Problem 3(LDA, QDA, KNN)

This question should be answered using the Weekly data set, which is part of the ISLR package in R. The file have been included in the assignment as Weekly.csv. It contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

```
In [1]: #install.packages('ISLR')
        #install.packages('aod')
        #install.packages('ggplot2')
        #install.packages('MASS')
        #install.packages('class')
```

```
In [2]: library(ISLR)
        library(aod)
        library(ggplot2)
        library(MASS)
        library(class)
```

In [3]: head(Weekly)

Direction	Today	Volume	Lag5	Lag4	Lag3	Lag2	Lag1	Year
Down	-0.270	0.1549760	-3.484	-0.229	-3.936	1.572	0.816	1990
Down	-2.576	0.1485740	-0.229	-3.936	1.572	0.816	-0.270	1990
Up	3.514	0.1598375	-3.936	1.572	0.816	-0.270	-2.576	1990
Up	0.712	0.1616300	1.572	0.816	-0.270	-2.576	3.514	1990
Up	1.178	0.1537280	0.816	-0.270	-2.576	3.514	0.712	1990
Down	-1.372	0.1544440	-0.270	-2.576	3.514	0.712	1.178	1990

a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

In [4]: summary(Weekly)

Year	Lag1	Lag2	Lag3
Min. :1990	Min. :-18.1950	Min. :-18.1950	Min. :-18.1950
1st Qu.:1995	1st Qu.: -1.1540	1st Qu.: -1.1540	1st Qu.: -1.1580
Median :2000	Median : 0.2410	Median : 0.2410	Median : 0.2410
Mean :2000	Mean : 0.1506	Mean : 0.1511	Mean : 0.1472
3rd Qu.:2005	3rd Qu.: 1.4050	3rd Qu.: 1.4090	3rd Qu.: 1.4090
Max. :2010	Max. : 12.0260	Max. : 12.0260	Max. : 12.0260
Lag4	Lag5	Volume	Today
Min. :-18.195	50 Min. :-18.19	950 Min. :0.0874	7 Min. :-18.1950
1st Qu.: -1.158	30 1st Qu.: -1.16	560 1st Qu.:0.3320	22 1st Qu.: -1.1540
Median : 0.238	30 Median: 0.23	340 Median :1.0026	88 Median : 0.2410
Mean : 0.145	58 Mean : 0.13	399 Mean :1.5746	62 Mean : 0.1499
3rd Qu.: 1.409	90 3rd Qu.: 1.40	3rd Qu.:2.0537	3 3rd Qu.: 1.4050
Max. : 12.026	50 Max. : 12.02	260 Max. :9.3282	Max. : 12.0260
Direction Down: 484 Up: 605			

Answer: The differences among lag1, lag2, lag3, lag4 and lag5 seems slightly. Min and max for both of them are same. Mean for them also seems similar.

b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors.

Use the summary function to print the results.

Do any of the predictors appear to be statistically significant? If so, which ones?

```
In [5]: glm.fit = glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data = Weekly, fami
        summary(glm.fit)
       Call:
       glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
           Volume, family = binomial(link = "logit"), data = Weekly)
        Deviance Residuals:
           Min
                     10 Median
                                      30
                                              Max
        -1.6949 -1.2565 0.9913 1.0849
                                           1.4579
        Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
        (Intercept) 0.26686 0.08593 3.106
                                                0.0019 **
       Lag1
                   -0.04127
                               0.02641 - 1.563
                                                0.1181
       Lag2
                    0.05844
                               0.02686 2.175
                                                0.0296 *
                   -0.01606
                              0.02666 -0.602
                                                0.5469
       Lag3
                   -0.02779
                              0.02646 - 1.050
                                                0.2937
       Lag4
                   -0.01447
                             0.02638 - 0.549
                                                0.5833
       Lag5
       Volume
                   -0.02274
                              0.03690 -0.616
                                                0.5377
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        (Dispersion parameter for binomial family taken to be 1)
           Null deviance: 1496.2 on 1088 degrees of freedom
       Residual deviance: 1486.4 on 1082 degrees of freedom
       AIC: 1500.4
       Number of Fisher Scoring iterations: 4
```

Answer: Lag1 and Lag2 are the two predictors which will be statistically significant.

c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

```
glm.probs=predict(glm.fit,newdata = Weekly, type="response")
In [6]:
        glm.pred=rep("Down",dim(Weekly)[1])
        glm.pred[glm.probs>0.5]="Up"
        prediction.glm=cbind(Weekly,glm.pred)
        colnames(prediction.glm)[10]="Direction prediction"
        contrasts(Weekly$Direction)
        table(glm.pred, Weekly$Direction)
```

```
Up
Down
       1
  Up
glm.pred Down Up
    Down
           54
                48
    Uр
          430 557
```

Assume Down - False ('0'); Up - True('1')

Typel: The model incorrectly predict Up and create 430 errors.

