

Ciclo 1 Fundamentos de programación con Python Sesión 8: Metodología para la solución de algoritmos

Programa Ciencias de la Computación e Inteligencia Artificial Escuela de Ciencias Exactas e Ingeniería Universidad Sergio Arboleda Bogotá

Agenda

- 1. Metodología de solución a problemas
- 2. Definición del problema
- 3. Análisis de problema
- 4. Diseño del programa
- 5. Codificación del programa
- 6. Implementación del programa
- 7. Mantenimiento del programa
- 8. El algoritmo

1. Metodología de solución de problemas

 Elaborar un programa de computadora implica llevar a cabo una serie de pasos secuenciales y cronológicos que comienzan con la detección y definición del problema y conducen a la implantación del programa que lo soluciona. Los pasos del proceso de programación son:

1. Definición del problema	4. Codificación el programa
2. Análisis del problema	5. Implantación del programa
3. Diseño de Programa	6. Mantenimiento del programa

2. Definición del problema

Este proceso inicia cuando surge la necesidad de resolver algún problema o satisfacer una necesidad mediante la computadora. Se debe identificar el problema y comprender la utilidad de la solución que se alcance.

3. Análisis del problema

Es necesario tener en detalle el problema en cuestión, para tener los datos disponibles como materia prima y definir el proceso necesario para convertir los datos en la información requerida. Costa de tres etapas:

- Primera etapa: definir los resultados esperados
- Segunda etapa: definir los datos de entrada
- Tercera etapa: determinar el proceso

Se tiene la siguiente problemática:

El profesor del curso de fundamentos de programación necesita calcular la nota definitiva para un estudiante, el 100% de nota esta distribuida de la siguiente manera: un 30% corresponde a la nota promedio de los 3 talleres que se realizaron durante el curso, otro 30% corresponde a la nota promedio de 2 evaluaciones cortas realizadas y un 40% corresponde al proyecto final que esta comprendido por el trabajo(50%) y la sustentación del mismo (50%)

❖ Definición del problema: Poder calcular la nota definitiva de un estudiante, según las calificaciones parciales obtenidas y los porcentajes establecidos.

❖ Análisis:

- Datos Resultado: NotaDefinitiva
- Datos de Entrada: nombreEstudiante, idEstudiante, nota Taller1, notaTaller2, notaTaller3, notaEvaluación1, nota Evaluación2, notaTrabajo, notaSustentación

Análisis:

Procedimiento:

notaTalleres=((notaTaller1+notaTaller2+notaTaller3)/3)*0,30

notaEvaluaciones=((notaEvaluación1+notaEvaluación2)/2)*0,30

notaProyecto=((notaTrabajo+notaSustentación)/2)*0,40

notaDefinitiva=notaTalleres+notaEvaluación+notaProyecto

- Un niño que cursa tercero de primaria necesita aprender a calcular el área para un triangulo rectángulo
- 2. Una pequeña empresa necesita saber en cuanto puede vender el producto que fabrica. De dicho producto conocemos el nombre, el código y el costo de producción; es necesario que el precio de venta incluya 120% como utilidad y un 15% de impuestos.
- 3. Cada estudiante propone 1 ejercicio donde realice las etapas de definición del problema y el análisis.

4. Diseño de programa

Durante este paso se proceda diseñar la lógica para la solución al problema, haciendo dos cosas:

- Elaborar el algoritmo.
- Prueba escritorio.

5. Codificación del programa

En este paso se procede a codificar el programa en el lenguaje de programación que vayamos a utilizar. Este proceso es sumamente sencillo dado que ya tenemos diseñado el programa, sólo nos concentramos en convertir las acciones del algoritmo instrucciones de computadora.

6. Implementación del programa

- Una vez que el programa está correcto, se instala y se pone a funcionar, entrando en operación normalmente en la situación específica para el cual se desarrolló.
- Debe ser supervisado continuamente para detectar posibles cambios o ajustes que sea necesarios realizar.

7. Mantenimiento del programa

Un programa que está en operación, por un lado podría presentar errores los cuales deben corregirse y por otro lado podría requerir cambios o ajustes en sus datos, procesos o información.

Eventualmente necesitaría mantenimiento para adecuarlo a los cambios que le imponga la dinámica cambiante de las organizaciones o de los problemas.

8. El algoritmo

Es una secuencia ordenada lógica y cronológica de pasos que llevan a la solución de un problema o a la ejecución de una tarea o actividad.

Los pasos del algoritmo deben tener las siguientes características:

- Simples, claros, precisos, exactos
- Tener un orden lógico
- Tener un principio y un fin

- Realizar un algoritmo paso a paso que permita entrenar a un robot para realizar el cambio de un bombillo fundido
- Realizar un algoritmo paso a paso que permita entrenar a un robot para realizar el cambio de una llanta pinchada

Preguntas

