IN THE CLAIMS: See Listing of Claims attached hereto which will replace all prior versions of claims in the application.

4

Claims 14 and 19: currently amended.

Claims 17, 18, 20, 23-26: previously presented.

Claim 15: canceled Claims 27-29: new

The Applicants hereby submit an Information Disclosure Statement, Form PTO-1449, to comply with 37 CFR § 1.98(a)(1). With the instant Office Action, the Office indicates on Form PTO-1449, filed with the Preliminary Amendment of August 22, 2001, that certain references were not considered by the Office. The Applicants hereby submit English language abstracts of International applications and copies of the Chemical Abstracts as required. As will be noted, this Information Disclosure Statement calls a number of references, which might be considered relevant, to the attention of the Office. The fact that these are in fact "prior art" and/or relevant to the prosecution is, however, not admitted. It is understood that, during examination, the Office will make an independent search and will identify any relevant prior art under 37 CFR § 1.104(a).

REMARKS

The Applicants acknowledge the Office Action of July 29, 2004 with appreciation. Claims 14-26 are pending in the application. Of these, Claims 16, 21 and 22 are withdrawn from consideration. The Office has acknowledged election of the invention of Group II, with traverse. Claims 14-15, 17-20 and 23-26 including SEQ ID NO:2 are presently examined.

To begin, the Office rejects Claims 14-15, 17-20 and 23-26 under 35 U.S.C. § 112, first paragraph, for lack of written description. The Office contends that the Applicants have not described a representative number of polynucleotide sequences encoding a TWD protein falling within the scope of the claimed genus of

polynucleotides which are fragments or derivatives of SEQ ID NO:2 or nucleic acids which hybridize to SEQ ID NO:2, and that the Applicants fail to describe structural features common to members of the claimed genus of polynucleotides or the necessary elements essential for the TWD protein. The Office concludes that the Specification fails to provide adequate written description for the broad claim to those fragments, derivatives, or sequences hybridizing with SEQ ID NO:2 which encode a TWD protein.

6

With the instant Response and Amendment, the Applicants amend Claim 14 to claim an isolated nucleic acid comprising the sequence set forth in SEQ ID NO:2 and non-functional derivatives of SEQ ID NO:2, which fall within the scope of the instant invention. The Office considers the subject matter of SEQ ID NO:2 to be adequately described. With regard to Specificational support for the claim to nonfunctional derivatives thereof, the Applicants define the term on page 6 of the instant Specification to be a nucleic acid having one or more deletions, substitutions, insertions and/or inversions. The Applicants describe the isolation and sequence analysis of non-functional derivatives. The Applicants submit that any nucleic acid deletion, substitution, inversion, and/or insertion in SEQ ID NO:2 which results in a non-functional nucleic acid, one which does not encode a functional TWD protein, falls within the scope of the claim. The Applicants submit that those skilled in the art are well-versed in manipulating nucleic acid sequences to abolish protein expression from a functional gene, as will be discussed. Additionally, the Specification provides written description and enablement of several non-functional derivatives representative of the genus.

Written description of non-functional derivatives may be found throughout the Specification. The Applicants describe a method for generating non-functional derivatives of SEQ ID NO:2, by introducing a T-DNA insertion. Such methods of generating a mutant nucleic acid by T-DNA insertion are known to those skilled in the art as evidenced by the references cited in the Specification and the Office reference of Babiychuk, et al., (Proc. Natl. Acad. Sci. USA 1997, 94:12722-12727). The Applicants presently reference Hodges, et al., (U.S. Patent 5,527,695) which discloses that the system of T-DNA integration has been extensively described in

the literature and can be modified to introduce foreign genes and other DNA sequences into plant cells (column 3, line 24).

 \mathcal{C}^{2}

The Applicants also provide description of the isolation and sequence analysis of non-functional derivatives. In Example 4, page 20 of the instant Specification, written description of the structural features of the nucleic acids and functional elements for TWD protein expression are disclosed. The Applicants describe mutations of three non-functional derivatives of SEQ ID NO:2 in detail, disclosing precise genetic alterations and description of those specific regions (e.g., promoter, enhancer, coding regions) of the mutant twisted dwarf nucleic acid sequences which are important for gene expression. Such derivatives are described as having lost promoter, start site, and coding sequence. These non-functional derivatives are disclosed to produce no functional gene product. The Applicants submit that the requirement for written description of representative species encompassed by the scope of the claim has been met, i.e., to SEQ ID NO:2 and non-functional derivatives thereof.

The Office rejects Claims 14-15, 17-20 and 23-24 under 35 U.S.C. § 112, first paragraph, for lack of enablement. The Office opines that the Specification is not enabled for the broad claims to a fragment or derivative of SEQ ID NO:2, or a nucleic acid hybridizing with SEQ ID NO:2, a vector, or method for the production of plants, cells, or seeds comprising said sequence, or methods of homologous recombination. The Office construes that the Specification fails to provide guidance for how to make and/or use the claimed invention and concludes that the Applicant has not reduced the invention to practice.

With the instant amendment, claims are drawn to the isolated nucleic acid of SEQ ID NO:2 and non-functional derivatives thereof. The instant Specification provides an enabling disclosure for the isolation of the nucleic acid of SEQ ID NO:2 in Example 1, page 18, by the method of T-DNA integration and plasmid rescue. The Applicants describe in Example 2, page 18, the use of the nucleic acid set forth by SEQ ID NO:2 to express peptides and generate antibodies to the TWD protein. The Applicants provide detailed protocols for using the claimed nucleic acid sequence for

PCR primer design and PCR amplification of nucleic acid homologues from *Zea mays* and *Lycopersicon esculentum* (Example 5, page 21). Furthermore, in Example 3, page 19 of the instant Specification, the Applicants transform plants with the isolated nucleic acid of SEQ ID NO:2 and demonstrate a phenotypic effect on plant architecture thereby constituting an actual reduction to practice. The Applicants submit that the instant Specification provides an enabling disclosure for the isolation of the nucleic acid sequence set forth in SEQ ID NO:2 and a demonstration of several uses of the nucleic acid to satisfy the enablement requirement.

الجو

The Applicants submit that the instant Specification is enabled for the isolation and use of non-functional derivatives. The Specification provides detailed protocols for the generation of derivatives through T-DNA insertion and plasmid rescue. This technique is well-known in the art as evidenced by Hodges, et al. and the cited Babiychuk, et al. The Applicants disclose the isolation and genetic analysis of several derivatives of the twd gene, which enabled the isolation of the nucleic acid of SEQ ID NO:2. The Applicants have demonstrated that non-functional derivatives of SEQ ID NO:2, harbored by transgenic plants, exhibit an effect on plant architecture. Thus, the instant Specification discloses multiple examples of how to make and use the isolated nucleic acid of SEQ ID NO:2 and non-functional derivatives thereof and provides a demonstration of reduction to practice. The Applicants submit that compliance with the enablement requirement is met.

The Office opines that the Applicants have not taught how one skilled in the art can use the claimed sequence to generate any of the disclosed phenotypes as listed on page 9, lines 7-20, without undue experimentation.

The Applicants assert that those skilled in the art are familiar with representative techniques used to genetically manipulate plants to exhibit a desired phenotype. This is evidenced by the cited <u>Babiychuk</u>, et al. which disclose insertional mutagenesis by T-DNA vectors. It is discussed in the instant Specification, page 11, line 3, that the instant nucleic acids may be changed to generate inactive derivatives, for example by T-DNA insertion, or through deletion or insertion of DNA

to generate the disclosed phenotypic changes. Additionally, those skilled in the art are well-versed in genetic manipulation of nucleic acid sequences to inactivate gene expression. Written description of the *twd* genomic sequence is found in Figure 1, wherein the nucleic acids of SEQ ID NO:2 which encode the amino acids comprising the TWD protein are identified. Based upon this disclosure, one skilled in the art would be apprised of nucleic acids to contemplate mutations in the coding sequence which would give rise to a non-functional derivative and to formulate DNA constructs for homologous recombination for the creation of transgenic plants mutant for TWD protein expression to give rise to the desired phenotype.

Examples of non-functional derivatives of SEQ ID NO:2 which were isolated from the transgenic plants and analyzed genetically are set forth in Example 4, page 20. The Applicants describe those specific structures of the nucleic acid sequences which are genetically altered to give rise to the twisted dwarf phenotype. Such derivatives are disclosed to have lost promoter, start site, and/or coding sequence. Therefore, those skilled in the art may rely on the Specificational disclosure for guidance as to the manipulation of the instant nucleic acid sequences to generate a non-functional nucleic acid for introduction into plants for the disclosed phenotype. The Specification and references cited therein provide detailed protocols for the generation of mutant plants using T-DNA inactivation. The Applicants discuss the isolation of nucleic acid derivatives and provide genetic analysis and disclosure of the genetic alterations which give rise to non-functional derivatives. The Applicants have demonstrated that transgenic plants harboring non-functional derivatives of SEQ ID NO:2 exhibit the phenotypes described on page 9 of the instant Specification.

