

Prediction of a New Observation

$$\bullet \ \ Y_{h(new)} = \mathbf{X}_h' \boldsymbol{\beta} + \epsilon_h : \qquad \text{with the observations } Y_i \mathbf{s}.$$

$$\bullet \ \ \text{Predicted value: } \widehat{Y}_h := \qquad .$$

$$\bullet \ \ \sigma^2(pred_h) := \qquad .$$

$$\bullet \ \ \text{Standard error for prediction:}$$

$$s(pred_h) = \qquad .$$

$$\bullet \ \ (1 - \alpha) \text{-prediction interval for } Y_{h(new)} :$$

4 D > 4 B > 4 E > 4 E > E 900

Multiple Regression: Example

n -	= 3	n c:	200	C 1	'ACI	าดท	22	var	iah	۱ ما	V a	nd ·	thre	o r)rei	dict	or۱	/ari	ahl	മഠ			
X_1	X_2	X_3	}.	ا ,	CS	JO1 1	30	vai	iau		a	·u		,), C.	JICL	0.	/an	αυι	C3			
	e –			X1		Х2		х3															
1 2								1.2 -0.															
3								0.4															
 30					12			0.6															
30			1.4	۷.	12	-0.	. 6 -	u . 0.															
														4	□ }	∢ 🗗	⊢ ∢	≣ ⊦	∢ ∄	Þ	=	99	(~

Example: Model 2

Nonadditive model with interaction between
$$X_1$$
 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \cdots, 30.$$

($\rho = 5$)
Call:
Im(formula = Y \(^{-1} \times X_1 + \times X_2 + \times X_3 + \times X_{11} \times X_{12} + \epsilon_i, \quad i = 1, \quad 5, \quad 3 \)
Coefficients:
Estimate Std. Error t value \(^{-1} \times Y_1 + \times Y_2 + \times X_3 + \times X_{11} + \times Y_1 + \times Y_2 + \times X_3 + \times X_2 + \times X_3 + \times X_4 + \times X_1 + \times X_2 + \times

- Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = +1$
- under Model 2. Standard error for prediction:
 - s(pred) =
 - A 99%-prediction interval for Y_{hnew} :
 - $1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383].$
 - R codes.
 - > newX=data.frame(X1=0.8, X2=0.5, X3=-1)
 - > predict.lm(fit2, newX, interval="confidence",
 - + level=0.99, se.fit=TRUE)
 - > predict.lm(fit2, newX, interval="prediction", + level=0.99, se.fit=TRUE)

Hidden Extrapolations

- Recall that extrapolation occurs when predicting the response variable for values of the X variable(s) of the original data.
- It's possible that, the fitted model when extended outside the range of the observations.
- With more than one X variables, the levels of define the region of the observations. One can not merely look at the ranges of each X variable.
- With two X variables, we can look at their scatter plot.
- Procedure to identify hidden extrapolation for more than two X variables will be discussed later.

Extra Sum of Squares

$$I$$
 and $\mathcal J$ are two **non-overlapping** index sets.

• Extra sum of squares (ESS):

$$SSR(X_{\mathcal J}|X_I) :=$$
• It indicates the

• Degrees of freedom: $d.f.(SSR(X_{\mathcal J}|X_I)) =$

• Mean squares: $MSR(X_{\mathcal{J}}|X_I) :=$

4 □ > 4 ₱ > 4 Ē > 4 Ē > Ē 90 Q €

Notations. • I: an index set; $X_I := \{X_i : i \in I\}$. • E.g. $I = \{2, 3\}, X_T = \{X_2, X_3\}.$ $SSE(X_T)$ and $SSR(X_T)$ denote the error sum of squares and regression sum of squares, respectively, under the regression model with $X_{\mathcal{I}} := \{X_i : i \in \mathcal{I}\}$ being the X variables. • E.g., $SSE(X_2, X_3)$ is the error sum of squares of the model with X_2 and X_3 .

4 D > 4 B > 4 E > 4 E > E 900

Body Fat

A researcher measured the amount of body fat (Y) of 20 healthy females 25 to 34 years old, together with three (potential) predictor variables, triceps skinfolds thickness (X_1) , thigh circumference (X_2) , and midarm circumference (X_3) . The amount of body fat was obtained by a cumbersome and expensive procedure requiring immersion of the person in water. Thus it would be helpful if a regression model with some or all of these predictors could provide reliable estimates of body fat as these predictors are easy to measure.

Consider the following 4 models.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, \quad i = 1, \cdots, 20.$$

Model 2: regression of
$$Y$$
 on X_2

$$Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, \quad i = 1, \cdots, 20.$$

• Model 4: regression of Y on
$$X_1$$
, X_2 and X_3 .

