Harnessing Information Retrieval Techniques in Retrieval-Augmented Generation

Lixiang Li, Wendy Jiang, Chen Peng, Jie Zheng {li4256, jiang794, peng326, zheng795} @purdue.edu

Outline

- Introduction 4m
- Background: 4m

Vector Database

Marginalization and Embedding

Information Retrieval

Large Language Model (LLM)

- Methodology 2m
 - Re-ranking
- Experiment Setup 3m
 - Datasets, Metrics, benchmarks
- Experimental Results and Insights 3m

Background

- Retrieval-Augmented Generation:
 - A technique that combines the strengths of retrieval-based and generation-based models.

- Improve Factual Accuracy
- Provide context information
- Provide up to date information

Background

- Limitation:
 - LLM relies on highly relevant and specific information.
 - But traditional methods don't provide relevant and effective information
 - Traditional methods provides long top k documents which are too long to be effective
 - Truncation methods are not reliable enough

Research Question

 How to design a model to help RAG to get the relevant and important information?

We propose a model to identify most relevant information.

Proposed Method

Related Work

- Retrieval Methods in RAG
 - Can't perform well for long documents

- Truncation Methods in RAG
 - Not reliable since it's hard to determine the truncation cutoff.

Overview

- Benefits of RAG: improved model performance, information retrieval, and cost efficiency.
- Challenges: potential biases in datasets, computational complexity.

RAG

arXiv:2005.11401

RAG Sequence and RAG Token

$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y|x,z) = \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) \prod_{i} p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

$$p_{\text{RAG-Token}}(y|x) \approx \prod_{i}^{N} \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y_i|x, z, y_{1:i-1})$$

RAG Retriever

Dense Passage Retrieval (DPR) architecture.

Embedding Models

nglish	Chinese French Polish										
	B English leaderboard 👰										
	rious, refer to task tabs										
o Languages: English											
Rank 🔺	Model A	Model Size (Million Parameters)	Memory Usage (GB, fp32)	Embedding Dimensions	Max Tokens	Average (56 Adatasets)	Classification Average (12 datasets)	Clustering Average (11 datasets)			
1	SFR-Embedding-Mistral	7111	26.49	4096	32768	67.56	78.33	51.67			
2	voyage-lite-02-instruct	1220	4.54	1024	4000	67.13	79.25	52.42			
3	GritLM-7B	7242	26.98	4096	32768	66.76	79.46	50.61			
4	e5-mistral-7b-instruct	7111	26.49	4096	32768	66.63	78.47	50.26			
5	<pre>google-gecko.text-embedding-p</pre>	1200	4.47	768	2048	66.31	81.17	47.48			
6 -	Gri±LM_Qv7R_	16702	172.08	1006	22762	-65-66	. 72 .52	50.14			

Instructor Model


```
import pickle
with open('NQDataset with ContentEmbeddings.pkl', 'wb') as f:
  pickle.dump(df copy, f)
with open('NQDataset with ContentEmbeddings.pkl', 'rb') as f:
  loaded df = pickle.load(f)
loaded df.iloc[0]
Unnamed: 0
                                 wolf of wall street number of f words
query
                                                         Uses / mi...
long answer
                                  Fuck count Minutes
short answer
                                                                   569
title
                     List of films that most frequently use the wor...
bert title
                     list of films that most frequently use the wor...
abstract
                     The use of profanity in films has always been ...
                     This is a list of non-pornographic, English l...
content
url
                     https://en.wikipedia.org/wiki/List%20of%20film...
index
                                                                109430
content embedding
                     [-0.024242813, 0.019909445, -0.042916078, 0.01...
Name: 0, dtype: object
```

Storage

- Vector index (ex. Faiss) and vector database options
- Used Wikipedia dataset

The landscape of vector databases.

Storage

Proposed vs Existing Framework

Wikipedia Document Dataset

id int32	title string · lengths	text string · lengths	<pre>url string · lengths</pre>	<pre>wiki_id int32</pre>	<pre>views float32</pre>	<pre>paragraph_id int32</pre>	langs int32	emb sequence
0 1.39M	1 79	101 9.71k	38 44	12 72M	1.99k 5.67k	0 603	0 312	
0	Deaths in 2022	The following notable deaths	https://en.wikipedia.org/wiki?curid=69407798	69,407,798	5,674.449219	0	38	[0.2865696847438812 -0.03181683272123337
1	YouTube	YouTube is a global online	https://en.wikipedia.org/wiki?curid=3524766	3,524,766	5,409.561035	0	184	[-0.096893817186355 0.1619211882352829,
2	YouTube	In October 2006, YouTube was bough	https://en.wikipedia.org/wiki? curid=3524766	3,524,766	5,409.561035	1	184	[0.1302049309015274 0.265736848115921,
3	YouTube	Since its purchase by Google, YouTub	https://en.wikipedia.org/wiki?curid=3524766	3,524,766	5,409.561035	2	184	[-0.097912572324275 0.13586106896400452,
4	YouTube	YouTube has had an unprecedented	https://en.wikipedia.org/wiki?curid=3524766	3,524,766	5,409.561035	3	184	[-0.264152705669403 0.06968216598033905,

