Übungsblatt 11

Übungsgruppe Metcalfe

Daniel Schubert Anton Lydike

Mittwoch 29.1.2020

Aufgabe 1)			_	$\{-}/1 { m p.}$		
a)	Die Merkma	le der folgenden Vielfachzugriffsverfahren sind:				
	Ver fahren	Beschreibung				
	FDMA	Zuweisung der Kanäle (unterschiedliche Trägerfrequenz, glei Kein Qualitätsverlust).	chzeitige \	 Ubertragung		
	Polling Master weist Medium den Stationen zu.					
	CSMA "Zuhören vor dem Sprechen". Kanal leer ⇒ sende Rahmen. Kanal besetzt : Übertragung verschieben. Kollision ⇒ zufälligen Zeitspanne warten, dann wie ober					
b)						
			Korrekt	Falsch		
	Das Slotted chronisieren	l ALOHA erfordert, dass alle Knoten ihre Übertragungen synn	\otimes	0		
	CSMA verr	ringert die Kollisionswahrscheinlichkeit gegenüber ALOHA	\otimes	0		
	-	sistenten CSMA wird ein Rahmen übertragen, wenn die Station Kanal vorfindet	\otimes	0		
c)	Die wahp* = ???	nrscheinlichkeit beträgt $p \cdot (1-p)^{N-1}$				

Aufgabe 2) ___/1p.

a) $d_{AB}=d_{BC}=400m, R=100Mbps, v_s=2*10^8m/s$

•

- Rechner B Bekommt "bad data", aber das "Jam-Signal", kommt erst nach vollendeter übertragung an.
- $L_{min} > 100Mb$
- b) Der binare exponentielle Backoff-Algorithmus verringert die wahrscheinlichkeit einer erneuten Kollision, da beide parteien unterschiedlich lange warten, bis sie erneut senden.
- c) Die Folgenden Felder befinden sich in einem Ethernet Frame:

		Ja	Nein
Quelle-MAC-Adre	esse	\otimes	\circ
Time-to-Live bzw	. Hop Count	\circ	\otimes
Sequenznummer		\circ	\otimes
CRC-Prüfsumme		\otimes	\circ

Aufgabe 3) ___ /1p.

a)

	Richtig	Falsch
Switches sind für die angeschlossenen Stationen transparent	\otimes	\circ
Der Spanning-Tree-Algorithmus wird erst angewendet, wenn die Switchtabellen erzeugt wurden $$	\otimes	0
Am Ende des Spanning-Tree-Protokolls soll jeder Switch ein eigenen Designated Port bestimmen	0	\otimes

b)

	Switch S1		Switch S2		Switch S3	
Port Mac-Adresse		Port	Mac-Adresse	Port	Mac-Adresse	
1) A → B	3	MAC A	3	MAC A	1	MAC A
2) A → D	-	-	-	-	-	-
3) C → A	1	MAC C	2	MAC C	3	MAC C

- Rahmen 1) und 2) kommen bei allen Hosts an.
- Rahmen 3) geht S3 \rightarrow S2 \rightarrow S1 \rightarrow Host A.
- c) Da das Netz hier nicht Zyklus-Frei ist, werden Pakete unendlich lange weitergeleitet. Das führt dazu, dass Informationen in den Routing-Tabellen nutzlos sind.

a	1
\mathbf{u})
	,

Switch	Root-Switch?	Ports	Root-Port?	Designated-Port?	Blocking-Port?
Switch 1	\otimes	P1	0	\otimes	0
		P2	\circ	\otimes	\circ
Switch 2	0	P1	0	0	\otimes
		P2	\circ	\otimes	\circ
		P3	\otimes	\circ	0
Switch 3	0	P1	0	\otimes	0
		P2	\circ	\otimes	\circ
		P3	\otimes	\circ	\circ
Switch 4	0	P1	0	0	\otimes
		P2	\otimes	\circ	\circ
		P3	\circ	\circ	\otimes
		P4	\circ	\otimes	0
Switch 5	0	P1	\otimes	\circ	\circ
		P2	0	\circ	\otimes
Switch 6	0	P1	\otimes	0	0
		P2	0	0	\otimes

Gesamtpunkte:	/3p
desamipunkie.	/ op