

Relational Retrieval Using a Combination of Path-Constrained Random Walks

Relational Retrieval and Proximity Measures

Retrieval with Rich Meta-Data

Gene recommendation: author, year→gene
Reference recommendation: title words, year→paper
Expert-finding: title words, genes→author
Venue recommendation: title words, genes→venue

How to measure proximity on typed graphs?

The Limitation of RWR proximity measure:

Random Walks with Restart (RWR) is a commonly used similarity measure on labeled graphs. It can be improved by supervised learning of edge weights. However, its one-parameter-per-edge label is limited because the context of an edge label appears is ignored

Path Constrained Random Walk

Carnegie Mellon

Given a query $q=(\mathbf{E}_q, T_q)$, recursively define a distribution for each path

$$h_{E_q,P}(e) = \sum_{e' \in range(P')} h_{E_q,P'}(e') \cdot \frac{1}{|R_l(e')|} \cdot \frac{1}{|R_l(e')$$

Path Ranking Algorithm (PRA)

Retrieval model

A retrieval model can rank target entities by linearly combine the distributions of different paths

$$score(e;\theta,L) = \sum_{P \in \mathbf{P}(q,L)} h_P(e)\theta_P$$

in matrix form $s=A\theta$

Parameter Estimation

Given a set of training data

D={ $(q^{(m)}, A^{(m)}, y^{(m)})$ }, $m=1...M, y^{(m)}(e)=1/0$

define a regularized objective function

$$O(\theta) = \sum_{m=1..M} o_m(\theta) - \lambda_1 |\theta|_1 - \lambda_2 |\theta|_2 / 2$$

$$o_m(\theta) = |P_m|^{-1} \sum_{i \in P_m} \ln p_i^{(m)} + |N_m|^{-1} \sum_{i \in N_m} \ln(1 - p_i^{(m)})$$

$$p_i^{(m)} = p(y_i^{(m)} = 1 | q^{(m)}; \theta) = \frac{\exp(\theta^T A_i^{(m)})}{1 + \exp(\theta^T A_i^{(m)})}$$

© Ext.1: Query Independent Paths

Generalize PageRank to multiple entity and relation type setting (can be calculate offline).

© Ext.2: Popular Entity Biases

There are entity specific characteristics which cannot be captured by a general model

$$s(e;\theta) = \sum_{P:T_{last}=T_q} h_P^T(e)\theta_P + \theta_e + \sum_{e'\in\mathcal{E}_q} \theta_{e',e},$$

in matrix form

$$s = A\theta + \theta^{(b)} + \Theta q$$

For efficiency we add to the model top J parameters (measured by $|O(\theta)/\theta_e|$) at each LBFGS iteration.

Results

L2 Regularization improves the retrieval quality

Reference recommendation task on Yeast data

L1 Regularization reduces the number of features

Reference recommendation task on Yeast data

© Example Features

ID	Weight	Feature	w			
1		$word \rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$	1) papers co-cited with the on-topic papers			
2		$word \rightarrow paper \xrightarrow{Cite} paper$	2) Aggregated citations of the on-topic papers			
3		$gene \rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$				
4		$word \rightarrow paper \xrightarrow{Cite^{-1}} paper$				
5	50.2	$gene \rightarrow paper \xrightarrow{Cite} paper$				
6	41.4	$word \rightarrow paper$	6) resembles an ad-hoc retrieval system			
7	29.3		7,8) papers cited during the past two years			
8	13.0	$year \xrightarrow{Before^{-1}} year \rightarrow paper \xrightarrow{Cite} paper$				
	• • •					
9	3.7	$T^* \to paper \xrightarrow{Cite} paper$	9) well cited papers			
10	2.9	GAL4>Nature. 1988. GAL4-VP16 is an unusually potent transcriptional activator.				
11	2.1	CYC1>Cell. 1979. Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisia				
			10,11) (important) early papers about			
12	-5.4	$year \xrightarrow{Before^{-1}} year \rightarrow paper$	specific query terms (genes)			
13	-39.1	$year \rightarrow paper$	12,13) general papers published during the			
14	-49.0	$T^* o year o paper$ 14) old papers	past two years			

Main Result

A PRA+qip+pop model trained for the reference recommendation task on the yeast data

Corpus	Task	RWR Trained	PRA			
			Trained	+qip	+pop	+qip +pop
Yeast	Ven	44.2	45.7 (+3.4)	46.4 (+5.0)	48.7 (+10.2)	49.3 (+11.5)
Yeast	Ref	16.0	16.9 (+5.6)	18.3 (+14.4)	19.1 (+19.4)	19.8 (+23.8)
Yeast	Exp	11.1	11.9 (+7.2)	$12.4 \ (+11.7)$	$12.5 \ (+12.6)$	12.9 (+16.2)
Yeast	Gen	14.4	14.9 (+3.5)	15.1 (+4.9)	15.1 (+4.9)	15.3 (+6.3)
Fly	Ven	48.3	50.4 (+4.3)	51.1 (+5.8)	50.7 (+5.0)	51.7 (+7.0)
Fly	Ref	20.5	$20.8 (+1.5)^{\dagger}$	21.0 (+2.4)	21.6 (+5.4)	21.7 (+5.9)
Fly	Exp	7.2	$7.6 \ (+5.6)^{\dagger}$	8.3 (+15.3)	7.9 (+9.7)	8.5 (+18.1)
Fly	Gen	19.2	20.7 (+7.8)	21.1 (+9.9)	21.1 (+9.9)	21.0 (+9.4)

