МАШИНА ОПОРНЫХ ВЕКТОРОВ

Постановка задачи

Дан датасет $D = \{(x_i \ y_i) | x_i \in R^n, y_i \in \{+1 \ -1\}\}_{i=1}^N$ и его геометрическая интерпретация:

Рисунок 1 - Геометрическая интерпретация постановки задачи

Где:

- ullet $H = \left\{ x \mid w^T x + w_0 = 0 \right\}$ разделяющая гиперплоскость
- $H_{+1} = \{x \mid w^T x + w_0 = \gamma\}$ гиперплоскость, проходящая через ближайшую точку x_i при условии, что для всех возможных точек расстояние от нее до H минимально, также $y_i = +1$ и $H \parallel H_{+1}$
- $H_{-1} = \left\{ x \mid w^T x + w_0 = -\gamma \right\}$ гиперплоскость, проходящая через ближайшую точку x_i при условии, что для всех возможных точек расстояние d от нее до H минимально, также $y_i = -1$ и $H \parallel H_{-1}$
- d минимальное расстояние между H и H_{-1} , H и H_{-1} , $d \perp H$
- $x_p \in H$
- $x \in H_{+1}$

Необходимо найти такие w^T , w_0 при которых $d \to \min$

Поиск минимального расстояния д

Координаты точки $x_p \in H$ выражаются через расстояние как $x_p = x - d$.

По определению для плоскости Ax + By + Cz + D = 0 нормальный вектор имеет координаты $\vec{n} = \{A \ B \ C\}$. Следовательно, расстояние d равно взвешенному нормальному вектору \vec{w} . То есть $d = \alpha w$.

Точка $x_p \in H$ выражается в терминах гиперплоскости: $w^T x_p + w_0 = 0$. Эту точку можно выразить через $x_p = x - d$ и $d = \alpha w$:

$$w^{T}x_{p} + w_{0} = 0$$

$$w^{T}(x-d) + w_{0} = 0$$

$$w^{T}(x-\alpha w) + w_{0} = 0$$

$$w^{T}x - \alpha w^{T}w + w_{0} = 0$$

$$w^{T}x + w_{0} = \alpha w^{T}w$$

$$\alpha = \frac{w^{T}x + w_{0}}{w^{T}w}$$

Длину вектора можно выразить через норму Евклида:

$$||d|| = \sqrt{d^T d}$$

$$||d|| = \sqrt{\alpha^2 w^T w}$$

$$||d|| = \sqrt{\left(\frac{w^T x + w_0}{w^T w}\right)^2 w^T w}$$

$$||d|| = \sqrt{\frac{\left(w^T x + w_0\right)^2}{w^T w}}$$

$$||d|| = \frac{|w^T x + w_0|}{||w||}$$

Классификатор с максимальным зазором

Определим зазор как $M=2\|d\|$. Таким образом, максимизируя $\|d\|$ мы максимизируем M. И нужно найти такие коэффициенты гиперплоскости H, которые будут максимизировать зазор для тех точек, которые ближе всего находятся к H, при условии, что ошибок нет. То есть $y_i \left(w^T x_i + w_0 \right) \ge 0, \forall i$

$$\begin{cases} \max_{w, w_0} \frac{1}{\|w\|} \min_{x_i \in D} \left| w^T x + w_0 \right| \\ y_i \left(w^T x_i + w_0 \right) \ge 0, \forall i \end{cases}$$

Уравнение 1 - Первая форма постановки задачи оптимизации

Поскольку H масштабно-инвариантна: $c \left| w^T x + w_0 \right| = 0$, то, что минимизация не взвешенной, что взвешенной функции, эту гиперплоскость не меняет и также приводит к требуемому решению. Таким образом, положим, что $\left| w^T x + w_0 \right| = 1$. Стоит так же отметить, что $\left\| w \right\|$ - не дифференцируема, но можем подобрать квадратичную сверху, то есть такую функцию, которая является дифференцируемой: $\left\| w \right\|^2$. Также максимизация d ведет к минимизации $\left\| w \right\|^2$.

