Interacting Dark Energy after DESI Baryon Acoustic Oscillation measurements 0

William Giarè, 1, * Miguel A. Sabogal, 2, † Rafael C. Nunes, 2, 3, ‡ and Eleonora Di Valentino 1, § 7

[Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS, Brazil 1

[Instituto de Astrofísica, Instituto Nacional de Pesquisas Espaciais, 1

[Instituto de Astronautas 1758, São José dos Campos, 12227-010, São Paulo, Brazil 1

We investigate the implications of the Baryon Acoustic Oscillation measurements released by the Dark Energy Spectroscopic Instrument (DESI) for Interacting Dark Energy (IDE) models characterized by an energy-momentum flow from Dark Matter to Dark Energy. By combining Planck-2018 and DESI data, we observe a preference for interactions exceeding the 95% confidence level, yielding a present-day expansion rate $H_0 = 71.4 \pm 1.5 \text{ km/s/Mpc}$, in agreement with SH0ES. This preference remains robust when including measurements of the expansion rate H(z) obtained from the relative ages of massive, early-time, and passively-evolving galaxies, as well as when considering distance moduli measurements from Type-Ia Supernovae sourced from the Pantheon-plus catalog using the SH0ES Cepheid host distances as calibrators. Overall, high and low redshift data can be equally or better explained within the IDE framework compared to Λ CDM, while also yielding higher values of H_0 in better agreement with the local distance ladder estimate.

The well-known discrepancy between the present-day 3 expansion rate of the Universe (H_0) as measured by the SH0ES collaboration using local distance ladder measurements from Type Ia supernovae [1-3] $(H_0 = 73 \pm 1)$ $[H_0]$ and the value of the same parameter inserred by the Planck collaboration $[H_0]$ from observations of temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) radiation, assuming a $[H_0]$ ACDM cosmology $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ and $[H_0]$ and $[H_0]$ and $[H_0]$ and $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are pointing towards new physics beyond the standard $[H_0]$ and $[H_0]$ are pointing towards new physics beyond the standard $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ and $[H_0]$ are acceptable systematic origin of this discrepancy $[H_0]$ are acceptable systematic origin of

Numerous theoretical attempts have been proposed to 4 increase the value of H_0 inferred from CMB data and restore cosmic concordance [7–10]. However, a compelling 4 solution to the problem remains elusive. The primary 4 challenge stems from the highly precisely determined and gular scale of the acoustic peaks in the CMB spectra [4]. 4 This scale sets the ratio between the sound horizon at 4 recombination and the angular diameter distance to the 4 last scattering surface. Increasing the value of H_0 without disrupting the acoustic scale requires either a reduction in the value of the sound horizon or a different post-4 recombination expansion history of the Universe able to 4 compensate for a higher H_0 while preserving the angular 4 diameter distance from the last scattering surface [11]. 4

* w.giare@sheffield.ac.uk 1

† miguel.sabogal@ufrgs.br 1

† rafadcnunes@gmail.com 1

§ e.divalentino@sheffield.ac.uk 1

This possibility appears in greeningly uplibly a

Both of these possibilities face severe constraints. Reducing the value of the sound horizon requires new 5
physics acting at very high redshifts, typically just prior 5
to recombination. Even ignoring the common fine-tuned 5
problems surrounding early-time solutions, they remain 5
severely constrained by high redshift observations, most 5
notably by CMB data. Conversely, late-time solutions 5
require new physics altering cosmic distances to compensate for the higher values of H_0 while preserving the angular diameter distance from the CMB. In turn, cosmic 5
distances are precisely measured by Baryon Acoustic Oscillations (BAO) and Type-Ia supernovae (SN) data that 5
so far have not provided any evidence for deviations from 5
a late-time Λ CDM cosmology, significantly reducing the 7
room allowed for new physics at low redshift [12, 13], 5

