Veech groups of hexagonal tiled surfaces

畑佐 悠太

2022 年 3 月 26 日 @ Yota25

東工大・数学系 M2

目次

1. Origami

2. Veech 群

3. Hexagonal tiled surface

1. Origami

定義

Origami とは有限枚の単位 Euclid 正方形からなり,以下の規則によって貼り合わせてできる曲面のことである.

- 各正方形の左辺はある正方形の右辺と貼り合う.
- 各正方形の上辺はある正方形の下辺と貼り合う.
- 貼り合わせてできる曲面は連結.

例

例

種数 g は Euler 標数を用いて

$$2-2g = (頂点の数) - (辺の数) + (面の数)$$

= $2-8+4=-2$

から g=2 と計算される.

Origami は 1 点抜きトーラス上の被覆空間だとみなせる.

命題

d 枚の正方形からなる origami は以下によって特徴付けされる.

- トーラス上の高々 1 点で分岐している次数 d の Riemann 面.
- 1 点抜きトーラス上の次数 d の連結な被覆空間.
- ullet 2 元生成自由群 F_2 の指数 d の部分群の共役類.
- ullet 2 元生成自由群 F_2 から推移的な作用の入った d 元集合.
- 頂点が d 個で辺が x と y でラベル付けされた有向グラフで,各頂点は x と y でラベル付けされた入力辺と出力辺をそれぞれ 1 つずつ持つ.

有理数体 $\mathbb Q$ の絶対 Galois 群 $\operatorname{Gal}(\overline{\mathbb Q}/\mathbb Q)$ を研究するために Grothendieck は dessin d'enfants と呼ばれる組み合わせ論的対象を 導入した.これは以下によって特徴付けされる.

- 3 点抜き球面上の有限次数の連結な被覆空間.
- 2 元生成自由群 F₂ の有限指数の部分群の共役類.

2. Veech 群

定義

任意の座標変換が $z\mapsto z+c$ $(c\in\mathbb{C})$ の形からなる座標近傍系 μ を備えた Riemann 面 (X,μ) を translation surface という.

 $E^*=(\mathbb{C}/\mathbb{Z}^2)\setminus\{0\}$ とするとき, E^* は translation surface となる.また E^* 上の有限次数被覆空間 (i.e. origami) も translation surface となる.

X を translation surface とし、 $f: X \to X$ を微分同相写像とする.

定義

f が局所的に $z\mapsto Az+b$ $\left(A\in \mathrm{GL}_2(\mathbb{R}),\ b\in\mathbb{R}^2
ight)$ であるとき,f を affine という.

注意

X が translation surface であることにより行列 $A\in \mathrm{GL}_2(\mathbb{R})$ は 局所座標の取り方によらずに大域的に定まる. $\operatorname{Aff}^+(X) := \{f \colon X \to X \mid$ 向きを保つ affine 微分同相 $\}$

とし $D \colon \mathrm{Aff}^+(X) \to \mathrm{GL}_2^+(\mathbb{R})$ を f に対し大域的に定まる行列 A を返す群準同型とする.

定義

 $\mathrm{GL}_2^+(\mathbb{R})$ の部分群 $\Gamma(X)\coloneqq D(\mathrm{Aff}^+(X))$ を X の Veech 群と呼ぶ.

目標:origami の Veech 群を計算したい

 $O=(p\colon X^*\to E^*)$ を origami, $u\colon \widetilde{X^*}\to X^*$ を普遍被覆とする. H を X^* の基本群とし F_2 の部分群とみなす.

定理 (Schmithüsen)

以下の可換図式が存在して,各行は完全列である.

$$1 \longrightarrow \operatorname{Aut}(\widetilde{X^*}/E^*) \longrightarrow \operatorname{Aff}^+(\widetilde{X^*}) \xrightarrow{D} \operatorname{SL}_2(\mathbb{Z}) \longrightarrow 1$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \downarrow^{\cong}$$

$$1 \longrightarrow \operatorname{Inn}(F_2) \longrightarrow \operatorname{Aut}^+(F_2) \longrightarrow \operatorname{Out}^+(F_2) \longrightarrow 1$$

さらに
$$\operatorname{Aff}^+(H) = \{ \gamma \in \operatorname{Aut}^+(F_2) \mid \gamma(H) = H \}$$
 とするとき $\Gamma(X^*) = \hat{\beta}(\operatorname{Aff}^+(H)) \subseteq \operatorname{SL}_2(\mathbb{Z})$ が成り立つ.

 h_1,\ldots,h_k を H の生成元, σ_1,\ldots,σ_d を右剰余類集合 $H\backslash F_2$ の完全代表系, $\overline{\sigma_i}$ を右剰余類 $H\cdot\sigma_i$ とする.

