

R XXXX X (beim Betreuer beantragen!) Auslegung einer Grid Fin Aktuatorik für wiederverwendbare Raketen

Institut für Raumfahrtsysteme

Ole Scholz

Aufgabenstellung

Die Originalaufgabenstellung ist bei Studienarbeiten dem ungebundenen Institutsexemplar beizufügen, bei Bachelor-, Master- und Diplomarbeiten dem gebundenen Exemplar zur Vorlage bei der Fakultät. Die Aufgabenstellung bei Bachelor-, Master- und Diplomarbeiten wird vom Fachbereich ausgegeben (bei CSE-Masterarbeit vom CSE Office), dieser registriert den Beginn und die Abgabe der Arbeit und stempelt diese Angaben auf das letzte Blatt der Original-Aufgabenstellung.

Eine Diplom-, Studien-, Bachelor- bzw. Masterarbeit soll zeigen, dass man in der Lage ist, in begrenzter Frist eine Aufgabe nach wissenschaftlichen Methoden selbständig zu bearbeiten.

Die Aufgabenstellung kann Literaturhinweise enthalten, die als Einstieg in die Aufgabe gedacht sind. Es wird erwartet, daß weitere Literatur selbständig gesammelt wird (Bibliotheken der TU, des Instituts, etc.).

Wichtig: Schriftverkehr mit Dritten bei Nennung des die Arbeit betreuenden Instituts bedarf der vorherigen Genehmigung.

In der Abgabeversion dann dieses Blatt entfernen und an dieser Stelle durch die Aufgabenstellung ersetzen!

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich	n die nachfolgende Arbeit selbständig und nur unte
Zuhilfenahme der angegebenen Literatur ang	gefertigt habe.
Datum Unterschrift	

Übersicht

Die Übersicht enthält kurz gefasste Angaben über die Zielsetzung, die angewandten Methoden und die gewonnenen Ergebnisse. Sie soll das Wesentliche aus dem Inhalt der Arbeit in wenigen Sätzen zusammenfassen und ist der eigentlichen Arbeit voranzustellen (höchstens 1/2 bis 1 Seite). Sie soll also nicht lediglich die Aufgabenstellung wiedergeben.

Inhaltsverzeichnis

1.	. Einleitung				
	1.1.	Motivation			
	1.2.	Ziele der Arbeit			
	1.3.	Vorgehensweise			
2.	Grur	ndlagen			
	2.1.	Grid Fins als Steuerelement von Flugkörpern im Hyperschall	8		
	2.2.	Wiedereintrittsbedingungen	8		
	2.3.	Das Air-Launchsystem Valkyrie	8		
3.	Mod	ellentwurf	•		
	3.1.	Systemanforderungen	(
	3.2.	Gitterdesign	(
	3.3.	Aktuatorik	(
	3.4.	Erster Demonstrator	(
	3.5.	CAD-Modell	9		
4.	Syste	emanalyse	10		
	4.1.	FEM-Analyse	10		
	4.2.	Betriebssimulation	10		
	4.3.	Systembewertung	10		
	4.4.	Fazit	10		
5.	Zusa	nmmenfassung und Ausblick	1		
Lit	eratu	rverzeichnis	13		
۸ ۵	L:1.d	ngsverzeichnis			
ΑU	Dilaui	igsverzeichnis	13		
Tal	bellen	verzeichnis	1.		
Syı	mbolv	verzeichnis	1		
Α.	Proje	ektmanagement	10		
	A.1.	Work Breakdown Structure	1(
	A.2.	Zeitplan	18		
	A.3.	Work Package Description	2.0		

