Introducción al software estadístico

Módulo VII

Nicolás Schmidt

nschmidt@cienciassociales.edu.uy

Departamento de Ciencia Política Facultad de Ciencias Sociales Universidad de la República

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos
 hist()
 boxplot()
 barplot()
 Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

"Un gráfico puede valer más que mil palabras, pero puede tomar muchas palabras hacerlo"

John Tukey

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos

hist()
boxplot()
barplot()
Otros

- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot()
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Gráficos del paquete graphics

Una de las fortalezas de R es su capacidad gráfica. Si bien el paquete graphics que viene por defecto con R es muy completo, por fuera de este paquete hay grandes desarrollos en términos de visualización de datos. Los paquetes ggplot2 y plotly son un buen ejemplo de ello.

Hay dos tipos de ordenes gráficas:

- Alto Nivel: Son funciones que crean un gráfico.
 - plot(), hist(), boxplot(), pairs(),...
- Bajo Nivel: Son funciones que añaden información a un gráfico existente.
 - ▶ points, lines, text, axis, legend,...

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot() Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

La función genérica para realizar un gráfico en R es plot(). Esta función genera un gráfico en función del tipo o tipos de datos de entrada.

Si bien la función plot ayuda a visualizar la información lo que debe determinar el tipo de gráfico a utilizar es la estructura de los datos que se desea visualizar y el objetivo que se persigue con lo que se desea comunicar con los datos.

Los gráficos deben estar guiados **estadísticamente**, y luego, si es posible **estéticamente**. Nunca a la inversa!.

Argumentos de funciones de alto nivel

Argumento	Descripción	Ejemplo
add = TRUE	Si es TRUE añade un gráfico	
	al existente	
axes = TRUE	Si es FALSE no incorpora	
	ejes ni caja del gráfico	
log = 'x'	Logaritmo del eje x	
log = 'y'	Logaritmo del eje y	
log = 'xy'	Logaritmo de ambos ejes	
xlab	Títulos de los eje x	xlab = 'Eje x'
ylab	Títulos de los eje y	ylab = 'Eje y'
xlim	Limite inferior y superior del eje y	xlim = c(1, 10)
ylim	Limite inferior y superior del eje x	ylim = c(1, 10)
main	Titulo principal	main = 'Titulo'
sub	Subtitulo	<pre>sub = 'subtitulo'</pre>

Argumentos de funciones de alto nivel

Argumento type = "p"

Tipo	Descripción
type = "p"	Puntos (valor por defecto)
type = "1"	Líneas
type = "b"	Puntos y lineas con espacio
type = .°"	Puntos y lineas sin espacio
type = "h"	Lineas verticales
type = "s"	Escalera. Inicia hacia la derecha.
type = "S"	Escalera Inicia hacia arriba.
type = "n"	No se dibuja ningún gráfico, solo los ejes.

Argumentos de funciones de alto nivel

```
plot(10:20, 10:20, type = "1", main = "type = '1'")
plot(10:20, 10:20, type = "b", main = "type = 'b'")
plot(10:20, 10:20, type = "h", main = "type = 'h'")
```


- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot() Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Argumentos de funciones de alto nivel

Función	Descripción	
points(x, y)	Añade puntos	
lines(x, y)	Añade lineas	
text(x, y, etiquetas,)	Añade la etiqueta en la coordenada xy	
abline(a,b)	Recta de pendiente b y ordenada en	
	el origen <i>a</i>	
abline(h = y)	Linea horizontal de altura y	
abline(v = x)	Linea vertical	
abline(objeto lm)	Ajusta una recta de regresión	
legend(x, y, leyeda)	Añade leyenda al gráfico	
title(main, sub)	Añade titulo y subtitulo	
axis(side,)	Añada un eje, side puede ser 1, 2, 3, o 4	

Modelo Lineal. Sepal Length vs. Petal Length

Argumento pch()

```
plot(1:25, pch = 1:25, cex = 2, xlim = c(-1,26), ylim = c(-1,26), xlab = "",
     ylab = "")
text(1:25 + 0.5, 1:25 - 1.5, 1:25 )
```


Argumento pch()

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot()
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Colores en R

R cuenta con una paleta amplia de colores o se pueden establecen colores con rgb() o con hsv(). A su vez hay una gran cantidad de paquetes que contienen paletas de colores.

