VE281

Data Structures and Algorithms

Sorting II

Review

- Simple Sorting Algorithms and Heap Sort
- Merge Sort: A Divide-and-Conquer Approach
 - Time complexity: $\Theta(n \log n)$
- Quick Sort
 - Selecting the pivot
 - In-place partitioning the array

Outline

- Quick Sort
- Comparison Sort Summary and Time Complexity
- Non-Comparison Sort
 - Counting Sort and Bucket Sort
 - Radix Sort

In-Place Partitioning the Array Time Complexity

- Once pivot is chosen, swap pivot to the beginning of the array.
- 2. Start counters i=1 and j=N-1.
- 3. Increment i until we find element A[i]>=pivot.
- 4. Decrement j until we find element A[j]<pivot.
- 5. If i<j, swap A[i] with A[j]. Go back to step 3.
- 6. Otherwise, swap the first element (pivot) with A[j].
- Scan the entire array no more than twice.
- Time complexity is $\Theta(N)$, where N is the size of the array.

Quick Sort Time Complexity

```
void quicksort(int *a, int left,
  int right) {
   int pivotat; // index of the pivot
   if(left >= right) return;
   pivotat = partition(a, left, right); Θ(N)
   quicksort(a, left, pivotat-1); T(LeftSz)
   quicksort(a, pivotat+1, right); T(RightSz)
}
```

- Let T(N) be the time needed to sort N elements.
 - T(0) = c, where c is a constant.
- Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + \Theta(N)$$

• LeftSz + RightSz = N - 1

Worst Case Time Complexity

Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + \Theta(N)$$

• Worst case happens when each time the pivot is the smallest item or the largest item.

•
$$T(N) = T(N-1) + T(0) + \Theta(N)$$

= $T(N-1) + T(0) + dN$
= $T(N-2) + 2T(0) + d(N-1) + dN$
...
= $T(0) + NT(0) + d + 2d + \cdots + d(N-1) + dN$
= $\Theta(N^2)$

Best Case Time Complexity

Recursive realtaion:

$$T(N) = T(LeftSz) + T(RightSz) + \Theta(N)$$

- Best case happens when each time the pivot divides the array into two equal-sized ones.
 - $T(N) = T((N-1)/2) + T((N-1)/2) + \Theta(N)$
 - The recursive relation is similar to that of merge sort.
 - $T(N) = \Theta(N \log N)$

Average Case Time Complexity

• Average case time complexity of quick sort can be proved to be $\Theta(N \log N)$.

Quick Sort Characteristics

- In-place?
 - In-place partitioning.
 - Worst case needs O(N) stack space.
 - Average case needs $O(\log N)$ stack space.
 - "Weekly" in-place.
- Not stable.

Summary

- Like merge sort, quick sort is a divide—and—conquer algorithm.
- Merge sort: easy division, complex combination.
- Quick sort: complex division (partition with pivot step), easy combination.
- Insertion sort is faster than quick sort for small arrays.
 - Terminate quick sort when array size is below a threshold. Do insertion sort on subarrays.

Outline

- Quick Sort
- Comparison Sort Summary and Time Complexity
- Non-Comparison Sort
 - Counting Sort and Bucket Sort
 - Radix Sort

Comparison Sorts Summary

	Worst Case Time	Average Case Time	In Place	Stable
Insertion	$O(N^2)$	$O(N^2)$ Yes		Yes
Selection	$O(N^2)$	$O(N^2)$ Yes		No
Bubble	$O(N^2)$	$O(N^2)$	Yes	Yes
Heap Sort	$O(N \log N)$	$O(N \log N)$	Yes	No
Merge Sort	$O(N \log N)$	$O(N \log N)$	No	Yes
Quick Sort	$O(N^2)$	$O(N \log N)$	Weakly	No

Comparison Sorts Summary

- How can quick sort runs at $O(N \log N)$, while insertion sort runs at $O(N^2)$?
 - Insertion sort corrects one reverse-ordered pair at a time.
 - Quick sort moves elements far distances, correcting multiple reverse-ordered pairs at a time.
- Why is quick sort's worst-case $O(N^2)$ while merge sort has no such a problem?
 - The choice of pivot determines size of partitions in quick sort, whereas merge sort cuts array in half every time.

Comparison Sorts Worst Case Time Complexity

• For comparison sort, is $O(N \log N)$ the best we can do in the worst case?

• Theorem: A sorting algorithm that is based on pairwise comparisons must use $\Omega(N \log N)$ operations to sort in the worst case.

• Proof: Consider the decision tree.

Decision Tree for 3 Items

• Input: an unsorted array of 3 items a, b, c.

Decision Tree and Theoretic Lower Bound

- Decision tree is a binary tree.
- The sorting result is at one of the leaves following the results of a sequence of pairwise comparisons.
- The number of pairwise comparisons in the worst case corresponds to the deepest leaf in the decision tree, or the height of the tree.
- The number of leaves in a decision tree for sorting N items is N!, i.e., the number of permutations on N items.
- Since a binary tree of height h has at most 2^h leaves, the height of the decision tree is at least $\lceil \log N! \rceil$.

