Databases Functional dependencies and normalization

Hans Philippi

January 28, 2020

The database design problem

- Suppose we have a db schema: is it good?
- Suppose we have a db schema derived from an ER diagram: is it good?
- A db schema seems to be good if it helps us to avoid redundancy and inconsistency, but are there more quality issues?
- When is a db schema good anyway?

normalization theory

Goals:

- define precise notions of the qualities of a relational database schema
- define algorithms to generate 'good' relational database schemes

The Holy Grail of normalization theory

input:

- the set of all relevant attributes
- a set of constraints based on the attribute semantics

output:

• an 'optimal' relational schema for these attributes

Functional dependencies: notational conventions

A set of attributes is represented without the brackets { } and the comma separator from set theory.

Concatenation of symbols denotes the union operator.

An example: instead of

$$X = \{A, B, C\}$$

 $Y = \{C, D, E\}$
 $X \cup Y = \{A, B, C, D, E\}$

we will write

$$X = ABC$$

 $Y = CDF$

$$XY = ABCDE$$

Letters from the beginning of the alphabet denote attributes, letters from the end denote sets of attributes.

What can go wrong when we split a table?

r				
A B C D				
a1	b1	c1	d1	
a2	b2	c1	d2	

We split r using projections ...

	r_1	
ſ	Α	В
ſ	a1	b1
	a2	b2

<i>r</i> ₂			
Α	C	D	
a1	c1	d1	
a2	c1	d2	

 \dots and we reconstruct r using the natural join. Great \dots

r				
A B C D				
a1	b1	c1	d1	
a2	b2	c1	d2	

r_1		
A B		
a1	b1	
a2	b2	

r ₂			
Α	С	D	
a1	c1	d1	
a2	c1	d2	

$r_1 \bowtie r_2$				
A B C D				
a1	b1	c1	d1	
a2	b2	c1	d2	

... but, uh ...

r			
Α	В	С	D
a1	b1	c1	d1
a2	b2	c1	d2

r ₃			
Α	В	С	
a1	b1	c1	
a2	b2	c1	

r_4	
С	D
c1	d1
c1	d2

$r_3 \bowtie r_4$				
Α	В	С	D	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c1	d1	
a2	b2	c1	d2	

After splitting and reconstructing, we might see *spurious tuples*

	r			
Α	В	С	D	
a1	b1	c1	d1	
a2	b2	c1	d2	

	r_3	
Α	В	С
a1	b1	c1
a2	b2	c1

r_4	
С	D
c1	d1
c1	d2

$r_3 \bowtie r_4$			
Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a2	b2	c1	d1
a2	b2	c1	d2

Definition:

Suppose we have a relation schema R (with constraints).

A decomposition of R is a set of relation schemas R_1, \ldots, R_n such that

- (i) each R_i consists of attributes in R and
- (ii) each attribute of R occurs in at least one R_j

Definition:

Suppose we have a relation schema R (with constraints). A decomposition R_1, R_2, \ldots, R_n of R is called <u>lossless</u> iff for each valid relation r(R):

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \ldots \bowtie \pi_{R_n}(r)$$

Requirement 1:

Your decomposition should be lossless

A crucial notion in the field of database design is the functional dependency (FD)

- FDs are omnipresent when expressing constraints on database schemas
- FDs are essential for a deeper understanding of data redundancy
- FDs are the key to solving the lossless decomposition problem
- an FD states that the value of an attribute is fully determined by one or more other attributes

Functional dependencies: examples

```
Within a table Address (street, number, zipcode, city) we see that zipcode \rightarrow street (zipcode determines street) ...
```

Functional dependencies: examples

```
Within a table Address (street, number, zipcode, city) we see that zipcode \rightarrow street (zipcode determines street) zipcode \rightarrow city street, number, city \rightarrow zipcode
```

Definition:

Suppose we have relation r with schema R.

Suppose $X, Y \subseteq attr(R)$.

On r, the

functional dependency (FD) $X \rightarrow Y$ holds

iff for each pair of tuples $t_1, t_2 \in r$:

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y].$$

Note:

say X determines Y, not X implies Y!

FindTheFDs			
Α	В	С	D
2	4	6	8
1	3	5	7
2	4 4	6	7
3		6	6
1	2	6	6
1	3	5	9

Does $A \rightarrow B$ hold? Does $B \rightarrow C$ hold? Does $C \rightarrow B$ hold? Does $AB \rightarrow C$ hold?

Functional dependencies & lossless decompositions

Theorem:

Suppose we have a relational schema R(XYZ).

The following holds:

If $X \to Y$ then

the decomposition $R_1(XY), R_2(XZ)$ is lossless

Functional dependencies may cause redundancy

redundancy: case 1

CATALOGUE			
brand	type	price	distributor
Batavus	Flits	1500	Batavus NL
Batavus	Opoe	500	Batavus NL
Trek	Downhill	4800	Enterprise
Trek	Earthquake	7500	Enterprise
Cannondale	Jumper	3900	C'Europe
Cannondale	Downhill	5600	C'Europe
Specialized	Jumper	3500	Tech Unlimited

Functional dependencies may cause redundancy

redundancy: case 1

CATALOGUE			
brand	type	price	distributor
Batavus	Flits	1500	Batavus NL
Batavus	Opoe	500	Batavus NL
Trek	Downhill	4800	Enterprise
Trek	Earthquake	7500	Enterprise
Cannondale	SmartJumper	3900	C'Europe
Cannondale	Downhill	5600	C'Europe
Specialized	StumpJumper	3500	Tech Unlimited

Redundancy caused by FD brand \rightarrow distributor But... this FD also guarantees a lossless decomposition

FDs: lossless decomposition avoids redundancy

DISTRIBUTION		
brand distributor		
Batavus	Batavus NL	
Trek	Enterprise	
Cannondale	C'Europe	
Specialized	Tech Unlimited	

CATALOGUE		
brand	type	price
Batavus	Flits	1500
Batavus	Opoe	500
Trek	Downhill	4800
Trek	Earthquake	7500
Cannondale	SmartJumper	3900
Cannondale	Downhill	5600
Specialized	StumpJumper	3500

Functional dependencies may cause redundancy

redundancy: case 2

RISC		
city	region	rise
Amsterdam	Randstad	40 %
Utrecht	Randstad	40 %
Rotterdam	Randstad	40 %
Maastricht	Limburg	10 %
Den Haag	Randstad	40 %
Almelo	Twente	25 %
Hengelo	Twente	25 %
Oldenzaal	Twente	25 %
Veenendaal	Gelderse Vallei	0 %

Functional dependencies may cause redundancy

redundancy: case 2

RISC		
city	region	rise
Amsterdam	Randstad	40 %
Utrecht	Randstad	40 %
Rotterdam	Randstad	40 %
Maastricht	Limburg	10 %
Den Haag	Randstad	40 %
Almelo	Twente	25 %
Hengelo	Twente	25 %
Oldenzaal	Twente	25 %
Veenendaal	Gelderse Vallei	0 %

FDs: lossless decomposition avoids redundancy

CITY-REGION		
city	region	
Amsterdam	Randstad	
Utrecht	Randstad	
Rotterdam	Randstad	
Maastricht	Limburg	
Den Haag	Randstad	
Almelo	Twente	
Hengelo	Twente	
Oldenzaal	Twente	
Veenendaal	Gelderse Vallei	

REGION-RISE		
region	rise	
Randstad	40 %	
Limburg	10 %	
Twente	25 %	
Gelderse Vallei	0 %	

Requirement 2:

Your decomposition should avoid redundancy

Making this statement more precise requires a profound study of FDs and their structure

Suppose we have a Universe R(A, B, C, D), investigated by two teams

Team 1 finds:

$$A \rightarrow B, B \rightarrow C$$

Team 2 finds:

$$A \rightarrow B, B \rightarrow C, A \rightarrow C$$

Suppose we have a Universe R(A, B, C, D), investigated by three teams

Team 1 finds:

$$A \rightarrow B, B \rightarrow C$$

Team 2 finds:

$$A \rightarrow B, B \rightarrow C, A \rightarrow C$$

Team 3 finds:

$$A \rightarrow B, B \rightarrow C, A \rightarrow C,$$

$$A \rightarrow A, AB \rightarrow A, AB \rightarrow C, \dots, ABCD \rightarrow ABCD$$

Functional dependencies: inference

Inference rules for FDs:

(
$$IR_1$$
) $Y \subseteq X \Rightarrow X \rightarrow Y$ (reflexivity)
(IR_2) $X \rightarrow Y \Rightarrow XZ \rightarrow YZ$ (augmentation)
(IR_3) $X \rightarrow Y$, $Y \rightarrow Z \Rightarrow X \rightarrow Z$ (transitivity)

Rules $IR_1 - IR_3$ are known as the Armstrong axioms these rules are sound and complete

Are the following rules valid?

$$\bullet \ X \to Y, X \to Z \Rightarrow X \to YZ$$

•
$$XY \rightarrow Z \Rightarrow X \rightarrow Z, Y \rightarrow Z$$

•
$$X \rightarrow YZ \Rightarrow X \rightarrow Y$$

Are the following rules valid?

•
$$X \rightarrow Y, X \rightarrow Z \Rightarrow X \rightarrow YZ$$

Yes

•
$$XY \rightarrow Z \Rightarrow X \rightarrow Z, Y \rightarrow Z$$

No

•
$$X \rightarrow YZ \Rightarrow X \rightarrow Y$$

Yes

Functional dependencies: calculations

In general, it is important to determine all the attributes depending on a left side X

Definition:

Suppose we have a schema R and a set FD's F on R. The <u>closure</u> (X-closure) X^+ of an attribute set X is the set of all attributes $A \in R$ such that $X \to A$ holds.

Functional dependencies: X-closure algorithm

```
Algorithm
INPUT: X \subseteq R, F
OUTPUT: X^+
METHOD:
    X^{+} = X:
    repeat
         oldX^{+} = X^{+}:
         for each FD U \rightarrow V in F {
             if U \subseteq X^+ then X^+ = X^+ \cup V:
    until oldX^+ == X^+
```

We have a schema attributes R = (ABCDEFG) and a set FDs $\mathbf{F} = \{C \to DE, A \to C, G \to D, B \to G\}$

Determine $A^+, B^+, C^+, (AG)^+$

Give also a key for R.

We have a schema attributes R = (ABCDEFG) and a set FDs $\mathbf{F} = \{C \to DE, A \to C, G \to D, B \to G\}$

- $A^+ = A ...$
- $A^+ = AC$...
- $A^+ = ACDE$

We have a schema attributes R = (ABCDEFG) and a set FDs $\mathbf{F} = \{C \to DE, A \to C, G \to D, B \to G\}$

- $A^+ = ACDE$
- $B^{+} = BGD$
- $C^+ = CDE$
- $(AG)^+ = AGCDE$

Note that: $(AB)^+ = ABCGDE$

Key: ABF

Formalization of avoiding redundancy:

Definition:

Suppose we have a schema R and a set FDs F.

R is in <u>BCNF</u> (w.r.t. F) iff each left side of a non-trivial FD is a superkey

BCNF: Boyce-Codd Normal Form

```
Algorithm INPUT: a schema R, a set of FDs F OUTPUT: a lossless BCNF-decomposition of R METHOD: while there is a schema S not in BCNF \{ suppose the villain is X \to Y; let Z be the set of remaining attributes in S; split S(XYZ) into S_1(XY), S_2(XZ) \}
```

We have a relation schema R(ABCDE) and a set of fd's $F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow E\}$

Give at least two BCNF decompositions

Do you have a preference for one of the decompositions?

We have a relation schema R(ABCDE) and a set of fd's $F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow E\}$

Decomposition 1: first split using $C \rightarrow D$, ...

..., then split (ABCE) using
$$C \to E$$
 (!)
$$(CD), (CE), (ABC)$$

We have a relation schema R(ABCDE) and a set of fd's

$$F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow E\}$$

Decomposition 1: first split using $C \to D$, then using $C \to E$

Decomposition 2: first split using $D \to E$, then using $C \to D$


```
Algorithm (refined version)
INPUT: a schema R, a set of FDs F
OUTPUT:
   a lossless BCNF-decomposition of R
METHOD:
   while there is a schema S not in BCNF {
       suppose the villain has left side X;
       let Y = X^+ without X:
       let Z be the set of remaining attributes in S;
       split S(XYZ) into S_1(XY), S_2(XZ)
```

We have a relation schema R(ABCDE) and a set of fd's $F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow E\}$

Decomposition 1: first split using $C \to DE$, (i.e. C^+) ...

(CDE), (ABC)

..., then split (CDE) using D o E (CD), (DE), (ABC)