

di Ingegneria Gestionale, dell'Informazione e della Produzione



## Formula 1 Lap Time Prediction

**Optimization Project** 

Optimization 2024/2025

PRESENTER

Daniele Gotti - 1079011

Dalmine, BG

### **Contents**

- What is Formula 1?
- Project Goals
- Data Preparation
- Model Creation
- Optimization
- Conclusion

This project was developed in a **Jupyter Notebook** (*.ipynb*) using **VS Code** and **Python** within an **Anaconda** virtual environment.

The full project is available on **GitHub**: <u>link</u>.



## What is Formula 1?

### What is Formula 1?

Formula 1 (F1) is the highest class of international **motorsport**.

- It features open-wheel, single-seater race cars competing in a series of Grand Prix events worldwide.
- Each Grand Prix (24 GPs in 2025) is held on a permanent or street circuit in different countries and the race weekend usually spans **three days**.



Source: sportingnews.com

### Race weekend



Source: fanamp.com

## Teams, drivers and championships

- Each team (constructor) fields two cars and employs two drivers.
- Points are awarded based on finishing position. The driver and team with the most points at season's end are crowned champions.
- Teams compete in the Constructors' Championship, and drivers in the Drivers' Championship.



Source: sportingnews.com



Source: motorauthority.com

### Cars

- F1 cars are technological masterpieces, with hybrid power units combining a turbocharged V6 engine and energy recovery systems.
- Made with carbon fiber, they're extremely light and fast: over 350 km/h top speed and 0 - 100 km/h in ~2.5 seconds.



Source: motorionline.com

 Each car is designed and built by the teams within strict FIA regulations.

## Why is Formula 1 fascinating?

- Involves the best of engineering: aerodynamics, materials science, thermal management, mechanical design, information and electronic systems, etc.
- Drivers undergo intense physical and mental training, enduring G-forces, high temperatures, and long concentration spans.
- Anything can happen during a race, which is why strategy plays a crucial role (pit stops, accidents, etc.).
- It's a sport where even hundredths of a second can make the difference.

## Why data is crucial in F1?

- Each car has over 300 sensors collecting real-time data generating 1.1 million telemetry data points per second.
- Data is used to:
  - optimize car setup for each track.
  - monitor performance and reliability.
  - run simulations to **test strategies** .
  - train drivers using advanced simulators.



Source: formule1fr.com

- Data informs race strategies: data scientists make fast decisions during the race.
- Machine learning and Al are increasingly used to model race outcomes and competitor behavior.



# **Project Goals**



## **Project goals**

- Develop linear regression models to predict lap times based on multiple variables
- Implement optimization techniques derived from gradient descent methods to minimize prediction error
- Analyze model performance and interpret the influence of different factors on lap times

Source: f1friend.com

## Why predict lap times?

- Driver benchmarking: provide realistic targets based on car and track conditions.
- Simulator Training: set lap time goals for driver development.
- Al Calibration (Games): tune Al lap times to match real-world scenarios.

- Car Development: evaluate design changes through simulated performance.
- Race Strategy: support tire and fuel decisions with predicted pace.
- Fan Engagement: Enhance broadcasts with expected lap time insights.



## **Data Preparation**

### **Custom Dataset Construction**

- Pre-existing datasets on Kaggle or UCI were not suitable for my specific goal of predicting lap times under varying real-world conditions.
- Instead, I created a custom dataset using the approach from a Kaggle notebook (*Data Exploration with OCI*), which leverages the **FastF1 API** (a F1 data service) to collect telemetry and race data.
- The resulting dataset includes detailed lap-by-lap information from the 2023 and 2024 Formula 1 seasons.

#### References:

- Kaggle notebook Data Exploration with OCI: link.
- Code for dataset creation with FastF1 API: <u>link</u>.
- FastF1 API documentation: <u>link</u>.



Source: docs.fastf1.dev

## **Original dataset**

The result obtained using the API is a dataset (<u>dataset\_original.csv</u>) containing 46 columns and 121534 rows. At first glance, many of these columns appear to be irrelevant.

• The code for the following operations is contained in the file 1 Dataset Preparation.ipynb.

## Editing rows (1/2)

- Removed rows where *IsAccurate* is false, as they do not meet the quality criteria for valid lap data (inlap or outlap, flags, safetycar, etc.).
- Removed rows in which all of the following fields were null: Stint, Compound, and TyreLife.
- Excluded drivers with minimal or unofficial participation.
- Removed laps recorded under yellow flag conditions (i.e., where *TrackStatus* ≠ 1).
- Excluded free practice sessions (FP1, FP2, FP3).

## Editing rows (2/2)

- Removed warm-up laps in qualifying sessions, retaining only laps within 5 seconds of the driver's best time in the same session.
- Standardized team names (Alfa Romeo → Kick Sauber, AlphaTauri → RB).
- Removed unofficial tyre compounds like test compound.
- Converted LapTime to seconds.

## **Editing columns**

- Dropped unnecessary columns at the beginning: DriverNumber, Sector1Time, Sector2Time, Sector3Time, Sector1SessionTime, Sector2SessionTime, Sector3SessionTime, SpeedI1, SpeedI2, SpeedFL, SpeedST, IsPersonalBest, LapStartTime, LapStartDate, Position, DeletedReason, FastF1Generated, Country.
- Added a new column FuelLevel based on estimated fuel consumption per lap.
- Dropped additional columns after filtering and row operations: IsAccurate,
   PitOutTime, PitInTime, TrackStatus, Deleted, EventDate, Time, Stint,
   RoundNumber, TimeWeather, original\_index.

## **Final dataset**

- The new data have been exported to the file <u>dataset\_final.csv</u>.
- Changes include:

- columns:  $46 \rightarrow 18$ ;

- rows:  $121534 \rightarrow 52160$ .

|   | Driver | LapTime | LapNumber | Compound | TyreLife | FreshTyre | Team            | EventName          | Session    | EventYear | AirTemp | Humidity | Pressure | Rainfall | TrackTemp | WindDirection | WindSpeed | FuelLevel |
|---|--------|---------|-----------|----------|----------|-----------|-----------------|--------------------|------------|-----------|---------|----------|----------|----------|-----------|---------------|-----------|-----------|
| 0 | VER    | 91.295  | 3.0       | SOFT     | 3.0      | False     | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 24.2    | 16.0     | 1017.5   | False    | 28.7      | 352           | 0.6       | 2.0       |
| 1 | VER    | 90.503  | 8.0       | SOFT     | 2.0      | True      | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.8    | 20.0     | 1017.7   | False    | 27.8      | 342           | 0.5       | 2.0       |
| 2 | VER    | 89.897  | 11.0      | SOFT     | 2.0      | True      | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.1    | 31.0     | 1017.7   | False    | 26.9      | 338           | 1.3       | 2.0       |
| 3 | VER    | 89.708  | 14.0      | SOFT     | 2.0      | False     | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.0    | 33.0     | 1017.9   | False    | 26.6      | 329           | 0.8       | 2.0       |
| 4 | PER    | 91.479  | 3.0       | SOFT     | 3.0      | False     | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 24.3    | 16.0     | 1017.5   | False    | 28.7      | 333           | 0.4       | 2.0       |
| 5 | PER    | 90.746  | 8.0       | SOFT     | 2.0      | True      | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.8    | 20.0     | 1017.7   | False    | 27.8      | 342           | 0.5       | 2.0       |
| 6 | PER    | 90.131  | 11.0      | SOFT     | 2.0      | True      | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.1    | 31.0     | 1017.7   | False    | 26.9      | 338           | 1.3       | 2.0       |
| 7 | PER    | 89.846  | 14.0      | SOFT     | 2.0      | False     | Red Bull Racing | Bahrain Grand Prix | Qualifying | 2023      | 23.0    | 33.0     | 1017.9   | False    | 26.6      | 329           | 0.8       | 2.0       |
| 8 | LEC    | 91.094  | 5.0       | SOFT     | 2.0      | True      | Ferrari         | Bahrain Grand Prix | Qualifying | 2023      | 24.2    | 16.0     | 1017.5   | False    | 28.7      | 352           | 0.6       | 2.0       |
| 9 | LEC    | 91.699  | 10.0      | SOFT     | 7.0      | False     | Ferrari         | Bahrain Grand Prix | Qualifying | 2023      | 23.8    | 20.0     | 1017.7   | False    | 27.8      | 342           | 0.5       | 2.0       |



## **Model Creation**

## Analysis of correlations between variables

Numerical vs numerical variable: Pearson correlation coefficient (from -1 to 1)

$$r=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum (x_i-ar{x})^2}\sqrt{\sum (y_i-ar{y})^2}}$$

Categorical vs numerical variable: Eta squared (from 0 to 1)

$$\eta^2 = rac{SS_{
m between}}{SS_{
m total}} = rac{\sum_g n_g (\bar{y}_g - \bar{y})^2}{\sum_s (y_i - \bar{y})^2}$$
  $g = {
m group},$   $n = {
m number of observation in g.}$ 

Categorical vs Categorical variable: Cramér V (from 0 to 1)

$$V = \sqrt{\frac{\chi^2/n}{\min(k-1,r-1)}}$$

$$\chi^2 = \text{Chi-squared statistic;}$$

$$n = \text{number of observation;}$$

$$k = \text{categories of one variable;}$$

$$r = \text{categories of the other variable.}$$

# Correlation matrix

- Lap times are highly correlated with the circuit.
- Air pressure is excessively correlated with the circuit, while variables such as Air temperature and Humidity convey overlapping information.
- Therefore, Air pressure, Air temperature, and Humidity will not be included in the model.



0.2

- 0.0

- -0.2

## **Model features**

y = Lap time (s)

|   | Variable name          | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|---|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0 | Track name             | Abu Dhabi Grand Prix, Australian Grand Prix, Austrian Grand Prix, Azerbaijan Grand Prix, Bahrain Grand Prix Belgian Grand Prix, British Grand Prix, Canadian Grand Prix, Chinese Grand Prix, Dutch Grand Prix Emilia Romagna Grand Prix, Hungarian Grand Prix, Italian Grand Prix, Japanese Grand Prix, Las Vegas Grand Prix Mexico City Grand Prix, Miami Grand Prix, Monaco Grand Prix, Qatar Grand Prix, Saudi Arabian Grand Prix Singapore Grand Prix, Spanish Grand Prix, São Paulo Grand Prix, United States Grand Prix |  |  |  |  |  |  |  |
| 1 | Team name              | Alpine, Aston Martin, Ferrari, Haas F1 Team, Kick Sauber, McLaren, Mercedes, RB, Red Bull Racing, Williams                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 2 | Compound               | HARD, INTERMEDIATE, MEDIUM, SOFT, WET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 3 | Fresh tyre             | False, True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 4 | Rainfall               | False, True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 5 | Tyre life (laps)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 6 | Track temperature (°C) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 7 | Wind direction (°)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 8 | Wind speed (m/s)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 9 | Fuel level (kg)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |

### Model creation

- Variables are standardized to have mean 0 and standard deviation 1.
- The dataset is split **50% into training and testing** sets (kept fixed throughout the optimization process to compare the results of different optimization methods).
- Categorical variables are converted into dummies using one-hot encoding, with the first category of each variable set as the baseline.

```
Categorical variables (with dropped baseline):
'Track name': baseline = 'Abu Dhabi Grand Prix'
'Team name': baseline = 'Alpine'
'Tyre compound': baseline = 'HARD'
'Fresh tyre': baseline = 'False'
'Rainfall': baseline = 'False'
```

## **Linear regression**

Loss function (objective): MSE (Mean Squared Error)

$$L(\mathbf{w}) = rac{1}{2n} \sum_{i=1}^n (\mathbf{x}_i^ op \mathbf{w} - y_i)^2 = rac{1}{2n} \|X\mathbf{w} - \mathbf{y}\|^2$$

