Natural Resources

Nonrenewable resources

Prices and scarcity

Growth and the environment

Natural resources and economic growth

Chad Jones and Dietrich Vollrath

Introduction to Economic Growth

Resources and modern growth

Nonrenewable resources

Prices and scarcity

Growth and the environment

Economies use resources in addition to capital, labor

$$Y_t = K_t^{\alpha} E_t^{\beta} (A_t L_t)^{1-\alpha-\beta} \tag{1}$$

where E_t is a flow of resources (think "energy") used in addition to other factors. Let capital and productivity evolve as usual.

Resource dynamics

Nonrenewable resources

Growth and the

There is a stock of resources, R, from which we draw E_t

$$dR = -E_t. (2)$$

so that the stock declines over time. In this sense it is non-renewable. Think R is oil in the ground, E is oil used. Let

$$s_E = \frac{E_t}{R_t} \tag{3}$$

be the extraction rate.

Resource dynamics

Nonrenewable resources

Prices and scarcity

Growth and the environment

The growth rate

$$g_R = -s_E,$$

and therefore

$$g_E = -s_E$$

or the amount used is declining over time. Could add discovery which raises ${\it R}$ and offsets this.

Growth with resources

Nonrenewable resources

Prices and scarcity

Let

$$Y_t = K_t^{\alpha} (B_t L_t)^{1-\alpha} \tag{4}$$

where

$$B_t = A_t^{\frac{1-\alpha-\beta}{1-\alpha}} \left(\frac{E_t}{L_t}\right)^{\frac{\beta}{1-\alpha}}.$$
 (5)

We know how a model with "productivity" of \boldsymbol{B}_t evolves (think Solow model)

$$g_y^{ss} = g_B.$$

Nonrenewable resources

Prices and scarcity

Growth and the

What is g_B ?

$$g_B = \frac{1 - \alpha - \beta}{1 - \alpha} g_A - \frac{\beta}{1 - \alpha} s_E - \frac{\beta}{1 - \alpha} g_L \qquad (6)$$
$$= \left(1 - \frac{\beta}{1 - \alpha}\right) g_A - \frac{\beta}{1 - \alpha} \left(s_E + g_L\right).$$

or the growth rate along the BGP depends on productivity growth, g_A , and the extraction rate, s_E . Also depends negatively on g_L (kind of like Malthusian model).

Race of productivity and resources

Nonrenewable resources

Growth and the

Whether growth is positive along a BGP depends on if

$$g_A > \frac{\frac{\beta}{1-\alpha}}{1-\frac{\beta}{1-\alpha}} (s_E + g_L) \tag{7}$$

which means faster extraction or higher population growth makes sustained growth harder to achieve. However, this

doesn't mean $s_E \to 0$ is a great policy, because then $E_t \to 0$ and GDP per capita will go to zero. There are trade-offs

Is energy scarce?

The model predicts that E_t declines over time, using less "energy". But does that mean energy is scarce? Depends on the price. As with labor and capital, E_t is a factor paid a marginal product

$$\beta \frac{Y_t}{E_t} = p_{Et}.$$

so the share of GDP going to E_t should be

$$\frac{p_{Et}E_t}{Y_t} = \beta. {8}$$

lonrenewable

Prices and scarcity

Energy share

Natural Resources

Nonrenewable resources

Prices and scarcity

Prices and scarcity

Growth and th

Natural Resources

Prices and scarcity

Total energy use

Natural Resources

lonrenewable

Prices and scarcity

Growth and th

Declining share

But is the energy share declining? An alternative production structure would give us

$$Y_t = (K_t^{\rho} + (A_t E_t)^{\rho})^{1/\rho},$$
 (9)

that ignores labor.

- ightharpoonup
 ho determines how substitutable capital and energy are.
- If $0 < \rho < 1$ then they are easy to substitute
- ▶ If ρ < 0 then they are complements (hard to substitute)
- ► *A* is the productivity of energy specifically

resources

Prices and scarcity

Nonrenewable esources

Prices and scarcity

Growth and the environment

With this model energy's share of GDP is

$$\frac{p_{Et}E_t}{Y_t} = \left(\frac{A_tE_t}{Y_t}\right)^{\rho}.$$

- ▶ We know E/Y went down
- If $\rho > 0$ (substitutes) then this explains the declining share
- If $\rho < 0$ (complements) then share should go up, unless A increased by a lot
- Seems like complements is more accurate (think a car and gas), so energy productivity A must have gone up?

The choice of s_E

Like other rates, extraction is a choice. What might that decision look like?

$$U_t = (c_t - \overline{c})^{1-\rho} R_t^{\rho} \tag{10}$$

- People care about consumption, c
- ▶ There is some minimum consumption, \bar{c} , that they need to have
- People care about the stock of resources, R
- That could be value of oil remaining in the ground
- Or that could be value of a forest or clean water

resources

Prices and scarcit

resources

Growth and the environment

For consumption

$$MU_c = \frac{(1-\rho)U_t}{c_t - \overline{c}} = (1-\rho)\frac{R_t^{\rho}}{(c_t - \overline{c})^{\rho}}.$$
 (11)

and for resources

$$MU_R = \frac{\rho U_t}{R_t} = \rho \frac{(c_t - \bar{c})^{1-\rho}}{R_t^{1-\rho}}.$$
 (12)

In both cases, the MU goes down as you get more of the thing.

Optimizing

resources

Prices and scarcity

Growth and the environment

Set ratio of MU equal to ratio of prices

$$\frac{MU_R}{MU_c} = \frac{P_{Rt}}{P_{ct}} \tag{13}$$

as usual. But what are the prices?

Production and prices

esources

Growth and the

Let

$$y_t = E_t^{\beta} A_t^{1-\beta} L_t^{-\beta}, \tag{14}$$

be production per capita, and let $c_t=y_t$ (no capital). Also, the resource evolves

$$dR = -E_t, (15)$$

So there is a trade-off in using E_t . It raises consumption but lowers the resource stock.

resources

Growth and the

$$\frac{P_{Rt}}{P_{ct}} = \frac{\beta y_t / E_t}{1}.$$

- ► The price of consumption is 1. It takes one unit of output to produce one unit of consumption.
- The price of the resource is $\beta y_t/E_t$. You have to sacrifice that amount of output (the MP of E) to keep one unit of R

resources

Prices and scarcity

Growth and the environment

Solve for

$$\frac{\rho(c_t - \overline{c})}{(1 - \rho)R_t} = \beta \frac{y_t}{E_t}.$$

which is re-arranged into

$$s_{Et} = \frac{E_t}{R_t} = \beta \frac{1 - \rho}{\rho} \frac{y_t}{y_t - \overline{c}}.$$
 (16)

and note it depends in two ways on the size of y_t .

The environmental effects of growth

With

$$s_{Et} = \beta \frac{1 - \rho}{\rho} \frac{y_t}{y_t - \overline{c}}.\tag{17}$$

- ▶ If $y_t \to \overline{c}$ poverty then s_{Et} is big
- \blacktriangleright It makes sense to sacrifice R to get more consumption
- lacktriangle But as y_t gets very big via economic growth s_{Et} goes down
- ► The additional consumption isn't worth very much compared to the loss of *R*
- It implies that environmental quality can improve with economic growth
- Think energy efficient cars/appliances, recycling, low-impact products, carbon offsets, etc..

resources

Prices and scarcity

Energy use per capita

Natural Resources

Nonrenewable resources

Prices and scarcit

Total CO2 emissions

Natural Resources

onrenewable esources

Prices and scarcit

Renewable percent

Natural Resources

lonrenewable esources

Prices and scarcity

Air pollutants

resources