# Concentration analysis of multivariate elliptic diffusions

SIAM CSE23 - Amsterdam

#### Lukas Trottner

joint work with Cathrine Aeckerle-Willems and Claudia Strauch 02 March 2023

Aarhus University University of Mannheim



Let X be a nice ergodic Markov processes with semigroup  $(P_t)_{t\geqslant 0}$ , invariant distribution  $\mu$  and generator L on  $\mathbb{L}^2(\mu)$  (endowed with inner product  $\langle f,g\rangle_{\mu}=\int fg\,\mathrm{d}\mu$ ) and denote

$$\mathbb{C}_{\nu}(f,T,x)\coloneqq\mathbb{P}^{\nu}\Big(\Big|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathrm{d}t-\mu(f)\Big|>x\Big),\quad f\in\mathbb{L}^{2}(\mu),x,\,T>0.$$

Let X be a nice ergodic Markov processes with semigroup  $(P_t)_{t\geqslant 0}$ , invariant distribution  $\mu$  and generator L on  $\mathbb{L}^2(\mu)$  (endowed with inner product  $\langle f,g\rangle_{\mu}=\int fg\,\mathrm{d}\mu$ ) and denote

$$\mathbb{C}_{\mathrm{v}}(f,T,x)\coloneqq\mathbb{P}^{\mathrm{v}}\Big(\Big|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathrm{d}t-\mu(f)\Big|>x\Big),\quad f\in\mathbb{L}^{2}(\mu),x,\,T>0.$$

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):

- 1. Functional inequalities:
  - Poincaré inequality (PI):

$$\begin{split} \mathsf{Var}_{\mu}(g) &:= \mu(g^2) - \mu(g)^2 \leqslant - \mathit{C}_{P} \langle \mathit{L}g, g \rangle_{\mu}, \quad g \in \mathit{D}(\mathit{L}). \\ \mathsf{Implies:} \ \|\mathit{P}_t f - \mu(f)\|_{\mathbb{L}^2(\mu)} \leqslant \mathsf{e}^{-2t/\mathit{C}_{P}} \|f - \mu(f)\|_{\mathbb{L}^2(\mu)} \end{split}$$

Let X be a nice ergodic Markov processes with semigroup  $(P_t)_{t\geqslant 0}$ , invariant distribution  $\mu$  and generator L on  $\mathbb{L}^2(\mu)$  (endowed with inner product  $\langle f,g\rangle_{\mu}=\int fg\,\mathrm{d}\mu$ ) and denote

$$\mathbb{C}_{\nu}(f,T,x)\coloneqq \mathbb{P}^{\nu}\Big(\Big|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathsf{d}t - \mu(f)\Big| > x\Big), \quad f\in \mathbb{L}^{2}(\mu),x,T>0.$$

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):

- 1. Functional inequalities:
  - Poincaré inequality (PI):

$$\mathsf{Var}_{\mu}(g) := \mu(g^2) - \mu(g)^2 \leqslant -\mathit{C}_{\mathsf{P}} \langle \mathit{L}g, g \rangle_{\mu}, \quad g \in \mathit{D}(\mathit{L}).$$

Implies: 
$$||P_t f - \mu(f)||_{\mathbb{L}^2(\mu)} \le e^{-2t/C_P} ||f - \mu(f)||_{\mathbb{L}^2(\mu)}$$

• log-Sobolev inequality (LS):  $(P_t)_{t\geqslant 0}$  symmetric and

$$\operatorname{Ent}_{\mu}(g^2) \coloneqq \mu(g^2 \log g^2) - \mu(g^2) \log \mu(g^2) \leqslant 2 C_{LS} \|\sqrt{-L}g\|^2, \quad g \in D(\sqrt{-L}),$$

Let X be a nice ergodic Markov processes with semigroup  $(P_t)_{t\geqslant 0}$ , invariant distribution  $\mu$  and generator L on  $\mathbb{L}^2(\mu)$  (endowed with inner product  $\langle f,g\rangle_{\mu}=\int fg\,\mathrm{d}\mu$ ) and denote

$$\mathbb{C}_{\nu}(f,T,x) \coloneqq \mathbb{P}^{\nu}\left(\left|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathrm{d}t - \mu(f)\right| > x\right), \quad f \in \mathbb{L}^{2}(\mu), x, T > 0.$$

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):

- 1. Functional inequalities:
  - Poincaré inequality (PI):

$$\mathsf{Var}_{\mu}(g) \coloneqq \mu(g^2) - \mu(g)^2 \leqslant - \mathit{C}_{P} \langle \mathit{L}g, g \rangle_{\mu}, \quad g \in \mathit{D}(\mathit{L}).$$

Implies:  $||P_t f - \mu(f)||_{\mathbb{L}^2(\mu)} \le e^{-2t/C_P} ||f - \mu(f)||_{\mathbb{L}^2(\mu)}$ 

• log-Sobolev inequality (LS):  $(P_t)_{t\geqslant 0}$  symmetric and

$$\mathsf{Ent}_{\mu}(g^2) \coloneqq \mu(g^2\log g^2) - \mu(g^2)\log \mu(g^2) \leqslant 2\mathit{C}_{LS}\|\sqrt{-\mathit{L}}g\|^2, \quad g \in \mathit{D}(\sqrt{-\mathit{L}}),$$

2. Mixing assumptions:

$$(\underline{\alpha}(\mathbf{v}, \mathbf{\phi})): \quad \alpha_{\mathbf{v}}(t) \coloneqq \sup_{s \geqslant 0} \sup_{A \in \sigma(X_u, u \leqslant s), B \in \sigma(X_u, u \geqslant s + t)} |\mathbb{P}^{\mathbf{v}}(A \cap B) - \mathbb{P}^{\mathbf{v}}(A)\mathbb{P}^{\mathbf{v}}(B)| \leqslant \varphi(t) \underset{t \to \infty}{\longrightarrow} 0.$$

For reasonable  $\nu$  implied by ergodicity of  $P_t$ , i.e.,  $\|P_t(x,\cdot) - \mu\|_{\mathsf{TV}} \leqslant CV(x)\phi(t)$ 

[Lez01] Suppose  $\nu \ll \mu$ ,  $d\nu/d\mu \in \mathbb{L}^2(\mu)$  and  $||f||_{\infty} < \infty$ . If  $\mu$  satisfies (PI) then we have the Bernstein inequality (BI)

$$\mathbb{C}_{\nu}(f,T,x) \leqslant 2 \left\| \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right\|_{\mathbb{L}^{2}(\mu)} \exp\Big( -\frac{Tx^{2}}{2(\sigma^{2}(f) + 2C_{P} \|f\|_{\infty}x)} \Big),$$

where  $\sigma^2(f) = \lim_{t \to \infty} t^{-1} \operatorname{Var}_{\mathbb{P}^{\mu}} \left( \int_0^t f(X_s) \, \mathrm{d}s \right)$ 

[GGW14] If  $\mu$  satisfies (LS),  $\mu(f)=0$  and  $\mu(\exp(\lambda_{\pm}f^{\pm}))<\infty$  for some  $\lambda_{\pm}>0$  then we have the (BI)

$$\mathbb{C}_{\nu}(f,T,x)\leqslant 2\Big\|\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\Big\|_{\mathbb{L}^{2}(\mu)}\exp\Big(-\frac{Tx^{2}}{2(\sigma^{2}(f)+C_{P}(\Lambda^{*})^{-1}(2C_{LS}/C_{P})x)}\Big),$$

 $\text{w. } \Lambda^* = \Lambda_+^* \vee \Lambda_-^* \text{ and } \Lambda_\pm^* \text{ Legendre transf. of } [0, \lambda_\pm] \ni s \mapsto \Lambda_\pm(s) \coloneqq \log \mu(\exp(s(\pm f))).$ 

[CG08] If  $(\alpha(\mu, \varphi))$  with  $\varphi(t) = c \exp(-t^{\frac{1-q}{1+q}})$ ,  $q \in [0, 1)$  [q = 0: exponential mixing,  $q \in (0, 1)$ : subexponential mixing] and  $\|f\|_{\infty} < \infty$ , then for any  $x \geqslant C(\mathsf{c}, q)/\sqrt{T}$ , it holds

$$\mathbb{C}_{\mu}(f,T,x)\leqslant 2\exp\bigg(-c(q)\bigg(rac{x\sqrt{T}}{\|f\|_{\infty}}\bigg)^{1-q}\bigg).$$

