Limites de suites

Réels et approximation

Exercice 4.1 (*)

Dans chacun des cas suivants, dire si on a bien une approximation avec la marge indiquée, ou sinon la corriger.

- 1. 3, 14 est une approximation de π à 0,01 près.
- 2. 3, 1416 est une approximation de π à 0,001 près.
- 3. 3, 1416 est une approximation de π à 10^{-5} près.
- 4. 1,41 est une approximation de $\sqrt{2}$ à 10^{-3} près.
- 5. 2,72 est une approximation de e à 10^{-2} près.

Solution de l'exercice 4.1

- 1. Comme les trois premiers chiffres de π en écriture décimale sont 3, 14, on a 3, $14 \le \pi < 3$, 15, et donc $0 \le \pi 3$, 14 < 3, 15 3, 14 = 0, 01, et donc $|\pi 3, 14| < 0$, 01. Ainsi 3, 14 est bien une approximation de π à 0,01 près.
- 2. Comme les cinq premiers chiffres de π en écriture décimale sont 3, 1415, on a 3, 1415 $\leq \pi < 3$, 1416, et donc 3, 1415 3, 1416 = -0, 0001 $\leq \pi 3$, 1416 < 0, et donc $|\pi 3, 1416| \leq 0$, 0001. Comme on a 0, 0001 < 0, 001, le nombre 3, 1416 est bien une approximation de π à 0,001 près.
- 3. On sait que les premiers chiffres de π sont 3, 141592, donc on a 3, 141592 $\leq \pi < 3$, 141593. Ainsi on a 3, 1416 $-\pi < 3$, 1416 -3, 141592 = 0, 000008 $< 10^{-5}$. Par conséquent on a $|3, 1416 \pi| > 10^{-5}$, et donc 3, 1416 n'est pas une approximation de π à 10^{-5} près.
- 4. Les premiers chiffres de $\sqrt{2}$ sont 1,414, donc on a 1,414 $\leq \sqrt{2} < 1,415$, et donc $\sqrt{2}-1,41 \geq 1,414-1,41=0,004 > 10^{-3}$. Par conséquent on a $|\sqrt{2}-1,41| > 10^{-3}$, et donc 1,41 n'est pas une approximation de $\sqrt{2}$ à 10^{-3} près.

5. Les premiers chiffres de e sont 2,71 donc on a 2,71 \leq e < 2,72, et donc 2,71-2,72 = 0,01 \leq e-2,72 < 0. Par conséquent on a $|e-2,72| \leq$ 0,01 = 10^{-2} , et donc 2,72 est une approximation de e à 10^{-2} près.

Exercice 4.2. (*) Soit x un réel strictement positif.

- 1. Montrer que $x > 10 \Rightarrow \left|\frac{2\sin x}{x}\right| \leqslant \frac{1}{5}$
- 2. La réciproque est-elle vraie?

Solution de l'exercice 4.2

1. Si x>10, alors $\frac{1}{x}\leqslant \frac{1}{10}$. De plus, pour tout x réel, $|\sin x|\leqslant 1$ et ces nombres sont positifs. Donc, pour tout x>10,

$$\left| \frac{2\sin x}{x} \right| \leqslant \frac{2}{10} = \frac{1}{5} \ .$$

2. Si $x = \pi$, on a $\left| \frac{2\sin x}{x} \right| = 0 \leqslant \frac{1}{5}$ mais $x \leqslant 10$. Donc la réciproque est fausse.

Exercice 4.3. (*) Soient a et b deux nombres réels de $[1, +\infty[$.

1. Montrer que

$$a \geqslant b \Rightarrow 1 - \frac{1}{b} \leqslant 1 + \frac{1}{a} - \frac{1}{a^2} \leqslant 1 + \frac{1}{b}$$

2. La réciproque est-elle vraie?

Solution de l'exercice 4.3

1. Supposons que $a \ge b$. Tout d'abord, comme $a \ge 1$, $\frac{1}{a} \ge \frac{1}{a^2}$, donc

$$1 - \frac{1}{b} \leqslant 1 \leqslant 1 + \frac{1}{a} - \frac{1}{a^2}$$
.

Puis, comme $a\geqslant b>0,$ on a $\frac{1}{a}\leqslant \frac{1}{b}.$ De plus, $\frac{1}{a^2}\geqslant 0.$ Donc :

$$1 + \frac{1}{a} - \frac{1}{a^2} \leqslant 1 + \frac{1}{a} \leqslant 1 + \frac{1}{b}$$
.

2. En prenant a=1 et b=2, on remarque que a< b, et pourtant les deux inégalités sont vérifiées. Donc la réciproque est fausse.

Exercice 4.4. (*) Soit $a \in [0, 1/2]$. Montrer que

$$|b| \leqslant \frac{a}{2} \Rightarrow \frac{a}{3} \leqslant \frac{a+b}{1+a} \leqslant \frac{3a}{2}$$

Solution de l'exercice 4.4

Soit $a \in [0, 1/2]$. Supposons que $|b| \leqslant \frac{a}{2}$. Alors, $-\frac{a}{2} \leqslant b \leqslant \frac{a}{2}$. Donc, en utilisant le fait que 1 + a > 0,

$$\frac{a-\frac{a}{2}}{1+a} \leqslant \frac{a+b}{1+a} \leqslant \frac{a+\frac{a}{2}}{1+a}$$
,

donc

$$\frac{a}{2(1+a)} \leqslant \frac{a+b}{1+a} \leqslant \frac{3a}{2(1+a)} .$$

De plus, $0 < (1+a) \leqslant 3/2$, donc :

$$\frac{a}{2 \times \frac{3}{2}} \leqslant \frac{a+b}{1+a} \leqslant \frac{3a}{2} \; ,$$

d'où le résultat.

Exercice 4.5. (**) Soit $c \ge 1$.

1. Montrer que si y est tel que $0 \le y \le 1 - \frac{1}{c}$, alors

$$\frac{1}{1-y} \leqslant 1 + cy$$

2. Soit b un réel supérieur à 10. Montrer que

$$a \geqslant b \Rightarrow a \leqslant \frac{a^2 + a + 1}{a - 5} \leqslant a \left(1 + \frac{13}{b} \right)$$

3. Lorsqu'on approche un réel A par un autre réel B, on appelle erreur relative la valeur |B-A|/|A|. Montrer que si $a\geqslant 13.10^k$, avec k un entier naturel, on peut approcher $\frac{a^2+a+1}{a-5}$ par a avec une erreur relative inférieure ou égale à 10^{-k} .

Solution de l'exercice 4.5

1. Soit y tel que $0 \le y \le 1 - \frac{1}{c}$. Remarquons que y est dans [0,1[, donc 1-y>0. Donc,

$$\frac{1}{1-y} \leqslant 1 + cy \Leftrightarrow 1 \leqslant (1+cy)(1-y) \Leftrightarrow 0 \leqslant (1+cy)(1-y) - 1.$$

Or

$$(1+cy)(1-y)-1=1+cy-y-cy^2-1=y(c-1-cy)=cy(1-\frac{1}{c}-y)$$
.

