

Univerzita Hradec Králové Fakulta informatiky a managementu

KATEDRA INFORMATIKY A KVANTITATIVNÍCH METOD 2014-06-29

BAKALÁŘSKÁ PRÁCE

Vert.x platforma pro webové aplikace

Autor: Michael Kutý

Vedoucí práce: doc. Ing. Filip Malý, Ph.D. Hradec Králové, 2014

vých aplikací. Teoretická čá které tato platforma řeší. V kolaborativní aplikace jejíž byla zajištěna vysoká dostuj	e se zaměřuje na problematiku vývoje distribuovaných ást práce popisuje architekturu platformy Vert.x a pro 7 praktické části bude implementovaná malá jednostra 8 jednotlivé části budou rozdistribuované na více instal pnost. Aplikace se nasadí do dvou referenčních instalac druhá v prostředí laboratoře CEPSOS při UHK.	oblém ánkov ncí al
Annotation English content	nt	
	ii	

Prohlašují, že jsem bakalářskou práci vypracoval samostatně a uvedl jsem všechny použité prameny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
meny a literaturu. V Kroměříži dne 22. července 2014 Michael Kutý			
	Prohlašuji, že jsem bakalářskou práci vyprac meny a literaturu.	coval samostatně a uvedl jsem všechny použité pra-	
v	V Kroměříži dne 22. července 2014	Michael Kutý	
v			
		v	

Obsah

Αŀ	Abstrakt						
Za	dání	práce	iii				
1	Úvo 1.1 1.2	Od Cíl a metodika práce	1 1 2				
2	Plat 2.1 2.2 2.3 2.4	2.3.1 Základní API	3 4 4 5 6 9 11 12 12 12 12 12				
3	Pral 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Návrh 3.1.1 Cíle aplikace Základní aplikace Integrace s databází MongoDB Real-time komunikace Polygnot vývoj a moduly Nasazení 3.6.1 Server 3.6.2 Java 3.6.3 Vert.x 3.6.4 MongoDB Škálování a vysoká dostupnost 3.7.1 Počet Verticlů	15 15 15 15 15 15 15 15 16 16 16 16 16				
4	Záv	ěr	17				
Li	eratı	ura	18				
Ρì	íloh	n v	ı				

1 Úvod

V současné době existuje nespočet frameworků¹ pro vývoj webových aplikací ve spoustě programovacích jazycích. Vývojář tak nemá vůbec lehké, vybrat ten správný nástroj, který by mu zaručil, že se jeho aplikace dostane na hranici možností, které mu daný nástroj poskytuje.

Většina webových aplikací ovšem dříve nebo později narazí na na problematiku škálování, kdy je třeba rozložit aplikaci na vice serverů ať už pro zajištění vysoké dostupnosti nebo co nejnižší odezvy. Dnes také není nic neobvyklého, že aplikaci najednou začnou navštěvovat tisíce klientů za minutu a rázem se tak může stát, že z jinak rychlé aplikace se stane často padající aplikace s nepřiměřenou odezvou.

Právě proto, jsem se rozhodl k hlubšímu zkoumání v dané oblasti webových aplikací. V první části bakalářské práce je popsána architektura a jednotlivé technologie, které mě motivovali k hlubšímu studiu platformy Vert.x. V hlavní části práce následuje návrh a vlastní implementace jednostránkové aplikace. V závěru je pak shrnutí kladů a záporů platformy.

1.1 Cíl a metodika práce

Hlavním cílem práce bude zjištění zda-li se platforma Vert.x hodí pro vývoj distribuovaných jednostránkových aplikací dále jen SPA. Vytvoření jednoduchého webového editoru myšlenkových map dále jen mindmap. Na této jednoduché aplikaci bude demonstrován proces vývoje webové aplikace pod platformou Vert.x. Při vývoji klientské části bude použit návrhový vzor MVVC.

Je nutné uchopit problematiku platformy Vert.x v širších souvislostech, proto se práce snaží neopomenout všechny technologie, které s Vert.x souvisí, z kterých Vert.x vychází nebo které přímo integruje. V teoretické části bude čtenář seznámen s důležitými filozofiemi, které platforma nabízí. A to jak událostmi řízenou architekturou, kterou platforma převzala z dnes již dobře známého frameworku Node.js. Tak především polygnot programování s jednoduchým konkurenčním modelem a možnost sdílet data mezi jednotlivými vlákny bez nutnosti zámků.

