

I, Ryuichi YAMADA, a Japanese Patent Attorney registered No. 7898 having my Business Office at Hasegawa Bldg., 4F, 7-7 Toranomon 3-chome, Minato-ku, Tokyo, Japan, solemnly and sincerely declare:

That I have a thorough knowledge of Japanese and English languages; and

That the attached pages contain a correct translation into English of the specification of the following Japanese Application:

> APPLICATION NUMBER

DATE OF **APPLICATION**

292493/2000(Pat.)

26/SEP/2000

Applicant(s)

CANON KABUSHIKI KAISHA

Signed this / St day of Soplands

Ryuichi

YAMADA

PATENT OFFICE

JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

> APPLICATION NUMBER

DATE OF <u>APPLICATION</u>

292493/2000(Pat.) 26/SEP/2000

Applicant(s)

CANON KABUSHIKI KAISHA

19/OCT/2001

Director-General,

Patent Office : KOZO OIKAWA (Seal)

Certificate No. 3091962/2001

```
<FILE NO.>
             4315008
_____
<DOCUMENT>
             PATENT APPLICATION
<FILE NO.>
             4315008
<FILING DATE> 26/SEP/2000
<DIRECTED TO> The Director General of the Patent Office
<INTERNATIONAL CLASSIFICATION> H05B 33/00
<TITLE OF THE INVENTION>
  LUMINESCENCE DEVICE
<NUMBER OF CLAIMS>
<INVENTOR(S)>
   <Address> c/o CANON KABUSHIKI KAISHA
            3-30-2 Shimomaruko, Ohta-ku, Tokyo
   <Name>
            Takao TAKIGUCHI
   <Address> Ditto
           Akira TSUBOYAMA
   <Name>
   <Address> Ditto
   <Name>
            Shinjiro OKADA
   <Address> Ditto
            Takashi MORIYAMA
   <Name>
   <Address> Ditto
            Jun KAMATANI
   <Name>
   <Address> Ditto
           Hidemasa MIZUTANI
   <Name>
<APPLICANT>
   <IDENTIFICATION NO.>
                         000001007
                         CANON KABUSHIKI KAISHA
   <NAME>
<ATTORNEY>
   <IDENTIFICATION NO.>
                          100096828
  <PATENT ATTORNEY>
                          Keisuke WATANABE
   <NAME>
   <TEL>
                          03-3501-2138
<DESIGNATED ATTORNEY>
                          100059410
   <IDENTIFICATION NO.>
   <PATENT ATTORNEY>
   <NAME>
                          Yoshio TOYODA
   <TEL>
                          03-3501-2138
<OFFICIAL FEES>
   <PREPAY REGISTRATION NO.>
                                004938
   <AMOUNT>
                                21000
<ARTICLES PRESENTED>
   <ARTICLE>
                         Specification
                                        1
                         Drawing(s)
                                        1
   <ARTICLE>
                         Abstract
                                        1
   <ARTICLE>
   <GENERAL POWER NO.>
                         9703710
```

YES

<REQUEST FOR PROOF>

[Document]

Specification

[Title of the Invention]

Luminescence Device

[Claims]

A luminescence device, comprising: an
 organic compound layer comprising a metal coordination
 compound represented by the following formula (1):

$$X_2$$

(1),

[wherein M denotes Ir, Pt, Rh or Pd; n is 2 or 3; Y denotes an alkylene group having 2 - 4 carbon atoms (wherein one or at least two non-neighboring methylene groups may be replaced with -O-, -S- or -CO- and hydrogen atom in said alkylene group may be replaced with a linear or branched alkyl group having 1 - 10 carbon atoms); and X1 and X2 independently denote hydrogen atom; halogen atom; nitro group; trialkyl-

silyl group having 1 - 8 carbon atoms; or a linear or branched alkyl group having 1 - 20 carbon atoms (wherein one or at least two non-neighboring methylene groups may be replaced with -O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH- or -C≡C- and capable of including hydrogen atom which can be replaced with fluorine atom)].

- 2. A device according to Claim 1, wherein in the formula (1), at least one of X1 to X2 is hydrogen atom.
- 3. A device according to Claim 1 or 2, further comprising two electrodes oppositely disposed to sandwich the organic compound layer to constitute an electroluminescence device, wherein a voltage is applied between the electrodes to produce luminescence.

[Detailed Description of the Invention]
[0001]

[Technical Field to which the Invention Pertains]

The present invention relates to a luminescence device using an organic compound. More specifically, the present invention relates to an organic electroluminescence device employing a metal coordination compound represented by the abovementioned formula (1) as a luminescence material. [0002]

[Prior Art]

An organic EL (electroluminescence) device has been extensively studied as a luminescence device with a high responsiveness and high efficiency. The organic EL device generally has a basic structure as shown in Figure 1(a), (b) (e.g., as described in "Macromol. Symp.", 125, pp. 1 - 48 (1997)).
[0003]

As shown in Figure 1, the EL device is generally constituted by disposing, on a transparent substrate 15, a plurality of organic film layers between a transparent electrode 14 and a metal electrode 11.

[0004]

In Figure 1(a), the organic layers includes a luminescence layer 12 and a hole transport layer 13.

As transparent electrode 14, a film of ITO (indium tin oxide) having a larger work function is used so as to ensure a good hole injection performance from the transparent electrode 14 into the hole transport layer 13. As the metal electrode 11, a layer of metal material such as aluminum, magnesium, alloys thereof, etc., having a smaller work function is used so as to ensure a good electron injection performance into the organic layer(s).

These electrodes may be formed in a thickness of 50 - 200 nm.

[0005]

The luminescence layer 12 may be formed of, e.g., aluminum quinolinol complex (representative example thereof may include Alq3 described hereinafter) having an electron transporting characteristic and a luminescent characteristic. The hole transport layer 13 may be formed of, e.g., triphenyldiamine derivative (representative example thereof may include α -NPD described hereinafter) having an electron donating characteristic. [0006]

The above-described EL device exhibits an electrical rectification characteristic, so that when an electric field is applied between the metal electrode 11 as a cathode and the transparent electrode 14 as an anode, electrons are injected from the metal electrode 11 into the luminescence layer 12 and holes are injected from the transparent electrodes 15.

[0007]

The thus-injected holes and electrons are recombined within the luminescence layer 12 to produce excitons, thus producing luminescence. At that time, the hole transport layer 13 functions as an electron-blocking layer to increase a recombination efficiency at the boundary between the luminescence layer 12 and the hole transport layer 13, thus enhancing a

luminescence efficiency.
[0008]

Further, in Figure 1(b), an electron transport layer 16 is disposed between the metal electrode 11 and the luminescence layer 12 shown in Figure 1(a), whereby an effective carrier blocking performance can be ensured by separating functions of luminescence, electron transport and hole transport, thus allowing efficient luminescence. The electron transport layer 16 may be formed of, e.g., oxadiazole derivatives.

[0009]

Heretofore, in ordinary organic EL devices, fluorescence produced during a transition of luminescent center molecule from a singlet excited state to a ground state has been used as luminescence. On the other hand, not the above fluorescence (luminescence) via singlet exciton, phosphorescence (luminescence) via triplet exciton has been studied for use in organic EL device as described in, e.g., Document 1: "Improved energy transfer in electrophosphorescent device" (D.F. O'Brien et al., Applied Physics Letters, Vol. 74, No. 3, pp. 442 - (1999)) and Document 2: "Very high-efficiency green organic light-emitting devices based on electrophosphorescence" (M.A. Baldo et al., Applied Physics Letters, Vol. 75, No. 1, pp. 4 - 1999)).

[0010]

In these documents, a four layer-structure of organic layers as shown in Figure 1(c) is principally used. The structure includes a hole transfer layer 13, a luminescence layer 12, an exciton diffusion-prevention layer 17, and an electron transport layer 16 successively formed in this order from the anode side. The materials used therefor are carrier transporting materials and phosphorescent materials shown below. Abbreviations for the respective materials are follows.

Alq3: aluminum-quinolinol complex,

α-NPD: N4,N4'-di-naphthalene-1-y1-N4,N4'-diphenyl-biphenyl-4,4'-diamine,

CBP: 4,4'-N,N'-dicarbazole-biphenyl,

BCP: 2,9-dimethyl-4,7-diphenyl-1,10-phenan-throline,

PtEOP: platinum-octaethyl porphine complex, and Ir(ppy)3: iridium-phenylpyridine complex.
[0011]

[0012]

In the above Documents 1 and 2, higher efficiencies have been achieved by using a hole transport layer 13 of $\alpha\text{-NPD}$, an electron transport

layer 16 of Alq3, an exciton diffusion-prevention layer 17 of BPC, and a luminescence layer 12 of a mixture of CPB as a host material with Ir(ppy)₃ or PtOEP doped into CBP at a concentration of ca. 6 wt. %.

[0013]

The reason why the phosphorescence
(luminescence) material has particularly attracted
notice is that the phosphorescence material is
expected to provide a higher luminescence efficiency
in principle. The reason is as follows. Excitons
produced by recombination of carriers comprise singlet
excitons and triplet excitons presented in a ratio of
1:3. Fluorescence produced during the transition from
the singlet excited state to the ground state is
utilized as luminescence in the conventional organic
EL devices. However, a resultant luminescence
efficiency is 25 % (being upper limit) based on all
the produced excitons in principle.