# Martingale approximation for diffusions

• Let X be a (weak) solution to the SDE

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t,$$

 $b \in \mathsf{Lip}_\mathsf{loc}(\mathbb{R}^d; \mathbb{R}^d)$ ,  $\sigma \in \mathsf{Lip}(\mathbb{R}^d; \mathbb{R}^{d \times d})$  and bounded,  $a \coloneqq \sigma \sigma^\top$  s.t.  $\lambda_- \mathbb{I} \leqslant a(x) \leqslant \lambda_+ \mathbb{I}$ ,  $\forall x \in \mathsf{Lip}_\mathsf{loc}(\mathbb{R}^d; \mathbb{R}^d)$ 

- Let  $L = b^{\top} \nabla + \sum_{i,j} a_{i,j} \partial_{x_i} \partial_{x_j}$  and suppose that for given  $f : \mathbb{R}^d \to \mathbb{R}$  the Poisson equation Lg = f has some sufficiently regular solution  $L^{-1}[f]$
- By Itō's formula:  $L^{-1}[f](X_t) L^{-1}[f](X_0) = \int_0^t LL^{-1}[f](X_s) \, \mathrm{d}s + \int_0^t (\nabla L^{-1}[f](X_s))^\top \sigma(X_s) \, \mathrm{d}W_s$  and hence

$$\int_0^t f(X_s) \, \mathrm{d}s = \underbrace{\int_0^t (-\nabla L^{-1}[f](X_s))^\top \sigma(X_s) \, \mathrm{d}W_s}_{\text{(loc.) martingale}} + \underbrace{L^{-1}[f](X_t) - L^{-1}[f](X_0)}_{\text{remainder}}$$

- $\rightsquigarrow$  If we have some control on  $L^{-1}[f]$ ,  $\nabla L^{-1}[f]$  we can use martingale approximation for derivation of concentration bounds
- employed in case d=1 for exponentially ergodic diffusions in [AWS21; GP07] and for  $d \ge 1$  and periodic drift [NR20] in the context of drift estimation

# Poisson equation under subexponential drift assumptions

Assume  $||b(x)|| \lesssim 1 + ||x||^{\kappa}$  and for some  $q \in (-1, 1)$ ,  $\mathfrak{r}, A > 0$ ,

$$\langle b(x), x/||x||\rangle \leqslant -\mathfrak{r}||x||^{-q}, \quad ||x|| > A.$$
 
$$(\mathcal{D}(q))$$

[PV01; BRS18] If  $\mu(f) = 0$  and  $|f(x)| \lesssim 1 + ||x||^{\eta}$ , then for  $L^{-1}[f](x) := -\int_0^{\infty} P_t f(x) dt$  we have  $L^{-1}[f] \in \mathcal{W}^{2,p}_{loc}(\mathbb{R}^d)$  for any p > 1,  $L^{-1}[f]$  solves the Poisson equation and

$$|L^{-1}[f](x)| \lesssim 1 + \|x\|^{\eta+1+q}, \quad \|\nabla L^{-1}[f](x)\| \lesssim 1 + \|x\|^{\eta+\kappa+1+q}.$$

# Poisson equation under subexponential drift assumptions

Assume  $||b(x)|| \lesssim 1 + ||x||^{\kappa}$  and for some  $q \in (-1, 1)$ ,  $\mathfrak{r}, A > 0$ ,

$$\langle b(x), x/\|x\| \rangle \leqslant -\mathfrak{r}\|x\|^{-q}, \quad \|x\| > A.$$
 
$$(\mathcal{D}(q))$$

[PV01; BRS18] If  $\mu(f)=0$  and  $|f(x)|\lesssim 1+\|x\|^\eta$ , then for  $L^{-1}[f](x)\coloneqq -\int_0^\infty P_t f(x)\,\mathrm{d} t$  we have  $L^{-1}[f]\in\mathcal{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^d)$  for any p>1,  $L^{-1}[f]$  solves the Poisson equation and

$$|L^{-1}[f](x)| \lesssim 1 + ||x||^{\eta + 1 + q}, \quad ||\nabla L^{-1}[f](x)|| \lesssim 1 + ||x||^{\eta + \kappa + 1 + q}.$$

