

数据可视化 个人作业二

时间和地理的可视化

姓名:	吴凡	
授课教师:	步一 助理教授	

二O二三年八月

一.时间可视化

时间可视化能够最为直观和简单地显示 APS 数据集中论文数量 随着时间的变化趋势,笔者利用 apsMetadata.csv 中的 Pub Date 字段 作为横轴,每一年发表数量的字段作为纵轴绘制了如下折线图。

从图上可以看出:

- 1. 自 1896 到 1946 年,相关论文发表数量的起伏较小,总体上处于低谷期:
- 2. 自 1946年开始,相关论文数量开始迅猛增长,增速在 1980年 到 1990年间达到了一个峰值。
- 3. 保持总的增长趋势一直到 2015 年,2016 年相较于 2015 年数量下降 1K,略有下降,是数量波动还是增长趋势变缓还无法看出,还得进一步看之后几年的数据。

二.空间可视化

1.数据预处理

由于 doiAuthorAffiliation.jsonl 中的 affliationsName 字段的数据太过繁杂,不是规范的地理编码,因此无法直接用于tableau 的地理可视化,因此需要对数据进行一定的预处理:

在这里,笔者在 Jupyter Notebook 中对该列数据进行了 一定的处理,处理的代码文件为 Processed.ipynb,在这个文件中做了两件事:

(1) 将 jsonl 文件转成 csv 文件作为 output.csv 输出;

```
In [4]:

data = []

with open('doiAuthorAffiliation.jsonl', 'r', encoding='utf-8') as file:
    for line in file:
    data.append(json.loads(line))

In [5]:

df = pd.DataFrame(data)

# 希DataFrame(F存为CSV文件
    df.to_csv('output.csv', index=False, encoding='utf-8')
```

(2)将 affliationsName 字段进行分割处理,只取最后一个逗号后面的字符串,忽略前面实验室的信息,以便形成较为规范的地理编码,得到 output_updated 文件输出,在 tableau 完成地理可视化。

```
In [6]:

import csv

input_file = 'output_csv'
output_file, 'r', newline='',encoding='utf-8') as file:
    reader = csv.reader(file)
    rows = list(reader)

for row in rows:
    if len(row) > 0:
        data = row[2].strip("[]") # 去掉最前面的'['和最后面的']'
    data = data.strip("")
    data = data.strip("")
    if ',' in data:
        data = data.strip(",')[-1].strip() # 只保留最后一个适号之后的内容
    else:
        data = data.strip() # 如果没有适号,则不做处理
    row[2] = data

with open(output_file, 'w', newline='',encoding='utf-8') as file:
    writer = csv.writer(file)
    writer.writerows(rows)
```

2.可视化结果分析

下图是完整的结果图展示: 节点大小越大,颜色越偏向红色,说明发表数量越多。

在得到上面这张图之前需要手动进行一些数据后处理工作,因为即使处理过了,还是有一部分数据 Tableau 无法识别为正确的地理编码,例如下图中的中华人民共和国就有很多条需要手动清洗数据:

将值与位置匹配———————————		
▲ 国家/地区		
您的数据	匹配位置	^
People^{'}s Republic of China	中国	
People' ¡¯s Republic of China	中国	
People' Republic of China"	中国	
People Republic of China	中国	
People's of Republic of China	中国	
Peoples Rebpublic of China	中国	~
✓ 仅在下拉列表中显示没有匹配项的位置□ 显示所有值		
重置匹配项	确定	

对于该地理可视化结果,我们需要注意到一些局部的信息:

1. 中国在 APS 数据集中共有 9272 条,在所有国家中处于中等水平,说明在这一块的研究中国还相对欠缺。

2.欧美国家肉眼可见地分布数量较多且分布位置较为集中。

三.网络可视化

笔者根据 APS 数据集中的 citationPairs.csv 在 Gephi 工具下做了网络可视化,并用 Gephi 内置的统计工具结合 apsMetadata.csv 对结果进行了相应的分析。

最终结果的 gephi 文件可以查看"被引用最多的是哪些论文呢.gephi",由于节点数太多,这里只展现两个比较关键节点周围的部分信息(下面两张图文件夹中也包含 gephi_PIC1.png 和 gephi_PIC2.png):

网络数据可视化的结果能够直观地展现出 APS 数据集中那些被引用较多的节点,也就是那些比较重要的节点,我们进一步利用 Gephi内置的统计工具对数据进行分析,利用特征向量中心度和 PageRank两个参数看看哪些节点比较重要:

(1) 以特征中心度的降序排序前 5 的节点信息:

Label	Eigenvector Centrality	PageRank
10. 1103/PhysRevA. 66. 032110	1.0	0.019475
10. 1103/PhysRevB. 54. 11169	0. 634963	0.023552
10. 1103/PhysRevB. 47. 7312	0.57177	0.026706
10. 1103/PhysRevB. 51. 5138	0. 463946	0.028833
10. 1103/PhysRevA. 65. 032314	0. 456286	0.010617
10. 1103/PhysRevA. 61. 052306	0.4498	0.009311
10. 1103/PhysRevB. 41. 9049	0.440431	0.009825

(2) 以 PageRank 的降序排序前 5 的节点信息:

Label	PageRank	Eigenvector Centrality
10. 1103/PhysRevB. 51. 5138	0.028833	0. 463946
10. 1103/PhysRevB. 47. 7312	0.026706	0.57177
10. 1103/PhysRevB. 54. 11169	0. 023552	0. 634963
10. 1103/PhysRevA. 66. 032110	0.019475	1.0
10. 1103/PhysRevB. 56. 6120	0.016321	0. 382909
10. 1103/PhysRevA. 59. 620	0.015433	0.071215

由上面两个统计结果,我比较好奇这两个排序排名第1的两篇论文究竟是什么,于是我在 apsMetadata. csv 进行检索:

(1)下图是按特征中心度排名第一的检索结果,论文标题为: Entanglement in a simple quantum phase transition(简单量子相变中的纠缠)

(2)下图是按 PageRank 排名第一的检索结果,论文标题为: Spontaneous interlayer coherence in double-layer quantum Hall systems:Charged vortices and Kosterlitz-Thouless phase transitions(双层量子霍尔系统的自发层间相干:带电涡和 Kosterlitz-Thouless相变)

171772 10.1103/PhysRevB.51.5138 article

Conferent transport timough a coupled-quantum-dot system with strong intradot interaction

Physical Review B Spontaneous interlayer coherence in double-layer quantum Hall systems; Charged vortices and Kosterlitz-Thouless phase transitions