1. Доказать теорему о циркуляции для случая контура, не перпендикулярного плоскости тока.

Циркуляция вектора индукции магнитного поля \vec{B} — это криволинейный интеграл по контуру L от скалярного произведения \vec{B} и вектора элемента этого контура $d\vec{l}$.

Пусть поле создано бесконечно длинным прямым проводником с током I, а контур L перпендикулярен плоскости тока. Тогда $\oint_L \vec{B} \ d\vec{l} = \mu_0 I$ (доказано на лекции)

Если контур охватывает несколько токов, то циркуляция \vec{B} равна их алгебраической сумме: $\oint_L \vec{B} \ d\vec{l} = \mu_0 \sum I_k$

Если контур L не перпендикулярен плоскости тока, то мы можем представить $d\vec{l}$ как сумму двух векторов $d\vec{l}_{||}$ и $d\vec{l}_{\perp}$, где $d\vec{l}_{||}$ параллелен току, а $d\vec{l}_{\perp}$ - перпендикулярен. Тогда \vec{B} $d\vec{l} = \vec{B}(d\vec{l}_{||} + d\vec{l}_{\perp}) = \vec{B}$ $d\vec{l}_{||} + \vec{B}$ $d\vec{l}_{\perp}$. Однако прямая, содержащая вектор тока \vec{l} , перпендикулярна плоскости силовых линий, а значит \vec{B} и $d\vec{l}_{||}$ перпендикулярны $\Rightarrow \vec{B}$ $d\vec{l}_{||} = 0$. Тогда \vec{B} $d\vec{l} = \vec{B}$ $d\vec{l}_{\perp}$, где $d\vec{l}_{\perp}$ равна проекции $d\vec{l}$ на плоскость силовых линий.

Таким образом, расчет циркуляции \vec{B} по произвольному контуру сводится к ее вычислению вдоль проекции этого контура на перпендикулярную плоскость, которое дает уже известную формулу $\oint_L \vec{B} \ d\vec{l} = \mu_0 \Sigma I_k$.

Источники: https://poznayka.org/s23161t1.html

https://portal.tpu.ru/SHARED/r/REDHG/academic/Dis2/Tab1/lek10.pdf

2. Что представляет собой коаксиальный кабель? Опишите магнитное поле внутри и вне коаксикального кабеля. Используйте теорему о циркуляции.

Коаксиальный кабель — это кабель, который состоит из четырех вложенных друг в друга цилиндров с общей осью: внутреннего проводника, внешнего проводника, внутренней изоляции, разделяющей проводники, и внешней изоляции. Внутренний проводник представляет собой провод (единичный или состоящий из нескольких), внешний проводник (экран) обычно сделан в виде оплетки или фольги. Их разделяет изолирующий диэлектрик. Внешний проводник окружён внешней изоляцией - непроводящей оболочкой, защищающей от воздействия окружающей среды.

Используя теорему о циркуляции, найдем индукцию магнитного поля, созданного бесконечным прямым проводником с током.

Посчитаем индукцию поля внутри и вне внутреннего проводника радиуса r_1 (формулы магнитного поля прямого тока из лекции):

Внутри:
$$B = \frac{\mu_0 I r}{2\pi r_1^2}$$
; вне: $B = \frac{\mu_0 I}{2\pi r}$

Индукция поля внешнего проводника (полого цилиндра) между радиусами r_2 и r_3 (ток взят с обратным знаком, т. к. направлен в противоположную сторону):

$$B = -\frac{\mu_0 I(r^2 - r_2^2)}{2\pi r(r_3^2 - r_2^2)}$$

Индукция поля вне внешнего проводника:

$$B = -\frac{\mu_0 I}{2\pi r}$$

Следовательно, в разных частях пространства:

- 1) Внутри внутреннего проводника: $B = \frac{\mu_0 Ir}{2\pi r_1^2}$
- 2) Внутри диэлектрика: $B = \frac{\mu_0 I}{2\pi r}$ (т. к. магнитное поле тока, текущего вдоль полого круглого цилиндрического проводника (оплетки) в полости проводника отсутствует)

