Distribution Theory and Applications — Summary

Lucas Riedstra

October 17, 2020

Contents

1	Dist	tributions	2
	1.1	Test functions and distributions	2
	1.2	Limits in $\mathcal{D}'(X)$	3
	1.3	Basic operations	4
		1.3.1 Differentiation and multiplication by smooth functions	4
		1.3.2 Reflection and translation	4
		1.3.3 Convolution	Ę

1 Distributions

1.1 Test functions and distributions

Definition 1.1. Let $X \subseteq \mathbb{R}^n$ be open, then we define the set of test functions on X as

$$\mathcal{D}(X) \coloneqq C_0^\infty(X) = \{f \colon X \to \mathbb{C} \mid f \text{ is smooth with compact support}\}.$$

Definition 1.2. Let $(\varphi_m) \subseteq \mathcal{D}(X)$. We say that $(\varphi_m) \to 0$ in $\mathcal{D}(X)$ if

- 1. there exists a compact $K \subseteq X$ such that supp $\varphi_m \subseteq K$ for all m;
- 2. $\partial^{\alpha} \varphi_m \to 0$ uniformly for each multi-index α .

Note that, for any $\varphi, \psi \in \mathcal{D}(X)$ and any multi-index α we have

$$\int_X \varphi \cdot \partial^\alpha \psi \, \mathrm{d}x = (-1)^{|\alpha|} \int_X \psi \cdot \partial^\alpha \varphi \, \mathrm{d}x \,,$$

which follows from partial integration and the fact that all boundary terms vanish since φ and ψ have compact support.

Also, by Taylor's theorem, for any $\varphi \in \mathcal{D}(X)$, $x, h \in X$ and $N \in \mathbb{N}$ we have

$$\varphi(x+h) = \sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h) \quad \text{where } R_N(x,h) = o(|h|^N) \text{ uniformly in } x.$$

Definition 1.3. A distribution on X is a linear map $u: \mathcal{D}(X) \to \mathbb{C}$ if for every compact set $K \subseteq X$ there exist constants C, N such that for all $\varphi \in \mathcal{D}(X)$ with supp $\varphi \subseteq K$ we have

$$|u(\varphi)| \le C \sum_{|\alpha| \le N} \sup |\partial^{\alpha} \varphi|.$$
 (1)

Condition 1 is called the *seminorm condition*. If, in the seminorm condition, the same N can be used for every compact set $K \subseteq X$, then the least such N is called the *order* of u, written $\operatorname{ord}(u)$.

The set of all distributions in X is denoted $\mathcal{D}'(X)$.

If $u \in \mathcal{D}'(X)$ and $\varphi \in \mathcal{D}(X)$, then instead of $u(\varphi)$ we usually write $\langle u, \varphi \rangle$.

Recap 1.4. A function $f: X \to \mathbb{C}$ is called *locally integrable* if $\int_K |f| dx < \infty$ for all compact $K \subseteq X$.

The set of locally integrable functions on X is denoted $L^1_{loc}(X)$.

Example 1.5. Let $M \in \mathbb{N}$ and let $f_{\alpha} \in L^1_{loc}(X)$ for all $|\alpha| \leq M$. Define the linear map $T : \mathcal{D}(X) \to \mathbb{C}$ by

$$\langle T, \varphi \rangle := \sum_{|\alpha| \leq M} \int_X f_\alpha \cdot \partial^\alpha \varphi \, \mathrm{d}x.$$

It is trivial that T is linear, and we verify that T is a distribution as follows: take $\varphi \in \mathcal{D}(X)$ with $\operatorname{supp} \varphi \subseteq K$. Then we have

$$\begin{aligned} |\langle T, \varphi \rangle| &\leq \sum_{|\alpha| \leq M} \int_{K} |f_{\alpha}| \cdot |\partial^{\alpha} \varphi| \, \mathrm{d}x \\ &\leq \sum_{|\alpha| \leq M} \sup |\partial^{\alpha} \varphi| \cdot \int_{K} |f_{\alpha}| \, \mathrm{d}x \\ &\leq \left(\max_{\alpha} \int_{K} |f_{\alpha}| \, \mathrm{d}x \right) \sum_{|\alpha| \leq M} \sup |\partial^{\alpha} \varphi|. \end{aligned}$$

Therefore, the seminorm condition is satisfied with N=M. From this, it also follows that $\operatorname{ord}(T) \leq M$.

A special case of the previous example is the case M=0: in this case the distribution simply becomes

$$\langle T_f, \varphi \rangle = \int_X f \varphi \, \mathrm{d}x \,.$$

Henceforth we will abuse notation: if $f \in L^1_{loc}(X)$, then we will write f instead of T_f , i.e., $\langle f, \varphi \rangle = \int_X f \varphi \, \mathrm{d}x$.

Lemma 1.6. Let $u: \mathcal{D}(X) \to \mathbb{C}$ be a linear map. Then u is a distribution if and only if, for every sequence $(\varphi_j) \subseteq \mathcal{D}(X)$ with $\varphi_j \to 0$ as in definition 1.2, we have $\langle u, \varphi_m \rangle \to 0$.

Proof. ' \Longrightarrow ' If u is a distribution and $(\varphi_m) \to 0$, then $\operatorname{supp} \varphi_m \subseteq K$ for some compact K, and by eq. (1) there exist C, N such that

$$|\langle u, \varphi_m \rangle| \le C \sum_{|\alpha| \le N} \sup |\partial^{\alpha} \varphi_m| \to 0.$$

' \iff 'Suppose there is a compact set K such that eq. (1) is not valid for any C, N. Let $m \in \mathbb{N}$ and C = N = m, then there is some φ_m with $\operatorname{supp}(\varphi_m) \subseteq K$, and

$$|\langle u, \varphi_m \rangle| > m \sum_{|\alpha| \le m} \sup |\hat{\sigma}^{\alpha} \varphi_m|.$$

By dividing φ_m by $\langle u, \varphi_m \rangle \neq 0$, we may assume w.l.o.g. that $\langle u, \varphi_m \rangle = 1$. We now have a sequence (φ_m) such that

$$\frac{1}{m} > \sum_{|\alpha| \le m} \sup |\partial^{\alpha} \varphi_m| \implies |\partial^{\alpha} \varphi_m| < \frac{1}{m} \quad \text{for } |\alpha| \le m \implies \partial^{\alpha} \varphi_m \to 0 \text{ uniformly for all } \alpha.$$

Since each φ_m also satisfies supp $\varphi_m \subseteq K$, by definition 1.2 we have that $\varphi_m \to 0$, but also $\langle u, \varphi_m \rangle \to 1$, a contradiction.

1.2 Limits in $\mathcal{D}'(X)$

Definition 1.7. We say that a sequence $(u_m) \subseteq \mathcal{D}'(X)$ converges to $u \in \mathcal{D}'(X)$ and write $u_m \to u$ if

$$\langle u_m, \varphi \rangle \to \langle u, \varphi \rangle$$
 for all $\varphi \in \mathcal{D}(X)$.

The following theorem is non-examinable but interesting:

Theorem 1.8. Let (u_m) be a sequence in $\mathcal{D}'(X)$ such that $\lim_{m\to\infty} \langle u_m, \varphi \rangle$ exists for all $\varphi \in \mathcal{D}(X)$. Then the map $\langle u, \varphi \rangle \coloneqq \lim_{m\to\infty} \langle u_m, \varphi \rangle$ is a distribution in X.

Proof. This is a direct application of the uniform boundedness principle.

Example 1.9. Let $X = \mathbb{R}$ and consider the sequence of functions $u_m \in L^1_{loc}(\mathbb{R})$ defined by $u_m(x) = \sin(mx)$. Then, for all $\varphi \in \mathcal{D}(\mathbb{R})$, we have

$$\langle u_m, \varphi \rangle = \int_{\mathbb{R}} \sin(mx)\varphi(x) dx = \frac{1}{m} \int_{\mathbb{R}} \cos(mx)\varphi'(x) dx \le \frac{1}{m} \int |\varphi'(x)| dx \to 0.$$

Therefore, it holds that $u_m \to 0$ in $\mathcal{D}'(\mathbb{R})$. With our abuse of notation we write this as $\lim_{m \to \infty} \sin(mx) = 0$ in $\mathcal{D}'(\mathbb{R})$.

1.3 Basic operations

Differentiation and multiplication by smooth functions

For $u \in C^{\infty}(X)$ and $\varphi \in \mathcal{D}(X)$, we have noted that

$$\langle \partial^{\alpha} u, \varphi \rangle = \int_{X} \partial^{\alpha} u \cdot \varphi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{X} u \cdot \partial^{\alpha} \varphi \, \mathrm{d}x = \langle u, (-1)^{|\alpha|} \partial^{\alpha} \varphi \rangle.$$

Since the RHS makes sense for any distribution u, we define

Definition 1.10. For $f \in C^{\infty}(X)$, $u \in \mathcal{D}'(X)$, we define $\partial^{\alpha}(fu)$ by

$$\langle \partial^{\alpha}(fu), \varphi \rangle := \langle u, (-1)^{|\alpha|} f \cdot \partial^{\alpha} \varphi \rangle$$

Remark. This definition outlines a more general pattern when working with distributions: first we take some well-defined operator on the collection of smooth maps, then we rewrite it to a form that is sensible for any distribution, and then we define that new form as the operator on distributions. This process is called extending the definition by duality.