Interestingly, recent BAO measurements released by 8 the Dark Energy Spectroscopic Instrument [14–16] 8 (DESI) appear to point towards new physics in the dark 8 energy sector of the cosmological model [16]. Follow-8 ing the intrinsic interest sparked by these new observa-8 tions [17-19], in this *letter*, we examine their implications 8 for cosmological models known as Interacting Dark En- 8 ergy (IDE) where a non-gravitational interaction between 8 Dark Matter (DM) and Dark Energy (DE) is postulated. 8 Over the years, these models have been extensively ex-8 plored as a potential avenue for resolving cosmological 8 tensions [20–26]. Despite high-redshift data supporting 8 IDE as solutions to the Hubble tension [20], the situation 8 remains somewhat unclear when examining low-redshift 8 observations, as different probes yield somewhat discor-8 dant conclusions [27–29]. In this letter, we demonstrate 8 that the new DESI data give a preference for interactions 8 exceeding the 95% confidence level (CL) and that high-8 and low-redshift observations can be equally or better 8 explained in IDE than in ACDM, while yielding higher 8 values of H_0 compatible with SH0ES. 8

This possibility appears increasingly unlikely given the extensive 3 review of several potential sources of systematic error performed 3 by the SH0ES collaboration [1, 5, 6], 3

Parameter	Planck-2018+DESI	Planck-2018+DESI+CC	Planck-2018+DESI+SN	Planck-2018+DESI+SN+CC 6
$\Omega_{ m b} h^2$	$0.02244 \pm 0.00013 (0.02244 \pm 0.00027)$	$0.02244 \pm 0.00013 (0.02244^{+0.00026}_{-0.00026})$	$0.02255 \pm 0.00014 (0.02255 + 0.00027)$	$0.02255 \pm 0.00014 (0.02255 + 0.00026)$
$\Omega_{ m c} h^2$	$0.070 \pm 0.022 (0.070 \frac{+0.044}{0.048}) $	$0.072 \pm 0.022 (0.072^{+0.045}_{-0.050})45$	$0.0953 \pm 0.0081 (0.095^{+0.017}_{-0.018})$ 10	$0.0954 \pm 0.0080 (0.095^{+0.017}_{-0.017})$
$100\theta_{\mathrm{s}}$	$1.04200 \pm 0.00029 (1.04200^{+0.00057}_{-0.00056})$	$.04198 \pm 0.00028 (1.04198 {}^{+0.00056}_{-0.00054})$ 6	$.04211 \pm 0.00028 (1.04211 \begin{array}{c} +0.00055 \\ -0.00055 \end{array})$ 61	$1.04211 \pm 0.00028 (1.04211 \begin{array}{c} +0.00055 \\ -0.00054 \end{array})$
$ au_{ m reio}$	$0.0553 \pm 0.0075 (0.055 \frac{+0.017}{-0.017}) 6$	$0.0549 \pm 0.0073 (0.055^{+0.015}_{-0.014})$ 1 ()	$0.0599 \pm 0.0077 (0.060^{+0.016}_{-0.014})$ 10	$0.0596 \pm 0.0078 (0.060^{+0.017}_{-0.016})$
$n_{ m s}$	$0.9675 \pm 0.0037 (0.9675 \frac{+0.0071}{-0.0074}) 65$	$0.966 \pm 0.0037 (0.9675^{+0.0072}_{-0.0072}) 10$	$0.9699 \pm 0.0037 (0.9699^{+0.0074}_{-0.0071}) 1 0$	$0.9698 \pm 0.0037 (0.9698 \frac{+0.0074}{-0.0072})$
$\log(10^{10} A_{\rm s})$	$3.044 \pm 0.015 (3.044^{+0.030}_{-0.028})6$	$3.044 \pm 0.014 (3.044^{+0.029}_{-0.028})_{6}$	$3.052 \pm 0.015 (3.052^{+0.031}_{-0.029})_{6}$	$3.051 \pm 0.015 (3.051^{+0.033}_{-0.032})$
ξ	$-0.38^{+0.18}_{-0.16} (-0.38^{+0.33}_{-0.31})$	$-0.37^{+0.19}_{-0.16}$ $(60.37^{+0.34}_{-0.31})$ $(60.37^{+0.34}_{-0.31})$	$-0.192^{+0.080}_{-0.071}$ (6-0.19 $^{+0.15}_{-0.14}$)6	$-0.191 \pm 0.068 (-0.19^{+0.13}_{-0.14})$
$H_0 [\mathrm{km/s/Mpc}]$	$71.4 \pm 1.5 (71.4^{+3.0}_{-2.8})$ 6	$71.3 \pm 1.5 (71.3^{+3.3}_{-3.2})$ 6	$70.0 \pm 0.60 (70.0^{+1.2}_{-1.1})$	$70.0 \pm 0.59 (70.0^{+1.2}_{-1.1})$
$\Omega_{ m m}$	$0.185 \pm 0.049 (0.19^{+0.10}_{-0.11})$ 6	$0.190 \pm 0.051 (0.19^{+0.11}_{-0.11})$ 65	66).242 \pm 0.020 (0.242 $^{+0.038}_{-0.041}$) 65	$66242 \pm 0.020 (0.242^{+0.038}_{-0.040})$
$r_{ m d}$ [Mpc]	$147.30 \pm 0.23 (147.30^{+0.44}_{-0.44})$ 6	$147.30 \pm 0.23 (147.30_{-0.45}^{+0.45})$ 65	$667.45 \pm 0.23 (147.45^{+0.46}_{-0.45})65$	6E $17.44 \pm 0.23 (147.44^{+0.45}_{-0.45})$
$\Delta\chi^2$	-2.33	-2.17	-4.88	-3.56 6
$\ln \mathcal{B}_{ij}$	-0.45	-0.78	-0.64	-0.01 6

