GEOMETRIE ŞI ALGEBRĂ LINIARĂ

Curs 11

Geometrie analitică

Am lucrat până acum cu spații și subspații vectoriale. Considerăm dreptele paralele L și W incluse în planul \mathbb{R}^2 .

Cele două submulțimi ale planului sunt $W = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = \frac{1}{2}x \}$ și respectiv

 $L = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = \frac{1}{2}x - 1 \}$. W conține originea, este deci un subspațiu vectorial al planului \mathbb{R}^2 . L nu este subspațiu vectorial neconținând elementul $0_{\mathbb{R}^2}$. Şi totuși L este o linie, este descris de o ecuație liniară. Este de fapt o varietate liniară.

Definiția 1. O varietate liniară în \mathbb{R}^n este o submulțime $L = p + W = \{p + w \mid w \in W\}$ unde $p \in \mathbb{R}^n$ și $W \subset \mathbb{R}^n$ este un subspațiu vectorial.

Bineînțeles definiția se poate da pentru orice spațiu vectorial V, orice $p \in V$ și orice $W \subset V$ subspațiu vectorial. Vom lucra însă numai în \mathbb{R}^n .

Este evident că o varietate liniară L este subspațiu vectorial dacă și numai dacă $0_{\mathbb{R}^n} \in L$.

Propoziția 2. Dacă p + W = p' + W', cu W, W' subspații vectoriale în \mathbb{R}^n , atunci W = W'.

Deci în reprezentarea unei varietăți liniare nevide sub forma p + W, subspațiul vectorial W este unic determinat.

În figura anterioară
$$L = \begin{pmatrix} 0 \\ -1 \end{pmatrix} + W, p = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \in \mathbb{R}^2.$$

Definiția 3. Pentru orice $L \subset \mathbb{R}^n$ varietate liniară, există un unic subspațiu vectorial $W \subset \mathbb{R}^n$, numit subspațiul director al lui L, a.î. $(\forall)p_0 \in L$, avem $L = p_0 + W$. Dimensiunea unei varietăți liniare este dimensiunea spațiului director, și se notează $\dim_{\mathbb{R}}(L)$.

O varietate liniară de dimensiune 1 se numește dreaptă. O varietate liniară de dimensiune 2 se numește plan, iar dacă varietatea are dimensiune n-1 în \mathbb{R}^n aceasta se numește hiperplan.

Dacă $p \in \mathbb{R}^n$, atunci $L = \{p\}$ are subspaţiul director $0_{\mathbb{R}^n}$, şi deci dim $\{p\} = 0$.

Observația 4. Dat un punct $p \in \mathbb{R}^n$ și W un subpațiu vectorial al spațiului \mathbb{R}^n , există o unică varietate liniară ce trece prin p și are ca spațiu director W.

Exemplul 5. Fie
$$L = \{v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} x_1 + x_2 + x_3 = 1, 2x_1 - x_2 - x_3 = 3\}$$
. Arătăm că

$$L$$
 este varietate liniară. $L = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \},$

adică
$$L$$
 este mulțimea soluțiilor sistemului $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, unde $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{pmatrix}$.

O soluţie a acestui sistem este $\begin{pmatrix} 4/3 \\ -1/3 \\ 0 \end{pmatrix}$.

Deci
$$L = \begin{pmatrix} 4/3 \\ -1/3 \\ 0 \end{pmatrix} + W$$
, unde $W = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$. W

este subspațiu vectorial în \mathbb{R}^3 . Este spațiul soluțiilor sistemului omogen $A \cdot v = 0_{\mathbb{R}^2}$. dim $(W) = \operatorname{defect}(A) = 1 = \operatorname{numărul}$ variabilelor secundare. L este o dreptă în \mathbb{R}^3 . Rezolvând sistemul $A \cdot v = 0_{\mathbb{R}^2}$ obținem $x_1 = 0, x_2 = -x_3, x_3 \in \mathbb{R}$ este parametru.

$$W = \langle \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \rangle = \{ t \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \mid t \in \mathbb{R} \}, \text{ este spatial generat de } \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}.$$

Obtinem
$$L = \left\{ \begin{pmatrix} 4/3 \\ -1/3 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -t \\ t \end{pmatrix} \mid t \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 4/3 \\ -1/3 - t \\ t \end{pmatrix} \mid t \in \mathbb{R} \right\}.$$

Ecuațiile prin care am definit L se numesc *implicite*. Ecuațiile la care am ajuns se numesc *parametrice*, acestea depind de parametrul $t \in \mathbb{R}$.

