# گزارش نهایی پروژه سیستمهای نهفته طراحی سامانه رصد وضعیت هوا

گروه سه:

كوشا جافريان ٩٥١٠٥۴٥٣

سروش باسلیزاده ۹۵۱۰۵۴۰۸

یاسمین طباطبایی ۹۵۱۰۴۸۶۶

۳ مرداد ۱۳۹۹

#### ۱ شرح پروژه

در این پروژه ما یک سامانه ی iot رصد وضعیت هوا طراحی کردیم که وضعیت ۳ نوع گاز سمی در هوا را اندازه گیری میکند و با توجه به مقادیر این گازها اخطارهای لازم را به کاربران میدهد. این سامانه اطلاعات وضعیت هوا را از تعدادی دستگاه که هر یک سه سنسور مخصوص به گاز دارند میگیرد و میانگین وضعیت آنها را نشان میدهد و بر اساس وضعیت گاز با بیشترین غلظت وضعیت آلودگی کلی را نشان میدهد. این سامانه به صورت یک اپلیکیشن گوشی پیادهسازی شده است که با یک لوکیشن خاص کار میکند و همچنین یک وبسرور که اطلاعات میانگین چند دستگاه را نمایش میدهد. شمای کلی طراحی را در شکل زیر مشاهده میکنید.

#### شکل ۱: شمای کلی سیستم

#### ۱.۱ تغییرات نسبت به پروپوزال اولیه

در پروپوزال پروژه ما سیستم را به صورت یک دستگاه در نظر گرفتیم اما در ارائهی اولیه تصمیم بر آن شد که قابلیت داشتن دستگاه در چند لوکیشن مختلف را نیز پیادهسازی کنیم. بنابراین ما یک وب سرور طراحی کردیم که بتواند مقادیر گازها را از چند برد مختلف در لوکیشنهای مختلف بگیرد و میانگین آنها را گزارش دهد که مشابه کاری است که دستگاههای رصد هوای مزاکر مناطق مختلف شهر انجام میدهند. همچنین اپلیکیشن گوشی نیز طراحی کردیم که مطابق آنچه در پروپوزال گفته شده بود از یک دستگاه آمار را میگیرد و مشابه یک سامانه رصد هوای خانگی برای ساختمانهای هوشمند عمل میکند.

### ۲ طراحی و پیاده سازی

\_ کلا builder iot و این داستانا رو یه ذره بگیم و نوع پروژه توی پرتئوس و اینا در این پروژه ما با استفاده از iot-builder یک

#### ۱.۲ شماتیک مدار

شماتیک مدار را در شکل زیر مشاهده میکنید. در این مدار یک برد Arduino Yun که برای کاربردهای iot مناسب است و سه سنسور LM35DZ تعبیه شده است که سنسورهای دما هستند اما ما از آنها به عنوان سنسور تشخیص گاز استفاده میکنیم. در پروپوزال ما سنسورهای واقعی اندازهگیری گاز 7-MQ و MQ-13 و MQ-13 را استفاده کرده بودیم اما چون این سنسورها در Proteus نبودند ما از سنسورهای جایگزین اندازهگیری دما استفاده کردیم.

#### ۲.۲ توضیح کلی کد

اینجا کلا توضیج میدیم که کد چه جوریه و سیستم چه جوریه و اینا

## ٣.٢ ايليكيشن گوشي

برای طراحی اپلیکیشن گوشی ما از قابلیتهای Visual Designer استفاده کردیم و کنترلرهای iot زیر را

- \_ عکس از پنل گوشی
- ـ توضیج این که چطوری از طریق وای فای با اضافه کردن ip دستگاه از روی گوشی ریزالتو می بینیم و اینا



شكل ٢: شماتيك مدار

#### ۴.۲ وبسرور و میانگین گیری از نتایج چند دستگاه

\_ اینجا راجع به search elastic اینا توضیح میدیم و ساختن ایندکسو پوش کردن ریزالتا و ...

# ۳ فایلها و شیوه ی اجرای برنامه

برای اجرای برنامه مراحل زیر را طی میکنیم:

• راه اندازی سرور الستیک: برای راهاندازی وب سرور باید elasticsearch روی سیستم نصب باشد. ورژنهای مختلف نرمافزار در اینجا موجود است. پس از دانلود و unzip کردن وارد پوشه میشویم فایل elasticsearch.yml را با فایلی که پوشه ی config از پروژه قرار دارد جایگزین میکنیم. این فایل قابلیت cors را به سرور اضافه میکند.

سپس دستور

elasticsearch-7.8.0> .\bin\elasticsearch

را میزنیم تا سرور راه بیفتد. در نهایت با دستور زیر فایل index.py را ران میکنیم.

python elasticsearch\index.py

تا یک ایندکس خالی به نام iot در سرور الستیک ساخته شود (روی یک سیستم فقط یک بار نیاز است این دستور اجرا شود).

• فایلهای Arduino Yun: پس از باز کردن پروژه در پروتئوس پوشهای با نامی مشابه زیر در آدرسی مشابه زیر ساخته می شود:

در این پوشه یک پوشهی دیگر به نام ARDUINO YUN قرار دارد که محتوای آن باید با محتوای این پوشه که ما در فایلهای پروژه قرار دادیم جایگزین شود.

• راهاندازی کلاینت گوشی همراه: برای راهاندازی کلاینت گوشی همراه باید نرمافزار IoT Controller را از اینجا نصب کنیم. سپس به صورت زیر در بخش Discover آی پی و پورتی که برد آردینو روی آن در حال اجرا است را وارد کنیم تا گوشی به برد وصل شود.





شکل ۳: شیوهی اتصال گوشی به برد

• مشاهده نتایج در وبسرور: برای مشاهدهی نتایج در وبسرور فایل web.html در پوشهی Web را اجرا میکنیم.

## ۴ سیمولیشن و نتایج

\_ یه تعدادی عکس از اجرای برنامه از روی گوشی با یه لوکیشن و از روی وب سرور با مثلا دو تا لوکیشن

## ۵ چالشها