系 (Schmithüsen)

 $A\in \mathrm{SL}_2(\mathbb{Z})\cong \mathrm{Aut}^+(\mathbb{Z}^2)$ に対し,A のリフト $\gamma_A^0\in \mathrm{Aut}^+(F_2)$ を 1 つ取って固定する.このとき

$$A \in \Gamma(X^*) \iff \frac{\exists i \in \{1, \dots, d\}, \forall j \in \{1, \dots, k\},}{\overline{\sigma_i} \cdot \gamma_0^A(h_j) = \overline{\sigma_i}}$$

定理 (Schmithüsen)

 $\Gamma(X^*)$ は $\mathrm{SL}_2(\mathbb{Z})$ の有限指数部分群である.

系と定理を用いて Schmithüsen は origami の Veech 群を計算する アルゴリズムを与えた.

3. Hexagonal tiled surface

定義

Hexagonal tiled surface とは有限枚の単位正六角形からなり,以下の規則によって貼り合わせてできる曲面のことである.

- 各正六角形の上の辺はある正六角形の下の辺と貼り合う.
- 各正六角形の左上の辺はある正六角形の右下の辺と貼り合う.
- 各正六角形の右上の辺はある正六角形の左下の辺と貼り合う.
- 貼り合わせてできる曲面は連結.

例

Origami の場合と同様に以下のことが成り立つ.

命題

d 枚の正六角形からなる hexagonal tiled surface は以下によって 特徴付けされる.

- トーラス上の高々 2 点で分岐している次数 d の Riemann 面.
- 2 点抜きトーラス上の次数 d の連結な被覆空間.
- 3 元生成自由群 F₃ の指数 d の部分群の共役類.
- ullet 3 元生成自由群 F_3 から推移的な作用の入った d 元集合.
- 頂点が d 個で辺が x_1 と x_2 と x_3 でラベル付けされた有向グラフで,各頂点は x_1 と x_2 と x_3 でラベル付けされた入力辺と出力辺をそれぞれ 1 つずつ持つ.

 $E:=(1,-\omega^2,\omega,-1,\omega^2,-\omega$ を頂点とする正六角形からなる曲面), $E^*:=E\setminus\{1,-1\}$ とする. E^* は translation surface である. また $p\colon X^*\to E^*$ を有限次数被覆空間 (i.e. hexagonal tiled surface) と するとき, X^* も translation surface である.

定理

$$\Gamma(E^*) = \left\langle \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}, \begin{pmatrix} 1 & 2\sqrt{3} \\ 0 & 1 \end{pmatrix} \right\rangle$$

系

 $P^{-1}\Gamma(E^*)P$ は $\mathrm{SL}_2(\mathbb{Z})$ の指数 4 で $\Gamma(3)$ を含む合同部分群.

 $p\colon X^* o E^*$ を hexagonal tiled surface とし $\widetilde{X^*}$ を X^* の普遍被覆とする. $F_3\cong \operatorname{Aut}(\widetilde{X^*}/E^*)$ と同一視するとき,

*:
$$\operatorname{Aff}^+(\widetilde{X^*}) \longrightarrow \operatorname{Aut}(F_3)$$

 $\widetilde{f} \longmapsto (\widetilde{f_*}: \sigma \mapsto \widetilde{f} \circ \sigma \circ \widetilde{f}^{-1})$

が定義される. $\operatorname{Aut}_*(F_3) \coloneqq \operatorname{Im}(*)$ と定義する.

注意

 $\operatorname{Aut}_*(F_3)$ は $\operatorname{Aut}(F_3)$ や $\operatorname{Aut}^+(F_3)$ とは等しくない.

H を X^* の基本群とし F_3 の部分群とみなす.

定理

以下の可換図式が存在して,上の行は完全列である.

$$1 \longrightarrow \operatorname{Aut}(\widetilde{X^*}/E^*) \longrightarrow \operatorname{Aff}^+(\widetilde{X^*}) \stackrel{D}{\longrightarrow} \Gamma(E^*) \longrightarrow 1$$

$$\downarrow \cong \qquad \qquad \downarrow * \qquad \qquad \theta$$

$$\operatorname{Inn}(F_3) \longrightarrow \operatorname{Aut}_*(F_3)$$

さらに $\operatorname{Aff}^+(H) = \{ \gamma \in \operatorname{Aut}_*(F_3) \mid \gamma(H) = H \}$ とするとき $\Gamma(X^*) = \theta(\operatorname{Aff}^+(H)) \subseteq \Gamma(E^*)$ が成り立つ.

 h_1,\ldots,h_k を H の生成元, σ_1,\ldots,σ_d を右剰余類集合 $H\backslash F_3$ の完全代表系, $\overline{\sigma_i}$ を右剰余類 $H\cdot\sigma_i$ とする.

系

 $A\in\Gamma(E^*)$ に対し, $\theta(\gamma_A^0)=A$ を満たす $\gamma_A^0\in {\rm Aut}_*(F_3)$ を 1 つ取って固定する.このとき

$$A \in \Gamma(X^*) \iff \frac{\exists i \in \{1, \dots, d\}, \forall j \in \{1, \dots, k\},}{\overline{\sigma_i} \cdot \gamma_0^A(h_j) = \overline{\sigma_i}}$$

定理

 $\Gamma(X^*)$ は $\Gamma(E^*)$ の有限指数部分群である.