

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Auditory Hazard Assessment Algorithm for the Human (AHAAH)

Bruce E. Amrein 9 November 2010

U.S. Army Research Laboratory Human Research & Engineering Directorate

HUMAN RESEARCH & ENGINEERING

Soldier Performance

- Enhance mission effectiveness and Soldier safety in combat.
- Ensure Soldier
 performance
 requirements are
 adequately considered
 in system design and
 materiel development.

Human Research & Engineering Directorate

Steady-state and impulse noise levels produced by U.S. Army military equipments

Type of noise	Vehicle or Weapon	Noise level	
Steady-state	HMMWV	94 dB in crew position at 55 mph	
	CH-47 helicopter	102.5 dB in the cockpit	
	UH-60 helicopter	106 dB at the pilot/co-pilot positions	
Impulse	M16A2 rifle	157 dB @ shooter's ear	
	M249 machinegun	159.5 dB @ gunner's ear	
	Javelin missile	172.3 dB @ gunner's fighting position	
	81 mm mortar	178.8 dB @ 1 m from the muzzle, 0.9 m above ground, 135° azimuth	

Reference: http://chppm-www.apgea.army.mil/hcp/NoiseLevels.aspx

The Triad Challenge

MISSION SUCCESS:

Locate, close with and destroy the enemy by fire and maneuver

Human Research & Engineering Directorate

RDECONF Bragg Soldier - No Hearing Protection Fired 1 round with an AT4

RDECONFY Bragg Soldier - No Hearing Protection Fired 1 round with an AT4

Human Research & Engineering Directorate

RDECOM)

The "Science" Behind the MIL-STD 1474

CORRECTION FOR NUMBER OF ROUNDS BASED ON COMMITTEE "ESTIMATE"

Human Research & Engineering Directorate

AMSRD-ARL-HR-SD

10 Nov 04

MEMORANDUM FOR RECORD

Subject: The history and the future of the Impulse Noise Criterion of MIL-STD 1474

- 1. The Impulse Noise Damage Risk Criterion for limiting the noise level of weepons originated at the U.S. Army Human Engineering Laboratory (HEL), now the Army Research Laboratory's Human Research & Engineering Directorate (ARL-HRED). Prior to that time there was no scientific guidance for limiting the noise levels and the acceptable number rounds that could safely be fired by artillery, small arms, rocket launchers, etc. The first study (TM 1-65), was conducted, in 1964, by Dr. Karl Kryter and the undersigned. The exposure criterion for this study was based upon the CHABA Working Group 46 criterion (Hazardous Exposure to intermittent and steady-state noise, dated 1965). This criterion states that temporary hearing loss measured 2 minutes after exposure to noise shall not exceed 10 dB at and below 1000 Hz, 15 dB at 2000 Hz, and 20 dB at and above 4000 Hz. This criterion postulates that repeated exposures, for many years of habitual exposure, will result in a permanent hearing loss of the same magnitude.
- 2. The results of this report were also presented at the International Congress on Acoustics held in Belgium in 1995. After presenting my paper, Dr. Ross Coles (whom I had not previously met) came to me and said that he was presenting a paper on the same topic. Dr. Coles was a Commander and physician in the British Royal Navy and had been assigned to the University of Southampton to conduct research on the hearing hazard of gurffre. After his presentation, he and I discussed our respective research and decided to write a joint US-British report with Dr. David Hodge of HEL and Dr. Christopher Rice of the University of Southampton. Following the publication of this joint report, HEL with the cooperation of the Army Environmental Hygiene Agency published, in 1965, the first standard (HEL Standard S1-63B) which provided impulse noise limits for weapons. Several years later, this HEL standard was elevated to a DOD Military Standard (MIL-STD-1474).
- 3. Through the years this standard has been very helpful in providing material design limits for impulse noise and limiting hearing loss among soldiers. It has been determined, however, that the limits are somewhat overly restrictive.
- 4. Over the last 15 years Dr. G. Richard Price and Dr. Joel T. Kalb (ARL-HRED) have been developing an improved computer model for assessing the potential hearing hazard resulting from exposure to impulse noise. Essentially the model calculated stress in the inner ear due to the following: head orientation, hearing

