

Universidade do Minho Escola de Engenharia

Problema de Empacotamento

Diogo Paiva (A100760), João Magalhães (A100740), Jorge Rodrigues (A101758), Rodrigo Gomes (A100555)

Índice

Formulação	. 1
Modelo	. 1
Restrições	. 5
Função Objetivo	. 6
Solução Ótima	. 7
Validação do modelo	. 8
Índice de figuras	
Figura 1 Restrições do modelo linear relativas aos itens	. 5
Figura 2 Restrições do modelo linear relativas aos contentores	. 6
Figura 3 Variáveis de contagem de quantidade de contentores utilizada	. 6
Figura 4 Função objetivo	. 7

Formulação

O presente relatório visa apresentar uma resposta ótima a um problema de empacotamento a uma dimensão com contentores de diferentes capacidades, tendo como base os conteúdos de programação linear lecionados no âmbito da disciplina de Investigação Operacional. Sendo '101758' o maior número de estudante dos elementos do grupo, de acordo com as instruções dadas, os dados do nosso problema são os seguintes:

CONTENTORES

CAPACIDADE	QUANTIDADE
11	ILIMITADA
10	2
7	6

ITENS

COMPRIMENTO	QUANTIDADE
1	2
2	15
3	10
4	10
5	6

A medida de eficiência que iremos adotar prende-se com a soma dos comprimentos dos contentores usados para transportar todos os itens. Pretendemos, portanto, apurar o valor mínimo que esta soma pode tomar, tratando-se assim de um problema de minimização.

As variáveis de decisão deste modelo serão as combinações possíveis para a distribuição dos diferentes itens por cada um dos três tipos de contentores. Iremos considerar a inexistência de espaço por ocupar no contentor e a existência de um, dois, ou três espaços livres. Achamos espectável que a solução seja dada no domínio de zero ou um espaço livre, no entanto, as restantes possibilidades foram adicionadas por precaução e de modo a obter com certeza a solução ótima na primeira execução do modelo.

Modelo

Nas tabelas que se seguem encontram-se as disposições consideradas, seguindo o esquema:

• xij: identifica a disposição de itens de índice *i* para o contentor de tipo *j*.

Para o contentor
$$j = 1$$
, constam $i = 1$, $i = 2$, ... $i = 37$;

Para o contentor
$$j = 2$$
, constam $i = 1$, $i = 2$, ... $i = 31$;

Para o contentor
$$j = 3$$
, constam $i = 1$, $i = 2$, ... $i = 20$;

1 referencia os contentores de capacidade 11, 2 referencia os contentores de capacidade 10 e 3 corresponde aos de capacidade 7.

Tabela 1 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 11, sem espaço livre.

Tam. Disp.	X11	X21	X31	X41	X51	X61	X71	X81	X91	X101	X111	X121	X131	X141
1	1	1	2	2	1	2	1	1	1	-	-	-	2	1
2	3	2	2	1	3	-	1	1	-	1	3	-	-	-
3	-	2	-	1	-	3	1	-	2	3	-	2	-	-
4	1	-	-	1	1	-	-	2	1	-	-	-	1	-
5	-	-	1	-	-	-	1	-	-	-	1	1	1	2

Tabela 2 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 11, com 1 espaço livre.

Tam. Disp.	X151	X161	X171	X181	X191	X201	X211	X221	X231	X241	X251	X261
1	1	-	-	1	2	-	-	-	1	2	2	-
2	1	1	1	-	-	-	3	-	-	1	4	5
3	1	1	-	3	-	-	-	2	-	2	-	-
4	1	-	2	-	2	-	1	1	1	-	-	-
5	-	1	-	-	-	2	-	-	1	-	-	-

Tabela 3 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 11, com 2 espaços livres.

Tam. Disp.	X271	X281	X291	X301	X311	X321	X331	X341	X351	X361	X371
1	2	2	1	1	2	2	-	-	-	-	1
2	1	-	1	2	2	2	-	-	2	1	-
3	-	1	2	-	1	1	3	-	-	1	-
4	-	1	-	1	-	-	-	1	-	1	2
5	1	-	-	-	-	-	-	1	1	-	-

Tabela 4 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 10, sem espaço livre.

