Regression methods "Data Science for Geosciences" Toulouse, January 28, 2020

Pierre Tandeo

IMT Atlantique, Brest, France pierre.tandeo@imt-atlantique.fr

Why is it called "regression"?

- Introduced by Legendre in 1805
- Named "method of least squares" by Gauss in 1809

- Used by Galton in 1877 (Nature) as "reversion"
- Finally named "regression toward the mean"
 by Galton in 1885

Good references

- Methodology:
 - Wasserman 2013:
 - statistics/probability point of view
 - rigorous
 - Hastie et al. 2009:
 - machine learning point of view
 - exhaustive (also clustering, classification)

- Methods/Applications:
 - Wilks 2011:
 - for climate data
 - physical point of view
 - Cressie and Wikle 2011:
 - some applications in climate
 - focus on spatio-temporal models

Notations

- y vector (here univariate):
 - continuous variable
 - "response variable" [stat]
 - o "output variable" [ML]
- X matrix (here multivariate):
 - continuous or discrete variables
 - "covariates" or "predictors" [stat]
 - "features" or "input variables "[ML]

$$\mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix} \quad \mathbf{X} = egin{bmatrix} x_{1,1} & \dots & x_{1,p} \ dots & dots \ x_{n,1} & \dots & x_{n,p} \end{bmatrix}$$

- Regression model:
 - o "transfer function" f
 - beta "parameters" [stat] or "coefficients" [ML]
 - o independent additive Gaussian errors epsilon

Specificity of geophysical data

 Nonlinear, chaotic, underlying hidden processes, etc...

 Organized in space and time, governed by physical/biological laws, high dimensional, etc...

Sea surface temperature evolution

Regressions for spatio-temporal processes

- Temporal process:
 - o process evolving in time
 - the input (X) and output (y) are the same variable at different times
 - o example is AR(p) process

$y_t = \sum_{i=1}^p \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq j \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p \\ 0 \leq p}} \theta_i y_{t-i} + \sum_{\substack{0 \leq j \leq p}}$

- Spatial process:
 - process evolving in space
 - the input (X) and output (y) are the same variables at different locations
 - example of kriging

Linear methods (linear regression)

Find the beta that minimizes the cost function:

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{i,j}
ight)^2$$

Analytic solution:

$$\widehat{eta} = \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{X}^{ op}\mathbf{y}$$

Predictions given by:

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{eta}$$

Linear methods (data and models)

Simulated data:

$$y = sin(x) + \epsilon$$
,

with $\epsilon \sim \mathcal{N}\left(0,(1/4)^2
ight)$ • Simple linear regression:

$$y = \beta_0 + \beta_1 x$$

• Multiple linear regression (polynomial):

$$y=eta_0+\sum_{j=1}^{15}eta_jx^j$$

Linear methods (issues: least squares parameters)

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_1	1 0
model_pow_1	3.3	2	-0.62	NaN	NaN	NaN	NaN	NaN		-	N	NaN	NaN	N
model_pow_2	3.3	1.9	-0.58	-0.006	NaN	NaN	NaN	INain	ternanc		V	NaN	NaN	N
model_pow_3	1.1	-1.1	3	-1.3	0.14	NaN	NaN	IVaIN	sitive/n	•	9 1	NaN	NaN	1
model_pow_4	1.1	-0.27	1.7	-0.53	-0.036	0.014	NaN	_{NaN} pa	ramete	ers	٧	NaN	NaN	1
model_pow_5	1	3	-5.1	4.7	-1.9	0.33	0.021	NaN	NaN	NaN	NaN	NaN	NaN	N
model_pow_6	0.99	-2.8	9.5	-9.7	5.2	-1.6	0.23	-0.014	NaN	NaN	NaN	NaN	NaN	N
model_pow_7	0.93	19	-56	69	-45	17	-3.5	0.4	-0.019	NaN	NaN NaN		NaN	1
model_pow_8	0.92	13	Without cross-validation, the error always decreases with the				-15	2.4	- ,21	0.0077	NaN	NaN	NaN	N
model_pow_9	0.87	1.7e+02					-1.6e+02	37	-5.2	0.42	Large i	9 1	1	
model_pow_10	0.87	1.4e+02					-87	15	-0.81		of parameter estimates		١	1
model_pow_11	0.87	-75					9.1e+02	-3.5e+02	91				034	1
model_pow_12	0.87	-3.4e+02		-4.4e+03		-5.2e+03	3.1e+03	-1.3e+03	3.8e+02	-80	12	-1.1	0.062	-
model_pow_13	0.86	3.2e+03	-1.8e+04	4.5e+04	-6.7e+04	6.6e+04	-4.6e+04	2.3e+04	-8,5e+03	2.3e+03	-4.5e+02	62	-5.7	0
model_pow_14	0.79	2.4e+04	-1.4e+05	3.8e+05	-6.1e+05	6.6e+05	-5e+05	2.8e+05	-1.2e+05	3.7e+04	-8.5e+03	1.5e+03	-1.8e+02	1
model_pow_15	0.7	-3.6e+04	2.4e+05	-7.5e+05	1.4e+06	-1.7e+06	1.5e+06	-1e+06	5e+05	-1.9e+05	5.4e+04	-1.2e+04	1.9e+03	-

