Cambridge (CIE) A Level Chemistry

Isomerism: Optical

Contents

- * Optical Isomers
- * Chirality & Drug Production

Optical Isomers

Properties of Enantiomers

- Stereoisomers are molecules that have the same structural formula but have the atoms arranged differently in space
- There are two types of stereoisomerism
 - Geometrical (cis / trans)
 - Optical

Optical isomerism

- A carbon atom that has **four different atoms** or **groups of atoms** attached to it is called a chiral carbon or chiral centre
- Compounds with a chiral centre (**chiral molecules**) exist as two **optical isomers** which are also known as enantiomers

How enantiomers occur

A molecule has a chiral centre when the carbon atom is bonded to four different atoms or group of atoms; this gives rises to enantiomers

- The enantiomers are **non-superimposable mirror images** of each other
- Their physical and chemical properties are identical but they differ in their ability to rotate plane polarised light
 - Hence, these isomers are called 'optical' isomers
 - One of the optical isomers will rotate the plane of polarised in the **clockwise** direction
 - Whereas the other isomer will rotate it in the anti-clockwise direction

How a polarizer works

When unpolarised light is passed through a polariser, the light becomes polarised as the waves will vibrate in one plane only

Biological activity of enantiomers

- Enantiomers also differ from each other in terms of their **biological activity**
- Enzymes are chiral proteins that speed up chemical reactions by binding substrates
- They are very target-specific as they have a specific binding site (also called active site) and will only bind molecules that have the exact same shape
- Therefore, if one enantiomer binds to a chiral enzyme, the mirror image of this enantiomer will not bind nearly as well if at all
 - It's like putting a right-hand glove on the left hand!

Enzymes acting on different biological enantiomer substrates

Enantiomers differ from each other in their biological activity

Optically Active Compounds & Racemic Mixtures

- Enantiomers are optical isomers that are mirror images of each other and are nonsuperimposable
- They have similar chemical properties but differ from each other in their ability to rotate plane polarised light and in their biological activity

Optical activity

- Let's suppose that in a solution, there is 20% of the enantiomer which rotates the plane polarised light clockwise and 80% of the enantiomer which rotates the plane of polarised light anticlockwise
- There is an uneven mixture of each enantiomer, so the reaction mixture is said to be optically active
 - The net effect is that the plane of polarised light will be rotated anticlockwise
- Similarly, if the percentages of the enantiomers are reversed, the reaction mixture is still optically active but now the plane of polarised light will be rotated clockwise
 - In this case, there is 20% of the enantiomer, which rotates the plane **anticlockwise**
 - And 80% of the enantiomer, which rotates the plane **clockwise**
- A racemic mixture is a mixture in which there are equal amounts of enantiomers present in the solution
- A racemic mixture is **optically inactive** as the enantiomers will cancel out each other's effect and the plane of polarised light will not change

How the percentage of enantiomers affects plane polarised light

When one of the enantiomers is in excess, the mixture is optically active; when there are equal amounts of each enantiomer the mixture is optically inactive

Effect of Optical Isomers on Plane Polarised Light

- Molecules with a chiral centre exist as optical isomers
- These isomers are also called **enantiomers** and are non-superimposable mirror images of each other
- The major difference between the two enantiomers is that one of the enantiomers rotates plane polarised light in a clockwise manner and the other in an anticlockwise fashion
 - The enantiomer that rotates the plane **clockwise** is called the **R** enantiomer
 - The enantiomer that rotates the plane **anticlockwise** is called the **S** enantiomer
- These enantiomers are, therefore, said to be **optically active**
- Therefore, the rotation of plane polarised light can be used to determine the identity of an optical isomer of a single substance

- For example, pass plane polarised light through a sample containing one of the two optical isomers of a single substance
- Your notes
- Depending on which isomer the sample contains, the plane of polarised light will be rotated either clockwise or anti-clockwise
- No effect will be observed when the sample is a racemic mixture

Using polarized light to distinguish between R and S enantiomers

Each enantiomer rotates the plane of polarised light in a different direction

Chirality & Drug Production

Chirality & Drug Production

- Most of the drugs that are used to treat diseases contain **one or more** chiral centres
- These drugs can therefore exist as enantiomers which differ from each other in their ability to rotate plane polarised light
- Another crucial difference between the enantiomers is in their potential biological activity and therefore their effectiveness as medicines
- Drug compounds should be prepared in such a way that only one of the optical isomers is produced, in order to increase the drugs' effectiveness
 - Some drug enantiomers can have very harmful side effects

Potential biological activity of enantiomers

- If conventional organic reactions are used to make the desired drug, a racemic mixture will be obtained
 - In a racemic mixture, there are equal amounts of the two enantiomers
- The physical and chemical properties of the enantiomers are the same, however, they may have opposite biological activities
- For example, the drug **naproxen** is used to treat pain in patients who suffer from arthritis
 - One of the enantiomers of naproxen eases the pain, whereas another enantiomer causes liver damage
- One enantiomer of a drug used to treat tuberculosis is effective whereas another enantiomer of this drug can cause blindness
- Thalidomide is another example of a drug that used to be used to treat morning sickness, where one of the enantiomers caused very harmful side effects for the unborn

Separating racemic mixtures

- Due to the different biological activities of enantiomers, it is very important to **separate** a racemic mixture into pure single enantiomers which are put in the drug product
- This results in **reduced side-effects** in patients
 - As a result, it protects pharmaceutical companies from legal actions if the side effects are too serious
- It also **decreases** the patient's **dosage** by half as the pure enantiomer is more **potent** and therefore reduces production costs
 - A more potent drug has better therapeutic activity

Chiral catalysts

- In order to produce single, pure optical isomers, **chiral catalysts** can be used
- The benefits of using chiral catalysts are that only **small amounts** of them are needed and they can be reused
- Your notes
- For example, an organometallic ruthenium catalyst is used in the production of naproxen which is used in the treatment of arthritis

Using catalysts to direct the production on one enantiomer

The organometallic ruthenium catalyst is a chiral catalyst which ensures that only one of the enantiomers is formed which can be used in treating arthritis

- Enzymes are excellent biological chiral catalysts that promote stereoselectivity and produce single-enantiomer products only
 - Stereoselectivity refers to the preference of a reaction to form one enantiomer over the other
- Due to the **specific** binding site of enzymes, only one enantiomer is formed in the reaction
- The enzymes are fixed in place on **inert supports** so that the reactants can pass over them without having to later separate the product from the enzymes
- The disadvantage of using enzymes is that it can be expensive to isolate them from living organism
 - Therefore, more research has recently been carried out into designing synthetic enzymes
- Although using enzymes to produce pure enantiomers in drug synthesis takes longer than conventional synthetic routes, there are many advantages to it in the long run
 - For example, using enzymes to synthesise drugs is a **greener** process as fewer steps are involved compared to conventional synthetic routes