Donc si $0 \leqslant y \leqslant 1 - \frac{1}{c}$, alors $cy(1 - \frac{1}{c} - y) \geqslant 0$ (on utilise aussi le fait que $c \geqslant 0$), et par l'équivalence écrite plus haut, on en déduit le résultat.

2. Supposons que $a\geqslant b\geqslant 10$. Tout d'abord, $a\geqslant 0$ et $0\leqslant a-5\leqslant a$, donc

$$\frac{a^2 + a + 1}{a - 5} \geqslant \frac{a^2 + a + 1}{a} \geqslant \frac{a^2}{a} = a$$
,

ce qui donne une des inégalités voulues. Remarquons maintenant que

$$\frac{a^2 + a + 1}{a - 5} = \frac{a + 1 + \frac{1}{a}}{(1 - \frac{5}{a})}$$

Or $\frac{5}{a} \leqslant \frac{1}{2} = 1 - \frac{1}{2}$ donc on peut utiliser la question 1 avec c = 2 et $y = \frac{5}{a}$. Cela nous donne :

$$\frac{1}{1 - \frac{5}{a}} \leqslant 1 + 2\frac{5}{a}$$

d'où

$$\frac{a^2 + a + 1}{a - 5} \leqslant (a + 1 + \frac{1}{a})(1 + \frac{10}{a}) = a\left(1 + \frac{11}{a} + \frac{11}{a^2} + \frac{10}{a^3}\right)$$

Remarquons maintenant que $a^2 \geqslant 10b$ et $a^3 \geqslant 100b$. Donc :

$$\frac{a^2 + a + 1}{a - 5} \leqslant a \left(1 + \frac{11}{a} + \frac{11}{a^2} + \frac{10}{a^3} \right)$$

$$\leqslant a \left(1 + \frac{11}{b} + \frac{11}{10b} + \frac{1}{10b} \right)$$

$$\leqslant a \left(1 + \frac{122}{10b} \right)$$

$$\leqslant a \left(1 + \frac{13}{b} \right)$$

3. Posons $b=13.10^k$ et supposons que $a\geqslant b$. Alors, comme a et $b\geqslant 10$, on peut appliquer la question précédente. En posant $A=\frac{a^2+a+1}{a-5}$ et B=a, on

a tout d'abord $A \geqslant B$. Puis, par la question précédente,

$$A \leqslant a \left(1 + \frac{13}{b} \right) \leqslant B(1 + 10^{-k})$$

donc

$$A - B \leqslant B10^{-k} \leqslant A10^{-k}$$

d'où

$$0 \leqslant \frac{A - B}{A} \leqslant 10^{-k} \;,$$

ce qui implique le résultat voulu.

Quantifications successives

Exercice 4.6. (**) Pour tous i et j entiers naturels non nuls, on note P(i, j) l'assertion "j est un multiple de i".

- 1. Pour visualiser les choses, représenter P sous la forme d'un tableau de vrai (V) et de faux (F) ayant une infinité de lignes et de colonnes.
- 2. Les assertions suivantes sont-elles vraies?
 - (a) $\forall i \in \mathbf{N}^*, \exists J \in \mathbf{N}^*, \forall j \in \mathbf{N}^*, j \geqslant J \Rightarrow P(i, j)$
 - (b) $\forall i \in \mathbf{N}^*, \forall J \in \mathbf{N}^*, \exists j \in \mathbf{N}^* \text{ tel que } (j \geqslant J \text{ et } P(i,j))$

Solution de l'exercice 4.6

- 1. (Sol non rédigée)
- 2. (a) Cette assertion est fausse. En effet, elle signifie que pour tout $i \in \mathbb{N}^*$, à partir d'un certain J, tous les entiers supérieurs ou égaux à J sont des multiples de J. Par exemple, en prenant i=2, on sait que pour tout entier J, 2J+1 est supérieur à J mais non divisible par 2.
 - (b) Cette assertion est vraie. En effet, elle signifie que pour tout i, il existe des multiples aussi grands que l'on veut. Plus précisément, pour tout $J \in \mathbf{N}^*$, on remarque que $iJ \geqslant J$ et iJ est un multiple de i.

Exercice 4.7. (**) Pour tous i et j entiers naturels non nuls, on note P(i, j) l'assertion " $\frac{1}{i^2} \leq \frac{1}{i}$ ".

1. Représenter P sous la forme d'un tableau de vrai (V) et de faux (F) ayant une infinité de lignes et de colonnes.

- 2. Les assertions suivantes sont-elles vraies? Justifiez votre réponse (c'est-à-dire démontrer l'assertion ou sa négation).
 - (a) $\forall i \in \mathbf{N}^*, \exists J \in \mathbf{N}^*, \forall j \in \mathbf{N}^*, j \geqslant J \Rightarrow P(i,j)$
 - (b) $\forall i \in \mathbb{N}^*, \forall J \in \mathbb{N}^*, \exists j \in \mathbb{N}^* \text{ tel que } (j \geqslant J \text{ et } P(i, j))$

Solution de l'exercice 4.7

- 1. (Solution non rédigée)
- 2. (a) Cette assertion est vraie. En effet, elle signifie que pour tout $i \in \mathbb{N}^*$, à partir d'un certain J, toutes les valeurs $1/j^2$ pour $j \geqslant J$ sont inférieures ou égales à 1/i. Pour cela, i étant donné, il suffit de poser J=i.
 - (b) Cette assertion est vraie. En effet, elle signifie que pour tout i, il existe une infinité de valeurs j telles que $1/j^2$ soit inférieur ou égal à 1/i or c'est une conséquence de la réponse précédente.

Exercice 4.8. (**) Soit u une suite de nombres entiers dont toutes les valeurs sont dans $\{0,1,2\}$. Pour tout entier $j \ge 3$ et tout entier $i \ge 1$, on note P(i,j) l'assertion " $\left|\frac{1}{j-u_j}\right| \le \frac{1}{i}$ ".

- 1. Représenter P sous la forme d'un tableau de vrai (V) et de faux (F) ayant une infinité de lignes et de colonnes (si on ne peut mettre vrai ou faux à coup sûr, on mettra un point d'interrogation).
- 2. Les assertions suivantes sont-elles vraies? Justifiez votre réponse (c'est-à-dire démontrer l'assertion ou sa négation).
 - (a) $\forall i \in \mathbb{N}^*, \exists J \in \mathbb{N}^*, \forall j \in \mathbb{N}^* \cap [3, +\infty[, j \geqslant J \Rightarrow P(i, j)]$
 - (b) $\forall i \in \mathbf{N}^*, \forall J \in \mathbf{N}^*, \exists j \in \mathbf{N}^* \cap [3, +\infty[\text{ tel que } (j \geqslant J \text{ et } P(i, j))]$
- 3. La suite $j \mapsto \frac{1}{j-u_j}$ admet-elle une limite? Si oui, que vaut-elle?

