FRI and Proximity Proofs: What they are, what they are for, and the future

Dan Boneh
Stanford University

Some papers we discuss in this module

- FRI (2018) and <u>analysis</u> (2018): Fast Reed–Solomon Interactive Oracle Proofs of Proximity
- DEEP-FRI (2019): Out of domain sampling improves soundness
- BCIKS (2020): Proximity Gaps for Reed–Solomon Codes
- CircleSTARK (2024): FRI using a Mersenne prime
- STIR (2024): Reed–Solomon proximity testing with fewer queries
- WHIR (2024): Proximity testing with a faster verifier

Beyond Reed-Solomon codes (a few recent results):

- Breakdown (2021), Orion (2022): Polynomial commitments with a fast prover
- <u>BaseFold</u> (2023): Polynomial commitments from foldable codes with shorter proofs
- Blaze (2024): Fast SNARKs from Interleaved RAA Codes

FRI: Fast Reed-Solomon IOPP

- Let \mathbb{F} be a finite field (say, $\mathbb{F} = \{0,1,2,...,p-1\}$) and $\mathcal{L} \subseteq \mathbb{F}$.
- Let $y: \mathcal{L} \to \mathbb{F}$ be a committed function (a vector of size $|\mathcal{L}|$)

FRI: a way to prove that y is "close" to a Reed-Solomon codeword

So what? Who cares? What does this even mean?

Let's get started ... first some background

Background

- (1) Codes
- (2) IOP and IOPP
- (3) Poly-IOP

(1) Linear codes

<u>Def:</u> an $[n, k, l]_p$ linear code \mathcal{C} is a linear subspace $\mathcal{C} \subseteq \mathbb{F}^n$ of dimension k (so $|\mathcal{C}| = p^k$) where $|u|_0 \ge l$ for all $0 \ne u \in \mathcal{C}$

Recall: For
$$u, v$$
 in \mathbb{F}^n (sum as integers)
$$|u|_0 \coloneqq \text{(Hamming weight of } u) = \sum_{i=0}^n (u_i)^0 \quad \text{(where } 0^0 = 0\text{)}$$

$$\Delta(u, v) \coloneqq \text{(relative Hamming distance)} = \frac{1}{n} |u - v|_0 \in [0, 1]$$

$$\text{example: } \Delta((1, \mathbf{5}, 9, \mathbf{4}, \mathbf{1}), \ (1, \mathbf{2}, 9, \mathbf{7}, \mathbf{4})) = 3/5$$

 $\mu = \mu(\mathcal{C}) \coloneqq l/n = \text{(relative min weight of } \mathcal{C}\text{)} = \frac{1}{n} \cdot \min_{0 \neq u \in \mathcal{C}} |u|_0$

 $\in [0.1]$

(1) Linear codes

Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a $[n, k, l]_p$ linear code. Then:

Fact 1: For all distinct
$$u, v \in \mathcal{C}$$
 we have $\Delta(u, v) \ge \mu(\mathcal{C}) = l/n$ (otherwise $0 \ne |u - v|_0 < l$ and $u - v \in \mathcal{C}$)

Fact 2:
$$k \le n - l + 1$$
 (i.e. $|\mathcal{C}| \le p^{n-l+1}$) (the singleton bound)

<u>Def:</u> if k = n - l + 1 then $\mathcal C$ is called an **MDS Code**The classic MDS code: the Reed-Solomon code (more in a bit)

Encoding a message as a codeword

Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a $[n, k, l]_p$ linear code.

Encoding: Let $c_1, ..., c_k \in \mathbb{F}^n$ be a basis of \mathcal{C} .

A message $m=(m_1,\ldots,m_k)\in\mathbb{F}^k$ can be encoded as a codeword

$$m \in \mathbb{F}^k$$
 encode $m_1 c_1 + \dots + m_k c_k \in \mathbb{F}^n$ (1/ ho expansion)

We can treat \mathcal{C} as a linear map $\mathcal{C}: \mathbb{F}^k \to \mathbb{F}^n$ that encodes messages in \mathbb{F}^k

<u>Def</u>: The **rate** of a code is $\rho := k/n \in [0,1]$ (e.g., $\rho = 0.5$)

In practice: for fast encoding, want ρ as large as possible (ρ =0.5 \Rightarrow n=2k)

Unique decoding distance $([n,k,l]_p \text{ linear code})$

Fact 3: for every $w \in \mathbb{F}^n$ there is at most one codeword $u \in \mathcal{C}$ s.t. $\Delta(u, w) < \mu(\mathcal{C})/2$

(by triangular inequality)

<u>Def:</u> $\mu(\mathcal{C})/2$ in [0,0.5] is called the **unique decoding distance** of \mathcal{C}

Most
$$w \in \mathbb{F}^n$$
 are not uniquely decodable
$$\sum_{u \in \mathcal{C}} B_0(u, l/2) = \sum_{u \in \mathcal{C}} \binom{n}{l/2} p^{l/2} \le p^{n-l+1} \cdot \binom{n}{l/2} p^{l/2} < n^{l/2} \cdot p^{n-l/2+1} \ll p^n$$

List decoding

Def: For a
$$[n, k, l]_p$$
 linear code \mathcal{C} , $w \in \mathbb{F}^n$, and $\delta \in [0,1]$, let $\text{List}[w, \mathcal{C}, \delta] \coloneqq \{ c \in \mathcal{C} \text{ s.t. } \Delta(c, w) \le \delta \}$

Then
$$\delta < \mu(\mathcal{C})/2 \implies |\operatorname{List}[w, \mathcal{C}, \delta]| \le 1$$
 (unique decoding distance)

List decoding

The Johnson bound: For
$$\mathcal{C} \subseteq \mathbb{F}^n$$
, $w \in \mathbb{F}^n$, $0 < \delta < 1 - \sqrt{1 - \mu}$

$$\left| \operatorname{List}[w, \mathcal{C}, \delta] \right| \leq 1/\varepsilon_{\delta} \text{ where } \varepsilon_{\delta} \coloneqq 2\sqrt{1 - \mu} \left(1 - \sqrt{1 - \mu} - \delta \right)$$

(blows up as δ approaches $\,1-\sqrt{1-\mu}$)

Convenient terms: δ -close and δ -far

<u>Def:</u> We say that $w \in \mathbb{F}^n$ is **\delta-close** to $\mathcal{C} \subseteq \mathbb{F}^n$ if there is some $c \in \mathcal{C}$ s.t. $\Delta(w,c) \leq \delta$ (i.e. $|\operatorname{List}[w,\mathcal{C},\delta]| \geq 1$). We write $\Delta(w,\mathcal{C}) \leq \delta$.

