

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : B01D 53/94, 53/86, 53/56, F01N 3/20	A1	(11) Internationale Veröffentlichungsnummer: WO 99/30811 (43) Internationales Veröffentlichungsdatum: 24. Juni 1999 (24.06.99)
(21) Internationales Aktenzeichen: PCT/EP98/07937		(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 7. Dezember 1998 (07.12.98)		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>
(30) Prioritätsdaten: 197 55 376.1 12. Dezember 1997 (12.12.97) DE 198 21 494.4 13. Mai 1998 (13.05.98) DE 198 45 944.0 6. Oktober 1998 (06.10.98) DE		
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): FEV MOTORENTECHNIK GMBH & CO. KOMMANDITGESELLSCHAFT [DE/DE] ; Neuenhofstrasse 181, D-52078 Aachen (DE).		
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): GÜRICH, Gunter [DE/DE] ; Eburonawinkel 6, D-52074 Aachen (DE). LÜERS, Bernhard [DE/DE] ; Katzhecke 13, D-52222 Stolberg (DE). HERNIER, Manuel [DE/DE] ; Gödderather Weg 32, D-41189 Mönchengladbach (DE).		
(74) Anwälte: LANGMAACK, Jürgen usw.; Postfach 51 08 06, D-50994 Köln (DE) .		

(54) Title: **METHOD FOR REDUCING NITROGEN OXIDES IN EXHAUST GASES CONTAINING OXYGEN, ESPECIALLY EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES**

(54) Bezeichnung: **VERFAHREN ZUR REDUZIERUNG VON STICKOXIDEN IN SAUERSTOFFHALTIGEN ABGASEN, INSbesondere ABGASEN VON VERBRENNUNGSMOTOREN**

(57) Abstract

The invention relates to a method for reducing nitrogen oxides in an exhaust gas flow, especially exhaust gases from internal combustion engines that are subjected to aftertreatment in a catalytic converter. The inventive method is characterised in that a solid reducing agent is transformed into a gas under the effect of heat and the gas is thermally and/or catalytically broken down in a reaction chamber into reductive products which are then mixed with the exhaust gases which are to undergo reduction.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Reduktion von Stickoxiden in einem sauerstoffhaltigen Abgasstrom, insbesondere Abgasen von Verbrennungsmotoren, die einer katalytischen Abgasnachbehandlung in einem Katalysator unterzogen werden, das dadurch gekennzeichnet ist, daß ein als Feststoff vorliegendes Reduktionsmittel unter Wärmeinwirkung in Gas verwandelt und das Gas in einer Reaktionskammer thermisch und/oder katalytisch in reduktive Produkte zerlegt wird, die dann dem zu reduzierenden Abgas zugemischt werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Amenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Somagal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swestland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Marokko	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Nassau	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estonia						

Bezeichnung: Verfahren zur Reduktion von Stickoxiden in sauerstoffhaltigen Abgasen, insbesondere Abgasen von Verbrennungsmotoren

5 Beschreibung

Die Erfindung betrifft ein Verfahren zur Reduktion von Stickoxiden in einem sauerstoffhaltigen Abgasstrom, insbesondere in Abgasen von Verbrennungsmotoren, die einer katalytischen Abgasnachbehandlung in einem Katalysator unterzogen werden.

Die katalytische Nachbehandlung von sauerstoffhaltigen Abgasen von Verbrennungsmotoren zur Reduzierung der NO_x-Emission erfordert eine sogenannte selektive katalytische Reduktion, die es ermöglicht, im Abgas mit den Stickoxiden, d. h. NO und NO₂ molekularen Stickstoff (N₂), Kohlendioxid (CO₂) und Wasser zu bilden, und zwar bei Dieselmotoren, aber auch Ottomotoren mit Kraftstoffdirekteinspritzung. Dies geschieht durch die Zufuhr von Reduktionsmitteln, die jedoch hinsichtlich der Zudosierung in den geforderten kleinen Mengen bei hochdynamisch betriebenen Verbrennungsmotoren im mobilen Einsatz mit schwankendem Stickstoffausstoß schwierig ist.

25 Gemäß DE-A-44 23 003 wird ein Verfahren vorgeschlagen, bei dem in einer Ausgestaltung als Reduktionsmittel Ammoniak, Hydrazin oder Tricyansäure in flüssiger Form dem Kraftstoff oder der Verbrennungsluft einlaßseitig zudosiert wird, so daß ihre Bestandteile erst nach Ablauf des Verbrennungsprozesses 30 die Zylinder verlassen und in das Abgassystem gelangen. Aufgrund der thermodynamischen Bedingungen während des Verbrennungsprozesses verlieren die Reduktionsmittel hierbei ihre reduktiven Eigenschaften.

35 In einer anderen Ausgestaltung gemäß dieser Druckschrift wird vorgeschlagen, das Reduktionsmittel in Pulverform auf der Abgasseite des Verbrennungsmotors einzubringen. Die Zufuhr des pulverförmigen Reduktionsmittels erfolgt durch Schwerkraft

und wird mit Hilfe einer mechanischen Verteilereinrichtung mit Gebläse-Luftunterstützung in die Abgasleitung eingebracht. Eine Dosierung von kleinsten Mengen an Reduktionsmitteln sind in dieser Technik sehr schwierig. Die Verwendung
5 von hygroskopischen Reduktionsmitteln bereitet hierbei erhebliche Probleme, da die Rieselfähigkeit Voraussetzung für ein einwandfreies Funktionieren eines derartigen Systems ist.

Gemäß DE-A-44 36 415 wird für einen Dieselmotor vorgeschlagen, einen Teil des Dieselkraftstoffes unmittelbar in die Abgasleitung einzubringen. Das Einbringen erfolgt hierbei mit Hilfe einer porösen Kammer, die mit einem Glühstift versehen ist, so daß der in die Kammer eingebrachte Dieselkraftstoff durch die porösen Wandungen dem Abgas in Gasform zugeführt
15 werden kann. Dieses Verfahren genügt nicht den heutigen Ansprüchen der Emissionsreduzierung.

Des weiteren wurde versucht, eine flüssige Dosierung einer eutektischen Harnstoff-Wasser-Lösung zum Abgas vorzunehmen.
20 Die Dosierung einer derartigen flüssigen Harnstoff-Wasser-Lösung auch in kleinen Mengen ist zwar mit großer Genauigkeit möglich. Der Nachteil besteht jedoch darin, daß für das einzudüsende Reduktionsmittel Wasser mitgeführt werden muß, welches nicht direkt am Reduktionsprozeß für das Stickoxid beteiligt ist. Es muß also nicht nur ein mehrfaches an Gewicht und Volumen - bezogen auf das Reduktionsmittel - getankt und transportiert werden, sondern es muß auch dafür Sorge getragen werden, daß das System insgesamt wintertauglich ist. Ein weiterer Nachteil besteht darin, daß aus der ins Abgas eingedüsten Flüssigkeit zunächst reduktive Bestandteile gewonnen werden müssen. Für den einwandfreien Betrieb jedoch sind dafür gewisse Abgas-Mindesttemperaturen erforderlich, was insgesamt eine Verminderung der Gesamteffizienz des Systems zur Folge hat. Der apparative Aufwand ist hoch und störanfällig,
30 da hier ein Pumpe-Düse-System verwendet werden muß.

Um diese Nachteile zu vermeiden, wurde gemäß DE-A-43 08 542 vorgeschlagen, festen Harnstoff anstelle einer wässrigen Harnstofflösung als Reduktionsmittel in das Abgassystem einzuführen. Da Harnstoff hygroskopisch ist und zusammenbäckt,
5 ist es erforderlich, den Harnstoff in Mikroprills einem Vorratsbehälter aufzugeben, aus dem die Prills über ein Mahlwerk abgezogen und dann mit Hilfe von Preßluft in das Abgassystem über eine Druckzerstäuberdüse eingeblasen werden. Die Zudosierung von kleinsten Mengen zur Anpassung an unterschiedliche
10 Abgasmengen ist mit diesem System sehr schwierig.

Gemäß DE-A-34 22 175 wurde vorgeschlagen, solche stickstoffhaltigen Reduktionsmittel, welche bei ihrer Zersetzung Ammoniak freigeben, thermisch zu beaufschlagen. Die so gewonnene
15 Ammoniakmenge kann daraufhin dem Abgas direkt zugeführt werden. Dabei kann die jeweils erforderliche Ammoniakmenge mit Hilfe der Heizleistung gesteuert werden. Ein solches rein thermisches System ist zu träge bezüglich der Dosierung von Ammoniak bei hochdynamisch aufkommender, wechselnder
20 Stickoxidemission von Verbrennungsmaschinen. Die Gefahr eines sogenannten Ammoniakdurchbruchs, d. h. verbleibender Ammoniakkonzentrationen hinter einer Katalysatoranordnung, ist gegeben.

25 In DE-A-42 00 514 wird das Reduktionsmittel ins Abgas gepumpt. Dabei wird das Reduktionsmittel außerhalb des Abgastroms in reduktive Bestandteile, sogenannte Spaltprodukte, zerlegt. Das Ziel dieser Verfahrensweise ist es, die Reaktionsgeschwindigkeit des eigentlichen Reduktionsschritts im Reduktionsmittel-Stickoxid-System herabzusetzen und eine hohe Effizienz im katalytischen Gesamtsystem zu bewirken. Die eigentliche Problematik bezüglich der Dosierung bei hochdynamischen Stickoxidaufkommen bleibt auch hier ungeklärt. Das System kann nur bei stationärem oder annähernd stationärem
30 Stickoxidaufkommen Anwendung finden, weil die Gefahr eines Ammoniakdurchbruchs gegeben ist.
35

- Gemäß DE-U-297 08 591 wird das feste, stickstoffhaltige Reduktionsmittel in einem druckfesten Konverter zu Ammoniak konvertiert. Ein Zwischenspeicher für Ammoniak wird zeitlich getaktet befüllt und entleert. In dieser Erfindung ist die
- 5 Anpassung des Reduktionsmittelflusses an ein hochdynamisches Abgasaufkommen vorgesehen. Dieses System erfordert eine druckfeste Druckbehälteranordnung zum Zwischenspeichern des Problemstoffs Ammoniak.
- 10 Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs bezeichneten Art zu schaffen, das die vorstehend erörterten Nachteile nicht aufweist.
- Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß
- 15 ein als Feststoff vorliegendes Reduktionsmittel unter Wärmeeinwirkung in Gas verwandelt und das Gas in einer Reaktionskammer thermisch und/oder katalytisch in reduktive Produkte zerlegt wird, die dann dem zu reduzierenden Abgas vor dem Katalysator zugemischt werden. Der Begriff "Gas" bzw. "Ver-
- 20 gasen" im Sinne der vorliegenden Erfindung umfaßt sowohl die Umwandlung "Feststoff-Flüssigkeit-Gas" als auch die Sublimation, d. h. den unmittelbaren Übergang "Feststoff-Gas". Der jeweils stattfindende Übergang von Feststoff zu Gas hängt von der Art des eingesetzten Reduktionsmittel ab.
- 25 Das erfindungsgemäße Verfahren hat insbesondere für Fahrzeuge den Vorteil, daß das einzusetzende Reduktionsmittel in fester Form, d. h. mit dem geringsten Aufwand an Vorratsvolumen mitgeführt werden kann. Der weitere Vorteil besteht darin, daß
- 30 das erzeugte und für die katalytische Reaktion im Abgaskatalysator benötigte Gas sehr viel einfacher dem zu reduzierenden Abgas zugemischt werden kann, wobei über entsprechende Regeleingriffe im Rahmen der Vergasung des Feststoffes auch eine Zudosierung in kleinsten Mengen möglich ist.
- 35 Ein weiterer Vorteil dieser Erfindung ist, daß auch Reduktionsmittel in der flüssigen oder gasförmigen Phase verwendet werden können, welche in einem Vorratsbehältnis und/oder ei-

ner Dosierkammer nicht in Spaltprodukte zerfallen. Problemstoffe, wie beispielsweise Ammoniak werden dann nicht gelagert sondern in der Umsetzung in reduktive Produkte im Verfahrensablauf erst erzeugt. Das Reduktionsmittel zerfällt bei
5 der Speicherung auch nicht in für die NO_x-Reduktion unwirksame Spaltprodukte.

Die Zerlegung des in Gasform verwandelten Reduktionsmittels in reduktive Produkte kann nun erfindungsgemäß entweder durch
10 eine Pyrolysereaktion unter weiterer Wärmeeinwirkung erfolgen oder durch die Zufuhr von Wasser, insbesondere Wasserdampf, durch eine katalytisch gestützte Hydrolysereaktion erfolgen. Die Hydrolysereaktion hat den Vorteil, daß zum einen die Abgastemperaturen ausreichen oder zumindest nur eine geringe
15 Temperaturerhöhung notwendig ist. Zum anderen besteht der Vorteil, daß in der Regel der Wasserdampfgehalt in Verbrennungsabgasen ausreicht, so daß keine oder nur geringe zusätzliche Wassermengen zuzuführen sind, um die Hydrolysereaktion durchführen zu können.

20 In weiterer vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß die benötigte Gasmenge durch Veränderung der auf den Feststoff einwirkenden Heizleistung geregelt wird. Die Veränderung des Gasmengenstroms kann beispielsweise über
25 ein steuerbares Dosierventil erfolgen.

In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß die benötigte Gasmenge durch Veränderung der Feststoffzufuhr geregelt wird. Besonders vorteilhaft ist eine Kombination
30 beider Maßnahmen, so daß die für eine Vergasung des Feststoffs benötigte Mindestheizleistung aufgebracht wird und dann über eine Erhöhung der Heizleistung und/oder eine Erhöhung der Feststoffzufuhr die benötigte Gasmenge entsprechend erhöht werden kann und umgekehrt, um so in Abhängigkeit von
35 der jeweils anfallenden, betriebsbedingten Abgasmenge die Zufuhr der in Gasform vorliegenden reduktiven Produkte einzuregeln.

In besonders zweckmäßiger Ausgestaltung der Erfindung ist ferner vorgesehen, daß hinter dem Katalysator die Menge an Abgaskomponenten, insbesondere NO_x und/oder an reduktiven Produkten des Reduktionsmittels, insbesondere an Amid Ionen und/oder Isocyansäure und/oder Ammoniak erfaßt wird. Durch diese Maßnahme kann mit Hilfe einer entsprechenden Steuereinrichtung gewährleistet werden, daß das Reduktionsmittel nur in der jeweils benötigten Menge in das Abgas eingeführt wird. Die Menge an reduktiven Produkten hinter dem Katalysator sollte möglichst "Null" sein. Werden erhöhte Werte festgestellt, muß die Reduktionsmittelzufuhr vermindert werden. Bei einer Erfassung der Anteile an NO_x ist ebenfalls eine Regelung der Reduktionsmittelzufuhr möglich. Hierbei ist es in Ausgestaltung zweckmäßig, wenn die Zudosierung des Reduktionsmittels über eine Steuereinrichtung in Abhängigkeit von den erfaßten NO_x-Werten erfolgt.

In vorteilhafter Ausgestaltung ist hierbei auch vorgesehen, daß die Zudosierung des Reduktionsmittels über eine Steuer- 20 einheit in Abhängigkeit von motorspezifischen Kennfeldern über die NO_x-Gehalte und/oder die HC-Gehalte im Abgas erfolgt. Werden derartige empirisch ermittelte Kennfelder in der Motorsteuerung "abgelegt", dann ist es möglich, auch ohne eine aufwendige Abgassensorik die Zudosierung betriebsabhängig durchzuführen, da diese Kennfelder im Betrieb in der Steuereinrichtung "gelesen" werden und die für den jeweiligen Betriebspunkt im Kennfeld "abgelegte" Reduktionsmittelmenge zudosiert wird.

Anstelle oder auch ergänzend zu den vorstehend genannten motorspezifischen Kennfeldern ist es zweckmäßig, über die Steuereinrichtung die Zudosierung des Reduktionsmittels in Abhängigkeit von katalysatorspezifischen Kennfeldern bezüglich des Umsatzgrades und/oder der Speicherfähigkeit der Nachbehandlungskatalysator vorzunehmen.

Auch eine zeitlich veränderliche Taktfrequenz oder ein variierender Öffnungsquerschnitt eines Dosierventils kann als Kennfeld ermittelt werden und in der Steuereinrichtung niedergelegt werden.

5

Ebenso kann die spezifische Vergasungsrate des Reduktionsmittels in Abhängigkeit von der Heizleistung und/oder Heiztemperatur als Kennfeld aufgestellt und in der Steuereinrichtung abgelegt und für die Zudosierung des vergasten Reduktionsmittels mit herangezogen werden.

Durch einen kombinierten Abgriff der Kennfelder oder durch eine Überlagerung von zwei oder mehr Kennfeldern, beispielsweise des motorspezifischen, des katalysatorspezifischen und 15 des Kennfeldes der spezifischen Vergasungsrate, lässt sich in der Regeleinrichtung ein Stellsignal für die Zudosierung erzeugen, das zu einer optimalen Zuführung der Reduktionsmittelgasmenge führt, bei der eine optimale Abgasnachbehandlung erreicht wird.

20

In weiterer vorteilhafter Ausgestaltung des erfundungsgemäßen Verfahrens ist vorgesehen, daß das Gas in einem Trägergas in Form von Abgas und/oder Luft vorgemischt und die Vormischung dem Abgasstrom zugemischt wird. Durch diese Maßnahme ist eine 25 gleichmäßige Verteilung von geringen Reduktionsmittelmengen im Abgasstrom möglich, da hier "Strähnen" vermieden werden und eine Reduktion des gesamten Abgasstromes im gewünschten Maß gewährleistet ist.

30

Das durch Wärmeeinwirkung aus dem als Feststoff vorliegenden Reduktionsmittels erzeugte Gas wird thermodynamisch so eingestellt, daß dieses einen leichten Überdruck gegenüber dem Abgasdruck aufweist, so daß hier in einfachster Weise eine "natürliche", von der gegebenen Heizleistung und/oder gegebenen Zufuhrmenge an Feststoff abhängiges Druckgefälle erzeugt wird. Dieses über die Heizleistung erzeugte Druckgefälle ermöglicht eine zeitlich exakte Dosierung des Gases. Dies kann beispielsweise dadurch bewirkt werden, daß das Reduktionsmit-

tel in wenigstens einem druckdichten Behälter oder einer Kartusche gelagert ist, der nur in Richtung auf das zu reduzierende Abgas offenbar ist. Das bei Heizeinwirkung entstehende Gasvolumen baut in dem Behälter einen entsprechenden geringen
5 Überdruck auf, beispielsweise 0,5 bar über dem Abgasgegen-
druck, der das Gas dann abströmen läßt. Die Heizeinwirkung kann über eine Wärmezufuhr über die Behälterwandung und/oder aber wenigstens ein Heizelement im Behälterinneren auf das Reduktionsmittel aufgebracht werden. Zur exakten Dosierung
10 des Reduktionsmittels kann beispielsweise der Differenzdruck zwischen Heizkammer, in der die Vergasung stattfindet, und Abgasrohr gemessen und über die Heizleistung geregelt werden. Über das Dosierventil, das auf vorteilhafte Weise getaktet arbeitet, ist es dann möglich, genau dosierte Mengen von Re-
15 duktionsmitteln zuzumessen.

Um hier jedoch Strömungswiderstände in den erforderlichen Strömungskanälen zu überwinden, ist es in weiterer Ausgestaltung der Erfindung zweckmäßig, wenn die Zumischung zum Abgas mit Hilfe eines Druckgefäßes zwischen dem Vergasungsbereich 20 und dem Abgasstrom erfolgt. Dies kann in einfacher Weise dadurch erfolgen, daß an der Zumischungsstelle der Abgaskanal nach Art eines Venturirohres ausgebildet ist, so daß die aufgrund der Geschwindigkeitserhöhung im Abgasstrom erfolgende Absenkung des statischen Druckes das entsprechende Druckgefälle gegenüber der Vergasungseinrichtung erzeugt und das Abströmen des erzeugten Gases begünstigt wird. Zusätzlich oder 25 anstelle der Ausnutzung des Druckgefäßes im Abgasstrom kann die Zumischung des Reduktionsmittelgases mit Hilfe eines Teilstroms von Abgas oder Luft erfolgen, der über ein entsprechendes Gebläse erzeugt wird.
30

Wenn ein Druckgefälle zwischen dem Vergasungsbereich und dem Zumischungsbereich, insbesondere ein Überdruck erzeugt werden kann, ist es zweckmäßig, wenn die Zuführmenge an vergastem Reduktionsmittel über eine steuerbare Dosiereinrichtung, insbesondere ein Dosierventil erfolgt, das über die Steuerein-
35

richtung angesteuert wird. Die Dosierung kann beispielsweise durch taktweises Öffnen des Dosierventils erfolgen.

Der Behälter kann als Nachfüllbehälter oder in besonders vor-
5 teilhafter Weise als Auswechselkartusche vorgesehen sein. Da-
mit ergibt sich eine gut handhabbare Einheit, die nur noch
aufzustecken ist, wobei der Verschluß geöffnet wird und zu-
gleich eine nach außen dichte Verbindung zur Behandlungsein-
richtung geschaffen wird.

10

Je nach Gestaltung der Einrichtung können beim Aufstecken auch entsprechende Armaturen in die Behälterfüllung einge-
bracht werden, wie beispielsweise Füllstandssensoren, mecha-
nische Austragsvorrichtungen, Heizeinrichtungen, gegebenen-
15 falls in Verbindung mit Gasabzugseinrichtungen. Auswechsel-
kartuschen können auch als Kartuschenbatterie eingesetzt wer-
den, um möglichst lange Betriebszeiträume abdecken zu können.

In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß
20 das feste Reduktionsmittel Cyanursäure und/oder Melamin
und/oder Harnstoff und/oder Biuret und/oder Trioret und/oder
andere stickstoffhaltige Reduktionsmittel einzeln oder in Mi-
schungen verwendet werden, die nach vollzogenem Phasenwechsel
von fest zu gasförmig sich bei weiterer Energiezufuhr in re-
25 duktive Produkte zerlegen lassen oder mehrerer dieser Kompo-
nenten verwendet werden. Besonders zweckmäßig hat sich hier-
bei die Verwendung von Cyanursäure erwiesen.

Das feste Reduktionsmittel kann in rieselfähigem Zustand ein-
gesetzt werden. Hierbei kann das rieselfähige Reduktionsmit-
tel aus einem Vorratsbehälter unmittelbar über mechanische
Systeme in eine Heizeinrichtung gefördert werden und/oder
sich insgesamt in der Heizeinrichtung befinden.

35 In einer anderen Ausgestaltung der Erfindung ist vorgesehen,
daß das feste Reduktionsmittel in Form eines Preßkörpers ein-
gesetzt wird. Derartige Preßkörper können beispielsweise als
Tablettenstapel oder als Stangen oder dergl. konfektioniert

werden, die dann entsprechend gegen die Heizeinrichtung vorgeschoben werden und/oder sich insgesamt in der Heizeinrichtung befinden.

- 5 Die Erfindung wird anhand von Zeichnungen schematisch dargestellt. Es zeigen:

Fig. 1 schematisch die Umsetzung eines Reduktionsmittels in einer Pyrolysereaktion zur Erzeugung reduktiver Produkte,

10 Fig. 2 ein Fließbild für eine erste Ausführung eines Verfahrens zur Erzeugung und Zuführung gasförmiger reduktiver Produkte entsprechend dem Verfahrensblauf gem. Fig. 1

15 Fig. 3 schematisch die Umsetzung eines Reduktionsmittels in einer Hydrolysereaktion zur Erzeugung reduktiver Produkte,

20 Fig. 4 eine Abwandlung der Ausführung gemäß Fig. 2,

25 Fig. 5 eine praxisnahe Anordnung für den Einbau an einem Fahrzeug zur Durchführung des Verfahrens gem. Fig. 4.

In Fig. 1 ist schematisch die Grundreaktion der Umsetzung eines festen Reduktionsmittels, hier Cyanursäure, in die Gasform und dann die Zerlegung in ein reduktives Produkt sowie deren Zumischung zum reduzierenden Abgas und die anschließende Abgasnachbehandlung in einem Katalysator dargestellt. Bei $(\text{HNCO})_3$, Cyanursäure, wird für die Umsetzung aus einer festen Form in die Gasform Wärme mit einem Temperaturniveau von 300 bis 450°C benötigt. Durch eine weitere Wärmezufuhr wird die gasförmig vorliegende Cyanursäure umgesetzt in $3(\text{HNCO})$, Isocyansäure. Hier wird eine weitere Wärmezufuhr mit einem Temperaturniveau von mehr als 400°C benötigt. Isocyansäure wird dann wiederum unter Wärmezufuhr mit einem Temperatur-

niveau von 450 bis 750°C in einer ggf. katalytisch gestützten Pyrolysereaktion umgesetzt in die benötigten reduktiven Produkte, die bei der Umsetzung von Isocyanäure im wesentlichen durch das NH (Amid Ion) gebildet wird, das dann dem Abgas zugesetzt wird. Die nachfolgende ebenfalls katalytisch gestützte Reaktion zwischen NH und NO_x im Abgas-Katalysator benötigt hierbei ein Temperaturniveau des Abgases von mehr als 400°C. Ein derartiges Temperaturniveau ist beispielsweise bei stationären Anlagen, insbesondere stationär im Vollastbereich betriebenen Verbrennungsmotoren gegeben.

Das Fließbild gemäß Fig. 2 zeigt ein Abgasrohr 1 eines Verbrennungsmotors, beispielsweise eines Dieselmotors, das mit einer Katalysatoreinrichtung 2 versehen, die einen selektiven Reduktionskatalysator aufweist. Die Abgasleitung 1 wird in Richtung des Pfeiles 3 vom Abgas durchströmt.

Der Abgasleitung 1 ist eine Einrichtung 4 für die Zufuhr eines als Feststoff vorliegenden Reduktionsmittels zugeordnet. Die Einrichtung 4 besteht im wesentlichen aus einem Vorratsbehälter 5 für ein als Feststoff vorliegendes Reduktionsmittel 6. Das Reduktionsmittel 6 kann in rieselfähiger Form oder als Festkörper vorliegen. Der Vorratsbehälter 5 kann mit einer Fördereinrichtung 7 versehen sein, mit der der Feststoff 6 in Richtung auf eine Auslaßöffnung 8 gefördert wird. Bei dem hier dargestellten Ausführungsbeispiel ist die Fördereinrichtung 7 schematisch dargestellt durch eine Preßplatte 7.1 mit einer Belastungsfeder 7.2. Die Preßplatte 7.1 kann auch mit einer Dichtung versehen sein, so daß über den rückwärtigen Raum eine Druckbeaufschlagung, beispielsweise über einen Zweigkanal mit Abgas erfolgen kann. Der Vorratsbehälter 5 muß in seinem Übergangsbereich zur Auslaßöffnung 8 so ausgestaltet sein, daß sich keine "Brücken" bilden können. Im Bereich der Auslaßöffnung 8 kann eine mechanische Dosiervorrichtung 8.1 vorgesehen, die bei rieselfähigem Reduktionsmittel, beispielsweise volumetrisch dosiert oder bei einem Festkörper über einen Antrieb entsprechende Partikelmengen abschabt. Das Reduktionsmittel selbst darf nicht zum Kleben oder Zusammen-

backen neigen, sondern muß seine Rieselfähigkeit auch bei wechselnden äußeren Bedingungen, beispielsweise Jahreszeitenwechsel, behalten. Sofern die Anordnung nicht mit dem Motor verbunden ist und hierdurch Vibrationen in den Behälter 5 eingeleitet werden, kann die Anordnung eines entsprechenden Vibrators zweckmäßig sein, der periodisch angesteuert wird und eine Brückebildung unterbindet.

Die Dosiereinrichtung 8.1 mündet in eine kammerförmige Heizeinrichtung 9 ein, die eine poröse beheizbare Wandung aufweist, die mit dem zugeführten festen Reduktionsmittel in unmittelbaren Kontakt kommt, hier nur durch eine schematische Heizspirale 9.1 dargestellt, so daß hier der Vergasungsvorgang erfolgen kann. Bei der Verwendung von Preßkörpern in Form von Stangen oder Tablettenstapeln entfällt die mechanische Dosievorrichtung. Die Zuordnung von Vorratsbehälter und Heizeinrichtung muß dann so konzipiert sein, daß über eine entsprechende Fördereinrichtung das Reduktionsmittel an die Heizeinrichtung angedrückt wird. Durch eine Beheizung der Behälterwandungen, die dann nach außen thermisch isoliert sind, oder über in die Behälterfüllung eingetauchte Heizelemente, kann die Vergasung des Reduktionsmittels bewirkt oder unterstützt werden, wie dies in Fig. 4 mit der Heizspirale 12.1 angedeutet ist.

