Espressioni regolari

Arturo Carpi

Dipartimento di Matematica e Informatica Università di Perugia

Corso di Linguaggi Formali e Compilatori - a.a. 2021/22

Operazioni sui linguaggi

- unione, intersezione, complemento,
- **2** concatenazione: $L_1L_2=\{uv\mid u\in L_1,\ v\in L_2\}$,
- **⑤** potenza: $L^n = \underbrace{L \ L \cdots \ L}_{n, \ volte}$,
- chiusura di Kleene:

$$L^* = \bigcup_{n \geq 0} L^n = \{u_1 u_2 \cdots u_n \mid n \geq 0, u_1, \dots, u_n \in L\}$$

Osservazione

Unione, concatenazione e chiusura di Kleene sono dette operazioni regolari.

Se
$$L_1=\{ab,cb\},\; L_2=\{aa,c\},$$
 allora
$$L_1L_2=\{abaa,\,abc,\,cbaa,\,cbc\}\,.$$

Se
$$L=\{a,ab\}$$
, allora

$$L^0=\{arepsilon\},\quad L^1=L,\quad L^2=\{aa,\,aab,\,aba,\,abab\},$$
 $L^3=\{aaa,\,aaab,\,aaba,\,aabab,\,abaab,\,abaab,\,ababa,\,ababab\}.$

$$egin{aligned} L^* &= \{arepsilon\} \cup L \cup L^2 \cup \dots \cup L^n \cup \dots \ &= \{arepsilon, a, ab, aa, aab, aba, abab, aaaaaa, aaab, aaba, \dots\} \ &= \{arepsilon\} \cup \{a^{n_1}ba^{n_2}b \cdots a^{n_{k-1}}ba^{n_k} \mid k, n_1, \dots, n_{k-1} \geq 1, \ n_k \geq 0\} \end{aligned}$$

(parole che iniziano con a e non contengono due b consecutive)

Espressioni regolari

Definizione

Sia $\widehat{\Sigma}$ l'alfabeto ottenuto aggiungendo a Σ le lettere \emptyset , +, *, (,). Si dicono espressioni regolari sull'alfabeto Σ le parole sull'alfabeto $\widehat{\Sigma}$ che si ottengono applicando un numero finito di volte le regole seguenti:

- (i) Ogni lettera $a \in \Sigma$ è un'espressione regolare, \emptyset è un'espressione regolare,
- (ii) Se E e F sono espressioni regolari, allora $(E+F),\ (EF)$ e E^* sono espressioni regolari.

A ogni espressione regolare è associato un linguaggio, detto linguaggio denotato dall'espressione regolare e definito dalle regole seguenti:

- (i) per ogni $a \in \Sigma$, l'espressione regolare a denota il linguaggio $\{a\}$; l'espressione regolare \emptyset denota il linguaggio vuoto.
- (ii) Detti L_E e L_F i linguaggi denotati dalle espressioni regolari E ed F, i linguaggi denotati dalle espressioni regolari $(E+F),\ (EF),\ E^*$ sono, rispettivamente, $L_E\cup L_F,\ L_EL_F,\ L_E^*$.

Linguaggi regolari

Definizione

I linguaggi denotati da espressioni regolari si dicono linguaggi regolari.

Osservazione

La classe dei linguaggi regolari è la più piccola famiglia di linguaggi che

- contiene i linguaggi finiti,
- è chiusa per le operazioni regolari.

Osservazione

Possiamo omettere qualche parentesi, rispettando la priorità:

- chiusura di Kleene,
- concatenazione,
- 追 somma.

$$bab + ab^*$$
 equivale a $(((ba)b) + (ab^*))$.

- a+b
- $(a+b)^*$
- **3** Ø*
- \triangle $((a+b)(a+b)(a+b))^*$
- **5** $(a + ab)^*$
- $(a+b)^*abb$
- **1** $(a+b+c)^* abac(a+b+c)^*$

Il teorema di Kleene

Teorema (Kleene) Un linguaggio è regolare se e soltanto se è riconosciuto da un automa a stati finiti.

Esite una procedura effettiva che

- Data un'espressione regolare, produce un automa a stati finiti che accetta il linguaggio denotato da tale espressione (sintesi),
- Dato un automa a stati finiti, produce un'espressione regolare che denota il linguaggio accettato da tale automa (analisi).

Dall'espressione regolare all'automa

Utilizzeremo esclusivamente automi non deterministici con ε -transizioni con un unico stato finale (non restrittivo)

Base

$$E=arepsilon~(=\emptyset^*)$$

Unione

Unione

Siano $A_1 = \langle Q_1, \Sigma, \delta_1, i_1, \{f_1\} \rangle$ e $A_2 = \langle Q_2, \Sigma, \delta_2, i_2, \{f_2\} \rangle$ gli automi che riconoscono i linguaggi denotati dalle espressioni regolari E e F.

Supponiamo $Q_1 \cap Q_2 = \emptyset$.

Costruiamo $\mathcal{A} = \langle Q, \Sigma, \delta, i, \{f\} \rangle$ come segue:

- $Q = Q_1 \cup Q_2 \cup \{i, f\}$, ove i, f sono due nuovi stati,
- i e f sono, rispettivamente lo stato iniziale e l'unico stato finale,
- **9** gli archi del grafo di \mathcal{A} sono gli archi dei grafi di \mathcal{A}_1 e \mathcal{A}_2 e, inoltre, $(i, \varepsilon, i_1), (i, \varepsilon, i_2), (f_1, \varepsilon, f), (f_2, \varepsilon, f).$

Allora ${\mathcal A}$ accetta il linguaggio denotato da (E+F).

Concatenazione

EF

Concatenazione

Siano $A_1 = \langle Q_1, \Sigma, \delta_1, i_1, \{f_1\} \rangle$ e $A_2 = \langle Q_2, \Sigma, \delta_2, i_2, \{f_2\} \rangle$ gli automi che riconoscono i linguaggi denotati dalle espressioni regolari $E \in F$.

Supponiamo $Q_1 \cap Q_2 = \emptyset$.

Costruiamo $\mathcal{A} = \langle Q, \Sigma, \delta, i, \{f\} \rangle$ come segue:

- **J** lo stato iniziale è quello di A_1 e lo stato finale è quello di A_2 ,
- ullet gli archi del grafo di ${\cal A}$ sono gli archi dei grafi di ${\cal A}_1$ e ${\cal A}_2$ con l'aggiunta dell'arco (f_1, ε, i_2) .

Allora ${\mathcal A}$ accetta il linguaggio denotato da (EF).

Chiusura di Kleene

 E^*

Chiusura di Kleene

Sia $A_1 = \langle Q_1, \Sigma, \delta_1, i_1, \{f_1\} \rangle$ l'automa che riconosce il linguaggio denotato dall'espressione regolare E. Costruiamo $A = \langle Q, \Sigma, \delta, i, \{f\} \rangle$ come segue:

- $Q = Q_1 \cup \{i, f\}$, ove i, f sono due nuovi stati,
- $oldsymbol{1}$ i e f sono, rispettivamente lo stato iniziale e l'unico stato finale,
- **9** gli archi del grafo di \mathcal{A} sono gli archi del grafo di \mathcal{A}_1 e, inoltre, $(f_1, \varepsilon, i_1), (i, \varepsilon, i_1), (f_1, \varepsilon, f), (i, \varepsilon, f).$

Allora \mathcal{A} accetta il linguaggio denotato da E^* .

L'algoritmo di sintesi

Proposizione Data un'espressione regolare G, si può effettivamente costruire un automa a stati finiti che riconosce il linguaggio denotato da G.

- $oldsymbol{1}$ se G è un'espressione regolare di base (lettera o insieme vuoto), allora restituisco l'automa corrispondente;
- se G=(E+F), allora calcolo gli automi \mathcal{A}_1 e \mathcal{A}_2 corrispondenti a E e F; costruisco l'automa dell'espressione (E+F);
- se G=(EF), allora calcolo gli automi \mathcal{A}_1 e \mathcal{A}_2 corrispondenti a E e F; costruisco l'automa dell'espressione (EF);
- $oldsymbol{G}$ se $G=E^*$, allora calcolo l'automa \mathcal{A}_1 corrispondente a E; costruisco l'automa dell'espressione E^* ;

$$G = (a + b)^* abb = ((((a + b)^* a)b)b)$$

