Package 'smidm'

October 14, 2022

Title Statistical Modelling for Infectious Disease Management

Version 1.0

Description Statistical models for specific coronavirus disease 2019 use cases at German local health authorities. All models of Statistical modelling for infectious disease management 'smidm' are part of the decision support toolkit in the 'EsteR' project. More information is published in Sonja Jäckle, Rieke Alpers, Lisa Kühne, Jakob Schumacher, Benjamin Geisler, Max Westphal ``'EsteR' – A Digital Toolkit for COVID-19 Decision Support in Local Health Authorities" (2022) <doi:10.3233/SHTI220799> and Sonja Jäckle, Elias Röger, Volker Dicken, Benjamin Geisler, Jakob Schumacher, Max Westphal ``A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions" (2021) <doi:10.3390/ijerph18179166>.

```
License BSD 3 clause + file LICENSE
```

Encoding UTF-8

RoxygenNote 7.2.1

Imports dplyr, extraDistr, stats, methods

Suggests testthat (>= 3.0.0), covr, xml2, knitr, rmarkdown, tidyr, hdrcde, ggplot2, scales

Config/testthat/edition 3

VignetteBuilder knitr

URL https://gitlab.cc-asp.fraunhofer.de/ester/smidm

BugReports https://gitlab.cc-asp.fraunhofer.de/ester/smidm/-/issues

NeedsCompilation no

Author Max Westphal [aut] (https://orcid.org/0000-0002-8488-758X>>https://orcid.org/0000-0002-2908-299X>>https://orcid.org/0000-0002-2908-299X>>https://orcid.org/0000-0001-8317-1435>>https://orcid.org/000

Maintainer Sonja Jäckle <sonja.jaeckle@mevis.fraunhofer.de>

Repository CRAN

Date/Publication 2022-08-27 08:40:02 UTC

R topics documented:

```
Index
16
```

Description

Calculates vector of probabilities that zero positive tests are observed given different numbers of infected.

Usage

```
calculate_likelihood_negative_tests(
  test_infos,
  test_types,
  negative_persons,
  subgroup_size,
  info
)
```

Arguments

test_infos Matrix with column number of test days and a column for each test with the testday relative to event date, the rows are the groups.

test_types Matrix with test day (columns) of each group (rows) and whe informations about test types.

```
negative_persons

Number of people without the infectious persons.

subgroup_size Array with the number of persons per test group.

info Dataframe, this is a placeholder
```

Value

Vector of probabilities calculated.

Examples

```
{\it calculate\_likelihood\_negative\_tests\_k} \\ {\it Likelihood~K}
```

Description

Calculates the probability that zero positive tests are observed given K of the group are infected.

```
calculate_likelihood_negative_tests_k(
  infected_group_size,
  information_data,
  test_infos,
  test_types,
  info,
  combination_infected,
  number_group_peoples,
  number_subgroups
)
```

Arguments

```
infected_group_size
                  Number of infected Persons in the group.
information_data
                  Matrix with columns person ID, tested (T/F), result(F/NA), testNumbers, group-
                  Number
test_infos
                  Matrix with column number of test days and a column for each test with the
                  testday relative to event date, the rows are the groups.
                  Matrix with test day (columns) of each group (rows) and whe informations about
test_types
                  test types.
info
                  Dataframe with the day specific information about sensitivity and specificity.
combination_infected
                  Matrix of all possible combinations how K infected are distributed among sub-
                  groups.
number_group_peoples
                  Vector with the number of people per group.
number_subgroups
                  Number of subgroups including group of untested (if existent).
```

Value

The probability.

```
calculate_posterior_no_infections

Negative analysis probability
```

Description

Calculates the probability that nobody is infected given the negative tests.

```
calculate_posterior_no_infections(
  negative_persons,
  infected_persons,
  event,
  test_infos,
  test_types,
  subgroup_size,
  distribution = NULL,
  info
)
```

Arguments

negative_persons

Number of people without the infectious persons.

infected_persons

Number of infectious persons.

event Characters, the name of the event, currently: "school" or "day_care_center".

test_infos Matrix with testing information; each row gives the number of tests (1. column)

and each test date (following columns) for each test group

test_types Matrix with test day (columns) of each group (rows) and the informations about

test types.

distribution Vector, this is a placeholder info Dataframe, this is a placeholder

Details

The probability is based on Bayes' theorem.

