Metrics

Andriy Koval

Tuesday, June 24, 2014

Contents

VI	1 Tetrics: labeling factors and exploring scales												
	Data preliminaries	1											
	Labeling Factor Levels	2											
	Time metrics : Age, Period, Cohort	2											
	Mapping Church Attendance												

Metrics: labeling factors and exploring scales

Report explains how the response categories from NLSY97 questionnaire are labeled and demonstrates application of labeled factors in data operations and graphing.

Data preliminaries

This section introduces data space.

Data In Initial point of departure - the databox of the selected variables, described in the Methods chapter.

Figure 3.2 Databox slice of variables selected from NLSY97 for analyses

This databox corresponds to the dataset dsL produced by Derive_dsL_from_Extract report, given in the Appendix.

dsL<-readRDS("./Data/Derived/dsL.rds")</pre>

Time Invariant				riant	J	Ti	me V	ariar	ıt																				
_										1																			_
sample	id	sex	race	bmonth	byear	attendPR	relprefPR	relraisedPR	year	agemon	ageyear	famrel	attend	values	todo	obeyed	pray	decisions	relpref	bornagain	faith	calm	blue	happy	depressed	nervous	tv	computer	internet
1	1	2	4	9	1981	7	21	21	1997	190	15	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA.	NA.
1	1	2	4	9	1981	7	21	21	1998	206	17	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
1	1	2	4	9	1981	7	21	21	1999	219	18	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA
1	1	2	4	9	1981	7	21	21	2000	231	19	NA	1	NA.	NA	NA.	NA	NA.	NA	NA	NA	3	3	3	3	3	NA	NA.	NA
1	1	2	4	9	1981	7	21	21	2001	243	20	NA.	6	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA.
1	1	2	4	9	1981	7	21	21	2002	256	21	NA.	2	1	1	1	0	1	NA	NA	NA	4	2	3	2	1	2	5	NA
1	1	2	4	9	1981	7	21	21	2003	266	22	NA	1	NA	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA.	NA	NA.	1
1	1	2	4	9	1981	7	21	21	2884	279	23	NA	1	NA.	NA	NA.	NA	NA.	NA	NA	NA	4	1	4	1	1	NA	NA	0
1	1	2	4	9	1981	7	21	21	2005	290	24	NA.	1	0	1	0	0	1	21	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	1
1	1	2	4	9	1981	7	21	21	2006	302	25	NA.	1	NA	NA	NA	NA	NA.	NA	NA	NA	4	1	4	1	1	NA	NA	1
1	1	2	4	9	1981	7	21	21	2007	313	26	NA.	1	NA.	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA.	2		1
1	1	2	4	9	1981	7	21	21	2008	325	27	NA	1	0	1	0	9	1	21	NA	3	3	3	3	3	3	NA		1
1	1	2	4	9	1981	7	21	21	2009	337	28	NA.	1	NA.	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA.	2	6	1
1	1	2	4	9	1981	7	21	21	2010	350	29	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	3	3	3	3	3	1		1
1	1	2	4	9	1981	7	21	21	2011	360	29	NA.	1	0	1	0	9	1	21	NA	1	NA	NA	NA	NA.	NA.	NA		1
1	2	1	2	7	1982	NA.	NA	NA NA	1997	178	14	2	NA.	NA.	NA.	NA	NA	NA .	NA	NA .	NA	NA.	NA.	NA.	NA.	NA.	NA.		NA.
	2		2	7	1982	NA NA	NA NA	NA NA	1998	196	16		NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA.			NA NA
	2	1	2	/	1902	NA.	NA.	NA .	1776	120	10	1	NA.	NH	NH.	NH.	NA.	NA.	NA.	NA .	NH	NH.	NA.	NA.	NA.	NA.	NA	NA.	NA .

