Loi des grands nombres.

1. Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes toutes de loi uniforme sur l'intervalle [0,1]. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Que peut-dire de

$$\frac{f(U_1)+\ldots+f(U_n)}{n}$$

lorsque n tend vers $+\infty$?

2. Soit $f:[0,1] \to \mathbb{R}$ une fonction continue. Pour tout $n \geq 0$, on définit la fonction $b_n:[0,1] \to \mathbb{R}$ par la formule

$$\forall x \in [0, 1], \ b_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

a. Montrer que la suite de fonctions $(b_n)_{n\geq 0}$ converge simplement vers f, c'est-à-dire

$$\forall x \in [0,1], \lim_{n \to \infty} b_n(x) = f(x).$$

que pour tout $x \in [0,1]$, la suite $(b_n(x))_{n\geq 0}$ converge vers f(x).

b. On suppose f lipschitzienne, c'est-à-dire qu'on suppose l'existence d'une constante K>0 telle que pour tous $x,y\in[0,1]$, on ait $|f(x)-f(y)|\leq K|x-y|$. Montrer que la suite de fonctions $(b_n)_{n\geq 0}$ converge uniformément vers f, c'est-à-dire

$$\lim_{n \to \infty} \sup \{ |b_n(x) - f(x)| : x \in [0, 1] \} = 0.$$

3. Pour calculer une valeur approchée de π , le naturaliste Buffon (1707-1788) proposa de laisser tomber sur un plancher fait de planches parallèles et toutes de la même largeur une boîte d'aiguilles de longueur égale à la largeur des planches.

Notant alors n le nombre total d'aiguilles et N le nombre, aléatoire, d'aiguilles qui tombaient à cheval sur deux planches consécutives, il proposa l'approximation suivante :

$$\pi \simeq \frac{2n}{N}$$
.

Proposer un modèle rigoureux de cette expérience et justifier la formule de Buffon.

- **4.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées de loi uniforme sur $\{0,1,\ldots,9\}$.
- a. Montrer que la série $\sum_{n\geq 1} X_n 10^{-n}$ converge presque sûrement vers une variable aléatoire dont on déterminera la loi.
- b. Soit $p \ge 1$ un entier. Pour tout $l \ge 0$, on note Y_l le vecteur aléatoire $(X_{lp+1}, \ldots, X_{lp+p})$. Soit (a_1, \ldots, a_p) un p-uplet d'éléments de $\{0, \ldots, 9\}$. Montrer qu'avec probabilité 1, on a

$$\frac{1}{n}\operatorname{Card}\left\{l \leq n : Y_l = (a_1, \dots, a_p)\right\} \xrightarrow[n \to \infty]{} \frac{1}{10^p}.$$

c. L'entier $p \geq 1$ étant toujours fixé, on choisit un entier $r \in \{1, \ldots, p\}$ et on pose, pour tout $l \geq 1$, $Z_l = (X_{lp+r}, \ldots, X_{lp+r+p-1})$. Montrer que

$$\frac{1}{n}\operatorname{Card}\left\{l \leq n : Z_l = (a_1, \dots, a_p)\right\} \underset{n \to \infty}{\longrightarrow} \frac{1}{10^p}.$$

d. Déduire de ce qui précède que pour tout $(a_1,\ldots,a_p)\in\{0,\ldots,9\}^p,$ on a presque sûrement

$$\frac{1}{n}\operatorname{Card}\left\{k \le n : X_{k+1} = a_1, \dots, X_{k+p} = a_p\right\} \xrightarrow[n \to \infty]{} \frac{1}{10^p}.$$

e. Montrer qu'il existe un ensemble $N \subset [0,1[$ de mesure de Lebesgue nulle tel que pour tout réel $x \in [0,1[\setminus N], l'écriture décimale <math>x=0,x_1x_2\dots$ de x vérifie

$$\forall p \ge 1, \ \forall a_1, \dots, a_p \in \{0, \dots, 9\}, \ \frac{1}{n} \operatorname{Card} \{k \le n : x_{k+1} = a_1, \dots, x_{k+p} = a_p\} \xrightarrow[n \to \infty]{} \frac{1}{10^p}.$$

2

f. Montrer qu'il existe un réel x dont l'écriture décimale vérifie la propriété ci-dessus.