

Pontifícia Universidade Católica do Rio de Janeiro

Assistente Virtual para Indicações em Viagens

Lucas Hardman Gomes Campos França Proposta de Projeto Final de Graduação

Centro Técnico Científico - CTC

Departamento de Informática

Curso de Graduação em Ciência da Computação

Lucas Hardman Gomes Campos França

Assistente Virtual para Indicações em Viagens

Proposta de Projeto Final, apresentado ao curso de Ciência da Computação da PUC-Rio como requisito parcial para a obtenção de te título de Bacharel em Ciência da Computação.

Orientador: Edmundo Torreão

Rio de Janeiro, Setembro de 2017.

<u>Índice</u>

1.	Introdução	4
	Situação Atual	
3.	Proposta e Objetivo do Trabalho	6
4.	Plano de Ação	8
5.	Cronograma	.10
6.	Referências Bibliográficas	.11

1. Introdução

Inicialmente criado pela IBM em 2011 para participar do programa televisivo americano Jeopardy, o Watson é um sistema de computação cognitiva. Desta forma, ele utiliza técnicas de "machine learning" para aprender com experiências anteriores e aplica estes conhecimentos em futuras tomadas de decisão.

O Watson veio para tentar evoluir na solução de um dos grandes problemas da computação: entender e interpretar a linguagem natural. Ele é capaz de entender dados não-estruturados, que representam 80% dos dados encontrados virtualmente em 2017. Estes dados são normalmente informações produzidas por "seres humanos" para "seres humanos", incluindo textos como artigos, pesquisas e postagens. Ou seja, temos um cenário de um programa computacional tentando interpretar informações com regras como gramática, contexto e cultura, e podem ser ambíguas, implícitas, complexas [1].

A IBM já oferece diversos serviços do Watson que podem ser utilizados por qualquer pessoa com conhecimentos em computação e programação. Dentre eles temos o Conversation e o Personality Insights. O primeiro é um serviço que torna capaz uma conversa por chat entre um usuário "falante" de linguagem natural e um robô que utiliza a inteligência do Watson. O robô deve entender a linguagem natural e responder da forma "mais humana possível". Já o segundo serviço lê e interpreta os dados retirados de redes sociais como Facebook e Twitter para identificar características de personalidade, necessidades, gostos, valores, preferências e hábitos.

Já podemos contar com aplicações do Watson em diversas áreas, como por exemplo na medicina, onde ele é capaz de recomendar terapias contra o câncer a partir do cruzamento da literatura científica com dados clínicos e genéticos dos pacientes ^[2]. Além dessa área, educação, finanças e "internet das coisas" também são focos da IBM para o Watson.

Dessa forma, o Watson é capaz de ser aplicado em diversos setores, entre eles o turismo. Os negócios desta indústria são normalmente diretos e objetivos, como montagem de pacotes de viagens, reservas de hotéis, aluguéis de carros, compras de passagens aéreas e compra de ingressos. O uso da computação cognitiva pode trazer para estes negócios um entendimento sobre as características e necessidades do cliente e com isso oferecer um serviço mais personalizado para cada cliente.

2. Situação Atual

A IBM possui uma gama de soluções para indústria de turismo e viagens que pode ser encontrada em IBM.com/Travel. A maior parte das companhias deste setor estão implementando soluções em forma de chatbots e robôs, ambas ainda "não maduras" o suficiente para impactar em estratégias significativas dessa indústria ou explorar toda a capacidade da tecnologia. Dessa forma, a maior parte das empresas nesta área estão apenas observando o avanço da computação cognitiva e as poucas que estão investindo lideram projetos pequenos e com baixos riscos^[3]. Este é o caso da empresa britânica Thomson, que trabalha no desenvolvimento de um chatbot interage com o usuário providenciando, em tempo real, respostas baseadas em pesquisas sobre destinos e perguntas sobre férias^[4]. Por exemplo, um robô conversa com usuário final com o intuito de sugerir as "melhores" férias baseando-se em um maior entendimento sobre o que o usuário está procurando. Outro trabalho similar é o WayBlazer, que implementa inteligência artificial para melhorar e personalizar a experiência do usuário em websites relacionados a turismo e viagens que contratarem o serviço^[5]. Neste caso, o serviço pode ser contratado para um website de turismo (por exemplo, Trivago), onde os usuários vão ter o seu comportamento mapeado (cliques, compras, e outros dados relevantes)[6] e assim, com o tempo, o website vai ter um perfil de cada usuário (o que pode ser utilizado para diversos fins, como por exemplo passar a sugerir/facilitar a compra de produtos ou serviços relacionados a este perfil).

