Lesson Objectives

- 1. The Basics of a Logarithm
- 2. The Two "Special" Types of Logarithms
- 3. Basic Properties of Logarithms
- 4. Simplify (or evaluate) logarithms
- 5. Convert Between Exponential and Logarithmic (and vice-versa)
- 6. Solve Basic Logarithmic and Exponential Equations

A. The **Basics** of a Logarithm

Suppose we have the exponential equation: $2^x = 8$

We know the answer is x = 3.

 $(2^3 = 8)$

Because our variable is in the exponent, we _____ just use ____ to solve this equation:

NO, NO, NO!! Don't do this!! $\Rightarrow \Rightarrow \frac{2^x}{2} = \frac{8}{2}$

If you did, you would get x = 4. (incorrect) Division is used to undo multiplication, right?

But, we don't have multiplication; we have exponential.

BIG IDEA! To undo an exponential function, we need to use its inverse – the _____

A logarithm

is

log = _____

Since a logarithm is an exponent, then it must necessarily have a ______.

Logarithmic form (definition):

"Logarithm base b of x equals y"

 $log_{base}(value) = exponent$

Rewrite (or convert) to exponential form:

 $\log_h x = y$ means the same thing as

base exponent = value

BIG IDEA! _____ and ____ are interchangeable in meaning.

B. The Two "Special" Types of Logarithms

- 1. _____ logarithm base is ____, but not explicitly written. It is understood to be 10.

 If you see a logarithm written ____ a base, then the base is ____.
 - Examples: $\log x$ means $\log_{10}(x)$ $\log \frac{1}{100}$ means $\log_{10}\left(\frac{1}{100}\right)$
 - Calculator button is **LOG** (to the left of the **7** button)
 - This calculator button is **ONLY** for base **10**, the common logarithm!
- 2. _____ logarithm base is ____, but the logarithm is written as "___" not " \log_e ".
 - Examples: $\ln x$ means $\log_e(x)$ $\ln e^7$ means $\log_e(e^7)$
 - Calculator button is LN (to the left of the 4 button)
 - This calculator button is **ONLY** for base **e**, the natural logarithm!

C. Basic Properties of Logarithms

Recall **BIG IDEA!**: $\log_b x = y \iff b^y = x$ (these are interchangeable in meaning)

Here are some **Basic Logarithm Properties** to remember:

1.
$$\log_b 1 =$$
 because $b^0 = 1$ (Any base with ____ power is 1)

2.
$$\log_b b =$$
 because $b^1 = b$ (Any base to the power of ___ is the base itself)

3.
$$\log_b b^x =$$
 because $b^x = b^x$ (______ base b will undo _____ base b) (Logarithm base b will undo "big" base b)

4.
$$b^{\log_b x} =$$
 because $\log_b x = \log_b x$ (______ base b will undo _____ base b)
 $b^{\log_b x} =$ ("Big" base b will undo logarithm base b)

• **EXAMPLE:** Simplify the expression.
$$\log_5 1$$
 [5.4-18]

$$\log_5 1$$
 means _____ Property 1 Answer: $\log_5 1 =$ ____

• **EXAMPLE:** Evaluate the logarithm. $\ln 1$ [5.4-15] This is a natural logarithm (ln) – it has base e.

$$\ln 1$$
 or $\log_e 1$ means _____ Property 1 Answer: $\ln 1 = \log_e 1 = \underline{\hspace{1cm}}$

EXAMPLE: Evaluate the logarithm.

ln(e)

[5.4-14]

This is a natural logarithm (In) – it has base e.

ln e or log_e e means _____

Property 2 Answer: $ln(e) = log_e(e) =$

• **EXAMPLE:** Simplify the expression, if possible. $\log 10^{7.4}$

Notice that the base of the logarithm is not written – it is a common logarithm, base 10.

 $\log 10^{7.4} = \log_{10}(10^{7.4})$

(Logarithm base 10 will undo exponential base 10)

 $\log_{10}(10^{7.4})$

Property 3

Answer: $\log 10^{7.4} =$

• **EXAMPLE:** Simplify the expression, if possible. $\ln e^6$

This is a natural logarithm (In) – it has base e.

[5.4.29]

 $\ln e^6 = \log_e e^6$

(Logarithm base e will undo exponential base e)

 $\log_e e^6$

Property 3

Answer: $\ln e^6 =$

• **EXAMPLE:** Find the indicated value of the logarithmic function.

 $\log_{7}(7)^{4x}$

[5.4.23]

 $\log_7(7)^{4x}$

(Logarithm base 7 will undo exponential base 7)

 $\log_7(7)^{4x}$

Property 3

Answer: $\log_7(7)^{4x} =$

EXAMPLE: Simplify.

 $4\log_4(5)$

[5.4.25]

 $4\log_4(5)$

(Exponential base 4 will undo logarithm base 4)

 $4\log_4(5)$

Property 4

Answer: $4^{\log_4(5)} =$

D. Simplify (or Evaluate) Logarithms

EXAMPLE:

Find the logarithm $\log_5 \frac{1}{625}$

Put "= y" on the end of the expression:

 $\log_5 \frac{1}{625}$

Chant: "A logarithm

an exponent."

