

,,,,,,,,,,,,

Formation

04

03 **Queries in Practice**

Conclusion

Introduction

Construction Management is changing quickly becoming more digital

- Construction project management is difficult without database digitization
- High inventory costs with long project timelines
- Optimize resource management
- Long UVA Construction projects

A database could be the answer to optimize inventory management

- Database that will make supply chain and inventory management more efficient, ensures projects finish on time and remain within scope.
- Find delays, conditions, and specific employees and contractors along the inventory process
- Optimized Construction Projects

Model Formation

The conceptual model has entities that are essential to construction efficiency

- Constructed a schema to establish connections between entities
 - Entities were selected for each involved party in a business transaction
 - Who and what need to interact to get a project finished?
- Example relationship Supplier and inventory: Suppliers supply 0 to many pieces of inventory.

Using 3NF relational modeling helps with flexibility and ease of use

Industry Standard 3NF

- Reduces redundancy
- Enforces data integrity
- Avoids anomalies like inaccuracies and deletions

Designed for flexibility and ease of use

- Add, update and remove data quickly and efficiently
- Data associated with entities in reasonable manner

Queries In Practice

Using data to create information

Business Understanding: What questions do we have?

Data Understanding: What data do we have?

Data Transformation: How do we turn data into information?

Inventory quality and delivery is key to project success.

By tracking delivery dates and expected delivery times, we can determine **days late**

Allows for better **supplier management** and budget planning

Change expected delivery times to increase ratings

Late Inventory directly leads to higher **budgets** and **lower client** ratings

Some suppliers and inventory types are late more

Use this information to plan more accurate timelines

Other Queries Valuable to CMC

Ratings

By tracking project delivery, and storage ratings, we can identify problems in our value chain.

Facility Usage

Tracking inventory usage and cost by facility allows us to optimize cost structure.

Client Prioritization

Tracking client locations, project success, and client revenue allows us to optimize our revenue and value creation.

Conclusion

Quantity of data, rating systems, and separating business expenditures are limitations

Limitation #1: Lack of quantity of data

Limitation #2: Rating systems utilized to score the firm

Limitation #3: Inability to separate business expenditures.

Employee information and inclusion of other divisions are future plans

.

r

Idea #1: Add Employee attributes and relationships

Idea #2: Inclusion of other divisions

Questions?

Appendix

Appendix #1: Relational Model

Appendix #2: Conceptual Model

