

Summary

$$X_c = \frac{\int_A x dA}{\int_A dA}$$

$$Y_c = \frac{\int_A y dA}{\int_A dA}$$

- (1) Kirst moments Q_x and Q_y :
- (2) Position of the centroid

Global Centriod

$$\bar{X} = \frac{\sum_i \bar{x}_i A_i}{\sum_i A_i}, \text{ and } \bar{Y} = \frac{\sum_i \bar{y}_i A_i}{\sum_i A_i};$$

- (3) The centroidal axes
- (4) The centroid for composite shapes

Application: How to simplify distributed Loads on beams?

$$\mathbf{M}_{CG} = \sum_{i=1}^{N} (\mathbf{r}_i - \bar{\mathbf{r}}) W_i = 0$$

$$\bar{X}\sum_{i} A_{i} = \sum_{i} \bar{x}_{i} A_{i}$$

$$dW = wdx$$

$$W = \int_{0}^{L} w dx \Leftrightarrow \int dA = A$$

A vertical distributed load is represented by plotting the load per unit length, w (N/m). The total load is equal to the area under the load curve.

first moment

A distributed load can be replace by a concentrated load with a magnitude equal to the

concentrated foad with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

$$(OC)W = \int x dW$$

$$(OC)A = \int_{0}^{L} x dA = \bar{x}A$$

$$\int (x - \bar{x})w(x)dx = 0 \quad \rightarrow \quad \bar{x} = \frac{\int_{0}^{L} xw(x)dx}{\int_{0}^{L} w(x)dx}$$

Sample Problem 9.9

Determine the equivalent concentrated load and the reactions at the supports.

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.

$$\bar{x} = \frac{\sum_{i} \bar{x}_{i} A_{i}}{\sum_{i} A_{i}}$$

$$A_I = \frac{1}{2} \times 1.5 \times 6 = 4.5$$

SOLUTION:

Component	A, kN	x , m	$\overline{x}A$, kN·m
Triangle I Triangle II	4.5 13.5	2 4	9 54
	$\Sigma A = 18.0$		$\Sigma \overline{x}A = 63$

 $F = 18.0 \,\mathrm{kN}$

$$\overline{X} = \frac{63 \,\mathrm{kN} \cdot \mathrm{m}}{18 \,\mathrm{kN}}$$

$$\overline{X} = 3.5 \text{ m}$$

• Determine the support reactions by summing moments about the beam ends.

$$\sum M_A = 0$$
: $B_y (6 \text{ m}) - (18 \text{ kN})(3.5 \text{ m}) = 0$
 $B_y = 10.5 \text{ kN}$

$$\overline{X} = 3.5 \text{ m}$$
 A_y
 B_y
 B_y

$$\sum M_B = 0$$
: $-A_y(6 \text{ m}) + (18 \text{ kN})(6 \text{ m} - 3.5 \text{ m}) = 0$
 $A_y = 7.5 \text{ kN}$

Lecture 14 Distributed Forces (II): Moments of Inertia

Oftentimes, we would like to know how mass is distributed over a continuum body or the volume or shape of a continuum body. This is because the mechanical moments generated by the distributed force depend on the span of a continuum body.

Moment of Inertia of an Area

When the force distributions are linearly proportional to the distance to an axis.

Sample Problem 9.1

Determine the moment of inertia of a triangle with respect to its base.

SOLUTION:

 A differential strip parallel to the x axis is chosen for dA.

$$dI_x = y^2 dA \qquad dA = \ell(y) dy$$
• For similar triangles,
$$\frac{l}{h} = \frac{h - y}{h} \qquad l = b \frac{h - y}{h} \qquad dA = b \frac{h - y}{h} dy$$

• Integrating dI_x from y = 0 to y = h,

$$I_{x} = \int y^{2} dA = \int_{0}^{h} y^{2} b \frac{h - y}{h} dy = \frac{b}{h} \int_{0}^{h} (hy^{2} - y^{3}) dy$$
$$= \frac{b}{h} \left[h \frac{y^{3}}{3} - \frac{y^{4}}{4} \right]_{0}^{h}$$
$$I_{x} = \frac{bh^{3}}{12}$$

$$I_{\bar{x}} = \int_{A} y^{2} dA; \quad dA = b dy$$

$$= \int_{0}^{h} by^{2} dy$$

$$= \frac{by^{3}}{3} \Big|_{0}^{h} = \frac{bh^{3}}{3}$$

Polar Moment of Inertia

• The *polar moment of inertia* is an important parameter in problems involving torsion of cylindrical shafts and rotations of slabs.

$$J_0 = \int r^2 dA$$

• The polar moment of inertia is related to the rectangular moments of inertia,

$$J_0 = \int r^2 dA = \int (x^2 + y^2) dA = \int x^2 dA + \int y^2 dA$$

= $I_y + I_x$

Sample Problem 9.2

- a) Determine the centroidal polar moment of inertia of a circular area by direct integration.
- b) Using the result of part *a*, determine the moment of inertia of a circular area with respect to a diameter.

$$dJ_O = u^2 dA \qquad dA = 2\pi u du$$

$$J_O = \int dJ_O = \int_0^r u^2 (2\pi u du) = 2\pi \int_0^r u^3 du$$

$$J_O = \frac{\pi}{2} r^4$$

• From symmetry, $I_x = I_y$,

$$J_O = I_x + I_y = 2I_x \qquad \frac{\pi}{2}r^4 = 2I_x$$

$$k_x = r/2$$

$$I_{diameter} = I_x = \frac{\pi}{4}r^4$$

Parallel Axis Theorem (Axes that are parallel to the centroidal axis)

• Consider moment of inertia *I* of an area *A* with respect to the axis *AA*'

$$I = \int y^2 dA$$

• The axis BB' passes through the area centroid and is called a *centroidal axis*.

$$I = \int y^{2} dA = \int (y' + d)^{2} dA$$

$$= \int y'^{2} dA + 2d \int y' dA + d^{2} \int dA$$

$$I = \bar{I} + Ad^{2} \quad parallel \ axis \ theorem$$

We usually take this as the moment of inertia w.r.t. The centroidal axis.

The moment of inertia with respect to am axis that is parallel to The centroidal axis is equal to

$$I_x = \bar{I}_{\bar{x}} + d^2 A \qquad \qquad I_x = \frac{1}{3}bh^3$$

$$\bar{I}_{\bar{x}} = \int_{A} y^{2} dA; \quad dA = b dy$$

$$= \int_{-h/2}^{h/2} by^{2} dy$$

$$= \frac{by^{3}}{3} \Big|_{-h/2}^{h/2}$$

$$= \frac{b}{3} \left(\frac{h^{3}}{8} - \frac{-h^{3}}{8}\right) = \frac{bh^{3}}{12}$$

$$I_x = \bar{I}_x + (h/2)^2 A = \frac{bh^3}{12} + \frac{h^2}{4}(bh) = \frac{bh^3}{3}$$

Radius of Gyration

 $k_x = radius \ of \ gyration$ with respect to the x axis

$$k_O^2 = k_x^2 + k_y^2$$

$$I_x = k_x^2 A \qquad k_x = \sqrt{\frac{I_x}{A}}$$

Radius of gyration is NOT radius

$$I_x = \frac{\pi r^4}{4}$$

$$k_x = r/2$$

$$k_o = \sqrt{\frac{J_O}{A}} = \sqrt{\frac{\pi r^4/2}{\pi r^2}} = r/\sqrt{2}$$

Moments of Inertia of Composite Areas

• The moment of inertia of a composite area A about a given axis is obtained by adding the moments of inertia of the component areas A_1, A_2, A_3, \ldots , with respect to the same axis.

Summary

(2) Moment of Inertia:

$$I_x = \int_A y^2 dA \; ; \quad I_y = \int_A x^2 dA$$

(3) Polar Moment of Inertia:

$$I_{\rho} = \int_{A} (x^2 + y^2) dA = \int_{A} r^2 dA$$

Second moment

Radiu of Gyration

$$r_O = \sqrt{\frac{I_O}{A}}$$

(4) Parallel Axis Theorem:

$$I_x = \bar{I}_x + dA$$

where \bar{I}_x is the moment of inertia with respect to the centroidal axis, and d is the distance between the x-axis and the centroidal axis x'.

Today's Lecture Attendance Password is: Moment of Inertia

Sample Problem 9.5

Determine the moment of inertia of the shaded area with respect to the x axis.

