

Produktionsmanagement (Operations Management)

2) Standortplanung

BWI-5 LE 02

Folienskriptum Wintersemester 2009/10 Dr. Helmut Vana

Dr. Helmut Vana

LERNZIELE

- Verstehen, warum gute Standortentscheidungen wichtig sind
- Lernen, wie optimale Lagerstandorte gefunden werden, wenn diese an beliebigen Orten erstellt werden können
- Sehen, welchen Einfluss die Zielfunktion auf die Lösung hat
- Toolbox: Verstehen, wie ganzzahlige Optimierungsprobleme formuliert und gelöst werden
- Lernen, wie optimale Lagerstandorte gefunden werden, wenn diese nur an bestimmten Orten erstellt werden können

- Motivation
- Beliebige Orte ein Standort
- Beliebige Orte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Orte
- Zusammenfassung und Ausblick

WIE ENTSCHEIDEN SIE, WO DIESE FAHRZEUGE PRODUZIERT WERDEN SOLLEN?

TYPISCHE STANDORTENTSCHEIDUNGEN

Fragestellung	Hauptzielsetzung
1. Wo soll ein Fahrzeug produziert werden?	Minimierung Kosten
Wo sollen Servicecenter zur Schaubilderstellung betrieben werden?	Minimierung Kosten und Lieferzeit
3. Wo sollen Lager für Unterhaltungselektro betrieben werden?	nik Minimierung Kosten
4. Wo sollen Zentrallager und Regionallage Flugzeugersatzteile betrieben werden?	r für Minimierung Lieferzeit und Kosten
5. Wo soll ein Hub errichtet werden?	Minimierung Kosten und Flugzeit
6. Wo sollen Krankenhäuser gebaut werder	n? Maximierung Erreichbarkeit in X Stunden
7. Wo sollen Polizeistationen errichtet werd	en? Minimierung maximale Entfernung

EINFLUSSFAKTOREN STANDORTPLANUNG

- Motivation
- Beliebige Standorte ein Standort
 - Rechtwinklige Entfernungsmessung
 - . Eindimensional
 - . Zweidimensional
 - Euklidische Entfernungsmessung
- Beliebige Standorte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Standorte
- Zusammenfassung und Ausblick

PROBLEMBESCHREIBUNG

- 1.Für ein neues Lager soll der optimale Standort (x, y) gefunden werden
- 2.Jeder beliebige Ort kann als Standort genutzt werden
- 3. Die einzigen Kosten sind Transportkosten. Diese sind proportional zur Entfernung d_j(x, y) zwischen Lager und Kunde j und proportional zur Nachfrage des Kunden w_j
- 4.Kunden werden als diskrete Nachfragepunkte (a_j, b_j) modelliert
- 5.Es bestehen keine Kapazitätsbeschränkungen oder sonstige Beschränkungen an den Standorten
- 6.Das Ziel ist es, die
 Transportkosten vom Lager zu
 allen Kunden zu minimieren

ENTFERNUNGSMESSUNG

Rechtwinklige Entfernungsmessung

Euklidische Entfernungsmessung

$$d_j(x, y) = |a_j - x| + |b_j - y|$$

$$d_j(x, y) = \sqrt{(a_j - x)^2 + (b_j - y)^2}$$

OPTIMIERUNGSPROBLEME

Allgemeine Entfernungen

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{j} w_{j} d_{j}(x,y)$$

Rechtwinklige Entfernungen

Eindimensionaler Fall

$$\min_{x} Z(x) = \min_{x} \sum_{j} w_{j} |a_{j} - x|$$

Zweidimensionaler Fall

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{j} w_{j} \left(\left| a_{j} - x \right| + \left| b_{j} - y \right| \right)$$

Euklidische Entfernungen

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{j} w_{j} \sqrt{\left(a_{j} - x\right)^{2} + \left(b_{j} - y\right)^{2}}$$

- Motivation
- Beliebige Standorte ein Standort
 - Rechtwinklige Entfernungsmessung
 - . Eindimensional
 - . Zweidimensional
 - Euklidische Entfernungsmessung
- Beliebige Standorte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Standorte
- Zusammenfassung und Ausblick

ZIELFUNKTION IM EINDIMENSIONALEN FALLECHNIKUM WIEN

Dr. Helmut Vana

EIGENSCHAFTEN KOSTENFUNKTION

Eigenschaften

- Die Steigung an Stelle x ≠ a_j entspricht der Summe der Nachfragen links von x minus der Summe der Nachfragen rechts von x
- Links von a_j ist die Steigung geringer als rechts von a_j
- Zwischen den a_j ändert sich die Steigung nicht
- Der optimale Lagerstandort liegt an dem Kundenstandort, von dem aus die Kostenfunktion links eine negative* und rechts eine positive** Steigung aufweist

* Genauer: Nicht-positive

** Genauer: Nicht-negative

IDENTIFIZIERUNG OPTIMALER LAGERSTANDORTE

Ziel

Finden des Kundenstandorts, von dem aus die Kostenfunktion links eine negative* und rechts eine positive** Steigung aufweist

Beispiel: Berechnung der Steigung

$$w_1 + w_2 + w_3 < \frac{1}{2} \sum w_j = 10$$
 $w_1 = 3$
 $w_2 = 2$
 $w_3 = 4$
 $w_4 = 7$
 $w_5 = 1$
 $w_6 = 3$
 $w_7 = 1$
 $w_8 = 1$
 $w_8 = 1$
 $w_8 = 1$
 $w_9 =$

^{*} Genauer: Nicht-positive

^{**} Genauer: Nicht-negative 18.11.2009

IDENTIFIZIERUNG OPTIMALER LAGERSTANDORTE

Erkenntnis

Der optimale Lagerstandort liegt bei dem Kunden, von dem aus nicht mehr als 50 Prozent der Nachfrage links liegen und nicht mehr als 50 Prozent der Nachfrage rechts liegen

Vorgehen zur schnellen Identifizierung dieses Kunden

Identifizierung des Kunden, der die kleinste kumulative Nachfrage besitzt, die größer oder gleich der halben Gesamtnachfrage ist

$$\frac{1}{2}\sum w_i = 10 \Rightarrow$$
 Muss Kunden finden, mit kleinster kumulierter Nachfrage ≥ 10

$$w_1 = 3$$
 $w_2 = 2$ $w_3 = 4$ $w_4 = 7$ $w_5 = 1$ $w_6 = 3$ $w_1 = 3$ $w_2 = 3$ $w_3 = 4$ $w_4 = 7$ $w_5 = 1$ $w_6 = 3$ $w_6 = 3$

^{*} Genauer: Nicht-positive

^{**} Genauer: Nicht-negative

BEISPIEL EINDIMENSIONALER FALL

Beispieldaten

	•	
j	a _j	W _j
1	5	31
2	8	28
3	0	19
4	6	53
5	14	32
6	10	41

19	31 53 2	28 41	32
1			X
0	5	10	15

Lösung

	a.	W:	Σ w:	
J	<u> </u>	•••		
3	0	19	19	
-1-	5	31	50	
4	6	53	103 ←	= 204/2=102
2	8	28	131	$\rightarrow x^* = 6$
6	10	41	172	
5	14	32	204	Z(6) = 31 5-6 +

$$Z(6) = 31|5-6|+28|8-6|+...=621$$

- Motivation
- Beliebige Standorte ein Standort
 - Rechtwinklige Entfernungsmessung
 - . Eindimensional
 - . Zweidimensional
 - Euklidische Entfernungsmessung
- Beliebige Standorte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Standorte
- Zusammenfassung und Ausblick

BEISPIEL ZWEIDIMENSIONALER FALL

► Kunde△ Lager

Beispieldaten

jj	a _j	b _j	Wj
1	5	13	31
2	8	18	28
3	0	0	19
4	6	3	53
5	14	20	32
6	10	12	41

VERGLEICH ZIELFUNKTIONEN EIN- UND ZWEIDIMENSIONALER FALL

Eindimensionaler Fall

$$\min_{x} Z(x) = \min_{x} \sum_{j} w_{j} |a_{j} - x|$$

Zweidimensionaler Fall

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{i} w_{i} (|a_{i} - x| + |b_{i} - y|)$$

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{j} w_{j} |a_{j} - x| + w_{j} |b_{j} - y|$$

$$= \min_{x} \sum_{j} w_{j} |a_{j} - x| + \min_{y} \sum_{j} w_{j} |b_{j} - y|$$
siehe links

wie links mit b_j statt a_j

und y statt x

Der zweidimensionale Fall lässt sich auf zwei eindimensionale Fälle reduzieren

BEISPIEL ZWEIDIMENSIONALER FALL

Beispieldaten

	•		
J	_a _j _	_b _j	Wj
1	5	13	31
2	8	18	28
3	0	0	19
4	6	3	53
5	14	20	32
6	10	12	41

25	F			• Kunde
20				△ Lager
15				
10	_			
5				
0				
	0	5	10	15

Lösung

aj	Wj	$\Sigma \mathbf{w_j}$	
0	19	19	
5	31	50	
6	53	103	$\leftarrow x^* = 6$
8	28	131	
10	41	172	
14	32	204	
	0 5 6 8 10	0 19 5 31 6 53 8 28 10 41	0 19 19 5 31 50 6 53 103 8 28 131 10 41 172

j	bj	w _j	$\Sigma \mathbf{w_j}$
3	0	19	19
4	3	53	72
6	12	41	113 ← y* = 12
1	13	31	144
2	18	28	172
5	20	32	204

$$Z(x^*, y^*) = 31(|5-6|+|13-12|)+...+41(|10-6|+|12-12|) = 1.781$$

- Motivation
- Beliebige Standorte ein Standort
 - Rechtwinklige Entfernungsmessung
 Eindimensional
 Zweidimensional
 - Euklidische Entfernungsmessung
- Beliebige Standorte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Standorte
- Zusammenfassung und Ausblick

ZIELFUNKTION UND IHRE OPTIMIERUNG FACHHOCHSCHULE

Zielfunktion

$$\min_{x,y} Z(x,y) = \min_{x,y} \sum_{j} w_{j} \sqrt{(a_{j} - x)^{2} + (b_{j} - y)^{2}}$$

Eigenschaft

Die Zielfunktion ist konvex*

Schlussfolgerung

Wenn die partiellen Ableitungen Null sind, dann haben wir die optimalen Werte für x und y gefunden

Partielle Ableitungen

Partielle Ableitungen
$$\frac{\partial}{\partial x} Z(x,y) = \sum_{j=1}^{J} w_j \frac{(x-a_j)}{\sqrt{(x-a_j)^2 + (y-b_j)^2}} = 0$$

$$\frac{\partial}{\partial y} Z(x,y) = \sum_{j=1}^{J} w_j \frac{(y-b_j)}{\sqrt{(x-a_j)^2 + (y-b_j)^2}} = 0$$

Beweis siehe Buch: "Operations Management"

LÖSUNGSALGORITHMUS

Definition

$$g_{j}(x,y) = \frac{w_{j}}{\sqrt{(x-a_{j})^{2}+(y-b_{j})^{2}}}$$

Dann folgt

$$\frac{\partial}{\partial x} Z(x,y) = \sum_{j=1}^{J} g_{j}(x,y) (x - a_{j}) = 0 \quad \Rightarrow \quad x = \frac{\sum_{j=1}^{J} a_{j} \cdot g_{j}(x,y)}{\sum_{j=1}^{J} g_{j}(x,y)}$$
(1)

$$\frac{\partial}{\partial y}Z(x,y) = \sum_{j=1}^{J} g_j(x,y)(y-b_j) = 0 \quad \rightarrow \quad y = \frac{\sum_{j=1}^{J} b_j \cdot g_j(x,y)}{\sum_{j=1}^{J} g_j(x,y)}$$
(2)

Algorithmus

- 1. Wähle Anfangslösung (x₀, y₀)
- 2. Berechne $g_i(x_0, y_0)$ und dann x_1 und y_1 mit (1) und (2)
- 3. Wenn $x_1 \approx x_0$ und $y_1 \approx y_0$, stoppe. Wenn nicht, berechne $g_i(x_1, y_1)$ und dann x_2 und y_2 mit (1) und (2)
- 4. Wenn $x_2 \approx x_1$ und $y_2 \approx y_1$, stoppe. Wenn nicht, berechne $g_j(x_2, y_2)$ und dann x_3 und y_3 mit (1) und (2)

BEISPIEL EUKLIDISCHE ENTFERNUNGEN

Beispieldaten

j	a _j b _j	Wj
1	5 13	31
2	8 18	28
3	0 0	19
4	6 3	53
5	14 20	32
6	10 12	41
§ .		

g₁(5,10) = 31

 $\sqrt{(5-5)^2+(10-13)^2}$

Lösung

t	g ₁	g ₂	9 3	g ₄	g ₅	g ₆	X	у
0					(x	$_{0},y_{0}) =$	5,0	10,0
1	10,3	3,3	1,7	7,5	2,4	7,6	7,1	10,8
2	10,3	3,9	1,5	6,7	2,8	13,0	7,7	11,4
3	10,0	4,2	1,4	6,2	3,0	16,9	8,0	11,7
4	9,6	4,4	1,3	5,9	3,1	19,9	8,2	11,8
5	9,2	4,5	1,3	5,8	3,2	22,2	8,3	11,9
6	8,9	4,6	1,3	5,8	3,2	23,9	8,4	11,9
7	8,7	4,6	1,3	5,8	3,2	25,3	8,5	11,9

18.11.2009

Dr. Helmut Vana

- Motivation
- Beliebige Standorte ein Standort
- Beliebige Standorte mehrere Standorte
 - Toolbox: Branch-and-Bound
 - Bestimmte Standorte
 - Zusammenfassung und Ausblick

PROBLEMBESCHREIBUNG

- Für N neue Lager soll der optimale Standort
 (x_n, y_n) gefunden werden
- Jeder beliebige Ort kann als Standort genutzt werden
- 3. Die einzigen Kosten sind
 Transportkosten. Diese sind proportional
 zur Entfernung zwischen Lager und
 Kunde und proportional zur Nachfrage
 des Kunden. Als Entfernungsmaß werden
 rechtwinklige Entfernungen genutzt
- Kunden werden als diskrete Nachfragepunkte (a_i, b_i) modelliert
- Es bestehen keine
 Kapazitätsbeschränkungen oder sonstige
 Beschränkungen an den Standorten
- 6. Das Ziel ist es, die Transportkosten vom Lager zu allen Kunden zu minimieren

- Wie würden Sie die Kunden zuordnen, wenn die Lagerstandorte gegeben wären?
- 2. Wie würden Sie die Lagerstandorte wählen, wenn die Kundenzuordnung gegeben ist?

LÖSUNGSALGORITHMUS

Beobachtung

Standortoptimierungsprobleme mit mehr als einem Lager sind schwierig optimal zu lösen. Es gibt aber einfache Heuristiken, mit denen "gute" Lösungen berechnet werden können

Heuristik

- 1. Auswahl Anfangslösung
- Optimierung Zuordnung: Für gegebene Lagerstandorte werden die optimalen Zuordnungen von Kunden zu Lagern ermittelt
- 3. Optimierung **Standorte**: Für die gegebene Zuordnung von Kunden zu Lagern werden die optimalen Standorte ermittelt
- Terminierung Algorithmus: Schritte 2 und 3 werden solange wiederholt, wie sich die Lagerstandorte von einer Iteration zur nächsten ändern

BEISPIEL MEHRERE STANDORTE

Beispieldaten

j	aj	b _j	W j
1	1	1	17
2	2	5	21
3	4	4	32
4	10	15	45
5	12	10	15
6	15	10	31
7	17	18	19

1. Auswahl Anfangslösung

	X	у	
1	8	8	
2	15	15	

2. Optimierung Zuordnung

] -			
j	aj	b _j	$d_j(x_1, y_1)$	$d_j(x_2, y_2)$
1	1	1	14	28
2	2	5	9	23
3	4	4	8	22
4	10	15	9	5
5	12	10	6	8
6	15	10	9	5
7	17	18	19	5

3. Optimierung Standort 1

j	a _j	Wj	$\Sigma \mathbf{w_j}$				
1	1	17	17				
2	2	21	38				
3	4	32	70	←	X *	= 4	
5	12	15	85				
		5 8					

j	bj	Wj	Σw_j			
1	1	17	17			
3	4	32	49	+	y* :	= 4
2	5	21	70			
5	10	15	85			
_						

3. Optimierung Standort 2

j	aj	$\mathbf{W}_{\mathbf{j}}$	$\Sigma \mathbf{w_j}$			
4	10	45	45			
6		31	76	←	X * =	= 15
7	17	19	95			

j	bj	Wj	Σw_{j}	
6	10	31	31	
4	15	45	76 ←	$y^* = 15$
7	18	19	95	

3. Neue Standorte

 	X	у
1	4	4
2	15	15

Standorte x y 1 4 4

15

15

2. Optimierung Zuordnung

- j	a _j b _j	$d_j(x_1, y_1)$	$d_j(x_2, y_2)$
1	1 1	6	28
2	2 5	3	23
3	4 4	0	22
4	10 15	17	5
5	12 10	14	8 Neue Zuordnung von Kunde 5
6	15 10	17	5
7	17 18	27	5

3. Optimierung Standort 1

j	a _j	W _j	Σw_j			
1	1	17	17			
2	2	21	38	+	Χ*	= 2
3	4	32	70			

j	bj	Wj	$\Sigma \mathbf{w_j}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1	1_	17	17			
3	4	32	49	+	y* :	= 4
2	5	21	70	,		

3. Optimierung Standort 2

j	a _j	Wj	$\Sigma \mathbf{w_j}$			
4	10	45	45			
5	12	15	60	←	X* =	= 12
6	15	31	91			
7	17	19	110			

j	b _j	Wj	Σw_{j}		
5	10	15	15		
6	10	31	46		
4	15	45	91 ←	y* =	15
7	18	19	110		

3. Neue Standorte

	X	у	
1	2	4	
2	12	15	

x y 1 2 4 2 12 15

2. Optimierung Zuordnung

j	aj	b _j	$d_j(x_1, y_1)$	$d_j(x_2, y_2)$	
1	1	1	4	25	
2	2	5	1	20	
3	4	4	2	19	
4	10	15	19	2	
5	12	10	16	5	
6	15	10	19	8	
7	17	18	29	8	

Keine Änderung, daher auch keine

Änderung der Standorte, daher Terminierung

ZUSAMMENFASSUNG BELIEBIGE STANDORTE

- Standortentscheidungen werden von einer Reihe von Faktoren getrieben. Wir haben uns auf den Faktor Transportkosten konzentriert und beliebige Standorte zugelassen
- Wir haben die Transportkosten abgeschätzt. Der optimale Lagerstandort hängt von der Art der Entfernungsmessung ab
 - Rechtwinklige Entfernungen: Optimal ist der Standort, von dem aus nicht mehr als 50 Prozent der Nachfrage links/rechts bzw. darüber/darunter liegen
 - Euklidische Entfernungen: Der optimale Standort wird numerisch bestimmt
- Sollen optimale Standorte für mehr als ein Lager bestimmt werden, kann eine Heuristik eingesetzt werden, die für gegebene Lagerstandorte optimale Kundenzuordnungen bestimmt und dann für gegebene Kundenzuordnungen optimale Lagerstandorte

- Motivation
- Beliebige Orte ein Standort
- Beliebige Orte mehrere Standorte
- Toolbox: Branch-and-Bound
 - Bestimmte Orte
 - Zusammenfassung und Ausblick

LINEARE PROGRAMMIERUNG (LP)

Was ist Lineare Programmierung?

Modellierungs- und Lösungsverfahren für mathematische Modelle mit linearen Zielfunktionen und Nebenbedingungen sowie kontinuierlichen Variablen

Allgemeine Formulierung

 $\max \mathbf{c}^\mathsf{T} \mathbf{x}$

X

N.B.

Ax < b

 $\mathbf{x} \geq 0$

Beispiel

 $max 30x_1 + 50x_2$

 X_1, X_2

N.B.

 $x_2 \leq 5$

 $x_1 + 2x_2 \le 12$ $x_1, x_2 \ge 0$

Wie werden lineare Programme gelöst?

Das am weitesten verbreitete Verfahren ist die Simplex-Methode

GANZZAHLIGE PROGRAMMIERUNG

- Belegung Sitzplätze im Kino
- Geöffnete und geschlossene Lagerstandorte

Was ist ganzzahlige Programmierung?

