Projet Télérupteur_RF433_V1 Projet

PROJET

Piloter deux relais en RF433.

Mémoriser l'état de la commande de chaque relais en cas de coupure de courant de l'émetteur.

Plus d'info pour récupérer le projet sur le site:

https://electroniquepassion.fr

Projet Télérupteur_RF433_V1 Synopsis Emetteur

Projet Télérupteur_RF433_V1 Synopsis Récepteur

Projet Télérupteur_RF433_V1

Dossier Matériels:

Projet_Telerupteur_RF433_V2\
Liste_Materiel_Emetteur_Recepteur_Telerupteur_RF433_V2

Dossiers Documentations Techniques:

Projet_Telerupteur_RF433_V2\Doc_Tech_Emetteur_Recepteur_Telerupteur_RF433_V2

Dossiers Schémas:

Projet_Telerupteur_RF433_V2\Schemas_Emetteur_Recepteur_Telerupteur_RF433_V2

Dossiers PCB Emetteur en Gerber

Projet_Telerupteur_RF433_V2\PCB_GERBER_Telerupteur_Emetteur_V2

Dossiers PCB Emetteur en PDF

Projet_Telerupteur_RF433_V2\PCB_PDF_Telerupteur_Emetteur_V2

Programme Arduino Emetteur:

Projet_Telerupteur_RF433_V2\ArduinoTelerupteurEmissionRF433_V2

Dossiers PCB Recepteur en Gerber

Projet_Telerupteur_RF433_V2\PCB_GERBER_Telerupteur_Recepteur_V2

Dossiers PCB Emetteur en PDF

Projet_Telerupteur_RF433_V2\PCB_PDF_Telerupteur_Recepteur_V2

Programme Arduino Récepteur :

Projet_Telerupteur_RF433_V2\ArduinoTelerupteurReceptionRF433_V2

Projet Télérupteur_RF433_V1

Librairies:

Dossier VirtualWire13

<u>VirtualWire V1,3</u> <u>Airspace</u> <u>Github</u> <u>CarnetduMaker</u>

Pjrc

Dossier simpleBouton V1.4.2

SimpleBouton

24LC256:

Lien 1 Lien 2 Lien 3

Lecture totale 24LC256

Projet_Telerupteur_RF433_V2\24LC256LectureTotale

Lecture - Ecriture 24LC256:

Projet_Telerupteur_RF433_V2\ArduinoLectureEcriture_24LC256

Test reception messages:

Projet_Telerupteur_RF433_V2\ArduinoTestReceptionMessage

Programmes utilises:

LibreOffice Calc, LibreOffice Draw, Arduino, Kicad, Freecad, FreeRouting Gimp

Arduino_Cde_Télérupteur_RF433_V1

Fonctions de la librairie VirtualWire sont les suivantes:

```
extern void vw_set_tx_pin(uint8_t pin);
Pin utilisée pour transmettre les données, par défaut D12 de l'Arduino.
extern void vw_set_rx_pin(uint8_t pin);
Pin utilisée pour recevoir les données, par défaut D11 de l'Arduino.
extern void vw_set_ptt_pin(uint8_t pin); par défaut D10 de l'Arduino.
extern void vw_setup(uint16_t speed)
extern void vw_rx_start();
extern void vw_rx_stop();
extern uint8_t vx_tx_active();
extern void vw_wait_tx();
extern void vw_wait_rx();
extern uint8_t vw_wait_rx_max(unsigned long milliseconds);
extern uint8_t vw_send(uint8_t* buf, uint8_t len);
vw_send(byte* buf, byte len);
extern uint8_t vw_have_message();
extern uint8_t vw_get_message(uint8_t* buf, uint8_t* len); .
vw_MAX_MESSAGE_LEN;
```