Solution de l'exercice 4.8

- 1. (Solution non rédigée)
- 2. (a) On remarque que pour tous les entiers i et j,

$$P(i,j) \Leftrightarrow j \geqslant i + u_i$$

et comme $u_j \in \{0, 1, 2\},\$

$$j \geqslant i + 2 \Rightarrow P(i, j)$$

et

$$j < i \Rightarrow \neg P(i, j)$$
.

L'assertion signifie que pour tout $i \in \mathbb{N}^*$, à partir d'un certain J, P(i,j) est vérifiée pour tous les $j \geq J$. Cette assertion est donc vraie : i étant fixé, si on pose J = i + 2, P(i,j) est vraie dès que $j \geq J$.

(b) Cette assertion est vraie. En effet, elle signifie que pour tout i, il existe une infinité de valeurs j telles que P(i,j) soit vraie, or c'est une conséquence de la réponse précédente.

Exercice 4.9. (**) Écrire le plus simplement possible les ensembles suivants (Justifier rigoureusement, en montrant séparément deux inclusions).

$$1. \bigcup_{x \in \mathbf{R}} \{x^2\},\,$$

4.
$$\bigcap_{x \in [0,1]} [x-1, x+1],$$

2.
$$\bigcup_{x \in [0,1]}]x - 1, x + 1[,$$

$$5. \bigcap_{n \in \mathbf{N}^*} \left[0, \frac{1}{n} \right],$$

3.
$$\bigcap_{x \in [0,1]}]x - 1, x + 1[,$$

6.
$$\bigcup_{n \in \mathbf{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right]$$

Solution de l'exercice 4.9

1. On considère une union de singletons qui contiennent tous un nombre réel, donc l'ensemble considéré contient des nombres réels. Comme x^2 est toujours positif, l'ensemble considéré est inclus dans \mathbf{R}_+ . On a donc montré $\bigcup_{x\in\mathbf{R}}\{x^2\}\subset\mathbf{R}_+$.

Réciproquement, soit y un nombre réel positif. Pour $x=\sqrt{y}$, on a $\{x^2\}=\{(\sqrt{y})^2\}=\{y\}$. Donc on a $y\in\bigcup_{x\in\mathbf{R}}\{x^2\}$. Comme y était un réel positif

quelconque, on a $\mathbf{R}_+ \subset \bigcup_{x \in \mathbf{R}} \{x^2\}.$

Par double-inclusion, on a montré l'égalité $\bigcup_{x \in \mathbf{R}} \{x^2\} = \mathbf{R}_+$.

2. Comme on considère une réunion d'intervalles de \mathbf{R} , l'ensemble considéré est un sous-ensemble de \mathbf{R} . Pour x=0, on a]x-1,x+1[=]-1,1[. Pour x=1, on a]x-1,x+1[=]0,2[. En prenant la réunion de ces deux-ensembles, on a l'intervalle]-1,2[, et on devine que c'est la solution.

Montrons alors par double-inclusion qu'on a $\bigcup_{x \in [0,1]}]x - 1, x + 1[=] - 1, 2[.$

Soit $y \in \bigcup_{x \in [0,1]}]x - 1, x + 1[$. Alors il existe $x \in [0,1]$ tel que $y \in]x - 1, x + 1[$.

Comme on a $x \ge 0$, on a $x - 1 \ge -1$, et donc y > -1. Comme on a $x \le 1$, on a $x + 1 \le 2$, et donc y < 2. Par conséquent on a -1 < y < 2, donc $y \in]-1, 2[$, et donc $\bigcup_{x \in [0,1]}]x - 1, x + 1[\subset]-1, 2[$.

Pour l'inclusion réciproque, soit $y \in]-1,2[$. Séparons en deux cas selon que y est plus petit ou plus grand que 1. Si on a y < 1, alors $y \in]-1,1[$, donc pour x=0 on a $y \in]x-1,x+1[$, et donc $x \in \bigcup_{x \in [0,1]}]x-1,x+1[$.

Si maintenant on a $1 \le y < 2$, alors on a $y \in]0,2[$, donc pour x=1 on a $y \in]x-1,x+1[$, et donc $x \in \bigcup_{x \in [0,1]}]x-1,x+1[$.

3. Pour x=0, on a]x-1, x+1[=]-1, 1[. Pour x=1, on a]x-1, x+1[=]0, 2[. On peut donc penser que l'intersection est $]-1, 1[\cap]0, 2[=]0, 1[$. Démontrons-le par double-inclusion.

Pour l'inclusion $\bigcap_{x \in [0,1]}]x - 1, x + 1[\subset]0, 1[$, on a

$$\bigcap_{x \in [0,1]}]x - 1, x + 1[\subset] - 1, 1[\cap]0, 2[=]0, 1[.$$

Pour l'inclusion réciproque, soit $y \in]0,1[$. Pour tout $x \in [0,1]$, on a |y-x|<1, donc $y \in]x-1,x+1[$, et par conséquent $y \in \bigcap_{x \in [0,1]}]x-1,x+1[$. On

a donc]0,1[
 $\bigcap_{x\in[0,1]}]x-1,x+1[,$ et on a démontré la double-inclusion.

- 4. La raisonnement est le même que dans la question précédente, on trouve l'ensemble [0,1],
- 5. Soit $A = \bigcap_{n \in \mathbb{N}^*} \left[0, \frac{1}{n}\right]$. Un dessin peut laisser penser que $A = \{0\}$.

Démontrons-le par double inclusion : soit $x \in \bigcap_{n \in \mathbb{N}^*} \left[0, \frac{1}{n}\right]$, et montrons

qu'alors on a x=0. On a en particulier $x\in[0,1]$, donc $x\geq 0$. Supposons $x\neq 0$. Alors on a $\frac{1}{x}>0$. Il existe un entier m strictement plus grand que $\frac{1}{x}$ (il suffit par exemple de prendre $m=\lfloor\frac{1}{x}\rfloor+1$). Pour cet entier m, on a $m>\frac{1}{x}>0$, donc $\frac{1}{m}<\frac{1}{1/x}=x$. Par conséquent on a $x\notin[0,\frac{1}{m}]$, et donc

$$x \notin \bigcap_{n \in \mathbf{N}^*} \left[0, \frac{1}{n}\right]$$
. On a démontré l'inclusion $\bigcap_{n \in \mathbf{N}^*} \left[0, \frac{1}{n}\right] \subset \{0\}$.

