	0	0	0	0	-6.3	0.8	0.7	5.8	6.3		
REC	5.0	0	11.5	0	5.0	2.5	0	1.4	2.0	0	0	0	0	-6.3	8.0	0.7	5.8	6.3		
Ref. No.		,	,	41005	(SCM-4	1)	<u></u>													
Mode	1	2	3	4	5	6	7	8												
STOP	0	3.0	2.9	0	3.0	3.0	0	6.0												
REC	0.5	3.0	2.9	0	2.9	3.0	0	5.9												
Ref. No.							IC	241006	(SCM-4	1)										
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	0	0	0	0	0	-6.1	0	0	0	0	0	0	0	0	6.0				
REC	0	0	0	0	0	0	-6.1	0	0	0	0	0.5	0	0	0	5.9				
Ref. No.					(SCM-4				ļ	-		41008	(SCM-4	1)		,				
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	0	0	0	-6.3	0	0	0	6.3	0.1	0	0	-6.1	0	0	0	6.0				
REC Ref. No.	0	0	0	-6.3	0	0	0	6.3	0	0	0	-6.1	0	0	0.1	5.9				
	4				(SCM-4				ļ					1						
Mode	1	2	3	4	5	6	7	8												
STOP	0	0	0	-6.1	0	0	0.1	6.0												
REC Ref. No.	0	0	0	-6.1	0	0	0.2	5.9	(2014.4)							L				
	1	2	3		5				(SCM-4		44	40	40	4.						
Mode	0.1	0	0	0	0	6	7	8	9	10	11	12	13	14	15	16				
REC	0.1	0	0	0	0		-6.1	0	0	6.0	0	0.1	0	0.1	0.1	6.0				
Ref. No.	0		0	U		0	-6.1	0	0	5.9	0	0	0	0	0	5.9				
Mode	1	2	3	4	5	6	7	8	(SCM-4 ²		11	10	10	1.1	4.5	40				
STOP	0	0	0	0	0	0	-6.3	0	6.3	10	11 0	12 0	13	14 0	15 0	16				
REC	0	0	0	0	0	0	-6.3	0	6.3	0	0	0	0	0	0	6.3				
Ref. No.				,				<u></u>	(SCM-41		U	<u> </u>	U	U	U	0.3	-	l	l	
Mode	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Т	Т		
STOP	0	0	0	0	0	0	-6.3	0	6.3	6.3	6.3	0	0	0	0	6.3		-		
REC	0	0	0	0	0	0	-6.3	0	6.3	6.3	6.3	0	0	0	0	6.3				
Ref. No.					(SCM-4		•	<u> </u>							<u> </u>	3.3				
Mode	1	2	3	4	5	6	7	8	ļ										T	
STOP	0	0	0	-6.3	0	0	0	6.3					-							
REC	0	0	0	-6.3	0	0	0	6.3												
Ref. No.							IC		(SCM-42	?)		1		I						
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			Ī	
STOP	0	0	0	0	0	0	-6.3	0	0	6.3	6.3	0	0	0	0	6.3				-
REC	0	0	0	0	0	0	-6.3	0	0	6.3	6.3	0	0	0	0	6.3				-
Ref. No.			IC	41015	SCM-42	2)						11016 (
Mode	1	2	3	4	5	6	7.	8	1	2	3	4	5	6	7	8	T		Т	
STOP	0	0	0	-6.3	0	0	0	6.3	0	0	0	-11.5	0	0	0	10.9		-		
REC	0	0	0	-6.3	0	0	0	6.3	0	0	0	-11.5	0	0	0	10.8				-
			1				-									. 5.5				

Ref. No.			IC	41017	SCM-4	4)														
Mode	1	2	3	4	5	6	7	8												
STOP	0	0	0	-11.5	.0	0	0	10.9												
REC	0	0	0	-11.5	0	0	0	10.8												
Ref. No.	Q4100	1 (SCI	VI-40)	Q410)2 (SC	VI-40)	Q410	03 (SC	M-40)	Q4100)4 (SCI	VI-40)		Q4100	05 (SC	M-40)		Q4100	6 (SCI	M-40)
Mode	Ε	С	В	Е	С	В	E	С	В	Е	С	В	1	2	3	4	5	Е	С	В
STOP	11.6	0	11.6	0	0	-0.3	0	0	-0.2	5.0	11.6	5.6	11.6	5.6	5.0	4.4	5.0	1.3	5.0	2.0
REC	11.6	11.4	10.7	0	0	-0.2	0	0	-0.2	4.9	11.5	5.5	11.5	5.5	4.9	4.3	4.9	2.4	5.0	3.0
Ref. No.	Q410)7 (SCI	VI-40)	Q410	08 (SC	VI-41)	Q410	09 (SC	M-41)	Q4101	O (SCI	VI-41)	Q4101	I1 (SCI	VI-41)	Q410	12 (SCI	W-41)		
Mode	Ε	С	В	E	С	В	E	С	В	Е	С	В	Е	С	В	E	С	В		
STOP	0.4	5.0	0.9	0	0	-0.4	6.3	10.9	6.9	-6.3	-12.2	-7.0	0	0	0.7	-0.6	6.0	0		
REC	0.4	5.0	0.9	0	0	-0.4	6.3	10.8	6.9	-6.3	-12.2	-7.0	0	0	0	-0.7	5.9	0		
Ref. No.	Q410°	13 (SCI	M-41)	Q410	14 (SCI	W-41)	Q410	15 (SC	M-41)	Q410°	16 (SCI	VI-42)	Q410°	17 (SCI	VI-42)	Q410	18 (SCI	VI-42)		
Mode	Е	С	В	Е	С	В	ш	С	В	Е	С	В	Ε	С	В	E	С	В		
STOP	0	0	-0.3	0	0	0.7	0	0	0.7	6.3	11.6	6.9	0	0	-0.1	0	0	-0.3		
REC	0	0	-0.4	0	0	0.7	0	0	0.7	6.3	11.5	6.9	0	0	-0.3	0	0	-0.2		
Ref. No.		19 (SCI	M-43)		20 (SCI			21 (SC			22 (SCI			23 (SCI			24 (SCI			
Mode	Е	С	В	Ε	С	В	Е	С	В	Е	С	В	E	С	В	E	С	В		
STOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
REC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Ref. No.		25 (SCI			26 (SCI	, i		27 (SC	,	_	28 (SCI			29 (SCI			30 (SCI			1
Mode	Е	C	В	E	С	В	E	С	В	Е	С	В	Е	С	В	E	С	В		
STOP	0	0	0	0	0	0	0	0	0.8	0	0	0	0	0	0	0	0	0		
REC	0	0	0	0	0	0	0	0	0.3	0	0	0	0	0	0	0	0	0		1
									<u> </u>					- /			/			·
Ref. No.		31 (SCI			32 (SCI			33 (SC	,		34 (SCI			35 (SCI			36 (SCI			
Mode	E	С	В	Е	С	В	E	С	В	E	С	В	Е	c	В	Е	С	В		
Mode STOP	E 0	C 0	B 0	E 0	C 0	B 0	E 0	C 0	B 0.8	E. 0	C 0	B 0	E 11.6	C 0	B 11.6	E -11.5	C -12.2	B -12.2		
Mode STOP REC	0 0	C 0	B 0 0	E 0	C 0 0	B 0 0	E 0 0	C 0	B 0.8 0.3	E 0	C 0	B 0 0	E 11.6 11.5	C 0	B 11.6 11.5	E -11.5 -11.5	C -12.2 -12.2	B -12.2 -12.2		
Mode STOP REC Ref. No.	0 0 Q410	0 0 37 (SCI	0 0 M-44)	0 0 0 Q410	0 0 38 (SCI	B 0 0 M-44)	0 0 Q410	0 0 39 (SC	0.8 0.3 M-44)	0 0 Q410	0 0 40 (SCI	0 0 VI-44)	E 11.6 11.5 Q410	0 0 41 (SCI	B 11.6 11.5 M-44)	E -11.5 -11.5 Q410	C -12.2 -12.2 42 (SC)	B -12.2 -12.2 VI-44)		
Mode STOP REC Ref. No.	0 0 0 0410 E	C 0 0 37 (SCI	B 0 0 M-44)	0 0 0 Q410 E	0 0 38 (SCI	B 0 0 W-44)	0 0 Q410 E	0 0 39 (SC	B 0.8 0.3 M-44)	0 0 0 Q410 E	0 0 40 (SCI	B 0 0 W-44) B	E 11.6 11.5 Q410 4	0 0 41 (SCI	B 11.6 11.5 M-44)	E -11.5 -11.5 Q410 E	C -12.2 -12.2 42 (SC	B -12.2 -12.2 VI-44)		
