土地资源可持续发展综合管理系统

使

用

说

明

书

1

一、引言

(一) 编写目的

随着全球对可持续发展目标的重视,土地资源的合理利用和保护成为了一个全球性议题。土地资源可持续发展综合管理系统的开发应运而生,旨在应对日益严峻的土地退化、城乡规划失衡以及生态保护需求。这个系统的开发源于对当前土地管理手段分散、效率低下及数据整合不足的市场需求。通过市场和竞争分析,明显看出需要一种能够集成多方面信息、支持决策制定的高效系统。目标用户群体包括政府土地管理机构、环境保护组织以及参与土地规划的企业。土地资源可持续发展综合管理系统提供了一个平台,通过高级数据分析和实时监控,帮助用户实现土地资源的高效管理和可持续利用,从而在全球范围内推动土地资源的合理和节约使用。

用户首先打开仿真软件界面,可以进行一系列的计算分析,例如:土地使用管理、土地质量 监测管理、土地使用计划设置、土地规划政策管理、土地开发利用评估和导入土地资源可持续发 展工艺流程图、绘制土地资源发展效果分析三维图、绘制土地开发利用分析柱状图。最后提供了 关于软件、网络检测、清除数据及退出软件功能,为土地资源可持续发展综合管理带来了极大的 便利,也提供了一款操作简单,运行稳定的软件。

本软件为土地资源可持续发展综合管理设计了一款方便简洁的软件,方法简单、便捷、操作易上手。本软件根据 MATLAB 开发,能够高效、便捷地进行土地使用管理、土地质量监测管理、土地使用计划设置、土地规划政策管理、土地开发利用评估和导入土地资源可持续发展工艺流程图、绘制土地资源发展效果分析三维图、绘制土地开发利用分析柱状图,可以通过图框的方式直观的显示各数据量。

本软件适用于环境管理领域。

(二) 软件运行环境

(1) 硬件要求:

处理器主频: 2GHZ 及以上;

内存: 4G 及以上;

(2) 软件要求

系统: windows10 64 位系统;

运行环境: Matlab R2020b 及以上版本、

Matlab Compiler 2.1 及以上版本。

二、软件总体设计

(一) 软件的技术特点:

本软件基于 Matlab R2020b 开发,运用其中的 GUI 功能设计出原始的*.m 文件和*.fig 文件,在此基础上运用 Matlab 自带的 Matlab Compiler 编译器对*.m 文件和*.fig 文件进行编译,编译成可脱离 Matlab 环境的能够独立执行的*.exe 文件,只要在安装 Matlab Compiler(可独立安装,且安装文件很小)的电脑上都可以运行本软件,成功地降低本软件的运行环境要求,提高可移植性。本软件在用户界面上具有人机交互,操作简便,运行稳定的特点。软件打开后只需要用户点击需要的功能,土地使用管理、土地质量监测管理、土地使用计划设置、土地规划政策管理、土地开发利用评估和导入土地资源可持续发展工艺流程图、绘制土地资源发展效果分析三维图、绘制土地开发利用分析柱状图,最后提供了关于软件、网络检测、清除数据及退出软件功能,为土地资源可持续发展综合管理带来了极大的便利。软件运行基于输入参数驱动,运行占用内存小。软件基于面向对象程序设计方法设计,可移植性强,可实现功能的扩展。

(二) 软件的主要功能:

- (1) 土地使用管理功能:
- (2) 土地质量监测管理功能;
- (3) 土地使用计划设置功能;
- (4) 土地规划政策管理功能;
- (5) 土地开发利用评估功能;
- (6) 导入土地资源可持续发展工艺流程图;
- (7) 绘制土地资源发展效果分析三维图;
- (8) 绘制土地开发利用分析柱状图;
- (9) 关于软件功能;
- (10) 支持网络检测功能;
- (11) 快速清除当前数据,进行下一步的计算;
- (12) 退出软件功能。

(三) 软件开发流程图

图1软件流程图

三、软件功能具体描述

3.1 配置计算机运行环境

本软件在打开之前需要安装 Matlab Compiler,在已安装 Matlab Compiler 的计算机上点击打 开 Land Resource Sustainability Management System.exe 即可运行本软件。

3.2 土地使用管理功能

用户在"土地使用管理"框内,选择"城市建设用地"、"农业用地"、"林地"、"草原"、 "湿地"、"保护区"、"未利用地"选项后,点击"确认选择"按钮,软件会根据用户的选择 对土地的使用进行管理。

3.3 土地质量监测管理功能

用户在"土地质量监测管理"框内,选择"土壤 pH 值"、"有机质含量"、"重金属污染"、 "盐碱化程度"、"土地退化"、"生物多样性"、"地表覆盖"选项后,点击"保存信息"按 钮,软件会根据用户的选择对土地质量的监测进行管理。

3.4 土地使用计划设置功能

用户在"土地使用计划设置"框内,选择"土地再分类"、"土地整治"、"土地开发"、 "土地批准"、"土地利用监测"、"环境影响评估"、"土地使用报告"选项后,点击"确认 设置"按钮,软件会根据用户的选择对土地的使用计划进行设置。

3.5 土地规划政策管理功能

用户在"土地规划政策管理"框内,输入"城市扩展限制"、"农地保护区域"、"林地补植要求"、"水源保护区"、"生态红线区"、"土地复垦指标"、"土地使用效率"参数后,点击"保存信息"按钮,软件会根据用户给定参数对土地规划的政策进行管理。