Theoretic Lower Bound

$$\log(N!) = \log N + \log(N - 1) + \dots + \log 1$$

$$\geq \log N + \log(N - 1) + \dots + \log(N/2)$$

$$\geq \frac{N}{2} \log(N/2)$$

$$= \Omega(N \log N)$$

- Thus, the worst case time complexity for comparison sorts is $\Omega(N \log N)$.
- Any way to beat the theoretic lower bound?
 - Do not compare keys: Non-comparison sort.

Outline

- Quick Sort
- Comparison Sort Summary and Time Complexity
- Non-Comparison Sort
 - Counting Sort and Bucket Sort
 - Radix Sort

Counting Sort

A Simple Version

- § Sort an array A of **integers** in the range [0, k], where k is known.
- 1. Allocate an array count[k+1].
- 2. Scan array A. For i=1 to N, increment count[A[i]].
- Scan array count. For i=0 to k, print i for count[i] times.
- Time complexity: O(N + k).
- The algorithm can be converted to sort integers in some other known range [a, b].
 - Minus each number by a, converting the range to [0, b-a].

Counting Sort

A General Version

- In the previous version, we print i for count[i] times.
 - Simple but only works when sorting integer keys alone.
 - How to sort items when there is "additional" information with each key?
- A general version:
- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
 - **C[i]** now contains number of items less than or equal to **i**.
- 4. For i=N downto 1, put A[i] in new position

Counting Sort

Example

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]]

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

_1	2	3	4	5	6	7	_8_
	0					3	

0 1 2 3 4 5 C 1 2 4 6 7 8

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

_1	2	3	4	5	6	7	8
	0				3	3	

- Allocate an array
 C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

_1	2	3	4	5	6	7	_8_
	0		2		3	3	

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

1	2	3	4	5	6	7	8
0	0		2		3	3	

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

_1	2	3	4	5	6	7	_8_
0	0		2	3	3	3	

- 1. Allocate an array C[k+1].
- Scan array A. For i=1 to N, incrementC[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement

1	2	3	4	5	6	7	8
0	0		2	3	3	3	5

- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]]

and decrement

Is counting sort stable?
Yes!

Bucket Sort

- Instead of simple integer, each key can be a complicated record, such as a real value.
- Then instead of incrementing the count of each bucket, distribute the records by their keys into appropriate buckets.
- Algorithm:
- 1. Set up an array of initially empty "buckets".
- 2. Scatter: Go over the original array, putting each object in its bucket.
- 3. Sort each non-empty bucket.
- 4. Gather: Visit the buckets in order and put all elements back into the original array.

Bucket Sort

Example

- Time complexity
 - Suppose we are sorting N items and we divide the entire range into N buckets.
 - Assume that the items are uniformly distributed in the entire range.
 - The average case time complexity is O(N).

Outline

- Quick Sort
- Comparison Sort Summary and Time Complexity
- Non-Comparison Sort
 - Counting Sort and Bucket Sort
 - Radix Sort

Radix Sort

- **Radix sort** sorts integers by looking at one digit at a time.
- Procedure: Given an array of integers, from the least significant bit (LSB) to the most significant bit (LSB), repeatedly do stable bucket sort according to the current bit.
- ullet For sorting base-b numbers, bucket sort needs b buckets.
 - For example, for sorting decimal numbers, bucket sort needs 10 buckets.

Radix Sort Example

- Sort 815, 906, 127, 913, 098, 632, 278.
- Bucket sort 81<u>5</u>, 90<u>6</u>, 12<u>7</u>, 91<u>3</u>, 09<u>8</u>, 63<u>2</u>, 27<u>8</u> according to the least significant bit:

0	1	2	3	4	5	6	7	8	9
		63 <u>2</u>	91 <u>3</u>		81 <u>5</u>	90 <u>6</u>	12 <u>7</u>	09 <u>8</u> 27 <u>8</u>	

• Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

Radix Sort Example

• Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

0	1	2	3	4	5	6	7	8	9
9 <u>0</u> 6	9 <u>1</u> 3 8 <u>1</u> 5	1 <u>2</u> 7	6 <u>3</u> 2				2 <u>7</u> 8		0 <u>9</u> 8

Bucket sort <u>9</u>06, <u>9</u>13, <u>8</u>15, <u>1</u>27, <u>6</u>32, <u>2</u>78,
<u>0</u>98 according to the most significant bit.

Radix Sort Example

Bucket sort <u>9</u>06, <u>9</u>13, <u>8</u>15, <u>1</u>27, <u>6</u>32, <u>2</u>78,
<u>0</u>98 according to the most significant bit.

0	1	2	3	4	5	6	7	8	9
<u>0</u> 98	<u>1</u> 27	<u>2</u> 78				<u>6</u> 32		<u>8</u> 15	906 913

• The final sorted order is: 098, 127, 278, 632, 815, 906, 913.

Radix Sort

- Radix sort can be applied to sort keys that is built on positional notation.
 - Positional notation: all positions uses the same set of symbols, but different positions have different weight.
 - Decimal representation and binary representation are examples of positional notation.
 - Strings can also be viewed as a type of positional notation. Thus, radix sort can be used to sort strings.
- We can also apply radix sort to sort records that contain multiple keys.

Lota except a colot taccolog (xxcola month

Radix Sort Time Complexity

- Let k be the maximum number of digits in the keys and N be the number of keys.
- We need to repeat bucket sort k times.
 - Time complexity for the bucket sort is O(N).
- The total time complexity is O(kN).