Fizyka jądrowa

Budowa jądra atomu

- Jądro atomowe składa się z protonów i neutronów wiązanych siłami jądrowymi, niezależnymi od ładunku.
- Neutron i proton określa się wspólną nazwą nukleon.
- Jądra o tej samej liczbie protonów, różniące się liczbą neutronów nazywamy izotopami.
- Łączna liczba protonów i neutronów w jądrze → liczba masowa A jądra.
- Liczba neutronów jest dana równaniem A Z, (Z jest liczbą protonów zwaną liczbą atomową).
- Wartość liczby A dla jądra atomowego jest bardzo bliska masie odpowiadającego mu atomu.

Atom pierwiastka X o liczbie atomowej Z i liczbie masowej A oznaczamy symbolem ${A \atop Z} X$

Pomiary rozpraszania wysokoenergetycznych protonów lub neutronów na jądrach atomowych → jądra mają kształt kulisty

$$R = (1.2 \cdot 10^{-15}) A^{1/3} \text{ m}$$

średni promień jąder (oprócz najmniejszych)

Liczba nukleonów (na jednostkę objętości) dla jądra o promieniu *R* i liczbie masowej *A*

$$N = \frac{A}{\frac{4}{3}\pi R^3} = \frac{A}{\frac{4}{3}\pi [(1.2 \cdot 10^{-15} m)A^{1/3}]^3} =$$

$$= 1.38 \cdot 10^{44} \text{ nukleonów/ m}^3$$

gęstość
$$\rho = NM = 2.3 \cdot 10^{17} \text{ kg/m}^3$$

Masa protonu = masie neutronu $\rightarrow M = 1.67 \cdot 10^{-27}$ kg.

Oddziaływanie nukleon-nukleon

Siła jądrowa (oddziaływanie silne) → wiąże nukleony w jądrach atomowych → większa niż siła odpychania elektrostatycznego występująca pomiędzy protonami.

Oddziaływania proton - proton, proton - neutron i neutron - neutron są identyczne i nazywamy je oddziaływaniami nukleon - nukleon.

Masy atomowe i energie wiązań można wyznaczyć doświadczalnie w oparciu o spektroskopię masową lub bilans energii w reakcjach jądrowych.

Jednostki

Masa jest podawana w jednostkach masy atomowej (u). Za wzorzec przyjmuje się 1/12 masy atomowej węgla.

	Z	A	Masa (u)	ΔE (MeV)	ΔΕ/Α
$\int_{0}^{1} n$	0	1	1.0086654	-	-
$^{1}_{1}\mathrm{H}$	1	1	1.0078252	1	1
⁴ ₂ He	2	4	4.0026033	28.3	7.07
⁹ ₄ Be	4	9	9.0121858	58.0	6.45
¹² ₆ C	6	12	12.0000000	92.2	7.68
¹⁶ ₈ O	8	16	15.994915	127.5	7.97
63 29 Cu	29	63	62.929594	552	8.50
$^{120}_{50}{ m Sn}$	50	120	119.9021	1020	8.02
$^{184}_{74} W$	74	184	183.9510	1476	8.02
²³⁸ ₉₂ U	92	238	238.05076	1803	7.58

Przykład: porównujemy masę atomu ⁴₂He z sumą mas jego składników

$$M\binom{4}{2}He = 4.0026033$$
 u
 $2M\binom{1}{1}H + 2M\binom{1}{0}n = 2\cdot1.0078252$ $u + 2\cdot1.0086654$ $u = 4.0329812$ u

Masa helu jest mniejsza od masy składników o 0.0303779 u

Dla każdego atomu jego masa jest mniejsza od masy składników o wielkość Δ*M* zwaną niedoborem masy lub defektem masy.

Gdy układ oddzielnych swobodnych nukleonów łączy się w jądro - energia układu zmniejsza się o wartość ΔE energii wiązania jądra.

Z teorii względności: $E = mc^2$

Najsilniej są wiązane nukleony w jądrach pierwiastków ze środkowej części układu okresowego.

Krótki zasięg sił jądrowych → wielkość Δ*E/A* nie jest stała !!!