Step-1

Let
$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0$$

$$\Rightarrow c_1 (w_2 - w_3) + c_2 (w_1 - w_3) + c_3 (w_1 - w_2) = 0$$

$$\Rightarrow (c_2 + c_3) w_1 + (c_1 - c_3) w_2 + (-c_1 - c_2) w_3 = 0$$

Step-2

So,

$$\Longrightarrow c_2 + c_3 = 0$$

$$c_1 - c_3 = 0$$

 $-c_1 - c_2 = 0$ (since w_1, w_2, w_3 are linearly independent)

But,

$$-c_1 - c_2 = 0$$

$$\Rightarrow c_1 = -c_2$$

And,

$$c_1 - c_3 = 0$$

$$\Rightarrow c_3 = c_1$$

Therefore, $c_3 = c_1 = -c_2$

Step-3

So,

$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0$$

$$c_1 v_1 - c_1 v_2 + c_1 v_3 = 0$$

Let $c_1 = 1, v_1 - v_2 + v_3 = 0$, therefore v_1, v_2, v_3 are linear dependent

Therefore, the sum $v_1 - v_2 + v_3 = 0$