Mode STOP REC Ref. No. Mode STOP	0 0 0 0410 E 0	0 0 37 (SCI	B 0 0 M-44) B -0.2	E 0 0 Q410 E 0	C 0 0 38 (SCI C 0	B 0 0 M-44) B 0.7	E 0 0 Q410 E 0	0 0 39 (SC C	B 0.8 0.3 M-44) B -11.5	E 0 0 Q410 E 0	0 0 40 (SCI	B 0 0 W-44) B 0	E 11.6 11.5 Q410 4 E 0	0 0 41 (SCI	B 11.6 11.5 M-44) B 0.7	E -11.5 -11.5 Q410 E 0	C -12.2 -12.2 42 (SC) C 0	B -12.2 -12.2 W-44) B -11.5		
Mode STOP REC Ref. No. Mode STOP	E 0 0 0 E 0 0 0	C 0 0 37 (SCI C 0 0 0	B 0 0 M-44) B -0.2 -0.2	E 0 0 Q410 E 0 0	C 0 0 38 (SCI C 0 0 0	B 0 0 W-44) B 0.7 0.7	E 0 0 Q410 E 0 0	C 0 0 39 (SC C 0 0	B 0.8 0.3 M-44) B -11.5 -11.5	E 0 0 Q4104 E 0 0	C 0 0 40 (SCI C 0 0 0	B 0 0 VI-44) B 0 -0.1	E 11.6 11.5 Q410 E 0	C 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7	E -11.5 -11.5 Q410 E 0 0	C -12.2 -12.2 42 (SC C O O	B -12.2 -12.2 VI-44) B -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No.	E 0 0 Q4103 E 0 Q4104	C 0 0 37 (SCI C 0 0 0 43 (SCI	B 0 0 M-44) B -0.2 -0.2 M-44)	E 0 0 Q410 E 0 Q410 Q410	C 0 0 38 (SCI C 0 0 0 44 (SCI	B 0 0 0 M-44) B 0.7 0.7 M-44)	E 0 0 Q410 E 0 0 Q410 Q410	C 0 0 39 (SC C 0 0 0 45 (SC	B 0.8 0.3 M-44) B -11.5 -11.5 M-44)	E 0 0 Q4100 E 0 Q4100 Q4100	C 0 0 40 (SCI C 0 0 0 46 (SCI	B 0 0 W-44) B 0 -0.1 M-44)	E 11.6 11.5 Q4104 E 0 0	C 0 0 41 (SCI C 0 0 0 47 (SCI	B 11.6 11.5 M-44) B 0.7 0.7 M-44)	E -11.5 -11.5 Q410 E 0 0 Q410	C -12.2 -12.2 42 (SC O O O 48 (SC	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44)		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 Q4100 E 0 Q4100 E	C 0 0 0 C C 0 0 0 0 43 (SCI	B 0 0 0 M-44) B -0.2 -0.2 M-44) B	E 0 0 Q4100 E 0 Q4100 E	C 0 0 0 38 (SCI C 0 0 0 44 (SCI C C	B 0 0 0 M-44) B 0.7 0.7 M-44) B	E 0 0 Q410 E 0 Q410 E	C 0 0 39 (SC C 0 0 45 (SC C C	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B	E 0 0 0 Q4100 E 0 Q4100 E	C 0 0 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 V-44) B 0 -0.1 M-44) B	E 11.6 11.5 Q410 0 E 0 Q410 0 E	C 0 0 0 41 (SCI C 0 0 0 0 47 (SCI C C	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B	E -11.5 -11.5 Q410 E 0 Q410 E	C -12.2 -12.2 -12.2 -12.2 C C O O O 48 (SC) C	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP	E 0 0 0 04100 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 37 (SCI C 0 0 43 (SCI C C 0 0 0 0)	B 0 0 0 M-44) B -0.2 -0.2 M-44) B -0.2	E 0 0 Q4101 E 0 Q410 E 0 0	C 0 0 0 S8 (SC) C 0 0 44 (SC) C C 0	B 0 0 0 M-44) B 0.7 0.7 M-44) B 0.7	E 0 0 Q410 E 0 Q410 E 0	C 0 0 39 (SC C 0 0 45 (SC C 0 0	B 0.8 0.3 M-44) B -11.5 M-44) B -11.5	E 0 0 0 Q4100 E 0 Q4100 E 0 0	C 0 0 0 40 (SCI 0 0 0 46 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 V-44) B 0 -0.1 M-44) B -0.2	E 11.6 11.5 Q410 E 0 Q410 E 0	C 0 0 0 41 (SCI C 0 0 0 C C 0 0 0 C C 0 0 0 0 C C 0 0 0 0 C C 0 0 0 C C 0 0 0 C C C 0 0 C	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B	E -11.5 -11.5 Q410 E 0 Q410 E 0	C -12.2 -12.2 42 (SC) 0 0 48 (SC) C 0	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B B -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	E 0 0 0410 E 0 0 0 Q410 E	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2	E 0 0 0 Q410 E 0 0 Q410 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 S S C C 0 0 0 C C C 0 0 0 0 0 0	B 0 0 0 M-44) B 0.7 0.7 M-44) B 0.7	E 0 0 Q410 E 0 Q410 E 0 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0	C 0 0 0 39 (SC C 0 0 45 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -11.5	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 40 (SCI 0 0 0 46 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 0 W-44) B 0 -0.1 W-44) B -0.2 0	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 0	C 0 0 0 41 (SCI 0 0 0 0 47 (SCI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7	E -11.5 -11.5 Q410 E 0 Q410 E	C -12.2 -12.2 -12.2 -12.2 C C O O O 48 (SC) C	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode REC Ref. No.	E 0 0 Q4100 E 0 Q4100 E 0 0	C 0 0 0 37 (SCI C 0 0 0 43 (SCI C 0 0 0 49 (SCI C 0 0 0 0 49 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44)	E 0 0 Q4100 E 0 0 Q410 E 0 0 Q410 C 0 Q410	C 0 0 0 S50 (SC)	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 M-43)	E 0 0 Q410 E 0 Q410 E 0 0 Q410 C Q410	C 0 0 39 (SC C 0 0 0 C C C C 0 0 0 51 (SC	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 M-44) B -11.5 M-41)	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 C Q Q4100 C Q Q4100 C Q4100 C Q Q4100 C Q Q4100 C Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	C 0 0 0 440 (SCI C 0 0 0 0 46 (SCI C 0 0 0 52 (SCI C C 0 0 0 0 52 (SCI C C 0 0 0 52 (SCI C C C 0 0 0 0 52 (SCI C C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41)	E 11.6 11.5 Q4100 E 0 Q4100 E 0 0	C 0 0 141 (SCI C 0 0 0 0 147 (SCI C 0 0 0 0 153 (SCI C 155 C	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41)	E -11.5 -11.5 Q410 E 0 Q410 E 0	C -12.2 -12.2 42 (SC) 0 0 48 (SC) C 0	