ODE-I 1 MA 032 2018-10-24 ANSWERS

(1) If
$$b \le 0$$
: $(0, +\infty)$

If $0 < b < 2$: $(b, +\infty)$

If $b = 2$: theorem doesn't apply

If $b > 2$: $(0, b)$

Then
$$\begin{cases} u_1' = u_2 \\ u_2' = u_3 \\ u_3' = u_3 \\ u_3' = u_3 \\ u_4 \\ \vdots$$

(iii)
$$e^{tA} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + t \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} + \frac{t^2}{2!} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(iv) Indicial equation:
$$3r(r-1)+r-1=0$$

 $3r^2-2r-1=0$
 $r=\frac{2\pm\sqrt{4+12}}{6}=\frac{2\pm4}{6}$
 $r=1, r_2=-\frac{1}{3}$
General solution is $c_1x+c_2x^{1/3}$

(ii) Using reduction of order method, we get
$$y_2(x) = \left(-\frac{1}{2} \times^2 e^{-2x} - \frac{1}{2} \times e^{-2x} - \frac{1}{4} e^{-2x}\right) e^x,$$
 so that general solution is $c_1e^x + c_2\left(-\frac{1}{2} \times^2 e^{-2x} - \frac{1}{4} \times e^{-2x}\right) e^x$

(ii)
$$x_0 = 0$$
 is a regular singular point ludicial equation: $r^2 - r + 1 = 0 = 1$ $r = \frac{1}{2} \pm \frac{\sqrt{3}}{2}$

A Solution: $y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}$ with $r = \frac{1}{2} + \frac{\sqrt{3}}{2}$, $a_0 = 1$

$$a_{1}=0$$

$$a_{1}=0$$

$$a_{1}=a_{1}=0$$

$$a_{2}=a_{1}=0$$

$$a_{3}=0$$

$$a_{4}=0$$

$$a_{5}=0$$

$$a_{7}=0$$

$$a_$$

Note: this is complex-valued. To find a real-valued solution, one should take real part which is a mess.

The Line if
$$(x_0, y_0)$$
 is stable and there exists to set $\|(x_0, y_0)\| = (x_0)\| = 0$ for any trajectory with $\|(x_0, y_0)\| = (x_0)\| < \varepsilon$

(ii)
$$\begin{cases} y^{-x=0} \\ y^{4}-x=0 \end{cases} =)$$
 (0,0) and (1,1)

polynomials, so C2-functions.

(iv) At
$$(0,0)$$
, einerrited system is
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

eigenvalues - 2 ± 2i - spiral sink - stable and asympt. stable

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \end{pmatrix}$$

$$\begin{cases} x \\ y-1 \end{cases}$$

eigenvalues - ½ ± 513 - saddle point - unitable

(ii) Use Liapunov function
$$V(x,y) = Ax^{2k} + By^{2k}$$

 $\dot{V} = 2kAx^{2k-1}(5y^{i0} - xe^{x}) + 2nBy^{2k-1}(-2xy)$
So choosing $Ax = 1$, $A = 2$, we get $V = 2x + By^{2k}$
 $\dot{V} = -2x^{2}e^{x}$ neg. semi-def

V = -2x E J

so (0,0) is stable