Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

Звіт до лабораторної роботи №1 на тему: "Методи розв'язування нелінійних рівнянь'

Виконав студент групи ОМ-3 Скибицький Нікіта

1 Постановка задачі

Нехай маємо рівняння f(x) = 0, \bar{x} – його розв'язок, тобто $f(\bar{x}) = 0$. Процес розв'язування цього рівняння розбивається на етапи:

- 1. Перевірка існування та визначення кількості коренів.
- 2. Відділення коренів, тобто розбиття \mathbb{R} на інтервали, на кожному з яких рівно один корінь.
- 3. Обчислення на кожному з цих інтервалів кореня із заданою точністю ε

Будемо вважати, що ставиться задача, у якій у заданої функції f на заданому проміжку [a,b] є рівно один корінь.

Мета лабораторної роботи: реалізувати пункт 3 трьома різними методами, проаналізувати кожен із них, і зробити відповідні висновки.

Були використані методи простої ітерації, січних, та хорд для знаходження найменшого за модулем додатного кореня рівняння $x^4 - 4x^3 + 5.5x^2 - 3x + 0.5 = 0$ з точністю $\varepsilon = 10^{-6}$.

2 Теоретична частина

2.1 Метод простої ітерації

Метод полягає у заміні рівняння f(x) = 0 еквівалентним йому рівнянням $x = \varphi(x)$. Далі запускається ітераційний процес вигляду $x_{n+1} = \varphi(x_n)$, де початкове наближення x_0 задається.

Для збіжності методу важливо правильно перейти до функції φ , простим вибором є $\varphi(x) = x + f(x)$, а більш розумним – $\varphi(x) = x + \tau(x) \cdot f(x)$, де $\tau(x)$ – знакостала на [a,b] функція така, що виконуються достатні умова збіжності, тобто $\max_{x \in [a,b]} |\varphi'(x)| \le q < 1$ і $m = |x_1 - x_0| \le \delta(1-q)$, де $\delta = \max_{x \in [a,b]} |x - x_0|$.

Переваги методу: простота, при q < 1/2 метод збігається швидше ніж метод ділення навпіл, метод узагальнюється на системи.

 $Hedoni\kappa u$ методу: при q>1/2 збігається повільніше ніж метод ділення навпіл, виникають складнощі при зведенні f(x)=0 до $\varphi(x)=x$.

2.2 Модифікований метод Ньютона

Модифікований метод Ньютона полягає у проведенні наступного ітераційного процесу: $x_{n+1} = x_n - f(x_n)/f'(x_0)$, де x_0 – задане. Враховуючи, що модифікований метод Ньютона є просто частинним випадком методу простої ітерації (і методу релаксації), то для збіжності достатньо $\max_{x \in [a,b]} |\varphi'(x)| \le q < 1$.

Переваги методу: немає необхідності обчислювати похідну на кожній ітерації.

 $He\partial oniku$ методу: має лише лінійну збіжність, тобто $|x_{n+1} - \bar{x}| = O(|x_k - \bar{x}|).$

2.3 Метод січних

Метод полягає у проведенні ітераційного процесу $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$, де x_0, x_1 – задані.

Переваги методу: степінь збіжності $\varphi = \left(1 + \sqrt{5}\right)/2$, узагальнюється на системи і рівняння в \mathbb{C} .

He doniku методу: збіжність методу залежить від початкового наближення x_0 , і необхідно $f \in C^{(2)}([a,b])$.

3 Практична частина

Попередній графічний аналіз показує, що найменший за модулем додатній корінь приблизно дорівнює 0.29, тому шукатимемо корінь на проміжку [a,b] = [0,0.4].

3.1 Метод простої ітерації

Візьмемо
$$\tau(x) = 0.6$$
, тоді $\varphi'(x) = x + 0.6 \cdot (x^4 - 4x^3 + 5.5x^2 - 3x + 0.5)$.

Покажемо, що φ опукла на [0,0.4], тоді її максимум на одному з країв інтервалу.

Справді,
$$\varphi''(x) = 6.6 - 14.4x + 7.2x^2$$
, її корені $x_{1,2} = 1 \pm \sqrt{1/3}/2$, $x_{1,2} > 1/2 > 0.4$.

Далі підставляємо краї: $|\varphi'(0)| = |-0.8| = 0.8$, $|\varphi'(0.4)| = 0.8416 \Rightarrow q = \max_{x \in [a,b]} |\varphi'(x)| = 0.8416 < 1$, отже метод гарантовано зійдеться.

Візьмемо
$$x_0 = \frac{a+b}{2} = 0.2.$$

Знайдемо
$$m=|x_1-x_0|=168/3125=0.05376\leq 0.16832=\delta(1-q),$$
 де $\delta=\max_{x\in[a,b]}|x-x_0|=0.2.$

Таким чином метод гарантовано зійдеться.