Figure 3.3 Generic dataset used in the current study, view for one respondent

Labeling Factor Levels

Review of the item reference cards shows that initially, all items were recorded on some discrete scale, either counting occasions or assigning an intiger to a category of response. However, data were saved as numerical values or intigers

```
ds<- dsL[,1:(ncol(dsL)/2)]# selects the first half of variables
str(ds)</pre>
```

```
'data.frame':
               134760 obs. of 30 variables:
$ sample
             : int
                   1 1 1 1 1 1 1 1 1 1 ...
$ id
                   1 1 1 1 1 1 1 1 1 1 ...
$ sex
             : int
                   2 2 2 2 2 2 2 2 2 2 . . .
                   4 4 4 4 4 4 4 4 4 ...
$ race
             : int
$ bmonth
                   9 9 9 9 9 9 9 9 9 ...
             : int
$ byear
             : int
                   $ attendPR
                   7 7 7 7 7 7 7 7 7 7 7 . . .
             : int
$ relprefPR
                   21 21 21 21 21 21 21 21 21 21 ...
            : int
                   21 21 21 21 21 21 21 21 21 21 ...
$ relraisedPR: int
$ year
                   1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 ...
             : int
$ agemon
                  190 206 219 231 243 256 266 279 290 302 ...
             : num
$ ageyear
             : num
                   15 17 18 19 20 21 22 23 24 25 ...
$ famrel
             : num NA NA NA NA NA NA NA NA NA ...
             : num NA NA NA 1 6 2 1 1 1 1 ...
$ attend
$ values
                   NA NA NA NA 1 NA NA O NA ...
             : num
             : num NA NA NA NA NA 1 NA NA 1 NA ...
$ todo
$ obeyed
             : num NA NA NA NA NA 1 NA NA O NA ...
$ pray
                   NA NA NA NA NA O NA NA O NA ...
             : num
             : num
                   NA NA NA NA 1 NA NA 1 NA ...
$ decisions
$ relpref
                   NA NA NA NA NA NA NA NA 21 NA ...
             : num
$ bornagain
                   NA NA NA NA NA NA NA NA NA ...
             : num
                   NA NA NA NA NA NA NA NA NA ...
$ faith
             : num
$ calm
                   NA NA NA 3 NA 4 NA 4 NA 4 ...
             : num
$ blue
                   NA NA NA 3 NA 2 NA 1 NA 1 ...
             : num
                   NA NA NA 3 NA 3 NA 4 NA 4 ...
$ happy
             : num
                   NA NA NA 3 NA 2 NA 1 NA 1 ...
$ depressed
             : num
$ nervous
                   NA NA NA 3 NA 1 NA 1 NA 1 ...
             : num
                   NA NA NA NA NA 2 NA NA NA NA ...
$ tv
             : num
                   NA NA NA NA NA S NA NA NA NA ...
$ computer
             : num
                   NA NA NA NA NA 1 0 1 1 ...
$ internet
             : num
```

LabelingFactorLevels.R sourced at the end of Derive_dsL_from_Extract matches numeric values with response labels from the questionnaire and adds to dsL copies of the variables, saved as labeled factors. For estimations routines such as lm4 or graphing functions such as ggplot, the data type (string,numeric, factor) is a meaningful input, so a quick access to both formats frequently proves useful. It is convenient to think that dsL contains only

```
ncol(dsL)/2
```

[1] 30

variables, but each of them has a double, a labeled factor.