Zuordnung von Passagieren zu Flugzeugen

Modellierungs- und Lösungsverfahren für mathematische Modelle mit diskreten Entscheidungsvariablen, das heißt mit Entscheidungsvariablen, die nur ganzzahlige Werte annehmen können

Wann wird die ganzzahlige Programmierung anstatt LP eingesetzt?

Zur Lösung von Problemen, bei denen nicht-ganzzahlige Lösungen nicht sinnvoll sind

Allge	emeir	ne Fo	rmul	ierun	9
may	cTv				

max C'X

X

N.B.

 $Ax \leq b$

$$\mathbf{x} \in \{0, 1, 2, ...\}$$

Beispiel

 $max 30x_1 + 50x_2$

 X_1, X_2

N.B. X_1 ≤ 6

 $x_2 \leq 5$

$$x_1 + 2x_2 \le 12$$

$$X_1, X_2 \in \{0, 1, 2, ...\}$$

Wie werden ganzzahlige Programme gelöst?

Das am weitesten verbreitete Verfahren ist Branch-and-Bound

BEISPIEL ZUORDNUNGSPROBLEM

Beispiel: Drei Studenten und drei Probleme

Lösungszeit in Stunden

	Problem							
Student	1	2	3_			4	~~~~	ŀ
Andreas	5	4	3		5	4	3	-
Berta	6	7	8	C=	6	7	8	
Christoph	4	7	9		4	7	9	

Zielsetzung

Ordne die Probleme den Studenten so zu, dass die Summe der Problemlösungszeiten minimiert wird

Nebenbedingungen

- 1. Jedes Problem muss von einem Studenten bearbeitet werden
- 2. Jeder Student muss ein Problem bearbeiten

Beispiel zulässige Lösung

$$Z(A-1, B-2, C-3) = 5 + 7 + 9 = 21 z$$

Gibt es eine bessere? Wie finden wir diese? Alle Möglichkeiten ausprobieren?

FORMULIERUNG ALS GANZZAHLIGES PROBLEMIKUM WIEN

Notation

- i Student (i = 1, 2, 3)
- j Problem (j = 1, 2, 3)
- c_{ii} Zeit, die Student i für Problem j benötigt

$$y_{ij} = \begin{cases} 1 & \text{wenn Student i Problem j bearbeitet} \\ 0 & \text{wenn nicht} \end{cases}$$

Mathematisches Programm

$$\min_{y} \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij} y_{ij}$$

$$NB \sum_{i=1}^{3} y_{ij} = 1$$

$$\sum_{i=1}^{3} y_{ij} = 1$$

$$i = 1, 2, 3$$

$$y_{ij} \in \left\{0,1\right\}$$

$$i = 1, 2, 3; j = 1, 2, 3$$

Jedes Problem muss von einem Studenten bearbeitet werden

Jeder Student muss ein Problem bearbeiten

VOLLSTÄNDIGE BERECHNUNG ALLER LÖSUNGENWAWIEN

1	Problem 2	3	Zulässig	Zeit	
A	А	Α	n	12	
Α	Α	В	n	17	
Α	Α	С	n	18	
Α	В	Α	n	15	
Α	В	В	n	20	
Α	В	С	У	21	
Α	С	Α	n	15	
Α	С	В	У	20	
Α	С	С	h	21	
В	Α	A	n	13	
В	Α	В	h	18	
В	Α	С	У	19	
В	В	Α	n	16	
В	В	В	n	21	
В	В	С	n	22	
В	С	Α	У	16	
В	С	В	n	21	
В	С	С	n	22	
С	Α	Α	n	11	
C	A	В	у	16	
С	Α	С	n	17	Ontingues
С	В	Α	У	14	Optimum
С	В	В	n	19	
00000000	В	С	n	20	
C	c	A	n	14	
С	С	В	n	19	
C	С	С	n	20	

ÜBERBLICK BRANCH-AND-BOUND

Grundidee

Aufteilung des Ursprungsproblems in Unterprobleme, bis diese entweder einfach lösbar sind oder keine optimale Lösung enthalten können

