Notas de Econometría

Pavel Solís 2025

4 Análisis de Regresión Múltiple: Inferencia

Queremos probar hipótesis sobre parámetros del modelo de regresión poblacional

- Una restricción de un parámetro
- Una restricción de varios parámetros
- Varias restricciones
 - Uso: Evaluar si un grupo de x's se puede omitir del modelo

4.1 Distribuciones muestrales de los estimadores MCO

Con RLM.1-RLM.5 obtuvimos para los estimadores MCO

- Valor esperado
- Varianza (para precisión de los estimadores)

Para hacer inferencia estadística, necesitamos la distribución muestral de $\widehat{\beta}_i$

- No definida por supuestos G-M
- Depende de la distribución de los errores (porque condicionamos sobre x's)
- Definimos nuevo supuesto (sobre los errores) para obtenerla

Supuesto RLM.6. Normalidad del Error

El error poblacional u es independiente de las variables explicativas x_1, x_2, \ldots, x_k y se distribuye normal con media cero y varianza σ^2 :

$$u \sim N(0, \sigma^2)$$

Observaciones sobre el supuesto RLM.6:

- RLM.6 es más fuerte que supuestos anteriores
 - Si u es independiente de x_j

$$\mathbb{E}\left(u\mid x_{1},x_{2},\ldots,x_{k}\right)=\mathbb{E}\left(u\right)=0$$

$$\operatorname{Var}(u \mid x_1, x_2, \dots, x_k) = \operatorname{Var}(u) = \sigma^2$$

- RLM.6 abarca los supuestos RLM.4 y RLM.5
 - Pero escribimos RLM.1-RLM.6 para enfatizar que suponemos más cosas
- En corte transversal, RLM.1-RLM.6 se conocen como los supuestos del **modelo** lineal clásico (MLC)

- Supuestos MLC = supuestos G-M + supuesto RLM.6
- \bullet Estimadores MCO $\widehat{\beta}_j$ tienen una propiedad de eficiencia más fuerte con MLC
 - Con G-M, MELI
 - Con MLC, estimadores insesgados de varianza mínima (no solo lineales en y_i)
- Supuestos MLC para la población se pueden resumir como

$$y \mid \vec{x} \sim N \left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k, \ \sigma^2 \right)$$

- -y condicional en \vec{x} , tiene una distribución normal homocedástica
 - * Media es lineal en \vec{x}
 - * Varianza es constante

[Gráfica]

- Justificación para RLM.6 se basa en TLC
 - -u es suma de muchos factores no observados que afectan a y, pero
 - * Depende del número factores y qué tan diferentes son sus distribuciones
 - * Supone que factores afectan de forma aditiva
- En la práctica, RLM.6 es una cuestión empírica
 - No todas las variables y se distribuyen como una normal
 - * Ej. Sueldo (¿puede ser negativo? ¿hay salario mínimo?)
 - A veces, una transformación de y genera distribución más cercana a normal
 - * Ej. log(precio) vs precio
 - A veces, RLM.6 es claramente falsa como cuando y solo toma algunos valores
 - * Ej. Arrestos (solo toma valores enteros y generalmente es cero)
- Si RLM.6 no se cumple, no es un problema serio cuando el tamaño de muestra es grande
- RLM.6 se traduce en una distribución muestral normal para estimadores MCO

Teorema. Distribuciones Muestrales Normales

Bajo supuestos MLC, RLM.1 a RLM.6, condicional en los valores muestrales de las variables independientes

$$\widehat{\beta}_j \sim \mathrm{N}\left[\beta_j, \mathrm{Var}\left(\widehat{\beta}_j\right)\right]$$

donde $\operatorname{Var}\left(\widehat{\beta}_{j}\right) = \frac{\sigma^{2}}{\operatorname{SCT}_{j}(1-R_{j}^{2})}, \ j = 1, 2, \dots, k, \text{ entonces}$

$$\frac{\widehat{\beta}_j - \beta_j}{\text{desvest}\left(\widehat{\beta}_j\right)} \sim N\left[0, 1\right]$$

Podemos escribir $\widehat{\beta}_j = \beta_j + \sum_{i=1}^n \omega_{ij} u_i$

- $\omega_{ij} = \frac{\hat{r}_{ij}}{\text{SCR}_j}$ solo depende de las x's (i.e., puede verse como no aleatorio)
 - \widehat{r}_{ij} es el residual i de la regresión de x_j sobre las otras x_j 's
 - SCR $_j$ es la SCR de esa regresión
- $\widehat{\beta}_{j}$ es entonces una combinación lineal de los errores $u_{i} \, \forall \, i$ y sabemos
 - $-u_i \stackrel{\text{iid}}{\sim} \text{N}(0, \sigma^2) \text{ por RLM.6}$
 - Una combinación lineal de normales se distribuye como una normal
- Entonces, $\mathbb{E}\left(\widehat{\beta}_{j}\right) = \beta_{j}$ y ya teníamos $Var(\widehat{\beta}_{j})$

Estandarización de una variable aleatoria normal da una variable aleatoria normal estándar Además, para hacer inferencia, ayuda saber que

- \bullet Cualquier combinación lineal de $\widehat{\beta}_j$'s también se distribuye normal
- \bullet Cualquier subconjunto de $\widehat{\beta}_j$'s tiene una distribución conjunta normal

Normalidad de los estimadores MCO es aproximadamente cierta para muestras grandes

• Aún sin normalidad de los errores

Problema: desvest $(\widehat{\beta}_j)$ depende de σ

4.2 Pruebas de hipótesis sobre un parámetro poblacional: Prueba t

Queremos probar hipótesis para cualquier parámetro de la función de regresión de la población

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

- Suponemos que el modelo poblacional satisface supuestos MLC
- $\bullet\,$ Sabemos que MCO produce estimadores insesgados de β_j
- $\bullet\,$ Queremos hacer pruebas de hipótesis sobre un β_j particular
 - Característica no observada de la población
 - Nunca conoceremos con certeza
- \bullet Formulamos hipótesis sobre el valor de β_j y usamos inferencia estadística para probar nuestra hipótesis
- Para construir pruebas de hipótesis, necesitamos el siguiente resultado

Teorema. Distribución t para Estimadores Estandarizados

Bajo supuestos MLC, RLM.1 a RLM.6,

$$\frac{\widehat{\beta}_j - \beta_j}{\text{errest}\left(\widehat{\beta}_j\right)} \sim t_{n-k-1}$$

donde k+1 es el número de parámetros desconocidos en el modelo poblacional y n-k-1 son los grados de libertad (g.l.)

