

NATIONAL BUREAU OF STANDARDS MICROGOPY RESOLUTION TEST CHART AD-A156 397

MERRIMACK RIVER BASIN WOODSTOCK, NEW HAMPSHIRE

MIRROR LAKE DAM N.H. 00317

STATE NO 259.07

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

AUGUST 1980

Approved for pulling release;
Distribution Unlimited

85 6 19 044

MTE FILE COP

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
NH 00317 2. GOVT ACCESSION NO A STATE OF THE STATE OF TH	SECIPIENT'S CATALOG NUMBER		
. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED		
Mirror Lake Dam	INSPECTION REPORT		
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER		
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(#)		
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION			
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
CONTROLLING OFFICE NAME AND ADDRESS DEPT. OF THE ARMY, CORPS OF ENGINEERS	12. REPORT DATE August 1980		
NEW ENGLAND DIVISION, NEDED	13. NUMBER OF PAGES		
424 TRAPELO ROAD, WALTHAM, MA. 02254	65		
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)		
	UNCLASSIFIED		
	184. DECLASSIFICATION/DOWNGRADING		

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, - INSPECTION, DAM SAFETY.

Merrimack River Basin Woodstock New Hampshire Tributary to Hubbard Brook.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The dam is a concrete gravity dam housing two stoplogs spillway bays with earth embankments wxtendein to the east and west of the concrete structure. It is 290 ft. long with a hydraulic height of 11.5 ft. The dam is in poor condition. Trees and brush growing on the embankments, and a lack of erosion protection on the upstream slopes and crests of both embankments are of major concern. It is small in size with a significant hazard potential.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS

424 TRAPELO ROAD

WALTHAM, MASSACHUSETTS 02254

REPLY TO ATTENTION OF:

NOV 14 1980

NEDED

Honorable Hugh J. Gallen Governor of the State of New Hampshire State House Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Mirror Lake Dam (NH-00317) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the eport has also been furnished the owner, New Hampshire Water Resources Board, Concord, N.H.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

incerely,

Incl
As stated

WILLIAM E. HODGSON, JR.

Colonel, Corps of Engineers Acting Division Engineer

MIRROR LAKE DAM NH00317

MERRIMACK RIVER BASIN WOODSTOCK, NEW HAMPSHIRE

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

Identification No.: NH00317

Name of Dam: Mirror Lake Dam

Town: Woodstock

County and State: Grafton, New Hampshire
Stream: Tributary to Hubbard Brook

Date of Inspection: July 9, 1980

BRIEF ASSESSMENT

Mirror Lake Dam is a concrete gravity dam housing two stoplog spillway bays with earth embankments extending to the east and west of the concrete structure. The dam has a total length of 290 feet and a hydraulic height of 11.5 feet. The east earth embankment is approximately 117 feet long with a crest width of about 13 feet while the west earth embankment has a crest width of about 15 feet and a length of 159 feet. Dimensions of the east and west stoplog spillway bays are 5'W x 8.6'H and 5'W x 3.8'H, respectively. A 1.5-foot wide concrete buttress separates the two bays. Starting from the east training wall a one foot wide concrete core wall extends 14 feet into the east earth embankment. Beginning at the west training wall a one foot wide concrete retaining wall extends 26 feet along the upstream face of the west earth embankment. impounds Mirror Lake, which has a maximum storage capacity of about 750 acre-feet. The reservoir is 2100 feet in length with a surface area of approximately 37 acres. The dam is located on the northwest side of the State of New Hampshire in the White Mountain National Forest region.

The dam is in poor condition. Major concerns are the trees and brush growing on the embankments, a lack of erosion protection on the upstream slopes and crests of both earth embankments, a major bulge and the growth of large birch trees in the dry-stone-masonry wall which retains the downstream side of the west earth embankment and a large, soft, wet area at the downstream toe of the west earth embankment.

Mirror Lake Dam has a small size and significant hazard classification based on its storage volume and potential for loss of less than a few lives and appreciable property damage should the dam breach. In accordance with the Recommended Guidelines for Safety Inspection of Dams, the test flood may range from the 100-year to > Probable Maximum Flood (PMF). The test flood selected was 1/2 PMF because of the potential for loss of life and because its storage capacity is in the upper end of the small size classification. The watershed is steeply sloping and wooded with no significant storage areas in the upstream watershed. test flood inflow for a drainage area of 0.34 square miles was determined to be 434 cfs (1275 csm). Routing of this inflow to determine the modifying effects of surcharge storage resulted in a test flood outflow of 175 cfs (515 csm) at elevation 697.3' This would cause the dam to be overtopped by 0.6 feet assuming the stoplogs are in place to elevation 695.0' NGVD. Spillway capacity at top of dam is 73 cfs which is 42 percent of the routed test flood outflow.

The owner, the New Hampshire Water Resources Board, should implement the results of the recommendations and remedial measures given in Sections 7.2 and 7.3 within one year after receipt of this Phase I Inspection Report.

Warren A. Guinan Project Manager

N.H. P.E. 2339

This Phase I Inspection Report on Mirror Lake Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

Charmed Watterson

ARAMAST MARTESIAN, MEMBER Geotechnical Engineering Branch Engineering Division

Carney M. Tezion

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

RICHARD DIBCONO, CHAIRMAN Water Control Branch

Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR

Chief, Engineering Division

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation: however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway naterity and serves as an aid in determining the need for more letailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for tences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

Section					
Letter o	f Transmittal				
Brief As	sessment				
Review Bo	oard Page				
Preface		i			
Table of Contents					
Overview Photo					
Location	Map	vi			
	REPORT				
1. PROJ:	ECT INFORMATION				
	General	1-1			
	•				
	a. Authority b. Purpose	1-1 1-1			
1.2	Description of Project	1-1			
	 a. Location b. Description of Dam and Appurtenances c. Size Classification d. Hazard Classification e. Ownership f. Operator g. Purpose of Dam h. Design and Construction History i. Normal Operating Procedures 	1-1 1-1 1-2 1-3 1-3 1-3 1-4 1-4			
1.3 Pertinent Data					
	a. Drainage Area b. Discharge at Damsite c. Elevation d. Reservoir e. Storage f. Reservoir Surface g. Dam h. Diversion and Regulating Tunnel i. Spillway j. Emergency Spillway k. Regulating Outlets	1-4 1-5 1-5 1-6 1-6 1-7 1-7			

Sec	ection			
2.	ENGINEERING DATA			
	2.1	Design		
	2.2	Construction		
	2.3	Operation	2-1	
	2.4	Evaluation	2-1	
		a. Availabilityb. Adequacyc. Validity	2-1 2-1 2-1	
3.	VISU	AL INSPECTION		
	3.1	Findings	3-1	
		a. Generalb. Damc. Appurtenant Structuresd. Reservoire. Downstream Channel	3-1 3-1 3-2 3-3 3-3	
	3.2	Evaluation	3-3	
4.	OPERATIONAL AND MAINTENANCE PROCEDURES			
	4.1	Operational Procedures	4-1	
		a. Generalb. Description of Any Warning System in Effect	4-1 4-1	
	4.2	Maintenance Procedures	4-1	
		a. Generalb. Operating Facilities	4-1 4-1	
	4.3	Evaluation	4-1	
5.	EVAI	LUATION OF HYDROLOGIC/HYDRAULIC FEATURES		
	5.1	General	5-1	
	5.2	Design Data		
	5.3	Experience Data	5-1	
	5.4	Test Flood Analysis	5-1	
	. .	Dam Pailuro Analysis	5-2	

Section		Page		
6.	EVALU)ITAU	ON OF STRUCTURAL STABILITY	
	6.1	Vis	ual Observations	6-1
6.2		Des:	ign and Construction Data	6-1
	6.3	Pos	t Construction Changes	6-1
	6.4	Sei	smic Stability	6-1
7.			NT, RECOMMENDATIONS AND L MEASURES	
	7.1	Dam	Assessment	7-1
		b.	Condition Adequacy of Information Urgency	7-1 7-1 7-1
	7.2	Rec	ommendations	7-1
	7.3 Remedial Measures			
		a.	Operating and Maintenance Procedures	7-2
	7.4	Alt	ernatives	7-2
			APPENDIXES	
APF	ENDIX	A -	VISUAL INSPECTION CHECKLIST	A-1
APF	PENDIX	В -	ENGINEERING DATA	B-1
APF	PENDIX	c -	PHOTOGRAPHS	C-1
API	PENDIX	D -	HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1
API	PENDIX	E -	INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1

July 10, 1980

Photo 1 - Overview of Mirror Lake Dam.

Note remains of old timber crib dam in foreground.

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT MIRROR LAKE DAM

SECTION 1 PROJECT INFORMATION

1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Anderson-Nichols & Company, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to Anderson-Nichols under a letter of March 22, 1979, from John P. Chandler, Colonel, Corps of Engineers. Contract No. DACW33-79-C-0050, as changed, has been assigned by the Corps of Engineers for this work.

b. Purpose

- (1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
- (2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.
- (3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

- a. Location. Mirror Lake Dam, also known as the Lower Dam, is located approximately 3 miles south of Woodstock, New Hampshire. The dam impounds Mirror Lake, a reservoir of small size. Water discharging over the dam flows south for about 1500 feet before its confluence with Hubbard Brook which empties into the Pemigewasset River another 2 miles southeast from this point. The Pemigewasset River is a major tributary in the Merrimack River Basin. The dam is shown on USGS Quadrangle, Plymouth, New Hampshire with coordinates approximately at N 43° 56' 30", W 71° 41' 30", Grafton County, New Hampshire. (See Location Map, page vi.)
- b. <u>Description of Dam and Appurtenances</u>. Mirror Lake Dam is a concrete gravity dam containing two stoplog spillway bays with earth embankments extending to the east and west of the concrete structure. The dam is founded on ledge and has a

hydraulic height of 11.5 feet and a total length of about 290 The cast earth embankment is about 117 feet long with a crest width of about 13 feet. The upstream face has a gradual slope of approximately 2H: 1V and consists of sand which changes to grass near the crest. The downstream face consists of a vertical dry stone masonry wall. Along the centerline of the crest is a footpath that extends the length of the east embank-Both large and small trees are growing on the embankment. The west earth embankment has an average crest width of about 15 feet and is approximately 159 feet long. From the west concrete training wall of the spillway structure, the embankment extends west about 30 feet before changing in alignment to a more northerly direction. The slope of the upstream face is approximately 2H:1V and is covered with trees and brush. cleared footpath extends the length of the west embankment along the centerline of the crest. The downstream face is composed primarily of a vertical dry stone masonry wall. Trees and brush are growing in and around this wall.

The concrete structure housing the two stoplog spillway bays is located between the earth embankments. The clear dimensions of the east bay are 5'W x 8.6'H while those of the west bay are Each bay utilizes 4" x 8" x 5'7" stoplogs. flowing over the stoplogs of the east bay enters a concrete stilling basin, 5'W x 12'L, before discharging over a V-notched metal plate weir that traverses the downstream end of the basin. Water passing over the stoplogs of the west bay flows along a 5'W x 6'L horizontal concrete section before it flows over a 5'W x 3'L concrete spillway with a slope of 1H:1.6V. From here the water enters a 5'W x 4'L concrete stilling basin prior to being discharged over a V-notched metal plate weir located across the downstream end of the basin. Both bays empty into the same channel downstream. The channel has drystone masonry training walls that extend 100 feet downstream to the Mirror Lake Road crossing. Separating the two stoplog bays is a 1.5-foot-wide concrete buttress. A concrete walkway, 11.5'W x 5'L covering the stoplog bays extends from the east to the west training Protruding perpendicularly from the east training wall wall. is an easterly direction is a concrete core wall whose surface is flush with the top of the east earth embankment. The core wall continues in this direction for 4 feet before changing in alignment in a northeasterly direction for 10 feet. perpendicular from the upstream face of the west training wall in a westerly direction is a 26-foot-long concrete retaining wall that protects and supports the upstream side of the west earth embankment in the area near the stoplog spillways. On the upstream face of the retaining wall is a Type F -Stevens drum recorder that was installed in the summer of 1970 by the U.S. Forest Service to measure the stage continuously at the outlet.

c. Size Classification. Small (hydraulic height - 11.5 feet; storage - 750 acre-feet) based on storage (\geq 50 to < 1000 acre-feet) as given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. Significant based on the Recommended Guidelines for Safety Inspection of Dams. Dam failure was assumed most likely to occur along the earth embankments but it was difficult to determine which of the two embankments was more susceptible to failure. Therefore two breach analyses were performed; one for the east and one for the west earth embankments. The analysis which resulted in the most damage downstream was used to determine the hazard classification. For computational purposes the elevation of the top of the stoplogs in each stoplog bay was assumed to be 695.0' NGVD (i.e. stoplogs were assumed to be in place).

Results indicated that should the west earth embankment fail there would be a total flow of 1,953 cfs at Mirror Lake Road located 100 feet downstream of the dam. Prior to the breach the flow at the road was calculated to be 73 cfs. Dam failure would increase the water level by 6.8 feet which would cause the road to be overtopped by 3.3 feet. It is estimated that the Camp Osceola building, located in the area between the dam and the road, and the uninhabited shed situated directly across the road from the Camp Osceola building would also be inundated by approximately 3 feet of water. What is referred to above as the Camp Osceola building is a house which is occupied year round. Its facilities are utilized by vacationers and the like; therefore the number of people occupying the building at any particular time is quite variable.

The dam failure analysis for the east earth embankment suggests that the depth of flow associated with the breach discharge of 550 cfs would overtop Mirror Lake Road by 1.7 feet. In this case the Camp Osceola building and the uninhabited shed would be inundated by approximately 2 and 1.5 feet of water respectively.

Based on these results, it was concluded that regardless of which earth embankment is assumed to fail, there is the potential for appreciable property damage and the loss of less than a few lives. For these reasons, Mirror Lake Dam was considered a Significant Hazard.

