Real Analysis 1

Forrest Kennedy

February 7, 2025

Contents

Lecture 13: 02-07-25 Lecture

Friday 07 February 2025

Example. Template for a proof of $(x_n \to x)$:

- 1. Let $\varepsilon > 0$ be given.
- 2. Choose N (depending on ε in general). This step takes the most amount of work and this work is not shown and is rough work.
- 3. let $n \geq N$
- 4. Now prove that $|x_n x| < \varepsilon$ for all $n \ge N$. Then the proof is complete.

Example. Prove that $\lim \left(\frac{n+1}{n}\right) = 1$

Rough work:

$$x_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$

x = 1

Now we want:

$$|x_n - x| < \varepsilon \tag{1}$$

$$\left|\frac{1}{n}\right| < \varepsilon \tag{3}$$

$$\frac{1}{n} < \varepsilon \tag{4}$$

$$\frac{1}{\varepsilon} < n \tag{5}$$

(6)

What I really want: Find N so that $\forall n \geq N, \, \frac{1}{\varepsilon} < n$, so choose $N \in \mathbb{N}$ such that $\frac{1}{\varepsilon} < N$, then if $n \geq N \Rightarrow \frac{1}{\varepsilon} < N < n$.

Proof. Let $\varepsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{\varepsilon} < N$. Let $n \geq N$. This implies that

$$\frac{1}{\varepsilon} < N \le n \tag{7}$$

$$\frac{1}{n} < \varepsilon \tag{8}$$

$$\frac{1}{\varepsilon} < N \le n \tag{7}$$

$$\frac{1}{n} < \varepsilon \tag{8}$$

$$\left| \left(1 + \frac{1}{n} \right) - 1 \right| < \varepsilon \tag{9}$$

$$\left| \left(\frac{n+1}{n} \right) - 1 \right| < \varepsilon \tag{10}$$

(11)

Thus we have shown the condition for the proof.

Example. Prove that $\lim_{n \to \infty} \left(\frac{1}{n^2} \right) = 0$

Proof. Let $\varepsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that

$$N > \frac{1}{\sqrt{\varepsilon}}.$$

Therefore

$$n > \frac{1}{\sqrt{\varepsilon}} \tag{12}$$

$$\frac{1}{n} < \sqrt{\varepsilon} \tag{13}$$

$$\frac{1}{n^2} < \varepsilon \tag{14}$$

$$\frac{1}{n} < \sqrt{\varepsilon} \tag{13}$$

$$\frac{1}{n^2} < \varepsilon \tag{14}$$

$$\left| \frac{1}{n^2} - 0 \right| < \varepsilon \tag{15}$$

Example. Prove that $\lim \frac{1}{n^2+576n+100,002} = 0$

Proof. If $\frac{1}{n^2} < \varepsilon$

$$\left| \frac{1}{n^2 + 576n + 100,002} - 0 \right| < \varepsilon \tag{16}$$

Note. Do not try to find an "optimal" N, just find one that works!