

Neural Network & Deep Learning

Single-Layer
Feedforward Networks
for Association

CSE & IT Department
School of ECE
Shiraz University

- In neurobiological context
 - Memory refers to relatively enduring neural alterations induced by interactions of organism with its environment
 - Has capabilities of storing and retrieving data patterns
- Biological memory
 - Is physically distributed
 - Operates by association, rather than addressing
 - Content-addressable memory, no address-addressable memory

Pattern Association

- Learning is process of forming association between related patterns
- Memorization of a pattern is an association of a pattern with itself
- An input stimulus (a sensory cue) similar to associated one will invoke associated pattern

• Example:

name of a cartoon ---> recalls TV series about it

Picture of a place ---> recalls memories of people are met

Recognizing a person with unlimited appearances

- There is some underlying collection of stored data which is ordered and interrelated in some way
- This data constitute a stored pattern or memory

Pattern Association

In recalling:

- When part of pattern of data is presented in form of sensory cue, rest of pattern (memory) is recalled or associated with it
- When an imperfect version of stored memory is offered, true and uncorrupted pattern should be associated with it
- A very limited form of association in conventional computers:
 - Key (index) term is a sensory cue when searching a database

Associative Memory (AM)

- Associative memory
 - Content-addressable memory
 - Memory that operates by association
 - Mapping of an input to an output (stimulus to output)
 - Example: face recognition
- Characteristics of associative memory
 - Distributed
 - Both key (stimulus) and output (stored pattern) are data vectors (as opposed to address and data)
 - Storage pattern different from key and is spatially distributed
 - Stimulus is address as well as stored pattern (with imperfections)
 - Tolerant to noise and damage

Architecture of an AM net:

• Feed-forward:

 Can store pattern associations in weights of net and can retrieve them

• Recurrent:

Can store patterns as stable states of a dynamic physical system with minimum energy

Feed-forward AM Net

- A highly simplified model of human memory
- Single-layer net:
 - Can store pattern associations in weights through training
 - Can recall known patterns by providing imperfect or incomplete form of them
- Distributed memory: simultaneous activities of many neurons that contain information about external stimuli
- Each association is an input-output vector pair $\langle \vec{s}: \vec{t} \rangle$ \vec{s} : key pattern, \vec{t} : stored or memorized pattern
- All associations $\langle S:T \rangle = \langle [\vec{s}(1) \dots \vec{s}(P)]: [\vec{t}(1) \dots \vec{t}(P)] \rangle$
- Bipolar representation is more powerful than binary in pattern association

0

Feed-forward AM Net

- Distributed memory mapping: each pair $\langle \vec{s}: \vec{t} \rangle$ transforms activity pattern \vec{s} in input space to activity pattern \vec{t} in output space
- Types of AMs:
 - Auto-associative (AAM)
 - A key vector is associated with itself in memory
 - Dimension of input and output are same
 - $\vec{t} = \vec{s}$ in each association pair $\langle \vec{s} : \vec{t} \rangle$
 - Hetro-associative (HAM)
 - A key vector is associated with another memorized vector
 - Dimension of input and output may or may not be same
 - $\vec{t} \neq \vec{s}$ in each association pair $\langle \vec{s} : \vec{t} \rangle$

AM Training

- Training methods:
 - Hebb rule: for threshold activation functions
 - Delta rule: for differentiable activation functions

- AM capacity of a net:
 - How many patterns can be stored before net starts to forget learned patterns
 - Some factors influence it (as in human memory)
 - Complexity of patterns (number of components of \vec{s} , \vec{t})
 - Similarity of input patterns that are associated with significantly different response patterns

Hebb rule for pattern association

- The simplest and most common method for determining weights of an associative memory NN
- A non-iterative learning method
- Can be used with patterns in binary or bipolar representation

$$\Delta w_{ij} = x_i y_j$$

Algorithm:

