Chapter 1

Optimization

CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce you to how optimization can be used to determine minima and maxima of both one-dimensional and multidimensional functions. Specific objectives and topics covered are

- Understanding why and where optimization occurs in engineering and scientific problem solving.
- Recognizing the difference between one-dimensional and multidimensional optimization.
- Distinguishing between global and local optima.
- Knowing how to recast a maximization problem so that it can be solved with a minimizing algorithm.
- Being able to define the golden ratio and understand why it makes one dimensional optimization efficient.
- Locating the optimum of a single-variable function with the golden-section search.
- Locating the optimum of a single-variable function with parabolic interpolation.
- Knowing how to apply the fminbnd function to determine the minimum of a one-dimensional function.
- Being able to develop MATLAB contour and surface plots to visualize twodimensional functions.
- Knowing how to apply the fminsearch function to determine the minimum of a multidimensional function.

YOUâĂŹVE GOT A PROBLEM

An object like a bungee jumper can be projected upward at a specified velocity. If it is subject to linear drag, its altitude as a function of time can be computed as

$$z = z_0 + \frac{m}{c} (v_0 + \frac{mg}{c}) (1 - e^{-(c/m)t}) - \frac{mg}{c}t$$
(7.1)

Figure 1.1: Elevation as a function of time for an object initially projected upward with an initial velocity.

where z = altitude (m) above the earth's surface (defined as z = 0), z_0 = the initial altitude (m), m = mass (kg), c = a linear drag coefficient (kg/s), v_0 = initial velocity (m/s), and t = time (s). Note that for this formulation, positive velocity is considered to be in the upward direction. Given the following parameter values: $g = 9.81 m/s^2$, $z_0 = 100$ m, $v_0 = 55$ m/s, m = 80 kg, and c = 15 kg/s, Eq. (7.1) can be used to calculate the jumper's altitude. As displayed in Fig. 7.1, the jumper rises to a peak elevation of about 190 m at about t = 4 s. Suppose that you are given the job of determining the exact time of the peak elevation. The determination of such extreme values is referred to as optimization. This chapter will introduce you to how the computer is used to make such determinations.

1.1. A SIMPLE MATHEMATICAL MODEL

In the most general sense, optimization is the process of creating something that is as effective as possible. As engineers, we must continuously design devices and products that perform tasks in an efficient fashion for the least cost. Thus, engineers are always confronting optimization problems that attempt to balance performance and limitations. In addition, scientists have interest in optimal phenomena ranging from the peak elevation of projectiles to the minimum free energy.

From a mathematical perspective, optimization deals with finding the maxima and minima of a function that depends on one or more variables. The goal is to determine the values of the variables that yield maxima or minima for the function. These can then be substituted back into the function to compute its optimal values.

Although these solutions can sometimes be obtained analytically, most practical optimization problems require numerical, computer solutions. From a numerical standpoint, optimization is similar in spirit to the root-location methods we just covered in Chaps. 5 and 6. That is, both involve guessing and searching for a point on a function. The fundamental difference between the two types of problems is illustrated in Fig. 7.2. Root location involves searching for the location where the function equals zero. In contrast, optimization involves searching for the function's extreme points.

Figure 1.2: A function of a single variable illustrating the difference between roots and optima.

As can be seen in Fig. 7.2, the optimums are the points where the curve is flat. In mathematical terms, this corresponds to the x value where the derivative f'(x) is equal to zero. Additionally, the second derivative, f''(x), indicates whether the optimum is a minimum or a maximum: if f''(x) > 0, the point is a maximum; if f''(x) > 0, the point is a minimum.

Now, understanding the relationship between roots and optima would suggest a possible strategy for finding the latter. That is, you can differentiate the function and locate the root (i.e., the zero) of the new function. In fact, some optimization methods do just this by solving the root problem: f''(x) = 0.

Example 1. Determining the Optimum Analytically by Root Location

Problem Statement: Determine the time and magnitude of the peak elevation based on Eq. (7.1). Use the following parameter values for your calculation: $g = 9.81 m/s^2$, z0 = 100 m, v0 = 55 m/s, m = 80 kg, and c = 15 kg/s. Solution: Equation (7.1) can be differentiated to give.

$$\frac{dz}{dt} = v_0 e^{-(c/m)t} - \frac{mg}{c} (1 - e^{-(c/m)t})$$

Note that because v = dz/dt, this is actually the equation for the velocity. The maximum elevation occurs at the value of t that drives this equation to zero. Thus, the problem amounts to determining the root. For this case, this can be accomplished by setting the derivative to zero and solving Eq. (E7.1.1) analytically for

$$t = \frac{m}{c}ln(1 + \frac{cv_0}{m\varrho})$$

Substituting the parameters gives

$$t = \frac{80}{15}ln(1 + \frac{15(55)}{80(9.81)}) = 3.83166s$$

This value along with the parameters can then be substituted into Eq. (7.1) to compute the maximum elevation as

$$z = 100 + \frac{80}{15} \left(50 + \frac{80(9.81)}{15}\right) \left(1 - e^{-(15/80)3.83166}\right) - \frac{80(9.81)}{15} \left(3.83166\right) = 192.8609m$$

We can verify that the result is a maximum by differentiating Eq. (E7.1.1) to obtain the second derivative

$$\frac{d^2z}{dt^2} = -\frac{c}{m}v_0e^{-(c/m)t} - ge^{-(c/m)t} = -9.81\frac{m}{s^2}$$

The fact that the second derivative is negative tells us that we have a maximum. Further, the result makes physical sense since the acceleration should be solely equal to the force of gravity at the maximum when the vertical velocity (and hence drag) is zero.

Although an analytical solution was possible for this case, we could have obtained the same result using the root-location methods described in Chaps. 5 and 6. This will be left as a homework exercise.

Although it is certainly possible to approach optimization as a roots problem, a variety of direct numerical optimization methods are available. These methods are available for both one-dimensional and multidimensional problems. As the name implies, one-dimensional problems involve functions that depend on a single dependent variable. As in Fig. 7.3a, the search then consists of climbing or descending one-dimensional peaks and valleys. Multidimensional problems involve functions that depend on two or more dependent variables.

Figure 1.3: (a) One-dimensional optimization. This figure also illustrates how minimization of f(x) is equivalent to the maximization of -f(x). (b) Two-dimensional optimization. Note that this figure can be taken to represent either a maximization (contours increase in elevation up to the maximum like a mountain) or a minimization (contours decrease in elevation down to the minimum like a valley).

In the same spirit, a two-dimensional optimization can again be visualized as searching out peaks and valleys (Fig. 7.3b). However, just as in real hiking, we are not constrained to walk a single direction; instead the topography is examined to efficiently reach the goal.

Finally, the process of finding a maximum versus finding a minimum is essentially identical because the same value x* both minimizes f(x) and maximizes -f(x). This equivalence is illustrated graphically for a one-dimensional function in Fig. 7.3a.

In the next section, we will describe some of the more common approaches for onedimensional optimization. Then we will provide a brief description of how MATLAB can be employed to determine optima for multidimensional functions.

1.2. ONE-DIMENSIONAL OPTIMIZATION

This section will describe techniques to find the minimum or maximum of a function of a single variable f(x). A useful image in this regard is the one-dimensional "roller coaster"-like function depicted in Fig. 7.4. Recall from Chaps. 5 and 6 that root location was complicated by the fact that several roots can occur for a single function. Similarly, both local and global optima can occur in optimization.

A *global optimum* represents the very best solution. A *local optimum*, though not the very best, is better than its immediate neighbors. Cases that include local optima are called *multimodal*. In such cases, we will almost always be interested in finding the global optimum. In addition, we must be concerned about mistaking a local result for the global optimum.

Just as in root location, optimization in one dimension can be divided into bracketing and open methods. As described in the next section, the golden-section search is an example of a bracketing method that is very similar in spirit to the bisection method for root location. This is followed by a somewhat more sophisticated bracketing approach-parabolic interpolation. We will then show how these two methods are combined and implemented with MATLAB's fminbnd function.

Figure 1.4: (a) A function that asymptotically approaches zero at plus and minus ∞ and has two maximum and two minimum points in the vicinity of the origin. The two points to the right are local optima, whereas the two to the left are global.

1.2.1. Golden-Section Search

In many cultures, certain numbers are ascribed magical qualities. For example, we in the West are all familiar with "lucky 7" and "Friday the 13th." Beyond such superstitious quantities, there are several well-known numbers that have such interesting and powerful mathematical properties that they could truly be called "magical". The most common of these are the ratio of a circle's circumference to its diameter π and the base of the natural logarithm e.

Although not as widely known, the golden ratio should surely be included in the pantheon of remarkable numbers. This quantity, which is typically represented by the Greek letter ϕ (pronounced: fee), was originally defined by Euclid (ca. 300 BCE) because of its role in the construction of the pentagram or five-pointed star. As depicted in Fig. 7.5, Euclid's definition reads: "A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser."

The actual value of the golden ratio can be derived by expressing Euclid's definition as

$$\frac{l_1 + l_2}{l_1} = \frac{l_1}{l_2} \tag{7.2}$$

Multiplying by l_1/l_2 and collecting terms yields

$$\phi^2 - \phi - 1 = 0 \tag{7.3}$$

where $\phi = l_1/l_2$. The positive root of this equation is the golden ratio:

$$\phi = \frac{1+\sqrt{5}}{2} = 1.61803398874989... \tag{7.4}$$

The golden ratio has long been considered aesthetically pleasing in Western cultures. In addition, it arises in a variety of other contexts including biology. For our purposes, it provides the basis for the golden-section search, a simple, general-purpose method for determining the optimum of a single-variable function.

The golden-section search is similar in spirit to the bisection approach for locating roots in Chap. 5. Recall that bisection hinged on defining an interval, specified by a lower guess (x_l) and an upper guess (x_u) that bracketed a single root. The presence of a root between these bounds was verified by determining that $f(x_l)$ and $f(x_u)$ had different signs. The root was then estimated as the midpoint of this interval:

Figure 1.5: Euclid's definition of the golden ratio is based on dividing a line into two segments so that the ratio of the whole line to the larger segment is equal to the ratio of the larger segment to the smaller segment. This ratio is called the golden ratio.

The final step in a bisection iteration involved determining a new smaller bracket. This was done by replacing whichever of the bounds x''_l or x_u had a function value with the same sign as $f(x_r)$. Akey advantage of this approach was that the new value x_r replaced one of the old bounds.

Now suppose that instead of a root, we were interested in determining the minimum of a one-dimensional function. As with bisection, we can start by defining an interval that contains a single answer. That is, the interval should contain a single minimum, and hence is called *unimodal*. We can adopt the same nomenclature as for bisection, where x_l and x_u defined the lower and upper bounds, respectively, of such an interval. However, in contrast to bisection, we need a new strategy for finding a minimum within the interval. Rather than using a single intermediate value (which is sufficient to detect a sign change, and hence a zero), we would need two intermediate function values to detect whether a minimum occurred.

The key to making this approach efficient is the wise choice of the intermediate points. As in bisection, the goal is to minimize function evaluations by replacing old values with new values. For bisection, this was accomplished by choosing the midpoint. For the golden-section search, the two intermediate points are chosen according to the golden ratio:

$$x_1 = x_l + d \tag{7.6}$$

$$x_2 = x_u - d \tag{7.7}$$

where

$$d = (\phi - 1)(x_u - x_l) \tag{7.8}$$

The function is evaluated at these two interior points. Two results can occur:

- 1. If, as in Fig. 7.6a, $f(x_1) < f(x_2)$, then $f(x_1)$ is the minimum, and the domain of x to the left of x_2 , from x_l to x_2 , can be eliminated because it does not contain the minimum. For this case, x_2 becomes the new x_l for the next round.
- 2. If $f(x_2) < f(x_1)$, then $f(x_2)$ is the minimum and the domain of x to the right of x_1 , from x_1 to x_u would be eliminated. For this case, x_1 becomes the new x_u for the next round.

Now, here is the real benefit from the use of the golden ratio. Because the original x_1 and x_2 were chosen using the golden ratio, we do not have to recalculate all the function values for the next iteration. For example, for the case illustrated in Fig. 7.6, the old x_1 becomes the new x_2 . This means that we already have the value for the new $f(x_2)$, since it is the same as the function value at the old x_1 .