Gradient

$$abla L(\mathbf{w}) = rac{1}{n} X^{ op} (X\mathbf{w} - \mathbf{y})$$

Hessian

$$abla^2 L(\mathbf{w}) = rac{1}{n} X^ op X$$



## **Optimization**

# **Gradient Descent** (basic)

$$x_{t+1} := x_t - \gamma \nabla f(x_t)$$

#### **Assumptions:**

- tol = 1e-04:
- x0 = zero vector;
- max iter = 10000;
- gamma = 0.6.

```
[TRAIN] Gradient Descent:
[STEP
         1 f(x) = 0.50000 | ||grad|| = 3.10e-01
[STEP
         2| f(x) = 0.45285 | ||grad|| = 2.19e-01
[STEP
         31 f(x) = 0.42587 | ||grad|| = 1.97e-01
[STEP
         4] f(x) = 0.40318 \mid ||grad|| = 1.88e-01
[STEP
         5| f(x) = 0.38245 | ||grad|| = 1.81e-01
[STEP
         6] f(x) = 0.36318 | ||grad|| = 1.75e-01
[STEP
         7] f(x) = 0.34517 | ||grad|| = 1.69e-01
[STEP
         8] f(x) = 0.32831 \mid ||grad|| = 1.64e-01
         9] f(x) = 0.31249 | ||grad|| = 1.59e-01
[STEP
[STEP
        10] f(x) = 0.29765 | ||grad|| = 1.54e-01
[STEP
        11 f(x) = 0.28370 | ||grad|| = 1.49e-01
        12] f(x) = 0.27058 | ||grad|| = 1.45e-01
[STEP
        13] f(x) = 0.25823 | ||grad|| = 1.40e-01
[STEP
[STEP
        14] f(x) = 0.24660 | ||grad|| = 1.36e-01
[STEP
        15] f(x) = 0.23563 | ||grad|| = 1.32e-01
[STEP
        16] f(x) = 0.22529 | ||grad|| = 1.28e-01
[STEP
        17] f(x) = 0.21553 | ||grad|| = 1.25e-01
        18] f(x) = 0.20632 | ||grad|| = 1.21e-01
[STEP
[STEP
        19] f(x) = 0.19761 | ||grad|| = 1.18e-01
        20| f(x) = 0.18938 | ||grad|| = 1.15e-01
[STEP
[STEP
        21] f(x) = 0.18160 \mid ||grad|| = 1.12e-01
[STEP
        221 f(x) = 0.17423 | ||grad|| = 1.09e-01
[STEP
        23] f(x) = 0.16726 | ||grad|| = 1.06e-01
        24] f(x) = 0.16065 | ||grad|| = 1.03e-01
[STEP
[STEP 3847] f(x) = 0.01908 \mid ||grad|| = 1.00e-04
[TEST] R2:
```

[TEST] RMSE: 2.260 s

# **Gradient Descent** (Lipschitz convex)

$$\gamma = rac{R}{B\sqrt{T}} = rac{\|x_0 - x^*\|}{\|
abla f(x_0)\| \cdot \sqrt{T}}$$

### **Assumptions:**

- tol = 1e-04:
- *x0* = zero vector;
- $max_{iter} = 10000$ ;
- $x^* = 0.01908$  (GD result).

```
[TRAIN] Gradient Descent Lipschitz Convex:
[STEP
         1 | f(x) = 0.50000 | | | grad | | = 3.10e-01
[STEP
         2] f(x) = 0.49961 | ||grad|| = 3.09e-01
[STEP
         3| f(x) = 0.49922 | ||grad|| = 3.09e-01
[STEP
         4] f(x) = 0.49883 \mid ||grad|| = 3.08e-01
[STEP
         5| f(x) = 0.49844 | ||grad|| = 3.07e-01
[STEP]
         6] f(x) = 0.49806 | ||grad|| = 3.06e-01
[STEP
         7] f(x) = 0.49768 \mid ||grad|| = 3.06e-01
[STEP
         8] f(x) = 0.49730 \mid ||grad|| = 3.05e-01
[STEP
         9] f(x) = 0.49692 | ||grad|| = 3.04e-01
[STEP
        10| f(x) = 0.49654 | ||grad|| = 3.03e-01
[STEP
        11] f(x) = 0.49616 \mid ||grad|| = 3.03e-01
[STEP
        12] f(x) = 0.49579 | ||grad|| = 3.02e-01
[STEP
        13] f(x) = 0.49542 \mid ||grad|| = 3.01e-01
[STEP
        14] f(x) = 0.49505 | ||grad|| = 3.01e-01
[STEP
        15] f(x) = 0.49468 | ||grad|| = 3.00e-01
[STEP
        16] f(x) = 0.49432 \mid ||grad|| = 2.99e-01
[STEP
        17] f(x) = 0.49395 | ||grad|| = 2.98e-01
        18] f(x) = 0.49359 | ||grad|| = 2.98e-01
[STEP
        19] f(x) = 0.49323 \mid ||grad|| = 2.97e-01
[STEP
[STEP
        20] f(x) = 0.49287 | ||grad|| = 2.96e-01
[STEP
        21 f(x) = 0.49251 | ||grad|| = 2.96e-01
[STEP
        22] f(x) = 0.49215 | ||grad|| = 2.95e-01
[STEP
        23] f(x) = 0.49180 \mid ||grad|| = 2.94e-01
        24 f(x) = 0.49145 | ||grad|| = 2.94e-01
[STEP
[STEP 10000] f(x) = 0.04555 | ||grad|| = 3.68e-02
[TEST] R2: 0.904
```

