DATA STRUCTURES IN PROLOG

LECTURE 2

Summary

- Structuring data
- Natural numbers
- Lists
- Esercises

Terms

The set TERM of *terms* is inductively defined as:

- 1. Every constant symbol is a term (lower case initial);
- 2. Every variable symbol is a term (upper case initial);
- 3. If $t_1 ldots t_n$ are terms and f is an n-ary, $f(t_1, ldots, t_n)$ is a term (called *functional term*, lower case initial f).

Examples: X, c, f(X, g(YY, c)),...

Atoms and clauses are defined as before (remember predicate names lower case initial).

Unification recap: Substitutions

A *substitution* is a function from the set of variables VAR to the set of terms TERM:

$$\sigma: Var \mapsto Term.$$

Given t, $t\sigma$ is defined (without function symbols) as follows:

- \bullet if c is a constant symbol, $c\sigma = c$;
- \bullet if x is a variable symbol, $x\sigma = \sigma(x)$;
- ullet if f is a function symbol of arity n, $f(t_1,\ldots,t_n)\sigma=f(t_1\sigma,\ldots,t_n\sigma)$.

The substitution σ of a variable x by a term t is denoted by x=t (or x/t).

Unification

An expression s is more general than an expression t, if t is an instance of s, but not viceversa.

Example: p(a, X) is more general than p(a, b).

A *unifier* of two expressions is the substitution, that makes them identical (when applied to them).

Example: $\{X=b\}$ is a unifier of p(a,X) and p(a,b).

Most general unifier

Intuitively, the *most general unifier* of two expressions, is the unifier that gives the most general instance of the two expressions.

Example: $\{X=b,Y=b,Z=a\}$ e $\{X=Y,Z=a\}$ are both unifiers of p(a,X) and p(Z,Y),

but $\{X=Y,Z=a\}$ is more general than $\{X=b,Y=b,Z=a\}$.

This unifier is unique up to variable renaming and is called mgu (most general unifier).

Unification (review)

- 1. $t_i = s_i$ identical variables or constants: skip to the next pair.
- 2. t_i variable: if t_i occurs in s_i then failure, otherwise $t_i = s_i$ is added to the unifier and all the occurrences of t_i are replaced by s_i .
- 3. s_i variable: as the previous one.
- 4. let t_i $f(tt_1, \ldots, tt_n)$ and s_i $g(ss_1, \ldots, ss_m)$ if $\neg (f = g) \lor \neg (n = m)$ then failure, otherwise unify $\langle tt_1, ss_1 \rangle, \ldots \langle tt_n, ss_n \rangle$.

Unification algorithm (full)

```
Input: C a set of pairs \langle t_1, s_2 \rangle where t_i, s_i are terms
\mathbf{Output}: most general unifier \theta, if exists, otherwise false
begin
  \theta := \{\}; success := true;
  while not empty(C) and success do
  begin
     choose \langle t_i, s_i \rangle in C;
     if t_i = s_i then C := C/\{ < t_i, s_i > \}
        else if var(t_i)
          then if occurs(t_i, s_i)
                then success:=false:
                else begin
                    \theta := \mathsf{subst}(\theta, t_i, s_i) \cup \{t_i = s_i\};
                    C:=subst(rest(C), t_i, s_i)
                    end
          else if var(s_i)
             then if occurs (s_i, t_i)
                then success:=false:
```

```
else begin
                      \theta := \mathsf{subst}(\theta, s_i, t_i) \cup \{s_i = t_i\};
                      C:=subst(rest(C), s_i, t_i)
                      end
           else if t_i = f(tt_1, \dots, tt_n) and
                      s_i = g(ss_1, \ldots, ss_m) and
                      f = g \wedge n = m
                      then C := rest(C) \cup \{ \langle tt_1, ss_1 \rangle, \ldots \langle tt_n, ss_n \rangle \}
                      else success := false
end;
if not success then output false else output true, \theta
```

end

Unification in PROLOG: examples

p(f(X,Y),a,g(b,W)) unifies with p(Z,X,g(b,Y)).

p(f(X,Y),a,g(b,W)) does not unify with p(Z,f(a),g(b,Y)).

p(f(X,Y),a,g(b,W)) does not unify with p(X,a,g(b,Y)).

A program for the class timetable

A program for the class timetable

```
teaches(Tea,Course) :- course(Course,Timetab,Tea,Room).
length(Course,Len) :-
    course(Course,timetab(Day,Start,End),Tea,Room),
    plus(Start,Len,End).
hasClass(Tea,Day) :-
    course(Course,timetab(Day,Start,End),Tea,Room).
busy(Room,Day,Time) :-
    course(Course,timetab(Day,Start,End),Tea,Room),
    Start =< Time, Time =< End.</pre>
```

Natural numbers

```
natural_number(0).
natural_number(s(X)) :- natural_number(X).
plus1(0,X,X) :- natural_number(X).
plus1(s(X),Y,s(Z)):- plus1(X,Y,Z).

lesseq1(0,X) :- natural_number(X).
lesseq1(s(X),s(Y)) :- lesseq1(X,Y).
```

Lists

Remember that a list of atoms is defined as follows:

- nil is a list;
- ullet if a is an atom and L is a list cons(a,L) is a list

In PROLOG [a | X] is the same as cons(a, X)

- [a,b,c,d] is a 4 element list;
- [a | X] is a list whose first element is a and the rest of the list is denoted by the variable X;
- [Y | X] is a list whose first element is denoted by the variable Y and the rest of the list is denoted by the variable X.

Lists

```
/* member1(X,L) is true when X is an element of L */
member1(X,[X|Xs]).
member1(X,[Y|Ys]) :- member1(X,Ys).

/* append1(X,Y,Z) is true when Z is the concatenation of X and Y */
    append1([],Ys,Ys).
    append1([X|Xs],Ys,[X|Zs]) :- append1(Xs,Ys,Zs).
```

Other programs using lists

```
/* prefix(L1,L) is true when L1 is a prefix of L */
    prefix([],_Ys).
    prefix([X|Xs],[X|Ys]) :- prefix(Xs,Ys).
/* reverse(L1,L2) is true when L2 is the
reverse of L1 (same elements in reversed order */
    reverse1([],[]).
    reverse1([X|Xs],Zs) :- reverse1(Xs,Ys),
                           append1(Ys, [X], Zs).
```

Sorting lists

```
sort1(Xs,Ys) :- permutation(Xs,Ys), ordered(Ys).
permutation(Xs,[Z|Zs]) :- select(Z,Xs,Ys),
                          permutation(Ys,Zs).
permutation([],[]).
ordered([]).
ordered([X]).
ordered([X,Y|Ys]) := X = < Y, ordered([Y|Ys]).
select(X,[X|Xs],Xs).
select(X,[Y|Ys],[Y|Zs]):-select(X,Ys,Zs).
```

Programs using lists and numbers

```
len([],0).
len([_X|Xs],s(N)) :- len(Xs,N).
len([],0).
len([_X|Xs],N) :- len(Xs,N1), N is N1 + 1.
```

Home exercises

- 1. build the search tree for:
 - ?- member(c,[a,c,b]).
 - ?- plus1(Y,X,s(s(s(s(s(0)))))). and
 - ?- reverse([a,b,c],X).
- 2. Write the PROLOG programs times, power, factorial, minimum using the definitions given for natural numbers.
- 3. Write the PROLOG programs suffix, subset, intersection using lists to represent sets.
- 4. Write a PROLOG program for a depth-first visit of possibly cyclic graphs, represented through the relation arc(X,Y)
- 5. Write a PROLOG program implementing insertion sort on lists.