Probabilistic Sensitivity Analysis

Dispelling the myths...

Andrew Briggs, DPhil *University of Oxford*

Some common myths surrounding PSA...

- But Claxton tells us 'inference is irrelevant' which means that we don't have to worry about uncertainty? Right?
- But PSA is complicated, we can handle uncertainty using standard sensitivity analysis methods? Right?
- But there are so many potential distributions, PSA is just an arbitrary exercise? Right?, WY
- PSA is all very well for simple models, but for my all-singing all-dancing discrete-event micro-simulation Markov-decision-process with policy relevant individual patient prediction module PSA is computationally expensive? Right?

But Claxton tells us 'inference is irrelevant' which means that we don't have to worry about uncertainty?

Even if this were true...

- Input parameters may be skewed and standard reporting may not focus on mean
- · Most decision models are not linear
- Uncertainty in input parameters affects the Expectation of the output parameters of interest

Example: Hazard ratio of risk of revision in hip model

But PSA is complicated, we can handle uncertainty using standard sensitivity analysis methods?

- One-way sensitivity analysis can under-represent decision uncertainty
- Multi-way analysis is cumbersome and doesn't say anything sensible about how likely different combinations of parameters are
- Both effectively ignore correlation

Choice of distribution is not arbitrary...

- A normal distribution is always a candidate
 - Central Limit Theorem
- Otherwise small number of candidates:
 - Type of parameter (logical restrictions)
 - Data being used to inform parameter estimation
 - Method of estimation

For example: Probability parameters Logical restriction: zero-one interval

Type of data: binomial

Estimation: univariate proportion

- Use Beta distribution

· Type of data: binomial

Estimation: multivariate logistic regression

- Use multivariate normality on log odds scale

 Type of data: time to event Estimation: survival analysis

- Use multivariate normality on log hazards scale

PSA is all very well for simple models, but for my all-singing all-dancing discrete-event microsimulation Markov-decision-process with policy relevant individual patient prediction module, PSA is computationally expensive?

True, but...

- The ends justify the means
- Uncertainty is important, therefore PSA is necessary

So...

- Buy a faster computer
- Leave it running over the weekend/semester/until 2006 (haven't you heard of Occam's Razor?)

Nevertheless, some important caveats...

Garbage in / Garbage out

- If we want to make statistical statements about outcomes, we had better be careful how we characterise our inputs
- Your VOI analysis is only as good as the PSA on which it is based!

Parameter uncertainty is not the only uncertainty!

- Structural uncertainty may be just as important
- Continuing role for traditional sensitivity analysis
- Need to see PSA for all scenarios?

Concluding comments

- · Decision uncertainty is important
- PSA can characterise parameter uncertainty to inform decision uncertainty
 - Less arbitrary than traditional SA
 - Process of choosing distributions should encourage more careful consideration of parameter uncertainty
- Continuing role for traditional SA for structural uncertainty
 - In addition to PSA