PLANTAR CLAVELES CON ARDUINO

Objetivo

Tamagotchi vegetal, cuidar algo verdaderamente vivo.

Usaremos arduino, por pantalla nuestra planta nos pedirá cosas según lo que detecten nuestros sensores.

Usar:

- pantalla lcd
- zumbador
- detector de humedad

¿Cómo funciona la pantalla LCD?

Así se conecta.

Hay que tener en cuenta que la pantalla que estoy usando tiene incorporado un adaptador I2C para que la conexión sea más sencilla y así quedaría.

Por si queréis saber más acerca del adaptador:

(partes del adaptador) aquí lo explica mejor→ https://www.youtube.com/watch?v=kuLgPLrg-cY

PROGRAMACIÓN PANTALLA LCD

Necesitamos la aplicación de **ARDUINO IDE** lo primero de todo **Software | Arduino**

Dentro de la aplicación de arduino instalamos esta librería (LiquidCrystal I2C):

y nos ponemos a picar código:

Es sencillo:

 Al principio del código, llamamos a la librería #include

<LiquidCrystal I2C.h>

creamos una pantalla:

LiquidCrystal_I2C
nombrepantalla(0x27, 16, 2);*

• en el setup iniciamos la pantalla

con: lcd.init();
 lcd.backlight();
 lcd.clear();

 para colocar el cursor donde queremos que empiece el texto a escribir: lcd.setCursor(x,y);

• El código se lee de arriba abajo y de

izquierda a derecha. Parece tonteria pero ES IMPORTANTE

cuando nombramos la pantalla: LiquidCrystal_I2C nombrepantalla(0x27, 16, 2);
ese (0x27, 16, 2); significa:

el 0x27 es por lo que tengo entendido un protocolo de la pantalla, según la pantalla el protocolo puede cambiar entre:

• 0x27 https://www.youtube.com/watch?v=Dbp66tmwBYQ ← Este men

explica bn 🙂

- 0x20
- 0x30
- 0x3f

el 16, 2 son los caracteres que contiene la pantalla, mi pantalla sería una tabla de 16x2 pero puede cambiar según lo grande que sea la pantalla que usemos

EJEMPLO DE CÓDIGO:

esto se vería:

Caracteres personalizados

Aparte de solo letras, números o caracteres especiales, podemos crear nuestros propios caracteres.

 $\underline{\text{https://maxpromer.github.io/LCD-Character-Creator/}} \leftarrow \text{ese link es para crear caracteres} \\ \text{personalizados}$

LCD Custom Character Generator

Support character lcd and create code for Arduino.

0	1	0	1	0
1	1	0	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0
0	0	0	0	0

- Se crea la variable byte <u>nombrecaracter</u> [] = {}
- Dentro del setup llamamos al carácter: lcd.createChar(0, nombrecaracter);
- Si lo queremos imprimir por pantalla: lcd.write(byte(0));

Para hacer un dibujo más complejo podemos implicar varios caracteres personalizados:

Decimos la posición en la que empezamos a escribir el print es para texto y el write es para caracteres especiales y se pone en orden según lo que queremos que salga.

```
#include <LiquidCrystal I2C.h>
LiquidCrystal I2C lcd(0x27, 16, 2);
//caracteres plantita
#pragma region flor
byte flor1[8] = { B00000, B00000, B00000, B00011, B00011, B00011,
B00000, B00000);
byte flor2[8] = { B00000, B00000, B00001, B10010, B10010, B11010,
B11010, B00100};
byte flor3[8] = { B00000, B00000, B00000, B00000, B00000, B00000,
B00000, B11100};
byte flor4[8] = { B00100, B00101, B00101, B00010, B00010, B00001,
B00011, B01111};
byte flor5[8] = { B11100, B11100, B10000, B00000, B00000, B00000,
B10000, B11100};
#pragma endregion
void setup(){
lcd.createChar(0, flor1);
  lcd.createChar(1, flor2);
  lcd.createChar(2, flor3);
  lcd.createChar(3, flor4);
  lcd.createChar(4, flor5);
#pragma region Fila1
//caracteres en primera fila
  lcd.setCursor(0,0);
  lcd.write(byte(0));
  lcd.write(byte(1));
  lcd.write(byte(2));
```

```
#pragma endregion
  #pragma region Fila2
//caracteres en segunda fila
  lcd.setCursor(0,1);
  lcd.print (" ");
  lcd.write(byte(3));
  lcd.write(byte(4));
  #pragma endregion
}
```

ANIMACIÓN POR PANTALLA

Es muy parecida a escribir, la unica diferencia es que metemos el codigo dentro de loop(); en vez de setup();

