- yb22 file
- 5 [15pts]. This problem concerns details of H-atom radial wavefons in Davydor 9 38.
- A) When a = -N, $^{W}N = 0, 1, 2, ...$, show that the Confluent hypergeometric for F(a;b;x) reduces to the polynomial: $F(-N;b;x) = \sum_{k=0}^{N} \frac{\Gamma(b)}{\Gamma(k+b)} \binom{N}{k} (-x)^k$, $^{W}(N) = \frac{N!}{k!(N-k)!}$ the binomial coefficient. Using this result, find an explicit form for the full H-atom radial wavefern fre(ρ) = $\frac{1}{\rho}$ Rne(ρ) for the 3s state. Compare with Davydor Table 8.
- (B) H-atom states $|nl\rangle$ with maximum allowed 4 momentum l=n-1 are called "raster" states. Find the general form of the full radial wavefor fre(p) when l=n-1.
- (C) Calculate expectation values of powers of p, viz. $\langle p^{\lambda} \rangle$, in the states $|n,l=n-1\rangle$ you found in part (B). For $\lambda=-3$, specifically, compare with Davydov's Eq. 38.17e.
- **6** A QM & momentum \hat{J} has eigenfons $|z_m\rangle$. Consider the ladder operators $\hat{J}_{\pm}=\hat{J}_x\pm i\hat{J}_y$. (A) Show that $\hat{J}_{\pm}|z_m\rangle$ is an eigenfon of \hat{J}^2 , with z_{\pm} value unchanged.
 - (B) Show that $\hat{J}_{\pm}|_{Jm}$ is an eigenfer of \hat{J}_{z} , corresponding to eigenvalues $m\pm 1$.
 - (C) Using the \hat{J}_{\pm} , find the most general metrix elements of $\hat{J}_{x} \notin \hat{J}_{y}$ i.e. evaluate $\langle \alpha' j'm' | \hat{J}_{x,y} | djm \rangle$, with pertinent selection rules for the quantum #5 $\alpha \alpha', jj', mm'$.
- Floorsider the Pauli matrices $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ for spin $\frac{1}{2}$; they obey the commutation of xyz [Sakurai, Sec 3.2].
 - (A) Prove the anti-commutation rule: { σ_{α} , σ_{β} } = $\sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta}$.
 - (B) If $\vec{A} \in \vec{B}$ are any two vector operators that commute with $\vec{\sigma}$, use $[\sigma_{\alpha}, \sigma_{\beta}]$ and $[\sigma_{\alpha}, \sigma_{\beta}]$ to prove the Dirac identity: $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = \vec{A} \cdot \vec{B} + i \vec{\sigma} \cdot (\vec{A} \times \vec{B})$.
- B If vector operators $\vec{A} \neq \vec{B}$ are both \vec{T} -vectors W.r.t. a QM & momentum operator \vec{J} , Show that: $[\vec{J}, \vec{A} \cdot \vec{B}] = 0$. Why does this establish $\vec{A} \cdot \vec{B}$ as a true scalar"?
- \exists [5pts]. Given: noncommuting operators $\hat{P} \in \hat{Q}$ and a set of basis fons {uk(x)}. If $Pij = \int dx \ u_i^*(x) \hat{P} \ u_j(x)$, verify the matrix egth: $(PQ)_{ke} = \sum_{m} P_{km} \ Q_{me}$, directly. What assumption(s) must be made about the set {uk(x)}?

[5[15pts]. Explore details of H-atom radial wavefens in Davydor 938.

(A) $F(a;b;x) = \sum_{k=0}^{\infty} [(a)_k/(b)_k] \frac{x^k}{k!}$, and with $|a|_k = \Gamma(k+a)/\Gamma(a)$, we can write:

$$\rightarrow F(-N;b;x) = \sum_{k=0}^{\infty} \frac{\Gamma(b)}{\Gamma(k+b)} \left[\frac{\Gamma(k-N)}{\Gamma(-N)} \right] \frac{x^k}{k!} , N=0,1,2,...$$

We must deal with the []. $\Gamma(z)$ diverges at z=(-1)N, and so the []=0 for all k>N. This means the series <u>terminates</u> at k=N. For $0 \le k \le N$, the [] is of indeterminate form $\pm \infty/\infty$. But from the reflection formula for Γ -fors [see NBS Handbook # (6.1.17)]: $\Gamma(z)\Gamma(1-z) = \pi \csc \pi z$, it is easy to show...

