Lecture 6 Arithmetic for Computers (1)

CS202 2023 Spring

Today's Agenda

- Recap
- Context
 - Operations on integers
 - Addition and subtraction
 - ALU
 - Dealing with overflow
 - Multiplication and division
- Reading: Textbook 3.1-3.4

Recap

		PC: Responce time/Execution time
	Computer Performance	Server: Throughput
		Performance = 1 / Execution time
		Clock cycle
		Clock period (Tc): Clock cycle time
	Notions	Clock rate/frequency (f): cycles/s
		Instruction Count (IC)
		Cycles per Instruction (CPI)
Lecture5 Performance	/ \	Elapsed time
	Execution time	CPU time
		CPU time = IC x CPI x Tc = IC x CPI / f
	Power consumption	Power = 1/2 x C x V^2 x f
	Performance comparison	SPEC CPU Benchmark, Geometric mean
	Amdahl's Law	T_improved = T_affected / factor + T_unaffected

Basic Arithmetic Logic Unit

One-bit ALU that performs AND, OR, and addition

Enhanced Arithmetic Logic Unit

ALU that have NAND/NOR operation, and subtraction

1-bit ALU that performs AND, OR, and addition on a and b or a' and b'

32-bit ALU

- Ripple-Carry-Adder
- CarryOut of the less significant bit is connected to the CarryIn of the more significant bit.

One-bit ALUs with Set Less Than

- Slt instruction requires a subtraction and then sets all but the LSbit to 0, with the LSbit set to 1 if a < b
- Less signal line
 - lsb signed bit
 - 1 if a < b, 0 otherwise

Low order bits ALU

32-bit ALU with Set Less Than

- The Less inputs are connected to 0 except for the least significant bit, which is connected to the Set output of the most significant bit.
- If the ALU performs a b and we select the input 3 in the multiplexor
 - Result = 0 ... 001 if a < b
 - Result = 0 ... 000 otherwise

Integer Addition

• Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

溢出:1. 正数加正 数是负数,比如111 +111 结果是1000 2. 负数+负数是正数

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)+7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 1
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 0

Integer Addition/Subtraction with Overflow

Example:

- 12+3=15 (00001100+00000011)
- 120+15=135 (01111000+00001111)
- 12-3=9 (00001100-00000011)
- -100-50=-150 (10011100-00110010)

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addiu, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action
- Note: addiu: "u" means it doesn't generate overflow exception, but the immediate can be a signed number

异常处理:先把pc寄存器里面的指令存到EPC里面,跳转到 预定义的处理程序地址mfc0(从协处理器reg移动)指令可 以检索EPC值,并在纠正操作后返回

Overflow Detection for Signed & Unsigned Addition

Signed addition

```
addu $t0, $t1, $t2  # $t0 = sum

xor $t3, $t1, $t2  # Check if signs differ

slt $t3, $t3, $zero  # $t3 = 1 if signs differ

bne $t3, $zero, No_overflow  # $t1, $t2 signs ≠, no overflow

xor $t3, $t0, $t1  # $t1, $t2 signs =, check sum

slt $t3, $t3, $zero  # $t3 = 1 if sum sign≠

bne $t3, $zero, Overflow  # All 3 signs ≠; goto overflow
```

Unsigned addition

同号才会可能溢出,先判断是否同号,按位异或,如果符号位不同结果为1,为1的话t3就是负数,去和0比较,如果是负数,说明t1,t2同号,然后t0去和t1比较,如果同号说明没有溢出

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8 -bit, 4×16 -bit, or 2×32 -bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Multiplication

- In every step
 - multiplicand is shifted
- multipicand:被乘数 multiplier:乘数
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

- Multiply 8_{ten} (1000_{two}) by 9_{ten} (1001_{two})
 - How values change in Mcand, Mplier and Product Registers?

Iter	Step	Multiplier	Multiplicand	Product
0	Initial values	100 <mark>1</mark>	0000 1000	0000 0000
1	1 ⇒ Prod = Prod + Mcand	1001	0000 1000	0000 1000
	Shift left Multiplicand	1001	0001 0000	0000 1000
	Shift right Multiplier	0100	0001 0000	0000 1000
2	0 ⇒ No operation	0100	0001 0000	0000 1000
	Shift left Multiplicand	0100	0010 0000	0000 1000
	Shift right Multiplier	0010	0010 0000	0000 1000
3	Same steps as 2	0010	0010 0000	0000 1000
		0010	0100 0000	0000 1000
		0001	0100 0000	0000 1000
4	Same steps as 1	0001	0100 0000	0100 1000
		0001	1000 0000	0100 1000
		0000	1000 0000	0100 1000

Optimized Multiplier Hardware

- Multiplier initially in right half of product register, 32-bit ALU and multiplicand is untouched
- Check the 0th bit in Product register, if 1, add left half of product with multiplicand
- The sum keeps shifting right, at every step, number of bits in product + multiplier = 64

32 bits

Shift right

Write

Multiplicand

Product

64 bits

32-bit ALU

Optimized Multiplier Example

Optimized Multiplier Example

• Multiply 8_{ten} by 9_{ten}:

2

5

6

31

32

- Value in Product Register?
- How about Multiplicand?

Multiplicand

Product

64 bits

32-bit ALU

32 bits

Shift right

Write

Control

test

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff
 - Can be pipelined
 - Several multiplication performed in parallel

Faster Multiplier

4-bits example

final result: 01001000

Notes

- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
- We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
- The product of two 32-bit numbers can be a 64-bit number
 - hence, in MIPS, the product is saved in two 32-bit registers

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - •mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - •mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Division Example

Division Example

Division Example

Division Example

Division Example

Division Example

Division Example

Division Example

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div Rem < 0 → +Div, shift 0 into Q Shift Div right 加上他的补码	0000 0000 0000	0010 0000 0010 0000 0001 0000	1110 0111 0000 0111 0000 0111
2	Same steps as 1	0000 0000 0000	0001 0000 0001 0000 0000 1000	1111 0111 0000 0111 0000 0111
3	Same steps as 1	0000 0000 0000	0000 1000 0000 1000 0000 0100	1111 1111 0000 0111 00000111
4	Rem = Rem – Div Rem >= 0 → shift 1 into Q Shift Div right	0000 0001 0001	0000 0100 0000 0100 0000 0010	0000 0011 0000 0011 0000 0011
5	Same steps as 4	0001 0011 0011	0000 0010 0000 0010 0000 0001	0000 0001 0000 0001 0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Optimized Divider

Signed Division

- Convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:
 Dividend = Quotient x Divisor + Remainder

$$+7 \text{ div } +2 \qquad \text{Quo} = +3 \qquad \text{Rem} = +1$$
 $-7 \text{ div } +2 \qquad \text{Quo} = -3 \qquad \text{Rem} = -1$

Why not -7 div +2 Quo = -4 Rem = +1? If so, -(x div y) != (-x) div y => programming challenge!

- Convention:
 - Dividend and remainder have the same sign
 - Quotient is negative if signs disagree
 - These rules fulfil the equation above

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result