However, if phosphorescence produced during transition from the triplet excited state is employed, a resultant luminescence efficiency is expected to be at least three times (that of the case of fluorescence) in principle. In addition thereto, if intersystem crossing from the singlet excited state which is a higher energy level to the triplet excited state is taken into consideration, the luminescence

efficiency of phosphorescence can be expected to be 100 %, which is four times that of fluorescence, in principle.

[0014]

The use of phosphorescence based on transition from the triplet excited state has also been proposed in, e.g., Japanese Laid-Open Patent Application (JP-A) 11-329739 (organic EL device and production process thereof), JP-A 11-256148 (luminescent material and organic EL device using the same) and JP-A 8-319482 (organic electroluminescent device).

[0015]

[Problems to be Solved by the Invention]

The above-mentioned organic EL devices utilizing phosphorescence have accompanied with a problem of luminescent deterioration particularly in an energized state. The reason for luminescent deterioration has not been clarified as yet but may be attributable to such a phenomenon that the life of triplet exciton is generally longer than that of singlet exciton by at least three digits, so that molecule is placed in a higher-energy state for a long period to cause reaction with ambient substance, formation of exciplex or excimer, change in minute molecular structure, structural change of ambient substance, etc.

[0016]

Anyway, the phosphorescence luminescence device is expected to provide a higher luminescence efficiency as described above, while the device is accompanied with the problem of luminescent deterioration in energized state.

[0017]

Accordingly, an object of the present invention is to provide a luminescence device and a display apparatus, capable of providing a high-efficiency luminescence at a high brightness (or luminance) for a long period (less deterioration in luminescence in energized state).

[0018]

[Means for Solving the Problems]

More specifically, the luminescence device of the present invention is characterized by including an organic compound layer comprising a metal coordination compound represented by the following formula (1): [0019]

$$X_1$$
 X_2 X_2

(1),

[wherein M denotes Ir, Pt, Rh or Pd; n is 2 or 3;
Y denotes an alkylene group having 2 - 4 carbon atoms
(wherein one or at least two non-neighboring methylene
groups may be replaced with -O-, -S- or -CO- and
hydrogen atom in said alkylene group may be replaced
with a linear or branched alkyl group having 1 - 10
carbon atoms); and X1 and X2 independently denote
hydrogen atom; halogen atom; nitro group; trialkylsilyl group having 1 - 8 carbon atoms; or a linear or
branched alkyl group having 1 - 20 carbon atoms
(wherein one or at least two non-neighboring methylene
groups may be replaced with -O-, -S-, -CO-, -CO-O-,
-O-CO-, -CH=CH- or -C=C- and capable of including
hydrogen atom which can be replaced with fluorine
atom)].

In the luminescence device according to the present invention, in the formula (1), at least one of X1 to X2 may preferably be hydrogen atom.

[0021]

[0020]

Further, the aforementioned luminescence device may preferably further comprise two electrodes oppositely disposed to sandwich the organic compound layer to constitute an electroluminescence device, wherein a voltage is applied between the electrodes to produce luminescence.

[0022]

[Embodiments for Practicing the Invention]

In the case where a luminescence layer is formed of a carrier transporting host material and a phosphorescent guest material, a process of emission of light from the triplet exciton may generally involve the following steps:

- transport of electron and hole within a luminescence layer,
 - (2) formation of exciton of the host material,
- (3) transmission of excited energy between host material molecules,
- (4) transmission of excited energy from the host material molecule to the guest material molecule,
- (5) formation of triplet exciton of the guest material, and
- (6) phosphorescence produced during transition from the triplet excited state to the ground state of the guest material.

[0023]

In the respective steps, desired energy transmission and luminescence may be caused based on various deactivation and competition.

[0024]

In order to improve a luminescence efficiency

of the EL device, a luminescence center material per se is required to provide a higher yield of luminescence quantum. However, an efficient energy transfer between host material molecules and/or between host material molecule and guest material molecule is also an important factor. Further, the case of the luminescent deterioration in energized state has not been clarified as yet but may presumably relate to the luminescent center material per se or an environmental change thereof by its ambient molecular structure.

[0025]

For this reason, the present inventors have extensively studied on various metal coordination compounds and as a result, have found that the organic electroluminescence device using the metal coordination compound represented by the abovementioned formula (1) as the luminescence center material allows a high-efficiency luminescence with a high brightness (luminance) for a long period and less luminescent deterioration in energized state.

[0026]

In the metal coordination compound represented by the formula (1) used in the present invention, at least one of X1 and X2 may preferably be hydrogen atom.

[0027]

The metal coordination compound used in the present invention has a phosphorescent property and is assumed to have a lowest excited state comprising, as a triplet excited state, a metal-to-ligand charge transfer (MLCT*) state or π - π * excited state. The phosphorescent emission of light (phosphorescence) is produced during the transition from these states to the ground state.

