ECOCHAIN: HARNESSING DATA SCIENCE TO MINIMIZE CARBON FOOTPRINT IN SUPPLY CHAINS

Dr. Radhakrishnan P
Professor
Department of Electronics and Communication
Engineering
Tagore Engineering College

ABSTRACT

This study introduces a sophisticated *data-driven* system tailored for optimizing carbon emissions within industrial operations, with a specific emphasis on supply chain management. Leveraging *advanced machine learning methodologies*—namely *decision trees and random forests*—the system meticulously evaluates CO2 equivalent (CO2e) contributions originating from various production components. Key functionalities encompass *meticulous data pre-processing* to calculate precise CO2e values, *robust assessment of feature importance* to pinpoint pivotal contributors, and the *formulation of actionable recommendations*.

The adopted machine learning algorithms offer distinct advantages: *decision trees* excel in elucidating complex relationships among production variables, while *random forests* enhance predictive accuracy by aggregating multiple decision trees. These attributes enable the system to deliver nuanced insights into carbon emissions dynamics within supply chains.

Recommendations stemming from the analysis advocate for **strategic measures**, thereby empowering organizations in the supply chain domain, this system aims to foster substantial **reductions** in **environmental impact** while **bolstering operational resilience** and **adherence to sustainability goals**.