

SW파일렀 Team Project 기획발표

AI 기반의 유동적인 신호등 / I스템 구축 (AI BASED FLEXIBLE TRAFFIC SYSTEM)

2025 SW파일럿 파이썬 5팀

写 十

01〉프로젝트 개요

04〉 진행 계획

02〉 프로젝트 추진방안

(05) 팀원 소개

03〉프로젝트 요구//항

(06) 기대효과

기존의 신호체계

고정식(Fixed) 신호 방식	감응식(Actuated) 신호 방식
일정한 시간 주기로 고정	차량 감지 여부에 따라 실시간 변동
사전에 수집된 평균 교통량 데이터 기반	차량 검지기(루프 감지기)로 실시간 교통량 파악
- 단순 구조 - 유지비용 저렴	– 실시간 대응 가능 – 불필요한 대기 시간 최소화
- 교통량 변화 반영 불가 - 비효율적 대기 발생	- 설치비용 높음 - 검지기 오작동 시 마비 가능

자료 : http://ops.thwa.dot.gov 루프 디텍터를 이용한 차량 검지

NEWSis.()

그래서 생각했습니다.

- 교차로 상황을 실시간 인식하면서,
- 필요할 때만 신호하여 대기 최소화하고,
- 설치해야 할 인프라 부담을 낮추면서
- 인간의 관리 없이 자율적으로 제어되는

새로운 교통 시스템 솔루션을 만들 수 없을까?

의 기반의 유동적인 신호등 / I스템

프로젝트 목적

- AI가 사진에서 **실시간 교통량을 인식**
- 자체 알고리즘을 통해 신호 주기를 조정
- 지능형 자동 제어 시스템
 시뮬레이터 버전(MVP)을 구현
- 기존 방식의 **한계를 극복**
- 교통 문제를 해소하는 데 기여

01 프로젝트 개요 -

프로젝트 목표

	차량 인식	객체 탐지 모델로 차량 수 실시간 집계
	교통량 분석	동-서/남-북 방향별 차량 수를 슬라이딩 윈도우 방식으로 분석
	신호 조정 알고리즘	차량 수 비율 기반으로 신호 주기 자동 계산
	/l뮬레이터 UI	PyQt로 신호등 애니메이션 + 교차로 UI 구현
~	결과 / 각화	실시간 대시보드 + 로그 저장 기능 제공

프로젝트 구조도

모듈별 설명

차량 감지 시스템 (CCTV 영상 분석)

기술 선택

- OpenCV + 딥러닝 기반 객체 탐지 모델
- YOLOv5 or YOLOv8 사용 예정

- CCTV 영상을 실시간으로 받아오는 스트림 처리
- 매 프레임에서 자동차 객체 탐지
- 관심영역(ROI) 내에 객채 수 계산
- 차량이 위치한 도로 방향 정보 tagging

모듈별 설명

교통량 데이터 집계 및 해석

기술선택

• Pandas 라이브러리 활용

- 일정 시간 단위 (예: 10초)로 방향별 차량 수 누적
- 테이블 데이터 형태로 데이터 전처리
- 신호 주기 조정 로직을 위한 입력값 구성
- 대시보드 시각화를 위한 입력값 구성

모듈별 설명

기술선택

- PyQT 라이브러리 활용
- 신호 조정 로직
 - Rule based vs Reinforcement Learning

- PyQT 기반 GUI로 신호등 시뮬레이터 구축
- 신호 조정 로직 구현

모듈별 설명

시각화 및 로그 시스템

기술선택

- PyQT 라이브러리 활용
- Matplotlib 라이브러리 활용

- 트래픽 대시보드 구현
- 각 방향 교통량 실시간 출력
- 현재 신호 주기 표시 및 조정 시점 출력
- 로그 저장 (csv형태)

