5장. 불 대수

- 01. 기본 논리식의 표현
- 02. 불 대수 법칙
- 03. 논리회로의 논리식 변환
- 04. 논리식의 회로구성
- 05. 불 대수식의 표현 형태
- 06. 불 대수 법칙을 이용한 논리식의 간소화

01 기본 논리식의 표현

- ❖ 불 대수학(Boolean Algebra)은 이진 논리값({0,1} 또는 {참, 거짓})을 대상으로 하는 연산을 다루는 대수학
- ❖기본적인 불 대수식은 AND, OR, NOT 연산을 이용하여 표현
- ❖ AND 식은 곱셈의 형식(⋅)으로 표현하고, OR 식은 덧셈의 형식(+)으로 표현
- ❖ **NOT** 식은 Ā 또는 A' 로 표현
- ❖완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식

A=0 and B=1일 때 출력을 1로 만들려는 경우출력 논리식

$$F = \overline{AB}$$

A=0 or B=1 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = \overline{A} + B$$

(A=0 and B=1) or (A=1 and B=0) 일 때 출력을 1로 만들려는 경우 출력 논리식

$$F = AB + AB$$

01 기본 논리식의 표현

❖ 2입력 논리식 예

입	력	출력
A	В	F
0	0	
0	1	
1	0	
1	1	

A=0 또는 B=0일 때, 1을 출력하는 논리식

$$F = A + B$$

A=1이거나 (B=0)이고 C=1일 때, 1을 출력하는 논리식

❖ 3입력 논리식 예

$$F = A + B C$$

(입력								출력
A	В	C	-	A=1		$\frac{-}{B}$	C	\overline{B} C	$A + \overline{B} C$
0	0	0				1			0
0	0	1				1	1	1	1
0	1	0							0
0	1	1					1		0
1	0	0		1		1			1
1	0	1		1		1	1	1	1
1	1	0		1					1
1	1	1		1			1		1

□ 불 대수 공리(Boolean Algebra Axioms)

P1	A=0 or $A=1$
P2	0 • 0 =
Р3	1 • 1 =
P4	0 + 0 =
P5	1 + 1 =
Р6	$1 \cdot 0 = 0 \cdot 1 =$
P7	1+0=0+1=
P8	$\hat{0} = 1$
Р9	<u>1=0</u>

공리(axiom, 公理)

논리적 체계를 구성하기 위해 가장 기본이 되는 몇 가지 명제들을 증명 없이 받아들이기로 하고 사용하는 것

□ 불 대수 기본 법칙

기본법칙

1. A+0=0+A=	2. $A \cdot 1 = 1 \cdot A =$	3. <i>A</i> +1=1+ <i>A</i> =
4. $A \cdot 0 = 0 \cdot A =$	5. A+A=	6. <i>A</i> · <i>A</i> = <i>A</i>
$\overline{7.A + A} =$	$8. A \cdot \overline{A} =$	9. A = A

교환법칙

결합법칙

12.
$$(A + B) + C = A + (B + C)$$
 13. $(AB) C = A (BC)$

□ 불 대수 기본 법칙

$$16. \quad \overline{A+B} = \overline{A} \, \overline{B}$$

$$17. \ \overline{AB} = \overline{A} + \overline{B}$$

흡수 법칙(absorptive law)

18.
$$A + AB = A$$

19.
$$A(A+B) = A$$

합의의 정리(consensus theorem)

$$20 \quad AB + BC + AC = AB + AC$$

$$21 \cdot (A+B)(B+C)(A+C) = (A+B)(A+C)$$

쌍대성(duality)

불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1을 서로 바꾸고 동시에 '•'과 '+'를 서로 바꾸면 다른 한 쪽이 얻어지는 성질. 한 쪽을 다른 쪽의 쌍대(dual)라고 한다. 예를 들어, 기본 법칙 ①과 ②는 쌍대성이 성립하며 ③과 ④, ⑤와 ⑥, ⑦과 ⑧도 마찬가지이다.

