2ο Σετ ασκήσεων Μαθηματική Ανάλυση

Your email address (dcv@uom.edu.gr) will be recorded when you submit this form. Not you? Switch account

* Required

Όνομα: *	
Your answer	
Επώνυμο: *	
Your answer	
Αριθμός Μητρώου: *	
Your answer	

Έστω ότι $P_3(x)$ είναι η τρίτης τάξης προσέγγιση με σειρά Taylor στο σημείο $x_0=0$ για τη συνάρτηση e^{-x} . Ποιο από τα παρακάτω είναι το άνω όριο για το σφάλμα αποκοπής στο σημείο x=1 (δηλαδή η μέγιστη απόλυτη διαφορά που μπορεί να προκύψει μεταξύ της τιμής $P_3(1)$ και e^{-1});

 $|R_4| < \frac{e}{24}$

 $|R_4| < \frac{e}{4}$

0 -

0 -

 $|R_4| < \frac{1}{24e}$

 $|R_4| < \frac{1}{24}$

0 --

0 ---

Για ποιες πραγματικές τιμές του χ συγκλίνει η παρακάτω σειρά; *

1 point

$$\sum_{n=0}^{+\infty} \frac{x^n 3^n}{n!}$$

- **Γ**ια x>5.
- Για όλες τις πραγματικές τιμές του χ.
- **Γ**ια x<1.
- **Γ**ια x>-1.

Η παρακάτω σειρά ισούται με: *

1 point

$$\sum_{k=0}^{+\infty} \lambda^k, |\lambda| < 1$$

- (1+λ
- (1/λ
- $(1+\lambda)/\lambda$
- 1/(1-λ)

Για ποιες τιμές του ρ (πραγματικός) συγκλίνει η παρακάτω σειρά: * 1 point $\sum_{n=0}^{\infty} \alpha \rho^{4n-1}$ $\rho^4 < 1$

ρ>-1

Για ποιες τιμές του λ συγκλίνει η παρακάτω σειρά: *

1 point

 $\sum_{n=1}^{+\infty} \frac{(5\lambda)^n}{n!}$

Για όλες τις πραγματικές τιμές του λ.

Για λ<1.

Για λ>1.

Για λ>5.

Για ποιες τιμές του ρ (πραγματικός) συγκλίνει η παρακάτω σειρά: *

1 point

$$\sum_{n=1}^{+\infty}\alpha\rho^{n-1}$$

- Για όλες τις πραγματικές τιμές του ρ.
- **Γ**ια ρ>1.
- **Γ**ια |ρ|<1.
- **Γ**ια ρ>5.

Το όριο της ακολουθίας α_n που ικανοποιεί τις παρακάτω ανισότητες 1 point είναι: *

$$\frac{5n}{\sqrt{n^2+n}} \le \alpha_n \le \frac{5n}{\sqrt{n^2-n}}$$

- \bigcirc 5
- \bigcirc 1
- O 10
- \bigcirc 2

Ποια η πέμπτης τάξης προσέγγιση με σειρά Taylor της συνάρτησης $f(x) = x \cdot cos(x)$ γύρω από το σημείο $x_0 = 0$.

$$x - \frac{x^3}{2} + \frac{x^5}{24}$$

 $x^2 - \frac{x^4}{6}$

_		
- (- 1	
		-

0 -

$$1 + \frac{x^2}{2}$$

 $1 + \frac{x^4}{4}$

(-)	
_		

O ---

Ποια η τρίτης τάξης προσέγγιση με σειρά Taylor της συνάρτησης $f(x)=e^x sin(x)$ γύρω από το σημείο $x_0=0$.

O -

- 0 -
- x^2+x+

(x+1)/6

Έστω ότι $P_3(x)$ είναι η τρίτης τάξης προσέγγιση με σειρά Taylor στο σημείο $x_0=0$ για τη συνάρτηση sin(x). Ποιο από τα παρακάτω είναι το λιγότερο συντηρητικό άνω φράγμα για το σφάλμα αποκοπής στο σημείο x=1/2 (δηλαδή το λιγότερο συντηρητικό άνω φράγμα για την απόλυτη διαφορά που μπορεί να προκύψει μεταξύ της τιμής $P_3(1/2)$ και sin(1/2)).

$$|R_4| < \frac{1}{384}$$

$$|R_4| < \frac{\cos(1/2)}{4!}$$

A copy of your responses will be emailed to dcv@uom.edu.gr.

Page 1 of 1

Submit

Never submit passwords through Google Forms.

н

Google Forms

