Métodos no paramétricos de clasificación Lección 13

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019

Contenido

- Métodos generativos
 - Histogramas
 - Estimación de densidad
 - k vecinos más cercanos
- Métodos discriminativos
 - Clasificación con k vecinos más cercanos

Métodos generativos no paramétricos de clasificación

- En general, los métodos generativos no paramétricos buscan formas de estimar $p(\underline{\mathbf{x}}|y)$ a partir de los datos.
- La clasificación selecciona entonces la mayor probabilidad $p(y|\underline{\mathbf{x}}) = p(\underline{\mathbf{x}}|y)p(y)/p(\underline{\mathbf{x}})$
- Ya revisamos un método generativo, no paramétrico, de clasificación: Modelos de probabilidad de color

Histogramas como estimadores no paramétricos

- En este método, utilizamos histogramas para estimar $p(\underline{\mathbf{x}}|y)$: uno para y = 0 (no-piel) y otro para y = 1 (piel).
- Podemos llamar al método semiparamétrico porque una vez calculado el histograma no necesitamos los datos.
- Supongamos que cada dimensión se divide en *b* celdas.
- \bullet Con n dimensiones, histograma tiene entonces b^n celdas
- Incremento exponencial de celdas con dimensión del espacio de entrada hace difícil "llenar" el histograma para $b\gg 1$
- División discreta de las celdas conduce a discontinuidades problemáticas

Dependencia de celdas y número de datos

Maldición de la dimensión

- Fenómenos en 1D empeoran en *n*-D
- Caso de probabilidades de color (3D) es manejable, pues b=32 y n=3, por lo que el número total de celdas $(32^3=2^{15}=32768)$ es fácilmente manejable con los millones de píxeles disponibles para estimarlo, y solo se requieren dos modelos (p. ej. piel y no-piel).
- Un simple cambio que considerara posición en la estimación y pasara a n=5 produce un histograma de $32^5=2^{25}=33\,554\,432$ celdas, que requerirá muchos más datos para que llegue a representar fielmente la distribución subyacente.
- El número de datos requerido crece exponencialmente con la dimensión del problema: este efecto se conoce como la maldición de la dimensión (curse of dimensionality)

Distribución de densidad binomial

- Necesitaremos la distribución de densidad binomial
- Es una generalización de la distribución de Bernoulli
- Es una distribución de probabilidad de masa **discreta** que indica el número k de aciertos en una secuencia de m experimentos independientes, con cada experimento individual siguiendo la misma distribución de Bernoulli con parámetro ϕ
- La distribución de probabilidad de masa binomial es:

$$\mathcal{B}(m,\phi) = P(k; m,\phi) = \binom{m}{k} \phi^k (1-\phi)^{m-k}$$
$$= \frac{m!}{k!(m-k)!} \phi^k (1-\phi)^{m-k}$$

• La distribución de Bernoulli equivale a m = 1 y k = y.

Distribución de densidad binomial

(2)

- Sea $K \sim \mathcal{B}(m,\phi)$ una variable aleatoria.
- La esperanza de K es $\mathsf{E}[K] = m\phi$
- La varianza de K es $m\phi(1-\phi)$

Estimacion de densidad

• Si los vectores $\underline{\mathbf{x}}$ se toman de un proceso con densidad de probabilidad $p(\underline{\mathbf{x}})$, entonces, la probabilidad de que $\underline{\mathbf{x}}$ esté dentro de una región \mathcal{R} es:

$$\phi = \int_{\mathcal{R}} p(\underline{\mathbf{x}}') \, d\underline{\mathbf{x}}'$$

- Si tenemos m puntos tomados del mismo proceso con densidad $p(\underline{\mathbf{x}})$, entonces la probabilidad de que k de ellos estén dentro de la región $\mathcal R$ sigue la distribución binomial $K \sim \mathcal B(m,\phi)$
- La media de la fracción de puntos que caen en la región es

$$\mathsf{E}\left[\frac{K}{m}\right] = \frac{1}{m}\,\mathsf{E}[K] = \frac{m\phi}{m} = \phi$$

Estimacion de densidad

• La varianza de esta fracción de puntos es

$$\operatorname{Var}\left[\frac{K}{m}\right] = \operatorname{E}\left[\left(\frac{K}{m} - \phi\right)^{2}\right] = \frac{\phi(1 - \phi)}{m}$$

que se hace cero si $m o \infty$ (varianza cero \Rightarrow pico en media)