□ 진리표를 이용한 분배법칙 A+BC=(A+B)(A+C) 의 증명

A B C	조 조 조 조 조 조 조 조 조 조 조 조 조 조 조 조 조 조 조 		우측식					
H D C	$B \cdot C$	$A+B\cdot C$	A+B	A+C	(A+B)(A+C)			
0 0 0								
0 0 1			ΠТ					
0 1 0			ПΤ	ПТ				
0 1 1			ПТ	ПТ				
1 0 0	T		ПΤ					
1 0 1			ПΤ					
1 1 0	T		ПΤ					
1 1 1	ŢŢ							
동일한 결과								

□ 드모르간의 정리 증명

A	В	A+B	좌측식		우측식
A	D	$A \mid D$	$\overline{A + B}$	A B	$A \cdot B$
0	0	0	1	1 1	1
0	1	1	0	1 0	0
1	0	1	0	0 1	0
1	1	1	0	0 0	0

□ 드모르간의 일반식

$$A_1 + A_2 + A_3 + \cdots + A_n = A_1 A_2 A_3 \cdots A_n$$

$$A_1 A_2 A_3 \cdots A_n = A_1 + A_2 + A_3 + \cdots + A_n$$

에제 5-1 [표 5-7]의 합의의 정리를 불 대수의 기본 법칙과 진리표를 이용하여 증명하여라.

$$AB + BC + AC = AB + AC$$
 $(A + B)(B + C)(A + C) = (A + B)(A + C)$

물이 • 불 대수의 기본법칙을 이용한 증명

$$AB + BC + \overline{A}C = AB + (A + \overline{A})BC + \overline{A}C = AB + ABC + \overline{A}BC + \overline{A}C$$

$$= A(B \cdot 1 + BC) + \overline{A}(C \cdot 1 + BC) = AB(1 + C) + \overline{A}C(1 + B)$$

$$= AB + \overline{A}C$$

$$(A + B)(B + C)(\overline{A} + C) = (A + B)(A\overline{A} + B + C)(\overline{A} + C)$$

$$= (A + B + 0)(A + B + C)(\overline{A} + B + C)(\overline{A} + 0 + C)$$

$$= (A + B + 0 \cdot C)(\overline{A} + 0 \cdot B + C)$$

$$= (A + B)(\overline{A} + C)$$

• 진리표를 이용한 증명 AB + BC + AC = AB + AC

	입력			좌측식				우측	4
A	В	C	AB	BC	$\overline{A}C$	AB + BC + AC	AB	$\frac{-}{A}C$	$AB + \overline{A}C$
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	0	1	1
0	1	0	0	0	0	0	0	0	0
0	1	1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	1	0	1	0	0	1	1	0	1
1	1	1	1	1	0	1	1	0	1

• 진리표를 이용한 증명 (A + B)(B + C)(A + C) = (A + B)(A + C)

	입력			좌측식			우측식		
\boldsymbol{A}	В	C	A+B	B+C	$\overline{A} + C$	$(A+B)(B+C)(\overline{A}+C)$	A+B	$\frac{-}{A} + C$	$(A+B)(\overline{A}+C)$
0	0	0	0	0	1	0	0	1	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	0	0	1	0	0
1	0	1	1	1	1	1	1	1	1
1	1	0	1	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1	1

End of Example

03 논리회로의 논리식 변환

❖ 원래의 회로에 게이트를 거칠 때마다 게이트의 출력을 적어주면서 한 단계 씩 출력 쪽으로 나아가면 된다.

03 논리회로의 논리식 변환

예 2

03 논리회로의 논리식 변환: 예제 5-2

04 논리식의 논리회로 구성

❖ AND, OR, NOT을 이용하여 논리식으로부터 회로를 구성.(AND-OR로 구성된 회로)

04 논리식의 논리회로 구성

04 논리식의 논리회로 구성

- □ 2개의 표준형(Standard Forms) 유일하지 않은 형태
 - ❖ SOP(Sum-Of-Products) 곱의 합
 - ❖ POS(Product-Of-Sums) 합의 곱
- □ 2개의 <mark>캐노니컬형</mark>(Canonical Forms) 유일한 형태
 - ❖ Sum-Of-Minterms 최소항의 곱
 - ❖ Product-Of-Maxterms 최대항의 곱

곱의 합과 최소항

- □ 곱의 합(Sum of Product, SOP)
 - ❖ SOP의 구성은 1 단계는 AND항(곱의 항, product term)으로 구성되고, 2 단계는 OR항(합의 항, sum term)으로 만들어진 논리식.

□최소항(Minterm)

- ❖ 최소항: 표준 곱의 항
- ❖ 표준 곱의 항이란 함수의 모든 변수를 포함하고 있음.
- ❖ 예: 4변수 *A*, *B*, *C*, *D*일 때:

최소항의 예 ABCD

곱의 합(SOP) 의 예 $F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ 지수항 아님 $F = \overline{A} + \overline{B} + \overline{C}$ 지수항 아님

□ 진리표로부터 최소항식을 표현하는 방법

	입	출력		
4	A	В	F	
	0	0	0	
	0	1	1	
	1	0	1	
	1	1	1	

$$(A=0 \text{ AND } B=1)$$
 OR $(A=1 \text{ AND } B=0)$ OR $(A=1 \text{ AND } B=1)$ 일 때, $F=1$ 이다. 또는

$$\overline{(A = 1 \text{ AND } B = 1)}$$
 OR $\overline{(A = 1 \text{ AND } B = 1)}$ OR $\overline{(A = 1 \text{ AND } B = 1)}$ 일 때, $F = 1$ 이다. 또는

$$\overline{AB} = 1$$
 OR $\overline{AB} = 1$ OR $\overline{AB} = 1$ 일 때, $F = 1$ 이다.

$$f = AB + AB + AB$$

□ 2변수 최소항의 표현 방법

A	В	최소항	기호
0	0	$\overline{A} \overline{B}$	m_0
0	1	$\overline{A} B$	m_1
1	0		m_2
1	1	A B	m_3

$$F(A,B) = \overline{AB} + A\overline{B} + AB$$

$$= m_1 + m_2 + m_3$$

$$= \sum m(1, 2, 3)$$

입	력	출	력	
A	В	F		
0	0	0	m_0	
0	1	1	m_1	
1	0	1	m_2	
1	1	1	m_3	

□ 3변수 최소항의 표현 방법

A B C	최소항	기호
0 0 0	ABC	m_0
0 0 1	ABC	m_{1}
0 1 0	$\overline{A} B \overline{C}$	m_2
0 1 1	ABC	m_3
1 0 0	ABC	m_{4}
1 0 1	ABC	m_{5}
1 1 0	ABC	m_{6}
1 1 1	ABC	m_{7}

□ 3변수 최소항의 표현 방법

ABC	F	최소항	기호
0 0 0	1	——— A B C	m_0
0 0 1	1	— — A B C	m_1
010	0	— — A B C	m_2
0 1 1	1	— А В С	m_3
1 0 0	0	A B C	m_{4}
1 0 1	1		m_{5}
110	0	A B C	m ₆
1 1 1	1	<i>A B C</i>	m_{7}

$$F(A,B,C) = \sum_{ABC} m(0,1,3,5,7)$$

$$= ABC + ABC + ABC + ABC$$

$$\overline{F}(A,B,C) = \sum_{C} m(2,4,6)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F(A,B,C) = \sum m(0,1,3,5,7) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \frac{}{E + E} = \frac{}{\sum m(2,4,6)} = \frac{}{ABC} + \frac{}{ABC} + \frac{}{ABC} = \frac{}{ABC}$$

$$F(A,B,C) = \sum m(2,4,6) = \overline{ABC} + \overline{ABC} + ABC$$

$$= \sum m(0,1,3,5,7) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

예제 5-3 다음 진리표를 이용하여 F 와 \overline{F} 를 최소항식으로 나타내어라.