To complete the algorithm, we need only determine the new x_1 . This is done with Eq. (7.6) with d computed with Eq. (7.8) based on the new values of x_l and x_u . A similar approach would be used for the alternate case where the optimum fell in the left subinterval. For this case, the new x_2 would be computed with Eq. (7.7).

As the iterations are repeated, the interval containing the extremum is reduced rapidly. In fact, each round the interval is reduced by a factor of ϕ - 1(about 61.8%). That means that after 10 rounds, the interval is shrunk to about 0.618¹⁰ or 0.008 or 0.8% of its initial length. After 20 rounds, it is about 0.0066%. This is not quite as good as the reduction achieved with bisection (50%), but this is a harder problem.

Figure 1.6: (a) The initial step of the golden-section search algorithm involves choosing two interior points according to the golden ratio. (b) The second step involves defining a new interval that encompasses the optimum.

Example 2. Golden-Section Search

Problem Statement: Use the golden-section search to find the minimum of

$$f(x) = \frac{x^2}{10} - 2\sin x$$

within the interval from $x_l = 0$ to $x_u = 4$

Solution: First, the golden ratio is used to create the two interior points:

$$d = 0.61803(4 - 0) = 2.4721$$

$$x_1 = 0 + 2.4721 = 2.4721$$

$$x_2 = 4 - 2.4721 = 1.5279$$

The function can be evaluated at the interior points:

$$f(x_2) = \frac{1.5279^2}{10} - 2sin(1.5279) = -1.7647)$$

$$f(x_1) = \frac{2.4721^2}{10} - 2\sin(2.4721) = -0.6300)$$

Because $f(x_2) < f(x_1)$, our best estimate of the minimum at this point is that it is located at x = 1.5279 with a value of f(x) = -1.7647. In addition, we also know that the minimum is in the interval defined by x_1 , x_2 , and x_1 . Thus, for the next iteration, the lower bound remains $x_1 = 0$, and x_1 becomes the upper bound, that is, $x_u = 2.4721$. In addition, the former x_2 value becomes the new x_1 , that is, $x_1 = 1.5279$. In addition, we do not have to recalculate $f(x_1)$, it was determined on the previous iteration as f(1.5279) = -1.7647.

All that remains is to use Eqs. (7.8) and (7.7) to compute the new value of d and x_2 :

$$d = 0.61803(2.4721 - 0) = 1.5279$$

$$x_2 = 2.4721 - 1.5279 = 0.9443$$

The function evaluation at x_2 is f(0.9943) = -1.5310. Since this value is less than the function value at x1, the minimum is f(1.5279) = -1.7647, and it is in the interval prescribed by x_2 , x_1 , and x_u . The process can be repeated, with the results tabulated here:

i	x_l	$f(x_l)$	x_2	$f(x_2)$	x_l	$f(x_l)$	x_u	$f(x_u)$	d
1	0	0	1.5279	-1.7647	2.4721	-0.6300	4.0000	3.1136	2.4721
2	0	0	0.9443	-1.5310	1.5279	-1.7647	2.4721	-0.6300	1.5279
3	0.9443	-1.5310	1.5279	-1.7647	1.8885	-1.5432	2.4721	-0.6300	0.9443
4	0.9443	-1.5310	1.3050	-1.7595	1.5279	-1.7647	1.8885	-1.5432	0.5836
5	1.3050	-1.7595	1.5279	-1.7647	1.6656	-1.7136	1.8885	-1.5432	0.3607
6	1.3050	-1.7595	1.4427	-1.7755	1.5279	-1.7647	1.6656	-1.7136	0.2229
7	1.3050	-1.7595	1.3901	-1.7742	1.4427	-1.7755	1.5279	-1.7647	0.1378
8	1.3901	-1.7742	1.4427	-1.7755	1.4752	-1.7732	1.5279	-1.7647	0.0851

Note that the current minimum is highlighted for every iteration. After the eighth iteration, the minimum occurs at x = 1.4427 with a function value of -1.7755. Thus, the result is converging on the true value of -1.7757 at x = 1.4276.

