Properties of gases

- Ideal & real gases
- Kinetic theory of gases
- Maxwell-Boltzmann distribution
- Applications of kinetic theory

Collision Frequency, z

Volume swept-out by a single particle

$$\pi d^2 \left\langle v_{\rm rel} \right\rangle t$$

- Number of collisions for one particle = volume × number density
- Collision frequency for one particle = number of collisions in unit time

$$z = \sigma \langle v_{\rm rel} \rangle \frac{N}{V} = \sigma \langle v_{\rm rel} \rangle \frac{p}{k_B T}$$

Collision Density, Z

Collision density is the total number of collisions occurring per unit volume

$$Z = \frac{1}{2}\sigma \left\langle v_{\rm rel} \right\rangle \left(\frac{N}{V}\right)^2$$

$$z = \sigma \left\langle v_{
m rel} \right
angle rac{N}{V}$$

$$Z = \frac{1}{2}\sigma\sqrt{2}\sqrt{\frac{8k_BT}{\pi m}}\left(\frac{N}{V}\right)^2$$

Mean free path

$$\lambda = \frac{\langle v \rangle}{z}$$

Applications of kinetic theory

- Effusion
- Diffusion
- Thermal Conductivity
- Viscosity

Effusion

- Gas escapes into a vacuum through a small hole
 - No collisions occur after the particles pass through the hole.
- The rate of effusion will be proportional to the rate at which particles strike the area defining the hole
- The diameter of the hole is smaller than the mean free path in the gas
 - No collisions occur as the particles pass through the hole

Effusion

Collisions with container walls

Collision frequency with wall (per unit area, per unit time)

$$z_{\text{wall}} = \rho_N \langle V \rangle = \frac{p}{k_B T} \left(\frac{k_B T}{2\pi m} \right)^{1/2} = \frac{p}{\left(2\pi m k_B T \right)^{1/2}}$$
$$\rho_N = \frac{N}{V} = \frac{p}{k_B T}$$

Effusion

Collisions with aperture

Rate =
$$\frac{dN}{dt} = z_{\text{wall}}a = \frac{pa}{(2\pi mk_BT)^{1/2}}$$

$$\frac{dp}{dt} = \frac{d}{dt} \left(\frac{Nk_B T}{V} \right) = \frac{k_B T}{V} \frac{dN}{dt}$$

$$\frac{dp}{dt} = \frac{k_B T}{V} \left(\frac{pa}{(2\pi m k_B T)^{1/2}} \right)$$

$$\int \frac{1}{p} dp = \int \left(\frac{k_B T a}{V (2\pi m k_B T)^{1/2}} \right) dt$$

$$p = p_0 \exp -t/\tau$$
 where $\tau = \left(\frac{2\pi m}{k_B T}\right)^{1/2} \frac{V}{a}$

Effusion

Rate =
$$\frac{dN}{dt} = z_{\text{wall}}a = \frac{pa}{\left(2\pi m k_B T\right)^{1/2}}$$

$$p = p_0 \exp{-t/\tau}$$

Graham's law of effusion

• Rate of effusion of a gas is inversely proportional to the square root of the mass of its particles

Transport Properties

Property	Transported Quantity	Kinetic Theory	Units
Diffusion	Matter	$D = \frac{1}{3} \lambda \left\langle v \right\rangle$	m²s-l
Thermal Conductivity	Energy	$\kappa = \frac{1}{3} \lambda \langle v \rangle C_V [X]$	J K ⁻¹ m ⁻¹ s ⁻¹
Viscosity	Momentum	$\eta = \frac{1}{3} \rho_N m \lambda \left\langle v \right\rangle$	kg m ⁻¹ s ⁻¹

Flux

Describes the amount of matter, energy, charge... passing through a unit area per unit time

For matter flux, $\;J_z \propto \frac{d \rho_N}{dz}\;\;$ where ρ_N is the number density.

Fick's first law of diffusion

$$J_z = -D\frac{d\rho_N}{dz}$$

$$D = \frac{1}{3}\lambda \left\langle v \right\rangle$$

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$

For matter flux, $J_z \propto \frac{d \rho_N}{dz}$ where ρ_N is the number density. $D = \frac{1}{2} \lambda \left< v \right>$

$$D = \frac{1}{2} \lambda \langle v \rangle$$

Diffusion in a Gas

$$J_{\text{left}} = \frac{\langle v \rangle \, \rho_N(-\lambda)}{4} = \frac{\langle v \rangle}{4} \left(\rho_N(0) - \lambda \left(\frac{d\rho_N}{dz} \right)_0 \right) \qquad J_{\text{right}} = \frac{\langle v \rangle \, \rho_N(+\lambda)}{4} = \frac{\langle v \rangle}{4} \left(\rho_N(0) + \lambda \left(\frac{d\rho_N}{dz} \right)_0 \right)$$
$$J_z = J_{\text{left}} - J_{\text{right}} = -\frac{1}{2} \left(\frac{d\rho_N}{dz} \right)_0 \lambda \, \langle v \rangle$$

For matter flux, $J_z \propto \frac{d\rho_N}{dz}$ where ρ_N is the number density. $D = \frac{1}{2} \lambda \langle v \rangle$

Diffusion

$$J_z = -D\frac{d\rho_N}{dz}$$

$$D = \frac{1}{3}\lambda \left\langle v \right\rangle$$

Diffusion in a Gas

Thermal Conductivity in a Gas

$$J_z = -\kappa \frac{dT}{dz}$$

$$\kappa = \frac{1}{3} \lambda \langle v \rangle C_V [A]$$

$$\epsilon = \alpha k_B T$$

Previously
$$\rho_N(-\lambda) = \rho_N(0) - \lambda \left(\frac{d\rho_N}{dz}\right)_0 \qquad \rho_N(+\lambda) = \rho_N(0) + \lambda \left(\frac{d\rho_N}{dz}\right)_0$$
 Now
$$\epsilon(-\lambda) = \alpha k_B \left(T - \lambda \left(\frac{dT}{dz}\right)_0\right) \qquad \epsilon(+\lambda) = \alpha k_B \left(T + \lambda \left(\frac{dT}{dz}\right)_0\right)$$

$$z_{\text{wall}} = \frac{N}{V} \left(\frac{k_B T}{2\pi m}\right)^{1/2} = \frac{N}{V} \frac{\langle v \rangle}{4}$$

$$J_{left} = \frac{1}{4} < v > \rho_N \epsilon(-\lambda) \qquad J_{right} = \frac{1}{4} < v > \rho_N \epsilon(+\lambda)$$

$$J_z = J_{\text{left}} - J_{\text{right}} = -\frac{1}{2} \left(\frac{dT}{dz}\right)_0 \alpha k_B \rho_N \lambda \langle v \rangle$$

$$\kappa = \frac{1}{3} \lambda \langle v \rangle C_V[X]$$

Transport Properties

Property	Transported Quantity	Kinetic Theory	Units
Diffusion	Matter	$D = \frac{1}{3}\lambda \left\langle v \right\rangle$	m²s-l
Thermal Conductivity	Energy	$\kappa = \frac{1}{3} \lambda \langle v \rangle C_V [X]$	J K ⁻¹ m ⁻¹ s ⁻¹
Viscosity	Momentum	$\eta = \frac{1}{3} \rho_N m \lambda \left\langle v \right\rangle$	kg m ⁻¹ s ⁻¹

Transport Properties

Property	Transported Quantity	Kinetic Theory	Units
Diffusion	Matter	$D = \frac{1}{3}\lambda \left\langle v \right\rangle$	m²s-l
Thermal Conductivity	Energy	$\kappa = \frac{1}{3} \lambda \langle v \rangle C_V [X]$	J K ⁻¹ m ⁻¹ s ⁻¹
Viscosity	Momentum	$\eta = \frac{1}{3} \rho_N m \lambda \left\langle v \right\rangle$	kg m ⁻¹ s ⁻¹

Classical Mechanics Summary

Translation

- Newton's laws
- Equations of motion
- Linear momentum
- Frames of reference & reduced mass

Rotation

- Angular momentum
- Moments of inertia

Vibration

- Simple harmonic motion
- The wave equation

Work & Energy

- Elastic & inelastic
 Collisions
- Centre of Mass

Properties of Gases Summary

- Ideal & real gases
 - pV=nRT
 - Virial expansion
 - Compression factor
- Kinetic theory of gases
 - Derivation
 - Classical equipartition
 - Predicting Cv

- Maxwell Boltzmann
 - (Derivation)
 - Collision frequencies
 - Mean free path
- Applications
 - Effusion
 - Diffusion