Pour l'inclusion réciproque, pour tout entier naturel n, on a $\{0\} \subset [0, \frac{1}{n}]$, et donc $\{0\} \subset \bigcap_{n \in \mathbb{N}^*} \left[0, \frac{1}{n}\right]$.

6. Soit $A = \bigcup_{n \in \mathbf{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right]$. Un dessin nous laisse penser que A =]0, 1].

Montrons tout d'abord que $A \subset]0,1]$. Si n appartient à \mathbf{N}^* , alors $0 < \frac{1}{n+1}$ et $\frac{1}{n} \leqslant 1$. Donc $\left[\frac{1}{n+1},\frac{1}{n}\right] \subset]0,1]$. On en déduit que $A \subset]0;1]$, puisque tout élément de A est dans au moins un intervalle de la forme $\left[\frac{1}{n+1},\frac{1}{n}\right]$ avec $n \in \mathbf{N}^*$.

Montrons maintenant que $]0,1] \subset A$. Soit x un élément de]0,1]. On cherche un entier n de \mathbb{N}^* tel que $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$, ou encore, ce qui revient au même, tel que $\frac{1}{n+1} \leqslant x \leqslant \frac{1}{n}$ Remarquons que pour tout n de \mathbb{N}^* ,

$$\frac{1}{n+1} \leqslant x \leqslant \frac{1}{n} \iff n \leqslant \frac{1}{x} \leqslant n+1$$

On voit donc qu'en prenant $n = \lfloor \frac{1}{x} \rfloor$, n est bien un entier, et $\frac{1}{n+1} \leqslant x \leqslant \frac{1}{n}$. De plus, si $x \in]0,1]$, $\frac{1}{x} \geqslant 1$ et donc $\lfloor \frac{1}{x} \rfloor \geqslant 1$. Donc pour tout $x \in]0;1]$, il existe bien un entier n dans \mathbf{N}^* tel que $x \in \left[\frac{1}{n+1},\frac{1}{n}\right]$, ce qui montre l'inclusion voulue.

Limites de suites

Exercice 4.10. (*)

Pour chacune des suites suivantes, trouver deux entiers N_{10} et N_{100} tels que les assertions

$$\forall n \ge N_{10}, |u_n| < \frac{1}{10}$$
$$\forall n \ge N_{100}, |u_n| < \frac{1}{100}$$

soient vraies.

1.
$$u_n = \frac{1}{n}$$
,
2. $u_n = \frac{1}{n^2}$,
3. $u_n = \frac{(-1)^n}{n^2}$,
4. $u_n = 2^{-n}$,
5. $u_n = 10^{-n}$,
6. $u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est pair} \\ \frac{1}{n^2} & \text{si } n \text{ est impair} \end{cases}$
7. $u_n = \begin{cases} 2^{-n} & \text{si } n \text{ est pair} \\ 3^{-n} & \text{si } n \text{ est impair} \end{cases}$
8. $u_n = \frac{\cos(n)}{3^n}$.

Solution de l'exercice 4.10

1. Pour n un nombre entier strictement positif, on a $\frac{1}{n} > 0$, donc $|u_n| = \frac{1}{n}$. L'inégalité $|\frac{1}{n}| < \frac{1}{10}$ est alors équivalente à n > 10. Par conséquent on peut prendre $N_{10} = 11$. Pour tout entier $n \ge N_{10} = 11$, on a bien $\frac{1}{n} < \frac{1}{10}$.

De même façon posons $N_{100}=101.$ On a alors, pour tout $n\geqslant N_{100},$ $|u_n|\leqslant \frac{1}{101}<\frac{1}{100}.$

2. Comme $u_n > 0$, on a $|u_n| = \frac{1}{n^2}$. Or, pour n > 0,

$$\frac{1}{n^2} < \frac{1}{10} \Leftrightarrow n^2 > 10 \Leftrightarrow n > \sqrt{10}$$

Posons $N_{10} = 4$, de sorte que $N_{10}^2 > 10$. Donc si $n \ge N_{10}$, $|u_n| < \frac{1}{10}$ grâce à l'équivalence ci-dessus.

De même,

$$\frac{1}{n^2} < \frac{1}{100} \Leftrightarrow n^2 > 100 \Leftrightarrow n > 10$$

Donc en posant $N_{100} = 11$, on a bien que pour tout $n \ge N_{100}$, $|u_n| < \frac{1}{100}$.

3. $|u_n| = \frac{1}{n^2}$, donc la question précédente montre que $N_{10} = 4$ et $N_{100} = 11$ conviennent.

4. Comme $u_n > 0$, on a $|u_n| = u_n = 2^{-n}$. Or, pour n > 0,

$$2^{-n} < \frac{1}{10} \Leftrightarrow 2^n > 10 \Leftrightarrow n \ln 2 > \ln 10 \Leftrightarrow n > \frac{\ln 10}{\ln 2}$$

où on a utilisé le fait que $\ln 2 > 0$ car 2 > 1 et ln est strictement croissante sur \mathbf{R}_+^* . Remarquons que : $\frac{\ln 10}{\ln 2} < \frac{\ln 16}{\ln 2} = \frac{\ln (2^4)}{\ln 2} = \frac{4 \ln 2}{\ln 2} = 4$

Posons $N_{10}=4$. Donc si $n\geqslant N_{10},\ |u_n|<\frac{1}{10}$ grâce aux équivalences et inégalités ci-dessus.

De même,

$$|u_n| < \frac{1}{100} \Leftrightarrow n > \frac{\ln 100}{\ln 2}$$

et remarquons que : $\frac{\ln 100}{\ln 2} < \frac{\ln 2^7}{\ln 2} = \frac{7 \ln 2}{\ln 2} = 7$ Donc en posant $N_{100} = 7$, on a bien que pour tout $n \ge N_{100}$, $|u_n| < \frac{1}{100}$.

5. Comme $u_n > 0$, on a $|u_n| = u_n = 10^{-n}$. Or, pour n > 0,

$$10^{-n} < \frac{1}{10} \Leftrightarrow 10^{-n} < 10^{-1} \Leftrightarrow n > 1$$

Posons $N_{10}=2$. Donc si $n\geqslant N_{10},\ |u_n|<\frac{1}{10}$ grâce aux équivalences et inégalités ci-dessus.

De même,

$$|u_n| < \frac{1}{100} \Leftrightarrow n > 2$$

Donc en posant $N_{100} = 3$, on a bien que pour tout $n \ge N_{100}$, $|u_n| < \frac{1}{100}$

6. Comme $u_n > 0$, on a $|u_n| = u_n$. Or, d'après la question 1, si $n \ge 11$, $\frac{1}{n} < \frac{1}{10}$ et d'après la question 2 si $n \ge 4$, $\frac{1}{n^2} < \frac{1}{10}$. Posons donc $N_{10} = \max\{11, 4\} = 11$. Si $n \ge N_{10}$, on a à la fois $\frac{1}{n} < \frac{1}{10}$ et $\frac{1}{n^2} < \frac{1}{10}$. Ainsi, que n soit pair ou impair, si $n \ge N_{10}$ avec $N_{10} = 11$, on a $|u_n| < \frac{1}{10}$.

