B-splines

• A spline function of order m and knots ξ_1, \ldots, ξ_k is a piecewise polynomial that can be expressed as a linear combination of the functions $x^0, \ldots, x^{m-1}, (x-\xi_1)_+^{m-1}, \ldots, (x-\xi_k)_+^{m-1}$, where

$$(x - \xi_i)_+^{m-1} = \begin{cases} (x - \xi_i)^{m-1} & \text{if } x \ge \xi_i; \\ 0 & \text{otherwise,} \end{cases}$$

for i = 1, ..., k.

• Plot $f(x) = (x - 0.5)_+^2$ for $x \in [0, 1]$.

```
f <- function(x, a=0.5){
  ans <- (x-a)^2
  ans[x<a] <- 0
  return(ans)
}
curve(f,0,1)</pre>
```

- A spline function of order m and inner knots ξ_1, \ldots, ξ_k on an interval [a, b] can be expressed as a linear combination of the B-spline basis functions on [a, b] of order m with inner knots ξ_1, \ldots, ξ_k .
- Each B-spline basis function of order m is characterized by a set of knots y_1, \ldots, y_{m+1} (arranged in ascending order), which is denoted by $N(\cdot|y_1,\ldots,y_{m+1})$. To compute B-spline basis functions, the following recursive formulas are used.

$$N(x|y_{1},...,y_{m+1}) = \frac{x - y_{1}}{y_{m} - y_{1}} N(x|y_{1},...,y_{m}) + \frac{y_{m+1} - x}{y_{m+1} - y_{2}} N(x|y_{2},...,y_{m+1}). (1)$$

$$N(x|y_{1},y_{2}) = \begin{cases} 1 & \text{if } x \in [y_{1},y_{2}); \\ 0 & \text{otherwise.} \end{cases}$$

$$N(x|\underbrace{y_{1},...,y_{1}},y_{2}) = \begin{cases} (y_{2} - x)^{m-1}/(y_{2} - y_{1})^{m-1} & \text{if } x \in [y_{1},y_{2}); \\ 0 & \text{otherwise.} \end{cases}$$

$$N(x|\underbrace{y_{1},...,y_{1}},y_{2}) = \begin{cases} (x - y_{1})^{m-1}/(y_{2} - y_{1})^{m-1} & \text{if } x \in [y_{1},y_{2}); \\ 0 & \text{otherwise.} \end{cases}$$

$$(3)$$

$$N(x|x_{1},...,x_{1},...,x_{2},$$

 $N(x|y_1, \underbrace{y_2, \dots, y_2}_{m \text{ times}}) = \begin{cases} (x - y_1)^{m-1} / (y_2 - y_1)^{m-1} & \text{if } x \in [y_1, y_2); \\ 0 & \text{otherwise.} \end{cases}$ (4)

• B-spline basis functions on [a, b] of order m with knots ξ_1, \ldots, ξ_k . Let y_1, \ldots, y_{2m+k} be the sequence

$$\underbrace{a,\ldots,a}_{m \text{ times}},\xi_1,\ldots,\xi_k,\underbrace{b,\ldots,b}_{m \text{ times}},$$

then the (m+k) functions $N(\cdot|y_1,\ldots,y_{m+1}),\ldots,N(\cdot|y_{m+k},\ldots,y_{2m+k})$ are the B-spline basis functions on [a,b] of order m with knots ξ_1,\ldots,ξ_k .

- Note. The B-spline basis functions sum up to 1 and each one takes values in [0, 1].
- The function splineDesign in R Package splines can be used for computing a single B-spline basis function $N(\cdot|y_1,\ldots,y_{m+1})$.
 - Suppose that $y = (y_1, \ldots, y_{m+1})$ and $x = (x_1, \ldots, x_n)$ are two vectors in R, then

gives the vector
$$(N(x_1|y_1,...,y_{m+1}),...,N(x_n|y_1,...,y_{m+1}))$$
.

• Example 1. Check whether splineDesign gives

$$N(x|0,0,0,1) = \begin{cases} (1-x)^{3-1}/(1-0)^{3-1} = (1-x)^2 & \text{if } x \in [0,1); \\ 0 & \text{otherwise.} \end{cases}$$

R commands:

```
require("splines")
y <- c(0,0,0,1)
f <- function(x){
  return(splineDesign(y, x, ord=length(y)-1, outer.ok=TRUE)[,1])
}
curve(f,0,1)

n0001 <- function(x){ (1-x)^2 }
curve(n0001, 0, 1, add=T, col=2) #Plot the N(|0,0,0,1) function on [0,1]</pre>
```

• The function bs in R Package splines can be used for computing the (m+k) B-spline functions on [a,b] of order m with knots ξ_1, \ldots, ξ_k .

