Public Policy 529 Association Between Categorical Variables Part 2

Jonathan Hanson

Gerald R. Ford School of Public Policy University of Michigan

November 7, 2022

Outline

1. Recap: The χ^2 Test of Independence

2. Assessing the Relationship

3. Small Sample Tests

Outline

1. Recap: The χ^2 Test of Independence

2. Assessing the Relationship

Small Sample Tests

Key Points

- This test applies when our variables of interest are categorical and we have a (relatively) large sample.
- In a joint frequency distribution, the χ^2 statistic measures deviation from the scenario in which the variables are independent.
- The χ^2 statistic is non-negative, and 0 indicates the variables are independent.
- We reject the null hypothesis of independence when the χ^2 statistic is sufficiently large.
- This critical value of χ^2 is determined by α and degrees of freedom.

Formula for the Test Statistic

A deviation from the scenario of independence occurs when the observed frequency (f_o) differs from the expected frequency (f_e) .

The χ^2 statistic sums up the deviations of the expected frequency (f_e) from f_o for all of the interior cells. The formula is:

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

For each cell, we square the deviation between f_o and f_e and divide the result by f_e . We then add up the resulting numbers.

- The Affordable Care Act (i.e. ObamaCare) led to the creation of health insurance marketplaces in the states, where individuals could shop for health insurance plans.
- Suppose you are asked to perform an analysis that compares how satisfied people are with these plans compared to those who have other forms of health coverage.
- How could we do this?

- The Health Reform Monitoring Survey (Oct 2016) provides data to compare satisfaction between ACA marketplace plans and other kinds of insurance.
- Dependent variable: level of satisfaction with health insurance (satisfied, neutral, and dissatisfied).
- Independent variable: health plan type (ACA health exchange or other health insurance).

Health Plan Type

Satisfaction	ACA	Other	Total
Satisfied	71.2%	79.9%	78.6%
	(772)	(5,096)	(5,868)
Neutral	18.2%	14.1%	14.7%
	(197)	(899)	(1,096)
Dissatisfied	10.7%	6.0%	6.7%
	(116)	(382)	(498)
Total	100%	100%	100%
	(1,085)	(6,377)	(7,462)

What distribution should we see if Satisfaction and Health Plan Type are independent?

Expected Distribution Under H_O

Health Plan Type

Satisfaction	ACA	Other	Total
Satisfied	78.6%	78.6%	78.6%
	(853.2)	(5014.8)	(5,868)
Neutral	14.7%	14.7%	14.7%
	(159.4)	(936.6)	(1,034)
Dissatisfied	6.7%	6.7%	6.7%
	(72.4)	(425.6)	(498)
Total	100%	100%	100%
	(1,085)	(6,377)	(7,462)

Deviations from Expected Distribution

Each cell contains $f_o - f_e$

Health Plan Type

Satisfaction	ACA	Other
Satisfied	772 - 853.2	5096 - 5014.8
Neutral	197 - 159.4	899 - 936.6
Dissatisfied	116 - 72.4	382 - 425.6

Note: this is also how we calculate the cell "residuals," which will come up later.

Applying the χ^2 Formula

Each cell contains: $(f_o - f_e)^2/f_e$

Health Plan Type

Satisfaction	ACA	Other
Satisfied	$\frac{(772 - 853.2)^2}{853.2}$	$\frac{(5096 - 5014.8)^2}{5014.8}$
Neutral	$\frac{(197 - 159.4)^2}{159.4}$	$\frac{(899 - 936.6)^2}{936.6}$
Dissatisfied	$\frac{(116-72.4)^2}{72.4}$	$\frac{(382 - 425.6)^2}{425.6}$

Summing up the Results

Each cell contains: $(f_o - f_e)^2/f_e$

	Health Plan Type	
Satisfaction	ACA	Other
Satisfied	7.7	1.3
Neutral	8.9	1.5
Dissatisfied	26.3	4.7

$$\chi^2 = 7.7 + 1.3 + 8.9 + 1.5 + 26.3 + 4.7 = 50.4$$

Degrees of Freedom

d.f. =
$$(\# \text{ rows - 1})(\# \text{ columns - 1})$$

	Health Plan Type	
Satisfaction	ACA	Other
Satisfied	7.7	1.3
Neutral	8.9	1.5
Dissatisfied	26.3	4.7

With 3 rows and 2 columns, degrees of freedom equals 2.

