Tutorial 1: Linear Algebra Revisited

Digital Image Processing (236860)

Vector spaces

- A **vector space** over a field \mathcal{F} is a set \mathcal{V} that has the following properties:
 - A sum $\mathscr{V} \times \mathscr{V} \to \mathscr{V}$, denoted as $(x, y) \to x + y$, is define, satisfying:
 - Commutativity: x + y = y + x
 - Associativity: x + (y + z) = (x + y) + z
 - Null element: x + 0 = x
 - Opposite element: u + (-u) = 0
 - A product $\mathscr{F} \times \mathscr{V} \to \mathscr{V}$, denoted as $(\alpha, x) \to \alpha x$, is defined, satisfying:
 - Distributivity in \mathcal{V} : $\alpha(x+y) = \alpha x + \alpha y$.
 - Distributivity in \mathscr{F} : $\alpha(x+y)=(\alpha+\beta)x=\alpha x+\beta x$.
 - Homogeneity in \mathscr{F} : $\alpha(x+y) = \alpha(\beta x) = (\alpha \beta)x$.
 - Scalar unit element: $1 \cdot x = x$.

Vector spaces

- The elements of \mathcal{V} are called vectors.
- The elements of \mathcal{F} are called scalars.
- Throughout the course we will assume $\mathcal{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Example 1: \mathbb{R}^d

Example 2: function spaces

- $\mathbb{F}(\mathbb{R}^d, \mathbb{R}) = \{ f : \mathbb{R}^d \to \mathbb{R} \}$
- For d = 2, f(x, y) is interpreted as an image.
- For d = 3, f(x, y, t) is interpreted as a video.

Bases

- Let $\mathcal V$ be a vector space. A finite set of vectors $\{x_1,\dots,x_n\}\subseteq \mathcal V$ is called **linearly independent**, if the identity $\sum_{k=1}^n \alpha_k x_k = 0$ implies that $\alpha_k = 0$ for all k. Otherwise, the set is said to be **linearly dependent**.
 - $\{x_1,\ldots,x_n\}\subseteq \mathcal{V}$ are linearly dependent iff $\exists i$ s.t. $x_i\in \operatorname{Span}\big\{x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n\big\}$.
- If a vector space $\mathscr V$ contains n linearly independent vectors and every n+1 vectors are linearly dependent, then we say that $\mathscr V$ has $\operatorname{dimension} n$: $\dim \mathscr V = n$. If $\dim \mathscr V \neq n$ for every $n \in \mathbb N$, then we say that $\mathscr V$ has infinite dimension.

Bases

• Let \mathcal{V} be a vector space. Suppose that $\dim \mathcal{V} = n$ and let $\{x_1, \ldots, x_n\} \subseteq \mathcal{V}$ be linearly independent (a basis). Then, every $y \in \mathcal{V}$ has a unique representation $y = \sum_{k=1}^n \alpha_k x_k$.

Bases give us a formal way to generalise "axis systems".

Bases

- Examples:
 - every two non-parallel vectors in $\mathbb{R}^2 \Rightarrow \dim \mathbb{R}^2 = 2$.
 - $\{e_i\}_{i=1}^n$ in $\mathbb{R}^n \Rightarrow \dim \mathbb{R}^n = n$.
 - The monomials in the first sense $\{x^i\}_{i=1}^N$ are linearly independent in $\mathbb{F}(\mathbb{R},\mathbb{R})$ for every $N\in\mathbb{N}$ $\Rightarrow \dim\mathbb{F}(\mathbb{R},\mathbb{R})=\infty$.

$$\alpha / + \beta /$$

Go α kms that way and β miles the other way

$$\alpha + \beta$$

Go α kms straight and then β kms to the right

Normed spaces

- A norm over a vector space $\mathscr V$ is a mapping $\|\cdot\|:\mathscr V\to\mathbb R$ such that:
 - Positivity: $||x|| \ge 0$ with equality iff x = 0.
 - Homogeneity: $\|\alpha x\| = \|x\| \|x\|$
 - Triangle inequality: $||x + y|| \le ||x|| + ||y||$
- A normed space is a pair $(\mathcal{V}, \|\cdot\|)$, where \mathcal{V} is a vector space and $\|\cdot\|$ is a norm over \mathcal{V} .