str(dsL)

```
134760 obs. of 60 variables:
'data.frame':
             : int 111111111...
$ sample
$ id
                    1 1 1 1 1 1 1 1 1 1 . . .
             : int
$ sex
                    2 2 2 2 2 2 2 2 2 2 . . .
             : int
                   4 4 4 4 4 4 4 4 4 ...
$ race
             : int
$ bmonth
             : int
                    9 9 9 9 9 9 9 9 9 ...
                    $ byear
             : int
$ attendPR
             : int 777777777...
$ relprefPR
             : int 21 21 21 21 21 21 21 21 21 21 ...
                    21 21 21 21 21 21 21 21 21 ...
$ relraisedPR : int
$ year
             : int
                   1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 ...
                    190 206 219 231 243 256 266 279 290 302 ...
$ agemon
             : num
$ ageyear
             : num
                    15 17 18 19 20 21 22 23 24 25 ...
$ famrel
                    NA NA NA NA NA NA NA NA NA ...
             : num
                    NA NA NA 1 6 2 1 1 1 1 ...
$ attend
             : num
$ values
             : num
                    NA NA NA NA 1 NA NA 0 NA ...
                    NA NA NA NA 1 NA NA 1 NA ...
$ todo
             : num
                    NA NA NA NA 1 NA NA O NA ...
$ obeyed
             : num
                    NA NA NA NA O NA NA O NA ...
$ pray
             : num
$ decisions
                    NA NA NA NA 1 NA NA 1 NA ...
             : num
                    NA NA NA NA NA NA NA 21 NA ...
$ relpref
             : num
$ bornagain
             : num
                    NA NA NA NA NA NA NA NA NA ...
$ faith
                    NA NA NA NA NA NA NA NA NA ...
             : num
$ calm
             : num NA NA NA 3 NA 4 NA 4 NA 4 ...
$ blue
             : num NA NA NA 3 NA 2 NA 1 NA 1 ...
             : num NA NA NA 3 NA 3 NA 4 NA 4 ...
$ happy
$ depressed
             : num NA NA NA 3 NA 2 NA 1 NA 1 ...
$ nervous
                    NA NA NA 3 NA 1 NA 1 NA 1 ...
             : num
                    NA NA NA NA NA 2 NA NA NA NA ...
$ tv
             : num
             : num
                    NA NA NA NA NA S NA NA NA NA ...
$ computer
$ internet
             : num NA NA NA NA NA 1 O 1 1 ...
             : Ord.factor w/ 2 levels "Cross-Sectional"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ sampleF
             : Factor w/ 8984 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ idF
             : Ord.factor w/ 3 levels "Male"<"Female"<..: 2 2 2 2 2 2 2 2 2 2 ...
$ sexF
$ raceF
           : Ord.factor w/ 12 levels "Jan"<"Feb"<"Mar"<..: 9 9 9 9 9 9 9 9 9 ...
$ bmonthF
$ byearF
             : Factor w/ 5 levels "1980", "1981", ...: 2 2 2 2 2 2 2 2 2 ....
$ attendPRF
             : Ord.factor w/ 8 levels "Never"<"Once or Twice"<...: 7 7 7 7 7 7 7 7 7 7 7 7 ...
$ relprefPRF : Ord.factor w/ 33 levels "Catholic"<"Baptist"<...: 21 21 21 21 21 21 21 21 21 21 ...
$ relraisedPRF: Ord.factor w/ 33 levels "Catholic"<"Baptist"<..: 21 21 21 21 21 21 21 21 21 21 21 ...</pre>
```

```
$ vearF
            : Factor w/ 15 levels "1997", "1998", ...: 1 2 3 4 5 6 7 8 9 10 ...
           : Factor w/ 244 levels "146","147","148",...: 45 61 74 86 98 111 121 134 145 157 ...
$ agemonF
            : Factor w/ 21 levels "12","13","14",...: 4 6 7 8 9 10 11 12 13 14 ...
$ ageyearF
             : Factor w/ 8 levels "0","1","2","3",...: NA ...
$ famrelF
$ attendF
            : Ord.factor w/ 8 levels "Never"<"Once or Twice"<..: NA NA NA 1 6 2 1 1 1 1 ...
$ valuesF
           : Ord.factor w/ 2 levels "FALSE/less Religious" < ..: NA NA NA NA NA 2 NA NA 1 NA ...
$ todoF
           : Ord.factor w/ 2 levels "FALSE/less Religious" < ..: NA NA NA NA NA 2 NA NA 2 NA ...
           : Ord.factor w/ 2 levels "FALSE/less Religious" < ..: NA NA NA NA NA 2 NA NA 1 NA ...
$ obeyedF
$ prayF
          : Ord.factor w/ 2 levels "FALSE/less Religious" < ...: NA NA NA NA NA 1 NA 1 NA 1 NA ...
$ decisionsF : Ord.factor w/ 2 levels "FALSE/less Religious" < ..: NA NA NA NA NA NA 2 NA 2 NA ...
          : Ord.factor w/ 33 levels "Catholic"<"Baptist"<..: NA NA NA NA NA NA NA NA A NA NA 21 NA ...
$ bornagainF : Ord.factor w/ 2 levels "NO"<"YES": NA ...
           $ faithF
$ calmF
           $ blueF
            : Ord.factor w/ 4 levels "All of the time"<...: NA \dots
$ happyF
            : Ord.factor w/ 4 levels "All of the time"<...: NA \dots
$ nervousF
            : Ord.factor w/ 4 levels "All of the time"<...: NA ...
             : Ord.factor w/ 6 levels "less than 2"<... NA NA NA NA NA 2 NA NA NA NA NA ...
$ tvF
$ computerF : Ord.factor w/ 6 levels "None"<"less than 1"<... NA NA NA NA NA 5 NA NA NA NA NA NA ...
$ internetF
             : Ord.factor w/ 2 levels "No"<"Yes": NA NA NA NA NA NA 2 1 2 2 ...
```

This give a certain flexibity to assemble needed dataset quickly and have access to factor labels. One can alternate between the raw metric and labeled factor by adding "F" suffix to the end of the variable name:

```
selectCols<-c("year","id","byear","attend","attendF") # select the columns with these names
ds<-dsL[,selectCols] # select all rows for the columns listed selectCols
print(ds[ds$id==1,]) # print all available data for respondent with ID 1</pre>
```

	year	id	byear	attend	attendF
1	1997	1	1981	NA	<na></na>
2	1998	1	1981	NA	<na></na>
3	1999	1	1981	NA	<na></na>
4	2000	1	1981	1	Never
5	2001	1	1981	6	About once/week
6	2002	1	1981	2	Once or Twice
7	2003	1	1981	1	Never
8	2004	1	1981	1	Never
9	2005	1	1981	1	Never
10	2006	1	1981	1	Never
11	2007	1	1981	1	Never
12	2008	1	1981	1	Never
13	2009	1	1981	1	Never
14	2010	1	1981	1	Never
15	2011	1	1981	1	Never

Having quick access to factor labels will be especially useful during graph production. For the grammer rules of operations with relevant data see Data Manipulation Guide.

Time metrics: Age, Period, Cohort

NLSY97 sample includes individuals from five cohorts, born between 1980 and 1984. The following graphics shows how birth cohort, age of respondents, and round of observation are related in NSLY97.

There are several indicators of age in NSLY97 that vary in precision. Birth cohort (**byear**) is the most general one, it was recorded once. Two age variables were recorded at each interview: age at the time of the interview in months (**agemon**) and in years (**ageyear**). Those are not derivatives of each other, but are are closely related. The variable **ageyear** records the full number of years a respondent reached at the time of the interview. Due to difficulties of administering the survey, time intervals between the waves could differ. For example, for one person **id** = 25 the age was recorded as 21 years for both 2003 and 2004 (see **ageyear**). However, when you examine age in months (**agemon**) you can see this rounding issue disappears once a more precise scale is used. To avoid this potentially confusing peculiarity, age in years will be calculated as (**age** = **year** - **byear**) or as (**ageALT** = **agemon**/12).

```
ds<-dsL[dsL$year %in% c(2000:2011),c('id',"byear","year","attend","ageyear","agemon")]
ds<- ds[ds$id %in% c(25),]
ds$age<-ds$year-ds$byear
ds$ageALT<- ds$agemon/12
print(ds)</pre>
```

	id	byear	year	attend	ageyear	agemon	age	ageALT
364		-	2000	5	17	214	17	17.83
365	25	1983	2001	7	18	226	18	18.83
366	25	1983	2002	7	19	236	19	19.67
367	25	1983	2003	2	21	254	20	21.17
368	25	1983	2004	7	21	261	21	21.75
369	25	1983	2005	5	22	272	22	22.67
370	25	1983	2006	7	23	284	23	23.67
371	25	1983	2007	5	24	295	24	24.58
372	25	1983	2008	7	25	307	25	25.58
373	25	1983	2009	7	26	319	26	26.58
374	25	1983	2010	7	27	332	27	27.67
375	25	1983	2011	7	28	342	28	28.50

Mapping Church Attendance

The focal variable of interest is **attend**, an item measuring church attendance in the current year. The questionnaire recorded the responses on the ordinal scale.

Creating frequency distributions for each of the measurement wave we have:

Missing values are used in the calculation of total responses to show the natural attrition in the study. Assumming that attrition is not significantly associated with the outcome measure, we can remove missing values from the calculation of the total and look at prevalence of endorsements over time.

Tracing the rate of change of prevalence in a line graph, we see more clearly which categores increase over time (e.g. "Never"), which decline (e.g. "About once/week), and which stay relatively stable (e.g. "About twice/month")

Graphs above shows change in the cross-sectional distribution of responses over the years. Modeling the change in these response frequencies is handled well by Markov models. LCM, however, works with longitudinal data, modeling the trajectory of each individual and treating attendance as a continuous outcome.

