음성인식

경북대학교 인공지능학과 김준우 박사과정

kaen2891@gmail.com

14, Feb. 2022.

Introduction of ASR

- Speech Recognition (SR)
 - Automatic Speech Recognition (ASR)
 - STT (Speech-to-Text)
- 주어진 입력 파형을 완벽한 문자로 변환

- ~ 2015
 - HMM (Hidden Markov Model) & GMM (Gaussian Mixture Model)-based machine learning approach
- 2016 ~
 - Deep Learning-based End-to-End ASR
- Model Input
 - Mel-spectrogram

- Output
 - Text

- Dataset
 - Short-time Fourier Transform (STFT)

- Dataset
 - Spectrogram

- Dataset
 - Waveform, Spectrogram, Mel-spectrogram

/usr/local/lib/python3.7/dist-packages/librosa/core/spectrum.py:1642: UserWarning: amplitude_to_db was called on complex input so phase "

- LM (Language Model)
- AM (Acoustic Model)

• GMM-HMM

• GMM-HMM

Connectionist Temporal Classification (CTC)

First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." Proceedings of the 23rd international conference on Machine learning. 2006.

- End-to-End vs Cascade
 - Pipeline (top) vs end-to-end (bottom) ASR

Cascade

Speech Recognition Architecture

End-to-End ASR

Preprocessing

- · Data augmentation
 - · additive Gaussian noise
 - time stretch (resampling)
- Windowing 20-25 ms, stride 10 ms
- FFT, log
- Normalization

spectrogram

DNN

training

CTC Loss

- · 2-3 convolutional layers
 - ch=32, ks=[11, 41], s=[2, 2]
 - ch=32, ks=[11, 21], s=[1, 2]
 - ch=64, ks=[11, 21], s=[1, 2]
- 3-7 bi-/uni- directional GRUs/LSTMs
- 1 row conv layer (for unidirectional)
- 1-2 fully connected layers
- BN/dropout for regularization

inference

Decoder

- greedy (argmax)
- beam search
- beam search with language model (width=2000-8000)

• End-to-End vs Cascade

• End-to-End vs Cascade

LSTM-based ASR

Seq2seq with Attention

- Listen, attend and spell
- First end-to-end ASR model
 - Hierarchical encoder reduces time resolution (pyramidal BiLSTM)

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence \mathbf{x} into high level features \mathbf{h} , the speller is an attention-based decoder generating the \mathbf{y} characters from \mathbf{h} .

Chan, William, et al. "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition." 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016.

Alignment between the Characters and Audio

Figure 2: Alignments between character outputs and audio signal produced by the Listen, Attend and Spell (LAS) model for the utterance "how much would a woodchuck chuck". The content based attention mechanism was able to identify the start position in the audio sequence for the first character correctly. The alignment produced is generally monotonic without a need for any location based priors.

Chan, William, et al. "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition." 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016.

• CTC + Attention

Fig. 1: Our proposed Joint CTC-attention based end-to-end framework: the shared encoder is trained by both CTC and attention model objectives simultaneously. The shared encoder transforms our input sequence \boldsymbol{x} into high level features \boldsymbol{h} , the location-based attention decoder generates the character sequence \boldsymbol{y} .

Kim, Suyoun, Takaaki Hori, and Shinji Watanabe. "Joint CTC-attention based end-to-end speech recognition using multi-task learning." 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017.

• CTC + Attention

Fig. 1: Our proposed Joint CTC-attention based end-to-end framework: the shared encoder is trained by both CTC and attention model objectives simultaneously. The shared encoder transforms our input sequence \boldsymbol{x} into high level features \boldsymbol{h} , the location-based attention decoder generates the character sequence \boldsymbol{y} .

Kim, Suyoun, Takaaki Hori, and Shinji Watanabe. "Joint CTC-attention based end-to-end speech recognition using multi-task learning." 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017.

- ASR with Transformer
 - Adopt Transformer-based End-to-End ASR model

Dong, Linhao, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

- Covolutional Transformer
 - Adopt the advantages of CNN and Transformer

Figure 1: Conformer encoder model architecture. Conformer comprises of two macaron-like feed-forward layers with half-step residual connections sandwiching the multi-headed self-attention and convolution modules. This is followed by a post layernorm.

Gulati, Anmol, et al. "Conformer: Convolution-augmented Transformer for Speech Recognition." Proc. Interspeech 2020 (2020): 5036-5040.

- Multi-Head Self Attention Module
 - Sinusoidal positional encoding -> relative sinusoidal positional encoding in [Ref]

Figure 3: *Multi-Headed self-attention module.* We use multi-headed self-attention with relative positional embedding in a pre-norm residual unit.

[Ref] Dai, Zihang, et al. "Transformer-XL: Attentive Language Models beyond a Fixed-Length Context." Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.

Conformer block

- It contains two Feed Forward modules sandwiching [9] the MHSA module and the Conv module
- For input x_i to a Conformer block i, the output y_i of the block is
- $\bar{x}_i = x_i + \frac{1}{2} FFN(x_i)$
- $x_i' = \bar{x}_i + \text{MHSA}(\bar{x}_i)$
- $x_i^{\prime\prime} = x_i^{\prime} + \text{Conv}(x_i^{\prime})$
- $y_i = \text{Layernorm}(x_i'' + \frac{1}{2}\text{FFN}(x_i''))$

Figure 2: The Transformer and our Macaron architectures.

• Conv Module

Layernorm Pointwise Conv BatchNorm Swish Activation Dropout +

• FFN Module

Figure 2: **Convolution module.** The convolution module contains a pointwise convolution with an expansion factor of 2 projecting the number of channels with a GLU activation layer, followed by a 1-D Depthwise convolution. The 1-D depthwise conv is followed by a Batchnorm and then a swish activation layer.

Figure 4: *Feed forward module.* The first linear layer uses an expansion factor of 4 and the second linear layer projects it back to the model dimension. We use swish activation and a pre-norm residual units in feed forward module.

Conformer (2020)

- Swish activation
 - - 로 경계가 있고 + 로는 제한이 없음
 - Relu와 달리 smooth
 - 비 단조함수로써 값이 0이 되지 않음

Can Replace ReLU

Swish Activation Function

f(x) = x * sigmoid(x)

Self Gated Activation Function New Activation By Google Mind

Conformer (2020)

Depth-wise Conv

- H*W*C의 conv output을 C단위로 분리하여 각각 conv filter 적용 \rightarrow output \rightarrow 다시 합침
- 적은 params로 동일한 크기의 output 출력 가능

Pointwise Conv

- 1x1 Conv filter
- 기존의 matrix의 결과를 shuffle해 뽑아내는 것을 목적으로 함
- Channel 수를 줄이거나 늘리는 목적으로 사용

- Results on LibriSpeech
 - Achieved WER of 2.1%/4.3% without LM
 - 1.9%/3.9% with an external LM

Method	#Params (M)	WER Without LM		WER With LM	
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	-	-	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	-	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

CPC (2017) wav2vec (2018): Un- / Self-supervised speech feature learning

- CPC, wav2vec
 - Given a raw audio signal of length L, CNN-based g_{enc} encodes the audio signals into vector representations
 - An auto-regressive function g_{ar} , such as a RNN, summarizes the past representations and produces context vectors
 - The representations are learned to maximize mutual information between context vectors (c) and future latent representations (z) as follows:

$$\sum_{t,k} I(c_t, z_{t+k}) = \sum_{t,k} \sum_{c_t, z_{t+k}} p(c_t, z_{t+k}|k) \log \frac{p(z_{t+k}|c_t, k)}{p(z_{t+k})}$$

• CPC objective can be present as follows:

$$L_{NCE} = -\log \frac{\exp\left(\frac{sim(q, k_{+})}{\tau}\right)}{\exp\left(\frac{sim(q, k_{+})}{\tau}\right) + \exp\left(\frac{sim(q, k_{-})}{\tau}\right)}$$

• Where q is the original sample, k_{\perp} represents a positive sample, k_{-} represents a negative sample, and au is a hyperparameter

Figure 1: Illustration of pre-training from audio data X which is encoded with two convolutional neural networks that are stacked on top of each other. The model is optimized to solve a next time step prediction task.

Schneider, Steffen, et al. "wav2vec: Unsupervised Pre-Training for Speech Recognition." Proc. Interspeech 2019 (2019): 3465-3469

- Using contrastive learning method to get powerful representation for self-supervised learning
 - Adapting the masking method (BERT) to the speech input in the latent space
 - Using CNN + transformer architecture for representation learning
 - Recording LibriSpeech clean 4.8% and noisy 8.2% Word Error Rate (WER) with just 10 minutes of data (40 utterances)

- Feature encoder: two 2D-convolution layers both with stride=(2,2)
 - Given a log-Mel spectrogram as input, resulting in a 4x reduction in the acoustic input's sequence length
- Contrastive module (wav2vec 2.0)
 - Discretizes the feature encoder output into a finite set of representative speech units

$$L_c = L_w + \alpha \cdot L_d$$

- Masked prediction module (BERT)
 - Extracts high-level contextualized speech representations using Context Vectors produced by the contrastive module
 - Predicts masked position with its corresponding token ID (Cross-entropy loss)

$$L_m = -\sum_{i=1}^{N} (\text{token} - \text{ID})_i \log(\text{Conformer}_{M}((\text{Context Vectors})_i))$$

Chung, Yu-An, et al. "W2v-bert: Combining contrastive learning and masked language modeling for self-supervised speech pre-training." 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2021.

Data preprocessing

Wav and spectrogram

Pre-processing

Wav – Spectrogram – Mel Fbank

Speech pre-processing

- Read waveform
 - 16000Hz -> 1 seconds (16000)

Speech pre-processing

- FFT: Fast Fourier Transform
 - STFT: Short-time Fourier Transform
 - We use librosa, soundfile, torchaudio, etc

- Mel scale: 사람의 귀를 모방하여 만든 scale
 - MFCC, Mel-spectrogram

2 2.5 3 Time

1.5

- Augmentation
 - Noise injection
 - 단순하게 numpy library를 사용하여 데이터에 임의의 값 추가

- Augmentation
 - Shifting time
 - 임의의 초로 오디오를 왼쪽 / 오른쪽으로 이동함
 - n초를 사용하여 오디오를 왼쪽 (빨리 감기)으로 이동하면 처음 n초는 0(무음)으로 표시됨
 - n초를 사용하여 오디오를 오른쪽 (뒤로 앞으로)으로 이동하면 마지막 n초가 0(무음)으로 표시됨

- Augmentation
 - Changing speed
 - 고정 비율로 시계열을 늘릴 수 있음

- Augmentation
 - Time stretching

Additive Gaussian Noise

- Augmentation
 - SpecAugment

- Augmentation
 - SpecAugment
 - 임의의 주파수 축에 0 값으로 Masking

- Augmentation
 - SpecAugment
 - 임의의 시간 축에 0 값으로 Masking

- Augmentation
 - SpecAugment
 - 주파수 + 시간축 0값 Masking
 - 각 1번 / 2번의 조합

Pre-trained wav2vec 2.0을 활용 한 음성인식 실습

- Using contrastive learning method to get powerful representation for self-supervised learning
 - Adapting the masking method (BERT) to the speech input in the latent space
 - Using CNN + transformer architecture for representation learning
 - Recording LibriSpeech clean 4.8% and noisy 8.2% Word Error Rate (WER) with just 10 minutes of data (40 utterances)

wav2vec 2.0 실습

- 목표
 - 영어 기반으로 학습된 공개된 wav2vec 2.0 모델을 활용하여 음성인식 진행

wav2vec 2.0 실습

- https://colab.research.google.com/drive/15LN8JMXgCZCHR4PEhu_BsuiRcnSS-1xc?usp=sharing
- 혹은 kaen2891 tistory 블로그 검색

Presentation finished

