Assignment 1B report

Name: Mohab Yousef

Mey0012

Test Linear Genotype

Fitness Evolution

Example Fitness Distribution

Aside: Sampling With and Without Replacement

Charbactically colorting camples from a population is a year common exactics in many fields of study, and a critical companyable of EC implementations. These

Calling EAs log_base_state and adding fitness to Histogram

Distribution fitness over 1 run Histogram

Example EA Experiment for 3 runs

Easy Green Config

17 k = 2

Easy Green Average best fitness = 35.2 when mu = 200, num children =50, mutation rate = 0.05 over 5 runs

Average best fitness: 35.2

EA for easy green over 30 EA runs

Statical Analysis for Easy Green

```
[34]: run_stats('data/la/easy/best_per_run.txt', 'data/lb/easy_green/best_per_run.txt')

Number of samples: 30
data/la/easy/best_per_run.txt mean: 20.433333333334
data/la/easy/best_per_run.txt stdv: 2.0625283000496615
data/lb/easy_green/best_per_run.txt mean: 35.033333333333
data/lb/easy_green/best_per_run.txt stdv: 1.6914252984479938
p-value: 4.066667372754878e-36

Hard Problem Instance
```

1a Average = 20.43, Variation = 2.06 1b: Average = 35.03, Variation = 1.69 1b data performs much better than 1a

EA over 5 EA Hard Green, mu =50, number of children = 20, mutation rate = 0.05

jupyter hard_green_config.txt Last Checkpoint: 3 days ago

```
File Edit View Settings Help
[ea]
 mu = 50
num children = 20
mutation_rate = 0.05
 parent_selection = k_tournament_with_replacement
survival_selection = k_tournament_without_replacement
 # Don't touch this
individual_class = LinearGenotype
[recombination_kwargs]
l method = uniform
[parent_selection_kwargs]
[survival_selection_kwargs]
7 k = 3
[mutation_kwargs]
bonus = False
# Don't touch this
 bounds = ${problem:bounds}
```


Average Best fitness = 98.4

x= y=7.8e+04

Average best fitness: 98.4

EA over 30 runs for Hard Green

Evolution and Statical analysis are down below shows the mean, stdv, best run mean, best run stdv, and p-value


```
1a (hard):
Average = 84.37
Variation = 14.77
1b (hard green):
Average = 81.53
Variation = 173.45 (much higher variation)
```

The p-value is 0.93, which is quite large. This means there is no significant difference between the two datasets.

Easy Yellow Best solution fitness is 36

```
1 [ea]
2 mu = 30
3 num children = 10
4 mutation_rate = 0.05
5 parent selection = stochastic universal sampling
6 survival_selection = k_tournament_without_replacement
7 # Don't touch this
8 individual_class = LinearGenotype
0 [recombination kwargs]
1 method = uniform
3 [parent_selection_kwargs]
4 k = 3
6 [survival_selection_kwargs]
7 k = 2
9 [mutation kwargs]
bonus = False
1 # Don't touch this
2 bounds = ${problem:bounds}
```


Easy Yellow Statistical Analysis

Mean Best Fitness: 34.33

Standard Deviation: 2.08 (shows the results are fairly close to the average)

Maximum Best Fitness: 36 Minimum Best Fitness: 32

the fitness scores are quite consistent, staying within a narrow range (32 to 36).

Hard Yellow Config

Best solution Fitness is 318 for Hard Yellow

Statical Analysis for Hard Yellow

Mean Best Fitness: 72.67 Standard Deviation: 212.46 Maximum Best Fitness: 318 Minimum Best Fitness: -50

some runs performed very poorly. high variation means that the performance is inconsistent.

Statistical Analysis of Best Fitnesses (Hard Yellow Deliverable):
Mean Best Fitness: 72.6666666666667
Standard Deviation of Best Fitness: 212.4648990617823
Maximum Best Fitness: 318
Minimum Best Fitness: -50

Easy Red Config

```
lead
mu = 40
num_children = 15
mu = 40
num_children = 15
mutation_rate = 0.05
parent_selection = k_tournament_with_replacement
survival_selection = k_tournament_without_replacement
# Don't touch this
individual_class = LinearGenotype

[recombination_kwargs]
method = uniform

[parent_selection_kwargs]
k = 4

[survival_selection_kwargs]
k = 3

[mutation_kwargs]
mutation_kwargs]
mutation_kwargs]
bonus = False
# Don't touch this
bounds = ${problem:bounds}
```

Best Solution Fitness for Easy RED = 36

Statical Analysis for Easy RED

```
Statistical Analysis of Best Fitnesses (Easy Red Deliverable):
Mean Best Fitness: 34
Standard Deviation of Best Fitness: 2.0
Maximum Best Fitness: 36
Minimum Best Fitness: 32
```

Mean Best Fitness: 34

Standard Deviation: 2.0 – Shows that the scores are close to the average

Maximum Best Fitness: 36 Minimum Best Fitness: 32

The fitness scores are quite consistent, staying within a narrow range of 32 to 36.

Hard Red Config

Hard Red Solution Fitness is 296

Statical Analysis For Hard RED

```
Statistical Analysis of Best Fitnesses (Hard Red Deliverable):
Mean Best Fitness: 65.33333333333333
Standard Deviation of Best Fitness: 199.7631931396105
Maximum Best Fitness: 296
Minimum Best Fitness: -50
```

Mean Best Fitness: 65.33

Standard Deviation: 199.76 very high variation

Maximum Best Fitness: 296 Minimum Best Fitness: -50

with both high and very low scores, we can see that it is inconsistent performance.

