Glossary of Linear Algebra Terms

Basis (for a subspace)

A linearly independent set of vectors that spans the space

Basic Variable

A variable in a linear system that corresponds to a pivot column in the coefficient matrix.

Column Space

The span of the columns of a matrix. For an mxn matrix A, $Col(A) = {\vec{y}: \vec{y} = A\vec{x} \ for \ some \ \vec{x} \in \mathbb{R}^n}$

Consistent linear system

A linear system with at least one solution.

<u>Determinant</u> (of a square matrix A)

The number det(A) defined inductively by a cofactor expansion along any row or column of A. Also, $(-1)^r$ times the product of the diagonal entries in any echelon form U obtained from A by row replacements and r row interchanges (but no scaling). If det(A)=0, A is a singular matrix (not invertible).

Diagonal Matrix

A square matrix whose entries NOT on the diagonal are all zero.

Diagonalizable Matrix

A matrix that is similar to a diagonal matrix.

That is, if A is similar to diagonal matrix D, we can write $A = PDP^{-1}$ where D is diagonal and P is an invertible matrix whose columns are eigenvectors of A.

Dimension (of a vector space V)

The number of vectors in a basis for V. The dimension of the zero space is 0.

Domain (of a transformation T)

The set of all vectors for which $T(\vec{x})$ is defined, i.e. the inputs to the transformation.

Dot Product (also Inner Product or Scalar Product)

The scalar $\vec{u}^T \vec{v}$, usually written $\vec{u} \cdot \vec{v}$, defined as the sum of the products of corresponding components of the vectors.

Echelon Matrix

A rectangular matrix with three properties:

- (1) All nonzero rows are above each row of zeros.
- (2) The leading entry in each row is in a column to the right of any leading entry in a row above it.
- (3) All entries in a column below a leading entry are 0.

Eigenspace (of A corresponding to λ)

The set of all solutions to $A\vec{x} = \lambda \vec{x}$, where λ is an eigenvalue of A.

Eigenvalue (of A)

A scalar λ such that the equation $A\vec{x} = \lambda \vec{x}$ has a solution for some nonzero vector \vec{x} . Found by solving the characteristic equation $\det(A - \lambda I) = 0$.

Eigenvector (of A)

A nonzero vector \vec{x} , such that $A\vec{x} = \lambda \vec{x}$ for some scalar λ . Eigenvectors are in the null space of $(A - \lambda I)$.

Elementary Matrix

An invertible matrix that results by performing one elementary row operation on an identity matrix.

Elementary Row Operation

- (1) Replace one row by the sum itself and another row.
- (2) Switch two rows.
- (3) Multiply all entries in a row by a constant.

Free Variable

A variable in a linear system that does not correspond to a pivot column.

Gaussian Elimination (row reduction)

A systematic method using elementary row operations that reduces a matrix to echelon form or reduced echelon form.

General Solution (of a linear system)

A parametric description of a solution set that expresses the basic variables in terms of the free variables (the parameters).

Gram-Schmidt Process

An algorithm for producing an orthogonal basis for a subspace that is spanned by a given set of vectors.

Homogeneous Equation

An equation of the form $A\vec{x} = \vec{0}$, possibly written as a system of linear equations.

Identity Matrix (denoted by I or I_n)

A square matrix with ones of the diagonal and zeros elsewhere.

Image (of a vector \vec{x} under a transformation T)

The vector $T(\vec{x})$ assigned to \vec{x} by T. The set of all the images is called the Range of T.

Inconsistent Linear System

A linear system with no solution.

Inner Product (also Dot Product)

A function on a vector space that assigns to each pair of vectors \vec{u} and \vec{v} a number $\langle \vec{u}, \vec{v} \rangle$.

Inverse (of an nxn matrix A)

An nxn matrix A^{-1} such that $AA^{-1}=A^{-1}A=I_n$.

Isomorphism

A one-to-one linear mapping from one vector space onto another.

Kernel (of a linear transformation T:V→W)

The set of \vec{x} in V such that $T(\vec{x}) = \vec{0}$. Also see Null Space.

Length (or Norm or Magnitude) of a vector \vec{v} .

The scalar $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$

Linear Combination.

A sum of scalar multiples of vectors. The scalars are called the weights.

Linear Equation

An equation that can be written in the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$.

<u>Linear Dependence</u> (of vectors)

For a set of vectors $\{\vec{v}_1, \cdots, \vec{v}_n\}$, if the equation $c_1\vec{v}_1 + \cdots + c_n\vec{v}_n = \vec{0}$ has non-trivial solutions then the set of vectors is dependent.

If the equation $c_1\vec{v}_1+\cdots c_n\vec{v}_n=\vec{0}$ has only the trivial solution then the set of vectors is independent.