Tam.	X12	X22	X32	X42	X52	X62	X72	X82	X92	X102	X112
Disp.											
1	1	-	-	1	2	-	-	-	1	2	2
2	1	1	1	-	-	-	3	-	-	1	1
3	1	1	-	3	-	-	-	2	-	2	-
4	1	-	2	-	2	-	1	1	1	-	-
5	-	1	-	-	-	2	-	-	1	-	1

Tabela 5 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 10, com 1 espaço livre.

Tam. Disp.	X122	X142	X152	X162	X172	X182	X192	X202	X212	X222
1	2	1	1	2	2	-	-	-	-	1
2	-	1	2	2	2	-	-	2	1	-
3	1	2	-	1	1	3	-	-	1	-
4	1	-	1	-	-	-	1	-	1	2
5	-	-	-	-	-	-	1	1	-	-

Tabela 6 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 10, com 2 espaços livres.

Tam. Disp.	X232	X242	X252	X262	X272	X282	X292	X302	X312
1	1	1	-	-	2	-	2	-	1
2	1	-	-	-	-	4	3	2	2
3	-	1	1	-	2	-	-	-	1
4	-	1	-	2	-	-	-	1	-
5	1	-	1	-	-	-	-	-	-

Tabela 7 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 7, sem espaço livre.

Tam. Disp.	X13	X23	X33	X43	X53	X73	X83
1	-	-	2	1	1	2	-
2	1	-	-	-	1	1	2
3	-	1	-	2	-	1	1
4	-	1	-	-	1	-	-
5	1	-	1	-	-	-	-

Tabela 8 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 7, com 1 espaço livre.

Tam. Disp.	X93	X103	X113	X123	X133	X143	X153
1	-	1	1	-	2	-	2
2	-	1	-	1	-	3	2
3	2	1	-	-	-	-	-
4	-	-	-	1	1	-	-
5	-	-	1	-	-	-	-

Tabela 9 Distribuição de itens de tamanho 1 a 5 em contentor de capacidade 7, com 2 espaços livres.

Tam. Disp.	X163	X173	X183	X193	X203
1	-	2	-	1	1
2	1	-	-	-	2
3	1	1	-	-	-
4	-	-	-	1	-
5	-	-	1	-	-

Restrições

O problema figura 3 tipos de restrições, sendo estas respetivas ao tipo de variáveis utilizadas, à quantidade máxima de itens de cada tipo e ao número máximo de contentores de cada capacidade. Assim sendo, as restrições do modelo são as seguintes:

• Variáveis:

```
xij \in \mathbb{N}^0, para todo i e j que façam sentido no problema
```

