Middleware

30221 - Sistemas Distribuidos

Rafael Tolosana Calasanz

Dpto. Informática e Ing. de Sistemas

Lectura Recomendada: capítulo introductorio:

G. Colouris, J. Dollimore, T. Kindberg and G. Blair.
Distributed systems: Concepts and Design. 5th Edition.
Addison-Wesley. May, 2011. ISBN: 978-0132143011.

Motivación

The Procedure Call Model can be defined "as a way of making the networked environment seem completely familiar to application developers, rather than exposing the network directly to them and thus presenting them with a development model so different than they be scared away from writing distributed programs."

James E. White . 1976

Motivación

Definición: [Colouris]

- La arquitectura software de un sistema es su estructura en términos de los componentes que la conforman y sus relaciones entre sí.
- Una arquitectura software es una abstracción de un sistema computacional, una abstracción sobre el código fuente.
 - Nos muestra aspectos del sistema que nos ayudan a comprenderlo
 - Las arquitecturas nos sirven para trabajar en equipo, comunicación y para mejorar el desarrollo del sistema

¹Instructor's Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5(c) Pearson Education 2012

Formas de Comunicación entre Componentes

- Comunicación Directa
- Comunicación Indirecta (mediada)
 - Linda, publish-subscribe, colas de mensajes, etc.

Protocolos de Comunicación

- Un protocolo de comunicación es un conjunto de reglas y formatos que se utilizan para la codificación y envío de un mensaje entre procesos.
- UDP y TCP son protocolos de comunicación

Protocolos de Interacción

- Un protocolo de interacción es una secuencia de mensajes intercambiados entre dos o más procesos para la realización de una tarea determinada
- Request Reply es un protocolo de interacción

Formato de los Mensajes / Datos

¿Cómo se codifican los datos?

Serialización / Marshalling

TCP / IP

Operaciones TCP / IP

- read(data byte[]) // bloqueante
- write(data byte[]) // no bloqueante

Operaciones TCP / IP

- read(data byte[]) // bloqueante
- write(data byte[]) // no bloqueante

Retos

Motivación

- Byte[] vs. Estructuras de Datos
 - Demasiados detalles de bajo nivel
- Heterogeneidad: v.gr. de las máquinas

Aproximaciones para la Codificación de los Datos

Automática

Motivación

Manual (intervención humana)

Aproximaciones para la Codificación de los Datos

Automática

Motivación

Manual (intervención humana)

Aproximaciones para la Codificación de los Datos

- Acuerdo entre emisor receptor
 - Metadatos incluidos en los mensajes
 - Datos en texto → XML / JSON

Middleware

Middleware

Motivación

Arquitectura SSDD

Middleware lavers

²Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn.

⁴⁽c)Pearson Education 2005

Motivación

Origen del Middleware: RPC

- Consiste en invocar un procedimiento remoto como si fuera local
- El servidor publica una interfaz
- Se genera código automático para serializar los datos
- El cliente invoca al procedimiento como si fuera local

Motivación

Origen del Middleware: RPC

- Consiste en invocar un procedimiento remoto como si fuera local
- El servidor publica una interfaz
- Se genera código automático para serializar los datos
- El cliente invoca al procedimiento como si fuera local

Un poco de historia

- Idea original de James E. White, 1976
- En 1984, Bruce J. Nelson y Andre D. Birrell (Xerox) presentaron RPC para implementar SSDD.
- De RPC se derivarían en las décadas siguientes, diferentes modelos: Common Object Request Broker Arquitecture, Java Remote Method Invocation, Sun RPC, RPC-based Web Services, GoRPC, etc.

Motivación

Modelo Interacción RPC

Motivación

Modelo Interacción RPC

 $^{^3}$ Tanenbaum Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All Middleware rights reserved. 0-13-239227-5 15/24

Modelo Actor

Motivación

Un Actor es un proceso

- puede recibir y enviar mensajes de forma asíncrona
- solo tiene memoria local
- un proceso recibe los mensajes en un buzón
- cada proceso tiene un identificador único PID

⁴Charla donde se explica el Model Actor: https://www.youtube.com/watch?v=7erJ1DV_Tlo

Motivación

⁵Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

Motivación

Modelo: Cola de Mensajes

- Emisor y receptor desacoplados temporal y espacialmente
- Comunicación 1 a 1

Motivación

Modelo: Cola de Mensajes

- Emisor y receptor desacoplados temporal y espacialmente
- Comunicación 1 a 1

Modelo: Publish – Subscribe

- Emisor y receptor desacoplados temporal y espacialmente
- Comunicación N a M

Modelo: Cola de Mensajes

- Emisor y receptor desacoplados temporal y espacialmente
- Comunicación 1 a 1

Modelo: Publish – Subscribe

- Emisor y receptor desacoplados temporal y espacialmente
- Comunicación N a M

Implementación: El Broker de Mensajes

- Patrón / Componente
- Posibilita comunicación indirecta
- El broker tiene wrappers
- El broker puede transformar / adaptar mensajes entre procesos (wrappers)

Ejemplo

Motivación

⁶Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

Motivación

Comunicación de Grupo

- ¿Cuál es el problema clásico del productor consumidor?
- ¿Qué sucedería si tuviéramos N productores?
- ¿ Qué sucedería si tuviéramos M consumidores?

Motivación

Comunicación de Grupo

- Múltiples productores (fuentes de datos)
- Múltiples consumidores
- Los productores ofrecen fuentes de datos
- Los consumidores se registran a una fuente de datos
- Cada vez que el productor produce un dato este se envía a un grupo de consumidores

Motivación

⁷Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

Motivación

Ejemplo: Apache Kafka

⁸Apache Kafka https://kafka.apache.org/

Resumen

Resumen

Motivación

Concepto de Middleware

- Abstracción sobre la comunicación
- Serialización / Marshalling automático de los datos
- Modelo de Comunicación / Sincronización

Middleware

30221 - Sistemas Distribuidos

Rafael Tolosana Calasanz

Dpto. Informática e Ing. de Sistemas