

2. Estimación No-paramétrica de densidad

2.1. Primera construcción

Sea X_1, \ldots, X_n variables aleatorias i.i.d. con distribución f en \mathbb{R} .

La distribución de f es $F(x) = \int_{-\infty}^{x} f(t)dt$.

Considere la distribución empírica como

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x).$$

Por la ley de los grandes números tenemos que $\hat{F}_n(x) \xrightarrow{c.s} F(x)$ para todo x en \mathbb{R} as $n \to \infty$. Entonces, $F_n(x)$ es consistente

Pregunta 2.1

¿Podríamos derivar \hat{F}_n para encontrar el estimar \hat{f}_n ?

La respuesta es si (más o menos).

Suponga que h > 0 tenemos la aproximación

$$f(x) \approx \frac{F(x+h) - F(x-h)}{2h}.$$

Remplazando F por su estimador \hat{F}_n , defina

$$\widehat{f}_n^R(x) = \underbrace{\widehat{F}_n(x+h) - \widehat{F}_n(x-h)}_{2h}$$

donde $\hat{f}_n^R(x)$ es el estimador de *Rosenblatt* .

Podemos rescribirlo de la forma,

$$\hat{F}(x) = \frac{1}{n} \sum_{n} I(x_i \circ x_i)$$

$$\hat{f}_n^R(x) = \frac{1}{2nh} \sum_{i=1}^n I(x - h < X_i \le x + h) = \frac{1}{nh} \sum_{i=1}^n K_0\left(\frac{X_i - x}{h}\right)$$

con $K_0(u) = \frac{1}{2}I(-1 < u \le 1)$, le cuál es equivalente al caso del histograma.

$$\hat{f}^{R}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)$$

2.2. Otra construcción

Con el histograma construimos una serie de segmentos fijo B_j y contabamos el número de datos que estaban **CONTENIDOS** en B_j

Pregunta 2.2

¿Qué pasaría si cambiamos la palabra CONTENIDOS por ALRE-

DEDOR DE "x"?

Suponga que se tienen intervalos de longitud 2h, es decir, intervalos de

la forma [x - h, x + h).

El histograma se escribe como

 $\hat{f}_{h}(x) = \frac{1}{2hn} \#\{X_{i} \in [x - h, x + h)\}.$

Ahora tratemos de modificar ligeramente esta expresión notando dos cosas

1.

 $(u) = \frac{1}{2}I(|u| \le 1)$

con $u = \frac{x - xh}{h}$

2.

 $\frac{1}{2}\#\{X_i \in [x-h,x+h)\} = \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right) = \sum_{i=1}^n \frac{1}{2}I\left(\left|\frac{x-x_i}{h}\right| \le 1\right)$

17

Finalmente se tiene que

#de vabres en el intend

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

$$\times -h$$

$$\times + h$$

$$\lambda + h$$

$$\lambda + h$$

Pregunta 2.3

¿Qué pasaría si cambiaríamos la función K del histograma por una más general?

Esta función debería cumplir las siguientes características

■ $K(u) \ge 0$.

■ $\int_{-\infty}^{\infty} K(u)du = 1$.

■ $\int_{-\infty}^{\infty} uK(u)du = 0$. Espanala ≥ 0 ■ $\int_{-\infty}^{\infty} u^2K(u)du < \infty$. Varianta < 00= $K(u) \ge 0$. Simething $K(u) \ge 0$ is similar = 0.

Por ejemplo:

Uniforme: $\frac{1}{2}I(|u| \le 1)$.

Triangular: $(1 - |u|)I(|u| \le 1)$.

Epanechnikov: $\frac{3}{4}(1-u^2)I(|u| \le 1)$.

Gausian. $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)$.

Entonces se tendría que la expresión general para un estimador por núcleos es

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

Pregunta 2.4

¿Qué pasaría si modificamos el ancho de banda h para un mismo kernel?

Nuevamente sería el ancho de banda ya que

Pregunta 2.5

 \cite{Q} ué pasaría si modificamos el kernel para un mismo ancho de banda h?

Recordemos nuevamente la fórmula

$$\int_{R}^{R} (X) dX$$
Cad
$$= \frac{1}{N} \int_{R}^{L} \operatorname{integra} dX$$

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

Cada sumando de esta expresión es una función por si misma. Si la egramos se obtiene que

integramos se obtiene que

