фонового пикселя $e_{n-1}(x, y)$ и текущего пикселя $e_n(x, y)$ должны быть равны и близки к нулю. Если же пиксель является граничным для области задымления, то будут наблюдаться характерные всплески в разнице значений энергии фонового и текущего пикселей. Это происходит из-за частого перехода такого рода пикселя из области задымления в область фона, и наоборот. Точки изображения, прошедшие контроль частотных характеристик, составляют собой массив точек полигональной аппроксимации формы области с вероятным наличием дыма.

На последнем шаге происходит контроль формы найденной области на выпуклость. В некоторой степени упрощения область задымления представляет собой выпуклый многоугольник, что следует из особенностей газообразной природы пара и дыма. Для проверки выпуклости граница найденной области пересекается несколькими горизонтальными и вертикальными прямыми линиями, после чего анализируется количество точек пересечения. Для выпуклой области оно всегда меньше или равно двум. Область, прошедшая контроль по всем четырем шагам, с высокой вероятностью соответствует области задымления и сопровождается на изображении цветовыми маркерами.

Метод визуального детектирования дыма на основе вейвлет-преобразований обладает высокой степенью эффективности, поскольку использует для анализа главную отличительную особенность видеопотока — наличие динамических характеристик искомой области. В настоящее время разрабатывается программная реализация данного метода визуального детектирования дыма.

Библиографический список

- 1. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. М. : Техносфера, 2005.
- 2. Грибунин, Б. Теория и практика вейвлетпреобразований / Б. Грибунин, А. Воробьев. М. : Военный университет связи, 1999.
- 3. Левтин, К. Э. Блочно-текстурный метод детектирование дыма в видеопоследовательностях / К. Э. Левтин // ТиПВСИТ. Улан-Удэ, 2009. С. 248–250.
- 4. Vezzani, R. Smoke Detection in Video Surveillance: the Use of ViSOR (Video Surveillance Online Repository) / R. Vezzani, S. Calderara // EUSIPCO-2005, Poland, 2007. P. 540–543.

K. E. Levtin

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

VIDEO STREAM SMOKE DETECTION BASED ON WAVELET TRANSFORMS

An approach that describes the algorithm for smoke detection in video stream based on applying a wavelet transform to candidate images and on some especial physical processes of smoke as gaseous substance is discussed.

© Левтин К. Э., 2009

УДК 004.932.75'1

С. В. Метляев

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Россия, Красноярск

РАСПОЗНАВАНИЕ СКЕЛЕТНЫХ ОБРАЗОВ

Рассматривается скелетное представление, используемое для распознавания символов. Описаны построение набора вектора скелетных признаков и формирования оценок распознавания.

Процедура скелетизации исходных изображений символов, ее использование в системах распознавания текста давно изучается разными авторами, ей посвящена многочисленная литература [1; 2].

Рассматривается задача, когда на изображения со сложной цветовой структурой нанесены печат-

ные символы, которые необходимо распознать. На начальном этапе исходное изображение подвергается предварительной обработке, заключающееся в улучшении изображения, очистки от шумов и т. д. На следующем этапе происходит поиск областей, в которых большая вероятность содержания текстовых символов. К найденным

областям применяется процедура скелетизации (утоньшения), в результате которого формируется скелетное представление.

Для ускорения получения скелетного представления применяется ряд технических приемов, таких как получение сведений о возможности удаления точки и о последующей точке перехода по границе с использованием предварительно подготовленных таблиц, а не с помощью вычисления нужных величин.

Главная задача скелетного представления символа — предоставить возможность для получения ряда характеристик исходного изображения, в связи с этим можно использовать скелетное представление символа для выделения характеристик символа. Утоньшенное изображение анализируется, и в особой таблице фиксируются его следующие параметры: особые точки, структура контура, цепной код.