1. Initialize all weights

$$w_{ij} = 0 \quad (i = 1, ..., n; j = 1, ..., m)$$

2. For each training input-output vector pair

$$<\vec{s}:\vec{t}>=<\vec{s}(p):\vec{t}(p)>$$

2.1. Set activation for input and output units

$$x_i = s_i \quad (i = 1, ..., n), \quad y_j = t_j \quad (j = 1, ..., m)$$

2.2. Adjust the weights

$$w_{ij}(\text{new}) = w_{ij}(\text{old}) + x_i y_j$$
, $(i = 1, ..., n ; j = 1, ..., m)$

3. Stop

• The weights found by Hebb rule (with zero initials) can be obtained by outer product of association vector pair $\langle \vec{s}: \vec{t} \rangle$

$$\vec{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_i \\ \vdots \\ s_n \end{bmatrix}, \ \vec{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_j \\ \vdots \\ t_m \end{bmatrix} \Rightarrow \vec{s} \ \vec{t}^T = \begin{bmatrix} s_1t_1 & \cdots & s_1t_j & \cdots & s_1t_m \\ \vdots & & \vdots & & \vdots \\ s_it_1 & \cdots & s_it_j & \cdots & s_it_m \end{bmatrix} = W = \{w_{ij}\}, \ w_{ij} = s_it_j \\ \vdots & & \vdots & & \vdots \\ s_nt_1 & \cdots & s_nt_j & \cdots & s_nt_m \end{bmatrix}$$

W: correlation memory matrix for association pair $\langle \vec{s}: \vec{t} \rangle$

• Using all associations $< S: T >= \{ < \vec{s}(p): \vec{t}(p) > , p = 1, ..., P \}$ $W = \{w_{ij}\}, w_{ij} = \sum_{p=1}^{P} s_i(p) t_j(p) \implies W = \sum_{p=1}^{P} \vec{s}(p) \vec{t}(p)^T = ST^T$

W: correlation memory matrix for all association pairs

• Example:

$$\vec{s}(1) = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \quad \vec{s}(2) = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \quad \vec{s}(3) = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \quad \vec{s}(4) = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$$

$$\vec{t}(1) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \qquad \vec{t}(2) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \qquad \vec{t}(3) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad \vec{t}(4) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$W(1) = \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{bmatrix}, \ W(2) = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & 1 \end{bmatrix}, \ W(3) = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}, \ W(4) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\Rightarrow W = \sum_{p=1}^{4} W(p) = \begin{bmatrix} 2 & 2 \\ 2 & -2 \\ -2 & 2 \end{bmatrix}$$

- Suitability of Hebb rule depends on correlation among input training vectors
 - For uncorrelated (orthogonal) input vectors (linearly independent),
 Hebb rule will produce correct weights and can recall all stored patterns perfectly
 - Two orthogonal vectors have zero dot product
 - For non-orthogonal input vectors, response will include a portion of each of target values (cross talk)
- Correlation memory matrix (weights W) has no mechanism for feedback since it is based on Hebbian learning
- Consequently, there are errors in recall
- How continually update W to reduce error?

Delta Rule in AM Net

Delta rule for pattern association:

- Impose error-correction learning (delta rule) to update W
 - An iterative learning method
 - Can be used for input (key) vectors that are linearly independent but not orthogonal
 - Can produce least square solution when input patterns are not linearly independent

$$y_{-}in_{j} = b_{j} + \sum_{i=1}^{n} x_{i}w_{ij} = b_{j} + \overrightarrow{w}_{.j}^{T}\overrightarrow{x}$$

 $y_{j} = f(y_{-}in_{j})$, $(j = 1, ..., m)$
 $w_{ij}(\text{new}) = w_{ij}(\text{old}) + \alpha(t_{j} - y_{j}) f'(y_{-}in_{j}) x_{i}$

Recalling in HAM Net

How memory is addressed and how stored information is recalled?

