MANUAL eDNAnalyzer

eDNAnalyzer é uma ferramenta computacional de fácil uso e acesso aberto, desenvolvida para processar e filtrar dados de atribuição taxonômica provenientes de estudos de metabarcoding, especialmente aqueles derivados de DNA ambiental (eDNA) e DNA derivado de invertebrados (iDNA).

Como citar o eDNAnalyzer? Olimpio, L.W.G.F.; Gestich, C.C.; Saranholi, B.H.; Galetti Jr, P.M.; Freitas, P.D. 2025. eDNAnalyzer: a user-friendly computational tool for post-processing taxonomic assignment data derived from eDNA and iDNA metabarcoding (doi:).

Como acessar o eDNAnalyzer? Você pode encontrar a ferramenta eDNAnalyzer acessando o repositório no GitHub em https://github.com/Leo-9821/eDNAnalyzer. O arquivo executável (.exe) está disponível para Windows®, enquanto o código-fonte em Python (.py) pode ser usado para executar o programa em Linux® ou macOS®. Neste caso, baixe os arquivos "main.py" e "metabar.py" e a pasta "img" para o mesmo diretório em seu computador e certifique-se de instalar as bibliotecas pandas, Pillow e openpyxl.

Como o eDNAnalyzer funciona? O software oferece duas funções principais: "Aplicação do *Threshold*" e "Consolidação de Resultados", cada uma exigindo um arquivo de entrada específico. Exemplos de arquivos de entrada e saída estão disponíveis no repositório https://github.com/Leo-9821/eDNAnalyzer/tree/master/example-files.

Uma visão do <u>funcionamento geral</u> do programa, é fornecida ao final deste manual, juntamente com instruções detalhadas para realizar as duas funções principais: "Aplicação do *Threshold*" e "Consolidação dos Resultados".

Escolhendo a opção Aplicação do Threshold

Esta opção processa dados de atribuições taxonômicas prévias, calculando o número total de reads por OTU/ASV por amostra de sequenciamento, filtrando OTUs/ASVs de acordo com um valor do *threshold* adotado (padrão ≥ 0,05%) e gerando saídas após a aplicação dos filtros selecionados.

Visão geral do processo:

- Calcular o número total de reads por OTU/ASV por amostra de sequenciamento, com base nas atribuições taxonômicas fornecidas (arquivo de entrada).
- Filtrar OTUs/ASVs de acordo com um valor de corte adotado (padrão: ≥ 0,05%).
- Gera arquivos (<u>arquivos de saída</u>) contendo o número total de reads por OTU/ASV, as OTUs/ASVs que não passaram no limiar e as OTUs/ASVs que passaram.

Arquivo de entrada: Um arquivo em formato .xlsx ou .csv (exemplo: input_exemplo.xlsx disponível em https://github.com/Leo-9821/eDNAnalyzer/blob/master/example_files/pt-

<u>br/xlsx/1 aplicacao threshold/input/input exemplo.xlsx</u>), contendo os dados de atribuição taxonômica, deve ser fornecido com as seguintes colunas obrigatórias:

- amostra_sequenciamento (identificação das amostras de sequenciamento)
- area_amostrador (indicando a área de coleta e o amostrador de DNA –
 por exemplo, amostra de água, solo, invertebrado utilizado como
 amostrador. Garanta que áreas e amostradores sejam identificados sem
 ambiguidade para evitar erros. Use um *underscore* para separar a área
 do coletor: area amostrador)
- ponto (indicando o ponto de coleta)
- n reads (número de *reads* por OTU/ASV)
- taxon (táxon determinado a partir da atribuição taxonômica)

Colunas adicionais com informações extras também podem ser incluídas, conforme mostrado na Tabela 1.

Tabela 1: Tabela resumo de um arquivo de entrada mostrando as informações gerais para a etapa de aplicação do *threshold*.

amostra_sequenciamento	barcode	tag	area_amostrador	ponto	aliquota	otu/asv	n_reads	%_id	taxon
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus
P08	12SrRNA	TB	P2_MC	2	1	4	3	100	Sus scrofa
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris
P08	12SrRNA	TC	P2_MC	2	1	6	7	100	Canis lupus
P08	12SrRNA	TC	P2_MC	2	1	7	2	99,26	Equus caballus
P08	12SrRNA	TC	P2_MC	2	1	8	4	100	Leopardus pardalis
P08	12SrRNA	TC	P2_MC	2	1	9	2	100	Puma concolor
P08	12SrRNA	TF	P2_MC	2	1	1	6	100	plant junction region
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris
P08	12SrRNA	TH	P3_MC	3	1	3	9	100	Pecari tajacu
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana
P08	12SrRNA	TH	P3_MC	3	1	5	7	100	Didelphis albiventris
P08	12SrRNA	TH	P3_MC	3	1	6	4	98,56	Gallus gallus
P08	12SrRNA	TH	P3_MC	3	1	7	6	97,81	Gymnogyps californianus
P08	12SrRNA	TH	P3_MC	3	1	9	4	100	Streptopelia decaocto
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla
P08	12SrRNA	TI	P3_MQ	3	1	5	8	100	Hydrochoerus hydrochaeris
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis
P08	12SrRNA	TI	P3_MQ	3	1	7	1013	100	Gallus gallus
P08	12SrRNA	TI	P3_MQ	3	1	8	4	100	Gallus gallus
P08	12SrRNA	TI	P3_MQ	3	1	9	2	100	Nycticorax nycticorax
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus
P08	12SrRNA	TL	P3_MC	3	1	2	481	100	Zaedyus pichiy