ABC	F	\overline{F}
0 0 0	0	1
0 0 1	1	0
010	1	0
0 1 1	1	0
100	1	0
1 0 1	1	0
1 1 0	0	1
1 1 1	0	1

풀이

$$F(A, B, C) = \sum m(1, 2, 3, 4, 5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\overline{F(A, B, C)} = \sum m(0, 6, 7)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC}$$

End of Example

□ 4변수 최소항의 표현 방법

ABCD	최소항	기호	ABCD	최소항	기호
0000	ABCD	m_0	1000	ABCD	m_{8}
0001	ABCD	m_1	1001	A B C D	m_9
0010	A B C D	m_2	1010	$\begin{bmatrix} - & - \\ A & B & C & D \end{bmatrix}$	m_{10}
0 0 1 1	A B C D	m_3	1011	$\begin{bmatrix} - \\ A & B & C & D \end{bmatrix}$	m_{11}
0100	A B C D	m_4	1100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>m</i> ₁₂
0 1 0 1	A B C D	m_{5}	1 1 0 1	A B C D	<i>m</i> ₁₃
0 1 1 0	$\overline{A} B C \overline{D}$	m_{6}	1110	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>m</i> ₁₄
0 1 1 1	$\overline{A} B C D$	m_{7}	1111	A B C D	<i>m</i> 15

$$F(A, B, C, D) = \sum m(0,1,5,9,11,15)$$

$$F = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD$$

에제 5-4 다음 논리식을 최소항식으로 변환하여라.

$$F(A,B,C,D) = ABC + AB + ABCD$$

풀이

• 첫 번째 항 $_{ABC}$ 에는 변수 $_{D}$ 또는 $_{D}$ 가 없으므로 $_{D+D}$ 를 곱한다.

$$\overrightarrow{ABC} = \overrightarrow{ABC}(\overrightarrow{D} + D) = \overrightarrow{ABC}\overrightarrow{D} + \overrightarrow{ABC}D$$

• 두 번째 항 \overline{AB} 에는 \overline{C} , \overline{C} 와 \overline{D} , \overline{D} 가 없으므로 $(\overline{C}+C)(\overline{D}+D)$ 를 곱한다.

$$\overline{AB} = \overline{AB}(C + C)(D + D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

• 세 번째 항 $_{ABCD}$ 은 이미 최소항이므로 $_{F}$ 의 최소항식은 다음과 같다

$$F(A, B, C, D) = ABC + AB + ABCD$$

$$= ABCD + ABCD$$

$$= \sum m(0,1,2,3,10,11,13)$$

합의 곱과 최대항

- ❖ 합의 곱 구성 : 1 단계는 OR항(합의 항, sum term)으로 구성되고, 2 단계는 AND항(곱의 항, product term)으로 만들어진 논리식.
- ❖ 모든 변수를 포함하는 OR항을 맥스텀(maxterm) 또는 최대항이라 한다.

최대항의 예
$$A + B + C + D$$
$$A + B + C + D$$

□ 최대항 표현 방법

AB	최대항	기호
0 0	A + B	M_{0}
0 1	A + B	M_{1}
1 0	A + B	M_{2}
1 1	$\overline{A} + \overline{B}$	M_{3}

<2변수인 경우>

ABC	최대항	기호
0 0 0	A + B + C	M_{0}
0 0 1	A + B + C	M_{1}
0 1 0	A + B + C	M_{2}
011	A + B + C	M_{3}
100	A + B + C	M_{4}
101	A + B + C	M_{5}
110	A + B + C	M_{6}
111	A + B + C	M_{7}

<3변수인 경우>

[Example]

$$F(A,B) = (A + B)(A + \overline{B})(\overline{A} + B)$$

$$= M_{0} \cdot M_{1} \cdot M_{2}$$

$$= \prod M(0,1,2)$$

입력	출력	
A B	F	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

예제 5-5

다음 최대항식을 진리표로 만들어 보고, 논리식을 구해보아라.

