# DISC Course on Linear Matrix Inequalities in Control

Siep Weiland Department of Electrical Engineering Eindhoven University of Technology

Course 2004 - Class 1



### Control and optimization

Theory of  $H_2$ , LQG and  $H_\infty$ -control synthesizes optimal controllers. However, the control paradigm is often restricted:

- Performance specs in terms of **complete closed-loop transfer**. Often (always?) only particular channels are relevant.
- Performance measure does not allow to impose particular time specs.
- Structured time-varying/nonlinear uncertainties can not be incorporated.
- Can only design LTI controllers.

For this course,

Controller is viewed as decision variable of optimization problem. Specifications are constraints on controlled closed-loop system.

### Optimization

Casting optimization problems in mathematics:

- $\mathcal{X}$ : decision set
- S: feasible decisions
- $f: \mathcal{S} \to \mathbb{R}$ : cost function or objective function

f assigns to each decision  $x \in \mathcal{S}$  a cost  $f(x) \in \mathbb{R}$ .

Goal is to select the decision  $x \in \mathcal{S}$  that minimizes the cost f(x).

This abstract formulation is hopelessly general. Requires the introduction of structural properties on S and f to convert to numerically efficient solutions.

#### Some classifications

Concrete features of problem formulation:

•  $\mathcal{X}$  is a real vector space: **continuous problem** 

 $\diamond \dim \mathcal{X} < \infty$ : finite dimensional problem

 $\diamond \dim \mathcal{X} = \infty$ : infinite dimensional problem

- $\mathcal{X}$  is a finite/discrete set: **combinatorial problem**
- Set of feasible decisions often described by equations and inequalities:

$$\mathcal{S} = \{ x \in \mathcal{X} \mid g_k(x) \le 0 \text{ for } k \in K, \quad h_\ell(x) = 0 \text{ for } \ell \in L \}$$

- $\diamond$  case K and L finite: **nonlinear program**
- $\diamond$  case K or L infinite: **semi-infinite** optimization.

### Questions in optimization problems

Minimize f over S means:

• What is least possible cost? Compute optimal value

$$f_{ ext{opt}} := \inf_{x \in \mathcal{S}} f(x) \ge -\infty$$

Convention: If  $S = \emptyset$  then  $f_{\text{opt}} = +\infty$ .

Convention: If  $f_{\text{opt}} = -\infty$  then problem is said to be **unbounded**.

• Can we find, for arbitrary  $\varepsilon > 0$ , the almost optimal solutions

$$x_{\varepsilon} \in \mathcal{S} \text{ with } f_{\text{opt}} \leq f(x_{\varepsilon}) \leq f_{\text{opt}} + \varepsilon.$$
?

By definition of the infimum, almost optimal solutions always exist.

### Solutions in optimization problems

• Does there exist an **optimal solution**? That is, does there exist

$$x_{ ext{opt}} \in \mathcal{S} ext{ with } f_{ ext{opt}} = f(x_{ ext{opt}})$$
 ?

If exists,  $x_{opt}$  is called a **minimizer** of f, and we write

$$f(x_{\text{opt}}) = \min_{x \in \mathcal{S}} f(x).$$

• Set of all optimal solutions is

$$\operatorname{arg\,min}_{x \in \mathcal{S}} f(x) := \{ x \in \mathcal{S} \mid f_{\text{opt}} = f(x) \}$$

• Is the optimal solution unique? When is it?

## Recap: infimum and minimum of functions

Any  $f: \mathcal{S} \to \mathbb{R}$  has an infimum  $f_- \in \mathbb{R} \cup -\infty$  denoted  $\inf_{x \in \mathcal{S}} f(x)$ .

The infimum is uniquely defined by the properties

- $f_- \leq f(x)$  for all  $x \in \mathcal{S}$
- $f_{-} < \infty$ : for all  $\varepsilon > 0$  exists  $x \in \mathcal{S}$  with  $f(x) \leq f_{-} + \varepsilon$ .  $f_{-} = -\infty$ : for all  $\varepsilon > 0$  exists  $x \in \mathcal{S}$  with  $f(x) \leq -\varepsilon$ .

If there exists  $x_0 \in \mathcal{S}$  with  $f(x_0) = \inf_{x \in \mathcal{S}} f(x)$  we say that f attains its minimum on  $\mathcal{S}$  and write  $f_- = \min_{x \in \mathcal{S}} f(x)$ .

If it exists, the **minimum** of f is uniquely defined through the properties

- $f_- \leq f(x)$  for all  $x \in \mathcal{S}$
- there exists  $x_0 \in \mathcal{S}$  for which  $f_- = f(x_0)$ .

## A first result on existence of optimal solutions

**Theorem:** (Weierstrass) If  $f: \mathcal{S} \to \mathbb{R}$  is continuous and  $\mathcal{S}$  is a compact subset of a normed linear space, then there exists  $x_{\min}, x_{\max} \in \mathcal{S}$  such that for all  $x \in \mathcal{S}$ 

$$\inf_{x \in \mathcal{S}} f(x) = f(x_{\min}) \le f(x) \le f(x_{\max}) = \sup_{x \in \mathcal{S}} f(x)$$

#### Comments:

- ullet Answers question of existence of optimal solutions for special  ${\mathcal S}$  and f.
- Gives no clue on how to find  $x_{\min}$ ,  $x_{\max}$ .
- No answer to uniqueness issue
- S compact if for every sequence  $x_n \in S$  a subsequence  $x_{n_m}$  exists which converges to a point  $x \in S$ .
- Conditions are restrictive!

#### Convex sets

A set  ${\mathcal S}$  in a linear vector space  ${\mathcal X}$  is **convex** if

$$\{x_1, x_2 \in \mathcal{S}\} \implies \{\alpha x_1 + (1 - \alpha)x_2 \in \mathcal{S} \text{ for all } \alpha \in (0, 1)\}$$

Convention: the empty set and singletons are convex.

The point  $\alpha x_1 + (1 - \alpha)x_2$  with  $\alpha \in (0, 1)$  is a **convex combination** of  $x_1$  and  $x_2$ . More generally,

The point  $x \in \mathcal{S}$  is a **convex combination** of  $x_1, \ldots, x_n \in \mathcal{S}$  if

$$x := \sum_{i=1}^{n} \alpha_i x_i \qquad \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i = 1$$

- Convex combination of convex combination is convex combination.
- The set of all convex combinations of  $x_1, \ldots, x_n$  is convex.

)/35

### Basic properties of convex sets

**Theorem:** Let S and T be convex sets in a normed space X. Then

- I.  $\alpha S := \{x \mid x = \alpha s, s \in S\}$  is convex
- 2.  $S + T := \{x \mid x = s + t, s \in S, t \in T\}$  is convex
- 3. closure of S and interior of S are convex
- 4. the intersection of any family of convex sets is convex.

#### Recall:

- $x \in \mathcal{S}$  is interior point of  $\mathcal{S}$  if there exist  $\varepsilon > 0$  such that  $\{y \mid ||x y|| \le \varepsilon\} \subseteq \mathcal{S}$ .
- $x \in \mathcal{X}$  is closure point of  $S \subseteq \mathcal{X}$  if for all  $\varepsilon > 0$  there exists  $y \in S$  such that  $||x y|| \le \varepsilon$ .
- Last property is very important!

## Examples of convex sets

**Theorem:** The intersection of any family of convex sets is convex.

- With  $a \in \mathbb{R}^n \setminus \{0\}$  and  $b \in \mathbb{R}$ , the
  - $\diamond$  hyperplane:  $\{x \in \mathbb{R}^n \mid a^\top x = b\}$
  - $\diamond$  half-space:  $\{x \in \mathbb{R}^n \mid a^{\top}x \leq b\}$

are convex.

• The intersection of finitely many hyperplanes and half-spaces defines a **polyhedron**.

Any polyhedron is convex and can be described as

$$\{x \in \mathbb{R}^n \mid Ax \le b, \quad Cx = d\}$$

for suitable matrices A, C, vectors b, d.

A polytope is a compact polyhedron.

#### Convex hulls

The convex hull, co(S), of any subset  $S \subset \mathcal{X}$  is the intersection of all convex sets containing S. That is,

$$co(\mathcal{S}) := \cap \{ \mathcal{T} \mid \mathcal{T} \text{ is convex }, \mathcal{S} \subseteq \mathcal{T} \}$$

- The convex hull co(S) is **convex**.
- co(S) is equal to the set of all convex combinations of points of S.
- If S is a finite set, then the convex hull co(S) is a polytope.

In fact, any polytope is the convex hull of a finite set S.

**Example:**  $\{x \in \mathbb{R}^n \mid a \leq x \leq b\}$  is defined by 2n inequalities and is the convex hull of  $2^n$  points.

