1

NCERT Physics 12.7 Q19

EE23BTECH11212 - MANUGUNTA MEGHANA SAI*

Question: Suppose the circuit in Exercise 7.18 (in Figure Fig. 1)has a resistance of 15 Ω . Obtain the average power transferred to each element of the circuit, and the total power absorbed.

 $\begin{array}{c|c}
15 \Omega & 80 mH \\
\hline
50 Hz & \\
\hline
230 V & \\
\hline
\end{array}$ $\begin{array}{c}
60 \mu F
\end{array}$

Fig. 1. LCR Circuit

Solution: In Figure Fig. 1 the following information is provided:

Symbol	Value	Description
L	80 mH	Inductance
C	$60\mu\mathrm{F}$	Capacitance
R	15 Ω	Resistance
V	230 V	Voltage
f	50 Hz	Frequecny

TABLE I Impedences

Angular frequency of signal, $\omega = 2\pi f = 2\pi \cdot (50)$ = 100π

The elements are connected in series to each other. Hence the impedence Z is givan as:

$$Z = \sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2}$$

$$= \sqrt{15^2 + \left(100\pi \cdot (80 \times 10^{-3}) - \frac{1}{100\pi \times 60 \times 10^{-6}}\right)^2}$$
(2)

$$= \sqrt{15^2 + (25.12 - 53.08)^2} \tag{3}$$

$$= 31.728 \Omega \tag{4}$$

Current flowing through the circuit *I* is :

$$I = \frac{V}{Z} = \frac{230}{31.728} \tag{5}$$

$$= 7.25 A$$
 (6)

Average power transferred to resistance is given by :

$$P_R = I^2 \cdot R = (7.25)^2 \times 15 \tag{7}$$

$$= 788.44 W$$
 (8)

 $60 \mu F$ Average power transferred to the capacitor, $P_C =$ Average power transferred to the inductor, $P_L = 0$ Total power absorbed by circuit:

$$= P_R + P_C + P_L \tag{9}$$

$$= 788.44 + 0 + 0 \tag{10}$$

$$= 788.44 W$$
 (11)

Total power absorbed by circuit is 788.44W

Function H(s):

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
 (12)

$$\Rightarrow V(s) = I(s) \left(R + Ls + \frac{1}{sC} \right) \tag{13}$$

$$\Rightarrow I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{14}$$

$$H(s) = \frac{V(s)}{I(s)} \tag{15}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{16}$$

$$\Rightarrow H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
 (17)

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (18)

Fig. 2. Absolute value of $H(j\omega)$ for RLC Circuit