Observaciones sobre el teorema:

- Dos últimos teoremas son diferentes
 - Antes, desvest $(\widehat{\beta}_j)$ y distribución N
 - Ahora, errest $(\widehat{\beta}_j)$ y distribución t
- Distribución t
 - Se obtiene porque la constante σ en desvest $(\widehat{\beta}_j)$ se reemplaza con la variable aleatoria $\widehat{\sigma}$ en errest $(\widehat{\beta}_j)$
 - Demostración difícil y poco informativa, pero en esencia muestra que es la división de una normal estándar N (0,1) sobre la raíz cuadrada de una χ^2_{n-k-1}
 - Ambas variables aleatorias son independientes por lo que se cumple con la definición de una \mathbf{t}_{n-k-1}
- Teorema permite hacer pruebas de hipótesis para β_j

En muchas aplicaciones, la hipótesis nula de interés es

$$H_0: \beta_i = 0, \quad j = 1, 2, \dots, k$$

• Significado: Una vez que controlamos por otras x's, x_j no tiene efecto en el valor esperado de y

Ejemplo.

$$\log(salario) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 antig + u$$

 $H_0: \beta_2 = 0$ implica que controlando por educ y antig, exper no impacta al salario

• Necesitamos estimados, errores estándar, estadístico de prueba y valores críticos

Usamos el **estadístico** to razón t
 para evaluar $H_0: \beta_j = 0$ y se define

$$\mathbf{t}_{\widehat{\beta}_j} = \frac{\widehat{\beta}_j}{\text{errest}\left(\widehat{\beta}_j\right)}$$

4

- Válido contra cualquier hipótesis alternativa
- Hay una forma más general del estadístico t (más adelante)

- En aplicaciones, se puede usar el nombre de la variable independiente
 - Por ejemplo, t_{educ} para $\widehat{\beta}_{educ}$
- Reportado por Stata
- Propiedades:
 - $-\mathbf{t}_{\widehat{\beta}_{i}}$ tiene el mismo signo que $\widehat{\beta}_{j}$ porque errest $(\widehat{\beta}_{j}) > 0$
 - Fijando errest $(\widehat{\beta}_j)$, mayores valores de $\widehat{\beta}_j$ implican mayores valores de $t_{\widehat{\beta}_j}$

¿Qué tan lejos está $\widehat{\beta}_j$ de cero?

- $|\widehat{\beta}_j| >> 0$ puede ser evidencia en contra de $\mathcal{H}_0: \beta_j = 0$
- Pero hay error de muestreo en estimado $\widehat{\beta}_i$
 - Por eso comparamos el tamaño de $\widehat{\beta}_j$ contra su error muestral
 - errest $(\widehat{\beta}_j)$ es el estimado de desvest $(\widehat{\beta}_j)$
- \bullet Entonces, $\mathbf{t}_{\widehat{\beta}_j}$ mide cuántas desviaciones estándar $\widehat{\beta}_j$ se aleja de cero
 - Si $|\mathbf{t}_{\widehat{\beta}_i}| >> 0$, rechazamos \mathbf{H}_0

Regla de rechazo depende de

- $\bullet\,$ Hipótesis alternativa H_a (un lado, dos lados)
- Nivel de significancia de la prueba α

$$\alpha = \mathbb{P}\left(\text{Rechazar } H_0 \mid H_0\right)$$

- Valores comunes: $\alpha = 0.1, 0.05, 0.01$
- Requiere conocer la distribución muestral de $\mathbf{t}_{\widehat{\boldsymbol{\beta}}_i}$
- Por teorema, $\mathbf{t}_{\widehat{\beta}_j} \sim \mathbf{t}_{n-k-1}$ cuando \mathbf{H}_0 es cierta

Notación:

Pregunta. ¿Cuál de las opciones siguientes es correcta?

$$- H_0: \beta_j = 0$$

$$- H_0 : \widehat{\beta}_j = 0$$
$$- H_0 : \widehat{\beta}_j = 0$$

• Probamos hipótesis sobre parámetros poblacionales, no sobre estimados

5

4.2.1 Hipótesis alternativas de un lado

La hipótesis alternativa de un lado tiene la forma $H_a: \beta_i > 0$

- Para escoger una regla de rechazo, decidimos el nivel de significancia α o \mathbb{P} (Rechazar $H_0 \mid H_0$)
 - Si $\alpha = 0.05$, estamos dispuestos a rechazar H_0 cuando es cierta 5% de las veces
- Bajo H_0 , $t_{\widehat{\beta}_j} \sim t_{n-k-1}$ y $\mathbb{E}\left(t_{\widehat{\beta}_j}\right) = 0$ (por teorema) pero bajo H_a , $\mathbb{E}\left(t_{\widehat{\beta}_j}\right) > 0$
 - Buscamos un valor positivo 'suficientemente grande' de $t_{\widehat{\beta}_j}$ para rechazar $H_0:\beta_j=0$ en favor de $H_a:\beta_j>0$
 - Valores negativos de $\mathbf{t}_{\widehat{\boldsymbol{\beta}}_{i}}$ no dan evidencia a favor de $\mathbf{H}_{\mathbf{a}}$
- 'Suficientemente grande' es el valor crítico c dado el nivel de significancia α : c_{α}
 - Si $\alpha=0.05,\,c$ es el percentil 95 de una distribución \mathbf{t}_{n-k-1}
 - Para obtener c, se necesita α y los grados de libertad
 - Los valores de c se obtienen de tablas o en Stata [display invttail(gl, α)]
- Regla de rechazo (prueba de una cola): Se rechaza H_0 en favor de H_a con un nivel de significancia 100α si

$$t_{\widehat{\beta}_j} > c$$

Ejemplo. Si $\alpha=0.05$ y n-k-1=28, entonces $c_{0.05}=1.701$. Si $\mathbf{t}_{\widehat{\beta}_j}\leq 1.701$, no rechazamos \mathbf{H}_0 al 5%

[Gráfica]

- Patrón: Si α baja, c sube
 - * Si $\alpha = 0.1$ y n k 1 = 21, $c_{0.1} = 1.323$
 - * Si $\alpha = 0.01$ y $n-k-1 = 21, \, c_{0.05} = 2.518$
- Si α baja, se requieren valores de $\mathbf{t}_{\widehat{\boldsymbol{\beta}}_i}$ más grandes para rechazar \mathbf{H}_0
 - * Si H₀ se rechaza al 5%, automáticamente se rechaza al 10%
- Si grados de libertad aumentan, distribución t converge a una normal estándar
 - * Si n k 1 = 120 y $\alpha = 0.05$,
 - $c_{0.05} = 1.658$ de una distribución t [display invttail(120,0.05)]
 - $c_{0.05} = 1.645$ de una distribución N (0,1) [display invnormal(0.95)]
 - * Cuando n-k-1 > 120, ambas distribuciones son similares

Ejemplo. Del análisis del salario (wagel.dta)

$$\log(\widehat{salario}) = 0.284 + 0.092 \, educ + 0.0041 \, exper + 0.022 \, antig$$

$$(0.104) \quad (0.007) \quad (0.0017) \quad (0.003)$$

$$n = 526, \ R^2 = 0.316$$

Errores estándar en paréntesis

- Interesados en probar $H_0: \beta_{exper} = 0$ vs $H_a: \beta_{exper} > 0$
- Grados de libertad: 526 4 = 522
- Valores críticos de $\phi(z)$: $c_{0.1} = 1.282$, $c_{0.05} = 1.645$, $c_{0.01} = 2.326$
- Estadístico para $\widehat{\beta}_{exper}$:

$$t_{exper} = \frac{0.0041}{0.0017} \approx 2.41$$

- Rechazamos H₀
 - * exper es estadísticamente significativa (mayor a cero) a un nivel del 1%
- Rendimiento esperado de 3 años más de experiencia (fijando antigüedad y educación) es 1.2% [3(0.0041) = 0.0123] (bajo, pero positivo)

