Neural Machine Translation Internals-Part2

By Mohit Kumar

Advance NMT: How to get better performance?

- The attention aspect
 - Global and local information
- The vocabulary aspect
 - Ensemble decoding
 - Rare word translations
- The data aspect
 - Monolingual Data
 - Multilingual Data

Rare Word Translations

Inability to translate Out-Of-Vocabulary(OOV)

WORDS COTT English - detected * Chinese (Simplified) ▼ 嗨, 吉姆, 你什么时候在那里得到那个 Hey Jim, when did you get that TrumpStamp there on your head? Edit TrumpStamp? Hāi, jímů, nǐ shénme shíhou zài nàlǐ dédào nàgè TrumpStamp?

TrumpStamp

Someone who wears an obvious hairpiece.

Hey Jim, when did you **gat** that TrumpStamp there on your head?

by MaxFiction June 10, 2016

Rare Word Translations

Inability to translate Out-Of-Vocabulary(OOV)

words correctly

Types of OOVs

1. Unseen words in training co

- 2. New words
- Solutions
 - 1. Training on a large vocabulary
 - 2. Learn on some linguistic features

Solution #1: Large Vocabulary

- Training on a corpus with a very large vocabulary
 - Decrease the number of unseen words
 - Potentially able to solve misspelling
- Computationally expensive
 - Larger corpus -> More training time
 - Larger vocabulary -> More candidates for decoding

Training

- Segment training data in subsets
- Each subset has exactly n distinct wc
- Train on one subset at a time
- Could be GPU parallelized

she loves cats
he likes dogs
cats have tails
dogs have tails
dogs chase cats
she loves dogs
cats hate dogs

|V| = 5

Training

- Segment training data in subsets
- Each subset has exactly n distinct wo
- Train on one subset at a time
- Could be GPU parallelized

she loves cats
he likes dogs
cats have tails
dogs have tails
dogs chase cats
she loves dogs
cats hate dogs

|V| = 5

Training

- Segment training data in subsets
- Each subset has exactly n distinct wc
- Train on one subset at a time
- Could be GPU parallelized

she loves cats
he likes dogs
cats have tails
dogs have tails
dogs chase cats
she loves dogs
cats hate dogs

|V| = 5

Testing

- Choose K most frequent words
- Choose K' frequent candidates per word from all subsets
- Use the candidate list to denerate translations

Data coverage

Vocabulary coverage is high with this approximating algorithm

Size of most frequent words

Table 1: Data coverage (in %) on target-side corpora for different vocabulary sizes. "All" refers to all the tokens in the training set.

Decoding speed boosting

The speed of NMT trained on vocabulary with candidate list **comparable** to the baseline

	CPU*	GPU°
RNNsearch	0.09 s	0.02 s
RNNsearch-LV	0.80 s	0.25 s
RNNsearch-LV +Candidate list	0.12 s	0.05 s

Trained on 30K

Trained on full vocab

Trained on full vocab with candidate list with K = 30K

Table 3: The average per-word decoding time. Decoding here does not include parameter loading and unknown word replacement. The baseline uses 30k words. The candidate list is built with K = 30k and K' = 10. (*) i7-4820K (single thread), (o) GTX TITAN Black

BLEU score boosting

NMT with candidate list has highe BLEU score than baseline system while the speed is much faster

	RNNsearch	RNNsearch-LV	Google	Phrase	-based SMT	
Basic NMT	29.97 (26.58)	32.68 (28.76)	30.6*			
+Candidate List	_	33.36 (29.32)	_			
+UNK Replace	K Replace 33.08 (29.08)		33.1°	33.3*	37.03°	
+Reshuffle (τ =50k)	_	34.60 (30.53)	_			
+Ensemble	_	37.19 (31.98)	37.5°			

(a) English→French

	RNNsearch	RNNsearch-LV	Phrase-based SMT
Basic NMT	16.46 (17.13)	16.95 (17.85)	
+Candidate List	_	17.46 (18.00)	
+UNK Replace	18.97 (19.16)	18.89 (19.03)	20.67\$
+Reshuffle	_	19.40 (19.37)	
+Ensemble	_	21.59 (21.06)	

(b) English→German

BLEU score obtained on different models

Solution #2: Linguistic Features

 Detect and solve unseen words problem based on some linguistic features, e.g. morphemes

Copy Mechanism:

Directly copy the unseen source word into target sentence

```
**en: The **ecotax** portico in **Pont-de-Buis**, ... [truncated] ..., a été **démonté* jeudi matin nn: Le <unk> <unk> de **ecotax** de **pont-de-Buis**, ... [truncated] ..., a été **démonté* jeudi matin nn: Le <unk> <unk> de <unk> a <unk>, ... [truncated] ..., a ete pris le jeudi matin nn(with copy): Le **ecotax** portico in **Pont-de-Buid**, ..., a ete pris le jeudi matin
```

uong, Minh-Thang, et al. "**Addressing the rare word problem in neural machine translation**." *arXiv preprint arXiv:1410*8206 (201

Solution #2: Linguistic Features

 Detect and solve unseen words problem based on some linguistic features, e.g. morphemes

Sub-word unit translation:

Segment each word into the smallest part, translate and re-

compound them Loanwords (differ in alphabets)

English: Claustrophobia German: Klaustrophobie Russian: Клаустрофобия Morphologically complex words(compounds)

English: Solar system(solar+system)

German:

Sonnensystem(sonnen+system)

Hungarian:

Naprendszer(nep+rendszer)

Translation example with segmentation

system	sentence
source	health research institutes
reference	Gesundheitsforschungsinstitute
WDict	Forschungsinstitute
C2-50k	Fo rs ch un gs in st it ut io ne n
BPE-60k	Gesundheits forsch ungsinstitu ten
BPE-J90k	Gesundheits forsch ungsin stitute
source	asinine situation Word level model with a
reference	dumme Situation back-off
WDict	asinine situation \rightarrow UNK \rightarrow asinine
C2-50k	asimine situation \rightarrow UNK \rightarrow asimine dictionary (baseline) as in in e situation \rightarrow As in en si tu at io n — Character bigram model
BPE-60k	as $ in $ ine situation \rightarrow A $ in $ line- $ $ Situation
BPE-J90K	$ as in ine\ situation \rightarrow As in in- Situation $ BPE(Byte Pair Encoding) model

Table 4: English→German translation example.

[&]quot;|" marks subword boundaries.

BLEU Score Boosting

			vocabulary		BL	EU	CHE	eF3	unig	ram F	1 (%)
name	segmentation	shortlist	source	target	single	ens-8	single	ens-8	all	rare	OOV
syntax-based (Sennrich and Haddow, 2015)				24.4	-	55.3	-	59.1	46.0	37.7	
WUnk	-	-	300 000	500 000	20.6	22.8	47.2	48.9	56.7	20.4	0.0
WDict	-	-	300 000	500 000	22.0	24.2	50.5	52.4	58.1	36.8	36.8
C2-50k	char-bigram	50 000	60 000	60 000	22.8	25.3	51.9	53.5	58.4	40.5	30.9
BPE-60k	BPE	-	60 000	60 000	21.5	24.5	52.0	53.9	58.4	40.9	29.3
BPE-J90k	BPE (joint)	-	90 000	90 000	22.8	24.7	51.7	54.1	58.5	41.8	33.6

Table 2: English \rightarrow German translation performance (BLEU, CHRF3 and unigram F₁) on newstest2015.

Systems with sub-word unit translation perform slightly better than baseline system

- Portion of words with explicit sub-word units is only 3-4%
- BPE algorithm may not be ideal

Advance NMT: How to get better performance?

- The attention aspect
 - Global and local information
- The vocabulary aspect
 - Ensemble decoding
 - Rare word translation
- The data aspect
 - Monolingual data
 - Multilingual data

Utilize Monolingual Data

- Higher prior probability (fluency) of target language
- Language model needs to be integrated
 - Shallow Fusion
 - Deep Fusion

Training On Monolingual Target Language

Training On Monolingual Target Language

- Could make up a parallel corpus
- No need to change the NN architectures
- Pair target language with source language

Pairing strategies

Dummy Source Sentences

Pair monolingual sentences with a single-word dummy source side <null>.

Source sentence: <null>

Target sentence(in monolingual corpora): Des Teufels liebstes Möbelstück ist die lange Bank.

Pairing strategies

Synthetic Source Sentences

Pair monolingual training instances with a synthetic source sentence (back-translation)

Source sentence(by Google translate): The devil's favorite piece of furniture is the long bench.

Target sentence(in monolingual corpora): Des Teufels liebstes Möbelstück ist die lange Bank.

BLEU Score Boosting

		BLEU					
name	training instances	newste	st2014	newstest2015			
		single	ens-4	single	ens-4		
syntax-based (S	Sennrich and Haddow, 2015)	22.6	-	24.4	-		
Neural MT (Jea	an et al., 2015b)	-	-	22.4	-		
parallel	37m (parallel)	19.9	20.4	22.8	23.6		
+monolingual	49m (parallel) / 49m (monolingual)	20.4	21.4	23.2	24.6		
+synthetic	22.7	23.8	25.7	26.5			

Table 3: English→German translation performance (BLEU) on WMT training/test sets. Ens-4: ensemble of 4 models. Number of training instances varies due to differences in training time and speed.

Synthetic model outperforms the other two

- More fluency in target language
- More "golden" parallel sentences

Advance NMT: How to get better performance?

- The attention aspect
 - Global and local information
- The vocabulary aspect
 - Ensemble decoding
 - Rare word translation
- The data aspect
 - Monolingual data
 - Multilingual data

Utilize Multilingual Data

- Using corpus with multiple languages
- Training on each languages pair in the corpus

Utilize Multilingual Data

- Encode the source language into a continuous representation
- Decode from the representation into any language

Multi-Way, Multilingual Model

One encoder and one decoder per source language

Shared single attention mechanism, with attention

S

The nth encoder, mth decoder at time step t in the Multi-way multilingual NMT model

Multi-Way, Multilingual Model

At time, tithithoword for force or other decoder m:

Decode hibited entertate or eftor

Previously edecedes the chisylpy to pl

Time obspectate at not extove? tor

Embedding arrixtfix

Recurrent calculation of the second calculation

Decode higher state $\psi_{dec}(z_{t-1}^m, E_y^m[y_{t-1}^m], f_{adp}^m(c_t^m))$

Low-Resource Translation

Multi model outperforms all the single-pair NMT system:

	Size	Single	Single+DF	Multi
	100k	5.06/3.96	4.98/3.99	6.2/ 5.17
运	200k	7.1/6.16	7.21/6.17	8.84/ 7.53
En−	400k	9.11/7.85	9.31/8.18	11.09/ 9.98
щ	800k	11.08/9.96	11.59/10.15	12.73/ 11.28
u	210k	14.27/13.2	14.65/13.88	16.96/ 16.26
펖	420k	18.32/17.32	18.51/17.62	19.81/ 19.63
De	840k	21/19.93	21.69/20.75	22.17/ 21.93
Д	1.68m	23.38/23.01	23.33/22.86	23.86/ 23.52
	210k	11.44/11.57	11.71/11.16	12.63/ 12.68
Ď	420k	14.28/14.25	14.88/15.05	15.01/ 15.67
En-	840k	17.09/17.44	17.21/17.88	17.33/ 18.14
Щ	1.68m	19.09/19.6	19.36/20.13	19.23/ 20.59

Table 2: BLEU scores where the target pair's parallel corpus is constrained to be 5%, 10%, 20% and 40% of the original size.

Large-Scale Translation

			Fr (3	39m)	Cs (12m)		De (4.2m)		Ru (2.3m)		Fi (2m)	
		Dir	\rightarrow En	$\mathrm{En} ightarrow$	\rightarrow En	$En \rightarrow$	\rightarrow En	$En \rightarrow$	\rightarrow En	$\mathrm{En} ightarrow$	\rightarrow En	$\mathrm{En} ightarrow$
LEU	<u>}</u>	Single	27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
	Ď	Multi	26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
(a) BL	st	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
(a)	Te	Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98

Multi model either outperforms or is comparable the single pair models.

In translating into English task, it always performs better.

Outline

Background

Machine Translation: task overview

Basic NMT

An encoder-decoder architecture

Advanced NMT

- The attention aspect
- The vocabulary aspect
- The data aspect

State-of-the-art NMT System

GNMT (Google NMT System)

State-of-the-art NMT: GNMT

GNMT: Google's NMT System

- Architecture
 - Paralleled deep encoder & decoder
- Mechanisms & Techniques
 - Residual Connections
 - Model Parallelism
 - Beam Search
 - Segmentation
- Multi-lingual

Google's Neural Machine Translation System

- LSTM network with 8 encoder and 8 decoder
- Residual connections and attention connections
- Low-precision arithmetic during inference
- Sub-word units
- Beam search: length-normalization and coverage penalty

State-of-the-art NMT: GNMT

GNMT: Google's NMT System

- Architecture
 - Paralleled deep encoder & decoder
- Mechanisms & Techniques
 - Residual Connections
 - Model Parallelism
 - Beam Search
 - Segmentation
- Multi-lingual

Model Architecture

GNMT Encoder

- Model is partitioned 8-ways and is placed on 8 different GPUs
- The bottom bi-directional encoder layers compute in parallel first
- Once both finish, the unidirectional encoder layers can start computing, each on a separate GPU.