- e. Ownership. No records were found regarding the original owner of the dam. The dam is believed to have been built in 1836. However, records on file at the New Hampshire Water Resources Board (NHWRB) indicate that Mr. H.D. Emmons of Littleton, New Hampshire owned the dam as of 1936. In 1960 Mr. Warren Priest acquired Mirror Lake Dam from Mr. Emmons. In 1964, the NHWRB, who is the current owner, acquired the rights and easements to the dam from Mr. Priest.
- f. Operation. Mr. Vernon K. Knowlton, Chief Engineer, New Hampshire Water Resources Board (NHWRB), 37 Pleasant Street, Concord, New Hampshire 03301, is responsible for the operation of Mirror Lake Dam. Phone: (603) 271-3406.
- g. <u>Purpose of Dam</u>. Mirror Lake Dam was used for storage and recreation. At the present time it is being used primarily for recreation.

h. Design and Construction History. (Information was obtained from the files of the NHWRB.) Records indicate that Mirror Lake Dam was originally constructed about 1836. The concrete portion of the dam was not added until 1913. A sketch of the dam dated August 17, 1936 indicates that at this time the dam consisted of a 47-inch wide concrete sluice with concrete training walls and earth embankments on each side.

In 1964, when the NHWRB took over ownership, funds were allocated to reconstruct Mirror Lake Dam. Work was performed by the New Hampshire Fish and Game Department construction crew. sheets of design plans were found pertaining to this reconstruction effort. The spillway capacity of the dam was increased by converting the original concrete sluice to a stoplog bay and by adding another stoplog spillway bay next to the con-New training and wingwalls were constructed on verted bay. the east side while the walls on the west side along with the earth embankments were reconstructed. Also, a concrete core wall and a concrete retaining wall, extending into the earth embankments from the east and west training walls were constructed. A concrete pad extending from the east to the west concrete training wall, which serves as a walkway over the stoplog bays, was also added at that time.

Normal Operating Procedures. Removal or adding of stoplogs in either or both bays effects regulation of the level of Mirror Lake. The west bay is 5'W x 3.8'H and the east bay is 5'W x 8.6'H. Since the drainage basin is so small (0.34 square miles), the NHWRB has not instituted a regular fall drawdown - summer storage program for Mirror Lake. Consequently, the elevation of the stoplogs in each bay is not adjusted on a regular basis. Only infrequently and on an as needed basis are stoplogs added or removed. A maintenance staff member of the NHWRB visits the dam about once every 3 weeks. At this time, conditions at the dam are checked and recorded in a maintenance log. Maintenance is on an as needed basis. Minor maintenance, such as clearing debris from the dam, is also performed occasionally by Mr. Warren Priest, the owner of the Camp Osceola building located directly downstream of the dam, and members of the U.S. Forest Service who frequently collect readings from the gage located on the west concrete retaining wall.

1.3 Pertinent Data

a. <u>Drainage Area</u>. The drainage area consists of 0.34 square miles (218 acres) of mountainous, predominantly wooded terrain. The normal recreational surface area of Mirror Lake is 37 acres which constitutes 17 percent of the watershed. There are no significant storage areas in the upstream watershed.

b. Discharge at Damsite

- (1) Outlet works None
- (2) Maximum discharge at damsite is unknown.

- (3) Ungated spillway capacity at top of dam not applicable
- (4) Ungated spillway capacity at test flood elevation not applicable
 - (5) Gated spillway capacity at top of dam elevation 73 cfs @ 696.7' NGVD (with stoplogs @ 695.0' NGVD) 398 cfs @ 696.7' NGVD (without stoplogs)
 - (6) Gated spillway capacity at test flood elevation 82 cfs @ 697.3' NGVD (with stoplogs @ 695.0' NGVD)
 - (7) Total spillway capacity at test flood elevation 82 cfs @ 697.3' NGVD (with stoplogs @ 695.0' NGVD)
 - (8) Total project discharge at top of dam -73 cfs @ 696.7' NGVD (with stoplogs @ 695.0' NGVD) 398 cfs @ 696.7' NGVD (without stoplogs - assuming no tailwater conditions) 7 cfs @ 696.7' NGVD (natural saddle)
 - (9) Total project discharge at test flood elevation 105 cfs @ 697.3' NGVD (with stoplogs @ 695.0' NGVD)
 70 cfs @ 697.3' NGVD (natural saddle)
 - c. Elevation (ft. above NGVD: see (6) below)
 - (1) Streambed at toe of dam 685.2
 - (2) Bottom of cutoff unknown
 - (3) Maximum tailwater unknown
 - (4) Normal pool 695.0
 - (5) Full flood control pool not applicable
- (6) Spillway crest (gated) 695.0 (shown on USGS Quadrangle and assumed to be the elevation at the top of the stoplogs)
 - (7) Original design surcharge unknown
 - (8) Top of dam 696.7
 - (9) Test flood pool 697.3 (with stoplogs @ 695.0)
 - d. Reservoir (length in feet)
 - (1) Normal pool 2100
 - (2) Flood control pool not applicable
 - (3) Spillway crest pool 2100

- (4) Top of dam 2260
- (5) Test flood pool 2320
- e. Storage (acre-feet)
 - (1) Normal pool 677
 - (2) Flood control pool not applicable
 - (3) Spillway crest pool 677
 - (4) Top of dam 750
 - (5) Test flood pool 779
- f. Reservoir Surface (acres)
 - (1) Normal pool 37
 - (2) Flood control pool not applicable
 - (3) Spillway crest 37
 - (4) Test flood pool 52
 - (5) Top of dam 51
- g. Dam
- (1) Type concrete gravity with stoplog spillway structure and earth embankments
 - (2) Length 290'
 - (3) Structural height 13'
- (5) Side slopes east earth embankment; 2H:lV upstream; vertical downstream: west earth embankment; 2H:lV upstream; vertical downstream: east stoplog spillway bay; vertical upstream and downstream: west sloplog spillway bay; vertical upstream; vertical immediately downstream of stoplogs followed by a concrete sluice of slope lH:1.6V.
 - (6) Zoning unknown
- (7) Impervious core unknown in original dam; In 1964, a 14 foot concrete core wall was added in the east embankment. Its depth is unknown.
 - (8) Cutoff unknown
 - (9) Grout curtain unknown

h. Diversion and Regulating Tunnel - not applicable

i. Spillway

- (1) Type stoplog with two bays
- (2) Length of weir 5' per stoplog bay; 10' total
- (3) Crest elevation 695.0' NGVD
- (4) Gated Two concrete stoplog spillway bays located next to each other between two earth embankments. The clear dimensions of the east stoplog bay are 5'W x 8.6'H while those of the west bay are 5'W x 3.8'H. The elevations of the inverts of the east and west bays are 688.1' NGVD and 692.9' NGVD, respectively.
- (5) Upstream Channel The upstream approach channel to the dam is actually a small oblong shaped bay of Mirror Lake that is about 210 feet long and 140 feet wide. The channel bottom consists of sand and gravel. The west bank of the bay is heavily wooded. The east bank is used for beaching canoes and consists of sand and grass. About 210 feet upstream of the dam is the entrance to the bay from the main body of Mirror Lake. The entrance constricts to a width of about 35± feet and is approximately 5 feet deep at its midpoint. Traversing the entrance are the submerged ruins of an old timber dam, which was formerly called the Upper Dam.
- (6) Downstream Channel Immediately downstream of the stoplog spillways the channel is about 15 feet wide with vertical dry stone masonry training walls and a channel bottom composed of boulders, with some sand and gravel. The channel retains these characteristics until it intersects Mirror Lake Road approximately 100 feet downstream of the dam. Here the water must flow through a 3-foot-diameter corrugated metal pipe traversing under the road. Approximately 1400 feet downstream of the road the channel joins with Hubbard Brook which eventually flows into the Pemigewasset River another 2 miles southeast from the channel Hubbard Brook confluence.

j. Emergency Spillway

- (1) Type Natural saddle located approximately 400 feet northwest of the stoplog spillway section of the Mirror Lake Dam.
- (2) Length of weir The horizontal middle section of the natural saddle is about 30 feet long. Extending from the east end of this section the saddle assumes a positive slope of about 10H:1V for a horizontal distance of about 20 feet. Extending west from the west end of the flat section, for a horizontal distance of 25 feet, the saddle has an upward slope of 4H:1V.

- (3) Crest elevation Rocks and boulders form the crest of the saddle. The elevation of the horizontal section is about 696.5' NGVD.
 - (4) Gates not applicable
- (5) Upstream Channel The upstream channel is approximately 80 feet wide with weeds and trees growing along the channel bottom and overbanks.
- (6) Downstream Channel The downstream channel is approximately 80 feet wide with weeds and trees growing along the channel bottom and overbanks. Flow through this saddle would intersect Mirror Lake Road approximately 300± feet downstream of the saddle crest. This is about 400± feet west of where the flow from the dam crosses the road. A series of one foot diameter corrugated metal pipes at this location would normally route the flow under the road. At the time of inspection, however, most of these pipes were plugged with debris so it is very likely that, unless the pipes are cleared, the water would pass over the top of Mirror Lake Road. From here the water would flow southeast through a wooded area and eventually combine with the flow from the dam.
 - k. Regulating Outlets not applicable

SECTION 2 ENGINEERING DATA

2.1 Design

No original design data were found for Mirror Lake Dam. However, three (3) sheets of design plans were found for the reconstruction of the dam in 1964. The plans were designed and drawn by the New Hampshire Water Resources Board (NHWRB). Blueline copies are on file at the NHWRB and reduced copies can be seen in Appendix B.

2.2 Construction

No information was found regarding the original construction of the dam except an indication that it was constructed about 1836 with the concrete portion being added in 1913. A sketch of the dam, found in the files of the NHWRB and dated August 17, 1936, indicated that at this time the dam consisted of a 47-inch wide concrete sluice with concrete training walls and earth embankments on each side. In 1964, the NHWRB took over ownership and was allocated funds to reconstruct the dam. Visual inspection confirmed that the spillway capacity of the dam was increased by converting the original concrete sluice to a stoplog bay and by adding another stoplog bay next to the converted bay. New training and wing walls were constructed on the east side while the walls on the west side along with the earth embankments were reconstructed. In addition, a concrete core wall and a concrete retaining wall, extending into the earth embankments from the east and west training walls respectively, were constructed. Also, a concrete walkway extending from the east to west training wall covering the stoplog bays was added at that time.

2.3 Operation

No engineering operational data were found.

2.4 Evaluation

- a. Availability. A search of the files of the NHWRB revealed only the plans for the reconstruction of the dam in 1964 and some general information.
- b. Adequacy. Because of the limited amount of detailed data available, the final assessments and recommendations of this investigation are based on the visual inspection, hydrologic and hydraulic analysis, and the 1964 reconstruction plans.
- c. <u>Validity</u>. The plans found in the files of the NHWRB are in general conformity with the structure as seen during the visual inspection.

SECTION 3 VISUAL INSPECTION

3.1 Findings

- a. <u>General</u>. Mirror Lake Dam is a low dam which impounds a reservoir of small size. The watershed above the reservoir is steeply sloping and wooded. The downstream area is generally flat in the Hubbard Brook and Pemigewasset River valleys.
- Dam. Mirror Lake Dam is an earth dam about 290 feet long with a hydraulic height of 11.5 feet. The east earth embankment is approximately 117 feet long with a crest width of approximately 13 feet. A footpath, free of vegetation, extends along the crest. Many large and small trees and some brush are growing on the embankment. (See Appendix C - Photos 2 and 3.) The upstream face is inclined at about 2H:1V and consists of sand which changes to grass near the crest. A portion of the sandy area is used to beach canoes. The downstream face consists of a vertical dry stone masonry wall. (See Appendix C - Photos 4 The downstream toe area between the concrete stoplog spillway and the east earth embankment consists partly of bedrock and partly of mowed lawn between the dam and the Camp Osceola building which sits on the east side of the downstream channel. (See Appendix C - Photo 5.) The west earth embankment has a crest width of about 15 feet and a length of approximately 159 feet. It also has a footpath clear of vegetation and an upstream face that is sloped at approximately 2H:1V. (See Appendix C - Photo 6.) Many trees and some brush are growing on the embankment; however, near the end of the embankment there is an area relatively free of vegetation where some erosion has occurred. The downstream face consists of a vertical dry stone masonry wall. A significant bulge where 2 large birch trees are growing exists in the wall where the earth embankment curves from a westerly to a more northerly direction. (See Appendix C - Photo 7.) Near the northerly toe of this bulge in the stonewall is a soft, wet area that is covered with trees and brush. (See Appendix C - Photo 8.)

A low area in the form of a natural saddle is located approximately 400± feet northwest of the concrete stoplog spillway structure. A stonewall forms the crest of the saddle. Trees and brush are growing along the upstream and downstream channel of the saddle. (See Appendix C - Photo 9.)

Inspection reports dated 1939 and 1969 indicate that the foundation of the dam is bedrock. This statement could not be confirmed on the basis of the visual inspection alone, although, as noted above, there were bedrock exposures immediately downstream of the dam between the spillway and the east embankment. Both embankments of the dam appear to be soil.

Leaks were mentioned in inspection reports dated 1936 and 1946. No flowing leakage was observed during the present inspection (although, as noted above, the downstream-toe area was wet and soft between the spillway and the west embankment), but it is pertinent to note that the dam was rebuilt in 1964, after the two dates on which leakage was reported.

c. Appurtenant Structures. A concrete spillway structure housing two stoplog spillway bays is located between the two earth embankments. (See Appendix C - Photos 10 and 11.) Extending from the east training wall of this structure into the east earth embankment is a 14 foot long, 1-foot-wide concrete core wall. The depth of this core wall could not be determined. Starting from the west training wall a 1 foot wide, 26 foot long, concrete retaining wall extends along the upstream face of the west earth embankment. (See Appendix C - Photo 10.)

Both stoplog bays utilize $4" \times 8" \times 5'-7"$ stoplogs. The condition of the stoplogs was observed to be good with no indication of deterioration.

The east stoplog bay is approximatley $5'W \times 8.6'H$. (See Appendix C - Photo 11.) Water flowing over the stoplogs of the east bay enters a $5'W \times 12'L$ concrete stilling basin before discharging over a V-notch metal plate weir traversing the downstream end of the stilling basin.

