

Automotive Background

Strong scientific community for autonomous vehicle technology research

"Hungary's automotive sector quietly goes on growing" Financial Times*

- Annual revenues: 12,7 bn EUR
- 10% of the GDP, 20% of the export
- 600+ automotive companies and suppliers
- 100,000+ jobs

Automotive production and development figures

- 4 OEMs and 15 of the top 20 TIER1s are present in Hungary
- Continuous need for qualified engineers
- Currently almost 6.000+ engineers in the automotive R&D demand is beyond 10.000 qualified engineers
- Complex, interdisciplinary domain specific knowledge
- New dedicated programs in higher education

Mobility as social challenge Inspirating factors for development

1 **Zero Emission** • Fuel-consumption reduction

• Reducing emission

2 Demographic pressure • Support of insecure leaders

• Increase the elderly mobility

3 Risk of accidents Avoidance of the accidents by reducing the effect of human mistakes

Increasing traffic density

Management of transport process

• Comfortable, time-saving travel

5 Assistance systems • Intelligent sensors for appropriate process

Intelligent actuators (steering, brakes, etc.)

Source: VDA

RECAR Education program

Strong scientific community for autonomous vehicle technology research

Long term competency in electronic vehicle control

- Industrial partners (BOSCH and Knorr-Bremse)
- Academical background (BME, ELTE, MTA SZTAKI)

Market demand

- Global trends and actual developments in automotive
- 4 OEM's and 15 TIER1 companies from Hungary
- Constant need for qualified engineers

Strong government support

- Higher added value compared to manufacturing
- ROI calculation at national economy level
- Special research funding programs

Dedicated BSc/BEng and MSc courses

- Autonomous Vehicle Control Engineer MSc in English, 2018, Budapest, BME
- Computer Science for Autonomous Driving MSc in English 2018, Budapest, ELTE
- Vehicle Test Engineer Beng in Hungarian 2018, Zalaegerszeg

RECAR Education program

Strong scientific community for autonomous vehicle technology research

	1						2							3							4					
Nu	lumerical mathematics							Industrial image processing							Automotive R&D processes and quality systems											
							Vajta L	ászló						Wahl Is	tván											
						ELTE	:						BME							BME						
:	2 0	1	f	4	TT	IK	3	1	0	v	4	TT	VIK	3	0	0	f	4	GH	GJT						
Cor	ntrol theo	ry and	system	dynan	nics		High p	erforma	ance m	icroco	ntroller	s and in	terface	Project	manag	ement				BME						
Bol	kor József-	Gáspár	Péter				Tevesz	z Gábor						2	0	0	f	2	GH	GTK						
						BME	1						BME	Machir	ne visior	1										
- 2	2 0	2	V	4	TT	KJIT	2	1	0	f	4	TT	VIK	Szirány	i Tamás											
	elligent sy						Humar	n factor	s in tra	ffic en	vironm	ent	ELTE							BME						
)ol	browiecki	Tadeusz					2	0	0	f	2	GH	IK		0	2	V	4	SZT	ALRT						
	BME Legal framework of								f autonomous vehicles ELTE					E Safety and security in vehicle industry												
;		0	f	4	TT	VIK		0	0	f	2	GH	IK	Sághi B	alázs					BME						
or	mpensatio	on block						zation a	nd map	pping				2	0	0	f	3	SZT	KJIT						
						•						Design and integration of embedded systems								S: 1						
							_		_					Majzik	stván					BME		ı	Diplo	ma t	hesi	S
							2	0	2	<u>†</u>	4	SZT	EMK		1	0	٧	3	SZT	VIK						
								omous	robots	and ve	hicles				modelli	ng, sim	nulatio	n and c	ontrol							
							Kiss Bá	alint					D. 45	Varga I	stvan					D145						
							2	1	0	.,	4	SZT	BME VIK	2	0	2	£	4	SZT	BME KJIT						
								notive e		v	4	321	VIN		otive ne			4		NII						
			v				Bécsi 1		nvironi	ments	ensors			Szalay 2		twork	c and c	omm. s	ystems							
			f v				Decsi i	aillas						Szalay i	.SUIL					ВМЕ						
(6 0	6	f	12	SZV	BME							BME	2	0	2	v	4	SZI	GJT						
_	hicle dyna			12	JL V	DIVIL	2	0	2	v	5	SZI		_	ated ve	hicle d	lesign r	roject	JE1	0,1						
	meth Huba					BME		nated di										-,								
	2 0	1	v	3	SZI		Szalay			,				Gáspár	Péter					BME						
/el	hicle testi						,							1	0	2		3	SZI	KJIT						
	bó Bálint	J				BME							BME	Németh	Huha					BME						
'Zd																										

RECAR Research program

- Basic and advanced research in artificial intelligence
- Co-operative control applications to vehicles
- Redundant technologies (sensors, actuators, energy and communication networks, softare)
- Insurance/reliability: how can reliability be tested and improved?
- Data acquisition/property rights: how is it possible to make data access and management transparent? Personal data how can the protection of personal data be guaranteed?
- Cyber security: how is it possible to avoid illegal use of intelligent functions?
- Driverless technologies: how can test and approval processes be improved to make autonomous vehicles safe and reliable?
- Accident investigations with involvement of automated vehicles

RECAR Research program

Proving Ground - industrial background

Close co-operation with the industry – specification of requirements

Automotive Working Group: Almotive, AVL, BME GJT, Bosch, Commsignia, Knorr-Bremse, Continental, EVOPRO, NKH, NI, SZTAKI, ThyssenKrupp Presta, TÜV Rheinland, ZF

- Detailed technical specification of the classic elements of vehicle dynamics and physical structure of the automated vehicle tests
- Draft specification of the autonomous environment and related communication infrastructure
- Technical proposal for autonomous vehicle public road testing

ICT Working Group: BME HIT, BME KJIT, BPC, Ericsson, HUAWEI, Kapsch, Magyar Közút, Magyar Telekom, NFM, NMHH, Nokia, Oracle, RWE, Siemens, SWARCO, T-Systems, Vodafone

• Detailed specification of the autonomous vehicle environment and related communication infrastructure

Bounder less organizational approach

Multi-level testing environment

From computer to real traffic – essential for automated driving

Public road

Limited public road

Proving ground

Laboratory

Simulation

Real public road environment

Controlled public road tests

Controlled systemtest

Component test, integration test

Conceptual and feasibility test

Multi-level testing environment

Not only a proving ground for automated driving but also a complex test environment for new info-communication technologies

zone

real-life testing

Proving Ground Concept plan - layout

Technical plans

zone

Testing and Validation ZONE concept

Extended testing zone – test field to city to public roads

- Loop_1 Local roads (City Zalaegerszeg being turned into "smart city")

 Loop_2 Hungarian roads (Zalaegerszeg-Gyor-Budapest) Actually designed

 R76 for automated driving, M7 with modified communication

 Test road (R76) plan

 High level communication

 Highway with RSUs (M7) plan

 Highway with RSUs (M1)

 Normal highway (M85, 86)
- R76 for automated driving, M7 with modified communication

 Highway with RSUs (M1)

 Normal highway (M85-86)

 Normal road (86/76)

Commitment of the Hungarian Government

Investment into a European level RD infrastructure

Business model

