

Page 1 of 50

APPLICATION CERTIFICATION FCC Part 22&24 On Behalf of IMC INTERNATIONAL INC.

4 inch 3G TABLET Model No.: ICE

FCC ID: 2ACI7-ICE

Prepared for : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang, Bao an District, Shenzhen,

Guangdong Province, China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan

Rd. Science & Industry Park, Nanshan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20141086

Date of Test : Jun 18, 2014- July 11, 2014

Date of Report : July 11, 2014

TABLE OF CONTENTS

Descri	Description		
T P.			
Test R	eport Certification		
1. GF	ENERAL INFORMATION	5	
1.1.	Description of Device (EUT)	5	
1.2.	Description of Test Facility		
1.3.	Measurement Uncertainty	6	
2. MI	EASURING DEVICE AND TEST EQUIPMENT	7	
	STEM TEST CONFIGURATION		
3.1.	Justification		
3.2.	Configuration of Test Setup.		
3.3.	Block Diagram of Test Setup		
4. TE	ST PROCEDURES AND RESULTS	9	
	OWER LINE CONDUCTED MEASUREMENT		
5.1.	Block Diagram of Test Setup		
5.2.	Power Line Conducted Emission Measurement Limits		
5.3.	Configuration of EUT on Measurement		
5.4.	Operating Condition of EUT		
5.5.	Test Procedure		
5.6.	Power Line Conducted Emission Measurement Results		
6. BA	ANDWIDTH MEASUREMENT		
6.1.	Block Diagram of Test Setup		
6.2.	Applicable Standard		
6.3.	Operating Condition of EUT		
6.4.	Test Procedure		
6.5.	Test Result	16	
7. RF	OUTPUT POWER	27	
7.1.	Block Diagram of Test Setup	27	
7.2.	Applicable Standard	27	
7.3.	Operating Condition of EUT		
7.4.	Test Procedure		
7.5.	Test Result		
8. SP	URIOUS EMISSIONS AT ANTENNA TERMINALS	30	
8.1.	Block Diagram of Test Setup	30	
8.2.	Applicable Standard		
8.3.	EUT Configuration on Measurement		
8.4.	Operating Condition of EUT		
8.5.	Test Procedure		
8.6.	Test Result		
	AND EDGE COMPLIANCE TEST		
9.1.	Block Diagram of Test Setup		
9.2.	Applicable Standard		
9.3.	Operating Condition of EUT		
9.4.	Test Procedure		
9.5.	Test Result	39	

Page 3 of 50

10. RA	DIATED SPURIOUS EMISSION TEST	42
10.1.	Block Diagram of Test Setup	42
10.2.	Applicable Standard	42
10.3.	Restricted bands of operation	43
10.4.	Configuration of EUT on Measurement	43
10.5.	Operating Condition of EUT	44
10.6.	Test Procedure	44
10.7.	Standard Requirement	44
10.8.	The Field Strength of Radiation Emission Measurement Results	45
11. FR	EQUENCY STABILITY	48
11.1.	Block Diagram of Test Setup	48
11.2.	Limits	
11.3.	Operating Condition of EUT	48
11.4.	Test Procedure	48
11.5.	Test Result	49
12. AN	TENNA REQUIREMENT	50
12.1.	The Requirement	
12.2.	Antenna Construction	

Report No.: ATE20141086

Page 4 of 50

Test Report Certification

Applicant : IMC INTERNATIONAL INC.

Manufacturer : IMC INTERNATIONAL INC.

EUT Description : 4 inch 3G TABLET

(A) MODEL NO.: ICE

(B) Trade Name.: /

(C) POWER SUPPLY: DC 3.7V (Powered by battery) or AC 120V/60Hz

(Powered by adapter)

Measurement Procedure Used:

FCC Rules and Regulations Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services TIA 603-D

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 22H&24E limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Jun 18, 2014-July 11, 2014
Prepared by :	7 in Zhang
	(Tim.zhang, Engineer)
Approved & Authorized Signer:	Lemil
	(Sean Liu, Manager)

Report No.: ATE20141086

Page 5 of 50

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : 4 inch 3G TABLET

Model Number : ICE

Number of channels : FDD V: 826.4-846.6 MHz 278 Channels

FDD II: 1852.4-1907.6 MHz 103 Channels

Frequency: UMTS FDD Bands:II/V, HSDPA, HSUPA

Antenna Gain : 1.5dBi

Type of Antenna : Integral Antenna

Power Supply : DC 3.7V (Powered by Battery)

AC 120V/60Hz (Powered by Adapter)

Adapter : Model:UBP-A806-051000

Input: AC 100-240VAC 50/60Hz

Output: 5.0V 1.0A

Applicant : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang,Bao an District, Shenzhen,

Guangdong Province, China

Manufacturer : IMC INTERNATIONAL INC.