The west stoplog bay is approximately 5'W x 3.8'H. Water passing over the stoplogs of the west bay flows along a 5'W x 6'L horizontal concrete section before flowing down a 5'W x 3'L concrete spillway inclined at lH:l.6V. From here the water enters a 5'W x 4'L concrete stilling basin prior to being discharged over a V-notch metal plate weir located across the downstream end of the basin.

The bays are separated by a 1.5-foot-wide concrete buttress and are covered by an 11.5'W x 5'L concrete walkway. (See Appendix C - Photo 11.) The general condition of the concrete throughout the entire spillway structure was observed to be good. No spalling, cracks, or unusual seepage was apparent. The only rust that was observed was on the embedded concrete sections and on the surface of the V-notch metal plate weirs. (See Appendix C - Photos 11 and 12.)

There is a 2-inch diameter drain pipe near the base of the west side of the concrete spillway structure. According to the design plans this is a weeper pipe. The drain appears to be functioning satisfactorily. Water was discharging from the drain at the time of the inspection and the concrete was rust-stained below the pipe. (See Appendix C - Photo 12.)

- d. Reservoir Area. The watershed above the reservoir is steeply sloping and wooded. No evidence of significant sedimentation was observed. The approach channel to the dam constricts to a width of 35± feet and a maximum depth of about 5 feet, where the channel leaves the main body of the lake approximately 210 feet upstream from the spillway structure. Traversing the channel at the constriction are the submerged ruins of an old timber crib dam. (See Appendix C Photos 1 and 13.)
- e. <u>Downstream Channel</u>. A 3-foot diameter corrugated metal pipe traversing under Mirror Lake Road is located about 100 feet downstream from the dam. Between the dam and the road, are dry-stone-masonry training walls on either side of the channel. (See Appendix C Photo 14.) Trees overhang the channel. The channel bottom is covered with boulders, gravel, and sand.

3.2 Evaluation

Based on the visual inspection, Mirror Lake Dam is in poor condition.

Trees and brush are growing on the embankment and could result in serious seepage or erosion problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot.

Some erosion has occurred on the upstream slope near the west embankment where there is no vegetation, apparently due to trespassing. Near the east embankment the upstream slope consists of a sandy beach, bare of vegetation, where canoes are beached. On the crest of the dam is a footpath which is bare of vegetation. Erosion caused by overflowing water resulting from rainfall or overtopping of the dam could cause the dam to breach if adequate erosion protection is not provided.

A major bulge in the dry-stone-masonry wall which retains the downstream side of the dam indicates that the wall may be failing. If the wall fails, the entire embankment may fail. Large birch trees growing out of this wall could also cause the wall to fail if they should blow over.

A large soft, wet area at the downstream toe where the west embankment curves northward indicates that significant seepage is occurring through the dam or its foundation. This seepage could result in a piping failure of the dam if the foundation or embankment consist of soils that are susceptible to piping.

Trees overhanging the discharge channel between the dam and the Mirror Lake Road culvert about 100 feet downstream of the dam could plug the culvert if they were undermined or blown over during flood-flow conditions.

A pile of cut brush on the downstream side of the dam near the west embankment makes it impossible to inspect that area adequately.

SECTION 4 OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

- a. <u>General</u>. According to New Hampshire Water Resources Board (NHWRB) personnel, no regular fall drawdown-summer storage program exists for Mirror Lake since its drainage basin (0.34 square miles) is so small. Consequently the stoplog elevations in each bay are adjusted infrequently and only on an as needed basis.
- b. <u>Description of Any Warning System in Effect</u>. No warning system presently exists for Mirror Lake Dam.

4.2 Maintenance Procedures

- a. <u>General</u>. The NHWRB is responsible for the maintenance of the dam. A maintenance staff member of the NHWRB visits the dam about once every 3 weeks to clear debris and check the overall condition of the dam. In addition, Mr. Warren Priest, the owner of Camp Osceola located directly downstream of the dam, and personnel from the U.S. Forest Service, who installed and utilize the gage on the west concrete retaining wall, also clear debris from the dam occasionally.
- b. Operating Facilities. Maintenance is on an as needed basis.

4.3 Evaluation

The present operational and maintenance (O&M) procedures are adequate to ensure that minor problems encountered are remedied within a reasonable amount of time. However, in the event of a major problem or emergency situation the existing O&M procedures are not considered adequate. Deficiencies include: 1) the lack of an adequate surveillance program and warning system for those downstream, especially the occupants of the Camp Osceola building; 2) the absence of contacts in the immediate vicinity of the dam who could check the condition of the dam on a more continuous basis and notify the NHWRB if the dam warranted attention and; 3) the lack of a readily apparent means to quickly remove the stoplogs to increase the spillway discharge capacity and lower the level of the lake during periods of highwater.

SECTION 5 EVALUATION OF HYDROLOGIC/HYDRAULIC FEATURES

5.1 General

Mirror Lake Dam is a concrete gravity dam containing two stoplog spillway bays with earth embankments extending to the east and west of the concrete structure. Total length of the dam is about 290 feet with a hydraulic height of 11.5 feet. impounds Mirror Lake, a reservoir of small size, which accepts runoff from a 0.34 square mile drainage basin characterized by a predominantly wooded mountainous terrain. No significant storage areas exist in the upstream watershed. The clear opening of the east stoplog bay without stoplogs is approximately 5'W x 8.6'H while the shallower west bay is 5'W x 3.8'H. concrete walkway 11.5'W x 5'L covers the stoplog bays. east earth embankment is approximately 117 feet long with a crest width of about 13 feet. The west earth embankment has a 15 foot average crest width and a length of about 159 feet. From the west concrete training wall of the spillway structure, the embankment extends west 30 feet before changing in alignment to a more northerly direction. Vertical dry-stone-masonry walls support the downstream face of both embankments while the upstream faces are composed of sand or sandy soil with a slope Trees and brush are growing on both of approximately 2H:1V. embankments. A concrete core wall projects from the east concrete training wall about 14 feet along the centerline of the east earth embankment. On the west side, starting from the west concrete training wall, a 26 foot long concrete retaining wall extends along the upstream face of the west earth embankment.

5.2 Design Data

No hydrologic/hydraulic criteria used in the design of Mirror Lake Dam were found.

5.3 Experience Data

At the time of the inspection, no visual evidence of damage to the dam caused by excessive discharges were noted.

5.4 Test Flood Analysis

Mirror Lake Dam is classified as being small in size having a hydraulic height of 11.5 feet and a maximum storage capacity of 750 acre-feet. The dam was determined to have a significant hazard classification. In accordance with the Recommended Guidelines for Safety Inspection of Dams, the test flood may range from the 100-year to ½ the Probable Maximum Flood (PMF). Because a breach of the dam poses a threat to the lives of those downstream, especially to the occupants of the Camp Osceola building located only 40± feet directly downstream of the east earth embankment, the test flood was chosen to be ½PMF.

Using the PMF Peak Flow Rates graph provided by the Corps, the peak inflow for this watershed, having a drainage area of 0.34 square miles and a slope which qualifies the basin as "mountainous", was determined to be 867 cfs (2550 csm). Therefore the test flood inflow for PMF would be 434 cfs (1275 csm). Using the procedure outlined in Estimating Effects of Surcharge Storage on Maximum Probable Discharges issued by the Corps to determine the modifying effect of surcharge storage on the test flood inflow, the routed test flood outflow was determined to be 175 cfs @ 697.3' NGVD. This is assuming that the stoplogs are in place up to an elevation equal to 695.0' NGVD which was their elevation at the time of inspection. It was decided to use this stoplog elevation after consultation with New Hampshire Water Resources Board (NHWRB) personnel revealed that stoplogs are infrequently added or removed.

The test flood analysis indicates that the dam would be overtopped by 0.6 feet. The maximum spillway capacity of the two stoplog bays at top of dam is 73 cfs which is 42 percent of the routed test flood outflow.

5.5 Dam Failure Analysis

The impact of failure of the dam with the reservoir level at top of dam was assessed using the Guidance for Estimating Downstream Dam Failure Hydrographs issued by the Corps of Engineers. The analysis covered only one reach which extended from the dam to Mirror Lake Road located approximately 100 feet downstream. Approximately 1400 feet downstream of the road the tributary flows into Hubbard Brook. No downstream hazard exists along this reach.

Dam failure was considered most likely to occur along the earth embankments but it was difficult to determine which of the two embankments was more susceptible to failure. Therefore two breach analyses were performed; one for the east and one for the west earth embankment. The analysis which resulted in the most damage downstream was used to determine the hazard classification. In the analysis the elevation of the stoplogs was assumed to be 695.0' NGVD which was their elevation at the time of inspection.

Results indicate that a breach of the west earth embankment with the water surface elevation at top of dam would result in a discharge of 1,953 cfs. The discharge through the two stoplog spillway bays just prior to failure would be 73 cfs. A breach would cause an increase in stage of 6.8 feet above the antecedent stage of 4 feet at Mirror Lake Road located .00 feet downstream of the spillway structure. The road would be overtopped along its lowest point to a depth of approximately 3.3 feet. In addition to the road, two building structures would also be flooded by about 3 feet of water, namely the Camp (seecla building located on the east side of the channel between the dam and the road and the uninhabited shed located across the road from the Camp Osceola building. The Camp Osceola building is a house which is occupied year round. Its facilities are utilized by vacationers

and the like; therefore the number of people occupying the building at any particular time is quite variable. Based on this analysis it was assumed that appreciable property damage and the possible loss of less than a few lives could occur if the west earth embankment were to fail.

A breach of the east earth embankment would result in a breach discharge of 550 cfs. This would cause the road to be overtopped by approximately 1.7 feet. In addition the Camp Osceola building and the uninhabited shed would be inundated by approximately 2.0 and 1.5 feet of water, respectively. The Camp Osceola building would probably receive the most damage of the two structures since it is located directly in the path of flow and only 40± feet downstream of the assumed breach section. The conditions resulting from a breach of the east earth embankment were considered sufficient to cause appreciable property damage with the potential for loss of less than a few lives.

The results of the two breach analyses therefore indicate that regardless of which earth embankment is assumed to fail, the outcome will be similar; appreciable property damage with a possible loss of less than a few lives. Mirror Lake was therefore classified a Significant Hazard.

SECTION 6 EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

The visual examination indicates the following potential structural problems:

- (1) Trees and brush growing on the embankment could lead to seepage and erosion problems if a tree blows over and pulls out its roots or if a tree dies or is cut and its roots rot.
- (2) Trespassing and minor erosion on the upstream slope and crest of the dam and lack of erosion protection make these areas subject to severe erosion. Erosion caused by overflowing water resulting from rainfall or overtopping of the dam could cause the dam to breach.
- (3) A major bulge in the dry-stone-masonry wall which retains the downstream side of the west embankment indicates that the wall may be failing which could lead to failure of the entire embankment.
- (4) Large birch trees growing in the dry-stone-masonry wall which retains the downstream side of the west embankment could cause failure of the wall and embankment if the trees are blown over and uprooted.
- (5) A large soft, wet area at the downstream toe between the spillway and west embankment is an indication that seepage is taking place through the embankment or the foundation. This could lead to piping failure of the dam if the embankment or foundation consists of soils that are susceptible to piping.

6.2 Design and Construction Data

No design or construction data relative to the structural stability of the dam were found.

6.3 Post Construction Changes

Sketches of the dam for the reconstruction in 1964 indicate that the concrete spillway structure is founded on "ledge," but do not include any information about the character of the embankment fill or the foundation of the embankment.

F.4 Seismic Stability

This dam is located in Seismic Zone 2 and, in accordance with the Phase I quidelines, does not warrant seismic analysis.

SECTION 7 ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

- a. Condition. The visual examination indicates that Mirror Lake Dam is in poor condition. The major concerns with respect to the integrity of the dam, if left uncorrected, are:
- (1) Trees and brush growing on the embankment which could lead to seepage and erosion problems if a tree blows over and pulls out its roots or if a tree dies or is cut and its roots rot.
- (2) Trespassing and minor erosion on the upstream slope and crest of the dam and lack of erosion protection make these areas subject to severe erosion. Erosion caused by overflowing water resulting from rainfall or overtopping of the dam could cause the dam to breach.
- (3) A major bulge in the dry-stone-masonry wall which retains the downstream side of the west embankment indicates that the wall may be failing which could lead to failure of the entire embankment.
- (4) Large birch trees growing in the dry-stone-masonry wall which retains the downstream side of the west embankment could cause failure of the wall and embankment if they blow over and are uprooted.
- (5) A large soft, wet area at the downstream toe between the spillway and west abutment, indicating that seepage is taking place through the embankment or foundation, might lead to piping failure of the dam if the embankment or foundation consists of soils that are susceptible to piping.
- b. Adequacy of Information. The information available is such that the assessment of this dam must be based primarily on the results of the visual inspection. A pile of cut brush on the downstream side of the dam near the west embankment made it impossible to inspect that area adequately.
- c. Urgency. The owner should implement the recommendations in 7.2 and 7.3 within one year after receipt of this Phase I report.

7.2 Recommendations

The owner should engage a registered professional engineer qualified in the design and construction of dams to:

(1) Specify and oversee procedures for the removal of trees and their root systems from the dam and a zone 25 feet wide at the downstream toe of the dam.

- (2) Design repairs for the unstable dry-stone-masonry wall which retains the downstream side of the embankment.
- (3) Investigate the soft, wet area at the downstream toe of the dam between the spillway and the west embankment and design remedial measures, if needed.
- (4) Design repairs for erosion on the embankment and design erosion protection for the embankment.
- (5) Perform detailed hydrologic and hydraulic studies to determine the need for and methods to increase project discharge capacity.

The owner should carry out the recommendations made by the engineers.

7.3 Remedial Measures

- a. Operating and Maintenance Procedures. The owner should:
 - (1) Cut brush on dam embankments and remove.
- (2) Remove the pile of cut brush on the downstream side of the dam near the west embankment.
- (3) Cut trees that overhang the discharge channel between the dam and the road downstream of the dam.
- (4) Implement a means to facilitate the quick removal of stoplogs to increase the spillway capacity of the dam and lower the level of the lake during seasons of heavy rainfall.
- (5) Visually inspect the dam and appurtenant structures once a month.
- (6) Engage a professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection of the dam once every year.
- (7) Establish a surveillance program for use during and immediately after heavy rainfall and also a downstream warning program to follow in case of emergency. A contact in the immediate vicinity of the dam should be established to enable the NHWRB to keep a continuous check on the dam's condition. Engineers at the NHWRB could then, in turn, direct any stoplog operations necessitated by the contact's input.

