Math 151A: Problem Set 3

Owen Jones

5/1/2023

Problem 1: (C) Newton's Method

Use Newton's method to find solutions accurate to within 10^{-5} for the problem:

$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
 for $1 \le x \le 2$.

Repeat using the Secant method. Report the number of iterations needed to reach your computed solutions.

For this problem: The true root is p = 1.82938360193385, you can use the stopping criterion: $|p_n - p| \le 10^{-5}$.

Solution:

 $f \in C^2[1,2], p \in (1,2), f(p) = 0$ $f'(p) \neq 0$, so there exists a sequence $(p_n)_{n=1}^{\infty}$ that converges to p for any initial p_0 within some δ of p. Let $p_0 = 1$, (and $p_1 = 1.5$ for secant method). Number of iterations and approximations of p for both methods shown in the command window accompanying code.

4/25/23 5:01 PM /Users/theelusivegerbilf.../hw_3_q_1_new.m 1 of 2

```
% Week 4 code 151A
% Find root of function f(x)=cos(x)-x^3 using Newton's method and Secant method clc;
clear all
% Find root of function f(x)=cos(x)-x^3 using Newton's method and Secant method clc;
(clear all
% Find root of function f(x)=cos(x)-x^3 using Newton's method and Secant method clc;
%% Parameters
(N0 = 500; % maximum umber of iterations
p0 = 1; % starting point
f = g(x) exp(x)+2^2-(x)+2^2cos(x)-6;
p_root=1.82933369193385;
% Newton's method
filter, p] = Newton(f, f_diff, tol, N0, p0,p_root);
fprintf('Newton''s method:n')
fprintf('Newton''s method:n')
fprintf('Hexation number = %d\n', iter);
fprintf('F(p) = %.11f'\n',p);
fprintf('Secant method:n')
fprintf('Secant method:n')
fprintf('Secant method:n')
fprintf('Secant method:n')
fprintf('Secant method:n')
fprintf('Secant method:n')
fprintf('P = %.11f'\n',p);
fprintf('Secant method:n')
```

4/25/23 5:02 PM MATLAB Command Window

1 of 1

Newton's method: Iteration number = 8 p = 1.82938360193 f(p) = 0.00000000000 Secant method: Iteration number = 7 p = 1.82938360195 f(p) = 0.000000000008

Problem 2: (C) Newton's Method for Optimization

Use Newton's method to approximate the value of x that produces the point on the graph of $y=x^2$ that is closest to (1,0). Use the stopping criterion $|p_{n+1}-p_n|\leq 10^{-8}$ and the value $p_0 = 1$. Report the approximation and the number of iterations needed to reach your computed solution.

Hint: Minimize $d(x)^2$, where d(x) represents the distance from (x, x^2) to (1, 0).

Solution:

 $d(x) = \sqrt{x^4 + (x-1)^2}$. Because distance is always non-negative and x^2 is monotone, d(x) is minimized when $d(x)^2$ is minimized.

 $(d(x)^2)' \in C^2[0,1]$. By observing the graph of $(d(x)^2)'$ there exists $p \in (0,1)$ s.t $(d(p)^2)' = 0$ and (d(p))'' > 0, so there exists a sequence $(p_n)_{n=1}^{\infty}$ that converges to p for any initial p_0 within some δ of p.

Let $f(x) = x - \frac{d'(x)^2}{d''(x)^2} = x - \frac{4x^3 + 2x - 2}{12x^2 + 2}$ with initial estimate $p_0 = 1$. It takes 6 iterations to obtain a 10^{-8} -accurate approximation with $p_6 = 0.58975451230$.

