ELEKTRONİK DEVRELERİN YAPAY SINİR AĞLARI İLE TASARIMI

FINAL PROJESI

Hazırlayanlar: İpek Türker - 504032308

Murat Şimşek - 504032208

Bu çalışmada tek iletkenli bir Mikroşerit yapının birim uzunluktaki kapasitans (C') değerinin bulunması için iki tip bilgi tabanli metod kullanılmıştır.

KULLANILAN METODLAR:

- Kaynak Fark Metodu (Source Difference Method)
- Ön Bilgili Giriş Metodu (Prior Knowledge Input –PKI Method)

Bu metodlar çok katmanlı, radyal tabanlı ve dalgacık yapılı ağ modellerine uygulanmıştır.

YSA İLE MODELLENEN MİKROŞERİT YAPI

Şekil-1: Ele alınan mikroşerit yapı ve boyutları

YSA Girişleri:

- İletkenin genişliği (w)
- İletkenin yüksekliği (h)
- Dielektrik malzemenin yüksekliği (t)

YSA Çıkış:

Birim uzunluktaki kapasitans

YSA Girişlerinin Tesbiti:

 $4,4.10^{-3}$ < h < 9,8.10⁻³ [m]

Eğitim kümesi boyutu : [3 x 100],

Test kümesi boyutu : [3 x 25]

Extrapolasyon Uygulaması İçin Giriş Değerleri:

$$(0,9.10^{-3} < w < 10^{-3}) & (12,9.10^{-3} < w < 14.10^{-3}) [m]$$

$$(3.10^{-3} < h < 4, 4.10^{-3}) & (9,8.10^{-3} < h < 10, 7.10^{-3})[m]$$

Test kümesi boyutu : [3 x 10]

PKI VE SOURCE DIFFERENCE METODLARI

Source Difference Metodu:

PKI VE SOURCE DIFFERENCE METODLARI

Prior Knowledge Metodu:

Şekil - 4: PKI Metodu ile YSA nın eğitimi

Şekil - 5: Eğitilmiş YSA

PKI VE SOURCE DIFFERENCE METODLARI

PKI & Source Difference Metod Birleşimi

Şekil - 6: Birleşik metodun eğitimi

Şekil - 7: Metodun test aşaması

Yaklaşık/Ampirik Çıkışlara Ait Hesaplamalar:

Yaklaşık çıkışların hesaplamalarında kullanılan bağıntıların alındığı makale 'Model of Microstrip Line for Circuit Design' adlı ve Frank Schnieder & Wolfgang Heinrich tarafından hazırlanmış Ocak 2001 tarihli bir makaledir.

Karakteristik empedans hesabı

$$Z_L = \frac{Z_{L0}(w_{\text{eq}Z})}{\sqrt{\varepsilon_{r,\text{eff},0}(w_{\text{eq}Z})}}$$

$$Z_{L0} = \frac{\eta_0}{2\pi} \cdot \ln \left\{ \frac{F_1 \cdot h_s}{w} + \sqrt{1 + \left(\frac{2 \cdot h_s}{w}\right)^2} \right\} \qquad w_{\text{eq}Z} = w + \frac{w_{\text{eq}0} - w}{2} \cdot \left(1 + \frac{1}{\cosh\left(\sqrt{\varepsilon_r - 1}\right)}\right)$$

$$w_{\text{eq}0} = w + \frac{t}{\pi} \cdot \ln \left\{1 + \frac{4 \cdot \exp(1)}{\frac{t}{h} \cdot \coth^2\left(\sqrt{6.517 \cdot \frac{w}{h_s}}\right)}\right\}$$

$$F_1 = 6 + (2\pi - 6) \cdot \exp\left\{-\left(30.666 \cdot \frac{h_s}{w}\right)^{0.7528}\right\}$$

$$\varepsilon_{r,\text{eff},0} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \left(1 + \frac{10 \cdot h_s}{w}\right)^{-a-b}$$

$$a = 1 + \frac{1}{49} \cdot \ln \left\{ \frac{\left(\frac{w}{h_s}\right)^4 + \left(\frac{w}{52 \cdot h_s}\right)^2}{\left(\frac{w}{h_s}\right)^4 + 0.432} \right\} + \frac{1}{18.7} \cdot \ln \left\{ 1 + \left(\frac{w}{18.1 \cdot h_s}\right)^3 \right\}$$

Kapasitans hesabı

$$C' = \varepsilon_{r,\,\mathrm{eff}} \cdot C'_a$$

$$C'_a = \frac{1}{c_0 \cdot Z_{L0}(w_{\mathrm{eq}0})}$$

$$\varepsilon_{r,\,\mathrm{eff}} = \varepsilon_{r,\,\mathrm{eff},\,0}(w_{\mathrm{eq}Z}) \cdot \left[\frac{Z_{L0}(w_{\mathrm{eq}0})}{Z_{L0}(w_{\mathrm{eq}Z})}\right]^2$$

Bu bağıntılar Matlab yardımı ile eğitim ve test giriş matrislerine uygulanmış ve sonuç olarak eğitim ve test kümelerine ilişkin yaklaşık (ampirik) çıkış matrisleri elde edilmiştir. Yapılan hesaplamalar sonucunda birim uzunluğa ilişkin kapasitans değerleri piko-farad [pF] mertebesinde elde edilmektedir.

EM Simulatör Çıkışlarının Elde Edilmesi:

TraceSim programının giriş ve hesaplama sonuçlarını gösteren kullanıcı arayüzü Şekil-8'de verilmektedir.

Şekil - 8: TraceSim Program Penceresi

Bölüm I - EM simulatör çıkışları ile yaklaşık hesaplama sonuçlarının karşılaştırılması:

1.

Şekil 1.1 : Gerçek çıkışlar ile Yaklaşık değerlerin birlikte gösterimi

Şekil 1.2 : Gerçek çıkışlardaki değişim₁

Şekil 1.3 : Gerçek çıkışlar ile Yaklaşık değerlerin farkının değişimi

Şekil 1.4 : Gerçek çıkışlar ile Yaklaşık değerlerin farkının değişimi

Bölüm II – PKI ve Source Difference Metodlarının çok katmanlı (2 gizli katmanlı) YSA üzerine uygulanmaları.

2. PKI veya Source Difference metodları kullanılmadan, verilerin doğrudan çok katmanlı bir YSA yapısına uygulanmaları: N = 50, Öğrenme hızları = 0.3, 0.4, 0.5 Momentum = 0.6

Şekil 2.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 2.2: Test kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.001	354	37.3290	0.00762804428344	0.00302403735962

Şekil 2.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 2.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

3. Source Difference Metodunun Çok Katmanlı YSA ya uyarlanması:

N = 50, Öğrenme hızları = 0.07, 0.08, 0.09 Momentum = 0.08

Şekil 3.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 3.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.08	206	22.9380	0.29237223737103	.05069084852850

Şekil 3.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 3.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

4. PKI Metodunun Çok Katmanlı YSA ya uyarlanması:

N = 50, Öğrenme hızları = 0.4, 0.5, 0.6 Momentum = 0.7

Şekil 4.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 4.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.003	540	52.0790	0.00459681910616	.00194198441829

Şekil 4.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 4.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

5. Source Difference ve PKI'nın birleştirilmiş halinin çok katmanlı YSA ya uygulanması:

N = 50, Öğrenme hızları = 0.4, 0.5, 0.6 Momentum = 0.7

Şekil 5.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 5.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.06	187	19.1710	0.06761328751401	.01860504509223

Şekil 5.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 5.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

Bölüm III - PKI ve Source Difference Metodlarının Radyal Tabanlı YSA üzerine uygulanmaları

6. PKI ve Source Difference Metodları kullanılmadan, verilerin doğrudan Radyal Tabanlı YSAya uygulanması: N = 50 , t_L = 0.05 , w_L = 0.05 , c_L = 0.05 t_M = 0.06 w_M =06 c_M =06 (Ayrıca her giriş için ayri sigma değeri kullanılmıştır.)

Şekil 6.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 6.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.003	439	96.2340	0.00401934366774	0.00156891743145

Şekil 6.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 6.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

7. Source Difference Metodunun Radyal Tabanlı YSA ya uygulanması:

N = 50 , t_L = 0.04 , w_L = 0.04 , c_L = 0.04 t_M = 0.05 w_M =0.05 c_M =0.05 Hata değeri 0.03 'ün altına indiğinde; t_L = 0.03 , w_L = 0.03 , c_L = 0.03 t_M = 0.04 w_M =0.04 c_M =0.05 olarak değiştirilmiştir.

Şekil 7.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 7.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.02	91	19.7500	0.08289909861371	.02466993361161

Şekil 7.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 7.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

8. PKI Metodunun Radyal Tabanlı YSA ya uygulanması:

$$N = 50$$
 , $t_L = 0.04$, $w_L = 0.04$, $c_L = 0.04$ $t_M = 0.05$ $w_M = 0.05$ $c_M = 0.05$

Şekil 8.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 8.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.003	69	15.3280	0.00307127399069	0 .00109616561805

Şekil 8.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 8.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

9. Source Difference ve PKI metodlarının birleştirilmiş halinin Radyal Tabanlı YSA ya uygulanması: N = 50, t_L = 0.05, w_L = 0.05, c_L = 0.05 t_M = 0.06 w_M =0.06

Şekil 9.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 9.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.03	95	20.5470	0.07943243700238	0.02236388205722

Şekil 9.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 9.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

Bölüm IV - PKI ve Source Difference Metodlarının Dalgacık yapılı (Wavelet) YSA üzerine uygulanmaları

10. PKI ve Source Difference Metodlarının kullanılmadan, verilerin doğrudan Wavelet yapısına uygulanması:

N = 50, $t_1 = 0.06$, $w_1 = 0.06$, $a_1 = 0.06$ $t_M = 0.07$ $w_M = 0.07$ $a_M = 0.07$

Şekil 10.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 10.2: Eğitim kümesine ait ortalama karesel hatalar

37

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata	
0.003	28	10.1560	0.00770705617070	0.00284659822141	(

Şekil 10.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 10.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

11. Source Difference Metodunun Wavelet yapılı YSAya uygulanması:

$$N = 50$$
, $t_L = 0.05$, $w_L = 0.05$, $a_L = 0.05$ $t_M = 0.06$ $w_M = 0.06$ $a_M = 0.06$

Şekil 11.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 11.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.04	62	22.1400	0.10508224715573	0.03099871043068

Şekil 11.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 11.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

12. PKI Metodunun Wavelet yapılı YSA ya uygulanması:

$$N = 50$$
, $t_L = 0.05$, $w_L = 0.05$, $a_L = 0.05$ $t_M = 0.06$ $w_M = 0.06$ $a_M = 0.06$

Şekil 12.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 12.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata	
0.003	35	12.8280	0.00436111430368	7.587969801461026e-4	

Şekil 12.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 12.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

13. Source Difference ve PKI Metodlarının Birleşiminin Wavelet yapılı YSA ya uygulaması:

$$N = 50$$
, $t_L = 0.05$, $w_L = 0.05$, $a_L = 0.05$ $t_M = 0.06$ $w_M = 0.06$ $a_M = 0.06$

Şekil 13.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 13.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.045	99	37.4070	0.06983552125860	0.02767425866590

Şekil 13.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 13.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

KARŞILAŞTIRMALAR

312713					
Çok Kaimanlı YSA Uygulamaları					
	Eğitim İçin Maks. Hatanın Üst. Sının	Îterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
Çok Katmanlı Ysa	0.001	354	37.3290	0.00762804428344	0.00302403735962
Source Difference	0.08	206	22.9380	0.29237223737103	0.05069084852850
РКІ	0.003	540	52.0790	0.00459681910616	0.00194198441829
SD - PKI	0.06	187	19.1710	0.06761328751401	0.01860504509223
		Radyal Tab	ank YSA Uygu	ılamaları	
	Eğitim İçin Maks . Hatanın Üst. Sının	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
Radyal Tabanlı Ysa	0.003	439	96.2340	0.00401934366774	0.00156891743145
Source Difference	0.02	91	19.7500	0.08289909861371	0.02466993361161
РКІ	0.003	69	15.3280	0.00307127399069	0.00109616561805
SD - PKI	0.03	95	20.5470	0.07943243700238	0.02236388205722
		Dalgacık Y	apah YSA Uygu	ilamaları	
	Eğitim İçin Maks . Hatanın Üst. Sının	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
Çok Katmanlı Ysa	0.003	28	10.1560	0.00770705617070	0.00284659822141
Source Difference	0.04	62	22.1400	0.10508224715573	0.03099871043068
РКІ	0.003	35	12.8280	0.00436111430368	7.5879698014e-04
SD - PKI	0.045	99	37.4070	0.06983552125860	0.02767425866590

KARŞILAŞTIRMALAR

A) Çok Katmanlı YSA ve Source Difference/PKI Metod Uygulamaları:

Çok Katmanlı YSA

PKI uygulanmış çok katmanlı YSA

Source Difference uygulanmış çok katmanlı YSA

Source Difference & PKI uvgulanmış cok katmanlı YSA

50

B) Radyal Tabanlı YSA ve Source Difference/PKI Metod Uygulamaları

Radyal Tabanlı YSA

PKI uygulanmış Radyal Tabanlı YSA

Source Difference uygulanmış Radyal Tabanlı YSA

Source Difference & PKI uygulanmış Radyal Tabanlı YSA

C) Wavelet yapılı YSA ve Source Difference/PKI Metod Uygulamaları:

Wavelet yapılı YSA

PKI uvgulanmıs Wavelet yapılı YSA

Source Difference uygulanmış Wavelet yapılı YSA

Source Difference & PKI uygulanmış Wavelet yapılı YSA

Bölüm V – Radyal Tabanlı YSAda Extrapolasyon Uygulaması:

14. Source Difference & Extrapolasyon

Şekil 14.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 14.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.02	85	18.7030	0.05050613046785	0.02804500195047

Şekil 14.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 14.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

15. PKI & Extrapolasyon

Şekil 15.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 15.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.003	66	14.8750	0.00786556446689	0.00296180222903

Şekil 15.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 15.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

16. SD - PKI & Extrapolasyon

Şekil 16.1: Eğitim kümesine ait ortalama karesel hataların maksimum değerleri

Şekil 16.2: Eğitim kümesine ait ortalama karesel hatalar

Eğitim İçin Maks. Hatanın Üst Sınırı	İterasyon Sayısı	Çalışma Zamanı (sn)	Çıkışta Elde Edilen Maksimum Hata	Çıkışta Elde Edilen Ortalama Hata
0.03	91	20.4680	0.04394623527087	0.02364124994480

Şekil 16.3: Çıkışın; gerçek, yaklaşık(yeşil) ve YSA(kırmızı)'dan elde edilen değerleri

Şekil 16.4: EM Çıkış-YSA ve EM Çıkış-Yaklaşık(kırmızı) arasındaki hata değerleri

SONUÇLAR

- EM simülatör çıkışı Ampirik çıkış : Fark fazla değil, ancak ani değişimler var.
- Çok katmanlı ağ + Source Difference Metod : Hata yeterince düşürülememiştir.
- Radyal tabanlı YSA + Source Difference Metod : Hata oldukça düşük.
- Wavelet yapılı YSA + Source Difference Metod : Yakınsama hızlı, hata ilk ikisinin ortasında bir seviyede.
- PKI metodu giriş sayısını arttırdığından, salt YSA ya nazaran EM simülatör çıkışına daha yakın sonuçlar vermiştir. Ancak, Source difference kadar başarılı değildir.
- Giriş PKI & Çıkış Source Difference birleşik metod: Radyal tabanlı ve Wavelet yapılı YSAda sonuçları iyileştirmiştir. En iyi hata sonucu Çok katmanlı YSA da elde edilmiştir.
- Hiçbir metod kullanılmadığı durumda eldeki verilerle en iyi sonucu Radyal Tabanlı YSA vermiştir.
- En hızlı yakınsayan yapı Wavelet YSAdır. Ancal Radyal Tabanlı YSA ya göre yüksek hata verir.
- Tasarım aşamasında hata değerlerini indirebilmek için ağırlıklar, merkezler ve diğer parametreler üzerinde farklı alternatifler denenerek en iyiye yakın sonucu veren parametreler tercih edilmiştir.
- Radyal tabanlı YSA ya extrapolasyon uygulandığında en iyi sonuç SD-PKI den elde edilmiştir.