Lecture 15: March 16, 2021 Computer Architecture and Organization-I Biplab K Sikdar

0.3 Microprogrammed Control Design

Target is to generate the sequence of control signals as noted in following figure.

In a microprommed control design this can be achieved by executing a set of microinstructions (microprogramme) as shown in Figure 11(b).

(a) Control signals from micro programmed CU

(b) Microprogram for CU design

Figure 11: Overview of micro-programmed control design

Microinstructions are stored in a special class of memory - control memory (CM).

Microprogram for CU design

Content of CM describes that the if the CPU is switched on, CU can fetch μ -instruction *activate* c_0 and execute.

It ensures tranfer of PC content to AR.

Then CU fetches and executes *activate* c_1 that realizes memory read DR \leftarrow M(AR).

That is, execution of the set of microinstructions stored im CM realizes CU function.

The design technique demands attention to the following issues:

- 1. Encoding of μ -instructions.
- 2. μ -instruction sequencing.

After activation of c_0 it is to be ensured that *activate* c_1 is fetched from CM.

3. Address mapping -once macroinstruction fetched from MM is found *Store* (say), then CU must fetch μ -instruction from address *case Store* (Figure 11(b)).

That is, depending on content of IR the CU should decide on next executable μ -instruction address.

0.3.1 Micro-instruction encoding

CU fetches an instruction to a register called control memory data register (CMDR) or microinstruction register (μ IR) (Figure 12).

Decoding of microinstruction is required to activate one (activate c_0) or multiple (activate c_2 , c_3) control signals.

Outputs of the decoder (control signals) are input to different parts of CPU.

Figure 12: Microinstruction decoding

Encoding controls size of a CM.

Encoding scheme can reduce the CM word size but may increase delay in decoding μ -instructions as well as limit possibility of parallel activation of control signals.

Three encoding schemes are considered for μ -programmed CU instruction format.

- 1. Horizontal
- 2. Vertical
- 3. Diagonal

0.3.1.1 Horizontal format

Horizontal μ -instruction encoding for CU of Figure 11(a)) is in Figure 13(a).

Figure 13: Microinstruction formats

It assigns one bit per control signal.

In example design, it requires 12-bit field (control field).

Horizontal format in general does not require decoder - avoids delay of decoding.

The features of horizontal format -

- a) It is a long format,
- b) It has ability to express high degree of parallelism,
- c) It considers little encoding (generally no encoding) of control information.

0.3.1.2 Vertical format

c) Diaginal format (encoding)

Features of a vertical format (Figure 13(b)) are

- a) This is of short format,
- b) Limited ability to support parallelism (generally no parallelism) in μ -operations,
- c) Accepts considerable encoding of control information.

For a CU, realized with n control signals, this demands m-bit, where $n \le 2^m$.

For n=12 control signals of example design, we need m=4 bits.

The 4-bit (K3 K2 K1 K0) code is then decoded by a 1-of-16 decoder.

Each output of decoder is connected to a control signal (Figure 13(b)).

For example, if K3 K2 K1 K0 = 1010, then c_{10} is activated.

0.3.1.3 Diagonal format

Limitation of vertical format - a microinstruction can't generate two control signals.

That is, parallel execution of microoperations are not allowed.

In example design, two control signals c_2 and c_3 can be considered in parallel.

Vertical encoding can't allow this. Solution is: c_2 and c_3 are generated sequentially.

Alternative solution is: n μ -instructions are partitioned into m groups to get maximum m parallel microoperations with in a μ -instruction.

Each group is encoded as in vertical format.

To decode a μ -instruction, a decoder is required for each group.

In Figure 13(c): encoding of control signals in m = 2 groups (Group 0 and Group).

Three decoders are needed to generate the control signals.

Degree of parallelism (parallel execution of μ -operations) offered is m = 3.

0.3.1.4 Microinstruction sequencing

There are two options for instruction sequencing

- 1. Include next microinstruction μI_{i+1} address with in the microinstruction μI_i .
- 2. Microprogram counter (μ PC) to store next executable μ -instruction address. We assume μ -instruction sequencing with μ PC.

0.3.2 Microinstruction address mapping

Shown in Figure 14.

Figure 14: Micro instruction mapping

0.3.3 Microprogrammed control unit

Shown in Figure 15.

Assume horizontal format.

CM size is 32 word. Each of 19 bits. 12-bit is for control field, 5-bit for branch address, and 2-bit for condition select.

Figure 15: Micro programmed control unit