Relazione Progetto Basi di Dati

Gruppo Numero 8

Tobia Sacchetto Stefano Roda

Definizione del problema Obbiettivo

Lo scopo di questo progetto consiste nella costruzione di una base di dati per la biblioteca dell'Università degli Studi di Ferrara e relativa interfaccia web.

Il progetto mira a gestire le informazioni sui libri, gli utenti e i prestiti all'interno delle biblioteche di diverse succursali al fine di fornire un sistema di consultazione efficiente.

Progettazione del diagramma E-R

Il primo passo del progetto consiste nella progettazione di un diagramma E-R (entità-relazione) che descriva le entità e le relazioni coinvolte nel sistema. Nel diagramma E-R vengono rappresentati gli elementi principali dalle entità come i libri, gli autori, gli utenti e le succursali. Le entità (descritte dagli attributi) vengono messe in relazione tramite delle associazioni dandogli un grado e una cardinalità.

Di seguito il nostro Diagramma E-R

Modello Relazionale

Il modello dei dati relazionale si fonda sul concetto di relazione, quest'ultimo è un concetto matematico basato sulle idee degli insiemi.

Una relazione può essere rappresentata da un insieme di righe (tuple) o di colonne (attributi).

Definito il modello relazionale, si può effettuare la normalizzazione che consiste nell'eseguire dei test di prima, seconda, terza (e così via) forma normale, che vadano minimizzare la ridondanza e gestire meglio l'integrità dei dati.

Esistono molteplici forme di normalizzazione, ma ogni forma racchiude la precedente e aggiunge un'ulteriore clausola per minimizzare ulteriormente l'integrità dei dati.

Prima forma normale (1NF):

- I domini degli attributi devono avere solo valori ATOMICI
- Esistenza di una chiave primaria

Seconda forma normale (2NF):

- Valgono i requisiti della 1NF
- Ogni valore non chiave deve dipendere pienamente da una chiave

Terza forma normale (3NF):

- Valgono i requisiti della 2NF
- Non bisogna avere dipendenze transitive su attributi non primi che non sono chiave.

Di seguito il nostro Schema Relazionale in terza forma normale:

Vincoli:

- Le chiavi primarie di <u>Prestito</u> sono Matricola per l'utente, Cod_libro per il libro e
 COD prestito per il prestito.
- La relazione <u>Book_Authors</u> presenta tre chiavi: Cod_libro, Cod_autore e Book_Authors. Quest'ultimo era già presente nel file Book_Authors.csv, quindi abbiamo ritenuto opportuno inserirlo nel database, tuttavia una soluzione alternativa avrebbe potuto essere utilizzare come chiave primaria la composizione di Cod_libro e Cod_autore.

Interrogazioni alle tracce al punto 2 in SQL

Operazioni di algebra relazionale:

- Π => Proiezione (Attributi)
- $\sigma => Select (Tuple)$
- ⋈ => Join

1- Ricerca di un libro per titolo: Gli utenti possono inserire il titolo del libro (anche parziale) per ottenere una lista dei libri corrispondenti, inclusi i dettagli sintetici come il titolo, l'ISBN, la succursale di appartenenza.

SELECT * FROM LIBRO WHERE TITOLO LIKE '%TITOLO%' π (*) σ ((TITOLO = "%TITOLO%")(LIBRO))

2- Visualizzazione dei libri di un autore: Gli utenti possono visualizzare tutti i libri di un autore specifico, suddivisi per anno di pubblicazione.

SELECT LIBRO * FROM (LIBRO INNER JOIN BOOK_AUTHORS.COD_LIBRO = LIBRO.COD_LIBRO) WHERE $(\sigma(COD_AUTORE="COD_AUTORE")(LIBRO \bowtie BOOK_AUTHORS.COD_LIBRO))$ BOOK_AUTHORS(BOOK_AUTHORS.COD_LIBRO)))

3- Ricerca degli autori: Gli utenti possono cercare gli autori inserendo uno o più parametri, come il nome o il cognome, utilizzando una ricerca libera o una selezione guidata.

SELECT * FROM AUTORE WHERE COD_AUTORE LIKE '%\$COD_AUTORE' AND NOME LIKE '%\$COD_AUTORE%' AND NOME LIKE '%\$COD_AUTORE%' AND DATA_NASCITA LIKE '%\$DATA_NASCITA%' AND LUOGO_NASCITA LIKE '%\$LUOGO%' π (*) σ (COD_AUTORE = "%\$COD_AUTORE%" AND NOME = "%\$COD_AUTORE%" AND NOME = "%\$NOME%" AND COGNOME = "%\$COGNOME%" AND DATA_NASCITA = "%\$DATA_NASCITA%" AND LUOGO_NASCITA = "%\$LUOGO%")(AUTORE)

4- Consultazione degli utenti: Gli utenti possono consultare l'elenco degli utenti della biblioteca, visualizzando le informazioni principali come il nome, il cognome e altre informazioni di contatto.

SELECT * FROM UTENTE $\pi(*)$ (UTENTE)

5- Ricerca di un utente e il suo storico dei prestiti: Gli utenti possono cercare un utente specifico e visualizzare il suo storico dei prestiti, inclusi quelli in corso.

SELECT PRESTITO.COD_LIBRO,
DATA_PRESTITO.TITOLO,ISBN,LINGUA,ANNO_PUB
FROM (PRESTITO INNER JOIN LIBRO ON
PRESTITO.COD_LIBRO = LIBRO.COD_LIBRO) WHERE
MATRICOLA="\$MATRICOLA"

π(PRESTITO.COD_LIBRO, DATA_PRESTITO, TITOLO, ISBN,
LINGUA, ANNO_PUB)(σ(MATRICOLA = "MATRICOLA")(PRESTITO × LIBRO(PRESTITO.COD_LIBRO = LIBRO.COD_LIBRO))

6- Consultazione dello storico dei prestiti: Gli utenti possono consultare lo storico completo dei prestiti, inclusi i dettagli sintetici sull'autore.