Normed spaces

- Norms allows us to compute the size of our vectors.
- We say $x \in \mathcal{V}$ is a unit vector, if ||x|| = 1.
- Examples:

•
$$\mathscr{C}_p^n = \left(\mathbb{R}^n, \|\cdot\|_p\right)$$
 where $\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$.

•
$$\left(\mathbb{F}(\mathbb{R}^n, \mathbb{R}), \|\cdot\|_p\right)$$
 where $\|f\|_p = \left(\int f(x)^p dx\right)^{\frac{1}{p}}$.

Normed spaces

- Norms allows us to compute the size of our vectors.
- We say $x \in \mathcal{V}$ is a **unit vector**, if ||x|| = 1.
- Examples:

•
$$\mathscr{C}_p^n = \left(\mathbb{R}^n, \|\cdot\|_p\right)$$
 where $\|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$.

For
$$p=2$$
 we get the Euclidean norm $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$.

$$\left(\mathscr{L}_p^n, \|\cdot\|_p \right) \text{ where } \|f\|_p = \left(\int f(x)^p dx \right)^{\frac{1}{p}} \text{ and } \mathscr{L}_p^n = \left\{ f \colon \mathbb{R}^n \to \mathbb{R} \mid \|f\|_p < \infty \right\}.$$

- A vector field \mathcal{V} is called an inner-product space if there exists a product $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$, satisfying:
 - Symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
 - Bilinearity: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - Homogeneity: $\langle \alpha x, y \rangle = \overline{\alpha} \langle x, \overline{y} \rangle$
 - Positivity: $\langle x, x \rangle \ge 0$ with equality iff x = 0.

Properties:

•
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

•
$$\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle$$

•
$$\|\cdot\| = \sqrt{(\,\cdot\,,\cdot\,)}$$
 is a norm.

• Cauchy-Schwarz inequality: $|\langle x, y \rangle| \le ||x|| ||y||$.

- Inner-products allows us to compute the similarity between our vectors.
- Examples:
 - The scalar product on \mathbb{R}^n

$$\langle x, y \rangle = x^T \overline{y} = \sum_{i=1}^n x_i \overline{y_i} = |x| |y| \cos \angle (x, y)$$

induces the Euclidean norm ℓ_2^n .

Examples:

• The product
$$\langle f,g\rangle=\int_a^b f(x)\overline{g(x)}dx$$
 induces the \mathcal{L}_2^n norm.

Orthonormal bases

- Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner-product space.
- We say $x, y \in \mathcal{V}$ are orthogonal, or $x \perp y$, if $\langle x, y \rangle = 0$.
- Let A be some index set, and let $\left\{x_{\alpha}\right\}_{\alpha\in A}\subseteq \mathscr{V}$ be a set of vectors. The set $\left\{x_{\alpha}\right\}_{\alpha\in A}$ is called an **orthonormal system** if $\forall \alpha,\beta\in A:\left\langle x_{\alpha},x_{\beta}\right\rangle =\delta_{\alpha\beta}$, where $\delta_{\alpha\beta}=1$ if $\alpha=\beta$, and $\delta_{\alpha\beta}=0$ otherwise.
 - $\Leftrightarrow \{x_{\alpha}\}_{\alpha \in A}$ are orthogonal unit vectors.
- Gram-Schmidt orthonormalization: Let (x_n) be either a finite or a countable sequence of linearly independent vectors in an inner-product space \mathscr{V} . Then it is possible to construct an orthonormal sequence (y_n) that has the same cardinality as the sequence (x_n) , such that: $\forall n \in \mathbb{N}$: Span $\{y_k | 1 \le k \le n\}$ = Span $\{x_k | 1 \le k \le n\}$.

