4.1 4.2 Joint, Marginal, Conditional

$$\begin{split} &f(x,y)=f_X(x)f_Y(y)\ 4.2.5-\operatorname{Indep}\ f(x,y)=g(x)h(y)\ 4.2.7\\ &F(x,y)=P(X\leq x,Y\leq y)=\int_{-\infty}^y\int_{-\infty}^x f(s,t)dsdt-\operatorname{Indep}\ F_{X,Y}(x,y)=F_X(x)F_Y(y)\\ &f(x|y)=P(X=x|Y=y)=\frac{f(x,y)}{f_Y(y)}\ 4.2.1\\ &f_X(x)=\sum_{y\in\mathbf{R}}f_{X,Y}(x,y)=\int_{-\infty}^\infty f(x,y)dy\\ &M_Z(t)=M_X(t)M_Y(t)\ 4.2.12-M_Z(t)=(M_X(t))^n\ 4.6.7-M_{\bar{X}}(t)=[M_X(\frac{t}{n})]^n\ 5.2.7\\ &M_W(t)=M_X(t)M_Y(t)=e^{\mu_1(e^t-1)}e^{\mu_2(e^t-1)}=e^{(\mu_1+\mu_2)(e^t-1)}\ \operatorname{Use}\ 4.2.12\ \operatorname{proof}\ 4.3.2\\ &X,Y\ \operatorname{indep}\ \operatorname{r.v.}\ g(X),h(Y)\ \operatorname{indep}\ 4.3.5\\ &U\sim Geom(p=\frac{1}{2}),u=1,2...\ V\sim NBin(p=\frac{1}{2},r=2),v=2,3..\ (\mathrm{U,V})\\ &\{(u,v):u=1,2,...;v=u+1,u+2,...\}\ \operatorname{not\ indep} \end{split}$$

Expectations

$$\begin{split} E[X] &= \int_{-\infty}^{\infty} x f(x) dx = E[E(X|Y)] \ 4.4.3 \ E[g(x)] = \sum_{x \in D} h(x) p(x) = \int_{-\infty}^{\infty} g(x) f(x) dx \\ E[g(X,Y)] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy \ 4.1.10 \\ E[XY] &= E[X] E[Y] \ E[g(X) h(Y)] = E[g(x)] E[h(y)] \ P(X \le x,Y \le y) = P(X \le x) P(Y \le y) \ 4.2.10 \\ E[g(X)|y] &= \sum_{x} g(x) f(x|y) = \int_{-\infty}^{\infty} g(x) f(x|y) dx \ 4.2.3 \\ E[(X-\mu)^n] &= \mu_n = \sum_{x} (x-\mu)^n p(x) = \int_{x} (x-\mu)^n f(x) dx - E(aX+b) = aE(X) + b \\ E[g_1(X_1) \cdots g_n(X_n)) &= (E(g_1(X_1)] \cdots (E(g_n(X_n)) \ X_1, ..., X_n \ \text{indep 4.6.6} \\ E[g(\vec{X})] &= \sum_{x} \sum_{x} \sum_{x} \int_{x} g(\vec{x}) p(\vec{x}) = \int_{x} \cdots \int_{\mathbf{R}^n} g(\vec{x}) f(\vec{x}) d\vec{x} \ E[\sum_{i=1}^n g(X_i)] = nE(g(X_1)) \ 5.2.5 \\ \mathbf{Variances} \end{split}$$

$$\begin{split} V[X] &= \sigma_x^2 = E(X^2) - [E(X)]^2 = E[V(X|Y)] + V[E(X|Y)] \ 4.4.7 \\ V[X|Y] &= E[(X - E[X|Y])^2|Y] = E[X^2|y] - (E[X|y])^2 \ 4.2.4 \\ V[aX \pm bY] &= a^2VX + b^2VY \pm 2abCov(X,Y) \ 4.5.6 \ V[aX + b] = a^2\sigma^2 \ \sigma_{ax+b} = |a|\sigma_x \\ V[X \pm Y] &= VX + VY \ \text{Indep } 4.5.6 \ V[\sum_{i=1}^n g(X_i)] = nVar(g(X_1)) \ 5.25 \end{split}$$

4.5 Covariance and Correlation

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y) = E[XY] - \mu_X\mu_Y = \sigma_{XY} + 4.5.1/3$$

$$Cov(aX,bY) = abCov(X,Y) \quad Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z) \quad Cov(X,c) = 0$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y} \quad Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} + 4.5.2$$

4.3 Transform

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v))|J| \quad 4.3.2 = \sum_{i=1}^k f_{X,Y}(h_{1i}(u,v), h_{2i}(u,v))|J_i| \quad 4.3.5$$

$$\begin{vmatrix} x = h_1(u,v) & u = g_1(x,y) \\ y = h_2(u,v) & v = g_2(x,y) \end{vmatrix} J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z-w) dw \quad Z = X + Y \quad 5.2.9 \text{ Convolution}$$

 $X \sim n(\mu, \sigma^2), Y \sim n(\gamma, \tau^2) - X + Y \sim n(\mu + \gamma, \sigma^2 + \tau^2)$ indep 4.2.14 $X \sim Poisson(\theta)$,

Distribution

$$\begin{array}{l} Y\sim Poisson(\lambda)-X+Y\sim Poisson(\theta+\lambda) \text{ indep } 4.3.2\\ X\sim Beta(\alpha,\beta),\ Y\sim Beta(\alpha+\beta,\gamma)-XY\sim n(\alpha,\beta+\gamma) \text{ indep } 4.3.3\\ X,Y\sim n(0,1)-X+Y,X-Y\sim n(0,2),\ X/Y\sim cauchy(0,1) \text{ indep } 4.3.4/6\\ X|Y\sim Bin(Y,p),Y|\Lambda\sim Pois(\Lambda),\Lambda\sim Expo(\beta) \text{ or } X|Y\sim Bin(Y,p),Y\sim NBin(p=\frac{1}{1+\beta},r=1)\\ 4.4.5\ Y|\Lambda\sim Pois(\Lambda),\Lambda\sim Gamma(\alpha,\beta) \text{ then } Y\sim NBin(\alpha,\frac{1}{1+p\beta}) \text{ Pois-Gamma}\\ X|P\sim Bin(n,P),P\sim Gamma(\alpha,\beta)\ EX=E[E(X|P)]=E[nP]=n\frac{\alpha}{\alpha+\beta} \text{ Beta-Bin } 4.4.6\\ V[X]=V[E(X|P)]+E[V(X|P)]=\frac{n^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}+\frac{n\alpha\beta}{(\alpha+\beta)(\alpha+\beta+1)}=n\frac{\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)^2(\alpha+\beta+1)} \text{ Beta-Bin } 4.4.8 \end{array}$$

$$f_X(x) \sim n(\mu_X, \sigma_X^2) \ f_Y(y) \sim n(\mu_Y, \sigma_Y^2) \ \rho_{XY} = \rho \text{ bivarialte normal } 4.5.10$$

$$f_{Y|X}(y|x) \sim n\left(\mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X), \sigma_Y^2(1 - \rho^2)\right)$$

$$aX + bY \sim n(\mu_X + h\mu_X, a^2\mu_X^2 + b^2\mu_X^2 + 2ah\sigma_X\sigma_X)$$

$$aX + bY \sim n(a\mu_X + b\mu_Y, a^2\mu_X^2 + b^2\mu_Y^2 + 2ab\rho\sigma_X\sigma_Y)$$

$$X_1,..,X_n \sim gamma(\alpha,\beta)$$
— $X_1+..+X_n \sim Gamma(\alpha_1+..+\alpha_n,\beta)$ $\bar{X} \sim gamma(n\alpha,\beta/n)$ indep 4.6.8

$$X \sim cauchy(0,\sigma), Y \sim cauchy(0,\tau) - X + Y \sim cauchy(0,\sigma+\tau)$$
 5.2.10

$$X_1,...,X_n \sim cauchy(0,\sigma) - \bar{X} \sim cauchy(0,\sigma), \sum_{1}^{n} X \sim cauchy(0,n\sigma)$$

