

Photochemistry of Carbonyl Compounds

Molecular Photochemistry
CHEM 4801

Primary Photochemical Processes of Carbonyl (n,π^*) States

Photochemistry of the Carbonyl Group

Primary Reactions of (n,π^*) States

Carbonyl (n,π^*) states are essentially diradicaloid in nature regardless of spin. The reactivity of (n,π^*) under a given set of conditions depends on whether the n or π^* orbital is involved.

$$^{1}(n,\pi^{*}) \text{ or } ^{3}(n,\pi^{*})$$

 π^* initiated (reactions with electrophiles)

n initiated (reactions with nucleophiles)

- Radical reactions
 - Atom abstractions
 - Radical additions
 - β-Cleavage
- Electron donation

- Radical reactions
 - Atom abstractions
 - Radical additions
 - α-Cleavage
- Electron acceptance

The *n* orbital of an (n,π^*) state is electrophilic and can thus accept an electron, abstract an atom in a nucleophilic bond (e.g. C-H), engage in electrophilic addition, or facilitate α -cleavage.

α-Cleavage
$$(σ → n)$$

$$*\begin{bmatrix} O \\ R \end{bmatrix}$$

$$σ → n$$

The π^* orbital of an (n,π^*) state is nucleophilic and can thus donate an electron, engage in nucleophilic addition, or facilitate β -cleavage.

 π^* initiated (reactions with electrophiles)

Secondary Thermal Processes of Radicals Derived from Carbonyls

Photochemistry of the Carbonyl Group

Secondary Processes: Fates of Diradicals

Many reactions of (n,π^*) states of carbonyls lead to biradical (BR) or radical pair (RP) intermediates. These ground-state species may undergo radical coupling, fragmentation, or addition processes.

Exemplary State Diagrams for Ketones

Photochemistry of the Carbonyl Group

Alkyl ketones generally have small ΔE_{ST} for (n,π^*) . S_1 and T_1 are pure (n,π^*) , which results in a relatively slow rate for ISC in accordance with El-Sayed's rules.

$$(\pi, \pi^*)$$
 S_2 (π, π^*) T_2 (n, π^*) S_1 T_1^{\ddagger} $k(S_1 \to T_1) = 10^7 - 10^8 \text{ s}^{-1}$ (n, π^*) T_1

Diaryl ketones have much lower energy (π, π^*) states, such that $E(S_1) \approx E(T_2)$. Intersystem crossing from $^1(n, \pi^*)$ to $^3(n, \pi^*)$ is often very rapid—faster than many reactions.

$$(\pi, \pi^*)$$
 S_2
$$(n, \pi^*)$$
 S_1
$$(n, \pi^*)$$
 T_2
$$k(S_1 \to T_1) = 10^{10} - 10^{11} \text{ s}^{-1}$$

$$(n, \pi^*)$$
 T_1

For strongly delocalized ketones, S_1 and T_1 are (π, π^*) . Intersystem crossing from $^1(\pi, \pi^*)$ to $^3(n, \pi^*)$ may be very rapid and compete with primary processes.

$$(n,\pi^*)$$
 S_2 (n,π^*) S_1 $k(S_1 \to T_1) = 10^{10} - 10^{11} \text{ s}^{-1}$

$$(\pi,\pi^*)$$
 T_1 Lifetimes can be very long for $^3(\pi,\pi^*)$.

Alkoxy radicals contain a half-filled n_0 orbital analogous to the one found in (n,π^*) states of carbonyl compounds. They have been used as benchmarks for reactivity of (n,π^*) states.

 (n,π^*) Alkoxy radical \vdots \vdots

Hydrogen atom abstraction

Addition to C=C

α-Cleavage

Intermolecular Hydrogen Atom Abstraction by Ketones

Photochemistry of the Carbonyl Group

 $S_1(n,\pi^*)$ or $T_1(n,\pi^*)$ can abstract hydrogen from ROH to form α -hydroxy radicals. The key orbital interaction is $\sigma_{\text{CH}} \to n$ and radical formation is followed by ISC and radical coupling.