AMSRD-ARL-HR-SD

Subject: The history and the future of the Impulse Noise Criterion of MIL-STD 1474

protection [manikin or Real-Ear-Attenuation-at-Threshold (REAT) measurements, aural reflex, and stapes displacement limitation. This model calculates risk based upon a hypothesis that damage to the hair cells in the cochlea correlates to a mathematical function of the rumber and amplitude of basilar membrane displacements in a manner analogous to mechanical fatigue of solid materials.

This model has been reviewed by a Peer Review Panel convened by the American Institute of Biological Sciences. The Panel concluded that the Ear Model "represents a significant improvement over the limits specified by MIL-STD-1474, and that the model was validated by a human exposure experiment conducted in Albuquerque, New Mexico"

In my opinion, this model is significantly more accurate than the existing criterion, and takes into account all aspects of the hearing mechanism. In addition to being more accurate, the acceptable levels predicted by this model are also slightly less restrictive than the limits specified by MIL-STD-1474.

It is my opinion, therefore, that the impulse noise limits stipulated in MIL-STD 1474 should be upgraded to the limits predicted by this new computer model.

/S/ GEORGES R. GARINTHER Guest Researcher Human Research & Engineering Directorate

"It is my opinion, therefore, that the impulse noise limits stipulated in MIL-STD 1474 should be upgraded to the limits predicted by this new computer model." Georges

Auditory Hazard Assessment Algorithm for the Human (AHAAH) Fifty Years of Basic Research

Human Research & Engineering Directorate

The 1960s: MIL-STD 1474 (Requirement 4) is developed:

- Very limited database of impulses (small arms only)
- Correction for number of rounds a guess by committee
- No allowance for waveform spectrum
- Calculation of duration required judgment by user
- But it was the best thing available at the time
- It was useful --- used for Health Hazard Assessments (HHA) "until something better comes along."

The 1970s: Basic Research Continued:

- At high levels, mechanical stress at the level of the hair cell is the primary loss mechanism
- Conductive path emphasizes the mid-range
- Middle ear muscles exert large variable influence
- Stapes non-linearity is a <u>major</u> influence at high intensity noise levels
- As level goes up, loss goes from log-time to linear-time relationship (demonstrated in human and cat ears)
- Above critical level, loss grows very rapidly oabout Ted Byperch Einforcesse in level (demonstrated in human, chinchilla, and cat ears)

Auditory Hazard Assessment Algorithm for the Human (AHAAH) Fifty Years of Basic Research

Human Research & Engineering Directorate

In the 1980s:

nath OKI

- Computational capacity exploded
- Wave motion in the cochlea could be calculated
- Transfer functions from free-field to stapes displacement became available
- Measurement techniques improved
- Digitized pressure histories became available
- Electrophysiological measurement of hearing sensitivity became possible

The 1990s: AHAAH was slowly born:

- Developed as an electro-acoustic analog of the ear
- Parallelism between physiology and model elements
- Promoted both generality and insight- works in the time domain
- Developed and validated first for the cat ear; predicted CTS,
 PTS and hair cell loss
- Model parameters changed to reflect values for human ear
- AHAAH validated for human ear
- Comparison of transfer functions with measured data (comments).

14

Human Research & Engineering Directorate

CHRONOLOGY OF RECENT SIGNIFICANT EVENTS

- **American Institute of Biological** Sciences (2001) concluded that the AHAAH Ear Model "represents a significant improvement over the limits specified by MII-STD-1474."
- AHAAH Website created (2003): http://www.arl.army.mil/ahaah/
- **Society of Automotive Engineers** (SAE) recommends use of AHAAH; publishes "Impulse Noise from Automotive Inflatable Devices" (2003).
- "Validation of the auditory hazard assessment algorithm for the human with impulse noise data" (2007), **TECHNOLO** published in J. Acoust. Soc. Am. 122 5.

