

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2003-0023492

Application Number

출 원 년 월 일 Date of Application 2003년 04월 14일

APR 14, 2003

출 원 Applicant(s) 인 :

주식회사 하이닉스반도체

Hynix Semiconductor Inc.

2003 년

10 ച്ച 22

. 일

특

허

첫

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0005

【제출일자】 2003.04.14

【발명의 명칭】 반도체소자의 게이트전극 형성방법

【발명의 영문명칭】 Method for forming gate in semiconductor device

【출원인】

【명칭】 주식회사 하이닉스반도체

【출원인코드】 1-1998-004569-8

【대리인】

【성명】 강성배

 【대리인코드】
 9-1999-000101-3

【포괄위임등록번호】 1999-024436-4

【발명자】

【성명의 국문표기】 피승호

【성명의 영문표기】PYI, Seung Ho【주민등록번호】660410-1042522

【우편번호】 467-860

【주소】 경기도 이천시 부발읍 아미리 현대3차아파트 301-2004호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

강성배 (인)

【수수료】

【기본출원료】 14 면 29,000 원 【가산출원료】 0 면 0 원 【우선권주장료】 0 건 0 원 【심사청구료】 9 항 397,000 원

F=130

【합계】 426,000 원

【첨부서류】 1. 요약서·명세서(도면) 1통

【요약서】

【요약】

본 발명은 반도체소자의 게이트전극 형성방법에 관한 것으로, 반도체기판상에 게이트절연막, 도핑실리콘층, 텅스텐질화막, 텅스텐과 하드마스크층을 순차적으로 형성한 후 상기 하드마스크층을 패터닝하는 단계; 상기 패터닝된 하드마스크층을 마스크로 하여 상기 텅스텐과 텅스텐질화막을 선택적으로 제거하여 상기 도핑실리콘층의 상면을 노출시키는 단계; 상기 노출된도핑실리콘층을 포함한 결과물의 상부에 이온주입한 후 상기 노출된 도핑실리콘층을 제거하는 단계; 및 산화공정을 진행하여 상기 잔류하는 도핑실리콘층의 측벽 및 저면에 산화막을 형성하는 단계를 포함하여 구성된다.

【대표도】

도 2e

【명세서】

【발명의 명칭】

반도체소자의 게이트전극 형성방법{Method for forming gate in semiconductor device}

【도면의 간단한 설명】

도 1은 종래기술에 따른 반도체소자의 게이트전극 형성방법을 도시한 공정단면도.

도 2a 내지 도 2g는 본 발명에 따른 반도체소자의 게이트전극 형성방법을 도시한 공정별 단면도.

도 3은 도 2e의 이온주입공정시 하드마스크 측면으로 주입된 이온의 분포도.

(도면의 주요부분에 대한 부호설명)

100 : 반도체기판 120 : 게이트산화막

140 : 도핑실리쿈층 160 : 텅스텐질화막

180 : 텅스텐 200 : 하드마스크층

220 : 포토레지스트 240 : 게이트전국 재산화막

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

보 발명은 반도체소자의 게이트전극 형성방법에 관한 것으로, 보다 상세하게는 2단계로 나누어진 게이트전극 식각공정 사이에 이온주입공정을 진행하여 저온의 게이트전극 재산화공정

에서도 충분한 두께의 재산화막을 형성할 수 있는 반도체소자의 게이트전극 형성방법에 관한 것이다.