Ejemplo:

```
palette()
## [1] "black"
                 "red"
                           "green3" "blue"
                                               "cyan"
                                                         "magenta" "vellow"
## [8] "gray"
colors()[sample(1:length(colors()), 20)]
## [1] "slategray2"
                               "lightgoldenrodyellow" "cadetblue"
       "lightgoldenrod1"
                               "firebrick1"
                                                      "wheat2"
## [7]
       "grav76"
                               "lightsteelblue"
                                                      "grev42"
## [10] "dodgerblue4"
                               "mistyrose3"
                                                      "lavenderblush4"
## [13] "ivory3"
                               "navajowhite1"
                                                      "violetred3"
## [16] "gray56"
                               "slateblue"
                                                      "grav62"
## [19] "grey66"
                               "grey77"
length(colors())
## [1] 657
```

Colores en R: paquete grDevices

Colores en R: paquete grDevices

```
par(mfrow=c(3,1), mar=c(0.7, 3, 0, 0))
sec <- sum(grepl("red", colors()))</pre>
barplot(rep(sec, sec), col = colors()[which((grep1("red", colors())) == TRUE)],
    border = NA, space = 0, axes = FALSE)
axis(2, labels = FALSE, lwd.ticks = 0)
mtext("red", side = 2, line = 1, cex = 1.5, font = 2, las = 0)
sec <- sum(grepl("green", colors()))</pre>
barplot(rep(sec, sec), col = colors()[which((grep1("green", colors())) == TRUE)],
    border = NA, space = 0, axes = FALSE)
axis(2, labels = FALSE, lwd.ticks = 0)
mtext("green", side = 2, line = 1, cex = 1.5, font = 2, las = 0)
sec <- sum(grepl("blue", colors()))</pre>
barplot(rep(sec. sec), col = colors()[which((grep1("blue", colors())) == TRUE)].
    border = NA, space = 0, axes = FALSE)
axis(2, labels = FALSE, lwd.ticks = 0)
mtext("blue", side = 2, line = 1, cex = 1.5, font = 2, las = 0)
```

Colores en R: paquete grDevices

colors()

```
par(mar = rep(0,4))
image(matrix(1:625, 25, 25, byrow = TRUE), main = "", col = colors())
```


rgb()

paletas

Paquete: paletteer


```
colores <- paletteer::paletteer_c(package = "scico", palette = "oslo", n = 100)
barplot(rep(10, length(colores)), col = colores,
    space = 0, border = NA, axes = F)</pre>
```

Paquete: wesanderson

1 Gráficos

- Gráficos del paquete graphics
- Funciones de Alto Nivel
- Funciones de Bajo Nivel
- Colores en R
- Parámetros
- Tipos de gráficos hist() boxplot() barplot() Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

par()

La función par() permite controlar todos los aspectos de bajo nivel de un gráfico. Si se ejecuta la función par() aparece la lista de todos los argumentos con los valores por defecto. Cada vez que se modifica algún parámetro no hay retorno hasta que vuelva a ser cambiado o al reiniciar sesión. Por eso es recomendable guardar los valores por defecto:

Ejemplo:

```
op <- par(no.readonly = TRUE)
par(op)</pre>
```

par()

Valores por defecto

```
length(par())
## [1] 72
str(par()[1:15])
## List of 15
## $ xlog : logi FALSE
## $ ylog : logi FALSE
## $ adj : num 0.5
## $ ann : logi TRUE
## $ ask : logi FALSE
## $ bg : chr "transparent"
## $ bty : chr "o"
## $ cex : num 1
## $ cex.axis: num 1
## $ cex.lab : num 1
## $ cex.main: num 1.2
## $ cex.sub : num 1
## $ cin : num [1:2] 0.15 0.2
## $ col : chr "black"
## $ col.axis: chr "black"
```