Example 1.11. Let $u = \delta_x$, then we have

$$\langle \partial^{\alpha} \delta_x, \varphi \rangle = \langle \delta_x, (-1)^{|\alpha|} \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha|} \partial^{\alpha} \varphi(x)$$

Furthermore, consider the Heaviside function $H(x) = \mathbb{1}_{x \ge 0}$. We have

$$\langle H', \varphi \rangle = -\langle H, \varphi' \rangle = -\int_{\mathbb{R}} H(x) \varphi'(x) \, \mathrm{d}x = -\int_{0}^{\infty} \varphi'(x) \, \mathrm{d}x = \varphi(0) = \langle \delta_{0}, \varphi \rangle,$$

so we write $H' = \delta_0$ in the distributional sense.

Lemma 1.12. Suppose $u' \in \mathcal{D}'(\mathbb{R})$ satisfies u' = 0. Then u is constant (i.e., $\langle u, \varphi \rangle = \langle c, \varphi \rangle = c \int_{\mathbb{R}} \varphi \, \mathrm{d}x$ for some c).

Proof. Fix any $\vartheta \in \mathcal{D}(\mathbb{R})$ with $\langle 1, \vartheta \rangle = 1$. Let $\varphi \in \mathcal{D}(\mathbb{R})$ and define

$$\varphi_A := \varphi - \langle 1, \varphi \rangle \vartheta$$
, $\varphi_B := \langle 1, \varphi \rangle \vartheta$ such that $\varphi = \varphi_A + \varphi_B$.

Note that $\langle 1, \varphi_A \rangle = \langle 1, \varphi \rangle - \langle 1, \varphi \rangle \langle 1, \vartheta \rangle = 0$. We claim that the function $\Phi_A(x) := \int_{-\infty}^x \varphi_A(y) \, \mathrm{d}y$ has compact support: since $\sup \varphi_A \subseteq [a, b]$ for some $a, b \in \mathbb{R}$, clearly $\Phi_A(x) = 0$ for x < a, while for x > b we have $\Phi_A(x) = \langle 1, \varphi_A \rangle = 0$. Obviously, it holds that $\Phi'_A = \varphi_a$. Now we compute

$$\langle u, \varphi \rangle = \langle u, \varphi_A \rangle + \langle u, \varphi_B \rangle = \langle u, \Phi_A' \rangle + \langle 1, \varphi \rangle \langle u, \vartheta \rangle = -\langle u', \Phi_A \rangle + c\langle 1, \varphi \rangle = \langle c, \varphi \rangle.$$

Since φ was chosen arbitrarily this shows that u is constant.

Reflection and translation

For $\varphi \in \mathcal{D}(\mathbb{R}^n)$, $h \in \mathbb{R}^n$, define the translation of φ by h by

$$(T_h\varphi)(x) := \varphi(x-h),$$

and the reflection of φ by $\check{\varphi}(x) := \varphi(-x)$.

Extending the definitions of translation and reflection by duality yields the following:

Definition 1.13. For $u \in \mathcal{D}'(\mathbb{R}^n)$, $h \in \mathbb{R}^n$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, define

$$\langle T_h u, \varphi \rangle \coloneqq \langle u, T_{-h} \varphi \rangle \quad \text{and} \quad \langle \widecheck{u}, \varphi \rangle \coloneqq \langle u, \widecheck{\varphi} \rangle.$$

Lemma 1.14. For $u \in \mathcal{D}'(\mathbb{R}^n)$, define $V_h \in \mathcal{D}'(\mathbb{R}^n)$ for $0 \neq h \in \mathbb{R}^n$ by

$$V_h := \frac{T_{-h}u - u}{\|h\|}$$

If $(h_j) \subseteq \mathbb{R}^n$ is a sequence for which $\lim_{j\to\infty} \frac{h_j}{\|h_j\|} = m \in S^{n-1}$, then $V_{h_j} \to \sum_i m_i \frac{\partial u}{\partial x_i}$ in $\mathcal{D}'(\mathbb{R}^n)$.

