PRANVEER SINGH INSTITUTE OF TECHNOLOGY, KANPUR

Even Semester

Session 2022-23

CT - 1

Theory of Automata and Formal Languages (KCS -402)

Theory of Automata and Format Danguages (2000)	
CO	
Number	Define [L1: Remember] various types of automata, languages and grammars.
CO1	Define [L1: Remember] various types of automata, ranguages Express [L2: Understand] languages using grammar, automaton and to review
CO2	Express [L2: Understand] languages designs
	class of language. Interpret [L3: Apply] the behavior of machines (such as FA, TM &PDA) and
CO3	Interpret [L3: Apply] the behavior of mashines (
	grammars. Analyze [L4:Analysis] ambiguity and decidability of grammars and languages.
CO4	Analyze [L4:Analysis] amorgany and decidations

Time: 1.5 Hrs.

M. M. 15

Section A Q1. Attempt all questions:

(1X3 = 3 Marks)CO₁

Define Alphabets and Strings in Automata Theory. a)

CO2

Explain epsilon closure with example. b)

CO₂

Comparison between DFA and NFA. c)

Section B

(2X4 = 8 Marks)

Q2. Attempt all questions:

Construct a Deterministic Finite Automation (DFA) for the language L which accepts all the strings in which the third symbol from right end is always 'a' over $\Sigma = \{a, b\}$. a i)

CO3

CO₃

- Design a DFA for language starts with b over $\Sigma = \{a, b\}$ and show the testing of "baabaa" as ii) string.
- Design a DFA for accepting all the strings of $\{L=0^m1^n \mid m>=0 \text{ and } n>=1\}$ bi)

CO₃

CO3

Minimize the given DFA shown below Figure. ii)

ii) Convert to DFA for the following non-deterministic finite automata (NFA) with epsilon 1774 ϵ q0 q1 d i) Convert the following NFA {{p,q,r,s},{0,1},\delta,p,\delta,s}} into DFA where \delta is given by: COS δ/∑ **→** P Q,SQ *Q R Q,RR \mathbf{S} P Φ P *S Or ii) Convert the following Mealy machine into equivalent Moore machine. CO3 a/1 b/1b/0 a/0 b/i Section C (4X1 = 4 Marks)Q3 a) Design Moore Machine for the input from (0, 1,2) which prints the residue modulo 5 of the input CO3 treated as ternary number. b) Design a mealy machine to determine the residue mod 3 of a binary number. CO3 Or a) Design a Regular Expression for the language containing all the strings having any number of CO3 a's and b's. b) Write a Regular Expression for the language in which first character is a or c followed **CO3**

by b over $\Sigma = \{a,b\}$.

Design a DFA that accepts the binary number whose equivalent is divisible by 5.

1114

c i)