D10, D11, D12 utilisées par défaut par Wirtualwire

Arduino_Cde_Télérupteur_RF433_V1

le 1/4 d'onde est la plus classique et la meilleure des antenne fouet (conducteur normal cuivre rigide) longueur onde entière = vitesse de la lumière / fréquence

soit : 300 000 / 433 = 693 mm 1/4 d'onde = 173 mm

On peut réduire le résultat à 95%, (effet de bout) donc 164,3 mm

Site Lucea

Fil utilisé pour l'antenne pendant les essais. 35m sans obstacle

SEED STUDIO réf: 113990010

SEED STUDIO réf:113990010

Arduino_Cde_Télérupteur_RF433_V1 Emetteur Calcul Refroidisseur Régulateur

Méthode utilisée : ICI

Rth ja : 50°C/W Rth jc : 5°C/W

Tj Max : 0-125° Prenons 100° Ta : 35°

Ta : 35° Pâte : 0,1°C/W Is : 0,2A

Pd =
$$(Ue-Us)*I$$

(21-12)*0,2A = 1,8w, Prenons 2w

$$Pd = \frac{(Tj - Ta)}{(Jc + CS + SA)}$$

$$SA = \frac{65 - 10,2}{2}$$

$$SA = 27,4$$
°C/W Maximum

Arduino_Cde_Télérupteur_RF433_V1 Emetteur

<u>4N35</u>
<u>Lien1</u>
Pour les essais, j'ai utilisé le Joy-IT Nano-V3 de chez Joy-It.
Pour information, nécessite le driver : CH341SER .
Pour télécharger le programme, j'ai choisi : ATmega328P (Old Bootloader)
Voir les infos sur la page :
<u>Joy-It</u>

Arduino_Cde_Télérupteur_RF433_V1 PCB Emetteur

Tracé du PCB:

Projet_Telerupteur_RF433_V2\

PCB_PDF_Telerupteur_Emetteur_V2\Telerupteur_Emetteur_RF433_V2-B_Cu.pdf

PCB_PDF_Telerupteur_Emetteur_V2\Telerupteur_Emetteur_RF433_V2-F_Cu.pdf

Implantation Composants:

Projet_Telerupteur_RF433_V2\

PCB_PDF_Telerupteur_Emetteur_V2\Telerupteur_Emetteur_RF433_V2-F_SilkS.pdf

Création du PCB

- Fabrication personnelle OU
- Sites en ligne comme :

Util'Pocket JLCPCB

Etc....

Chez JLCPCB nécessite l'envoi du dossier compressé :

PCB_GERBER_Telerupteur_Emetteur_V2

Arduino_Cde_Télérupteur_RF433_V1 PCB Emetteur

Enficher le Nano sur 2 supports PinHeader 15b, Mâle – Femelle, positionner le Nano avant de souder.

Ne pas oublier le cavalier

Déposer de la pâte thermique entre le radiateur et régulateur

Arduino_Cde_Télérupteur_RF433_V1 PCB Tracé Emetteur

Telerupteur_Emetteur_RF433_V2-B_Cu.pdf

Images pas à l'échelle

Telerupteur_Emetteur_RF433_V2-F_Cu.pdf

Arduino_Cde_Télérupteur_RF433_V1 PCB Récepteur

Tracé du PCB:

Projet_Telerupteur_RF433_V2\

PCB_PDF_Telerupteur_Recepteur_V2\Telerupteur_Recepteur_RF433_V2-B_Cu.pdf

PCB_PDF_Telerupteur_Recepteur_V2\Telerupteur_Recepteur_RF433_V2-F_Cu.pdf

Implantation Composants:

Projet_Telerupteur_RF433_V2\

PCB_PDF_Telerupteur_Recepteur_V2\Telerupteur_Recepteur_RF433_V2-F_SilkS.pdf

Création du PCB

- Fabrication personnelle OU
- Sites en ligne comme : Util'Pocket JLCPCB Etc....

Chez JLCPCB nécessite l'envoi du dossier compressé :

PCB_GERBER_Telerupteur_Recepteur_V2

Arduino_Cde_Télérupteur_RF433_V1 PCB Récepteur

Enficher le Nano sur 2 supports PinHeader 15b, Mâle – Femelle, positionner le Nano avant de souder.

Ne pas oublier le cavalier

Déposer de la pâte thermique entre le radiateur et régulateur.

Présence du 220v sur la platine

Arduino_Cde_Télérupteur_RF433_V1 PCB tracé Récepteur

Telerupteur_Recepteur_RF433_V2-B_Cu.pdf

Telerupteur_Recepteur_RF433_V2-F_Cu.pdf

Images pas à l'échelle