Thus, except for sign, (-)ⁿ, $\Gamma(z)$ diverges in the same way (namely as $\frac{1}{E}$) when $z \to -n$, any (-)ve integer. If $m \nmid n$ are integers: $m! \Gamma(-m)/n! \Gamma(-n) = (-)^{m-n}$, is finite. Applying this result to Eq. (1)...

$$\left[\frac{\Gamma(k-N)}{\Gamma(-N)}\right] = (-)^k \frac{N!}{(N-k)!} \Rightarrow F(-N;b;x) = \sum_{k=0}^N \frac{\Gamma(b)}{\Gamma(k+b)} \binom{N}{k} (-x)^k \ . \tag{3}$$

 $\binom{N}{k} = \frac{N!}{k!} (N-k)!$ is the binomial coefficient. <u>NOTE</u>: this result can be gotten also by using Leibniz' formula to differentiate the definition of the Laguerre polynomial $L_N^{b-1}(x)$ associated with F(-N;b;x) [Dayydov, Math. App. D, Eqs. (D7) & (D8)].

In his Eq. (38.16), Davydor writes the full FI-atom radial wave for as ...

For the 3s state, $n=3 \notin l=0$, so $N=2 \notin b=2$. Then $N_{30}=\frac{1}{\sqrt{2}}(2\mathbb{Z}/3)^{\frac{3}{2}}$, and $\chi=\frac{2}{3}\mathbb{Z}\rho$. Also [by Eq.(3)]: $F(-N;b;x)=F(-2;2;x)=1-x+\frac{1}{6}x^2$. Then have:

$$f_{30}(p) = N_{30}F(-2;2;x)e^{-x/2} = \frac{2z^{3/2}}{3\sqrt{3}}\left[1-\frac{2}{3}Zp+\frac{2}{27}(Zp)^2\right]e^{-\frac{1}{3}Zp}$$

This agrees with the 35 entry in Davydov's Table 8 when 2=1 (hydrogen).

(B) For the "raster" states $|n,l=n-1\rangle$, the radial quantum # N=n-(l+1)=0, and—by Eq.(3)—have $F(0;b;x)\equiv 1$. By Eq.(4), the radial wave fens reduce to $\frac{f_{n,n-1}(p)}{n}=N_{n,n-1}\frac{x^{n-1}}{n}e^{-x/2}$, $x_{n}=\frac{2zp}{n}$, $N_{n,n-1}=\left(\frac{zz}{n}\right)^{\frac{3}{2}}\sqrt{\frac{1}{(2n)!}}$.

(C) The expectation value of p2 in the rester state of Eq. (6) is...

$$\rightarrow \langle \rho^{\lambda} \rangle = \int_{0}^{\infty} f_{n,n-1}^{*}(\rho) \left[\rho^{\lambda} \right] f_{n,n-1}(\rho) \cdot \rho^{2} d\rho = \int_{0}^{\infty} d\rho \, \rho^{\lambda+2} \left[f_{n,n-1}(\rho) \right]^{2}.$$

The χ har integration $\int_{4\pi} d\Omega |Y_{em}(\theta, \varphi)|^2 = 1$ has been done. With $f_{n,n-1}(p)$ the real radial wovefor of Eq.(6)...

$$\langle \rho^{\lambda} \rangle = \frac{1}{(2n)!} \left(\frac{2Z}{n} \right)^{\frac{3}{2}} \int_{0}^{\infty} d\rho \, \rho^{\lambda+2} \, \chi^{2n-2} \, e^{-\chi}, \quad \chi = (2Z/n) \rho$$

$$= \frac{1}{(2n)!} \left(\frac{n}{2Z} \right)^{\lambda} \int_{0}^{\infty} d\chi \, \chi^{2n+\lambda} \, e^{-\chi} \leftarrow \text{tabulated integral [e.g. Dwight # (860.07)]}$$

$$\langle \rho^{\lambda} \rangle = \left(\frac{n}{27}\right)^{\lambda} \frac{\Gamma(2n+\lambda+1)}{(2n)!}; \quad \langle \rho^{\lambda} \rangle = \left(\frac{n}{27}\right)^{\lambda} \frac{(2n+\lambda)!}{(2n)!}, \quad \forall \lambda = \text{integer}. \quad (8)$$

For λ=-3, Eq. (8) gives...

$$\left\langle \frac{1}{\rho^{3}} \right\rangle = \left(\frac{n}{2Z} \right)^{-3} \frac{(2n-3)!}{(2n)!} = \left(\frac{2Z}{n} \right)^{3} / 2n(2n-1)(2n-2)$$

$$\int_{0}^{\infty} \left(\frac{1}{\rho^{3}} \right) = \left(\frac{Z}{n} \right)^{3} / n(n-\frac{1}{2})(n-1) = \left(\frac{Z}{n} \right)^{3} / (l+1)(l+\frac{1}{2}) l, \quad \text{where } l=n-1.$$
(9)

Our result for (1/p3) agrees with Davydov's Eq. (38.17e) in the case we are con-Sidering, viz. 1=n-1. Similarly, Eq. (8) gives, with 1=n-1 properly inserted

$$\langle 1/p^2 \rangle = \left(\frac{Z}{n}\right)^2/n (n - \frac{1}{2}) = \frac{Z^2}{n^3}/(l + \frac{1}{2}) \iff \text{Davydov Eq.}(38.17d)$$

 $\langle 1/p \rangle = Z/n^2 \quad (\text{no } l - \text{dependence}) \iff \text{u} \quad \text{u} \quad (38.17c)$
 $\langle p \rangle = \frac{n}{Z} (n + \frac{1}{2}) = \frac{3n^2 - l(l + 1)}{2Z} \Big|_{l=n-1} \iff \text{u} \quad (38.17a).$

6 Elementary operations with & momentum ladder operators J± [Sakurai, Sec. 3.5].

(A) \hat{J}^2 commutes with every one of the components \hat{J}_k of \hat{J} , i.e. $[\hat{J}^2, \hat{J}_k] = 0$, where k = x, y, z [Sakurai, Eq. (3.5.2)]. So, obviously $[\hat{J}^2, \hat{J}_{\pm}] = 0$. Now consider $\Psi =$ Igm) an eigenfon of \hat{J}^2 , i.e. $\hat{J}^2\psi = g(y+1)\psi$. Let $\phi_{\pm} = \hat{J}_{\pm}\psi$, and look at

 $\rightarrow \hat{J}^2 \phi_{\pm} = \hat{J}^2 \hat{J}_{\pm} \psi = \hat{J}_{\pm} \hat{J}^2 \psi = 3(3+1) \hat{J}_{\pm} \psi = 3(3+1) \phi_{\pm}.$

So, as required, $\phi_{\pm} = \hat{J}_{\pm} |_{Jm}$ is an eigenfon of \hat{J}^2 with j unchanged.

(B) $\Psi = |jm\rangle$ is an eigenfen of \hat{J}_{z} , i.e. $\hat{J}_{z}\Psi = m\Psi$. Now consider $\hat{J}_{z}\phi_{\pm}$, where (as above) $\phi_{\pm} = \hat{J}_{\pm} \psi$. By adding & subtracting $\hat{J}_{\pm} \hat{J}_{z}$, we can write ...

 $\rightarrow \hat{J}_{z} \phi_{\pm} = \hat{J}_{\bar{z}} \hat{J}_{\pm} \psi = \hat{J}_{\pm} \hat{J}_{\bar{z}} \psi + [\hat{J}_{\bar{z}}, \hat{J}_{\pm}] \psi.$

The first term RHS is just mot. As for the second term RHS, calculate

 $\left[\left[\hat{J}_{2}, \hat{J}_{\pm} \right] = \pm \hat{J}_{\pm} \leftarrow \text{Sakurai Eq. (3.5.6b)} \left[\text{use of } \left[\hat{J}_{\alpha}, \hat{J}_{\beta} \right] = i \hat{J}_{\gamma}, \text{etc.} \right] \cdot \left(\frac{3}{2} \right) \right]$

Eq. (2) => $\hat{J}_2 \phi_{\pm} = (m \pm 1) \phi_{\pm}$ (4)

As required, $\phi_{\pm} = \hat{J}_{\pm} |_{2m}$ is an eigenfon of \hat{J}_{z} with eigenvalue $m\pm 1$.

(C) We can express: $\hat{J}_x = \frac{1}{2}(\hat{J}_+ + \hat{J}_-)$, and $\hat{J}_y = \frac{1}{2i}(\hat{J}_+ - \hat{J}_-)$, and we "know.". $\hat{J}_{\pm} |\alpha_{3}m\rangle = \sqrt{(3 \mp m)(3 \pm m + 1)} |\alpha_{3} m \pm 1\rangle \leftarrow Sakurai Egs (3.5.39 \ 40). (5)$

The quantum #5 & (total & momentum) and a (all other quantum #5) remain un-Changed, and the matrix element (a'g'm'IIx |azm) = Saar Syr (aym'IIx |aym).

