- **Decision Trees: Study Notes**
- * **Definition:** A diagram showing choices and possible results to aid decision-making.
- * **Structure:**
 - * **Root Node:** Initial question, represents entire dataset.
 - * **Branches:** Connect nodes, show decision flow.
 - * **Internal Nodes:** Decision points based on features.
 - * **Leaf Nodes:** Terminal nodes, represent final outcomes/predictions.
- * **Types:**
 - * **Classification Trees:** Predict categorical outcomes (e.g., spam/not spam).
 - * **Regression Trees:** Predict continuous numerical values (e.g., house price).
- * **How They Work:**
 - 1. Start at the root node (initial question).
 - 2. Ask yes/no questions to split data into subsets.
 - 3. Follow branches based on answers.
 - 4. Continue branching until a final outcome/decision is reached.
- * **Advantages:**
 - * Simple and easy to understand.
 - * Versatile (classification and regression).
 - * No feature scaling needed.
 - * Handles non-linear relationships.
- * **Disadvantages:**
 - * Overfitting (poor performance on new data).
 - Instability (small input changes, big prediction changes).
 - * Bias towards features with more levels.
- * **Applications:**
 - Loan Approval in Banking

- * Medical Diagnosis
- * Predicting Exam Results in Education
- * **Related Fields:**
 - * Machine Learning
 - * Data Mining
 - * Statistics