Minicurso de Verão da FGV/2025: Fundamentos da Otimização Multiobjetivo: Métodos, Teoria e Aplicações

Jefferson D.G. Melo

IME/UFG

14 de janeiro de 2025

Descrição do minicurso

- Otimização multiobjetiva
- Método gradiente multiobjetivo
- Método do ponto proximal multiobjetivo
- Método de Newton multiobjetivo
- Método de Frank-Wolfe e método gradiente-proximal multiobjetivos
- Discussão da pesquisa brasileira sobre o tema e problemas em aberto

Descrição da primeira nota de aula

- O problema de otimização multiobjetiva e solução Pareto
- Condição de otimalidade-Pareto crítico
- Revisão do método gradiente clássico
- Direção de descida multiobjetiva e busca de Armijo
- Método gradiente multiobjetivo
- Propriedades básicas e convergência do método gradiente multiobjetivo
- Análise de convergência do método gradiente multiobjetivo no caso convexo

O problema de otimização multiobjetivo e solução Pareto ótima

• Estamos interessados no seguinte problema de otimização multiobjetivo:

$$\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}),\tag{1}$$

sendo $F: \mathbb{R}^n \to \mathbb{R}^m$ um função multiobjetiva diferenciável.

- Um ponto $x^* \in \mathbb{R}^n$ é uma solução Pareto fraca (fracamente Pareto eficiente) para o problema (1) se **não existe** $x \in \mathbb{R}^n$ tal que $F(x) \prec F(x^*)$ (ou, equivalentemente, $F_i(x) < F_i(x^*)$, para todo $i = 1, \ldots, m$).
- Um ponto $x^* \in \mathbb{R}^n$ é uma solução Pareto (Pareto eficiente) para o problema (1) se **não** existe $x \in \mathbb{R}^n$ tal que $F(x) \leq F(x^*)$ e $F(x) \neq F(x^*)$ (ou seja, se $F_i(x) < F_i(x^*)$, para algum $i \in \{1, \ldots, m\}$, então $F_j(x) > F_j(x^*)$) para algum $j \in \{1, \ldots, m\}$.
- Note que utilizamos a ordem parcial usual em \mathbb{R}^m : se $a,b\in\mathbb{R}^m$, temos

$$a \leq b \iff a_i \leq b_i \quad e \quad a \prec b \iff a_i < b_i, \quad \forall i \in \{1, \dots, m\}.$$
 (2)

Ilustração de soluções Pareto e Pareto fraco

Exemplo 1: Planejamento econômico sustentável

O governo deseja desenvolver um plano de produção industrial que equilibre dois objetivos conflitantes:

- Maximizar o crescimento econômico, representado pela produção total de bens industriais.
- Minimizar o impacto ambiental, representado pelas emissões de carbono geradas pela produção.

Defina:

- x_1 : quantidade de bens industriais do tipo 1 produzidos.
- x_2 : quantidade de bens industriais do tipo 2 produzidos.

As funções objetivo são:

$$f_1(x_1, x_2) = ax_1 + bx_2$$
 (crescimento econômico em unidades monetárias), $f_2(x_1, x_2) = cx_1 + dx_2$ (emissões de carbono, em toneladas, a minimizar).

Continuação

Note que para este problema, pode existir algumas restrições:

- recursos disponíveis para produção são limitados;
- demanda mínima deve ser atendida;
- não pode haver produção negativa.

Interpretação:

O governo deseja \max imizar f_1 enquanto \min imiza f_2 . No entanto, como esses objetivos são conflitantes (mais produção gera mais emissões), não há uma solução única que otimize ambos. Em vez disso, busca-se o $\operatorname{conjunto}$ de $\operatorname{soluções}$ de Pareto , onde $\operatorname{melhorar}$ um objetivo implica piorar o outro.

Problema tri-objetivo:Planejamento econômico sustentável com bem-estar social

O Prefeito de uma cidade está planejando o desenvolvimento econômico de suas regiões urbanas e busca equilibrar três objetivos conflitantes:

- Maximizar a produção econômica: Representa o aumento do PIB regional baseado na produção de bens e serviços.
- Minimizar os custos ambientais: Relaciona-se com a redução das emissões de carbono e o uso de recursos naturais.
- Maximizar o bem-estar social: Avalia o impacto sobre a qualidade de vida, incluindo a geração de empregos e a saúde da população.