Typell: The model incorrectly predict Down and create 48 errors.

```
In [7]:
        mean(glm.pred == Weekly$Direction)
        54/(54+430)
        557/(557+48)
```

0.561065197428834

0.111570247933884

0.920661157024793

Accuracy: 0.5610 Sensitivity: 0.1115 Specificity: 0.9206

d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

```
In [8]: training=Weekly[Weekly$Year <= 2008,]</pre>
         test=Weekly[Weekly$Year > 2008, ]
```

```
In [9]: glm.fit=glm(Direction~Lag2,data=training,family=binomial(link = 'logit'))
        glm.probs=predict(glm.fit,newdata = test, type="response")
        glm.pred=rep("Down",dim(training)[1])
        glm.pred[glm.probs>0.5]="Up"
        prediction.glm=cbind(training,glm.pred)
        colnames(prediction.glm)[10]="Direction prediction"
        table(glm.pred, training$Direction)
```

```
glm.pred Down Up
          61 73
   Down
   Uр
         380 471
```

```
In [10]: mean(glm.pred == training$Direction)
         54/(54+430)
         557/(557+48)
```

0.54010152284264

0.111570247933884

0.920661157024793

Accuracy: 0.5401 Sensitivity: 0.1115 Specificity: 0.9206

e) Repeat d) using LDA.

```
In [11]: | lda.fit = lda(Direction~Lag2,data=training)
         lda.pred = predict(lda.fit, test)
         lda.class = lda.pred$class
         prediction.lda=cbind(test, lda.class)
         colnames(prediction.lda)[10] = "Direction prediction"
         head(prediction.lda)
         table(lda.class, test$Direction)
         mean(lda.class == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
986	2009	6.760	-1.698	0.926	0.418	-2.251	3.793110	-4.448	Down	Up
987	2009	-4.448	6.760	-1.698	0.926	0.418	5.043904	-4.518	Down	Up
988	2009	-4.518	-4.448	6.760	-1.698	0.926	5.948758	-2.137	Down	Down
989	2009	-2.137	-4.518	-4.448	6.760	-1.698	6.129763	-0.730	Down	Down
990	2009	-0.730	-2.137	-4.518	-4.448	6.760	5.602004	5.173	Up	Up
991	2009	5.173	-0.730	-2.137	-4.518	-4.448	6.217632	-4.808	Down	Up

lda.class Down Up Down 9 5 34 56 Uр

0.625

Accuracy: 0.625

f) Repeat d) using QDA.

```
qda.fit = qda(Direction~Lag2, data = training)
In [12]:
         qda.pred = predict(qda.fit, test)
         qda.class = qda.pred$class
         prediction.qda=cbind(test, qda.class)
         colnames(prediction.qda)[10] = "Direction prediction"
         head(prediction.qda)
         table(qda.class, test$Direction)
         mean(qda.class == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
986	2009	6.760	-1.698	0.926	0.418	-2.251	3.793110	-4.448	Down	Up
987	2009	-4.448	6.760	-1.698	0.926	0.418	5.043904	-4.518	Down	Up
988	2009	-4.518	-4.448	6.760	-1.698	0.926	5.948758	-2.137	Down	Up
989	2009	-2.137	-4.518	-4.448	6.760	-1.698	6.129763	-0.730	Down	Up
990	2009	-0.730	-2.137	-4.518	-4.448	6.760	5.602004	5.173	Up	Up
991	2009	5.173	-0.730	-2.137	-4.518	-4.448	6.217632	-4.808	Down	Up