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B B -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 Q4100 E 0 Q4100 E 0 Q4100 E	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B	E 0 0 Q410 E 0 Q410 E 0 0 Q410 E	C 0 0 0 S50 (SCI	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B	E 0 0 Q410 E 0 0 Q410 E 0 Q410 E	C 0 0 0 0 45 (SC C 0 0 0 51 (SC C C C C C C C C C C C C C C C C C C	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 M-44) B B -11.5 B B -11.5	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E	C 0 0 440 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 W-44) B -0.2 0 M-41) B	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B	E -11.5 -11.5 Q410 E 0 Q410 E 0	C -12.2 -12.2 42 (SC) 0 0 48 (SC) C 0	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B B -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No.	E 0 0 0 0410 E 0 0 0410 E 0 0 0 0	C 0 0 0 43 (SCI C 0 0 0 49 (SCI C 11.6	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6	E 0 0 0410 E 0 0 0410 E 0 0 0 0410 E	C 0 0 0 38 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 45 (SC C 0 0 0 51 (SC C 0.2	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 M-41) B -10.5 M-41) B -0.4	E 0 0 O4100 E 0	C 0 0 0 40 (SCI C 0 0 0 0 52 (SCI C 0 .1	B 0 0 0 -0.1 M-44) B -0.2 0 M-41) B -0.3	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 0	C 0 0 0 41 (SCI C 0 0 0 0 0 53 (SCI C -0.2	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4	E -11.5 -11.5 Q410 E 0 Q410 E 0	C -12.2 -12.2 42 (SC) 0 0 48 (SC) C 0	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B B -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q410: E 0 0 Q410: E 10.9 10.8	C 0 0 0 43 (SCI C 0 0 0 49 (SCI C 11.6 11.5	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5	E 0 0 0410 E 0 0 0410 E 0 0 0 410 E -12.2	C 0 0 0 0 44 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2	E 0 0 0410 E 0 0 0410 E 0 0 0 0410 E 0	C 0 0 0 45 (SC C 0 0 0 51 (SC C 0 .2 0.2	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 M-41) B -10.4 -0.2	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 V-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 11.2	C 0 0 0 41 (SCI C 0 0 0 0 0 53 (SCI C -0.2 -0.4	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4	E -11.5 -11.5 Q410 E 0 Q410 E 0 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4100 E 10.9 10.8 QR410	C 0 0 0 43 (SC) C 0 0 0 49 (SC) C 11.6 11.5 002 (SC)	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B -11.6 11.5 :M-40)	E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E -12.2 QR410	C 0 0 0 0 44 (SCI C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 -12.2	E 0 0 0410 E 0 0410 E 0 0 0410 E 0 0 0410	C 0 0 0 45 (SC C 0 0 0 51 (SC C 0.2 0.2 0.5)	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 M-41) B -10.4 -0.4 -0.2 CM-40)	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 Q4100	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.3	E 11.6 11.5 Q4100 E 0 Q4100 E 0 Q4100 E 11.2 11.1 QR410	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 :M-41)	E -11.5 -11.5 Q410 E 0 Q410 E 0 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4100 E 10.9 10.8 QR410 E	C 0 0 0 43 (SCI C 0 0 0 49 (SCI C 11.6 11.5 002 (SCI C C C C C C C C C C C C C C C C C C	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 :M-40) B	E 0 0 0 0410 E 0 0 0410 E 0 0 0410 E -12.2 0R410 E	C 0 0 0 0 44 (SC) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 CM-40) B	E 0 0 0410 E 0 0410 E 0 0 0410 E 0 0 0410 E	C 0 0 0 45 (SC C 0 0 0 0 51 (SC C 0 0.2 0.2 0.5 (SC C C C C 0 0.2 0.5 (SC C C C C C C C C C C C C C C C C C C	B 0.8 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -11.5 M-41) B -0.4 -0.2 CM-40) B	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1 :M-41) B	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 11.2	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4	E -11.5 -11.5 Q410 E 0 Q410 E 0 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4110 E 10.9 10.8 QR411 E 5.0	C 0 0 0 43 (SCI C 0 0 11.6 11.5 C C C 12.6 C C C C C C C C C C C C C C C C C C C	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 CM-40) B 5.2	E 0 0 Q4101 E 0 0 Q4101 E -12.2 QR410 E 0 0	C 0 0 0 38 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 -12.2	E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0	C 0 0 0 45 (SC C 0 0 0 51 (SC C 0.2 0.2 0.5)	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -11.5 M-41) B -0.4 -0.2 CM-40) B 3.9	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 QR410 E 0 0 QR410 E 0 QR	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.3	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 11.2 11.1 QR410 E	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 B B B B B B B B B B B B B B B B B B B	E -11.5 -11.5 Q410 E 0 Q410 E 0 Q410 E 0 Q410 E 0 C C C C C C C C C C C C C C C C C	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 W-44) B -11.5 -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 Q410: E 0 0 Q410: E 10.9 10.8 QR410 E 5.0 5.0	C 0 0 0 43 (SCI C 0 0 0 11.6 11.5 C C 0 0 0 1 1.5 C C 0 0 0 1 1.5 C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 CM-40) B 5.2 5.1	E 0 0 0 0410: E 0 0 0410: E 0 0 0410 E -12.2 -12.2 0R410 E 0 0	C 0 0 0 44 (SC) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 CM-40) B 0	E 0 0 0 Q410 E 0 0 Q4110 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 45 (SC C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -11.5 M-41) B -0.4 -0.2 CM-40) B 3.9 3.8	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1 CM-41) B 0 0	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 11.2 11.1 QR410 E 0 0	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 2M-41) B 0	E -11.5 -11.5 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 0 Q410 E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4100 E 10.9 10.8 QR410 E 5.0 GR410	C 0 0 0 37 (SCI C 0 0 0 0 43 (SCI C 0 0 0 11.6 11.5 11.5 12.5 (SCI C 0 0 0 11.5 11.5 12.5 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 CM-40) B 5.2 5.1 CM-43)	E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E -12.2 QR410 E 0 0 QR410 O QR410 O QR410	C 0 0 0 0 44 (SC) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 CM-40) B 0 0 CM-43)	E 0 0 0 Q410 E 0 Q410 E 0 Q4	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.8 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -10.5 M-41) B -0.4 -0.2 CM-40) B 3.9 3.8 CM-43)	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E 0 0 QR410 C E	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1 CM-41) B 0 0 CM-40)	E 11.6 11.5 Q410 E 0 0 Q410 E 0 Q410 E 11.2 11.1 QR410 E 0 0 QR410 E	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 :M-41) B 0 0 :M-40)	E -11.5 -11.5 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 0 Q410 E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4100 E 10.9 10.8 QR410 E 5.0 QR410 E	C 0 0 0 37 (SCI C 0 0 0 0 43 (SCI C 0 0 0 11.6 11.5 11.5 12.5 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 CM-40) B 5.2 5.1 CM-43) B	E 0 0 0 0410 E 0 0 0410 E 0 0 0410 E -12.2 -12.2 0R410 E 0 0 0R410 -E	C 0 0 0 0 44 (SC) C 0 0 0 0 0 45.1 5.1 010 (SC) C	B 0 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 CM-40) B 0 0 CM-43) B	E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0 Q410 E 0 Q410 E 0 Q4110 E 0 QR410 E 0 QR410 E 0 QR410 E 0 QR410 E	C 0 0 0 45 (SC C 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0	B 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -11.5 M-41) B -0.4 -0.2 CM-40) B 3.9 3.8 CM-43) B	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1 EM-41) B 0 0 EM-40) B	E 11.6 11.5 Q410 E 0 Q410 E 0 Q410 E 11.2 11.1 QR410 E 0 QR410 E	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 2M-41) B 0 0 2M-40) B	E -11.5 -11.5 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 0 Q410 E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5 -11.5		
Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode STOP REC Ref. No. Mode	E 0 0 0 Q4100 E 0 0 Q4100 E 10.9 10.8 QR410 E 5.0 GR410	C 0 0 0 37 (SCI C 0 0 0 0 43 (SCI C 0 0 0 11.6 11.5 11.5 12.5 (SCI C 0 0 0 11.5 11.5 12.5 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 0 M-44) B -0.2 -0.2 M-44) B -0.2 -0.2 M-44) B 11.6 11.5 M-40) B 5.2 5.1 EM-43) B 11.6	E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E -12.2 QR410 E 0 0 QR410 O QR410 O QR410	C 0 0 0 0 44 (SC) C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-43) B -12.2 -12.2 CM-40) B 0 0 CM-43)	E 0 0 0 Q410 E 0 Q410 E 0 Q4	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0.8 0.8 0.3 M-44) B -11.5 -11.5 M-44) B -11.5 -10.5 M-41) B -0.4 -0.2 CM-40) B 3.9 3.8 CM-43)	E 0 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 Q4100 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 E 0 0 QR410 C E 0 QR410 C E 0 Q	C 0 0 0 40 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 0 0 W-44) B 0 -0.1 M-44) B -0.2 0 M-41) B -0.3 -0.1 CM-41) B 0 0 CM-40)	E 11.6 11.5 Q410 E 0 0 Q410 E 0 Q410 E 11.2 11.1 QR410 E 0 0 QR410 E	C 0 0 0 41 (SCI C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B 11.6 11.5 M-44) B 0.7 0.7 M-44) B 0.7 0.7 M-41) B 11.4 11.4 :M-41) B 0 0 :M-40)	E -11.5 -11.5 Q410 E 0 0 Q410 E 0 0 Q410 E 0 0 0 Q410 E 0 0 0 Q410 E 0 0 Q410 E 0 0 Q410 E 0	C -12.2 -12.2 42 (SCI C O O O O O O O O O O O O O O O O O O	B -12.2 -12.2 W-44) B -11.5 -11.5 M-44) B -11.5 -11.5 -11.5		

INTERFACE C.B.A.

INTERF	ACE	C.B.	<u>A.</u>																	
Ref. No.		1		1			T			61001	(SCM-4	5) .				,				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	5.1	0.1	5.1	5.1	3.7	2.3	2.9	2.6	3.1	0	2.6	1.7	3.0	3.2	1.8	0.7	0.4	0.4	0.7	0.7
REC Ref. No.	5.1	0.1	5.1	5.1	3.7	2.3	2.9	2.6	3.1	0	2.6	1.7	3.0	3.2	1.8	0.7	0.4	0.4	0.7	0.7
Her. No.				T		1	T			· · · · · · · · · · · · · · · · · · ·	(SCM-4			· · · · · · · · ·	,					
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0.7	4.5	0	0.7	0	2.6	5.1	0	0	2.1	2.2	1.8	2.6	2.2	2.7	2.2	2.3	0	5.1	2.6
REC Ref. No.	0.7	4.5	0	0.7	0	2.6	5.1	0	0	2.1	2.2	1.8	2.7	2.1	2.2	2.1	2.1	0	0.1	2.6
		1 10	10		I 4=				,		(SCM-4	_					,	,	Г	
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0.1	5.4	5.4	5.1	0	0	0	5.1	4.6	2.5	0	0	0	5.1	5.1	0	5.1	4.9	4.8	0
REC Ref. No.	0.1	5.4	5.4	5.1	0	0	0	5.1	4.6	2.5	0	0	0	5.1	5.1	0	5.1	4.9	4.8	0
	61	62	63	64	65	66	67				(SCM-45		70	74	75	7.				
Mode STOP	0	5.1	-			66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
REC	0	5.1	5.1 5.1	4.9	2.1	2.2	4.8	4.8	2.2	0	2.3	0	5.1	2.1	2.1	5.1	5.1	5.1	5.1	5.1
Ref. No.	-	3.1	3.1	4.9	2.1	2.2	4.0	4.6	<u> </u>		2.3 (SCM-45		5.1	2.1	2.1	5.1	5.1	5.0	5.1	5.1
	1	2	3	4	5	6	7	8	9	10	11		12	1.4	15	16	17	10	10	20
Mode STOP	0.7	2.2	4.1	2.6	2.0	2.5	2.7	2.7	2.5	2.4	2.1	2.6	1.9	14 0	15 2.9	1.9	2.5	18	2.0	20
REC	0.7	2.2	4.1	2.7	2.0	2.5	2.7	2.7	2.5	2.4	2.1	2.6	2.0	0	2.9	1.9	2.5	2.0	2.0	0.6
Ref. No.		1		L.	(SCM-4		2.7	2.7	2.0	∠.→	2.1	2.0	2.0		2.3	1.5	2.0	2.0	2.0	0.6
Mode	21	22	23	24	25	26	27	28					I			l	Τ			
STOP	0.9	2.1	0.9	4.3	3.4	0.9	0.8	5.1										-		
REC	1.0	2.1	1.0	4.3	3.4	0.9	0.8	5.1							-					
Ref. No.							1		61003	SCM-4			1			l	<u> </u>	L		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
STOP	4.1	2.5	2.7	2.7	2.5	2.4	5.1	0	5.1	5.1	5.1	2.1	2.6	1.9	2.9	2.0	2.6	5.1		
REC	4.1	2.5	2.7	2.7	2.5	2.4	5.1	0	5.1	5.1	5.1	2.1	2.6	1.9	2.9	2.0	2.6	5.1		
Ref. No.									IC	61004	(SCM-45	5)					l			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	0	0	0	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	2.2	5.1	0
REC	0	5.1	0	0	5.0	5.0	5.0	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	2.2	5.1	0
Ref. No.									IC	61004	(SCM-45	j)								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	0	5.1	0	0	0	5.1	0	0	0	0	0	0	5.1	5.1	5.1	5.1	5.1	5.1	2.7
REC	0	0	5.1	0	0	0	5.1	0	0	0	0	0	0	5.1	5.1	5.1	5.1	5.1	5.1	2.7
Ref. No.									IC	61004	(SCM-45	5)								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	5.1	0	0	0	5.1	0.6	2.5	5,1	0	5.1	5.2	5.1	5.1	5.1	0.3	2.4	2.5	0	5.1	5.1
REC	5.1	0	3.2	0.1	0	0.6	2.5	5.1	0	5.1	5.2	5.1	5.1	5.1	0.3	2.4	2.5	0	5.1	5.1
Ref. No.		61004							(SCM-4											
Mode	61	62	63	64	1	2	3	4	5	6	7	8								
STOP REC	5.1	5.1 0	0	5.1	2.5	5.1	3.1	0	5.1	3.3	5.1	5.1								
Ref. No.	5.1	U	0	5.1	2.6	5.3	3.3	0	5.4	0.4	5.3	5.3								
	1	2	3	4	5	6			(SCM-4		44	40	40	4.4	4-	40				
Mode STOP	0	5.0	5.0	0	5.1	6	7 5.1	8	9	10	11	12	13	14	15	16				
REC		9.1	8.8	0	5.9	0	5.1	0	5.1 5.1	0	5.0	5.1	5.1	5.0	0	5.1				
Ref. No.		0.1	0.0	-	3.3		L	(SCM-4		U	5.0	5.1	5.1	6.1	0	6.5				
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14		1				
STOP	4,9	4.8	5.1	2.2	2.1	2.5	0	4.9	2.1	4.8	5.0	4.9	2.2	5.1						
REC	4.8	4.8	5.1	2.2	2.1	2.5	0	4.9	2.1	4.8	5.0	4.9	2.2	5.1						
Ref. No.					I-46)(SC		<u> </u>						1-46)(SC							
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				
STOP	3.4	0.1	5.1	0	4.1	0.6	5.1	5.1	4.9	4.7	0	0	5.1	0.4	0.2	5.1				
REC	3.4	0.1	5.1	0	4.1	0.6	5.1	5.1	4.9	4.7	0	0	5.1	0.4	0.2	5.1				
Ref. No.				, , , , , , ,				(SCM-4			لمتما						L			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14		7				
STOP	1.0	5.1	5.1	0	5.1	0	0	5.1	1.0	5.1	0	0	5.1	5.1						
REC	1.1	5.0	5.0	0.1	5.0	0.1	0	5.0	1.1	5.1	0	0	5.1	5.1						\dashv
···											لسنسا									

Ref. No.	T						10	61011	(SCM-4	<u> </u>							T			
		2	3	4	5	6	7	8	9	10	11'	12	13	14	15	16		r	1	1
Mode	0	0	0.1	0	4.5	2.6	2.5	0	5.1	3.3	0.3	5.1	0.4	0.4	0	5.1				ļ <u>.</u>
REC	0	0	0.1	0	4.5	2.6	2.5	0	5.1	3.3	0.3	5.1	0.4	0.4	0	5.1	-			-
Ref. No.	ا ٽ		0.1			1 2.0	2.0		l		(SCM-4		0.4	0.7				<u> </u>	<u> </u>	
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	3.0	2.8	1.7	2.6	2.9	2.6	2.6	2.1	0	2.2	2.7	2.7	3.2	2.7	1.7	3.0	3.2	0	5.1
REC	0	3.0	2.8	1.7	2.6	2.9	2.4	2.7	2.1	0	2.2	2.8	2.5	3.0	2.7	1.7	2.9	3.0	0	5.1
Ref. No.			J	l							(SCM-4	<u></u>					1			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.5	1.8	1.9	2.2	2.1	2.5	1.6	2.1	1.7	0	3.9	3.9	3.9	3.9	4.6	4.6	4.6	4.6	4.8	5.1
REC	2.5	1.8	1.9	2.2	2.1	2.5	1.6	2.1	1.7	0	3.8	3.8	3.9	3.9	4.6	4.6	4.6	4.6	4.8	5.1
Ref. No.									IC	61015	(SCM-4	6)								
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	0	0	0	0	0.2	0.2	4.9	2.5	4.8	0	4.8	2.5	4.9	0	0	0	0	0	0	5.1
REC	0	0	0	0	0	0	4.9	2.5	4.8	0	4.8	2.5	4.9	0	0	0	0	0	0	5.1
Ref. No.				1		T	1		(SCM-4								ļ			
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	2.4	2.9	2.6	0.4	1.6	0.7	5.1	0	5.1	5.1	4.9	5.1	5.1	5.1	5.0	5.1				
REC Ref. No.	2.4	2.9	2.6	0.4	1.6	0.7	5.1	0	5.1	5.1	4.9	5.1	5.1	5.1	5.0	5.1		<u> </u>		L
	1	2	3	4	5	6	7	8	,		(SCM-4)	_	40	1 44	1 45	140	1 4-	40	40	00
Mode STOP	0	0.4	5.1	5.1	5.1	5.1	0	0	9	10	11	12	13	14	15	16	17	18	19	20
REC	4.4	0.4	0	0	5.1	5.1	0	0	0	0	5.1 5.1	2.2	2.6	2.0	3.0	1.9	2.5	2.0	2.0	0
Ref. No.	7,7	L		0	3.1	0.1				_	(SCM-48	L	2.7	2.0	3.0	1.9	2.0	2.0	2.0	
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	0	5.1	0	0	5.1	5.1	0	0	5.0	0	2.4	2.4	0	0	5.1	5.1	5.1	0.2	0	0.2
REC	0	5.1	0	0	5.1	5.1	0	0	5.0	0	2.5	2.4	0	0	0.8	5.1	5.1	1.0	0.1	0.1
Ref. No.		L	<u> </u>	L	1			1	IC	61017	(SCM-48		_							
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	0	0	5.1	0	0	0	5.1	0	0	0	0	0	5.1	0	0	0	0	5.1	5.1	5.1
REC	0	0	5.1	0	0	0	5.1	0	0	0	0	0	5.1	0	0	0	0	5.1	5.1	5.1
Ref. No.			,				,		IC	61017	(SCM-48	3)								
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	5.1	0	0	0	0	0	4.8	0	0	5.1	0	0	0	0	4.6	5.1	5.1	5.1	5.1	0
REC Ref. No.	5.1	0	0	0	0	0	4.8	0	0	5.1	0	0	0	0	5,0	5.0	2.6	2.5	2.5	2.5
	1	2	3	4	5		7		9	_	(SCM-47		40	- 44	45	10	47	- 10	- 10	
Mode STOP	2.2	2.6	2.0	3.0	1.9	2.5	2.0	2.0	2.4	10 2.5	11 5.1	12 5.0	13 0	14	-5.0	16 0	17 0	18	19	2.5
REC	2.1	2.6	2.0	3.0	1.9	2.5	2.0	2.0	2.4	2.5	5.1	5.0	0	0	-5.0	0	0	0.2	0	2.5
Ref. No.		L	(SCM-4		1.0	2.0	2.0	2.0	2.4	2.0	3.1	5.0		0	-5.0	0		0.2	U	2.0
Mode	21	22	23	24		Γ								T						
STOP	0	4.9	5.1	5.1																
REC	0	4.9	5.1	5.1															* ***	
Ref. No.						·			IC	61019	(SCM-47	7)				1				ــــــ
Mode	1	2	3	_ 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.2	.2.6	2.0	3.0	1.9	2.5	2.0	2.0	2.4	2.5	5.1	5.0	0	0	-5.0	0	0	2.2	1.9	2.5
REC	2.1	2.6	2.0	2.9	1.9	2.5	2.0	2.0	2.4	2.5	5.1	5.0	0	0	-5.0	0	0	2.2	1.9	2.5
Ref. No.	K	61019	(SCM-4	7)							IC	61020	(SCM-4)	7)						
Mode	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
STOP	0	4.9	5.1	5.1	0	0	0	0.2	0.2	0	-5.0	0	0	0	0	0	0	0	0	4.9
REC Ref. No.	0	4.9	5.1	5.1	0	0	0	0	0	0	-4.9	0	0	0	0	0	0	0	0	4.9
			-		-			61021		· · · · · · · · · · · · · · · · · · ·	- 44	40	1.0	1	1 1-					
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
STOP	0	2.2	0	1.9	1.9	0	-5.0	0	0	0	0	0	0	0	2.2	4.9				
Ref. No.	٧	4.4	L .	1.9	2.0	0	-5.1	0 61022	O (SCM-4)	0.4 71	0.4	0	0	0	2.2	4.9				L
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				· · · · ·
STOP	2.0	5.1	0	0	0	0	-5.0	0	0	0.2	0.2	5.1	2.1	5.1	5.1	4.9				
REC	1.6	5.1	0	0	0	0	-5.0	0	0	0.4	0.4	5.6	1.7	5.6	5.8	5.6				
	L	٠.,		L			-0.0			0.4	U.4	J.U	1.7	J.U	٥,٠	0.0	1			

Ref. No.			IC	61023	(SCM-4	8)				 				 			
Mode	1	2	3	4	5	6	7	8									
STOP	2.9	0	2.9	0	0	4.9	2.1	0						·	T		
REC	2.9	0	2.9	0	0	5.6	2.4	0									
Ref. No.	Q610	01 (SCI	M-45)	Q610	02 (SCI	VI-48)	Q610	03 (SC	M-48)					 		1	
Mode	Е	C	В	E	С	В	E	С	В		ļ	1					
STOP	5.1	5.0	4.3	2.0	4.9	2.6	2.0	4.9	2.6							<u> </u>	
REC	5.1	5.0	4.3	2.0	4.9	2.6	2.0	4.9	2.6				Ţ				

FRONT C.B.A.

