Glycimic Index

Richel Bilderbeek

10/16/2020

Loading libraries

```
library(ggplot2)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Loading data

Control, with white bread, which has a known glycemic index of 75%:

```
t_control <- read.csv("control.csv")
names(t_control) <- c("t", names(t_control)[-1])
t_control$Gemiddeld <- NULL
knitr::kable(t_control)</pre>
```

t	X1	X2	Х3	X4	X5	X6	X7	X8	X9
15	0.000	-0.013	0.075	-0.013	0.175	0.088	0.163	0.050	0.125
30	0.013	0.113	0.225	0.263	0.575	0.288	0.413	0.225	0.363
45	0.025	0.113	0.225	0.675	0.775	0.425	0.550	0.288	0.375
60	0.163	-0.100	0.125	0.750	0.425	0.275	0.550	0.025	0.313
75	0.225	-0.038	-0.100	0.475	0.038	0.250	0.413	-0.213	0.225
90	0.087	0.013	-0.225	0.350	-0.087	0.413	0.225	-0.163	0.000
105	-0.025	-0.013	-0.125	0.450	-0.113	0.425	0.163	-0.087	-0.138
120	-0.088	0.013	-0.050	0.325	-0.087	0.425	0.138	-0.062	-0.150

Treatment, with Jimmy Joy's Plenny Shake, of which the glycemic index needs to be determined:

```
t_jj <- read.csv("jj.csv")
names(t_jj) <- c("t", names(t_jj)[-1])
t_jj$Gemiddeld <- NULL
knitr::kable(t_jj)</pre>
```

t	X1	X2	Х3	X4	X5	X6	X7	X8	X9
15	0.050	0.113	0.088	0.138	0.063	0.038	0.100	0.050	0.050
30	0.175	0.200	0.213	0.250	0.200	0.138	0.138	0.200	0.275
45	0.175	0.013	0.200	0.150	0.313	0.225	0.063	0.238	0.338
60	0.088	-0.138	0.075	0.000	0.350	0.087	0.088	0.050	0.138
75	0.025	-0.063	0.013	-0.050	0.300	-0.050	0.175	-0.050	0.125
90	-0.100	0.063	-0.013	-0.025	0.213	-0.025	0.188	0.075	0.087
105	-0.163	0.038	-0.013	-0.062	0.100	0.037	0.138	0.063	0.087
120	-0.113	-0.075	0.013	-0.062	0.038	0.175	0.125	0.013	0.150

Convert data to long form

```
t_control_long <- tidyr::pivot_longer(
  t_control,
  cols = starts_with("X"),
  names_to = "person_id"
)
t_control_long$treatment <- "control"

t_jj_long <- tidyr::pivot_longer(
  t_jj,
  cols = starts_with("X"),
  names_to = "person_id"
)
t_jj_long$treatment <- "jj"
t <- rbind(t_control_long, t_jj_long)
knitr::kable(head(t))</pre>
```

t	person_id	value	treatment
15	X1	0.000	control
15	X2	-0.013	control
15	X3	0.075	control
15	X4	-0.013	control
15	X5	0.175	control
15	X6	0.088	control

AUC per person in time

```
t$person_id <- as.factor(t$person_id)
ggplot(
    t,
    aes(x = t, y = value, color = treatment)
) + geom_point() + geom_smooth() +
    scale_y_continuous("AUC of blood glucose concentration") +
    scale_x_continuous("time (minutes)") +
    ggtitle("AUCs in time") +
    facet_grid(person_id ~ .) +
    ggsave("aucs_in_time_pp.png", width = 7, height = 49)</pre>
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Average AUC in time

```
ggplot(
    t,
    aes(x = t, y = value, color = treatment)
) + geom_point() + geom_smooth() +
    scale_y_continuous("AUC of blood glucose concentration") +
    scale_x_continuous("time (minutes)") +
    ggtitle("AUCs in time") +
    ggsave("aucs_in_time.png", width = 7, height = 7)

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Calculate the glycemic index

Calculate the average concentrations (again)

```
t_summary <- t %>% dplyr::group_by(t, treatment) %>% dplyr::summarise(mean = mean(value), .groups = "dr
knitr::kable(t_summary)
```

t	treatment	mean
15	control	0.0722222
15	jj	0.0766667
30	control	0.2753333
30	jj	0.1987778
45	control	0.3834444
45	jj	0.1905556
60	control	0.2806667
60	jj	0.0820000
75	control	0.1416667
75	jj	0.0472222
90	control	0.0681111
90	jj	0.0514444
105	control	0.0596667
105	jj	0.0250000
120	control	0.0515556
120	jj	0.0293333

Approximate the area in the two-hour curve

Simply sum the values

```
t_gi <- t_summary %>% dplyr::group_by(treatment) %>% dplyr::summarise(sum = sum(mean), .groups = "drop"
knitr::kable(head(t_gi))
```

treatment	sum
control	1.332667
jj	0.701000

Correct values

We know the control (white bread) has a glycemic index of 75%.

```
control_row <- which(t_gi$treatment == "control")
control_sum <- t_gi$sum[control_row]
conversion <- 75 / control_sum
testthat::expect_equal(control_sum * conversion, 75)
jj_row <- which(t_gi$treatment == "jj")
jj_sum <- t_gi$sum[jj_row]
gi <- jj_sum * conversion
cat(paste("The glycemic index of Jimmy Joy's Plenny shake is", gi))</pre>
```

The glycemic index of Jimmy Joy's Plenny shake is 39.4509754877439

The glycemic index of Jimmy Joy's Plenny shake is approximately 40%, which is classified as a low glycemic index.