- <10> 일반적으로 반도체소자가 집적화 될 수록 게이트전극의 넓이는 더욱 작아진다. 도체의 넓이가 좁아지면 좁아질수록 도체의 저항은 커지는데, 이는 게이트전극에서도 마찬가지이다.
- <11> 최근까지 게이트전극으로는 텅스텐실리사이드(WSix)가 사용되어 왔으며, 그 사용을 연장하기 위해 다양한 시도가 이루어지고 있다.
- <12> 하지만 향후에 모든 소자가 빠른 속도특성을 요구받고 있기 때문에 게이트전극의 저항은 더욱 낮게 조절해야 할 필요가 있다.
- <13> 따라서, 대부분의 소자제조업체에서는 텅스텐실리사이드(WSix)를 대체할 게이트전극 물질로 텅스텐(W)/텅스텐질화막(WN)/도핑실리콘층(Si)의 적층구조가 제시되고 있으며, 이는 대부분의 게이트전극에 적용될 것으로 여겨지고 있다.
- 이러한 적층구조에서, 텅스텐(W)과 도핑실리콘층(Si)만을 적층하게 되면 그 계면에서 반응이 일어나 텅스텐실리사이드가 형성되는데, 이러한 계면반응을 방지코자 텅스텐과 도핑실리콘층 사이에 텅스텐질화막(WN)을 삽입하고 있다.
- 하지만 최근 반응억제물질로 삽입된 텅스텐질화막(WN)과 도핑실리콘층(Si)의 계면에도
 적은 양의 실리콘질화막이 고온에서 형성되는 것으로 알려져 있다.
- <16> 한편, 게이트전극의 손상된 층을 제거함과 동시에 게이트에지에서의 전기장

집중을 제거하는 종래의 방법을 도 1을 참조하여 살펴보면, 실리콘기판(5)상에 게이트산화막 (10)과 게이트전극용 폴리실리콘충(15)과 하드마스크(20)를 적충한 후 이를 식각하여 게이트전 극(15)을 형성한다. 그 다음, 식각공정에 의해 노출된 실리콘과 게이트측벽을 일정 두께만큼 산화시켜 게이트전극 재산화막(25)을 형성한다.

- <17> 이러한 게이트전극 재산화막으로 인해 상기 게이트전극(15)의 손상된 층은 제거되고 게이트에지에서의 전기장 집중을 제거하게 된다.
- 한편, 텅스텐/텅스텐질화막/도핑실리콘층이 적층된 게이트전극(15)에서는 텅스텐의 이상 산화현상 때문에 건식산화공정을 진행할 수 없으므로 수소와 산소의 비율을 일정하게 유지하 는 습식산화공정을 1000℃이상의 고온에서 진행하고 있다.

【발명이 이루고자 하는 기술적 과제】

- <19> 이러한 고온의 재산화공정이 진행될 때에는 게이트전극용 텅스텐질화막과 도핑실리콘층 간 계면상이 형성되는데, 이를 방지하기 위해 저온에서 재산화공정을 진행하는 경우 충분한 두 께의 산화막이 형성되지 않는다는 문제점이 있다.
- 따라서, 본 발명은 상기 종래기술의 제반 문제점을 해결하기 위하여 안출한 것으로서, 2
 단계로 나누어진 게이트전극 식각공정 사이에 이온주입공정을 진행하여 저온의 게이트전극 재
 산화공정에서 충분한 두께의 재산화막을 형성함으로써 게이트전극용 텅스텐질화막과 도핑실리
 콘층간 계면상의 형성을 방지하고, 게이트에지에서의 필드집중을 방지할 수 있는 반도체소자의
 게이트전극 형성방법을 제공함에 그 목적이 있다.

【발명의 구성 및 작용】

*21> 상기 목적을 달성하기 위한 본 발명은, 반도체기판상에 게이트절연막, 도핑실리콘충, 팅스텐질화막, 텅스텐과 하드마스크층을 순차적으로 형성한 후 상기 하드마스크층을 패터닝하는 단계; 상기 패터닝된 하드마스크층을 마스크로 하여 상기 텅스텐과 텅스텐질화막을 선택적으로 제거하여 상기 도핑실리콘층의 상면을 노출시키는 단계; 상기 노출된 도핑실리콘층을 포함한 결과물의 상부에 이온주입한 후 상기 노출된 도핑실리콘층을 제거하는 단계; 및 산화공정을 진행하여 상기 잔류하는 도핑실리콘층의 측벽 및 저면에 산화막을 형성하는 단계를 포함하여 구성됨을 특징으로 한다.

