IPEIO - PROBABILIDADES E ESTATÍSTICA

Ano Lectivo 2016/17

 $2^{\rm o}$ Teste - 17 de maio de 2017

Duração: 0h45

(0.3)

Ι	Nome	e completo:					_			
I	V.º a	luno:	Curso:							
com t	ıma (· -	=	á correcta. Deternonta 0.1 valores e				
1.	Cons	sidere a amostra	aleatória (X_1, X_2)	(X_2,\ldots,X_n) de i	ıma população c	om distribuição P	(4λ) .			
(0.3)	(a)	V F O estima	$ dor \ \hat{\lambda} = \frac{\overline{X}}{4} \ \acute{e} \ ce $	ntrado para λ .						
(0.3)	(b)	O erro quadráti	co médio (EQM	$\hat{\lambda} = \frac{\overline{X}}{4} \text{ \'e?}$						
		\fbox{A} 4λ	$\boxed{B} \ \frac{\lambda}{4n}$	\fbox{C} $4\lambda^2$	extstyle e	E Nenhur	ma das anteriores			
(0.3)	(c)	Dada a amostra é?	(7,3,3,5,6	,5,2,5,4,2), uma estimativa	a pontual de λ res	pontual de λ resultante de $\hat{\lambda} = \overline{\frac{X}{4}}$,			
		A 4.20	B 1.05	C 2.10	D 3.05	E Nenhur	na das anteriores			
2.	Cons	sidere a amostra	das velocidades	de download, e	em Mb/s , de 24	ligações à internet	:			
		49.66 53.36 51.69 44.82	48.15 47.80 50.28 46.75	52.94 49.57 56.04 48.91			.96 51.17 .40 50.09			
	onde	se observou $\bar{x} =$	49.48 e s = 3.8	964. Assuma a	normalidade d	la população.				
(0.4)	(a)	O intervalo de 9 casas decimais):	5% de confiança	a para o valor i	nédio da populaç	ção é (com valores	arredondados a 4			
		A]47.8344; 53	1.1256[B]47.	.9211 ; 51.0389[C]48.1717; 5	50.7884[D]41.4	184; 57.5417[
(0.4)	(b)	Para o teste de significância é:	hipóteses $H_0: \mu$	$u \ge 50 \ vs \ H_1:$	$\mu < 50$, a região	de rejeição para u	ım nível de 1% de			
		$[A] R_{0.01} =]2.32$	$26, +\infty$ [B] R_0	$[-\infty, -1.5]$	B19[$[-\infty, -2.5[$	$R_{0.01} =]1.282, +\infty[$			

(c) $\overline{\mathbb{V}}$ $\overline{\mathbb{F}}$ Seja p a proporção de ligações à internet com velocidade superior a 50Mb/s. Então,

 $IC_{95\%}(p) \subseteq IC_{99\%}(p).$

3. Pretende-se estabelecer uma relação linear entre a temperatura do ar (x em graus Celsius) e a concentração de ozono (Y em microgramas por metro cúbico). Para tal foram obtidos os seguintes dados relativos a 11 medições:

	25										
y_i	122.9	133.8	134.0	142.3	142.6	151.0	156.6	161.9	162.7	168.8	170.8

Resolva as questões com base nos cálculos obtidos pelo R:

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.2727 6.9782 1.186 0.266 conc. ozono 4.7164 0.2313 20.389 7.66e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.426 on 9 degrees of freedom Multiple R-squared: 0.9788, Adjusted R-squared: 0.9765

(0.3) (b) A estimativa do valor da concentração de ozono obtido pelo modelo para uma temperatura de 30 graus celsius é (com valores arredondados a 4 casas decimais):

A 140 7647 R 217 6187 C 11 6554 D 132 2612 F Nephuma das anteriores

 A
 149.7647
 B
 217.6187
 C
 11.6554
 D
 132.2612
 E
 Nenhuma das anteriores

(0.3) (c) \overline{V} \overline{F} O valor do coeficiente de determinação, permite concluir que a qualidade do ajustamento é "fraca".

(0.3) (d) F Para um nível de significância de 5%, rejeita-se a hipótese do verdadeiro valor do declive da recta de regressão ser nulo.

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

- 4. O peso de uma folha de transistor de papel produzido na FCT é uma variável aleatória X com distribuição normal de valor médio desconhecido. Uma amostra de pesos de 30 folhas foi recolhida, donde resultou $\bar{x}=10gr$ e s=0.8gr. Teste, para um nível de significância de $\alpha=5\%$, a hipótese de o verdadeiro desvio padrão do peso das folhas ser igual a 1gr.
- (0.2) Hipóteses:
- (0.2) Estatística do teste:
- (0.2) Região de rejeição:
- (0.2) Decisão:

IPEIO - PROBABILIDADES E ESTATÍSTICA

Ano Lectivo 2016/17

(0.4)

