CS244: Theory of Computation

Fu Song ShanghaiTech University

Fall 2022

Outline

Advanced Topics in Computability Theory

The Recursion Theorem
Decidability of Logical Theories
Turing Reducibility

Outline

Advanced Topics in Computability Theory The Recursion Theorem

Decidability of Logical Theories Turing Reducibility Can a machine reproduce itself?

Self-Reference

Lemma

There is a computable function $f: \Sigma^* \to \Sigma^*$, where if w is any string, f(w) is the description of a Turing machine P_w that prints out w and then halts.

 P_f on input w: (computable function $f:\Sigma^* \to \Sigma^*$)

1. Construct a TM P_w :

 P_w on input x:

- 1. Erase input.
- 2. Write w on the tape.
- 3. Halt.
- 2. Output $\langle P_w \rangle$.

Self-Reproduce TM

A TM SELF such that $\langle SELF \rangle = \langle AB \rangle$

- ightharpoonup A produces $\langle B \rangle$ and passes control to B
- \triangleright B produces $\langle A \rangle$
- ► *AB* produces ⟨*AB*⟩

How to implement A and B?

$$A = P_{\langle B \rangle}$$
 and $B = P_{\langle A \rangle}$?

Self-Reproduce TM

- ▶ $A = P_{\langle B \rangle}$, A writes $\langle B \rangle$ into the tape
- ▶ B constructs A based on the output $\langle B \rangle$ of A

B on input $\langle M \rangle$:

- 1. Compute $f(\langle M \rangle)$ that is $P_{\langle M \rangle}$. $(P_{\langle B \rangle} = A \text{ when } M = B)$
- 2. Combine $P_{\langle M \rangle}$ with $\langle M \rangle$ to make a complete TM SELF.
- 3. Output (SELF)

Behavior of SELF

- ▶ $A = P_{\langle B \rangle}$, A writes $\langle B \rangle$ into the tape
- ▶ B constructs A based on the output $\langle B \rangle$ of A

B on input $\langle M \rangle$:

- 1. Compute $q(\langle M \rangle)$ that is $P_{\langle M \rangle}$. $(P_{\langle B \rangle} = A \text{ when } M = B)$
- 2. Combine $P_{(M)}$ with $\langle M \rangle$ to make a complete TM SELF.
- Output (SELF)

Behavior of SELF

- 1. First A runs. It prints $\langle B \rangle$ on the tape.
- 2. B starts. It looks at the tape and finds its input, $\langle B \rangle$.
- 3. B calculates $f(\langle B \rangle)$ that is $\langle P_{\langle B \rangle} \rangle = \langle A \rangle$.
- 4. B combines that with $\langle A \rangle$ and $\langle B \rangle$ into the TM SELF.
- 5. B prints $\langle SELF \rangle$ and halts.

Recursion Theorem

This idea can be generalized into recursion theorem which allows a TM M to obtain its own description $\langle M \rangle$ and perform computation with $\langle M \rangle$ instead of just printing $\langle M \rangle$

Theorem (Recursion theorem)

Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w)$$

Recursion Theorem

Theorem (Recursion theorem)

Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w)$$

R on input w:

- ▶ $A = P_{\langle BT \rangle}$, A writes $\langle BT \rangle$ into the tape following w
- ▶ B constructs A based on the output $\langle BT \rangle$ of A

B on input $\langle M \rangle$:

- 1. Compute $f(\langle M \rangle)$ that is $P_{\langle M \rangle}$. $(P_{\langle BT \rangle} = A \text{ when } M = BT)$
- 2. Combine $P_{\langle M \rangle}$ with $w \langle BT \rangle$ and write $\langle R, w \rangle$ into the tap
- 3. Pass control to T

Applications of Recursion Theorem

Theorem

A_{TM} is not decidable.

Recall that we prove this via the diagonalization method. We can prove this via the recursion theorem

B on input w:

- 1. Obtain via the recursion theorem, $\langle B \rangle$.
- 2. Run the decider R of A_{TM} on $\langle B, w \rangle$.
- 3. If R accepts, then reject. If R rejects, then accept.

Applications of Recursion Theorem

 $MIN_{TM} = \{ \langle M \rangle \mid M \text{ is a minimal TM that is equivalent to } M \}.$

Theorem

MIN_{TM} is not Turing-recognizable.

C on input w:

- 1. Obtain via the recursion theorem, $\langle C \rangle$.
- 2. Run the enumerator E of MIN_{TM} until a TM D appears with $|\langle D \rangle| > |\langle C \rangle|$.
- 3. Simulate D on w.
- D and C are equivalent
- $|\langle D \rangle| > |\langle C \rangle|$
- ▶ Then, $\langle D \rangle \notin MIN_{TM}$, contradiction with Item 2

Applications of Recursion Theorem

Theorem

Let $f: \Sigma^* \to \Sigma^*$ be a computable function. There exists a TM M such that $f(\langle M \rangle)$ describes a TM equivalent to M.