Finding the Critical Value of χ^2

- The χ^2 test is a one-sided test in which the entire rejection region is in the right-hand tail.
- If $\alpha=.05$, the critical value of χ^2 is the value that leaves 5% of the area in the right-hand tail.
- With 2 degrees of freedom, the critical value is 5.99 (see table).
- The χ^2 statistic from our test is 50.4, which exceeds the critical value.
 - \Rightarrow Satisfaction with health insurance and health plan type are not independent.

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

			Righ	t-Tail Proba	bility		
df	0.250	0.100	0.050	0.025	0.010	0.005	0.001
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12
9	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	12.55	15.99	18.31	20.48	23.21	25.19	29.59

Running the Test in Stata

. tab Satisfaction PlanType, chi

	Is your of coverage of insurance through marketpl	health plan the	
Satisfaction	ACA	Other	Total
Satisfied Neutral Dissatisfied	772 197 116	5,096 899 382	5,868 1,096 498
Total	1,085	6,377	7,462

Pearson chi2(2) = 50.1539 Pr = 0.000

Running the Test in R

```
> health.table <- table(health$Satisfaction, health$PlanType)</p>
> addmargins(health.table)
               ACA Other Sum
  Satisfied
               772 5096 5868
  Neutral
            197 899 1096
  Dissatisfied 116 382 498
              1085 6377 7462
  Sum
> chisq.test(health.table, correct = F)
       Pearson's Chi-squared test
data: health.table
X-squared = 50.154, df = 2, p-value = 1.286e-11
```

Outline

1. Recap: The χ^2 Test of Independence

2. Assessing the Relationship

3. Small Sample Tests

Assessing the Relationship

- The χ^2 statistic does not tell us anything about the nature of the relationship or the strength of association.
- It tells us whether we there is a statistically significant deviation from the scenario of independence between the variables.
- We can, however, examine the data and use other techniques to assess the nature and direction of the relationship.
 - e.g. those with ACA insurance expressed lower levels of satisfaction.

At the most basic level, we can just compare the percentages across the categories of the independent variable.

	Health P	lan Type	
Satisfaction	ACA	Other	Total
Satisfied	71.2%	79.9%	78.6%
	(772)	(5,096)	(5,868)
Neutral	18.2%	14.1%	14.7%
	(197)	(899)	(1,096)
Dissatisfied	10.7%	6.0%	6.7%
	(116)	(382)	(498)
Total	100%	100%	100%
	(1,085)	(6,377)	(7,462)

Satisfaction is about 8.4 percentage points higher among those with other types of insurance.

Analysis of Residuals

- To be more systematic, we can analyze the residuals (i.e. the deviations).
- For which categories are the deviations positive or negative?
- Are the deviations large or small? We can measure this in context.

Calculating the Residuals

Each cell contains $f_o - f_e$

Health Plan Type

Satisfaction	ACA	Other
Satisfied	772 - 853.2	5096 - 5014.8
Neutral	197 - 159.4	899 - 936.6
Dissatisfied	116 - 72.4	382 - 425.6

Some residuals are positive and others are negative.

Calculating the Residuals

Note that the residuals cancel each other out mathematically, both horizontally and vertically.

Health Plan Type				
Satisfaction	ACA	Other	Net Change	
Satisfied	-81.2	81.2	0	
Neutral	37.6	-37.6	0	
Dissatisfied	43.6	-43.6	0	
Net Change	0	0	0	

We see that about 81 fewer people were satisfied with ACA plans than expected. These 81 people instead were Neutral or Dissatisfied.

Interpreting the Magnitude of the Residuals

• It is helpful to have a way to determine whether a residual is large or small.

e.g. is 81 fewer people a lot or a little?