Um exemplo ilustrativo

A seguir, apresentamos um exemplo de uma função quadrática para ilustrar a impossibilidade de encontrar um otimizador para ambas as componentes em um problema multiobjetivo:

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} (x_1 - 1)^2 + x_2^2 \\ x_1^2 + (x_2 - 1)^2 \end{bmatrix},$$

onde $x=(x_1,x_2)\in\mathbb{R}^2$.

Note que:

- O minimizador de $f_1(x)$ é $x^* = (1,0)$, com $f_1(x^*) = 0$.
- O minimizador de $f_2(x)$ é $x^{**} = (0,1)$, com $f_2(x^{**}) = 0$.

Como não existe $x \in \mathbb{R}^2$ que minimize simultaneamente $f_1(x)$ e $f_2(x)$, evidencia-se que os objetivos entram em conflito, necessitando de um conceito mais amplo de solução, como as soluções de Pareto ou Pareto fracas.

Ilustração da curva Pareto do exemplo anterior

Curvas de nível de f_1 e f_2 com as soluções Pareto.

Problema de otimização escalar e condição de otimalidade

Considere o seguinte problema de otimização escalar:

$$\min_{x\in\mathbb{R}^n} f(x),$$

onde $f: \mathbb{R}^n \to \mathbb{R}$ é uma função diferenciável.

A condição de otimalidade de primeira ordem para um ponto $x^* \in \mathbb{R}^n$ ser uma solução ótima local é:

$$\nabla f(x^*) = 0,$$

onde $\nabla f(x^*)$ é o gradiente de f avaliado em x^* .

Esta condição implica que o vetor gradiente, cuja direção oposta aponta na direção de maior decrescimento de f, deve ser nulo em x^* , indicando um ponto crítico.

Condição de otimalidade-otimização multiobjetivo

Agora, considere o seguinte conjunto

$$\operatorname{Im} J_F(x) := \{J_F(x)v \mid v \in \mathbb{R}^n\} = \{(\langle \nabla F_1(x), v \rangle, \dots, \langle \nabla F_m(x), v \rangle) \mid v \in \mathbb{R}^n\}.$$

A condição clássica de otimalidade do caso escalar, "gradiente igual a zero", pode ser estendida para o contexto multiobjetivo utilizando o conjunto acima da seguinte forma: um ponto $x^* \in \mathbb{R}^n$ é um Pareto crítico para o problema (1) se

$$\operatorname{Im} J_{F}(x^{*}) \cap (-\mathbb{R}_{++})^{m} = \emptyset.$$
(3)

Equivalentemente, para todo $v \in \mathbb{R}^n$ existe $j \in \{1, \dots, m\}$ tal que

$$\langle \nabla F_j(x^*), v \rangle \geq 0.$$

Logo, se x^* não for um Pareto crítico, então existe uma direção $v \in \mathbb{R}^n$ tal que

$$\langle \nabla F_i(x^*), v \rangle < 0, \quad \forall i = 1, \ldots, m.$$

Relação entre criticalidade e solução Pareto (fraca)

- 1) Se um ponto x^* é uma solução Pareto fraca, então x^* é um Pareto crítico. Em geral, o recíproco é falso.
- 2) Se F é uma função convexa, o recíproco é válido, i.e., todo ponto Pareto crítico é solução Pareto fraca.
- 3) Todo minimizador (ou ponto crítico) de uma função escalarizada $f(x) = \sum_{j=1}^{m} \lambda_j F_j(x)$ é um Pareto fraco (Pareto crítico) de F.
- 4) Se F é uma função convexa, vale a volta de 3), isto é, toda solução Pareto fraca de F é minimizador de alguma função escalarizada.

Justificativas dos fatos anteriores

Justificativa de (1): Se x^* não é Pareto crítico, existe $v \in \mathbb{R}^n$ tal que $J_F(x^*)v \prec 0$. Logo, pela expansão de Taylor de primeira ordem, temos que

$$F(x^* + tv) - F(x^*) = tJ_F(x^*)v + o(t) = t\left(J_F(x^*)v + \frac{o(t)}{t}\right)$$

Como $\lim_{t\to 0} o(t)/t = 0$, temos que para t>0 suficientemente pequeno, vale que $F(x^*+tv)-F(x^*) < 0$, ou seja $F(x^*+tv) < F(x^*)$, implicando que x^* não é Pareto fraco.

