Линейная алгебра. Коллоквиум 2 семестр. Основано на реальных событиях. v0.0

26 мая 2017

Ченжлоги

v0.0~(20.05.2017) - ucxoдное: добавлены 1–10 вопросы (спасибо Соне, Даше, Лизе, Наташе, Алёне)

Доказательства

1. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Теорема. $\dim(U \cap W) = \dim U + \dim W - \dim(U + W)$

Доказательство. Пусть $p=\dim(U\cap W),\ k=\dim U,\ m=\dim W.$ Выберем базис a= $\{a_1, \ldots, a_p\}$ в пересечении. Его можно дополнить до базиса U и до базиса W. Значит, $\exists b=\{b_1,\ldots,b_{k-p}\}$ такой, что $a\cup b$ — базис в U и существует $\exists c=\{c_1,\ldots,c_{m-p}\}$ такой, что $a \cup c$ — базис в W.

Докажем, что $a \cup b \cup c$ — базис в U + W.

1. Докажем, что U+W порождается множеством $a\cup b\cup c$.

кажем, что
$$U+W$$
 порождается множеством $a \cup b \cup c$.
$$v \in U+W \Rightarrow \exists u \in U, \ w \in W: v=u+w \\ u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle \\ w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle$$
 $\Rightarrow U+W = \langle a \cup b \cup c \rangle$

2. Докажем линейную независимость векторов из $a \cup b \cup c$. Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F : z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. Т.е. $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W).$$

2. Теорема о пяти эквивалентных условиях, определяющих набор линейно независимых подпространств векторного пространства

Определение. Сумма называется прямой, если из условия $u_1 + \ldots + u_k = 0$ следует, что $u_1 = \ldots = u_k = 0$. Обозначение: $U_1 \oplus \ldots \oplus U_k$.

В этом случае, подпространства U_1, \ldots, U_k называют линейно независимыми.

- 1. Если $u_1 + \ldots + u_k = 0 \Rightarrow u_1 = \ldots = u_k = 0 \ (U_1, \ldots, U_k$ линейно независимы)
- 2. Любой u единственным образом представим в виде $u = u_1 + \ldots + u_k$, где $u_i \in U_i$
- 3. Если e_i базис в U_i , то $e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$
- 4. $\dim(U_1 + \dots U_k) = \dim U_1 + \dots + \dim U_k$
- 5. $U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_k) = \{0\}$

Доказательство.

Пусть
$$u_1, \ldots, u_k = u_1 \ldots u_k$$
, где $u_i, u_i' \in U_i$. Тогда
$$\underbrace{(u_1 - u_1')}_{\in U_1} + \ldots + \underbrace{(u_k - u_k')}_{\in U_k} = \vec{0} \Rightarrow$$

$$\Rightarrow (u_1 - u_1') = \ldots = (u_k - u_k') = \vec{0} \Rightarrow$$

$$\Rightarrow u_1 = u_1', \ldots, u_k = u_k'.$$

 $2 \Rightarrow 3$ Пусть $u \in U_1 + \ldots + U_k$. Тогда u единственно представим в виде $u = u_1 + \ldots + u_k$, где $u_i \in U_i$.

Каждый u_i единственным образом представим в виде линейной комбинации векторов из $e_1 \cup \ldots \cup e_k \Longrightarrow e_1 \cup \ldots \cup e_k -$ базис.

$$3 \Rightarrow 4$$
 Пусть $e_1 \cup \ldots \cup e_k$ — базис $U_1 + \ldots + U_k$. Тогда
$$\dim(U_1 + \ldots + U_k) = |e_1^1 + \ldots + e_{s_1}^1 + \ldots + e_1^k + \ldots + e_{s_k}^k| = |e_1^1 + \ldots + e_{s_1}^1| + \ldots + |e_1^k + \ldots + e_{s_k}^k| = \dim U_1 + \ldots + \dim U_k.$$

 $4 \Rightarrow 5$ Пусть для краткости $\overline{U_i} = U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_k$. Тогда

$$\dim(U_i \cap \overline{U_i}) = \dim U_i + \dim \overline{U_i} - \dim \underbrace{(U_i + \overline{U_i})}_{U_1 + \dots + U_k} \leqslant$$