By a luminescence experiment based on photoluminescence caused by photo-excitation, a phosphorescence yield and a phosphorescence life are obtained. The luminescent material of the present invention provides a higher phosphorescence yield of 0.15 - 0.9 and a shorter phosphorescence life of 1 - 40 µsec.

More specifically, the shorter

phosphorescence life is a condition for providing a

resultant EL device with a higher luminescence

efficiency. This is because the longer

phosphorescence life increases molecules placed in

their triplet excited state which is a waiting state

for phosphorescence, thus resulting in a problem of

lowering the resultant luminescence efficiency

particularly at a higher current density. The

material of the present invention is a suitable

luminescent material for an EL device with a higher

phosphorescence yield and a shorter phosphorescence life. Further, an emission wavelength of the metal coordination compound represented by the formula (1) of the present invention can be expected to be adjusted by appropriately modifying the substituents X1 and X2 thereof. From also the viewpoints as described above, the metal coordination compound of the present invention is a suitable luminescent material for the EL device.

Further, as shown in Examples appearing hereinafter, it has been clarified that the (metal coordination) compound of the present invention also has an excellent stability in a continuous energization test.

This may be attributable to introduction of particular substituents as a feature of the present invention allowing control of intermolecular interaction with a host luminescent material and suppression of formation of associated exciton leading to thermal inactivation, thus minimizing quenching to improve device characteristics.

[0030]

[0029]

The luminescence device according to the present invention, as shown in Figure 1, may preferably include the organic layer comprising the metal coordination compound between two oppositely

disposed electrodes comprising a transparent electrode between which are supplied with a voltage to produce luminescence, thus constituting an electric-field luminescence device.

[0031]

The high-efficiency luminescence device shown in the present invention may be applicable to products required to allow energy saving and high luminance, applied examples of which may include those for display apparatus and illumination apparatus, a light source for printers, and backlight (unit) for a liquid crystal display apparatus. As the display apparatus, it is possible to provide a flat panel display apparatus capable of exhibiting an excellent energy saving performance, a high visibility and a good lightweight property. With respect to the light source for a printer, it becomes possible to replace a laser light source of laser beam printer currently used widely with the luminescence device according to the present invention. Further, when independently addressable devices are arranged in arrays and desired exposure of light to a photosensitive drum is effected to form an image. By the use of the device of the present invention, it becomes possible to considerably reducing the volume (size) of image forming apparatus. With respect to the illumination apparatus and backlight (unit), the resultant apparatus (unit) using

the luminescence device of the present invention is expected to have an energy saving effect.
[0032]

A synthesis scheme of the metal coordination compound represented by the above-mentioned formula (1) used in the present invention will be shown by taking an iridium complex as an example.

Synthesis of ligand L
[0033]

Synthesis of iridium coordination compound [0034]

or

[0035]

$$IrCl_3 \xrightarrow{2 \times L} [Ir(L)_2Cl]_2 \xrightarrow{L} Ir(L)_3$$

[0036]

Hereinbelow, specific structural formulas of the metal coordination compounds used i the present

invention are shown in Tables 1 - 7. However, there are merely exemplified as representative examples.

The present invention is not limited thereto. A to C used in Tables 1 - 7 represent formulas shown below.

[0037]

A:
$$-\text{CH}_2\text{CH}_2$$
— B: $-\text{CH}_2\text{CHCH}_2$ — C: $-\text{CH}_2\text{CHCHCH}_2$ —

D: $-\text{CH}_2\text{CH}_2$ — E: $-\text{CH}_2\text{CHC}$ — F: $-\text{CHCH}_2$ — G: $-\text{CHO}$ —

H: $-\text{CH}_2\text{CH}_2$ — I: $-\text{CH}_2\text{CHCHO}$ — J: $-\text{CH}_2\text{CHCH}_2$ — K: $-\text{CH}_2\text{CHCH}_2$ —

L: $-\text{SCHCHCH}_2$ — M: $-\text{CH}_2\text{CHCHS}$ — N: $-\text{CH}_2\text{SCHCH}_2$ — O: $-\text{CH}_2\text{CHSCH}_2$ —

P: $-\text{CH}_2\text{CHC}$ — Q: $-\text{CHCH}_2$ — R: $-\text{CCCH}_2$ — S: $-\text{CH}_2\text{CC}$ —

T: $-\text{CCHO}$ — U: $-\text{CH}_2\text{CHCH}$ — V: $-\text{CHCH}_2$ — W: $-\text{CCCH}_2$ —

X: $-\text{CH}_2\text{CHC}$ — Z: $-\text{CH}_2\text{CHO}$ — A': $-\text{CHCHO}$ — B': $-\text{CH}_2\text{CHCC}$ —

[8800]

[Table 1]

