LOGISTIC REGRESSION

Concha Bielza, Pedro Larrañaga

Computational Intelligence Group Departmento de Inteligencia Artificial Universidad Politécnica de Madrid

Machine Learning

Outline

Logistic regression model

- Maximum likelihood estimation of parameters
- 3 Conclusions

Outline

Logistic regression model

Motivation

Objectives

- Determine the existence/absence of relationship between independent variables and a dependent variable
- Use the identified variables to predict the probability of the response taking each value, as a function of the predictor values
- Use these probabilities to classify future observations

Approach

What.

- Since '67, standard for regression with dichotomic data (Health Sciences)
- We have: Y = C = 0, 1 $X_1, ..., X_n$
- N observations like

$$\mathcal{D} = \{ (o^j, x_1^j, ..., x_n^j) = (o^j, \mathbf{x}^j), j = 1, ..., N \} \text{ with}$$

$$o^j = 1 \text{: observation } j \text{ has the characteristic;}$$

$$o^j = 0 \text{: it hasn't}$$

- Dependent variable is $\pi^j = p(C = 1 | \mathbf{x}^j) = p(C = 1 | X_1 = x_1^j, \dots, X_n = x_n^j)$ and since C is Bernoulli, its mean is $E(C | \mathbf{x}^j) = \pi^j$
- ⇒ We look for a relationship between the response mean and the predictors
- ⇒ Scatterplots are not useful: no relation between y-axis and data

Intuitions

If n = 1, C = 1 =heart attack, X =cholesterol level, what relationship we expect between π and x?

- $\pi \approx 1$ for large x values; $\pi \approx 0$ for small x values
- Non-linear for many values of X: for medium x's, almost linear; asymptotic in extremes

$$-\beta_1 = 5$$

 $-\beta_1 = 10$
 $-\beta_1 = -8$

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

 \Rightarrow satisfies $\pi \in [0, 1]$

Intuitions

In general

- In general, to guarantee $\pi \in [0, 1]$, we apply a nonlinear transformation: $\pi = F(\beta^t \mathbf{x})$
 - F any distribution function
 - $\beta = (\beta_1, ..., \beta_n)$ vector of coefficients
 - $\mathbf{x}^{j} = (x_{1}^{j}, ..., x_{n}^{j})$ data

Expressions: π and 1 $-\pi$

Logistic model

 $\forall j = 1, ..., N$:

$$\pi^{j} = p(C = 1 | \mathbf{x}^{j}) = \frac{e^{\beta^{t} \mathbf{x}^{j}}}{1 + e^{\beta^{t} \mathbf{x}^{j}}} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} \mathbf{x}_{1}^{j} + \dots + \beta_{n} \mathbf{x}_{n}^{j})}}$$

$$\Rightarrow 1 - \pi^{j} = p(C = 0 | \mathbf{x}^{j}) = \frac{1}{1 + e^{(\beta_{0} + \beta_{1} \mathbf{x}_{1}^{j} + \dots + \beta_{n} \mathbf{x}_{n}^{j})}}$$

- $\beta_0, \beta_1, \dots, \beta_n$ are the parameters, to be estimated from data
- Decision boundary is linear: $p(C = 1|\mathbf{x}^{j}) = p(C = 0|\mathbf{x}^{j}) \iff p(C = 1|\mathbf{x}^{j}) = 0.5$ $\iff \beta_{0} + \beta_{1}x_{1}^{j} + \dots + \beta_{n}x_{n}^{j} = 0$

Expressions: Risk Ratio $RR(\mathbf{x}, \mathbf{x}')$

Example

- Variables: C Coronary Disease (1 yes, 0 no); X_1 Cholesterol (1 high, 0 low), X_2 Age, and X_3 Electrocardiogram res. (1 abnormal, 0 normal)
- Parameters (N = 609 obs): $\widehat{\beta_0} = -3.911$ $\widehat{\beta_1} = 0.652$ $\widehat{\beta_2} = 0.029$ $\widehat{\beta_3} = 0.342$
- Compare the risk for two patterns: $\mathbf{x} = (1, 40, 0)$ and $\mathbf{x}' = (0, 40, 0)$:
 - $p(C=1|\mathbf{x}) = p(C=1|X_1=1, X_2=40, X_3=0) =$ = $\frac{1}{1+e^{-(-3.911+0.652(1)+0.029(40)+0.342(0))}} = 0.109$
 - $p(\hat{C} = 1|\mathbf{x}') = p(C = 1|X_1 = 0, X_2 = 40, X_3 = 0) =$ = $\frac{1}{1+e^{-(-3.911+0.652(0)+0.029(40)+0.342(0))}} = 0.060$
- $RR(\mathbf{x}, \mathbf{x}') = \frac{p(C=1|\mathbf{x})}{p(C=1|\mathbf{x}')} = \frac{p(C=1|X_1=1, X_2=40, X_3=0)}{p(C=1|X_1=0, X_2=40, X_3=0)} = \frac{0.109}{0.060} = 1.82$
- For a person who is 40 years old and with normal electrocardiogram, the risk is multiplied by almost 2 when going from low Cholesterol level (0) to high (1)

Expressions: Odds and logit

Logistic model in logit form

$$\bullet \quad \text{Odds}(\mathbf{x}) = \frac{\rho(C = 1|\mathbf{x})}{1 - \rho(C = 1|\mathbf{x})} = e^{(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}$$

Increasig 1 unit x_1 , $\frac{p(C=1|\mathbf{x})}{1-p(C=1|\mathbf{x})}$ multiplies by the factor e^{β_1} . Not very interpretable

logit form:

$$logit(p(C=1|\mathbf{x})) = ln Odds(\mathbf{x}) = ln \left[\frac{p(C=1|\mathbf{x})}{1 - p(C=1|\mathbf{x})} \right] = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

A linear model with this transformation, that represents in a logarithmic scale the difference between the probabilities of belonging to both classes. Interpretable in this scale

• Example: $logit(p(C = 1|\mathbf{0})) = ln Odds(\mathbf{0}) = \beta_0$

Interpreting parameters β_i

Proposition: In a logistic regression model, coefficient β_i represents the logit change when the i-th variable X_i (i = 1, ..., n) increases 1 unit

Proof: Let **x** and **x**' be vectors such that $x_l = x_l'$ for all $l \neq i$ and $x_i' = x_i + 1$, then $logit(p(C = 1|\mathbf{x}')) - logit(p(C = 1|\mathbf{x})) =$

$$\beta_0 + \sum_{l=1}^n \beta_l x_l' - \left(\beta_0 + \sum_{l=1}^n \beta_l x_l\right) = \beta_i x_i' - \beta_i x_i = \beta_i (x_i + 1 - x_i) = \beta_i$$

• In the example: $\mathbf{x} = (1, 40, 0), \mathbf{x}' = (0, 40, 0)$ $logit(p(C = 1|\mathbf{x})) = \beta_0 + 1 \cdot \beta_1 + 40 \cdot \beta_2 + 0 \cdot \beta_3$ $logit(p(C = 1|\mathbf{x}')) = \beta_0 + 0 \cdot \beta_1 + 40 \cdot \beta_2 + 0 \cdot \beta_3$ $\Rightarrow \operatorname{logit}(p(C=1|\mathbf{x})) - \operatorname{logit}(p(C=1|\mathbf{x}')) = \beta_1$

Multi-class logistic regression: $\Omega_C = \{1, ..., R\}, R > 2$

- $C|\mathbf{x} \sim \text{categorical distribution (rather than Bernoulli)}$
- Equation of the logit is now a set of R-1 logit transformations:

$$\ln \frac{p(C=1|\mathbf{x})}{p(C=R|\mathbf{x})} = \beta_{10} + \beta_{11}x_1 + \dots + \beta_{1n}x_n$$

$$\vdots$$

$$\ln \frac{p(C=R-1|\mathbf{x})}{p(C=R|\mathbf{x})} = \beta_{(R-1)0} + \beta_{(R-1)1}x_1 + \dots + \beta_{(R-1)n}x_n$$