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 20.$$

> summa	ry(fit	1)															
Call: lm(form	ıla =	y ~ x	1, d	ata =	fat))											
Coeffic																	
Estimate (Interc								0.	658								
X1 		0.85	72	0.	1288	6.	656	3.02e	-06 ³	***							
Signif.	codes	: 0	*** (0.001	** (0.01	* 0.0	0 5.	0.1	1							
Residua Multiple																	
F-stati:	stic:	44.3	on	1 and	18 I	F,	p-va	lue:	3.024	1e-06							
> anova Analysi:			ce T	able													
Response																	
Df Sum S	1	352.2	7 3	52.27	44			4e-06	***								
Residua	ls 18	143.1	2	7.95													
														(d Gl		

> summar	y(fit2)														
Call:	,														
lm(formu		λ2, Q	ita = Ia	it)											
Coeffici Estimate (Interce	Std. E														
X2		.85 <mark>6</mark> 5													
Signif.	codes:	0 *** (0.001 **	0.01	* 0.0	0 5.	0.1	1							
Residual Multiple															
F-statis									/ 363						
> anova(Analysis		ianca T	.hla												
Response		rance ra	ibie												
Df Sum S	q Mean S	Sq F val			3 60.	07 ×	**								
Residual				10.017	5.0e	07									

> summary(fit3)	
Call:	
lm(formula = Y X1 + X2, data = fat)	
Coefficients: Estimate Std. Error t value Pr(> t)	
(Intercept) -19.1742 8.3606 -2.293 0.0348 *	
X1 0.2224 0.3034 0.733 0.4737	
X2 0.6594 0.2912 2.265 0.0369 *	
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1	
Residual standard error: 2.543 on 17 degrees of freedom Multiple R-squared: 0.7781, Adjusted R-squared: 0.7519	
F-statistic: 29.8 on 2 and 17 DF, p-value: 2.774e-06	
> anova(fit3) Analysis of Variance Table	
Response: Y Df Sum Sg Mean Sg F value Pr(>F)	
X1 1 352.27 352.27 54.4661 1.075e-06 ***	
X2 1 33.17 33.17 5.1284 0.0369 * Residuals 17 109.95 6.47	
	◆ GLT

- CIV		(fit	1)															
Call	. 1		-	71 .	v o .	v o .		£ a.e										
IM(I	ormuı	a =	1 1	1 +	X2 +	A3, (lata	= 1a										
Coef	ficie	nts:																
				r t	value	Pr(> t)											
(Int	ercer	t)	117.6	85	99	.782	1.	173	0.	258								
X1			4.3	34	3	.016	1.	437	0.	170								
X2			-2.8	357	2	. 582	-1.	106	0.	285								
X 3			-2.1	L <mark>86</mark>	1	. 595	-1.	370	0.	190								
Resi	dual	stan	lard	erro	r: 2.	48 oı	1 16	degr	es o	f fre	edom							
Mult	iple	R-sqı	arec	1: 0.	8014,		Adju	sted	R-sq	uare	1: 0.	7641						
F-st	atist	ic: 7	21.52	on .	3 and	16 I	F,	p-va:	lue:	7.343	e-06							
		it4)																
Anal	ysis	of V	ariar	ice T	able													
	onse:																	
	um So				lue													
X1					52.27													
X2 X3					33.17 11.55				93373 18956									
	duale	16			6.15		3//3	۷.	10930									
Kesi	uuais	10	90.4	ŧw	0.13													
																∢ GI		
																1 01		

Body Fat: ESS

From the R outputs, we can derive a number of extra sums of squares. For example:

$$SSR(X_2|X_1) =$$

$$SSR(X_1|X_2) =$$

- Both extra sums of squares have degrees of freedom , so $MSR(X_2|X_1) =$ and $MSR(X_1|X_2) =$
- The reduction of SSE by adding with is much more than the reduction of SSE by adding to a model with

to a model

 $SSR(X_3|X_1,X_2) =$ This extra sum of squares has degrees of freedom so $MSR(X_3|X_1,X_2) =$ $SSR(X_2, X_3|X_1) =$ This extra sums of squares has degrees of freedom so $MSR(X_2, X_3|X_1) =$ Are there other ESS that can be derived from the R outputs? 4 D > 4 B > 4 E > 4 E > E 900

Decomposition of SSR into ESS

For a model with multiple X variables, the regression sum of squares (SSR) can be expressed as the of several extra sums of squares.

For example:

$$SSR(X_1, X_2) =$$

 X_1 is already in the model.

 $SSR(X_1)$ measures the contribution by in the model, whereas $SSR(X_2|X_1)$ measures the contribution when , given that

However, such decomposition is usually not unique. For example,

$$SSR(X_1, X_2) =$$


```
    More X variables.

                                       decompositions. For
  example, with three X variables:
   SSR(X_1, X_2, X_3) =
                         SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2)
   SSR(X_1, X_2, X_3) = SSR(X_2) + SSR(X_1|X_2) + SSR(X_3|X_1, X_2)
   SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2, X_3|X_1), \dots, \dots

    Body Fat.

     • From Model 1, SSR(X_1) = 352.27; Also SSR(X_2|X_1) = 33.17
       and SSR(X_3|X_1, X_2) = 11.55. So
             SSR(X_1, X_2, X_3) =
     • From Model 2, SSR(X_2) = 381.97; Also SSR(X_1|X_2) = 3.47.
       So
             SSR(X_1, X_2, X_3) =
```

Read anova() output

4□ ▶ 4 Ē ▶ 4 Ē Þ Ē 90 €