Justificativa de (2): Como F é convexa, temos que para todo $y \in \mathbb{R}^n$: $F_j(y) - F_j(x^*) \ge \langle \nabla F_j(x^*), y - x^* \rangle$, e portanto

$$\max_{j=1,...,m} \{F_j(y) - F_j(x^*)\} \ge \max_{j=1,...,m} \{\langle \nabla F_j(x^*), y - x^* \rangle\} \ge 0,$$

onde a última desigualdade usamos o fato que x^* é Pareto crítico. Concluímos então que x^* é um ponto Pareto fraco.

Justificativa do fato (3)

Assuma que x^* seja um minimizador da função escalarizada $f(x) = \sum_{j=1}^m \lambda_j F_j(x)$, para algum $\lambda \in \mathbb{R}_+^m$ tal que $\sum_{j=1}^m \lambda_j = 1$. Se x^* não for Pareto fraco, então existe $y \in \mathbb{R}^n$ tal que $F_j(y) < F_j(x^*)$ para todo $j = 1, \ldots, m$. Portanto, temos que

$$f(y) = \sum_{i=1}^{m} \lambda_j F_j(y) < \sum_{i=1}^{m} \lambda_j F_j(x^*) = f(x^*),$$

contrariando o fato que x^* é minimizador de f.

Similarmente, assuma que x^* seja um ponto crítico da função escalarizada $f(x) = \sum_{j=1}^m \lambda_j F_j(x)$, para algum $\lambda \in \mathbb{R}_+^m$ tal que $\sum_{j=1}^m \lambda_j = 1$. Logo, $\sum_{j=1}^m \lambda_j \nabla F_j(x^*) = 0$. Se x^* não for Pareto crítico de F, existiria $v \in \mathbb{R}^n$ tal que $\langle \nabla F_j(x^*), v \rangle < 0$ para todo $j = 1, \ldots, m$. Portanto, obteriamos um absurdo, pois

$$0 = \left\langle \sum_{j=1}^{m} \lambda_{j} \nabla F_{j}(x^{*}), v \right\rangle = \sum_{j=1}^{m} \lambda_{j} \langle \nabla F_{j}(x^{*}), v \rangle < 0,$$

onde para a última desigualdade usamos que $\lambda_i \geq 0$ e $\lambda \neq 0$.

Exemplo ilustrando problema com escalarização "a priori"

Obs.: O fato (4) pode ser provado utilizando caracterização do subdiferencial de uma função convexa dado pelo máximo de funções afins.

Agora, ilustraremos o problema em considerar escalarização a priori. Para isto, considere a função convexa bi-objetiva $F(x,y) = (x^2 - y, y)$. Note que a Imagem de F é dada por $Im F = F(\mathbb{R}^2) = \{(u, v) : u = x^2 - v, v = v, \text{ com } x, v \in \mathbb{R}\}$. Logo, $u + v = x^2 > 0$ e todo u, v tal que u + v > 0 está na Im F, basta tomar v = v e $x = \sqrt{u + v}$, de onde teremos $x^{2} = u + v$, i.e., $u = x^{2} - v = x^{2} - y$. Portanto $Im F = \{(u, v) : u + v \ge 0\}$. As soluções Pareto (fracos) correspondem aos pontos em que u + v = 0, i.e., $(x^2 - y) + y = x^2 = 0$. Logo os pontos Pareto formam o conjunto $\{0\} \times \mathbb{R}$. Mais ainda, embora qualquer mínimo da função escalarizada $f(z) = aF_1(z) + bF_2(z)$, com $(a, b) \in \mathbb{R}^2_+$ e a + b = 1, seja um Pareto fraco de F, esse mínimo pode não existir. De fato, $f(x,y) = ax^2 + (b-a)y$. Logo, essa função possui minimizador se e somente se a=b=1/2, os quais correspondem ao conjunto de solução Pareto de F, i.e., $\{0\} \times \mathbb{R}$.