Value

The probability p.

See Also

calculate_prior_infections, generate_data_extended, get_test_sensitivities and calculate_likelihood_neg

Examples

calculate_prior_infections

A priori probability of further Infections

Description

Calculates the a priori probability of how many people are infected in one event.

Usage

```
calculate_prior_infections(
  negative_persons,
  infected_persons,
  event,
  p_one = NULL,
  infect_average = NULL
)
```

Arguments

negative_persons

Number of people without the infectious persons.

infected_persons

Number of infected people.

event Characters, event type given as characters, currently: "school" or "day_care_center".

p_one Number, this is a placeholder infect_average Number, this is a placeholder

Details

The probability is beta-binomial distributed. The values for p1 and infection_average for the events "school" and "day_care_center" are from Schoeps et al. (2021).

Value

The a priori probability y.

References

Schoeps A et al. (2021) "Surveillance of SARS-CoV-2 transmission in educational institutions, August to December 2020, Germany". *Epidemiology and Infection* 149, E213: 1-9.

Examples

```
generate_data_extended
```

Generate data extended

Description

Creates a dataframe suitable as input for calculate_likelihood_negative_tests.

Usage

```
generate_data_extended(
   M = 20,
   d = matrix(data = 1, nrow = 1, ncol = 2),
   S = c(12)
)
```

Arguments

- M The size of the group without infected, default is twenty.
- d A matrix with the test dates, default is matrix(data = 1, nrow = 1, ncol = 2).
- S A vector with the sizes of the subgroups, default is c(12).

Value

The dataframe.

```
get_expected_total_infections
```

Expected number of total symptomatic infections

Description

Calculates the expected total number of symptomatic infections after a group event, based on the observed infections so far.

```
get_expected_total_infections(
  group_size,
  last_day_reported_infection,
  total_reported_infections,
  meanlog = 1.69,
  sdlog = 0.55
)
```

Arguments

group_size integer, size of the group.

last_day_reported_infection

Number of days the last infection was reported after the event (0 = event day).

total_reported_infections

Number of reported symptomatic infections so far.

meanlog Number, the parameter of mean from the log-normal distribution.

Salog Number, the parameter of sd from the log-normal distribution.

Details

meanlog and sdlog are the log-normal distribution parameters derived from the incubation period characteristics described in Xin et al. (2021). Note that the function often clearly overestimates the number of symptomatic infections if last_day_reported_infections is less than 3.

Value

The total number of expected symptomatic infections.

Examples

```
get_expected_total_infections(25, 5, 4)
```

```
get_incubation_day_distribution
```

Vector of day-specific probabilities of disease outbreak

Description

Creates a vector containing the probabilities of the disease outbreak for the days 1 to maxi after the infection.

Usage

```
get_incubation_day_distribution(max_days, meanlog = 1.69, sdlog = 0.55)
```

Arguments

max_days Number, the maximum length of the incubation time, defined as number.

meanlog Number, the parameter of mean from the log-normal distribution.

Sdlog Number, the parameter of sd from the log-normal distribution.

Details

meanlog and sdlog are the log-normal distribution parameters derived from the incubation period characteristics described in Xin et al. (2021).

get_infection_density 9

Value

Vector of day-specific probabilities of disease outbreak.

References

Xin H, Wong JY, Murphy C et al. (2021) "The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis". *Clinical Infectious Diseases*, 73(12): 2344-2352.