 $\leq \dim U_i + \dim U_1 + \ldots + \dim U_{i-1} + \dim U_{i+1} + \ldots + \dim U_k - \dim U_1 - \ldots - \dim U_k.$

Итак, $\dim(U_i \cap \overline{U_i}) \leq 0 \Longrightarrow \dim(U_i \cap \overline{U_i}) = 0 \Longrightarrow U_i \cap \overline{U_i} = \{\vec{0}\}.$

$$(5\Rightarrow 1)$$
 Пусть $\vec{0}=u_1+\ldots+u_k$, где $u_i\in U_i$. Тогда для любого i имеем $u_i=-u_1-\ldots-u_{i-1}-u_{i+1}-\ldots-u_k\Rightarrow$ $\Rightarrow u_i\in U_i\cap \overline{U_i}=\{\vec{0}\}\Rightarrow u_i=\vec{0}.$

3. Описание всех базисов *n*-мерного векторного пространства в терминах одного базиса и матриц координат. Формула преобразования координат вектора при замене базиса векторного пространства

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V: \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{1} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$. **Предложение**. e'_1, \ldots, e'_n образуют базис тогда и только тогда, когда $\det C \neq 0$. **Доказательство**.

 $(\stackrel{\cdot}{\Rightarrow}) e_1', \dots, e_n'$ — базис, а значит $\exists C' \in \mathcal{M}_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n)C' = (e_1, \dots, e_n)CC'$$
$$E = CC'$$
$$C' = C^{-1} \iff \exists C^{-1} \iff \det C \neq 0$$

 \bigoplus det $C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $x_1e'_1 + \ldots + x_ne'_n = 0$. Тогда можно записать

$$(e'_1, \dots, e'_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$
$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Так как (e_1,\ldots,e_n) — базис, то $C\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=0$. Умножая слева на обратную матрицу получаем $x_1=\ldots=x_n=0$.

4. Докажите, что отношение изоморфности на множестве всех векторных пространств является отношением эквивалентности

Теорема. "Изоморфность" — отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

I. Рефлексивность. $\varphi: V \simeq V$ — изоморфизм. Id : $V \simeq V$

II. Симметричность. $\varphi: V \simeq W$ — изоморфизм $\Longrightarrow \varphi^{-1}: W \simeq V$ — тоже изоморфизм. Т.к. отображение φ^{-1} также биективно, то осталось проверить, что оно линейно.

Пусть
$$w_1, w_2 \in W$$
. Тогда $\exists v_1, v_2 \in V$, такие что

$$w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Rightarrow v_1 = \varphi^{-1}(w_1), v_2 = \varphi^{-1}(w_2).$$

Теперь $\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = v_1 + v_2 = \varphi^{-1}(w_1) + \varphi^{-1}(w_2).$

$$\varphi^{-1}(\alpha w) = \varphi^{-1}(\alpha \varphi(v)) = \varphi^{-1}(\varphi(\alpha v)) = \alpha v = \alpha \varphi^{-1}(w).$$

III. *Транзитивность.* $\psi \circ \varphi : U \xrightarrow{\varphi} V \xrightarrow{\psi} W$. Если φ и ψ — изоморфизм, то $\psi \circ \varphi$ — тоже изоморфизм.

Докажем, что если φ и ψ — линейны, то $\psi \circ \varphi$ — тоже линейна.

$$(\psi \circ \varphi)(v_1 + v_2) = \psi(\varphi(v_1 + v_2)) = \psi(\varphi(v_1) + \varphi(v_2)) =$$

$$= \psi(\varphi(v_1)) + \psi(\varphi(v_2)) = (\psi \circ \varphi)(v_1) + (\psi \circ \varphi)(v_2).$$

$$(\psi \circ \varphi)(\alpha v) = \psi(\varphi(\alpha v)) = \psi(\alpha \varphi(v)) =$$

$$= \alpha \psi(\varphi(v)) = \alpha(\psi \circ \varphi)(v).$$

Тогда очевидно, что транзитивность следует из линейности, так как композиция двух биективных отображений также биективна.

