Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models

Pan Lu, et al

University of California, Microsoft Research

NeurIPS 2023

Abstract

- LLMs' Limitations
 - Lack of up-to-date knowledge (e.g., real-time web info)
 - Inability to use external tools (e.g., calculators)
 - Weak in precise mathematical / logical reasoning
- Chameleon: LLMs with plug-and-play modules
 - Vision models
 - Web search engines
 - Python functions
 - Heuristic-based modules
- Experiments
 - Benchmark: ScienceQA and TabMWP
 - Based on GPT-4, we achieved SOTA

Introduction

- Goal: Dynamically selecting tools
 - GPT-4 works as planner with in-context learning [1]
 - Synthesize program with basic tools

Related Work

- LLM using tools
 - Codex was fine-tuned with Github codes [1]
 - Reasoning with coding was suggested [2]
- Limitation of prior works
 - Requires supervised fine-tuning
 - Fixed set of tools
 - Calls one tool at a time
- Chameleon's difference
 - In-context learning without fine-tuning
 - Plug-and-play: adapt to new tools given description
 - Composes multi-step tool sequences
- [1] Mark Chen et al. "Evaluating large language models trained on code". In: *arXiv* preprint *arXiv*:2107.03374 (2021).
- [2] Wenhu Chen et al. "Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks". In: arXiv preprint arXiv:2211.12588 (2022).

Comparision of work

Model	Tool Use						Skill Dimension					Inference & Extension		
	Size	\$	8	O	Ь	0	Image	Web	Know.	Math	Table	Composition	Planning	Plug-n-Play
CoT [57]	1	/	Х	Х	Х	Х	×	Х	Х	1	Х	Х	Х	Х
Lila [39]	1	1	X	Х	X	1	X	X	Х	/	Х	Х	X	X
PoT [6]	2	1	X	X	X	1	X	X	X	/	X	X	X	X
Code4Struct [55]	1	/	X	X	X	1	X	X	X	Х	X	X	X	X
PAL [10]	2	/	X	Х	X	1	X	X	Х	/	Х	X	X	X
MathPrompter [18]	2	1	Х	Х	Х	1	X	Х	X	1	Х	X	X	X
ART [43]	4	1	Х	Х	1	1	X	/	Х	/	Х	1	Х	1
Toolformer [49]	5	Х	X	X	1	Х	X	/	X	Х	X	Х	natural lang.	X
WebGPT [40]	10	1	X	X	1	X	X	1	X	X	X	/	program	X
MM-ReAct [60]	>10	1	Х	Х	1	Х	1	1	1	/	/	1	word match	
Visual ChatGPT [59]	>10	1	-	-	X	X	1	X	Х	Х	Х	/	natural lang.	/
ViperGPT [52]	>10	1	-	-	X	X	1	X	/	/	X	/	program	/
VisProg [13]	>10	1	-	-	X	1	1	X	Х	X	X	/	program	/
HuggingGPT [50]	>10	1	1	Х	Х	Х	1	X	-	X	-	/	natural lang.	✓
Chameleon (ours)	>10	1	1	1	1	1	/	1	1	/	/	1	natural lang.	1

- Prior Tools: Lack of generalization
 - Limited tools, Manually prompting usage
- Our method: Chameleon
 - Plug-and-Play Flexibility
 - Natural language planning by LLM (Interpretable)

General Framework

- Notations
 - Input query x_0
 - Natural language planner $\mathcal P$
 - Task instruction I
 - Module inventory \mathcal{M} consists of modules: $\{M_i\}$
 - Constraints \mathcal{G} for the sequence orders of modules
 - Few-shot examples $\mathcal D$

General Framework

- Workflow
 - Plan p, Time step t, Output y^t , Cache c^t

-
$$p = \mathcal{P}(x_0; \mathcal{I}, \mathcal{M}, \mathcal{G}, \mathcal{D})$$

$$-y^t \leftarrow M^t(x^{t-1}; c^{t-1})$$

$$-x^t \leftarrow \text{update_input}(x^{t-1}; y^t)$$

$$-c^t \leftarrow \text{update_cache}(c^{t-1}; y^t)$$

- The functions are hand-designed for each M_i
- Response

$$-r = y^T \leftarrow M^T(x^{T-1}; c^{T-1})$$

Tool Types	Tools
	Knowledge Retrieval, Query Generator,
@ Oman A I	Row Lookup, Column Lookup,
⑤ OpenAI	Table Verbalizer, Program Generator,
	Solution Generator
Hugging Face	Image Captioner
Github	Text Detector
Web Search	Bing Search
Python	Program Verifier, Program Executor
Rule-based	Answer Generator

- Knowledge Retrieval
 - This module retrieves additional background knowledge
- Query Generator
 - It creates search engine queries based on the problem
- Row / Column Lookup
 - Reasoning process may involve tabular context
 - Focusing only on relevant section for query

Tool Types	Tools
	Knowledge Retrieval, Query Generator,
@ O A I	Row Lookup, Column Lookup,
⑤ OpenAI	Table Verbalizer, Program Generator,
	Solution Generator
Hugging Face	Image Captioner
Github	Text Detector
Web Search	Bing Search
Python	Program Verifier, Program Executor
Rule-based	Answer Generator

- Table Verbalizer
 - Converting structured tables into text
- Program Generator
 - It generates Python programs to solve queries

Tool Types	Tools
	Knowledge Retrieval, Query Generator,
	Row Lookup, Column Lookup, Table Verbalizer, Program Generator,
~ .	, 5
	Solution Generator
Hugging Face	Image Captioner
Github	Text Detector
Web Search	Bing Search
Python	Program Verifier, Program Executor
Rule-based	Answer Generator

- Image Captioner
 - Converts raw image data into a textual description
- Text Detector
 - Identifies text within a given image
- Bing search
 - It excels when broader or up-to-date information

Tool Types	Tools
	Knowledge Retrieval, Query Generator,
@ O A I	Row Lookup, Column Lookup,
	Table Verbalizer, Program Generator,
	Solution Generator
Hugging Face	Image Captioner
Github	Text Detector
Web Search	Bing Search
Python	Program Verifier, Program Executor
Rule-based	Answer Generator

- Program Verifier
 - Checks for syntax and logical errors [1]
- Program Executor
 - Executes the program and produces the result

^[1] Aman Madaan et al. "Self-refine: Iterative refinement with self-feedback". In: Advances in Neural Information Processing Systems 36 (2024).

Tool Types	Tools
	Knowledge Retrieval, Query Generator,
(Oman A I	Row Lookup, Column Lookup,
⑤ OpenAI	Table Verbalizer, Program Generator,
	Solution Generator
Hugging Face	Image Captioner
Github	Text Detector
Web Search	Bing Search
Python	Program Verifier, Program Executor
Rule-based	Answer Generator

- Solution Generator
 - Using all the cached information, generate solution [1]
- Answer Generator
 - Executes the program and produces the result

Jason Wei et al. "Chain-of-thought prompting elicits reasoning in large language models".
In: Advances in neural information processing systems 35 (2022), pp. 24824–24837.

Benchmark

- TabMWP [1]
 - A math reasoning benchmark with tables
 - Row & Column lookup, Table Verbalizer would be needed
- ScienceQA [2]
 - A multi-modal dataset covering scientific topics
 - e.g.) Physics problem with image
- [1] Pan Lu et al. "Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning". In: arXiv preprint arXiv:2209.14610 (2022).
- [2] Pan Lu et al. "Learn to explain: Multimodal reasoning via thought chains for science question answering". In: Advances in Neural Information Processing Systems 35 (2022).

Experiment

- · Result
 - SOTA in few-shot settings (ScienceQA)
 - Outperformed fine-tuning models (TabMWP)

Experiment

Figure 4: Tools called in the generated programs from **Chameleon** on ScienceQA.

Figure 5: Tools called in the generated programs from **Chameleon** on TabMWP.

- Tool usage of ChatGPT-based Chameleon
 - Heavily influenced by few-shot examples
 - Strongly prefers certain tools
- Tool usage of GPT-4-based Chameleon
 - Distributes tool calls more objectively
 - Uses query generator and web search at the same time

Ablation study

Module	Δ (ScienceQA)	\(\Delta\) (TabMWP)
Knowledge Retrieval	-7.8%	-2.2%
Bing Search	-7.4%	-
Text Detector	-8.4%	-
Image Captioner	-6.0%	-
Program Generator	-	-7.4%
Table Verbalizer	-	-0.2%

- · Most of tools are vital
 - Knowledge retrieval is important in both tasks
 - Domain specific tools are important
 - Vision models for ScienceQA, Program tools for TabMWP

Error Analysis

- 50 mistakes of ChatGPT on ScienceQA
 - Chameleon reduces mistakes by tools

Conclusion

- We introduce Chameleon
 - Augmenting external tools
 - Plug-and-play manner
- Experiments on ScienceQA, TabMWP
 - Significant improvements in accuracy
 - Potential for addressing real-world queries