Further, the Office concludes that the Specification does not teach how one skilled in the art would use a plant transformed with any of the claimed sequences.

The amended claims are drawn to an isolated nucleic acid of SEQ ID NO:2 and non-functional derivatives thereof. The Applicants have demonstrated an alteration in the wild type plant morphology when transgenic plants harbor non-functional derivatives of SEQ ID NO:2. The Applicants discuss the attributes of plants

transformed with inactive derivatives extensively in the instant Specification, starting on page 4. On page 11 of the instant Specification, it is discussed that transgenic plants with disoriented growth are desired for wood with changed rigidity for desired processing or physical characteristics, and further that transgenic plants may present reduced seed loss during harvesting of siliques. The Applicants have demonstrated that non-functional derivatives of the sequence set forth in SEQ ID NO:2 give rise to plants with the desired phenotype of disoriented growth. The Applicants have demonstrated that this phenotype may then be reversed by expression of the nucleic acid of SEQ ID NO:2. The Applicants submit that the Specification enables the use of plants transformed with the instant nucleic acid or a non-functional derivative thereof.

Those skilled in the art genetically alter plants through introduction of nucleic acid sequences, including homologous recombination. The Applicants, herewith, provide a reference to <u>Hodges, et al.</u>, (U.S. Patent 5,527,695) which substantiates this understanding and which rebuts the Office conclusion that homologous recombination in plants is impractical and provides evidence that those skilled in the art are well-versed in making transgenic plants via homologous recombination.

Homologous recombination in plants is the subject matter of the <u>Hodges</u>, <u>et al</u>. disclosure. The reference discloses methods contemplated by those skilled in the art for genetic manipulation of nucleic acid sequences for targeted integration into the host genome via homologous recombination (Column 4, line 1). Those skilled in the art are familiar with the requirements for gene expression and are well-versed in manipulation of nucleic acids to express or repress the activity of a gene. Therefore, the Specificational teaching and the teaching of those skilled in the art provide a written description and enablement for the use of the instant nucleic acids to generate plants, through homologous recombination or T-DNA insertion, exhibiting the phenotypes disclosed on page 9 of the instant Specification.

The Applicants submit that the Specificational teaching to isolate and use nucleic acids which confer the desired growth characteristics, as well as the experimental/procedural teaching of Babiychuk, et al. and Hodges, et al., provide

one skilled in the art with an enabling disclosure. Consequently, the Specification is enabled for SEQ ID NO:2 and non-functional derivatives thereof. Reconsideration and withdrawal of the rejection is respectfully solicited.

Moving on, the Office rejects Claims 14 and 15 under 35 U.S.C. §101 as being directed to non-statutory subject matter. The Applicants amend Claim 14 to add clarifying language which refers to an "isolated" nucleic acid, as kindly suggested by the Office.

The Office rejects Claims 14-15 and 17-18 under 35 U.S.C. 102(b) as being anticipated by <u>Peattie</u>, et al., (U.S. Patent No. 5,763,590). <u>Peattie</u>, et al. disclose a nucleic acid sequence that encodes an FK506 binding protein which exhibits sequence similarity to the instant nucleic acid of SEQ ID NO:2 and which the Office concludes would hybridize under low stringent conditions.

The Applicants submit that the instant amendment, defining the claim scope to the sequence set forth in SEQ ID NO:2 and non-functional derivatives thereof distinguishes over the cited prior art. This subject matter is not anticipated by Peattie, et al. Reconsideration and withdrawal of the prior art rejection is respectfully requested.

The Office rejects Claims 14-15 and 17-18 under 35 U.S.C. 102(b) as being anticipated by Holt, KA., (U.S. Patent No. 5,886,791). Holt discloses a non-analogous protein. The Office finds Holt to teach expression of cDNA in plants. The Applicants submit that the instant amendment, defining the claim scope to SEQ ID NO:2 and non-functional derivatives thereof, is not anticipated by the reference disclosure. Reconsideration and withdrawal of the prior art rejection is respectfully solicited.