No.	М	n	Υ	R ₁	R ₂	X ₁	X ₂
(1)	Ir	3	A	_		Н	Н
(2)	İr	3	Α	_	_	OCH3	Н
(3)	lr	3	В	Н		н	Н
(4)	Īr	3	В	Н	_	OCH ₃	Н
(5)	lr	3	В	Н	_	н	CF ₃
(6)	İr	3	В	н	-	Н	CI
(7)	İr	3	В	СН₃	_	Н	Н
(8)	lr	3	В	СН₃	_	F	Н
(8)	Îr	3	В	СН₃	_	NO ₂	Н
(10)	lr	3	В	C₂H₅	_	Н	Н
(11)	Ir	3	В	C₃H ₇	_	Н	CF ₃
(12)	İr	3	В	C ₂ H ₅ (CH ₃)CHCH ₂	_	н	Н
(13)	İr	4	В	C ₆ H ₁₃	_	OCH(CH ₃) ₂	н
(14)	Ir	3	В	C ₁₀ H ₂₁	_	Si(CH ₃) ₃	Н
(15)	lr	3	С	Н	Н	Н	Н
(16)	Īr	3	С	Н	Н	OCH3	Н
(17)	Īr	3	С	Н	Н	Н	CF ₃
(18)	I r	3	С	Н	Н	F	н
(19)	I r	3	С	Н	Н	NO ₂	Н
(20)	Īr	3	С	н	Н	OC ₅ H ₁₁	Н
(21)	İr	3	С	Н	Н	O(CH ₂) ₂ C ₃ F ₇	. н
(22)	Îr	3	С	Н	Н	Н	Si(C ₂ H ₅) ₃
(23)	Ir	3	С	н	н	Н	Br
(24)	Īr	3	С	Н	Н	CH ₃	н
(25)	Īr	3	С	СН₃	Н	CH₃	Н
(26)	lr	3	С	Н	СН₃	н	н
(27)	lr	3	С	СН₃	СН₃	Н	н
(28)	Îr	3	С	C ₃ H ₇	Н	Si(CH ₃) ₃	Н
(29)	Îr	3	С	н	C ₅ H ₁₁	Н	Н
(30)	İr	3	С	C ₈ H ₁₇	н	CI	Н

[0039] [Table 2]

No.	М	n	Υ	R _i	R ₂	X ₁	X ₂
(31)	İr	3	С	C₂H₅	C₂H₅	Н	C ₇ F ₁₅
(32)	lr	3	С	н	C₀H₁₃	NO₂	н
(33)	lr	3	С	C ₁₀ H ₂₁	Н	CF ₃	Н
(34)	lr	3	ပ	н	C₀H₁⋼	Н	OC₄H ₉
(35)	Īr	3	D	_	_	Н	Н
(36)	İr	3	D	_	_	OCH₃	н
(37)	İr	3	E	н	_	Н	н
(38)	Îr	3	E	н	_	Н	NO ₂
(39)	Îr	3	E	СН₃	_	н	н
(40)	Ĭr	3	E	CH₃	_	OCH₃	Н
(41)	Īr	3	E	СН₃	_	Н	CF₃
(42)	Îr	3	E	СН₃	_	NO₂	Н
(43)	İr	3	E	CH₃	_	OC₃H ₇	Н
(44)	İr	3	É	C₂H₅	_	Н	н
(45)	İr	3	E	C₂H₅	· -	Н	CF₃
(46)	Îr	3	E	C ₃ H ₇	-	Н	н
(47)	İr	3	E	C₃H₁	-	OC₅H ₁₁	н
(48)	lr	3	E	(CH3)2CHCH2CH2	1	Н	H
(49)	lr	3	E	C₅H₁₁	1	Н	C₄F ₉
(50)	İr	3	E	C ₆ H₁₃		н	Н
(51)	Ŀ	3	E	C₅H₁₃	_	н	. Br
(52)	İr	3	E	C₀H₁₃	<u> </u>	NO ₂	Н
(53)	Îr	3	E	C ₈ H₁,	_	Н	Н
(54)	<u>Ir</u>	3	E	С"Ң"	_	OCH₂C≡CCH₃	н
(55)	. Ir	3	E	C ₁₀ H ₂₁	_	Н	Н
(58)	Ir	3	E	C ₁₀ H ₂₁	_	OCH₂CH=CH₂	Н
(57)	Ir	3	F	н	_	OCH₃	н
(58)	lr	3	F	CH₃		н	Н
(59)	lr	3	F	CH₃		OCH₃	н
(60)	lr	3	F	C₂H₅	_	Н	CF₃

[0040]

[Table 3]