5. Критерий изоморфности двух конечномерных векторных пространств

Теорема. V, W — конечномерные векторные пространства $\Longrightarrow V \simeq W \Longleftrightarrow \dim V = \dim W$. Докажем две леммы.

Лемма 1. dim $V = n \Rightarrow V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$. Выберем базис (e_1, \dots, e_n) в V. Тогда

$$x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in F.$$

Отображение является изоморфизмом (т.к. линейно и биективно), а следовательно $V \simeq F^n$.

Лемма 2. Пусть $\varphi:V\simeq W$ — изоморфизм. e_1,\ldots,e_n — базис V. Тогда $\varphi(e_1),\ldots,\varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$, тогда существует $v \in V : w = \varphi(v)$. Положим $v = \varphi^{-1}(w)$. Тогда

$$\Rightarrow v = x_1 e_1 + \ldots + x_n e_n, \ x_i \in F$$

$$\Rightarrow w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n)$$

$$\Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Теперь покажем, что $\varphi(e_1),\ldots,\varphi(e_n)$ — линейно независимы.

Пусть $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$, где $\alpha_i \in F$. Тогда $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применим φ^{-1} : $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Так как e_1, \ldots, e_n — базис V, то $\alpha_1 = \ldots = \alpha_n = 0$.

Доказательство теоремы.

- \Longrightarrow Пусть $V\simeq W$ и $\dim V=n.$ Пусть $\varphi:V\simeq W$ изоморфизм. (e_1,\ldots,e_n) базис V.

Тогда $\varphi(e_1),\ldots \varphi(e_n)$ — базис W (по лемме 2), а следовательно $\dim W=n=\dim V.$

6. Существование и единственность линейного отображения с заданными образами базисных векторов. Связь между координатами вектора и его образа при линейном отображении. Формула изменения матрицы линейного отображения при замене базисов.

Пусть V, W — векторные пространства. (e_1, \ldots, e_n) — базис $V. \varphi : V \to W$ — линейное отображение.

Предложение 1. φ однозначно определено векторами $\varphi(e_1), \dots, \varphi(e_n)$.

Доказательство. $v \in V \Longrightarrow v = x_1 e_1 + \ldots + x_n e_n$, где $x_i \in F$.

Тогда $\varphi(v) = \varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n).$

Предложение 2. Для любого набора $w_1, \ldots, w_n \in W$ существует единственное линейное отображение $\varphi: V \to W$, такое что $\varphi(e_1) = w_1, \ldots, \varphi(e_n) = w_n$.

Доказательство. $v \in V, v = x_1 e_1 + \ldots + x_n e_n$.

Положим $\varphi(v) = \varphi(x_1e_1 + \ldots + x_ne_n) = x_1w_1 + \ldots + x_nw_n$. Тогда легко убедиться, что φ линейно (прямая проверка), а единственность следует из пункта 1.

Предложение 3. Если
$$v = x_1 e_1 + \ldots + x_n e_n$$
 и $\varphi(v) = y_1 w_1 + \ldots + y_n w_n$, то $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Доказательство.

С одной стороны:

$$\varphi(v) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) =$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (w_1, \dots, w_n) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

С другой стороны:

$$\varphi(v) = (w_1, \dots, w_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Так как w_1, \dots, w_n — линейно независимы, то $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Предложение. Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ и $e' = (e'_1, \ldots, e'_n)$ — базисы V, $f = (f_1, \ldots, f_m)$ и $f' = (f'_1, \ldots, f'_m)$ — базисы W, A — матрица линейного отображения $\varphi: V \to W$ по отношению k e и f, A' — матрица линейного отображения по отношению k базисам e' и f'. Тогда

$$A' = D^{-1}AC \ (A = DA'C^{-1})$$

Доказательство.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C \Rightarrow \underbrace{(\varphi(e'_1), \dots, \varphi(e'_n))}_{(f'_1, \dots, f'_m)A' = (f_1, \dots, f_m)DA^{-1}} = \underbrace{(\varphi(e_1), \dots, \varphi(e_n))}_{(f_1, \dots, f_m)A}C = (f_1, \dots, f_m)AC \Rightarrow DA^{-1} = AC \Rightarrow A' = D^{-1}AC$$

7. Установите изоморфизм между пространствами ${\bf Hom}(V,W)$ и ${\bf Mat}_{m\times n}$, где V и W — векторные пространства размерностей n и m соответственно

Теорема. При фиксированных базисах е и f отображение $\operatorname{Hom}(V,W) \to \operatorname{Mat}_{m \times n}(F)$: $\varphi \to A(\varphi,\, e,\, f)$ является изоморфизмом векторных пространств V и W.

