Computer Animation & Physical Simulation

Lecture 3: Non-Physically-Based Animation I

XIAOPEI LIU

School of Information Science and Technology ShanghaiTech University

Keyframing

What is a frame?

One of the many still images which compose the complete moving picture

• What is a keyframe?

- A drawing that defines the critical frames of any smooth transition
- The remaining frames are filled with inbetweens
 - · Inbetweening or tweening
 - The process of generating intermediate frames between two images
 - · Manually render or adjust inbetween frames by hand
 - Or automatically render inbetween frames using interpolation

Keyframing

- An example of keyframe-based animation
 - Interpolating inbetween frames from keyframes
 - Interpolating critical properties or features

Rigid transformation

- Translation
- Rotation
- Scaling

Homogeneous Coordinates

- Given a frame defined by (p, v₁, v₂, v₃)
 - Ambiguity between the representation of a point $[p_x,\,p_y,\,p_z]^T$ and a vector $[v_x,\,v_y,\,v_z]^T$
 - We can write the point as the inner product $[s_1, s_2, s_3, 1][\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{p}_0]^T$
 - We can write the vector as the inner product $[s'_1, s'_2, s'_3, 0][v_1, v_2, v_3, p_o]^T$
 - These four vectors of three s_i values and a zero or one are called the <u>homogeneous representations</u> of the point and the vector

Identity transformation

- This transformation is represented by the identity matrix
- It maps each point and each vector to itself

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Translation transformation

In matrix form, the translation transformation is

$$T(\Delta x, \Delta y) = \begin{pmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{pmatrix}$$

 When we consider the operation of a translation matrix on a vector: unchanged as expected

$$\begin{pmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

- Rotation transformation
 - Rotation by an angle θ about the z-axis

$$\mathbf{R}_{x}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Scaling transformation

- Take a point or vector and multiply its components by scale factors in x, y
- Differentiate between uniform scaling and non-uniform scaling

$$\mathbf{S}(x, y) = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Affine transformation

- A function between affine spaces which preserves points, straight lines and planes
- An affine transformation does not necessarily preserve angles
- Typically involve
 - Translation
 - Rotation
 - Scaling
 - Shearing

- Problem with rigid/affine transformation
 - Objects cannot have locally varying deformation
- Non-affine transformation
 - Based on piecewise affine transformation
 - Triangle-based transformation
 - Based on non-linear transformation
 - · Radial basis functions

Triangle-based Deformation

- Transformation between triangles
 - Establish correspondence between triangles

Radial Basis Functions

A real-valued function

• Function value depends only on the distance from some other center points c_i

$$\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} - \mathbf{c}\|)$$

RBF Types

Gaussian:

• Thin-plate spline:

$$\phi(r)=e^{-(arepsilon r)^2}$$

$$\phi(r)=\sqrt{1+\left(arepsilon r
ight)^2}$$

$$\phi(r) = r^2 \ln(r)$$

Radial Basis Functions

Function interpolation

Mathematical form

$$f(\mathbf{x}) = \sum_{i=1}^{N} \lambda_i \, \phi(\|\mathbf{x} - \mathbf{x}_i\|)$$

Solving the interpolation

$$\begin{bmatrix} \phi(||\mathbf{x}_1 - \mathbf{x}_1||) & \phi(||\mathbf{x}_1 - \mathbf{x}_2||) & \cdots & \phi(||\mathbf{x}_1 - \mathbf{x}_N||) \\ \phi(||\mathbf{x}_2 - \mathbf{x}_1||) & \phi(||\mathbf{x}_2 - \mathbf{x}_2||) & \cdots & \phi(||\mathbf{x}_2 - \mathbf{x}_N||) \\ \vdots & \vdots & & \vdots & & \vdots \\ \phi(||\mathbf{x}_N - \mathbf{x}_1||) & \phi(||\mathbf{x}_N - \mathbf{x}_2||) & \cdots & \phi(||\mathbf{x}_N - \mathbf{x}_N||) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_N \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{bmatrix}$$

RBF-based Deformation

Solving deformation field

- Based on corresponding points
- Use RBF interpolation for deformation field

Interpolation

Linearly interpolate the parameters between keyframes

Interpolation

Cubic curve interpolation

- We can use three cubic functions to represent a 3D curve
- Each function is defined within the range 0 ≤ t ≤ 1

$$\mathbf{Q}(t) = [x(t) \ y(t) \ z(t)]$$
or
$$Q_x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$Q_y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$Q_z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

Interpolation

Spline interpolation

- We may like to have a spline interpolating some of the control points
- Bezier curves do not necessarily pass through all the control points

Interpolating Keyframes from Spline Curve

B-Spline interpolation of features (critical points)

THE IN BETWEENS ARE GOING TO BE ON THIRDS.

I. Image Warping & Morphing

Image Warping

- The process of digitally manipulating an image
 - Any shapes portrayed in the image have been significantly distorted
 - Used for correcting image distortion as well as for creative purposes

Cross-dissolve

- Interpolate whole images:
 - Image_{halfway} = (1-t)*Image1 + t*image2

- Morphing procedure
 - Warping + cross-dissolve

- How can we specify the warp?
 - Specify corresponding points
 - Feature points

The whole procedure

- 1. Create an intermediate shape (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images

- Different interpolation parameters
 - Sample interpolation parameters in [0,1]

- A special effect in motion pictures
 - Most often used to depict one person turning into another object
 - Feature matching with image warping/blending

- As-Rigid-As-Possible shape interpolation
 - Blends the interiors of given shapes
 - Rigid in the sense that local volumes are least-distorting

- Simplest method
 - Vertex coordinate interpolation

- Least-distorting triangle-to-triangle morphing
 - An affine mapping from source to target triangles represented by

$$A\vec{p_i} + \vec{l} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \vec{p_i} + \begin{pmatrix} l_x \\ l_y \end{pmatrix} = \vec{q_i}, \quad i \in \{1, 2, 3\}$$

Simplest solution

$$A(t) = (1 - t)I + tA$$

- Least-distorting triangle-to-triangle morphing
 - Some properties of the affine transformation
 - Symmetric with respect to t
 - Rotational angles and scales should change linearly
 - Triangle should keep its orientation (no flipping)
 - The resulting vertex paths should be simple

- Least-distorting triangle-to-triangle morphing
 - Decomposition
 - Singular value decomposition (SVD)

$$A = R_{\alpha} D R_{\beta} = R_{\alpha} \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} R_{\beta}, \quad s_x, s_y > 0$$

 A decomposition into <u>single rotation</u> and <u>a symmetric matrix</u> creates visually the best transformation

- Least-distorting triangle-to-triangle morphing
 - Decomposition
 - Variant from SVD

$$A = R_{\alpha}DR_{\beta} = R_{\alpha}(R_{\beta}R_{\beta}^{T})DR_{\beta} =$$

$$(R_{\alpha}R_{\beta})(R_{\beta}^{T}DR_{\beta}) = R_{\gamma}S = R_{\gamma}\begin{pmatrix} s_{x} & s_{h} \\ s_{h} & s_{y} \end{pmatrix}$$

- Least-distorting triangle-to-triangle morphing
 - Interpolation

$$A = R_{\alpha}DR_{\beta} = R_{\alpha}(R_{\beta}R_{\beta}^{T})DR_{\beta} =$$

$$(R_{\alpha}R_{\beta})(R_{\beta}^{T}DR_{\beta}) = R_{\gamma}S = R_{\gamma}\begin{pmatrix} s_{x} & s_{h} \\ s_{h} & s_{y} \end{pmatrix}$$

$$A_{\alpha,\beta}(t) = R_{t\alpha}((1-t)I + tD)R_{t\beta}$$

$$A_{\gamma}(t) = R_{t\gamma}((1-t)I + tS)$$

- Least-distorting triangle-to-triangle morphing
 - Comparison for interpolation

Closed-form vertex paths for a triangulation

$$B_{\{i,j,k\}}(t)\vec{p_f} + \vec{l} = \vec{v_f}(t), \quad f \in \{i,j,k\}$$

Note that B can be represented by vertices

Error functional:

$$E_{V(t)} = \sum_{\{i,j,k\} \in \mathcal{T}} \left\| A_{\{i,j,k\}}(t) - B_{\{i,j,k\}}(t) \right\|^2$$

Generating Intermediate Morphs

Closed-form vertex paths for a triangulation

$$E_{V(t)} = u^T \begin{pmatrix} c & G^T \\ G & H \end{pmatrix} u \qquad \longrightarrow \qquad H \begin{pmatrix} v_{2_x}(t) \\ v_{2_y}(t) \\ \vdots \end{pmatrix} = -G$$

$$V(t) = -H^{-1}G(t)$$

In practice, we compute the LU decomposition

Generating Intermediate Morphs

Extension to 3D shape interpolations

II. Animation by 2D Mesh Deformation

2D Mesh Deformation

• Why 2D deformation?

- To make new keyframes
- To interpolate intermediate frames

2D Mesh Deformation

Mesh-based method

- Anchor-point-based deformation
 - Specify very few anchor (feature) points

Mesh-based method

- As-rigid-as-possible deformation
 - Compute the deformation based on the change of anchor points
 - Minimize overall distortion

- As-rigid-as-possible deformation
 - General idea
 - Given the coordinates of the constrained vertices (anchor points)
 - Step 1:generate intermediate result
 - Prevent shearing and non-uniform stretching
 - Permit rotation and uniform scaling
 - Step 2: Adjust the scale of each triangle

- As-rigid-as-possible deformation
 - General idea
 - Process overview

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - Generate an intermediate result
 - By minimizing an error function that allows rotation and uniform scaling
 - Input: xy-coordinates of the constrained vertices
 - Output: the xy-coordinates of the remaining free vertices

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - The error function between rest triangle {v₀, v₁, v₂} a deformed triangle {v₀', v₁', v₂'}
 - First compute relative coordinates {x₀₁, y₀₁}

$$v_2 = v_0 + x_{01} \overrightarrow{v_0 v_1} + y_{01} R_{90} \overrightarrow{v_0 v_1}$$

• Given v_0' , v_1' , x_{01} , and y_{01} , the system can compute the desired location for v_2' .

$$v_2^{desired} = v_0' + x_{01} \overrightarrow{v_0' v_1'} + y_{01} R_{90} \overrightarrow{v_0' v_1'} \text{ where } R_{90} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Original Triangle

46

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - The error associated with v₂' is then represented as

$$E_{\{v_2\}} = \left\| v_2^{\text{ desired}} - v_2' \right\|^2$$

• We can define $v_0^{\rm desired}$ and $v_1^{\rm desired}$ similarly, and then define the error associated with the triangle as

$$E_{\{v_0, v_1, v_2\}} = \sum_{i=1, 2, 3} \left\| v_i^{\text{desired}} - v_i' \right\|^2$$

Original Triangle

Target triangle

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - The error for the entire mesh is the sum of errors for all triangles
 - Since the error metric is quadratic in $v'=(v_{0x}', v_{0y}', ..., v_{nx}', v_{ny}')^T$, we can express it:

$$E_{1\{\mathbf{v}'\}} = \mathbf{v'}^{\mathrm{T}} \mathbf{G} \mathbf{v'}$$

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - Error minimization
 - Setting the partial derivatives of the function $E_1\{v'\}$ with respect to the free variables $\mathbf{u} = (u_{0x}, u_{0y}, ..., u_{mx}, u_{my})^T$ in \mathbf{v}' to zero
 - By reordering v' to put the free variables first we can write

$$\mathbf{v'}^{\mathrm{T}} = (\mathbf{u}^{\mathrm{T}} \mathbf{q}^{\mathrm{T}})$$

Where \mathbf{q} represents the constrained vertices

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - Error minimization

ization
$$\mathbf{v'}^{\mathsf{T}} = (\mathbf{u}^{\mathsf{T}} \mathbf{q}^{\mathsf{T}})$$

$$\mathbf{E}_{1} = \mathbf{v'}^{\mathsf{T}} \mathbf{G} \mathbf{v'} = \begin{pmatrix} \mathbf{u} \\ \mathbf{q} \end{pmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{G}_{00} & \mathbf{G}_{01} \\ \mathbf{G}_{10} & \mathbf{G}_{11} \end{bmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{q} \end{pmatrix}$$

$$\frac{\partial E_1}{\partial \mathbf{u}} = (\mathbf{G}_{00} + \mathbf{G}_{00}^{\mathsf{T}})\mathbf{u} + (\mathbf{G}_{01} + \mathbf{G}_{10}^{\mathsf{T}})\mathbf{q} = \mathbf{0}$$

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - Error minimization

$$\frac{\partial E_1}{\partial \mathbf{u}} = (\mathbf{G}_{00} + \mathbf{G}_{00}^{\mathsf{T}})\mathbf{u} + (\mathbf{G}_{01} + \mathbf{G}_{10}^{\mathsf{T}})\mathbf{q} = \mathbf{0}$$

$$G'u + Bq = 0$$

- Note
 - G' and B are fixed
 - Only **q** changes during manipulation
 - Pre-computing **G'-1B** at the beginning

- As-rigid-as-possible deformation
 - Step 1: scale-free construction
 - Example results

