DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEEP LEARNING LAB EVALUATION: Plant Seedlings Classification

Submitted by:

Aditya Vashista

101703039

avashista_be17@thapar.edu

+91-9212291117

COE-02

PATIALA-147001, PUNJAB

TABLE OF CONTENTS

Introduction	2
Methodology	3
Python Script/Code	4
Output	8

INTRODUCTION

We are provided with a training set and a test set of images of plant seedlings at various stages of grown. Each image has a filename that is its unique id. The dataset comprises 12 plant species. The goal of the is to create a classifier capable of determining a plant's species from a photo. The list of species is as follows:

Black-grass

Charlock

Cleavers

Common Chickweed

Common wheat

Fat Hen

Loose Silky-bent

Maize

Scentless Mayweed

Shepherds Purse

Small-flowered Cranesbill

Sugar beet

File descriptions

- train.csv the training set, with plant species organized by folder
- test.csv the test set, we need to predict the species of each image
- sample_submission.csv a sample submission file in the correct format

METHODOLOGY

***I did not use Google Colab for this project as the time to time there was deallocation of resources/ termination of session while training even though, I was I using TPU and training of the final model required at least 19 hours of training, which is not possible on colab. Hence I used Spyder for the same

Since we are given only training data set of images, first we have to divide the set into two sub sets: one for training and other for testing/validation. Also we need to define a data generator for input categized image inputs to be trained on tensorflow model.

For this problem, after making 3 models with different accuracy criterion, activation function, data validation splitting and different number of hidden layers,I selected following model:

- Sequential Model with 5 CNN Layer (including input layer), 1 hidden ANN layer and 1 ANN output layer.
- Each CNN layer has padding, batch normalization, relu activation, maxPooling and dropout with rate of 0.25.
- Input Layer accepts the size of a 256x256 RGB image.
- Hidden ANN layer has batch normalization, relu activation and dropout with rate of 0.25.
- Output Layer has softmax activation for generating 12 outputs, giving probabilities of each 12 classes.
- Optimizer used: Adam
- Loss function: categorical_crossentropy
- Evaluation Metrics: categorical_accuracy & accuracy

A list containing names of all categories where the index of each category name corresponds to index of that class in output array obtained from model after prediction. We predict the category of input image sample by using numpy.argmax() which returns index of category having max probability.

Training was done over 38 epochs obtaining:

accuracy=categorical_accuracy= 0.8691

val_accuracy=val_categorical_accuracy= **0.8247**

Kaggle Score after submitting final file: 0.82367

PYTHON CODE/SCRIPT

Batch: Coe 2 Roll Number: 101703039 Problem: Plant Seedlings Classification""" #importing libraries import tensorflow as tf from keras_preprocessing.image import ImageDataGenerator from keras_preprocessing import image from tensorflow.keras.layers import Dense, Dropout,Flatten, Conv2D from tensorflow.keras.layers import BatchNormalization, Activation, MaxPooling2D from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import load_model import numpy as np import pandas as pd #generating training and testing data of images available datagen = ImageDataGenerator(rescale = 1./255,shear_range = 0.3, zoom_range = 0.3,rotation_range=0.3, width_shift_range=0.3,height_shift_range=0.3, horizontal_flip = True, vertical_flip=True, validation_split=0.3) train_set=datagen.flow_from_directory("C:\\Users\\aditya\\Downloads\\train", target_size=(256,256),batch_size=32,class_mode='categorical', subset='training') test_set=datagen.flow_from_directory("C:\\Users\\aditya\\Downloads\\train", target_size=(256,256),batch_size=32,class_mode='categorical', subset='validation') #Creating Sequential CNN + ANN model #For each CNN layer batchnormalization, drop out and max pooling is also applied

"""Name: Aditya Vashista

```
model=Sequential()
#CNN LAYER 1: INPUT LAYER
model.add(Conv2D(64,(3,3),padding='same',input\_shape=(256,256,3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=2,strides=2,padding='valid'))
model.add(Dropout(0.25))
#CNN LAYER 2
model.add(Conv2D(128,(5,5),padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
#CNN LAYER 3
model.add(Conv2D(256,(3,3),padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=2,strides=2,padding='valid'))
model.add(Dropout(0.25))
#CNN LAYER 4
model.add(Conv2D(512,(3,3),padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=2,strides=2,padding='valid'))
model.add(Dropout(0.25))
#CNN LAYER 5
model.add(Conv2D(512,(3,3),padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=2,strides=2,padding='valid'))
model.add(Dropout(0.25))
#FLATTENING
model.add(Flatten())
#ANN LAYER 1
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
```

```
model.add(Dropout(0.25))
#OUTPUT LAYER(ANN-2) with 12 outputs
model.add(Dense(12,activation='softmax'))
#creating optimizer
opt=Adam(lr=0.0005)
#model compilation
model.compile(optimizer=opt,loss='categorical_crossentropy',metrics=['categorical_accuracy','accuracy'])
#model summary
model.summary()
#Total epochs used for training=38
#Epochs were devided as: 38=16+8+10+4 with different validation splits:(2,3)
#MODEL TRAINING
#epochs=4 //last epocs set
epochs=38
steps_per_epoch=train_set.n//train_set.batch_size
test_steps=test_set.n//test_set.batch_size
model.fit(x=train_set,epochs=epochs,validation_data=test_set,validation_steps=test_steps)
# saving model
model.save("model.h5")
del model
#loading model
model=load_model('model.h5')
#testing and verification of various images manually to check accuracy
testImage1=image.load_img('train//Small-flowered Cranesbill//0b26e2d09.png',target_size=(256,256))
testImage1=image.img_to_array(testImage1)
testImage1=np.expand_dims(testImage1,0)
print(model.predict(testImage1))
print(np.argmax(model.predict(testImage1))) \\
```

#TESTING

```
#DEFINING 12 classes as per requirements
classes=['Black-grass','Charlock','Cleavers','Common Chickweed','Common wheat','Fat Hen',
     'Loose Silky-bent', 'Maize', 'Scentless Mayweed', 'Shepherds Purse',
     'Small-flowered Cranesbill', 'Sugar beet']
#reading sample file for testing
sam=pd.read_csv('sample_submission.csv')
#dataframe to be stored in output file
df=pd.DataFrame(columns=['file', 'species'])
#computing output
for i in range(len(sam)):
  testImage=image.load_img('test//'+str(sam.iloc[i][0]),target_size=(256,256)) #loading a single image
  #necessary steps to convert images into suitable input format for model
  testImage=image.img_to_array(testImage)
  testImage=np.expand_dims(testImage,0)
  #getting index of max output from list of 12 outputs from the model after prediction
  pred=np.argmax(model.predict(testImage))
  #assigning corresponding class
  pred=classes[pred]
  #adding the output with image name in dataframe
  df=df.append({'file':sam.iloc[i][0],'species':pred},ignore_index=True)
#saving output to new file
df.to_csv('submission.csv',index=False)
```

OUTPUTS

Model summary after compilation:

<pre>: model.summary() Model: "sequential_5"</pre>
Layer (type) Output Shape Param #
conv2d_24 (Conv2D) (None, 256, 256, 64) 1792
batch_normalization_32 (Batc (None, 256, 256, 64) 256
activation_32 (Activation) (None, 256, 256, 64) 0
max_pooling2d_24 (MaxPooling (None, 128, 128, 64) 0
dropout_32 (Dropout) (None, 128, 128, 64) 0
conv2d_25 (Conv2D) (None, 128, 128, 128) 204928
batch_normalization_33 (Batc (None, 128, 128, 128) 512
activation_33 (Activation) (None, 128, 128, 128) 0
max_pooling2d_25 (MaxPooling (None, 64, 64, 128) 0
dropout_33 (Dropout) (None, 64, 64, 128) 0
conv2d_26 (Conv2D) (None, 64, 64, 256) 295168
batch_normalization_34 (Batc (None, 64, 64, 256) 1024
activation_34 (Activation) (None, 64, 64, 256) 0
max_pooling2d_26 (MaxPooling (None, 32, 32, 256) 0
dropout_34 (Dropout) (None, 32, 32, 256) 0
conv2d_27 (Conv2D) (None, 32, 32, 512) 1180160

dropout_34 (Dropout)	(None,	32, 32, 256)	0
conv2d_27 (Conv2D)	(None,	32, 32, 512)	1180160
batch_normalization_35 (Batc	(None,	32, 32, 512)	2048
activation_35 (Activation)	(None,	32, 32, 512)	0
max_pooling2d_27 (MaxPooling	(None,	16, 16, 512)	0
dropout_35 (Dropout)	(None,	16, 16, 512)	0
conv2d_28 (Conv2D)	(None,	16, 16, 512)	2359808
batch_normalization_36 (Batc	(None,	16, 16, 512)	2048
activation_36 (Activation)	(None,	16, 16, 512)	0
max_pooling2d_28 (MaxPooling	(None,	8, 8, 512)	0
dropout_36 (Dropout)	(None,	8, 8, 512)	0
flatten_5 (Flatten)	(None,	32768)	0
dense_13 (Dense)	(None,	256)	8388864
batch_normalization_37 (Batc	(None,	256)	1024
activation_37 (Activation)	(None,	256)	0
dropout_37 (Dropout)	(None,	256)	0
dense_14 (Dense)	(None,	12)	3084

Total params: 12,440,716
Trainable params: 12,437,260
Non-trainable params: 3,456

Output while training in different batches of epocs:

```
Found 3330 images belonging to 12 classes.
Found 1420 images belonging to 12 classes.
Epoch 1/16
categorical_accuracy: 0.2024 - val_loss: 3.3982 - val_accuracy: 0.1371 - val_categorical_accuracy:
Epoch 2/16
105/105 [================ ] - 1693s 16s/step - loss: 1.8834 - accuracy: 0.3465 -
categorical_accuracy: 0.3465 - val_loss: 6.8800 - val_accuracy: 0.1385 - val_categorical_accuracy:
Epoch 3/16
105/105 [==========] - 1677s 16s/step - loss: 1.6653 - accuracy: 0.4264 -
categorical_accuracy: 0.4264 - val_loss: 6.6332 - val_accuracy: 0.1392 - val_categorical_accuracy:
0.1329
Epoch 4/16
105/105 [========================] - 1643s 16s/step - loss: 1.5296 - accuracy: 0.4736 -
categorical_accuracy: 0.4736 - val_loss: 5.8745 - val_accuracy: 0.1229 - val_categorical_accuracy:
0.1229
Epoch 5/16
categorical accuracy: 0 4661 - val loss: 4 5862 - val accuracy: 0 1534 - val categorical accuracy:
                               IPython console History
0.8237 - accuracy: 0.8237 - val_loss: 0.7904 - val_categorical_accuracy: 0.7358 - val_accuracy:
             0.7358
             Epoch 2/10
                                =====] - 1497s 14s/step - loss: 0.4703 - categorical accuracy:
             105/105 [========
             0.8357 - accuracy: 0.8357 - val_loss: 0.9949 - val_categorical_accuracy: 0.6875 - val_accuracy:
t','Fat Hen',
             0.6875
             0.8261 - accuracy: 0.8261 - val_loss: 0.9572 - val_categorical_accuracy: 0.6903 - val_accuracy:
             0.6903
             Epoch 4/10
             0.8423 - accuracy: 0.8423 - val_loss: 0.8356 - val_categorical_accuracy: 0.7330 - val_accuracy:
,256))
             0.7330
             0.8198 - accuracy: 0.8198 - val_loss: 1.9768 - val_categorical_accuracy: 0.4808 - val_accuracy:
0.4808
Epoch 6/10
0.8312 - accuracy: 0.8312 - val_loss: 0.5965 - val_categorical_accuracy: 0.7962 - val_accuracy:
0.7962
Epoch 7/10
105/105 [============== - - 1521s 14s/step - loss: 0.4472 - categorical accuracy:
0.8420 - accuracy: 0.8420 - val_loss: 2.1002 - val_categorical_accuracy: 0.4659 - val_accuracy:
Epoch 8/10
0.8535 - accuracy: 0.8535 - val_loss: 1.7361 - val_categorical_accuracy: 0.4844 - val_accuracy:
0.4844
0.8520 - accuracy: 0.8520 - val_loss: 0.8178 - val_categorical_accuracy: 0.7365 - val_accuracy:
```

Output while testing model on different labeled class images :

File Directory before execution of last block of code on test data:

File Directory after execution of last block of code on test data:

<u>Output in submission.csv after whole execution of python file:</u>

	А	В
1	file	species
2	26e7ae885.png	Fat Hen
3	e80a259c5.png	Small-flowered Cranesbill
4	3f64c2c1b.png	Common wheat
5	1312065a5.png	Small-flowered Cranesbill
6	47b7d8e17.png	Small-flowered Cranesbill
7	c0f5d9ac8.png	Small-flowered Cranesbill
8	ab0f67743.png	Black-grass
9	da9ef7858.png	Charlock
10	5f04aed97.png	Small-flowered Cranesbill
11	fba8fc78a.png	Black-grass
12	632156793.png	Cleavers
13	4bbfd1e05.png	Cleavers
14	74fd477eb.png	Common Chickweed
15	060450d79.png	Common Chickweed
16	cae684f8f.png	Charlock
17	86f08e6d1.png	Fat Hen
18	a8c8a1db0.png	Shepherds Purse
19	456d507c0.png	Cleavers
20	f48916a8c.png	Scentless Mayweed
21	dc55449b2.png	Sugar beet
22	52dc7a4d6.png	Common Chickweed
23	862b8e7a0.png	Sugar beet
24	5eb9c26a6.png	Black-grass
25	20817c846.png	Shepherds Purse
26	bf3924a57.png	Common Chickweed
27	f6d250856.png	Shepherds Purse
28	3dd52hd2a nng	Small-flowered Craneshill

	А	В			
297	5817b766d.png	Shepherds Purse			
298	f4234cf4f.png	Fat Hen			
299	ba3ce6b3e.png	Scentless Mayweed			
300	a006a475c.png	Shepherds Purse			
301	87608f7aa.png	Charlock			
302	80e299ae9.png	Shepherds Purse			
303	c7eb96871.png	Common wheat			
304	8db450ce3.png	Common Chickweed			
305	82b5f4d33.png	Shepherds Purse			
306	79dafec17.png	Black-grass			
307	b3e08b037.png	Fat Hen			
308	b687160f5.png	Small-flowered Cranesbill			
309	23e480e64.png	Shepherds Purse			
310	c75a82234.png	Scentless Mayweed			
311	0086a6340.png	Common Chickweed			
312	539961189.png	Common Chickweed			
313	dabea05f4.png	Black-grass			
314	f1f7c833f.png	Charlock			
315	ce15eee52.png	Charlock			
316	4392d93cf.png	Fat Hen			
317	71f5323c5.png	Black-grass			
318	79d93bc96.png	Black-grass			
319	25fa8d109.png	Common wheat			
320	800a8c17e.png	Fat Hen			
321	e4d5ec761.png	Common wheat			
322	Ocaeda5df.png	Common wheat			
323 16357b436.png Loose Silky-bent					
324	446f7da01 nng				
4	subn	nission			

U	LO22IRTE DATA	LOSS Some features might be I				
A1	· i	\times \checkmark f_x file				
	А	В				
769	5ee9d0a5b.png	Loose Silky-bent				
770	60f0bc617.png	Small-flowered Cranesbill				
771	3f826b318.png	Common Chickweed				
772	966ae5ad9.png	Black-grass				
773	1821eb11a.png	Scentless Mayweed				
774	df7cb5f87.png	Common Chickweed				
775	6ba4ef411.png	Cleavers				
776	f1e87cba7.png	Loose Silky-bent				
777	b9062c1c8.png	Sugar beet				
778	e478c452c.png	Sugar beet				
779	f4e7733d4.png	Small-flowered Cranesbill				
780	0bf7bfb05.png	Common wheat				
781	7696badea.png	Common wheat				
782	0751c0bbc.png	Sugar beet				
783	406162ef9.png	Charlock				
784	e783f5a4f.png	Sugar beet				
785	8311740de.png	Sugar beet				
786	a0b393945.png	Small-flowered Cranesbill				
787	808578ed5.png	Charlock				
788	86676d627.png	Sugar beet				
789	116b136de.png	Sugar beet				
790	bb20fce02.png	Scentless Mayweed				
791	f9ea23fb5.png	Fat Hen				
792	00c47e980.png	Sugar beet				
793	d488a4fe1.png	Common wheat				
794	cf46d09c5.png	Common Chickweed				
795	279df95f2.png	Sugar beet				

Best Submission Score on Kaggle:

All submissions on Kaggle:

Overview	Data	Notebooks	Discussion	Leaderboard	Rules	Team		My Submissions	Late Submission
submission 3 hours ago b "inal_submi	y Aditya	Vashista					0.82367	0.82367	
submission 1 hours ago b "inal_model	y Aditya	Vashista					0.76070	0.76070	
submission 1 hours ago b "inal_model	y Aditya						0.71536	0.71536	
submission 1 hours ago b "inal_model	y Aditya	Vashista					0.70906	0.70906	
sample_sub t hours ago b try 1							0.10327	0.10327	
submission 1 hours ago b		Vashista					0.04659	0.04659	