Számítógépes Grafika

Hajder Levente és Baráth Dániel hajder@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2019/2020. I. félév

- Modellezés feladata
- Moordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Modellezés feladata

- Geometriai modellezés feladata
 - A világunkat modellezni kell a térben.
 - Valamilyen koordinátarendszer szükséges
 - Mozgó (dinamikus) tárgyak esetén a térbeli mozgást le kell írni.
 - Mozognak
 - Pörögnek-forognak
 - Kicsinyednek-nagyobbodnak
- Vetítés feladata
 - A háromdimenziós világot levetíteni a kétdimenziósképsíkra.
 - Kameraszerű képet adni.

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- 3 Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Descartes-koordinátarendszer

- Descartes, 1637.: Értekezés a módszerről (Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences)
- Legtöbbször ezzel találkozunk, ez a legegyszerűbb és legelterjettebb megadási mód
- A dimenziónak megfelelő számú koordinátával írjuk le a pontokat

Descartes-koordinátarendszer

- Az euklidészi sík minden véges pontjához egyértelműen hozzárendel egy rendezett, valós (x, y) számpárt, ahol az x az abszcissza és y az ordináta
- Ehhez válasszunk két, egymásra merőleges, irányított egyenest, az OX (x) és OY (y) koordinátatengelyeket, amelyek egymást az O pontban, az origóban metszik. Ekkor a P pont x és y koordinátái a P pont OX és OY irányított egyenesektől vett előjeles távolsága
- Három dimenzióban hasonló: 3 koordináta, 3 egymásra merőleges koordináta tengely

Geometriai értelmezés

 Szemléletesebben: A P(a,b,c) az a pont, amit az origóból az x tengely mentén a egységet lépve, majd az y tengely mentén b egységet lépve, végül a z tengely mentén c egységet lépve kapunk

Geometriai értelmezés

 Vagyis a fenti értelmezés szerint, felhasználva az egységnyi hosszú, koordinátatengelyek irányába mutató i, j, k bázisvektorokat, az [a, b, c]^T koordináták a következő pontot azonosítják:

$$P = O + a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
 $= O + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Descartes-koordinátarendszer Polárkoordináták Baricentrikus koordináták

Homogén koordináta

Sodrásirány - jobbsodrású rendszer

Sodrásirány - balsodrású rendszer

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Síkbeli polákoordináta-rendszer

- Egy O kezdőpontból (referenciapontból) induló félegyenes (polártengely) határozza meg.
- Egy P pont helyét két adat azonosítja: (r, ϕ)
 - $r \ge 0$: a P pont O-tól vett távolsága
 - $\phi \in [0,2\pi)$: az O-n és P-n átmenő egyenes polártengellyel bezárt szöge
- ullet r=0 esetén a felírás nem egyértelmű

Konverziók

Polár → Descartes:

$$x = r \cos \phi, \ y = r \sin \phi$$

■ Descartes → polár:

$$\phi = \begin{cases} \arctan \frac{y}{x}, & x > 0 \land y \ge 0 \\ \arctan \frac{y}{x} + 2\pi, & x > 0 \land y < 0 \\ \arctan \frac{y}{x} + \pi, & x < 0 \end{cases}$$

$$\frac{\pi}{2}, & x = 0 \land y > 0$$

$$\frac{3\pi}{2}, & x = 0 \land y < 0$$

$$???, & x = 0 \land y = 0$$

• arctan() nem egyértelmű $(\pi - periodikus)$ ezért programozásban az $\phi = atan2(y,x)$ függvényt használjuk

Gömbi koordináták

Gömbi koordináták

- Térbeli polár-koordináták; egy alapsík (és annak PKR-e) illetve egy arra merőleges "Z tengely"
- Egy térbeli P pontot három adat reprezentál: (r, ϕ, θ)
 - r, φ: a P pont alapsíkra vett vetületének polárkoordinátái
 - $\theta \in [0,\pi]$: az O és P-t összekötő egyenes Z tengellyel bezárt szöge

Konverziók

- A síkban látott esethez hasonló feltételek mellett:
- Gömbi \rightarrow Descartes:

$$x = r \cos \phi \sin \theta$$
, $y = r \sin \phi \sin \theta$, $z = r \cos \theta$

• Descartes \rightarrow gömbi:

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\phi = atan2(y, x)$$

$$\theta = \arccos \frac{z}{r}, \qquad r \neq 0$$

Az x=y=z=0 eset itt is többértelmű!

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- 3 Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Baricentrikus koordináták

- August Ferdinand Möbius [1827]
- Motiváció: sokszor egy konkrét, véges része érdekes csak számunkra a térnek. Ennek a Descartes-félénél egy "kiegyensúlyozottabb" reprezentációját keressük.
- A baricentrikus koordináták nem függnek egy pont önkényes origónak választásától

Tömegközéppont

- Mechanikai analógia: pontrendszer tömegközéppontja
- Legyen n+1 pontunk és helyezzünk minden P_i pontba $m_i \in \mathbb{R}$ súlyt. Ekkor a tömegközéppont:

$$M = \frac{1}{\sum_{i=0}^{n} m_i} \sum_{i=0}^{n} m_i P_i$$

Baricentrikus koordináták

• Ha \mathbb{E}^n -ben az $A_0,...,A_n$ pontok kifeszítik a teret (nem egy n-1 dimenziós altérbe esnek), akkor a tér bármely X pontjához találhatóak $\lambda_0,...,\lambda_n$ valós számok úgy, hogy

$$X = \sum_{i=0}^{n} \lambda_i A_i,$$

ahol a λ_i baricentrikus koordinátákra teljesül, hogy

$$\sum_{i=0}^{n} \lambda_i = 1.$$

Megjegyzés

- Ha ∀i-re λ_i ≥ 0, akkor konvex kombinációról beszélünk és a pontok konvex burkába esnek a kombináció eredményei.
- Az affin transzformációk nem változtatják meg a baricentrikus koordinátákat
- Homogén jellegű koordináták: egy h ≠ 0 számmal megszorozva a koordinátákat ugyanazt a pontot kapjuk.

