1. Give the multiplication tables for S_3 and Δ_3 .

We know that the Symmtric Group of Degree 3 has 3! = 6 elements.

Then let us define S_3 on the set Z_3 as follows.

 $primary_table: \ \{ \ '1,2,3': \ 'a', \ '1,3,2': \ 'b', \ '2,3,1': \ 'c', \ '2,1,3': \ 'd', \ '3,1,2': \ 'e', \ '1,3,2': \ 'd', \ '1,3,2': \ 'e', \ '1,3,2': \ '1,3,$ '3,2,1': 'f' },

/						
a	b	c	d	е	f	
b	a	d	c	f	е	
С	f	е	b	a	d	
d	е	f	a	b	с	
е	d	a	f	С	b	
f	c	b	е	d	a	

Likewise, Δ_3 is the finite set $\{1, R, R^2, D_1, D_2, D_3\}$

$$1 = \{1,2,3\}$$

$$R = \{3,1,2\}$$

$$R^2 = \{2,3,1\}$$

$$D_1 = \{1,3,2\}$$

$$D_2 = \{3,2,1\}$$

$$D_2 = \{3,2,1\}$$

$$D_3 = \{2,1,3\}$$

ν_3	(2,1,0)					
1	R	R^2	D_1	D_2	D_3	
R	R^2	1	D_3	D_1	D_2	
R^2	1	R	D_2	D_3	D_1	
D_1	D_2	D_3	1	R	R^2	
D_2	D_3	D_1	R^2	1	R	
D_3	D_1	D_2	R	R^2	1	

2. Exhibit an isomorphism of the additive groups Z_6 and Z_2xZ_3 .

In other words, show that there is a function $f:\{Z_6,+,1\}\rightarrow\{Z_2xZ_3,+',1\}$ such that f(x+y) = f(x) + f(y) and f is bijective.

We can construct a simple function table as follows

Z_6	Z_2xZ_3
0	0x0
1	0x1
2	0x2
3	1x0
4	1x1
5	1x2

 $\overline{\text{So f(n)} = \text{q x r}} \text{ for n} = \text{q(3)} + \text{r}$

Clearly, this function is bijective.

Now we have to show that it is a morphism. We can do this informally.

First, observe that the ρ function defined in Chapter 1,Theorem 16 is a morphism.

But, all f is is a function that carries Z_6 into it's remainder and quotient mod 3.

So, f is a morphism.

Thus, f is bijective, as required.

4. Show that the group Z_2xZ_2 is not isomorphic to Z_4 but is isomorphic to the group of all symmetries of a rectangle.

First, we must show that there is no function $f:\{Z_2xZ_2,+,1\}->\{Z_4,+',1\}$ such that f is bijective and f(x+y)=f(x)+'f(y).

First, we can observe that +' is not bijective- (a+a) = (b+b) = (c+c) = 0

Then, suppose we have an f that is bijective and morphism.

Suppose in our biject that $f(x)=0,\,f(y)=a,\,f(z)=b,\,f(i)=c,$ for some x,y,z,i in Z_4

Then f(y+y) = f(z+z) = f(i+i) = f(x) = 0

Then (y+y) = (z+z) = (i+i) = x, since f is bijective

But for + in \mathbb{Z}_4 only two pairs of numbers add to the same sum, 2 and 4

Then y = z or z = i or y=i. either choice is absurd.

Therefore f cannot be both bijective and a morphism, as required.

For the second part–I don't see how there can be an isomorphism between the two groups, since the domain Z_2xZ_2 hsa four elements, while the codomain of the all symmetries of a rectangle has eight elements.