Customer Churn Prediction on Telecom Data From Kaggle

Context:

- This particular churn prediction problem was hosted on Kaggle in 2020. You can find the original dataset and problem statement https://www.kaggle.com/c/customer-churn-prediction-2020/overview.
- Customer churn happens when a customer ceases to utilize the service provided by business.

Business Motivation and Goal:

- Telecom industry has a huge problem of customer churn. Customers leave and join new service every now and then.
- The goal of this project is to analyse the churn data to get some actionable insights and help the business in preventing customer churn.

Metrics and Business Constraints:

- Their is no strict latency requirement
- · High Accuracy is demanded
- Since data is imbalanced Recall would be also a good metric to notice

Methodology/Approach:

Available Features:

1.) state	
2.) account_length	
3.) area_code	
4.) international_plan	

5.) voice_mail_plan6.) number_vmail_messages

7.) total_day_minutes

8.) total_day_calls

9.) total_day_charge 10.) total_eve_minutes

11.) total_eve_calls

12.) total_eve_charge

13.) total_night_minutes

14.) total_night_calls

15.) total_night_charge

16.) total_intl_minutes

17.) total_intl_calls

18.) total_intl_charge

19.) number_customer_service_calls

20.) churn

Exploratory Data Analysis And Featurisation

EDA Highlights:

- Dataset is highly imbalanced (Fig. 1), number of churned examples is much lower than the not_churned examples.
- Features such as total_day_charge (Fig. 2), total_night_charge, total_eve_charge, total_intl_charge and number_vmail_messages (Fig. 3) are showing a decent separation between the churned and not_churned examples.
- For more detailed EDA check the ipynb here: https://github.com/S-G-001/customer_churn_prediction

Featurisation:

- One hot encoding was done for categorical features.
- Features have been standardised by removing the mean and scaling the variance.
- Features that were Highly correlated with other features have been removed from the training process. Removed features are: 'total_day_minutes','total_eve_minutes','total_night_minutes','total_intl_minutes'.

Machine Learning Models And Their Results

Models:

• Five classification models were trained - two SVM, one Random Forest and two XGBoost classifiers. Below tables lists their performance on training data and test data.

+	S.No.	Model	class imbalance status	t Train_accuracy	Test_Accuracy	++ Test_Recall_score
i	1.	SVM	No class balancing	0.98	0.91	0.48
	2.	SVM	Balanced using class weights	0.98	0.9	0.65
	3.	RF	Balanced using class weights	0.97	0.92	0.72
Ì	4.	XGBClassifier	Balanced using scale_pos_weight	1.0	0.95	0.75
ĺ	5.	XGBClassifier	Balanced using SMOTE	0.99	0.84	0.87
+						

Conclusion:

- XGBClassifier (Model 4) is giving the highest test accuracy and a decent recall score.
- Test recall score is highest for XGBClassifier(Model 5) when data is balanced using SMOTE, but it's leading to high variance.
- 4th model with 95% accuracy and 75% recall seems to be the best choice for predicting churn.

Key Action Points:

- Some of the most important features in prediction of Churn are: Total_day_charge, number_customer_service_calls, total_eve_charge, total_night_charge and international_plan. Marketing/business team can act on these features to prevent churn.
- Main challenge of this project is the class imbalance, to get a better recall score we need more data points belonging
 minority class. And more data in general will enable us to build deep learning models and get better test accuracy.

^{*} Note: This three pager report has been created for academic purposes.