Airline Passenger Satisfaction Prediction Project

Wendy Yu, Xuefei Wang, Lee Ko

Project Introduction

Question

- What are major factors of Airline passenger satisfaction?
- Can we predict passenger satisfaction?

Task

 Train a binary classification model to predict customer satisfaction of airline passengers based on airline customer survey

Provided information

- Satisfaction level for each survey (Satisfied: 1, Neutral or dissatisfied: 0)
- o Information from survey (22 columns): Gender, Customer type, Age, Type of travel, Class, Flight distance, Inflight wifi service, etc.

Data Overview

- Kaggle dataset <u>Airline Passenger Satisfaction</u>
 - 80% train data, 20% test data (103904 + 25976 =
 - o 25 columns
 - 22 distinct features: 4 categorical, 18 numei 129487 rows x 25 columns
 - 3 columns to be drop/split: index, id, satisfaction (target column)
 - Class distribution
 - Binary classification
 - 43% "satisfied" (11403)
 - 57% "neutral or dissatisfied" (14573)
 - Competition data
 - Cleaned up to some extent, more focus on transformation/feature engineering

		Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	wifi service	Departure/Arrival time convenient	 Inflight entertainment	board service	room service
	0	0	70172	Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3	4	 5	4	3
	1	1	5047	Male	disloyal Customer	25	Business travel	Business	235	3	2	 1	1	5
	2	2	110028	Female	Loyal Customer	26	Business travel	Business	1142	2	2	5	4	3
	3	3	24026	Female	Loyal Customer	25	Business travel	Business	562	2	5	 2	2	5
	4	4	119299	Male	Loyal Customer	61	Business travel	Business	214	3	3	3	3	4
		2.												
i	25971	25971	78463	Male	disloyal Customer	34	Business travel	Business	526	3	3	4	3	2
	25972	25972	71167	Male	Loyal Customer	23	Business travel	Business	646	4	4	4	4	5
	25973	25973	37675	Female	Loyal Customer	17	Personal Travel	Eco	828	2	5	2	4	3
	25974	25974	90086	Male	Loyal Customer	14	Business travel	Business	1127	3	3	4	3	2
	25075	25075	24700	Fomolo	Loyal	42	Personal	Foo	264	2		4	4	2

Data Processing

- Preprocessing
 - Dropping unused columns ('Unnamed', 'id')
 - Data rearranging
 - OneHotEncoder
 - Filling in missing values
 - Numerical (mean)
 - categorical (re-categorize)
 - Outlier detection
 - Set upper threshold (Q3 + 1.5*IQR)
- Exploration
 - Distribution of values
 - Correlation check

Data Exploration

1000

2000

Flight Distance

3000

4000

0.0000

Model

- Models of choice
 - 1. Decision Tree (DT)
 - 2. Random Forest (RF)
 - 3. Linear Regression (LR)

Model - 1. Decision Tree

- Parameter tuning
 - Random state, max_depth, and min_sample_
 - Model accuracy score went up
 - Model performance score after parameter tu
- Result Analysis
 - Online boarding, inflight wifi, type of travel
- Error Analysis
 - Confusion matrix
 - 1218 instances

Confusion matrix

[[14062 511] [707 10696]]

Depai

Model - 2. Random Forest

- Parameter tuning
 - Experiment with n_estimators, max_depth, min_samples_split
 - n_estimators ↑, max_depth ↑, min_samples_split ↓: Higher score
 - o Trade-offs with computing time
 - o Highest model score: 0.9641
- Results
- Classification errors
 - Corrected in RF compared with DT
 - Coefficient of Online boarding service
 - DT: 0.318974
 - RF: 0.153231 (Robust, reasonable)
 - Giving more weights to specific feature could be useful to make prediction simple, but it results in more classification errors

Model - 3. Logistic Regression

- Parameter tuning
 - C, max_iter
 - class_weight
 - Highest model score: 0.8717
- Result Analysis
 - Online boarding, business class, inflight wifi service
 - Error Analysis
 - More classification errors compared to RF and DT
 - Simple algorism

Model Comparison

	1. Decision Tree	2. Random Forest	3. Logistic Regression
Parameter tuning	Random state = 42 max_depth min_sample_split	n_estimators (# of trees) = 100 max_depth min_samples_split	C = 10 Max_iter = 10000 Class_weight random_state
Strength		Robust coefficient compared to DT	Simple to apply; fast speed
Limitation : Reasoning for error samples	Limited robustness compared to RF. Too much weight given to one feature, which was corrected in RF	· Slow speed when generating multiple trees with no limit on depths	Assumption of no collinearity between input variables
Performance score	0.9531	0.9622	0.8717
roc_auc_score	0.9472	0.9598	0.8673