 $F(A, B, C) = \prod M(0,1,3,5,7)$

풀이

ABC	F	최대항	기호
000	0	A + B + C	M_{0}
001	0	$A + B + \overline{C}$	M_{1}
010	1	A + B + C	M_{2}
011	0	$A + \overline{B} + \overline{C}$	M_3
100	1	$\overline{A} + B + C$	M_{4}
101	0	$\overline{A} + B + \overline{C}$	M_{5}
110	1	$\overline{A} + \overline{B} + C$	M_{6}
111	0	$\overline{A} + \overline{B} + \overline{C}$	M_{7}

진리표

논리식
$$F(A,B,C) = \prod M(0,1,3,5,7)$$

$$= (A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)$$

예제 5-6

다음 논리식을 최대항식으로 변화하여라.

$$F(A, B, C, D) = (A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

풀이

• 첫 번째 항 \overline{D}_D 를 합하고 분배법칙 A + BC = (A + B)(A + C)을 적용한다.

$$A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D)$$

• 두 번째 항 AA를 합하고 마찬가지로 분배법칙을 적용한다.

$$\overline{B} + C + \overline{D} = \overline{A}A + \overline{B} + C + \overline{D} = (\overline{A} + \overline{B} + C + \overline{D})(A + \overline{B} + C + \overline{D})$$

• 세 번째 항 $_{A+B+C+D}$ 는 이미 최대항이므로 최종식은 다음과 같다.

$$F(A,B,C,D) = (A+\overline{B}+C)(\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

$$= (A+\overline{B}+C+\overline{D})(A+\overline{B}+C+D)(\overline{A}+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

$$= \prod M(4,5,6,13)$$

최소항과 최대항과의 관계

- ❖ 최소항은 출력이 1인 항을 SOP로 나타낸 것이고, 최대항은 출력이 0인 항을 POS로 나타낸 것이다.
- ❖ 최소항과 최대항은 상호 보수의 성질을 가진다.

ABC	F	F	최소항	기호	최대항	기호	관 계
000	0	1	$\begin{array}{c} \\ A B C \end{array}$	m_0	A + B + C	M_{0}	$M_0 = \overline{m}_0$
0 0 1	1	0	$\begin{array}{c} \\ A B C \end{array}$	m_{1}	A + B + C	M_{1}	$M_1 = m_1$
0 1 0	1	0	$\begin{array}{cccc} - & - \\ A & B & C \end{array}$	m_2	$A + \overline{B} + C$	M_{2}	$M_2 = m_2$
0 1 1	1	0	-ABC	m_3	$A + \overline{B} + \overline{C}$	M_3	$M_3 = \overline{m}_3$
100	1	0	ABC	m_{4}	$\overline{A} + B + C$	M_{4}	$M_4 = m_4$
1 0 1	1	0	$\begin{array}{c} - \\ A B C \end{array}$	m_{5}	$\overline{A} + B + \overline{C}$	M_{5}	$M_{5} = m_{5}$
1 1 0	0	1		m_{6}	$\overline{A} + \overline{B} + C$	M_{6}	$M_{6} = m_{6}$
111	0	1	ABC	m_{7}	$\overline{A} + \overline{B} + \overline{C}$	M_{7}	$M_7 = m_7$

ABC	F	\bar{F}
0 0 0	0	1
0 0 1	1	0
0 1 0	1	0
0 1 1	1	0
100	1	0
1 0 1	1	0
110	0	1
111	0	1

$$F(A,B,C) = \underbrace{\sum m(1,2,3,4,5)}_{=\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}}_{=\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}}_{=\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}}$$

$$= \overline{\overline{ABC} \cdot \overline{ABC} \cdot \overline{ABC} \cdot \overline{ABC} \cdot \overline{ABC}}_{=\overline{ABC} + \overline{ABC} + \overline{ABC}}$$

$$= (A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$

 $\prod M(1, 2, 3, 4, 5)$

$$F(A, B, C) = \sum m(1, 2, 3, 4, 5)$$

$$= \prod M(1, 2, 3, 4, 5)$$

$$= \prod M(0, 6, 7)$$

$$= \sum m(0, 6, 7)$$

최소항을 부정하면 최대항 최대항을 부정하면

최소항

□ [1]식을 간소화하는 과정

$$(1) \quad \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$(2) \quad \overline{AB} + \overline{AB} + \overline{ABC}$$