Human Research & Engineering Directorate

CHRONOLOGY OF RECENT SIGNIFICANT EVENTS (Continued)

- Air Force Research Laboratory (AFRL)
 convenes "Effects of High Intensity
 Continuous, Impulse and Blast Noise on
 Humans Workshop" in Moab, Utah (2008).
- AHAAH web-based analysis tool goes on-line (2008) http://www.arl.army.mil/AHAAH/
- **ARL publishes** "Using the Auditory Hazard Analysis Algorithm for Humans (AHAAH) software, beta release W93e." ARL-TR-4987 (2009)
- American National Standards
 Institute (ANSI) reinstates the
 ANSI/ASA Working Group S3/WG 62
 "Impulse Noise with Respect to Hearing
 Hazard" and chartered it with the

U.S.ARRYY UNITED	W. ARL. ARMY. MIL STATES ARMY RESEARCH LABORATORY Business Careers Media Contact Us	a
АНААН	Home > AHAAH	
	* = required fields * Waveform File Type:	Australia Walter Analysis Continuenting Continue
	Last Modified: September 1, 2010 Last Reviewed: July 1, 2010	
About A	RL Business Careers Media Contact Us Sitemap	Privacy & Security AKO
		✓ Trusted sites Protected Mode: Off ♣ 100%

Human Research & Engineering Directorate

Responses to questions posed by the AIBS panel:

Is the assessment method based on sound scientific principles?

- The method is a theoretically-based approach.
- •The model:
 - uses physical laws to obtain a set of proven algorithms which are used to determine the percentage of the population that would sustain a permanent threshold shift based on impulsive sound measurement under a variety of exposure conditions.
 - accounts for impulse noise measurements:
 - under free field conditions
 - at the ear canal entrance
 - at the tympanic membrane, at probe tip location,
 - and while using a variety of hearing protection devices.

Human Research & Engineering Directorate

Is the assessment method based on sound scientific principles?

- •Specific anatomical and physiological aspects of the ear canal model are based on scientific principles including:
 - effect of pinnae and external auditory canal as an exponential horn
 - two-piston model of the tympanic membrane
 - pars flaccida and pars tensa
 - an ossicular chain which includes compliant malleo-incudo and incudo-stapedial joint
- •AHAAH correctly accounts for the nonlinear behavior of the ear (annular ligament, stapes activity).
- •The cochlea is modeled using the Wentzel-Kramers-Brillouin (WKB) method; dividing the basilar membrane into 23 "bins" or segments where acoustic energy accumulates.
- •The model's explanation of head related transfer function (HRTF) is scientifically based. *TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED*.

Human Research & Engineering Directorate

Does the method adequately protect the noise-exposed population from a well-defined auditory injury?

- AHAAH predicts the probability of PTS with 96% accuracy.
- •This model is unable (as is MIL-STD 1474D) to account for Soldiers who are not allowed adequate recovery time (estimated at least 24 hours) between consecutive periods of exposure to high level sounds.

Human Research & Engineering Directorate

Has the method been validated by the existing human exposure data sets?

- •The model's predictions are in agreement with the results of all data sets analyzed (small arms weapons, Albuquerque Studies; automotive airbags).
- •Within the parameters in which the model will be used, the model is valid.

Is the accuracy of the method in determining acceptable exposure conditions adequate for use as an occupational exposure standard?

- •The method is a powerful tool ready for use as a standard.
- •Accurately predicts exposure under the conditions specified in the model (such as proper fit and wearing of HPDs).

- A unique, non-linear hearing protector was used in the Albuquerque Studies (AS).
- Many analyzes of the AS data were conducted assuming <u>linear</u> (non level dependent) behavior of the hearing protector.
- Assuming linear hearing protection when analyzing Albuquerque Studies hearing loss data is inappropriate.

Human Research & Engineering Directorate

Will the method remain valid and retain necessary accuracy as the impulse noise characteristics change (e.g., longer and shorter sound pressure wave duration, complex and reverberate environments) and as the hearing protection devices change?

