Package 'ADMMsigma'

March 1, 2018

Type Package
Title Penalized Precision Matrix Estimation via ADMM
Version 1.0
Date 2018-02-23
Description This R package produces penalized precision matrix estimates via the alternating direction method of multipliers (ADMM) algorithm
License MIT + file LICENSE
ByteCompile TRUE
NeedsCompilation yes
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Depends Rcpp (>= 0.12.10), RcppArmadillo, doParallel, foreach, dplyr, ggplot2
LinkingTo Rcpp,
RcppArmadillo
Suggests testthat
SystemRequirements GNU make
R topics documented:
ADMMsigma 2 ADMMsigmac 3 CVP_ADMMsigmac 4 CV_ADMMsigmac 4 CV_RIDGEsigmac 5 ParallelCV 6 plot.ADMMsigma 7 plot.RIDGEsigma 7 print.ADMMsigma 7 print.RIDGEsigma 8 RIDGEsigma 8 RIDGEsigmac 9
RIDGEsigmac

2 ADMMsigma

Index 10

 $ADMM \ penalized \ precision \ matrix \ estimation \ (using \ ADMM sigmac)$

Description

Penalized Gaussian likelihood precision matrix estimation using the ADMM algorithm.

Usage

```
ADMMsigma(X = NULL, S = NULL, lam = 10^seq(-5, 5, 0.5), alpha = seq(0, 1, 0.1), rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000, K = 5, parallel = FALSE, quiet = TRUE)
```

Arguments

X	data matrix
S	option to specify sample covariance matrix (denominator n)
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter $[0, 1]$: $0 = \text{ridge}$, $1 = \text{lasso/bridge}$. Defaults to seq $(-1, 1, 0.1)$
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'loglik'). Option crit != 'ADMM' will use tol1 as tolerance. Default is 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
K	specify the number of folds for cross validation
parallel	option to run CV in parallel. Defaults to FALSE
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, omega, and gradient

```
ADMM_sigma(X, lam = 0.1, rho = 10)
```

ADMMsigmac 3

ADMMsigmac	ADMM penalized precision matrix estimation (c++)	

Description

Penalized Gaussian likelihood precision matrix estimation using the ADMM algorithm.

Usage

```
ADMMsigmac(S, initZ2, initY, lam, alpha = 1, rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000L)
```

Arguments

S	option to specify sample covariance matrix (denominator n)
initY	initialization matrix for Y
lam	tuning parameter for penalty
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c("ADMM", "grad", "lik"). Option crit != "ADMM" will use tol1 as tolerance. Defaults to "ADMM"
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
initZ	initialization matrix for Z2

Value

iterations, lam, omega

```
ADMMsigmac(X, lam = 0.1)
```

4 CV_ADMMsigmac

CVP_ADMMsigmac

CV (no folds) ADMM penalized precision matrix estimation (c++)

Description

Cross validation (no folds) function for ADMM_sigma. This function is to be used with ParallelCV.

Usage

```
CVP_ADMMsigmac(S_train, S_valid, lam, alpha, rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000L, K = 5L, quiet = TRUE)
```

Arguments

S_train	matrix or data frame. This is pxp sample covariance for training data
S_valid	matrix or data frame. This is pxp sample covariance for validation data
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'lik'). Option crit != 'ADMM' will use tol1 as tolerance. Defaults to 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, S, Omega, and cv.errors

CV_ADMMsigmac

CV ADMM penalized precision matrix estimation (c++)

Description

Cross validation function for ADMM_sigma.

Usage

```
CV\_ADMMsigmac(X, lam, alpha, rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000L, K = 5L, quiet = TRUE)
```

CV_RIDGEsigmac 5

Arguments

X	matrix or data frame. This is the n x p column matrix where the rows are a realization of n independent copies of a p-variate random vector
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'lik'). Option crit != 'ADMM' will use tol1 as tolerance. Defaults to 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, S, Omega, and cv.errors

Examples

```
CV\_ADMMsigmac(X, lam = seq(0.1, 3, 0.1))
```

CV_RIDGEsigmac

CV ridge penalized precision matrix estimation (c++)

Description

Cross validation function for RIDGEsigma.