#### **Convex functions**

A function  $f: \mathcal{S} \to \mathbb{R}$  is **convex** if

- $\bullet$  *S* is convex and
- for all  $x_1, x_2 \in \mathcal{S}$ ,  $\alpha \in (0, 1)$  there holds

$$f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2)$$

It is **strictly convex** if < instead of  $\le$ .

#### **Examples:**

- $f(x) = x^2$  on  $\mathbb{R}$
- f(x) = |x| on  $\mathbb{R}$
- f(x) = ||x|| on  $\mathbb{R}$ .
- $f(x) = \sin x$  on  $[\pi, 2\pi]$ .

## Convex functions (more general) -optional

A Hermitian valued function  $F: \mathcal{S} \to \mathbb{H}^n$  is (strictly) convex if  $\mathcal{S}$  is convex and for all  $x_1, x_2 \in \mathcal{S}$ ,  $\alpha \in (0, 1)$  there holds

$$F(\alpha x_1 + (1 - \alpha)x_2) \leq (\prec) \alpha F(x_1) + (1 - \alpha)F(x_2).$$

#### Here,

•  $\mathbb{H}^n$  is the set of  $n \times n$  Hermitian matrices.

That is 
$$A \in \mathbb{H}^n$$
 if  $A = A^* = \bar{A}^\top$ .

- All eigenvalues of Hermitian matrices are real.
- $A \prec 0$  means that A is **negative definite**, that is

$$x^*Ax < 0$$
 for all complex vectors  $0 \neq x \in \mathbb{R}^n$ 

Equivalently, all **eigenvalues** of A are negative.

#### Sublevel sets and convex functions

**Theorem:** If  $f: \mathcal{S} \to \mathbb{R}$  is convex then for any  $\gamma \in \mathbb{R}$  the sublevel set  $\mathcal{S}^{\gamma} := \{x \in \mathcal{S} \mid f(x) \leq \gamma\}$ 

#### Remarks:

is convex.

- ullet Converse is not true: f can be non-convex if all its sublevel sets are convex.
- $S^{\gamma} = \emptyset$  if  $\gamma < \inf_{x \in S} f(x)$ .
- If  $\gamma' \leq \gamma''$  then  $\mathcal{S}^{\gamma'} \subset \mathcal{S}^{\gamma''}$ .

The above result is simple, but has **many** applications.

For example,  $f_k : \mathcal{S} \to \mathbb{R}$  are convex,  $\gamma_k \in \mathbb{R}$ . What can we say about  $\{x \in \mathcal{S} \mid f_k(x) \leq \gamma_k, \quad k = 1, \dots, K\}$ ???

### Example: multi-objective control

Quantification of design specs by functional inequalities  $f: \mathcal{S} \to \mathbb{R} \cup \{\infty\}$ :

$$\mathcal{S}^{\gamma} = \{ x \in \mathcal{S} \mid f(x) \le \gamma \}$$

- Natural ordering:  $S^{\gamma_1} \subseteq S^{\gamma_2}$  whenever  $\gamma_1 \leq \gamma_2$ .
- Allows multi-criterion specification

$$\mathcal{S}_{\gamma} = \mathcal{S}_1^{\gamma_1} \cap \mathcal{S}_2^{\gamma_2} \cap \ldots \cap \mathcal{S}_K^{\gamma_K}$$

for some multi-index  $\gamma = (\gamma_1, \dots, \gamma_K)$ .

#### **Example:**

$$\mathcal{S}^{(\gamma_1,\gamma_2)} = \underbrace{\{x \in \mathcal{S} \mid f_1(x) = ||T||_{H_{\infty}} < \gamma_1\}}_{\mathcal{S}_1^{\gamma_1}} \cap \underbrace{\{x \in \mathcal{S} \mid f_2(x) = ||T||_{H_2} < \gamma_2\}}_{\mathcal{S}_2^{\gamma_2}}$$

where T is the 'closed-loop' transfer associated with the decision ('controller')  $x \in \mathcal{S}$ .

But what's a suitable design now ??



#### Pareto optimal solutions

Consider the multi-criterion specification

$$\mathcal{S}^{\gamma} = \mathcal{S}_1^{\gamma_1} \cap \mathcal{S}_2^{\gamma_2} \cap \ldots \cap \mathcal{S}_K^{\gamma_K}$$

for some multi-index  $\gamma = \operatorname{col}(\gamma_1, \gamma_2, \dots, \gamma_K) \in \mathbb{R}^K$ .