<u>Def:</u> We say that $w \in \mathbb{F}^n$ is δ -far from $\mathcal{C} \subseteq \mathbb{F}^n$ if for all $c \in \mathcal{C}$ we have $\Delta(w,c) > \delta$ (i.e. $|\operatorname{List}[w,\mathcal{C},\delta]| = 0$). We write $\Delta(w,\mathcal{C}) > \delta$.

The classic MDS code: Reed-Solomon

First, polynomials over a field ${\mathbb F}$

- $\mathbb{F}^{< d}[X]$: set of all univariate polynomials over \mathbb{F} of degree < d
- For a polynomial $f \in \mathbb{F}^{< d}[X]$ and $\mathcal{L} \subseteq \mathbb{F}$ write $\bar{f} : \mathcal{L} \to \mathbb{F}$ for the restriction of f to the domain \mathcal{L}

A function $w: \mathcal{L} \to \mathbb{F}$, where $n \coloneqq |\mathcal{L}|$, can be treated as a vector $\text{vec}(w) \coloneqq \left(w(a_1), ..., w(a_n)\right) \in \mathbb{F}^n$ where $\mathcal{L} = \{a_1, ..., a_n\} \subseteq \mathbb{F}$ has a natural ordering

The classic MDS code: Reed-Solomon

<u>Def:</u> The Reed-Solomon code over the field \mathbb{F} , evaluation domain $\mathcal{L} \subseteq \mathbb{F}$, and degree d, is the linear code

$$RS[\mathbb{F}, \mathcal{L}, d] \coloneqq \{ \bar{f} : \mathcal{L} \to \mathbb{F} \text{ where } f \in \mathbb{F}^{< d}[X] \}$$

Fact: Let $d < n := |\mathcal{L}|$.

$$RS[\mathbb{F}, \mathcal{L}, d]$$
 is a $[n, d, l = (n - d + 1)]_p$ linear code

 \Rightarrow RS[F, \mathcal{L} , d] is an MDS code (has p^d codewords)

<u>Def:</u> The rate of RS[\mathbb{F} , \mathcal{L} , d] is $\rho \coloneqq d/n \in [0,1]$

(e.g., $\rho = 0.5$)

 $m \in \mathbb{F}^d$

encode

 $\operatorname{vec}(\bar{f}_m) \in \mathbb{F}^n$

($1/\rho$ expansion)

Def: For RS[
$$\mathbb{F}$$
, \mathcal{L} , d], $w: \mathcal{L} \to \mathbb{F}$, and $\delta \in [0,1]$, let List[w, d, δ] := { $\bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ s.t. $\Delta(\bar{f}, w) \leq \delta$ }

So:
$$\delta < \frac{\mu}{2} = \frac{l}{2n} = \frac{n-d+1}{2n} \approx \frac{1-\rho}{2}$$
 \Rightarrow | List[w, d, δ] | ≤ 1 (unique decoding distance)

Recall: $\rho \coloneqq d/n \in [0,1]$ where $n \coloneqq |\mathcal{L}|$. For MDS code: $\mu \approx 1 - \rho$.

The Johnson bound: For
$$\mathrm{RS}[\mathbb{F},\mathcal{L},d], \ w:\mathcal{L}\to\mathbb{F}, \ \delta<1-\sqrt{\rho}$$

$$\big|\mathrm{List}[w,d,\delta]\big|\leq 1/\varepsilon_\delta \ \text{where} \ \varepsilon_\delta\coloneqq 2\sqrt{\rho}(1-\sqrt{\rho}-\delta)\in (0,1)$$

(blows up as δ approaches $\,1-\sqrt{
ho}$)

The Johnson bound: For
$$\mathrm{RS}[\mathbb{F},\mathcal{L},d]$$
, $w\colon\mathcal{L}\to\mathbb{F}$, $\delta<1-\sqrt{\rho}$
$$\big|\operatorname{List}[w,d,\delta]\big|\leq 1/\varepsilon_\delta \quad \text{where} \quad \varepsilon_\delta\coloneqq 2\sqrt{\rho}(1-\sqrt{\rho}-\delta)\in (0,1)$$
 (blows up as δ approaches $1-\sqrt{\rho}$)

size of List $[w, d, \delta]$ as a function of $\delta \in [0,1]$:

$$\delta = 0 \qquad \text{size } \leq 1 \qquad \text{size } \leq 1/\varepsilon_{\delta} \qquad \text{unknown} \qquad \geq p$$

$$\delta = 0 \qquad (1-\rho)/2 \qquad 1-\sqrt{\rho} \qquad 1-\rho \qquad 1$$
 Conjectured to be poly(n) size (true for random $\mathcal{L} \subseteq \mathbb{F}$ [BGM'24])

The Johnson bound: For
$$\mathrm{RS}[\mathbb{F},\mathcal{L},d], \ w\colon \mathcal{L}\to \mathbb{F}, \ \delta<1-\sqrt{\rho}$$

$$\big|\operatorname{List}[w,d,\delta]\big|\leq 1/\varepsilon_\delta \ \text{ where } \ \varepsilon_\delta\coloneqq 2\sqrt{\rho}(1-\sqrt{\rho}-\delta)\in (0,1)$$
 (blows up as δ approaches $1-\sqrt{\rho}$)

size of List $[w, d, \delta]$ as a function of $\delta \in [0,1]$:

An example: $\rho = 1/4$

Background on IOPs

Review (1) IOP and IOPP

(2) Poly-IOP

Interactive Oracle Proofs (IOP)

[BCS'16, RRR'16]

Let $R = \{(x, w)\}$ be a poly-time relation (e.g., x = sha3(w))

<u>Def</u>: an IOP for R is a pair of algorithms (P, V) s.t.:

Verifier(x)

 α_i : short random challenges

 π_i : poly-size strings (oracles)

 $m{V}$ can query for cells of π_i

$$V^{\pi_0,\ldots,\pi_k}(\mathbf{x},\alpha_1,\ldots,\alpha_k) \rightarrow \text{yes/no}$$

Interactive Oracle Proofs (IOP) [BCS'16, RRR'16]

```
Let R = \{(x, w)\}\ be a poly-time relation (e.g., x = sha3(w))
```

<u>Def</u>: an IOP (P, V) for R

is **complete** if for all $(x, w) \in R$, when V interacts with P

$$\Pr[V^{\pi_0,...,\pi_k}(\mathbf{x},\alpha_1,...,\alpha_k) = \text{yes}] = 1$$

is **sound** if for all P^* and $x \notin L(R) := \{x \mid \exists w : (x, w) \in R\}$

$$\Pr[V^{\pi_0,\dots,\pi_k}(\mathbf{x},\alpha_1,\dots,\alpha_k) = \text{yes}] < err \qquad (\approx 2^{-128})$$

is **knowledge sound** (informally) if for all P^* , V accepts $x \Rightarrow \text{prover "knows" } w \text{ s.t. } (x, w) \in R$

Interactive Oracle Proofs (IOP) [BCS'16, RRR'16]

```
Let R = \{(x, w)\} be a poly-time relation (e.g., x = sha3(w))
```

Def: an IOP (P, V) for R

is **complete** if for all $(x, w) \in R$, when V interacts with P

$$\Pr[\mathbf{V}^{\pi_0,\dots,\pi_k}(\mathbf{x},\alpha_1,\dots,\alpha_k) = \text{yes }] = 1$$

is **sound** if for all P^* and $x \notin L(R) := \{x \mid \exists w : (x, w) \in R\}$ $\Pr[V^{\pi_0,\ldots,\pi_k}(\mathbf{x},\alpha_1,\ldots,\alpha_k) = \text{yes}] < err$ $(\approx 2^{-128})$

is **succinct** if time(V) is at most polylog(time(R)) and O(|x|, log(1/err)) $\Rightarrow k$ is small and V makes few queries to the oracles π_0, \dots, π_k

IOP for $R \Rightarrow SNARK$ for R (the BCS'16 compiler)

Step 1: replace $\pi_0,...,\pi_k$ by Merkle commitments

We obtain an interactive proof (IP)

V queries π_i at cell $j \Rightarrow P$ responds with a Merkle proof for cell j

IOP for $R \Rightarrow SNARK$ for R (the BCS'16 compiler)

Step 2: Make non-interactive using the Fiat-Shamir transform

IOP for $R \Rightarrow SNARK$ for R (the BCS'16 compiler)

"Thm" (BCS'16, CCH+'19, Hol'19): the IOP has round-by-round soundness

 \Rightarrow

the derived SNARG is secure in the random oracle model

(see also Chiesa-Yogev SNARK book)

Efficiency:

- To reduce prover work: minimize $|\pi_0| + \cdots + |\pi_k|$
- To reduce proof size: minimize k and number of verifier queries
 - ⇒ Merkle Commitments = =
- \Rightarrow Merkle Proofs $(O_{\lambda}(\log |\pi_i|) \text{ size})$

A generalization: IOP of Proximity (IOPP)

Let $R = \{(x, y, w)\}$ be a poly-time relation (y = w)

<u>Def</u>: an IOPP for R is a pair of algorithms (P, V) s.t.:

Completeness and proximity soundness

Let $R = \{(x, y, w)\}$ be a poly-time relation (y = w)

Def: (x, y) is δ -far from R, if $(x, y', w) \notin R$ for all y', w with $\Delta(y, y') \leq \delta$

<u>Def</u>: an IOPP (P, V) for R

is **complete** if for all $(x, y, w) \in R$ the Verifier V always accepts P

is δ -sound if for all (x, y) that are δ -far from R:

$$\forall \mathbf{P}^*$$
: $\Pr[\mathbf{V}^{\mathbf{y},\pi_0,\dots,\pi_k}(\mathbf{x},\alpha_1,\dots,\alpha_k) = \text{yes}] < err \quad (\approx 2^{-128})$

if (x, y) is neither, then no guarantee on the output of V

An important example: a Reed-Solomon IOPP

Let
$$\mathcal{C} = \text{RS}[\mathbb{F}, \mathcal{L}, d]$$
, $u: \mathcal{L} \to \mathbb{F}$, and $\delta \in [0,1]$

Def: an IOPP for RS, a
$$\delta$$
-**RS-IOPP**, is an IOPP (P, V) such that

$$P(x = C, y = u, w = \bot)$$
 Verifier $\sqrt[y]{x = C}$

complete:
$$u \in \mathcal{C} \implies \text{for } P: \Pr[V^{u,\pi_0,\dots,\pi_k}(x,\alpha_1,\dots,\alpha_k) = yes] = 1$$

$$\delta$$
-sound: $\Delta(u, \mathcal{C}) > \delta \Rightarrow \forall P^*: \Pr[V^{u, \pi_0, \dots, \pi_k}(x, \alpha_1, \dots, \alpha_k) = \text{yes}] < err$

FRI is an efficient RS-IOPP. But why is this useful?