5.3 Sampling from N

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i \ 5.2.2 \ \bar{X}_{n+1} = \frac{\sum_{i=1}^{n+1} X_i}{n+1} = \frac{\sum_{i=1}^n X_i + X_{n+1}}{n+1} = \frac{n\bar{X}_n + X_{n+1}}{n+1} \ 5.3.1$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - n\bar{X}^2) \ 5.2.3 \ nS_{n+1}^2 = (n-1)S_n^2 + (\frac{n}{n+1})(X_{n+1} - \bar{X}_n)^2$$

$$\frac{5.2.6}{5.2.6} \ | \ X_1, \dots, X_n \ \text{iid} \ | \ E[\bar{X}] = \mu \ | \ E[S^2] = \sigma^2 \ | \ V[\bar{X}] = \frac{\sigma^2}{n} \ | \ \text{W/o Normal}$$

$$\frac{5.3.1}{5.3.1} \ \sim n(\mu, \sigma^2) \ | \ \bar{X}, S^2 \ \text{indep} \ | \ \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \ | \ \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \ | \ \text{W Normal}$$

$$Z \sim n(0, 1), \ Z^2 \sim \chi_1^2 \ 5.3.2a \ X_1, \dots X_n \sim \chi_{p_i}^2, \ X_1 + \dots X_n \sim \chi_{p_{1}+\dots p_n}^2 \ 5.3.2b \ \chi_p^2 \sim gamma(\frac{p}{2}, 2) \ 4.6.8$$

$$X_1, \dots X_n \sim n(\mu, \sigma^2), \ \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim t_{n-1} \ 5.3.4 - t_1 = Cauchy(0, 1)$$

$$X_1 \dots X_n, Y_1 \dots Y_m \ \text{indep.} \ X_i \sim n(\mu_X, \sigma_X^2) Y_j \sim n(\mu_Y, \sigma_Y^2), \frac{S_X^2}{\sigma_X^2} \sim \chi^2 - \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F5.3.5$$

$$X \sim F_{p,q}, \ \frac{1}{X} \sim F_{q,p} - X \sim T_q, \ X^2 \sim F_{1,q} - X \sim F_{p,q}, \ \frac{1}{q} \frac{X}{1+\bar{p}X} \sim Beta(\frac{p}{2}, \frac{q}{2})$$

$$f_{\chi^{2}}(x) = \frac{x^{\frac{p}{2}-1}}{\Gamma^{\frac{p}{2}} 2^{\frac{p}{2}}} e^{-\frac{x}{2}}, x > 0 \ f_{T}(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})\sqrt{p\pi}} \left(1 + \frac{x^{2}}{p}\right)^{-\frac{p+1}{2}}, -\infty < x < \infty$$

$$f_{F}(x) = \frac{\Gamma(\frac{p+q}{2})}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \left(\frac{p}{q}\right)^{\frac{p}{2}} \frac{x^{\frac{p}{2}-1}}{(1+\frac{p}{2}x)^{\frac{p+q}{2}}}, x > 0$$

$$Var\chi_{n-1}^2 = Var\left[\frac{(n-1)S^2}{\sigma^2}\right] = \frac{(n-1)^2}{\sigma^4} Var[S^2] = 2(n-1) \implies Var[S^2] = \frac{2\sigma^4}{n-1}$$

5.4 Order statistics

$$5.4.4 \ f_K(x) = \frac{n!}{(j-1)!(n-j)!} K[F_X(x)]^{k-1} [1 - F_X(x)]^{n-k} f(x) \ 1-29p9$$

$$5.4.6 \ f_{X_{(1)},...,X_{(n)}}(x_1,...,x_n) = \begin{cases} n! f_X(x_1) \cdot ... \cdot f_X(x_n) & -\infty < x_1 < .. < x_n < \infty \\ 0 & \text{otherwise} \end{cases}$$

$$f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(u) f_X(v) [F_X(u)]^{i-1} [F_X(v) - F_X(u)]^{j-1-i} [1 - F_X(v)]^{n-j}$$

1 from N to T to Chi to F

Given some function of these, find the distribution.