<22> (실시예)

- <23> 이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하도록 한다.
- 도 2a 내지 도 2g는 본 발명에 따른 반도체소자의 게이트전극 형성방법을 도시한 공정별 단면도이며, 도 3은 도 2e의 이온주입공정시 하드마스크 측면으로 주입된 이온의 분포도이다.
- 전저, 도 2a에 도시된 바와 같이, 반도체기판(100)상에 게이트산화막(120), 도핑실리콘
 충(140), 텅스텐질화막(WNx)(160), 텅스텐(W)(180) 및 하드마스크충(200)을 순차적으로 형성한
 다.
- <26>이때, 상기 하드마스크층(200)은 게이트전극의 패터닝시 마스킹 용도로 또는 콘택형성시 전기적 단락방지 용도로 산화막이나 질화막 또는 그 조합된 막을 이용할 수 있다.
- -27> 그 다음, 도 2b에 도시된 바와 같이, 상기 결과물의 상부에 포토레지스트(220)를 형성하고 패터닝한다.

- <28> 이어서, 도 2c에 도시된 바와 같이, 상기 패터닝된 포토레지스트(220)를 마스크로 하여하는마스크층(200)을 건식식각한다.
- -29> 그 다음, 도 2d에 도시된 바와 같이, 상기 패터닝된 포토레지스트(220)를 제거한 후 상기 패터닝된 하드마스크층(200)을 마스크로 하여 상기 텅스텐(180)과 상기 텅스텐질화막(160)을 건식식각하여 그 하부의 도핑실리콘층(140)을 노출시킨다.
- <30> 이때, 상기 도핑실리콘층(140)은 부분적으로 식각되어도 무방하다.
- 이어서, 도 2e에 도시된 바와 같이, 상기 노출된 도핑실리콘층(140)을 포함한 결과물의 상부에 산화가 촉진되며 전기적으로 영향을 주지 않는 Ge등의 이온을 낮은 에너지로 이온주입한다.
- <32> 여기서, 이온주입에너지는 30 내지 200KeV 범위에서 이루어지며, 이온주입각도는 0 내지 10°이며, 이온주입 투사범위(Rp)는 잔류하는 도핑실리콘층 두께의 ±500Å이다.
- <33> 즉, 이온주입에너지가 30KeV 인 경우 이온주입 투사범위(Rp)는 300 Å이며, 200KeV인 경우 이온주입 투사범위(Rp)는 1500Å이하이다.
- <34> 이때, 상기 주입된 이온은 상기 도핑실리콘층(140)에 수직하게 입사하지만, 도 3에 도시된 바와 같이 하드마스크(200)의 측면으로도 이온주입된다.
- 또한, 상기 이온주입공정에 의해 주입된 이온은 상기 하드마스크(200)의 측면으로 까지 이온주입되어 상기 도핑실리콘층(140)의 측면과 깊이 방향으로 이온주입된다.
- <36> 이로써 상기 이온주입된 도핑실리콘층(140)에는 후속의 게이트전극 재산화공정의 저온 산화에 의해서도 충분한 두께의 게이트전극 재산화막이 형성될 수 있다.

- 한편, 상기 이온주입공정으로 인해 소오스/드레인영역이 형성될 실리콘기판(100)에도 이 온이 주입되는데, 이때 상기 주입된 이온이 질량이 큰 경우 상기 실리콘기판(100) 표면영역의 비정질화를 용이하게 하여 얕은 접합영역을 용이하게 형성하게 된다.
- <38> 그 다음, 도 2f에 도시된 바와 같이, 상기 노출된 도핑실리콘충(140)을 다시 건식식각하여 최종적으로 패터닝을 완료한다.
- <39> 이어서, 도 2g에 도시된 바와 같이, 상기 텅스텐(180)과 상기 텅스텐질화막(160)은 산화시키지 않으면서 상기 도핑실리콘층(140)을 산화시키는 습식분위기에서 게이트전극 재산화공정을 진행하여 게이트전극 재산화막(240)을 형성한다.
- 이때, 상기 게이트전극 재산화공정은 상기 텅스텐질화막(160)과 상기 도핑실리콘층(140)
 의 계면에 계면상을 발생시키지 않는 1000℃이하의 저온에서 진행한다.

