1.	转速电流双闭环调速系统	允中的两个调速器通常	米用的控制力式是	
	A. PID	B. PI	C. P	D. PD
2.	静差率和机械特性的硬质	度有关,当理想空载转速	一定时,特性越硬,静差率	
	A. 越小	B. 越大	C. 不变	D. 不确定
3.	下列异步电动机调速方流	去属于转差功率消耗型[的调速系统是	
	A. 降电压调速	B. 串级调速	C. 变极调速 D.	变压变频调速
4.	可以使系统在无静差的情	青况下保持恒速运行,	实现无静差调速的是	
	A. 比例控制	B. 积分控制	C. 微分控制	D. 比例微分控制
5.	控制系统能够正常运行的			
			C. 快速性	D. 准确性
6.			战低,则系统的稳定精度	
			C. 不变	
7.	常用的数字滤波方法不信			_ : 1 //#/
, •	A. 算术平均值滤波			
(2. 中值平均滤波			
	转速电流双闭环调速系统		烷 仨 旦	
٥.			和与定 · ASR D.	A TD
0			ASK D.	AIK
9.	双闭环直流调速系统的		生队员 克西波丁胶队	άn.
			·速阶段 D.电流下降阶 - 44 B	爻
11.	下列不属于双闭环直流			
_	A. 饱和非线性控制	В.		d tardid
	2. 准时间最优控制		D. 饱和线性 □	生控制
12.	下列交流异步电动机的	调速方法中,应用最厂	的是	
	A. 降电压调速		B. 变极对数调速	
	2. 变压变频调速		串电阻调速	
	C. <mark>变压变频调速</mark> SPWM 技术中,调制波	皮是频率和期望波相同的	事电阻调速 勺	
13.	交压变频调速SPWM 技术中,调制涉A. 正弦波B.	皮是频率和期望波相同的 方波 C. 等	申电阻调速勺序腰三角波D. 锯	齿波
13.	变压变频调速SPWM 技术中,调制返A. 正弦波B. 下列不属于异步电动机	皮是频率和期望波相同的 方波 C.等 .动态数学模型特点的是	事电阻调速 勺 穿腰三角波 D. 锯 ¹	
13.	变压变频调速SPWM 技术中,调制返A. 正弦波B. 下列不属于异步电动机	皮是频率和期望波相同的 方波 C.等 .动态数学模型特点的是	申电阻调速勺序腰三角波D. 锯	
13. 14.	变压变频调速SPWM 技术中,调制返A. 正弦波B. 下列不属于异步电动机	b 是频率和期望波相同的 方波 C. 等 .动态数学模型特点的是 低阶 C. 非	事电阻调速 内 等腰三角波 D. 锯 と 卡线性 D. 强	
13. 14.	交压变频调速 SPWM 技术中,调制滤 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的	皮是频率和期望波相同的方波 C. 等 方波 C. 等 动态数学模型特点的是 KM 低阶 C. 引 中断服务子程序中中断	事电阻调速 内 等腰三角波 D. 锯 と 卡线性 D. 强	耦合
13.14.15.	交压变频调速 SPWM 技术中,调制涉A. 正弦波 B. 下列不属于异步电动机A. 高阶 B. 在微机数字控制系统的A. 故障保护 B. 比例微分的英文缩写是	皮是频率和期望波相同的方波 C. 等 方波 C. 等 动态数学模型特点的是 C. 事 低阶 C. 事 中断服务子程序中中断 PWM 生成 C. 事 E. 等 C. 每	事电阻调速 内 等腰三角波 D. 锯 上 上 D. 强 T级别最高的是 上流调节 D. 转速调	耦合
13.14.15.	交压变频调速 SPWM 技术中,调制涉A. 正弦波 B. 下列不属于异步电动机A. 高阶 B. 在微机数字控制系统的A. 故障保护 B. 比例微分的英文缩写是	皮是频率和期望波相同的方波 C. 等 方波 C. 等 动态数学模型特点的是 C. 事 低阶 C. 事 中断服务子程序中中断 PWM 生成 C. 事 E. 等 C. 每	事电阻调速 内 身腰三角波 D. 锯 上	耦合
13.14.15.16.	交压变频调速 SPWM 技术中,调制涉A. 正弦波 B. 下列不属于异步电动机A. 高阶 B. 在微机数字控制系统的A. 故障保护 B. 比例微分的英文缩写是	世 大波 C. 等 一 一 一 一 一 一 一 一 一 一 一 一 一	事电阻调速 方 序腰三角波 D. 锯 上 卡线性 D. 强 T级别最高的是 也流调节 D. 转速调 C. VR	耦合
13.14.15.16.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标	在	事电阻调速 方 序腰三角波 D. 锯 上 卡线性 D. 强 T级别最高的是 也流调节 D. 转速调 C. VR	耦合 月节 D. PID
13.14.15.16.17.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标	接是频率和期望波相同的 方波 C. 等 .动态数学模型特点的是 低阶 C. 非 中断服务子程序中中断 PWM 生成 C. 申 : B. PD :应以何时所能达到的数 B. 最高速	事电阻调速 方 等腰三角波 D. 锯 上 非线性 D. 强 折级别最高的是 电流调节 D. 转速调 C. VR 位的准	耦合 月节 D. PID
13.14.15.16.17.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字	成	事电阻调速 方 等腰三角波 D. 锯 上 非线性 D. 强 折级别最高的是 电流调节 D. 转速调 C. VR 位的准	耦合 引节 D. PID D. 任意速度
13.14.15.16.17.20.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字	接是频率和期望波相同的 方波 C. 等 动态数学模型特点的是 低阶 C. 非 中断服务子程序中中的 PWM 生成 C. 申 B. PD 最高速 過速方法不包括 B. T 法	中电阻调速 的 等腰三角波 D. 锯 上 上 上 上 大级别最高的是 已流调节 D. 转速调 C. VR 位值为准 C. 最低速 C. M/T法	耦合 引节 D. PID D. 任意速度
13.14.15.16.17.20.	文压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字 A. M 法	世 を と が た の た の た の た の た の の の た の の の の の の の の の の の の の	中电阻调速 的 等腰三角波 D. 锯 是 上 上 上 上 大级别最高的是 也流调节 D. 转速调 C. VR 位值为准 C. 最低速 C. M/T 法	耦合 引节 D. PID D. 任意速度 D. F法
13.14.15.16.17.20.21.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字 A. M法 转速电流双闭环调速系 A. ACR B.	世界	中电阻调速 的 等腰三角波 D. 锯 是 上 上 上 上 大级别最高的是 也流调节 D. 转速调 C. VR 位值为准 C. 最低速 C. M/T 法	耦合 D. PID D. 任意速度 D. F法 D. ATR
13.14.15.16.20.21.22.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字 A. M法 转速电流双闭环调速系 A. ACR B.	世 を を を を を を を を で で で で で で で で で で で で で	中电阻调速 好 等腰三角波 D. 锯岩 上 上 上 上 大级别最高的是 自流调节 D. 转速调 C. VR 位值为准 C. 最低速 C. M/T 法 C缩写是 ASR 本规律的叙述中,错误的	耦合 D. PID D. 任意速度 D. F法 D. ATR
13.14.15.16.20.21.22.	2. 变压变频调速 SPWM 技术中,调制波 A. 正弦波	度是频率和期望波相同的 方波	中电阻调速 的	耦合 D. PID D. 任意速度 D. F法 D. ATR
13.14.15.16.20.21.22.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. 平均速度 采用旋转编码器的数字 A. M 法 转速电流双闭环调速系 A. ACR B. 下列关于转速反馈闭环 A. 只用比例放大器的反	是频率和期望波相同的方波 C. 等。	中电阻调速 好	耦合 D. PID D. 任意速度 D. F法 D. ATR
13.14.15.16.20.21.22.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. With a public publi	是频率和期望波相同的 方波 C. 等 动态数学模型特点的是 中断服务子程序中中的 PWM生成 C. 明 。 B. PD 。 应以何时所能达到的 B. 最方法不包括 B. T法 统中转速调节器的英文 AVR C. 调速控制基础 证惯控制系统,其被调制不被反馈环节包围的 证据,是:抵抗扰动、服从结果。	中电阻调速 好	耦合 D. PID D. 任意速度 D. F法 D. ATR
13.14.15.16.20.21.22.	交压变频调速 SPWM 技术中,调制波 A. 正弦波 B. 下列不属于异步电动机 A. 高阶 B. 在微机数字控制系统的 A. 故障保护 B. 比例微分的英文缩写是 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. PI 调速系统的静差率指标 A. M法 转速电流双闭环调速系 A. ACR B. 下列关于转速反馈器、可以扩充。只用比例的反馈控制系统可以扩充。反馈控制系统的特度依赖于线 B. 反馈控制系统的特度依赖于线 C. 反馈控制系统的特度依赖于线	是频率和期望波相同的方波 C. 等。对态数学模型特点的是《性》 C. 引即中断服务子程序中中的PWM生成 C. 引起, B. PD。这以何时所能达到的数 B. 最方法不包括。我不包括。我不包括。我不包括。我不包括。我不是,我不被反馈环节包围,我们使还是。我们是,我们就会没有一种。	中电阻调速 好	耦合 D. PID D. 任意速度 D. F法 D. ATR 是