2 Transformation of pairs of r.v.s

Given 2 random variables and their joint function, and given a function of them, find its distribution. 1-10p1

$$f(x,y) = \begin{cases} f(x,y) & 0 < x < \infty, 0 < y < \infty \\ \frac{1}{4}e^{-\frac{x+y}{2}} & u = \frac{X-Y}{2} \\ 1. & V = Y \to X = 2u + v, Y = v \\ 2. & J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial u} \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

3.
$$g(u,v) = f(x,y)|J| = \frac{1}{4}e^{-\frac{x+y}{2}}2 = \frac{1}{2}e^{-\frac{2u+v+v}{2}} = \frac{1}{2}e^{-(u+v)}$$

$$4. \ 0 < x < \infty, 0 < y < \infty \implies 0 < 2u + v < \infty, 0 < v < \infty \implies v > -2u$$

$$\begin{array}{ll} g_U(u) = & \int_{-2u}^{\infty} \frac{1}{2} e^{-(u+v)} dv = \frac{1}{2} e^{-u} \int_{-2u}^{\infty} e^{-v} dv = \frac{1}{2} e^{-u} \left[-e^{-v} \right]_{-2u}^{\infty} = \frac{1}{2} e^{-u} \left[0 + e^{2u} \right] & u < 0 \\ = \frac{1}{2} e^{|u|} & \int_{0}^{\infty} \frac{1}{2} e^{-(u+v)} dv = \frac{1}{2} e^{-u} \int_{0}^{\infty} e^{-v} dv = \frac{1}{2} e^{-u} \left[-e^{-v} \right]_{0}^{\infty} = \frac{1}{2} e^{-u} \left[0 + 1 \right] & u \ge 0 \end{array}$$

Distribution: Double Exponential(Laplace)

Given
$$f(x,y)$$
, find the $f_X(x) = -E[X] = -V[X] = f_Y(y) = -E[Y] = -V[Y] = f(x,y) = -E[XY] = Cov(x,y) = E[XY] - EXEY = f(X|Y) = -E[X|Y] = -V[X|Y] = \rho = Cov(x,y)/\sqrt{V[X]V[Y]} = 4.5.7 \ E[Y|X] = a + bx, \ E[Y] = E[E[Y|X]] = E[a + bX] = a + bE[X] \ \text{by } 4.4.3, \ E[XE[Y|X]] = E[X(a + bX)] = aE[X] + bE[X^2], \ E[XE[Y|X]] = \int_{-\infty}^{\infty} xE[Y|x]f_X(x)dx \ \text{by } 2.2.1, \ = \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} yf_Y(y|x)dy \right] f_X(x)dx \ \text{by } 4.2.3, = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dydx = E[XY] \ \text{by } 4.1.10, \ \sigma_{XY} = E[XY] - \mu_X\mu_Y = a\mu_X + bE[X^2] - \mu_X\mu_Y = a\mu_X + b(\sigma_X^2 + \mu_X^2) - \mu_X(a + b\mu_X) = b\sigma_X^2$ $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y} = \frac{b\sigma_X^2}{\sigma_X\sigma_Y} = b\frac{\sigma_X}{\sigma_Y}$

4 Order statistics

* Find the distribution of X(k) or find the joint distribution of $X_{(i)}, X_{(k)}$ joint pmf 1-31p2-3

5.4.5 uniform order pdf 1-31p4-8

pdf/pmf

CDF:
$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y) = \int_{-\infty}^{x} f(y) dy$$
 probabilities: $a \le b$:

PMF:
$$p(x) = P(X = x) = P(\forall w \in \mathcal{W} : X(w) = x)$$

$$P(a \le X \le b) = F(b) - F(a^-); P(a < X \le b) = F(b) - F(a); P(a \le X \le a) = p(a);$$

 $P(a < X < b) = F(b^{-}) - F(a)$; (where a^{-} is the largest possible X value strictly less than a); Taking a = b yields P(X = a) = F(a) - F(a - 1) as desired.

