In Search of Interpretable Features to Explain Decisions of Black Box Models

Mateusz Staniak (Warsaw University of Technology)

Joint work with Przemysław Biecek (MI² Data Lab)

Google Flu Trends

5 years of web logs

Machine Learning

proved to be a more useful and timely indicator [of flu] than government statistics with their natural reporting lags

WHAT WE CAN LEARN FROM THE EPIC FAILURE OF GOOGLE FLU TRENDS

Amazon scraps secret AI recruiting tool that 'didn't like women'

- Amazon ended job recruiting service that was reportedly biased against women
- It was created by Amazon's Edinburgh team in 2014 to automatically sort CVs
- The AI taught itself to downgrade resumes that included words like 'women's'
- Amazon now uses a 'much-watered down version' of the recruiting engine to help with some rudimentary chores, such as removing duplicate resumes

By REUTERS

PUBLISHED: 04:02 GMT, 10 October 2018 | **UPDATED:** 16:55 GMT, 10 October 2018

Amazon's machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants' resumes with the aim of mechanizing the search for top talent, five people familiar with the effort told Reuters.

But the firm was ultimately forced to end the project after it found the system had taught itself to prefer male candidates over females.

Machine Learning models are vulnerable to:

Biased training

Concept drift

Unmeasurable objectives

Training data vs validation data distribution

Fairness, Lawfulness, ...

LIME (Local Interpretable Model-Agnostic Explanations)

Interpretable Features

MI

Tabular data

A Region T	A Country	# Distance	# Points	A Glider
PACA 25%	France 96%	L	L	Pegase 16%
Rhône-Alpes 13%	Espagne 2%			Duo Discus 8%
Other (28) 61%	Other (18) 2%	25 1.25k	21.2 1.2k	Other (178) 77%
	Afrique du Sud	568.280029	511.959991	Duo Discus X
	Afrique du Sud	398.700012	402.049988	JS1 18m
	Namibie	482.380005	398.660004	Nimbus 4D (< 750 kg)

Existing Approaches for Tabular Data

Continuous features

• iml package (R) – Christoph Molnar

live package (R) – Mateusz
 Staniak

Variable	N	Estimate		р		
fixed_acidity	2000		0.14 (0.14, 0.15)	<0.001		
volatile_acidity	2000		-1.43 (-1.46, -1.40)	<0.001		
citric_acid	2000	ı i	-0.66 (-0.69, -0.63)	<0.001		
residual_sugar	2000		0.00 (-0.00, 0.01)	0.9		
chlorides	2000	ı 🖷	-2.57 (-2.71, -2.43)	<0.001		
free_sulfur_dioxide	2000	Ė	0.00 (0.00, 0.00)	<0.001		
total_sulfur_dioxide	2000	P	0.00 (0.00, 0.00)	<0.001		
density	2000		-25.69 (-28.09, -23.30)	<0.001		
pH	2000	ı į	-0.82 (-0.85, -0.79)	<0.001		
sulphates	2000	į.	2.56 (2.53, 2.60)	<0.001		
alcohol	2000	i i	0.20 (0.19, 0.20)	<0.001		
(Intercept)			30.32 (27.93, 32.71)	<0.001		
-20100 102030						

Discretized features

• lime library (Python) – Marco Tulio Ribeiro

 lime package (R) – Thomas Lin Pedersen

A New Approach:

Use our knowledge about the model behaviour

Partial Dependence Plots

Ceteris Paribus Profiles

Summary

- IML techniques helps explore, compare and maintain Machine Learning models.
- Explanations of individual predictions rely on good interpretable features.
- For tabular data, the notion of an *interpretable feature* is not clear.
- We propose a method of creating interpretable features based on conditional behaviour of the model.

More resources

- https://github.com/ModelOriented/localModel R implementation of described methodology.
- https://github.com/mi2datalab tools for IML built by MI² Data Lab.
- https://pbiecek.github.io/DALEX docs/ introduction to Interpretable Machine Learning and DALEX family of packages.
- http://mi2.mini.pw.edu.pl/ MI² Data Lab website.
- https://github.com/ModelOriented/xspliner tools for feature extraction from complex models.

Acknowledgement

This work was financially supported by NCN Opus grant 2016/21/B/ST6/02176 and by NCN Opus grant 2017/27/B/ST6/01307.

References

- Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2013. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. arXiv:1309.6392 [stat].
- Molnar, C., Bischl, B., Casalicchio, G., 2018. iml: An R package for Interpretable Machine Learning. JOSS 3, 786. https://doi.org/10.21105/joss.00786
- Ribeiro, M.T., Singh, S., Guestrin, C., 2016. "Why Should I Trust You?": Explaining the Predictions of Any
 Classifier, in: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
 and Data Mining, KDD '16. ACM, New York, NY, USA, pp. 1135–1144.
 https://doi.org/10.1145/2939672.2939778
- Staniak, M., Biecek, P., 2018. Explanations of model predictions with live and breakDown packages. arXiv:1804.01955 [cs, stat].