INTRODUCTION TO DIGITAL MUSICOLOGY

Fabian C. Moss

2025-07-05

Table of contents

Preface	1
I. INTRODUCTION	3
1. What is Digital Musicology?	5
2. Digital Musicology today	7
3. The history of Digital Musicology	9
II. DATA ABOUT MUSIC	11
4. RISM metadata	13
5. Spotify and MusicBrainz metadata	15
6. Music and the streaming industry	17
7. Analyzing song survival	19
III. MUSIC AS DATA	31
8. Audio	33
9. MIDI	35
10.MEI - header	37
11.MEI - the body	39
IV. WORKING WITH MUSIC DATA	41
12. Digital music analysis: harmony	43
13. Digital music analysis: melody	45

Table of contents

V. CRITICAL DIGITAL MUSICOLOGY	47
14. Copyright	49
15. Representation and representativeness	51
16. Discussion	53
References	55

Preface

This page contains material for the course Introduction to Digital Musicology, held at Julius-Maximilians-Universität, Würzburg (Germany) in Fall 2025.

⚠ Warning

This is work in progress.

Test citation Knuth (1984).

Part I. INTRODUCTION

1. What is Digital Musicology?

Introduction and terminology

Understanding what "digital musicology" means.

- Introduction
- Overview of the field
- Terminology
 - e.g. digital vs computational; the latter in 2nd semester
 - digital vs empirical vs quantiative
 - how does DM relate to "traditional" subdivisions of musicology?

Read.

2. Digital Musicology today

i Goal

Acquiring and overview of current activities in Digital Musicology.

- Current research topics
- Important institutions and people (also, e.g. NFDI4Culture)
- Central journals and conferences

3. The history of Digital Musicology

i Goal

Knowing the beginnings and the major stages of DM.

Part II. DATA ABOUT MUSIC

4. RISM metadata

i Goal

Learn what metadata are and how to search for music sources on RISM Online.

- What is RISM?
- What is RISM Online?

Exercise

Understand basic SPARQL and design queries via prompting.

5. Spotify and MusicBrainz metadata

i Goal

Understand the kind of metadata provided by Spotify vs MusicBrainz.

6. Music and the streaming industry

Gain first insights into the music market and its workings.

Work with sales data.

In this session, we will analyze songs from the Billboard 100 charts and trace their 'course of life' in the charts.

The data was obtained from Kaggle, a large community website for data analysis challenges.

As before, we first import the pandas library for data analysis and load the data using the read_csv fundtion that takes as its main argument the path to the data file, in our case charts.csv.

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data/charts.csv")
```

Inspecting the first 5 lines with the .head() method of pandas DataFrames, we obtain an understanding of the structure of the data.

df.head()

	1 ,	,			1 . 1	1 1	1 1
	date	rank	song	artist	last-week	peak-rank	weeks-on-bo
0	2021-11-06	1	Easy On Me	Adele	1.0	1	3
1	2021-11-06	2	Stay	The Kid LAROI & Justin Bieber	2.0	1	16
2	2021-11-06	3	Industry Baby	Lil Nas X & Jack Harlow	3.0	1	14
3	2021-11-06	4	Fancy Like	Walker Hayes	4.0	3	19
4	2021-11-06	5	Bad Habits	Ed Sheeran	5.0	2	18

Think: What do the columns represent? Provide verbal descriptions of their meaning and write it down.

After this general overview, we might want to achieve a slightly deeper understanding. For instance, it is not difficult to interpret the date column, but from only the first few entries, we cannot know the temporal extend of our data.

Let's find out what the earliest and latest dates are using the .min() and .max() methods, respectively.

```
df["date"].min(), df["date"].max()
```

```
('1958-08-04', '2021-11-06')
```

This tells us that the data stored in charts.csv runs from August 1958 to November 2021 and thus allows us to trace the movement of songs in the Billboard charts across more than 60 years.

```
# Top artists
df.artist.value_counts()
```

```
artist
                                                                  1023
Taylor Swift
Elton John
                                                                   889
Madonna
                                                                   857
Drake
                                                                   787
                                                                   769
Kenny Chesney
YoungBoy Never Broke Again Featuring Sherhonda Gaulden
                                                                     1
Drake Featuring Chris Brown
                                                                     1
Kehlani Featuring Jhene Aiko
                                                                     1
DaBaby Featuring A Boogie Wit da Hoodie & London On Da Track
                                                                     1
                                                                     1
Name: count, Length: 10205, dtype: int64
```