GNMT Bi-directional Encoder:

First Layer

Bi-directional encoder

- The bottom encoder layer is bi-directional
- Two-side context information

Efficiency:

- Bi-directional are only used for the bottom encoder layer
- Allow for maximum possible parallelization during computation

GNMT Decoder

- The bottom decoder layer output only for obtaining recurrent attention context, which is sent directly to all the remaining decoder layers.
- The softmax layer is also partitioned and placed on multiple GPUs.

Training

•• Recall tatandard its anaximum maximum-likelihood $L(\theta) = \frac{1}{N} \sum \log p_{\theta}(\vec{\pmb{y}}^{(n)}|\vec{\pmb{x}}^{(n)})$

$$L(\theta) = \frac{1}{N} \sum_{n} \log p_{\theta}(\vec{\mathbf{y}}^{(n)} | \vec{\mathbf{x}}^{(n)})$$

- · Problems:
 - NOT realized the stack are wared for not then beyond the Bilder Language in
 - then sequences
 - NOT encourage a ranking among incorrect output sequences

Training

GMNT objective: expected rewards

$$\mathcal{O}_{\mathrm{RL}}(oldsymbol{ heta}) = \sum_{i=1}^{N} \sum_{Y \in \mathcal{Y}} P_{ heta}(Y \mid X^{(i)}) \ r(Y, Y^{*(i)}).$$

- Reward r(Y, Y *(i))
 - per-sentence score
 - compute an expectation over all of the output sentences Y
- Glue Score:
 - record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams) and then compute the recall and precision

State-of-the-art NMT: GNMT

GNMT: Google's NMT System

- Architecture
 - Paralleled deep encoder & decoder
- Mechanisms & Techniques
 - Residual Connections
 - Model Parallelism
 - Beam Search
 - Segmentation
- Multi-lingual

Residual Connections

- Residual connections start from the layer third
- Residual connections greatly improve the gradient flow

Model Parallelism

- Both model parallelism and data parallelism to speed up training
- Data parallelism: Train n model replicas concurrently using a Downpour SGD algorithm
- Model parallelism: Partitioned along the depth dimension and are placed on multiple GPUs

Decode with Beam Search

Coverage penalty

 Empirically-better Score function to rank candidate

Length normalization

 Aim to account for the fact that we have to compare hypotheses of different length.

$$\begin{split} s(Y,X) &= \log(P(Y|X))/lp(Y) + cp(X;Y) \\ lp(Y) &= \frac{(5+|Y|)^{\alpha}}{(5+1)^{\alpha}} \\ cp(X;Y) &= \beta * \sum_{i=1}^{|X|} \log(\min(\sum_{j=1}^{|Y|} p_{i,j}, 1.0)), \end{split}$$

where p i,j is the attention probability of the j-th target word yj on the i-th source $\sum_{i=0}^{|X|} p_{i,j}$ By construction is equal to 1.

Segmentation Approaches

Wordpiece Model

```
Word: Jet makers feud over seat width with big orders at stake
wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake
```

 Mixed Word/Character Model convert OOV words into the sequence of its constituent characters

Quantized Inference

- Using 8-bit or 16 bit integer representation to do reduced precision arithmetic
- When it is decoded on TPU, certain operations, such as embedding lookup and attention module, remain on the CPU, and all other quantized operations are off-loaded to the TPU.

	BLEU	Log Perplexity	Decoding time (s)
CPU	31.20	1.4553	1322
GPU	31.20	1.4553	3028
TPU	31.21	1.4626	384

Performances

Table 4: Single model results on WMT En→Fr (newstest2014)

BLEU	Decoding time
	per sentence (s)
37.90	0.2226
38.01	1.0530
38.27	0.1919
37.60	0.1874
38.95	0.1146
38.39	0.2774
37.0	
31.5	
33.1	
37.7	
39.2	
	37.90 38.01 38.27 37.60 38.95 38.39 37.0 31.5 33.1 37.7

[&]quot;WPM-32K", a wordpiece model with a shared source and target vocabulary of 32K wordpieces, performs well on this dataset and achieves the best quality as well as the fastest inference speed.

Performances: Production Data

Table 10: Mean of side-by-side scores on production data

	PBMT	GNMT	Human	Relative
				Improvement
$English \rightarrow Spanish$	4.885	5.428	5.550	87%
English \rightarrow French	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
$Spanish \rightarrow English$	4.872	5.187	5.372	63%
French \rightarrow English	5.046	5.343	5.404	83%
$Chinese \rightarrow English$	3.694	4.263	4.636	60%

PBMT: Translation by phrase-based statistical translation system used by Google,

GNMT: Translation by our GNMT system

Human: Translation by humans fluent in both languages.