Orthonormal bases

• If $\{x_i\}_{i=1}^n$ is an orthonormal basis of \mathcal{V} , then $\forall y \in \mathcal{V}$: $y = \sum_{i=1}^n \langle y, x_i \rangle x_i.$

Basis for L_2

• We have seen that if $\left\{x_i\right\}_{i=1}^n$ is an orthonormal basis of \mathcal{V} , then $\forall y \in \mathcal{V}$: $y = \sum_{i=1}^n \left\langle y, x_i \right\rangle x_i$.

• It can be proven that there is an orthonormal "basis" $\{g_i\}_{i=1}^{\infty}$ for \mathcal{L}_2 such that $\forall f \in \mathcal{L}_2$: $f \approx \sum_{i=1}^{\infty} \left\langle f, g_i \right\rangle g_i$.

Example: Legendre polynomials

Example: Fourier

Linear operators

- Let \mathscr{V} and \mathscr{Y} be vector spaces over the same field \mathscr{F} . A mapping $T:\mathscr{V}\to\mathscr{Y}$ is said to be a **linear** transformation if for all $x_1,x_2\in\mathscr{V}$ and $\alpha_1,\alpha_2\in\mathscr{F}$: $T\left(\alpha_1x_1+\alpha_2x_2\right)=\alpha_1T\left(x_1\right)+\alpha_2T\left(x_2\right)$.
- A linear transformation $T: \mathcal{V} \to \mathcal{V}$ is called a linear operator.
- All linear transformation from \mathbb{R}^n to \mathbb{R}^m can be represented by a $\mathbb{R}^{m\times n}$ matrix.

Linear operators

- $\mathscr{D}:\mathscr{L}_2\to\mathscr{L}_2$ where $\mathscr{D}f=f'$.
 - Proof: $\mathscr{D}\left(\alpha f + \beta g\right) = \alpha f' + \beta g' = \alpha \mathscr{D}f + \beta \mathscr{D}g$.

Linear operators

• $\tau_p: \mathcal{L}_2 \to \mathcal{L}_2$ where $\tau_p f(x) = f(x-p)$.

• Proof:
$$\left(\tau_p\left(\alpha f + \beta g\right)\right)(x) = \left(\alpha f + \beta g\right)\left(x - p\right)$$

= $\alpha f\left(x - p\right) + \beta g\left(x - p\right) = \alpha \tau_p\left(f\right) + \beta \tau_p\left(g\right)$.

Linear functionals

- A linear transformation $T: \mathcal{V} \to \mathcal{F}$ is called a linear functional.
- Examples:
 - Given $y \in \mathcal{V}$: $T_y(x) = \langle y, x \rangle$.
 - If $\dim \mathcal{V} < \infty$, these are the only functionals.
 - In this case there is an isomorphism between functionals and vectors.

Linear functionals

- Examples:
 - $\delta: \mathcal{L}_2 \to \mathbb{R}$ where $\delta(f) = f(0)$.
 - There is no $g \in \mathcal{L}_2$ s.t. $\delta = \langle g, \cdot \rangle$.
 - We will sometimes write $\delta(f) = \langle \delta, f \rangle = \int \delta(x) f(x) dx$.
 - $\delta au_p: \mathscr{L}_2 o \mathbb{R}$ where $\delta au_p\left(f(x)\right) = \delta\left(f\left(x-p\right)\right) = f\left(0-p\right) = f\left(-p\right).$

• Let $\mathscr{H}:\mathscr{L}_2\to\mathscr{L}_2$ be a linear operator, and let $\left\{g_i\right\}_{i=1}^\infty$ be a basis for \mathscr{L}_2 .

For each
$$f \in \mathcal{L}_2$$
, we can write $f \approx \sum_{i=1}^{\infty} \langle f, g_i \rangle g_i$.

Then
$$\mathcal{H}f \approx \mathcal{H}\left(\sum_{i=1}^{\infty} \left\langle f, g_i \right\rangle g_i \right) = \sum_{i=1}^{\infty} \left\langle f, g_i \right\rangle \mathcal{H}g_i.$$

This is analogous to multiplying a matrix by a vector: $Hu = \sum_{j=1}^{\infty} u_j He_j$.

Hence

Hence
$$\mathscr{H}f(x) = \sum_{i=1}^{\infty} \langle f, g_i \rangle \, \mathscr{H}g_i(x) = \sum_{i=1}^{\infty} \left(\int f(y) \, g_i(y) \, dy \right) \, \mathscr{H}g_i(x)$$
$$= \int \left(\sum_{i=1}^{\infty} \mathscr{H}g_i(x) \, g_i(y) \right) f(y) \, dy.$$

- Denote $h(x,y) = \sum_{i=1}^{\infty} \mathcal{H} g_i(x) g_i(y)$.
- Then $\mathcal{H}f(x) = \int h(x,y)f(y) dy$.

•
$$\mathscr{H}f(x) = \int h(x,y)f(y) dy = \langle h(x,\cdot), f \rangle.$$

- ullet h is called the kernel, or the impulse response of ${\mathscr H}$.
- This is analogous to multiplying a matrix by a vector:

$$(Hu)_i = \sum_{j=1}^n h_{ij} u_j = \langle h_i, u \rangle.$$

Coordinate systems

Orthonormal coordinates

Orthonormal coordinates

Orthonormal coordinates

Orthonormal matrices

- A matrix $U \in \mathbb{R}^{n \times n}$ is called **orthonormal**, if its columns are made of orthonormal vectors.
- Properties:
 - ullet The set of columns and the set of rows of U are orthonormal bases.
 - $U^{-1} = U^T$.
 - The vector Ux is the vector x converted from the U-coordinate system to the natural coordinate system.
 - The vector U^Tx is the vector x converted from the natural coordinate system to the U-coordinate system.
 - $\langle Ux, Uy \rangle = \langle x, y \rangle$, and thus ||Ux|| = ||x||.

Orthonormal matrices

Unitary matrices

- A matrix $U \in \mathbb{C}^{n \times n}$ is called **unitary**, if its columns are made of orthonormal vectors.
- Properties:
 - ullet The set of columns and the set of rows of U are orthonormal bases.
 - $U^{-1} = U^*$.
 - The vector Ux is the vector x converted from the U-coordinate system to the natural coordinate system.
 - The vector U^*x is the vector x converted from the natural coordinate system to the U-coordinate system.
 - $\langle Ux, Uy \rangle = \langle x, y \rangle$, and thus ||Ux|| = ||x||.

Unitary transformations

- Generally, a linear transformation $U:\mathcal{V}\to\mathcal{Y}$ is called unitary if $U^{-1}=U^*$.
- How do we define U^* in \mathcal{L}_2 ? We will found out in the lecture.
- In the meantime think is au_p unitary?

- An eigenvector of A is a non-zero vector $u \neq 0$ satisfying $Au = \lambda u$, with the scalar λ called an eigenvalue.
- The collection of eigenvalues is called the spectrum of a matrix.
- For an $n \times n$ matrix A with n linearly independent eigenvectors, we can write $Au_i = \lambda_i u_i$ for each $i=1,\ldots,n$, or $AU=U\Lambda$ in matrix form. This leads to the decomposition $A=U\Lambda U^{-1}$.

- Let us examine how A operates on a vector $v \in \mathbb{R}^n$.
- Since $\{u\}_{i=1}^n$ are a set of n linearly independent vectors, they form a basis, meaning $v = \sum_{i=1}^n \alpha_i u_i$ for some $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{R}$.
- Then $Av = U\Lambda U^{-1}\sum_{i=1}^n \alpha_i u_i = U\Lambda\alpha = U(\lambda\odot\alpha)$, where
 - λ , α are the vectors containing the appropriate scalar entries, and \odot is the point-wise product.

• If the matrix A is symmetric, it can be shown that there is an orthonormal basis of eigenvectors. Thus, the spectral decomposition becomes $A = U\Lambda U^T$.

