Part A

 d_1 is a metric. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$. Examine the requirements for d_1 to be a metric

- 1. Note that $d_1(x, x) = \max\{|x_i x_i| : i = 1, ..., k\} = 0$. Additionally, $|x_i y_i| > 0$ for all i and therefore the maximum is larger than 0, hence d(x, y) > 0.
- 2. Since $|x_i y_i| = |y_i x_i|$, it follows that $d_1(x, y) = d_2(y, x)$.
- 3. Note that one can rewrite $|x_i z_i| = |x_i y_i + y_i z_i| \le |x_i y_i| + |y_i z_i|$. This means that $\max\{|x_i z_i| : i = 1, ..., k\} \le \max\{|x_i y_i| : i = 1, ..., k\} + \max\{|y_i z_i| : i = 1, ..., k\}$ and therefore $d_1(x, z) \le d_1(x, y) + d_1(y, z)$.

Therefore d_1 is a metric over \mathbb{R}^k .

 d_2 is a metric. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$. Examine the requirements for d_1 to be a metric.

- 1. Note that $d_2(\mathbf{x}, \mathbf{x}) = \sum_{i=0}^k |x_i x_i| = 0$. Further more, $|x_i y_i| > 0$ for all $i = 1, \ldots, k$ meaning their sum is positive, hence $d_2(\mathbf{x}, \mathbf{y}) > 0$.
- **2**. Since $|x_i y_i| = |y_i x_i|$, it follows that $d_2(\mathbf{x}, \mathbf{y}) = d_2(\mathbf{y}, \mathbf{x})$.
- 3. Note that

$$\sum_{i=1}^{k} |x_i - z_i| = \sum_{i=1}^{k} |x_i - y_i + y_i - z_i| \le \sum_{i=1}^{k} (|x_i - y_i| + |y_i - z_i|) = \sum_{i=1}^{k} |x_i - y_i| + \sum_{i=1}^{k} |y_i - z_i|$$

hence $d_2(\mathbf{x}, \mathbf{z}) \le d_2(\mathbf{x}, \mathbf{y}) + d_2(\mathbf{y}, \mathbf{z})$.

Therefore d_2 is a metric over \mathbb{R}^k .

Part B

 d_1 is a complete metric. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$. We will first prove the following inequality

$$d_1(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{y}) \le \sqrt{k} \cdot d_1(\mathbf{x}, \mathbf{y})$$

For the first inequality, note that $|x_j - y_j| \le \sqrt{(x_j - y_j)^2} \le \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$ for all $i = j, \ldots, k$. Therefore $\max\{|x_i - y_i| : i = 1, \ldots, k\} \le d(\mathbf{x}, \mathbf{y})$ hence $d_1(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{y})$. Now for the second inequality, note that

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2} \le \sqrt{\sum_{i=1}^{k} (\max\{|x_j - y_j| : j = 1, \dots, k\})^2}$$
$$= \sqrt{k \cdot d_1^2(\mathbf{x}, \mathbf{y})}$$
$$= \sqrt{k} \cdot d_1(\mathbf{x}, \mathbf{y})$$

Therefore $d(\mathbf{x}, \mathbf{y}) \leq \sqrt{k} \cdot d_1(\mathbf{x}, \mathbf{y})$ proving the original inequality. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^k and assume it is Cauchy under d_1 . Take $\epsilon > 0$. Then $\exists N \in \mathbb{N}$ such that

$$d_1(\mathbf{x}_n, \mathbf{x}_m) < \frac{\epsilon}{\sqrt{k}}, \forall m, n > N$$

and therefore

$$d(\mathbf{x}_n, \mathbf{x}_m) \le \sqrt{k} \cdot d_1(\mathbf{x}_n, \mathbf{x}_m) < \varepsilon, \forall m, n > N$$

meaning that (\mathbf{x}_n) is Cauchy under d. Since \mathbb{R}^k is complete under d there exists $\mathbf{s} \in \mathbb{R}^k$ such that $\lim_{n\to\infty} d(\mathbf{x}_n,\mathbf{s})=0$. Note then by the first inequality and squeeze lemma that

$$0 \le \lim d_1(\mathbf{x_n}, \mathbf{s}) \le \lim d(\mathbf{x_n}, \mathbf{s}) = 0 \implies \lim d_1(\mathbf{x_n}, \mathbf{s}) = 0$$

