CS70 In Simpler Terms - Note 10

written by Kevin Liu cs70.kevinmliu.com

August 1, 2017

1 RSA

- Encrypt message x: $E(X) = x^e \pmod{N}$, N = pq (large primes)
- Decode m = E(x): $D(m) = m^d \pmod{N}$, where d is the M.I. of $e \pmod{(p-1)(q-1)} \Rightarrow \gcd(e,(p-1)(q-1)) = 1$ ensures that d exists since e is relatively prime with (p-q)(q-1)
- $D(E(x)) = x \pmod{N} \Rightarrow E$ is a bijection $x^{ed} = x \pmod{N}$ Proof:
 - $-ed = 1 \pmod{(p-1)(q-1)} = 1 + (p-1)(q-1)k$
 - $-x^{ed} x = x^{1+k(p-1)(q-1)} x = x(x^{k(p-1)(q-1)} 1)$

We are trying to show that the above statement $\equiv 0 \pmod{N}$, because then we will have proven that $x^{ed} \equiv x \pmod{N}$

- We can do this by showing that x is divisibly by p and x is divisible by $q \Rightarrow$ divisible by pq
 - * case 1: x is a multiple of p, in which case we are done
 - * case 2: x is not a multiple of p so using FLT $x^{p-1} \equiv 1 \pmod{p} \Rightarrow (x^{p-1})^{k(q-1)} \equiv 1^{k(q-1)} \pmod{p} \equiv 1 \pmod{p} \Rightarrow x^{k(p-1)(q-1)} 1 \equiv 0 \pmod{p} \quad \Box$
- the proof for the case where q|x is analogous

2 Polynomials

- \bullet degree d polynomial has at most d roots
- need d+1 points to uniquely determine polynomial of degree d
- Lagrange interpolation used to find a polynomial of lowest degree, given a set of points

Formula for calculating the final polynomial p(x) of degree d $p(x) = \sum_{i=1}^{d+1} y_i \Delta_i(x)$, after constructing d+1 polynomials $\Delta_i(x)$

Formula for finding the individual polynomials, $\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_j - x_j)}$

Example: Find the polynomial of lowest degree that passes through the points (1,1), (2,2), (3,4)

$$- d = 2, x_i = i$$

$$- i = 1, \Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)}$$

* This makes sense because at
$$x=2, x=3, \Delta_1(x)=0$$
, and at $x=1, \Delta_1(x)=1$, so $y_1\Delta(x)=1(1)=1$ which is correct

$$-i = 2, \Delta_2(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)}$$

$$-i = 2, \, \Delta_2(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)}$$
$$-i = 3, \, \Delta_3(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)}$$

Finite Fields F_m or GF(m)3

Restricting the fields to \pmod{m}

- x has inverse (mod m) iff gcd(m, x) = 1 so m is prime
- $x \in \{1, ...m 1\}$ all have an inverse (mod m) \Rightarrow bijection
- How many polynomials are there of degree at most 2 \pmod{m} ?
 - There are 3 coefficients in a degree 2 polynomial
 - Each coefficient has m values to choose from $\{0,...m-1\} \Rightarrow m^3$ polynomials

The chart below summarizes the result above:

Polynomials of degree $\leq d$ over F_m

Number of points given	Number of polynomials
d+1	1
d	m
	•
	•
•	
0	m^{d+1}