Address : 28E Jingang, xixiang,Bao an District, Shenzhen,

Guangdong Province, China

Date of sample received: Jun 18, 2014

Date of Test : Jun 18, 2014-July 11, 2014

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Universal radio communication tester	Rohde&Schwarz	CMU200	100308	Jan. 11, 2014	Jan. 10, 2015

3. SYSTEM TEST CONFIGURATION

3.1.Justification

The EUT was configured for testing according to TIA/EIA-603-D. The final qualification test was performed with the EUT operating at normal mode.

3.2. Configuration of Test Setup

3.3.Block Diagram of Test Setup

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliant
§ 2.1049; § 22.905 § 22.917; § 24.238	99% & -26 dB Occupied Bandwidth	Compliant
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliant
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliant
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: 4 inch 3G TABLET)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)			
(MHz)	Quasi-peak Level	Average Level		
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *		
0.50 - 5.00	56.0	46.0		
5.00 - 30.00	60.0	50.0		

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

Page 11 of 50

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : Cha	arging&W	CDMA c	ommuni	icating			
MEASUREMENT	RESULT:	"IMC-	3G-V00	01_fin"			
2014-6-27 9:2 Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.215783 0.431634	56.80 56.20 38.80	10.5 10.7 10.9	66 63 57	6.8	QP	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT:	"IMC-	3G-V00	01_fin2	"		
2014-6-27 9:2	21						
Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.216214 0.288294 0.647535	45.40 39.10 33.20	10.8		11.5	AV	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT:	"IMC-	3G- V 00	2_fin"			
2014-6-27 9:2 Frequency MHz			Limit dBµV	_	Detector	Line	PE
0.150000 0.216214 0.290028	56.50 55.60 46.10	10.5 10.7 10.8	66 63 61		QP	N N N	GND GND GND
MEASUREMENT	RESULT:	"IMC-	3G- V 00)2_fin2'	,		
2014-6-27 9:2	:6						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.216214 0.359876 0.503420	43.40 36.70 32.80	10.7 10.9 11.0	53 49 46		AV	N N N	GND GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

4"3G TABLET M/N:ICE EUT:

Manufacturer: TMC

Operating Condition: WCDMA/Charging Test Site: 1#Shielding Room

Operator: Alen

Test Specification: L 120V/60Hz

Report No:ATE20141086 Comment: Start of Test: 2014-6-27 / 9:20:06

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. Start Step ΙF Stop Transducer

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH QuasiPeak 1.0 s 4.5 kHz 9 kHz LISN (ESH3-Z5)

Average

MEASUREMENT RESULT: "IMC-3G-V001 fin"

2	014-6-27 9:21 Frequency MHz	-		Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	56.80	10.5	66	9.2	QP	L1	GND
	0.215783	56.20	10.7	63	6.8	QP	L1	GND
	0.431634	38.80	10.9	57	18.4	QP	L1	GND

MEASUREMENT RESULT: "IMC-3G-V001 fin2"

2014-6-27 9:21 Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.216214	45.40	10.7	53	7.6	AV	L1	GND
0.288294	39.10	10.8	51	11.5	AV	L1	GND
0.647535	33.20	11.0	46	12.8	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: 4"3G TABLET M/N:ICE

Manufacturer: IMC

Operating Condition: WCDMA/Charging Test Site: 1#Shielding Room

Operator: Alen

Test Specification: N 120V/60Hz

Comment: Report No:ATE20141086 Start of Test: 2014-6-27 / 9:24:31

SCAN TABLE: "V 150K-30MHz fin"

Short Description: __SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz LISN(ESH3-Z5)

Average

MEASUREMENT RESULT: "IMC-3G-V002 fin"

2	014-6-27 9:26 Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	56.50	10.5	66	9.5	QP	N	GND
	0.216214	55.60	10.7	63	7.4	QP	N	GND
	0.290028	46.10	10.8	61	14.4	QP	N	GND

MEASUREMENT RESULT: "IMC-3G-V002 fin2"

2014-6-27 9:26							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.216214	43.40	10.7	53	9.6	AV	N	GND
0.359876	36.70	10.9	49	12.0	AV	N	GND
0.503420	32.80	11.0	46	13.2	AV	N	GND

Report No.: ATE20141086

Page 15 of 50

6. BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. Applicable Standard

FCC § 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable.