- A. 正弦波 B. 方波 **C. 等腰三角波 D.** 锯齿波 25. 下列不属于交流异步电动机动态数学模型特点的是 **B. 线性** C. 非线性 A. 高阶 D. 强耦合 26. 在微机数字控制系统的故障保护中断服务子程序中,工作程序正确的是 A. 显示故障原因并报警—分析判断故障—封锁 PWM 输出—系统复位 B. 显示故障原因并报警一封锁 PWM 输出一分析判断故障一系统复位 C. 封锁 PWM 输出一分析判断故障一显示故障原因并报警一系统复位 D. 分析判断故障—显示故障原因并报警—封锁 PWM 输出—系统复位 27. 正弦波脉宽调制的英文缩写是 A. PID B. PWM C. SPWM D. PD 29. 采用比例积分调节器的闭环调速系统一定属于 A. 无静差调速系统 B. 有静差调速系统 C. 双闭环调速系统 D. 交流调速系统 30. 异步电动机数学模型的组成不包括
 A. 电压方程
 B. 磁链方程
 C. 转矩方程
 D. 外部扰动
 二、填空题 常用的可控直流电源有 旋转交流机组、静止式可控整流器、直流斩波器或脉宽调制变换器 2. 调速系统的稳态性能指标包括 调速范围 和 静差率 3. 反馈控制系统的作用是: 抵抗扰动, 服从给定 4. 当电流连续时,改变控制角,V-M系统可以得到一组 平行的 机械特性曲线。 5. 常见的调速系统中,在基速以下按 **恒转矩调速方式**,在基速以上按 **恒功率调速方式** 6. 自动控制系统的动态性能指标包括对给定输入信号的跟 随性能指标 和对扰动输入信号的 抗扰性能指标 7. 电力牵引设备上最先进的可控直流电源是 直流斩波器或脉宽调制变换器 8. SPWM 控制技术包括 单极性控制 和 双极性控制 两种方式。 ____、电磁脉冲测速器. 9. 常见的转速检测装置有 测速发电机、 旋转编码器 10. VVVF 控制是指逆变器输出 电压 和 频率 可变的控制。 12. 电流截止负反馈的作用是 限流 13. 负反馈的作用是 抵制扰动 14. 静态环流可以分为 直流平均环流 和 瞬时脉动环流 15. 自动控制系统的动态性能指标包括对给定输入信号的 **跟随性能指标** 和对扰动输入信号的 抗扰性能指标。 16. PWM 变换器可以通过调节 电力电子开关 来调节输出电压。 18. PWM 逆变器根据电源类型不同可以分为 电压型 和 频率型 20. 转速单闭环直流控制系统可以通过引入 电流环 控制以提高系统动态性能。 21. 转速电流双闭环调速系统在启动过程中,转速调节器 ASR 将经历 不饱和 、饱和、退饱和 三种情况。
 - 22. 交流调速的基本类型中最好的一种节能省力型调速方案是变压变频调速
 - 24. 无静差直流调速系统的实质是调节器包含 比例积分 环节。
 - 25. 比例积分控制综合了比例控制和积分控制两种规律的优点, **比例** 部分能迅速响应控制作用。
 - 28. 电流调节器可以对电网电压的波动起 及时抗扰 的作用。
 - 2. 双闭环调速系统中,在恒流升速阶段时,两个调节器的状态是(A)。
 - (A) ASR 饱和、ACR 不饱和(B) ACR 饱和、ASR 不饱和(C) ASR 和 ACR 都饱和(D) ACR 和 ASR 都不饱和
 - 5. 无静差调速系统中,调节器一般采用(C)调节器。
 - (A) P 调节器 (B) PD 调节器 (C) PI 调节器
 - 8. 在速度负反馈单闭环调速系统中, 当下列(C)参数变化时系统无调节能力。
 - (A) 放大器的放大倍数 Kp (B) 负载变化

(C) 转速反馈系数

- (D) 供电电网电压
- 10. 为了增加系统响应的快速性,我们应该在系统中引入(\mathbf{A})环节进行调节。 (\mathbf{A}) 比例 (\mathbf{B}) 积分 (\mathbf{C}) 微

6. PID 控制器各环节的作用是什么?

答: PID 控制器各环节的作用是:

- (1)比例环节 P: 成比例地反映控制系统的偏差信号,偏差一旦出现,控制器立即产生控制作用,以便减少偏差,保证系统的快速性。
- (2) 积分环节 I: 主要用于消除静差,提高系统的控制精度和无差度。
 - (3) 微分环节 D: 反映偏差信号的变化趋势,并能在偏差信号变得过大之前,在系统中引入一个早期修正信号,从而加快系统的动作速度,减少调节时间。

三、名词解释题

分

1. V-M 系统

晶闸管-电动机调速系统

3. 静差率

负载由理想空载增加到额定值所对应的转速降落与理想空载转速的比

4. ASR

转速调节器

5. 测速方法的分辨率

衡量一种测速方法对被测转速变化的分辨能力

6. PWM

可逆脉冲宽度调制

7. 直接转矩控制

利用转矩反馈直接控制电机的电磁转矩

8. 调速范围

电动机提供的最高转速与最低转速之比

9. ACR

电流调节器[]';

- 10. 测速误差率
- 15. 调节器的设计过程可以简化为哪两步?
- 1.选择调节器的结构
- 2.选择调节器的参数
- 1、带有比例调节器的单闭环直流调速系统,如果转速的反馈值与给定值相等,则调节器的输出为(A)。
- A、零B、大于零的定值C、小于零的定值D、保持原先的值不变
- 2、无静差调速系统的PI 调节器中P 部份的作用是(D)。
- A、消除稳态误差 B、不能消除稳态误差也不能加快动态响应
- C、既消除稳态误差又加快动态响应D、加快动态响应
- 3、异步电动机变压变频调速时,采用(B)控制方式,可获得一线性机械特性。
- A、U1/f1=常值 B、Eg/f1=常值 C、Es/f1=常值 D、Er/f1=常值
- 4、一般的间接变频器中, 逆变器起(B)作用。
- A、调压 B、调频 C、调压与逆变 D、调频与逆变
- 5、转差频率控制变频调速系统的基本思想是控制(C)。
- A、电机的调速精度 B、电机的动态转矩 C、电机的气隙磁通 D、电机的定子电流
- 三、简答题(每小题10分,共40分)
- 1、调速范围和静差率的定义是什么?

2、简述恒压频比控制方式。

答: 绕组中的感应电动势是难以直接控制的,当电动势值较高时,可以忽略定子绕组的漏磁 阻抗压降,而认为定子相电压 Us \approx Eg,则得1 Us f=常值

这是恒压频比的控制方式。但是,在低频时 Us 和 Eg 都较小,定子阻抗压降所占的份量就 比较显著,不再能忽略。这时,需要人为 地把电压 Us 抬高一些,以便近似地补偿定子压降。

- 3、转速、电流双闭环调速系统稳态运行时,两个调节器的输入偏差电压和输出电压各是多少? 为什么?
- 答: 当两个调节器都不饱和时,它们的输入偏差电压和输出电压都是零,转速调节器ASR 的输出限幅电压Uim 决定了电流给定电压的最大值;电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压Udm。
- 4、单闭环调速系统的基本特征。
- 答: (1) 具有比例放大器的单闭环调速系统是有静差的。(2) 闭环系统具有较强的抗干扰性能反馈闭环系统具有很好的抗扰性能,对于作用在被负反馈所包围的前向通道上的一切扰动都能有效地抑制。(3) 闭环系统对给定信号和检测装置中的扰动无能为力。
 - 1、调速系统的静差率指标应以最低速时所能达到的数值为准。
 - 2、电流调节器可以对电网电压的波动起及时抗扰的作用。
 - 3、反馈控制系统的作用是:抵抗扰动,服从给定。
 - 4、双闭环直流调速系统的起动过程包括:①转速调节阶段;②<u>电流上升阶段</u>;③<u>恒流升速阶段</u>。
 - 5、交流异步电动机动态数学模型特点有**高阶、非线性、强耦合**。
 - 6、常见的可控直流电源有<u>旋转交流机组、静止式可控整流器、直流斩波器(或脉宽调制变换器)</u>。
 - 7、PWM 变换器可以通过调节**电力电子开关**来调节输出电压。
 - 8、转速、电流双闭环调速系统中转速调节器的英文缩写是 ASR。
 - 二、选择题(每小题 2 分, 共 20 分)
 - 1、异步电动机数学模型的组成不包括(**D**)。
 - A、电压方程 B、磁链方程 C、转矩方程 D、外部扰动
 - 2、控制系统能够正常运行的首要条件是(B)。
 - A、抗扰性 B、稳定性 C、快速性 D、准确性
 - 3、SPWM 技术中,载波是频率比期望波高得多的(C)。
 - A、正弦波 B、方波 C、等腰三角波 D、锯齿波
 - 4、常用的数字滤波方法不包括(D)。
 - A、算术平均值滤波 B、中值滤波 C、中值平均滤波 D、几何平均值滤波
- 5、在电机调速控制系统中,系统无法抑制(B)的扰动。
 - A、电网电压 B、电机励磁电压变化 C、给定电源变化 D、运算放大器参数变化
 - 6、在速度负反馈单闭环调速系统中,当下列(C)参数变化时系统无调节能力。
 - A、放大器的放大倍数 K。 B、负载变化 C、转速反馈系数 D、供电电网电压
 - 7、采用比例积分调节器的闭环调速系统一定属于(A)。
 - A、无静差调速系统 B、有静差调速系统 C、双闭环调速系统 D、交流调速系统
 - 8、双闭环调速系统在稳定运行时,控制电压 U_{ct} 的大小取决于(C)。
 - A、Idl B、n C、n和Idl D、α和β
 - 9、下列不属于双闭环直流调速系统启动过程特点的是(D)。
 - A、饱和非线性控制 B、转速超调 C、准时间最优控制 D、饱和线性控制
 - 10、在交一直一交变频装置中, 若采用不控整流, 则 PWN 逆变器的作用是(C)。
 - A、调压 B、调频 C、调压调频 D、调频与逆变

三、判断题(每小题 2 分, 共 10 分)

- 1、调速范围是指电动机提供的最低转速与最高转速之比。 (×)
- 2、在无静态调速系统中的 PI 调节器中, P 部分的作用是加快动态响应。 (✓)
- 3、微机数字调速系统中,采样频率应小于信号最高频率的2倍。 (×)
- 4、当闭环系统开环放大系数大于系统的临界放大系数时,系统将不稳定。 (✓)
- 5、正弦波脉宽调制的英文缩写是 PWM。

四、简答题(每小题 5 分, 共 20 分)

- 1、在《电力拖动及其自动控制系统》这门课程中如何对其定义?其基本任务是什么?
- 答:在《电力拖动及其自动控制系统》这门课程中对其定义如下:具有自动控制和调节工作机械的速度或位移的电力拖动系统称为"电力拖动自动控制系统",或者"运动自动控制系统"。其基本任务是通过控制和调节电动机的旋转速度或转角来实现工作机械对速度或位移的要求。
- 2、ACR 的是什么的英文缩写?调节器的设计过程可以简化为哪两步?
- 答: ACR 的是电流调节器的英文缩写。

两步: ①选择调节器的结构; ②选择调节器的参数。

- 3、PID 控制器中的 P、I、D 分别代表什么环节?并说明 I 环节的作用。
- 答: PID 控制器中的 P、I、D 分别代表比例环节、积分环节、微分环节。其中 I 环节的作用是消除静差,提高系统的控制精度和无差度。

4、简述泵升电压产生的原因及其抑制措施。

答: 泵升电压产生的原因: 采用二极管整流获得直流电源时, 电机制动时不能回馈电能, 只好对滤波电容充电, 使电容两端电压 升高,产牛泵升申压。

泵升电压抑制措施: 电容器吸收动能; 镇流电阻消耗动能; 并接逆变器。

五、计算题(每小题 15 分, 共 30 分)

1、(15 分) 有一 V-M 系统: 电动机 Pnom=2.5kw, Un=220V, In=15A, nn=1500r/min, Rs=2Ω, Rrec=1Ω, Ks=30, 要求调速范围 D=20, 静差率 s=20%。求:(1)计算开环系统的速降和允许的静态速降;(2)采用转速负反馈,当给定电压为 20V、转速 为 1000r/min 时, 计算放大器的放大倍数。

$$\Delta n_{op} = I_n \times \frac{R_{\Sigma}}{C_s} = 354.3 (V/(r/min))$$

解: (1) 开环系统的速降为

$$\Delta n_{c1} = \frac{n_n \times s}{D \times (1-s)} = 8.33(r/min)$$

允许的静态速降为

$$C_e = \frac{U_n - I_n R_a}{n_n} = 0.127 (V/(r/min))$$

$$K = \frac{\Delta n_{op}}{\Delta n_{c1}} - 1 = 44.54$$
(2) 计算放大器的放大倍数
$$K_P = \frac{K \times C_e}{K_s \times \alpha} = 8.79$$

2、(15 分) 有一转速负反馈单闭环 V-M 有静差直流调速系统,其系统稳态结构框图如下图所示,试利用此图推导其静特性 方程。

解: 电压比较环节: $\Delta U_n = U_n^* - U_n$,放大器: $U_c = K_p \Delta U_n$,电力电子变换器: $U_{d0} = K_s U_c$ $n = \frac{U_{d0} - I_d R}{C_e}$, 测速反馈环节: $U_n = \alpha n$

调速系统开环机械特性:

$$n = \frac{K_{P}K_{S}U_{n}^{*} - I_{d}R}{C_{e}\left(1 + \frac{K_{P}K_{S}\alpha}{C_{e}}\right)} = \frac{K_{P}K_{S}U_{n}^{*}}{C_{e}(1 + K)} - \frac{I_{d}R}{C_{e}(1 + K)}$$

削去中间变量的静特性方程:

- 2-1 在转速、电流双闭环调速系统中, 若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数 Kn 行不行? 改变电力电子 变换器的放大倍数 Ks 行不行? 改变转速反馈系数 α 行不行?若要改变电动机的堵转电流,应调节系统中的哪些参数?
- 答: ① 在转速、电流双闭环调速系统中, 若要改变电动机的转速,应调节的参数有: 转速给定电压 U*n, 因为转速反馈系统的转速 输出服从给定。
- ② 改变转速调节器的放大倍数 Kn,只是加快过渡过程,但转速调节器的放大倍数 Kn 的影响在转速负反馈环内的前向通道上, 它引起的转速变化,系统有调节和抑制能力。因此,不能通过改变转速调节器的放大倍数 Kn,来改变转速
- ③ 改变改变电力电子变换器的放大倍数 Ks, 只是加快过渡过程, 但转电力电子变换器的放大倍数 Ks 的影响在转速负反馈环内的 前向通道上,它引起的转速变化,系统有调节和抑制能力。因此,不能通过改变电力电子变换器的放大倍数 Ks,来改变转速
- ④ 改变转速反馈系数α,能改变转速。转速反馈系数α的影响不在转速负反馈环内的前向通道上,它引起的转速变化,系统没有 调节和抑制能力。因此,可以通过改变转速反馈系数α来改变转速,但在转速、电流双闭环调速系统中稳定运行最终的转速还是服从 给定。
- ⑤ 若要改变电动机的堵转电流,应调节系统中的参数有:转速的给定 U*n、转速调节器的放大倍数 Kn、转速调节器的限幅值、转 速反馈系数 α 等, 因为它们都在电流环之外。

2-2 在转速、电流双闭环调速系统稳态运行时,两个调节器的输入偏差电压和输出电压各是多少? 为什么?

答:在转速、电流双闭环调速系统中稳定运行时,转速调节器退饱和,PI的作用使得转速调节器的输入偏差电压为 0,转速调节 器的输出电压由于维持在 U^*_{im} (n^*) 。

在转速、电流双闭环调速系统中稳定运行时,电流调节器不饱和,PI 的作用使得电流调节器的输入偏差电压为 0,形成一个电流 随动子系统,力图使 Id 尽快跟随其给定 U*i. 电流调节器的输出电压 Uc 又后面的环节决定。

2-3 在转速、电流双闭环调速系统的转速调节器不是 PI 调节器,而是 P 调节器,对系统的静、动态性能将会产生什么影响?

答: 在转速、电流双闭环调速系统中,转速调节器采用 P 调节器,整个系统成为一个有静差的系统。

转速调节器不饱和,一直处于主导地位;电流调节器不饱和,形成一个电流随动子系统,无法形成在最大电流下在最短时间内使速度上升/下降最快,动态响应较慢。

- 2-4 试从下述五个方面来比较转速、电流双闭环调速系统和带电流截止环节的转速单闭环调速系统:
- ① 调速系统的静态性能; ② 动态限流性能; ③ 启动的快速性
- ④ 抗负载扰动的性能; ⑤ 抗电源波动的性能

答:

① 调速系统的静态性能:

在转速、电流双闭环调速系统中,转速调节器采用 PI 调节器,整个系统成为一个无静差的系统。 带电流截止环节的转速单闭环调速系统中,转速调节器采用 PI 调节器,整个系统成为一个无静差的系统。

② 动态限流性能:

在转速、电流双闭环调速系统中,电流调节器采用 PI 调节器,将电流限制在 Idm 内。带电流截止环节的转速单闭环调速系统中,将电流限制在 Idcr-Idbl 内。

③ 启动的快速性:

在转速、电流双闭环调速系统在启动/制动过程中,转速调节器饱和,电流调节器在最大电流 I_{dm} 附近进行 PI 调节,时间最短,提高了启动/制动的快速性。

带电流截止环节的转速单闭环调速系统中,在启动/制动过程中,当电流大于截止电流 Ider 时,电流调节器起作用,并不是在最大电流附近进行调节,启动/制动的快速性较差。

④ 抗负载扰动的性能:

在转速、电流双闭环调速系统中,负载扰动在转速外环中,负载扰动作用在电流环之后,因此只能靠转速调节器 ASR 来产生抗负载扰动的作用。在设计 ASR 时,应要求有较好的抗扰性能指标。

带电流截止环节的转速单闭环调速系统中,负载扰动立即引起电流变化,当电流大于截止电流 Ider 时, 电流调节器起作用,可以进行调节。

⑤ 抗电源波动的性能

在转速、电流双闭环调速系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗电源波动的性能大有改善。在电流截止环节的转速单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电源电压扰动的性能要差一些。

2-5 在转速、电流双闭环调速系统中,两个调节器均采用 PI 调节器。当系统带额定负载运行时,转速反馈线突然断线,当系统重新进入稳定运行时电流调节器的输入偏差信号ΔUi 是否为零?

答:在转速、电流双闭环调速系统中,两个调节器均采用 PI 调节器。当系统带额定负载运行时,转速反馈线突然断线,转速调节器 反馈电压突变为为 0,转速调节器输入偏差突变为最大,转速调节器(PI 调节器)饱和,转速开环,系统变为电流单闭环调节。转速调节器的输出突变为正极限值 U^*_{im} ,电流调节器的输入偏差变大,电流调节器为 PI 调节器作用,直至进入新的稳定状态,电流无静差。当重新进入稳定运行时,电流调节器(PI 调节器)的输入偏差信号 ΔU_i 为零。

2-6 在转速、电流双闭环调速系统中, 给定信号 U*n 未变, 增加转速反馈系数α, 系统稳定后转速反馈电压 Un 是增加、减小还是不变?

答:在转速、电流双闭环调速系统中,给定信号 U^* n 未变,增加转速反馈系数 α ,转速调节器反馈电压增加,转速调节器输入偏差变大,转速调节器输出变大即电流调节器给定变大,电流调节器输入偏差变大,电流调节器输出变大即电机电流变大,进入重新调节阶段。系统稳定后,转速、电流无静差。转速调节器输入偏差为 0,转速反馈电压 U_n 等于转速给定信号 U^* n,不变。

- 2-7 在转速、电流双闭环调速系统中,两个调节器均采用 PI 调节器。已知电动机参数为: P_N =3.7KW, U_N =220V, I_N =20A, I_N =1000r / I_N =1000r / I_N =11.5Ω, I_N =11.5Ω, I_N =11.5Ω, I_N =12.5Ω, I_N =12.5Ω, I_N =12.5Ω, I_N =12.5Ω, I_N =13.7KW, I_N =2.5Ω, I_N =2.5Ω $I_$
 - ① 电流反馈系数β和转速反馈系数α
 - ② 当电动机在最高转速发生堵转时的 Udo、U*I、Ui、Uc值.

解: ① 稳态运行时,转速调节器不饱和,输入偏差为 0,
$$\alpha = \frac{U_n^*}{n} = \frac{U_{nm}^*}{n}$$
 8/1500=0.0056

稳态运行时,电流调节器不饱和,输入偏差为 0, $\beta = \frac{U_{i}^{*}}{n} = \frac{U_{im}^{*}}{i_{dm}} = 8/40 = 0.2$

② 当电动机在最高转速发生堵转时, 电枢回路最大电流 I_{dm}=40A,

电流调节器反馈电压最大 U*im=8V,

电流调节器输入偏差最大大,电流调节器饱和,输出最大 U*cm=8V,电流开环.

经过电力电子变换器后的 Udo= Ks*Uc =40*8=320V.,

电机转速很小;几乎为 0,转速反馈电压很小,转速调节器输入偏差很大,转速调节器饱和,转速开环,转速调节器输出 $\mathbf{U}^*_{im}=\mathbf{8V}$.

- 2-8 在转速、电流双闭环调速系统中, ASR、ACR 两个调节器均采用 PI 调节器。当 ASR 的输出达到 U*im=8V 时,主电路电流达到最大电流 80A,当负载电流由 40A 增加到 70A,试问:
 - ① U*1如何变化? ② Uc如何变化? ③ Uc值.由哪些条件决定?
- 答:① 在转速、电流双闭环调速系统中,ASR、ACR 两个调节器均采用 PI 调节器。当 ASR 的输出达到 $U^*_{im}=8V$ 时,ASR 饱和不起作用; 主电路电流达到最大电流 80A,电流调节器的给定电压 $U^*_{im}=8V$ 最大保持不变,
- ② 当负载电流由 40A 增加到 70A, 电流调节器反馈电压 Ui 增加, 电流调节器的输入偏差电压减小, 电流调节器的输出电压 Ui 减小.
- ③ Uc值.由:电流调节器的输入偏差电压(电流调节器的给定电压 U*i-电流调节器反馈电压)、条电流调节器的比例放大系数、电流调节器积分时间常数以及电机的运行状态等条件决定。
- 2-9 在转速、电流双闭环调速系统中,电动机拖动恒转矩负载在额定工作点正常运行,现因某种原因使电动机励磁电源突然下降一半,系统工作情况会如何变化?写出 U_{do} 、 U_{i}^* 、 U_c 、 I_d 、n 在系统重新进入稳定后的表达式。

答:在转速、电流双闭环调速系统中,电动机拖动恒转矩负载在额定工作点正常运行,现因某种原因使电动机励磁电源突然下降一半,电机的电磁转矩减小为原来的一半,转速下降,转速调节器反馈电压 Un减小,转速调节器的输入偏差电压增大,转速调节器的输出电压即电流调节器的给定电压 U*i增大.电流调节器的输出电压 Uc增大,转速上升,达到新的稳定。

在系统重新进入稳定后 Udo=

 $\mathbf{U}^*_{\mathbf{i}}=$

U_c=

 $I_d =$

n=

- 2-10 某反馈控制系统已校正成典型 I 型系统。已知时间常数 T=0.1S, 要求阶跃响应超调量 σ ≤10%
 - ① 求系统的开环增益; ② 计算过渡过程时间 t_s 和上升时间 t_r
 - ③ 画出开环对数特性。如要求上升时间 $t_r < 0.25s$,则 K=?, $\sigma=?$
- 解: ① 典型 I 型系统 W (S) = $\frac{K}{S(TS+1)}$ T=0.1S 阶跃响应超调量 $\sigma \leq 10\%$

当 $w_{\rm c} < 1/T$ 时,的幅频特性以 $-20{
m dB/dec}$ 斜率穿越零分贝线,系统有较好的稳定性。**系统的开环增益 K=** $w_{\rm c}$ 截止频率 KT=0.5 K=5

②过渡过程时间
$$\mathbf{t}_{s} = \frac{3}{\xi \omega_n} = 6\mathbf{T} = 0.6\mathbf{S}$$

上升时间
$$\mathbf{t}_{r=}\frac{2\xi T}{\sqrt{1-\xi^2}}(\pi-\arccos\xi)$$
 取 ξ =0.707

2-11 有一个系统,其控制对象的传递函数为 $W_{obj}(S) = \frac{k1}{TS+1} = \frac{10}{0.01S+1}$,要求设计一个无静差系统,在阶跃输入下系统**超调量** $\sigma \leq 5\%$ (按线性系统考虑),试决定调节器的结构,并选择其参数。

解: 要求设计一个无静差系统, 调节器结构选用 I 调节器, $W_I(S) = \frac{k_I}{S}$,

$$W_{I}(S) W_{obj}(S) = \frac{10K_I}{S(0.01S+1)}$$
 为典型 I 型系统.

查典型 I 型系统阶跃输入跟随性能指标表可知**超调量 \sigma \leq 5\%, K_T = 0.5** K = 50 $K_I = 5$

2-12 有一个系统,其控制对象的传递函数为 $W_{\text{obj}}(S) = \frac{k1}{S(TS+1)} = \frac{10}{S(0.02S+1)}$,要求校正为典型 II 型系统,在阶跃输入下系统**超调**

量σ≤25%(按线性系统考虑),试决定调节器的结构,并选择其参数。

解:要求校正为典型 II 型系统,调节器结构选用 PI 调节器,

$$W_{PI}(S) = \frac{k_{PI}(\tau_1 S + 1)}{\tau_1 S}, \quad \tau_1 = hT = 7*0.02 = 0.14S$$

$$W_{PI}(S) W_{obj}(S) = \frac{51.2(0.18S+1)}{S^2(0.02S+1)}$$
 为典型 II 型系统.

查典型Ⅱ型系统阶跃输入跟随性能指标表可知超调量 σ ≤30%, h=7

2-13 调节对象的传递函数为 $W_{obj}(S) = \frac{18}{(0.25S+1)(0.02S+1)}$,要求分别校正成典型 I 型系统和典型 I 型系统,求调节器的结构和参数。

解:① 要求校正为典型 I 型系统,调节器结构选用 PI 调节器,

$$W_{PI}(S) = \frac{k_{PI}(\tau_1 S + 1)}{\tau_1 S}, \quad \tau_1 = T1 = 0.25S$$

② 要求校正为典型 Π 型系统,调节器结构选用 Π 调节器,认为 $\frac{1}{T_1S+1} \approx \frac{1}{T_1S}$ $T_1>>T_2$

$$W_{PI}(S) = \frac{k_{PI}(\tau_1 S + 1)}{\tau_1 S}$$
, $\tau_1 = hT_2$ 一般取 h=5 $\tau_1 = hT_2 = 5*0.02 = 0.1S$

2-14 在一个由三相零式晶闸管整流装置供电的转速、电流双闭环调速系统中,已知电动机额定参数: P_N =360KW, U_N =220V, I_N =308A, I_N =1000r / min,电动势系数 Ce=0.196V. min / r, 主回路总电阻 R=0.18Ω,触发整流环节的放大倍数 Ks=35,电磁时间常数

 T_{l} =0.012S, 机电时间常数 T_{m} =0.12S,电流反馈滤波时间常数 T_{0i} =0.0025S 转速反馈滤波时间常数 T_{0i} =0.015S. 额定转速时给定电压 $U(^{*}_{n})_{N}$ =10V, 调节器 ASR、ACR 饱和输出电压 U^{*}_{im} =8V, U_{cm} =6.5V,

系统的静、动态指标为: 稳态无静差,调速范围 D=10, 电流超调量 σ_i<5%, 空载启动到额定转速时的转速超调量 σ_n<5%, 试求:

- ① 电流反馈系数β(假定启动电流限制在 339A 以内)和转速反馈系数α
- ② 试设计电流调节器 ACR, 计算其参数 R_i 、 C_i 、 C_{oi} ,画出其电路图 (调节器输入回路电阻 R_{o} =40 $K\Omega$
- ③ 设计转速调节器 ASR, 计算其参数 R_n 、 C_n 、 C_{on} , R_0 =40 $K\Omega$
- ④ 计算电动机带 40%额定负载启动到最低转速时的转速超调量 σn
- ⑤ 计算空载启动到额定转速的时间
- 解: ① 稳态运行时,电流调节器不饱和,输入偏差为 0, $\beta = \frac{U_i^*}{n} = \frac{U_{im}^*}{i_{dm}} = 8/339 = 0.024$

稳态运行时,转速调节器不饱和,输入偏差为 0, $\alpha = \frac{U_n^*}{n} = \frac{U_{nm}^*}{n_N} = 10/1000 = 0.001$

- ② * 电磁时间常数 $T_{i=0.012S}$,三相零式晶闸管整流装置的平均失控时间 $T_{s=0.0033S}$,电流反馈滤波时间常数 $T_{0i=0.0025S}$ 电流 环的小时间常数 $T_{0i=1.00033}$ + 0.0025=0.0058S,
 - *根据设计要求:稳态无静差,电流超调量σ_i≤5%,因此可按典型Ⅰ型系统设计,电流调节器选用PI型。检查对单源电压的抗

扰性: $\frac{T_L}{T_{\Sigma i}}$ =0.012/0.0058=6.13, 参考典型 I 型系统的动态抗扰性能,各项指标是可以接受的.

* ACR 超前时间常数: τ i=Ti=0.012S

电流环开环增益:要求σ_i≤5%时,应取 K_IT_{Σi}=0.5,因此

 $K_I=0.5/T_{\Sigma I}=0.5/0.0058=86.2 S^{-1}$

于是,ACR 的比例系数为: $K_i = \frac{K_I \tau_i R}{K_s \beta}$ =(86.2*0.012*0.18)/(0.024*38)=0.222

*根据电流调节器原理图,取 R0=40KΩ,则

 $R_i=K_iR_0=0.222*40=8.88KΩ$ (Ψ 9ΚΩ)

 $C_i = \tau_i / R_i = 0.012 / 9 = 1.3 \,\mu\text{F}$ ($\mathbb{R} \ 1.3 \,\mu\text{F}$)

 C_{oi} = $4\tau_i/R_0$ =4*0.012/40= $0.2\,\mu F$ (取 $0.2\,\mu F$)

③ * 电流环等效时间常数为 $2T_{\Sigma I}$ =0.0116S,转速反馈滤波时间常数 T_{on} =0.015S 转速环最小时间常数 $T_{\Sigma I}$ =2 $T_{\Sigma I}$ + T_{on} =0.0266S,机电时间常数 T_{m} =0.12S,

电动势系数 Ce=0.196V. min / r,

- * 由于设计要求无静差,转速调节器必须有积分环节;又跟据动态要求,空载启动到额定转速时的转速超调量 σ n ≤ 5%,应按典型 II 型系统设计转速环。故 ASR 选用 PI 调节器.
- * 按跟随和抗扰性能都较好的原则,取 h=5,则 ASR 的超前时间常数为

$$\tau_{n}\!\!=\!\!hT_{\Sigma n}\!\!=\!\!5\!*\!0.0266\!\!=\!\!0.133S$$

$$K_{N} = \frac{h+1}{2h^2 T_{\Sigma n}^2} = \frac{5+1}{2 \times 5^2 \times 0.0266^2} = 169.6$$

$$K_{n} = \frac{(h+1)\beta C_{e}T_{m}}{2h\alpha RT_{y_{m}}} = \frac{(5+1)\times0.024\times0.196\times0.12}{2\times5\times0.001\times0.18\times0.0266} = 70.74$$

* 由转速调节器的原理图可知,取 R_0 =40 $K\Omega$,则

 $R_n=K_n*R_0=70.7*40=2828KΩ$ ($R_n=2830KΩ$)

 $C_n = \tau_n/R_n = 0.133/2830 = 0.047 \mu F$ ($\mathbb{R} C_n = 0.05 \mu F$)

 $C_{on}=4T_{on}/R_0=4*0.015/40=1.5\mu F$ ($\mathbb{R} C_{on}=1.5\mu F$)

④ 计算电动机带 40%额定负载启动到最低转速时的转速超调量 σ_n

当 h=5 时, (Δ cmax/Cb) %=81.2%, 而

 $\Delta \ nnom=IdnomR/Ce=1.2*9.5/0.113=100.9r/min$ $\sigma \ n\%=81.2\%*2*1.5*100.9*0.0274/(1600*0.1)=4.24\%<10\%$

- ⑤ 计算空载启动到额定转速的时间
- 2-15 有一个转速、电流双闭环调速系统,主电路采用三相桥式整流电路,已知电动机额定参数: P_N =555KW, U_N =750V, I_N =760A, n_N =375r / min,电动势系数 Ce=1.82V. min / r,主回路总电阻 R=0.14 Ω ,允许电流过载倍数 λ =1.5,触发整流环节的放大倍数 Ks=75,电磁时间常数 T_i =0.03S,机电时间常数 T_m =0.112S,电流反馈滤波时间常数 T_i =0.002S 转速反馈滤波时间常数 T_i =0.02S. 设调节器输入电压 U^*_{nm} = U^*_{im} = U_{cm} =10V,调节器输入回路电阻 R_0 =40 $K\Omega$

设计指标: 稳态无静差, 电流超调量 σ i \leq 5%, 空载启动到额定转速时的转速超调量 σ n \leq 10%, 可电流调节器已按典型 I 型系统设计,并取参数 KT=0.5, 试求:

- ① 选择转速调节器 ASR 结构, 计算其参数 Rn、Cn、Con, Ro=40KΩ
- ② 计算电流环的截止频率 w_{c} 和转速环的截止频率 w_{n} ,并考虑他们是否合理.

解: ① * 电流调节器已按典型 I 型系统设计,并取参数 KT=0.5,由于设计要求无静差,转速调节器必须有积分环节;又跟据动态要求,空载启动到额定转速时的转速超调量 σ_n ≤10%,应按典型 II 形系统设计转速环。故 ASR 选用 PI 调节器.