В полученном описании скелетного представления производится огрубляющая предобработка, состоящая в удалении коротких линий, объединении близких триодов, уничтожении малых внутренних контуров. Для внешнего контура находят его тип или топологический код. Для этого контур записывают в виде последовательного набора номеров особых точек, соответствующих обходу по часовой стрелке. Затем с помощью перенумерации особых точек и изменения начала контура делают попытку отождествления контура с одним из основных типов.

Топологические признаки, которые могут использоваться при анализе скелетизованного представления символов следующие:

- нормированные координаты особой точки (вершины графа);
- длина ребра до следующей вершины в процентах от длины всего графа;
- нормированное направление из данной точки на следующую особую точку;
- нормированное направление входа в точку, выхода из точки (для триодов эти значения различаются, для точек индекса 1 совпадают с точностью до знака);
- кривизна дуги, точнее «левая» и «правая» кривизна дуги, соединяющей особую точку со следующей вершиной (кривизна слева и справа). Кривизна вычисляется как отношение максимального расстояния от точек дуги (находящихся соответственно слева/справа от прямой) до прямой, соединяющей вершины, к длине отрезка, соединяющего те же вершины.

Обучение метода состоит в построении деревьев распознавания для каждого из определенных заранее (вручную или автоматически) топологических кодов. Кратко опишем процедуру построения дерева распознавания.

Для каждого топологического кода в обучающем множестве проводится отбор всех имен символов, имеющих достаточно большое представительство. Для каждого имени проводится анализ имеющихся значений признаков p[i], i=1,...,N, где N — число признаков для текущего топологического кода. Обозначим Ai — множество имеющихся значений для признака i для символов с именем A. Тогда для каждого i, 0 < i <= N, Ai представляется в виде

$$A_{i} = A_{i1} \cup \mathbf{K} \cup A_{imi},$$

$$A_{ii} = \left\{ x \in R \mid s_{ii} \le x \le e_{ii} \right\},$$

где mi различно для каждого i и для каждого A. Далее производится поиск конфликтов. Если для некоторых символов A, B значения признаков пересекаются, т. е. $A_i \cap B_i \neq 0$ для $\forall i, i=1,...,N$, тогда проводится попытка разрешить конфликт. Делается попытка найти некоторый наилучший для разбиения (наиболее дисперсионный) признак j, выбрать точку деления этого признака k, и разбить множество A на два непересекающихся подмножества A', A'' таким образом, чтобы выполнялось условие

$$A = A \cup A,$$

$$A_{j} = A_{j} \cup A_{j},$$

$$A_{j} = A_{j1} \cup A_{j2} \cup ... \cup A_{jk},$$

$$A_{j} = A_{jk+1} \cup A_{jk+2} \cup ... \cup A_{jmj}, 0 < k < m_{j}.$$

Затем процедура повторяется, т. е. для каждого A', A" проводится построение областей значений признаков и поиск конфликтов с разноименными символами с возможной дальнейшей разбивкой множеств A', A" и т. д. Конечно, все конфликты разрешить удается не всегда, поэтому при распознавании в ряде случаев будет выдаваться не одна альтернатива, а несколько. Оценки результирующих альтернатив будут зависеть как от значений признаков (топологических и не топологических), так и от представительности конфликтующих символов в обучающем множестве.

Таким образом, распознавание является древовидным, текущее дерево распознавания выбирается с помощью топологического кода.

Метод распознавания символов на основе их скелетного представления имеет ряд преимуществ в сравнении с другими методами: простота реализации метода, точность полученных результатов, высокое скорость (быстродействие) в зависимости от выбора метода скелетизации.

Библиографический список

1. Lam, L. Thinning Methodologies: A Comprehensive Survey / L. Lam, S. W. Lee, C. Y. Suen // IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 14. 1992. P. 869–885.

2. Plamondon, R. Methodologies for Evaluating Thinning Algorithms for Character Recognition / R. Plamondon, C. Y. Suen, M. Bourdeau, C. Barriere.

Int'l. J. Pattern Recognition and Artificial Intelligence, special issue thinning algorithms. 1993. Vol. 7, N_{2} 5. P. 1 247–1 270.

