Задача построения расписаний

Тюшев Максим

6 ноября 2023 г.

1 Прикладная задача

Дано; независимых работ, для каждой работы задано время выполнения. Требуется построить расписание выполнения работ без прерываний на М процессорах. На расписании должно достигаться минимальное значение критерия разбалансированности расписания.

Под разбалансированностью расписания понимаем разность $T_{max}-T_{min}$, где T_{max} — наибольшая, по всем процессорам, длительность расписания (время завершения последней работы) на процессоре, T_{min} аналогично, наименьшая длительность.

2 Формальная постановка задачи

2.1 ДАНО

- M количество процессоров, $\{M_1, \ldots, M_M\}$ множество процессоров
- ullet $N=(Task_1,\ Task_2,\ \dots,\ Task_N)$ множество независимых работ
- $T=(Time_1,\ Time_2,\ \dots\ ,\ Time_N)$ время выполнения работ, где $Time_i$ время выполнения работы $Task_i$

2.2 ТРЕБУЕТСЯ

Построить расписание $HP=(HP_B,\ HP_L)$ на заданном количестве процессоров.

- $HP_B : N \to \{M_0, M_1, \dots, M_m\} -$
- HP_L : порядок выполнения работ

Необходимо привязать каждую работу $Task_i$ к некоторому процессору j, на котором будет выполняться данная работа, задать порядок выполнения выполнения работ на каждом из процессоров.

2.3 МИНИМИЗИРУЕМЫЙ КРИТЕРИЙ

Разбалансированность расписания:

$$\min_{HP} \left(T_{max} - T_{min} \right) = \min_{HP} \left(\max_{1 \le i \le M} t_i - \min_{1 \le i \le M} t_i \right), \tag{1}$$

где t_i – длительность расписания на i-ом процессоре.

3 Ограничения на корректность расписания

- $\forall i \in [1, N] \; \exists ! j \in [1, M] :$ работа $Task_i$ привязана к процессору с номером j
- Недопустимы прервывания (в каждый момент времени, в котором определено расписание выполняется какая-либо работа)
- Недопустим перенос работы на другой процессор во время ее выполнения

4 Исследование последовательной реализации

4.1 Рассматриваемые законы изменения температуры

• Cauchy: $T = T_0 \frac{1}{1+i}$

• Boltzmann: $T = T_0 \frac{\log(1+i)}{1+i}$

• LogDiv: $T = T_0 \frac{1}{\log(1+i)}$

где i – номер итерации.

4.2 Экспериментальное исследование

Экспериментально было определено, что при $M=100,\ |N|=1\ 000\ 000,\ 10 \le Task_i \le 1000,\ \forall i \in [1,|N|]$ алгоритм работает более минуты. Для этих входных данных получены следующие результаты (усреднены по 5 запускам):

Закон понижения температуры	Качество решения	Время работы, сек
Cauchy	974	141.83
Boltzmann	1191	163.19
LogDiv	1924	114.39

4.3 Время работы алгоритма в зависимости от входных данных

Для следующих законов понижения температуры: Cauchy и LogDiv, были построенны тепловые карты. На тепловых картах показано усреднение по 5 запускам. Параметры входных данных:

- $10 \le M \le 500$, с шагом 10
- $1000 \le |N| \le 10$ 000, с шагом 100
- $10 \le Task_i \le 1\ 000, \ \forall i \in [1, |N|]$

Рис. 1: LogDiv

Рис. 2: Cauchy