Кількість ітерацій
$$n \geq \left\lceil \frac{\ln \left(\frac{\varepsilon(1-q)}{(b-a)} \right)}{\ln q} \right\rceil + 1 > 86.$$

Справді, метод успішно відпрацьовує, причому за значно меншу кількість ітерацій:

n	x_n	$f(x_n)$	$ x_n - x_{n-1} $
1	0.2	0.0896	0.2
2	0.25376	0.0316717363	0.05376
3	0.2727630418	0.0152704811	0.019003
4	0.2819253304	0.0080599509	0.0091623
5	0.286761301	0.0044305753	0.004836
6	0.2894196461	0.0024864697	0.0026583
7	0.290911528	0.0014111068	0.0014919
8	0.2917581921	0.00080581	0.0008467
9	0.292241678	0.0004617709	0.0004835
10	0.2925187406	0.0002651468	0.0002771
11	0.2926778287	0.0001524198	0.0001591
12	0.2927692806	0.000087676	9.15e-05
13	0.2928218862	0.0000504525	5.26e-05
14	0.2928521577	0.0000290388	3.03e-05
15	0.292869581	0.0000167159	1.74e-05
16	0.2928796105	0.000009623	1e-05
17	0.2928853843	0.00000554	5.8e-06
18	0.2928887083	0.0000031895	3.3e-06
19	0.292890622	0.0000018363	1.9e-06
20	0.2928917237	0.0000010572	1.1e-06
21	0.292892358	0.0000006087	6e-07 *

Модифікований метод Ньютона 3.2

Будемо шукати корінь на [0.2, 0.3].

Перевіримо збіжність звичайного методу Ньютона:

Знайдемо x_0 для якого $f''(x_0) \cdot f(x_0) > 0$:

 $f''(x)=11-24x+12x^2>0$ на [0,0.4], тому достатньо просто вибрати x_0 так, що $f(x_0)>0$, наприклад $x_0=0.2$ для якого $f(x_0)=0.0896>0$, тоді $|x_0-\bar{x}|\leq 0.1$.

$$m_1 = \min_{x \in [a,b]} f'(x)$$
 $M_2 = \max_{x \in [a,b]} f''(x).$

Умова збіжності $q = \frac{M_2}{2m_1}|x_0 - \bar{x}| \le 1$:

$$\begin{cases} f'(0.2) = -1.248 \\ f'(0.3) = -0.672 \end{cases} \Rightarrow m_1 = 0.672$$
$$\begin{cases} f''(0.2) = 6.68 \\ f''(0.3) = 4.88 \end{cases} \Rightarrow M_2 = 6.68$$

$$\begin{cases} f''(0.2) = 6.68 \\ f''(0.3) = 4.88 \end{cases} \Rightarrow M_2 = 6.68$$

 $q \leq \frac{6.68}{1.344} \cdot 0.1 \approx 0.497 < 1$, отже метод гарантовано зійдеться.

Кількість ітерацій
$$n \geq \left[\frac{\ln\left(\frac{|x_0 - \bar{x}|}{\varepsilon}\right)}{\ln(1/q)} \right] + 1 > 17.$$

Але це оцінка на кількість ітерацій методу Ньютона а не модифікованого, тому може бути більше ітерацій.

Справді, метод успішно відпрацьовує:

n	x_n	$f(x_n)$	$ x_n - x_{n-1} $
1	0.2	0.0896	0.2
2	0.2444444444	0.0404538333	0.0444444
3	0.26451083	0.0221485969	0.0200664
4	0.2754972372	0.0130723485	0.0109864
5	0.281981537	0.008017075	0.0064843
6	0.2859582608	0.0050249356	0.0039767
7	0.2884507884	0.003190859	0.0024925
8	0.2900335557	0.0020425975	0.0015828
9	0.291046749	0.0013141928	0.0010132
10	0.2916986303	0.0008482741	0.0006519
11	0.2921194012	0.00054867	0.0004208
12	0.2923915589	0.0003553566	0.0002722
13	0.2925678271	0.0002303515	0.0001763
14	0.2926820887	0.000149403	0.0001143
15	0.2927561974	0.0000969357	7.41e-05
16	0.2928042806	0.0000629086	4.81e-05
17	0.2928354852	0.0000408321	3.12e-05
18	0.2928557393	0.0000265056	2.03e-05
19	0.2928688869	0.0000172068	1.31e-05
20	0.292877422	0.0000111707	8.5e-06
21	0.292882963	0.0000072522	5.5e-06
22	0.2928865603	0.0000047084	3.6e-06
23	0.2928888958	0.0000030569	2.3e-06
24	0.2928904121	0.0000019846	1.5e-06
25	0.2928913966	0.0000012885	1e-06 *

3.3 Метод січних

Почнемо з $x_0=0.05,\ x_1=0.1.$ Апріорних умов збіжності немає, тому просто перевіримо чи метод зійдеться перевіряючи на кожній ітерації умови $|x_n-x_{n-1}|<\varepsilon$ та $|f(x_n)|<\varepsilon$.

$\lceil n \rceil$	x_n	$f(x_n)$	$x_n - x_{n-1}$
1	0.1	0.2511	0.05
$\frac{1}{2}$	0.2119420451	0.2311 0.0751672237	0.03 0.1119420451
_			$\begin{bmatrix} 0.1119420431 \\ 0.0478272038 \end{bmatrix}$
3	0.2597692489	0.026269176	
4	0.2854631426	0.0053930356	0.0256938937
5	0.292100772	0.0005619159	0.0066376294
6	0.2928728061	0.000014435	0.0007720341
7	0.2928931617	0.0000000404	0.0000203556
8	0.2928932188	0.0000000000	0.0000000571 *

4 Висновки

Як бачимо, ми або заощаджуємо на аналізі (дослідженні) функції але виграємо у простоті методу, або ж заощаджуємо на кількості ітерацій/швидкодії, але додатково аналізуємо функцію (обчислюємо похідні, скінченні різниці, тощо).