Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 3.6.1

(Общая физика: электричество и магнетизм)

Спектральный анализ электрических сигналов

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год

Цель работы: изучение спектрального состава периодических электрических сигналов.

Оборудование: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

1 Теоретическая введение

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n=0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \le 1 \tag{1}$$

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

3. **Амплитудно-модулированные колебания.** Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t.$$

Коэффициент m называют **глубиной модуляции**. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{2}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t.$$
 (3)

 $a_{
m for}$ ω 0

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a_{\rm och}=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулиро-

ванного колебания: $a_{\text{бок}} = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы.

2 Экспериментальные установки

1. Экспериментальная установка А для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис. 7. Сигнал с выхода генератора прямоугольных импульсов Г5-54 подается на вход анализатора спектра и одновременно на вход У осциллографа. С генератора импульсов на осциллограф подается также сигнал синхронизации, запускающий ждущую развертку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра распределение амплитуд спектральных составляющих этой последовательности.

Рис. 7: Схема для исследования спектра периодической последовательности прямоугольных импульсов

2. Экспериментальная установка Б для исследования спектра периодической последовательности цугов гармонических колебаний (рис. 8) Генератор Г6-34 вырабатывает синусо-идальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора Г6-34 подаются прямоугольные импульсы с генератора Г5-54 и синусоида модулируется - "нарезается"на отдельные куски - цуги. Эти цуги с выхода генератора Г6-34 поступают на вход спектроанализатора и одновременно на вход Y осциллографа. Сигнал синхронизации подается на осциллограф с генератора импульсов.

Рис. 8: Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

3. Экспериментальная установка В для исследования амплитудно - модулированного сигнала (рис. 9). В генератор сигналов встроен модуляционный генератор, который расположен в левой части Γ 6-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}} = 1 \text{ к}\Gamma$ ц подается с модуляционного генератора на вход АМ (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0 = 25 \text{ к}\Gamma$ ц). Амплитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 9: Схема для исследования спектра высокочастотного гармон. сигнала, промодулированного по амплитуде низкочастотным гармон. сигналом

3 Ход работы

А. Периодическая последовательность прямоугольных сигналов

В этой части исследуется зависимость ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса.

Установим на анализаторе спектра режим работы с однократной развёрткой и получим на экране спектр импульсов с параметрами $f_{\text{повт}}=10^3~\Gamma$ ц ; $\tau=100~\text{мкc}$; частотный масштаб $m_x=5~\text{к}\Gamma$ ц / дел.

Проанализируем, как меняется спектр:

а) при увеличении au вдвое при неизменном $f_{\text{повт}}=1$ к Γ ц. $\Delta
u$ – уменьшается вдвое, $\delta
u$ – остается неизменным.

"Эталонный спектр"

"Увеличение τ вдвое"

б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=100$ мкс. $\Delta \nu$ – остается неизменным, а $\delta \nu$ – увеличивается вдвое.

"Эталонный спектр"

"Увеличение $f_{\text{повт}}$ вдвое"

Построим график зависимости ширины спектра от обратного времени импульса:

τ, мc	Δν, κΓц	
40	25,00	
60	16,50	
80	12,50	
100	10,00	
120	8,25	
140	7,00	
160	6,25	
180	5,50	
200	5,00	

Данные зависимости $\Delta \nu (1/\tau)$

График зависимости $\Delta \nu(1/\tau)$ и его линейная аппроксимация

Видно, что точки с очень высокой точностью ложатся на прямую, что подтверждает справедливость соотношения неопределённости Построим графики АЧХ для двух спектров и сравним их с теоритическими значениями:

Б. Периодическая последовательность цугов

В этой части исследуется зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

Установим частоту несущей $\nu_0=25$ к Γ ц и проанализируем, как изменяется вид спектра:

а) при увеличении длительности импульса вдвое от $\tau=50$ мкс, до $\tau=100$ мкс для $f_{\text{повт}}=1$ к Γ ц "ширина" пиков уменьшается вдвое.

0.12 0.10 0.04 0.02

"Увеличение au вдвое"

б) при изменении частоты несущей: $\nu_0=25{,}10$ или 40 к Γ ц. изменяется только положение пика

 $u_0 = 10 \ \mathrm{k}\Gamma \mathrm{ц}$

 $u_0 = 25 \ \mathrm{k}\Gamma \mathrm{ц}$

Построим график зависимости ширины спектра от обратного времени импульса:

fповт, кГц	δν, κΓц	
0,5	0,5	
1	1	
2	2	
4	4	
5	5	

График зависимости $\delta \nu(f_{\text{повт}})$ и его линейная аппроксимация

Видно, что значения в точности удовлетворяют соотношению неопределённости

3.1 В. Модулированный по амплитуде сигнал

Построим график замисимости отношения $\frac{A_{60\mathrm{K}}}{A_{\mathrm{och}}}$ в зависимости от глубины модуляции:

Амод, В	Amin, MB	Атах, мВ	m	Аосн	Абок	Абок/Аосн
0,2	450	555	0,10	330	66	0,20
0,6	349	659	0,31	330	201	0,61
1,0	255	756	0,50	330	333	1,01
1,4	149	864	0,71	330	469	1,42
1,8	56	991	0,89	330	614	1,86
2,0	17	1000	0,97	330	653	1,98

Данные зависимости $m(\frac{A_{6\text{ok}}}{A_{\text{och}}})$

График зависимости $m(\frac{A_{6 {
m o} {
m K}}}{A_{{
m o} {
m cH}}})$ и его линейная аппроксимация

Из данных аппроксимации получили $k=0.49\pm0.04,$ что соответсвует ожиданиям $k_{\text{ож}}=0.5$