4/25/23 4:25 PM /Users/theelusivegerbilf.../hw_3_q_2_new.m 1 of 1

```
% Week 4 code 151A
% Find root of function f(x)=cos(x)-x^3 using Newton's method and Secant method
clear all;
%% Parameters
tol = 1e-8; % error tolerance
N0 = 500; % maximum number of iterations
p0 = 1; % starting point
f = q(x) 4*x^3+2*x-2;
%% Newton's method
f diff = q(x) 12*x^2+2;
[iter, p] = Newton(f, f_diff, tol, N0, p0);
fprintf('Newton''s method'\n')
fprintf('Iteration number = %d \n', iter);
fprintf('p = %.11f \n',p);
fprintf('d(p) = %.11f \n', sqrt((p)^4+(p-1)^2));
  %% Algorithms
  function [iter, p] = Newton(f, f_diff, tol, N0, p0)
   function [iter, p] = Newton(f, f_diff,
j = 1;
p = p0;
while j < N0
y = f(p);
y_diff = f_diff(p);
% always a good idea to add checks
if abs(y_diff) < 1e-12
error('dividing by zero')
end</pre>
          end
p_next = p - y / y_diff;
if abs(p_next-p)<tol
break;
end
            j = j + 1;
p = p_next;
```

4/25/23 4:26 PM MATLAB Command Window 1 of 1

Newton's method: Iteration number = 6 p = 0.58975451230 d(p) = 0.53784144870

Problem 3: (T) Convergence Rate

- a) Show that the sequence $p_n = 10^{-2^n}$ converges quadratically to zero.
- b) Show that for any positive k > 1, the sequence $p_n = 10^{-n^k}$ does not converge quadratically to zero.
- c) The sequence $p_n = \sqrt{p_{n-1}}$ starting at $p_0 = 1.5$ converges to p = 1. Show that it is linearly convergent (without explicitly solving p_n as a function of n).
- d) The sequence $p_n = p_{n-1} \frac{1}{5} p_{n-1}^5$ starting at $p_0 = 0.5$ converges to p = 0. Show that it converges sublinearly (without explicitly solving p_n as a function of n).
- e) Recall that a sequence $\{p_n\}$ converges superlinearly to p if

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = 0.$$

Show that if $p_n \to p$ of order a for a > 1, then p_n converges superlinearly to p.

Solution:

- a) If p_n converges to p quadratically, it automatically has to converge linearly as well. $\lim_{n\to\infty}\frac{|p_{n+1}-0|}{|p_n-0|^2}=\lim_{n\to\infty}\frac{|10^{-2^{n+1}}-0|}{|10^{-2^n}-0|^2}=\lim_{n\to\infty}\frac{|10^{-2^{n+1}}|}{|10^{-2\cdot 2^n}|}=\lim_{n\to\infty}\frac{|10^{-2^{n+1}}|}{|10^{-2^{n+1}}|}=1$ Therefore, by the definition of order of convergence, p_n converges to 0 with order of convergence 2 and error constant 1. Since the order is 2, p_n converges quadtratically to 0.
- b) $\lim_{n\to\infty} \frac{|p_{n+1}-0|}{|p_n-0|^2} = \lim_{n\to\infty} \frac{|10^{-(n+1)^k}-0|}{|10^{-n^k}-0|^2} = \lim_{n\to\infty} \frac{|10^{-(n+1)^k}|}{|10^{-2\cdot n^k}|} = \lim_{n\to\infty} |10^{2\cdot n^k-(n+1)^k}| = \lim_{n\to\infty} |10^{(n+1)^k}|^{(n+1)^k} = \lim_{n\to\infty} |10^{(n+1)^k}|^{($
- c) $\lim_{n\to\infty} \frac{|p_{n+1}-1|}{|p_n-1|} = \lim_{n\to\infty} \frac{|\sqrt{p_n}-1|}{|p_n-1|} = \lim_{n\to\infty} \frac{1}{|\sqrt{p_n}+1|} = \frac{1}{2}$ because p_n converges to 1. Therefore, by the definition of order of convergence, p_n converges to 1 with order of convergence 1 and error constant $\frac{1}{2}$. Since the order is 1, p_n converges linearly to 1.
- d) $\lim_{n\to\infty} \frac{|p_{n+1}-0|}{|p_n-0|} = \lim_{n\to\infty} \frac{|p_n-\frac{1}{5}p_n^5|}{|p_n|} = \lim_{n\to\infty} |1-\frac{1}{5}p_n^4| = 1$ because p_n converges to 0. Therefore, by the definition of order of convergence, p_n converges to 0 with order of convergence 1 and error constant 1. Since the order is 1 and $\lambda \geq 1$, p_n converges sublinearly to 0.
- e) If $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^a} = \lambda$ for $\lambda \in \mathbb{R}^+$. It follows $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|} = \lambda \lim_{n\to\infty} |p_n-p|^{a-1}$. Because $p_n \to p$ and a > 1, it follows that $\lambda \lim_{n\to\infty} |p_n-p|^{a-1} = 0$. Therefore $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|} = 0$. Hence $p_n \to p$ superlinearly whenever $p_n \to p$ of order a > 1.

