Capítulo 10

PERPENDICULARISMO E ORTOGONALIDADE

Nos capítulos anteriores, somente em alguns casos foi necessário supor que o sistema de coordenadas fosse ortogonal. Neste e nos próximos capítulos esta hipótese é essencial. A menos que explicitemos o contrário, considere **fixado um sistema ortogonal** $(O, \vec{i}, \vec{j}, \vec{k})$.

10.1 Reta e Reta

Para decidir se duas retas são ortogonais, consideramos vetores diretores dessas retas e verificamos se eles são ortogonais. Lembre que: retas **ortogonais** podem ser concorrentes ou reversas, enquanto que retas **perpendiculares** são, necessariamente, concorrentes.

10.2 Problemas Resolvidos

1. Verifique se as retas r: $X = (1, 1, 1) + \lambda(2, 1, -3)$ e s: $X = (0, 1, 0) + \alpha(-1, 2, 0)$ são ortogonais. Em caso afirmativo, verifique se são perpendiculares.

Solução: Temos que: $\vec{\mathbf{r}} \bullet \vec{\mathbf{s}} = (2, 1, -3) \bullet (-1, 2, 0) = 2.(-1) + 1.2 + (-3).0 = -2 + 2 = 0 e,$ portanto, \mathbf{r} e s são ortogonais. Para verificar se são perpendiculares, basta verificar se são concorrentes. Há duas maneiras de se fazer isso: a primeira é resolvendo-se o sistema formado pelas equações de \mathbf{r} e s. A outra maneira é verificando se \mathbf{r} e s são coplanares, ou seja, considerando os pontos $\mathbf{A} = (1, 1, 1) \in \mathbf{r}$, $\mathbf{B} = (0, 1, 0) \in \mathbf{s}$, estudamos a dependência linear dos vetores $\vec{\mathbf{r}}$, $\vec{\mathbf{s}}$ e $\overrightarrow{\mathbf{BA}} = (1, 0, 1)$. Vejamos:

$$\det \begin{pmatrix} 2 & 1 & -3 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} = 11 \neq 0$$

o que mostra que \vec{r} , \vec{s} e \overrightarrow{BA} são \vec{LI} e, portanto, \vec{r} e s são reversas; logo não são perpendiculares.

2. Verifique se as retas \mathbf{r} e s são ortogonais. Em caso afirmativo, verifique se são perpendiculares, sendo:

$$r: \begin{cases} x-y+2z=1\\ x+y-2z=2 \end{cases} \qquad s: \begin{cases} 2x-y+z=1\\ x-y=0 \end{cases}$$

Solução: Os vetores diretores de \mathbf{r} e s são, respectivamente, $\vec{\mathbf{r}} = (0, 4, 2)$ e $\vec{\mathbf{s}} = (1, 1, -1)$ (faça esses cálculos!!!). Como $\vec{\mathbf{r}} \bullet \vec{\mathbf{s}} = 0.1 + 4.1 + 2.(-1) = 4 - 2 = 2 \neq 0$, as retas $\vec{\mathbf{r}}$ e $\vec{\mathbf{s}}$ não são ortogonais.

3. Ache equações paramétricas da reta **r** que passa por P=(-1, 3, 1) e é perpendicular à reta s: $\frac{x-1}{2}=\frac{y-1}{3}=z$.

Solução: Procuremos o ponto $Q = r \cap s = pé$ da perpendicular. O ponto $A = (1, 1, 0) \in s$ e $\vec{s} = (2, 3, 1)$ é um vetor diretor de s e, portanto, uma equação vetorial de s é dada por s: $X = (1, 1, 0) + \lambda(2, 3, 1)$. Dessa forma, como Q pertence a s, segue que existe $\lambda \in \mathbb{R}$ tal que

$$Q = (1 + 2\lambda, 1 + 3\lambda, \lambda)$$

e portanto um vetor diretor de r é:

$$\vec{\mathbf{r}} = \overrightarrow{\overline{\mathbf{PQ}}} = (2 + 2\lambda, -2 + 3\lambda, \lambda - 1)$$

Como \mathbf{r} e s são perpendiculares, devemos ter $\vec{r} \perp \vec{s}$; ou seja:

 $0 = \vec{r} \cdot \vec{s} = (2 + 2\lambda, -2 + 3\lambda, \lambda - 1) \cdot (2, 3, 1) = (2 + 2\lambda).2 + (-2 + 3\lambda).3 + (\lambda - 1).1 =$ = $4 + 4\lambda - 6 + 9\lambda + \lambda - 1 = 14\lambda - 3 \implies \lambda = \frac{3}{14}$ e, portanto, $\overrightarrow{PQ} = (\frac{34}{14}, -\frac{19}{14}, -\frac{11}{14})$. Então um sistema de equações paramétricas de \vec{r} é dado por:

$$r: \begin{cases} x = -1 + 34\lambda \\ y = 3 - 19\lambda \\ z = 1 - 11\lambda \end{cases}$$

10.3 Problemas Propostos

1. Verifique se as retas r e s são ortogonais; em caso afirmativo, se são também perpendiculares.

(a) r:
$$X = (1, 2, 3) + \lambda(1, 2, 1)$$

s:
$$X = (2, 4, 4) + \lambda(-1, 1, -1)$$

(b) r:
$$X = (0, 1, 0) + \lambda(3, 1, 4)$$

s:
$$X = (-1, 1, 0) + \lambda(1, 0, 1)$$

(c) r:
$$\frac{x-1}{2} = \frac{y-3}{5} = \frac{z}{7}$$

s:
$$X = (1, 3, 0) + \lambda(0, -7, 5)$$

(d) r:
$$x + 3 = y = \frac{z}{3}$$

s:
$$\frac{x-4}{2} = \frac{4-y}{-1} = -z$$

(e)
$$r: \begin{cases} x = 2 + 3\lambda \\ y = -5 - 2\lambda \\ z = 1 - \lambda \end{cases}$$

s:
$$\frac{x-4}{2} = \frac{y-2}{3} = \frac{z+4}{-5}$$

2. Ache equações na forma simétrica (quando existir) da reta $\, {f t} \,$ perpendicular comum às retas reversas

(a)
$$r: \begin{cases} x = 2 + \lambda \\ y = \lambda \\ z = -1 + \lambda \end{cases}$$
 e

$$e \quad s: \begin{cases} x + y = 2 \\ z = 0 \end{cases}$$

(b)
$$r: x = y - 1 = z + 3$$

e s:
$$2x - y = y + z = 2x - z - 1$$

10.4 Reta e Plano

Para decidir se uma reta ${\bf r}$ e um plano Π são perpendiculares, o procedimento é o seguinte: considere os vetores:

r: paralelo a r

 \vec{u} e \vec{v} : LI e paralelos ao plano Π

Então:

$$\mathbf{r} \perp \Pi \iff \vec{u} \wedge \vec{v} //\vec{r}$$

Se for conhecida uma equação geral do plano Π : $ax + by + cz + d = \emptyset$ então, como (a, b, c) é um vetor normal a Π , basta verificarmos se este vetor é paralelo a \vec{r} .

Problemas Resolvidos 10.5

1. Verifique se ${\bf r}$ e Π são perpendiculares, sendo r: ${\bf X}=(0,\,1,\,0)+\lambda(1,\,1,\,3)$ $(\lambda \in \mathbb{R})$ e $\Pi: X = (3, 4, 5) + \lambda(6, 7, 8) + \mu(9, 10, 11)$ $(\lambda, \mu \in \mathbb{R}).$

Solução: Um vetor normal ao plano Π é $\vec{n}=(6,7,8) \land (9,10,11)=(-3,6,-3)$. Como um vetor diretor da reta \mathbf{r} é \mathbf{r} = (1, 1, 3), que não é paralelo a \mathbf{n} , segue que \mathbf{r} e \mathbf{n} não são perpendiculares.

2. Verifique se ${\bf r}$ e Π são perpendiculares, sendo Π : ${\bf x}+2{\bf z}=14$

Solução: Um vetor paralelo a $\mathbf{r} \in \vec{\mathbf{r}} = (2, -1, -1) \land (2, 1, -1) = (2, 0, 4)$. Por outro lado, um vetor normal a $\Pi \in \vec{n} = (1, 0, 2)$. Como $\vec{r} = 2\vec{n}$, vemos que $\vec{r} \perp \!\!\! \perp \!\!\! \Pi$

Problemas Propostos 10.6

1. Verifique se r é perpendicular a II nos casos

(a) r:
$$X = (3, 1, 4) + \lambda(1, -1, 1)$$
 II: $X = (1, 1, 1) + \lambda(0, 1, 0) + \mu(1, 1, 1)$

(b) r:
$$X = (3, 1, 4) + \lambda(-1, 0, 1)$$
 II: $X = (1, 1, 1) + \lambda(0, 2, 0) + \mu(1, 1, 1)$

(c)
$$x = 1 + 3\lambda$$

 $y = 1 - 3\lambda$
 $z = \lambda$ $II: 6x - 6y + 2z - 1 = 0$

(d)
$$r: \begin{cases} x+y+z=1\\ 2x+y-z=0 \end{cases}$$
 $\Pi: x-y+z=1$
(e) $r: \begin{cases} x-y-z=0\\ x+y=0 \end{cases}$ $\Pi: 2x-2y+4z=0$

(e) r:
$$\sqrt{\frac{x-y-z=0}{x+y=0}}$$
 $\Pi: 2x-2y+4z=1$

2. Ache equações paramétricas da reta r que passa por P e é perpendicular ao plano II nos casos:

(a)
$$P = (1, -1, 0)$$
 $\Pi: X = (1, -1, 1) + \lambda(1, 0, 1) + \mu(1, 1, 1)$

(b)
$$P = (1, 3, 7)$$
 $\Pi: 2x - y + z = 6$

3. Ache uma equação geral do plano II que passa por P e é perpendicular à reta r nos seguintes casos:

(a)
$$P = (0, 1, -1)$$
 r: $X = (0, 0, 0) + \lambda(1, -1, 1)$

(b)
$$P = (1, 1, -1)$$
 r: $\begin{cases} x - 2y + z = 0 \\ 2x - 3y + z - 1 = 0 \end{cases}$

(c)
$$P = (0, 0, 0)$$
 r passa por $A = (1, -1, 1)$ e $B = (-1, 1, -1)$

4. Ache o ponto Q, simétrico do ponto P em relação à reta r nos seguintes casos:

(a)
$$P = (0, 2, 1)$$
 r: $X = (1, 0, 0) + \lambda(0, 1, -1)$

(b)
$$P = (1, 1, -1)$$
 $r: \frac{x+2}{3} = y = z$

(c)
$$P = (0, 0, -1)$$
 $r: \sqrt[3]{x - y - z} = 0$ $2x + 3y - 1 = 0$

5. Ache o ponto Q, simétrico do ponto P em relação ao plano II nos seguintes casos:

(a)
$$P = (1, 4, 2)$$
 $\Pi: x - y + z - 2 = 0$

(a)
$$P = (1, 4, 2)$$
 $\Pi: x - y + z - 2 = 0$
(b) $P = (1, 1, 1)$ $\Pi: 4y - 2z + 3 = 0$

6. Determine a projeção ortogonal

(a) do ponto
$$P = (4, 0, 1)$$
 sobre o plano Π : $3x - 4y + 2 = 0$

(b) da reta r:
$$x + 1 = y + 2 = 3z - 3$$
 sobre o plano Π : $x - y + 2z = 0$

7. Dados os planos Π_1 : x-y+z+1=0 e Π_2 : x+y-z-1=0, determine o plano Π que contém $\Pi_1 \cap \Pi_2$ e é ortogonal ao vetor (1, 1, -1).

8. Ache o vértice B do triângulo retângulo ABC sabendo que

$$\diamond$$
 A = (1, 1, 1) e a cota de C é maior do que a de A;

⋄ a hipotenusa AC mede
$$\sqrt{3}$$
 uc e é ortogonal ao plano x + y - z - 10 = 0;

$$\diamond$$
 o lado AB é ortogonal ao plano $2x - y - z = 0$.

Plano e Plano 10.7

Se \vec{n}_1 é normal ao plano Π_1 e

 \vec{n}_2 é normal ao plano Π_2 , então

 $\Pi_1 \perp \Pi_2$ se, e somente se, $\vec{n}_1 \cdot \vec{n}_2 = 0$.

10.8 Problema Resolvido

Verificar se são perpendiculares os planos

$$\Pi_1$$
: X = (0, 0, 1) + λ (1, 0, 1) + μ (-1, -1, 1)

$$\Pi_2$$
: $2x - 7y + 16z = 40$.

Solução: Um vetor normal a Π_1 é $\vec{n}_1=(1,0,1) \wedge (-1,-1,1)=(1,-2,-1)$. Um vetor normal a $\Pi_2 \notin \vec{n}_2 = (2, -7, 6)$. Como $\vec{n}_1 \bullet \vec{n}_2 = (1, -1, -1) \bullet (2, -1, 16) = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) + (-1).16 = 1.2 + (-1).(-1) +$ = 0, segue que $\Pi_1 \perp \Pi_2$.

Problemas Propostos 10.9

Verifique se os planos dados s\(\tilde{a}\)o perpendiculares nos casos:

(a)
$$\Pi_1$$
: $X = (1, -3, 4) + \lambda(1, 0, 3) + \mu(0, 1, 3)$ Π_2 : $X = (0, 0, 0) + \lambda(1, 1, 6) + \mu(1, -1, 0)$

$$\Pi_2$$
: X = (0, 0, 0) + λ (1, 1, 6) + μ (1, -1, 0)

(b)
$$\Pi_1$$
: $X = (1, 1, 1) + \lambda(-1, 0, -1) + \mu(4, 1, 1)$ Π_2 : $X = (3, 1, 1) + \lambda(1, -3, -1) + \mu(3, 1, 0)$

$$\Pi_2$$
: X = (3, 1, 1) + λ (1, -3, -1) + μ (3, 1, 0)

(c)
$$\Pi_1$$
: $X = (4, 3, 1) + \lambda(-1, 0, -1) + \mu(3, 1, 0)$

$$\Pi_2$$
: y - 3z = 0

(d)
$$\Pi_1$$
: $x + y - z - 2 = 0$

$$\Pi_2$$
: $4x - 2y + 2z = 0$

- 2. Ache uma equação geral do plano Π que passa por $P=(2,\,1,\,0)$ e é perpendicular aos planos Π_1 : x + 2y - 3z + 4 = 0e Π_2 : 8x - 4y + 16z - 1 = 0.
- 3. Dados os planos Π_1 : x y + z + 1 = 0, Π_2 : x + y z 1 = 0 e Π_3 : x + y + 2z 2 = 0, ache uma equação do plano Π que contém $\Pi_1 \, \cap \, \Pi_2$ e é perpendicular a Π_3 .