Determinant maximization with linear matrix inequality constraints

S. Boyd, L. Vandenberghe, S.-P. Wu Information Systems Laboratory Stanford University

SCCM Seminar 5 February 1996

MAXDET problem definition

minimize
$$c^T x + \log \det G(x)^{-1}$$

subject to $G(x) \triangleq G_0 + x_1 G_1 + \dots + x_m G_m > 0$
 $F(x) \triangleq F_0 + x_1 F_1 + \dots + x_m F_m \geq 0$

- $-x \in \mathbf{R}^m$ is variable
- $G_i = G_i^T \in \mathbf{R}^{l \times l}, \ F_i = F_i^T \in \mathbf{R}^{n \times n}$
- $F(x) \ge 0$, G(x) > 0 called *linear matrix inequalities*

- looks specialized, but includes wide variety of convex optimization problems
- convex problem
 - tractable, in theory and practice
 - useful duality theory

Outline

- 1. examples of MAXDET probems
- 2. duality theory
- 3. interior-point methods

Special cases of MAXDET

semidefinite program (SDP)

minimize
$$c^T x$$

subject to $F(x) = F_0 + x_1 F_1 + \cdots + x_m F_m \ge 0$

LMI can represent many convex constraints linear inequalities, convex quadratic inequalities, matrix norm constraints, . . .

linear program

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, i = 1, ..., n$

$$\mathsf{SDP} \; \mathsf{with} \; F(x) = \mathbf{diag} \, (b - Ax)$$

analytic center of LMI

minimize
$$\log \det F(x)^{-1}$$

subject to $F(x) \stackrel{\Delta}{=} F_0 + x_1 F_1 + \cdots + x_m F_m > 0$

- $\log \det F(x)^{-1}$ smooth, convex on $\{x \mid F(x) > 0\}$
- optimal point x_{ac} maximizes $\det F(x)$
- $x_{\rm ac}$ called analytic center of LMI F(x)>0

Minimum volume ellipsoid around points

find min vol ellipsoid containing points $x_1, \ldots, x_K \in \mathbf{R}^n$

ellipsoid $\mathcal{E} = \{x \mid ||Ax - b|| \le 1\}$

- center $A^{-1}b$
- $A = A^T > 0$, volume proportional to $\det A^{-1}$

minimize
$$\log \det A^{-1}$$

subject to $A = A^T > 0$
 $||Ax_i - b|| \le 1, \quad i = 1, \dots, K$

convex optimization problem in A, b (n+n(n+1)/2 vars)

express constraints as LMI

$$||Ax_i - b|| \le 1 \Longleftrightarrow \begin{bmatrix} I & Ax_i - b \\ (Ax_i - b)^T & 1 \end{bmatrix} \ge 0$$

Maximum volume ellipsoid in polytope

find max vol ellips. in $\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, L\}$

ellipsoid $\mathcal{E} = \{By + d \mid ||y|| \le 1\}$

- center d
- $B = B^T > 0$, volume proportional to det B

$$\mathcal{E} \subseteq \mathcal{P} \iff a_i^T (By + d) \le b_i \text{ for all } ||y|| \le 1$$

$$\iff \sup_{\|y\| \le 1} a_i^T By + a_i^T d \le b_i$$

$$\iff \|Ba_i\| + a_i^T d \le b_i, \quad i = 1, \dots, L$$

convex constraint in B and d

$\mathbf{maximum\ volume\ } \mathcal{E} \subseteq \mathcal{P}$

formulation as convex problem in variables B, d:

maximize
$$\log \det B$$

subject to $B = B^T > 0$
 $\|Ba_i\| + a_i^T d \le b_i, \ i = 1, \dots, L$

express constraints as LMI in B, d

$$||Ba_i|| + a_i^T d \le b_i \Longleftrightarrow \begin{bmatrix} (b_i - a_i^T d)I & Ba_i \\ (Ba_i)^T & b_i - a_i^T d \end{bmatrix} \ge 0$$

hence, formulation as MAXDET-problem

minimize $\log \det B^{-1}$

subject to B > 0

$$\begin{bmatrix} (b_i - a_i^T d)I & Ba_i \\ (Ba_i)^T & b_i - a_i^T d \end{bmatrix} \ge 0, \quad i = 1, \dots, L$$

Experiment design

estimate x from measurements

$$y_k = a_k^T x + w_k, \quad i = 1, \dots, N$$

- $a_k \in \{v_1, \ldots, v_m\}$, v_i given test vectors
- $w_k \text{ IID } N(0,1)$ measurement noise
- λ_i = fraction of a_k 's equal to v_i
- $-N\gg m$

