CONCORDIA UNIVERSITY FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

PROBLEM I [12 pts]

A piston-cylinder device with a set of stops initially contains 0.3 kg of steam at 1.0 MPa and 400°C. The location of the stops corresponds to 60 percent of the initial volume. Now the steam is cooled. Determine the compression work if the final state is:

- a) 1.0 MPa and 250°C,
- b) 500 kPa
- c) Also determine the temperature at the final state in part (b).

L	ACCUMUNATION OF	NEW Y	
	Steam		
100	0.3 kg		
100	I MPa		
-	400°C		1

W (a)	Z2.16 kJ
W (b)	36.79 RJ
T ₂	151.8°C

PROBLEM II [12 pts]

Six grams of air is contained in the cylinder shown in the figure below. The air is heated until the piston raises 50 mm. The spring just touches the piston initially. Calculate:

- a) the temperature when the piston leaves the stops,
- b) the work done.

T_1	530 K
W	0.304 87

PROBLEM III [6 pts]

- Explain physically why C_p is higher than C_v for an ideal gas?
- Demonstrate that for an ideal gas: $C_p C_v = R$.
- What does the area under a Cp.vs T graph represents?

CONSTANTS FOR ALL PROBLEMS: Patm= 100 kPa For air: R=0.2870 kJ/kg K

TABLE A-5

		fic volume, n³/kg		Internal energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/kg · K			
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor, s _e
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8		8.8690 8.6314 8.4621 8.3302 8.2222	8.827 8.722 8.642
4.0 5.0 7.5 10	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2560.7 2574.0 2583.9		8.0510 7.9176 7.6738 7.4996 7.2522	8.393 8.250 8.148
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2624.6	0.8320 0.8932 0.9441 1.0261 1.0912	6.8234	7.830 7.767 7.669
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0		1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.358 7.354 7.284
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2706.3 2711.7	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.127 7.087 7.052
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2732.0	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.965 6.940
450 500 550 600 650	147.90 151.83 155.46 158.83 161 98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	622.65 639.54 655.16 669.72 683.37	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2752.4 2756.2	1.8604 1.8970 1.9308	4.8285	6.820 6.788 6.759

Appendix | 921

TABLE A6												
Superheated water (Continued)												
T	V	u	h	s	v	и	h	s	v	u	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
P = 1.00 MPa (179.88°C)			P = 1.20 MPa (187.96°C)				P = 1.40 MPa (195.04°C)					
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8.8310	0.41933	4051.7	4638.8	8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0	4890.5	8.9497

TABLE

Saturat

16,000 17,000

18,000 19,000 20,000

21,000 22.000 4-9 A piston-cylinder device with a set of stops contains steam at a specified state. Now, the steam is cooled. The compression work for two cases and the final temperature are to be determined.

Analysis (a) The specific volumes for the initial and final states are (Table A-6)

- $P_1 = 1 \text{ MPa}$ $T_1 = 400^{\circ}\text{C}$ $V_1 = 0.30661 \text{ m}^3/\text{kg}$
- $P_2 = 1 \text{ MPa}$ $T_2 = 250 \text{ °C}$ $V_2 = 0.23275 \text{ m}^3 \text{ /kg}$ \bigcirc

 $M_{\Delta} = mP(v_1 - v_2) = (0.3 \text{ kg})(1000 \text{ kPa})(0.30661 - 0.23275)\text{m}^3/\text{kg} = 22.16 \text{ kJ}$

Noting that pressure is constant during the process, the boundary

work is determined from

(V)

400°C

volume. Then, the boundary work becomes

The temperature at the final state is

$$P_2 = 0.5 \,\mathrm{MPa}$$

 $v_2 = (0.60 \times 0.30661) \,\mathrm{m}^3/\mathrm{kg} \bigg] T_2 = 151.8 \,\mathrm{°C}$ (Table A-5)

3.3 Air is compressed in a cylinder such that the volume changes from 100 to 10 in³. The initial pressure is 50 psia and the temperature is held constant at 100°F. Calculate the work.

The work is given by $W = \int P dV$. For the isothermal process the equation of state allows us to write

$$PV = mBT = \text{const.}$$

since the mass m, the gas constant R, and the temperature T are all constant. Letting the constant be P_1V_1 , the above becomes $P = P_1V_1/V$, so that

$$W = P_1 V_1 \int_{V_1}^{V_2} \frac{dV}{V} = P_1 V_1 \ln \frac{V_2}{V_1} = (50)(144) \left(\frac{100}{1728}\right) \ln \frac{10}{100} = -959 \text{ ft-lbf}$$

- 3.4 Six grams of air is contained in the cylinder shown in Fig. 3-13. The air is heated until the piston raises 50 mm. The spring just touches the piston initially. Calculate (a) the temperature when the piston leaves the stops and (b) the work done by the air on the piston.
 - (a) The pressure in the air when the piston just raises from the stops is found by balancing the forces on the piston:

$$PA = P_{\text{atm}}A + W$$
 $\frac{P\pi(0.2)^2}{4} = (100\,000)\frac{\pi(0.2)^2}{4} + (300)(9.81)$ $\therefore P = 193\,700\,\text{Pa}$ or 193.7 kPa

The temperature is found from the ideal-gas law:

$$T = \frac{PV}{mR} = \frac{(193.7)(0.15)(\pi)(0.2)^2/4}{(0.006)(0.287)} = 530 \text{ K}$$

(b) The work done by the air is considered to be composed of two parts: the work to raise the piston and the work to compress the spring. The work required to raise the piston a distance of 0.05 m is

$$W = (F)(d) = (P)(A)(d) = (193.7) \frac{\pi (0.2)^2}{4} (0.05) = 0.304 \text{ kJ}$$

The work required to compress the spring is $W = \frac{1}{2}Kx^2 = \frac{1}{2}(400)(0.05^2) = 0.5 \text{ kJ}$. The total work required by the air to raise the piston is W = 0.304 + 0.5 = 0.804 kJ

Two kilograms of air experiences the three-process cycle shown in Fig. 3-14. Calculate the net work.

Fig. 3-13

Fig. 3-14

P.	$\overline{\Omega}$

1). Writing simply becouse Cp-Cv:R
is wrong since the question was:
explain physically.

for the same heat addition, the increase in To will be higher at a ch then at Pict.

Since, any specific heat is defined as the ratio of heat own a variation in Ton (BT)

Hen Cp > Ca

possible other explanation: becaux at Pict, a part of the heat is also used to light the pistom and then to generate work.

2) see next pege

(2)

3) The heet provided

2

the veniction in enthalpy.

and

$$h_2 - h_1 = \int_{r_1}^{r_2} c_p \cdot dT$$

Example

Determine the enthalpy change, Δh , of nitrogen, in kJ/kg, as it is heated from 600 to 1000K, using (a) the empirical data for h from the nitrogen table (Table A-18), (b) the empirical specific heat equation as a function of temperature (Table A-2c), (c) the C_P value at the average temperature (Table A-2b), and (d) the C_P value at room temperature (Table A-2a). Also determine the percentage error in each case.

Note

For non-ideal gases: internal energy and enthalpy changes are found using the empirical gas tables. Also changes in internal energy can be found using C_V for constant volume processes. Changes in enthalpy can be found using C_P , providing that the process is constant pressure.

For ideal gases: internal energy and enthalpy changes may be found using empirical gas tables. Also changes in internal energy may be found using C_V for any process since internal energy is a function of temperature alone. Also changes in enthalpy may be found using C_P for any process since enthalpy is a function of temperature alone.

II.9.3. Relationship between C_V and C_P:

We have:

$$h = u + P v$$

For an ideal gas Pv = RT so that

$$h = u + R \cdot T$$

Differentiating

$$dh = du + R \cdot dT$$

Divide by dT

$$dh/dT = du/dT + R$$

Recall definition of C_V and C_P for an ideal gas

$$C_P = C_V + R$$

We can also define specific Heat Ratio, k as

$$k \equiv \frac{C_P}{C_v}$$