Problem 4: (T) Polynomial Approximation

Let $f(x) = e^{2x}$ for $x \in [0, 2]$. Find the Lagrange interpolating polynomial of degree-2, i.e. $P_2(x)$, using the nodes $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$ and use it to approximate f(1.5) i.e. $f(1.5) \approx P_2(1.5)$.

Solution:

$$P_2(x) = \frac{(x-1)(x-2)}{2} - e^2(x)(x-2) + \frac{e^4(x)(x-1)}{2}$$

 $P(1.5) = 25.89110, f(1.5) = 20.08554 \text{ Error} = 5.80556$

Problem 5: (T) Lagrange Interpolating Polynomials

Consider the function $f(x) = \frac{14}{3}x^{100} - \frac{64}{59}x^{50} - 97$. Find the Lagrange interpolating polynomial of degree-200 on [-1,1] using equally spaced nodes $x_j = -1 + jh$ for $j = 0, \dots, n$ with $h = \frac{1}{100}$.

Hint: The solution for this problem should only be one sentence, no computing or derivations are needed.

Solution:

$$P(x) = f(x) - \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n) = f(x) = \frac{14}{3}x^{100} - \frac{64}{59}x^{50} - 97$$
 because f is only 101 times differentiable.

More clearly $P(x) = \frac{14}{3}x^{100} - \frac{64}{59}x^{50} - 97$ over the interval.

Problem 6: (T) Lagrange Interpolating Polynomials

Let $P_3(x)$ be the degree-3 Lagrange interpolating polynomial using the input-output pairs (0,0), (0.5,s), (1,3), and (2,2). Find the value of s so that the coefficient of the cubic term x^3 in $P_3(x)$ is equal to 6.

Solution:

$$P_{3}(x) = f(x_{0})L_{0}(x) + f(x_{1})L_{1}(x) + f(x_{2})L_{2}(x) + f(x_{3})L_{3}(x)$$

$$f(0) = 0 \Rightarrow f(0)L_{0}(x) = 0$$

$$f(0.5)L_{1}(x) = s \frac{x(x-1)(x-2)}{0.5 \cdot (-0.5) \cdot (-1.5)} = \frac{8sx(x-1)(x-2)}{3}$$

$$f(1)L_{2}(x) = 3 \frac{x(x-0.5)(x-2)}{1 \cdot 0.5 \cdot (-1)} = -6x(x-0.5)(x-2)$$

$$f(2)L_{3}(x) = 2 \frac{x(x-0.5)(x-1)}{2 \cdot 1.5 \cdot 1} = \frac{2x(x-0.5)(x-1)}{3}$$

$$f(x_{0})L_{0}(x) + f(x_{1})L_{1}(x) + f(x_{2})L_{2}(x) + f(x_{3})L_{3}(x)$$

$$= \frac{8sx(x-1)(x-2)}{3} - 6x(x-0.5)(x-2) + \frac{2x(x-0.5)(x-1)}{3}$$

$$= \frac{8s-16}{3}x^{3} + (14-8s)x^{2} + \frac{16s-17}{3}x$$
If $s = 4.25$ then $P_{3}(x) = 6x^{3} - 20x^{2} + 17x$