În general o dreaptă (varietate liniară de dimensiune 1) are un parametru, un plan are doi parametri iar un hiperplan în \mathbb{R}^n are n-1 parametri.

• Dreapta, ecuații. Varietăți liniare.

O dreaptă este o varietate liniară de dimensiune 1, adică subspațiul vectorial director este $\langle v \rangle, v \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$. Orice alt vector λv , cu $\lambda \neq 0, \lambda \in \mathbb{R}$ generează $\langle v \rangle (\langle v \rangle = \langle \lambda v \rangle)$.

Voi descrie ecuațiile parametrice și implicite ale unei drepte $L \subset \mathbb{R}^n$ ce trece prin p și are $\langle v \rangle = \{tv \mid t \in \mathbb{R}\}$ (subspațiul generat de v) ca subspațiu director, cu $p = {}^t(p_1, p_2, \ldots, p_n) \in \mathbb{R}^n$ și $v = {}^t(v_1, \ldots, v_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}.$

 $L = p + \langle v \rangle$. Deci $(\forall)x \in L, x = p + tv$, pentru un $t \in \mathbb{R}$.

De aici obținem ecuațiile parametrice

$$x_1 = p_1 + tv_1, x_2 = p_2 + tv_2, \dots, x_n = p_n + tv_n.$$

Ecuațiile implicite ale dreptei L se obțin eliminând parametrul t din ecuațiile de mai sus. Obținem

$$L: \frac{x_1 - p_1}{v_1} = \ldots = \frac{x_n - p_n}{v_n}.$$

Dacă pentru un indice $j, v_j = 0$, atunci ecuația corespunzătoare indicelui j este $x_j - p_j = 0$.

Ecuațiile dreptei L(p,q) ce trece prin $p = {}^t(p_1, p_2, \ldots, p_n) \neq q = {}^t(q_1, q_2, \ldots, q_n)$, două puncte distincte din \mathbb{R}^n .

Observăm că v = q - p este un vector director al dreptei L(p,q). Este un vector în spațiul vectorial \mathbb{R}^n , deci originea sa este în $0_{\mathbb{R}^n}$. În figura cu care am început considerațiile geometrice am descris acest fapt.

L(p,q)=p+< q-p>. Deci $(\forall)x\in L, x=p+t(q-p)=(1-t)p+tq,$ cu $t\in\mathbb{R}.$ O combinație liniară $\alpha p+\beta q,$ cu $\alpha,\beta\in\mathbb{R},$ $\alpha+\beta=1,$ se numește combinație convexă. Am obținut $L(p,q)=\{(1-t)p+tq\mid t\in\mathbb{R}\},$ muțimea combinațiilor convexe dintre p și q.

Dacă $t \in [0, 1]$, atunci combinația convexă (1-t)p+tq reprezintă segmentul dintre p și q de pe dreapta L(p, q). Îl putem nota $[p, q] = \{(1-t)p + tq \mid t \in [0, 1]\}$.

Ecuațiile parametrice ale dreptei L(p,q) sunt

$$x_1 = p_1 + t(q_1 - p_1) = (1 - t)p_1 + tq_1,$$

$$x_2 = p_2 + t(q_2 - p_2) = (1 - t)p_2 + tq_2, \dots,$$

$$x_n = p_n + t(q_n - p_n) = (1 - t)p_n + tq_n.$$

De aici, eliminând parametrul t, obținem ecuațiile implicite

$$\frac{x_1-p_1}{q_1-p_1}=\ldots=\frac{x_n-p_n}{q_n-p_n}.$$

Dacă pentru un indice $j, q_j - p_j = 0$, atunci ecuația corespunzătoare indicelui j este $x_j - p_j = 0$.

Legătura între forma implicită/analitică și cea parametrică a unei drepte.

Considerăm o dreaptă $L = p + \langle v \rangle$, ce trece prin $p \in \mathbb{R}^n$ şi are vector director $v \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$. Presupunem $v_k \neq 0$ şi $v_{k+1} = \ldots = v_n = 0$.

