

Recommendation Problem

- Given user set
 - User profiles optional
- Given item set
 - ☐ Item attributes optional
- Given preference
 - Explicit/Implicit preference data mandatory强制的
- Real-world RSs tend to make full use of available data
- The most basic RS problem only use preference data
 - focus of the ML research for RS

RS Problem Example: MovieLens

- UserID::Gender::Age::Occupation::Zip (user info file format)
 - □ Age is chosen from 7 ranges: * 1: "Under 18" * 18: "18-24" * 25: "25-34" * 35: "35-44" * 45: "45-49" * 50: "50-55" * 56: "56+"
 - □ Occupation is chosen from 20 choices: * 0: "other" or not specified * 1: "academic/educator" * 2: "artist" * 3: "clerical/admin" * 4: "college/grad student" * 5: "customer service" * 6: "doctor/health care" * 7: "executive/managerial" * 8: "farmer" * 9: "homemaker" * 10: "K-12 student" * 11: "lawyer" * 12: "programmer" * 13: "retired" * 14: "sales/marketing" * 15: "scientist" * 16: "self-employed" * 17: "technician/engineer" * 18: "tradesman/craftsman" * 19: "unemployed" * 20: "writer"
- MovieID::Title::Genres (movie info file format)
 - ☐ Titles are provided by the IMDB (including year of release)
 - Genres are selected from 18 genres: * Action * Adventure * Animation * Children's * Comedy * Crime * Documentary * Drama * Fantasy * Film-Noir * Horror * Musical * Mystery * Romance * Sci-Fi * Thriller * War * Western

[1] Download at http://grouplens.org/datasets/movielens/

RS Problem Example: MovieLens

- UserID::MovieID::Rating::Timestamp
 - \square Ratings in 5-star scale $\{1,2,3,4,5\}$
 - $\hfill\Box$ Timestamp is represented in seconds (can be transformed into dd-mm-yyyy)

Training Data

ıser	movie	date	rate
1	34	11-04-02	3
1	296	09-05-02	4
2	11	18-01-02	5
2	59	23-02-02	4
2	124	03-04-02	2

58 05-07-02

Test Data

user	movie	date	rate
1	75	21-02-03	?
1	126	09-03-03	?
2	92	18-01-03	?
2	257	29-05-03	?
3	66	22-03-03	?
3	394	02-06-03	?

RS Problem Formalization

- Given a User-Info Matrix (optional): U
- Given an Item-Info Matrix (optional): V
- Given a User×Item partially observed Preference Matrix: X
- lacktriangle Complete the missing entries in X

 \mathbf{X}

X

RS Categorization

- Data Perspective
 - □ Demography-based-基于人口统计的 (rely on user profiles) ☆
 - □ Content-based-基于内容的 (rely on item attributes) ☆
 - □ Collaborative Filtering based (rely on preference) ★ 基于协同滤波
 - Hybrid
- Method Perspective
 - Rule-based (database approach)
 - ☐ Memory-based (information retrieval approach) ★
 - ☐ Model-based (machine learning approach) ★
 - Hybrid

Real-world RSs

- Real-world RSs are usually Hybrid
 - □ Combine multiple recommendation strategies in different scenarios
 - □ Mainly based on CF (协同过滤) techniques with rule-based and content-based as complementary strategies
- Amazon combines demography-based, Content-based, and CF-based strategies
 - User demographic info
 - User purchased records, click-through histories, etc.
 - ☐ Item attributes, item taxonomy
 - Item popularities

Content-based (Brief Intro)

- Item correlation by comparing item content
- Recommend items highly correlated to historical preference

Content-based (Brief Intro)

- Require Item-Info Matrix and Preference Matrix
- Advantages
 - ☐ Fine and accurate to model preference
 - □ Tags are effective if provided
- Disadvantages
 - Rely on item attributes (complete and comprehensive)
 - □ Cold-start problem (new users have no historical data)

? ? ? ? ? ?

- Web 2.0 emphasizes user participation and contributions
 - □ Tags (Flickr), Articles (Wikipedia), Reviews (Amazon), etc.
- Collective Intelligence (CI)
 - Making use of the union of individual contributions
- Collaborative Filtering (CF) is CI
 - ☐ But focus on discovering intersected individual contributions

Collaborative Filtering (Overview)

- Main idea of CF
 - Find neighbors based on historical preference How to decide?
 - Recommend items highly rated by neighbors How to rank?

2

- User-based Collaborative Filtering (similar users)
- User-based vs. Demography-based
 - Demography-based uses user-info to compute similarity
 - ☐ User-based uses historical preference data to compute similarity

Collaborative Filtering (Overview)

- Item-based Collaborative Filtering (similar items)
- Item-based vs. Content-based
 - ☐ Content-based uses item-info to compute similarity
 - ☐ Item-based uses associated preference data to compute similarity

- Both user-based and item-based are "memory-based"
 - User-based has long history
 - ☐ Item-based was invented by Amazon as an improvement of user-based
- User-based vs Item-based How to choose?
 - □ It depends ···

User-based CF	Item-based CF	
item # < user #	item # > user #	
Items change rapidly	Items stay stable	
News RS	Product RS (e.g., Amazon)	

Collaborative Filtering (Overview)

- Model-based (compared to memory-based)
 - Using ML models for preference-matrix completion
 - lacktriangle Recommend items based on the estimated ratings
- Matrix Factorization Approach
 - ☐ Singular Value Decomposition (SVD)
 - SVD variants
 - Bayesian Probabilistic Matrix Factorization
- Mixture Model Approach
 - ☐ Flexible Mixture Models
 - ☐ Bi-LDA (variant of Latent Dirichlet Allocation)

- CF is the most widely used recommendation mechanism
- Advantages
 - ☐ Only based on historical preference data
 - ☐ Domain independent (model not specific to certain item domains)
 - ☐ Well defined ML problem (numerous ML methods can be applied)
- Disadvantages Challenges
 - □ Cold-start problem (new user has no preference data)
 - □ Sparsity problem (preference matrix is very sparse)
 - Noise problem (rely on the quality of preference data)

Hybrid Strategies

- Weighted Hybridization
 - ☐ Combine weighted results of multiple recommenders to generate a final recommendation
- Switching Hybridization
 - $f \Box$ Switch between different recommenders depending on situations
- Mixed Hybridization
 - $\hfill \Box$ Show results of different recommenders at different locations on a webpage
- Cascade Hybridization
 - ☐ Refine the result of another recommender from coarse to fine

Recommendation Criteria

- Personalization
 - ☐ Relevance to user's tastes
- Diversity
 - ☐ Coverage of user's multiaspect tastes
- Serendipity
 - Exploration of user's new tastes

Recommendation Performance

- Rating Prediction (regression problem)
 - $\hfill \Box$ Measure the difference between predictions and ground-truths
- Evaluation Metrics
 - Mean Absolute Error (MAE) , Root Mean Squared Error (RMSE)

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |r_n - \hat{r}_n|$$

RMSE =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} (r_n - \hat{r}_n)^2}$$

