

VORLESUNG **NETZWERKSICHERHEIT**

SOMMERSEMESTER 2023 MO. 14-16 UHR

KAPITEL 0 ORGANISATION

MATTHIAS WÜBBELING

- Studium der Informatik an der TU-Dortmund (Dipl.-Inf.)
- Promotion an der Universität Bonn (Dr. rer. nat.)
- Akademischer Rat / Studienberater Cyber-Security an der Uni Bonn
- Wissenschaftler bei Fraunhofer FKIE (Abteilung Cyber Security)
- Administrator bei der Gesellschaft für Informatik
 - Kostenfreie Mitgliedschaft für Studierende & Auszubildende
 (https://gi.de/mitgliedschaft/mitglied-werden/studierende-auszubildende)
- Freiberuflicher Autor und Berater im Bereich IT-Sicherheit
- Geschäftsführer der Identeco GmbH & Co. KG (https://identeco.de)

MATTHIAS WÜBBELING (FORTS.)

- Forschungsschwerpunkte:
 - Anomalien im Internet-Routing (insb. BGP)
 - Praktische Angriffe auf Netzwerk-/Internet-Infrastrukturen
 - Intrusion Detection / Prevention (Perimetersicherheit)
 - Kommunikationssicherheit
 - IT-Sicherheitsbewusstsein
 - Hardwarenahe / Systemnahe Programmierung (Arduino)

STRUKTUR DER VERANSTALTUNG

- Vorlesung:
 - https://net.cs.uni-bonn.de/wg/itsec/teaching/st-2023/netzwerksicherheit/
 - Präsenz Vorlesung, 13 Termine im Sommersemester 2023
- Klausur:
 - Zulassung: Erfolgreiche Teilnahme an den Übungen
 - Termine:
 - 1. Klausur: vermutlich in der letzten VL-Woche
 - 2. Klausur: zum Ende der vorlesungsfreien Zeit
 - Inhalte aus Vorlesungen und Übungen

STRUKTUR DER VERANSTALTUNG (FORTS.)

Übungen:

- Globalübung im Hörsaal (Di. 16 18 Uhr) BEGINN: NÄCHSTE WOCHE!G
- 12 Termine im Sommersemester 2023
- 11 Übungszettel (jeweils 1 Woche Bearbeitungszeit, Aus-/Abgabe dienstags)

Teilnahme:

- Abgabe von Übungszetteln in 2er Gruppen (Abgabe in Artemis)
 - https://alpro.besec.uni-bonn.de/ bitte @uni-bonn.de Adresse nutzen.
- Gruppenregistrierung bei erster Abgabe

Modul: BA-INF 147 - Netzwerksicherheit
Semester: Sommersemester X Wintersemester \square 2020
Erforderliche Studienleistungen gemäß § 11 (6) PO:
x Bearbeitung regelmäßig erscheinender Übungsblätter
x Die Bearbeitung kann in Gruppen von bis zu 2 Studierenden erfolgen.
x Insgesamt müssen $\geq p$ % der Punkte erreicht werden. p=50
\square Für \ge x % der Aufgabenblätter müssen jeweils \ge y % der Punkte erreicht werden. $\mathbf{x} = \mathbf{y} = \mathbf{y}$
x Die Aufgaben sind aufgeteilt in theoretische und praktische Aufgaben, und zu erzielende Punkte gelten separat für beide Teile.
☐ Jeder Student/jede Studentin muss -mal die Lösung einer Aufgabe vorstellen.
☐ Erfolgreiche Bearbeitung eines Programmierprojekts
 □ Die Bearbeitung kann in Gruppen von bis zu Studierenden erfolgen. □ Das Projektergebnis muss präsentiert werden.
☐ Teilnahme an Leistungstests
☐ Es finden Leistungstests statt.
☐ Insgesamt müssen ≥ p % der Punkte erreicht werden. p=
\Box Für \geq x % der Tests müssen jeweils \geq y % der Punkte erreicht werden.
x= ; y=
☐ Jeder Test ersetzt jeweils ein Übungsblatt und trägt entsprechend zu deren Wertung bei.
☐ Ausarbeitung und Halten eines Referats
In den Prüfungsausschüssen soll beantragt werden, folgende Parameterwerte generell zu

STRUKTUR DER VERANSTALTUNG (FORTS.)

- Lernziele (Vorlesung & Übung):
 - Grundlagenvermittlung (Bachelor-Veranstaltung 4. Semester)
 - Verständnis von Computer-Netzwerk- und Sicherheitsarchitekturen
 - Lese-/Verstehen-Kompetenz technischer Dokumentationen
- Koexistenz mit anderen Veranstaltungen (ergänzend / überlappend)
 - Kommunikation in Verteilten Systemen NETZWERK
 - IT-Sicherheit SICHERHEIT
 - Network Security (Master)
 - IT Security (Master)

INHALTSÜBERSICHT

- Premiere im Sommersemester 2020!
 - Das heißt: Die Vorlesung wurde (erst) dreimal durchgeführt.
 - Das heißt auch: Es ist noch nicht alles perfekt!

INHALTSÜBERSICHT

- Premiere im Sommersemester 2020!
 - Das heißt: Die Vorlesung wurde (erst) zweimal durchgeführt.
 - Das heißt auch: Es ist noch nicht alles perfekt!
- Inhalte:
 - Protokolle & Standards (Modelle, Spezifikationen, etc.)
 - Schutzziele (Daten in Bewegung)
 - Angriffe
 - Maßnahmen

WERKZEUGE (BEISPIELE)

Linux (KALI)

- Bringt nützliche Analyse-Tools mit
- Keine Installation notwendig (Live-System)

Ettercap

Erstellt (beliebige) Netzwerkpakete, unterstützt beim ARP-Spoofing, etc.

Wireshark

- Liest / Schneidet Netzwerkverkehr zur Analyse mit
- Erlaubt das Erstellen/Hinzufügen von Plugins zur Protokollunterstützung

PROGRAMMIERUNG

Low-Level Netzwerkprogrammierung findet meist in C statt!

Jeder kann C lernen, nur Mut!

Häufig werden Analysetools auch in Python geschrieben

Ich kann damit leben!

Wichtig: Ordentliche Entwicklungsumgebung

- Editor
- Debugger
- Git

FRAGEN?