S. V. Metlyaev

Siberian State Aerospace University named after academician M. F. Reshetnev, Russia, Krasnoyarsk

RECOGNITION OF THE SKELETAL IMAGES

We consider a skeletal presentation used for a character recognition. We describe the construction of a set of vector skeletal traits and estimates mark of recognition.

© Метляев С. В., 2009

УДК 681.3

В. В. Митюков

Ульяновское высшее авиационное училище гражданской авиации (институт), Россия, Ульяновск

ПРОГРАММНОЕ ДОПОЛНЕНИЕ К СРЕДСТВАМ РИСОВАНИЯ MS OFFICE ДЛЯ ИНТЕРАКТИВНОЙ АППРОКСИМАЦИИ ГРАФИЧЕСКИХ ЗАВИСИМОСТЕЙ

Рассматривается задача аналитического представления некоторых зависимостей, заданных дискретно или графически. Предложен подход к аппроксимации такого вида зависимостей путем визуальной интерактивной обводки их кривыми линиями (сплайнами), включенными в панель рисования пакета MS Office.

Задачи компьютерного моделирования непосредственно связаны с необходимостью интерполяции и аппроксимации различных данных и зависимостей, представленных в графическом виде. Например, если требуемая зависимость получена в результате сложных экспериментов или громоздких расчетов. В работе рассматривается задача аппроксимации таких зависимостей, решаемая путем визуальной подгонки рисованных кривых линий (сплайнов).

Математически сплайны состоят из алгебраических полиномов *n*-ой степени [1], состыкованных между собой с заданной степенью гладкости. В приложениях MS Office используется стандартная, встроенная в ОС Windows функция Безье, рисующая кубический параметрический сплайн, составленный из плоских фрагментов:

$$\mathbf{r}(u) = \mathbf{p}_0 \cdot (1 - u)^3 + \mathbf{p}_1 \cdot 3 \cdot u (1 - u)^2 + \mathbf{p}_2 \cdot 3 \cdot u^2 (1 - u) + \mathbf{p}_3 \cdot u^3,$$
(1)

где параметр (u) задан в интервале [0, 1].

Перетаскивание меток-манипуляторов в большинстве графических программ позволяет интерактивно изменять векторные коэффициенты (точки) \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , задающие форму фрагмента сплайна, добиваясь его наилучшего совпадения с плоским фрагментом отсканированного изображения зависимости. Сначала размещаются конце-

вые точки \mathbf{p}_0 и \mathbf{p}_3 , и, затем, перемещением точек \mathbf{p}_1 и \mathbf{p}_2 , задающих направления желаемых касательных на концах кривой, подбирается нужная форма сплайна [1]. Для выполнения этих действий вполне достаточно средств стандартной панели инструментов «Рисование» пакета MS Office (автофигуры «Линия» или «Кривая»). После масштабирования полученных точек \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 по осям координат и подстановки полученных значений в уравнение (1), нетрудно вычислить значения реальных координат любой промежуточной точки фрагмента сплайна.

В задачах моделирования может потребоваться представить кубическим фрагмент сплайна $\mathbf{R}(\mathbf{U})$ в виде разложения по другим базисным функциям (например, в степенной ряд):

$$\mathbf{r}(u) = \mathbf{c}_0 \cdot \mathbf{\varphi}_0(x) + \mathbf{c}_1 \cdot \mathbf{\varphi}_1(x) + \mathbf{c}_2 \cdot \mathbf{\varphi}_2(x) + \mathbf{c}_3 \cdot \mathbf{\varphi}_3(x). \tag{2}$$

Путем сопоставления уравнений кривой $\mathbf{r}(u)$ в (2) с уравнением в Безье (1), можно установить соотношения между наборами векторов \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 и \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 .

В задачах аппроксимации в качестве независимой переменной чаще всего служит одна из координат (x), наряду с остальными координатами в (1) зависящая от параметра $u \rightarrow x(u)$. Для вычисления зависимой от x переменной y = y(u(x)) в