每周汇报

- **蔡碧瑜**
- 2022/04/07

论文列表

No.	title	Publication Source	Year
1	Deep Fusion LSTMs for Text Semantic Matching	ACL	2016
2	Bi-Directional Attention Flow for Machine Comprehension	ICLR	2017
3	Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling	EMNLP	2019

/01

Deep Fusion LSTMs for Text Semantic Matching (2016.ACL)

Deep Fusion LSTMs for Text Semantic Matching (2016.ACL)

$$X=x_1,x_2,\cdots,x_m$$

A matching vector $\mathbf{h}_{i,j}$

$$Y=y_1,y_2,\cdots,y_n$$

$$\mathbf{h}_{i,j}(X,Y) = \mathbf{h}_{i,j}(X|Y) \oplus \mathbf{h}_{i,j}(Y|X)$$

$$(\mathbf{h}_{i,j}^{(x)}, \mathbf{c}_{i,j}^{(x)}) = \mathbf{LSTM}(\mathcal{H}_{i,j}, \mathbf{c}_{i-1,j}^{(x)}, \mathbf{x}_i)$$

$$(\mathbf{h}_{i,j}^{(y)}, \mathbf{c}_{i,j}^{(y)}) = \mathbf{LSTM}(\mathcal{H}_{i,j}, \mathbf{c}_{i,j-1}^{(y)}, \mathbf{x}_j)$$

Deep Fusion LSTMs for Text Semantic Matching (2016.ACL)

Figure 2: Illustration of DF-LSTMs unit.

$$(\mathbf{h}_{i,j}^{(x)}, \mathbf{c}_{i,j}^{(x)}) = \mathbf{LSTM}(\mathcal{H}_{i,j}, \mathbf{c}_{i-1,j}^{(x)}, \mathbf{x}_i)$$

$$(\mathbf{h}_{i,j}^{(y)}, \mathbf{c}_{i,j}^{(y)}) = \mathbf{LSTM}(\mathcal{H}_{i,j}, \mathbf{c}_{i,j-1}^{(y)}, \mathbf{x}_j)$$

$$\mathbf{M}_{i,j}^{(x)} = \{\mathbf{h}_{i-K,j}^{(x)}, \dots, \mathbf{h}_{i-1,j}^{(x)}\} \qquad \mathbf{r}_{i,j}^{(x)} = \mathbf{a}_{i,j}^{(x)} \mathbf{M}_{i,j}^{(x)}$$

$$\mathbf{M}_{i,j}^{(y)} = \{\mathbf{h}_{i,j-K}^{(y)}, \dots, \mathbf{h}_{i,j-1}^{(y)}\} \qquad \mathbf{r}_{i,j}^{(y)} = \mathbf{a}_{i,j}^{(y)} \mathbf{M}_{i,j}^{(y)}$$

$$\mathbf{\mathcal{H}}_{i,j} = \mathbf{r}_{i,j}^{(x)} \oplus \mathbf{r}_{i,j}^{(y)}$$

$$\mathbf{\mathcal{H}}_{i,j} = \mathbf{r}_{i,j}^{(x)} \oplus \mathbf{r}_{i,j}^{(y)}$$

Figure 3: Illustration of unfolded DF-LSTMs.

/02

Bi-Directional Attention Flow for Machine Comprehension (2017. ICLR)

Figure 1: BiDirectional Attention Flow Model (best viewed in color)

Context-to-query(C2Q)

which query words are most relevant to each context word

$$\mathbf{S}_{tj} = \alpha(\mathbf{H}_{:t}, \mathbf{U}_{:j}) \in \mathbb{R}$$

$$\mathbf{a}_t \in \mathbb{R}^J$$
 $\mathbf{a}_t = \operatorname{softmax}(\mathbf{S}_{t:})$

$$ilde{\mathbf{U}}_{:t} = \sum_{j} \mathbf{a}_{tj} \mathbf{U}_{:j}$$

Query-to-context(Q2C)

 which context words have the closest similarity to one of the query words and hence critical for answering the query

