Math 5305: Homework 1 Avinash Iyer

Problem 1

(i) Let $f: X \to Y$ be a function, and let $A \subseteq X$. Then, if $x \in A$, we must have $f(x) \in f(A)$, so that $x \in f^{-1}(f(A))$, meaning $A \subseteq f^{-1}(f(A))$. If f is injective, then for any $z \in f^{-1}(f(X))$, there is a unique $y \in f(X)$ such that f(z) = y (by injectivity), meaning that f is left-invertible; therefore, $f^{-1}(f(A)) = A$ for all such $A \subseteq X$.

(ii) If $B \subseteq Y$, then for any $f(x) \in f(f^{-1}(B))$, $x \in f^{-1}(B)$, or that $f(x) \in B$, meaning that $f(f^{-1}(B)) \subseteq B$. If f is surjective, then for any $y \in Y$, there is some $z \in X$ such that f(z) = y, or that $z \in f^{-1}(\{y\})$; therefore, we may select a right-inverse for f, meaning that $f(f^{-1}(X)) = Y$, or $f(f^{-1}(B)) = B$ for all subsets $G \subseteq Y$.

Problem 6

Let $X \neq \emptyset$ and $\mathcal{C} \subseteq \mathcal{P}(X)$. We define the topology $\tau_{\mathcal{C}}$ on X by

$$\tau_{\mathfrak{C}} = \bigcap \bigl\{\tau \ \middle| \ \tau \subseteq \mathfrak{P}(X) \text{ is a topology, } \mathfrak{C} \subseteq \tau \bigr\}.$$

The intersection is indeed well-defined, as the discrete topology includes \mathcal{C} , and it is the smallest such topology as any other topology on X that contains \mathcal{C} is included in the intersection.

Problem 9

Let τ_1 , τ_2 be topologies on X with respective bases \mathcal{B}_1 , \mathcal{B}_2 .

Let $\tau_1 \subseteq \tau_2$, $x \in X$, and $B_1 \in \mathcal{B}_1$ with $x \in B_1$. Since $B_1 \in \mathcal{B}_1$, $B_1 \in \tau_1$, so $B_1 \in \tau_2$, meaning that $B_1 = \bigcup_{i \in I} U_i$ for some family $\{U_i\}_{i \in I} \subseteq \mathcal{B}_2$. There is at least one such $U_i \in \mathcal{B}_2$ with $x \in U_i$; setting $B_2 \coloneqq U_i$, we have $x \in B_2 \subseteq B_1$.

Suppose now that for any $x \in X$, $B_1 \in \mathcal{B}_1$ with $x \in B_1$, there is $B_2 \in \mathcal{B}_2$ with $x \in B_2 \subseteq B_1$. Let $U \in \tau_1$. Then, there is some family $\{B_i\}_{i \in I} \subseteq \mathcal{B}_1$ such that $\bigcup_{i \in I} B_i = U$. For each $x \in B_i$, we find $V_{x,i} \in \mathcal{B}_2$ such that $x \in V_{x,i} \subseteq B_i$. Then, we get $\bigcup \{V_{x,i} \mid x \in U, i \in I\} = U$, whence $U \in \tau_2$.

Problem 14

Let $f: X \to Y$ be a map of topological spaces.

(i) Let f be open. Then, for any $A \subseteq X$, we see that $f(A^{\circ})$ is open in Y. Since $A^{\circ} \subseteq A$, we see that $f(A^{\circ}) \subseteq f(A)$, so since $f(A^{\circ})$ is open, it is contained in $f(A)^{\circ}$, meaning that $f(A^{\circ}) \subseteq f(A)^{\circ}$.

Now, let f be such that $f(A^\circ) \subseteq f(A)^\circ$ for all $A \subseteq X$. Let $U \subseteq X$ be open, so $U^\circ = U$. Then, since $f(U^\circ) \subseteq f(U)^\circ$, we see that $f(U) \subseteq f(U)^\circ$, and since $f(U)^\circ \subseteq f(U)$ necessarily, we have $f(U) = f(U)^\circ$, or that f is an open map.

(ii) Let f be closed. Then, for any $A \subseteq X$, we have that $f(\overline{A})$ is closed in X. Since $A \subseteq \overline{A}$, we have that $f(A) \subseteq f(\overline{A})$, and since $f(\overline{A})$ is closed, we also have $\overline{f(A)} \subseteq f(\overline{A})$.

Now, let f be such that $\overline{f(A)} \subseteq f(\overline{A})$, and let $C \subseteq X$ be closed, meaning $\overline{C} = C$. Then, as assumed, we have $\overline{f(C)} \subseteq f(\overline{C})$, but since $C = \overline{C}$, we have $f(\overline{C}) = f(C) \subseteq \overline{f(C)}$, meaning $\overline{f(C)} = f(C)$, or that f(C) is closed.

Math 5305: Homework 1 Avinash Iyer

Problem 18

(i) Let

$$\mathcal{B}_{prod} = \left\{ \prod_{i \in I} U_i \; \middle| \; U_i = B_i \in \mathcal{B}_i \text{ for finitely many } i \right\}.$$

We show that \mathcal{B}_{prod} is a basis. First, for each \mathcal{B}_i , $\bigcup \mathcal{B}_i = X_i$, so by taking products we find that $\bigcup \mathcal{B}_{prod} = \prod_{i \in I} X_i$. Then, for any two elements U and V of \mathcal{B}_{prod} , there are finitely many $\{U_{i_k}\}_{k=1}^n$ and $\{V_{i_j}\}_{j=1}^n$ in \mathcal{B}_{i_k} and \mathcal{B}_{i_j} such that U and V are the respective products with X_i elsewhere. We have three cases.

- If $U_{i_j} \neq X_{i_j}$ and $V_{i_j} = X_{i_j}$ at index i_j , then the intersection $U \cap V$ has U_{i_j} at index i_j , meaning that their intersection is yet again a product of basis elements with all but finitely many equal to X_i .
- Similarly, if $U_{i_j} = X_{i_j}$ and $V_{i_j} \neq X_{i_j}$, the intersection $U \cap V$ yields yet another product of basis with elements with all but finitely many equal to X_i .
- If U_{i_j} , $V_{i_j} \neq X_{i_j}$, then there is some $W_{i_j} \in \mathcal{B}_{i_j}$ such that $W_{i_j} \subseteq U_{i_j} \cap V_{i_j}$, meaning that the intersection $U \cap V$ contains a product of basis elements with all but finitely many equal to X_i .
- (ii) Let

$$\mathcal{B}_{box} = \left\{ \prod_{i \in I} B_i \mid B_i \in \mathcal{B}_i \right\}.$$

We can see immediately that \mathcal{B}_{box} is a basis, as $\bigcup \mathcal{B}_i = X_i$ for each i, so by taking products, we get that $\bigcup \mathcal{B}_{box} = \prod_{i \in I} X_i$. Similarly, since the finite intersection of basis elements always contains a basis element, taking $U, V \in \mathcal{B}_{box}$, we have $(\prod_{i \in I} U_i) \cap (\prod_{i \in I} V_i) = \prod_{i \in I} (U_i \cap V_i)$, which contains some box $\prod_{i \in I} W_i$ where $W_i \in \mathcal{B}_i$.

(iii) If the indexing set I is finite, we see that $\tau_{box} = \tau_{prod}$. Else, if I is infinite, we have that $\tau_{prod} \subseteq \tau_{box}$.