When we insert $\hat{J}_x = \frac{1}{2}(\hat{J}_+ + \hat{J}_-)$, this M.E. vanishes except when $m' = m \pm 1$. So...

 $\langle \alpha' j' m' | \hat{J}_{x} | \alpha_{j} m \rangle = \frac{1}{2} \delta_{\alpha \alpha'} \delta_{jj'} \begin{cases} \sqrt{(j-m)(j+m+1)}, & \text{when } m' = m+1; \\ \sqrt{(j+m)(j-m+1)}, & \text{when } m' = m-1. \end{cases}$ Selection: $\Delta \alpha = 0$, $\Delta J = 0$, $\Delta m = \pm 1$

 $\langle \alpha' j' m' | \hat{J}_{y} | \alpha_{j} m \rangle = \frac{1}{2i} \delta_{\alpha \alpha'} \delta_{jj'} \left\{ \frac{\sqrt{(j-m)(j+m+1)}}{(-1)\sqrt{(j+m)(j-m+1)}}, \text{ when } m' = m+1; \right\}$

(6b)

(6a)

(3) Carry out manipulations with the Pauli matrices of for spin 1/2.

(A) From the explicit representation: $(\sigma_x, \sigma_y, \sigma_z) = (\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) -- see$ Sakurai, Eq. (3.2.32) =- we verify directly that: $\sigma_x^2 = \binom{01}{10}\binom{01}{10} = \binom{10}{10} = 1$. Also, $\sigma_y^2 = 1 \notin \sigma_z^2 = 1$, similarly. Thus $\sigma_x^2 = 1$ for each of $\alpha = x, y, z$.

For d + B, again look at explicit forms ...

So: JaJp+JBJa=0, when a \$ B. Combined with Ja=1, we get

$$\{\sigma_{\alpha}, \sigma_{\beta}\} = \sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta}$$
, (2)

which is the desired anticommutation rule.

(B) If we just add the equations
$$\{\sigma_{\alpha}, \sigma_{\beta}\} = 2\delta_{\alpha\beta}$$
 and $[\sigma_{\alpha}, \sigma_{\beta}] = 2i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$, then
 $\rightarrow \sigma_{\alpha}\sigma_{\beta} = \delta_{\alpha\beta} + i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$ $\int_{-\infty}^{\infty} \epsilon_{\alpha\beta\gamma} = \{\pm 1, \text{ for } \alpha\beta\gamma = \{\text{even}\} \text{ perm}^{n} \text{ of } xyz; \{3\}$

Then the Dirac identity is easy ...

Then the Durke laterting is easy...

$$\frac{(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})}{(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})} = \sum_{\alpha,\beta} (\sigma_{\alpha} A_{\alpha})(\sigma_{\beta} B_{\beta}) = \sum_{\alpha,\beta} (\sigma_{\alpha} \sigma_{\beta})(A_{\alpha} B_{\beta})$$

$$= \sum_{\alpha,\beta} (\delta_{\alpha\beta} + i \epsilon_{\alpha\beta\gamma} \delta_{\gamma}) A_{\alpha} B_{\beta}$$

$$= \sum_{\alpha,\beta} (\delta_{\alpha\beta} + i \epsilon_{\alpha\beta\gamma} \delta_{\gamma}) A_{\alpha} B_{\beta}$$

$$= \sum_{\alpha,\beta} (\delta_{\alpha\beta} + i \epsilon_{\alpha\beta\gamma} \delta_{\gamma}) A_{\alpha} B_{\beta}$$

$$= \sum_{\alpha,\beta} (A_{\alpha} B_{\alpha} + i \sum_{\alpha,\beta} \sigma_{\gamma} (\epsilon_{\alpha\beta\gamma} A_{\alpha} B_{\beta})$$

$$= A_{\alpha} B_{\beta} + i \sigma_{\alpha} (A_{\alpha} B_{\beta}).$$

$$= A_{\alpha} B_{\beta} + i \sigma_{\alpha} (A_{\alpha} B_{\beta}).$$

$$(4)$$

REMARKS

1. Sakurai proves the Dirac identity in his Eq. (3.2.40).

2. For of's for spin 1 & spin 3/2, see Schiff "QM" (3rd ed., 1968), Sec. 27. NOTE: the relation { $\sigma_{\alpha}, \sigma_{\beta}$ } = 28 as is obeyed only for spin 1/2.