PDF:
$$P(\forall w \in \mathcal{W} : a < X(w) < b) = \int_{a}^{b} f(x) dx$$

PDF:
$$P(\forall w \in W : a \le X(w) \le b) = \int_a^b f(x) dx$$

 $P(a \le X \le b) = P(a < X \le b) = P(a < X < b); P(X > a) = 1 - F(a); P(a \le X \le b) = F(b) - F(a)$

CDF

Condition: $f(x) \ge 0 \forall x \text{ pmf } \sum_{x} f_X(x) = 1, pdf \int_{-\infty}^{\infty} f(x) dx = 1$

$$\begin{split} E(e^{tx}) &= \int e^{tx} f(x) dx = \sum e^{tx} f(x); \ M_{aX+b}(t) = e^{tb} M_{aX}(t) \\ M_X(t) &= E(e^{tx}) & M_X(0) = 1 \\ M_X'(t) &= E(xe^{tx}) & M_X'(0) = E(X) \\ M_X''(t) &= E(x^2 e^{tx}) & M_X''(0) = E(X^2) \\ M_X^n(t) &= E(x^n e^{tx}) & M_X^n(0) = E(X^n) \end{split}$$

transform

$$g(x) \uparrow | F_Y(y) = F_X(g^{-1}(y))$$

 $g(x) \downarrow | F_Y(y) = 1 - F_X(g^{-1}(y))$

not monotone :
$$X \le 0$$
 is \emptyset : $P(X \le -\sqrt{y}) = 0$

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = P(X \le \sqrt{y}) - P(X \le -\sqrt{y}) = F_X(\sqrt{y}) = \sqrt{y}, \ 0 < \sqrt{y} < 1$$

monotone:
$$f_Y(y) = f_X(g^{-1}(y)) |\frac{d(g^{-1}(y))}{dy}|$$

Series

$$\begin{array}{ll} \text{Infinite } |p| < 1 & \sum_{k=0}^{\infty} kp^{k-1} = \frac{d}{dp} \left(\sum_{k=0}^{\infty} p^k \right) = \frac{1}{(1-p)^2} \\ \sum_{k=0}^{\infty} p^k = \frac{1}{1-p} & \sum_{k=0}^{\infty} \binom{r+k-1}{k} x^k = (1-x)^{-r} r \in \mathbb{N}^+ \\ \sum_{k=1}^{\infty} p^k = \frac{p}{1-p} & \sum_{k=0}^{\infty} \binom{\alpha}{k} p^k = (1+p)^{\alpha} & |p| < 1 \,, \, \alpha \in \mathbb{C} \\ \Gamma(n) = (n-1)! & \sum_{k=0}^{\infty} \binom{\alpha}{k} p^k = (1+p)^{\alpha} & |p| < 1 \,, \, \alpha \in \mathbb{C} \\ \Gamma(a+1) = a\Gamma(a) & \sum_{n=0}^{\infty} ar^n = e^x \\ \Gamma(1/2) = \sqrt{\pi} & \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, |r| < 1 \\ \sum_{k=0}^{n-1} ar^n = \frac{a(1-r^n)}{1-r} & \sum_{k=0}^{n-1} ar^n = \frac{a(1-r^n)}{1-r} \\ \Gamma(-1/2) = -2\Gamma(1/2) & \int_0^{\infty} x^{t-1} e^{-x} dx = \Gamma(t) & \end{array}$$

Integrals+c

Substitution
$$\begin{array}{c|c} u = g(x) & du = g'(x)dx \\ x^3 & du = 3x^2dx \end{array} \right| \begin{array}{c} \int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du \\ \int_1^2 5x^2cos(x^3)dx = \int_1^8 \frac{5}{3}cos(u)du \end{array}$$

Integreation by parts
$$\begin{pmatrix} u & du & dv & v \\ x & dx & e^{-x} & -e^{-x} \end{pmatrix} \int_a^b u dv \\ \ln x & \frac{1}{x} dx & dx & x \end{pmatrix} \int_3^5 x \ln x dx$$

$$\begin{split} &=uv|_a^b - \int_a^b v du \\ &= -xe^{-x} + \int xe^{-x} dx = -xe^{-x} - e^{-x} + c \\ &= xlnx|_3^5 - \int_3^5 dx = (xlnx - x)|_3^5 = 5ln5 - 3ln3 - 2 \\ &\int_a^b f(x) dx = F(b) - F(a) = - \int_b^a f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx; \\ &\frac{d}{dx} \int_{v(x)}^{u(x)} f(t) dt = u'(x) f[u(x)] - v'(x) f[v(x)] \end{split}$$

Derivatives

Distribution	CDF	P(X=x),f(x)	μ	EX^2	Var	MGF	M'(t)	M" (t)	$M^n(t)$
Bern(p)		$p^x q^{1-x}, x \in \{1, 0\}$	p	p	pq	$pe^t + q$			
$\operatorname{Bin}(n,p)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x} p^x q^{n-x}; x \in \{0, 1n\}$	np	$\mu(\mu+q)$	$q\mu$	$(pe^t + q)^n$			
Geom(p)	$1 - q^x$	$pq^{x-1}, x \in 1, 2, \dots$	$\frac{1}{p}$	$\frac{p+2q}{p^2}$	$\frac{q}{p^2}$	$\frac{pe^t}{1 - qe^t}, t < -\ln q$			
	$1 - q^{x+1}$	$pq^x, x \in 0, 1, \dots$	$\frac{q}{p}$	$\frac{p+2q}{p^2}$ $\frac{q^2+q}{p^2}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^t}, qe^t < 1$	$\frac{pqe^t}{(1-qe^t)^2}$	$\frac{2pqe^t}{(1-qe^t)^3} - M'(t)$	
$\overline{\mathrm{NBin}(r,p)}$		$\binom{x-1}{r-1} p^r q^{x-r}, x \in r, r+1$	$\frac{r}{p}$	•		$\left(\frac{pe^t}{1-qe^t}\right)^r$			
, ,		$\binom{r-1}{r-1} p^r q^x, x \in 0, 1$	$\frac{rq}{p}$		$\frac{rq}{p^2}$ $\frac{rq}{p^2}$	$\left(\frac{p}{1-qe^t}\right)^r, qe^t < 1$			
$\overline{\text{HGeom}(N,m,k)}$		$\frac{\binom{m}{x}\binom{N-m}{k-x}}{\binom{N}{k}}$	$\frac{km}{N}$		$\mu \frac{(N-m)(N-k)}{N(N-1)}$	- 4-			
$\mathrm{HGeom}(w,b,k)$		$\frac{\binom{w}{x}\binom{k}{b}}{\binom{w+b}{k}}$	$\frac{kw}{w+b}$		$\mu \frac{b(w+b-k)}{(w+b)(w+b-1)}$				
$Pois(\mu)$	$e^{-\mu} \sum_{i=0}^{x} \frac{\mu^i}{i!}$	$\frac{\mu^x}{x!}e^{-\mu}, x \in 0, 1$	μ	$\mu^2 + \mu$	μ	$e^{\mu(e^t-1)}$	$\mu e^t M(t)$	$\mu e^t (1 + \mu e^t) M(t)$	
$\operatorname{Unif}(n)$		$\frac{1}{n}, x \in 1, 2n$	$\frac{n+1}{2}$	$\frac{(n+1)(2n+1)}{6}$	$\frac{(n^2-1)}{12}$	$\frac{\sum_{i=1}^{n} e^{ti}}{n}$			
$\overline{\mathrm{Unif}(a,b)}$	$\frac{x-a}{b-a}$	$\frac{1}{b-a}, x \in (a,b)$	$\frac{a+b}{2}$		$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$			
$\mathcal{N}(\mu, \sigma^2)$		$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	$\mu^2 + \sigma^2$	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$	$(\mu + \sigma^2 t)M(t)$	$[(\mu + \sigma^2 t)^2 + \sigma^2]M(t)$	
$\mathcal{N}(0,1)$		$\frac{1}{2}e^{-\frac{x}{2}}$	0	1	1	$e^{\frac{t^2}{2}}$			
$\mathcal{LN}(\mu, \sigma^2)$		$\frac{1}{x\sigma\sqrt{2\pi}}e^{\frac{-(\ln x-\mu)^2}{2\sigma^2}}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+2\sigma^2}$	$\theta^2(e^{\sigma^2}-1)$	×			
$Cauchy(\theta, \sigma^2)$		$\frac{\pi\sigma}{1+(\frac{x-\theta}{2})^2}$	×	×	×				
D Expo (μ, σ^2)		$\frac{1}{2\pi\sigma}e^{-\left \frac{\omega-\mu}{\sigma}\right }$	μ	$\mu^2 + 2\sigma^2$	$2\sigma^2$	$\frac{e^{\mu t}}{1-\sigma^2 t^2}$			
