ملتها الهالمة تطور جملة كيميائية نحو حالة التوازن

pH /I محلول مائي

II/ تأثير حمض و أساس على الماء

<u>1. حمض قوی و حمض ضعیف</u>

2. أساس قوى و أساس ضعيف 3. أمثلة من الحياة اليومية

III/ تطور جملة كيميائية نحو حالة التوازن

1. مقارنة التقدم النهائي و التقدم الأعظمي : النسبة النهائية au_f للتقدم

2. مفهوم حالة التوازن

 Q_x کسر التفاعل 3

K ثابت التوازن K

5. تأثير الحالة الابتدائية للجملة على حالة التوازن

III/ التحولات (حمض ـ أساس)

1. التشرد الذاتي للماء

2. سلم الـ pH

 pK_a و K_a : ثابتا الحموضة

4. مجال التغلب : تطبيق على الكواشف الملونة : مجال التغير اللوني

5. المعايرة الـ pH مترية

مالاس الهالمة

تطور جملة كيميائية نحو حالة التوازن

pH /I محلول مائي

من أجل المحاليل الممددة (المخففة)

$$pH = -\log[H_3O^+]$$

 $pH = -\log[H_3O^+]$: فإن الـ pH يعرف بالعلاقة

$$[H_3O^+] = 10^{-pH} (mol.L^{-1})$$

هذه العلاقة تكافئ:

مثال <u>1</u> مثال <u>1</u> مثال (S_1) المحلول الهيدروجين حيث : $[H_3O^+] = 1.0 \times 10^{-2} \, mol/L$ ، نحصل على : pH = 2

ملاحظة : الـ pH و التركيز المولى للشوارد H_3O^+ تتغير باتجاه معاكس.

 $pH \succ 7$ عند $pH \succ 7$ المحاليل المعتدلة لها pH = 7 ، المحاليل الحمضية لها $pH \rightarrow 7$ والمحاليل الأساسية لها يعرف الجداء الشار دي للماء Ke في المحاليل المائية كما يلي:

$$Ke = 10^{-14}$$
 : $25^{\circ}C$ عند $Ke = [H_3O^+][OH^-]$

من أجل قياس pH محلول، يمكن استعمال:

- جهاز قياس pH إذا كان القياس يتطلب دقة.
- ورق pH (أو كاشف ملون) إذا كان القياس تقريبي و لا يتطلب دقة عالية.

قياس دقيق $\Delta pH = 0.05$ الارتياب

II/ تأثير حمض و أساس على الماء

حمض قوي و حمض ضعيف الحمض القوي: هو الحمض الذي يتشرد كليا في الماء.

$$HA_{(aq)} + H_2O_{(l)} \to H_3O^+_{(aq)} + A^-_{(aq)}$$

 $C=10^{-2} \, mol\,/\,L$ وله $C=10^{-2} \, mol\,/\,L$ وله نعتبر محلول (S) الكلور الهيدروجين الكلور الكلور الهيدروجين ($HCl_{(g)}+H_2O_{(l)}\to H_3O^+_{(aq)}+Cl^-_{(aq)}$) في المحلول. ($HCl_{(g)}+H_2O_{(l)}\to H_3O^+_{(aq)}$ و $H_3O^+_{(aq)}\to H_3O^+_{(aq)}$ $[H_3O^+] = C$ أي $[H_3O^+] = 10^{-pH} = 10^{-2} \, mol \, / \, L$: (S) لدينا في المحلول

إذا HCl يتشرد كليا في الماء فهو حمض قوى.

الحمض الضعيف: هو الحمض الذي يتشرد جزئيا في الماء.

$$HA_{(aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + A^-_{(aq)}$$

 $. \ pH = 3.4$ وله $C = 10^{-2} \ mol/L$ تركيزه المولى CH_3COOH وله CH_3COOH وله CH_3COOH ($CH_3COOH_{(l)} + H_2O_{(l)} = H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$) في المحلول. ($H_3COOH_{(l)} + H_2O_{(l)} = H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$ $[H_3O^+] \prec C$ أي $[H_3O^+] = 10^{-pH} = 10^{-3.4} = 3.98 \times 10^{-4} \, mol/L$: (S) لدينا في المحلول إذا CH3COOH يتشرد جزئيا في الماء فهو حمض ضعيف.

