Section 13: metric spaces

Definition (Definition 13.1 – metric)

Suppose S is a set. A function $d: S \times S \to [0, \infty)$ is called a metric (or distance) if the following hold:

- (D1) Non-degeneracy: d(x, y) = 0 iff x = y (hence d(x, y) > 0 when $x \neq y$).
- (D2) Symmetry: for $x, y \in S$, d(x, y) = d(y, x).
- (D3) Triangle inequality: for $x, y, z \in S$, $\overline{d(x,y) + d(y,z)} \geqslant d(x,z).$
- (S, d) is called a metric space.
- Examples. 1. Let $S = \mathbb{R}$. Then d(x, y) = |x y| is a metric.
- 2. The *n*-dimensional Euclidean space \mathbb{R}^n (p. 84): set of all *n*-tuples $\vec{x} = (x_1, \dots, x_n)$ $(x_i \in \mathbb{R})$. $d(\vec{x}, \vec{y}) = (\sum_i (x_i y_i)^2)^{1/2}$. (D1), (D2) are easy to check; (D3) is harder.

Convergence in metric spaces

Definition (Definition 13.2)

Suppose (S, d) is a metric space.

A sequence $(s_n) \subset S$ converges to $s \in S$ if $\lim_n d(s_n, s) = 0$ – that is, $\forall \varepsilon > 0 \ \exists N$ s.t. $d(s_n, s) < \varepsilon$ for n > N.

A sequence $(s_n) \subset S$ is Cauchy if $\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ d(s_n, s_m) < \varepsilon$ for m, n > N.

Note: for (\mathbb{R}, d) , we recover the usual definitions of "converges" and "Cauchy."

Complete metric spaces

Proposition

If (s_n) converges, then it is Cauchy.

Proof. Suppose (s_n) converges to s. Want to show (s_n) is Cauchy. Fix $\varepsilon > 0$, and find N s.t. $d(s_n, s_m) < \varepsilon$ when n, m > N. Find N s.t. $d(s_n, s) < \frac{\varepsilon}{2}$ if n > N. This N works: if n, m > N, then $d(s_n, s_m) \leqslant d(s_n, s) + d(s, s_m) < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$.

Does a Cauchy sequence always converge?

Definition (Definition 13.2 continued)

A metric space (S, d) is called **complete** if any Cauchy sequence in S converges.

Examples. \mathbb{R} is complete. Will prove: \mathbb{R}^n is complete.

Example: discrete metric

Discrete metric. S is a set. For $x, y \in S$, $d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$. Is it a metric? **Yes!** Need to check the following:

- **(D1)** d(x,y) = 0 iff x = y, d(x,y) > 0 if $x \neq y$.
- **(D2)** For $x, y \in S$, d(x, y) = d(y, x).
- **(D3)** For $x, y, z \in S$, $d(x, y) + d(y, z) \ge d(x, z)$.

Verification of (D3), for x, y, z distinct:

$$d(x, y) + d(y, z) = 1 + 1 \ge d(x, z) = 1.$$

Is this metric space complete? **Yes!** Suppose a sequence (s_n) is Cauchy, and show it converges.

Find N s.t. $d(s_n, s_m) < 1$ for n, m > N. Then $s_n = s_{N+1}$ fr n > N. In particular, (s_n) converges to s_{N+1} .

A metric space which is not complete

Consider \mathbb{Q} , with metric d(x,y) = |x-y| (metric inherited from \mathbb{R}). To show that this metric space is not complete, exhibit a Cauchy sequence which doesn't converge.

For $n \in \mathbb{N}$ find $r_n \in (\sqrt{2} - \frac{1}{n}, \sqrt{2})$. $r_n \to \sqrt{2}$ is \mathbb{R} , hence (r_n) is Cauchy (in \mathbb{R} , and also in \mathbb{Q}).

In \mathbb{R} , $\lim r_n = \sqrt{2}$. If (r_n) were convergent in \mathbb{Q} , it would have converged to the same limit. But $\sqrt{2} \notin \mathbb{Q}$, hence (r_n) is not convergent in \mathbb{Q} .

Example: Manhattan (taxicab) metric d_1

Consider
$$\mathbb{R}^n$$
; for $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$, $d_1(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|$.

The notation d_1 is different from the textbook (Exercise 13.1), but in line with common mathematical usage.

Proposition

 (\mathbb{R}^n, d_1) is a complete metric space.

