DERWENT-ACC-NO:

1999-271989

DERWENT-WEEK:

199923

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Numerical-function minimum point

search procedure -

involves determining small point of

numerical function

repetitively from initial value using

recurrence formula

involving predetermined variable and

absolute value of

Hessian which is symmetrical matrix

PATENT-ASSIGNEE: HITACHI LTD[HITA]

PRIORITY-DATA: 1997JP-0245070 (September 10, 1997)

PATENT-FAMILY:

JP 11085728 A

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

March 30, 1999

N/A

800

G06F 017/11

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 11085728A

N/A

1997JP-

0245070

September 10, 1997

INT-CL (IPC): G06F017/11

ABSTRACTED-PUB-NO: JP 11085728A

BASIC-ABSTRACT:

NOVELTY - The extremely small point of a numerical function is repetitively

determined from an initial value using a recurrence formula involving a

predetermined variable and the absolute value of a Hessian which is a

symmetrical matrix.

USE - None given.

ADVANTAGE - Does not form unstable immobility point of upper recurrence formula based on large point and saddle point. Prevents simultaneous duplication search of small point through repulsion in interactive potential. DESCRIPTION OF DRAWING(S) - The figure shows the diagram explaining the effect of a numerical-function point search procedure.

CHOSEN-DRAWING: Dwg.5/6

TITLE-TERMS: NUMERIC FUNCTION MINIMUM POINT SEARCH PROCEDURE DETERMINE POINT

NUMERIC FUNCTION REPEAT INITIAL VALUE

RECURRENCE FORMULA

PREDETERMINED VARIABLE ABSOLUTE VALUE HESSIAN

SYMMETRICAL MATRIX

DERWENT-CLASS: T01

EPI-CODES: T01-J04A; T01-J04C;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1999-203554

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-85728

(43)公開日 平成11年(1999) 3月30日

(51) Int.Cl.⁶

識別記号

G06F 17/11

FΙ

G06F 15/32

審査請求 未請求 請求項の数2 OL (全 8 頁)

(21)出願番号

特願平9-245070

(22)出願日

平成9年(1997)9月10日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 牧本 伸生

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(72)発明者 田口 順一

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(72)発明者 野本 安栄

茨城県日立市大みか町五丁目2番1号 株

式会社日立製作所大みか工場内

(74)代理人 弁理士 小川 勝男

(54)【発明の名称】 極小値・最小値探索方法

(57)【要約】

【課題】(1)関数の極小点のみを無駄なく探索すること及び(2)関数の相異なる複数の極小点を(特に最小点を)無駄なく探索する、ことが本発明の課題である。 【解決手段】極小点探索対象関数530の極小点(最小点)550を探索するために、▽fの零点を求めるNewton法において、(1) Hessian Hfをその(対称行列としての)絶対値Hfで置き換えることにより、極小点(≠鞍点、極大点)のみを効率的に探索する。

1

【特許請求の範囲】

【請求項1】滑らかな実数値関数 f (x)の極小点を探索する方法において、初期値 x 0 から、

 $xk+1=xk-|Hf(xk)|^{2}-1\nabla f(xk)$ $k=0, 1, \cdots$

∇f:関数fのgradient

Hf:関数fのHessian

|A| : Aの対称行列としての絶対値

- : ベキ乗記号

なる漸化式を反復的に用いることにより極小点を見つけ 10 ることを特徴とする実数値関数極小点探索方法。

【請求項2】実数値関数の極小点を探索する方法において、

前記実数値関数を探索空間内の所定の集合の所定範囲内 の近傍で大きい値をとるように補正した関数を作り、 作られた関数の極小点を探索し、探索の進行に応じて補 正を小さくすることを特徴とする極小点探索方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、最適制御の分野に 20 k) 属する。その中でも特に、滑らかな実数値多変数関数の (2 極大(小)値を求めるものに関する。 探索

[0002]

【従来の技術】滑らかな実数値多変数関数の極小点を探索するための従来技術として、Newton法や最急降下法が良く知られている(例えば名取著数値解析とその応用コロナ社を参照)。以下図2の番号をステップ番号として、その典型的な手順を説明する。

【0003】ステップ210:解の候補の初期値x0を何らかの方法で与える。

ステップ220:解の候補を更新する。従来から例えば次のような漸化式がよく用いられる。 $xk+1=xk-\epsilon \nabla f(xk)$ 、 $xk+1=x(Hf(xk))^2-1$ ・ $\nabla f(xk)$ 、 $U(\xi)$ (世間数 ξ (世間数 ξ ののではです。 という。 はべき乗記号(以下同様)。ここで、前者の漸化式は最急降下、後者の漸化式は ξ (以下の表)。

【0004】ステップ230:収束判定を行ない、更新を繰り返すかどうか決める。

ステップ240:探索結果を得る。

微分を用いた上記の探索方法は、大域的な最小点だけでなく単なる極小点をも(後者は更に極大点、鞍点をも) 安定な不動点として持つ。

【0005】そこで大域的な最小点を探索するために、ステップ220に雑音を加えたSA(Simulated Annealing)などの確率的アルゴリズムが提案されている(例えば麻生著ニューラルネットワーク情報処理産業図書を参照)。

[0006]

【発明が解決しようとする課題】最急降下は収束が遅い 50 偏微分を数値微分で計算する手順の例を示す。

2 数は1)との問題

(解の近くでの収束の次数は1)との問題がある。また、Newton法は収束は速い(解の近くでの収束の次数は2)が、極小点だけでなく(最小2乗推定には不要な)極大・鞍点にも収束することがあり、無駄が多い。また、大域的な最小点を探索するためのSAなどの確率的アルゴリズムも探索が冗長であり、無駄が多いとの問題がある。

【0007】そこで、本発明は次の2点を解決することを課題とする。

- (1)関数の極小点のみを無駄なく探索する。
- (2)関数の相異なる複数の極小点を(特に最小点を)無駄なく探索する。

[0008]

【課題を解決するための手段】

(1)上記の課題(1)を解決するための手段として、 従来のNewton法におけるHessianをその (対称行列としての)絶対値で置き換える。すなわち、 図2のステップ220において次の漸化式を用いる。 $xk+1=xk-|Hf(xk)|^{-1}\cdot \nabla f(xk)$

(2)上記の課題(2)を解決するための手段として、探索空間内の「除外集合」L上で大きい値を取るように fを補正した関数gを作り、(fの代わりに)gの極小点を探索し、必要なら探索の進行と共にg→fとする。【0009】以下の (2-a)、(2-b) は、(2)においてそれぞれしを既発見の零点の集合とした 場合及びしを並列探索中の他の探索点の集合とした場合の例である。

(2-a) 上記の課題(2) を解決するためのより 具体的な手段として、滑らかな非負実数値関数 f(x) の零点(または0に近い極小点;以下同様)を順次探索 する方法において、既に発見した零点の集合しの近傍で 急激に大きい値を取る「ボテンシャル関数」pをfに掛けた関数 g = f・pを作り、gの零点を探索する。 【0010】(2-b)上記の課題(2)を解決するためのより具体的な手段として、滑らかな実数値関数 f(x)の最小点を並列に探索する方法において、他の探索点の近傍で急激に大きい値を取る「相互ボテンシャル 関数」uをfに掛けた関数 g = f・uを作り、gの極小 40 点を探索する。

[0011]

【発明の実施の形態】衛星画像の標定を例に、本発明の 1実施形態について説明する。

(1)では標定の流れを、(2)では(外部)標定の方程式を説明する。(3)では、外部標定の方程式の1個の解を探索する手順の例を示す。(4)では、(3)を用いて外部標定の方程式の複数の解を探索する手順の例を示す。(5)では、並列的に最小点探索を行なう手順の例を示す。(6)では、((3)、(4)で必要な)個微分を数値微分で計算する手順の例を示す。

3

【0012】(1) 標定の流れ

標定とは、幾つかの標定点(予め位置の分かっている基 準点)の緯度・経度とその写真上での座標とから、撮影 時の条件(位置、方向など)を推定することを指す。そ の大まかな流れは例えば次の通りである。