SOLUTION:

- Compute the moments of inertia of the bounding rectangle and half-circle with respect to the *x* axis.
- The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

A 120 mm b = 81.8 mm x

$$a = \frac{4r}{3\pi} = \frac{(4)(90)}{3\pi} = 38.2 \text{ mm}$$

b = 120 - a = 81.8 mm
$$A = \frac{1}{2}\pi r^2 = \frac{1}{2}\pi (90)^2$$

 $=12.72\times10^3$ mm²

Parallel Axis Theorem $I_X = \bar{I}_{X'} + d^2 A$

Centroidal Axis

SOLUTION:

Rectangle:

$$I_x = \frac{1}{3}bh^3 = \frac{1}{3}(240)(120) = 138.2 \times 10^6 \text{ mm}^4$$

Half-circle:

moment of inertia with respect to AA',

$$I_{AA'} = \frac{1}{8}\pi r^4 = \frac{1}{8}\pi (90)^4 = 25.76 \times 10^6 \text{ mm}^4$$

moment of inertia with respect to x',

$$\bar{I}_{x'} = I_{AA'} - Ad^2 = 25.76 \times 10^6 - (12.72 \times 10^3)(88.8)^2$$

= $7.20 \times 10^6 mm^4$

moment of inertia with respect to x,

$$I_x = \bar{I}_{x'} + Ab^2 = 7.20 \times 10^6 + (12.72 \times 10^3)(81.8)^2$$

= 92.3×10⁶ mm⁴

• The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

$$I_x = 45.9 \times 10^6 \text{ mm}^4$$

Why the name: Moment of Inertia?

Why do we call the second moment of an object as the moment of inertia? What is inertia? In rectilinear motion,

$$M\mathbf{a} = \mathbf{F}$$
Mass or inertia

Consider a thin plate rotating around z-axis, and we assume the mass density $\rho = const.$

Its velocity is: $v = r\theta$, and its acceleration is

$$a = r\ddot{\theta}$$
.

Suppose that the force acting on the infinitesimal element is dF,

$$adm = dF$$
.

$$adm = d\mathbf{F}, \qquad dm = \rho t dA$$

Consider the moment equation around z-axis,

$$\mathbf{r} \times \mathbf{a} dm = \mathbf{r} \times d\mathbf{F} \rightarrow \int_{A} \mathbf{r} \times \mathbf{a} dm = \int_{A} \mathbf{r} \times d\mathbf{F}$$

$$\int_{A} r(r\ddot{\theta}) dm = \int_{A} r^{2} \ddot{\theta} \rho t dA = M_{z}$$

$$t\rho\ddot{\theta}\int_{A}r^{2}dA = t\rho\ddot{\theta}J_{O} = M_{z}, \quad \rightarrow \quad t\rho J_{O}\ddot{\theta} = M_{z}, \quad \leftarrow \quad M\mathbf{a} = \mathbf{F}$$

Polar moment of inertia

The polar moment of inertia of the thin plate is,

$$J_O = \int_A r^2 dA = (x^2 + y^2) dA$$

 $J_O = \int_A \rho^2 dA$ is the moment of inertia force of $\rho \ddot{\theta}$.

We can define,

$$I_{z,mass} = \rho t \int_A (x^2 + y^2) dA = \int_A (x^2 + y^2) dm$$
, and

Moment of Inertia
$$\longrightarrow$$
 $I_{z,mass}\ddot{\theta} = M_z$

The moment of inertia, otherwise known as the angular mass or rotational inertia, of a rigid body determines the torque needed for a desired angular acceleration about a rotational axis.

The moment of inertia of body with the shape of the cross-section is **the second moment of this area** about the z-axis perpendicular to the cross-section, weighted by its density.

We can define the second moment of the area A as,

$$I_z = \int_A (x^2 + y^2) dA$$

Magic Ring Trick

$$\frac{1}{2}Mv^{2} = \frac{1}{2}\rho J(\dot{\theta}_{y})^{2} = \frac{1}{2}\rho J(\omega)^{2}$$

$$J_Y = \int_V X^2 dV = 2 \int_0^{\pi} X^2 AR d\theta = 2A \int_0^{\pi} R^3 \sin^2 \theta d\theta$$
$$= R^3 A\pi$$

$$\frac{1}{2}Mv^2 = \frac{1}{2}\rho J_Y \omega^2$$

This is for your Thanksgiving Party Performance!

http://www.suntekstore.com/goods.php?id=15008530&utm_source=gbus&utm_medium=paid