

MultiAtributive Ideal-Real Comparative Analysis (MAIRCA)

Capitão-Tenente Arthur Pinheiro de Araújo Costa Mestrando em Sistemas em Computação - IME

Grupo de Pesquisa IME – UFF – USP

SUMÁRIO

- > Introdução
- Panorama do Método
- > Etapas do método
- ➤ Mão na massa
- > Aplicações encontradas na literatura
- > Palavra aberta

INTRODUÇÃO

- ➤ O método *MultiAtributive Ideal-Real Comparative Analysis* (MAIRCA) foi desenvolvido pelo Professor Dragan Pamucar em 2016 no Centro de Pesquisa Logística da Universidade de Defesa de Belgrado.
- A configuração básica do MAIRCA é definir a lacuna (Gap) entre classificações ideais e empíricas. A soma dos Gaps de cada critério gera o lacuna total para cada alternativa observada.

INTRODUÇÃO

- A classificação das alternativas vem no final do processo, sendo a alternativa melhor ranqueada a que possui menor valor de Gap.
- > É necessário já ter os pesos dos critérios para executar o MAIRCA.

➤ Para tal, o MAIRCA é processado em seis etapas.

ARTIGO SEMINAL

Article

The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots

Ljubomir Gigović 1, Dragan Pamučar 2, Zoran Bajić 3,* and Milić Milićević 2

- Department of Mathematics, University of Defence, Belgrade 11000, Serbia; ljubomir.gigovic@va.mod.gov.rs
- Department of Logistics, University of Defence, Belgrade 11000, Serbia; dpamucar@gmail.com (D.P.); milic.milicevic@mod.gov.rs (M.M.)
- Department of Military-Chemical Engineering, University of Defence, Belgrade 11000, Serbia
- Correspondence: zoran.bajic@va.mod.gov.rs; Tel.: +381-11-3603259

Academic Editor: Vincenzo Torretta

Received: 8 February 2016; Accepted: 11 April 2016; Published: 15 April 2016

PANORAMA DO MÉTODO NA BASE SCOPUS

Year ↓	Documents ↑
2023	6
2022	24
2021	14
2020	12
2019	5
2018	7
2017	3
2016	1

PANORAMA DO MÉTODO NA BASE SCOPUS

Documents by subject area

- Passo 1: Determinar a Matriz de Decisão;
- > Passo 2: Definição de preferências para a escolha de alternativas PAi;
- Passo 3: Determinar a Matriz de Decisão Teórica (Tp);
- Passo 4: Determinar a Matriz de Decisão Real (Tr);
- Passo 5: Determinar a Matriz de Decisão do Gap (G); e
- Passo 6: Ranqueamento das alternativas.

(Passo 1: Determinar a Matriz de Decisão)

$$X = egin{array}{ccccc} A_1 & C_1 & C_2 & ... & C_n \ A_2 & A_2 & x_{11} & x_{12} & ... & x_{1n} \ x_{21} & x_{22} & & x_{2n} \ ... & ... & ... & ... \ x_{m1} & x_{22} & ... & x_{mn} \ \end{bmatrix}$$

Matriz de decisão						
	Lucro	Lucro	Lucro	tucro		
	C1	C2	C3	C4		
A1	70	245	16,4	19		
A2	52	246	7,3	22		
A3	53	295	10,3	25		
A4	63	256	12	8		
A5	64	233	5,3	17		

(Passo 2: Definição de preferências para a escolha de alternativas PAi)

> Definição de preferências para a escolha de alternativas PAi:

$$P_{A_i} = \frac{1}{m}; \sum_{i=1}^{m} P_{A_i} = 1, i = 1, 2, ..., m$$

- \succ Considera-se que o Decision Maker (DM) inicialmente é neutro para a probabilidade de seleção de cada alternativa: $P_{A_1}=P_{A_2}=...=P_{A_m}$
- > Logo, na Matriz e decisão com 5 alternativas, temos: $PA_i = \frac{1}{5} = 0.20$

	. –	_=	0,2
81	41 =	15	(
			く

	Matriz de decisão					
	Lucro	Lucro	Lucro	Lucro		
	C1	C2	C3	C4		
A1	70	245	16,4	19		
A2	52	246	7,3	22		
A3	53	295	10,3	25		
A4	63	256	12	8		
A5	64	233	5,3	17		

(Passo 3: Determinar a Matriz de Decisão Teórica (Tp))

Como já explicado inicialmente, as prioridades das alternativas são iguais, então:

$$P_{A_1} = P_{A_2} = ... = P_{A_m}$$

$$T_p = P_{A_i} \begin{bmatrix} w_1 & w_2 & \dots & w_n \\ t_{p1} & t_{p2} & \dots & t_{pn} \end{bmatrix} = P_{A_i} \begin{bmatrix} w_1 & w_2 & \dots & w_n \\ P_{A_i} \cdot w_1 & P_{A_i} \cdot w_2 & \dots & P_{A_i} \cdot w_n \end{bmatrix}$$

$$PA_i = \frac{1}{5} = 0.20$$

Pesos c	Pesos de cada critério		
C1	0,0474		
C2	0,0246		
C3 0,5136			
C4	0,4144		
PAi	0,2		

	Matriz de decisão Teórica (Tp)					
Lucro Lucro Lucro Lucro						
	C1	C2	C3	C4		
	0,009488	0,004928	0,102714	0,08287		

$$ightharpoonup$$
 Tp1 = 0,2 * 0,0474 = 0,00948

$$ightharpoonup$$
 Tp2 = 0,2 * 0,0246 = 0,00492

(Passo 4: Determinar a Matriz de Decisão Real (Tr))

> Para calcularmos a Tr, usamos a Matriz de decisão inicial e a Tp:

N							
		Matriz de decis	ao				
	Lucro Lucro Lucro Luc						
	C1	C2	C3	C4			
A1	70	245	16,4	19			
A2	52	246	7,3	22			
A3	53	295	10,3	25			
A4	63	256	12	8			
A5	64	233	5,3	17			
	<u> </u>						

Matriz de decisão Teórica (Tp)						
Lucro Lucro Lucro Lucro						
C1	C2	C3	C4			
0,009488	0,009488 0,004928 0,102714 0,08287					

- ightharpoonup Tr11 = 0,00948 * (70 52)/(70 52) = 0,00948
- ightharpoonup Tr23 = 0,10271 * (7,3 5,3)/(16,4 5,3) = 0,018507

Matriz de decisão Real (Tr)						
	Lucro	Lucro	Lucro	Lucro		
	C1	C2	C3	C4		
A1	0,009488	0,000954	0,102714	0,053622		
A2	0,000000	0,001033	0,018507	0,068246		
A3	0,000527	0,004928	0,046268	0,082870		
A4	0,005798	0,001828	0,061999	0,000000		
A5	0,006325	0,000000	0,000000	0,043872		

(Passo 5: Determinar a Matriz de Decisão do Gap (G))

Para calcular G, executamos a diferença entre Tp e Tr:

$$G = T_p - T_r = \begin{bmatrix} g_{11} & g_{12} & \dots & g_{1n} \\ g_{21} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{m1} & g_{m2} & \dots & g_{mn} \end{bmatrix} = \begin{bmatrix} t_{p11} - t_{r11} & t_{p12} - t_{r12} & \dots & t_{p1n} - t_{r1n} \\ t_{p21} - t_{r21} & t_{p21} - t_{r21} & \dots & t_{p2n} - t_{r2n} \\ \dots & \dots & \dots & \dots \\ t_{pm1} - t_{rm1} & t_{pm2} - t_{rm2} & \dots & t_{pmn} - t_{rmn} \end{bmatrix}$$

(Passo 5: Determinar a Matriz de Decisão do Gap (G))

> Para calcular G, executamos a diferença entre Tp e Tr:

N	/latriz de decisã	o Teórica (Tp)	
Lucro	Lucro	Lucro	Lucro
C1	C2	C3	C4
0,009488	0,004928	0,102714	0,08287

	G11 =	0,009488 -	- 0,009488 =	= ZERO
--	-------	------------	--------------	--------

$$\Rightarrow$$
 G43 = 0,10271 - 0,06199 = 0,04071

Matriz de decisão do Gap (G = Tp - Tr)						
	Lucro	Lucro	Lucro	Lucro		
	C1 C2 C3					
A1	0,000000	0,003974	0,000000	0,029248		
A2	0,009488	0,003895	0,084207	0,014624		
A3	0,008961	0,000000	0,056446	0,000000		
A4	0,003690	0,003100	0,040715	0,082870		
A5	0,003163	0,004928	0,102714	0,038998		