* 三相桥式晶闸管整流装置的平均失控时间 Ts=0.00167S,

电流环最小时间常数 $T_{\Sigma i}$ = T_S + T_Oi =0.00167+0.002=0.0037S

转速环最小时间常数 T_{Σn}=2T_{ΣI}+T_{on}=2*0.0037+0.02=0.0274S

按跟随和抗扰性能都较好的原则,取 h=5,则 ASR 的超前时间常数为

$$\tau_{n}=hT_{\Sigma n}=5*0.0274=0.137S$$

$$K_N = \frac{h+1}{2h^2 T_{\Sigma_n}^2} = \frac{5+1}{2\times 5^2 \times 0.0137^2} = 87.6$$

$$\alpha = \frac{U_n^*}{n} = \frac{U_{nm}^*}{n_N} = 10/375 = 0.027 \qquad \beta = \frac{U_i^*}{n} = \frac{U_{im}^*}{i_{dm}} = 10/*1.5*760 = 0.009$$

$$K_{n} = \frac{(h+1)\beta C_{e}T_{m}}{2h\alpha RT_{\Sigma n}} = \frac{(5+1)\times0.009\times0.196\times0.12}{2\times5\times0.027\times0.18\times0.0137} = 1.9$$

* 由转速调节器的原理图可知,取 R₀=40KΩ,则

$$R_n=K_n*R_0=1.9*40=76KΩ$$
 ($Ψ R_n=76KΩ$)

$$C_n = \tau_n/R_n = 0.137/76 = 1.8 \mu F$$
 (取 $C_n = 1.8 \mu F$)
 $C_{on} = 4 T_{on}/R_0 = 4 * 0.02/40 = 2 \mu F$ (取 $C_{on} = 2 \mu F$)

② 计算电流环的截止频率 w_c 的计算和验证如下:

根据设计要求: 稳态无静差, 电流超调量 σ i≤5%, 因此可按典型 I 型系统设计, 电流调节器选用 PI 型。检查对单源电压的抗扰

性: $\frac{T_L}{T_{\Sigma}}$ =0.03/0.0037=8.11〈10 参考典型 I 型系统的动态抗扰性能,各项指标是可以接受的.

* ACR 超前时间常数: τ_i=T_i=0.03S, 要求 σ_i≤5%时, 应取 K_iT_{Σi}=0.5,因此

$$K_I=0.5/T_{\Sigma I}=0.5/0.0037=135.1 \text{ S}^{-1}$$

电流环截止频率 ω ci=KI=135.1 1/s

晶闸管装置传递函数近似条件: 1/3Ts=1/(3×0.0017)=196.11/s>ωc,满足近似条件。

忽略反电动势对电流环的影响的条件:

小时间常数近似处理条件:
$$\frac{1}{3}\sqrt{\frac{1}{T_sT_{oi}}} = \frac{1}{3}\sqrt{\frac{1}{0.017\times0.02}} = 180.8 \text{ S}^{-1}>\omega c$$
 满足近似条件。

和转速环的截止频率 $w_{\rm n}w_{\rm c}$ 的计算和验证如下:

转速环截止频率为: ω n=K_N/ωi=K_Nτ_n=87.6*0.137=12 S⁻¹

电流环传递函数简化条件:
$$\frac{1}{3}\sqrt{\frac{K_I}{T_{\Sigma i}}} = \frac{1}{3}\sqrt{\frac{135.1}{0.0037}} = 63.7 \text{ S}^{-1} > \omega_n$$
满足简化条件。

转速环小时间常数近似处理条件:
$$\frac{1}{3}\sqrt{\frac{K_I}{T_{on}}} = \frac{1}{3}\sqrt{\frac{135.1}{0.02}} = 27.4 > \omega_n$$
, 满足近似条件。

- 2-16 在一转速、电流双闭环 V-M 系统中, 转速调节器 ASR、电流调节器 ACR 均采用 PI 调节器。
- ① 在此系统中,当转速给定信号最大值 $U^*_{nm}=15V$, $n=n_N=1500r$ / min; 电流给定信号最大值 $U^*_{im}=10V$,允许最大电流 $I_{dm}=30A$,电枢回路总电阻 $R=2\Omega$,晶闸管装置的放大倍数 $K_{S}=30$,电动机的额定电流 $I_{N}=20A$,电动势系数 $C_{S}=0.128V$. min / r,现系统在 $U^*_{n}=5V$, $I_{dL}=20A$ 时稳定运行,求此时的稳态转速 n=?,ACR 的输出电压 $U_{C}=?$
- ② 当系统在上述情况下运行时,电动机突然失磁(ϕ =0), 系统将会发生什么现象?试分析并说明. 若系统能够稳定下来,则稳定后 n=?, Un=?, U * =?, U $_i$ =?
- ③ 该系统转速环按典型 II 型系统设计,且按 Mmin 准则选择参数,取中频宽 h=5,转速环小时间常数 $T_{\Sigma n}=0.05$,求转速环在跟随给定作用下的开环传递函数,并计算出放大系数及各时间常数.
- ④ 该系统由空载(I_{dL} =0)突加额定负载时,电流 I_d 和转速 n 的动态过程波形是怎样的?已知机电时间常数 T_m =0.05S,计算其最大动态降落 Δn_{max} 和恢复时间 t_v .
- 2-17 有一转速、电流双闭环控制的 H 型双极式 PWM 直流调速系统,已知电动机参数为: P_N =200KW, U_N =48V, I_N =3.7A, I_N =200r / min,电枢电阻 R_a =6.5Ω,电枢回路总电阻 R=8Ω,允许电流过载倍数 λ =2,电动势系数 Ce=0.12V. min / r,电磁时间常数 T_1 =0.015S,机电时间常数 T_m =0.2S,电流反馈滤波时间常数 T_0 =0.001S 转速反馈滤波时间常数 T_0 =0.005S. 设调节器输入电压 $U^*_{nm}=U^*_{im}=U_{cm}$ =10V,调节器输入回路电阻 R_0 =40KΩ,已计算出电力晶体管 D202 的开关频率 f=1kHz,PWM 环节的放大倍数 K_S =4.8

试对该系统进行动态参数设计,设计指标:稳态无静差,电流超调量 $\sigma_i \leq 5\%$,空载启动到额定转速时的转速超调量 $\sigma_n \leq 20\%$, 过渡过程时间 $t_n \leq 0.1S$

问题 2-18: 哪些是控制系统的稳态性能指标、稳定性指标和动态性能指标?

① 稳态性能指标是: 调速范围 $D=n_{max}/n_{min}=n_{nom}/n_{min}$ 和静差率 $S=\triangle n_{nom}/n_0*100\%$ ② 稳定性指标: 柏德图(对数幅频特性和对数幅频特性)

典型 I 型系: 对数幅频特性以-20dB/dec 的斜率穿越零分贝线,**只有保证足够的中频带宽度,系统就一定是稳定的,且有足够的稳定裕量。** $\gamma = 90^{\circ} - tg^{-1}$ ω_{c} T > 45° 典型 II 型系统: 对数幅频特性以-20dB/dec 的斜率穿越零分贝线。

 $\gamma = 180^{\circ} - 180^{\circ} + tg^{-1} \omega_{c} t - tg^{-1} \omega_{c} T = tg^{-1} \omega_{c} t - tg^{-1} \omega_{c} T$ ③ 动态性能指标分跟随性能指标和抗扰性能指标:

跟随性能指标 (土升时间:在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值所经过的时间(有些教材定义为

10%--90%)

超调量:在典型的阶跃响应跟随过程中,输出量超出稳态值的最大偏移量

与稳态值之比。

调节时间:又称过度过程时间原则上是系统从给定量阶跃变化到输出量完全

稳定下来的时间。一般在阶跃响应曲线的稳态值附近,

取±5%(或±2%)的范围作为允许误差。

抗扰性能指标: 动态降落: 在系统稳定时, 突加一个约定的标准的扰动量, 在过度过程中引起

的输出量最大降落值。

恢复时间:从阶跃扰动作用开始,到输出量基本恢复稳态,距新稳态值之差

进入某基准量的±5% (或±2%)范围之内所需的时间。

2-19 转速、电流双闭环调速系统启动过程的特点是 饱和非线性控制 、 转速超调 和 准时间最优 。

- 2-20、调节器的设计顺序是<u>先内环后外环:从内环开始,逐步向外扩展</u>。常用的调节器设计方法有<u>工程设计方法</u>、<u>调节器最佳整定方</u>法、模型系统法和振荡指标法。
- 2-21、转速、电流双闭环调速系统中,转速环按典型_Ⅱ_型系统设计,抗扰能力强_, , 稳态无静差。
- 2-22、转速、电流双闭环调速系统中,电流环按典型 <u>I</u>型系统设计,抗扰能力<u>较差</u>,超调<u>小</u>。
- 2-23、在电机调速控制系统中,对于(C)的扰动,系统是无能为力的。

A、运算放大器的参数的变化;

B、电机励磁电压的变化;

C、转速反馈参数的变化;

D、电网电压的变化

2-24 带有比例调节器的单闭环直流调速系统,如果转速的反馈值与给定值相等,

则调节器的输出为(A)

A、零;

B、大于零的定值

C、小于零的定值;

D、保持原先的值不变

2-25 带有比例积分调节器的单闭环直流调速系统,如果转速的反馈值与给定值相等,

则调节器的输出为(B)

A、零;

B、大于零的定值

C、小于零的定值;

D、保持原先的值不变

无静差调速系统的 P I 调节器中 P 部份的作用是 (A)

A、消除稳态误差;

B、不能消除稳态误差也不能加快动态响应

C、既消除稳态误差又加快动态响应; D、加快动态响应

2-27、双闭环调速系统在稳定时,控制电压 Uct 的大小取决于(C)。P51

A、转速 n;

B、负载电流 Iai

C、转速 n 和负载电流 Id;

D、电流反馈系数 β

- 2-28 转速电流双闭环调速系统在起动的恒流升速阶段中,两个调节器的关系为(C)
 - A、ASR和ACR均饱和限幅输出;

B、ASR不饱和,ACR饱的限幅输出

- C、ASR饱和限幅输出,ACR不饱和;D、ASR和ACR均不饱和
- 2-29、带电流变化率内环的三环调速系统中的电流变化率调节器一般采用 积分 调节器.
- 2-30、带电压内环的三环调速系统中的电压调节器一般采用 积分 调节器.
- 2-31 转速微分负反馈的引入,可使转速调节器在起动时<u>转速调节器退饱和时间提前τ_{dn},使得转速调节器提前进入调节状态</u>,从而抑制了超调。
- 2-32、带比例调节器的单闭环调速系统的开环放大系数_大于_临界放大系数时,系统将不稳定。P29
- 2-33、有一采用 PI 调节器的双闭环调速系统,已知电动机参数: $U_{nom}=220V$, $I_{nom}=100A$, $n_{nom}=1000r$ / min, $\lambda=1.5$, $U^*_n=10V$, $K_s=30$, ASR、ACR 限幅值为 $U^*_{im}=10V$, $U_{ctm}=8V$,电枢主回路总电阻 $R=1\Omega$,系统的转速反馈系数 $\alpha=\frac{10/1000=0.001}{1000}$, $\beta=10/150=\frac{0.067}{1000}$,系统原来稳定运行在额定工作状态,**突然转速反馈线断线,系统重新稳定后,U^*_i=\frac{10V}{1000},n=\frac{1000r / min** , $U_{ct}=\frac{8V}{1000}$, $I_{d}=\frac{100A}{1000}$.
- 2-34、在转速、电流双闭环调速系统中,电流环为什么校正成典型Ⅰ型系统,转速环为什么校正成典型Ⅱ型系统?

答:在转速、电流双闭环调速系统中,电流环的一项重要作用是保持电枢电流在动态过程中不超过允许值,因而在突加控制作用时不希望有超调,或者超调量越小越好。从这个观点出发,应该把电流环校正成典型 I 型系统。电流环的还有一项作用是对电网电压

波动及时调节,为了提高其抗扰性能,又称	f望把电流环校正成典型 II 型系统。	在一般情况下,当控制对象的两个时间常数之比 $rac{T_L}{T_{\Sigma i}}$ =
〈10,典型 I 型系统的抗扰恢复时间还是证	可以接收的,因此一般多按典型Ⅰ型;	系统来设计电流环。
在转速、电流双闭环调速系统中,为了实现	见转速无静差,还必须在扰动作用点し	以前设置一个积分环节,因此需要 II 型系统。再从动态
性能来看,调速系统首先需要有较好的抗抗	尤性能,所以把转速环校正成典型 II	型系统。
2-35、弱磁控制的直流调速系统属于(B	3)。A、恒转矩调速	B、恒功率调速
C、恒磁通调速;	D、不能确定	
$2-36$ 、典 I 型系统在阶跃输入: $R(t)=R_0$ 的		
A, 0;	$\mathbf{B} \mathbf{R}_0$	
$C_{\gamma} R_{0}/K$;	D、无穷大	
2-36、典 I 型系统在阶跃输入: R(t)=R ₀ 的	稳态误差是(A)。	
A、0;	$B \setminus R_0$	
$C \setminus R_0/K$;	D、无穷大	
2.25 曲 I 刑乏体产创地检入 D(A) IV 点	5 卷大 识关目 (
2-37、典 I 型系统在斜坡输入: R(t)=V _{0t} 的		
A、0;	B、V ₀	
$C \cdot v_{0}/K$;	D、无穷大	
2-38、典 I 型系统在加速度输入: $\mathbf{R}(\mathbf{t}) = \frac{a_0}{2}$	$\frac{d^2}{2} \mathbf{R}_0$ 的稳态误差是(D)。	
A, 0;	B. a ₀	
$C \cdot a_0/K$:	D、无穷大	
2-39、典 II 型系统在阶跃输入: R(t)=R₀的	稳态误差是(A)。	

 $B \setminus R_0$

B、v₀ D、无穷大

 $B \mathrel{\ldotp} a_0$

D、无穷大

D、无穷大

A, 0;

A, 0;

A, 0;

 $C \cdot a_0/K$;

C, v₀/K;

 $C \setminus R_0/K$;

2-40、 典 I 型系统在斜坡输入: $R(t)=V_{0t}$ 的稳态误差是(A)。

2-41、典 I 型系统在加速度输入: $\mathbf{R}(\mathbf{t}) = \frac{a_0 t^2}{2} \mathbf{R_0}$ 的稳态误差是(C)。