Kombinatorika a grafy 2

Tomáš Turek

Přednáška 1

Párování v grafech

Definice:

Párování v grafu G = (V, E) je množina hran $M \subseteq E$ taková, že každý vrchol z G je obsažen v nejvýš jedné hraně v M.

Definice:

Vrcholové pokrytí v grafu G=(V,E) je množina vrcholů $T\subseteq V$ t.ž. každá hrana obsahuje aspoň jeden vrchol z T.

- $\mu(G) := \text{velikost největšího párování v grafu } G$
- $\tau(G) := \text{velikost}$ nejmenšího vrcholového pokrytí v grafu G

Pozorování

• $\mu(G) \leq \tau(G)$ v libovolném grafu G

Definice:

- ullet volný vrchol: vrchol nesousedící s žádnou hranou z M
- volná střídavá cesta: cesta spojující dva volné vrcholy na níž se střídají párovácí $(\in M)$ a nepárovácí $(\notin M)$ hrany

Lemma

Nechť M je párování v G. Potom M je největší párování v $G \Leftrightarrow$ v G neexistuje volná střídající se cesta pro M.

Důkaz:

 $\bullet \; \Rightarrow$ Pokud vGexistuje VSC pak lze tyto hrany přehodit. Potom je to spor s tím, že je největší.

- \Leftarrow Nechť M není největší potom existuje N větší párování než M. Uvažme graf s hranami $M \cup N$. Každá komponenta grafu je buď:
 - 1. izolovaná hrana v $M \cap N$
 - 2. kružnice sudé délky, kde se střídají M a N
 - 3. cesta na níž se střídají M a N
- Protože |N|>|M| v $M\cup N$ musí být komponenta K, která má víc hran z N než z M. K je cesta liché délky, která začíná a končí hranou z N, tedy K je VSC pro M.

Definice:

Kytka v grafu G a párování M je podgraf tvořený **stonkem** S a **květem** K, kde S je cesta sudé délky mezi dvěma vrcholy x a y, kde x je volný a $y \in K$, navíc na S se střídají párovací a nepárovací hrany. K je lichá kružnice, která neobsahuje žádný vrchol z S a střídají se na ni párovací a nepárovací hrany (u y má dvě nepárovací hrany).

• Může nastat ze x = y a $S = \{x\}$.

Pozorováni

• Hrany z květu jsou nepárovací. Jinak by se nejednalo o párování.

Definice:

Kontrakce květu K nahradí K jedním vrcholem y, smaže všechny hrany indukované K a každou hranu $\{u,v\}$, kde $u \in K$ a $v \notin K$ nahradí hranou $\{y,v\}$. Označme G.K graf vzniklý z G kontrakcí květu K, M.K pak párování vznikle z M odstraněním všech hran K.

Lemma:

Nechť M je párování v grafu G obsahující kytku se stonkem S a květem K. Potom M je největší párování v $G \Leftrightarrow M.K$ je největší párování v G.K.

- Nebo-li: M má VSC v $G \Leftrightarrow M.K$ má VSC v G.K.
- Navíc z VSC v M.K v G.K lze v polynomiálním čase najít VSC v M a G.

- \Rightarrow (v alternativním znění) Nechť P je VSC v M.K. Potom:
 - 1. $y \in P \Rightarrow P$ je i VSC v M
 - 2. y je vnitřní vrchol v P, potom lze nahradit obloukem z K (jsou dva oblouky, protože je tam celkově lichý počet hran, tak jedna cesta musí být lichá a druhá sudá, tudíž to lze spojit)
 - 3. y je koncový vrchol v P, potom y musí být volný, tudíž x=y, poté prakticky stejný postup jako u 2.

- $\Leftarrow G$ má VSC $\Rightarrow G.K$ má VSC, pokud S má délku 0, to jest y je volný vrchol. Následně to pak už není cesta ale sled. Začnu tedy z konce cesty a poprvé co se dostanu do y tak skončím.
- $M \triangle S$: Párování v G vznikne tak, že se na S prohodí párovací a nepárovací hrany.
- Pozorování: V $M \triangle S$ je květ K kytka se stonkem délky 0.
- Pozorování: $|M\triangle S| = |M|$.
- G má VSC $\Rightarrow G.K$ má VSC, navíc S má délku 0.
- (G,M) má VSC \Leftrightarrow $(G,M\triangle S)$ má VSC \Rightarrow $(G.K,(M\triangle S).K)$ má VSC \Leftrightarrow (G.K,M.K) má VSC.

Přednáška 2

Procedura NajdiVSCneboKytku

- Vstup: graf G=(V,E) párování M
- Výstup: buď VSC P pro (G,M), nebo kytka $S \cup K$ v (G,M), nebo "M je největší párování v G".
- Používáme frontu vrcholů F, pro každý vrchol $x \in V$ máme hladinu $h(x) \in \mathbb{N}_0$ a rodiče $r(x) \in V$.
- Na začátku $F = \emptyset, h(x)$ a r(x) jsou nedefinované.
- Pro každý volný vrchol x proveď:
 - Zařaď x do F, h(x) = 0.
- Dokud $F \neq \emptyset$: odebereme $x \neq F$
 - 1. Pokud h(x) je lichá. Nechť y je vrchol spojený s x hranou M.
 - 1. Pokud h(y) není definovaná: h(y) = h(x) + 1, r(y) = x, zařaď y do F.
 - 2. Pokud h(y) je sudá: to nemůže nastat
 - 3. Pokud h(y) je lichá: $Px = \text{cesta } x, r(x), r(r(x)), \ldots, Py$ je cesta $y, r(y), r(r(y)), \ldots$ obě cesty vedou až do volného vrcholu.
 - 1. Pokud $Px \cap Py = \emptyset$ tak potom $Px \cup Py \cup \{x,y\}$ je **VSC**, konec
 - 2. Pokud $Px \cap Py \neq \emptyset$ našli jsme **kytku** $Px \cap Py \cap \{x, y\}$, konec.
 - 2. Pokud h(x) je sudá. Pro každý y t.z. $\{xy\} \notin M$:
 - 1. Pokud h(y) není definovaná: h(y) = h(x) + 1, r(y) = x, vlož y do F.
 - 2. Pokud h(y) je lichá, tak nedělej nic.
 - 3. Pokud h(y) je sudá: najdi VSC nebo kytku jako v 1.3,konec.
- Pokud dojdeme do stavu, že $F=\emptyset$, napiš "M je největší", konec.

Lemma

Pokud Najdi
VSCnebo Kytku napíše "M je největší", tak M je největší.

Důkaz:

- Pokud M není největší, tak obsahuje VSC $v_0v_1...v_k \in V$, dokážeme indukci podle i, že každý z vrcholů $v_0...v_k$ dostal přidělenou hladinu $h(v_i)$ splňující $h(v_i) \equiv i \mod 2$.
- Pro i = 0 v_0 je volný, tedy $h(v_0) = 0$. Hotovo.
- Pro i > 0, i liché, indukční předpoklad je $h(v_{i-1})$ je sudá: tak z algoritmu buď už v_i měla lichou $h(v_i)$ nebo ji dostala. (Kdyby sudá, tak vyhodí VSC nebo Kytku.)
- Pro i > 0 i je sudé, indukční předpoklad, že $h(v_{i-1})$ je lichá: tak obdobně bude $h(v_i)$ sudé. Jistě k je liché, tedy $h(v_k)$ je lichá, ale v_k je volný vrchol, tedy $h(v_k) = 0$ a to je spor.

П

Procedura ZvětšiPárování

- vstup: G, M
- výstup: párování M' v G, |M'| > |M| nebo "M je největší"
- 1. Procedura NajdiVSCneboKytku(G,M)
- $2.\ M$ je největší, tak konec
- 3. VSC, invertuji a zvětši M, konec
- 4. Kytka, ZvětšiPárování (G.K,M.K)
 - 1. M.K je největší, potom i M je největší
 - 2. M'je větší párování vG.Knež $M.K\colon M^*:=M'\cup (\frac{|k|-1}{2}$ hran květu) tak aby to šlo.

Algoritmus pro hledání největšího párování

- vstup: G
- \bullet výstup: největší párování v G
- 1. M := libovolné párování (buď prázdné, nebo hladově nějaké)
- 2. Opakuj ZvětšiPárování (G,M) dokud to jde.
- 3. Vypiš nalezéné párování.

Definice:

Perfektní párování v grafu G je párování v němž každý vrchol sousedí s právě jednou párovací hranou.

Pozorování

• Perfektní párování je největší párování.

Pozorování

Ne každý graf má perfektní párování (trojúhelník).

- Lichá komponenta grafu G je komponenta s lichým počtem vrcholů.
- odd(G) := počet lichých komponent v G
- Pro graf G=(V,E) a množinu $S\subseteq V:G-S=(V\setminus S,E\cap \binom{V\setminus S}{2}).$

Věta Tutte

Pro každý G=(V,E) platí G má perfektní párování $\Leftrightarrow \forall S\subseteq V: \mathrm{odd}(G-S)\leq |S|.$

• Druhá část se nazývá Tutteova podmínka.

- \Rightarrow Necht G má perfektní párování M. Pro spor, necht $\exists S \subseteq V : \text{odd}(G S) > |S|$. Potom ale z každé liché komponenty G S vede aspoň jedna hrana z M do S, tudíž odd $(G S) \le |S|$ a to je spor.
- \leftarrow Nechť G splňuje Tutteovu podmínku.
- Pozorování: odd(G) = 0, jinak spor $S = \emptyset$.
- Chci dokázat, že Gmá perfektní párování a to pomocí indukce podle $|\binom{V}{2} \setminus E|.$
 - Pro $|{V \choose 2} \setminus E| = 0$: G je úplný graf, navíc odd(G) = 0. Tudíž zjevně má perfektní párování.
 - $-\Pr[\binom{V}{2} \setminus E| > 0 : S := \{x \in V : \deg(x) = |V| 1\}.$
 - Rozliším dva případy:
 - 1. Každá komponenta G-S je úplný graf: G snadno najdu perfektní párování, díky tomu, že odd $(G-S) \leq |S|$.
 - 2. Existuje komponenta Q grafu G-S, která není úplná. V Q lze najít dva nesousední vrcholy x,y, které mají společného souseda z Q. Protože $z \notin S$, $\exists w : w$ nesousedí se z. Označme $G_1 = (V, E \cup \{xy\}), G_2 = (V, E \cup \{zw\})$.
 - Pozorování G_1, G_2 splňují Tutteovu podmínku.
 - Pak z indukčního předpokladu G_1 má perfektní párování M_1 a G_2 má M_2 . Pokud M_1 neobsahuje hranu $\{xy\}$, tak M_1 je perfektní párování v G. Tak je to hotové.
 - Pokud ale $\{xy\} \in M_1$ tak podobně předpokládám, že $\{zw\} \in M_2$. Uvažme graf $H = (V, M_1 \cup M_2)$: každá komponenta H je buď hrana patřící $M_1 \cap M_2$, nebo sudá kružnice na níž se střídají hrany z M_1 a M_2 .
 - V každé komponentě H neobsahující hranu $\{xy\}$ můžu vrcholy spárovat pomocí hran M_1 . Nechť C je komponenta H obsahující $\{xy\}$. Pokud C neobsahuje $\{zw\}$, vrcholy spáruji pomocí M_2 , hotovo.
 - Ve zbylém případu v C použijeme jednu z hran $\{xy\}, \{zw\}$ a zbytek lze spárovat pomocí $M_1 \setminus \{xy\}$ a $M_2 \setminus \{zw\}$.

- Tedy G má perfektní párování.

Přednáška 3

Definice:

- Graf je **d-regulární**, pokud všechny jeho vrcholy mají stupeň d.
- Graf je (vrcholově) **k-souvislý**, pokud má aspoň k+1 vrcholů a nemá vrcholový řez velikosti < k.

Lemma

Nechť G = (V, E) je graf, jehož každý vrchol má lichý stupeň, nechť $A \subseteq V$ je množina liché velikosti. Potom G obsahuje lichý počet hran z A do $V \setminus A$.

Důkaz:

- S = 2k + ven je součet stupňů v A. Ten musí být lichý.
- 2k je pro každou hranu, která má oba vrcholy v A.
- Tudíž ven musí být liché.

Věta (Petersen)

Každý 3-regulární a 2-souvislý graf má perfektní párování.

Důkaz:

- Nechť G=(V,E) je 3-regulární a 2-souvislý graf. Tvrdíme: $\forall S\subseteq V: \text{odd}(G-S)\leq |S|.$
- Pro $S=\emptyset$ Tutteova podmínka platí: |V| je sudá (z principu sudosti grafů) a taky souvislý \Rightarrow odd(G)=0.
- $S \neq \emptyset, l := \text{odd}(G S)$ nechť Q_1, \ldots, Q_l jsou liché komponenty G S. Nechť p je počet hran mezi S a $Q_1 \cap \cdots \cap Q_l$.
- Pozorování: $p \leq 3|S|$ plyne z toho, že je 3-regulární.
- Pozorování: z každé Q_i vedou aspoň 2 hrany do S to plyne z toho, že je G 2-souvislý, jinak by existovala artikulace.
- Pozorování: z každé Q_i vedou aspoň 3 hrany do S. To plyne z lemma.
- $\Rightarrow p \geq 3l \Rightarrow l \leq |S|$. A ještš použít Tutteovu větu.

Kontrakce a minory

Definice:

Nechť G=(V,E) je graf, $e=\{x,y\}\in E$ pak kontrakce hrany e je operace, která vrcholy x,y nahradí jedním vrcholem v_e a pro každý vrchol $z\in V\setminus\{x,y\}$ sousedící s x nebo y se hrany $\{xz\},\{yz\}$ nahradí $\{v_ez\}$. Výsledek se značí G.e.

Lemma ("o kontrahovatelné hraně")

V každém 3-souvislém grafu G = (V, E), který není izomorfní K_4 existuje hrana $e \in E$ taková, že G.e je opět 3-souvislý graf.

Důkaz:

• Pro spor nechť G = (V, E) je protipříklad.

Pomocné tvrzení

• Pro každou hranu $e=\{xy\}\in E$ existuje vrchol $z\in V\setminus\{x,y\}$ takový, že $G-\{x,y,z\}$ je nesouvislý, navíc každý z vrcholů $\{x,y,z\}$ má aspoň jednoho souseda v každé komponentě $G-\{x,y,z\}$.

Důkaz tvrzení:

- Víme, že G.e není 3-souvislý, navíc $|V(G.e)| \ge 4$ jinak je to K_4 , tedy existuje v G.e vrcholový řez R velikosti nejvýše 2.
- Jistě $v_e \in R$ jinak by R byl řez v $G > R \neq \{v_e\}$ jinak by $\{x,y\}$ byl řez v G.
- Tedy $R = \{v_e, z\}$ a $\{x, y, z\}$ je řez v G. Kdyby např. x neměl žádného souseda v nějaké komponentě C grafu $G \{x, y, z\}$, tak $G \{y, z\}$ je nesouvislý, spor s tím, že G má být 3-souvislý.

- Volme $e=\{x,y\}\in E$ a vrchol $z\in V$, komponentu C grafu $G-\{x,y,z\}$ tak, aby C mělo co nejméně vrcholů. Nechť w je vrchol C sousedící se z.
- Pro hranu $f=\{z,w\}$ použiji pomocné tvrzení: $\exists v\in V\setminus\{z,w\}:G-\{z,w,v\}$ je nesouvislý a každá jeho komponenta obsahuje vrchol sousedící s w.
- Necht D je komponenta $G \{z, v, w\}$ neobsahující x ani y. Tedy $D \subseteq C \setminus \{w\} : D$ obsahuje souseda w, ten musí být uvnitř C, žádná cesta uvnitř D neobsahuje x, y, z, w tedy D je uvnitř jediné komponenty $G \{x, y, z\}$, tedy D je uvnitř C, tedy i uvnitř $C \setminus \{w\}$.
- To je spor s minimalitou C.

Věta (Tutteova charakterizace 3-souvislých grafů)

Graf G = (V, E) je 3-souvislý $\Leftrightarrow \exists$ posloupnost grafů G_0, G_1, \ldots, G_k , kde:

- 1. $G_0 \cong K_4, G_k \cong G$.
- 2. $\forall i = 1, ..., k : G_i$ obsahuje hranu $e = \{x, y\}$ spojující dva vrcholy x, y stupně ≥ 3 , $\deg(x) = \deg(y) = 3$ a $G_{i-1} \cong G_i.e.$

Přednáška 4

0.1

Důkaz:

- $\bullet \; \Rightarrow$ Opakovaná aplikace lemma o kontrahovatelné hraně.
- \Leftarrow Necht G_0, \ldots, G_k splňuje podmínky na pravé straně. Dokážeme, že všechny grafy G_0, \ldots, G_k jsou 3-souvislé. Indukcí pdole i dokážeme, že G_i je 3-souvislý.
 - $-i=0:K_4$ je 3-souvislý.
 - -i>0 předpokládáme, že G_{i-1} je 3-souvislý, pro spor nechť G_i není 3-souvislý, $\exists u,v\in V(G_i):G_i-\{u,v\}$ je nesouvislý, navíc $\exists e=\{x,y\}\in E(G_i)=G_i.e=G_{i-1}.$
 - Případy:
 - 1. $\{u,v\} \cap \{x,y\} = \emptyset$ G_{i-1} pak není 3-souvislý. Spor.
 - 2. $\{u,v\} = \{x,y\}$ pak G_{i-1} je 1-souvislý. Spor.
 - 3. $|\{u,v\} \cap \{x,y\}| = 1$ BŮNO: x = u: nelze, protože $\deg(y) \geq 3$, tedy komponenta $G_i \{u,v\}$ obsahující y má aspoň 2 vrcholy, tedy $G_i.e = G_{i-1}$ má řez $\{v,v_e\}$. Spor.

Definice:

Graf H je **minor** rafu G pokud H lze vyrobit z G posloupností mazání hrany, kontrakce hrany, mazání vrcholu. Značení: $H \leq_m G$.

Definice:

Graf F je **dělení** grafu H, pokud F vznikne z H tak, že se každá hrana $\{x,y\}\in E(H)$ nahradí cestou délky ≥ 1 .

Definice:

Graf H je **topologický minor** grafu G, pokud G obsahuje nějaké dělení grafu H jako podgraf. Značení $H \leq_t G$.

Graf H je **indukovaný podgraf** grafu G, pokud je H podgraf grafu G a zároveň má všechny hrany původního grafu indukované vrcholům grafu H. Značení $H \leq_i G$.

• H je **podgraf** grafu G. Značení $H \subseteq G$.

Pozorování

• Platí implikace $H \leq_i G \Rightarrow H \subseteq G \Rightarrow H \leq_t G \Rightarrow H \leq_m G$. Ale neplatí žádná opačná implikace.

Lemma

 $H = (V_H, E_H)$ je graf, $V_H = \{x_1, x_2, \dots, x_k\}, G = (V_G, E_G)$ je graf. Potom $H \leq_m G$ iff G obsahuje k disjunktních souvislých neprázdných podgrafů B_1, B_2, \dots, B_k takových, že pokud $\{x_i, x_j\} \in E_H$, tak G obsahuje aspoň jednu hranu spojující vrchol B_I s vrcholem B_j .

Důkaz:

- Danou vlastnost si označíme jako vlastnost p.
- \Leftarrow Zkontrahuji všechny hrany v B_i . Nadbytečné hrany a vrcholy odstraním.
- \Rightarrow Necht $H \leq_M G$, tj. existuje posloupnost grafů G_0, G_1, \ldots, G_p , kde $H \cong G_0, G_p \cong G$ a pro $\forall i = 1, \ldots, p : G_{i-1}$ vznikne z G_i smazáním hrany nebo vrcholu anebo kontrakcí hrany.
- Dokážeme indukcí podle $i=0,\ldots,p,$ že G_i má vlastnost p.
 - $-i = 0: \forall j = 1, \dots, k: \{x_j\} = B_j$
 - -i > 0 předpokládejme G_{i-1} splňuje vlastnost p.
 - Pak přidáním vrcholu nebo hrany nic neděláme, zůstávají stejné.
 - Dekontrakce hrany. Pokud není v B_j tak hotovo (zůstane stejné). Pokud ale je v B_j tak oba nové vrcholy přidáme do B_j a ostatní stejné.

Přednáška 5

Značení:

Pro uspořádání \leq a množinu grafů $F=\{F_1,F_2,\dots\}$ označím $\mathcal{F}\mathrm{orb}_{\leq}(F):=\{G\ \mathrm{graf}; \forall H\in F: H\nleq G\}.$

• Plyne ze slova Forbidden, nebo-li zakázané.

Definice:

Třída grafů \mathcal{G} je **uzavřená** vůči uspořádání \leq pokud $\forall G \in \mathcal{G} \ \forall H \leq G : H \in \mathcal{G}$.

Pozorování

Třída \mathcal{G} se dá přepsat jako $\mathcal{F}orb_{<}(F)$ pro nějakou množinu F iff \mathcal{G} je uzavřená vůči <.

Fakt

• Rovinné grafy jsou uzavřené vůči $\subseteq, \leq_i, \leq_t, \leq_m$.

Připomenutí:

- G = (V, E) rovinný, souvislý, má nakreslení mající f stěn, potom |V| |E| + f = 2.
- Pokud $|V| \ge 3 \text{ tak } |E| \le 3|V| 6.$
- Pokud $|V| \ge 4$ a G neobsahuje trojůhelník jako podgraf, tak $|E| \le 2|V| 4$.

Věta (Kuratowski, Wagner)

Pro graf G = (V, E) je ekvivalentní:

- 1. G je rovinný,
- 2. $G \in \mathcal{F}orb_{<_t}(K_5, K_{3,3}),$
- 3. $G \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$.

- 1 \Rightarrow 2 : G je rovinný \Rightarrow každý topologický minor je rovinný \Rightarrow $K_5 \not\leq_t$ $G \wedge K_{3,3} \nleq_t G \Rightarrow G \in \mathcal{F}orb_{<_t}(K_5, K_{3,3}).$
- $1 \Rightarrow 3$: Obdobně jako předchozí.
- $3 \Rightarrow 2: H \leq_t J \Rightarrow H \leq_m J$ a taky $H \nleq_m J \Rightarrow H \nleq_t J$. $J \in \mathcal{F}orb_{\leq_m}(H) \Rightarrow J \in \mathcal{F}orb_{\leq_t}(H)$ nebo-li $\mathcal{F}orb_{\leq_m}(H) \subseteq$ $\mathcal{F}orb_{<_{t}}(H)$.
- $2 \Rightarrow 3$: Připomenutí: Pro graf H s maximálním stupněm ≤ 3 . $H \leq_t G \Leftrightarrow$ $H \leq_m G$. A taky $K_5 \leq_m H \Rightarrow ((K_5 \leq_t H) \vee (K_{3,3} \leq_t H))$.
 - Pak dokážeme obměnu $(\neg 3 \Rightarrow \neg 2)$ $K_5 \leq_m G \vee K_{3,3} \leq_m G \Rightarrow K_5 \leq_t$ $G \vee K_{3,3} \leq_m G \Rightarrow G \notin \mathcal{F}orb(K_5, K_{3,3})$.
- $3 \Rightarrow 1$ Indukcí podle |V|.
 - $-|V| \le 4$: Jistě G ke rovinný.
 - Předpoklad, že $|V| \geq 5$ a $G \in \mathcal{F}orb_{\leq_m}(K_5, K_{3,3})$. Nechť k je vrcholová souvislost.
 - Rozlišíme případy:
 - 1. k=0: každá komponenta je dle indukčního předpokladu rovinná $\Rightarrow G$ je rovinný.
 - 2. k=1: Lze rozdělit graf G na dva grafy G_1, G_2 podle dané artikulace x. S tím, že oba grafy mají i daný vrchol x. Podle IP jsou oba grafy rovinné, navíc jdou nakreslit tak, že x bude vždy na vnější stěně (pomocí projekce na sféru), potom je můžeme "slepit" dohromady a máme stále rovinný graf.

- 3. k=2 Obdobně rozdělím graf na G_1,G_2 a z nich vytvořím $G_1^+:=G_1\cup\{xy\}$ a $G_2^+:=G_2\cup\{xy\}$. Následně tvrdím: $G_1^+,G_2^+\in\mathcal{F}\mathrm{orb}_{\leq_m}(K_5,K_{3,3}).$ G_1 i G_2 obsahuje cestu P_1 a P_2 z x do y (jinak by x nebo y obsahovalo řez).
- $-G_1^+ \leq_m G \text{ (dokonce } G_1^+ \leq_m G1 \cup P_2 \subseteq G).$
- $-G_1^+ \in \mathcal{F}orb_{\leq m}(K_5, K_{3,3})$ kdyby např. $K_5 \leq_m G_1^+ \leq_m G$, tak $K_5 \leq_m G$ a to je spor. Dle IP G_1^+ i G_2^+ jsou rovinné, oba se dají nakreslit tak, že hrana $\{xy\}$ je na vnější stěně. Následně pak slepím G_1^+ a G_2^+ a popřípadě smažu hranu $\{xy\}$ a získám rovinný graf.
- 4. $k \geq 3$: G je 3-souvislý: Fakt: v rovinném nakreslení 2-souvislého grafu je každá stěna ohraničená kružnicí. A taky lemma o kontrahovatenlné hraně: $\exists e = \{xy\} \in E$ taková, že G.e je 3-souvislý, tedy $G.e v_e$ je 2-souvislý.
- Pozorování: $G.e-v_e=G-\{x,y\}$. Dle IP G.e je rovinný. Zvolme rovinné nakreslení G.e. V $G.e-v_e$ je stěna, z níž byl smazán v_e ohraničená kružnicí C. Do stěny ohraničné C nakreslíme vrchol x. Každý soused v_e v grafu G.e leží na C, tedy každý soused x v grafu G různý od y leží na C. Označme $N_C(x)$: sousedé x na C a podobně $N_C(y)$.
- Teď rozdělme případy.
 - 1. $|N_C(x) \cap N_C(y)| \geq 3$: to nelze, $C \cup \{x, y\}$ indukují dělení K_5 .
 - 2. $\exists a_1, a_2 \in N_C(x), b_1, b_2 \in N_C(y) : |\{a_1, a_2, b_1, b_2\}| = 4$ leží na C v pořadí a_1, b_1, a_2, b_2 : to taky nelze, pak je tam $K_{3,3}$.
 - 3. Nenastane ani jedna z předchozích možností. Vrcholy $N_c(x)$ rozdělí C na cesty $P_1, P_2, \ldots, P_k, \exists j : N_C(y) \subseteq P_j$.

Kreslení grafů na plochy

Definice:

- Nechť $X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m$. Zobrazení $f: X \to Y$ je **homeomorfismus** pokud f je pojitá bijekce X na Y a f^{-1} je spojitá bijekce Y na X.
- X,Y jsou **homeomorfní**, pokud existuje homeomorfismus X na Y. Značím $X\cong Y$.

Fakt

Homeomorfismus zachovává kompaktnost, uzavřenost a otevřenost. Ne však omezenst.

Definice:

Plocha je souvislá kompaktní 2-rozměrná varieta bez hranic.

• Příklady: sféra, torus.

• Nepříklady: \mathbb{R}^2 , otevřený kruh, dvě separátní sféry.

Definice operací s plochami:

- 1. Přidání ucha:
 - "Odebrání dvou kruhů a přidáním válce mezi ně."
 - Na diagramu se kreslí, že mají orientaci opačným směrem.
- 2. Přidání křižítka:
 - "Odebrání jednoho kruhu a přidání křižítka, tj. že se jeden bod propojí s přesně opačným bodem na druhé straně, ale nikdy se nepřekříží."

Přednáška 6

Definice:

- Orientovatelná plocha rodu g, značená $\Sigma_g(g \ge 0)$, je plocha vzniklá ze sféry přidáním g uší.
- Neorientovatelná plocha rodu g, značená $\Pi_g(g \ge 1)$, je plocha vzniklá ze sféry přídáním g křižítek.

Fakt

Plocha vzniklá ze sféry přidáním $k \geq 1$ křižítek a $l \geq 0$ uší je Π_{k+2l} .

Fakt

Každá plocha je homeomorfní právě jedné ploše z posloupnosti $\Sigma_0, \Pi_1, \Sigma_1, \Pi_2, \dots$

Defince:

- Σ_0 je sféra.
- Σ_1 je torus.
- Σ_2 je dvojitý torus.
- Π_1 je projektivní rovina.
- Π_2 je kleinova láhev.

Definice:

Nakreslení grafu G = (V, E) na plochu Γ je zobrazení \mathcal{G} , které:

- 1. vrcholům $x \in V$ přiřadí bod $\bar{x} \in \Gamma$,
- 2. hraně $e=\{xy\}\in E$ přiřadí křivku $\bar{e}\subseteq \Gamma$ spojující \bar{x} a \bar{y} . ("Křivka" je homeomorfní kopie intervalu [0,1].)

Navíc platí:

1. $x, y \in V, x \neq y \Rightarrow \bar{x} \neq \bar{y}$,

- 2. pro $x \in V, e \in E : \bar{x} \in \bar{e} \Rightarrow x \in e$,
- 3. pro $e, f \in E, e \neq f : \bar{e} \cap \bar{f} \neq \emptyset \Rightarrow \bar{e} \cap \bar{f} = \{\bar{x}\}, \text{ kde } e \cap f = \{x\}.$

Stěna je souvislá komponenta $\Gamma \setminus (\bigcup_{x \in V} \bar{x} \cup \bigcup_{e \in E} \bar{e}).$

Definice:

Nakreslení je **buňkové** (2-cell), pokud každá jeho stěna je homeomorfní otevřenému kruhu.

Fakt

Nakreslení \mathcal{G} na Σ_0 je buňkové iff nakreslený graf je souvislý.

Definice:

Eulerova chrakteristika plochy Γ značená $\chi(\Gamma)$, je:

$$\chi(\Gamma) = \begin{cases} 2 - 2g & \text{pro } \Gamma \cong \Sigma_g \\ 2 - g & \text{pro } \Gamma \cong \Pi_g \end{cases}$$

Věta (Zobecněná Eulerova formule)

Necht \mathcal{G} je buňkové nakreslení grafu G = (V, E) na ploše Γ a označme $h(\mathcal{G}) = |V|, e(\mathcal{G}) = |E|, f(\mathcal{G}) = \#$ stěn \mathcal{G} . Potom $h(\mathcal{G}) - e(\mathcal{G}) + f(\mathcal{G}) = \chi(\Gamma)$.

Důkaz:

- Předpokládáme, že $\Gamma\cong \Sigma_g$ (případně $\Gamma\cong \Pi_g$ je podobný). Indukcí podle g.
- g = 0: Eulerova formule pro rovinné grafy. Hotovo.
- g > 0: Zafixujeme si ucho reprezentované kružnicemi u, u'. Necht e_1, e_2, \ldots, e_k jsou hrany křížící u, u' v pořadí daným orientací u, u' $(e_1, e_2, \ldots, e_k$ nejsou nutně různé).
- Jistě $k \geq 1$, jinak by nakreslení nebylo buňkové. Označme $LS(\mathcal{G}) = n(\mathcal{G}) e(\mathcal{G}) + f(\mathcal{G})$. Nechť \mathcal{G}_1 vznikne z \mathcal{G} tak, že se na každou e_i přidají dělící vrcholy x_i a y_i , těsně k u a u'. $LS(\mathcal{G}_1) = LS(\mathcal{G})$.
- Nechť \mathcal{G}_2 vznikne z \mathcal{G}_1 tak, že pro $\forall i = 1, ..., k$ přidám cestu délky 3 z x_i do x_{i+1} a z y_i do y_{i+1} a x_k do x_i a y_k do y_i , cesty jsou těsně u u a u'.
- $LS(\mathcal{G}_2) = LS(\mathcal{G}_1)$
- \mathcal{G}_3 nakreslení na Σ_{g-1} vzniklé z \mathcal{G}_2 odstraněním u, u' a všech hran, které ho kříží.
- $n(\mathcal{G}_2) = n(\mathcal{G}_3), e(\mathcal{G}_2) k = e(\mathcal{G}_3), f(\mathcal{G}_2) = f(\mathcal{G}_3) 2 + k$
- $LS(\mathcal{G}_2) = LS(\mathcal{G}_3) 2 = {}^{IP} \chi(\Sigma_{q-1}) 2 = \chi(\Sigma_q)$

Fakt

Pro nebuňkové nakreslení \mathcal{G} platí: $h(\mathcal{G}) - e(\mathcal{G}) + f(\mathcal{G}) > \chi(\Gamma)$.

Důsledek:

Nechť G + (V, E) je graf, který má nakreslení \mathcal{G} na Γ , nechť $|V| \geq 3$. Potom:

- 1. $|E| \leq 3|V| 3\chi(\Gamma)$,
- 2. (průměrný stupeň $G = \frac{2|E|}{|V|} \le 6 \frac{6\chi(\Gamma)}{|V|}$.

Důkaz:

1. BŮNO \mathcal{G} je buňkové, každá stěna je incidentní s aspoň 3mi hranami, každá hrana je incidentní s nejvýš dvěma stěnami. Tedy $3f(\mathcal{G}) \leq \text{počet}$ incidencí "hrana-stěna": $\leq 2e(\mathcal{G}) \Rightarrow f(\mathcal{G}) \leq \frac{2}{3}e(\mathcal{G})$. Tedy: $\chi(\Gamma) \leq |V| - \frac{1}{3}|E|$.

Pro plochu Γ označme:

$$H_{\Gamma} := \left| \frac{5 + \sqrt{49 - 24\chi(\Gamma)}}{2} \right|$$

Věta

Nechť Γ je plocha, $\Gamma\ncong\Sigma_0$. Potom každý graf, který má nakreslení na Γ obsahuje vrchol stupně $\leq H_{\Gamma}$.

Důkaz:

- $\Gamma \cong \Pi_1$: průměrný stupeň nakreslení \mathcal{G} na Γ je $\leq 6 \frac{6}{n(\mathcal{G})} < 6 \Rightarrow \exists$ vrchol stupně $\leq 5 = H_{\Pi_1}$.
- $\Gamma \cong \Pi_2$ nebo $\Gamma \cong \Sigma_1$: průměrný stupeň ≤ 6 . Hotovo.
- $\chi(\Gamma) < 0$: Mějme nakreslení \mathcal{G} na Γ , uvažme pro minimální stupeň δ nakreslení \mathcal{G} dva odhady.
- 1. $\delta \leq 6 \frac{6\chi(\Gamma)}{n(\mathcal{G})}$ 2. $\delta \leq n(\mathcal{G}) 1$
- tedy $\delta \le \min\{6 \frac{6\chi(\Gamma)}{n(\mathcal{G})}, n(\mathcal{G}) 1\}.$
- Budeme zkoumat max_{n∈N}(min{6 ^{6χ(Γ)}⁄_{n(G)}, n(G) 1} ≤ ⌊δ₀⌋).
 Hledáme n₀: 6 ^{6χ(Γ)}⁄_{n₀} = n₀ 1 ⇔ 6n₀ 6χ(Γ) = n₀² n₀ ⇔ n₀² 7n₀ +
- $n_0 = \frac{7 + \sqrt{49 24\chi(\Gamma)}}{2}$ $\delta_0 = n_0 1 = \frac{5 + \sqrt{49 24\chi(\Gamma)}}{2}$

Graf G=(V,E) je **d-degenerovaný**, pokud každý jeho podgraf obsahuje vrchol stupně $\leq d$.

Důsledek:

Každý graf nakreslitelný na plochu $\Gamma\ncong\Sigma_0$ je H_{Γ} -degenerovaný.

Pozorování

Každý d-degenerovaný graf má barevnost $\leq d+1$.

Důsledek: (Heawood)

Každý graf nakreslitelný na $\Gamma \ncong \Sigma_0$ má barevnost $\leq H_{\Gamma} + 1$.

Fakt (Ringel-Youngs)

Na každou plochu $\Gamma \ncong \Pi_2$ se dá nakreslit $K_{H_{\Gamma}+1}$.

Přednáška 7

Barvení grafů

Dai vein gi

Značení:

- $\Delta(G)$ největší stupeň v G
- $\delta(G)$ nejmenší stupeň vG
- $\chi(G)$ barevnost G
- d(G) degenerovanost G
 - nebo-li nejmenší $d \in \mathbb{N}_0$ takové, že G je d-degenerovaný.
 - G je $d\text{-}degenerovaný: každý jeho neprázdný podgraf má vrchol stupně <math display="inline">\leq d.$

Pozorování

$$\delta(G) \le d(G) \le \Delta(G)$$

Pozorování

$$\chi(G) \le d(G) + 1 \le \Delta(G) + 1$$

Lemma

Nechť G je souvislý graf, který má aspoň jeden vrchol stupně menšího než $\Delta(G)$. Potom $\chi(G) \leq \Delta(G)$.

Důkaz:

- Nechť $x \in V(G)$ je vrchol stupně $< \Delta(G)$. Tvrdím: $\delta(G) \le \Delta(G) 1$. Zvolme libovolný podgraf H. Dva případy:
- 1. $x \in H$ tak hotovo, protože $\deg_H(x) \leq \deg_G(x) \leq \Delta(G) 1$.
- 2. $x \notin H$ Protože G je souvislý, tak existuje $y \in V(H)$, který má v G souseda, který nepatří do H $\deg_H(y) \leq \deg_G(y) 1 \leq \Delta(G) 1 \Rightarrow \chi(G) \leq d(G) + 1 \ leq \Delta(G)$.

Věta (Brooks)

Pro každý souvislý graf G, který není ani úplný graf ani lichá kružnice, platí $\chi(G) \leq \Delta(G)$.

Důkaz:

- Nechť k je vrcholová souvislost G. Potom zavedeme $\Delta := \Delta(G)$.
- 1. Pokud k=1, tak existuje artikulace x. Graf G rozdělíme na G_1 a G_2 podle dané artikulace s tím, že x je v oubou grafech.
- Z toho pak plyne, že $\deg_{G_1}(x) < \Delta$ a $\deg_{G_2}(x) < \Delta$.
- Pak po použití lemma máme $\chi(G_1) \leq \Delta \wedge \chi(G_2) \leq \Delta$: obarvím G_1 obarvením f_1 pomocí Δ barev, stejně i pro G_2 s f_2 . BŮNO: $f_1(x) = f_2(x)$, jinak udělám permutaci barev. Pak mám obarvení celého G.
- 2. Pro k=2 udělám to stejné, akorát rozdělím grafy podle x,y, které jsou právě vrcholovým řezem grafu G. BŮNO: $\deg_{G_1}(x) \ge \deg_{G_2}(x)$.
- Poznámka: podgrafy G s $\Delta(G) \leq 2$ věta platí, předp. $\Delta(G) = \Delta \geq 3$.
- Nyní mám možnosti:
 - 1. $\{xy\}$ patří do E(G) (i $E(G_1) \wedge E(G_2)$) pomocí lemma obarvíme G_1 i G_2 pomocí Δ barev, x má jinou barvu než y a dostanu i obarvení G.
 - 2. $\deg_{G_1}(x) \leq \Delta 2$ nebo $\deg_{G_1}(y) \leq \Delta 2$, přidám $\{xy\}$ a pořád platí obarvení pomocí lemma.
 - 3. $\deg_{G_1}(x)=\deg_{G_1}(y)=\Delta-1\Rightarrow \deg_{G_2}(x)=\deg_{G_2}(y)=1$, tak místo xy použiji $\{vy\}$, kde v je soused x z G_2 . dále viz 2).
- 3. $k \geq 3$: G souvislý, není úplný $\Rightarrow G$ obsahuje 2 nesousedící vrcholy x a y, které mají společného souseda z.
- G-x-y je souvislý, tedy jeho vrcholy lze uspořádat do posloupnosti $v_1, v_2, \ldots, v_{n-2}$ tak, že $v_{n-2} = z$ a každý $v_i \in \{v_1, \ldots, v_{n-3}\}$ má aspoň jednoho souseda mezi v_{i+1}, \ldots, v_{n-2} .
- Vrcholy tedy uspořádám $x, y, v_1, v_2, \ldots, v_{n-2}$ a obarvím G hladově zleva doprava pomocí Δ barev.

Hranové obarvení grafu G=(V,E) je funkce $f:E\to\mathbb{Z}$ taková, že pro 2 různé hrany $e,e'\in E$ sdílející vrchol platí $f(e)\neq f(e')$. **Hranová barevnost** grafu G značená $\chi_e(G)$ je nejmenší k takové, že G má hranové obarvení používající k barev.

Definice:

Line graph značen jako L(G) vznikne z grafu G.

$$L(G) = (E, \{ef\} \in {E \choose 2}; e \cap f \neq \emptyset)$$

Pozorování

$$\chi_e(G) = \chi(L(G)) \le \Delta(L(G)) + 1 \le 2\Delta(G) - 1$$

Věta (Vizing)

$$\forall G: \chi_e(G) \leq \Delta(G) + 1$$

- Mějme $G = (V, E), \Delta = \Delta(G)$. Necht $H = (V, E_H)$ je co největší podgraf G, který lze hranově obarvit pomocí $\Delta + 1$ barev, necht f_H je takové hranové obarvení.
- Pokud H = G jsme hotovi. Pro spor nechť existuje $e_0 = \{xy_0\} \in E \setminus E_H$.
- Řeknu, že barva $\beta \in \{1, 2, ..., \Delta + 1\}$ je volná u vrcholu w, pokud žádná hrana H incidentí s w nemá barvu β .
- Pozorování: Každý vrchol má ≥ 1 volnou barvu.
- Nechť $e_0, e_1, e_2, \ldots, e_k$ je co nejdelší posloupnost různých hran, kde $e_i = \{xy_i\}$, pro každé $i = 1, \ldots, k : f_H(e_1)$ je barva, která je volná u y_{i-1} . Nechť β je volná barva u y_k . Pak jsou případy:
- 1. β je volná u x
 - e_k obarvím β a pro j = 0, ..., k-1 hranu e_j obarvím $f_H(e_{j+1})$. To je ale spor s maximalitou H.
- 2. β je použitá na nějaké hraně \tilde{e} incidentní s x, nepatřící do $\{e_0, e_1, \dots, e_k\}$
 - $e_{k+1} := \tilde{e}$ Opět spor s maximalitou e_0, e_1, \dots, e_k .
- 3. β je použitá na nějaké hraně $e_i \in \{e_1, \dots, e_{k-1}\}$
 - Nechť α je volná barva u x. Dle předpokladu $\alpha \neq \beta$. Nechť P je co největší souvislý podgraf H na jehož hranách jsou jen barvy α a β a který obsahuje hranu e_j . P má maximální stupeň ≤ 2 , $\deg_P(x) = 1 \Rightarrow P$ je cesta, která má začátek v x.
 - Necht z je druhý konec P. Uvažujeme obarvení $\tilde{f}_H : E_H \to \{1, \dots, \Delta + 1\}$ vznikne z f_H tak, že na P prohodíme barvy α a β . 2 podpříklady:

- 1. $z = y_{j-1}$: v \tilde{f}_H je β volná u x i u y_k . α je volná u y_{j-1} a použitá na $e_i \Rightarrow$ nastává případ 1) pro e_0, \ldots, e_k .
- na $e_j \Rightarrow$ nastává případ 1) pro e_0, \dots, e_k . 2. $z \neq y_{j-1}$: v \tilde{f}_H je β volná u x i u $y_{j-1} \Rightarrow$ nastává případ 1 pro e_0, \dots, e_{j-1} .

Přednáška 8

Perfektní grafy

Značení:

- $\omega(G)$ klikovost G, nebo-li velikost největší kliky v G.
- $\alpha(G)$ nezávislost G, nebo-li velikost největší nezávislé množiny vG
- Doplněk grafu G = (V, E) je graf $\bar{G} = (V, {V \choose 2} \setminus E)$.

Pozorování

$$\omega(G) = \alpha(\bar{G}) \quad \omega(\bar{G}) = \alpha(G)$$

Pozorování

$$\chi(G) \ge \omega(G)$$

Pozorování

$$\omega(C_{2k+1}) > 2$$

Definice:

Graf G=(V,E) je **perfektní**, pokud pro každý indukovaný podgraf H grafu G platí $\omega(H)=\chi(H)$.

Pozorování

G perfektní graf, $G' \leq_i G \Rightarrow G'$ je perfektní.

Důsledek:

G obsahuje C_{2k+1} nebo $\overline{C_{2k+1}}$ jako indukovaný podgraf $\Rightarrow G$ není perfektní.

Silná věta o perfektníc grafech

Gje perfektní iffGneobsahuje C_{2k+1} ani $\overline{C_{2k+1}}$ (pro $k\geq 2)$ jako indukovaný podgraf.

Bez důkazu.

Nezávislá množina N v grafu G=(V,E) je **rozlehlá**, pokud každá klika G velikosti $\omega(G)$ obsahuje vrchol z N.

• Ekvivalentně: $\omega(G-N) = \omega(G) - 1$.

Lemma 1

Pro graf G = (V, E) jsou následující tvrzení ekvivalentní:

- 1. G je perfektní,
- 2. $\forall H \leq_i G : H$ má rozlehlou nezávislou množinu,
- 3. $\forall H \leq_i G, \forall x \in V(H) : H$ má rolehlou nezávislou množinu obsahující x.

Důkaz:

- $3 \Rightarrow 2$ triviálně.
- $2 \Rightarrow 1$ Necht $G' \leq_i G$ a cheeme $\omega(G') = \chi(G')$.
 - Obarvení G' pomocí $\omega(G')$ barev najdeme takto: N_1 je rozlehlá NzMna v G_1 a té dáme barvu 1. Následně $N_2 := NzMna$ v $G' N_1$ barvu 2 a tak dále opakujeme dokud nemáme obarvené celé G'.
 - $-\omega(G'-N_1)=\omega(G')-1,$
 - $-\omega(G'-(N_1\cup N_2))=\omega(G')-2$ a tak dále.
 - Proto použijeme právě $\omega(G')$ barev. Hotovo.
- 1 \Rightarrow 3 Necht G je perfektní graf, mějme $H \leq_i G, \forall x \in V(H)$. Víme $\omega(H) = \chi(H)$.
 - Vrcholy H barvy f(x) jsou rozlehlá nezávislá množina.
 - Každá největší klika musí mít právě jeden vrchol s danou barvou.

Definice:

Nechť G=(V,E) je graf s vrcholem x. Nechť $k\in\mathbb{N}$. Potom k-násobné nafouknutí vrcholu x, která vytvoří G^+ takto:

- 1. Vrchol x se nahradí k-ticí nových vrcholů $x_1, \ldots x_k$ tvořící kliku.
- 2. Každý soused vrcholu x v G se spojí se všemi x_1, \ldots, x_k .

Lemma 2

Pokud G je perfektní a G^+ je jeho nafouknutí, tak i G^+ je perfektní.

Důkaz:

• Dokážeme, že $\forall H \leq_i G^+$ má rozlehlou nezávislou množinu. Pak ještě použijeme Lemma 1 a máme hotovo.

- Volme $H \leq_i G^+$: Pokud H obsahuje nejvýš jeden z x_1, \ldots, x_k tak $H \leq_i G$, takže H má rozlehlou NzMnu dle Lemma 1. Předpokládejme, že H obsahuje aspoň dva vrcholy z x_1, \ldots, x_k .
- Potom H je nfouknutí nějakého $H^- \leq_i G, x \in V(H^-)$.
- Dle Lemma 1, H^- obsahuje rozlehlou NzMnu N^- obsahující x. BÚNO: $x_1 \in V(H)$.
- Tvrdím: $N := (N^- \setminus \{x\}) \cup \{x_1\}$ je rozlehlá NzMna v H. Jistě N je nezávislá. Nechť K je klika H velikosti $\omega(H)$. Pak jsou dvě možnosti:
- 1. $K \cap \{x_1, \dots, x_k\} = \emptyset$ v tom případě je K i největší v H^- , tedy $N^- \cap K \neq \emptyset$, dokonce $(N^- \setminus \{x\}) \cap K \neq \emptyset$, $N \cap K \neq \emptyset$.
- 2. $K \cap \{x_1, \ldots, x_k\} \neq \emptyset$ nutně K obsahuje všechny vrcholy z $\{x_1, x_2, \ldots, x_k\}$ patřící do H, tedy i $x_1 \in K$, tedy $K \cap N = \{x_1\} \neq \emptyset$.
 - Tedy N he rozlehlá NzMna H.

Značení:

 $H <_i G := H \leq_i G \& H \ncong G - H$ je vlastní indukovaný podgraf G.

Věta (Slabá věta o perfektních grafech.)

G je perfektní iff \bar{G} je perfektní.

- Sporem: \exists perfektní graf G=(V,E). ale \bar{G} není perfektní. Volme G tak, že |V| je co nejmenší. Tedy $\forall H<_i G$ platí, že H i \bar{H} jsou perfektní. Jinak to je menší graf co do velikosti |V|.
- Protože \bar{G} není perfektní, tak dle Lemma 1 $\exists G' \leq_i \bar{G} : G'$ nemá rozlehlou NzMnu.
- Tvrdím, že $G' \cong \bar{G}$, kdyby $G' <_i \bar{G}$ tak G' není perfektní, ale $\bar{G}' <_i G$ tedy \bar{G}' je perfektní, spor s minimalitou G.
- Tedy \bar{G} nemá rozlehlou NzMnu. Tj. pro každou NzMnu \bar{N} v \bar{G} existuje v \bar{G} klika velikosti $\omega(G)$ disjunktní s \bar{N} . Tedy pro každou kliku K v G existuje v G NzMna velikosti $\alpha(G)$ disjunktní s K.
- Nechť Q_1, Q_2, \ldots, Q_t je seznam všech klik v G. Nechť N_i je NzMna G velikosti $\alpha(G)$ disjunktní s Q_i , pro $i = 1, \ldots, t$.
- Pro každý vrcholy $x \in V$ nechť f(x) je počet indexů $i \in \{1, ..., t\}$ takových, že $x \in N_i$.
- G^+ vznikne z G tak, že se každý vrchol x nafoukne f(x)-krát.
- Vrcholy $x \in V$ s f(x) = 0 se smažou.
- Dle Lemma 2 G^+ je stále perfektní.
- $|V(G^+| = t\alpha(G) = t\alpha(G^+)$
- Víme: $\chi(G^+)\alpha(G^+) \ge |V(G^+)| = t\alpha(G^+)$
- Tedy $\chi(G^+) \ge t$. (1)

- Ale $\chi(G^+) = \omega(G^+)$. (2)
- Nechť Q^+ je největší klika v G^+ , ta musela vzniknout nafouknutím nějaké kliky Q_j v G.
- (3) $|Q^{+}| = \sum_{x \in Q_{j}} f(x) = \sum_{x \in Q_{j}} \sum_{i=1}^{t} |N_{i} \cap \{x\}| = \sum_{i=1}^{t} \sum_{x \in Q_{j}} |N_{i} \cap \{x\}|$ $\begin{array}{l} \{x\}| = \sum_{i=1}^t |Q_j \cap N_i \leq t-1 \\ \bullet \ \ \text{Protože} \ Q_j \cap N_j = \emptyset \ \text{dle definice} \ N_j \ \text{a dohromady} \ (1), \ (2) \ \text{a} \ (3) \ \text{je spor}. \end{array}$

Přednáška 9

Připomenutí

- Částečné uspořádaná množina (X, \leq) , $kde \leq je$ reflexivní, slabě antisymetrická a tranzitivní.
- **Řetězec:** podmnožina X, v níž každé dva prvky jsou porovnatelné.
- Antiřetězec: podmnožina X, v níž žádné dva prvky nejsou porovnatelné.
- Také je dobré znát **Hasseho diagram**.

Cvičení

Dokažte: Pokud každý řetězec v (X, \leq) má velikost $\leq k$, tak (X, \leq) se dá rodělit $na \leq k$, antiřetězců.

• Indukcí dle k (postupně se mažou maximální prvky).

Definice:

Pro částečně uspořádanou množinu (X, \leq) definují graf **porovnatelnosti** $G_{\leq} =$ (X, E), kde $E = \{ \{xy\} \in {X \choose 2} : x \le y \lor y \le x \}.$

$Cvi\check{c}en\acute{\iota}$

Dokažte: $G \le je \ perfektni$.

- Klikovost = nejdelší řětězec.
- Barevnost = počet antiřetězců.
- Použití předchozího cvičení.

Věta (*Dilworth*)

Pokud v částečně uspořádané množině (X, \leq) má každý antiřetězec velikost l, tak (X, \leq) se dá rozdělit na $\leq l$ řetězců.

Důkaz:

- Každý G_{\leq} je perfektní $\Rightarrow \bar{G_{\leq}}$ je perfektní.
- $\omega(\bar{G}_{<}) \leq \bar{l} \& \chi(\bar{G}_{<}) \leq l \Rightarrow \bar{l} \text{ Nzmna} \rightarrow l \text{ klik} \Rightarrow \text{ řetězce v } (X, \leq).$

Pozorování

Bipartitní grafy jsou perfektní.

Značení:

- m(G) := velikost největšího párování v grafu <math>G
- $\operatorname{vp}(G) := \operatorname{veliksot}$ nejmenšího vrcholového pokrytí v grafu G.

Pozorování

$$m(G) \le vp(G)$$

Připomenutí

Konig-Egerváryho věta: G bipartitní: m(G) = vp(G).

Definice:

Graf G=(V,E) je **chordální**, pokud neobsahuje kružnici délky ≥ 4 jako indukovaný podgraf.

Pozorování

GrafGje chordální a $H \leq_i G \Rightarrow H$ je chordální.

Definice:

Nechť G = (V, E) je graf, nechť x a y jsou dva nesousední vrcholy v G. xy-řez je množina $R \subseteq V$, t.ž. x a y jsou v různých komponentách G - R.

Lemma

Graf G=(V,E) je chordální iff pro každé dva nesousední vrcholy x,y existuje xy-řez, který je klika v G.

Důkaz:

• \Leftarrow Necht G není chordální. Chceme dva nesousední vrcholy x,y, t.ž. žádný xy-řez není klika. Necht G obsahuje indukovanou kružnici C délky ≥ 4 , necht x,y jsou nesousedící vrcholy na C.

- Vždy musím odebrat aspoň 2 vrcholy z cyklu. Ale mezi nimi není hrana a tudíž nemůže se jednat o kliku. S tím, že odstraněné vrcholy musí přerušit dvě cesty P_1, P_2 . Kde P_1 a P_2 je rozdělení C dle x, y.
- \Rightarrow Nechť G je chordální, nechť x,y jsou dva nesousedící vrcholy. Nechť R je xy-řez minimální vzhledem k inkluzi. Ukážeme, že R je klika v G.
 - Sporem: nechť existují nesousedící vrcholy $u, v \in R$. Nechť G_x, G_y jsou komponenty G - R obsahující x respektive y.
 - Pozorování: ui v má aspoň jednoho souseda v G_x i v G_y z minimality
 - Necht P_x je co nejkratší csta z u do v jejichž vnitřní vrcholy patří do G_x . Podobně P_y . $P_x \cup P_y$ je indukovaná kružnice délky ≥ 4 , spor.

Definice:

Vrchol x grafu G je **simpliciální**, pokud sousedi x tvoří kliku v G.

Pozorování

Vrchol stupně ≤ 1 je simpliciální.

Lemma

Každý chordální graf (s aspoň jedním vrcholem) má simpliciální vrchol.

Důkaz:

- Dokážeme: \forall chordální graf G = (V, E) je buď úplný nebo má dva nesousední simpliciální vrcholy. Indukcí dle |V|.
- |V| = 1 G je úplný.
- |V| > 1 Pokud G není úplný (jinak triviálně platí). Volme x, y nesousedící vrcholy v G. Nechť R je xy-řez tvořící kliky v G (Lemma).
 - $-G_x, G_y$ jsou komponenty G-R obsahující x popř. y.

 - $-G_x^+, G_y^+$ jsou podgrafy G indukované $G_x \cup R$ respektive $G_y \cup R$. IP: G_x^+ je buď úplný, nebo obsahuje dva nesousedící simpliciální vrcholy.
 - V obou případech to znamená, že ${\cal G}_x^+$ obsahuje simpliciální vrchol s_x nepatřící do R.Obdobně s_y je simpliciální vrchol v G_y^+ nepatřící do
 - V G mají s_x i s_y stejné sousedy jako v G_x^+ resp. G_y^+ , tedy s_x a s_y jsou dva nesousedící simpliciální vrcholy vG.

Perfektní eliminační schéma (*PES*) grafu G je uspořádání vrcholů G do posloupnosti $v_1, v_2, v_3, \ldots, v_n$ takové, že $\forall i = 1, \ldots, n$ sousedi v_i mezi $\{v_1, \ldots, v_{i-1}\}$ tvoří kliky v G. (*Ekvivalentně:* v_i je simpliciální v indukovaném podgrafu G $\{v_1, \ldots, v_i\}$.)

Věta

Následující vlastnosti grafu G = (V, E) jsou ekvivalentní:

- 1. G je chordální,
- 2. $\forall H \leq_i G : H$ má simplic. vrchol,
- 3. G má PES.

Důkaz:

- $1 \Rightarrow 2 : \forall H \leq_i G$ je chordální \Rightarrow z Lemma H má simpliciální vrchol.
- $2 \Rightarrow 3$: Vezmu simpliciální vrchol v G dám ho doprava v PES. Odeberu z G a takhle pořád opakuji.
- $3 \Rightarrow 1: G$ s PES, pak každá Cs $|V| \ge 4$ musí mít chordu. Podívám se na poslední vrchol v PES. Pak z vlastnosti PES musí mít předchozí vrcholy chordu.

Důsledek:

- Důkaz 2 \Rightarrow 3 říká, že v polynomiálním čase lze pro dané Gnajít PES nebo zjistit, že neexistuje.

Věta

- 1. Každý chordální graf je perfektní.
- 2. Pro chordální graf G lze v polynomiálním čase zjistit $\omega(G) = \chi(G)$, spolu s nevětší klikou a optimálním obarvením.

Přednáška 10

- Už víme, že lze vytvořit PES.
- Pro každý vrchol v PES platí, že jeho předchozí sousedi tvoří kliku a s
 daným vrcholem tvoří kliku o jedna větší.
- Pak již stačí najít vrchol s největším počtem předchozích vrcholů (značeno k) a potom $\omega(G)=k+1$.
- Pro spor vezmu největší kliku z algoritmu. Kdyby nebyl největší, tak lze přidat další, ale ten musí být sousedem a tudíž ho algoritmus musel najít.

- Pro obarvení budu postupovat zleva a danému vrcholu dám nejmenší možnou barvu. Zaznačím si největší barvu a novou barvu přidám jakmile vrchol bude mít v předchozích vrcholech právě tolik sousedů. Tím pádem nikdy nepřekročím velikost maximální kliky a tedy $\chi(G) = \omega(G)$.
- Najdu tedy obarvení, které je rovno klice a tedy je i perfektní.

Extremální kombinatorika

Definice:

Pro $n \in \mathbb{N}$ a graf F definujeme $\exp(n,F) :=$ největší počet hran v grafu na n vrcholech, který neobsahuje F jako podgraf. Nebo-li:

$$ex(n, F) = max\{|E|; G = (V, E) : |V| = n, F \subseteq G\}$$

Definice:

Turanův graf T(n,r) je úplný r-partitní graf na n vrcholech, jehož všechny partity mají velikost $\left\lfloor \frac{n}{r} \right\rfloor$ anebo $\left\lceil \frac{n}{r} \right\rceil$.

• Potom t(n,r) := počet hran T(n,r).

Věta (*Turán*)

$$\forall n, r \in \mathbb{N} : \exp(n, K_{r+1}) = t(n, r)$$

- Pozorování: T(n,r) neobsahuje K_{r+1} , tedy $\operatorname{ex}(n,K_{r+1}) \geq t(n,r)$.
- Stačí dokázat: $\operatorname{ex}(n, K_{r+1}) \leq t(n, r)$. Nechť G = (V, E) je graf na n vrcholech, $K_{r+1} \not\subseteq G$ a $|E| = \operatorname{ex}(n, K_{r+1})$.
- Tvrzení 1: Každé 2 nesousedící vrcholy x,y mají v G stejný stupeň. Sporem kdyby $\deg(x) > \deg(y)$ tak y odstraním sousedy a přidám mu sousedy x. Ten má ale více hran a protože $\{x,y\} \notin E$ a sx nebyla klika, tak teď také žádná klika nevznikla sy. "Nebo-li y nahradím kopií x."
- Tvrzení 2: Definujeme relaci $R:=\{(x,y)\in V\times V:\{x,y\}\notin E\}.$ Potom R je ekvivalence.
 - Jistě je R reflexivní, také symetrické.
 - Pro spor předpokládejme, že R není tranzitivní: $\exists x,y,z:(x,y)\in R, (y,z)\in R \land (x,z)\notin R$. Dle Tvrzení 1: $\deg_G(x)=\deg_G(y)=\deg_G(z)$.
 - Potom "nahradím x a z kopiemi y". A platí |E(G')| > |E|. A G' neobsahuje K_{r+1} obdobným argumentem jako u Tvrzení 1.
 - Nyní nechť P_1, P_2, \ldots, P_k jsou třídy ekvivalence R.

- Tvrzení 3: $k = r \text{ (pokud } n \ge r)$.
 - $-k > r : \text{tak } K_{r+1} \subseteq G \text{ a to je spor.}$
 - -k < r: tak lze partitu s ≥ 2 vrcholy rozdělit na dvě menší partity a přidáme hrany mezi nimi a dostaneme G', který $K_{r+1} \nsubseteq G' \& |E(G')| > |E|$ opět spor.
- Tvrzení 4: BÚNO: $|P_1| \le |P_2| \le \cdots \le |P_r|$. Tvrdíme, že $|P_1| \le |P_r| + 1$.
 - Kdyby nějaké dvě partity byly odlišné ≥ 2 . Potom vezmeme půlku přebytečných vrcholů a přehodíme je do předchozí partity. Následně spojíme hranami. Dostanu G' kde $K_{r+1} \nsubseteq G$ a |E(G')| > |E|. Poznámka: (l+2)l < (l+1)(l+1).
- Shrnutí: G je úplný r-partitní graf, kde všechny partity jsou skoro stejné $\Rightarrow G \cong T(n,r)$.

Ddefinice:

Hypergraf je dvojice (V, E), kde prvky E ("hyperhrany") jsou podmnožiny V.

Definice:

Hypergraf je k-uniformní, pokud všechny jeho hyperhrany mají k vrcholů.

Definice:

f(n,k) := největší počet hyperhran v k-uniformním hypergrafu na n vrcholech, v němž žádné dvě hyperhrany nejsou disjunktní.

Pozorování

Pro n < k : f(n, k) = 0.

Pozorování

Pro $k \le n < 2k : f(n, k) = \binom{n}{k}$.

Pozorování

Pro $n \geq 2k: f(n,k) \geq {n-1 \choose k-1}.$ (Vybereme předem jeden vrchol.)

Definice:

Označme $V = \{1, 2, 3, \dots, n\}$, na V uvažujme sčítání modulo n. Interval je podmnožina V tvaru $\{i, i+1, i+2, \dots, i+k\}$.

Pozorování

Pro n > 2k máme na V přesně n intervalů.

Lemma

Nechť $V = \{1, 2, 3, \dots, n\}, n \ge 2k$ a G = (V, E) je k-uniformní hypergraf jehož každá hyperhrana je interval a každé dvě hyperhrany se protínají. Potom $|E| \leq k$.

Důkaz:

• BÚNO: $I = \{1, 2, 3, \dots, k\} \in E$.

• BUNO: $I = \{1, 2, 3, \dots, \kappa\} \in E$.
• Označme $I_j^- := \{j, j-1, j-2, \dots, j-k+1\}$ a $I_j^+ := \{j+1, j+2, \dots, j+k\}$.
• I je protnutí $I_1^-, I_2^-, \dots, I_{k-1}^-$ & $I_1^+, I_2^+, \dots, I_{k-1}^+$. Navíc z každé dvojice I_j^-, I_j^+ nejvýše jeden patří do E, protože $I_j^- \cap I_j^+ = \emptyset$. Tudíž $|E| \le k$.

Věta (Erdös-Ko-Rado)

Pro libovolné $k \in \mathbb{N}$ a $n \geq 2k$ platí $f(n,k) = \binom{n-1}{k-1}$.

Důkaz:

- Myšlenka: G = (V, E) je k-uniformní hypergraf na n vrcholech, každé dvě hyperhrany se protínají $\rightarrow |E| \leq {n-1 \choose k-1}$.
 - Ekvivalentně: $(1)\frac{|E|}{\binom{n}{k}} \le \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}$.

 - Lemma: Když každá hyperhrana je interval $\frac{|E|}{n} \leq \frac{k}{n}(2)$. Tyto dva zlomky jsou vlastně pravděpodobnosti. Takže náhodně očíslujeme vrcholy a mám stejnou pravděpodobnost v obou případech.
- Důkaz: Mějme $n \geq 2k$. Necht G = (V, E) je k-uniformní hypergraf v němž aždé 2 hyperhrany se protínají a |E| je co největší. Chceme dokázat $|E| \leq {n-1 \choose k-1}$. Nechť X je počet dvojic (e,π) t.ž. $e \in E$ a $\pi: V \to \mathbb{R}$ $\{1,2,\ldots,n\}$ taková, že π zobrazí e na intervalu. Potom pomocí počítání dvěma způsoby:
- 1. $X \leq n! \cdot k$ (dle lemma)
- 2. $X = |E| \cdot n \cdot k! \cdot (n-k)!$
- $|E| \cdot n \cdot k! \cdot (n-k)! \le n! \cdot k$ $|E| \le \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}$

Přednáška 11

Slunečnice (nebo Δ -systém) se středem S a l lístky je l-tice množin L_1, L_2, \ldots, L_l taková, že $\forall i \neq j : L_i \cap L_j = S$.

• $s(k,l) := \sup\{|E|; G = (V,E) \text{ je } k$ -uniformní hypergraf neobsahující žádnou slunečnici s l lístky $\}$.

Věta ("lemma o slunečnici", Erdös-Rado)

$$\forall k, l \in \mathbb{R} : s(k, l) < +\infty$$

Důkaz:

- Indukcí dle k.
- k = 1 : s(k, l) = l 1
- k > 1: Nechť G = (V, E) je k-uniformní hypergraf neobsahující slunečnici
- Nechť $D \subseteq E$ je co největší množina po dvou disjunktních hyperhran v G.
- Jistě $|D| \le l 1$, jinak máme slunečnici s $|D| \ge l$ lístky.
- Označme $W:=\bigcup_{d\in D} d\subseteq V, |W|=k\cdot |D|\leq k\cdot (l-1).$
- Jistě každá e ∈ E obsahuje aspoň jeden vrchol W. Tedy existuje x ∈ W, který je obsažen v aspoň |E| / |W| = |E| / |k·(l-1)| hyperhranách z E.
 Označme E_x := {e ∈ E, x ∈ e} pak E_x := {e \ {x}, e ∈ E_x} a G_x :=
- G_x^- je (k-1)-uniformní hypergraf, který neobsahuje slunečnici s l lístky: kdyby e_1, e_2, \dots, e_l byla slunečnice v G_x^- , tak $e_1 \cup \{x\}, e_2 \cup \{x\}, \dots, e_l \cup \{x\}$ je slunečnice v G.
- Tedy dle IP: $|E_x^-| = s(k-1, l) < +\infty$.
- Navíc $|E_x^-| = |E_x| \ge \frac{|E|}{k \cdot (l-1)}$, tedy $|E| \le k \cdot (l-1) \cdot s(k-1,l)$.
- Tedy $s(k,l) \leq k \cdot (l-1) \cdot s(k-1,l)$.

Poznámka:

Důkaz nám dává odhad $s(k,l) \le k!(l-1)^k$.

Hypotéza

$$(\forall l)(\exists c_l): s(k,l) \le c_l^k$$

Definice:

Hamiltonovská kružnice v grafu G = (V, E) je kružnice v G obsahující všechny vrcholy G.

Pro $n \geq 3$ označme $h(n) := \max\{d \in \mathbb{N}_0, \exists \text{ graf na } n \text{ vrcholech s min stupněm } \geq d,$ který neobsahuje hamiltonovskou kružnici.}.

Věta (Bondy-Chvátal)

Nechť G=(V,E) je graf s $n\geq 3$ vrcholy, nechť $x,y\in V$ jsou nesousedící vrcholy G takové, že $\deg_G(x)+\deg_G(y)\geq n$. Nechť $G^+:=(V,E\cup\{xy\})$. Potom G je hamiltonovský iff G^+ je hamiltonovský.

Důkaz:

- ⇒ je triviální
- \Leftarrow Označme $e_0 = \{xy\}$. Nechť G^+ obsahuje hamiltonovskou kružnici C. Pokud $e_0 \notin C$, tak C je hamiltonovská kružnice v G.
- Předpoklad $e_0 \in C$ jinak triviálně.
- Očíslujeme vrcholy a hrany ${\cal C}$ takto:

$$-x = x_1, x_2, \dots, x_{n-1}, x_n = y$$

- $e_0, e_1, e_2, \dots, e_n, e_0$

- Cíl je najít $i \in \{1, 2, 3, ..., n-1\}$ tak, že x sousedí s x_{i+1} a y sousedí s x_i v grafu G.
- Označme $S_x := \{i \in \{1, 2, 3, \dots, n-1\}, \{xx_{i+1}\} \in E\}$ z toho plyne, že $|S_x| = \deg_G(x)$ a taky $S_y := \{i \in \{1, 2, 3, \dots, n-1\}, \{yx_i\} \in E\}$ pak $|S_y| = \deg_G(y)$.
- Tedy $|S_x| + |S_y| \ge n, |S_x \cup S_y| \le |\{1, 2, 3, ..., n-1\}| \le n-1$, tudíž $\exists i \in S_x \cap S_y$.
- $(C \setminus \{e_0, e_i\}) \cup \{\{xx_{i+1}\}, \{yx_i\}\}$ je hamiltonovská kružnice v G.

Důsledek: (Dirac)

Každý graf na $n \geq 3$ vrcholech s minimální stupněm $\geq \frac{n}{2}$ je hamiltonovský. (Nebo $h(n) < \frac{n}{2}$.)

Důkaz:

- $\forall x \neq y \in V : \deg_G(x) + \deg_G(y) \ge n$
- Pokud G je úplný, tak hotovo. Jinak můžeme postupně přidávat hrany a
 vytvořit úplný graf. Pak pomocí Bondy-Chvátalovy věty jsou všechny tyto
 grafy v posloupnosti hamiltonovské.

- Multigraf je jako graf, ale můžu mít více hran mezi stejnou dvojicí vrcholů a můžu mít i smyčky.
- Formálně: Multigraf je dvojice množin (V, E) spolu s incidenční funkcí $f: E \to \binom{V}{2} \cup \binom{V}{1}$, kde V jsou vrcholy a E hrany.

Definice:

Incidenční matice multigrafu G = (V, E) je matice $I_G \in \{0, 1, 2\}^{|V| \times |E|}$, kde v řádku odpovídajícímu vrcholu $x \in V$ a sloupci odpovídající hraně $e \in E$ je hodnota 2, pokud e je smyčka u x, 1 pokud x je jedna ze dvou konců e, 0 jinak.

Definice:

Mějme multigraf G = (V, E) s maticí incidence I_G .

- Označme: k(G) = k(V, E) počet komponent souvislosti G.
- Označme: r(G) = r(VE) hodnost I_G . (nad \mathbb{Z}_2)
- Označme: n(G)=n(V,E) dimenze jádra $\operatorname{Ker}(I_G)$ matice I_G , kde $\operatorname{Ker}(I_G)=\{x\in(\mathbb{Z}_2)^{|E|}:I_gx=0\}$. Také se n(G) nazývá nulita G.

Pozorování

$$r(V, E) = |V| - k(V, E)$$

Pozorování

$$n(V, E) = |E| - r(V, E)$$

Definice:

 $Ker(I_G)$ prostor cyklů G = (V, E).

Definice:

G = (V, E) multigraf $e \in E$. Pak:

- $G e := (V, E \setminus \{e\})$
- G/e (kontrakce hrany y) := G e, pokud e je smyčka, jinak nový vrchol v_e všechny hrany se projeví na novém vrcholu (protože máme multigraf).

Pozorování

G-e i G/e má vždy o jednu hranu méně než G.

Přednáška 12

- r(G) = |V| k(G) = |F|, kde $F \subseteq E$ je největší podmnožina E neobsahující
- n(G) = |E| r(G) = |F|, kde $F \subseteq E$ je největší podmnožina E taková, že k(G - F) = k(G)

$$r(G - e) = \begin{cases} r(G) - 1 & e \text{ je most v } G \\ r(G) & \text{jinak} \end{cases}$$

$$n(G-e) = \left\{ \begin{array}{ll} n(G) & e \text{ je most v } G \\ n(G)-1 & \text{jinak} \end{array} \right.$$

$$r(G/e) = \left\{ \begin{array}{ll} r(G) & e \text{ je smyčka v } G \\ r(G) - 1 & \text{jinak} \end{array} \right.$$

$$n(G/e) = \left\{ \begin{array}{ll} r(G) - 1 & e \text{ je smyčka v } G \\ r(G) & \text{ jinak} \end{array} \right.$$

Tutteův polynom multigrafu G = (V, E), značený $T_G(x, y)$ je definován:

$$T_G = \sum_{F \subset F} (x-1)^{r(V,E)-r(V,F)} \cdot (y-1)^{n(V,F)}$$

Poznámka:

 x^0 je konstantní funkce $\equiv 1$

Pozorování

 $T_G(1,1) = \#$ počet koster v souvislém grafu G.

Tvrzení

Necht $G_1=(V_1,E_1)$ a $G_2=(V_2,E_2)$ jsou multigrafy, kde $E_1\cap E_2=\emptyset$ a $|V_1\cap V_2|\leq 1$. Necht $G=(V=V_1\cup V_2,E=E_1\cup E_2)$. Potom $T_G(x,y)=$ $T_{G_1}(x,y)T_{G_2}(x,y)$.

- Nechť $V_1 \cap V_2 = \emptyset$ (situace $|V_1 \cap V_2| = 1$ je obdobná). $T_G(x,y) = \sum_{F_1 \subseteq E_1} \sum_{F_2 \subseteq E_2} (x-1)^{r(V,E)-r(V,F_1 \cup F_2 \cdot (y-1)^{n(V,F_1 \cup F_1 \cup F_2 \cdot (y-1)^{n(V,F_1 \cup F_1 \cup$

$$(1) = \sum_{F_1 \subset E_1} \sum_{F_2} (x-1)^{r(E_1) + r(E_2) - (r(F_1) + r(F_2))} \cdot (y-1)^{n(F_1) + n(F_2)} =$$

$$\left(\sum_{F_1 \subseteq E_1} (x-1)^{r(E_1)-r(F_1)} \cdot (y-1)^{n(F_1)}\right) \left(\sum_{F_2 \subseteq E_2} (x-1)^{r(E_2)-r(F_2)} \cdot (y-1)^{n(F_2)}\right) =$$

$$=T_{G_1}(x,y)T_{G_2}(x,y)$$

Důsledek: e je most v G + (V, E), tak $T_{G-e}(x, y) = T_{G/e}(x, y)$.