Algorithmus

Branching Unterteilung des aktuellen Problems in Unterprobleme.
 Z.B. "Ordne einem Problem einen Studenten zu"

Bounding

Berechnung einer Schranke S, die angibt, wie hoch der Zielfunktionswert in einem Unterproblem mindestens ist. Z.B. "Ordne jedem noch nicht zugeordneten Problem den jeweils schnellsten Studenten zu"

LÖSUNG ZUORDNUNGSPROBLEM

Branching "Ordne einem Problem einen Studenten zu"

Bounding "Ordne jedem noch nicht zugeordneten Problem den jeweils schnellsten Studenten zu"

A
$$\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$$
 $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 4 & 7 & 9 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \end{bmatrix}$ $\begin{bmatrix} 5 & 4 & 3 \\ 6 & 7 & 8 \\ 6 &$

BRANCH-AND-BOUND ALGORITHMUS

1. Initialisierung

- a. Berechnung der Kosten einer beliebigen zulässigen Lösung: Z
- b. Berechnung der Kosten einer (unteren) Schranke: S
- 2. **Terminierung** Wenn alle Unterprobleme gelöst sind oder von der weiteren Betrachtung ausgeschlossen sind, Terminierung des Algorithmus mit der optimalen Lösung. Die Kosten der optimalen Lösung betragen Z
- 3. Branching Aufteilung des (Unter-)Problems in Unterprobleme
- 4. Bounding Berechnung einer Schranke S für jedes Unterproblem
 - a. S > Z: Ausschluss des Unterproblems von der weiteren Betrachtung
 - b. S < Z und Lösung des Unterproblems zulässig: Das Unterproblem wurde optimal gelöst und hat geringere Kosten als die bisher beste Lösung. Setzen von Z = S und Ausschluss des Unterproblems von der weiteren Betrachtung
 - c. Keine zulässige Lösung im Unterproblem: Ausschluss des Unterproblems von der weiteren Betrachtung
- **5. Fortsetzung** mit 2.

INHALT

- Motivation
- Beliebige Orte ein Standort
- Beliebige Orte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Orte
- Zusammenfassung und Ausblick

44

PROBLEMBESCHREIBUNG

FACHHOCHSCHULE TECHNIKUM WIEN

- Für bis zu N neue Lager sollen optimale Standorte gefunden werden
- 2. Es können nur Lager an im Voraus bestimmten Orten betrieben werden
- 3. Die Kosten bestehen aus
 - Transportkosten ("echte" Entfernung) t_{ni}
 - Variablen Standortkosten v_n
 - Fixen Standortkosten f_n
- Kunden werden als diskrete Nachfragepunkte modelliert
- Es bestehen keine
 Kapazitätsbeschränkungen oder sonstige Beschränkungen an den Standorten
- 6. Das Ziel ist es, die Summe aus Transportkosten, variablen Standortkosten und fixen Standortkosten zu minimieren

Variable Kosten zur Erfüllung der gesamten Nachfrage von j aus n Distributionskosten $c_{nj} = (v_n + t_{nj})w_j$

BEISPIEL STANDORTOPTIMIERUNGSPROBLEM WIEN

Beispiel: Fünf Kunden und vier potenzielle Lagerstandorte

Kosten in EUR pro Tag

$$\mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \qquad \mathbf{f} = \begin{bmatrix} 85 \\ 120 \\ 25 \\ 30 \end{bmatrix}$$

Zielsetzung

Öffne Lager und ordne den Kunden Lager zu, so dass die Kosten (fixe Standortkosten plus Distributionskosten) minimiert werden

Nebenbedingungen

- 1. Jeder Kunde muss von genau einem Lager beliefert werden
- 2. Nur geöffnete Lager können Kunden beliefern

Beispiel zulässige Lösung

$$Z(1 - -) = 85 + 39 + 31 + 49 + 15 + 40 = 259 z$$

FORMULIERUNG STANDORTPLANUNGS-**PROBLEM**

Notation

Distributionskosten Cni

Fixe Standortkosten an Ort n

= 1, wenn Lagerstandort n Kunde i beliefert; = 0, wenn nicht X_{ni}

= 1 wenn ein Lager an Ort n betrieben wird; = 0 wenn nicht y_n

Mathematisches Programm

$$\min_{x,y} \sum_{n=1}^{N} \sum_{j=1}^{J} c_{nj} x_{nj} + \sum_{n=1}^{N} f_{n} y_{n}$$

