





# INTRODUÇÃO À COMPUTAÇÃO GRÁFICA

Adair Santa Catarina Curso de Ciência da Computação Unioeste – Campus de Cascavel – PR

Jan/2021



# Computação Gráfica

Área da ciência da computação que estuda a geração, manipulação e interpretação de modelos e imagens de objetos utilizando computador.





# Subáreas da Computação Gráfica





# Outra forma de visualizar as subáreas





# Subáreas da Computação Gráfica





# Visualização Computacional – Exemplos





# **Visualização Computacional – Exemplos**





# Visualização Computacional – Exemplos









# Aplicações da CG – Interfaces gráficas





# Traçado de gráficos





# Automação de escritórios





## Projeto e desenho auxiliado por computador





# Simulação









# Animação





# Controle de processos





# Cartografia





# **Arte digital**







# Slides de apresentação





## **Sistemas Gráficos**















# Resolução gráfica



ndh e ndv = número de posições endereçáveis

Resolução:

Horiz\_Res = ndh/width; Vert Res = ndv/height

Tamanho do ponto:

Horiz\_DotSize = width/ndh Vert DotSize = height/ndv

Total pontos endereçáveis:

Tot\_Dots = ndh \* ndv

Resolução de área:

Area\_Res = Tot\_Dots/(width \* height)

Razão de aspecto gráfica:

Aspect = Vert\_DotSize/Horiz\_DotSize

Razão de aspecto física:

PAspect = height/width



#### Sistemas de coordenadas



$$ndhm1 = ndh - 1$$

$$ndvm1 = ndv - 1$$

#### Coordenadas do Dispositivo:

$$0 \le dcx \le ndhm1$$

$$0 \le dcy \le ndvm1$$

#### Coordenadas Normalizadas:

$$0 \le ndcx \le 1$$

$$0 \le ndcy \le 1$$

#### Coordenadas do Mundo:

$$X_{min} \le X \le X_{max}$$

$$y_{min} \le y \le y_{max}$$



#### Conversão entre sistemas

ndcy = dcy / ndvm1

$$x = x_{min} + ndcx * (x_{max} - x_{min})$$

$$y = y_{min} + ndcy * (y_{max} - y_{min})$$

$$ndcy = \frac{(y - y_{min})}{(y_{max} - y_{min})}$$
Coordenadas do Mundo (X, Y)

Coordenada de Entrada do Dispositivo (DCX, DCY)

NDC (NDCX, NDCY)

Coordenada de Saída do Dispositivo (DCX, DCY)

$$dcx = round(ndcx * ndhm1)$$

dcy = round(ndcy\*ndvm1)



## Sistemas de coordenadas em 3D





Regra da mão esquerda





Regra da mão direita