Exercises on differential calculus and the Riez-Frechet representation theorem

Contents

1	Differential calculus11.1 Operators $F(\cdot)$ 11.2 Forms $a(\cdot, \cdot)$ 3
2	Linear forms & application of the Riez-Frechet theorem 5
1	Differential calculus
1.	1 Operators $F(\cdot)$
no	xercice 1.1 Let X and Y denote Banach spaces or Hilbert spaces. F detectes either a map defined from X onto Y or a map from onto \mathbb{R} . (In this st case, F is called a functional).
a) b)	Let us consider the differential operator $F(u)(x) = \nabla u(x)$. Provide examples of functional spaces pairs (X,Y) such that $F:X \to Y$. Calculate the 1st order differential of $F(u)$ at u_0 in the direction δu . Calculate the 2nd order differential of $F(u)$ at u_0 in the direction $(\delta u, \delta v)$
a) su b) - 6	Let us consider the differential operator $F(k;u)(x) = div(k(x)\nabla u(x))$. (To go further). Provide examples of functional spaces triplets (K, X, Y) of that $F:(K,X) \to Y$. Calculate the following differentials: $\partial_k F(k_0;u_0) \cdot \delta k$ $\partial_u F(k_0;u_0) \cdot \delta u$ $dF(k_0;u_0) \cdot (\delta k, \delta u)$
	Let us consider the integral operator $F(u) = \int_{\Omega} u^p(x) dx$. Clarify the minimal functional space to well define F .

- b) Calculate the differential at u_0 in the direction δu .
- 4) Let us consider the operator $F(u) = \int_{\Omega} \|\nabla u\|^2 dx$.
- a) Clarify a functional space such that F is well defined.
- b) Calculate the 1st (resp. 2nd order) differential at u_0 in the direction δu (resp. $(\delta u, \delta v)$).

Corrections

- 1) $F(u)(x) = \nabla u(x)$. $F: X \to Y$.
- a) Let Ω be a bounded domain in \mathbb{R}^d . Typical examples of functional spaces (X,Y) are: $X = H^1(\Omega)$ and $Y = (L^2(\Omega))^d$, or $X = H^2(\Omega)$ and $Y = (H^1(\Omega))^d$, or $X = W^{1,\infty}(\Omega)$ and $Y = (L^\infty(\Omega))^d$.
- b) The map $u \mapsto F(u)$ is linear. Its differential F'(u) $(F'(u) \equiv d_u F(u))$ equals F for any $u \in X$.

For all $\delta u \in X$, $F'(u_0) \cdot \delta u = \nabla(\delta u)$.

c) Next, the 2nd order differential simply reads: for all $\delta u \in X$ and $\delta v \in X$,

$$F''(u_0) \cdot (\delta u, \delta v) = 0$$

for any element u_0 .

- 2) $F(k; u)(x) = div(k(x)\nabla u(x)), F: (Z, X) \to Y.$
- a) Let Ω be a bounded domain in \mathbb{R}^d . Typical examples of functional spaces (X,Y,Z) are: $Z = L^{\infty}(\Omega)$, $X = H^2(\Omega)$ and $Y = L^2(\Omega)$.
- b) The two maps $u \mapsto F(\cdot; u)$ and $k \mapsto F(k; \cdot)$ are linear. Therefore their differential are trivial:

For all $\delta k \in \mathbb{Z}$, $\partial_k F(k_0; u_0) \cdot \delta k = div(\delta k \nabla u_0)$.

For all $\delta u \in X$, $\partial_u F(k_0; u_0) \cdot \delta u = div(k_0 \nabla(\delta u))$.

The total derivative $dF(k_0; u_0) \cdot (\delta k, \delta u)$ reads:

 $dF(k_0; u_0) \cdot (\delta k, \delta u) = \partial_k F(k_0; u_0) \cdot \delta k + \partial_u F(k_0; u_0) \cdot \delta u = div(\delta k \nabla u_0) + div(k_0 \nabla (\delta u))$

3)
$$F(u) = \int_{\Omega} u^p(x) dx$$
, $F: X \to \mathbb{R}$.

