So you want to use some time series data

Emorie D. Beck

Wednesday May 1, 2021

	EARLY BIRD	REGULAR
STUDENT	\$30	\$45
Requires an Undergraduate or Grad	duate SPSP Membershi _l	o valid through Decen
EARLY CAREER	\$30	\$45
Requires an Early Career SPSP Mem	bership valid through i	December 2021 - chec
FULL/RETIRED/ ASSOCIATE	\$105	\$130
Requires a Full, Retired or Associate	SPSP Membership vali	d through December 2
NON-MEMBER	\$150	\$175

https://forum.spsp.org

Modeling and Analyzing the Dynamics of Motivation, **Affect, and Social Interaction**

Keynote Robin Vallacher

Introduction to Complex Systems Theory Brian Eiler

How to Set Up an EMA Study Emorie Beck

Applied EMA Techniques Ruben Arslan

Collecting Mobile Sensor Data Alex Danvers

Translating Verbal Models to Theory Eiko Fried and Don Robinaugh

Introduction to MLM for Longitudinal Data Analysis Josh Jackson

VAR Models + GIMME Aidan Wright

Dynamic Network Analysis Julian Burger

Recurrence Quantification Analysis / Advanced Physiological Signal Processing Aaron Likens

Neural Network Models for Building Theory Stephen Read

Introduction to Agent-Based Modeling Andrzej Nowak

Language as a Dynamic System: Where to Get it and What to Do Next Rick Dale

What is a time series?

Emorie Beck's "How to set up an EMA study"; Ruben Arslan's "Applied EMA techniques"; Alex Danver's "Collecting Mobile Sensor Data"; Rick Dale's "Language as a Dynamic System"

						Emotional	Intellectual
ID	Date	Sociability	Trust	Orga	nization	Volatility	Curiosity
1	10/22/18 15:23	3		3	4	3	3
1	10/22/18 19:00						
1	10/22/18 23:23	2		2	1	4	2
1	10/22/18 23:25	3		1	1	3	4
1	10/23/18 3:00						
1	10/23/18 7:00						
1	10/23/18 11:00						
1	10/23/18 17:50	3		4	4	3	3
1	10/23/18 19:39	2		3	3	3	3
1	10/23/18 23:00						
1	10/24/18 0:00	5		4	1	4	1
1	10/24/18 3:00						
1	10/24/18 7:00						
1	10/24/18 11:00						
1	10/24/18 11:44	4		3	2	1	2
1	10/24/18 15:37	5		2	4	4	3

Emorie Beck's "How to set up an EMA study"; Ruben Arslan's "Applied EMA techniques"; Alex Danver's "Collecting Mobile Sensor Data"; Rick Dale's "Language as a Dynamic System"

Questions

Description

Prediction

Explanation

Aggregation

Between-Person / Nomothetic

Within-Person

Idiographic

Basic / Data Driven

Do you have sufficient N?

Do you have a variance or frequency problem?

The day-night problem

What is your missingness structure?

More Challenging / Conceptual

Is your question autoregressive?

Are there likely individual differences in the phenomena?

How prevalent are different response styles?

Do you have sufficient N?

Between

N = 2

What Between and Within-Persor	1
N's do you need?	

Depends on:

- Perspective (idiographic, withinperson, etc.)
- Method (mean, SD, correlation)
- Number of indicators

But once you choose a question and look to a method, this should be the first question you ask yourself.

_ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
<u>S1</u>	1	4	2
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S2	2	1	1
S2	2	2	2
S2	2 2	3	2
S2	2	4	1

 $n_1 = 8$

Within

 $n_2 = 8$

Do you have a variance or frequency problem?

