EE23BTECH11047 - Deepakreddy P

A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.

Solution:

Fig. 1. Circuit-1

Symbol	Description value	
L	Inductor	44mH
V_{rms}	RMS Volt- age	220V
f	Frequency 50Hz	

$$V = I(j\omega L) \tag{1}$$

$$I = \frac{V}{j\omega L} \tag{2}$$

$$I = \frac{V}{j\omega L}$$
(2)

$$I = \frac{220\sqrt{2}}{j(314)(44x10^{-3})}$$
(3)

$$I = \frac{22.52}{j} \tag{4}$$

Fig. 2. Circuit-2

$$I_{rms} = \frac{I}{\sqrt{2}} \tag{5}$$

$$I_{rms} = \frac{I}{\sqrt{2}}$$

$$I_{rms} = \frac{15.92}{j}$$

$$(5)$$

$$|I_{rms}| = 15.92A$$
 (7)

 ${\rm TABLE~II}$ FORMULAE AND OUTPUT

Symbol	Description	Formulae	Value
X_L	Inductive Reactance	$2 \pi f L$	13.816
ω	Angular Frequency	$2\pi f$	314 rad/sec
I_{rms}	Rms cur- rent	$\frac{V}{X_L}$	15.92A