The Applicants add new Claim 27 drawn to the isolated nucleic acid of SEQ ID NO:2 which encodes a polypeptide of the sequence set forth in SEQ ID NO:3.

Also, new Claims 28 and 29 are added to include clarifying language as to the orientation of the claimed nucleic acid sequences relative to the transcriptional

regulatory elements. Specificational support for the amendment is found on page 10, line 12 where it is disclosed that the claimed nucleic acids may be integrated and expressed in an antisense orientation. Consequently, this language may not be considered to be new matter.

* * * * *

The Office raises objections to the Specification and Drawings for several clerical or translational errors. With the instant Response and Amendment, the Applicants provide the necessary corrections in the enclosed replacement paragraphs provided in the <u>Amendments to the Specification</u> pages. Annotated Marked-up Drawings and corresponding Replacement Sheets of the Drawing Figures are also enclosed. The Replacement Sheets include a correction of the figure labels for Figures 1-3.

* * * *

Accordingly, reconsideration of all grounds of objection and rejection, withdrawal thereof, and passage of this application to issue are all hereby respectfully solicited.

It should be apparent that the undersigned attorney has made an earnest effort to place this application into condition for immediate allowance. If he can be of assistance to the Examiner in the elimination of any possibly-outstanding insignificant impediment to an immediate allowance, the Examiner is respectfully invited to call him at his below-listed number for such purpose.

Allowance is solicited.

Respectfully submitted,

THE FIRM OF HUESCHEN AND SAGE

G. PATRICK SAGE

Dated: January 31, 2005 Customer No.: 25,666 500 Columbia Plaza 350 East Michigan Ave. Kalamazoo, MI 49007-3856 (269) 382-0030

Enclosure:

Listing of Claims; Amendments to the Specification; Annotated Marked-up Drawings; Replacement Sheets; Information Disclosure Statement, Form PTO-1449; Accompanying References; Extension fee, three months; Check in the amount of \$1020.00 and Postal Card

