Die Fourier transformation

Terminologic

Jerminologic

$$g: [a,b] \longrightarrow \mathbb{R} \text{ height and } [a,b] \text{ stackweise stelig}$$
 $(=) \exists t_0, t_1, ..., t_m \in [a,b] \text{ mit}$

$$a = t_0 < t_1 < ... < t_m = b$$
 and $g \in C((t_{j-1}, t_j))$ $(j = 7, ..., m)$

UNO es existieren die einsetigen Grenzwate

g: [a,b] - R hift and [a,b] stückweise glatt

$$a = t_0 < t_1 < ... < t_m = b$$
 and $g \in C^1((t_{j-1}, t_j))$ $(j = 7, ..., m)$

UND es existinen clie einscition breezeste
$$g(t_j+), g(t_j-), g'(t_j+), g'(t_j-) \qquad (j=1,...,m),$$

$$g'(x_0) = \frac{1}{2}(g'(x_0+) + g'(x_0^-))$$

ISIR so: en Interall,
$$f: I \rightarrow C$$
 eine Fulction
$$u(x) := Re(f), \quad v(x) := Im(f), \quad soclass \quad f(x) = u(x) + i \cdot v(x)$$

$$f \text{ height and } I \quad differentiable$$

c=)
$$u$$
 and v sind $v f$ I differ $v f$ v

$$= f'(x) := u'(x) + i \cdot v'(x)$$
Se: $I = [a,b]$ and $u, v \in R([a,b])$.

$$= \int_{\alpha}^{b} f(x) dx = \int_{\alpha}^{b} u(x) dx + i \cdot \int_{\alpha}^{b} v(x) dx$$

und
$$f$$
 heißt integrierber aut I.
Men schreibt: $f \in R([a,b], C)$

$$f: \mathbb{R} \to \mathbb{C}$$
 mid $f \in \mathbb{R}([a,b], \mathbb{C})$ for jeels laterall $[a,b] \subseteq \mathbb{R}$.

$$\int_{-\infty}^{\infty} f(t) dt \text{ he: } \text{ } f(absolut) \text{ } konveyent$$

)
$$f(t)$$
 dt heißt (absolut) konvegent

- ∞

(=) $\int Re(f(t)) dt$ and $\int Im(f(t)) dt$ sind (absolut) Konvegent

=)
$$\int_{-\infty}^{\infty} f(t) dt := \int_{-\infty}^{\infty} Re(f(t)) dt + i \cdot \int_{-\infty}^{\infty} Im(f(t)) dt$$

1st $\int_{-\infty}^{\infty} f(t) dt$ absolut konversat, so height f absolut integrier bar

Sei f: P -> C stückneise slett, I und f' absolut integriebe und f habe endlish viels Unskys leits skillen Van ist fart R beschränkt und $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x) = 0$ Se: $f: \mathbb{R} \longrightarrow \mathbb{C}$ stockwise statis und absolut integric bar For $S \in \mathbb{R}$ definine $g_s(t) := f(t) \cdot e^{-ist}$ $(t \in \mathbb{R})$ Es 514: - gs ich studenise sklig - gs ist absolut inkgirban - Für $\hat{f}: \mathbb{R} \longrightarrow \mathbb{C}$ mit $\hat{f}(s) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-ist} dt$ · fist art R beschränkt • $\lim_{s\to\pm\infty} \hat{f}(s) = 0$ (Satz von Riemann - Lebesgue) · fist and R sktig f heift die Fourier transformiete von f. Oil Abbilday f 1-> f heißt Fouriertransformation und ist Isomorphismus von 5 nach & (linea und bijektiv) Integral Stex) dx Carchysche Hauptwet Falls lim SL(x) dx existint, JF(x) dr := lim f(x) dx $+\lim_{\alpha\to\infty}\int\limits_0^{\infty}f(x)\,dx$ neunt man das den Cauchyschn-Haupt wort und man schabb ≠ y-100 -x f(x) dx (H - Sf(x) dx = lim Sf(x) dx

See
$$f: \mathbb{R} \to \mathbb{C}$$
 stickwise slatt and absolut integrober.