1. Einleitung

In den letzten Jahrzehnten kam es immer wieder zu Schlagzeilen in den Medien, die von privaten Weltraumunternehmen berichten. Hierbei wird diese New Space Szene hauptsächlich von großen US-Firmen wie SpaceX, Virgin Galactic, Blue Origin dominiert, um nur ein paar zu nennen. Bei so viel Konkurrenz sind Kosten ein wichtiger Faktor. Firmen wie SpaceX versuchen möglichst wirtschaftlich zu werden, indem sie immer größere Raketen bauen, die höhere Lasten auf einmal ins Weltall bringen können. So soll das Starship mehr als 100t in den Low Earth Orbit (LEO) bringen können. Das bringt aber auch einige Nachteile mit sich. Ein Start so großer Raketen ist nur mir sehr viel Beladung wirtschaftlich. So müssen sich mehrere Kunden einen Start teilen und haben somit sowohl in Bezug auf die Umlaufbahn noch den Starttermin Kompromisse einzugehen. Gerade für einzelne, kleinere Satelliten ist das nicht ideal. Dies führt zur Ergründung eines weiten Bereiches der New Space Branche, den Microlaunchern. Mit ihren relativ kleinen Nutzlasten bieten sie die Möglichkeit individuelle Ansprüche kleiner Satelliten zu berücksichtigen.

Ein weiteres Potenzial die Kosten zu senken bietet die Bergung und Wiederverwendung von Raketenstufen und Nutzlastverkleidung. Schon den 70er-Jahren wurde in den USA das Space Shuttle entwickelt, welches mittels aerodynamischen Auftriebs wie ein Flugzeug landen konnte. Auf Grund von zu hohen Instandhaltungskosten wurde das Projekt jedoch nach 30 Jahren eingestellt. Modernere Beispiele bietet zum Beispiel die erste Stufe der Falcon 9 von SpaceX. Diese lässt sich wieder landen, indem durch ein erneutes Zünden der Triebwerke die Geschwindigkeit so weit abgebremst wird, dass sie sanft aufsetzt. Rocket Lab verfolgt einen anderen Einsatz. Bei ihrer Electron Rakete soll die erste Stufe mit einem Fallschirm abgebremst und dann von einem Hubschrauber mittels Skyhook eingefangen werden. Dieses Prinzip konnte das neuseeländische Raumfahrtunternehmen auch schon erfolgreich testen. Auch wenn diese Methode auf Grund des Bedarfs einer dichten Atmosphäre nur auf der Erde Anwendung findet und nur vergleichsweise kleine Raketenstufen von einem Hubschrauber getragen werden können, ist sie dank einer leichten Implementierung für simple Systeme vorzuziehen.

Nun stellt sich die Frage, warum Europa und somit auch Deutschland, als eigentlich technologisch fortgeschrittener Standort, in dieser Branche nur spärlich vertreten ist. Ein großes Problem stellt ihr die Wetterlage dar. Gerade im Norden Europas gehören Gewitter das ganze Jahr über zum Alltag und besonders im Herbst und Winter kann starker Wind und schwerer Schneefall potenziellen Starts im Wege stehen. Das begrenzt stark die Kapazität von Spaceports. Ein weiterer Nachteil des Standorts Europa ist die hohe Bevölkerungsdichte. Gerade im Westen ist somit kaum ein Start möglich, der genug Abstand zu besiedeltem Gebiet hält. Wegen der Erdrotation wird nach Osten gestartet, sodass auch Starts an der Küste zum Atlantik keine gute Option bieten.

Als Antwort auf diese Probleme entwickelt die German Association for Intercontinental Astronautics e.V. (GAIA Aerospace) das Valkyrie System. Hierbei handelt es sich um eine zweistufige AirLaunch-Trägerrakete, die als Microlauncher kleine Cubesat Satelliten aus Deutschland heraus in den LEO bringen soll. ...

1.1. Motivation

Um eine erfolgreiche Bergung zu gewährleisten, muss sich das Raketensegment zum Großteil seiner Flugzeit kontrollieren lassen. ...