2. أساس قوي و أساس ضعيف الأساس القوي: هو الأساس القوي: هو الأساس الذي يتشرد كليا في الماء.

$$B_{(aq)} + H_2 O_{(l)} \rightarrow BH^+(aq) + HO^-(aq)$$

 $25^{0}C$ عند الدرجة $C=10^{-2}\,mol\,/\,L$ يعتبر محلول (S) عند الدرجة الصوديوم ($Na^{+}_{(aq)}+HO^{-}_{(aq)}$) عند الدرجة pH = 12 و له

($NaOH_{(S)} \xrightarrow{H_2O} Na^+(aq) + HO^-(aq)$) . نقارن بين HO^- و G في المحلول (HO^-

 $[HO^-] = C$ اأي $[HO^-] = \frac{10^{-14}}{10^{-12}} = 10^{-2} \, mol \, / \, L$ ومنه $[H_3O^+] = 10^{-pH} = 10^{-12} \, mol \, / \, L$: (S) الدينا في المحلول إذا NaOH ينحل كليا في الماء فهو أساس قوى.

الأساس الضعيف: هو الأساس الذي يتشرد جزئيا في الماء.

$$B_{(aq)} + H_2 O_{(l)} = BH^+(aq) + HO^-(aq)$$

 $25^{0}C$ عند الدرجة $C=10^{-2}\,mol\,/\,L$ يعتبر محلول ($CH_{3}NH_{2})_{(aq)}$ عند الدرجة عند الدرجة عند الدرجة pH = 10.8

 $CH_3NH_{2(aq)} + H_2O_{(l)} = HO^-_{(aq)} + CH_3NH_{3(aq)}^+$ و C في المحلول. ($HO^-_{3(aq)} + CH_3NH_{2(aq)}^+$

 $\left[HO^{-}
ight] \prec C$ أي $\left[HO^{-}
ight] = \frac{10^{-14}}{10^{-10.8}} = 6.3 \times 10^{-4} \, mol \, / \, L$ ومنه $\left[H_{3}O^{+}
ight] = 10^{-pH} = 10^{-10.8} \, mol \, / \, L$: $\left(S\right)$ الدينا في المحلول إذا CH3NH2 يتشرد جزئيا في الماء فهو أساس ضعيف.

III/ تطور جملة كيميائية نحو حالة التوازن

مقارنة التقدم النهائي و التقدم الأعظمي: $au_{ m c}$ - النسبة النهائية $au_{ m c}$

 $x_{
m max}$ نسبة التقدم النهائي au_f أو au_f هي النسبة بين التقدم النهائي au_f و التقدم الأعظمي

$$\tau = \frac{x_f}{x_{\text{max}}}$$

TO. E

حيث : ـ التقدم النهائي x_f لتحول كيميائي هو قيمة التقدم عند انتهاء التفاعل.

ـ التقدم الأعظمي x_{\max} لتحول كيميائي هو قيمة التقدم بفرض أن التحول تام.

ملاحظة : ـ إذا كان t=1 فإن التفاعل تام.

ے إذا كان $1 \rightarrow \tau$ فإن التفاعل غير تام.

2. مفهوم حالة التوازن

في تحول كيميائي لجملة، إذا كانت المتفاعلات و النواتج متواجدة في الحالة النهائية بكميات ثابتة فإن الجملة في حالة توازن. (أي أن تراكيز المتفاعلات و تراكيز النواتج تبقى ثابتة مهما كان الزمن).

 Q_r كسر التفاعل 3

إن كسر التفاعل Q مقدار يميز الجملة الكيميائية و هي في حالة ما.

aA + bB = cC + dD

من أجل التفاعل ذي المعادلة:

يعرف كسر التفاعل arrho بالعبارة:

$$Q_r = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

حيث [A]، [B] تمثل التراكيز الولية للمتفاعلات و [C]، [C] تمثل التراكيز المولية للنواتج.

ملاحظة : ـ المقدار Q بدون وحدة.

