Propositional Logic: Deductive Proof & Natural Deduction Part 2 CS402, Spring 2017

Shin Yoo

Basis for Inference Rules

	Introduction	Elim	ination
^	$ \frac{\phi \psi}{\phi \land \psi} \land i $	$\left \begin{array}{c} \frac{\phi \wedge \psi}{\phi} \wedge e_1 \end{array} \right $	$\frac{\phi \wedge \psi}{\psi} \wedge e_2$
\ \	$\frac{\phi}{\phi \lor \psi} \lor i_1$	$\frac{\psi}{\phiee\psi}ee i_2$	$\frac{\phi \psi}{\overset{\vdots}{\overset{\vdots}{\overset{\vdots}{\overset{\vdots}{\overset{\vdots}{\overset{\vdots}{\overset{\vdots}{$
\rightarrow	$ \begin{vmatrix} \phi \\ \vdots \\ \psi \\ \phi \to \psi \end{vmatrix} \to_i $	$\left \begin{array}{cc} \phi & \phi \to \psi \\ \hline \psi & \end{array} \to_{\boldsymbol{e}} \right $	

How do we know the validity of these rules?

Truth tables. In other words, \land premise \models consequent

Basis for Inference Rules

How about the following?

	Introduction	Elimination
7	$\begin{vmatrix} \phi \\ \vdots \\ \frac{\perp}{\neg \phi} \neg_i \end{vmatrix}$	$\begin{array}{cccc} \neg \phi & \neg \phi \\ \vdots & \vdots \\ \neg \phi & \psi & \neg \psi \\ \hline \phi & & \\ \end{array} \neg_e$

These cannot be justified by truth tables. Rather, these are justified by the Reductio Principle of propositional logic.

Theorem 1 (Reductio Principle)

Let Γ be a set of formulas, ϕ and ψ a formula. If $\Gamma \cup \{\varphi\} \vDash \psi$ and $\Gamma \cup \{\varphi\} \vDash \neg \psi$, then $\Gamma \vDash \neg \varphi$. If $\Gamma \cup \{\neg \varphi\} \vDash \psi$ and $\Gamma \cup \{\neg \varphi\} \vDash \neg \psi$, then $\Gamma \vDash \varphi$.

Basis for Inference Rules

A related question: prove that \wedge and \vee cannot define \neg .

On Derived Rules

Repetition: since $\models P \rightarrow P$, we can derive an inference rule based on it.

$$rac{\phi}{\phi}$$
 Repetition

For example, this rule can be used to prove $Q \rightarrow (P \rightarrow Q)$:

1.	Q	Assumption
2.	P	Assumption
3.	Q	Repetition, 1
4.	P o Q	\rightarrow_i , 2-3
5.	$Q \rightarrow (P \rightarrow Q)$	\rightarrow_i . 1-4

On Derived Rules

Now, introduction of double negation:

$$\frac{\phi}{\neg\neg\phi}$$

1.	ϕ	Assumption
2.	$\neg \phi$	Assumption
3.	ϕ	Repetition, 1
4.	$\neg \neg \phi$	\neg_i , 2-3 (i.e. $\neg \phi \rightarrow \neg \phi \land \neg \phi \rightarrow \phi$)
5.	$\phi \rightarrow \neg \neg \phi$	\rightarrow_i , 1-4

On Derived Rules

Elimination of double negation:

$$\frac{\neg \neg \phi}{\phi}$$

1.	$\neg \neg \phi$	Assumption
2.	$\neg \phi$	Assumption
3.	$\neg \neg \phi$	Repetition
4.	ϕ	¬ _e , 2-3
5.	$\neg\neg\phi\to\phi$	\rightarrow_i , 1-4

More Exercises

Prove the validity of the following sequents.

•
$$(s \rightarrow p) \lor (t \rightarrow q) \vdash (s \rightarrow q) \lor (t \rightarrow p)$$

$$\bullet \vdash (p \rightarrow q) \lor (q \rightarrow r)$$