Zusatzinformationen zur Dokumentation für die Grundwasserneubildung

Mittlere Abflussspende für die Zeitreihe 1976-2005 mit dem Programm ABIMO [wh_abimo.shp]

Für das nordostdeutsche Tiefland, zu dem das Gebiet des Landes Brandenburg gehört, repräsentiert die Höhe des Gesamtabflusses in guter Näherung auch die Höhe der Grundwasserneubildung. Dies ist gleichbedeutend mit der Möglichkeit, die Komponenten des Direktabflusses zu vernachlässigen. Die Gesamtabflusshöhe errechnet sich aus der Differenz Niederschlag minus reale Verdunstung (Evapotranspiration). (LUA, Studien- und Tagungsberichte, Band 27)

Aufbauend auf dem Modell RASTER bzw. der PC-Version "Arbeitsplatz Grundwasserdargebot – GWD" entwickelten Glugla & Fürtig (1997) ihr sog.

Abflussbildungsmodell, ABIMO. Das Modell behandelt ausschließlich die Vertikalprozesse des Landschaftswasserhaushaltes an der Grenzfläche

Atmosphäre/Biosphäre/Lithosphäre: Niederschlag, Verdunstung und Entstehen von Gesamtabfluss (Resultat der Abflussbildung, potenzielles Wasserdargebot). Wie seine Vorläufer ermöglicht ABIMO die großgebietliche rasterorientierte Berechnung der langjährig mittleren Gesamtabflusshöhe, greift aber neuere hydrometeorologische und bodenhydrologische Entwicklungen auf und bietet erweiterte Eingabe- und Differenzierungsmöglichkeiten für Eingangsparameter. (LUA, Studien- und Tagungsberichte, Band 27)

Nähere Informationen und Ergebnisse des Vergleiches mit dem Modell ARC/EGMO siehe unter:

LUA, Studien- und Tagungsberichte Band 27: "Flächendeckende Modellierung von Wasserhaushaltsgrößen für das Land Brandenburg". Studie (2000)

Mittlere Abflussspende für die Zeitreihe 1976-2005 (Abimo 2.1)

1. Struktur der Attributtabelle

Feldname	Bedeutung	Einheit	Bemerkungen		
Bil	Bilanzgebiet		nicht verwendet		
Rw	Rechtswert	Meter	nicht verwendet		
Hw	Hochwert	Meter	nicht verwendet		
Nut	Nutzungsart	Wiotoi	G: Gewässer		
1400	rtatzarigoart		W: Wald		
			L: Landwirtschaft		
			aus ATKIS abgeleitet		
Bod	Bodenart		S: Sand		
			L: Lehm		
			N1: Niedermoor		
Nfk	nutzbare Feldkapazität	%	Sand: 9%		
	·		Lehm: 21%		
			Niedermoor: 15%		
Flk	Grundwasserflurabstandsklasse		<1 Meter		
			1-2 Meter		
			>2 Meter		
Flw	mittlerer	Meter	<1 Meter -> 0.5		
	Grundwasserflurabstand		1-2 Meter -> 1.5		
P1	Niederschlag	mm	Thiessen-Polygone		
Etp	Potenzielle Evapotranspiration	mm	Thiessen-Polygone		
			berechnet nach Wendling auf Monatsbasis		
Kf	Niederschlagskorrektur	-	einheitlich 1,12		
P1s	Niederschlag Mai-Oktober	mm	Thiessen-Polygone		
Etps	Potenzielle Evapotranspiration	mm	Thiessen-Polygone		
	Mai-Oktober				
Kfs	Niederschlagskorrektur	-	einheitlich 1,12		
	Sommer				
Ver	Versiegelungsgrad	%			
Kan	Kanalisierungsgrad	%			
Ert	Ertragsklasse bei				
	landwirtschaftlicher Nutzung				
Ber	Beregnung	mm	nicht verwendet		
Bau	Baumart		L: Laubwald		
			N: Nadelwald		
			Unterscheidung anhand von CORINE Daten		
Bgr	Begründungsjahr bei				
	Waldnutzung				
Etr	reale Verdunstung	mm			
Row	oberirdischer Abfluss von	mm			
	versiegelten Flächen				
R	Gesamtabfluss	mm			
Ant	Anteil	%	nicht verwendet		
Rdf	Reduktionsfaktor	%	nicht verwendet		
Jahr	Berechnungsjahr		nur für Waldflächen		
			Jahr minus Bgr ergibt mittleres Baumalter		
Ru	R-Row	mm			
Area	Fläche	m²	[shape].returnarea		
MQ	mittlerer Abfluss	m³/s	R/1000*Area/365/86400		
Hydrotop			[Nut] + [Bod] + [Flk]+[P1].asString+[Etp].asString+		
			[P1s].asString+[Etps].asString+[Ver].asString+ [Kan].asString+[Ert].asString+[Bau]		
			į įranjasoningtienijasoningtibauj		

Im langjährigen Mittel ist die Gesamtabflusshöhe dem gemessenen, auf die Einzugsgebietesfläche bezogenen Abfluss – der Abflussspende – von Fließgewässern gleichzusetzen. Durch den Vergleich der berechneten Gesamtabflusshöhe mit an ausgewählten Flusspegeln ermittelten mittleren Abflüssen in verschiedenen Einzugsgebieten lassen sich Aussagen zur Gültigkeit der Modellrechnungen ableiten (siehe Tabelle 1).

