Package 'nhdplusTools'

July 22, 2025

```
Type Package
Title NHDPlus Tools
Version 1.3.2
Description Tools for traversing and working with National Hydrography Dataset Plus (NHD-
      Plus) data. All methods implemented in 'nhdplusTools' are available in the NHDPlus documenta-
      tion available from the US Environmental Protec-
      tion Agency <a href="https://www.epa.gov/waterdata/basic-information">https://www.epa.gov/waterdata/basic-information</a>>.
URL https://doi-usgs.github.io/nhdplusTools/
      https://github.com/doi-usgs/nhdplusTools/
BugReports https://github.com/doi-usgs/nhdplusTools/issues/
Depends R (>= 4.1)
Imports hydroloom, dataRetrieval, dplyr, sf, units, magrittr,
      isonlite, httr, xml2, R.utils, utils, tidyr, methods, maptiles,
      mapsf, fst, arrow, tools, zip, pbapply, memoise, digest
Suggests testthat, knitr, rmarkdown, ggmap, ggplot2, lwgeom, gifski,
      leaflet, httptest, future, future.apply
License CC0
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
Config/testthat/parallel true
Config/testthat/edition 3
LazyData true
Language en-US
NeedsCompilation no
Author David Blodgett [aut, cre] (ORCID:
        <a href="https://orcid.org/0000-0001-9489-1710">https://orcid.org/0000-0001-9489-1710</a>),
      Mike Johnson [aut] (ORCID: <a href="https://orcid.org/0000-0002-5288-8350">https://orcid.org/0000-0002-5288-8350</a>),
      Marc Weber [ctb] (ORCID: <a href="https://orcid.org/0000-0002-9742-4744">https://orcid.org/0000-0002-9742-4744</a>),
      Josh Erickson [ctb],
      Lauren Koenig [ctb] (ORCID: <a href="https://orcid.org/0000-0002-7790-330X">https://orcid.org/0000-0002-7790-330X</a>)
```

2 Contents

Maintainer David Blodgett <dblodgett@usgs.gov>

Repository CRAN

Date/Publication 2025-06-10 13:00:14 UTC

Contents

add_plus_network_attributes	3
align_nhdplus_names	4
calculate_arbolate_sum	5
calculate_total_drainage_area	6
disambiguate_flowline_indexes	7
discover_geoconnex_reference	8
discover_nhdplus_id	9
download_nhd	9
download_nhdplushr	10
download_nhdplusv2	11
download_rf1	12
	13
	13
	14
	16
<u> </u>	17
get_characteristics_metadata	17
	18
	19
·	20
	21
	22
	23
	24
	25
	26
	27
	28
	30
	31
	32
·	34
	34
	35
	36
	36
~	37
get_pfaf	
get_raindrop_trace	
get_sorted	
·	41

	get_streamlevel	43
	get_streamorder	44
	get_terminal	45
	get_tocomid	46
	get_UM	47
	get_UT	48
	get_vaa	48
	get_vaa_names	50
	get_vaa_path	51
	get_waterbodies	51
	get_waterbody_index	52
	get_wb_outlet	53
	get_xs_point	54
	get_xs_points	55
	make_node_topology	56
	make_standalone	57
	map_nhdplus	58
	navigate_network	60
	navigate_nldi	61
	nhdplusTools_cache_settings	62
	nhdplusTools_data_dir	63
	nhdplus_path	63
	plot_nhdplus	64
	prepare_nhdplus	67
	rescale_catchment_characteristics	68
	rpu_boundaries	70
	subset_nhdplus	70
	subset_rpu	73
	subset_vpu	74
	vpu_boundaries	75
Index		76

add_plus_network_attributes

Add NHDPlus Network Attributes to a provided network.

Description

Given a river network with required base attributes, adds the NHDPlus network attributes: hydrosequence, levelpath, terminalpath, pathlength, down levelpath, down hydroseq, total drainage area, and terminalflag. The function implements two parallelization schemes for small and large basins respectively. If a number of cores is specified, parallel execution will be used.

Usage

```
add_plus_network_attributes(
  net,
  override = 5,
  cores = NULL,
  split_temp = NULL,
  status = TRUE
)
```

Arguments

net data.frame containing comid, tocomid, nameID, lengthkm, and areasqkm. Ad-

ditional attributes will be passed through unchanged. tocomid == 0 is the convention used for outlets. If a "weight" column is provided, it will be used in get_levelpaths otherwise, arbolate sum is calculated for the network and used as

the weight.

override numeric factor to be passed to get_levelpaths

cores integer number of processes to spawn if run in parallel.

split_temp character path to optional temporary copy of the network split into independent

sub-networks. If it exists, it will be read from disk rather than recreated.

status logical should progress be printed?

Value

data.frame with added attributes

Examples

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))

test_flowline <- prepare_nhdplus(walker_flowline, 0, 0, FALSE)

test_flowline <- data.frame(
   comid = test_flowline$COMID,
   tocomid = test_flowline$toCOMID,
   nameID = walker_flowline$GNIS_ID,
   lengthkm = test_flowline$LENGTHKM,
   areasqkm = walker_flowline$AreaSqKM)

add_plus_network_attributes(test_flowline)</pre>
```

align_nhdplus_names

Align NHD Dataset Names

Description

this function takes any NHDPlus dataset and aligns the attribute names with those used in nhdplus-Tools. calculate_arbolate_sum 5

Usage

```
align_nhdplus_names(x)
```

Arguments

Χ

a sf object of nhdplus flowlines

Value

data.frame renamed sf object

Examples

```
source(system.file("extdata/new_hope_data.R", package = "nhdplusTools"))
names(new_hope_flowline)
names(new_hope_flowline) <- tolower(names(new_hope_flowline))
new_hope_flowline <- align_nhdplus_names(new_hope_flowline)
names(new_hope_flowline)</pre>
```

calculate_arbolate_sum

Calculate Arbolate Sum

Description

Calculates arbolate sum given a dendritic network and incremental lengths. Arbolate sum is the total length of all upstream flowlines.

Usage

```
calculate_arbolate_sum(x)
```

Arguments

Х

data.frame with ID, toID, and length columns.

Value

numeric with arbolate sum.

Examples

```
calculate_total_drainage_area

Total Drainage Area
```

Description

Calculates total drainage area given a dendritic network and incremental areas.

Usage

```
calculate_total_drainage_area(x)
```

Arguments

v

data.frame with ID, toID, and area columns.

Value

numeric with total area.

```
catchment_area$nhdptotda <- walker_flowline$TotDASqKM
mean(abs(catchment_area$totda - catchment_area$nhdptotda))
max(abs(catchment_area$totda - catchment_area$nhdptotda))</pre>
```

```
disambiguate_flowline_indexes
```

Disambiguate Flowline Indexes

Description

Given a set of flowline indexes and numeric or ascii criteria, return closest match. If numeric criteria are used, the minimum difference in the numeric attribute is used for disambiguation. If ascii criteria are used, the adist function is used with the following algorithm: '1 - adist_score / max_string_length'. Comparisons ignore case.

Usage

```
disambiguate_flowline_indexes(indexes, flowpath, hydro_location)
```

Arguments

indexes data.frame as output from get_flowline_index with more than one hydrologic

location per indexed point.

flowpath data.frame with two columns. The first should join to the COMID field of the

indexes and the second should be the numeric or ascii metric such as drainage

area or GNIS Name. Names of this data.frame are not used.

hydro_location data.frame with two columns. The first should join to the id field of the indexes

and the second should be the numeric or ascii metric such as drainage area or

GNIS Name.. Names of this data, frame are not used.

Value

data.frame indexes deduplicated according to the minimum difference between the values in the metric columns. If two or more result in the same "minimum" value, duplicates will be returned.

```
flowpath <- dplyr::select(sample_flines,</pre>
                           comid = COMID,
                           totda = TotDASqKM,
                           nameid = GNIS_NAME,
                           REACHCODE,
                           ToMeas,
                           FromMeas)
indexes <- get_flowline_index(flowpath,</pre>
                               hydro_location,
                               search_radius = 0.2,
                               max_matches = 10)
disambiguate_flowline_indexes(indexes,
                               dplyr::select(flowpath, comid, totda),
                               dplyr::select(hydro_location, id, totda))
result <- disambiguate_flowline_indexes(indexes,</pre>
                                          dplyr::select(flowpath, comid, nameid),
                                          dplyr::select(hydro_location, id, nameid))
result[result$id == 1, ]
result[result$id == 2, ]
result[result$id == 3, ]
```

discover_geoconnex_reference

discover geoconnex reference feature layers

Description

Queries the geoconnex.us reference feature server for available layers and attributes.

Usage

```
discover_geoconnex_reference()
```

Value

data.frame containing layers available and fields that are available to query.

```
discover_geoconnex_reference()
```

discover_nhdplus_id 9

Description

Multipurpose function to find a COMID of interest.

Usage

```
discover_nhdplus_id(point = NULL, nldi_feature = NULL, raindrop = FALSE)
```

Arguments

point sfc POINT including crs as created by: sf::st_sfc(sf::st_point(..,..),

crs)

nldi_feature list with names 'featureSource' and 'featureID' where 'featureSource' is derived

from the "source" column of the response of get_nldi_sources and the 'feature-

Source' is a known identifier from the specified 'featureSource'.

raindrop logical if TRUE will call a raindrop trace web service and return will be the same

as get_raindrop_trace with direction "none".

Value

integer COMID or list containing COMID and raindrop trace.

Examples

```
point <- sf::st_sfc(sf::st_point(c(-76.874, 39.482)), crs = 4326)
discover_nhdplus_id(point)

discover_nhdplus_id(point, raindrop = TRUE)

nldi_nwis <- list(featureSource = "nwissite", featureID = "USGS-08279500")
discover_nhdplus_id(nldi_feature = nldi_nwis)</pre>
```

download_nhd

Download NHD

Description

Download NHD

Usage

```
download_nhd(nhd_dir, hu_list, download_files = TRUE)
```

Arguments

nhd_dir character directory to save output into

hu_list character vector of hydrologic region(s) to download. Use get_huc to find HU

codes of interest. Accepts two digit and four digit codes.

download_files boolean if FALSE, only URLs to files will be returned can be hu02s and/or

hu04s

Value

character Paths to geodatabases created.

Examples

download_nhdplushr

Download NHDPlus HiRes

Description

Download NHDPlus HiRes

Usage

```
download_nhdplushr(nhd_dir, hu_list, download_files = TRUE, archive = FALSE)
```

Arguments

nhd_dir character directory to save output into

hu_list character vector of hydrologic region(s) to download. Use get_huc to find HU

codes of interest. Accepts two digit and four digit codes.

download_files boolean if FALSE, only URLs to files will be returned can be hu02s and/or

hu04s

archive pull data from the "archive" folder rather than "current". The archive contains

the original releases of NHDPlusHR data that were updated in subsequent pro-

cessing. Not all subsets of NHDPlusHR were updated. See: https://www.usgs.gov/national-

hydrography/access-national-hydrography-products for more details.

Value

character Paths to geodatabases created.

download_nhdplusv2 11

Examples

download_nhdplusv2

Download seamless National Hydrography Dataset Version 2 (NHD-PlusV2)

Description

This function downloads and decompresses staged seamless NHDPlusV2 data. The following requirements are needed: p7zip (MacOS), 7zip (windows) Please see: https://www.epa.gov/waterdata/get-nhdplus-national-hydrography-dataset-plus-data for more information and metadata about this data.

Default downloads lower-48 only. See examples for islands. No Alaska data are available.

Usage

```
download_nhdplusv2(
  outdir,
  url = paste0("https://dmap-data-commons-ow.s3.amazonaws.com/NHDPlusV21/",
  "Data/NationalData/NHDPlusV21_NationalData_Seamless", "_Geodatabase_Lower48_07.7z"),
  progress = TRUE
)
```

Arguments

outdir The folder path where data should be downloaded and extracted

url the location of the online resource progress boolean display download progress?

Value

character path to the local geodatabase

12 download_rf1

Examples

download_rf1

Download the seamless Reach File (RF1) Database

Description

This function downloads and decompresses staged RF1 data. See: https://water.usgs.gov/GIS/metadata/usgswrd/XML/erf1_2 for metadata.

Usage

```
download_rf1(
  outdir,
  url = "https://water.usgs.gov/GIS/dsdl/erf1_2.e00.gz",
  progress = TRUE
)
```

Arguments

outdir The folder path where data should be downloaded and extracted

url the location of the online resource progress boolean display download progress?

Value

character path to the local e00 file

```
## Not run:
   download_wbd("./data/rf1/")
## End(Not run)
```

download_vaa 13

download_vaa

Download NHDPlusVAA data from HydroShare

Description

downloads and caches NHDPlusVAA data on your computer

Usage

```
download_vaa(
  path = get_vaa_path(updated_network),
  force = FALSE,
  updated_network = FALSE
)
```

Arguments

path character path where the file should be saved. Default is a persistent system data

as retrieved by nhdplusTools_data_dir. Also see: get_vaa_path

force logical. Force data re-download. Default = FALSE

updated_network

logical default FALSE. If TRUE, updated network attributes from E2NHD and

National Water Model retrieved from doi:10.5066/P976XCVT.

Details

The VAA data is a aggregate table of information from the NHDPlusV2 elevslope.dbf(s), PlusFlow-lineVAA.dbf(s); and NHDFlowlines. All data originates from the EPA NHDPlus Homepage here. To see the location of cached data on your machine use get_vaa_path. To view aggregate data and documentation, see here

Value

character path to cached data

download_wbd

Download the seamless Watershed Boundary Dataset (WBD)

Description

This function downloads and decompresses staged seamless WBD data. Please see: https://prd-tnm.s3.amazonaws.com/StagedProducts/Hydrography/WBD/National/GDB/WBD_National_GDB.xml for metadata.

14 get_3dhp

Usage

```
download_wbd(
  outdir,
  url = paste0("https://prd-tnm.s3.amazonaws.com/StagedProducts/",
    "Hydrography/WBD/National/GDB/WBD_National_GDB.zip"),
  progress = TRUE
)
```

Arguments

outdir The folder path where data should be downloaded and extracted

url the location of the online resource progress boolean display download progress?

Value

character path to the local geodatabase

Examples

```
## Not run:
  download_wbd("./data/wbd/")
## End(Not run)
```

get_3dhp

Get 3DHP Data

Description

Calls the 3DHP_all web service and returns sf data.frames for the selected layers. See https://hydro.nationalmap.gov/arcgis/refor source data documentation.

Usage

```
get_3dhp(
  AOI = NULL,
  ids = NULL,
  type = NULL,
  universalreferenceid = NULL,
  t_srs = NULL,
  buffer = 0.5,
  page_size = 2000
)
```

get_3dhp 15

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.	
ids	character vector of id3dhp ids or mainstem uris	
type	character. Type of feature to return. e.g. ("hydrolocation", "flowline", "waterbody", "drainage area", "catchment"). If NULL (default) a data.frame of available types is returned	
universalreferenceid		
	character vector of hydrolocation universal reference ids such as reachcodes	
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.	
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended search. Default = 0.5	
page_size	numeric default number of features to request at a time. Reducing may help if 500 errors are experienced.	

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default CRS of EPSG:4269 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

a simple features (sf) object or valid types if no type supplied

```
AOI <- sf::st_as_sfc(sf::st_bbox(c(xmin = -89.56684, ymin = 42.99816, xmax = -89.24681, ymax = 43.17192), crs = "+proj=longlat +datum=WGS84 +no_defs"))

# get flowlines and hydrolocations
flowlines <- get_3dhp(AOI = AOI, type = "flowline")
hydrolocation <- get_3dhp(AOI = AOI, type = "hydrolocation")
waterbody <- get_3dhp(AOI = AOI, type = "waterbody")

if(!is.null(waterbody) & !is.null(flowlines) & !is.null(hydrolocation)) {
  plot(sf::st_geometry(waterbody), col = "lightblue", border = "lightgrey")
  plot(sf::st_geometry(flowlines), col = "blue", add = TRUE)
  plot(sf::st_geometry(hydrolocation), col = "grey", pch = "+", add = TRUE) }

# given mainstem ids from any source, can query for them in ids.
```

get_boundaries

get_boundaries

Return RPU or VPU boundaries

Description

Return RPU or VPU boundaries

Usage

```
get_boundaries(type = "vpu")
```

Arguments

```
type character. Either "RPU" or "VPU"
```

Value

An object of class "sf"

get_catchment_characteristics

Get Catchment Characteristics

Description

Downloads (subsets of) catchment characteristics from a cloud data store. See get_characteristics_metadata for available characteristics.

Source: Wieczorek, M.E., Jackson, S.E., and Schwarz, G.E., 2018, Select Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the Conterminous United States (ver. 3.0, January 2021): U.S. Geological Survey data release, doi:10.5066/F7765D7V.

Usage

```
get_catchment_characteristics(varname, ids, reference_fabric = "nhdplusv2")
```

Arguments

varname character vector of desired variables. If repeated varnames are provided, they

will be downloaded once but duplicated in the output.

ids numeric vector of identifiers (comids) from the specified fabric

reference_fabric

(not used) will be used to allow future specification of alternate reference fabrics

Examples

```
get_catchment_characteristics("CAT_BFI", c(5329343, 5329427))
```

get_characteristics_metadata

Get catchment characteristics metadata table

Description

Download and cache table of catchment characteristics.

Wieczorek, M.E., Jackson, S.E., and Schwarz, G.E., 2018, Select Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the Conterminous United States (ver. 3.0, January 2021): U.S. Geological Survey data release, doi:10.5066/F7765D7V.

Usage

```
get_characteristics_metadata(search, cache = TRUE)
```

18 get_DD

Arguments

search character string of length 1 to free search the metadata table. If no search term

is provided the entire table is returned.

cache logical should cached metadata be used?

Examples

```
get_characteristics_metadata()
```

get_DD

Navigate Downstream with Diversions

Description

Traverse NHDPlus network downstream with diversions NOTE: This algorithm may not scale well in large watersheds. For reference, the lower Mississippi will take over a minute.

Usage

```
get_DD(network, comid, distance = NULL)
```

Arguments

network data.frame NHDPlus flowlines including at a minimum: COMID, DnMinorHyd,

DnHydroseq, and Hydroseq.

comid integer identifier to start navigating from.

distance numeric distance in km to limit how many COMIDs are returned. The COMID

that exceeds the distance specified is returned. The longest of the diverted paths

is used for limiting distance.

Value

integer vector of all COMIDs downstream of the starting COMID

get_DM 19

```
plot(dplyr::filter(sample_flines, COMID %in% DM_COMIDs)$geom,
    col = "blue", add = TRUE, lwd = 2)
```

get_DM

Navigate Downstream Mainstem

Description

Traverse NHDPlus network downstream main stem

Usage

```
get_DM(network, comid, distance = NULL, sort = FALSE, include = TRUE)
```

Arguments

network	data.frame NHDPlus flowlines including at a minimum: COMID, LENGTHKM, DnHydroseq, and Hydroseq.
comid	integer identifier to start navigating from.
distance	numeric distance in km to limit how many COMIDs are returned. The COMID that exceeds the distance specified is returned.
sort	if TRUE, the returned COMID vector will be sorted in order of distance from the input COMID (nearest to farthest)
include	if TRUE, the input COMID will be included in the returned COMID vector

Value

integer vector of all COMIDs downstream of the starting COMID along the mainstem

```
library(sf)
source(system.file("extdata", "sample_flines.R", package = "nhdplusTools"))
plot(sample_flines$geom)
start_COMID <- 11690092
DM_COMIDs <- get_DM(sample_flines, start_COMID)
plot(dplyr::filter(sample_flines, COMID %in% DM_COMIDs)$geom,
        col = "red", add = TRUE, lwd = 3)