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC = (\overline{ABC} + \overline{ABC}) + (\overline{ABC} + \overline{ABC}) + \overline{ABC}$$

$$= \overline{AB}() + \overline{ABC}$$

$$= \overline{AB} \cdot + \overline{ABC}$$

예제 5-7

다음 최대항식을 최소항식으로 바꾸어 나타내고 부정도 최소항식과 최대항식으로 나타내보아라.

$$F(A,B,C) = \prod M(0,2,3,7)$$

풀이

$$F(A,B,C) = \prod M(0,2,3,7) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

$$= (A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = \sum m(0,2,3,7)$$

$$= \prod M(1,4,5,6) = \sum m(1,4,5,6)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$F(A, B, C) = \prod M(0, 2, 3, 7) = \sum m(0, 2, 3, 7) = \sum m(1, 4, 5, 6) = \prod M(1, 4, 5, 6)$$

End of Example

□ [1]식을 간소화하는 과정

$$(1) \quad \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$(3) \overline{AB} + AB + AC$$

□ [1]식을 간소화하는 과정

$$(1) \quad \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$(4) \overline{AB} + A\overline{B} + BC$$

$$\overline{AB} + \overline{AB} + \overline{ABC}$$

$$AB + AB + AC$$

$$\overline{AB} + \overline{AB} + \overline{BC}$$

□ (2)식을 간소화하는 과정

$$(1) \quad \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$(2) \quad \overline{AB} + \overline{AB} + \overline{ABC}$$

(3)
$$\overline{AB} + \overline{AB} + AC$$

$$(4) \quad \overline{AB} + \overline{AB} + \overline{BC}$$

15.
$$X + YZ = (X+Y)(X+Z)$$

$$\overline{AB} + AB + ABC = \overline{AB} + A(\overline{B} + BC) = \overline{AB} + A(\overline{B} + B)(\overline{B} + C)$$

$$= \overline{AB} + A \cdot 1 \cdot (\overline{B} + C) = \overline{AB} + AB + AC$$

에제 5-8 불 대수 법칙을 이용하여 다음 논리식을 간소화하여라.

$$ABC + ABC + ABC + ABC$$

풀이

$$\overline{ABC} + \overline{ABC} + \overline$$

End of Example

□ 간소화하는 과정 예

$$F(A, B, C) = \sum m(0,1,3,5,7)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{AB}(C + C) + \overline{AC}(B + B) + \overline{AC}(B + B)$$

$$= \overline{AB} + \overline{AC} + \overline{AC}$$

$$= \overline{AB} + \overline{C}(A + A)$$

$$= \overline{AB} + C$$

$$\overline{F(A, B, C)} = \sum m(0,1,3,5,7) = \sum m(2,4,6)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= BC(A + A) + \overline{AC}(B + B)$$

$$= BC + \overline{AC} = (A + B)C$$

에제 5-9 다음 진리표에서 논리식을 구하고 불 대수 법칙을 이용하여 간소화하여라.

ABC	F	$ar{F}$
0 0 0	0	1
0 0 1	1	0
0 1 0	1	0
0 1 1	1	0
1 0 0	1	0
1 0 1	1	0
1 1 0	0	1
1 1 1	0	1

풀이

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{BC}(\overline{A} + A) + \overline{AB}(\overline{C} + C) + \overline{AB}(\overline{C} + C)$$

$$= \overline{BC} + \overline{AB} + \overline{AB}$$

$$\overline{F(A,B,C)} = \sum m(0,6,7)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC}$$

End of Example

07 정리

- ❖ 2개의 표준형(Standard Forms) 유일하지 않음
 - SOP(Sum-Of-Products)
 - POS(Product-Of-Sums)
- ❖ 2개의 캐노니컬형(Canonical Forms) 유일함
 - Sum-Of-Minterms
 - Product-Of-Maxterms