P425/1 **PURE MATHEMATICS** PAPER 1 **EOT 1 2024** 3 hours **Uganda Advanced Certificate of Education PURE MATHEMATICS** Paper 1 3 hours INSTRUCTIONS TO CANDIDATES Answer all the eight questions in section A and five questions from section B. Any additional question (s) answered will **not** be marked. All working must be shown clearly. Begin each answer on a fresh sheet of paper. Silent non programmable scientific calculators and mathematical tables with a list of formulae may be used. Neat work is a must.

Turn over

SECTION A: (40 MARKS)

Answer all the questions in this section

1. Evaluate
$$\int_{-1}^{\frac{-1}{2}} \frac{4x+2}{(x^2+x-2)^4} dx$$
 (05 marks)

- 2. Solve for x in $\log_a x + 3 + \frac{1}{\log_x a} = 2 \log_a 2$ (05 marks)
- 3. The roots of the quadratic equation $x^2 bx + 2 = 0$ are α and β . Given that $\alpha = \sqrt{5} + \sqrt{3}$. Show that $b = 2\sqrt{5}$. Hence find the value of $\alpha^2 \beta^2$. (05 marks)
- **4.** Given that $y = 3^x$, find $\frac{d^2y}{dx^2}$ when x = -1 (05 marks)
- 5. If $\log 2$, $\log 2^x 1$ and $\log 2^x + 3$ are in an Arithmetic progression (A.P), Find the value of x. (05 marks)
- 6. Solve for y in $4sin^2y 12sin 2y + 35cos^2y = 0$. For $0^o \le y \le \frac{\pi}{2}$ (05 marks)
- 7. Find the area bounded by the curve $x = y^2 4$ and the y- axis. (05 marks)
- 8. Given that the plane 4x + 3y 3z 4 = 0
 - (a) Show that the point A (1, 1, 1) lies on the plane. (02 marks)
 - (b) Find the perpendicular distance from the plane to the point B (1, 5, 1). (03 marks)

SECTION B: (60 MARKS)

Answer any **five** questions from this section

- 9. (a) Prove by induction that $3^{2n+2} 8n 9$ is divisible by 64 for $n \ge 1$. (05 marks)
 - (b) The expression $6x^3 + 7x^2 + ax + b$ has a remainder of 72 when divided by x 2 and is exactly divisible by x + 1. Find the values of a and b. Show that 2x 1 is also a factor of the polynomial and obtain the third factor. (07 marks)
- 10. (a) Find the position vector of the point of intersection of the line x 2 = 2y + 1 = 3 z and the plane x + 2y + z = 3. (04 marks)
 - (b) Show that the position vectors $\mathbf{O}\mathbf{A} = 4\mathbf{i} 8\mathbf{j} 13\mathbf{k}$, $\mathbf{O}\mathbf{B} = 3\mathbf{i} 2\mathbf{j} 3\mathbf{k}$ and $\mathbf{O}\mathbf{C} = 3\mathbf{i} + \mathbf{j} 2\mathbf{k}$ are vertices of a triangle. (04 marks)
 - (c) Determine the Cartesian equation of the plane defined by the vector equation

$$r = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}. \tag{04 marks}$$

- 11. Given that $y = \frac{\sin x 2\sin 2x + \sin 3x}{\sin x + 2\sin 2x + \sin 3x}$
 - (i) Prove that $y + tan^2 15^o$ in the form $p + q\sqrt{r}$ where p, q and r. are integers
 - (ii) Hence find the value of x between 0^o and 360^o for which $2y + sec^2\left(\frac{x}{2}\right) = 0$ (12 marks)
- 12. Differentiate the following functions with respect to x
 - (a) $3x \ln x^2$
 - (b) $sin^3 2x$

(c)
$$e^{\tan x}$$
 (12 marks)

- 13. (a) Given that $y = \theta \cos \theta$ and $x = \sin \theta$, find $\frac{dy}{dx}$ when $\theta = 0^{\circ}$
 - (b) The curve $y = ax^2 + bx + c$ cuts the x-axis at -1 and 3 and also passes through the point (1, 12). Sketch the curve hence find the area enclosed by the curve and the x-axis

(12marks)

14. Given that
$$y = \frac{64x^2 - 148x + 78}{(4x - 5)^3}$$
, Express y into partial fractions hence find $\int_4^6 y \, dy$

(12 marks)

- 15. (a) The complex number has modulus 1 and argument 120°. Find the fourth root of z.
 - (b) If z is a complex number, describe and illustrate on the argand diagram the locus given by $\left|\frac{z+i}{z-2}\right| = 3$. (12 marks)
- 16. Evaluate (a) $\int_0^{\frac{\pi}{2}} \sin 2x \cos x \, dx$

(b)
$$\int \sqrt{(1-x^2)} dx$$

(12 marks)

END

The only way to learn mathematics is to do mathematics