Therefore the sequence (\mathbf{x}_n) converges under d_1 meaning \mathbb{R}^k is complete under d_1 .

 d_2 is a complete metric. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$. We will first prove the following inequality

$$d_1(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le k \cdot d_1(\mathbf{x}, \mathbf{y})$$

Consider $d_1(\mathbf{x}, \mathbf{y})$. Let q denote the index between $1, \ldots, k$ such that $d_1(\mathbf{x}, \mathbf{y}) = \max\{|x_i - y_i| : i = 1, \ldots, k\} = |x_q - y_q|$. Note then that

$$d_2(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^k |x_i - y_i| = |x_q - y_q| + \sum_{i=1}^{q-1} |x_i - y_i| + \sum_{i=q+1}^k |x_i - y_i| \ge |x_q - y_q| = d_1(\mathbf{x}, \mathbf{y}).$$

Therefore the first inequality holds. Note that $|x_i - y_i| \le d_1(\mathbf{x}, \mathbf{y})$ for all i = 1, ..., k. Therefore the sum of all i's is less than or equal to the sum of $d_1(\mathbf{x}, \mathbf{y})$ k times, meaning

$$d_2(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^k |x_i - y_i| \le k d_2(\mathbf{x}, \mathbf{y})$$

and hence the second inequality holds, proving the original inequality. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^k and assume that is is Cauchy under d_2 . Take $\epsilon > 0$. Then $\exists N \in \mathbb{N}$ such that

$$d_2(\mathbf{x}_n, \mathbf{x}_m) < \frac{\epsilon}{k}, \forall m, n > N$$

and therefore

$$d_1(\mathbf{x}_n, \mathbf{x}_m) < k \cdot d_2(\mathbf{x}_n, \mathbf{x}_m) < \epsilon, \forall m, n > N$$

meaning that (\mathbf{x}_n) is Cauchy under d_1 . Since d_1 is a complete metric by the previous proof, it follows that $\exists \mathbf{s} \in \mathbb{R}^k$ such that $\lim d_1(\mathbf{x}_n, \mathbf{s}) = 0$. Then by the first inequality and squeeze lemma

$$0 \le \lim d_2(\mathbf{x}_n, \mathbf{s}) \le k \cdot \lim d_1(\mathbf{x}_n, \mathbf{s}) = 0 \implies \lim d_2(\mathbf{x}_n, \mathbf{s}) = 0$$

Therefore the sequence converges under d_2 meaning \mathbb{R}^k is complete under d_2 .

Part A

Proof. Let $(x_n), (y_n), (z_n) \in B$. Examine the requirements for d to be a metric.

- 1. Note that $d(x_n, x_n) = \sup\{|x_i x_i| : i = 1, 2, ...\} = 0$. Since d is the supremum of absolute values which are all positive, the metric will always be positive or 0.
- 2. Since $|x_i y_i| = |y_i x_i|$, it follows that $d(x_n, y_n) = d(y_n, x_n)$.
- 3. Note that

$$d(x_n, z_n) = \sup \{|x_i - z_i| : i = 1, 2, ...\}$$

$$= \sup \{|x_i - y_i| + |y_i - z_i| : i = 1, 2, ...\}$$

$$\leq \sup \{|x_i - y_i| + |y_i - z_i| : i = 1, 2, ...\}$$

$$\leq \sup \{|x_i - y_i| : i = 1, 2, ...\} + \sup \{|y_i - z_i| : i = 1, 2, ...\}$$

$$= d(x_n, y_n) + d(y_n, z_n)$$

Therefore $d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n)$.

