CHAPTER 3: DEALING WITH DATABASES

Dr. Garrett Dancik

- If we know the DNA sequence (and know the gene structure)
 - Then we can predict the mRNA sequence
 - Then we can predict the **protein** sequence
- If we know the protein sequence, then we can (possibly) predict
 - Secondary and tertiary structure, domains
 - Function

What is a database?

- A database is a repository of information with a specific structure, that enables entering of and extraction of data
- Many databases today are electronic, which enables efficient searching
- It is useful to think of a database as a table (whether or not the data are displayed that way or not
 - A row in the table corresponds to each entry, or record, of the database
 - Each column of the table corresponds to a field, and each record has the same set of fields (which may be blank for some records)
 - In general, a record consists of information for one or more fields

Examples of flat-files databases

 A flat-file database is the simplest database where collections of data are stored as single text files or a collection of different text files

(A)			
	NAME	TELEPHONE	ADDRESS
	S. Claus	0203 450	The North Pole, Lapland
	M. Mouse	0202 453	Disneyworld, Florida
	A. Moonman	0104 459	Craterland, The Moon

(B) GenBank Flat-File Format http://www.ncbi.nlm.nih.gov

```
LOCUS
            SCU49845
                         5028 bp
                                    DNA
            Saccharomyces cerevisiae TCP1-beta gene, partial cds, and
DEFINITION
            Ax12p
            (AXL2) and Rev7p (REV7) genes, complete cds.
            U49845
ACCESSION
            U49845.1 GI:1293613
VERSION
KEYWORDS
SOURCE
            Saccharomyces cerevisiae (baker's yeast)
            Saccharomyces cerevisiae
  ORGANISM
            Eukaryota; Fungi; Ascomycota; Saccharomycotina;
            Saccharomycetes;
            Saccharomycetales; Saccharomycetaceae; Saccharomyces.
```

Relational databases

- A relational database is the most common database for biological information
- A relational database stores data in multiple tables
- Each table is linked to at least one other table through a shared field called a key, which must be unique

Let's convert the following database to a relational database

Name	Gender	CityState	Item	Description	Purchase Date
Bob Smith	Male	Willimantic, CT	Jeans	Description of jeans	1/19/2014
Bob Smith	Male	Willimantic, CT	Dog Food	Description of dog food	1/19/2014
Jane Doe	Female	Hartford, CT	Shoes	Description of shoes	2/02/2014
Jane Doe	Female	Hartford, CT	Dog Food	Description of dog food	2/02/2014

Relational Database example

Customer table

CustomerID	Name	Gender	CityState
1	Bob Smith	Male	Willimantic, CT
2	Jane Doe	Female	Hartford, CT

Item table

ItemID	Name	Description
1	Jeans	Description of jeans
2	Dog Food	Description of dog food
3	Shoes	Description of shoes

Transaction table

PurchaseID	Customer ID	Item ID	PurchaseDate
1	1	1	1/19/2014
2	1	2	1/19/2014
3	2	3	2/02/2014
4	2	2	2/02/2014

Customer ID is a **key** that uniquely identifies each customer. ItemID and PurchaseID are also keys.

Relational databases in bioinformatics

protab1			
Protein-code	Protein-name	Length	Species-origin
P1001	Hemoglobin	145	Bovine
P1002	Hemoglobin	136	Ovine
P1003	Eye Lens Protein	234	Human

protab2	
Protein-code	Protein-sequence
P1001	MDRTTHGFDLKLLSPRTVNQWLMLALFFGHS
P1002	MDKTSHGFEIKLLTPKKLQQWLMIAIYFGHT
P1003	SRTHEEEGKLMQWPPRPLYIALFTEPPYP

Overview of databases

- Many (thousands) of bioinformatics databases are accessible via the internet
- Although databases are generally built around one biological aspect (e.g., DNA sequences), they will often link to external relevant information (e.g., protein sequences)
- The underlying biological data (usually experimentally determined), is referred to as the data
- Additional information (research citations, links to other databases, interpretation of the data) is referred to as annotation
- Primary databases contain data that is experimentally derived
- Secondary databases contain data that is predicted from primary data.

How many databases are there?

- Every year the journal Nucleic Acids Research has an issue devoted to new and updated database
 - They currently list >1600 databases
 - http://www.oxfordjournals.org/nar/database/c
- Selected database types
 - Sequence databases
 - DNA
 - RNA
 - Protein
 - Microarray and gene expression databases
 - Oganelle databases
 - Plant databases
 - Immunological databases

Sequence databases – generating data

- A DNA sequence is the sequence of chromosomal DNA and contains introns, exons, and untranslated regions.
- Complementary DNA, or cDNA, are DNA sequences synthesized from reverse transcription of a mRNA.
 - cDNA corresponds to genes that are expressed at the time of sampling
 - cDNA will not contain any introns or control sequences (such as the promoter) that are not transcribed
- An expressed sequence tag (EST) is a partial cDNA sequence
- Protein sequences are generated experimentally or are translated from nucleotide sequence data

Microarrays and gene expression databases

- Microarrays measure gene expression
- Databases include Gene Expression Omnibus (GEO), Array Express, and others

Additional database types

- Protein interaction databases
 - Proteins must interact with other proteins or DNA/RNA to carry out their function
 - Systems biology involves studying these interactions (e.g., biological networks) in order to understand the dynamic behavior of a cell or organism
- Structural databases
 - Structure of DNA, RNA, or protein

Understanding Data Quality

- Always remember that Garbage in = Garbage out!
- If multiple individuals sequence the same gene, then the data produced will be redundant (identical or nearly identical)
- A non-redundant database finds a consensus sequence which summarizes the redundant entries
- Data consistency can be checked automatically
 - DNA sequences should consist of only the letters A,C,G, and T, though experimental uncertainty can be recorded
 - Protein structure has physical limitations (bonding geometry), and errors can be identified, and either corrected or annotated
- Ontologies were developed so consistent naming conventions are used
 - http://www.genenames.org
 - http://www.geneontology.org

Understanding data quality

- If a gene or protein is labeled as "hypothetical", "putative", or "predicted", then it has been predicted using computational methods
- Database entries generally have version numbers that allow for tracking of changes