Let  $\|\nu\|_f := \sup_{|g| \leqslant f} |\nu(g)|$  for some  $f \geqslant 1$  and  $(\Psi_1, \Psi_2)$  be either pairs of inverse Young functions (i.e.,  $xy \leqslant \Psi_1^{-1}(x) + \Psi_2^{-1}(y)$ ) or  $(\mathsf{Id}, 1)$  or  $(1, \mathsf{Id})$ .

### **Proposition** [DFG09; AWST22]

Given  $(\mathcal{D}(q))$  we have

$$\|P_t(x,\cdot)-\mu\|_{\mathsf{TV}}\leqslant C(q_+)\exp\left(\iota\|x\|^{1-q_+}\right)\exp\left(-\iota't^{\frac{1-q_+}{1+q_+}}\right)\quad\text{and}\quad\int_{\mathbb{R}^d}\exp\left(\iota\|x\|^{1-q_+}\right)\mu(\mathsf{d}x)<\infty.$$

$$\text{Moreover, for } \gamma \geqslant 1+q, \; r_{\gamma,q}(t) \sim (1+t)^{(\gamma-(1+q))/(1+q)}, \; f_{\gamma,q}(x) \sim 1+\|x\|^{\gamma-(1+q)},$$

$$(\Psi_1(r_{\gamma,q}(t))\vee 1)\|P_t(x,\cdot)-\mu\|_{1\vee\Psi_2\circ f_{\gamma,q}}\leqslant C(\Psi)(1+\|x\|^\gamma).$$

## Continuous-time concentration result

#### Theorem [AWST22]

Assume  $(\mathcal{D}(q))$ ,  $||b(x)|| \lesssim 1 + ||x||^{\kappa}$  and  $|f(x)| \leqslant \mathfrak{L}(1 + ||x||^{\eta})$ . Let

$$ho(\eta,\kappa,q)\coloneqq egin{cases} 1/(1-q_+), & \eta=0\ rac{1}{2}+rac{\eta+\kappa+1+q}{1-q_+}, & \eta>0. \end{cases}$$

Then, there exists a constant c > 0 s.t. for any  $x \ge 2/\sqrt{T}$ ,

$$\mathbb{C}_{\mu}(f,T,x) := \mathbb{P}^{\mu}\left(\left|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathrm{d}t - \mu(f)\right| > x\right) \leqslant \exp\left(-\mathfrak{c}\left(\frac{x\sqrt{T}}{\mathfrak{L}}\right)^{1/\rho(\eta,\kappa,q)}\right).$$

## Continuous-time concentration result

#### **Theorem** [AWST22]

Assume  $(\mathcal{D}(q))$ ,  $||b(x)|| \lesssim 1 + ||x||^{\kappa}$  and  $|f(x)| \leqslant \mathfrak{L}(1 + ||x||^{\eta})$ . Let

$$ho(\eta,\kappa,q)\coloneqq egin{cases} 1/(1-q_+), & \eta=0\ rac{1}{2}+rac{\eta+\kappa+1+q}{1-q_+}, & \eta>0. \end{cases}$$

Then, there exists a constant c > 0 s.t. for any  $x \ge 2/\sqrt{T}$ ,

$$\mathbb{C}_{\mu}(f,T,x) \coloneqq \mathbb{P}^{\mu}\left(\left|\frac{1}{T}\int_{0}^{T}f(X_{t})\,\mathrm{d}t - \mu(f)\right| > x\right) \leqslant \exp\left(-\mathfrak{c}\left(\frac{x\sqrt{T}}{\mathfrak{L}}\right)^{1/\rho(\eta,\kappa,q)}\right).$$

$$\begin{array}{c|cccc} \text{Poincar\'e, } \eta = 0 & \text{log-Sobolev, } \eta \leqslant 2 & \text{subexponential, } \eta > 0 \\ \hline & \frac{\log(1/\delta)}{\epsilon} & \frac{\log(1/\delta)}{\epsilon} & \frac{\log(1/\delta)^{2\rho\,(\eta,\kappa,q)}}{\epsilon^2} \end{array}$$

