

PROJECT 6: OPENCL ARRAY MULTIPLY, MULTIPLY-ADD, AND MULTIPLY-REDUCE

PARALLEL PROGRAMMING

MAY 23, 2018 Spring Term

PREPARED FOR

OREGON STATE UNIVERSITY

MATTHEW MEYN

PREPARED BY

JEREMY FISCHER

1 ARRAY MULTIPLY AND ARRAY MULTIPLY AND ADD

1.1 What machine you ran this on?

I ran this on rabbit.engr.oregonstate.edu.

1.2 Results Table

1.2.1 Array Multiplication

	1024	4096	8192	32768	65536	131072	262144	524288	1048576	2097152	3145728	4194304	5242880	6291456	7340032	8388608
8	0.018	0.076	0.137	0.491	1.276	0.248	0.355	1.186	2.512	4.128	3.953	5.409	9.328	9.749	8.076	9.161
16	0.014	0.081	0.142	0.594	1.323	0.257	0.585	1.064	1.86	3.738	4.81	5.338	8.213	10.331	8.112	9.159
32	0.015	0.081	0.139	0.569	1.052	0.206	0.534	1.059	2.494	4.331	4.253	4.725	9.636	7.117	11.142	9.444
64	0.014	0.054	0.105	0.434	0.899	0.271	0.553	1.158	2.358	2.842	3.92	5.252	7.873	6.976	9.945	12.991
128	0.018	0.051	0.136	0.658	0.956	0.314	0.621	1.181	1.965	2.859	5.11	6.446	5.953	7.111	10.77	9.144
256	0.02	0.054	0.107	0.433	0.802	0.244	0.418	0.925	2.358	4.285	5.773	7.231	6.25	11.313	11.543	10.717
512	0.019	0.057	0.107	0.583	1.137	0.276	0.587	0.739	2.439	4.313	5.845	4.736	9.119	10.073	8.076	9.279

Fig. 1: A table of the *Local Work Size* vs. *Global Work Size* for the array multiplication program. The *Local Work Size* is on the Y-axis in bold and the *Global Work Size* is on the X-axis in bold

1.2.2 Array Multiplication and Add

	1024	4096	8192	32768	65536	131072	262144	524288	1048576	2097152	3145728	4194304	5242880	6291456	7340032	8388608
8	0.013	0.057	0.098	0.423	1.255	2.167	0.556	0.723	2.352	4.955	5.161	4.783	5.87	11.005	8.095	9.858
16	0.018	0.056	0.107	0.569	0.986	1.777	0.359	1.005	2.174	3.893	5.116	4.761	5.86	7.051	8.18	9.317
32	0.012	0.056	0.104	0.59	1.285	1.302	0.499	0.921	2.13	3.538	5.476	4.837	8.661	6.809	9.218	10.324
64	0.017	0.055	0.14	0.603	1.105	2.558	0.576	1.027	1.771	3.801	4.84	4.799	6.289	7.083	9.625	11.695
128	0.019	0.073	0.156	0.41	1.208	2.158	0.468	1.261	2.483	4.129	3.933	4.751	5.844	9.637	8.25	9.322
256	0.019	0.081	0.16	0.556	0.845	2.194	0.577	0.707	1.451	4.516	4.556	6.16	8.507	7.106	9.287	9.174
512	0.016	0.075	0.142	0.419	0.78	2.332	0.52	1.026	2.074	2.89	3.798	7.502	5.873	10.921	8.784	7.865

Fig. 2: A table of the *Local Work Size* vs. *Global Work Size* for the array multiplication and add program. The *Local Work Size* is on the Y-axis in bold and the *Global Work Size* is on the X-axis in bold

1.3 Results Graph

1.3.1 Array Multiplication

Fig. 3: A graph of the Mega Multiplies Per Second vs. Global Work Size for the array multiplication program.

Fig. 4: A graph of the Mega Multiplies Per Second vs. Local Work Size for the array multiplication program.

1.3.2 Array Multiplication and Add

Fig. 5: A graph of the Mega Multiplies And Adds Per Second vs. Global Work Size for the array multiplication and add program.

Fig. 6: A graph of the Mega Multiplies And Adds Per Second vs. Local Work Size for the array multiplication and add program.

- 1.4 What patterns are you seeing in the performance curves?
- 1.5 Why do you think the patterns look this way?
- 1.6 What is the performance difference between doing a Multiply and doing a Multiply-Add?
- 1.7 What does that mean for the proper use of GPU parallel computing?

2 ARRAY MULTIPLY WITH REDUCTION

2.1 Results Table

	1024	4096	8192	32768	65536	131072	262144	524288	1048576	2097152	3145728	4194304	5242880	6291456	7340032	8388608
32	0.001	0.007	0.019	0.045	0.094	0.289	0.61	0.961	2.125	3.517	7.154	5.476	6.204	7.416	8.658	9.698

Fig. 7: A table of the *Local Work Size* vs. *Global Work Size* for the array multiplication with reduction program. The *Local Work Size* is on the Y-axis in bold and the *Global Work Size* is on the X-axis in bold

2.2 Results Graph

Fig. 8: A graph of the Mega Multiplies With Reductions Per Second vs. Global Work Size for the array multiplication with reductions program.

- 2.3 What pattern are you seeing in this performance curve?
- 2.4 Why do you think the pattern looks this way?
- 2.5 What does that mean for the proper use of GPU parallel computing?