1.2. Ziele der Arbeit

•••

1.3. Vorgehensweise

Im nächsten Kapitel werden zunächst die für diese Arbeit notwendigen Grundlagen dargelegt. Zu Beginn wird auf die Eigenschaften von Grid Fins eingegangen, sowohl in Bezug auf ihr aerodynamisches Verhalten, als auch unter Betrachtung ihrer Vor- und Nachteile gegenüber konventionellen planaren Steuerflächen. Als nächstes werden dann die Wiedereintrittsbedingungen bei einer suborbitalen Flugbahn am Beispiel des AirLaunch-Systems Valkyrie erläutert.

Nachdem die Grundlagen geklärt sind, werden in Kapitel 3 die Anforderungen an das System definiert. Unter Berücksichtigung dieser folgt eine Vorstellung verschiedener Teillösungen für die einzelnen Elemente von Steuerflächen und Aktuatorik. Auf Basis eines Morphologischen Kastens, in dem diese Teillösungen zusammengetragen werden, wird begründet ein erster Demonstrator entworfen und in einem CAD-Programm erstellt.

Daraufhin wird dieses Modell in Kapitel 4 mittels einer Finiten Elementen Berechnung auf Stabilität und Festigkeit untersucht und mit einer Betriebssimulation in Matlab auf eine genügende Leitungsfähigkeit im Betrieb geprüft. Auf Grund dieser Simulationen wird das Modell verbessert und anschließend kritisch bewertet. Zuletzt werden noch einmal alle Ergebnisse zusammengefasst und ein Ausblick auf eine mögliche weitere Vorgehensweise gegeben.

2. Grundlagen

- 2.1. Grid Fins als Steuerelement von Flugkörpern im Hyperschall
- 2.2. Wiedereintrittsbedingungen
- 2.3. Das Air-Launchsystem Valkyrie

3. Modellentwurf

- 3.1. Systemanforderungen
- 3.2. Gitterdesign
- 3.3. Aktuatorik
- 3.4. Erster Demonstrator

Morphologischer Kasten Dann begründete Auswahl

3.5. CAD-Modell

4. Systemanalyse

- 4.1. FEM-Analyse
- 4.2. Betriebssimulation
- 4.3. Systembewertung
- **4.4.** Fazit

5. Zusammenfassung und Ausblick

In der Zusammenfassung (mindestens 1,5 Seiten) sollen die theoretische Herleitung und die wesentlichen Ergebnisse so aufgelistet werden, dass sie ohne Kenntnis der vorherigen Abhandlung verständlich sind. Dabei wird in der Vergangenheit geschrieben und die wichtigsten Ergebnisse der Arbeit wiedergegeben.

Literaturverzeichnis

Autor, X., Zweitautor, Y., 2012. Titel. Name des Journals.

Abbildungsverzeichnis

Tabellenverzeichnis

Symbolverzeichnis

A. Projektmanagement

A.1. Work Breakdown Structure

A.2. Zeitplan

A.3. Work Package Description

		AP 1100
Titel	Vergleich zum planaren Leitwerk	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T_0	
Ende	T ₀ +2 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

Ziele:

- Kenntnisse über Vor- und Nachteile von Grid Fins im Vergleich zu planaren Leitwerken bezüglich
 - Aerodynamik, bei unterschiedlichen Anströmungsbedingungen
 - Strukturmechanische Eigenschaften
 - Allgemeine Unterschiede

Input:

• Literatur zum Vergleich der beiden

Schnittstellen zu anderen APs:

• AP 2200 zur Bestimmung aerodynamischen Einflüsse

Aufgaben:

• Literatur zur Thematik lesen

Ergebnisse:

- Vor- und Nachteile von Grid Fins kennen
- Wissen, wo und wie sie entsprechend ihrer Eigenschaften einzusetzen sind

		AP 1200
Titel	Einfluss der Gitterform	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T_0	
Ende	T ₀ +2 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

• Kenntnisse über verschiedene Gitterformen und ihren Einfluss auf das aerodynamische Verhalten und die Struktur

Input:

• Literatur zu den verschiedenen Formen

Schnittstellen zu anderen APs:

- AP 2200 zur Berücksichtigung der Gitterform auf die Aerodynamik
- AP 2300 zum Einfluss der Gitterform auf die Struktur

Aufgaben:

• Literatur zur Thematik lesen

Ergebnisse:

• Vor- und Nachteile unterschiedlicher Gitterformen kennnen

		AP 1300
Titel	Aktuatorik	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T_0	
Ende	T ₀ +2 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

• Kenntnisse über Aktuatoren zur Steuerung der Grid Fins

Input:

- Literatur zur Aktuatorik
- Kataloge von Herstellern

Schnittstellen zu anderen APs:

• AP 3200 zur Auswahl stehende Aktuatoren

Aufgaben:

- Literatur zur Thematik lesen
- sich bei Herstellern informieren

Ergebnisse:

• Überblick über mögliche Aktuatorik

		AP 1400
Titel	Wiedereintrittsbedingungen	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T_0	
Ende	T ₀ +2 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

• Kenntnisse zu den Bedingungen beim Wiedereintritt

Input:

• Literatur zum Wiedereintritt

Schnittstellen zu anderen APs:

- AP 2100 Aerodynamische Einflüsse des Wiedereintritts
- AP 2300 Strukturmechanische Einflüsse des Wiedereintritts

Aufgaben:

• Literatur zur Thematik lesen

Ergebnisse:

• Kenntnisse zu Bedingungen beim Wiedereintritt

		AP 2100
Titel	Anforderungen an die Aerodynamik	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +2 Wochen	
Ende	T ₀ +2,5 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Sammlung aller aerodynamischen Anforderungen an die Grid Fins

Input:

• Vorgaben aus Gespräch mit Betreuer

Schnittstellen zu anderen APs:

- AP 2200 Aerodynamische Kräfte bestimmen Leistung des Aktuators
- AP 2200 Aerodynamische Kräfte bestimmen Belastung der Konstruktion

Aufgaben:

- Aerodynamische Anforderungen definieren
- Ggf. nach Wichtigkeit sortieren und in Pflicht und Wunschbedingungen einteilen

Ergebnisse:

• Liste aerodynamischer Anforderungen

		AP 2200
Titel	Anforderungen an die Aktuatorik	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +2,5 Wochen	
Ende	T ₀ +3 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Sammlung aller Anforderungen an die Aktuatorik der Grid Fins

Input:

- Vorgaben aus Gespräch mit Betreuer
- Kennwerte der Aktuatorik aus Verwendungsbeispielen von Grid Fins als Orientierungswerte

Schnittstellen zu anderen APs:

• AP 4400 Anforderungen müssen in Betriebssimulation erfüllt werden

Aufgaben:

- Anforderungen an Aktuatorik definieren
- Ggf. nach Wichtigkeit sortieren und in Pflicht und Wunschbedingungen einteilen

Ergebnisse:

• Liste der Anforderungen an die Aktuatorik

		AP 2300
Titel	Anforderungen an Struktur und Werk-	Seite: 1 von 1
	stoff	
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +3 Wochen	
Ende	T ₀ +3,5 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Sammlung aller Anforderungen an die Struktur und dem Werkstoff im Bezug auf die Festigkeit und thermische Belastbarkeit

Input:

- Angaben von 3D-Druck-Anbietern
- AP 1400

Schnittstellen zu anderen APs:

- AP 4100 Anforderungen müssen vom Modell erfüllt werden
- AP 1400 Wiedereintrittsbedingungen müssen ausgehalten werden

Aufgaben:

- Anforderungen Werkstoff und Struktur definieren
- Ggf. nach Wichtigkeit sortieren und in Pflicht und Wunschbedingungen einteilen

Ergebnisse:

• Liste der Anforderungen an Werkstoff und Struktur

		AP 3100
Titel	Gittervarianten	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +3,5 Wochen	
Ende	T ₀ +4 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Überblick über die verschiedenen Gittervarianten und ihre Unterschiede haben

Input:

• Bisher verwendete Gittervarianten in der Raketentechnik

Schnittstellen zu anderen APs:

• AP 3400 Varianten in Morphologischen Kasten eintragen

Aufgaben:

- Gittervarianten sammeln
- Unterschiede untersuchen

Ergebnisse:

• Liste von Gittervarianten

		AP 3200
Titel	Aktuatoren und Stellglieder	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +4 Wochen	
Ende	T ₀ +4,5 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Überblick über die verschiedenen Aktuatoren und Stellglieder so wie ihre Unterschiede haben

Input:

• Bisher verwendete Steuervarianten für Grid Fins

Schnittstellen zu anderen APs:

• AP 3400 Varianten in Morphologischen Kasten eintragen

Aufgaben:

- Akuatoren- und Stellgliedervarianten sammeln
- Unterschiede untersuchen

Ergebnisse:

• Liste von Aktuatoren und Stellgliedern

		AP 3300
Titel	Morphologischen Kasten erstellen	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +4 Wochen	
Ende	T ₀ +5 Wochen	Dauer: 1 Woche
Bearbeiter	Ole Scholz	

• Überblick über alle Lösungsvarianten haben

Input:

• Lösungsvarinaten aus den APs 3100, 3200, 3300

Schnittstellen zu anderen APs:

• AP 4100 Modell mit Lösungsvarianten aus Morphologischen Kasten zusammen stellen

Aufgaben:

• Aus den vorher erarbeiteten Lösungsvarianten Morphlogischen Kasten erstellen

Ergebnisse:

• Morphologischer Kasten

		AP 4100
Titel	Lösungsvarianten auswählen und zu Mo-	Seite: 1 von 1
	dell zusammen stellen	
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +5 Wochen	
Ende	T ₀ +5,5 Wochen	Dauer: 0,5 Wochen
Bearbeiter	Ole Scholz	

• Vollständiges Modell für eine spätere Fertigung

Input:

- Morphologischer Kasten aus AP 3400
- In AP 2000 definierte Anforderungen

Schnittstellen zu anderen APs:

- AP 2000 definierte Anforderungen erfüllen
- AP 3400 Lösungsvarianten aus Morphologischen Kasten auswählen
- AP 4200 gewählte Lösungsvarianten ins CAD-Modell einbauen
- AP 4400 in Betriebssimulation einbinden

Aufgaben:

- Nicht anforderungsgerechte Lösungsvariaten ausschließen
- Beste und kombinierbare Varianten auswählen
- Gewählte Lösungen zu einem Modell zusammen fassen

Ergebnisse:

• Prototyp

		AP 4200
Titel	CAD-Modell anfertigen	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +5,5 Wochen	
Ende	T ₀ +6,5 Wochen	Dauer: 1 Woche
Bearbeiter	Ole Scholz	

- CAD-Modell für
 - -Import in FEM-Programm
 - -Fertigung mit 3D-Drucker

Input:

• Modell aus AP 4100

Schnittstellen zu anderen APs:

- AP 4100 CAD-Modell aus gewählten Teillösungen erstellen
- AP 4300 CAD-Modell in FEM-Programm importieren

Aufgaben:

• Vorher gewähltes Modell in CAD-Programm implementieren

Ergebnisse:

• CAD-Modell

		AP 4300
Titel	FEM-Analyse durchführen	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +6,5 Wochen	
Ende	T ₀ +8,5 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

- Strukturelle Optimierung des Modells
- Numerische Bestätigung der Festigkeit einer optimierten Konstruktion

Input:

• CAD-Modell aus AP 4200

Schnittstellen zu anderen APs:

• AP 4200 CAD-Modell analysieren und anpassen

Aufgaben:

- Beanspruchung unter Last untersuchen
- Über-/unterbeanspruchte Teile der Konstruktion lokalisieren
- CAD-Modell rekursiv anpassen und erneut testen

Ergebnisse:

• Für Festigkeit optimiertes und überprüftes Modell

		AP 4400
Titel	Betriebssimulation durchführen	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +8,5 Wochen	
Ende	T ₀ +10,5 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

• Bestätigung der anforderungsgerechten Auslegung der Aktuatorik

Input:

- Anforderungen aus AP 2200
- Modell aus AP 4100

Schnittstellen zu anderen APs:

- AP 2200 Erfüllung der Anforderungen
- AP 4100 Analyse des Modells

Aufgaben:

- Verhalten der Steuerung unter Betriebsbedingungen mittels Matlab/Simulink untersuchen
- Erfüllung der Anforderungen überprüfen
- Eventuelle Anpassung der Aktuatorik

Ergebnisse:

• Angemesse und überprüfte Aktuatorik der Grid Fins

		AP 4500
Titel	Kritische Bewertung	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +10,5 Wochen	
Ende	T ₀ +11,5 Wochen	Dauer: 1 Woche
Bearbeiter	Ole Scholz	

• Kritische Auseinandersetzung mit den Ergebnissen der Arbeit

Input:

- Anforderungen aus AP 2000
- Simulationsergebnisse von AP 4300 und AP 4400

Schnittstellen zu anderen APs:

- AP 4300, AP 4400 Simulationsergebnisse im Abgleich mit:
- AP 2000 Anforderungen

Aufgaben:

- Kritische Einschätzung der Ergebnisse
- Eventuelle Fehler und Verbesserungsmöglichkeiten der Grid Fins aufzeigem

Ergebnisse:

• Bewertung des Modells

		AP 5100
Titel	Ausarbeitung	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +3,5 Wochen	
Ende	T ₀ +13 Wochen	Dauer: 9,5 Wochen
Bearbeiter	Ole Scholz	

• Vollständige Dokumentation der Vorgehensweise und Ergebnisse

Input:

• APs 1000, 2000, 3000, 4000

Schnittstellen zu anderen APs:

• Ausarbeitung umfasst alle vorherigen APs

Aufgaben:

 \bullet Alle Arbeitsschritte und Gedankengängen in fachlich korrekter Form schriftlich festhalten

Ergebnisse:

• PDF-Dokument mit dem gesamten Inhalt dieser Arbeit

		AP 5200
Titel	Präsentation	Seite: 1 von 1
Verantwortlicher	Ole Scholz	Version: 1.0
		Datum: DD.MM.YYYY
Beginn	T ₀ +11 Wochen	
Ende	T ₀ +13 Wochen	Dauer: 2 Wochen
Bearbeiter	Ole Scholz	

• Vorstellung der Arbeitsergebnisse

Input:

• APs 2000, 3000, 4000

Schnittstellen zu anderen APs:

• über die Inhalte der APs 2000, 3000, 4000

Aufgaben:

- PowerPoint-Präsentation
- Präsentation über gesamte Arbeit halten

Ergebnisse:

• Mit Poster unterstützte verbale Vorstellung der Arbeitsergebnisse

		AP 1200
Titel	Titel des Arbeitspakets	Seite: X von Y
Verantwortlicher	Dein Name	Version: 1.1
		Datum: DD.MM.YYYY
Beginn	T_0	
Ende	T ₀ +X Wochen	Dauer: X Wochen
Bearbeiter	Dein Name	

- Ziel 1
- Ziel 2
- ...

Input:

- Input 1
- ...

Schnittstellen zu anderen APs:

- AP XXXX Beschreibung
- AP

Aufgaben:

- Aufgabe 1
- ...

Ergebnisse:

- Ergebnis 1
- ...