7. Implement program for decomposing time series data into trend and seasonality

EX.N0:7	Implement program for decomposing time series data into trend and seasonality
DATE : 07/04/2025	

AIM:

To Implement program for decomposing time series data into trend and seasonality.

PROGRAM:

```
import pandas as pd
from statsmodels.tsa.seasonal import seasonal decompose
import matplotlib.pyplot as plt
# Load and prepare the data (as before)
df = pd.read csv('earthquakes.csv')
df['year'] = pd.to numeric(df['year'], errors='coerce')
df = df.dropna(subset=['year'])
df['year'] = df['year'].astype(int)
annual data = df.groupby('year').agg({'richter': 'mean'}).reset index()
annual data.set index('year', inplace=True)
# Fill missing years
full index = pd.RangeIndex(start=annual data.index.min(), stop=annual data.index.max() + 1)
annual data = annual data.reindex(full index)
# Interpolate missing values
annual data['richter interp'] = annual data['richter'].interpolate(method='linear')
# Decompose the time series
decomposition = seasonal decompose(annual data['richter interp'], model='additive', period=10)
# Plot the decomposition
decomposition.plot()
plt.suptitle('Time Series Decomposition of Earthquake Magnitude', fontsize=16)
plt.tight layout()
plt.show()
```

OUTPUT:

Time Series Decomposition of Earther size Magnitude

RESULT:

Thus, the program for Implement program for decomposing time series data into trend and seasonality is executed successfully.