L'usage de la calculatrice et du mobile est interdit.

N.B:

Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

Toute réponse doit être justifiée.

Traiter les exercices 1 et 3 dans deux doubles feuilles différentes et l'exercice 2 dans un cahier.

Exercice 1: (6 pt)

Soient α un paramètre réel et (S_{α}) le système linéaire défini par :

$$\begin{cases} x+y-z=1\\ 2x+3y+\alpha z=3\\ x+\alpha y+3z=2 \end{cases}$$

- 1- Pour quelle(s) valeur(s) de α le système (S_{α}) est de Cramer? Dans ce cas, résoudre le système avec les formules de Cramer.
- **2-** Supposons que (S_{α}) n'est pas de Cramer. En utilisant le théorème de Rouché-Fontené, dire pour quelle(s) valeur(s) de α le système (S_{α}) est compatible. Résoudre le système dans ce cas.

Exercice 2: (10 pt)

Soit A la matrice de $M_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 6 & 2 & -10 \\ 2 & 3 & -5 \\ 0 & 0 & 2 \end{pmatrix}$.

- **1-** Calculer $(A 2I_3)(A 7I_3)$.
- **2-** En déduire :

i/ que la matrice A est inversible puis déterminer la matrice A^{-1} .

ii/ la matrice A^n pour tout entier $n \geq 2$.

iii/ que le polynôme caractéristique de A est égal à : $P_A(X) = (2 - X)^2 (7 - X)$.

- **3-** Montrer que A est diagonalisable.
- **4-** Déterminer une matrice inversible P de $M_3(\mathbb{R})$ et une matrice diagonale D de $M_3(\mathbb{R})$ telles que $D = P^{-1}AP$.
 - 5- En déduire la matrice A^n pour tout entier $n \geq 2$.

Exercice 3: (4 pt)

Soit $n \geq 3$ et considérons une matrice $A \in M_n(\mathbb{C})$ telle que $\operatorname{rg}(A) = 2$, $\operatorname{Tr}(A) = 0$ et $A^n \neq 0$.

- 1- Montrer que 0 est une valeur propre de A puis donner la dimension de l'espace propre E_0 .
 - ${\bf 2}\text{--}$ Déterminer la multiplicité de 0.
 - **3-** La matrice A est-elle diagonalisable?

Bon courage