Linear methods (solution: ridge and lasso regressions)

- Deal with:
 - Numerical problems of least squares
 - Highly correlated X predictors (ridge)
 - Large number of predictors X (lasso)
- Interests:
 - Robust to new independent data
 - Avoid overfitting (ridge)
 - Used for model selection (lasso)

Ridge cost function:

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{i,j}
ight)^2 + lpha \sum_{j=1}^p eta_j^2$$

Lasso cost function:

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{i,j}
ight)^2 + lpha \sum_{j=1}^p \left|eta_j
ight|$$

Small and realistic parameter values

|coef_x_1 |coef_x_2 |coef_x_3 |coef_x_4 |coef_x_5 |coef_x_6 |coef_x_7 |coef_x_8 |coef_x_9 |coef_x_10 |coef_x_11 |coef_x_9 | intercept alpha 1e-15 0.87 -3e+02 3.8e+02 -2.4e+02 66 0.96 0.64 0.15 -0.026 -0.0054 0.00086 0.0 23 alpha 1e-10 0.92 11 -15 2.9 0.17 -0.091-0.0110.002 0.00064 2.4e-05 -2e-05 -4.2 -5.4e-05 -2.9e-07 2ealpha 1e-08 -1.5 -0.680.039 0.016 0.00016 -0.000361.1e-06 1.9e-07 alpha 0.001 0.96 0.56 -0.13 1.9 0.55 -0.026-0.0028-0.00011 4.1e-05 1.5e-05 3.7e-06 7.4e-07 1.3e-07 1.9e-08 1.7 alpha 0.001 0.82 0.31 -0.087-0.02-0.0028-0.00022 1.8e-05 1.2e-05 3.4e-06 7.3e-07 1.3e-07 1.9e-08 1.1 alpha 0.01 -0.052 1.4 1.3 -0.088-0.01 -0.0014-0.00013 7.2e-07 4.1e-06 1.3e-06 3e-07 5.6e-08 9e-09 2.4 0.97 -1.3e-06 -9.3e-09 1.3e-09 alpha 1 -0.14-0.019-0.003-0.00047-7e-05 -9.9e-06 -1.4e-07 7.8e-10 0.55 -0.00024 -1.0 alpha 5 14 -0.059-0.0085-0.0014-4.1e-05 -6.9e-06 -1.1e-06 -1.9e-07 3.1e-08 -5.1e-09 -8.2e-10 -0.0 alpha 10 0.4 -0.0055-0.00095 -0.00017-3e-05 -5.2e-06 -9.2e-07 -1.6e-07 2.9e-08 -5.1e-09 -9.1e-10 -1.6 0.28 -0.0006 -2e-05 -3.6e-06 -2.2e-08 alpha 20 -0.022 -0.0034 -0.00011-6.6e-07 -4e-09 -7.5e-10 -1.4

coef x 1 coef x 2 coef x 3 coef x 4 coef x 5 coef x 6 coef x 7 coef x 8 coef x 9 coef x 10 coef x 11 coe intercept 5.4 alpha 1e-15 0.96 0.22 1.1 -0.370.00089 0.0016 -0.00012 -6.4e-05 -6.3e-06 1.4e-06 7.8e-07 2.1e-07 4e-08 -0.00012 2.1e-07 5.4 alpha 1e-10 0.96 0.22 1.1 -0.370.00088 0.0016 -6.4e-05 -6.3e-06 1.4e-06 7.8e-07 4e-08-6.4e-05 alpha 1e-08 0.96 0.22 -0.370.00077 0.0016 -0.00011-6.3e-06 1.4e-06 7.8e-07 2.1e-07 4e-08 0 alpha 1e 0.96 0.5 0.6 -0.13-0.0380 7.7e-06 1e-06 7.7e-085.1e-07 alpha 0.0001 0.9 0.17 -0 9.5e-06 -0.048alpha 0.001 1.7 1.3 -0.13-0 1.5e-08 3.6 1.8 -0.00056 0 alpha 0.01 -0.55 -0 HIGH SPARSIT 0.038 -0 -0 -0 alpha 1 alpha 5 0.038 -0 -0 -0 -0 alpha 10 0.038 -0 -0 -0 -0 -0 -0 -0

Simple model with few parameters

Nonlinear methods (local linear regression)

Other nonlinear methods

Link between regression and classification

- In classification, y is **discrete**:
 - o bimodal (0/1, heads/tails, etc...)
 - multimodal (large/medium/small, green/blue/red/green; etc...)
- In classification, different transfer and loss functions:
 - o sigmoid transfer function f
 - cross-entropy loss function