Problem: scale and orientation not restricted

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Fitting the original triangle to the intermediate triangle
 - Allowing rotation and translation
 - · No shearing and scaling
 - Given a triangle $\{v_0', v_1', v_2'\}$ in the intermediate result and corresponding triangle in the rest shape $\{v_0, v_1, v_2\}$
 - Find a new triangle {v₀^{fitted}, v₁^{fitted}, v₂^{fitted}} that is congruent to {v₀, v₁, v₂}
 - Minimize the following functional

$$E_{\text{f}\left\{v_0^{\text{fitted}},v_1^{\text{fitted}},v_2^{\text{fitted}}\right\}} = \sum_{i=1,2,3} \left\| v_i^{\text{fitted}} - v_i' \right\|^2$$

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Fitting the original triangle to the intermediate triangle

• Approximate by first minimizing the error allowing uniform scaling and then adjusting the scale afterwards

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Fitting the original triangle to the intermediate triangle
 - Using the coordinates x_{01} and y_{01} , we can express v_2^{fitted} using v_0^{fitted} and v_1^{fitted} :

$$v_2^{\text{fitted}} = v_0^{\text{fitted}} + x_{01} \overline{v_0^{\text{fitted}} v_1^{\text{fitted}}} + y_{01} R_{90} \overline{v_0^{\text{fitted}} v_1^{\text{fitted}}}$$

- · The fitting functional becomes
 - A function of just the coordinates of v₀ fitted and v₁ fitted
 - A quadratic in the four free variables of $w=(v_{0x}^{fitted}, v_{0y}^{fitted}, v_{1x}^{fitted}, v_{1y}^{fitted})^T$
- We minimize E_f by

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Fitting the original triangle to the intermediate triangle
 - We obtain a newly fitted triangle similar to the original triangle
 - Make it congruent simply by scaling the fitted triangle by the factor of $||v_0^{\text{fitted}}-v_1^{\text{fitted}}||/||v_0-v_1||$
 - Apply this fitting operation to all triangles in the mesh
 - Fitting result

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Generating the final result using the fitted triangles
 - Assemble all the fitted triangles
 - Given the corresponding fitted triangle {v₀^{fitted}, v₁^{fitted}, v₂^{fitted}}, we define a quadratic error function by:

$$E_{2\{v_0"v_1",v_2"\}} = \sum_{(i,j) \in \{(0,1),(1,2),(2,0)\}} \left\| \overrightarrow{v_i"v_j"} - \overrightarrow{v_i}^{\text{fitted}} \overrightarrow{v_j}^{\text{fitted}} \right\|^2$$

· we associate an error with each edge

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Generating the final result using the fitted triangles
 - The error for the entire mesh can be represented in a matrix form

$$E_{2\{\mathbf{v''}\}} = \mathbf{v''}^{\mathsf{T}} \mathbf{H} \mathbf{v''} + \mathbf{f} \mathbf{v''} + c$$

- Note
 - **H** is defined by the connectivity of the original mesh
 - **f** and c are determined by the fitted triangles
- We minimize E₂ by setting the partial derivatives of E₂ over free vertices **u** to zero
 - Reordering v", we can write $\mathbf{v}''^{\mathrm{T}} = (\mathbf{u}^{\mathrm{T}} \mathbf{q}^{\mathrm{T}})$

- As-rigid-as-possible deformation
 - Step two: scale adjustment
 - Generating the final result using the fitted triangles

$$E_{2} = \mathbf{v}^{"T} \mathbf{H} \mathbf{v}^{"} + f \mathbf{v}^{"} + c = \begin{pmatrix} \mathbf{u} \\ \mathbf{q} \end{pmatrix}^{T} \begin{bmatrix} \mathbf{H}_{00} & \mathbf{H}_{01} \\ \mathbf{H}_{10} & \mathbf{H}_{11} \end{bmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{q} \end{pmatrix} + (\mathbf{f}_{0} \mathbf{f}_{1}) \begin{pmatrix} \mathbf{u} \\ \mathbf{q} \end{pmatrix} + c$$

$$\frac{\partial E_{2}}{\partial \mathbf{u}} = (\mathbf{H}_{00} + \mathbf{H}_{00}^{T}) \mathbf{u} + (\mathbf{H}_{01} + \mathbf{H}_{10}^{T}) \mathbf{q} + \mathbf{f}_{0} = \mathbf{0}$$

$$\mathbf{H}' \mathbf{u} + \mathbf{D} \mathbf{q} + \mathbf{f}_{0} = \mathbf{0}$$

$$\mathbf{H}' \text{ and } \mathbf{D} \text{ are fixed}$$

$$\mathbf{q} \text{ and } \mathbf{f}_{0} \text{ change during manipulation}$$

- As-rigid-as-possible deformation
 - Extensions
 - Weights for controlling rigidity
 - Add weights in front of energy function to control rigidity
 - · Can manually designed

