Econometric Analysis of Cross Section and Panel Data

Lecture 5: Asymptotic Theory for Least Squares

Zhian Hu

Central University of Finance and Economics

Fall 2024

This Lecture

- ► Hansen (2022): Chapter 6 & 7
- ▶ The most widely-used tool in sampling theory is large sample asymptotics.
- ▶ By "asymptotics" we mean approximating a finite-sample sampling distribution by taking its limit as the sample size diverges to infinity.

Modes of Convergence

依概率收敛

▶ **Definition:** A sequence of random vectors $Z_n \in \mathbb{R}^k$ converges in probability to Z as $n \to \infty$, denoted $Z_n \xrightarrow[p]{} Z$ or alternatively $\text{plim}_{n \to \infty} Z_n = Z$, if for all $\delta > 0$

$$\lim_{n\to\infty}\mathbb{P}\left[\|Z_n-Z\|\leq\delta\right]=1$$

We call Z the probability limit (or plim) of Z_n

Modes of Convergence

依分布收敛

Definition: Let Z_n be a sequence of random vectors with distributions $F_n(u) = \mathbb{P}\left[Z_n \leq u\right]$. We say that Z_n converges in distribution to Z as $n \to \infty$, denoted $Z_n \xrightarrow[d]{} Z$, if for all u at which $F(u) = \mathbb{P}[Z \leq u]$ is continuous, $F_n(u) \to F(u)$ as $n \to \infty$. We refer to Z and its distribution F(u) as the asymptotic distribution, large sample distribution, or limit distribution of Z_n .

Weak Law of Large Numbers

大数定律

▶ Weak Law of Large Numbers (WLLN): If $Y_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}||Y|| < \infty$, then as $n \to \infty$,

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{p} E[Y]$$

- ▶ Theorem: If $Y_i \in \mathbb{R}^k$ are i.i.d., $h(y) : \mathbb{R}^k \to \mathbb{R}^q$, and $\mathbb{E}||h(Y)|| < \infty$, then $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^n h(Y_i) \xrightarrow{p} \mu = \mathbb{E}[h(Y)]$ as $n \to \infty$.
- ▶ **Definition:** An estimator $\widehat{\theta}$ of θ is consistent if $\widehat{\theta} \xrightarrow{p} \theta$ as $n \to \infty$.

Central Limit Theorem

▶ Multivariate Lindeberg-Lévy Central Limit Theorem (CLT): If $Y_i \in \mathbb{R}^k$ are i.i.d. and $\mathbb{E}||Y||^2 < \infty$, then as $n \to \infty$

$$\sqrt{n}(\bar{Y}-\mu) \xrightarrow{d} \mathrm{N}(0,V)$$

where $\mu = \mathbb{E}[Y]$ and $\boldsymbol{V} = \mathbb{E}[(Y - \mu)(Y - \mu)']$.

► The central limit theorem shows that the distribution of the sample mean is approximately normal in large samples.

Continuous Mapping Theorem and Delta Method

▶ Continuous Mapping Theorem (CMT): Let $Z_n \in \mathbb{R}^k$ and $g(u) : \mathbb{R}^k \to \mathbb{R}^q$. If $Z_n \xrightarrow{p} c$ as $n \to \infty$ and g(u) is continuous at c then $g(Z_n) \xrightarrow{p} g(c)$ as $n \to \infty$.

Continuous Mapping Theorem and Delta Method

三明治法则

Delta Method: Let $\mu \in \mathbb{R}^k$ and $g(u) : \mathbb{R}^k \to \mathbb{R}^q$. If $\sqrt{n}(\widehat{\mu} - \mu) \xrightarrow{d} \xi$, where g(u) is continuously differentiable in a neighborhood of μ , then as $n \to \infty$

$$\sqrt{n}(g(\widehat{\mu})-g(\mu)) \xrightarrow{d} G'\xi$$

where ${\bf G}(u)=\frac{\partial}{\partial u}{\bf g}(u)'$ and ${\bf G}={\bf G}(\mu).$ In particular, if $\xi\sim {\rm N}(0,{\bf V})$ then as $n\to\infty$

$$\sqrt{n}(g(\widehat{\mu}) - g(\mu)) \xrightarrow{d} N(0, \mathbf{G}' \mathbf{VG})$$

Assumptions

- Recall the model $Y = X'\beta + e$ with the linear projection coefficient $\beta = (\mathbb{E}[XX'])^{-1}\mathbb{E}[XY]$.
- ► Assumptions:
 - 1. The variables (Y_i, X_i) , i = 1, ..., n, are i.i.d.
 - 2. $\mathbb{E}\left[Y^2\right] < \infty$.
 - 3. $\mathbb{E}\|X\|^2 < \infty$.
 - 4. $\mathbf{Q}_{XX} = \mathbb{E}\left[XX'\right]$ is positive definite.

Observe that the OLS estimator

$$\widehat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i X_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i Y_i\right) = \widehat{\mathbf{Q}}_{XX}^{-1} \widehat{\mathbf{Q}}_{XY}$$

is a function of the sample moments $\widehat{Q}_{XX} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i'$ and $\widehat{Q}_{XY} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$

- \triangleright Specifically, the fact that (Y_i, X_i) are mutually i.i.d. implies that any function of (Y_i, X_i) is i.i.d., including $X_i X_i'$ and $X_i Y_i$. These variables also have finite expectations.
- Under these conditions, the WLLN implies that as $n \to \infty$.

$$\widehat{Q}_{XX} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \xrightarrow{p} \mathbb{E} [XX'] = Q_{XX}$$

and

$$\widehat{\mathbf{Q}}_{XY} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i \xrightarrow{p} \mathbb{E}[XY] = \mathbf{Q}_{XY}$$
10/40

- ▶ The CMT allows us to combine these equations to show that $\widehat{\beta}$ converges in probability to β .
- ▶ Specifically, as $n \to \infty$,

$$\widehat{\beta} = \widehat{\boldsymbol{Q}}_{XX}^{-1} \widehat{\boldsymbol{Q}}_{XY} \xrightarrow{p} \boldsymbol{Q}_{XX}^{-1} \boldsymbol{Q}_{XY} = \beta$$

- ▶ We have shown that $\widehat{\beta} \xrightarrow{p} \beta$ as $n \to \infty$. In words, the OLS estimator converges in probability to the projection coefficient vector β as the sample size n gets large.
- ▶ It states that the OLS estimator $\widehat{\beta}$ converges in probability to β as n increases and thus $\widehat{\beta}$ is consistent for β .

► To illustrate the effect of sample size on the least squares estimator consider the least squares regression.

log(wage) =
$$\beta_1$$
 education + β_2 experience + β_3 experience $^2 + \beta_4 + e$

▶ We sequentially estimated the model by least squares starting with the first 5 observations and continuing until the full sample is used.

- Consistency is a good first step, but in itself does not describe the distribution of the estimator.
- Now we derive an approximation typically called **the asymptotic distribution**.

$$\sqrt{n}(\widehat{\beta}-\beta) = \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}e_{i}\right)$$

The random pairs (Y_i, X_i) are i.i.d., so any function of (Y_i, X_i) is also i.i.d. This includes $e_i = Y_i - X_i'\beta$ and the product X_ie_i . The latter is mean-zero $(\mathbb{E}[Xe] = 0)$ and has $k \times k$ covariance matrix

$$\Omega = \mathbb{E}\left[(Xe)(Xe)' \right] = \mathbb{E}\left[XX'e^2 \right]$$

- $ightharpoonup \Omega$ has finite elements under some assuptions:
 - 1. The variables (Y_i, X_i) , i = 1, ..., n, are i.i.d..
 - 2. $\mathbb{E}\left[Y^4\right] < \infty$.
 - 3. $\mathbb{E}\|X\|^{\frac{1}{4}} < \infty$.
 - 4. $\mathbf{Q}_{XX} = \mathbb{E}[XX']$ is positive definite.

ightharpoonup Since $X_i e_i$ is i.i.d., mean zero, and finite variance, the central limit theorem implies

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i e_i \longrightarrow \mathrm{N}(0,\Omega)$$

So we can derive

$$\sqrt{n}(\widehat{\beta} - \beta) \xrightarrow{d} Q_{XX}^{-1} N(0, \Omega) = N(0, \mathbf{Q}_{XX}^{-1}\Omega \mathbf{Q}_{XX}^{-1})$$

as $n \to \infty$.

▶ Theorem: Asymptotic Normality of Least Squares Estimator Under the above assumptions, as $n \to \infty$

$$\sqrt{n}(\widehat{\beta}-\beta) \xrightarrow{d} \mathrm{N}\left(0, V_{\beta}\right)$$

where $extbf{ extit{Q}}_{XX} = \mathbb{E}\left[XX'
ight], \Omega = \mathbb{E}\left[XX'e^2
ight]$, and

$$extbf{\emph{V}}_eta = extbf{\emph{Q}}_{XX}^{-1} \Omega extbf{\emph{Q}}_{XX}^{-1}$$

➤ Compare the variance of the asymptotic distribution and the finite-sample conditional variance in the CEF model:

$$extbf{\emph{V}}_{\widehat{eta}} = ext{var}[\widehat{eta} \mid extbf{\emph{X}}] = \left(extbf{\emph{X}}' extbf{\emph{X}}
ight)^{-1} \left(extbf{\emph{X}}' extbf{\emph{D}} extbf{\emph{X}}
ight) \left(extbf{\emph{X}}' extbf{\emph{X}}
ight)^{-1}$$

Notice that $\mathbf{V}_{\widehat{\beta}}$ is the exact conditional variance of $\widehat{\beta}$ and \mathbf{V}_{β} is the asymptotic variance of $\sqrt{n}(\widehat{\beta} - \beta)$. Thus \mathbf{V}_{β} should be (roughly) n times as large as $\mathbf{V}_{\widehat{\beta}}$, or $\mathbf{V}_{\beta} \approx n \mathbf{V}_{\widehat{\beta}}$.

$$nV_{\widehat{\beta}} = \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'DX\right)\left(\frac{1}{n}X'X\right)^{-1}$$

▶ which looks like an estimator of V_{β} . Indeed, as $n \to \infty$, $nV_{\widehat{\beta}} \xrightarrow{p} V_{\beta}$.

lacktriangle There is a special case where Ω and $oldsymbol{V}_eta$ simplify. Suppose that

$$\mathsf{cov}\left(XX',e^2\right)=0$$

▶ It holds in the homoskedastic linear regression model but is somewhat broader. The asymptotic variance formulae simplify as

$$\Omega = \mathbb{E}\left[XX'\right]\mathbb{E}\left[e^2\right] = \mathbf{Q}_{XX}\sigma^2$$
 $\mathbf{V}_{\beta} = \mathbf{Q}_{XX}^{-1}\Omega\mathbf{Q}_{XX}^{-1} = \mathbf{Q}_{XX}^{-1}\sigma^2 \equiv \mathbf{V}_{\beta}^0$

• We call V_{β}^0 the homoskedastic asymptotic covariance matrix.

Consistency of Error Variance Estimators

- ▶ We can show that the estimators $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n \hat{e}_i^2$ and $s^2 = (n-k)^{-1} \sum_{i=1}^n \hat{e}_i^2$ are consistent for σ^2
- ▶ The trick is to write the residual \hat{e}_i as equal to the error e_i plus a deviation

$$\widehat{e}_i = Y_i - X_i'\widehat{\beta} = e_i - X_i'(\widehat{\beta} - \beta)$$

▶ Thus the squared residual equals the squared error plus a deviation

$$\widehat{e_i}^2 = e_i^2 - 2e_iX_i'(\widehat{\beta} - \beta) + (\widehat{\beta} - \beta)'X_iX_i'(\widehat{\beta} - \beta)$$

➤ So when we take the average of the squared residuals we obtain the average of the squared errors, plus two terms which are (hopefully) asymptotically negligible. This average is:

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 - 2 \left(\frac{1}{n} \sum_{i=1}^n e_i X_i' \right) (\widehat{\beta} - \beta) + (\widehat{\beta} - \beta)' \left(\frac{1}{n} \sum_{i=1}^n X_i X_i' \right) (\widehat{\beta} - \beta)$$

Consistency of Error Variance Estimators

► The WLLN implies that

$$\frac{1}{n} \sum_{i=1}^{n} e_i^2 \xrightarrow{p} \sigma^2$$

$$\frac{1}{n} \sum_{i=1}^{n} e_i X_i' \xrightarrow{p} \mathbb{E} \left[eX' \right] = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i X_i' \xrightarrow{p} \mathbb{E} \left[XX' \right] = Q_{XX}$$

- ▶ Since $\widehat{\beta} \xrightarrow{p} \beta$, $\widehat{\sigma}^2$ converges in probability to σ^2 as desired.
- ▶ Since $n/(n-k) \to 1$ as $n \to \infty$, it follows that $s^2 = \left(\frac{n}{n-k}\right) \widehat{\sigma}^2 \xrightarrow{p} \sigma^2$. Thus both estimators are consistent.

Homoskedastic Covariance Matrix Estimation

- We have shown that $\sqrt{n}(\widehat{\beta} \beta)$ is asymptotically normal with asymptotic covariance matrix \mathbf{V}_{β} .
- For asymptotic inference (confidence intervals and tests) we need a consistent estimator of V_{β} .
- Under homoskedasticity V_{β} simplifies to $V_{\beta}^{0} = Q_{XX}^{-1}\sigma^{2}$ and now we consider the simplified problem of estimating V_{β}^{0} .

Homoskedastic Covariance Matrix Estimation

- ▶ The standard moment estimator of Q_{XX} is \widehat{Q}_{XX} and thus an estimator for Q_{XX}^{-1} is \widehat{Q}_{XX}^{-1} .
- ▶ The standard estimator of σ^2 is the unbiased estimator s^2 .
- lacksquare Thus a natural plug-in estimator for $m{V}^0_eta = m{Q}^{-1}_{XX}\sigma^2$ is $\hat{m{V}}^0_eta = \hat{m{Q}}^{-1}_{XX} \, \mathrm{s}^2$.
- Consistency of \widehat{V}_{β}^{0} for V_{β}^{0} follows from consistency of the moment estimators \widehat{Q}_{XX} and s^{2} and an application of the continuous mapping theorem.

$$\widehat{m{V}}_{eta}^0 = \widehat{m{Q}}_{XX}^{-1} s^2 \stackrel{}{\longrightarrow} m{Q}_{XX}^{-1} \sigma^2 = m{V}_{eta}^0$$

Heteroskedastic Covariance Matrix Estimation

- We have established the asymptotic covariance matrix of $\sqrt{n}(\widehat{\beta} \beta)$ is $V_{\beta} = \mathbf{Q}_{XX}^{-1} \Omega \mathbf{Q}_{XX}^{-1}$.
- We now consider estimation of this covariance matrix without imposing homoskedasticity.
- ► The standard approach is to use a plug-in estimator which replaces the unknowns with sample moments.
- ▶ A natural estimator for Q_{XX}^{-1} is \widehat{Q}_{XX}^{-1} .
- ightharpoonup The moment estimator for Ω is

$$\widehat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \widehat{e}_i^2$$

leading to the plug-in covariance matrix estimator and the estimator is consistent

$$\widehat{m{V}}_{\!eta}^{
m HC0} = \widehat{m{Q}}_{\!X\!X}^{-1} \widehat{\Omega} \widehat{m{Q}}_{\!X\!X}^{-1}$$

