Classificação de células tumorais em imagens histopatológicas utilizando Deep Learning

Breno C. Zukowski¹, Lucas B. Figueira¹

¹Faculdade de Tecnologia de Ribeirão Preto - (FATEC) Ribeirão Preto, SP – Brasil

breno.marques@fatec.sp.gov.br, lucas.figueira@fatec.sp.gov.br

Abstract. Diagnosing breast cancer can be challenging and laborious even for well-trained professionals. Inexperienced physicians and disagreement among histopathologists are primary causes of misdiagnosis that compromise patient care. With computational decision support systems using deep learning, it is possible to guarantee better results for this process. This article demonstrates the use of a deep learning model that uses YOLOv5 to compare the efficiency of a machine versus a pathologist in identifying tumor cells.

Resumo. O diagnóstico de câncer de mama pode ser desafiador e laborioso mesmo para profissionais bem treinados. Médicos inexperientes e discordância entre histopatologistas são causadores primários de diagnósticos errôneos que comprometem o tratamento de pacientes. Com sistemas computacionais de apoio a decisão utilizando deep learning, é possível garantir melhores resultados para este processo. Este artigo demonstra a utilização de um modelo de aprendizagem profunda que utiliza YOLOv5 para comparar a eficiência de uma máquina em relação a um patologista na identificação de células tumorais.

1. Introdução

O câncer de mama é a mais recorrente neoplasia maligna em mulheres ao redor do mundo. Apenas em 2020 foram realizados 2,3 milhões de diagnósticos e 685.000 mortes foram registradas (WHO, 2021). No Brasil, o cenário é similar: no mesmo ano a ordem de incidência estava prevista para cerca de 600.000 casos (INCA, 2018). A análise de imagens histológicas está entre os mais utilizados métodos de diagnóstico da atualidade. Porém, existem deficiências associadas ao método provenientes do trabalho humano desenvolvido para realizá-lo. Falhas estas, que podem levar a diagnósticos errados e agravamento do quadro de saúde do paciente em decorrência da falta de tratamento imediato. Mesmo quando bem sucedidos, a análise humana demanda uma grande carga de esforço e tempo que poderiam ser mitigados com auxílio de visão computacional e deep learning.

Segundo Tiezzi, Plotze e Figueira (2020), uma série de fatores podem ser descritos como métodos de predição de prognóstico, sendo atualmente utilizados no contexto clínico para determinação de tratamento, em especial para utilização de drogas antine-oplásicas. Dentre eles destacam-se critérios clínicos, histológicos e utilização de marcadores tumorais. Abordando o critério histológico, temos o grau de diferenciação tumoral, baseado no sistema de escore de Nottingham (NGS), que, apesar de ser considerado um potente método de predição, recebe críticas em relação à sua baixa reprodutibilidade, provavelmente devido ao seu caráter subjetivo e processamento pré-analítico da amostra.

Dessa forma, gera ampla discordância entre histologistas que o aplicam, o que impacta diretamente no prognóstico do paciente e na decisão clínica de administrar ou não a quimioterapia sistêmica (TIEZZI; PLOTZE; FIGUEIRA, 2020). Alternativas de métodos com biologia molecular vêm sendo propostas para inferir com maior acurácia o estágio de agressividade da doença de forma a evitar desvios de diagnóstico. Entretanto, essas são técnicas de alto custo, inviáveis em muitas situações, principalmente em países subdesenvolvidos.

Atualmente, as técnicas de aprendizado de máquina vêm ganhando espaço em diversas áreas e aplicações. Na medicina, já são importantes métodos de auxílio ao diagnóstico de imagens radiológicas (HU et al., 2018). Diversos modelos computacionais têm sido desenvolvidos nos últimos anos utilizando a metodologia deep learning para concretizar sistemas de apoio ao diagnóstico. Grupos de pesquisa ao redor do mundo têm desenvolvido soluções de aprendizado de máquina utilizando técnicas diversas de deep learning, que, apesar de rápidas e geralmente acuradas, apenas oferecem mapas de calor e pontos de atenção, informações insuficientes para interpretação concreta e justificação do diagnóstico oferecido pela máquina, o que não é adequado para sistemas de apoio à decisão médica (LI et al., 2021).

Vê-se, portanto, nas CNNs (do inglês, Convolutional Neural Network) uma solução viável para análise de recortes específicos de tecido com a quantidade de informação e assertividade adequadas para auxílio ao diagnóstico médico. Pois a partir delas é possível segmentar e classificar regiões de interesse com as informações necessárias para evidenciar a presença de tumores malignos com eficiência.

O presente artigo propõe um modelo de aprendizagem profunda para a segmentação de áreas de interesse e posterior classificação de imagens histológicas visando apoiar o diagnóstico de câncer de mama.

2. Revisão bibliográfica

2.1. Introdução

Para justificar sua utilização é primeiro importante entender os conceitos que embasam as CNN's (do inglês, *Convolutional Neural Networks*), algoritmos de aprendizagem profunda especializados em processamento e classificação de imagens. Segundo (GOOD-FELLOW; BENGIO; COURVILLE, 2016) redes neurais convolucionais são um tipo especializado de rede neural para processamento de dados organizados topologicamente em grades, que através de operações matemáticas chamadas convoluções, são capazes de extrair características principais das entradas utilizando filtros (kernels), garantindo eficiência e redução de custos computacionais para a classificação.

Diferentemente de outros tipos de dados, imagens possuem a propriedade de *invariância de tradução* (AGGARWAL, 2018), ou seja, transmitem a mesma informação sobre o objeto independentemente das variações do contexto. No entanto, existem características espaciais, de luz, sombra, perspectiva, cenário, entre outras variáveis, que alteram significantemente a matriz de pixels que constituem a imagem do objeto de estudo. Enquanto para um ser humano distinguir um objeto qualquer no espaço independente da posição, incidência de luz ou cenário em que este se encontra seja uma tarefa trivial, para um computador esta tem um custo elevado de execução. Sendo assim, é necessário que se

utilize de técnicas que permitam a extração de características mais objetivas e com dados relevantes para a análise, evitando imprecisões que não contribuem para a classificação do objeto desejado.

Em geral, uma CNN apenas difere de uma rede neural densa totalmente conectada por apresentar camadas destinadas ao processamento das imagens que serão analisadas. Apresentando camadas de convolução, ativação, pooling, tal como apresentado na Figura 1 para finalmente enviar esses dados para uma rede neural densa que fará a classificação.

Figura 1. O fluxo básico de uma CNN e suas diversas camadas. Fonte: Introduction to Convolutional Neural Networks (CNN). Disponível em: https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/

2.2. Convolução

Em aplicações de aprendizagem de máquina a convolução é comumente interpretada como uma operação entre a imagem I e o kernel K, matrizes multidimensionais que ao serem convolucionadas resultarão em uma nova matriz que chamamos de *feature map* ou mapa de características. Quando tomamos por exemplo uma convolução de matrizes bidimensionais temos de levar em consideração certas propriedades matemáticas que não se traduzem bem para cenários práticos de aprendizagem profunda. Dessa forma, muitos *frameworks* de redes neurais implementam uma função similar chamada correlação cruzada (cross-correlation), que é em suma a mesma operação sem a rotação do kernel. Sendo definida pela seguinte função:

$$S(i,j) = (I*K)(i,j) = \sum_m \sum_n I(i+m,j+n)K(m,n)$$

Em termos gerais, basta que multiplique-se os valores das posições equivalentes do kernel nas coordenadas da imagem analisada, posteriormente soma-se todos os resultados para que se obtenha um valor único na posição definida (i,j) do *feature map*. É possível visualizar este processo com clareza na Figura 2.

O kernel é constituído por parâmetros que filtram certas características desejadas do *input*, uma rede neural convolucional pode apresentar diversas camadas de convolução para extração de características diferentes. As primeiras camadas em geral extraem características mais gerais, como bordas e contornos, enquanto as camadas posteriores extraem características mais específicas e abstratas.

Figura 2. O processo de convolução sem rotação explicado graficamente. Imagem retirada do livro *Deep Learning* (GOODFELLOW; BENGIO; COURVILLE, 2016). Onde é possível perceber que o output é restringido apenas as posições compreendidas dentro da imagem por todos os parâmetros do kernel. São desenhadas caixas para indicar as saídas referentes a multiplicação e somatório das posições equivalentes do kernel à imagem.

2.3. Pooling

Apesar da efetividade de destaque de características provenientes da técnica de convolução, o *feature map* ainda destaca demasiadamente informações sobre localização espacial das *features* na saída, gerando uma variável extra a ser analisada (característica e posição) que prejudica a invariância de tradução da imagem. É mais relevante em geral para o modelo, compreender que a característica desejada está presente no objeto, do que sua posição especificamente (GOODFELLOW; BENGIO; COURVILLE, 2016). Portanto, em um fluxo comum de CNN é necessário que após o processo de convolução e aplicação da função de ativação (transformação não linear realizada ao longo do sinal de entrada), seja realizada uma operação que permita suavizar a saída classificada. A esta técnica damos o nome de *pooling*.

