Комплексные числа

1 Вычислите:

a)
$$\left(\frac{1-i}{1+i}\right)^3$$
; 6) $\left(\frac{i^5+2}{i^{11}+1}\right)^2$; B) $\frac{(1+3i^2)(8-i^{17})}{(2+i)^2}$;

r)
$$\frac{(2+i)(4+i)(13+i)}{1+i^5}$$
; A) $\left(\frac{(5+i)(7-6i)}{3+i}\right)^2$.

2 Представьте комплексные числа в тригонометрической и показательной формах, изобразите точкам на комплексной плоскости:

а)
$$-2$$
; б) $3i$; в) 4 ; г) $1-i\sqrt{3}$; д) $-\frac{\sqrt{3}}{2}+\frac{i}{2}$; е) $\frac{1-i}{1+i}$.

3 Даны числа $z_1=1-\mathrm{i}\sqrt{3},\,z_2=\sqrt{3}+\mathrm{i}.$ Вычислите:

a)
$$\left(\frac{\overline{z_1}}{z_2}\right)^2$$
; б) $\overline{z_1 \cdot z_2}$; в) $\frac{z_1}{z_2} - \frac{z_1}{\overline{z_2}}$.

4 Вычислите:

a)
$$(1+i)^{27}$$
;

6)
$$(2\sqrt{2} - 2\sqrt{6} \cdot i)^{24}$$
;

B)
$$\left(\frac{1+\sqrt{3}+i(\sqrt{3}-1)}{1+i\sqrt{2}}\right)^{20}$$
;

r)
$$2(1+i\sqrt{3})^8-32(1+i\sqrt{3})^4+128(1+i\sqrt{3})^2$$
.

д)
$$(1 + \cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^{32}$$
;

e)
$$((2+\sqrt{3})i-1)^{12}$$
;

$$\times$$
 $\left(1+\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{20}$;

5 Найдите корни из комплексных чисел. Ответ запишите в алгебраической форме и изобразите точками на комплексной плоскости:

а)
$$\sqrt{1}$$
; б) $\sqrt[3]{1}$; в) $\sqrt[4]{1}$; в) $\sqrt[3]{-64i}$; д) $\sqrt{1-i}$; е) $\sqrt[4]{-4}$; ж) $\sqrt[3]{i}$; з) $\sqrt[6]{1}$;

6 Изобразите множества точек на комплексной плоскости:

а)
$$|z| \leqslant 3$$
; б) $2 \leqslant |z| < 3$; в) $\frac{\pi}{2} < \arg z < \pi$; г) $-\frac{\pi}{3} \leqslant \arg z \leqslant \frac{\pi}{3}$; д) $|z - 2\mathfrak{i}| < 1$;

е)
$$2 \leqslant |z+1| \leqslant 3$$
; ж) $|1-i-z| < 2$; з) $Re(z) \cdot Im(z) = 0$; и) $Re^2(z) + Im^2(z) = 1$.

7 Выразите $\sin 7x$ и $\cos 7x$ в виде многочленов от $\sin x$ и $\cos x$

8 Найдите все комплексные числа, сопряжённые:

- а) своему квадрату;
- б) своему кубу.

9 Решите уравнения в поле комплексных чисел:

a)
$$x^2 + 2x + 5 = 0$$
;

6)
$$x^2 + (1-2i)x - 7 - i = 0$$
;

B)
$$(x+1)^4 - 16 = 0$$
;

r)
$$(x+1)^4+16=0$$
;

д)
$$x^4 + 9x^2 + 20 = 0$$
.

|10*| Найдите число решений системы в зависимости от значений параметра a:

$$\begin{cases} |z + 2i - 1| = 3; \\ |z - 1| = \alpha. \end{cases}$$

11* При каких а существует ровно одно решение системы неравенств:

$$\begin{cases} |z+i| \leq 3; \\ |z-3a| \leq 2a. \end{cases}$$

 12^* На вход автомата подаётся карточка с упорядоченной парой чисел, а затем каждую секунду автомат преобразует карточку (x,y) в карточку $(x^2-y^2,2xy)$. После минуты работы автомат получил карточку с исходной парой. Найдите все возможные значения чисел на изначальной карточке.

13* Среди всех комплексных чисел, удовлетворяющих условию $|z-2\mathfrak{i}|\leqslant 1$, найдите число, имеющее наименьший положительный аргумент.

14* Найдите суммы:

a)
$$1 - C_n^2 + C_n^4 - C_n^6 + \dots$$
;

6)
$$C_n^1 - C_n^3 + C_n^5 - C_n^7 + \ldots$$
;

Выразите $\sin\frac{2\pi}{5}$ и $\cos\frac{2\pi}{5}$ через радикалы от рациональных чисел.

 $\overline{16^*}$ Является ли число $\frac{2+\mathfrak{i}}{2-\mathfrak{i}}$ корнем из 1 какой-либо степени?