Cílem teoretické části je tedy popsat jednotlivé části platformy a jejich účel či problém, který řeší. V závěru teoretické části bude platforma srovnána s již zmíněným nástrojem Node.js² to v několika důležitých aspektech rychlosti, která je v dnešním světě neustálého růstu počtu zařízení, to co trápí webové aplikace s desítkami tisíc dlouho trvajících připojení.

¹Cílem frameworku je převzetí typických problémů dané oblasti, čímž se usnadní vývoj tak, aby se návrháři a vývojáři mohli soustředit pouze na své zadání

²Serverový framework, postavený na modelu událostmi řízeného programování

V praktické části bude vytvořen editor pro jednoduchou správu a tvorbu mindmap. Tyto mindmapy bude moct upravovat více uživatelů najednou v reálném čase. Budou popsány a vysvětleny jednotlivé kroky vývoje až po úplné nasazení webové aplikace na jednotlivé servery, kde bude prověřena funkčnost distribuovaného provozu aplikace. Pro nasazení aplikace na více serverů bude použit nástroj konfiguračního managementu Salt Stack.

1.2 Postup a předpoklady práce

Práce předpokládá základní znalost programovacího jazyku Java a JavaScript. Teoretická část se neomezuje pouze na nezbytný popis technologií potřebných k realizaci malé jednostránkové webové aplikace. Představuje stručný pohled na celou platformu Vert.x. Teoretická část může být použita jako odraz k hlubšímu studiu daných technologií. Pro realizaci webové aplikace budou použity pokročilé techniky, které učiní aplikaci ještě více znovupoužitelnou a škálovatelnou. Tyto techniky budou čtenáři vysvětleny podrobným způsobem s použitím ukázek. Práce předpokládá znalost základní terminologie související s programováním obecně. Méně zažité pojmy budou vysvětleny poznámkou pod čarou.

Při vývoji webové aplikace budou použity následující softwarové technologie:

- Java Developement Kit 7: soubor základních nástrojů a knihoven pro běh a vývoj Java aplikací.
- Ubuntu 12.04: operační systém vhodný pro běh Vert.x aplikací
- Vert.x 2.1M3+: platforma pro vývoj real-time webových aplikací
- MongoDB: dokumentové orientovaná NoSQL databáze
- AngularJS: client side framework pro snadný a efektivní vývoj jednostránkových webových aplikací
- D3.js: framework pro práci s grafy

2 Platforma Vert.x

Dnešním trendem internetu jsou real-time kolaborativní aplikace, které drasticky změnily potřeby programátorů, na jednotlivé nástroje. Programátor tak má možnost zvolit si z velké řádky nástrojů mezi než patří například Node.js, Akka či ruby EventMachine. Problémem těchto jinak časem a komunitou prověřených platforem může být fakt, že jsou úzce spjaté s konkretním programovacím jazykem či velmi náročná integrace do již stávájící aplikace.

Vert.x je projekt vycházející z Node.js, který jako první framework, pokořil v roce 2010 C10K¹ problém. Platforma Vert.x má velice podobné API² jako Node.js. Obě platformy poskytují kompletně asynchronní API. Jak již název napovídá Node.js je napsán v JavaScriptu, zatím co Vert.x je implementován v Javě. Vert.x ale nění pouhá reimplementace Node.js do jazyka Java. Platforma má svou vlastní unikátní filozofii, která je diametrálně odlišná od Node.js.

2.1 Historie

Začátek vývoje projektu Vert.x je datován do roku 2011. Tedy rok poté co spatřil světlo světa framework Node.js a za pouhý rok si vydobyl své místo u komunity, která si jej velmi oblíbila. Pravděpodobně největší motivací pro vývoj nové platformy podobné Node.js byla právě oblíbenost Node.js.

Hlavním autorem platformy byl a je Tim Fox, který v době začátku vývoje platformy pracoval ve společnosti VMWare. Tato společnost si vzápětí nárokovala všechny zásluhy Tima Foxe na Vert.x platformu. Právníci společnosti vydaly výzvu, ve které požadovali mimo jiné doménu, veškerý zdrojový kód a účet Tima Foxe na Githubu. Z toho důvodu Tim Fox odešel od společnosti v roce 2012. V témže roce projevila o platformu zájem firma RedHat, která nabídla Timovi pracovní místo, absolutně volnou ruku ve vývoji a vedení projektu[1].

Po několika debatách jak s představiteli společnosti RedHat tak i komunitou došel Tim Fox k názoru, že nejlepší pro budoucí zdravý rozvoj platformy bude přesunutí celé platformy pod nadaci Eclipse Foundation, k čemuž došlo na konci roku 2013. V dnešní době se platforma těší velkému vývoji, který čítá desítky pravidelných přispěvatelů mezi něž patří mimo Tima například také Norman Maurer, který patří mezi přední inženýry vyvíjející framework Netty.io, který zodpovídá za integraci Netty frameworku do Vert.x platformy.

Na tomto místě by bylo vhodné uvést, že platforma Vert.x letos vyhrála prestižní cenu "Most Innovative Java Technology" v soutěži JAX Innovation awards[2].

¹C10K problém řeší otázku: "Jak je možné obsloužit deset tisíc klientů za pomocí jednoho serveru, a to s co možná nejnižším zatížením serveru

 $^{^2} Application \ Programming \ Interface$

Obrázek 2.1: Architektura Vert.x Jaehong Kim

2.2 Architektura

Na obrázku 2.1 jsou znázorněny dvě nezávislé Vert.x instance, které spolu komunikují pomocí zpráv. V levé části je blíže zobrazena jedna Vert.x instance, která bude blíže rozebrána v následujících kapitolách.

2.2.1 Jádro

Velikost samotného jádra aplikace nepřekračuje 10Mb kódu v jazyce java. V současné verzi je jádro platformy koherentní, dobře čitelné a poskytuje stabilní API. Lze jej následně rozšířit o novou funkčnost dokompilovaním balíčků, které lze naleznout v oficiálním repositáři. Pravděpodobnou inspirací byl již zmíněný Node.js respektive NPM³ u kterého se takováto forma vývoje velice oblíbila. Od doby vzniku této platformy vzniklo nespočet rozšíření, které udělaly z Node.js silný násroj pro rychlý vývoj webových aplikací. Klíčové jsou aspekty jako událostmi řízené programování a neblokující asynchronní model. Událostmi řízené programování je podle Tomáše Pitnera[8] základním principem tvorby aplikací s GUI(Graphical user interface). Netýká se však pouze GUI, je to obecnější pojem označující typ asynchronního programování, kdy je:

³Node package manager

tok programu řízen událostmi; události nastávají obvykle určitou uživatelskou akcí: klik či pohyb myši, stisk tlačítka událostmi řízené aplikace musí být většinou programovány jako vícevláknové (i když spouštění vláken obvykle explicitně programovat nemusíme) Asynchronní někdy také paralélní model je přímo závislý na způsobu implementace samotným programovacím jazykem. Základním pojmem je zde proces, který je vnímán jako jedna instance programu, který je plánován pro nezávislé vykonávání. Naproti tomu Vlákno⁴ je posloupnost po sobě jdoucích událostí.(vlákno). V dřívější době nebylo potřeba rozlišovat proces a vlákno, protože proces se dále v aplikaci nedělil. Vytvoření vlákna je poměrně drahá a pomalá operace. Což se často obchází vytvořením zásoby uspaných vláken dopředu s nějakým managementem, co vlákna přidává a ubírá dle potřeby. Základním principem Vert.x a jemu podobných frameworků je jedno hlavní vlákno, obvykle pro každý procesor jedno a jednotlivé úlohy co při běhu aplikace vznikají si řídí sám.