 Q_r عبارة و الأجسام الصلبة و الرواسب و الغازات غير المنحلة لا توضع في عبارة - تركيز الماء و الأجسام الصلبة و

أمثلة:

 $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$: انحلال حمض الإيثانويك في الماء : $Q_r = \frac{\left[CH_3COO^-\right]\left[H_3O^+\right]}{\left[CH_3COOH\right]}$

$$Q_r = \frac{\left[CH_3COO^{-}\right]\left[H_3O^{+}\right]}{\left[CH_3COOH\right]}$$

 $Cu_{(S)} + 2Ag^+_{(aq)} = Cu^{2+}_{(aq)} + 2Ag_{(S)}$: صفيحة من النحاس في محلول نتر ات الفضة

$$Q_r = \frac{\left[Cu^{2+}\right]}{\left[Ag^+\right]^2}$$

K ثابت التوازن A

ثابت التوازن هو قيمة كسر التفاعل عند حالة توازن (الحالة النهائية) aA + bB = cC + dD

من أجل تفاعل في وسط مائي:

$$K = Q_{rf} = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

ملاحظة : - ثابت التوازن لا يتأثر بكميات مادة المزيج الابتدائي.

ـ ثابت التوازن يتأثر بدرجة الحرارة.

5 تأثير الحالة الابتدائية للجملة على حالة التوازن - النسبة النهائية لتقدم التفاعل و الحالة الابتدائية:

النسبة النهائية لتقدم التفاعل تتعلق بالحالة الابتدائية للجملة

ـ النسبة النهائية لتقدم التفاعل و ثابت التوازن:

$$K = \frac{\tau_f^2}{1 - \tau_f}.C$$

النسبة النهائية لتقدم التفاعل تتعلق بثابت التوازن

III/ التحولات (حمض ـ أساس)

1. التشرد الذاتي للماء

الماء النقي يتفكك ذاتيا الى شوار د $^+ O_3$ و $^+ H_3O^+$ و التفاعل ذي المعادلة :

$$H_2O_{(l)} + H_2O_{(l)} = H_3O^+(aq) + HO^-(aq)$$

(يتغير بتغير درجة الحرارة) $K_e = [H_3 O^+][HO^-]$ ثابت التوازن الموافق لمعادلة التفاعل:

$$pK_e = -\log K_e$$
 : يعرف ألـ pK_e بالعلاقة :

75.6

($pK_e=14$ أي) . $K_e=10^{-14}$: $25^{0}C$ عند عند کل محلول مائي، عند

pH . pH يتغير pH المائية عمليا من pH الى 14. وحسب قيم ألـ pH تصنف المحاليل المائية إلى ثلاثة أصناف يتغير pHالمحلول المائى المعتدل ، المحلول المائي الحمضي ، المحلول الأساسي.

عند $25^{\circ}C$ يكون المحلول المائي :

$$pH = 7.0$$
 ومنه $pH = \frac{1}{2} pK_e$ ومنه $[HO^-] = [H_3O^+]$ ومنه

$$pH \prec 7,0$$
 ومنه $pH \prec \frac{1}{2} pK_e$ ومنه $[HO^-] \prec [H_3O^+]$ ومنه

$$pH \succ 7,0$$
 ومنه $pH \succ \frac{1}{2} pK_e$ ومنه $[HO^-] \succ [H_3O^+]$ ومنه

pK_a و K_a : ثابتا الحموضة

- تعریف ثابت الحموضة K_a الثنائیة (أساس / حمض):

إن ثابت التوازن K الموافق لمعادلة تفاعل الحمض HA مع الماء

$$HA_{(aq)} + H_2O_{(l)} = H_3O^+{}_{(aq)} + A^-{}_{(aq)}$$

: (HA/A^-) الثنائية K_a المعوضة يسمى ثابت الحموضة

$$K_a = K = \frac{[H_3 O^+]_f . [A^-]_f}{[HA]_f}$$

: pK_a الـ

: يعرف ألـ pK_a للثنائية pK_a كالتالى

$$K_a = 10^{-pK_a}$$
 ويعني $pK_a = -\log K_a$

ملاحظة: ثوابت الحموضية K_a و pK_a تمكن من مقارنة قوة الأحماض فيما بينها وكذلك قوة الأسس فيما بينها.

- ـ كلما كان $_{K_{a}}$ أكبر كان $_{pK_{a}}$ أصغر فكان الحمض أقوى و الأساس المرافق له أضعف.
- كلما كان K_a أصغر كان p أكبر فكان الأساس أقوى و الحمض المرافق له أضعف.