Jeder Kunde i muss beliefert werden

$$x_{nj} \le y_n$$
 $n = 1, ..., N;$

$$N; j = 1,...,J$$

 $x_{nj} \le y_n$ n = 1,...,N; j = 1,...,J Nur geöffnete Lager können Kunden beliefern

$$\mathbf{X}_{\mathsf{nj}} \in \big\{0,1\big\}$$

$$x_{nj} \in \{0,1\}$$
 $n = 1,...,N$; $j = 1,...,J$

$$y_n \in \{0,1\}$$
 $n = 1,...,N$

$$n = 1,...,1$$

LÖSUNG MIT BRANCH-AND-BOUND

Branching "Lege für den jeweils nächsten Standort fest, ob an ihm ein Lager eröffnet werden soll oder nicht"

"Beliefere jeden Kunden aus dem kostengünstigsten geöffneten oder Bounding nicht-geschlossenen Lager"

$$\mathbf{f} = \begin{bmatrix} 85 \\ 120 \\ 25 \\ 30 \end{bmatrix}$$

$$\mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix}$$

LÖSUNG STANDORTOPTIMIERUNGSPROBLEMISCHULE WIEN

49

HILFSZETTEL FÜR BERECHNUNG SCHRANKEN WIEN

$$\mathbf{f} = \begin{bmatrix} 85 \\ 120 \\ 25 \\ 30 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 & 31 & 49 & 15 & 40 \\ 56 & 45 & 25 & 24 & 47 \\ 26 & 48 & 40 & 16 & 50 \\ 40 & 50 & 41 & 28 & 52 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 39 &$$

ERWEITERUNGEN BASISMODELL

Begrenzung Lageranzahl auf M

$$\sum_{n=1}^{N} y_n \leq N$$

$$\sum_{n=1}^{N} y_n \ge M$$

$$\sum_{n=1}^{N} y_n \le M \qquad \qquad \sum_{n=1}^{N} y_n \ge M \qquad \qquad \sum_{n=1}^{N} y_n = M$$

Begrenzung Kundenanzahl je Lager auf R_n

$$\sum_{j=1}^{J} x_{nj} \le l \ge R_n$$

Beschränkung Lagerkapazität auf K_n

$$\sum_{i=1}^{J} w_{i} x_{nj} \le l \ge K_{n} \text{ (Begrenzung Liefervolumen)}$$

ERWEITERUNGEN BASISMODELL – FORTSETZUNG

Wenn-Dann Beziehungen

Wenn Lager n geöffnet ist, dann muss Lager m geschlossen sein

Wenn Lager n geöffnet ist, dann muss auch Lager m geöffnet sein

Lager n oder Lager m (oder beide Lager) müssen geöffnet werden

$y_n + y_m \ge 1$	y _n	\mathbf{y}_{m}	+
	0	0	0
	0	1	1
	1	0	1
	1	1	2

INHALT

- Motivation
- Beliebige Orte ein Standort
- Beliebige Orte mehrere Standorte
- Toolbox: Branch-and-Bound
- Bestimmte Orte
- Zusammenfassung und Ausblick

53

ZUSAMMENFASSUNG

- Standortentscheidungen haben einen hohen Einfluss auf die Kosten eines Unternehmens und auf die Leistungsfähigkeit der Logistik. Sie sind also wichtig
- Wenn beliebige Standorte gewählt werden können und die wesentlichen Kosten die Transportkosten sind, dann können optimale Standorte mit wenig Datenbedarf und Aufwand gefunden werden
- Wenn aus einer vorausgewählten Menge von Orten die optimalen Standorte ausgewählt werden sollen und neben Transportkosten fixe und variable Standortkosten entscheidungsrelevant sind, kann das Problem als ganzzahliges Optimierungsproblem formuliert werden
- Toolbox: Gelöst werden können ganzzahlige Optimierungsprobleme mit Branch-and-Bound, einem Algorithmus, der sehr breit einsetzbar ist