第二章 进程同步

1. 用 wait ()、signal ()操作管理临界区 (1 个实例的临界资源)时,信号量的初值一般应定

一、选择最合适的答案

义为 (C)。		
A 1 B. 0	C. 1	D. 任意值
2. 有 m 个进程共享同一临界资源(1个实例), 若使用信号量机制实现对一临界资源的互斥		
访问,则信号量的变化范围是(A)。		
A.1至 - (m-1) B.1至	m-1 C.1至-m	D.1至 m
3. 在下面的叙述中,正确的是(C).	
A. 临界资源是非共享资源 B. 临界资源是任意共享资源		
C. 临界资源是互斥共享资源 D. 临界资源是同时共享资源		
4. 对进程间互斥地使用临界资源	,进程可以(D)	
A. 互斥地进入临界区 B. 互斥地进入各自的临界区		
C. 互斥地进入同一临界区 D. 互斥地进入各自的同类资源的临界区		
5. 设两个进程共用一个临界资源的互斥信号量 mutex, 当 mutex=1 时表示(B)。		
A. 一个进程进入了临界区,另	引一个进程等待 B. 没有-	一个进程进入临界区
C. 两个进程都进入了临界区	D. 两个边	性程都在等待
6. 设两个进程共用一个临界资源的互斥信号量 mutex, 当 mutex=-1 时表示 (A)。		
A. 一个进程进入了临界区,另	引一个进程等待 B. 没有-	一个进程进入临界区
C. 两个进程都进入了临界区	D. 两个边	性程都在等待
7. 当一进程因在信号量 S 上执行 wait (S) 操作而被阻塞后, S 的值为 (B)。		
A.>0 B.<0	C. ≥0	D. ≤0
8. 当一进程因在信号量 S 上执行 signal (S) 操作而导致唤醒另一进程后, S 的值为(D)。		
A.>0 B.<0	C. ≥0	D. ≤0
9. 如果信号量的当前值为-4,则	表示系统中在该信号量上有	(A)个进程等待。
A. 4 B. 3	C. 5	D. 0
10. 若有 4 个进程共享同一程序段,而且每次最多允许 3 个进程进入该程序段,则信号量的		
变化范围是 (B)。		
A. 3, 2, 1, 0	B. 3, 2, 1,	0, -1
C. 4, 3, 2, 1, 0	D. 2, 1, 0,	-1, -2
11. 若信号 S 的初值为 2, 当前值为-1, 则表示有(B)个等待进程?		
A. 0 B. 1	C. 2	D. 3
12. 如果有三个进程共享同一互斥	段,而且每次最多允许两个	进程进入该互斥段,则信号量
的初值应设置为(C)。		
A. 3 B. 1	C. 2	D. 0
13. 并发进程之间(D)		
	同步 C. 必须互斥	D. 可能需要同步或互斥

- 14. 在操作系统中, 有一组进程, 进程之间具有直接相互制约性。这组并发进程之间(B)。

- A. 必定无关 B. 必定相关 C. 可能相关 D. 相关程度相同
- 15. (A) 操作不是 wait () 操作可完成的。
 - A. 为进程分配处理机
- B. 使信号量的值变小
- C. 可用于进程的同步
- D. 使进程进入阻塞状态

二、 选择所有正确的答案

- 1. 有关进程的描述中,(AC)是正确的。
 - A. 进程执行的相对速度不能由进程自己来控制
 - B. 利用信号量的 wait (). signal ()操作可以交换大量信息
 - C. 同步是指并发进程之间存在的一种制约关系
 - D. 并发进程在访问共享资源时,不可能出现与时间有关的错误
- 2. 下列资源中, (ACD) 是临界资源。

 - A. 打印机 B. 非共享的资源 C. 共享变量 D. 共享缓冲区
- 3. 进程从执行状态转换到阻塞状态的可能原因是(BD).
 - A. 时间片完

- B. 需要等待其它进程的执行结果
- C. 执行了 signal()操作
- D. 执行了 wait()操作
- 4. 进程从阻塞状态转换到就绪状态的可能原因是(BC).
 - A. 时间片完
- B. 其它进程执行了唤醒原语
- C. 执行了 signal()操作 D. 执行了 wait()操作
- 5. 在单处理机系统中,设系统中有 n 个进程(n>2),且当前处理机没有执行进程调度程序, 下述情况哪些可能发生(BCD)。
 - A. 没有运行的进程,有2个进程处于就绪状态,n个进程处于等待状态。
 - B. 一个进程处于运行状态, n-1 个进程处于等待状态。
 - C. 一个进程处于运行状态, 1个进程处于就绪状态, n-2个进程处于等待状态。
 - D. 一个进程处于运行状态, n-1 个进程处于就绪状态, 没有进程处于等待状态

三、判断正误,错误的简要说明理由

- 1. 一个临界资源可以对应多个临界区。(√)
- 2. 互斥地使用临界资源是通过互斥地进入临界区实现的。(X) 表达不确切,应该是互斥的进入同类临界区。
- 3. 同步信号量的初值一般为 1。(X)

互斥信号量的初值一般为1;而同步信号量的初值应视具体情况而定。

- 4. 生产者一消费者问题是一个既有同步又有互斥的问题。(√)
- 5. 进程 A、B 共享变量 x, 需要互斥执行; 进程 B、C 共享变量 y, B、C 也需要互斥执行, 因此, 进程 A、C 必须互斥执行。(X)

不具有传递性。

6. 单道程序系统中程序的执行也需要同步和互斥。(X)

单道程序系统不具有并发性,因此不需要同步和互斥。

四、解答题

- 1. 某车站售票厅,任何时刻最多可容纳 20 名购票者进入,当售票厅中少于 20 购票者时,则厅外的购票者可立即进入,否则需在外面等待。若把一个购票者看作一个进程,请回答下列问题:
- (1) 用 wait()、signal()操作管理这些并发进程时,应怎样定义信号量?写出信号量的初值以及信号量各种取值的含义。
- (2) 根据所定义的信号量,把应执行的 wait()、signal()操作填入下述程序中,以保证进程能够正确地并发执行。

COBEGIN PROCESS Pi (i=1,2,....)

COEND

(3) 若欲购票者最多为 n 个人, 写出信号量可能的变化范围 (最大值和最小值)。

解:

售票厅问题:

- (1) 定义一信号量 S, 初始值为 20。
- S>0 S 的值表示可继续进入售票厅的人数
- S=0 表示售票厅中已有 20 名顾客
- S<0 |S|的值为等待进入售票厅中的人数
- (2) 上框为 P(S) 下框为 V(S)
- (3) S 的最大值为 20
- S 的最小值为 20-N, N 为某一时刻需要进入售票厅的最大人数。

问题描述

假设一个系统有三个抽烟者进程和一个供应者进程。每个抽烟者不停地卷烟并抽掉它,但是要卷起并抽掉一支烟,抽烟者需要有三种材料:烟草、纸和胶水。三个抽烟者中,第一个拥有烟草、第二个拥有纸、第三个拥有胶水。供应者进程无限地提供三种材料,供应者每次将两种材料放桌子上,拥有剩下那种材料的抽烟者卷一根烟并抽掉它,并给供应者进程一个信号告诉完成了,供应者就会放另外两种材料再桌上,这个过程一直重复(让三个抽烟者轮流地抽烟)

问题描述

假设一个系统有三个抽烟者进程和一个供应者进程。每个抽烟者不停地卷烟并抽掉它,但是要卷起并抽掉一支烟,抽烟者需要有三种材料:烟草、纸和胶水。三个抽烟者中,第一个拥有烟草、第二个拥有纸、第三个拥有胶水。供应者进程无限地提供三种材料,供应者每次将两种材料放桌子上,拥有剩下那种材料的抽烟者卷一根烟并抽掉它,并给供应者进程一个信号告诉完成了,供应者就会放另外两种材料再桌上,这个过程一直重复(让三个抽烟者轮流地抽烟)


```
Semaphore S1=0;
Semaphore S1=0;
Semaphore S1=0;
Semaphore table=1;
```

```
Provider(){
     while(true){
          wait(table);
           if (i==0) {
               将组合1放在桌上;
                signal (S1);
           } else if (i==1) {
                 将组合2放在桌上;
                 signal (S2);
           } else if (i==2) {
                 将组合3放在桌上;
                 signal (S3);
           }
                i=(i+3)\%3;
       }
 }
```

```
Smoker1(){
while(true){
wait(S1);
从桌上拿走组合 1;
卷烟、抽掉;
signal(table);
}
```

```
Smoker2(){
while(true){
wait(S2);
从桌上拿走组合 2;
卷烟、抽掉;
signal(table);
}
```

```
Smoker3(){
    while(true){
        wait($3);
        从桌上拿走组合 3;
        卷烟、抽掉;
        signal(table);
    }
}
```