Monte Carlo Methods:

- Prediction (first problem)
- Control (Second problem)

I her: Model of system is sunknown. One has access to samples / transitions either through simulation / real data.

Prediction Poublem: Two approaches
- first visit method
- Every visit method.

Rees Recall, value \int_{R}^{n} under a ginen policy π $V_{\pi}(s) = E\left[\sum_{k=0}^{\infty} \sqrt[K]{9} t_{k+1} \left| S_{0} = 8 \right]\right]$

In order to find $V_{\pi}(s)$, we need to calculate or approx E[.] but we cannot calculate E[.] since we don't know $\phi(s,\pi(s),.)$

A4 College Book

Kavitha

1 (8 21 a2) (8 21 a3)

5.a. (s4,au)... - Actions ai in states 8 i will be ficked up from the given

If I is deterministic, then in state Si, action picked = Th(Si) = ai

- This is a disadvantage since we only learn about how good action

 $a_i = \pi(s_i)$ is in state s_i but not about other actions femille in state s_i

- Thus, we should consider randomized policies Tr (a(8), ~ EA(2) 8+ 7(als) = P(Ai=alsi=s) 70 + a EA(s).

Exploring Starts!

Existed start with certain state-action pairs. Assume that all state action pairs have non-zero probability of the selection at the

⇒ All state action pairs will be time limited Visisited a
infinite number of times in the limit as number of episade, → ∞

Suppose, $V(b) = \phi(b=b)$, $b \in S$ be the initial distribution on states.

Then, $\mu(s_1a) = \beta(s_0=s, A_0=a) = P(s_0=s) P(A_0=a \mid s_0=s)$ = V(3) T (als)

A4 College Book

Me assume that, M(S,a) = V(8) T(a18) >0 +8 ES, a E A(8) Min neg $\sum_{s,a} \mu(s,a) = \sum_{s} \sum_{a} \sqrt{g(s)} \pi(a|s)$ V(8) >0 +8EC T(a(s) >0 + a + A(s) = ENCS) ET (als) (N.G) Driverse R.L Froblem - construct oftimal reward -> Avg cost MDP - & learning. Trughub @ iisc acin Monte Carlo Control: Evaluation Improvement To Greedy & Given an intial policy To, hoal: Find (Tx 19 xx) (T, 9x) Policy Eval (7*, 9x*)
Improvent

Trent = greedy (2 Tre) = Tp,(8) = Orgmax 97 (8,0) + 8 ES with exploring starts, MC methods will compute The exactly for arbitrary 1/k The (is a better folicy than The because, 1/ (8, TRH (8)) = 2/1 (8, augmar 9/1 (8,a)) = max 9 (8,a) 7 9 9 (B, The (B)) = of (8) If $q_{\pi_k}(s, T_{k+1}(s)) = q_{\pi_k}(s, T_k(s))$ then both Top & They are optimal polices Rbe, Fs. €S S.t 9 TR (30, TR+(30)) > 9 TR (80, TR(80)) Note that 9 (s, a) are estimated using Mente-Carlo bused pluy evaluation. We don't need an infinite no of iterats for l'E to converge for given policy.

Work around 1 :

Stop when | VT(3) - V(3) | < 8

Work around 2:

Use a priori defined enteger M., M2, M3 etc steps of iterate P. E which is followed by foling improvement (Modified Policy Iteration)

This takes less no of steps of P.E. before an improvementent before an improvent step is conducted.

Monte Carlo Exploring Starts (FS) for Estimating To Tx Initialize:

7(s) E A(s) + 8 E S

&(8,a) & R(arbitrary), + stS, a Et(s)

Returns(sa) < Empty list + sES, a E A(s) (Similar to 8-Value iteration)

Loop for each episode:

- Choose S. E. G. , A. E. A(S.) randomly ruch that all pairs of states & actions have prob >0

- Generate an opisode from So, Ao followy T. D. So, Ao, R, S, AI, Rz -- - ST-1, AT-1 KT

-90 hoop (for each step of of episode t= T-1, T-2. -0) 9 C 8 9+ Rt+1

Append h to returns (s, A+)

& (State) = Average (Returns (Sr At)) $\pi(3t) \leftarrow \underset{a}{\text{arg max}} & (3t, a)$ To for each episode for t = T-1, T-2 - 9 = 79 + R++1 47-1 de = Ry 97-2 = 897-1+ RT-1 = 8RT + RT-1 4 = R, + (R2 + V2R3 + - - V17RT In = I & Gi a Vg of G's over n'episodes $\overline{A}_{n+1} = \underline{L} \stackrel{\text{(i+1)}}{\underline{\times}} G_i$ $= \frac{1}{n+1} \left(\frac{1}{1-1} + \frac$ - An + Inti (Gn+ -An) a) can Monte- Carlo Control procedure (with ES) converge to a subofitimal folicy. No mc control with Es gives us oftimal policy since otherwise corresponding value of seill be suboptimal & opolicy empronementstep happening on that valuefor will give a better policy => . convergence didn't happen. Inverted Jendulum - MoC with E-S)

A4 College Book:

Monte Carlo "eirthout Explosing Starts: If we don't use explosing darts, attornatively : - All actions need to be selected infinitely often in each action R. L method: On-Policy Method of oplicy methods. On policy method: henevote an episodes wing policy T So, Ao, R, S, #1, ... ST-1, AT-1, RT Of Y (S.) from M episodes, then $V_{\pi}(s_0) \approx \frac{1}{M} \approx G(i)$ Ti is termination for it episode. Off policy Hethods: Generate episodes using policy To So (Ao, R, - - ST-1, AT-1, KT Goal: Estimate V_b (So) value of state So under policy b OB Note: - On - policy methods evaluate or improve policy used to make decisions -> Off-policy methods evaluate or improve policy different from policy used the generate data.