## DEVOIR 1

LOGIQUE NUMÉRIQUE ET CIRCUITS COMBINATOIRES

ETIENNE COLLIN | 20237904 ANGE LILIAN TCHOMTCHOUA TOKAM | 20230129 Justin Villeneuve | 20132792

Architecture des ordinateurs - IFT1227

Section A

Section A

Professeure Alena Tsikhanovich

Université de Montréal À remettre le 16 Février 2023 à 23:59



# Table des matières

| Ta                                                  | able o | des matières                    | 1 |
|-----------------------------------------------------|--------|---------------------------------|---|
| 1                                                   | Réd    | luction de la logique numérique | 2 |
| 2 Conception schématique des circuits combinatoires | 3      |                                 |   |
|                                                     | 2.1    | Partie a                        | 3 |
|                                                     | 2.2    | Partie b                        | 4 |
|                                                     |        | 2.2.1 Simplification $S_4$      | 4 |
|                                                     |        | 2.2.2 Simplification $S_6$      | 4 |
|                                                     | 2.3    | Quartus                         | 5 |

## 1 Réduction de la logique numérique

En utilisant la méthode tabulaire de Quine-McCluskey, simplifiez la function logique suivante :

$$F(A, B, C, D) = \sum_{d} (0, 9, 13, 15) + \sum_{d} (2, 3, 4, 6, 11)$$

Commençons par créer le tableau contenant les minterms (sans passer par une table de vérité, le  $minterm\ x$  sera la représentation binaire de x) et simplifions en utilisant la technique de Quine-McCluskey.

| Nombre de 1s | Minterm | Nombre de 1s | Minterm | Nombre de 1s | Minterm |
|--------------|---------|--------------|---------|--------------|---------|
| 0            | 0000√   | 0            | 00-0√   | 0            | 00*     |
| 1            | 0010√   |              | 0-00✓   | 2            | 11*     |
| 1            | 0100✓   |              | 001-*   |              | •       |
|              | 0011√   | 1            | 0-10✓   |              |         |
| 2            | 0110✓   |              | 01-0✓   |              |         |
|              | 1001✓   | 2            | -011*   |              |         |
| 3            | 1011√   |              | 10-1√   |              |         |
| 9            | 1101✓   |              | 1-01✓   |              |         |
| 4            | 1111√   | 3            | 1-11√   |              |         |
|              | ,       | 3            | 11-1✓   |              |         |

À l'aide de ces tableaux, trouvons maintenant les prime implicants.

| Prime implicants | Minterms |          |          |          |  |  |  |
|------------------|----------|----------|----------|----------|--|--|--|
| Time implicants  | 0000     | 1001     | 1101     | 1111     |  |  |  |
| 001-             |          |          |          |          |  |  |  |
| -011             |          |          |          |          |  |  |  |
| 00               | ✓        |          |          |          |  |  |  |
| 11               |          | <b>√</b> | <b>√</b> | <b>√</b> |  |  |  |

Ainsi, selon cette table, la simplification de la function logique F est :

$$F(A, B, C, D) = \bar{A}\bar{D} + AD \tag{1}$$



# 2 Conception schématique des circuits combinatoires

## 2.1 Partie a

Concevoir la table de vérité de l'afficheur. Sur la carte, pour allumer un segment de de l'afficheur, il faudra générer le signal 0 et le signal 1 pour l'éteindre.

| $D_3$ | $D_2$ | $D_1$ | $D_0$ | Chiffres & Lettres | $S_0$ | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ |
|-------|-------|-------|-------|--------------------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0                  | 0     | 0     | 0     | 0     | 0     | 0     | 1     |
| 0     | 0     | 0     | 1     | 1                  | 1     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0     | 0     | 1     | 0     | 2                  | 0     | 0     | 1     | 0     | 0     | 1     | 0     |
| 0     | 0     | 1     | 1     | 3                  | 0     | 0     | 0     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 0     | 4                  | 1     | 0     | 0     | 1     | 1     | 0     | 0     |
| 0     | 1     | 0     | 1     | 5                  | 0     | 1     | 0     | 0     | 1     | 0     | 0     |
| 0     | 1     | 1     | 0     | 6                  | 0     | 1     | 0     | 0     | 0     | 0     | 0     |
| 0     | 1     | 1     | 1     | 7                  | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 1     | 0     | 0     | 0     | 8                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1     | 0     | 0     | 1     | 9                  | 0     | 0     | 0     | 0     | 1     | 0     | 0     |
| 1     | 0     | 1     | 0     | A                  | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
| 1     | 0     | 1     | 1     | b                  | 1     | 1     | 0     | 0     | 0     | 0     | 0     |
| 1     | 1     | 0     | 0     | -                  | d     | d     | d     | d     | d     | d     | d     |
| 1     | 1     | 0     | 1     | -                  | d     | d     | d     | d     | d     | d     | d     |
| 1     | 1     | 1     | 0     | -                  | d     | d     | d     | d     | d     | d     | d     |
| 1     | 1     | 1     | 1     | -                  | d     | d     | d     | d     | d     | d     | d     |



#### 2.2 Partie b

Simplifier la SOP des functions logiques contrôlant les segments 4 et 6 avec la méthode de Karnaugh.

### 2.2.1 Simplification $S_4$



L'équation simplifiée est donc :

$$S_4 = \bar{D}_3 D_0 + D_2 \bar{D}_1 + \bar{D}_1 D_0 \tag{2}$$

### 2.2.2 Simplification $S_6$

L'équation simplifiée est donc :

$$S_6 = \bar{D}_3 \bar{D}_2 \bar{D}_1 + D_2 D_1 D_0 \tag{3}$$

20

#### 2.3 Quartus

Voici maintenant le schéma résultant de la synthèse du circuit dans *Quartus*. Notez que pour montrer les symbols *VCC* et *GND*, l'option *Show constant value* est décochée. Le même *GND* est lié à *data2*, *data4* et *data5* dans le *Mux8*, mais ils sont montrés séparément dans le schéma.

