### Análisis preliminar anchoveta

María José Zúñiga

2023-06-20

#### Revisión de los datos

## [1] FALSE FALSE

# Revisión de los datos del Método de Producción Diaria de Huevos (MPDH)

Table 1: Índices de abundancia con los coeficientes de variación utilizados en el modelo de evaluación de stock de anchoveta centro-sur.

| Año  | Crucero<br>verano | cvV | Crucero<br>otoño | cvO | Crucero<br>huevos | cvH | dtH  |
|------|-------------------|-----|------------------|-----|-------------------|-----|------|
| 1997 | 0                 | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 1998 | 0                 | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 1999 | 0                 | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 2000 | 370054            | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 2001 | 412103            | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 2002 | 1494267           | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 2003 | 250295            | 0.3 | 0                | 0.3 | 112323            | 100 | 0.16 |
| 2004 | 1289818           | 0.3 | 0                | 0.3 | 0                 | 100 | 0.16 |
| 2005 | 931140            | 0.3 | 0                | 0.3 | 153150            | 100 | 0.16 |
| 2006 | 785840            | 0.3 | 2062538          | 0.3 | 637223            | 100 | 0.16 |
| 2007 | 897777            | 0.3 | 1500000          | 0.3 | 0                 | 100 | 0.16 |
| 2008 | 1040062           | 0.3 | 0                | 0.3 | 255016            | 100 | 0.16 |
| 2009 | 184774            | 0.3 | 1874556          | 0.3 | 313432            | 100 | 0.16 |
| 2010 | 17550             | 0.3 | 323000           | 0.3 | 73983             | 100 | 0.16 |
| 2011 | 25797             | 0.3 | 250000           | 0.3 | 77613             | 100 | 0.16 |
| 2012 | 100020            | 0.3 | 174000           | 0.3 | 109348            | 100 | 0.16 |
| 2013 | 73551             | 0.3 | 83755            | 0.3 | 50772             | 100 | 0.16 |
| 2014 | 82996             | 0.3 | 137374           | 0.3 | 17779             | 100 | 0.16 |
| 2015 | 120727            | 0.3 | 0                | 0.3 | 17303             | 100 | 0.16 |
| 2016 | 218422            | 0.3 | 501740           | 0.3 | 59886             | 100 | 0.16 |
| 2017 | 84188             | 0.3 | 490994           | 0.3 | 28197             | 100 | 0.16 |
| 2018 | 347160            | 0.3 | 745055           | 0.3 | 0                 | 100 | 0.16 |
| 2019 | 605670            | 0.3 | 786931           | 0.3 | 207744            | 100 | 0.16 |
| 2020 | 569463            | 0.3 | 1005239          | 0.3 | 136588            | 100 | 0.16 |
| 2021 | 516374            | 0.3 | 1338007          | 0.3 | 643089            | 100 | 0.16 |
| 2022 | 1084161           | 0.3 | 1417886          | 0.3 | 65757             | 100 | 0.16 |
| 2023 | 1017674           | 0.3 | 0                | 0.3 | 70829             | 100 | 0.16 |



Figure 1: Índices de biomasa estimados en los cruceros de verano, otoño y huevos.



Figure 2: Índices de biomasa observados (puntos) y estimados (línea) por el modelo de evaluación de stock de anchoveta centro-sur.



Figure 3: Comparación de Biomasa desovante estimada por el método de producción diaria de huevos y modelo de evaluación de stock

Table 2: Comparación de coeficiente de capturabilidad estimada por el modelo de evaluación de stock de sardina común para cada índice de biomasa.

| Índices de<br>biomasa | dt   | CV    | Capturabilidad<br>q |
|-----------------------|------|-------|---------------------|
| Crucero Verano        | 0.50 | 0.3   | 0.88                |
| Crucero Otoño         | 0.83 | 0.3   | 3.32                |
| Crucero Huevos        | 0.16 | 100.0 | 0.36                |

Table 3: Fechas de inicio, término y duración en días de los cruceros de huevos. Fracción del año biológico considerando la fecha de inicio del crucero

| Año<br>Crucero | Fecha de<br>inicio | Fecha de<br>término | Duración del<br>crucero | Año<br>biológico | Fracción del<br>año biológico (dt) |
|----------------|--------------------|---------------------|-------------------------|------------------|------------------------------------|
| 2022           | 2022-09-10         | 2022-11-12          | 63                      | 2022-23          | 0.19                               |
| 2021           | 2021-10-08         | 2021-11-13          | 36                      | 2021-22          | 0.27                               |
| 2020           | 2020-09-27         | 2020-10-19          | 22                      | 2020-21          | 0.24                               |
| 2019           | 2019-08-20         | 2019-10-28          | 69                      | 2019-20          | 0.14                               |
| 2018           | 2018-09-09         | 2018-10-24          | 45                      | 2018-19          | 0.19                               |
| 2017           | -                  | -                   | -                       | 2017-18          | -                                  |
| 2016           | 2016-09-06         | 2016-10-21          | 45                      | 2016-17          | 0.18                               |
| 2015           | 2015-09-27         | 2015-10-27          | 30                      | 2015-16          | 0.24                               |
| 2014           | 2014-09-06         | 2014-10-21          | 45                      | 2014-15          | 0.18                               |
| 2013           | 2013-09-27         | 2013-10-27          | 30                      | 2013-14          | 0.24                               |
| 2012           | 2012-10-07         | 2012-10-29          | 22                      | 2012-13          | 0.27                               |
| 2011           | 2011-09-21         | 2011-10-15          | 24                      | 2011-12          | 0.22                               |
| 2010           | 2010-09-10         | 2010-10-15          | 35                      | 2010-11          | 0.19                               |
| 2009           | 2009-09-03         | 2009-10-05          | 32                      | 2009-10          | 0.18                               |
| 2008           | 2008-09-05         | 2008-09-26          | 21                      | 2008-09          | 0.18                               |
| 2007           | 2007-08-29         | 2007-09-28          | 30                      | 2007-08          | 0.16                               |
| 2006           | -                  | -                   | -                       | 2006-07          | -                                  |
| 2005           | 2005-08-21         | 2005-09-22          | 32                      | 2005-06          | 0.14                               |
| 2004           | 2004-08-21         | 2004-09-29          | 39                      | 2004-05          | 0.14                               |
| 2003           | 2003-08-23         | 2003-10-29          | 67                      | 2003-04          | 0.15                               |
| 2002           | 2002-08-15         | 2002-09-12          | 28                      | 2002-03          | 0.12                               |



Figure 4: Fracción del año biológico en que comienza el crucero de huevos por año



Figure 5: Distribución espacial de huevos de sardina común desde el año 2002 al 2021 (Fuente: Grendi et al 2022 ) .

## Escenarios de sensibilidad del índice de biomasa desovante estimada por el MPDH

Table 4: Escenarios de sensibilidad del índice de biomasa desovante estimada por el Método de Producción Diaria de Huevos (MPDH).

| Escenarios                            | Descripción                                             |  |  |  |
|---------------------------------------|---------------------------------------------------------|--|--|--|
| Caso base                             |                                                         |  |  |  |
| S1                                    | CV C.huevos=100, dt_C.huevos=0.16 y bloque_q_C.huevos=0 |  |  |  |
| Cambios e                             | en dt_C.huevos y bloque_q_C.huevos                      |  |  |  |
| S2                                    | S1 + dt_C.huevos=variable                               |  |  |  |
| S3                                    | S2 + bloque_q_C.huevos=3                                |  |  |  |
| S3 y Cambios en CV C.huevos           |                                                         |  |  |  |
| S4                                    | S3 + CV C.huevos = 0.30                                 |  |  |  |
| S5                                    | S3 + CV C.huevos=0.15 (alta ponderación)                |  |  |  |
| S6                                    | S3 + CV C.huevos=0.50 (baja ponderación)                |  |  |  |
| S4 y Cambios en CV C.verano y C.otoño |                                                         |  |  |  |
| S7                                    | S4 + CV C.verano=100 (no aporta información)            |  |  |  |
| S8                                    | S4 + CV C.otoño=100 (no aporta información)             |  |  |  |
| S9                                    | S4 + CV C.verano=0.25 y CV C.otoño=0.15                 |  |  |  |

Cambios en d<br/>t ${\bf y}$ bloques de capturabilidad biomasa desovante del índice de biomasa desovante (MPDH)



Table 5: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

|                                          | RMSE     |          |         |
|------------------------------------------|----------|----------|---------|
| Escenarios                               | C.Huevos | C.Verano | C.Otono |
| caso base                                | 0.85     | 0.71     | 0.43    |
| $dt\_mph\ variable$                      | 0.87     | 0.71     | 0.43    |
| $dt\_mph\ variable\ y\ 3\ bloques\_qmph$ | 0.85     | 0.71     | 0.43    |



Figure 6: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio  $(R_0)$ , donde la línea horizontal representa el nivel crítico para el test  $\chi^2$ .



Figure 7: Análisis retrospectivo relativo



Figure 8: Variables poblacionales de sardina común

### Cambios en CV mpdh



Table 6: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

|   |                 |          | RMSE     |         |
|---|-----------------|----------|----------|---------|
|   | Escenarios      | C.Huevos | C.Verano | C.Otono |
| 1 | caso base       | 0.85     | 0.71     | 0.43    |
| 4 | $cv_mph=0.3$    | 0.67     | 0.73     | 0.38    |
| 5 | $cv_mph=0.15$   | 0.53     | 0.78     | 0.35    |
| 6 | $cv\_mph{=}0.5$ | 0.73     | 0.72     | 0.41    |



Figure 9: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio  $(R_0)$ , donde la línea horizontal representa el nivel crítico para el test  $\chi^2$ .



Figure 10: Análisis retrospectivo relativo



Figure 11: Variables poblacionales de sardina común

### Cambios en CV reclas y pelaces



Table 7: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

|          |                                             |          | RMSE     |         |
|----------|---------------------------------------------|----------|----------|---------|
|          | Escenarios                                  | C.Huevos | C.Verano | C.Otono |
| 1        | caso base                                   | 0.85     | 0.71     | 0.43    |
| $\gamma$ | cv_reclas=100                               | 0.68     | 0.95     | 0.37    |
| 8        | cv_pelaces=100                              | 0.70     | 0.71     | 0.46    |
| 9        | cv_reclas=0.25, cv_pelaces=0.15, cv_mph=0.3 | 0.66     | 0.71     | 0.31    |



Figure 12: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio  $(R_0)$ , donde la línea horizontal representa el nivel crítico para el test  $\chi^2$ .



Figure 13: Análisis retrospectivo relativo



Figure 14: Variables poblacionales de sardina común