Pozorování

e je smyčka v G, potom $T_{G-e}(x,y) = T_{G/e}(x,y)$, protože G - e = G/e.

Věta

Necht G = (V, E) je multigraf. Potom:

- 1. pokud $E = \emptyset$, tak $T_G(x, y) = 1$
- 2. pokud $e \in E$, tak
 - 1. pokud e je smyčka, tak $T_G(x,y) = y \cdot T_{G-e}(x,y) = y \cdot T_{G/e}(x,y)$
 - 2. pokud e je most, tak $T_G(x,y) = x \cdot T_{G-e}(x,y) = x \cdot T_{G/e}(x,y)$
 - 3. jinak $T_G(x,y) = T_{G-e}(x,y) + T_{G/e}(x,y)$.

- 1. Plyne z definice.
- 2. Volme $e \in E$ potom:

$$T_G(x,y) = \sum_{F \subseteq E; e \notin F} \dots + \sum_{F \subseteq E; e \in F} \dots = S_1 + S_2$$

$$S_1 = \sum_{F \subset E: e \notin F} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^F$$

$$S_2 = \sum_{F \subseteq E; e \in F} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^F$$

$$T_{G-e}(x,y) = \sum_{F \subseteq E \setminus \{e\}} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^F$$

$$T_{G/e}(x,y) = \sum_{F \subseteq E \setminus \{e\}} (x-1)^{r(E \setminus \{e\}) - r(F)} \cdot (y-1)^F$$

- Pokud e není most v G tak $r(E) = r(E \setminus \{e\})$, tedy $S_1 = T_{G-e}(x, y)$.
- Pokud e je most v G, tak $r(E) = r(E \setminus \{e\}) + 1$ a tedy $S_1 = (x-1) \cdot T_{G-e}(x,y)$.
- Pokud e je smyčka, tak $S_2 = (y-1) \cdot T_{G/e}(x,y)$.
- Pokud e není smyčka, tak $S_2 = T_{G/e}(x, y)$.
- Takže pak celkově podle toho co je e:

$$T_G(x,y) = S_1 + S_2 = \begin{cases} \text{most} & (x-1)T_{G-e} + T_{G/e} = x \cdot T_{G/e} = x \cdot T_{G-e} \\ \text{smyčka} & (y-1)T_{G/e} + T_{G-e} = y \cdot T_{G-e} = y \cdot T_{G/e} \\ \text{jinak} & T_{G-e} + T_{G/e} \end{cases}$$

Definice:

Obarvení multigrafu G=(V,E) pomocí b barev je funkce $f:V\to\{1,2,3,\ldots,b\}$ taková, že žádná hrana $e\in E$ nemá oba konce zbarvené na stejnou barvu. Pokud G obsahuje smyčku, tak G nemá žádné obarvení.

Definice:

Chromatický polynom G = (V, E) je funkce $\chi_G(z) : \mathbb{N}_0 \to \mathbb{N}_0$, kde $\chi_G(z)$ je počet obarvení G pomocí z barev.

Cvičení:

- $G = K_n \operatorname{tak} \chi_G(z) = {z \choose n} n! = z \cdot (z-1) \cdot \cdots \cdot (z-n+1)$
- $H = \bar{K_n} \ tak \ \chi_H(z) = z^n$

Tvrzení

Nechť G = (V, E) je multigraf, $z \in \mathbb{N}_0$. Potom:

- 1. pokud $E = \emptyset$, tak $\chi_G(z) = z^{|V|}$
- 2. pokud $e \in E$, tak:
 - 1. pokudeje smyčka tak $\chi_G(z)=0$
 - 2. jinak $\chi_G(z) = \chi_{G-e}(z) \chi_{G/e}(z)$.

Důkaz:

- 1. Triviálně.
- Plyne z definice.
- 2. jsou dvě možnosti:
 - Více hran: pak musí být stejné obarvení a to také platí, protože $\chi_{G/e}(z) = 0$ kvůli smyčce.
 - Jen jedna hrana, tak musíme odebrat obarvení, které dají oboum vrcholům stejnou barvu a to je přesně $\chi_{G/e}(z)$.

Tvrzení

 \forall multigraf G:

$$\chi_G(z) = (-1)^{|V| - k(G)} \cdot z^{k(G)} \cdot T_G(1 - z, 0)$$

Důkaz:

- Druhou stranu výrazu si označíme jako $PS_G(z)$. Pak jsou dva možné postupy.
- 1. Opraví se $PS_G(z)$ a zjistí se, že $PS_G(z) = \sum_{F \subseteq E} (-1)^{|F|} \cdot z^{k(V,F)}$. Pak pomocí **principu inkluze a exkluze** (*PIE*) ze zdůvodnní, že ten výraz je roven $\chi_G(z)$.
- 2. Zkontroluje se, že $\chi_G(z)$ splní stejné podmínky rekurze jako $PS_G(z)$.
- V tomto případě volíme první možnost.
- Označme $\chi_G(z) := \sum_{F \subset E} (-1)^{|F|} \cdot z^{k(V,F)}$ (1).
- Pozorování: Pokud G obsahuje smyčku e, tak $\chi_G(z) = 0$, protože:

$$\bar{\chi_G}(z) = \sum_{F \subseteq E \backslash \{e\}} ((-1)^{|F|} \cdot z^{k(V,F)} + (-1)^{|F \cup \{e\}} \cdot z^{k(V,F)})$$

• (1) Předpokládejme, že G neobsahuje smyčku. Označme si $\mathcal{F} :=$ množina všech funkcí $|V| \to \{1,2,\ldots,z\} \ |\mathcal{F}| = z^{|V|}$. Pro hranu $e = \{xy\} \in E$ označím $\hat{S}_e := \{f \in \mathcal{F}; f(x) = f(y)\}$.

$$\chi_G(z) = |\mathcal{F} \setminus \bigcup_{e \in E} \hat{S}_e| = |\mathcal{F}| - |\bigcup_{e \in E} \hat{S}_e| =^{\text{PIE}}$$

$$=^{\text{PIE}} |\mathcal{F}| - (\sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} + 1 |\bigcap_{e \in E} \hat{S}_e|) = z^{|V|} + \sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} |\bigcap_{e \in F} \hat{S}_e| = (1)$$

- Obecně $|\bigcup_{e\in E}\hat{S}_e|=z^{k(V,E)},$ protože v komponentě musí být jedna barva.

$$(1) = \sum_{F \subseteq E} (-1)^F z^{k(V,F)} = \bar{\chi_G}(z)$$

Vytvořující funkce

Připomenutí:

$$(a_0, a_1, \dots) \subseteq \mathbb{R} \to A(x) = a_0 + xa_1 + x^2a_2 + \dots$$

Definice:

Formální mocninná řada reprezentující posloupnost reálných čísel (a_0,a_1,a_2,\dots) je výraz tvaru $a_0+a_1x+a_2x^2+\dots=\sum_{n=0}^\infty a_nx^n$.

Značení:

 $|\mathbb{R}|$ je množina formálních mocninných řad (v proměnné x nad \mathbb{R}).

• Pro $A(x) \in \mathbb{R}[|x|], A(x) = a_0 + a_1 x + a_2 x^2 + \dots$ je $[x^n]A(x)$ koeficient u x^n v A(x), tj. a_n .

Operace s formálními mocninnými řadami

• násobení

$$\alpha \in \mathbb{R} : \alpha A(x) = (\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2 + \dots$$

• sčítání

$$A(x), B(x) \in \mathbb{R}[|x|], A(x) = a_0 + a_1 x + \dots, B(x) = b_0 + b_1 x + \dots$$

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$

$$0 = 0 + 0x + 0x^2 + 0x^3 + \dots$$
 má vlastnost:

$$\forall A \in \mathbb{R}[|x|] : A + 0 = 0 + A = A$$

• násobení

$$A(x) \cdot B(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$
, kde

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

$$1 = 1 + 0x + 0x^2 + 0x^3 + \dots$$
, má vlastnost:

$$\forall A \in \mathbb{R}[|x|] : A \cdot 1 = 1 \cdot A = A$$

Fakt

- (A+B)C = AC + BC
- $\mathbb{R}[|x|]$ je okruh (tj. komutativní okruh s jednotkou).

Definice:

Pro $A\in\mathbb{R}[|x|]$ označme A^{-1} (nebo $\frac{1}{A}$) mocninnou řadu $B\in\mathbb{R}[|x|]$ splňující $AB=1\in\mathbb{R}[|x|]$. A^{-1} je **multiplikativní inverze (převrácená hodnota)** A.

Přednáška 13

Poznámka:

• Ne všechny FMŘ mají inverzní prvky, například 0.

Tvrzení

Pokud $\mathbb{R}[|x|]\ni A(x)=a_0+a_1x+a_2x^2+\dots$ má $A^{-1}(x)$ v tom případě je $A^{-1}(x)$ jednoznačná.

- $a_0 = 0 \Rightarrow A^{-1}(x)$ neexistuje.
- Předpoklad $a_0 \neq 0$ hledejme $b_0, b_1, b_2, \dots \in \mathbb{R}$ tak, aby

$$(a_0 + a_1 x + a_2 x^2 + \dots)(b_0 + b_1 x + b_2 x^2 + \dots) = 1$$

$$a_0 b_0 = 1$$

$$a_1 b_0 + a_0 b_1 = 0$$

$$a_2 b_0 + a_1 b_1 + a_0 b_2 = 0$$

$$\vdots$$

$$b_0 = \frac{1}{a_0}$$

$$b_1 = -\frac{1}{a_0} \cdot a_1 b_0$$

$$b_2 = -\frac{1}{a_0} (a_2 b_0 + a_1 b_1)$$

$$\vdots$$

Nechť $A_1(x), A_2(x), A_3(x), \ldots$ je posloupnost FMŘ řeknu, že součet $A_1(x) + A_2(x) + A_3(x) + \ldots$ je **konvergentní**, pokud $\forall n \in \mathbb{N}_0$ existuje jen konečně mnoho indexů $j \in \mathbb{N}_0$ takových, že $[x^n]A_j(x) \neq 0$. V takovém případě pak definuji $A_1(x) + A_2(x) + A_3(x) + \ldots$ jako FMŘ $S(x) \in \mathbb{R}[|x|]$ splňující (jen konečně mnoho nenul):

$$\forall n \in \mathbb{N}_0 : [x^n]S(x) := [x^n]A_1(x) + [x^n]A_2(x) + [x^n]A_3(x) + \dots$$

Definice:

Mějme $A(x) = a_0 + a_1 x + a_2 x^2 + \dots, B(x) = b_0 + b_1 x + b_2 x^2 + \dots \in \mathbb{R}[|x|]$, nechť $b_0 = 0$. Potom

$$A(B(x)) = a_0 + a_1 B(x) + a_2 B^2(x) + a_3 B^3(x) + \dots = \sum_{n=0}^{\infty} a_n B^n(x)$$

Poznámka:

Pokud $b_0 = 0$, $tak B(x) = b_1 x + b_2 x^2 + b_3 x^3 + \dots = x(b_1 + b_2 x + b_3 x^2 + \dots)$ a tedy $B^n(x) = x^n(b_1 + b_2 x + b_3 x^2 + \dots)$ má nulové koeficienty stupňů $0, 1, 2, 3, 4, \dots, n-1$.

• Součet $A(B(x)) = a_0 + a_1 B(x) + a_2 B^2(x) + \ldots$, protože $\forall n \in \mathbb{N}_0$ pouze sčítance $a_0, a_1 B(x, a_2 B^2(x), \ldots, a_n B^n(x)$ mohou mít nenulový koeficient u x^n .

Definice:

Kombinatorická třída je množina \mathcal{A} taková, že každý prvek $\alpha \in \mathcal{A}$ má definovanou velikost $|\alpha| \in \mathbb{N}_0$ a pro každé $n \in \mathbb{N}_0$, \mathcal{A} má jen konečně mnoho

prvků velikosti n. Značení: $A_n := \{ \alpha \in A; |\alpha| = n \}.$

Definice:

Obyčejná vytvořující funkce kombinační třídy \mathcal{A} , značená OVF(\mathcal{A}) je FMŘ $\sum_{n=0}^{\infty} |\mathcal{A}_n| x^n.$

Pozorování

$$OVF(\mathcal{A}) = \sum_{\alpha \in \mathcal{A}} x^{|\alpha|}$$

Pozorování

Pokud \mathcal{A} a \mathcal{B} disjunktní kombinační třídy, tak $\text{OVF}(\mathcal{A} \cup \mathcal{B}) = \text{OVF}(\mathcal{A}) + \text{OVF}(\mathcal{B})$.

Definice:

Nechť \mathcal{A}, \mathcal{B} jsou kombinační třídy. Potom $\mathcal{A} \times \mathcal{B} := \{(\alpha, \beta); \alpha \in \mathcal{A}, \beta \in \mathcal{B}\}$, kde $|(\alpha, \beta)| = |\alpha| + |\beta|$.

Pozorování

$$OVF(A \times B) = OVF(A) \cdot OVF(B)$$

Důkaz:

$$OVF(\mathcal{A} \times \mathcal{B}) = \sum_{n=0}^{\infty} |(\mathcal{A} \times \mathcal{B})_n| x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n |\mathcal{A}_k| \cdot |\mathcal{B}_{n-k}| \right) x^n =$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^n |\mathcal{A}_k| x^k \cdot |\mathcal{B}_{n-k}| x^{n-k} = OVF(\mathcal{A}) \cdot OVF(\mathcal{B})$$

Pozorování

$$\mathcal{A}^k = \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}, \text{OVF}(\mathcal{A}^k) = \text{OVF}(\mathcal{A})^k$$

Definice:

Nechť \mathcal{A} je kombinační třída taková, že $\mathcal{A}_0 = \emptyset$, potom:

$$Seq(\mathcal{A}) = \{\emptyset\} \cup \mathcal{A}^1 \cup \mathcal{A}^2 \cup \dots$$

tj. množina všech konečných posloupností prvků \mathcal{A} .

Pozorování

$$OVF(Seq(\mathcal{A})) = 1 + OVF(\mathcal{A}) + OVF(\mathcal{A})^2 + \dots = \frac{1}{1 - OVF(\mathcal{A})}$$

Definice:

Labelovaná kombinatorická třída je množina \mathcal{A} , jejíž každý prvek α má danou množinu vrcholů $V(\alpha)$, což je konečná množina \mathbb{N} , kde platí následující:

- 1. Označíme-li $\mathcal{A}_V := \{\alpha \in \mathcal{A} : V(\alpha) = V\}$, pak pro každé $V \subseteq \mathbb{N}$ konečné platí $|\mathcal{A}_V| < +\infty$.
- 2. Pro dvě konečné množiny vrcholů $V,W\subseteq \mathbb{N}$ takové, že |V|=|W|, platí $|\mathcal{A}_V|=|\mathcal{A}_W|$
- Značení: $A_n := A_{\{1,2,3,\dots,n\}}$ a $A_* := A_0 \cup A_1 \cup A_2 \cup \dots$ pro $\alpha \in A : |\alpha| := |V(\alpha)|$.

Definice:

Exponenciální vytvořující funkce labelované kombinatorické třídy \mathcal{A} , značená $\mathrm{EVF}(\mathcal{A})$ je

$$\sum_{n=0}^{\infty} |\mathcal{A}_n| \frac{x^n}{n!} = \sum_{\alpha \in \mathcal{A}_*} \frac{x^{|\alpha|}}{|\alpha|!}$$

Pozorování

Pro labelované kombinatorické třídy \mathcal{A}, \mathcal{B} , které jsou disjunktní, platí $\text{EVF}(\mathcal{A} \cup \mathcal{B}) = \text{EVF}(\mathcal{A}) + \text{EVF}(\mathcal{B})$.

Definice:

Labelovaný součin $\mathcal{A} \otimes \mathcal{B}$ labelovaných kombinačních třída \mathcal{A}, \mathcal{B} je labelovaná kombinační třída $\{(\alpha, \beta); \alpha \in \mathcal{A}, \beta \in \mathcal{B}, V(\alpha) \cap V(\beta) = \emptyset\}$, kde $V((\alpha, \beta)) := V(\alpha) \cup V(\beta)$.

Tvzrení

$$EVF(A \otimes B) = EVF(A) \cdot EVF(B)$$

- Levou stranu si označím jako LS(x) a pravou jako PS(x).
- $\forall n \in \mathbb{N}_0 : [x^n]LS$ jestli se rovná $[x^n]PS$

$$[x^n]LS = \frac{1}{n!}|(\mathcal{A} \otimes \mathcal{B})_n| = \frac{1}{n!} \sum_{V \subseteq \{1,2,3,\dots,n\}} |\mathcal{A}_V||\mathcal{B}_{\{1,\dots,n\}\setminus V}| =$$

$$= \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} |\mathcal{A}_k| |\mathcal{B}_{n-k}| = \sum_{k=0}^{n} \frac{|\mathcal{A}_k|}{k!} \frac{|\mathcal{B}_{n-k}|}{(n-k)!} =$$
$$= \sum_{k=0}^{n} [x^k] \text{EV}(\mathcal{A}) [x^{n-k}] \text{EVF}(\mathcal{B}) = PS(x)$$

Přednáška 14

Akce grup a počítání orbit

Připomenutí

Grupa Γ je multiplikativní: $\alpha, \beta \in \Gamma$ tak i $\alpha\beta \in \Gamma$ součin je v Γ .

- 1_{Γ} neutrální prvek v Γ ($\forall \alpha \in \Gamma : 1_{\Gamma}\alpha = \alpha 1_{\Gamma} = \alpha$)
- α^{-1} inverzní prvek k $\alpha \in \Gamma$ $(\alpha \alpha^{-1} = \alpha^{-1} \alpha = 1_{\Gamma})$

Definice:

Akce grupy Γ na množině \mathcal{M} je binární operace $(_\bullet_): \Gamma \times \mathcal{M} \to \mathcal{M}$. Splňující:

- 1. $\forall p \in \mathcal{M} : 1_{\Gamma} \bullet p = p$
- 2. $\forall \alpha, \beta \in \Gamma, \forall p \in \mathcal{M} : \alpha \bullet (\beta \bullet p) = (\alpha \beta) \bullet p$.

Pozorování

- je akce Γ na \mathcal{M} :
 - 1. pokud pro $\alpha \in \Gamma, p \in \mathcal{M} : \alpha \bullet p = q \in \mathcal{M}, \text{ pak } (\alpha^{-1}) \bullet q = p.$ Protože $(\alpha^{-1}) \bullet q = (\alpha^{-1}\alpha) \bullet p1_{\Gamma}p = p$
 - 2. pro pevné $\alpha \in \Gamma$, funkce $p \to \alpha p$ je bijekce $\mathcal{M} \to \mathcal{M}$

Definice:

Mějme akci Γ na \mathcal{M} . Prvky $p, q \in \mathcal{M}$ jsou **ekvivalentní** (vůči •) pokud $\exists \alpha \in \Gamma : \alpha \bullet p = q$. Značení $p \simeq q$.

Pozorování

 \simeq je ekvivalence na množině \mathcal{M} .

- $p \simeq p : 1_{\Gamma} \bullet p = p$
- $p \simeq q \Rightarrow q \simeq p : \alpha \bullet p = q \Rightarrow (\alpha^{-1}) \bullet q = p$

• $(p \simeq q \land q \simeq r) \Rightarrow p \simeq r : (\alpha \bullet p = q \land \beta \bullet q = r) \Rightarrow (\beta \alpha) \bullet p = r$

Definice:

Třídy \simeq se nazývají **orbity**, orbitu obsahující $p \in \mathcal{M}$ značím [p] (nebo $[p]_{\mathcal{M}, \bullet}$). Množinu orbit značím \mathcal{M}/Γ .

Definice:

Stabilizátor prvku $p \in \mathcal{M}$, značený $\operatorname{Stab}(p)$, je $\{\alpha \in \Gamma : \alpha \bullet p = p\}$.

Pozorování

Stab(p) je podgrupa Γ .

Definice:

Množina pevných bodů pro $\alpha \in \Gamma$, značená $Fix(\alpha)$, je $\{p \in \mathcal{M}, \alpha \bullet p = p\}$.

Lemma (o orbitě a stabilizátoru)

Nechť Γ je konečná grupa s akcí na \mathcal{M} . Potom

$$\forall p \in \mathcal{M} : |[p]| \cdot |\operatorname{Stab}(p)| = |\Gamma|$$

- Volme $p \in \mathcal{M}$, necht $k := |[p]|, [p] = \{q_1, q_2, \dots, q_k\}$, kde $q_1 := p$.
- Označme $\Gamma_i := \{ \alpha \in \Gamma : \alpha \bullet p = q_i \}, i = 1, 2, \dots, k.$
- Tedy $\Gamma_1 = \operatorname{Stab}(p)$. Zjevně $\Gamma_1, \Gamma_2, \dots, \Gamma_k$ jsou disjunktní a jejich sjednocení je Γ .
- Tvrdím, že $|\Gamma_1| = |\Gamma_2| = \cdots = |\Gamma_k|$.
- Volme $i \geq 2$ a dokážeme $|\Gamma_1| = |\Gamma_i|$.
- Jistě Γ_i je neprázdná, protože jinak by $p \not\simeq q_i$ a $q_i \notin [p]$.
- Volme libovolné $\alpha_0 \in \Gamma_i$.
- Uvážím zobrazení $\Phi: \Gamma_1 \to \Gamma_i$ definované pro $\beta \in \Gamma_1: \Phi(\beta) = \alpha_0 \beta$.
- Tvrdím, že Φ je bijekce $\Gamma_1 \to \Gamma_i$.
- Ověřme:
- 1. $\forall \beta \in \Gamma_1 : \Phi(\beta) \in \Gamma_i$

$$\Phi(\beta) \bullet p = (\alpha_0 \beta) \bullet p = \alpha_0 \bullet (\beta \bullet p) = q_i$$

- 2. Φ je prosté
 - Předpokládejme, že $\exists \beta_1, \beta_2 \in \Gamma_1 : \Phi(\beta_1) = \Phi(\beta_2)$, tj. $\alpha_0 \beta_1 = \alpha_0 \beta_2$, tj. $\beta_1 = \beta_2$.
- 3. Φ je na
 - Volme $\gamma \in \Gamma_i$ hledejme $\beta \in \Gamma_1$ t.ž.

$$\Phi(\beta) = \gamma \Leftrightarrow \alpha_0 \beta = \gamma \Leftrightarrow \beta = \alpha_0^{-1} \gamma \in \Gamma_1$$

Věta ("Burnsideovo lemma", "Cauchy-Froheriova fromule")

Nechť Γ je koneřná grupa s akcí na množině \mathcal{M} . Potom:

- 1. (jednoduchá verze) pokud \mathcal{M} je konečná, tak $|\mathcal{M}/\Gamma| = \frac{1}{|\Gamma|} \sum_{\alpha \in \Gamma} |\operatorname{Fix}(\alpha)|$. Nebo-li "počet orbit je průměrný počet bodů".
- 2. (obecná verze) Nechť má každá orbita $o \in \mathcal{M}/\Gamma$ přiřazenou váhu $||o|| \in \mathbb{N}_0$ tak, že pro každé $n \in \mathbb{N}_0$ existuje jen konečně mnoho orbit váhy n. Potom:

$$\sum_{o \in \mathcal{M}/\Gamma} x^{||o||} = \frac{1}{|\Gamma|} \sum_{\alpha \in \Gamma} \sum_{p \in \operatorname{Fix}(\alpha)} x^{||[p]||}$$

Důkaz:

- Levou stranu si označím LS(x) a pravou PS(x).
- $2 \Rightarrow 1$ Zvolme ||o|| = 0 pro každé $o \in \mathcal{M}/\Gamma$.
- Definujeme $\mathcal{D}:=\{(\alpha,p)\in\Gamma\times\mathcal{M}; \alpha\bullet p=p\}$ a $S=\sum_{(\alpha,p)\in\mathcal{D}}x^{||[p]||}$. Pak počítáme dvěma způsoby.

$$(1)S = \sum_{\alpha \in \Gamma} \sum_{p \in \mathcal{M}; (\alpha, p) \in \mathcal{D}} x^{||[p]||} = \sum_{\alpha \in \Gamma} \sum_{p \in Fix(\alpha)} x^{||[p]||} = |\Gamma| \cdot PS(x)$$

$$(2)S = \sum_{p \in \mathcal{M}} \sum_{\alpha \in \Gamma; (\alpha, p) \in \mathcal{D}} x^{||[p]||} = \sum_{p \in \mathcal{M}} |\operatorname{Stab}(p)| \cdot x^{||[p]||} =$$

$$= \sum_{p \in \mathcal{M}} \frac{|\Gamma|}{||[p]||} x^{||[p]||} = \sum_{o \in \mathcal{M}/\Gamma} \sum_{p \in o} \frac{|\Gamma|}{|o|} x^{||o||} = |\Gamma| \sum_{o \in \mathcal{M}/\Gamma} x^{||o||} = |\Gamma| \cdot LS(x)$$