Statistical Methods in Cancer Epidemiology using R

Karri Seppä

Finnish Cancer Registry

Lecture 6

karri.seppa@cancer.fi

Mar 9, 2020

Contents

- 1. Case-control designs
- 2. Exposure odds ratio (EOR) and its interpretation
- 3. Estimation of EOR by logistic regression
- 4. Matched case-control studies

Main R functions to be covered

- ▶ glm()
- clogit() and cch() in practical 6

Case-control design

- From given study population (base pop'n) are selected all or a random sample of
 - D cases, or individuals with the disease being diagnosed during certain period
 - C controls, or "healthy" individuals at risk.

- Exposure to risk factor *X* and other covariates assessed in cases and chosen controls.
- ➤ To increase efficiency and remove confounding, the sampling of controls is often *stratified* or individually *matched* for age, gender, place of residence, *etc*.

Exposure odds ratio (EOR)

With binary risk factor X the results are summarized:

Exposure	Cases	Controls	Total	
yes $(X = 1)$ no $(X = 0)$	D_1 D_0	C_1 C_0	T_1 T_0	
Total	D	С	T	

Common effect measure:

exposure odds ratio

$$EOR = \frac{D_1/D_0}{C_1/C_0} = \frac{D_1C_0}{D_0C_1}$$

Precision in EOR

Standard error of log(EOR), 95% error factor (EF) & 95% confidence interval (CI) for the associated parameter:

$$SEL = \sqrt{\frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}}$$

$$EF = \exp\{1.96 \times SEL\}$$

$$CI = [EOR/EF, EOR \times EF].$$

NB. Random error depends inversely on numbers of cases and controls.

What parameter is estimated by EOR?

The answer depends on

- type of base population, from which cases emerge
 - closed population or cohort, or
 - open or dynamic population,
- time dimensionality
 - longitudinal or cross-sectional
- sampling principle of controls:
 - (A) case-noncase sampling (epidemic ca-co study)
 - (B) case-cohort sampling
 - (C) density sampling (incl. nested case-control study)

Simplified ideal situation:

Simplified ideal situation:

Simplified ideal situation:

Simplified ideal situation:

Simplified ideal situation:

Simplified ideal situation:

Complete follow-up of a cohort of initially healthy subjects with no losses during a fixed risk period.

Possible sampling frames: A, B and C

A: Case-noncase sampling

A: Case-noncase sampling

Controls chosen from those N-D subjects % cohort members still at risk (healthy) <u>at the end</u> of the follow-up.

A: Case-noncase sampling

Controls chosen from those N-D subjects % cohort members still at risk (healthy) <u>at the end</u> of the follow-up.

B: Case-cohort sampling:

A: Case-noncase sampling

Controls chosen from those N-D subjects % cohort members still at risk (healthy) <u>at the end</u> of the follow-up.

B: Case-cohort sampling:

► The control group or subcohort is a random sample of the whole cohort (N) at the start of the follow-up.

A: Case-noncase sampling

Controls chosen from those N-D subjects % cohort members still at risk (healthy) <u>at the end</u> of the follow-up.

B: Case-cohort sampling:

► The control group or subcohort is a random sample of the whole cohort (N) at the start of the follow-up.

C: Density sampling:

A: Case-noncase sampling

Controls chosen from those N-D subjects % cohort members still at risk (healthy) <u>at the end</u> of the follow-up.

B: Case-cohort sampling:

The control group or subcohort is a random sample of the whole cohort (N) at the start of the follow-up.

C: Density sampling:

- Controls drawn <u>during the follow-up</u> from those currently at risk.
- Nested case-control design (NCC)
 A set of controls is sampled from the *risk set*at each time t of diagnosis of a new case.

▶ In the traditional or epidemic case-control study the controls are selected from those still healthy at the end of the risk period, during which cases are collected.

- ▶ In the traditional or epidemic case-control study the controls are selected from those still healthy at the end of the risk period, during which cases are collected.
- ► In this design EOR estimates the risk odds ratio

$$\psi = rac{ ext{odds of dis. in the exp'd}}{ ext{odds of dis. in the unexp'd}} = rac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)},$$

where π_1 and π_0 are the risks of disease in the exposed and unexposed groups, estimable from a corresponding cohort study by incidence proportions R_1 and R_0 .

- ▶ In the traditional or epidemic case-control study the controls are selected from those still healthy at the end of the risk period, during which cases are collected.
- In this design EOR estimates the risk odds ratio

$$\psi = rac{ ext{odds of dis. in the exp'd}}{ ext{odds of dis. in the unexp'd}} = rac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)},$$

where π_1 and π_0 are the risks of disease in the exposed and unexposed groups, estimable from a corresponding cohort study by incidence proportions R_1 and R_0 .

▶ **NB.** $\psi \approx \pi_1/\pi_0 = \phi$, *i.e.* close to **risk ratio**, when risks π_1 and π_0 are low % (< 0.1)

- ▶ In the traditional or epidemic case-control study the controls are selected from those still healthy at the end of the risk period, during which cases are collected.
- In this design EOR estimates the risk odds ratio

$$\psi = rac{ ext{odds of dis. in the exp'd}}{ ext{odds of dis. in the unexp'd}} = rac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)},$$

where π_1 and π_0 are the risks of disease in the exposed and unexposed groups, estimable from a corresponding cohort study by incidence proportions R_1 and R_0 .

▶ **NB.** $\psi \approx \pi_1/\pi_0 = \phi$, *i.e.* close to **risk ratio**, when risks π_1 and π_0 are low % (< 0.1) = the "rare disease assumption".

Density sampling

- New incident cases occurring during given study period are identified from the base population.
- controls are randomly chosen from the population at risk at various times in the period (sometimes only once).
- ► For chronic disease studies this design is the most popular,
- Logically the only possibility in open populations,

Nested case-control study: *time-matched* selection:

one or more (rarely over 5) controls chosen from the population at risk at each time t_d when a new case is diagnosed.

EOR in density sampling

In a full cohort study the true hazard ratio $\rho=\lambda_1/\lambda_0$ is estimated by the incidence rate ratio

$$IR = \frac{I_1}{I_0} = \frac{D_1/D_0}{Y_1/Y_0}.$$

- In a case-control study with density sampling the **exposure odds** among controls C_1/C_0 estimates the exposure odds Y_1/Y_0 , i.e. the distribution of person-years in the base population.
- Thus, the exposure odds ratio EOR

$$EOR = \frac{D_1/D_0}{C_1/C_0} \approx \frac{D_1/D_0}{Y_1/Y_0} = IR$$

is a consistent estimator of the true hazard rate ratio ρ without any rare-disease assumption.

Example. Alcohol use and oesophageal cancer

(Tuyns et al 1977, see **B&D** 1980).

- ▶ 205 new cases of cancer identified in a French province during two years, and 770 randomly sampled population controls ⇒ Density sampling
- ▶ **NB.** No stratification or matching for age in design
 - \Rightarrow Too many young controls in relation to few cases
 - \Rightarrow inefficient!
- Exposure of interest: Daily consumption of alcohol.
- In the following table the data are summarized by dichotomized exposure and stratified by age group.
- In R the data are found: data(esoph)

Example: Results stratified by age

Age	Exposure \geq 80 g/d	Cases	Ctrls	EOR
25-34	yes	1	9	∞
	no	0	106	
35-44	yes	4	26	5.05
	no	5	164	
45-54	yes	25	29	5.67
	no	21	138	
55-64	yes	42	27	6.36
	no	34	139	
65-74	yes	19	18	2.58
	no	36	88	
75-84	yes	5	0	∞
	no	8	31	
Total	yes	96	109	5.64
	no	104	666	(crude)

Example: (cont'd)

Modification?

- ▶ Stratum-specific EOR $_k$ s somewhat variable.
- ▶ Random error in some of them apparently great (especially in the youngest and the oldest age groups).

Confounding?

- Is exposure associated with age in the study population?
- Look at variation in the age-specific prevalences of exposure among controls.
- Adjustment for age is generally reasonable.

Model for stratified data

Random part:

Conditional on total number of subjects

$$T_{jk} = D_{jk} + C_{jk}$$

in each level j (j=1,2) of exposure variable X and level k ($k=1,\ldots K$) of covariate Z we assume

$$D_{jk} \sim \text{Binomial}(T_{jk}; p_{jk}),$$

where p_{jk} is the "probability of being a case" in a group of cases & controls defined by X and Z.

Model for stratified data (cont'd)

Systematic part & logit link:

$$logit(p_{jk}) = log\left(\frac{p_{jk}}{1 - p_{jk}}\right) = \alpha + \beta X + \gamma_k,$$

X = exposure, 1: 'exposed'; 0: 'unexposed',

 $\alpha = \text{logit}(p_{11}) = \text{log of "pseudo baseline odds"},$

 $\beta = \text{logarithm of exposure odds ratio,}$

= $log(\rho)$, logarithm of true rate ratio ρ with density sampling,

 $\gamma_k = \text{logarithm of rate ratio btw levels } k \text{ and } 1 \text{ of } Z.$

Hence $e^{\beta} = \rho$ is the common rate ratio for the exposure effect assumed constant over the levels of Z.

Example. Estimation by glm()

Input of data

```
D <- c(0,1, 5,4, 21,25, 34,42, 36,19, 8,5) # no. of cases
C <- c(106,9, 164,26, 138,29, 139,27, 88,18, 31,0) # controls
Tot <- D + C # cell totals
```

Generation and naming of the levels for factors describing age group and alcohol exposure

Example. Estimation by glm()

```
agrn agr alcn alc D C Tot
    1 25-34 1 0-79g/d 0 106 106
2 1 25-34 2 80+g/d 1 9 10
3 2 35-44 1 0-79g/d 5 164 169
4 2 35-44 2 80+g/d 4 26 30
5 3 45-54 1 0-79g/d 21 138 159
             2 80+g/d 25 29 54
6
  3 45-54
7 4 55-64 1 0-79g/d 34 139 173
8
  4 55-64
             2 80+g/d 42 27 69
9
  5 65-74 1 0-79g/d 36 88 124
10 5 65-74 2 80+g/d 19 18 37
11 6 75-84 1 0-79g/d 8 31 39
12 6 75-84
             2 80+g/d 5 0 5
```

Example. Estimation by glm() (cont'd)

Crude estimation

```
library(Epi)
mod1 <- glm( D/Tot ~ alc, fam = binomial, w = Tot)
round(ci.lin(mod1, Exp=T)[ , -(3:4)], 4)</pre>
```

```
Estimate StdErr exp(Est.) 2.5% 97.5% (Intercept) -1.8569 0.1054 0.1562 0.1270 0.1920 alc80+g/d 1.7299 0.1752 5.6401 4.0006 7.9515
```

Estimation adjusted for age

```
mod2 <- update(mod1, . ~ . + agr)</pre>
```

Goodness-of-fit evaluation

```
c( mod2$deviance, mod2$df.res )
```

[1] 11.04118 5.00000

Example. Estimation by glm() (cont'd)

Estimation results after adjusting for age

```
round(ci.lin(mod2, Exp=T)[ , -(3:4)], 4)
```

	Estimate	${\tt StdErr}$	<pre>exp(Est.)</pre>	2.5%	97.5%
(Intercept)	-5.0543	1.0094	0.0064	0.0009	0.0461
alc80+g/d	1.6699	0.1896	5.3116	3.6630	7.7022
agr35-44	1.5423	1.0659	4.6753	0.5788	37.7668
agr45-54	3.1988	1.0232	24.5022	3.2984	182.0171
agr55-64	3.7135	1.0185	40.9966	5.5688	301.8094
agr65-74	3.9669	1.0231	52.8196	7.1112	392.3239
agr75-84	3.9622	1.0650	52.5723	6.5193	423.9520

Matched case-control study

Matching

- ► For each case choose 1 or more (rarely over 4) controls with same age (eg. within 1 year, or in the same 5-year ageband), sex, place of living, etc.
- Implies stratification in design: each matched case-control set forms one stratum.
- Improves efficiency of the study & estimation of effect parameters, if matching factors are strong determinants of outcome.

Matched case-control study (cont'd)

Some principles

- Impractical to match on many other covariates than those mentioned,
- ► Matching on a correlate Z of risk factor X of interest, which is not causal determinant of outcome
 - \Rightarrow overmatching, loss of efficiency.
- Counter-matching: Choose controls which are different from case w.r.t. Z, close correlate of X
 - ⇒ increases efficiency.

Matched case-control study (cont'd)

- ► Matched design ⇒ matched analysis!
- Ignoring matching in analysis my lead to biased results.
- Matching factors must always be accounted for in estimating the rate ratios of interest.
- With very close matching (based e.g. on sibship, neighbourhood) use conditional logistic regression modelling
 - function clogit() in package survival

Full cohort design

Each member of the cohort provides exposure data for all cases, as long as this member is at risk, i.e. alive, not censored & free from outcome.

Times of new cases define the **risk-sets**.

▶ Use e.g. function coxph()

Nested case-control design

Whenever a new case occurs, a set of controls (here 2/case) are sampled from its risk set. Implies time-matching at least.

- **NB.** A control once selected for some case can be selected as a control for another case, and can later on become a case, too.
 - Analyse using function clogit()

Case-cohort design

Subcohort: Sample of the whole cohort randomly selected at the outset. Serves as reference group for all cases.

NB. A subcohort member can become a case, too.

► Analyse using function cch()

Concluding remarks

- ► Analysis using glm() on individual data records from an unmatched study proceeds similarly as for grouped data.
- Matched design → matched analysis by clogit().
- More complicated designs, like counter-matched and two-phase studies, require specialized methods and programming.
- ► Case-cohort design: Use function cch() in package survival that adjusts standard errors *etc.* appropriately.