Recall that for bisection (Sec. 5.4), an exact upper bound for the error can be calculated at each iteration. Using similar reasoning, an upper bound for golden-section search can be derived as follows: Once an iteration is complete, the optimum will either fall in one of two intervals. If the optimum function value is at x_2 , it will be in the lower interval (x_1, x_2, x_1) . If the optimum function value is at x_1 , it will be in the upper interval (x_2, x_1, x_u) . Because the interior points are symmetrical, either case can be used to define the error.

Looking at the upper interval (x_2, x_1, x_u) , if the true value were at the far left, the maximum distance from the estimate would be

$$\Delta x_a = x_1 - x_2$$

$$= x_l + (\phi - 1)(x_u - x_l) - x_u + (\phi - 1)(x_u - x_l)$$

$$= (x_l - x_u) + 2(\phi - 1)(x_u - x_l)$$

$$= (2\phi - 3)(x_u - x_l)$$

or 0.2361 $(x_u - x_l)$. If the true value were at the far right, the maximum distance from the estimate would be

$$\Delta x_b = x_u - x_1$$

$$= x_u - x_l - (\phi - 1)(x_u - x_l)$$

$$= (x_u - x_l) - (\phi - 1)(x_u - x_l)$$

$$= (2 - \phi)(x_u - x_l)$$

or 0.3820 $(x_u - x_l)$. Therefore, this case would represent the maximum error. This result can then be normalized to the

optimal value for that iteration
$$x_o pt$$
 to yield
$$\varepsilon_a = (2 - \phi) \left| \frac{x_u - x_l}{x_{opt}} \right| \times 100\% \tag{7.9}$$

This estimate provides a basis for terminating the iterations.

An M-file function for the golden-section search for minimization is presented in Fig. 7.7. The function returns the location of the minimum, the value of the function, the approximate error, and the number of iterations.

The M-file can be used to solve the problem from Example 7.1.

```
>> q=9.81; v0=55; m=80; c=15; z0=100;
>> z=0(t) - (z0+m/c*(v0+m*g/c)*(1-exp(-c/m*t))-m*g/c*t);
>> [xmin,fmin,ea,iter]=goldmin(z,0,8)
xmin =
   3.8317
fmin =
-192.8609 ea =
   6.9356e-005
```

Notice how because this is a maximization, we have entered the negative of Eq. (7.1). Consequently, fmin corresponds to a maximum height of 192.8609.

You may be wondering why we have stressed the reduced function evaluations of the golden-section search. Of course, for solving a single optimization, the speed savings would be negligible. However, there are two important contexts where minimizing the number of function evaluations can be important. These are

1. Many evaluations. There are cases where the golden-section search algorithm may be a part of a much larger calculation. In such cases, it may be called many times. Therefore, keeping function evaluations to a minimum could pay great dividends for such cases.

Figure 1.7: An M-file to determine the minimum of a function with the golden-section search.

2. Time-consuming evaluation. For pedagogical reasons, we use simple functions in most of our examples. You should understand that a function can be very complex and time-consuming to evaluate. For example, optimization can be used to estimate the parameters of a model consisting of a system of differential equations. For such cases, the "function" involves time-consuming model integration. Any method that minimizes such evaluations would be advantageous.

Figure 1.8: Graphical depiction of parabolic interpolation.

1.2.2. Parabolic Interpolation

Parabolic interpolation takes advantage of the fact that a second-order polynomial often provides a good approximation to the shape of f(x) near an optimum (Fig. 7.8).

Just as there is only one straight line connecting two points, there is only one parabola connecting three points. Thus, if we have three points that jointly bracket an optimum, we can fit a parabola to the points. Then we can differentiate it, set the result equal to zero, and solve for an estimate of the optimal x. It can be shown through some algebraic manipulations that the result is

```
asdasdas
asdasd
asd
asd
as
dasd
asd
das
df
aag
```

$$x_4 = x_2 - \frac{1}{2} \frac{(x_2 - x_1)^2 [f(x_2) - f(x_3)] - (x_2 - x_3)^2 [f(x_2) - f(x_1)]}{(x_2 - x_1) [f(x_2) - f(x_3)] - (x_2 - x_3) [f(x_2) - f(x_1)]}$$
(7.10)

where x1, x2, and x3 are the initial guesses, and x4 is the value of x that corresponds to the optimum value of the parabolic fit to the guesses.