Cuando $H_a: \beta_j < 0$, la regla de rechazo (prueba de una cola) es

$$t_{\widehat{\beta}_i} < -\epsilon$$

• c>0 en tablas (distribución t
 es simétrica, c viene de $\mathbf{H}_{\mathbf{a}}:\beta_j>0)$

Ejemplo. Si $\alpha=0.05$ y g.l.=18, c=1.734 y $\rm H_0$ se rechaza al 5% si $\rm t_{\widehat{\beta}_j}<-1.734$

[Gráfica]

- Dado que $\mathbf{H}_{\mathbf{a}}:\beta_{j}<0,\,\mathbf{t}_{\widehat{\beta}_{j}}<0$ para rechazar \mathbf{H}_{0}
 - Si $t_{\widehat{\beta}_{j}}>0,$ no da evidencia en favor de H_{a}

Ejemplo.

$$\widehat{examen} = 2.274 + 0.00046 comp + 0.048 prsnl - 0.00020 inscr$$

$$(6.113) \quad (0.00010) \quad (0.04) \quad (0.00022)$$

$$n = 408, \ R^2 = 0.0541$$

- Errores estándar en paréntesis
- comp para calidad del profesor, prsnl para atención a estudiantes, inscr para tamaño de la escuela
- Interesados en probar si escuelas grandes tienen bajo desempeño

*
$$H_0: \beta_{inscr} = 0 \text{ vs } H_a: \beta_{inscr} < 0$$

 $-i\hat{\beta}_{inscr} < 0$ observado es por error muestral?

$$-n-k-1=408-4=404$$

- Valor crítico de $\phi(z)$ al 5%: $-c_{0.05} = -1.65$
- Estadístico para $\widehat{\beta}_{inscr}$:

$$t_{inscr} = \frac{-0.00020}{0.00022} \approx -0.91$$

- No rechazamos H₀
 - * inscr no es estadísticamente significativa a un nivel del 5%
- $t_{comp} = 4.6 > 2.33 = c_{0.01}$, se rechaza $H_0: \beta_{comp} = 0$ a un nivel del 1%
- $\mathbf{t}_{prsnl}=1.2<1.28=c_{0.1},$ no se rechaza $\mathbf{H}_0:\beta_{prsnl}=0$ incluso a un nivel del 10%

4.2.2 Hipótesis alternativas de dos lados

En la práctica, es común probar $H_0: \beta_j = 0$ contra $H_a: \beta_j \neq 0$

- Para ver si x_i tiene un efecto ceteris paribus en y
 - Sin especificar si el efecto es positivo o negativo
 - Previene que escojamos Ha después de ver los resultados de la regresión

Regla de rechazo se basa en el valor absoluto del estadístico t:

$$|\mathbf{t}_{\widehat{\beta}_i}| > c$$

- El valor crítico c se determina al escoger α de forma que el área en cada cola de la distribución sea $\alpha/2$
 - Si $\alpha = 0.05$, c es el percentil 97.5 de una distribución \mathbf{t}_{n-k-1}

Ejemplo. Si
$$\alpha=0.05$$
 y $n-k-1=25$, entonces $c_{0.05}=2.060$
En Stata: display invttail(25,0.025)
[Gráfica]

• Si H_0 se rechaza en favor de H_a , decimos que " x_j es estadísticamente significativa o diferente de cero a un nivel de $(100 - \alpha)\%$ "

Ejemplo.

$$\widehat{califuni} = 1.39 + 0.412 \, califprep + 0.015 \, examen - 0.083 \, faltas$$

$$(0.33) \quad (0.094) \quad (0.011) \quad (0.026)$$

$$n = 141, R^2 = 0.234$$

- Errores estándar en paréntesis
- Grados de libertad: 141 4 = 137

- Valores críticos de $\phi(z)$: $c_{\frac{0.1}{2}} = 1.65$, $c_{\frac{0.05}{2}} = 1.96$, $c_{\frac{0.01}{2}} = 2.58$
 - * En Stata: invnormal(0.95), invnormal(0.975), invnormal(0.995)
- -t $_{califprep}=4.38>2.58,$ estadísticamente significativa al 1%
- $t_{examen}=1.36,$ no es estadísticamente significativa al 10%
- t_{faltas} = -3.19 < -2.58, estadísticamente significativa al 1%
 - * Diferencia promedio predicha en califuni entre estudiantes con misma califprep y examen si uno de ellos falta toda la semana es $0.42~(0.083 \times 5~{\rm porque}~\Delta faltas = 5)$

4.2.3 Pruebas de hipótesis para otros valores de β_i

 $H_0: \beta_j = 0$ es la hipótesis nula más común pero podemos hacer pruebas para cualquier valor hipotético a_j

- $H_0: \beta_j = a_j$
- $\beta_i = 1$ o $\beta_i = -1$ son comunes

El estadístico t apropiado es

$$t_j = \frac{\widehat{\beta}_j - a_j}{\text{errest}\left(\widehat{\beta}_j\right)}$$

• En general, el estadístico se puede expresar

$$t = \frac{\text{estimado} - \text{valor hipotético}}{\text{error estándar}}$$

 $\bullet\,$ Mide cuántas desviaciones estándar está
 $\widehat{\beta}_j$ del valor hipotético a_j

Bajo $\mathbf{H}_0: \beta_j = a_j,$ el estadístico $\mathbf{t}_j \sim \mathbf{t}_{n-k-1}$ por el teorema

• El estadístico t usual se obtiene cuando $a_j = 0$

El estadístico t general se puede usar para hacer una PH contra H_a de uno y dos lados

 $\bullet\,$ El valor crítico c lo encontramos como antes, la diferencia está en cómo se computa el estadístico t

Si $H_0: \beta_j = 1$ y $H_a: \beta_j > 1$, rechazamos H_0 si t > c y decimos que " $\widehat{\beta}_j$ es estadísticamente mayor a 1" a un nivel de $100\alpha\%$

$$t = \frac{\widehat{\beta}_j - 1}{\text{errest}\left(\widehat{\beta}_j\right)}$$

Preguntas. Análisis del crimen en universidades con relación al tamaño del campus

• Modelo poblacional:

$$\log(crimen) = \beta_0 + \beta_1 \log(inscr) + u$$

- Modelo de elasticidad constante
 - No efecto ceteris paribus, ¿por qué?
 - $-\beta_1$ es la elasticidad del *crimen* con respecto a *inscr*
 - Equivale a $crimen = \exp(\beta_0)inscr^{\beta_1}\exp(u)$, ¿qué pasa si $\beta_0 = u = 0$? [Gráfica]
- $H_0: \beta_1 = 0$ es obvio; más interesante $H_0: \beta_1 = 1$ vs $H_0: \beta_1 > 1$
 - Si se rechaza H_0 , el crimen es un problema grave en campus grandes

$$log(\widehat{crimen}) = -6.63 + 1.27 log(inscr)$$

$$(1.03) \qquad (0.11)$$

$$n = 97, R^2 = 0.585$$

- $\widehat{\beta}_1 > 1$, pero ¿es suficiente para concluir que $\beta_1 > 1$?
- ¿Estadístico t?
 - En este caso, el t que reporta Stata no nos sirve, ¿por qué?
- ¿Grados de libertad?
- Valores críticos: $c_{0.05} = 1.66, c_{0.01} = 2.37$
- ¿Decisión? ¿Se rechaza o no se rechaza H₀?

