Инверсия 1

Определение. Говорят, что i_s, i_t перестановка $\sigma = \begin{pmatrix} (1..s..t..n \\ ..i_s..i_t.. \end{pmatrix}$ образует инверсию, если $s < t, i_s > i_t$

Число всех инверсий $\sigma = inv(\sigma)$

Теорема. Если перестановка σ - четная (нечетная) $\Leftrightarrow inv(\sigma)$ - четно (нечет-

$$\begin{split} \sigma &= (23) \quad \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 3 \ 2 \ 4 \end{pmatrix} inv(23) = 1 \quad \text{ нечетно.} \\ \sigma &= (234) \quad \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 3 \ 4 \ 2 \end{pmatrix} inv(234) = 2 \text{ четно.} \\ \mathbf{\Pi}\mathbf{ример.} \quad \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 3 \ 4 \ 2 \ 1 \end{pmatrix} \underset{(13)}{\rightarrow} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 4 \ 2 \ 3 \end{pmatrix} \underset{(24)}{\rightarrow} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 2 \ 4 \ 3 \end{pmatrix} \underset{(34)}{\rightarrow} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 2 \ 3 \ 4 \end{pmatrix} \\ (13)(24)(34) &= (1234) \end{split}$$

Доказательство.

1. Транспозиция соседних чисел меняет число инверсий на одну.

$$\begin{pmatrix} 1 \dots i \ j \dots n \\ \dots j \ i \dots \end{pmatrix}$$

- $\begin{pmatrix} 1 & .. & i & j & .. & n \\ .. & .. & j & i & .. & . \end{pmatrix}$ 1) Рассмотрим пары, не содержащие $i,j\Rightarrow$ число инверсий не меняется.
- 2) Рассмотрим пары содержащие либо i, либо $j \Rightarrow (k, i), (k, j), (i, k), (j, k)$ либо обратна инверсия, как раньше \Rightarrow число инверсий не меняется.
 - 3) $(i,j) \to (j,i)$ число инверсия изменяется на одну.
 - 2. Транспозиция $\forall i,j$ меняет четность числа инверсий. $\frac{\left(i\underline{ab..cdj}\right)}{m} \to \left(..aib..cdj\right) \to \left(ab..cdij\right) \to \left(ab..cdji\right) \to \left(jab..cdi\right)$ транспозиций соседних чисел.

 \Rightarrow всего 2m+1 транспозиций соседних чисел \Rightarrow четность $inv(\sigma)$ измен.

3. σ - четное (нечетное) $\Leftrightarrow \sigma =$ четное (нечетное) число транспозиций $\Leftrightarrow inv(\sigma)$ - четное (нечетное).

2 Теорема Лагранжа

Определение. G - группа, $H \leq G$, $x \in G$, тогда xH - левым смежным классом по подгруппе H (Hx - правый смежный класс).

Пример.
$$G = S_3 = \{e, (12), (13), (23), (123), (132)\}$$

 $H = A_3 = \{e, (123), (132)\}$
 $(12)H = \{(12), (12)(123), (12)(132)\} = \{(12), (23), (13)\}$

Лемма. \forall два смежных класса (левых) либо совпадают, либо не пересекаются.

Доказательство.
$$x,y\in G$$
 $xH\cap yH\neq\varnothing$ $xh_1=yh_2\Rightarrow x=yh_2h_1^{-1}\Rightarrow xH=yh_2h_1^{-1}H=yH$

Определение. Число различных смежных классов (левых)

 $H \leq G$ называется индексом подгруппы H в G и обозначается

Теорема Лагранжа.

$$G$$
 - конечная группа, $H \leq G$ $\Rightarrow |G| = [G:H]*|H|$

Доказательство.

2.
$$G = x_1 H \cup x_2 H \cup ... \cup x_k H \Rightarrow |G| = k * |H|, \ k = [G : H]$$

Следствие. G_3 - конечное группа $H \leq G \Rightarrow |G| \cdot |H|$

Пример.

$$S_3 = A_3 \cup (12)A_3 \quad |S_3| = [S_3 : A_3] * |A_3|$$

Определение. Подгруппа вида $H = \{e, a, a^2, ..., a^n = e\}$ называется циклической.

Определение. Наименьшее натуральное $n \in \mathbb{N}$: $a^n = e$ называется порядком элемента a.

Следствие. Порядок элемента делит |G|

Доказательство. $a \in G, a^n = e, n$ - порядок a.

Рассмотрим $H = \{e, a, ..., a^n\}, |H| = n, |G| : n,$ по теореме Лагранжа.