DRINKING WATER SURVEILLANCE PROGRAM

ORANGEVILLE WELL SUPPLY

REPORT FOR 1991 AND 1992

						•
•			•			
		v				
					,	•
			•			
					*	
				•		
•	·.					
•						
						•
					•	
					•	

1991/1992 District Contacts for West Central Ontario

District contacts

DWSP study

Lee Van Biesbrouck (416) 521-7593

(416) 521-7593 Hamilton District Office Cayuga Delhi Dunnville

Haldimand-Norfolk

Hamilton
Port Dover
Port Rowan
Simcoe

Alison Braith Waite/ Robert Slattery

(905) 732-0816 (Ext 231/234) Welland District Office

Fort Erie Grimsby

Niagara Falls Port Colborne St. Catharines

Welland

Jeff Taylor (519) 622-8121 Cambridge District Office Brantford Cambridge Elmira Guelph Kitchener

Kitchener Mannheim

Ohsweken Orangeville Waterloo

	•			
			•	
		•		
•				
	•			
A				
	1			
	•			
			•	

ORANGEVILLE WELL SUPPLY DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

MAY 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 3049

•						•		
				•				
•								
•					•			
						,		·
•						*		
,				•				
		. 0						
	1		•					
							·	
	ş·					. *		
	•							
							*	
						1		
								,
			·					
							1	
							,	,
					1			
								,
		•						
								,
				•				
					,			
		•						
			α	•				

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

ORANGEVILLE WELL SUPPLY 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Orangeville well supply is a ground water source and consists of 10 wells which collect and pump water from several aquifers. Iron/manganese sequestering is practiced and the water is disinfected. The maximum pumping capacity of the system is $15.3 \times 1000 \, \text{m}^3/\text{day}$. The Orangeville well supply serves a population of approximately 19,000.

Raw water at the 10 wells, treated water from the reservoir and one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Orangeville well supply, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

SUMMARY TABLE BY SCAN

SC	SCAN	WELL RAW TESTS	8A POSITIVE %POSITIVE	SITIVE	WELL 8 RAW TESTS	88 POSITIVE %POSITIVE	OSITIVE	WELL 8C RAW TESTS R	POSITIVE %POSITIVE	OSITIVE	WELL 2 PRETREATED TESTS POS	ATED POSITIVE %POSITIVE	SITIVE
BA	BACTERIOLOGICAL	9	2	33	9	-	16	2	0	0	9	-	16
5	CHEMISTRY (FIELD)		4	100	7	4	100	ĸ	٣	100	4	4	100
5	CHEMISTRY (LABORATORY)	97	33	71	97	38	82	23	17	13	97	34	ዩ
ME	METALS	87	17	35	48	19	39	54	80	33	87	19	39
5	CHLOROAROMATICS	28	0	0	28	0	0	14	0	0	28	0	0
PE	PESTICIDES AND PCB	20	0	0	20	0	0	35	0	0	0.2	0	0
H.C.	PHENOL I CS	2	0	0	2	0	0	-	0	0	~	0	0
٥٨	VOLATILES	95	0	0	95	0	0	31	0	0	62	0	0
RA	RAD I ONUCL I DES	7	-	14	7	0	0	7	2	28	7	2	. 58
		2,2	2.5		27.0	cy		171	7		7,	4	

TABLE A

DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN

		•		1 KU C 2 I W	אט אאוירני	. INDICATES THAT NO SATIFICE WAS TAKEN							
	SCAN	WELL 3 PRETREATED TESTS POSITI	3 FEATED POSITIVE %POSITIVE	SITIVE	WELL 4 PRETREATED TESTS POSI	ATED POSITIVE %POSITIVE	SITIVE	WELL 5 PRETREATED TESTS POS	WELL 5 PRETREATED TESTS POSITIVE %POSITIVE	SITIVE	WELL 5A . PRETREATED TESTS POS	ATED POSITIVE %POSITIVE	SITIVE
	BACTERIOLOGICAL	9	v-	16	6		Ξ	٥	-	Ξ	m	0	0
	CHEMISTRY (FIELD)	4	7	100	7	7	100	7	۷	100	2	2	100
	CHEMISTRY (LABORATORY)	97	35	92	69	99	81	69	48	69	23	15	99
	METALS	87	19	39	72	36	20	72	16	22	54	ε	33
	CHLOROAROMATICS	28	0	0	75	0	0	75	0	0	14	0	
	PESTICIDES AND PCB	20	0	0	105	0	0	105	0	0	35	0	0
	PHENOL I CS	2	0	0	ĸ	0.	0	2	0		-	0	0
	VOLATILES	95	0	0	93	m	м	66	0	0	31	0	0
	RAD I ONUCL IDES	7	2	28	7	2	28	7	2	28			•
TOTAL		273	61		407	105		407	7.7		133	52	
									1 1 1 1 1 1 1 1 1				t t t

. DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN

	SCAN	WELL 6 PRETREATED TESTS POSITIVE		%POSITIVE	WELL 7 PRETREATED TESTS POSI	, ATED POSITIVE %POSITIVE	SITIVE	RESERVOIR TREATEO TESTS PO	JIR I POSITIVE %POSITIVE	SITIVE	OIST. SYSTEM KENSINGTON PL TESTS POSITI	٧E	%POSITIVE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BACTER I OLOGICAL	٥	0	0	9	-	16	5	^	07			
	CHEMISTRY (FIELD)	9	•	100	7	7	100	58	- 58	100	75	, , ,) 001
	CHEMISTRY (LABORATORY)	69	56	18	97	36	78	120	92	92	189	151	62
	METALS	72	32	77	87	50	41	120	43	35	207	91	73
	CHLOROAROMATICS	75	0	0	28	0	0	20	0	0	84		0
	PESTICIDES AND PCB	105	0	0	2	0	0	175	0	0	132	0	0
	PHENOL1CS	м	0	0	2	0	0	2	0	0	•		
	POLYAROMATIC HYDROCARBONS			•			•	17	0	0	17	0	0
	VOLATILES	69	0	0	62	0	0	155	19	12	186	10	2
	RAD IONUCL IDES	۷	2	28	7	-	14	~	2	28	•		
TOTAL	907	406	%	,	273	29		200	184		863	567	

DRINKING WATER SURVEILLANCE PROGRAM

ORANGEVILLE WELL SUPPLY 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Orangeville well supply in August 1992. This is the first published annual report.

PLANT DESCRIPTION

The Orangeville well supply is a ground water source and consists of 10 wells which collect and pump water from several aquifers. Iron/manganese sequestering is practiced and the water is disinfected. The maximum pumping capacity of the system is 15.3 x 1000 m³/day. The Orangeville well supply serves a population of approximately 19,000.

The sample day flows were not reported for this sampling period.

General information for the water supply is presented in Table 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines at the wells and reservoir were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Municipal operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service

connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Raw water at 10 wells, treated water from the reservoir and one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 (when data is provided) contains information on flow rate and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

In Table 4, a "pretreated" sample refers to a raw water sample collected prior to the addition of treatment chemicals where the treated water flows directly into the distribution system and a representative treated water sample could not be obtained.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN REPORTS FOR GROUND WATER SUPPLIES, WHERE:

- TREATMENT CAN BE LIMITED TO DISINFECTION;
- MANY WELLS CAN FEED INTO THE DISTRIBUTION SYSTEM INDEPENDENTLY; AND
- TREATED SAMPLES, WHEN AVAILABLE, ARE TAKEN FROM RESERVOIRS; THIS SECTION WILL DISCUSS:
 - RESULTS FROM RAW, PRETREATED, TREATED AND DISTRIBUTED WATERS;
 - THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES;
 - POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in

late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 1 distributed water sample with a maximum reported value of 21°C. This sample was probably not flushed adequately.

CHEMISTRY (LABORATORY)

Calcium exceeded the European Economic Community Aesthetic Guideline Level of 100 mg/L in 2 pretreated water samples with a maximum reported value of 110.4 mg/L.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in all 26 pretreated, treated and distributed water samples with a maximum reported value of 818 umho/cm.

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80--100~mg/L with values greater than 200 mg/L in all 26 pretreated, treated and distributed water samples with a maximum reported value of 413.7 mg/L.

Magnesium exceeded the European Economic Community Aesthetic Guideline Level of 30 mg/L in 2 pretreated water samples with a maximum reported value of 33.4 mg/L.

Total ammonium exceeded the European Economic Community Aesthetic Guideline Level of 0.05 mg/L in 3 pretreated water samples with a maximum reported value of 0.066 mg/L.

Dissolved solids (residue filtrate in Table 4) exceeded the ODWO Aesthetic Objective of 500 mg/L in 1 pretreated water sample with a maximum reported value of 538 mg/L.

The numerous minerals and salts detected above aesthetic guidelines is characteristic of many groundwater sources.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important potential health effect of turbidity is its interference with disinfection in the treatment

plant and the maintenance of a chlorine residual. The ODWO Maximum Acceptable Concentration for turbidity is 1.0 Formazin Turbidity Unit (FTU) and applies to the water leaving the treatment facility.

Turbidity exceeded the ODWO Maximum Acceptable Concentration of 1.0 FTU in 1 of 5 treated water samples from the reservoir with a reported value of 1.45 FTU. The corresponding and more reliable field turbidity result was not above the guideline. In ground water samples, turbidity can increase if the samples are not analyzed immediately in the field. This is frequently caused by precipitating iron but can also be due to precipates formed from sulphides or calcium. The District Officer was advised of the situation.

METALS

The results of the metals scan showed that none were detected above the guidelines.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticides and PCB scan showed that none were detected.

PHENOLICS

The results of the phenolic test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The specific pesticide scan was not requested during this sampling period.

VOLATILES

Trichloroethylene was found at positive levels in 3 pretreated water samples from one well. The maximum observed level was 3.6 ug/L. This was below the ODWO Maximum Acceptable Concentration of 50 ug/L.

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in 4 of 10 treated and distributed water samples analyzed. The maximum observed level was 7.95 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Orangeville well supply, for the sample year 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME:

ORANGEVILLE WELL SUPPLY

WORKS #:

220003252

UTM #:

1705716854860910

DISTRICT:

CAMBRIDGE

REGION:

WEST CENTRAL

DISTRICT OFFICER:

J. TAYLOR

CHIEF OPERATOR:

R. LONG

ADDRESS:

500 "C" LINE

ORANGEVILLE, ONTARIO

519-941-2671

MUNICIPALITY:

ORANGEVILLE

AUTHORITY:

MUNICIPAL

PLANT INFORMATION

MAXIMUM PUMPING CAPACITY: 15.314 (X 1000 M3)

DESIGN CAPACITY:

(X 1000 M3/DAY)

RATED CAPACITY: - (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

ORANGEVILLE

19,000

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
TOTAL CHLORINE RESIDUAL	TREATED	DAILY
TEMPERATURE	RAW	MONTHLY
TURBIDITY	RAW TREATED	2 TIMES/WEEK 2 TIMES/WEEK

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
! EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

BACTERIOLOGICAL O O O O O O O O O O O O O	WELL SA RAW	WELL 8B RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATED
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BACT.	ERIOLOGICAL 100ML)	DET'N LIMIT ≈ 0	19	GUIDELINE = 0 (A1)	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S S P S P S P S P P P P P P P P P P P P	0 , . 0 ,	0 0			0 .0 .0		. 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OLIFORM MF (CT/	100ML)	DET'N LIMIT = 0	N9	GUIOELINE = 5/100ML (A1)	(A1)		
) DET'N LIMIT = 0	AUG SEP OCT NOV DEC	0 · · 0 ·		.0 .0 .		0 .0 .0	0.0.0	.0
30	ORM BCKGRD MF (C	T/100ML)	DET'N LIMIT = 0	N9	GUIDELINE = N/A			
. 0	AUG SEP OCT NOV DEC			33.	0 .	0 .0	0 . 2 . 0	

) () () () () () () () () ()		t t t t t t t t t t t t t t t t t t t		1 t t 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
			1					
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = 0 (A1)		GUIDELINE = 500 (A3)	9	GUIDELINE = 5/100ML (A1)		GUIDELINE = N/A	
DIST. SYSTEM KENSINGTON PL FREE FLOW	0109	· · · · · · · · ·	ains	4	ains		ains	
REȘERVOIR TREATEO	DET'N LIMIT = 0		DET*N LIMIT = 0	33 (=) 3 (=) 3 (=) 3 (=)	DET'N LIMIT = 0		DET'N LIMIT = 0	
WELL 7 PRETREATED	CAL	.0, .0 .	(^	0 .
WELL 6 PRETREATED	BACTERIOLOGICAL FECAL COLIFORM MF (CT/100ML)	1992 AUG 0 1992 SEP 0 1992 OCT 0 1992 NOV 0	STANDRO PLATE CNT.MF (CT/ML	1992 AUG 1992 SEP . 1992 OCT . 1992 NOV .	TOTAL COLIFORM MF (CT/100ML)	1992 AUG 0 1992 SEP . 1992 OCT 0 1992 NOV .	T COLIFORM BCKGRO MF (CT/100ML	1992 AUG 0 1992 SEP

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

	WELL 8A . RAW	WELL 8B RAW	WELL BC RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL SA PRETREATED	
FLD PH (DMNSLESS	CHEMISTRY (FIELD)	(FIÉLD)	DET'N LIMIT = N/A		GUIDELINE = 6.5-8.5 (A4)	(A4)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV	7.350	7.200	. 2,400	7.200	7.000	7.200	7.200	7.200	
FLD TEMPERATURE (DEG.C	E (0EG.C)		DET'N LIMIT = N/A		GUIDELINE = 15 (A3)				
1992 OCT	•		8.200			8.500	. 11.000		
FLD TURBIDITY (FTU	(FTU)	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT = N/A		GUIDELINE = 1.0 (A1)				
1992 AUG 1992 SEP	.300	.280			5.500	006.	.020	. 6	
1992 NOV 1992 DEC	.560	1.030		.580	.760	. 350	.360		
		** * *			•		007.		

