		Question		
1 Question Grade: 1	Your respon	se		
Weighted Grade: (5/5)	Een analoog videosignaal heeft een bandbreedte van 6.5 MHz. Dit signaal wordt met PCM verzonden. De signaal- ruisverhouding SNR bij maximum signaal ten gevolge van quantisatiefouten dient minimaal 65 dB te bedragen.		Correct	
	a. Bepaal de minimaal benodigde sample frequentie.	$f_s = 13 (17\%) \text{ MHz}$		
	b. Bepaal het minimaal benodigde aantal bits per PCM woord, en geef de resulterende bitrate R_b van het PCM signaal.	De minimale woordlengte is: 11 (17%) bits. De bitrate R_b bedraagt 143 (17%) Mbit/s.		
	c. Welke bitfoutenkans P_e is op de verbinding maximaal toelaatbaar indien op de bestemming een gemiddelde SNR = 58.5 dB geëist wordt.	De maximaal toelaatbare P_e is 2.935 (17%) $.10^{-7}$.		
	 d. Op een slechte verbinding blijkt de bitfoutenkans P_e = 34 . 10⁻⁶ te bedragen. 1. Bereken de maximaal haalbare SNR bij maximaal signaalniveau. 2. Met hoeveel bits per PCM woord kunt u volstaan indien 8 dB degradatie ten opzichte van dit maximum toelaatbaar is. 	De gevraagde maximaal haalbare SNR bij maximaal signaalniveau bedraagt: 43.43 (17%)dB. De nieuwe woordlengte is 6 (17%) bits.		
	Comm	nent:		
Question Grade: 0.67 Weighted Grade: (3.33/5)	Your response		Correct response	
	Een transmissiesysteem dat gebruik maakt van Delta Modulatie, wordt getest met een sinusvormig signaal met frequentie 10 kHz en piek - piek spanning $V_{PP} = 3.3 \text{ V}$.		Een transmissiesysteem dat gebruik maakt van Delta Modulatie, wordt getest met een sinusvormig signaal met frequentie 10 kHz en piek - piek spanning $V_{PP} = 3.3 \text{ V}$.	
	De samplefrequentie $f_{\mathcal{C}}$ is 20 maal the Nyquist-frequentie.		De samplefrequentie $f_{\mathcal{C}}$ is 20 maal the Nyquist-frequentie.	
	a. Welke stapgrootte is vereist om slope overloading te voorkomen bij een zo klein mogelijke "granular noise" niveau ?	259.18 (33%) mV.	a. Welke stapgrootte is vereist om slope overloading te voorkomen bij een zo klein mogelijke "granular noise" niveau ?	259.18 mV.
	b. Bepaal de enkelzijdige spectrale ruisvermogensdichtheid ten gevolgen van "granular noise"	De enkelzijdige spectrale ruisdichtheid $N_{0 gr} = -72.52 (33\%) \frac{dB V^{2}}{Hz}$	b. Bepaal de enkelzijdige spectrale ruisvermogensdichtheid ten gevolgen van "granular noise"	De enkelzijdige spectrale ruisdichtheid $N_{0 gr} = -72.52 \frac{dB V^{2}}{Hz}$
	c. Indien de ontvanger een brandbreedte heeft van BW = 28 kHz, geef dan de signaal - quantisatieruis verhouding (SNR) aan de uitgang.	$SNR ={27.84} (0\%) dB.$	c. Indien de ontvanger een brandbreedte heeft van BW = 28 kHz, geef dan de signaal - quantisatieruis verhouding (SNR) aan de uitgang.	SNR = 29.39±0.2 dB.
	Total grade: $1.0 \times 1/3 + 1.0 \times 1/3 + 0.0 \times 1/3 = 33\% + 33\% + 0\%$			
	Comment:			