(Passo 6: Ranqueamento das alternativas(Qi))

- > Finalmente as alternativas são classificadas de acordo com o somatório dos valores de G.
- ➤ É desejável que Gij (Tp Tr) tenha valores que tendam a ZERO, visto que a alternativa com a menor diferença entre Tp e Tr é a escolhida.

$$g_{ij} = \begin{cases} 0, & ift_{pij} = t_{rij} \\ t_{pij} - t_{rij}, & ift_{pij} > t_{rij} \end{cases} \qquad (g_{ij} \to 0)$$

(Passo 6: Ranqueamento das alternativas(Qi))

Soma-se os valores de G (Qi) para cada alternativa, sendo a alternativa com o menor Qi a determinada como melhor.

Matriz de decisão do Gap (G = Tp - Tr)				
	Lucro	Lucro	Lucro	Lucro
	C1 /	C2	C3 //	C4
A1	0,000000	0,003974	0,000000	0,029248
A2	0,009488	0,003895	0,084207	0,014624
A3	0,008961	0,000000	0,056446	0,000000
A4	0,003690	0,003100	0,040715	0,082870
A5	0,003163	0,004928	0,102714	0,038998

$$Q_{i} = \sum_{j=1}^{n} g_{ij} \quad i = 1, 2, ..., m$$

Somatório	o dos Gaps (Qi)	Rank
A1 0,033222		1 (-
A2	0,112214	3
А3	0,065407	2
A4	0,130375	4
A5	0,149802	5

$$\Rightarrow$$
 Qi1 = 0 + 0,00397 + 0 + 0,0292 = 0,0332

$$\triangleright$$
 Qi5 = 0,0316 + 0,00492 + 0,1027 + 0,0389 = 0,149

OR DE NAR Vamos calcular os pesos dos critérios para escolha de um drone de guerra!

Matriz de decisão				
	Lucro Custo			
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
PREDATOR B	15	27	17	240
SCAN EAGLE	6	18	5	60
KRONSHTADT	7,5	24	13	100
HERON	10	45	46	140
HUNTER-B	18	10	30	540

anout / mout

Pesos de cada critério (MEREC)				
ALTITUDE DE VOO MÁX. (KM)	0,1529			
AUTONOMIA (HORAS)	0,2414			
CUSTO (US\$ MILHÕES)	0,3141			
VELOC. (NÓS)	0,2917			
PAi	0,2			

$$PA_i = \frac{1}{5} = 0.20$$

Vamos escolher um drone de guerra!

Matriz de decisão					
	Lucro Lucro Custo Lucro				
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)	
PREDATOR B	15	27	17	240	
SCAN EAGLE	6	18	5	60	
KRONSHTADT	7,5	24	13	100	
HERON	10	45	46	140	
HUNTER-B	18	10	30	540	

Pesos de cada critério (MEREC)				
ALTITUDE DE VOO MÁX. (KM)	0,1529			
AUTONOMIA (HORAS)	0,2414			
CUSTO (US\$ MILHÕES)	0,3141			
VELOC. (NÓS)	0,2917			
PAi	0,2			

$$PA_i = \frac{1}{5} = 0.20$$

Vamos calcular os pesos dos critérios para escolha de um drone de guerra!

Matriz de decisão					
Lucro Lucro Custo Lucro					
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)	
PREDATOR B	15	27	17	240	
SCAN EAGLE	6	18	5	60	
KRONSHTADT	7,5	24	13	100	
HERON	10	45	46	140	
HUNTER-B	18	10	30	540	

Pesos de cada critério (MEREC)			
ALTITUDE DE VOO MÁX. (KM)	0,1529		
AUTONOMIA (HORAS)	0,2414		
CUSTO (US\$ MILHÕES)	0,3141		
VELOC. (NÓS)	0,2917		
PAi	0,2		

$$\rightarrow$$
 PAi = 1/n = 1/5 = 0,2

Determinar a Matriz de Decisão Teórica (Tp)

$$T_p = P_{A_i} \begin{bmatrix} w_1 & w_2 & \dots & w_n \\ t_{p1} & t_{p2} & \dots & t_{pn} \end{bmatrix} = P_{A_i} \begin{bmatrix} w_1 & w_2 & \dots & w_n \\ P_{A_i} \cdot w_1 & P_{A_i} \cdot w_2 & \dots & P_{A_i} \cdot w_n \end{bmatrix}$$

$$\rightarrow$$
 Tp1= PAi X W1= 0,2 X 0,1529 = 0,03057

$$ightharpoonup$$
 Tp2 = PAi X W2 = 0,2 X 0,2414 = 0,04828

Pesos de cada critério (MEREC)			
ALTITUDE DE VOO MÁX. (KM)	0,1529		
AUTONOMIA (HORAS)	0,2414		
CUSTO (US\$ MILHÕES)	0,3141		
VELOC. (NÓS)	0,2917		
PAi	0,2		

