Group Theory

Week 3 Exercises

Topics: Bezout's Lemma, Fermat's and Orbit-Stabilizer Theorem, Burnside's Lemma

Awez

1 Solutions

Solution (Q1.3.1). Addition modulo n is a binary operation on \mathbb{Z}_n since it maps every element in $\mathbb{Z}_n \times \mathbb{Z}_n$ to a unique element in \mathbb{Z}_n . It's because by Euclid's division lemma a+b can be written as qn+r, $r \in \mathbb{Z}_n$ and this r is unique, thus $a+b \equiv r \mod n$ and we have a unique mapping. This operation also nakes \mathbb{Z}_n into a group since

1. It's associative,

$$a \cdot (b \cdot c) = a + ((b+c) \mod n) \mod n \tag{1}$$

$$= (a+b+c) \mod n \tag{2}$$

$$= ((a+b) \mod n + c) \mod n \tag{3}$$

$$= (a \cdot b) \cdot c. \tag{4}$$

- 2. We have an identity e=0 such that $a \cdot e = e \cdot a = a$ since $a+0=0+a \equiv a \mod n$.
- 3. For every $a \in \mathbb{R}_n$ we have $a' = (n-a) \mod n$ since we have $a \cdot a' = a' \cdot a = e \equiv 0 \mod n$.

Solution (Q1.3.2). So let the given set of numbers be $S = \{x | x \in \mathbb{R}_n \ \gcd(x,n) = 1\}$ and the given operation be '.'. First, the operation is a function from $S \times S \to S$ since $\forall x,y \in S, xy \mod n \in S$. This belongs to S as $\gcd(x,n) = 1$ and $\gcd(y,n) = 1 \implies \gcd(xy,1) = 1$ and it's unique because of Euclid's division lemma. Moreover

1. It's associative,

$$(a \cdot b) \cdot c = ab \mod n \cdot c \tag{5}$$

$$= ((ab \mod n)c) \mod n \tag{6}$$

$$= (abc) \mod n \tag{7}$$

$$= (a(bc \mod n)) \mod n \tag{8}$$

$$= a \cdot (b \cdot c) \tag{9}$$

2. There's an identity $e=1\in S$, since $\gcd(1,n)=1$ and

$$a \cdot 1 = 1 \cdot a = a \mod n = a \tag{10}$$

3. For each $a \in S$, using Bezout's lemma since $\gcd(a,n) = 1$ there exists an x such that $ax \equiv 1 \mod n$. Then $x \mod n$ is the inverse of a. Since $a \cdot x = x \cdot a = 1 \mod n$.

This S is known as \mathbb{Z}^* .

Solution (Q2.2). To prove that the example 2.2 is a valid group action, we need to verify the two group action properties:

1. For any $g, h \in G$ and $s \in S$, we must show that $(gh) \cdot s = g \cdot (h \cdot s)$.

$$(gh) \cdot s = (gh)(s) \tag{11}$$

$$=g(h(s)) (12)$$

$$=g\cdot(h\cdot s),\tag{13}$$

which holds since g and h are elements of the group G, and \cdot denotes the action on S.

Exercise 2 Awez

2. For every $s \in S$, we must show that $e \cdot s = s$, where e is the identity in G.

$$e \cdot s = e(s) = s, \tag{14}$$

by the definition of the group action, where e acts as an identity on S.

Hence, the example 2.2 is a valid group action.

Solution (Q2.3). To prove Burnside's Lemma, let G be a finite group acting on a finite set S. We need to count the orbits of G on S in two ways:

1. First, by considering the number of fixed points of each group element $g \in G$. Define $|S^g|$ as the number of elements of S fixed by g. Then the total number of fixed points across all elements is

$$\sum_{g \in G} |S^g|. \tag{15}$$

2. Next, count the elements in each orbit. Each orbit contains exactly $|G|/|G_s|$ elements, where G_s is the stabiliser of $s \in S$. Thus, the number of orbits is

$$\frac{1}{|G|} \sum_{g \in G} |S^g|,\tag{16}$$

which proves Burnside's Lemma.

Solution (Q2.4). We are asked to prove that the relation \sim defined by $s \sim t$ if and only if there exists a $g \in G$ such that $g \cdot s = t$ is an equivalence relation.

- 1. **Reflexivity:** For all $s \in S$, we have $e \cdot s = s$ where e is the identity element in G. Thus, $s \sim s$.
- 2. **Symmetry:** If $s \sim t$, then there exists $g \in G$ such that $g \cdot s = t$. Since G is a group, the inverse g^{-1} exists, and $g^{-1} \cdot t = s$. Thus, $t \sim s$.
- 3. **Transitivity:** If $s \sim t$ and $t \sim u$, then there exist $g, h \in G$ such that $g \cdot s = t$ and $h \cdot t = u$. Thus, $h(g \cdot s) = u$, which means $(hg) \cdot s = u$, so $s \sim u$.

Hence, \sim is an equivalence relation.