#### ☐ xfrolk03 / Digital-electronics-1-2021



#### Digital-electronics-1-2021 / Labs / 03-vivado / README.md





# Lab assignment

- 1. Preparation tasks (done before the lab at home). Submit:
  - o Figure or table with connection of 16 slide switches and 16 LEDs on Nexys A7 board.
- 2. Two-bit wide 4-to-1 multiplexer. Submit:
  - Listing of VHDL architecture from source file mux\_2bit\_4to1.vhd with syntax highlighting,
  - Listing of VHDL stimulus process from testbench file tb mux 2bit 4to1.vhd with syntax highlighting,
  - Screenshot with simulated time waveforms; always display all inputs and outputs.
- 3. A Vivado tutorial. Submit:
  - Your tutorial for Vivado design flow: project creation, adding source file, adding testbench file, running simulation, (adding XDC constraints file).

# 1. Preparation tasks.

# Table with connection of 16 slide switches and 16 LEDs on Nexys A7 board.

| LED   | Connection | Switch | Connection |
|-------|------------|--------|------------|
| LED0  | H17        | SW0    | J15        |
| LED1  | K15        | SW1    | L16        |
| LED2  | J13        | SW2    | M13        |
| LED3  | N14        | SW3    | R15        |
| LED4  | R18        | SW4    | R17        |
| LED5  | V17        | SW5    | T18        |
| LED6  | U17        | SW6    | U18        |
| LED7  | U16        | SW7    | R13        |
| LED8  | V16        | SW8    | Т8         |
| LED9  | T15        | SW9    | U8         |
| LED10 | U14        | SW10   | R16        |
| LED11 | T16        | SW11   | T13        |
| LED12 | V15        | SW12   | Н6         |
| LED13 | V14        | SW13   | U12        |
| LED14 | V12        | SW14   | U11        |
| LED15 | V11        | SW15   | V10        |

# 2. Two-bit wide 4-to-1 multiplexer.

Listing of VHDL architecture from source file mux\_2bit\_4to1.vhd
with syntax highlighting

```
end architecture Behavioral;
```

# Listing of VHDL stimulus process from testbench file tb\_mux\_2bit\_4to1.vhd with syntax highlighting

```
p_stimulus : process
    begin
        report "Stimulus process started" severity note;
        -- First test values
        s_d <= "00";
        s_c <= "00";
        s_b <= "00";
        s a <= "00";
        s_sel <= "00"; wait for 100 ns;</pre>
        s_d <= "10";
        s_c <= "01";
        s_b <= "01";
        s_a <= "00";
        s_sel <= "00"; wait for 100 ns;</pre>
        s d <= "10";
        s_c <= "01";
        s_b <= "01";
        s_a <= "11";
        s_sel <= "00"; wait for 100 ns;</pre>
        s_d <= "10";
        s_c <= "01";
        s_b <= "01";
        s_a <= "00";
        s sel <= "01"; wait for 100 ns;
        s_d <= "10";
        s c <= "01";
        s b <= "11";
        s a <= "00";
        s_sel <= "01"; wait for 100 ns;</pre>
        -- Report a note at the end of stimulus process
        report "Stimulus process finished" severity note;
        wait:
    end process p_stimulus;
```

Screenshot with simulated time waveforms; always display all inputs and outputs



### 3. A Vivado tutorial

Your tutorial for Vivado design flow: project creation, adding source file, adding testbench file, running simulation, (adding XDC constraints file)

### 3.1 Creating projekt













# 3.2 Adding source file







### 3.3 Adding testbench file

Postupujeme podobně jako v kapitole 3.2.

 $\begin{tabular}{ll} File - Add Sources - Add or create simulation sources - Create File - File Type > VHDL \, , \\ File name > simulace - Ok - Finish Define module - Entity name \, , Architecture name - Ok - Yes \\ \end{tabular}$ 

Výstup můžeme vidět na obrázku níže



### 3.3 Running simulation