WELL O PRETREATED	PRETREATED	TREATED · K	KENSINGTON PL FREE FLOW	KENSINGTON PL STANDING) () () () () () () () () () () () () ()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHEMISTRY (FIELD) FLD CHLORINE (COMB) (MG/L)	10)	DET'N LIMIT = 0	GUI	GUIDELINE = N/A			
•		.030	090.	•	•		
•	•	020.	.110	.110			
•	•	.060	.030	.030	•		
• 1		. 041.	n o n .	020.			
FLO CHLORINE FREE (MG/L)		DET'N LIMIT = 0	פחו	GUIDELINE = N/A			
,	•	089.	.620	٠	٠	•	
•		.280	.150		•		
		.580	.250	.250			
	•	.430	007	.400	•		•
FID CHIORINE (TOTAL) (MG/L		DET'N LIMIT = 0		GUIDELINE = N/A			
		. 710	.680				•
	•	.340	.210				
	•	.650	.360	.360	•		
		067	.430	.430			•
•	•	067	.390	.300	•	•	
• • • • • • • • • • • • • • • • • • •	; ; ; ; ; ; ;	DET'N LIMIT = N/A	CUI	GUIDELINE = 6.5-8.5 (A4)			1 5 1 1 2 2 3 1 5 5 5 7 4 4 4 6 7
7.200	٠	7.200	7.400				
	2.400	2.400	2.400			•	
7.200	•	7.400	2.400	7.400	٠		
• •	7.200	7.400	7.200	7.200			•
7.000		7.400	7.400	7.400			
FLD TEMPERATURE (DEG.C)		DET'N LIMIT = N/A	GUI	GUIDELINE = 15 (A3)			
٠		8.500	21.000	21.000			٠
FLO TURBIDITY (FTU)	; ; ; ; ; ; ; ; ;	DET'N LIMIT = N/A	IND	GUIDELINE = 1.0 (A1)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
.200	•	009.	. 700	•			
• !	020.	. 590	.370				•
.120		.430	.530	.530			
. 220	.580	1.000	.650	059.		•	
uc>.	•	noc.	UC#.	UCC.		•	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

	WELL BA RAW	WELL 8B RAW	WELL 8C RAW	WELL 2 PRETREAȚEO	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATED :
ALKALINITY (MG/L	:	CHEMISTRY (LABORATORY)	DET'N LIMIT = 0.2		GUIDELINE = 30-500 (A4)	(A4)		
1992 AUG . 1992 SEP 1992 OCT 1992 NOV 1992 DEC	233.200	229.100		255.100 241.100	254.700 247.600	297.000 296.800 131.000	240.300 246.400 151.000	244.100
CALCIUM (MG/L	·		DET'N LIMIT = 0.20	1	GUIDELINE = 100 (F2)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	69.180	60.550	. 62.600	81.100 75.700	80.900	110.460	83.520 84.400 58.750	78,550
CHLORIDE (MG/L	^		DET'N LIMIT = 0.20		GUIDELINE = 250 (A3)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 GEC	4.600	3.400	3.200	24.500	12.100 11.600	46.000 37.800 32.400	54.900 61.800 70.900	51.800
COLOUR (HZU	() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.50		GUIDELINE = 5 (A3)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	1.500	1.500	1.000 <1	1.000 <7	3.500	1.000 <t 2.500 2.000</t 	80L .500 <t 1.000 <t< td=""><td></td></t<></t 	
CONDUCTIVITY (UMHO/CM	MHO/CM)		DET'N LIMIT = 1.0	ເດອ	GUIDELINE = 400 (F2)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	787	, 463 , 346	451	515	575 578	818 740 530	684 690	. 99

	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	1 1 1 1 1 1 2 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1			·			
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = 30-500 (A4)	243.700 239.500 247.100 237.200	GUIDELINE = 100 (F2) 65.350 69.000 75.700 65.950	GUIDELINE = 0.2 (A1)	GUIDELINE = 250 (A3) 5.200 6.800 14.100 5.300	GUIDELINE = 5 (A3) 1.000 <t <t .500="" <t<br="">BDL 500 <t< th=""><th>GUIDELINE = 400 (F2) 488 486 539 485</th></t<></t></t 	GUIDELINE = 400 (F2) 488 486 539 485
DIST. SYSTEM KENSINGTON PL FREE FLOW	no	237,200 242,400 242,600 242,600 237,800	69.600 67.700 68.000 74.400 66.400		5.300 5.100 6.700 13.000 5.400	2.500 2.000 .500 .500	491 485 488 528 488
RESERVOIR TREATED	DET'N LIMIT = 0.2	235.800 243.000 239.500 235.500 219.000	0ET'N LIMIT = 0.20 69.060 65.300 69.500 66.400 68.100	DET'N LIMIT = 0.001 BOL	0ET'N LIMIT = 0.20 5.400 5.100 6.700 5.100 5.100	DET'N LIMIT = 0.50 2.000 2.000 1.500 1.500 1.500	0ET'N LIMIT = 1.0 492 488 485 477 477
WELL 7 PRETREATED	CHEMISTRY (LABORATORY)	237.000	68.350	•	5.600	4.500	508
WELL 6 PRETREATED		253.700 256.400 108.100) 96.540 95.700 50.800	•	11.000 12.000 12.600	, 1.500 3.000 2.000	623 607 607 461
	ALKALINITY (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	CALCIUM (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV	CYANIDE (MG/L	CHLORIDE (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	COLOUR (HZU 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	CONDUCTIVITY (UMHO/CM 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

WELL 5A PRETREATED	1	. 200 <1		.120		301.320		2.484	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.499		1.148
WELL 5 PRETREATED		.500 <1.		.120		313.000 315.000 226.190		1.179 .618 3.87	1	1.532 1.530 1.493		1.107
WELL 4 PRETREATED	1	.900 .900 .900		. 180	(44)	413.760 398.000 220.590		2.381 1.587 4.497	, , , , , , , , , , , , , , , , , , ,	1.921 1.850 1.754		1.104 1.105 .519
WELL 3 PRÈTREATED	GUIDELINE = 5.0 (A3)	.200 <1.	GUIDELINE = 1.5 (A1)	.160	GUIDELINE = 80-100 (A4)	313.090 293.000	GUIDELINE = N/A	1.004	GUIDELINE = 10 (F2)	1.238	GUIDELINE = N/A	1.086
WELL 2 PRETREATED	1	.200 <1		. 200.		310.480		2.452	1	1.249		1.194
WELL 8C RAW	DET'N LIMIT = 0.10	.300 <1	DET'N LIMIT = 0.01	. 280	DET'N LIMIT = 0.5	249.000	DET'N LIMIT = N/A	2.078	DET'N LIMIT = 0.01	1.120	DET'N LIMIT = N/A	
WELL 88 RAW	(LABORATORY)	.500		. 260		307.160		4.101	, , , , , , , , , , , , , , , , , , ,	1.096		1.075
WELL 8A RAW	CHEMISTRY (LA	. 500 .	^	. 160	•	270.000	<u> </u>	2.141		1.082	(COMNSLESS)	1.018
.3. CX		1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	FLUORIDE (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	HARDNESS (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	IONCAL (DMNSLESS	1992 AUG 1992 SEP 1992 OCT 1992 DEC	POTASSIUM (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	LANGELIERS INDEX (DMNSLESS	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

					. ,		
							-
DIST. SYSTEM 'KENSINGTON PL STANDING	GUIDELINE = 5.0 (A3)	.300 <t< th=""><th>GUIDELINE = 1.5 (A1) .180 .160 .160 .240</th><th>GUIDELINE = 80-100 (A4) 260.460 270.000 290.000 261.460</th><th>GUIDELINE = N/A 4.668 130 2.078 1.976</th><th>GUIDELINE = 10 (F2) 1.226 1.300 1.169 1.205</th><th>GUIDELINE = N/A 1.202 1.079 1.207 .945</th></t<>	GUIDELINE = 1.5 (A1) .180 .160 .160 .240	GUIDELINE = 80-100 (A4) 260.460 270.000 290.000 261.460	GUIDELINE = N/A 4.668 130 2.078 1.976	GUIDELINE = 10 (F2) 1.226 1.300 1.169 1.205	GUIDELINE = N/A 1.202 1.079 1.207 .945
DÍST, SYSTEM KENSINGTON PL FREE FLOW	GUIDE	,400 41 .400 41 .600 .600	GUIDE .180 .180 .160 .160	GUIDE 271.600 265.310 268.000 287.000 262.660	GUIDE 1.718 2.541 1.839 1.265 2.430	GUIDE 1.267 1.245 1.290 1.141 1.179	GUIDE 1.118 1.216 1.108 1.193 .939
RESERVOIR DI TREATEO KE	DET'N LIMIT = 0.10	.400 <1 .300 <1 .400 <1 .400 <1 .600	DET'N LIMIT = 0.01 .180 .180 .160 .220 .220	DET'N LIMIT = 0.5 269.000 260.800 271.000 261.600 238.700	DET'N LIMIT = N/A 1.144 4.596 .495 .777 4.088	DET'N LIMIT = 0.01 1.279 1.256 1.260 1.454 1.223	DET'N LIMIT = N/A 1.082 1.191 1.072 1.186 .975
WELL 7 PRETREATED	ABORATORY)	.100 <1.	.180	271.650	4.191.	1.113	1.098
WELL 6 PRETREATED	CHEMISTRY (LABORATORY) (MG/L).	.700	120	349.000 345.000 189.630	3.241 .539 4.472	1.197 1.180 1.173	x (DMNSLESS) 1.127 1.069 .433
•	CHE DISS ORG CARBON (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV	FLUGRIDE (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	HARDNESS (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	10NCAL (DMNSLESS 1992 AUG 1992 SEP 1992 OCT 1992 DCC	POTASSIUM (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	LANGELIERS INDEX (DMNSLESS 1992 AUG 1.127 1992 DCT 1.069 1992 NOV 1992 DEC .433

WELL SA PRETREATED	25.560	22.920	.004 <1	.000.	4.460	.070 < 1
WELL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F	-		⊢
WELL 5 PRETREATED	25.260 25.400 19.320	23.640 29.000 26.040	BDL BDL <006 <1	7> 500. 1> 500. 1> 100.	4.470	7> 080. 7> 070. 7> 080.
WELL 4 PRETREATED	33.400 33.100 20.580	21.640 17.500 15.400	.054 .062 .066	.003 <t .003 <t .000.</t </t 	801 801	. 130 . 110 . 120
WELL 3 PRETREATED	INE = 30.0 (F2) 27.000 26.000	INE = 200 (A4) 5.080 4.710	.028 .028	.INE = 1.0 (A1) .001 <t .002 <t< td=""><td>INE = 10.0 (A1) BDL BDL</td><td>.INE = N/A .040 <t .070 <t< td=""></t<></t </td></t<></t 	INE = 10.0 (A1) BDL BDL	.INE = N/A .040 <t .070 <t< td=""></t<></t
WELL 2 PRETREATED F	GUIDELINE 26.220 25.300	GUIOELINE 12.710 11.930	GUIDELINE .012 .014	GUIDELINE .001 <t .003 <t< td=""><td>GUIDELINE 1.760 1.720</td><td>GUIDELINE .050 <t .090 <t< td=""></t<></t </td></t<></t 	GUIDELINE 1.760 1.720	GUIDELINE .050 <t .090 <t< td=""></t<></t
WELL 8C WE RAW PR	DET'N LIMIT = 0.1 22.400	DET'N LIMIT = 0.20 3.200	DET'N LIMIT = 0.002	0ET'N LIMIT = 0.001002 <t< td=""><td>DET'N LIMIT = 0.005</td><td>DET'N LIMIT = 0.02</td></t<>	DET'N LIMIT = 0.005	DET'N LIMIT = 0.02
WELL 8B RAW	220	, , , , , , , , , , , , , , , , , , ,	810.	1> 100.	. 045	.030 <7
WELL 8A RAW	CHEMISTRY (LABORATORY)) 23.520 23.	3.090			(MG/L) .010 <t< td=""><td>LD (MG/L) .040 <7</td></t<>	LD (MG/L) .040 <7
3 62	MAGNESIUM (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	SOD JUM (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	AMMONIUM TOTAL (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 DEC		NITRATE (TOTAL) (MG/L 1992 AUG 1992 SEP 1992 OCT 1992 DOV	

	1 1 1 1 1 1 1				; ; ; ; ; ;						: : : : : : :		
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						: : : : : : : :		
•					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1		
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1		
DIST. SYSTEM KENSINGTON PL STANDING	NE = 30.0 (F2)	23.640 23.800 24.500 23.520	NE = 200 (A4)	4.260 5.040 7.320 4.080	NE = 0.05 (F2)	.012 .012 .010	NE = 1.0 (A1)	. 001 <1 . 002 <1 . 002 <1	NE = 10.0 (A1)		NE = N/A		. 110 <t . 060 <t . 050 .</t </t
DIST. SYSTEM DIKENSINGTON PL KEFREE FLOW ST	GUIDELINE	23.700 23.400 23.900 24.500 23.520	GUIDELINE	4.280 3.780 5.080 7.030 4.040	GUIDELINE	BDL .004 <t .002 <t .004 <t< td=""><td>GUIDELINE</td><td>BDL BDL .002 <7 .001 <7 BDL</td><td>, GUIDELINE</td><td>.020 <t .015 <t .020 <t .625</t </t </t </td><td>GUIOELINE</td><td></td><td>.080 <t .050 <t .030 <t< td=""></t<></t </t </td></t<></t </t 	GUIDELINE	BDL BDL .002 <7 .001 <7 BDL	, GUIDELINE	.020 <t .015 <t .020 <t .625</t </t </t 	GUIOELINE		.080 <t .050 <t .030 <t< td=""></t<></t </t
RESERVOIR DI TREATED KE	DET'N LIMIT = 0.1	23,340 23,760 23,600 . 23,200 16,680	DET'N LIMIT = 0.20	4.220 3.770 4.320 4.280 4.100	DET'N LIMIT = 0.002	BDL .006 <t BDL .002 <t .006 <t< th=""><th>DET'N LIMIT = 0.001</th><th>108 108 108 108</th><th>DET'N LIMIT = 0.005</th><th>.020 <t .020 <t .015 <t .025 ·</t </t </t </th><th>DET'N LIMIT = 0.02</th><th>.020 <t> 020.</t></th><th>. 030 <t . 020 <t . 040 <t< th=""></t<></t </t </th></t<></t </t 	DET'N LIMIT = 0.001	108 108 108 108	DET'N LIMIT = 0.005	.020 <t .020 <t .015 <t .025 ·</t </t </t 	DET'N LIMIT = 0.02	.020 <t> 020.</t>	. 030 <t . 020 <t . 040 <t< th=""></t<></t </t
WELL 7 PRETREATED	ABORATORY)	24.540 24.200	1	3.410	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			.002 <1		. 005 <Ţ		.030 <	T> 050.
WELL 6 PRETREATED	CHEMISTRY (LABORATORY)	26.160 25.900 15.240		5.240 5.270 5.480	C/L)	.010 .014 .020	^	.003 <t .003 <t .000.</t </t 	MG/L)	.015 <t .025 .030</t 	D (MG/L	1> 090.	T> 060. T> 080.
ar R	MAGNESIUM (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	SODIUM (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV	AMMONIUM TOTAL (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	NITRITE (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 DEC	NITRATE (TOTAL) (MG/L	.1992 AUG 1992 SEP 1992 OCT 1992 DEC	NITROGEN TOT KJELD (MG/L	1992 AUG 1992 SEP	1992 OCT 1992 NOV 1992 DEC

