Package 'HDMedian'

January 13, 2024

Title High-dimensional inference	based on geometric median
Version 0.1.0	
Author Liuhua Peng, Guanghui C	heng
Maintainer Liuhua Peng uhu	.peng@unimelb.edu.au>
Description This package implendimensional inference based	•
License N/A	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.2.3	
MANOVA_Mean_Lin20 MANOVA_Median SCI_TwoSample_HD_M SCI_TwoSample_HD_M SCI_TwoSample_HD_M Test_TwoSample_HD_M Test_TwoSample_HD_M	1
Index	13
	and Xia (2014)'s MANOVA test for high-dimensional means with tity transformed observations

Description

Type Package

Let $\mu_1,...,\mu_K$ be the population means of K groups. The hypothesis testing problem is

 $H_0: \mu_1 = \cdots = \mu_K \ \ \text{versus} \ \ H_1: H_0 \ \text{is not true}.$

Usage

```
MANOVA_CaiXia_Ip(dat, K, N, p, alpha = 0.05)
```

Arguments

dat	a list of data matrices, with each element from each group
K	the number of groups
N	a vector contains the number of observation in each group
р	dimensions of the data
alpha	significance level of the test

Details

This function implements the MANOVA test in Cai and Xia (2014) with identity transformed observations

Value

A list containing the following objects:

- alpha the pre-specified significance level
- test_stat_Ip value of the test statistic
- crit_val value of the critical value
- test_res test result, 1 (reject) or 0 (not reject)

Examples

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
X3 <- matrix(rnorm(5000, 0.4, 1), 50, 100)
dat <- list(X1, X2, X3)
N <- c(50, 50, 50)
MANOVA_CaiXia_Ip(dat, K=3, N, p=100, alpha=0.05)</pre>
```

MANOVA_Mean_Lin2021

Lin, Lopes and Muller (2021)'s MANOVA test for high-dimensional means based on sample means.

Description

Let $\mu_1,...,\mu_K$ be the population means of K groups. The hypothesis testing problem is

```
H_0: \mu_1 = \cdots = \mu_K \text{ versus } H_1: H_0 \text{ is not true.}
```

The p-value of the test is approximated by bootstrapping centralized normal random vectors with estimated covariance matrices. The results include both approaches with and without standardization.

Usage

```
MANOVA_Mean_Lin2021(dat, K, N, p, n_boot = 400)
```

Arguments

dat	a list of data matrices, with each element from each group
K	the number of groups
N	a vector contains the number of observation in each group
p	dimensions of the data
n_boot	the number of bootstrap iterations

Details

The results include both approaches with and without standardization. The approach with standardization refers to the case of $\tau=0$ in Lin, Lopes and Muller (2021), while the approach without standardization refers to the case of $\tau=1$ in the paper.

Value

A list containing the following objects:

- test_p_value_non_std p-value of the test without standardization
- test_p_value_std p-value of the test with standardization
- test_stat_mean_non_std value of the test statistic without standardization
- test_stat_mean_std value of the test statistic with standardization
- res_mean_boot_non_std a vector of length n_boot containing values of the bootstrap version of the test statistic without standardization
- res_mean_std_boot a vector of length n_boot containing values of the bootstrap version of the test statistic with standardization

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
X3 <- matrix(rnorm(5000, 0.4, 1), 50, 100)
dat <- list(X1, X2, X3)
N <- c(50, 50, 50)
MANOVA_Mean_Lin2021(dat, K=3, N, p=100, n_boot=400)</pre>
```

4 MANOVA_Median

MANOVA_Median	MANOVA test for high-dimensional medians based on geometric medians.
---------------	--

Description

Let $m_1, ..., m_K$ be the population medians of K groups. The hypothesis testing problem is

$$H_0: m_1 = \cdots = m_K$$
 versus $H_1: H_0$ is not true.

