- 101. Let $X_i, i=1,2,...$, be independent Bernoulli(p) random variables and let $Y_n=n^{-1}\sum_{i=1}^n X_i$.
 - (a) Show that $\sqrt{n}(Y_n p) \stackrel{\mathcal{D}}{\to} N(0, p(1 p))$
 - (b) Show that for $p \neq 0.5$, the estimate of variance $Y_n(1-Y_n)$ satisfies

$$\sqrt{n}\{Y_n(1-Y_n)-p(1-p)\} \stackrel{\mathcal{D}}{\to} N(0,(1-2p)^2p(1-p)).$$

(c) Show that for $p=0.5, n\{Y_n(1-Y_n)-0.25\} \xrightarrow{\mathcal{D}} -0.25\chi_1^2$. This may seem strange, but it's not. Examine values on the left-hand side, and briefly explain why it's not.