SRM INSTITUTE OF SCIENCE AND TECHNOLOGY 18CSC304J - COMPILER DESIGN EVENSEM 2023-24

WORKSHEET

I.Convert RE into NFA:-

1. ε

2. a

3. a/b

4. ab

5. a*

6. (a/b)*

7. (a/b)*abb

8. (0/1) (0/2)

9. 12/53

10. (abc)*

11. ((a/b) b*)* (a/b)

b*

(a/b)b*

((a/b)b*)*

12. (a/b)*abb (a/b)*

13. (a*/b*)*

14. (a/b)*a (a/b)

15. (a/b/c)* (a/b)*

16. (a/b)a(a/b)*abb

17.0(2/51)*

18.4(0/123)*

19. (a,a*/bb*)

20. (0/1)*1

II. CONVERT RE to DFA (INDIRECT METHOD)

1.
$$RE = a^*$$

NFA

Finding the states

$$\epsilon$$
 closure $\{0\} = \{0,1,3\}$

$$A = \{0,1,3\}$$

$$\epsilon$$
 closure[move(A,a)] = {2}
= {2,1,3}

$$\epsilon \text{ closure[move(B,a)]} = \{2\}$$

$$= B$$

$$= B$$

Transition table:

	a
A	В
В	В

Minimizing DFA:

Minimized Transition table:

State	a
A	A

DFA:

2. RE = (a/b)*abb Draw the NFA and Convert it into DFA

NFA

$$\epsilon$$
 closure $\{0\} = \{0,1,2,4,7\} = A$
 $mov(A,a) = \epsilon$ closure $\{3,8\} = \{3,8,6,1,2,4,7\} = B$
 $mov(A,b) = \epsilon$ closure $\{5\} = \{5,6,1,2,4,7\} = C$
 $mov(B,a) = \epsilon$ closure $\{3,8\} = B$
 $mov(B,b) = \epsilon$ closure $\{9,5\} = \{9,5,6,7,1,2,4\} = D$
 $mov(C,a) = \epsilon$ closure $\{3,8\} = B$
 $mov(C,b) = \epsilon$ closure $\{5\} = C$
 $mov(D,a) = \epsilon$ closure $\{8,3\} = B$
 $mov(D,b) = \epsilon$ closure $\{10,5\} = \{10,5,6,7,1,2,4\} = E$
 $mov(E,a) = \epsilon$ closure $\{5\} = C$

Transition table:

	a	b
A	В	С
В	В	D
С	В	С
D	В	Е
Е	В	C

Minimizing DFA:

$$\pi = \{ (A,B,C,D) (E) \}$$

$$= \{ (A,B,C) (D) (E) \}$$

$$= \{ (AC) (B) (D) (E) \}$$

$$\pi = \{ (A) (B) (C) (D) (E) \}$$

Minimized Transition table:

State	a	b
A	В	A
В	В	D
D	В	Е
Е	В	A

DFA:

II. CONVERT RE to DFA (DIRECT METHOD)

1. RE = (a/b)*abb Convert it into DFA in direct method

Augmented RE: (a/b)*.a.b.b#

Syntax Tree

(a|b)*.a.b.b#

Node	followpos
1	1,2,3
2	1,2,3
3	4
4 *	5
5	6
6	-

	Node	followpos
a	1	1,2,3
b	2	1,2,3
a	3	4
b	4	5
b	5	6
#	6	·-

2. RE = (a+b)*+(a.c)* Convert it into DFA in direct method

Augmented RE: ((a+b)*+(a.c)*)#

Syntax Tree

$$((a+b)*+(a.c)*).#$$

Syntax Tree

$$((a+b)^*+(a.c)^*).#$$

Followpos

$$((a+b)*+(a.c)*).#$$

	Node	followpos	pressure
ı	1	1,2,5	(1, 2,3,5) a (1, 2, 4,5) c (3,5)
	2	1,2,5	a c
	3	4	b /a,b [4]
	4	3,5	
	5	2	[1, 2, 5]