Le même raisonnement montre qu'en prenant $N_{100} = \max\{101, 11\} = 101$, on aura (en utilisant les questions 1 et 2) que $\frac{1}{n} < \frac{1}{100}$ et $\frac{1}{n^2} < \frac{1}{100}$. Ainsi, que n soit pair ou impair, si $n \ge N_{100}$, avec $N_{100} = 101$, on a $|u_n| < \frac{1}{100}$.

7. Comme $u_n > 0$, on a $|u_n| = u_n$. D'après la question 4, si $n \ge 4$, $2^{-n} < \frac{1}{10}$. Cherchons un rang n à partir duquel $3^{-n} < \frac{1}{10}$. On a :

$$3^{-n} < \frac{1}{10} \Leftrightarrow 3^n > 10 \Leftrightarrow n \ln 3 > \ln 10 \Leftrightarrow n > \frac{\ln 10}{\ln 3}$$

où on a utilisé le fait que ln 3>0 car 3>1 et ln est strictement croissante sur \mathbf{R}_+^* . Remarquons que : $\frac{\ln 10}{\ln 3} < \frac{\ln 27}{\ln 3} = \frac{\ln (3^3)}{\ln 3} = \frac{3 \ln 3}{\ln 3} = 3$ Donc si $n\geqslant 3$, $3^{-n}<\frac{1}{10}$. Finalement, posaons $N_{10}=4$, de sorte que si $n\geq N_{10}$, on a à la fois $2^{-n}<\frac{1}{10}$ et $3^{-n}<\frac{1}{10}$, que n soit pair ou impair. Donc dans tous les cas, si $n\geqslant N_{10}$, $|u_n|<\frac{1}{10}$.

Pour N_{100} , remarquons que $3^5 = 243 > 100$, donc si $n \ge 5$, $3^{-n} < \frac{1}{100}$. De même, d'après la question 4, si $n \ge 7$, $2^{-n} < \frac{1}{100}$. Donc $N_{100} = 7$ convient.

8. On remarque que pour tout $n \ge 1$,

$$|u_n| = \frac{|\cos n|}{3^n} \leqslant \frac{1}{3^n}$$

donc la question précédente montre que l'on peut prendre $N_{10}=3$ et $N_{100}=5$.

Exercice 4.11. (*/**)

Pour chacune des suites suivantes et pour tout réel strictement positif ε , trouver un entier N_ε tel que l'assertion

$$\forall n \geq N_{\varepsilon}, |u_n| < \varepsilon$$

soit vraie.

1.
$$u_n = \frac{1}{n}$$
,
2. $u_n = \frac{1}{n^2}$,

3.
$$u_n = \frac{(-1)^n}{n^2}$$
,

4.
$$u_n = 2^{-n}$$
,

5.
$$u_n = 10^{-n}$$

6.
$$u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est pair} \\ \frac{1}{n^2} & \text{si } n \text{ est impair} \end{cases}$$

7.
$$u_n = \begin{cases} 2^{-n} & \text{si } n \text{ est pair} \\ 3^{-n} & \text{si } n \text{ est impair} \end{cases}$$

$$8. \ u_n = \frac{\cos(n)}{3^n}.$$

Solution de l'exercice 4.11

1. Pour n un nombre entier strictement positif, on a $\frac{1}{n} > 0$, donc $|u_n| = \frac{1}{n}$. Soit $\varepsilon > 0$. L'inégalité $|\frac{1}{n}| < \varepsilon$ est alors équivalente à $n > \frac{1}{\varepsilon}$. Par conséquent on peut prendre $N_{\varepsilon} = \lfloor \frac{1}{\varepsilon} \rfloor + 1$, qui est le plus petit entier strictement supérieur à $\frac{1}{\varepsilon}$. Pour tout entier $n \geq N_{\varepsilon}$, on a bien $\frac{1}{n} < \varepsilon$.

2. Comme $u_n > 0$, on a $|u_n| = \frac{1}{n^2}$. Or, pour n > 0, et $\varepsilon > 0$,

$$\frac{1}{n^2} < \varepsilon \Leftrightarrow n^2 > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{1}{\sqrt{\varepsilon}}$$

Posons $N_{\varepsilon} = \lfloor \frac{1}{\sqrt{\varepsilon}} \rfloor + 1$. Donc si $n \geqslant N_{\varepsilon}$, $|u_n| < \varepsilon$.

- 3. $|u_n| = \frac{1}{n^2}$, donc la question précédente montre que $N_{\varepsilon} = \lfloor \frac{1}{\sqrt{\varepsilon}} \rfloor + 1$.
- 4. Comme $u_n > 0$, on a $|u_n| = u_n = 2^{-n}$. Or, pour n > 0,

$$2^{-n} < \varepsilon \Leftrightarrow 2^n > \frac{1}{\varepsilon} \Leftrightarrow n \ln 2 > \ln \frac{1}{\varepsilon} \Leftrightarrow n > \frac{\ln \frac{1}{\varepsilon}}{\ln 2}$$

où on a utilisé le fait que $\ln 2 > 0$ car 2 > 1 et ln est strictement croissante sur \mathbf{R}_+^* .

Posons $N_{\varepsilon} = \lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \rfloor + 1$. Donc si $n \ge N_{\varepsilon}$, $|u_n| < \varepsilon$ grâce aux équivalences et inégalités ci-dessus.

5. Comme $u_n > 0$, on a $|u_n| = u_n = 10^{-n}$. Or, pour n > 0,

$$10^{-n} < \varepsilon \Leftrightarrow 10^n > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{\ln \frac{1}{\varepsilon}}{\ln 10}$$

Posons $N_{\varepsilon} = \lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 10} \rfloor + 1$. Donc si $n \geqslant N_{\varepsilon}$, $|u_n| < \varepsilon$ grâce aux équivalences et inégalités ci-dessus.

