

AH276

General Description

The AH276 is an integrated Hall sensor with output driver designed for electronic commutation of brushless DC motor applications. The device includes an onchip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a Schmitt trigger to provide switching hysteresis for noise rejection, a temperature compensation circuit to compensate the temperature drift of Hall sensitivity and two complementary open-collector drivers for sinking large load current. It also includes an internal band-gap regulator which is used to provide bias voltage for internal circuits.

Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold B_{OP} , the pin DO will be turned low (on) and pin DOB will be turned high (off). This output state is held until the magnetic flux density reverses and falls below B_{RP} , then causes DO to be turned high (off) and DOB turned low (on).

AH276 is available in TO-94 (SIP-4L) package.

Features

- · On-Chip Hall Sensor
- 3.5V to 16V Supply Voltage
- 350mA (avg) Output Sink Current
- Reversed Supply Voltage Protection
- Build in Over Temperature Protection Function
- -20°C to 85°C Operating Temperature
- Low Profile TO-94 (SIP-4L) Package
- ESD Rating: 300V (Machine Model)

Applications

- Dual-Coil Brushless DC Motor
- · Dual-Coil Brushless DC Fan
- Revolution Counting
- Speed Measurement

Figure 1. Package Type of AH276

AH276

Pin Configuration

Z4 Package (TO-94)

Figure 2. Pin Configuration of AH276 (Front View)

Pin Description

Pin Number	Pin Name	Function
1	V_{CC}	Supply voltage
2	DO	Output 1
3	DOB	Output 2
4	GND	Ground

Functional Block Diagram

Figure 3. Functional Block Diagram of AH276

Ordering Information

Package Temperature		Part Number		Markir	Packing	
Range	Lead Free	Green	Lead Free	Green	Type	
		AH276Z4-AE1	AH276Z4-AG1	AH276Z4-E1	AH276Z4-G1	Bulk
TO-94	-20 to 85 °C	AH276Z4-BE1	AH276Z4-BG1	AH276Z4-E1	AH276Z4-G1	Bulk
	AH276Z4-CE1	AH276Z4-CG1	AH276Z4-E1	AH276Z4-G1	Bulk	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green package.

Nov. 2009 Rev. 1. 4

AH276

Absolute Maximum Ratings (Note 1)

 $(T_A = 25^{\circ}C)$

Parameter	Symbol	Value	Unit	
Supply Voltage		V _{CC}	20	V
Reverse Protection Voltage		V _{RCC}	-20	V
Magnetic Flux Density		В	Unlimited	Gauss
	Continuous		350	mA
Output Current	Hold	I_{O}	550	mA
	Peak (start up)		750	mA
Power Dissipation		P_{D}	550	mW
Thermal Resistance	Die to atmosphere	θЈА	227	°C/W
Thermal Resistance	Die to package case	θЈС	49	°C/W
Storage Temperature		T _{STG}	-50 to 150	°C
ESD (Machine Model)			300	V
ESD (Human Body Model)			2500	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period may affect device reliability.

Recommended Operating Conditions

 $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3.5	16	V
Ambient Temperature	T_{A}	-20	85	°C

AH276

Electrical Characteristics

 $(T_A=25^{\circ}C, V_{CC}=14V, unless otherwise specified)$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Saturation Voltage	V_{SAT}	V _{CC} =3.5V, I _O =100mA		0.3		V
Cutput Suturation Voltage	SAI	I _O =350mA		0.35	0.6	V
Output Leakage Current	I_{OL}	V _{CE} =16V		0.1	10	μΑ
Supply Current	I _{CC}	V _{CC} =16V, Output Open		12	16	mA
Output Rise Time	tr	R _L =820Ω, C _L =20pF		3.0	10	μs
Output Fall Time	tf	R _L =820Ω, C _L =20pF		0.3	1.5	μs
Switch Time Differential	Δt	R _L =820Ω, C _L =20pF		3.0	10	μs
Output Zener Breakdown Voltage	V_Z			55		V
Thermal Protection Temperature	TSD			178		°C
Thermal Protection Hysteresis	ΔTSD			40		°C

Magnetic Characteristics

 $(T_A = 25^{\circ}C)$

Parameter	Symbol	Grade	Min	Тур	Max	Unit
Operating Point		A	10		50	Gauss
	B_{OP}	В	5		70	Gauss
		С			100	Gauss
		A	-50		-10	Gauss
Releasing Point	B_{RP}	В	-70		-5	Gauss
		С	-100			Gauss
Hysteresis	B _{HYS}			75		Gauss

Nov. 2009 Rev. 1. 4

BCD Semiconductor Manufacturing Limited

Magnetic Characteristics (Continued)

Figure 4. Basic Test Circuit

Figure 5. V_{DO} vs. Magnetic Flux Density

Figure 6. V_{DOB} vs. Magnetic Flux Density

Typical Performance Characteristics

Figure 7. I_{CC} vs. V_{CC}

Figure 8. $B_{OP}/B_{RP}/B_{HYS}$ vs. V_{CC}

Figure 9. $B_{OP}/B_{RP}/B_{HYS}$ vs. Ambient Temperature

Figure 10. $P_{\rm D}$ vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 11. I_{CC} vs. Ambient Temperature

Figure 12. V_{SAT} vs. Ambient Temperature

Typical Applications

Figure 12. Typical Application Circuit

Mechanical Dimensions

TO-94 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788