Before we begin...

- Open up these slides:
 - https://bit.ly/2LholJh
- Open up the documentation:
 - THREE.js Docs
- Have a look through some examples:
 - THREE.js Examples

THREE.js

Learning Objectives

- Understand WebGL and requestAnimationFrame
- Understand X, Y and Z planes
- **Use** THREE.js effectively

Agenda

• THREE.js

Review

- Finish off React app
- Deploy the app with Now
- <u>P5.js</u>

Project Time!

THREE.js

Examples

What are we building?

Background

What is **THREE.js**?

The aim of the project is to create a lightweight 3D library with the lowest level of complexity

More or less, it is an attempt to make 3D stuff easier in browsers

Who made THREE.js?

- A guy named Ricardo Cabello (but everyone calls him Mr. Doob)
 - Website
 - Github
 - Twitter

What is it created with?

What is it built with?

- It's built on top of WebGL, a JavaScript API
- It uses a renderer to show the 3D environment
 - Renderers for Canvas, SVG, CSS3D

How do we include it?

- Just like any other JavaScript library
- We reference the Three.js script before our own (or use NPM)
- There are also a bunch of helper files that you can use too, like:
 - Orbit Controls
 - datGui

Key Components

Key Components

- Camera
- Scene
- Renderer
- Light(s)
- Mesh(es)

We extend the stuff that Three.js provides

Key Components

What is a mesh?

What will we be using?

What will we be using?

- Three.js
- OrbitControls.js?
- Stats.js?
- datGui.js?

<u>requestAnimationFrame</u>

In order to show changes in a Three.js scene, we need to re-render it. **setInterval** used to be the way we do that, but now we use **requestAnimationFrame**. Why?

- It runs as quickly as possible (higher FPS)
- It stops when the tab or window is no longer active (better battery life)
- It times it correctly for optimum performance
- Is often hardware-boosted

Coding time!

Scene & Camera

```
const scene = new THREE.Scene();
let width = window.innerWidth;
let height = window.innerHeight;
let camera = new THREE.PerspectiveCamera(45, width / height, 0.1, 1
camera.position.x = -30;
camera.position.y = 40;
camera.position.z = 30;
camera.lookAt(scene.position);
```

Renderer

Our first shape

```
let cubeGeometry = new THREE.BoxGeometry(4, 4, 4);
let cubeMaterial = new THREE.MeshBasicMaterial({
   color: "#FF8F00",
   wireframe: true
});
let cube = new THREE.Mesh(cubeGeometry, cubeMaterial)
```

Homework

- It's Project Time!
- Read up on ES2015
 - Translate some of your previous code into it!
- Finish all exercises from class
- Upload your homework to GitHub
- Prepare for next lesson

Homework (Extra)

- Go through some tasks in <u>Exercism</u>
- Get into <u>JavaScript30</u>
- Go through <u>The Modern JavaScript Tutorial</u>
- Read <u>Exploring ES6</u>
- Read <u>Eloquent JavaScript</u>
- Read <u>Speaking JavaScript</u>

What's next?

• Project Presentations!

Questions?

Feedback time!

Lesson 18: THREE.js

https://ga.co/js05syd

Thanks!