A specification  $\gamma^* \in \mathbb{R}^K$  is called **Pareto optimal** if  $\mathcal{S}^{\gamma}$  is feasible for  $\gamma > \gamma^*$  and infeasible for  $\gamma < \gamma^*$ . A point  $x^* \in \mathcal{S}^{\gamma^*}$  (if exists) is called a **Pareto optimal solution**.

#### Interpretations:

- Every relaxation of  $\gamma^*$  is feasible; every tightening of  $\gamma^*$  is infeasible. Defines a **partial ordering** on design specifications.
- $\gamma$  feasible but not Pareto optimal  $\Longrightarrow \gamma$  can be tightened.
- $\gamma$  infeasible but not Pareto optimal  $\Longrightarrow \gamma$  should be relaxed.
- Set of all Pareto optimal specifications is trade-off surface in  $\mathbb{R}^K$ .

How to find Pareto optimal solutions in multi-objective control designs?

### Example: quadratic functions

Consider the quadratic function

$$f(x) = \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} q & s^{\mathsf{T}} \\ s & R \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = q + 2s^{\mathsf{T}}x + x^{\mathsf{T}}Rx$$

When is it convex ??.

Its sublevel set  $S_0 := \{x \mid f(x) \le 0\}$  is a

- half-space if R = 0
- ellipsoid if s = 0 and  $R \succ 0$ .

#### Affine sets

A subset S of a linear vector space is **affine** if  $x = \alpha x_1 + (1 - \alpha)x_2$  belongs to S for every  $x_1, x_2 \in S$  and  $\alpha \in \mathbb{R}$ .

- Geometric idea: line through any two points belongs to set.
- Every affine set is convex.
- ullet  ${\cal S}$  affine if and only if

$$\mathcal{S} = \{x \mid x = x_0 + m, m \in \mathcal{M}\}$$

with  $\mathcal{M}$  a linear subspace.

#### Affine functions

A function  $f: \mathcal{S} \to \mathcal{T}$  is **affine** if  $f(\alpha x_1 + (1 - \alpha)x_2) = \alpha f(x_1) + (1 - \alpha)f(x_2)$  for all  $x_1, x_2 \in \mathcal{S}$ .

**Theorem:** If S and T are finite dimensional, then  $f: S \to T$  is affine if and only if

$$f(x) = f_0 + T(x).$$

where  $f_0 \in \mathcal{T}$  and  $T : \mathcal{T} \to \mathcal{T}$  a linear map (a matrix).

Hence, affine functions are translates of linear functions.

## How to check convexity of functions??

**Theorem:** All affine functions are convex.

Not easy to verify convexity of non-affine functions. The following is a classical result:

**Theorem:** Let f be twice continuously differentiable on the interior of S. Then  $f: S \to \mathbb{R}$  is convex if and only if

$$\partial^2 f(x) \succeq 0$$

for all  $x \in \mathcal{S}$ .

**Theorem:**  $f: \mathcal{S} \to \mathbb{R}$  is convex if and only if its **epigraph** 

$$\{(x,y)\mid x\in\mathcal{S},y\geq f(x)\}$$

is a convex set.

### General convex programming

Let  $S = \{x \in \mathbb{R}^n \mid g(x) \leq 0, h(x) = 0\}$  be a given feasible set with  $g: \mathbb{R}^n \to \mathbb{R}^k$  and  $h: \mathbb{R}^n \to \mathbb{R}^\ell$ .

#### The optimization problem

minimize 
$$f(x)$$
  
subject to  $x \in \mathcal{S}$ ,  $g(x) \leq 0$ ,  $h(x) = 0$ 

is said to be a

- $\bullet$  convex program if f and g are convex and h is affine.
- linear program if f, g and h are all affine.
- ullet quadratic program if f is quadratic and g and h are affine.

These are probably the only tractable instances of this nonlinear optimization problem.

### Why is convexity important ???

Reason 1: absence of local minima

Solvers for nonlinear optimizations typically determine local minima.

Let  $f: \mathcal{S} \to \mathbb{R}$ . An element  $x_0 \in \mathcal{S}$  is said to be a

 $\bullet$  local optimal solution of f if there exists  $\varepsilon>0$  such that

$$f(x_0) \le f(x)$$
 for all  $x \in \mathcal{S}, ||x - x_0|| \le \varepsilon$ .

• global optimal solution of f if  $f(x_0) \leq f(x)$  for all  $x \in \mathcal{S}$ .

Main feature of convex optimizations:

**Theorem:** Suppose  $f: \mathcal{S} \to \mathbb{R}$  is convex. Every local optimal solution of f is a global optimal solution. If f is strictly convex, then the global optimal solution is moreover unique.