M on input w:

- 1. Obtain via the recursion theorem, $\langle M \rangle$.
- 2. Compute $f(\langle M \rangle)$ to obtain a description of a TM M'.
- 3. Simulate M' on w.

Then, M and M' are equivalent.

Outline

Advanced Topics in Computability Theory

Decidability of Logical Theories

Turing Reducibility

Logical Theories

Definition (Model)

A model M is a tuple (U, P_1, \dots, P_k) , where

- ► *U* is the universe
- ▶ $P_i: X^r \to \{\text{Ture,False}\}\ \text{for}\ 1 \le i \le k \text{ is a } r\text{-arity relation for some}\ r \in \mathbb{N}$

Definition (Logical formulae)

Formulae over M are defined by the following syntax:

$$\phi ::= P_i(x_1, \cdots, x_r) \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2 \mid (\phi) \mid \neg \phi \mid \exists x. [\phi] \mid \forall x. [\phi]$$

where x, x_1, \dots, x_r are variables over U and P_i is a r-arity relation in M.

Logical Theories

Definition (Sentence)

A variable x in a formula ϕ is called free variable if it is not bound within the scope of a quantifier.

A formula ϕ is called sentence if it does not have any free variables.

Definition (PNF)

A formula ϕ is in prenex normal form if

$$\phi = Q_1 x_1. Q_2 x_2. \cdots. Q_k x_k. [\psi]$$

where $Q_1, \dots Q_k \in \{ \forall, \exists \}$ and ψ is a formula without quantifiers.

Language of Logical Theories

$$L(M) = \{ \phi \mid \phi \text{ is true in the model } M \}$$

- ▶ $\forall x. \forall y. [x \leq y \lor y \leq x]$ is true in $M = (\mathbb{N}, \leq)$
- ▶ $\forall x. \forall y. [x < y \lor y < x]$ is false in $M = (\mathbb{N}, <)$

Language of Logical Theories

Let P be a 3-arity relation such that $P(x_1, x_2, x_3) \equiv x_1 + x_2 = x_3$

$$L(N_+) = \{\phi \mid \phi \text{ is true in the model } N_+ = (\mathbb{N}, P)\}$$

E.g., $\forall x.\exists y.[x+x=y]$ is true in N_+ , but, $\forall x.\exists y.[y+y=x]$ is false in N_+ .

Theorem

 $L(N_{+})$ is decidable.

We construct an NFA N such that:

$$\phi$$
 is true $\iff \varepsilon \in L(N)$

Proof (1)

Theorem

 $L(N_+)$ is decidable.

- Suppose $\phi = Q_1 x_1. Q_2 x_2. \cdots. Q_k x_k. [\psi]$.
- Let $\phi_i = Q_{i+1}x_{i+1}.Q_{i+2}x_{i+2}.\cdots.Q_kx_k.[\psi]$ for $0 \le i \le k$, where $\phi_k = \psi$.
- ▶ Then ϕ_i contains free variables $x_1, x_2 \cdots, x_i$.
- ▶ We show how to construct a NFA N_k from ϕ_k , i.e., ψ .
- ▶ Then, we show how to construct an NFA N_{k-1} from N_k .
- ▶ Finally, N_0 accepts a word iff ϕ is true.

Proof (2)

$$\mathsf{Let}\; \Sigma_i = \left\{ \left[\begin{array}{c} 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ 1 \\ 0 \end{array} \right], \cdots, \left[\begin{array}{c} 1 \\ \cdot \\ \cdot \\ \cdot \\ 1 \\ 1 \end{array} \right] \right\}$$

- ▶ Each column is size *i* and $\Sigma_0 = \{[]\}$
- A sequence $\vec{a_1} \vec{a_2} \cdots \vec{a_m}$ of symbols from Σ_i denotes a valuation of variables x_1, x_2, \cdots, x_i
- ► The value of x_j is the reverse of the binary sequence $\vec{a_1}[j]\vec{a_2}[j]\cdots\vec{a_m}[j]$ of the *j*-th row in $\vec{a_1}\vec{a_2}\cdots\vec{a_m}$

Proof (3)

Consider $P(x_i, x_j, x_\ell)$: Construct $N_{P(x_i, x_j, x_\ell)}$

Proof (4)

- ► For $\neg P(x_i, x_j, x_\ell)$: construct $\overline{N}_{P(x_i, x_j, x_\ell)}$
- ► For $P(x_i, x_j, x_\ell) \land P'(x_{i'}, x_{j'}, x_{\ell'})$: construct $N_{P(x_i, x_j, x_\ell)} \cap N_{P'(x_{i'}, x_{j'}, x_{\ell'})}$
- ▶ For $P(x_i, x_j, x_\ell) \lor P'(x_{i'}, x_{j'}, x_{\ell'})$: construct $N_{P(x_i, x_j, x_\ell)} \cup N_{P'(x_{i'}, x_{j'}, x_{\ell'})}$
- \triangleright Finally, we get the NFA N_k

Lemma

 N_k accepts a word w (that is an assignment of variables x_1, x_2, \dots, x_k) iff ψ is true under w.

Proof (5)

- ▶ Suppose the NFA N_i for ϕ_i
- ightharpoonup Construct a NFA N_{i-1} for

$$\phi_{i-1} = \exists x_i. Q_{i+1} x_{i+1}. Q_{i+2} x_{i+2}. \cdots Q_k x_k. [\psi]$$

 $ightharpoonup N_{i-1}$ is same as N_i , except that

Lemma

 N_{i-1} accepts a word w (that is an assignment of variables x_1, x_2, \dots, x_{i-1}) iff ψ_{i-1} is true under w.

Proof (6)

- ▶ Suppose the NFA N_i for ϕ_i
- ▶ Construct an NFA N_{i-1} for

$$\phi_{i-1} = \forall x_i. Q_{i+1} x_{i+1}. Q_{i+2} x_{i+2}. \cdots Q_k x_k. [\psi]$$

▶ Construct an NFA \overline{N}_{i-1} for

$$\neg \phi_{i-1} = \exists x_i. \overline{Q}_{i+1} x_{i+1}. \overline{Q}_{i+2} x_{i+2}. \cdots \overline{Q}_k x_k. [\neg \psi]$$

▶ N_{i-1} is the complement of \overline{N}_{i-1}

Lemma

 N_{i-1} accepts a word w (that is an assignment of variables $x_1, x_2, \cdots, x_{i-1}$) iff ψ_{i-1} is true under w.

Presburger Arithmetic

A more general decidable theory: Presburger Arithmetic

- ▶ universe: integer Z
- ightharpoonup atomic formula: $\sum_{i=1}^n a_i x_i \bowtie c$,
 - ▶ a_i's and c are integer constants
 - \triangleright x_i 's are integer variables
 - $\triangleright \bowtie \in \{=, \neq, <, >, \leq, \geq, \equiv_m\}$
- ► Boolean connectors: ∧, ∨, ¬
- ▶ Quantifiers: ∀,∃

Its complexity lies between 2-NEXPTime and 3-EXPTime/2-EXPSpace .1

¹Antoine Durand-Gasselin, Peter Habermehl: On the Use of Non-deterministic Automata for Presburger Arithmetic. CONCUR 2010: 373-387.

An Undecidable Theory: Peano arithmetic

Let P_1 be a 3-arity relation such that $P_1(x_1, x_2, x_3) \equiv x_1 + x_2 = x_3$ Let P_2 be a 3-arity relation such that $P_2(x_1, x_2, x_3) \equiv x_1 \times x_2 = x_3$

$$L(N_{+,\times}) = \{ \phi \mid \phi \text{ is true in the model } N_{+,\times} = (\mathbb{N}, P_1, P_2) \}$$

Theorem

 $L(N_{+,\times})$ is undecidable.

Proof idea: A_{TM} can be reduced to $L(N_{+,\times})$

- 1. For a TM M and an input w, construct a formula $\psi_{M,w}$ encoding an accepting computation history of M on w
- 2. $\psi_{M,w}$ contains a free variable x
- 3. $\exists x.\psi_{M,w}$ is true iff M accepts w

Gödel's Incompleteness Theorem

In any reasonable system of formalizing the notion of provability in number theory, some true statements are unprovable

Definition (Formal Proof)

A formal proof of a statement ϕ is a sequence of statements, S_1, S_2, \cdots, S_n such that

- For every $1 \le i \le n$, S_i follows from the preceding statements and certain basic axioms about numbers, using simple and precise rules of implication
- \triangleright $S_n = \phi$

Gödel's Incompleteness Theorem

The following two reasonable properties of proofs hold:

- ▶ The correctness of a proof of a statement can be checked by machine. Formally, $L_{provable} = \{\langle \phi, \pi \rangle | \pi \text{ is a proof of } \phi \}$ is decidable.
- ► The system of proofs is sound. That is, if a statement is provable (i.e., has a proof), it is true.