Therefore d is a metric over B.

Part B

 d^* does not define a metric of B because it is not always finite. If $(x_n) = 1$ and $(y_n) = 1$, then $d^*(x_n, y_n) = \sum_{i=1}^{\infty} 1$ which is infinite.

13.4

iii

Proof. Let $V = \bigcup_n E_n$ be union of a collection of open sets. Let $x \in V$. Then $\exists m \in \mathbb{N}$ such that $x \in E_m$. Since E_m is open, $x \in \mathring{E}$ and therefore $\exists r > 0$ such that $\mathbb{B}(x,r) \subset E_m \subset V$. Therefore $X \in \mathring{V}$. Therefore $Y \subset \mathring{V}$. Since by definition $\mathring{V} \subset V$, it follows that $V = \mathring{V}$ and therefore $V \subset \mathring{V}$ is closed.

iv

Proof. Let $V = \bigcap_{i=1}^n E_i$ be a finite intersection of open sets. If $V = \emptyset$, then it is open since the empty set is open. Let $x \in V$. Then $x \in E_i, i = 1, ..., n$. Since each E_i is open, there is an associated r_i such that $\mathbb{B}(x, r_i) \subset E_i$. Let $r = \min\{r_i : i = 1, ..., n\}$. Note then that $\mathbb{B}(x, r) \subset \mathbb{B}(x, r_i) \subset E_i$ for all i = 1, ..., n. Therefore $\mathbb{B}(x, r) \subset V$ meaning $x \in \mathring{V}$. Therefore $V \subset \mathring{V}$ which by the same logic as the previous proof gives $V = \mathring{V}$.

Part A

Proof. Let S be a set and \mathcal{U} be a collection of sets. Let $x \in \bigcap S \setminus U$. Then $x \in S$ and $x \notin U$ for all $U \in \mathcal{U}$. Therefore $x \notin \bigcup U$ meaning $x \in S \setminus \bigcup U$, hence $\bigcap S \setminus U \subset S \setminus \bigcup U$. Let $x \in S \setminus \bigcup U$. Then $x \in S$ and $x \notin \bigcup U$. Therefore $x \notin U$ meaning $s \in S \setminus U$ for all $U \in \mathcal{U}$. Therefore $x \in \bigcap S \setminus U$, hence $\bigcap S \setminus U \subset S \setminus \bigcup U$. Since both are subsets of each other,

$$\bigcap_{U\in\mathcal{U}}S\setminus U=S\setminus\bigcup_{U\in\mathcal{U}}U$$

Part B

Proof. First note that the previous result holds when the intersection and union are swapped. That is,

$$S\setminus\bigcap_{U\in\mathcal{U}}U=\bigcup_{U\in\mathcal{U}}S\setminus U$$

Let $\mathcal U$ be a collection of closed sets. Then

$$S \setminus \bigcap_{U \in \mathcal{U}} = \bigcup_{U \in \mathcal{U}} S \setminus U$$

Since each $U \in \mathcal{U}$ is closed, it follows that $S \setminus U$ is open. Therefore the right hand side is a union of open sets, which itself is open. Therefore the left hand side is open meaning the intersection of the closed sets must be closed.

13.6

Proof. Let E be a subset of a metric space (S, d).

1. \Rightarrow) Assume that E is closed. Then $\overline{E}=\subset\bigcap_{\substack{E\subset F\subset S\\F\text{ closed}}}F\subset E$ since E is a subset of itself

and is the smallest closed subset that contains itself. Since $E \subset \overline{E}$, it follows that $E = \overline{E}$.