**Table 1:** Order of sufficient sample length  $\Psi(\varepsilon, \delta)$  s.t.  $(\varepsilon, \delta)$ -PAC-bound  $\mathbb{P}^{\mu}(|\mu_{\mathcal{T}}(f) - \mu(f)| \leqslant \varepsilon) \geqslant 1 - \delta$  holds for  $\mathcal{T} \geqslant \Psi(\varepsilon, \delta)$ 

#### Discrete-time concentration result

Let observations  $(X_{k\Delta})_{k=1,\dots,n}$  be given for some  $\Delta\leqslant 1$ . Define  $\mathbb{H}_{n,\Delta}(f):=\frac{1}{\sqrt{n\Delta}}\mathbb{G}_{n,\Delta}(f)$ , where

$$\mathbb{G}_{n,\Delta}(f) \coloneqq \frac{1}{\sqrt{n\Delta}} \sum_{k=1}^{n} f(X_{k\Delta}) \Delta.$$

Then for  $\mathbb{G}_t(f) \coloneqq t^{-1/2} \int_0^T f(X_t) \, \mathrm{d}t$ ,  $f = \widetilde{f} - \mu(\widetilde{f})$ ,  $\Phi_k(t) \coloneqq \int_t^{k\Delta} (L\widetilde{f}(X_s) - \mu(L\widetilde{f})) \, \mathrm{d}s$ ,  $\omega_k(t) \coloneqq \int_t^{k\Delta} \nabla \widetilde{f}(X_s)^\top \sigma(X_s) \, \mathrm{d}W_s$ ,

$$\sqrt{n\Delta}(\mathbb{G}_{n,\Delta}(f) - \mathbb{G}_{n\Delta}(f)) = \mu(L\widetilde{f})\frac{n\Delta^2}{2} + \sum_{k=1}^n \int_{(k-1)\Delta}^{k\Delta} \Phi_k(t) dt + \sum_{k=1}^n \int_{(k-1)\Delta}^{k\Delta} \omega_k(t) dt.$$

## Discrete-time concentration result

Let observations  $(X_{k\Delta})_{k=1,\ldots,n}$  be given for some  $\Delta \leq 1$ . Define

$$\mathbb{H}_{n,\Delta}(f) := \frac{1}{n\Delta} \sum_{k=1}^{n} f(X_{k\Delta}) \Delta.$$

Then for  $\mathbb{H}_t(f) := t^{-1} \int_0^T f(X_t) \, \mathrm{d}t$ ,  $f = \widetilde{f} - \mu(\widetilde{f})$ ,  $\Phi_k(t) := \int_t^{k\Delta} (L\widetilde{f}(X_s) - \mu(L\widetilde{f})) \, \mathrm{d}s$ ,  $\omega_k(t) := \int_t^{k\Delta} \nabla \widetilde{f}(X_s)^\top \sigma(X_s) \, \mathrm{d}W_s$ .

$$n\Delta(\mathbb{H}_{n,\Delta}(f) - \mathbb{H}_{n\Delta}(f)) = \mu(L\widetilde{f})\frac{n\Delta^2}{2} + \sum_{k=1}^n \int_{(k-1)\Delta}^{k\Delta} \Phi_k(t) dt + \sum_{k=1}^n \int_{(k-1)\Delta}^{k\Delta} \omega_k(t) dt.$$