Theorem

 $L(N_{+,\times})$ is Turing-recognizable.

Proof

Theorem

 $L(N_{+,\times})$ is Turing-recognizable.

 $P_{+,\times}^{TR}$ on input ϕ :

- 1. For each π possible proof of length $1, 2, \cdots$.
- 2. Run the proof checker R of $L_{provable}$ on $\langle \phi, \pi \rangle$.
- 3. If R accepts, then accept. If R rejects, then continue Item 2.

Theorem

Some true statements in $L(N_{+,\times})$ is not provable.

Assume that all true statements in $L(N_{+,\times})$ are provable. We reduce from $L(N_{+,\times})$.

 $P_{+,\times}^{NP}$ on input ϕ :

- 1. Run the prover of $L(N_{+,\times})$ on ϕ and $\neg \phi$ in parallel.
- 2. If ϕ is true, then accept.
- 3. If $\neg \phi$ is true, then reject.

Then $L(N_{+,\times})$ will be decidable, contradicting the fact that $L(N_{+,\times})$ is undecidable.

Outline

Advanced Topics in Computability Theory

The Recursion Theorem

Decidability of Logical Theories

Turing Reducibility

Definition

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every $w \in \Sigma^*$

$$w \in A \iff f(w) \in B$$
.

 A_{TM} and $\overline{A}_{\mathsf{TM}}$ are reducible to one another because a solution to either could be used to solve the other by simply reversing the answer

Definition

An oracle for a language B is an external device that is capable of reporting whether any string $w \in B$. An oracle Turing machine is a modified Turing machine that has the additional capability of querying an oracle. We write M^B to describe an oracle Turing machine that has an oracle for language B.

An oracle Turing machine can decide more languages than an ordinary Turing machine can

$T^{A_{\text{TM}}}$ on input $\langle M \rangle$:

- Construct the following TM N: N on any input:
 - 1.1 Run M in parallel on all strings in Σ^*
 - 1.2 If M accepts any of these strings, accept
- 2. Query the oracle to determine whether $\langle N, 0 \rangle \in L(A_{TM})$
- 3. If the oracle answers NO, accept; if YES, reject
- ▶ If $L(M) \neq \emptyset$, then $L(N) = \Sigma^*$, then $T^{A_{TM}}$ rejects
- ▶ If $L(M) = \emptyset$, then $L(N) = \emptyset$, then $T^{A_{TM}}$ accepts

 $T^{A_{\mathsf{TM}}}$ is a decider of E_{TM} .

Definition

Language A is Turing reducible to language B, written $A \leq_{\mathcal{T}} B$, if A is decidable relative to B, i.e., A uses an oracle of the language B

Theorem

If $A \leq_T B$ and B is decidable, then A is decidable.

Replace the oracle of the language B in orale TM T^B by the decider of B yields a standard decidable TM for A

Oracle TM solve many problems that are not solvable by ordinary Turing machines. But even such a powerful machine cannot decide all languages

Theorem

Let $A'_{\mathsf{TM}} = \{ \langle M^{A_{\mathsf{TM}}}, w \rangle \mid M^{A_{\mathsf{TM}}} \text{ is an oracle TM and accepts } w \}$. $A'_{\mathsf{TM}} \text{ is undecidable relative to } A_{\mathsf{TM}}.$

Theorem

Let $A'_{\mathsf{TM}} = \{ \langle M^{A_{\mathsf{TM}}}, w \rangle \mid M^{A_{\mathsf{TM}}} \text{ is an oracle TM and accepts } w \}$. A'_{TM} is undecidable relative to A_{TM} .

Assume A'_{TM} is decidable relative to A_{TM} , let $T^{A_{TM}}$ be the decider of A'_{TM} .

 $D^{A_{\mathsf{TM}}}$ on input $\langle M \rangle$:

- 1. Simulate the decider $T^{A_{TM}}$ of A'_{TM} on $\langle M, \langle M \rangle \rangle$
- 2. If $T^{A_{TM}}$ accepts, then reject
- 3. If $T^{A_{\text{TM}}}$ rejects, then accept
- ▶ $D^{A_{\mathsf{TM}}}$ accepts $\langle M \rangle$ iff $T^{A_{\mathsf{TM}}}$ rejects $\langle M, \langle M \rangle \rangle$ iff M rejects $\langle M \rangle$
- ▶ Let M be $D^{A_{TM}}$
- $ightharpoonup D^{A_{\mathsf{TM}}}$ accepts $\langle D^{A_{\mathsf{TM}}} \rangle$ iff $D^{A_{\mathsf{TM}}}$ rejects $\langle D^{A_{\mathsf{TM}}} \rangle$