The trivial solution is $c_1 = c_2 = \cdots 0$.

<u>Linear Transformation</u> T (from vector space V to vector space W)

A rule T that to each vector \vec{x} in V assigns a unique vector $T(\vec{x})$ in W, such that:

- (1) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u}, \vec{v} in V.
- (2) $T(\vec{u}) = cT(\vec{u})$ for all \vec{u} in V and all scalars c.

Magnitude (or Length or Norm) of a vector \vec{v}

The scalar $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$

Nonhomogeneous equation

An equation of the form $A\vec{x} = \vec{b}$ with $\vec{b} \neq \vec{0}$.

Nonsingular (matrix)

An invertible matrix.

Nontrivial solution

A nonzero solution of a homogeneous equation.

Norm (or Length or Magnitude) of a vector \vec{v}

The scalar $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$

Normalizing (of a vector \vec{v})

The process of creating a unit vector $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$

Null Space (of an mxn matrix A)

The set Nul(A) of all solutions to the homogeneous equation $A\vec{x} = \vec{0}$.

One-To-One (mapping)

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each \vec{b} in \mathbb{R}^m is the image of at most one \vec{x} in \mathbb{R}^n .

Onto (mapping)

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each \vec{b} in \mathbb{R}^m is the image of at least one \vec{x} in \mathbb{R}^n .

Origin

The zero vector.

Orthogonal (set of vectors)

A set S of vectors such that $\vec{u} \cdot \vec{v} = 0$ for each distinct pair of vectors in S.

Orthonormal (set of vectors)

A orthogonal set of unit vectors.

Overdetermined System

A system of equations with more equations than unknowns.

Parametric Equation of a Line

An equation of the form $\vec{x} = \vec{p} + t\vec{v}$, where t is a parameter. You can think of this as a line that goes through "point" \vec{p} with "slope" \vec{v} .

Pivot Column

A column that contains a pivot position.

Pivot Position

A position that will contain a leading entry when the matrix is reduced to echelon form.

Range (of a linear transformation T)

The set of all vectors of the form $T(\vec{x})$ for some \vec{x} in the domain of T.

Rank (of a matrix A)

The dimension of the column space of A, denoted by Rank(A).

Reduced Echelon Matrix

A rectangular matrix in echelon form that also has the following properties:

The leading entry in each nonzero row is 1, and each leading 1 is the only nonzero entry in its column

Row Equivalent (matrices)

Two matrices for which there exists a (finite) sequence of row operations that transforms one matrix into the other.

Scalar

A (real) number used to multiply a vector or matrix.

Similar (matrices)

Matrices A and B such that $P^{-1}AP=B$ (or $A=PBP^{-1}$) for some invertible matrix P.

Singular (matrix)

A square matrix that has no inverse.

Span $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_n}\}$

The set of all linear combinations of $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$.

Standard Basis

For \mathbb{R}^n : the basis $\mathcal{E} = \{\vec{e}_1, \dots, \vec{e}_n\}$, consisting of the columns of the nxn identity matrix. For \mathbb{P}_n : the basis $\{1, t, \dots, t^n\}$.

Standard Matrix (for a linear transformation T)

The matrix A such that $T(\vec{x}) = A\vec{x}$ for all \vec{x} in the domain of T.

Subspace

A subset H of a vector space V such that H is itself a vector space under the operations of vector addition and scalar multiplication defined on V.

Symmetric Matrix

A matrix A such that $A^T = A$.

Trace (of a square matrix A)

The sum of the diagonal entries in A, denoted by tr(A).

Transformation (or Function or Mapping) T from \mathbb{R}^n to \mathbb{R}^m .

A rule that assigns to each vector \vec{x} in \mathbb{R}^n a unique vector $T(\vec{x})$ in \mathbb{R}^m .

Transpose (of matrix A)

An nxm matrix A^T whose columns are the corresponding rows of the mxn matrix A.

Trivial Solution

The solution $\vec{x} = \vec{0}$ of a homogeneous equation $A\vec{x} = \vec{0}$.

Underdetermined System

A system of equations with fewer equations than unknowns.

Unit Vector

A vector \vec{v} such that $||\vec{v}|| = 1$.

Vector

A list of numbers; a matrix with only one column; any element of a vector space.

Vector Space

A set of objects, called vectors, on which two operations are defined, called addition and multiplication by scalars (real numbers). Ten axioms must be satisfied.

Weights

The scalars used in a linear combination.

Zero Subspace

The subspace $\{\vec{0}\}$ consisting of only the zero vector.

7ero Vector

The unique vector, denoted by $\vec{0}$, such that $\vec{u} + \vec{0} = \vec{u}$ for all \vec{u} . In \mathbb{R}^n , $\vec{0}$ is the vector whose entries are all zero.