Scilab Practical 1: Modified Euler's Method

Using suitable loop, write a sci-lab program to obtain approximate solution of y using Modified Euler's Method (Correct up to five decimal places).

1)
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
 ; $y(0) = 1$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 1-10)

2)
$$\frac{dy}{dx} = y^2 - \frac{y}{x}$$
; $y(1) = 1$ for $x = 1.1$ with $h = 0.05$ (Roll. No: 11 – 20)

3)
$$\frac{dy}{dx} = 2 + \sqrt{xy}$$
; $y(1) = 1$ for $x = 2$ with $h = 0.5$ (Roll. No: 21 – 30)

4)
$$\frac{dy}{dx} = log(x + y)$$
; $y(0) = 2$ for $x = 0.4$ with $h = 0.2$ (Roll. No. 31-40)

5)
$$\frac{dy}{dx} = y + x^2$$
; $y(0) = 1$ for $x = 0.1$ with $h = 0.05$ (Roll. No: 41-50)

6)
$$\frac{dy}{dx} = -xy^2$$
; $y(0) = 2$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 51-60)

7)
$$\frac{dy}{dx} = x + y^2$$
; $y(0) = 1$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 61 onwards)

Scilab Practical 2: Runge kutta method of order four

Using suitable loop, write a sci-lab program to obtain approximate solution of y using Runge Kutta method of order four (Correct up to five decimal places).

1)
$$\frac{dy}{dx} = log(x + y)$$
; $y(0) = 2$ for $x = 0.4$ with $h = 0.2$ (Roll. No: 1-10)

2)
$$\frac{dy}{dx} = x + y^2$$
; $y(0) = 1$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 11 – 20)

3)
$$\frac{dy}{dx} = -xy^2$$
; $y(0) = 2$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 21 – 30)

4)
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
; $y(0) = 1$ for $x = 0.2$ with $h = 0.1$ (Roll. No: 31-40)

5)
$$\frac{dy}{dx} = y + x^2$$
; $y(0) = 1$ for $x = 0.1$ with $h = 0.05$ (Roll. No: 41-50)

6)
$$\frac{dy}{dx}$$
 = 2 + \sqrt{xy} ; $y(1) = 1$ for $x = 2$ with $h = 0.5$ (Roll. No: 51-60)

7)
$$\frac{dy}{dx} = y^2 - \frac{y}{x}$$
; $y(1) = 1$ for $x = 1.1$ with $h = 0.05$ (Roll. No: 61 onwards)

Specimen Outcome Printout

Name:		_ A.Y	Roll No. :	Division:		
SCI-LAB P	RACTICAL 1: MODIFIED	EULER'S METHOD				
QUESTION:						
INPUT						
OUTPUT						
Enter the v Enter value Enter Fina	al value of x0: value of y0: e of h: l value of xn: ber of iteration:					
at x=						
Euler solut	tion y=					
modified	solution =					
modified	solution =					
modified	solution =					
modified	solution =					
modified	solution =					
step=						
at x=						
Euler solution y=						
modified	solution=					
modified	solution =					

modified solution=						
modified solution=						
modified solution=						
Specimen Outcome Printout						
Name:	A.Y	Roll No. :	Division:			
SCI-LAB PRACTICAL 2: QUESTION:	RUNGE KUTTA METHOD	OF FOURTH ORDER				
INPUT						
OUTPUT						
By Range Kutta fourth order Method						
Enter initial value of x0:						
Enter the value of y0:						
Enter value of h:						
Enter Final value of xn:						
Number of iteration :						
Step=						
k1=						
k2=						
k3=						
k4=						
k=						

at x=

y=

Step=

k1=

k2=

k3=

k4=

k=

at x=

y=