Si $H_0:\beta_j=-1$ y $H_a:\beta_j\neq-1$, rechazamos H_0 si $|t|>c_{\alpha/2}$ y decimos que " $\widehat{\beta}_j$ es estadísticamente diferente de -1" al nivel apropiado

$$t = \frac{\widehat{\beta}_j - (-1)}{\text{errest}\left(\widehat{\beta}_j\right)}$$

Preguntas. Análisis de precios de casas y características de la comunidad

• Modelo poblacional:

$$\log(precio) = \beta_0 + \beta_1 \log(oxn) + \beta_2 \log(dist) + \beta_3 habit + \beta_4 alprof + u$$

• Modelo estimado:

$$\widehat{\log(prc)} = 11.08 \quad -0.954 \log(oxn) \quad -0.134 \log(dst) \quad +0.255h \quad -0.052 apr \\ (0.32) \quad (0.117) \qquad (0.043) \qquad (0.019) \quad (0.006)$$

$$n = 506$$
, $R^2 = 0.581$

- Todos los coeficientes son estadísticamente diferentes de cero con bajos niveles de significancia pero $H_0: \beta_j = -1$ (no $H_0: \beta_j = 0$)
- ¿Cuál es el valor del estadístico t?
- \bullet Conclusión: Poca evidencia de que la elasticidad sea diferente de -1

4.2.4 Cálculo de valores-p para pruebas t

Enfoque clásico: Definir H_a , escoger α que determina c, comparar t contra c, conclusión (rechazar H_0 o no rechazar H_0)

- Hay arbitrariedad al escoger α (cada quien puede escoger diferente α)
- Ej. H_0 puede no rechazarse al 5% pero si al 10%
- En lugar de hacer la prueba para diferentes niveles de α , usamos el valor p

El valor – p de la prueba

- Responde la siguiente pregunta: Dado el valor observado del estadístico t, ¿cuál es el valor más pequeño de α para el que se rechazaría H_0 ?
- ullet Es el valor de α si usamos el valor de t
 como el valor de c

Ejemplo.
$$H_0: \beta_j = 0, H_a: \beta_j \neq 0, g.l = 40, t = 1.85$$

- $-c_{0.05}=2.021$, no se rechaza H_0
- $-\ c_{0.1}=1.684,$ se rechaza ${\rm H}_0$
- -0.05 < valor p < 0.1
- $\ valor p = \mathbb{P}\left(|t_{40}| > 1.85\right) = 2\mathbb{P}\left(t_{40} > 1.85\right) = 2(0.0359) = 0.0718$
- En Stata, display ttail(40, 1.85)*2

[Gráfica]

Siempre se reporta en decimal porque es una probabilidad: 0 < valor - p < 1

• Ej. Si $H_0: \beta_j = 0$ y $H_a: \beta_j \neq 0$,

$$valor - p = \mathbb{P}(|T| > |t|)$$

donde $T = t_{n-k-1}$ y t es el valor del estadístico de prueba

Interpretación del valor -p:

- \bullet Probabilidad de observar un estadístico t $tan extremo al observado si <math> H_0$ fuera cierta
 - Un valor p pequeño es evidencia contra H₀

- Un valor -p grande da poca evidencia contra ${\rm H}_0$
- Ej. valor p = 0.5 significa que observaremos valores de t
 tan extremos al obtenido 50% de las veces si H₀ fuera cierta
- \bullet Sintetiza la fuerza o debilidad de la evidencia empírica contra H_0

Una vez calculado el valor – p, se puede hacer una prueba clásica para cualquier α

• Ej. H_0 se rechaza si valor $-p < \alpha$, sino H_0 no se rechaza al nivel $(100\alpha)\%$

Para una H_a de un lado

- Si $H_0: \beta_i = 0$
 - $\mathbf{H_a}:\beta_j>0,$ solo calcular si $\widehat{\beta}_j>0$ (t > 0) y valor $\mathbf{p}=\mathbb{P}\left(T>t\right)$
 - Ha : $\beta_j < 0$, solo calcular si $\widehat{\beta}_j < 0$ (t > 0) y valor p = $\mathbb{P}(T <$ t) = $\mathbb{P}(T > |\mathbf{t}|)$
- valor p de un lado = $\frac{\text{valor-p de dos lados}}{2}$

No es crucial reportar el valor - p para el estadístico t pero sí para el estadístico F porque los valores críticos varían

4.2.5 Lenguaje de pruebas de hipótesis clásicas

Si, H₀ no se rechaza, ¿cuál de los siguientes enunciados es correcto?

- H_0 no se rechaza al nivel $(100 \alpha)\%$
- H_0 se acepta al nivel $(100 \alpha)\%$

Ejemplo.

$$H_0: \beta_j = 1, t = 0.393$$

$$H_0: \beta_i = 0.99, t = 0.308$$

- Ambas no pueden ser ciertas
- Decimos: Los datos no permiten rechazarlos a un nivel $(100 \alpha)\%$

4.2.6 Significancia económica (práctica) vs significancia estadística

Al correr una regresión, debemos observar:

- Significancia estadística: Tamaño del estadístico t $_{\widehat{\boldsymbol{\beta}}_i}$
- \bullet Significancia económica: Magnitud y signo del coeficiente estimado $\widehat{\beta}_j$

Ej. Cuando probamos $H_0: \beta_j = 0, t_{\widehat{\beta}_j} = \frac{\widehat{\beta}_j}{\text{errest}(\widehat{\beta}_j)}$ puede ser significativo porque

• $\widehat{\beta}_j$ es grande, o

• errest $(\widehat{\beta}_j)$ es pequeño

Solo enfocarnos en la significancia estadística puede llevarnos a la conclusión falsa de que una variable independientes es "importante" para explicar y aunque su efecto estimado sea pequeño

Ejemplo. Tasa de participación en planes de retiro

$$n = 1,534, R^2 = 0.1$$

- $t_{emplead} = \frac{-0.00013}{0.00004} = -3.25$
- Estadísticamente significativo (valor -p de dos lados = 0.001)
- ¿Significancia económica?
 - Fijando tcomplem y ansplan, si la empresa crece en 10 mil empleados,

$$\widehat{tpartic} = 10,000(-0.00013) = -1.3\%$$

- Gran crecimiento en empleados con efecto moderado en la participación
 - * Sí afecta, pero es poco en términos prácticos

Cuando el tamaño de muestra crece $(n \to \infty)$, los errores estándar disminuyen

- Parámetros estimados con precisión
- Efectos estadísticamente significativos (porque $n \to \infty$)
- Hay que interpretar la magnitud

Relación entre el tamaño de muestra (n) y el nivel de significancia (α)

- Si $n \to \infty$, usar una α baja porque los errores estándar disminuyen
- Si $n \to 0$, usar una α alta porque es difícil encontrar significancia

Ejemplo. Tasa de productos defectuosos (por cada 100)

$$\widehat{\log(tdef)} = 12.46 - 0.029 \, hrcpct - 0.962 \, \log(vents) + 0.761 \, \log(emple)
(5.69) (0.023) (0.453) (0.407)$$

$$n = 29$$
, $R^2 = 0.262$

• La variable de interés son las horas de capacitación (hrcpct)

$$- H_0: \beta_{hrcpct} = 0 y H_a: \beta_{hrcpct} < 0$$

 $-\beta_{hrcpct} = -0.029$, ¿cuánto baja la tasa con 5 horas más de capacitación?

