Teledetección

Tema 3 Sistemas de Adquisición

Alejandro Millán Calderón personal.us.es/amillan
21 de abril de 2023

© Universidad de Sevilla. Todos los derechos reservados.

Índice

- 1. Adquisición de imágenes
 - Resolución espacial
 - Resolución espectral
 - Resolución radiométrica
 - Resolución temporal
- 2. Tipos de sensores
 - Sensores pasivos
 - Sensores activos

Adquisición de imágenes

Actores de un sistema de Teledetección

Proceso de adquisición de un sensor pasivo

Tipos de resolución

Espacial

Proporciona el tamaño del menor objeto discriminable por el sensor.

Espectral

Capacidad del sensor para discriminar la radiancia detectada en distintas longitudes de onda del espectro.

Radiométrica

Capacidad del sensor para discriminar niveles o intensidades de radiancia espectral.

Temporal

Capacidad del sistema para discriminar los cambios temporales sufridos por la superficie en estudio.

Adquisición de imágenes

Resolución espacial

Resolución espacial

- Determina la precisión con la que los objetos de la superficie son reflejados en la imagen.
- Durante el proceso de adquisición, el sensor muestrea la superficie generando una matriz de datos (píxel = picture element).
- Se mide mediante 3 parámetros relacionados entre sí:
 - ► FOV
 - ► IFOV
 - ► GIFOV

FOV vs. IFOV vs. GIFOV

- **FOV** (*Field Of View*): Ángulo total de visión del sensor. Determina, junto con la altitud del sensor, la anchura, en tierra, de la imagen.
- **IFOV** (*Instantaneous FOV*): Ángulo de muestreo puntual del sensor. Determina el ángulo discreto cuyo muestreo da lugar a cada píxel.
- GIFOV (Ground IFOV): Anchura en metros del paralelepípedo correspondiente al IFOV sobre la superficie (medido al nadir).

Efectos de la resolución espacial (fotografía aérea genérica)

Imagen de zona afectada por tornado a distintas resoluciones [1]

Imagen de zona afectada por tornado a distintas resoluciones [2]

Imagen de zona afectada por tornado a distintas resoluciones [3]

Imagen de zona afectada por tornado a distintas resoluciones [4]

Imagen de zona afectada por tornado a distintas resoluciones [5]

Imagen de zona afectada por tornado a distintas resoluciones [6]

Adquisición de imágenes

Resolución espectral

Resolución espectral

- Viene determinada por el <u>número de bandas</u> que el sensor puede captar y por su <u>anchura espectral</u>.
- Es conveniente:
 - Un número alto de bandas, ya que la mayoría de cubiertas requieren un estudio multiespectral.
 - ▶ <u>Bandas estrechas</u>, ya que permite una discriminación más fina.
- En un sensor determinado, el número de bandas que posee y su anchura, depende de la aplicación que se le haya querido dar al mismo.

Grados de resolución espectral

Pancromáticas

- Abarcan una única banda espectral (en general ancha).
- Dicha banda suele abarcar VIS y NIR.
- Se representan en escala de grises.

Multiespectrales

- Cuentan con varias bandas espectrales (3 14 aprox.).
- Pueden representarse en color (color verdadero o falso color).

Hiperespectrales

- Cuentan con una gran cantidad de bandas (cientos).
- Permiten detectar diferencias muy sutiles en las cubiertas.

Ilustración de grados de resolución espectral

Adquisición de imágenes

Resolución radiométrica

Resolución radiométrica

- Cada píxel tiene asignado un <u>ND (nivel digital)</u> proporcional a la radiancia recibida.
- La <u>resolución radiométrica</u> de un sensor (también llamada <u>profundidad de color</u> en fotografía) viene dada por el número de ND que es capaz de codificar (se mide en bits):
 - ▶ 256 niveles: 8 bit.
 - ► 1024 niveles: 10 bit.
- Viene limitada por la sensibilidad del sensor.
- En general, una mejor resolución radiométrica conduce a una mejor interpretación.

Gama de tonalidades en función de la resolución radiométrica

Ilustración de diferentes resoluciones radiométricas

Adquisición de imágenes

Resolución temporal

Resolución temporal

- Es la <u>periodicidad</u> con la que el sensor adquiere una nueva imagen del mismo punto de la superficie terrestre.
- Depende de la <u>altitud</u> y el tipo de <u>órbita</u> del satélite.

Parámetros de una órbita

- Altitud [m]
- Excentricidad ($0 \le e < 1$)
- Inclinación [º]

Tipos de órbitas satelitales

- **HEO** (*High Earth Orbit*): Órbita terrestre alta.
 - ▶ Órbita geoestacionaria (periodo de 24 h, sobre el ecuador).
- MEO (Medium Earth Orbit): Órbita terrestre media.
- **LEO** (*Low Earth Orbit*): Órbita terrestre baja.
 - Órbita heliosíncrona (órbita polar = inclinación próxima a 90°, sincronizada con el Sol).