DM_COMIDs <- get_DM(sample_flines, start_COMID, distance = 40)
plot(dplyr::filter(sample_flines, COMID %in% DM_COMIDs)$geom,
        col = "blue", add = TRUE, lwd = 2)</pre>
```

20 get_elev_along_path

```
get_elev_along_path Get Elevation Along Path (experimental)
```

Description

Uses a cross section retrieval web services to retrieve elevation along a path.

Usage

```
get_elev_along_path(points, num_pts, res = 1, status = TRUE)
```

Arguments

points sf data.frame containing a point column.

num_pts numeric number of points to retrieve along the cross section.

res integer resolution of 3D Elevation Program data to request. Must be on of: 1, 3,

5, 10, 30, 60.

status logical

Value

sf data.frame containing points retrieved. Names include "id", "distance_m", "elevation_m", "spatial_ref", "geometry", and ".group". .group tracks which input point each set of output points belongs to.

```
point1 <- sf::st_sfc(sf::st_point(x = c(-105.9667, 36.17602)), crs = 4326)
point2 <- sf::st_sfc(sf::st_point(x = c(-105.97768, 36.17526)), crs = 4326)
point3 <- sf::st_sfc(sf::st_point(x = c(-105.98869, 36.17450)), crs = 4326)

points <- sf::st_as_sf(c(point1, point2, point3))

(xs <- get_elev_along_path(points, 100))

if(inherits(xs, "sf")) {

bbox <- sf::st_bbox(xs) + c(-0.005, -0.005, 0.005, 0.005)

nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)

plot(sf::st_transform(sf::st_geometry(xs), 3857), pch = ".", add = TRUE, col = "red")
plot(sf::st_transform(sf::st_sfc(point1, crs = 4326), 3857), add = TRUE)
plot(sf::st_transform(sf::st_sfc(point2, crs = 4326), 3857), add = TRUE)
plot(sf::st_transform(sf::st_sfc(point3, crs = 4326), 3857), add = TRUE)
plot(xs$distance_m, xs$elevation_m)
}</pre>
```

get_flowline_index 21

get_flowline_index

Get Flowline Index

Description

given an sf point geometry column, return COMID, reachcode, and measure for each.

Usage

```
get_flowline_index(
  flines,
  points,
  search_radius = NULL,
  precision = NA,
  max_matches = 1
)
```

Arguments

flines sf data.frame of type LINESTRING or MULTILINESTRING including CO-

MID, REACHCODE, ToMeas, and FromMeas. Can be "download_nhdplusv2" and remote nhdplusv2 data will be downloaded for the bounding box surround the submitted points. NOTE: The download option may not work for large areas,

use with caution.

points sf or sfc of type POINT in analysis projection. NOTE: flines will be projected

to the projection of the points layer.

search_radius units distance for the nearest neighbor search to extend in analysis projection.

If missing or NULL, and points are in a lon lat projection, a default of 0.01 degree is used, otherwise 200 m is used. Conversion to the linear unit used by the provided crs of points is attempted. See RANN nn2 documentation for more

details.

precision numeric the resolution of measure precision in the output in meters.

max_matches numeric the maximum number of matches to return if multiple are found in

search_radius

Details

Note 1: Inputs are cast into LINESTRINGS. Because of this, the measure output of inputs that are true multipart lines may be in error.

Note 2: This algorithm finds the nearest node in the input flowlines to identify which flowline the point should belong to. As a second pass, it can calculate the measure to greater precision than the nearest flowline geometry node.

get_gagesII

Note 3: Offset is returned in units consistent with the projection of the input points.

Note 4: See 'dfMaxLength' input to sf::st_segmentize() for details of handling of precision parameter.

Note 5: "from" is downstream – 0 is the outlet "to" is upstream – 100 is the inlet

Value

data.frame with five columns, id, COMID, REACHCODE, REACH_meas, and offset. id is the row or list element in the point input.

Examples

```
source(system.file("extdata", "sample_flines.R", package = "nhdplusTools"))
point <- sf::st_sfc(sf::st_point(c(-76.87479, 39.48233))),
                    crs = 4326)
get_flowline_index(sample_flines, point)
point <- sf::st_transform(point, 5070)</pre>
get_flowline_index(sample_flines, point,
                   search_radius = units::set_units(200, "m"))
get_flowline_index("download_nhdplusv2", point)
get_flowline_index(sample_flines, point, precision = 30)
get_flowline_index(sample_flines,
                   sf::st_sfc(list(sf::st_point(c(-76.86934, 39.49328)),
                                   sf::st_point(c(-76.91711, 39.40884)),
                                   sf::st_point(c(-76.88081, 39.36354))),
                              crs = 4326),
                   search_radius = units::set_units(0.2, "degrees"),
                   max_matches = 10)
```

get_gagesII

Find gagesII Features

Description

Subsets the gagesII dataset by location (POINT), area (POLYGON), or set of IDs. See <doi:10.5066/P96CPHOT> for documentation of source data.

Usage

```
get\_gagesII(AOI = NULL, id = NULL, t\_srs = NULL, buffer = 0.5, basin = FALSE)
```

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.
id	character NWIS Gage ID(s)
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended search. Default $= 0.5$
basin	logical should the gagesII basin also be returned? If True, return value will be a list with "site" and "basin" elements.

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

```
a simple features (sf) object
```

```
get_geoconnex_reference
```

get geoconnex reference feature layers

Description

Queries the geoconnex reference feature server for features of interest.

Usage

```
get_geoconnex_reference(
  AOI,
  type = NULL,
  t_srs = NULL,
  buffer = 0.5,
  status = TRUE
)
```

24 get_hr_data

Arguments

AOI	bbox, sf polygon or point, or a URL that will return an sf object when passed to read_sf
type	character the feature type chosen from discover_geoconnex_reference
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended search. Default = 0.5
status	boolean print status or not

Value

sf data.frame containing requested reference features

Examples

get_hr_data Get NHDPlus HiRes Data

Description

Use to remove unwanted detail NHDPlusHR data See get_nhdplushr for examples.

get_huc 25

Usage

```
get_hr_data(
   gdb,
   layer = NULL,
   min_size_sqkm = NULL,
   simp = NULL,
   proj = NULL,
   rename = TRUE
)
```

Arguments

gdb character path to geodatabase to get data from.

layer character layer name from geodatabase found with st_layers
min_size_sqkm numeric minimum basin size to be included in the output
simp numeric simplification tolerance in units of projection
proj a projection specification compatible with st_crs

rename boolean if TRUE, nhdplusTools standard attribute values will be applied.

Value

sf data.frame containing requested data

get_huc

Find WBD HUC unit subsets

Description

Subsets WBD features by location (POINT), area (POLYGON), or set of HUC IDs.

search. Default = 0.5

Usage

```
get_huc(AOI = NULL, id = NULL, t_srs = NULL, buffer = 0.5, type = "huc12")
```

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.
id	WBD HUC ID(s)
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended

26 get_levelpaths

type character. Type of feature to return ('huc02', 'huc04', 'huc06', 'huc08', 'huc10',

'huc12', 'huc12_nhdplusv2').

Pulls 'huc02'-'huc12' from a web service that hosts a snapshot of the Watershed

Boundary Dataset from October, 2020.

See <doi:10.5066/P92U7ZUT> for full source data.

See https://api.water.usgs.gov/ (geoserver) for the web service.

'huc12_nhdplusv2' derives from a snapshot of the WBD available from the nhd-

plusv2. See download_nhdplusv2 for source data documentation.

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

a simple features (sf) object

get_levelpaths

Get Level Paths (DEPRECATED)

Description

Calculates level paths using the stream-leveling approach of NHD and NHDPlus. In addition to a levelpath identifier, a topological sort and levelpath outlet identifier is provided in output. If arbolate sum is provided in the weight column, this will match the behavior of NHDPlus. Any numeric value can be included in this column and the largest value will be followed when no nameID is available.

Usage

```
get_levelpaths(x, override_factor = NULL, status = FALSE, cores = NULL)
```

Arguments

data.frame with ID, toID, nameID, and weight columns.

override_factor

numeric factor to use to override nameID. If 'weight' is 'numeric_factor' times

larger on a path, it will be followed regardless of the nameID indication.

status boolean if status updates should be printed.

cores numeric number of cores to use in initial path ranking calculations.

get_nhdarea 27

Details

1. levelpath provides an identifier for the collection of flowlines that make up the single mainstem flowpath of a total upstream aggregate catchment.

- 2. outletID is the catchment ID (COMID in the case of NHDPlus) for the catchment at the outlet of the levelpath the catchment is part of.
- 3. topo_sort is similar to Hydroseq in NHDPlus in that large topo_sort values are upstream of small topo_sort values. Note that there are many valid topological sort orders of a directed graph.

Value

data.frame with ID, outletID, topo_sort, and levelpath columns. See details for more info.

Examples

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))

test_flowline <- prepare_nhdplus(walker_flowline, 0, 0, FALSE)

test_flowline <- data.frame(
   ID = test_flowline$COMID,
   toID = test_flowline$toCOMID,
   nameID = walker_flowline$GNIS_ID,
   weight = walker_flowline$ArbolateSu,
   stringsAsFactors = FALSE)

get_levelpaths(test_flowline)</pre>
```

get_nhdarea

Find NHDPlusV2 Areas

Description

Subsets NHDPlusV2 Area features by location (POINT), area (POLYGON), or set of IDs. See download_nhdplusv2 for source data documentation.

Usage

```
get_nhdarea(AOI = NULL, id = NULL, t_srs = NULL, buffer = 0.5)
```

Arguments

AOI

sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.

28 get_nhdphr

id NHD Area COMID(s)

t_srs character (PROJ string or EPSG code) or numeric (EPSG code). A user specified

- target -Spatial Reference System (SRS/CRS) for returned objects. Will default

to the CRS of the input AOI if provided, and to 4326 for ID requests.

buffer numeric. The amount (in meters) to buffer a POINT AOI by for an extended

search. Default = 0.5

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

a simple features (sf) object

get_nhdphr

Get NHDPlusHR Data

Description

Calls the NHDPlus_HR web service and returns sf data.frames for the selected layers. See https://hydro.nationalmap.gov/arcg for source data documentation.

Usage

```
get_nhdphr(
  AOI = NULL,
  ids = NULL,
  type = NULL,
  reachcode = NULL,
  t_srs = NULL,
  buffer = 0.5,
  page_size = 2000
)
```

Arguments

AOI sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be pro-

vided as either a location (sf POINT) or area (sf POLYGON) in any Spatial

Reference System.

ids character vector of nhdplusid ids

get_nhdphr 29

type	character. Type of feature to return e.g. $c("networknhdflowline", nonnetworknhdflowline", nhdwaterbody", "nhdpluscatchment"). If NULL (default) a data.frame of available types is returned$
reachcode	character vector of reachcodes NOTE: performance of this query is currently very poor, spatial queries are the primary use of this function.
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended search. Default $= 0.5$
page_size	numeric default number of features to request at a time. Reducing may help if 500 errors are experienced.

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default CRS of EPSG:4269 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

a simple features (sf) object or valid types if no type supplied

```
AOI <- sf::st_as_sfc(sf::st_bbox(c(xmin = -89.56684, ymin = 42.99816, xmax = -89.24681, ymax = 43.17192), crs = "+proj=longlat +datum=WGS84 +no_defs"))

# get flowlines and hydrolocations
flowlines <- get_nhdphr(AOI = AOI, type = "networknhdflowline")
point <- get_nhdphr(AOI = AOI, type = "nhdpoint")
waterbody <- get_nhdphr(AOI = AOI, type = "nhdwaterbody")

if(!is.null(waterbody) & !is.null(flowlines) & !is.null(point)) {
  plot(sf::st_geometry(waterbody), col = "lightblue", border = "lightgrey")
  plot(sf::st_geometry(flowlines), col = "blue", add = TRUE)
  plot(sf::st_geometry(point), col = "grey", pch = "+", add = TRUE) }

# given universalreferenceid (reachcodes), can query for them but only
# for hydrolocations. This is useful for looking up mainstem ids.

get_nhdphr(reachcode = "13020101021927", type = "networknhdflowline")
```

30 get_nhdplus

	C -t N -t'1 H. J D -t	V2 C. I + - (M. I+; I;+;)
get_nhdplus	Get National Hydrography Dataset	v 2 Subsets (Muttirealization)

Description

Subsets NHDPlusV2 features by location (POINT), area (POLYGON), or set of COMIDs. Multi realizations are supported allowing you to query for flowlines, catchments, or outlets.

Usage

```
get_nhdplus(
  AOI = NULL,
  comid = NULL,
  nwis = NULL,
  realization = "flowline",
  streamorder = NULL,
  t_srs = NULL)
```

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.
comid	numeric or character. Search for NHD features by COMID(s)
nwis	numeric or character. Search for NHD features by collocated NWIS identifiers
realization	character. What realization to return. Default is flowline and options include: outlet, flowline, catchment, and all
streamorder	numeric or character. Only return NHD flowlines with a streamorder greater then or equal to this value for input value and higher. Only usable with AOI and flowline realizations.
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

to the CRS of the input AOI if provided, and to 4326 for ID requests.

