Q-1 SUDOKU

									ے			
		D	1	2	3	4	5	6	π	8		
	0	5	3	4	2	7	6	7	9	8		
<u>ን</u>	١	6	2	#	1	9	5	3	(A)	0		
	2		9	8					6			
	3	8		2	-	6				3		
	4	4	-		8	0	3			1		
	5	7		3		2				6		
	٤		6			•		2	8			
	7				4		9		-	5		
	8			١		8			7	9		

> max[a][a], fartially filled, fill this Sudokn.

! In a sow, number can't repeat.

2: In a col, number can't repeat.

8: In a 3×3 box, number can't repeat.

Start inden of 3×3 box

$$4,4 \rightarrow 3,3$$
 Nearest multiple of 3
 $5,2 \rightarrow 3,0$ $= i$.
 $2,7 \rightarrow 0,6$ $x \rightarrow 2-2.1.3$
 $7,7 \rightarrow 6,6$ $C \rightarrow C-C.1.3$
 $4,1 \rightarrow 3,0$

(0,0)
$$\rightarrow$$
 (0,1) \rightarrow (0,2) \rightarrow (0,3) \rightarrow (0,4) \rightarrow (0,5) \rightarrow (0,6)

(0,7) \rightarrow (0,8) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (1,2) \rightarrow (1,3)

(1,4) \rightarrow (1,5) \rightarrow (1,6) \rightarrow (1,4) \rightarrow (1,8)

(1,0) \rightarrow (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,5)

(1,6) \rightarrow (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,5)

 \rightarrow (1,6) \rightarrow (1,1) \rightarrow (1,8)

 \rightarrow Backtracking

 \rightarrow Remain \rightarrow Backtracking

 \rightarrow Remain \rightarrow Backtracking

matili, (n)

•	D	1	2	3	4	5	6	ਸ	8
0	0	7	2	3	4	2	6	7	8
١	9	10	U	12	13	14	12	16	14
2	B	19	20	อา	22	23	24	25	26
3	27	28	24	30	31	32	33	34	35
4	86	34	38	39	40	41	42	43	44
5	45	46	44	48	49	20	57	52	\mathfrak{Q}
۵	24	22	26	5 7	28	ঘ	٦،د		
									
8									රිර්

$$n = 24$$
 $c = 24/9$
 $c = 24/9$
 $c = 24/9$

$$N = 50 \Rightarrow X = 50|9 = 5$$

 $C = 50/.9 = 5$

```
Void
      Sudo Rusolver (matili), x) {
    if (n == 81) {
         Print (mat 1)(1)
         return;
   ス= x/9, C= n/9;
    if [matrije] !=0) {
          11 filed cell.
          Sudoku Solver (mat, x+1);
    else ( 11 matia je j = 0 => Blank Cell
        for ( i= L; i(=q; i++) {
             if (is Valid (mat, r,c,i)) {
                   matfajlej = i;
                  > Sudoku Solver (mat, n+1);
                    matfajlej = 0
               3
```

```
000
    is Valid (matryr, r, c, d) {
      11 this fun checks if it is possible to put
      Il i at inden or, c.
      11 80 W & COI
       for(j=0; j(9;j++) {
             if (mat[r][j] ==d) return false;
            if (mat[j][c] = =d) return false;
        11 Start index of 3×3 Box
        ルニ ナーシ1.3
        Y= C-C1.3
        for ( i = x; i(x+3; i++){
              for ( )= 4; j < 4+3; j++) {
                    if (matliglig) == d) {
                         return false;
                    3
         return true;
<del>مى</del>||
         TC: 9 \times 9 \times 9 \times 9 - \cdots - 9 \Rightarrow 9^{81}
Upper Bound
SC: 9 \times 9
```

Q. N- green. Given NXN matrix, frint all valid possibilities of placing Nqueens in the given matrix. 今 0 2 3


```
pool
         Check (mat[][], i, j) - D(N)
        for ( r=0; 2<1; 2++)(
               (\alpha)0 \qquad ( \bot = = [i](x) tom) \ddagger i
                     veturn false;
        \frac{3}{3}
3 = 1 - 1, C = j + 1
         while (27=0 48 CKN) {
               if(mat[x](c) == +)
                                        D(N)
                    veturn false;
                C++
         x= i-1, c=j-1
         while ( 27=0 48 c7=0) {
               if(mat(1)(c) == 1)
                                         O(N)
                    Veturn false;
                C - -
         return true;
two TC of N-Queens.
```


Q.3 Rat in a Maze

 $N \times W$

$$\longleftrightarrow$$

→ One cell can't be visited more than once.

$$x, y-1 \longleftrightarrow x, y \longrightarrow x, y+1$$

$$x+1, y$$

$$(0,0)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1$$

list (pair (int, int) >

```
Void
       maze (mat 1717, N, M, i, j, list (peir (int ) ) Reta)
1
       17(10 11 17N 11 j(0 11 j7=M) {
       3

if ( mat [i][j] = = \underline{\perp} | | mat [i][j] = = 2 )
        if(i== N-1 && j== M-1){
             frint ( fath)
              return;
       \frac{\delta}{i} [mæt[i][j] == 0) {
              mat(i)(j) = (1);
              path. add (di,j3);
               maze (met, N, M, i-1, j, path);
               maze (mat, N, M, 1, j-1, Path)
               maze (mat, N, M, 1+1, j, Path)
               maze (mat, N, M, i, j+1, Path)
                mat(i)(j) = 0;
                Rath remove ();
              TC: O(N×M)
= 62 ach cell is Visited exactly
                       ouce.
                SC: O(NM)
```