[TEST] RMSE: 3.354 s

# **Gradient Descent** (smooth convex)

$$L = rac{1}{n} \|X^ op X\| \qquad \qquad \gamma \coloneqq rac{1}{L}$$

### **Assumptions:**

- *tol* = 1e-04:
- x0 = zero vector;
- $max_{iter} = 10000$ .

```
[TRAIN] Gradient Descent Smooth Convex:
[STEP
         1 f(x) = 0.50000 | ||grad|| = 3.10e-01
[STEP
         2| f(x) = 0.45774 | ||grad|| = 2.27e-01
[STEP
         3] f(x) = 0.43257 | ||grad|| = 2.02e-01
[STEP
         4] f(x) = 0.41189 \mid ||grad|| = 1.91e-01
[STEP
         5| f(x) = 0.39314 | ||grad|| = 1.84e-01
[STEP
         6] f(x) = 0.37565 \mid ||grad|| = 1.79e-01
[STEP
         7] f(x) = 0.35922 | ||grad|| = 1.73e-01
[STEP
         8] f(x) = 0.34371 \mid ||grad|| = 1.69e-01
[STEP
         9] f(x) = 0.32907 | ||grad|| = 1.64e-01
[STEP
        10] f(x) = 0.31522 | ||grad|| = 1.59e-01
        11] f(x) = 0.30212 | ||grad|| = 1.55e-01
[STEP
[STEP
        12] f(x) = 0.28970 | ||grad|| = 1.51e-01
[STEP
        13] f(x) = 0.27794 \mid ||grad|| = 1.47e-01
[STEP
        14] f(x) = 0.26678 | ||grad|| = 1.43e-01
[STEP
        15 | f(x) = 0.25620 | ||grad|| = 1.40e-01
        16] f(x) = 0.24615 | ||grad|| = 1.36e-01
[STEP
[STEP
        17] f(x) = 0.23660 | ||grad|| = 1.33e-01
[STEP
        18] f(x) = 0.22753 \mid ||grad|| = 1.29e-01
[STEP
        19] f(x) = 0.21890 \mid ||grad|| = 1.26e-01
[STEP
        20 f(x) = 0.21069 | ||grad|| = 1.23e-01
[STEP
        21] f(x) = 0.20288 | ||grad|| = 1.20e-01
[STEP
        22] f(x) = 0.19545 \mid ||grad|| = 1.17e-01
[STEP
        23] f(x) = 0.18837 \mid ||grad|| = 1.14e-01
        24] f(x) = 0.18162 | ||grad|| = 1.12e-01
[STEP 4417] f(x) = 0.01908 \mid ||grad|| = 1.00e-04
```

TEST] R2: 0.957 TEST] MSE: 5.107 s TEST] RMSE: 2.260 s

# **Gradient Descent** (strongly convex)

$$L = rac{1}{n} \|X^ op X\| \qquad \mu = rac{1}{n} \lambda_{\min}(X^ op X)$$
  $\gamma = rac{2}{L + \mu}$ 

### **Assumptions:**

- *tol* = 1e-04;
- x0 = zero vector;
- $max_iter = 10000$ .

```
1] f(x) = 0.50000 \mid ||grad|| = 3.10e-01
[STEP
[STEP
         2] f(x) = 0.43156 \mid ||grad|| = 2.02e-01
         3] f(x) = 0.39230 \mid ||grad|| = 1.87e-01
[STEP
         4] f(x) = 0.35816 \mid ||grad|| = 1.76e-01
[STEP
         5] f(x) = 0.32782 | ||grad|| = 1.67e-01
[STEP
         6] f(x) = 0.30073 \mid ||grad|| = 1.58e-01
[STEP
[STEP
        7] f(x) = 0.27647 \mid ||grad|| = 1.50e-01
[STEP
         8] f(x) = 0.25469 | ||grad|| = 1.43e-01
         9] f(x) = 0.23507 | ||grad|| = 1.36e-01
[STEP
[STEP
        10] f(x) = 0.21738 | ||grad|| = 1.30e-01
[STEP
        11] f(x) = 0.20138 \mid ||grad|| = 1.24e-01
[STEP
        12] f(x) = 0.18690 \mid ||grad|| = 1.18e-01
[STEP
        13 f(x) = 0.17377 | ||grad|| = 1.13e-01
        14 f(x) = 0.16184 | ||grad|| = 1.08e-01
[STEP
[STEP
        15] f(x) = 0.15099 \mid ||grad|| = 1.04e-01
        16] f(x) = 0.14112 | ||grad|| = 9.97e-02
[STEP
        17] f(x) = 0.13211 | ||grad|| = 9.57e-02
[STEP
        18] f(x) = 0.12389 | ||grad|| = 9.20e-02
[STEP
[STEP
        19] f(x) = 0.11637 | ||grad|| = 8.85e-02
        20| f(x) = 0.10950 | ||grad|| = 8.52e-02
[STEP
        21] f(x) = 0.10320 | ||grad|| = 8.21e-02
[STEP
[STEP
        22] f(x) = 0.09742 | ||grad|| = 7.92e-02
        23] f(x) = 0.09212 | ||grad|| = 7.65e-02
[STEP
        24] f(x) = 0.08725 | ||grad|| = 7.39e-02
[STEP 4013] f(x) = 0.01908 | ||grad|| = 1.00e-04
```

[TRAIN] Gradient Descent Strongly Convex:

[TEST] R2: 0.957 [TEST] MSE: 5.105 s<sup>2</sup> [TEST] RMSE: 2.259 s

## **Comparison of GD methods**





# Stochastical Gradient Descent (basic)

$$x_{t+1} := x_t - \gamma 
abla f_i(x_t)$$

- Each epoch consists of several gradient updates.
- The number of updates per epoch is as  $max\_iter / epochs$ .
- In each step, a mini-batch of size batch\_size is selected uniformly at random without replacement.

- tol = 1e-04;
- x0 = zero vector;
- max\_iter = 10000;
- gamma = 0.05;
- batch\_size = 32;
- epochs = 20.

```
[TRAIN] Stochastical Gradient Descent:
   Epoch: 1/20 | Step: 1/500
[STEP 1] batch loss = 0.51212 | f(x) = 0.50000 | ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 2/500
         2] batch loss = 0.56820 \mid f(x) = 0.49685 \mid ||grad|| = 3.05e-01
   Epoch: 1/20 | Step: 3/500
         3| batch loss = 0.47040 \mid f(x) = 0.49185 \mid ||grad|| = 2.96e-01
   Epoch: 1/20 | Step: 4/500
         4] batch loss = 0.43891 \mid f(x) = 0.48855 \mid ||grad|| = 2.91e-01
   Epoch: 1/20 | Step: 5/500
         5] batch loss = 0.45475 \mid f(x) = 0.48374 \mid ||grad|| = 2.80e-01
   Epoch: 1/20 | Step: 6/500
         6] batch loss = 0.43605 \mid f(x) = 0.48050 \mid ||grad|| = 2.76e-01
   Epoch: 1/20 | Step: 7/500
        7] batch loss = 0.53208 \mid f(x) = 0.47747 \mid ||grad|| = 2.72e-01
   Epoch: 1/20 | Step: 8/500
         8] batch loss = 0.59147 \mid f(x) = 0.47283 \mid ||grad|| = 2.61e-01
   Epoch: 1/20 | Step: 9/500
         9] batch loss = 0.67909 \mid f(x) = 0.47150 \mid ||grad|| = 2.67e-01
   Epoch: 1/20 | Step: 10/500
[STEP 10] batch loss = 0.54173 | f(x) = 0.46619 | ||grad|| = 2.56e-01
   Epoch: 1/20 | Step: 11/500
[STEP 11] batch loss = 0.34960 \mid f(x) = 0.46520 \mid ||grad|| = 2.60e-01
   Epoch: 1/20 | Step: 12/500
[STEP 12] batch loss = 0.39757 \mid f(x) = 0.46310 \mid ||grad|| = 2.55e-01
[STEP 10000] batch loss = 0.01760 \mid f(x) = 0.01971 \mid ||grad|| = 1.00e-02
[TEST] RMSE: 2.294 s
```

# Stochastical Gradient Descent (Lipschitz convex)

$$\gamma = rac{R}{B\sqrt{T}} = rac{\|x_0 - x^*\|}{\|
abla f(x_0)\| \cdot \sqrt{T}}$$

- tol = 1e-04;
- x0 = zero vector;
- *max\_iter* = 10000;
- batch\_size = 32;
- epochs = 20.

```
[TRAIN] Stochastical Gradient Descent Lipschitz Convex:
   Epoch: 1/20 | Step: 1/500
        1] batch loss = 0.42238 \mid f(x) = 0.50000 \mid ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 2/500
         2 batch loss = 0.37405 \mid f(x) = 0.49977 \mid ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 3/500
        3] batch loss = 0.53735 \mid f(x) = 0.49959 \mid ||grad|| = 3.09e-01
   Epoch: 1/20 | Step: 4/500
[STEP 4] batch loss = 0.44097 \mid f(x) = 0.49930 \mid ||grad|| = 3.09e-01
   Epoch: 1/20 | Step: 5/500
[STEP 5] batch loss = 0.47149 | f(x) = 0.49907 | ||grad|| = 3.09e-01
   Epoch: 1/20 | Step: 6/500
[STEP 6] batch loss = 0.51910 | f(x) = 0.49871 | ||grad|| = 3.08e-01
   Epoch: 1/20 | Step: 7/500
        7] batch loss = 0.78506 \mid f(x) = 0.49856 \mid ||grad|| = 3.08e-01
   Epoch: 1/20 | Step: 8/500
         8] batch loss = 0.54381 \mid f(x) = 0.49766 \mid ||grad|| = 3.05e-01
   Epoch: 1/20 | Step: 9/500
         9] batch loss = 0.57174 \mid f(x) = 0.49722 \mid ||grad|| = 3.05e-01
   Epoch: 1/20 | Step: 10/500
[STEP 10] batch loss = 0.47979 | f(x) = 0.49668 | ||grad|| = 3.03e-01
   Epoch: 1/20 | Step: 11/500
[STEP 11] batch loss = 0.52904 \mid f(x) = 0.49609 \mid ||grad|| = 3.02e-01
   Epoch: 1/20 | Step: 12/500
[STEP 12] batch loss = 0.46823 \mid f(x) = 0.49556 \mid ||grad|| = 3.01e-01
[STEP 10000] batch loss = 0.10987 \mid f(x) = 0.04558 \mid ||grad|| = 3.74e-02
[TEST] R2: 0.904
[TEST] RMSE: 3.355 s
```

# Stochastical Gradient Descent (strongly convex)

$$\mu = rac{1}{n} \lambda_{\min}(X^ op X) \qquad \gamma_t = rac{2}{\mu(t+1)}$$

- tol = 1e-04;
- x0 = zero vector;
- max\_iter = 10000;
- batch\_size = 32;
- epochs = 20;
- t0 = 10000.

```
[TRAIN] Stochastical Gradient Descent Strongly Convex:
[INFO] mu = 1.391e-03
   Epoch: 1/20 | Step: 1/500
         1] batch loss = 0.64239 \mid f(x) = 0.50000 \mid ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 2/500
         2] batch loss = 0.52280 \mid f(x) = 0.48161 \mid ||grad|| = 2.78e-01
   Epoch: 1/20 | Step: 3/500
         3] batch loss = 0.50150 \mid f(x) = 0.47486 \mid ||grad|| = 2.75e-01
   Epoch: 1/20 | Step: 4/500
         4] batch loss = 0.58777 \mid f(x) = 0.47008 \mid ||grad|| = 2.80e-01
   Epoch: 1/20 | Step: 5/500
         5] batch loss = 0.39681 \mid f(x) = 0.46852 \mid ||grad|| = 3.22e-01
   Epoch: 1/20 | Step: 6/500
        6] batch loss = 0.53487 \mid f(x) = 0.47740 \mid ||grad|| = 3.78e-01
   Epoch: 1/20 | Step: 7/500
[STEP 7] batch loss = 0.34691 \mid f(x) = 0.46028 \mid ||grad|| = 3.17e-01
   Epoch: 1/20 | Step: 8/500
         8] batch loss = 0.54930 \mid f(x) = 0.44895 \mid ||grad|| = 2.81e-01
   Epoch: 1/20 | Step: 9/500
         9] batch loss = 0.42627 | f(x) = 0.43792 | ||grad|| = 2.52e-01
   Epoch: 1/20 | Step: 10/500
[STEP 10] batch loss = 0.45343 \mid f(x) = 0.43380 \mid ||grad|| = 2.64e-01
   Epoch: 1/20 | Step: 11/500
[STEP 11] batch loss = 0.49409 \mid f(x) = 0.42654 \mid ||grad|| = 2.60e-01
   Epoch: 1/20 | Step: 12/500
[STEP 10000] batch loss = 0.01282 \mid f(x) = 0.01952 \mid ||grad|| = 2.59e-02
[TEST] R2: 0.956
TEST1 RMSE: 2.279 s
```

## **Comparison of Stochastical GD methods**



## **Adagrad**

$$[\mathbf{G}_t]_i := \sum_{s=0}^t \left( [\mathbf{g}_s]_i 
ight)^2$$

$$[\mathbf{x}_{t+1}]_i := [\mathbf{x}_t]_i - \gamma \cdot rac{|\mathbf{g}_t|_i}{\sqrt{[\mathbf{G}_t]_i} + arepsilon} \quad orall i$$

- tol = 1e-04;
- x0 = zero vector;
- max\_iter = 10000;
- gamma = 0.1;
- epochs = 20;
- epsilon = 1e-08.

```
[TRAIN] Adagrad:
   Epoch: 1/20 | Step: 1/500
[STEP 1] f(x) = 0.50000 \mid ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 2/500
[STEP 2] f(x) = 0.72197 | ||grad|| = 1.06e+00
   Epoch: 1/20 | Step: 3/500
        3] f(x) = 0.57555 | ||grad|| = 1.19e+00
   Epoch: 1/20 | Step: 4/500
[STEP 4] f(x) = 0.29119 | ||grad|| = 7.45e-01
   Epoch: 1/20 | Step: 5/500
        5| f(x) = 0.14026 | ||grad|| = 3.42e-01
   Epoch: 1/20 | Step: 6/500
        6] f(x) = 0.09360 | ||grad|| = 1.62e-01
   Epoch: 1/20 | Step: 7/500
[STEP 7] f(x) = 0.07334 \mid ||grad|| = 9.05e-02
   Epoch: 1/20 | Step: 8/500
[STEP 8] f(x) = 0.06107 | ||grad|| = 6.76e-02
   Epoch: 1/20 | Step: 9/500
[STEP 9] f(x) = 0.05242 \mid ||grad|| = 5.54e-02
   Epoch: 1/20 | Step: 10/500
[STEP 10] f(x) = 0.04598 | ||grad|| = 4.91e-02
   Epoch: 1/20 | Step: 11/500
[STEP 11] f(x) = 0.04105 \mid ||grad|| = 4.35e-02
   Epoch: 1/20 | Step: 12/500
[STEP 12] f(x) = 0.03722 | ||grad|| = 3.92e-02
[STEP 712] f(x) = 0.01908 \mid ||grad|| = 9.96e-05
[TEST] RMSE: 2.259 s
```

### **Adam**

$$egin{align} \mathbf{m}_t &:= eta_1 \mathbf{m}_{t-1} + (1-eta_1) \mathbf{g}_t \ [\mathbf{v}_t]_i &:= eta_2 [\mathbf{v}_{t-1}]_i + (1-eta_2) ([\mathbf{g}_t]_i)^2 \quad orall i \ [\mathbf{x}_{t+1}]_i &:= [\mathbf{x}_t]_i - \gamma \cdot rac{[\hat{\mathbf{m}}_t]_i}{\sqrt{[\hat{\mathbf{v}}_t]_i} + arepsilon} \quad orall i \ \end{aligned}$$

### **Assumptions:**

• tol = 1e-04;

- beta1 = 0.9;
- x0 = zero vector;
- *beta2* = 0.999.
- $max_iter = 10000$ ;
- gamma = 0.4;
- epochs = 20;
- epsilon = 1e-08;

```
[TRAIN] Adam:
   Epoch: 1/20 | Step: 1/500
[STEP 1] f(x) = 0.50000 \mid ||grad|| = 3.10e-01
   Epoch: 1/20 | Step: 2/500
[STEP 2] f(x) = 0.72197 \mid ||grad|| = 1.06e+00
   Epoch: 1/20 | Step: 3/500
[STEP 3] f(x) = 0.44041 \mid ||grad|| = 8.99e-01
   Epoch: 1/20 | Step: 4/500
        4] f(x) = 0.25586 \mid ||grad|| = 6.28e-01
   Epoch: 1/20 | Step: 5/500
[STEP 5] f(x) = 0.25651 | ||grad|| = 6.38e-01
   Epoch: 1/20 | Step: 6/500
[STEP 6] f(x) = 0.28212 | ||grad|| = 7.91e-01
   Epoch: 1/20 | Step: 7/500
[STEP 7] f(x) = 0.16497 | ||grad|| = 5.15e-01
   Epoch: 1/20 | Step: 8/500
[STEP 8] f(x) = 0.13054 \mid ||grad|| = 2.77e-01
   Epoch: 1/20 | Step: 9/500
[STEP 9] f(x) = 0.21314 \mid ||grad|| = 5.51e-01
   Epoch: 1/20 | Step: 10/500
[STEP 10] f(x) = 0.22101 | ||grad|| = 5.88e-01
   Epoch: 1/20 | Step: 11/500
[STEP 11] f(x) = 0.14442 \mid ||grad|| = 3.79e-01
   Epoch: 1/20 | Step: 12/500
[STEP 12] f(x) = 0.10761 | ||grad|| = 2.85e-01
[STEP 168] f(x) = 0.01908 \mid ||grad|| = 5.22e-05
```

# Comparison of Adagrad and Adam



# **Newton-Raphson Method**

$$\mathbf{x}_{t+1} := \mathbf{x}_t - 
abla^2 f(\mathbf{x}_t)^{-1} 
abla f(\mathbf{x}_t)$$

**Key property**: because uses a quadratic approximation of the function, it converges in just one step if the function is exactly quadratic.