Table I. Constraints at 68% (95%) CL on the parameters of the IDE model. For all datasets, we provide $\Delta \chi^2 = \chi^2_{\text{IDE}} - \chi^2_{\Lambda\text{CDM}}$ as well as the Bayes factors $\ln \mathcal{B}_{ij} = \ln \mathcal{Z}_{\Lambda\text{CDM}} - \ln \mathcal{Z}_{\text{IDE}}$ calculated as the difference between the evidence for ΛCDM and IDE model. Negative values of $\Delta \chi^2$ and $\ln \mathcal{B}_{ij}$ indicate a better fit and a preference for the IDE model over the ΛCDM , respectively.

We consider a homogeneous and isotropic Universe and 9 introduce an energy-momentum flow in the dark sector of 9 the model by modifying the energy-momentum equation 9 as 9

$$\nabla_{\mu} T_i^{\mu\nu} = Q_i^{\nu}, \quad \sum_{i=1}^{n} Q_i^{\mu} = 0.$$
 (1)

The degree of interaction is quantified by the four-vector 11

$$Q_i^{\mu} + 0(Q_i + \delta Q_i)u^{\mu} + a^{-1}(0, \partial^{\mu} f_i),$$
 (2)

where u^{μ} represents the velocity four-vector, Q_i is the background energy transfer, and the index i runs over DM and DE. We adopt a widely recognized interaction kernel $Q = \mathcal{H}\xi\rho_{\rm DE}$ [20, 30–33] where \mathcal{H} is the (conformal) Hubble parameter, $\rho_{\rm DE}$ is the DE energy-density and ξ dictates both the amount and the direction of energy-momentum flow. We require $\xi < 0$, forcing the energy-momentum transfer from DM to DE. Additionally, we fix the DE equation of state to $w \simeq -1$, resembling an interacting vacuum scenario. $\frac{2}{13}$

We implement the theoretical model in a modified version of the Boltzmann solver code CLASS [35] and use the publicly available sampler COBAYA [36] to perform 14 Markov Chain Monte Carlo (MCMC) analyses. We assume flat priors on the set of sampled cosmological parameters $\{\Omega_b h^2, \Omega_c h^2, \tau_{\rm reio}, \theta_{\rm s}, \log(10^{10}A_{\rm s}), n_{\rm s}, \xi\}$. Our 14 baseline datasets include the **Planck-2018** CMB temperature polarization and lensing likelihoods [4, 37, 38] 14