```
# Longest in charts
df.sort_values(by="weeks-on-board", ascending=True).iloc[50_000:]
```

	date	rank	song	artist	last-week	peak-rank	we
213768	1980-11-22	69	Turn And Walk Away	The Babys	79.0	69	2
106440	2001-06-16	41	Fill Me In	Craig David	69.0	41	2
106443	2001-06-16	44	Bootylicious	Destiny's Child	66.0	44	2
106448	2001-06-16	49	All Or Nothing	O-Town	60.0	49	2
213674	1980-11-29	75	My Mother's Eyes	Bette Midler	85.0	75	2
•••		•••					
39148	2014-05-10	49	Radioactive	Imagine Dragons	48.0	3	87
1215	2021-08-14	16	Blinding Lights	The Weeknd	17.0	1	87
1117	2021-08-21	18	Blinding Lights	The Weeknd	16.0	1	88
1020	2021-08-28	21	Blinding Lights	The Weeknd	18.0	1	89
919	2021-09-04	20	Blinding Lights	The Weeknd	21.0	1	90

df["date"] = pd.to_datetime(df["date"])

df[df.artist=="Drake"].song.value_counts()

Hotline Bling 36 God's Plan 36 Controlla 26 Fake Love 25 Nice For What 25 Trust Issues 1 Too Much 1 Own It Tuscan Leather 1 Come Thru 1

song

Name: count, Length: 108, dtype: int64

df[df.artist=="Elton John"].song.value_counts()

song	
Candle In The Wind 1997/Something About The Way You Look Tonight	42
Can You Feel The Love Tonight (From "The Lion King")	26
I Guess That's Why They Call It The Blues	23
The One	22
Candle In The Wind	21
Little Jeannie	21
The Last Song	20
Recover Your Soul	20
Believe	20
Circle Of Life (From "The Lion King")	20
Blessed	20
Sad Songs (say So Much)	19
I Don't Wanna Go On With You Like That	18
Nikita	18
Bennie And The Jets	18
Mama Can't Buy You Love	18
Blue Eyes	18
You Can Make History (Young Again)	17
Sacrifice	17
Empty Garden (Hey Hey Johnny)	17

```
Crocodile Rock
                                                                                  17
Goodbye Yellow Brick Road
                                                                                  17
I'm Still Standing
                                                                                  16
Club At The End Of The Street
                                                                                  16
Simple Life
                                                                                  16
Someday Out Of The Blue
                                                                                  15
Don't Let The Sun Go Down On Me
                                                                                  15
Island Girl
                                                                                  15
Daniel
                                                                                  15
Rocket Man
                                                                                  15
Healing Hands
                                                                                  15
The Bitch Is Back
                                                                                  14
Who Wears These Shoes?
                                                                                  14
Wrap Her Up
                                                                                  14
Sorry Seems To Be The Hardest Word
                                                                                  14
Lucy In The Sky With Diamonds
                                                                                  14
Your Song
                                                                                  14
Nobody Wins
                                                                                  13
A Word In Spanish
                                                                                  13
Someone Saved My Life Tonight
                                                                                  13
You Gotta Love Someone
                                                                                  13
In Neon
                                                                                  13
Chloe
                                                                                  13
(Sartorial Eloquence) Don't Ya Wanna Play This Game No More?
                                                                                  12
Kiss The Bride
                                                                                  12
Saturday Night's Alright For Fighting
                                                                                  12
Grow Some Funk Of Your Own/I Feel Like A Bullet (In The Gun Of Robert Ford)
                                                                                  11
Made In England
                                                                                  10
Levon
                                                                                  10
Victim Of Love
                                                                                  10
Part-Time Love
                                                                                  10
Honky Cat
                                                                                  10
Friends
                                                                                   9
Heartache All Over The World
                                                                                   8
                                                                                   8
Ego
                                                                                   7
Tiny Dancer
                                                                                   6
Bite Your Lip (Get up and dance!)
Border Song
                                                                                   5
Name: count, dtype: int64
```

```
def chart_performance(artist, song):
   data = df[(df["artist"] == artist) & (df["song"] == song)]
   data = data.sort_values(by="date").reset_index(drop=True)
```

```
data["date_rel"] = pd.to_timedelta(data["date"] - data["date"][0]).dt.days
return data
```

```
test_cases = {
    "Taylor Swift": "You Belong With Me",
    "Drake": "God's Plan",
    "Elton John": "Candle In The Wind 1997/Something About The Way You Look Tonight",
    "The Weeknd": "Blinding Lights",
    "Elvis Presley": "Please Don't Stop Loving Me"
}
```

```
taylor = chart_performance("Taylor Swift", "You Belong With Me")
drake = chart_performance("Drake", "God's Plan")
elton = chart_performance("Elton John", "Candle In The Wind 1997/Something About The Way You I
weeknd = chart_performance("The Weeknd", "Blinding Lights")
elvis = chart_performance("Elvis Presley", "Please Don't Stop Loving Me")
```

```
_, ax = plt.subplots(figsize=(15,4))

for artist, song in test_cases.items():
    data = chart_performance(artist, song)
    x = data["date"].values
    y = data["rank"].values

    ax.plot(x, y, marker=".", label=f"{song} ({artist})")

plt.gca().invert_yaxis()
plt.legend()
plt.show()
```



```
_, ax = plt.subplots(figsize=(15,4))

for artist, song in test_cases.items():
    data = chart_performance(artist, song)
    x = data["date_rel"].values
    y = data["rank"].values

    ax.plot(x, y, marker=".", label=f"{song} ({artist})")

plt.gca().invert_yaxis()
plt.legend()
plt.show()
```



```
# TODO: remove lines for missing weeks (gaps in curves)
# add two cases:
# - short duration but high peak
# - long duration but low peak
```

```
\# Q: can we predict a song's survival using the features given in the data? 
 \# --> at least introduce notion of training/test data and discuss the epistemologic 
 \# sources for explanation
```

Try other data: https://www.kaggle.com/datasets/thedevastator/billboard-hot-100-a

```
df_charts = pd.read_csv("Hot Stuff.csv", index_col=0)
df_charts["WeekID"] = pd.to_datetime(df_charts["WeekID"])
```

```
df_charts.head()
```

	url	WeekID	Week Position	Song
index				
0	http://www.billboard.com/charts/hot-100/1965-0	1965-07-17	34	Don't Just Stand Tl
1	http://www.billboard.com/charts/hot-100/1965-0	1965 - 07 - 24	22	Don't Just Stand Tl
2	http://www.billboard.com/charts/hot-100/1965-0	1965 - 07 - 31	14	Don't Just Stand Tl
3	http://www.billboard.com/charts/hot-100/1965-0	1965 - 08 - 07	10	Don't Just Stand Tl
4	http://www.billboard.com/charts/hot-100/1965-0	1965-08-14	8	Don't Just Stand Tl

df_audio = pd.read_csv("Hot 100 Audio Features.csv", index_col=0)

df_audio.head()

	SongID	Performer	Song
index			
0	-twistin'-White Silver SandsBill Black's Combo	Bill Black's Combo	-twistin'-White Silver Sands
1	¿Dònde Està Santa Claus? (Where Is Santa Claus	Augie Rios	¿Dònde Està Santa Claus?
2	And Roses And RosesAndy Williams	Andy Williams	And Roses And Roses
3	And Then There Were DrumsSandy Nelson	Sandy Nelson	And Then There Were Dr
4	Baby One More TimeBritney Spears	Britney Spears	Baby One More Time

d = df_charts.merge(df_audio)

d.shape

(330208, 29)

d["WeekID"] = pd.to_datetime(d["WeekID"])

d.sample(10)

	url	WeekID	Week Position	Song
275610	http://www.billboard.com/charts/hot-100/1964-0	1964-06-20	85	My Dreams
189145	http://www.billboard.com/charts/hot-100/2014-0	2014-02-08	97	Radio
245340	http://www.billboard.com/charts/hot-100/1969-0	1969-08-02	92	Let's Call It A Day
141579	http://www.billboard.com/charts/hot-100/2009-0	2009-08-08	3	Knock You Down
117570	http://www.billboard.com/charts/hot-100/1960-0	1960-02-20	93	Sleepy Lagoon
150750	http://www.billboard.com/charts/hot-100/1966-0	1966-09-17	36	Flamingo

	url	WeekID	Week Position	Song
${23582}$	http://www.billboard.com/charts/hot-100/1985-1	1985-10-05	63	Soul F
21493	http://www.billboard.com/charts/hot-100/2003-0	2003-04-12	21	Rock
71236	http://www.billboard.com/charts/hot-100/2008-1	2008-12-13	52	My Li
208184	http://www.billboard.com/charts/hot-100/1984-1	1984-12-15	60	Missin

```
## BOOTSTRAP!
# d = d.sample(500_000, replace=True)
```

d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 330208 entries, 0 to 330207

Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	url	330208 non-null	
		330208 non-null	3
1	WeekID		
2	Week Position	330208 non-null	
3	Song	330208 non-null	· ·
4	Performer	330208 non-null	· ·
5	SongID	330208 non-null	object
6	Instance	330208 non-null	int64
7	Previous Week Position	298048 non-null	float64
8	Peak Position	330208 non-null	int64
9	Weeks on Chart	330208 non-null	int64
10	spotify_genre	315700 non-null	object
11	spotify_track_id	287066 non-null	object
12	spotify_track_preview_url	169915 non-null	object
13	spotify_track_duration_ms	287066 non-null	float64
14	spotify_track_explicit	287066 non-null	object
15	spotify_track_album	287004 non-null	object
16	danceability	286508 non-null	float64
17	energy	286508 non-null	float64
18	key	286508 non-null	float64
19	loudness	286508 non-null	float64
20	mode	286508 non-null	float64
21	speechiness	286508 non-null	float64
22	acousticness	286508 non-null	float64
23	instrumentalness	286508 non-null	float64
24	liveness	286508 non-null	float64

```
286508 non-null float64
 25 valence
 26 tempo
                                286508 non-null float64
                               286508 non-null float64
 27 time_signature
 28 spotify_track_popularity 287066 non-null float64
dtypes: datetime64[ns](1), float64(15), int64(4), object(9)
memory usage: 73.1+ MB
from IPython.display import Audio, HTML
Audio(url=d.loc[1000, "spotify_track_preview_url"])
<IPython.lib.display.Audio object>
def curves(performer, song):
    data = d[(d.Performer == performer) & (d.Song == song)].sort_values(by="WeekID").reset_ind
    data["date_rel"] = pd.to_timedelta(data["WeekID"] - data["WeekID"][0]).dt.days
    x = data["date_rel"].values # or date_rel or WeekID
    y = data["Week Position"].values
    return x,y
test_cases2 = {
    "Patty Duke": "Don't Just Stand There",
    "Ace Of Base": "Don't Turn Around",
    "Dan + Shay": "Speechless",
    "YoungBloodZ Featuring Lil Jon": "Damn!",
    "K-Ci & JoJo": "All My Life",
    "Trevor Daniel": "Falling"
_, ax = plt.subplots(figsize=(15,4))
for performer, song in test_cases2.items():
    x,y = curves(performer, song)
    ax.plot(x, y, marker=".", label=f"{song} ({performer})")
plt.gca().invert_yaxis()
plt.legend()
plt.show()
```


Modeling the life of a song in the Top 100:

We assume that once a song has left the Top 100, it is impossible to re-enter (even though that does happen, of course)

- 1. Each song has a starting rank r_0 .
- 2. For each following week, there is a bernoulli dropout probability θ that determines whether a song remains in the charts.

3.

Observation: Genres tend to leave the Top 100 higher than they entered them

```
entrances = []
peaks = []
exits = []

for _, group in d.groupby("SongID"):
    weeks = group.sort_values(by="WeekID")["Week Position"].values
    entrances.append(weeks[0])
    peaks.append(weeks.min())
    exits.append(weeks[-1])
```

```
import numpy as np
```

from matplotlib.collections import LineCollection

```
_, ax = plt.subplots(figsize=(10,4))

K = len(entrances) + 1

for a, b, c in zip(entrances[:K], peaks[:K], exits[:K]):
    if a != b != c: # remove constants
        ax.plot([0, 1, 2], [a, b, c], c="k", lw=.5, alpha=.01)
```

```
plt.xlim(0,2)
plt.ylim(0,100)
plt.gca().invert_yaxis() # smaller is better
plt.savefig("img/rise-decline.png", dpi=600)
plt.show()
```


OBSERVATION: At least 3 types:

- constants
- low in, peak, low out
- low in, peak, mid out

Try to disentangle what causes the difference

Part III. MUSIC AS DATA

8. Audio

i Goal

Understand what an audio signal is and how it is represented digitally .

- Waveform to spectrogram
- Harmonics
- Timbre
- $\bullet\,$ Audible range and volume
- reading melodies from a spectrogram
- digital audio: sampling

9. MIDI

i Goal

Be able to name use cases for MIDI. Translate MIDI numbers to pitches.

10. MEI - header

i Goal

Understand basic XML encoding and the skeleton structure of MEI.

• mei friend

11. MEI - the body

i Goal

Understand the relation between CWMN and the MEI music element.

- MuseScore export
- mei friend

Part IV. WORKING WITH MUSIC DATA

12. Digital music analysis: harmony

i Goal

Understand what labeling is and why labels can be useful.

- further MuseScore practice
- segmentation and labeling
- Counting chords, finding cadences

13. Digital music analysis: melody

i Goal

Understand how melodic pattern matching works in principle.

• Pattern finding in melodies (Non-Western)

Part V. CRITICAL DIGITAL MUSICOLOGY

14. Copyright

i Goal

Know a few famous copyright infringement cases and why data analysis is important here.

• Plagiarism cases and copyright

15. Representation and representativeness

Goal

Understand the difference between representativeness and representation. Obtain a critical understanding of biases relevant for data selection.

- Representation and the canon
- Representing means modeling means abstraction (what is "music" in "music encoding"?)
- biases: how to recognize them, how to deal with them, and when biases are a good thing.
- FAIR and CARE

16. Discussion

i Goal

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.