SELECT COD_PRESTITO, DATA_PRESTITO,
PRESTITO.COD_LIBRO, PRESTITO.MATRICOLA, NOME,
COGNOME, TITOLO FROM ((PRESTITO INNER JOIN
UTENTE ON
PRESTITO.MATRICOLA=UTENTE.MATRICOLA) INNER
JOIN LIBRO ON PRESTITO.COD_LIBRO =
LIBRO.COD_LIBRO)

π(COD_PRESTITO, DATA_PRESTITO,
PRESTITO.MATRICOLA, NOME,
COGNOME, TITOLO)((PRESTITO MATRICOLA, NOME,
UTENTE(PRESTITO.MATRICOLA=UTENTE.MATRICOLA)) M LIBRO (PRESTITO.COD_LIBRO)

7- Ricerca dei prestiti in un range di date: Gli utenti possono cercare i prestiti effettuati in un determinato intervallo di date. Se nessuna data viene specificata, vengono mostrati i prestiti futuri in scadenza, inclusi i dettagli sintetici sull'autore.

l d.	

8- Calcolo di statistiche relative a libri e autori: Gli utenti possono ottenere statistiche come il numero di libri pubblicati in un determinato anno, il numero di prestiti effettuati in una determinata succursale e il numero di libri pubblicati per autore.

```
a.
SELECT COUNT(*) FROM LIBRO WHERE
                                                          \pi(COUNT(*)) (\sigma(ANNO_PUB\ LIKE
ANNO PUBLIKE ".$ANNO."
                                                          '$ANNO')(LIBRO))
                                                     b.
                                                          \pi(COUNT(*)) (\sigma(COD\_SUC\ LIKE
b.
SELECT COUNT(*) FROM (PRESTITO INNER JOIN
                                                          '$SUCCURSALE') (PRESTITO ⋈
LIBRO ON LIBRO.COD_LIBRO=
                                                          LIBRO(LIBRO.COD_LIBRO= PRESTITO.COD_LIBRO))
PRESTITO.COD LIBRO) WHERE COD SUC LIKE
                                                     c.
"".$SUCCURSALE.""
                                                          \pi(COUNT(*), NOME, COGNOME)
                                                          ((LIBRO ⋈
c.
SELECT COUNT(*), NOME, COGNOME FROM
                                                          BOOK\_AUTHORS (\texttt{BOOK\_AUTHORS.COD\_LIBRO=LIBRO.C}
((LIBRO INNER JOIN BOOK AUTHORS ON
                                                          OD_LIBRO) ►
BOOK AUTHORS.COD LIBRO=LIBRO.COD LIBRO)
                                                          AUTORE({\tt AUTORE.COD\_AUTORE=BOOK\_AUTHORS.COD\_AUTORE})
INNER JOIN AUTORE ON
AUTORE.COD AUTORE=BOOK AUTHORS.COD A
UTORE) GROUP BY AUTORE.COD AUTORE
```

Query Aggiuntive:

Query 1)

Inserita la lingua utilizzata per la scrittura del libro, viene visualizzato il numero totale dei libri scritti in quella lingua presi in prestito, affiancato dal nome e cognome del suo autore.

In questa query si vanno a visualizzare in modo immediato i libri presi in di una determinata lingua, in modo da verificare la loro disponibilità.

Query:

SELECT COUNT(LIBRO.COD_LIBRO),AUTORE.COD_AUTORE,AUTORE.NOME, AUTORE.COGNOME FROM (((PRESTITO INNER JOIN LIBRO ON LIBRO.COD_LIBRO=PRESTITO.COD_LIBRO) INNER JOIN BOOK_AUTHORS.ON BOOK_AUTHORS.COD_LIBRO.COD_LIBRO) INNER JOIN AUTORE ON BOOK_AUTHORS.COD_AUTORE=AUTORE.COD_AUTORE) WHERE LINGUA='\$LINGUA' GROUP BY AUTORE.COD_AUTORE

Query 2)

Si visualizzano per ogni utente il numero di prestiti suddivisi per dipartimento.

Dalla visualizzazione della tabella è possibile raccogliere diverse informazioni, per esempio:

- Qual è l'utente che usufruisce maggiormente dei prestiti;
- Qual è il dipartimento presso il quale viene effettuato il maggior numero di prestiti;
- Qual è il dipartimento che viene meno utilizzato.

Query:

SELECT UTENTE.MATRICOLA, UTENTE.NOME, UTENTE.COGNOME,
CONTEGGIO.DIPARTIMENTO, CONTEGGIO.CONTEGGIO FROM UTENTE JOIN (SELECT PRESTITO.MATRICOLA,
SUCCURSALE.DIPARTIMENTO, COUNT(*) AS CONTEGGIO FROM PRESTITO JOIN LIBRO ON LIBRO.COD_LIBRO
= PRESTITO.COD_LIBRO JOIN SUCCURSALE ON LIBRO.COD_SUC = SUCCURSALE.COD_SUC GROUP BY
PRESTITO.MATRICOLA, SUCCURSALE.DIPARTIMENTO) AS CONTEGGIO ON CONTEGGIO.MATRICOLA =
UTENTE.MATRICOLA ORDER BY CONTEGGIO DESC