A special type of IOP: Poly-IOP

Let $R = \{(x, w)\}$ be a poly-time relation

<u>Def</u>: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Verifier(X)

 f_0 , ..., f_k : oracles for polynomials

V can eval f_i at any $x \in \mathbb{F}$

 $V^{f_0,\ldots,f_k}(\mathbb{X},\alpha_1,\ldots,\alpha_k) \rightarrow \text{yes/no}$

A special type of IOP: Poly-IOP

Let $R = \{(x, w)\}$ be a poly-time relation

<u>Def</u>: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Prover P(X, W)

Verifier(X)

Completeness and soundness as for an IOP

$$\alpha_k \leftarrow \mathfrak{U}$$

$$f_k \in \mathbb{F}^{< d}[X]$$

 $V^{f_0,\ldots,f_k}(\mathbf{x},\alpha_1,\ldots,\alpha_k) \rightarrow \text{yes/no}$

Why Poly-IOP?

Many SNARKs are derived from Poly-IOPs: either univariate (e.g., Plonk) or multilinear (e.g., HyperPlonk)

Can we compile a Poly-IOP to a SNARK?

Yes! And the key ingredient is an IOPP

Compiling a Poly-IOP to a SNARK Using a Reed-Solomon IOP of Proximity

An important application of an RS-IOPP

Poly-IOP for $R \Rightarrow SNARK$ for R

Derive a SNARK in two steps:

- Replace $f_0,...,f_k$ by a **polynomial commitment** to same; now queries from $\emph{\textbf{V}}$ are replaced by polynomial evaluations.
- Apply the Fiat-Shamir transformation.

Poly-IOP for $R \Rightarrow SNARK$ for R

We will show: RS-IOPP \Rightarrow poly. commitment scheme (PCS)

Poly-IOP \Rightarrow IOP \Rightarrow SNARK

A direct SNARK construction:

The interesting step: Poly-IOP ⇒ IOP

Challenge: how to build a polynomial eval oracle from a list lookup oracle??

Representing a polynomial as an IOP oracle

The problem:
$$f \in \mathbb{F}^{< d}[X] \rightarrow \text{string } \pi : \square \square \square \square \square \subseteq \mathbb{F}^n$$

Let
$$C = RS[\mathbb{F}, \mathcal{L}, d]$$
 with $\mathcal{L} = \{a_1, \dots, a_n\}$ $(d < n)$

• The honest prover represents $f \in \mathbb{F}^{< d}[X]$ by its encoding

$$f \rightarrow \pi = (f(a_1), f(a_2), \dots, f(a_n)) = \bar{f} \in \mathcal{C} \subseteq \mathbb{F}^n$$

We will treat π as a function $\pi: \mathcal{L} \to \mathbb{F}$

New problem: in a Poly-IOP the prover can only send $f \in \mathbb{F}^{< d}[X]$, but now the prover can send any $\pi: \mathcal{L} \to \mathbb{F}$, possibly not in \mathcal{C}

Representing a polynomial as an IOP oracle

The new problem: prover sends an oracle $\pi: \mathcal{L} \to \mathbb{F}$

- Can Verifier confirm that π is a codeword in \mathcal{C} by only opening a few cells in π ??
 - Can't be done (what if π is wrong in only one cell?)
 - But Verifier can confirm that π is δ -close to some codeword, for δ <(unique decoding distance) $\Rightarrow \pi$ represents a unique poly.

How to check? Reed-Solomon IOPP (e.g., FRI)

But this is not yet a PCS. First, let's develop some tools ...

Quotienting

Let $a \in \mathbb{F}$ s.t. $a \notin \mathcal{L}$ and let $b \in \mathbb{F}$. Let $f \in \mathbb{F}^{< d}[X]$ and $\delta \in [0,1]$.

Define the quotient map: $u: \mathcal{L} \to \mathbb{F} \to q(X) \coloneqq \frac{u(X) - b}{X - a} : \mathcal{L} \to \mathbb{F}$

Fact 1: if $u = \overline{f} \in RS[\mathbb{F}, \mathcal{L}, d]$ and b = f(a) then $q \in RS[\mathbb{F}, \mathcal{L}, d-1]$

Fact 2: Suppose that for all $\bar{g} \in \text{List}[u,d,\delta]$ we have $b \neq g(a)$.

Then q is δ -far from RS[\mathbb{F} , \mathcal{L} , d-1].

Proof: Suppose $\Delta(q, \bar{h}) \leq \delta$ for some $h \in \mathbb{F}^{< d-1}[X]$ (i.e. $\bar{h} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d-1]$). Set $g(X) \coloneqq h(X) \cdot (X-a) + b$. Then $\bar{g} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$ and $\Delta(u, \bar{g}) \leq \delta$. But then $\bar{g} \in \mathrm{List}[u, d, \delta]$ and g(a) = b. Contradiction!

Visualizing Quotienting

The quotient map for $a \in \mathbb{F} \setminus \mathcal{L}$: $u: \mathcal{L} \to \mathbb{F} \to q(X) \coloneqq \frac{u(X) - b}{X - a} : \mathcal{L} \to \mathbb{F}$

$$u:\mathcal{L} \to \mathbb{F}$$

$$q(X) \coloneqq \frac{u(X) - b}{X - a} : \mathcal{L} \to \mathbb{I}$$

Honest prover

$$u = \bar{f} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$$

and $b = f(a)$

distance u to RS[\mathbb{F} , \mathcal{L} , d]:

distance q to RS[\mathbb{F} , \mathcal{L} , d-1]:

Dishonest prover

$$\Delta(u, RS[\mathbb{F}, \mathcal{L}, d]) = \eta$$
 and $\forall \bar{g} \in List[u, d, \delta]: b \neq g(a)$

Quotienting by more values

Let $\{a_1, ..., a_k\} \subseteq \mathbb{F} \setminus \mathcal{L}$ and $\{b_1, ..., b_k\} \subseteq \mathbb{F}$. Let $f: \mathcal{L} \to \mathbb{F}$.

Define polynomials V(X), $I(X) \in \mathbb{F}^{\leq k}[X]$ as

$$V(X) \coloneqq \prod_{i \in [k]} (X - a_i)$$
 and $I(a_i) = b_i$ for all $i \in [k]$.

