Braid groups

Briseida Trejo Ernesto Vázquez

Instituto de Matemáticas, UNAM

Summer Graduate School MSRI-CMO: Geometric Group Theory FECHA

Braids

Definition

An n-braid is a collection of n disjoint strings.

Braids

Definition

An n-braid is a collection of n disjoint strings.

Examples

3-braid

Braid groups

The n-strand braid group B_n has the presentation:

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle.$$

Braid groups

The n-strand braid group B_n has the presentation:

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle.$$

Relations

 $\sigma_1 \sigma_2 \sigma_1$

 $\sigma_2 \sigma_1 \sigma_2$

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$

if $|i - j| \ge 2$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

Multiplication (Concatenation)

Multiplication (Concatenation)

$$\bigcap_{\sigma_1 \sigma_3} = \bigvee_{\sigma_3 \sigma_1}$$

$$\Leftrightarrow$$

$$\left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right| = \left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right|$$

Pure braids

Pure braid

Pure braids

Pure braids

Pure braid

Not pure

Theorem

The pure braid group P_n is biorderable for all $n \ge 1$.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

The mapping clas group $\mathcal{MCG}(\mathcal{S},\mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi: \mathcal{S} \to \mathcal{S}$ satisfying $\psi_{|\partial \mathcal{S}} = id$ and $\psi(\mathcal{P}) = \mathcal{P}$.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

The mapping clas group $\mathcal{MCG}(\mathcal{S},\mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi: \mathcal{S} \to \mathcal{S}$ satisfying $\psi_{|\partial \mathcal{S}} = id$ and $\psi(\mathcal{P}) = \mathcal{P}$.

Proposition

There is an isomorphism $B_n \cong \mathcal{MCG}(D_n)$, where D_n is the disk D^2 with n regularly spaced points.

Order in B_n

 σ -positive subword property

Proposition

Thanks.