•AHAAH provides a realistic and flexible assessment of auditory risk from impulsive noise events (with or without hearing protection).

Unlike MIL-STD-1474D:

- the model does not assume a specific shape of sound impulse.
- the model does not rely on determining parameters such as duration that are difficult to measure consistently.
- removes subjective interpretation of waveforms that are different from the norm.
- •AHAAH collocates well with all available datasets; no false negatives.

 TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.

Human Research & Engineering Directorate

Does the method provide clear guidance on the hearing protection devices that will be acceptable under the conditions assessed?

AHAAH can be used to assess the relative effectiveness of any HPD, or combinations of HPDs.

Is AHAAH, in its current state and using sound pressure data as weapon developers currently collect it, a suitable replacement for MIL-STD 1474D for general application in limiting exposure of hearing-protected soldiers to impulse noise?

AHAAH is a suitable replacement of MIL-STD 1474D in the application of limiting exposure of hearing protected Soldiers to impulse noise.

Overall Strengths and Weaknesses of AHAAH

Human Research & Engineering Directorate

Strengths

AHAAH is a flexible assessment of auditory risk which:

- accommodates changes in impulse noise characteristics and hearing protection devices.
- is based on scientific research and can determine auditory injury, as well as account for impulse noise measurements under free field conditions, at the ear canal entrance, at the tympanic membrane, at probe tip location, and while using a variety of hearing protection devices.
- uses well established theories to account for physiological activity and sound processing in the inner ear.
- correctly accounts for the nonlinear nature of annular ligament and stapes activity.
- assumes the basilar membrane is acting nonlinearly at levels which the ear can be damaged.
- has been validated against all available human impulse noise exposure data.

Overall Strengths and Weaknesses of AHAAH

Human Research & Engineering Directorate

Weaknesses

- •AHAAH (or any other damage risk criterion) is not able to account for the temporal pattern of exposure of Soldiers who are not allowed adequate recovery time between consecutive periods of exposure to high level sounds.
- •Details of the effects of the acoustic reflex at high levels of impulse noise are not well known; however treatment of the acoustic reflex in AHAAH has been shown to be predictive of actual hearing loss.

AHAAH- Recent Developments

Human Research & Engineering Directorate

LTC Eric Fallon, Mr. Charles Jokel

ISRAEL DEFENSE FORCES Corps Headquarters Occupational Health Frame September 2009

SUBJECT: IMPULSIVE NOISE HAZARDS REGULATIONS

Dear colleagues.

U.S. Army, USACHPPM -

U.S. Army, ARL - Mr. Bruce Amrein

We wish again (on behalf of myself and Mr. Philip Hopstone from RAFAEL) to thank you for your hospitality and the productive meeting at Aberdeen, May 11-14, 2009 and for sharing the information with us. There is no replacement for a direct

Secondly, although the meeting was productive and demonstrated the efforts made by the US Army to develop a unique approach for impulsive noise hazard risk evaluation and to verify its accuracy, it also demonstrated the need for world-wide guidelines. At this point it is seems reasonable to us to adopt the US Army approach, however we see also a need that this approach will be approved in-house (i.e., adopted by the US Army as a standard) and by NATO.

At this point, and due the reasons mentioned, we (the IDF Medical Corps) have chosen a conservative approach, of adopting the THAAH model (due to its "army noise ear response approach" and the including of non-linear ochasior elements), and applying the equal energy principle, as proposed by NATO RTO-017 (as a possibility, with extrapolation to some exposures not covered by NATO, according to ACGIH), and adopting of LAEO 8h of 85 dBA (90 dBA for blast noise with protected ears by

30 September 2009: **Israel Defense Forces Adopt AHAAH for Impulse Noise Hazard Evaluation**

At this point, and due the reasons mentioned, we (the IDF Medical Corps) have chosen a conservative approach, of adopting the AHAAH model (due to its "army noise ear response approach" and the including of non-linear behavior elements),

toward some agreement soon, knowledge may be lost and there will be fewer chances for having internationally accepted guidelines.