Doesn't say anything about existence of optimal solutions.

## Why is convexity important ???

Reason 2: uniform bounds

Trivial result:

**Theorem:** Suppose  $S = co(S_0)$  and  $f : S \to \mathbb{R}$  is convex. Then equivalent statements are

- I.  $f(x) \leq \gamma$  for all  $x \in \mathcal{S}$
- 2.  $f(x) \leq \gamma$  for all  $x \in \mathcal{S}_0$ .

Very interesting if  $S_0$  consists of finite number of points, i.e,

$$\mathcal{S}_0 = \{x_1, \dots, x_n\}.$$

Implies finite test!!

### Why is convexity important ???

Reason 3: subgradients

A vector  $g = g(x_0) \in \mathbb{R}^n$  is called a **subgradient** of  $f : \mathcal{S} \to \mathbb{R}$  at  $x_0 \in \mathcal{S}$  if  $f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$  for all  $x \in \mathcal{S}$ .

Set of all subgradients is called **subdifferential** and denoted as  $\partial f(x_0)$ .

#### Geometric idea:

Graph of affine function  $x \mapsto f(x_0) + \langle g, x - x_0 \rangle$  is tangent to graph of f at  $x_0$ .

Main result of convex analysis:

**Theorem:** A convex function  $f : \mathcal{S} \to \mathbb{R}$  has a subgradient at every interior point  $x_0$  of  $\mathcal{S}$ .

### Examples and properties of subgradients

A vector  $g \in \mathbb{R}^n$  is **subgradient of** f **at**  $x_0$  if  $f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$ 

- Example: f(x) = |x| has any real number  $g \in [-1, 1]$  as its subgradient at 0.
- if f is differentiable, then the gradient  $g = g(x_0) = \nabla f(x_0)$  will do.
- $f(x_0)$  is global minimum if and only if 0 is subgradient of f.
- Since

for all  $x \in \mathcal{S}$ .

$$\langle g, x - x_0 \rangle > 0 \implies f(x) > f(x_0),$$

all points in half-space  $\{x \mid \langle g, x - x_0 \rangle > 0\}$  can be discarded in searching for minimum of f.



## Ellipsoid algorithm: main ideas

Aim: Minimize the convex function  $f: \mathbb{R}^n \to \mathbb{R}$ .

Suppose some minimizer lies inside the ellipsoid

$$\mathcal{E}_0 := \{ x \in \mathbb{R}^n \mid (x - x_0)^\top P_0^{-1} (x - x_0) \le 1 \}$$

where  $P_0 \succ 0$ .

**Problem:** Can we compute a smaller ellipsoid containing all the minimizers of f?

#### First point:

Compute one subgradient  $g_0 \in \partial f(x_0)$ .

If 
$$\langle g, x - x_0 \rangle > 0$$
 then  $f(x) > f(x_0)$ .

Hence all minimizers must be contained in

$$\mathcal{E}_0 \cap \{x \in \mathbb{R}^n \mid \langle g, x - x_0 \rangle \le 0\}$$

### Ellipsoid algorithm: main ideas

#### **Covering ellipsoid:**

For  $x_k \in \mathbb{R}^n$  and  $P_k \succ 0$  suppose

$$\mathcal{E}_k := \{ x_k \mid (x - x_k)^{\top} P_k^{-1} (x - x_k) \le 1 \}$$

For any nonzero  $g_k \in \mathbb{R}^n$ , the ellipsoid  $\mathcal{E}_{k+1}$  covers

$$\mathcal{H}_k := \mathcal{E}_k \cap \{ x \in \mathbb{R}^n \mid \langle g_k, x - x_k \rangle \le 0 \}$$

if we set  $\lambda_k = \sqrt{g_k^{\top} P_k g_k}$  and  $v_k = P_k g_k / \lambda_k$  and

$$x_{k+1} = x_k - \frac{1}{n+1}v_k, \qquad P_{k+1} = \frac{n^2}{n^2 - 1} \left( P_k - \frac{2}{(n+1)}v_k v_k^{\mathsf{T}} \right).$$

The volume decreases as  $\operatorname{vol}(\mathcal{E}_{k+1}) \leq e^{-\frac{1}{2n}} \operatorname{vol}(\mathcal{E}_k)$ .

One can prove that  $\mathcal{E}_{k+1}$  is the smallest covering ellipsoid.