Tabelle 1: Vergleich gemessener und berechneter Abflüsse für unterirdische Einzugsgebiete

Pegelname,	MQ	Grundwassertrend	R Abimo	Ao	Au	Bemerkung
Gewässer	[m³/s]	Speicheränderung	[m ³ /s]	[km²]	[km²]	
Babelsberg,	7,768	-1,54 cm/a	7,1	1803,6	1905,6	Einstellung Rieselfelder
Nuthe		->0,23 m³/s				
Beeskow,	4,155	-1,5 cm/a	3,50	920	966,8	im Westen Uferfiltrat aus Spree
Spree		-> 0,115 m³/s				
(abzügl. Leibsch)						
Biesenthal Wehr-	0,699	-2,18 cm/a	0,61	150	123,9	Zustrom Hellmühler Fließ fehlt
mühle UP, Finow		->0,021 m³/s				
Bliesdorf,	2,936	-1 cm/a	2,32	756,5	754,8	Drängewasser Oder nicht berücksichtigt,
Friedländer Strom		-> 0,06 m³/s				Zustrom Alte Oder?
Doberburg, Barolder	0,264	-2,6 cm/a	0,206	65,8	63,3	
Mühlenfließ		-> 0,0013 m³/s				
Eberswalde,	0,559	-1,27cm/a	0,469	125	114,3	
Schwärze		->0,012 m³/s				
Grünheide 2,	0,753	-1,01 cm/a	0,746	174	188,7	
Löcknitz		->0,015 m³/s				
Märkisch Buchholz,	1,372	-1,6 cm/a	1,41	519,3	342,5	westlicher Teil des Grundwasserabstroms
Dahme		-> 0,043 m³/s				erreicht Pegel nicht,
						oberirdischer Zustrom Buschgraben nicht
						berücksichtigt
Prenzlau Wehr UP,	1,216	keine Daten	1,398	402,8	420,2	
Ucker						
Pritzwalk,	0,359	im Westen keine	0,343	76	69,3	
Dömnitz		Daten geschätzt ca.				
		-1,5 cm/a				
		->0,008				

Pegelname,	MQ	Grundwassertrend	R Abimo	Ao	Au	Bemerkung
Gewässer	[m ³ /s]	Speicheränderung	[m³/s]	[km²]	[km²]	
Schadewitz,	1,856	-3,17 cm/a	1,89	633,3	449	unterirdisches EZGB endet im Osten ca. 10
Kleine Elster		-> 0,11 m³/s				km vorher, oberirdischer Zufluss in diesem
						Bereich nicht beachtet
Wolfshagen,	3,305	keine Daten	2,64	570	564	kleiner Teil in MV nicht berücksichtigt ca.
Stepenitz		geschätzt	(2,71)			15 km ²
		-1,5cm/a				() mit Flächenkorrektur
		->0,067 m³/s				
Woltersdorf II,	1,091	-0,8 cm/a	0,874	207,9	254,3	Zufluss Mückendorfer Graben fehlt
Hammerfließ		->0,015 m³/s				teilweise

Fehlerbetrachtung:

mittlere Abweichung: ca. -7% des gemessenen MQ

max . Abweichung ca. -21% (Doberburg) bis +15 % (Prenzlau) des gemessenen MQ

3. Hinweise:

Die Verwendung von Thiessen-Polygonen erzeugt bei den meteorologischen Eingangsdaten scharfe Übergänge. Diese bleiben auch in der Abflussberechnung erhalten.

Alle Gewässerflächen sind stark vereinfacht nach $R = N^*kf - ETP$ berechnet.

Die Geometrie des Datenbestands ist nicht an Einzugsgebieten ausgerichtet. Zur Bilanzierung muss das entsprechende Gebiet mit der Arcview-Geoverarbeitung ausgeschnitten und Fläche und MQ neu berechnet werden (siehe unter 1).

Die Datei wh_abimo.dbf kann nicht direkt in ABIMO eingelesen werden. Dazu wird folgende Vorgehensweise empfohlen:

Mit der Arcview-Geoverarbeitung werden die Flächen mit gleichem Attribut Hydrotop zusammengeführt. Die erzeugte Tabelle über das Attribut Hydrotop mit der Tabelle wh_abimo.dbf verbinden. Shape-Datei unter neuem Namen speichern. In dieser Shape-Datei die Felder Area, MQ und Hydrotop der Attributtabelle löschen. Die dbf-Datei kann jetzt in Abimo geladen werden (max. 32.000 Datensätze).

Fachlicher Ansprechpartner: Stefan Wieneke Landesumweltamt Brandenburg Referat Ö4 Tel. 033201-442 643