Receipt.

THE COMMISSIONER IS HEREBY AUTHORIZED TO CHARGE ANY FURTHER OR ADDITIONAL FEES WHICH MAY BE REQUIRED (DUE TO OMISSION, DEFICIENCY, OR OTHERWISE), OR TO CREDIT ANY OVERPAYMENT, TO DEPOSIT ACCOUNT NO. 08,3220.

14

Figur 1A

Figure 1.

1	GTCTAAGAACCTTAAGGAGAAAGAGATTAAGAGGCAGACATTGCTTGAGCTTGTTGATTA
61	TGTTGCATCAGTTGGTTTTAAGTTTAACGATGTTTCGATGCAAGAGTTAACGAAGATGGT
121	AGCGGTTAATCTGTTTAGAACTTTTCCTTCTGCGAATCACGAGAGTAAAATTCTTGAAAT
181	ACATGATATGGATGAAGAACCTTCTTTGGAGCCAGCTTGGCCTCATGTTCAAGTTGT
241	GTATGAGATTCTTCTCAGATTCGTGGCTTCTCCCATGACTGATGCAAAGCTTGCCAAGAG
301	ATATATTGACCATTCTTTGTCTTGAAGCTCTTAGACTTGTTTGATTCTGAAGATCAAAG
361	AGAGAGGGAATATCTAAAAACTATTCTGCATCGGGTGTACGGGAAGTTCATGGTGCATCG
421	ACCTTACATCAGAAAGGCGATAAACAATATCTTCTACAGATTCATATCCGAGACTGAAAA
481	GCATAATGGCATTGCGGAGTTGCTAGAGATTCTTGGAAGTATAATTAAT
541	GCCTTTAAAAGAAGAGCACAAGCTCTTCCTTTTGCGAGCCTTGATTCCTCTCCACAAGCC
601	TAAATGTTCATCAGTCTATCACCAACAGCTTTCGTATTGCATTGTTCAGTTTGTAGAAAA
661	GGACTTCAAGCTCGCTGATACCGTTATTAGAGGTCTTTTAAAATATTGGCCTGTGACTAA
721	CAGCTCAAAGGAAGTTATGTTTCTTGGAGAGTTAGAAGAAGTCTTGGAAGCAACTCAAGC
781	CGCTGAGTTTCAACGTTGTATGGTTCCATTATCCCGACAAATTGCTCGATGCCTCAACAG
841	TTCACATTTCCAGGTTCGAGTCTTTGACTATCATCACAACTTCATATCTATC
901	TAAAGTCTTGTACCTATATATGAAGTTGTACTTTTTTTTT
961	TTGTTTCTATGGAACAACGATCACATAAGAAACCTGATCACTCAGAACCATAAAGTGATA
1021	ATGCCTATAGTCTTCCCAGCTCTTGAGAGAAACACGCGTGGACATTGGAACCAAGCAGTT
1081	CAAAGTCTGACTATAAACGTGAGGAAAGTATTATGCGAGATTGACCAAGTTCTTTTCGAC
1141	GAGTGTTTAGCCAAATTCCAAGTAGAAGAAGTGAATAAAACAGAGGTTAAAGCGAAACGG
1201	GAAAGGACATGGCAACGGTTAGAAGATTTAGCTACTTCAAAGACCGTTGTAACCAACGAG
1261	GCAGTACTGGTTCCAAGATTTGTGTCCTCAGTCAATCTTACTACAAGCAGCTCTGAGTCC
1321	ACAGGGTCGTAGGTCTCGTAGGTTACTATGTACTATGTAACAAATATTTGTGGTCAC
1381	${\tt TATAGAAATGGTTCTTGAGAGACGACTGTATAATTATTTTTTAAATTATAATCTTTTGG}$
1441	GTCAAATTGAGAATATTTGATATTATTTTACTGAATTATAAAACGCCGTTAAAACTCT
1501	$\tt CGTTAGTTAACGGCTGACTCTGAAGTGAAAACTGAAAAGTCGAAGGGTCTCTTTATATTT$
1561	TCAGAATCAAAATCTGAAATTTATCTCTCGGTCGATCCAGTCTTCGTGAGTGA
1621	GACGACGACGACTCACACTCTTGAGCTTCTCATACTTCGTAAGTTCACTCTCTTT
1681	CTCTAAATTGACAAACTTTTCTTCGTTTTCTGCTATTATTGACGACGAGACTTGATTTT