Ilustração da curva Pareto do exemplo anterior

Direção de descida para o método do gradiente

Note que um ponto x^* é Pareto crítico se

$$\max_{i=1,\ldots,m} \langle \nabla F_i(x^*), v \rangle \ge 0, \quad \forall v \in \mathbb{R}^n.$$
 (4)

Portanto, se x não for um Pareto crítico, então existe uma direção de descida $v \in \mathbb{R}^n$ para todas as funções componentes F_j . A idéia principal dos métodos de descida é verificar de alguma forma se a condição (4) é satisfeita; caso contrário, calcular uma direção v e um tamanho de passo α tal que

$$F_j(x + \alpha v) < F_j(x), \quad \forall j \in \{1, \dots, m\}.$$
 (5)

Método do gradiente clássico

O método do gradiente busca minimizar uma função escalar $f: \mathbb{R}^n \to \mathbb{R}$ iterativamente, movendo-se na direção oposta ao gradiente da função, i.e., gerando uma sequência de pontos $\{x^k\}$ a partir de um ponto inicial x^0 , por meio da seguinte formulação básica:

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

- $x^k \in \mathbb{R}^n$ é o ponto da k-ésima iteração,
- $\nabla f(\cdot)$ é o gradiente da função,
- α_k é o tamanho do passo.

Note que a direção $v^k := -\nabla f(x^k)$ é solução do problema:

$$\arg\min_{v\in\mathbb{R}^n} \left\{ \langle \nabla f(x^k), v \rangle + \frac{1}{2} |v|^2 \right\} \tag{6}$$

Escolha do tamanho do passo

A escolha do passo α_k é crucial para a convergência. Algumas abordagens incluem:

- Tamanho fixo: $\alpha_k = \alpha$, constante.
- Regra de Armijo: Ajuste adaptativo de $\alpha_k := 2^{-\ell_k}$ com base na redução da função:

$$f(x^k - 2^{-\ell}\nabla f(x^k)) \le f(x^k) - \delta 2^{-\ell} \|\nabla f(x^k)\|^2$$

onde $\delta \in (0,1)$ e ℓ_k é o menor número natural ℓ satisfazendo a desigualdade acima.

 Busca Linear Exata: Cálculo do tamanho do passo minimizando a função ao longo da direção de descida.

A escolha adequada de α_k melhora a eficiência e a estabilidade do método.

Trajetória do método do gradiente

Idéia do método do gradiente multiobjetivo

O método do gradiente multiobjetivo, proposto por Fliege e Svaiter 1 , gera uma sequência $\{x^k\}$ por meio do procedimento:

$$x^{k+1} = x^k + \alpha_k v^k,$$

onde v^k é a única solução do seguinte subproblema fortemente convexo (não suave):

$$v^{k} := \arg\min_{v \in \mathbb{R}^{n}} \left\{ \max_{j=1,\dots,m} \langle \nabla F_{j}(x^{k}), v \rangle + \frac{1}{2} |v|^{2} \right\}, \tag{7}$$

e o tamanho do passo $\alpha_{\textit{k}}$ é escolhido por uma regra do tipo Armijo.

Note que a direção de descida multiobjetiva v^k generaliza a direção de máxima descida, no contexto escalar, dada pela direção oposta ao gradiente : $v^k = -\nabla f(x^k)$.

¹Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3):479-494, 2000.

Subproblema da direção de descida multiobjetiva

Note que o problema (7) para obter a direção multiobjetiva generaliza (6) e pode ser reformulado como o seguinte problema de otimização quadrática com restrições lineares:

$$\min_{(v,t)\in\mathbb{R}^n\times\mathbb{R}}\left\{t+\frac{1}{2}|v|^2:\langle\nabla F_j(x^k),v\rangle\leq t,\quad\forall j=1,\ldots,m\right\}.$$

Note que a função Lagrangiana para este subproblema é:

$$L_{x^k}(t, v, \lambda) = t + \frac{1}{2}|v|^2 + \sum_{i=1}^m \lambda_j(\langle \nabla F_j(x^k), v \rangle - t),$$

e portanto as condições de KKT são:

$$1 - \sum_{j=1}^{m} \lambda_j = 0, \quad v + \sum_{j=1}^{m} \lambda_j \nabla F_j(x^k) = 0, \tag{9}$$

$$\lambda_{i} \geq 0, \quad \langle \nabla F_{i}(x^{k}), v \rangle \leq t, \quad \lambda_{i}(\langle \nabla F_{i}(x^{k}), v \rangle - t) = 0, \quad \forall j = 1, \dots, m$$

(10)

(8)

Observe que o KKT anterior tem solução. Por exemplo, o problema é convexo e satisfaz Slater ((1,0) é ponto de Slater.)

