РАСЧЕТНОЕ ЗАДАНИЕ

по курсу

«Основы теории радиосистем и комплексов радиоуправления»

1. Исходные данные

На рис.1 приведена упрощенная структурная схема радиозвена со следящим гироприводом (следящего угломера, координатора) и части звена "автопилот-снаряд" (АС), входящих в состав системы радиоуправления [I. с. 116-117, 123-127, 132-134].

Рис. 1

На рис.1 обозначены: $\varphi(t) = Vt + at^2/2$ - закон изменения во времени углового положения линии визирования цели в стабилизированной системе координат, $\varphi_A(t)$ - угловое положение равносигнального направления антенной системы, $\theta(t)$ - ошибка угломера, $u_{\Pi}(t)$ - помеховая составляющая выходного напряжения пеленгатора (дискриминатора), $F(\theta)$ - дискриминационная характеристика (ДХ). В расчете используются два типа ДХ:

- тип I

$$F(\theta) = A \cdot \sin(\alpha \theta),$$

- тип II

$$F(\theta) = B \cdot \theta \cdot \exp(-\frac{\beta \theta^2}{2}).$$

 $K_{y}(p)$, K_{rn}/p - операторные коэффициенты передачи (ОКП) усилителя мощности и гиропривода. В расчете используются два типа ОКП $K_{y}(p)$:

- тип I

$$K_{y}(p) = K_{y1} \frac{pT_{1} + 1}{(pT_{2} + 1)(pT_{yM} + 1)}$$
,

- тип II

$$K_{y}(p) = K_{y2} \frac{pT_1 + 1}{p(pT_{VM} + 1)}$$
.

 $K_{\Phi}(p)$ - ОКП фильтра на входе звена АС.

$$K_{\Phi}(p) = \frac{1}{pT_{\Phi} + 1}.$$

Исходные данные для расчёта указаны в табл. 1 и 2. Номер индивидуального задания совпадет с порядковым номером студента по списку группы в журнале.

2. Задание

- 1. Рассчитать и построить ДХ, с учетом данных табл. 1. Определить крутизну ДХ $S_{\rm L} = dF/d\theta$ при $\theta = 0$.
- 2. Определить условия устойчивости следящего угломера.
- 3.Определить для линеаризованного угломера, при $F(\theta) = S_{\mathcal{A}}\theta$ и $u_{\Pi}(t) = \xi(t)$, где ξ белый шум со спектральной плотностью $S_{\xi}(\omega) = S(0) = 10^{-4} \text{ B}^2 \cdot \text{c}$, математическое ожидание m_{θ} и среднеквадратичное отклонение (СКО) $\sigma_{\theta} = \sqrt{D\{\theta\}}$ ошибки θ в установившемся режиме.
- 4. Используя метод статистической линеаризации ([2, с. 150-153], [3, с.402-405]), рассчитать и построить зависимости $m_{\theta} = f_1(S(0))$ и $\sigma_{\theta} = f_2(S(0))$. Определить критическое значение $S(0)_{\rm kp}$, при котором происходит срыв слежения в угломере. Сопоставить полученные значения m_{θ} и σ_{θ} с апертурой (линейным участкам) ДХ. Коэффициенты линеаризации K_0 , и K_{12} приведены в [3, с. 393-394].
- 5. Исследовать работу системы при $u_{\Pi}(t) = U_{\Pi}\cos(\Delta\Omega_{\Pi}t)$. Полагая $F(\theta) = S_{\Pi}\theta$, построить AЧX от точки приложения u_{Π} до точки u_{1} и определить наиболее опасную частоту гармонической помехи $\Delta\Omega_{\Pi}$ с точки зрения подавления полезной составляющей напряжения $u_{\text{вых}}$ помехой в нелинейности ограничителя команд $f(u_{1})$ (на рис.1 ограничитель не показан).

ЛИТЕРАТУРА

- 1. Радиоуправление реактивными снарядами и космическими аппаратами. Под ред. Л.С.Гуткина. -М.: Сов.радио, 1968.
 - 2. Первачев С.В. Радиоавтоматика. -М.: Радио и связь, 1982.
- 3. Первачев С.В., Валуев А.А., Чиликин В.М. Статистическая динамика радиотехнических следящих систем. -М.: Сов.радио, 1973.

Таблица 1. Параметры дискриминационной характеристики и фильтра

A, [B]	В, [В/град]	T_{Φ} , [c]
15	7	0,1

Таблица 2 Исходные данные для расчёта. $T_{\rm ym}=0.01~{\rm c},~K_{\rm rn}=1{{\rm rpad}\over {\rm c\cdot B}}$

No	тип $F(\theta)$	тип $K_{ m y}(p)$	α, град ⁻¹ β, град ⁻²	$K_{y1}, K_{y2} c^{-1}$	T_1 , c	<i>T</i> ₂ , c	<i>V</i> , град/с	a , град/ c^2
1	I	I	0,5	3	0,01	0,05	0,5	0
2	I	I	0,55	2,8	0,02	0,06	0,45	0
3	I	II	0,4	3,5	0,5	0	0	0,5
4	I	II	0,45	3,2	0,6	0	0	0,45
5	II	I	0,13	1,5	0,045	0,13	0,3	0
6	II	I	0,14	1,3	0,055	0,14	0,2	0
7	II	II	0,13	2,6	1,1	0	0	0,55
8	II	II	0,12	2,5	1,15	0	0	0,6
9	II	II	0,11	2,4	1,2	0	0	0,65