- Efecto no trivial
- $t_{hrcpct} = -0.029/0.023 = -1.26, g.l. = 29 4 = 25$ (n pequeña, α alta)
 - $-c_{0.05} = -1.71$, hrcpct no es estadísticamente significativa al 5%
 - $-c_{0.1} = -1.32$, hrcpct casi estadísticamente significativa al 10%
- valor $-p = \mathbb{P}(T_{25} < -1.26) = 0.11$
 - Bajo para deberse a error muestral pero sujeto a interpretación

Los errores estándar pueden ser altos por multicolinealidad aún cuando $n \to \infty$

- Difícil estimar con precisión los efectos parciales cuando algunas variables independientes están altamente correlacionadas
 - Como cuando el tamaño de muestra es pequeño
- Soluciones
 - Recolectar más datos
 - Cambiar enfoque del análisis (quitar o cambiar variables independientes)

Guía para discutir la significancia en RLM

- 1. Si la variable es estadísticamente significativa a niveles usuales (10, 5, 1%), discutir la magnitud del coeficiente para entender la importancia económica
 - Cuidado: unidades de medición, forma de la variable (ej. logaritmo)
- 2. Si la variable no es estadísticamente significativa,
 - ¿Efecto esperado (signo)?
 - \bullet ¿Efecto grande (magnitud)? Si efecto es grande, calcular valor p para el estadístico t.
 - Si n pequeña, valor p < 0.2
 - Si valor p > 0.2, coeficiente grande por error muestral
- 3. Si estadístico t pequeño y signo "incorrecto", ignorar

Si la variable es estadísticamente significativa con signo "incorrecto" y efecto grande, difícil de resolver

• Pensar en el modelo o en los datos (ej. puede ser por omitir una variable relevante)

4.3 Intervalos de confianza

Podemos construir IC para un parámetro poblacional β_i bajo los supuestos del MLC

- Dan un rango de valores para β_i
- Diferentes a estimados puntuales

• También conocidos como estimados por intervalos

Sabemos que $\frac{\widehat{\beta}_j - \beta_j}{\text{errest}(\widehat{\beta}_j)} \sim t_{n-k-1}$, entonces un **intervalo de confianza** al 95% está dado por

$$\widehat{\beta}_j \pm c_{\alpha/2} \cdot \operatorname{errest}\left(\widehat{\beta}_j\right)$$

- $c_{\alpha/2}$ es el percentil 97.5 de una distribución \mathbf{t}_{n-k-1}
- Cota inferior del IC: $\underline{\beta_j} = \widehat{\beta}_j c_{\alpha/2} \cdot \text{errest}(\widehat{\beta}_j)$
- Cota superior del IC: $\overline{\beta_j} = \widehat{\beta}_j + c_{\alpha/2} \cdot \operatorname{errest}(\widehat{\beta}_j)$

Significado: Si calculamos $\underline{\beta_j}$ y $\overline{\beta_j}$ para muchas muestras, el parámetro poblacional (no conocido) β_j estaría en el intervalo $\left(\underline{\beta_j}, \overline{\beta_j}\right)$ para 95% de las muestras

$$\mathbb{P}\left(\underline{\beta_j} < \beta_j < \overline{\beta_j}\right) = 1 - \alpha$$

- Para la muestra particular que usamos para construir el IC, no sabemos si contendrá a β_j
- \bullet Esperamos tener una de las muestras para las que el IC contiene a $\beta_j,$ pero no hay garantía

Elementos para construir un IC:

- $\widehat{\beta}_i$
- errest $(\widehat{\beta}_j)$
- \bullet c de la distribución $\mathbf{t}_{n-k-1},$ para lo que necesitamos saber
 - Grados de libertad (n-k-1)
 - Nivel confianza (95%)

Ejemplo. Si los grados de libertad son n-k-1=25 y $\alpha=0.05,$ c=2.06, entonces el IC es

$$\left[\widehat{\beta}_j - 2.06 \cdot \operatorname{errest}\left(\widehat{\beta}_j\right), \, \widehat{\beta}_j + 2.06 \cdot \operatorname{errest}\left(\widehat{\beta}_j\right)\right]$$

Grados de libertad (n-k-1) y valor crítico (c) para un IC al 95%:

 $\bullet\,$ Si n-k-1>120, $\mathbf{t}_{n-k-1}\approx\mathbf{N},$ entonces usamos el percentil 97.5 de Φ

$$\widehat{\beta}_j \pm 1.96 \cdot \text{errest} \left(\widehat{\beta}_j \right)$$

• Si n-k-1>50, $c\approx 2$, entonces la regla de aproximación es

$$\widehat{\beta}_j \pm 2 \cdot \operatorname{errest}\left(\widehat{\beta}_j\right)$$

• Si n - k - 1 < 50, usar tablas o Stata

Si cambia α de 0.05 a 0.1 o 0.01

• Para un IC al 90%, c es el percentil 95 de t_{n-k-1} o Φ

- Ej. g.l.=
$$n - k - 1 = 25$$
, $c = 1.71$, IC al 90% es (más angosto)

$$\widehat{\beta}_j \pm 1.71 \cdot \text{errest}\left(\widehat{\beta}_j\right)$$

• Para un IC al 99%, c es el percentil 99.5 de \mathbf{t}_{n-k-1} o Φ

– Ej. g.l.=
$$n - k - 1 = 25$$
, $c = 2.79$, IC al 99% es (más amplio)

$$\widehat{\beta}_j \pm 2.79 \cdot \text{errest} \left(\widehat{\beta}_j \right)$$

Con IC, podemos hacer PH de 2 lados:

• Si $H_0: \beta_j = a_j$ y $H_a: \beta_j \neq a_j$, rechazamos H_0 al 5% si $a_j \notin IC$ del 95%

Ejemplo. Modelo de elasticidad constante para estudiar el efecto ceteris paribus del márgen de ganancias (ganancia/ventas) en el gasto I&D

$$\log(\widehat{invdes}) = -4.38 + 1.084 \log(ventas) + 0.0217 margengan$$

$$(0.47) \quad (0.060) \quad (0.0128)$$

$$n = 32. R^2 = 0.918$$

- Elasticidad de I&D respecto a ventas:
 - 1% más de ventas asociado con 1.084% más en gasto I&D
- Grados de libertad: 32 2 1 = 29
 - Usamos percentil 97.5 de la distribución t_{29} : c = 2.045
- IC al 95% para $\beta_{\log(ventas)}$: $1.084 \pm 2.045 \times 0.06$ o (0.961, 1.21)
 - -0 \notin IC porque se espera que gasto I&D crezca con el tamaño de la empresa
 - $-1 \in IC$, no podemos rechazar $H_0: \beta_{\log(ventas)} = 1$ vs $H_a: \beta_{\log(ventas)} \neq 1$ al 5%
 - $\ast\,$ La elasticidad estimada no es estadísticamente diferente de 1 al5%
- IC al 95% para $\beta_{margengan}$: $0.0217 \pm 2.045 \times 0.0128$ o (-0.0045, 0.0479)
 - No rechazamos $H_0: \beta_{margengan} = 0$ vs $H_a: \beta_{margengan} \neq 0$ al 5%

Los intervalos de confianza dependen de los supuestos hechos para construirlos

• Si la variable omitida se correlaciona con otras variables independientes, el IC no es confiable porque estimados MCO sesgados

- Si hay heterocedasticidad, errest $\left(\widehat{\beta}_j\right)$ no es válido para estimar desvest $\left(\widehat{\beta}_j\right)$
 - IC no será al 95%
- Si normalidad del error no se cumple, el IC no es válido
 - Aunque esto se puede relajar cuando $n \to \infty$

4.4 PH para una combinación lineal de parámetros

Hasta ahora PH o IC para una sola β_j , aquí cómo probar una sola hipótesis con varias β_j 's

Para ilustrar, modelo poblacional para gente trabajadora con título de preparatoria,:

$$\log(salar) = \beta_0 + \beta_1 carrtec + \beta_2 licen + \beta_3 exper + u$$

- Hipótesis de interés: ¿Un año de carrera técnica vale lo mismo que un año de licenciatura?
 - H₀ : $\beta_1 = \beta_2$, ambas escuelas generan mismo aumento porcentual en salario (ceteris paribus)
 - $H_a:\beta_1<\beta_2,$ un año de carrera técnica vale menos que un año de licenciatura
- $\bullet\,$ No podemos usar estadísticos t
 individuales para $\widehat{\beta}_1$ y $\widehat{\beta}_2$
- Reexpresamos hipótesis como

$$- H_0: \beta_1 - \beta_2 = 0$$

$$- H_a: \beta_1 - \beta_2 < 0$$

• El estadístico quedaría

$$\frac{\widehat{\beta}_1 - \widehat{\beta}_2}{\operatorname{errest}\left(\widehat{\beta}_1 - \widehat{\beta}_2\right)}$$

y mismo proceso que antes (α , g.l., c, regla de rechazo t < -c o valor - p < α)

•
$$\operatorname{jerrest}\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right)$$
? $\operatorname{errest}\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right) \neq \operatorname{errest}\left(\widehat{\beta}_{1}\right) - \operatorname{errest}\left(\widehat{\beta}_{2}\right)$

- Por probabilidad,
$$\operatorname{Var}\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right)$$
 y desvest $\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right) = \sqrt{\operatorname{Var}\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right)}$

- Entonces, errest
$$\left(\widehat{\beta}_{1} - \widehat{\beta}_{2}\right) = \sqrt{\operatorname{errest}^{2}\left(\widehat{\beta}_{1}\right) + \operatorname{errest}^{2}\left(\widehat{\beta}_{2}\right) - 2s_{1,2}}$$

- Alternativas:
 - En Stata, usar el comando test
 - Reescribir el modelo para obtener directamente el error estándar de interés
- Reescribir modelo siempre funciona

- Si
$$\theta_1 = \beta_1 - \beta_2$$
, entonces $H_0: \theta_1 = 0$ vs $H_a: \theta_1 < 0$, y $t = \frac{\widehat{\theta}_1}{\operatorname{errest}(\widehat{\theta}_1)}$

– Definimos $\beta_1 = \theta_1 + \beta_2$, entonces

$$\log(salario) = \beta_0 + (\theta_1 + \beta_2) carrtec + \beta_2 licen + \beta_3 exper + u$$
$$= \beta_0 + \theta_1 carrtec + \beta_2 univ + \beta_3 exper + u$$

– Se crea una nueva variable univ = carrtec + licen, no se estima β_1 y se obtiene errest $(\widehat{\theta}_1)$ directo

Ejemplo. Salario y estudios universitarios

$$\widehat{\log(salar)} = 1.472 + 0.0667 \, carrtec + 0.0769 \, licen + 0.0049 \, exper \\
(0.021) \quad (0.0068) \quad (0.0023) \quad (0.0002)$$

$$n = 6,763, R^2 = 0.222$$

- $-\ {}_{\dot{\iota}}\widehat{\beta}_1$ y $\widehat{\beta}_2$ son estadísticamente y económicamente significativas?
- $-i\widehat{\beta}_1-\widehat{\beta}_2?$
- $\operatorname{jerrest}\left(\widehat{\beta}_1 \widehat{\beta}_2\right)$?

$$\widehat{\log(salar)} = 1.472 - 0.0102 \, carrtec + 0.0769 \, licen + 0.0049 \, exper$$

$$(0.021) \quad (0.0069) \quad (0.0023) \quad (0.0002)$$

$$n = 6,763, R^2 = 0.222$$

$$- t_{\widehat{\theta_1}} = \frac{-0.0102}{0.0069} = -1.48$$

- $-\,$ valor p = 0.07, algo de evidencia pero no fuerte contra ${\rm H}_0$
- IC al 95% con aproximación Φ :

$$-0.0102 \pm 1.96 \cdot 0.0069$$
 o $(-0.0237, 0.033)$

4.5 Pruebas de varias restricciones lineales: Prueba F

Hasta ahora hipótesis de una sola restricción, aquí varias restricciones

- Antes: Una β_j o una combinación lineal de β_j 's
- Uso mas común: Probar si un conjunto de variables independientes no tiene efecto parcial sobre la variable dependiente

4.5.1 Probar restricciones de exclusión (PH múltiple o conjunta)

 H_0 : Un conjunto de variables no tiene efecto en y, una vez que controlamos por otras

- Estadísticos t individuales no son apropiados
 - Hipótesis no pone restricciones en los otros parámetros

- ¿Cuántas t significativas para rechazar?
- No es claro cómo se rechazaría H₀
- Necesitamos probar las restricciones de exclusión de forma conjunta

Comparamos 2 modelos: con y sin restricciones

- Modelo sin restricciones o no restringido incluye todos los parámetros
- Modelo restringido siempre tiene menos parámetros

SCR es útil para hacer pruebas de hipótesis conjuntas

- SCR siempre aumenta cuando se quitan variables del modelo
- Relativo a SCR del modelo con todas las variables, ¿cuánto aumenta SCR cuando quitamos variables del modelo?

Ejemplo. ¿La productividad en el beisbol tiene efecto en el salario?

Modelo no restringido:

 $\log(salar) = \beta_0 + \beta_1 ansliga + \beta_2 promjueg + \beta_3 prombat + \beta_4 hruns + \beta_5 carrbat + u$

- Productividad: Promedio de bateo, home runs, carreras al bat
- \bullet H₀: Productividad en el beisbol no tiene efecto en el salario
 - $-H_0: \beta_3 = 0, \beta_4 = 0, \beta_5 = 0$ (una vez que controlamos por los años en la liga y el promedio de juegos)
 - 3 restricciones de exclusión
- H_a: H₀ no es cierta
 - Al menos una de las tres $(\beta_3, \beta_4 \text{ o } \beta_5)$ es diferente de cero
- Para ilustrar, estimamos el modelo

$$\log(salar) = 11.19 + 0.0687 \, ansliga + 0.0126 \, promjueg$$

$$(0.27) + 0.00098 \, prombat + 0.0144 \, hruns + 0.0108 \, carrbat$$

$$(0.0011) + 0.00098 \, prombat + 0.0144 \, hruns + 0.0108 \, carrbat$$

$$(0.0072)$$

$$n = 353, \quad SCR = 183.186 \quad R^2 = 0.6278$$

• ¿t individuales de variables de productividad son significativas?

Modelo restringido (sin variables en H_0):

$$\log(salar) = \beta_0 + \beta_1 ansliga + \beta_2 promjueg + u$$

$$\widehat{\log(salar)} = 11.22 + 0.0713 \, ansliga + 0.0202 \, promjueg$$

$$(0.11) \quad (0.0125) \quad (0.0013)$$

$$n = 353$$
, $SCR = 198.311$ $R^2 = 0.5971$

- Incremento en SCR de 183.186 a 198.311 ¿es suficientemente grande para rechazar H_0 ?
 - Necesitamos un estadístico con distribución conocida bajo H_0 para obtener un valor crítico c a partir de α

Caso general (ambos modelos con intercepto):

• Modelo sin restricciones con k variables independientes (k+1 parámetros):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

- Suponemos que hay q restricciones de exclusión (tienen coeficientes cero)
 - Últimas q variables se quitan del modelo
- $H_0: \beta_{k-q+1} = 0, \dots, \beta_k = 0$
- $H_a: H_0$ es falsa
 - Al menos uno de los parámetros $(\beta_{k-q+1}, \ldots, \beta_k)$ es distinto de cero
- Modelo con restricciones (impuestas):

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{k-q} x_{k-q} + u$$

Estadístico F o razón F:

$$F_d = \frac{\left(SCR_r - SCR_{sr}\right)/q}{SCR_{sr}/(n-k-1)}$$

- SCR_r del modelo restringido
- SCR_{sr} del modelo sin restricciones
- ≥ 0 porque $SCR_r \geq SCR_{sr}$ (por lo que si F < 0, los SCR están invertidos)
- q son los grados de libertad del numerador: $g.l._r g.l._{sr} = (n-k-1+q) (n-k-1)$
- n-k-1 son los grados de libertad del denominador: $g.l._{sr}$
- Ambos modelos se estiman con mismo n (cuidado cuando hay faltantes)
- Denominador es el estimador insesgado de $\sigma^2 = \text{Var}(u)$ en modelo sin restricciones
- Compara el aumento relativo en SCR al ir del modelo sin restricciones al restringido

Para calcular el estadístico F, necesitamos: $g.l._{sr}$, q, SCR_{sr} y SCR_{r}

- Ej. n = 353, k + 1 = 6, $n k 1 = g.l._{sr} = 353 6 = 347$, q = 3
- Para seguir, necesitamos la distribución muestral del estadístico F bajo H₀
 - Conociendo esa distribución, podemos escoger c y definir la regla de rechazo

Teorema. Distribución F

Bajo supuestos MLC, RLM.1 a RLM.6 y H₀,

$$F_{d} = \frac{\left(SCR_{r} - SCR_{sr}\right)/q}{SCR_{sr}/(n-k-1)} \sim F_{q, n-k-1}$$

- Intuición: F es una división de 2 variables aleatorias χ^2 independientes divididas por sus grados de libertad respectivos
 - Esa es la definición de una variable aleatoria F
- \bullet Rechazamos H_0 si F es grande
 - Si $\alpha = 0.05$, c_{α} es el percentil 95 de la distribución $F_{q,n-k-1}$
 - * c depende entonces de α , q y n-k-1
 - Valores críticos al 10%, 5%, 1% de la distribución F de tablas o Stata
 - * display invFtail (3,60,0.05)
- \bullet Regla de rechazo: Rechazamos H_0 en favor de H_a al $100\alpha\%$ si

$$F > c_{\alpha}$$

- Ej. Si q = 3, n k 1 = 60,
 - * $\alpha = 0.05$, $c_{\alpha} = 2.76$, rechazamos H₀ al 5% si F > 2.76
 - * $\alpha=0.01,\,c_{\alpha}=4.13,\,\mathrm{rechazamos}\,\,\mathrm{H}_0$ al 1% si F > 4.13 [Gráfica]
- En aplicaciones, $q \ll n-k-1$
 - Si n-k-1 pequeño, los parámetros en el modelo sin restricciones se estiman con poca precisión
 - Si n k 1 > 120, $g.l. = \infty$ en tablas F
- Si rechazamos H_0 , decimos que x_{k-q+1}, \ldots, x_k son estadísticamente significativas de forma conjunta (o conjuntamente significativas) al $100\alpha\%$
 - Prueba no nos dice qué variable es significativa
 - Pueden ser todas, puede ser solo una
- $\bullet\,$ Si ${\rm H}_0$ no se rechaza, las variables son conjuntamente no significativas
 - Justifica quitarlas del modelo

Ejemplo. ¿La productividad en el beisbol tiene efecto en el salario?

$$q = 3, n - k - 1 = 347, c_{0.05} = 2.6, c_{0.01} = 3.78$$

$$F_d = \frac{(SCR_r - SCR_{sr})}{SCR_{sr}} \cdot \frac{n - k - 1}{q} = \frac{(198.311 - 183.186)}{183.186} \cdot \frac{347}{3} \approx 9.55$$

¿Conclusión?

- H_0 : Productividad no tiene efecto en el salario ¿Rechazamos H_0 o no?
- ¿Significado?
- ¿Por que estadísticos t individuales no son significativos pero el estadístico F sí?
 - MC dificulta asignar el efecto parcial a cada variable (por eso t's no significativas)
 - MC es menos importante para probar si variables de productividad son conjuntamente significativas
- Estadístico F es útil para probar la exclusión de un grupo de variables cuando están altamente correlacionadas
 - Ej. Probar si variables que miden el desempeño de una empresa afectan los salarios de CEOs

4.5.2Relación entre estadísticos F y t

Si $H_0: \beta_k = 0$ y q = 1, ¿tenemos 2 formas de probar la hipótesis sobre el coeficiente?

$$t_{n-k-1}^2 \sim F_{1,n-k-1}$$

- Se obtiene el mismo resultado si H_a es de 2 lados, pero
 - t es más flexible porque se puede usar directamente para H_a de un lado
 - t es más fácil de obtener para 1 restricción
- Casos posibles:
 - t's no significativas pero F es significativa
 - t significativa pero grupo de variables (F) no es significativo
 - * Lógicamente inconsistente (se rechaza $H_0: \beta_1 = 0$, pero no se rechaza $H_0: \beta_1 = 0, \beta_2 = 0, \beta_3 = 0$
 - * Puede abusarse si no se reporta adecuadamente
 - * Ej. Aceptación de créditos: minoría (efecto marginal), edad (no efecto) y otros (ingreso, riqueza, buró), con prueba conjunta entre minoría y edad no significativa para concluir que minoría no es importante
- Comúnmente, si cada variable es estadísticamente significativa, el conjunto de variables también será estadísticamente significativo
 - No hay inconsistencia lógica en rechazar ambas hipótesis nulas