Existují dva druhy asynchronního modelu (multitaskingu): multiprocesorový: o běh, tvorbu a režii vláken se stará operační systém multivláknový: o běh, tvorbu a režii vláken se stará aplikace a předává je operačnímu systému Podle Lažanského[9] je sdílení paměti důsledkem nižší režie při přepínání (přepnutí vláken je výrazně rychlejší), obdobně i vytváření a rušení vlákna a samozřejmě i úspora paměti. Jak již bylo zmíněno jádro Vert.x je implementováno v jazyce Java a pro Vert.x je tedy důležité, jak moc je dobrá implementace paralélního modelu v jazyce JAVA. Zde se dostáváme k jedinému požadavku pro běh Vert.x instancí a to je přítomnost Java development Kitu ve verzi 1.7 a novější. Tato verze přinesla nespočet vylepšení, pro jejichž výpis zde není místo. Došlo také na přepsání či úpravy v několika zásadních třídách z balíčku java.util.concurrent⁵.

ExecutorService z balíčku java.util.concurrent

CyclicBarrier⁶ z balíčku java.util.concurrent

CountDownLatch z balíčku java.util.concurrent

File z balíčku java.nio

Vylepšený ClassLoader lepší odolnost vůči deadlockům⁷

Více o java.concurrent[5]

Ed Gardoh v roce 2011 ve svém jednoduchém testu[3] prověřil práci s paralelizací úkonů. Z jeho testů vyplývá, že Java 1.7 je až o 40% rychlejší při práci s vlákny díky nové metodě Fork/Join⁸.

2.2.2 Multi-reactor pattern

Základ jádra je postaven na tzv. Multi-reactor pattern[10], který vychází z Reactor patternu[4], ten lze charakterizovat několika body:

⁴Označuje v informatice odlehčený proces, pomocí něhož se snižuje režie operačního systému při změně kontextu, které je nutné pro zajištění multitaskingu

⁵Knihovna pro práci s multitaskingem

Odborný výraz pro situaci, kdy úspěšné dokončení první akce je podmíněno předchozím dokončením druhé akce, přičemž druhá akce může být dokončena až po dokončení první akce.

⁸http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

- aplikace je řízena událostmi
- na události se registrují handlery
- vlákno zpracovává události a spouští registrované handlery
- toto vlákno nesmí být blokováno⁹

Multi-reactor pattern[10] se od Reactor patternu liší pouze tím, že může mít více hlavních vláken. Tím přináší Vert.x možnost pohodlně škálovat instance na více procesorových jader. Takovému vláknu, se ve Vert.x komunitě říká *Event Loop*. V komunitách Nginx nebo Node.js se ovšem setkáme spíše s pojmem *Run Loop*. Nevýhoda tohoto modelu je, že nikdy nesmí dojít k blokování hlavního vlákna a také fakt, že platforma Node.js poskytovala jenom jedno vlákno, které šlo škálovat na jednotlivé procesory. Jak je vidět z obrázku 2.2 na následující straně Vert.x platforma poskytuje více hlavních vláken, zpravidla však jedno hlavní vlákno na jeden procesor. Toho lze snadno docílit pomocí *Runtime.getRuntime().availableProcessors()* o kterém se dozvíte více v kapitole 3.7. Na obrázku 2.3 na následující straně pak lze vidět situaci čtyř hlavních vláken na čtyři procesorové jádra. ?? na straně ??říklady blokujících volání:

- tradiční API (JDBC, externí systémy)
- dlouhotrvající operace (generování apod.)

Hybridní model vláken

Platforma Vert.x přišla s inovací v oblasti hlavních vláken a to takovou, že k hlavním *Event loops* přidala další sadu vláken *Background thread pool*, které jsou vyčleněny z hlavní architektury a poskytující samostatnou kapitolu pro škálování aplikace. To lze ostatně vidět na obrázku 2.1 na straně 4. Díky tomu, lze psát specializované moduly nebo verticle tzv. *workery* pro blokující volání či dlouhotrvající operace aniž by nějak omezovaly běh celé aplikace. Více o *workerech* v 2.2.3

2.2.3 Vert.x instance

Verticle běží v jedné Vert.x instanci 2.2 na následující straně. Každá Vert.x instance běží ve vlastním JVM instanci. V jedné Vert.x instanci může najednou běžet X Vertclů. Na jednom fyzickém stroji může běžet více Vert.x instancí případně v cluster módu i na více fyzických strojích.

Verticle

Základní jednotka vývoje a nasazení. Verticle může být skript nebo třída například v jazyce Java. Verticle lze spouštět samostatně¹⁰ v praxi se ovšem využívají pouze moduly, které obsahují zpravidla více Verticles popřípadě worker Verticles.

⁹pokud dojde k zablkování hlavního vlákna dojde k zablokování celé aplikace např. *Thread.sleep(), a další z java.util.concurrent*

¹⁰vertx run Verticle.js

Obrázek 2.2: Vert.x instance

Obrázek 2.3: Vert.x instance vertx run HelloWord -instances 4

- nejmenší spustitelná jednotka
- třída / skript
- vykonává neblokující operace
- konkurence single-threaded¹¹
- přístup ke Core API2.3.1, registrace handlerů, deploy dalších verticlů

Spuštění verticle programově

```
JsonObject config = new JsonObject();
config.putString("foo", "wibble");
config.putBoolean("bar", false);
container.deployVerticle("foo.ChildVerticle", config);
```

Spuštění verticle z příkazové řádky

```
vertx run foo.js -conf myconf.json
```

Moduly

Moduly poskytují větší míru zapouzdření a znovupoužitelnost funkcionality. V praxi se mohou moduly skládat z více modulů či verticlů a mohou být uloženy v centrálním repozitáři¹² nebo může být využit jakýkoliv jiný repozitář. Repozitáře v kterých hledá Vert.x při startu instance dostupné moduly lze definovat v hlavní konfiguraci Vert.x. Každý modul musí mít svůj deskriptor ve formátu JSON¹³, tento deskriptor musí být v kořenovém adresáři modulu a může vypadat například takto. *toto je poze základní výčet parametrů všechny lze nalézt v dokumentaci Vert.x*

```
"main": "EchoServer.java",
   "worker": true,
   "includes": "io.vertx~some-module~1.1",
   "auto-redeploy": true
}
```

Typy modulů lze rozdělit do dvou základních skupin, které lze dál rozdělit podle typu určení modulu.

spustitelné mají definovanou main třídu v deskriptoru, takovéto moduly je pak možné spustit jako samostatné jednotky pomocí parametru *runmod nebo programově deploy-Module*

nespustitelné modul nemá specifikovanou main třídu a lze jej použít v jiném modulu použitím parametru *includes*

¹¹běží vždy pouze v jednom vlákně (odpadá synchronizace, zámky, ...), izolace (vlastní classloader)

¹²http://modulereg.vertx.io/

¹³JSON (JavaScript Object Notation) je odlehčený formát pro výměnu dat. Je jednoduše čitelný i zapisovatelný člověkem a snadno analyzovatelný i generovatelný strojově.

Jak bylo řečeno v 2.2.2 Vert.x instance má dvě sady vláken. Parametrem *worker* v deskriptoru modulu, lze říci Vert.x jádru aby spustil modul v *background worker poolu*. Parametr *auto-redeploy* mluví sám za sebe.

Spuštění modulu programově v jazyce Java

Spuštění modulu z příkazové řádky

```
vertx runmod com.mycompany~my-mod~1.0 -conf config.json
```

Worker Verticle

2.2.4 Event Bus

Nervový systém celého Vert.x, jehož název lze volně přeložit jako sběrnice událostí. Cílem EventBusu je zpozdředkování komunikace mezi jednotlivými komponentami a vlákny aplikace. Podobně jako při použití externí Message Queue[12] dále jen MQ. Díky faktu, že komponenta Event Bus je implementována přímo v jádru platformy odpadá nutnost používat další knihovny pro práci s MQ a v neposlední řadě také režijní náklady či výpočetní výkon. Jak je vidět na obrázku , komponenta Event Bus je distribuovaná přes všechny instance v clusteru. Obrovskou výhodou oproti externí MQ je fakt, že lze takovouto komunikaci snadno přemostit ke klientovi na straně webového prohlížeče což je detailněji popsáno v kapitole 3.4.

Základní typy komunikace:

- Point to Point
- Publish/Subscribe

typy zpráv:

- String
- primitivní typy (int, long, short, float double, ..)
- org.vertx.java.core.json.JsonObject
- org.vertx.java.core.buffer.Buffer

Toto je výčet pouze základních typů zpráv, které Vert.x podporuje v jádře. Není ale vůbec problém výčet stávájících typů rozšířit(doimplementovat). Například modul bson.vertx.eventbus¹⁴ rozšíří aplikaci o možnost používat mnohem komplexnější typy zpráv jejichž výčet se nachází níže.

- java.util.UUID
- java.util.List

¹⁴https://github.com/pmlopes/mod-bson-io

Obrázek 2.4: Event Bus distribuovaný mezi dva Servery

- java.util.Map
- java.util.Date
- java.util.regex.Pattern
- java.sql.Timestamp

Mezi doporučené se ovšem řadí JSON, protože je jednoduše serializovatelný mezi jednotlivými programovacími jazyky.

Hazelcast

Jednou z nejdůležitějších architektonických součástí Vert.x je knihovna Hazelcast, kterou tvoří jenom neuvěřitelných 2,6MB kódu v jazyce Java. Hlavní výhody In-memory data grid[6] lze podle Ki Sun Song sumarizovat:

- Data jsou distribuovaná a uložená na více serverech ve více geografických lokacích
- Datový model je většinou objektově orientovaný a ne-relační
- Každý server pracuje v aktivním režimu
- Dle potřeby lze přidávat a odebírat servery

Hazelcast lze využít v několika rolích:

- NoSQL¹⁵ databáze v paměti
- Cache¹⁶
- Data grid
- Zasílání zpráv
- Aplikační škálování
- Clustrování aplikací

Hazelcast je tedy typ distribuovaného úložiště, které běží jako vestavěný systém a lze díky němu distribuovat celou aplikaci do více geografických lokací nebo zasílat zprávy mezi jednotlivými komponentami. Vert.x API využívá Hazelcast API a odstiňuje tak programátora od poměrně nízko úrovňové API Hazelcastu.Když je Vert.x spuštěn, Hazelcast je spuštěn v módu vestavěného systému. Odpadá tak režie další služby. Jako nejčastější příklad užití samotného Hazelcastu bývá uváděno ukládání uživatelské session[11]. Hazelcast tedy usnadní práci v situaci, kdy budeme potřebovat uložit uživatelskou session například pro eshop. Mohli bychom využít externí RDBMS tedy databázový server, který by obstarával komunikaci s kleinty a udržoval integritu dat díky, kterému by jsme dosáhli stejného výsledku. S využitím knihovny Hazelcast ovšem odpadá nezbytná režie a monitoring, nemluvě o serverových prostředcích.

2.3 API

Vert.x poskytuje malou sadu metod, kterou lze volat na přímo z jednotlivých Verticlů. Funkcionalitu platformy lze jednoduše rozšířit pomocí modulů, které po zveřejnění do centrálního repozitáře může využívat kdokoliv a pomáhá tak znovu použitelnosti kódu. Samotné jádro Vert.x je tak velice malé a kompaktní. Vert.x API se dělí na *Základní API a Kontainer API*.

2.3.1 Základní API

Základní API, které Vert.x poskytuje programátorovi je poněkud strohé a obdobné jako u frameworku Node.js. Platforma tak poskytuje stabilní základ, který se v praxi neobejde bez modulů o kterých pojednává kapitola 2.2.3.

- TCP/SSL server/klient
- HTTP/HTTPS server/klient
- Websockets server/klient, SockJS

¹⁵databázový koncept, ve kterém datové úložiště i zpracování dat používají jiné prostředky než tabulková schémata tradiční relační databáze

 $^{^{16}}$ specializovaný typ paměti pro krátkodobé ukládání

- Distribuovaný Event Bus
- Časovače
- Práce s buffery
- Přístup k souborovému systému
- Přístup ke konfiguraci

2.3.2 Kontainer API

Díky této části API může programátor řídit spouštění a vypínání nových modulů a verticlů za běhu aplikace. V praxi jsme tak schopní škálovat aplikaci za běhu či měnit funkcionalitu celé aplikace aniž by to někdo mohl zaregistrovat. Tuto API můžeme také volat přímo z příkazové řádky dále jen CLI¹⁷.

- Nasazení a zrušení nasazení Verticlů
- Nasazení a zrušení nasazení Modulů
- Získání konfigurace jednotlivých Verticlů
- Logování

2.4 Výkonnostní testy a porovnání s Node.js

2.4.1 Metoda testování

2.4.2 Výsledky

2.4.3 Srovnání s Node.js

Následující tabulka ukazuje srovnání důležitých vlastností jednotlivých platforem, jejichž důležitost byla popsána v předchozích kapitolách.

Srovnání vlastností				
Vlastnost	Node.js	Vert.x		
CLI	Ano	Ano		
Cluster	Ano	Ano		
Moduly	Ano	Ano		
MQ	Ne	Ano		
Hybridní model vláken	Ne	Ano		
In-memory data grid	Ne	Ano		
Polygnot	Ne	Ano		

Tabulka 2.1: Table Title

¹⁷Command Line Interface

```
Command Prompt

result 48
start - Task 49
task -49 took 1.2770000000000001 secs
result 49
run time 65.298 secs
```

Obrázek 2.5: První test běhu serializační třídy

Obrázek 2.6: Využití jednotlivých procesorů při běhu

Ed Gardoh v roce 2011 provedl test[3] pro porovnání paralelizace¹⁸ v Javě 1.6 a 1.7. Hlavní myšlenkou je aby testovací třída simulovala úkol, který jako první volá vzdálenou službu a čeká sekundu na výzvu k návratu(spánek) a pak simuluje nějaké zpracování s výsledkem, jako je formátování řetězce. 2.5 je vidět synchronní běh serializační třídy v Javě 1.6. Z 2.6 je pak vidět využití potenciálů jednotlivých procesorů. Výsledek není žádné překvapení 50 úkolů s 1 sekundovým spánkem a spojováním řetězce trvalo něco málo přes 65 sekund. Cílem jeho testu mělo být porovnání paralelizování úkonů. Výsledky testu ukázaly zlepšení až o 75%. Z obrázků 1-4 zřetelně plyne, že nová Java je, pro single-thread¹⁹ model aplikace ta nejlepší volba.

Jetnotlivé testy prokázaly, že za takovým rapidním zrychlením stojí metody Fork/Join. Při vhodném škálování bylo zrychlení až o 75%. Z testů ovšem vyplívá také fakt, že při neúměrném počtu hlavních vláken na počet procesorů to má negativní dopady. Jedním z dopadů je 100% vytížení a jednotlivých jader. Při vhodném určení počtu vláken, je vidět rapidní urychlení asynchronní paralelizace. Node.js i Vert.x však poskytuji informace o celkovém počtu fyzických jader procesoru a ta je tedy snadné určení optimálního počtu vláken pro ideální výsledky.(Více na?asi vysvětlit)

^{*} pouze za použití modulů

¹⁸Paralelizace procesů se skládá z rozložení jednoho velkého úkonu do několika menších úkolů, které mohou běžet paralelně. Výsledkem je provedení jednoho úkolu nebo procesu za pomocí více než jednoho procesoru nebo procesorů "Paralelní zpracování", nesmí být zaměňováno se souběžností.

¹⁹jedno vláknový

Obrázek 2.7: První test běhu serializační třídy

Obrázek 2.8: První test běhu serializační třídy

3 Praktická část

popis

3.1 Návrh

test

3.1.1 Cíle aplikace

• Přidání a odstranění jednotlivých bodů v MindMapě

3.2 Základní aplikace

core

3.3 Integrace s databází MongoDB

databaze

3.4 Real-time komunikace

komunikace

3.5 Polygnot vývoj a moduly

moduly vice jazyku

3.6 Nasazení

deploy + scaling

3.6.1 Server

ubuntu

3.6.2 Java

java

3.6.3 Vert.x

vert.x

3.6.4 MongoDB

mongodb

3.7 Škálování a vysoká dostupnost

možnosti škálování a HA

3.7.1 Počet Verticlů

verticle count

3.7.2 Vert.x v clusteru

HA

4 Dobrá rada na závěr

LyX je vynikající editor, který vám usnadní napsání rozsáhlejší práce typu bakalářka nebo diplomka. Editor si hravě poradí s komplikovanými úlohami jako je vkládání křížových odkazů, vytvoření seznamu literatury a citování literatury v textu, vytvoření obsahu a rejstříku. Bez většího úsilí bude vaše práce typograficky na úrovni.

Používáte-li LyX jen na psaní bakalářky, *nesnažte se* naučit vše, co umí! Zabralo by to více času než celá bakalářka! Naučte se jen pár nezbytností a pište a pište a pište! Až budete mít dopsán a zkontrolován text, můžete si pohrát s výběrem vzhledu vhodného pro vaši práci, s výběrem písma, typu záhlaví stránek, hlaviček kapitol atd. Teprve nakonec udělejte závěrečnou typografickou revizi textu. Zejména zkontrolujte polohu plovoucích objektů (případně je přemístěte na vhodnější místo) a odstraňte vdovy a sirotky (osamělé řádky)¹.

¹Nejsnáze odstranit tak, že z textu vypustíte (nebo do něj přidáte) pár slov či vět anebo úpravou odstavců.

Literatura

- controls[1] Phipps, Simon Who *Vert.x:* Red Hat, VMware, or ne-Dostupný ither? [online]. [cit. 2014-06-30]. WWW: \mathbf{Z} http: //www.infoworld.com/d/open-source-software/ who-controls-vertx-red-hat-vmware-or-neither-210549
- [2] Kamali, Masoud *The Winners of the JAX Innovation Awards* 2014 [online]. [cit. 2014-06-30]. Dostupný z WWW: http://jax.de/awards2014/
- [3] Gardoh, Ed Parallel Processing and Multi-Core Utilization with Java [online]. [cit. 2014-03-22]. Dostupný z WWW: http://embarcaderos.net/2011/01/23/parallel-processing-and-multi-core-utilization-with-java/
- [4] Merta, Zdeněk*Vert.x jOpenSpace 2013* [online]. [cit. 2014-03-22]. Dostupný z WWW: http://jopenspace.cz/2013/presentations/zdenek-merta-vert.x.pdf
- [5] Package java.util.concurrent Description [online]. [cit. 2014-03-22]. Dostupný z WWW: http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html#package_description
- [6] Sun Song, Ki Understanding Vert.x Architecture Part II [online]. [cit. 2014-03-22]. Dostupný z WWW: http://www.cubrid.org/blog/dev-platform/introduction-to-in-memory-data-grid-main-features/
- [7] Jaehong, Kim Introduction to In-Memory Data Grid: Main Features [on-line]. [cit. 2014-03-22]. Dostupný z WWW: http://www.cubrid.org/blog/dev-platform/understanding-vertx-architecture-part-2/
- [8] Pitner, Tomáš Programování v jazyce Java [online]. [cit. 2014-03-22]. Dostupný z WWW: http://www.fi.muni.cz/~tomp/slides/pb162/printable. html
- [9] Lažanský, J. Procesy a vlákna [online]. [cit. 2014-03-22]. Dostupný z WWW: http://labe.felk.cvut.cz/vyuka/A4B33OSS/Tema-03-ProcesyVlakna.pdf
- [10] Fox, Tim Event loops [online]. [cit. 2014-03-22]. Dostupný z WWW: http://vertx.io/manual.html#event-loops
- [11] Kosek, Jiří Session proměnné [online]. [cit. 2014-03-22]. Dostupný z WWW: http://www.kosek.cz/clanky/php4/session.html
- [12] Janssen, Cory Message Queue [online]. [cit. 2014-03-22]. Dostupný z WWW: http://www.techopedia.com/definition/25971/message-queue

Přílohy

Seznam obrázků

2.1	Architektura Vert.x Jaehong Kim	4
2.2	Vert.x instance	7
2.3	Vert.x instance vertx run HelloWord -instances 4	7
2.4	Event Bus distribuovaný mezi dva Servery	10
2.5	První test běhu serializační třídy	13
2.6	Využití jednotlivých procesorů při běhu	13
2.7	První test běhu serializační třídy	14
2.8	První test běhu serializační třídy	14

Seznam tabulek

2 1	Table Title	 1	^
Z.1	Table Title	 1	. 4