8.270 8.350 8.260 8.350 8.260 8.35	WELL BA RAW		WELL 8B RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATEO
8.350 8.260	1EMISTRY	£	ABORATORY)			11	(A4)		
) DETIN LIMIT = 0.0005	8.270		8.390	8.290	8.350 8.220	8.240 8.230	8.070 8.090 8.130	8.280 8.200 8.170	8.340
. 0004 <1	PHOSPHORUS FIL REACT (MG/L		(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
OET'N LIMIT = 0.002 GUIDELINE = 0.40 (F2) BOL BOL	1> 100.	.	1> 500.	. 500.		.002 <1	. 001 t	80L .001 <1	.002 <1
301.000 CR0 293.000 CR0 361.000 CR0 361.000 CR0 453.000 CR0 361.000 CR0 361.000 CR0 463.000 CR0 361.000 CR0 463.000 CR0 361.000 CR0 463.000 CR0 361.000 CR0 463.000 CR0 463.000 CR0 361.000 CR0 463.000 CR0 463.000 CR0 361.000 CR0 463.000 CR0 463.00	PHOSPHORUS TOTAL (MG/L			. 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
301.000 CR0 293.000 CR0 374.000 CR0 445.000 CR0 360.000 CR0 361.000 CR0 465.000 CR0 465.000 CR0 360.000 CR0 465.000 CR0 660.000 CR0 660.00	. 005 <1 	~		. BDL	B0L .005 <t< td=""><td>B0L .003 <t< td=""><td>80L .003 <7</td><td>80L .003 <t< td=""><td></td></t<></td></t<></td></t<>	B0L .003 <t< td=""><td>80L .003 <7</td><td>80L .003 <t< td=""><td></td></t<></td></t<>	80L .003 <7	80L .003 <t< td=""><td></td></t<>	
301.000 CR0 293.000 CR0 374.000 CR0 481.000 CR0 448.000 CR0 360.000 CR0 387.000 CR0 361.000 CR0 481.000 CR0 481.000 CR0 488.000 CR0 CR0 CR0 CR0 CR0 CR0 CR0 CR0 CR0	RESIDUE FILTRATE (MG/L			DET'N LIMIT = N	1		, , , , , , , , , , , , , , , , , , ,		
DET'N LIMIT = 0.20 GUIDELINE = 500 (A3) 28.960 55.050 78.340 27.420 50.510 53.420 87.660 27.530 DET'N LIMIT = 0.05 GUIDELINE = 1.0 (A1) 1.540 8.600 .250 .630 3.800 10.300 .360	315.000 CRO 314.000 CRO	CRO CRO	301.000 CRO 306.000 CRO						
28.960 55.050 78.340 26.760 27.420 27.420 27.420 27.420 27.420 27.420 27.420 27.420 27.420 27.420 27.420 27.530 27				'N LIMIT =	1 1 1 1 1 1 1 1 1	DELINE = 500 (A3)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DET'N LIMIT = 0.05 GUIOELINE = 1.0 (A1) . 430	30.790	! !	30.470 : 33.780	28.960	49.960	55.050 53.420	86.740 78.340 87.660	26.760 27.420 27.530	27.590
	^			'N LIMIT =			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1.710	1 1 1	.670	1.540	. 430	3.800	8.900 8.600 10.300	.130 <t .250 .360</t 	.240 <1

·.					• • •. • •						
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = 6.5-8.5 (A4)	8.460 8.320 8.400	INE = N/A	_INE = 0.40 (F2)	,	LINE = 500 (A3)	317.000 CRO 316.000 CRO 350.000 CRO 315.000 CRO	LINE = 500 (A3)	31.520 32.750 41.870 31.100	LINE = 1.0 (A1)	.680 .550 .890
DIST. SYSTEM KENSINGTON PL FREE FLOW	GUIDE:	8.360 8.460 8.350 9.200	GUIDELINE	GUIDELINE		GUIDELINE	319.000 CR0 315.000 CR0 317.000 CR0 343.000 CR0 317.000 CR0	GUIDELINE	31.390 31.150 32.510 42.220 32.650	GUIDELINE	.910 .510 .840 .500
RESERVOIR DIS TREATED KEN	DET'N LIMIT = N/A	8.330 8.450 8.310 8.450 8.260	DET'N LIMIT = 0.0005 .145 .025 .096 .140	DET'N LIMIT = 0.002	. 320 . 051 . 245 . 340 . 237	DET'N LIMIT = N/A	320.000 CRO 317.000 CRO 315.000 CRO 310.000 CRO 307.000 CRO	DET'N LIMIT = 0.20	31.320 31.460 32.670 30.450 31.690	DET'N LIMIT = 0.05	.870 .420 .600 1.450 RRV .880
WELL 7 PRETREATED	30RATORY)	8.350 8.250	.003 <t .<="" td=""><td>7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>.005 <t .016</t </td><td></td><td>330.000 CRO 322.000 CRO</td><td></td><td>45.450 44.130</td><td></td><td>3.600</td></t>	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.005 <t .016</t 		330.000 CRO 322.000 CRO		45.450 44.130		3.600
WELL 6 PRETREATED	CHEMISTRY (LABORATORY)	8.210 8.150 8.150	\	. (MG/L)	BDL .004 <t .004 <t< td=""><td>(MG/L)</td><td>405.000 CRO 395.000 CRO 399.000 CRO</td><td>•</td><td>77.800 79.900 82.670</td><td>^</td><td>1.900 1.830 2.500</td></t<></t 	(MG/L)	405.000 CRO 395.000 CRO 399.000 CRO	•	77.800 79.900 82.670	^	1.900 1.830 2.500
	PH (DMNSLESS)	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	1992 AUG	PHOSPHORUS TOTAL (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	RESIDUE FILTRATE (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV	SULPHATE (MG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	TURBIDITY (FTU	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

- *	WELL 8A RAW	WELL 8B RAW	WELL 8C WEI	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	- WELL 5 PRETREATED	WELL 5A PRETREATED
SILVER (UG/L	METALS)	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = 0.05	ND CO	GUIDELINE = N/A		-	
35 SAMPLES	BOL	BDL	108	B0L	BOL	B0L	B0L	B0L
ALUMINUM (UG/L	^	1	DET'N LIMIT = 0.10	N9	GUIDELINE = 100 (A4)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	5.900	5.000	8.200	4.300	5.900	5.100 2.600 1.400	4.600 1.900 1.700	4.300
ARSENIC (UG/L	(4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.10	N9	GUIDELINE = 25 (A1)			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	BDL : .420 <t< td=""><td>BDL</td><td>.390 <1</td><td>BOL .200 <t< td=""><td>1.300</td><td>4.600 5.700 4.000</td><td>80L .230 <↑ .80L</td><td>. 160 <7</td></t<></td></t<>	BDL	.390 <1	BOL .200 <t< td=""><td>1.300</td><td>4.600 5.700 4.000</td><td>80L .230 <↑ .80L</td><td>. 160 <7</td></t<>	1.300	4.600 5.700 4.000	80L .230 <↑ .80L	. 160 <7
BARIUM (UG/L	^		DET'N LIMIT = 0.05	ਲ ਰ	GUIDELINE = 1000 (A2)		· 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	80.000	72.000		72.000	98.000	63.000 62.000 55.000	64.000 72.000 75.000	
BORON (UG/L	^		DET'N LIMIT = 2.00	no	GUIDELINE = 5000 (A1)		, p p p p p p p p p p p p p p p p p p p	
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	47.000 8.600 <t< td=""><td>33.000</td><td>: 16.000 <t< td=""><td>32.000 14.000 <t< td=""><td>36.000 9.700 <t< td=""><td>79.000 39.000 28.000</td><td>46.000 17.000 <t 14.000 <t< td=""><td>34.000</td></t<></t </td></t<></td></t<></td></t<></td></t<>	33.000	: 16.000 <t< td=""><td>32.000 14.000 <t< td=""><td>36.000 9.700 <t< td=""><td>79.000 39.000 28.000</td><td>46.000 17.000 <t 14.000 <t< td=""><td>34.000</td></t<></t </td></t<></td></t<></td></t<>	32.000 14.000 <t< td=""><td>36.000 9.700 <t< td=""><td>79.000 39.000 28.000</td><td>46.000 17.000 <t 14.000 <t< td=""><td>34.000</td></t<></t </td></t<></td></t<>	36.000 9.700 <t< td=""><td>79.000 39.000 28.000</td><td>46.000 17.000 <t 14.000 <t< td=""><td>34.000</td></t<></t </td></t<>	79.000 39.000 28.000	46.000 17.000 <t 14.000 <t< td=""><td>34.000</td></t<></t 	34.000
BERYLLIUM (UG/L	^		DET'N LIMIT = 0.05	no	GUIDELINE = 6800 (04)			1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	.080 <t< td=""><td></td><td>BoL</td><td>BDL BOL</td><td>108</td><td>.120 <t BDL BDL BDL</t </td><td>.070 <t .080 .001</t </td><td>060.</td></t<>		BoL	BDL BOL	108	.120 <t BDL BDL BDL</t 	.070 <t .080 .001</t 	060.
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , , ,	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

		٠	,	٠			7	•			. '.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠			•				•		
		٠					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•								t	•			•				•		
		•		•			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	•	•					•			•	,	٠	•	* 1		•	٠	٠	•
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = N/A	BOL	GUIDELINE = 100 (A4)	• (3.100 4.000	1.900 3.200	GUIDELINE = 25 (A1)		BDL	.520 <t< td=""><td>.230 <1</td><td>GUIDELINE = 1000 (A2)</td><td></td><td>81.000</td><td>84.000</td><td>88.000</td><td>GUIDELINE = 5000 (A1)</td><td></td><td>9.900 <1</td><td>10.000 <t< td=""><td>9.400 <t< td=""><td></td><td>GUIDELINE = 6800 (04)</td><td></td><td>BDL</td><td>BOL</td><td>80L 80L</td></t<></td></t<></td></t<>	.230 <1	GUIDELINE = 1000 (A2)		81.000	84.000	88.000	GUIDELINE = 5000 (A1)		9.900 <1	10.000 <t< td=""><td>9.400 <t< td=""><td></td><td>GUIDELINE = 6800 (04)</td><td></td><td>BDL</td><td>BOL</td><td>80L 80L</td></t<></td></t<>	9.400 <t< td=""><td></td><td>GUIDELINE = 6800 (04)</td><td></td><td>BDL</td><td>BOL</td><td>80L 80L</td></t<>		GUIDELINE = 6800 (04)		BDL	BOL	80L 80L
DIST. SYSTEM KENSINGTON PL FREE FLOW	פטונ	BOL	1109	6.200	1.600 4.000	1.800 3.200)109	BDL	BDL	1> 055.	.390 <1)109	83.000	77.000	86.000	84.000)IN9	22,000		13.000 <t< td=""><td>9.900 <1</td><td>2 000.61</td><td>1109</td><td>BDL</td><td>B0L</td><td>BOL</td><td>90L</td></t<>	9.900 <1	2 000.61	1109	BDL	B0L	BOL	90L
RESERVOIR D TREATED KI	DET'N LIMIT = 0.05	801	DET'N LIMIT = 0.10	2.000	1.700 2.700	6.100 3.500	0ET'N LIMIT = 0.10	B01		.550	1> 047.	DET'N LIMIT = 0.05	77.000	78.000	89.000	82.000	0ET'N LIMIT = 2.00	72.000		8.700 <t< td=""><td>20.000 <t< td=""><td></td><td>0ET'N LIMIT = 0.05</td><td>.100 <t< td=""><td></td><td>BOL</td><td>BOL</td></t<></td></t<></td></t<>	20.000 <t< td=""><td></td><td>0ET'N LIMIT = 0.05</td><td>.100 <t< td=""><td></td><td>BOL</td><td>BOL</td></t<></td></t<>		0ET'N LIMIT = 0.05	.100 <t< td=""><td></td><td>BOL</td><td>BOL</td></t<>		BOL	BOL
WELL 7 PRETREATED		B0L	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• •	5.000	2.000) 1 1 1 1 1 1 1 1 1 1 1 1 1		1> 007.	• 6	1.100			95.000	. 000	000.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	27.000	•	23.000				T> 090.	•	BDL
WELL 6 PRETREATEO	METALS	BOL		4.300	2.100	3.000		T> 013.		1.800	1.500		80,000	- ;	87.000	85.000	(58,000	•	23.000	1/ 000 21	1> 000.61	•	1> 001.		BOL	. 108
	SILVER (UG/L		ALUMINUM (UG/L	1992 AUG	1992 SEP 1992 OCT	. 1992 NOV 1992 DEC	ARSENIC (UG/L	1992 AUG	1992 SEP	1992 OCT	1992 NOV 1992 DEC	BARIUM (UG/L	1992 AUG	1992 SEP	1992 OCT	1992 DEC	BORON (UG/L	1992 AUG	1992 SEP	1992 OCT	1992 NOV	ואאב טבנ	BERYLLIUM (UG/L	1992 AUG	1992 SEP	1992 OCT	1992 NOV 1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

		; ;		ے ا		;
WELL 5A PRETREATED		. 290 <1				
WELL 5 PRETREATED	BDL BDL .090 <t< td=""><td>.140 <t BDL .220 <t< td=""><td>5.000 <1 4.300 <1 4.500 <1</td><td>1.700 <1 BDL 1.200 <1</td><td>108 108 108</td><td>108</td></t<></t </td></t<>	.140 <t BDL .220 <t< td=""><td>5.000 <1 4.300 <1 4.500 <1</td><td>1.700 <1 BDL 1.200 <1</td><td>108 108 108</td><td>108</td></t<></t 	5.000 <1 4.300 <1 4.500 <1	1.700 <1 BDL 1.200 <1	108 108 108	108
WELL 4 PRETREATED	108 108	.340 <t .210 <t .300 <t< td=""><td>6.100 5.400 BDL</td><td>1.500 <t .720 <t .RDL</t </t </td><td>510.000 580.000 510.000</td><td>BDL</td></t<></t </t 	6.100 5.400 BDL	1.500 <t .720 <t .RDL</t </t 	510.000 580.000 510.000	BDL
WELL 3 PRETREATED	LINE = 5.0 (A1) BDL BDL .	GUIDELINE = N/A <t .280="" <t="" bdl<="" td=""><td>GUIDELINE = 50.0 (A1) <t .520="" 4.500="" <t="" <t<="" td=""><td>GUIDELINE = 1000 (A3) BOL BDL</td><td>GUIDELINE = 300 (A3) <t 280.000<="" 310.000="" td=""><td>GUIDELINE = 1.0 (A1)</td></t></td></t></td></t>	GUIDELINE = 50.0 (A1) <t .520="" 4.500="" <t="" <t<="" td=""><td>GUIDELINE = 1000 (A3) BOL BDL</td><td>GUIDELINE = 300 (A3) <t 280.000<="" 310.000="" td=""><td>GUIDELINE = 1.0 (A1)</td></t></td></t>	GUIDELINE = 1000 (A3) BOL BDL	GUIDELINE = 300 (A3) <t 280.000<="" 310.000="" td=""><td>GUIDELINE = 1.0 (A1)</td></t>	GUIDELINE = 1.0 (A1)
WELL 2 PRETREATED	GUIDELINE BDL BDL	GUIDE .270 <t BDL</t 	GUIDE 4,400 <t 2,400 <t< td=""><td>BDL BDL BOL</td><td>GUIDE 44.000 <t 64.000</t </td><td>GUIDE BOL</td></t<></t 	BDL BDL BOL	GUIDE 44.000 <t 64.000</t 	GUIDE BOL
- 8c	DET'N LIMIT = 0.05	T'N LIMIT = 0.02 BDL	DET'N LIMIT = 0.50 2.800 <t< td=""><td>DET'N LIMIT = 0.50 BDL</td><td>DET'N LIMIT = 6.00 120.000</td><td>DET'N LIMIT = 0.02 BDL</td></t<>	DET'N LIMIT = 0.50 BDL	DET'N LIMIT = 6.00 120.000	DET'N LIMIT = 0.02 BDL
WELL 88 WELL RAW RAW	BDL 80L . 070 <1	.250 <t190 <t<="" td=""><td>4.700 <1</td><td>BDL 80L</td><td>86.000 83.000</td><td>BOL</td></t190>	4.700 <1	BDL 80L	86.000 83.000	BOL
WELL BA WERRAW R	METALS) BDL	. 110 <1 	4.000 <t< td=""><td>1.100 <t BDL</t </td><td>160.000</td><td>) BOL</td></t<>	1.100 <t BDL</t 	160.000) BOL
عا ند	CADMIUM (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	COBALT (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	CHROMIUM (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	COPPER (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	1RON (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	MERCURY (UG/L 26 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

OIST. SYSTEM KENSINGTON PL

DIST. SYSTEM KENSINGTON PL

RESERVOIR TREATED

WELL 7 PRETREATED

WELL 6 PRETREATED

CADMIUM (UG/L	METALS)	ø	DET'N LIMIT = 0.05	GUIDELINE	INE = 5.0 (A1)			
	į		į	į				
1992 AUG	BUL	. 2	BUL	801	1, 020		•	•
1992 SEP	· ca	PUL	108	75 080	1, 0,00	•	•	
1002 1107	סטר		BDI.	. 108	1, 6,6:	•	•	•
1992 DEC	BDL		90 80 80	80L	.070 <1			
COBALT (UG/L	•		DET'N LIMIT = 0.02	GUIDELINE	INE = N/A			
000	,	•		1, 000		٠.		
1992 AUG	1> U/L	. 6	1> 047.	1> 077	• (
1992 SEP		.270 <t< td=""><td>.370 <t< td=""><td>. 550 <1</td><td>. 350 <1</td><td>•</td><td>•</td><td>•</td></t<></td></t<>	.370 <t< td=""><td>. 550 <1</td><td>. 350 <1</td><td>•</td><td>•</td><td>•</td></t<>	. 550 <1	. 350 <1	•	•	•
1992 001	BUL	. 040	80L	1> 064.	13.000		•	
1992 NEC	.280 <t< td=""><td>1> 0/0.</td><td>.320 <1</td><td>.240 <t< td=""><td>.280 <t< td=""><td></td><td></td><td></td></t<></td></t<></td></t<>	1> 0/0.	.320 <1	.240 <t< td=""><td>.280 <t< td=""><td></td><td></td><td></td></t<></td></t<>	.280 <t< td=""><td></td><td></td><td></td></t<>			
CHROM1UM (UG/L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.50	GUIDELINE	INE = 50.0 (A1)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0004	900		, 000	. 4 700				
1992 AUG	5.100		4.200 <1	1.000 4	• ()		•	•
1992 SEP		3.100 <1	1.100 <1	1.000 <	1> 096.	•	•	
1992 001	1> 007.4		801	1> 00+7	1.200 <1		•	•
1992 NOV	•	8.900	8.200	1.400 <t< td=""><td>1.100 <t< td=""><td>•</td><td></td><td>•</td></t<></td></t<>	1.100 <t< td=""><td>•</td><td></td><td>•</td></t<>	•		•
1992 DEC	.980 <t< td=""><td></td><td>1.900 <ī</td><td>2.900 <t< td=""><td>2.900 <t< td=""><td></td><td></td><td></td></t<></td></t<></td></t<>		1.900 <ī	2.900 <t< td=""><td>2.900 <t< td=""><td></td><td></td><td></td></t<></td></t<>	2.900 <t< td=""><td></td><td></td><td></td></t<>			
COPPER (UG/L	Ŷ		DET'N LIMIT = 0.50	GUIDELINE	INE = 1000 (A3)			
1992 AUG	1,100 <t< td=""><td>•</td><td>1,500 <t< td=""><td>57,000</td><td>•</td><td></td><td>•</td><td>•</td></t<></td></t<>	•	1,500 <t< td=""><td>57,000</td><td>•</td><td></td><td>•</td><td>•</td></t<>	57,000	•		•	•
1992 SEP	٠	108	BDL	24.000	530.000		•	•
1992 OCT	BDL	•	BDL	480.000	470.000	•		
1992 NOV		108	.530 <1	33,000	410.000		•	
1992 DEC	1> 079.	•	.620 <t< td=""><td>67.000</td><td>710.000</td><td>•</td><td>•</td><td></td></t<>	67.000	710.000	•	•	
IRON (UG/L)		1	DET'N LIMIT = 6.00	GUIDELINE	INE = 300 (A3)			
1992 AUG	140.000	•	150.000	150.000		•		
1992 SEP	•	280.000	150.000	140.000	140.000		•	
1992 OCT	160.000	•	130.000	120.000	120.000			•
1992 NOV	•	280.000	130.000	190.000	140.000		•	
1992 DEC	170.000	•	93.000	100.000	79.000	•	•	٠
MERCURY (UG/L	^		DET'N LIMIT = 0.02	GUIDEL	GUIDELINE = 1.0 (A1)			
	BDL	BDL	B0L					٠
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

- -	WELL BA RAW	WELL 8B RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATEO	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATED
	METALS .		DET'N LIMIT = 0.05		GUIDELINE = 50.0 (A3)	(3)		
1992 AUG 1992 SEP 1992 OCT 1992 NOV	18.000	22.000	23.000	6.500	14.000 14.000	50.000 44.000 43.000	.100 <t BBL .110 <t< td=""><td>. 070.</td></t<></t 	. 070.
MOLYBDENUM (UG/L	١)		DET'N LIMIT = 0.05	1	GUIDELINE = N/A	P	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	. 590	1.200	1.400	. 640	.580	.910 	.240 <1 .340 <1 .290 <1	.270 <1
NICKEL (UG/L	^		DET'N LIMIT = 0.20) 	GUIDELINE = 350 (D3)	9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	108	. 250 <t </t 		1.100 <t BDL</t 	. 760 <t . BDL</t 	80L .580 <t< td=""><td>. BBC.</td><td>.580 <1</td></t<>	. BBC.	.580 <1
LEAD (UG/L) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.05	• • • • • • • •	GUIDELINE = 10 (A1)	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ;
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	. 330 . T	. 130 <t </t 		. 430 <t 1> 067.</t 	. 130 <1 . 090 .	. 210 <1	BDL BDL .160 <t< td=""><td>. 070.</td></t<>	. 070.
ANTIMONY (UG/L	(1	DET'N LIMIT = 0.05	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE = 146 (D4)		8 8 8 8 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	. 260 <1	.540 	. 390 .	.530 .510	. 460 <t . 410 <t< td=""><td>.330 <t .430 <t .520</t </t </td><td>. 280 <1</td><td>. 510</td></t<></t 	.330 <t .430 <t .520</t </t 	. 280 <1	. 510
SELENIUM (UG/L	^		DET'N LIMIT = 1.00	1 6 8 8 8 8 8 8 9	GUIDELINE = 10 (A1)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	108	108	108	108 ,	108	BDL 1.400 <t 8dl="" 8dl<="" td=""><td>BDL 1,100 <t BDL</t </td><td></td></t>	BDL 1,100 <t BDL</t 	

DIST. SYSTEM DIST. SYSTEM

RESERVOIR

WELL 7

WELL 6

				-								
			1 6 6 6 6 8 8 8 8 8 8 8									
			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
•			1									
KENSINGTON PL STANDING	LINE = 50.0 (A3)	17.000 15.000 36.000 13.000	LINE = N/A	. 800 . 750 . 490 <1	LINE = 350 (03)	1.600 <t 3.900 BDL BOL</t 	LINE = 10 (A1)	2.200 1.200 .590 1.500	LINE = 146 (04)	.760 .490 <1 .420 <1 .570	LINE = 10 (A1)	708 108 108
KENSINGTON PL FREE FLOW	GUIDELINE	18.000 17.000 15.000 31.000	GUIDELINE	. 740 . 790 . 710 . 530	GUIDELINE	80L 1.000 <7 3.500 80L 80L	GUIDELINE	.280 <1 .330 <1 1.200 .350 <1 .650	GUIDELINE	.210 <1 .400 <1 .340 <1 .340 <1	GUIDELINE	80L 80L 80L 80L
TREATED KEN	DET'N LIMIT = 0.05	19.000 18.000 17.000 24.000 19.000	OET'N LIMIT = 0.05	.690 .810 .760 .890	DET'N LIMIT = 0.20	801 1,400 <t 801 801 801</t 	DET'N LIMIT = 0.05	. 210 <1 . 260 <1 . 100 <1 . 540 . 450 <1	DET'N LIMIT = 0.05	.250 <1 .480 <1 .350 <1 .330 <1 .340 <1	DET'N LIMIT = 1.00	80L 80L 1.100 <t 80L 80L</t
PRETREATED	,	43.000		720. 710.		.360 <t .B0L</t 	J	. 210 <Ţ . 160 <Ţ	5	. 470 <1 . 400	٥	. 108 . 108
PRETREATED	METALS)	20.000	(.820 1.000 .950	^	90°L 80°L 80°L		1> 070. 1> 070. 1> 064.	^	.350 <1 .490 <1 .450 <1	^	BDL BDL 1.400 <7
: a.	MANGANESE (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 DEC	MOLYBDENUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	NICKEL (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV	LEAD (UG/L)	1992 AUG 1992 SEP 1992 OCT 1992 NOV	ANTIMONY (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV	SELENIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

- 4	WELL 8A RAW	WELL 8B RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 . PRETREATED	WELL 5 PRETREATED	WELL SA PRETREATED
STRONTIUM (UG/L	METALS)		DET'N LIMIT = 0.	0.10 · GU	GUIDELINE = N/A			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	170.000	280.000	330.000	530.000 520.000	380.000	900.000	150.000 150.000 160.000	150.000
TITANIUM (UG/L	•		DET'N LIMIT = 0.	0.50 GU	GUIDELINE = N/A	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	18.000	11.000	20.000	11.000	13.000	23.000 21.000 17.000	18.000	11.000
THALLIUM (UG/L	^		DET'N LIMIT = 0.	0.05 GU	GUIDELINE = 13 (D4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	80L			Bol. Bol.	. B0L	, 108 108 108	80. 80.	
URANIUM (UG/L	^		DET'N LIMIT = 0.	0.05 GU	GUIDELINE = 100 (A1)		1	P
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	. 200 <1 	. 280 <1 	.290 <1	.520 .470 .	. 240 <1 . 280 <1	1.100 1.000 . 760	1> 076. 1> 024. 1> 0326.	.380 <1
VANADIUM (UG/L	(1	DET'N LIMIT = 0.	0.05 GU	GUIDELINE = N/A			
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	80L			BDL		. 140 <t . 090 <t . BBL</t </t 	.210 <t .160 <t .BDL</t </t 	
ZINC (UG/L)	^		DET'N LIMIT = 0.	0.20 GU	GUIDELINE = 5000 (A3)	3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	5.100	4.300 7.500	5.500	17.000	4.300	10.000 8.000 8.500	4.300 3.100 3.900	12.000

ILLE WELL SUPPLY	DIST. SYSTEM KENSINGTON PL
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY	DIST. SYSTEM CKENSINGTON PL K
SURVEILLANCE P	RESERVOIR TREATED
DRINKING WATER	WELL 7 PRETREATED
	ELL 6 RETREATED

							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 1 1 1 1 1 1 1						1 1 0 1 1 1 0 7		: : : : : : :			
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = N/A	200.000 200.000 380.000 260.000	GUIDELINE = N/A	12.000 22.000 8.900 24.000	GUIDELINE = 13 (D4)	108 108 108	GUIDELINE = 100 (A1)	. 280 <1 . 230 <1 . 350 <1 . 250 <1	GUIDELINE = N/A	108 108 108 108	GUIDELINE = 5000 (A3)	43.000 42.000 15.000 34.000
DIST. SYSTEM KENSINGTON PL FREE FLOW	ainb	200.000 200.000 200.000 450.000 240.000	GU10	23.000 11.000 22.000 8.300 24.000	GUID	8DL .070 <t 8DL 8DL 8DL</t 	OIND	.230 <1 .220 <1 .240 <1 .340 <1 .280 <1	OI NO	108 108 108 108	GLUD	10.000 9.500 43.000 13.000
RESERVOIR DISTREMENT	DET'N LIMIT = 0.10	190.000 200.000 200.000 270.000 260.000	DET'N LIMIT = 0.50	22.000 11.000 25.000 12.000 24.000	DET'N LIMIT = 0.05	801 - 060 - 108 - 108 - 108 - 108	DET'N LIMIT = 0.05	. 190 <1 .300 <1 .240 <1 .270 <1	DET'N LIMIT = 0.05 ·	.060 <t 80L 80L 80L 80L 80L</t 	DET'N LIMIT = 0.20 .	8.600 8.200 7.800 11.000 8.000
WELL 7 PRETREATED		650.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.000 9.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Bol		.320 <1.	* • • • • • • • • • • • • • • • • • • •	108		8.600
WELL 6 PRETREATED	METALS)	390,000	(19.000	^	108 109	(.730		.080 <t BDL BDL</t 		6.900
3	STRONTIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 DEC	TITANIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	THALLIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	URANIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	VANADIUM (UG/L	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	ZINC (UG/L)	1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

WELL 5A PRETREATED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL))) () () () () () () () () (BOL	* * * * * * * * * * * * * * * * * * *	BDL))))) () () () () () () () (BDL	1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	4 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	BDL	1	BDL		BDL	1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	
WELL 5 PRETREATED		BDL	1 3 4 1 1 1 1 1 1 1 1 1 1 1 1	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	1	BDL	1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	108	
WELL 4 PRETREATED		BDL		BDL	1 1 1 1 1 1 1	BDL		BOL	• • • • • • • • • • • • • • • • • • •	BDL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	; ; ; ; ; ; ; ; ; ; ;	BDL	*	BOL		B01		BOL	,	BOL	
WELL 3 PRETREATED	GUIDELINE = 450 (D4)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	. 108	GUIDELINE = N/A	BDL	GUIDELINE = 10000 (I)		GUIDELINE = 38000 (D4)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 10 (C1)	BDL	GUIDELINE = 1900 (D4)	108	GUIDELINE = N/A	BDL	SUIDELINE = 74000 (04)	108	GUIDELINE = N/A	BDL	
WELL 2 Pretreated		BDL		BDL		BDL		BOL		BDL		· BDL		BDL	9	BDL	9	BDL	9	BDL	9	BDL	9	108	
WELL 8C WEL RAW PRE	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET*N LIMIT = 1.000	TOB	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	108	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	BDL	
r 88		BDL		BDL		BDL	• • • • • • • • • • • • • • • • • • •	BOL		BDL	1	BDL		BDL		BDL) () () () () () ()	BDL) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		BOL		BOL	
WELL RAW	OMATICS)		^		^		~		^		^		^		^		^		^		^		^		
WELL BA RAW	CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)	32 SAMPLES BDL	123-TRICHLOROBENZENE (NG/L	32 SAMPLES BDL	1234-TETCLOROBENZENE (NG/L	32 SAMPLES BDL	1235-TETCLOROBENZENE (NG/L	32 SAMPLES BDL	124-TRICHLOROBENZENE (NG/L	32 SAMPLES BDL	1245-TETCLOROBENZENE (NG/L	32 SAMPLES BDL	135-TRICHLOROBENZENE (NG/L	32 SAMPLES BDL	HEXACHLOROBENZENE (NG/L	32 SAMPLES BDL	HEXACHLOROETHANE (NG/L	32 SAMPLES BDL	OCTACHLOROSTYRENE (NG/L	32 SAMPLES . BDL	PENTACHLOROBENZENE (NG/L	32 SAMPLES BDL	236-TRICHLOROTOLUENE (NG/L	32 SAMPLES BDL	

																						•		
STEM DIST. SYSTEM ON PL KENSINGTON PL A STANDING	GUIDELINE = 450 (D4)	BDL 80L	GUIDELINE = N/A	8DL 8DL	GUIDELINE = N/A	BDL BDL	GUIDELINE = N/A	BOL BDL	GUIDELINE = 10000 (I)	8DL 8DL	GUIDELINE = 38000 (D4)	80L 80L	GUIDELINE = N/A	80L 80L	GUIDELINE = 10 (C1)	80L 80L	GUIDELINE = 1900 (D4)	80r 80r	GUIDELINE = N/A	80L 80L	GUIDELINE = 74000 (04)	BDL 80L	GUIDELINE = N/A	109
RESERVOIR DIST. SYSTEM TREATED KENSINGTON PL FREE FLOW	DET'N LIMIT = 1.000	801	DET'N LIMIT = 5.00D	801 8	DET'N LIMIT = 1.000	801 8	DET'N LIMIT = 1.000	801 8	DET'N LIMIT = 5.000	801 8	DET'N LIMIT = 1.000	801 8	DET'N LIMIT = 5.000	807	DET'N LIMIT = 1.000	80L 8	DET'N LIMIT = 1.000	BDL B	DET'N LIMIT = 1.000	BDL B	DET'N LIMIT = 1.000	BDL B	DET'N LIMIT = 5.000	807
WELL 7 PRETREATED	4TICS	BDL	^	BDL	^	BDL	•	BDL		BDL		BDL	^	BDL	^	BDL								
WELL 6 PRETREATED	CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)		123-TRICHLOROBENZENE (NG/L	108	1234-TETCLOROBENZENE (NG/L	108	1235-TETCLOROBENZENE (NG/L	108	124-TRICHLOROBENZENE (NG/L		1245-TETCLOROBENZENE (NG/L	BOL	135-TRICHLOROBENZENE (NG/L	BDL	ENZENE (NG/L	108	HEXACHLOROETHANE (NG/L)	. BDL	OCTACHLOROSTYRENE (NG/L	, 108	PENTACHLOROBENZENE (NG/L	าดย	236-TRICHLOROTOLUENE (NG/L	NOB

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WELL 8A WELL 8	AW 80L	WELL 8C WELL 2 RAW PRETREATED DET'N LIMIT = 5.000 DET'N LIMIT = 5.000	WELL 2 WELL 3 WELL 4 WELL 5 WELL SA PRETREATED PRETREATED PRETREATED 000 GUIDELINE = N/A 8DL 8DL 8DL 8DL 000 GUIDELINE = N/A 8DL 8DL 8DL 8DL	WELL 4 PRETREATED BDL	WELL 5 PRETREATED BDL	WELL SA PRETREATED BDL
--	--------	---	--	-----------------------	-----------------------	------------------------------

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY DIST. SYSTEM KENSINGTON PL STANDING BDL 80 .GUIDELINE = N/A GUIDELINE = N/A DIST. SYSTEM KENSINGTON PL FREE FLOW BDL BDL DET'N LIMIT = 5.000 DET'N LIMIT = 5.000 **B**DL BDL RESERVOIR TREATED 80 E BDL WELL 7 PRETREATED CHLOROAROMATICS 245-TRICHLOROTOLUENE (NG/L BDL WELL 6 PRETREATED 26A-TRICHLOROTOLUENE (NG/L BDL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WELL RAW	W W	WELL 8B RAW	. WELL 8C RAW	WELL 2 PRETREATED	WELL 3 D PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATED
ALDRIN (NG/L	PESTICIDES AND PCB	S AND PCB	DET'N LIMIT =	1.000	GUIDELINE = 700 (A1)	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BDL	BDL	BOL	80F)r BDL	BDL	. BDL	BDL
ALPHA BHC (NG/L	^		DET'N LIMIT =	1.000	GUIDELINE = 700 (G)		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BDL	BDL	10 8	BDL). BDL	BDL	108	BDL
BETA BHC (NG/L	(DET*N LIMIT =	1.00	GUIDELINE = 300 (G)	, , , , , , , , , , , , , , , , , , ,	1)))))))))))))))))))
32 SAMPLES	108	108	10 8	BDL)L BDL	BDL .	BDL	BDL
LINDANE (GAMMA BHC) (NG/L	C) (NG/L	(DET'N LIMIT =	1.000	GUIDELINE = 4000 (A1)	.1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,
32 SAMPLES	108	108	108	BDL)r 80r	BDL	108	BDL
ALPHA CHLORDANE (NG/L	NG/L)		DET*N'LIMIT =	2.000	GUIDELINE = 7000 (A1)	(1)	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 SAMPLES	801	108	BDL	BDL	OL BDL	BDL	BDL	80L
GAMMA CHLORDANE (NG/L	NG/L)		DET'N LIMIT =	2.00	GUIDELINE = 7000 (A1)	(1)		
32 SAMPLES	BDL	108	BDL	BDL)r 80r	BDL	BDL	BDL
DIELDRIN (NG/L	^		DET'N LIMIT =	2.00	GUIDELINE = 700 (A1)	^		
32 SAMPLES	BDL	BDL	BDL	BDL)L 80L	BDL	BDL	BDL
METHOXYCHLOR (NG/L	()		DET'N LIMIT =	5.0	GUIDELINE = 900000 (A1)	(A1)		
32 SAMPLES	BDL	108	BOL	108)r 80r	BDL	BDL	BDL
ENDOSULFAN 1 (NG/L	,		DET'N LIMIT =	2.00	GUIDELINE = 74000 (D4)	04)		
32 SAMPLES	BDL	BDL	BOL	BDL). BDL	BDL	BDL	BDL
ENDOSULFAN II (NG/L	ر ۱		DET'N LIMIT =	5.000	GUIDELINE = 74000 (D4)	04)		
32 SAMPLES	BDL	BDL	BDL	BDL)L BDL	BDL	BDL	BDL
ENDRIN (NG/L	~		DET'N LIMIT =	5.000	GUIDELINE = 1600 (D3)	3)		
32 SAMPLES	BDL	BDL	. BDL	BDL). BDL	BDL	BDL	BDL
ENDOSULFAN SULPHATE (NG/L	TE (NG/L	•	DET'N LIMIT =	5.00	GUIDELINE = N/A			
32 SAMPLES	BDL	DO8	BDL	108). BDL	BOL	BDL	BDL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

			-	•				•		•														
STEM DIST. SYSTEM ON PL KENSINGTON PL J STANDING	GUIDELINE = 700 (A1)	. BDL	GUIDELINE = 700 (G)	. BDL 80L	GUIDELINE = 300 (G)	. 801	GUIDELINE = 4000 (A1)	. BDL BDL .	GUIDELINE = 7000 (A1)		GUIDELINE = 7000 (A1)	. 80L 80L .	GUIDELINE = 700 (A1)	. BDL BDL .	GUIDELINE = 900000 (A1)	BDL BDL .	GUIDELINE = 74000 (04)	BDL 80L	GUIDELINE = 74000 (04)	BDL BDL .	GUIDELINE = 1600 (D3)	. BDL BDL .	GUIDELINE = N/A	. BOL
RESERVOIR DIST. SYSTEM IREATED . KENSINGTON PL	DET'N LIMIT = 1.000 _	108	DET'N LIMIT = 1.000	3 108	DET'N LIMIT = 1.00	901	DET'N LIMIT = 1.000	3 , 108	DET'N LIMIT = 2.000	9 108	DET'N LIMIT = 2.00	3 TOB	DET'N LIMIT = 2.00	801	DET'N LIMIT = 5.0	80F	DET'N LIMIT = 2.00	BDL 801	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 5.000	80F	DET'N LIMIT = 5.00	BOL
WELL 7 PRETREATED	AND PCB	108		BDL		BOL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	108	T	108	·	BDL		BDL		BOL		BDL	^	80F
WELL 6 PRETREATED	PESTICIDES AND PCB	108 ·	ALPHA BHC (NG/L)	BOL	BETA BHC (NG/L)	108	LINDANE (GAMMA BHC) (NG/L	B0L	ALPHA CHLORDANE (NG/L)	708	GAMMA CHLORDANE (NG/L)	B0L	DIELDRIN (NG/L)	108	METHOXYCHLOR (NG/L)	108	ENDOSULFAN 1 (NG/L)	80F	ENDOSULFAN II (NG/L)	108	ENDRIN (NG/L)	108	ENDOSULFAN SULPHATE (NG/L	BOL

Page 38

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

.s (x	WELL 8A RAW	WELL 88 RAW	WELL BC RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATEO	WELL 5A PRETREATED
PESTIC: HEPTACHLOR EPOXIDE (NG/L	PESTICI IDE (NG/L	PESTICIDES AND PCB (NG/L)	DET'N LIMIT = 1.000		GUIDELINE = 3000 (A1)	(1	1 1 1 1 1 1 1 1 1 1 1 1	
32 SAMPLES	BDL	ור 80ר	BOL	108	BDL	BDL	108	BDL
HEPTACHLOR (NG/L	^		DET'N LIMIT = 1.000		GUIDELINE = 3000 (A1)	()	* * * * * * * * * * * * *	1
32 SAMPLES	BDL	ור פטר	BOL	108	BDL	TOB .	108	108
MIREX (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = N/A		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BDL	108 BDL	BOL	BDL	BDL	BDL	108	BDL
OXYCHLORDANE (NG/L	3/1)		DET'N LIMIT = 2.000	, T	GUIDELINE = N/A	1 1 7 9 9 9 9 9)))))) () () () () () () ()	1 h h l l l l l l l l l l l l l l l l l
32 SAMPLES	BDL	ור 80ר	TOB	BDL	108	BOL	108	BDL
O,P-DDT (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = 30000 (A1)	(1)) () () () () () () () () ()	1
32 SAMPLES	BDL	IL BDL	BOL	108	BOL	108	108	BDL
PCB (NG/L .)			DET'N LIMIT = 20.00		GUIDELINE = 3000 (A2)	6		
32 SAMPLES	BDL	1L 80t	BDL	BDL	BDL	BDL	108	BDL
.P,P-DDD (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = 30000 (A1)	1)		
32 SAMPLES	BDL	1c 80L	BDL	BDL	BDL	BOL	BDL	BOL
P,P-DDE (NG/L	^		DET'N LIMIT = 1.000	_	GUIDELINE = 30000 (A1)	(1)		
32 SAMPLES	BOL	ır 80F	108	108	BDL	80r	108	BDL
P,P-00T (NG/L	^		DET'N LIMIT = 5.000		GUIDELINE = 30000 (A1)	(1)		*
32 SAMPLES	108	1r 80r	BOL	BDL	BOL	BOL	BDL	BDL
TOXAPHENE (NG/L	^		DET'N LIMIT = 500.0		GUIDELINE = 5000 (A1)	·		
32 SAMPLES	BDL	IL BOL	BOL	BDL	BDL	BDL	108	108
AMETRINE (NG/L	^		DET'N LIMIT = 50.0		GUIDELINE = 300000 (D3)	(03)		
. 26 SAMPLES	BOL	IL BOL	BOL	BDL	B0L	108	BDL	108
ATRAZINE (NG/L	^		DET'N LIMIT = 50.0		GUIDELINE = 60000 (A2)	(2)		
26 SAMPLES	BOL	1L B0L	108	BDL	BOL	108	108	801

DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

													:											
DIST. SYSTEM DIST. SYSTEM KENSINGTON PL KENSINGTON PL FREE FLOW STANDING	GUIDELINE = 3000 (A1)	BDL BDL	GUIDELINE = 3000 (A1)	BDL	GUIDELINE = N/A	BDL BDL	GUIDELINE = N/A	BOL BOL	GUIDELINE = 30000 (A1)	BDL BDL	GUIDELINE = 3000 (A2)	BDL BDA	GUIDELINE = 30000 (A1)	108 T08	GUIDELINE = 30000 (A1)	BDL BDL	GUIDELINE = 30000 (A1)	108 TOB	GUIDELINE = 5000 (A1)	8DL . 8DL	GUIDELINE = 300000 (03)		GUIDELINE = 60000 (A2)	
RESERVOIR DIST. TREATED KENSIN	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	, BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 2.000	. BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 20.00	ВОГ	DET'N LIMIT = 5.000	. BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 500.0	BD.L	DET'N LIMIT = 50.0	BDL	DET*N LIMIT = 50.0	BDL
WELL 7. PRETREATED	AND PCB	BDL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		108		BDL		BDL		BDL		BDL		108		108		BDL
WELL 6 PRETREATED	PESTICIDES AND PCB	BOL	HEPTACHLOR (NG/L)	BDL	MIREX (NG/L)	BDL	OXYCHLORDANE (NG/L)	BDL	0,P-DDT (NG/L)	TOB .	PCB (NG/L)	BDL	P,P-DDD (NG/L)	108	P,P-DDE (NG/L)	BOL	P,P-DDT (NG/L .)	BDL	TOXAPHENE (NG/L)	801	AMETRINE (NG/L)	BDL	ATRAZINE (NG/L)	BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WELL BA RAW	WELL RAW	.L 8B	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL SA Pretreated
PEST ATRATONE (NG/L)	PESTICIDES AND PCB	80	DET'N LIMIT =	50.0	GUIDELINE = N/A	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
26 SAMPLES	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
CYANAZINE (BLADEX) (NG/L	()		DET'N LIMIT =	100.0	GUIDELINE = 10000 (A2)	2)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 SAMPLES	BDL	BDL	BDL	108	108	BOL	BDL	BDL
DESETHYL ATRAZINE (NG/L	٦)	1 2 3 4 5 6 6 6 7 1 1	DET'N LIMIT =	200.0	GUIDELINE = 60000 (A2)	2)		P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1
26 SAMPLES	вог	BDL	BDL	BDL	BDL	BOL	BDL	BDL
DESETHYL SIMAZINE (NG/L	۲.		DET'N LIMIT =	200.0	GUIDELINE = 10000 (A2)	2)		*
26 SAMPLES	ВDL	BDL	BDL	BDL	BDL	BDL	108	BDL
PROMETONE (NG/L)			OET'N LIMIT =	50,000	GUIDELINE = 52500 (03)	?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) () () () () () () () () ()
26 SAMPLES	BDL	BDL	108	BOL	801	108	BOL	BDL
PROPAZINE (NG/L)			DET'N LIMIT =	50.000	GUIDELINE = 700000 (D3)	3)	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 SAMPLES	BDL	BDL	BOL	BOL	BOL	BOL	BDL	BDL
PROMETRYNE (NG/L)			DET'N LIMIT =	50.000	GUIDELINE = 1000 (A2)		; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 SAMPLES	BDL	BOL	108	BOL	BOL	BDL	BDL	BDL
METRIBUZIN (SENCOR) (NG/L	()		DET'N LIMIT = 100.0	100.0	GUIDELINE = 80000 (A1)	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
26 SAMPLES	BOL	BDL	108	BDL	BOL	BDL	108	BDL
SIMAZINE (NG/L)	÷.		DET'N LIMIT =	50.00	GUIDELINE = 10000 (A2)	2)	P P P P P P P P P P P P P P P P P P P	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 SAMPLES	BDL	BDL	BOL	BDL	. B0L	BDL	BDL	BDL
ALACHLOR (LASSO) (NG/L	^		DET'N LIMIT =	500.0	GUIDELINE = 5000 (A2)			4 P 4 4 P 5 P 8 P 8 P 8 P 8 P 8 P 8 P 8 P 8 P 8
26 SAMPLES	BDL	80F	BOL	BDL	BDL	BDL	BDL	BOL
METOLACHLOR (NG/L	~		DET'N LIMIT =	500.0	GUIDELINE = 50000 (A2)	2)	1 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 SAMPLES	BDL	BDL	B0L	BOL	BOL.	BDL	B01	BOL
		8 6 7 1 1 1 1						

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

DIST. SYSTEM KENSINGTON PL STANDING

DIST, SYSTEM KENSINGTON PL FREE FLOW

RESERVOIR TREATED

WELL 7 PRETREATED

> WELL 6 PRETREATED

PESTICIDES AND PCB	83,		
ATRATONE (NG/L)	!	DET'N LIMIT = 50.0	GUIDELINE = N/A
BOL	BOL	108	
CYANAZINE (BLADEX) (NG/L)		DET'N LIMIT = 100.0	GUIDELINE = 10000 (A2)
TOB	BDL .	108	
DESETHYL ATRAZINE (NG/L)	0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 200.0	GUIDELINE = 60000 (A2)
108 .	BDL	108	
DESETHYL SIMAZINE (NG/L)	1	DET'N LIMIT = 200.0	GUIDELINE = 10000 (A2)
TOB .	BDL	BOL	
PROMETONE (NG/L)	1 1 1 1 1 1 1 1 1	DET'N LIMIT = 50.000	GUIDELINE = 52500 (03)
BOL	BDL	BOL	
PROPAZINE (NG/L)		DET'N LIMIT = 50.000	GUIDELINE = 700000 (D3)
708	BOL	B0L	
PROMETRYNE (NG/L)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	DET*N LIMIT = 50.000	GUIDELINE = 1000 (A2)
BOL	BOL	BOL	
METRIBUZIN (SENCOR) (NG/L)		DET'N LIMIT = 100.0	GUIDELINE = 80000 (A1)
108	BDL	BDL	
SIMAZINE (NG/L)		DET'N LIMIT = 50.00	GUIDELINE = 10000 (A2)
108	BDL	108	
ALACHLOR (LASSO) (NG/L ')		DET'N LIMIT = 500.0	GUIDELINE = 5000 (A2)
BDL	B0L	BDL	
METOLACHLOR (NG/L)		0ET'N LIMIT = 500.0	GUIDELINE = 50000 (A2)
BDL	BDL	BDL	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WEI RAV	WELL BA RAW	WELL 88 RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A ° PRETREATED
PHENOLICS (UG/L	PHENOLICS		DET'N LIMIT = 0.2		GUIDELINE = N/A			=
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	108		. Ida	. 800 <t< td=""><td>. 1.000 <t . BDL</t </td><td>8DL .400 <t .8DL</t </td><td>108</td><td></td></t<>	. 1.000 <t . BDL</t 	8DL .400 <t .8DL</t 	108	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY DIST. SYSTEM KENSINGTON PL STANDING GUIDELINE = N/A DIST. SYSTEM KENSINGTON PL FREE FLOW 0.2 DET'N LIMIT = 801 801 801 801 801 RESERVOIR TREATED .400 <T . BDL WELL 7 PRETREATED . 400 <T PHENOLICS WELL 6 PRETREATED BDL . BDL PHENOLICS (UG/L 1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WELL 6 PRETREATED	WELL / PRETREATED	TREATED KENS	KENSINGTON PL KENSINGTON PL FREE FLOW STANDING	
POLYARON PHENANTHRENE (NG/L)	POLYAROMATIC HYDROCARBONS	DET'N LIMIT = 10.0	GUIDELINE = N/A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	٠	BOL		*
ANTHRACENE (NG/L)		DET'N LIMIT = 1.0	GUIDELINE = N/A	
	٠	BDL	BDL	
FLUORANTHENE (NG/L)		DET'N (IMIT = 20.0	GUIDELINE = 42000 (D4)	
		BDL		
PYRENE (NG/L)	,	DET'N LIMIT = 20.0	GUIDELINE = N/A	
	٠	BDL	BDL .	
BENZO(A)ANTHRACENE (NG/L	(DET'N LIMIT = 20.0	GUIDELINE = N/A	
٠	•	BDL	BDL .	
CHRYSENE (NG/L)		DET'N LIMIT = 50.0	GUIDELINE = N/A	
٠	٠	BOL		
DIMETH. BENZ(A)ANTHR (NG/L	^	DET'N LIMIT = 5.0	GUIDELINE = N/A	
	٠	BDL		
BENZO(E) PYRENE (NG/L	•	DET'N LIMIT = 50.0	GUIDELINE = N/A	
	٠	BDL		
BENZO(B) FLUORANTHEN (NG/L	•	DET'N LIMIT = 10.0	GUIDELINE = N/A	
	٠	BDL		
PERYLENE (NG/L)		DET*N LIMIT = 10.0	GUIDELINE = N/A	
	٠	BDL		
BENZO(K) FLUORANTHEN (NG/L	^	DET'N LIMIT = 1.0	GUIDELINE = N/A	
• 1	• ;	BDL	BDL	
BENZO(A) PYRENE (NG/L	•	DET'N LIMIT = 5.0	GUIDELINE = 10 (A1)	
•	•	901		

DIST. SYSTEM KENSINGTON PL STANDING	= N/A		= N/A		. N/A		- N/A		= N/A	
DIST. SYSTEM DIST. KENSINGTON PL KENSIN FREE FLOW STANDI	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BOL	GUIDELINE = N/A	BDĽ	GUIDELINE = N/A	BDL	GUIDELINE = N/A	
RESERVOIR DI TREATED KE	DET'N LIMIT = 20.0	BDL	DET'N LIMIT = 10.0	108	DET'N LIMIT = 20.0	BDL	DET*N LIMIT = 2.0	BDL	DET'N LIMIT = 10.0	
WELL 7 PRETREATED	POLYAROMATIC HYDROCARBONS EN (NG/L)	٠		٠		•		•		
WELL 6 PRETREATED	BENZO(G, H, I) PERYLEN (NG/L		DIBENZO(A,H) ANTHRAC (NG/L	٠	INDENO(1,2,3-C,D) PY (NG/L		BENZO(B) CHRYSENE (NG/L)	٠	CORONENE (NG/L)	

- -	WELL 8A RAW	WELL 8B RAW	88	WELL 8C RAW .	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 Pretreated	WELL SA PRETREATED
BENZENE (UG/L	VOLATILES	1	1 1 1 1 4 4	DET*N LIMIT = 0.	0.05	GUIDELINE = 5 (A1)	1	, , , , , , , , , , , , , , , , , , ,	
32 SAMPLES	BOL		108 .	BOL	B0L	BOL	B0L	BDL	BOL
TOLUENE (UG/L	, ^		1	DET'N LIMIT = 0.	0.05	GUIDELINE = 24 (A3)	P	*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BOL		BOL	BOL	108	BOL	BDL	BDL	BDL
ETHYLBENZENE (UG/L	() ()	1	; ; ; ; ;	DET*N LIMIT = 0.	0.05	GUIDELINE = 2.4 (A3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC	108 		BDL .	. 100 <1	. BDL	. 108 t>	B0L 100 <t< td=""><td>BDL .050 <t< td=""><td></td></t<></td></t<>	BDL .050 <t< td=""><td></td></t<>	
P-XYLENE (UG/L	^	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ;	DET'N LIMIT = 0.	0.10	GUIDELINE = 300 (A3*)	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BOL		B0L	108	708 _.	BOL	BDL	BDL	BDL
M-XYLENE (UG/L	·			DET'N LIMIT = 0.	0.10	GUIDELINE = 300 (A3*)		1	7 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
32 SAMPLES	TO8		BOL	BOL	B0L	BDL	BOL	BOL	108
O-XYLENE (UG/L	^			DET'N LIMIT = 0.	0.05	GUIDELINE = 300 (A3*)		5 5 7 6 6 1 1 1 1 1 1 1 1 1	2 i i i i i i i i i i i i i i i i i i i
32 SAMPLES	BDL		BOL	BDL	B0L	108	BOL	BOL	BOL
STYRENE (UG/L	•			DET'N LIMIT = 0.	0.05	GUIDELINE = 100 (D1)))))) () () () () () () () (, , , , , , , , , , , , , , , , , , ,	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
1992 AUG 1992 SEP 1992 OCT 1992 NOV 1992 DEC			BOL	150 <1.	1> 050.	:1 .050 <1 :1 80L	BDL .100 <7 .200 <7	BDL .100 <t .200 <t< td=""><td></td></t<></t 	
1,1-DICHLOROETHYLENE (UG/L	YLENE (UG/L	^		DET'N LIMIT = 0.	0.100	GUIDELINE = 7 (D1)	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9)))))))))))))))))))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 SAMPLES	BOL		BOL	BOL	108	BOL	BOL	BOL	BOL
METHYLENE CHLORIDE (UG/L	10E (UG/L	•		DET'N LIMIT = 0.	0.50	GUIDELINE = 50 (A1)	1	9	2
32 SAMPLES	108		BOL	BDL	108	BOL	BDL	BOL	901
T12-DICHLOROETHYLENE (UG/L	YLENE (UG/L	^		DET'N LIMIT = 0.	0.10	GUIDELINE = 70 (D1)	1 7 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 5 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	1
32 SAMPLES	BDL		BOL	BDL	TOB	BOL	BDL	BDL	BOL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORÂNGEVILLE WELL SUPPLY

