Intelligent Data Analysis

Problem Set 2 <u>Due 3/24/2016</u>

- 1. Let μ and σ^2 be the mean and variance of a population, respectively. Show that $s^2 = \frac{1}{N} \sum_{t=1}^{N} \left(x^t \mu \right)^2$ is an unbiased estimate of the variance for a sample $\chi = \left\{ x^t \right\}_{t=1}^{N}$. That is, prove that $E[s^2] = \sigma^2$.
- 2. Let **A** be an *n* by *n* real symmetric positive definite matrix. Find a unit vector **x** $(\|\mathbf{x}\| = 1)$ so as to maximize $\mathbf{x}^T \mathbf{A} \mathbf{x}$. What is the maximal value of $\mathbf{x}^T \mathbf{A} \mathbf{x}$? Hint: use Lagrangian to solve the constrained optimization problem.
- 3. Derive the formula of $E[\theta \mid \chi]$ in Chapter 3, pp 24. First, use Bayes' rule to obtain $p(\theta \mid \chi) = \frac{p(\chi \mid \theta)p(\theta)}{\int p(\chi \mid \phi)p(\phi)d\phi} = \alpha \prod_{t=1}^{N} p(x^{t} \mid \theta)p(\theta)$, where α is a

normalization factor that depends on $\chi = \left\{x^t\right\}_{t=1}^N$ but is independent of θ ,

$$p\left(x^{t} \mid \theta\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x^{t} - \theta)^{2}}{2\sigma^{2}}\right], \text{ and } p\left(\theta\right) = \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{(\theta - \mu_{0})^{2}}{2\sigma_{0}^{2}}\right].$$

- (a) Show that $p(\theta \mid \chi) = \beta \exp\left[-\frac{1}{2}\left[\left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\theta^2 2\left(\frac{1}{\sigma^2}\sum_{t=1}^N x^t + \frac{\mu_0}{\sigma_0^2}\right)\theta\right]\right]$, where β is some constant. Note that integration is not necessary and you don't need to show what β is.
- (b) According to (a), show that $p(\theta | \chi)$ is a normal density given by

$$p(\theta \mid \chi) = \frac{1}{\sqrt{2\pi}\sigma_N} \exp\left[-\frac{(\theta - \mu_N)^2}{2\sigma_N^2}\right], \text{ in which}$$

$$\frac{1}{\sigma_N^2} = \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \text{ and } \frac{\mu_N}{\sigma_N^2} = \frac{N}{\sigma^2} m + \frac{\mu_0}{\sigma_0^2}, \text{ where } m = \frac{1}{N} \sum_{t=1}^N x^t.$$

(c) From (b), solve μ_N and σ_N^2 to obtain

$$\mu_{N} = E\left[\theta \mid \chi\right] = \frac{\frac{N}{\sigma^{2}}}{\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}} m + \frac{\frac{1}{\sigma_{0}^{2}}}{\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}} \mu_{0} \text{ and } \sigma_{N}^{2} = \frac{\sigma_{0}^{2} \sigma^{2}}{N \sigma_{0}^{2} + \sigma^{2}}.$$

4. Consider the error function of the ridge regression as follows:

$$E(w_2, w_1, w_0) = \sum_{t=1}^{N} (r^t - w_2(x^t)^2 - w_1 x^t - w_0)^2 + \lambda (w_2^2 + w_1^2),$$

where λ is a positive number. Derive the optimal condition in matrix form $\mathbf{A}\mathbf{w} = \mathbf{b}$ that minimizes E. Note that \mathbf{A} is a 3 by 3 matrix and $\mathbf{w} = (w_2, w_1, w_0)^T$.

- 5. Program Assignment This goal of this assignment is study model selection for a regression problem. Suppose one sample is described by $\chi = \left\{x^t, r^t\right\}_{t=1}^N$, in which $r^t = f(x^t) + \varepsilon^t$, where f is a deterministic function and $\varepsilon^t \sim N(0,1)$. Function f is given by $f(x) = 3\sin(3.14x) + 4$, where x is randomly drawn from [0,1]. Generate your own data set.
 - (a) Five samples are taken, each containing 20 cases. Note that the five samples have the same set of inputs $\left\{x^t\right\}_{t=1}^{20}$, but the corresponding responses might be different. Plot a sample of data along with f, as shown in Chapter 4, pp 17 (a). Plot five polynomial fits, namely, $g_i(\cdot)$, of order 1, 3, and 5. For each case, plot the average of the five fits, namely, $\overline{g}(\cdot)$. See Chapter 4, pp 17, dotted lines in (b), (c), (d).
 - (b) In the same setting as that of (a), using one hundred models instead of five, plot bias², variance, and error for polynomials of order 1 to 5. See Chapter 4, pp 15 and 20.