Matriz de decisão Teórica (Tp)						
Lucro Custo Lucro						
ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)			
0,030573357	0,048284563	0,062810908	0,0583312			

Determinar a Matriz de Decisão Real (Tr)

$$LUCRO $(t_{rij} = \underbrace{ (x_{ij} - x_j^{min})}_{x_i^{max} - x_j^{min}})$$$

CUSTO
$$t_{rij} = t_{pij} \cdot \left(\frac{x_{ij} - x_j^{\text{max}}}{x_j^{\text{min}} - x_j^{\text{max}}} \right)$$

$$ightharpoonup$$
 Tr11 = 0,03057 * (15 – 6)/(18 - 6) = 0,02293

$$rac{1}{7}$$
 Tr23 = 0.06281 * (5 - 46)/(5 - 46) = 0.06281

	<u> </u>	Cd	C 3	<u> </u>		
Matriz de decisão						
	Lucro	Lucro	Custo	Lucro		
	ALTITUDE DE VOO MÁX. (KIVI)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)		
PREDATOR B	15	27	17	240		
SCAN EAGLE	67	18	(5)	60		
KRONSHTADT	7,5	24	13	100		
HERON	10	45	46	140		
HUNTER-B	18	10	30	540		

Matriz de decisão Teórica (Tp)						
Lucro Custo Lucro						
ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)			
0,030573357	0,048284563	0,062810908	0,0583312			

Matriz de decisão Real (Tr)				
	Lucro	Lucro	Custo	Lucro
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
PREDATOR B	0,022930	0,023453	0,044427	0,021874
SCAN EAGLE	0,000000	0,011036	0,062811	0,000000
KRONSHTADT	0,003822	0,019314	0,050555	0,004861
HERON	0,010191	0,048285	0,000000	0,009722
HUNTER-B	0,030573	0,000000	0,024512	0,058331

Matriz de Decisão do Gap (G = Tp - Tr)

Matriz de decisão Teórica (Tp)			
Lucro	Lucro	Custo	Lucro
ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
0,030573357	0,048284563	0,062810908	0,0583312

> G11 = 0,03057 - 0,02293 = 0,007643

> G23 = 0,06281 - 0,06281 = ZERO

TP3 - TRZ3

Matriz de decisão Real (Tr)				
	Lucro	Lucro	Custo	Lucro
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
PREDATOR B	0,022930	0,023453	0,044427	0,021874
SCAN EAGLE	0,000000	0,011036	0,062811	0,000000
KRONSHTADT	0,003822	0,019314	0,050555	0,004861
HERON	0,010191	0,048285	0,000000	0,009722
HUNTER-B	0,030573	0,000000	0,024512	0,058331

Matriz de decisão do Gap (G = Tp - Tr)				
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
PREDATOR B	0,007643	0,024832	0,018384	0,036457
SCAN EAGLE	0,030573	0,037248	0,000000	0,058331
KRONSHTADT	0,026752	0,028971	0,012256	0,053470
HERON	0,020382	0,000000	0,062811	0,048609
HUNTER-B	0,000000	0,048285	0,038299	0,000000

Somatório dos Gaps/Ranqueamento

Matriz de decisão do Gap (G = Tp - Tr)				
	ALTITUDE DE VOO MÁX. (KM)	AUTONOMIA (HORAS)	CUSTO (US\$ MILHÕES)	VELOC. (NÓS)
PREDATOR B	0,007643	0,024832	0,018384	Q,036457
SCAN EAGLE	0,030573	0,037248	4 0,000000	0,058331
KRONSHTADT	0,026752	0.028971	0,012256	0,053470
HERON	-0,020382	0,000000	0,062811	0,048609
HUNTER-B	0,000000	0,048285	0,038299	0,000000