• creamos dos dibujos de las plantas y vamos alternando con un delay(1000);

```
#include <LiquidCrystal I2C.h>
LiquidCrystal I2C lcd(0x27, 16, 2); // Inicia el LCD en la dirección
0x27 con 16 caracteres y 2 líneas
//caracteres plantita
#pragma region floranimacion1
byte flor1[8] = { B00000, B00000, B00000, B00011, B00011, B00011,
B00000, B00000);
byte flor2[8] = { B00000, B00000, B00001, B10010, B10010, B11010,
B11010, B00100};
byte flor3[8] = { B00000, B00000, B00000, B00000, B00000, B00000,
B00000, B11100};
byte flor4[8] = { B00100, B00101, B00101, B00010, B00010, B00001,
B00011, B01111};
byte flor5[8] = { B11100, B11100, B10000, B00000, B00000, B00000,
B10000, B11100};
#pragma endregion
#pragma region floranimacion2
byte flore1[8] = { B00000, B00000, B00000, B00001, B00001, B00001,
B00000, B00000);
byte flore2[8] = { B00000, B00000, B00010, B11001, B11001, B11101,
B01101, B00010};
```

```
byte flore3[8] = { B00000, B00000, B00000, B00000, B00000, B00000,
B01110, B01110};
byte flore4[8] = { B00010, B00010, B00001, B00001, B00001, B00001,
B00011, B01111};
byte flore5[8] = { B11110, B11000, B00000, B00000, B00000, B00000,
B10000, B11100};
#pragma endregion
void setup() {
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(6, 0);
 lcd.print("NO HAY");
 lcd.setCursor(5, 1);
 lcd.print("CLAVELES");
void loop() {
 /*lcd.setCursor(9, 1);
 lcd.print(millis() / 2000);*/
 animacionPlanta();
void animacionPlanta() {
  //frame 1
 #pragma region llamar animacion 1  //llamar caracteres primer
frame
 lcd.createChar(0, flor1);
 lcd.createChar(1, flor2);
 lcd.createChar(2, flor3);
 lcd.createChar(3, flor4);
 lcd.createChar(4, flor5);
 #pragma endregion
 #pragma region Fila11
                                       //escribir en pantalla primer
frame
  lcd.setCursor(0,0);
  lcd.write(byte(0));
  lcd.write(byte(1));
```

```
lcd.write(byte(2));
  #pragma endregion
  #pragma region Fila21
                                  //escribir en pantalla
segundo frame
 lcd.setCursor(0,1);
 lcd.print (" ");
 lcd.write(byte(3));
 lcd.write(byte(4));
 #pragma endregion
 delay(1000);
 //frame 2
  #pragma region llamar animacion 2  //llamar caracteres segunda
frame
 lcd.createChar(5, flore1);
 lcd.createChar(6, flore2);
 lcd.createChar(7, flore3);
 lcd.createChar(8, flore4);
 lcd.createChar(9, flore5);
 #pragma endregion
 #pragma region Fila12
 lcd.setCursor(0,0);
 lcd.write(byte(5));
 lcd.write(byte(6));
 lcd.write(byte(7));
 #pragma endregion
 #pragma region Fila22
 lcd.setCursor(0,1);
 lcd.print (" ");
 lcd.write(byte(8));
 lcd.write(byte(9));
 #pragma endregion
 delay(1000);
```

SENSOR DE HUMEDAD

Así se conecta.

(si quieres conectar la pantalla y el sensor a la vez, uno de los dos tiene que ir el pin que le da los 5 voltios en otro lao, en mi caso he usado el PIN13)

Poco que decir porque entender entiendo poco xD (sinceridad lo primero)