We regularize early-time super-horizon instabilities in the dynamics of cosmological perturbations [30, 34] by setting w = 13 $-1 + \epsilon$ and taking $\epsilon \simeq 0.0001 \rightarrow 0$. 13

and the **DESI** BAO measurements obtained from ob- 14 servations of galaxies & quasars [14], and Lyman- α [15] <u>tracers summarized in Tab. I of Ref. [16]. These lat-</u> 14 <u>ter are characterized in terms of measurements of the 14</u> transverse comoving distance $(D_{
m M}/r_{
m d})$, the Hubble horizon $(D_{\rm H}/r_{\rm d})$, and the angle-averaged distance $(D_{\rm V}/r_{\rm d})$, normalized to the (comoving) sound horizon at the drag epoch, $r_{\rm d}$. We account for the correlation between measurements of $D_{\rm M}/r_{\rm d}$ and $D_{\rm H}/r_{\rm d}$. In addition to CMB and BAO data, we also consider distance moduli measure-14 ments from Type Ia SN gathered from the Pantheon-plus 14 sample [39]. For this latter we use the SH0ES Cepheid 14 host distances as calibrators [1]. Finally, we include mea- 14 surements of the expansion rate H(z) derived from the 14 relative ages of massive, early-time, passively-evolving 14 galaxies, known as cosmic chronometers (CC) [40]. We 14 conservatively use only 15 CC measurements in the red-14 shift range 0.179 < z < 1.965 [41–43], accounting for all 14 non-diagonal terms in the covariance matrix and system- 14 atic contributions. 14

We summarize the constraints on cosmological parameters at 68% and 95% CL in Tab. I. The most important 17 results read as follows: 17

The joint Planck+DESI analysis yields a preference for a non-vanishing $\xi = -0.38^{+0.18}_{-0.16}$, well exceeding the 95% CL. Additionally, it provides a value $H_0 = 71.4 \pm 1.5$ km/s/Mpc, in perfect agreement with local distance ladder estimates. Therefore, focusing on 18 Planck-2018 and DESI-BAO altogether, IDE can fully resolve the Hubble tension, see also Fig. 1. Adding CC 18 does not change this result, see also Tab. I. 18

• Combining Planck-2018+DESI+SN, we still find a 18 preference for $\xi \neq 0$ at more than 95% CL, consistently yielding values of H_0 higher than in the stan-

Figure 1. 2D contours at 68% and 95% CL for the coupling parameter ξ and the Hubble parameter H_0 , as inferred by the different combinations of Planck-2018, DESI, and SN data listed in the legend. The olive-green band represents the value of H_0 measured by the SH0ES collaboration, 15

dard cosmological model, see also Tab. I and Fig. 1, 18
Again, this conclusion does not change considering CC.
A non-vanishing energy-momentum flow from DM to 18
DE is potentially supported by all the main high and 18
low redshift datasets analyzed in this work. 18

- For all the datasets listed in Tab. I, we compare the best-fit χ^2_{IDE} obtained within IDE to the best-fit χ^2_{ACDM} obtained for ΛCDM . We find that $\Delta\chi^2 = \chi^2_{\text{IDE}} \chi^2_{\text{ACDM}}$ is always negative. This means that IDE can fit data better than ΛCDM for all the different combinations of data while simultaneously yielding higher values of H_0 .
- To account for the fact that IDE has one more free parameter than Λ CDM, we perform a model comparison and calculate the Bayes factors $\ln \mathcal{B}_{ij}$ normalized (for each dataset) to a baseline Λ CDM scenario in such a way that a negative $\ln \mathcal{B}_{ij}$ indicate a preference for IDE over Λ CDM, and vice versa.³ Despite a trend towards $\ln \mathcal{B}_{ij} < 0$, the evidence is always inconclusive, suggesting that IDE and Λ CDM can be deemed equally 18 plausible to fit current observations. 18

Taking the results obtained by combining Planck-2018 22 and DESI BAO distance measurements at face value, 22

To do so, we employ the MCEvidence package, which is publicly available [44, 45] and can be accessed at the following link: 18 https://github.com/yabebalFantaye/MCEvidence 18

Figure 2. Upper panel: Best-fit predictions for (rescaled) 16 distance-redshift relations for IDE (solid curves) and ΛCDM 16 (dashed curves) obtained from the analysis of Planck-16 2018+DESI data. These predictions are presented for the three different types of distances probed by BAO measurements, each indicated by the colors reported in the legend. 16 The error bars represent ±1σ uncertainties. Lower panel: Difference between the model prediction and data-point for each BAO measurement, normalized by the observational uncertainties. The IDE predictions are represented by 'x'-shaped points while the ΛCDM predictions are represented by 'o'-shaped points. 16