- \Leftarrow) Assume that $E = \overline{E}$. Since \overline{E} is the intersection of closed sets, it itself is closed. Therefore E must also be closed.
- 2. \Rightarrow) Assume that E is closed. Let (x_n) be a sequence in E that converges to some $x \in S$. Assume towards contradiction that $x \notin E$. Then $x \in S \setminus E$, meaning $\exists r > 0$ such that $\mathbb{B}(x,r) \subset S \setminus E$. However, this means that choosing an $\epsilon < r$ means $\exists N \in \mathbb{N}$ such that $d(x,x_n) < \epsilon < r$ for all n > N. Therefore $x_n \in \mathbb{B}(x,r)$ for n > N. But that means there are infinitely many terms of the sequence outside of E, a contradiction.
 - \Leftarrow) Assume that E contains the limits of every convergent sequence in E. Let

- $x \in S \setminus E$. Suppose that for any r > 0 that $\mathbb{B}(x,r) \cap E \neq \emptyset$. Then it is possible to construct a sequence (x_n) where $x_n \in \mathbb{B}(x,\frac{1}{n}) \cap E$. Note that $(x_n) \to x$ since $d(x_n,x) < \frac{1}{n}$ for each n. However, this sequence is in E but the limit point x is not in E, hence a contradiction. Therefore there must be some r > 0 such that $\mathbb{B}(x,r) \cap E = \emptyset$ which is the same as saying $\mathbb{B}(x,r) \subset S \setminus E$. This means that $S \setminus E$ is equal to its interior and therefore $S \setminus E$ is open. Therefore E is closed.
- 3. \Rightarrow) Assume that $x \in \overline{E}$. Note that it is sufficient to show that for any r > 0 that $\mathbb{B}(x,r) \cap E \neq \emptyset$. If this is true, then by the same logic in (b) it is possible to construct a sequence in E that will approach x. Take r > 0 and assume towards contradiction that $\mathbb{B}(x,r) \cap E = \emptyset$. Then $E \subset S \setminus \mathbb{B}(x,r)$. Since open balls are open, then $S \setminus \mathbb{B}(x,r)$ is a closed set containing E which means that $\overline{E} \subset S \setminus \mathbb{B}(x,r)$. But then by the assumption, $x \in S \setminus \mathbb{B}(x,r)$ and $x \in \mathbb{B}(x,r)$ which is a contradiction.
 - \Leftarrow) Assume that x is the limit of a sequence (x_n) of points in E. By part (a), \overline{E} is closed and by (b), \overline{E} must contain the limit of any sequence of points in \overline{E} . Since $x_n \in E$ for all n, $x_n \in \overline{E}$ for all n. Therefore (x_n) is a sequence of points in \overline{E} and hence its limit must also be in \overline{E} .
- 4. \Rightarrow) Assume that $x \in \overline{\partial E}$. Therefore $x \in \overline{E}$ and $x \notin \mathring{E}$. Therefore it is sufficient to show that $x \in \overline{S \setminus E}$. Let $F \supset S \setminus E$ be a closed set. Note that then $S \setminus F$ is open and that $S \setminus F \subset E$. If $x \in S \setminus F$, then there is some r > 0 such that $\mathbb{B}(x,r) \subset S \setminus F$. Since $S \setminus F \subset E$, it follows that $\mathbb{B}(x,r) \subset E$. However, this implies that x is in the interior and is therefore a contradiction. Therefore $x \notin S \setminus F$ meaning $x \in F$. Since F was an arbitrary closed set containing $S \setminus E$, x is in every closed set containing $S \setminus E$ and therefore $x \in \overline{S \setminus E}$.
 - \Leftarrow) Assume that $x \in \overline{E}$ and $x \in \overline{S \setminus E}$. It is sufficient to show that $x \notin \mathring{E}$ since x is assumed to be in the closure. Assume towards contradiction that $x \in \mathring{E}$. Then there exists some r > 0 such that $\mathbb{B}(x,r) \subset E$. This means that $S \setminus \mathbb{B}(x,r)$ is closed set with $S \setminus \mathbb{B}(x,r) \supset S \setminus E$ which requires that $x \in S \setminus \mathbb{B}(x,r)$. However this is not possible since x is contained in any ball centered around it. Therefore x cannot be interior to E.