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Homogén koordináták

- Az euklideszi tér minden pontjához hozzárendelünk egy számnégyest, homogén koordinátákat: $P_{hom} = [x, y, z, w]^T$
- Átváltás $P_{real} = [x', y', z']$ Descartes-i és $P_{hom} = [x, y, z, w]^T$ homogén koordinátákkal megadott pontok között:
 - "Odafelé:" x' = x/w, y' = y/w, és z' = z/w
 - "Visszafelé:" x = hx', y = hy', z = hz', és w = h, ahol $h \in \Re$
- A megfeleltetés többértelmű, hiszen h értéke tetszőleges lehet (zérust kivéve): egy valós koordinátához végtelen sok homogén koordinátás alak tartozik.

Affin transzformációk

- Lineáris transzformációk 4 × 4-es mátrixszal leírhatóak
 - A transzformációkat P = [x, y, z, 1] alakú pontokon végezzük
 - P' = TP alakban kapjuk az eredményt
- Transformációk típusai:
 - Egybevágósági transzformációk
 - Eltolás (Telt)
 - Elforgatás (T_{forg})
 - Tükrözés (T_{tukor})
 - Hasonlósági transzformációk
 - Skálázás (T_s)
 - Egyéb transzformációk
 - Nyírás (T_{ny})
 - A transzformációk egymás után elvégezhetőek, ebben az esetben (jobbról balra haladva) szorzatot kell felírni. Például:

$$T = T_{forg1}T_sT_{forg2}T_{elt1}T_{ny}T_{s2}$$

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Eltolás

ullet $d=[d_{\mathrm{x}},d_{\mathrm{y}},d_{\mathrm{z}}]$ vektorral való eltolást valósít meg

$$ullet$$
 Alakja $T_{elt} = egin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• Az eredmény vektor $P'=T_{elt}P$ hossza megegyezik az eredeti P vektor hosszával $\to T_{elt}$ egybevágósági transzformáció

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Elforgatás

- X, Y, Z tengely körüli elforgatás szögét jelöljük rendre α -val, β -val és γ -val.
- A forgatási mátrixok alakjai:

$$T_{lpha} = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & \cos(lpha) & -\sin(lpha) & 0 \ 0 & \sin(lpha) & \cos(lpha) & 0 \ 0 & 0 & 0 & 1 \end{array}
ight],$$
 $T_{eta} = \left[egin{array}{cccc} \cos(eta) & 0 & \sin(eta) & 0 \ 0 & 1 & 0 & 0 \ -\sin(eta) & 0 & \cos(eta) & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$ és

Elforgatás

Továbbá:

$$T_{\gamma} = \left[egin{array}{cccc} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \ \sin(\gamma) & \cos(\gamma) & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

- A teljes 3D-s forgatás a három forgatás szorzataként adható meg: $T_{forg} = T_{\alpha}T_{\beta}T_{\gamma}$
- Az eredmény vektor $P' = T_{forg}P$ hossza megegyezik az eredeti P vektor hosszával $\to T_{forg}$ egybevágósági transzformáció

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Tükrözés

- ullet $d=[d_{\scriptscriptstyle X},d_{\scriptscriptstyle Y},d_{\scriptscriptstyle Z}]$ vektorral való eltolást valósít meg
- Alakja (tükrözés az X tengelyre) $T_{tukor} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- Az eredmény vektor $P' = T_{tukor}P$ hossza megegyezik az eredeti P vektor hosszával, ezért T_{tukor} egybevágósági transzformáció
- A tükrözés a többi tengely esetében is lehetséges, de az X tengelyre tükrözéssel + forgatással tetszőleges forgatás + tükrözés helyettesíthető.

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- 3 Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tijkrözés
 - Skálázás
 - Nyírás

Skálázás

A skálázás a P vektor hosszát nyújtja meg s-szeresére

• Alakja
$$T_s = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 A transzformáció a méretet megváltoztatja, de a szögeket nem \rightarrow hasonlósági transzformáció

Skálázás

• Koordinátánkánt lehet saját skálát is alkalmazni:

$$\bullet \ \ T_s = \left[\begin{array}{cccc} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

A hasonlósági tulajdonságot ezzel elveszítjük

- Modellezés feladata
- 2 Koordinátarendszerek
 - Descartes-koordinátarendszer
 - Polárkoordináták
 - Baricentrikus koordináták
 - Homogén koordináta
- Affin transzformációk
 - Eltolás
 - Elforgatás
 - Tükrözés
 - Skálázás
 - Nyírás

Nyírás

• A nyírás a tárgy szögeit is megváltoztatja

$$ullet$$
 Alakja $T_{ny} = \left[egin{array}{cccc} 1 & a & b & 0 \ 0 & 1 & c & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$