Parámetros gráficos: par()

Parámetro	Descripción
adj	Justificación del texto
	adj = 0 $ ightarrow$ izquierda
	adj = 0,5 $ ightarrow$ centrado
	adj = 1 $ ightarrow$ derecha
bty	Tipo de caja del gráfico
	Tipos posible: "o", "I", "7", "c", "u", "]"
cex	Controla el tamaño de símbolos y textos
cex.axis	Tamaño de los valores de los ejes
cex.lab	Tamaño de las etiquetas de los ejes
cex.main	Tamaño del titulo
cex.sub	Tamaño del subtitulo
col.axis	Color de los valores de los ejes
col.lab	Color de las etiquetas de los ejes
col.main	Color del titulo
col.sub	Color del subtitulo
col	Color de símbolos

Parámetros gráficos: par()

font	Tipo de letra
	$\texttt{font} \; \texttt{=} \; 1 \to normal$
	font = $2 o \text{cursiva}$
	font = 3 $ ightarrow$ negrita
	font = 4 negrita y cursiva
las	Controla la orientación de las etiquetas
	las = 0 →paralelo a los ejes
	las = $1 \rightarrow$ horizontal
	las = 2 →perpendicular a los ejes
	las = 3 →vertical
lty	Tipo de linea. Numero entero del 1 al 5
lwd	Ancho de linea. Numero entero
mfcol	Vector de dos enteros. Divide ventana gráfica
mfrow	Vector de dos enteros. Divide ventana gráfica
pch	Tipo de símbolo. Numero entero del 1 al 25
bg	Color de fondo
mar	Vector numerico:
	c(abajo, izquierda, arriba, derecha)

Estructura de la presentación

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos

hist()
boxplot()
barplot()

- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Tipos de gráficos

El tipo de grafico a urtilizar va a depender al menos de dos elementos fundamentales:

- 1. El tipo de variable que se va a graficar: cuantitativa o cualitativa.
- 2. La cantidad de variables que se quiere graficar.

hist()

Un histograma es una representación gráfica de una variable continua que se visualiza como un diagrama de barras con intervalos constantes.

Ejemplo:

```
hist(iris[[2]], col = 1, border = "white", labels = TRUE)
hist(iris[[3]], col = 2, border = "white", labels = TRUE)
```


Todos los parámetros de construcción de un histograma se pueden modificar. Si desea ver los cálculos hechos por defecto puede guardar como un objeto un histograma y ver el contenido del mismo.

```
h <- hist(iris[[2]], plot = FALSE); h
## $breaks
  [1] 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
##
## $counts
## [1] 4 7 13 23 36 24 18 10 9 3 2 1
##
## $density
## [1] 0.13333333 0.23333333 0.43333333 0.76666667 1.20000000 0.80000000
## [7] 0.60000000 0.33333333 0.30000000 0.10000000 0.06666667 0.03333333
##
## $mids
   [1] 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3
##
## $xname
## [1] "iris[[2]]"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

hist()

Parámetro	Descripción
breaks	Indica los valores de corte de los intervalos de la variable por defecto son todos iguales.
counts	Indica la frecuencia de los valores de la variable en cada intervalo.
density	Cuando el argumento freq es FALSE se calcula la densidad y el eje y cambia. Se calcula como: la frecuencia en el intervalo dividido el numero total datos por el ancho del intervalo. a la unidad.
mids	Punto medio de los intervalos.
equidist	Indica si la distancia entre los intervalos son iguales.

Ejemplo:

```
col1 \leftarrow rgb(1.0.1.0.3.0.2)
col2 \leftarrow rgb(0,0.2, 1,0.3)
par(mar=c(3,5,3,3))
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
hist(iris[[4]], breaks = 20, col = col1, main = "Petal.Width",
        xlab = "", vlab = "", labels = TRUE, axes = FALSE)
axis(1, seq(0, 3))
hist(iris[[2]], breaks = 20, col = col2, main = "Sepal.Width",
        xlab = "", ylab = "", labels = TRUE, , axes = FALSE)
axis(1, seq(2, 4.5))
par(mar=c(5,5,0,3))
hist(iris[4]), breaks = 20, xlim = c(0.4.5), col = col1.
        main = "", xlab = "", ylab = "")
hist(iris[[2]], breaks = 20, xlim = c(0,4.5), col = col2, add = T,
        main = "", xlab = "", ylab = "")
legend(4, 35, legend=c("Petal.Width", "Sepal.Width"),
        col=c(col1, col2), pch=15, bty = "n", cex = 0.8)
```


Un boxplot es un un grafico para una variable cuantitativa que se contruye a partir de lso cuartiles de la distribucion de los valores de dicha variable.

```
boxplot(iris[[2]], col = 2)
fivenum(iris[[2]])
## [1] 2.0 2.8 3.0 3.3 4.4
boxplot(iris[[3]], col = 3, horizontal = T)
```


iris: Sepal.Width

barplot()

Un barplot es un gráfico de barras que permite visualizar variables cuantitativas.

Datos a usar: datasets::VADeaths

```
VADeaths
      Rural Male Rural Female Urban Male Urban Female
           11.7
                             15.4
## 50-54
                     8.7
                                        8.4
## 55-59
           18.1
                     11.7 24.3 13.6
                     20.3 37.0
## 60-64
          26.9
                                      19.3
## 65-69
        41.0
                     30.9
                            54.6
                                        35.1
## 70-74
        66.0
                     54.3
                             71.1
                                        50.0
```

barplot()

barplot():datasets::mtcars

Perspective Plots con persp()

Modelo lineal con scatterplot3d()

Estructura de la presentación

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot() Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Ventanas gráficas

Es posible querer hacer un grafico sin que sobreescriba uno o tambien es posible haer un grafico y que directamente se guarde en una ruta determinada sin que pase por una ventana gráfica.

R cuenta con varias funciones para controlar estos dispositivos:

```
windows()  # nuevo dispositivo grafico en windows
x11()  # nuevo dispositivo grafico en Linix
macintosh()  # nuevo dispositivo grafico en mac
```

En caso de querer guardar un grafico sin pasar por una ventana se pueden usar alguna de estas funciones:

```
postscript()
pdf()
png()
```

Es importante recordar que el ultimo dispositivo abierto es el que queda activo.

Ventanas gráficas

Es importante recordar que el ultimo dispositivo abierto es el que queda activo.

```
windows()
dev.list() # muestra los dispositivos abiertos
##
    pdf windows
##
dev.cur() # muestra el dipositivo activo
## windows
## 3
dev.set(2) # se cambia de dispositivo activo
## pdf
## 2
dev.off(3) # si no se especifica numero se cierra el activo
## pdf
## 2
```

Estructura de la presentación

- 1 Gráficos
 - Gráficos del paquete graphics
 - Funciones de Alto Nivel
 - Funciones de Bajo Nivel
 - Colores en R
 - Parámetros
 - Tipos de gráficos hist() boxplot() barplot() Otros
- 2 Ventanas gráficas
- 3 Division de ventanas gráficas

Con la funcion par() se puede establecer el número de divisiones con el argumento mfrow = c(2,2)

```
par(mfrow = c(2, 2))
plot(lm(dist~speed, data = cars))
```


La función split.screen() controlar multiples sectores en un dispositivo gráfico.

```
split.screen(c(1, 2))
## [1] 1 2
screen(2); plot(1)
screen(1); plot(rnorm(10))
```


La función layout() permite dividir un dispositivo gráfico de múltiple maneras


```
vec <- c(1, 1, 10, 10, 10, 1, 1, 3, 3, 3, 6, 6, 3, 3, 3, 7, 2, 2, 8, 5, 4, 2, 2, 9, 5)
m <- matrix(vec, 5, 5); m

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 6 7 4
## [2,] 1 1 1 6 2 2
## [3,] 10 3 3 2 2
## [4,] 10 3 3 8 9
## [5,] 10 3 3 5 5</pre>
```

layout(m); layout.show(10)