<u>S1:</u>

$$SD_{y1} = 1.39$$

Range_{v1} = 1 to 5

$$y_2$$
: 0 = 4, 1 = 4

S2:

$$SD_{y1} = 1.39$$

Range = 1 to 2

$$y_2$$
: 0 = 7, 1 = 1

ID	day	beep	y ₁	y ₂
S1	1	1	1	0
S1	1	2	3	1
S1	1	3	1	1
S1	1	4	2	0
S2	1	1	1	0
S2	1	2	1	0
S2	1	3	1	0
S2	1	4	1	1
S1	2	1	1	1
S1	2	2	3	0
S1	2	3	5	1
S1	2	4	2	0
S2	2	1	1	0
S2	2	2	1	0
S2	2	3	2	0
S2	2	4	1	0

"The method required it, but the life did not" (Allport, 1968).

What to do with low variances and frequencies:

Typical suggestions:

- standardize (within-person)
- throw out low frequency / variance folks

But the best thing you can do is design and test questions and provide instructions to participants that will provide variability in responses.

The Day-Night Problem

ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1

Nighttime

The Day-Night Problem

What to do with overnight intervals

Typical suggestions:

- Add empty rows
- Cubic spline interpolation
- Linear normalization
- Ignore them (if not asking autoregressive questions)

ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S1	1	5	NA
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S2	1	5	NA
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S1	2	5	NA
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1

Nighttime

What is your missingness structure?

	ID	Dav	Bee	р	Sociability	Trust	Organization	Emotional Volatility	Intellectual Curiosity
				1	3	3	4	3	3
What to	o do with mi	issingness		2	2	2	1	4	2
				3	3	1	1	3	4
	Options			4	3	4	4	3	3
- Observa	tion-wise de	eletion:		1	2	3	3	NA	3
delete n	nissing obser	rvations		2	5	4	1	NA	1
- Person-	wise deletior	n: delete		3	4	3	2	NA	2
people v	with reportir	ng issues		4	5	2	4	NA	3
				1	NA	NA	NA	NA	NA
	of how you			2	4	2	3	1	3
	ity analyses			3	4	3	2	4	1
	nose folks (o			4	3	2	3	2	2
for thos	se patterns)		•	1	4	4	1	4	4
	conducted	l		2	2	2	2	4	3
	4	1		3	2	1	1	2	2
	4	1		4	4	3	0	4	4

Is your question autoregressive? The unequal interval problem

ID	day	beep	y ₁	у 1, t-1	Lagged Indicat	tor
S1	1	1	1			
S1	1	2	3			
S1	1	3	1			
S1	1	4	2			
S1	1	5	NA			
S1	2	1	1			
S1	2	2	3			
S1	2	3	1			
S1	2	4	2			
S1	2	5	NA			
S2	1	1	2			
S2	1	2	2			
S2	1	3	4			
S2	1	4	3			
S2	1	5	NA			
S2	2	1	1			
S2	2	2	2			
S2	2	3	2			
S2	2	4	1			

Is your question autoregressive? The unequal interval problem

ID	day	beep	y ₁	у _{1, t-1}	← Lagged Indicator
S1	1	1	1	NA	
S1	1	2	3	1	
S1	1	3	1	3	
S1	1	4	2	1	
S1	1	5	NA	2	
S1	2	1	1	NA	
S1	2	2	3	1	
S1	2	3	1	3	
S1	2	4	2	1	
S1	2	5	NA	2	
S2	1	1	2	NA	
S2	1	2	2	2	
S2	1	3	4	2	
S2	1	4	3	4	
S2	1	5	NA	3	
S2	2	1	1	NA	
S2	2	2	2	1	
S2	2	3	2	2	
S2	2	4	1	2	

ID	day	beep	y ₁	y _{1, t-1}
S1	1	1	1	
S1	1	2	3	
S1	NA	NA	NA	
S1	1	4	2	
S1	1	5	NA	
S1	2	1	1	
S1	NA	NA	NA	
S1	2	3	1	
S1	2	4	2	
S1	2	5	NA	
S2	1	1	2	
S2	1	2	2	
S2	1	3	4	
S2	1	4	3	
S2	1	5	NA	
S2	2	1	1	
S2	2	2	2	
S2	2	3	2	
S2	2	4	1	

