Рубежный контроль

вариант 16

номер задачи 15

номер задачи 35

```
import pandas as pd
import seaborn as sns
import numpy as mp
```

data=pd.read_csv("/Users/mohao/Downloads/毛子2/ммо/ла61/Latest Covid-19 India Status.csv")

data.head()

	State/UTs	Total Cases	Active	Discharged(��∂��	Deaths	Active Ratio	Discharge Ratio	Death Ratio	Population
0	Andaman And Nicobar	10032	1	9902	129	0.01	98.70	1.29	100896618
1	Andhra Pradesh	2319504	346	2304428	14730	0.01	99.35	0.64	128500364
2	Arunachal Pradesh	64484	0	64188	296	0.00	99.54	0.46	658019
3	Assam	724196	1358	716199	6639	0.19	98.90	0.92	290492
4	Bihar	830459	32	818171	12256	0.00	98.52	1.48	40100376

data.isnull().sum()

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36 entries, 0 to 35
Data columns (total 9 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype					
0	State/UTs	36 non-null	object					
1	Total Cases	36 non-null	int64					
2	Active	36 non-null	int64					
3	Discharged(00d00	36 non-null	int64					
4	Deaths	36 non-null	int64					
5	Active Ratio	36 non-null	float64					
6	Discharge Ratio	36 non-null	float64					
7	Death Ratio	36 non-null	float64					
8	Population	36 non-null	int64					
dtypes: float64(3), int64(5), object(1)								
memory usage: 2.7+ KB								

#Запача №16.

#Для набора данных проведите нормализацию для одного (произвольного) числового #признака с использованием преобразования Бокса-Кокса (Box-Cox transformation).

import scipy.stats

 $\textbf{from} \ \texttt{scipy.stats} \ \textbf{import} \ \texttt{boxcox}$

sns.distplot(data['Death Ratio'])

/Users/mohao/Downloads/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplo t` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Death Ratio', ylabel='Density'>

new=scipy.stats.boxcox(x=data['Death Ratio'])

sns.distplot(new[0])

/Users/mohao/Downloads/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplo t` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

#Для студентов группы ИУ5—24М, ИУ5И—24М — #для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

```
#Для студентов группы ИУ5—24М, ИУ5И—24М —
  #для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".
 sns.violinplot(x=data["Total Cases"])
 <AxesSubplot:xlabel='Total Cases'>
  -0.2
                        0.4
Total Cases
 <AxesSubplot:xlabel='Deaths'>
                              75000 100000 125000 150000
                 25000 50000
 [14]: #Задача №36.
       #Зидона мэдо
#Для набора данных проведите процедуру отбора признаков (feature selection).
#Используйте класс SelectKBest для 5 лучших признаков, и метод, основанный на взаимной информации.
 [15]: from sklearn.feature_selection import SelectKBest
       from matplotlib import pyplot as plt
from sklearn.feature_selection import f_regression
[16]: #Выберите данные для обработки
       x=data.drop(['Total Cases','State/UTs'],axis=1)
8]: bestfeatures = SelectKBest(score_func=f_regression, k=5)
9]: fit = bestfeatures.fit(x,y)
0]: dfscores = pd.DataFrame(fit.scores_)
1]: dfcolumns = pd.DataFrame(x.columns)
4]: featureScores = pd.concat([dfcolumns,dfscores],axis=1)
5]: featureScores.columns = ['Specs','Score']
print(featureScores.nlargest(5,'Score'))
    Specs Score
1 Discharged(@@d@@ 1.367958e+06
                   Deaths 2.674688e+02
                   Active 3.130274e+01
    5 Death Ratio 5.268177e-01
4 Discharge Ratio 4.418779e-01
```