

Session 2

Basics of Linguistics

Azam Rabiee, PhD

August 23, 2020

Roadmap

We will review ML/DL methods for NLP

Digikala Academy NLP Events

Basic

- Session 1. Introduction
- **Session 2.** Basics of Linguistics
- Session 3. Basics of ML
- Session 4 (Lab). Effective Word Representation by python

Intermediate

• TBA

Advanced

• TBA

Outline

Session 1: Introduction

- Applications
- Tasks
- Approaches

Session 2. Basics of Linguistics

Session 3. Basics of ML

Session 4 (Lab). Effective Word Representation by python

Review: Applications

Sentiment Analysis

Question Answering

Automatic Summarization

Al Marketing

Text / Document Classification

Speech Recognition

Give me

Spell Checking

Review: Tasks

Approaches

Outline

Session 1: Introduction arocessing **Session 2.** Basics of Linguistics • Components Challenges Vectorization Basics of Session 3. Basics of ML Session 4 (Lab). Effective Word Representation by python

Outline

Session 1: Introduction arocessing **Session 2.** Basics of Linguistics Components Challenges Vectorization Basics of Session 3. Basics of ML Session 4 (Lab). Effective Word Representation by python

Tokenization

A dog is chasing a boy on the playground. Breaking up the sequence of characters into sentences and words

Tokenization

Tokenizer also extracts token features, such as:

Capitalization
Inclusion of digits
Punctuation
Special shows:

Special characters

The MRI, I took on 2019, priced at \$500!!

Part-of-Speech (PoS) Tagging

Stemming

Normalizing the word to its stem word (not necessarily the dictionary word)

```
stemmer(`studies`) → `studi`
stemmer(`studied`) → `studi`
stemmer(`studying`) → `studi`
stemmer(`study`) → `studi`
```

Lemmatization

```
Normalizing the word to its stem dictionary word

lemmatizer(`studies`) → `study`

lemmatizer(`studies`) → `study`
                             lemmatizer(`studied`) → `study`
Basics of N.
                            lemmatizer(`studying`) → `study`
```

Stemming vs. Lemmatization

```
lemmatizer(`am`, pos=`v`) → `be`
lemmatizer(`was`, pos=`v`) → `be`
lemmatizer(`were` pos=`v`)
  stemmer(`am`)
                         → `am`
  stemmer(`was`)

      `was`
  stemmer(`were`) → `were`
                 → `is`
                                              lemmatizer(`is`, pos=`v`) → `be`
  stemmer(`is`)
                                              lemmatizer(`are`, pos=`v`) → `be`
  stemmer(`are`)
                         → `are`
stemmer(`studying`) → `studi` lemmatize lemmatizer
                                              lemmatizer(`studying`, pos=`v`) → `study`
                                              lemmatizer(`studying`, pos=`n`) → `studying`
```

Stemming vs. Lemmatization

	-cing
Stemming	Lemmatization
Does not consider the context	Considers the context & PoS
Fast	Slow
Less accurate	Accurate
Basics of Natur	

Chunking / Parsing

Extract meaningful phrases, such as:

noun phrases

verb phrases

prepositional phrases

adjective phrases

adverbal phrases

to make sure if a sentence **syntactically** is correct

Chunking / Parsing

Chunking / Parsing

I am feeling hungry

Parsing one word at a time

Parsing two words at a time

N-gram: Parsing N word(s) at a time

Chinking

Removing stop words

<u>the</u> <u>dog</u> <u>is</u> chasing playground <u>A</u> boy article article verb preposition noun noun article aux noun

dog chasing boy playground

Basics on

Semantic Analysis

Basics of Natural Language Protes Understanding the meaning, relationships, and interpretation of words

Semantic Analysis

Disclosure Integration

Integrating sentences to take into account the context

I know Martin Cook. He works at Google.

A sense of the context: Martin Cook works at Google.

Pragmatic Analysis

- A: Do you know what time it is?
 - Yes. it's 6:00 pm.

- B: Do you know what time it is?
 - Sorry. I won't be late anymore.

ssing

Which type of analysis can find mistakes in the following sentences?

A: Avoid playing when you are in tired

B: Hot ice-cream

1. A: Syntactic Analysis, B: Semantic Analysis

2. A: Semantic Analysis, B: Syntactic Analysis

Coreference resolution is the task of finding all expressions that refer to the same entity in a text. The task is mostly related to:

- 1. Tokenization
- 2. Lemmatization
- 3. Discourse Analysis

"I voted for Nader because he was most aligned with my values," she said.

AI-hard problem

Outline

Session 1: Introduction arocessing **Session 2.** Basics of Linguistics • Components Challenges Vectorization Basics of Session 3. Basics of ML Session 4 (Lab). Effective Word Representation by python

Tokenization

The main challenge for the sentence tokenizer: 55

Is it one sentence or two?