### **Assumptions:**

- tol = 1.00e-04;
- *x0* = zero vector;
- max\_iter = 10 000.

```
[TRAIN] Newton-Raphson Method:

[STEP 1] f(x) = 0.50000 \mid ||grad|| = 3.10e-01

[STEP 2] f(x) = 0.01908 \mid ||grad|| = 5.06e-16

[TEST] R2: 0.957

[TEST] MSE: 5.105 s<sup>2</sup>
```



# Random Coordinate Gradient Descent

$$\mathbf{x}_{t+1} := \mathbf{x}_t - rac{1}{L_{i_t}} 
abla_{i_t} f(\mathbf{x}_t) \mathbf{e}_{i_t}$$

$$L_j=rac{1}{n}\sum_{k=1}^n X_{k,j}^2$$

### **Assumptions:**

- *tol* = 1e-04;
- *x0* = zero vector;
- $max_{iter} = 10000$ .

```
[TRAIN] Random Coordinate Gradient Descent:
[STEP
         1] f(x) = 0.50000 \mid ||grad|| = 3.10e-01
[STEP
         2] f(x) = 0.49999 | ||grad|| = 3.10e-01
[STEP
         3| f(x) = 0.49418 | ||grad|| = 3.02e-01
[STEP
         4] f(x) = 0.49377 \mid ||grad|| = 2.99e-01
         5| f(x) = 0.49358 | ||grad|| = 3.00e-01
[STEP
[STEP
         6] f(x) = 0.49358 \mid ||grad|| = 2.99e-01
         7] f(x) = 0.46822 | ||grad|| = 3.41e-01
[STEP
[STEP
         8] f(x) = 0.46750 \mid ||grad|| = 3.37e-01
[STEP
         9] f(x) = 0.46311 \mid ||grad|| = 3.29e-01
        10] f(x) = 0.45466 | ||grad|| = 3.53e-01
[STEP
[STEP
       11] f(x) = 0.45466 \mid ||grad|| = 3.53e-01
[STEP
       12] f(x) = 0.44208 \mid ||grad|| = 3.01e-01
       13] f(x) = 0.44203 | ||grad|| = 3.01e-01
[STEP
       14] f(x) = 0.44202 | ||grad|| = 3.01e-01
[STEP
       15] f(x) = 0.44103 \mid ||grad|| = 2.97e-01
[STEP
[STEP
       16] f(x) = 0.44101 \mid ||grad|| = 2.97e-01
      17] f(x) = 0.44094 \mid ||grad|| = 2.97e-01
[STEP
      18] f(x) = 0.44094 |
                            | ||grad|| = 2.97e-01
[STEP
      19] f(x) = 0.44094 \mid ||grad|| = 2.97e-01
[STEP
[STEP
        20] f(x) = 0.44088 | ||grad|| = 2.96e-01
[STEP
       21] f(x) = 0.43766 | ||grad|| = 2.83e-01
[STEP
       22] f(x) = 0.43171 | ||grad|| = 2.88e-01
[STEP
       23] f(x) = 0.43171 | ||grad|| = 2.88e-01
       24] f(x) = 0.41689 | ||grad|| = 2.68e-01
[STEP
[STEP 7972] f(x) = 0.01908 \mid ||grad|| = 9.90e-05
```

## **Random Coordinate GD**



## **Proximal Gradient Descent for Lasso**

 Lasso regression: tends to zero out many coefficients, making the model more interpretable. The last term of the Lasso objective function is not differentiable; therefore, this problem is well-suited for Proximal Gradient Descent, as the first part is differentiable while the second is not.

$$f(\mathbf{w}) = rac{1}{2n} \sum_{k=1}^n (y_k - \mathbf{x}_k^ op \mathbf{w})^2 + \lambda \sum_{j=1}^d w_j^2$$

 At each step of Proximal Gradient Descent, we apply the following proximal operator, the soft-thresholding function.

$$\operatorname{prox}_{\lambda \| \cdot \|_{1,\gamma}}(\mathbf{z}) = \operatorname{sign}(\mathbf{z}) \max (|\mathbf{z}| - \gamma \lambda, 0)$$

## **Proximal Gradient Descent**

$$\mathbf{x}_{t+1} = \operatorname{prox}_{h,\gamma} \left( \mathbf{x}_t - \gamma \nabla g(\mathbf{x}_t) \right)$$

### **Assumptions:**

- tol = 1e-04;
- *x0* = zero vector;
- max\_iter = 10000;
- gamma = 1;

- *lambda\_min* = 0.005;
- lambda max = 1;
- lambdas = 20.

The code takes as input a range of lambda values, defined by *lambda\_min*, *lambda\_max*, and *lambdas*, and performs Proximal GD for each of them. In the end, it returns the solution corresponding to the lambda that yields the best results.

```
[TRAIN] Proximal Gradient Descent for Lasso function:
[TRAIN] Lambda = 5.000e-03
[TEST] R2: 0.927
[TEST] MSE: 8.547 s<sup>2</sup>
[TEST] RMSE: 2.924 s
[TRAIN] Lambda = 5.737e-02
[TEST] R2: 0.257
[TEST] MSE: 87.223 s<sup>2</sup>
[TEST] RMSE: 9.339 s
[TRAIN] Lambda = 1.097e-01
[TEST] R2: 0.016
[TEST] MSE: 115.559 s<sup>2</sup>
[TEST] RMSE: 10.750 s
[TRAIN] Lambda = 1.621e-01
[TEST] R2: 0.002
[TEST] MSE: 117.203 s<sup>2</sup>
[TEST] RMSE: 10.826 s
[TRAIN] Lambda = 2.145e-01
[TEST] R2:
              -0.000
[TEST] MSE: 117.452 s<sup>2</sup>
[FINAL RESULTS] Best lambda = 5.000e-03
[TEST] R2: 0.927
[TEST] MSE: 8.547 s<sup>2</sup>
```

