VE 216 Homework 3 Lin Yihna of 33 ff 5/80219/0998

1. (A. A.) = 
$$\int_{a}^{a+T_{0}} k_{1}(y) dx^{2}(y) dx^{2$$

Therefore, 
$$Y(4) = Big) + \sum_{k=1}^{\infty} |3ik| \cos(ku_k t) + Aik| \sin(ku_k t)$$

where

$$\begin{cases}
Big) = \frac{1}{4} \int_{0}^{\infty} |x|^{4} + Aik| \sin(ku_k t) \\
Big) = \frac{1}{4} \int_{0}^{\infty} |x|^{4} + Aik| \sin(ku_k t) dt
\end{cases}$$

3.  $Y(t) = \sin(3ix^{4}) + \cos(6ix^{4})$ 
 $y(t) = \frac{1}{2} (e^{3ix^{4}} - e^{-3ix^{4}}) + \frac{1}{2} (e^{4ix^{4}} + e^{-4ix^{4}})$ 

$$= \frac{1}{2} (e^{3ix^{4}} - e^{-3ix^{4}}) + \frac{1}{2} (e^{4ix^{4}} + e^{-4ix^{4}})$$

$$= \frac{1}{2} (e^{3ix^{4}} - e^{-3ix^{4}}) + \frac{1}{2} (e^{4ix^{4}} + e^{-4ix^{4}})$$

$$= \frac{1}{2} (e^{3ix^{4}} - e^{-3ix^{4}}) + \frac{1}{2} (e^{4ix^{4}} + e^{-4ix^{4}})$$

$$= \frac{1}{2} (e^{3ix^{4}} + e^{-3ix^{4}}) + \frac{1}{2} (e^{4ix^{4}} + e^{-4ix^{4}})$$

$$= \frac{1}{2} (e^{3ix^{4}} + e^{-3ix^{4}}) + \frac{1}{2} (e^{-4ix^{4}} + e^{-4ix^{4}})$$

$$= \frac{1}{2} (e^{-1} - e^{-1} - e^{-1}$$

2 + - [ [ ] ( ] ( sin ] k as ] kt - (as ] k + ) sin ] kt ) ]

(1) 
$$7.=2$$
 ( $k=\frac{1}{7}$ ,  $\int_{0}^{\infty} x(ey e^{-ji\omega_{k}k} + idt)$ 
 $u_{0}=\pi$ 
 $=\frac{1}{1}\int_{0}^{\infty} x(ey e^{-ji\omega_{k}k} + idt)$ 
 $=\frac{1}{2}\int_{0}^{\infty} x(ey e^{-ji\omega_{k}k} + i$ 

7. (a) 
$$X(t) = \sum_{\infty}^{\infty} a_k e^{jk \frac{j}{2}t}$$

24 My is odd harmonic,

 $X(t+\frac{1}{2}) = \sum_{\substack{k \text{ is odd} \\ k \text{ is odd}}} a_k e^{jk \frac{j}{2}t} e^{jk \frac{j}{2}t} = \sum_{\substack{k \text{ is odd} \\ k \text{ is odd}}} a_k e^{jk \frac{j}{2}t} e^{jk \frac{j}{2}t}$ 
 $= \sum_{\substack{k \text{ is odd} \\ k \text{ is odd}}} a_k e^{jk \frac{j}{2}t} e^{jk \frac{j}{2}t}$ 
 $= \sum_{\substack{k \text{ is odd} \\ k \text{ is odd}}} a_k e^{jk \frac{j}{2}t} e^{jk \frac{j}{2}t}$ 

Thus,  $|X(t)| = -X(t+\frac{1}{2})|$ 

(b) Fs coefficient of  $x(y)$ .

$$a_k = \frac{1}{T} \left( \int_0^{\frac{T}{2}} \chi(t) e^{-jkwnt} dt + \int_{\frac{T}{2}}^{T} \chi(t) e^{-jkwnt} dt \right)$$

Let t= t + I for the second part,

by & is even x(+) + x(+) =0 i.e. x(+) =-x(++)

Therefore, XIII is ledd harmonic

8. See attachet page.

$$\begin{array}{lll}
\P[a]_{k>0} & \text{if } & \text{if }$$

$$\frac{d_{1} = -\frac{1}{4\pi} \left( \frac{j}{k+2} + \frac{j}{k+2} + \frac{j-(-1)^{k}}{\pi(k+2)^{k}} + \frac{j-(-1)^{k}}{\pi(k+2)^{k}} \right) k \neq 12}{k = 2}$$

$$-\frac{1}{3} + \frac{j}{16\pi}$$

$$\frac{d_{2} = -\frac{1}{3} - \frac{j}{16\pi}}{d_{3} = \frac{2j}{16} - \frac{13}{35\pi}}$$
(a) Using time transformations  $q_{1} = q_{1} = q_{2} = \frac{2j}{16\pi}$ 

$$w_{0} = \frac{2}{\pi} \qquad d_{1} = \frac{1}{3} \qquad w_{1} - aw_{0} = \frac{\pi}{4}$$
Using amplitude transformations  $k_{1} = \begin{cases} k' + a' & a_{0} & k = 0 \\ a_{1} & k' & k' = 0 \end{cases}$ 

$$w_{2} = u_{1} = \frac{1}{3} \qquad u'_{1} - aw_{0} = \frac{\pi}{4}$$

$$w_{3} = u_{1} = \frac{1}{3} \qquad u'_{1} - aw_{0} = \frac{\pi}{4}$$

$$w_{1} = u_{1} = \frac{1}{3} \qquad u'_{2} = \frac{1}{3} \qquad u'_{3} + \frac{1}{3} \qquad u'_{4} = \frac{1}{3} \qquad u'_{5} = \frac{1}{$$

[0. (a) 
$$x_{t}y = k_{i}(x_{t}) + k_{i}(x_{t}) + y_{i}(x_{t})$$
 $(x_{t}) = k_{i}(x_{t}) + k_{i}(x_{t}) + y_{i}(x_{t})$ 
 $k = |x_{t}| + k_{i}(x_{t})$ 
 $k = |x_{t}| + k_{i}($ 

(h) 
$$H_{ij}(x) = \frac{1}{-4i_{1j}x+1}$$
 $N = 4$ 
 $H_{ij}(x) = \frac{1}{4i_{2j}x+1}$ 
 $N = 4$ 
 $H_{ij}(x) = \frac{1}{4i_{2j}x+1}$ 
 $H_{ij$ 

Wg = 3 Ws = 9, Wg = 15 Total pine (= - (31)) power in fundamental Pt = (7)2 THO = (1- 1/1 × 600% = 8.988 × 10-40% = 0.090% Two for this amplitier THD=0.09% The fundamental period of gan is 10 15. (1) The graph see the attached page (b) ax = to 2 xinje-jink = to ( (+ e -jfk + e -jfk + e -jfk + e -jfk + e -jfk) the Fourier coefficient of y to ] denoted as by is 9 = 10 ( e-jit ok -e-jk ji8) = 70(1- e ight) Thus the Fourier series coefficients of g and is (bx=10(1-e-i=t)) (1) gan = 7[n] - 7 cm-1] & bk = (1-e-jk ) ak So \ \ \ \approx = \frac{1 - e^{-j \frac{1}{2} x k}}{10 \left(1 - e^{-j \frac{2}{2} k}\right)}. So cy= = 2 ay = 5 The FS coefficients of X(z) is  $a_1 = \frac{1}{2}$ Cb)  $w_0 = 42$   $y(z) = \frac{e^{j\varphi_2 t} - e^{-j\psi_2 t}}{2J} = \sum_{k=-\infty}^{\infty} \frac{b_k}{k} e^{j\varphi_2}$ The FS weficient, of you is

(c) The FS coefficients of zety is 
$$Q_{k}$$
, then
$$Q_{k} = \sum_{l=0}^{\infty} a_{l}l_{k-l}$$

$$Z(t) = X(t) \quad y(t) = Cos((\varphi_{x}t)) \sin(\varphi_{x}t) = \frac{1}{2} \sin(\delta xt)$$

$$Z(t) = \frac{e^{-i2(\varphi_{x}t)t} - e^{-i2(\varphi_{x}t)t}}{4^{-}} \quad cos = 4\pi$$

$$-\frac{2}{k^{-}} \quad c_{k} = \frac{1}{2} \sin(\delta xt)$$

$$Se \quad the \ Fs \quad coefficient \quad of \quad z(t) \quad is \quad c_{k} = \frac{1}{2} \sin(\delta xt)$$

$$This \quad the \quad Same as the result with that ef part (e).$$

## VE216 Introduction to Signals and Systems

## HOMEWORK 3 ATTACHED PAGES April 7, 2020

## Yihua Liu 518021910998

6. The Fourier series representation of 4(a) is



Figure 1. 6-1.

The Fourier series representation of 4(b) is



Figure 2. 6-2.

1

The Fourier series representation of 4(c) is



Figure 3. 6-3.

8. (a) The graph of  $S_N(t)$  with N=5 for  $t\in[0.5,4.5]$  is



Figure 4. 8(a)-1.

The graph of  $S_N(t)$  with N=10 for  $t\in[0.5,4.5]$  is



Figure 5. 8(a)-2.

The graph of  $S_N(t)$  with N=15 for  $t\in[0.5,4.5]$  is



Figure 6. 8(a)-3.

The graph of  $S_N(t)$  with N=19 for  $t\in[0.5,4.5]$  is



Figure 7. 8(a)-4.

From the graphs I see that the general shape and discontinuities of  $S_N(t)$  does not change obviously as N increases, but the sawteeth of the curve increases as N increases proportionally. In general, the shape of the graph becomes closer to x(t) as N increases.

(b) Use Matlab to calculate  $S_N(0)$  and  $S_N(1)$  for the N values in (a).

When N = 5,  $S_N(0) = 0.4822$ ,  $S_N(1) = 0.1891$ .

When N = 10,  $S_N(0) = 0.4902$ ,  $S_N(1) = 0.1879$ .

When N = 15,  $S_N(0) = 0.4935$ ,  $S_N(1) = 0.1861$ .

When N = 19,  $S_N(0) = 0.4949$ ,  $S_N(1) = 0.1857$ .

Hence, we can make an educated guess that  $S_N(0) \to \frac{1}{2}$  and  $S_N(1) \to \frac{1}{2e}$  when  $N \to \infty$ . 10.

(d) The graph of the magnitude of the system's frequency response  $|H(j\omega)|$  as a function of  $\omega$  is



Figure 8. 10(d).

(e) The MATLAB code is shown below:

```
\begin{array}{ll} 1 & a=[1]; \\ 2 & b=[1\ 1\ 1]; \\ 3 & w=linspace(-5,5,10000); \\ 4 & h=freqs(a,b,w); \\ 5 & plot(w,abs(h)); \end{array}
```

The graph is



Figure 9. 10(e).

(f) The power density spectrum of x(t) is



Figure 10. 10(f).

(h) The power density spectrum of y(t) is



Figure 11. 10(h).

12.(a) The graph of the fi lter's magnitude response is



Figure 12. 12(a).

(b) The graph of the generated signal is



Figure 13. 12(b).

## (c) The graph of the output signal is



Figure 14. 12(c).