

정 세 윤 교수

오늘의 목표

- 실수의 분류 체계를 이해한다.
- '닫혀있음'과 항등원, 역원을 이해한다.
- 약수/배수, 공약수/공배수를 이해한다.
- 복소수의 정의와 성질, 연산을 이해한다.

목차

- 1. 실수와 사칙연산
- 2. 대소관계와 절댓값
- 3. 정수의 약수와 배수
- 4. 복소수의 정의와 성질

실수와 사칙연산

1. 실수의 구성 (1/3)

- ◆실수(연속한 수직선에 존재)의 분류 체계
 - 자연수(natural number, N): 1, 2, 3, ··· 물건을 셀 때, 순서를 정할 때 사용
 - □ 정수(integer, ℤ): ···, -2, -1, 0, 1, 2, ··· 양의 정수(자연수), 0, 음의 정수
 - □ 유리수(rational number, \mathbb{Q}): $-\frac{1}{2}$, $\frac{0}{5}$, $\frac{4}{3}$, 0. $\dot{3}$, \cdots 분수꼴 $\frac{a}{b}$ 표현이 가능한 수 $(a,b(\neq 0))$ 는 정수)
 - □ 무리수(irrational number, I): π , $\sqrt{2}$, $-\sqrt{3}$, e, ··· 분수꼴 a/b 표현이 불가능한 수 $(a,b(\neq 0))$ 는 정수)

1. 실수의 구성 (2/3)

실수의 분류 체계 벤 다이어그램

1. 실수의 구성 (3/3)

- ◆실수의 특성
 - □ 유리수의 조밀성(density) 임의의 두 실수 사이에는 무수히 많은 유리수가 존재
 - □ 무리수의 조밀성(density) 임의의 두 실수 사이에는 무수히 많은 무리수가 존재
 - □ 실수의 연속성(continuity)
 - 실수 집합 ℝ = 유리수 집합 ℚ ∪ 무리수 집합 Ⅱ
 - \blacksquare 유리수와 무리수는 서로소 $\mathbb{Q} \cap \mathbb{I} = \phi$
 - \blacksquare \mathbb{Q} 와 \mathbb{I} 모두 무한집합이지만, $n(\mathbb{Q}^{-}) < n(\mathbb{I}^{-})$

2. 실수와 '닫혀있다' (1/6)

- ◆ 사칙연산과 닫혀있다
 - □ 사칙연산: 덧셈, 뺄셈, 곱셈, 나눗셈
 - □ '집합'이 '연산'에 대하여 닫혀있다(closed)
 - □ 자연수 집합 N = {1, 2, 3, 4, ··· }에 대하여
 - 덧셈: $a \in \mathbb{N}$, $b \in \mathbb{N}$ 이면 $a + b \in \mathbb{N}$ 이므로 '자연수 집합'은 '덫셈'에 대하여 닫혀있다
 - 뺄셈: 1 ∈ N, 2 ∈ N 이면 1 − 2 = −1 ∉ N (반례)
 '자연수 집합'은 '뺄셈'에 대하여 닫혀있지 않는다(open)
 - 곱셈: 닫혀 있다 / 나눗셈: 닫혀있지 않다

2. 실수와 '닫혀있다' (2/6)

◆ 사칙연산과 닫혀있다 (계속)

	자연수 №	정수 🏻	유리수 ℚ	무리수 🏽	실수 ℝ
덧셈	0	0	0	X	0
뺄셈	X	0	0	X	0
곱셈	0	0	0	X	0
나눗셈	X	X	0	X	0

한국생숙두신대학교 프라임칼리지

2. 실수와 '닫혀있다' (3/6)

- ◆ 연산의 기본법칙
 - □ 실수 집합 \mathbb{R} 은 사칙연산 모두에 대하여 닫혀있으므로 임의의 실수 a, b, c에 대하여 다음이 성립

□ 교환법칙: a + b = b + a결합법칙: (a + b) + c = a + (b + c)분배법칙: $a \times (b + c) = a \times b + a \times c$

2. 실수와 '닫혀있다' (4/6)

- ◆ 덧셈에 대한 항등원과 역원
 - □ 덧셈에 대한 항등원(identity element) 임의의 $a \in R$ 에 대하여, a + e = e + a = a를 만족시키는 $e = 0 \in R$ 이므로, \mathbb{R} 의 덫셈에 대한 항등원은 0이다.
 - □ 덧셈에 대한 역원(inverse element) 어떤 $a \in R$ 에 대하여, a + x = x + a = 0(항등원) 만족시키는 $x = -a \in \mathbb{R}$ 이므로, \mathbb{R} 의 덧셈에 대한 a의 역원은 -a 이다.