A dog is chasing Mr. Cook on the playground.

PoS Tagging

PoS is crucial for syntactic and semantic analysis

Basics of Can you help me with the can?

Name Entity Recognition (NER)

processing Basics of Natural Language Cook said: "he is coming."

Context Understanding / Pragmatic Analysis

- A: Do you know what time it is?
 - Yes. it's 6:00 pm.

- B: Do you know what time it is?
 - Sorry. I won't be late anymore.

Challenges

Ambiguity

I saw a man on a hill with a telescope.

- There is a man on the hill, and I watched him with my telescope.
- There is a man on the hill, and he has a telescope.
- I'm on a hill, and I saw a man using my telescope.
- I'm on a hill, and I saw a man who has a telescope.
- There is a man on a hill, and I saw him something with my telescope.

Knowledge Graph (KG) is a network of entities, their properties, and relationships. Which of the following is highly related to KG?

- Stemming
- Semantic Analysis
- Basics of Natura

Outline

Session 1: Introduction arocessing **Session 2.** Basics of Linguistics • Components Challenges Vectorization Basics of Session 3. Basics of ML Session 4 (Lab). Effective Word Representation by python

Steps of ML/DL Projects with Text Data

ANN Example for Sentiment Analysis

$$\mathbf{z}^{[i]} = \mathbf{W}^{[i]} \mathbf{a}^{[i-1]}$$
$$\mathbf{a}^{[i]} = f(\mathbf{z}^{[i]})$$

$$x = [x_1, x_2, ..., x_n]$$
: tweets

Example: "This movie was almost good"

Vectorization (converting words to numbers) is unavoidable for ML

, is unavo.

Basics of Natural Language Proces

Vectorization

Bag-of-Words (BoW)

S1: Jim and Pam traveled by bus.

	S2: The train was late. S3: The flight was full; Traveling by flight is expensive.													
	and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel	was
S1	1	1	1	0 + 1 1	0	0	0	1	0	1	0	0	1	0
S2	0	0	0	031	0	0	0	0	1	0	1	1	0	1
S3	-0	500	1	1	2	1	1	0	0	0	1	0	1	1

Bag-of-Words (BoW)

Pros

- Simple
- Fast

Cons

- Sparse
- High dimension
- No distinction between rare and common words
- No word relation (context)

equency of the word × Importance of the words Single Property Residual Language Property Residual Lang

Frequency of the word × Importance of the word

$$\frac{\textit{no. of times it appears}}{\textit{total no. of words}} \times \log_{10} \frac{\textit{total no. of docs}}{\textit{no. of docs in which word appears}}$$

Frequency of the word × Importance of the words

$$\frac{no.\ of\ times\ it\ appears}{total\ no.\ of\ words}\ \times\ \log_{10}\frac{total\ no.\ of\ docs}{no.\ of\ docs\ in\ which\ word\ appears}$$
 Examples:
$$TF(\text{``the''}) = 0.1$$
 Q1: What does it mean?
$$Q2: \ If\ \text{``the''}\ appears\ in\ all\ 10\ documents,\ what\ is\ IDF(\text{``the''})?}$$

Q2: If "the" appears in all 10 documents, what is IDF("the")?

Frequency of the word × Importance of the words

$$\frac{no.\ of\ times\ it\ appears}{total\ no.\ of\ words}\ \times\ \log_{10}\frac{total\ no.\ of\ docs}{no.\ of\ docs\ in\ which\ word\ appears}$$
 Examples:
$$\mathsf{TF("the")} = 0.1$$

$$\mathsf{IDF("the")} = 0$$

$$\mathsf{TF-IDF("the")} = 0$$

$$TF("the") = 0.1$$

$$IDF("the") = 0$$

Frequency of the word × Importance of the words

$$\frac{\textit{no. of times it appears}}{\textit{total no. of words}} \times \log_{10} \frac{\textit{total no. of docs}}{\textit{no. of docs in which word appears}}$$

$$TF("NLP") = 0.1$$

Examples:

Or ("NLP") = 0.1

Q: If "NLP" appears in only one document, what is IDF("NLP")?

Frequency of the word × Importance of the words

$$\frac{no.\ of\ times\ it\ appears}{total\ no.\ of\ words}\ \times\ \log_{10}\frac{total\ no.\ of\ docs}{no.\ of\ docs\ in\ which\ word\ appears}$$
 Examples:
$$\mathsf{TF}(\text{"NLP"}) = 0.1$$

$$\mathsf{IDF}(\text{"NLP"}) = 1$$

48

TF-IDF

D1: Jim and Pam traveled by bus.

	D2: The train was late. D3: The flight was full. Traveling by flight is expensive.													
	and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel	was
D1	0.4	0.4	0.3	0	0	0	0	0.4	0	0.4	0	0	0.3	0
D2	0	0	0	0	0	0	0	0	0.5	0	0.4	0.5	0	0.4
D3	0	0	0.2	0.3	0.6	0.3	0.3	0	0	0	0.2	0	0.2	0.2

TF-IDF vs. BoW

BoW

	and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel w	as
S1	1	1	1	0	0	0	0	1	0	1	0	0	1\\0	
S2	0	0	0	0	0	0	0	0	1	0	1)(0 1	
S3	0	0	1	1	2	1	1	0	0,0	0	1	0	1 1	

TF-IDF

		and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel	was
	D1	0.4	0.4	0.3	00	0	0	0	0.4	0	0.4	0	0	0.3	0
F	D2	0	0	0	0	0	0	0	0	0.5	0	0.4	0.5	0	0.4
3	D3 -	0	0	0.2	0.3	0.6	0.3	0.3	0	0	0	0.2	0	0.2	0.2

TF-IDF

Pros

- Simple
- Fast
- s lage processing Considers the importance of words

Cons

- Sparse

Vectorization

Example: ANN for Sentiment Analysis

Input Representation

Word	Number
a	1
able	2
about	3
•••	
movie	680
zebra	1000

Input Representation

		_
Word	Number	
a	1	$x = [x_1, x_2,, x_n]$: tweets
able	2	proce
about	3	Example: "This movie was almost good"
	•••	x = [700, 680, 720, 20, 55]
movie	680	
		Natural La
zebra	1000	Nac
Basi	CS O	

$$x = [x_1, x_2, ..., x_n]$$
: tweets

processing

$$x = [700, 680, 720, 20, 55]$$

In the ANN for sentiment analysis, how can we handle variable-length tweets?

Tweet 1: "this movie was almost good"

Tweet 2: "it was terrible"

Word Number a able about 3 1000 movie zebra Basics

Input Representation

$$x = [x_1, x_2, ..., x_n]$$
: tweets

Example: "This movie was almost good"

$$x = [700, 680, 720, 20, 55]$$

Zero-padding to match size of largest tweet

$$x = [700, 680, 720, 20, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

ANN learns the 4-D embedding representation of sentences

Example: "This movie was almost good"

x = [700, 680, 720, 20, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Pros

- Simple
- Fast
- nage Processing • Considers the importance of words
- Condense and low dimension

Cons

- No word relation
- Meaningless math operation between words

Vectorization

word2vec

Word2vec is a model provided by Google in 2013 Basics of Natural Language Processing

[Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013]

word2vec

Word2vec is a model provided by Google in 2013 for the **effective word embedding**.

[Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013]

Word Embedding

King + female = Queen
Man + female = Woman
Queen - royal = Woman

Word Similarity

Top 30 analogous words or synonyms for king

Top 10 similar words or synonyms for king

queen 0.745687

prince 0.659387

duke 0.574773

kings 0.544352

henry 0.532862

princess 0.524547

lord 0.518185

george 0.512252

knight 0.505063

regent 0.499793

https:/wordsimilarity.com/

Vectorization: Wrap up

Bag-of-Words

Some Vectorization Approaches

word2vec

TF-IDF

	and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel	was
S1	1	1	1	0	0	0	0	1	0	1	0	0	1	0
52	0	0	0	0	0	0	0	0	1	0	1	1	0	1
S3	0	0	1_	1	2	1	1	0	0	0	1	0	1	1

	and	bus	by	expensive	flight	full	is	jim	late	pam	the	train	travel	was
D1	0.4	0.4	0.3	0	0	0	0	0.4	0	0.4	0	0	0.3	0
D2	0	0	0	0	0	0	0	0	0.5	0	0.4	0.5	0	0.4
D3	0	0	0.2	0.3	0.6	0.3	0.3	0	0	0	0.2	0	0.2	0.2

Embedding Layer

Session 1: Introduction arocessing **Session 2.** Basics of Linguistics Components Challenges Vectorization Basics of Session 3. Basics of ML Session 4 (Lab). Effective Word Representation by python

Digikala Academy NLP Events

Basic

- Session 1. Introduction
- **Session 2.** Basics of Linguistics
- Session 3. Basics of ML
- Session 4 (Lab). Effective Word Representation by python

Intermediate

• TBA

Advanced

• TBA

References of this session

coursera

Natural Language Processing (NLP) with Python — Tutorial

https://medium.com/towards-artificial-intelligence/naturallanguage-processing-nlp-with-python-tutorial-for-beginners-1f54e610a1a0#2847