TP 2

Exercice 1. On souhaite comparer l'efficacité de différentes méthodes de réduction de variance sur une option sur maximum discret de payoff

$$\left(K\left(\max_{t\in\{t_0,\dots,t_J\}} S_t\right) - S_T\right)_+$$

où $0 = t_0 < t_1 < \dots < T_J = T$ et T sa maturité.

Pour la valorisation, on se place dans un modèle de Black-Scholes de dimension 1 sous la probabilité risque neutre, de sorte que la dynamique du sous-jacent est donnée par

$$S_t = S_0 e^{(r - \sigma^2/2)t + \sigma W_t}$$

où W est un mouvement Brownien réel standard, r > 0 est le taux d'intérêt, $\sigma > 0$ est la volatilité et S_0 est la valeur initiale du sous-jacent, encore appelé prix spot. Pour les tests numériques, on prendra :

S_0	K	r	σ	T	J
100	0.95	0.02	0.25	2	24

Avec ces valeurs, on trouve comme prix 18.83 pour un intervalle de confiance de largeur 0.12. **Remarque**: Dans toutes les questions utilisant une méthode de Monte-Carlo, on prendra soin de fournir un intervalle de confiance.

- 1. Ecrire une fonction de simulation du sous-jacent.
- 2. Ecrire une fonction qui, étant donnée une trajectoire du modèle, calcule le payoff de l'option.
- 3. Ecrire une fonction calculant le prix de l'option par une méthode de Monte-Carlo standard à M tirages.
- 4. Même question que précédemment avec une technique de variables antithétiques.
- 5. Même question que précédemment en utilisant une technique de variable de contrôle linéaire adaptative avec comme contrôle $S_T S_0 e^{rT}$.
- 6. Comparer la précision des résultats obtenus par les 3 méthodes pour différents strikes. Pour ce faire, tracer le prix et l'intervalle de confiance en fonction de K pour chacune des méthodes.

Exercice 2. Le but de cet exercice est de se familiariser avec la méthode l'*importance sam*pling sur un exemple jouet. On considère une option d'achat dans le modèle de Black-Scholes

$$S_t = S_0 e^{(r - \sigma^2/2)t + \sigma W_t}$$

où W est un mouvement Brownien standard réel. On prendra comme paramètres

$$S_0 = 100, r = 0.03, \sigma = 0.2, T = 2, K = 120.$$

Le prix avec ces paramètres est 6.57.

D'après les résultats vus en cours, le prix de l'option d'achat vérifie l'égalité

$$\mathbb{E}[e^{-rT}(S_T - K)_+] = \mathbb{E}\left[e^{-rT}\left(S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}(G+\theta)} - K\right)_+ e^{-\theta G - \theta^2/2}\right], \forall \theta \in \mathbb{R}$$

où G suit une loi normale centrée réduite. On introduit la fonction $\psi: \mathbb{R} \to \mathbb{R}$ définie par

$$\psi(g) = e^{-rT} \left(S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}g} - K \right)_+.$$

Bien que le prix de l'option d'achat soit donné par une formule fermée, nous allons le calculer par une méthode de Monte Carlo. Dans ce cadre, nous cherchons à déterminer la valeur θ^* du paramètre θ qui minimise

$$v(\theta) = \mathbb{E}\left[\psi(G)^2 e^{-\theta G + \theta^2/2}\right].$$

La fonction v est fortement convexe et de classe C^{∞} , de plus

$$v'(\theta) = \mathbb{E}\left[(\theta - G)\psi(G)^2 e^{-\theta G + \theta^2/2}\right].$$

On note $U: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ la fonction

$$U(\theta, g) = (\theta - g)\psi(g)^{2} e^{-\theta g + \theta^{2}/2}.$$

de sorte que $\mathbb{E}[U(\theta, G)] = v'(\theta)$.

- 1. Récupérer le squelette sur *Chamilo*. Il se compile en utilisant *CMake*. Ne pas oublier de définir la variable CMAKE_PREFIX_PATH sur la ligne de commande en indiquant le chemin vers la librairie PNL.
- 2. Dans cette question, on cherche à approcher $\theta^* = \arg\min_{\theta \in \mathbb{R}} v(\theta)$. Soit $\theta_0 \in \mathbb{R}$ fixé et $\alpha_0 = 0$, on définit les suites de variables aléatoires $(\theta_n)_n \in \mathbb{R}^{\mathbb{N}}$ et $(\alpha_n)_n \in \mathbb{N}^{\mathbb{N}}$ par

$$\begin{cases} \theta_{n+\frac{1}{2}} = \theta_n - \gamma_{n+1} U(\theta_n, G_{n+1}), \\ \sin (\theta_{n+\frac{1}{2}})^2 \le \log(\alpha_n + 1) & \theta_{n+1} = \theta_{n+\frac{1}{2}} & \text{et} \quad \alpha_{n+1} = \alpha_n, \\ \sin (\theta_{n+\frac{1}{2}})^2 > \log(\alpha_n + 1) & \theta_{n+1} = \theta_0 & \text{et} \quad \alpha_{n+1} = \alpha_n + 1. \end{cases}$$
(1)

 $(G_n)_n$ est une suite i.i.d de loi normale centrée et réduite et $\gamma_n = \frac{\gamma}{(n+1)^{\beta}}$, avec $1/2 < \beta \le 1$. La suite $(\theta_n)_n$ converge p.s. vers θ^* pour toute valeur initiale de θ_0 . En pratique, on pourra prendre $\beta = 0.75$.

Implémenter le calcul de la suite $(\theta_n)_n$.

```
void MonteCarlo::is(PnlVect *lambda, double gamma, int n, PnlRng *rng);
```

En sortie, le paramètre lambda contient l'ensemble des valeurs $\theta_1, ..., \theta_n$.

3. Implémenter une méthode de Monte Carlo utilisant l'approximation θ_n de θ^* .

```
void MonteCarlo::mcis(double &prix, double &stddev, double lambda, PnlRng *rng);
```

- 4. Comparer la précision avec celle de la méthode de Monte Carlo standard déjà implémentée dans le squelette.
- 5. Tracer l'évolution de la suite θ_n en fonction de n. On tracera plusieurs graphiques pour différentes valeurs de $\gamma = 50, 5, 0.5, 0.05, 0.01$.
- 6. Reprendre la question précédente avec la suite

$$\left(\frac{1}{n}\sum_{\ell=100}^{n}\theta_{\ell}\right)_{n>100}$$

- 7. Tracer sur un même graphique, la convergence des 2 méthodes de Monte-Carlo \mathtt{mc} et \mathtt{mcis} .
- 8. Implémenter une version adaptive de l'estimateur de la question 3.