## Real Life Leslie Knopes: Factors Contributing to the Proportion of Women Candidates for Local Office in the United States

Maggie Sullivan Georgetown University, McCourt School of Public Policy PPOL 565: Data Science 2 Professor Brodnax May 10, 2023

#### **Executive Summary**

Much data and research exists about factors influencing the number of women in national politics globally but there is little understanding of these same elements at the local level. In my project, I examine which social, economic, and political factors are most relevant to predicting higher proportions of women candidates for local office in the United States. I employ a gender guessing package on candidate-level precinct returns from the 2018 elections and combine the resulting data with county-level factors related to demography, economics, election history, and reproductive healthcare. Using both LASSO regression and random forest techniques resulted in a low success rate for predicting counties with higher proportion of women candidates, but did isolate a small number of influential factors. This lack of conclusive evidence from this study suggests that demographic and community level factors are not the most influential drivers of women candidates. Instead, untested community-level variables and individual-level factors may be more telling for future research.

#### Introduction

The United Nations tracks data on women in national political positions as part of the Sustainable Development Goals indicator 5.5.1 and recently expanded this to include local level offices (United Nations, n.d.). However, UN data is aggregated at the national level, leaving a relatively small sample size for advanced modeling techniques. Secondly, there is extensive research on factors related to women's representation at the national level, but representation at the local level is understudied (Berevoescu, 2021 & Carroll, 2010). While extensive datasets exist for the number or proportion of women serving in office at national level, data is sparse for local level offices. Finally, most indicators measure the number of women elected officials and not women candidates.

There is much existing analysis on barriers to increasing the number of women in office. The International Republican Institute, a leader on research and programming related to this topic internationally, identified three main categories of barriers to women's participation in public life: the individual, social, and institutional and governmental barriers (International Republican Institute, 2023). Domestic analysis largely has focused on social and economic barriers, but there is an increased attention on the individual motivation to run for office (Lawless, 2010). However, this variable is more difficult to measure based on the data available, although some interesting research has been done on surveys of mayors in the U.S. (Carroll, 2010). Increasingly, reproductive health and abortion are noted as driving factors for women's political participation, even at the municipal level (Epstein, 2023 and Frey, 2022). My study seeks to build on existing research by providing an analysis of the factors related to the proportion of women candidates by county in local elections in the United States in 2018.

#### Data

The MIT Election Data + Science Lab has compiled a database on U.S. election data, including detailed information by the precinct level for U.S. local and state government ballots for the 2018 elections (MIT Election Data and Science Lab, 2022). This includes names of candidates on the ballot for a variety of local and state positions as well as the resulting vote counts for each candidate by precinct. The original local dataset includes over 1.8 million rows (candidate-level) for 31 states plus Wasington, DC. After data-cleaning and aggregation, the final dataset contains 1,083 (county-level) rows for 28 states. This includes a total of 24,862 unique candidates for local office, of which 6,883 were classified as women (roughly 28%) using a gender-guessing package in Python. See Appendix I for a more detailed description of the gender-guessing algorithm's methodology. Figure 1 depicts the distribution of the outcome variable in this study, the proportion of local candidates that are women (by county).

Figure 1: Distribution of the Proportion of Local Candidates that Are Women



The average proportion of women candidates was just 30%, although there were significant numbers of counties with no women and all women. I then examined the proportions at the state level, this time based on the median values instead of the average due to the high number of counties with no women candidates. As seen in Figure 2, only two states (Connecticut and Illinois) had counties with a median of 50% or higher women candidates for local office.

Figure 2: Median Proportion of Women Candidates for Local Election

Median Proportion of Women Candidates for Local Election



In addition to the initial dataset, the MIT Election Data + Science Lab compiled an additional dataset with key county-level demographic and voting history factors (including election results for the 2012 and 2016 presidential races) to accompany the 2018 precinct level return data (MIT Election Data and Science Lab, 2022). I also sourced data on key reproductive health indicators such as the number of women potentially in demand of contraception assistance or the number of women's clinics in the county (Guttmacher Institute, n.d.). As a result, I compiled a total of 88 variables (including dummy variables for state and regions) covering key demographic, economic, reproductive health, and political factors. See Appendix II for a full list of the input variables and sources.

Tables 1-4 highlight descriptive statistics for key subsets of the most relevant input variables. Most of the counties in the data are majority white, although there is an average of 11.7% of the population that is Black as well as an average of 6.4 % of the population that is Hispanic and just an average of 4.4% that is foreign-born. There is potential collinearity of these racial and ethnic factors, for example if a county has a large community of Black immigrants who speak Spanish. The average percentage of the county that is rural is roughly balanced at 54.8%. Our data contains two age percentages which allow us to examine counties with majority elderly and majority young populations. Surprisingly the majority of counties voted for Republican presidential candidates in both 2012 and 2016, despite Obama's victory in 2012.

Table 1: Subset of Key Demographic Variables

| Subset of Demographic Variables |                                       |       |          |                  |         |         |       |
|---------------------------------|---------------------------------------|-------|----------|------------------|---------|---------|-------|
| Daganintiwa                     | Percentage of the population that is: |       |          |                  |         |         |       |
| Descriptive statistics          | White                                 | Black | Hispanic | Foreign-<br>Born | Age <29 | Age >65 | Rural |
| Mean                            | 0.768                                 | 0.117 | 0.064    | 0.044            | 0.373   | 0.172   | 0.548 |
| Stan. Dev.                      | 0.19                                  | 0.167 | 0.087    | 0.052            | 0.05    | 0.042   | 0.31  |
| Min                             | 0.132                                 | 0.0   | 0.0      | 0.0              | 0.136   | 0.07    | 0.0   |
| 25%                             | 0.651                                 | 0.009 | 0.016    | 0.013            | 0.344   | 0.146   | 0.296 |
| 50%                             | 0.827                                 | 0.038 | 0.034    | 0.027            | 0.37    | 0.17    | 0.542 |
| 75%                             | 0.924                                 | 0.156 | 0.071    | 0.054            | 0.398   | 0.192   | 0.8   |
| Max                             | 0.996                                 | 0.862 | 0.832    | 0.522            | 0.674   | 0.531   | 1.0   |

**Table 2: Subset of Economic Variables** 

| Subset of Economic Variables |                      |                               |  |  |  |  |  |
|------------------------------|----------------------|-------------------------------|--|--|--|--|--|
| Descriptive statistics       | Unemployment<br>Rate | Median<br>Household<br>Income |  |  |  |  |  |
| Mean                         | 0.079                | 47,023                        |  |  |  |  |  |
| Stan. Dev.                   | 0.031                | 13,411                        |  |  |  |  |  |
| Min                          | 0.0                  | 18,972                        |  |  |  |  |  |
| 25%                          | 0.059                | 38,089                        |  |  |  |  |  |
| 50%                          | 0.076                | 44,845                        |  |  |  |  |  |
| 75%                          | 0.095                | 53,179                        |  |  |  |  |  |
| Max                          | 0.261                | 125,672                       |  |  |  |  |  |

**Table 3: Subset of Political Variables** 

| Subset of Political Variables |       |            |  |  |  |  |
|-------------------------------|-------|------------|--|--|--|--|
| Top Candidate                 | Count | Percentage |  |  |  |  |
| Trump ('16)                   | 863   | 0.797      |  |  |  |  |
| Clinton ('16)                 | 217   | 0.2        |  |  |  |  |
| Third('16)                    | 3     | 0.003      |  |  |  |  |
| Obama ('12)                   | 306   | 0.283      |  |  |  |  |
| Romney ('12)                  | 777   | 0.717      |  |  |  |  |

**Table 4: Subset of Reproductive Health Variables** 

| Subset of Reproductive Health Variables |                                            |                                           |                                                                              |                                                                                 |                                                                                 |  |
|-----------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Descriptive statistics                  | Number of<br>publicly<br>funded<br>clinics | Number of<br>Title<br>X-funded<br>clinics | No. of wom. in<br>need of public<br>support for<br>contraceptive<br>services | No. of women<br>13-44 with<br>potential demand<br>for contraceptive<br>services | No. of women<br>20-44 with<br>potential demand<br>for contraceptive<br>services |  |
| Mean                                    | 3.844                                      | 1.5                                       | 7,415                                                                        | 14,303                                                                          | 12,658                                                                          |  |
| Stan. Dev.                              | 7.565                                      | 2.117                                     | 19,621                                                                       | 39,441                                                                          | 35,410                                                                          |  |
| Min                                     | 1                                          | 0                                         | 30                                                                           | 50                                                                              | 40                                                                              |  |
| 25%                                     | 1                                          | 1                                         | 950                                                                          | 1,545                                                                           | 1,335                                                                           |  |
| 50%                                     | 2                                          | 1                                         | 2,240                                                                        | 3,750                                                                           | 3,230                                                                           |  |
| 75%                                     | 4                                          | 1                                         | 6,270                                                                        | 10,735                                                                          | 9,325                                                                           |  |
| Max                                     | 175                                        | 36                                        | 345,310                                                                      | 715,650                                                                         | 645,830                                                                         |  |

### Methodology

Because my primary goal was to understand the relationship between the input variables and my outcome variable (the proportion of women running for local office) rather than prediction, I utilized two techniques: 1) Least Absolute Shrinkage and Selection Operator (LASSO) regression and 2) random forests.

The LASSO algorithm performs a standard Ordinary Least Squares (OLS) regression but applies a penalty based on a user-defined tuning parameter to shrink certain coefficients to zero. Thus LASSO regression not only assists in regularizing our model, but also performs variable selection (James et al., 2021). This method served useful in isolating which of my 88 independent variables had the strongest predictive nature. This technique is frequently used in medical research but has been used previously in political science research, such as the use of LASSO regression to perform variable selection of over 70 variables to predict the gender wage gap in the United States (Boeheim & Stoellinger, 2021). Because LASSO regression is a parametric technique based on OLS, it can perform poorly if the relationship between the features and outcome variables are non-linear.

Random forests are a non-parametric technique based on decision trees, which predict the outcome variable by splitting the data based on the independent variable values (resulting in an output resembling a family tree). Although the researcher can set hyperparameters such as max-depth or node purity to reduce overfitting, a useful technique is to employ random forests by building multiple, decorrelated trees on multiple training samples. (James et al., 2021). Using

a random forest approach improves prediction accuracy while still maintaining strong interpretability by identifying variable importance (James et al., 2021). This variable importance role is most relevant to my research. Previously, random forests have been used by researchers across sectors to both identify variable importance and predict an outcome. For example, Genuer et al. demonstrated how random forests can be used in algorithms to both rank and select variables to maintain both interpretation and prediction power (Genuer et al., 2010).

### Findings

First, I used LASSO regression to isolate the most relevant variables. For hyperparameter tuning, I experimented with alphas of 1, 5, and 10 (which control the penalties introduced to reduce variables to zero). These had very similar results, reducing all but 5 or 6 of the 88 original variables to zero. Notably, these remaining variables are largely related to population metrics (particularly for women) as well as one indicator measuring mean household income. However, the magnitude of the coefficients of the remaining variables were so small, suggesting the lack of a meaningful impact on the outcome variable. This is confirmed by the poor R2 score which suggests that these variables overall are poor predictors of the proportion of women candidates. Figure 3 shows the coefficients of the variables remaining after applying the LASSO regression method.

Figure 3: Coefficients of Remaining Variables from LASSO Regression



Next, I employed the random forest technique, starting first with building one decision tree to explore hyperparameter tuning. Figure 4 demonstrates hyperparameter tuning for the depth of the decision tree (i.e. how many times it would split) and how this affected the test data. As demonstrated in Figure 4, although the training score improved with increased depth, the test performance score was consistently low, suggesting an overall poor model.

Figure 4: Hyperparameter Tuning - Decision Tree Max Depth Validation Curve

However, as previously mentioned, building random forests can help increase performance. I then built a random forest using 750 iterations and a maximum depth of 3 (based on the initial validation curve) to prevent overfitting. I also used a five-fold cross-validation and calculated the mean R2 score. However, like the LASSO regression results, the resulting R2 score was so low (0.006) as to not be significantly impactful. However it is notable that some of the top 15 variables of importance in the random forest were also present in the LASSO regression, including median household income and female population related statistics. Notably the dummy variable for Illinois was most relevant, likely because our earlier exploratory analysis demonstrated Illinois and Connecticut were the only two states with median county proportions of more than 50%. Of interest, none of the political variables, such as whether the county primarily voted for Trump or Clinton in the 2016 elections, were in the top predictors for either model. Figure 5 shows the variable importance for the top 15 variables in my random forest.

Figure 5: Variable Importance (Random Forest)



Top 15 Variables by Importance (Random Forest)

#### Conclusion

Overall, my findings do not support a strong relationship among community-level demographic, economic, political, and reproductive health factors on the proportion of women running for local office. Although some variables were influential in both models, the magnitude and scores were so nominal as to not have meaningful applications for policy. However, there are a number of other untested variables which may be relevant and were not among the 88 features variables. For example, these might include data on social attitudes, the existence of "role models" of previously elected officials, childcare access, or domestic violence rates. Alternatively, the lack of evidence in this study suggests that research based on individual-level data (such as that of a candidate survey) might provide more relevant insight. However, the resulting dataset from my study does provide new information in a scarce data landscape on the count and proportion of women running for local government positions in the United States.

#### Bibliography

- Berevoescu, I., & Ballington, J. (2021). *Women's representation in local government: a global analysis*. UN Women. <a href="https://www.unwomen.org/sites/default/files/2022-01/">https://www.unwomen.org/sites/default/files/2022-01/</a>
  <a href="h
- Boeheim, R., & Stoellinger, P. (2021). Decomposition of the gender wage gap using the LASSO estimator. *Applied Economics Letters*, 28(10), 817–828. https://doi.org/10.1080/13504851.2020.1782332
- Carroll, S. J., & Sanbonmatsu, K. (2010). *Entering the mayor's office: Women's decisions to run for municipal office*. Prepared for the annual Midwest Political Science Association Meeting. <a href="https://cawp.rutgers.edu/sites/default/files/resources/enteringmayors">https://cawp.rutgers.edu/sites/default/files/resources/enteringmayors</a> office.pdf
- Epstein, R. J., (2023). Democrats Run on Abortion, Even for Offices With Little Say on the Issue. New York Times. <a href="https://www.nytimes.com/2023/04/02/us/politics/democrats-abortion-mayor.html">https://www.nytimes.com/2023/04/02/us/politics/democrats-abortion-mayor.html</a>
- Frey, W. H., (2022). *Motivated by abortion, women could determine the outcome in Tuesday's midterm elections*. Brookings. <a href="https://www.brookings.edu/blog/the-avenue/2022/11/04/motivated-by-abortion-women-could-determine-the-outcome-in-tuesdays-midterm-elections/">https://www.brookings.edu/blog/the-avenue/2022/11/04/motivated-by-abortion-women-could-determine-the-outcome-in-tuesdays-midterm-elections/</a>
- Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014
- "Gender-Guesser" (2016). https://pypi.org/project/gender-guesser/
- Guttmacher Institute (n.d.). U.S. Counties. [Data set] https://data.guttmacher.org/counties
- International Republican Institute. (2023). *Women's political leadership and gender equality*. Retrieved March 1, 2023, from <a href="https://www.iri.org/what-we-do/womens-political-leadership-and-gender-equality/">https://www.iri.org/what-we-do/womens-political-leadership-and-gender-equality/</a>
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). *An Introduction to Statistical Learning with Applications in R*. Springer.

  <a href="https://hastie.su.domains/ISLR2/ISLRv2">https://hastie.su.domains/ISLR2/ISLRv2</a> website.pdf</a>
- Lawless, J. L., & Fox, R. L. (2010). *It still takes a candidate: Why women don't run for office*. Cambridge University Press. <a href="https://doi-org.proxy.library.georgetown.edu/10.1017/CBO9780511778797">https://doi-org.proxy.library.georgetown.edu/10.1017/CBO9780511778797</a>

- MIT Election Data and Science Lab (2018). 2018 Election Analysis Dataset (GitHub) [Data set]. https://github.com/MEDSL/2018-elections-unoffical
- MIT Election Data and Science Lab (2022). *Local Precinct-Level Returns 2018* (Harvard Dataverse V1) [Data set]. Harvard Dataverse. <a href="https://doi.org/10.7910/DVN/CHYXUP">https://doi.org/10.7910/DVN/CHYXUP</a>
- United Nations. (n.d.). *Goal 5: Achieve gender equality and empower all women and girls*.

  Retrieved March 1, 2023, from <a href="https://sdgs.un.org/goals/goal5#targets">https://sdgs.un.org/goals/goal5#targets</a> and indicators

#### Appendix I: Implementation Appendix

Since data is scarce on women candidates at the local level, I utilized the Python package "gender-guesser" to classify the gender of each candidate name in the MIT election dataset. This package intakes a single name (such as Margaret) and outputs the gender classification of "male", "female", "mostly-male", "mostly-female", "andy" (if equal likelihood to be male or female), or "unknown" if the name is not found in the database. I calculated the proportion of women as the number of women (as identified by the package as 'female" or "mostly-female") divided by the total number of candidates in each county. This package is based on the underlying data from the program "gender" which includes a dictionary of gender-match-data for about 40,000 names, primarily from European countries, the United States, China, India, and Japan ("Gender-Guesser", 2016). This was last updated in 2016 so information should be relatively accurate for 2018 data. The "gender-guesser" package successfully classified 94.5% of all names in my dataset. Once I aggregated the data to the county-level, I removed counties with 50% or higher "unknown" or "andy" values.

# Appendix II: Independent Features

Note that each variable is calculated at the county level.

| #   | Variable Name     | Description                                                    | Source                                 | Notes                                                |
|-----|-------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| 1.  | total_population  | Total population                                               | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 2.  | cvap              | Citizen Voting Age<br>Population                               | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 3.  | white_pct         | Percentage of the population that is white                     | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 4.  | black_pct         | Percentage of the population that is Black                     | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 5.  | hispanic_pct      | Percentage of the population that is Hispanic                  | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 6.  | nonwhite_pct      | Percentage of the population that is not-white                 | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 7.  | foreignborn_pct   | Percentage of the population that is foreign-born              | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 8.  | female_pct        | Percentage of the population that is female                    | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 9.  | age29andunder_pct | Percentage of the population that is less than 29 years of age | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 10. | age65andolder_pct | Percentage of the population that is less than 29 years of age | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 11. | clf_unemploy_pct  | Unemployment population for civilian labor force               | 2012-2016<br>(ACS 5-Year<br>Estimates) | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 12. | lesshs_pct        | Percentage of the population                                   | 2012-2016                              | Pulled from MIT                                      |

|     |                        | with an education of less<br>than a regular high school<br>diploma                                                   | (ACS 5-Year<br>Estimates)                          | 2018 Election<br>Analysis Dataset                        |
|-----|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| 13. | lesscollege_pct        | Percentage of the population with an education of less than a bachelor's degree                                      | 2012-2016<br>(ACS 5-Year<br>Estimates)             | Pulled from MIT<br>2018 Election<br>Analysis Dataset     |
| 14. | lesshs_whites_pct      | White population with an education of less than a regular high school diploma as a percentage of total population    | 2012-2016<br>(ACS 5-Year<br>Estimates)             | Pulled from MIT<br>2018 Election<br>Analysis Dataset     |
| 15. | lesscollege_whites_pct | White population with an education of less than a bachelor's degree as a percentage of total population              | 2012-2016<br>(ACS 5-Year<br>Estimates)             | Pulled from MIT<br>2018 Election<br>Analysis Dataset     |
| 16. | rural_pct              | Percentage of the population that is rural                                                                           | 2010 IPUMS<br>NHGIS,<br>University of<br>Minnesota | Pulled from MIT<br>2018 Election<br>Analysis Dataset     |
| 17. | median_hh_inc          | Median household income in<br>the past 12 months (in 2016<br>inflation-adjusted dollars)                             | 2012-2016<br>(ACS 5-Year<br>Estimates)             | Pulled from MIT<br>2018 Election<br>Analysis Dataset     |
| 18. | pres_16_CLINTON        | Dummy variable for Hilary<br>Clinton receiving the highest<br>presidential candidate vote<br>totals in 2016          | 2016 MEDSL<br>Election<br>Returns<br>Dataverse     | Derived from<br>MIT 2018<br>Election Analysis<br>Dataset |
| 19. | pres_16_THIRD          | Dummy variable for a third<br>party candidate receiving the<br>highest presidential<br>candidate vote totals in 2016 | 2016 MEDSL<br>Election<br>Returns<br>Dataverse     | Derived from<br>MIT 2018<br>Election Analysis<br>Dataset |
| 20. | pres_16_TRUMP          | Dummy variable for Donald<br>Trump receiving the highest<br>presidential candidate vote<br>totals in 2016            | 2016 MEDSL<br>Election<br>Returns<br>Dataverse     | Derived from<br>MIT 2018<br>Election Analysis<br>Dataset |
| 21. | pres_12_OBAMA          | Dummy variable for Barack<br>Obama receiving the highest<br>presidential candidate vote<br>totals in 2012            | 2012 MEDSL<br>Election<br>Returns<br>Dataverse     | Derived from<br>MIT 2018<br>Election Analysis<br>Dataset |
| 22. | pres_12_ROMNEY         | Dummy variable for Mitt<br>Romney receiving the                                                                      | 2012 MEDSL<br>Election                             | Derived from<br>MIT 2018                                 |

|     |                             | highest presidential candidate vote totals in 2012                                                         | Returns<br>Dataverse    | Election Analysis<br>Dataset |
|-----|-----------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|
| 23. | no_wom_demand_contracep_pub | Number of women who likely need public support for contraceptive services and supplies, aged 13-44, 2016   | Guttmacher<br>Institute |                              |
| 24. | total_titlex_clinics        | Total Title X-funded clinics, 2015                                                                         | Guttmacher<br>Institute |                              |
| 25. | no_wom_dem_contracep_13     | Total no. of women aged<br>13-44 with potential demand<br>for contraceptive services<br>and supplies, 2016 | Guttmacher<br>Institute |                              |
| 26. | no_wom_dem_contracep_20     | Total no. of women aged<br>20-44 with potential<br>demand for contraceptive<br>services and supplies, 2016 | Guttmacher<br>Institute |                              |
| 27. | total_pub_clinics           | Total publicly funded clinics, 2015                                                                        | Guttmacher<br>Institute |                              |
| 28. | DUM_no_PP_clinics           | Dummy variable for the presence of Planned Parenthood clinics, 2015                                        | Guttmacher<br>Institute | Derived from count data      |
| 29. | DUM_no_PP_clinics_titlex    | Dummy variable for the presence of Planned Parenthood clinics with Title X funding, 2015                   | Guttmacher<br>Institute | Derived from count data      |
| 30. | DUM_no_fed_centers          | Dummy variable for the presence of federally qualified health centers, 2015                                | Guttmacher<br>Institute | Derived from count data      |
| 31. | DUM_no_fed_centers_titlex   | Dummy variable for the presence of federally qualified health centers with Title X funding, 2015           | Guttmacher<br>Institute | Derived from count data      |
| 32. | DUM_no_HD_clinics           | Dummy variable for the presence of health department clinics, 2015                                         | Guttmacher<br>Institute | Derived from count data      |
| 33. | DUM_no_HD_clinics_titlex    | Dummy variable for the presence of health department clinics with Title X funding, 2015                    | Guttmacher<br>Institute | Derived from count data      |

| 34. | DUM_no_hosp_clinics          | Dummy variable for the presence of hospital-based clinics, 2015                                            | Guttmacher<br>Institute            | Derived from count data     |
|-----|------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|
| 35. | DUM_no_hosp_clinics_titlex   | Dummy variable for the presence of hospital-based clinics with Title X funding, 2015                       | Guttmacher<br>Institute            | Derived from count data     |
| 36. | DUM_no_other_clinics         | Dummy variable for the presence of other clinics, 2015                                                     | Guttmacher<br>Institute            | Derived from count data     |
| 37. | DUM_no_other_clinics_titlex  | Dummy variable for the presence of other clinics with Title X funding, 2015                                | Guttmacher<br>Institute            | Derived from count data     |
| 38. | REGION_midwest               | Dummy variable if state is in<br>East North Central or West<br>North Central Division                      | Census<br>Regions and<br>Divisions | Derived based on state name |
| 39. | REGION_northeast             | Dummy variable if state is in<br>New England or Middle<br>Atlantic Division                                | Census<br>Regions and<br>Divisions | Derived based on state name |
| 40. | REGION_south                 | Dummy variable if state is in<br>South Atlantic, East South<br>Central, or West South<br>Central Division  | Census<br>Regions and<br>Divisions | Derived based on state name |
| 41. | REGION_west                  | Dummy variable if state is in<br>the Mountain or Pacific<br>Division                                       | Census<br>Regions and<br>Divisions | Derived based on state name |
| 42. | DIVISIONS_east_north_central | Dummy variable if state is<br>Illinois, Indiana, Michigan,<br>Ohio or Wisconsin                            | Census<br>Regions and<br>Divisions | Derived based on state name |
| 43. | DIVISIONS_east_south_central | Dummy variable if state is<br>Alabama, Kentucky,<br>Mississippi orTennessee                                | Census<br>Regions and<br>Divisions | Derived based on state name |
| 44. | DIVISIONS_middle_atlantic    | Dummy variable if state is<br>New Jersey, New York or<br>Pennsylvania                                      | Census<br>Regions and<br>Divisions | Derived based on state name |
| 45. | DIVISIONS_mountain           | Dummy variable if state is<br>Arizona, Colorado, Idaho,<br>Montana, Nevada, New<br>Mexico, Utah or Wyoming | Census<br>Regions and<br>Divisions | Derived based on state name |
| 46. | DIVISIONS_new_england        | Dummy variable if state is                                                                                 | Census                             | Derived based on            |

|     |                              | Connecticut, Maine,<br>Massachusetts, New<br>Hampshire, Rhode Island<br>and Vermont                                                                             | Regions and<br>Divisions                     | state name                                           |
|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 47. | DIVISIONS_pacific            | Dummy variable if state is<br>Alaska, California, Hawaii,<br>Oregon or Washington                                                                               | Census<br>Regions and<br>Divisions           | Derived based on state name                          |
| 48. | DIVISIONS_south_atlantic     | Dummy variable if state is<br>Delaware, District of<br>Columbia, Florida, Georgia,<br>Maryland, North Carolina,<br>South Carolina, Virginia or<br>West Virginia | Census<br>Regions and<br>Divisions           | Derived based on state name                          |
| 49. | DIVISIONS_west_north_central | Dummy variable if state is<br>Iowa, Kansas, Minnesota,<br>Missouri, Nebraska, North<br>Dakota and South Dakota                                                  | Census<br>Regions and<br>Divisions           | Derived based on state name                          |
| 50. | DIVISIONS_west_south_central | Dummy variable if state is<br>Arkansas, Louisiana,<br>Oklahoma and Texas                                                                                        | Census<br>Regions and<br>Divisions           | Derived based on state name                          |
| 51. | ruralurban_cc_1.0            | Counties in metro areas of 1 million population or more                                                                                                         | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 52  | ruralurban_cc_2.0            | Counties in metro areas of 250,000 to 1 million population                                                                                                      | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 53. | ruralurban_cc_3.0            | Counties in metro areas of fewer than 250,000 population                                                                                                        | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 54. | ruralurban_cc_4.0            | Urban population of 20,000 or more, adjacent to a metro area                                                                                                    | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 55. | ruralurban_cc_5.0            | Urban population of 20,000 or more, not adjacent to a metro area                                                                                                | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 56. | ruralurban_cc_6.0            | Urban population of 2,500                                                                                                                                       | 2013 USDA                                    | Pulled from MIT                                      |

|                 |                    | to 19,999, adjacent to a<br>metro area                                                                                                                                                                                                                                                            | Economic<br>Research<br>Service              | 2018 Election<br>Analysis Dataset                    |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 57.             | ruralurban_cc_7.0  | Urban population of 2,500 to 19,999, not adjacent to a metro area                                                                                                                                                                                                                                 | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 58.             | ruralurban_cc_8.0  | Completely rural or less than 2,500 urban population, adjacent to a metro area                                                                                                                                                                                                                    | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 59.             | ruralurban_cc_9.0  | Completely rural or less than 2,500 urban population, not adjacent to a metro area                                                                                                                                                                                                                | 2013 USDA<br>Economic<br>Research<br>Service | Pulled from MIT<br>2018 Election<br>Analysis Dataset |
| 60.<br>-<br>88. | Dummies for states | Alabama, Arizona, Colorado, Connecticut, Delaware, Florida, Hawaii, Illinois, Iowa, Kentucky, Louisiana, Maine, Maryland, Minnesota, Mississippi, Montana, Nevada, New Hampshire, New Jersey, North Carolina, Ohio, Oklahoma, Rhode Island, Vermont, Virginia, Washington, West Virginia, Wyoming | MIT Local<br>Precinct-Level<br>Returns 2018  |                                                      |