TDC São Paulo

Aprimorando a confiabilidade do software com os Golden Signals usando Datadog

Ariane Izac / Diego Rodrigues

\$whoami

- Gerente de SRE na Cartão Elo
- Apaixonado por opensource
- Entusiasta DevOps
- Trabalhando com tecnologia há 19 anos

\$whoami

- SRE/Especialista em Testes de Performance na cartão Elo
- Apaixonada qualidade de software e Performance
- Faço parte da família TDC: comitê técnico da área de qualidade, palestrante, coordenadora dessa edição da trilha DevTest e IA e workshop Desmistificando testes de performance com JMeter
- Desbravando o universo de SRE

Agenda

01. Contexto Elo

02. Um pouco de história

03. Como usar na engenharia de confiabilidade

04. Um pouco de Datadog

05. Pontos de Atenção

Sobre a Elo

Elo no Brasil

A Elo começou em 2011, com cartões de débito e crédito. Desde então, expandiu para mais negócios: cartões pré-pagos e especializados, soluções customizadas para empresas, plataformas de tokenização e prevenção a fraudes, pagamentos por QR Code e NFC e consultoria de negócios para os nossos parceiros.

Com tecnologia própria e local, a Elo é uma empresa 100% brasileira, ágil e flexível para atender às necessidades de quem usa nossos produtos. Fazemos isso por meio de uma rede ampla de portadores de cartão, estabelecimentos comerciais, credenciadores e emissores.

A missão da Elo é impulsionar a inclusão de pagamentos digitais no Brasil, com produtos para todos os perfis de pessoas e empresas. Para todo tipo de brasileiro.

Nossos números

Cartões ativos 11 M

Estabelecimentos comerciais ativos 357 B

Volume transacionado até 2023 +37

Emissores

Principais Desafios e Dores

- Falta de visibilidade
- Múltiplas ferramentas para throubleshooting
- Sustentação
- Mudança de mindset
- Padronização

Monitoração versus Observabilidade

Resumindo

Observabilidade e Monitoração se complementam, cada um servindo a um propósito diferente.

A Monitoração informa quando algo está errado, enquanto a observabilidade permite que você entenda o porquê e os relacionamentos entre os componentes. A Monitoração é um subconjunto e uma parte essencial para a observabilidade.

Golden Signals

Um ótimo lugar para começar a implantar uma solução de Observabilidade é implementando os Golden Signals do Google:

Tráfego — Quantidade de solicitações a uma aplicação.

Latência — O tempo que leva para atender uma Solicitação ou a métrica, formalmente conhecida como tempo de resposta.

Erros — Taxa de erro das transações.

Saturação — Quão ocupado o sistema está.

MEDIÇÕES SRE

- SLIs e SLOs são a maneira prescritiva pela qual o SRE pratica o princípio DevOps de "medir tudo".
- A implementação de SLOs também força a colaboração entre Product Owners e operadores de sistemas, aderindo ao princípio de DevOps de "quebrar barreiras organizacionais".

Conceito de	SLI	SLO	Error Budget	SLA
Definição	Métrica quantificável relevante para negócio (medir confiabilidade) Pergunte: O que você está medindo?	% que o SLI deverá ser cumprido em um target (período de tempo) Pergunte: Quão bom tem que ser?	Quanto é permitido/ aceitável errar. Equilíbrio entre inovação e estabilidade Pergunte: Qual meu orçamento/ margem para erros?	Contrato legal que deverá ser cumprido podendo haver penalidade quando não atendido Pergunte: O que acontece quando não entregamos o acordado?
Exemplo	Tempo de resposta de na API X <=300ms	99% dos <u>requests</u> na API X <=300ms nos últimos 30 dias	1% é o aceitável de <u>request</u> acima de 300ms nos últimos 30 dias	Mensalmente, 97% das requisições realizadas na API X retornarem com tempo de até 450ms (gordura entre SLO e SLA)

Como Utilizar os Golden Signals para Encontrar Gargalos na Performance

Com os Golden Signals, podemos avaliar o desempenho dos aplicativos e identificar a causa raiz dos problemas; essa é a abordagem que a maioria das soluções de monitoração de aplicação (APM) usa para encontrar a causa raiz. Aqui você pode ver três exemplos de como os Golden Signals juntos podem facilmente mostrar o gargalo:

Aplicação em um momento de alta demanda

O trafego esta alto, mas devido a elasticidade do ambiente de Cloud, novos recursos são adicionados, não impactando os demais Signals, a saturação terá uma alta temporária

Aplicação em um momento de alta demanda

O Trafego est alto e esses acessos começam a demandar mais recursos, deixando o ambiente saturado, com o ambiente saturado o tempo de resposta aumenta, o erros também e a disponibilidade pode ser impactada

Applicacao com uma release ruim

Essa release ruim, vai começar a gerar uma alta taxa de erros e devido a esses problemas o trafego deve começar a cair e o tempo de resposta aumenta

Exercício em grupo: Configurando os Níveis de Serviço

Care-Van é um aplicativo que ajuda a encontrar e reservar proprietários de vans que estão disponíveis para dar carona a idosos com problemas de mobilidade.

Você é um SRE trabalhando com a equipe de produtos que projeta a solicitação de carona para os clientes.

O que você sugere que são boas medidas/métricas para os SLx:

- Service Level Indicator (SLI)
- Service Level Objective (SLO)
- Service Level Agreement (SLA)

Para referência

SLI: um atributo mensurável de um serviço que representa a disponibilidade/desempenho do sistema.

SLO: define como o serviço deve funcionar, na perspectiva do usuário (medido via SLI).

SLA: um contrato vinculativo para fornecer ao cliente alguma forma de compensação se o serviço não atender às expectativas.

Solução de exemplo

Service Level Indicator (SLI):

The latency of successful HTTP responses (HTTP 200)

Service Level Objective (SLO):

The latency of 95% of the responses must be less than 200ms

Service Level Agreement (SLA):

Customer compensated if the 95th percentile latency exceeds 300ms

Um pouco de DataDog

- Ferramenta consolidada no mercado líder no quadrante do Gartner
- Plataforma Saas (modular)
- Centralização das informações: visão unificada de métricas, logs e traces da aplicação e infraestrutura
- Facilidade/Agilidade na identificação de gaps (APM)
- Visão das integrações e **integração** com diversas plataformas
- Antecipação de potenciais problemas em produção (Alertas e notificações)

Figure 1: Magic Quadrant for Observability Platforms

Considerações antes de DataDog e Golden Signals

Latência	Tráfego	Erros	Saturação
Valor relevante para aplicação	Considerar Picos	% aceitável	Auto Scalling
Considerar Integrações	Projeções de produção	Impactos para o Negócio	Configurar de acordo com volume
Timeouts	Janelas com maior volume	Prejuízos - Financeiros/Imagem	Alto consumo de CPU – mais lento
			Alto consumo de memória - Restarts

Recursos

Tráfego

DataDog e Golden Signals

- 1. Latência: APM (Resources), Monitor, Dashboard, Alarmes
- 2. Tráfego: APM (Resources), Monitor, Dashboard, Alarmes
- 3. Erros: APM (Error), Monitor, Dashboard, Alarmes
- 4. Saturação: APM (Infrastructure), Monitor, Dashboard, Alarmes

Demonstração

Dúvidas?

Referências e livros completos:

Pontos de Atenção

Formato

Não tem bala de prata

Desafios

Observabilidade desde início do desenvolvimento (cultura)

Dicas

Começar com que tem, e aprimorar aos poucos

Práticas além de ferramentas

Para fechar...

Sejamos mais pró-ativos que reativos

Diego Rodrigues

Obrigado.

Ariane Izac

ELO-