Innamed: 0	query	long answer	short_answer	title	bert_title	abstract	content	url		content_embedding
										#```^```\$
2	what are the toll roads called in mexico	This is a list of autopistas , or tolled (quota) highways , in Mexico . T	autopistas	List of Mexican aut	list of mexican autopistas	This is a list of	Many federa	https://en.wi	109631	5.41652627e-02 6.37640506e-02 -5.65397879e-03 4.89284545e-02
2	what are the top five wine producing states	2016 production of still wine State Production (gal) Production	California Washington New York Peni	American wine	american wine	American wir	The North A	https://en.wi	98864	[[-7.31019536e-03 -1.26333470e-02 -1.06264362e-02 1.31341349e-02
2	who sings the theme song for living single	Living Single Season 1 DVD cover Created by Yvette Lee Bowser	performed by	Living Single	living single	Living Single	Throughout	https://en.wi	15276	[[-0.01875372 -0.00664845 -0.01411123 0.01214166 0.03976656 0.0153
2	what type of reproduction do whiptail lizards use	summer, and hatching approximately eight weeks later. The New M	•	New Mexico whipta	new mexico whiptail	Cnemidopho	The New Me	https://en.wi	103123	[[-2.50664949e-02 -7.14592077e-03 -2.15893276e-02 3.62700666e-03
2	where use the cummer alumnice hold in 2012	The 2012 Cummer Olumniae formally the Comes of the VVV Olumnia	Olympiad	2012 Cummor Olum	2012 cummor olumnico	The 2012 Co.	Following a b	id bandad bu	former Ohim	nic champion Cohartian Coo and than Mayor of Landon Van Livingstona Lando

Methodology

• Framework:

Methodology

- Motivation:
 - RAG relies on highly relevant information.
 - Traditional methods like reranking and truncations have some limitations

We propose a model to identify most relevant information.

Proposed Method

- SLRC: Sentence-Level Relevance Classifier
- Input:
 - Query Embedding and sentences embedding of Top K documents
- Output:
 - Relevant info label: if the sentences is relevant with the query.

Evaluation

Natural Questions Benchmark

Example 1

Question: what color was john wilkes booth's hair

Wikipedia Page: John_Wilkes_Booth

Long answer: Some critics called Booth "the handsomest man in America" and a "natural genius", and noted his having an "astonishing memory"; others were mixed in their estimation of his acting. He stood 5 feet 8 inches (1.73 m) tall, had jet-black hair, and was lean and athletic. Noted Civil War reporter George Alfred Townsend described him as a "muscular, perfect man" with "curling hair, like a Corinthian capital".

Short answer: jet-black

Example 1

Question: who played will on as the world turns Long answer: William "Will" Harold Ryan Munson is a fictional character on the CBS soap opera As the World Turns. He was portrayed by Jesse Soffer on recurring basis from September 2004 to March 2005, after which he got a contract as a regular. Soffer left the show on April 4, 2008 and made a brief return in July 2010. Judgment: Correct. Justification: It is clear beyond a reasonable doubt that the answer is correct.

https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/1f7b46b5378d757553d3e92ead36bda2e4254244.pdf

LLM (gpt-2)

Decoder-only transformer architecture (created by author)

GPT-2 is a decoder-only transformer architecture. It removes the following components from the transformer:

- The entire encoder module
- All encoder-decoder self-attention modules in the decoder

LLM (gpt-2)

Decoder-only transformer architecture (created by author)

After these components have been removed, each layer of the decoder simply consists of

 a masked self-attention layer followed by a feed forward neural network. Stacking several of such layers on top of each other forms a deep, decoder-only transformer architecture, such as those used for GPT or GPT-2.

Evaluation Metrics

We choose two metrics to measure the similarity of the machine-translated text to a set of high quality reference translations. Both metrics range from 0 to 1.

- BLEU SCORE: A precision based measure.
- ROUGE_SCORE: The harmonic mean of recall and precision.
- Perplexity score ?

Evaluation Benchmarks

We choose the RAG and GPT-2 as the benchmarks where GPT-2 is pre-trained on large scale datasets.

We compare the performance of:

- Pretrained GPT-2 model
- 2. Pretrained GPT-2 model + RAG prompts (top-3 documents)
- 3. Fine-tuned GPT-2 model using RAG prompts (top-3 documents)
- 4. LLaMa 7B + RAG prompts
- 5. LLaMa 7B

Evaluation settings

We customize the dataset by selecting 2335 query&answer pairs from NQDataset. The dataset is splitted into two parts:

- Train Split: 1335 query&answer pairs
- Test Split: 1000 query&answer pairs

What's more, the indices of top-3 document is added for each query&answer pairs.

query	long	long_answer							
wolf of wall street number of f words	Film	Year	Fuck count	Minutes	Uses / minute	Source	[0 178 684]		

Example of our customized dataset

Evaluation Results — ROUGE of EXP1

The following results show the ROUGE 1 score and BLEU score of the pre-trained GPT-2 model on the test split of our customized dataset.

