

System Dependability Lab Exercises on Safety Assessment of Static Systems

Hamza Mouddene, Ali Abdoulhamid Zakaria

November 19, 2021

1 Introduction

The computing platform designs support three applications $(A_1, A_2 \text{ and } A_3)$. Each application A_i is implemented by two tasks A_{iL} and A_{iR} . The application A_i fails if **both** tasks A_{iL} and A_{iR} fail. A task fails if all the computers that can host it fail.

 FC_{A_i} loss of application A_i , with $i \in {1, 2, 3}$.

FC_One_Appli loss of at least one application.

All the FC are classified CATASTROPHIC for an operation time of $T = 10^3 h$.

Question 1 What are the qualitative and quantitative safety requirements associated to the FCs? We know that all the FC are Catastrophic, so the qualitative and quantitative safety requirements are:

- order ≥ 2 (Qualitative)
- $\overline{\Lambda} \leq 10^{-9}/flight\ hour\ (Quantitative)$

${\bf 2}\quad {\bf Computing\ Platform\ Design-solution\ 1}$

Figure 1 presents the first solution for the computer platform design. In this solution the **application fails** if its computer fails. We assume that the loss of a computer is modelled by an exponential distribution of failure rate $\lambda = 10^{-5} \cdot h^{-1}$.

Figure 1: Solution 1 - one computer per task

Question 2

1. The fault-tree for the failure conditions FC_{A_i} and FC_One_Appli .

Figure 2: Solution 1 - The fault-tree

2. the Minimal Cut Sets for FC_{A_i} and FC_One_Appli is:

Figure 3: Solution 1 - the Minimal Cut Sets for FC_One_Appli

Figure 4: Solution 1 - the Minimal Cut Sets for FC_{A_1}

Figure 5: Solution 1 - the Minimal Cut Sets for FC_{A_2}

Figure 6: Solution 1 - the Minimal Cut Sets for FC_{A_3}

3. The mean failure rate of FC_{A_i} and FC_One_Appli is:

$$\begin{split} mean_{FC_One_Appli} &= \frac{Q}{T} = \frac{3.10^{-4}}{1000} = 3.10^{-7} \\ \forall i \in \{1, 2, 3\}, \quad mean_{FC_{A_i}} &= \frac{Q}{T} = \frac{9, 9.10^{-5}}{1000} = 9, 9.10^{-8} \end{split}$$

4. The qualitative and quantitative requirements are not enforced for failure conditions FC_{A_i} and FC_One_Appli, because the order is equal to 2 (Qualitative) and the mean failure rate is greater than 10^{-9} .

3 Computing Platform Design – solution 2

Figure 2 describes the solution 2 for the computing platform design. In this solution the application fails if its computer fails except for task A_{1L} (resp. A_{3R}) that fails if both the computers C_{1L} and C_{1Lb} (resp. C_{3R}

and C_{3Rb}) fail.

Figure 7: Solution 2 - backup computers for tasks ${\cal A}_{1L}$ and ${\cal A}_{3R}$

Question 3

1. The fault-tree for the failure conditions FC_{A_i} and FC_One_Appli.

Figure 8: Solution 2 - The fault-tree

2. the Minimal Cut Sets for FC_{A_i} and FC_One_Appli is:

Figure 9: Solution 2 - the Minimal Cut Sets for FC_One_Appli

Figure 10: Solution 2 - the Minimal Cut Sets for FC_{A_1}

Figure 11: Solution 2 - the Minimal Cut Sets for FC_{A_2}

Figure 12: Solution 2 - the Minimal Cut Sets for FC_{A_3}

3. The mean failure rate of FC_{A_i} and FC_One_Appli is:

$$mean_{FC_One_Appli} = \frac{Q}{T} = \frac{1.10^{-4}}{1000} = 1.10^{-7}$$

$$mean_{FC_{A_2}} = \frac{Q}{T} = \frac{9,9.10^{-5}}{1000} = 9,9.10^{-8}$$

$$\forall i \in \{1,3\}, \quad mean_{FC_{A_i}} = \frac{Q}{T} = \frac{9,9.10^{-7}}{1000} = 9,9.10^{-10}$$

4. The qualitative and quantitative requirements are not enforced for failure conditions FC_{A_2} and FC_{A_2} and FC_{A_3} and FC_{A_2} and FC_{A_3} and FC_{A_3} and FC_{A_3} and FC_{A_3} and FC_{A_3} and FC_{A_3} because order = 3 (Qualitative) and the mean failure rate is less than 10^{-9} .

4 Computing Platform Design – solution 3

The solution 3 of the computing platform design is described by the figure 3. In this solution the application fails if its computer fails and if the spare computer Sp_L (resp. Sp_R) cannot be used as a backup. The spare Sp_L (resp. Sp_R) can be used by:

- A_{1L} (resp. A_{1R}) if C_{1L} (resp. C_{1R}) fails,
- A_{2L} (resp. A_{2R}) if C_{2L} (resp. C_{2R}) fails and not used by A_{1L} (resp. A_{1R}),
- A_{3L} (resp. A_{3R}) if C_{3L} (resp. C_{3R}) fails and not used by A_{1L} or A_{2L} (resp. A_{1R} or A_{2R}).

Figure 13: Solution 3 - one computer per task and one spare per side

Question 4

1. The fault-tree for the failure conditions FC_{A_i} and FC_One_Appli .

Figure 14: Solution 3 - The fault-tree

2. the Minimal Cut Sets for FC_{A_i} and FC_One_Appli is:

Figure 15: Solution 3 - the Minimal Cut Sets for FC_One_Appli

Figure 16: Solution 3 - the Minimal Cut Sets for FC_{A_1}

Figure 17: Solution 3 - the Minimal Cut Sets for FC_{A_2}

Figure 18: Solution 3 - the Minimal Cut Sets for FC_{A_3}

3. The mean failure rate of FC_{A_i} and FC_One_Appli is:

$$\begin{split} mean_{FC_One_Appli} &= \frac{Q}{T} = \frac{1,4.10^{-7}}{1000} = 1,4.10^{-10} \\ mean_{FC_{A_1}} &= \frac{Q}{T} = \frac{9,8.10^{-9}}{1000} = 9,8.10^{-12} \\ mean_{FC_{A_2}} &= \frac{Q}{T} = \frac{3,9.10^{-8}}{1000} = 3,9.10^{-11} \\ mean_{FC_{A_3}} &= \frac{Q}{T} = \frac{8,8.10^{-8}}{1000} = 8,8.10^{-11} \end{split}$$

4. The qualitative and quantitative requirements are enforced for failure conditions FC_{A_i} and FC_{A_i} are the order is equal to 4 (Qualitative) and the mean failure rate is less than FC_{A_i} and FC_{A_i} are the order is equal to 4 (Qualitative) and the mean failure rate is less than FC_{A_i} and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) are the order is equal to 4 (Qualitative) and FC_{A_i} are the order is equal to 4 (Qualitative) are the order is equal

5 Computing Platform Design – DAL Allocation

The group of Basic Computers is independent from Spare Computers:

- Basic Computers = C_{1L} , C_{2L} , C_{3L} , C_{1Lb} , C_{1R} , C_{2R} , C_{3R} , C_{3Rb}
- Spare Computers = Sp_L, Sp_R

Within a group Basic or Spare, all computers are dependent.

Question 5 Knowing the independent group, for each solution complete the DAL allocation table 1 to allocate a DAL to the computers of the platform.

The DAL allocation for solution 1

FC	INITIAL DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R}
FC_A_1	A	$\{C_{1R}, C_{1L}\}$	A			A		
FC_A_2	A	$\{C_{2R},C_{2L}\}$		A			A	
FC_A_3	A	$\{C_{3R}, C_{3L}\}$						A
		$\{C_{1R}, C_{1L}\}$	A			A		
FC_One_Appli	A	$\{C_{2R}, C_{2L}\}$		A			A	
		$\{C_{3R}, C_{3L}\}$			A			A
Final	A	A	A	A	A	A		

The DAL allocation for solution 2

FC	INITIAL DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1LB}	C_{1R}	C_{2R}	C_{3R}	C_{3RB}
FC_A_1	A	$\{C_{1R}, C_{1L}, C_{1LB}\}$	A			A	A			
FC_A_2	A	$\{C_{2R}, C_{2L}\}$		A				A		
FC_A_3	A	$\{C_{3R}, C_{3L}, C_{3RB}\}$			A				A	A
		(110/ 12/ 122)	A			A	A			
FC_One_Appli	A	$\{C_{2R}, C_{2L}\}$		A				A		
		$\{C_{3R}, C_{3L}, C_{3RB}\}$			A				A	A
Final	A	A	A	A	A	A	A	A		

The DAL allocation for solution 3

FC	INITIAL DAL	MCS	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R}	Sp_L	Sp_R
FC_A_1	A	$\{C_{1R},C_{1L},Sp_L,Sp_R\}$	A			A			С	С
		$\{C_{1L}, C_{1R}, C_{2L}, C_{2R}\}$	A	A		A	A			
	A	$\{C_{1R}, C_{2L}, C_{2R}, Sp_L\}$		A		A	A		С	
FC_A_2	A	$\{C_{1L}, C_{2L}, C_{2R}, Sp_R\}$	A	A			A			С
		$\{C_{2L}, C_{2R}, Sp_L, Sp_R\}$		A			A		С	С
		$\{C_{2L}, C_{3L}, C_{3R}, Sp_L\}$		A	A			A	С	
		$\{C_{2L}, C_{2R}, C_{3L}, C_{3R}\}$		A	A		A	A		
		$\{C_{1R}, C_{2L}, C_{3L}, C_{3R}\}$		A	A	A		A		
		$\{C_{1L}, C_{3L}, C_{3R}, Sp_R\}$	A		A			A		С
FC_A_3	A	$\{C_{1L}, C_{2R}, C_{3L}, C_{3R}\}$	A		A		A	A		
		$\{C_{1L}, C_{1R}, C_{3L}, C_{3R}\}$	A		A	A		A		
		$\{C_{3L},C_{3R},Sp_L,Sp_R\}$			A			A	С	С
		$\{C_{2R}, C_{3L}, C_{3R}, Sp_L\}$			A		A	A	С	
		$\{C_{1R}, C_{3L}, C_{3R}, Sp_L\}$			A	A		A	С	
		$\{C_{1R},C_{1L},Sp_L,Sp_R\}$	A			A			С	С
		$\{C_{1L}, C_{1R}, C_{2L}, C_{2R}\}$	A	A		A	A			
		$\{C_{1R}, C_{2L}, C_{2R}, Sp_L\}$		A		A	A		С	
	A	$\{C_{1L}, C_{2L}, C_{2R}, Sp_R\}$	A	A			A			С
		$\{C_{2L}, C_{2R}, Sp_L, Sp_R\}$		A			A		С	С
		$\{C_{2L}, C_{3L}, C_{3R}, Sp_L\}$		A	A			A	С	
FC_One_Appli		$\{C_{2L}, C_{2R}, C_{3L}, C_{3R}\}$		A	A		A	A		
l c _onc_rippii		$\{C_{1R}, C_{2L}, C_{3L}, C_{3R}\}$		A	A	A		A		
		$\{C_{1L}, C_{3L}, C_{3R}, Sp_R\}$	A		A			A		С
		$\{C_{1L}, C_{2R}, C_{3L}, C_{3R}\}$	A		A		A	A		
		$\{C_{1L}, C_{1R}, C_{3L}, C_{3R}\}$	A		A	A		A		
		$\{C_{3L}, C_{3R}, Sp_L, Sp_R\}$			A			A	С	С
		$\{C_{2R}, C_{3L}, C_{3R}, Sp_L\}$			A		A	A	С	
		$\{C_{1R}, C_{3L}, C_{3R}, Sp_L\}$			A	A		A	С	
Final			A	A	A	A	A	A	С	С

6 Computing Platform Design – Failed components

It is not possible to repair failed components in any airport so it should be possible to fly the aircraft safely with some components failed.

Question 6 Duplicate the table 2 in your report and complete :

- The first one considering the qualitative requirement (i.e. satisfy FC_One_appl i order bound);
- The second one considering the quantitative requirement (i.e. satisfy FC_One_appl i mean failure rate bound).

For the qualitative part, if it needs 2 more components to fail it's OK, otherwise KO. For the

Solution	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R}	C_{1LB}	C_{3RB}	Sp_L	Sp_R
1	KO	KO	KO	KO	KO	KO				
2	OK	KO	OK	OK	KO	OK	OK	OK		
3	OK	OK	OK	OK	OK	OK			OK	OK

quantitative part, we set the probability of failure to 1 then calculate the mean failure rate again, if $\overline{\Lambda} \leq 10^{-9}$ it's OK, otherwise KO.

Solution	C_{1L}	C_{2L}	C_{3L}	C_{1R}	C_{2R}	C_{3R}	C_{1LB}	C_{3RB}	Sp_L	Sp_R
1	KO	KO	KO	KO	KO	KO				
1	$[10^{-5}]$	$[10^{-5}]$	$[10^{-5}]$	$[10^{-5}]$	$[10^{-5}]$	$[10^{-5}]$				
9	KO	KO	KO	KO	KO	KO	KO	KO		
2	$[2.10^{-7}]$	$[10^{-5}]$	$[2.10^{-7}]$	$[2.10^{-7}]$	$[10^{-5}]$	$[2.10^{-7}]$	$[2.10^{-7}]$	$[2.10^{-7}]$		
3	KO	KO	КО	KO	KO	KO			KO	KO
3	$[6.10^{-9}]$	$[7.10^{-9}]$	$[8, 9.10^{-9}]$	$[6.10^{-9}]$	$[7.10^{-9}]$	$[8, 9.10^{-9}]$			$[6.10^{-9}]$	$[6.10^{-9}]$

It is not possible to fly safely with one computer failed according to the last 2 tables.

7 Computing Platform Design – Comparison

We suppose that the cost of a solution mainly depends on the number of computers and their associated DAL (i.e. costs are: DALA = 20, DALB = 15, DALC = 5; DALD = 4; DALE = 0).

Question 7 Copy and complete the table 3 to compare the three solutions with respect to their cost, safety and its capability to fly with a faulty computer. What is your preferred solution? Can you imagine a better solution? The last solution is more safe, but it's so expensive, so to enhance the efficiency of this

Solution	Qualitative	Quantitative	acceptable with failed component	cost
1	OK	KO	КО	120
2	OK	КО	KO	160
3	OK	OK	KO	130

solution, Increasing the backup infrastructure is a good solution but increasing the backup size is linked directly with the increasing the cost.