Circle:

Circumference (perimeter) $C = 2\pi r$

Area of a circle: $A = \pi r^2 = \frac{\pi}{4}d^2$

d is the diameter of the circle. d = 2 r

Sector:

Given a sector of a circle where *l* is the length of the arc and *A* is the area of the sector:

$$l = 2 \pi r \times \frac{\theta}{360}. \qquad A = \pi r^2 \times \frac{\theta}{360}.$$

Example 18. What is the area of a circle whose radius measures 4 cm?

- (A) 16π
- (B) 18π (C) 20π (D) 64π
- $(E) 49\pi$

Example 19. What is the radius of a circle whose area is 64π cm²?

- (A) 64
- (B) 32 (C) 16 (D) 8
- (E) 128

Example 20. Find in terms of π the number of square inches in the area of the shaded region formed by the intersecting diameters of a circle with radius 6.

- $(A) 16\pi$
- (B) 12π
- $(C) 20\pi$
- (D) 64π
- $(E) 36\pi$

 \Rightarrow **Example 21.** Four circles of radius 3 are drawn with the centers at the vertices of a square. The regions inside the square are shown. Find the area of the shaded region.

- (A) $36-24\pi$
- (B) $36-12\pi$
- (C) $36-9\pi$
- (D) $81-12\pi$
- (E) $81 9\pi$

 \Leftrightarrow Example 22. (AMC 10) Circles A, B, and C each have radius 1. Circles A and B share one point of tangency. Circle C has a point of tangency with the midpoint of AB. What is the area inside circle C but outside circle

A and circle B?

- (A) $3 \frac{\pi}{2}$ (B) (C) 2 (D) $\frac{3\pi}{4}$ (E) $1 + \frac{\pi}{2}$

E

Example 23. ABCD is a square with vertex A at the center of the circle. AE = 10in. What is the number of square inches in the area of ΔBCD ?

- (A) 100

- (B) 50 (C) 25 (D) 8π (E) 12π

Example 24. The length of a side of equilateral triangle ABC is 12. D, E, and F are the midpoints of AB, BC, and AC, respectively. A, B, and C are the centers of the circles that contain

arcs DF, DE, and FE, respectively. What is the area of the shaded region?

(B)
$$36\sqrt{3} - 9\pi$$

(C)
$$72\sqrt{3} - 9\pi$$

(D)
$$36\sqrt{2} - 18\pi$$

(E)

Example 25. In the rectangle shown, the radius of each quarter circle is 6. What is

the area of the shaded region?

- (A) $120 36\pi$
- $(B) 36\pi$
- (C) $200 36\pi$
- (D) $120 18\pi$
- (E) $240 36\pi$

Example 26. In square ABCD, AB = 1. BD and AC are arcs of radius 1. Two

shaded areas are the same. Find the difference of the unshaded areas.

(A)
$$\frac{\pi}{2} - 1$$
.

(B)
$$1 - \frac{\pi}{4}$$

(A)
$$\frac{\pi}{2} - 1$$
. (B) $1 - \frac{\pi}{4}$. (C) $\frac{\pi}{3} - 1$.

(D)
$$1 - \frac{\pi}{6}$$
. (E) $2 - \frac{\pi}{2}$.

(E)
$$2 - \frac{\pi}{2}$$
.

Example 27. D and C trisect the arc of the half circle as shown in the figure. Find the shaded area if the area of the half circle is 9π .

- (A) 3π (B) 4π (C) 5π (D) 6π (E) 2π

☆ Example 28. Semi-circles of radius 2 and 3 are externally tangent and are

circumscribed by a third semi-circle, as shown in the figure. Find the area of the shaded region.

- (A) 3π
- (B) 4π (C) 6π (D) 9π
- (E) 12π