3) Внутри оплетки:
$$B = \frac{\mu_0 I}{2\pi r} - \frac{\mu_0 I (r^2 - r_2^2)}{2\pi r (r_3^2 - r_2^2)} = \frac{\mu_0 I}{2\pi r} (1 - \frac{r^2 - r_2^2}{r_3^2 - r_2^2})$$

4) Вне кабеля:
$$B = \frac{\mu_0 I}{2\pi r} - \frac{\mu_0 I}{2\pi r} = 0$$

Источники: https://study.physics.itmo.ru/mod/resource/view.php?id=10748

https://megalektsii.ru/s57706t11.html

https://studref.com/624229/tehnika/magnitnoe_pole_pryamolineynogo_tsilindricheskogo provodnika tokom

https://studref.com/624230/tehnika/magnitnoe_pole_koaksialnogo_kabelya https://old.bigenc.ru/technology and technique/text/2075777

- 3. Набор катушек Гельмгольца имеет радиус R=10 см и разделен расстоянием R=10 см. Каждая катушка имеет 250 витков, пропускающих ток I=2 A.
- (a) Определите общее магнитное поле B вдоль оси x (центральной линии для двух катушек) с шагом 0,2 см от центра одной катушки (x=0) до центра другой (x=R).
- (b) Постройте график зависимости B(x)
- (c) На какой % изменяется B от x = 5 см до x = 6 см?
- (а) Поле на оси одиночного витка радиуса R с током силой I определяется формулой (выводится из закона Био-Савара):

$$B(x) = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{\frac{3}{2}}}$$

где x — расстояние от катушки по оси до точки

Поле катушки, состоящей из n витков:

$$B(x) = \frac{\mu_0 n I R^2}{2(R^2 + x^2)^{\frac{3}{2}}}$$

Для первой катушки (с центром в точке 0):

$$B(x) = \frac{\mu_0 n I R^2}{2(R^2 + x^2)^{\frac{3}{2}}}$$

Для второй катушки (с центром в точке R):

$$B(x) = \frac{\mu_0 n I R^2}{2(R^2 + (R - x)^2)^{\frac{3}{2}}}$$

Результирующее поле:

$$B(x) = \frac{\mu_0 n I R^2}{2(R^2 + x^2)^{\frac{3}{2}}} + \frac{\mu_0 n I R^2}{2(R^2 + (R - x)^2)^{\frac{3}{2}}}$$

Рассчитаем поле от x=0 до x=10 с шагом 0,2 в Excel:

X, CM	В(х), Тл
0,00	0,004252313
0,20	0,004284254
0,40	0,004313452
0,60	0,004339957
0,80	0,004363837
1,00	0,004385177
1,20	0,004404081
1,40	0,004420670
1,60	0,004435077
1,80	0,004447448
2,00	0,004457937
2,20	0,004466708
2,40	0,004473926
2,60	0,004479761
2,80	0,004484382
3,00	0,004487953
3,20	0,004490635
3,40	0,004492582
3,60	0,004493934
3,80	0,004494824
4,00	0,004495369
4,20	0,004495671
4,40	0,004495815
4,60	0,004495868
4,80	0,004495881
5,00	0,004495881
5,20	0,004495881
5,40	0,004495868
5,60	0,004495815
5,80	0,004495671
6,00	0,004495369
6,20	0,004494824

0,004493934
0,004492582
0,004490635
0,004487953
0,004484382
0,004479761
0,004473926
0,004466708
0,004457937
0,004447448
0,004435077
0,004420670
0,004404081
0,004385177
0,004363837
0,004339957
0,004313452
0,004284254
0,004252313

(b) Построим график на основе этих данных:

(c)
$$B(5) = 0.004495881$$
; $B(6) = 0.004495369$ $B(6)$ меньше $B(5)$ на $100 - \frac{B(6)}{B(5)} \cdot 100 \approx 0.011\%$

Источники: https://en.wikipedia.org/wiki/Helmholtz_coil