s	а	s'	p(s' s,a)	r(s.a.s')	States indexes indicate the following: Coin 1 Value, Coin 2 Value, Where Arm is Over
H,H,1	Call Fairy		1		
H,H,2	Call Fairy		1		
H,H,1	Move	H,H,2	1		
H,H,2	Move	H,H,1	1		
H,H,1	Flip	H,H,1	0.5		
H,H,1	Flip	T,H,1	0.5		
H,H,2	Flip	H,T,2	0.5		
H,H,2	Flip	H,H,2	0.5		
T,T,1	Call Fairy		1		
T,T,2	Call Fairy		1		
T,T,1	Move	T,T,2	1		
T,T,2	Move	T,T,1	1		
T,T,1	Flip	T,T,1	0.5		
T,T,1	Flip	H,T,1	0.5		
T,T,2	Flip	T,T,2	0.5		
T,T,2	Flip	T,H,2	0.5	-1	
T,H,1	Call Fairy	T,H,1	1	-5	
T,H,2	Call Fairy	T,H,2	1	-5	
T,H,1	Move	T,H,2	1	-2	
T,H,2	Move	T,H,1	1	-2	
T,H,1	Flip	T,H,1	0.5	-1	
T,H,1	Flip	H,H,1	0.5	-1	
T,H,2	Flip	T,H,2	0.5	-1	
T,H,2	Flip	T,T,2	0.5	-1	
H,T,1	Call Fairy	H,T,1	1	-5	
H,T,2	Call Fairy	H,T,2	1	-5	
H,T,1	Move	H,T,2	1	-2	
H,T,2	Move	H,T,1	1	-2	
H,T,1	Flip	H,T,1	0.5	-1	
H,T,1	Flip	T,T,1	0.5	-1	
H,T,2	Flip	H,H,2	0.5	-1	
H,T,2	Flip	H,T,2	0.5	-1	

- b. This is continuing as even when the battery runs out, the robot will continue to operate and as such will not end
- c. Make it such that when the robot runs out of charge, it will stop operating

a.
$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

b.
$$\sum_{s',r} p(s',r|s,a)[r+\gamma v_{\pi}(s')]$$
 as $q_{\pi}(s,a)\sum_{,a} \pi(a|s) = v_{\pi}(s)$ and $v_{\pi}(s) = \sum_{s',r} p(s',r|s,a)[r+\gamma v_{\pi}(s')]\sum_{,a} \pi(a|s)$

a.
$$V(s) = \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \sum_{a} \pi(a|s)$$

Therefore
$$\sum_{s',r} p(s',r|Z,a)[r+\gamma v_{\pi}(s')] \sum_{,a} \pi(a|Z)$$
=V(Z) = 0.5* 0.8V(Z) + 0.5* 0.8V(Z)
V(Z)=0.8V(Z)

V(Z)=0

$$\sum_{a} \pi(a|Y) \sum_{s',r} p(s',r|Y,a)[r + \gamma v_{\pi}(s')] = V(Y)$$

b. We can change the policy such that $\pi(a|s) = \pi(b|s) = 0.85$. This is better than the above policy because if we redo the calculations above, we can get the following values:

```
V(Z) will remain zero not matter the policy V(Y) = 0.85*1+0.85*5=5.1 \text{ which is greater than 3} \\ V(X) = 0.85(0.2(25)) = 4.25 \text{ which is greater than 2.5} \\ V(W) = 0.85*(5.1)+0.85(0.5*(4+0.8*4.25)+0.5(2+0.8*5.1)) = 10.064
```

This shows that for all values of s, the new policy gives us state values greater than the older policy

4.

V(W)

Episode 1 Val: 0 + 10+0 = 10 Episode 2 Val: -10 + 0 = -10 Episode 3 Val: 6+2 = 8 Episode 4 Value: 12+0=12 Final Val= (10 + -10 +8 +12)/ 4 = 5

V(Y)

Episode 1 Val: 0

Episode 2 Val: Non-existent

Episode 3 Val: 6 Episode 4 Value: 12

Final Val= (12 + 6 + 0)/3 = 6

V(X)

Episode 1 Val: 0 +10 = 10

Episode 2 Val: 0

Episode 3 Val: Non-existent Episode 4 Value: Nonexistent Final Val= (10 + 0)/2 = 5

V(Z) = 0 as it is the terminal state

5.

a.
$$Q(S, A) += \alpha [R + \Upsilon max_aQ(S', A) - Q(S, A)$$

=0.5[4 + 1*16-0]
= 0.5*20
 $Q(W,a)=10$

b.
$$Q(S, A) += \alpha [R + \Upsilon Q(S', A') - Q(S, A)$$

=0.5[4 + 1*8-0]
= 0.5*12
 $Q(W,a)=6$

6.

- a. We use a greedy policy instead of an ε greedy policy as we want to display the episode with the maximum possible value. We are also not going to be exploring anymore hence we use a greedy rather than epsilon greedy. It will work with Sarsa as Sarsa only selects the action based off the policy passed in so it can work with a standard greedy policy.
- b. This would work with Monte Carlo control(off policy only) because it will converge to the optimal policy π^* as the policy we learn is deterministic and as long as we estimate Q values for it, we learn a policy greedy to the previous estimated target policy we learn and eventually will converge. This however, would not work with On-Policy Monte Carlo control as that is not necessarily guaranteed to give us an optimal policy.