• Itens (representadas por Ix, com x = 1,2,3,4,5, sendo 'x' o comprimento do item)

```
/* Item com comprimento = 1 */
I1: 1 \times 11 + 1 \times 21 + 2 \times 31 + 2 \times 41 + 1 \times 51 + 2 \times 61 + 1 \times 71 + 1 \times 81 + 1 \times 91
  + 2 x131 + 1 x141 + 1 x151 + 1 x181 + 2 x191 + 1 x231 + 2 x241 + 2 x251 + 2 x271
  + 2 x281 + 1 x291 + 1 x301 + 2 x311 + 2 x321 + 1 x371 + 1 x12 + 1 x42 + 2 x52
  + 1 \times 92 + 2 \times 102 + 2 \times 112 + 2 \times 122 + 1 \times 142 + 1 \times 152 + 2 \times 162 + 2 \times 172 + 1 \times 222
  + 1 \times 232 + 1 \times 242 + 2 \times 272 + 2 \times 292 + 1 \times 312 + 2 \times 33 + 1 \times 43 + 1 \times 53 + 2 \times 73
  + 1 \times 103 + 1 \times 113 + 2 \times 133 + 2 \times 153 + 2 \times 173 + 1 \times 193 + 1 \times 203 = 2;
/* Item com comprimento = 2 */
I2: 3 \times 11 + 2 \times 21 + 2 \times 31 + 1 \times 41 + 3 \times 51 + 1 \times 71 + 1 \times 81 + 1 \times 101 + 3 \times 111
  + 1 x151 + 1 x161 + 1 x171 + 3 x211 + 1 x241 + 4 x251 + 5 x261 + 1 x271 + 1 x291
  + 2 \times 301 + 2 \times 311 + 2 \times 321 + 2 \times 351 + 1 \times 361 + 1 \times 12 + 1 \times 22 + 1 \times 32 + 3 \times 72
  + 1 x102 + 1 x112 + 1 x142 + 2 x152 + 2 x162 + 2 x172 + 2 x202 + 1 x212 + 1 x232
  + 4 x282 + 3 x292 + 2 x302 + 2 x312 + 1 x13 + 1 x53 + 1 x73 + 2 x83 + 1 x103
  + 1 \times 123 + 3 \times 143 + 2 \times 153 + 1 \times 163 + 2 \times 203 = 15;
/* Item com comprimento = 3 */
I3: 2 x21 + 1 x41 + 3 x61 + 1 x71 + 2 x91 + 3 x101 + 2 x121 + 1 x151 + 1 x161
  + 3 x181 + 2 x221 + 2 x241 + 1 x281 + 2 x291 + 1 x311 + 1 x321 + 3 x331 + 1 x361
  + 1 x12 + 1 x22 + 3 x42 + 2 x82 + 2 x102 + 1 x122 + 2 x142 + 1 x162 + 1 x172
  + 3 x182 + 1 x212 + 1 x242 + 1 x252 + 2 x272 + 1 x312 + 1 x23 + 2 x43 + 1 x73
  + 1 \times 83 + 2 \times 93 + 1 \times 103 + 1 \times 163 + 1 \times 173 = 10;
/* Item com comprimento = 4 */
I4: 1 x11 + 1 x41 + 1 x51 + 2 x81 + 1 x91 + 1 x131 + 1 x151 + 2 x171 + 2 x191
  + 1 \times 211 + 1 \times 221 + 1 \times 231 + 1 \times 281 + 1 \times 301 + 1 \times 341 + 1 \times 361 + 2 \times 371 + 1 \times 12
  + 2 x32 + 2 x52 + 1 x72 + 1 x82 + 1 x92 + 1 x122 + 1 x152 + 1 x192 + 1 x212
  + 2 \times 222 + 1 \times 242 + 2 \times 262 + 1 \times 302 + 1 \times 23 + 1 \times 53 + 1 \times 123 + 1 \times 133 + 1 \times 193 = 10;
/* Item com comprimento = 5 */
15: 1 \times 31 + 1 \times 71 + 1 \times 111 + 1 \times 121 + 1 \times 131 + 2 \times 141 + 1 \times 161 + 2 \times 201 + 1 \times 231
  + 1 x271 + 1 x341 + 1 x351 + 1 x22 + 2 x62 + 1 x92 + 1 x112 + 1 x192 + 1 x202 + 1 x232 + 1 x252 + 1 x13 + 1 x33 + 1 x113 + 1 x183 = 5;
```

Figura 1 Restrições do modelo linear relativas aos itens.

• Contentores (representados por Cx, com x = 1,2,3, sendo 'x' a identificação do contentor)

```
/* Restrições de quantidade de contentores */
/* Contentor de capacidade = 11 existe em quantidades ilimitadas, portanto não possui restrições*/

/* Contentor com capacidade = 10 */
C2: 1 x12 + 1 x22 + 1 x32 + 1 x42 + 1 x52 + 1 x62 + 1 x72 + 1 x82 + 1 x92
+ 1 x102 + 1 x112 + 1 x122 + 1 x142 + 1 x152 + 1 x162 + 1 x172 + 1 x182 + 1 x192
+ 1 x202 + 1 x212 + 1 x222 + 1 x232 + 1 x242 + 1 x252 + 1 x262 + 1 x272 + 1 x282
+ 1 x292 + 1 x302 + 1 x312 <= 2;

/* Contentor com capacidade = 7 */
C3: 1 x13 + 1 x23 + 1 x33 + 1 x43 + 1 x53 + 1 x73 + 1 x83 + 1 x93 + 1 x103
+ 1 x113 + 1 x123 + 1 x133 + 1 x143 + 1 x153 + 1 x163 + 1 x173 + 1 x183 + 1 x193
+ x203 <= 6;
```

Figura 2 Restrições do modelo linear relativas aos contentores.

Função Objetivo

Tendo em conta o propósito do problema, a função objetivo corresponderá a uma expressão matemática que traduza a minimização da capacidade total tos contentores utilizados, correspondente ao somatório da quantidade de cada contentor utilizada, multiplicada pela respetiva capacidade.

Sendo a quantidade de cada contentor utilizada dada por q1, q2 e q3 (correspondente às capacidades 11, 10 e 7, respetivamente), podemos obter o valor dessas variáveis com o somatório do número de vezes que cada disposição de itens é utilizada, ou seja:

```
/* Variáveis de contagem de quantidade de contentores*/
/* Conta o número de contentores de capacidade 11*/
q1 = 1 \times 11 + 1 \times 21 + 1 \times 31 + 1 \times 41 + 1 \times 51 + 1 \times 61 + 1 \times 71 + 1 \times 81 + 1 \times 91
  + 1 x101 + 1 x111 + 1 x121 + 1 x131 + 1 x141 + 1 x151 + 1 x161 + 1 x171 + 1 x181
  + 1 x191 + 1 x201 + 1 x211 + 1 x221 + 1 x231 + 1 x241 + 1 x251 + 1 x261 + 1 x271
  + 1 \times 281 + 1 \times 291 + 1 \times 301 + 1 \times 311 + 1 \times 321 + 1 \times 331 + 1 \times 341 + 1 \times 351 + 1 \times 361
  + 1 x371;
/* Conta o número de contentores de capacidade 10*/
q2 = 1 \times 12 + 1 \times 22 + 1 \times 32 + 1 \times 42 + 1 \times 52 + 1 \times 62 + 1 \times 72 + 1 \times 82 + 1 \times 92
  + 1 x102 + 1 x112 + 1 x122 + 1 x142 + 1 x152 + 1 x162 + 1 x172 + 1 x182 + 1 x192
  + 1 \times202 + 1 \times212 + 1 \times222 + 1 \times232 + 1 \times242 + 1 \times252 + 1 \times262 + 1 \times272 + 1 \times282
  + 1 x292 + 1 x302 + 1 x312;
/* Conta o número de contentores de capacidade 7*/
q3 = 1 \times 13 + 1 \times 23 + 1 \times 33 + 1 \times 43 + 1 \times 53 + 1 \times 73 + 1 \times 83 + 1 \times 93 + 1 \times 103
  + 1 x113 + 1 x123 + 1 x133 + 1 x143 + 1 x153 + 1 x163 + 1 x173 + 1 x183 + 1 x193
Figura 3 Variáveis de contagem de quantidade de contentores utilizada
```

Utilizando estas variáveis auxiliares, é possível escrever a função objetivo de forma bastante sucinta:

```
/* Função objetivo */
minimize : 11q1 + 10q2 + 7q3;
```

Figura 4 Função objetivo

Solução Ótima

Recorrendo ao LPSolve para resolver este problema linear obtivemos o sequente output:

Variables	MILP	MILP	MILP	MILP	result	Variables	MILP	MILP	MILP	MILP	result
	133	130	129	128	128	x281	0	0	0	0	0
q1	9	9	8	6	6	x291	0	0	0	0	0
q2	2	1	2	2	2	x301	0	0	0	0	0
q3	2	3	3	6	6	x311	0	0	0	0	0
×11	0	0	0	0	0	x321	0	0	0	0	0
x21	0	0	0	0	0	x371	0	0	0	0	0
x31	0	0	0	0	0	x12	0	0	0	0	0
×41	0	0	0	0	0	x42	0	0	0	0	0
x51	0	0	0	0	0	x52	0	0	0	0	0
x61	0	0	0	0	0	x92	0	0	0	0	0
×71	0	0	0	0	0	x102	0	0	0	0	0
x81	0	1	2	2	2	x112	0	0	0	0	0
x91	0	0	0	0	0	x122	0	0	0	0	0
x131	0	0	0	0	0	x142	0	0	0	0	0
×141	1	0	0	0	0	x152	0	0	0	0	0
x151	0	0	0	0	0	x162	0	0	0	0	0
x181	0	0	0	0	0	x172	0	0	0	0	0
x191	0	0	0	0	0	x222	0	0	0	0	0
x231	0	0	0	0	0	x232	0	0	0	0	0
x241	0	0	0	0	0	x242	0	0	0	0	0
x251	0	0	0	0	0	x272	0	0	0	0	0
x271	0	0	0	0	0	x292	0	0	0	0	0
x281	0	0	0	0	0	x312	0	0	0	0	0
Variables	MILP	MILP	MILP	MILP	result	Variables	MILP	MILP	MILP	MILP	result
x33	0	0	0	0	0	x202	0	0	0	0	0
x43	0	0	0	0	0	x212	0	0	0	0	0
x53	0	0	0	0	0	x282	0	0	0	0	0
x73	0	0	0	0	0	x302	0	0	0	0	0
x103	0	1	0	0	0	x13	0	0	0	3	3
x113	1	0	0	0	0	x83	0	0	0	0	0
x133	0	0	0	0						-	
x153	0				0	x123	0	0	0	0	0
		0	0	0	0	x143	0	0	0	0	0
x173	0	0	0	0 0	0 0	x143 x163	0 1	0	0	0	0
x193	0	0	0	0 0 0	0 0 0	x143 x163 x121	0 1 0	0 0 2	0 0 1	0 0	0 0
	0 0 0	0	0 0 0	0 0 0 0	0 0 0	x143 x163 x121 x221	0 1 0 0	0 0 2 0	0 0 1 0	0 0 0	0 0 0
x193 x203 x101	0 0 0 3	0 0 0	0 0 0 2	0 0 0 0 2	0 0 0 0 0	x143 x163 x121 x221 x331	0 1 0 0	0 0 2 0	0 0 1 0	0 0 0 0	0 0 0 0
x193 x203 x101 x111	0 0 0 3 2	0 0 0 1 3	0 0 0 2 3	0 0 0 0 2 2	0 0 0 0 2 2	x143 x163 x121 x221 x331 x82	0 1 0 0 0	0 0 2 0 0	0 0 1 0 0	0 0 0 0 0	0 0 0 0 0
×193 ×203 ×101 ×111 ×161	0 0 0 3 2	0 0 0 1 3	0 0 0 2 3	0 0 0 0 2 2	0 0 0 0 2 2	x143 x163 x121 x221 x331 x82 x182	0 1 0 0 0 0	0 0 2 0 0 0	0 0 1 0 0 0	0 0 0 0 0	0 0 0 0 0
x193 x203 x101 x111 x161 x171	0 0 0 3 2 0	0 0 0 1 3 0	0 0 0 2 3 0	0 0 0 0 2 2 2 0	0 0 0 0 2 2 0	x143 x163 x121 x221 x331 x82 x182 x252	0 1 0 0 0 0	0 0 2 0 0 0 0	0 0 1 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
x193 x203 x101 x111 x161 x171 x211	0 0 0 3 2 0 3 0	0 0 0 1 3 0 2	0 0 0 2 3 0 0	0 0 0 0 2 2 0 0	0 0 0 2 2 0 0	x143 x163 x121 x221 x331 x82 x182 x252	0 1 0 0 0 0 0	0 0 2 0 0 0 0 0	0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
x193 x203 x101 x111 x161 x171 x211	0 0 0 3 2 0 3 0	0 0 0 1 3 0 2 0	0 0 0 2 3 0 0	0 0 0 0 2 2 2 0 0	0 0 0 2 2 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x23 x93	0 1 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 2	0 0 0 0 0 0 0 0 2
x193 x203 x101 x111 x161 x171 x211 x261 x351	0 0 0 3 2 0 3 0 0	0 0 0 1 3 0 2 0 0	0 0 0 2 3 0 0 0	0 0 0 0 2 2 0 0 0	0 0 0 2 2 0 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x252 x23 x93 x341	0 1 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 2 0	0 0 1 0 0 0 0 0 0 2	0 0 0 0 0 0 0 0 0 2 1	0 0 0 0 0 0 0 0 0 2 1
x193 x203 x101 x111 x161 x171 x211 x261 x351 x361	0 0 0 3 2 0 3 0 0	0 0 0 1 3 0 2 0 0 0	0 0 0 2 3 0 0 0	0 0 0 2 2 2 0 0 0	0 0 0 2 2 2 0 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x252 x23 x93 x341 x192	0 1 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 2 0 0	0 0 1 0 0 0 0 0 0 2 0 0	0 0 0 0 0 0 0 0 0 2 1	0 0 0 0 0 0 0 0 0 2 1
x193 x203 x101 x111 x161 x171 x211 x261 x351 x361 x22	0 0 0 3 2 0 3 0 0 0	0 0 0 1 3 0 2 0 0 0	0 0 0 2 3 0 0 0 0	0 0 0 2 2 2 0 0 0 0	0 0 0 2 2 0 0 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x252 x23 x93 x341 x192 x262	0 1 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 2 0 0	0 0 1 0 0 0 0 0 0 2 0 0	0 0 0 0 0 0 0 0 0 0 2 1 0	0 0 0 0 0 0 0 0 0 0 2 1 0
x193 x203 x101 x111 x161 x171 x211 x261 x351 x361 x22 x32	0 0 0 3 2 0 3 0 0 0 0	0 0 0 1 3 0 2 0 0 0 0	0 0 0 2 3 0 0 0 0 0	0 0 0 2 2 2 0 0 0 0	0 0 0 2 2 0 0 0 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x252 x23 x93 x341 x192 x262 x201	0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 2 0 0 0	0 0 1 0 0 0 0 0 0 2 0 0 0	0 0 0 0 0 0 0 0 0 0 2 1 0 0	0 0 0 0 0 0 0 0 0 0 2 1 0 0
x193 x203 x101 x111 x161 x171 x211 x261 x351 x361 x22	0 0 0 3 2 0 3 0 0 0	0 0 0 1 3 0 2 0 0 0	0 0 0 2 3 0 0 0 0	0 0 0 2 2 2 0 0 0 0	0 0 0 2 2 0 0 0 0	x143 x163 x121 x221 x331 x82 x182 x252 x252 x23 x93 x341 x192 x262	0 1 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 2 0 0	0 0 1 0 0 0 0 0 0 2 0 0	0 0 0 0 0 0 0 0 0 0 2 1 0	0 0 0 0 0 0 0 0 0 0 2 1 0

Figura 5 Output LPSolve de resolução do modelo linear

Traduzindo a solução da linguagem matemática, concluímos que a distribuição ótima dos itens passa por utilizar seis contentores de capacidade 11, dois de capacidade 10 e seis de capacidade 7, respeitando as seguintes distribuições:

• Contentores de capacidade 11:

- Duas distribuições x81: Um item de comprimento 1; Um item de comprimento
 2; Dois itens de comprimento 4.
- Duas distribuições x101: Um item de comprimento 2; Três itens de comprimento
 3.
- Duas distribuições x111: Três itens de comprimento 2; Um item de comprimento
 5.

• Contentores de capacidade 10:

Duas distribuições x32: Um item de comprimento 2; Dois itens de comprimento
 4.

• Contentores de capacidade 7:

- o Três distribuições x13: Um item de comprimento 2; Um item de comprimento 5.
- Duas distribuições x23: Um item de comprimento 3; Um item de comprimento
 4.
- o Uma distribuição x93: Dois itens de comprimento 3.

Tendo em consideração os valores obtidos para as variáveis q1,q2 e q3, o valor da função objetivo obtido é $11 \times q1 + 10 \times q2 + 7 \times q3 = 11 \times 6 + 10 \times 2 + 7 \times 6 = 128$, equivalendo à soma dos comprimentos dos contentores usados na solução. Dado que os itens ocupam um total de 127 unidades de espaço e que esse valor não pode ser obtido por nenhuma combinação linear de constantes 11,10 e 7, 128 é o valor mínimo de comprimento total que os contentores podem ter, se transportarem todos os itens.