$$\begin{cases} \min_{w, w_0} \|w\|^2 \\ y_i \left(w^T x_i + w_0 \right) \ge 0, \forall i \\ \min \left| w^T x + w_0 \right| = 1 \end{cases}$$

Уравнение 2 - Вторая форма оптимизационной задачи Объединив условия, получим другую постановку задачи выпуклого программирования:

$$\begin{cases} \min_{w, w_0} \|w\|^2 \\ y_i \left(w^T x_i + w_0 \right) \ge 1, \forall i \end{cases}$$

Уравнение 3 - Третья форма постановки задачи

Рисунок 2 - Функция условие или функция риска hinge-loss $\max \left\{ 0, y_i \left(x_i^T w + w_0 \right) \right\}$

Модификация задачи для линейной несепарабельных данных

Рисунок 3- Пример линейно неразделимой выборки

Если мы введем вектор фиктивных переменных $\xi = (\xi_1 \quad \xi_2 \quad \cdots \quad \xi_N)$ как величину штрафа за выход значений в пространство другого класса, то можно использовать $y_i \left(w^T x_i + w_0 \right) \geq M \left(1 - \xi_i \right)$ при $i = \overline{1,m}$. Здесь $M \left(1 - \xi_i \right)$ - величина пропорциональная расстоянию, при котором прогноз находится на неправильной стороне своего зазора. Поскольку M=1 то условие упрощается до: $y_i \left(w^T x_i + w_0 \right) \geq 1 - \xi_i, \forall i$. При этом мы будем решать оптимизационную задачу для общего случая и потребуем, чтобы: $\xi_i \geq 0, \forall i$. Чтобы учесть эти фиктивные переменные, необходимо внести их в постановку задачи. Таким образом, постановка задачи поиска оптимальной разделяющей поверхности в общем случае будет выглядеть так:

$$\begin{cases} \min_{w, w_0} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i \\ y_i \left(w^T x_i + w_0 \right) \ge 1 - \xi_i, \forall i \\ \xi_i \ge 0 \end{cases}$$

Уравнение 4 - Постановка задачи оптимизации для линейно несепарабельных данных

Решение задачи оптимизации

Для решения задачи квадратичного программирования согласно уравнению 4 необходимо перейти к двойственной задаче Вульфа, что позволит нам использовать ядерный трюк. Так называемый возможный

переход от одного пространства к другому, если нет такой прямой, которая может быть решена на основе уравнения 4. Двойственная задача Вульфа также. подразумевает условия Каруша-Куна-Таккера.

$$\begin{cases} f(x) + \sum_{j=1}^{m} u_{j} g_{j}(x) \to \max \\ \nabla f(x) + \sum_{j=1}^{m} u_{j} \nabla g_{j}(x) = 0 \forall j \\ u_{j} \ge 0 \forall j \\ u_{j} \nabla g_{j}(x) = 0 \forall j \end{cases}$$

Уравнение 5 - Двойственная задача Вульфа

Составим Лагранжиан:

$$\begin{split} & \max_{\lambda,\xi} \min_{w,w_0,\xi} L\left(w,w_0,\xi_i,\lambda_i,\xi_i\right) = \frac{1}{2} \left\|w\right\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \mu_i \xi_i - \sum_{i=1}^N \lambda_i \left[y_i \left(w^T x_i + w_0\right) - 1 + \xi_i\right] \right. \\ & \max_{\lambda,\xi} \min_{w,w_0,\xi} L\left(w,w_0,\xi_i,\lambda_i,\xi_i\right) = \frac{1}{2} \left\|w\right\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \mu_i \xi_i - \sum_{i=1}^N \lambda_i y_i w^T x_i - \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i + \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i + \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i + \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i + \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i - \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i - \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=1}^N \lambda_i \xi_i - \sum_{i=1}^N \lambda_i y_i w_0 - \sum_{i=$$