Periodo orbital [1]

■ El <u>periodo orbital</u> es el <u>tiempo</u> que tarda un satélite en recorrer una vuelta completa de su órbita.

Periodo orbital [2]

Satélite	Altitud	Periodo orbital
Aqua	705 km	99 min.
Satélite meteo.	36000 km	24 horas
Luna	384000 km	28 días

- Los satélites más bajos viajan más rápido atraídos por una mayor <u>fuerza de gravedad</u> de la Tierra.
- Además tienen que recorrer <u>menos distancia</u> por lo que tienen periodos orbitales menores.

Satélites HEO

Satélites Geoestacionarios:

- Siempre enfocan la misma zona terrestre.
- Aplicación a meteorología y comunicaciones.
- Resolución temporal muy alta (del orden de minutos).

Imagen de la Tierra (Meteosat)

Satélites MEO

Órbita semi-síncrona:

- Periodo orbital de 12 horas.
- Cruzan por el mismo punto exacto del ecuador cada 24 h.
- \blacksquare Aplicación a posicionamiento global.

Despliegue del sistema GPS)

for 27 Operational Satellites on September 29, 1998 Satellite Positions at 00:00:00 9/29/98 with 24 hours (2 orbits) of Ground Tracks to 00:00:00 9/30/98

Satélites LEO

Órbita heliosíncrona (polar):

- Periodo orbital = 99 min aprox.
- En 24 horas ven la Tierra 2 veces (1 de día y 1 de noche).
- Siempre cruzan el ecuador a la misma hora local.
- Aplicación a meteorología y estudios científicos (iluminación solar consistente).

Compromiso entre resoluciones

Los cuatro tipos de resolución están relacionados:

- Alta resolución espacial conduce a baja resolución temporal y viceversa.
- Alta resolución radiométrica implica alto volumen de almacenamiento lo que obliga a bajar la resolución espectral.

Estudio	Res. Temporal	Res. Espacial	Res. Espectral
Meteorología	Alta	Baja	~
Vegetación	Baja	Alta	Alta
Incendios	Muy alta	Baja	~

Características de algunos programas

Resoluciones:

Espacial	Espectral	Radiom.	Temporal
2500 m	VIS, NIR, LWIR	256 ND	30 min.
3000 m	12 bandas	4096 ND	15 min.
1100 m	2 VIS, NIR, LWIR	1024 ND	12 h
30 m	3 VIS, 3 NIR, LWIR	256 ND	16 d
20 m	2 VIS, NIR	256 ND	20 d
250 m	36 bandas	1024 ND	1 d
15 m	3 VIS, NIR	128 ND	24 d
1,5 m	8 bandas	2048 ND	A petición
0,5 ; 1,5 m	1 PAN, 3 VIS, NIR	2048 ND	A petición
	2500 m 3000 m 1100 m 30 m 20 m 250 m 15 m	2500 m VIS, NIR, LWIR 3000 m 12 bandas 1100 m 2 VIS, NIR, LWIR 30 m 3 VIS, 3 NIR, LWIR 20 m 2 VIS, NIR 250 m 36 bandas 15 m 3 VIS, NIR 1,5 m 8 bandas	2500 m VIS, NIR, LWIR 256 ND 3000 m 12 bandas 4096 ND 1100 m 2 VIS, NIR, LWIR 1024 ND 30 m 3 VIS, 3 NIR, LWIR 256 ND 20 m 2 VIS, NIR 256 ND 250 m 36 bandas 1024 ND 15 m 3 VIS, NIR 128 ND 1,5 m 8 bandas 2048 ND

<u>Sensor</u> = Dispositivo (transportado por una plataforma) capaz de captar información a distancia. Tipos:

Sensores pasivos: Reciben energía proveniente de la superficie.

- Rastreador de barrido (escáner).
- Rastreador de empuje.
- Radiómetro de microondas.

Sensores activos: Emiten su propio haz de energía.

- LIDAR (visible y NIR).
- Radar (microondas).

Sensores pasivos

Rastreador de barrido (escáner)

- Se obtiene la imagen mediante el barrido que realiza un <u>espejo</u> móvil.
- La radiancia medida es convertida a <u>señal eléctrica</u> y posteriormente <u>digitalizada</u>.
- El barrido puede ser <u>multiespectral</u>. Para ello, la señal es descompuesta a bordo en varias longitudes de onda y enviada a detectores diferentes.

Operación de un rastreador de barrido (escáner)

Composición en color verdadero de canales TM

Rastreador de empuje

- Elimina el espejo móvil y lo sustituye por una línea de detectores CCD (Charge-Coupled Device) que cubre todo el campo de visión del sensor. Explora líneas completas.
- Ventajas frente al rastreador de barrido (escáner):
 - ► Aumenta la <u>resolución espacial.</u>
 - Disminuye los <u>problemas geométricos</u> por asincronismo entre espejo móvil y plataforma.
- Tiene el inconveniente de la dificultad de calibración homogénea de la línea de detectores.