03 프로젝트 요구//항

기능 요구//항

- 1. 차량 객체는 YOLO 기반 탐지기로 자동 인식되어야 하며, 방향(동-서/남-북)에 따라 분류되어야 한다
- 2. 집계된 차량 수 데이터를 바탕으로 신호 주기를 동적으로 조정해야 한다
- 3. 신호 조정 알고리즘은 최소 및 최대 시간 범위 내에서 동작해야 한다
- 4. PyQt 기반 UI에서 현재 신호 상태(녹색/적색/남은 시간 등)를 애니메이션 형태로 표시해야 한다
- 5. 대시보드에는 방향별 차량 수, 현재 신호 시간, 전체 사이클 로그가 표시되어야 한다
- 6. 모든 신호 사이클은 CSV 파일로 로그가 저장되어야 한다.
- 7. 사용자는 프로그램 실행 후 영상 파일 또는 실시간 스트림을 선택하여 테스트할 수 있어야 한다
- 8. 전체 시스템은 Presenter 구조를 통해 Model과 View를 **독립적으로 관리**해야 한다

03 프로젝트 요구//항

비기능 요구//항

- 1.프로그램은 PyQt5 기반으로 구성되며 **외부 서버에 의존하지 않아야 한다** (완전한 로컬 실행 가능)
- 2.시스템은 예외 상황(영상 없음, 모델 로드 실패 등)에 대한 처리 로직을 포함해야 한다
- 3.코드 스타일은 PEP8을 따르며, 각 클래스 및 함수에는 docstring이 포함되어야 한다
- 4.최종 보고서 및 발표 자료는 문서 템플릿에 맞춰 제출되어야 한다

04 진행계획

주차별 계획

Week 1

요구사항 분석 및 설계

Task 1 - 전체 요구사항 정리

Task 2 - 기술 스택 확정

Task 3 - 세부 역할 분담

Task 4 - 진행 일정 세분화

Task 4 - 시스템 아키텍처 작성

Week 2

CCTV 수집 환경 구축 AI 프로토타입 설계

Task 1 - CCTV 스트림 수집 환경 구축

Task 2 - 차량 검출 모델 조사

Task 3 - 검출 모델 파인튜닝

Task 4 - 검출 모델 평가 리포트

Week 3

교통량 집계 신호제어 알고리즘 구현

Task 1 - 교통량 통계 로직 개발

Task 2 - 신호주기 조정 알고리즘 설계

Task 3 – 신호주기 조정 알고리즘 개발

Task 4 - 알고리즘 실용성 테스트

Task 5 - 기존 방식 vs 알고리즘 비교 분석

Week 4

대시보드 UI·통합 테스트

Task 1 - 실시간 교통량 현황 시각화

Task 2 - 실시간 신호주기 시각화

Task 3 - 테스트 케이스 작성·수행

Task 4 - 버그 리포트 및 수정

04 진행계획

팀원간의 회의 일정 /소통 방법

각 task가 끝난 후 해당 내용을 **githubPR로 공유**

비대면 회의 시 Discord로 화면공유/회의 진행

05 팀원 소개

팀장

황문규

권재영

솜채현

신정헌

조은일

객체 탐지 모델 결정

CCTV 스트림 처리

모델 연결

GUI / I뮬레이터 개발

UI 레스트

도로 내 세설 세각화

모델-Vlew 연결

상태 흐름 관리

통합 컨트롤러

신호 조정 로직 설계

신호 조정 로직 개발

레스트 케이스 작성

대/ 보드 구현

실시간 데이터 표시

로그 기능 구현

06 기대효과

교통 흐름 개선

평균 통행 시간 감소 기대 불필요한 대기 최소화 교차리 처리 효율 향상

사고 예방

급정거·충돌 위험 감소 보행자 보호 강화 꼬리물기 현상 방지

체감 비용 절감

출퇴근 시간 단축 연료비 절감 차량 비용 · 물류비 · 인건비 절감

탄소 감축 및 에너지 절약

신호 대기 불필요한 가속 · 감속 감소 연료 소비 절감 온실가스 및 배기가스 감소

질의 응답 및 연락처

자유롭게 질문해주세요.

이메일

moongye2202@knu.ac.kr

프로젝트 GitHub

https://github.com/moon9H/AdaptiveTraffic