$$\mathbf{S}_{tj} = \alpha(\mathbf{H}_{:t}, \mathbf{U}_{:j}) \in \mathbb{R}$$

$$\mathbf{b} = \operatorname{softmax}(\operatorname{max}_{col}(\mathbf{S})) \in \mathbb{R}^T$$

$$ilde{\mathbf{h}} = \sum_t \mathbf{b}_t \mathbf{H}_{:t} \in \mathbb{R}^{2d}$$

tile T times across the column

$$\tilde{\mathbf{H}} \in \mathbb{R}^{2d \times T}$$

$$\mathbf{G}_{:t} = oldsymbol{eta}(\mathbf{H}_{:t}, ilde{\mathbf{U}}_{:t}, ilde{\mathbf{H}}_{:t}) \in \mathbb{R}^{d_{\mathbf{G}}}$$

$$eta(h, ilde{u}, ilde{h}) = [h; ilde{u}; h \circ ilde{u}; h \circ ilde{h}] \in \mathbb{R}^{8d imes T}$$

Figure 1: BiDirectional Attention Flow Model (best viewed in color)

/03

content

01 Background

Model Architecture

03 Experiments

- Information retrieval
 - Relevance matching

NLP problems

Semantic matching

HCAN (Hybrid Co-Attention Network)

Figure 1: Overview of our Hybrid Co-Attention Network (HCAN). The model consists of three major components: (1) a hybrid encoder module that explores three types of encoders: *deep*, *wide*, and *contextual*; (2) a relevanced matching module with external weights for learning soft term matching signals; (3) a semantic matching module with co-attention mechanisms for context-aware representation learning.

$$\{w_1^q, w_2^q, ..., w_n^q\}$$

$$\mathbf{O} \in \mathbb{R}^{n \times l}$$

$$\{w_{1}^{q}, w_{2}^{q}, ..., w_{n}^{q}\} \qquad \mathbf{Q} \in \mathbb{R}^{n \times L}$$

$$(q, c) \qquad \{w_{1}^{c}, w_{2}^{c}, ..., w_{m}^{c}\} \qquad \mathbf{C} \in \mathbb{R}^{m \times L}$$

$$\mathbf{C} \in \mathbb{R}^{m \times I}$$

Deep Encoder

$$\mathbf{U}^h = \mathrm{CNN}^h(\mathbf{U}^{h-1}), h = 1, \dots, N$$

Wide Encoder

$$[k, k+1, ..., k+N-1]$$

Contextual Encoder

$$\mathbf{U}^h = \mathrm{BiLSTM}^h(\mathbf{U}^{h-1}), h = 1, \dots, N$$

$$Max(\mathbf{S}) = [\max(\tilde{\mathbf{S}}_{1,:}), ..., \max(\tilde{\mathbf{S}}_{n,:})],$$

 $Mean(\mathbf{S}) = [mean(\tilde{\mathbf{S}}_{1,:}), ..., mean(\tilde{\mathbf{S}}_{n,:})],$
 $Max(\mathbf{S}), Mean(\mathbf{S}) \in \mathbb{R}^n$

$$\mathbf{o}_{RM} = \{ wgt(q) \odot \textit{Max}(\mathbf{S}), wgt(q) \odot \textit{Mean}(\mathbf{S}) \}$$
$$\mathbf{O}_{RM} \in 2 \cdot \mathbb{R}^{n},$$

$$\mathbf{S} = \mathbf{U}_q \mathbf{U}_c^T, \mathbf{S} \in \mathbb{R}^{n imes m}$$

$$\bigcup_{\mathbf{\tilde{S}}} \mathsf{Softmax}$$

$$\mathbf{A} = REP(\mathbf{U}_q \mathbf{W}_q) + REP(\mathbf{U}_c \mathbf{W}_c) + \mathbf{U}_q \mathbf{W}_b \mathbf{U}_c^T$$