Convention: using the last category R as the denominator (estimates do not vary under other choice). We get:

$$p(C = r | \mathbf{x}) = \frac{e^{\beta_{r0} + \beta_{r1} x_1 + \dots + \beta_{rn} x_n}}{1 + \sum_{l=1}^{R-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{ln} x_n}}, r = 1, \dots, R-1$$

$$p(C = R | \mathbf{x}) = \frac{1}{1 + \sum_{l=1}^{R-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{ln} x_n}}$$

which add up to 1. There are (n+1)(R-1) parameters: $\{\beta_{10},...,\beta_{(R-1)n}\}$

Feature subset selection

Multicollinearity among predictors

- Important to remove it, as done in linear regression
 - \Rightarrow Unstable $\hat{\beta}_i$ (correlated, high std error)
- Detect it as usually
- Remove correlated predictors

Outline

- 1 Logistic regression model
- Maximum likelihood estimation of parameters
- 3 Conclusions

Maximum likelihood estimates

(Conditional) likelihood function $\mathcal L$

- Probability function: $p(C = c^j | \mathbf{x}^j) = (\pi^j)^{c^j} (1 \pi^j)^{1 c^j}, \quad c^j = 0, 1$ (each obs is a Bernoulli trial)
- $\mathcal{L}(\beta|\mathcal{D}) = \prod_{i=1}^{N} p(C = c^{j}|\mathbf{x}^{j}) = \prod_{i=1}^{N} (\pi^{j})^{c^{j}} (1 \pi^{j})^{1 c^{j}}$
- Conditional log-likelihood: $\ln \mathcal{L}(\beta|\mathcal{D}) = \sum_{j=1}^{N} \ln p(C = c^{j}|\mathbf{x}^{j})$ $= \sum_{i=1}^{N} \left[c^{j} \ln \pi^{j} + (1 c^{j}) \ln(1 \pi^{j}) \right]$

$$= \sum_{j=1}^{N} c^{j} \ln \frac{\pi^{j}}{1 - \pi^{j}} + \sum_{j=1}^{N} \ln(1 - \pi^{j})$$

$$= \sum_{i=1}^{N} c^{j} \left(\beta_{0} + \beta_{1} x_{1}^{j} + \dots + \beta_{n} x_{n}^{j} \right) - \sum_{i=1}^{N} \ln \left(1 + e^{(\beta_{0} + \beta_{1} x_{1}^{j} + \dots + \beta_{n} x_{n}^{j})} \right)$$

Maximum likelihood estimates

MLE $\hat{\beta}_i$ for β_i

• If the derivative is equal to zero: -likelihood equations-

$$\begin{split} \frac{\partial \ln \mathcal{L}(\boldsymbol{\beta})}{\partial \beta_0} &= \sum_{j=1}^N c^j - \sum_{j=1}^N \frac{e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}}{1 + e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}} = 0 \\ \frac{\partial \ln \mathcal{L}(\boldsymbol{\beta})}{\partial \beta_1} &= \sum_{j=1}^N c^j x_1^j - \sum_{j=1}^N x_1^j \frac{e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}}{1 + e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}} = 0 \\ &\vdots \\ \frac{\partial \ln \mathcal{L}(\boldsymbol{\beta})}{\partial \beta_n} &= \sum_{j=1}^N c^j x_n^j - \sum_{j=1}^N x_n^j \frac{e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}}{1 + e^{(\beta_0 + \beta_1 x_1^j + \dots + \beta_n x_n^j)}} = 0 \end{split}$$