No.	М	n	Υ	R ₁	R₂	X ₁	X ₂
(61)	Ir	3	F	C₅H₁₃	_	OCH(CH ₃) ₂	Н
(62)	Îr	3	F	C ₈ H₁7	_	Si(CH ₃) ₂ C ₈ H ₁₇	н
(63)	Îr	3	G	Н	_	OCH₃	н
(84)	Ir	3	G	Н	_	Н	CF ₃
(65)	Îr	3	G	н	_	O(CH ₂) ₃ OCH ₂ C ₂ F ₅	Н
(66)	lr	3	G	CH₃		Н	Н
(67)	Ir	3	Н	Н	Н	Н	н _
(68)	Îr	3	Н	СН₃	н	Si(CH ₃) ₃	Н
(69)	lr	3	Н	Н	СН₃	Н	CI
(70)	lr	3	I	Н	н	Н	н
(71)	lr	3	I	Н	н	OCH ₃	н
(72)	Ir	3	I	н	Н	Н	CF₃
(73)	İr	3	I	Н	Н	Н	СН₃
(74)	lr	3	I	C₂H₅	Н	COOC ₂ H ₅	н
(75)	lr	3	I	Н	C₅H₁₁	OCH ₂ CH=CH ₂	н
(78)	Ir	3	J	н	_	Н	н
(77)	<u>I</u> r	3	J	Н	_	NO ₂	Н
(78)	Îr	3	J	CH₃	_	OCH₃	Н
(79)	Îr	3	К	Н		Н	Н
(80)	İr	3	К	н	_	Н	Si(CH ₃) ₃
(81)	İr	3	К	C ₃ H ₇		Н	CF₃
(82)	Îr	3	L	Н	Н	Н	Н
(83)	Ir	3	L	CH₃	Н	SC₂H₅	н
(84)	Îr	3	L	Н	CH₃	OC ₆ H ₁₃	Н
(85)	Īr	3	М	н	Н	Н	н
(88)	İr	3	М	C₂H₅	н	COOC ₃ H ₇	H
(87)	Îr	3	М	н	C₂H₅	Н	O(CH ₂) ₃ C ₂ F ₅
(88)	İr	3	N	_	н	н .	н
(89)	İr	3	N	_	C₂H₅	Н	NO ₂
(90)	Îr	3	N		C₀H₁₃	CI	Н

[0041] [Table 4]

						ş	
No.	M	n	Y	R _i	R₂	X ₁	X ₂
(91)	lr	3	0	Н	<u> </u>	. Н	н
(92)	Ĭr	3	0	Н	_	Н	Si(C ₂ H ₅) ₃
(93)	lr	3	0	C ₈ H₁,7·		OCH(CH ₃) ₂	Н
(94)	İr	3	Р	н	<u> </u>	Н	н
(95)	lr	3	Р	C₃H₁	_	Н	COOCH₃
(98)	lr	3	P	C ₆ H₁₃		Н	н
(97)	lr	3	Q	н	_	Н	н
(98)	Îr	3	Q	C₄H ₉	_	O(CH ₂) ₃ CH=CH ₂	Н
(99)	lr	3	R	_		Н	н
(100)	İr	3	R	_		Н	CF ₃
(101)	Ir	3	S		_	н	Н
(102)	lr	3	S	_	_	OC₂H₅	н
(103)	<u>l</u> r	3	T	Н	_	Н	Br
(104)	İr	3	T	C₂H₅	_	Н	Н
(105)	<u>Ir</u>	3	U	_	_	Н	н
(106)	<u> </u>	3	U	_		Н	C ₇ F ₁₅
(107)	İr	3	>	н	_	н	Н
(108)	lr	3	W	-	_	OCH₂C≡CCH₃	Н
(109)	lr	3	X	CH₃	_	Н	H
(110)	<u>I</u> r	3	Z	_	Н	O(CH ₂) ₂ CH(CH ₃) ₂	Н
(111)	<u>Ir</u>	3	Z	-	C₃H ₇	Н	Н
(112)	Ir	3	A'	н	Н	Н	н
(113)	Ir	3	B'	Н		Н	NO ₂
(114)	Ir	3	B'	СН₃	_	Н	Н
(115)	lr	3	C'	Н	C₀H₁₀	OCH₃	Н
(116)	Pt	2	Α	_	_	Н	Н
(117)	Pt	2	В	н	_	н	H
(118)	Pt	2	В	н	_	Н	C₄F _θ
(119)	Pt	2	В	СН₃	_	OCH ₃	Н
(120)	Pt	2	В	C₃H₁	_	Н	CF ₃

[0042] [Table 5]

