CRYPTOGRAPHIC HASH FNS & MACS

ONE-WAY FNS (OWF)

- easy to compute but hard to invert
- \rightarrow $\forall y$, there is no efficient algo. which can compute x such that f(x) = y
 - e.g. Constant for f(x) = c are <u>NOT</u> OWF Multiplication of large primes is an OWF

COLLISION-RESISTANT FNS (CRF)

- \rightarrow no efficient algo. Hnt. can find two messages m, and mz s.t. $f(m_1) = f(m_2)$
 - Multiplication of large primes is a CRF

CHF

- → A CHF H: M → T is a fn tht satisfies:
 - 1) |M| >> |T| => collisions are unavoidable!
 - 21 it is easy to compute the hash value for any given message
 - 3) It is hard to retrieve a message frm its hashed value -> OWF
 - 4) it is hard to find 2 diff. messages w/ same hash value -> CRF

APPLICATIONS

- 1) Digital signature generation & verification
- 2) File integrity
- 3) Password ventrication
- 4) Key derivation
- 5) Used to build other crypto primitives le.g. block crpher, MAC ...)

BIRTHDAY ATTACK

→ is a type of cryptographic attack

tet H: M - 10,13" be a CHF

An algo. to find a collision in time $O(\sqrt{2^n}) = O(2^{n/2})$ hashes:

- 1) Choose 27/2 random messages in M: ms,..., m21/2
- 2) For $i = 1, ..., 2^{n/2}$, compute $t_i = H(m_i)$
- 3) If there exists a collision, return (mi. mi), else go to 1)

→ CHF shid. have output length n>256!

- ▶ Compression function: $h: T \times X \to T$
- ▶ PB: 1000...0||mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression function h. If H admits a collision, so does h.

MAC [Message Authentication Code]

- → is a pair of algos (S, V) defined over (K, M, T)
 - · S : K × M → T
 - . V: K×M×T → {L,T}
 - · Consistency: V(k, m, S(k, m)) = T

- It's hard to compute a valid pair (m, S(k,m)) w/o knowing key k

BLOCK CIPHER & MAC

- → MAC algos. can be constructed from block cipher algo.
- However, block ciphers can only process 128/256 bits
- So, we need to construct MACs for long messages.

ECBC-MAC

PMAC [Parallelizable MAC]

- can evaluate block ciphen in parallel

HMAC

- MAC built from CHFs

AUTHENTICATED ENCRYPTION

- → Plain encryption is mallecible; the decryption algo. never fulls
- Decryption shid. fail if a ciphertxt was not computed using the key
- GOAL: Provide data confidentiality, integrity & authenticity silmutaneously

ENCRYPT-THEN-MAC

- 1) Always compute the MACs on the ciphertxt
- 2) Use 2 diff. keys = encryption (KE) MAC (KM)

ENCRYPTION	DECRYPTION
a) $C \leftarrow E_{AES}(K_E, M)$	a) if T= HMAC-SHA(Km, C)
b) T ← HMAC-SHA(KM, C)	b) then return DAES (KE, C)
c) return CIIT	c) else return 1

AES-GCM

-> combines < Galois field based one-time MAC for authentication

AES based counter mode for encryption

→ One-time MAC is encrypted too > Secure for many messages