Computational MR imaging Laboratory 1: MRI pulse sequences and image contrast

Code submission is due by 12:00 before the next Thursday lab section. Please upload your code to StudOn in a described format. Late submissions will not be accepted.

Learning objectives

- Recall and improve familiarity of the MR contrast generation process.
- Recall and improve familiarity with MR pulse sequences and the k-space concept.
- Simulate image contrasts from generated by pulse sequences using a numerical brain phantom.

1. Inspect the digital brain phantom (Aubert-Broche, Neuroimage 2006)

- 1.1.Load the file digital_brain_phantom.mat by calling load_data method. T1, T2, and PD values were simulated. Therefore, their values for one region is the same.
 - 1.1.1. Label (mat['ph']['label'][0][0])
 - 1.1.1.1. 1: Cerebrospinal Fluid (CSF)
 - 1.1.1.2. 2: Gray Matter (GM)
 - 1.1.1.3. 3: White Matter (WM)
 - 1.1.2. T1_map (mat['ph']['t1'][0][0])
 - 1.1.2.1. Predefined T1 values
 - 1.1.3. T2_map (mat['ph']['t2'][0][0])
 - 1.1.3.1. Predefined T2 values
 - 1.1.4. PD_map (mat['ph']['sd'][0][0])
 - 1.1.4.1. Predefined proton density(PD) values
- 1.2. Display the regions Cerebrospinal Fluid (CSF, label=1) Gray Matter (GM, label=2) and White Matter (WM=3).
 - 1.2.1. Implement methods, get_[csf,gm,wm]_mask(). Consider their labels.
- 1.3. Display the predefined T1, T2 and Proton Density (PD) values for these three regions.
- 1.4. Print unique values of T1 map, T2 map, and PD map.
- 1.5. Print T1, T2, and PD for CSF, GM, and WM, respectively.
 - 1.5.1. Implement methods, get [T1,T2,PD].

2. Simulate MR image contrast from pulse sequences

- 2.1. Implement spin_echo method. Use the Spin-Echo signal equation from Bernstein eq 14.57.
 - 2.1.1. Assume a 90° excitation and a 180° refocusing pulse.
- 2.2. Spin Echo Proton density weighted (PDw):
 - 2.2.1. Choose repetition time (TR) and echo time (TE) accordingly and define them as a list format in self.PDw_TRTE in Lab01_op class. Hint: Consider the T1 and T2 values of GM and WM.
- 2.3. T1-weighted
 - 2.3.1. Do the same as PDw and define self.T1w_TRTE.

- 2.4. T2-weighted
 - 2.4.1. Do the same and define self.T2w_TRTE.
- 2.5. Plot PDw, T1w, and T2w images.

3. K-Space trajectories

Consider three popular k-space acquisition trajectories. Cartesian, radial and spiral (see **Figure 1**). Sketch the gradient waveforms that generate these k-space trajectories. Hint: Remember that:

$$k_{y} = \int_{0}^{t} G_{y} d\tau$$
$$k_{x} = \int_{0}^{t} G_{x} d\tau$$

Figure 1: Cartesian, radial and spiral k-space trajectories

Appendix: Equations from Bernstein book:

Spin Echo signal equation (section 2.1.2)

$$S = M_0(1 - 2e^{-(TR - TE/2)/T_1} + e^{-TR/T_1})e^{-TE/T_2}$$
(14.57)