Din $x \in L$ rezultă imediat ecuațiile parametrice.

$$\begin{cases} x_1 = p_1 + tv_1, \dots \\ x_k = p_k + tv_k \\ x_{k+1} = p_{k+1}, \dots, x_n = p_n. \end{cases}$$
 Aflăm parametrul t din ecuația de pe coordo-

nata k, $t = \frac{x_k - p_k}{v_k}$. Eliminăm pe t și obținem un sistem cu n-1 ecuații cu n necunoscute (formă implicită).

necunoscute (formă implicită).
$$\begin{cases} x_1 - \frac{v_1}{v_k} x_k = p_1 - \frac{v_1}{v_k} p_k, \dots, x_{k-1} - \frac{v_{k-1}}{v_k} x_k = p_{k-1} - \frac{v_{k-1}}{v_k} p_k \\ x_{k+1} = p_{k+1}, \dots, x_n = p_n. \end{cases}$$

• Ecuații ale planului

Un plan este o varietate liniară cu spațiul director de dimensiune 2.

Fie $v, w \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, doi vectori liniar independenți. Planul ce trece prin $p \in \mathbb{R}^n$ și are spațiul director $W = \langle v, w \rangle$ este L = p + W. Deci $(\forall) x \in L, x = p + sv + tw$ cu $s, t \in \mathbb{R}, L = \{p + sv + tw \mid s, t \in \mathbb{R}\}$.

Putem să scriem ecuațiile parametrice:

$$x_1 = p_1 + sv_1 + tw_1, x_2 = p_2 + sv_2 + tw_2, \dots, x_n = p_n + sv_n + tw_n; s, t \in \mathbb{R}.$$

Ecuațiile planului L(p,q,r), ce trece prin trei puncte necoliniare $p,q,r \in \mathbb{R}^n$. Vectorii q-p și r-p din spațiul vectorial \mathbb{R}^n sunt liniar independenți (pentru că punctele p,q,r sunt necoliniare), și deci generează un subspațiu vectorial de dimensiune 2.

 $L(p,q,r) = p + \langle q-p,r-p \rangle = \{p + s(q-p) + t(r-p) \mid s,t \in \mathbb{R}\} = \{(1-s-t)p + sq + tr \mid s,t \in \mathbb{R}\}$. Vedem că avem din nou o combinație liniară convexă (suma coeficienților este 1).

Ecuatiile parametrice sunt în acest caz

$$x_1 = (1 - s - t)p_1 + sq_1 + tr_1,$$

 $x_2 = (1 - s - t)p_2 + sq_2 + tr_2,$...,
 $x_n = (1 - s - t)p_n + sq_n + tr_n;$ $s, t \in \mathbb{R}.$

• Ecuații ale hiperplanului

Un hiperplan este o varietate liniară de dimensiune n-1 în \mathbb{R}^n .

Considerăm $v_1, v_2, \ldots, v_{n-1}, n-1$ vectori liniar independenți în \mathbb{R}^n . Hiperplanul ce trece prin $p \in \mathbb{R}^n$ și are spațiul director $W = \langle v_1, v_2, \ldots, v_n \rangle$, este L = p+W, de unde $L = \{p+t_1v_1+t_2v_2+\ldots+t_{n-1}v_{n-1} \mid t_1, t_2, \ldots, t_{n-1} \in \mathbb{R}\}$. Scriem $v_j, 1 \leq j \leq n-1$

în coordonate,
$$v_j = \begin{pmatrix} v_{1,j} \\ v_{2,j} \\ \vdots \\ v_{n,j} \end{pmatrix} \in \mathbb{R}^n$$
. Primul indice reprezintă coordonata iar al doilea

indice reprezintă indicele vectorului.

Deci $x \in L \Leftrightarrow x = p + t_1 v_1 + t_2 v_2 + \ldots + t_{n-1} v_{n-1}$, pentru anumiţi $t_1, t_2, \ldots, t_{n-1} \in \mathbb{R}$. Ecuațiile parametrice sunt în acest caz

$$\begin{cases} x_1 = p_1 + t_1 v_{1,1} + t_2 v_{2,1} + \ldots + t_{n-1} v_{n-1,1}, \\ x_2 = p_2 + t_1 v_{1,2} + t_2 v_{2,2} + \ldots + t_{n-1} v_{n-1,2}, & \ldots, \\ x_n = p_n + t_1 v_{1,n} + t_2 v_{2,n} + \ldots + t_{n-1} v_{n-1,n} & t_1, t_2, \ldots t_{n-1} \in \mathbb{R}. \end{cases}$$

Pentru a obţine ecuaţia implicită ne uităm la sistemul ecuaţiilor parametrice. Pentru t_1, \ldots, t_{n-1} găsim x_1, \ldots, x_n . Date x_1, \ldots, x_n , coordonatele unui punct din hiperplan, găsim parametrii $t_1, \ldots t_{n-1}$, care îl definesc. Deci gândind sistemul în funcţie de variabilele $t_1, \ldots t_{n-1}$, acesta este compatipil dacă şi numai dacă matricea formată din vectorii v_1, \ldots, v_{n-1} are acelaşi rang cu matricea extinsă. Vectorii $v_1, \ldots v_{n-1}$ sunt liniar independenţi, deci rangul matricii din $\mathcal{M}_{n,n-1}(\mathbb{R})$ formată cu aceşti vectori are rang n-1. Deci matricea extinsă are rang n-1, adică

$$\begin{vmatrix} x_1 - p_1 & v_{1,1} & v_{1,2} & \dots & v_{1,n-1} \\ x_2 - p_2 & v_{2,1} & v_{2,2} & \dots & v_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n - p_n & v_{n,1} & v_{n,2} & \dots & v_{n,n-1} \end{vmatrix} = 0, \text{ ceea ce reprezintă ecuația implicită a hiper-}$$

palnului. Ceea ce trebuie reținut este că petru un hiperplan avem o singură ecuație cu n necunoscute.

Propoziția 6. Dacă $\{L_i\}_{i\in I}$ este o familie de varietăți liniare în \mathbb{R}^n , atunci $\bigcap_{i\in I} L_i$ este o varietate liniară. Fie W_i spațiul director pentru $L_i, i\in I$. Dacă $\bigcap_{i\in I} L_i \neq \emptyset$ atunci spațiul director al intersecției $\bigcap_{i\in I} L_i$ este $\bigcap_{i\in I} W_i$. În acest caz $\dim(\bigcap_{i\in I} L_i) = \dim(\bigcap_{i\in I} W_i)$.

Paralelism

Definiția 7. Fie L_1 și L_2 varietăți liniare având subspațiile directoare W_1 și W_2 . Spunem că L_1 este paralelă cu L_2 și notăm $L_1||L_2$ dacă $W_1 \subseteq W_2$ sau $W_2 \subseteq W_1$.

Propoziția 8. Fie $L_1||L_2|$ două varietăți liniare paralele. Atunci $L_1 \cap L_2 = \emptyset$ sau $L_1 \subseteq L_2$ sau $L_2 \subseteq L_1$.

Demonstrație: Scriem $L_i = p_i + W_i, i = 1, 2$. Presupunem $L_1 \cap L_2 \neq \emptyset$. Fie $x \in L_1 \cap L_2$. Din definiția paralelismului varietăților liniare, $W_1 \subseteq W_2$ sau $W_2 \subseteq W_1$, deci $x + W_1 \subseteq x + W_2$ sau $x + W_2 \subseteq x + W_1$, adică $L_1 \subseteq L_2$ sau $L_2 \subseteq L_1$.

Exemplul 9. Fie $L_1 = \{ v \in \mathbb{R}^3 \mid x_1 = 1, x_2 = 1 \}$ dreapta verticală ce trece prin ${}^t(1,1,0) \in \mathbb{R}^3$ și $L_2 = \{ v \in \mathbb{R}^3 \mid x_1 = 0, x_3 = 0 \}$, axa Ox_2 din \mathbb{R}^3 . W_1 este axa Ox_1 iar $W_2 = L_2$. $L_1 \cap L_2 = \emptyset$, dar $L_1 \not\parallel L_2$ pentru că nu avem nu avem nici o incluziune între W_1 și W_2 .

Postulatul lui Euclid Printr-un punct $p \in \mathbb{R}^n$, există o unică varietate liniară care trece prin p, este paralelă cu o varietate liniară dată L și are dimensiunea varietății L.

Poziția relativă a două drepte în \mathbb{R}^n , $n \ge 3$.

Considerăm $L = p + \langle v \rangle$ și $L' = p' + \langle v' \rangle$, două drepte în \mathbb{R}^n . Avem $L \cap L' \neq \emptyset$ dacă există $t, t' \in \mathbb{R}$ a.î. p + tv = p' + t'v', adică $p - p' \in \langle v, v' \rangle$, sau sistemul tv - t'v' = p' - p, în t și t' are soluție, adică este compatibil.

Considerăm matricele
$$A = \begin{pmatrix} v_1 & -v'_1 \\ \vdots & \vdots \\ v_n & -v'_n \end{pmatrix}$$
 și $\overline{A} = \begin{pmatrix} v_1 & -v'_1 & p'_1 - p_1 \\ \vdots & \vdots & \vdots \\ v_n & -v'_n & p'_n - p_n \end{pmatrix}$.

Deci L şi L' se intersectează dacă şi numai dacă $\operatorname{rang}(A) = \operatorname{rang}(\overline{A})$.

L||L'| dacă și numai dacă < v > = < v' >(sunt spații de dimensiuni egale cu 1), adică v este multiplu nenul de v', adică rang(A) = 1.

Am obţinut:

- dacă $\operatorname{rang}(A) = \operatorname{rang}(\overline{A}) = 1$ atunci dreptele L și L' coincid,
- dacă rang(A) = 1, rang $(\overline{A}) = 2$ atunci dreptele sunt paralele distincte (nu se intersectează),
- dacă rang $(A) = \text{rang}(\overline{A}) = 2$ atunci dreptele se intersectează într-un unic punct. Cazurile de mai sus au loc și pentru n = 2, adică în plan. Următorul caz poate avea loc numai pentru $n \ge 3$.
- dacă $\operatorname{rang}(A) = 2, \operatorname{rang}(\overline{A}) = 3$ atunci dreptele sunt neconcurente şi neparalele (necoplanare). Este cazul dreptelor din **exemplul 9**.

Putem considera cazul particular a două linii în \mathbb{R}^3 . Fie acestea

$$L: \left\{ \begin{array}{ll} a_1x_1+a_2x_2+a_3x_3 &=& \alpha \\ b_1x_1+b_2x_2+b_3x_3 &=& \beta \end{array} \right.$$
 şi $L': \left\{ \begin{array}{ll} a_1'x_1+a_2'x_2+a_3'x_3 &=& \alpha' \\ b_1'x_1+b_2'x_2+b_3'x_3 &=& \beta' \end{array} \right.$ Avem linii deci un parametru pentru fiecare linie, adică numărul variabilelor secundare este 1 pentru fiecare sistem. Rangul matricii fiecărui sistem așadar 2.

Considerăm sitemul dat de cele patru ecuații cu necunoscutele x_1, x_2, x_3 . Notăm cu B, \overline{B} matricea, respectiv matricea extinsă a sistemului. Dreptele L și L' se intersectează dacă și numai dacă sistemul ce are matricea B este compatibi adică $\operatorname{rang}(B) = \operatorname{rang}(\overline{B})$ și sunt paralele dacă $\operatorname{rang}(B) = 2$.

Obtinem cazurile.

- $\operatorname{rang}(B) = \operatorname{rang}(\overline{B}) = 2$ dreptele coincid,
- rang(B) = 2, rang $(\overline{B}) = 3$, dreptele sunt paralele, distincte,
- $\operatorname{rang}(B) = \operatorname{rang}(\overline{B}) = 3$, dreptele sunt concutente într-un singur punct,

• $\operatorname{rang}(B) = 3, \operatorname{rang}(\overline{B}) = 4$, dreptele sunt neconcurente şi neparalele; sunt necoplanare (cazul din **exemplul 9**).

Dacă cele două drepte le considerăm în plan, atunci reptele pot fi confundate, paralele distincte sau concurente într-un unic punct.

Poziția relativă a două plane în \mathbb{R}^3 .

Un plan în \mathbb{R}^3 este de fapt un hiperplan, și este descris de o singură ecuație.

Fie $\pi_1 = \{v \in \mathbb{R}^3 \mid a_1x_1 + a_2x_2 + a_3x_3 = \alpha\}$ şi $\pi_2 = \{v \in \mathbb{R}^3 \mid a_1'x_1 + a_2'x_2 + a_3'x_3 = \alpha'\}$, două plane în \mathbb{R}^3 .

două plane în
$$\mathbb{R}^3$$
.

Considerăm sistemul
$$\begin{cases} a_1x_1 + a_2x_2 + a_3x_3 = \alpha \\ a'_1x_1 + a'_2x_2 + a'_3x_3 = \alpha' \end{cases}$$
 cu matricea $C = \begin{pmatrix} a_1 & a_2 & a_3 \\ a'_1 & a'_2 & a'_3 \end{pmatrix}$ și matricea extinsă $\overline{C} = \begin{pmatrix} a_1 & a_2 & a_3 & \alpha \\ a'_1 & a'_2 & a'_3 & \alpha' \end{pmatrix}$.

Planele sunt paralele dacă $\operatorname{rang}(C) = 1$ şi se intersectează dacă şi numai dacă sistemul este compatibil, adică $\operatorname{rang}(C) = \operatorname{rang}(\overline{C})$.

Obținem următoarele cazuri:

- $\operatorname{rang}(C) = \operatorname{rang}(\overline{C}) = 1$, planele coincid,
- rang(C) = 1 și rang $(\overline{C}) = 2$, planele sunt paralele, distincte,
- $\operatorname{rang}(C) = \operatorname{rang}(\overline{C}) = 2$, planele se intersectează. Dimensiunea intersecției este numărul variabilelor secundare = 1, adică planele se intersectează după o dreaptă.

Poziția relativă dintre o dreaptă și un hiperplan în \mathbb{R}^n

Cum poate sta o dreaptă față de un plan (care este un hiperplan) în \mathbb{R}^3 ? Poate fi conținută în plan, poate fi paralelă cu acesta, sau poate să se intersecteze într-un unic punct. Același lucru este valabil pentru o dreaptă și un hiperplan în \mathbb{R}^n .

Să demonstrăm acest lucru. Fie dreapta $L = p + \langle v \rangle$, cu $p \in \mathbb{R}^n$ şi $v \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ şi hiperplanul $H = \{x \in \mathbb{R}^n \mid a_1x_1 + a_2x_2 + \ldots + a_nx_n = \alpha\}$. Ştim că pentru orice $x \in L$, coordonatele satisfac ecuațiile $x_i = p_i + tv_i, 1 \leq i \leq n$. Considerăm

sistemul
$$\begin{cases} x_1-tv_1 &= p_1\\ & \dots\\ x_n-tv_n &= p_n\\ a_1x_1+a_2x_2+\dots+a_nx_n &= \alpha \end{cases}$$
. Este un sistem cu $n+1$ ecuații în

n+1 variabile, x_1, \ldots, x_n, t . Considerăm t necunoscută. Dacă $L \cap H = \{z\}$, atunci trebuie să existe $t_0 \in \mathbb{R}$ a.î. $z = p + t_0 v \in H$. Deci soluția sistemului dacă există este un n+1- uplu (z_1, \ldots, z_n, t_0)

Sistemul este compatibil dacă şi numai dacă $\operatorname{rang}(A) = \operatorname{rang}(\overline{A})$.

Pentru a compara cele două ranguri ajungem să comparăm rangurile a două matrice 1×1 și 1×2 . Astfel comparăm rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n)$ cu rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n)$.

Obţinem:

- rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n)$ = rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha a_1p_1 a_2p_2 + \ldots + a_np_n)$ = 0 atunci sistemul este compatibil şi $L \subset H$.
- rang $(a_1v_1 + a_2v_2 + ... + a_nv_n) = 0 < \text{rang}(a_1v_1 + a_2v_2 + ... + a_nv_n, \alpha a_1p_1 a_2p_2 + ... + a_np_n) = 1$ Sistemul este incompatibil, $L \cap H = \emptyset$
- rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n)$ = rang $(a_1v_1 + a_2v_2 + \ldots + a_nv_n, \alpha a_1p_1 a_2p_2 + \ldots + a_np_n)$ = 1, sistemul este compatibil, are soluție unică. $L \cap H = \{z\}$.