Figur 1B

1741	. GT	TTT	GA.	AA?	ГGА	AA7	rgg'	ГТС	'AA	GT	AGC	TG	ACT	TC	GAC	CTA	TG	TTC	TT:	rtc	GG'	ΓTT	TTG	TCA	
1801	. TT	GAA	TC'	TT	ACT	TG1	CTC	GAT	TT(GG:	rcg	ATO	TT	TA	ATC	CAA	TT	CAA	CA	CTT	(AA)	AGA		AAT	1
1861	. TT	TTG	GA'	TTC	3AC	ACI	TG	CAC	'AT'	TT:	ΓTΑ	TTC	CAG	ACC	CCA	AGG	TT	JAT	TT	GGC	AAS		ATG		2
1921	GA. E	ATC S	TC' L	TGC E		CAT H	CAI Q	AAC T	TC Q	AA.		CAT H	rgg D	TAI	AGI	AA7	AT:	ГТТ	CAT	CAC	AT:	ΓTA	ATC'	TCT	13
1981	CT	GAA	TA	CAI	TAT	ATA	TG	ACT	TC	AA	TAT	GTI	TG	ATT	rgc	BAG	TT.	ГТТ	TTC	TI	GT	CCC.	ATA	TTC	
2041	AA	TTG	GA'	rgc	CTT	TGI	TA.	AAG	GA.	ΓA.	TA	GTO	TA	TC	\AA	TT	'ATC	3TT	GAC	CTC	CG:	rta'	TTC'	TTT	
2101	CT.	AAA	TC	ATA	ATT	GTG	AA	ГСТ	TG	GA <i>I</i>	ACA	AAC	CA	TGT	ra:	CAC	AA	CAA	AT7	OT	TT	AGA	CTT.	AAT	
2161	AA	CTC	CT	гтт	CT	GTI	TG	ΓTA	AG/	LAP	ΓTG	AGA	AT	GAC	TA	TT	GG	G T	TGF	CI	'AA'	rgc.	ATC'	TTT	
2221	TG'	TGG	CTO	CCA	AGA	CCA Q	AG! E	AGA S		GA <i>P</i> E	LAT I	AGI V	TAT			\GG G	AA(S	TG A			GT(V	GCA'	TAG' S	TGA E	29
2281	GC(CAT S			GA(E	GGG G	TAF N	ATG V		CCI	CC P	TAA K	AGʻ V			AG S	TG <i>I</i> E	AAG A			GT(V	CTT(L	GGA' D	TGA E	49
2341	GAZ K				AA(K	GCA Q	GA7. I	TA' I		AAC C	GA E	AGG G	TC. H	ACC C		TC S	CA! K	AAC P	CAT S		AAC K	TA(Y	CTC' S	TAC T	69
2401	AT(GCT F			'AA(GTA	.CCC	TT'	TAC	GCI	TT	CTG	TT	JAI	TG	GA	TG1	TG	TTA	TT	TCC	AT	rgcz	ACT	72
2461	TGT	ГТG	GCC	CTA	TT	GCT	ACI	GT	ΓŢ₽	TT	TG.	AAT	CT:	ГТС	TA	TC	TGP	.cc	LA.	TT	CAT	AT	rgg	CCA	
2521	TAC		CAC H	TA Y	CAC R	GGG A			ACC T	AA K	AA. N	ACT S			CA H	.CA. K			GAG E	GA D	TAC T	ATC W	GGC! H		91
2581	AGC		CAA Q	CC P	TAT I	ГТG. Е	AAT L		GTT V	CT L	TG(G	GAA K			'AT	GT	GGC	TG:	rcg	AA	TAT	GT	CTC	CTA	102
2641	CAC	CT	CCA	TT	TCC	GTT.	AGA	TG	TA/	'CG	TC	TT	GG1	AA7	ΑT	TT	GAT	'GAC	TT	AG	CTI	GTC	TAT	ATI	
2701	TAT	GAZ	ACC	CA	ATC	BAG	ATG	GAT	ΓAT	'TT	GG	GAG	GAZ	AA	AA	GA:	ГТG	AGI	TT	TG	TAT	TT1	TTT	TG	
2761	CTI	CA	ATG	CT	GAI	ATT	GCC	CAI	TT	TA	ACC	FTC.	ACI	AT	AC.	AA:	ГТТ	TT1	TT	AT.	AAA	AAA	GAT	TG	
2821	TGC	'ACT	ГАА	GA0	GTG	AA	ATG	TTC	TC	TG	TG	AGA	CAG												111
2881	TCG G	GTC	TT	GC: A	rag s	CA:	ΓGA. Κ	AGT S	CT	GG'	TG <i>P</i> E	AC(R	GTG A	CG	CT' L	TG7 V	rgc H	ATG V	TT	GG(G	CTG W	GGA E	ATT L	AG A	131
941	CTT	ATC	GG.	AAA	AGA	AGO	JAA.	ACI	TT'	TC'	ГТТ	TC	CCA	AT(GT:	rcc	AC	СТА	TG	302	ACD.	ттт	CTT	ידי אי	
	Y	G	;	K	E	G	N	F	•	S	F	P	N	٠ ٦	V	P	P	M	: 1	Ą	D	L	L	Y	151
001	ATG. E	AGG V	TG	ga <i>i</i> E	AGT V	TAT I	TTG(G	GGT F	TTC	GA: D	TGA E	AA. T	CAA K	AG(GA(E	GGI	'AA	GTT	AT.	TTC	CT.	ATA	CCA	TC	163