- 6. Comme $u_n > 0$, on a $|u_n| = u_n$. Or, d'après la question 1, si $n \ge \lfloor \frac{1}{\varepsilon} \rfloor + 1$, $\frac{1}{n} < \varepsilon$ et d'après la question 2 si $n \ge \lfloor \frac{1}{\sqrt{\varepsilon}} \rfloor + 1$, $\frac{1}{n^2} < \varepsilon$. Posons donc $N_{10} = \max\{\lfloor \frac{1}{\varepsilon} \rfloor + 1, \lfloor \frac{1}{\sqrt{\varepsilon}} \rfloor + 1\}$. Si $n \ge N_{\varepsilon}$, on a à la fois $\frac{1}{n} < \varepsilon$ et $\frac{1}{n^2} < \varepsilon$. Ainsi, que n soit pair ou impair, si $n \ge N_{\varepsilon}$, on a $|u_n| < \varepsilon$.
- 7. Comme $u_n > 0$, on a $|u_n| = u_n$. D'après la question 4, si $n \ge \lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \rfloor + 1$, $2^{-n} < \varepsilon$. Cherchons un rang n à partir duquel $3^{-n} < \varepsilon$. On a :

$$3^{-n} < \varepsilon \Leftrightarrow 3^n > \frac{1}{\varepsilon} \Leftrightarrow n \ln 3 > \ln \frac{1}{\varepsilon} \Leftrightarrow n > \frac{\ln \frac{1}{\varepsilon}}{\ln 3}$$

Donc si $n \geqslant \lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 3} \rfloor + 1$, $3^{-n} < \varepsilon$. Finalement, posons $N_{\varepsilon} = \max\{\lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 3} \rfloor + 1$, $\lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 2} \rfloor + 1$ Si $n \geq N_{\varepsilon}$, on a à la fois $2^{-n} < \varepsilon$ et $3^{-n} < \varepsilon$, que n soit pair ou impair. Donc dans tous les cas, si $n \geqslant N_{\varepsilon}$, $|u_n| < \varepsilon$.

8. On remarque que pour tout $n \ge 1$,

$$|u_n| = \frac{|\cos n|}{3^n} \leqslant \frac{1}{3^n}$$

donc la question précédente montre que l'on peut prendre $N_{\varepsilon} = \lfloor \frac{\ln \frac{1}{\varepsilon}}{\ln 3} \rfloor + 1$.

Exercice 4.12. (**) La phrase suivante est-elle vraie ou fausse? Justifier.

Si une suite de nombre réels est périodique, alors elle est bornée.

Solution de l'exercice 4.12

Exercice 4.13. (**)

Pour chacune des suites suivantes, dire si la suite est périodique, majorée, minorée, bornée, convergente, si elle tend vers $\pm \infty$, ou si elle diverge (démontrez toutes vos réponses). Si elle est convergente, déterminer sa limite.

1.
$$u_n = (-1)^n$$
,

$$4. \ u_n = \frac{n}{n+1},$$

8.
$$u_n = n + (-1)^n$$
,
9. $u_n = n + (-1)^n n$,

2.
$$u_n = \frac{1}{n}$$
,

5.
$$u_n = (-1)^n + \frac{1}{n}$$
,

10.
$$u_n = \frac{n+1}{n^2}$$
.

3.
$$u_n = \frac{1}{n^2}$$
,

6.
$$u_n = \cos(n)$$
,
7. $u_n = 2^{-n}$,

11.
$$u_n = \frac{2n^2 + n + 3}{n^2}$$
.

Solution de l'exercice 4.13

- 1. On remarque que pour tout n entier naturel, $u_{n+2} = (-1)^2 u_n = u_n$. Donc u est périodique (de période 2 car elle n'est pas constante). Toute suite périodique est bornée. Plus précisément, ici, on peut remarquer que $|u_n| = 1$ pour tout n. Enfin, $(u_{2n+1})_{n\geqslant 0}$ converge vers -1 et $(u_{2n})_{n\geqslant 0}$ converge vers 1. Donc u possède deux sous-suites ayant des limites différentes, donc u diverge.
- 2. Montrons que u_n tend vers 0 lorsque n tend vers $+\infty$. Soit $\varepsilon > 0$. Posons $N = \lfloor \frac{1}{\varepsilon} \rfloor + 1$. Pour tout $n \ge N$, on a $|\frac{1}{n}| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$.

Donc u est convergente. Toute suite convergente est bornée, donc u est bornée. Plus précisément, ici, on peut remarquer que pour tout $n \ge 1$,

 $0 \le u_n \le 1$. Comme u est strictement décroissante, elle prend une infinité de valeurs distinctes, et donc elle ne peut être périodique.

- 3. Complètement similaire à la question précédente : u a pour limite 0, elle est non périodique mais bornée.
- 4. On peut écrire :

$$u_n = \frac{1}{1 + \frac{1}{n}}$$

Or

$$1 + \frac{1}{n} \xrightarrow[n \to +\infty]{} 1 + 0$$

par addition de limites, puis

$$u_n = \frac{1}{1 + \frac{1}{n}} \xrightarrow[n \to +\infty]{} \frac{1}{1} = 1$$

par quotient (ou inverse, ici), de limites. Donc u est convergente, elle est donc notamment bornée (ici, on peut montrer facilement qu'elle est bornée entre 0 et 1), et non périodique car elle est strictement croissante. On peut aussi dire qu'elle est convergente et non constante (calculer u_0 et u_1 par exemple), donc non périodique.

- 5. On remarque que pour tout entier n > 0, $u_{2n} = 1 + \frac{1}{2n}$ et $u_{2n+1} = -1 + \frac{1}{2n+1}$. Donc $(u_{2n})_{n\geqslant 1}$ converge vers 1 et $(u_{2n+1})_{n\geqslant 0}$ converge vers -1. La suite u possède deux sous-suites qui convergent vers des limites distinctes, donc u diverge. Par contre, u est bornée, car pour $n \geqslant 1$, $|u_n| \leqslant |(-1)^n| + |\frac{1}{n}| \leqslant 2$. Remarquons que u ne peut pas être périodique car $(u_{2n})_{n\geqslant 1}$ est strictement décroissante.
- 6. On sait que la fonction cos prend des valeurs dans [-1, 1], donc u est bornée. Elle n'est pas périodique et en fait, elle ne prend même jamais deux fois la même valeur. En effet, si n et m sont deux entiers,

$$cos(n) = cos(m) \Leftrightarrow (n \equiv m[2\pi] \text{ ou } n \equiv -m[2\pi])$$

Si $n \neq m$, chacune des deux congruences de droite ci-dessus impliquent que π est rationnel, ce qui est faux. Donc, u_n ne prend jamais deux fois la même valeur. De plus, (u_n) est divergente (Solution à rédiger).

7. On a montré dans l'exercice 4 que u admettait 0 pour limite. Donc u est convergente et notamment, u est bornée. Plus précisément, $(u_n)_{n\geqslant 0}$ est strictement décroissante, bornée entre 0 et 1.

- 8. On peut écrire, pour tout $n \ge 0$: $n-1 \le u_n$ Or n-1 tend vers $+\infty$ lorsque n tend vers $+\infty$. Donc par le théorème des gendarmes, u admet $+\infty$ comme limite en $+\infty$. Elle n'est donc pas bornée, et elle est divergente.
- 9. On remarque que pour $n \ge 0$, $u_{2n} = 4n$ et $u_{2n+1} = 0$. Donc $(u_{2n})_{n \ge 0}$ tend vers $+\infty$ lorsque n tend vers l'infini, et $(u_{2n+1})_{n \ge 0}$ tend vers 0 lorsque n tend vers l'infini. La suite u possède deux sous-suites ayant des limites différentes, donc elle diverge. De plus, u_{2n} tend vers $+\infty$, donc u n'est pas bornée.
- 10. On peut écrire, pour $n \ge 1$:

$$u_n = \frac{1 + \frac{1}{n}}{n}$$

Par somme de limites, le numérateur tend vers 1. Le dénominateur tend vers $+\infty$, donc par quotient de limites, u_n tend vers 0 quand n tend vers l'infini. Donc u est bornée. De plus, u n'est pas périodique car elle est strictement décroissante.

11. On peut écrire, pour $n \ge 1$:

$$u_n = 2 + \frac{1}{n} + \frac{3}{n^2}$$

On sait que $\frac{1}{n}$ et $\frac{3}{n^2}$ tendent vers 0 quand n tend vers l'infini par quotient de limites. Donc u_n tend vers 2 par somme de limites.

Exercice 4.14. (*)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs entières. Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge, alors elle est constante à partir d'un certain rang (ce qu'on peut traduite par l'assertion $\exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, u_n = u_{n_0}$).

Solution de l'exercice 4.14

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge et notons l sa limite. On sait alors que pour tout $\varepsilon > 0$, il existe un entier N tel que pour tout $n \ge N$, $|u_n - l| < \varepsilon$. On ne sait pas a priori que l est un entier, mais comme tous les u_n sont proches de l pour $n \ge N$, ils sont proches de u_N , en prenant ε assez petit, on aura des entiers à distance < 1 de u_N , ils seront donc tous égaux à u_N . En effet, choisissons $\varepsilon = 1/4$. Il existe donc N tel que pour tout $n \ge N$, $|u_n - l| < 1/4$. Notamment, pour tout

 $n \geqslant N$,

$$|u_n - u_N| = |(u_n - l) + (l - u_N)| \le |u_n - l| + |l - u_N| < 2 \times \frac{1}{4} = \frac{1}{2}$$

Or u_n et u_N sont entiers, donc s'ils sont à distance strictement inférieure à 1, ils sont égaux. Donc, pour tout $n \ge N$, $u_n = u_N$. Ce qui signifie bien que u est constante à partir du rang N.

Exercice 4.15. (**)*Le nombre d'or*

- 1. Résoudre dans **R** l'équation $x^2 x 1 = 0$.
 - La solution positive, notée ϕ , est appelée " nombre d'or".
- 2. Démontrer qu'on a $\phi = 1 + \frac{1}{\phi}$. On définit une suite $(u_n)_{n \in \mathbb{N}}$ comme suit. On pose $u_0 = 2$ et, pour tout $n \in \mathbb{N}^*$, on pose $u_{n+1} = 1 + \frac{1}{u_n}$.
- 3. Montrer que, pour tout $n \in \mathbf{N}^*$, on a $\frac{3}{2} \leqslant u_n \leqslant 2$.
- 4. Montrer que, pour tout $n \in \mathbf{N}^*$, on a $|u_{n+1} \phi| \leq \frac{4}{9}|u_n \phi|$. (Utiliser la question 2.)
- 5. En déduire, par récurrence, que, pour tout $n \in \mathbf{N}^*$, on a

$$|u_n - \phi| \leqslant (\frac{4}{9})^n .$$

- 6. Prouver que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
- 7. Déterminer un entier n tel que u_n est une approximation de ϕ à 10^{-6} près.

Solution de l'exercice 4.15

1. Soit Δ le discriminant du polynôme $x^2 - x - 1$:

$$\Delta = (-1)^2 - 4 * 1 * (-1) = 5$$

Comme $\Delta > 0$, le polynôme a deux racines, x_1 et x_2 , avec :

$$x_1 = \frac{1 - \sqrt{5}}{2}$$
 et $x_2 = \frac{1 + \sqrt{5}}{2}$

La solution positive de l'équation $x^2 - x - 1 = 0$ est donc $\phi = x_2 = \frac{1+\sqrt{5}}{2}$.

2.
$$\phi$$
 vérifie $\phi^2-\phi-1=0$, or
$$\phi^2-\phi-1=0 \iff \phi^2=\phi+1$$

$$\Leftrightarrow \phi=\frac{\phi+1}{\phi}$$

$$\Leftrightarrow \phi=1+\frac{1}{\phi}$$

3. On peut montrer cela par récurrence. On va montrer plus précisément que pour tout $n \in \mathbb{N}$, P(n) est vraie, avec $P(n) : "\frac{3}{2} \leq u_n \leq 2$ ". L'initialisation ne pose pas de problème, cas $u_0 = 2$, donc P(0) est vraie.

Montrons que P est héréditaire. Soit $n \in \mathbb{N}$ tel que P(n) soit vraie. Donc, $\frac{3}{2} \leqslant u_n \leqslant 2$. Comme $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}_+^* , on en déduit $\frac{1}{2} \leqslant \frac{1}{u_n} \leqslant \frac{2}{3}$. Donc,

$$1 + \frac{1}{2} \leqslant u_{n+1} \leqslant 1 + \frac{2}{3}$$

d'où

$$\frac{3}{2} \leqslant u_{n+1} \leqslant \frac{5}{3} \leqslant 2$$

Donc P(n+1) est vraie.

On en conclut, par récurrence, que P(n) est vraie pour tout entier naturel n.

4. Soit $n \in \mathbb{N}^*$. On a, d'après la question 2,

$$u_{n+1} - \phi = 1 + \frac{1}{u_n} - (1 + \frac{1}{\phi})$$
$$= \frac{1}{u_n} - \frac{1}{\phi}$$
$$= \frac{\phi - u_n}{\phi u_n}$$

On remarque que $\phi \in [\frac{3}{2}; 2]$ (car $\sqrt{5} \in [2; 3]$) et $u_n \in [\frac{3}{2}; 2]$ d'après la question précédente. Donc :

$$|u_{n+1} - \phi| = \frac{|\phi - u_n|}{\phi u_n}$$

$$\leqslant \frac{|\phi - u_n|}{(\frac{3}{2})^2}$$

$$= \frac{4}{9}|\phi - u_n|$$

5. La récurrence est très simple. Pour l'initialisation, on utilise l'encadrement donné sur ϕ à la question précédente : $\phi \in \left[\frac{3}{2}; 2\right]$ et $u_0 = 2$ donc

$$|u_0 - \phi| = 2 - \phi \leqslant \frac{1}{2} \leqslant 1$$

- . Pour l'hérédité, on utilise la question précédente.
- 6. Comme $\frac{4}{9} < 1$, la suite $n \mapsto (\frac{4}{9})^n$ tend vers 0 lorsque n tend vers l'infini. Donc pour tout $\varepsilon > 0$, il existe un rang $N \in \mathbf{N}$ tel que pour tout $n \ge N$, $|u_n \phi| \le (\frac{4}{9})^n < \varepsilon$. Donc $n \mapsto u_n$ converge vers ϕ .
- 7. D'après la question 5, il suffit de trouver un entier n tel que $(\frac{4}{9})^n \leq 10^{-6}$. Or

$$\left(\frac{4}{9}\right)^n \leqslant 10^{-6} \iff n \geqslant \frac{6\ln 10}{\ln \frac{9}{4}}$$