Arquivos de saída: Todas as tabelas podem ser salvas em formato .xlsx e .csv. Veja um exemplo de arquivo gerado nesta etapa na Tabela 2.

Tabela 2: Tabela resumo de um arquivo de saída mostrando os dados processados após a execução da etapa de aplicação do *threshold*.

amostra_sequenciamento	barcode	tag	area_amostrador	ponto	aliquota	otu/asv	n_reads	%_id	taxon	taxon_final_curada
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax	
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus	
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus	
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	6	7	100	Canis lupus	
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus	
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus	
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris	
P08	12SrRNA	TH	P3_MC	3	1	3	9	100	Pecari tajacu	
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana	
P08	12SrRNA	TH	P3_MC	3	1	5	7	100	Didelphis albiventris	
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus	
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus	
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa	
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla	
P08	12SrRNA	TI	P3_MQ	3	1	5	8	100	Hydrochoerus hydrochaeris	
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis	
P08	12SrRNA	TI	P3_MQ	3	1	7	1013	100	Gallus gallus	
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy	
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus	
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus	
P08	12SrRNA	TL	P3_MC	3	1	2	481	100	Zaedyus pichiy	

Escolhendo a opção Consolidação dos Resultados

Este processo fornece tabelas com os resultados, listas de espécies com seus números de detecções e *reads*. As tabelas podem ser geradas separando as listas por amostrador, área ou ambos.

Visão geral do processo:

- 1. Edite a tabela contendo as OTUs/ASVs de interesse, preenchendo a coluna taxon_final_curada com a atribuição taxonômica selecionada após curadoria manual. Esta etapa visa revisar e refinar a identificação taxonômica para corrigir possíveis inconsistências, incorporando dados de distribuição de espécies e observações de campo para maior precisão.
- Insira a tabela curada (<u>arquivo de entrada</u>) no eDNAnalyzer. O programa processará os dados e retornará as informações de interesse de acordo com os filtros selecionados pelo usuário (por exemplo: amostrador, área ou ambos).
- Gera arquivos com resultados consolidados (<u>arquivos de saída</u>) em formatos .xlsx e .csv. Quando necessário, arquivos .csv em arquivo .zip serão fornecidos.

Arquivo de entrada: A tabela de entrada (Tabela 3) para a etapa de consolidação de resultados é uma tabela (em formato .xlsx ou .csv) contendo os dados de taxon final da etapa anterior de aplicação de *threshold* e a lista de taxon curada.

Tabela 3. Tabela resumo de um arquivo de entrada mostrando as informações gerais para a etapa de consolidação.

amostra_sequenciamento	barcode	tag	area_amostrador	ponto	aliquota	otu/asv	n_reads	%_id	taxon	taxon_final_curada	~
P08	12SrRNA	TA	P1_MQ	1	1	1	233	100	Nycticorax nycticorax	Nycticorax nycticorax	
P08	12SrRNA	TB	P2_MC	2	1	1	50	99,26	Bos taurus	Bos taurus	
P08	12SrRNA	TB	P2_MC	2	1	2	41	99,25	Canis lupus	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	2	20	99,26	Canis lupus familiaris	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	3	38	100	Canis lupus familiaris	Canis lupus familiaris	
P08	12SrRNA	TC	P2_MC	2	1	4	524	100	Canis lupus familiaris	Canis lupus familiaris	
P08	12SrRNA	TG	P2_MC	2	1	1	17	99,29	Canis lupus	Canis lupus familiaris	
P08	12SrRNA	TH	P3_MC	3	1	1	109	100	Bos taurus	Bos taurus	
P08	12SrRNA	TH	P3_MC	3	1	2	52	100	Canis lupus familiaris	Canis lupus familiaris	
P08	12SrRNA	TH	P3_MC	3	1	4	1859	100	Rhea americana	Rhea americana	
P08	12SrRNA	TI	P3_MQ	3	1	1	14	100	Bos taurus	Bos taurus	
P08	12SrRNA	TI	P3_MQ	3	1	2	127	100	Equus caballus	Equus caballus	
P08	12SrRNA	TI	P3_MQ	3	1	3	28	100	Sus scrofa	Sus scrofa	
P08	12SrRNA	TI	P3_MQ	3	1	4	27	100	Tamandua tetradactyla	Tamandua tetradactyla	
P08	12SrRNA	TI	P3_MQ	3	1	6	25	100	Bubulcus ibis	Bubulcus ibis	
P08	12SrRNA	TI	P3_MQ	3	1	7	1013	100	Gallus gallus	Gallus gallus	
P08	12SrRNA	TK	P3_MC	3	1	1	33	100	Zaedyus pichiy	Euphractus sexcinctus	
P08	12SrRNA	TK	P3_MC	3	1	2	26	97,04	Euphractus sexcinctus	Euphractus sexcinctus	
P08	12SrRNA	TL	P3_MC	3	1	1	1111	100	Canis aureus	Canis lupus familiaris	
P08	12SrRNA	TL	P3_MC	3	1	2	481	100	Zaedyus pichiy	Euphractus sexcinctus	

Arquivos de saída: Todas as tabelas podem ser salvas em formatos .xlsx e .csv. Veja um exemplo de arquivo gerado nesta etapa na Figura 1.

Figura 1. Tabela resumo de um arquivo de saída mostrando os resultados consolidados após a execução da etapa de consolidação. Observe que a lista de táxons é apresentada de acordo com o filtro selecionado em diferentes guias da planilha.

	Α	В	C	D	
1		Taxon	Reads	Detecções em P6	
2	0	Tapirus terrestris	4195	1	
3	1	Canis lupus familiaris	1269	1	
4	2	Pitheciidae	736	1	
5	3	Coendou insidiosus	451	1	
6	4	Callicebus nigrifrons	313	1	
7	5	Bos taurus	212	1	
8	6	Lycalopex vettulus	202	1	
9	7	Rattus rattus	177	1	
10	8	Puma concolor	164	1	
11	9	Callithrix penicillata	118	1	
12	10	Columba livia	113	1	
13	11	Gallus gallus	98	1	
14	12	Sus scrofa	94	1	
15	13	Cingulata	88	1	
16	14	Thraupis sayaca	65	1	
17	15	Pecari tajacu	65	1	
18	16	Callithrix sp.	63	1	
19	17	Euphractus sexcinctus	48	1	
20	18	Cairina moschata	39	1	
21	19	Hydrochaeris hydrochaeris	38	1	
22	20	Canidae	36	1	
23	21	Dasypus novemcinctus	32	1	
24	22	Chrysocyon brachyurus	19	1	
25	23	Nymphicus hollandicus	18	1	
26					
1	→ P2	P4 P7 P6 P3 P8 ⊕			

Funcionamento Geral do Programa eDNAnalyzer

Após acessar o programa em https://github.com/Leo-9821/eDNAnalyzer, siga as etapas clicando nas opções disponíveis.

Etapa 1: Selecione o idioma

Etapa 2: Leia o manual e escolha uma das duas opções de processamento

Etapa 3: Escolha a opção "Aplicação do Threshold".

Etapa 4: Carregue um arquivo contendo os dados de atribuição taxonômica

Etapa 5: Verifique o diretório fornecido para garantir que o arquivo foi carregado corretamente.

Etapa 6: Insira um valor do *threshold* em porcentagem ou deixe vazio para usar o padrão (0,05%) e execute a etapa de Aplicação do *threshold*.

Etapa 7: Após a execução, três arquivos de saída serão gerados, contendo respectivamente: (i) o valor do *threshold* calculado por amostra de sequenciamento, (ii) as OTUs/ASVs com reads abaixo do limiar e (iii) as OTUs/ASVs com reads iguais ou acima do limiar. Salve pelo menos o último arquivo em .xlsx ou .csv para usar para a curadoria manual e entrada na etapa de consolidação.

Etapa 8: Escolha a opção "Consolidação de Resultados".

Etapa 9: Carregue um arquivo contendo a tabela curada após a aplicação do *threshold*.

Etapa 10: Verifique o diretório para confirmar o carregamento correto do arquivo.

Etapa 11: Selecione as opções para filtrar os dados por coletor e/ou área.

Etapa 12: Se selecionou a opção "Amostrador", digite os IDs dos coletores, separando-os com a tecla "Enter". Se você não selecionou "Amostrador", deixe o campo em branco.

Etapa 13: Salve as tabelas geradas com os dados filtrados. Para compactar todas as tabelas em .csv em um único arquivo .zip, selecione a opção ZIP. Assim, você salvará os resultados consolidados com a lista final de táxons e as informações sobre o número de *reads* que cada táxon apresentou e o número de vezes que foi detectado.

