Radiometry - Measurement of light

Niels Jørgen Christensen IMM,DTU

Concepts - informal

- Light ~ energy Light pr. time ~ Flux, Power Light pr. area ~ Irradians, Radiant Exitance
- Light in special direction ~ Radient Intensity Light along Ray ~ Radiance Light pr. wavelength

- Special cases
 Diffuse, Isotropic
- Area: planar surface, sphere, half sphereSolid angle steradian

Physics	Radiometry			Photometry	
Energy Energi	Radiant Energy Strålingsenergi	Q	Joules J kgm²/s²	Luminous Energy Lysmængde	Talbot T Lumen.s
Flux (Power) Effekt	Radiant Flux(Power) Strålingsstrøm	Φ=dQ/dt	Watt W W = J/s	Luminous Flux Lysstrøm	Lumen L L = T/s
Flux Density Modtaget effekttæthed	Irradiance Irradians	E=dΦ/dA	W/m²	Illuminance Illuminans	Lux = L/m ²
Flux Density Udsendt effekttæthed	Radiant Exitance Udstråling	M=dΦ/dA	W/m²	Luminous Exitance Lysudstråling	Lux = L/m ²
	Radiosity Udstråling – konstant	В	W/m²	Luminosity	Lux = L/m ²
Ang.Flux dens Effekttæthed/ rumvinkel	Radiance Radians	L=dΦ/(dA [±] dω)	W/(m ² sr)	Luminance Luminans	Nit=L/m ² sr = cd/m ²
Intensity Effekt pr. rumvinkel	Radiant Intensity Strålingsstyrke	I=d Φ /dω	W/sr	Lumious Intensity Lysstyrke	Candela cd = L/sr

Differential Flux - Throughput

· Differential Flux

 $d\Phi = L(x,\omega)\cos\theta \,d\omega \,dA$

· Radiance along ray

Constant

 $L_1 d\omega_1 dA_1 = L_2 d\omega_2 dA_2$

• No absorption, No scattering

T Throughput

- Conservation of

 $T = d\omega_1 dA_1 = d\omega_2 dA_2 = \frac{dA_1 dA_2}{r^2}$

energy Along pencil

• Throughput T

 $L_{\rm l}=L_{\rm 2}$

Sensor Response R

- R =LT
- ~ Radiance of visible

$$R = \int_{A} \int_{\Omega} L \cos \theta \, d\omega \, dA$$
$$= LT$$

 Walls equally bright over a wide range of viewing distances

Light - wave

$$\begin{split} y &= A_{\epsilon} \sin[\frac{2\pi}{\lambda} (x + vr)] \\ v &= Af \\ y &= A_{\epsilon} \sin[\frac{2\pi}{\lambda} (x + \lambda f)] \\ k &= \frac{2\pi}{\lambda} \\ ao &= 2\pi f \\ y &= A_{\epsilon} \sin(kx + ax) \\ q &= bf = \frac{kr}{\lambda} \\ k &= 6.63.10^{-16} [h] \\ q[500nm] &= 6.63.10^{-16} \cdot f(5000m) \\ q[500nm] &= 6.63.10^{-16} \cdot f(5$$

Flux Φ - photon

$$q[\lambda] = hf = \frac{hc}{\lambda}$$

Flux Φ = Power P

- 100 W pære
- $f = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{500 \cdot 10^{-9}} \frac{m/s}{m} = 6 \cdot 10^{14} s^{-1}$

$$q[500] = hf = \frac{hc}{\lambda} = 6.63 \cdot 10^{-34} [Js] 6 \cdot 10^{14} [s^{-1}] \approx 4 \cdot 10^{-19} [J]$$

$$N_{photon}[100W] = \frac{100[W]}{4 \cdot 10^{-19}[J/photon]} \approx 10^{20}[photon/s]$$

Exercise - Light Bulb

- Krypton flashlight bulb ~ sphere
- 2.4 V, 0.7 A,
- d=1cm

Radiant Flux/Power Φ

$$\Phi = \frac{dQ}{dt} \qquad [W] = [J/s]$$

$$Q = \int dQ = \int \Phi dt$$

 $\Phi = P = Volt \ x \ Ampere \ [W]$

Radiant Flux/Power Φ

$$\Phi = P = Volt \ x \ Ampere$$

Radient Intensity - I

$$I = \frac{d\Phi}{d\omega} \qquad \left[\frac{W}{sr} \right]$$

$$\int_{\Omega} d\Phi = \int_{\Omega} I \cdot d\omega = I \int_{\Omega} d\omega \quad Isotropic$$

$$\Phi = I \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta \ d\theta = -I \cdot 2\pi \cdot \cos\theta \Big|_0^{\pi} = I \cdot 4\pi$$
 See next slides

$$I = \frac{\Phi}{4\pi}$$
 Sphere, Isotropic

Angles – Solid Angles

 $ds = r d\theta$ section on circle

 $dA = (rd\theta)(r\sin\theta \, d\phi) = r^2\sin\theta \, d\theta \, d\phi$ Area Element on sphere

$$d\theta = \frac{ds}{r}$$
 Circle: $\frac{2\pi r}{r} = 2\pi$ [radians]

$$d\omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\phi$$
 Sphere: $\frac{4\pi r^2}{r^2} = 4\pi \, [\text{sr}]$

Solid Angle - Sphere

$$\int_{\Omega} d\omega = \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta \, d\theta \, d\phi$$

$$= -\int_{0}^{2\pi} d\phi \int_{0}^{\pi} \, d(\cos\theta)$$

$$= -2\pi \cdot \cos\theta \Big|_{0}^{\pi}$$

$$= 4\pi \quad [sr]$$

Radient Intensity - I

$$I = \frac{d\Phi}{d\omega}$$

$$\int_{\Omega} d\Phi = \int_{\Omega} I \cdot d\omega = I \int_{\Omega} d\omega$$

$$\Phi = I \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta \ d\theta = -I \cdot 2\pi \cdot \cos\theta \Big|_0^{\pi} = I \cdot 4\pi$$

$$I = \frac{\Phi}{4\pi}$$
 Isotropic

Irradiance E

$$E = \frac{d\Phi}{dA} \qquad \left[\frac{W}{m^2}\right]$$

$$\Phi = \int_{\Omega} d\Phi = \int_{\Omega} E \cdot dA = E \int_{\Omega} dA = E \cdot 4\pi r^{2}$$

$$E = \frac{\Phi}{4\pi r^2}$$
 Sphere, Isotropic

Irradiance at point on sphere - Inverse square law

$$E = \frac{d\Phi}{dA}$$

$$\Phi = \int_{\Omega} d\Phi = \int_{\Omega} E \cdot dA = E \int_{\Omega} dA = E \cdot 4\pi\sigma^{-2}$$

$$E = \frac{\Phi}{A} = \frac{\Phi}{4\pi\sigma^{-1}} \text{ Sphere, Isotropic}$$

$$I = \frac{\Phi}{A} = \frac{\Phi}{4\pi} \text{ Sphere, Isotropic}$$

$$E = \frac{\Phi}{A} = \frac{\Phi}{4\pi r^2} = \frac{I}{r^2} Sphere, Isotropic$$

Radient Exitance - M

$$M = \frac{d\Phi}{dA} \quad \left[\frac{W}{m^2} \right]$$

$$\Phi = \int_{\Omega} d\Phi = \int_{\Omega} M \cdot dA = M \int_{\Omega} dA = M \cdot 4\pi r^{2}$$

$$M = \frac{\Phi}{4\pi r^2}$$
 Sphere, Isotropic

Radiance - L

$$L = \frac{d\Phi}{dA^{\perp}d\omega} = \frac{d\Phi}{dA\cos\theta\,d\omega},$$

$$\Phi = \int_{\Omega} d\Phi = \int_{A} \int_{\Omega} L d\omega \cos\theta \, dA$$

$$\Phi = L \int_{A} dA \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \ d\theta$$

$$= -LA 2\pi \frac{\cos^2 \theta}{2} \bigg|_0^{\frac{\pi}{2}} = LA \pi \quad \text{diffuse emitter}$$

In figure $d\omega = \Delta \sigma$ $dA^{\perp} = \Delta A$

Radiance - Diffuse emitter

$$L = \frac{d\Phi}{dA^{\perp}d\omega} = \frac{d\Phi}{dA\cos\theta\,d\omega},$$

$$\Phi = \int_{\Omega} d\Phi = \int_{A} \int_{\Omega} L d\omega \cos\theta \, dA$$

$$\Phi = L \int_{4} dA \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta$$

$$= -LA \ 2\pi \frac{\cos^2 \theta}{2} \Big|_{0}^{\frac{\pi}{2}} = LA \ \pi \quad \text{diffuse emitter}$$

Radiance - L: Sphere

$$L = \frac{d\Phi}{dA^{\perp}d\omega}$$

$$\Phi = \int_{\Omega} d\Phi = \int_{\Omega} dA^{\perp} \int_{\Omega} L \, d\omega$$

$$\Phi = L \int_{\Omega} dA \int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta \ d\theta = L \ 4\pi r^2 \ 4\pi$$

$$= \frac{1.68}{4\pi r^2 4\pi} \left[\frac{W}{m^2 s r} \right] = \frac{1.68}{4\pi \left(0.5 \cdot 10^{-2}\right)^2 4\pi} \left[\frac{W}{m^2 s r} \right] = 430 \left[\frac{W}{m^2 s r} \right]$$

Exercise - Light Bulb

- Krypton flashlight bulb ~ sphere
- 2.4 V, 0.7 A,
- d=1cm

Photometry

Niels Jørgen Christensen IMM, DTU

Physics	Radiometry			Photometry	
Energy Energi	Radiant Energy Strålingsenergi	Q	Joules J kgm²/s²	Luminous Energy Lysmængde	Talbot T Lumen.s
Flux (Power) Effekt	Radiant Flux(Power) Strålingsstrøm	Φ=dQ/dt	Watt W W = J/s	Luminous Flux Lysstrøm	Lumen L L = T/s
Flux Density Modtaget effekttæthed	Irradiance Irradians	E=dΦ/dA	W/m²	Illuminance Illuminans	Lux L/m²
Flux Density Udsendt effekttæthed	Radiant Exitance Udstråling	M=dΦ/dA	W/m²	Luminous Exitance Lysudstråling	Lux L/m²
	Radiosity Udstråling – konstant	В	W/m²	Luminosity	Lux L/m²
Ang.Flux dens Effekttæthed/ rumvinkel	Radiance Radians	L=dΦ/(dA [⊥] dω)	W/(m ² sr)	Luminance Luminans	Nit L/m ² sr cd/m ²
Intensity Effekt pr. rumvinkel	Radiant Intensity Strålingsstyrke	I=dΦ/dω	W/sr	Lumious Intensity Lysstyrke	Candela cd L/sr

Example - Illuminance

- · Light bulb
- 100 W
- 2 m from surface
- Surface perpendicular
- λ=650 nm
- $K(\lambda)$ =685 $V(\lambda)$
- $K(\lambda)$ Luminous efficacy $V(\lambda)$ Luminous efficiency
- V(650) = 0.1

Irradiance E - Illuminance E_v

$$E = \frac{d\Phi}{dA}$$

$$\Phi = \int_{\Omega} d\Phi = \int_{\Omega} E \cdot dA = E \int_{\Omega} dA = E \cdot 4\pi r^{2}$$

$$E = \frac{\Phi}{4\pi r^{2}}$$
 Sphere, Isotropic

$$E_{\nu} = K(\lambda) E = 685 V(\lambda) E$$

Photometer - simple

- · Light sources
- I_s = 40 lm/sr = 40 cd
- I_x = ?
- r_s = 35 cr
- r = 65 cm

Lumineous Intensity - I_v

$$\begin{split} E &= \frac{d\Phi}{dA} \\ \Phi &= \int_{\Omega} \!\! d\Phi = \int_{\Omega} \!\! E \cdot dA = E \! \int_{\Omega} \!\! dA = E \cdot 4\pi r^{-2} \end{split}$$

$$E = \frac{\Phi}{4\pi r^2} = \frac{4\pi I}{4\pi r^2} = \frac{I}{r^2}$$

$$\frac{I_s / K(\lambda)}{r_s^2} = \frac{I_x / K(\lambda)}{r_x^2} \implies \frac{I_s}{r_s^2} = \frac{I_x}{r_x^2}$$

Example

- · Diffuse emitter
- Radiance equal in all directions from all surface points
- L=6000 W/(m² sr)
- Power?
- · Radiosity?

Radiance - Diffuse emitter

$$L = \frac{d\Phi}{dA^{\perp}d\omega} = \frac{d\Phi}{dA\cos\theta\,d\omega},$$

$$\Phi = \int_{\Omega} d\Phi = \int_{A} \int_{\Omega} L d\omega \cos\theta \, dA$$

$$\Phi = L \int_{A} dA \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \ d\theta$$

$$= -LA \, 2\pi \frac{\cos^2 \theta}{2} \Big|_{0}^{\frac{\pi}{2}} = LA \, \pi \quad \text{diffuse emitter}$$

Radiosity B - Diffuse emitter

$$L = \frac{d\Phi}{dA^{\perp}d\omega} \quad , \text{Here diffuse emitter}$$

$$\Phi = \int_{\Omega} d\Phi = \int_{A} \int_{\Omega} L d\omega \cos\theta \, dA$$

$$\Phi = L \int_{A} dA \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta \ d\theta$$

$$= -LA \ 2\pi \frac{\cos^2 \theta}{2} \bigg|_0^{\frac{\pi}{2}} = LA \ \pi = BA$$

Non-diffuse emitter - Example

- L =6000 $\cos \theta$ [W/m² sr]
- Radiosity?
- Power?

Radiosity

$$L = \frac{d\Phi}{dA^{\perp}d\omega} = \frac{d\Phi}{dA\cos\theta\;d\omega} \;\;, B = \frac{d\Phi}{dA}$$

$$B = \int_{\Omega} L \cos\theta \, d\omega$$

