Codificación y decodificación de códigos usando códigos Checksum y Berger

Arquitecturas Tolerantes a Fallos

CURSO 2012/2013

Pereira Guerra, Adrián <adrian.pereira@udc.es> https://github.com/adrisons/ATF

1. Berger

Sabemos que el número de bits que añade Berger es $k = [log_2(I+1)]$ siendo k la longitud de bits añadidos e I la longitud del dato original no codificado. Sin embargo, al decodificar, sabemos que el código codificado tiene longitud I+k, es decir, $I + log_2(I+1)$ y, de esta fórmula no se puede despejar I. Por lo tanto, estudio los datos de la Figura 1 para encontrar una relación que me permita conseguir la longitud del dato original a partir del codificado.

Como se ve en la tabla, cuando el dato original tiene como longitud 2^i-1 se añade un nuevo bit a la codificación. Por lo tanto, se cumple que el $2^{Anhadido} \le Total < 2^{Anhadido+1}$, y sólo hay que calcular la potencia de dos a la que corresponde el Total para hallar el número de bits del dato original.

Dato original	Añadido	Total
1	1	2
2	1	3
3	2	5
4	2	6
1	2	0
7	3	10
8	3	11
9	3	12
	3	
15	4	19
16	4	20
	4	
31	5	36
	5	
63	6	69
	6	
127	7	134

Figura 1: Tabla de código Berger