Math 104 Worksheet 1 UC Berkeley, Summer 2021 Monday, June 21

Prove the following consequences of the field properties. Continue from the first step(s)
that have been provided for some of the problems.

(a) If
$$a + c = b + c$$
, then $a = b$.

Proof. Suppose a + c = b + c. Then

$$a = a + 0 = a + (c + (-c)) = \dots (a+c) + (-c) = (b+c) + (-c) = b + (c+(-c))$$

(b) $a \cdot 0 = 0$ for all a.

Proof.
$$0 + a \cdot 0 = a \cdot 0 = a \cdot (0 + 0) = \dots$$
 $a \cdot 0 + a \cdot 0$. By Part (a), $0 = a \cdot 0$.

(The result should follow by applying assertion (a).)

(c)
$$(-a)b = -ab$$
 for all a, b .
Proof. $ab + (-a)b = ... (a+(-a))b = 0 \cdot b = 0 = ab + (-ab) \cdot (-a)b = -ab$.

(The result should follow by applying assertion (a).)

(d)
$$-(-a) = a$$
 for all a .
Proof. $-(-a) = -(-a) + 0 = -(-a) + a + (-a) = -(-a) + (-a) + a = 0 + a = 0$

(e) (-a)(-b) = ab for all a, b.

Proof. (Use assertions (c) and (d).)

(f) If ab = 0, then a = 0 or b = 0 for all a, b.

Proof. Supple the end are entered to the contract of the supple that
$$a = 0$$
. Case 1. $a = 0$. Done $a'ab = a'0 = 0$.

Case 1. $a = 0$. Done $a'ab = a'0 = 0$.

 $A \Rightarrow B$ Courtrapositive:

Not $B \Rightarrow \text{Not } A$

- 2. Prove the following consequences of the properties of an ordered field. Continue from the first step(s) that have been provided for some of the problems.
- (a) If $a \le b$, then $-b \le -a$.

Proof. Suppose that $a \leq b$. Then

$$-b = (a + (-a)) + (-b) = a + ((-a) + (-b)) \le .b + ((-a) + (-b)) = ... = -a$$

(b) If $0 \le a$ and $0 \le b$, then $0 \le ab$.

Proof. $0 = 0 \cdot b \leq \dots$

(c) 0 ≤ a² for all a.

Proof. (Consider the two cases $0 \le a$ and $a \le 0$.)

case 2.
$$a \le 0$$
. Then $0 \le -a = 0 \le (-a)(-a) = a^2$.

(d) 0 < 1.</p>

Proof. (First justify $0 \le 1$, then justify $0 \ne 1$.)

x= x-1= x-0=0

环 0=1,

(all elements = 0, i.e there is only one element)

(e) If 0 < a, then $0 < a^{-1}$.

Proof. Let 0 < a, and suppose that $a^{-1} \le 0$. Then $0 \le -a^{-1}$ by assertion (a). (Show that $0 \le -1$, a contradiction.)

(f) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Proof. By Part (e), 0 < b' and 0 < a' ⇒ a'b'>0.

a < b ⇒ a a'b' < b a'b'

by Part (b).

Recall Yesterday - discussed why we might want to study R. (Q not good enough).

- gaps (TI # Q)

- no LUBP

Before we proceed further:

There is a notion of distance on R

Def: abs. value |a| = a = 0 if $a \ge 0$ -a if a < 0

· Def: The distance between a, b E PR is defined as d(a,b) = |a-b|. $|a-c| \le |a-b| + |b-c|$ for all $a,b,c \in \mathbb{R}$.

distance function

- (i) la120 for all a ER.
- (ii) | ab | = |a|.|b| for all a, b∈ R.
- (iii) | a+b| \le |a|+|b| for all a,b \end{a}

Proof: (i) By definition.

- (ii) Easy-check all A cases.
- (iii) |a| \(a \le |a| -161 < b < 161.

Add: - (|a|+|b|) \(a+b \le |a|+|b|.

 $\Rightarrow |a+b| \leq |a|+|b|$

Corollary (Triangle înequality).

Proof:

1 a-c = | a-b+b-c| < 1 a-6 | + 1 b-c | by (iii).

 $Fact: |a| \le b \iff -b \le a \le b$

Exercise: Prove that if $a,b \in \mathbb{R}$, a < b, then $a < \frac{a+b}{2} < b$.

Proof: $a = \frac{a+a}{2} < \frac{a+b}{2} < \frac{b+b}{2} = b$.

Corollary: If $a,b \in \mathbb{R}$, a < b, then there exists $x \in \mathbb{R}$ such that a < x < b.

Corollary: If a,b \in R, a < b, there there exist infinitely many x \in R such that a < x < b.

Foreshadowing - denseness of Q in IR

Notion of infinity Introduce the symbols on and -00. · for any aER, a<00 and -os<a. Important: 00 and -00 are not real numbers! Just symbols which we understand intaitively with the purpose of notational convenience. e.g. (-00,a) = \{ x \in R: x < a } $(-\infty, -\infty) = \mathbb{R}$

Extended real numbers: $RU \{co, -ao\}$ not a field. $a+c=b+c \Rightarrow a=b$ still ordered, but not a field. $1+\infty=2+\infty \not \Rightarrow 1=2$. Let S be a nonempty subset of R Def: The maximum of S, or max S, is an element x e S such that s x for all s e S. E_X : $max <math>\frac{32}{3},43=4$. maximum of (1,2) = {xER: 1< x<23 does not exist Def. The minimum... Def: An upper bound of S is a real number u such that for all seS. (note: max S, if it exists, is always an upper bound of S). 10 is an opper bound for 32,3,43.

Def: A lower bound -..

Def:	The	supremum of S, or supS is the least upper bound
of	S	If S is bounded above,
	(i)	s < sup S for all se S (upper bound)

(ii) (How can we make the notion of "least" upper bound rigorous?)

Idea: anything less than sup S cannot be an upper bound.

. If m< supS, then there exists SES such that 5>m.

OR For any $\varepsilon > 0$, there exists $s \in S$ such that $s > \sup S - \varepsilon$.

Welcome to real analysis!

If S is not bounded above, then define $\sup S = \infty$. Exercise: Define the infimum, or greatest lower bound.