- Suppose that $\mathtt{knots} = (\xi_1, \ldots, \xi_k)$ and $\mathtt{x} = (x_1, \ldots, x_n)$ are vectors in R, then B-spline basis functions on $[\mathtt{a},\mathtt{b}]$ of order \mathtt{m} with knots ξ_1, \ldots, ξ_k evaluated at \mathtt{x} form a $n \times (\mathtt{m}+k)$ matrix X, where the j-th column of X is the j-th B-spline basis function evaluated at \mathtt{x} . The matrix X can be computed using the R command

bs(x, knots=knots, deg=m-1, Boundary.knots=c(a,b), intercept=TRUE)

• Example 2. Compute the B-spline basis functions on [0,1] of order three with knots 0.1 and 0.2 using bs and splineDesign. Plot the five B-spline basis functions.

```
x \leftarrow (1:1000)/1001
knotlist=c(0.1, 0.2)
ord=3
knot_all=c(rep(0,ord), knotlist, rep(1,ord))
nb = length(knotlist)+ord
plot(x,x,type="n",ylab="")
s=0
for ( i in 1:nb){
  y = knot_all[i:(i+ord)]
  f <- function(x){</pre>
   n <- length(x)
   return(splineDesign(y, x, ord=length(y)-1, outer.ok=T)[,1])
  f1 <- function(x){</pre>
    bx=bs(x, deg=ord-1, knots=knotlist, Boundary.knots=c(0,1), intercept=T)
    return(bx[,i])
  }
  lines(x,f(x), type="l"); lines(x, f1(x), col=i+1)
  s=s+sum(abs(f(x)-f1(x)))
}
s
```

• Spline functions can approximated smooth functions well if the number of knots are large enough.

- Exercise 1. Write a function with input x and $y = (y_1, \ldots, y_{m+1})$ (assuming $y_1 \leq \ldots \leq y_{m+1}$ and $m \in \{1, 2\}$) and output $N(x|m, y_1, \ldots, y_{m+1})$ using the recursive formulas in (1) (4). Use your function to compute $N(x|2, y_1, y_2, y_3)$ at x = seq(0, 1, length=11) for $(y_1, y_2, y_3) = (0, 0, 0.1)$ and $(y_1, y_2, y_3) = (0, 0.1, 0.2)$. Compare the results with those obtained using splineDesign.
- Exercise 2. Let B_1, \ldots, B_{m+k} be the B-spline basis functions on [0,1] of order m with knots ξ_1, \ldots, ξ_k . Check whether each of $B_1(x), \ldots, B_{m+k}(x)$ can be expressed as linear combinations of the functions 1, $x, \ldots, x^{m-1}, (x-\xi_1)_+^{m-1}, \ldots, (x-\xi_k)_+^{m-1}$ for $x=(1:1000)/1001, m=4, k=3, \text{ and } (\xi_1,\ldots,\xi_3)=(1:3)/4.$
- Exercise 3. Let $f(x) = x \sin(20x)$ for $x \in [0,1]$. Suppose that $n = 1000, (X_1, \ldots, X_n) = \text{seq(0, 1, length=n)}, \text{ and } Y_i = f(X_i) \text{ for } i = 1, \ldots, n.$
 - (a) Find the ISE of estimating f based on $(X_1, Y_1), \ldots, (X_n, Y_n)$ by approximating f using the best linear combination of B-spline basis functions on [0,1] of order 4 with k equally spaced knots ((1:k)/(k+1)) for $k = 1, 2, \ldots, 7$. Which k gives the best ISE?
 - (b) Consider estimating f based on $(X_1, Y_1), \ldots, (X_n, Y_n)$ by approximating f using the best linear combination of $1, x, \ldots, x^m$. Let m_0 be the smallest m such that the resulting ISE is smaller than the best ISE found in Part (a). Find m_0 .

Exercise 4. Define a function f in R:

```
f0 <- function(x){
  ans <- x*sin(20*x)
  ans[x<0] <- 0
  return(ans)
}

f <- function(x){ f0(2*(x-0.5))}
curve(f,0,1)</pre>
```

It is expected that we can approximate f well using a cubic spline (order 4) with knots (1:13)/14.

(a) Generate data from a nonparametric regression model as follows:

```
n <- 1000
x <- seq(0,1,length=n)
y <- f(x) + rnorm(n, sd=0.02)</pre>
```

Fit a cubic spline to the data with knots (1:13)/14 using truncated power basis functions. Remove the insignificant knots using backward elimination. How many knots are left in the model?

(b) Let knots0 be the remaining knots from Part (a). Generate data from a nonparametric regression model as follows:

```
n <- 1000
x <- seq(0,1,length=n)
y <- f(x)</pre>
```

Fit a cubic spline to the data with knots =knots0 using B-spline basis functions on [0,1]. Find the ISE. Denote this ISE by ISE.SP. Recall that we can also approximate f well on [0,0.5] using a polynomial of high degree. Is it possible to use a polynomial of degree 10 to approximate f so that the ISE is smaller or equal to ISE.SP?

- Exercise 5. Let $f(x) = x \sin(20x)$ for $x \in [0,1]$. Suppose that $n = 1000, (X_1, \ldots, X_n) = \text{seq(0, 1, length=n)}$, and $Y_i = f(X_i) + \varepsilon_i$ for $i = 1, \ldots, n$, where ε_i 's are IID $N(0, \sigma^2)$ variables with $\sigma = 0.2$. Consider estimating f based on $(X_1, Y_1), \ldots, (X_n, Y_n)$ by approximating f using
 - (i) B-spline basis functions with order 4 and k equally spaced knots and
 - (ii) polynomial basis functions $1, x, \ldots, x^m$,

where k and m are chosen using cross-validation. The selection ranges for k and m are $\{1, 2, ..., 7\}$ and $\{1, 2, ..., 12\}$. Find the IMSEs for (i) and (ii) based on 10000 simulations. Use **set.seed** to make sure that the simulation data for (i) and (ii) are the same.