$$\mathbf{A} = softmax_{col}(\mathbf{A})$$

$$\mathbf{A} \in \mathbb{R}^{n \times m}$$

$$\begin{split} \tilde{\mathbf{U}_q} &= \mathbf{A}^T \mathbf{U}_q \\ \tilde{\mathbf{U}_c} &= REP(\max_{\text{col}}(\mathbf{A})\mathbf{U}_c) \\ \tilde{\mathbf{U}_q} &\in \mathbb{R}^{m \times F}, \tilde{\mathbf{U}_c} \in \mathbb{R}^{m \times F} \end{split}$$

$$\mathbf{H} = [\mathbf{U}_c; \tilde{\mathbf{U}_q}; \mathbf{U}_c \otimes \tilde{\mathbf{U}_q}; \tilde{\mathbf{U}_c} \otimes \tilde{\mathbf{U}_q}]$$
 $\mathbf{O}_{\mathrm{SM}} = \mathrm{BiLSTM}(\mathbf{H})$
 $\mathbf{H} \in \mathbb{R}^{m \times 4F}, \mathbf{O}_{\mathrm{SM}} \in \mathbb{R}^d$

- Answer Selection → TrecQA
- Paraphrase Identification → TwitterURL
- Semantic Textual Similarity → Quora
- Tweet Search → TREC Microblog

TrecQA

Model

TwitterURL

Quora

Wiodei	MAP	MRR	macro-F1	Acc				
InferSent	0.521	0.559	0.797	0.866				
DecAtt	0.660	0.712	0.785	0.845				
$ESIM_{seq}$	0.771	0.795	0.822	0.850				
$ESIM_{tree}$	0.698	0.734	<u>=</u> 1	0.755				
$ESIM_{seq+tree}$	0.749	0.768	-	0.854				
PWIM	0.739	0.795	0.809	0.834				
State-of-the-Art Models								
Rao et al. (2016) 0.780 0.834 -								
Gong et al. (2018)	- I		P-1	0.891				
BERT	0.838	0.887	0.852	0.892				
Our Approach								
RM	0.756	0.812	0.790	0.842				
SM	0.663	0.725	0.708	0.817				
HCAN	0.774	0.843	0.817	0.853				

Model	TREC	2-2013	TREC-2014		
Model	MAP	P@30	MAP	P@30	
QL	0.2532	0.4450	0.3924	0.6182	
RM3	0.2766	0.4733	0.4480	0.6339	
L2R	0.2477	0.4617	0.3943	0.6200	

Neural Baselines							
DUET	0.1380	0.2528	0.2680	0.4091			
DRMM	0.2102	0.4061	0.3440	0.5424			
K-NRM	0.1750	0.3178	0.3472	0.5388			
PACRR	0.2627	0.4872	0.3667	0.5642			
BERT	0.3357	0.5656	0.5176	0.7006			

Our Approach							
RM	0.2818	0.5222	0.4304	0.6297			
SM	0.1365	0.2411	0.2414	0.3279			
HCAN	0.2920	0.5328	0.4365	0.6485			

Encoder	Model	TrecQA		TwitURL	Quora	TREC-2013		TREC-2014	
Effecter	Model	MAP	MRR	macro-F1	Acc	MAP	P@30	MAP	P@30
	RM	0.756	0.812	0.790	0.842	0.282	0.522	0.430	0.630
Deep	SM	0.663	0.725	0.708	0.817	0.137	0.241	0.241	0.328
	HCAN	0.774	0.843	0.817	0.853	0.292	0.533	0.437	0.649
	RM	0.758	0.806	0.790	0.830	0.278	0.510	0.421	0.617
Wide	SM	0.673	0.727	0.719	0.811	0.138	0.247	0.247	0.336
	HCAN	0.770	0.847	0.795	0.843	0.285	0.524	0.435	0.642
	RM	0.690	0.736	0.811	0.804	0.272	0.503	0.417	0.613
Contextual	SM	0.668	0.735	0.730	0.805	0.133	0.256	0.242	0.324
	HCAN	0.739	0.790	0.815	0.826	0.285	0.524	0.434	0.635

Table 4: Evaluation of different encoders in Sec. 2.1 (best numbers on each dataset are bolded).

Figure 2: Model effectiveness with different numbers of encoder layers.

Thanks!