8. Симметрия графа и его дополнения

8.1. Автоморфизмы графа и группа симметрий

Пусть G = (V, E) — простой граф. A втоморфизмом графа называется биекция

$$\varphi \colon V \to V$$

такая, что для любых двух вершин $u, v \in V$ выполняется

$$\{u,v\} \in E \iff \{\varphi(u),\varphi(v)\} \in E.$$

Другими словами, φ сохраняет структуру смежности.

- Множество всех автоморфизмов графа G образует группу при композиции отображений, называемую **группой автоморфизмов** Aut(G).
- Тривиальный автоморфизм тождественное отображение $\mathrm{id}: v \mapsto v$.
- Если $\varphi \in \operatorname{Aut}(G)$ не является тождественным, говорят о *неявной* (или неполной) симметрии.

Пояснение: автоморфизмы — это «симметрии» графа, аналоги зеркальных и поворотных симметрий фигур. Они показывают, какие вершины и ребра можно «переставить», не меняя общей формы графа.

8.2. Примеры симметрий

Пример 1. Цикл C_4 (четырёхвершинный цикл). Вершины можно пронумеровать 1, 2, 3, 4 по кругу. Автоморфизмы:

поворот на
$$90^{\circ}: 1 \to 2 \to 3 \to 4 \to 1$$
,

отражение:
$$1 \leftrightarrow 4, \ 2 \leftrightarrow 3,$$

и их композиции. Группа симметрий изоморфна диhedral group D_4 порядка 8.

Пример 2. Полный граф K_n . Любая перестановка вершин сохраняет все рёбра, поэтому

$$\operatorname{Aut}(K_n) \cong S_n$$

симметричная группа порядка n!.

8.3. Граф-дополнение

 \mathcal{A} ополнением графа G = (V, E) называется граф

$$\overline{G} = (V, \overline{E}), \quad \overline{E} = \big\{ \{u, v\} \mid u \neq v, \ \{u, v\} \notin E \big\}.$$

То есть в \overline{G} все отсутствующие в исходном G связи становятся рёбрами, а все прежние исчезают.

- $(\overline{G}) = G$.
- ullet Если G простой, то и \overline{G} простой.
- $\deg_{\overline{G}}(v) = |V| 1 \deg_{G}(v)$.

Группа автоморфизмов и дополнение

$$\operatorname{Aut}(\overline{G}) = \operatorname{Aut}(G).$$

Пояснение: перестановка вершин сохраняет и отсутствующие в G связи, значит сохраняет рёбра дополнения.

8.4. Иллюстрация: граф и его дополнение

 $\mathit{Пример}$. Пусть G — треугольник K_3 (все три ребра). Тогда \overline{G} — три изолированные вершины (нет рёбер).

8.5. Свойства и применения

- **Симметрия упрощает алгоритмы:** при поиске путей, раскраске и проверке изоморфизма можно работать с представителем орбиты.
- Дополнение и свойства связности: G связен $\Rightarrow \overline{G}$ связен, но часто изучают одновременно пару (G, \overline{G}) , например в теореме Рамсея.
- Оптимизация: задачи клики в G переходят в задачи независимого множества в \overline{G} .

Источники

- Д.Б. West, Introduction to Graph Theory, Prentice Hall.
- P. Diestel, Graph Theory.
- Википедия: Автоморфизм графа
- Википедия: Дополнение графа