Bases de Datos 1

Alejandra Lliteras alejandra.lliteras@lifia.info.unlp.edu.ar

Figura extraída de:

Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.

DBMS

 Un sistema manejador de bases de datos (Data Base Managment System) es una herramienta para crear y manejar grandes volúmenes de datos de manera eficiente permitiendo persistirlos de manera segura y por largos períodos de tiempo

DBMS

- Debe permitir
 - Crear nuevas bases de datos y sus esquemas
 - Lenguaje de definición de datos (DDL)
 - Consultar los datos y modificarlos
 - Lenguaje de consultas y manipulación de datos (DML)
 - Permitir el almacenamiento de grandes volúmenes de datos, por largos períodos de tiempo
 - Permitir el acceso eficiente a los datos (para consultas y modificaciones)
 - Permitir la recuperación de los datos ante fallos (Durabilidad)
 - Control de acceso de múltiples usuarios, sin que éstos tengan interacciones indeseadas (Aislamiento)
 - Acciones sobre los datos que se realizan de manera completa (Atomicidad)

DBMS

- Es usado por
 - Administradores del sistema
 - Crean bases de datos y esquemas
 - Usuarios convencionales
 - · que consultan los datos o los modifican

Esquemático simplificado de un DBMS

Definición de transacción

- Es una unidad de ejecución de un programa que accede y posiblemente modifica datos
- Es una colección de operaciones que forman una única unidad lógica de trabajo
- Tiene un inicio y un fin definido
 - La transacción consiste de cada una de las sentencias que se ejecutan entre el inicio de la transacción y su fin.

Un DBMS debe asegurar:

- que la ejecución de las transacciones se realice adecuadamente a pesar de la existencia de fallos:
 - o se ejecuta la transacción completa o no se ejecuta nada
- Debe asegurar la concurrencia de las transacciones

Un DBMS debe asegurar:

- que la ejecución de las transacciones se realice adecuadamente a pesar de la existencia de fallos:
 - o se ejecuta la transacción completa o no se ejecuta nada
- Debe asegurar la concurrencia de las transacciones

Propiedades ACID

- Atomicidad (Atomicity):
 - o todas las operaciones de una transacción se realiza o ninguna de ellas, lo hace.
- Consistencia (Consistency):
 - La ejecución aislada de la transacción, conserva la consistencia de la base de datos
- Aislamiento (Isolation):
 - Cuando dos o mas transacciones se ejecutan concurrentemente, cada una de ellas ignora al resto
- Durabilidad (Durability):
 - cuando termina una transacción exitosamente, los cambios quedan en la base de datos aun cuando haya fallos en el sistema

Estados de una transacción

Activa:

 Es el estado inicial, la transacción permanece en este estado mientras se ejecuta

Parcialmente comprometida:

Después de ejecutarse la última operación

Fallida:

 Luego de darse cuenta que no puede continuar con la ejecución normal

Abortada:

 Después de haber retrocedido la transacción y restablecido la base de datos a su estado anterior al comienzo de la transacción

Comprometida:

Al completarse con éxito

Diagrama de transición de estados

Figura extraída de:

Elmasri, R., & Navathe, S. B. (2007). Fundamentos de sistemas de bases de datos.

Una transacción ha sido

- · abortada, cuando llega al estado abortada
- comprometida, cuando llega al estado comprometida
- terminada, cuando se encuentra en estado comprometida o abortada

Procesador de consultas

Plan de ejecución de consulta

- El plan de ejecución de consulta, surge a partir del análisis y la optimización que se realiza en el compilador de consultas, donde se emplean las estadísticas que genera el DBMS
 - Estadísticas: información generada y almacenada por el DBMS sobre las propiedades de los datos

- DBMS relacional y Open Source
 - 2008: SUN Microsystem
 - 2010: Desarrollado, distribuido y mantenido por ORACLE Corporation
- Algunas características
 - Portabilidad y algunos aspectos internos
 - Escrito en C y C++
 - Corre en diferentes plataformas (http://www.mysql.com/support/supportedplatforms/database.html)
 - Motor de almacenamiento transaccional y no transaccional
 - Seguridad
 - Sistema de contraseña y privilegios
 - · Encriptación de contraseña
 - Escalabilidad
 - Usada en grandes bases de datos (50 millones de registros)
 - Hasta 64 índices por tabla. Cada índice de 1 a 16 columnas
 - Conectividad
 - Mediante diversos protocolos
 - TCP IP

- DBMS relacional y Open Source
 - Desarrollado, distribuido y mantenido por ORACLE Corporation
- Algunas características
 - Se opera por línea de comando o bien por alguna interface gráfica (por ejemplo: mySQL Workbench, PHP Admin, entre otros)
 - Es parte de la arquitectura LAMP
 - Sistemas de infraestructura de internet que usa las Herramientas: Linux (como SO), Apache (como servidor web), MySQL/MariaDB (gestor de BBDD) y Perl, PHP, o Python (lenguaje de programación)

- Versiones
 - Con licencia GPL
 - Comercial

GPL

- MySQL Community Edition and MySQL Cluster Community Edition*
 - · Open source, non-commercial

Commercial

24x7 support and access to management / monitoring and back-up tools

- MySQL Classic Edition
- Embedded database for OEMs/ISVs/VARs
 Read-intensive applications
- MySQL Standard Edition
 - High Performance, Scalable OLTP Applications
 MySQL Replication
- MySQL Enterprise Edition
 - MySQL Partitioning MySQL Enterprise Monitor MySQL Enterprise Backup
- MySQL Cluster Carrier Grade Edition*
 - · Write-Scalable, 99.999% Uptime Database
 - MySQL Cluster Manager
 - MySQL Cluster Geo -Replication

Permite múltiples formatos de almacenamiento

Por ejemplo:

Engine	Support	Comment	Transactions
InnoDB	DEFAULT	Supports transactions, row-level locking, and foreign keys	YES
MEMORY	YES	Hash based, stored in memory, useful for temporary tables	NO
MyISAM	YES	MyISAM storage engine	NO
CSV	YES	CSV storage engine	NO

Para ver todos los formatos soportados por la versión de Mysql, ejecutar el comando

SHOW ENGINES;

- Los múltiples formatos de almacenamiento son administrados por Motores de almacenamiento
 - Son componentes de MySql que manejan las operaciones de SQL para los diferentes tipos de tablas.
 - InnoDB es el componente de propósito más general.
 - Oracle recomienda su uso excepto para tablas muy especializadas.
 - La sentencia "CREATETABLE" por defecto crea tablas con InnoDB.
 - MySQL utiliza una arquitectura de storage engines conectable, lo que permita cargar y/o descargar nuevos engines en un servidor que se está ejecutando.

InnoDB

- Soporta transacciones
- Realiza el bloqueo a nivel de fila de una tabla
- Permite definir claves foráneas
- Integridada de datos
 - Transacciones
 - Restricciones entre las relaciones
- Es recomendable para tablas con alta cantidad de inserts y deletes, debido al bloqueo a nivel de fila

MyISAM

- No soporta transacciones
- Hace bloqueo a nivel de tabla
 - Lo que la hace lenta para tablas con muchos inserts/deletes
- No posee restricción de clave foránea
- Es beneficioso para tablas con alto nivel de lecturas

- Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Elmasri, R., & Navathe, S. B. (2007).
 Fundamentos de sistemas de bases de datos.

http://dev.mysql.com/doc/refman/5.7/en/featur es.html