### Database-Based Hand Pose Estimation

CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington

# Static Gestures (Hand Poses)

- Given a hand model, and a single image of a hand, estimate:
  - 3D hand shape (joint angles).
  - 3D hand orientation.



Input image



Articulated hand model

## Static Gestures

- Given a hand model, and a single image of a hand, estimate:
  - 3D hand shape (joint angles).
  - 3D hand orientation.



Input image



Articulated hand model

# Goal: Hand Tracking Initialization



- Given the 3D hand pose in the previous frame, estimate it in the current frame.
  - Problem: no good way to automatically initialize a tracker.

Rehg et al. (1995), Heap et al. (1996), Shimada et al. (2001), Wu et al. (2001), Stenger et al. (2001), Lu et al. (2003), ...

## Assumptions in Our Approach









- A few tens of distinct hand shapes.
  - All 3D orientations should be allowed.
  - Motivation: American Sign Language.

## Assumptions in Our Approach







- A few tens of distinct hand shapes.
  - All 3D orientations should be allowed.
  - Motivation: American Sign Language.
- Input: single image, bounding box of hand.

## Assumptions in Our Approach

input image

skin detection





segmented hand

- We do not assume precise segmentation!
  - No clean contour extracted.

## Approach: Database Search

- Over 100,000 computer-generated images.
  - Known hand pose.





## Why?

- We avoid direct estimation of 3D info.
  - With a database, we only match 2D to 2D.
- We can find all plausible estimates.
  - Hand pose is often ambiguous.





## **Building the Database**

26 hand shapes



## **Building the Database**

4128 images are generated for each hand shape.

Total: 107,328 images.



## Features: Edge Pixels



## Chamfer Distance



## Directed Chamfer Distance

- Input: two sets of points.
  - red, green.
- c(red, green):
  - Average distance from each red point to nearest green point.



## Directed Chamfer Distance

- Input: two sets of points.
  - red, green.
- c(red, green):
  - Average distance from each red point to nearest green point.
- c(green, red):
  - Average distance from each red point to nearest green point.



## Chamfer Distance

- Input: two sets of points.
  - red, green.
- c(red, green):
  - Average distance from each red point to nearest green point.



- c(green, red):
  - Average distance from each red point to nearest green point.

### Chamfer distance:

C(red, green) = c(red, green) + c(green, red)

- A database image is a correct match for the input if:
  - the hand shapes are the same,
  - 3D hand orientations differ by at most 30 degrees.



- An input image has 25-35 correct matches among the 107,328 database images.
  - Ground truth for input images is estimated by humans.



 Retrieval accuracy measure: what is the rank of the highest ranking correct match?





## Results on 703 Real Hand Images

| Rank of highest       | Percentage of |
|-----------------------|---------------|
| ranking correct match | test images   |
| 1                     | 15%           |
| 1-10                  | 40%           |
| 1-100                 | 73%           |

## Results on 703 Real Hand Images

| Rank of highest ranking correct match | Percentage of test images |
|---------------------------------------|---------------------------|
| 1                                     | 15%                       |
| 1-10                                  | 40%                       |
| 1-100                                 | 73%                       |

- Results are better on "nicer" images:
  - Dark background.
  - Frontal view.
  - For half the images, top match was correct.

initial image



segmented hand



edge image



correct match





initial image



segmented hand



edge image



correct match





initial image



segmented hand



edge image



incorrect match





initial image



segmented hand



edge image



correct match





initial image



segmented hand



edge image



correct match





initial image



segmented hand



edge image



incorrect match





rank: 1

"hard" case



segmented hand



edge image



"easy" case



segmented hand



edge image



## Research Directions

- More accurate similarity measures.
- Better tolerance to segmentation errors.
  - Clutter.
  - Incorrect scale and translation.
- Verifying top matches.
- Registration.











## Efficiency of the Chamfer Distance



- Computing chamfer distances is slow.
  - For images with d edge pixels, O(d log d) time.
  - Comparing input to entire database takes over 4 minutes.
    - Must measure 107,328 distances.

### database



Goal:

find the k nearest
 neighbors of query q.









### database



### Goal:

- find the k nearest
  neighbors of query q.
- Brute force time is linear to:
  - n (size of database).
  - time it takes to measure a single distance.

### database



### Goal:

- find the k nearest
  neighbors of query q.
- Brute force time is linear to:
  - n (size of database).
  - time it takes to measure a single distance.