SSI1 – Fundamentos da Computação - Exemplo Prova 3 Parte 1 (questões 1 a 12 = 7 pontos)

Responda às questões considerando o computador hipotético Ramses. Nos exercícios 1 a 10 mostre obrigatoriamente o que cada instrução executa, considerando o mapa de memória mostrado abaixo.

Obs.: estes valores devem ser considerados apenas para os exercícios 1 a 10.

Posição	Valor
30	35
31	36
32	34
33	8
34	16
35	32

Nos exercícios 1 a 10, indique qual o valor da posição de memória 35 após a execução de cada um dos programas abaixo. Mostre obrigatoriamente o resultado de cada instrução executada:

```
1)
LDR A 31 | A=MEM[31] = 36
LDR B 34 | B=MEM[34] = 16
ADD B 33 | B=B+MEM[33] = 16+8 = 24
STR A 35 | MEM[35]=A = 36 <<< Resposta
HLT
2)
LDR A 31 | A=MEM[31] A=36
LDR A 33 | A=MEM[33] A=8
LDR B 34 | B=MEM[34] B=16
STR A 35 | MEM[35]=A = 8
                           <<< Resposta
HLT
3)
          | A=MEM[30] A=35
LDR A 30
ADD A #30 \mid A=A+30 = 35+30 = 65
STR A 35 | MEM[35]=A = 65 <<< Resposta
HLT
4)
            | A=MEM[32] A=34
LDR A 32
ADD A 32, i \mid A=A+16 = 34+16 = 50
STR A 35
                               <<< Resposta
          | MEM[35] = A = 50
HLT
5)
LDR A 32 | A=MEM[32] A=34
SUB A 30 | A=A-MEM[30] = 34-35 = -1
STR A 35 | MEM[35]=A = -1 <<< Resposta
HLT
```

```
6)
LDR A 30 | A=MEM[30] A=35
SUB A 33 | A=A-MEM[33] A=35-8 = 27
STR A 35 | MEM[35]=A = 27 <<< Resposta
HLT
LDR A 32 | A=MEM[32] A=34
SUB A #30 | A=A-30 A=34-30 A=4
STR A 35 | MEM[35]=A = 4 <<< Resposta
HLT
8)
LDR A #31 | A=31
SUB A 30, i | A=A-32 A=31-32 A=-1
STR A 35 | MEM[35] = A = -1 <<< Resposta
HLT
9)
LDR A 30 | A=MEM[30] A=35
STR A 35 | MEM[35]=A = 35
LDR B 30 | B=MEM[30] B=35
ADD A 32 | A=A+MEM[32] =35+34 =69
STR A 34 | MEM[34]=A = 69
ADD B 33 | B=B+MEM[33] = 35+8 = 43
ADD B 34 | B=B+MEM[34] = 43+69 = 112
ADD A 30 | A=A+MEM[30] = 69+35=104
STR B 35 | MEM[35]=B = 112 <<< Resposta
HLT
10)
  LDR B 30 | B=MEM[30] B=35
2 LDR A 33 | A=MEM[33] A=8
4 SUB A 32 | A=A-MEM[32] A=8-34 A=-26
6 JN 10
        | SALTA PARA POS 10.
8 ADD B 31 <<<<< NÃO EXECUTOU
10 ADD B 32 | B=B+MEM[32] B=35+34 B=69
12 LDR A 32 | A=MEM[32] A=34
14 SUB A 35 | A=A-MEM[35] A=34-32 A=2
16 JN 20 | NÃO SALTA PARA 20
18 ADD B 33 | B=B+MEM[33] B=69+8 = 77
20 ADD B 34 | B=B+MEM[34] B=77+16 = 93
24 HLT
```

11) Mostre em código de máquina (binário, decimal ou hexadecimal) como fica a tradução do seguinte trecho de programa:

Desenvolvimen	to da questão:	Resposta final:
NEG A	11010000	11010000 00101010
LDR X #10	00101010	00001010
	00001010	10000000
		00010100
JMP 20	1000000	11110000
	00010100	01110001
		00011110
HLT	11110000	
SUB A 30, i	01110001	
	00011110	

12) A memória abaixo representa as instruções, em linguagem de máquina, de um programa do Ramses. Faça a tradução para o assembly do Ramses.

Desenvolvimento:

Posição	Valor		
0	00100110	LDR B #10	
1	00001010		
2	01101000	NOT X	
3	00110100	ADD B 7	
4	00000111		
5	10000000	JMP 8	
6	00001000		
7	00110100	ADD B 4	
8	00000100		
9	00010100	STR B 11	
10	00001011		
11	11111111	HLT	

Resposta Final:

LDR B #10 NOT X ADD B 7 JMP 8 ADD B 4 STR B 11 HLT