there is solid ground to conclude that they lend weight to 22 the possibility of non-vanishing energy-momentum trans- 22 fer from DM to DE, resulting in the pronounced nega- 22 tive correlation between ξ and H_0 depicted in Fig. 1. This preference can be better understood by referring to Ref. [16]. In this work, the DESI collaboration argued 22 that both within a minimal w_0 CDM model and considering a dynamical w_0w_a CDM parameterization, Planck- 22 2018+DESI data produce a strong preference for a (dy-22) namical) DE equation of state showing a phantom behav- 22 ior in the past. In IDE, upon straightforward manipula- 22 tion of the continuity equation, one can rearrange the effective equation of state parameters to be $w_{\text{eff}} = -1 + \xi/3$. Consequently, the preference for a late-time phantom-like 22 behavior is recast into an indication $\xi < 0$ here exceed-22 ing the 95% CL. Focusing on Planck+DESI(+CC), this 22 preference can fully resolve the Hubble tension. However. 22 the significant fraction of energy-momentum transferred 22 from DM to DE naturally implies lower values of the 22 matter density parameter (Ω_m) compared to the standard cosmological model. When SN data are included in the analysis, we observe a tendency towards higher val- 22

Distance	Redshift	DESI	IDE $(\#\sigma)$	ΛCDM (#σ) 19
$D_V(z)/(r_d\sqrt{2})$	0.3	14.48 ± 0.27	$+0.54\sigma$	-1.18σ 19
	1.49	21.36 ± 0.55	-0.01σ	$+0.14\sigma$ 19
$D_M(z)/(r_d\sqrt{3})$	0.51	19.07 ± 0.35	$+2.33\sigma$	$+0.91\sigma$ 19
	0.71	20.00 ± 0.38	-1.55σ	-2.53σ 19
	0.93	22.51 ± 0.29	-0.31σ	$+0.55\sigma$ 19
	1.32	24.19 ± 0.60	-0.04σ	-0.22σ 19
	2.33	26.01 ± 0.61	$+0.60\sigma$	0.66σ 19
$zD_H(z)/(r_d$	66	14.98 ± 0.43	-2.92σ	-2.72σ 19
	0.71	16.92 ± 0.50	-0.48σ	$+0.01\sigma$ 19
	0.93	17.24 ± 0.33	-0.15σ	$+0.80\sigma$ 19
	1.32	15.88 ± 0.48	-1.28σ	-0.65σ 19
	2.33	13.00 ± 0.26	-1.34σ	-0.75σ 19

Table II. The DESI results (and their 1σ errors) are presented 21 for three distinct types of distances investigated by BAO measurements. For each data point, we indicate the consistency 21 between the best-fit predictions of the IDE and Λ CDM mod-21 els and the observed data, expressed in units of observational 21 uncertainties ($\#\sigma$). 21

ues of Ω_m that reduces the value inferred for H_0 . Having that said, H_0 always remains significantly larger than the value inferred within the standard cosmological model 22 and in much better agreement with local distance ladder 22 estimate. 22

To better understand the role played by DESI data, we 23 compare the theoretical distance predictions for IDE and 23 ular, in Fig. 2, we compare the Planck-2018+DESI best-23 fit predictions for the three different types of (rescaled) 23 distances probed by BAO measurements. In the bot- 23 tom panel of the same figure, we show the distance be- 23 tween the observed DESI data points and the best-fit 23 predictions obtained for ACDM ('o'-shaped points) and IDE ('x'-shaped points) in units of observational un- 23 certainty σ . The same difference between the model 23 at z=0. 24 predictions and DESI data is summarized in Tab. II. 23 we see that the only two data points that are in disagreement with IDE at a level exceeding 2σ are the 23 measurements of $D_M(z)/(r_d\sqrt{2})$ and $zD_H(z)/(r_d\sqrt{2})$ at 23 z=0.51. However, the same two (correlated) data points 23 Baryon Acoustic Oscillations measurements released by 27 are also in significant disagreement with ACDM, espe-23 cially $zD_H(z)/(r_d\sqrt{z})$. Conversely, IDE is more success-23 ful in explaining $D_M(z)/(r_d\sqrt{z})$ at z=0.71 than $\Lambda {\rm CDM.}$ 23 Overall, apart from the DESI distance measurements at 23 = 0.51 (which - repetita iuvant - are at odds also 23 with Λ CDM), there are no other BAO measurements in 23

