(NATURAL SCIENCE)

주체103(2014)년 제60권 제10호

Vol. 60 No. 10 JUCHE103(2014).

다중결수맹목등화알고리듬에 대한 연구

리철화

위대한 령도자 김정일동지께서는 다음과 같이 지적하시였다.

《현시대는 과학과 기술의 시대이며 과학과 기술이 류례없이 빠른 속도로 발전하는것은 현대과학기술발전의 중요한 특징입니다. 작은 나라일수록 빨리 발전하려면 과학기술발전에 큰 힘을 넣어야 합니다. 우리는 남이 한걸음 걸을 때 열걸음, 백걸음으로 달려 과학기술발전에서 하루빨리 세계선진수준에 올라서야 합니다.》(《김정일선집》제15권 중보판 485폐지)

론문에서는 수자통신체계에 기초한 직교진폭변조(QAM)에서 리용되는 맹목등화알고리듬에 기초하여 개선형다중결수알고리듬 MMA(p,g)를 제안하였다. 이를 위하여 전통적인 MM (다중결수)기준에 2차원자유도를 도입하여 맹목등화알고리듬에 대한 일반화를 진행하였으며 이 과정에 얻은 알고리듬의 하나인 MMA(2,1)이 16-QAM신호에서 나타내는 성능을 분석하였다.

1. 맹목등화방법

학습렬을 리용하지 않는 통로등화를 맹목통로등화라고 한다.

일반적으로 QAM자료통신에 대해 좋은 성능을 나타내는 초기의 맹목등화알고리듬에 서는 다음과 같은 상수곁수(*CM*)기준에 기초한 비용함수를 리용하였다.[1]

$$CM_p: J_p^{CM} = \frac{1}{2p} E[(|y_n|^p - R^p)^2]$$
 (1)

여기서 y_n 은 중첩되지 않은 렬이다.

한편 보다 일반화된 CM 비용함수는 다음과 같다.[2]

$$CM(p, q): J_p^{CM} = \frac{1}{pq} E[(|y_n|^p - R^p)^q]$$
 (2)

원천신호의 실값과 허값이 독립동일분포특성을 가지거나(QAM신호) 기호사이간섭이 실 값과 허값사이의 호상상관이 작은 경우 전송된 자료의 실값과 허값은 현재의 중첩되지 않은 렬의 실값과 허값으로부터 추정할수 있다.[3] 이때 등화기출력의 실값과 허값들에 각각비용함수들을 할당하여 16-QAM신호에서 ISI를 억제하는데 여기에 리용되는 수정된 CM 기준 MM_p 는 다음과 같다.[2]

$$MM_{p}: J_{p}^{MM} = \frac{1}{2p} E[(|y_{R,n}|^{p} - R_{R}^{p})^{2} + (|y_{I,n}|^{p} - R_{I}^{p})^{2}]$$
(3)

이러한 *MM*의 가장 중요한 특징은 반송파추적고리를 따로 리용하지 않고 위상요동을 제 거하는것이다.

론문에서는 2차원자유도를 가진 다중결수비용함수(식 (3))를 일반화하여 초기수렴속도 (16-QAM신호에 대하여)가 빠른 새로운 다중결수알고리듬을 제안한다.

2. MM _p기준의 일반화

1) 체계모형

기초대역체계에서 시불변통로(FIR)로 전송되는 QAM신호렬 a_n 을 고찰하자. 이때 보드속도로 표시한 통로와 등화기의 출력을 다음과 같이 쓸수 있다.

$$x_n = h_n \cdot a_n + N_n$$
, $y_n = w_n^H x_n$

여기서 h_n 은 FIR통로의 임풀스응답, w_n 은 n시각의 등화기벡토르, N_n 은 가산성백색잡음의 표본, $x_n = \{x_n, \cdots, x_{n-N+1}\}^T$ 는 통로출력렬 즉 등화기의 입력렬, T와 H는 각각 전이와 에르미트전이를 표시한다.

등화목표는 수신자료 x_n 만을 리용하여 수신된 송신신호렬 a_n 을 추정하는것이다.

2) 일반화된 다중결수기준

현재 많이 리용되고있는 맹목등화알고리듬들은 수학적구조가 근사하므로 현재의 비용함수 MM_p 에 파라메터 q(임의의 차원의 자유도)를 도입하면 새로운 비용함수는 다음과 같이 된다.

$$J_{p, q}^{MM} = \frac{1}{2p} E[(|y_{R, n}|^p - R_R^p)^q + (|y_{I, n}|^p - R_I^p)^q]$$
 (4)

여기서 p, q≥1이다.

이때 다중곁수알고리듬은 $J_{p,\ q}^{MM}$ 을 w에 관하여 미분하여 얻는데 그 결과는

$$\mathbf{w}_{n+1} = \mathbf{w}_{n} + \mu \begin{bmatrix} \left\| y_{R, n} \right\|^{p} - R_{R}^{p} \right\|^{q-2} \left\| y_{R, n} \right\|^{p-2} (R_{R}^{p} - |Y_{R, n}|^{p}) y_{R, n} \\ j \left\| y_{I, n} \right\|^{p} - R_{I}^{p} \right\|^{q-2} \left\| y_{I, n} \right\|^{p-2} (R_{I}^{p} - |Y_{I, n}|^{p}) y_{I, n} \end{bmatrix} \mathbf{x}_{n}$$
 (5)

으로 되며 이것을 MMA(p, q)로 표시한다.