- 0) 各標定点の緯度・経度を予め測定しておく。
- 1) 各標定点の緯度・経度を地球楕円体モデルによる3 次元の地上座標に変換する。
- 2) 各標定点の写真座標と地上座標との、井線条件(後 述)からのずれ量を定める。
- 3)2)のずれ量に関する最小2乗法により撮影時の条 件をパラメター推定する。

本発明は、3)の最小2乗方程式の数値解法として利用 できる。

【0013】(2)標定の方程式

ここでは最も簡単な外部標定の場合を例に、基本となる 方程式を説明する。外部標定とは、(1)で述べた流れ において、2)での共線条件は中心投影、3)での推定 すべき未知パラメターはカメラの方向(320)U∈S O(3)と 位置(330) XO∈R 3としたもので 20 ステップ230:ステップ220でのθkの更新量が十 ある。

【0014】次に、カメラ(310)による撮影のモデ ルを図3に示す。図3の記号を用いると、共線条件(中 心投影の方程式)は次のように書ける。

A i U(XI-XO)=0

但しiは、標定点のインデックス、 $Ai = (c \mid x)$ i)、cは2×2のスカラー行列、 | は行列を横に並べ ること、をそれぞれ表す。

【0015】観測誤差のため、標定点の座標の観測値X i, xiは一般にこの方程式を満たさない。そこで例え 30 ば次のような2乗誤差関数 e を考える。

 $e(U, X0) = \Sigma i \mid Ai \quad U(Xi - X0) \mid$

eを最小にするU, XOの組がいわゆる最小2乗推定量 である。

【0016】eの定義式の右辺は次のようにX0につい て、「平方完成」できる。

 $e(U, X0) = (B^1/2 X0 B^-1/2)$ C)' $(B^1/2 \times 0 B^-1/2 C) + D -$ C' B -1 C

 $B = \sum i (Ai U)' (Ai U)$

 $C = \Sigma i$ (Ai U)' (Ai U Xi)

 $D = \Sigma i$ (Ai U Xi)' (Ai U Xi)

したがって改めて、

e(U) = e(U; Xi, xi) = D - C'B' - 1

とすると、最小2乗の方程式は

 $\nabla e (U) = 0$

 $X0 = B^{-} - 1$ C

定する式とに分離する。

【0017】3次元トーラスT 3から3次直交群SO (3)の全射φ(回転角の3つ組θ→ x, y, z 軸周りの回転の合成U)が存在するので、ここではぁに よる eの引き戻し $e \cdot \phi$ をあらためて $e = e (\theta)$ と書 き、 T^3 上の方程式 $\nabla e(\theta) = 0$ を外部標定の基本 方程式とする。但し方程式 $\nabla e(\theta) = 0$ は、eの大域 的最小点以外に、eの極大点・鞍点・単なる極小点など も (最小2乗推定には不要な)解として持つ。

4

10 【0018】(3)1個の解の探索

図2の番号をステップ番号として、▽e=0の解(のう ち、eの極小値)を探索する手順の例を説明する。 ステップ210:初期値 θ 0を0とする。(4)(5)

で複数解を探索するので、初期値の与え方を工夫する必 要はあまりない。

【0019】ステップ220: 更新の漸化式として次式 を用いる。

 $\theta \mathbf{k} + 1 = \theta \mathbf{k} - | He(\theta \mathbf{k}) | -1 \nabla e(\theta \mathbf{k})$ k) k = 1, 2, ...

分小さくなったら終了する。

【0020】(4)複数の極小点の探索

図4の番号をステップ番号として、▽e=0の解(のう ち、eの極小点)を複数探索する手順の例を説明する。 ステップ420: 既発見の極小点の集合480 Lでパラ メトライズされた「ポテンシャル関数」 $p(\theta; L)$ を 作り、e白身の代わりにpを掛けた関数 $g(\theta; L) =$ $e(\theta) \cdot p(\theta; L)$ を極小値探索の対象として氷 解手順200にかける。

【0021】ポテンシャル関数pは例えば次のように定

 $p(\theta; L) = \sum k wk \cdot sk \cdot | (\theta - \theta k) / s$ $k \mid ^{-} - 2$

但し、wk, skはそれぞれ重み・スケールを表す定 数、 $L=(\theta k)$ は既発見の極小点、kはそのインデッ クス。Lの初期値は ϕ (空集合)、 $P(\theta;\phi) \equiv 1$ 。 【0022】ステップ200:(3) で述べた方法で gの極小点を探索する。

ステップ440:求解手順200で得られた解の候補の 40 を初期値として、(例えばeを求解手順200にかけ て)解の候補を微修正する。得られた解の候補を、解の リスト480しに加える。

【0023】ステップ450:一定個数解の候補が得ら れるまで、ステップ420からの手順を繰り返す。

ステップ460:ステップ450で得られた解の候補の 中から、2乗誤差eを最小とするものを最小点として選 択・出力する。

【0024】最小2乗推定における2乗誤差関数eの最 小値は一般にはOではない。したがってeの最小点とg のように、方向Uに関する方程式と位置XO を陽に決 50 の最小点とは厳密には異なり、ステップ440が必要で

09/08/2003. EAST Version: 1.04.0000

5

ある。しかし、eの最小点とgの最小点とはかなり近い 場合が多く、その場合には上記の手順は期待通り機能す る。

【0025】(5)並列的な探索

図6の番号をステップ番号として、関数610 f(x) (ここでは2乗誤差関数 $e(\theta)$)の最小点を並列探索 する手順の例を説明する。

【0026】ステップ620:最小値の候補の初期値X $=\{x1, \dots xm\}$ を適当に与える。後述のように比 β i extstyle / lpha ${
m i}$ を大きくとっておけば、初期値 ${
m X}$ の与え方を工夫 ${
m i0}$ のように取ると良い。反復初期は比 ${
m eta}/lpha$ を大きくと する必要はあまりない。

ステップ630:適当なiを選び、最小値探索対象の関 数をh(xi)= α ·f(xi)+ β ·u (x1 …, xm) とする。但しuは、x1, …, xmの中に 近いものがある場合に大きい値を取る「相互ポテンシャ ル関数」であり、その形は例えば次の通り、u(x1, ..., xm) = Σi , j = 1, ...m 1/|xi-xi|^ 2

ステップ640:hを最小化する方向にxiを更新す δ . xi← xi-|Hh(xi)| -1. ∇ h(x*20

$$\partial$$
 f/x i = 1/ \triangle Σ k \cdot d k...) ∂ 2 f/x i x j = 1/ \triangle 2 Σ k \cdot d k...) (i = j)

 $1/\Delta^2$ Σk , 1 wk, 2n f ($\cdots x i + \Delta$

 $\Sigma \mathbf{k}$

· d k…)

 $x j + \triangle$

 $dk\cdots$) $(1 \neq j)$

但し△は対象のスケールに応じて選んだ適当な定数、∑ ※うに決める。 は k, l=1, …, 4の範囲でとり、各係数は次のよ※30 【0030】

数値微分を用いることにより、偏導関数を実装すること なく最急降下やNewton法とほぼ同等) の極小点探 索性能を実現でき、プログラミングの時間や労力を大幅 に減らすことができる。

[0031]

【発明の効果】本発明の手段(1)によれば、(通常の Newton法に比べて、収束のオーダーを落さずに) 極小点だけを無駄なく探索できる。これは次のように説 明できる(図1参照)。非線形連立方程式▽e (θ) = 0に関する通常のNewton法の漸化式は、 $\partial \leftarrow \theta$ – He(θ) -1∇e(θ)、である(Heは関数eの Hessian)。eの極大点・鞍点はこの漸化式の安 定な不動点であり、従ってこの漸化式は(初期値によっ ては) eの極大点・鞍点110 に収束140する。

【0032】ここでは、(1) Hessianが対称行★50 の(2-a)、(2-b)は、それぞれLを既発見の零

* i)

ステップ7650: 必要なら他のxiについてもステッ プ640の更新を行なう。iの選び方は、例えば1、 …、mの順あるいはランダムとすれば良い。 【0027】ステップ660: 収束判定を行なう。 ステップ670:得られた最小値の候補Xの中から、f を最小にするxiを選択する。ここで選択されるxi が、最小値探索結果680である。元の最小化対象関数 fと相互ポテンシャル関数uの重み α 、 β は、例えば次 る。このとき相互ポテンシャルの斥力により、解の候補 (x1,…xm)を探索空間内に万偏なく配置すること ができる。反復を進めるに従って比βαを→0とする。 【0028】このとき相互ポテンシャルロの効果は小さ くなり、hの極小点は元の最小化対象関数fの極小点に 収束する。

6

【0029】(6)数值微分

関数 f の x = (… x i …) ' における数値微分は、例え ば次のような線形結合により実装できる。

wk, 1 f $(\cdots x i + \triangle$

wk, 2d f $(\cdots x i + \Delta)$

★列であり、しかも(2)極大点・鞍点ではHessia nが正定値でないであることに着目し、上式におけるH essianをその絶対値で置き換えた。 θ k+1= θ $k-|He(\theta k)|^{-}-1\nabla e(\theta k)$, Hessi 40 anの絶対値をとることにより、極大点・鞍点110は 上の漸化式の不安定な不動点となるので、上の漸化式が それらに収束することはまずない。

【0033】一方極小点120の近くでは、|He|= He なので、極小点120への収束150のオーダー は通常のNewton法と同じである本発明の手段 (2)によれば、「除外集合」 しから離れた極小点を 選択的に探索できる。物理的なアナロジーで言えば、こ れはしの近傍での補正ポテンシャルがし近傍での運動を 妨げるためである。特に手段の項で述べたように、以下

点の集合とした場合及びしを並列探索中の他の探索点の 集合とした場合 の例である。

【0034】本発明の手段(2-a)によれば、非負実 数値関数の相異なる複数の零点を無駄なく探索できる。 これ(ポテンシャルpが、既発見の零点の近傍での探索 を妨げる)は、直観的には次のように説明できる(図5 参照)。零点を探索したい非負値関数510eに既発見 の零点の集合しの近くで急激に大きい値を取る正価のポ テンシャル関数520pを掛けるその結果できる非負値 関数530 $g=g(\theta;L)$ は、Lの近くに $\nabla g=0$ 10 【図4】本発明請求項3による、非負値関数の複数零点 の解を持たない。

【0035】一方eの零点でしに入っていないものがあ れば、それはgの零点であり、 また∇g=0の解であ る。したがって、や実施形態の(4)で述べた手順によ り▽g=0の解を順次探索すれば、eの複数の相異なる 零点を探索できる。

【0036】また、本発明の手段(2-6)によれば、 複数の極小点を並列的・協調的に探索できる。その理由 は手段(2-a) で複数の零点が探索できる理由と同 様である。すなわち、相互ポテンシャルによる斥力が1 20 L、550…2乗誤差関数eの最小点(≒0)

個の極小点の同時重複探索を妨げる。

【図面の簡単な説明】

【図1】 鞍点を持つ関数の極小点探索について、本発明 及び従来のNewton法による収束の軌跡を示す模式 図である。

R

【図2】非線形方程式の反復解法の典型的な氷解手順を 示す図である。

【図3】外部標定におけるカメラ撮影のモデルを示す図 である。

探索の手順を示す図である。

【図5】本発明の効果を説明する図である。

【図6】本発明のい1実施の形態5の処理手順を示す図 である。

【符号の説明】

510…最小2乗推定の対象である、2乗誤差関数e、 520…既発見のeの極小点の集合Lの近くで大きな値 をとる「ポテンシャル」関数P、530…極小点探索対 象関数 g 、540…2乗誤差関数 e の既発見の極小点 ∈

【図1】

【図2】

【図4】

【図5】

