V.D

I. Variété topologique

Soit M un espace topologique séparé.

1. Carte

Définition. Une carte locale (sur M en p) est un couple (U, φ) , où U est un ouvert contenant p.

$$\varphi: U \to \varphi(U) \subset \mathbb{R}^n$$

où φ est un homéomorphisme.

Exemple. Soit E un e.v. de dimension n et $\{e_1, \ldots, e_n\}$ une base de E. Pour tout $v \in E$, on a :

$$v = \sum_{i=1}^{n} v_i e_i.$$

On considère

$$\varphi: E \longrightarrow \mathbb{R}^n, \qquad v \longmapsto (v_1, \dots, v_n)$$

 (E,φ) est une carte.

3- Atlas

 $\underline{\mathbf{D\acute{e}f.}}$ Un atlas sur M est la donnée sur M d'une famille

$$\mathcal{A} = \{(U_i, \varphi_i)\}_{i \in I}$$

de cartes telle que

$$M = \bigcup_{i \in I} U_i.$$

Si toutes les cartes sont de même dimension n, on dit que . . .

Ex (Sphère \mathbb{S}^2)

$$\mathbb{S}^2 = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid \sum_{i=1}^3 x_i^2 = 1 \right\}$$

avec la topologie induite.

Pour i = 1, 2, 3, on pose :

$$U_i^+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_i > 0\}$$

$$U_i^- = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_i < 0\}$$

où, par exemple, si $x=(x_1,x_2,x_3)$, alors $\check{x}^2=(x_1,x_3).$

$$\check{x}^2 = (x_1, x_3)$$

$$U_1^+ = \{(x_1, x_2, x_3) \mid x_1 > 0\}$$

Montrer que:

- 1. U_i^+, U_i^- sont des ouverts de \mathbb{S}^2 ;
- 2. $\varphi_i^+(U_i^+) = \varphi_i^-(U_i^-) = D_2$ (disque unité);
- 3. $\varphi_i^+,\, \varphi_i^-$ sont des homéomorphismes sur $D_2\,;$
- 4. $\left\{(U_i^+,\varphi_i^+),\,(U_i^-,\varphi_i^-)\right\}$ forme un atlas sur $\mathbb{S}^2\,;$
- 5. Écrire les fonctions de transition.

<u>Proposition</u>: Soient M et N deux variétés topologiques et $f: M \to N$, une application et $x_0 \in M$.

Les assertions suivantes sont equivalentes :

- 1. f est continue en x_0 .
- 2. Il existe (U,φ) en $x_0, (V,\psi)$ en $f(x_0)$ avec $f(U) \subset V$ et

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

est continue en $\varphi(x_0)$.

3. Pour tous (U,φ) en x_0 , (V,ψ) en $f(x_0)$ avec $f(U)\subset V$, l'application

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

est continue en $\varphi(x_0)$.

