GABRIEL ALEXNDER FONG PENAGOS 19722

EJERCICIO 01

TABLA 01

MUX 8:1

Entrada	Valor	A	В	С	Y
000	0	0	0	0	0
001	1	0	0	1	1
010	1	0	1	0	1
011	0	0	1	1	0
100	1	1	0	0	1
101	0	1	0	1	0
110	0	1	1	0	0
111	1	1	1	1	1

MUX 4:1

Entrada	A	В	Y
00	0	0	С
01	0	1	~C
10	1	0	~C
11	1	1	С

MUX 2:1

Entrada	A	Y	
0	0	B^C	XOR
1	1	(B ~^ C)	XNOR

TABLA 02

MUX 8:1

Entrada	Valor	A	В	C	Y
000	1	0	0	0	1
001	X	0	0	1	X
010	0	0	1	0	0
011	0	0	1	1	0
100	X	1	0	0	X
101	1	1	0	1	1
110	1	1	1	0	1
111	0	1	1	1	0

MUX 4:1

Entrada	A	В	Y
00	0	0	~C
01	0	1	0
10	1	0	С
11	1	1	~C

MUX 2:1

Entrada	A	Y	
0	0	B ~ C	NOR
1	1	B ~& C)	NAND

SUB-CIRCUITO MULTIPLEXOR 2:1

SUB-CIRCUITO MULTIPLEXOR 4:1

SUB-CIRCUITO MULTIPLEXOR 8:1

EJERCICIO 04

PROGRAMACION MUX.v

```
Wekcome Guide

MIXY

1 //GABRIEL ALEXANDER FONG PENAGOS

2 //CARNE 19722

3 //ELECTRONICA DIGITAL

4 //LABORATORIO 85

5 // MIXES

6 module MUX2_1(input wire A, B, C, output wire Y);

7 assign Y = A7C:B;

9 endmodule

10 module MUX4_1(input wire A, B, C, D, input wire[1:0]S, output wire Y);

7 // CEAMOS EL MODULO PARA EL MUX 2:1 A es el selector, B Y C SON INPUTS

7 // CEAMOS EL MODULO PARA EL MUX 2:1 A es el selector, B Y C SON INPUTS

8 assign Y = A7C:B;

9 endmodule

10 module MUX4_1(input wire A, B, C, D, input wire[1:0]S, output wire Y);

11 //CREAMOS EL MODULO PARA EL MUX 4:1, SE UTILIZAN 3 MUX 2:1 PARA CREARLO

12 module MUX4_1(input wire A, B, C, D, input wire[1:0]S, output wire Y);

13 //S PUEDE SER 1 0 0, SE AGREGA EL VALOR ADENTRO DE CORCHETESS, EL CUAL SELECCIONA LA SUNCE, EL MUX 2:1 PARA SELECCIONAR CUAL DE LAS 2 ENTRADAS DARA EL VALOR DE SA MUX2_1 mux3(S[0], O, 0, OUT2);

13 //UTILIZAMOS EL MUX 2:1 PARA SELECCIONAR CUAL DE LAS 2 ENTRADAS DARA EL VALOR DE SA MUX2_1 mux3(S[0], OUT1, OUT2, Y);

14 wire OUT1, OUT2;

15 MUX4_1 mux1(A, B, C, D, S[1:0], OUT1);

16 MUX4_1 mux1(A, B, C, D, S[1:0], OUT1);

17 MUX4_1 mux1(B, F, G, H, S[1:0], OUT2);

18 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

19 MUX4_1 mux1(S[0], A, B, C, D, S[1:0], OUT2);

19 MUX4_1 mux1(S[0], MUX 4:1 PARA SELECCIONAR CUAL DE LAS 4 ENTRADAS DARA EL VALOR DE SA MUX2_1 mux3(S[0], OUT1, OUT2, Y);

19 MUX4_1 mux1(S[0], MUX 4:1 PARA SELECCIONAR CUAL DE LAS 4 ENTRADAS DARA EL VALOR DE SA MUX2_1 mux3(S[0], OUT1, OUT2, Y);

19 MUX4_1 mux3(S[0], OUT1, OUT2, Y);

20 MUX4_1 mux3(S[0], OUT1, OUT2, Y);

21 MUX4_1 mux3(S[0], OUT1, OUT2, Y);

22 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

23 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

24 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

25 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

25 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

26 MUX4_1 mux1(S[0], OUT2, OUT2, Y);

27 MUX4_1 mux1(S[0], OUT3, OUT2, Y);

28 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

29 MUX2_1 mux3(S[0], OUT1, OUT2, Y);

20 MUX4_1 mux1(S[0], OUT3, OUT2, Y);

20 MUX4_1 mux1(S[0], OUT3, OUT2, Y);

21 MUX4_
```

```
module t_mux2_1(input wire A, B, C, output wire Y);

module t_mux2_1(input wire A, B, C, output wire Y);

module t_mux2_1(input wire A, B, C, output wire Y);

//CREANOS EL MODULO TABLA 1 CON MOX 2:1 A ES SELECTOR BY SALIDA

//CREANOS EL MODULO TABLA 1 CON MOX 2:1 A ES SELECTOR BY SALIDA

//CREANOS EL MODULO TABLA 1 CON MOX 2:1 A ES SELECTOR BY SALIDA

//CREANOS EL MODULO TABLA 1 CON MOX 2:1 A ES SELECTOR BY SALIDA

//CREANOS EL MODULO TABLA 1 CON MOX 2:1 A ES SELECTOR BY SALIDA

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 4:1 A Y B SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MODULO TABLA 1 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MOX 4:1 PARA TERMINAR DE REALIZAR LA TABLA 1

//CREANOS EL MODULO TABLA 1 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MODULO TABLA 2 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MODULO TABLA 2 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MODULO TABLA 2 CON MOX 8:1 A B C SON SELECTORES

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TABLA 2 CON MOX 2:1 A ES SELECTOR

//CREANOS EL MODULO TAB
```

PROGRAMACION MUX tb.v

MUX8_1 U6(VCC, GND, GND, GND, GND, VCC, VCC, GND, S[2:0], Y);

module t2 mux4 1(input wire A. B. C. GND. output wire Y):

assign S[0] = B;

assign S[0] = C;

```
$\frac{1}{3} = \text{0}; \text{ sa} = \text{0}; \text{ int } 2 = \text{0}; \text{ sa} = \text{0}; \text{ int } 2 = \text{0}; \text{ sa} = \text{ sa}; \text{ sa}; \text{ sa} = \text{ sa}; \text{
```

```
137 v initial begin //INICIAMOS PARA COLOCAR LOS DATOS EN GTK WAVE

138 $dumpfile("MUX_tb.vcd");

139 $dumpvars(0, testbench);

140 end

141

142 endmodule
```

- Propagation Delay: Es el tiempo máximo o retraso entre el cambio de la entrada y el cambio en la salida. Tiempo máximo en que se estabiliza la salida luego de un cambio en la entrada
- Contamination Delay: Es el tiempo mínimo o retraso entre el cambio de la entrada y el cambio en la salida.
- Analogía: Contamination Delay es como cuando tu ex toxica cambia pero el Propagation delay es todo el tiempo en el que se tarda en estabilizarce.
- Ruta Crítica: Es la ruta en donde la suma del Tpd (Propagation Delay) es más alta.
- Ruta Corta: Es la ruta en donde la suma del Tcd (Contamination Delay) es más baja.