qda.class Down Up 0 0 Down Uр 43 61

0.586538461538462

Accuracy = 0.5865

g) Repeat d) using KNN with K = 1.

```
In [13]:
         test.x=cbind(test$index,test$Lag2)
         training.x=cbind(training$index,training$Lag2)
         test.x=cbind(test$Lag2)
         knn.pred=knn(training.x,test.x,training$Direction,k=1)
         prediction.knn=cbind(test,knn.pred)
         colnames(prediction.knn)[10]="Direction prediction"
         head(prediction.knn)
         table(knn.pred ,test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
986	2009	6.760	-1.698	0.926	0.418	-2.251	3.793110	-4.448	Down	Up
987	2009	-4.448	6.760	-1.698	0.926	0.418	5.043904	-4.518	Down	Up
988	2009	-4.518	-4.448	6.760	-1.698	0.926	5.948758	-2.137	Down	Down
989	2009	-2.137	-4.518	-4.448	6.760	-1.698	6.129763	-0.730	Down	Down
990	2009	-0.730	-2.137	-4.518	-4.448	6.760	5.602004	5.173	Up	Down
991	2009	5.173	-0.730	-2.137	-4.518	-4.448	6.217632	-4.808	Down	Up
		5								

knn.pred Down Up 21 29 Down Uр 22 32

```
In [23]: mean(knn.pred == test$Direction)
         21/(21+22)
         31/(31+30)
```

0.480769230769231

0.488372093023256

0.508196721311475

Accuracy: 0.5096 Sensitivity: 0.4883 Specificity: 0.5081

h) Which of these methods appears to provide the best results on this data?

Logistic Regression Accuracy: 0.5401

LDA Accuracy: 0.625 QDA Accuracy = 0.5865KNN Accuracy: 0.5096

So the LDA model provide the best results on this data

i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods.

Report the variables, method, and associated confusion matrix that appears to provide the best

results on the held out data.(Note that you should also experiment with values for K in the KNN classifier.)

• Test KNN with K = 5

```
In [15]:
         test.x=cbind(test$index,test$Lag2)
         training.x=cbind(training$index,training$Lag2)
         test.x=cbind(test$Lag2)
         knn.pred=knn(training.x,test.x,training$Direction,k=5)
         prediction.knn=cbind(test,knn.pred)
         colnames(prediction.knn)[10]="Direction prediction"
         head(prediction.knn)
         table(knn.pred ,test$Direction)
         mean(knn.pred == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
986	2009	6.760	-1.698	0.926	0.418	-2.251	3.793110	-4.448	Down	Up
987	2009	-4.448	6.760	-1.698	0.926	0.418	5.043904	-4.518	Down	Up
988	2009	-4.518	-4.448	6.760	-1.698	0.926	5.948758	-2.137	Down	Down
989	2009	-2.137	-4.518	-4.448	6.760	-1.698	6.129763	-0.730	Down	Down
990	2009	-0.730	-2.137	-4.518	-4.448	6.760	5.602004	5.173	Up	Up
991	2009	5.173	-0.730	-2.137	-4.518	-4.448	6.217632	-4.808	Down	Up

knn.pred Down Up Down 15 22 Uр 28 39

0.519230769230769

Accuracy: 0.5192

• Test KNN with K = 10

```
In [16]:
         test.x=cbind(test$index,test$Lag2)
         training.x=cbind(training$index,training$Lag2)
         test.x=cbind(test$Lag2)
         knn.pred=knn(training.x,test.x,training$Direction,k=10)
         prediction.knn=cbind(test,knn.pred)
         colnames(prediction.knn)[10]="Direction prediction"
         head(prediction.knn)
         table(knn.pred ,test$Direction)
         mean(knn.pred == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
986	2009	6.760	-1.698	0.926	0.418	-2.251	3.793110	-4.448	Down	Down
987	2009	-4.448	6.760	-1.698	0.926	0.418	5.043904	-4.518	Down	Up
988	2009	-4.518	-4.448	6.760	-1.698	0.926	5.948758	-2.137	Down	Down
989	2009	-2.137	-4.518	-4.448	6.760	-1.698	6.129763	-0.730	Down	Down
990	2009	-0.730	-2.137	-4.518	-4.448	6.760	5.602004	5.173	Up	Up
991	2009	5.173	-0.730	-2.137	-4.518	-4.448	6.217632	-4.808	Down	Up

knn.pred Down Up Down 15 20 Uр 28 41

0.538461538461538

Accuracy: 0.5384

- Test Logistic Regression, LDA, QDA, KNN K=1
- With Training (1990 to 2009) + test(2009 2010);
- Predictor Lag2

```
In [17]: training=Weekly[Weekly$Year <= 2009,]</pre>
          test=Weekly[Weekly$Year > 2009, ]
```

- Logistic Regression

```
glm.fit=glm(Direction~Lag2,data=training,family=binomial(link = 'logit'))
In [18]:
         glm.probs=predict(glm.fit,newdata = test, type="response")
         glm.pred=rep("Down",dim(training)[1])
         glm.pred[glm.probs>0.5]="Up"
         prediction.glm=cbind(training,glm.pred)
         colnames(prediction.glm)[10]="Direction prediction"
         table(glm.pred, training$Direction)
         mean(glm.pred == training$Direction)
```

glm.pred Down Up Down 20 40 Uр 444 533

0.533269045323047

Accuracy: 0.5332

- LDA

```
In [19]: lda.fit = lda(Direction~Lag2,data=training)
         lda.pred = predict(lda.fit, test)
         lda.class = lda.pred$class
         prediction.lda=cbind(test, lda.class)
         colnames(prediction.lda)[10] = "Direction prediction"
         head(prediction.lda)
         table(lda.class, test$Direction)
         mean(lda.class == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
1038	2010	-1.010	2.178	-0.356	0.039	1.328	2.390427	2.680	Up	Up
1039	2010	2.680	-1.010	2.178	-0.356	0.039	4.223070	-0.782	Down	Up
1040	2010	-0.782	2.680	-1.010	2.178	-0.356	4.363246	-3.897	Down	Up
1041	2010	-3.897	-0.782	2.680	-1.010	2.178	5.654582	-1.639	Down	Up
1042	2010	-1.639	-3.897	-0.782	2.680	-1.010	5.079534	-0.715	Down	Up
1043	2010	-0.715	-1.639	-3.897	-0.782	2.680	5.082238	0.874	Up	Up

lda.class Down Up Down 3 0 17 32 Uр

0.673076923076923

Accuracy: 0.6730

- QDA

```
qda.fit = qda(Direction~Lag2, data = training)
In [20]:
         qda.pred = predict(qda.fit, test)
         qda.class = qda.pred$class
         prediction.qda=cbind(test, qda.class)
         colnames(prediction.qda)[10] = "Direction prediction"
         head(prediction.qda)
         table(qda.class, test$Direction)
         mean(qda.class == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
1038	2010	-1.010	2.178	-0.356	0.039	1.328	2.390427	2.680	Up	Up
1039	2010	2.680	-1.010	2.178	-0.356	0.039	4.223070	-0.782	Down	Up
1040	2010	-0.782	2.680	-1.010	2.178	-0.356	4.363246	-3.897	Down	Up
1041	2010	-3.897	-0.782	2.680	-1.010	2.178	5.654582	-1.639	Down	Up
1042	2010	-1.639	-3.897	-0.782	2.680	-1.010	5.079534	-0.715	Down	Up
1043	2010	-0.715	-1.639	-3.897	-0.782	2.680	5.082238	0.874	Up	Up

qda.class Down Up Down 0 0 Up 20 32

0.615384615384615

Accuracy: 0.6153

- KNN(k=1)

```
In [21]:
         test.x=cbind(test$index,test$Lag2)
         training.x=cbind(training$index,training$Lag2)
         test.x=cbind(test$Lag2)
         knn.pred=knn(training.x,test.x,training$Direction,k=1)
         prediction.knn=cbind(test,knn.pred)
         colnames(prediction.knn)[10]="Direction prediction"
         head(prediction.knn)
         table(knn.pred ,test$Direction)
         mean(knn.pred == test$Direction)
```

	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	Direction prediction
1038	2010	-1.010	2.178	-0.356	0.039	1.328	2.390427	2.680	Up	Down
1039	2010	2.680	-1.010	2.178	-0.356	0.039	4.223070	-0.782	Down	Down
1040	2010	-0.782	2.680	-1.010	2.178	-0.356	4.363246	-3.897	Down	Up
1041	2010	-3.897	-0.782	2.680	-1.010	2.178	5.654582	-1.639	Down	Up
1042	2010	-1.639	-3.897	-0.782	2.680	-1.010	5.079534	-0.715	Down	Down
1043	2010	-0.715	-1.639	-3.897	-0.782	2.680	5.082238	0.874	Up	Up

knn.pred Down Up Down 8 15 Uр 12 17

0.480769230769231

Predictor: Lag2 With Training (1990 to 2008) + test(2009 - 2010); Logistic Regression Accuracy:

0.5401

LDA Accuracy: 0.625 QDA Accuracy = 0.5865KNN Accuracy: 0.5096

Predictor: Lag2 With Training (1990 to 2005) + test(2006 - 2010); Logistic Regression Accuracy:

0.5332

LDA Accuracy: 0.6730 QDA Accuracy = 0.6153KNN Accuracy: 0.4807

In [22]: #End