The p-value of the test is approximated by the multiplier bootstrap. The results include both approaches with and without standardization. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Usage

```
MANOVA_Median(dat, K, N, p, n_boot = 400)
```

Arguments

dat	a list of data matrices, with each element from each group
K	the number of groups
N	a vector contains the number of observation in each group
р	dimensions of the data
n_boot	the number of bootstrap iterations

Details

The results include both approaches with and without standardization. The approach with standardization refers to the case of $\tau=0$ in Cheng, Lin and Peng (2023), while the approach without standardization refers to the case of $\tau=1$ in the paper. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Value

A list containing the following objects:

- test_p_value_non_std p-value of the test without standardization
- test_p_value_std_ver1 p-value of the test with standardization based on the original data
- test_p_value_std_ver2 p-value of the test with standardization based on the bootstrap sample
- test_stat_median_non_std value of the test statistic without standardization
- test_stat_median_std value of the test statistic with standardization
- res_median_boot_non_std a vector of length n_boot containing values of the bootstrap version of the test statistic without standardization
- res_median_boot_std_ver1 a vector of length n_boot containing values of the bootstrap version of the test statistic with standardization based on the original data
- res_median_boot_std_ver2 a vector of length n_boot containing values of the bootstrap version of the test statistic with standardization based on the the bootstrap sample

Examples

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
X3 <- matrix(rnorm(5000, 0.4, 1), 50, 100)
dat <- list(X1, X2, X3)
N <- c(50, 50, 50)
MANOVA_Median(dat, K=3, N, p=100, n_boot=400)
```

 ${\tt SCI_TwoSample_HD_Mean_Konietschke}$

Konietschke et al.(2021)'s approach for constructing simultaneous confidence intervals for the difference between two-sample high-dimensional means

Description

Let μ_1 and μ_2 be the population medians of the two groups. The simultaneous confidence intervals is valid for all components of $\mu_1 - \mu_2$.

Usage

```
SCI_TwoSample_HD_Mean_Konietschke(
    X1,
    X2,
    n1,
    n2,
    p,
    n_boot = 1000,
    level = 0.95
)
```

Arguments

```
X1 a n_1 \times p matrix containing data from the first group
X2 a n_2 \times p matrix containing data from the second group
N1 the sample size of the first group
N2 the sample size of the second group
P dimensions of the data
N_boot
N_boot
Number of bootstrap iterations
Confidence level of the confidence intervals
```

Details

As in Konietschke et al. (2021), the confidence intervals are built upon standardized mean difference. The limits of the intervals are approximated by multiplier bootstrap with Rademacher weights.

Value

A list containing the following objects:

- level the pre-specified confidence level
- res_SCI_mean_std a 2 × p matrix containing the simultaneous confidence intervals based on standardized means, the first row contains the lower bounds and the second contains the upper bounds

Examples

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
SCI_TwoSample_HD_Mean_Konietschke(X1, X2, 50, 50, 100)</pre>
```

```
SCI_TwoSample_HD_Mean_XueYao
```

Xue and Yao (2020)'s approach for constructing simultaneous confidence intervals for the difference between two-sample high-dimensional means

Description

Let μ_1 and μ_2 be the population medians of the two groups. The simultaneous confidence intervals is valid for all components of $\mu_1 - \mu_2$.

Usage

```
SCI_TwoSample_HD_Mean_XueYao(X1, X2, n1, n2, p, n_boot = 1000, level = 0.95)
```

Arguments

X1	a $n_1 \times p$ matrix containing data from the first group
X2	a $n_2 \times p$ matrix containing data from the second group
n1	the sample size of the first group
n2	the sample size of the second group
p	dimensions of the data
n_boot	number of bootstrap iterations
level	confidence level of the confidence intervals

Details

As in Xue and Yao (2020), the confidence intervals are built upon non-standardized mean difference. The limits of the intervals are approximated by multiplier bootstrap with normal weights.