EL CÓDIGO CON PANTALLA Y SENSOR

Aquí están mezclados pantalla y sensor

```
#include <LiquidCrystal I2C.h>
LiquidCrystal I2C lcd(0x27, 16, 2); // Inicia el LCD en la dirección
0x27 con 16 caracteres y 2 líneas
int SENSOR;
//caracteres plantita
#pragma region floranimacion1
byte flor1[8] = { B00000, B00000, B00000, B00011, B00011, B00011,
B00000, B00000);
byte flor2[8] = { B00000, B00000, B00001, B10010, B10010, B11010,
B11010, B00100};
byte flor3[8] = { B00000, B00000, B00000, B00000, B00000, B00000,
B00000, B11100};
byte flor4[8] = { B00100, B00101, B00101, B00010, B00001,
B00011, B01111};
byte flor5[8] = { B11100, B11100, B10000, B00000, B00000, B00000,
B10000, B11100};
#pragma endregion
#pragma region floranimacion2
byte flore1[8] = { B00000, B00000, B00000, B00001, B00001, B00001,
B00000, B00000);
byte flore2[8] = { B00000, B00000, B00010, B11001, B11001, B11101,
B01101, B00010};
byte flore3[8] = { B00000, B00000, B00000, B00000, B00000, B00000,
B01110, B01110};
byte flore4[8] = { B00010, B00010, B00001, B00001, B00001, B00001,
B00011, B01111};
byte flore5[8] = { B11110, B11000, B00000, B00000, B00000, B00000,
B10000, B11100};
#pragma endregion
void setup() {
 lcd.init();
 lcd.backlight();
 lcd.clear();
 Serial.begin (9600); //esto es de la pantalla, que ni puta idea
 pinMode (13, OUTPUT); //activa el pin 13
```

```
lcd.setCursor(3, 0);
 lcd.print("HAY AGUA?");
void loop() {
 digitalWrite (13,1);
 animacionPlanta();
 SENSOR = analogRead(A0);
 comprobacion();
void comprobacion() {
 if (SENSOR <= 30) {
   Serial.println(SENSOR);
   lcd.setCursor(3, 1);
   lcd.print(" AGUAAAA!");
 else if (SENSOR >30) {
   Serial.println(SENSOR);
  lcd.setCursor(3, 1);
   lcd.print(" IS WET ");
 }
void animacionPlanta(){
 //frame 1
 #pragma region llamar animacion 1  //llamar caracteres primer
frame
 lcd.createChar(0, flor1);
 lcd.createChar(1, flor2);
 lcd.createChar(2, flor3);
 lcd.createChar(3, flor4);
 lcd.createChar(4, flor5);
 #pragma endregion
 frame
 lcd.setCursor(0,0);
 lcd.write(byte(0));
 lcd.write(byte(1));
 lcd.write(byte(2));
 #pragma endregion
 #pragma region Fila21
                                     //escribir en pantalla
```

```
segundo frame
 lcd.setCursor(0,1);
 lcd.print (" ");
 lcd.write(byte(3));
 lcd.write(byte(4));
 #pragma endregion
 #pragma region Fila11
                                      //escribir en pantalla primer
frame
 lcd.setCursor(13,0);
 lcd.write(byte(0));
 lcd.write(byte(1));
 lcd.write(byte(2));
 #pragma endregion
 #pragma region Fila21
                                      //escribir en pantalla
segundo frame
 lcd.setCursor(13,1);
 lcd.print (" ");
 lcd.write(byte(3));
 lcd.write(byte(4));
 #pragma endregion
 delay(1000);
 //frame 2
 #pragma region llamar animacion 2  //llamar caracteres segunda
frame
 lcd.createChar(5, flore1);
 lcd.createChar(6, flore2);
 lcd.createChar(7, flore3);
 lcd.createChar(8, flore4);
 lcd.createChar(9, flore5);
 #pragma endregion
 #pragma region Fila12
 lcd.setCursor(0,0);
 lcd.write(byte(5));
 lcd.write(byte(6));
 lcd.write(byte(7));
 #pragma endregion
 #pragma region Fila22
 lcd.setCursor(0,1);
 lcd.print (" ");
```

```
lcd.write(byte(8));
lcd.write(byte(9));
#pragma endregion
#pragma region Fila12
lcd.setCursor(13,0);
lcd.write(byte(5));
lcd.write(byte(6));
lcd.write(byte(7));
#pragma endregion
#pragma region Fila22
lcd.setCursor(13,1);
lcd.print (" ");
lcd.write(byte(8));
lcd.write(byte(9));
#pragma endregion
delay(1000);
```

BIBLIOGRAFÍA

https://docs.arduino.cc/built-in-examples/ (creo que viendo los ejemplos que te trae la propia web de arduino te haces el curso. Eso sí, el cómo funciona la pantalla olvidate :)
https://www.youtube.com/watch?v=bV7rujD-9NU&list=PLEzmH7aN82FEh2JjYuNCvFu6wFolHai32 (esto es un curso para aprender desde 0)

(Ejemplos de código)

https://github.com/johannpereze/cursoArduinoJohannPerezEhttps://github.com/bitwiseAr/Curso-Arduino-desde-cero/

(animación en pantalla código)

- https://github.com/creatividadcodificada/ProyectosArduino/blob/master/LCd_arduino_dinosaurio_completo.ino
- https://www.youtube.com/watch?v=_yDPX4DIIbA