Principles of Programming Languages 202 Assignment 4

Ben Gindi - 205874142 Shira Segev - 208825349

• Code for parts 3 & 4 below.

Part 1: Theoretical Questions

Q1

Typint the expression: ((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3) Stage I: Rename bound variables:

((lambda (x y) (if (> x y) #t #f)) 8 3)

Stage II: Assign type variables to all sub-exps:

Expression	Var
((lambda (x y) (if (> x y) #t #f)) 8 3)	T_0
(lambda (x y) (if (> x y) $\#t$ $\#f$))	T_1
(if (> x y) # t # f)	T_2
(> x y)	T_3
>	$T_{>}$
х	T_x
У	T_y
#t	$T_{\#t}$
#f	$T_{\#\!f}$
8	T _{num8}
3	T_{num3}

Stage III: Construct type equations.

- The equations for the sub-expressions are:

Expression	Equation
((lambda (x y) (if (> x y) #t #f)) 8 3)	$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$
(lambda (x y) (if (> x y) #t #f))	$T_1 = [T_x * T_y \to T_2]$
(if (> x y) #t #f)	$T_2 = T_{\#t} \text{ and } T_{\#t} = T_{\#f}$
(> x y)	$T_{>} = [T_x * T_y \rightarrow T_3]$

- The equations for the primitives are:

Expression	Equation
>	$T_{>} = [Number * Number \rightarrow Boolean]$
#t	$T_{\#t} = Boolean$
#f	$T_{\#f} = Boolean$
8	$T_{num8} = Number$
3	$T_{num3} = Number$

Stage IV: Solve the equations:

Equation	Substitution
$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$	{}
$T_1 = [T_x * T_y \to T_2]$	
$T_2 = T_{\#t}$ and $T_{\#t} = T_{\#f}$	
$T_{>} = [T_x * T_y \rightarrow T_3]$	
$T_{>} = [Number * Number \rightarrow Boolean]$	
$T_{\#t} = Boolean$	
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	

Step 1:

 $T_1 = [T_{num8} \ * \ T_{num3} \to T_0 \] \ \text{oSubstitution} = (\ T_1 = [T_{num8} \ * \ T_{num3} \to T_0] \) \ \text{, a type-sub.}$ Substitution = Substitution o ($T_1 = [T_{num8} \ * \ T_{num3} \to T_0] \) \ .$

Equation	Substitution
$T_1 = [T_x * T_y \to T_2]$	$\{ T_1 = [T_{num8} * T_{num3} \rightarrow T_0] \}$
$T_2 = T_{\#t}$	
$T_{\#t} = T_{\#f}$	
$T_{>} = [T_x * T_y \rightarrow T_3]$	
$T_{>} = [Number * Number \rightarrow Boolean]$	
$T_{\#t} = Boolean$	
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	

Step 2:

 $T_1 = [T_x * T_y \to T_2] \, \text{oSubstitution} = (T_1 = [T_{num8} * T_{num3} \to T_0] = [T_x * T_y \to T_2]) \, \text{,}$ not a type-sub. Substitution = Substitution o ($T_3 = \text{Boolean})$.

Equation	Substitution
$T_2 = T_{\#t}$	$\{ T_1 = [T_{num8} * T_{num3} \rightarrow T_0] \}$
$T_{\#t} = T_{\#f}$	
$T_{>} = [T_x * T_y \rightarrow T_3]$	
$T_{>} = [Number * Number \rightarrow Boolean]$	
$T_{\#t} = Boolean$	
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	

Step 3:

$$\boldsymbol{T}_2 = \boldsymbol{T}_{\#t} \, \text{oSubstitution=} \, \text{(} \, \boldsymbol{T}_2 = \boldsymbol{T}_{\#t} \, \text{)}$$

Substitution = Substitution o $(\boldsymbol{T}_2 = \boldsymbol{T}_{\#t})$.

Equation	Substitution
$T_{\#t} = T_{\#f}$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0],$
$T_{>} = [T_x * T_y \rightarrow T_3]$	$T_2 := T_{\#f} $
$T_{>} = [Number * Number \rightarrow Boolean]$	
$T_{\#t} = Boolean$	
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	

Step 4:

$$T_{\#t} = T_{\#f} \, \texttt{oSubstitution=} \, \texttt{(} \, T_{\#t} = T_{\#f} \, \texttt{)}$$

Substitution = Substitution o $(T_{\it\#t} = T_{\it\#f})$.