[TEST] RMSE: 2.924 s

| -0.000 | Team name [Aston Martin]    | 24 | -0.000 | bias                                   | 0  |
|--------|-----------------------------|----|--------|----------------------------------------|----|
| -0.015 | Team name [Ferrari]         | 25 | -0.452 | Track name [Australian Grand Prix]     | 1  |
| 0.000  | Team name [Haas F1 Team]    | 26 | -1.483 | Track name [Austrian Grand Prix]       | 2  |
| 0.015  | Team name [Kick Sauber]     | 27 | 1.725  | Track name [Azerbaijan Grand Prix]     | 3  |
| -0.009 | Team name [McLaren]         | 28 | 0.555  | Track name [Bahrain Grand Prix]        | 4  |
| -0.001 | Team name [Mercedes]        | 29 | 1.980  | Track name [Belgian Grand Prix]        | 5  |
| 0.000  | Team name [RB]              | 30 | 0.155  | Track name [British Grand Prix]        | 6  |
| -0.034 | Team name [Red Bull Racing] | 31 | -0.799 | Track name [Canadian Grand Prix]       | 7  |
| 0.001  | Team name [Williams]        | 32 | 0.926  | Track name [Chinese Grand Prix]        | 8  |
| 0.437  | Compound [INTERMEDIATE]     | 33 | -1.040 | Track name [Dutch Grand Prix]          | 9  |
| -0.000 | Compound [MEDIUM]           | 34 | -0.311 | Track name [Emilia Romagna Grand Prix] | 10 |
| -0.122 | Compound [SOFT]             | 35 | -0.141 | Track name [Hungarian Grand Prix]      | 11 |
| 0.000  | Compound [WET]              | 36 | -0.000 | Track name [Italian Grand Prix]        | 12 |
| -0.000 | Fresh tyre [True]           | 37 | 0.719  | Track name [Japanese Grand Prix]       | 13 |
| 0.102  | Rainfall [True]             | 38 | 0.465  | Track name [Las Vegas Grand Prix]      | 14 |
| 0.005  | Tyre life (laps)            | 39 | -0.322 | Track name [Mexico City Grand Prix]    | 15 |
| -0.139 | Track temperature (°C)      | 40 | 0.380  | Track name [Miami Grand Prix]          | 16 |
| -0.000 | Wind direction (°)          | 41 | -0.621 | Track name [Monaco Grand Prix]         | 17 |
| -0.004 | Wind speed (m/s)            | 42 | -0.084 | Track name [Qatar Grand Prix]          | 18 |
| 0.118  | Fuel level (kg)             | 43 | 0.321  | Track name [Saudi Arabian Grand Prix]  | 19 |
|        |                             |    | 0.838  | Track name [Singapore Grand Prix]      | 20 |
|        |                             |    | -0.653 | Track name [Spanish Grand Prix]        | 21 |
|        |                             |    | -0.843 | Track name [São Paulo Grand Prix]      | 22 |
|        |                             |    |        |                                        |    |

1.193

Feature Coefficient

Track name [United States Grand Prix]

# **Coefficient importance in Lasso**

• Feature importance is computed using the **RMS** (Root Mean Square) of the coefficients of the dummy variables if the feature is **categorical**, and using the absolute value of the coefficient if the feature is **numerical**.

 The variables Wind speed, Fresh tyre, and Wind direction are not particularly relevant.
 We can remove them to simplify the model.





## Conclusion

### Conclusion

- The most effective method for training the model is the Newton-Raphson method, as it converges in a single step and reaches a more precise minimum.
- The overall results are promising, especially considering that the model does not account for factors such as driver skill, strategy, etc. which can significantly influence performance in this context.
- The final model is implemented in the file <u>3 Final Model</u>, and is ready for use by the user. Here, the model is implemented using the **entire dataset** for training, in order to achieve greater robustness.

|    | Feature                                | Coefficient |    |                                       |        |
|----|----------------------------------------|-------------|----|---------------------------------------|--------|
| _  |                                        |             |    |                                       |        |
| 0  | bias                                   | 0.127       |    |                                       |        |
| 1  | Track name [Australian Grand Prix]     | -0.689      | 21 | Track name [Spanish Grand Prix]       | -0.872 |
| 2  | Track name [Austrian Grand Prix]       | -1.761      | 22 | Track name [São Paulo Grand Prix]     | -1.319 |
| 3  | Track name [Azerbaijan Grand Prix]     | 1.636       | 23 | Track name [United States Grand Prix] | 1.032  |
| 4  | Track name [Bahrain Grand Prix]        | 0.770       | 24 | Team name [Aston Martin]              | -0.020 |
| 5  | Track name [Belgian Grand Prix]        | 1.985       | 25 | Team name [Ferrari]                   | -0.082 |
| 6  | Track name [British Grand Prix]        | 0.292       | 26 | Team name [Haas F1 Team]              | 0.013  |
| 7  | Track name [Canadian Grand Prix]       | -1.054      | 27 | Team name [Kick Sauber]               | 0.051  |
| 8  | Track name [Chinese Grand Prix]        | 1.163       | 28 | Team name [McLaren]                   | -0.074 |
| 9  | Track name [Dutch Grand Prix]          | -1.216      | 29 | Team name [Mercedes]                  | -0.064 |
| 10 | Track name [Emilia Romagna Grand Prix] | -0.783      | 30 | Team name [RB]                        | 0.016  |
| 11 | Track name [Hungarian Grand Prix]      | -0.568      | 31 | Team name [Red Bull Racing]           | -0.096 |
| 12 | Track name [Italian Grand Prix]        | -0.414      | 32 | Team name [Williams]                  | 0.037  |
| 13 | Track name [Japanese Grand Prix]       | 0.760       | 33 | Compound [INTERMEDIATE]               | 0.892  |
| 14 | Track name [Las Vegas Grand Prix]      | 0.885       | 34 | Compound [MEDIUM]                     | 0.009  |
| 15 | Track name [Mexico City Grand Prix]    | -0.650      | 35 | Compound [SOFT]                       | -0.071 |
| 16 | Track name [Miami Grand Prix]          | 0.254       | 36 | Compound [WET]                        | 1.649  |
| 17 | Track name [Monaco Grand Prix]         | -1.060      | 37 | Rainfall [True]                       | 0.205  |
| 18 | Track name [Qatar Grand Prix]          | -0.182      | 38 | Tyre life (laps)                      | 0.051  |
| 19 | Track name [Saudi Arabian Grand Prix]  | 0.440       | 39 | Track temperature (°C)                | 0.031  |
| 20 | Track name [Singapore Grand Prix]      | 0.834       | 40 | Fuel level (kg)                       | 0.122  |
|    |                                        |             |    |                                       |        |

## References

- Lecture notes and slides provided during the Optimization course, academic year
   2024 2025.
- Kaggle notebook Data Exploration with OCI: <u>link</u>.
- Code for dataset creation with FastF1 API: link.
- FastF1 API documentation: <u>link</u>.