### Theorem [AWST22]

Assume  $(\mathcal{D}(q))$ ,  $||b(x)|| \lesssim 1 + ||x||^{\kappa}$ ,  $f \in C^2(\mathbb{R}^d; \mathbb{R})$  s.t.  $||D^k f(x)|| \lesssim 1 + ||x||^{\eta_k}$ , k = 0, 1, 2. Define  $\alpha = (\kappa + \eta_1) \vee \eta_2$ , and let  $\widetilde{\gamma} > 1 + q$ , r > 1, s.t.  $\widetilde{\gamma} - (1 + q) > r(\alpha \vee (1 + q)/(r - 1))$ . Then, for  $p \geqslant 2$ ,

$$\|\mathbb{H}_{n,\Delta}(f) - \mu(f)\|_{L^p(\mathbb{P}^{\mu})} \leqslant \mathfrak{D}\left(\Delta + \sqrt{\frac{\Delta}{n}}p^{\frac{\max\{(\tilde{\gamma} + 2\alpha + 1 - q_+)/2, \eta_1 + 1 - q_+\}}{1 - q_+}} + \frac{1}{\sqrt{n\Delta}}p^{\frac{1}{2} + \frac{\eta_1 + \kappa_1 + 1 + q}{1 - q_+}}\right) := \Phi(n, \Delta, p),$$

and

$$\mathbb{P}^{\mu}\Big(|\mathbb{H}_{n,\Delta}(f) - \mu(f)| > e\Phi(n,\Delta,x)\Big) \leqslant e^{-x}, \quad x \geqslant 2.$$



## MCMC for moderately heavy tailed targets

Langevin diffusion

$$\mathrm{d}X_t = -\nabla U(X_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}W_t,$$

has invariant density  $\pi(x) \propto \exp(-U(x)) \rightsquigarrow$  sampling from  $\pi$  by numerical approximation of X, e.g., Euler scheme

$$\vartheta_{n+1}^{(\Delta)} = \vartheta_n^{(\Delta)} - \Delta \nabla U(\vartheta_n^{(\Delta)}) + \sqrt{2\Delta} \xi_{n+1}, \quad \vartheta_0^{(\Delta)} \sim X_0, \quad (\xi_n) \underset{\text{iid}}{\sim} \mathcal{N}(0, \mathbb{I}_d)$$

- abundant literature on sampling preicision in TV or Wasserstein distance for U strongly convex or modifications thereof [Dal17; DK19; DM17; DMM19]  $\rightsquigarrow \pi(x) dx$  sub-Gaussian
- ullet Assume instead that for some  $q\in(0,1)$

$$\langle \nabla U(x), x/\|x\| \rangle \geqslant \mathfrak{r}\|x\|^{-q}, \quad \|x\| > A.$$
 ( $\mathcal{U}(q)$ )

$$ightsquigarrow \exists \lambda > 0: \int_{\mathbb{R}^d} \exp\left(\lambda \|x\|^{\widetilde{q}}\right) \pi(x) \, \mathrm{d}x < \infty \iff \widetilde{q} \leqslant 1 - q$$

ightharpoonup prototypical example:  $\pi(x) \propto \exp(-\beta \|x\|^{1-q})$  outside some ball around the origin

## Convergence guarantees

### **Proposition** [AWST22]

Assume  $(\mathcal{U}(q))$  and that  $\nabla U$  is bounded. Let  $f \in C^2(\mathbb{R}^d)$  s.t.  $||D^k f(x)|| \lesssim 1 + ||x||^{\eta_k}$ , k = 0, 1, 2, and consider the burn-in estimator

$$\mathbb{H}_{n,m,\Delta}(f) \coloneqq \mathbb{H}_{n,\Delta}(f) \circ \theta_m = \frac{1}{n} \sum_{k=m+1}^{n+m} f(X_{k\Delta}).$$

Then we have the following approximation guarantees:

|                                    | step length $\Delta$                                                         | sample size <i>n</i>                                                                                           | burn-in <i>m</i>                                                        |
|------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $\epsilon$ -prec. sampling         | $\frac{\varepsilon^2}{d(\log(\mathfrak{C}/\varepsilon))^{(1-q)/(1+q)})}$     | $\frac{d(\log(\mathfrak{C}/\varepsilon))^{2(1-q)/(1+q)}}{\varepsilon^{2}}$                                     | _                                                                       |
| $(\varepsilon, \delta)$ -PAC bound | $\frac{(\delta \varepsilon)^2}{d(\log(1/\delta))^2(\eta_0 + (q+3)/2)/(1-q)}$ | $\frac{d\mathfrak{D}^2(\log(1/\delta))^{\left(4\left(\eta_0+(q+3)/2\right)\right)/(1-q)}}{\delta^2\epsilon^4}$ | $\frac{d(\log(1/\delta))^{2(\eta_0+q+2)/(1-q)}}{(\delta\varepsilon)^2}$ |

