SIPMOS ® Power Transistor

- N channel
- Enhancement mode
- Avalanche-rated
- dv/dt rated
- Ultra low on-resistance
- 175°C operating temperature
- also in TO-220 SMD available

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code
BUZ 100	50 V	60 A	0.018 Ω	TO-220 AB	C67078-S1348-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		Α
$T_{\rm C}$ = 101 °C		60	
Pulsed drain current	/ _{Dpuls}		
$T_{\rm C}$ = 25 °C		240	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{\rm D} = 60 \; {\rm A}, \; V_{\rm DD} = 25 \; {\rm V}, \; R_{\rm GS} = 25 \; {\rm \Omega}$			
$L = 70 \mu H, T_j = 25 °C$		250	
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>		kV/µs
$I_{S} = 60 \text{ A}, \ V_{DS} = 40 \text{ V}, \ di_{F}/dt = 200 \text{ A/}\mu\text{s}$			
$T_{\text{jmax}} = 175 ^{\circ}\text{C}$		6	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		250	
Operating temperature	T _j	-55 + 175	°C
Storage temperature	T _{stg}	-55 + 175	
Thermal resistance, chip case	R _{thJC}	≤ 0.6	K/W
Thermal resistance, chip to ambient	R _{thJA}	≤ 75	
DIN humidity category, DIN 40 040		Е	
IEC climatic category, DIN IEC 68-1		55 / 175 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = -40 °C		50	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				
$V_{\rm DS} = 50 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 25 \; ^{\circ} \rm C$		-	0.1	1	μΑ
$V_{\rm DS} = 50 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = -40 \; {\rm ^{\circ}C}$		-	1	100	nA
$V_{\rm DS} = 50 \; \rm V, \; V_{\rm GS} = 0 \; \rm V, \; T_{\rm j} = 150 \; ^{\circ}\rm C$		-	10	100	μΑ
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_D = 60 \text{ A}$		-	0.013	0.018	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol		Values		Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	<i>g</i> fs				S
$V_{DS} \ge 2 * I_D * R_{DS(on)max}, I_D = 60 A$		25	39	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	2400	3200	
Output capacitance	C_{oss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	800	1200	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	300	450	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \; \rm V, \; V_{\rm GS} = 10 \; \rm V, \; I_{\rm D} = 3 \; \rm A$					
$R_{\rm GS} = 50 \ \Omega$		-	40	60	
Rise time	t_{r}				
$V_{\rm DD} = 30 \; \rm V, \; V_{\rm GS} = 10 \; \rm V, \; I_{\rm D} = 3 \; \rm A$					
$R_{\rm GS} = 50 \ \Omega$		-	100	150	
Turn-off delay time	$t_{d(off)}$				
$V_{\text{DD}} = 30 \text{ V}, \ V_{\text{GS}} = 10 \text{ V}, \ I_{\text{D}} = 3 \text{ A}$					
$R_{\rm GS}$ = 50 Ω		-	250	335	
Fall time	t_{f}				
$V_{\rm DD} = 30 \; \rm V, \; V_{\rm GS} = 10 \; \rm V, \; I_{\rm D} = 3 \; \rm A$					
$R_{\rm GS}$ = 50 Ω		-	140	190	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				А
<i>T</i> _C = 25 °C		-	-	60	
Inverse diode direct current,pulsed	/ _{SM}				
<i>T</i> _C = 25 °C		-	-	240	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 120 \text{ A}$		-	1.4	1.8	
Reverse recovery time	t _{rr}				ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S,} dI_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	70		
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, dI_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	0.16	-	

Power dissipation

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_C = 25$ °C

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{C}})$

parameter: $V_{GS} \ge 10 \text{ V}$

Transient thermal impedance

$$Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80~\mu{\rm s}$

Typ. transfer characteristics $I_{\rm D} = f\left(V_{\rm GS}\right)$

parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\text{DS (on)}} = f(I_{\text{D}})$ parameter: V_{GS}

Typ. forward transconductance $g_{fS} = f(I_D)$

parameter: $t_p = 80 \mu s$, $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\text{DS (on)}} = f(T_{\text{j}})$

parameter: $I_D = 60 \text{ A}$, $V_{GS} = 10 \text{ V}$

Gate threshold voltage

 $V_{GS (th)} = f(T_j)$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_D = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = 60 \text{ A}$, $V_{DD} = 25 \text{ V}$

 $R_{\rm GS} = 25~\Omega,~L = 70~\mu{\rm H}$

Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$

parameter: $I_{D \text{ puls}} = 90 \text{ A}$

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_i)$$

Package Outlines

TO-220 AB

Dimension in mm

- 1) punch direction, burr max. 0.04
- 2) dip tinning
- 3) max. 14.5 by dip tinning press burr max. 0.05