 $\log_5 \frac{1}{625}$ means: _____ or $5^y = \frac{1}{625}$

Since the value $\frac{1}{625}$ is a fraction, the exponent must be ______

625 is a power of 5, since $5 \cdot 5 \cdot 5 \cdot 5 = 625$, or $5^4 = 625$. So $\log_5 \frac{1}{625} =$

E. Convert between Exponential and Logarithmic (and vice-versa)

• **EXAMPLE:** Write in exponential form.

$$\log_{10} \frac{1}{1000000} = -6$$

[*Lial 10.3.19]

Chant:

$$\log_{10} \frac{1}{1000000}$$

$$=$$
 -6

What is the base? ____ What is the exponent? ____ put them together: _____

What is the "value"? _____

In exponential form:

• **EXAMPLE:** Write in exponential form.

$$\log_{15} 1 = 0$$

[*Lial 10.3-11]

Chant:

"A logarithm

an exponent." is

 log_{15} 1

0 =

base = ____, exponent = ____, value = ____

In exponential form:

EXAMPLE: Write in logarithmic form.

$$7^3 = 343$$

$$7^3 = 343$$

Chant:

"A logarithm is an exponent."

Setup:

 $log_{(base)}(value) = exponent$

In logarithmic form:

EXAMPLE: Write in logarithmic form.

$$10^{-5} = 0.00001$$

[*Lial 10.3-4]

$$10^{-5} = 0.00001$$

Chant:

"A logarithm is

an exponent."

Setup:

 $log_{(base)}(value) =$

exponent

In logarithmic form: _____

F. Solve Basic Logarithmic and Exponential Equations

Solve Basic Logarithmic E	nuations –	ISOI ATE and	convert to	EXPONENTIAL
Solve pasic Logaritimine E	Jualions –	130LATE allu	convert to	EXPONENTIAL

$$9\log(3x) = 27$$

[5.4.95]

$$\frac{9\log(3x)}{2} = \frac{27}{3}$$

(log has base)

Chant: "A logarithm is an exponent."

the
$$log_{10}(3x) = 3$$
 to exponential form with base 10.

$$10^3 = 3x$$

Divide both sides by 3 and simplify.

$$\frac{1000}{1000} = \frac{3x}{1000}$$

 $3 \ln(4x) = 21$

$$x = \underline{\hspace{1cm}}$$

 $\frac{3\ln(4x)}{2} = \frac{21}{2}$ First, the logarithm. Divide by 3.

(In means base)

(It is stuck inside the logarithm.)

Chant: "A logarithm is an exponent."

the $\log_e(4x) = 7$ to exponential form with base e.

Divide both sides by 4 and simplify.

Leave as exact answer with
$$e$$
 – do not _____. ANSWER: $\chi = \frac{e^7}{4}$ or _____

Answer is **NOT**: x =_____ (the divide 4 is _____ part of the exponent!)

• **EXAMPLE:** Solve the equation.

$$4 - 2 \log_3 x = 2$$

[5.4.10]

First, **ISOLATE** the logarithm. Subtract 4 both sides. $4 - 2 \log_3 x = 2$

 $(do ___ do 4 - 2 = 2 at beginning!)$

Combine like terms and simplify.

Divide both sides by – 2

_____ = ___

Simplify.

Chant:

"A logarithm is an exponent."

the $\log_3 x = 1$ to exponential form with base 3.

Simplify.

ANSWER:

- Solve Basic Exponential Equations ISOLATE and convert to LOGARITHM
- **EXAMPLE:** Solve the equation. Use the change of base formula as appropriate.

$$3(10^{2x}) = 17$$

[5.4.73]

(Type an integer or decimal rounded to the nearest hundredth as needed.)

First, _____ the exponential. Divide by 3.

$$3(10^{2x}) = 17$$

Simplify. Do NOT round $\frac{17}{3}$. Leave as ______ to the end!

$$\frac{3(10^{2x})}{10^{2x}} = \frac{17}{10^{2x}}$$

Update the equation.

Do _____ divide by the 2 yet. It's stuck in the exponential.

$$10^{2x} = \frac{17}{3}$$

Chant: "A logarithm

is an exponent."

the exponential $10^{2x} = \frac{17}{3}$ to a logarithm base 10.

· _____

Divide both sides by 2 and simplify.

$$\frac{\log\left(\frac{17}{3}\right)}{2} = \frac{2x}{3}$$

Simplify. Use calculator to round to hundredth.

$$\chi = \frac{\log\left(\frac{17}{3}\right)}{2} \approx \underline{\hspace{1cm}}$$

A logarithm base e is same as natural logarithm (____) $\ln\left(\frac{3}{5}\right) = x$ $\ln(3/5)$

Use calculator to get answer rounded to 4 decimal places.

Answer:

• **EXAMPLE:** Solve the equation for x. $e^{-x} = 258$ [5.4-26] (Type an integer or decimal rounded to the nearest hundredth as needed.)

Do ____ divide by – 1 yet. (It's stuck in the exponential.) $e^{-1x}=258$ No need to ISOLATE the exponential – it's already there!

$$e^{-1x} = 258$$

Chant: "A logarithm is an exponent." the exponential $e^{-\mathbf{1}x}=258$ to a logarithm base e.

A logarithm base *e* is same as natural logarithm ()

 $\ln{(258)} - 1x$

Divide by the -1 both sides and simplify.

 $x = -\ln (258)$ is "_____" answer Use calculator to round

INCORRECT: x =In(-258)

Error

Error

That would be

.

-1n(258) -5.552959585

In general, you **cannot** take logarithm of zero or negative. Only $log_h(\underline{\hspace{1cm}})$ works!

Answer:

Sources Used:

- 1. MyLab Math for Algebra for College Students, 8th Edition, Lial, Pearson Education Inc.
- 2. MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.