Exemples 1

Si f et g sont surjectives alors $f \circ g$ est surjective

f est surjective $f: B \rightarrow C$

 $\forall c \in C \exists b \in B \mid f(b) = c \quad (définition)$

g est surjective $g: A \rightarrow B$

 $\forall b \in B \exists a \in A \mid g(a) = b \quad (définition)$

en combinant les deux définitions précédentes, on obtient :

$$\forall c \in C \exists a \in A \mid f(b) = c$$

$$f(g(a)) = c$$

$$f \circ g(a) = c$$

par conséquent **f**o**g** est surjective!

Si f et g sont injectives alors $f \circ g$ est injective

 \boldsymbol{g} est injective $\boldsymbol{g}: A \rightarrow B$

$$a_1 \neq a_2$$
 \rightarrow $\boldsymbol{g}(a_1) \neq \boldsymbol{g}(a_2)$ (définition)

f est injective $f: B \to C$

$$\begin{array}{cccc} b_1 \neq b_2 & \rightarrow & \boldsymbol{f}(b_1) \neq \boldsymbol{f}(b_2) & \text{(définition)} \\ \mathbf{g}(a_1) \neq \boldsymbol{g}(a_2) & \rightarrow & \boldsymbol{f}(\boldsymbol{g}(a_1)) \neq \boldsymbol{f}(\boldsymbol{g}(a_2)) \end{array}$$

donc
$$g(a_1) \neq g(a_2)$$
 \rightarrow $f(g(a_1)) \neq f(g(a_2))$
donc $a_1 \neq a_2$ \rightarrow $f \circ g(a_1) \neq f \circ g(a_2)$

par conséquent **f**o**g** est injective!

Si \boldsymbol{f} et \boldsymbol{g} sont bijectives alors $\boldsymbol{f} \circ \boldsymbol{g}$ est bijective

En combinant les deux résultats précédents