Rețele neurale

Învățare automată

Introducere

- Clasificare de imagini folosind o rețea neurală
- Rețea de tip feed forward
- Recunoașterea literelor în imagini (dataset MNIST)

Feed forward

SGD

- Stochastic gradient descent:
 - 1. Forward
 - 2. Compute errors
 - 3. Backpropagation
 - 4. Update parameters

2. Compute errors

$$\frac{\partial E}{\partial \mathbf{W}^{(l)}} = \frac{\partial E}{\partial \mathbf{a}^{(L)}} \frac{\partial \mathbf{a}^{(L)}}{\partial \mathbf{a}^{(L-1)}} \cdots \frac{\partial \mathbf{a}^{(l+2)}}{\partial \mathbf{a}^{(l+1)}} \frac{\partial \mathbf{a}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}}$$

4. Parameters update

Gradient Descent Update Rule

$$w_{t+1} = w_t - \eta
abla w_t$$

Momentum based Gradient Descent Update Rule

$$v_t = \gamma * v_{t-1} + \eta \nabla w_t$$

$$w_{t+1}=w_t-v_t$$

Layers

- Rețea Linear -> ReLU -> Linear
- Linear
 - Forward: y = x * weight + bias
 - Backward
 - dweight = x.T * dy
 - dbias = dy
 - => dy * weight.T
- ReLU
 - Forward: max (0,x)
 - Backward: => dy * (x > 0)

- Cross entropy combină softmax cu negative log-likelihood
- Softmax transformă rezultatele generate de rețea într-o distribuție de probabilitate

$$S(f_{y_i}) = rac{e^{f_{y_i}}}{\sum_j e^{f_j}}$$

- Cross entropy combină softmax cu negative log-likelihood
- Negative log-likelihood

$$L(\mathbf{y}) = -\log(\mathbf{y})$$

- Cross entropy
 - Forward:

$$p_k = rac{e^{f_k}}{\sum_j e^{f_j}}$$

$$p_k = rac{e^{f_k}}{\sum_j e^{f_j}}$$

$$L_i = -log(p_{y_i})$$

$$\frac{\partial L_i}{\partial f_k} = p_k - \mathbb{1}(y_i = k)$$