DIGITAL LOGIC DESIGN LAB (EET1211)

LAB VII: CONSTRUCT, TEST AND INVESTIGATE THE OPERATION OF VARIOUS FLIP-FLOP CIRCUITS

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch:		Section:			
S. No.	Name	Registration No.	Signature		

Mar	ks:	/1(U	

Remarks:

Teacher's Signature

I. OBJECTIVE

- 1. Design and test of SR latch using universal logic gates.
- 2. Design and test of SR flip-flop using universal logic gates.
- 3. Design and test of JK flip-flop using universal logic gates.
- Investigation of the logic behavior of various flip flop ICs: 7474 D flip-flop IC
 7476 JK flip-flop IC
- 5. Realize the function of T flip flop using the JK flip-flop IC.

II. PRE-LAB

For Obj. 1:

- a. Obtain the characteristic table for the SR latch.
- b. Draw the logic diagram for SR latch using NAND gates.
- c. Write HDL code for SR latch.

For Obj. 2:

- a. Obtain the characteristic table for the SR flip flop.
- b. Draw the logic diagram for SR flip flop using two cross coupled NAND gates.
- c. Write HDL code for SR flip flop.

For Obj. 3:

- a. Obtain the characteristic table for the JK flip flop.
- b. Draw the logic diagram for JK flip flop using two cross coupled NAND gates.
- c. Write HDL code for JK flip flop.

For Obj. 4:

- a. Write the characteristic table for D flip-flop.
- b. Write the characteristic table of JK flip-flop.
- c. Write the characteristic table of T flip-flop.

For Obj. 5:

- a. Draw the logic diagram for T Flip flop using JK flip-flop.
- b. Write HDL code for T flip flop.

III. LAB:								
Components Required:								
<u>S. No</u>	Name of the Component	Specification	Quantity					
HDL Prog	gram:							
Observat	ion:							
Conclusio	0.00							
Conclusio	on:							

IV. POST LAB

- 1. Differentiate between a latch and a flip-flop.
- 2. If both inputs of a SR NOR Latch are low, what will happen to the output?
 - a) The output will reset.
 - b) The output will toggle.
 - c) The output will become unpredictable.
 - d) The output will not be changed
- 3. If both inputs of a SR NAND Latch are low, what will happen to the output?
 - a) The output will reset.
 - b) The output will toggle.
 - c) The output will become unpredictable.
 - d) The output will not be changed
- 4. Which of the following describes the operation of a positive edge-triggered D-type flip-flop?
 - a) If both inputs are high, the output will toggle.
 - b) The input is toggled into the flip-flop on the leading edge of the clock and is passed to the output on the trailing edge of the clock.
 - c) When both inputs are LOW, an invalid state exists.
 - d) The output will follow the input on the leading edge of the clock.