Name: Arshdeep Singh ID Number: 2020A7PS0144

Hardware runs

Run 1: Comparator

Diagram

Truth Table

A (A3A2A1A0)	B (B3B2B1Bo)	A>B	A=B	A <b< th=""></b<>	
0000	1111	0	0	1	
1111	0000		0	0	
0000	0000 0000		0 10		
1111	1111	0	-	0	
0101	1000	0	0	1	
1010	0011	1	0	0	
1001	1001 1001		1	0	

CS Scanned with CamScanner

Name : Arshdeep Singh ID Number : 2020A7PS0144

Q: Name the gates that can be used as one-bit comparators.

A: XNOR gate.

Run 2: Decoder

Diagram

Truth Table

C	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
0	0	0	0	•	1	-	1	1	1	1
0	0	1	1	0			1	•	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	. 1	1	•
1	0	0	1	1	1	1	0	1	. (1
1	0	1	1	1.	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	١	1	1	1	1	0

CS Scanned with CamScanner

Name: Arshdeep Singh ID Number: 2020A7PS0144

Q: Are the outputs of the decoder active low or active high?

A: Active low .

Q: What external gate would have been used if the IC were to be active high?

A: NAND gate.

Software runs

Run 3: Comparator

1. Write the Verilog code and testbench for 4-bit comparator using data flow modeling. (Hint: Use >, < and = = to compare the two numbers). Complete the truth table.

A: Verilog Code and testbench-

```
Summary
                                module ex5_cad (g,e,1,a,b);
OBJECTS
                                input [3:0] a , b ;
 All
                                output g,e,1;
                                assign l=a<b;
 Instances
                                assign g=a>b;
 Nets
                                assign e=(a==b);
                                endmodule
 Nets and Pins
                                module ex5_cad_tb ;
▼ GROUPS
                                reg [3:0] a, b;
                                initial begin
 Cells
                                #000 a=4'b0000 ; b=4'b1111;
 Types
                                #10 a=4'b1111; b=4'b0000;
                                #10 a=4'b0101; b=4'b1000;
                               #10 a=4'b1010 ; b=4'b0011;
#10 a=4'b1001 ; b=4'b1001;
                                #10 $stop;
                                ex5_cad u1(g,e,l,a,b);
                           \Box
                                                                           M:
mouse L:
```

Name : Arshdeep Singh ID Number : 2020A7PS0144

Truth Table

A (A3A2A1A0)	B (B3B2B1Bo)	A>B G	A=B E	A <b L</b
0000	1111	0	0	1
1111	0000	1	0	0
0101	1000	0	0	1
1010	0011		0	0
1001	1001	0	1	0

CS Scanned with CamScanner

Q: Paste the screenshot of waveform window where you get the waveforms for the above code

A:

Name: Arshdeep Singh ID Number: 2020A7PS0144

Run 4: Encoders and Decoders

1. Write the verilog code and testbench for 2:4 decoder using data flow modeling, with active high output. (Hint: part of code is written below; A is input and D is output.). Complete the truth table.

A: Verilog Code and testbench-

PLEASE CHECK LAST PAGE

Name : Arshdeep Singh ID Number : 2020A7PS0144

Truth Table

A1	A0	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

CS Scanned with CamScanner

Q: Paste the screenshot of waveform window where you get the waveforms for the above code.

A:

Name: Arshdeep Singh ID Number: 2020A7PS0144

2. Write the verilog code and testbench for 8-bit priority encoder using behavioral modeling. (Hint: Use **if**, **else** and **else if** statements). Complete the truth table

A: Verilog Code and testbench-

Name: Arshdeep Singh ID Number: 2020A7PS0144

Truth Table

D 7	D6	D5	D4	D3 -	D2	D 1	D0	Y2	Y1	Y0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0,	0	1	X	0	0	4000
0	0	0	0	0	1	X	X	0	1	0
0	0	0	0	1	X	X	X	0	-	-
0	0	0	1	X	X	X	X	1	0	0
0	0	1	X	X	X	X	X	1	0	1
0 ·	1	X	X	X	X	X	X	1	1	0
1	X	X	X	X	X	X	X	-	-	1

CS Scanned with CamScanner

Q: Paste the screenshot of waveform window where you get the waveforms for the above code

A:

Assignment

1. Verilog code and testbench for 3-to-8 decoder using structural modeling (use 2-to-4 decoders as blocks).

Ans: Link1:

2. Write the Verilog code and testbench for 8:3 encoder using behavioral modeling. (Hint: use **case** statements) **Ans: Link2:** www.edaplayground.com/x/Prz2

3. Write the verilog code and testbench for 2:4 decoder using data flow modeling, with active high output and active low enable pin. (Hint: use 1-bit enable input pin in all the assign statements like $D[3] = (A \& B \& \sim En)$).

Ans: Link3: www.edaplayground.com/x/BS45

4. Write the verilog code and testbench for 4-bit (4-to-2) encoder using behavioral modeling.

Ans: Link4: www.edaplayground.com/x/DbBg

Name: Arshdeep Singh ID Number: 2020A7PS0144