Value

sfc a single, or list, of simple feature objects

31 get_nhdplushr

Examples

```
point < -sf::st_sfc(sf::st_point(c(-119.845, 34.4146)), crs = 4326)
get_nhdplus(point)
get_nhdplus(point, realization = "catchment")
get_nhdplus(point, realization = "all")
get_nhdplus(comid = 101)
get_nhdplus(nwis = c(11120000, 11120500))
area <- sf::st_as_sfc(sf::st_bbox(c(xmin = -119.8851, xmax =-119.8361,
ymax = 34.42439, ymin = 34.40473), crs = 4326))
get_nhdplus(area)
get_nhdplus(area, realization = "flowline", streamorder = 3)
```

get_nhdplushr

Get NHDPlus HiRes

Description

Get NHDPlus HiRes

Usage

```
get_nhdplushr(
  hr_dir,
  out_gpkg = NULL,
  layers = c("NHDFlowline", "NHDPlusCatchment"),
  pattern = ".*GDB.gdb$",
  check_terminals = TRUE,
  overwrite = FALSE,
  keep_cols = NULL,
)
```

Arguments

hr_dir character directory with geodatabases (gdb search is recursive)

character path to write output geopackage out_gpkg

layers character vector with desired layers to return. c("NHDFlowline", "NHDPlus-

> Catchment") is default. Choose from: c("NHDFlowline", "NHDPlusCatchment", "NHDWaterbody", "NHDArea", "NHDLine", "NHDPlusSink", "NHD-PlusWall", "NHDPoint", "NHDPlusBurnWaterbody", "NHDPlusBurnLineEvent", "HYDRO_NET_Junctions", "WBDHU2", "WBDHU4", "WBDHU6", "WBDHU8" "WBDHU10", "WBDHU12", "WBDLine") Set to NULL to get all available.

check_terminals

pattern

boolean if TRUE, run make_standalone on output.

character optional regex to select certain files in hr_dir

32 get_nldi_basin

overwrite	boolean should the output overwrite? If false and the output layer exists, it will
	be read and returned so this function will always return data even if called a
	second time for the same output. This is useful for workflows. Note that this
	will NOT delete the entire Geopackage. It will overwrite on a per layer basis.
keep_cols	character vector of column names to keep in the output. If NULL, all will be kept.
	parameters passed along to get_hr_data for "NHDFlowline" layers.

Details

NHDFlowline is joined to value added attributes prior to being returned. Names are not modified from the NHDPlusHR geodatabase. Set layers to "NULL" to get all layers.

Value

sf data.frames containing output that may also be written to a geopackage for later use.

Examples

```
## Not run:
# Note this will download a lot of data to a temp directory.
# Change 'temp_dir' to your directory of choice.
temp_dir <- file.path(nhdplusTools_data_dir(), "temp_hr_cache")</pre>
download_dir <- download_nhdplushr(temp_dir, c("0302", "0303"))</pre>
get_nhdplushr(download_dir, file.path(download_dir, "nhdplus_0302-03.gpkg"))
get_nhdplushr(download_dir,
              file.path(download_dir, "nhdplus_0302-03.gpkg"),
              layers = NULL, overwrite = TRUE)
get_nhdplushr(download_dir,
              file.path(download_dir, "nhdplus_0302-03.gpkg"),
              layers = "NHDFlowline", overwrite = TRUE,
              min_size_sqkm = 10, simp = 10, proj = "+init=epsg:5070")
# Cleanup
unlink(temp_dir, recursive = TRUE)
## End(Not run)
```

get_nldi_basin

Get NLDI Basin Boundary

Description

Get a basin boundary for a given NLDI feature.

get_nldi_basin 33

Usage

```
get_nldi_basin(nldi_feature, simplify = TRUE, split = FALSE)
```

Arguments

nldi_feature	list with names 'featureSource' and 'featureID' where 'featureSource' is derived from the "source" column of the response of get_nldi_sources and the 'featureID' is a known identifier from the specified 'featureSource'.
simplify	logical should response geometry be simplified for visualization and performance?
split	logical should response resolve precisely to the location of the 'nldi_feature'? Setting 'TRUE' calls an additional service and will be slower and less robust.

Details

Only resolves to the nearest NHDPlus catchment divide. See: https://waterdata.usgs.gov/blog/nldi-intro/ for more info on the nldi.

Value

sf data.frame with result basin boundary

34 get_nldi_index

```
plot(st_geometry(basin), border = "red", add = TRUE)
}
```

get_nldi_feature

Get NLDI Feature

Description

Get a single feature from the NLDI

Usage

```
get_nldi_feature(nldi_feature)
```

Arguments

nldi_feature

list with names 'featureSource' and 'featureID' where 'featureSource' is derived from the "source" column of the response of get_nldi_sources and the 'featureID' is a known identifier from the specified 'featureSource'.

Value

sf data.frame with one feature

Examples

```
get_nldi_feature(list("featureSource" = "nwissite", featureID = "USGS-05428500"))
```

get_nldi_index

Get NLDI Index

Description

uses the Network Linked Data Index to retrieve and estimated network location for the given point. If not within a grid cell of a flowline, will use a raindrop trace service to find the nearest downslope flowline location.

Usage

```
get_nldi_index(location)
```

Arguments

location

numeric WGS84 lon/lat pair (X, Y)

get_nwis 35

Examples

```
index <- get_nldi_index(c(-89.276, 42.988))
if(inherits(index, "sf")) {
plot_nhdplus(bbox = sf::st_bbox(sf::st_buffer(index[1,], units::set_units(1000, "m"))))
plot(sf::st_geometry(sf::st_transform(index, 3857)), add = TRUE)
}</pre>
```

get_nwis

Discover USGS NWIS Stream Gages

Description

Returns a POINT feature class of active, stream network, NWIS gages for an Area of Interest. If a POINT feature is used as an AOI, then the returned sites within the requested buffer, are sorted by distance (in meters) from that POINT.

Usage

```
get_nwis(AOI = NULL, t_srs = NULL, buffer = 20000)
```

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be provided as either a location (sf POINT) or area (sf POLYGON) in any Spatial Reference System.
t_srs	character (PROJ string or EPSG code) or numeric (EPSG code). A user specified - target -Spatial Reference System (SRS/CRS) for returned objects. Will default to the CRS of the input AOI if provided, and to 4326 for ID requests.
buffer	numeric. The amount (in meters) to buffer a POINT AOI by for an extended search. Default = 20,000. Returned results are arrange by distance from POINT AOI

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

```
a simple features (sf) object
```

36 get_path_lengths

get_pathlength

Get Path Length

Description

Generates the main path length to a basin's terminal path.

