UNIVERSITATEA	POLITEHNICA	DIN	BUCU	REȘTI
Facultatea				

Aprilie 2022

CHESTIONAR DE CONCURS

Numărul legitimați	
	mitializare, specific
Prenumele tatălui _	iriatan tura iş A'
Prenumele	

DISCIPLINA: Informatica

VARIANTA A

- 7. 1. Folosim metoda backtracking pentru a genera submulțimile produsului cartezian dintre mulțimile M şi N care conțin doar perechi de forma (x, y) pentru care suma x+y este un număr par, unde x∈M şi y∈N. Ştiind că M={1, 2, 3, 4, 5, 6, 7, 8, 9} şi N={1, 2, 3, 4, 5} specificați câte submulțimi cu proprietatea indicată se generează. (9 pct.)
 - a) 2^{44} (b) 2^{23} ; c) 2^{8} ; d) 2^{22} ; e) 2^{7} ; f) 2^{45} .
 - 2. Se consideră următorul tablou unidimensional: v=(1, 7, 3, 8, 2, 5). Elementele acestuia sunt ordonate crescător folosind metoda bulelor. Câte interschimbări au loc și care dintre tablourile de mai jos nu poate să se obțină într-o etapă intermediară a algoritmului? (9 pct.)
 - a) 5 interschimbări si nu se poate obtine v= (1, 3, 2, 7, 5, 8);
 - b) 7 interschimbări și nu se poate obține v= (1, 3, 2, 7, 5, 8);
 - c) 7 interschimbări și nu se poate obține v= (1, 3, 2, 7, 8, 5);
 - d) 6 interschimbări și nu se poate obține v= (1, 3, 2, 7, 8, 5);
 - e) 5 interschimbări si nu se poate obtine v= (1, 3, 2, 7, 8, 5);
 - f) 6 interschimbări și nu se poate obține v= (1, 3, 2, 7, 5, 8).
 - 3. Care dintre următoarele expresii au valoarea adevărat dacă și numai dacă variabila x (de tip întreg) este un număr par. (9 pct.)

C/C++:	Pascal
E1: x % 2 == 0 •	E1: $x \mod 2 = 0$
E2: x / 2 * 2 == 0	E2: x div 2 * 2 = 0
E3: x / 2 * 2 == x *	E3: x div 2 * 2 = x
E4: x / 2 == x / 2	E4: x div 2 = x div 2

- a) E1; b) toate; c) E2 și E3; d) E4; e) E1,E3 și E4, f) E1 și E3.
- 4. Fie o matrice M de nxn numere întregi. Valoarea elementelor matricei depinde de poziția lor, astfel Mij=i-1, (1<=i, j<=n). Pentru n=21, calculați suma elementelor de deasupra diagonalei principale. Rezultatul este: (9 pct.)
 - a) 1750; b) 3290; c) 1540; d) 2870; e) 3080 f) 1330.
- 5. Un arbore cu 9 noduri, numerotate de la 1 la 9, este reprezentat prin următorul vector de tați: 0 1 2 2 4 4 1 7 8. Indicați numărul de frunze ale arborelui. (9 pct.)
 - a) 3; b) 2; c) 1; d) 6; e) 4; f) 5.

C/C++:	Pascal	
struct Data { int zi, luna, an;	<pre>type Data = record zi, luna, an : integer;</pre>	
};	end;	
<pre>struct Persoana{ char nume[30];</pre>	Persoana = record nume: string[30];	
struct Data datan;	datan: Data;	
};	end;	
struct Persoana p;	var p: Persoana;	

- (a) C/C++: p.nume[0] = 'A'; p.datan.an = 1999; Pascal: p.nume[1] := 'A'; p.datan.an := 1999;
- b) C/C++: p.nume[0] = "A"; p.datan.an = 1999; Pascal: p.nume[1] := "A"; p.datan.an := 1999;
- c) C/C++: p.nume[0] = 'A'; p.datan = 1999; Pascal: p.nume[1] := 'A'; p.datan := 1999;
- d) C/C++: p.nume[1] = "A"; p.datan.an = 1999; Pascal: p.nume[2] := "A"; p.datan.an := 1999;
- @) C/C++: p.nume = 'A'; p.datan.an = 1999; Pascal: p.nume := 'A'; p.datan.an := 1999;
- ff C/C++: p.nume[1] = 'A'; p.datan.an = 1999; Pascal: p.nume[2] := 'A'; p.datan.an := 1999.
- 7. Care este numărul minim de muchii pe care trebuie să le conțină un graf neorientat cu 4 componente conexe și n noduri, știind că n≥4? (9 pct.)

```
a) n+4; b) n(n-4)/2; c) (n-3)(n-4)/2; d) n-4; e) n+(n-4)/2; f) n(n-1)/4.
```

8. Indicați valorile variabilelor a, b și c în urma apelului f (a, b) (pentru Limbajul C++/Pascal), respectiv, f (&a,b) (pentru Limbajul C), al subprogramului f definit mai jos: (9 pct.)

С	C++	Pascal
int a=2, b=3, c;	int a=2, b=3, c;	<pre>var a:integer = 2;</pre>
<pre>void f(int*x,int y) {</pre>	<pre>void f(int&x,int y) {</pre>	<pre>var b:integer = 3;</pre>
a++;	a++; @>3	var c:integer;
b++;	b++; & = 4	procedure f (var
*x=*x*2;	x=x*2;6	x:integer;
y=y*3;	y=y*3; 12	y:integer);
c=x+y;	c=x+y; / 🖁	begin
I make the second of the second of the	als become in the secondary was	inc(a);
(Same day and a successive sees	AND DESCRIPTION OF STREET OFFICE STREET, SHARES	inc(b);
		x:=x*2;
	ficted	y:=y*3;
	1 - 2 rum X 113	c=:x+y;
		end;

a) 6 6 12; b) 6 12 18; c) 6 4 15; d) 4 3 13; e) 3 4 10; f) 4 4 13.

- 9. Se utilizează metoda backtracking pentru generarea tuturor modalităților de a scrie numărul 6 ca sumă a cel puțin două numere naturale nenule. Termenii descompunerii sunt în ordine crescătoare. Soluțiile se generează în ordinea: 1+1+1+1+1+1, 1+1+1+1+2, 1+1+1+3, 1+1+4, 1+2+3, 1+5, 2+2+2, 2+4 și 3+3. Se aplică exact aceeași metodă pentru scrierea lui 9. Câte soluții de forma 2+... vor fi generate? (9 pct.)
 - a) 7; b) 3; c) 6; d) 4; e) 5; f) 2.
- 10. Fie f o funcție recursivă definită, pentru numere naturale, astfel:
 - f(1) = f(0) = 0;
 - f(n) = f(n-1) + 1 dacă n este divizibil cu 2 sau cu 3;
 - f(n) = f(n-2) 2 altfel.

Ce valoare are f (2022)? (9 pct.)

(a) -671; b) 668; c) -668; d) -669; e) 669; f) -670.