• To recall any pattern
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix}$$
, compute $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_m \end{bmatrix}$ as:

$$y_{-}in_{j} = \sum_{i=1}^{n} x_{i}w_{ij}, \quad y_{j} = f(y_{-}in_{j}) = sgn(y_{-}in_{j}) = \begin{cases} 1 & , & \text{if } y_{-}in_{j} > 0 \\ 0 & , & \text{if } y_{-}in_{j} = 0 \\ -1 & , & \text{if } y_{-}in_{j} < 0 \end{cases}$$

Other association functions:

• In nets using Hebb rule:
$$f(x) = \begin{cases} 1 & \text{,} & \text{if } x > \theta \\ \theta & \text{,} & \text{if } x = \theta \\ -1 & \text{,} & \text{if } x < \theta \end{cases}$$

- In nets using delta rule: $f(x) = \frac{1 e^{-x}}{1 + e^{-x}}$
- Using product operation to recall a vector

$$y_{in_{j}} = \sum_{i=1}^{n} x_{i} w_{ij} = \overrightarrow{w}_{i}^{T} \overrightarrow{x} \Longrightarrow \overrightarrow{y_{in}} = W^{T} \overrightarrow{x} \Longrightarrow \overrightarrow{y} = f(W^{T} \overrightarrow{x})$$

Recalling in HAM Net

Example:

$$\langle \vec{s}: \vec{t} \rangle = \{ \langle -1, 1, 1, 1: -1, -1 \rangle, \langle 1, -1, 1, 1: -1, 1 \rangle,$$

 $\langle 1, 1, -1, 1: 1, -1 \rangle, \langle 1, 1, 1, -1: 1, 1 \rangle \}$

 Since stored patterns are orthogonal, all patterns can be recalled perfectly

$$W = \begin{bmatrix} 2 & 2 \\ 2 & -2 \\ -2 & 2 \\ -2 & -2 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \overrightarrow{y_in} = W^T \vec{x} = \begin{bmatrix} 2 & 2 & -2 & -2 \\ 2 & -2 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -4 \\ 4 \end{bmatrix} \implies \vec{y} = f(\vec{y}_i\vec{n}) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Recalling in HAM Net

Example:

$$W = \begin{bmatrix} 2 & 2 \\ 2 & -2 \\ -2 & 2 \\ -2 & -2 \end{bmatrix}$$

A pattern with one missed component can be recalled

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \implies \overrightarrow{y_in} = W^T \vec{x} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \implies \vec{y} = f(\overrightarrow{y_in}) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

A pattern with one mistaken component cannot be recalled

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \implies \overrightarrow{y_in} = W^T \vec{x} = \begin{bmatrix} 0 \\ 8 \end{bmatrix} \implies \vec{y} = f(\overrightarrow{y_in}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ (cross talk)}$$

AAM

- Is a special case of HAM NN where $\vec{t} = \vec{s}$ for all training pairs $\langle \vec{s} : \vec{t} \rangle$
- Can be used to determine whether an input vector is known or unknown to net
- Net recognizes a known vector by producing that pattern on output units if is given as input
- Training vectors stores associations in weights
- A stored vector can be retrieved from distorted (noisy) or partial input (to show its generalization)

0

Weights in AAM Net

• To store a single bipolar vector $\vec{x} = \vec{s}(1)$, choose weight matrix W(1) as (using Hebb rule):

$$W(1) = \vec{x} \, \vec{x}^T - I \implies W(1) = W(1)^T$$

• To prove $\vec{x} = \vec{s}(1)$ is known vector for net:

$$\overrightarrow{y_{-}in} = W(1)^T \overrightarrow{x} = (\overrightarrow{x} \ \overrightarrow{x}^T - I) \ \overrightarrow{x} = \overrightarrow{x} \ \overrightarrow{x}^T \overrightarrow{x} - I \overrightarrow{x} = n \overrightarrow{x} - \overrightarrow{x} = (n-1) \ \overrightarrow{x}$$

$$\Rightarrow \overrightarrow{y} = sgn(\overrightarrow{y_{-}in}) = sgn((n-1) \ \overrightarrow{x}) = sgn(\overrightarrow{x}) = \overrightarrow{x}$$

For P mutually orthogonal vectors in S, weights can also be set:

$$W = \sum_{p=1}^{P} W(p)$$

Or

$$W = \sum_{p=1}^{P} \vec{s}(p) \vec{s}(p)^{T} = S S^{T}$$
, then set diagonal weights to zero

W: correlation memory matrix

- Weights on diagonal of W are set to zero:
 - To improve generalization ability of net
 - To increase biological plausibility of net
 - Necessary for iterative AM NNs
 - Necessary if delta rule is used for training

