COMP0147 Discrete Mathematics for Computer Scientists Notes

Joe

March 27, 2019

Notes adapted from lecture notes by Max Kanovich and Robin Hirsch [1].

Contents

1	Foundations							
	1.1	Set Th	eory and Functions	5				
		1.1.1	Set Notations	Į				
		1.1.2	Properties	Į				
		1.1.3	Set Equality	Į				
			Set Operations					
		1.1.5	Boolean Algebra	(

1 Foundations

Contents

1.1	Set Tl	heory and Functions
	1.1.1	Set Notations
	1.1.2	Properties
	1.1.3	Set Equality
	1.1.4	Set Operations
	1.1.5	Boolean Algebra

1.1 Set Theory and Functions

1.1.1 Set Notations

- Set definition: $A = \{a, b, c\}$
- Set membership (element-of): $a \in A$
- Set builder notation: $\{x \mid x \in \mathbb{R} \land x^2 = x\}$
- Empty set: ∅

1.1.2 Properties

- No structure
- No order
- No copies

For example, a,b,c are references to actual objects in

$$\{a,b,c\} \Leftrightarrow \{c,a,b\} \Leftrightarrow \{a,b,c,b\}$$

1.1.3 Set Equality

Definition 1.1.1 (Set Equality). Set A = B iff:

- 1. $A \subseteq B \implies \forall x(x \in A \rightarrow x \in B)$
- 2. $B \subseteq A \implies \forall y(y \in B \rightarrow y \in A)$

Remark. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

1.1.4 Set Operations

- Union: $A \cup B \equiv \{x \mid x \in A \lor x \in B\}$
- *Intersection*: $A \cap B \equiv \{x \mid x \in A \land x \in B\}$
- Relative Complement: $A \setminus B \equiv \{x \mid x \in A \land x \notin B\}$
- Absolute Complement: $A^c \equiv U \setminus A \equiv \{x \mid x \in U \land x \notin A\}$
- Symmetric Difference: $A\Delta B \equiv (A \setminus B) \cup (B \setminus A) \equiv (A \cup B) \setminus (A \cap B)$
- Cartesian Product: $A \times B \equiv \{(x, y) \mid x \in A \land y \in B\}$

1.1.5 Boolean Algebra

Definition 1.1.2 (De Morgan's Laws).

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1.1}$$

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1.2}$$

Definition 1.1.3 (Idempotent Laws).

$$p \lor p \equiv p \tag{1.3}$$

$$p \wedge p \equiv p \tag{1.4}$$

Definition 1.1.4 (Commutative Laws).

$$p \lor q \equiv q \lor p \tag{1.5}$$

$$p \wedge q \equiv q \wedge p \tag{1.6}$$

Definition 1.1.5 (Associative Laws).

$$p \lor (q \lor r) \equiv (p \lor q) \lor r \tag{1.7}$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r \tag{1.8}$$

Definition 1.1.6 (Distributive Laws).

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{1.9}$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{1.10}$$

Definition 1.1.7 (Identity Laws).

$$p \vee F \equiv p \tag{1.11}$$

$$p \vee T \equiv T \tag{1.12}$$

$$p \wedge T \equiv p \tag{1.13}$$

$$p \wedge F \equiv F \tag{1.14}$$

Definition 1.1.8 (Absorption Laws).

$$p \lor (p \land q) \equiv p \tag{1.15}$$

$$p \land (p \lor q) \equiv p \tag{1.16}$$

Definition 1.1.9 (Implication and Negation Laws).

- Identity: $p \rightarrow q \equiv \neg p \lor q$
- Counter-example: $\neg(p \rightarrow q) \equiv p \land \neg q$

Bibliography

[1] Max Kanovich and Robin Hirsch. "Lecture Notes on Discrete Mathematics for Computer Scientists". URL: http://www.cs.ucl.ac.uk/1819/a4u/t2/comp0147_discrete_mathematics_for_computer_scientists/.