• To accomplish this goal, we can standardize the residuals (i.e. convert them into a z score).

$$z = \frac{f_o - f_e}{se} = \frac{f_o - f_e}{\sqrt{f_e(1 - \text{row proportion})(1 - \text{column proportion})}}$$

Example: Standardizing the Residual

The residual for the Satisfied/ACA cell was -81.2. What is z? Use the observed frequencies to find the proportions.

Health Plan Type			
Satisfaction	ACA	Other	Total
Satisfied	772	5,096	5,868
Neutral	197	899	1,096
Dissatisfied	116	382	498
Total	1,085	6,377	7,462

The row proportion is 5,868/7,462 = .786. The column proportion is 1,085/7,462 = .145.

Example: Standardizing the Residual

Recalling that the expected frequency for the Satisfied/ACA cell (f_e) was 853.2:

$$z = \frac{f_o - f_e}{se}$$

$$= \frac{f_o - f_e}{\sqrt{f_e(1 - \text{row proportion})(1 - \text{column proportion})}}$$

$$= \frac{-81.2}{\sqrt{853.2(1 - .786)(1 - .145)}}$$

$$= -6.50$$

A z-score of -6.50 is very far out in the left-hand tail of the standard normal distribution. This is a very large residual.

Example: All the Residuals

	Health F	Health Plan Type		
Satisfaction	ACA	Other		
Satisfied	-6.51	6.51		
Neutral	3.49	-3.49		
Dissatisfied	5.74	-5.74		

For all six cells, the standardized residuals are large. The sign also tells us the direction of the deviation from the null hypothesis.

Adjusted Residuals in Stata

 There is a supplementary Stata command, tabchi, that must first be installed. Type:

findit tabchi

Identify the correct item and follow the directions to install.
 Then:

tabchi var1 var2, adjust

• In R, you need to install the questionr library. Then:

chisq.residuals(table, digits = 2, std = TRUE)

. tabchi Satisfaction PlanType, a

observed frequency expected frequency adjusted residual

throug	a health ce plan
ACA	Other
772 853.227 -6.508	5014.773
197 159.362 3.492	
116 72.411 5.736	
	coverage insurar throug market ACA 772 853.227 -6.508 197 159.362 3.492 116 72.411

Pearson chi2(2) = 50.1539 Pr = 0.000 likelihood-ratio chi2(2) = 45.8674 Pr = 0.000

Working with Ordinal Variables

- When the variables are ordinal, there can be a positive or negative relationship between them.
- By "positive" we mean that when an observation is higher (lower) on one variable it tends to be higher (lower) on the other
- The χ^2 statistic does not measure this.
- A variety of other statistics do: gamma, Kendall's tau-b, etc.
- ullet These statistics range from -1 to +1, where 0 means there is no relationship between the variables.

. tab LegalPot RestrictGuns, col chi

frequency
column percentage

POST: Should marijuana be legal?	more dif	ficult to b	ouy a gun	Total
1. Oppose	509	462	81	1,052
	26.16	32.04	35.53	29.09
2. Neither favor nor	455	407	60	922
	23.38	28.22	26.32	25.50
3. Favor	982	573	87	1,642
	50.46	39.74	38.16	45.41
Total	1,946	1,442	228	3,616
	100.00	100.00	100.00	100.00

Pearson chi2(4) = 44.8000 Pr = 0.000

. tab LegalPot RestrictGuns, col taub gamma

Key	
frequency column percentag	re

POST: Should	PRE: Should fed govt make it more difficult to buy a gun			
marijuana be legal?	1. More d	2. Keep t	3. Easier	Total
1. Oppose	509	462	81	1,052
	26.16	32.04	35.53	29.09
2. Neither favor nor	455	407	60	922
	23.38	28.22	26.32	25.50
3. Favor	982	573	87	1,642
	50.46	39.74	38.16	45.41
Total	1,946	1,442	228	3,616
	100.00	100.00	100.00	100.00

 $\mbox{gamma} = -0.1611 \quad \mbox{ASE} = 0.025 \\ \mbox{Kendall's tau-b} = -0.0967 \quad \mbox{ASE} = 0.015 \\ \mbox{}$

Interpretation

- Both the gamma statistic and the tau-b statistic suggest a mild negative relationship between the two variables.
- People who are opposed to legalizing marijuana are more likely to favor making it easier to buy guns, and vice-versa.
- These measures allow us to be a bit more systematic when assessing the relationship between ordinal variables.

. tab SpendSchools SpendChildCare, col taub gamma nokey

PRE: Federal Budget Spending: public schools	PRE: Federal Budget Spending: Social Security 1. Decrea 2. Kept t 3. Increa			Total
1. Decreased	180	101	43	324
	31.86	6.25	2.11	7.69
2. Kept the Same	151	571	230	952
	26.73	35.36	11.30	22.59
3. Increased	234	943	1,762	2,939
	41.42	58.39	86.58	69.73
Total	565	1,615	2,035	4,215
	100.00	100.00	100.00	100.00

gamma = 0.6213 ASE = 0.018 Kendall's tau-b = 0.3696 ASE = 0.013

These variables have a positive relationship.

. tab SpendWelfare DeficitImpt, col taub gamma nokey

P	OST: Import	ance of red	ucing defic	it	
1. Not at	2. A litt	3. Modera	4. Very I	5. Extrem	Total
15	31	198	589	862	1,695
36.59	23.13	29.55	44.96	59.24	46.95
7	45	287	495	418	1,252
17.07	33.58	42.84	37.79	28.73	34.68
19	58	185	226	175	663
46.34	43.28	27.61	17.25	12.03	18.37
41	134	670	1,310	1,455	3,610
100.00	100.00	100.00	100.00	100.00	100.00
	1. Not at 15 36.59 7 17.07 19 46.34 41	1. Not at 2. A litt 15 31 36.59 23.13 7 45 17.07 33.58 19 58 46.34 43.28 41 134	1. Not at 2. A litt 3. Modera 15 31 198 36.59 23.13 29.55 7 45 287 17.07 33.58 42.84 19 58 185 46.34 43.28 27.61 41 134 670	1. Not at 2. A litt 3. Modera 4. Very I 15 31 198 589 36.59 23.13 29.55 44.96 7 45 287 495 17.07 33.58 42.84 37.79 19 58 185 226 46.34 43.28 27.61 17.25	36.59 23.13 29.55 44.96 59.24 7 45 287 495 418 17.07 33.58 42.84 37.79 28.73 19 58 185 226 175 46.34 43.28 27.61 17.25 12.03 41 134 670 1,310 1,455

gamma = -0.3393 ASE = 0.021Kendall's tau-b = -0.2254 ASE = 0.014

These variables have a negative relationship.

The gamma and Kendall tau-b Statistics in R

- First, one must install the DescTools library.
- Second, make your table object with the table command.
- For the gamma statistic: GoodmanKruskalGamma(table)
- For the tau-b statistic: KendallTauB(table).

Outline

1. Recap: The χ^2 Test of Independence

2. Assessing the Relationship

3. Small Sample Tests

Fisher's Exact Test

- We have already seen the small-sample counterpart of the χ^2 test: the Fisher's Exact test
- The Fisher's test continues to work for larger sample sizes, though χ^2 is computationally easier.
- When expected cell sizes become too small, however, we can no longer use χ^2 .

. tab Satisfaction PlanType, chi exact

Enumerating sample-space combinations:
stage 3: enumerations = 1

stage 2: enumerations = 103
stage 1: enumerations = 0

	Is your c	urrent	
	coverage a	health	
	insurance	plan	
	through	the	
	marketpl	ace?	
Satisfaction	ACA	Other	Total
Satisfied	772	5,096	5,868
Neutral	197	899	1,096
Dissatisfied	116	382	498
Total	1,085	6,377	7,462

Pearson chi2(2) = 50.1539 Pr = 0.000 Fisher's exact = 0.000