HW9 Omair Shafi Ahmed

14.3

a) An augmented dickey-fuller test is done for p = 0,1,2,3,4 and the corresponding BIC and AIC is calculated to decide the best p. With p = 1, the ADF statistic is -1.58, which, being smaller than -3.44 allows us to reject the null hypothesis. P = 2 also results in an ADF statistic less than -3.44.

. reg dy time L.y L.dy if tin(1955q1,2009q4),r

Linear regression	Number of obs	=	220
	F(3, 216)	=	9.81
	Prob > F	=	0.0000
	R-squared	=	0.1389
	Root MSE	=	.00867

dy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
time	.0001894	.0001266	1.50	0.136	0000601	.0004389
У L1.	0252585	.0159473	-1.58	0.115	0566907	.0061738
dy L1.	.3487863	.0747664	4.67	0.000	.2014211	. 4961515
cons	2080206	1275485	1.63	0.104	- 0433784	4594197

. reg dy time L.y L(1/2).dy if tin(1955q1,2009q4),r

regression N	Number of	obs	=	220
E	7(4, 215)		=	8.49
E	Prob > F		=	0.0000
F	R-squared		=	0.1531
F	Root MSE		=	.00862
	F F	regression Number of F(4, 215) Prob > F R-squared Root MSE	F(4, 215) Prob > F R-squared	F(4, 215) = Prob > F = R-squared =

dy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
time	.0002414	.0001326	1.82	0.070	0000201	.0005028
y L1.	0314597	.0166704	-1.89	0.060	064318	.0013986
dy L1. L2.	.3109996 .1303913	.0798289 .0833263	3.90 1.56	0.000 0.119	.153652 0338499	.4683471 .2946324
_cons	.2566477	.133199	1.93	0.055	0058954	.5191908

. reg dy time L.y L(1/3).dy if tin(1955q1,2009q4),r

Linear regression	Number of obs	=	220
	F(5, 214)	=	6.82
	Prob > F	=	0.0000
	R-squared	=	0.1544
	Root MSE	=	.00863

dy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
time	.0002241	.0001342	1.67	0.096	0000404	.0004887
y L1. dy	0293833	.0168431	-1.74	0.083	0625831	.0038164
L1.	.3138763	.0799431	3.93	0.000	.1562996	.4714529
L2.	.1402701	.0891168	1.57	0.117	035389	.3159291
L3.	0402143	.0758439	-0.53	0.597	189711	.1092825
_cons	.240324	.1345183	1.79	0.075	0248265	.5054745

. reg dy time L.y L(1/4).dy if tin(1955q1,2009q4),r

Linear regression	Number of obs	=	220
	F(6, 213)	=	5.85
	Prob > F	=	0.0000
	R-squared	=	0.1549
	Root MSE	=	.00865

dy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
time	.0002151	.0001468	1.47	0.144	0000742	.0005044
у L1.	0282924	.0183671	-1.54	0.125	064497	.0079121
dy L1. L2. L3. L4.	.3118539 .1421678 0344698 0226011	.0803509 .0904877 .0753436 .0857673	3.88 1.57 -0.46 -0.26	0.000 0.118 0.648 0.792	.1534691 0361982 1829845 1916625	.4702386 .3205338 .1140448 .1464604
_cons	.231766	.1464337	1.58	0.115	0568789	.5204108

. reg dy time L.y if tin(1955q1,2009q4),r

Linear regression	Number of obs	=	220
	F(2, 217)	=	2.26
	Prob > F	=	0.1065
	R-squared	=	0.0239
	Root MSE	=	.00921

dy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
time	.0000597	.0001434	0.42	0.678	0002229	.0003422
у L1.	0101309	.0180416	-0.56	0.575	04569	.0254282
_cons	.0906014	.1444148	0.63	0.531	1940339	.3752367

14.4

The F-Statistic being 3.7 is smaller than 5.86 implying that there is no break in the AR(I) model.

. qlrtest dy, ebegin(1955q1) eend(2009q4) chow(L.dy) fvar(fstat)

-	fstat	154	1.103678	. 6731129	.0727904	3.719405
	Variable	Obs	Mean	Std. Dev.	Min	Max

14.5

- c) There is evidence of a break as the maximum f-statistic, being 5.09 is greater than 4.53, implies that the null hypothesis can be rejected.
 - . qlrtest dy L.dy, ebegin(1955q1) eend(2009q4) chow(L1.dr L2.dr L3.dr L4.dr) fvar(fstat1)

fst	tat1	154	3.734356	. 6231697	1.65061	5.095863
Varia	able	Obs	Mean	Std. Dev.	. Min	Max

```
14.6
```

A)

```
. pfregress dy L.dy, ebegin(1955q1) eend(1989q4) fend(2009q4) horizon(1) pname(pdinf) ename(einf) RMSFE = .00596043
```

B)

```
. pfregress dy L.dy, ebegin(1955q1) eend(1989q4) fend(2009q4) horizon(1) pname(pdinf) ename(einf) RMSFE = .00596043
```

C)

```
. pfregress dy L.dy, ebegin(1955q1) eend(1989q4) fend(2009q4) horizon(1) pname(pdinf) ename(einf) RMSFE = .00596043
```

D) The forecasts don't appear to be biased. The AR(I) model has the smallest RSMFE, with an RMSFE of 2.38.