Operación de un rastreador de empuje

Composición en falso color de canales SPOT

Radiómetro de microondas

- Mide radiancia en la región de microondas.
- Necesita antenas muy grandes para tener una resolución aceptable.
- La observación en esta banda es muy compleja al ser la señal de microondas muy débil.

Aplicaciones del radiómetro de microondas

- Es útil en condiciones de <u>nubosidad</u> ya que la atmósfera es prácticamente transparente a estas longitudes de onda.
- Se ha utilizado para cartografiar los <u>casquetes</u> <u>polares.</u> Con temperaturas tan bajas, la ley de Wien da el máximo de emisión de radiación desplazado hacia longitudes de onda más altas como las de estos radiómetros.

Cubierta de hielo estimada a partir de datos del sensor AMSR

Sensores activos

LIDAR (Light Detection And Ranging)

El LIDAR es un sensor activo destinado al estudio de la atmósfera que emite <u>pulsos de luz</u> <u>láser.</u>

- El proceso consiste básicamente en emitir un pulso y medir el <u>tiempo</u> que tarda en volver y su <u>intensidad</u> de vuelta.
- Por cada pulso que emite el sensor recibe <u>múltiples pulsos de</u> <u>retorno</u> en función de la estructura de la superficie impactada.
- Así, por cada punto analizado se obtiene una <u>firma de pulsos</u> <u>de retorno</u> que puede utilizarse para caracterizar su naturaleza.

Ilustración de un perfil de CALIPSO

Radar (RAdio Detecting And Ranging)

- El sensor recibe el <u>eco</u> de la señal que envía, cuando ésta choca con la superficie de la Tierra.
- **E**ste eco depende de cómo sea la superficie en función de λ :
 - Si la superficie es <u>plana</u>: se produce <u>reflexión especular</u> y la señal no vuelve al sensor.
 - ► Si la superficie es <u>rugosa</u>: se produce <u>reflexión difusa</u> y parte de la señal vuelve al sensor.

Ejemplo de imagen de Radar [1]

Ejemplo de imagen de Radar [2]

Ejemplo de imagen de Radar [3]

Ejemplo de imagen de Radar [4]

Medidas fundamentales en Radar

Tiempo de retorno del pulso

Indica la <u>distancia</u> (= altitud al nadir) hasta el punto observado.

Coeficiente de retrodispersión

Es la razón entre la radiancia que llega al sensor y la que incide en la superficie (depende del ángulo de observación y de la λ):

$$\sigma^{\circ} = \frac{L_{recibida}}{L_{enviada}}$$

Indica la <u>rugosidad</u> de la superficie.

Tipos de Radar en función de la precisión en estas medidas:

- Radar para la toma de imágenes.
- Altímetro (alta precisión en distancia).
- Escaterómetro (alta precisión en rugosidad).

Problemas de distorsión en imágenes de radar

- Distorsión geométrica:
 - Debida a <u>irregularidades</u> del terreno.
- Moteado (*speckle*):
 - La distancia entre el sensor y el punto estudiado influye en la fase de la señal devuelta.
 - Variaciones muy pequeñas de distancia producen grandes variaciones de fase.
- Movimiento de la escena:
 - Los <u>objetos en movimiento</u> en la dirección de alcance producen una variación en la frecuencia de la señal devuelta.
 - Esto hace que aparezcan <u>desplazados</u> respecto a su lugar correcto.

Distorsión geométrica en imágenes de Radar

Moteado en imágenes de Radar

Región Leilah Fluctus. Las formas cónicas (abajo a la derecha) son zonas de sedimentación fluvial. Los ríos son de etano/metano y la superficie sólida se compone básicamente de granos de hidrocarburos (equivalentes a nuestra arena/tierra) y hielo (equivalente a nuestras rocas, la temperatura es de -179 °C). También posee actividad volcánica (aunque las erupciones son de agua líquida) así como atmósfera (compuesta en su mayoría de nitrógeno).

Movimiento de la escena en imágenes de Radar

Altímetro

- Mide la distancia del sensor al punto sobre la superficie en el nadir del satélite.
- Permite obtener DEM (*Digital Elevation Models*) de alta precisión (hasta 10 cm).

Cuenca del río Amazonas

Cordillera de Los Andes (oeste), Macizos de Guayana (norte) y Meseta del Mato Grosso (este).

Volcán Etna (Italia)

Escaterómetro

- Mide con gran exactitud el coeficiente de retrodispersión σ° .
- Para lograrlo, <u>sacrifica resolución</u> espacial.
- Emplea <u>técnicas de promediado</u> sobre el mismo punto (midiendo σ° desde diferentes ángulos).
- Aplicaciones (aquellas relacionadas con la medida de la rugosidad):
 - ► En tierra:
 - Grado de deforestación (a mayor deforestación menor σ °).
 - · Estudios geológicos.
 - En mar:
 - Oleaje.
 - · Dirección e intensidad del viento.

Velocidad del viento sobre la superficie marina

Nivel de humedad del terreno

Gracias