Kinematika - Teoretický přehled

Fyzika - opakování a prohloubení

1 Základní pojmy

1.1 Pohyb

Definice:

Pohyb je změna polohy tělesa vůči zvolenému vztažnému systému v čase.

Druhy pohybu:

- Přímočarý trajektorie je přímka
- Křivočarý trajektorie je křivka
- Rovnoměrný rychlost je konstantní
- Nerovnoměrný rychlost se mění

1.2 Dráha a posunutí

Dráha (s):

- Skalární veličina
- Délka trajektorie, kterou těleso urazilo
- Jednotka: m (metr)

Posunutí (\vec{r}) :

- Vektorová veličina
- Přímá vzdálenost mezi počáteční a koncovou polohou
- Jednotka: m (metr)

1.3 Rychlost

Průměrná rychlost:

$$v_p = \frac{s}{t}$$

Okamžitá rychlost:

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

Jednotka: m/s (metr za sekundu)

1.4 Zrychlení

Definice:

Zrychlení je změna rychlosti v čase.

Rovnice:

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t}$$

 $\bf Jednotka:\ m/s^2\ (metr\ za\ sekundu\ na\ druhou)$

2 Rovnoměrný přímočarý pohyb

2.1 Základní rovnice

Dráha:

 $s = v \cdot t$

Rychlost:

v = konstantní

Popis veličin:

Veličina	Popis	Jednotka
s	Dráha	m
v	Rychlost	$\mathrm{m/s}$
t	Čas	S

Grafické znázornění:

• Graf s(t): Přímka procházející počátkem (při $s_0=0)$

 \bullet Graf v(t): Vodorovná přímka (konstantní rychlost)

3 Rovnoměrně zrychlený pohyb

3.1 Kinematické rovnice

Rychlost:

$$v = v_0 + a \cdot t$$

Dráha (se začáteční rychlostí):

$$s = v_0 \cdot t + \frac{1}{2}a \cdot t^2$$

Dráha (bez času):

$$v^2 = v_0^2 + 2a \cdot s$$

Popis veličin:

Veličina	Popis	Jednotka
v	Koncová rychlost	m/s
v_0	Počáteční rychlost	m/s
a	Zrychlení	$\mathrm{m/s^2}$
t	Čas	\mathbf{s}
s	Dráha	m

Grafické znázornění:

• Graf s(t): Parabola

 \bullet Graf v(t): Přímka se sklonem a

• Graf a(t): Vodorovná přímka (konstantní zrychlení)

3.2 Speciální případy

Rozjezd z klidu $(v_0 = 0)$:

$$s = \frac{1}{2}a \cdot t^2$$

$$v = a \cdot t$$

$$v^2 = 2a \cdot s$$

Brzdění do zastavení (v = 0):

$$0 = v_0 + a \cdot t \quad \Rightarrow \quad t = -\frac{v_0}{a}$$

$$s = v_0 \cdot t + \frac{1}{2}a \cdot t^2 = \frac{v_0^2}{2|a|}$$

4

4 Volný pád

4.1 Základní rovnice

Výška:

$$h = \frac{1}{2}g \cdot t^2$$

Rychlost:

$$v = g \cdot t$$

Rychlost bez času:

$$v^2 = 2g \cdot h$$

Popis veličin:

Veličina	Popis	Jednotka
h	Výška	m
v	Rychlost	$\mathrm{m/s}$
g	Gravitační zrychlení	$\mathrm{m/s^2}$
t	Čas	S

Fyzikální význam:

- Volný pád je speciální případ rovnoměrně zrychleného pohybu
- Zrychlení $a=g=9.81~\mathrm{m/s^2}$ (na Zemi)
- Zanedbáváme odpor vzduchu

5 Vrhy

5.1 Svislý vrh vzhůru

Výška:

$$y = v_0 \cdot t - \frac{1}{2}g \cdot t^2$$

Rychlost:

$$v_y = v_0 - g \cdot t$$

Maximální výška:

$$h_{max} = \frac{v_0^2}{2g}$$

Doba výstupu (do maximální výšky):

$$t_{max} = \frac{v_0}{g}$$

Doba letu (celková):

$$t_{celk} = \frac{2v_0}{g}$$

5.2 Vodorovný vrh

Vodorovná složka:

$$x = v_0 \cdot t$$

$$v_x = v_0 = \text{konstantn}$$
í

Svislá složka:

$$y = -\frac{1}{2}g \cdot t^2$$

$$v_y = -g \cdot t$$

Trajektorie:

$$y = -\frac{g}{2v_0^2} \cdot x^2$$

(parabola)

Dopad na zem (z výšky h):

$$t = \sqrt{\frac{2h}{g}}$$

$$x = v_0 \cdot \sqrt{\frac{2h}{g}}$$

5.3 Vrh šikmo vzhůru

Rozklad počáteční rychlosti:

$$v_x = v_0 \cos \alpha$$

$$v_y = v_0 \sin \alpha$$

Pohybové rovnice:

$$x = v_0 \cos \alpha \cdot t$$

$$y = v_0 \sin \alpha \cdot t - \frac{1}{2}g \cdot t^2$$

Trajektorie:

$$y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

Dosah (R):

$$R = \frac{v_0^2 \sin 2\alpha}{g}$$

Maximální výška:

$$h_{max} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

Doba letu:

$$t_{celk} = \frac{2v_0 \sin \alpha}{g}$$

Popis veličin:

Veličina	Popis	Jednotka
v_0	Počáteční rychlost	m/s
α	Úhel vrhu	° nebo rad
v_x, v_y	Složky rychlosti	$\mathrm{m/s}$
R	Dosah	\mathbf{m}
h_{max}	Maximální výška	\mathbf{m}

6 Pohyb po kružnici

6.1 Základní veličiny

Úhlová rychlost:

$$\omega = \frac{2\pi}{T} = 2\pi f = \frac{\varphi}{t}$$

Obvodová rychlost:

$$v = \omega \cdot r = \frac{2\pi r}{T}$$

Perioda:

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

Frekvence:

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

Popis veličin:

Veličina	Popis	Jednotka
ω	Úhlová rychlost	$\mathrm{rad/s}$
v	Obvodová rychlost	m/s
r	Poloměr	m
T	Perioda	S
f	Frekvence	Hz
φ	Úhel	rad

6.2 Dostředivé zrychlení a síla

Dostředivé zrychlení:

$$a_d = \frac{v^2}{r} = \omega^2 \cdot r$$

Dostředivá síla:

$$F_d = m \cdot a_d = \frac{mv^2}{r} = m\omega^2 \cdot r$$

Fyzikální význam:

- Dostředivé zrychlení směřuje k středu kružnice
- Dostředivá síla je výslednice všech sil, které udržují těleso na kruhové dráze
- Tato síla neprovádí práci (je kolmá na rychlost)

7 Převody jednotek rychlosti

7.1 Základní převody

km/h m/s:

$$1~{\rm km/h} = \frac{1000~{\rm m}}{3600~{\rm s}} = \frac{1}{3.6}~{\rm m/s} \approx 0.278~{\rm m/s}$$

$$1 \text{ m/s} = 3.6 \text{ km/h}$$

Praktický vzorec:

$$v[\mathrm{m/s}] = \frac{v[\mathrm{km/h}]}{3.6}$$

$$v[\mathrm{km/h}] = v[\mathrm{m/s}] \times 3.6$$

7.2 Příklady převodů

-km/h	m/s	Poznámka
36	10	Běžná rychlost ve městě
50	13,9	Rychlost ve městě
90	25	Rychlost mimo obec
130	36,1	Maximální rychlost na dálnici
360	100	Vysoká rychlost

8 Fyzikální konstanty

Konstanta	Symbol	Hodnota	Jednotka
Gravitační zrychlení (Země)	g	9,81	m/s^2
Gravitační zrychlení (Měsíc)	g_M	1,62	$\mathrm{m/s^2}$
Rychlost světla ve vakuu	c	299792458	$\mathrm{m/s}$
Rychlost zvuku ve vzduchu (20°C)	v_{zvuk}	343	$\mathrm{m/s}$

9 Souhrn jednotek v SI

Veličina	Jednotka SI	Další jednotky	Převody
Dráha, posunutí	m (metr)	km, cm, mm	1 km = 1000 m
Rychlost	m/s	$\mathrm{km/h}$	$1~\mathrm{m/s} = 3.6~\mathrm{km/h}$
Zrychlení	$\mathrm{m/s^2}$	-	-
Čas	s (sekunda)	min, h	$1~\mathrm{h} = 3600~\mathrm{s}$
Úhel	rad (radián)	° (stupeň)	$1 \text{ rad} = 57.3^{\circ}$
Úhlová rychlost	$\mathrm{rad/s}$	$^{\circ}/\mathrm{s},\mathrm{ot/min}$	$1~{\rm ot/min}=0.105~{\rm rad/s}$
Frekvence	Hz (Hertz)	${ m ot/min}$	$1~\mathrm{Hz}=1/\mathrm{s}$
Perioda	s (sekunda)	\min	$\mathrm{T}=1/\mathrm{f}$

Poznámky

- Trajektorie: Křivka, po které se těleso pohybuje
- Vztažný systém: Soustava souřadnic, vůči které měříme pohyb
- Vektor vs. skalár: Vektor má velikost i směr (posunutí, rychlost, zrychlení), skalár má jen velikost (dráha, rychlost v absolutní hodnotě, čas)
- Pohyb je relativní: Závisí na volbě vztažného systému (v jednom může být těleso v klidu, v jiném se pohybuje)
- Grafická analýza: Z grafu s(t) lze určit rychlost (směrnice tečny), z grafu v(t) lze určit zrychlení (směrnice) a dráhu (obsah pod křivkou)
- Optimální úhel vrhu: Pro maximální dosah je optimální úhel 45° (při vrhu ze stejné výšky na stejnou výšku)
- \bullet Kruhový pohyb: I při konstantní velikosti rychlosti se mění směr \to existuje zrychlení (dostředivé)