【발명의 효과】

- 상술한 바와 같이, 본 발명은 게이트전극 재산화공정을 저온에서 진행함으로써 게이트전 극용으로 적충된 텅스테질화막과 도핑실리콘층 계면의 계면상으로 인해 시그널의 오류가 발생 하는 문제를 해결할 수 있다는 효과가 있다.
- 또한, 게이트전국용 도핑실리콘층에도 이온이 주입됨으로써 저온의 게이트전국 재산화공 정을 진행하더라도 충분한 두께의 게이트산화막을 형성할 수 있어 게이트에지에서의 필드집중 을 해결할 수 있다는 효과가 있다.
- 이로 인해 단채널효과와 핫 캐리어에 의한 게이트산화막의 열화현상을 방지할 수 있어 소자의 신뢰성을 향상시킬 수 있다는 효과가 있다.

또한, 주입되는 이온의 에너지를 조절함으로써 실리콘기판에도 이온주입이 되며, 주입된이온의 질량이 큰 경우 실리콘기판의 표면이 소오스/드레인영역을 형성하기 위한 이온주입 이전에 비정질화됨으로써 얕은 접합영역을 얻기에 유리하다는 효과가 있다.

한편, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능할 것이다.

【특허청구범위】

【청구항 1】

반도체기판상에 게이트절연막, 도핑실리콘층, 텅스텐질화막, 텅스텐과 하드마스크층을 순차적으로 형성한 후 상기 하드마스크층을 패터닝하는 단계;

상기 패터닝된 하드마스크층을 마스크로 하여 상기 텅스텐과 텅스텐질화막을 선택적으로 제거하여 상기 도핑실리콘층의 상면을 노출시키는 단계;

상기 노출된 도핑실리콘층을 포함한 결과물의 상부에 이온주입한 후 상기 노출된 도핑실리콘층을 제거하는 단계; 및

산화공정을 진행하여 상기 잔류하는 도핑실리콘층의 측벽 및 저면에 산화막을 형성하는 단계를 포함하여 구성된 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 2】

제 1 항에 있어서, 상기 텅스텐과 텅스텐질화막은 건식식각으로 제거하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 3】

제 1 항에 있어서, 상기 이온주입은 30 내지 200 KeV의 범위로 진행하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 4】

제 3 항에 있어서, 상기 이온주입은 30KeV인 경우 이온주입 투사범위(Rp)는 300 Å이며, 상기 이온주입이 200KeV인 경우 이온주입 투사범위(Rp)는 1500Å이하인 것을 특징으로 하는 반 도체소자의 게이트전극 형성방법.

【청구항 5】

제 1 항에 있어서, 상기 이온은 Ge이 포함된 가스를 이용하는 것을 특징으로 하는 반도 체소자의 게이트전극 형성방법.

【청구항 6】

제 1 항에 있어서, 상기 이온주입시 상기 하드마스크층의 측면으로 이온주입하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 7】

제 1 항에 있어서, 상기 이온주입시 이온주입각도는 0 내지 10°사이인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 8】

제 1 항에 있어서, 상기 이온주입시 투사범위는 상기 잔류하는 도핑실리콘층 두께의 ± 500Å인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【청구항 9】

제 1 항에 있어서, 상기 산화공정은 1000℃이하의 온도에서 수행하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.

【도면】

[도 2a]

【도 2b】

【도 2c】

[도 2d]

[도 2e]

[도 2f]

[도 2g]

[도 3]