Proof: (\mathbb{R}^n, d_1) is a metric space.

- Symmetry: $d_1(\vec{x}, \vec{y}) = d_1(\vec{y}, \vec{x})$ (straightforward).
- Non-degeneracy: $d_1(\vec{x}, \vec{y}) = 0$ iff $\vec{x} = \vec{y}$. $d_1(\vec{x}, \vec{y}) = 0$ iff $\sum_{i=1}^n |x_i y_i| = 0$ iff $x_i = y_i$ for any i iff $\vec{x} = \vec{y}$.
- Triangle inequality: $d_1(\vec{x}, \vec{z}) \leq d_1(\vec{x}, \vec{y}) + d_1(\vec{y}, \vec{z})$. RHS = $d_1(\vec{x}, \vec{y}) + d_1(\vec{y}, \vec{z}) = \sum_{i=1}^n |x_i - y_i| + \sum_{i=1}^n |y_i - z_i|$ = $\sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) \geq \sum_{i=1}^n |(x_i - y_i) + (y_i - z_i)|$ = $\sum_{i=1}^n |x_i - z_i| = d_1(\vec{x}, \vec{z}) = \text{LHS}$.

Proof: (\mathbb{R}^n, d_1) is complete

Lemma (similar to 13.3)

Consider a sequence $(\vec{x}^{(k)})_k$ in \mathbb{R}^n , with $\vec{x}^{(k)} = (x_i^{(k)})_{i=1}^n$. Then:

- $(\vec{x}^{(k)})_k$ is Cauchy iff $(x_i^{(k)})_k$ is Cauchy for $1 \leq i \leq n$.
- $(\vec{x}^{(k)})_k$ converges to $\vec{x} = (x_i)_{i=1}^n$ iff $\lim_k x_i^{(k)} = x_i$ for $1 \le i \le n$.

Lemma \Rightarrow completeness of (\mathbb{R}^n, d_1) .

Need to show: if $(\vec{x}^{(k)})_k$ is Cauchy, then it converges.

$$\vec{x}^{(k)} = (x_i^{(k)})_{i=1}^n$$
. $(x_i^{(k)})_k$ is Cauchy for $1 \leqslant i \leqslant n$.

 \mathbb{R} is complete $\Rightarrow (x_i^{(k)})_k$ converges to some $x_i \in \mathbb{R}$ $\Rightarrow (\vec{x}^{(k)})_k$ converges to $\vec{x} = (x_i)_{i=1}^n$.

Proof of Lemma, part (1) (part (2) is similar)

$$(\vec{x}^{(k)})_k$$
 is Cauchy iff $(x_i^{(k)})_k$ is Cauchy for $1 \leqslant i \leqslant n$.

 \Rightarrow : Suppose $(\vec{x}^{(k)})_k$ is Cauchy. Fix i. Want: $(x_i^{(k)})_k$ is Cauchy. For $\varepsilon > 0$ need to find N s.t. $|x_i^{(k)} - x_i^{(m)}| < \varepsilon$ for k, m > N. Find N s.t. $d_1(\vec{x}^{(k)}, \vec{x}^{(m)}) < \varepsilon$ for k, m > N. $\varepsilon > d_1(\vec{x}^{(k)}, \vec{x}^{(m)}) = \sum_{j=1}^n |x_j^{(k)} - x_j^{(m)}| \geqslant |x_i^{(k)} - x_i^{(m)}|$, so this N works for us!

 \Leftarrow : Suppose $(x_i^{(k)})_k$ is Cauchy $\forall i$. Want: $(\vec{x}^{(k)})_k$ is Cauchy. Fix $\varepsilon > 0$. Need to find N s.t. $d_1(\vec{x}^{(k)}, \vec{x}^{(m)}) < \varepsilon$ for k, m > N.

For $1 \leqslant i \leqslant n$ find $N_i \in \mathbb{N}$ s.t. $|x_i^{(k)} - x_i^{(m)}| < \frac{\varepsilon}{n}$ for $k, m > N_i$.

For $k, m > N = \max\{N_1, \dots, N_n\}$,

$$d_1(\vec{x}^{(k)}, \vec{x}^{(m)}) = \sum_{i=1}^n |x_i^{(k)} - x_i^{(m)}| < n \cdot \frac{\varepsilon}{n} = \varepsilon.$$

The *n*-dimensional Euclidean space revisited

The *n*-dimensional Euclidean space \mathbb{R}^n (p. 84): set of all *n*-tuples $\vec{x} = (x_1, \dots, x_n)$ $(x_i \in \mathbb{R})$. $d(\vec{x}, \vec{y}) = (\sum_i (x_i - y_i)^2)^{1/2}$.

Proposition (Only partially proved in textbook)

 (\mathbb{R}^n, d) is a complete metric space.

- Symmetry: $d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$ (straightforward).
- Non-degeneracy: $d(\vec{x}, \vec{y}) = 0$ iff $\vec{x} = \vec{y}$. $d(\vec{x}, \vec{y})^2 = 0$ iff $\sum_{i=1}^n (x_i y_i)^2 = 0$ iff $x_i = y_i$ for any i iff $\vec{x} = \vec{y}$.
- <u>Triangle inequality</u>: requires extra work. We shall define inner product and prove some useful inequalities.

The inner product (not in textbook)

Definition (Inner product and magnitude)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$ define the inner (scalar) product: $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^n x_i y_i$. The magnitude of \vec{x} is $\|\vec{x}\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \langle \vec{x}, \vec{x} \rangle^{1/2} = d(\vec{x}, 0)$.

Observation: $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$.

Properties of inner product.

Symmetry. For $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.

Linearity. For $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and $t \in \mathbb{R}$, $\langle t\vec{x}, \vec{y} \rangle = t \langle \vec{x}, \vec{y} \rangle$,

 $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$

Why do we need inner product? Orthogonality! Without inner products, cannot talk about orthogonal projections.

Triangle inequality and BCS inequality

Lemma (Triangle Inequality lite; not in textbook)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$, $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$.

Lemma \Rightarrow triangle inequality: For $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^n$, $d(\vec{a}, \vec{c}) = \|\vec{a} - \vec{c}\| = \|(\vec{a} - \vec{b}) + (\vec{b} - \vec{c})\|$ (now apply Lemma) $\leq \|\vec{a} - \vec{b}\| + \|\vec{b} - \vec{c}\| = d(\vec{a}, \vec{b}) + d(\vec{b}, \vec{c})$.

Theorem (Bunyakovsky-Cauchy-Schwarz, or BCS)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$, $|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| \, ||\vec{y}||$.

Inner product

Definition (Inner product and magnitude)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$ define the inner (scalar) product: $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^n x_i y_i$. The magnitude of \vec{x} is $\|\vec{x}\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2} = \langle \vec{x}, \vec{x} \rangle^{1/2} = d(\vec{x}, 0)$.

Theorem (Bunyakovsky-Cauchy-Schwarz, or BCS)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\left| \langle \vec{x}, \vec{y} \rangle \right| \leq \|\vec{x}\| \|\vec{y}\|$.

Proof. Nothing to prove if $\vec{x} = 0$ or $\vec{y} = 0$.

If
$$\vec{x}, \vec{y} \neq 0$$
, let $f(t) = \langle \vec{x} + t\vec{y}, \vec{x} + t\vec{y} \rangle = \|\vec{x} + t\vec{y}\|^2 \geqslant 0$. OTOH

$$f(t) = \langle \vec{x}, \vec{x} \rangle + \langle \vec{x}, t\vec{y} \rangle + \langle t\vec{y}, \vec{x} \rangle + \langle t\vec{y}, t\vec{y} \rangle = \|\vec{x}\|^2 + 2t\langle \vec{x}, \vec{y} \rangle + t^2 \|\vec{y}\|^2$$

$$= (t\|\vec{y}\| + \frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{y}\|})^2 + (\|\vec{x}\|^2 - \frac{\langle \vec{x}, \vec{y} \rangle^2}{\|\vec{y}\|^2}).$$

$$f(t) \geqslant \|\vec{x}\|^2 - \frac{\langle \vec{x}, \vec{y} \rangle^2}{\|\vec{y}\|^2}$$
, with equality for $t = -\frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{y}\|^2}$. Thus,

$$\|\vec{x}\|^2 - \frac{\langle \vec{x}, \vec{y} \rangle^2}{\|\vec{y}\|^2} \geqslant 0$$
, or equivalently, $\langle \vec{x}, \vec{y} \rangle^2 \leqslant \|\vec{y}\|^2 \|\vec{x}\|^2$.

Take $\sqrt{}$ of both sides.