2. 실수와 '닫혀있다' (5/6)

- ◆곱셈에 대한 항등원과 역원
 - □ 곱셈에 대한 항등원 임의의 $a \in R$ 에 대하여, $a \times e = e \times a = a$ 를 만족시키는 $e = 1 \in R$ 이므로, \mathbb{R} 의 곱셈에 대한 항등원은 1이다.
 - □ 곱셈에 대한 역원 어떤 $a(\neq 0) \in R$ 에 대하여, $a \times x = x \times a = 1$ (항등원) 만족시키는 $x = \frac{1}{a} \in \mathbb{R}$ 이므로, \mathbb{R} 의 곱셈에 대한 $a(\neq 0)$ 의 역원은 $\frac{1}{a}$ 이다.

2. 실수와 '닫혀있다' (6/6)

- ◆ 자연수 집합의 덧셈·곱셈에 대한 항등원과 역원
 - 덧셈에 대한 항등원 (없음, ∵ 0 ∉ ℕ)덧셈에 대한 역원 (없음, ∵ 항등원 없음)
 - □ 곱셈에 대한 항등원 $(1 \in \mathbb{N})$ 곱셈에 대한 역원 $(\text{없음, }^1/_a \notin \mathbb{N})$

- ◆ 일반적인 연산에 대한 항등원과 역원
 - □ 주어진 집합이 그 연산에 대해 닫혀있고 항등원과 역원이 그 집합의 원소인 경우

2 대소관계와 절댓값

1. 실수의 대소관계 (1/3)

- ◆실수의 대소관계에 대한 기본 성질
 - 미임의의 실수 a에 대하여, a > 0, a = 0, a < 0 중 어느 한 경우만 성립

□ 수직선에서 표현

1. 실수의 대소관계 (2/3)

- ◆실수의 대소관계에 대한 기본 정리
 - 미임의의 실수 a에 대하여, a > 0, a = 0, a < 0 중 어느 한 경우만 성립
 - $\square \ a > 0, \ b > 0$ 이면 $a + b > 0, \ ab > 0$
 - $\square a > b, b > c$ 이면 a > c
 - a > b 이면, 임의의 실수 c에 대하여 $a \pm c > b \pm c$
 - a > b, c > 0 이면, ac > bca > b, c < 0 이면, ac < bc

1. 실수의 대소관계 (3/3)

- ◆실수의 대소관계에 대한 기본 정리 활용
 - □ 두 실수 a, b의 대소관계를 비교하면 $a > b \Leftrightarrow a b > 0$, $a = b \Leftrightarrow a b = 0$, $a < b \Leftrightarrow a b < 0$ 중 어느 한 경우만 성립
 - a > 0, b > 0 인 경우, a/b > 1, a/b = 1, a/b < 1 중 어느 한 경우만 성립

2. 실수의 절댓값 (1/3)

- ◆ 절댓값(absolute value)의 정의
 - \square 수직선 위에서 실수 a와 원점 사이의 거리, |a|
 - □ 수직선에서 표현

2. 실수의 절댓값 (2/3)

실수와 절댓값의 성질

$$|a|^2 = a^2, |ab| = |a||b|, \left|\frac{a}{b}\right| = \frac{|a|}{|b|}(b \neq 0)$$

 \square 임의의 실수 a에 대하여, $a^2 \geq 0$ 이다.

2. 실수의 절댓값 (3/3)

절댓값의 정의 예제

$$a = 3$$
일 때, $|a-1| + |a-2| + |a-3| + |a-4| + |a-5| = ?$

$$\Box$$
 실수 a 에 대하여, $A = |a + |a| - |a - |a| = ?$

정수의 약수와 배수

1. 정수의 나눗셈과 나머지 (1/3)

- ◆ 정수의 나눗셈
 - \square 정수 a를 자연수 n으로 나눈 몫이 q, 나머지가 r일 때, a = nq + r, $a \mod n = r$ (단, $r \in \{0, 1, \dots n 1\}$)

- □ 다음 정수를 7로 나누고 몫과 나머지는 구하자.
 - **-15** =
 - **-11** =
 - **■** -7 =
 - 9 =

1. 정수의 나눗셈과 나머지 (2/3)

- ◆정수의 분류
 - □ 모든 정수는 자연수 k로 나눈 나머지에 의하여,
 다음과 같이 분류된다.
 kn, kn + 1, kn + 2, ···, kn + (k − 1)

 \square 임의의 정수 $a = a \mod 2$ 으로 분류하면?

 \square 임의의 정수 $a = a \mod 3$ 으로 분류하면?

1. 정수의 나눗셈과 나머지 (3/3)

정수의 분류 예제

 \square 정수 a에 대하여, a^2 을 3으로 나눈 나머지는 0 또는 1이다.

2. 소수와 소인수분해 (1/3)

- ◆소수(prime number)의 정의
 - □ 2, 3, 5, 7, 11, 13, ··· 와 같이 1보다 큰 자연수 중에서1과 자신 이외에는 양의 약수를 갖지 않는 수

□ 4, 6, 8, 9, 10, 12, ··· 와 같이 1보다 큰 자연수 중에서 소수가 아닌 수를 합성수(composite number)

□ 1은 소수도 아니고 합성수도 아니다.

2. 소수와 소인수분해 (2/3)

- ◆소인수분해
 - □ 임의의 합성수는 소수의 곱으로 유일하게 표현 가능
 - □ 자연수를 소수인 인수(약수)의 곱으로 표현하는 것

$$\square 120 = 2^3 \times 3 \times 5$$
, $96 = 2^5 \times 3$

2. 소수와 소인수분해 (3/3)

약수의 개수와 총합

- $lacksymbol{\square}$ 소인수 분해된 자연수 $N=a^{lpha}b^{eta}c^{\gamma}$ 에 대하여,
- □ (양의 약수의 개수) = $(\alpha + 1)(\beta + 1)(\gamma + 1)$, (양의 약수의 총합) = $(1 + a + \dots + a^{\alpha})(1 + b + \dots + b^{\beta})(1 + c + \dots + c^{\gamma})$

 $\Box 12 = 2^2 \times 3$

3. 공약수와 공배수 (1/3)

- ◆ 공약수와 최대공약수
 - □ 두 개 이상의 정수의 공통인 약수(인수)를 공약수, 공약수 중에서 가장 큰 값은 최대공약수(GCD)

□ 18과 24의 공약수와 최대공약수 공약수: -6, -3, -2, -1, 1, 2, 3, 6; 최대공약수: 6

□ 공약수는 최대공약수의 약수이다. *서로소: 두 정수의 공약수가 1밖에 없는 경우

3. 공약수와 공배수 (2/3)

- ◆ 공배수와 최소공배수
 - □ 두 개 이상의 정수의 공통인 배수를 공배수, 공배수 중에서 가장 작은 양수 값은 최소공배수(LCM)

□ 18과 24의 공배수와 최소공배수 공배수: ···, -144, -72, 0, 72, 144, ···; 최소공배수: 72

□ 공배수는 최소공배수의 배수이다.

3. 공약수와 공배수 (3/3)

- 최대공약수와 최소공배수의 관계
- \square 두 자연수 A, B의 최대공약수 G, 최소공배수 L일 때,
- \Box A=aG, B=bG (단, a, b는 서로소) L=abG=Ab=aB, LG=AB

 $\Box G = 6, L = 36인 두 자연수의 합과 곱은?$

4. 정수의 p진법 표현 (1/3)

- ◆ p진법 $(a_i \in \{0, 1, \dots, p-1\})$
 - $m{p}$ 진법으로 표현된 양의 정수 $N=a_na_{n-1}a_{n-2}\cdots a_1a_0$ $N=a_np^n+a_{n-1}p^{n-1}+\cdots+a_1p^1+a_0p^0$

 $m{p}$ 진법으로 표현된 양의 소수 M=0. $a_1a_2\cdots a_{n-1}a_n$ $M=rac{a_1}{p}+rac{a_2}{p^2}+\cdots+rac{a_{n-1}}{p^{n-1}}+rac{a_n}{p^n}$

4. 정수의 p진법 표현 (2/3)

- p진법 예제 1
- N = 15를 2진법으로 표현하면?

 $\mathbf{D} M = \frac{1}{3} = 0.3$ 을 2진법으로 표현하면?

4 복소수의 정의와 성질

1. 허수와 복소수 (1/4)

- ◆ 허수(imaginary number)의 정의
 - \square 임의의 실수 a에 대하여, $a^2 \ge 0$
 - $x^2 = -1$ 을 만족하는 실수는 존재하지 않음

 $x^2 = -1$ 을 만족하는 수를 i로 나타내고 허수단위로 정의, 즉 $i^2 = -1$

1. 허수와 복소수 (2/4)

- ◆복소수(complex number)의 정의
 - \square 실수 a,b에 대하여, a+bi 꼴의 수를 복소수로 정의
 - □ a를 실수부, b를 허수부로 정의

하수 $(b \neq 0)$, 순허수 $(a = 0, b \neq 0)$ 2 + 2i, 2 + 0i, 0 + 3i, 0 + 0i

□ (복소수 집합) = (실수 집합) ∪ (허수 집합)

1. 허수와 복소수 (3/4)

- ◆ 켤레복소수(complex conjugate)의 정의
 - \Box 복소수 z = a + bi에 대하여, $\overline{z} = a bi$ 를 켤레복소수

$$\overline{z} = z, z + \overline{z} = 2a, z - \overline{z} = 2bi$$

$$\Box i-2, \quad 4-3i, \quad -5i,$$

1. 허수와 복소수 (4/4)

- ◆복소수(complex number)의 상등
 - 실수 a, b, c, d에 대하여,

$$a + bi = c + di \Leftrightarrow a = c, b = d$$

 \square 실수 a,b에 대하여, $a+bi=0 \Leftrightarrow a=0,b=0$

- **□** *a*, *b*가 실수가 아니라면?
- □ 무리수의 상등?

2. 복소수의 연산 (1/4)

◆복소수의 사칙연산

□ 덧셈·뺄셈
$$(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$$

$$\square$$
 곱셈 $(a+bi) \times (c+di) = (ac-bd) + (ad+bc)i$

□ 나눗셈
$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

- □ 사칙연산에 대하여 닫혀있으며, 항등원과 역원이 존재
- □ 교환법칙, 결합법칙, 분배법칙 성립

2. 복소수의 연산 (2/4)

◆ 허수단위의 거듭제곱

$$i = \sqrt{-1}$$
, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, ...

$$i^{4n+1} = i, i^{4n+2} = -1, i^{4n+3} = -i, i^{4n} = 1, \cdots$$

$$\Box i^{16}$$

$$i^{101}$$

$$i^{98}$$

$$i^9$$

2. 복소수의 연산 (3/4)

◆ 허수단위의 연산

- $\mathbf{z}^2 = -2$ 이면, $x = \pm \sqrt{-2} = \pm \sqrt{2}i$
- \square 두 실수 a, b에 대하여 다음 성질이 성립

$$\mathbf{a} > \mathbf{0}, \, \mathbf{b} > \mathbf{0} : \sqrt{a}\sqrt{b} = \sqrt{ab}, \, \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$a > 0$$
, $b < 0$: $\sqrt{a}\sqrt{b} = \sqrt{ab}$, $\frac{\sqrt{a}}{\sqrt{b}} = -\sqrt{\frac{a}{b}}$

$$\mathbf{a} < \mathbf{0}, \ b > \mathbf{0}: \sqrt{a}\sqrt{b} = \sqrt{ab}, \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$\mathbf{a} < \mathbf{0}, \, \mathbf{b} < \mathbf{0}: \sqrt{a}\sqrt{b} = -\sqrt{ab}, \, \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

2. 복소수의 연산 (4/4)

복소수 연산 예제

$$\mathbf{x} = \mathbf{1} + 2i$$
일 때, $x^3 - 2x^2 + 3x + 2$ 의 값은?

$$\mathbf{x} = \frac{1+\sqrt{3}i}{2}$$
, $y = \frac{1-\sqrt{3}i}{2}$ 일 때, $\frac{y^2}{x} + \frac{x^2}{y}$ 의 값은?

정리하기

- 자연수, 정수, 유리수, 무리수로 구성된 실수
- 특정 집합이 특정 연산에 대해 '닫혀 있다'
- 나머지를 기준으로 정수의 분류와 소인수분해
- 대소비교가 가능한 실수, 제곱이 음수인 허수

강의를 마쳤습니다.

수고하셨습니다.