3.6 土地开发利用评估功能

用户在"土地开发利用评估"框内,输入"开发潜力评估"、"可持续性评估"、"生态影响评估"、"经济效益评估"、"社会影响评估"、"资源消耗评估"、"生物多样性影响"参数后,点击"利用评估"按钮,软件会根据用户给定参数对土地开发的利用进行评估。

3.7 导入土地资源可持续发展工艺流程图

用户点击操作面板中"导入土地资源可持续发展工艺流程图"按钮,软件会根据用户的选择 自动导入土地资源可持续发展工艺流程图,供用户参考。

3.8 绘制土地资源发展效果分析三维图

用户点击操作面板中"绘制土地资源发展效果分析三维图"按钮,软件会根据系统分析自动 绘制土地资源发展效果分析三维图,为用户提供直观的数据展示图。

3.9 绘制土地开发利用分析柱状图

用户点击操作面板中"绘制土地开发利用分析柱状图"按钮,软件会根据系统分析自动绘制 土地开发利用分析柱状图,为用户提供直观的数据展示图。

3.10 关于软件

用户点击操作面板中"关于软件"按钮,会弹出关于此软件设计时的设计思路和原理供用户 参考。

3.11 网络检测

如果用户要查看当前网络连接状态,点击操作面板中 "网络检测"按钮,软件将自动检测 当前的网络连通性。

3.12 清除输入参数和结果

如果用户需要在当前界面中进行重新输入的各个参数,那么,在此之前用户需要点击操作面 板中"清除数据"按钮,则会将软件界面重置。

3.13 退出软件

如果用户要离开当前软件,点击操作面板中"退出软件"按钮,软件将自动关闭。

四、软件使用说明

使用 MATLAB 软件, 打开 Land_Resource_Sustainability_Management_System.m 并运行,打开 Land Resource Sustainability Management System.fig 软件界面。

(1) 成功初始化和配置用户环境后,会显示软件界面,如图所示。

图 2 软件界面

(2) 用户在"土地使用管理"框内,选择"城市建设用地"、"农业用地"、"林地"、 "草原"、"湿地"、"保护区"、"未利用地"选项后,点击"确认选择"按钮,软件会根据 用户的选择对土地的使用进行管理,如图所示。

图 3 点击"确认选择"按钮后界面

(3) 用户在"土地质量监测管理"框内,选择"土壤 pH 值"、"有机质含量"、"重金 属污染"、"盐碱化程度"、"土地退化"、"生物多样性"、"地表覆盖"选项后,点击"保 存信息"按钮,软件会根据用户的选择对土地质量的监测进行管理,如图所示。

图 4 点击"保存信息"按钮后界面

(4) 用户在"土地使用计划设置"框内,选择"土地再分类"、"土地整治"、"土地开 发"、"土地批准"、"土地利用监测"、"环境影响评估"、"土地使用报告"选项后,点击 "确认设置"按钮,软件会根据用户的选择对土地的使用计划进行设置,如图所示。

图 5 点击"确认设置"按钮后界面

(5) 用户在"土地规划政策管理"框内,输入"城市扩展限制"、"农地保护区域"、"林地补植要求"、"水源保护区"、"生态红线区"、"土地复垦指标"、"土地使用效率"参数后,点击"保存信息"按钮,软件会根据用户给定参数对土地规划的政策进行管理,如图所示。

图 6 点击"保存信息"按钮后界面

(6) 用户在"土地开发利用评估"框内,输入"开发潜力评估"、"可持续性评估"、"生态影响评估"、"经济效益评估"、"社会影响评估"、"资源消耗评估"、"生物多样性影响"参数后,点击"利用评估"按钮,软件会根据用户给定参数对土地开发的利用进行评估,如图所示。

图 7点击"利用评估"按钮后界面

(7) 用户点击操作面板中"导入土地资源可持续发展工艺流程图"按钮,软件会根据用户的选择自动导入土地资源可持续发展工艺流程图,供用户参考,如图所示。

图 8 点击"导入土地资源可持续发展工艺流程图"按钮后界面

(8) 用户点击操作面板中"绘制土地资源发展效果分析三维图"按钮,软件会根据系统分析自动绘制土地资源发展效果分析三维图,为用户提供直观的数据展示图,如图所示。

图 9 点击"绘制土地资源发展效果分析三维图"按钮后界面

(9) 用户点击操作面板中"绘制土地开发利用分析柱状图"按钮,软件会根据系统分析自动绘制土地开发利用分析柱状图,为用户提供直观的数据展示图,如图所示。

图 10 点击"绘制土地开发利用分析柱状图"按钮后界面

(10)用户点击操作面板中"关于软件"按钮,会弹出关于此软件设计时的设计思路和原理供用户参考,如图所示。

图 11 点击"关于软件"按钮后界面

(11)如果用户要查看当前网络连接状态,点击操作面板中 "网络检测"按钮,软件将自动检测当前的网络连通性,如图所示。

图 12 点击"网络检测"按钮后界面

(12)如果用户需要在当前界面中进行重新输入的各个参数,那么,在此之前用户需要点击操作面板中"清除数据"按钮,则会将软件界面重置,如图所示。

图 13 点击"清除数据"按钮后界面

(13) 如果用户要离开当前软件,点击操作面板中"退出软件"按钮,软件将自动关闭,如 图所示。

图 14 点击"退出软件"按钮后界面