Control Systems

G V V Sharma*

	Contents		9 Phase Margin 3
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula	1 1 1	10 Oscillator 3 10.1 Introduction
2	Bode Plot2.1Introduction	1 1 1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.
3	Second order System 3.1 Damping	1 1 1 1	Download python codes using svn co https://github.com/gadepall/school/trunk/ control/codes
4	Routh Hurwitz Criterion4.1Routh Array4.2Marginal Stability4.3Stability4.4Example	3 3 3 3 3	1 Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula
5	State-Space Model5.1Controllability and Observability5.2Second Order System5.3Example5.4Example5.5Example	3 3 3 3 3 3	2 Bode Plot 2.1 Introduction 2.2 Example 3 Second order System 3.1 Damping
6	Nyquist Plot 6.1 Introduction	3 3 3 3	3.2 Example3.3 Settling Time3.3.1. Find the closed loop transfer function for the system in Fig. given that
7	Compensators7.1Phase Lead	3 3 3	system in Fig. given that $G(s) = \frac{1}{s^2 + 2s}$ (3.3.1.1)
	Gain Margin 8.1 Introduction		$ \begin{array}{c} r \\ \hline \end{array} $ $k \longrightarrow G(s) \longrightarrow y$

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 3.3.1

Solution: The closed loop transfer function is

$$H(s) = \frac{kG(s)}{1 + kG(s)}$$

$$= \frac{k}{s^2 + 2s + k}$$
(3.3.1.2)

after substituting from (3.3.1.1).

3.3.2. Find the step response of the system.

Solution: The characteristics of the poles of 3.3.3. Find steady state response using the final value transfer function describes the property of the transfer function.

Calculating poles:

$$s^{2} + 2s + k = 0$$

$$s = \frac{-2 \pm \sqrt{(-2)^{2} - 4(1)(k)}}{2(1)}$$
(3.3.2.2)

$$s = -1 \pm \sqrt{1 - k} \tag{3.3.2.3}$$

Calculating step response for a general 3.3.4. Find the settling time in terms of 'k' . damping system (3.3.1.3):

$$X(s) = \frac{1}{s} \tag{3.3.2.4}$$

$$Y(s) = H(s)X(s)$$
 (3.3.2.5)

$$=\frac{k}{s^2+2s+k}\frac{1}{s}$$
 (3.3.2.6)

(3.3.2.8)

$$y(t) = u(t) + \frac{k}{(2\sqrt{1-k})(-1+\sqrt{1-k})}e^{(-1+\sqrt{1-k})t}u(t)$$

 $+\frac{k}{\left(2\sqrt{1-k}\right)\left(1+\sqrt{1-k}\right)}e^{\left(-1-\sqrt{1-k}\right)t}u(t) \text{ [when } k \neq 1\text{]} -0.02 < \frac{-1}{\sqrt{1-k}}e^{-t}\left[\sinh\left(\sqrt{1-k}\right)t + \frac{k}{\sqrt{1-k}}\right]$

$$y(t) = (1 - e^{-t} - te^{-t}) u(t)$$
 [when $k = 1$]

Over Damped System:

For the closed loop transfer function (3.3.1.3) to be Over damped system, poles should be Real and Distinct, this happens when k is less than 1.

Under Damped System:

For the closed loop transfer function (3.3.1.3) to be Under damped system, poles should be Complex and Conjugate, this happens when k is greater than 1.

Critical Damped System:

For the closed loop transfer function (3.3.1.3) to be Critical damped system, poles should be Real at same location, this happens when k is 1.

theorem.

Solution:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
 (3.3.3.1)

$$= \lim_{s \to 0} s \frac{k}{s^2 + 2s + k} \frac{1}{s}$$
 (3.3.3.2)

$$= \lim_{s \to 0} \frac{k}{s^2 + 2s + k} \tag{3.3.3.3}$$

$$=\frac{k}{k}=1$$
 (3.3.3.4)

Solution:

$$0.98 < y(t) < 1.02$$
 (3.3.4.1)

$$0.98 < u(t) + \frac{k}{\left(2\sqrt{1-k}\right)\left(-1+\sqrt{1-k}\right)}e^{\left(-1+\sqrt{1-k}\right)t}u(t) + \frac{k}{\left(2\sqrt{1-k}\right)\left(1+\sqrt{1-k}\right)}e^{\left(-1-\sqrt{1-k}\right)t}u(t) < 1.02$$

$$(3.3.4.2)$$

On further simplifying (3.3.4.2)

$$k \neq 1] -0.02 < \frac{-1}{\sqrt{1-k}} e^{-t} \left[\sinh\left(\sqrt{1-k}\right) t + \sqrt{1-k} \cosh\left(\sqrt{1-k}\right) t < 0.02 \quad (3.3.4.3) \right]$$

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 Oscillator
- 10.1 Introduction
- 10.2 Example