8 Show that [J, A.B]=0, for A&B as T-vectors w.r.t. J.

Consider the & component of the commutator. It can be written as ...

$$\longrightarrow [\vec{J}, \vec{A} \cdot \vec{B}]_{\alpha} = \sum_{\beta} [J_{\alpha}, A_{\beta} B_{\beta}] = \sum_{\beta} \{A_{\beta} [J_{\alpha}, B_{\beta}] + [J_{\alpha}, A_{\beta}] B_{\beta}\}. \quad (!)$$

We have used the commutator identity: [P,QR] = Q[P,R]+[P,Q]R. Since $\vec{A} \not= \vec{B}$ are both \vec{T} -vectors w.r.t. \vec{J} , then in Eq.(1) we can set...

$$\begin{array}{l}
\stackrel{\text{Sol}}{\longrightarrow} \left[\overrightarrow{J}, \overrightarrow{A} \cdot \overrightarrow{B} \right]_{\alpha} = i \sum_{\beta, \gamma} \varepsilon_{\alpha\beta\gamma} \left\{ A_{\beta} B_{\gamma} + A_{\gamma} B_{\beta} \right\} \\
= i \left\{ \sum_{\beta, \gamma} \varepsilon_{\alpha\beta\gamma} A_{\beta} B_{\gamma} - \sum_{\gamma, \beta} \varepsilon_{\alpha\gamma\beta} A_{\gamma} B_{\beta} \right\}.
\end{array}$$
(3)

Each term on RHS of Eq. (3) is equivalent to $(\vec{A} \times \vec{B})_{\alpha}$. So, as required...

$$[\vec{J}, \vec{A} \cdot \vec{B}] = i \{ (\vec{A} \times \vec{B}) - (\vec{A} \times \vec{B}) \} = 0.$$

This result is independent of whether $\vec{A} \notin \vec{B}$ commute with each other.

Under the ossmal rotation operator (rotation by 4 89 about axis n), viz. $R(\delta \varphi) = 1 - i \delta \varphi(\hat{n} \cdot \hat{J}), [Sakurai Eq.(3.1.15)], a scalar S transforms as$

$$\begin{bmatrix} S \to S' = R^{-1}SR = S + i \delta \varphi [\hat{n} \cdot \vec{f}, S], & 1^{12} \text{ orden in } \delta \varphi; \\ {}^{3}V \delta S = S' - S = i \delta \varphi [\hat{n} \cdot \vec{f}, S].
\end{bmatrix}$$
(5)

If S is a "true scalar", it will be unaffected by such a rotation, i.e. 85=0. This requires $[\hat{n}\cdot\hat{J},S]=0...$ or that S commute with each component of \bar{J} , i.e. [J,S]=0. Then S= A·B is a "true scalar" by virtue of Eq. (4).

^{*} Easy = ±1 if asy = { even} permutation of 123. Otherwise Easy = 0.

9[5pts]. Prove: (PQ)ke = 2 Pkm Qme W.n.t. basis {uk(x)}.

The RHS of the identity is

 $\longrightarrow \sum_{m} P_{km} Q_{me} = \sum_{m} \int dx \, u_{k}^{*}(x) \, \hat{P} \, u_{m}(x) \int dx' \, u_{m}^{*}(x') \, \hat{Q} \, u_{e}(x')$

= $\int dx \, u_k^*(x) \, \hat{P} \int dx' \left[\sum u_m(x) \, u_m^*(x') \right] \, \hat{Q} \, u_e(x')$. (1)

But the "basis" $\{u_k(x)\}$ is by assumption a <u>complete set</u> of fens on the (Common) domain of $\hat{P} \not\in \hat{Q}$. Such a complete set obey the closure relation:

 $\longrightarrow \sum_{m} u_{m}(x) u_{m}^{*}(x') = \delta(x-x'), Dwac delte fon.$

The [] in Eq. (1) can be replaced by the 8-for, and we have -- as desired

 $\begin{bmatrix}
\sum_{m} P_{km} Q_{me} = \int dx \, u_{k}^{*}(x) \, \hat{P} \int dx' \, \delta(x-x') \, \hat{Q} \, u_{k}(x') \\
= \int dx \, u_{k}^{*}(x) \, \hat{P} \, \hat{Q} \, u_{k}(x) = (PQ)_{ke} \, .
\end{bmatrix} \, \underbrace{QED}$

The <u>ordering</u> of PAQ has been respected, so the proof holds whether or not PAQ commute. One need only assume the {uk(x)} are a complete set.

In the language of boos and kets, the proof goes as ...

More efficient, but more abstract.