여기서 $0<\mu\le 1$ 이며 정의상수 R_R 와 R_I 는 이지리짐상수로서 원천통계량에 따라 선택된다. 한편 식 (4)로부터 맹목등화알고리듬에 관한 몇가지 비용함수들을 다음과 같이 정의할수 있다.

① p=1, q=2 일 때

$$J_{1, 2}^{MM} = \frac{1}{2} E[(|y_{R, n}| - R_R)^2 + (|y_{I, n}| - R_I)^2].$$
 (6)

이것은 이미 제안된 비용함수로서 RCA(Reduced Constellation Algorithm) 또는 GSA(Genera lized Sato Algorithm)이라고 부르는데 여기에 대응한 알고리듬은 *MMA*(1, 2)이다.

② p=1, q=1일 때

$$J_{1,\ 1}^{MM} = \mathbb{E} \left[\left\| y_{R,\ n} \right\| - R_{R} + \left\| y_{I,\ n} \right\| - R_{I} \right]$$
 (7)

이것은 새로운 비용함수로서 SGSA(Sign Generalized Sato Algorithm) 또는 SRCA(Sign Reduced Constellation Algorithm)라고 부르며 여기에 대응한 알고리듬을 *MMA*(1, 1) 이라고 한다.

③ p = 2, q = 2 일 때

$$J_{2,2}^{MM} = \frac{1}{4} E[(y_{R,n}^2 - R_R^2)^2 + (y_{I,n}^2 - R_I^2)^2]$$
 (8)

이것 역시 이미 제안된 알고리듬에 해당한 비용함수로서 여기에 대응한 알고리듬은 MMA(2, 2)이다.

3. 새로운 다중결수알고리듬 MMA(2, 1)

현재 리용되고있는 통계적그라디엔트에 기초한 맹목등화알고리듬의 비용함수들은 제안한 비용함수 (4)의 특수경우이다. 이러한 일반화로부터 새로운 다중결수알고리듬들을 구성할수 있다. 합리적인 p와 q의 선택은 p=2, q=1인 경우이다. 이때 학습규칙은 다음과 같다.

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \mu \{ \operatorname{sgn}[R_R^2 - y_{R,n}^2] y_{R,n} - j \operatorname{sgn}[R_I^2 - y_{I,n}^2] y_{I,n} \} \mathbf{x}_n$$
 (9)

여기서 sgn은 표준부호함수이다.

이때 알고리듬 (9)를 MMA(2, 1)로 표시한다.

4. 모이결과와 분석

여러가지 통로에 대한 모의결과에 의하면 *MMA*(2, 1) 의 수렴특성은 16-QAM에서 *MMA*(1, 1), *MMA*(1, 2), *MMA*(2, 2) 보다 우월하다는것을 알수 있다. 또한 더 높은 차수의 별자리표들(64-QAM, 256-QAM)에서 *MMA*(2, 2)의 성능은 *MMA*(2, 1)과 근사하다.

AWGN통로에서 16-QAM의 네가지 경우에 따르는 ISI와 MSE수렴특성은 그 림과 같다. 이 결과들은 보드속도등화기 에 대하여 독립적인 실행을 충분히 진 행하고 그것에 대한 평균으로 얻었다.

그림으로부터 *MMA*(2, 1) 이 같은 안정상태에서 *MMA*(1, 1), *MMA*(1, 2), *MMA*(2, 2) 보다 빨리 수렴한다는것을 알 수 있다.

그리고 *MMA*(2, 1) 의 MSE는 서로 다른 2개의 16-OAM수신기에서 류사하다.

맺 는 말

QAM신호의 맹목등화를 위한 2차원자유도를 가진 일반적인 *MM* 기준을 제기하였다. 또한 RCA, MCMA 및 SRCA와 같은 현재 리용되고있는 알고리듬들과 제안된 기준과의 관계를 밝히였다. 그리고 모의실험을 통하여 *MMA*(2, 1) 이 16-QAM에서 가장 빠른 수렴속도를 가진다는것을 확증하였다.

참 고 문 헌

- [1] A. Goupil et al.; IEEE Tran. Signal Process, 55, 4, 1436, 2007.
- [2] J. Yang et al.; Proc. IEEE Intl. Conf. DSP, 1, 127, 1997.
- [3] Xi-Lin Li et al.; IEEE Trans. Commun, 54, 11, 1913, 2006.

주체103(2014)년 6월 5일 원고접수

Multi-Modulus Blind Equalization Algorithm

Ri Chol Hwa

We have proposed the improved multi-modulus equalization algorithm MMA(p, g) based on blind equalization algorithm for QAM based on digital communication system. And we have generalized a blind equalization algorithm by introducing two dimension of freedom in MM criterion and made the performance comparison between other blind equalization algorithms and a proposed algorithm for 16-QAM via MATLAB simulation.

Key words: multi-modulus, blind equalization, MM criterion