Рассмотрим две вещи:

Утверждение. Hom $(V, W) \to \operatorname{Mat}_{m \times n}(F) : \varphi \mapsto A(\varphi, e, f)$ является биекцией.

Вывод. Задать линейное отображение $V \to W$ — то же самое, что выбрать базис e в V, базис f в W и задать матрицу $(m \times n)$, где $n = \dim V$, $m = \dim W$.

Наглядный пример. $\varphi: \mathbb{R}^3 \to \mathbb{R}^2: (x, y, z) \mapsto (x, y)$.

Следовательно,
$$A(\varphi, e, f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

Предложение. Положим

$$\mathbb{C} = (e_1, \dots, e_n)$$
 — базис V $\mathbb{f} = (f_1, \dots, f_n)$ — базис W $A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f})$ $A_{\psi} = A(\psi, \mathbb{e}, \mathbb{f})$ $A_{\varphi+\psi} = A(\varphi+\psi, \mathbb{e}, \mathbb{f})$ $A_{\lambda\varphi} = A(\lambda\varphi, \mathbb{e}, \mathbb{f})$

1. $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$:

С одной стороны: $((\varphi + \psi)e_1, \dots, (\varphi + \psi)e_n) = (f_1, \dots, f_m)A_{\varphi + \psi}$.

С другой стороны:

$$((\varphi + \psi)e_1, \dots, (\varphi + \psi)e_n) = (\varphi(e_1) + \psi(e_1), \dots, \varphi(e_n) + \psi(e_n)) =$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n)) =$$

$$= (f_1, \dots, f_m)A_{\varphi} + (f_1, \dots, f_m)A_{\psi} = (f_1, \dots, f_m)(A_{\varphi} + A_{\psi}) \Rightarrow$$

$$\Rightarrow A_{\varphi + \psi} = A_{\varphi} + A_{\psi}.$$

 $2. \ A_{\lambda\varphi} = \lambda A_{\varphi}$

C одной стороны: $((\varphi)e_1,\ldots,(\varphi)e_n)=(f_1,\ldots,f_m)A_{\varphi}$.

С другой стороны:

$$((\varphi)\lambda e_1, \dots, (\varphi)\lambda e_n) = (\varphi(\lambda e_1), \dots, \varphi(\lambda e_n)) = (\lambda \varphi(e_1), \dots, \lambda \varphi(e_n)) =$$

$$= \lambda(\varphi(e_1), \dots, \varphi(e_n)) = \lambda(f_1, \dots, f_m)A_{\varphi} \Rightarrow$$

$$\Rightarrow A_{\lambda \varphi} = \lambda A_{\varphi}.$$

Таким образом, очевидно, что так как отображение биективно и линейно, то оно является изоморфизмом.

8. Докажите, что ядро и образ линейного отображения являются подпространствами в соответствующих векторных пространствах. Сформулируйте и докажите критерий инъективности линейного отображения в терминах его ядра

Предложение 1. $\mathrm{Ker} \varphi$ — подпространство в V.

Доказательство. Проверим по определению.

- 1. $0_v \in \text{Ker}\varphi$, так как $\varphi(0_v) = 0_w$.
- 2. $v_1, v_2 \in \text{Ker}\varphi \Longrightarrow \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_w + 0_w = 0_w \Longrightarrow v_1 + v_2 \in \text{Ker}\varphi$.
- 3. $v \in \text{Ker}\varphi$, $\lambda \in F \Longrightarrow \varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0 \Longrightarrow \lambda v \in \text{Ket}\varphi$.

Предложение 2. $\text{Im}\varphi$ — подпространство в W.

Доказательство. Проверим по определению.

- 1. $0_w = \varphi(0_v) \Longrightarrow 0_w \in \operatorname{Im}\varphi$.
- 2. $w_1, w_2 \in \operatorname{Im}\varphi \Longrightarrow \exists v_1, v_2 \in V : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Longrightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \Longrightarrow w_1 + w_2 \in \operatorname{Im}\varphi.$
- 3. $w \in \operatorname{Im}\varphi, \lambda \in F \Longrightarrow \exists v \in V : \varphi(v) = w \Longrightarrow \lambda w = \lambda \varphi(v) = \varphi(\lambda v) \Longrightarrow \lambda w \in \operatorname{Im}\varphi.$

Таким образом, все условия подпространства выполнены.

Предложение. Отображение φ инъективно тогда и только тогда, когда $\mathrm{Ker} \varphi = \{0\}$. Доказательство.

- (\Rightarrow) Очевидно, так как если $\mathrm{Ker}\varphi = \{0\}$, то это значит, что все векторы переходят в W.
- \iff Пусть $v_1, v_2 \in V$ таковы, что $\varphi(v_1) = \varphi(v_2)$.

Тогда $\varphi(v_1 - v_2) = 0 \Longrightarrow v_1 - v_2 \in \text{Ker}\varphi \Longrightarrow v_1 - v_2 = 0 \Longleftrightarrow v_1 = v_2.$

9. Связь между рангом матрицы линейного отображения и размерностью его образа

Для начала докажем одну лемму.

Лемма. $U \subseteq V$ — подпространство и $(e_1, \dots, e_k$ — его базис. Тогда $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle$ — подпространство. В частности, dim $\varphi(U) \leqslant \dim U$.

Доказательство. $u \in U \Longrightarrow u = \lambda_1 e_1 + \ldots + \lambda_k e_k \Longrightarrow \varphi(u) = \varphi(\lambda_1 e_1 + \ldots + \lambda_k e_k) = \lambda_1 \varphi(e_1) + \ldots + \lambda_k e \varphi(e_k) \in \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle.$

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_m)$ — базис $W, A = A(\varphi, e, f)$ — матрица линейного отображения φ по отношению K e и f.

Теорема. dim $\text{Im}\varphi = \text{rk}A$

Доказательство. Воспользуемся леммой, доказанной выше: $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$. Координаты вектора $\varphi(e_i)$ находятся в столбце $A^{(i)} \Longrightarrow \lambda_1 \varphi(e_1) + \dots + \lambda_n \varphi(e_n) = 0 \Longleftrightarrow \lambda_1 A^{(1)} + \dots + \lambda_n A^{(n)} = 0 \Longrightarrow \operatorname{rk} \{\varphi(e_1), \dots, \varphi(e_n)\} = \operatorname{rk} A$. $\dim \langle \varphi(e_1), \dots, \varphi(e_k) \rangle = \dim \operatorname{Im} \varphi$.

10. Оценки на ранг произведения двух матриц

Теорема. Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$.

Доказательство. Реализуем A и B как матрицы линейных отображений, то есть φ_A : $F^m \to F^k, \ \varphi_B : F^n \to F^m$. Тогда AB будет матрицей отображения $\varphi_A \circ \varphi_B$.

$$\operatorname{rk}(AB) = \operatorname{rk}(\varphi_A \circ \varphi_B) = \begin{cases} \leqslant \operatorname{Im} \varphi_A = \operatorname{rk} A \\ \leqslant \operatorname{Im} \varphi_B = \operatorname{rk} B \end{cases}$$

Первое неравенство следует из того, что $\operatorname{Im}(\varphi_A \circ \varphi_B) \subset \operatorname{Im}\varphi_A$, откуда, в свою очередь следует, что $\dim \operatorname{Im}(\varphi_A \circ \varphi_B) \leqslant \dim \operatorname{Im}\varphi_A$.

Рассматривая второе неравенство, получим:

$$\operatorname{Im}(\varphi_A \circ \varphi_B) = \varphi_A(\operatorname{Im}\varphi_B) \Longrightarrow \dim \operatorname{Im}(\varphi_A \circ \varphi_B) = \dim(\varphi_A(\operatorname{Im}\varphi_B)) \leqslant \dim \operatorname{Im}\varphi_B.$$