1 Исчисление высказываний

1.1 Предметный язык и язык исследователя (метаязык). Соглашения об обозначениях. Схемы формул.

Высказывание — это строка, сформированная по следующим правилам.

1.2 Оценка высказываний, общезначимость, следование.

1.2.1

Чтобы задать оценку высказываний: Зафиксируем множество истинностных значений $V = \{II, II\}$ Определим функцию оценки переменных (интерпретацию) $f: P \to V$ (P — множество пропозициональных переменных). Если $\|A\| = II$ и $\|B\| = II$, то $\|(A \to B) \to (B \to A)\| = II$

1.2.2

Синтаксис для указания функции оценки переменных

$$\llbracket \alpha \rrbracket^{X_1 := v_1, \ \dots, \ X_n := v_n}$$

Это всё метаязык — потому полагаемся на здравый смысл

$$[A \& B \& (C \to C)]^{A:=H, B:=[\neg A]}$$

1.2.3

1. Переменные

$$[X] = f(X)$$
 $[X]^{X:=a} = a$

2. Отрицание

$$\llbracket \neg \alpha \rrbracket = \left\{ \begin{array}{ll} \mathcal{I}, & ecnu \ \llbracket \alpha \rrbracket = H \\ \mathcal{I}, & uhaue \end{array} \right.$$

3. Конъюнкция

4. Дизъюнкция

5. Импликация

1.2.4

Если α истинна при любой оценке переменных, то она *общезначима* (является $maemonorue\check{u}$):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$\begin{bmatrix} A \to A \end{bmatrix}^{A:=\mathcal{U}} = \mathcal{U}$$

$$\begin{bmatrix} A \to A \end{bmatrix}^{A:=\mathcal{I}} = \mathcal{U}$$

Выражение $A \to \neg A$ тавтологией не является:

$$[\![A \to \neg A]\!]^{A:=H} = \mathcal{J}$$

1

1.2.5

1. Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \dots, \gamma_n$, будем говорить, что $\alpha - cnedcmeue$ этих высказываний:

$$\gamma_1, \ldots, \gamma_n \models \alpha$$

- 2. Истинна при какой-нибудь оценке выполнима.
- 3. Не истинна ни при какой оценке невыполнима.
- 4. Не истинна при какой-нибудь оценке опровержима.

1.3 Доказуемость, гипотезы (контекст), выводимость.

1.3.1

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- 1. является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- 2. получается из $\delta_1, \dots, \delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j < i и k < i, что $\delta_k \equiv \delta_j \to \delta_i$.

1.3.2

(доказательство формулы α) — такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

1.3.3

(вывод формулы α из гипотез $\gamma_1, \ldots, \gamma_k$) — такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:

- 1. является аксиомой;
- 2. либо получается по правилу Modus Ponens из предыдущих;
- 3. либо является одной из гипотез: существует $t: \delta_i \equiv \gamma_t$.

2 Корректность, полнота, противоречивость и непротиворечивость (эквивалентные формулировки).