Figure 3. Statistical reconstruction of the (rescaled) expansion rate of the universe H(z)/(1+z) at 1σ and 2σ confidence 26 levels for ACDM and IDE models through the joint analysis 26 of Planck-2018+DESI+SN+CC, compared to DESI measure-26 ments. 26

tension with the IDE best-fit predictions. Remarkably, 23 the best-fit value for $H_0 \sim 73.26$ obtained by Planck-2018+DESI is fully consistent with SH0ES. Last but not least, we stress that for Planck-2018+BAO, the larger 23 part of the improvement in the total $\Delta \chi^2 = -2.33$ over 23 ACDM comes exactly from the DESI BAO measurement 23 $(\Delta \chi^2_{\rm DESI} = -1.52)^4$. 23

As a final remark, in Fig. 3, we present the theoretical 24 predictions for H(z) as obtained by simultaneously analyzing Planck-2018, DESI, CC, and SN. We display the 24 best-fit predictions (along with their 1 and 2σ uncertain- Λ CDM against the observed cosmic distances. In partic-23 ties) for IDE and Λ CDM, comparing them against the data points released by DESI. As evident from the figure, even accounting for all datasets together, the DESI 24 datapoint at z = 0.51 remains essentially unexplained in 24 both models. Conversely, IDE can fit H(z) at z=0.71 24 and z = 0.93 better than Λ CDM, simultaneously predict-24 ing a larger present-day expansion rate H_0 , as evident when comparing the red and blue reconstructed curves 24

In conclusion, barring any potential systematic er- 25 Comparing the best-fit predictions for IDE and Λ CDM, 23 rors, BAO measurements released by DESL significantly 25 some important conclusions can be reached. Foremost, 23 open up the possibility of addressing the Hubble tension 25 23 through late-time new physics, as argued here for IDE 25

In this *letter*, we have studied the implications of the 27

⁴ For Planck-2018+DESI+CC, such improvement in the fit of 23 DESI BAO measurements becomes even more significant: 23 $\Delta\chi^2_{\rm DESI} = -2.34$. 23

the Dark Energy Spectroscopic Instrument for Interact- 27 ing Dark Energy models characterized by an energy- 27 momentum flow from Dark Matter to Dark Energy. Fo- 27 cusing on the minimal Planck-2018+DESI data combi-27 nation, we found a preference for interactions exceed- 27 ing the 95% confidence level, yielding a present-day ex- 27 pansion rate $H_0 = 71.4 \pm 1.5 \text{ km/s/Mpc}$ which can resolve the Hubble tension. Combining Planck-2018+DESI 27 with either measurements of the expansion rate H(z) obtained from the relative ages of massive, early-time, and 27 passively-evolving galaxies or with distance moduli mea- 27 surements from Type-Ia Supernovae sourced from the 27 Pantheon-plus catalog using the SH0ES Cepheid host 27 distances as a calibrator, we still find a preference for 27 $\xi \neq 0$ at more than 95% CL. For all the different com-27 binations of datasets, we observe an improvement in the 27 [10] N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, 10 χ^2 of the fit over ΛCDM . Overall, accounting for DESI 27 measurements, high and low redshift data are found to 27 be equally or better explained within the IDE framework 27 than Λ CDM, while consistently yielding values of H_0 that are higher than in the standard cosmological model and 27 in much better agreement with local distance ladder es- 27 timates. In light of these results, we conclude that DESI 27 data (re-)open up the possibility of addressing the Hub- 27 ble tension through late-time new physics, 27

MAS received support from the CAPES scholarship. 28 RCN thanks the financial support from the Conselho 28 Nacional de Desenvolvimento Científico e Tecnologico 28 CNPq, National Council for Scientific and Technolog- 28 and the Fundação de Amparo à pesquisa do Estado do RS 28 (FAPERGS, Research Support Foundation of the State 28 of RS) for partial financial support under the project No. 28 23/2551-0000848-3. EDV is supported by a Royal Soci- 28 [20] Y. <u>ety Dorothy Hodgkin Research Fellowship. This article is 28</u> based upon work from COST Action CA21136 Address- 28 ing observational tensions in cosmology with systemat- 28 [21] A. Bernui, ics and fundamental physics (CosmoVerse) supported by 28 COST (European Cooperation in Science and Technol-28 ogy). We acknowledge IT Services at The University of 28 [22] G. A. Hoerning, R. G. Landim, L. O. Ponte, R. P. Rolim, 50 Sheffield for the provision of services for High Perfor- 28 mance Computing. 28

