Introduction to Speech Data

Ville Hautamäki and Tomi Kinnunen

《一剪梅》

Expressive TTS

- Singing synthesis
- Speaker verification

Content

- Speech-to-text
- 'High-level' speaker id

Speech

- Text-to-speech
- Voice conversion
- Automatic speaker verification

Prosody

Timbre

Slide adapted from prof. Haizhou Li's keynote at APSIPA'13

Speech production system

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Content

Phone, word or N-gram occupation counts

Prosody

'Stylized' F0 / energy contours, Legendre polynomials, multinomial subspace models

Categorical, sparse

- + Explicit/interpretable
- High error rate
- Difficult to extract

Timbre

Most practical (today)

Short-term spectrum: MFCC, LFCC, LPCC, PNCC ... with $\Delta + \Delta^2$

- + High accuracy
- + Easy & fast to compute
- Sensitive to disturbances

Continuous, dense

Tomi Kinnunen and Haizhou Li, "An Overview of Text-Independent Speaker Recognition: from Features to Supervectors", Speech Communication 52(1): 12--40, January 2010

Feature extraction at two levels

Level 1: short-term feature extraction

- Based on acoustic-phonetic knowledge of human speech production at millisecond time-scale
- Example: mel-frequency cepstral coefficients (MFCCs)

DIGITAL SIGNAL PROCESSING

Level 2: recording-level feature extraction

- Extraction of higher-level features that are shared across all the frames in a recording (examples: speaker, language, recording device, age, gender, smoking habit you name it)
- Example: identity vector (i-vector)

MACHINE LEARNING

Short-term feature extraction

- Pretend that speech is a piecewise constant function over a short-time period of speech, known as a frame
- A feature extractor f(.) spits out a 'snapshot' of the short-term power spectrum $_{\pm}$ a sequence of feature vectors $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T\}$
 - Typical frame duration ~25 ms (1 ms = 1/1000th of a second)
 - Typical frame hop ~50% of the frame size
 - Typical dimension of the feature vector ~20 to 60
- Assume the observations to be independent and identically distributed (i.i.d.) samples from a recording-level statistical model, $\mathbf{x}_t \sim p(\mathbf{x} \mid \Theta_{\text{recording}})$
 - Usually, a Gaussian mixture model (GMM)

Bag-of-frames illustrated

Ordering (temporal) information gets destroyed

Original

Frames shuffled, 30 ms frame

Shuffled frames

Frames shuffled, 100 ms frame

MFCC extraction

Mel-frequency cepstral coefficient (MFCC) features

Mel-frequency filterbank

[Generated using 'RASTAmat' package of Dan Ellis]

Speaker verification: science and art of data-driven modeling

"... from the speaker-recognition research trend in the last decade, it seems that improving feature robustness beyond a certain level (for a variety of degradations) is extremely difficult—or, in other words, data-driven modeling techniques have been more successful in improving robustness compared to new features"

[John H.L. Hansen and Taufiq Hasan, Speaker Recognition by Machines and Humans: A Tutorial Review, IEEE Signal Processing Magazine, Nov 2015]

Speaker modeling and comparison

1970s and before

Long-term feature averaging

1980s and 1990s

<u> 1995 to ~2005 </u>

- Dynamic time warping (DTW), vector quantiz. (VQ)
- Hidden Markov Models
- Early neural net models
- All rooted on GMMs
- 1996 onwards: NIST SREs
- Focus on text-independent models
 Gaussian mixture models (GMMS)
- Universal background model

2005—today

- GMM supervectors
- Joint factor analysis (JFA)
- i-vectors
- Probabilistic linear discr. analysis (PLDA) scoring
- Deep neural nets

Modern era

Speaker / language recognition is about modeling the "feature clouds"

[F. K. Soong, A. E. Rosenberg, L. R. Rabiner and B. H. Juang, "A Vector Quantization Approach to Speaker Recognition," *AT&T Technical Journal*, Vol. 66, pp. 14-26, Mar/Apr 1987]

Single Gaussian

Bi-variate normal distribution

- (a) Covariance matrix **Σ** is full, rank **Σ** = 2, (b) diag (**Σ**) = $(a, b)^t$ and (c) **Σ** = a * I.
- ▶ How many parameters we need to estimate in (a), (b), (c)?

Gaussian mixture model (GMM)

1 Gaussian not good enough?

Looks better, yes? *

Gaussian mixture model (GMM)

1 Gaussian not good enough?

Looks better, yes? *

GMM as a density estimator

2-d data

Density contour

... another visualization

GMM as a latent (hidden) variable model

"Oracle": Assignment of data points to components is known (red, green or blue)

... but this is how our training sample is given: no labels!

strength of each color = posterior probability that the given observation was generated by the corresponding component

Progress of EM algorithm

GMM as a 'data compressor'

- Assume 1 minute recording of audio sampled with 8 kHz.
 Raw data has 8000 x 60 = 480,000 samples
- Assume 12 MFCCs extracted every 10 ms $_{\pm}$ 12 coeffs x 100 frames/sec x 60 sec = **72,000 feature values**
- A GMM with 128 Gaussians & diagonal covariance matrices has
 - 128 mean vectors (dimensionality = 12)
 - 128 variance vectors (dimensionality = 12)
 - 128 mixing weights
 - Total 128*12 + 128*12 + 128 = 3200 parameters

Gaussian mixture model – universal background model (GMM-UBM)

Douglas A. Reynolds and Thomas F. Quatieri and Robert B. Dunn, "Speaker Verification Using Adapted Gaussian Mixture Models", *Digital Signal Processing*, 2000.

Step 1: training the UBM

Step 2: speaker enrollment via maximum a posteriori (MAP) adaptation

$$\alpha_k = \frac{n_k}{n_k + r}$$

$$\tilde{\mathbf{x}}_k = \frac{1}{n_k} \sum_{t=1}^T P(k|\mathbf{x}_t) \mathbf{x}_t$$

$$n_k = \sum_{t=1}^T P(k|\mathbf{x}_t)$$

$$P(k|\mathbf{x}_t) = \frac{P_k \mathcal{N}(\mathbf{x}_t|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{t=1}^K P_t \mathcal{N}(\mathbf{x}_t|\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_m)}$$

Adaptation coefficient (r = relevance factor)

Mean of training data assigned to kth Gaussian

Soft count of vectors assigned to kth Gaussian

Posterior probability of the kth Gaussian for one feature vector

Step 3: speaker comparison

- $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T}$ is a sequence of test utterance feature vectors and $\mathbf{\theta}_s$ is a GMM of speaker s, claimed to have 'generated' \mathbf{X} , adapted from the UBM as explained above.
- We compute log-likelihood ratio $LLR(\mathbf{X}) = \log p(X | \mathbf{\theta}_s) - \log p(X | \mathbf{\theta}_{ubm})$
- The larger the LLR value, the stronger the evidence for the "same speaker" hypothesis. Binary decision is made by comparing LLR(X) against a pre-selected threshold (such as 0).
- Intuition: $log p(X | \theta_{ubm})$ represents the uninformative part common to all speakers (such as speech content)

GMM supervectors

[W. M. Campbell, D. E. Sturim, D. A. Reynolds, "Support vector machines using GMM supervectors for speaker verification", *IEEE Signal Proc Lett* 2006]