• Como $Var[K/m] \to 0$ para $m \to \infty$ podemos suponer que

$$\phi pprox rac{k}{m}$$

• Si $p(\underline{\mathbf{x}})$ es aproximadamente constante en \mathcal{R} , entonces

$$\phi = \int_{\mathcal{R}} p(\underline{\mathbf{x}}') \, d\underline{\mathbf{x}}' \approx p(\underline{\mathbf{x}}) \underbrace{\int_{\mathcal{R}} d\underline{\mathbf{x}}'}_{V} = p(\underline{\mathbf{x}}) V, \qquad \underline{\mathbf{x}} \in \mathcal{R}$$

ullet Combinando los dos valores de ϕ obtenemos

$$\frac{k}{m} \approx \phi \approx p(\underline{\mathbf{x}})V \quad \Rightarrow \quad p(\underline{\mathbf{x}}) \approx \frac{k}{mV}$$

- Exactitud de aproximaciones aumenta mientras mayor sea m
- Tenemos dos estrategias para estimar $p(\underline{\mathbf{x}})$:
 - lacktriangledown fijo y se determina k (estimación de densidad con kernels)
 - 2 k fijo y se determina entonces V(k-NN)

- Tomemos \mathcal{R} como un hipercubo con lados de tamaño h centrados en $\mathbf{x} \in {\rm I\!R}^n$
- El volumen del hipercubo es entonces $V = h^n$
- Sea $H(\underline{\mathbf{u}})$ una ventana de Parzen:

$$H(\underline{\mathbf{u}}) = \begin{cases} 1 & \|\underline{\mathbf{u}}\|_{\infty} < 1/2 \\ 0 & \text{en otro caso} \end{cases}$$

(hipercubo de lado 1 centrado en el origen)

• $H\left(\frac{\mathbf{x}-\mathbf{x}^{(i)}}{h}\right)$ es 1 si $\mathbf{x}^{(i)}$ está dentro del hipercubo de lado h centrado en \mathbf{x}

Estimación de densidad con kernels

• El número total de puntos en el hipercubo es entonces:

$$k = \sum_{i=1}^{m} H\left(\frac{\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(i)}}{h}\right)$$

- ullet Similar a histograma pero celda de lado h se centra en ${f x}$
- Introduciendo esto y $V = h^n$ en $p(\underline{\mathbf{x}}) \approx k/mV$ obtenemos la densidad del modelo:

$$\tilde{p}(\underline{\mathbf{x}}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{h^n} H\left(\frac{\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(i)}}{h}\right)$$

- El término h se denomina ancho de banda.
- Las discontinuidades causadas por las cajas *H* se pueden eliminar usando otros kernels.

Estimación de densidad con kernels

- Basta con satisfacer $H(\underline{\mathbf{u}}) \geq 0$ y $\int H(\underline{\mathbf{u}}) d\underline{\mathbf{u}} = 1$ para que $\tilde{p}(\underline{\mathbf{x}})$ satisfaga las condiciones para una distribución de densidad probabilística.
- Se usa con frecuencia el kernel gaussiano:

$$\tilde{p}(\underline{\mathbf{x}}) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{(2\pi h^2)^{n/2}} \exp\left(-\frac{\|\underline{\mathbf{x}} - \underline{\mathbf{x}}^{(i)}\|^2}{2h^2}\right)$$

• Si calculamos la media de la densidad estimada (media del valor estimado en $\underline{\mathbf{x}}$) sobre distintas selecciones de puntos

Esperanza de densidad estimada

¿A qué converge esa media?

• Aplicando la esperanza a $\tilde{p}(\underline{x})$:

$$E[\tilde{p}(\underline{\mathbf{x}})] = E\left[\frac{1}{m}\sum_{i=1}^{m}\frac{1}{h^{n}}H\left(\frac{\underline{\mathbf{x}}-\underline{\mathbf{x}}'}{h}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\frac{1}{h^{n}}E\left[H\left(\frac{\underline{\mathbf{x}}-\underline{\mathbf{x}}'}{h}\right)\right]$$
$$= \frac{1}{h^{n}}E\left[H\left(\frac{\underline{\mathbf{x}}-\underline{\mathbf{x}}'}{h}\right)\right] = \frac{1}{h^{n}}\int H\left(\frac{\underline{\mathbf{x}}-\underline{\mathbf{x}}'}{h}\right)p(\underline{\mathbf{x}}')\,d\underline{\mathbf{x}}'$$

que jes la **convolución** de la densidad $p(\underline{x})$ con kernel H!

- La densidad es suavizada con H
- Si H se hace angosta (tiende a $\delta(\underline{\mathbf{x}})$) entonces $\mathsf{E}[\tilde{p}(\underline{\mathbf{x}})]$ tiende a $p(\underline{\mathbf{x}})$, pero requiere $m \to \infty$, o tendrá mucho ruido
- ¡Se requiere un compromiso para h! (¿recuerdan la regresión ponderada localmente?)

• El mayor problema de la estimación con kernels es que requieren el almacenamiento de todos los puntos $\underline{\mathbf{x}}^{(i)}$, y el costo de la estimación de densidad depende de ese número de puntos.

Dependencia de h

- Tomar h constante en estimación con kernels conduce a problemas:
 - Si h es muy grande, regiones sobrepobladas de $\underline{\mathbf{x}}$ se sobre suavizan
 - Si h es muy pequeño, regiones poco pobladas de <u>x</u> tendrán estimaciones ruidosas
- Valor óptimo de h depende entonces de la posición de x
- La estimación de k vecinos más cercanos pretende solucionar esto

Retomando

$$p(\underline{\mathbf{x}}) \approx \frac{k}{mV}$$

mantenemos fijo k e incrementamos el volumen V de una hiperesfera centrada en $\underline{\mathbf{x}}$ hasta que incluya exactamente k puntos.

 Se utilizan estructuras de datos para almacenar puntos, que sean eficientes para búsqueda de vecinos más cercanos (kd-trees, biblioteca FLANN, ...)

Estimación con kNN

Desventajas de la estimación con kNN

- Desventaja del kNN es que lo estimado no es una densidad probabilística (integral no suma 1)
- Desventaja del kNN y la estimación con kernels es que requerimos mantener todo el conjunto de puntos de entrenamiento.
- Por eso requerimos kd-trees u otras estructuras para búsqueda eficiente

• Como método generativo, con kNN estimamos $p(\underline{\mathbf{x}}|y=c)$, donde y=c indica que $\underline{\mathbf{x}}$ pertenece a la clase c:

$$p(\underline{\mathbf{x}}|y=c) = \frac{k_c}{m_c V}$$

con

- m_c el número de puntos en el conjunto de entrenamiento que pertenecen a la clase c,
- $m = \sum_c m_c$.
- \bullet k es el número total de puntos en el volumen V, y
- k_c es el número de puntos de la clase c que están dentro de ese volumen V.
- $k = \sum_{c} k_{c}$

Clasificación con k vecinos más cercanos

Con la probabilidad a priori

$$P(y=c)=\frac{m_c}{m}$$

obtenemos la densidad no condicional

$$p(\underline{\mathbf{x}}) = \sum_{c} p(\underline{\mathbf{x}}|y=c)P(y=c)$$
$$= \sum_{c} \frac{k_{c}}{m_{c}V} \cdot \frac{m_{c}}{m} = \sum_{c} \frac{k_{c}}{mV} = \frac{k}{mV}$$

Finalmente, con la regla de Bayes

$$P(y = c | \underline{\mathbf{x}}) = \frac{p(\underline{\mathbf{x}} | y = c)P(y = c)}{p(\underline{\mathbf{x}})} = \frac{k_c}{k}$$

Clasificación con k vecinos más cercanos

- Para minimizar la probabilidad de error de clasificación, x
 debe ser asignado a la clase con más representantes en los k
 vecinos más cercanos.
- Nótese que este clasificador tiene un origen generativo (un modelo para cada clase), pero la regla final se aplica de forma discriminativa

Clasificación con k vecinos más cercanos

(4)

Resumen

- Métodos generativos
 - Histogramas
 - Estimación de densidad
 - k vecinos más cercanos

- 2 Métodos discriminativos
 - Clasificación con k vecinos más cercanos

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017-2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica