Magic States Distillation Using Δ -Toric (good qLDPC?).

David Ponarovsky

January 3, 2024

Let $|f\rangle$ be a codeword in C_X , and let X_g be the indicator that equals 1 if f has support on X_g , and 0 otherwise. Observes that applying T^{\otimes} on $|f\rangle$ yilds the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_g X_g g \right\rangle = \exp \left(i \pi / 4 \sum_g X_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers } \right) \left| f \right\rangle \\ &= \exp \left(i \pi / 4 \sum_g X_g |g| - 2 \cdot \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

1 Many to One.

Assume that f is supported on exactly one generator. Then we have that $T^{\otimes n}|f\rangle=e^{i\pi|g|/4}|f\rangle$ Therefore, if |g|=4k+1 then we are done.

2 Using Quntum Error Correction Codes.

Now assume that the code C_X is the quantum Tanner code, denote by G, A, B the group and the two generator sets that are used for constructing the square complex.

Claim 2.1. Consider g, h that are supported on the same $v \in V$. We will call such a pair a source-sharing pair. Suppose that for any we have that $|g \cdot h|$ is even. Then there is a Clifford gate that computes $|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h \text{ source-sharing}} X_g X_h |g \cdot h|\right) |f\rangle$.

3 Fail Attempt.

In addition, let us assume the existence of $d \in G$ such that d is non-identity and commutes with any element in $A \cup B$. Then, observe that multiplying by d preserves adjacency on the complex. Namely, if $\{u,v\} \in E$ then also $\{du,dv\} \in E$.

Consider $|f\rangle$ such that if X_g is not zero, and g is associated with a local codeword $c \in C_A \otimes C_B$ on vertex v, then the generator associated with the local codeword c on vertex $d \cdot v$ also supports f, denoted by g'. Thus, the exponent above becomes:

Figure 1: Quantum Circuit for distillation.

$$\begin{split} &= \exp\left(i\pi/4\sum_{g}X_{g}|g| - 2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h| + X_{g'}X_{h'}|g\cdot h| \\ &+ 4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l| + X_{g'}X_{h'}X_{l'}|g\cdot h\cdot l|\right)|f\rangle \\ &= \exp\left(i\pi/4\sum_{g}X_{g}|g| - 2\cdot2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h| + 2\cdot4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l|\right)|f\rangle \\ &= \exp\left(i\pi/4\sum_{g}X_{g}|g| - i\pi\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|\right)|f\rangle \end{split}$$

Claim 3.1. The gate
$$|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h\in G/a} X_g X_h |g\cdot h|\right) |f\rangle$$
 is in the Clifford.

Proof. Just decode f and apply \mathbf{CZ} between any pair of qubits corresponding to the generators g, h such that $g \cap h = 1$. Then encode the state again. Observes that \mathbf{CZ} is a Clifford gate, and by the fact that the code is a CSS code then the decoder and the encoder are both in the Clifford.

Let's denote the circuit defined in Claim 3.1 by Λ . So we have that:

$$\Lambda^{\dagger} \exp\left(i\pi/4\sum_{g} X_{g}|g| - i\pi\sum_{g,h \in G/a} X_{g}X_{h}|g \cdot h|\right)|f\rangle$$
$$= \exp\left(i\pi/4\sum_{g} X_{g}|g|\right)|f\rangle$$

Maybe what do we need is to arrange in some way |g| + |g'| = 4k + 1 and $\langle g, f \rangle = \langle g', f' \rangle$

Claim 3.2. For any m codewords $x_1...x_m$ there is a set of coordinates I and $|I| < \alpha n$. Such that:

$$\sum_{j\in[n]/I} x_a^j x_b^j = 0$$

For any pair x_a, x_b .

Claim 3.3. For any m codewords $x_1...x_m$ there is a set of coordinates I and $|I| < \alpha n$. Such that:

$$\sum_{a,b,j\in[n]/I} x_a^j x_b^j = 4k$$

For any pair x_a, x_b .