UK Patent Application (19) GB (11) 2 116 193 A

- (21) Application No 8305020
- (22) Date of filing 23 Feb 1983
- (30) Priority data
- (31) 57/033102
- (32) 4 Mar 1982
- (31) 58/014400
- (32) 31 Jan 1983 (33) Japan (JP)
- (43) Application published 21 Sep 1983
- (51) INT CL³ CO9D 11/18
- (52) Domestic classification
 - C3V AD
 - C3J AP
 - C3R 32E8 32G2Y 32KH
 - 32KJ 32T2B 32T2X C10
 - C11 C12 C13P C13S C14B C15 C16 C24 C25 C26
 - C27 C29 C2A C33A C8P
 - C9A C9B C9N J L2A L2X
 - L5D L6G V
 - C3W 210 211 215 305
 - U1S 1390 2258 C3J C3R
 - C3A C3M
- (56) Documents cited GB 0915477
- (58) Field of search C3J
 - C3R
 - C3V
- (71) Applicant
 Pilot Man-Nen Hitsu KK,
 - (Japan),
 - 5-18 Kyobashi 2-chome,
 - Chuoh-ku,
 - Tokyo, Japan
- (72) inventor
 - Shigekazu Enami
- (74) Agent and/or address for service
 - Mathisen, Macara and
 - Co.
 - Co.,
 - Lyon House,
 - Lyon Road, Harrow,
 - Harrow
 - Middlesex, HA1 2ET
 - THI ZEI

(54) Aqueous ink

(57) An aqueous ink comprising an emulsion of a polymeric dyestuff which is prepared by bonding a water-insoluble polymer containing amino groups with a dye selected from the group consisting of anion-type dyes and reactive dyes, which aqueous ink

is free from globbing and skipping in writing and yields a high quality written image. When desired, a watersoluble viscosity-adjustment agent can also be added to this aqueous ink. In this case, the viscosity of the aqueous ink can be adjusted to be in the range of 50 cps to 3000 cps and the ink is particularly suitable for use with a ball-point pen with a simple structure.

FIG. 1

F1G. 2

FIG. 4

10

15

20

25

30

35

40

45

60

SPECIFICATION Aqueous ink

Background of the invention

The present invention relates to an aqueous ink, and more particularly to an aqueous ink 5 comprising a polymeric dyestuff which is formed by binding a polymer including amino groups with a particular dye, with the addition of a water-soluble viscosity-adjustment agent thereto when necessary.

In general, aqueous inks have a variety of advantages over oil-base inks. For instance, when an aqueous ink is used in writing instruments, it seldom spreads or penetrates into substrates (for example paper) to the back side thereof, and is free from unpleasant odors and toxicity. More particularly, when 10 an aqueous ink is employed in a ball-point pen, it is advantageous over oil-base inks in that it is free from globbing and skipping in writing, yielding a better quality written image than in the case of oilbase inks. Therefore, aqueous inks are used not only for such writing instruments, but also in a variety of writing and recording apparatus, for example, as a jet ink in ink-jet printing apparatus.

On the other hand, when oil-base inks are employed in writing instruments, they have certain 15 advantages over aqueous inks in that the written ink images, once dried, are more resistant to water than aqueous ink images. In addition, written ink images of an oil-base ink containing a solvent with a low boiling point dry much more quickly than aqueous inks and are less subject to smearing by physical pressure than aqueous ink images.

Aqueous inks of the so-called solution type, in which a dye is dissolved in water, are generally 20 used. When an aqueous ink of this type is employed for writing on a sheet of paper, and if the lines or images written by that ink happen to come into contact with water or something wet or damp, the lines or images immediately spread and become blurred due to the poor water-resistance thereof. This is a shortcoming of aqueous inks of the solution type.

Within this category of aqueous inks, there is an aqueous ink in which a basic dye is contained in 25 order to yield clear written or printed images with high density. This type of aqueous ink, however, is not resistant to light (i.e., fades easily).

Further, since, in the aqueous inks of the solution type, a dye is dissolved in water, but the dye cannot be dissolved beyond a certain concentration, there is a limit to the written or printed image density that can be obtained by use of this aqueous ink, unless the amount of the ink applied to the 30 sheet of paper per unit area of written or printed images is increased. However, if the amount of the ink applied to the paper per unit area of the written or printed images is increased, the written or printed images do not dry quickly, and it may occur that those written or printed images spread before drying.

In order to improve upon aqueous inks with respect to the above-described shortcomings, a variety of methods have been proposed. In one method, a pigment is mixed with an emulsion of a 35 polymeric material when preparing the aqueous ink. In another method, a polymeric dyestuff, which is prepared by bonding a water-soluble dye with a water-soluble resin, is dissolved in water when preparing the aqueous ink.

The former method, however, has the shortcoming that it does not provide sufficient dispersion stability of the pigment for practical use, since the pigment employed has a comparatively great 40 specific weight. When the pigment is used in this method, the use of the pigment alone does not provide a clear color; but, if a dye is added to the plament in order to obtain a more clear color, the written or printed ink images become considerably vulnerable to water.

The latter method does not provide written or printed images with sufficient water-resistance for practical use.

When an aqueous ink of any of the above-described conventional types is employed in ball-point pens, it is necessary, due to the low viscosity of the aqueous ink, to employ a ball-point pen with a relatively complicated structure as shown in Fig. 1. Such a ball-point pen comprises an ink magazine member 2 for holding a porous material 1 therein, and a writing point 5 for holding a ball 4 and an inkleading core member 3 disposed adjacent to the ball 4.

If that conventional aqueous ink is placed in a ball-point pen intended for use with an oil-base ink, 50 as shown in Figure 2, comprising a writing point 5 for holding a ball 4, and an ink magazine 2, with a much simpler structure than that of the ball-point pen for use with an aqueous ink, and if the writing point 5 is directed downwards, the aqueous ink flows down from the writing point 5, due to the low viscosity thereof, by the pressure applied to the ink under its own weight within the ink magazine 2. In 55 other words, the conventional aqueous ink cannot be employed in the ball-point pen having such a 55 simple structure, in which the aqueous ink is directly placed in the ink magazine 2, as shown in Figure

Summary of the invention

45

50

It is therefore an object of the present invention to provide an improved aqueous ink from which 60 the shortcomings of the conventional aqueous inks have been eliminated, but which has the advantages of both conventional aqueous inks and oil-base inks; that is, it neither spreads nor penetrates into substrates to the back side thereof, is free from unpleasant odors and toxicity and is water-resistant.

60

paper, without significant penetration thereof through the fibres of the paper, whereby high image

In the case of a conventional aqueous ink, it is not until the aqueous ink itself has been

completely absorbed by the fibers of the paper that the written images are dry; therefore, a relatively long time is required before complete drying. In order to decrease the drying time, an additive for

density of the written images and non-spreading of the written images are attained.

5

25

30

35

40

45

50

55

accelerating the absorption of the ink by the fibers of the paper can be added to the ink, although ink-spreading and penetration of the ink into the substrate to the back side thereof will take place.

In contrast to this, in the present invention, the particles of the polymeric dyestuff quickly adhere to each other before the water contained in the emulsion is completely absorbed by the fibers of the paper, so that dry film is quickly formed over the written images.

In the present invention, moreover, for particular use with ball-point pens, a water-soluble viscosity-adjustment agent capable of adjusting the viscosity of the aqueous ink can be added.

The inventor of the present invention has discovered that when the viscosity of the aqueous ink according to the present invention is adjusted to be in the range of 50 cps to 3,000 cps by addition of a water-soluble viscosity-adjustment agent thereto, even if the aqueous ink is placed in a ball-point pen with a simple structure, in which the aqueous ink is directly placed in the ink magazine as shown in Figure 2, globbing and skipping during writing of the ink, and the flowing out of the ink from the writing point of the ball-point pen, do not take place at all.

More specifically, when the viscosity of the aqueous ink is prepared so as to have a viscosity

15 within the above-mentioned appropriate range by addition of a water-soluble viscosity-adjustment
agent thereto, water which is one component of the aqueous ink in its dispersion phase is evaporated
at the small ring-shaped gap between the ball 4 and the writing point 5 for holding the ball 4 therein in
the plane A—A' as shown in Figure 3, so that the aqueous ink in the ring-shaped gap in the plane A—A'
is concentrated to a higher viscosity, and then forms a dry polymeric film, whereby the flow of the
aqueous ink out of the writing point 5 is stopped against the pressure applied to the ink-pillar under its
own weight. In other words, the aqueous ink in the ring-shaped gap between the ball 4 and the socket
portion of the writing pont 5 loses fluidity by the evaporation of water therefrom, forming a stopper
capable of holding back the aqueous ink within the ink magazine against the pressure applied to the
ink at the point by the weight of the ink column.

In the case of a conventional solution-type aqueous ink, it is necessary that the viscosity of the aqueous ink be 10,000 cps or more in order that the excess ink not flow out of the writing point. When the viscosity of the conventional aqueous ink is less than 10,000 cps, a ball-point pen with a particularly complex structure is necessary in order to prevent the excess ink from flowing out of the writing point.

It appears that, if the viscosity of the emulsion of the polymeric dyestuff for use in the present invention itself were adjusted to be in the range of 50 cps to 3,000 cps, without addition of any water-soluble viscosity-adjustment agent, the problem of the flowing of the aqueous ink out of the writing point could be eliminated. However, it is in fact better to use a water-soluble viscosity-adjustment agent than to prepare the emulsion of the polymeric dyestuff with a viscosity in the above-mentioned range, from the points of view of the stability of the aqueous ink and the ease of preparation of the aqueous ink.

When a viscosity-adjustment agent is employed, it is preferable that the viscosity-adjustment agent be water-soluble in order to obtain the necessary stability of the prepared ink and to attain a smooth flow of the aqueous ink from the writing point.

Polymers for preparing the emulsions of the polymeric dyestuff for use in the present invention are as follows:

(1) Polymers prepared by copolymerizing each monomer in Category A in Table 1.

(2) Copolymers prepared by copolymerizing the monomers in Category A in Table 1 with the monomers in Category C in Table 1.

45 (3) Polymers prepared by copolymerizing the monomers in Category B in Table 1 with the monomers in Category C in Table 1.

In addition to the above, polymers having amino groups, prepared by polyaddition or by polycondensation, for example, polyurethane and polyamides, can be employed.

To the emulsions of the above-mentioned polymers, there can be added polymer emulsions prepared by subjecting the monomers in Category C in Table 1 to emulsion polymerization.

Among the polymers in the above-mentioned (2) and (3), copolymers prepared from diene-type monomers or from fluorine-containing vinyl monomers are capable of forming films with low adhesion and coagulation properties. As a result, an aqueous ink containing as the polymeric dyestuff a copolymer of the above-mentioned type provides images that can be erased by mechanical friction, for example, by rubbing with a rubber eraser.

	Table 1	
	(A) Monomers having amino groups Dimethylaminoethylstyrene Diethylaminoethylstyrene	
5	Propylaminoethylstyrene Butylaminoethylstyrene Cyclohexyl aminoethylstyrene	5
10	N,N'-diethylethylene diaminoethylstyrene Aminoethylmethyl aminoethylstyrene Diethylaminoethylmethacrylate N-vinylcarbazole	10
	N-vinylphthalimide (B) Monomers having amino groups	
15	Acrylamide Methacrylamide N-methylolacrylamide Dimethylaminoethylmethacrylate	15
20	Vinylpyridine N-vinyldimethylamine N-vinylimidazole N-vinylpyrrolidone Vinylpiperazine	20
25	Vinyipiperazine Aminostyrene Vinylsulfonamide Dimethylaminoethyl methacrylate · methylchloride Vinylphenethyl triethylammonium bromide	25
	(C) Conventional vinyl monomers, diene-type monomers, and fluorine-containing vinyl monomers Conventional vinyl monomers:	
30	Styrene and styrene derivatives Vinyl acetate Acrylic esters	30
35	Methacrylic acid esters Acrylonitrile Vinyl chloride Vinylidene chloride	35
	Diene-type monomers: Isoprene	
40	Butadiene Chloroprene Fluoroprene Phenylbutadiene	40
	Fluorine-containing vinyl monomers: Vinylidene fluoride Ethylene chloride trifluoride	
45	Methods of preparing emulsions of the polymers will now be specifically explained. As a matter of course, however, the emulsions of the polymers for use in the present invention are not limited to those prepared by the following methods:	45
50	(1) Preparation of emulsions of the polymers in the above-mentioned groups of polymers (1) and (2): An emulsion of poly(2-isopropyl aminoethyl styrene) is prepared by subjecting 2-isopropylaminoethylstyrene to emulsion polymerization. An emulsion of a copolymer of 2-isopropylaminoethylstyrene and styrene is prepared by	50
	subjecting 2-isopropylaminoethylstyrene and styrene to emulsion polymerization. Likewise, an emulsion of a copolymer of 2-isopropylaminoethylstyrene and isoprene is prepared by subjecting 2-isopropylaminoethylstyrene and isoprene to emulsion polymerization.	
55	In the emulsion polymerization, an emulsifying agent, a polymerization initiator and an electrolyte are employed in an aqueous solvent. As the emulsifying agent, an anion-activating agent, such as sodium lauryl sulfate ester; and a	55
60	non-ionic activating agent, such as polyoxyethylene nonylphenol ether, can be employed. As the polymerization initiator, an aqueous azo-type initiator, such as 2,2'-azobis(2-amidinopropane) · hydrochloride, can be employed.	60
	Further, as the electrolyte, for example, sodium triphosphate can be employed.	

5	The thus prepared aqueous ink was placed in a ball-point pen of the type was subjected to the same writing test and water-resistance test as in Example The result was that the written images were high in image density and di written images dried as fast as in Example 1. The water-resistance of the written images was greater than that of the vexample 1. Specifically, the written images did not become blurred at all after in water, and the image density of the written images was not changed at all. The written images were subjected to a light-resistance test, and the test with the light resistance of the images obtained by a conventional aqueous ink dye as that in the present embodiment, that is, C.I. Acid Black 26. The result w	e 1	5
10	embodiment was better in light-resistance than the conventional aqueous ink.		
	Example 3 The following components were placed in a pressure-resisting glass contamosphere in the container was replaced with an inert gas:	ainer and the	
15		Parts by weight	15
	Water	30	
	Sodium lauryl sulfate	0.30	
	Polyoxyethylene nonyl phenol ether	1.2 0.040	
	2,2'-azobis(2-amidinopropane)hydrochloride	20	20
20	2-diethylaminoethylstyrene Sodium triphosphate	0.13	20
25	The above mixture was reacted for polymerization, with stirring, at 75°C 0.040 part by weight of 2,2'-azobis(2-amidinopropane)hydrochloride was reaction mixture and the polymerization reaction was continued for another 4 emulsion of poly(2-diethylaminoethylstyrene), with the solid components there prepared. An emulsion of a polymeric dyestuff was prepared by stirring the following for 6 hours:	is further added to the hours, whereby an eof being 32 wt.%, was	25
		Parts by weight	
20	The above-prepared emulsion of poly(2-diethylaminoethylstyrene)	10	30
30	Reactive Dye (Lanasol Black B made by CIBA-GEIGY Ltd.)	2	
	Water	40	
	To the thus prepared emulsion of the polymeric dyestuff, the following c so that an embodiment No. 3 of an aqueous ink according to the present inver-	omponents were added, ntion was prepared:	
35	•	Parts by weight	35
33	Diethylene glycol	5	
	Anti-germ agent (Proxel XL-2 made by Imperial Chemical Industries, Ltd.)	0.2	•
40	The thus prepared aqueous ink was placed in a marker with the writing bundle of fibers. By use of this marker, the writing test and water-resistance to same manner as in Example 1. The results were almost the same as in Examp	est were conducted in the	40
•	Example 4		
	An emulsion of a polymeric dyestuff was prepared by stirring the following for 3 hours:	ng components at 60°C	
		Parts by weight	
45	Emulsion of polyurethane (with about 40% residue after evaporation)	50	45
	(Sanprene UX-3500 made by Sanyo Chemical Industries, Ltd.)	50	
	C.I. Acid Black 119 (Aizen Opal Black New Conc. made by Hodogaya	5	
•	Chemical Co., Ltd.)	50	
	Water		
50	Prior to the preparation of the emulsion, the dye, C.I. Acid Black 119, we To the thus prepared emulsion of the polymeric dyestuff, the following of	as pre-wetted with water. components were added:	50
		Parts by weight	
	Diethylene glycol	5	
	Anti-germ agent (Proxel XL-2)	0.3	

15

5

15

20

25

30

35

50

substrates into which the ink does not penetrate, for example, to hard, dry painted materials, glass or enameled ware.

By referring to the following examples, embodiments of an aqueous ink according to the present invention will now be explained in detail.

5 Example 1

Water

Styrene

Sodium lauryl sulfate

Sodium triphosphate

Polyoxyethylene nonyl phenol ether

2-isopropylaminoethylstyrene

2,2'-azobis(2-amidinopropane)hydrochloride

The following components were placed in a pressure-resisting glass container and the atmosphere in the container was replaced with an inert gas:

Parts by weight
60
0.58
10
2.3
0.077
3.5

35

0.3

The above mixture was reacted for polymerization, with stirring, at 75°C for 2 hours. 0.077 part by weight of 2,2'-azobis(2-amidinopropane)hydrochloride was further added to the reaction mixture and the polymerization reaction was continued for another 4 hours, whereby an emulsion of a copolymer of styrene and 2-isopropylaminoethylstyrene, with the solid components thereof being 33 wt.%, was prepared. In measurement of the amount of the solid components, the amount of the resinous components contained in the emulsion was measured.

An emulsion of a polymeric dyestuff was prepared by stirring the following components at 60°C for 6 hours:

Parts by weight

25 The above-prepared emulsion of the copolymer of styrene/2isopropylaminoethylstyrene
C.I. Mordant Black 11 (Mitsui Chrome Black PB Conc. made by Mitsui
Toatsu Chemicals Inc.)
Water for moistening the dye (i.e. C.I. Mordant Black)

2

To the thus prepared emulsion of the polymeric dyestuff, the following components were added and the mixture was then subjected to filtration, so that an embodiment No. 1 of an aqueous ink according to the present invention was prepared:

Glycerin Farts by weight
5
Methyl p-hydroxybenzoate 0.05

The thus prepared aqueous ink was placed in a ball-point pen of the type shown in Figure 1, and a writing test was conducted on a sheet of ordinary office quality paper. The result was that the written images were high in image density and did not spread at all. Seven seconds after writing, the written images were touched with the finger. The written images did not spread and the finger was not smeared by the written images. Ten minutes later, the written-images-bearing paper was immersed in water for 30 minutes, the written images became only slightly blurred, and the image density of the written images was not changed at all.

The written images were subjected to a light-resistance test, and the test result was compared with the light-resistance of the images obtained by a conventional aqueous ink containing the same dye as that in the present embodiment, that is, C.I. Mordant Black 11. The result was that the present embodiment was better in light-resistance than the conventional aqueous ink.

Example 2

Example 1 was repeated except that the emulsion of the polymeric dyestuff employed in Example 1 was replaced with an emulsion of a polymeric dyestuff prepared in accordance with the following formulation, so that an embodiment No. 2 of an aqueous ink according to the present invention was prepared:

Emulsion of the copolymer of styrene and 2-isopropylaminoethylstyrene
(prepared in Example 1)

50

51

52

53

54

55

55

C.I. Acid Black 26 (Kayanol Milling Black VLG made by Nippon Kayaku Co.,
Ltd.)

Water for moistening the dye (i.e., C.I. Acid Black 26)

Dibutyl maleate

5

10

20

25

30

35

40

45

50

60

bonding of such a dye with the polymer having amino groups is usually done by mixing the dye with an emulsion of the polymer or by mixing the two under application of heat thereto.

A mixture of any combinations of the anion-type dyes and the reactive dyes can also be used in the above.

Further, it is preferable that the particle size of the polymeric dyestuff prepared in the emulsion be in the range of not more than 5 μ m.

In addition to the emulsion of the polymeric dyestuff, to the aqueous ink according to the present invention, there can be added, when necessary, a moistening agent, a plasticizer, a solvent, an antigerm agent, a pH adjustment agent or a viscosity-adjustment agent.

As the moistening agent, the following can be employed: Glycerin; glycols, such as propylene glycol diethylene glycol, polyethylene glycol; triethanolamine; sodium pyrrolidonecarboxylate; triethanolamine pyrrolidone-carboxylate; dimethyl sulfoxide; and 1,3-dimethyl-2-imidazolidinone.

As the plasticizer, the following can be used: Esters, such as dibutyl phthalate, dioctyl phthalate, dioctyl adipate, dibutyl maleate, trimethylphosphate; known plasticizers, such as epoxidated soybean oil, epoxydated triglyceride, ester of chlorinated fatty acid; cellosolves, such as butyl cellosolve acetate, and carbitols, such as phenyl carbitol. As the solvent, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, 1,3-dimethyl-2-imidazolidinone and N-methyl-2-pyrrolidone can be employed. When any of the plasticizers or polar solvents is added to the emulsion of the polymeric dyestuff, the particles of the polymer and the polymeric dyestuff can be softened or dissolved in the plasticizer or solvent, so that the adhesion properties of the polymeric dyestuff to the substrate can be controlled.

As the viscosity-adjustment agent, a variety of water-soluble resins, such as polyvinyl pyrrolidone, polyvinyl alcohol, cellulose ethers, and a copolymer of maleic acid and vinyl methylether, can be employed.

As the viscosity-adjustment agent for particular use in the aqueous ink for use with ball-point pens according to the present invention, a water-soluble viscosity-adjustment agent for adjusting the viscosity of the aqueous ink to be in the range of 50 cps to 3,000 cps is employed.

Examples of the water-soluble viscosity-adjustment agents are as follows: Synthesized or natural water-soluble polymers, such as alkali salts of polyacrylic acid or of polymethacrylic acid; alkali salts of a copolymer containing acrylic acid or methacrylic acid; alkali salts of a copolymer of styrene and maleic acid, alkali salts of a copolymer of vinyl acetate and crotonic acid; polyvinyl alcohol (including a modified polyvinyl alcohol); alkali salts of a copolymer of methyl vinyl ether · maleic acid; derivatives of polyalkylene oxide; methyl cellulose; hydroxyethyl cellulose; sodium salt of carboxymethyl cellulose; gum Arabi; and alkali salts of shellac. In addition to the above, polyethylene oxide, sodium aliginate, tragacanth gum, guar bean gum, karaya gum, additives for increasing the viscosity of emulsions, for example, SN-Thickener (water-soluble oligomer) made by Sannopco Limited, and Thickner QR-708 made by Rohm and Haas, can be employed as the viscosity-adjustment agent. Any of those viscosity-adjustment agents can be employed in an amount ranging from 0.01 wt.% to 15 wt.% of the total weight of the aqueous ink according to the present invention.

As the anti-germ agent, water-soluble or water-dispersible anti-germ agents, such as methyl p-40 hydroxybenzoate and 1,2-benzoisothiazolin-3-on, can be used.

Furthermore, the following synthesized rubber latexes can be added:

Latexes of natural rubber, polyisoprene, polybutadiene, polychloroprene, poly(styrene butadiene), poly(acrylonitrii butadiene), and poly(methyl methacrylate butadiene), and poly(ethylene chloride trifluoride vinylidene fluoride). By addition of any of these latexes, the images written with the aqueous ink become erasable, by, for example, rubbing with a rubber eraser.

In addition to the above additives, a lubricating agent, a surface active agent and an anti-rusting agent can be added.

The lubricating agent is for attaining smooth working of the ball which is placed in a socket portion of the writing point of a ball-point pen.

As the lubricating agent, a variety of lubricants, such as polyalkylene glycol and alkali salts of fatty aclds, extreme-pressure additives, a fluorine-containing-type surface active agent, or a phosphoric-ester-containing-type surface active agent, can be employed.

As the anti-rusting agent, a variety of commercially available anti-rusting agents particularly those effective for iron- or copper-alloys, can be employed.

Furthermore, in order to adjust the tone of the color of the aqueous ink, a variety of pigments can 55 be added.

In order to adjust the surface tension and to improve the stabily of the aqueous ink, a variety of nonionic and anionic surface active agents can be employed.

The thus prepared aqueous ink according to the present invention is excellent in water-resistance, and light-resistance, and provides written images with high density, which dry very quickly and substantially do not spread on the substrate. Further, the aqueous ink can be placed in a ball-point pen with a simple structure, providing written images with high quality.

Because of the high quality of this aqueous ink, the ink can be employed not only for the writing instruments, but also for a variety of writing and recording apparatus, and can also be applied to

Ę	(2) Preparation of emulsions of the polymers in the above-mentioner group of polymers (3) By subjecting methacrylamide and methyl methacrylate to emusion polymerization, an emulsion of a copolymer of methacrylamide and methyl methacrylate, in which polymethacrylamide is partly dissolved, is obtained. In this case, since the polymethacrylamide, which is water-soluble, is adsorbed on the surfaces of the particles of the copolymer, which is water insoluble, the polymethylacrylamide is not easily released from the copolymer. Therefore, when a polymeric dyestuff is prepared by use of the above emulsion, the state in which the water-soluble polymeric dyestuff is adsorbed on the surfaces of the particles of the water-isoluble dyestuff can be maintained. As a result, when an aqueous ink	5
10	dyestuff is used for writing, a film in which the two polymeric dyestuff are mingled with each other is formed so as to cover the written images, whereby the written images are fortified against water. It is preferable that the amount of the polymers having amino groups be in the range of 5 wt.% to 60 wt.% of the total weight of the agueous ink	10
15	As the polymers for use in the emulsion, polymers prepared by polymerizing different monomers in each of Category A, Category B, and Category C can also be employed. For particular use with a ball-point pen, in addition to the above, poly(2-diethylaminostyrene), poly(dimethylaminoethylmethacrylate · 2-ethylhexylmethacrylate), poly(2-isopropylamino-	15
20	subjecting diethylaminoethylmethacrylate to graft-polymerization, can be employed in the present invention. These polymers can also be prepared by conventional emulsion polymerization. Other than by the method of emulsion by polymerization, the above-described emulsions of polymers can be prepared by emulsifying a solution of polymers in an aqueous solvent by use of an emulsifying agent.	20
25	For particular use with a ball-point pen, it is desirable that the amount of the polymer having amino groups be in the range of 5 wt.% to 45 wt.%, more preferably in the range of 10 wt.% to 30 wt.%, of the total weight of an aqueous ink according to the present invention. When the amount the polymer is less than 5 wt.%, the absolute amount of the dye that can be used in insufficient for	25
30	obtaining images with high density and water-resistance. On the other hand, when the amount of the polymer is more than 45 wt.%, it is difficult to prepare a stable aqueous ink. Examples of dyes that can be bonded with the polymers having amino groups are as follows, which dyes contain a sulfonic acid group, a carboxylic group, or a hydroxyl group, or are of the anion-complex type:	30
35	Anion-type dyes	35
40	Direct dyes: C.I. Direct Black 19, 154 C.I. Direct Blue 106, 158, 200 C.I. Direct Red 79, 83 C.I. Direct Violet 48	40
45	Mordant dyes: C.I. Mordant Black 7 C.I. Mordant Blue 13, 47, 48 C.I. Mordant Red 3, 7, 27	45
50	Metal complex dyes: C.I. Acid Black 51, 52, 118, 119, 155, 158 C.I. Acid Blue 161 C.I. Acid Red 186, 265	50
	Reactive dyes Dyes having as a reactive group, for example, a dichlorotriazinyl group, a monochlorotriazinyl group, a chloropyrimidyl group, a vinylsulfone group, an alkyl sulfuric group, or a bromoacrylic amide group.	
55	For example: C.I. Reactive Black 9, 10, 14 C.I. Reactive Blue 18, 19	55

These anion-type dyes and reactive dyes combine with the polymers having amino groups, for example, through van der Waals' force, hydrogen bonding, ion bonding or covalent bonding. The

5	The mixture was then subjected to filtration as in Example 1, so that an eaqueous ink according to the present invention was prepared. The thus prepared aqueous ink was placed in a ball-point pen of the type was subjected to the same writing test and water-resistance test as in Example The results were the same as in Example 2.	್ಲಿ shown in Figure 1 and	5
	Example 5 An emulsion of a polymeric dyestuff was prepared by mixing the following by allowing the mixture to stand for 1 day:	ng components and then	
		Parts by weight	
10	Emulsion of polyurethane (the same emulsion as that employed in Example 4)	` 50	10
	C.I. Direct Black 19 (Daiwa Black 300H made by Daiwa Dyestuff MFG, Co., Ltd).	5	
	Water	50	
15	Prior to the preparation of the emulsion, the dye C.I. Direct Black 19, wa To the thus prepared emulsion of the polymeric dyestuff, the following of		15
		Parts by weight	
	Glycerin	5	
	Anti-germ agent (Proxel XL-2)	0.3	
20	The mixture was subjected to filtration as in Example 1, so that an embedaqueous ink according to the present invention was prepared. The thus prepared aqueous ink was placed in a ball-point pen of the type was subjected to the same writing test and water-resistance test as in Example 1.	e shown in Figure 1 and	20
25	Example 6	•	25
	The following components were placed in a pressure-resisting glass cor atmosphere in the container was replaced with an insert gas:	ntainer and the	
		Parts by weight	
	Water	60 0.55	30
30	Sodium lauryl sulfate Polyoxyethylene nonyl phenol ether	2.2	30
	2,2'-azobis(2-amidinopropane)hydrochloride	0.073	
	Methacrylamide	1.7	
	Methyl methacrylate	35	
35	Sodium triphosphate	0.3	35
40	The above mixture was reacted for polymerization, with stirring, at 75°C emulsion of a copolymer of methacrylamide and methyl methacrylate, emulsi solution of polymethacrylamide, with the solid components thereof being 36 An emulsion of polymeric dyestuff was then prepared by the following chours:	fied in an aqueous wt.%, was prepared.	40
	·	Parts by weight	
	The above-prepared emulsion	50	
	C.i. Mordant Black 11 (Mitsui Chrome Black PB Conc. made by Mitsui		
	Toatsu Chemicals Inc.)	2	
45	Water	50	45
	Polyoxyethylene nonyl phenol ether Dibutyl maleate	0.4 4	
		·	
50	In the above preparation, the dye, C.I. Mordant Black 11, was first dissort of the thus prepared emulsion of the polymeric dyestuff, the following and the mixture was then subjected to filtration, so that an embodiment No. according to the present invention was prepared.	components were added	50
		Parts by weight	
	Glycerin	10	
	Anti-germ agent (Proxel XL-2)	0.3	

The thus prepared aqueous ink was placed in a ball-point pen of the type shown in Figure 1 and was subjected to the same writing test and water-resistance test as in Example 1. 4. The results were the same as in Example 1.

Example 7

The following components were placed in a pressure-resisting glass container and the atmosphere in the container was replaced with an inert gas:

5

15

20

	Water	Parts by weight	
	Sodium lauryl sulfate	60	
10	Polyoxyethylene nonyl phenol ether	0.57	
.0	2,2'-azobis(2-amidinopropane)hydrochloride	2.3	10
	2-isopropylaminoethylstyrene	0.077	
	Sodium triphosphate	5.1	
	odiam improspriate	0.27	

37 parts by weight of isoprene were further added to the above mixture, and the mixture was reacted for polymerization, with stirring, at 75°C for 2 hours.

0.077 part by weight of 2,2'-azobis(2-amidinopropane)hydrochloride was further added to the reaction mixture and the polymerization reaction was continued for another 4 hours. The unreacted isoprene was removed by evaporation. Thus, an emulsion of poly(isoprene 2-isopropylamino-ethylstyrene), with the solid components thereof being 25 wt.%, was prepared.

An emulsion of a polymeric dyestuff was then prepared by stirring the following components at 60°C for 6 hours:

	The above-prepared emulsion of poly(isoprene 2-	, Pa	irts by weight	
25	isopropylaminoethylstyrene) Reactive Dye (Lanasol Black B) Water		50 2 5	25

In the above, the dye, Reactive Dye, was pre-wetted by water.

To the thus prepared emulsion of the polymeric dyestuff, the following components, which were the same as employed in Example 1, were added and the mixture was then subjected to filtration, so that an embodiment No. 7 of an aqueous ink according to the present invention was prepared:

30

Glycerin	Parts by weight
	5 ⁻
Methyl p hydroxybenzoate	0.05

The thus prepared aqueous ink was placed in a ball-point pen of the type shown in Figure 1 and was subjected to the same writing test and water-resistance test as in Example 1.

The results were the same as in Example 2.

35

Example 8

The following components were placed in a pressure-resisting glass container and the atmosphere in the container was replaced with an inert gas as in Example 7.

40		Parts by weight	40
	Water	60	40
	Sodium lauryl sulfate	0.56	
	Polyoxyethylene nonyl phenol ether	2.2	
45	2,2'-azobis(2-aminopropane)hydrochloride Acrylamide	0.074	
75	• • • • • • • • • • • • • • • • • • • •	2.0	45
	Sodium triphosphate	0.27	

36 parts by weight of isoprene were further added to the above mixture, and the mixture was reacted for polymerization, with stirring, at 75°C for 2 hours.

0.074 part by weight of 2,2'-azobis(2-amidinopropane) hydrochloride was further added to the reaction mixture and the polymerization reaction was continued for another 4 hours. The unreacted isoprene was removed by evaporation. Thus, an emulsion of a copolymer of isoprene and acrylamide, emulsified in an aqueous solution of polyacrylamide, with the solid components thereof being 30 wt.%, was prepared.

An emulsion of a polymeric dyestuff was then prepared by stirring the following components at 55 60°C for 6 hours:

55

50

	The above-prepared emulsion of the copolymer of isoprene and	Parts by weight	
	acrylamide	50	
5	C.I. Acid Black 26 (Kayanol Milling Black VLG) Water	2	_
5	vvalei	2	5
10	In the above preparation, the dye, C.I. Acid Black 26, was pre-wetted by v To the thus prepared emulsion of the polymeric dyestuff, the following co the same as those employed in Example 1, were added and the mixture was the filtration, so that an embodiment No. 8 of an aqueous ink according to the presprepared:	mponents, which were	10
		Parts by weight	
	Glycerin Methyl p-hydroxybenzoate	5	
	wethyr p-nydroxybenzoate	0.05	
15	The thus prepared aqueous ink was placed in a conventional marker and vectors are writing test and water-resistance test as in Example 1. The results were the same as in Example 1.	vas subjected to the	15
	Example 9		
	The following components were placed in a pressure-resisting stainless statmosphere in the container was replaced with an inert gas:	eel container and the	
20		Parts by weight	20
	Water	60	
	Sodium lauryl sulfate	0.5	
	Polyoxyethylene nonyl phenol ether	2.1 0.07	
25	2,2'-azobis(2-amidinopropane)hydrochloride 2-diethylaminoethylstyrene	5.7	25
23	Styrene	8.0	
	Sodium triphosphate	0.27	
30	27 parts by weight of butadiene were further added to the above mixture, reacted for polymerization, with stirring, at 55°C for 24 hours. The unreacted butadiene was removed by evaporation, so that an emulsion butadiene, styrene and 2-diethylaminoethylstyrene, with the solid components was prepared. An emulsion of a polymeric dystuff was then prepared by stirring the folio 60°C for 6 hours:	on of a copolymer of thereof being 25 wt.%,	30
		Dente hu weight	25
35	The above prepared emulsion of the copolymer of butadiene, styrene and	Parts by weight	35
	2-diethylaminoethylstyrene	50	
	C.I. Direct Black 17 (Kayaku Direct Fast Black D made by Nippon Kayaku		
	Co., Ltd.)	3	
40	Water	4	40
	In the above, the dye, C.I. Direct Black 17, was pre-wetted by water. To the thus prepared emulsion of the polymeric dyestuff, the following co and the mixture was then subjected to filtration; so that an embodiment No. 9 of according to the present invention was prepared:		
45		Parts by weight	45
0	Diethylene glycol	6	
	Anti-germ agent (Proxel XL-2)	0.3	
	The thus prepared aqueous ink was placed in a ball-point pen of the type was subjected to the same writing test and water-resistance test as in Example		
50	The results were the same as in Example 2.	• •	50
	·		-

Example 10

The following components were placed in a pressure-resisting stainless steel container and the atmosphere in the container was replaced with an inert gas as in Example 9:

	Water	Parts by weight	
		· 60	
	Sodium lauryl sulfate	0.5	
	Polyoxyethylene nonlyl phenol ether	2.1	
5		0.07	
	Dimethylaminoethyl methacrylate		
	Sodium triphosphate	4.5	
		0.27	
10			
	dimethylaminoethyl methacrylate and butadiene emulsified in an aqueou polydimethylaminoethyl methacrylate, with the solid components thereo prepared.		10
	h. abaraar		
15	An emulsion of a polymeric dyestuff was then prepared by stirring t 60°C for 6 hours:	he following components at	
	oo o loi o llouis.	- •	15
		Double 1	
	The above-prepared emulsion of the copolymer of dimethylaminoethyl	Parts by weight	
	methacrylate and butadiene		
	C.I. Acid Black 118 (Opal Black BNH, metal complex dye, made by	50	
20	Hodogaya Chemical Co., Ltd.)		
	Water	5	20
	vvator	4	
	In the above, the dye, C.I. Direct Black 118, was pre-wetted by water		
25	no the thus prepared emulsion of the polymeric dyestuff, the follow and the mixture was then subjected to filtration, so that an embodiment is	ing components	25
	· · · · · · · · · · · · · · · · · · ·		25
	Ethylene glycol	Parts by weight 6	
	NBR latex (Nipol 1562 made by Nippon Zeon Co., Ltd).	20	
	Anti-germ agent (Proxel XL-2)	0.3	
30	The thus prepared aqueous ink was placed in a ball-point pen of the was subjected to the same writing test and water-resistance test as in Ex The results were the same as in Example 1.	type shown in Figure 1 and ample 1.	30
	Example 11		
35	An emulsion of a polymeric dyestuff was prepared by stirring the fol for 6 hours:	lowing components at 60°C	35
	Emulsion of poly(2-diethylaminoethylstyrene) with 32 wt.% of solid	Parts by weight	
	Components prepared in Figure 1- 2		
	components, prepared in Example 3	10	
40	Reactive Dye (Lanasol Black B)	2	
40	Water	10	40
	To the thus prepared emulsion of the polymeric dyestuff, the followi and the mixture was then subjected to filtration, so that an embodiment N according to the present invention was prepared.	ng components were added lo. 11 of an aqueous ink	
. –		Parts by woich	
45	BRN latex (Nipol 1562)	Parts by weight	
	Anti-germ agent (Proxel XL-2)	20	45
		0.2	
	The thus prepared aqueous ink was placed in a ball-point pen of the was subjected to the same writing test and water-resistance test as in Example 2.	type shown in Figure 1 and ample 1.	
50	Comparative Example 1		
50	A mixture of the following components was reacted for polymerizati procedure at 75°C for 3 hours:	on under a conventional	50
	Water	Parts by weight	
e e		50	
55	Acrylamide	5	
	2,2'-azobis(2-amidinopropane) hydrochloride	•	55
		0.010	33

55

Thus, an aqueous solution of polyacrylamide was prepared.

An aqueous solution of a water-soluble polymeric dyestuff was then prepared by stirring the following components at 60°C for 6 hours:

	Parts by weight.	
The above-prepared aqueous solution of the water-soluble polyacrylamide	25	5
C.I. Acid Black 118 (Opal Black BNH)	4	
Water	75	
10% aqueous solution of sodium hydroxide	5	
	C.I. Acid Black 118 (Opal Black BNH) Water	The above-prepared aqueous solution of the water-soluble polyacrylamide C.I. Acid Black 118 (Opal Black BNH) Water 25 4 75

The aqueous solution of the water-soluble polymeric dyestuff was subjected to filtration, so that a 10 comparative aqueous ink No. 1 was prepared.

The thus prepared comparative aqueous ink No. 1 was placed in a ball-point pen of the type shown in Figure 1 and was subjected to the same writing test and water-resistance test as in Example 1

The time required for drying the images written by this comparative ink was approximately twice

15 the times that were required for drying the images written by any of the so far explained aqueous inks
according to the present invention. The water-resistance of the images written by the comparative ink
was also extremely inferior to the water-resistance of the images written by any of the so far explained
aqueous inks according to the present invention.

Comparative Example 2

A mixture of the following components was reacted for polymerization under the same conditions 20 as in Comparative Example 1:

		Parts by weight	
	Water	60	
	Methacrylamide	10	
25	2,2'-azobis(2-amidinopropane)hydrochloride	0.020	25

Thus, an aqueous solution of polyacrylamide was prepared.

An aqueous solution of a water-soluble polymeric dyestuff was then prepared by stirring the following components at 60°C for 6 hours:

			Parts by weight	
30	The above-prepared aqueous solution of the water-soluble			30
	polymethacrylamide		15	
	Reactive dve (Lanasol Black B)		4	
	Water		100	
•	Glycerin	•	12	

The aqueous solution of the water-soluble polymeric dyestuff was subjected to filtration, so that a 35 comparative aqueous ink No. 2 was prepared.

The thus prepared comparative aqueous ink No. 2 was subjected to the same writing test and water-resistance test as in Example 1.

The time required for drying the images written by this comparative ink and the water-resistance
40 of the written images were almost the same as those in Comparative Example No. 1.

Comparative Example 3

An aqueous solution of a water-soluble polymeric dyestuff was prepared by stirring the following components at 60°C for 6 hours:

	Parts by weight	
45 30 wt.% aqueous solution of polyethyleneimine (Epomin P-1000 made by		45
Nihon Shokubai Kagaku Kogyo Co., Ltd).	50	
C.I. Acid Black 26 (Kayanol Milling Black VLG)	4	
Water	30	
Diethylene glycol	8	

The aqueous solution of the water-soluble polymeric dyestuff was subjected to filtration, so that a 50 comparative aqueous ink No. 3 was prepared.

The thus prepared comparative aqueous ink No. 3 was subjected to the same writing test and water-resistance test as in Example 1.

The time required for drying the images written by this comparative ink and the water-resistance of the written images were almost the same as those in Comparative Example No. 1.

The following are examples of emulsions of polymers for use in aqueous inks, which are particularly suitable for ball-point pens with simple structures, as will be explained later in Examples 12 through 19.

5	Emulsion No 1 A mixture (A-1) was prepared by mixing the following components:	-
		5
	Water Parts by weight	
	Sodium laund authors 435	
	Polyovyothylone negyd who well atte	
10	Sodium triphophata	4.0
	2.22-archig/2 amidia-proposal-level-set 1 1 1	10
	2,2 -azobis(2-amidinopropane)nydrochioride 0.6	
	A mixture (B-1) was prepared by mixing the following components:	
	Parts by weight	
	2-ethylnexyl methacrylate 270	
15	Dimethylaminoethyl methacrylate 45	15
	A mixture (C-1) was prepared by mixing the following components:	
	Parts by weight	
	2,2"-azobis(2-amidinopropane)hydrochloride 0.6	
	Water 15	
20	with a reflux condenser, and polymerization was initiated by heating the mixture at 65°C, with the atmosphere in the container continuously being replaced by N ₂ . A mixture of the remainder of the mixture (8-1) and the mixture (C-1) was added dramwise to the	20
25	reaction mixture and the polymerization reaction was continued at the same temperature (65°C). Near the final stage of the polymerization, the temperature of the reaction mixture was elevated to 70°C, and the polymerization reaction was terminated. The time required for the polymerization was 5 hours. Thus, an emulsion of a copolymer of 2-ethylhexyl methacrylate and dimethylaminoethyl methacrylate. Emulsion No. 1, was prepared. The amount of the solid components contained in the emulsion was 39 wt.%.	25
30	Emulsion No 2 A mixture (A-2) was prepared by mixing the following components:	30
	Parts by weight	
	vvater	
àc	Sodium lauryl sulfate 1.08	
35	Polyoxyethylene nonyl phenol ether 4.3	35
	Sodium triphosphate 0.54 2,2'-azobis(2-amidinopropane)hydrochloride 0.14	
	2,2 -azobis(2-amidinopropane)nydrochloride 0.14	
	A mixture (B-2) was prepared by mixing the following components:	
-	Parts by weight	
40	n-butylacrylate 60	40
	Diethylaminoethyl methacrylate 12	40
	A mixture (C-2) was prepared by mixing the following components:	
-	, , , , , , , , , , , , , , , , , , ,	
	2,2'-azobis(2-amidinopropane)hydrochloride Parts by weight 0.28	
45	Water 5	45
	The entire mixture (A-2) and 18 parts by weight of the mixture (B-2) were placed in a container with a reflux condenser, and polymerization was initiated by heating the mixture at 60°C, with the atmosphere in the container continuously being replaced by N-	40
50	The remainder of the mixture (B-2) was added dropwise to the reaction mixture and the polymerization reaction was continued at the same temperature (60°C). Near the final stage of the polymerization the temperature of the reaction mixture was elevated to 70°C, and the mixture (C-2)	50

50

was added dropwise to the reaction mixture, and the polymerization reaction was terminated. The time required for the polymerization was 4 hours and 30 minutes. Thus, an emulsion of a copolymer of n-butylacrylate and diethylaminoethyl methacrylate, Emulsion No. 2, was prepared. The amount of the solid components contained in the emulsion was 38 wt.%. 5 **Emulsion No. 3** A mixture (A-3) was prepared by mixing the following components: Parts by weight Water 300 10 10 Sodium lauryl sulfate 3.6 Polyoxyethylene nonyl phenol ether 14.4 Sodium triphosphate 3.0 2,2'-azobis(2-amidinopropane)hydrochloride 0.5 A mixture (B-3) was prepared by mixing the following components: 15 15 Parts by weight 2-ethylhexyl methacrylate 200 2-isopropylaminoethylstyrene 40 A mixture (C-3) was prepared by mixing the following components: Parts by weight 2,2'-azobis(2-amidinopropane)hydrochloride 20 20 30 Water The entire mixture (A-3) and the entire mixture (B-3) were placed in a container with a reflux condenser, and polymerization was initiated by heating the mixture at 75°C, with the atmosphere in the container continuously being replaced by N2. The mixture (C-3) was added dropwise to the reaction mixture and the polymerization reaction 25 was continued at the same temperature (75°C). The polymerization reaction was terminated in 6 hours. Thus, an emulsion of a copolymer of 2-ethylhexylmethacrylate and 2isopropylaminoethylstyrene, Emulsion No. 3, was prepared. The amount of the solid components 30 contained in the emulsion was 39 wt.%. 30 **Emulsion No. 4** A mixture (A-4) was prepared by mixing the following components: Parts by weight 300 Water 3 35 Sodium lauryl sulfate 35 12 Polyoxyethylene nonyl phenol ether 1.3 Sodium triphosphate 0.4 2,2'-azobis(2-amidinopropane)hydrochloride A component (B-4): 200 parts by weight 2-diethylaminoethyl styrene 40 40 A mixture (C-4) was prepared by mixing the following components: Parts by weight 0.4 2,2'-azobis(2-amidinopropane)hydrochloride

The entire mixture (A-4) and the entire component (B-4) were placed in a container with a reflux condenser, and polymerization was initiated by heating the mixture at 75°C, with the atmosphere in the container continuously being replaced by N₂.

The mixture (C-4) was added dropwise to the reaction mixture and the polymerization reaction

was continued at the same temperature (75°C). The polymerization reaction was terminated in 6 hours.

Thus, an emulsion of poly(2-diethylaminoethylstyrene), Emulsion No. 4, was prepared. The amount of the solid component contained in the emulsion was 32 wt.%.

	Emulsion No. 5 A mixture (A-5) was prepared by mixing the following components:	
	Parts by weight	
5	Water 600 Sodium lauryl sulfate 5.7 Polyoxyethylene nonyl phenol ether 23 Sodium triphosphate 2.7	5
	2,2'-azobis(2-amidinopropane)hydrochloride 0.77	
10	A component (B-5): 2-isopropylaminoethylstyrene 51 parts by weight	10
	A component (C-5): Isoprene 370 parts by weight	
	A mixture (D-5) was prepared by mixing the following components:	
15	2,2'-azobis(2-amidinopropane)hydrochloride Vater Parts by weight 0.77 Vater 15	15
20	The entire mixture (A-5) and the entire component (B-5) were placed in a pressure-resisting container, with the atmosphere in the container replaced by N ₂ . The entire component (C-5) was then added to the mixture, and polymerization was initiated by heating the mixture at 75°C. The mixture (D-5) was added dropwise to the reaction mixture and the polymerization reaction was continued at the same temperature. The polymerization reaction was terminated in 6 hours. Thus, an emulsion of a copolymer of isoprene and 2-isopropylaminoethylstyrene, Emulsion No. 5,	20
	was prepared. The amount of the solid components contained in the emulsion was 25 wt.%.	
25	Emulsion No. 6 A mixture (A-6) was prepared by mixing the following components:	25
	Water Formula Parts by weight 60 Sodium lauryl sulfate 0.58	
30	Polyoxyethylene nonyl phenol ether 2.3 Sodium triphosphate 0.3 2,2'-azobis(2-amidinopropane)hydrochloride 0.077	30
	A mixture (B-6) was prepared by mixing the following components:	
35	2-isopropylaminoethylstyrene 3.5 Styrene 35	35
	A mixture (C-6) was prepared by mixing the following components:	
	2,2'-azobis(2-amidinopropane)hydrochloride Water Parts by weight 0.077 2	
40	As in Emulsion 4, the entire mixture (A-6) and the entire mixture (B-6) were placed in a container with a reflux condenser, and the polymerization was initiated by heating the mixture at 75° C, with the atmosphere in the container continuously being replaced by N_2 . The mixture (C-6) was added dropwise to the reaction mixture and the polymerization reaction was continued at the same temperature (75°C). The polymerization reaction was terminated in 6 hours.	40
45	Thus, an emulsion of a copolymer of 2-isopropylaminoethylstyrene and styrene, Emulsion No. 6, was prepared. The amount of the solid components contained in the emulsion was 33 wt.%. Referring to the following Examples No. 12 through No. 19, embodiments of an aqueous ink according to the present invention, which are particularly suitable for use with ball-point pens, will now	45
50	be explained. In those examples, a dye, a moistening agent and an anti-germ agent were dissolved in water, and the mixture was added to one of the Emulsion No. 1 through No. 6 and/or other emulsions. This mixture was stirred under application of heat thereto, and a water-soluble viscosity-adjustment agent was added to the mixture, whereby each aqueous ink was prepared.	50

5

When particles with a particle size of more than 5 μ m were contained in the aqueous ink, such particles were filtered off.

In Example 19, dibutyl maleate was employed as a plasticizer, by emulsifying it in the Emulsion No. 6, with addition of polyoxyethylene nonyl phenol ether, which served as a surface active agent.

5 Example 12	
An embodiment No. 12 of an aqueous ink according to the present invention was p	prepared under
the above-described procedure, with the following formulation:	

		Parts by weight	
	C.i. Direct Black 19 (Daiwa black 300H, made by Daiwa Dyestuff Mfg. Co.,	. 9	10
10	Ltd).	_	. •
	Diethylene glycol	16	
	Anti-germ agent (Proxel XL-2)	1	
	Water	18	
	Emulsion No. 1	56	
15	Water-soluble viscosity-adjustment agent [Johncryl 142 (alkali-soluble		15
	39% acryl polymer emulsion, made by Johnson & Son, Inc. 5 parts,		-
	and 10% aqueous solution of sodium hydroxide 2 parts]	7	

Example 13
An embodiment No. 13 of an aqueous ink according to the present invention was prepared in the same manner as in Example 12, with the following formulation:

20

		Parts by weight	
	C.I. Direct Black 19	9	
	Diethylene glycol	16	
	Proxel XL-2	1	
25	Water	18	25
	Emulsion No. 1	56	
	Water-soluble viscosity-adjustment agent [Aron AS-7180 (18% aqueous		
	solution of an acrylic copolymer made by Toagosei Chemical Industry	4.4	
	Co., Ltd.)]	11	

30 Example 14

An embodiment No. 14 of an aqueous ink according to the present invention was prepared in the same manner as in Example 12, with the following formulation:

		Parts by weight	
	C.I. Acid Black 2 (Nigrosine NBC made by Sumitomo Chemical Co., Ltd.)	5	
35	Diethylene glycol	15	35
JJ.	Proxel XL-2	1	
	Water	19	
	Emulsion No. 2	60	
40	Water-soluble viscosity-adjustment agent [Aron AS-7601 (30% aqueous solution of a polymer, made by Toagosei Chemical Industry Co., Ltd.)]	7	40

Example 15

An embodiment No. 15 of an aqueous ink according to the present invention was prepared in the same manner as in Example 12, with the following formulation:

		Parts by weight	
45	Lanasol Black 5095 (Reactive Dyestuff made by CIBA-GEIGY, Ltd.)	6	45
45		15	
	Glycerin	. 1	
	Proxel XL-2	20	
	Water	28	
	Emulsion No. 4	50	
50	Water-soluble viscosity-adjustment agent (Sodium salt of		50
-	carboxymethylcellulose)	0.25	

Example 16

An embodiment No. 16 of an aqueous ink according to the present invention was prepared in the same manner as in Example 12, with the following formulation:

		Bonto buccasinha	
	C.I. Acid Black 2	Parts by weight 5	
	Glycerin	∻ 5 20	
	Proxel XL-2	1	
5	Water	24	_
	Emulsion No. 3	50	5
	Water-soluble viscosity-adjustment agent (50% aqueous solution of	90	
	ammonium salt of a copolymer of vinyl acetate and crotonic acid,	•	
	Mowilith CT 5A, made by Farbwerke Hoechst AG.)	12	
		12	
10	Example 17		
	An embodiment No. 17 of an aqueous ink according to the present invention	was prepared in the	10
	same manner as in Example 12, with the following formulation:	, was brehared in the	
	C.I. Acid Black 119 (Aizen Opal Black New Conc. made by Hodogaya		
	Chemical Co., Ltd.)	5	
15	Glycerin	20	15
	Proxel XL-2	1	13
	Water	24	
	Emulsion of polyurethane (with about 40% resodie after evaporation)		
	(Sanprene UX-3500 made by Sanyo Chemical Industries, Ltd.)	50	
20	Water-soluble viscosity-adjustment agent (Polyvinyl alcohol)	0.8	20
	Example 18		
	An embodiment No. 18 of an aqueous ink according to the present invention	was prepared in the	
	same manner as in Example 12, with the following formulation:		
0.5	Lamaret Direct FOOD	Parts by weight	
25	Lanasol Black 5095	. 4	25
	Glycerin	20	
	Proxel XL-2	1 .	
	Water	25	
20	Emulsion No. 5	50	
30	Styrene butadien latex (with 40% of solid components)	20	30
	Water-soluble viscosity-adjustment agent (Sodium salt of carboxymethyl cellulose)		
	centriose;	0.25	
	Example 19		
35	An embodiment No. 19 of an aqueous ink according to the present inventior same manner as in Example 12, with the following formulation:	was prepared in the	25
33	The memor as in Example 12, with the following formulation:		35
		Dorto bussiale	
	C.I. Acid Black 26 (Kayanol Milling Black VLG made by Nihon Kayaku, Co.,	Parts by weight	
	Ltd.)	4	
•	Glycerin	15	
40	Proxel·XL-2	1	40
	Water	30	40
	Emulsion [(Emulsion No. 6 50 parts, plasticizer (Dibutyl maleate) 2 parts,	00	
	and surface active agent (Polyoxyethylene nonyl phenol ether) 0.02		
	parts]	50.2	
45	Water-soluble viscosity-adjustment agent (Sodium salt of carboxymethyl		45
	cellulose)	0.3	70
	The embodiments No. 12 through No. 19 of an aqueous ink according to the	present invention	
	were subjected to viscosity measurement and writing tests, with each aqueous inle	nlaced in a Type 1	
	ball-point pen which was of the type shown in Figure 2, or in a Type 2 ball-point per	en which was of the	
50	type shown in Figure 4.		50
	In the viscosity measurement, the viscosity of each aqueous ink was measur	ed by a B-type	
	viscosimeter under the conditions of 20°C and 60 rpm.	,	
	As previously explained, the Type 1 ball-point pen shown in Figure 2 compris	ses an ink magazine	
	2 and a writing point 5 which holds a ball 4.	-	
55	The Type 2 ball-point pen comprises an ink magazine 2 with an outer air guid	le pipe 6 therein, and	55
	a writing point 5 which holds a ball 4.	• •	
	The writing tests included (1) an ink flow test, (2) a test for checking the water	er-resistance of the	
	images written by each aqueous ink, and (3) a visual inspection for ink-spreading, i	nk-globbing, and	
	skipping in writing.		

5

10

15

45

50

10

15

In the ink flow test, each aqueous ink tested was placed in the Type 1 ball-point pen or in the Type 2 ball-point pen, and the ball-point pen was held vertically with the writing point directed downwards at 20°C for 24 hours. After the 24 hours, whether or not the ink placed in the ball-point pen flowed out of the writing point was checked visually.

In the water-resistance test, predetermined lines and images were written on a sheet of office-quality paper by use of either the Type 1 ball-point pen or the Type 2 ball-point pen in which each acquous ink was charged. 10 minutes later after the writing, the paper was immersed in water and maintained in water for 30 minutes. Thereafter, the extent to which the written lines and images became blurred was visually checked.

In the visual inspection for ink-spreading, ink-globbing, and skipping in writing, predetermined lines and images were written on a sheet of office-quality paper by use of either the Type 1 ball-point pen or the Type 2 ball-point pen in which each aqueous ink was charged. During the writing, ink-globbing and skipping in writing were visually inspected. In addition, ink-spreading in writing was visually inspected by use of a loupe.

The results of these tests are summarized in the following table:

	Example	Viscosity (cps)	Ball-point pen	Excess flow of ink	Deterioration of written images by water	Spreading of images	Globbing and/or skipping	
20	12	ca. 300	Type 1	None	Almost None	Almost None	Almost None	20
-	13	ca. 1200	Type 1	None	Almost None	Almost None	Almost None	-
25	14	ca. 2700	Type 1	None	Almost None	Almost None	Almost None	- 25 _.
-	15	ca. 150	Type 1	None	Almost None	Almost None	Almost None	-
-	16	ca. 1000	Type 1	None	Almost None	Almost None	Almost None	_
30	17	ca. 200	Type 1	None	Almost None	Almost None	Almost None	30
•	18	ca. 150	Type 2	None	Almost None	- Almost None	Almost None	-
35	19	ca. 300	Type 1	None	Almost None	Almost None	Almost None	35

Claims

40

50

1. An aqueous ink comprising an emulsion of a polymeric dyestuff which is prepared by bonding a water-insoluble polymer containing amino groups with a dye selected from the group consisting of anion-type dyes and reactive dyes.

2. An aqueous lnk as claimed in Claim 1, further comprising a water-soluble viscosity-adjustment 40 agent.

3. An aqueous ink as claimed in Claim 2, wherein said water-insoluble polymer is at least one polymer selected from the group consisting of (1) polymers prepared by polymerizing vinyl monomers having at least one amino group selected from the group of a primary amino group, a secondary amino group and a tertiary amino group; (2) copolymers of vinyl monomers having at least one amino group selected from the group of a primary amino group, a secondary amino group, a tertiary amino group and a quaterary group, and vinyl monomers or diene monomers, which vinyl monomers or diene monomers can be copolymerized with said first-mentioned vinyl monomers and do not have amino groups; and (3) polymers containing amino groups prepared by polyaddition or polycondensation.

4. An aqueous ink as claimed in Claim 2, wherein the amount of said water-insoluble polymer is in the range of 5 wt.% to 45 wt.% of the total weight of said aqueous ink.

5. An aqueous ink as claimed in Claim 2, wherein the particle size of said polymeric dyestuff is not more than 5 μm .

- 6. An aqueous ink as claimed in Claim 2, wherein the amount of said water-soluble viscosity-adjustment agent is in the range of 0.01 wt.% to 15 wt.% of the total weight of said aqueous ink.
- 7. An aqueous ink as claimed in Claim 2, wherein the viscosity of said aqueous ink is in the range of 50 cps to 3,000 cps at 20°C.
- 8. An aqueous ink substantially as herein described with reference to any one of the accompanying examples.

5

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1983. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained