Aufgabe 24

(a) Angenommen, es gäbe ein $z \in \mathbb{C}$, sodass $\forall \epsilon > 0: |z - f(\epsilon)| > \epsilon$. Dies können wir umformen zu

$$\frac{1}{\epsilon} > \underbrace{\frac{1}{|z - f(\zeta)|}}_{\text{holomorph, da } z \neq f(\zeta)}.$$

Wegen des Satzes von Liouville muss $\frac{1}{|z-f(\zeta)|} = \text{const sein.}$ Also ist auch const $= |z-f(\zeta)| = |f(\zeta)-z| \ge |f(\zeta)| - |z|$ und daher $|f(\zeta)| < \text{const}$, also ist f beschränkt und daher nach Liouville konstant. Die Kontraposition war zu zeigen.

(b) Sei $z = x + iy \in \mathbb{C}$. Dann gilt $z = k + i \cdot l + q + i \cdot s$ mit $k, l \in \mathbb{Z}$ und $0 \le q, s \le 1$. Aufgrund der in der Aufgabenstellung beschriebenen Eigenschaft, ist also $f(z) = f(k + i \cdot l + q + i \cdot s) = f(q + s \cdot i)$. Aus Holomorphie folgt Stetigkeit, also ist f(M) kompakt für $M = \{q + s \cdot i | 0 \le q, s \le 1\}$. Daher gibt es ein $C \in \mathbb{C}$, sodass $\sup_{\zeta \in M} \zeta < C$. Es gilt folglich $f(z) = f(q + s \cdot i) < C$. Also ist f beschränkt und nach dem Satz von Liouville konstant.

Wir betrachten die Funktion $h(z) \coloneqq \frac{f(z)}{g(z)}$. Hat g eine Nullstelle, so nennen wir diese ζ . h(z) ist also wohldefiniert für alle $z \in \mathbb{C} \setminus \{\zeta\}$. In dieser Menge ist auch stets $|h(z)| \le 1$, da $|f(z)| \le |g(z)| \ \forall z \in \mathbb{C}$. Soll h holomorph sein, so muss die Cauchy'sche Integralformel gelten: $h(\zeta) = \frac{1}{2\pi i} \oint_{\varphi} \frac{h(z)}{z - \zeta} \, \mathrm{d}z$