A função $\theta(x)$ definida por

$$\theta(x) := \min_{v \in \mathbb{R}^n} \left\{ \max_{j=1,\dots,m} \langle \nabla F_j(x), v \rangle + \frac{1}{2} |v|^2 \right\}. \tag{11}$$

possui um papel importante, tanto na caracterização da direção $v^k := v(x^k)$ quanto na análise de convergência do método gradiente multiobjetivo.

Temos as seguintes propriedades:

- $\theta(x) \le 0$ e $\theta(x) = 0$ se e somente se v(x) = 0, este caso acontece se e somente se x é um ponto Pareto crítico de F.
- $\theta(x)$ e a solução v(x) correspondente são funções contínuas.

Justificativa das propriedades de $\theta(x)$

Da definição de $\theta(x)$, temos que

$$\theta(x) \leq \max_{j=1,\dots,m} \langle \nabla F_j(x), 0 \rangle + \frac{1}{2} |0|^2 = 0$$

Note também que

$$\theta(x) = \max_{j=1,\dots,m} \langle \nabla F_j(x), v(x) \rangle + \frac{1}{2} |v(x)|^2.$$

Em particular, segue trivialmente que se v(x) = 0, então $\theta(x) = 0$. Assuma agora que $\theta(x) = 0$. Então,

$$0 = \theta(x) \leq \max_{j=1,...,m} \langle \nabla F_j(x), sv(x) \rangle + \frac{1}{2} |sv(x)|^2, \quad \forall s \in \mathbb{R}.$$

Dividindo a expressão acima por s>0 e passando o limite com $s\to 0$, obtemos que $\max_{j=1,\dots,m}\langle \nabla F_j(x),v(x)\rangle\geq 0$. Voltando na definição de $\theta(x)$, concluimos que $0=\theta(x)\geq (1/2)\|v(x)\|^2$ e portanto que v(x)=0.

Caracterização de Pareto fraco usando v(x)

Do fato que $\theta(x) \leq 0$, temos que

$$\max_{j=1,\ldots,m} \langle \nabla F_j(x), v(x) \rangle \leq -\frac{1}{2} |v(x)|^2.$$

Logo, se $v(x) \neq 0$, obtemos que $\langle \nabla F_j(x), v(x) \rangle < 0$ para todo j = 1, ..., m, e portanto v(x) é uma direção de descida, implicando que x não é Pareto crítico.

Obs. A desigualdade acima será bastante utilizada.

Agora se v(x)=0, temos que $\theta(x)=0$ e portanto para todo $v\in\mathbb{R}^n$ e $s\in\mathbb{R}$, temos

$$0 = \theta(x) \leq \max_{j=1,\ldots,m} \langle \nabla F_j(x), sv \rangle + \frac{1}{2} |sv|^2, \quad \forall s \in \mathbb{R}.$$

Dividindo a expressão acima por s>0 e passando o limite com $s\to 0$, obtemos que $\max_{i=1,\dots,m}\langle \nabla F_i(x), \nu\rangle \geq 0$, concluindo que x é Pareto crítico.

Exercício Continuidade das funções $\theta(x)$ e v(x) (Dica: utilize o sistema KKT, subsequências adequadas para para os multiplicadores λ^k e a descrição de $v(x^k)$).

Busca de Armijo-multiobjetiva

Seja v uma direção de descida para F em x:

$$\max_{i=1,\dots,m} \langle \nabla F_i(x), v \rangle < 0, \quad \forall v \in \mathbb{R}^n.$$
 (12)

A busca de Armijo consiste em obter um tamanho de passo $\alpha_\ell=2^{-\ell}$ tal que ℓ é o menor número natural satisfazendo:

$$F(x + \alpha_{\ell} v) \leq F(x) + \alpha_{\ell} \delta J_{F}(x) v \tag{13}$$

para algum $\delta \in (0,1)$.

A desigualdade vetorial acima é equivalente a

$$F_j(x + \alpha_\ell v) \le F_j(x) + \alpha_\ell \delta \langle \nabla F_j(x), v \rangle,$$
 Para todo $j = 1, ..., m.$ (14)

Note que (12) implica que $\langle \nabla F_j(x), v \rangle < 0$, e portanto a busca de Armijo garante que o tamanho de passo $\alpha := \alpha_\ell$ seja tal que ponto $x^+ := x + \alpha v$ é de descida para F em x, isto é, $F(x^+) \prec F(x)$.

