Source: [KBBiologyMasterIndex]

1 | Bio-Molecules Quiz Review

#disorganized

1.1 | Paul's Review Sheet

... is here

1.1.1 | Carbohydrates

- Set 1, carbs. See Luke De's video + [KBhBIO101Carbs]
 - Glucose vs. fructose both monosacharrides, one is a 6-carbon ring and one is a 5-carbon ring
 - Mono vs. di. vs. polysaccharide carbohydrates made out of a single, double, and multiple monomer (single-unit) carbohydrates
 - Starch vs. glycogen vs. cellulose lots of alpha glucose in less branches, lots of alpha glucose in more branches, lots of beta glucose in organized lattice respectively.
 - Starch plant food reserve
 - Glycogen animal energy reserve
 - Cellulose cell wall in plants
- Set 2, lipids. See Luke De's video + [KBhBIO101Lipids]
 - Triglyceride vs. fatty acid vs. phosophilid see [KBhBI0101StructuresofCarbs]
 - · Glycerol => a fatty acid
 - Triglyceride => three of 'em above
 - Phospholipid => two fatty acid + phosphate head
 - Saturated vs unsaturated fatty acids see also [KBhBIO101StructuresofCarbs]
 - Saturated Fats => no double bonds in the carbon chain of fatty acids think! butter
 - Unsaturated Fats => double bonds in the carbon chain of fatty acids think! olive oil
- · Identify functional groups
 - Amino acid groups see [KBhBl0101AminoAcids]
 - carboxyl O=C-R-OH
 - carboxylic acid H-O-C=O (left side of backbone)
 - carbonyl C=O part of carboxyl
 - amide RC(=O)NR'R" (frequently shown in side chains of amino acids see Amine)
 - amino/amine H3N+ (right side of backbone)
 - hydroxyl OH group. Need I say more?
 - ester take a carboxylic acid and replace the hydrogen with a R-O group #ASK
 - ether R-O-R structure. Commonly shown as as an alcohol group (H-O-C) as part of the carboxyl
- Monomers vs Polymers [KBhBIO101StructuresofCarbs]
 - Monomer single molecule (such as a monosacchride) that could be chained together to make polymers
 - Polymers complex molecues built from monomers
 - Building polymers dehydration reaction taking out water molecules
 - Destructing polymers hydration reaction adding in water molecules

1.1.2 | Cell Structures

- · Prokaryotic vs. Eukaryotic
 - Prokaryotic cells often in single-cellular cells, has a cell wall, and contained in capsules
 - Eukaryotic cells in multicellular cell elements, contains a plasma membranes and nucleus
- Compare and contrast a typical animal cell with a typical plant cell. Be able to label diagrams of each. (See... problem set 1)
 - Animal Cell
 - · No cell wall
 - No chloroplast
 - · Has Cytoplasm
 - · Has Ribosomes
 - · Has Mitochondria
 - · No plastids organelle pigments
 - Has Cilla Hair-like items on the outer surface
 - Plant Cell
 - · Has cell wall
 - · Has chloroplast photosynthesis
 - · Has cytoplasm
 - · Has Ribosomes
 - · Has Mitochondria
 - Has plastics organelle pigments
 - Mostly has no Cilla
- Endosymbiotic theory
 - Endosymbiotic theory states that organelles within our current eukaryotic cells the mitochondria and chloroplasts are originally prokaryotic cells in their own right. This is because they divide independently through binary fission, and also contains circular DNA that is independent of the main cell itself.
- · Organizing organelles based on membranes #ASK
 - Membranous organelles possess own plasma => regulates own macromolecure consumption, hormones, etc. Perhaps original prokarotic cells
 - Non-membranous organelles does not posess own plasma => mostly part of the cytoskeleton of a cell
 - Ribosomes => protein synthesizer in the cell
 - Centrosome => forms flangella, cilla, and handles cells divisions

1.2 | Helpful review items

Figure 1: Screen Shot 2020-10-09 at 11.58.55 AM.png