Tarefa

Luiz Roberto Rodrigues Nobre

1. Pesquise quais são os tipos de dados suportados pelo PostgreSQL e quantidade de memória necessária para armazenar cada um.

De acordo com a documentação oficial do PostgreSQL, há mais de 20 tipos de dados que podem ser inseridos, mas o que nos interessa são os seguintes tipos:

- Numeric Types
- Monetary Types
- Character Types
- Date/Time Types
- Boolean Type
- Enumerated Types
- UUID Type

Tabela de Numeric Types

Nome dos numéricos	Tamanho em Bytes	Observações
smallint	2	
integer	4	
bigint	8	
decimal	Variável	Precisão especificada pelo usuário
numeric	Variável	Precisão especificada pelo usuário
real	4	
double precision	8	
smallserial	2	
serial	4	
bigserial	8	

Monetary Types

O tipo monetary ocupa 8 bytes, com uma precisão fracionária fixa (0.00, por exemplo), mas também pode ser definida na configuração do banco lc_monetary.

Character Types

Nome Tamanho em bytes Observações

Nome	Tamanho em bytes	Observações
character varying, varchar	Tamanho variável com limite	
character, char, bpchar	Tamanho fixo	Caso não seja totalmente ocupado, é completado com espaços
text	Tamanho variável ilimitado	

Date/Time Types

Nome	Tamanho em bytes	Observações
timestamp	8	Possui tempo e data sem fuso horário
timestamp	8	Possui tempo e data com fuso horário
date	4	Apenas data
time	8	Apenas tempo
interval	16	Intervalo de tempo

Boolean Type

O boolean possui apenas 1 byte de tamanho, e salva os valores TRUE, YES, ON, 1 (verdadeiro) e FALSE, NO, OFF, 0 (falso).

UUID Type

UUID significa *Universally Unique Identifier*. Tem o tamanho de 16 bytes (128 bits) e é um identificador único gerado por algoritmo.

2. Quais são os tipos de arquivos suportados pelo PostgreSQL?

Heap

É o formato padrão de armazenamento de tabelas no PostgreSQL. Cada tabela é guardada em arquivos segmentados no diretório PGDATA/base/(diretório de armazenamento), com blocos de 8KB.

Sequencial

O PostgreSQL armazena os dados na ordem em que são inseridos. O comando Seq Scan permite a varredura sequencial dos registros.

Hashing

Usado através de índices do tipo hash, criando uma estrutura de armazenamento chamada *bucket* para valores com o mesmo hash. Melhora a performance de buscas exatas.

Clustering

Permite organizar fisicamente os blocos da tabela conforme uma chave de ordenação, através do comando CLUSTER. Não é mantido automaticamente.

3. Documentação inicial do Projeto Físico da "Seguradora"

Cliente

Identificador	Cliente
Descrição	Tabela de armazenamento de todos os clientes da seguradora
Organização	Tabela Heap
Ordenação	numero

Atributos

Nome	Chave	Tipo de dados	Tamanho	Restrições	Bytes
numero	Primária	Integer	-	Not Null, Sem repetição	4
nome	-	Varchar	100	Not Null	100

Logradouro

Identificado	r Loa	radouro
iueiitiitauu	LUG	laubult

Descrição	Tabela de armazenamento de logradouros vinculados aos clientes
Organização	Tabela Heap
Ordenação	numero

Atributos

Nome	Chave	Tipo de dados	Tamanho	Restrições	Bytes
numero	Primária	Integer	-	Not Null, Sem repetição	4
data	-	Date	-	Pode ser nula	4
cliente_numero	Estrangeira	Integer	-	Chave estrangeira, Not Null	4

Carro

Identificador	Carro	

Identificador Carro

Descrição	Tabela de armazenamento de carros cadastrados
Organização	Tabela Heap
Ordenação	numero

Atributos

Nome	Chave	Tipo de dados	Tamanho	Restrições	Bytes
numero	Primária	Integer	-	Not Null, Sem repetição	4
nome	-	Varchar	100	Not Null	100
modelo	-	Varchar	100	Pode ser nulo	100
logradouro_numero	Estrangeira	Integer	-	Chave estrangeira, Única	4

Acidente

Identificador Acidente

Descrição	Tabela de armazenamento de todos os acidentes registrados
Organização	Tabela Heap
Ordenação	id acidente

• Atributos

Nome	Chave	Tipo de dados	Tamanho	Restrições	Bytes
id_acidente	Primária	Integer	-	Not Null, Auto Increment	4
data	-	Date	-	Pode ser nula	4
hora	-	Time	-	Pode ser nula	8
local	-	Varchar	200	Pode ser nula	200
carro_numero	Estrangeira	Integer	-	Chave estrangeira, Not Null	4

4. Script SQL da criação das tabelas

```
-- tabela Cliente

CREATE TABLE Cliente (
    numero INT PRIMARY KEY,
    nome VARCHAR(100) NOT NULL

);

-- tabela Logradouro

CREATE TABLE Logradouro (
```

```
numero INT PRIMARY KEY,
    data DATE,
    cliente_numero INT NOT NULL,
    FOREIGN KEY (cliente_numero) REFERENCES Cliente(numero)
);
-- tabela Carro
CREATE TABLE Carro (
    numero INT PRIMARY KEY,
    nome VARCHAR(100) NOT NULL,
    modelo VARCHAR(100),
    logradouro_numero INT UNIQUE,
    FOREIGN KEY (logradouro_numero) REFERENCES Logradouro(numero)
);
-- tabela Acidente
CREATE TABLE Acidente (
    id_acidente INT PRIMARY KEY AUTO_INCREMENT,
    data DATE,
    hora TIME,
    local VARCHAR(200),
    carro_numero INT,
   FOREIGN KEY (carro_numero) REFERENCES Carro(numero)
);
```