Maximum likelihood estimates

MLE $\hat{\beta}_i$ for β_i

- It is impossible to have a closed formula (analytic solution) for MLE
- Newton-Raphson's numeric algorithm is traditionally used, with an updating formula given by

$$\widehat{oldsymbol{eta}}^{\mathsf{new}} = \widehat{oldsymbol{eta}}^{\mathsf{old}} + (\mathbf{\mathsf{Z}}^{\mathsf{t}}\mathbf{\mathsf{W}}^{\mathsf{old}}\mathbf{\mathsf{Z}})^{-1}\mathbf{\mathsf{Z}}^{\mathsf{t}}(\mathbf{c} - \widehat{\pi}^{\mathsf{old}})$$

c is *N*-vector of response values o^j , j = 1, ..., N

X is $N \times n$ -matrix with rows \mathbf{x}^{j}

Z is the matrix $[\mathbf{u}|\mathbf{X}]$, with \mathbf{u} the N-vector of ones

 $\hat{\pi}^{\text{old}}$ is N-vector of estimated values at that iteration, i.e. its jth-component is

$$(\hat{\pi}^j)^{\text{old}} = [1 + e^{-(\hat{\beta}_0^{\text{old}} + \hat{\beta}_1^{\text{old}} x_1^j + \dots + \hat{\beta}_n^{\text{old}} x_n^j)}]^{-1}$$

W^{old} is a diagonal matrix with elements $(\hat{\pi}^j)^{\text{old}}(1-(\hat{\pi}^j)^{\text{old}})$ Initialize e.g. with $\hat{\beta}=(0,...,0)$

...until convergence

Classifying

Steps

- **1.** Fix a cutoff value $\hat{\pi}^*$ for $\hat{\pi}$
- **2.** Assign $\hat{c}^j = 1$ if $\hat{\pi}^j \ge \hat{\pi}^*$. Otherwise, $\hat{c}^j = 0$ (predicted class)
- 3. Build the confusion matrix:

$$\begin{array}{c|cccc} & \hat{c} = 1 & \hat{c} = 0 \\ \hline c = 1 & N_1 & N_2 \\ c = 0 & N_3 & N_4 \\ \end{array}$$

$$N = N_1 + N_2 + N_3 + N_4$$

Assess the model utility:

% correctly classified =
$$100 (N_1 + N_4)/N$$

sensitivity = $100 N_1/(N_1 + N_2)$
specificity = $100 N_4/(N_3 + N_4)$

Outline

Logistic regression model

- Maximum likelihood estimation of parameters
- 3 Conclusions

Software

Logistic regression with WEKA

Classifier ⇒ Functions

Logistic

- Binary case $\to e^{\beta_i}$ is the odds ratio in Weka (> 1 for β_i > 0, and < 1 for β_i < 0). Increasing X_i in 1 unit (the remaining variables do not change), the ratio $p(C=1|\mathbf{x})/p(C=0|\mathbf{x})$ multiplies by e^{β_i} .
- Multi-class case $\rightarrow e^{\beta_1 i}$: Increasing X_i in 1 unit (the remaining variables do not change), the ratio $p(C=1|\mathbf{x})/p(C=R|\mathbf{x})$ multiplies by $e^{\beta_1 i}$. If $e^{\beta_1 i} > 1(\beta_1 i) > 0$ then C=1 becomes more likely than C=R for each increment in X_i

Conclusions

Statistical paradigm

- Discriminative model: maximize conditional probability
- Assign to each instance the posterior probability of belonging to each class
- Interpretation of parameters
- Estimation of parameters by maximum likelihood.
 Approximate them via iterative numerical methods

Bibliography

Texts

- Bielza, C., Larrañaga, P. (2021) Data-Driven Computational Neuroscience.
 Machine Learning and Statistical Models, Cambridge University Press [Chap. 8]
- Hosmer, D.W., Lemeshow, S. (2000) Applied Logistic Regression, 2nd ed., Wiley Interscience
- Kleinbaum, D.G. (1994) Logistic Regression, Springer
- Ryan, T.P. (1997) Modern Regression Methods, Wiley [Chap. 9]
- Sharma, S. (1996) Applied Multivariate Techniques, Wiley [Chap. 10]