FRONT	C.B./	۹																		
Ref. No.									IC	62001	(SCM-50))						,		
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STOP	2.1	5.1	5.1	5.1	5.1	2.6	2.5	0	5.2	0	0	0	0	0	0	0	0	0	0	-28.7
REC	2.0	5.1	5.1	5.1	5.1	2.6	2.5	0	5.1	0	0	0	1.2	0	1.2	0	0	0	0	-9.1
Ref. No.									IC	62001	(SCM-50))								
Mode	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
STOP	-28.7	-28.7	-28.7	-28.7	-28.7	-28.7	-28.7	-28.7	-0.1	5.2	-29.0	0	0	0	0	0	0	-28.9	-28.9	-28.9
REC	-9.3	-8.7	-12.1	-13.8	-13.7	-16.1	-26.4	-18.0	-3.3	5.1	-26.7	0	0	0	0	0	0	-24.1	-24.0	-24.0
Ref. No.									IC	62001	(SCM-50))								
Mode	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
STOP	-28.9	-28.9	-28.9	-28.9	-28.9	-28.9	-28.9	5.2	5.1	0	0	5.2	0	0	0	0	0	0	0	0
REC	-24.0	-24.0	-24.0	-24.0	-23.8	-23.8	-24.3	5.1	5.1	1.0	4.7	5.1	0	2.4	0	0	0	0	0	0
Ref. No.									IC	62001	(SCM-50)								
Mode	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
STOP	0	0	0	0	0	0.2	0.1	0.1	0.1	5.1	5.1	0	5.1	0	0	0	0	0	0	0
REC	4.7	0	0	0	0	3.8	3.8	3.8	3.8	5.1	0	0	5.1	0	2.5	0	0	0	0	0
Ref. No.				1		IC	62001	(SCM-5	0)											
Mode	81	82	83	84	85	86	87	88	89	90	91	92	93	94						
STOP	0	0	0	0	5.2	5.2	0	5.1	5.1	5.1	5.1	0	0	0						
REC	0	5.1	3.8	5.1	5.1	5.1	0	5.1	5.1	5.1	5.1	0	0	0						
Ref. No.			IC	62002	(SCM-5	0)			IC620	03 (SC	M-50)									
Mode	1	2	3	4	5	6	7	8	1	2	3									
STOP	0	2.5	0.2	0	4.6	2.5	5.1	5.1	5.1	5.1	0									
REC	. 0	2.5	0.2	0	4.6	2.5	5.1	5.1	5.1	5.1	0									
Ref. No.	Q620	02 (SCI	M-51)	Q620	03 (SCI	M-51)	Q620	04 (SCI	W-51)	Q620	05 (SCI	W-51)	Q620	06 (SCI	M-51)	Q620	07 (SC	M-51)		
Mode	E	С	В	E	С	В	Е	С	В	E	С	В	E	С	В	Ε	С	В		
STOP	0	2.9	0.2	0	3.8	0	0	3.7	0	0	3.5	0	5.1	3.0	4.9	5.1	2.9	4.9		
REC	0	3.7	0	0	2.8	0.2	0	3.7	0	0	2.5	0.2	5.1	2.1	4.9	5.1	2.8	4.9		
Ref. No.	Q620	08 (SCI	VI-51)	Q620	09 (SCI	M-51)														
Mode	Ε	С	В	Е	C	В														
STOP	5.2	2.8	4.9	5.1	2.1	4.9														
REC	5.1	2.8	4.9	5.1	2.0	4.9														
Ref. No.	QR620	01 (SC	M-50)																	
Mode	E	С	В																	
STOP	0	0	4.6																	
REC	0	0	4.6																	
								<u> </u>	<u> </u>			<u> </u>								$\overline{}$

	_			_	_	_
REA	R	Αľ	ИP	C.	B.	Α.

REAR A	AMP	C.B.	Α																						
Ref. No.	IC4001 (SCM-74) IC4002 (SCM-74)															-									
Mode	1	2	3	4	5	6	7	8	1	2	3	1 4	5	6	7	8	+	1	Τ						
STOP	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0	10.9			+	 					
REC	10	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0	10.9			-	-					
Ref. No.	 			C4003	1			10.0	 			C4004		10.5			<u> </u>								
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8		T		Т					
STOP	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	10	0	0	10.9	+	 							
REC	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0		+	 	-	 					
Ref. No.	IC4005 (SCM-74)							10.3							0	10.9	_			<u>.</u>					
34-4-	1	2	3	4	5	6	7	8	 , -	Τ 2		C4006	,		Т -		-		1						
Mode	0	0	0	-11.4	0	0	0	+	1	2	3	4	5	6	7	8	+		-						
REC	0	0	T 0	ļ	0			10.9	0	0	0	-11.4		0	0	10.9			-	-					
Ref. No.		- 0		-11.4		0	0	10.9	0	0	0	-11.4	0	0	0	10.9		1							
		Τ 2		C4007				T .	 		,	C4008		-	,										
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8									
STOP	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0	10.9									
REC	0 0 0 -11.5 0 0 0 10.9 0 0 0 -11.5 0 0 0 10.9																								
Ref. No.	104014 (00141-73)											C4015	,	-											
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8									
STOP	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0	10.9									
REC	0 0 0 -11.5 0 0 10.9									0	0	-11.5	0	0	0	10.9									
Ref. No.	104010 (8014-73)										10	C4017	(SCM-7	3)											
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8									