	Nom	e complet	io:											
	N.° ε	ıluno:		Curso):									
com	uma	ões que se cruz no q nem desc	uadrado											
1.	Con	sidere a a	amostra	aleatóri	a (X_1, X_2)	X_2,\ldots,Z_n	(X_n) de u	ıma pop	oulação	com dis	tribuição	o $P(4\lambda)$		
(0.3)	(a)	V F) estima	$\operatorname{dor} \hat{\lambda} =$	$=\frac{\overline{X}}{4}$ é ce	entrado j	para λ .							
(0.3)	(b)	O erro o	quadrátic	co médi	o (EQM	I) de $\hat{\lambda}$ =	$=\frac{\overline{X}}{4}$ é?							
		$\boxed{\mathtt{A}} \ 4\lambda$		$\boxed{B} \ \frac{\lambda}{16}$	$\frac{\lambda}{6n}$ C		$4\lambda^2$	$4\lambda^2$ $\boxed{\mathtt{D}} \frac{\lambda}{4n}$			E Nen	ıhuma d	na das anteriores	
(0.3)	(c)	Dada a é?	amostra	(7,3,	3, 5, 6	,5,2,	[5,4,2]), uma e	estimativ	va pontı	ial de λ	resultar	nte de $\hat{\lambda}$ =	$=\frac{\overline{X}}{4},$
	A 1.05 B 4.20 C 3.05 D 2.10 E Nenhuma das ante									as anteri	ores			
2.	Con	sidere a ε	amostra	das velc	ocidades	de dow	n load, ϵ	${ m em}~Mb/$	s, de 24	ligaçõe	s à inter	rnet:		
		49.66 51.69	53.36 44.82	48.15 50.28	47.80 46.75	52.94 56.04	49.57 48.91	49.32 56.23	45.65 49.05	37.96 55.13	47.63 49.96	46.96 48.40	51.17 50.09	
	ond	e se obser	vou $\bar{x} =$	49.48 e	e s = 3.8	3964. As	ssuma a	norma	lidade	da popı	ılação.			
(0.4)	(a)	O interv		5% de c	confianç	a para o	valor n	nédio da	ı popula	ção é (d	com valc	ores arre	dondados	s a 4
		A]47.	9211;51	1.0389[B]48	.1717; 5	50.7884[C]47	7.8344;	51.1256	[D]4	11.4184;	57.5417	

significância é:

(b) Para o teste de hipóteses $H_0: \mu \geq 50 \ vs \ H_1: \mu < 50$, a região de rejeição para um nível de 1% de

 $\boxed{ \textbf{A} } \; R_{0.01} =] - \infty, -2.5 [\quad \boxed{ \textbf{B} } \; R_{0.01} =] \\ 1.282, + \infty [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ 2.326, + \infty [\quad \boxed{ \textbf{D} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ - \infty, -1.319 [\quad \boxed{ \textbf{C} } \; R_{0.01} =] \\ -$

(c) $\overline{\mathbb{V}}$ $\overline{\mathbb{F}}$ Seja p a proporção de ligações à internet com velocidade superior a 50Mb/s. Então, (0.3)

$$IC_{95\%}(p) \supseteq IC_{99\%}(p).$$

3. Pretende-se estabelecer uma relação linear entre a temperatura do ar (x em graus Celsius) e a concentração de ozono (Y em microgramas por metro cúbico). Para tal foram obtidos os seguintes dados relativos a 11 medições:

	25										
y_i	122.9	133.8	134.0	142.3	142.6	151.0	156.6	161.9	162.7	168.8	170.8

Resolva as questões com base nos cálculos obtidos pelo R:

Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 8.2727 6.97821.186 0.2660.231320.389 conc. ozono 4.71647.66e-09Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.426 on 9 degrees of freedom Multiple R-squared: 0.9788, Adjusted R-squared: 0.9765

- (0.3) (a) A reta estimada é (com valores arredondados a 4 casas decimais): $\boxed{\mathbb{A}} \hat{Y} = 8.2727 + 4.7164x \qquad \boxed{\mathbb{B}} \hat{Y} = 4.7164 + 0.2313x \qquad \boxed{\mathbb{C}} \hat{Y} = 8.2727 + 6.9782x$
- (0.3) (b) A estimativa do valor da concentração de ozono obtido pelo modelo para uma temperatura de 30 graus celsius é (com valores arredondados a 4 casas decimais):

 A 11.6554
 B 217.6187
 C 149.7647
 D 132.2612
 E Nenhuma das anteriores
- (0.3) (c) \overline{V} \overline{F} O valor do coeficiente de determinação, permite concluir que a qualidade do ajustamento é "fraca".
- (0.3) (d) F Para um nível de significância de 5%, não se rejeita a hipótese do verdadeiro valor do declive da recta de regressão ser nulo.

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

- 4. O peso de uma folha de transistor de papel produzido na FCT é uma variável aleatória X com distribuição normal de valor médio desconhecido. Uma amostra de pesos de 30 folhas foi recolhida, donde resultou $\bar{x}=10gr$ e s=0.8gr. Teste, para um nível de significância de $\alpha=5\%$, a hipótese de o verdadeiro desvio padrão do peso das folhas ser igual a 1gr.
- (0.2) Hipóteses:
- (0.2) Estatística do teste:
- (0.2) Região de rejeição:
- (0.2) Decisão: