Diferenciál

Zadání

1. Je dána funkce

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^6 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Ukažte, že $\nabla_{\boldsymbol{v}} f(0,0) = 0$ pro všechna $\boldsymbol{v} \in \mathbb{R}^2$ (tj. směrová derivace je dána lineárním zobrazením), ale f není v (0,0) spojitá (a odtud nemá v (0,0) diferenciál).

- 2. Nalezněte diferenciál funkce $f(x,y) = x^2 2y^3$ v bodě $\boldsymbol{a} = (2,1)$. Dále určete $\nabla_{\boldsymbol{v}} f(\boldsymbol{a})$, jestliže $\boldsymbol{v} = (3,2)$.
- 3. Je dána funkce $f(x,y) = x^2 3xy + 4y$. Nalezněte všechny jednotkové vektory \boldsymbol{v} tak, aby
 - (a) $\nabla_{\mathbf{v}} f(1,1) = -1;$
 - (b) $\nabla_{v} f(1,1) = \sqrt{2}$.
- 4. Je dána funkce $f(x,y) = x^2 xy + y^2$. Nalezněte všechny jednotkové vektory $\boldsymbol{v} \in \mathbb{R}^2$ tak, aby
 - (a) $\nabla_{\boldsymbol{v}} f(1,1)$ byla největší;
 - (b) $\nabla_{\boldsymbol{v}} f(1,1)$ byla nejmenší;
 - (c) $\nabla_{\mathbf{v}} f(1,1) = 0$.
- 5. Je dána funkce $f(x,y) = \frac{x}{x^2+y^2}$. Nalezněte všechny jednotkové vektory $\boldsymbol{v} \in \mathbb{R}^2$ tak, aby
 - (a) $\nabla_{\boldsymbol{v}} f(1,2)$ byla největší;
 - (b) $\nabla_{\boldsymbol{v}} f(1,2)$ byla nejmenší;
 - (c) $\nabla_{\mathbf{v}} f(1,2) = 0$.
- 6. Nalezněte Jacobiho matici a diferenciál vektorové funkce f v bodě a, jestliže
 - (a) $\mathbf{f}(x, y, z) = (xyz, x^2z), \mathbf{a} = (1, -2, 1);$
 - (b) $\mathbf{f}(x,y) = (ye^x, x^3 y, 2x + 1), \mathbf{a} = (0,1).$
- 7. Určete Jacobiho matici vektorové funkce $\mathbf{f}(x,y) = (x+y,x^2y)$ v obecném bodě $(x,y) \in \mathbb{R}^2$ a určete, v kterých bodech má tato matice nulový determinant.
- 8. Nalezněte rovnici tečné roviny ke grafu funkce f v bodě a, jestliže
 - (a) $f(x,y) = 2x^2 + y^2 5y$, $\boldsymbol{a} = (1,2,-4)$;
 - (b) $f(x,y) = \text{arctg } \frac{y}{x}, \, \boldsymbol{a} = (1,1,\frac{\pi}{4});$
 - (c) $f(x,y) = \sqrt{x^2 + y^2}$, $\boldsymbol{a} = (3,4,5)$.

- 9. Nalezněte všechny body v grafu funkce f, ve kterých je tečná rovina rovnoběžná s rovinou z=0, jestliže
 - (a) $f(x,y) = x^2y + xy^2 x$;
 - (b) $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$.
- 10. Pomocí diferenciálu nalezněte přibližně hodnotu 1,02^{3,01}.
- 11. Dva rezistory o odporech $R_1=10\,\Omega$ a $R_2=15\,\Omega$ jsou zapojeny paralelně. Využijte diferenciál k aproximaci celkového odporu paralelního zapojení těchto rezistorů, jestliže z důvodů teploty odpor R_1 vzrostl o $\frac{1}{5}\,\Omega$ a R_2 o $\frac{4}{5}\,\Omega$.
- 12. Pomocí diferenciálu nalezněte aproximaci délky uhlopříčky v obdélníku, jehož strany mají délky 30,3 cm a 39,9 cm.
- 13. Předpokládejte, že $f: \mathbb{R}^2 \to \mathbb{R}$ a $\boldsymbol{g}: \mathbb{R} \to \mathbb{R}^2$ jsou diferencovatelné, $\boldsymbol{g}(0) = (1,3), \boldsymbol{g}'(0) = (-2,2)$ a $\nabla f(1,3) = (5,-2)$. Nalezněte h'(0), kde $h(t) = f(\boldsymbol{g}(t))$.
- 14. Je dána diferencovatelná funkce $f: \mathbb{R}^2 \to \mathbb{R}$ a $h(u,v) = f(\boldsymbol{g}(u,v))$. Vypočtěte
 - (a) $\frac{\partial h}{\partial u}(0,0)$ a $\frac{\partial h}{\partial v}(0,0)$, víte-li, že $\boldsymbol{g}(u,v)=(e^u+\sin v,e^u+\cos v)$ a $\nabla f(1,2)=(2,-3)$;
 - (b) $\frac{\partial h}{\partial u}(1,-1)$ a $\frac{\partial h}{\partial u}(1,-1)$, víte-li, že $\boldsymbol{g}(u,v)=(u^2+2uv^2-v^3,v^2-3u)$ a $\nabla f(4,-2)=(2,1);$
 - (c) $\frac{\partial f}{\partial x}(2,3)$ a $\frac{\partial f}{\partial y}(2,3)$, víte-li, že $\boldsymbol{g}(u,v)=\left(u+u\ln v,\frac{u+v}{u-1}\right)$ a $\nabla h(2,1)=(3,1)$.
- 15. Pomocí věty o derivaci složeného zobrazení vypočtěte g'(t), jestliže g(t) vznikne z $f(x,y) = \frac{x-y}{x+2y}$ tak, že položíme $x = e^t$ a $y = e^{-t}$.
- 16. Pomocí věty o derivaci složeného zobrazení vypočtěte $\frac{\partial g}{\partial u}(u,v)$ a $\frac{\partial g}{\partial v}(u,v)$, jestliže g(u,v) vznikne z $f(x,y,z) = x^2 + y^2 + z^2$ tak, že položíme $x = u \sin v$, $y = u \cos v$ a $z = u^2 v$.
- 17. Ukažte, že je-li $f: \mathbb{R} \to \mathbb{R}$ spojitě diferencovatelná funkce, pak $g(x,y) = f(x^2 + y^2)$ vyhovuje rovnici $y \frac{\partial g}{\partial x} x \frac{\partial g}{\partial y} = 0$.
- 18. Ať funkce $L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ má spojité všechny parciální derivace do druhého řádu včetně a $\boldsymbol{x}: \mathbb{R} \to \mathbb{R}^n$ je vektorová funkce, jejíž druhá derivace \boldsymbol{x}'' je spojitá. Prvních n proměnných funkce L označme u_1, \ldots, u_n a zbylých n proměnných pak v_1, \ldots, v_n . Předpokládejte, že

$$\left(\frac{\partial L}{\partial v_i}\left(\boldsymbol{x}(t), \boldsymbol{x}'(t)\right)\right)' - \frac{\partial L}{\partial u_i}\left(\boldsymbol{x}(t), \boldsymbol{x}'(t)\right) = 0$$

pro každé i = 1, ..., n. Ukažte, že funkce

$$\sum_{i=1}^{n} \frac{\partial L}{\partial v_i} \left(\boldsymbol{x}(t), \boldsymbol{x}'(t) \right) x_i'(t) - L \left(\boldsymbol{x}(t), \boldsymbol{x}'(t) \right)$$

je konstantní.

Výsledky

2.
$$df(\mathbf{a})(h, k) = 4h - 6k, \nabla_{\mathbf{v}} f(\mathbf{a}) = 0.$$

3. (a)
$$(1,0)$$
, $(0,-1)$;

(b)
$$\frac{1}{2}(-\sqrt{2}+1,\sqrt{2}-1)$$
. $\frac{1}{2}(-\sqrt{2}-1,\sqrt{2}+1)$.

4. (a)
$$\frac{1}{\sqrt{2}}(1,1)$$
;

(b)
$$-\frac{1}{\sqrt{2}}(1,1)$$
;

(c)
$$\frac{1}{\sqrt{2}}(1,-1), \frac{1}{\sqrt{2}}(-1,1).$$

5. (a)
$$\frac{1}{5}(3,-4)$$
;

(b)
$$\frac{1}{5}(-3,4)$$
;

(c)
$$\frac{1}{5}(3,4), -\frac{1}{5}(3,4).$$

6. (a)
$$\boldsymbol{J_f}(\boldsymbol{a}) = \begin{pmatrix} -2 & 1 & -2 \\ 2 & 0 & 1 \end{pmatrix}$$
, $\mathrm{d}\boldsymbol{f}(\boldsymbol{a})\left(h,k,l\right) = (-2h+k-2l,2h+l)$;

(b)
$$\boldsymbol{J_f}(\boldsymbol{a}) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 2 & 0 \end{pmatrix}$$
, $d\boldsymbol{f}(\boldsymbol{a}) (h, k) = (h + k, -k, 2h)$.

7.
$$\boldsymbol{J_f}(x,y) = \begin{pmatrix} 1 & 1 \\ 2xy & x^2 \end{pmatrix}$$
 a det $\boldsymbol{J_f}(x,y) = 0$ právě tehdy, když $x=0$ nebo $x=2y$.

8. (a)
$$z = 4x - y - 6$$
;

(b)
$$z = -\frac{x}{2} + \frac{y}{2} + \frac{\pi}{4}$$
;

(c)
$$z = \frac{3}{5}x + \frac{4}{5}y$$
.

9. (a)
$$(0,-1,0)$$
 a $(0,1,0)$;

(b)
$$(1,1,3)$$
.

10.
$$1,02^{3,01} \approx 1,06$$
.

11. Přibližně
$$6, 2\Omega$$
.

$$13. -14.$$

14. (a)
$$\frac{\partial h}{\partial u}(0,0) = -1$$
 a $\frac{\partial h}{\partial v}(0,0) = 5$;

(b)
$$\frac{\partial h}{\partial u}(1,-1) = 5$$
 a $\frac{\partial h}{\partial v}(1,-1) = -16$;

(c)
$$\frac{\partial f}{\partial x}(2,3) = 1$$
 a $\frac{\partial f}{\partial y}(2,3) = -1$.

15.
$$g'(t) = \frac{6}{(e^t + 2e^{-t})^2}$$
.

16.
$$\frac{\partial g}{\partial u}(u,v) = 2u(1+2u^2v^2), \frac{\partial g}{\partial u}(u,v) = 2u^4v;$$