Boa definição da busca de Armijo

Seja v uma direção de descida para F em x:

$$q(v) := \max_{i=1,\dots,m} \langle \nabla F_i(x), v \rangle < 0.$$
 (15)

Pela fórmula de Taylor, temos

$$F_j(x + \alpha v) = F_j(x) + \alpha \left(\langle \nabla F_j(x), v \rangle + \frac{o_j(\alpha)}{\alpha} \right)$$
 (16)

Como $\delta \in (0,1)$, q(v) < 0 e $\lim_{\alpha \to 0} \frac{o_j(\alpha)}{\alpha} = 0$, $j = 1, \ldots, m$, podemos tomar $\bar{\alpha} > 0$ suficientemente pequeno tal que, para todo $\alpha \in (0,\bar{\alpha})$, temos

$$\frac{\|o_j(\alpha)\|}{\alpha} \leq (\delta-1)q(\alpha) \leq (\delta-1)\langle \nabla F_j(x), v \rangle, \qquad \forall j=1,\ldots,m.$$

Logo, utilizando essa desigualdade em (16), temos $F_j(x + \alpha v) \leq F_j(x) + \alpha \delta \langle \nabla F_j(x), v \rangle$, para todo $\alpha \in (0, \bar{\alpha})$.

Método do gradiente multiobjetivo

- 0) (Passo Inicial) Escolha $x^0 \in \mathbb{R}^n$, $\delta \in (0,1)$ e faça k=0;
- 1) (Direção de Descida) Compute v^k como sendo a única solução de

2) (Critério de Parada) Se
$$v^k = 0$$
, pare;

3) (Escolha do Passo) Determine o primeiro inteiro não negativo
$$\ell_k := \ell$$
 satisfazendo

 $F(x^{k} + 2^{-\ell}v^{k}) \leq F(x^{k}) + 2^{-\ell}\delta J_{E}(x^{k})v^{k}$:

 $\min_{\mathbf{v} \in \mathbb{R}^n} \left\{ \max_{j=1,\dots,m} \langle \nabla F_j(\mathbf{x}^k), \mathbf{v} \rangle + \frac{1}{2} |\mathbf{v}|^2 \right\},\,$

4) (Atualização), Faça $\alpha_k = 2^{-\ell_k}$, $x^{k+1} := x^k + \alpha_k v^k$, $k \leftarrow k+1$ e retorne ao Passo 1.

(17)

(18)

Propriedades básicas

- Se o Método gradiente multiobjetivo parar na k-ésima iteração, então x^k é um ponto Pareto crítico;
- Existe $\lambda^k \in \mathbb{R}_+^m$ tal que $\sum_{j=1}^m \lambda_j^k = 1$ e $v^k = -\sum_{j=1}^m \lambda_j^k \nabla F_j(x^k)$;
- Se x^k não é Pareto crítico, então v^k é uma direção de descida: $F(x^{k+1}) \prec F(x^k)$;
- Se o conjunto de nível $L_F(x^0) := \{x \in \mathbb{R}^n : F(x) \leq F(x^0)\}$ é compacto, então $\{x^k\}$ é limitada;
- Todo ponto de acumulação de $\{x^k\}$, caso exista, é um ponto crítico.

Vamos provar este resultado de convergência logo em seguida.

Convergência do método gradiente multiobjetivo

Apresentaremos alguns passos da prova da convergência do método gradiente multiobjetivo:

- Como $\{F(x^k)\}$ é decrescente (na ordem parcial de \mathbb{R}^m), ela converge;
- Assuma, sem perda de generalidade, que $\{x^k\}$ converge para \bar{x} ;
- Definindo $q(v) = \max_{j=1,\dots,m} \langle \nabla F_j(x^k), v \rangle$, temos de (17) que $||v^k||^2 \le -2q(v^k)$;
- Da busca de Armijo, definição de q(v) e do fato que $F(x^k) \succeq F(\bar{x})$, temos:

$$0 \leq \sum_{k=0}^{N} -\delta \alpha_k q(v^k) \leq F_j(x^0) - F_j(x^{N+1}) \leq F_j(x^0) - F_j(\bar{x}), \qquad \forall j = 1, \dots, m.$$

- Da última desigualdade acima, temos $\{\alpha_k q(v^k)\} \to 0$. Logo, se $\inf_k \alpha_k > 0$, então $\{q(v^k)\}$ converge a zero, o qual implica que $\{v^k\}$ também converge a zero;
- Como $v^k = -\sum_{j=1}^m \lambda_j^k \nabla F_j(x^k)$, com $\lambda^k \in \mathbb{R}_+^m$ e $\sum_{j=1}^m \lambda_j^k = 1$, temos que existe $\bar{\lambda} \in \mathbb{R}_+^m$ tal que $\sum_{j=1}^m \bar{\lambda}_j = 1$ e $\sum_{j=1}^m \bar{\lambda}_j \nabla F_j(\bar{x}) = 0$. De onde concluimos que \bar{x} é crítico.

Continuação da análise de convergência

Assumiremos agora que inf $_k$ $\alpha_k=0$. Refinando a uma subsequência se necessário, podemos assumir que $v^k \to \bar{v}$, $x^k \to \bar{x}$, $\alpha_k \to 0$ e que $\alpha_k < 1$ para todo $k \ge k_0$.

Em particular, temos que $\hat{\alpha}_k := 2\alpha_k$ também converge a zero e da regra de Armijo temos que existe um índice j_k tal que

$$F_{j_k}(x^k + \hat{\alpha}_k v^k) - F_{j_k}(x^k) > \hat{\alpha}_k \delta \langle \nabla F_{j_k}(x^k), v^k \rangle.$$

Como $j_k \in \{1,\ldots,m\}$, temos que existe $\bar{j} \in \{1,\ldots,m\}$ tal que $j_k = \bar{j}$ infinitas vezes (Refinando a uma subsequência, se necessário, assumiremos que $j_k = \bar{j}$ para todo k). Logo dividindo ambos os lados da desigualdade acima por $\hat{\alpha}_k$ e utilizando o Teorema do valor médio, temos que

$$\langle \nabla F_{\overline{j}}(x^k + \tilde{\alpha}_k v^k), v^k \rangle > \delta \langle \nabla F_{\overline{j}}(x^k), v^k \rangle,$$

com $\tilde{\alpha}_k \in (0, \hat{\alpha}_k)$.

Continuação da análise de convergência

Portanto, passando o limite na desigualdade acima, obtemos

$$\langle \nabla F_{\bar{j}}(\bar{x}), \bar{v} \rangle \geq \delta \langle \nabla F_{\bar{j}}(\bar{x}), \bar{v} \rangle,$$

equivalentemente,

$$(1-\delta)\langle \nabla F_{\bar{i}}(\bar{x}), \bar{v} \rangle \geq 0$$

e portanto, da definição de q(v) e do fato que $\delta \in (0,1)$, concluímos que

$$q(\bar{v}) \geq \langle \nabla F_{\bar{i}}(\bar{x}), \bar{v} \rangle \geq 0.$$

Mas sabemos que $\|v^k\|^2 \le -2q(v^k)$, o qual passando o limite com $k \to +\infty$, implica que $\|\bar{v}\|^2 \le -2q(\bar{v}) \le 0$. Concluindo que $\sum_{j=1}^m \bar{\lambda}_j \nabla F_j(\bar{x}) = \bar{v} = 0$ e portanto que \bar{x} é Pareto crítico.

Convergência total sob convexidade

Em seguida mostraremos que, sob convexidade e uma hipótese adicional, toda a sequência $\{x^k\}$ gerada pelo método gradiente multiobjetivo converge para um ponto Pareto fraco.

Hipótese 1: A função F é convexa, i.e., as componentes F_j são funções convexas.

Para mostrar a convergência total de $\{x^k\}$, utilizaremos da propriedade de Fejér convergência, a qual discutimos abaixo.

Definição e resultado básico de Fejér convergência

Definition: Seja S um subconjunto não vazio de \mathbb{R}^n . Uma sequência $\{x^k\}$ em \mathbb{R}^n é dita quasi-Fejér convergente para S se, e somente se, para todo $x \in S$, existe uma sequência somável $\{\varepsilon_k\} \subset \mathbb{R}_+$ tal que, para todo inteiro $k \geq 0$, temos

$$||x^{k+1} - x||^2 \le ||x^k - x||^2 + \varepsilon_k.$$

A sequência $\{x^k\}$ é Fejér convergente para S se, na definição acima, $\varepsilon_k=0$ para todo $k\geq 0$. A importância da convergência quasi-Fejér é ilustrada no seguinte lema.

Lema: Se $\{x^k\}$ é quasi-Fejér convergente para um conjunto não vazio S, então as seguintes afirmações são válidas:

- (i) a sequência $\{x^k\}$ é limitada;
- (ii) se um ponto de acumulação de $\{x^k\}$ pertence a S, então $\{x^k\}$ converge para um ponto em S.

Fejér convergência de $\{x^k\}$ gerada pelo método gradiente multiobjetivo

Seja $\Omega_k := \{x \in \mathbb{R}^n : F(x) \leq F(x^k)\}$. Note que como $\{F(x^k)\}$ é descrescente, temos que $\Omega_{k+1} \subset \Omega_k$. Precisaremos da seguinte hipótese:

Hipótese 2: O conjunto $\Omega := \bigcap_k \Omega_k$ é não vazio.

Lemma: A seguinte desigualdade vale:

$$||x^{k+1} - x||^2 \le ||x^k - x||^2 + \alpha_k \max_{j=1,\dots,m} \{F_j(x) - F_j(x^k)\} + \alpha_k^2 ||v^k||^2.$$

Como consequência:

Teorema: Se valem Hipótese 1 e Hipótese 2, então a sequência $\{x^k\}$ é quasi-Fejér convergente a um ponto Pareto fraco pertencente ao conjunto Ω .

Prova da Fejér convergência de $\{x^k\}$.

Lembre que $x^{k+1} = x^k + \alpha_k v^k$. Logo, temos

$$\begin{split} \|x^{k+1}-x\|^2 &= \|x^k-x\|^2 + 2\alpha_k \langle v^k, x^k-x \rangle + \alpha_k^2 \|v^k\|^2 \\ &= \|x^k-x\|^2 + \alpha_k \sum_{j=1}^m \lambda_j^k \langle \nabla F_j(x^k), x-x^k \rangle + \alpha_k^2 \|v^k\|^2 \\ &\leq \|x^k-x\|^2 + \alpha_k \sum_{j=1}^m \lambda_j^k \left(F_j(x) - F_j(x^k)\right) + \alpha_k \|v^k\|^2 \end{split}$$
 onde usamos a convexidade de F e que $\alpha_k^2 \leq \alpha_k \leq 1$. Note que a busca de Armijo e a

definição de q(v) garantem que $F_i(x^{k+1}) < F_i(x^k) + \delta \alpha_k \langle \nabla F_i(x^k), v^k \rangle < F_i(x^k) + \delta \alpha_k g(v^k),$

qual implica que
$$-\alpha_k q(v^k) \leq \frac{F_j(x^k) - F_j(x^{k+1})}{\delta}$$

(19)

Continuação da análise de convergência de $\{x^k\}$.

Lembre $||v^k||^2 \le -2q(v^k)$, logo concluímos que

$$\alpha_k ||v^k||^2 \le -2\alpha_k q(v^k) \le \frac{2[F_j(x^k) - F_j(x^{k+1})]}{\delta},$$

implicando que

$$\sum_{k=0}^{N} \alpha_k ||v^k||^2 \le \frac{F_j(x^0) - F_j(x^{N+1})}{\delta}.$$

Pela Hipótese 2, temos para todo $\bar{x} \in \Omega$ e $j=1,\ldots,m$, que $F_j(\bar{x}) \leq F_j(x^{N+1})$. Portanto,

$$\sum_{k=0}^N \alpha_k \|v^k\|^2 \leq \frac{F_j(x^0) - F_j(\bar{x})}{\delta}.$$

Usando $x=\bar{x}$ em (19), temos que $\{x^k\}$ é quasi-Fejér convergente para Ω . Como $\{F(x^k)\}$ é decrescente, temos que todo ponto de acumulação de $\{x^k\}$ está em Ω . Logo, $\{x^k\}$ converge a um ponto de Ω . A prova do teorema segue, já que todo ponto de acumulação é Pareto crítico, o qual é Pareto fraco, pois F é convexa.