Irradiation of acetone in isopropanol

Irradiation of benzophenone in isopropanol: an interesting result

Reaction mechanism: benzophenone + IPA

 $S_1(n,\pi^*)$ or $T_1(n,\pi^*)$ can abstract hydrogen from ROH to form α -hydroxy radicals. The key orbital interaction is $\sigma_{\text{CH}} \to n$ and radical formation is followed by ISC and radical coupling.

Reaction mechanism: [1. ISC $(S_n \to T_1)$]; 2. $\sigma_{CH} \to n$; [3. ISC $(T \to S)$]; 4. $n \leftrightarrow n$

Amines react with photo-excited ketones to form either pinacols or 2-aminoalcohols. Unlike the reactions with alcohols, electron transfer (et) is typically involved in these reactions.

Reaction mechanism: [1. ISC ($S_n \rightarrow T_1$);] 2. et ($n_N \rightarrow n_0$); 3. pt; [4. ISC;] 5. $n \leftrightarrow n_0$

Rate constants of quenching by alcohols and amines support significantly different mechanisms for the two classes of hydrogen donors.

 $k_a \, (M^{-1} \, S^{-1})$

Ketone	E_T	T_{1}	Me ₂ CHOH	NEt ₃
Me ₂ CO	78	n,π*	1×10^{6}	4 × 10 ⁸
4-CF ₃ C ₆ H ₄ COPh	74	n,π*	2×10^{6}	_
PhCOMe	72	n,π*	1×10^{6}	7×10^{7}
4-MeC ₆ H ₄ COPh	70	п,п*	1 × 10 ⁵	_
Ph ₂ CO	69	n,π*	1×10^{6}	2×10^9
4-PhC ₆ H ₄ COPh	61	п,п*	1×10^{4}	_
MeCOCOMe	56	n,π*	5×10^3	5×10^7
2-Acetylnaphthalene	56	п,п*	_	5 × 10 ⁵

For amines, rate of quenching is negatively correlated with the ionization potential of the amine.

Even $T_1(\pi,\pi^*)$ has a high rate of reaction with amines despite generally slow reaction with ROH.

 (n,π^*) states are considerably more reactive than (π,π^*) states as evidenced by the data below. Solvent-based switching of the configuration of T_1 can dramatically affect k.

			$k_q (M^{-1} s^{-1})$		
Ketone	E_T	T_{1}	Me ₂ CHOH	NEt ₃	
Me ₂ CO	78	n,π*	1×10^{6}	4×10^{8}	
4-CF ₃ C ₆ H ₄ COPh	74	n,π*	2×10^{6}	_	
PhCOMe	72	n,π*	1×10^{6}	7×10^{7}	
4-MeC ₆ H ₄ COPh	70	π,π*	1×10^{5}	_	
Ph ₂ CO	69	n,π*	1×10^{6}	2×10^9	
4-PhC ₆ H ₄ COPh	61	π,π*	1×10^4	_	
MeCOCOMe	56	n,π*	5×10^{3}	5×10^{7}	
2-Acetylnaphthalene	56	π,π*	_	5 × 10 ⁵	

Rate of PhCOMe	+ Me ₂ CHOH
Solvent Benzene Acetonitrile	$\frac{k_q \text{ (M}^{-1} \text{ s}^{-1}\text{)}}{2 \times 10^6}$ 10^3

Intramolecular Hydrogen Atom Abstraction and Norrish Type II

Photochemistry of the Carbonyl Group

Intramolecular hydrogen abstraction is called *Norrish type II reaction* or γ -hydrogen abstraction (γ -HA). A 1,4-biradical is produced that may undergo fragmentation or coupling.

Intramolecular y-Hydrogen Abstraction

Intramolecular hydrogen abstraction is called *Norrish type II reaction* or γ -hydrogen abstraction (γ -HA). A 1,4-biradical is produced that may undergo fragmentation or coupling.