Найдем минимум:

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{N} \lambda_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^{N} \lambda_i y_i x_i$$

$$\frac{\partial L}{\partial w_0} = \sum_{i=1}^{N} \lambda_i y_i = 0$$

$$\frac{\partial L}{\partial \xi} = C - \sum_{i=1}^{N} \mu_i - \sum_{i=1}^{N} \lambda_i = 0$$

При условии, что $\lambda_i, w, \xi_i \geq 0, \forall i$

Выполним подстановку и получим двойственную задачу Вульфа:

•
$$L(w, w_0, \xi_i, \lambda_i, \xi_i) = \frac{1}{2} ||w||^2 - \sum_{i=1}^N \lambda_i y_i w^T x_i - \sum_{i=1}^N \lambda_i y_i w_0 + \sum_{i=1}^N \lambda_i + \sum_{i=1}^N \xi_i (C - \lambda_i - \mu_i)$$

(Группировка множителей)

•
$$\frac{1}{2} \| w \|^2 = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^T x_i$$
 (подстановка $\frac{\partial L}{\partial w}$)

•
$$\sum_{i=1}^{N} \lambda_i y_i x_i^T w = \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^T x_i$$
 (подстановка $\frac{\partial L}{\partial w}$)

•
$$\frac{1}{2} \|w\|^2 - \sum_{i=1}^N \lambda_i y_i x_i^T w = -\frac{1}{2} \sum_{i=1}^N \sum_{i=1}^N \lambda_i \lambda_j y_i y_j x_i^T x_i$$
 (разность двух предыдущих)

•
$$\sum_{i=1}^{N} \xi_i (C - \lambda_i - \mu_i) = 0$$
 (равенство из $\frac{\partial L}{\partial \xi}$)

Таким образом, переходим к двойственной задаче квадратичного программирования при условии ККТ:

$$\begin{cases} L(\lambda_{i}) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{i} + \sum_{i=1}^{N} \lambda_{i} \rightarrow \max_{\lambda_{i}} \\ \frac{\partial L}{\partial w} = w = \sum_{i=1}^{N} \lambda_{i} y_{i} x_{i} \\ \frac{\partial L}{\partial w_{0}} = \sum_{i=1}^{N} \lambda_{i} y_{i} = 0 \\ \frac{\partial L}{\partial \xi} = C - \sum_{i=1}^{N} \mu_{i} - \sum_{i=1}^{N} \lambda_{i} = 0 \\ \lambda_{i} \left(y_{i} \left(w^{T} x_{i} + w_{0} \right) - \left(1 - \xi_{i} \right) \right) = 0 \\ \mu_{i} \xi_{i} = 0 \\ y_{i} \left(w^{T} x_{i} + w_{0} \right) - \left(1 - \xi_{i} \right) \geq 0 \\ i = \overline{1, N} \end{cases}$$

Уравнение 6 - Постановка задачи для SVM

Такая задача решается вычислительными методами с помощью компьютера

Виды опорных точек

- Если $\lambda_i = 0 \Longrightarrow C = \mu_i$ и из Лагранжиана сокращается штраф за выход і-ой точки в чужой класс. Точка лежит в своей классе.
- Если $0 < \lambda_i < C$, то $0 < \mu_i < C$ (штраф за выход в чужую область $\xi_i = 0$), штраф $y_i (w^T x_i + w_0) = 1$ В этом случае объект находятся на границе классов и является опорным.
- Если $\lambda_i = C$, то $\mu_i = 0$ и $y_i \left(x_i^T w + w_0 \right) + \xi_i 1 = 0$, что дает нам $\xi_i \ge 0$. Такие объекты находятся в толще чужого класса и также являются опорными нарушителями.

Таким образом точка называется опорной, когда $\lambda_i \neq 0$