A camada de *pooling* substitui a saída do *feature map* por uma estatística aproximada das informações desejadas para a rede neural densa, garantindo uma aproximação

de invariância que permite melhores resultados para as operações realizadas nesse conjunto de dados (GOODFELLOW; BENGIO; COURVILLE, 2016).

Existem diversas funções de *pooling*, as duas mais comuns são: *Average Pooling* e *Max Pooling*. Seus respectivos algoritmos tem propósitos distintos, entretanto ambos cumprem o papel de filtrar o *feature map* de tal forma a reduzir a dimensionalidade da imagem e destacar características principais a serem processadas pela rede neural densa. Gerando um novo mapa de características que chamamos de *pooled feature map*.

2.4. Detecção unificada de objetos em tempo real com YOLO

Com a proposta de ser um classificador de objetos de alta performance, YOLO propõe uma abordagem diferente de outros modelos prévios a ele entregando velocidade e acurácia com custo computacional reduzido, além de uma arquitetura escalável.

Segundo Redmon et al. (2015) alternativas conhecidas de classificadores como R-CNN's (*Regions with Convolutional Neural Networks*) utilizam métodos para primeiro gerar potenciais caixas delimitadoras em uma imagem e posteriormente rodar um classificador para as áreas segmentadas. Após as classificações, é aplicado ainda pósprocessamento para refinar as delimitações, eliminar duplicações e possíveis imprecisões. Esse tipo de modelo, devido a sua complexidade, torna-se lento e de difícil otimização pois cada componente individual deve ser treinado separadamente.

3. Métodos

O processo de desenvolvimento do modelo iniciou-se com a seleção de imagens de cortes histopatológicos do banco TCGA (https://portal.gdc.cancer.gov/projects/TCGA-BRCA), dataset este que possui informações clínicas e histopatológicas de 1098 pacientes com câncer de mama e suas respectivas imagens histológica (TIEZZI; PLOTZE; FIGUEIRA, 2020).

Posteriormente, como é requisitado pela documentação oficial do YOLOv5 (JOCHER et al., 2022) em sua arquitetura, os tumores presentes em cada imagem que participaria do sub-conjunto de treino foram anotados para que sejam reconhecidos pelo modelo com a ferramenta *LabelImg* (TZUTALIN, 2015) que é capaz de anotar caixas delimitadoras com coordenadas em formato adequado para serem reconhecidas pela implementação escolhida.

Referências

AGGARWAL, C. C. *Neural Networks and Deep Learning*: A textbook. Cham: Springer, 2018. 497 p. ISBN 978-3-319-94462-3.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. *Deep Learning*. [S.l.]: MIT Press, 2016. (http://www.deeplearningbook.org).

HU, Z. et al. Deep learning for image-based cancer detection and diagnosis - a survey. *Pattern Recognition*, v. 83, p. 134–149, 2018. ISSN 0031-3203.

INCA. *INCA estima que haverá cerca de 600 mil casos novos de câncer em 2018*. 2018. Acessado em 05 de Fev. de 2022. Disponível em: (https://www.inca.gov.br/imprensa/inca-estima-que-havera-cerca-de-600-mil-casos-novos-de-cancer-em-2018).

- JOCHER, G. et al. *ultralytics/yolov5:* v6.2 YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations. Zenodo, 2022. Disponível em: (https://doi.org/10.5281/zenodo.7002879).
- LI, B. et al. Classifying breast histopathology images with a ductal instance-oriented pipeline. In: IEEE. 2020 25th International Conference on Pattern Recognition (ICPR). [S.l.], 2021. p. 8727–8734.
- REDMON, J. et al. You only look once: Unified, real-time object detection. *CoRR*, abs/1506.02640, 2015. Disponível em: (http://arxiv.org/abs/1506.02640).
- TIEZZI, D. G.; PLOTZE, R.; FIGUEIRA, L. B. Deep learning como sistema de auxílio diagnóstico e classificação do câncer de mama. *I Workshop de Tecnologia da Fatec Ribeirão Preto*, v. 1, n. 1, 2020.
- TZUTALIN. *LabelImg*. 2015. Free Software: MIT License. Disponível em: \(https://github.com/tzutalin/labelImg \).
- WHO. *Breast cancer*. 2021. Acessado em 05 de Fev. de 2022. Disponível em: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.