Usage

```
CV_RIDGEsigmac(X, lam, K = 3L, quiet = TRUE)
```

Arguments

X	matrix or data frame. This is the n x p column matrix where the rows are a realization of n independent copies of a p-variate random vector
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, S, Omega, and cv.errors

6 ParallelCV

Examples

```
CV_RIDGEsigmac(X, lam = seq(0.1, 3, 0.1))
```

ParallelCV

Parallel CV (uses CV_ADMMsigmac)

Description

Parallel implementation of cross validation.

Usage

```
ParallelCV(X = NULL, S = NULL, lam = 10^seq(-5, 5, 0.5), alpha = seq(0, 1, 0.1), rho = 2, mu = 10, tau1 = 2, tau2 = 2, crit = "ADMM", tol1 = 1e-04, tol2 = 1e-04, maxit = 1000, K = 5, quiet = TRUE)
```

Arguments

lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
alpha	elasticnet mixing parameter [0, 1]: 0 = ridge, 1 = lasso/bridge
rho	initial step size for ADMM
mu	factor for primal and residual norms
tau1	adjustment for rho
tau2	adjustment for rho
crit	criterion for convergence c('ADMM', 'grad', 'lik'). Option crit != 'ADMM' will use tol1 as tolerance. Default is 'ADMM'
tol1	absolute tolerance. Defaults to 1e-4
tol2	relative tolerance. Defaults to 1e-4
maxit	maximum number of iterations
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

iterations, lam, omega, and gradient

plot.ADMMsigma 7

plot.ADMMsigma

Plot ADMMsigma object

Description

produces a heat plot for the cross validation errors

Usage

```
## S3 method for class 'ADMMsigma' plot(x, ...)
```

Arguments

Х

ADMMsigma class object

plot.RIDGEsigma

Plot RIDGEsigma object

Description

produces a heat plot for the cross validation errors

Usage

```
## S3 method for class 'RIDGEsigma' plot(x, ...)
```

Arguments

Χ

RIDGEsigma class object

print.ADMMsigma

Print ADMMsigma object

Usage

```
## S3 method for class 'ADMMsigma' print(x, ...)
```

Arguments

Х

ADMMsigma class object

8 RIDGEsigma

print.RIDGEsigma

Print RIDGEsigma object

Usage

```
## S3 method for class 'RIDGEsigma' print(x, ...)
```

Arguments

Χ

RIDGEsigma class object

RIDGEsigma

Ridge penalized precision matrix estimation (using RIDGEsigmac)

Description

Penalized Gaussian likelihood precision matrix estimation using the ADMM algorithm.

Usage

```
RIDGEsigma(X = NULL, S = NULL, lam = 10^seq(-5, 5, 0.5), K = 3, quiet = TRUE)
```

Arguments

X	data matrix
S	option to specify sample covariance matrix (denominator n)
lam	tuning parameter for penalty. Defaults to 10^seq(-5, 5, 0.5)
K	specify the number of folds for cross validation
quiet	specify whether the function returns progress of CV or not

Value

lam, omega, and gradient

```
RIDGEsigma(X, lam = 0.1)
```

RIDGEsigmac 9

RIDGEsigmac

Ridge-penalized precision matrix estimation (c++)

Description

Ridge-penalized Gaussian likelihood precision matrix estimation. Augmented from Adam Rothman's STAT 8931 code.

Usage

```
RIDGEsigmac(S, lam)
```

Arguments

S sample covariance matrix (denominator n)

lam tuning parameter for penalty

Value

matrix of omega hat

```
n = nrow(X)
RIDGEsigmac(S = (n-1)/n*cov(X), lam = 0.1)
```

Index

```
ADMMsigma, 2
ADMMsigmac, 3

CV_ADMMsigmac, 4
CV_RIDGEsigmac, 5
CVP_ADMMsigmac, 4

ParallelCV, 6
plot.ADMMsigma, 7
plot.RIDGEsigma, 7
print.ADMMsigma, 7
print.RIDGEsigma, 8

RIDGEsigma, 8

RIDGEsigmac, 9
```