Q1 (ompute the generalized inverse of the following matrix

$$A = \begin{bmatrix} 1 & 2 & 5 & 2 \\ 3 & 7 & 12 & 4 \\ & & & & 1 & 2 & 3 x 4 \end{bmatrix}$$
 $\therefore 2(A) \leq \min(3,4)$
 $\therefore 2(A) \leq 3$
 $M = \begin{bmatrix} 2 & 5 & 2 \\ 7 & 12 & 4 \\ & & & & 1 & 2 \end{bmatrix}$
 $|M| = \begin{bmatrix} 2 & 5 & 2 \\ 7 & 12 & 4 \\ & & & & 1 & 2 \end{bmatrix}$
 $|M| = \begin{bmatrix} 2(-2) + 12(-2) - 5(-14 - 4) + 2(-21 - 12) \\ |M| = -24 + 90 - 66 \end{bmatrix}$
 $|M| = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$
 $|M| = 7 - 6$
 $= 1$
 $|M'| = 7 - 6$
 $= 1$
 $|M''| = 1 \text{ odj} M$
 $|M|$
 $= 1 \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$

G=H⁷

: G=
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

o V_6 V_3

o V_4 -1

verify that $AGA = A$

$$\begin{bmatrix} 1 & 2 & 5 & 2 \\ 3 & 7 & 12 & 4 \\ 0 & 1 & -3 & -2 \end{bmatrix} \quad \begin{bmatrix} 7 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 7 - 6 + 0 + 0 & -2 + 2 + 0 + 0 & 0 + 0 + 0 + 0 \\ 21 - 21 + 0 + 0 & -6 + 7 + 0 + 0 & 0 + 0 + 0 + 0 \\ 0 - 3 + 0 + 0 & 0 + 1 + 0 + 0 & 0 + 0 + 0 + 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 5 & 2 \\ 0 & 1 & 0 & 3 & 7 & 12 & 4 \\ -3 & 1 & 0 & 0 & 1 & 2 & 5 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 5 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 6 & 4 + 0 \\ 0 + 3 + 0 & 0 + 7 + 0 & 0 + 12 + 0 & 0 + 4 + 0 \\ -3 + 3 + 0 & -6 + 7 + 0 & -15 + 12 + 0 & -6 + 4 + 0 \\ 1 & 2 & 5 & 2 & 3 & 7 & 12 & 4 \\ 0 & 1 & -3 & -2 & 3 & 7 & 12$$

Q2 find generalized inverse of the following material
A= 381 000
-411 000
110 1 2 2 3
I verily that, AGA = A
-> A= 381
verily that AGA = A 11 4-
[110]
$\pi(A) \leq \min(3,3)$
: 2(A) = 1 3 8 - 1 1 1 8
01-3-2 000 0 0
M= 3 817
7-6+0+0 -2+2-0+0 45-0+0+0
0:0:0:0:0:15-15
1M1=3(0-1)-8(0-1)+1(-4-1)
= -3 +8 -5
. 0 . 0
Ma 1 7 0 1
IMI - 3 132
IM/ = 3+32,51,21- 0+1+2- 0+2+2-
:. 2(A) = 2
: M-'= 1 adj. M 5- 8-10]
1MI
= 1 dg 3 87
35 [-41]

$$M^{-1} = \frac{1}{36} \frac{1}{4} \frac{3}{3}$$

$$M^{-1} = \frac{1}{36} \frac{3}{35}$$

$$M^{-1} = \frac{1}{35} \frac{3}{35}$$

$$M^{-1}$$

Q3 tind g-inverse for the following matrix,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$

Also verify that $AGA = A$
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 8 & 9 \end{bmatrix}$
 $A(A) = min(3,3)$
 $A(A) = min(3,3)$
 $A(A) = 3$
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 8 & 9 \end{bmatrix}$
 $A(A) = 3$
 $A(A) = 3$

Q4 Find different solutions to
$$Ax = y$$
 where

 $A = \begin{bmatrix} 5 & 3 & 1 - h \\ 8 & 5 & 2 & 3 \end{bmatrix}$
 $21 & 13 & 5 & 2$
 $3 & 2 & 7 + 7$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$
 $2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$
 $3 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$

$$M : \begin{bmatrix} 5 & 3 \\ 8 & 5 \end{bmatrix}$$

$$| M| > 25 - 24$$

$$| M| = 1$$

$$\therefore 2(A) \le 2$$

$$\therefore M^{-1} = 1 \text{ adj. M}$$

$$| M|$$

$$= 1 \begin{bmatrix} 5 - 5 \\ -3 \end{bmatrix}$$

$$= \begin{bmatrix} 5 - 3 \\ -8 & 5 \end{bmatrix}$$

$$(h^{1-1})^{T} = \begin{bmatrix} 5 - 8 \\ -3 & 5 \end{bmatrix}$$

$$H = \begin{bmatrix} 5 - 8 & 0 & 0 \\ -3 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$G = (H)^{T}$$

$$\therefore G = \begin{bmatrix} 5 - 3 & 0 & 0 \\ -8 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$GY = \begin{bmatrix} 5 - 3 & 0 & 0 \\ -8 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$GY = \begin{bmatrix} 5 - 3 & 0 & 0 \\ -8 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$GY = \begin{bmatrix} 5 - 3 & 0 & 0 \\ -8 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$