: pK_a و pH و pK

من أجل كل ثنائية (أساس / حمض): نستنتج العلاقة التالية:

$$pH=pK_a + \log \frac{\left[\text{Winlw}\right]_f}{\left[\text{Weard}\right]_f}$$

4. مجال التغلب

- مجالات تغلب الصفة الحمضية أو الأساسية لثنائية

ـ مخطط مجالات التغلب

في ثنائية حمض ـ أساس (نرمز لها في الحالة العامة بـ A/B) حيث B هي الصفة الأساسية و A هي الصفة الحمضية ، يكون مخطط مجالات التغلب كما يلي :

- مخطط توزيع الصفة الغالبة

لمعرفة الصفة الغالبة لثنائية (أساس / حمض) يستعمل عادة مخطط يدعى مخطط الصفة الغالبة يبرز تطور النسبة المئوية للصفة الأساسية بدلالة pH.

 $(C_6H_5COOH/C_6H_5COO^-)$ مثال: مخطط توزیع الصفة الغالبة للثنائیة مخطط توزیع الصفة الغالبة للثنائیة نرمز لها اختصارا ب

- تطبيق على الكواشف الملونة: مجال التغير اللوني

الكاشف الملون عبارة عن ثنائية (أساس / حمض) حيث الصفة الحمضية و الصفة الأساسية ليس لهما نفس اللون يرمز للثنائية: - HIn/In

 $HIn_{(aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + In^-_{(aq)}$: معادلة تفاعل الكاشف الملون مع الماء :

 $pH = pK_i + \log \frac{\left[In^-\right]_f}{\left[HIn\right]_f}$: وفق العلاقة pH وفق العلاقة $R = \frac{\left[In^-\right]_f}{\left[HIn\right]_f}$ بانسبة وبالتسبة $R = \frac{\left[In^-\right]_f}{\left[HIn\right]_f}$

. $pH \succ pK_i^- + 1$ ومنه In^- ومنه الحان In^- ومنه الحان الح

- $PH \prec pK_i 1$ فإن الصفة HIn تشكل أغلبية، أي أن لون المحلول يفرضه لون $R \prec \frac{1}{10}$. ومنه $R \prec \frac{1}{10}$. ومنه المحلول يفرضه لون المحلول يفرضه المحلول يفرضه المحلول يفرضه المحلول يفرضه المحلول المحل
 - من أجل المجال $pK_i 1 \prec pH \prec pK_i + 1$ فإن لون المحلول يكون مزيج من أجل المجال بين هذا المجال بين على التغير اللوني.

أمثلة عن بعض الكواشف ومجالات التغير اللوني لها:

لون الأساس	مجال التغير اللوني	لون الحمض	الكاشف الملون
أصفر	3,1 – 4,4	أحمر	هلیانتین
أزرق	6,0 – 7,6	أصفر	أزرق البروموتيمول
بنفسجي	8,2-10,0	شفاف	فينولفتالين

5. المعايرة الـ pH مترية

- الهدف من المعايرة : - تحديد التركيز المولي للمحلول المعاير.

ـ متابعة مراحل المعايرة وتراكيز الأفراد الكيميائية المتواجدة.

اً معايرة حمض قوي بأساس قوي (Na^+,OH^-) بواسطة (H_3O^+,Cl^-) عثال : معايرة

1/ التركيب التجريبي و الخطوات المتبعة البروتوكول التجريبي: _ الوسائل و الأدوات ، المواد الكيميائية. ـ طربقة العمل.

- القياسات ، الرسم التخطيطي.

 $H_3O^+(aq) + OH^-(aq) = 2H_2O_{(l)}$: \(\text{\text{\text{as alice}}}\)

(الشكل -1).

ـ تعيين نقطة التكافئ

تعين نقطة التكافؤ بعدة طرق، نذكر منها:

• طريقة المماسين المتوازيين.

 $g(V) = \frac{dpH}{dV}$: طريقة المشتق

4/ مناقشة منحنى المعايرة: يناقش في ثلاثة أجزاء

ـ في الجزء MN.

ـ في الجزء NP.

ـ في الجزء PQ.

ملاحظة: pH هي قيمة pH المحلول الحمضي قبل إضافة المحلول الأساسي.

5/ الكاشف الأنسب للكشف عن التكافؤ هو الذي يشمل مجال تغير لونه نقطة التكافؤ

أي: أزرق البروموتيمول [7,6 – 6].

6/ طبيعة المزيج عند نقطة التكافؤ

 $pH_E = \frac{1}{2} pK_e$: المزيج معتدل

ر تراكيز الأفراد الكيميائية عند نقطة التكافؤ Cl^- ، Na^+ ، OH^- ، H_3O^+ : هي .

