Chapter 24 Relations de comparaisons sur les suites

Exercice 24.1

Classer les suites de la liste ci-dessous de manière à ce que chacune d'entre elles soit négligeable devant

$$a_n = \ln n,$$

$$b_n = e^n$$
,

$$a_n = \ln n,$$
 $b_n = e^n,$ $c_n = (\ln n)^{2025},$ $d_n = n^{0.1},$ $e_n = 5^n,$

$$d_n = n^{0.1},$$

$$e_n = 5^n,$$

$$f_n = 2^n,$$

$$g_n = n^{10}$$

$$f_n = 2^n$$
, $g_n = n^{10}$, $h_n = \sqrt{\ln n}$, $i_n = n!$.

$$n = n!$$

Exercice 24.2

Vrai ou Faux?

1.
$$e^n \sim e^{n+1}$$
.

2.
$$e^{u_n} \sim e^{v_n}$$
 si et seulement si $(u_n - v_n)$ converge vers 0.

3. Si
$$u_n \sim v_n$$
 alors $e^{u_n} \sim e^{v_n}$.

4.
$$\stackrel{\text{...}}{\hookrightarrow}$$
 Si $u_n \sim v_n$ alors $\ln u_n \sim \ln v_n$.

Exercice 24.3

Classer les suites de la liste ci-dessous de manière à ce que chacune d'entre elles soit négligeable devant les suivantes.

$$a_n = n^n$$
,

$$a_n = n^n, b_n = n^{\ln(n)},$$

$$c_n = e^{n^2}$$

$$c_n = e^{n^2}, d_n = (\ln n)^{n \ln n}.$$

Exercice 24.4

Pour chaque paire de suites (u_n) et (v_n) ci-dessous, A-t-on $u_n = \mathcal{O}(v_n), v_n = \mathcal{O}(u_n), u_n = o(v_n), v_n = o(u_n)$ ou $u_n \sim v_n$?

1.
$$u_n = (n^2 - n)/2$$
 et $v_n = 6n$.

2.
$$u_n = n + 2\sqrt{n}$$
 et $v_n = n^2$.

3.
$$u_n = n \ln n \text{ et } v_n = n \sqrt{n}/2.$$

4.
$$u_n = n + \ln n \text{ et } v_n = \sqrt{n}$$
.

5.
$$u_n = 2(\ln n)^2$$
 et $v_n = \ln(n) + 1$.

6.
$$u_n = 4n \ln n + n \text{ et } v_n = (n^2 - n)/2.$$

Exercice 24.5

Trouver un équivalent simple de (u_n) lorsque n tend vers $+\infty$ dans les cas suivants.

1.
$$u_n = (1000)2^n + 4^n$$
.

2.
$$u_n = n + n \ln n + \sqrt{n}$$
.

3.
$$u_n = \ln(n^{20}) + (\ln n)^{10}$$
.

4.
$$u_n = (0.99)^n + n^{100}$$
.

Exercice 24.6

Déterminer un équivalent simple quand *n* tend vers l'infini de

1.
$$a_n = \frac{1}{3^n} - \frac{1}{2^n}$$
;

2.
$$b_n = \frac{1}{n} + \frac{10^{32}}{n^2}$$
;

3.
$$c_n = n^{-1/2} + 1$$
;

4.
$$d_n = \ln n - \sqrt{n} + (-1)^n$$
;

5.
$$e_n = 10^n + n!$$

6.
$$f_n = \frac{1}{10^n} + \frac{1}{n!}$$

7.
$$g_n = n! + n^{\sqrt{n}} + n^n$$
;

4.
$$d_n = \ln n - \sqrt{n} + (-1)^n$$
;
5. $e_n = 10^n + n!$;
6. $f_n = \frac{1}{10^n} + \frac{1}{n!}$;
7. $g_n = n! + n\sqrt{n} + n^n$;
10. $i_n = \ln(n + 32)$

9.
$$i_n = \sqrt{n+1} - \sqrt{n}$$

10.
$$j_n = \ln(n + 32)$$

Exercice 24.7

Déterminer un équivalent simple de

1.
$$u_n = \frac{100^n + 3(n!)}{2(n!) + 1000^n}$$

$$2. \ v_n = \frac{n! + 2^n}{3^n + n^{30}}.$$

3.
$$w_n = \frac{n^3 + n! + 10^n}{(n+2)! + 100^n},$$

4. $t_n = \frac{n! + n^n}{n^{n+3} + 1000^n},$

4.
$$t_n = \frac{n! + n^n}{n^{n+3} + 1000^n}$$

et en déduire leurs limites.

Trouver un équivalent simple de (u_n) lorsque n tend vers $+\infty$ dans les cas suivants.

1.
$$u_n = n^{1/n} - 1$$
;

2.
$$u_n = \frac{1 + \sin \frac{1}{n}}{\tan \frac{1}{n^2}}$$
;

3.
$$u_n = \ln\left(n + \sqrt{n^2 + 1}\right)$$
;

4.
$$u_n = (n+3 \ln n) e^{-(n+1)}$$
;

$$5. \ u_n = \frac{n! + e^n}{2^n + 3^n} :$$

5.
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$
;
6. $u_n = \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}$.

Exercice 24.9

Soient u et v deux suites de réels strictement positifs telles que, à partir d'un certain rang,

$$\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

Montrer que $u_n = \mathcal{O}(v_n)$.

Exercice 24.10

Soit (u_n) la suite définie par

$$u_0>0$$
 et $\forall n\in\mathbb{N}, u_{n+1}=\frac{u_n}{\sqrt{1+u_n^2}}.$

- **1.** Prouver que (u_n) est convergente.
- 2. Pour $n \in \mathbb{N}^*$, on définit $w_n = \frac{1}{u_n^2} \frac{1}{u_{n-1}^2}$. Déterminer w_n , calculer de deux façons différentes $\frac{1}{n} \sum_{k=1}^n w_k$, déduire $\lim_{n\to+\infty} nu_n^2$, puis un équivalent de u_n .

Exercice 24.11 (****)

Soit $T: \mathbb{N}^* \to \mathbb{R}^*_+$ telle que

$$T(n) = 2T\left(\left|\frac{n}{2}\right|\right) + \mathcal{O}(n) \quad [n \to +\infty].$$

Montrer que $T(n) = \mathcal{O}(n \lg n)$.