Define the map: $u: \mathcal{L} \to \mathbb{F} \to q(X) \coloneqq \frac{u(X) - I(X)}{V(X)} : \mathcal{L} \to \mathbb{F}$

Fact 1: if
$$u = \bar{f}$$
 and $b_i = f(a_i)$ for $i \in [k]$ then $q \in RS[\mathbb{F}, \mathcal{L}, d - k]$

Fact 2: (STIR, Lemma 4.4) Suppose that for every $\bar{g} \in \operatorname{List}[u,d,\boldsymbol{\delta}]$ we have that $b_i \neq g(a_i)$ for some $i \in [k]$. Then q(X) is $\boldsymbol{\delta}$ -far from RS[$\mathbb{F},\mathcal{L},d-k$].

Poly-IOP ⇒ **IOP**: first attempt

$$P \qquad f \in \mathbb{F}^{< d}[X] \qquad V \qquad P \qquad V$$
 honest prover: $\pi \coloneqq \bar{f} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$
$$eval \ f \ at \ a_1 \in \mathbb{F} \setminus \mathcal{L} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \delta\text{-RS-IOPP for } q_1(X) \coloneqq \frac{\pi(X) - b_1}{X - a_1} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d - 1]$$
 for some $\delta \in [0,1] \qquad (q_1 \text{ is easy to calculate from } \pi)$
$$eval \ f \ at \ a_2 \in \mathbb{F} \setminus \mathcal{L} \qquad \qquad \delta\text{-RS-IOPP for } q_2(X) \coloneqq \frac{\pi(X) - b_2}{X - a_2} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d - 1]$$

$$b_2 \leftarrow f(a_2)$$

Insufficient! What if $f_1 \neq f_2$? (can happen if δ >unique decoding distance)

Verifier can conclude: there are $\overline{f_1}, \overline{f_2} \in \operatorname{List}[\boldsymbol{\pi}, d, \delta]$ s.t. $\begin{cases} f_1(a_1) = b_1 \\ f_2(a_2) = b_2 \end{cases}$

A simple observation

(DEEP)

$$P \qquad f \in \mathbb{F}^{< d}[X]$$

$$P \qquad \pi = \square : \mathcal{L} \to \mathbb{F}$$

$$\text{Honest prover: } \pi \coloneqq \bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$$

$$\text{sample random } r \in \mathbb{F} \setminus \mathcal{L}$$

$$\text{one } f \in \text{List}[\pi, d, \delta]$$

$$\text{return } s \in \mathbb{F} \text{. Honest prover: } s \coloneqq f(r)$$

Fact: Let BAD be the event that
$$\exists \bar{f_1} \neq \bar{f_2} \in \operatorname{List}[\pi, d, \delta]$$
 s.t. $f_1(r) = f_2(r) = s$

$$\Pr[\text{BAD}] \leq \binom{|\text{List}[\boldsymbol{\pi},d,\delta]|}{2} \cdot \frac{d}{|\mathbb{F}|-|\mathcal{L}|}$$
union bound over all pairs
$$\Pr[\text{BAD}] \text{ for a fixed } f_1, f_2$$

A simple observation

Fact: Let BAD be the event that $\exists \bar{f_1} \neq \bar{f_2} \in \text{List}[\pi, d, \delta]$ s.t. $f_1(r) = f_2(r) = s$

$$\Pr_{r}[\text{BAD}] \leq \binom{|\text{List}[\pi,d,\delta]|}{2} \cdot \frac{d}{|\mathbb{F}|-|\mathcal{L}|}$$

When $\delta < 1 - \sqrt{\rho}$ (Johnson bound) then $\left| \operatorname{List}[\pi, d, \delta] \right| < \operatorname{const}_{\delta}$

 \Rightarrow If \mathbb{F} is sufficiently large then $\Pr[\mathrm{BAD}] < 2^{-128}$ (negligible) (otherwise, repeat with multiple random $r_1, \dots, r_t \in \mathbb{F} \setminus \mathcal{L}$)

 \Rightarrow Only one $f \in \text{List}[\pi, d, \delta]$ satisfies f(r) = s, with high probability

Poly-IOP ⇒ **IOP**: second attempt

Verifier can conclude: there is $\bar{f}_1 \in \text{List}[\boldsymbol{\pi}, d, \delta]$ s.t. $\begin{cases} f_1(a_1) = b_1 \\ f_1(r) = s \end{cases}$

Poly-IOP ⇒ IOP: second attempt

$$P \qquad f \in \mathbb{F}^{< d}[X] \qquad V \qquad P \qquad \pi = \square \square : \mathcal{L} \to \mathbb{F} \qquad V$$
 Honest prover: $\pi \coloneqq \bar{f} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$ sample random $r \in \mathbb{F} \setminus \mathcal{L}$
$$I(a_2) \coloneqq b_2, \quad I(r) = s \qquad \text{return } s \in \mathbb{F} \text{.} \qquad \text{Honest prover: } s \coloneqq f(r)$$
 eval f at $a_2 \in \mathbb{F} \setminus \mathcal{L}$
$$b_2 \leftarrow f(a_2) \qquad \delta\text{-RS-IOPP for } q_2(X) \coloneqq \frac{\pi(X) - I(X)}{V(X)} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d - 2]$$

Now: $\delta < 1 - \sqrt{\rho}$ and $f_1(r) = f_2(r) = s \implies f_1 = f_2$ w.h.p, as required

Verifier can conclude: there is $\bar{f}_2 \in \text{List}[\boldsymbol{\pi}, d, \delta]$ s.t. $f_2(a_2) = b_2$, $f_2(r) = s$

Poly-IOP ⇒ IOP: summary

- The IOP prover encodes $f \in \mathbb{F}^{< d}[X]$ using a linear code (RS) (other linear codes can be used, possibly with a faster encoding than RS)
- δ -RS-IOPP applied to a quotient $q(X) \coloneqq \frac{\pi(X) I(X)}{V(X)}$ proves evaluations of the encoded polynomial to the Verifier.
- For $\delta < 1 \sqrt{\rho}$: an out of domain query (r,s) ensures that the prover is bound to a unique polynomial, w.h.p

Poly-IOP \Rightarrow IOP \Rightarrow SNARK

A direct SNARK construction:

An RS-IOPP is the key ingredient in compilation

Poly-IOP ⇒ **IOP**: remarks

Remark 1: what if Poly-IOP Verifier wants to query f at $a \in \mathcal{L}$??