- a) The minimal regularity for u is $u \in X$ with $X = L^p(\Omega)$, $1 \le p < \infty$.
- b) For all $\delta u \in X$,

$$F'(u) \cdot \delta u = p \int_{\Omega} u^{p-1}(x) \delta u(x) dx$$

4)
$$F(u) = \int_{\Omega} \|\nabla u\|^2 dx, \ F: X \to \mathbb{R}.$$

a) The minimal regularity for u is $\nabla u \in (L^2(\Omega))^d$. Therefore $X = H^1(\Omega)$ is an adequate functional space.

b) For all $\delta u \in X$,

$$F'(u) \cdot \delta u = 2 \int_{\Omega} (\nabla u(x), \nabla(\delta u)(x)) dx$$

and

$$F''(u) \cdot (\delta u, \delta v) = 2 \int_{\Omega} (\nabla(\delta u)(x), \nabla(\delta v)(x)) dx$$

1.2 Forms $a(\cdot, \cdot)$

Exercice 1.2 Let V be a subspace of $H^1(\Omega)$. Let a(.,.) be a form defined from $V \times V$ into \mathbb{R} .

Write the differential expression $\partial_u a(u_0, v) \cdot \delta u$, in the following cases:

1)
$$a(u,v) = \int_{\Omega} u^p(x)v(x) \ dx, \ 1 \le p < \infty.$$

2)
$$a(u,v) = \int_{\Omega} \nabla u(x) \nabla v(x) \ dx$$
.

3)
$$a(u,v) = \int_{\Omega} \lambda(u(x)) \nabla u(x) \nabla v(x) dx$$
.

You will clarify the necessary minimal regularity for $\lambda(u)$.

Correction.

For all $\delta u \in V$,

1)
$$\partial_u a(u_0, v) \cdot \delta u = p \int_{\Omega} u_0^{p-1} \delta u v \ dx$$

2)
$$\partial_u a(u_0, v) \cdot \delta u = \int_{\Omega} \nabla (\delta u) \nabla v \ dx$$

3) The map $u \mapsto a(u, \cdot)$ is non-linear. To be differentiable, $\lambda(u)$ has to be differentiable.

Moreover, to have the integral of a(u, v) well defined, $\lambda(u)$ has to be in $L^{\infty}(\Omega)$. For all $\delta u \in V$, we have:

$$\partial_u a(u_0, v) \cdot \delta u = \int_{\Omega} \left(\lambda(u_0) \nabla(\delta u) \nabla v + \lambda'(u_0) \cdot \delta u \nabla(u_0 \nabla v) \right) dx$$

To have the integral above well defined, $\lambda'(u_0)$ has to be in $L^{\infty}(\Omega)$. Therefore, $\lambda(u)$ has to be in $W^{1,\infty}(\Omega)$.

Exercice 1.3 Let V be a Hilbert space, let a(.,.) be a bilinear form defined from $V \times V$ into \mathbb{R} ; let l be a linear form defined from V into \mathbb{R} . Let j be the functional defined by: $j(u) = \frac{1}{2}a(u,u) - l(u)$. Show that:

$$j'(u)(v) \equiv j'(u) \cdot v = a(u, v) - l(v) \quad \forall u \in V, \ \forall v \in V$$
$$j''(u)(v, w) = a(v, w) \quad \forall u, v, w \in V$$

Recall. The functional j corresponds to the energy of the system: $a(u, v) = l(v) \forall v$.

Correction. The functional j(u) is quadratic (since it defined from the bilinear symmetric form a(.,.)). Therefore it is C^{∞} in V. Its derivatives are straightforward to calculate: $\forall u \in V, \ \forall v \in V$,

$$j'(u) \cdot v = \frac{1}{2}a(u,v) + \frac{1}{2}a(v,u) - l(v)$$

Hence the result. Next, $\forall w \in V$,

$$j''(u) \cdot (v, w) = a(v, w)$$

2 Linear forms & application of the Riez-Frechet theorem

The Riez-Frechet theorem provides a relationship between a Hilbert space H and its dual space H'. This result is very useful to handle PDE models in particular to linearize them (e.g. in view to implement the Newton-Raphson algorithm) and to derive the corresponding adjoint operator employed e.g. in variational data assimilation.

Notations.

Let H be a Hilbert space. Let L be an element of H', the dual of H. In the following, we denote: $\langle L, v \rangle_{H' \times H} \equiv L(v)$, $\forall v \in H$.