ID	day	beep	y ₁	у _{1, t-1}
S1	1	1	1	NA
S1	1	2	3	1
S1	1	4	2	3
S1	1	5	NA	2
S1	2	1	1	NA
S1	2	3	1	1
S1	2	4	2	1
S1	2	5	NA	2
S2	1	1	2	NA
S2	1	2	2	2
S2	1	3	4	2
S2	1	4	3	4
S2	1	5	NA	3
S2	2	1	1	NA
S2	2	2	2	1
S2	2	3	2	2
S2	2	4	1	2
S2	2	5	NA	1

ID	day	beep	y ₁	y _{1, t-1}
S1	1	1	1	NA
S1	1	2	3	1
S1	1	4	2	3
S1	1	5	NA	2
S1	2	1	1	NA
S1	2	3	1	1
S1	2	4	2	1
S1	2	5	NA	2
S2	1	1	2	NA
S2	1	2	2	2
S2	1	3	4	2
S2	1	4	3	4
S2	1	5	NA	3
S2	2	1	1	NA
S2	2	2	2	1
S2	2	3	2	2
S2	2	4	1	2
S2	2	5	NA	1

ID	day	beep	y ₁	y _{1, t-1}
S1	1	1	1	NA
S1	1	2	3	1
S1	NA	NA	NA	3
S1	1	4	2	NA
S1	1	5	NA	2
S1	2	1	1	NA
S1	NA	NA	NA	1
S1	2	3	1	NA
S1	2	4	2	1
S1	2	5	NA	2
S2	1	1	2	NA
S2	1	2	2	2
S2	1	3	4	2
S2	1	4	3	4
S2	1	5	NA	3
S2	2	1	1	NA
S2	2	2	2	1
S2	2	3	2	2
S2	2	4	1	2

Are there likely individual differences in the phenomena?

What to do with unequal intervals:

Options:

- Don't lag (best) and use alternative model
- Cubic spline interpolation
- Linear normalization

Once data are collected, they are what they are. Better to design a study that minimizes unequal lags if basic lagged (often AR(1)) questions are your goal

ID	day	beep	y ₁	У 1, t-1
- 51	1	1	1	NA
S1	1	2	3	1
<u>\$1</u>			NA-	<u>-</u>
-51 - <u>51</u>	1	/	2	— NA
<u>51</u>	1		<u>_</u>	2
	1	<u>5</u>	NA -	<u> </u>
-\$1	2	1	1	NA
-S1	NΛ	NΛ	NΛ	1
<u>-S1</u>	2	3	1	NA.
S1	2	4	2	1
<u>-S1</u>	2	5	NΛ	2
- 52	1	1	2	NA
S2	1	2	2	2
S2	1	3	4	2
S2	1	4	3	4
- S2	1	- 5	NA	3
<u>-52</u>	2	1	1	NA.
S2	2	2	2	1
S2	2	3	2	2
S 2	2	4	1	2

How prevalent are different response styles?

Are restrictions in variance reflective of participants' actual experiences or of response styles?

What to do with response style	es:
--------------------------------	-----

Options:

 Best to tackle this at the collection stage

Once data are collected, they are what they are. Good instructions on how you want participants to interpret and use scales can alleviate this issue. Different response styles may be interesting, but they will hamper inference.

ID	day	beep	y ₁	y _{1, t-1}
S1	1	1	4	
S1	1	2	3	
S1	1	3	4	
S1	1	4	2	
S1	1	5	NA	
S1	2	1	4	
S1	2	2	3	
S1	2	3	4	
S1	2	4	2	
S1	2	5	NA	
S2	1	1	1	
S2	1	2	2	
S2	1	3	4	
S2	1	4	3	
S2	1	5	NA	
S2	2	1	1	
S2	2	2	5	
S2	2	3	2	
S2	2	4	4	
c2	2	5	NΙΛ	

Basic / Univariate

Univariate: Variability, Instability, Inertia

Bi/Multivariate: Correlations and (Basic) Structural Models

Variance Decomposition: Multilevel Models

Advanced / Multivariate

Cross-Lagged VAR, GIMME, and EGA

Machine Learning

Differential Equation Models

Univariate: Variability, Instability, Inertia

ID	day	beep	y ₁	У _{1, t-1}
S1	1	1	1	NA
S1	1	2	3	1
S1	1	3	1	3
S1	1	4	2	1
S1	1	5	NA	2
S1	2	1	1	NA
S1	2	2	3	1
S1	2	3	1	3
S1	2	4	2	1
S1	2	5	NA	2
S2	1	1	2	NA
S2	1	2	2	2
S2	1	3	4	2
S2	1	4	3	4
S2	1	5	NA	3
S2	2	1	1	NA
S2	2	2	2	1
S2	2	3	2	2
S2	2	4	1	2
S2	2	5	NA	1

Intraindividual Variability:

the standard deviation of an indicator

$$SD_{y,i} = \sqrt{\frac{\sum (y_t - \overline{y})^2}{N-1}}$$

R:sd(),psych::SD()

Instability: mean squared successive difference (MSSD)

$$MSSD_{y,i} = \frac{\sum (y_t - y_{t-1})^2}{N}$$

R: psych::mssd()

Inertia: the univariate, lagged autocorrelation

$$r_{yy_{t-1},i} = \frac{\sum (y_t - \overline{y})(y_{t-1} - \overline{y_{t-1}})}{\sqrt{\sum (y_t - \overline{y})^2 (y_{t-1} - \overline{y_{t-1}})^2}}$$
R: cor(), psych::cor.ci()

See Ong & Ram (2017)

Univariate: Variability, Instability, Inertia

ID	SD _v	MSSD _v	r _{y,yt-1}
S1	1.07	0.94	0.12
S2	0.88	1.28	-0.35
S3	0.91	1.39	-0.25
S4	1.55	2.98	0.12
S5	0.93	1.02	-0.08
S6	0.99	0.52	0.03
S7	0.81	1.05	-0.11
S8	1.05	1.17	0.18
S9	1.03	0.91	0.38
S10	1.06	1.01	0.29

Bi/Multivariate: Correlations and (Basic) Structural Models

Bi/Multivariate: Correlations and (Basic) Structural Models

Factor Analysis Dynamic Factor Analysis

psych::fa.parallel(),psych::fa()

Principle Components Analysis

psych::fa.parallel(),
 psych::pca()

Other clustering techniques

Variance Decomposition: Multilevel Models

		_	
ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S1	1	5	NA
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S2	1	5	NA
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S1	2	5	NA
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1

NA

S2

Observations

Level 1: $Y_{bi} = \beta_{0i} + \varepsilon_{bi}$, where b = beep, and i = person β_{0di} = average level for person i ε_{bdi} = residual for beep b, person i

Person

Level 2: $\beta_{0i} = \mu_{00} + r_{0i}$ μ_{000} = average level across persons r_{00i} = deviation for person i across beeps

 $var(r_{00i})$ = between-person variance in within-person levels

 $lme4::lmer(y \sim 1 + (1 | ID), data = d)$

See <u>Haan-Rietdijk et al., 2016</u>

Josh Jackson's "Multilevel Model (for EMA data)"

Variance Decomposition: Multilevel Models

ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S1	1	5	NA
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S2	1	5	NA
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S1	2	5	NA
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1
S2	2	5	NA

Observations

Day

Person

Level 1: $Y_{bdi} = \beta_{0di} + \varepsilon_{bdi}$, where b = beep, d = day, and i = person β_{0di} = average level for person *i* on day *d* ε_{bdi} = residual for beep b, day d, person i

Level 2: $\beta_{0di} = \gamma_{00i} + u_{0di}$ γ_{00i} = average level for person *i* across days u_{0di} = deviation for person *i* on day *d* across beeps b

Level 3: $\gamma_{00i} = \mu_{000} + r_{00i}$ μ_{000} = average level across person & days r_{00i} = deviation for person *i* across day & beep

 $var(r_{00i})$ = between-person variance in within-person levels

 $lme4: lmer(y \sim 1 + (1 | ID/day), data = d)$

 $var(u_{0di})$ = variance across days

See Haan-Rietdijk et al., 2016

Josh Jackson's "Multilevel Model (for EMA data)"

Variance Decomposition: Multilevel Models

	_	_	
ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S1	1	5	NA
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S2	1	5	NA
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S1	2	5	NA
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1
60	2	_	

NA

S2

Observations

Level 1:

$$Y_{bi} = \beta_{0i} + \beta_{1i} * (X_{bi} - \overline{X}_i) + \varepsilon_{bi}$$

Person

Level 2:

$$\beta_{0i} = \mu_{00} + \mu_{01} * (\overline{X}_i - \overline{X}) + r_{0i}$$

$$\beta_{1i} = \mu_{10} + \mu_{11} * (\overline{X}_i - \overline{X}) + r_{1i}$$

 μ_{10} = average change in Y as a function of deviations from within-person averages of X across people i and beeps b. μ_{01} = average change in Y as a function of between person differences in average levels of X across people i and beeps b. μ_{11} = average change in Y as a function of both within-person deviations from person-level means and between-person differences average levels of X across people i and beeps b.

See <u>Gordon (2018)</u> for a tutorial PDF Josh Jackson's "Multilevel Model (for EMA data)"

Variance Decomposition: Multilevel Models

ID	day	beep	y ₁
S1	1	1	1
S1	1	2	3
S1	1	3	1
S1	1	4	2
S1	1	5	NA
S2	1	1	2
S2	1	2	2
S2	1	3	4
S2	1	4	3
S2	1	5	NA
S1	2	1	1
S1	2	2	3
S1	2	3	1
S1	2	4	2
S1	2	5	NA
S2	2	1	1
S2	2	2	2
S2	2	3	2
S2	2	4	1
S2	2	5	NA

Observations

Level 1:

$$Y_{bi} = \beta_{0i} + \beta_{1i} * (X_{bi} - \overline{X}_i) + \varepsilon_{bi}$$

Person

Level 2:

$$\beta_{0i} = \mu_{00} + \mu_{01} * (\overline{X}_i - \overline{X}) + r_{0i}$$

$$\beta_{1i} = \mu_{10} + \mu_{11} * (\overline{X}_i - \overline{X}) + r_{0i}$$

 β_{0i} = average levels of Y for person i across beeps b.

 β_{1i} = average change in Y as a function of within-person deviations in X for person i across beeps b.

 r_{0i} = deviations from average levels of Y for person i across beeps b

 r_{0i} =deviations in change in Y as a function of deviations in within-person levels of X for person i across beeps b.

See Gordon (2018) for a tutorial PDF

Josh Jackson's "Multilevel Model (for EMA data)"

ID	Date	V1	V2	V3	V4	V5
1	10/22/18 15:23	3	3	4	3	3
1	10/22/18 23:23	2	2	1	4	2
1	10/22/18 23:25	3	1	1	3	4
1	10/23/18 17:50	3	4	4	3	3
1	10/23/18 19:39	2	3	3	3	3
1	10/24/18 0:00	5	4	1	4	1
1	10/24/18 11:44	4	3	2	1	2
1	10/24/18 15:37	5	2	4	4	3
1	10/24/18 20:46	2	3	3	2	3
1	10/25/18 21:07	4	2	3	1	3
1	10/25/18 22:54	4	3	2	4	0
1	10/25/18 23:47	3	2	3	2	2
1	10/26/18 8:44	4	4	1	4	4
1	10/27/18 16:46	2	2	2	4	3
1	10/27/18 22:55	2	1	1	2	2
1	10/28/18 3:40	4	3	0	4	4

	V1	V2	V3	V4	V5
V1					
V2	0.02				
V3	-0.05	0.08			
V4	0.64	-0.12	-0.10		
V5	0.26	-0.27	0.43	0.07	

	V1	V2	V3	V4	V5
V1	.11	.04	12	.22	.15
V2	0.02	.43	.16	20	36
V3	-0.05	0.08	25	12	.37
V4	0.64	-0.12	-0.10	.60	.10
V5	0.26	-0.27	0.43	0.07	.33

Cross-Lagged VAR, GIMME, and EGA

Multilevel Vector
Autoregressive Models

Graphical Vector Autoregressive Models

GIMME (Unified Structural Equation Models)

Dynamic Exploratory
Graph Analysis

Between- and withinperson (shrinkage)

Idiographic

Idiographic with constrained group-level pathways (by consensus)

Idiographic (with some multilevel options under development)

Frequentist or Bayesian Significance

Graphical LASSO (i.e. regularization)

Step-forward using Lagrange Multiplier Tests

Graphical LASSO & triangulated maximally filtered graph

Between-, within-, and person-specific effects

Results in correlation terms

Sub-group analysis, moderator pathways

Uses GLLA and embedding dimensions to capture change in continuous time metrics

mlVAR::mlVAR()

graphicalVAR::
graphicalVAR()

gimme::gimme()

EGAnet::dynEGA()

Bringmann et al., 2016

Wild et al., 2010; Epskamp et al., 2018 Beltz & Gates, 2017; Lane et al., 2019

Golino & Epskamp, 2017; Golino et al., 2020

Machine Learning

Prediction: Does X predict Y?

Prediction: Does X predict Y across people?

Are there individual differences in person-specific prediction?

Machine Learning

Regularized (Logistic) Regression

Random Forest

Naïve Bayes

BISCU(W)IT

Neural Networks

Support Vector Machines

... And more

All supported by cross-validation, regularization, ensemble methods (e.g., bagging)

Machine Learning

Are there individual differences in person-specific prediction?

Beck & Jackson, under review; See also Fisher & Soyster, 2019; Soyster et al., 2020, Butter et al., 2020

Machine Learning

Beck & Jackson, under review; See also Fisher & Soyster, 2019; Soyster et al., 2020, Butter et al., 2020

Machine Learning

Beck & Jackson, under review; See also <u>Fisher & Soyster, 2019</u>; <u>Soyster et al., 2020</u>, <u>Butter et al., 2020</u>

Differential Equation Models

Dynamical Systems Theory

Equilibria

Attractors

Repellers

$$\Delta X = b_0 + b_1 X$$

Location: $0 = b_0 + b_1 X$

Danvers, Wundrack, & Mehl, 2020; Butner, 2014, Boker et al., 2009 Butler & Cuelz, 2020, Revelle & Condon, 2015, Revelle & Wilt, 2020

Eiko Fried & Don Robinaugh's "Formalizing Verbal Theories"

Differential Equation Models

Equilibria

Attractors

Repellers

$$\Delta X = b_0 + b_1 X_0$$
Location: $X = -\frac{b_0}{b_1}$

Danvers, Wundrack, & Mehl, 2020; Butner, 2014, Boker et al., 2009 Butler & Cuelz, 2020, Revelle & Condon, 2015, Revelle & Wilt, 2020

Eiko Fried & Don Robinaugh's "Formalizing Verbal Theories"

Differential Equation Models

Dynamical Systems Theory

Equilibria

Attractors

Repellers

$$\Delta X = b_0 + b_1 X_h$$

 $\Delta X = b_0 + b_1 X_{b_0}$ Location: $X = -\frac{b_0}{b_1}$

Strength: b₁

lm() EGAnet::glla() psych::cta() rties::estDerivs(); rties::indivClo()

Danvers, Wundrack, & Mehl, 2020; Butner, 2014, Boker et al., 2009 Butler & Cuelz, 2020, Revelle & Condon, 2015, Revelle & Wilt, 2020

Eiko Fried & Don Robinaugh's "Formalizing Verbal Theories"

Thank you!

- https://github.com/emoriebeck/R-tutorials
- @EmorieBeck
- emorie_beck@northwestern.edu