4.5.3 Forma R² del estadístico F

El estadístico F se puede obtener usando las R²'s de los modelos

• Restringido: $SCR_r = SCT(1 - R_r^2)$

• No restringido: $SCR_{sr} = SCT(1 - R_{sr}^2)$

Forma R² del estadístico F:

$$F_d = \frac{(R_{sr}^2 - R_r^2)/q}{(1 - R_{sr}^2)/(n - k - 1)}$$

- No aplica para probar todas las restricciones lineales
 - Solo cuando $SCT_{sr} = SCT_r$ y misma variable dependiente
- ≥ 0 siempre porque $\mathbf{R}_{sr}^2 > \mathbf{R}_r^2$ (\mathbf{R}_{sr}^2 primero vs SCR_r primero)
- Los valores de R²'s no se tienen que elevar al cuadrado
- Versión útil porque $0 < R^2 < 1$, mientras que SCR depende de unidades de medición

Ejemplo. ¿La productividad en el beisbol tiene efecto en el salario?

$$F_d = \frac{(0.6278 - 0.5971)}{(1 - 0.6278)} \cdot \frac{347}{3} \approx 9.54$$

Misma conclusión que antes (diferencia por redondeo)

Ejemplo. Datos faltantes

Tenemos: Obs = 1,388, faltantes = 197, k+1=6, $R_{sr}^2 = 0.0387$, $R_r^2 = 0.0364$

-n=1,191

- g.l. numerador: q=2

– g.l. denominador: $g.l._{sr} = 1,191-6 = 1,185$

 $-\alpha = 0.05, c_{\alpha} = 3.0$

 \ast display inv Ftail (2,1185,0.05)

$$F_d = \frac{(0.0387 - 0.0364)}{(1 - 0.0387)} \cdot \frac{1,185}{2} \approx 1.42$$

¿Conclusión?

4.5.4 Cálculo de valores – p para pruebas F

Para pruebas F:

$$valor - p = \mathbb{P}\left(\mathcal{F} > F_d\right)$$

- \mathcal{F} es la variable aleatoria $F_{q, n-k-1}$
- \bullet F_d es el valor del estadístico F

Interpretación:

 \bullet Probabilidad de observar un valor de F tan grande como el obtenido dado que H_0 es cierta

Utilidad:

- \bullet Ayuda tener una mejor idea de la fuerza de la evidencia en contra de H_0
- Un valor p pequeño es evidencia contra H_0 (ej. valor p=0.016)
- Al tener el valor p, podemos hacer una prueba F para cualquier α
 - Ej. Si valor p = 0.024, H_0 se rechaza al 5% pero no se rechaza al 1%

Stata:

- Permite hacer pruebas de varias restricciones (comando test)
- Reporta valores p en automático
- Aborda el tema de datos faltantes
- Es menos probable cometer un error que al hacerlo a mano

4.5.5 Estadístico F para la significancia total de una regresión

Siempre podemos probar si ninguna variable independiente tiene un efecto en y (en modelo de k variables independientes)

- $H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$
- H_a : Al menos una $\beta_j \neq 0$
- En esencia prueba si $\mathbb{E}(y|x_1, x_2, \dots, x_k) = \mathbb{E}(y)$
- ullet Conocer los valores de las variables independientes no afecta el valor esperado de y
- Se usa para determinar significancia total de la regresión

Modelo restringido (k restricciones impuestas):

$$y = \beta_0 + u$$

• $R_r^2 = 0$ (no hay variables que expliquen y)

Estadístico

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$

• R² de regresión de y sobre x_1, x_2, \dots, x_k

 Solo válido para probar exclusión conjunta de todas las variables independientes (ej. EMH)

Si no rechazamos H_0 , no hay evidencia de que las variables independientes ayuden a explicar y

• Buscar otras variables para explicar y

Si valor – p \approx 0, rechazamos H₀

• Variables independientes explican algo de la variación en y (aún si \mathbb{R}^2 baja)

R² baja puede resultar en estadístico F muy significativo

• Por eso calcular F para probar significancia conjunta y no solo R²

4.5.6 Pruebas de restricciones lineales generales

Los estadísticos F se utilizan principalmente para probar restricciones de exclusión

• También se pueden usar restricciones que no solo excluyen variables independientes

$$\log(precio) = \beta_0 + \beta_1 \log(avaluo) + \beta_2 \log(lote) + \beta_3 \log(pies2) + \beta_4 cuartos + u$$

- Si el avalúo es racional: $\beta_1 = 1$ y las otras variables no deberían ayudar a explicar el precio al controlar por el avalúo
- $H_0: \beta_1 = 1, \beta_2 = 0, \beta_3 = 0, \beta_4 = 0$
- 4 restricciones (3 de ellas de exclusión)
- Como antes:

Para ilustrar:

- Estimamos modelo sin restricciones
- Imponemos las restricciones para obtener modelo restringido (cuidado)
- Modelo sin restricciones: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + u$
 - $-g.l._{sr} = 5$ y obtenemos SCR_{sr}
- Modelo restringido: $y = \beta_0 + x_1 + u$
 - Para imponer restricción $\beta_1 = 1$, estimamos $y x_1 = \beta_0 + u$
 - Obtenemos SCR_r
- Estadístico F:

$$F_d = \frac{\left(SCR_r - SCR_{sr}\right)/4}{SCR_{sr}/5}$$

- No podemos usar forma R^2 , variables dependientes son diferentes ($SCT_{sr} \neq SCT_r$)
- Usamos forma SCR si variable dependiente en modelo restringido es diferente

Ejemplo. Precios de vivienda

$$\widehat{\log(precio)} = \begin{array}{cccc} 0.264 & + & 1.043 \ \log(avaluo) & + & 0.0074 \ \log(lote) \\ (0.57) & & (0.151) & & (0.0386) \\ \\ & -0.1032 \ \log(pies2) & + & 0.0338 \ cuartos \\ (0.1384) & & (0.0221) \\ \\ n = 88, & \text{SCR} = 1.822 & \text{R}^2 = 0.773 & \text{SCR}_r = 1.880 \\ \end{array}$$

- Si usamos t's individuales para cada hipótesis, no rechazamos ninguna
- Pero hipótesis de racionalidad es una hipótesis conjunta

$$F_d = \frac{(1.88 - 1.822)}{1.822} \cdot \frac{83}{4} = 0.661$$

- $c_{0.05} = 2.5 \text{ para } F_{4,83}$
 - En Stata: test (lavaluo = 1) (llote lpies2 cuartos)
- ¿Hay evidencia contra hipótesis de que avalúos son racionales?

4.6 Reportar resultados de regresión

Al reportar los resultados de un análisis de RLM, debemos incluir:

- Variable dependiente claramente indicada
- Variables independientes listadas en la primera columna
- Coeficientes:
 - Interpretar variables clave (saber unidades de medición)
 - Discutir importancia económica
- Errores estándar (en lugar de t's) en paréntesis debajo de los coeficientes
 - Nos forza a pensar en H_0 a probar (no siempre es $H_0:\beta_j=0$)
 - Facilita calcular intervalos de confianza
- \bullet R²:
 - Medida de bondad de ajuste
 - Facilita el cálculo de la F para restricciones de exclusión [SCR, σ no esenciales]
- Número de observaciones
- (Opcional) Estrellas para significancia respecto a $H_0: \beta_j = 0$ (*,**,***)

[Gráfica]