AMENDMENTS TO THE CLAIMS

- 1 1. (Currently Amended) A method of transmitting signals from a transmitter
 2 comprising two or more transmit antennas in a mobile telecommunications network, the
 3 method comprising
 - determining channel state information,
 - 5 estimating reliability of the channel state information,
 - space time block encoding at least one data sequence,
 - before transmitting the data sequence, applying to the data sequence a linear transformation so as to at least partially compensate for channel variations, the linear transformation being dependent upon the channel state information and dependent upon
- the estimated reliability of the channel state information.
- in which where the channel state information is channel estimates in the form of
- channel coefficients, and the channel state information for a time interval (n) is assumed
- accurate for the previous time interval (n-1), the channel state information reliability (ρ)
- 14 <u>is determined as</u>
- $\rho(1)=0$

17

18

1

2

3

- 16 $\rho(n) = (1-\alpha)\mathbf{hf}^* + \alpha\rho(n-1)$
 - where h is the channel vector, f is the latest channel state information, and α is a forgetting factor.
- 2. (Original) A method according to claim 1, in which the channel state information is channel estimates.
- 3. (Original) A method according to claim 1, in which the reliability of the channel state information is determined from latest channel state information and previous channel state information.
 - 4. (Original) A method according to claim 3, in which the latest channel state information is given a weight relative to the previous channel state information, the weight being dependent upon channel state information stability.
- 1 5. (Canceled)

	5
1	6. (Currently Amended) A method according to claim 51 in which α is selected
2	dependent on the size of the variation between the latest channel state information and the
3	last previous channel state information.
1	(Original) A method according to claim 1, in which the linear transformation
2	is applied before block encoding the data sequence.
1	8. (Original). A method according to claim 1, in which the linear transformation
2	is applied after block encoding the data sequence.
1	(Currently Amended) A method according to claim 1, in which the space-time
2	block encoding is such that at a first transmission time instant first symbol is transmitted
3	from a first of the two antennas and a second symbol is transmitted from the second of
4	the two antennas, then at the next transmission instant a negative complex conjugate of
5	the first second symbol is transmitted from the first antenna and a complex conjugate of
6	the second symbol is transmitted from the second first antenna.
1	10. (Original) A method according to claim 9, in which the space-time block
2	encoding is Alamouti space-time block encoding.
1	11. (Original) A method according to claim 1, in which the transmitter is a base
2	station operating according to a code division multiple access (CDMA) or wideband code
3	division multiple access (W-CDMA) transmission scheme

1	(Original) A method according to claim 14 in which the base station
	12. (Original) A method according to claim 11, in which the base station operates in accordance with the Universal Mobile Telecommunications System (UMTS)
2	
3	standard.
1	13. (Currently Amended) A transmitter for mobile telecommunications
2	comprising at least two transmit antennas, a space time block encoder, a linear
3	transformation apparatus operative to transform a data sequence from or to a space time
4	block encoder so as to at least partially compensate for channel variations, a processor
5	operative to receive channel state information and to estimate reliability of the channel
6 .	state information, and a processor operative to determine the linear transformation to be
7	applied dependent upon the channel state information and the estimated reliability of the
8	channel state information.
9	in which where the channel state information is channel estimates in the form of
10	channel coefficients, and the channel state information for a time interval (n) is assumed
11	accurate for the previous time interval (n-1), the channel state information reliability (p)
12	is determined as
13	$\rho(1)=0$
14	$\rho(n) = (1-\alpha)\mathbf{hf}^{\bullet} + \alpha\rho(n-1)$
15	where h is the channel vector, f is the latest channel state information, and α is a
16	forgetting factor.
1	14. (Original) A transmitter according to claim 13, in which the channel state
2	information is channel estimates.
1	15. (Original) A transmitter according to claim 13, in which the reliability of the
2	channel state information is determined from latest channel state information and
3	previous channel state information.
1	16. (Original) A transmitter according to claim 15, in which the latest channel
2	state information is given a weight relative to the previous channel state information, the
3	weight being dependent upon channel state information stability.

17. (Canceled)

	_17 _18
1	18. (Currently Amended) A transmitter according to claim 17 1/3, in which α is
2	selected dependent on the size of the variation between the latest channel state
3	information and the last previous channel state information.
1	19. (Original) A transmitter according to claim 13, in which the linear
2	transformation apparatus transforms the data sequence before it is applied to the block
3	encoder. 16
1	20. (Original) A transmitter according to claim 15, in which the linear
2	transformation apparatus transforms the data sequence after it is applied to the block
3	encoder. 19
1	21. (Currently Amended) A transmitter according to claim 13, in which the
2	space-time block encoder operates such that at a first transmission time instant a first
3	symbol is transmitted from a first of the two antennas and a second symbol is transmitted
4	from the second of the two antennas, then at the next transmission instant a negative
5	complex conjugate of the first second symbol is transmitted from the first antenna and a
6	complex conjugate of the second first symbol is transmitted from the second antenna.
1	22. (Original) A transmitter according to claim 21, in which the space-time block
2	encoder is Alamouti space-time block encoder.
1	23. (Original) A transmitter according to claim 13, which is a base station operating according to a code division multiple access (CDMA) or wideband code
2	operating according to a code division multiple access (CDMA) or wideband code
3	division multiple access (W-CDMA) transmission scheme.
1	24. (Original) A transmitter according to claim 23, which operates in accordance
2	with the Universal Mobile Telecommunications System (UMTS) standard.
1	25. (Canceled)
1	26. (Canceled)

21. (Original) A network for mobile telecommunications comprising a transmitter and a receiver,

the transmitter comprising a space-time block encoder and a linear transformation apparatus operative to transform a data sequence from or to the space-time block encoder by applying a linear transformation so as to at least partially compensate for channel variations, the transmitter comprising at least two transmit antennas,

the receiver comprising a space-time block decoder and a channel estimator, a processor operative to estimate channel state information reliability from channel state information provided by the channel estimator, and a processor operative to determine the coefficients of a further linear transformation matrix dependent upon the channel state information and the estimated reliability of the channel state information to be applied to a further data sequence for transmission,

the coefficients of the further linear transformation matrix being sent from the receiver to the transmitter for use.