Das gasförmige Reduktionsmittel tritt nunmehr aus der Heizeinrichtung 9 in eine Dosierkammer 10 ein, deren Wandungen mit einer Wärmeisolierung 11 und die im Wandbereich mit einer weiteren Heizeinrichtung 12 versehen ist, so daß eine Kondensation des gasförmigen Reduktionsmittel an den Wandungen vermieden ist.

Der Dosierkammer 10 ist eine Reaktionskammer 13 nachgeschaltet, die mit einer weiteren Heizeinrichtung 14 versehen ist und die es ermöglicht, den aus der Dosierkammer 10 in die Reaktionskammer 13 eintretenden Reduktionsmittelgas thermisch in seine reduktiven Bestandteile zu zerlegen. Bei der Verwendung von Cyanursäure, d. h. (HNCO), wird in der Reaktionskam-

mer 13 entsprechend dem Diagramm gem. Fig. 1 mit Hilfe der zusätzlichen Wärmezufuhr durch die Heizeinrichtung 14 über die Zerlegung in HNCO und in das schneller reduzierende NH das reduktive Produkt erzeugt. Über ein Dosierventil 10.1 (Fig. 2), das analog oder taktend arbeitet, kann die Zufuhr des Gases zur Reaktionskammer 13 geregelt werden.

Aus der Reaktionskammer 13 kann das Gas über ein Zumischrohr 15 direkt abgeleitet werden. Die Mündung des Zumischrohres 15 kann hierbei mit einer mechanischen Verteileinrichtung 16 versehen sein, um eine möglichst gleichmäßige Verteilung über den ganzen Strömungsquerschnitt vor dem Eintritt in den Katalysator 2 zu bewirken. Die Verteileinrichtung kann beispielsweise durch eine Prallplatte an der Austrittsöffnung gebildet werden. Ziemlichmäßig ist es, wenn im Abgasrohr 1 zumindest vor der Mündung des Zumischrohres ein Drallkörper 16.1 angeordnet ist.

Zur Verbesserung der Mischung im Abgasrohr ist bei dem hier dargestellten Ausführungsbeispiel der Reaktionskammer 13 eine Vormischkammer 17 zugeordnet, die über ein Zuleitungsrohr 18 für ein Trägergas in Verbindung steht. Als Trägergase können heiße Luft, ein Abgasteilstrom eingesetzt werden, die über entsprechende Quellen und mit entsprechendem Vordruck bereit gestellt werden. Abgas als Trägergas kann unmittelbar aus dem Abgasrohr 1 stromauf entnommen werden. An der Vormischkammer 17 kann somit ein Teil des sauerstoffhaltigen Trägergases mit dem aus der Reaktionskammer 13 zuströmenden gasförmigen Reduktionsmittel vorgemischt und die Vormischung dann in das Abgasrohr wie vorstehend beschrieben aufgrund des Druckgefälles zwischen der Mündung 16 des Zuleitungsrohres 15 und dem (höheren) Druck in der Vormischkammer 17 eingeleitet werden. Durch ein steuerbares Ventil 19 vor der Vormischkammer 17 kann ein unkontrolliertes Ausströmen des Reduktionsmittels, beispielsweise bei einem Fahrzeugbrand, verhindert werden. Zweckmäßig sind alle "heißen" Kamern und die Verbindungskanäle mit dem Isoliermantel 11 umgeben.

Die Gesamtanordnung ist mit einer Steuereinrichtung 20 verbunden, die ihrerseits mit der Motorsteuerung in Verbindung stehen kann. Über die Steuereinrichtung 20 wird zum einen die Heizleistung der Heizeinrichtung 9 gesteuert, wobei die Zufuhr an Heizenergie über einen entsprechenden Temperatursensor 21 kontrolliert wird. In Fig. 2 kann die Heizenergie optimal über einen Drucksensor 26 kontrolliert werden. In der Steuerung können motorspezifische und/oder spezifische Kennfelder der Nachbehandlungseinrichtung, NO_x-Kennfelder und/oder HC-Kennfelder für alle Betriebszustände "abgelegt" sein, so daß die Zufuhr an Reduktionsmittel entsprechend den Vorgaben der Kennfelder geregelt werden kann.

Über die Steuereinrichtung 20 wird ferner sowohl die Heizleistung der Heizeinrichtung 12 der Dosierkammer 10 als auch die Heizleistung der Heizeinrichtung 14 der Reaktionskammer 13 jeweils über Temperatursensoren 22 bzw. 23 kontrolliert und entsprechend geregelt sowie das Ventil 19 angesteuert. Zwischen der Dosierkammer 10 und der Reaktionskammer 13 kann ein weiteres Dosierventil 10.1 angeordnet sein, daß auch als Rückschlagventil ausgebildet sein kann, das nur bei Bedarf öffnet, so daß die Beheizung der Reaktionskammer 13 auch nur bei Bedarf zugeschaltet wird, während über die Heizung in der Heizkammer 9 ein Grundtemperaturniveau aufrechterhalten wird. Über einen Drucksensor 26 kann ein Grunddruckniveau aufrechterhalten werden.

Über einen hier nicht näher dargestellten regelbaren Antriebsmechanismus ist es ferner möglich, mit Hilfe der Steuereinrichtung 20 auch über den Vorschub der Fördereinrichtung 7 und/oder die mechanische Dosiereinrichtung 8.1 die Mengenzufuhr zur Heizeinrichtung 9 zu regulieren. Die Regulierung der Zufuhrmengen an festem Reduktionsmittel aus dem Vorratsbehälter 5 ist immer dann zweckmäßig, wenn für die Heizeinrichtung 9 eine untere und eine obere Grenztemperatur erreicht wird und eine Veränderung der zu erzeugenden Gasmenge nur noch durch eine Veränderung der Feststoffzufuhr möglich ist. Eine weitere Möglichkeit zur Reduzierung der aufzubrin-

genden Heizleistung ist eine Unterteilung des Vorratsbehälters in einzelne mit Reduktionsmittel gefüllte Segmente, die separat mit Heizleistung beaufschlagt werden können, so daß nicht jeweils das gesamte Reduktionsmittel im Vorratsbehältnis auf ein höheres Temperaturniveau gebracht werden muß.

Über einen Sensor 24, der im Abgaskanal 1 hinter der Katalysatoreinrichtung 2 angeordnet ist, besteht ferner die Möglichkeit sicherzustellen, daß nicht zuviel Reduktionsmittel zugeführt wird. Mit diesem Sensor 24 können die Zerfallsprodukte des eingesetzten Reduktionsmittels im Abgasstrom erfaßt werden, so insbesondere Amid Ionen und/oder Isocyansäure und/oder Ammoniak oder aber auch Stickoxide und danach über die Steuereinrichtung 20 eine Regelung der Heizleistung der Heizeinrichtung 9 und/oder eine Regelung der Mengenzufuhr an Reduktionsmittel aus dem Vorratsbehälter 5 Einfluß genommen werden kann und/oder eine Dosierung mittels Dosierventil 10.1.

Über einen Sensor 25 kann der Füllstand im Vorratsbehälter 5 kontrolliert werden, so daß bei Erreichen einer Mindestmenge ein entsprechendes Signal erzeugt wird, das dem Betreiber die Notwendigkeit der Nachfüllung anzeigt. Alternativ kann auch die Heizleistung überwacht werden, zum Beispiel über die Dauer oder Häufigkeit der Ansteuerung des Dosierventils. Bei einem Anstieg der Leistung über einen Grenzwert kann ein Signal zum Auswechseln der Kartusche gegeben werden.

Der anhand von Fig. 1 und Fig. 2 beschriebene Verfahrensablauf erfordert bei der Pyrolysereaktion und bei der späteren katalytisch gestützten Reaktion des erzeugten reduktiven Produktes im Abgas relativ hohe Temperaturen, wie sie bei einem im Vollastbereich betriebenen Verbrennungsmotor im stationären Betrieb gegeben sind.

35

In Fig. 3 ist schematisch eine andere Grundreaktion der Umsetzung eines festen Reduktionsmittels, hier Cyanursäure, in die Gasform und dann die Zerlegung in ein reduktives Produkt

sowie dessen Zumischung zum reduzierenden Abgas und die anschließende Abgasnachbehandlung in einem Katalysator dargestellt. Bei (HNO₃), Cyanursäure, wird für die Umsetzung aus einer festen Form in die Gasform Wärme mit einem Temperatur-

5 niveau von 300 bis 450°C benötigt. Durch die Zufuhr von Wasserdampf bei 150 bis 350°C erfolgt die Umsetzung der gasförmigen Cyanursäure zu NH₃ (Ammoniak), die als ggf. katalytisch gestützte Hydrolysereaktion abläuft. Das als reduktives Produkt gewonnene Ammoniak wird dann dem Abgas zugemischt. Die

10 nachfolgende ebenfalls katalytisch gestützte Reaktion zwischen NH₃ und NO_x im Abgas-Katalysator benötigt hierbei ein Temperaturniveau des Abgases von nur mehr als 120°C. Ein derartiges Temperaturniveau ist beispielsweise bei instationär auch im Teillastbereich betriebenen Verbrennungsmotoren bei

15 Fahrzeugen gegeben.

Fig. 4 zeigt in Form eines Fließbildes das Verfahren entsprechend dem Verfahrensablauf gem. Fig. 3, wie es insbesondere bei Fahrzeugmotoren mit wechselnden Lastanforderungen zweckmäßig ist. Das Verfahren basiert auf der Verwendung einer auswechselbaren Kartusche 5.1 mit Reduktionsmittelfüllung. Hierbei ist es zweckmäßig, wenn die Heiz- und Vergasungseinrichtung 9/10 in unmittelbaren Kontakt mit der Reduktionsmittelfüllung gebracht wird. Die geschlossene Kartusche 5.1 wird druckdicht an die Einrichtung angeschlossen, wobei die Heizeinrichtung 12.1 die Grenzfläche berührt oder in die Reduktionsmittelfüllung 6 eindringt. Das entstehende Reduktionsmittelgas, das unter entsprechendem Überdruck steht, kann dann über ein von der Steuereinrichtung 20 angesteuertes

20 taktendes oder analog arbeitendes Dosierventil 10.1 in die Reaktionskammer 13 übertreten. Zweckmäßig für die genaue Dosiierung ist die Anordnung einer Drosselstelle 10.2 im Übergang zwischen der Heiz- und Vergasungseinrichtung 9/10 und der Reaktionskammer 13. Auch hier sind alle "heißen" Kammern

25 und Verbindungskanäle einschließlich der Kartusche 5.1 mit einem Isoliermantel umgeben, der hier zur Vereinfachung der Zeichnung nicht dargestellt ist.

Um eine NO_x-Reduktion bei Abgastemperaturen von ca. 150°C bis 350°C realisieren zu können, erfolgt in der Reaktionskammer 13 beispielsweise bei der Verwendung von Cyanursäure eine Umsetzung im wesentlichen in Ammoniak als reduktives Produkt.

- 5 Hierzu wird über eine Zuleitung 18.1 der Reaktionskammer 13 wasserhaltiges Abgas zugeführt, um so eine Hydrolyse zu bewirken. Ein Hydrolyse-Katalysator 13.1 kann die Zerlegung noch unterstützen, so daß hier Umsatzgrad, Reaktionstemperatur und Verweilzeit des Gases bei der Transformation in reduktive Bestandteile in der Reaktionskammer 13 optimiert werden können
- 10

In Fig. 5 ist eine entsprechend dem Fließschema nach Fig. 4 arbeitende praxisnahe Anordnung einer Einrichtung zur Durchführung des Reaktions-Verfahrens nach Fig. 3 schematisch in seinen Einzelkomponenten dargestellt. Hierbei ist an der Abgasleitung 1 ein Vorratsbehälter 5, vorzugsweise in Form einer auswechselbaren Kartusche für ein in fester Form (rieselfähig oder Festkörper) vorliegendes Reduktionsmittel angeordnet. Der als Heizeinrichtung 9 ausgebildete poröse Boden steht mit der Dosierkammer 10 in Verbindung, in der die Zusatzheizeinrichtung 12 angeordnet ist, durch die dieser Raum so beheizt wird, daß eine Resublimation des erzeugten Gases vermieden wird. Über das angesteuerte Dosierventil 10.1 wird eine entsprechend bemessene Gasmenge in eine als Hydrolyse-Katalysator ausgebildete Reaktionskammer 13.1 übergeleitet, die über die Heizeinrichtung 14 aufgeheizt wird, um hier die Zerlegung des Gases zu bewirken. Durch ein Ableitungsrohr 1.1 vom Abgasrohr 1 kann ein Abgasteilstrom, wie in Fig. 4 als Abgasteilstrom 18.1 angedeutet, vor der Reaktionskammer 13 eingeleitet werden. Der Wassergehalt im Abgas reicht in der Regel für den Ablauf der Hydrolysereaktion des Gases mit dem Wasser aus, um die gewünschte Bildung von reduktiven Produkten zu bewirken, wie in Fig. 3 für Cyanursäure als Reduktionsmittel dargestellt. Gegebenenfalls können geringe Wasserdampfmengen zugesetzt werden. Aus der Reaktionskammer 13 tritt das in Form von reduktiven Produkten vorliegende gasförmige Reduktionsmittel über das Zuführungsrohr 15 in den Abgaskan-

nal 1 ein. Durch einen stationären Mischer, beispielsweise flügelförmige Drallkörper 16.1 vor und hinter der Einleitungsstelle für die reduktiven Produkte wird im Zuführungs-
bereich das Abgas so verwirbelt, daß eine praktisch gleich-
5 mäßige Verteilung über den ganzen Strömungsquerschnitt in der Abgasleitung 1 erzielt wird.

Durch die Anordnung einer zweiten Kartusche 5.3, die mittels einer Zuleitung 28 an die Dosierkammer 10 der ersten Kartusche 5 angeschlossen ist und in der ein Rückschlagventil 29 angeordnet ist, kann eine entsprechend größere Menge an Reduktionsmittel zur Verfügung gestellt werden. Auch die zweite Kartusche 5.3 ist mit einer Heizeinrichtung 9 zur Erzeugung eines Reduktionsmittelgases sowie einer Dosierkammer 10 mit
15 Zusatzheizeinrichtung 12 ausgerüstet.