- The problem: $q(X) \coloneqq \frac{\pi(X) I(X)}{(X a)(X r)} \colon \mathcal{L} \to \mathbb{F}$ is undefined at X = a (not a problem when $a \notin \mathcal{L}$)
- Solution: Q(X) := (f(X) I(X))/(X a)(X r) is a poly. in $\mathbb{F}^{< d-2}[X]$. Honest prover defines q(a) := Q(a) and runs the RS-IOPP on q.

Remark 2: naively, the IOP uses one RS-IOPP per query to f

- In practice, we can batch many RS-IOPPs into one RS-IOPP
- Let's see how ... first we need some tools

One last topic before the break:

Distance Preserving Transformations

Towards an efficient RS-IOPP

Distance Preserving Transformations

Let $\mathcal{L}, \mathcal{L}' \subseteq \mathbb{F}$, d, d' some degree bounds, and $\delta \in [0,1]$.

<u>Def</u>: A **distance preserving transformation** is a randomized map $T(u_1, \dots, u_k; r) \rightarrow u$ that maps $u_1, ..., u_k : \mathcal{L} \to \mathbb{F}$ to $u : \mathcal{L}' \to \mathbb{F}$ such that: case 1: (the honest case) if $u_1, ..., u_k \in RS[\mathbb{F}, \mathcal{L}, d]$ then $u \in RS[\mathbb{F}, \mathcal{L}', d']$ for all r. case 2: (the dishonest case) if some u_i is δ -far from $RS[\mathbb{F}, \mathcal{L}, d]$ then u is δ -far from RS[\mathbb{F} , \mathcal{L}' , d'], w.h.p over r.

Example 1: batch RS-IOPP

Setting: Prover has $u_0, ..., u_k$: $\mathcal{L} \to \mathbb{F}$, Verifier has oracles for $u_0, ..., u_k$.

Goal: convince Verifier that all $u_0, ..., u_k$ are δ -close to RS[$\mathbb{F}, \mathcal{L}, d$].

- Naively: run k RS-IOPP protocols \Rightarrow expensive
- **Better**: batch all k into a single function $u: \mathcal{L} \to \mathbb{F}$

step 1: Verifier samples random r in \mathbb{F} ; sends to prover

step 2: Prover sets $u \coloneqq u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k : \mathcal{L} \to \mathbb{F}$

step 3: Both run RS-IOPP on $u: \mathcal{L} \to \mathbb{F}$

when Verifier wants u(a) for some $a \in \mathcal{L}$, prover opens all $u_0(a), ..., u_k(a)$

Why is this distance preserving?

Case 1: (an honest prover) if $u_0, ..., u_k \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ then $u \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ for all $r \in \mathbb{F}$

Case 2: (a dishonest prover) if some u_i is δ -far from $RS[\mathbb{F}, \mathcal{L}, d]$, we need to argue that

u is δ -far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$, with high probability over $r\in\mathbb{F}$

When $\delta \in [0,1-\sqrt{\rho})$, Case 2 follows from the celebrated <u>BCIKS</u> proximity gap theorem.

The proximity gap theorem

Thm (BCIKS'20, Thm. 6.2): RS[F, \mathcal{L} , d] an RS-code with const. rate $\rho \coloneqq d/n$ (say, $\rho = 0.5$)

Let
$$u_0, \dots, u_k : \mathcal{L} \to \mathbb{F}$$
 and $0 < \delta < 1 - 1.01\sqrt{\rho}$.

For
$$r \in \mathbb{F}$$
 define $u^{(r)} \coloneqq u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k$.

Suppose that $\Pr_r \left[u^{(r)} \text{is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d] \right] > err$ then all u_j are $\delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d]$,

where
$$err = O\left(\frac{kn}{|\mathbb{F}|}\right)$$
 for $0 < \delta < \frac{1-\rho}{2}$ $err = O\left(\frac{kn^2}{|\mathbb{F}|}\right)$ for $\frac{1-\rho}{2} < \delta < 1 - 1.01\sqrt{\rho}$

We will assume that err is negligible, i.e. err $< 1/2^{128}$ (if not, use multiple r)

The proximity gap theorem

Suppose that $\Pr_r \left[\ u^{(r)} \ \text{is } \delta\text{-close to RS}[\mathbb{F},\mathcal{L},d] \ \right] > err$ then all u_j are $\delta\text{-close to RS}[\mathbb{F},\mathcal{L},d]$

Contra-positive: if some u_j is δ -far from $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ then $u^{(r)}$ is δ -far with high probability, over r.

A stronger form: correlated proximity

Thm (BCIKS'20, Thm. 6.2):

Let
$$u_0, \dots, u_k : \mathcal{L} \to \mathbb{F}$$
 and $0 < \delta < 1 - 1.01\sqrt{\rho}$.

Suppose that $\Pr_r \left[u^{(r)} \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d] \right] > err$ then there is an $S \subseteq \mathcal{L}$ such that $|S| \geq (1 - \delta) \cdot |\mathcal{L}|$ and for all $j \colon \exists f_i \in \text{RS}[\mathbb{F}, \mathcal{L}, d] \text{ s.t. } \forall x \in S \colon u_i(x) = f_i(x)$

 $\Rightarrow u_0, ..., u_k$ are δ -close to $RS[\mathbb{F}, \mathcal{L}, d]$ on the same positions S.

(recall
$$u^{(r)} \coloneqq u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k$$
)

Why is this called a proximity gap??

Suppose that $\Pr_r \left[u^{(r)} \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d] \right] > err$ then all u_j are $\delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d]$ on the same positions $S \subseteq \mathcal{L}$

But if all $u_0, ..., u_k : \mathcal{L} \to \mathbb{F}$ are δ -close to $\mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$ on positions $S \subseteq \mathcal{L}$, then $u^{(r)}$ is δ -close for all $r \in \mathbb{F}$.

So $\Pr_r[u^{(r)} \text{ is } \delta\text{-close to } RS[\mathbb{F}, \mathcal{L}, d]]$ exhibits a gap:

Proximity gaps for other linear codes?

A similar proximity gap holds for <u>every</u> linear code.

min. distance

Thm: (Zeilberger'24) Let $\mathcal{C} \subseteq \mathbb{F}^n$ be an $[n,dim,l]_p$ linear code. Then \mathcal{C} has a correlated proximity gap for $0<\delta<1-\sqrt[4]{\tau}$ and err = $O\binom{kn}{|\mathbb{F}|}$, where $\tau\coloneqq 1-(l/n)$.

(For RS-code $\tau \approx \rho$, so this gap is much weaker than BCIKS'20)

This can be used in a C-proximity IOPP (e.g., Basefold, Blaze)

2nd Distance preserving example: 2-way folding

From now on set $\mathcal{L} = \{1, \omega, \omega^2, ..., \omega^{n-1}\} \subseteq \mathbb{F}$, where

- n is a power of two, and
- ω is an n-th primitive root of unity $(\omega^n = 1)$ (requires that n divides $|\mathbb{F}| 1$)

Then:

- $\omega^{n/2} = -1$ so that if $x = \omega^i \in \mathcal{L}$ then $-x = \omega^{i+(n/2)} \in \mathcal{L}$
- $|\mathcal{L}^2| = |\{a^2 : a \in \mathcal{L}\}| = |\mathcal{L}|/2 = n/2$ $(-a, a \to a^2)$

2-way folding a polynomial

A folding transformation: let's start with an example.

Let
$$f(X) = 1 + 2X + 3X^2 + 4X^3 + 5X^4 + 6X^5 \in \mathbb{F}^{<6}[X]$$

Define
$$f_{\text{even}}(X) \coloneqq 1 + 3X + 5X^2$$
 and $f_{\text{odd}}(X) \coloneqq 2 + 4X + 6X^2$

Then:
$$f(X) = f_{\text{even}}(X^2) + X \cdot f_{\text{odd}}(X^2)$$

Define: for
$$r \in \mathbb{F}$$
 define $f_{\text{fold},r} := f_{\text{even}} + r \cdot f_{\text{odd}} \in \mathbb{F}^{<3}[X]$

2-way folding a polynomial: more generally

For $f \in \mathbb{F}^{< d}[X]$ (with d even) define:

•
$$f_{\text{even}}(X^2) := \frac{f(X) + f(-X)}{2}$$
 and $f_{\text{odd}}(X^2) := \frac{f(X) - f(-X)}{2X}$

•
$$f_{\text{fold},r}(X) \coloneqq f_{\text{even}}(X) + r \cdot f_{\text{odd}}(X) \in \mathbb{F}^{< d/2}[X]$$

Then:
$$f(X) = f_{\text{even}}(X^2) + X \cdot f_{\text{odd}}(X^2)$$

- for every $a \in \mathbb{F}$: $f_{\text{fold},r}(a^2)$ can be eval given f(a), f(-a)
- $\bar{f} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow \overline{f_{\mathrm{fold},r}} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}^2, d/2] \xrightarrow{\text{unchanged rate = } d/|\mathcal{L}|}$

Folding an arbitrary word $u: \mathcal{L} \to \mathbb{F}$

For $u: \mathcal{L} \to \mathbb{F}$ and $r \in \mathbb{F}$ define $u_e, u_o, u_{\text{fold},r}: \mathcal{L}^2 \to \mathbb{F}$ as

- for $a \in \mathcal{L}$: $u_e(a^2) \coloneqq \frac{u(a) + u(-a)}{2}$ and $u_o(a^2) \coloneqq \frac{u(a) u(-a)}{2a}$
- for $b \in \mathcal{L}^2$: $u_{\text{fold},r}(b) \coloneqq u_e(b) + r \cdot u_o(b)$ (recall $|\mathcal{L}^2| = |\mathcal{L}|/2$)

Lemma (distance preservation): for $0 < \delta < 1 - \sqrt{\rho}$

- $u \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow u_{\mathrm{fold},r} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ for all $r \in \mathbb{F}$
- u is δ -far from $RS[\mathbb{F}, \mathcal{L}, d] \Rightarrow$

$$\Pr[u_{\text{fold},r} \text{ is } \delta\text{-far from RS}[\mathbb{F}, \mathcal{L}^2, d/2]] \ge 1 - err$$

Folding an arbitrary word $u: \mathcal{L} \to \mathbb{F}$

For $u: \mathcal{L} \to \mathbb{F}$ and $r \in \mathbb{F}$ define $u_e, u_o, u_{\text{fold},r}: \mathcal{L}^2 \to \mathbb{F}$ as

- for $a \in \mathcal{L}$: $u_e(a^2) \coloneqq \frac{u(a) + u(-a)}{2}$ and $u_o(a^2) \coloneqq \frac{u(a) u(-a)}{2a}$
- for $b \in \mathcal{L}^2$: $u_{\mathrm{fold},r}(b) \coloneqq u_e(b) + r \cdot u_o(b)$ (recall $|\mathcal{L}^2| = |\mathcal{L}|/2$)

Lemma (distance preservation): for $0 < \delta < 1 - \sqrt{\rho}$

- $u \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow u_{\mathrm{fold},r} \in \mathrm{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ for all $r \in \mathbb{F}$
- $\Pr_r[u_{\text{fold},r} \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}^2, d/2]] > err \implies$

$$u$$
 is δ -close to $RS[\mathbb{F}, \mathcal{L}, d]$

(contra-positive)

Why is this true?

The first part of the lemma is easy. Let's prove the second part.