- ightharpoonup Qi1 = 0,007+0,024+0,018+0,036 = 0,0873
- ightharpoonup Qi2 = 0,030+0,037+0,000+0,058 = 0,1265
- \rightarrow Qi3 = 0,026+0,028+0,012+0,053 = 0,1214
- \rightarrow Qi4 = 0,020+0,000+0,062+0,048 = 0,1318
- ightharpoonup Qi5 = 0,000+0,048+0,038+0,000 = 0,0865

Somatório d	Rank	
PREDATOR B	0,087316	2
SCAN EAGLE	0,126153	4
KRONSHTADT	0,121448	3
HERON	0,131802	5
HUNTER-B	0,086584	1

FERRAMENTA COMPUTACIONAL

> EXCEL MÉTODO MAIRCA

(Utilizando a ferramenta computacional)

> EXCEL MÉTODO MAIRCA

APLICAÇÕES ENCONTRADAS NA LITERATURA

Economic Research-Ekonomska Istraživanja

ISSN: 1331-677X (Print) 1848-9664 (Online) Journal homepage: http://www.tandfonline.com/loi/rero20

New hybrid multi-criteria decision-making DEMATEL-MAIRCA model: sustainable selection of a location for the development of multimodal logistics centre

Dragan S. Pamucar, Snezana Pejcic Tarle & Tanja Parezanovic

APLICAÇÕES ENCONTRADAS NA LITERATURA

Journal of Cleaner Production 184 (2018) 101-129

Contents lists available at ScienceDirect

Journal of Cleaner Production

Evaluating the performance of suppliers based on using the R'AMATEL-MAIRCA method for green supply chain implementation in electronics industry

Kajal Chatterjee ^a, Dragan Pamucar ^b, Edmundas Kazimieras Zavadskas ^{c, *}

^a Department of Mathematics, National Institute of Technology, Durgapur, 713209, India

^b Department of Logistics, University of Defence, Belgrade, 11000, Serbia

^c Institute of Sustainable Constructions, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-1022, Vilnius, Lithuania

APLICAÇÕES ENCONTRADAS NA LITERATURA

Expert Systems With Applications 88 (2017) 58-80

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model

Dragan Pamučar a,*, Milan Mihajlović b, Radojko Obradović c, Predrag Atanasković d

- ^a University of defence in Belgrade, Department of logistics, Pavla Jurisica Sturma 33, 11000 Belgrade, Serbia
- ^b University of defence in Belgrade, Department of finances, Pavla Jurisica Sturma 33, 11000 Belgrade, Serbia
- ^c University of Belgrade, Faculty of Architecture, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
- d University of Novi Sad, Faculty of Technical Science, Dositeja Obradovića 6, 21000 Novi Sad, Serbia

ARTICLE INFO

Article history: Received 19 March 2017 Revised 21 June 2017 Accepted 23 June 2017 Available online 27 June 2017

Keywords: Interval rough numbers DEMATEL ANP MAIRCA Public procurements

ABSTRACT

This paper presents a novel approach for treating uncertainty in the multi-criteria decision making process by introducing interval rough numbers (IRN). The IRN approach enables decision making using only the internal knowledge incorporated in the data provided by the decision maker. A hybrid multi-criteria model was developed based on IRN, and demonstrated using the example of the bidder selection process in the state administration public procurement procedure. The first segment of the hybrid model deals with the rough interval DEMATEL-ANP (IR'DANP) model, which enables more objective expert evaluation of criteria in a subjective environment than the traditional/crisp approach. In the second segment, the evaluation is enabled by applying the new rough interval MAIRCA method, which introduces mathematical tools and shows high stability concerning changes in the nature and characteristics of the criteria. The results of the hybrid IR'DANP-MAIRCA model were analyzed using 36 scenarios of sensitivity analysis, which showed high stability of the results. The results of the interval rough method were compared with the fuzzy extensions of the TOPSIS, VIKOR, MABAC, TODIM, ELECTRE I and DEMATEL-ANP models.

© 2017 Elsevier Ltd. All rights reserved.

REFERÊNCIAS

➤ Gigović, L., Pamuĉar, D., Bajić, Z., & Milićević, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability (Switzerland), 8(4). https://doi.org/10.3390/su8040372; e

➤ Pamučar, D., Mihajlović, M., Obradović, R., & Atanasković, P. (2017). Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Systems with Applications, 88, 58–80. https://doi.org/10.1016/j.eswa.2017.06.037.

Dúvidas?

32