$-$ Expo (λ)	$1 - e^{-\lambda x}$	$\lambda e^{-\lambda x}, x \in (0, \infty)$	$\frac{1}{\lambda}$		$\frac{1}{\lambda^2}$	$\frac{\frac{e^{t}}{1-\sigma^{2}t^{2}}}{\frac{\lambda}{\lambda-t}, t < \lambda}$			
$\text{Expo}(\beta)$		$\frac{1}{\beta}e^{-\frac{x}{\beta}}$	β		$\hat{\beta}^2$	$\frac{1}{1-\beta t}$	$\beta(1-\beta t)^{-2}$	$2\beta^2(1-\beta t)^{-3}$	
$Gamma(a, \lambda)$		$\frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}, x \in (0, \infty)$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^a, t < \lambda$				
$\operatorname{Gamma}(\alpha,\beta)$		$\frac{1}{\Gamma(a)\beta\alpha}x^{a-1}e^{-x/\beta}$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^a, t < \frac{1}{\beta}$				
Beta (a,b)		$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	$\frac{a}{a+b}$		$\frac{\mu(1-\mu)}{(a+b+1)}$				$\frac{\Gamma(\alpha+n)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n)\Gamma(\alpha)}$
$B(\alpha, \beta) =$		$\frac{\Gamma(a)b}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$ $\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+\beta)}, x \in (0,1)$	$a_{\mp b}$	$\frac{a(a+1)}{(a+b)(a+b+1)}$	$\frac{ab}{(a+b)^2(a+b+1)}$				$\Gamma(\alpha+\beta+n)\Gamma(\alpha)$
χ_p^2		$\frac{1}{2^{p/2}\Gamma(n/2)}x^{p/2-1}e^{-x/2}$	p	$\frac{(a+b)(a+b+1)}{2p+p^2}$	2p	$(1-2t)^{-p/2}, t < \frac{1}{2}$			
$\overline{t_n}$		$\frac{\Gamma(\frac{2}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{x^2}{n})^{-\frac{N+2}{2}}$	0, n > 1		$\frac{n}{n-2}, n > 2$	×			
F	x > 0	$\frac{\Gamma(\frac{p+q}{2})}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \left(\frac{p}{q}\right)^{\frac{p}{2}} \frac{x^{\frac{p}{2}-1}}{\left(1+\frac{p}{q}x\right)^{\frac{p+q}{2}}}$	$\frac{q}{q-2}$	q > 2	$2(\frac{q}{q-2})^2 \frac{p+q-2}{p(q-4)}$	q > 4			
Arcsine	$\frac{1}{\pi \arcsin \sqrt{x}}$	$\frac{1}{\pi\sqrt{x(1-x)}}, x \in [0,1]$	$\frac{1}{2}$		$\frac{1}{8}$				$\operatorname{Beta}(\frac{1}{2},\frac{1}{2})$
Dirichlet	$B(a) = \frac{\prod_{i=1}^{k} \Gamma(a_i)}{\Gamma(\sum_{i=1}^{k} a_i)}$	$\frac{1}{B(a)} \prod_{i=1}^{k} x_i^{a_i - 1}, x \in (0, 1)$	$\frac{a_i}{\sum_k a_k}$	$\sum_{i=1}^{k} x_i = 1$	$\frac{a_i(a_0\!-\!a_i)}{a_0^2(a_0\!+\!1)}$	$Cov(X_i, X_j) =$	$^{\frac{-a_{i}a_{j}}{a_{0}^{2}(a_{0}+1)}}$	$a_0 = \sum_{i=1}^k a_i$	

 $U \sim Geom(p=\frac{1}{2}), u=1,2..$ the number of trials needed to get the first head. $V \sim NBin(p=\frac{1}{2},r=2), v=2,3..$ the number of trials needed to get two heads in repeated tosses of a fair coin.