Username (e.g. ppete9):

Rule	Expression
Commutativity	X + Y = Y + X
	$X \cdot Y = Y \cdot X$
Associativity	(X+Y)+Z=X+(Y+Z)
	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity	$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$
	$(X+Y)\cdot(X+Z) = X+Y\cdot Z$
Covering	$X + X \cdot Y = X$
	$X \cdot (X + Y) = X$
Combining	$X \cdot Y + X \cdot Y = X$
	$(X+Y)\cdot(X+Y)=X$
Consensus	$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
	$(X+Y)\cdot(X+Z)\cdot(Y+Z) = (X+Y)\cdot(X+Z)$
Generalized Idempotency	$X + X + \dots + X = X$
	$X \cdot X \cdot \cdots \cdot X = X$
DeMorgan's Theorems	$(X_1 \cdot X_2 \cdot \dots \cdot X_n)' = X_1' + X_2' + \dots + X_n'$
	$(X_1 + X_2 + \dots + X_n)' = X_1' \cdot X_2' \cdot \dots \cdot X_n'$
Generalized DeMorgan's	$F(X_1, X_2, \dots, X_n, +, \cdot) = F(X_1, X_2, \dots, X_n, \cdot, +)'$
Shannon's Expansion	$F(X_1, X_2, \dots, X_n) = X_1 \cdot F(1, X_2, \dots, X_n) + X_1' \cdot F(0, X_2, \dots, X_n)$
	$F(X_1, X_2, \dots, X_n) = [X_1 + F(0, X_2, \dots, X_n)] \cdot [X_1' + F(1, X_2, \dots, X_n)]$
Dual	Interchange $+$ with \cdot , and 0 with 1

```
// ! : Logical NOT, ~ : Bitwise NOT

// && : Logical AND, & : Bitwise AND

// || : Logical OR, | : Bitwise OR

// ~ : Bitwise XOR

// ~ : Bitwise XNOR

// == : Equality, == : Case Equality (4-state)

// != : Inequality, !== : Case Inequality (4-state)
```

```
module top_module (
  input logic x1,
  input logic y1,
  output logic f1
);
  // Module internals here
endmodule

module sub_module (
  input logic x2,
  input logic y2,
  output logic f2
);
  // Submodule internals here
endmodule

sub_module sub_inst(.x2(x1), .y2(y1), .f2(f1));
```

```
// Sequential (synchronous) logic
always_ff @(posedge clk or posedge rst) begin
   if (rst)
     out <= 0;
else
     out <= ~out;
end
// Combinational logic
always_comb begin
   // assignments that depend solely on input combinatorics
end</pre>
```

```
interface simple_if (input logic clk);
logic data;
modport master (output data);
modport slave (input data);
endinterface
```

Buffer				NOT						OR		
4	A	Output		A	4 (Output	;			A	В	Output
	0	0		()	1				0	0	0
	1	1		-	1	0				0	1	1
										1	0	1
										1	1	1
	N.	AND			N	OR			_		X	OR
A	В	Output		A	В	Outp	ut			A	В	Output
0	0	1		0	0	1				0	0	0
0	1	1		0	1	0				0	1	1
1	0	1		1	0	0				1	0	1
1	1	0		1	1	0				1	1	0
						\rightarrow						
						↓ S				D		
	G → G → G											
				' D ' T						S		
				PMOS				NMO	OS			
	Parameter PMOS I					N	MO	\mathbf{S}				
			Subst	Substrate Type n-				ype	p-	type		

AND

Output

 $\frac{0}{0}$

0

1

Output

1

 $\frac{0}{0}$

1

В

0

1

В

XNOR

 $\frac{A}{0}$

 $\frac{0}{1}$

1

A 0

0 | 1

1 | 1

Parameter	PMOS	NMOS
Substrate Type	n-type	p-type
Threshold Voltage	Negative	Positive

Gate	PMOS Configuration	NMOS Configuration				
OR(A+B)	Parallel	Series				
AND $(A \cdot B)$	Series	Parallel				

 t_{pHL} : The time between an input change and the corresponding output change when the output changes from HIGH to LOW.

 t_{pLH} : The time between an input change and the corresponding output change when the output changes from LOW to HIGH.

ullet Note: t_p is measured from the 50% crossing of the input to the 50% crossing of the output

 t_f : Time between 90% of output high and 10% output low

 t_r : Time between 10% of output low and 10% output high

$$P = cV^2 f$$