7.4 Alternatives

There are no practical alternatives to the recommendations and remedial measures given in Sections 7.2 and 7.3.

APPENDIX A

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST PARTY ORGANIZATION

PROJECT Mirror Lake Dam, NH	DATE July 9, 1980
	TIME 1:00 PM
	WEATHER Clear, warm
	W.S. ELEV. U.S. DN.S.
PARTY:	<u>694.6</u> <u>685.2</u>
1. Warren Guinan (ANCo)	6. Gary Kerr (NHWRB)
2. Stephen Gilman (ANCo)	
3. <u>Leslie Williams (ANCo)</u>	8
4. Gregg Camstock (ANCo)	9
5. Ronald Hirschfeld (GEI)	10
PROJECT FEATURE	INSPECTED BY REMARKS
1. Hydrology/Hydraulics	G. Comstock/L. Williams
2. Structural Stability	S. Gilman
3. Soils and Geology	R. Hirschfeld
4	
5	
6	
7	
8	
9	
10	

PERIODIC INSPECTION CHECKLIST

PROJECT Mirror Lake Dam, NH	DATE July 9, 1980
PROJECT FEATURE Dam Embankment	NAME_R. Hirschfeld
DISCIPLINE Soils & Geology	NAME

DISCIPLINE Solls & Geology	NAME
AREA EVALUATED	CONDITION
DAM EMBANKMENT	
Crest Elevation	
Current Pool Elevation	
Maximum Impoundment to Date	Unknown.
Surface Cracks	None observed.
Pavement Condition	Not paved.
Movement or Settlement of Crest	None observed. Dry-stone-masonry wall which retains
Lateral Movement	downstream side of embankment between spillway and west embankment has
Vertical Alignment	Good. bulged locally.
Horizontal Alignment	See "Lateral Movement."
Condition at Abutment and at Concrete Structures	Good
Indications of Movement of Structural Items on Slopes	See "Lateral Movement."
Trespassing on Slopes	Footpath on crest. Canoe beaching area on upstream slope near east embankment.
Sloughing or Erosion of Slopes or Abutments	Area bare of vegetation and with minor erosion on upstream slope near east embankment.
Rock Slope Protection - Riprap Failures	No riprap.
Unusual Movement or Cracking at or Near Toe	See "Lateral Movement."
Unusual Embankment or Down- stream Seepage	Soft, wet area at downstream toe between spillway and west embankment.
Piping or Boils	None observed.
Foundation Drainage Features	None observed.
Toe Drains	None observed.
Instrumentation System	None observed.
Vegetation	Trees and brush growing on crest, up-

stream slope, and downstream toe area, and two large trees growing in dry-stonemasonry wall which retains downstream side -2 of west embankment.

A-2

PERIODIC INSPECTION CHECKLIST PROJECT Mirror Lake Dam, NH DATE July 9, 1980 NAME S. Gilman PROJECT FEATURE Control Tower DISCIPLINE Structural NAME _ AREA EVALUATED CONDITION OUTLET WORKS - CONTROL TOWER Concrete and Structural General Condition Good. Good. No indication of movement. Condition of Joints Spalling None visible. None apparent. Visible Reinforcing Rusting or Staining of Only at embedded items. Concrete None apparent. Any Seepage or Efflorescence Joint Alignment Good. Unusual Seepage or Leaks in None. Gate Chamber Cracks None apparent. Rusting or Corrosion of V-notch weirs are surface rusted. Steel Mechanical and Electrical Not applicable. b. Air Vents Float Wells Crane Hoist Elevator Hydraulic System Service Gates Emergency Gates Lightning Protection System Emergency Power System Wiring and Lighting System

PERIODIC INSPECTION CHECKLIST				
PROJECT Mirror Lake Dam, NH	DATE July 9, 1980			
PROJECT FEATURE Spillway Weir	NAME R. Hirschfeld			
DISCIPLINE Soils-Geology & Structural	NAME S. Gilman			
AREA EVALUATED	CONDITATION			
AREA EVALUATED	CONDITION			
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS				
a. Approach Channel				
General Condition	Fair			
Loose Rock Overhanging Channel	None.			
Trees Overhanging Channel	Trees overhand channel.			
Floor of Approach Channel	Sand and gravel.			
b. Weir and Training Walls				
General Condition of Concrete	Good.			
Rust or Staining				
Spalling				
Any Visible Reinforcing				
Any Seepage or Effloresænæ				
Drain Holes	None.			
c. Discharge Channel				
General Condition	Fair.			
Loose Rock Overhanging Channel	Dry-stone-masonry training walls on			
Trees Overhanging Channel	sides of channel. Trees overhang channel.			
Floor of Channel	Boulders, some sand and gravel.			
Other Obstructions	Highway culvert about 100 ft. down- stream of dam.			
Stoplogs and Slots	Good - no indication of deterioration.			

PERIODIC INSPECTION CHECKLIST PROJECT Mirror Lake Dam, NH DATE July 9, 1980 PROJECT FEATURE Service Bridge NAME S. Gilman DISCIPLINE Structural __ NAME_ AREA EVALUATED CONDITION OUTLET WORKS - SERVICE BRIDGE a. Super Structure Bearings Not applicable. Anchor Bolts Not applicable. Bridge Seat Not applicable. Longitudinal Members Good. Underside of Deck Good.Secondary Bracing Not applicable. Good. Deck Drainage System Not applicable. Railings Good. Expansion Joints None. Paint Good. b. Abutment & Piers General Condition of Concrete Alignment of Abutment Approach to Bridge endition of Seat & Backwall

APPENDIX B
ENGINEERING DATA

MEMO

FROM KEN

RE MIRROR LAKE WOODSTOCK 259.07

In 5/2/79 I inspected Merror Take dam in Woodstock, The right dike is overgrown with trees up to 24 wiches in diameter. The left dike has about a half dozen mature trees.

Growing and. No seepage was

The right and like is posted against thesessing. I met the.

JAMES LAMBREGISE, RED 1, lampton.

Who I informed me that he is the owner of the land that the right dike is located on. He said his deed makes no mention of the dam. He is very much against cutting the trees from the dike. He said that he would not allow anyone to cut trees until he was in presented.

I court order forcing him to. He requested that we go to his house,

the burnt out red one, before doing B-1

The left dike appears to be sweet by Warren Priest of lamp Deceda. I did not contact Mr Priest but assume he would also object to having his trees cut. The trees are matere and make the area very seemic.

The 1964 reconstruction plans provision that no tree 6" or larger should be sut without permission from the engineer

N. H. WATER RESOURCES BOARD Concord, N. H. 03301

DAM SAFETY INSPECTION REPORT FORM

Town: Woodstock	Dam Number: 259.07
Inspected by: France C. Mice	
Local name of dam or water body: /////	•
Owner: State & Mitter 118 y State Group to yo	Address: 216 Sale Handleway Bround Will
Owner was/was not interviewed during inspec	tion.
Drainage Area: 0.43 sq. mi.	Stream: Trib. Hubbard Brook
Pond Area:Acre, Storage	= <u>100 ± Ac-Ft. Max. Head 9.2 Ft.</u>
Foundation: Type <u>ledge</u> , See	page present at toe - Yes/No,
Spillway: Type Stop logs, Free	eboard over perm. crest: 45 £ 9.2,
Width 2-5'bays, Fla	shboard height <u>None</u> ,
Max. Capacity	c.f.s.
Embankment: Type, Cove	erWidth,
Upstream slope to 1;	Downstream slopeto 1
Abutments: Type Earth, Cond	
Gates or Pond Drain: Size Only Stoplogs Cap	acityType
Lifting apparatus	Operational condition
Lifting apparatus Spil Changes since construction or last inspection	ony Rebuilt by N.H.W.R.B in 1965.
Downstream development: Town Road immedia	olely below & U.S. HW #3 - I mile down
This dam would/would not be a menace if it	failed.
Suggested reinspection date: 1974	
Pamarks:	

MIRROR LAKE

Mirror Lake dam was rebuilt with funds from the Capital Budget for recreational development in September and October, 1964 at a cost of \$ by the N. H. Fish and Game Department construction crew. Formerly, there was a diversion of water from Hubbard Brook to increase the flow for small manufacturing power. Rights and easements to the dam were acquired by the Water Resources Board.

Drainage Area: 0.63 square miles

Pond Area: 37:1-acres

l inch runoff from drainage less pond area raised lake 6.15 inches.

15 year frequency flood flow: 100 cfs.

100 year frequency flood flow: 210 cfs.

Spillway (stop log sections - 5 feet wide):

Shallow section: 5 feet wide by 42 feet deep

Deep section: 5 feet wide by 102 feet deep

NOTE: Above sections have stop logs (when in place) from 2 feet below crest of dam to bottom.

Capacity of Stop Log Sections: / bay

Head	Flow - cfs.
2"	1.1
L ¹¹	3.2
6"	5 . 7
9"	9.7
12"	16.
18"	29.
2կ"	43.5
30"	59. –
36"	76.
48"	112.

Jume 21, 1946

Dum 200.07

Mirror Mas, Woodstock, M. H.

This dam was inspected on above date. The dam is in fair condition. There is an old leak under the dam which still persists. The construction and conditions of this dam is such that it will probably stand up under minor floods. If repairs are ever made to this dam, attempt should be made to obtain greater spillway capacity.

Leonard R. Frost Engineer

NEW HAMPSHIRE WATER CONTROL COMMISSION DATA ON DAMS IN NEW HAMPSHIRE

(LOCATION	STATE NO.	259.07
Citi	Town Woodstock : County	Grafton	
	Stream Mirror Lake		
	Basin-Primary Merrimack Secondary		
	Local Name Lower am		
	Coordinates—Lat. 43.55.48.800ft. : Long	1.401.46.400	••••••••••••••
	•		_
	GENERAL DATA Drainage area: ControlledSq. Mi.: Uncontrolled	Sa Mi . Toto	1 14 / Sa Mi
	Overall length of dam300 ft.: Date of Construction	sq. mi.: 10ta 836.concrete in	1
	Height: Stream bed to highest elevft.: Max. Structu		
	Cost—Dam Reservoir		**********************
	DESCRIPTION Gravity, stone, earth, concrete on	ledge /	
	Waste Gates		
	Type		
	Number Size ft. high x		
	Elevation Invert		-
	Hoist	***************************************	
	Waste Gates Conduit		•
£	Number		
	· ·	***************************************	sq. ft.
	Embankment		
	Type		
	Height—Max ft.: Min		
	Top-Width: Elev		
	Slopes—Upstream on: Downstream	on	***************************************
•	Length—Right of Spillway: Left of Spill	lway	***************************************
	Spillway		
	Materials of ConstructionCONCRETE(S	luicel	•••••••••••••••••••••••••••••••
	Length—Total3.917 ft: Net		
	Height of permanent section—Max. 9.5ft.: Min		ft.
	Flashboards—Typenone	: Height	ft.
	Elevation—Permanent Crest: 1	op of Flashboard	***************************************
	Flood Capacity cfs.: cfs.:	cfs	/sq. mi.
	Abutments	•	-
	Materials:		***************************************
	Freeboard: Max. 1.5 ft.: Min.	**************************************	ft.
	Headworks to Power Devel (See "Data on Power Develop	ment'')	
	OWNER Harry Emmons, littleton, NH.	***************************************	
	REMARKS Condition fair-Leaks		
٠	Dam is "enace. Use-Recreation-Stor	rage. /	
		- G 	
	Tabulation By FLT Date	9/28/39	•••••
	B-6		

NEW HAMPSHIRE WATER CONTROL COMMISSION DATA ON RESERVOIRS & PONDS IN NEW HAMPSHIRE

		*** *	DAM NO25907
Town Woodstock	: Co	unty Grafton	
StreamM	irror Lake	••••••	***************************************
	rimack R. : S		
-	Lower Dam		
		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
DRAINAGE AREA			
Controlled So	q. Mi.: Uncontrolled	Sq. Mi.: Total	Sq. Mi.
ELEVATION vs. WATER	R SURFACE AREA vs. VOL	UME	
Y). in A	П	Surface	77-1
Point	Head Feet	Area Acres	Volume Acre Ft.
(1) Max. Flood Hei	ight ·	***************************************	***************************************
(2) Top of Flashbo	oards	••••••	••••••
(3) Permanent Cre	est	••••••	•••••••••••••••
(4) Normal Drawd	own	37,10	••••••••
(5) Max. Drawdow	7n	***************************************	***************************************
(6) Original Pond	•••••	***************************************	***************************************
	: Coef. to change to U.S		
	: Coef. to change to U.S		
Base Used	: Coef. to change to U.S		
Base Used	: Coef. to change to U.S	S.G.S. Base	olume
Base Used	: Coef. to change to U.S. Total Volume	Useable Vo	olume
Base Used RESERVOIR CAPACITY Drawdown	Total Volume	Useable Vo	olumeft.
Base Used RESERVOIR CAPACITY Drawdown Volume	Total Volume	Useable Vo	olumeft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi.	Total Volume ft.	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER	Total Volume ft. use-Recreation.Storage	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons	Total Volume ft. Use-Recreation.Storage s.Littleton.NH.	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons	Total Volume ft. use-Recreation.Storage	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons	Total Volume ft. Use-Recreation.Storage s.Littleton.NH.	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons	Total Volume ft. Use-Recreation.Storage s.Littleton.NH.	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons	Total Volume ft. Use-Recreation.Storage s.Littleton.NH.	Useable Vo	olumeftac. ft.
Drawdown Volume Acre ft. per sq. mi. Inches per sq. mi. USE OF WATER OWNER Harry Emmons REMARKS Mer	Total Volume ft. Use-Recreation.Storage s.Littleton.NH.	Useable Vo	olumeftac. ft.

TOWN	OODSIOCK		TOWN 7		STATE NO.	
RIVER STREAM LA	irror Lake					
DRAINAGE AREA	·		POND AREA			
	ravity		FOUNDATION NATURE OF	ledge		
MATERIALS OF CONSTRUCTION	Stone, Earth,	Concrete		<u>-</u> -		
PURPOSE OF DAM	POWER-CON	SERVATION—DOMES	TIC-RECREATION-TRANSPORTA	TION—PUBL	ALTITIO DE	_
HEIGHTS, TOP OF			TOP OF DAM TO SPILLWAY CRESTS	18"		
SPILLWAYS, LENG DEPTHS BELOW		.1 ⁿ			LENGTH OF DAM Approx.	<u> </u>
FLASHBOARDS TYPE, HEIGHT AI	BOVE CREST None					
OPERATING HEAD CREST TO N. T. W			TOP OF FLASHBOA TO N. T. W.	RDS		
WHEELS, NUMBER						
GENERATORS, NU. KINDS & K. W.	MBER					
H. P. 90 P. C. TIMI 100 P. C. EFF.	3		H. P. 75 P. C. TIME 100 P. C. EFF.			
REFERENCES, CAS			· · · · · · · · · · · · · · · · · · ·			· . —
	ONS .					

To the Public Service Commission:

Yes. Will be subject to periodic inspection.

Fair - (leaks)

The foregoing memorandum on the above dam is submitted covering inspection made Aug. 14, 1936; according to notification to owner dated Aug. 5, 1936, and bill _ for same is enclosed.

D. Waldo White Chief Engineer

Aug. 20, 1936 Copy to Owner

CONDITION:

MENACE:

CALCULATION SHEET Date Guy 17, 1936 MIRORLARE

NEW HAMPSHURE WATER RESOURCES BOARD

INVENDORY OF DAMS AND WATER POWER DEVELOPMENTS

<u>PAM</u>		•			
BASIN	Miground Mirror	ie ic	NO.	ケー	-I-5460
RIVER	14111011	ako	MILES	7- FROM MOUCH	-I-5460 D.A.SQ.MI.
IOMI:	1 words	trok	OWNER	HAMPYDEM	wins, littletens
LOCAL MA	ME OF DA	H	Lower Dai	11	E(MC = Thomas
BUILT \$ 26.	out 1836	>NESCRIPT	IVA GRAV	174 - St	116 Forth Coverate
Coin	rete partini	1913 011 1	cone		f
			/		
POND ARE	M-AGRES ,	37.10		FOI	ID CAPACITY-ACRE FT.
HEIGHT-T	OP TO PED	OF CTREA	M-77. /	/ XAM	min.
OVERALL	LENGTH OF	DAM-FT.	M-FT. / 362 - TAX	FLOOD HEI JE	AROVE CREST-FT.
PERMANEN	i chio. i		· · · ·	7:00:17	
TAILWATE	R E	LEV.U.S.G	.3.	LOJAL	GAGE
SPILLWAY	LENGTHS-	FT. 9.9	7/7 BOVE CREST	FREED	DARD-FT. //
FLASHEOA	RDS-TYPE.	HEIGHT A	BOVE CREST	Hone	
WASTE GA	TES-NC.	WIDTH MAX	. OPENER ?	DEPLH STUL	PELCW CREST
					
					
REMARKS	Trust.	7 19 1 F		11.70	Guilde descri
					
5F 10	to 41623	and Fit	PRILLIPENIA	CC2 4 P	
	<u> </u>		1.2.17.7: 15.0	332 / 1	
POWER DE	VELOPMENT				odinates from A.E. of 557 + 88 cc + 4
	RATED	HEAD	C.F.S.	17	400 1 6700711
UNITS M	C. HP	FEET F	ULL GATE	KW	MAKE
					
_					
					
			· · · · · · · · · · · · · · · · · · ·		
					
USE A	OCHERTI	10 11			
					
					
REMARKS	MONA	e water	na ministra	come for the be	Dry D. Fumeus.
11-22 I		- 6 C (1/2)	1 5 5 7	TENTON STATE	rdam upstream
110 14	404 41	<u> </u>	10,25,01	YE - 277 PJ 757	FA AM COSTFAN
77 - 7	A CT	MITTER G	ay Fig.		
					
		•			
	7/5.121	1			
	7/91/36				
	C/16 3	1			
DATE		7	_		

LOCATION MAN MIRRORLARE DAM RECONSTRUCTION HOWS TOCK, N'M. SITE PLAN

APPENDIX C

PHOTOGRAPHS

Photo 2 - Looking west along crest of east earth embankment. Note the footpath and the trees on the embankment and the Camp Osceola building in the background.

Photo 3 - Looking east along the crest of the east earth embankment. Note footrath and trees.

July 9, 1980 Photo 4 - Looking at the downstream toe of the eastern end of the east earth embankment. Note the vertical dry-stonemasonry wall.

July 9, 1980 Photo 5 - View of the downstream toe of the western end of the east earth embankment next to the spillway. Note the vertical dry-stone-masonry wall.

July 9, 1980
Photo 6 - Looking south along the crest of the west earth embankment. Note footpath, trees, and brush.

July 9, 1980

Photo 7 - View of the downstream toe of the west embankment where the embankment curves from a westerly to a northerly direction. Note bulge in dry-stone-masonry wall and birch trees growing out of the wall.

July 9, 1980

Photo 8 - View of soft, wet area at the downstream toe of the west earth embankment where the embankment curves from
a westerly direction to a northerly
one.

July 9, 1980
Photo 9 ~ View of natural saddle located approximately 400± feet northwest of the small-way structure of the dam.

July 9, 1980
Photo 10 - View from the east earth embankment looking west at the concrete spillway structure housing 2 stoplog spillway bays. Note concrete corewall.

Duly 9, 1980.

Photo II - View of the 2 cracrete stoplog spill-way bays from the downstream channel.

July 9, 1980
Photo 12 - View of 2-inch diameter drainage pipe located at downstream toe of west training wall. Note staining of concrete below drainage pipe.

July 9, 1980
Photo 13 - View of upstream channel from east
earth embankment. Note canoe beaching
area in foreground and channel constriction in background.

July 9, 1980

Photo 14 - View of downstream channel from downstream toe of concrete stoplog spillway structure. Note vertical drystone-masonry walls, trees, and 3foot diameter culvert beneath road
located about 100 feet downstream.

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

Ander	rson-Nicho	ls & Company, Inc.	Subject <u>Prenew Anniques</u> MIFFLE LEKE JAM	Sheet No. / of /5 Date 7/-/5c Computed 26
	JOB NO.	Tos No	3273-25	Checked Low
QUARES /4 IN. SCAL	0 1 2 .E	2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23 24 25 26 27 28 ° 3'
	2			
	3 B	REACH ANALY	SIS - ASSUME BREAC	H WITH WSEL AT TOP OF
-	5	DAM	(696.7' NGYD). TO DETE	ERMINE DIS HAZARD POTEIS, EL
	6 7	$Q_b = \frac{g}{27} u$	36 Tg y. 3/2	
	8	• •	WE BREACH WIRTH	
	10		g = 32.2 FT/SEC2	
	11		U = POOL ELEV. AT TIME O	OF BREACH (696.7') MINUS THE
			U/S RIVER BED ELEV. WA	HERE THE BREACH IS OCCURRING.
	12		NOTE : FOR MIRROR L	AKE DAM FAILURE WAS ASSUMED
	13		TO OCCUP ALONG THE	EARTH EMBANKMENTS DOWN TO
	14		ELEV. EQUAL TO THAT.	OF THE DIS TOE OF THE DAM.
	15		11	RE CALCULATED USING DIS TOE
	16		•	OF ALS PHER BEL EVENTIONS.
	17			
	18	r	- Day •	
	19			CONSIDEREL MOST LINELY TO CO. A
	20			A SEPARATE BREACH ANALLIS
•	21		ERFORMED FUR EACH OF THE	
	22	THAT E	KTEND FOR 1001 FEET TO	THE EAST AND WEST OF THE
	23	CONCRE	FIE PORTION OF THE DAME	THESE TWO ANALYSES
	24	- ARE	LARELLED "CUNDITION. 2"	AND CONDITION 2" FILL REFER.
		TO THE	E LEST AND EAST EMB!	NKMENTS BESPECTIVELY
	25			
	26			
	28	CONDITION Z	BREACH OF WEST EA	RTH EMBANKMENT
	29	'Q a=.		
	30		EH_WIDTH, WB, WAS	-
	31	100	FT. WEST FROM THE	WEST END OF THE
	32	CONC	RETE CORE WALL.	
	33			
-			WE = 100 FT	
	34	W		
	35	yo" was	MEASURED FROM THE TOP OF DAM	ELECT SELT MENT TO THE END TO
_	36		R, THE DIS TOE ELEVATIONS VARY	
	37		"WEIGHTED" YOU WAS THERETORE	
	38		The second secon	- · · · · - ·

D-2

Anderson-Nichols	&	Company,	Inc.

Subject BREACH ANALYSIS
MIRROR LAKE TAM

Sheet No. 3 of 15

Date 7/17/50

Computed 25 C

37 38

	JOB NO	Checked
QUARES /4 IN. SCAL	0 1 .E	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2
	1	
	2	CONTITION 1 (CONTINUED)
	3	
	4	CALCULATION OF "WEIGHTED TO":
	5	
	6	(696.7-689.6) + (696.7-690.5) × 25'
	7	2
	8	+ (696.7 - 690.5) + (696.7 - 692.4) × 25'
	9	2
	10	1 (16, 7 - 672, 4) + (696 7 - 6922) × 25'
	11	+ (696.7 - 672.4) + (696.7 - 692.3) × 25'
	12	+ (696.7-692.3) + (696.7-693.6) x 25'] - 100 = 5.0' = 3.
	13	2
	14	
	15	$\frac{3}{2}$
	16	CALCULATE Qb, = & Wb 732.2 y.
	17	$0 - 0 \left(\frac{3}{2} \right)^{\frac{3}{2}}$
	18	$Q_{b_1} = \frac{8}{27} (100) \sqrt{32.2} (5)^{3/2}$
	19	
	20	$Q_{b_1} = 1880 \text{ CFS}$
• • • •	21	
	22	
	23	BECAUSE OF THE SLOPE OF THE TERRAIN DIS OF THIS
** ** *=	24	BREACHED SECTION MOST OF THE WATER CONSTITUTING Q6,
	25	WOULD FIRST FLOW INTO THE STONE WALLED CHENNEL
	26	LOCATED DIRECTLY DIS OF THE TWO STOR LOG BAYE, THE TOTAL
	27	BREACH DISCHARGE OBT THEREFORE WEED TO CALCULATE
	28	THE HAZARD DIS CAUSED BY THE BREACH SHOULD INCLUDE FLOW
	29	FROM THE STOP LOG GAYS AS WELL AS GO,
	30	DIAGRAM OF STOP LOG BAYS
	31	TOP OF OPENING = 696.7
	32	5'
	33	TOP OF STATE GOE 695.0
	34	
	35	
	36	
	37	EAST U/S FACE WEST

Anderson-Nichols & Company, Inc.	Subject KREACH HIJELYSIS	Sheet No. 4 of 5		
JOB NO.	MIRROR LAKE DAM	Computed 50 C Checked 50		
	3273-75			
HES 0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19 20	0 21 22 23 24 25 26 27 28 29 30		
2 CONDITION I	: CONTINUED)			
	OF FLOW THROUGH THE STOP LOG	RAYS QSL WITH THE		
WSEL @	TOP OF DAM = 696.7'.			
4				
5 USE	WEIR EQUATION Q=CLH=			
, ° +	WHERE C= 3.3			
7	L= 2 × 5' =/0'			
8	It = 1,2°			
$Q_{SL} = 3$	$(3 \times 10 \times (1.7)^{3/2} = 73 c$	ES @ WSEL = 696.7		
10		(TOP OF DAM)		
11				
THERE!	FORE , THE TOTAL BREACH DIS	CHARGE IS EQUAL TO		
13				
14	QBT = Qb, + QsL			
15	٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠			
16	QBT = 1880 + 73			
17				
18	QBT, = 1953 CFS			
19				
20				
21 7HE A	INTECEDENT DISCHARGE OR	THE FLOW PASSING		
DUER THE DAI	M BEFORE THE BREACH, is,	IN THIS CASE, EOURL		
123 TO THE FLOW	S THROUGH THE STOP LOG BAYS	, OSL, ATA		
	7 (
$ Q_{1,1,7}$	= Qsh = 73 cf	-s.		
128 ANT	ECEDENT			
29				
30				
31				
32				
33				
34				
35				
37 TINCESS 07.	ARWINE MOTES, AL COEFF WENT	uses in the weigh power.		
	THE COUR ON CHEEF THEEN FROM THE			
HAMMARIA .	or Apperence , Spring Comme			
	D-5			

Ander	rson-Nichol	s & Company, Inc.		CH ANDLYSIS LAKE DAM	Date -	of	15
	JOB NO.	Tie. No. 327		EM/E 2/11	Computed Checked_	d <u>िंग्रेड</u> ्ट च्या	
SQUARES	0 1 2	•		3 14 15 16 17 1	I8 19 20 21 22	23 24 25 2	6 27 28 ·
I/4 IN. SCAL						25 24 25 20	
	2						
	3	CONDITION I					
		CROSS SECTION	#	- MIRROR	hake home		
۵.	4		- · · · · · · · · · · · · · · · · · · ·	LOCATEL	- 100 D/s	Er DAM	**; <u>.</u>
	5	•		WITH A 3	6" O CORRUG	SATED METAL	L PIPE
	6			TRANS VERSI	ING THE ROAL	5 - SEE F	D-8
	7			FOR DET		·	/
	8				- ,		
	9	DETERMINI	= THE MA	XIMUM FLOW	THE 36" 0 PI	PE CAN	
	10			THE ROAD			
	11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,_			, , , ,	
	12		Tow or F	PIPE = 682.	5 1640		
	13	an a		OAD = 690.0			
	14			= 690 - 6			
	15		A ELEV.	_ = 67076	20.3 = 7.3		
	16				//		
	17	USEO	RIFICE EQUA	71W Q =	CATICAH		
	18			- (1-12 /-	72.5 /2.5	20) -	
	19		4 = 0,8	7 (1.5)2 / Zx	132.2 × (1.5-	聖) - /	1/ CFS
	20						• .
	21	S/NC	E 111 CF5	IS LESS TH	AN QBT, = 1	1953 CFS	T.HE
	22	ROA	D WILL BO	E OVERTOR	red. To D	ETERMIN	E EY
	23	Hou	MUCH THE	ROAD WILL	BE FLOODE	FD, DEU	ELOPE
	24	A	CATING CU.	EVE FOR TH	IS CROSS SEC	TION. WEL	5 THE
	25	ORIF	ICE GOVATIO	N TO BATE	FLOW FROM	A STAGE	_OF
	26	3 F)	TO THE	TOP OF TH	FE ROAD 17	7.5 ET).	ABOUE.
	27	7.5	FT USE	THE ORIFICE	EQUATION_	FOB FLOW	THROUGH
	28	THE	PIPE AND	THE WEIR E	EQUATION FOR	R FLOW	PUER
		THE	ROAL,		The contract of the contract o		
	29			_			
	30						
	31						•
	32						
	33	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
	34						
	35						•
	36						· ·
	37						

38

Anderson-Nichols & Company, Inc.

Subject <u>EREACH ANALUS</u>IS MIRROR LAKE DEM

Sheet No. 6 of 15

Date 7/17/65

Computed 2/66

JOB NO.

J. No. 3273-25

CONDITION 1 (CONTINUED)

RATING CURVE DATA FOR CROSS SECTION # 1

1	ELEVATION	STAGE ABOUT INVERT	DISCHARGE
	(FT. NEVD)	(FT)	(CFS)
	-		
	682.5	0	. 0
•	685.5	3	Q = 0.8 Tr (1.5) 7(64.4X1.5) = 56
	686.5	_ 4_	$Q = c.87 - (1.5)^2 - \sqrt{(64.4)(2.5)} = 72$
	688.5	6	$Q = 0.8 \pi (1.5)^2 \sqrt{(64.4)(4.5)} = 96$
	690.0 (TOR)	7.5	Q = 0.8 Tr(1.5)2 7 (64.4) (6.0) = 111
	691.0	8.5	Q = 08 Tr (1.5)2 1 (64.4) (7.0)
			$+(2.8)(62)(1)^{3/2}+(2.8)(\frac{1}{2})^{9}(1)^{3/2}$
			+ (5.8×4/50)(1)3/2 = 333
	692.0	9.5	Q = 0.8 T- (1.5)2 1 (0-4)18.0 =
	<u> </u>		+ (2.8)(62)(2) 2/2 + (2.8)(1)/11)(1)/12
			+17.671 40//2)(2)3/- = 841
	693.0	10.5	Q = C.E TT (1.5) 2/(64.4) (9.0)
			$-(2 e)^{3/2}(3)^{3/2}(2)e)(\frac{3}{2})^{\frac{3}{2}}(2)e^{\frac{3}{2}}(2)e^{\frac{3}{$
			+(2.8)/(0)/1/3/2 = 1649
	693.5	11.0	Q = 0.8 Tr (1.5)2 1(64.4) (9.5)
		ì '	+(2.8)(62)(3.5)3/2+(2.8)(1)(28(3.5)
			$1(2.8)(70)(1/2)(2.5)^{2/2} = 2175$

Anderson-Nichols	&	Company, Inc.	
------------------	---	---------------	--

Subject BREACH ANALYSIS
MIRROR LAKE DAM

Sheet No. 9 of 15

Date 7//7/80

Computed 206C

Checked ---

JOB NO.

38

Job. No. 3273-25

' 1	· CONSITION 1
	2
	3
	AT CROSS SECTION I, A. BREACH OF THE WEST EARTH
	EMBANKMENT WOULD CAUSE A RISE IN THE WIEL
	ABOUT THE NATURAL TAILWATER OF ABOUT
	7
	10.8 - 4.0 = 6.8 FT. (SEE RATING CURVE PG. D-9.
	9
1	MIRROR LAKE RUAD WOULD BE OVERTORPED BY A DEPTH EQU
<u>:</u>	10.8 - 7.5 = 3.3 ET
<u>:</u>	3
	IN ADDITION TO THE ROAD BEING FLOODED IT IS ALSO
<u>-</u>	VERY LIKELY THAT THE CAMP OSCEOLA BUILDING LOCATED
	2/5 OF THE ROAD AND I'ME UNINHABITED SHED LOCATED
	DIS OF THE RUND WOULD ALSO BE INVINATED BY
1	ABOUT 3 FEET, THIS NUMBER WAS ARRIVED AT AFTER
١	EXAMINATION OF THE RELATIVE PUSITION AND ELEVATIONOF
1	19 THESE RULLBINGS WITH RESPECT TO THE BREACHED SECTION
2	AND MIRROR LAKE KOAD (CRUSS -ELTIN # 1)
2	ISHED \
2	
2	MINNOR LAKE RE
2	Assume 3 445.4
2	OSCECTA NO SECURITION OF THE PROPERTY OF THE P
2	BUILDING 72 A100 PATH OF WATER 1983 =
. 2	DUE TO
2	BREACH 602 602 33'
2	29 OSS EMAIL CAMP CAMP
	1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N
	$\frac{9ay_5}{EAPTH}$ $\frac{UE_{57}}{EAPTH}$ $\frac{695}{E}$
	EMBAUKMENT GEE LAKE
	33 RoAC 7
	GEL .
1	$\begin{array}{c} 5H \in \mathcal{D} \rightarrow \mathcal{C} \\ \hline \\ 35 \end{array}$
3	36
	37

Ander	son-Nichols & Company,	Inc. Subject BREACH ANALYSIS MIRROR LAKE JAM	Sheet No
	JOB NO.	. 3273-25	Checked
RES . SCAL	0 1 2 3 4 5 6 E	7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29
	2 3 <u>CONDITION</u> 4	2: BREACH OF EAST EARTH	EMBANKMENT
	5 B	REACH WIDTH , WB) WAS ASSUM T. EAST FROM THE EAST END OF	
	8 9 10	W8 = 78 FT	
	112	CONDITION I, YO WAS MEASUR	
	13 D/S TOE	ELEVATIONS VARY THROUGHOUT. SECTION. A WEIGHTED Y.	THE ASSUMED
	15 CALCULA	TEP.	
•	17 18	ALCULATION OF WEIGHTED Yo".	
	19 (6	96.7-695.3) +(666.7-694.6) × 25° + (6	96.7-694.6)+ (696.7-693.2))x 25°
	21 + ((4	596.7-694.1) + (696.7 - 693. Z)) × 10' + (69	26.7-694.1) + (696.7-673.4) × 15
	23 + ((6	96.7 -693,4) + (696.7 -692.8) X 3' -	= 78 = Z.6 = Y.
	26 CALCULA	ATE Q = 8 W, 32.2 y	3/2_
	28	$Q_{1} = 8 (78) \sqrt{32.2} (2$	3/2
	30	$Q_{L} = 550 \text{ c.f.s.}$	
	31	62	
	33	-	

Subject BREACH ANALYSIS
MIRRSR LAKE DAM

Sheet No. // of /5
Date 7///80
Computed 2066

JOB NO.

JOB No. 3273-25

	D-/2		•,
	37		
-	36		•
	34 35		, * ,
	33	_	
	31		
- · · · · ·	30		
	29		<u> </u>
	28		
	27	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	26	· · · · · · · · · · · · · · · · · · ·	·-····································
	25		
	23		
	22		
	21		
-	20		•
	19		•
	$Q_{BT_2} = 550 \text{ CFS}$		
	17 ABT = Ob2		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	16		
	DISCHARGE QBT. THEREFORE FUR CONDITION		
	CAUSED BY THE BREACH Qh TO OBTAIN THE		
	TO ADD THE FLOW FROM THE STOP LOG BAYS QSL		
1	ANALYTING THE EFFECTS OF THE BREACH ON M. 11 RUAD AND AREAS U/S, IT WAS NOT CONSID		
	HOWEVER SINCE WE WERE PRIMARILY INTE.		
	WILL IT PEACHES A POINT DIS OF MIRROR		
	FLOW FROM THE TWO STOP LOG BAYS (GSL= 7	3 cfs ⇒	SEE PG.D-15
	THE ASSUMED BREACH SECTION WOLLD NOT	•	
	EARTH EMBANKMENT SUGGESTED THAT YWATER		
	VISUAL OBSERVATION OF THE AREA DIS	OF THE	= ACT
	3 CONDITION Z (CONTINUED)		
	2		

Subject BREAKH ANDREYSIS
MIRROR LAKE DAM

Sheet No. 12 of 15
Date 7/17/80
Computed 600.0

JOB NO.

JUB NO. 3273-25

ARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3

CONDITION 2:

CROSS SECTION #1

MIRROR LAKE READ

LOCATED - 100' 2/3 OF DAM

WITH A 36" O CORROGATED METAL PIE

TRAISINERSING THE ROAD - SEE Py 2-8

FOR JETAILS.

WE ARE ASSUMING MOST OF TOTAL BREACH DISCHARGE

QBT = 550 CFS WILL PASS OVER THE ROAD BEFORE

COMBINING WITH THE FLOW FROM THE STOR LOG BAYS (GSETS (FS))

WHICH FLOWS UNDER MIRROR LAKE ROAD THROUGH THE

36" O CORRUGATED METAL PIPE. TO DETERMINE THE

DEPTH OF WATER OVERTOPPING THE ROAD NE THEREFORE

DEVELOPED A STAGE DISCHARGE CURVE UTILIZING THE WEIR

EQUATION ONLY.

RATING CURVE DATA FOR CRUSS SECTION #1

ELEVATION	STAGE ABOVE ROAD	DISCHARGE
(F- NGVD)	(Fr.)	(CFS)
		. <u> </u>
690.0	0	3,
691.0	/	$Q = (2.8)(62)(1)^{3/2} + 2.8(8)(1)^{1/2}$
		$+(2.8)(20)(1)^{3/2} = 213$
691.5	1.5	
		$+2.8(30)(\frac{1}{2})(1.5)^{2/2}=427$
691.7	1.7	Q = 2,8(62)(1.7) 1/2 + 2,8 (13.6)(/2)(1.7) 2/2
		$f = 2.8(34/1)(1.7)^{3/2} = 532$
691.8	1,8	Q=0.8)(62×1.8)3/2 + 28(144)/2)(1.8)3/2
		+28(36)(2)(1.5)3/2 = 590
692.0	2.0	Q = (2.8)(62)(2.0) 3/2 + 2/2 (16) 2/2) 12
		$+2.8(40)(1.)(2)^{3/2} = 713$
692.5	25	Q = (2.8)(62)(2.5) = /2 + (2.5)(20)(=) 2.5) 1/2
		$+2.8(50) = 12.5)^{-1} = 908$

D-13

Subject <u>BREACH ANALYSIS</u>
MIRROR LAKE DAM

JOB NO.

8

9

10

11

12

13

14

15

30

Jos. No. 3273-25

JARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 IN. SCALE

CONDITION Z

A BREACH OF THE EAST EARTH EMBANKMENT WOULD CAUSE MIRROR LAKE RUAD TO BE OVERTUPPED BY ABOUT 1.7 FT.

IN ADDITION, THE CAMP OSCEOLA BUILDING TUNINHABITED SHED LOCATED DIRECTLY IN THE PATH OF WERE ASSUMED TO THE BREACH DISCHARGE BE INUNDATED BY 2.0 and 1.5 FT RESPECTIVELY. THOSE FIGURES WERE ARRIVED AT AFTER EXAMINATION OF THE RELATIVE POSITIONS AND STRUCTURES Tuo BREACH AND MIRROR LAKE PURS IZELOW,

16 681 17 696 18 €95 19 MIARDA LAKE FOLD 694 20 693 AS SUMED CAMP EAST 21 PATH OCCOLA 692 EMBAUK. BUKDIN 4 22 691 oF asceoup WATERT 690 24 EBRTH EMBAN, BRÉALH 689 25 SECTION 688 26 STOP LOG 687 EMBANKMENT 27 684 28 29

D-15

38

Subject RREACH ANALYSIS
MIRROR LAKE DAM

JOB NO. 3273-25

SQUARES 1/4 IN. SCA	O LE	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
• • • •	2	
	3	Manage of the second se
	4	HARARU CONCLUSIONS &
	5	
	6	Two Breach ANALYSIS WERE PERFORMED; ONE FOR THE WEST
	7	AND ONE FOR THE EAST CEARTH EMBANKMENTS WHICH ARE
	8	REFERRED TO AS CONDITION LAND CONDITION Z RESPECTIVELY
*	9	RESULTS INDICATE THAT SHOULD THE WEST EARTH
	10	EMBANKMENT FAIL THERE WOULD BE AN INCREASE IN WSEL
;	11	ABOVE THE NATURAL TAILWATER WSEL OF ABOUT 6.8 FEET,
	12	THIS WOULD RESULT IN MIAROR LAKE ROAD BEING OVERTOPPED BY 3.3. 7
· · · · · · · · · · · · · · · · · · ·	13	WHICH LOULD LAUSE APPRECIABLE DAMAGE TO THE RUAD, FURTHERMORE
	14	THE CAMP OSCEOLA BUILDING LOCATED WIS OF MIRROR LAKE ROAD AND I
	15	ZNENHABITED SHED LOCATED DIS OF THE HOAD COULD EACH BE
	16	INUNDATED BY APPROXIMATELY 3 FEET OF WATER. CONSEQUENTE
	17	THERE IS THE POTENTIAL FOR THE LUSS OF 1-2 LIVES AND
	18	CONSIDERABLE PRUPERTY HAMAGE.
	19	THE BREACH ANALYSIS FOR THE EAST EARTH EMBANKMENT
	20	INDICATED THAT MIRACR CAKE ROAD WOULD BE OVERTOPPED BY
	21	1.7 FEET OF WATER WHICH COULD HINDER ITS THE AT AN
	22	ACCESS RUAD. IN ADDITION, THE CAMP OSCECLA BUILDING ANLI
	23	THE UNINHABITED SHED COULD BE INUNDATED BY 2 AND 1.5 FE
	24	OF WATER RESPECTIVELY WITH THE PUSSIBLE LOSS OF 1-2 CIUP
·	25	AND SOME PRUPERTY DEMAGE
	26	BOTH ANALYSIS THEREFORE SUGGEST THE POTENTIAL FOR A LOSS
*******	27	OF 1-2 LIVES AND APPRECIABLE PROPERTY DAMAGE FOR
	28	THIS REASON MIRPOR LAKE DAM WAS CONFIDERED A
	29	SIGNIFICANT HAZARD.
-	30	
	31	
	32	en de la companya de
	33	
	34	
	35	
	36	
	, 90	

36 37 38 Subject TEST FLOOD ANALY:

Sheet No. / of /5

Date 7//5/80

Computed 206 Checked 20

JOB NO. 3273-25

IN. SCAL	0 1 .E 	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
	2	
	3	
	4	MIRROR LAKE DAM TEST FLOOD ANALYSIS
	5	
	6	
!	7	
	8	DRAINAGE AREA (D.A.) & _O.34 Mi2 (SHEETS IN THE
	9	NHWRO FILES REPORT A D.A. OF 0.43 M. 3.
	10	AN ATTEMPT WAS MADE TO VERIFY THIS
	11	VALUE BY PLANIMETERING THE D.A. OFF OF A
	12	1:62,500 SCALE USGS QUAD (PLYMOUTH, N.H.),
	13	RESULTS INDICATED A D.A. NO LARGER THAN
	14	ABOUT 0.34 M/2 THIS VALUE OF 0.34 M, 2 WAS
	15	CONSIDERED AN ACCURATE ESTIMATE OF THE DA.
	16	AND WAS USED IN PLACE OF THE NHWRG
··· -	17	VALUE, 0.43 M, 2, WHICH WE WERE NOT
Ì	18	ABLE TO JUSTIFY.)
	19	SIZE CLASSIFICATION & SMALL
	20	MAXIMUM STORAGE CAPACITY = 750 AC-F
	21	HYDRAULIC HEIGHT (696.7-685.2) = 11.5 F
]	22	119BRAU LIC \$121GAT (676.17 665.6) 1173 (
	23	HAZARD CLASSIFICATION & SIGNIFICANT
	24	THE PART CONTRICTOR OF THE CHANGE OF THE
	25	
	26	TEST FLOOD RANGE 6 100 YR TO 1/2 PMF
	27	
	28	
	29	CHOSEN TEST FLOOD & YZ PMF BECAUSE OF THE
	30	POTENTIAL FOR THE LASS OF
	31	O TO Z LIVES
	32	
	33	
	34	
	35	

38

Subject TEST FLOOD ANALYSIS MIRROR LAKE DAM

Sheet No. 2 of _	سي ر
Date 7/15/80	
Computed	
Checked [11]	

JOB NO. 3273 - 25

SQUARES 1/4 IN, SCAL	0 1 2 3 4 5 6 7 E	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
	3 STEP # 1	: DETERMINE PEAK INFLOW (QP,)
 .	5	THE SLOPE OF THE WATERSHED WAS CALCULATED.
	6 7 8	$\Delta ELEVATION = 1280 - 695 = 585 FT$ $LENGTH OF BASIN = 0.95 Mi$
	9	TO DETERMINE THE PROBABLE MAXIMUM FLOOD (PMF) IN CSA
	11	FOR THIS AREA THE "MAXIMUM PROBABLE FLOOD
	13	(616 FT/MI) QUALIFIES IT AS MOUNTAINOUS TERRAIN
	15	(SLOPES > 20 FT/MI). THE MAXIMUM ALLOWABLE PMF OF 2550 CSM WAS USED IN THE FOLLOWING CALCULATIONS
	17	SINCE THE COM VALUE CORRESPONDING TO A D.A CF 0.34 M: 2 IN A MOUNTAINOUS TERRAIN WOULD EXCEED THE 255
	19	CSM LIMIT.
	21	2550 CFS x 0.34 M; = 867 CFS = PMF
	23	PEAK INFLOW = 1/2 PMF = E67 = 434 CFS
	25	PEAK INFLOW = QP, = 434 CFS
	28	CHECK & ACCORDING TO COE GUIDANCE, THE
	30	70 1/4 THE PMF : 100 YEAR = 867 = 217 CFS
÷ .	32 .	THIS VALUE OF 217 CFS COMPARES VERY
	33	WELL WITH THE YALUE OF 210 CFS FOR THE 100 YR FLOOD FOUND IN
	35 36	THE NHWRE FILES,
	37	

7-19

Subject TEST FLOOR ANALYSIS
MIRROR LAKE DAM

Sheet No. 3 of 15

Date 7/15/80

Computed 2/6 C

Checked 11

JOB NO. 3273-25

38

171

TARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

V. SCALE DETERMINE SURCHARGE HEIGHT TO PAIS OP = 434 CFS 3 TO DO THIS IT WAS NECESSARY TO DEVELOPE A PATING CURVE FOR MIRBOR LAKE PAM. THE CURVE TAKES INTO ACCOUNT FLOW THROUGH THE TWO STOP LOG BAYS, OVER, THE EAST AND WEST EARTH EMBANKMENTS AND THE 14 FT CONCRETE PAD ABOVE THE STOP LOG RAYS AS WELL AS A NATURAL SHALE LOCATEL NW OF THE DAM. THE FOLLOWING IS A LIST OF THESE OUTFLOW AREAS WITH THEIR CREST 10 ELEVATIONS, LOCATION AND EQUATIONS WISED TO FATE 11 THEIR FLOW, 12 STOP LOG BAYS 14 a) WITH STOP LOGS IN PLACE : 15 OF STOP LOGS = 695,0 NGVD 16 WE'R EAN TO ELEY 6967 -Q = 33 L H 1/2 17 (+) CRIFICE EGIS FOR ELEV. >696.7' = Q = 0.5 A 129H X WITTOUT STOF LOGS: 118 19 Bottom OF LEFT PAY = 688.9 NOVD BOTTOM OF RT PAY= 692.9 NEW * WELF EGN: TO, ELEV 676.7 : LT. EAY = Q=2.7 LH 3/2; RT. EAY = Q=2.8 LH== 21 ORIFICE EGN FOR ELEY >696.7' (ELTHEATS) = Q = CIE A /29H 22 NATURAL SADDLE 23 400± NW OF DAM CREST ELEV. = 696.5 NGVI 25 WEIR_EON = Q = 2.7 WH 3/2 26 EAST AND WEST EAPTH EMBANKMENTS 27 LOW POINT = 696.7 NOVA 28 WEIR EQN = Q = 2,7 LH 3/2 CONCRETE PAD OVER STOP LOG BAYS 30 ELEJATION = 697,2 NOVD 31 Q = 2.3 LH 3/2 WEIR EUN = 32 33 34 C' VALUE TAKEN FROM THE KING AND BRASER HANDBOOK OF 35 HYLRAULIES . EINTH ENT WY 36 ADJUSTED THE VALUE OF & AT EIR/ - 697.2 37

MATCHEL REASONARY WELL WITH WELL EGY G AT ECCY - 696-7

free will or in yout to make your manifelies compact considering

JOB NO. 3273-25

SQUARES 1/4 IN, SCAL	0 1 :	2 3 4 5 6	7 8 9	9 10 11 12	13 14 1	5 16 17 18	B 19 20 21	22 23 24 2	25 26 27
	1	CAI	LCULAT	IONS FO	R THE	MIRE	OR LAKE	RATING	CURVE
l å	2		ARE	SHOWN	BELO	<i>√</i> :		·	
· -	3								
	5	WITH TOP	OF STO	p Logs	IN BO	TH BAY.	SATE	LEVATION	1 = 69.
-	6		AR				FI = 1		7.1
7	7			_			R EQN		
	8			_	•		CE EQN	Q = CA	729H
-	9	,		•	×5′.=/			_	
	10	ELEV (NOVO)		Hweir (FT)			Ć. sa	Q (0)(0) ^{3/2}	(CFS
-1	11	695.0		1.0		-		(10)(1) ^{3/2}	
	12	696.0		1.5				(10) (1,5) ³ /	
	13	696.7		- 1: 1:7		_ ,	` ,) [10] (1.7) 3/	
	14	697.2		——————————————————————————————————————		۔۔۔۔۔۔۔۔ سمج جس		5)(17)(1644	
	15	698.0				بران میران	-	5(17)(169)	
	16	699.0		_	_	15	-	E) (17) (7/64	
: :	17						696.7 -	不	
	18						r:	8, 5,	WEST GI
	19	WITHOU	T 570	PLOGS	IN E	ITHER	,	ENT BAY	
	20	ERST BAY		,	,		£ 688.1_	<u> </u>	╝.
	21		<u> </u>	= 2.7 wein	C =	0.5 OFF		u/s	FACE
46	22	WEST BAY	: AR	EA= 3.8'	× 5' =	19 FT2			
•	24		C	= 2.8 WEI	r C=	0.5 ORIF	- PAY	<u>a</u> -	(c #5)
• • • • • • • • • • • • • • • • • • • •	25	ELEV. NEVO.	YWEIR H	DEF Q	(cfs) _Hn	EIR HORE	F OR(CFS)	(QL+GR)	•
· ·	26	695	6.1	203			43	246	
	27	696	7.1	255	,		76	331	-
·	28	6%,5	7.6	- 28 <i>3</i>		.6 .8	96	379	
	29		7.8	•	<u>.</u>		. 104	398	
= -	30	697.2		326	-	- 2.4° - 3.2	110	438 493	
. • -	31	698.0		.2 357 .2 390	-	- 4,2	136	546	
	32	699.0			<i>A</i> = 7		156 WEIR EG		SEE Pa
	33	NATURA ELEV. (NOVE		HIWEIR)		., , , , , , , , , , , , , , , , , , ,	WEIR EQ	UHILL	(SEE FG
•	34	696.5	2	1. (WEIR)	<u> </u>				J
· ·	35	696.7		, 2_	(Q=(7.7) ⁽ 34	9(2) ^{3/2} +(2.7)	11 , with	;) ³ /2
<i>;</i>	36	• • •					(治ればも		_
	37	697.2		.7	G) =(2.7/30)	(17) ²⁴ + (8.7)	litarii Ek	-y2 &
•	38	.,		,		+ (2.7)	(= 1	1 -) = 2	<u>=</u>

DISTANCE

DIVIBIONS PER INCH BOTH WAYS. 60 BY SO DIVISIONS.

TO THE STATE IN STOCK BIRKET

Subject TEST FLOOD ANALYSIS MIRROR LAKE DAM

JOB NO.	3273	- 25
---------	------	------

1,	CALCULATIONS F	OR MIRROR LAK	E RATING CURVE (CONTINUED)
2	NATURAL SAD	DIE CONTINU	<u>E 2)</u>	
3	ELEY. (NEVD)	HWEIR (FT)	$Q = (2.7)(30)(15)^{3/2} + (2.7)(\frac{1}{2})(15)^{3/2} + (2.7)(\frac{1}{2})(15)^{3/2}$	(QLICFS)
4	698.0	1.5	$Q = (2.7)(30)(1.5)^{3/2} + (2.7)(40)$	1.5x 1.5x =)(1.1) 1/2
5			$+(2.7)(\frac{1}{.23}\times1.5\times\frac{1}{2})(1$	$(.5)^{3/2} = 206$
6				
7	699.0	2.5	$Q = (2.7)(30)(2.5)^{3/2} + (2.7)(\frac{1}{0.0})^{4}$	2.5 /2)(2.5)2/2
8	- 1 1· O		+ 12.7) 1 = x2.5 ×	$(2.5)^{3/2} = 526$
9			(-1)(723	
10				
11				
12				
13	and the second of the second o		<u></u>	
- 14	EAST AND WE	ST EARTH EME		
		C = 2.7 FOR	WEIR EQUATION C	£ = CL143/2
15				
16	ELEV (NO	EVO) HWEIR (F	<u> </u>	Q CF:
17				
18	696.7	0		0
19	,			
20	697.2	VARIES	$Q = (2.7)(7)(.2)^{3/2}$	
21		V1.11/L3	+(2.7)(16)(.2)2/2	
22			+(2.7)(9)(.1) 3/2	
23			?(2.7)(6) (.05) ³ !	
24			1 (x 1) (x) (101)	_ /
25			(-1/2-)/1/3	/_
26	698.0.	VARIES	$Q = (2.7)(25)(.4)^{3}$	
27	,		$+(2.7)(4)(.4)^{3/2}$ $+(2.7)(12)(.3)^{3/2}$ $+(2.7)(25)(7)^{3/2}$	
28			t(2.7)(12)(.3)	
			$\frac{1(2.7)(25)(.7)^{3/2}}{1(2.7)(35)(.6)^{3/2}}$ $+(2.7)(35)(.6)^{3/2}$ $+(2.7)(15)(.7)^{3/2}$	
29			H(2.7) (35)(14) 3/2	
30			+(2.7) (15) (17) 3/2	
31				
32			$\begin{array}{c} + (2.0)(11)(11)(11)^{2/2} \\ + (2.0)(12)(12)^{2/2} \\ + (2.0)(16)(16)(16)^{2/2} \\ + (2.0)(20)(16)^{3/2} \\ + (3.0)(20)(17)^{2/2} \end{array}$	
	<u>.</u>	-	f (27) (18) (19)	
34			+ (27) (25) (16) 3/2	
35			+ 10 20 10 10 10 10	
36			+ (6.7) (05) (15) 3/L	
37			1 (01) (1)	
			- / " . Lar / /	

D-22

Subject TEST FLOOD ANALYSIS Anderson-Nichols & Company, Inc. MIRROR LAKE DAM Computed JOB NO. 3273-25 QIIARES 1/4 I. SCALE 2 CALCULATIONS FOR MIRROR LAKE RATING CURVE (CONTINUED) EAST AND WEST EARTH EMBANKMENTS (CONTINUEL) 5 HWEIR (FT) ELEV. (NGVD) a (CFS) Q= (2.7)(15) (.6)3/2 699,0 VARIES + (2.7) (75) (1.4) 3/2 10 + (2.7)(5)(1.4)^{3/2} 11 +(2.7)(20) (1.1) 3/2 12 + (2.7) (25) (1.6) 3/2 13 +(2.7)(35)(1.6) 3/2 14 + (2.7)(15)(1.7) 3/2 15 + (2.7) (1) (2.1) 3/2 16 +(2.7) (7) (2.2) 3/2 17 + (2.7)(18)(1.8)2/2 18 · + (2.7) (25)(1.5) 3/2 19 +(2.7)(25)(1.7) 3/2 20 +(2.7)(25)(1.7)2/2 +(2.7) (25/1/.7) 3/2 21 22 + (2.7) (40) (1.4)3/2 +(2.7)(8)(.5)3/2 23 24 25 PAD CONCRETE OYER THE TWO STOP LOG EAYS 26 Q = CLH3/2 C=Z.8 FOR WE'R EON 27 ELEY (NGVD) H WEIR (FT) Q (CFS) 28 29 697.2 0 0 $Q = (2.8)(14)(.8)^{3/2}$ $Q = (2.8)(14)(1.8)^{3/2}$ 30 698.0 28 .8 31 95 699.0 1.8 32 33 34

Subject TEST FLOOD ANALYSIS
MIRROR LAKE DAM

JOB NO. 3773-25

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 30

1/4 IN. SCAL	0 1 E	2 3 4 5	6 7 8 9	10 11 12 13	14 15 16 17	18 19 20 21	22 23 24 25	26 27	28 2 :
	1			• • • • • • • • • • • • • • •	· 				
	3	POINTS	USED TO F	PLOT MIRR	OR LAKE K	PATING CURU	∕ E		
	4	ELEY.	WITH STOP LOGS	WITHOUT STOP LOGS	NATURAL SADDLE	EARTH EMBANKMENTS	CONCRETE PAD	WITH STOFLOGS	WITHOUT !
	5	(FT NEVD)	Q(cfs)	Q(cfs)	Q (cFs)	1 -	Q (CFS)	Q (CFS)	QTOTAL
**	6	695.0	0	246				0	246
- 	7	696.0	33	331				33	331 '
	8	696.5	50	379	0			50	379
	9	696.7	73	398	7	0		80	405
 >(10	697.2	95	438	55	7	0	157	500
	11	698.0	120	493	206	426	78	780	1153
	12	699.0	145	546	556	1663	95	2429	2830
	13 pto	10 697.5 10 697.3		464	102	89 22	6,	285	661
	· ' -				10	1 22		175	545
	15		NG THE			PATING CU.	,	1-25)	
and the secretaries of the secondary of	17		HE ELEW			E AT QF	1 = 434 CLZ	**	***
	18		MAY BE D	ETERMINE	ک.				ι
	19		0	ע איט -	⇒>	199 ~1	. / > = = = =		_
	20		₽, -	434 cFs	~	697.7' N		CHAILLA CHI	
· '	21		. =						
71	22						/ ~ .	م به حری	
	23				-				٠٠,
	24	5-=P=	2 L	D = = = 6 00 0		VOLUME	Dr. C.Dr.14	06F 1	CTR
	25		~ . 0	DEDE KININ	V € J J Ţ Ċ	VOCCIPIE	. UP O UN SAST	~ ~ ~ (3,00,
•	26		72 20	Tuic	A (7000	SE ELEV.	Atrod .	OFF	
	27					EC. THE			
•	28					CUCATIONS		-	
	29					URI'E AN			
•	30	•	173ECF		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
·	31		-	•					
	32		•	** .					
e in the second section of the	33			The same of the sa		• 12 / 12 · • 1			
•	34	•							•
	35				•				
	36								<u>~</u>]
. ,	37			. • • •					4
• -	38								•

Subject TEST FLOOD ANALYSIS

MIRROR LAKE DAM

Sheet No. <u>0</u> of <u>/5</u>

Date <u>7//5/60</u>

Computed <u>246</u> Checked LUJ

JOB NO. 3273 - 25

5

10 11

12

14

15

16 17

18 19

20

21

22

23

24 25 26

27

28

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 3C 1/4 IN. SCALE

CALCULATIONS FOR STORAGE VS ELEVATION CURVE (AND SURFACE AREA VC. ELEV. " CURVE)

ELEVATION = 605 FEET (NGVD) = NORMAL FOOL ELEVATION (MOM OUT)

* AVERNOE PERSON THROOM LAKE TO STY MORES

1 - CTOKNES = 37 × 18.3 = <u>677</u> Acre Part

CLING FRUSTRUM OF PYRAMIS EQUATION" AND PRANAMETERED EVALUACE AREAS, DEVELOPE POINTS FOR STORAGE ELEVATION CURVE

V = 1/3 h (b, + bz + Vb, bz)

EINLERGES SURFACE AREA (ACRES)

NORMAR ROSE SURFACE AREA (ACRES)

Elevation acces Norman form (FEET)

ELEVATION = 720 FEET (NGVE)

SURFRIE AREA = 78 ACRES

2-KINGE IN ELEV = 20 FEET

V = 1/3 (20) (55 + 78 + 1(55) x(78)) = 1323 ACRE - FEET

TOTAL STORMS = 900 + 1323 = 2229 ACRE - FEET

- Committee of the Comm

Morphometric measurements of Mirror Lake, New Hampshire (1968)
43° 56.5'N, 71° 41.5'B

Maximum	Effective	Length (517 n	Average Dep	tn <u>5.37</u>	<u>-</u>
Maxicum	Effective	Width	358 m	Length of S	horeline 1840	
Area			14.9 ha	Shore Devel	opment 1.3	
Maxiquo	Depth		10.9 m	Volume Deve	lopment 1.5	
Depth	Area m ² x 10 ⁴	(% of total	Stratum al) (m)	¤³ × 10³	Volume (% of total)	
0	14.9	100.0	0-1	143	17.2	
1	13.7	91.7	1-2	130	15.7	
2	12.4	93.4	2-3	113	14.2	
3	11.3	76.0	3-4	108	13.0	
4	10.3	69.0	4-5	98.0	11.8	
5	9.3	62.5	5-6	87.4	10.5	
6	3.2	55.0	6-7	₹70.7	8.5	
7	6.0	39.9	7-8	43.6	5.3	
8	2.9	19.6	e-9	21.6	2.6	
9	1.5	10.1	9-10	8.9	1.1	
10	0.4	2.9	10-10	0.9 1.2	011	
			Total	830	100.0	

140, 110 87 12

20

TRACT MOS MADA DA SA LA COLOR

Subject TEST FLOOD ANALYSIS MIRROR LAKE DAM

JOB NO. 3271-25

SQUARES 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 . 1/4 IN. SCALE

STEP # 26 DETERMINING THE VOLUME OF SURCHARGE (STOR) (CONTINUED)

TEST FLOOD INFLOW ELEVATION = 697,7 STORAGE AT 697.7 790 AC-FT 677 AC-FT NORMAL STORAGE SURCHARGE STORAGE = 790-677 = 113 AC-FT

113 AC-FT X $\left(\frac{1}{0.34 \text{ M}^2}\right) \times \left(\frac{\text{M}^2}{640 \text{ Ac}}\right) = 0.52 = 6.23''$

STOR 1 = 6.23"

13

16 17 18

19

20 21

23 24

29

30 31

32

34 35

37

38

12

DETERMINE QP STEP # ZC

QP = QP × (1 - STORI) IF TEST FLOOD = FULL PM.

SINCE THE TEST FLOOD IN THIS ANALYSIS = 1 PMF

 $Q_{\rho_2} = Q_{\rho_1} \times \left(1 - \frac{s_{TOP, 1}}{(19/2)}\right)$

 $\therefore Q_{p_2} = 434 \times (1 - \frac{6.23}{9.5})$

 $Q_{p_2} = 149$ CFS

_ DETERMINE SURCHARGE HEIGHT AND (STOR Z) TO PASS QP

FROM THE MIRROR LAKE RATING CURVE (WITH STOP LOGS" Pg 2 !)

AT QB = 149 CFS = ELEY = 697.2 = NEIGHT

FROM THE STORAGE ELEV. CURVE (Pg 3-29)

AT ELEV = 697.2 = Transe = THO ACTET

ひっとう

		nois a v	cumpa	іу, шс.				<u>, , , , , , , , , , , , , , , , , , , </u>	<u>10</u> 11127	۵/۵		t No			5		
		_	_			,	MIRROR	1 A15C	DAI	4	Date Com	puted _		c			
	JOB NO	. 3273	-25						,		Chec	ked	<u>- · · · · · · · · · · · · · · · · · · ·</u>				
DUARES 4 IN. SCAL	0 1 E	2 3	4 5	6 7	8 9	10 1 1	i 12 13	14 15	16 17	18 19 2	0 21	22 2:	3 24	25	26 27	28 29	30
-	2	S7572	#32	_ D&	TERMINIA	1169 36	P.C.H.H.P.G	براع لبر ع	THE BL	15 (575)	(2 ج	70 PA	155 (GF2	(41.7	ממשב"ב	ر ر
	3 .							· · · 									
	4		U.P. CH P	RGE.	STORAG	€ =	776-	677. = 5	13_Ac	-FT							
	<u> </u>			9: Ac	EFT X			M. = -	= 0	, 43. ' =	- [5,]	13" =	= 57	OR	2_∫		
	6			-		2.34 /s	1,2	o40 FC			_						
	.																• •
_	7	STER	# Di		E-FRE	NE	ALTER BY	F SUR.	UBRGF	AND	0.0						•
	8	F-1 74.	· · · · · · ·		- 1 - 1, 27, 20	72E. J	MICK 19		HOC.3S.			3					
	9	*** • • • •			.					J *		<u> </u>		7		=	
	10			370F	<u> </u>	<u> </u>	.= G.2	.3 <u>f</u> 5.	/3 =.	5.68		446	570A	· .			
·	11		·-·														
	12		·	-Op	= - Op.	_(_1_	A <u>vē</u>	5704	=	434 (1	- 51	68)=,	17.	FEF	5. =0,	٠. :
	12				··			。 			7	.5- J	i 				
		TEP *	4	DE	TERMAN	VE S	TOR 3	ANO	CON	PARS_	رسر لرما	AVE	E, 5	TOR	~		
	14					•								•			
	15			 Du	-175	CES	<u> </u>	> E	IEV :	¥ (-97;				100	TIME	- UP 11	\ •
	16			- 4/3	.T.4			<u>_</u>		697.	? .	ر ۱ ۱ مودر		PG	D -	25	\mathcal{I}
	17													,			
<u>-</u>	18									· · · ·							
	19			ELEV	= 697,2	2,5. NE	SVD	⇒ 7	775	ACRE .	FT		STOR CUR	PREJE VE	- F	14EV 0-29	,) .
	20														· /		
																	٠.
٠,	21			Mr	75 - (677	1	90	AC	RE-FT		= 50	رست جم	AG G	ری سے	TOPAGE	_
-	22										•				- •	- /	
2	23	5-0		- · · · · ·	22 60			···· · /		M; =			_/	_ [- ./	11_5	. >
. —	24	2100	د	· -	76 225	T. F1	×	4 4,2	.x	Va Ec	_ =	. 75	•			-5270	<u>* 5</u>
	25				·		· · · · · · · · · · ·	7 5		,		• •					
	26												÷ ÷				
·	27		• · · · · · · · · · · · · · · · · · · ·	STOK.	દે5	5.4二_	/\$.	REASO	WARLY	ردود	E 77		VE -	5.70R	F 57	68"	, •
	28		THE	REFO	RE	(i)	ມ_ : ` =	ROUTE	<u> 00</u>	TFLOW_	_=_/	175	CFS	د ـ			
· · ·						, ,	.		MMA								
	29	TE	57 /	-1.001	INF	رساء،	= 434										
	30	ļ								= /7	- ح	ES	(העדו על	572.6	C / AK F	× - }
•	31	1							,			7				200, 5	ー [•
	32	j			GLEV					126,12							
	33	1								NEVD							
	34	FIA:	OUNT.	DAM	15 000	GR.TO.	PRED =	697	-36	76.7 3	= 0	.6					
	35			HE . C.	682517	: J	OF T.1	40 5	70 P LO	5 PAYA	- w	ITH S	THE	57	300	د ښه	•
- 1		67				•				696.							
	36									5 / 0					-		٠
•	37	1		_	75 (1			-		- /	,	_		,	-		
	38 —	<u> </u>	i i w		/ <u></u>		- ر	-31		· · · · · · · · · · · · · · · · · · ·							
- ,	39	l					1'	- 1									

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

VER/DATE PHY/FED SCS A POWER CAPACITY

NGT CAPACITY

NAVIGATION LOCKS

NAVIGATION LOCKS DAY MO YR REPORT DATE 897 0890490 **POPULATION** 3 C 3 4 2 MAINTENANCE GAME DEPT 230 FROM DAM AUTHORITY FOR INSPECTION LATITUDE LONGITUDE (MEST) 2 4456.4 7141.5 CONSTRUCTION BY TOTALLE SPIN HETHEEN 2 EARTH ENDANKHENTS 22-RECONSTRUCTED 20-1970 € 3 181十 677 NED NAME OF IMPOUNDMENT NH FISH AND MEXINATES (ACRE ACTIES (ACXINATES) VILLAGE OF WEST THORNTON THO S ET STEPL G HAYS 33-STOPLOGS IN PLACE AT 695 FT NGVO NEAREST DOWNSTREAM CITY - TOWN - VILLAGE PL92-367 OPERATION 750 3 HIRROR LAKE INSPECTION DATE REGULATORY AGENCY THY PHAD T 09JUL80 ENGINEERING BY HE 194T HEMARKS NAME 0 REMARKS 3 ٤ 13 CONS. RUCTION MIRROR LAKE DAM VOLUME OF DAM 3 PURP0SES RIVER OF STREAM E ensormationers a co INC DISCHARGE (11.) ATEX RESCURCES HOARD PUPULAR NAME THENDBEAND FROOM INSPECTION BY COMPANY DIST STATE COUNTY DIST. YEAR COMPLETED 707 ¥ (-) (-) 0. OWNER DESIGN TYPE OF DAM WSASK :) L A ...

INVENTORY OF DAMS IN THE UNITED STATES