STOP	0	0	0	-11.4	0	0	0	10.9	0	0	0	-11.4	0	0	0	10.9									
REC	0	0	0	-11.5	0	0	0	10.9	0	0	0	-11.5	0	0	0	10.9									
Ref. No.			Į.	C6601 (SCM-72	!)					10	C6605 ((SCM-7	2)											
Mode	1	2	3	4	5	6	. 7	8	1	2	3	4	5	6	7	8									
STOP	7.2	3.6	7.1	0	0	11.5	6.4	0	0	0	0	-4.4	0	0	0	4.4				1					
REC	7.2	3.6	7.1	0	0	11.5	6.4	0	0	0	0	-4.4	0	0	0	4.4									
Ref. No.			10	26606 (SCM-72	!)					10	C6607 (SCM-72	2)		····									
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8									
STOP	0	0	0	-4.4	0	0	0	4.4	0	0	0	-4.4	0	0	0	4.4			<u> </u>						
REC	0	0	0	-4.4	0	0	0	4.4	0	0	0	-4.4	0	0	0	4.4				1					
Ref. No.			10	26608 (SCM-72)		•		IC6609 (SCM-72					L		IC6610 (SCM-72)								
Mode	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3						
STOP	3.2	0	0	-4.4	0	0	0	4.4	0	0	0	-4.4	0	0	0	4.4	0	4.9	4.9	1					
REC	3.2	0	0	-4.4	0	0	0	4.4	0	0	0	-4.4	0	0	0	4.4	0	4.9	4.9	1					
Ref. No.									IC	26611 (SCM-72	!)					·			 -					
Mode	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20					
STOP	0	5.0	4.9	2.2	2.1	4.8	4.1	0.1	0.5	4.8	0	1.1	1.1	0.7	2.0	0.6	0.8	4.8	0.3	0.2					
REC	0	5.0	4.9	2.2	2.1	4.8	4.1	0.1	0.5	4.8	0	1,1	1.1	0.7	2.0	0.6	0.9	4.8	0	0					
Ref. No.		·		'	IC	6611 (SCM-72	!)		L		L		L	2 (SCI					1					
Mode	21	22	23	24	25	26	27	28	29	30	31	32	1	2	3	4	5			\Box					
STOP	0	0.1	0.1	0	0	0	4.7	2.3	2.3	4.5	4.9	4.9	0	4.5	0	0.1	4.9	 	<u> </u>	 					
REC	0	0.1	0	0	0	0	4.7	2.3	2.3	4.5	4.9	4.9	0	4.5	0	0.1	4.9	<u> </u>		+					
Ref. No.	Q400	1 (SCN	M-74)	Q400	2 (SCN	1-74)	Q400	3 (SCN			4 (SCN			5 (SCN			06 (SCI	VI-74)		٠					
Mode	E	С	В	Ε	С	В	Ε	С	В	E	С	В	E	С	В	E	С	В							
STOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ļ						
REC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							
Ref. No.	Q400	7 (SCN	M-74)	Q400	8 (SCN	1-74)	Q401	0 (SCN	1-73)		1 (SCN			5 (SCN			6 (SCI	1		·					
Mode	E	С	В	E	С	В	E	С	В	Е	С	В	E	С	В	E	С	В							
STOP	0	0	0	0	0	0	10.9	11.6	11.6	-11.5	-12.2		0	0	-0.1	0	0	-0.1							
REC	0	0	0	0	0	0	10.8	11.6	11.6	-11.5	-12.2		0	0	-0.1	0.1	0	-0.1							
Ref. No.	Q4017 (SCM-73) Q4021 (SCM-73) Q4022 (SCM										7 (SCN			28 (SCN	<u> </u>	_	1								
Mode	Ε								В	E	С	В	E	С	В	E	C	В							
STOP	0	0	-0.1	0	0	-0.1	0	0	-0.1	0	0	-0.1	-0.2	0	-0.2	0	0	-0.2	ļ	\vdash					
REC	0	0	-0.1	0	0	-0.1	0	0	-0.1	0	0	-0.1	0	0	-0.2	0.1	0	-0.2	L						
Ref. No.	Q402	Q4029 (SCM-73) Q4033 (SCM-73) Q4034 (SCI									5 (SCN			6 (SCN			7 (SCN			Ь					
Mode	Е	С	В	E	c	В	E	С	В	E	c	В	E	С (ОС)	В	E	C	В		——					
STOP	0.1	0	-0.2	0	0	-0.1	0	0	-0.1	0	0	-0.1	11.2	-0.1	11.4	-11.5		-12.1		 					
REC	0	0	-0.3	0	0	-0.1	0	0	-0.1	0	0	-0.1	11.2	-0.2	11.4	-11.5	-12.2								
																L		, , , ,	L						

Ref. No.	Q4038 (SCM-74)			3 (SCM-74) Q6601 (SCM-72)				Q6602 (SCM-72)			Q6603 (SCM-72)			6 (SCN	<i>I</i> I-72)				
Mode	Е	С	В	E	С	В	E	С	В	E	C.	В	Ε	С	В				
STOP	10.9	11.6	11.6	-0.7	4.9	0	0	4.9	0	0	5.1	0	4.9	-4.7	4.2				
REC	10.9	11.6	11.5	-0.7	4.9	0	0	4.9	0	0	5.1	0	4.9	-4.7	4.2				
Ref. No.		Q6609 (SCM-72)							26610 (SCM-72)	1,	Q661	1 (SCN	/I-72)			***************************************	-
Mode	1	2	3	4	5	6	1	2	3	4	5	6	E	С	В				
STOP	4.8	1.7	1.1	4.8	1.3	1.7	0.5	0.5	-0.2	4.8	0.5	-0.2	-0.8	4.8	-0.2				
REC	4.8	1.7	1.1	4.8	1.3	1.7	0.4	0.4	-0.2	4.8	0.4	-0.2	-0.8	4.8	-0.2				
Ref. No.	O6612 (SCM-72)						Q6613 (SCM-72)												
Mode	1	2	3	4	5	6	Ε	С	В										
STOP	-4.9	-0.8	-0.2	-4.9	-0.8	-0.2	0.8	-4.2	0.2										
REC	-4.9	-0.8	-0.2	-4.9	-0.8	-0.2	.0.8	-4.2	0.2										
Ref. No.	QR66	03 (SCI	VI-72)	QR66	05 (SCI	M-72)	QR66	06 (SC	M-72)	QR66	07 (SCI	M-72)							
Mode	E	С	В	Ε	С	В	Е	С	В	Ε	С	В							
STOP	0	0	3.6	4.4	0.3	4.8	0	4.8	0	0	4.8	0.1							
REC	0	0	3.6	4.4	0.5	4.8	0	4.8	0	0	4.9	0.1					ļ.,		

Panasonic_®