Summary of Covariance Matrix Notation

The exact variance of $\widehat{\beta}$ (under the assumptions of the linear regression model) and the asymptotic variance of $\sqrt{n}(\widehat{\beta}-\beta)$ (under the more general assumptions of the linear projection model) are

$$egin{aligned} oldsymbol{V}_{\widehat{eta}} &= \mathsf{var}[\widehat{eta} \mid oldsymbol{X}] = oldsymbol{(X'X)}^{-1} oldsymbol{(X'X)}^{-1} oldsymbol{V}_{eta} &= \mathsf{avar}[\sqrt{n}(\widehat{eta} - eta)] = oldsymbol{Q}_{XX}^{-1} \Omega oldsymbol{Q}_{XX}^{-1} \end{aligned}$$

▶ The HC0 estimators of these two covariance matrices are

$$oldsymbol{\widehat{V}}_{\widehat{eta}}^{ ext{HCo}} = \left(oldsymbol{X}'oldsymbol{X}
ight)^{-1} \left(\sum_{i=1}^{n} X_i X_i' \widehat{\mathbf{e}}_i^2
ight) \left(oldsymbol{X}'oldsymbol{X}
ight)^{-1} \ \widehat{oldsymbol{V}}_{eta}^{ ext{HCO}} = \widehat{oldsymbol{Q}}_{XX}^{-1} \widehat{\Omega} \widehat{oldsymbol{Q}}_{XX}^{-1}$$

and satisfy the simple relationship $\widehat{m{V}}_{eta}^{\mathrm{HC0}} = n \widehat{m{V}}_{\widehat{eta}}^{\mathrm{H}}$

Summary of Covariance Matrix Notation

Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify to

$$oldsymbol{V}_{\widehat{eta}}^0 = ig(oldsymbol{X}'oldsymbol{X}ig)^{-1}\,\sigma^2 \ oldsymbol{V}_{eta}^0 = oldsymbol{Q}_{XX}^{-1}\sigma^2$$

Their standard estimators are

$$\widehat{oldsymbol{V}}_{\widehat{eta}}^0 = ig(oldsymbol{X}'oldsymbol{X}ig)^{-1} s^2 \ \widehat{oldsymbol{V}}_{eta}^0 = \widehat{oldsymbol{Q}}_{XX}^{-1} s^2$$

which also satisfy the relationship $\widehat{m{V}}_{eta}^0 = n \widehat{m{V}}_{\widehat{eta}}^0$.

- In most serious applications a researcher is actually interested in a specific transformation of the coefficient vector $\beta = (\beta_1, \dots, \beta_k)$.
- ► For example, the researcher may be interested in a single coefficient β_j or a ratio β_j/β_l .
- In any of these cases we can write the parameter of interest θ as a function of the coefficients, e.g. $\theta = r(\beta)$ for some function $r : \mathbb{R}^k \to \mathbb{R}^q$. The estimate of θ is

$$\widehat{\theta} = r(\widehat{\beta})$$

▶ By the continuous mapping theorem and the fact $\widehat{\beta} \xrightarrow{p} \beta$ we can deduce that $\widehat{\theta}$ is consistent for θ if the function $r(\cdot)$ is continuous.

- ▶ **Assumption:** $r(\beta): \mathbb{R}^k \to \mathbb{R}^q$ is continuously differentiable at the true value of β and $R = \frac{\partial}{\partial \beta} r(\beta)'$ has rank q.
- ▶ Theorem: Asymptotic Distribution of Functions of Parameters Under the above assumptions, as $n \to \infty$,

$$\sqrt{n}(\widehat{\theta}-\theta) \xrightarrow[d]{} \mathrm{N}\left(0,V_{\theta}\right)$$

where $V_{\theta} = R'V_{\beta}R$.

ln many cases the function $r(\beta)$ is linear:

$$r(\beta) = R'\beta$$

for some $k \times q$ matrix R. In particular if R is a "selector matrix"

$$R = \begin{pmatrix} I \\ 0 \end{pmatrix}$$

▶ then we can partition $\beta = (\beta_1', \beta_2')'$ so that $\mathbf{R}'\beta = \beta_1$. Then

$$oldsymbol{V}_{oldsymbol{ heta}}=\left(egin{array}{ccc} oldsymbol{I} & 0 \end{array}
ight)oldsymbol{V}_{eta}\left(egin{array}{c} oldsymbol{I} \\ 0 \end{array}
ight)=oldsymbol{V}_{11}$$

Thus

$$\sqrt{n}\left(\widehat{\beta}_{1}-\beta_{1}\right) \xrightarrow{d} \mathrm{N}\left(0, \mathbf{V}_{11}\right)$$

▶ To illustrate the case of a nonlinear transformation take the example $\theta = \beta_j/\beta_l$ for $j \neq l$. Then

$$\mathbf{R} = \frac{\partial}{\partial \beta} r(\beta) = \begin{pmatrix} \frac{\partial}{\partial \beta_1} (\beta_j / \beta_I) \\ \vdots \\ \frac{\partial}{\partial \beta_j} (\beta_j / \beta_I) \\ \vdots \\ \frac{\partial}{\partial \beta_\ell} (\beta_j / \beta_I) \\ \vdots \\ \frac{\partial}{\partial \beta_k} (\beta_j / \beta_I) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 / \beta_I \\ \vdots \\ -\beta_j / \beta_I^2 \\ \vdots \\ 0 \end{pmatrix}$$

► S0

$$\mathbf{V}_{\theta} = \mathbf{V}_{jj}/\beta_I^2 + \mathbf{V}_{II}\beta_i^2/\beta_I^4 - 2\mathbf{V}_{jI}\beta_j/\beta_I^3$$

where V_{ab} denotes the ab^{th} element of V_{β} .

Asymptotic Standard Errors

► A standard error is an estimator of the standard deviation of the distribution of an estimator. Thus

$$s\left(\widehat{eta}_{j}
ight)=\sqrt{\widehat{oldsymbol{V}}_{\widehat{eta}_{j}}}=\sqrt{\left[\widehat{oldsymbol{V}}_{\widehat{eta}}
ight]_{jj}}$$

▶ Standard errors for $\widehat{\theta}$ are constructed similarly. Supposing that $\theta = h(\beta)$ is real-valued then the standard error for $\widehat{\theta}$ is

$$s(\widehat{ heta}) = \sqrt{\widehat{m{R}'}\,\widehat{m{V}}_{\widehat{m{eta}}}\widehat{m{R}}} = \sqrt{m{n}^{-1}\widehat{m{R}'}\,\widehat{m{V}}_{m{eta}}\widehat{m{R}}}$$

▶ When the justification is based on asymptotic theory we call $s(\widehat{\beta}_j)$ or $s(\widehat{\theta})$ an asymptotic standard error for $\widehat{\beta}_j$ or $\widehat{\theta}$.

t-statistic

▶ Let $\theta = r(\beta) : \mathbb{R}^k \to \mathbb{R}$ be a parameter of interest, $\widehat{\theta}$ its estimator, and $s(\widehat{\theta})$ its asymptotic standard error. Then the t-statistic is

$$T(heta) = rac{\widehat{ heta} - heta}{s(\widehat{ heta})}$$

ightharpoonup We know that $\sqrt{n}(\widehat{\theta}-\theta) \xrightarrow[d]{} \mathrm{N}\left(0,V_{\theta}\right)$ and $\widehat{V}_{\theta} \xrightarrow[\rho]{} V_{\theta}$. Thus

$$egin{aligned} T(heta) &= rac{\widehat{ heta} - heta}{s(\widehat{ heta})} \ &= rac{\sqrt{n}(\widehat{ heta} - heta)}{\sqrt{\widehat{V}_{ heta}}} \ &
ightarrow rac{\mathrm{N}\left(0, V_{ heta}
ight)}{\sqrt{V_{ heta}}} \ &= Z \sim \mathrm{N}(0, 1) \end{aligned}$$

t-statistic

- ▶ It is also useful to consider the distribution of the absolute t-ratio $|T(\theta)|$.
- ▶ Since $T(\theta) \xrightarrow{d} Z$ the continuous mapping theorem yields $|T(\theta)| \xrightarrow{d} |Z|$.
- Letting $\Phi(u) = \mathbb{P}[Z \leq u]$ denote the standard normal distribution function we calculate that the distribution of |Z| is

$$\mathbb{P}[|Z| \le u] = \mathbb{P}[-u \le Z \le u]$$

$$= \mathbb{P}[Z \le u] - \mathbb{P}[Z < -u]$$

$$= \Phi(u) - \Phi(-u)$$

$$= 2\Phi(u) - 1$$

Confidence Intervals

- An interval estimator \widehat{C} is called a confidence interval when the goal is to set the coverage probability to equal a pre-specified target such as 90% or 95%.
- $ightharpoonup \widehat{C}$ is called a $1-\alpha$ confidence interval if $\inf_{\theta} \mathbb{P}_{\theta}[\theta \in \widehat{C}] = 1-\alpha$.
- ▶ When $\widehat{\theta}$ is asymptotically normal with standard error $s(\widehat{\theta})$ the conventional confidence interval for θ takes the form

$$\widehat{C} = [\widehat{\theta} - c \times s(\widehat{\theta}), \quad \widehat{\theta} + c \times s(\widehat{\theta})]$$

where c equals the $1 - \alpha$ quantile of the distribution of |Z|.

▶ Using (7.34) we calculate that c is equivalently the $1 - \alpha/2$ quantile of the standard normal distribution. Thus, c solves

$$2\Phi(c) - 1 = 1 - \alpha$$

Confidence Intervals

Equivalently, it is the set of parameter values for θ such that the t-statistic $T(\theta)$ is smaller (in absolute value) than c, that is

$$\widehat{C} = \{ heta : |T(heta)| \leq c \} = \left\{ heta : -c \leq rac{\widehat{ heta} - heta}{s(\widehat{ heta})} \leq c
ight\}$$

▶ The coverage probability of this confidence interval is

$$\mathbb{P}[\theta \in \widehat{C}] = \mathbb{P}[|T(\theta)| \le c] \to \mathbb{P}[|Z| \le c] = 1 - \alpha$$

where the limit is taken as $n \to \infty$, and holds because $T(\theta)$ is asymptotically |Z|.

• We call the limit the asymptotic coverage probability and call \widehat{C} an asymptotic $1-\alpha\%$ confidence interval for θ .

Confidence Intervals

- ▶ The standard coverage probability for confidence intervals is 95%, leading to the choice c = 1.96.
- ▶ Rounding 1.96 to 2 , we obtain the most commonly used confidence interval in applied econometric practice

$$\widehat{C} = [\widehat{\theta} - 2s(\widehat{\theta}), \quad \widehat{\theta} + 2s(\widehat{\theta})]$$

► This is a useful rule-of thumb.

Regression Intervals

In the linear regression model the conditional expectation of Y given X = x is

$$m(x) = \mathbb{E}[Y \mid X = x] = x'\beta$$

- In some cases we want to estimate m(x) at a particular point x. Notice that this is a linear function of β .
- Letting $r(\beta) = x'\beta$ and $\theta = r(\beta)$ we see that $\hat{m}(x) = \hat{\theta} = x'\hat{\beta}$ and $\mathbf{R} = x$ so $s(\hat{\theta}) = \sqrt{x'\hat{\mathbf{V}}_{\hat{\beta}}x}$. Thus an asymptotic 95% confidence interval for m(x) is

$$\left[x'\widehat{eta}\pm 1.96\sqrt{x'\hat{m{V}}_{\widehat{m{eta}}}x}
ight]$$

▶ It is interesting to observe that if this is viewed as a function of *x* the width of the confidence interval is dependent on *x*.

Regression Intervals

► To illustrate we return to the log wage regression. The estimated regression equation is

$$\log(wage) = x'\widehat{\beta} = 0.155x + 0.698$$

where x = education. The covariance matrix estimate is

$$\hat{m{V}}_{\widehat{eta}} = \left(egin{array}{ccc} 0.001 & -0.015 \ -0.015 & 0.243 \end{array}
ight)$$

▶ Thus the 95% confidence interval for the regression is

$$0.155x + 0.698 \pm 1.96\sqrt{0.001x^2 - 0.030x + 0.243}$$

Regression Intervals

(a) Wage on Education