

# Dive Reconstruction Pipeline

Michael Nixon

# Goals - Original

- Reconstruct scenes filmed while diving
- Demonstrate ORB SLAM capabilities of an underwater drone in Gazebo

# Updated

- Reconstruct scenes filmed while diving
- Demonstrate ORB SLAM capabilities of an underwater drone in Gazebo
- Implement the Python API for Agisoft to create a reconstruction pipeline for dive footage

Measure of Success: Create an easy to follow and repeatable workflow that produces reasonable 3d models of provided video without intimate knowledge of the programs at work

# Methodology - Video Processing

- ffmpeg
  - Split video into series of images
- Metashift Video Import
  - Works for many common video formats (not .MOV)

### ffmpeg

- winget install ffmpeg
- ffmpeg -i input.mp4 -vf fps=1 output%d.png



# Methodology - Python API

```
chunk = Metashape.app.document.addChunk()
chunk.addPhotos(imgFiles)
camera = chunk.cameras[0]
camera.photo.meta["Exif/FocalLength"]

#image matching and alignment for the active chunk
chunk = Metashape.app.document.chunk
for frame in chunk.frames:
    frame.matchPhotos(downscale=1)
chunk.alignCameras()
```

### Notes:

- Works for photo series
- Can utilize multispectral cameras
- No mention of video in the documentation.

```
# Code for setting up a multispectral camera
doc = Metashape.app.document
chunk = doc.chunk
rgb = ["RGB_0001.JPG", "RGB_0002.JPG", "RGB_0003.JPG"]
nir = ["NIR_0001.JPG", "NIR_0002.JPG", "NIR_0003.JPG"]
images = [[rgb[0], nir[0]], [rgb[1], nir[1]], [rgb[2], nir[2]]]
chunk.addPhotos(images, Metashape.MultiplaneLayout)
```

\*Legally\* requires a Pro License for Metashape

# Film Used - The Main Wreck





# Filmed in St Lucia

Island Country in the Caribbean



# The Cup



Filmed in Tempe, AZ

# Results - Main Wreck



### Stats:

- 46/66 images aligned
- 23016 tie points
- Point Cloud of 330k pts
- 3D Model 502k faces

### What Worked

- 1fps
- Sequential image preselection
- Model Generation from Depth Maps





# Results - Other Model Building Methods



Tie Points

- 23k faces
- 11k vertices

**Point Cloud** 

- 498k faces
- 250k vertices

Tie Points (left)
Point Cloud (below)



# Results - The Second Bit of Wreck (Medium Time Step)



### Stats:

- 74k tie points
- 72/125 images aligned
- 3D Model 25k faces

### What Worked:

- Nothing really :(
- Model does not look like any of the images

# Results - The Second Bit of Wreck (Large Time Step)



### Stats:

- 81k tie points
- 59/59 images aligned
- 3D Model 49k faces

### What Worked:

- Improved on model clarity
- Model loosely resembles the source images

# The Cup (Small Time Step)



### Stats:

- 419/419 Photos Aligned
- 272k Tie Points
- 3D Model 503k faces
- Point Cloud 7.24M points

### What Didn't Work:

- Model Scale
- Detecting clear glass

Fun Fact: scale is unknown, in this case the model is nearly 7m tall

# Underwater vs

### Best Underwater Model

- 46/66 images aligned
- 23016 tie points
- Point Cloud of 330k pts
- 3D Model 502k faces

### **Above Water**

### Best Above Water Model:

- 419/419 Photos Aligned
- 272k Tie Points
- 3D Model 503k faces
- Point Cloud 7.24M points

### **Evaluation**

Measure of Success: Create an easy to follow and repeatable workflow that produces reasonable 3d models of provided video without intimate knowledge of the programs at work

Easy to follow
Repeatable
Reasonable results
No Intimate knowledge necessary

# Conclusions

- ffmpeg
- Agisoft API
- Photos
  - Number
  - Quality
  - Position
- Panning around an object vs through/over
- Clear or Translucent Objects
- Metashape Presets
  - Image Preselection
  - Tie points



# Questions?

Thank You!

| Meta<br>Analysis |  |
|------------------|--|
|                  |  |
|                  |  |

| What doing?                             |    |
|-----------------------------------------|----|
| Project ideas/research                  |    |
| installing gazebo                       |    |
| installing gazebo classic               |    |
| fiddling with gazebo robot models       |    |
| orb slam research and integration       |    |
| installing and understanding ffmpeg     |    |
| film processing                         |    |
| agisoft <mark>i</mark> nstall           |    |
| understanding agisoft                   |    |
| cup filming                             |    |
| importing and aligning photos in agisot | it |
| building models                         |    |
| texture building                        |    |
| point cloud generation                  |    |
| learning python api                     |    |
| python implementation *legally*         |    |
| jerryrigging the pirated license        |    |
| blender imports for viewing             |    |
| messing w blender render                |    |
| troubleshooting                         |    |



5.5

14.25

no

yes

Time (rounded

helpful to end product Total

-

T

\*

\*

-

126.75

28.75

Wasted

to .25 hrs)