Por outro lado, a grande maioria dos serviços disponíveis online para essa indústria funcionam de forma onde o usuário informa o que quer e o sistema responde exclusivamente de acordo com o que foi informado. Ou seja, não há uma análise específica sobre o perfil do usuário que influencie nos resultados. Entre estes sistemas, temos o Hotel Urbano e o Trivago, que possuem a principal funcionalidade de encontrar melhores preços em hotéis. Outro sistema conhecido é o Decolar.com, que permite centralizar no aplicativo todas as informações sobre uma viagem, incluindo tickets de embarques, reservas em hotéis, alugueis de carros e ingressos de atrações turísticas, por exemplo. Nesta mesma linha há várias outras aplicações, bem comuns em forma de websites ou aplicativos para celular.

3. Proposta e Objetivo do Trabalho

Este projeto tem como proposta um estudo sobre computação cognitiva e sobre as APIs do Watson, utilizando um aplicativo mobile que funciona como assistente virtual para indicações em viagens como "prova de conceito" (POC - Proof of Concept). Desta forma, será utilizada uma API de um assistente virtual ("IMB Watson Conversation") para viabilizar a interação com usuários relativa a seus interesses pessoais sobre viagens. O projeto também utilizará a API "IBM Watson Personality Insights" para obter o perfil do usuário, a partir da leitura e interpretação das suas contas nas redes sociais. Os dados obtidos do "Personality Insights" serão interpretados pelo aplicativo, a ser desenvolvido neste projeto, posicionando os usuários num determinado perfil para que lhes sejam feitas sugestões de acordo com seus gostos, interesses e estilo de vida.

O sistema será implementado em uma plataforma tecnológica ainda a ser definida, podendo ser Android ou iOS, e deverá pedir acesso à conta do Facebook ou do Twitter do usuário. Com as credenciais concedidas, o IBM Watson Personality Insights fará a leitura do perfil do usuário e exportará um arquivo contendo pontuações obtidas em diversas características humanas^[7]. Este arquivo deve ser interpretado pelo sistema a ser desenvolvido, que deve guardar informações que identificam as tendências de gostos e interesses do usuário. Estas informações guardadas devem servir como "base" para identificar locais de possível interesse.

Após efetuar o login e garantir o acesso à uma rede social ao sistema, o usuário se encontra em uma sala de chat, onde uma assistente virtual, funcionando através do IBM Watson Conversation^[8], inicia uma conversa. Neste dialogo, a assistente procura palavraschave para identificar quais são os interesses do usuário naquele momento, e com isso começar a fazer sugestões baseadas nas informações armazenadas no sistema. A aceitação ou não do usuário pode alterar as informações persistidas no sistema, fazendo com que o sistema passe a oferecer sugestões melhores no futuro.

Assim como o sistema armazena informações sobre o usuário, ele também deve guardar informações sobre destinos, atrações turísticas, restaurantes, exposições e outros estabelecimentos ou eventos ao redor do mundo. Estas informações devem ser utilizadas pelo

sistema a ser implementado comparadas com as informações sobre o usuário para formar as sugestões da assistente.

Desta forma, podemos observar que estamos lidando com um volume muito grande de informações, e ainda não foi especificado em como obter parte delas. Tendo isto em vista, assim como o tempo limitado para a disciplina de Projeto Final, a quantidade de informações no sistema provavelmente será limitada. A princípio a assistente deverá conseguir conversar apenas sobre algumas cidades, e atendendo a determinadas questões.

