Thesis experiments

yifan he

 $\mathrm{June}\ 2021$

1 Backjumping and QDLL

Instance	Baseline	Backjumping
gttt_3x3_b	1213	1213
$gttt_3x3_torus_b$	357	357
chain 12v. 13	8215	8215
chain 13v. 14	16409	16409
chain 14v.15	32795	32795
chain 15 v. 16	65565	65565
chain 16 v. 17	131103	131103
chain 17 v. 18	262177	262177
chain 18v. 19	524323	524323
TOILET6.1.iv.11	1441537	1441537
TOILET6.1.iv.12	218581	218581
TOILET7.1.iv.14	3036638	3036638
adder-2-sat	4463	3543
adder-2-unsat	54539	46335
k_d_{n-1}	710	582
k_{lin_p-2}	3678092	1188617
k_path_n-2	39841	10927
k_path_n-3	981769	505581
k_path_p-3	31128	5546
k_path_p-4	632520	151620
k_t4p_n-1	5173935	1816773
k_{in_n-2}	6230305	139775
impl20	2097151	41
k_dum_n-2	11326381	4590898
k_dum_p-3	891072	200362
k_dum_p-4	_	15705268

Table 1: Compare backjumping solver and baseline solver

This experiment compares the effect of the back jumping solver and the

baseline solver. The time limit is 15 minutes per instance and both solvers use the most frequent branching heuristic. The overall result shows back jumping can reduce the searching space, and 1 instance that was originally unsolvable within the time limit was solved by the back jumping trick.

The paper Backjumping for Quantified Boolean Logic satisfiability by Giunchiglia mentioned 3 instances of the BLOCK group that are impossible to be solved by the baseline solver can be solved by the back jumping solver [2]. However, even if the pruning condition was triggered many times, none of the BLOCK instances can be solved by my back jumping solver. This might because of the branching heuristic and the tie-breaking rule.

Another reason for the failure of replicating the QUBE-BJ experimental result might be the QUBE-BJ solver had bugs in its implementation. The output of the 3qbf-5cnf-100var-800cl.1 instance evaluated by the state of art QBF solver depQBF is SAT but QUBE-BJ printed UNSAT during the QBFeval 2004[1]. From my implementation experience, if there are wrong answers in the code, invalid pruning might occur and the searching space can be reduced. Thus, because QUBE-BJ can potentially print out wrong answers, the result shown in the 2004 paper cannot be completely trusted.

Another interesting thing about the back jumping trick is, the pruning often happens in a very deep level of the search tree, the number of nodes pruned is limited. This might be a reason that almost all state of art QBF solvers use clause learning instead of back-jumping.

References

- [1] Results for instance 3qbf-5cnf-100var-800cl.1 QBFEVAL'04. http://www.qbflib.org/benchmark_solvers.php?idBench=9308&year=2004&track=1,2004. Accessed: 2021-06-09.
- [2] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping for quantified boolean logic satisfiability. *Artificial Intelligence*, 145(1-2):99–120, 2003.