Counter

De procesgraaf

is een oplossing voor C in $C = u(d \parallel C)$.

Bag over $\{0,1\}$

De procesgraaf

is een oplossing voor B in $B = 0(\underline{0} \parallel B) + 1(\underline{1} \parallel B)$.

Deadlock

We introduceren de speciale constante

 δ : deadlock;

het proces dat nog niet getermineerd is, maar ook geen echte stappen meer kan doen.

Axioma's:

(A6)
$$x + \delta = x$$
 (δ is een 'eenheidselement' voor +)
(A7) $\delta \cdot x = \delta$ (δ is een 'links-nul' voor \cdot)

De procesgraaf $G(\delta)$ is $-\delta$

Procesgrafen (8)

Een knoop s van $g \in G(A)$ heet **onbereikbaar wegens deadlock** als elk pad van de wortel r van g naar s een δ -pijl bevat.

Twee *verschillende* pijlen $s \to_a t$ en $s \to_b u$ met hetzelfde beginpunt s heten **zusterpijlen**.

Het δ -schone overblijfsel $\Delta(g)$ van g krijgen we door:

- (i) pijlen $s \rightarrow_a t$ te verwijderen als s onbereikbaar is wegens deadlock;
- (ii) vervolgens herhaaldelijk δ -pijlen te verwijderen, totdat geen enkele pijl nog een δ -pijl als zusterpijl heeft;
- (iii) alle onbereikbare delen uit de ontstane graaf te verwijderen.

Procesgrafen (9)

Zij $\mathbf{g} = (N, E, r)$ en $\mathbf{g'} = (N', E', r')$ δ -schone procesgrafen.

Een relatie $\mathcal{R} \subseteq N \times N'$ is een **bisimulatie** tussen g en g' als

- (i) $(r, r') \in \mathcal{R}$;
- (ii) R eindknopen alleen met eindknopen relateert;

en voor alle $a \neq \delta$:

- (iii) $s \to_{\mathbf{a}} t \& (s, s') \in \mathcal{R} \implies \exists t' \in N'. \ s' \to_{\mathbf{a}} t' \& (t, t') \in \mathcal{R};$
- $(\mathsf{iv}) \ s' \to_{\mathbf{a}} t' \ \& \ (s,s') \in \mathcal{R} \implies \exists t \in N. \ s \to_{\mathbf{a}} t \ \& \ (t,t') \in \mathcal{R}.$

BPA $_{\delta}$: correctheid en volledigheid

De axioma's van BPA $_{\delta}$:

$$(A1) \quad x + y = y + x$$

$$(A2) \quad x + (y + z) = (x + y) + z$$

$$(A3) \quad x + x = x$$

$$(A4) \quad (x + y) \cdot z = (x \cdot z) + (y \cdot z)$$

$$(A5) \quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$(A6) \quad x + \delta = x$$

$$(A7) \quad \delta \cdot x = \delta$$

Stelling: Voor alle gesloten BPA $_{\delta}$ -termen p en q:

$$\mathsf{BPA}_\delta \vdash p = q \iff \Delta(\mathbf{G}(p)) \Leftrightarrow \Delta(\mathbf{G}(q)).$$

PA_{δ} : correctheid en volledigheid

De axioma's van PA_{δ} :

$$\begin{array}{lll} \text{(A1)-(A7) (d.w.z., de axioma's van BPA}_{\delta}) \text{ plus} \\ \text{(M1)} & \text{x} \parallel \text{y} & = (\text{x} \parallel \text{y}) + (\text{y} \parallel \text{x}) \\ \text{(M2)} & \text{a} \parallel \text{x} & = \text{a} \cdot \text{x} & \text{(voor alle a} \in \text{A} \cup \{\delta\}) \\ \text{(M3)} & (\text{a} \cdot \text{x}) \parallel \text{y} & = \text{a} \cdot (\text{x} \parallel \text{y}) & \text{(voor alle a} \in \text{A} \cup \{\delta\}) \\ \text{(M4)} & (\text{x} + \text{y}) \parallel \text{z} & = (\text{x} \parallel \text{z}) + (\text{y} \parallel \text{x}) \\ \end{array}$$

Stelling: Voor alle gesloten PA_{δ} -termen p en q:

$$\mathsf{PA}_\delta \vdash p = q \iff \Delta(\mathbf{G}(p)) \Leftrightarrow \Delta(\mathbf{G}(q)).$$

Buffers koppelen (1)

Beschouw twee buffers met plaats voor één bit

met respectievelijke specificaties

$$\begin{split} B_{12} &= \sum_{d \in \{0,1\}} r_1(d) \cdot s_2(d) \cdot B_{12} \\ &= r_1(0) \cdot s_2(0) \cdot B_{12} + r_1(1) \cdot s_2(1) \cdot B_{12}; \text{ en} \\ B_{23} &= \sum_{d \in \{0,1\}} r_2(d) \cdot s_3(d) \cdot B_{23} \\ &= r_2(0) \cdot s_3(0) \cdot B_{23} + r_2(1) \cdot s_3(1) \cdot B_{23} \end{split}$$

Buffers koppelen (2)

De tweebitsbuffer

kan worden verkregen door B_{12} en B_{23} 'te koppelen': het uitgaande kanaal van B_{12} wordt verbonden met het inkomende kanaal van B_{23} .

Om een dergelijke koppeling ook op specificatieniveau tot stand te brengen, willen we uitdrukken dat 'send-actie' $s_2(d)$ van B_{12} communiceert met de 'receive-actie' $r_2(d)$ van B_{23} .

ACP: de communicatiefunctie γ

Gegeven is een verzameling A van acties.

Een communicatiefunctie is een partiële functie

$$\gamma: A \times A \rightarrow A$$

zo dat voor alle $a, b, c \in A$:

(De linkerkant van bovenstaande vergelijkingen is gedefinieerd dan, en slechts dan, als de rechterkant gedefinieerd is.)

Procesgrafen (10)

Zij $g_1, g_2 \in \mathbf{G}(A)$, d.w.z., g_1 en g_2 zijn samenhangende procesgrafen met een acyclische wortel.

Met een **communicatiediagonaal** van het cartesisch product $g_1 \parallel g_2$ bedoelen we een tripel

$$(s_1,s_2) \rightarrow_{\mathbf{c}} (t_1,t_2)$$

zo dat

$$s_1 \rightarrow_{\mathbf{a}} t_1, \ s_2 \rightarrow_{\mathbf{b}} t_2 \ \mathsf{en} \ \gamma(\mathbf{a}, \mathbf{b}) = \mathsf{c}.$$

In het vervolg noteren we met $g_1 \parallel g_2$ het cartesisch product van g_1 en g_2 waaraan de communicatiediagonalen zijn toegevoegd.

Procesgrafen (11)

Zij $g_1, g_2 \in G(A)$, d.w.z., g_1 en g_2 zijn samenhangende procesgrafen met een acyclische wortel.

We definiëren $g_1 \mid g_2$ als de procesgraaf die uit $g_1 \mid g_2$ wordt verkregen door:

- (i) alle pijlen van de vorm $(r_1, r_2) \rightarrow_a (r_1, s_2)$ èn alle pijlen van de vorm $(r_1, r_2) \rightarrow_a (s_1, r_2)$ met (r_1, r_2) de wortel van $g_1 \parallel g_2$, s_1 een willekeurige knoop van g_1 en s_2 een willekeurige knoop van g_2 , te verwijderen;
- (ii) alle daardoor onbereikbaar geworden delen te verwijderen.

ACP: de communicatiemerge

Axioma's $(a, b \in A \cup \{\delta\})$:

LET OP: bovenstaande axioma's (CF1) en (CF2) vervangen de axioma's (C1), (C2) en (C3) in de syllabus!!!

ACP: de merge en de left-merge

Nieuwe axioma's $(a \in A \cup \{\delta\})$:

$$(CM1) \quad x \parallel y \qquad = ((x \parallel y) + (y \parallel x)) + (x \mid y)$$

$$(CM2) \quad a \parallel x \qquad = a \cdot x$$

$$(CM3) \quad (a \cdot x) \parallel y = a \cdot (x \parallel y)$$

$$(CM4) \quad (x + y) \parallel z = (x \parallel z) + (y \parallel z)$$