A ce stade-là, on peut utiliser la calculatrice et déterminer le plus petit entier supérieur ou égal à $\frac{6\ln 10}{\ln \frac{9}{4}}$. Si on n'a pas de calculatrice, on peut chercher de tête une puissance de $\frac{9}{4}$ qui serait supérieure, et pas trop loin d'une puissance de 10. Une façon simple de fonctionner est de minorer $\frac{9}{4}$ par 2. Comme $2^7 = 128$, on en déduit que $(\frac{9}{4})^7 > 10^2$, donc

$$\frac{6\ln 10}{\ln \frac{9}{4}} < \frac{6\ln 10}{\ln 10^{\frac{2}{7}}} = \frac{6\times 7}{2} = 21$$

Donc pour tout $n \ge 21$, u_n est une approximation de ϕ à 10^{-6} près. En fait, l'usage de la calculatrice nous apprend que c'est vrai dès que $n \ge 18$.

Exercice 4.16. (**) Racines carrées, méthode égyptienne

On présente un algorithme pour obtenir des approximations de racines carrées. Soit a un nombre réel plus grand que 1 dont on cherche à déterminer la racine carrée. On

suppose qu'on sait déterminer la partie entière $\lfloor \sqrt{a} \rfloor$. On définit une suite $(u_n)_{n \in \mathbb{N}}$ comme suit : on part de $u_0 = \lfloor \sqrt{a} \rfloor + 1$, et on définit par récurrence $u_{n+1} = \frac{u_n + \frac{u}{u_n}}{2}$.

- 1. Montrer par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et qu'on a $(u_n)_{n\in\mathbb{N}}$ \sqrt{a} pour tout $n \in \mathbb{N}$.
- 2. Montrer qu'on a $|u_{n+1} \sqrt{a}| \leqslant \frac{|u_n \sqrt{a}|^2}{2\sqrt{a}}$.
- 3. En déduire que la suite u_n tend vers \sqrt{a} .
- 4. Déterminer un entier n tel que u_n est une approximation de \sqrt{a} à 10^{-6} près.

Solution de l'exercice 4.16

1) On veut montrer par récurrence sur $n \in \mathbb{N}$ la propriété

$$P(n) = u_{n+1} - u_n \le 0 \text{ et } u_n > \sqrt{a}$$
.

Initialisation: On a $u_0 = \lfloor \sqrt{a} \rfloor + 1 > \sqrt{a}$. Et

$$u_1 - u_0 = \frac{u_0 + \frac{a}{u_0}}{2} - u_0 = \frac{\frac{a}{u_0} - u_0}{2} < \frac{\sqrt{a} - u_0}{2} < 0.$$

On a
$$u_{n+1} - \sqrt{a} = \frac{u_n + \frac{a}{u_n}}{2} - \sqrt{a} = \frac{u_n^2 - 2\sqrt{a}u_n + a}{2u_n} = \frac{(u_n - \sqrt{a})^2}{2u_n} \geqslant 0.$$

Hérédité: Soit $n \in \mathbb{N}$ tel que la proposition P(n) soit vraie, montrons P(n+1). On a $u_{n+1} - \sqrt{a} = \frac{u_n + \frac{a}{u_n}}{2} - \sqrt{a} = \frac{u_n^2 - 2\sqrt{a}u_n + a}{2u_n} = \frac{(u_n - \sqrt{a})^2}{2u_n} \geqslant 0$. Et $u_{n+2} - u_{n+1} = \frac{\frac{a}{u_{n+1}} - u_{n+1}}{2} < \frac{\sqrt{a} - u_{n+1}}{2} < 0$. Ce qui fini de montrer P(n+1) et achève la récurrence.

- 2) Soit $n \in \mathbb{N}$, alors on a $|u_{n+1} \sqrt{a}| = u_{n+1} \sqrt{a} = \frac{u_n + \frac{a}{u_n}}{2} \sqrt{a} = \frac{u_n^2 2\sqrt{a}u_n + a}{2u_n} = \frac{u_n^2 2\sqrt{a}u_n + a}{2u$ $\frac{(u_n - \sqrt{a})^2}{2u_n} \leqslant \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}}.$
- 3) Posons $v_n = u_n \sqrt{a}$, ainsi $u_n \xrightarrow{n \to +\infty} \sqrt{a}$ si et seulement si $v_n \xrightarrow{n \to +\infty} 0$. Par la question précédente on a $|v_{n+1}| \leqslant \frac{|v_n|^2}{2\sqrt{a}}$. Montrons par récurrence que $|v_n| \leqslant \frac{1}{2^{2^n-1}}$.

Initialisation: On a $|v_0| = \lfloor \sqrt{a} \rfloor + 1 - \sqrt{a} < 1$.

Hérédité: On a $|v_{n+1}| \leqslant \frac{v_n^2}{2\sqrt{a}} \leqslant \frac{v_n^2}{2} \leqslant \frac{1}{2 \times (2^{2^n-1})} = \frac{1}{2^{2^{n+1}-1}}$.

Comme $\frac{1}{2^{2^{n+1}-1}} \xrightarrow{n \to +\infty} 0$, on déduit que $v_n \xrightarrow{n \to +\infty} 0$ et donc $u_n \xrightarrow{n \to +\infty} \sqrt{a}$. 4) On a $|u_n - \sqrt{a}| \leqslant \frac{1}{2^{2^n-1}}$, et $\frac{1}{2^{2^n-1}} \leqslant 10^{-6}$ dès que $n \geqslant 5$. Donc u_5 est une 10^{-6} approximation de \sqrt{a} .

Exercice 4.17. (**)

Soit u_0 un entier positif quelconque. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_{n+1} = \begin{cases} u_n + 1 & \text{si } n \text{ est impair} \\ u_n/2 & \text{si } n \text{ est pair} \end{cases}$$

- 1. La suite $(u_n)_{n \in \mathbb{N}}$ est-elle croissante? décroissante?
- 2. Montrez que, pour toute valeur initiale $u_0 \in \mathbf{N}^*$, l'assertion

$$\exists N \in \mathbf{N}, u_N = 1.$$

est vraie.

(Si on remplace $u_n + 1$ par $3u_n + 1$ dans la définition, alors c'est un problème ouvert de savoir si l'assertion est vraie. Cela s'appelle le $problème\ de\ Syracuse$.)

Solution de l'exercice 4.17