SEMPLEME (UG/L) SEMPLEME (UG/L) SEMPLEME S (A1) SEMPLEME (UG/L) SEMPLEME (UG		WELL 6 PRETREATED	WELL 7 PRETREATED	RESERVOIR TREATED	DIST. SYSTEM KENSINGTON PL FREE FLOW	DIST. SYSTEM KENSINGTON PL STANDING	
BOL BOL BOL BOL BOL BOL BOL	BENZENE (UG/L	VOLATILES		DET'N LIMIT = 0.0		11	
SERE (LIGAL 1) SELE SE		80ľ.	BOL	BDL	BDL	٠	
BDL BDL	TOLUENE (UG/L	(= 24	
SERIZENE (UG/L 1) DET'IN LINIT = 0.05 GUIDELINE SOUR SO		BOL	. BDL	BDL	BDL		
BDL BDL 100 <t 100="" <t="" <t<="" td="" =""><td>ETHYLBENZENE (</td><td></td><td>• • • • • • • • • • • • • • • • • • •</td><td>. "</td><td></td><td>11</td><td></td></t>	ETHYLBENZENE (• • • • • • • • • • • • • • • • • • •	. "		11	
100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 < T 100 <t 100="" <="" <t="" t="" td="" ="" <=""><td>1992 AUG</td><td>108</td><td>•</td><td>BOL</td><td>80L</td><td></td><td></td></t>	1992 AUG	108	•	BOL	80L		
SOL 100 <t 100="" 100<="" <t="" td="" =""><td>1992 SEP</td><td>100</td><td>80r</td><td>B0L 100 <t< td=""><td>. 100 . 1> 050</td><td>• '</td><td></td></t<></td></t>	1992 SEP	100	80r	B0L 100 <t< td=""><td>. 100 . 1> 050</td><td>• '</td><td></td></t<>	. 100 . 1> 050	• '	
BDL BDL BDL BDL BDL	1992 NOV 1992 DEC	T> 001.	80L	.050 . T> 001.	BDL .100 <t< td=""><td></td><td></td></t<>		
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 150 <t (ug="")<="" 150="" <t="" bdl="" hylene="" l="" td="" =""><td>P-XYLENE (UG/L</td><td></td><td></td><td>DET'N LIMIT = 0.</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t>	P-XYLENE (UG/L			DET'N LIMIT = 0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BDL BDL BDL BDL BDL		BOL	108	BDL	BDL		
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL DET'IN LIMIT = 0.05 GUIDELINE BDL DET'IN LIMIT = 0.05 CT 150 <t (ug="")="" bdl="" det'in="" det<="" guideline="" hylene="" l="" limit="0.10" td="" =""><td>M-XYLENE (UG/L</td><td></td><td></td><td>i ii</td><td>, , , , , , , , , , , , , , , , , , ,</td><td></td><td>111111111111111111111111111111111111111</td></t>	M-XYLENE (UG/L			i ii	, , , , , , , , , , , , , , , , , , ,		111111111111111111111111111111111111111
BDL BDL BDL BDL BDL		BDL	BDL	BDL	108		
BDL BDL	O-XYLENE (UG/L	^	! ! ! ! ! ! !				
BDL BDL C200 <t <<="" <t="" bdl="" c200="" td="" =""><td></td><td>BDL</td><td>. 108</td><td>BOL</td><td>108</td><td>•</td><td></td></t>		BDL	. 108	BOL	108	•	
*T	STYRENE (UG/L	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 · · · · · · · · · · · · · · · · · ·		
<pre></pre>	1992 AUG	BDL		BDL	BOL	•	
<pre></pre>	1992 SEP	15.0 <1	.> 050.				
) DET'N LIMIT = 0.100 GUIDELINE = BDL BOL BOL) DET'N LIMIT = 0.50 GUIDELINE = BDL BDL) DET'N LIMIT = 0.10 GUIDELINE =	1992 NOV 1992 DEC	T> 021	B0L	108 107	BDL .150 <t< td=""><td></td><td></td></t<>		
BDL BDL BDL BDL	1,1-DICHLOROET	THYLENE (UG/L	()) () ()) () () () () () () (2 =	
) DET'N LIMIT = 0.50 GUIDELINE = BOL BOL BOL) DET'N LIMIT = 0.10 GUIDELINE = BOL BOL		108	108	BOL	108	·	
BDL BDL BDL BDL BDL BDL BDL	METHYLENE CHLC	ORIDE (UG/L)				11	
) DET'N LIMIT = 0.10 GUIDELINE = BDL BDL BDL		BDL	108	BOL	BOL	٠	
BDL 80L	T12-DICHLOROE1	THYLENE (UG/L	(DET'N LIMIT = 0.		11	
		BDL	BDL	BDL	BOL		

WELL 5A PRETREATED		ВОГ						·	BDL			·	BUL			BDL		BDL		* ;	BDL	
WELL 5 PRETREATED		. BDL		.200 <	BDL	BDL		301	BDĹ	1> 040.		BDL	BDĽ	. 050 ct		BDL		BDL		BDL	BDĹ	, B0L
WELL 4 PRETREATED		BDL	•	BDL	BDL	BDL		BDL	901	BDL		BDL	80Ľ	BDĽ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.600	1.900	1.300
WELL 3 PRETREATED	GUIDELINE = N/A	BDL	GUIDELINE = 350 (A1+)	. 2		* * * * * * * * * * * * * * * * * * *	GUIDELINE = 200 (D1)	. 5		•	GUIDELINE = 5 (A1)	. 20		BDL	GUIDELINE = 5 (A1)	BDL	GUIDELINE = 5 (D1)	BDL	GUIDELINE = 50 (A1)	·	905	BDL
WELL 2 PRETREATED	∩9	BDL	N9	. 108	3 - 3	•	00 00	· G		BDL .	N _D	• [80L	no	108	no	106	เกษ	٠٠٥	7 .	BOL
WELL 8C WELL RAW PRETR	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.10		BDL		DET'N LIMIT = 0.02	•	BDL		DET'N LIMIT = 0.05		BDL	• •	DET'N LIMIT = 0.20		DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.10	•	BDL	,
WELL 8B RAW	•	108		. 801		BDL	^	BDL		BDL	(· IOB		BDL	•	BDL	^	. BDL		. 108	•	BDĽ
WELL 8A RAW	VOLATILES 1,1-DICHLOROETHANE (UG/L	32 SAMPLES BDL	CHLOROFORM (UG/L)	1992 AUG BDL 1992 SEP .	1992 OCT 1992 NOV BDI		111, TRICHLOROETHANE (UG/L	1992 AUG BDL 1992 SEP		1992 DEC BDL	1,2 DICHLOROETHANE (UG/L	1992 AUG BDL 1992 SEP .	1992 OCT .	1992 DEC	CARBON TETRACHLORIDE (UG/L	32 SAMPLES BDL	1,2-DICHLOROPROPANE (UG/L	32 SAMPLES BDL	TRICHLOROETHYLENE (UG/L)	1992 AUG BDL 1992 SEP	1992 OCT .	

															•	•									
STEM DIST. SYSTEM ON PL KENSINGTON PL NA STANDING	GUIDELINE = N/A		GUIDELINE = 350 (A1+)	.300		.400 <1	GUIDELINE = 200 (D1)					GUIDELINE = 5 (A1)					GUIDELINE = 5 (A1)		GUIDELINE = 5 (D1)		GUIDELINE = 50 (A1)				BDL
RESERVOIR DIST. SYSTEM TREATED KENSINGTON PL	DET'N LIMIT = 0.100	8DL	DET'N LIMIT = 0.10	3.600	-	2.900	DET'N LIMIT = 0.02		80L			DET'N LIMIT = 0.05		BDL			DET'N LIMIT = 0.20	BDL	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.10		BDL		BDL
WELL 7 PRETREATED	•	BDL			90.	. 801		•	BDL	BDL	•	^		BUL.	BDL	٠	^	BDL	^	BDL	^	•	BOL	80L	
WELL 6 PRETREATED	VOLATILES 1,1-DICHLOROETHANE (UG/L	BDL	CHLOROFORM (UG/L)	1992 AUG BDL	1992 SEP	1992 NOV . 1992 DEC BDL	111, TRICHLOROETHANE (UG/L	1992 AUG BDL	1992 SEP	NOV	1992 DEC BDL	1,2 DICHLOROETHANE (UG/L	1992 AUG BDL	1992 OCT 8DL	NOV	1992 DEC BDL	CARBON TETRACHLORIDE (UG/L	BDL	1,2-DICHLOROPROPANE (UG/L	BDL	TRICHLOROETHYLENE (UG/L	1992 AUG BDL	1992 SEP .		1992 DEC BDL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

1992 AUG BDL	WELL 8A RAW	WELL 8B RAW	WELL 8C WI RAW PI	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL 5A PRETREATED
BDL	VOLATILES CHLOROBROMOMETHANE (UG/L		ET'N LIMIT =	OD CONTRACTOR				
E (UG/L) DET'N LIMIT = 0.05 GUIDELINE = BDL	AUG SEP OCT NOV DEC	BDL	. BDL	108	108	108	108 108	
BDL	-TRICHLOROETHANE (UG/L	_	ET'N LIMIT =	กซ	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •	
E (UG/L		BDL	BDL	BDL	BDL	BDL	BDL	BOL
BDL	ORODIBROMOMETHANE (UG/L		ET'N LIMIT =	เกษ				
(UG/L) DET'N LIMIT = 0.05 GUIDELINE = 8DL 8	AUG SEP OCT NOV DEC	. BDL .		108	. BDL	108 108	. 108 . 108 . 108	BDL
BDL BDL BDL BDL BDL BDL	RACHLOROETHYLENE (UG/L		ET'N LIMIT. =	IND	1			
BDL BDL BDL BDL		BDL	BDL	BDL	BDL .	BDL	BDL	80L
BDL BDL	MOFORM (UG/L)		ET'N LIMIT =	GU1	1 -	(1	
E (UG/L) DET'N LIMIT = 0.05 GUIDELINE = 8DL BDL B	1	BDL	BDL	301	BOL	BDL	BDL	BDL
BDL BDL	2-TETCHLOROETHANE (UG/L	•	ET'N LIMIT =	Ing	•	(9 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
L DET'N LIMIT = 0.100 GUIDELINE = BDL BDL BDL BDL	,	BDL	ВОГ	BOL	BDL	BDL	BDL	BDL
BDL BDL BDL BDL BDL BDL BDL BDL GUIDELINE =	YL CHLORIDE (UG/L)		ET'N LIMIT, =	GU1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : :
E (UG/L) DET'N LIMIT = 0.100 GUIDELINE = BDL	,	BDL	BDL	BOL	BOL	BDL	BDL	BDL
BDL	-DICHLOROETHYLENE (UG/L	•	ET'N LIMIT =	Ino		1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
BDL BDL BDL	AUG SEP OCT	BDL		BOL	, BDL	.100 <7	BDL	. 801
) DET'N LIMIT = 0.10 GUIDELINE =	NOV	BDL		BDL	80L	80L 80L	80L 80L	
			11	CU1	•		1 4 1 6 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
32 SAMPLES BDL BDL BDL BD		BDL	BDL	BDL	BDL	. BDL	BOL	BDL

																							17171111773 6 9 6 9 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
DIST. SYSTEM DIST. SYSTEM KENSINGTON PL FREE FLOW STANDING	GUIDELINE = 350 (A1+)	1.100	1.000 . GUIOELINE = 0.6 (D4)	. , , 108	GUIDELINE = 350 (A1+)	.800 <1		800 <t< th=""><th>GUIDELINE = 65 (A5)</th><th>BOL .</th><th>GUIDELINE = 350 (A1+)</th><th>BOL</th><th>GUIOELINE = 0.17 (04)</th><th>BDL ,</th><th>GUIDELINE = 2 (D1)</th><th>BDL</th><th>GUIDELINE = 70 (D1)</th><th>BDL</th><th>BDL .</th><th></th><th>GUIDELINE = 1510 (D3)</th><th>BDL .</th><th></th></t<>	GUIDELINE = 65 (A5)	BOL .	GUIDELINE = 350 (A1+)	BOL	GUIOELINE = 0.17 (04)	BDL ,	GUIDELINE = 2 (D1)	BDL	GUIDELINE = 70 (D1)	BDL	BDL .		GUIDELINE = 1510 (D3)	BDL .	
RESERVOIR DIST. TREATED KENSI	DET'N LIMIT = 0.05	2.300 1.650 2.750 2.150	· 2.150 DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.10	1.400	1.800	1.400	DET'N LIMIT = 0.05	B0L	DET'N LIMIT = 0.20	BDL	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.100	BOL	DET'N LIMIT = 0.100	80r	90L 80L	80L 80L	DET'N LIMIT = 0.10	BDL	.
WELL .7 PRETREATED	^			BDL	(•	- 801	BDL .	^	BOL		BOL	^	BOL		BDL	^		•			BDL	
WELL 6 PRETREATED	VOLATILES DICHLOROBROMOMETHANE (UG/L	1992 AUG BDL 1992 SEP . 1992 OCT BDL 1992 NOV .	1992 DEC BDL 112-TRICHLOROETHANE (UG/L	108	CHLORODIBROMOMETHANE (UG/L	1992 AUG BDL	1992 OCT BDL	1992 NOV . 1992 DEC BDL	TETRACHLOROETHYLENE (UG/L	. BOL	BROMOFORM (UG/L)	. BOL	1122-TETCHLOROETHANE (UG/L	BDL	VINYL CHLORIDE (UG/L)	BOL	C12-DICHLOROETHYLENE (UG/L	1992 AUG BDL	1992 OCT BDL	1992 NOV . 1992 DEC BDL	CHLOROBENZENE (UG/L)	BDL	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

WELL SA RAW	3 ∝	WELL 88 RAW	WELL BC RAW	WELL 2 PRETREATED	WELL 3 PRETREATED	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL SA PRETREATED
VOLATILES 1,4-DICHLOROBENZENE (UG/L	ES C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.10		GUIDELINE = 5 (A1)			
32 SAMPLES BDL		108	. BDL	BOL	BÖL	108	ā	ā
1,3-DICHLOROBENZENE (UG/L	^		DET'N LIMIT = 0.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 3750 (03)			109
32 SAMPLES BDL		108	108	. B0L	108	108	i C	
1,2-DICHLOROBENZENE (UG/L	^		DET'N LIMIT = 0.05	1	GUIDELINE = 200 (A1)			100
32 SAMPLES BDL		BDL	BDL	108	BDL	BDI	ā	č
ETHYLENE DIBROMIDE (UG/L	_	; ; ; ; ; ; ;	DET'N LIMIT = 0.05		GUIDELINE = 50 (D1)			
32 SAMPLES BDL		108	BOL	108	BDL	I CB	č	Š
TOTL TRIHALOMETHANES (UG/L	•		DET'N LIMIT = 0.50		GUIDELINE = 350 (A1)			ROL
992 AUG BDL							i	
992 OCT		BOL	•	BOL	108	, BUL .	108	. 100
1992 NOV BDL 1992 DEC				. 80.	108	108	80Ľ	108
		300			•	T08	BOL	•

								•			•	•			
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = 5 (A1)	•	GUIDELINE = 3750 (03)	٠	GUIDELINE = 200 (A1)		GUIDELINE = 50 (D1)	•	GUIDELINE = 350 (A1)	•					
DIST. SYSTEM KËNSINGTON PL FREE FLOW	GUI	BOL	Ing	BDL		BDL	פחו	BDL	Ing	3.200 <t< td=""><td>2.600 <1</td><td>4.000 <t< td=""><td>700 <1</td><td>2.800 <t< td=""><td></td></t<></td></t<></td></t<>	2.600 <1	4.000 <t< td=""><td>700 <1</td><td>2.800 <t< td=""><td></td></t<></td></t<>	700 <1	2.800 <t< td=""><td></td></t<>	
RESERVOIR DIST	DET'N LIMIT = 0.10	BOL	DET*N LIMIJ = 0.10	BDL	DET'N LIMIT = 0.05	PDF	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.50	7.300	4.750 <t< td=""><td>7.950</td><td>6.450</td><td>6.150</td><td></td></t<>	7.950	6.450	6.150	
WELL 7 PRETREATED		108	1	BDL		BOL		BDL	^	•	. BDL	•	BOL	•	
WELL 6 PRETREATED	VOLATILES 1,4-DICHLOROBENZENE (UG/L)	BDL	1,3-DICHLOROBENZENE (UG/L)	. 108	1,2-DICHLOROBENZENE (UG/L)	B0.L	ETHYLENE DIBROMIDE (UG/L)	108	TOTL TRIHALOMETHANES (UG/L	1992 AUG BDL		1992 OCT . BDL		1992 DEC BDL	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

	WELL 8A RAW	WELL.88 RAW	WELL 8C RAW	WELL 2 PRETREATED	WELL 3 Pretreated	WELL 4 PRETREATED	WELL 5 PRETREATED	WELL SA PRETREATED
COBALT 60 (80/L	RADIONUCLIDES)	ES	DET'N LIMIT = 0.70	1 1 1 3 1 1 1 1 1	GUIDELINE = N/A	, , , , , , , , , , , , , , , , , , ,		
10 SAMPLES	B0L	108	108	108	BOL	108 .	108	
CESIUM 134 (80/L	^]		DET'N LIMIT = 0.	0.70	GUIDELINE = N/A			
10 SAMPLES	T08	B0L	108	108	108	BOL	B0L	
CESIUM 137 (BQ/L	,		DET'N LIMIT = 0.	0.70	GUIDELINE = 50 (A1)			
10 SAMPLES	BOL	108	BDL	108	108	BOL	B0L	•
GROSS ALPHA COUNT (BQ/L	עד (80/L)		DET'N LIMIT = 0.04	1	GUIDELINE = 0.55 (D1)	1)		4 9 9 9 9 9 1 1 1 1 1
1992 OCT 1992 NOV 1992 DEC	. 090.		060.	0.00:	.040.	060.	060.	
GROSS BETA COUNT (BQ/L	(80/L)	6 6 7 1 1 1 7 8 8 8 8	DET'N LIMIT = 0.04		GUIDELINE = N/A	+		
1992 OCT 1992 NOV 1992 DEC	80F	BOL	070.	. 050.	. 040.		. 050	
TRITIUM (BO/L	^		DET'N LIMIT = 7.	7.00	GUIDELINE = 40000 (A1)	(1)		
10 SAMPLES	BOL	BOL	108	108	BDL	BDL	B01	•
1001NE 131 (BQ/L	^		DET'N LIMIT = 0.	0.70	GUIDELINE = 10 (A1)			
10 SAMPLES	B0L	BOL	BOL	108	BDL	BDL	B0L	•

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1992 ORANGEVILLE WELL SUPPLY

			6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•••						
DIST. SYSTEM KENSINGTON PL STANDING	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (D1)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)	•	GUIDELINE = 10 (A1)	
RESERVOIR DIST. SYSTEM TREATED KENSINGTON PL FREE FLOW	DET'N LIMIT = 0.70 GUIDE	. 108	DET'N LIMIT = 0.70 GUIDE	108	DET'N LIMIT = 0.70 GUIDE	. 108	DET'N LIMIT = 0.04 GUIDE	. 070:	DET'N LIMIT = 0.04 GUIDE	. 090.	DET'N LIMIT = 7.00 GUIDE		DET'N LIMIT = 0.70 GUIDE	ica
WELL 7 PRETREATED	S	BDL	1	BOL		BDL	0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 090.		. BDL		BOL		ES .
WELL 6 PRETREATED	RADIONUCLIDES COBALT 60 (BQ/L)	708	CESIUM 134 (BQ/L)	108	CESIUM 137 (80/L)	108	GROSS ALPHA COUNT (BQ/L)	1992 OCT110	GROSS BETA COUNT (BQ/L)	1992 OCT .050 1992 NOV .	TRITIUM (BQ/L)	108 .	10DINE 131 (BQ/L)	BDI

SCAN/PARAMETER	UNIT	DETECTION LIMIT	CHIDELINE		
		CIMII	GUIDELINE		
BACTERIOLOGICAL					
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)	
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML	(A3)	
TOTAL COLIFORM BACKGROUND MF	CT/100ML	O.	·N/A		
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0 _.	5/100ML	(A1)	
CHEMISTRY (FLD)					
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A		
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A		
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A		
FIELD PH FIELD TEMPERATURE	DMNSLESS	N/A	6.5-8.5		
FIELD TURBIDITY	DEG.C FTU	N/A		(A3)	
CHEMISTRY (LAB)	710	N/A	1.0	(A1) .	
ALKALINITY AMMONIUM TOTAL	MG/L	0.20	30-500	(A4)	
CALCIUM	MG/L	0.002		(F2)	
CHLORIDE	MG/L MG/L	0.20 0.20	100.0		
COLOUR	TCU	0.50	250.0	(A3)	
CONDUCTIVITY	UMHO/CM	1.00	400.0		
CYANIDE	MG/L	0.001		(A1)	
DISSOLVED ORGANIC CARBON	MG/L	0.10		(A3)	
FLUORIDE	MG/L	0.01		(A1)	
HARDNESS I ONCAL	MG/L	0.50	80-100	(A4)	
LANGELIERS INDEX	DMNSLESS DMNSLESS	N/A N/A	N/A		
MAGNESIUM	MG/L	0.10	N/A 30.0	(F2)	
NITRATES (TOTAL)	MG/L	0.005		(A1)	
NITRITE	MG/L	0.001	1.0	(A1)	
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A		
PH PHOSPHOPHS ST. DEACT	DMNSLESS	N/A	6.5-8.5	(A4)	
PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	MG/L	0.0005	N/A		
POTASSIUM	MG/L MG/L	0.002 0.010	0.4	(F2)	
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	10.0 500.0	(F2) (A3)	
SODIUM	MG/L	0.20	200.0	(A4)	•
SULPHATE	MG/L	0.20	500.0	(A4)	
TURBIDITY	FTU	0.05	1.0	(A1)	
* The Maximum Acceptable Concentration	(MAC) for <u>natur</u>	ally occurring	fluoride in	drinking water	is 2.4 mg/L.
CHLOROAROMAT4CS					
1,2,3-TRICHLOROBENZENE	NC ()	F 0			
1,2,3,4-TETRACHLOROBENZENE	NG/L NG/L	5.0 1.0	N/A		
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A N/A		
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)	
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)	
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	,	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A		
2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A		
HEXACHLOROBENZENE (HCB)	NG/L	5.0	N/A	4043	
HEXACHLOROBUTADIENE	NG/L NG/L	1.0 1.0	10 450	(C1) (D4)	
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)	
OCTACHLOROSTYRENE	NG/L	1.0	N/A	- '/	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)	
CHLOROPHENOLS					
2,3,4-TRICHLOROPHENOL	NG/L	100.0	N/A		
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A		
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A		
	•				

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
		400.0	2400000	(0/)
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0 10.0	5000 60000	(A1) (A1)
PENTACHLOROPHENOL	NG/L	10.0	00000	(01)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	. 5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	(47)
COPPER	UG/L	0.50	1000 300	(A3) (A3)
IRON	UG/L	6.00 0.05	10	(A1)
LEAD	UG/L	0.05	50	(A3)
MANGANESE MERCURY	UG/L UG/L	0.02	1	(A1)
MOLYBDENUM .	UG/L	0.05	N/A	(41)
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	*****
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS		4.0		
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	(41)
BENZO(A) PYRENE	NG/L	5.0 2.0	10 N/A	(A1)
BENZO(B) CHRYSENE	NG/L NG/L	10.0	N/A	
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,1) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.D	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB		500.0	5000	(42)
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700 - 7000	(G) (A1)
ALPHA CHLORDANE AMETRINE	NG/L NG/L	2.0 50.0	300000	(D3)
ATRATONE	NG/L NG/L	50.0	N/A	(03)
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
ENDRIN	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
HEXACHLOROCYCLOPENTADIENE	NG/L	5.0	206000 (D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	- 900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX P,P-DDD	NG/L	5.0	N/A
O,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDE	NG/L NG/L	5.0 1.0	30000 (A1) 30000 (A1)
OXYCHLORDANE	NG/L	2.0	30000 (A1) N/A
PCB	NG/L	20.0	3000 (A2)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	- 50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
DESETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
PHENOL ICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.0	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000- (A1)
2,4-01CHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000 (A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A
2,4,5-TP (SILVEX)	NG/L	20.0	10000 (A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.0	90000 (A1)
CARBOFURAN	NG/L	2000.0	90000 (A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000 (G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A
DIALLATE	NG/L	2000.0	N/A
DIAZINON	NG/L	20.0	20000 (A1)
DICAMBA	NG/L	50.0	120000 (A1)
DICHLOROVOS EPTAM	NG/L	20.0	N/A
ETHION	NG/L	2000.0	N/A
IPC	NG/L	20.0	· 35000 (G)
MALATHION	NG/L	2000.0	N/A
METHAL DADATHLON	NG/L NG/L	20.0	190000 (A1)
METHYL PARATHION METHYLTRITHION	NG/L	50.0 20.0	9000 (D3)
MEVINPHOS	NG/L	20.0	N/A
PARATHION	NG/L	20.0	N/A 50000 (A1)
PHORATE (THIMET)	NG/L	20.0	2000 (A1)
PICHLORAM	NG/L	100.0	190000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000 (D3)
RELDAN	NG/L	20.0	N/A
RONNEL	NG/L	20.0	N/A
VOLATILES			
1,1-DICHLOROETHANE	UG/L	0.10	N/A
1,1-DICHLOROETHYLENE .	UG/L	0.10	7 (D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2-DICHLOROETHANE	UG/L	0.05	5 (A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5 (D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750 (D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5 (A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200 (D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.6 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.17 (D4)

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
BENZENE		0.05	5 (44)
BROMOFORM	UG/L	. 0.05 0.20	5 (A1)
CARBON TETRACHLORIDE	UG/L UG/L	0.20	350 (A1+) 5 (A1)
CHLOROBENZENE	UG/L	0.10	5 (A1) 1510 (D3)
CHLORODIBROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	350 (A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)
ETHYLENE DIBROMIDE	UG/L	0.05	50 (D1)
ETHYL RENZENE	UG/L	0.05	2.4 (A3)
M-XYLENE *	UG/L	0.10	300 (A3*)
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)
O-XYLENE	UG/L	0.05	300 (A3*)
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	100 (D1)
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
TOLUENE	UG/L	0.05	24 (A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)
VINYL CHLORIDE	UG/L	0.10	2 (D1)
RADIONUCLIDES			
ŢŖĬŢĬŮM	BQ/L	7.0	40000 (A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A
COBALT 60	BQ/L	0.70	N/A
CESIUM 134	BQ/L	0.70	N/A
CESIUM 137	BQ/L	0.70	50 (A1)
IODINE 131	BQ/L	0.70	10 (A1)

[#] Equal to 15.0 Picocuries/litre

•				
				٠
			*	
	•			
				٠
		•	-	
			·	
		•		
•				
			·	
•				
		•	_	
			9	
•			•	

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF

HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER

COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING

BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

. *

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

- -45 mL glass vial with septum

(teflon side must be in contact with sample)

-do <u>not</u> rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate.

Cyanide (Treated only)

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols -250 mL glass bottle

-do $\underline{\text{not}}$ rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

(PBVOL), (PBEXT)

-1 L amber glass bottle; instructions

as per organic -250 mL glass bottle -do <u>not</u> rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

5. Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

- . 1. Record time of day on submission sheet.
 - 2. Place bucket under tap and open cold water.
 - 3. Fill to predetermined volume.
 - 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do not rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons -1 L amber glass bottle per scan

(OAPAHX) -do <u>not</u> rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

1. Record time of day on submission sheet.

2. Let cold water flow for five minutes.

3. Record temperature on submission sheet.

4. Fill all bottles as per instructions.

 Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

		•	
			•
	,		
			,
		•	
			·

	·					
1000	,		·			
The state of the s		·				
With the state of						
Box			·			
The state of the s				*		
The second state of the se				•	·	·
		,				
		,				

•			
•			
		•	
			•