Equation	Substitution
$T_{>} = [T_x * T_y \rightarrow T_3]$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0], T_2 := T_{\#f}$
$T_{>} = [Number * Number \rightarrow Boolean]$	$T_{\#t} \coloneqq T_{\#f}$ }
$T_{\#t} = Boolean$	
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	

Step 5:

$$T_> = [T_x \,*\, T_y \,\to T_3] \, \text{oSubstitution= (} \, T_> = [T_x \,*\, T_y \,\to T_3] \, \text{),}$$
 Substitution = Substitution o ($T_> = [T_x \,*\, T_y \,\to T_3] \, \text{).}$

Equation	Substitution
$T_{>} = [Number * Number \rightarrow Boolean]$	$\left\{ \begin{array}{l} T_1 = \left[T_{num8} \ * \ T_{num3} \rightarrow T_0 \right] , \end{array} \right.$
$T_{\#t} = Boolean$	$T_2 := T_{\#f}$, $T_{\#t} := T_{\#f}$, $T_> = [T_x * T_y \to T_3]$ }
$T_{\#f} = Boolean$	
$T_{num8} = Number$	
$T_{num3} = Number$	
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	

Step 6:

$$T_{>} = [Number * Number \rightarrow Boolean] \circ \texttt{Substitution} = ($$

$$[T_x * T_y \rightarrow T_3] = [Number * Number \rightarrow Boolean]) \text{, not a type-sub.}$$

$$\texttt{Substitution} = \texttt{Substitution} \circ (T_{>} = [T_x * T_y \rightarrow T_3]).$$

Equation	Substitution
$T_{\#t} = Boolean$	$\{T_1 = [T_{num8} * T_{num3} \rightarrow T_0],$
$T_{\#f} = Boolean$	$T_2 := T_{\#f}$, $T_{\#t} := T_{\#f}$, $T_> = [T_x * T_y \to T_3]$ }
$T_{num8} = Number$	
$T_{num3} = Number$	
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	
$T_x = Number$	
$T_y = Number$	
T_3 = Boolean	

Step 7:

 $T_{\it\#t} = Boolean \, \circ {\tt Substitution} =$ ($T_{\it\#f} = Boolean$) , a type-sub.

Substitution = Substitution o ($T_{\it \#f} = Boolean$).

Equation	Substitution
$T_{\#f} = Boolean$	$\{T_1 = [T_{num8} * T_{num3} \rightarrow T_0],$
$T_{num8} = Number$	$T_2 := Boolean$, $T_{\#_t} := Boolean$,
$T_{num3} = Number$	$T_{>} = [T_x * T_y \rightarrow T_3],$ $T_{\#t} = Boolean \}$
$T_{num8} = T_x$	
$T_{num3} = T_y$	
$T_0 = T_2$	
$T_x = Number$	
$T_y = Number$	
$T_3 =$ Boolean	

Step 8:

 $T_{\it \#f} = Boolean \circ {\tt Substitution} = (\it Boolean = Boolean)$, true.

Substitution = Substitution \circ (Boolean = Boolean).

Equation	Substitution
$T_{num8} = Number$	$\{T_1 = [T_{num8} * T_{num3} \rightarrow T_0],$
$T_{num3} = Number$	$T_2 := Boolean$, $T_{\#_t} := Boolean$,
$T_{num8} = T_x$	$T_{>} = [T_x * T_y \rightarrow T_3],$ $T_{\#t} = Boolean \}$
$T_{num3} = T_y$	
$T_0 = T_2$	
$T_x = Number$	
$T_y = Number$	
T_3 = Boolean	

Step 9:

 $T_{num8} = Number \circ \text{Substitution} = (T_{num8} = Number)$, a type-sub.

Substitution = Substitution \circ ($T_{num8} = Number$).

Equation	Substitution
$T_{num3} = Number$	$\{T_1 := [T_{num8} * T_{num3} \to T_0],$
$T_{num8} = T_x$	$T_2 := Boolean$, $T_{\#t} := Boolean$,
$T_{num3} = T_y$	$T_{>} = [T_x * T_y \rightarrow T_3],$ $T_{\#t} = Boolean,$
$T_0 = T_2$	$T_{num8} := Number $ }
$T_x = Number$	
$T_y = Number$	
T_3 = Boolean	

Step 10:

 $T_{\mathit{num3}} = Number \, \mathtt{oSubstitution} = (\, T_{\mathit{num3}} = Number \,)$, a type-sub.

Substitution = Substitution o ($T_{num3} = Number$).

Equation	Substitution
$T_{num8} = T_x$	$ \left\{ \begin{array}{l} T_1 := \left[T_{num8} * T_{num3} \rightarrow T_0 \right] , \\ T_2 := Boolean , \end{array} \right. $
$T_{num3} = T_y$	$T_{\#t} := Boolean$, $T_{>} = [T_x * T_y \rightarrow T_3]$,
$T_0 = T_2$ $T_x = Number$	$T_{\#t} = Boolean$, $T_{num8} := Number$,
$T_{v} = Number$	$T_{num3} = Number$ }
T_3 = Boolean	

Step 11:

 $T_{\it num8} = T_{\it x} \, {\rm oSubstitution} {\rm = (} \, T_{\it x} \, {\rm = } \, Number \, {\rm)} \, , \,\,$ a type-sub.

Substitution = Substitution \circ ($T_x = Number$).

Equation	Substitution
$T_{num3} = T_y$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0],$
$T_0 = T_2$	$T_2 := Boolean$, $T_{\#t} := Boolean$,
$T_x = Number$	$T_{>} = [T_x * T_y \rightarrow T_3],$ $T_{\#_I} = Boolean,$
$T_y = Number$	$T_{num8}^{m} := Number$, $T_{num3} := Number$,
$T_3 = Boolean$	$T_{num8} := T_x $

Step 12:

 $T_{\mathit{num3}} = T_{\mathit{y}} \, \mathtt{oSubstitution} = (\, T_{\mathit{y}} = Numberr \,)$, a type-sub.

Substitution = Substitution \circ ($T_y = Number$).

Equation	Substitution
$T_0 = T_2$	$ \left\{ \begin{array}{l} T_1 := \left[T_{num8} * T_{num3} \rightarrow T_0 \right] , \\ T_2 := Boolean , \end{array} \right. $
$T_x = Number$	$T_{\#t} := Boolean$, $T_{>} := [T_x * T_y \rightarrow T_3]$,
$T_y = Number$	$T_{\#t} := Boolean$, $T_{num8} := Number$,
$T_3 = Boolean$	$T_{num3} := Number$, $T_{num8} := T_x$, $T_{num3} := T_y$ }

Step 13:

 $\boldsymbol{T}_0 = \boldsymbol{T}_2 \, \text{oSubstitution=} \, (\, \boldsymbol{T}_0 = Boolean \,) \, \text{, a type-sub.}$

Substitution = Substitution o ($T_0 = T_2$).

Equation	Substitution
$T_x = Number$	{ $T_1 := [T_{num8} * T_{num3} \rightarrow T_0]$, $T_2 := Boolean$,
$T_y = Number$	$T_{\#t} := Boolean$, $T_{>} := [T_x * T_y \rightarrow T_3]$, $T_{\#t} := Boolean$,
$T_3 = Boolean$	$T_{num8} := Number$, $T_{num3} := Number$, $T_{num8} := T_x$,
	$T_{num3} := T_y$, $T_0 := Boolean$ }

Step 14:

 $T_x = Number \circ \text{Substitution} = (Number = Number)$, true.

Equation	Substitution
$T_y = Number$	$ \left\{ \begin{array}{l} T_1 := \left[T_{num8} * T_{num3} \rightarrow T_0 \right], \\ T_2 := Boolean, \\ T_{\#t} := Boolean, \\ T_> := \left[T_x * T_y \rightarrow T_3 \right], \end{array} \right. $
$T_3 = Boolean$	$T_{\#t} := Boolean$, $T_{num8} := Number$, $T_{num8} := Number$, $T_{num8} := T_x$, $T_{num8} := T_y$, $T_0 := Boolean$, $T_x := Number$ }

Step 15:

 $T_y = Number \, \mathtt{oSubstitution} = (\, Number = Number \,)$, true.

Equation	Substitution
$T_3 = Boolean$	$\{T_1 := [T_{num8} * T_{num3} \rightarrow T_0],$ $T_2 := Boolean,$ $T_{\#t} := Boolean,$ $T_{>} := [T_x * T_y \rightarrow T_3],$ $T_{\#t} := Boolean,$ $T_{num8} := Number,$ $T_{num8} := Number,$ $T_{num8} := T_x,$ $T_{num8} := T_y,$ $T_0 := Boolean,$
	$T_x := Number$, $T_y := Number$ }

Final Step (16):

```
( T_3 = Boolean ) \circ Substitution = ( T_3 = Boolean ), type-sub. Substitution = Substitution \circ ( T_3 = Boolean ).
```

Equation	Substitution
	$\{T_1 := [Number * Number \rightarrow Boolean],$ $T_2 := Boolean,$ $T_{\#i} := Boolean,$ $T_{=i} := [Number * Number \rightarrow Boolean],$ $T_{=i} := Boolean,$ $T_{num8} := Number,$ $T_{num8} := Number,$ $T_x := Number,$ $T_y := Number,$ $T_0 := Boolean,$ $T_3 := Boolean\}$

 $T_1 := [Number * Number \rightarrow Boolean]$

- a. {f: [T1->T2], x: T1} |- (f x)}: T2 ⇒ true
 Explanation: The function f receives argument of type T1, and returns T2.

