Master MVA 2019

Feuille d'exercices : Inférence

Exercice 1 (Intégrale de Cauchy)

Démontrez la formule d'intégration de Cauchy

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - w} dz = \begin{cases} f(w), & w \in \Gamma \\ 0, & w \in \bar{\Gamma}^c \end{cases}$$

pour f analytique sur le disque unité ouvert Γ délimité par le cercle γ . On pourra commencer par prendre w=0 et f(z)=1, puis généraliser à $w\in\Gamma$, puis $w\in\bar{\Gamma}^c$.

Exercice 2 (Zéros de la transformée de Stieltjes empirique)

Considérons le spectre limite $\tilde{\mathcal{F}}$ d'un modèle $\Sigma_n^*\Sigma_n$, $\Sigma_n=\frac{1}{\sqrt{n}}R_N^{\frac{1}{2}}X_N$, de spectre empirique \tilde{L}_N avec $X_N\in\mathbb{C}^{N\times n}$ d'entrées i.i.d. de moyenne nulle, de variance unité et de moment d'ordre 4 fini, et $R_N=\operatorname{diag}(\lambda_1^RI_{N_1},\ldots,\lambda_K^RI_{N_K})$ où $N_i/N\to 1/K$, $\lambda_1^R<\ldots<\lambda_K^R$. On suppose que le support de $\tilde{\mathcal{F}}$ se décompose en K clusters exactement. On veut montrer que le nombre de zéros de $\tilde{g}_n(z)=\frac{1}{n}\operatorname{tr}(\Sigma_n^*\Sigma_n-zI_n)^{-1}$ dans tout compact contenant le cluster k est presque surement égal pour tout N large à N_k .

- 1. Avec la méthode vue en cours, donnez l'expression de $0 = \frac{1}{2\pi i} \int_{\mathcal{C}_k} \frac{1}{w} dw$ comme une intégrale complexe mettant en jeu $\tilde{t}(z)$, limite presque sure de $\tilde{g}_n(z)$, où \mathcal{C}_k est un contour complexe entourant λ_k^R .
- 2. A l'aide d'un calcul de résidus, évaluez cette intégrale. Attention à bien identifier les pôles contenus uniquement à l'intérieur du contour final $\mathcal{C}_{\nu}^{\mathcal{S}}$.
- 3. Conclure sur le nombre de zéros réels de $\tilde{g}_n(x)$ dans l'ensemble délimité par $\mathcal{C}_k^{\mathcal{S}}$.

Exercice 3 (Expression explicite des zéros de la transformée de Stieltjes)

1. Pour $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n), a \in \mathbb{R}^n$, et $\eta \in \mathbb{R}$ montrez que

$$\det(\Lambda - aa^* - \eta I_n) = \det(\Lambda - \eta I_n)(1 - a^*(\Lambda - \eta I_n)^{-1}a).$$

- 2. En prenant $a=1/\sqrt{n}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})^T$, prouvez alors que les valeurs propres de $\Lambda-aa^*$ sont les zéros de $\frac{1}{n}\sum_{i=1}^n\frac{1}{\lambda_i-\eta}$.
- 3. Conclure sur l'expression des zéros de $\tilde{g}_n(x)$ vus en cours.

Exercice 4 (Inférence de valeurs propres isolées ou rassemblées)

Nous nous plaçons dans le cadre de l'Exercice 2.

- 1. Supposons qu'il existe autant de clusters dans $\tilde{\mathcal{F}}$ que de valeurs propres distinctes dans L_{∞}^{R} (à savoir K). A l'aide des méthodes d'inférence vues en cours et des changements de contours, trouvez un estimateur pour chacun des λ_{i}^{R} .
- 2. Supposons a contrario qu'à deux valeurs de λ_i^R , disons λ_1^R et λ_2^R , soit associé un seul cluster dans $\tilde{\mathcal{F}}$. Proposez une méthode en deux étapes permettant de déterminer les valeurs de chacun de ces λ_i^R et utilisant deux intégrations complexes. Résoudre le problème.

Exercice 5 (Bords du spectre et critère de séparabilité)

Nous nous plaçons dans le cadre des Exercices 2 et 4 et allons déterminer un critère de séparabilité des clusters de $\tilde{\mathcal{F}}$.

Master MVA 2019

1. En utilisant la caractérisation des bords du support de $\tilde{\mathcal{F}}$ via les extrema de $x(\tilde{t})$, expliciter toutes les valeurs des bords du support comme solutions d'une équation à point fixe. Ces solutions sont-elles exhaustives?

- 2. Montrez que la courbe $x(\tilde{t})$, $\tilde{t} \in D = \mathbb{R}^* \setminus \{-1/\text{supp}(L_\infty^R)\}$, admet un point d'inflexion unique dans chaque intervalle maximal de D.
- 3. Déterminez la valeur du couple $(\tilde{t}, x(\tilde{t}))$ en ce point d'inflexion.
- 4. Donnez un critère, lié au point d'inflexion, permettant de décider de la séparabilité de clusters successifs dans la spectre de $\tilde{\mathcal{F}}$.
- 5. Analysez (et confirmez la validité de) ce critère dans le cas où $c \to 0, c \to \infty$, et $\lambda_{i+1}^R \lambda_i^R \to 0$ ou $\lambda_{i+1}^R \lambda_i^R \to \infty$.