Hence we propose proceeding with the process towards establishing a single, internationally accepted document (with the "best available knowledge"). Interim steps would involve a forum discussion via E-mail to establish the proposed document, prior to ratification.

Best regards,

LTC Dr. Amnon Duvdevany Head of Acousties and EMR Section Occupational Health Frame IDF Medical Corps

CC: IDF Surgeon General, IDF Surgeon General Deputy, RAFAEL - Mr. Philip

Human Research & Engineering Directorate

Validation of the auditory hazard assessment algorithm for the human with impulse noise data

and Analysis, P.O.B. 368, Charlestown, Maryland 21914 (Received 26 January 2007: revised 25 August 2007: accented 27 August 2007)

Obscirced 26 James 2011; revised 35 August 2014; accepted 27 August 2017. Perfecting adolery harden from intens according replices, such as weapons that it is railways, has been producing audient parallel and the intensity of the production of the production of the production of the filters correctly in over 95% of the cases, the MIL-S1D-1474D was correct in 42% of the cases, and A-weighted energy was correct in 25% of the cases. Terms for all methods tended to be in the direction of overprediction of hazard. In addition to greatly increased accuracy, the AHAAH model also has the advantage of being theoretically based and including novel diagnostic features. © 2007 Acoustical Society of America. [DOI: 10.1121/1.2785810]

PACS number(s): 43.64.Wn, 43.50.Yw, 43.64.Bt, 43.50.Op [BLM]

I. INTRODUCTION

A Background
Roding the hazard of intense impulse noises has long
been a perplexing technical problem. The recent concession
greater is a proposed to the proposed of the prop more likely to be those associated with metabolic stresses.

The final output of AHAAH is in auditory risk units (ARUs) that yield a prediction of immediate threshold shift, which in turn also provide a prediction of permanent threshold shift and hair cell loss (Price, 2005). A copy of this software, supporting documentation, and instructions about its opera-tion are now downloadable at the Army Research Lab's web-

underestimated, hering loss with produced in the production. In addition to the great personal loss as with definess are the operational costs association hardware production. In the other persons, the hardware production of the control of the control matted, then there will be costs associated with over-nated, then there will be costs associated with over-tical costs of the cost of the costs associated with cost of the cost of the

2007

Recent AHAAH-related Publications

2009

Approved for public release; distribution is unlimited

his Survey Report and any recommendations made herein are for the specific facility evaluated and may not be universally plicable. Any recommendations made are not to be considered as final statements of NIOSH policy or of any agency or ndividual involved. Additional NIOSH Survey Reports are available at http://www.cdc.gov/nios

An Analysis of the Blast Overpressure Study Data

Comparing Three Exposure Criteria REPORT WRITTEN BY William J. Murphy, Ph.D.

> Amir Khan Peter B. Shaw, Ph.D.

REPORT DATE: December 3 2009

REPORT NUMBER EPHB 309-05h

U.S. DEPARTMENT OF HEALTH AND HUMAN SER

Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Division of Applied Research and Technology Engineering and Physical Hazards Branch

> Hearing Loss Prevention Team 4676 Columbia Parkway, Mail Stop C-27 Cincinnati, Ohio 45226-1998

2009

Baltimore Maryland NOISE-CON 2010 2010 April 19-21

A hearing protector model for predicting impulsive noise hazard

U. S. Army Research Laboratory Human Research & Engineering Directorate Aberdeen Proving Ground, MD 21005-5425

Reduction of impulsive noise hearing hazard by earplugs and earmuffs an electro-acoustic lumped-parameter circuit-model of insertion-loss us attenuation at threshold (REAT) data. It assumes energy flow into the p volume along three paths, each considered as a piston: 1) the rigid prot against the skin, 2) leakage at the support and 3) transmission through against the skin, 2) leakage at the support and 3) transmission through to material (a second piston within the rigid piston). Circuit elements are matches REAT data assuming path 1 is important at low, 2 at middle an frequencies. Applying the model to 384 REAT data-sets for ANSI 512.6 users gives statistical frequency distributions of occluded volume and lea For a given free-field impulsive noise, the model pressure predictions are compared to measurements acoustical manikin ears to check validity The hearing hazards of the measured waveforms and the predicted way calculated with our previously developed AHAAH ear model (Auditor Algorithm for Humans). The result is a cumulative frequency distribu on user fit data useful in finding the best protector for a given impulsiv