It shows that the overall performance of pre-trained GPT-2 is bad.

Evaluation Results — BLEU of EXP1

The following results show the ROUGE 1 score and BLEU score of the pre-trained GPT-2 model on the test split of our customized dataset.

It shows that the overall performance of pre-trained GPT-2 is bad.

Evaluation Results — Perplexity of EXP1

The following results show the ROUGE 1 score and BLEU score of the pre-trained GPT-2 model on the test split of our customized dataset.

It shows that the overall performance of pre-trained GPT-2 is bad.

Evaluation Results — ROUGE of EXP2

In terms of the bad performance of pretrained GPT-2 mode, we use RAG prompts (top-3 documents) to help improve the scores.

Evaluation Results — BLEU of EXP2

In terms of the bad performance of pretrained GPT-2 mode, we use RAG prompts (top-3 documents) to help improve the scores.

Evaluation Results — Perplexity of EXP2

In terms of the bad performance of pretrained GPT-2 mode, we use RAG prompts (top-3 documents) to help improve the scores.

Evaluation Results — ROUGE of EXP3

In terms of the bad performance of pretrained GPT-2 mode, we use a classifier to select the most relevant sentences from top-3 documents as the prompt to help improve the scores.

Evaluation Results — BLEU of EXP3

In terms of the bad performance of pretrained GPT-2 mode, we use a classifier to select the most relevant sentences from top-3 documents as the prompt to help improve the scores.

Evaluation Results — Perplexity of EXP3

In terms of the bad performance of pretrained GPT-2 mode, we use a classifier to select the most relevant sentences from top-3 documents as the prompt to help improve the scores.

Evaluation Results — BLEU Comparison of GPT2

Evaluation Results — ROUGE Comparison of GPT2

Evaluation Results — Perplexity Comparison of GPT2

Evaluation Results - Rouge1 Comparison on LLaMa2

Evaluation Results - Rouge2 Comparison on LLaMa2

Evaluation Results - RougeL Comparison on LLaMa2

Evaluation Results - BLEU Score Comparison on LLaMa2

Evaluation Results - BLEU Score Comparison on LLaMa2

Evaluation Results - Perplexity Score Comparison on LLaMa2

Evaluation Results - Perplexity Score Comparison on LLaMa2

Difficulties and Limitations

- (1)We don't have enough GPU to run the inference using full document as context
- (2) It takes long time to generate the Wikipedia embeddings due to large size of wikipedia documents
- (3)The context size of GPT2 is limited and we can not fit the entire top document into the prompt of GPT2; LLaMa model has long context windows, but it takes GPUs to run experiments and we do not have enough resource to run large scale experiments compared to industry
- (4)On the evaluation of truthfulness, usefulness and trustworthiness, we lack the man power to evaluate the all the outputs (ROUGE, BLUE and Perplexity do not guarantee truthfulness, usefulness and trustworthiness)
- (5)The NQdataset evaluation might still not be comprehensive to encompass a wide range of human knowledge

Summary of Contribution

(1)Proposed method on better extracting relevant information for RAG system

(2)Extensive evaluation on proposed method on open source model including GPT2 and LLaMa2; And the proposed method achieve better performance in ROUGE, BLUE and Perplexity compared to two baselines

Future Work

- Evaluation reveals that while LLMs exhibit a certain degree of noise robustness
- Still struggle significantly in terms of negative rejection, information integration, and dealing with false information

Figure 1: Illustration of 4 kinds of abilities required for retrieval-augmented generation of LLMs.

Future Work

- Proposes terative retrieval-generation collaborative framework
- Able to leverage both parametric and non-parametric knowledge, but also helps to find the correct reasoning path through retrieval-generation interactions

Question: What is the date of birth of Emilie Hegh Arntzen's mother? Retrieval: infobox name: Emilie Hegh Arntzen; caption: Hegh Arntzen in 2018; birth date: January 1, 1994; birth place: Skien, Norway; nationality: Norwegian; Iteration 1 Generation: Emilie Hegh Arntzen was born on January 1, 1994 in Skien, Norway. Her mother is unknown. Retrieval: Camilla Marie Gjersem was born together with a twin sister, Anne Line, on 6 January 1994 in Hønefoss, Norway. Their mother, Perlina Bangug, is a Filipina from Ilagan, Isabela, and their father, Petter Gjersem, a Norwegian from Raufoss. Camilla Gjersem is a law student at the University of Oslo. Generation: Hanne Hegh (born 19 January 1960) is a Norwegian handball player. She played 220 matches for the Norwegian national handball team between 1978 and 1992. She is the mother of Emilie Hegh Arntzen. Retrieval: infobox name: Hanne Hegh; caption: Hanne Hegh 2008; nationality: Norwegian; birth_date: April 27, 1960; birth_place: Oslo, Norway; Iteration 3 Generation: Hanne Hegh was born on April 27, 1960 in Oslo, Norway. She is the mother of Emilie Hegh Arntzen, who was born on January 1, 1994 in Skien, Norway.