- As-rigid-as-possible deformation
 - Animations
 - Manual manipulation to create keyframes
 - RBF to interpolate anchor points for intermediate frames

- As-rigid-as-possible deformation
 - Different results

- As-rigid-as-possible deformation
 - Video

As-Rigid-As-Possible Shape Manipulation

Takeo Igarashi, Tomer Moscovich, John F. Hughes

III. Animation by 2D Vectorization

Image Vectorization

- The process of conversion
 - From raster graphics into vector graphics
 - Unlimited resolution
 - No aliasing artifacts
 - Smaller storage
 - Easier to edit and manipulate

Vector

- A powerful vector graphics representation
 - Draw multicolored mesh objects with smooth transitions
 - Can be used to vectorize a raster image

Parametric surface patch

A general parametric surface representation has the form

$$S = \{(x, y, z) : x = X(u, v), y = Y(u, v), z = Z(u, v)\}$$

A tensor product patch is defined as

$$m(u,v) = F(u)QF^{T}(v)$$

- m(u,v) is the position vector of a point (u,v)
- F vectors consist of the basis functions
- Q matrix is a function of the control points
- Bezier bicubic, rational biquadratic, B-splines, etc.
 - Require control points lying outside the surface

Ferguson patch

- Defined with control points lying on the surface
- Suitable for image vectorization
- Definition

$$m(u,v) = F(u)QF^{T}(v) = UCQC^{T}V$$

• Definition
$$Q = \begin{bmatrix} m^0 & m^2 & m_v^0 & m_v^2 \\ m^1 & m^3 & m_v^1 & m_v^3 \\ m_u^0 & m_u^2 & m_{uv}^0 & m_{uv}^2 \\ m_u^1 & m_u^3 & m_{uv}^1 & m_{uv}^3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & -1 \\ -2 & 2 & 1 & 1 \end{bmatrix},$$

$$U = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix}$$
, and $V = \begin{bmatrix} 1 & v & v^2 & v^3 \end{bmatrix}$.

- m_u, m_v, m_{uv} are the partial derivatives
- In practice, the values of m_{uv} are usually set to zero

Ferguson patch

An example

Gradient mesh

 Topologically planar rectangular Ferguson patches

Gradient mesh

- For boundaries, each consists of one or more cubic Bezier splines
- For each control point q in the mesh
 - Position, derivatives, and RGB color can be edited
- Scalability
 - Gradient meshes can be scaled with fewer artifacts

- Image reconstruction
 - Fitting optimized gradient mesh on image
 - Optimization without and with mesh smoothness

Image vectorization results

Gradient Mesh

Image vectorization results

Gradient Mesh

Animation

- Editing gradient meshes to create keyframes
- Interpolate the gradient mesh to create animations

- How to create vector graphics easily?
 - A diffusion curve partitions the space through which it is drawn
 - Define different colors on either side
 - Support a variety of operations
 - Geometry-based editing, keyframe animation, and ready stylization

- Data structure
 - Graphical illustration

- Rendering smooth gradients from diffusion curves
 - Color sources
 - Distance the colors a little bit
 - Gradient constraint
 - Expressed as a gradient field w
 - Zero everywhere except on the curve, where it is equal to the color derivative across the curve

$$w_{x,y} = (cl - cr)N_{x,y}$$

Rendering smooth gradients from diffusion curves

- Diffusion
 - Given the color sources and gradient fields
 - · Compute the color image I
 - From the steady state diffusion of the color sources
 - Subject to the gradient constraints
 - The solution to a Poisson equation

$$\Delta I = \operatorname{div} \mathbf{w}$$
 $I(x,y) = C(x,y)$ if pixel (x,y) stores a color value where Δ and div are the Laplace and divergence operators.

- Rendering smooth gradients from diffusion curves
 - Reblurring
 - Color diffusion according to blur values stored along each curve
 - Blur values are stored only on curves
 - Diffuse the blur values over the image by solving Laplacian problem

$$\Delta B = 0$$

 $B(x,y) = \sigma(x,y)$ if pixel (x,y) is on a curve

With blur field, apply a spatially varying blur on the color image by image filtering

- Rendering smooth gradients from diffusion curves
 - The whole process

Creating Diffusion Curves

Manual creation

- (a) sketching the curves
- (b) adjusting the curve's position
- (c) setting colors and blur along the diffusion curve
- (d) the final result.

Creating Diffusion Curves

Tracing an image

Creating Diffusion Curves

- Keyframe-based animation
 - Edit keyframes based on diffusion curves
 - Create intermediate frames by control parameter interpolation

Next Lecture: Non-Physically-Based Animation II