

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

FOUNDATION

BATCH FOR CSIR-NET 2023

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

TOPIC -: GROUP THEORY

LECTURE No. 01

Basic definition related to group theory

Lecture Index:
i) Euler's function & Sum of relative Prime no.

- ii) Congruent Modulo & its theorem
- iii) No. of Positive Divisors
- iv) Sum of positive divisors

1. Euler's \(\phi \) function -:

A mapping $\phi : \mathbb{N} \to \mathbb{N}$ defined by $\phi(n) = \{x \in \mathbb{N} : 1 \le x \le n; \gcd(x,n) = 1\}$

Example:
$$\phi(6) = |\{1,5\}| \neq 2$$

 $\phi(9) = |\{1,2,4,5,7,8\}| = 6$

- Some shortcuts to find Euler's Phi Function
- If p is a prime number and a is a positive integer then $\phi(p^a) = (p^a p^{a+1})$

If p₁, p₂, ... p_n are prime numbers and a, b, z are the positive integers

$$\phi(p_1^a, p_2^b \dots p_n^z) = (p_1^a - p_1^{a-1})(p_2^b - p_2^{b-1}) \dots (p_n^z - p_n^{z-1})$$

- $\phi(m.n) = \phi(m). \ \phi(n) \ ; \ iff \ gcd(m,n) = 1$
- Sum of relative prime numbers -: Sum of all positive integers (including unity)
 which are less than and co-prime to it.

or.

$$S = \{x \in \mathbb{N} : 1 \le x \le n; \gcd(x,n) = 1\}$$
, Sum of all elements of set S

2. Number of positive divisors, $\tau(n)$ -: let n>1, n be a positive integer,

 $n=p_1^a.\ p_2^b.p_3^c....p_n^c$, where $p_1,\ p_2,\ p_3,.....\ p_n$ are prime number, then number of positive divisors of n is denoted by $\tau(n)=\tau(p_1^a.\ p_2^b.p_3^c....p_n^c)=(a+1).(b+1).(c+1)...$ (z+1).

3. Sum of positive divisors, $\sigma(n)$: let n>1, n be a positive integer, $n=p_1^a$. p_2^b . p_2^c p_n^z , where p_1 , p_2 , p_3 p_n are prime number, then sum of positive divisors of n is denoted by $\sigma(n)$.

$$\sigma(n) = \left(\frac{p_1^{a+1}-1}{p_1-1}\right) \cdot \left(\frac{p_2^{b+1}-1}{p_2-1}\right) \cdot \left(\frac{p_3^{c+1}-1}{p_3-1}\right) \cdot \cdots \cdot \left(\frac{p_n^{z+1}-1}{p_n-1}\right).$$

4. Congruent modulo -: let n be a fixed positive integer, two integer a and b are congruent modulo n if n (a-b)

and it is denoted by $a \equiv b \pmod{n}$

i.e.
$$a \equiv b \pmod{n}$$
 if $n \pmod{a-b}$

$$\Rightarrow a - b = nk \in \mathbb{Z} \Rightarrow a = b + nk$$

Note:
$$a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$$

Some special theorem

Fermat's Theorem: If p is a prime number, a is integer and $p \nmid a$ [p does not divide a], then $a^{p-1} \equiv 1 \pmod{p}$.

Example: $2^{10} \pmod{11} = 1 \Leftrightarrow 2^{10} \notin 1 \pmod{11}$ [:: 11\{2\}]

Euler's theorem-: If $n \ge 1$ and gcd(a,n) = 1, then $a^{\phi(n)} = 1 \pmod{n}$.

Wilson's Theorem-: If p is a prime number, then $(p-1)! = (-1) \pmod{p}$.

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

- Q.1 Which of the following statements involving Euler's function φ is/are true?
 - (a) φ(n) is even as many times as it is odd
 - (b) φ(n) is odd for only two values of n
 - (c) $\phi(n)$ is even when n > 2
 - (d) $\phi(n)$ is odd when n = 2 or n is odd

Q.2. Find the total number of divisors of number 38808 excluding 1 and the number itself.

(a) 72

(b) 71

(c) 70

Q.3. The remainder when $\sum_{r=1}^{100} r!$ is divided by 12 is

(a) 5

(b) 7

(c)9

Q.4. Remainder when the sum $1^5+2^5+3^5+4^5+....+99^5+100^5$ is divided by 4 is

(a) 0

(b) 1

(c) 2

Q.5. For Euler's ϕ function $(\phi : N \rightarrow N)$, $\phi(n)$ is

- (a) Always even number
- (b) Neither one-one nor onto
- (c) $\phi(1000) = 400$
- (d) None of the above

Q.6. Find the Sum of positive divisors of 50 is.

(a) 31/ (b) 20

(c) 06 (d) 93

Q.7. Find the number of divisors of N = 2520 (excluding unity)

(a) 41

(b) 42

(c)45

Q.8 let S be the set of all positive integers (including unity) which are less than 3969 and co-prime to it. What is the sum of all the elements of S?

(a) 6001125

(b) 6001128

(c) 6001130

Q.9. The number of positive divisors of 50,000 is

(a) 20

(b) 30

(c)40

FOUNDATION

BATCH FOR CSIR-NET 2023

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	Total ₹ 21,780
24 months	₹ 908 / mo

0 12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR