STATS 310B: Theory of Probability II

Winter 2016/17

Lecture 15: February 28

Lecturer: Sourav Chatterjee Scribes: Kenneth Tay

15.1 Time Homogeneous Markov Chains on Countable State Spaces

Let $\{X_n\}_{n\geq 0}$ be a time-homogeneous Markov chain taking values on a countable state space S. Recall the following definitions:

Definition 15.1 For $x \in S$, the **first hitting time** of x is $T_x := \inf\{n \geq 1 : X_n = x\}$. (Note: Time 0 doesn't count.)

Definition 15.2 Let $\rho_{xy} := P(T_y < \infty \mid X_0 = x)$. In particular, ρ_{xx} is the probability of ever returning to x given that the chain starts at x.

We say that a state x is **recurrent** if $\rho_{xx} = 1$, and is **transient** otherwise.

Definition 15.3 Let $N(x) = \sum_{n=1}^{\infty} 1_{\{X_n = x\}}$, i.e. the **number of visits** to x (except time θ).

Theorem 15.4 The following are equivalent:

- (a) x is recurrent.
- (b) $\mathbb{E}_x N(x) = \infty$, where \mathbb{E}_x means $\mathbb{E}[\cdot \mid X_0 = x]$.
- (c) $P_x(N(x) = \infty) = 1$.

Proof: $(a) \Rightarrow (c)$: x is recurrent implies that the chain returns to x a.s. By the strong Markov property, the chain after that returns again a.s., and so on.

More formally, let T_x^k be the time of the k^{th} return. Let $g(y) := P_y(T_x^1 < \infty)$. By definition of recurrence, g(x) = 1. Hence,

$$P_x\left(T_x^2 < \infty \mid \mathcal{F}_{T_x^1}\right) = g(X_{T_x^1}) = g(x) = 1,$$

so $P_x(T_x^2 < \infty) = 1$. Similarly, $P(T_x^k < \infty) = 1$ for all k, and so $P_x(N(x) = \infty) = 1$.

- $(c) \Rightarrow (b)$: Trivial.
- $(b) \Rightarrow (a)$: Note that we can write N(x) as

$$N(x) = \sum_{k=1}^{\infty} 1_{\{T_x^k < \infty\}},$$

$$\Rightarrow \qquad \mathbb{E}_x N(x) = \sum_{k=1}^{\infty} P_x(T_x^k < \infty).$$

Note that $1 \le T_x^1 \le T_x^2 \le \dots$, so

$$P_x(T_x^k < \infty) = \mathbb{E}_x \left[P(T_x^k < \infty) \mid \mathcal{F}_{T_x^{k-1}} \right]$$
 (tower property)
$$= \mathbb{E}_x \left[g(X_{T_x^{k-1}}); T_x^{k-1} < \infty \right]$$

$$= \mathbb{E}_x \left[g(x); T_x^{k-1} < \infty \right]$$

$$= \rho_{xx} P(T_x^{k-1} < \infty),$$

$$\Rightarrow P_x(T_x^k < \infty) = \rho_{xx}^k.$$

This implies that

$$\mathbb{E}_x N(x) = \sum_{k=1}^{\infty} \rho_{xx}^k.$$

Since $\mathbb{E}_x N(x) = \infty$, we must have $\rho_{xx} = 1$, i.e. x is recurrent.

15.2 Recurrence/Transience of Simple Random Walk (Pólya)

Theorem 15.5 Let S_n be a simple symmetric random walk on \mathbb{Z}^d . Then 0 (or any other state) is recurrent if d = 1 or 2, and transient if $d \geq 3$.

Proof: Let $p_n = P(S_n = 0 \mid S_0 = 0)$. By Theorem 15.4, 0 is recurrent if and only if $\mathbb{E}_0 N(0) = \sum_{n=1}^{\infty} p_n = \infty$.

Case 1: d = 1. Note that $p_n = 0$ if n is odd. Suppose that n is even. Then, since there must be exactly n/2 + 1's and n/2 - 1's, $p_n = \binom{n}{n/2} 2^{-n}$.

We can use Stirling's approximation, $n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$, to approximate p_n :

$$p_n = \binom{n}{n/2} 2^{-n} = \frac{n!}{((n/2)!)^2} 2^{-n}$$

$$\sim \frac{\sqrt{2\pi} n^{n+1/2} e^{-n}}{(\sqrt{2\pi} (n/2)^{n/2+1/2} e^{-n/2})^2} 2^{-n}$$

$$= \frac{2}{\sqrt{2\pi n}}$$

$$= \sqrt{\frac{2}{\pi n}}.$$

This implies that $\sum_{n=1}^{\infty} p_n = \infty$.

Case 2: d = 2.

If we rotate the lattice by 45° , the random walk remains the same, but the possible moves from (0,0) are (1,1), (1,-1), (-1,1) or (-1,-1). Viewing the random walk in this way, the coordinates of S_n are performing independent simple random walks on \mathbb{Z} !

Therefore
$$p_n \sim \left(\sqrt{\frac{2}{\pi n}}\right)^2 = \frac{2}{\pi n}$$
, and hence $\sum_{n=1}^{\infty} p_n = \infty$.

Case 3: $d \ge 3$.

We will show that $p_n \leq Cn^{-d/2}$, where C is a constant that does not depend on n. This will imply that $\sum_{n=1}^{\infty} p_n < \infty$.

We can write $S_n = X_1 + \dots + X_n$, where $X_i \stackrel{iid}{\sim} \text{Unif}\{(1, 0, \dots, 0), (-1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\}.$

Let's compute the characteristic function of S_n . Letting $t = (t_1, \ldots, r_d) \in \mathbb{R}^d$,

$$\mathbb{E}\left[e^{it \cdot X_1}\right] = \frac{1}{2d} \sum_{j=1}^{d} (e^{it_j} + e^{-it_j})$$
$$= \frac{1}{d} \sum_{j=1}^{d} \cos t_j,$$
$$\mathbb{E}\left[e^{it \cdot S_n}\right] = \left(\frac{1}{d} \sum_{j=1}^{d} \cos t_j\right)^d.$$

Note that for $x \in \mathbb{Z}$,

$$\frac{1}{2\pi} \int_{-\pi/2}^{3\pi/2} e^{itx} dt = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } x \neq 0. \end{cases}$$

Thus, if X is an integer-valued random variable,

$$P(X=0) = \frac{1}{2\pi} \int_{-\pi/2}^{3\pi/2} \mathbb{E}[e^{itX}]dt.$$

This generalizes to d-dimensions: for $x \in \mathbb{Z}^d$,

$$\frac{1}{(2\pi)^d} \int_{[-\pi/2, 3\pi/2]^d} e^{it \cdot x} dt = \prod_{j=1}^d \left(\int_{-\pi/2}^{3\pi/2} e^{it_j x_j} dt_j \right)$$
$$= 1_{\{x_1 = x_2 = \dots = x_d = 0\}},$$

so if X is a \mathbb{Z}^d -valued random variable, then

$$P(X=0) = \frac{1}{(2\pi)^d} \int_{[-\pi/2.3\pi/2]^d} \mathbb{E}[e^{it \cdot X}] dt.$$

Using this identity for S_n , we get

$$P(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi/2, 3\pi/2]^d} \left(\frac{1}{d} \sum_{j=1}^d \cos t_j \right)^n dt$$

$$\leq \frac{1}{(2\pi)^d} \int_{[-\pi/2, 3\pi/2]^d} \left(\frac{1}{d} \sum_{j=1}^d |\cos t_j| \right)^n dt$$

Note that the graph of $y = |\cos x|$ is the same on the intervals $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, so

$$\frac{1}{(2\pi)^d} \int_{[-\pi/2, 3\pi/2]^d} \left(\frac{1}{d} \sum_{j=1}^d |\cos t_j| \right)^n dt = \frac{2^d}{(2\pi)^d} \int_{[-\pi/2, \pi/2]^d} \left(\frac{1}{d} \sum_{j=1}^d |\cos t_j| \right)^n dt.$$

Look at the graph $y=|\cos x|$ on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. It is an easy fact that there is some c>0 such that $|\cos x|\leq 1-cx^2$ for all x in this interval. With this bound, we get

$$P(S_{n} = 0) \leq \frac{2^{d}}{(2\pi)^{d}} \int_{[-\pi/2, \pi/2]^{d}} \left(\frac{1}{d} \sum_{j=1}^{d} (1 - ct_{j}^{2}) \right)^{n} dt$$

$$= \frac{1}{\pi^{d}} \int_{[-\pi/2, \pi/2]^{d}} \left(1 - \frac{c \sum_{j=1}^{d} t_{j}^{2}}{d} \right)^{n} dt$$

$$\leq \frac{1}{\pi^{d}} \int_{[-\pi/2, \pi/2]^{d}} \exp\left(-cn \sum_{j=1}^{d} t_{j}^{2} \right) dt \qquad (\text{since } 1 - x \leq e^{-x})$$

$$\leq \frac{1}{\pi^{d}} \int_{\mathbb{R}^{d}} \exp\left(-cn \sum_{j=1}^{d} t_{j}^{2} \right) dt$$

$$= \frac{1}{\pi^{d}} \left(\int_{\mathbb{R}} \exp\left(-cnt^{2}/d \right) dt \right)^{d}$$

$$\sim Constant \cdot n^{-d/2},$$

as required.