Die Anordnung gem. Fig. 5 kann auch so abgewandelt werden, daß neben einer "aktiven" Kartusche 5 für den Normalbetrieb eine zweite Kartusche für die Kaltstartphase angeordnet ist,
20 die nur in der Startphase zugeschaltet wird. Diese zweite Kartusche kann in ihrer Heizleistung so ausgelegt sein, daß sehr schnell entsprechende Mengen an Reduktionsmittelgas zur Verfügung stehen.

Ansprüche

1. Verfahren zur Reduktion von Stickoxiden in einem sauerstoffhaltigen Abgasstrom, insbesondere Abgasen von Verbrennungsmotoren, die einer katalytischen Abgasnachbehandlung in einem Katalysator unterzogen werden, dadurch gekennzeichnet, daß ein als Feststoff vorliegendes Reduktionsmittel unter Wärmeeinwirkung in Gas verwandelt und das Gas in einer Reaktionskammer thermisch und/oder katalytisch in reduktive Produkte zerlegt wird, die dann dem zu reduzierenden Abgas vor dem Katalysator zugemischt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gas unter Wärmezufuhr durch Pyrolyse zerlegt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gas unter Zufuhr von Wasser, insbesondere Wasserdampf, durch Hydrolyse zerlegt wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die benötigte Gasmenge durch Veränderung der auf den Feststoff einwirkenden Heizleistung geregelt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die benötigte Gasmenge durch Veränderung der Feststoffzufuhr geregelt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß hinter dem Katalysator die Menge an einzelnen Abgaskomponenten, insbesondere NO_x und/oder an reduktiven Produkten des Reduktionsmittels, insbesondere Amid Ionen und/oder Isocyansäure und/oder Ammoniak erfaßt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Zudosierung des vergasten Reduktionsmittels in den Abgasstrom über eine Steuereinrichtung in Abhängigkeit der hinter dem Katalysator erfaßten Mengen an Ab-

gaskomponenten, insbesondere NO_x und/oder an reduktiven Produkten des Reduktionsmittels erfolgt.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Zudosierung des vergasten Reduktionsmittels über eine Steuereinrichtung in Abhängigkeit von motorspezifischen Kennfeldern über die NO_x -Gehalte und/oder die HC-Gehalte im Abgas erfolgt.

10 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Zudosierung des vergasten Reduktionsmittels über eine Steuereinrichtung in Abhängigkeit von katalysatorspezifischen Kennfeldern bezüglich des Umsatzgrades und/oder der Speicherfähigkeit der katalytischen Nachbehandlungseinrichtung erfolgt.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Zudosierung des vergasten Reduktionsmittels über eine Steuereinrichtung in Abhängigkeit von Kennfeldern in bezug auf das Druckgefälle des Gases gegenüber dem Abgas erfolgt.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Zudosierung des vergasten Reduktionsmittels über eine Steuereinrichtung in Abhängigkeit von Kennfeldern in bezug auf die für die Vergasung eingesetzte Heizleistung erfolgt.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Gas in einem Trägergas in Form von Abgas und/oder Luft vorgemischt und die Vormischung dem Abgassstrom zugemischt wird.

13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Zumischung mit Hilfe eines Druckgefälles zwischen dem Vergasungsbereich und dem Abgasstrom erfolgt.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß bei einem Druckgefälle zwischen dem Vergasungsbereich und dem Abgasstrom die Zuminischung über eine steuerbare Dosiereinrichtung, insbesondere ein Dosierventil,
5 erfolgt.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Reduktionsmittel in wenigstens einem druckdichten Behälter gelagert ist, der nur in Richtung auf
10 das zu reduzierende Abgas offenbar ist.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Reduktionsmittel durch Wärmezufuhr zum Behälter über dessen Wand und/oder wenigstens über ein Heizelement im Behälterinneren vergast wird.
15
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß als feste Reduktionsmittel Cyanursäure und/oder Melamin und/oder Harnstoff und/oder Biuret und/oder
20 Trioret und/oder andere stickstoffhaltige Reduktionsmittel, einzeln oder in Mischungen verwendet werden, die nach vollzogenem Phasenwechsel von fest zu gasförmig sich bei weiterer Energiezufuhr in reduktive Produkte zerlegen lassen.
- 25 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das feste Reduktionsmittel in rieselfähigem Zustand eingesetzt wird.
- 30 19. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß das feste Reduktionsmittel in Form von Preßkörpern eingesetzt wird.

Fig.1

fig. 4

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP 98/07937

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 B01D53/94 B01D53/86 B01D53/56 F01N3/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 B01D F01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 558 809 A (ASEA BROWN BOVERI) 8 September 1993	1,2
A	see column 2, line 23 - column 4, line 7; figure 1	3-19
X	DE 38 39 199 A (KRIEB KARL HEINZ DIPL PHYS) 31 May 1990	1
A	see claims 1-3	2-19
X	WO 92 16454 A (MOLECULAR TECH CORP) 1 October 1992	1,2
A	see figure 3	3-19
X	DE 34 22 175 A (KERN JULIUS DR) 19 December 1985	1,2
A	cited in the application see claims 1-14	3-19
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

25 March 1999

01/04/1999

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kanoldt, W

INTERNATIONAL SEARCH REPORT

In national Application No

PCT/EP 98/07937

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 287 224 A (ENERGY & ENVIRON RES CORP) 19 October 1988 see claims 1-16 -----	1-3
A	US 5 240 688 A (PACHALY REIHARD ET AL) 31 August 1993 see claims 1-19 -----	4-19
A	EP 0 487 886 A (MAN TECHNOLOGIE GMBH) 3 June 1992 see figure 2 -----	1,3
A	US 5 234 671 A (GARDNER-CHAVIS RALPH A ET AL) 10 August 1993 see figures 1,2 -----	1-19
A	US 5 693 300 A (SLONE RALPH J) 2 December 1997 see claims 1-3 -----	1-19
A	DE 40 03 515 A (BAYER AG ; VOLKSWAGENWERK AG (DE)) 8 August 1991 see claims 1-5 -----	1-19

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. appl. No.

PCT/EP 98/07937

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0558809 A	08-09-1993	DE 4206024 A		02-09-1993
		CA 2086778 A		28-08-1993
		JP 6277449 A		04-10-1994
DE 3839199 A	31-05-1990	NONE		
WO 9216454 A	01-10-1992	US 5234670 A		10-08-1993
		AU 1754692 A		21-10-1992
DE 3422175 A	19-12-1985	DE 3420772 A		05-12-1985
EP 0287224 A	19-10-1988	US 4861567 A		29-08-1989
		US 4851201 A		25-07-1989
		AT 130780 T		15-12-1995
		DE 3854728 D		11-01-1996
		DE 3854728 T		10-10-1989
US 5240688 A	31-08-1993	AT 129925 T		15-11-1995
		AT 134155 T		15-02-1996
		AU 8297991 A		02-03-1992
		AU 8517791 A		02-03-1992
		CA 2063811 A		02-02-1992
		CA 2088576 A		02-02-1992
		DE 69114503 D		14-12-1995
		DE 69114503 T		02-05-1996
		DE 69117163 D		28-03-1996
		DE 69117163 T		05-09-1996
		WO 9202291 A		20-02-1992
		EP 0542792 A		26-05-1993
		EP 0495089 A		22-07-1992
		FI 930377 A		29-01-1993
		WO 9202450 A		20-02-1992
		US 5543123 A		06-08-1996
		US 5399325 A		21-03-1995
EP 0487886 A	03-06-1992	DE 4038054 A		04-06-1992
		DE 4203807 A		12-08-1993
		DE 59101378 D		19-05-1994
		ES 2052313 T		01-07-1994
US 5234671 A	10-08-1993	US 5078982 A		07-01-1992
		AU 8914091 A		15-04-1992
		EP 0510189 A		28-10-1992
		WO 9204963 A		02-04-1992
		US 5234670 A		10-08-1993
		US 5171554 A		15-12-1992
		AU 8715991 A		15-04-1992
		WO 9204964 A		02-04-1992
US 5693300 A	02-12-1997	AU 659413 B		18-05-1995
		AU 8655391 A		15-04-1992
		AU 8749591 A		15-04-1992
		CN 1060613 A,B		29-04-1992
		DE 69108926 D		18-05-1995
		DE 69108926 T		07-09-1995
		DE 69115495 D		25-01-1996
		DE 69115495 T		09-05-1996
		EP 0548255 A		30-06-1993

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/EP 98/07937

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5693300	A	EP	0556228 A	25-08-1993
		JP	6501198 T	10-02-1994
		JP	6501200 T	10-02-1994
		WO	9204962 A	02-04-1992
		WO	9204966 A	02-04-1992
		US	5342599 A	30-08-1994
DE 4003515	A 08-08-1991	DE	59007453 D	17-11-1994
		EP	0445408 A	11-09-1991
		ES	2060917 T	01-12-1994
		JP	4215821 A	06-08-1992
		US	5085840 A	04-02-1992

INTERNATIONALER RECHERCHENBERICHT

In: nationales Aktenzeichen

PCT/EP 98/07937

A. Klassifizierung des Anmeldungsgegenstandes
 IPK 6 B01D53/94 B01D53/86 B01D53/56 F01N3/20

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationsymbole)
 IPK 6 B01D F01N

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 558 809 A (ASEA BROWN BOVERI) 8. September 1993	1,2
A	siehe Spalte 2, Zeile 23 - Spalte 4, Zeile 7; Abbildung 1	3-19
X	DE 38 39 199 A (KRIEB KARL HEINZ DIPL PHYS) 31. Mai 1990	1
A	siehe Ansprüche 1-3	2-19
X	WO 92 16454 A (MOLECULAR TECH CORP) 1. Oktober 1992	1,2
A	siehe Abbildung 3	3-19
X	DE 34 22 175 A (KERN JULIUS DR) 19. Dezember 1985	1,2
A	in der Anmeldung erwähnt siehe Ansprüche 1-14	3-19
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - "L" Veröffentlichung, die eignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgetüft)
 - "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- 'T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolliidiert, sondern nur zum Verständnis des der Erfindung zugrundliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindereicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht auf erfindereicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Anmeldedatum des Internationalen Recherchenberichts

25. März 1999

01/04/1999

Name und Postanschrift der internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Kanoldt, W

INTERNATIONALER RECHERCHENBERICHT

In: nationales Aktenzeichen

PCT/EP 98/07937

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 287 224 A (ENERGY & ENVIRON RES CORP) 19. Oktober 1988 siehe Ansprüche 1-16	1-3
A	US 5 240 688 A (PACHALY REIHARD ET AL) 31. August 1993 siehe Ansprüche 1-19	4-19
A	EP 0 487 886 A (MAN TECHNOLOGIE GMBH) 3. Juni 1992 siehe Abbildung 2	1,3
A	US 5 234 671 A (GARDNER-CHAVIS RALPH A ET AL) 10. August 1993 siehe Abbildungen 1,2	1-19
A	US 5 693 300 A (SLONE RALPH J) 2. Dezember 1997 siehe Ansprüche 1-3	1-19
A	DE 40 03 515 A (BAYER AG ; VOLKSWAGENWERK AG (DE)) 8. August 1991 siehe Ansprüche 1-5	1-19

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 98/07937

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0558809	A	08-09-1993	DE	4206024 A	02-09-1993
			CA	2086778 A	28-08-1993
			JP	6277449 A	04-10-1994
DE 3839199	A	31-05-1990	KEINE		
WO 9216454	A	01-10-1992	US	5234670 A	10-08-1993
			AU	1754692 A	21-10-1992
DE 3422175	A	19-12-1985	DE	3420772 A	05-12-1985
EP 0287224	A	19-10-1988	US	4861567 A	29-08-1989
			US	4851201 A	25-07-1989
			AT	130780 T	15-12-1995
			DE	3854728 D	11-01-1996
			DE	3854728 T	10-10-1989
US 5240688	A	31-08-1993	AT	129925 T	15-11-1995
			AT	134155 T	15-02-1996
			AU	8297991 A	02-03-1992
			AU	8517791 A	02-03-1992
			CA	2063811 A	02-02-1992
			CA	2088576 A	02-02-1992
			DE	69114503 D	14-12-1995
			DE	69114503 T	02-05-1996
			DE	69117163 D	28-03-1996
			DE	69117163 T	05-09-1996
			WO	9202291 A	20-02-1992
			EP	0542792 A	26-05-1993
			EP	0495089 A	22-07-1992
			FI	930377 A	29-01-1993
			WO	9202450 A	20-02-1992
			US	5543123 A	06-08-1996
			US	5399325 A	21-03-1995
EP 0487886	A	03-06-1992	DE	4038054 A	04-06-1992
			DE	4203807 A	12-08-1993
			DE	59101378 D	19-05-1994
			ES	2052313 T	01-07-1994
US 5234671	A	10-08-1993	US	5078982 A	07-01-1992
			AU	8914091 A	15-04-1992
			EP	0510189 A	28-10-1992
			WO	9204963 A	02-04-1992
			US	5234670 A	10-08-1993
			US	5171554 A	15-12-1992
			AU	8715991 A	15-04-1992
			WO	9204964 A	02-04-1992
US 5693300	A	02-12-1997	AU	659413 B	18-05-1995
			AU	8655391 A	15-04-1992
			AU	8749591 A	15-04-1992
			CN	1060613 A,B	29-04-1992
			DE	69108926 D	18-05-1995
			DE	69108926 T	07-09-1995
			DE	69115495 D	25-01-1996
			DE	69115495 T	09-05-1996
			EP	0548255 A	30-06-1993

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören:

Ir. nationales Aktenzeichen

PCT/EP 98/07937

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5693300 A		EP 0556228 A JP 6501198 T JP 6501200 T WO 9204962 A WO 9204966 A US 5342599 A	25-08-1993 10-02-1994 10-02-1994 02-04-1992 02-04-1992 30-08-1994
DE 4003515 A	08-08-1991	DE 59007453 D EP 0445408 A ES 2060917 T JP 4215821 A US 5085840 A	17-11-1994 11-09-1991 01-12-1994 06-08-1992 04-02-1992