

N-channel 300 V, 35 m Ω typ., 60 A STripFETTM II Power MOSFET in a TO-247 package

AM01475v1_noZen_noTab

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STW74NF30	STW74NF30 300 V		60 A

- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge

Applications

Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters.

Product status link

Product summary			
code	STW74NF30		
ing 74NF30			

Product summary		
Order code	STW74NF30	
Marking	74NF30	
Package	TO-247	
Packing	Tube	

STW74NF30

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	300	V
V _{GS}	Gate-source voltage	±20	V
I _D	Drain current (continuous) at T _C = 25 °C	60	Α
I _D	Drain current (continuous) at T _C = 100 °C	37.8	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	240	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	320	W
dv/dt (2)	Peak diode recovery voltage slope	12	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	55 to 150 °C	

^{1.} Pulse width limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.39	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

Table 3. Avalanche characteristics

Sy	mbol	Parameter	Value	Unit
	I _{AR}	Avalanche current, repetitive or non- repetitive (pulse width limited by $T_{jmax.}$)	50	А
E	E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	400	mJ

DS12794 - Rev 1 page 2/13

^{2.} $I_{SD} \leq 60~A,~di/dt \leq 200~A/\mu s;~V_{DD} \leq 80\%~V_{(BR)DSS}$.

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	300			V
	7	V _{GS} = 0 V, V _{DS} = 300 V			1	μA
I _{DSS}	Zero-gate voltage drain current	V _{GS} = 0 V, V _{DS} = 300 V, T _C = 125 °C ⁽¹⁾			10	μА
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 30 A		35	45	mΩ

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	5930	-	pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	837	-	pF
C _{rss}	Reverse transfer capacitance		-	110	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 V to 240 V, V _{GS} = 0 V	-	462	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	1.55	-	Ω
Qg	Total gate charge	V _{DD} = 240 V, I _D = 60 A,	-	164	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to10 V (see Figure 14. Test circuit for gate	-	36	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	69	_	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 150 V, I _D = 30 A	-	115	-	ns
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	87	-	ns
t _{d(off)}	Turn-off delay time		-	141	-	ns
t _f	Fall time		-	101	-	ns

DS12794 - Rev 1 page 3/13

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		60	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		240	А
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 60 A	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 60 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	252		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 15. Test circuit for inductive load switching	-	2.5		μC
I _{RRM}	Reverse recovery current	and diode recovery times)	-	20		Α
t _{rr}	Reverse recovery time	$I_{SD} = 60 \text{ A}, \text{ di/dt} = 100 \text{ A/µs},$	-	316		ns
Q _{rr}	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 15. Test circuit for	-	3.7		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times)	-	23.2		Α

^{1.} Pulse width is limited by safe operating area.

DS12794 - Rev 1 page 4/13

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics curves

DS12794 - Rev 1 page 5/13

Figure 7. Capacitance variations

Figure 8. Normalized gate threshold voltage vs temperature

Figure 9. Normalized on-resistance vs temperature

Figure 10. Normalized $V_{(BR)DSS}$ vs temperature

Figure 11. Maximum avalanche energy vs temperature

Figure 12. Source-drain diode forward characteristics

DS12794 - Rev 1 page 6/13

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Figure 14. Test circuit for gate charge behavior

Figure 15. Test circuit for inductive load switching and diode recovery times

M01470v1

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS12794 - Rev 1 page 7/13

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS12794 - Rev 1 page 8/13

4.1 TO-247 package information

Figure 19. TO-247 package outline

0075325_9

DS12794 - Rev 1 page 9/13

Table 8. TO-247 package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

DS12794 - Rev 1 page 10/13

Revision history

Table 9. Document revision history

Date	Revision	Changes
22-Oct-2018	1	First release.

DS12794 - Rev 1 page 11/13

Contents

1	Electrical ratings		2	
2			3	
	2.1	Electrical characteristics curves	5	
3	Test	circuits	7	
4 Package information			8	
	4.1	TO-247 package information	8	
Rev	/ision	history	11	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12794 - Rev 1 page 13/13