- Suppose that $\Pr_r[u_{\text{fold},r} \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}^2, d/2]] > err$
- Then by the BCIKS'20 theorem, there are $g_e, g_o \in \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ that match u_e, u_o on a set $S \subseteq \mathcal{L}^2$ of size $|S| \ge (1 - \delta)(n/2)$
- Define $g: \mathcal{L} \to \mathbb{F}$ as $g(a) \coloneqq g_e(a^2) + a \cdot g_o(a^2) \in \mathrm{RS}[\mathbb{F}, \mathcal{L}, d]$
- Then: g(a) = u(a) for all $a \in \mathcal{L}$ for which $a^2 \in S$ (2|S| values in \mathcal{L})
- But then $\Delta(u,g) \leq 1 \frac{2|S|}{n} = 1 \frac{|S|}{n/2} \leq \delta$. $\Rightarrow u \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d]$

An important corollary

Let
$$C = RS[\mathbb{F}, \mathcal{L}, d]$$
 and $C' = RS[\mathbb{F}, \mathcal{L}^2, d/2]$

Corollary: For $u: \mathcal{L} \to \mathbb{F}$ (folding does not decrease distance, w.h.p)

- if $\Delta(u, \mathcal{C}) < 1 \sqrt{\rho}$ then $\Pr_r[\Delta(u_{\text{fold},r}, \mathcal{C}') \ge \Delta(u, \mathcal{C})] \ge 1 err$
- if $\Delta(u, \mathcal{C}) \ge 1 \sqrt{\overline{\rho}}$ then $\Pr_r[\Delta(u_{\text{fold},r}, \mathcal{C}') \ge 1 \sqrt{\overline{\rho}}] \ge 1 err$

Recall: $\Delta(u, \mathcal{C}) \leq \delta \iff u \text{ is } \delta\text{-close to } \mathcal{C}$

4-way folding $u: \mathcal{L} \to \mathbb{F}$ (using $i^2 = -1$)

For $u: \mathcal{L} \to \mathbb{F}$ define $u_0, u_1, u_2, u_3: \mathcal{L}^4 \to \mathbb{F}$ for $a \in \mathcal{L}$ as

$$\begin{pmatrix} 4 \cdot u_0(a^4) \\ 4a \cdot u_1(a^4) \\ 4a^2 \cdot u_2(a^4) \\ 4a^3 \cdot u_3(a^4) \end{pmatrix} := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & (-i)^2 & (-i)^3 \\ 1 & -1 & 1 & -1 \\ 1 & i & i^2 & i^3 \end{pmatrix} \cdot \begin{pmatrix} u(a) \\ u(ia) \\ u(i^2a) \\ u(i^3a) \end{pmatrix}$$
 (a degree-4 FFT)

The 4-way fold of u: for $r \in \mathbb{F}$ define $u_{4\mathrm{fold},r} \colon \mathcal{L}^4 \to \mathbb{F}$ as $u_{4\mathrm{fold},r}(b) \coloneqq u_0(b) + r \cdot u_1(b) + r^2 \cdot u_2(b) + r^3 \cdot u_3(b)$ for $b \in \mathcal{L}^4$

Evaluating $u_{4\text{fold},r}(X)$ at $b \in \mathcal{L}^4$ requires four evals. of u(X).

4-way folding $u: \mathcal{L} \to \mathbb{F}$ (using $i^2 = -1$)

For $u: \mathcal{L} \to \mathbb{F}$ define $u_0, u_1, u_2, u_3: \mathcal{L}^4 \to \mathbb{F}$ for $a \in \mathcal{L}$ as

$$\begin{pmatrix} 4 \cdot u_0(a^4) \\ 4a \cdot u_1(a^4) \\ 4a^2 \cdot u_2(a^4) \\ 4a^3 \cdot u_3(a^4) \end{pmatrix} := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & (-i)^2 & (-i)^3 \\ 1 & -1 & 1 & -1 \\ 1 & i & i^2 & i^3 \end{pmatrix} \cdot \begin{pmatrix} u(a) \\ u(ia) \\ u(i^2a) \\ u(i^3a) \end{pmatrix}$$
 (a degree-4 FFT)

The 4-way fold of u: for $r \in \mathbb{F}$ define $u_{4\mathrm{fold},r} \colon \mathcal{L}^4 \to \mathbb{F}$ as $u_{4\mathrm{fold},r}(b) \coloneqq u_0(b) + r \cdot u_1(b) + r^2 \cdot u_2(b) + r^3 \cdot u_3(b)$ for $b \in \mathcal{L}^4$

Fact: the same distance preservation corollary holds for $u_{4\text{fold},r}$

8-way folding $u: \mathcal{L} \to \mathbb{F}$ (using an 8th root of unity)

Can similarly define 8-way folding, or even 2^w folding for $w \ge 3$.

maps
$$u: \mathcal{L} \to \mathbb{F}$$
 to $u_{2^w \text{fold}, r}: \mathcal{L}^{2^w} \to \mathbb{F}$ $(|\mathcal{L}^{2^w}| = |\mathcal{L}|/2^w)$

- (1) evaluating $u_{2^w \text{fold},r}(b)$ requires 2^w evals. of u(X)
 - \Rightarrow uses a degree-2^w FFT (degree-8 FFT for 8-way folding)
- (2) the same distance preservation corollary holds for $u_{2^w \text{fold},r}$

End of Segment 1: Brief Summary

For a linear code \mathcal{C} : List $[u, \mathcal{C}, \delta]$ is small up to $\delta < 1 - \sqrt{1 - \mu}$

Poly-IOP → **IOP** compiler:

- Honest **P** Commits to $f \in \mathbb{F}^{< d}[X]$ by sending its encoding \bar{f} to **V**
- Prove evaluation of f using RS-IOPP on quotient of sent word u
- Out-of-domain eval. commits P to unique word in List $[u, C, \delta]$

Folding:

- $(u: \mathcal{L} \to \mathbb{F}) \to (u_{\text{fold},r}: \mathcal{L}^2 \to \mathbb{F})$ is a distance preserving map
- Proof using the BCIKS'20 proximity gap theorem

See you in part 2 ...

Let's put all this machinery to use

END OF SEGMENT