Validação do modelo

De modo a validar solução obtida, inserimos no modelo linear cinco variáveis auxiliares de contagem de itens por comprimento, de nomes fx, com x = 1,2,3,4,5, sendo que x referencia o comprimento do item. A formulação destas variáveis passa pela soma da quantidade de itens que existe de um certo comprimento em cada distribuição, com omissão das cujo valor é zero.

```
/* Variáveis de contagem de quantidade de itens*/
/* Conta o número de itens de comprimento 1*/
f1= 1 x11 + 1 x21 + 2 x31 + 2 x41 + 1 x51
                                                         + 2 x61 + 1 x71 + 1 x81 + 1 x91
  + 2 x131 + 1 x141 + 1 x151 + 1 x181 + 2 x191 + 1 x231 + 2 x241 + 2 x251 + 2 x271
  + 2 \times 281 + 1 \times 291 + 1 \times 301 + 2 \times 311 + 2 \times 321 + 1 \times 371 + 1 \times 12 + 1 \times 42 + 2 \times 52
  + 1 x92 + 2 x102 + 2 x112 + 2 x122 + 1 x142 + 1 x152 + 2 x162 + 2 x172 + 1 x222
  + 1 x232 + 1 x242 + 2 x272 + 2 x292 + 1 x312 + 2 x33 + 1 x43 + 1 x53 + 2 x73
  + 1 x103 + 1 x113 + 2 x133 + 2 x153 + 2 x173 + 1 x193 + 1 x203;
/* Conta o número de itens de comprimento 2*/
f2 = 3 \times 11 + 2 \times 21 + 2 \times 31 + 1 \times 41 + 3 \times 51 + 1 \times 71 + 1 \times 81 + 1 \times 101 + 3 \times 111
  + 1 x151 + 1 x161 + 1 x171 + 3 x211 + 1 x241 + 4 x251 + 5 x261 + 1 x271 + 1 x291
  + 2 \times 301 + 2 \times 311 + 2 \times 321 + 2 \times 351 + 1 \times 361 + 1 \times 12 + 1 \times 22 + 1 \times 32 + 3 \times 72
  + 1 x102 + 1 x112 + 1 x142 + 2 x152 + 2 x162 + 2 x172 + 2 x202 + 1 x212 + 1 x232
  + 4 \times 282 + 3 \times 292 + 2 \times 302 + 2 \times 312 + 1 \times 13 + 1 \times 53 + 1 \times 73 + 2 \times 83 + 1 \times 103
  + 1 \times 163 + 1 \times 173;
/* Conta o número de itens de comprimento 3*/
f3= 2 x21 + 1 x41 + 3 x61 + 1 x71 + 2 x91 + 3 x101 + 2 x121 + 1 x151 + 1 x161
  + 3 \times 181 + 2 \times 221 + 2 \times 241 + 1 \times 281 + 2 \times 291 + 1 \times 311 + 1 \times 321 + 3 \times 331 + 1 \times 361
  + 1 x12 + 1 x22 + 3 x42 + 2 x82 + 2 x102 + 1 x122 + 2 x142 + 1 x162 + 1 x172
  + 3 \times 182 + 1 \times 212 + 1 \times 242 + 1 \times 252 + 2 \times 272
                                                           + 1 \times 312 + 1 \times 23 + 2 \times 43 + 1 \times 73
            + 2 \times 93 + 1 \times 103 + 1 \times 163 + 1 \times 173;
/* Conta o número de itens de comprimento 4*/
            + 1 \times 41 + 1 \times 51 + 2 \times 81 + 1 \times 91
                                                         + 1 \times 131 + 1 \times 151 + 2 \times 171 + 2 \times 191
  + 1 x211 + 1 x221 + 1 x231 + 1 x281 + 1 x301 + 1 x341 + 1 x361 + 2 x371 + 1 x12
            + 2 \times 52 + 1 \times 72
                                   + 1 x82
                                              + 1 \times 92 + 1 \times 122 + 1 \times 152 + 1 \times 192 + 1 \times 212
  + 2 x222 + 1 x242 + 2 x262 + 1 x302 + 1 x23 + 1 x53 + 1 x123 + 1 x133 + 1 x193;
/* Conta o número de itens de comprimento 5*/
f5 = 1 \times 31 + 1 \times 71 + 1 \times 111 + 1 \times 121 + 1 \times 131 + 2 \times 141 + 1 \times 161 + 2 \times 201 + 1 \times 231
  + 1 \times 271 + 1 \times 341 + 1 \times 351 + 1 \times 22 + 2 \times 62 + 1 \times 92 + 1 \times 112 + 1 \times 192 + 1 \times 202
  + 1 x232 + 1 x252 + 1 x13 + 1 x33 + 1 x113 + 1 x183;
```

Figura 6 Variáveis de contagem de quantidade de itens distribuídos por comprimento

Como é possível verificar pela Figura 7, o resultado obtido pelo LPSolve para as variáveis de contagem de itens corresponde à quantidade total existente. Juntando isso ao nosso conhecimento de que não excedemos a quantidade máxima de contentores (q1 < ∞ , q2 <= 2 e q3 <=6) e de que a função objetivo toma o valor 15 15 15 15 f3 10 10 10 10 10

mínimo, consideramos o modelo linear por nós 5 5 elaborado correto e válido. Figura 7 Resultados LPSolve obtidos para as

variáveis fx

10

10

10

10

10