Politechnika Wrocławska	Dr. inż. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania
Wydział Elektroniki Kier: Automatyka i Robotyka	Teoria i metody optymalizacji AREU0003
Studia magisterskie II stopnia	Projekt

Zadania programowania nieliniowego PN – algorytmy optymalizacji nieliniowej dla zmiennych ciągłych

- **1.Opis projektu** z przedmiotu " Teoria i metody optymalizacji" w zakresie optymalizacji nieliniowej dla zmiennych ciągłych powinien zawierać:
 - sformułowanie zadania optymalizacji: należy sformułować postać zadania z uwzględnieniem przyjętych ograniczeń oraz podać przyjętą metodę rozwiązania,
 - szczegółowe omówienie algorytmu optymalizacji:
 - typ algorytmu algorytm optymalizacji lokalnej lub algorytm optymalizacji globalnej,
 - stosowane kryteria stopu zbieżność algorytmu,
 - ograniczenia algorytmu (np.: metoda min. w kierunku uzasadnienie wyboru metody, metoda min. bez ograniczeń, metoda min. z ograniczeniami),
 - w algorytmie heurystycznym szczegółowe omówienie operatorów uzasadnienie wyboru
 - informacje ogólne o programie środowisko programistyczne, zastosowane biblioteki lub gotowe moduły,
 - zasady wprowadzania danych początkowych reguły doboru współczynników algorytmu – jeżeli takie są ,
 - przykłady testowe ze szczegółowym opisem techniki rozwiązania zadania.

Zadania programowania nieliniowego (PN):

Wybór zadań testowych dla zagadnień z dziedziny programowania nieliniowego:

- Trzy zadania testowe konieczne do załączenia do opisu projektu można wybrać spośród zadań optymalizacji funkcji nieliniowych podanych w pliku funkcji testowych. Przykłady muszą dotyczyć funkcji posiadających co najmniej kilka minimów lokalnych. Wszystkie minima lokalne muszą zostać obliczone.
- Czwarte nieliniowe zadanie testowe powinno posiadać interpretację praktyczną, z odniesieniem do literatury (na ocenę bardzo dobry lub wyższą).
- dyskusja wpływu doboru punktu startowego na szybkość działania algorytmu jeżeli taki punkt jest wykorzystany w algorytmie,
- ilustracja wyników pracy algorytmu optymalizacji:
 - 1. ilustracja kolejnych iteracji algorytmu z wyszczególnieniem istotnych dla iteracji danych (jeżeli jest to możliwe)
 - 2. rozwiązanie optymalne z wartością funkcji celu.
 - 3. dla zadania o wymiarze n=2 warstwice funkcji celu oraz punkt optymalny z jego wartością funkcji celu (na ocenę bardzo dobry lub wyższa),
 - 4. dla algorytmów optymalizacji lokalnej i n=2: droga dojścia do rozwiązania optymalnego (jeżeli jest możliwa) aproksymacja odcinkami, wprowadzenie możliwości skalowania ekranu, wizualizacja 2D lub 3D (muszą być widoczne kolejne kroki algorytmu, natomiast wybór rozmiaru przestrzeni do wizualizacji powinien być podyktowany czytelnością rysunku z punktu widzenia kolejnych kroków algorytmu optymalizacji) (na ocenę bardzo dobry lub wyższą).
 - 5. dla algorytmów optymalizacji globalnej wizualizacja procesu obliczeń odpowiadająca określonemu algorytmowi (zachowanie się operatorów wg ustaleń szczegółowych w projekcie) na ocenę dobry plus lub wyzszą.

- 6. Podać ciekawe przykłady,/dla różnych typów warstwic dla n=2 wąskie doliny czy zagęszczone warstwice/ oraz wyjaśnić różnice w pracy algorytmu dla tych przykładów.
- 7. Zrobić rysunki warstwic wraz z trajektorią dojścia od punktu początkowego do punktu optymalnego lub z najlepszym osobnikiem w populacji wraz z zaznaczonym obszarem dopuszczalnym dla omawianych przykładów (na ocenę bardzo dobry lub wyższą).
- wykaz literatury, zawierający pozycje cytowane w opisie.
- 2. Należy przyjąć następujące oznaczenia:
 - n ilość zmiennych, m ilość ograniczeń, x wektor zmiennych decyzyjnych, zbiór rozwiązań dopuszczalnych : X, dokładność obliczeń ϵ , liczba iteracji L, punkt optymalny x, wartość optymalna funkcji celu: f(x) = f.
 - -dobór parametrów metody /uzasadnić, czy parametry zostały przetestowane i dla jakich zadań testowych podać przykłady (wykazać prawidłowość doboru) wskazać literaturę/.
- **3.** Należy umieścić **dyskusję błędów** wraz z uzasadnieniem przyczyn ich powstawania z punktu widzenia techniki optymalizacji. Omówić wprowadzone zabezpieczenia.
- **4.** Program powinien zawierać **pakiet organizujący przebieg procesu optymalizacji –** program powinien pozwalać na wielokrotną minimalizację tej samej funkcji przy zmieniających się ograniczeniach przy różnych danych wejściowych bez uciekania się do współpracy z systemem operacyjnym.