Dann:

Vt $\in \mathbb{R}$: $(H-\int_{-\infty}^{\infty} \hat{f}(s)e^{ist} ds = \frac{1}{2}(f(t+)+f(t-))$

Fells f shift and \mathbb{R} is:

Vt $\in \mathbb{R}$: $f(t) = CH-\int_{-\infty}^{\infty} \hat{f}(s)e^{ist} ds$

Sei $V:=\{f: \mathbb{R} \to \mathbb{C}: f \text{ is } l \text{ stickwise shift and absolut integrieben} \}$

Sei $f\in V$ (V komplete VR), $h\in \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{C}$ sei definite $f_h(t):=f(t+h)$

Daum is $f_h\in V$ and $f_h(s)=e^{ish}\hat{f}(s)$ (se \mathbb{R})

Seien $f_h, f_h\in V$ and $f_h(s)=e^{ish}\hat{f}(s)$ (se \mathbb{R})

Seien $f_h, f_h\in V$ and $f_h(s)=e^{ish}\hat{f}(s)$ (se \mathbb{R})

Dann heißt $f_h\in V$ and $f_h(s)=e^{ish}\hat{f}(s)$ dx

the jecks $f\in \mathbb{R}$ konvegat ist.

Dann heißt $f_h \neq f_h(s):=\frac{1}{2\pi}\int_{-\infty}^{\infty} f_h(t-x)\cdot f_h(s) dx$

die Faltung von f_h and $f_h(s):=\frac{1}{2\pi}\int_{-\infty}^{\infty} f_h(t-x)\cdot f_h(s) dx$

Scienty, $f_2: \mathbb{R} \to \mathbb{C}$ stating and absolut integrable and f_2 destrible.

Ourse:

Ver $\mathbb{R}: \int_{-\infty}^{\infty} f_1(t-x) \cdot f_2(x) dx$ konvejet absolut.

•
$$f_1 * f_2$$
 is satis and absolut inhysion and $(\hat{f}_1 * \hat{f}_2)(s) = \hat{f}_1(s) \cdot \hat{f}_2(s)$

• $|(\hat{A}_{1} * \hat{F}_{2})(t)| \leq \frac{\pi}{2\pi}$. Sup $|f_{1}(x)| \int_{-\infty}^{\infty} |f_{2}(x)| dx$ ($t \in \mathbb{R}$)

Sei f: R-> C stückweise slett, sktig und absolut integriaber.
Weik sei f'absolut integrierber. Dann gilt:

$$f' \in V$$
 and $\widehat{f}'(s) = is \cdot \widehat{f}(s)$ (seR)

f se: stells and absolut interrobon.

f heißt band beschrönkt

=) In dieser Fell leann men f mil einen Ocsk {kT:k EZ}, T>0

darskllen

Abtast theorem von Shannon

$$\exists b > 0: \hat{f}(s) = 0 \quad (s \in \mathbb{R} \setminus (-b, b)).$$

Dan 5:11 für jecks
$$T \subset \frac{\pi}{b}$$
:
$$f(t) = \sum_{k=-\infty}^{\infty} f(kT) \cdot sinc(\frac{\pi}{T}(t-kT)) \quad (t \in \mathbb{R})$$

mil
$$sinc(x) := \begin{cases} \frac{sin(x)}{x}, & x \neq 0 \\ 1, & x \neq 0 \end{cases}$$
 , Silos cardinalis

Fine Funktion & & Com (R, C) hipt schnell fellend

(=) Vn, m & No: t -> t m f (n) (t) is beachant aut IR.

S:= { F: R > C: Fist school bellend } height Schwatz - Raum

Seien F, g & S, p ein Polynom und le & Co(R, () mit le (") beschrickt

aut R. Dann gilt:

· fist absolut integrio bar und lim flt) = 0

· Va, BEC: 2F+ BgES · kf, pf, f, Rc(f), Im(f), t → f(-t) ∈ S.

· f & S and f(t) = \$\int f(s) e'st ds (t&R)

· f(n) & S (n & N) and f(n) (s) = (ij) n f(s) (s & R)

· f c S (heR) and f, (s) = eish. f(s) (seR) · + * 5 & S und + * 5 = 6.6

· For h(+):= e (teR) gilt: heS und h = 1/27 h aut R

For f,ges gill: $= \int_{-\infty}^{\infty} \hat{f}(s) \cdot \hat{g}(s) ds$ 1 5 f(t).g(t) dt

Inst. for Fig: $\frac{1}{2\pi}\int_{-\infty}^{\infty}|f(t)|^2 dt = \int_{-\infty}^{\infty}|f(s)|^2 ds$