 And indeed, the argument x is defined as T1, and the return value of (f x) is T2.
- b. {f: [T1->T2],g: [T2->T3]}, x: T2} |- (f g x): T3 ⇒ false Explanation: Number of arguments is illegal (f receives one argument of type T1, but it is called with two arguments (g x)).
- c. $\{f: [T2->T1], g: [T1->T2], x: T1\} | (f (g x)): T1 \Rightarrow true$ Explanation:
 - The function f receives argument of type T2, and returns T1.
 - The function g receives argument of type T1, and returns T2.
 - The argument x is defined as T1.
 - In the expression $(g \ x)$, the return value is T2.
 - Then, f indeed receives T2, and returns T1.
- d. $\{f: [T2->Number], x: Number\} | (f x x): Number \Rightarrow false Explanation: number of arguments is illegal (f receives Number as an argument, but it is called with$ **two**numbers <math>(x x)).

Q3

```
a. <u>cons-Type:</u> [T_1*T_2 \rightarrow Pair(T_1,T_2)]
b. <u>car-Type:</u> [Pair(T_1,T_2) \rightarrow T_1]
c. <u>cdr-Type:</u> [Pair(T_1,T_2) \rightarrow T_2]
```

Q4

```
(Define f
          (lambda (x)
                (values x x x)))
The type of function f is: f (x: T): [T * T * T]
```

Q5

```
a. T_1, T_2
\underline{\text{MGU}}: T_1 = T_2
b. Number, Number
\underline{\text{MGU}}: \text{already a Number}
c. [T_1 * [T_1 \rightarrow T_2] \rightarrow Number], [[T_3 \rightarrow Number] * [T_4 \rightarrow Number] \rightarrow N]
\underline{\text{MGU}}: T_1 = [T_3 \rightarrow Number], T_2 = Number, T_4 = [T_3 \rightarrow Number]
d. [T_1 \rightarrow T_1], [T_1 \rightarrow [Number \rightarrow Number]
\underline{\text{MGU}}: T_1 = [Number \rightarrow Number]
```

Part 2: Type Checking

• We implemented values as a special form.

Q2.3

Part 4: Promises

Q1.b

The benefits of the promise interface compared to the callback interface are:

- Code written in promise interface is more readable
- The **type** of functions returning Promises is **more informative** and similar to the simple types of synchronous versions
- **Composition** is simplified by **chaining** (we can chain sequences of asynchronous calls in a chain of .then() calls).
- We can aggregate **error handling** in a **single handler** for a chain of calls, in a way similar to exception handling.

Part 3: Generators

Q1

```
Purpose: given two generators, the method returns a generator
Signature: braid(gen1, gen2)
Type: [Generator * Generator -> Generator]
export function* braid(gen1: Generator, gen2: Generator) {
   var ir1 , ir2;
   while(1) {
       ir1 = gen1.next();
       ir2 = gen2.next();
        if (!ir1.done) {
        if(ir1.done && ir2.done) {
           break;
```

```
Purpose: given two generators, the method returns a generator
Signature: biased(gen1, gen2)
Type: [Generator * Generator -> Generator]
export function* biased(gen1: Generator, gen2: Generator) {
   var ir1, ir2;
   while (1) {
        ir1 = gen1.next();
       ir2 = gen2.next();
       if (!ir1.done) {
           yield ir1.value;
           ir1 = gen1.next();
           if (!ir1.done) {
        if (ir1.done && ir2.done) {
           break;
```

Part 4: Promises

Q1.a

```
export function f(x: number): Promise<number> {
    return new Promise<number>((resolve, reject) =>{
        if (x != 0) {
           resolve(1 / x);
       else{
           reject(new Error("can't divide by zero"));
    });
export function g(x: number): Promise<number> {
    return new Promise<number>((resolve, reject) => {
        if (x != null) {
           resolve(x * x);
           reject(new Error("can't multiply nulls"));
    });
export function h(x: number): Promise<number> {
   return new Promise<number> (async (resolve, reject) => {
        g(x).then((gRes: number) => {
            f(gRes).then((fRes: number) => {
                resolve(fRes);
            }).catch((e: any) => reject(e));
        }).catch((e: any) => reject(e));
    });
```

```
Purpose: given two promises (p1 and p2), slower succeeds only if
both promises succeed.
The return value is (x, value) (x = 0 for p1 or 1 for p2),
value is the return value of the promise that was resolved last.
Signature: slower(promises)
Type: [Promise<T>[] -> Promise<[number, any]>]
export function slower<T>(promises: Promise<T>[]):
Promise<[number, any]> {
   return new Promise<[number, any]>((resolve, reject) => {
        let runners: [number, any][] = [];
       const p1 = promises[0].then((x: any) => {
            runners.push([0, x]);
        }).catch((e: any) => reject(e))
       const p2 = promises[1].then((x: any) => {
            runners.push([1, x]);
        }).catch((e: any) => reject(e))
       p1.then( => p2.then(() => resolve(runners[1])))
    });
```