### Ellipsoid algorithm

- I. Let f,  $P_0$ ,  $\mathcal{E}_0$  be given. Set k=0.
- 2. Compute a subgradient  $g_k$  of f at  $x_k$ . If  $g_k = 0$  then stop, otherwise proceed to Step 2.
- 3. All minimizers are contained in

$$\mathcal{H}_k := \mathcal{E}_k \cap \{x \in \mathbb{R}^n \mid \langle g_k, x - x_k \rangle \le 0\}.$$

4. Compute the covering ellipsoid

$$\mathcal{E}_{k+1} := \{ x \in \mathbb{R}^n \mid (x - x_{k+1})^\top P_{k+1}^{-1} (x - x_{k+1}) \le 1 \}$$

that contains  $\mathcal{H}_k$ .

5. Set k to k+1 and return to Step 2.

Gives decreasing sequence of ellipsoids  $\mathcal{E}_0$ ,  $\mathcal{E}_1$ ,  $\mathcal{E}_1$ , . . . all guaranteed to contain minimizer of f.

## Stopping criteria ellipsoid algorithm

Suppose  $x^* \in \mathcal{E}_0$  is minimizer of f. The algorithm guarantees  $x^* \in \mathcal{E}_k$  for all k. Hence, we have

$$f(x_k) \ge f(x^*) \ge f(x_k) + \langle g_k, x^* - x_k \rangle \ge$$

$$\ge f(x_k) + \inf_{\xi \in \mathcal{E}_k} \langle g_k, \xi - x_k \rangle = f(x_k) - \sqrt{g_k^{\top} P_k g_k}$$

Therefore,

$$U_k := \min_{\ell \le k} f(x_\ell) \ \ge \ f(x^*) \ \ge \ \max_{\ell \le k} \left( f(x_\ell) - \sqrt{g_\ell^\top P_\ell g_\ell} \right) =: L_k$$

Stopping criterion for guaranteed accuracy:

$$U_k - L_k < \varepsilon$$
 guarantees  $|f(x_k) - f(x^*)| < \varepsilon$ .

#### Properties of ellipsoid algorithm

- If  $\mathcal{E}_0$  contains at least one minimizer of f then  $f(x_k)$  converges to the minimal value of f.
- The sequence  $x_k$  is not guaranteed to converge. Certainly not to a minimizer of f.
- Exist explicit equations for  $x_k$ ,  $P_k$ ,  $\mathcal{E}_k$  such that volume of  $\mathcal{E}_k$  decreases with a factor  $e^{-1/2n}$ .
- Simple, robust, easy to implement.
- However, slow convergence.

#### **Summary**

- We considered general optimization problems
- Convex sets and convex functions: definitions and facts
- Convexity distinguishes easy from difficult optimization problems
- We considered subgradients and their role in optimization
- We discussed ellipsoid algorithm.

### Linear Matrix Inequalities (LMI's)

#### A linear matrix inequality (LMI) is an expression

$$F(x) = F_0 + x_1 F_1 + \ldots + x_n F_n \prec 0$$

#### where

- $x = col(x_1, ..., x_n)$  is a vector of reals, the **decision variables**,
- ullet  $F_i = F_i^ op$  are real symmetric matrices and
- $\prec 0$  means negative definite, i.e.,

$$\begin{split} F(x) \prec 0 &\iff z^\top F(x) z < 0 \text{ for all } z \neq 0 \\ &\Leftrightarrow &\text{all eigenvalues of } F(x) \text{ are negative} \\ &\Leftrightarrow &\lambda_{\max}\left(F(x)\right) < 0 \end{split}$$

Note that F is an **affine function** of the decision variables.

## Simple examples

- 1 + x < 0
- $1 + x_1 + 2x_2 < 0$

$$\bullet \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x_1 \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} < 0.$$

All the same with  $\leq 0$ ,  $\geq 0$  and > 0.

Only very simple cases can be treated analytically.

Need to resort to numerical techniques!

### Main LMI problems

#### The LMI feasibility problem:

Test whether there exists  $x_1, \ldots, x_n$  such that  $F(x) \prec 0$ .

#### The LMI optimization problem:

Minimize  $c_1 x_1 + \ldots + c_n x_n$  over all  $x_1, \ldots, x_n$  that satisfy  $F(x) \prec 0$ .

#### How is this solved?

 $F(x) \prec 0$  is feasible if and only if  $\min_x \lambda_{\max}(F(x)) < 0$  and therefore involves minimizing the function

$$f: x \mapsto \lambda_{\max}(F(x))$$

This is possible because this function is convex!

There exist very efficient algorithms for this (interior point, ellipsoid).

Next class