Clase 25/4: Variables aleatorias continuas II

Ejercicio 1. La longitud de los clavos fabricados por una máquina, en milímetros, es una variable aleatoria X que sigue una distribución normal de parámetros $\mu = 10$ y $\sigma^2 = 4$. Se debe dar una especificación del máximo la longitud de los clavos, tal que el 90,15% de los clavos cumpla con la especificación. ¿Cuál debe ser la especificación?

Ejercicio 2. La longitud de los clavos fabricados por una máquina, en milímetros, es una variable aleatoria X que sigue una distribución normal. Se sabe que el 79,95% de los clavos fabricados miden menos de 11mm, y que el 90,15% de los clavos fabricados miden menos de 12mm. ¿Cuales son los parámetros de μ y σ de X?

Ejercicio 3. (Ejercicio 7 - Práctica 4) Definimos la función Gamma $\Gamma: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ por la fórmula

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

- a) Probar que Γ está bien definida.
- b) Mostrar que $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$ para todo $\alpha > 1$. Deducir que $\Gamma(n) = (n 1)$! para todo $n \in \mathbb{N}$.
- c) Probar que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Sugerencia: Hallar la función de densidad de Z^2 para Z una variable aleatoria con distribución normal estándar. ¿Es la densidad obtenida la de una distribución conocida? ¿Cuál?

Ejercicio 4. (Ejercicio 8 - Práctica 4) Sean $n \in \mathbb{N}$ y Z una variable aleatoria con distribución $\Gamma(n, \lambda)$. Probar que para todo z > 0 se tiene

$$F_Z(x) = \mathbb{P}(X_z \ge n)$$

donde X_z es una variable aleatoria con distribución $\mathcal{P}(z\lambda)$.