Основные принципы и понятия

Операционные системы

Виртуальная память

- Логическая концепция
- Реализованая с помощью физической памяти и VMM
- Обеспечивает:
 - Универсальную вычислительную модель памяти, обычно линейный массив
 - Управление ресурсом физической памяти (выделение, освобождение)
 - Предоставление большего объёма памяти, своп
 - Буферный кэш для файловой системы
 - Оптимизации для совместного использования ресурсов, COW

Адресное пространство

Virtual address space

Physical address space

Адресное пространство, трансляция

Таблица трансляции

PGD - page global directory

PUD - page upper directory

PMD - page middle directory

PT - page table

Устройство PDE (х86)

Page Directory Entry

G - Ignored

S - Page Size (0 for 4kb)

A - Accessed

D - Cache Disabled

W - Write Through

U - User\Supervisor

R - Read\Write

P - Present

Устройство РТЕ (х86)

Page Table Entry

Трансляция адресов на ARM v7

РТЕ для arm v7

Трансляция адресов на ARM v8

* Field has additional properties to the default RESO definition, see the register description for more information.

РТЕ для arm v8

With the 4KB granule size, for the level 1 descriptor n is 30, and for the level 2 descriptor, n is 21.

With the 16KB granule size, for the level 2 descriptor, n is 25.

With the 64KB granule size, for the level 2 descriptor, n is 29.

With the 4KB granule size m is 12[‡], with the 16KB granule size m is 14, and with the 64KB granule size, m is 16.

A level 0 Table descriptor returns the address of the level 1 table.

A level 1 Table descriptor returns the address of the level 2 table.

A level 2 Table descriptor returns the address of the level 3 table.

‡ When m is 12, the RESO field shown for bits[(m-1):12] is absent.

Figure D4-15 VMSAv8-64 level 0, level 1 and level 2 descriptor formats with 48-bit OAs

TLB - table lookaside buffer

VIVIVI I IO

Организация УММ

- Содержит:
 - таблицу используемой физической памяти
 - список регионов виртуальной памяти каждого процесса (VMA)
 - LRU кэш использованных страниц
 - отображение памяти устройств ММІО, регионы DMA
 - аллокатор памяти ядра (kmalloc)
 - кеш блоков для ввода/вывода
 - менеджер файлов отображаемых в память (mmap(2))
- https://www.kernel.org/doc/gorman/pdf/understand.pdf для более глубокого понимания

Управление страницами, vma, rmap

Кэш страниц, LRU

Память ядра, kmalloc

ттар(2) и файлы

Figure 9.22 Memory-mapped files. shared betw processes

Планировщик ввода/вывода, CFQ *

^{*} HTTPS://WWW.KERNEL.ORG/DOC/DOCUMENTATION/BLOCK/CFQ-IOSCHED.TXT

Overcommit, OOM killer

«Engineers have more words for screwing up than the Inuit have words for snow."»

Pierce Nichols