(h) Transmitters employing digital modulation techniques-when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated.

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 826.4-846.6MHz and 1852.4-1907.6MHz. We select 826.4MHz, 836.6MHz, 846.6MHz and 1852.4MHz, 1880.0MHz, 1907.6MHz TX frequency to transmit.

6.4. Test Procedure

99% occupied bandwidth&-26dB occupied bandwidth test:

- 1. Set resolution bandwidth (RBW) = 50 kHz.
- 2. Set the video bandwidth (VBW) = 100 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

6.5.Test Result

WCDMA BAND V						
Frequency (MHz)	99% Occupied Bandwidth (MHz)	-26 dBc Bandwidth (MHz)				
826.4	4.1147	4.613				
836.6	4.1233	4.622				
846.6	4.1307	4.627				

WCDMA BAND II								
Frequency (MHz)	99% Occupied Bandwidth (MHz)	-26 dBc Bandwidth (MHz)						
1852.4	4.1563	4.637						
1880.0	4.1370	4.618						
1907.6	4.1280	4.606						

WCDMA BAND V HSDPA								
Frequency (MHz) 99% Occupied Bandwidth (MHz) -26 dBc Bandwidth (MHz)								
826.4	4.1242	4.633						
836.6	4.1228	4.624						
846.6	4.1319	4.628						

WCDMA BAND II HSDPA								
Frequency 99% Occupied Bandwidth -26 dBc Bandwidth (MHz) (MHz)								
1852.4	4.1549	4.648						
1880.0	4.1582	4.641						
1907.6	4.1351	4.630						

WCDMA BAND V HSUPA										
Frequency (MHz)	± • •									
826.4	4.1206	4.614								
836.6	4.1211	4.627								
846.6	4.1353	4.637								

WCDMA BAND II HSUPA Frequency 99% Occupied Bandwidth -26 dBc Bandwidth (MHz) (MHz) (MHz) 1852.4 4.1492 4.640 1880.0 4.1489 4.657 1907.6 4.1405 4.650

The spectrum analyzer plots are attached as below.

WCDMA BAND V

Channel 4233

WCDMA BAND II

WCDMA BAND V HSDPA

Channel 4233

WCDMA BAND II HSDPA

WCDMA BAND V HSUPA

Channel 4233

WCDMA BAND II HSUPA

Channel 9400

Page 26 of 50

Channel 9538

Page 27 of 50

7. RF OUTPUT POWER

7.1.Block Diagram of Test Setup

Conducted method:

Radiated method:

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

7.2. Applicable Standard

FCC § 22.913(a), § 24.232(b).

Report No.: ATE20141086

Page 28 of 50

7.3. Operating Condition of EUT

- 7.3.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.3.2. Turn on the power of all equipment.
- 7.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 826.4-846.6MHz and 1852.4-1907.6MHz. We select 826.4MHz, 836.6MHz, 846.6MHz and 1852.4MHz, 1880.0MHz, 1907.6MHz TX frequency to transmit.

7.4. Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method(For ERP&EIRP):

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

7.5.Test Result

PASS

Conducted Power

Mode	Channel	Frequency (MHz)	Conducted Power (dBm)PEAK Power
UMTS FDD V(WCDMA)	4132	826.4	24.6
	4183	836.6	24.2
	4233	846.6	24.1

Mode	Channel	Frequency (MHz)	Conducted Power (dBm)PEAK Power
UMTS FDD II(WCDMA)	9262	1852.4	23.6
	9400	1880.0	23.8
	9538	1907.6	23.4

Page 29 of 50

Radiated Power

ERP for UMTS FDD V(WCDMA)

Indic	cated	Tabla	Test Antenna		Substituted			Antenna	Cabl	Absolut	Part 27	
Frequen cy (MHz)	S.A. Reading (dBµV/ m)	Table Angle Degree	Angle	Heigh t (m)	Polar (H/V)	Frequen cy (MHz)	S.G. Level (dBm)	Polar (H/V)	Gain Correctio n (dBi)	e Loss (dB)	e Level (dBm)	Limit (dBm)
					Low C	hannel						
826.4	92.06	220	1.0	V	826.4	24.1	V	0	0.9	23.2	38.45	
826.4	80.53	207	1.5	Н	826.4	16.2	Н	0	0.9	15.3	38.45	
					Middle	Channel	-					
836.6	92.23	50	1.2	V	836.6	24.0	V	0	0.9	23.1	38.45	
836.6	80.01	358	1.3	Н	836.6	15.8	Н	0	0.9	14.9	38.45	
High Channel												
846.6	91.75	16	1.0	V	846.6	23.9	V	0	0.9	23.0	38.45	
846.6	79.86	109	1.2	Н	846.6	15.6	Н	0	0.9	14.7	38.45	