[1] A. G. Riess et al., Astrophys. J. Lett. 934, arXiv:2112.04510 [astro-ph.CO]. 29

S. Murakami, A. G. Riess, B. E. Stahl, W. D. Ken-10 worthy, D.-M. A. Pluck, A. Macoretta, D. Brout, D. O. 10 Jones, D. M. Scolnic, and A. V. Filippenko, JCAP 11, 8 Xiv:2306.00070 [astro-ph.CO]. 10

3 L. Breuval, A. G. Riess, S. Casertano, W. Yuan, L. M. 10 28 R. C. Nunes, S. Vagnozzi, S. Kumar, E. Di Valentino, Macri, M. Romaniello, Y. S. Murakami, D. Scolnic, G. S. (2024), arXiv:2404.08038 Anand, and I. Soszyński, astro-ph.CO]. 10

[4] N. Aghanim et al. (Planck), Astron. Astrophys. 641,

(2020), [Erratum: Astron. Astrophys. 652, C4 (2021)], 32 arXiv:1807.06209 [astro-ph.CO]. 32

[5] A. G. Riess, G. S. Anand, W. Yuan, S. Casertano, A. Dol-33 phin, L. M. Macri, L. Breuval, D. Scolnic, M. Perrin, 33 and I. R. Anderson, Astrophys. J. Lett. **962**, L17 (2024), **33**

[6] D. Brout and A. Riess, (2023), ar ph.COl. 10

[7] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, 12 A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk Class. Quant. Grav. **38**, 153001 (2021), arXiv:2103.01183

8 E. Abdalla et al., JHEAp **34**, 49 (2022), arXiv:2203.06142 45

astro-ph.CO. 30 31 35

[9] A. R. Khalife, M. B. Zanjani, S. Galli, S. Günther, J. Les-10 gourgues, and K. Benabed, (2023), arXiv:2312.09814 22 astro-ph.CO]. 10

S. J. Witte, V. Poulin, and J. Lesgourgues, Phys 10 984, 1 (2022), arXiv:2107.10291 [astro-ph.CO].

[11] L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020). arXiv:1908.03663 [astro-ph.CO]. 39

[12] G. Efstathiou, Mon. Not. Roy. Astron. Soc. 505, 3866 (2021), arXiv:2103.08723 [astro-ph.CO] 40

[13] R. E. Keeley and A. Shafieloo, Phys. Rev. Lett. 131, 111002 (2023), arXiv:2206.08440 [astro-ph.CO].

A. G. Adame et al. (DESI), (2024), arXiv:2404.03000 astro-ph.CO. 30 31 35

15 A. G. Adame et al. (DESI), (2024), arXiv:2404.03001 22 astro-ph.CO]. 30 31

[16] D. Collaboration, "Desi 2024 vi: Cosmological con- 44 straints from the measurements of baryon acoustic os- 44 cillations," (2024), arXiv:2404.03002 [astro-ph.CO]. 44

[17] D. Wang, (2024), arXiv:2404.06796 [astro-ph.CO].

ical Development) under the project No. 304306/2022-3. 28 [18] M. Cortês and A. R. Liddle, (2024), arXiv:2404.08056 46 astro-ph.CO]. 30 31 35

[19] E. O. Colgáin, M. G. Dainotti, S. Capozziello, S. Pourojaghi, M. M. Sheikh-Jabbari, and D. Stojkovic, (2024), 1 arXiv:2404.08633 [astro-ph.CO]. 47

Zhai, W. Giarè, C. van de Bruck, E. Di Valentino, 48 O. Mena, and R. C. Nunes, JCAP 07, 032 (2023), 48 iv:2303.08201 [astro-ph.CO]. Bernui, E. Di Valentino,

Giarè, S. Kumar, 49 and R. C. Nunes, Phys. Rev. D 107 arXiv:2301.06097 [astro-ph.CO]. 49