 $\sigma_{\rm CH} \to n$ or $\sigma_{\rm CH} \to \pi$ remains the key orbital interaction in the abstraction step.

This particular abstraction has a favorable six-membered cyclic transition state.

As in intermolecular hydrogen abstraction, (n,π^*) is more reactive than (π,π^*) . Relative reactivity of hydrogens is tertiary > secondary > primary.

Ketone	T_{1}	Φ_{IHA}	k_q (ns ⁻¹)
PhCOCH ₂ CH ₂ C <u>H</u> ₃	n,π*	1.0 (0.36)	0.8
PhCOCH ₂ CH ₂ CH ₂ CH ₃	n,π*	1.0 (0.33)	10
$PhCOCH_2CH_2C\underline{H}(CH_3)_2$	n,π*	1.0 (0.25)	50
4-CIPhCOCH ₂ CH ₂ CH ₂ CH ₃	n,π*	0.8	3
$4\text{-MeOPhCOCH}_2\text{CH}_2\text{CH}_2\text{CH}_3$	π,π*	0.3	0.6
$4\text{-MeOPhCOCH}_2\text{CH}_2\text{C}\underline{\textbf{H}}(\text{CH}_3)_2$	π,π*	_	0.3
4 -CF $_3$ PhCOCH $_2$ CH $_2$ CH $_2$ CH $_3$	n,π*	1.0	30
$MeCOCH_2CH_2C\underline{H}_3$	n,π*	0.8 (0.4)	1
$MeCOCH_2CH_2CH_2CH_3$	n,π*	0.1 (0.3)	10
$MeCOCH_2CH_2CH(CH_3)_2$	n,π*	0.1 (0.9)	40

Singlet Reactivity of Dialkyl Ketones

Dialkyl ketones undergo slow intersystem crossing, so S_1 is also reactive in γ -hydrogen abstraction. S_1 is generally much more reactive than T_1 (why?)

Ketone	Configuration	Φ_IHA	k_q (ns ⁻¹)
MeCOCH ₂ CH ₂ C <u>H</u> ₃	$T_1(n,\pi^*)$	0.8 (0.4)	1
	$S_1(n,\pi^*)$	0.06 (0.06)	20
$MeCOCH_2CH_2CH_2CH_3$	$T_1(n,\pi^*)$	0.1 (0.3)	10
	$S_1(n,\pi^*)$	0.1 (0.1)	100
$MeCOCH_2CH_2C\underline{H}(CH_3)_2$	$T_1(n,\pi^*)$	0.1 (0.9)	40
	$S_1(n,\pi^*)$	0.3 (0.3)	200

Recall our state energy diagram for acetone.

Solvent Effects

Quantum yields of γ -HA products are often higher in alcoholic solvents. The new hydroxyl group hydrogen bonds to solvent, arresting back hydrogen abstraction and increasing Φ .

Ketone	T_1	Ф _{ІНА} ROH	Ф _{ІНА} benzene
PhCOCH ₂ CH ₂ CH ₃	n,π*	1.0	0.36
PhCOCH ₂ CH ₂ CH ₂ CH ₃	n,π*	1.0	0.33
$PhCOCH_2CH_2C\underline{H}(CH_3)_2$	n,π*	1.0	0.25
$MeCOCH_2CH_2C\underline{H}_3$	n,π*	8.0	0.4
$MeCOCH_2CH_2CH_2CH_3$	n,π*	0.1	0.3
$MeCOCH_2CH_2CH(CH_3)_2$	n,π*	0.1	0.9

Hydrogen bonding also prevents racemization of γ-stereogenic ketones.

$$\frac{hv}{t\text{-BuOH}}$$

Fate of the Biradical Intermediate

The distribution of final (closed-shell) products from T_1 depends on (1) the populations of possible conformers of the biradical and (2) their intrinsic rates of intersystem crossing, which depend on the distances between the radical centers.