EIRP for UMTS FDD II(WCDMA)

India	cated	Table	Test Antenna		Substituted			Antenna	Cabl	Absolut	Part 27	
Frequen cy (MHz)	S.A. Reading (dBµV/ m)	Table Angle Degree	Angle Degree	Heigh t (m)	Polar (H/V)	('\/	S.G. Level (dBm)	Polar (H/V)	Gain Correctio n (dBi)	e Loss (dB)	e Level (dBm)	Limit (dBm)
					Low C	hannel						
1852.4	89.29	154	1.0	V	1852.4	18.0	V	6.2	1.1	23.1	33	
1852.4	80.89	275	1.3	Н	1852.4	12.1	Н	6.2	1.1	17.2	33	
					Middle	Channel	-					
1880.0	88.34	25	1.5	V	1880.0	17.2	V	6.2	1.1	22.3	33	
1880.0	80.37	147	1.3	Н	1880.0	11.6	Н	6.2	1.1	16.7	33	
High Channel												
1907.6	89.40	275	1.4	V	1907.6	18.2	V	6.2	1.1	23.3	33	
1907.6	80.52	180	1.2	Н	1907.6	12.3	Н	6.2	1.1	17.4	33	

Report No.: ATE20141086

Page 30 of 50

8. SPURIOUS EMISSIONS AT ANTENNA TERMINALS

8.1.Block Diagram of Test Setup

8.2. Applicable Standard

FCC §2.1051, §22.917, §24.238.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 826.4-846.6MHz and 1852.4-1907.6MHz. We select 826.4MHz, 836.6MHz, 846.6MHz and 1852.4MHz, 1880.0MHz, 1907.6MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. Set the EUT to its maximum power at the required channel.
- 8.5.2. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. Measure and record all spurious emissions up to the tenth harmonic of the carrier frequency.
- 8.5.3. Set the RBW=100 kHz , VBW=300 kHz below 1GHz and the RBW=1MHz , VBW=3MHz above 1GHz.

Page 31 of 50

- 8.5.4. Detector = peak-Max hold.
- 8.5.5. Sweep time = auto.
- 8.5.6. Allow trace to fully stabilize.

8.6.Test Result

The spectrum analyzer plots are attached as below.

UMTS FDD V

30MHz - 9GHz (Channel 4132)

Page 32 of 50

30MHz - 9GHz (Channel 4183)

Page 33 of 50

30MHz - 9GHz (Channel 4233)

Stop 10 GHz

UMTS FDD II

30MHz – 20GHz (Low Channel)

900 MHz/

Page 35 of 50

30MHz – 20GHz (Middle Channel)

30MHz - 20GHz (High Channel)

Page 37 of 50

Page 38 of 50

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. Applicable Standard

FCC §2.1051, §22.917, §24.238.

9.3. Operating Condition of EUT

- 9.3.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.3.2. Turn on the power of all equipment.
- 9.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 826.4-846.6MHz and 1852.4-1907.6MHz. We select 826.4MHz, 846.6MHz and 1852.4MHz, 1907.6MHz TX frequency to transmit.

9.4. Test Procedure

Conducted Band Edge:

- 9.4.1.Set the EUT to its maximum power at the required channel.
- 9.4.2. Measurements are to be performed with the EUT set to the low and high channel of each frequency band.
- 9.4.3. Set the RBW=50 kHz, VBW=100 kHz below 1GHz and above 1GHz.
- 9.4.4. Detector = AV.
- 9.4.5. Sweep time = auto.
- 9.4.6. Allow trace to fully stabilize.

9.5.Test Result

UMTS FDD V

Frequency (MHz)	Emission (dBm)	Limit (dBm)
824.00	-25.77	-13
849.00	-20.15	-13

UMTS FDD II

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1850.00	-25.36	-13
1910.00	-28.07	-13

Page 40 of 50

UMTS FDD V Band, Channel 4233

UMTS FDD II Band, Channel 9538

10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Semi-Anechoic Chamber Test Setup Diagram

Cable GROUND PLANE ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS EUT 0.8 METER

10.2. Applicable Standard

FCC §2.1051, §22.917(a), §24.238(a)

Page 43 of 50

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{2}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 44 of 50

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 826.4-846.6MHz and 1852.4-1907.6MHz. We select 826.4MHz, 836.6MHz, 846.6MHz and 1852.4MHz, 1880.0MHz, 1907.6MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to TIA 603-D on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Sample Calculation:

EUT Field Strength (dBm)= Reading(Signal generator)+ Antenna Gain(substitution antenna)-Cable loss(From signal Generator to substitution antenna)

The bandwidth of test receiver is set at 9kHz in below 30MHz, and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 20GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

10.7.Standard Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power(P)by a factor of at least 43 + 10Log $_{10}$ (power out in Watts). The spectrum is scanned from 30MHz up to a frequency including its 10^{th} harmonic.

10.8. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The EUT is tested radiation emission at each test mode in three axes. The worst emissions are reported in all test mode and channels.

UMTS FDD V Band (WCDMA850)

Indica	ated	Table	Te Ante		S	Substitu	ıted		Absolute	Limit	Manai
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Heigh	Polar (H/V)	Frequenc y (MHz)	Level (dBm				(dBm)	Margi n (dB)
				Low (Channel(82	26.4Ml	Hz)				
1652.2	52.06	109	1.4	V	1652.2	-46.0	9.4	0.95	-37.55	-13	24.55
1652.2	47.33	25	1.5	Н	1652.2	-56.2	9.4	0.95	-47.75	-13	34.75
3305.8	44.91	123	1.6	V	3305.8	-48.6	10.1	2.08	-40.58	-13	27.58
3305.8	41.36	305	1.7	Н	3305.8	-53.1	10.1	2.08	-45.08	-13	32.08
78.14	45.45	108	1.0	V	78.14	-50.1	0	0.32	-50.42	-13	37.42
170.19	48.06	102	1.0	Н	170.19	-46.9	0	0.53	-47.43	-13	34.43

UMTS FDD V Band (WCDMA850)

Indica	ated	Test Table Antenna		S	Substitu	ıted		Absolute	Limit	Margi	
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Heigh	Polar (H/V)	Frequenc y (MHz)	Level (dBm)		Cable Loss (dB)		(dBm)	n
	Middle Channel (836.6MHz)										
1673.2	52.63	18	1.5	V	1673.2	-49.4	9.4	0.98	-40.98	-13	27.98
1673.2	43.90	256	1.4	Н	1673.2	-59.6	9.4	0.98	-51.18	-13	38.18
3346.8	45.48	203	1.7	V	3346.8	-48.0	10.2	2.10	-39.90	-13	26.90
3346.8	41.93	109	1.8	Н	3346.8	-52.5	10.2	2.10	-44.40	-13	31.40
78.14	46.02	213	1.0	V	78.14	-49.5	0	0.32	-49.82	-13	36.82
170.19	48.63	307	1.0	Н	170.19	-46.3	0	0.53	-46.83	-13	33.83

UMTS FDD V Band (WCDMA850)

Indica	ated	Table	Test ble Antenna		Substituted				Absolute	Limit	Margi
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Heigh	Polar (H/V)	N/	Level (dBm)	Gain	Cable Loss (dB)		(dBm)	n
	High Channel(846.6MHz)										
1693.2	54.79	10	1.3	V	1693.2	-47.3	9.4	1.00	-38.90	-13	25.90
1693.2	46.06	226	1.4	Н	1693.2	-57.5	9.4	1.00	-49.10	-13	36.10
3386.4	43.64	329	1.5	V	3386.4	-49.9	10.2	2.10	-41.80	-13	28.80
3386.4	40.09	155	1.6	Н	3386.4	-54.4	10.2	2.10	-46.30	-13	33.30
78.14	44.18	237	1.0	V	78.14	-51.4	0	0.32	-51.72	-13	38.72
170.19	46.79	289	1.0	Н	170.19	-48.2	0	0.53	-48.73	-13	35.73

UMTS FDD II Band (WCDMA1900)

Indica	ated	Table	Te Ante		S	Substitu	ıted		Absolute	Limit	Monoi
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Height	Polar (H/V)	Frequenc y (MHz)	Level (dBm		Cable Loss (dB)		(dBm)	n
	Low Channel(1852.4MHz)										
3704.8	51.55	167	1.9	V	3704.8	-44.96	10.3	2.58	-37.24	-13	24.24
3704.8	46.69	201	1.4	Н	3704.8	-50.56	10.3	2.58	-42.84	-13	29.84
5557.2	39.02	65	1.5	V	5557.2	-52.16	11.6	3.93	-44.49	-13	31.49
5557.2	39.34	73	1.6	Н	5557.2	-53.06	11.6	3.93	-45.39	-13	32.39
78.14	44.96	286	1.0	V	78.14	-50.56	0	0.32	-50.88	-13	37.88
170.19	47.05	102	1.0	Н	170.19	-48.36	0	0.53	-48.89	-13	35.89

Page 47 of 50

UMTS FDD II Band (WCDMA1900)

Indica	ated	Table	Te Ante		S	Substitu	ited		Absolute	Limit	Manai
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Height	Polar (H/V)	V	Level (dBm		Cable Loss (dB)		(dBm)	n
	Middle Channel(1880.0MHz)										
3760	50.98	64	1.9	V	3760	-45.53	10.3	2.59	-37.72	-13	24.72
3760	46.12	258	1.8	Н	3760	-51.13	10.3	2.59	-43.32	-13	30.32
5640	38.45	169	1.3	V	5640	-52.73	11.7	3.94	-44.97	-13	31.97
5640	38.77	275	1.6	Н	5640	-53.63	11.7	3.94	-45.87	-13	32.87
78.14	44.39	86	1.0	V	78.14	-51.13	0	0.32	-50.81	-13	37.81
170.19	46.48	303	1.0	Н	170.19	-48.93	0	0.53	-49.46	-13	36.46

UMTS FDD II Band (WCDMA1900)

Indica	ated	Table	Te Ante		S	Substitu	ited		Absolute	Limit	Morai
Frequenc y (MHz)	S.A. Reading (dBµV/ m)	Angle	Height	Polar (H/V)	V	Level (dBm		Cable Loss (dB)		(dBm)	n
	High Channel(1907.6MHz)										
3815.2	49.71	267	2.0	V	3815.2	-46.80	10.4	2.60	-39.00	-13	26.00
3815.2	44.85	101	1.6	Н	3815.2	-52.40	10.4	2.60	-44.60	-13	31.6
5722.8	37.18	305	1.3	V	5722.8	-54.00	11.8	3.95	-46.15	-13	33.15
5722.8	37.50	173	1.8	Н	5722.8	-54.90	11.8	3.95	-47.05	-13	34.05
78.14	43.12	189	1.0	V	78.14	-52.40	0	0.32	-52.72	-13	39.72
170.19	45.21	202	1.0	Н	170.19	-50.20	0	0.53	-50.73	-13	37.73

Note:

Absolute Level=SG Level- Cable loss + Antenna Gain

Margin=Limit- Absolute Level

Page 48 of 50

11.FREQUENCY STABILITY

11.1.Block Diagram of Test Setup

11.2.Limits

For Hand carried battery powered equipment:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235/22.355 Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.4VDC and 4.2VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10% and +10%. For the purposes of measuring frequency stability these voltage limits are to be used.

For equipment powered by primary supply voltage:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235/22.355 Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

For this EUT section 2.1055(d)(1) applies. This requires to vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

11.3. Operating Condition of EUT

- 11.3.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.3.2. Turn on the power of all equipment.
- 11.3.3.Let the EUT work in Test modes measure it. The test frequency are 836.6MHz and 1880MHz.

11.4.Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber.

Page 49 of 50

The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

11.5.Test Result

Pass.

UMTS FDD V Band Middle Channel, fo = 836.6 MHz

UM 15 FDD V Band Middle Channel, fo = 836.6 MHz										
Temperature	Power	Frequency	Frequency							
(OC)	Supplied	Error	Error							
(OC)	(VDC)	(Hz)	(ppm)							
-30		5	0.005							
-20		-7	0.008							
-10		-8	0.009							
0		-6	0.007							
10	3.7	-1	0.002							
20		-7	0.009							
30		14								
40		-5	0.006							
50		-7	0.009							
25	3.5	-6	0.007							
23	4.2	3	0.003							

UMTS FDD II Band Middle Channel, fo = 1880 MHz

Tomporoturo	Power	Frequency	Frequency
Temperature	Supplied	Error	Error
(OC)	(VDC)	(Hz)	(ppm)
-30		-2	-0.001
-20		-1	-0.001
-10		3	0.002
0		0	0.000
10	3.7	2	0.001
20		0	0.000
30		1	0.001
40		1	0.001
50		3	0.002
25	3.5	-1	-0.001
23	4.2	2	0.001

Page 50 of 50

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with Integral antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