No.	М	n	Y	R ₁	R ₂	X ₁	X ₂
(121)	Pt	2	В	C ₈ H ₁₇	_	Н	Н
(122)	Pt	2	С	н	н	Н	Н
(123)	Pt	2	С	Н	Н	Н	CF ₃
(124)	· Pt	2	С	СН₃	СН3	Н	Н
(125)	Pt	2	С	C₂H₅	Н	н	Н
(126)	Pt	2	С	C ₁₀ H ₂₁	Н	OCH ₃	Н
(127)	Pt	2	D	_		Н	Н
(128)	Pt	2	E	Н	_	Н	Н
(129)	Pt	2	E	СН	_	Н	Н
(130)	. Pt	2	E	СН₃	_	Н	Н
(131)	Pt	2	E	сӊ		н -	NO ₂
(132)	Pt	2	E	C ₈ H ₁₃	_	OC₂H₅	Н
(133)	Pt	2	F	СН₃		н	н
(134)	Pt	2	F	C₂H₅	_	н	CF ₃
(135)	Pt	2	G	Н	-	н	н
(138)	Pt	2	G	Н	.—	Н	Si(CH ₃) ₃
(137)	Pt	2	G	C₄H ₉		н	СН₃
(138)	Pt	2	H	Н	C ₆ H₁₃	н	Н
(139)	Pt	2	I	Н	Н	Н	Н
(140)	Pt	2	I	C₂H₅	H	Н	Si(C ₂ H ₅) ₃
(141)	Pt	2	J	_	н	н	Н
(142)	Pt	2	К	C₅H ₁₁		Н	Н
(143)	Pt	2	L	C ₈ H ₁₇	Н	SC₂H ₅	Н
(144)	Pt	2	N	_	Н	Н	Н
(145)	Pt	2	0	Н		Н	, Н
(148)	Pt	2	P	Н		н	Н
(147)	Pt	2	Q	Н		Н	СН₃
(148)	Pt	2	R		_	Н	Н
(149)	Pt	2	υ	7 	_	н	н
(150)	Pt	2	٧	н	_	NO ₂	н

[0043] [Table 6]

						7	
No.	M	n	Υ.	R ₁	R ₂	X ₁	X ₂
(151)	Pt	2	w	<u> </u>		Н	Н
(152)	Pt	2	X	СН₃		Н	Н
(153)	Pt	2	Z		н	н	Н
(154)	Pt	2	Α'	Н	Н	н	н
(155)	Pt	2	B,	. н		OCH₃	Н
(156)	Pt	2	Ċ	Н	Н	Н	CF ₃
(157)	Rh	3	В	H	-	Н	8r
(158)	Rh	3	В	Н	_	OC ₆ H ₁₃	Н
(159)	Rh	3	В	СН₃	-	Н	Н
(160)	Rh	3	С	Н	Н	Н	Н
(161)	Rh	3	C	Н	Н	OCH₃	Н
(162)	Rh	3	C	Н	н	NO ₂	Н
(163)	Rh	3	C	Н	CH₃	Н	Н
(164)	Rh	3	C	C₀H₁₃	Н	Н	Si(CH₃)₃
(165)	Rh	3	D	-	_	н	н
(166)	Rh	3	E	Н	_	COOC₂H₅	Н
(167)	Rh	3	E	СН₃	-	Н	Н
(168)	Rh	3	E	СН₃	1	н	O(CH ₂) ₆ C ₂ F ₅
(169)	Rh	3	E	C₃H ₇	–	н	Н
(170)	Rh	3	E	C10H21		Н	Н
(171)	Rh	3	F	C ₈ H ₁₇	<u> </u>	Н	Н
(172)	Rh	3	G	Н	-	OCH₂CH=CH₂	Н
(173)	Rh	3	G	CH₃		Н .	CF₃
(174)	Rh	3	Н	Н	н	н	Н
(175)	Rh	3	I	Н	Н	Н	Н
(178)	Rh	3	K	C₂H₅		CI	Н
(177)	Rh	3	М	. H	Н	Н	H
(178)	Rh	3	N		н	Н	н
(179)	Rh	3	P	СН₃	_	Н	NO ₂
(180)	Rh	3	S	-	_	Н	Н

[0044] [Table 7]

No.	M	n	Υ	R ₁	R ₂	X ₁	X ₂
(181)	Rh	3	٧	Н		Н	Н
(182)	Rh	3	Х	Н	_	SC ₅ H ₁₁	Н
(183)	Rh	3	C,	Н		OC ₇ H ₁₅	Н
(184)	Pd	2	В	C ₆ H ₁₃		Н	н
(185)	Pd	2	С	Н	Н	OCH ₃	Н
(186)	Pd	2	С	Н	Н	н	Н
(187)	Pd	2	D	_	_	Н	Н
(188)	Pd ·	2	E	Н	_	н	CF ₃
(189)	Pd	2	E	СН₃	_	н	Н
(190)	Pd	2	F	C ₃ H ₇	_	Н	Н
(191)	Pd	2	G	Н	_	н	Н
(192)	Pd	2	G	Н	_	Si(CH ₃) ₃	H-
(193)	Pd	2	1	СН₃	н	NO ₂	н
(194)	Pd	2	J	_	н	н	Н
(195)	Pd	2	L	Н	н	Н	Н
(198)	Pd	2	М	Н	н	C₄F ₉	н
(197)	Pd	2	0	Н	_	н	C₄H ₉
(198)	Pd	2	Т	Н	_	Н	Н
(199)	Pd	2	w	_	_	OCH3	OCH3
(200)	Pd	2	۸,	CH ₃ .	Н	н	CI

