无穷级数

Didnelpsun

目录

1	常数项级数													
	1.1	概念 .			1									
		1.1.1	基本概念		1									
		1.1.2	性质		1									
	1.2	级数敛	散性判别		2									
		1.2.1	正项级数		2									
			1.2.1.1 概	无念	2									
			1.2.1.2 收	双敛原则	2									
			1.2.1.3 比	公较判别法	2									
			1.2.1.4 比	公较判别法极限性质	3									
			1.2.1.5 比	公值判别法	3									
			1.2.1.6 根	B值判别法	3									
		1.2.2	交错级数		4									
			1.2.2.1 概	无念	4									
			1.2.2.2 莱	至布尼兹判别法	4									
		1.2.3	任意项级数	[4									
			1.2.3.1 绝	西对收敛	4									
			1.2.3.2 条	条件收敛	4									
2	幂级	数			4									
	2.1	概念与	收敛域		4									
		2.1.1	概念		4									
		212	阿贝尔宁理	I	1									

	2.1.3	收敛域.														•	4
2.2	幂级数	求和函数				•										•	4
	2.2.1	概念				•									•		4
	2.2.2	运算法则] .														4
	2.2.3	性质															4
	2.2.4	重要展开	式			•									•		4
2.3	函数展	开为幂级	数			•									•		4
	2.3.1	概念				•									•		4
	2.3.2	求法															4
		2.3.2.1	直挂	妾法		•									•		4
		2.3.2.2	间担	妾法		•										•	4

1 常数项级数

1.1 概念

级数的经典悖论为芝诺悖论。

1.1.1 基本概念

定义: 给定义一个无穷数列 $u_1, u_2, \dots, u_n, \dots$, 将其各项用加号连起来的得到的记号 $\sum_{n=1}^{\infty} u_n$, 即 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$ 叫做**无穷级数**,简称**级数**,其中 u_n 称为该级数的**通项**。

若 u_n 是常数而不是函数,则 $\sum\limits_{n=1}^{\infty}u_n$ 就被称为**常数项无穷级数**,简称**常数项** 级数。

 $S_n = u_1 + u_2 + \cdots + u_n$ 称为级数的部分和, $\{S_n\}$ 是级数的部分和数量。

定义: 若 $\lim_{n\to\infty} S_n = S$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛, 并称 S 为该收敛级数 $\sum_{n=1}^{\infty} u_n$ 的和;

若 $\lim_{n\to\infty} S_n$ 不存在或为 $\pm \infty$,则 $\sum_{n=1}^{\infty} u_n$ 发散。

研究 $\sum_{n=1}^{\infty} u_n$ 收敛还是发散, 就是研究级数 $\sum_{n=1}^{\infty} u_n$ 的敛散性。

在级数 $\sum_{n=1}^{\infty} u_n$ 去掉前 m 项,得 $\sum_{n=m+1}^{\infty} u_n = u_{m+1} + u_{m+2} + \cdots$,称为级数 $\sum_{n=1}^{\infty} u_n$ 的 m 项后余项

1.1.2 性质

- 1. 线性性质: 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 均收敛,且其和分别为 S, T, 则任给常数 a,b, 有 $\sum_{n=1}^{\infty} (au_n + bv_n)$ 也收敛,且其和为 aS + bT,即 $\sum_{n=1}^{\infty} (au_n + bv_n) = a\sum_{n=1}^{\infty} u_n + b\sum_{n=1}^{\infty} v_n$ 。
- 2. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则其任意 m 项后余项 $\sum_{n=m+1}^{\infty} u_n$ 也收敛;若存在 m 项后余项 $\sum_{n=m+1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛。
- 3. 级数收敛必要条件: 若级数 $\sum_{n=1}^{\infty} u_n$ 首先,则 $\lim_{n\to\infty} u_n = 0$ 。

证明性质三: $u_n = S_n - S_{n-1}$,所以 $\lim_{n \to \infty} = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$ 。极限为 0 不一定收敛。

1.2级数敛散性判别

1.2.1 正项级数

1.2.1.1 概念

定义: 若通项 $u_n \geqslant 0$, $n = 1, 2, \cdots$, 则 $\sum_{n=1}^{\infty} u_n$ 为正项级数。

1.2.1.2 收敛原则

定理: 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是其部分和数列 $\{S_n\}$ 有界。(某一 函数在固定区间内变化率是有界的,则变化范围是有界的)

证明: 必要性: 由于 $u_n \geqslant 0$, $\therefore S_n = u_1 + u_2 + \dots + u_n \geqslant 0$, 且 $S_1 \leqslant S_2 \leqslant$ $\cdots \leqslant S_n \leqslant \cdots$, $\{S_n\}$ 单调不减且下界为 0。当 $\sum\limits_{n=1}^\infty u_n$ 收敛时, $\lim\limits_{n\to\infty} S_n$ 存在,则 $\{S_n\}$ 必有上界。有上界下界则 $\{S_n\}$ 有界。(某一函数在固定区间内变化率是有 界的,则变化范围是有界的)

充分性: 由于 $\{S_n\}$ 单调不减,所以根据单调有界准则, $\{S_n\}$ 收敛,即 $\lim_{n\to\infty} S_n$ 存在,于是 $\sum_{n=0}^{\infty} u_n$ 收敛。

基本就是使用放缩法判断是否有界。

例题: 判断级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 的敛散性。 解: $S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > n \frac{1}{\sqrt{n}} = \sqrt{n}$, 当 $n \to \infty$ 时 $\sqrt{n} \to \infty$,

比较判别法 1.2.1.3

定理: 给出两个正项级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$, 若从某项开始有 $u_n \leqslant v_n$ 成立, 则:

①若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛;②若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 也发散。即大的收敛小的也收敛,小的发散大的也发散。

例题: 判断调和级数
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 的敛散性。

$$\widetilde{\mathbf{H}}: \ \ \, : \ x > 0, \ \, x > \ln(1+x), \ \, \therefore \frac{1}{n} > \ln\left(1+\frac{1}{n}\right).$$

又对于
$$\ln\left(1+\frac{1}{n}\right) = \ln\frac{n+1}{n} = \ln(n+1) - \ln n$$
。

$$S_n = \ln \frac{2}{1} + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} = \ln 2 - \ln 1 + \ln 3 - \ln 2 + \dots + \ln (n+1) - \ln n = 0$$

$$\ln(n+1)$$
。 当 $\ln(n+1)$ 在 $n\to\infty$ 时, $S_n\to\infty$ 。

所以
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$
 发散,则 $\sum_{n=1}^{\infty} \frac{1}{n}$ 也发散。

定理:
$$p$$
 级数:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \left\{ \begin{array}{l} p > 1, 收敛 \\ p \leqslant 1, 发散 \end{array} \right.$$

1.2.1.4 比较判别法极限性质

是比较判别法的推论,利用极限的阶数来比较。

给出两个正项级数
$$\sum\limits_{n=1}^{\infty}u_n$$
, $\sum\limits_{n=1}^{\infty}v_n$, $v_n\neq 0$, 且 $\lim\limits_{n\to\infty}\dfrac{u_n}{v_n}=A$:

1. 若
$$A=0$$
,则当 $\sum\limits_{n=1}^{\infty}v_n$ 收敛时, $\sum\limits_{n=1}^{\infty}u_n$ 也收敛。

2. 当
$$A = +\infty$$
,当 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散。

3. 若
$$0 < A < +\infty$$
,则 $\sum_{n=1}^{\infty} v_n$ 与 $\sum_{n=1}^{\infty} u_n$ 具有相同敛散性。

例题: 判断
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n}\right)$$
 敛散性。

解: 令
$$\frac{1}{n} = x$$
, $n \to \infty$ 所以 $x \to 0^+$ 。当 $x \to 0^+$, $x - \sin x \sim \frac{1}{6}x^3$ 。

$$\therefore \lim_{n \to \infty} \frac{\frac{1}{n} - \sin \frac{1}{n}}{\frac{1}{n^3}} = \frac{1}{6} \neq 0, \text{ 所以 } \frac{1}{n} - \sin \frac{1}{n} = \frac{1}{n^3} \text{ 具有相同敛散性}.$$

根据
$$p$$
 级数定理, $p=3>1$, 所以 $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n}\right)$ 收敛。

1.2.1.5 比值判别法

也称为达朗贝尔判别法。

定理: 给出一正项级数 $\sum_{n=1}^{\infty} u_n$,若 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则: ①若 $\rho < 1$,则 $\sum_{n=1}^{\infty} u_n$ 收敛; ②若 $\rho > 1$,则 $\sum_{n=1}^{\infty} u_n$ 发散。

注意: $\rho = 1$ 时无法根据此判断 $\sum_{n=1}^{\infty} u_n$ 敛散性,如 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,但 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛。

适用于含有 a^n , n!, n^n 的通项。

例题: 判断级数 $\sum_{n=1}^{\infty} \frac{|a|^n n!}{n^n}$ 的敛散性,其中 a 为非零常数。解:

1.2.1.6 根值判别法

也称为柯西判别法。

定理:
$$\sum_{n=1}^{\infty} u_n$$

- 1.2.2 交错级数
- 1.2.2.1 概念
- 1.2.2.2 莱布尼兹判别法
- 1.2.3 任意项级数
- 1.2.3.1 绝对收敛
- 1.2.3.2 条件收敛

2 幂级数

- 2.1 概念与收敛域
- 2.1.1 概念
- 2.1.2 阿贝尔定理
- 2.1.3 收敛域
- 2.2 幂级数求和函数
- 2.2.1 概念
- 2.2.2 运算法则
- 2.2.3 性质
- 2.2.4 重要展开式
- 2.3 函数展开为幂级数
- 2.3.1 概念
- 2.3.2 求法
- 2.3.2.1 直接法
- 2.3.2.2 间接法