RIDGE REGRESSION

Generalized Ridge regression

Consider the regression model

$$Y = X\beta_* + \varepsilon \,,$$

where $X \in \mathbb{R}^{n \times d}$, β_* is an unknown vector in \mathbb{R}^d and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Define the generalized Ridge estimator by:

$$\widehat{\beta} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^d} \left\{ (Y - X\beta)^\top W (Y - X\beta) + (\beta - \beta_0)^\top \Delta (\beta - \beta_0) \right\},\,$$

where $\beta_0 \in \mathbb{R}^d$, $W \in \mathbb{R}^{n \times n}$ is a diagonal matrix with elements in [0,1], $\Delta \in \mathbb{R}^{d \times d}$ is a definite-positive matrix.

- 1. Provide the expression of $\widehat{\beta}$ when $\beta_0 = 0$, $W = I_n$ and $\Delta = \lambda I_d$ where $\lambda > 0$.

 Proof in lecture notes.
- 2. Solve the optimization problem in the general case.

For all $\beta \in \mathbb{R}^d$, write

$$\mathcal{L}(\beta) = (Y - X\beta)^{\top} W(Y - X\beta) + (\beta - \beta_0)^{\top} \Delta(\beta - \beta_0).$$

Therefore, for all $\beta \in \mathbb{R}^d$,

$$\nabla \mathcal{L}(\beta) = 2\left(\left(X^{\top}WX + \Delta\right)\beta - \Delta\beta_0 - X^{\top}WY\right).$$

Note that $X^{\top}WX + \Delta$ is definite-positive so that $\nabla \mathcal{L}(\beta) = 0$ has a unique solution given by

$$\widehat{\beta} = \left(X^{\top} W X + \Delta \right)^{-1} \left(\Delta \beta_0 + X^{\top} W Y \right).$$

3. Compute $\mathbb{E}[\widehat{\beta}]$ and show that the estimator is unbiased when $\beta_0 = \beta_*$.

Assuming that the design is not random,

$$\mathbb{E}[\widehat{\beta}] = (X^{\top}WX + \Delta)^{-1} (\Delta\beta_0 + X^{\top}W\mathbb{E}[Y]).$$

This yields

$$\mathbb{E}[\widehat{\beta}] = \left(X^{\top}WX + \Delta\right)^{-1} \left(\Delta\beta_0 + X^{\top}WX\beta_*\right).$$

In the case where $\beta_0 = \beta_*$,

$$\mathbb{E}[\widehat{\beta}] = (X^{\top}WX + \Delta)^{-1} (X^{\top}WX + \Delta) \beta_* = \beta_*$$

and the estimator is unbiased.

4. Compute $\mathbb{V}[\widehat{\beta}]$ and the mean squared error $\mathbb{E}[\|\widehat{\beta} - \beta_*\|_2^2]$ when $\beta_0 = \beta_*$.

By definition of $\widehat{\beta}$,

$$\begin{split} \mathbb{V}[\widehat{\beta}] &= \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \boldsymbol{X}^\top \boldsymbol{W} \mathbb{V}[\boldsymbol{Y}] \boldsymbol{W}^\top \boldsymbol{X} \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \\ &= \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{W}^\top \boldsymbol{X} \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \\ &= \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \boldsymbol{X}^\top \boldsymbol{W}^2 \boldsymbol{X} \left(\boldsymbol{X}^\top \boldsymbol{W} \boldsymbol{X} + \boldsymbol{\Delta} \right)^{-1} \,. \end{split}$$

If $\beta_0 = \beta_*$, as the estimator is unbiased,

$$\begin{split} \mathbb{E}[\|\widehat{\beta} - \beta_*\|_2^2] &= \operatorname{Trace}\left(\mathbb{V}[\widehat{\beta}]\right) \\ &= \sigma^2 \operatorname{Trace}\left(\left(X^\top W X + \Delta\right)^{-1} X^\top W^2 X \left(X^\top W X + \Delta\right)^{-1}\right) \\ &= \sigma^2 \operatorname{Trace}\left(X^\top W^2 X \left(X^\top W X + \Delta\right)^{-2}\right) \,. \end{split}$$

5. Assume that $W = I_n$, $\beta_0 = 0$ and $\Delta = V\Lambda V^{\top}$ where $X = UDV^{\top}$ is a singular value decomposition of X and Λ is a diagonal matrix with positive diagonal components. Provide an expression of $\hat{\beta}$ as a function of U, D, V, Λ and Y.

In the proposed setting,

$$\widehat{\beta} = (X^{\top}X + \Delta)^{-1} X^{\top}Y.$$

Let $X = UDV^{\top}$ be a singular value decomposition of X and choose $\Delta = V\Lambda V^{\top}$. Then,

$$\begin{split} \widehat{\beta} &= \left((UDV^\top)^\top UDV^\top + V\Lambda V^\top \right)^{-1} (UDV^\top)^\top Y \\ &= \left(VD^\top U^\top UDV^\top + V\Lambda V^\top \right)^{-1} VD^\top U^\top Y \\ &= V \left(D^\top D + \Lambda \right)^{-1} D^\top U^\top Y \,. \end{split}$$

Contrary to the classical Ridge estimator, this estimator shrinks values of β with a different penalty for each component thanks to the matrix Λ .