

Setting up a teaching environment for Machine Learning

Vineeth B. S.

Department of Avionics,
Indian Institute of Space Science and Technology

(Thanks to: Birenjith P. S.)

Something to take away from these four days ...

- TPML 2020
 - Courses in optimization, Python for machine learning, unsupervised, supervised, and reinforcement learning
 - Applying machine learning techniques to a variety of problems
- So what will you do now?
 - develop and teach machine learning courses
 - apply machine learning techniques to problems that you are working on
 - student projects in machine learning

Some points to note ...

- In order to do any one of the above
 - Need to set up a mechanism for formulating, running, evaluating, and analyzing machine learning applications and experiments
- This talk touches on some aspects of setting up an environment to do machine learning teaching and research
 - Useful software components
 - Pointers to resources
- Talk is based on my experience. Apologies if it is biased and incomplete (if your favourite software package is not covered, please tell me!)
 - Talk does not cover the physical setup of a lab
 - Mainly targets an environment that can be easily deployed on to a student's laptop or desktop computers in a "programming lab"
 - Does not target "big data", high performance computing, GPUs ...

Plan for this talk ...

- Software tools for teaching ML
- Typical examples of how these software tools can be used
- How to package these software tools into a customized and easily deployable distribution?

A pre-requisite for teaching ML: datasets

- https://toolbox.google.com/datasetsearch
- UCI machine learning datasets https://archive.ics.uci.edu/ml/index.php
- Kaggle https://www.kaggle.com/datasets
- Examples of Govt. sources
 - India https://data.gov.in/
 - US https://www.data.gov/
 - UK https://www.ukdataservice.ac.uk/
- Financial data https://data.worldbank.org/, https://www.imf.org/en/Data
- MNIST handwritten digits dataset http://yann.lecun.com/exdb/mnist/
- Classification of datasets
 - For each specific dataset type what is a good source of that dataset?
- Lists of datasets
 - https://en.wikipedia.org/wiki/List of datasets for machine-learning research
 - https://elitedatascience.com/datasets
 - https://www.kdnuggets.com/2016/05/top-10-datasets-github.html
 - https://github.com/DataHackIL/DataSets
 - https://github.com/awesomedata/awesome-public-datasets

Having a look at data - data exploration tools

- Let us look at 'iris' dataset and diabetes dataset
- Linux command line utilities
- Spreadsheet software
 - Libreoffice https://www.libreoffice.org/
 - WPS office https://www.wps.com/
 - Microsoft Excel

Having a look at data - data exploration tools

GGobi (http://ggobi.org/)

Teaching ML without (much) programming background

- WEKA
- RapidMiner
- KNIME
- Orange(3)

A quick introduction to WEKA

- WEKA Waikato Environment for Knowledge Analysis
- Inside ...
 - 100+ in-built algorithms for classification
 - 70+ in-built algorithms for pre-processing of data
 - 25 feature selection algorithms
 - "Well-known" clustering, classification algorithms
- Demonstrations
 - Data exploration
 - Classification of a dataset

Resources for setting up ML practice lab sessions using WEKA

- A possible set of experiments ...
 - Data exploration & preprocessing on multiple datasets
 - Missing data, Describing data
 - Supervised learning algorithms
 - Classification
 - Unsupervised learning algorithms
 - Clustering
- Free resources for starting up ...
 - https://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/
 - https://www.cs.waikato.ac.nz/ml/weka/mooc/moredataminingwithweka/
 - https://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/
 - https://www.cs.waikato.ac.nz/~ml/weka/book.html

Teaching ML with the use of a programming language

 Python is widely used as a language for building and studying ML algorithms

- Several options to work with Python
 - Jupyter notebook
 - Spyder
 - Visual code
- A number of useful libraries
 - Numpy
 - Scipy
 - Pandas
 - Scikit-learn
 - Matplotlib
- Resources for teaching python
 - Google's Python class https://developers.google.com/edu/python
 - https://docs.python.org/3/tutorial/
 - https://www.learnpython.org/
 - https://www.coursera.org/learn/python

Teaching ML with programming background (Python) - online

- Kaggle notebook
- Google CoLab
- AWS SageMaker
- Google Cloud Datalab
- Domino Data Lab
- DataBrick Notebooks
- Azure Notebooks
- Datalore
- CoCalc
- Binder

Setting up Python

- Python usually available on your computer
 - Maybe used for scripts used in administration of your linux distribution
 - Not really a good idea to modify this for your machine learning needs
- Python package management
 - pip installs python packages from PyPI python package index
 - repository of open source third party python packages
 - pip install <package_name> can be used to easily install packages

Python virtual environment

- Creation of isolated environments for Python
- Demonstration of how to set up an isolated environment (https://pyvideo.org/pycon-us-2011/pycon-2011--reverse-engineering-ian-bicking--39-s.html)
- virtualenvwrapper provides a set of commands which makes working with virtual environments much more pleasant.
- It also places all your virtual environments in one place.
- why does this work?
 - a copy of the python binary is kept in your virtual environment directory
 - libraries and modules are searched in places relative to the location of the python binary this is a feature of python and not of virtualenv means that we can have other versions of libraries and modules placed with respect to this new location of the python binary.

Deployment options

- Virtual machines
- Docker

Courtesy: Nan Li

Deployment using virtual machines

- A very simplified view how does a program run on your computer?
- Should be possible to emulate this in software a virtual computer.
- Setting up a virtual machine ...
 - Virtualbox
 - VMware
- Setting up of a virtual machine for deployment in ML teaching ...

Docker

- Machine learning labsheets as well as associated software can be given to students or participants in the form of containers.
- Multiple containers can co-exist without any conflict and have their own software, libraries, and configuration
- Containers are run on a operating system (like linux) and are not as resource intensive as virtual machines. Containers share the operating system kernel.
- Containers from images
- Images contain layers
 - Starting from an operating system, required libraries, application, and then configuration
 - Only layers that have changed needs to be communicated

Docker images

- An image is a set of files that forms the root file system.
- Images are made up of layers which can be visualized as being stacked one on top of the other
- Layers can add, change, and remove files
- Sharing of layers for optimizing performance is also possible
- An image is like a read only file system
- A container provides a writable copy of that filesystem
 - Containers and images are like instances and classes
- Our need is to build a docker image which will contain all the necessary software for our machine learning lab.
 - Demonstration ...
- This process can be automated using a Dockerfile
 - A series of directives (FROM, RUN, COPY)

Courtesy: Tutorials on docker.org

A possible sequence of experiments for an ML lab with Python

- Lab 1: Datasets and their exploration
 - Classification of datasets
 - Different kinds of attributes
 - Missing data
 - Outliers
 - Generating synthetic data
- Lab 2:
 - Python introduction
 - Jupyter notebooks
- Lab 3:
 - Use of basic python libraries
 - Numpy and Scipy libraries
 - Basic plotting in Python using Matplotlib
- Lab 4:
 - Introduction to Pandas & Scikit-Learn
 - Feature engineering
 - Dimensionality reduction

- Lab 5:
 - Unsupervised learning using scikit-learn
 - Clustering algorithms
- Lab 6:
 - Training, Validation, Test split
 - Supervised learning using scikit-learn
- Other labs from other topics can be added as required

Resources for ML

- https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md
- https://github.com/josephmisiti/awesome-machine-learning/blob/master/blogs.md
- https://github.com/ujjwalkarn/Machine-Learning-Tutorials
- https://github.com/NajiElKotob/Awesome-ML