[0045]

[Examples]

A common portion of device preparation steps used in the present invention will be described.
[0046]

As a device structure, a device having a three-layer structure shown in Figure 1(b) was used. On a glass substrate (transparent substrate 15), a 100 nm-thick film (transparent electrode 14) of ITO (indium tin oxide) was formed, followed by patterning to have an (opposing) electrode area of 3 mm 2 . On the ITO-formed substrate, organic layers and metal electrode layers shown below were successively formed by vacuum (vapor) deposition using resistance heating in a vacuum chamber (10^{-4} Pa).

Organic layer 1 (hole transport layer 13) (40 nm): $\alpha\text{-NPD}$

Organic layer 2 (luminescence layer 12) (20 nm): mixture of CBP: metal coordination compound (metal coordination compound proportion: 5 wt.%)

Organic layer 3 (electron transport layer 16) (30 nm): Alq3

Metal electrode layer 1 (15 nm): Al-Li alloy (Li = 1.8 wt. %)

Metal electrode layer 2 (100 nm): Al [0047]

An electric field was applied between the ITO

electrode (as an anode) and the Al electrode (as a cathode) to apply a voltage to each device so as to provide the device with the same current value, thus measuring a luminance (brightness) with time. The constant current amount was 70 mA/cm^2 . At that time, the resultant luminances of the respective devices were in the range of $60 - 220 \text{ cd/m}^2$.

As the cause of device deterioration, oxygen or moisture (water content) is a problematic factor, so that each device was subjected to the above measurement in a dry nitrogen gas stream after it was taken out of the vacuum chamber so as to remove such a factor.

[0049]

In Comparative Example 1, as the conventional luminescent material, $Ir(ppy)_3$ described in the aforementioned document 2.

[0050]

The results of energization durability test of the devices using the respective compounds are shown in Table 8. The devices (of the present invention) provide luminance half-life times clearly longer than the device using the conventional luminescent material, so that it becomes possible to realize a high-durability device resulting from stability of the materials of the present invention.

[0051] [Table 8]

Ex. No.	Luminescent material No. (Ex.Comp. No.)	Luminance half-life (Hr)
1	(10)	750
2	(15)	950
3	(17)	800
4	(21)	850
5	(39)	900
6	(43)	750
7	(46)	900
8	(85)	500
9	(96)	650
10	(122)	650
11	(131)	600
12	(146)	550
13	(163)	600
14	(177)	450
15	(182)	450
Comp.Ex.	Ir(ppy)3	350

[0052]

[Effect of the Invention]

As described hereinabove, the metal coordination compound used in the present invention

provides a higher phosphorescence efficiency and a shorter phosphorescence life and allows control of its emission wavelength by changing the substituents, thus being suitable as a luminescent material for EL device.

[0053]

As a result, the luminescence device having an organic layer containing the metal coordination compound according to the present invention is an excellent device which exhibits a high efficiency luminescence, a high luminance for a long period, and a less luminescence deterioration in energized state.

[Brief Description of the Drawing]

Figure 1 is a schematic (sectional) view of a layer structure of a luminescence device according to the present invention.

[Explanation of Symbols]

- 11: metal electrode
- 12: luminescence layer
- 13: hole-transporting layer
- 14: transparent electrode
- 15: transparent substrate
- 16: electron-transporting layer
- 17: exciton diffusion-prevention layer

FIG. 1

[Document Name]

Abstract

[Abstract]

[Problem]

To provide a luminescence device which produces high-efficiency luminescence, maintains a high brightness for a long period of time, and exhibits less deterioration in energized state.

[Solution Means]

A luminescence device including an organic compound layer which contains a metal coordination compound having a partial structure represented by the following formula (1):

$$X_2$$

(1),

[wherein M denotes Ir, Pt, Rh or Pd; n is 2 or 3; Y denotes an alkylene group having 2 - 4 carbon atoms (wherein one or at least two non-neighboring methylene groups may be replaced with -O-, -S- or -CO- and hydrogen atom in said alkylene group may be replaced

with a linear or branched alkyl group having 1 - 10 carbon atoms); and X1 and X2 independently denote hydrogen atom; halogen atom; nitro group; trialkyl-silyl group having 1 - 8 carbon atoms; or a linear or branched alkyl group having 1 - 20 carbon atoms (wherein one or at least two non-neighboring methylene groups may be replaced with -O-, -S-, -CO-, -CO-O-, -O-CO-, -CH=CH- or -C=C- and capable of including hydrogen atom which can be replaced with fluorine atom)]. [Selected Figure]

Figure 1