LS estimator: $\widehat{x} = \left(\sum\limits_{k=1}^{N} a_k a_k^T\right)^{-1} \sum\limits_{k=1}^{N} y_k a_k$

error covariance

$$\mathbf{E}(\widehat{x} - x)(\widehat{x} - x)^T = \frac{1}{N} \left(\sum_{i=1}^m \lambda_i v_i v_i^T \right)^{-1} = \frac{1}{N} E(\lambda)$$

optimal experiment design: choose λ_i

$$\lambda_i \ge 0, \quad \sum_{i=1}^m \lambda_i = 1,$$

that make $E(\lambda)$ 'small'

- minimize $\lambda_{\max}(E(\lambda))$ (E-optimality)
- minimize $\operatorname{Tr} E(\lambda)$ (A-optimality)
- minimize $\det E(\lambda)$ (D-optimality)

all are MAXDET problems

D-optimal design

minimize
$$\log \det \left(\sum_{i=1}^{m} \lambda_i v_i v_i^T\right)^{-1}$$

subject to $\lambda_i \geq 0, \quad i = 1, \dots, m$

$$\sum_{i=1}^{m} \lambda_i = 1$$

$$\sum_{i=1}^{m} \lambda_i v_i v_i^T > 0$$

can add other convex constraints, e.g.,

– bounds on cost or time of measurements:

$$c_i^T \lambda \leq b_i$$

no more than 80% of the measurements is
 concentrated in less than 20% of the test vectors

$$\sum_{i=1}^{\lfloor m/5\rfloor} \lambda_{[i]} \le 0.8$$

 $(\lambda_{[i]} \text{ is } i \text{th largest component of } \lambda)$

Positive definite matrix completion

 $\mathsf{matrix}\ A = A^T$

- entries A_{ij} , $(i,j) \in \mathcal{N}$ are fixed
- entries A_{ij} , $(i,j) \notin \mathcal{N}$ are free

positive definite completion

choose free entries such that A > 0 (if possible)

maximum entropy completion

maximize
$$\log \det A$$
 subject to $A > 0$

property:
$$(A^{-1})_{ij} = 0$$
 for $i, j \not\in \mathcal{N}$

(since
$$\frac{\partial \log \det A^{-1}}{\partial A_{ij}} = -(A^{-1})_{ij}$$
)

Moment problem

there exists a probability distribution on **R** such that

$$\mu_i = \mathbf{E}t^i, \ i = 1, \dots, 2n$$

if and only if

$$H(\mu) = \begin{bmatrix} 1 & \mu_1 & \dots & \mu_{n-1} & \mu_n \\ \mu_1 & \mu_2 & \dots & \mu_n & \mu_{n+1} \\ \vdots & \vdots & & \vdots & \vdots \\ \mu_{n-1} & \mu_n & \dots & \mu_{2n-2} & \mu_{2n-1} \\ \mu_n & \mu_{n+1} & \dots & \mu_{2n-1} & \mu_{2n} \end{bmatrix} \ge 0$$

LMI in variables μ_i

hence, can solve

maximize/minimize
$$\mathbf{E}(c_0+c_1t+\cdots+c_{2n}t^{2n})$$
 subject to $\underline{\mu}_i \leq \mathbf{E}t^i \leq \overline{\mu}_i, \quad i=1,\ldots,2n$

over all probability distributions on **R** by solving SDP

maximize/minimize
$$c_0 + c_1\mu_1 + \cdots + c_{2n}\mu_{2n}$$

subject to $\underline{\mu}_i \leq \mu_i \leq \overline{\mu}_i, \quad i = 1, \dots, 2n$
 $H(\mu_1, \dots, \mu_{2n}) \geq 0$

Other applications

- maximizing products of positive concave functions
- minimum volume ellipsoid covering union or sum of ellipsoids
- maximum volume ellipsoid in intersection or sum of ellipsoids
- computing channel capacity in information theory
- maximum likelihood estimation

MAXDET duality theory

primal MAXDET problem

minimize
$$c^T x + \log \det G(x)^{-1}$$

subject to $G(x) = G_0 + x_1 G_1 + \dots + x_m G_m > 0$
 $F(x) = F_0 + x_1 F_1 + \dots + x_m F_m \ge 0$

optimal value p^{\star}

dual MAXDET problem

maximize
$$\log \det W - \operatorname{Tr} G_0 W - \operatorname{Tr} F_0 Z + l$$

subject to $\operatorname{Tr} F_i Z + \operatorname{Tr} G_i W = c_i, \quad i = 1, \dots, m$
 $W > 0, \quad Z \geq 0$

variables $W=W^T\in\mathbf{R}^{l\times l}$, $Z=Z^T\in\mathbf{R}^{n\times n}$ optimal value d^\star

properties

- $p^{\star} \geq d^{\star}$ (always)
- $p^{\star} = d^{\star}$ (usually)

definition

duality gap = primal objective - dual objective

Example: experiment design

primal problem

minimize
$$\log \det \left(\sum\limits_{i=1}^m \lambda_i v_i v_i^T\right)^{-1}$$
 subject to $\sum\limits_{i=1}^m \lambda_i = 1$ $\lambda_i \geq 0, \quad i=1,\ldots,m$ $\sum\limits_{i=1}^m \lambda_i v_i v_i^T > 0$

dual problem

maximize
$$\log \det W$$
 subject to $W = W^T > 0$
$$v_i^T W v_i \leq 1, \quad i = 1, \dots, m$$

interpretation: W determines smallest ellipsoid with center at the origin and containing v_i , i = 1, ..., m

Central path: general

general convex optimization problem

minimize $f_0(x)$ subject to $x \in C$

 f_0, C convex

φ is **barrier function** for C

- smooth, convex
- $\ \ \varphi(x) \to \infty \text{ as } x (\in \operatorname{int} C) \to \partial C$

central path

$$x^{\star}(t) = \operatorname*{argmin}_{x \in C} \left(t f_0(x) + \varphi(x) \right) \ \, \text{for} \, \, t > 0$$

Central path: MAXDET problem

$$f_0(x) = c^T x + \log \det G(x)^{-1}$$

 $C = \{x \mid F(x) \ge 0\}$

barrier function for LMI $F(x) \ge 0$

$$\varphi(x) = \begin{cases} \log \det F(x)^{-1} & \text{if } F(x) > 0 \\ +\infty & \text{otherwise} \end{cases}$$

MAXDET central path: $x^{\star}(t) = \operatorname*{argmin}_{F(x) > 0} \varphi(t,x)$, with G(x) > 0

$$\varphi(t,x) = t\left(c^T x + \log \det G(x)^{-1}\right) + \log \det F(x)^{-1}$$

example: SDP

Path-following for MAXDET

properties of MAXDET central path

- from $x^{\star}(t)$, get dual feasible $Z^{\star}(t)$, $W^{\star}(t)$
- corresponding duality gap is n/t
- $-x^{\star}(t) \rightarrow \text{optimal as } t \rightarrow \infty$

path-following algorithm

given strictly feasible $x, t \ge 1$

repeat

- 1. compute $x^*(t)$ using Newton's method
- 2. $x := x^*(t)$ 3. increase t

until n/t < tol

tradeoff: large increase in t means

- fast gap reduction (fewer outer iterations), but
- many Newton steps to compute $x^{\star}(t^+)$ (more Newton steps per outer iteration)

Complexity of Newton's method

(Nesterov & Nemirovsky, late 1980s)

for **self-concordant** functions

definition: along a line

$$|f'''(t)| \le Kf''(t)^{3/2}$$

Example: (K=2)

$$\varphi(t, x) = t(c^T x + \log \det G(x)^{-1}) + \log \det F(x)^{-1} \quad (t \ge 1)$$

complexity of Newton's method

- **theorem:** #Newton steps to minimize $\varphi(t, x)$, starting from $x^{(0)}$:

$$\#\mathrm{steps} \leq 10.7(\varphi(t,x^{(0)}) - \varphi^\star(t)) + 5$$

- empirically: #steps $\approx (\varphi(t, x^{(0)}) - \varphi^*(t)) + 3$

Path-following algorithm

idea: choose t^+ , starting point \hat{x} for Newton alg. s.t.

$$\varphi(t^+, \widehat{x}) - \varphi^*(t^+) = \gamma$$

(bounds # Newton steps required to compute $x^*(t^+)$)

in practice: use lower bound from duality

$$\varphi(t^{+}, \widehat{x}) - \varphi^{*}(t^{+}) \leq \varphi(t^{+}, \widehat{x}) + \log \det Z^{-1}$$

$$+ t \left(\log \det W^{-1} + \operatorname{Tr} G_{0}W + \operatorname{Tr} F_{0}Z - l \right)$$

$$= \varphi(t^{+}, \widehat{x}) + \text{function of } W, Z$$

two extreme choices

- fixed reduction: $\widehat{x} = x^*(t)$, $t^+ = (1 + \sqrt{2\gamma/n}) t$
- predictor step along tangent of central path

Total complexity

total number of Newton steps

- upper bound: $O\left(\sqrt{n}\log(1/\epsilon)\right)$
- practice, fixed-reduction method: $O\left(\sqrt{n}\log(1/\epsilon)
 ight)$
- practice, with predictor steps: $O(\log(1/\epsilon))$

one Newton step involves a least-squares problem

minimize
$$\left\| \tilde{F}(v) \right\|_F^2 + \left\| \tilde{G}(v) \right\|_F^2$$

Conclusion

MAXDET-problem

minimize
$$c^T x + \log \det G(x)^{-1}$$

subject to $G(x) > 0$, $F(x) \ge 0$

arises in many different areas

- includes SDP, LP, convex QCQP
- geometrical problems involving ellipsoids
- experiment design, max. likelihood estimation, channel capacity, . . .

convex, hence can be solved very efficiently

software/paper available on ftp soon (anonymous ftp to isl.stanford.edu in /pub/boyd/maxdet)