Durée : 1H30

L'usage de la calculatrice et du mobile est interdit.

Exercice 1: (7.5 pts)

Soit $\varphi \in End(\mathbb{R}_2[X])$ défini par :

$$\varphi: \ \mathbb{R}_2[X] \qquad \to \mathbb{R}_2[X]$$

$$P = \alpha + \beta X + \lambda X^2 \quad \mapsto \varphi(P) = (\alpha - \beta) + (-\alpha + \beta) X + 2\lambda X^2.$$

- **1-** Déterminer $M = M_C(\varphi)$ où $C = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.
- **2-** Soit C' une base de $\mathbb{R}_2[X]$ définie par : $C' = (P_1 = 1 + X, P_2 = X^2, P_3 = -1 + X)$. Déterminer la matrice de passage P de C vers C'.
- 3- En Déduire :

$$\mathbf{a}/N = M_{C'}(\varphi).$$

b/ La matrice M^n où $n \in \mathbb{N}^*$.

Exercice 2: (5 pts)

Soit u l'application de $\mathbb{R}_2[X]$ vers $\mathbb{R}_2[X]$ définie, pour tout $P \in \mathbb{R}_2[X]$, par :

$$u(P) = (2X + 1) P - (X^2 - 1) P'$$
, où P' désigne la dérivée de P .

et soit $B = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$, et $M = M_B(u)$.

- **1-** Montrer que $u \in End(\mathbb{R}_2[X])$.
- **2-** Déterminer les valeurs propres de M.
- ${\bf 3-}$ Déduire que M est diagonalisable. Justifier.
- **4-** Déterminer une matrice S pour que $N=S^{-1}.M.S$ soit diagonale.

Exercice 3: (7.5 pts)

Soit, dans \mathbb{R} , le système linéaire suivant :

$$\begin{cases} x + \alpha y + \alpha^2 z = 1 \\ x + \alpha y + \alpha \beta z = \alpha \\ \beta x + \alpha^2 y + \alpha^2 \beta z = \alpha^2 \beta \end{cases}$$
 $(S_{\alpha,\beta})$

où α et β sont des paramètres réels .

- 1- Calculer le déterminant de la matrice du système $(S_{\alpha,\beta})$.
- **2-** Pour quelles valeurs de α et β le système $(S_{\alpha,\beta})$ est de Cramer. Dans ce cas, résoudre $(S_{\alpha,\beta})$.
 - **3-** Résoudre $(S_{\alpha,\beta})$ dans le cas où il n'est pas de Cramer.

Bon Courage