sci-hub免费下载论文

作者: 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailuqaji/

更多内容, 请看: 文献查找

sci-hub网址: https://gfsoso.99lb.net/sci-hub.html, https://tool.yovisun.com/scihub/

如果链接打不开,可以自行百度sci-hub网址,有很多链接。

免费下载SCI论文、英文文章(请使用文章的全文网站链接、DOI进行搜索,用关键词或者标题是不行的)

直接在搜索框里面填写文献链接点链接生成就可下载论文了

例如:

我在IEEE官网上找到了这篇文章:

3D-Brain Segmentation Using Deep Neural Network and Gaussian Mixture Model

把文章上面的网址复制, 粘贴到sci-hub网站上

点击链接生成,即可。直接点下载,你想要的论文就下载下来了。

或者使用文章的DOI,也可以下载论文

3D-Brain Segmentation Using Deep Neural Network and Gaussian Mixture Model

Publisher: IEEE

4 Author(s) Duy M. H. Nguyen; Huy T. Vu; Huy Q. Ung; Binh T. Nguyen View All Authors

3 Paper Citations

Abstract	Abstract: Automatic segmentation of major brain tissues from high-resolution magnetic resonance images (MRIs) plays an important role in clinical diagnostics and neuroscience research. In this paper, we present a novel approach to extract brain tissues including gray matter, white matter and cerebrospinal fluid by using Gaussian mixture models (GMMs), Convolution neural networks (CNNs)	
Document Sections		
1. Introduction		
2. Method	· · · · · · · · · · · · · · · · · · ·	applied to classify voxels which have distinct intensity
3. Experiments and	information and are easy to recognize while DNNs and CNNs are treating voxels which are similar in appearance and usually recognized insufficiently by traditional approaches. The empirical results on	
Results	· ·	od outperforms 13 state-of-the-art algorithms,
4. Conclusion	surpassing all other methods by a significant i	margin.
Authors	Published in: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)	
r!	Date of Conference: 24-31 March 2017	INSPEC Accession Number: 16881653
Figures		
References	Date Added to IEEE Xplore: 15 May 2017	DOI: 10.1109/WACV.2017.96
	Date Added to IEEE <i>Xplore</i> : 15 May 2017 • ISBN Information:	Publisher: IEEE

复制DOI: 10.1109/WACV.2017.96到sci-hub网站上,同样可以下载。