Exercice 2.1

- 1) Write the standard equation a(u,v) = l(v) for all v in $H = H^1(\Omega)$, in an equation which holds in H'.
- 2) Let L be a linear form defined from $H = L^2(\Omega)$ into \mathbb{R} . We set:

$$L(v) = \int_{\Omega} fv \ dx$$

with $f \in L^2(\Omega)$.

Apply the Riesz-Fréchet representation theorem to L. (We recall that $(L^2(\Omega))' = L^2(\Omega)$).

3) Let H be a subspace of $H^1(\Omega)$. Let a(.,.) be the form defined from $H \times H$ into \mathbb{R} by:

$$a(u,v) = \int_{\Omega} \lambda \nabla u \nabla v \ dx + \int_{\Omega} cu^{3} v \ dx$$

with λ and c given in $L^{\infty}(\Omega)$.

Apply the Riesz-Fréchet representation theorem to this case.

4) What can you note in the case c = 0 a.e. $\in \Omega$?

Correction.

2) The mapping $v \mapsto L(v)$ is indeed linear from $H = L^2(\Omega)$ into \mathbb{R} . In other words $L \in (L^2)' = L^2$ and $L(v) \equiv \langle L, v \rangle_{(L^2)' \times L^2}$, $\forall v \in L^2(\Omega)$. The Riesz-Fréchet representation theorem states that it exists an unique $f \in L^2(\Omega)$ such that:

$$< L, v>_{L^2 \times L^2} = (f, v)_{L^2}$$

Moreover: $||L||_{L^2} = ||f||_{L^2}$.

Moreover, let us recall that: $(f, v)_{L^2} = \int_{\Omega} f v dx$.

3) The mapping $v \mapsto a(u, v)$ is a linear form from H into \mathbb{R} .

This linear mapping defines an element $A(u) \in H'$ such that:

$$< A(u), v>_{H'\times H} = a(u, v) \quad \forall v \in H$$

The Riesz-Fréchet representation theorem states that it exists an unique $a_u \in H$ such that:

$$(a_u, v)_H = \langle A(u), v \rangle_{H' \times H}$$

Furthermore: $||A(u)||_{H'} = ||a_u||_H$.

4) Here, in addition the mapping $u \mapsto a(u,v)$ is linear. Therefore a(u,v) is a bilinear of $H \times H$ onto \mathbb{R} .

Compared to the previous case, the map $u \in H \mapsto A(u) \in H'$ is in addition linear.

Bilinear symmetric form case a(.,.)

Exercice 2.2 Let $H=L^2(\Omega)$. Let a(.,.) be the bilinear symmetric form defined on $H\times H$ by: $a(u,v)=\int_{\Omega}uvdx$.

Let l(.) be the linear form defined by: $l(v) = \int_{\Omega} fv dx$, with $f \in L^2(\Omega)$. We set:

$$j(u) = \frac{1}{2}a(u, u) - l(u)$$

Prove that:

$$j'(u) = (u - f)$$
 in $L^2(\Omega)$

Correction. First, let us recall that j(u) represents the system energy. Indeed, it has been previously shown that the unique solution of a(u,v) = l(v) for all v, minimizes the functional j(u) (see the course material on the INSA Moodle page).

The functional j is defined from H into \mathbb{R} therefore $j' \in L(H, \mathbb{R}) \equiv H' = L^2(\Omega)$. And $\forall \delta u \in H$,

$$j'(u) \cdot \delta u \equiv \langle j'(u), \delta u \rangle_{H' \times H} = a(u, \delta u) - l(\delta u) = \int_{\Omega} (u - f) \delta u \ dx = (u - f, \delta u)_{L^2}$$

In vertu of the Riesz-Frechet representation theorem, it follows that:

$$j'(u) \cdot \delta u = \langle (u - f), \delta u \rangle_{H' \times H}$$

Hence the result: j'(u) = (u - f) in $H' = (L^2)' = L^2$.

Comment: The gradient of the energy functional is nothing else than (u - f). This expression may be employed to numerically minimize the energy therefore obtaining the solution u^* of the "state" equation $a(u, v) = l(v) \ \forall v$.