Contents

Preface ix
A Note to Students xv

Chapter 2

Chapter 3 Determinants

Chapter 1 Linear Equations in Linear Algebra

INTROD	UCTORY EXAMPLE: Linear Models in Economics and Engineering	1
1.1	Systems of Linear Equations 2	
1.2	Row Reduction and Echelon Forms 12	
1.3	Vector Equations 24	
1.4	The Matrix Equation $A\mathbf{x} = \mathbf{b}$ 34	
1.5	Solution Sets of Linear Systems 43	
1.6	Applications of Linear Systems 49	
1.7	Linear Independence 55	
1.8	Introduction to Linear Transformations 62	
1.9	The Matrix of a Linear Transformation 70	
1.10	Linear Models in Business, Science, and Engineering 80	
	Supplementary Exercises 88	
Matri	x Algebra 91	
INTROD	UCTORY EXAMPLE: Computer Models in Aircraft Design 91	
INTROD 2.1	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92	
INTROD 2.1 2.2	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102	
INTROD 2.1 2.2 2.3	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111	
INTROD 2.1 2.2 2.3 2.4	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111 Partitioned Matrices 117	
INTROD 2.1 2.2 2.3 2.4 2.5	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111 Partitioned Matrices 117 Matrix Factorizations 123	
2.1 2.2 2.3 2.4 2.5 2.6	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111 Partitioned Matrices 117 Matrix Factorizations 123 The Leontief Input–Output Model 132	
INTROD 2.1 2.2 2.3 2.4 2.5 2.6 2.7	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111 Partitioned Matrices 117 Matrix Factorizations 123 The Leontief Input—Output Model 132 Applications to Computer Graphics 138	
INTROD 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	UCTORY EXAMPLE: Computer Models in Aircraft Design 91 Matrix Operations 92 The Inverse of a Matrix 102 Characterizations of Invertible Matrices 111 Partitioned Matrices 117 Matrix Factorizations 123 The Leontief Input—Output Model 132 Applications to Computer Graphics 138 Subspaces of \mathbb{R}^n 146	

INTRODUCTORY EXAMPLE: Random Paths and Distortion 163

- 3.1 Introduction to Determinants 164
- 3.2 Properties of Determinants **169**

	3.3 Cramer's Rule, Volume, and Linear Transformations 177 Supplementary Exercises 185
Chapter 4	Vector Spaces 189
	INTRODUCTORY EXAMPLE: Space Flight and Control Systems 189 4.1 Vector Spaces and Subspaces 190 4.2 Null Spaces, Column Spaces, and Linear Transformations 198 4.3 Linearly Independent Sets; Bases 208 4.4 Coordinate Systems 216 4.5 The Dimension of a Vector Space 225 4.6 Rank 230 4.7 Change of Basis 239 4.8 Applications to Difference Equations 244 4.9 Applications to Markov Chains 253 Supplementary Exercises 262
Chapter 5	Eigenvalues and Eigenvectors 265
	INTRODUCTORY EXAMPLE: Dynamical Systems and Spotted Owls 265 5.1 Eigenvectors and Eigenvalues 266 5.2 The Characteristic Equation 273 5.3 Diagonalization 281 5.4 Eigenvectors and Linear Transformations 288 5.5 Complex Eigenvalues 295 5.6 Discrete Dynamical Systems 301 5.7 Applications to Differential Equations 311 5.8 Iterative Estimates for Eigenvalues 319 Supplementary Exercises 326
Chapter 6	Orthogonality and Least Squares 329
	INTRODUCTORY EXAMPLE: The North American Datum and GPS Navigation 329 6.1 Inner Product, Length, and Orthogonality 330 6.2 Orthogonal Sets 338 6.3 Orthogonal Projections 347 6.4 The Gram–Schmidt Process 354 6.5 Least-Squares Problems 360 6.6 Applications to Linear Models 368 6.7 Inner Product Spaces 376 6.8 Applications of Inner Product Spaces 383 Supplementary Exercises 390

Chapter 7 Symmetric Matrices and Quadratic Forms 393

INTRODUCTORY EXAMPLE: Multichannel Image Processing 393

- 7.1 Diagonalization of Symmetric Matrices 395
- 7.2 Quadratic Forms 401
- 7.3 Constrained Optimization 408
- 7.4 The Singular Value Decomposition 414
- 7.5 Applications to Image Processing and Statistics **424**Supplementary Exercises **432**

Chapter 8 The Geometry of Vector Spaces 435

INTRODUCTORY EXAMPLE: The Platonic Solids 435

- 8.1 Affine Combinations **436**
- 8.2 Affine Independence 444
- 8.3 Convex Combinations **454**
- 8.4 Hyperplanes 461
- 8.5 Polytopes **469**
- 8.6 Curves and Surfaces 481

Chapter 9 Optimization (Online)

INTRODUCTORY EXAMPLE: The Berlin Airlift

- 9.1 Matrix Games
- 9.2 Linear Programming—Geometric Method
- 9.3 Linear Programming—Simplex Method
- 9.4 Duality

Chapter 10 Finite-State Markov Chains (Online)

INTRODUCTORY EXAMPLE: Google and Markov Chains

- 10.1 Introduction and Examples
- 10.2 The Steady-State Vector and Google's PageRank
- 10.3 Communication Classes
- 10.4 Classification of States and Periodicity
- 10.5 The Fundamental Matrix
- 10.6 Markov Chains and Baseball Statistics