To demonstrate mapping of individual trajectories to time, let's select a dataset that would include personal identifyer (id), cohort indicator (byear), wave of measurement (year) and the focal variable of interest - worship attendance (attend).

attendF	attend	year	byear	id	
About twice/month	5	2000	1982	47	1
Once or Twice	2	2001	1982	47	2
About once/month	4	2002	1982	47	3
Once or Twice	2	2003	1982	47	4
Less than once/month	3	2004	1982	47	5
Once or Twice	2	2005	1982	47	6
Once or Twice	2	2006	1982	47	7
Less than once/month	3	2007	1982	47	8
Once or Twice	2	2008	1982	47	9
Never	1	2009	1982	47	10
Never	1	2010	1982	47	11
Never	1	2011	1982	47	12

The view above lists attendance data for subjust with id = 47. Mapping his attendance to time we have where vertical dimension maps the outcome value and the horizontal maps the time. There will be a trajecory for each of the

length(unique(dsL\$id))

[1] 8984

subjects in total. Unless specified otherwise, only individuals from the cross-sample will be used in the model to increase external validity.

Each of such trajectories imply a story, a life scenario. Why one person grows in his religious involvement, while other declines, or never develops an interest in the first place? To demostrate how interpretations of trajectories can vary among individuals consider the following scenario.

Attendance trajectories of subjects with ids 4, 25, 35, and 47 are plotted in the next graph

The respondent **id**=35 reported attending no worship services in any of the years, while respondent **id**=25 seemed to frequent it, indicating weekly attendance in 8 out of the 12 years. Individual **id**=47 started as a fairly regular attendee of religious services in 2000 (5= "about twice a month"), then gradually declined his involvement to nill in 2009 and on. Respondent **id**=4, on the

other hand started off with a rather passive involvement, reporting attended church only "Once or twice" in 2000, maintained a low level of participation throughout the years, only to surge his attendance in 2011. Latent curve models will describe intraindividual trajectories of change, while summarizing the interindividual similarities and trends.

Previous research in religiousity indicated that age might be one of the primary factors explaining interindividual differences in church attendance. To examine the role of age, we change the metric of time from waves of measurement, as in the previous graph, to biological age.

Persons **id** = 35 and **id** = 25 are peers, in 2000 they were both 17. Respondent **id** = 47 is a year older, in 2000 he was 18. The oldest is **id** = 4, who by the last round of measurement in 2011 is 30 years of age. Perhaps, his increased church attendance could be explained by starting a family of his own?

Note that for person **id** = 25 the age was recorded as 21 years for both 2003 and 2004. However, when you examine age in months (**agemon**) you can see this is rounding issue that disappears once a more precise scale is used. To avoid this potentially confusing peculiarity, age in years will be either calculated as (**age** = **year** - **byear**)

```
ds<- dsL %>% dplyr::filter(id %in% c(4,25,45,47),year %in% c(2000:2011)) %>%
    dplyr::select(idF,year,attend,agemon,ageyear) %>%
    mutate(time=year-2000, age=ageyear)
head(ds,12)
```

	idF	year	${\tt attend}$	agemon	ageyear	time	age
1	4	2000	2	238	19	0	19
2	4	2001	1	251	20	1	20
3	4	2002	3	262	21	2	21
4	4	2003	1	276	22	3	22
5	4	2004	2	287	23	4	23
6	4	2005	2	297	24	5	24
7	4	2006	2	309	25	6	25
8	4	2007	2	320	26	7	26
9	4	2008	2	336	27	8	27
10	4	2009	1	344	28	9	28
11	4	2010	2	357	29	10	29
12	4	2011	5	368	30	11	30

or as (age = agemon/12).

```
ds<- dsL %>% dplyr::filter(id %in% c(4,25,45,47),year %in% c(2000:2011)) %>%
    dplyr::select(idF,year,attend,agemon,ageyear,byear) %>%
    mutate(time=year-2000, age=agemon/12)
head(ds,12)
```

	idF	year	attend	agemon	ageyear	byear	time	age
1		2000	2	238	19	1981	0	19.83
2	4	2001	1	251	20	1981	1	20.92
3	4	2002	3	262	21	1981	2	21.83
4	4	2003	1	276	22	1981	3	23.00
5	4	2004	2	287	23	1981	4	23.92
6	4	2005	2	297	24	1981	5	24.75
7	4	2006	2	309	25	1981	6	25.75
8	4	2007	2	320	26	1981	7	26.67
9	4	2008	2	336	27	1981	8	28.00
10	4	2009	1	344	28	1981	9	28.67
11	4	2010	2	357	29	1981	10	29.75
12	4	2011	5	368	30	1981	11	30.67

