### Newton's Ring Experiment

# SGTB Khalsa College, University of Delhi Preetpal Singh(2020PHY1140)

Paper Title: Waves and Optics Lab

Submitted on: June 8, 2021

Due On: June 10, 2021

File Name: 2020PHY1140\_Newton\_Ring

B.Sc(H) Physics Sem II

Submitted to: Dr. Nimmi Singh

#### 1 AIM

To determine the radius of curvature of the lower surface of a planoconvex lens by using Newton's rings apparatus.

#### 2 APPARATUS

A plano-convex lens of large radius of curvature, optical arrangement for Newton's rings, plane glass plate, sodium lamp, spherometer and a travelling microscope.

#### 3 THEORY

- Light from Na lamp(which is monochromatic) is made to fall on convex lens through which we get the parallel beam of light.
- This is reflected by glass plate kept at 45 and made to fall normally on the plano convex lens.
- There is a thin film of air between its convex surface and glass plate.
- Both beams after reflection observed through travelling microscope.

#### 4 PROCEDURE

- Adjust the lens to obtain ring pattern.
- Central ring will appear to be dark as we are observing reflecting system.
- Note the least count of travelling microscope used.
- Slide the microscope knob from left to right and right to left to ensure that the readings are within the scale.
- Set the cross wire at  $k^{th}$  ring then move towards  $20^{th}$  and note down the reading.



Figure 1: Newton's Ring Experiment

• Then start moving back towards  $k^{th}$  ring and then keep on sliding microscope and take readings till you reach  $20^{th}$  ring on the left side.

### 5 FORMULA

Radius of curvature,  $R = \frac{slope(m)}{4\lambda}$ 

where, l= wavelength of light (Sodium lamp,  $l{=}5893~\rm{\AA}$  ) m = Slope of line drawn between  $~\rm{D}_n^2$  and n

$$= \frac{D_{n+p}^2 - D_n^2}{p}$$

Here,  $D_{n+p}$  is the diameter of  $(n+p)^{th}$  ring and  $D_n$  that of  $n^{th}$  ring.

# 6 OBSERVATIONS

Table 1: Table for determination of diameter(D) of rings

|    | Position of d1 |     |          |           |     |             |     | Position of d2 |        |       | D(cm) | $D^2(\text{cm}^2)$ |
|----|----------------|-----|----------|-----------|-----|-------------|-----|----------------|--------|-------|-------|--------------------|
| n1 | MSR            | VSD | VSR      | d1        | n2  | MSR         | VSD | VSR            | d2     |       |       |                    |
|    | (in            |     | (VSR*LC) | (MSR+VSR) |     | (in         |     | (MSR*VSR)      | (MSR+V | SR)   |       |                    |
|    | $_{ m mm})$    |     |          |           |     | $_{ m mm})$ |     |                |        |       |       |                    |
| 20 | 40             | 47  | 0.47     | 40.47     | -20 | 48          | 19  | 0.19           | 48.19  | 7.719 | 0.771 | 0.595              |
| 18 | 40             | 81  | 0.81     | 40.81     | -18 | 48          | 2   | 0.02           | 48.02  | 7.21  | 0.721 | 0.519              |
| 16 | 40             | 98  | 0.98     | 40.98     | -16 | 47          | 87  | 0.87           | 47.87  | 6.89  | 0.689 | 0.474              |
| 14 | 41             | 19  | 0.19     | 41.19     | -14 | 47          | 69  | 0.690          | 47.69  | 6.5   | 0.65  | 0.422              |
| 12 | 41             | 35  | 0.350    | 41.35     | -12 | 47          | 52  | 0.52           | 47.52  | 6.17  | 0.617 | 0.38               |
| 10 | 41             | 40  | 0.4      | 41.4      | -10 | 47          | 33  | 0.33           | 47.33  | 5.93  | 0.593 | 0.351              |
| 8  | 41             | 69  | 0.690    | 41.69     | -8  | 47          | 16  | 0.16           | 47.16  | 5.469 | 0.546 | 0.299              |
| 6  | 41             | 76  | 0.76     | 41.76     | -6  | 46          | 93  | 0.93           | 46.93  | 5.17  | 0.517 | 0.267              |
| 4  | 42             | 90  | 0.9      | 42.9      | -4  | 45          | 67  | 0.67           | 45.67  | 2.77  | 0.277 | 0.076              |
| 2  | 42             | 21  | 0.21     | 42.21     | -2  | 45          | 33  | 0.33           | 45.33  | 3.11  | 0.311 | 0.0973             |

## 6.1 Data Plotting

Table 2: Data For Graph Plotting

|    |       |                     | - 1       |               |
|----|-------|---------------------|-----------|---------------|
| x  | У     | $_{\mathrm{slope}}$ | intercept | Ycal          |
| 20 | 0.595 | 0.027321            | 0.047466  | 0.593890909   |
| 18 | 0.519 |                     |           | 0.53924848476 |
| 16 | 0.474 |                     |           | 0.48460606052 |
| 14 | 0.422 |                     |           | 0.42996363628 |
| 12 | 0.38  |                     |           | 0.37532121204 |
| 10 | 0.351 |                     |           | 0.3206787878  |
| 8  | 0.299 |                     |           | 0.26603636356 |
| 6  | 0.267 |                     |           | 0.21139393932 |
| 4  | 0.076 |                     |           | 0.15675151508 |
| 2  | 0.097 |                     |           | 0.10210909084 |



#### 7 CALCULATIONS

Least count for vernier of microscope = 0.01m = 0.001cm

From Excel sheet, slope: =  $\tan\theta = 0.027321~{\rm cm}^2$  and  $\lambda = \frac{\tan\theta}{4R} \Rightarrow$ 

$$R = \frac{\tan \theta}{4\lambda} = \frac{0.027321 \text{cm}^2}{4 \times 5893 \times 10^{-8} \text{ cm}} = 115.904 \text{ cm}$$

Log Error: R=  $\frac{\tan \theta}{4\lambda} \Rightarrow \log R = \log \tan \theta - \log 4 - \log(\lambda)$ 

$$\Rightarrow \frac{\Delta R}{R} = \frac{\Delta \tan \theta}{\tan \theta}$$

but

$$\frac{\Delta \tan \theta}{\tan \theta} = \frac{\Delta PQ}{PQ} + \frac{\Delta QR}{QR}$$

$$\Delta PQ = 2 \times (\text{least count of y axis}) = 2 \times 0.0025 = 0.0050 \text{ cm}^2$$

$$\Delta QR = 2 \times (\text{ least count of x-axis}) = 2 \times 0.1 = 0.2$$

$$PQ = (0.400 - 0.277) = 0.123$$
cm<sup>2</sup>

$$QR = (13 - 8.28) = 4.72$$

$$\therefore \frac{\Delta \tan \theta}{\tan 0} = \frac{0.0050}{0.123} + \frac{0.1}{4.72} = 0.0406 + 0.0211 = 0.0617$$

and 
$$\frac{\Delta R}{R} = \frac{\Delta \tan \theta}{\tan \theta} = 0.0617 \text{cm}$$

### 8 RESULT

Radius of curvature of plano convex lens is (115.904  $\pm$  0.061) cm