Examples

```
get_incubation_day_distribution(10)
get_incubation_day_distribution(10, meanlog = 1.69, sdlog = 0.55)
```

get_infection_density Dataframe with dates and probability of infection

Description

Creates a dataframe containing probability of infection occurring at a particular date/time, given the symptom_begin_date.

Usage

```
get_infection_density(
   symptom_begin_date,
   max_incubation_days = 14,
   meanlog = 1.69,
   sdlog = 0.55
)
```

Arguments

```
symptom_begin_date
Date, when the person gets symptoms.

max_incubation_days
Number of incubation days.

meanlog
Number, the parameter of mean from the log-normal distribution.

sdlog
Number, the parameter of sd from the log-normal distribution.
```

Details

meanlog and sdlog are the log-normal distribution parameters derived from the incubation period characteristics described in Xin et al. (2021).

Value

Dataframe with dates and probability of infection.

References

Xin H, Wong JY, Murphy C et al. (2021) "The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis". *Clinical Infectious Diseases*, 73(12): 2344-2352.

Examples

Description

Creates a dataframe containing infectiousness at a particular date/time, given the symptom_begin_date.

Usage

```
get_infectiousness_density(
   symptom_begin_date,
   infectiousness_shift = 12.272481,
   max_infectious_days = 24,
   shape_infectiousness_gamma = 20.516508,
   rate_infectiousness_gamma = 1.592124
)
```

Arguments

```
symptom_begin_date
Date, when the person gets symptoms.

infectiousness_shift
Number of days with the largest contagions before the first symptoms.

max_infectious_days
Number of the infectious days.

shape_infectiousness_gamma
Number, the shape parameter for the gamma distribution.

rate_infectiousness_gamma
Number, the rate parameter for the gamma distribution.
```

Details

infectiousness_shift, shape_infectiousness_gamma and rate_infectiousness_gamma are the distribution parameters for the infectious period from He et al. (2020).

Value

Dataframe with dates and infectiousness probability.

References

He, X et al. (2020) "Temporal dynamics in viral shedding and transmissibility of COVID-19". *Nature Medicine*, 26: 672–675.

Examples

```
get_misc_infection_density
```

Dataframe with dates and probability of infection

Description

Creates a dataframe containing probability of infection occurring at a particular dates/times, given the symptom_begin_dates and number_of_persons per date.

Usage

```
get_misc_infection_density(
   symptom_begin_dates,
   number_of_persons,
   max_incubation_days = 17,
   meanlog = 1.69,
   sdlog = 0.55
)
```

Arguments

```
symptom_begin_dates
Dates, when the persons get symptoms.

number_of_persons
Number of persons who get symptoms on each date.

max_incubation_days
Number of incubation days.
```

meanlog Number, the parameter of mean from the log-normal distribution.

Sdlog Number, the parameter of sd from the log-normal distribution.

Details

meanlog and sdlog are the log-normal distribution parameters derived from the incubation period characteristics described in Xin et al. (2021).

Value

Dataframe with dates and probability of infection.

References

Xin H, Wong JY, Murphy C et al. (2021) "The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis". *Clinical Infectious Diseases*, 73(12): 2344-2352.

Examples

```
symptom_begin_dates <- c(as.Date("2022-03-22"), as.Date("2022-03-26"))
number_of_persons <- c(3,1)
get_misc_infection_density(symptom_begin_dates, number_of_persons)</pre>
```

```
get_serial_interval_density
```

Dataframe with dates and contact symptom begin probability

Description

Creates a dataframe containing probability that a contact will start showing symptoms (serial interval) at a particular date/time, given the symptom_begin_date.

```
get_serial_interval_density(
   symptom_begin_date,
   max_serial_interval_days = 20,
   shape_serial = 2.154631545,
   rate_serial = 0.377343528
)
```

get_test_sensitivities 13

Arguments

```
symptom_begin_date
Date, when the index person got symptoms.

max_serial_interval_days
Number of serial interval days.

shape_serial
Number, the shape parameter for the gamma distribution.
```

Details

rate_serial

shape_serial and rate_serial are the parameters of the gamma distribution for the serial interval derived from Najafi et al. (2020).