Value

A list containing the following objects:

- level the pre-specified confidence level
- res_SCI_mean_non_std a $2 \times p$ matrix containing the simultaneous confidence intervals based on non-standardized means, the first row contains the lower bounds and the second contains the upper bounds

Examples

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
SCI_TwoSample_HD_Mean_XueYao(X1, X2, 50, 50, 100)
```

```
SCI_TwoSample_HD_Median
```

Simultaneous confidence intervals for the difference between twosample high-dimensional medians based on geometric medians

Description

Let m_1 and m_2 be the population medians of the two groups. The simultaneous confidence intervals is valid for all components of $m_1 - m_2$. The limits of the intervals are approximated by multiplier bootstrap. The results include both approaches with and without standardization. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Usage

```
SCI_TwoSample_HD_Median(
    X1,
    X2,
    n1,
    n2,
    p,
    weight = "Rademacher",
    n_boot = 1000,
    level = 0.95
)
```

Arguments

```
X1 a n_1 \times p matrix containing data from the first group
X2 a n_2 \times p matrix containing data from the second group
The sample size of the first group
The sample size of the second group
The dimensions of the data
```

weight specify the type of weight variable in the multiplier bootstrap, a common choice

is Rademacher

n_boot number of bootstrap iterations

level confidence level of the confidence intervals

Details

The results include both approaches with and without standardization. The approach with standardization refers to the case of $\tau=0$ in Cheng, Lin and Peng (2023), while the approach without standardization refers to the case of $\tau=1$ in the paper. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Value

A list containing the following objects:

- level the pre-specified confidence level
- res_SCI_non_std a 2 × p matrix containing the simultaneous confidence intervals based on non-standardized medians, the first row contains the lower bounds and the second contains the upper bounds
- res_SCI_std_ver1 a 2 × p matrix containing the simultaneous confidence intervals based on standardized medians, the first row contains the lower bounds and the second contains the upper bounds. The standardization is based on the original data.
- res_SCI_std_ver2 a 2 × p matrix containing the simultaneous confidence intervals based on standardized medians, the first row contains the lower bounds and the second contains the upper bounds The standardization is based on the bootstrap sample.

Examples

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
SCI_TwoSample_HD_Median(X1, X2, 50, 50, 100)
```

```
Test_TwoSample_HD_Mean_Konietschke
```

Konietschke et al.(2021)'s two-sample test for high-dimensional means

Description

Let μ_1 and μ_2 be the population means of the two groups. The hypothesis testing problem is

$$H_0: \mu_1 = \mu_2 \text{ versus } H_1: \mu_1 \neq \mu_2.$$

The p-value of the test is approximated by the multiplier bootstrap.

Usage

```
Test_TwoSample_HD_Mean_Konietschke(
   X1,
   X2,
   n1,
   n2,
   p,
   n_boot = 1000,
   alpha = 0.05
)
```

Arguments

X1	a $n_1 \times p$ matrix containing data from the first group
X2	a $n_2 \times p$ matrix containing data from the second group
n1	the sample size of the first group
n2	the sample size of the second group
p	dimensions of the data
n_boot	number of bootstrap iterations
alpha	significance level of the test

Details

As in Konietschke et al. (2021), the test statistic is standardized, and the p-value of the test is approximated by the multiplier bootstrap with Rademacher weights.

Value

A list containing the following objects:

- alpha the pre-specified significance level
- res_test_mean_std result of the test
- p_val_mean_std p-value of the test
- test_stat_mean_std value of the test statistic
- res_mean_std_boot a vector of length n_boot containing values of the bootstrap version of the test statistic

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
Test_TwoSample_HD_Mean_Konietschke(X1, X2, 50, 50, 100)</pre>
```

Test_TwoSample_HD_Mean_XueYao

Xue and Yao (2020)'s two-sample test for high-dimensional means

Description

Let μ_1 and μ_2 be the population means of the two groups. The hypothesis testing problem is

$$H_0: \mu_1 = \mu_2 \text{ versus } H_1: \mu_1 \neq \mu_2.$$

The p-value of the test is approximated by the multiplier bootstrap.

Usage

```
Test_TwoSample_HD_Mean_XueYao(X1, X2, n1, n2, p, n_boot = 1000, alpha = 0.05)
```

Arguments

X1	a $n_1 \times p$ matrix containing data from the first group
X2	a $n_2 \times p$ matrix containing data from the second group
n1	the sample size of the first group
n2	the sample size of the second group
p	dimensions of the data
n_boot	number of bootstrap iterations
alpha	significance level of the test

Details

As in Xue and Yao (2020), the test statistic is not standardized, and the p-value of the test is approximated by the multiplier bootstrap with normal weights.

Value

A list containing the following objects:

- alpha the pre-specified significance level
- res_test_mean_non_std result of the test without standardization
- p_val_mean_non_std p-value of the test without standardization
- test_stat_mean_non_std value of the test statistic without standardization
- res_mean_non_std_boot a vector of length n_boot containing values of the bootstrap version of the test statistic without standardization

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
Test_TwoSample_HD_Mean_XueYao(X1, X2, 50, 50, 100)</pre>
```

```
Test_TwoSample_HD_Median
```

Two-sample test for high-dimensional medians based on geometric medians.

Description

Let m_1 and m_2 be the population medians of the two groups. The hypothesis testing problem is

```
H_0: m_1 = m_2 versus H_1: m_1 \neq m_2.
```

The p-value of the test is approximated by the multiplier bootstrap. The results include both approaches with and without standardization. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Usage

```
Test_TwoSample_HD_Median(
   X1,
   X2,
   n1,
   n2,
   p,
   weight = "Rademacher",
   n_boot = 1000,
   alpha = 0.05
)
```

Arguments

X1	a $n_1 \times p$ matrix containing data from the first group
X2	a $n_2 \times p$ matrix containing data from the second group
n1	the sample size of the first group
n2	the sample size of the second group
p	dimensions of the data
weight	specify the type of weight variable in the multiplier bootstrap, a common choice is Rademacher
n_boot	number of bootstrap iterations
alpha	significance level of the test

Details

The results include both approaches with and without standardization. The approach with standardization refers to the case of $\tau=0$ in Cheng, Lin and Peng (2023), while the approach without standardization refers to the case of $\tau=1$ in the paper. There are two different bootstrap approaches for the standardized statistic, one standardization is based on the original data (std_ver1), the other standardization method is based on the bootstrap sample (std_ver2).

Value

A list containing the following objects:

- alpha the pre-specified significance level
- res_test_non_std result of the test without standardization
- res_test_std_ver1 result of the test with standardization based on the original data
- res_test_std_ver2 result of the test with standardization based on the the bootstrap sample
- p_val_non_std p-value of the test without standardization
- p_val_std_ver1 p-value of the test with standardization based on the original data
- p_val_std_ver2 p-value of the test with standardization based on the the bootstrap sample
- test_stat_medn_non_std value of the test statistic without standardization
- test stat medn std value of the test statistic with standardization
- res_medn_boot_non_std a vector of length n_boot containing values of the bootstrap version of the test statistic without standardization
- res_medn_boot_std_ver1 a vector of length n_boot containing values of the bootstrap version of the test statistic with standardization based on the original data
- res_medn_boot_std_ver2 a vector of length n_boot containing values of the bootstrap version of the test statistic with standardization based on the the bootstrap sample

```
X1 <- matrix(rnorm(5000, 0, 1), 50, 100)
X2 <- matrix(rnorm(5000, 0.2, 1), 50, 100)
Test_TwoSample_HD_Median(X1, X2, 50, 50, 100)</pre>
```

Index

```
MANOVA_CaiXia_Ip, 1
MANOVA_Mean_Lin2021, 2
MANOVA_Median, 4

SCI_TwoSample_HD_Mean_Konietschke, 5
SCI_TwoSample_HD_Mean_XueYao, 6
SCI_TwoSample_HD_Median, 7

Test_TwoSample_HD_Mean_Konietschke, 8
Test_TwoSample_HD_Mean_XueYao, 10
Test_TwoSample_HD_Median, 11
```