Title

D. Zack Garza

Sunday 26th July, 2020

Contents

0.1	Sylow Theorems	1
	0.1.1 Sylow 1 (Cauchy for Prime Powers)	1
	0.1.2 Sylow 2 (Sylows are Conjugate)	2
	0.1.3 Sylow 3 (Numerical Constraints)	2
0.2	Products	2
0.3	Isomorphism Theorems	3
0.4	Special Classes of Groups	5
0.5	Classification of Groups	5
0.6	Finitely Generated Abelian Groups	6

0.1 Sylow Theorems

A p-group is a group G such that every element is order p^k for some k. If G is a finite p-group, then $|G| = p^j$ for some j.

Write

- |G| = p^km where (p, m) = 1,
 S_p a Sylow-p subgroup, and
 n_p the number of Sylow-p subgroups.

Some useful facts:

- Coprime order subgroups are disjoint, or more generally \mathbb{Z}_p , $\mathbb{Z}_q \subset G \implies \mathbb{Z}_p \cap \mathbb{Z}_q = \mathbb{Z}_{(p,q)}$.
- The Chinese Remainder theorem: $(p,q)=1 \implies \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$

0.1.1 Sylow 1 (Cauchy for Prime Powers)

 $\forall p^n$ dividing |G| there exists a subgroup of size p^n

Idea: Sylow p-subgroups exist for any p dividing |G|, and are maximal in the sense that every p-subgroup of G is contained in a Sylow p-subgroup.

If $|G| = \prod p_i^{\alpha_i}$, then there exist subgroups of order $p_i^{\beta_i}$ for every i and every $0 \le \beta_i \le \alpha_i$. In particular, Sylow p-subgroups always exist.

0.1.2 Sylow 2 (Sylows are Conjugate)

All sylow-p subgroups S_p are conjugate, i.e.

$$S_p^i, S_p^j \in \operatorname{Syl}_p(G) \implies \exists g \text{ such that } gS_p^i g^{-1} = S_p^j$$

Corollary 0.1.

$$n_p = 1 \iff S_p \le G$$

0.1.3 Sylow 3 (Numerical Constraints)

- 1. $n_p \mid m$ (in particular, $n_p \leq m$),
- $2. \ n_p \equiv 1 \mod p,$
- 3. $n_p = [G: N_G(S_p)]$ where N_G is the normalizer.

Corollary 0.2.

p does not divide n_p .

Proposition 0.3.

Every p-subgroup of G is contained in a Sylow p-subgroup.

Something proof title="Something"

Proof.

Let $H \leq G$ be a *p*-subgroup. If *H* is not *properly* contained in any other *p*-subgroup, it is a Sylow *p*-subgroup by definition.

Otherwise, it is contained in some p-subgroup H^1 . Inductively this yields a chain $H \subsetneq H^1 \subsetneq \cdots$, and by Zorn's lemma $H := \bigcup_i H^i$ is maximal and thus a Sylow p-subgroup.

Theorem 0.4(Fratini's Argument).

If
$$H \subseteq G$$
 and $P \in \text{Syl}_n(G)$, then $HN_G(P) = G$ and $[G : H]$ divides $|N_G(P)|$.

0.2 Products

Theorem 0.5 (Recognizing Direct Products).

We have $G \cong H \times K$ when

- $H, K \leq G$
- G = HK.
- $H \cap K = \{e\} \subset G$

Note: can relax to [h, k] = 1 for all h, k.

${\bf Theorem~0.6} (Recognizing~Generalized~Direct~Products).$

We have $G = \prod H_i$ when

- $H_i \leq G$ for all i. $G = H_1 \cdots H_n$ $H_k \cap H_1 \cdots \widehat{H_k} \cdots H_n = \emptyset$

Note on notation: intersect H_k with the amalgam leaving out H_k .

Theorem 0.7 (Recognizing Semidirect Products).

We have $G = N \rtimes_{\psi} H$ when

- G = NH
- $N \leq G$
- $H \cap N$ by conjugation via a map

$$\psi: H \longrightarrow \operatorname{Aut}(N)$$

 $h \mapsto h(\cdot)h^{-1}.$

Note relaxed conditions compared to direct product: $H \subseteq G$ and $K \subseteq G$ to get a semidirect product instead

Useful Facts

- If $\sigma \in Aut(H)$, then $N \rtimes_{\psi} H \cong N \rtimes_{\psi \circ \sigma} H$.
- $\operatorname{Aut}((\mathbb{Z}/(p)^n) \cong \operatorname{GL}(n,\mathbb{F}_p)$, which has size

$$|\operatorname{Aut}(\mathbb{Z}/(p)^n)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1}).$$

- If this occurs in a semidirect product, it suffices to consider similarity classes of matrices (i.e. just use canonical forms)

$$\operatorname{Aut}(\mathbb{Z}/(n)) \cong \mathbb{Z}/(n)^{\times} \cong \mathbb{Z}/(\varphi(n))$$

where φ is the totient function.

- $-\varphi(p^k) = p^{k-1}(p-1)$
- If G, H have coprime order then $\operatorname{Aut}(G \oplus H) \cong \operatorname{Aut}(G) \oplus \operatorname{Aut}(H)$.

0.3 Isomorphism Theorems

Theorem 0.8(1st Isomorphism Theorem).