Figur 1C

3061	CA.	CT	rgt'	TTC	CTT.	ACC.	AAG.	ACG	AC.	rcc.	ACA	TC	CAA	GC7	rtt2	ATC	CCA	ACC	TCC	TTG	CTT	'AC	
3121	. CI	CT	CTG.	ACT	TAG.	ATG.	ATG'	TAT	TG	AAC.										TGT. V			
3181	. A.P	AG(R			TGC A																		19
3241	. A A				AGC(FTT.	ATC	CA.	rct:	CTC	TCT	ATC	TCT	ATC	TC	20
3301	TC	TT	rccz	AAC	AAT:	FAC	GGT	CAA	AGI	TTT	AGG	TTI	CTC	AGG	CAT	ľAC'	TTA	GTG.	AGT	CTG	CTC	GA	
3361	GG	CTC	CTTC	GTG'	TCT:	rct'	TTC	GGC	TTT	rtgi	ATT.	AGI	CA'	rgg	TT	rtg	CTG	TTT					20
3421					GAC(22.
3481	AG	TTA	\AAZ	AAC	CAT	rgco	CATO	CTT	AAC	ATA	AGC.	AGC	TTC	GCC	TCF	ATC	AAA(CTA	AAA	CGA:	race	GA	
3541					P (ŧ.,		247
3541	E	AAC	L		3G I C	I (C	JAC.	I	.GTF	AAG	ACI	CA.	ĽСА	AAC	.CA	LTC	4.T.T.	rga.	AGA.	AAA'	ГC	255
3601	AT	TAA	AGT	TC	ATAC	CTCC	GTT	rTC'	TCG	AAA	ATC	ΓAΑ	TC	AA	CTC	AAZ	AAC	CTT	ATC		GT: L		257
3661	AC.		AGA E																	CAGA E			277
3721	GG.	ACA O	GAT M	GGA	CTC S	AGC A	ACG	TG.	ATG	ATT	TCC	CGA	AAC	GC.	ACA	AA.	AGT#	ATGO	CTC	TG#	ACG!	4C	205
3781																							291
	K	A	Ι	R	R	E	L	R	A	L	, <i>I</i>	Ŧ	E	Q	E	K	A	L	Y	Q	K		317
3841	Q	GAA. K	AGA E	AAT M	'GTA Y	CAA K	AGG G	AAT I	rat F	TCA K	AAC	GG.	AAA K	GA' D	TGA E	AGG G	TGC G	TGC A	TA.ª K	GTC S	AAA K	\G	337
3901	AG(CT L	TTT F	TTG W	GTT L	GAT I	AGT V	GTT L	TAT W	GGC O	TAA'	'GG'	TTT F	GT:	TTC S	CCI	TTT F	CTC	DDD:	TAT	CTI		357
3961	CGF	ACG(CCA	CAG	AGT	TAA	AGC	AG <i>P</i>	TT											-	£	•	/ د د
351					V BVK			D	*												١,		365

-FIGURE

Figure 2.

TTP	:	1 MAE	VEEE	3ÖTÖN	SSVDC	GŞTI	DEII:	AEGA		RGEL	PODD	AGPP	KVDSE	VE	50
TWD		1	MDESI	LEHOI	QTHDC	ES.				SEP	SOEG	NVPP	KVDSE	AE	45
TTP	51	ı YLH			EGHGC								WREOO	PL	100
TWD	4.	6 VLD											MHEGO	PI	95
TTP	101		IGKE		GLAIG		AKSGI		FHVC	WEL	AYÇK	EGNF	SFPNV	PP	150
TWD	96								VHV.	WEL	AYGK	EGNE	SFPNV	PP	145
TTP	151				DETGE			rvee 	RIGI			GNAL	FKEEK	Ļ 2	200
TWD	146								RIGA	, , ,		11.	FKEEK	ļ 1	95
TTP	201												LLKLO		250
TWD	196	EEAM	OOYEN	(AIAY	MGDDF	MFQI	YGK	XODM	IALRY	7KNP	CHLN	IAAC	: :	R 2	245
TTP	251	YDEA											ARKLA	P 3	300
TWD	246	YDEA	IGHC	IVLT	EEEKN	IPKAI	FRR(GKAK	AELC		: : SARD		AQKYA	P 2	295
TTP	301	QDKA	ĮTREI	NLIA	EHEKA	- · - ·		• • • •	• • • •	• • •	• • • •	••••	• • • • •	. 3	320
TWD	296	DDKA	IRREI	RALA	 EQEKA		KOKE	MYKG	IFK	KDE	GGAK	SKSL	FWLIV	L 3	345

F164R3

Figure 3.

ZmTWD	1	EEAMQQYEMAIAYMGDDFMFQLFGKYRDMALAVKNPCHLNN	AACLIKLKR	50
TWD	196	EEAMQQYEMAIAYMGDDFMFQLYGKYQDMALRVKNPCHLNI	CAACLIKLKR	245
ZmTWD	51	FDEAIAQCSIVLTEDESNVKALFRRGKAKSELGOTESARED	FLKAKKYSP	,100
TWD	246	: : :	FRKAQKYAP	295
ZmTWD	101	EXKEIIRELRLLAEQXKALYQKQKELYKGLFGPSPEAKF	KKAKYLVVF	148
TWD	296	DDKAIRRELRALAEQEKALYQKQKEMYKGIFKGKDEGGAKS	: : SKSLFWLIVL	345
ZmTWD	149	WOWLVSFILYLAGMFKRKNE 168		
TWD	346	: : : WQWFVSLFSRIFRRHRVKAD 365		

4/4