It is certain that combat with energetic weapons damages unprotected military performance, but soldiers are reluctant to wear recommended prot isolation also reduces military performance. Solution of this dilenn acoustic transmission at low levels while providing protection by means of a the combat arms earplug, a peak-clipping pass-through headphone or a pass designed for the weapon. To support these approaches, we made a hearing for use with our previously developed hearing hazard model¹, AHAAl Assessment Algorithm for Humans). AHAAH predicts hazard based on measured in the free field or under hearing protective devices on real ears and has been validated against losses for known human exposures.

The HP model extends AHAAH application to improving weapon

predicting protected responses to free-field waveforms using commonly data. This paper gives the history of HP models, derives the model equ component adjustments to match the REAT data. Applying the model to 38 four different HPs of the Interlab study 12 gives fit and hazard distributions f

⁰Email address: joel.kalb@us.army.mil

2010

Critique of "An Analysis of the Blast Overpressure Study Data Comparing Three Exposure Criteria," by Murphy, Khan, and Shaw

ARMY RESEARCH LABORATORY

by G. Richard Price

prepared by

Auditory Hazard Analysis P.O. Box 368 Charlestown, MD 21914

2010

Human Research & Engineering Directorate

Albuquerque Studies Data: MIL-STD 1474D, A-weighted Energy, AHAAH

MIL-STD-1474D was correct in its evaluation of 22 of the exposures and incorrect in 31, an accuracy of 42%.

✓ Its errors were all in the direction of overpredicting hazard.

A-weighted energy was correct in 13 cases out of 53, an accuracy of 25%.

- ✓ This method also erred in *over-predicting* the true hazard.
- ✓ The amount of error in the over-prediction was sizable, often 10–20 dB.

The AHAAH model was correct in all but three cases for an overall accuracy of 94%.

✓ Its three errors were also in the direction of G. Richard Price: Validation of auditory hazard algorithm J. Acoust. Soc. Am., Vol. 122, No. 5, November 2007

Human Research & Engineering Directorate

SUMMARY

1. Are there deficiencies with the current impulse noise requirement of MIL-STD 1474D?

YES- acknowledged for 10-years

- **2.** If so, what are the deficiencies that need to be addressed?
- Not scientifically based.
- It is overly restrictive (its errors were all in the direction of overpredicting hazard)
- Fails to properly handle non-standard waveforms
- Many weapons systems are granted waivers to exceed the "Z-curve"
- **3.** Do any of the following models/approaches adequately address all of the current MIL-STD deficiencies?

AHAAH Model

YES

 If so, is this model sufficiently tested and proven to be applied?

YES; AHAAH has been validated against all available human exposure data.

American Institute of Biological Sciences

...concluded that the AHAAH Ear Model "represents a significant improvement over the limits specified by MIL-STD-1474" April 2, 2001

RDECOM This afternoon, at ARL's Adelphi Laboratory Center:

Human Research & Engineering Air act prate

LIFETIME ACHIEVEMENT

G. Richard Price is awarded the 2010 ARL Award for Lifetime Achievement. During his 50-years of research in audition and hearing loss he developed a theoretical understanding of the ear's function at high noise intensities, validated and transitioned it into a unique mathematical model of the ear. In parallel, he created basic understandings of the effects of changes in hearing on military performance, which have materially affected hearing conservation within the armed forces. Dr. Price's outstanding work reflects great credit upon him, ARL, RDECOM, and the Department of the Army.

is acusticus