4. Plano de Ação

Etapa 1: Documentação

- Documentação sobre o estudo realizado e os artefatos do projeto da aplicação
- Atualização do escopo conforme as mudanças necessárias durante a implementação.
- Registro de informações sobre as linhas de código para facilitar futuros retrabalhos e atualizações.
- Atualização da modelagem conforme as necessidades encontradas durante a implementação.

Etapa 2: Estudo sobre as funcionalidades das APIs do Watson

• Leitura e compreensão da documentação das APIs com a finalidade entender o funcionamento da tecnologia que vai ser utilizada.

Etapa 3: Pesquisa

- Pesquisa sobre as tecnologias a serem utilizadas no projeto e como ela se comunicam.
- Pesquisa sobre sistemas similares.

Etapa 4: Especificação de requisitos

Definição das características que o sistema deve atender.

Etapa 5: Estudo sobre os possíveis ambientes de desenvolvimento

Etapa 6: Definição da arquitetura de software

Etapa 7: Modelagem

Criação de modelos de dados de representação do sistema.

Etapa 8: Definição do escopo

- Definição clara e objetiva sobre todos os aspectos da aplicação.
- Detalhamento sobre todas as funcionalidades a serem implementadas.

Etapa 9: Inicio da Implementação

• Primeiros passos da implementação do sistema.

Etapa 10: Implementação

• Implementação completa do sistema.

Etapa 11: Testes

- Testes automatizados.
- Testes com usuários.
- Documentação dos testes.
- Elaboração de um documento apresentando os resultados finais.

Etapa 12: Ajustes e finalização

- Ajustes finais.
- Revisão
- Finalização da documentação

5. Cronograma

Projeto Final	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Mai	Jun	Jul
Projeto Final		17	17	17	17	18	18	18	18	18	18
Etapa 1: Documentação											
Etapa 2: Estudo sobre as											
funcionalidades das APIs do Watson											
Etapa 3: Pesquisa											
Etapa 4: Elaboração da proposta											
Etapa 5: Especificação de requisitos											
Etapa 6: Viabilidade											
Etapa 7: Estudo sobre os possíveis											
ambientes de desenvolvimento											
Etapa 8: Definição da arquitetura de											
software											
Etapa 9: Modelagem											
Etapa 10: Definição do escopo											
Etapa 11: Inicio da Implementação											
Etapa 12: Documentação											
Etapa 13: Implementação											
Etapa 14: Testes											
Etapa 15: Ajustes e finalização											

6. Referências Bibliográficas

[1] – YouTube: IBM Watson: How it Works. Acesso em 20/09/2017. Disponível em:

https://www.youtube.com/watch?v=_Xcmh1LQB9I&t=3s

[2] – IBM: Conheça o Watson e seu uso na saúde. Acesso em 20/09/2017. Disponível em:

https://www.ibm.com/blogs/robertoa/2017/03/conheca-o-watson-e-seu-uso-na-saude/

[3] – IBM: Beyond bots and robots: Exploring the unrealized potential of cognitive computing in the travel industry. Acesso em 20/09/2017. Disponível em:

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=GBE03776USEN&

[4] – Forbes: Bringwater, Adrian. Come Fly With Al, IBM Cloud Builds 'Chatbot' Virutal Travel Agent. Acesso em 20/09/2017. Disponível em:

https://www.forbes.com/sites/adrianbridgwater/2016/11/22/come-fly-with-ai-ibm-cloud-builds-chatbot-virtual-travel-agent/#1088409b4813

[5] - WayBlazer: Acesso em 20/09/2017. Disponível em:

https://www.wayblazer.ai/

[6] – Baseline: Greengard, Samuel. WayBlazer's Journey Leads to Cognitive Computing. Acesso em 24/09/2017. Disponível em:

http://www.baselinemag.com/cloud-computing/wayblazers-journey-leads-to-cognitive-computing.html

[7] – Watson Documentação: Acesso em 20/09/2017. Disponível em:

https://console.bluemix.net/docs/services/personality-insights/models.html#models

[8] – Watson Documentação: Acesso em 20/09/2017. Disponível em:

https://console.bluemix.net/docs/services/conversation/index.html#about