(الشكل -1)

1/ التركيب التجريبي و الخطوات المتبعة : بإتباع نفس الطريقة.

$$CH_{3}COOH_{(aq)} + OH^{-}_{(aq)} = CH_{3}COO^{-}_{(aq)} + H_{2}O_{(l)}$$
 : معادلة التفاعل /2

- تعيين نقطة التكافؤ: بإتباع إحدى الطرق المذكورة سابقا.

4/ مناقشة منحنى المعايرة: بإتباع نفس الطريقة.

.(
$$pH_E > \frac{1}{2}pK_e$$
) مطبیعة المزیج عند نقطة التکافئ : المزیج حمضی ($pH_E > \frac{1}{2}pK_e$

$\frac{1}{2}$ 8.7 من الأفراد الكيميائية عند نقطة التكافؤ و عند نقطة نصف التكافؤ و $\frac{1}{2}$ 8.7 $\frac{1}{2}$ \frac

ـ تر اكيز ها عند نقطة نصف التكافؤ:

$$[H_{3}O^{+}] = 10^{-pK_{a}}$$

$$[OH^{-}] = 10^{pK_{a}-14}$$

$$[Na^{+}] = \frac{C_{B}V}{V_{A} + V}$$

$$[CH_{3}COO^{-}] = [Na^{+}]$$

$$[CH_{3}COOH] = [CH_{3}COO^{-}]$$

$$[H_{3}O^{+}] = 10^{-pH_{E}}$$

$$[OH^{-}] = 10^{pH_{E}-14}$$

$$[Na^{+}] = \frac{C_{B}V_{BE}}{V_{A} + V_{BE}}$$

$$[CH_{3}COO^{-}] = [Na^{+}]$$

$$[CH_{3}COOH] = [OH^{-}]$$

حيث ٧ حجم الأساس المضاف عند نصف التكافؤ. 9. علاقة ألى pH بـ ألى pK_a عند نقطة نصف التكافؤ

$$pH = pKa$$

ملاحظة : pH هي قيمة pH المحلول الحمضي قبل إضافة المحلول الأساسي.

ج/ معايرة أساس ضعيف بحمض قوي مثال: معايرة (H_3O^+,Cl^-) بواسطة (H_3O^+,Cl^-)

1/ التركيب التجريبي و الخطوات المتبعة : بإتباع نفس الطريقة.

$$H_3O^+(aq) + NH_{3(aq)} = NH_{4(aq)}^+ + H_2O_{(l)}$$
: معادلة التفاعل /2

3/ <u>- ر</u>سم المنحنى : (الشكل -3).

- تعيين نقطة التكافؤ: بإتباع إحدى الطرق المذكورة سابقا.

(
$$pH_E \prec \frac{1}{2}pK_e$$
). المزيج أساسي عند نقطة التكافئ : المزيج أساسي).

8.7 / الأفراد الكيميائية عند نقطة التكافؤ وعند نقطة نصف التكافؤ NH_3 ، NH_4^+ ، Cl^- ، OH^- ، H_3O^+ : الأفراد الكيميائية هي

ـ تر اكيز ها عند نقطة نصف التكافؤ:

$$[H_{3}O^{+}] = 10^{-pK_{a}}$$

$$[OH^{-}] = 10^{pK_{a}-14}$$

$$[Cl^{-}] = \frac{C_{A}V}{V_{B} + V}$$

$$[NH_{4}^{+}] = [Cl^{-}]$$

$$[NH_{4}^{+}] = [NH_{3}]$$

$$[H_{3}O^{+}] = 10^{-pH_{E}}$$

$$[OH^{-}] = 10^{pH_{E}-14}$$

$$[Cl^{-}] = \frac{C_{A}V_{AE}}{V_{B} + V_{AE}}$$

$$[NH_{4}^{+}] = [Cl^{-}]$$

$$[NH_{3}] = [H_{3}O^{+}]$$

حيث V حجم الحمض المضاف عند نصف التكافؤ. 9. علاقة ألى pH بـ ألى pK_a عند نقطة نصف التكافؤ

77.5

$$pH = pKa$$

(الشكل ـ3)

ملاحظة : pH هي قيمة pH المحلول الأساسي قبل إضافة المحلول الحمضي.