Part A

(a,b) is *Open*. Note that to show a set is open is the same as showing the set is a subset of its interior. Let $x \in (a,b)$. Let $r_1 = b - x$ and $r_2 = x - a$ and take $r = \frac{1}{2} \min \{r_1, r_2\}$. Then a < x - r < x + r < b. Therefore $\mathbb{B}(x,r) \subset (a,b)$ meaning x is an interior point. Therefore (a,b) is a subset of its interior points and therefore is open.

5

Proof. Note that $[a,b]^{\mathbb{C}} = (-\infty,a) \cup (b,\infty)$ which is the union of open sets. Therefore the complement of [a,b] is open and therefore [a,b] is closed.

Proof. Consider the interior of [a, b]. Note that a, b are not in the interior as for any r > 0, $a - r \notin [a, b]$ and $b + r \notin [a, b]$. Therefore the candidates for its interiorare (a, b). However, since (a, b) is open, it is equal to its interior and therefore the interior of [a, b] is (a, b).

Proof. Note that the smallest closed superset of (a,b) is [a,b]. Therefore the set subtraction of [a,b] and (a,b) gives $\{a,b\}$. Therefore the boundary of (a,b) is $\{a,b\}$. Since [a,b] is closed, its closure is the same. Its interior is also (a,b) and so using the same logic as before its boundary is $\{a,b\}$.

Part B

Open Balls are Open. Let (S,d) be a metric space. Let $x \in S$ and r > 0. Consider the open ball $\{s \in S : d(s,x) < r\}$. Let $y \in \mathbb{B}(x,r)$. Choose r' = r - d(x,y). Then if $z \in \mathbb{B}(y,r')$,

$$d(z, x) \le d(z, y) + d(y, x) < r' + d(y, x) = r$$

Therefore $\mathbb{B}(y, r') \subset \mathbb{B}(x, r)$ hence the original ball is open.

Closed Balls are Closed. Let (S,d) be a metric space. Let $x \in S$ and r > 0. Consider the closed ball $D(x,r) = \{s \in S : d(s,x) \le r\}$. Let $y \in S \setminus D(x,r)$. Then d(y,s) > r and therefore d(y,s) - r > 0. Let r' = d(y,s) - r. Let $z \in \mathbb{B}(y,r')$. Then

$$d(s,y) \leq d(s,z) + d(z,y) \implies d(z,s) \geq d(s,y) - d(z,y) > d(s,y)$$

Therefore $z \in S \setminus D(s,r)$ which means $S \setminus D(s,r)$ is open and hence D(s,r) is closed. \blacksquare

13.9

- a) The closure is the set itself unioned with $\{0\}$
- b) $\overline{\mathbb{Q}} = \mathbb{R}$
- c) The closure is $[-\sqrt{2}, \sqrt{2}]$

13.11

Proof. Let $E \subset \mathbb{R}^k$.

 \Rightarrow) Assume that E is compact. By the Heine-Borel theorem, E is bounded and closed. Therefore for any sequence in E, it is also bounded meaning the sequence has a convergent subsequence. Since E is also closed, it contains all its limit points and therefore the subsequence converges to a point in E.

 \Leftarrow) Assume that every sequence in E has a subsequence that converges to a point in E. Note that E must be bounded otherwise there exists sequences that will have no subsequential limit in \mathbb{R}^k . Let (x_n) be a sequence in E that converges to some $x \in \mathbb{R}^k$. By the assumption, there exists a subsequence that converges to some $y \in E$. However since (x_n) converges, its subsequence also has the same limit and therefore $y = x \in E$. Therefore E contains its limit points and is closed. Since E is closed and bounded, by the Heine-Borel theorem it is compact.