RSI_BollingerBands

September 29, 2021

1 RSI & Bollinger Bands Strategy

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")

# fix_yahoo_finance is used to fetch data
import fix_yahoo_finance as yf
yf.pdr_override()

[2]: # input
symbol = 'AAPL'
symbol = 'AAPL'
start = '2018-08-01'
end = '2018-12-31'
```

```
[2]: # input
symbol = 'AAPL'
start = '2018-08-01'
end = '2018-12-31'

# Read data
df = yf.download(symbol,start,end)

# View Columns
df.head()
```

[********* 100%********* 1 of 1 downloaded

```
[2]:
                      Open
                                 High
                                              Low
                                                        Close
                                                                Adj Close \
    Date
    2018-08-01 199.130005
                            201.759995 197.309998
                                                   201.500000 199.243088
    2018-08-02 200.580002
                            208.380005
                                       200.350006
                                                   207.389999
                                                               205.067123
    2018-08-03 207.029999
                            208.740005
                                       205.479996
                                                   207.990005
                                                               205.660416
    2018-08-06 208.000000
                            209.250000
                                       207.070007
                                                   209.070007
                                                               206.728317
    2018-08-07 209.320007
                            209.500000 206.759995
                                                   207.110001 204.790268
                  Volume
```

Date 2018-08-01 67935700

```
2018-08-02 62404000
2018-08-03 33447400
2018-08-06 25425400
2018-08-07 25587400
```

```
[3]: # Simple Line Chart
plt.figure(figsize=(14,10))
plt.plot(df['Adj Close'])
plt.legend(loc='best')
plt.title('Stock '+ symbol +' Closing Price')
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
```


1.1 RSI

```
[4]: import talib as ta

[5]: rsi = ta.RSI(df['Adj Close'], timeperiod=14)
    rsi = rsi.dropna()
    rsi
```

[5]:	Date	
	2018-08-21	79.104871
	2018-08-22	79.114058
	2018-08-23	79.540524
	2018-08-24	80.203382
	2018-08-27	81.882790
	2018-08-28	83.383755
	2018-08-29	85.752712
	2018-08-30	87.000185
	2018-08-31	88.388786
	2018-09-04	88.752068
	2018-09-05	83.041064
	2018-09-06	70.653076
	2018-09-07	65.619678
	2018-09-10	58.246306
	2018-09-11	65.912718
	2018-09-12	59.943364
	2018-09-13	66.263664
	2018-09-14	61.254313
	2018-09-17	51.526255
	2018-09-18	52.021893
	2018-09-19	52.211924
	2018-09-20	54.680286
	2018-09-21	50.657256
	2018-09-24	55.331409
	2018-09-25	57.280716
	2018-09-26	54.068198
	2018-09-27	60.217641
	2018-09-28	61.193416
	2018-10-01	63.070254
	2018-10-02	65.460960
	2010-10-02	03.400900
	0040 44 45	
	2018-11-15	35.745552
	2018-11-16	38.000323
	2018-11-19	33.429692
	2018-11-20	29.070172
	2018-11-21	28.978513
	2018-11-23	26.925899
	2018-11-26	29.708364
	2018-11-27	29.511006
	2018-11-28	37.406645
	2018-11-29	36.493364
	2018-11-30	35.835839
	2018-12-03	42.956272
	2018-12-03	
		37.168867
	2018-12-06	35.906482
	2018-12-07	32.183810

```
2018-12-10
             33.506564
2018-12-11
             32.902595
2018-12-12
             33.527827
2018-12-13
             36.053619
2018-12-14
             32.162209
2018-12-17
             31.143065
2018-12-18
             34.246587
2018-12-19
             30.630826
2018-12-20
             28.124444
2018-12-21
             24.836210
2018-12-24
             22.985848
2018-12-26
             36.494822
2018-12-27
             35.827195
2018-12-28
             35.926208
2018-12-31
             37.874459
Length: 91, dtype: float64
```

1.2 Bollinger Bands

1.3 Combine RSI and Bollinger Bands

```
[12]: fig = plt.figure(figsize=(20,18))
     ax = plt.subplot(2,1,2)
     ax.xaxis_date()
     ax.xaxis.set_major_formatter(mdates.DateFormatter('%d-\%m-\%Y'))
     plt.plot(df[['20 Day MA', 'Upper Band', 'Lower Band']], label=('20 Day MA', u
      candlestick_ohlc(ax,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.
     plt.title('RSI & Bollinger Bands')
     plt.ylabel('Price')
     plt.plot(rsi, '-', label='RSI')
     plt.text(s='Overbought', x=rsi.index[0], y=80, fontsize=14)
     plt.text(s='OverSold', x=rsi.index[0], y=20, fontsize=14)
     ax.axhline(y=80,color='r')
     ax.axhline(y=20,color='r')
     plt.xlabel('Date')
     plt.legend(loc='best')
     plt.show()
```