State-of-the-art NMT: GNMT

GNMT: Google's NMT System

- Architecture
 - Paralleled deep encoder & decoder
- Mechanisms & Techniques
 - Residual Connections
 - Model Parallelism
 - Beam Search
 - Segmentation
- Multi-lingual

Multiple Language

Multiple source languages and multiple target languages within a single model

- Simplicity
- Low-resource language improvements
- Zero-shot translation

BLEU scores on various data sets for single language pair and

multilingual model	_		
multilingual model Model	Single	Multi	Diff
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Japanese}$	23.66	21.10	-2.56
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Korean}$	19.75	18.41	-1.34
$\operatorname{Prod\ Japanese} \rightarrow \operatorname{English}$	23.41	21.62	-1.79
$\operatorname{Prod} \operatorname{Korean} \rightarrow \operatorname{English}$	25.42	22.87	-2.55
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Spanish}$	34.50	34.25	-0.25
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Portuguese}$	38.40	37.35	-1.05
$\operatorname{Prod} \operatorname{Portuguese} \rightarrow \operatorname{English}$	44.40	42.53	-1.87
$\operatorname{Prod} \operatorname{Spanish} \rightarrow \operatorname{English}$	38.00	36.04	-1.96
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{German}$	26.43	23.15	-3.28
$\operatorname{Prod} \ \operatorname{English} \rightarrow \operatorname{French}$	35.37	34.00	-1.37
$\operatorname{Prod} \operatorname{German} \rightarrow \operatorname{English}$	31.77	31.17	-0.60
Prod French→English	36.47	34.40	-2.07

Mixing Language

- What happens when languages are mixed on the source or target side?
 - Japanese: 私は東京大学の学生です。 → I am a student at Tokyo University.
 - Korean: 나는 도쿄 대학의 학생입니다. → I am a student at Tokyo University.
 - Mixed Japanese/Korean: 私は東京大学학생입니다. → I am a student of Tokyo University.

Case Study

The Google Translate mobile and web apps are now using GNMT for 100% of machine translations from Chinese to English

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。	Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

Summary: What have we learned about NMT?

- Machine Translation: What is the task and how to evaluate?
- Basic NMT: An encoder-decoder architecture
- Advanced NMT
 - Attention: attention mechanism for NMT
 - Vocab: Rare word translation
 - **Data**: Utilize monolingual/multilingual data
- State-of-art NMT System
 - GNMT (Google NMT System)

Reading List

Essential:

- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks ." Advances in neural information processing systems. 2014.
- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "
 <u>Neural machine translation by jointly learning to align and translate</u>." arXiv preprint arXiv:1409.0473 (2014).
- Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "

 <u>Effective approaches to attention-based neural machine translation</u>." arXiv preprint arXiv:1508.04025 (2015).
- Wiseman, Sam, and Alexander M. Rush. "<u>Sequence-to-sequence learning as beam-search optimization.</u>" arXiv preprint arXiv:1606.02960 (2016).
- Luong, Minh-Thang, et al. "<u>Addressing the rare word problem in neural machine translation.</u>" arXiv preprint arXiv:1410.8206 (2014).
- Sennrich, Rico, Barry Haddow, and Alexandra Birch. "
 <u>Neural machine translation of rare words with subword units.</u>" arXiv preprint arXiv:1508.07909 (2015).
- Wu, Yonghui, et al. "
 Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translatio
 n
 ." arXiv preprint arXiv:1609.08144 (2016).

Reading List

Optional:

- Ling, Wang, et al. "<u>Character-based neural machine translation</u>." arXiv preprint arXiv:1511.04586 (2015).
- Johnson, Melvin, et al. "
 <u>Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation</u>
 ." arXiv preprint arXiv:1611.04558 (2016).
- Gu,Ã, Jiatao, et al. <u>Learning to translate in real-time with neural machine translation</u>, arXiv preprint arXiv:1610.00388(2016).

Other References

- Neural Machine Translation Tutorial ACL 2016
- Cho, Kyunghyun, et al. <u>Learning phrase representations using RNN encoder-decoder for statistical machine translation</u> *arXiv preprint arXiv:1406.1078* (2014).
- Cho, Kyunghyun, et al. "
 On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint arXiv:1409.1259 (2014).
- Schuster, Mike and Paliwal, Kuldip K. <u>Bidirectional recurrent neural networks</u>. IEEE Transactionson Signal Processing, 45(11):2673–2681, 1997.
- Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.
- Kalchbrenner, Nal, and Phil Blunsom. "
 <u>Recurrent convolutional neural networks for discourse compositionality</u>." arXiv preprint arXiv:1306.3584 (2013).

Thanks!