α-Cleavage of Carbonyl Compounds and Norrish Type I

Photochemistry of the Carbonyl Group

α-Cleavage of Excited Carbonyls

Excited carbonyls may undergo α -cleavage or Norrish type I reaction. A bond between the carbonyl carbon and an α -carbon breaks. A variety of secondary processes of the resulting RP are possible.

Formation of a relatively stable radical is required (at least secondary) and Φ and rate parallel the stability a of the (non-acyl) radical formed and the bond dissociation energy of the broken bond.

α-Cleavage of Excited Carbonyls

Excited carbonyls may undergo α -cleavage or Norrish type I reaction. A bond between the carbonyl carbon and an α -carbon breaks. A variety of secondary processes of the resulting RP are possible.

Fate of the Radical Pair

S states yield singlet radical pairs, which can rapidly recombine to form starting material. *T* states cannot immediately recombine and the radicals typically escape the solvent cage and react randomly.

Orbital Analysis of the Primary Process

 (n,π^*) states are much more reactive than (π,π^*) states because the half-filled n orbital overlaps well with the $\sigma_{\rm CC}$ orbital of the breaking bond. The key orbital interaction is $\sigma_{\rm CC} \to n$.

State Correlation Diagram

A state correlation diagram for α -cleavage shows that reactions of both S and T are expected to exhibit an activation barrier starting from the excited state, either (n,π^*) or (π,π^*) .

The (n,π^*) state correlates with the *linear* acyl radical and the ground and (π,π^*) states correlate with the *bent* acyl radical. A surface crossing and avoided crossing save the day.

α-Cleavage of Cyclobutanones

Cyclobutanones readily open via α -cleavage after photo-excitation. Decarbonylation or elimination may take place; conversion to a zwitterionic intermediate followed by ring closure may also occur.

Reactions of the 1,4-BR are extremely rapid, as all three processes are stereospecific with respect to C4.

Cycloadditions of Excited States of Carbonyls to Alkenes

Photochemistry of the Carbonyl Group

Electron-rich Alkenes + Excited Carbonyls

Excited ketones and aldehydes (n,π^*) react with alkyl- and EDG-substituted alkenes in a [2+2] cycloaddition process called the *Paterno-Büchi reaction*.

Regioselectivity?

Stereoselectivity?

Electron-rich Alkenes + Excited Carbonyls

Both singlet and triplet states can react, although the selectivity of the reaction and its underlying mechanism depend on the multiplicity of the (n,π^*) state.

Key Orbital Interactions

The key orbital interactions for electron-rich and electron-poor olefins are different not only in the orbitals involved, but in their symmetry and stereochemistry. Distinct biradicals are formed.

Electron-rich olefins. $\pi \rightarrow n$

Electron-poor olefins. $\pi^*_{CO} \rightarrow \pi^*_{CC}$

The stereoselectivity of addition of excited acetaldehyde to (E)-2-butene is significantly greater than the selectivity of the corresponding reaction of benzaldehyde. Why?

Solvent-dependent Reactivity

Changing the polarity of the solvent can have a profound effect on the mechanism and alter both stereo- and regioselectivity.

Via triplet biradical intermediate

Via electron transfer

β-Cleavage of Excited Carbonyl Compounds

Photochemistry of the Carbonyl Group

β-Cleavage of Excited Carbonyls

A $\pi^* \to \sigma^*$ interaction facilitates cleavage of weak bonds β to the carbonyl group in (n,π^*) or (π,π^*) states. In the latter case, a $\sigma \to \pi$ interaction may also be relevant.

Ring strain

Low bond energy

β-Cleavage of α,β-epoxy ketones or aldehydes may lead to rearrangement or stereoisomerization of the starting material.

Rearrangement to β-diketones

Epimerization at the α -carbon

Reasonably good leaving groups can be lost from the β -position following excitation of the carbonyl group. Benzoins are an interesting case study in this regard.

$$X = CI, SMe_2+BF_4-, OCOMe, OPO(OR)_2, SPh$$

Ionic cyclization of benzoins to benzofurans