If $\varphi: G \longrightarrow H$ is a group morphism then

$$G/\ker\varphi\cong\operatorname{im}\,\varphi.$$

Figure 1: The 2nd "Diamond" Isomorphism Theorem

Note: for this to make sense, we also have

- $\ker \varphi \leq G$
- im $\varphi \leq G$

Corollary 0.9.

If $\varphi: G \longrightarrow H$ is surjective then $H \cong G/\ker \varphi$.

Proposition 0.10.

If $H, K \leq G$ and $H \leq N_G(K)$ (or $K \leq G$) then $HK \leq G$ is a subgroup.

Theorem 0.11 (Diamond Theorem / 2nd Isomorphism Theorem).

If $S \leq G$ and $N \leq G$, then

$$\frac{SN}{N} \cong \frac{S}{S \cap N}$$
 and $|SN| = \frac{|S||N|}{|S \cap N|}$.

Note: for this to make sense, we also have

- $SN \leq G$,
- $S \cap N \leq S$,

Corollary 0.12.

If we relax the conditions to $S, N \leq G$ with $S \in N_G(N)$, then $S \cap N \leq S$ (but is not normal in G) and the theorem still applies.

Theorem 0.13 (Cancellation / 3rd Isomorphism Theorem).

Suppose $N, K \leq G$ with $N \subseteq G$ and $N \subseteq K \subseteq G$.

- 1. If $K \leq G$ then $K/N \leq G/N$ is a subgroup
- 2. If $K \subseteq G$ then $K/N \subseteq G/N$.
- 3. Every subgroup of G/N is of the form K/N for some such $K \leq G$.
- 4. Every normal subgroup of G/N is of the form K/N for some such $K \leq G$.
- 5. If $K \subseteq G$, then we can cancel normal subgroups:

$$\frac{G/N}{K/N} \cong \frac{G}{K}.$$

Theorem 0.14(The Correspondence Theorem / 4th Isomorphism Theorem). Suppose $N \subseteq G$, then there exists a correspondence:

$$\left\{H < G \mid N \subseteq H\right\} \iff \left\{H \mid H < \frac{G}{N}\right\}$$

$$\left\{ \substack{\text{Subgroups of } G \\ \text{containing } N} \right\} \iff \left\{ \substack{\text{Subgroups of the} \\ \text{quotient } G/N} \right\}.$$

In words, subgroups of G containing N correspond to subgroups of the quotient group G/N. This is given by the map $H \mapsto H/N$.

Note: $N \triangleleft G$ and $N \subseteq H \triangleleft G \implies N \triangleleft H$.

0.4 Special Classes of Groups

Definition 0.14.1 (2 out of 3 Property).

The "2 out of 3 property" is satisfied by a class of groups \mathcal{C} iff whenever $G \in \mathcal{C}$, then $N, G/N \in \mathcal{C}$ for any $N \subseteq G$.

Definition 0.14.2 (p-groups). If $|G| = p^k$, then G is a **p-group**.

Definition 0.14.3 (Normalizers Grow).

If for every proper H < G, $H \le N_G(H)$ is again proper, then "normalizers grow" in G.

0.5 Classification of Groups

General strategy: find a normal subgroup (usually a Sylow) and use recognition of semidirect products.

- Keith Conrad: Classifying Groups of Order 12
- Order p: cyclic.
- Order p^2q : ?

0.6 Finitely Generated Abelian Groups

Definition 0.14.4 (Invariant Factor Decomposition).

$$G \cong \mathbb{Z}^r \times \prod_{j=1}^m \mathbb{Z}/n_j\mathbb{Z}$$
 where $n_1 \mid \cdots \mid n_m$.

Invariant factors \longrightarrow Elementary Divisors:

- Take prime factorization of each factor
- Split into coprime pieces

Example 0.1.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{2^3.5^2.7} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{2^3} \times \mathbb{Z}_{5^2} \times \mathbb{Z}_7$$

Going from elementary divisors to invariant factors:

- Bin up by primes occurring (keeping exponents)
- Take highest power from each prime as *last* invariant factor
- Take highest power from all remaining primes as next, etc

Example 0.2.

Given the invariant factor decomposition

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{5^2}$$

$$\frac{p=2 \quad p=3 \quad p=5}{2,2,2 \quad 3,3 \quad 5^2}$$

$$\implies n_m = 5^2 \cdot 3 \cdot 2$$

$$\begin{array}{c|cccc}
\hline
p = 2 & p = 3 & p = 5 \\
\hline
2, 2 & 3 & \emptyset
\end{array}$$

$$\implies n_{m-1} = 3 \cdot 2$$

$$\frac{p=2 \quad p=3 \quad p=5}{2 \quad \emptyset \quad \emptyset}$$

$$\implies n_{m-2} = 2$$

and thus

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_{3 \cdot 2} \times \mathbb{Z}_{5^2 \cdot 3 \cdot 2}$$

Classifying Abelian Groups of a Given Order:

Let p(x) be the integer partition function.

Example:
$$p(6) = 11$$
, given by $6, 5 + 1, 4 + 2, \cdots$.

Write $G = p_1^{k_1} p_2^{k_2} \cdots$; then there are $p(k_1)p(k_2) \cdots$ choices, each yielding a distinct group.