Number, the rate parameter for the gamma distribution.

Value

Dataframe with dates and contact symptom begin probability.

References

Najafi F et al. (2020) "Serial interval and time-varying reproduction number estimation for COVID-19 in western Iran.". *New Microbes and New Infections*, 36: 100715.

Examples

```
get_test_sensitivities
```

Generate info

Description

Creates a dataframe with day specific test sensitivity and specificity of PCR and Antigen tests.

Usage

```
get_test_sensitivities(df)
```

Arguments

df

Dataframe, this is a placeholder

Value

The dataframe.

Examples

```
 \begin{array}{l} {\rm get\_test\_sensitivities()} \\ {\rm df} <- \; {\rm data.frame(} \\ {\rm "PCR"} = c(0, \; 0, \; 0, \; 0.04, \; 0.34, \; 0.64, \; 0.76, \; 0.79, \; 0.80, \; 0.79, \\ {\rm 0.77, \; 0.74, \; 0.71, \; 0.67, \; 0.62, \; 0.58, \; 0.54, \; 0.49, \; 0.44, } \\ {\rm 0.40, \; 0.37, \; 0.33), } \\ {\rm "Antigen"} = c(0, \; 0, \; 0, \; 0.03, \; 0.13, \; 0.40, \; 0.64, \; 0.69, \; 0.70, \; 0.69, \\ {\rm 0.62, \; 0.52, \; 0.40, \; 0.29, \; 0.21, \; 0.17, \; 0.13, \; 0.11, } \\ {\rm 0.08, \; 0.07, \; 0.05, \; 0.04)} \\ {\rm )} \\ {\rm get\_test\_sensitivities(df)} \end{array}
```

predict_future_infections

Prediction of future infections per day

Description

Predicts how many people are expected to develop symptoms on each day after the last reported infection after a group event.

Usage

```
predict_future_infections(
  last_day_reported_infection,
  total_reported_infections,
  total_expected_infections,
  meanlog = 1.69,
  sdlog = 0.55
)
```

Arguments

last_day_reported_infection

Number of days the last infection was reported after the event (0 = event day).

total_reported_infections

Number of reported symptomatic infections so far.

total_expected_infections

Number of expected symptomatic infections in total.

meanlog Number, the parameter of mean from the log-normal distribution.

sdlog Number, the parameter of sd from the log-normal distribution.

Details

meanlog and sdlog are the log-normal distribution parameters derived from the incubation period characteristics described in Xin et al. (2021).

p_onePrimaryMore 15

Value

Vector with expected future infections per day after the event.

References

Xin H, Wong JY, Murphy C et al. (2021) "The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis". *Clinical Infectious Diseases*, 73(12): 2344-2352.

Examples

p_onePrimaryMore

One more primary a priori probability

Description

Calculates the a priori probability y for one primary case more by using the current prior distribution and the prior distribution of one single primary case.

Usage

```
p_onePrimaryMore(yCurrent, y1)
```

Arguments

yCurrent The current prior distribution.

y1 The prior distribution of one single primary case.

Value

The a priori probability y.

Index

```
calculate_likelihood_negative_tests, 2, 5, 7
calculate_likelihood_negative_tests_k, 3
calculate_posterior_no_infections, 4
calculate_prior_infections, 5, 6
generate_data_extended, 5, 7
get_expected_total_infections, 7
get_incubation_day_distribution, 8
get_infection_density, 9
get_infectiousness_density, 10
get_misc_infection_density, 11
get_serial_interval_density, 12
get_test_sensitivities, 5, 13
p_onePrimaryMore, 15
predict_future_infections, 14
```