Example: $\vec{s} = \{ < -1, 1, 1, 1 >, < 1, -1, 1, 1 >, < 1, 1, -1, 1 > \}$

$$W = \begin{bmatrix} 1 - 1 - 1 - 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 - 1 & 1 & 1 \\ -1 & 1 - 1 & 1 \\ 1 - 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 - 1 & 1 \\ -1 & 1 - 1 & 1 \\ 1 - 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 - 1 & 1 \\ 1 & 1 - 1 & 1 \\ -1 - 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 - 1 - 1 & 1 \\ -1 & 3 - 1 & 1 \\ -1 - 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

$$\Rightarrow W' = \begin{bmatrix} 0 & -1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

• Recalling a stored pattern:

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \begin{cases} \overrightarrow{y} \cdot \overrightarrow{in} = W^T \vec{x} = \begin{bmatrix} 4 \\ -4 \\ 4 \\ 4 \end{bmatrix} \Rightarrow \vec{y} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \\ \overrightarrow{y} \cdot \overrightarrow{in} = W'^T \vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \vec{y} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Example: $\vec{s} = \{ < -1, 1, 1, 1 >, < 1, -1, 1, 1 >, < 1, 1, -1, 1 > \}$

$$W = \begin{bmatrix} 3 - 1 - 1 & 1 \\ -1 & 3 - 1 & 1 \\ -1 - 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix} \implies W' = \begin{bmatrix} 0 - 1 - 1 & 1 \\ -1 & 0 - 1 & 1 \\ -1 - 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Recalling a pattern with one missed component

$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} \overrightarrow{y} \cdot \overrightarrow{in} = W^T \vec{x} = \begin{bmatrix} 3 \\ -5 \\ 3 \\ 1 \end{bmatrix} \Rightarrow \vec{y} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \\ \overrightarrow{y} \cdot \overrightarrow{in} = W'^T \vec{x} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \vec{y} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Storage capacity of AAM nets

• Input (key) vectors $S = [\vec{s}(1) \dots \vec{s}(P)]$ are orthonormal if

$$\vec{s}(i)^T \vec{s}(j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

- Number of patterns stored (storage capacity) by AAM is
 - n if S is orthonormal
 - rank of correlation memory matrix if S isnot orthonormal
 - rank(W) < n where n is input dimension
- So, correlation memory matrix can reliably store a maximum of n patterns

Storage capacity of AAM nets:

- Real-world patterns are not orthonormal
- If key vectors in *S* are linearly independent, they can be preprocessed to form an orthonormal set (Gram-Schmidt procedure)
- Preprocessing to enhance separability of key vectors in S (i.e. feature enhancement) helps improve storage capacity
- Correlation memory matrix may recall patterns that it has never seen before
 - It can make errors if new pattern is not orthonormal against key vectors in S

Storage capacity of AAM nets:

- Szu theorem: n-1 mutually orthogonal bipolar vectors with n components can be stored using sum of outer product weight matrices (with diagonal terms set to zero)
- Storing n mutually orthogonal vectors will result in a weight matrix that cannot recall any of stored patterns

Example:

$$\vec{s} = \{ <1, 1, -1, -1 >, <-1, 1, 1, -1 >, <-1, 1, -1, 1 > \}$$

$$W = W(1) + W(2) + W(3) = \begin{bmatrix} 0 - 1 - 1 & -1 \\ -1 & 0 - 1 & -1 \\ -1 - 1 & 0 & -1 \\ -1 - 1 & -1 & 0 \end{bmatrix}$$

Iterative AAM Net

 In some cases, when net does not respond immediately to an input signal, but response is like a stored pattern, it can be applied to net again

$$\vec{s} = \{ < 1, 1, -1, -1 > \} \Longrightarrow W = \begin{bmatrix} 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & -1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & 1 & 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \implies \overrightarrow{y_in} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ -1 \end{bmatrix} \implies \vec{y} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ -1 \end{bmatrix} \implies \overrightarrow{y_in} = \begin{bmatrix} 3 \\ 2 \\ -2 \\ -2 \end{bmatrix} \implies \vec{y} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$