F. B. Abdalla, and E. Abdalla, (2023), arXiv:2308.05807 50 astro-ph.CO]. 50

[23] A. Pourtsidou and T. Tram, Phys. Rev. D **94**, 043518 arXiv:1604.042 22 [astro-ph.CO]

E. Di Valentino, A. Melchiorri, and O. Mena, Phys D **96**, 043503 (2017), arXiv:1704.08342 [astro-ph.CO]. **36**

[25] S. Kumar and R. C. Nunes, Phys. Rev. D **96**, 103511 10 (2017), arXiv:1702.02143 [astro-ph.CO]. 5

26 M. Lucca and D. C. Hooper, Phys. Rev. (2020), arXiv:2002.06127 [astro-ph.CO]

[27] W. Giarè, Y. Zhai, S. Pan, E. Di Valentino, R. C. Nunes and C. van de Bruck, (2024), arXiv:2404.02110 [astro-54

and O. Mena, Phys. Rev. D 105, 123506 (2022), 56 arXiv:2203.08093 [astro-ph.CO]. 56

W. Yang, S. Pan, O. Mena, and E. Di Valentino, JHEAp 10 [29] 640, 19 (2023), arXiv:2209.14816 [astro-ph.CO]. 51

[30] M. B. Gavela, L. Lopez Honorez, O. Mena, an	ıd 10		(2020), arXiv:1807.06205 [astro-ph.CO].
S. Rigolin, JCAP 11, 044 (2010), arXiv:1005.0295 [astro-	 10	[39]	D. Brout et al., Astrophys. J. 938, 110 (2022), 66
ph.CO]. 10			arXiv:2202.04077 [astro-ph.CO]. 67
			R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002), 8
S. Vagnozzi, Phys. Rev. D 101 , 063502 (2020	<u>).</u> 59		arXiv:astro-ph/0106145. 68
arXiv:1910.09853 [astro-ph.CO]. 59		[41]	M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, and 10
[32] E. Silva, U. Zúñiga-Bolaño, R. C. Nunes, and E. I	D. 60		A. Cimatti, JCAP 07, 053 (2012), arXiv:1201.6658 68
Valentino, "Non-linear matter power spectrum mode	II 60		astro-ph.CO. 10
	᠒ 60	[42]	M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 40
arXiv:2403.19590 [astro-ph.CO]. 60			(2015), arXiv:1503.01116 [astro-ph.CO]. 4 8 7
[33] E. Di Valentino, A. Melchiorri, O. Mena, an	id	[43]	M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, 7
S. Vagnozzi, Phys. Dark Univ. 30 , 100666 (2020)	<u>)</u> 61		C. Maraston, L. Verde, D. Thomas, A. Citro, R. To-7
arXiv:1908.04281 [astro-ph.CO]. 61			jeiro, and D. Wilkinson, JCAP 05 , 014 (2016), 7
[34] J. Valiviita, E. Majerotto, and R. Maartens, JCAP 0'	<mark>7.</mark> 10		arXiv:1601.01701 [astro-ph.CO]. 71
020 (2008), arXiv:0804.0232 [astro-ph]. 4 8 7		[44]	A. Heavens, Y. Fantaye, E. Sellentin, H. Eggers, Z. Ho-
[35] D. Blas, J. Lesgourgues, and T. Tram, JCAP 07, 03	<u>14</u> 10		senie, S. Kroon, and A. Mootoovaloo, Phys. Rev. Lett. 73
(2011), arXiv:1104.2933 [astro-ph.CO].			119, 101301 (2017), arXiv:1704.03467 [astro-ph.CO]. 70
[36] J. Torrado and A. Lewis, JCAP 05 , 057 (2021)), 7	454	5A. Beavens, Y. Fantaye, A. Mootoovaloo, H. Eggers, 73
arXiv:2005.05290 [astro-ph.IM]. 64			Z. Hosenie, S. Kroon, and E. Sellentin, (2017), 73
[37] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A	<u>.</u> 5 65		arXiv:1704.03472 [stat.CO]. 73
(2020), arXiv:1907.12875 [astro-ph.CO]. 4 7 8			
[38] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A	<u> 1</u> 10		