Методы Оптимизации. Даниил Меркулов. Субградиент. Субдифференциал.

Directional derivative

Производная по направлению

Пусть f(x) - выпуклая функция на выпуклом множестве $S \subseteq \mathbb{R}^n$ и пусть $x_0 \in \mathbf{ri}S$. Тогда в x_0 существует производная по любому направлению $s \in \mathbf{Lin}S$:

$$f'(x_0;s) = \lim_{lpha o 0+} rac{f(x_0 + lpha s) - f(x_0)}{lpha}$$

Важные факты о производной по направлению

• Если функция f(x) дифференцируема в точке x_0 , то ее производная по любому направлению $s \in \mathbb{R}^n$ существует и равна:

$$f'(x_0;s) = \langle
abla f(x_0), s
angle$$

Subgradient

Мотивация

Важным свойством непрерывной выпуклой функции f(x) является то, что в выбранной точке x_0 для всех $x \in \mathrm{dom}\ f$ выполнено неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0
angle$$

для некоторого вектора g, то есть касательная к графику функции является *глобальной* оценкой снизу для функции.

- ullet Если f(x) дифференцируема, то $g =
 abla f(x_0)$
- Не все непрерывные выпуклые функции дифференцируемы :)

Не хочется лишаться такого вкусного свойства.

Субградиент

Вектор g называется **субградиентом** функции $f(x):S \to \mathbb{R}$ в точке x_0 , если $\forall x \in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0
angle$$

Субдифференциал

Множество всех субградиентов функции f(x) в точке x_0 называется субдифференциалом f в x_0 и обозначается $\partial f(x_0)$.

- ullet Если $x_0 \in \mathbf{ri}S$, то $\partial f(x_0)$ выпуклое компактное множество.
- ullet Выпуклая функция f(x) дифференцируема в точке $x_0 \iff \partial f(x_0) =
 abla f(x_0)$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

Теорема Моро - Рокафеллара (субдифференциал линейной комбинации)

Пусть $f_i(x)$ - выпуклые функции на выпуклых множествах $S_i,\ i=\overline{1,n}$. Тогда, если $\bigcap_{i=1}^n \mathbf{r} \mathbf{i} S_i
eq \emptyset$ то функция $f(x)=\sum_{i=1}^n a_i f_i(x),\ a_i>0$ имеет субдифференциал $\partial_S f(x)$ на множестве $S=\bigcap_{i=1}^n S_i$ и

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Важное следствие (субдифференциал максимума)

Пусть $f_i(x)$ - выпуклые функции на открытом выпуклом множестве $S\subseteq \mathbb{R}^n, \ x_0\in S$, а поточечный максимум определяется как $f(x)=\max_i f_i(x)$. Тогда:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0)
ight\}$$

где
$$I(x) = \{i \in [1:m]: f_i(x) = f(x)\}$$

Теорема (субдифференциал сложной функции)

Пусть g_1, \ldots, g_m - выпуклые функции на открытом выпуклом множестве $S \subseteq \mathbb{R}^n$, $g = (g_1, \ldots, g_m)$ - образованная из них вектор - функция, φ - монотонно неубывающая выпуклая функция на открытом выпуклом множестве $U \subseteq \mathbb{R}^m$, причем $g(S) \in U$. Тогда субдифференциал функции $f(x) = \varphi\left(g(x)\right)$ имеет вид:

$$\partial f(x) = igcup_{p \in \partial arphi(u)} \left(\sum_{i=1}^m p_i \partial g_i(x)
ight),$$

где u = g(x)

Важное следствие

В частности, если функция φ дифференцируема в точке u=g(x), то формула запишется так:

$$\partial f(x) = \sum_{i=1}^m rac{\partial arphi}{\partial u_i}(u) \partial g_i(x)$$

Conditional subgradient

Определение

Множество

$$\{g|f(x)-f(x_0)\geq \langle g,x-x_0
angle,\ orall x\in S\}$$

называется **субдифференциалом** f в x_0 на множестве S и обозначается $\partial_S f(x_0)$.

Примеры

Концептуально, различают три способа решения задач на поиск субградиента:

- Теоремы Моро Рокафеллара, композиции, максимума
- Геометрически
- По определению

Пример 1

Найти $\partial f(x)$, если f(x) = |x|

Пример 2

Найти $\partial f(x)$, если f(x) = |x-1| + |x+1|

Пример 3

Найти $\partial f(x)$, если $f(x) = [\max(0, f_0(x))]^q$. Здесь $f_0(x)$ - выпуклая функция на открытом выпуклом множестве $S, q \geq 1$.

Решение:

Согласно теореме о композиции (функция $arphi(x)=x^q$ - дифференцируема), а $g(x)=\max(0,f_0(x))$

имеем:
$$\partial f(x) = q(g(x))^{q-1} \partial g(x)$$

По теореме о поточечном максимуме:

$$\partial g(x) = \left\{ egin{aligned} \partial f_0(x), & f_0(x) > 0, \ \{0\}, & f_0(x) < 0 \ \{a \mid a = \lambda a', \ 0 \leq \lambda \leq 1, \ a' \in \partial f_0(x), \ f_0(x) = 0 \} \end{aligned}
ight.$$

Пример 4

Найти $\partial f(x)$, если $f(x) = \sin x, x \in [\pi/2; 2\pi]$

$$\partial f_G(x) = \begin{cases} (-\infty, \cos x_0], & x = \pi/2; \\ \varnothing, & x \in (\pi/2, x_0); \\ \cos x, & x \in [x_0, 2\pi); \\ [1, +\infty], & x = 2\pi. \end{cases}$$

Пример 5

Найти $\partial f(x)$, если $f(x) = |c_1^T x| + |c_2^T x|$

Домашнее задание 7

- 1. Докажите, что точка x_0 является точкой минимума выпуклой функции f(x) тогда и только тогда, когда $0\in\partial f(x_0)$
- 2. Найти $\partial f(x)$, если $f(x) = \mathrm{ReLU}(x) = \mathrm{max}\{0,x\}$
- 3. Найти $\partial f(x)$, если $f(x) = \|x\|_p$ при $p=1,2,\infty$
- 4. Найти $\partial f(x)$, если $f(x) = \|Ax b\|_1^2$
- 5. Найти $\partial f(x)$, если $f(x) = e^{\|x\|}$