Proof. By definition, we can write $\langle V_h, \varphi \rangle = \frac{1}{\|h\|} \langle u, T_h \varphi - \varphi \rangle$. Now Taylor's theorem tells us that

$$(T_h \varphi - \varphi)(x) = \varphi(x - h) - \varphi(x) = -\sum_i h_i \frac{\partial \varphi}{\partial x_i} + R(x, h),$$

where R(x,h) = o(||h||) in $D(\mathbb{R}^n)$ (exercise sheet 1, question 2).

By sequential continuity, we have

$$\lim_{j \to \infty} \langle V_{h_j}, \varphi \rangle = \langle u, -\sum_i m_i \frac{\partial \varphi}{\partial x_i} \rangle = \langle \sum_i m_i \frac{\partial u}{\partial x_i}, \varphi \rangle,$$

which shows that $V_{h_j} \to \sum_i m_i \frac{\partial u}{\partial x_i}$ in $\mathcal{D}'(\mathbb{R}^n)$.

1.3.3 Convolution

For $\varphi \in \mathcal{D}(\mathbb{R}^n)$, note that $(T_x \check{\varphi})(y) = \check{\varphi}(y - x) = \varphi(x - y)$.

Definition 1.15. For $u \in C^{\infty}(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we define the *convolution* $u * \varphi : \mathbb{R}^n \to \mathbb{C}$ as

$$(u * \varphi)(x) := \int_{\mathbb{R}^n} u(x - y)\varphi(y) \, \mathrm{d}y = \int_{\mathbb{R}^n} u(y)\varphi(x - y) \, \mathrm{d}y = \langle u, T_x \widecheck{\varphi} \rangle.$$

Since the RHS makes sense for any $u \in \mathcal{D}'(\mathbb{R}^n)$, we extend the definition this way: for $u \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we define the convolution $u * \varphi$ as

$$(u * \varphi)(x) := \langle u, T_x \check{\varphi} \rangle.$$

Lemma 1.16. Let $\varphi \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^m)$ and define $\Phi_x(y) := \varphi(x,y)$. Suppose for any $x \in \mathbb{R}^n$ there exists a neighbourhood N(x) and a compact $K \subseteq \mathbb{R}^m$ such that $\varphi(x,y)$ for all $x \in N(x), y \notin K$. Then $x \mapsto \langle u, \Phi_x \rangle$ is differentiable with

$$\partial_x^{\alpha} \langle u, \Phi_x \rangle = \langle u, \partial_x^{\alpha} \Phi_x \rangle$$

for any $u \in \mathcal{D}'(\mathbb{R}^m)$.

Proof. Fix $x \in \mathbb{R}^n$, then by Taylor's formula we have

$$\Phi_{x+h}(y) = \Phi_x(y) + \sum_{i=1}^n h_i \frac{\partial \varphi}{\partial x_i} + R(x, y, h),$$

where $\partial_y^{\alpha} R(x, y, h) = o(\|h\|)$, uniformly in y, for any multi-index α . Furthermore, by assumption there exists a compact K such that for h small enough, supp $R(x, \cdot, h) \subseteq K$. Therefore, $R(x, \cdot, h)$ is a test function for h small enough.

Combining the previous two facts shows that $R(x,\cdot,h) = o(\|h\|)$ in $\mathcal{D}(\mathbb{R}^m)$ as $h \to 0$.

Let $u \in \mathcal{D}'(\mathbb{R}^m)$, then we find by sequential continuity that $\langle u, R(x, \cdot, h) \rangle$ is also $o(\|h\|)$, and therefore

$$\langle u, \Phi_{x+h} \rangle = \langle u, \Phi_x \rangle + \sum_{i=1}^n h_i \langle u, \frac{\partial \Phi_x}{\partial x_i} \rangle + o(\|h\|).$$

This shows that $x\mapsto \langle u,\Phi_x\rangle$ is differentiable with

$$\frac{\partial}{\partial x_i} \langle u, \Phi_x \rangle = \langle u, \frac{\partial \Phi_x}{\partial x_i} \rangle.$$

From this the result follows.

Corollary 1.17. If $u \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in \mathcal{D}(\mathbb{R}^n)$, then $u * \varphi$ is differentiable with $\partial^{\alpha}(u * \varphi) = u * \partial^{\alpha}\varphi$.

Proof. Apply the previous lemma with $\Phi_x(y) := \varphi(x - y)$.