**Table 2:** Order of sufficient sampling frequency  $\Delta$ , sample size n and burn-in m for  $(\varepsilon, \delta)$ -PAC bounds and sampling within  $\varepsilon$ -TV margin

### **Summary**

- we provide concentration inequalities for subexponentially ergodic diffusions and polynomially bounded functions given continuous observations
- Concentration inequalities for sampled chains are derived from the continuous observation result
- we demonstrate implications on sufficient sample sizes for MCMC for moderately heavy tailed targets

### **Summary**

- we provide concentration inequalities for subexponentially ergodic diffusions and polynomially bounded functions given continuous observations
- Concentration inequalities for sampled chains are derived from the continuous observation result
- we demonstrate implications on sufficient sample sizes for MCMC for moderately heavy tailed targets

Thank you for your attention!

- C. Aeckerle-Willems and C. Strauch. "Concentration of scalar ergodic diffusions and some statistical implications". In: Ann. Inst. Henri Poincaré Probab. Stat. (2021), to appear.
- C. Aeckerle-Willems, C. Strauch, and L. Trottner. Concentration analysis of multivariate elliptic diffusion processes. 2022.
- D. Bakry, P. Cattiaux, and A. Guillin. "Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré". In: *J. Funct. Anal.* 254.3 (2008), pp. 727–759. ISSN: 0022-1236.
- V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov. "The Poisson equation and estimates for distances between stationary distributions of diffusions". In: *J. Math. Sci. (N.Y.)* 232.3, Problems in mathematical analysis. No. 92 (Russian) (2018), pp. 254–282. ISSN: 1072-3374.
- P. Cattiaux and A. Guillin. "Deviation bounds for additive functionals of Markov processes". In: ESAIM Probab. Stat. 12 (2008), pp. 12–29. ISSN: 1292-8100.
- A. S. Dalalyan. "Theoretical guarantees for approximate sampling from smooth and log-concave densities". In: *J. R. Stat. Soc. Ser. B. Stat. Methodol.* 79.3 (2017), pp. 651–676. ISSN: 1369-7412.
- R. Douc, G. Fort, and A. Guillin. "Subgeometric rates of convergence of *f*-ergodic strong Markov processes". In: *Stochastic Process. Appl.* 119.3 (2009), pp. 897–923. ISSN: 0304-4149.
- A. S. Dalalyan and A. Karagulyan. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient". In: Stochastic Process. Appl. 129.12 (2019), pp. 5278–5311. ISSN: 0304-4149.
- A. Durmus and E. Moulines. "Nonasymptotic convergence analysis for the unadjusted Langevin algorithm". In: Ann. Appl. Probab. 27.3 (2017), pp. 1551–1587. ISSN: 1050-5164.
- A. Durmus, S. Majewski, and B. a. Miasojedow. "Analysis of Langevin Monte Carlo via convex optimization". In: *J. Mach. Learn. Res.* 20 (2019), Paper No. 73, 46. ISSN: 1532-4435.
- F. Gao, A. Guillin, and L. Wu. "Bernstein-type concentration inequalities for symmetric Markov processes". In: *Theory Probab. Appl.* 58.3 (2014), pp. 358–382. ISSN: 0040-585X.
- L. Galtchouk and S. Pergamenshchikov. "Uniform concentration inequality for ergodic diffusion processes". In: *Stochastic Process. Appl.* 117.7 (2007), pp. 830–839. ISSN: 0304-4149.

- P. Lezaud. "Chernoff and Berry-Esséen inequalities for Markov processes". In: ESAIM Probab. Statist. 5 (2001), pp. 183–201. ISSN: 1292-8100.
- R. Nickl and K. Ray. "Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions". In: *Ann. Statist.* 48.3 (2020), pp. 1383–1408. ISSN: 0090-5364.
- E. Pardoux and A. Y. Veretennikov. "On the Poisson equation and diffusion approximation. I". In: *Ann. Probab.* 29.3 (2001), pp. 1061–1085. ISSN: 0091-1798.