${\rm CB}\ {\rm N}^{\circ}{\rm 1}$ - Raisonnement - Vocabulaire ensembliste - Sujet ${\rm 1}$

1. Questions de cours

a. A l'aide d'une table de vérité, démontrer que

$$\rceil (\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\mathbf{P} \land \rceil \mathbf{Q})$$

- b. Montrer que la composée de deux injections est une injection.
- **2a.** Soit $f \in \mathbb{R}^{\mathbb{R}}$. Donner la signification puis la négation de l'assertion suivante :

$$\forall (x, y) \in \mathbb{R}^2, (x < y) \Rightarrow (f(x) < f(y))$$

Cette assertion signifie que f est strictement croissante sur $\mathbb{R}.$

$$| (\forall (x,y) \in \mathbb{R}^2, (x < y) \Rightarrow (f(x) < f(y))) \Leftrightarrow (\exists (x,y) \in \mathbb{R}^2, (x < y) \land (f(x) \ge f(y)))$$

b. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

Traduire à l'aide de quantificateurs le fait que $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée.

$$\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, u_n > M$$

3. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1, u_1 = 3 \\ u_{n+2} = 4u_{n+1} - 4u_n, & \forall n \in \mathbb{N} \end{cases}$ Montrer que :

$$\forall n \in \mathbb{N}, \qquad u_n = 2^n \left(1 + \frac{n}{2}\right)$$

Pour $n \in \mathbb{N}$, on note $H_n : u_n = 2^n \left(1 + \frac{n}{2}\right)$.

- \boxtimes <u>Initialisation</u>: H_0 et H_1 sont vérifiées par le calcul.
- \boxtimes <u>Hérédité</u>: Soit $n \in \mathbb{N}^*$. On suppose H_n et H_{n-1} vraies. On a alors:

$$u_{n+1} = 4u_n - 4u_{n-1} = 4\left(2^n\left(1 + \frac{n}{2}\right) - 2^{n-1}\left(1 + \frac{n-1}{2}\right)\right) = 4 \times 2^{n-1}\left(2 + n - 1 - \frac{n-1}{2}\right)$$
$$= 2^{n+1}\left(1 + \frac{n+1}{2}\right), \text{ ainsi } H_{n+1} \text{ est vraie.}$$

Conclusion: Par principe de récurrence H_n est vraie pour tout $n \in \mathbb{N}$.

4. a désigne un entier. Montrer que si a^2 est un multiple de 16 alors $\frac{a}{2}$ est un entier pair.

On suppose que a^2 est un multiple de 16 et que $\frac{a}{2}$ n'est pas un entier pair.

 a^2 est un entier pair, donc on sait que a est un entier pair, ainsi $\frac{a}{2}$ est un entier. Comme il n'est pas pair, il est donc impair et il existe $n \in \mathbb{Z}$ tel que $\frac{a}{2} = 2n + 1$ et par suite $a^2 = 4(4n^2 + 4n + 1)$.

pair, il est donc impair et il existe $n \in \mathbb{Z}$ tel que $\frac{a}{2} = 2n + 1$ et par suite $a^2 = 4(4n^2 + 4n + 1)$. a^2 étant un multiple de 16, il existe $k \in \mathbb{Z}$ tel que $a^2 = 16k$. On a donc $4k = 4n^2 + 4n + 1$. Ce qui est impossible car 4 divise $4k - 4n^2 - 4n$ mais ne divise pas 1.

On a montré par l'absurde que $\frac{a}{2}$ est un entier pair.

5. Soit $f:(x;y) \mapsto (x+3y;x-5y)$.

Montrer que f est bijective de \mathbb{R}^2 dans \mathbb{R}^2 et déterminer sa fonction réciproque.

Soient (x; y) et (a; b) dans \mathbb{R}^2 .

$$f(x;y) = (a;b) \Leftrightarrow \begin{cases} x + 3y = a & (L_1) \\ x - 5y = b & (L_2) \end{cases} \xrightarrow[L_1 \leftarrow L_1 - L_2]{} \begin{cases} 8x = 5a + 3b \\ 8y = a - b \end{cases} \Leftrightarrow \begin{cases} x = \frac{5a + 3b}{8} \\ y = \frac{a - b}{8} \end{cases}$$

Ainsi, f est bijective de \mathbb{R}^2 dans \mathbb{R}^2 et $f^{-1}: (a;b) \mapsto \left(\frac{5}{8}a + \frac{3}{8}b; \frac{1}{8}a - \frac{1}{8}b\right)$

6. I et J désignent des parties de \mathbb{R} . On considère la fonction f suivante :

$$f: \left| \begin{array}{ccc} I & \to & J \\ x & \mapsto & \ln(x^2 - 3x) \end{array} \right|$$

Déterminer des ensembles I et J, pour lesquels f est bijective.

Il faut $I \subset]-\infty; 0[\cup]3; +\infty[$ pour que le logarithme soit défini.

- \leadsto Sur] $-\infty$; 0[, par composition, f est continue et strictement décroissante, elle est donc injective. De plus $\lim_{x\to-\infty}f(x)=+\infty$ et $\lim_{x\to0}f(x)=-\infty$. Ainsi, une possibilité est $I=]-\infty$; 0[et $J=\mathbb{R}$.
- \leadsto Sur $]3; +\infty[$, par composition, f est continue et strictement croissante, elle est donc injective. De plus $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to 3} f(x) = -\infty$. Ainsi, une autre possibilité est $I=]3; +\infty[$ et $J=\mathbb{R}$.

Sup PTSI A CB1 - 2023-2024

CB n°1 - Raisonnement - Vocabulaire ensembliste - Sujet 2

1. Questions de cours

a. A l'aide d'une table de vérité, démontrer que

$$(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\exists \mathbf{P} \lor \mathbf{Q})$$

- Montrer que la composée de deux surjections est une surjection.
- **2a.** Soit $f \in \mathbb{R}^{\mathbb{R}}$. Donner la signification puis la négation de l'assertion suivante :

$$\forall (x, y) \in \mathbb{R}^2, (x < y) \Rightarrow (f(x) > f(y))$$

Cette assertion signifie que f est strictement décroissante sur \mathbb{R} .

$$| (\forall (x,y) \in \mathbb{R}^2, (x < y) \Rightarrow (f(x) > f(y))) \Leftrightarrow (\exists (x,y) \in \mathbb{R}^2, (x < y) \land (f(x) \le f(x)))$$

b. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

Traduire à l'aide de quantificateurs le fait que $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée.

$$\forall m \in \mathbb{R}, \exists n \in \mathbb{N}, u_n < m.$$

3. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels <u>positifs</u> telle que $\begin{cases} u_1 = 1 \\ u_{n+1}^2 = u_1 + u_2 + \dots + u_n, & \forall n \geq 1 \end{cases}$ Montrer que:

$$\forall n \in \mathbb{N}^*, \qquad u_n \ge \frac{n}{4}$$

Pour $n \in \mathbb{N}^*$, on note $H_n : u_n \ge \frac{n}{4}$. \boxtimes <u>Initialisation</u>: H_1 est vérifiée par le calcul.

- \boxtimes Hérédité : Soit $n \in \mathbb{N}^*$. On suppose que pour tout $k \in [1, n]$, H_k est vraie. On a alors :

$$u_{n+1}^2 \ge \frac{1}{4}(1+2+\cdots+n)$$
, donc $u_{n+1}^2 \ge \frac{n(n+1)}{8}$.

 $u_{n+1}^2 \ge \frac{1}{4}(1+2+\dots+n), \text{ donc } u_{n+1}^2 \ge \frac{n(n+1)}{8}.$ Par ailleurs, pour $n \ge 1, \frac{n(n+1)}{8} - \frac{(n+1)^2}{16} = \frac{(n-1)(n+1)}{16} \ge 0;$

on en déduit que $u_{n+1}^2 \ge \frac{(n+1)^2}{16}$ et comme $u_{n+1} \ge 0$, on obtient que H_{n+1} est vraie.

<u>Conclusion</u>: Par principe de récurrence H_n est vraie pour tout $n \in \mathbb{N}^*$

4. a désigne un nombre entier.

Montrer que si a^2 n'est pas un multiple de 16 alors $\frac{a}{2}$ n'est pas un entier pair.

On suppose que $\frac{a}{2}$ est un entier pair. Alors, il existe $k \in \mathbb{Z}$, tel que $\frac{a}{2} = 2k$. Par suite, a = 4k et donc $a^2 = 16k^2$ donc $a^{\tilde{2}}$ est un multiple de 16.

Ainsi, par contraposée, si a^2 n'est pas un multiple de 16, $\frac{a}{2}$ n'est pas un entier pair.

Sup PTSI A

5. Soit $f: x \mapsto \frac{2x+3}{4x-1}$. Montrer que f est une bijection de $\mathbb{R} \setminus \left\{\frac{1}{4}\right\}$ dans un ensemble I à définir, et exprimer sa fonction réciproque.

Soient
$$x \in \mathbb{R} \setminus \left\{\frac{1}{4}\right\}$$
, et $y \in \mathbb{R}$.

$$f(x) = y \iff 2x + 3 = y(4x - 1) \iff x(4y - 2) = 3 + y \iff \left(x = \frac{3 + y}{4y - 2} \quad \land \quad y \neq \frac{1}{2}\right).$$

On a montré que
$$f$$
 est une bijection de $\mathbb{R} \setminus \left\{ \frac{1}{4} \right\}$ dans $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ et $f^{-1}: y \mapsto \frac{3+y}{4y-2}$

6. I et J désignent des parties de \mathbb{R} . On considère la fonction f suivante :

$$f: \left| \begin{array}{ccc} I & \to & J \\ x & \mapsto & \sqrt{4x^2 - 9} \end{array} \right|$$

Déterminer des ensembles I et J, pour lesquels f est bijective.

Il faut
$$I \subset \left[-\infty; -\frac{3}{2}\right] \cup \left[\frac{3}{2}; +\infty\right[$$
 pour que la racine soit définie.

 $ightharpoonup \operatorname{Sur}\left[-\infty;-rac{3}{2}
ight]$, par composition, f est continue et strictement décroissante, elle est donc injective. De plus $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to -rac{3}{2}} f(x) = 0$.

Ainsi, une possibilité est
$$I = \begin{bmatrix} -\infty; -\frac{3}{2} \end{bmatrix}$$
 et $J = \mathbb{R}^+$.

Ainsi, une possibilité est
$$I = \left[-\infty; -\frac{1}{2}\right]$$
 et $J = \mathbb{R}^+$.
 \Rightarrow Sur $\left[\frac{3}{2}; +\infty\right[$, par composition, f est continue et strictement croissante, elle est donc injective.

De plus
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to \frac{3}{2}} f(x) = 0$.

Ainsi, une autre possibilité est
$$I = \begin{bmatrix} \frac{3}{2}; +\infty \end{bmatrix}$$
 et $J = \mathbb{R}^+$.