Usage

```
get_pathlength(x)
```

Arguments

Χ

data.frame with ID, toID, length columns.

Value

data.frame containing pathlength for each ID

Examples

get_path_lengths

Get Path Lengths (DEPRECATED)

Description

Given a network and set of IDs, finds path lengths between all identified flowpath outlets. This algorithm finds distance between outlets regardless of flow direction.

Usage

```
get_path_lengths(outlets, network, cores = 1, status = FALSE)
```

Arguments

outlets vector of IDs from data.frame

network data.frame with ID, toID, and lengthkm attributes.
cores integer number of cores to use for parallel computation.

status logical print status and progress bars?

get_path_members 37

Value

data.frame containing the distance between pairs of network outlets. For a network with one terminal outlet, the data.frame will have 'nrow(network)^2' rows.

Examples

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))
fline <- walker_flowline

outlets <- c(5329303, 5329357, 5329317, 5329365, 5329435, 5329817)

# Add toCOMID
fline <- nhdplusTools::get_tocomid(fline, add = TRUE)

fl <- dplyr::select(fline, ID = comid, toID = tocomid, lengthkm)
get_path_lengths(outlets, fl)</pre>
```

get_path_members

Get Path Members (DEPRECATED)

Description

Given a network and set of IDs, finds paths between all identified flowpath outlets. This algorithm finds members between outlets regardless of flow direction.

Usage

```
get_path_members(outlets, network, cores = 1, status = FALSE)
```

Arguments

outlets vector of IDs from data.frame

network data.frame with ID, toID, and lengthkm attributes.

cores integer number of cores to use for parallel computation.

status logical print status and progress bars?

Value

list of lists containing flowpath identifiers along path that connect outlets.

38 get_pfaf

Examples

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))
fline <- walker_flowline

outlets <- c(5329303, 5329357, 5329317, 5329365, 5329435, 5329817)

# Add toCOMID
fline <- nhdplusTools::get_tocomid(fline, add = TRUE)

fl <- dplyr::select(fline, ID = comid, toID = tocomid, lengthkm)
get_path_members(outlets, fl)</pre>
```

get_pfaf

Get Pfafstetter Codes (DEPRECATED)

Description

Determines Pfafstetter codes for a dendritic network with total drainage area, levelpath, and topo_sort attributes.

Usage

```
get_pfaf(x, max_level = 2, status = FALSE)
```

Arguments

x sf data.frame with ID, toID, totda, outletID, topo_sort, and levelpath attributes.

max_level integer number of pfaf levels to attempt to calculate. If the network doesn't have resolution to support the desired level, unexpected behavior may occur.

status boolean print status or not

Value

data.frame with ID and pfaf columns.

get_raindrop_trace 39

```
sf::st_sf() %>%
  select(ID = COMID, toID = toCOMID, area = AreaSqKM)
fl$nameID = ""
fl$totda <- calculate_total_drainage_area(sf::st_set_geometry(fl, NULL))</pre>
f1 <- left_join(f1, get_levelpaths(rename(sf::st_set_geometry(f1, NULL),</pre>
                                     weight = totda)), by = "ID")
pfaf <- get_pfaf(fl, max_level = 3)</pre>
fl <- left_join(fl, pfaf, by = "ID")</pre>
plot(fl["pf_level_3"], lwd = 2)
pfaf <- get_pfaf(fl, max_level = 4)</pre>
hr_catchment <- left_join(hr_data$NHDPlusCatchment, pfaf, by = c("FEATUREID" = "ID"))</pre>
colors <- data.frame(pf_level_4 = unique(hr_catchment$pf_level_4),</pre>
                 color = sample(terrain.colors(length(unique(hr_catchment$pf_level_4)))),
                     stringsAsFactors = FALSE)
hr_catchment <- left_join(hr_catchment, colors, by = "pf_level_4")</pre>
plot(hr_catchment["color"], border = NA, reset = FALSE)
plot(sf::st_geometry(hr_flowline), col = "blue", add = TRUE)
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))
f1 <- select(walker_flowline, COMID, AreaSqKM) %>%
  right_join(prepare_nhdplus(walker_flowline, 0, 0,
                             purge_non_dendritic = FALSE, warn = FALSE),
            by = "COMID") %>%
  sf::st_sf() %>%
  select(ID = COMID, toID = toCOMID, area = AreaSqKM)
fl$nameID = ""
fl$totda <- calculate_total_drainage_area(sf::st_set_geometry(fl, NULL))</pre>
f1 <- left_join(f1, get_levelpaths(rename(sf::st_set_geometry(f1, NULL),</pre>
                                     weight = totda)), by = "ID")
pfaf <- get_pfaf(fl, max_level = 2)</pre>
fl <- left_join(fl, pfaf, by = "ID")</pre>
plot(fl["pf_level_2"], lwd = 2)
```

40 get_sorted

Description

Uses a raindrop trace web service to trace the nhdplus digital elevation model to the nearest downslope flowline.

Usage

```
get_raindrop_trace(point, direction = "down")
```

Arguments

```
point sfc POINT including crs as created by: sf::st_sfc(sf::st_point(..,..), crs)

direction character "up", "down", or "none". Controls the portion of the split flowline that is returned along with the raindrop trace line.
```

Value

sf data.frame containing raindrop trace and requested portion of flowline.

Examples

```
point <- sf::st_sfc(sf::st_point(x = c(-89.2158, 42.9561)), crs = 4326)

(trace <- get_raindrop_trace(point))

if(inherits(trace, "sf")) {
   bbox <- sf::st_bbox(trace) + c(-0.005, -0.005, 0.005, 0.005)

nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)

plot(sf::st_transform(sf::st_sfc(point, crs = 4326), 3857), add = TRUE)
   plot(sf::st_transform(sf::st_geometry(trace)[1], 3857), add = TRUE, col = "red")
   plot(sf::st_transform(sf::st_geometry(trace)[2], 3857), add = TRUE, col = "black")
}</pre>
```

get_sorted

Get Sorted Network

Description

given a tree with an id and toid in the first and second columns, returns a sorted and potentially split set of output.

Can also be used as a very fast implementation of upstream with tributaries navigation. The full network from each outlet is returned in sorted order.

get_split_catchment 41

Usage

```
get_sorted(x, split = FALSE, outlets = NULL)
```

Arguments

x data.frame with an identifier and to identifier in the first and second columns.

split logical if TRUE, the result will be split into independent networks identified by

the id of their outlet. The outlet id of each independent network is added as a

"terminalID" attribute.

outlets same as id in x; if specified only the network emanating from these outlets will

be considered and returned.

Value

data.frame containing a topologically sorted version of the requested network and optionally a terminal id.

Examples

```
get_split_catchment Get split catchment
```

Description

Uses a catchment splitting web service to retrieve the portion of a catchment upstream of the point provided.

Usage

```
get_split_catchment(point, upstream = TRUE)
```

42 get_split_catchment

Arguments

```
point scf POINT including crs as created by: sf::st_sfc(sf::st_point(..,..), crs).

upstream logical If TRUE, the entire drainage basin upstream of the point provided is returned in addition to the local catchment.
```

Details

This service works within the coterminous US NHDPlusV2 domain. If the point provided falls on an NHDPlusV2 flowline as retrieved from get_raindrop_trace the catchment will be split across the flow line. IF the point is not along the flowline a small sub catchment will typically result. As a result, most users of this function will want to use get_raindrop_trace prior to calls to this function.

An attempt is made to eliminate polygon shards if they exist in the output. However, there is a chance that this function will return a multipolygon data.frame.

Value

sf data.frame containing the local catchment, the split portion and optionally the total drainage basin.

```
point <- sf::st_sfc(sf::st_point(x = c(-89.2158, 42.9561)), crs = 4326)
trace <- get_raindrop_trace(point)</pre>
if(inherits(trace, "sf")) {
(snap_point <- sf::st_sfc(sf::st_point(trace$intersection_point[[1]]),</pre>
                          crs = 4326))
(catchment <- get_split_catchment(snap_point))</pre>
bbox <- sf::st_bbox(catchment) + c(-0.005, -0.005, 0.005, 0.005)
nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)
plot(sf::st_transform(sf::st_geometry(catchment)[2], 3857), add = TRUE, col = "black")
plot(sf::st_transform(sf::st_geometry(catchment)[1], 3857), add = TRUE, col = "red")
plot(sf::st_transform(sf::st_sfc(point, crs = 4326), 3857), add = TRUE, col = "white")
(catchment <- get_split_catchment(snap_point, upstream = FALSE))</pre>
bbox <- sf::st_bbox(catchment) + c(-0.005, -0.005, 0.005, 0.005)
nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)
plot(sf::st_transform(sf::st_geometry(catchment)[1], 3857), add = TRUE, col = "red")
plot(sf::st_transform(sf::st_geometry(catchment)[2], 3857), add = TRUE, col = "black")
plot(sf::st\_transform(sf::st\_sfc(point, crs = 4326), 3857), add = TRUE, col = "white")
```

get_streamlevel 43

```
pour_point <- sf::st_sfc(sf::st_point(x = c(-89.25619, 42.98646)), crs = 4326)

(catchment <- get_split_catchment(pour_point, upstream = FALSE))

bbox <- sf::st_bbox(catchment) + c(-0.005, -0.005, 0.005, 0.005)

nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)

plot(sf::st_transform(sf::st_geometry(catchment)[1], 3857), add = TRUE, col = "red")
plot(sf::st_transform(sf::st_geometry(catchment)[2], 3857), add = TRUE, col = "black")
plot(sf::st_transform(sf::st_sfc(pour_point, crs = 4326), 3857), add = TRUE, col = "white")
}</pre>
```

get_streamlevel

Get Streamlevel

Description

Applies a topological sort and calculates stream level. Algorithm: Terminal level paths are assigned level 1 (see note 1). Paths that terminate at a level 1 are assigned level 2. This pattern is repeated until no paths remain.

If a TRUE/FALSE coastal attribute is included, coastal terminal paths begin at 1 and internal terminal paths begin at 4 as is implemented by the NHD stream leveling rules.

Usage

```
get_streamlevel(x)
```

Arguments

Χ

data.frame with levelpathi, dnlevelpat, and optionally a coastal flag. If no coastal flag is included, all terminal paths are assumed to be coastal.

Value

numeric stream order in same order as input

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))
test_flowline <- data.frame(
levelpathi = walker_flowline$LevelPathI,
dnlevelpat = walker_flowline$DnLevelPat)
test_flowline$dnlevelpat[1] <- 0</pre>
```

44 get_streamorder

```
(level <- get_streamlevel(test_flowline))
walker_flowline$level <- level
plot(sf::st_geometry(walker_flowline), lwd = walker_flowline$level, col = "blue")
test_flowline$coastal <- rep(FALSE, nrow(test_flowline))
(level <- get_streamlevel(test_flowline))
test_flowline$coastal[!test_flowline$dnlevelpat %in% test_flowline$levelpathi] <- TRUE
(level <- get_streamlevel(test_flowline))</pre>
```

get_streamorder

Get Streamorder

Description

Applies a topological sort and calculates strahler stream order. Algorithm: If more than one upstream flowpath has an order equal to the maximum upstream order then the downstream flowpath is assigned the maximum upstream order plus one. Otherwise it is assigned the max upstream order.

Usage

```
get_streamorder(x, status = TRUE)
```

Arguments

x data.frame with dendritic ID and toID columns.

status logical show progress update messages?

Value

numeric stream order in same order as input

```
source(system.file("extdata", "walker_data.R", package = "nhdplusTools"))
test_flowline <- prepare_nhdplus(walker_flowline, 0, 0, FALSE)

test_flowline <- data.frame(
    ID = test_flowline$COMID,
    toID = test_flowline$toCOMID)

(order <- get_streamorder(test_flowline))
walker_flowline$order <- order</pre>
```

get_terminal 45

```
plot(sf::st_geometry(walker_flowline), lwd = walker_flowline$order, col = "blue")
```

get_terminal

Get Terminal ID (DEPRECATED)

Description

Get the ID of the basin outlet for each flowline. This function has been deprecated in favor of get_sorted.

Usage

```
get_terminal(x, outlets)
```

Arguments

x two column data.frame with IDs and toIDs. Names are ignored.

outlets IDs of outlet flowlines

Value

data.frame containing the terminal ID for each outlet

46 get_tocomid

get_tocomid

Get tocomid

Description

Given flowlines with fromnode and tonode attributes, will return a toid attribute that is the result of joining tonode and fromnode attributes. In the case that a terminalpa attribute is included, the join is executed by terminalpa group. This is done grouped by terminalpathID because duplicate node ids have been encountered across basins in some datasets. If 'remove_coastal' is 'TRUE' (the default) either ftype or fcode are required. Uses the add_toids function.

Usage

```
get_tocomid(
   x,
   return_dendritic = TRUE,
   missing = 0,
   remove_coastal = TRUE,
   add = TRUE
)
```

Arguments

Х

data.frame with comid, tonode, fromnode, and (optionally) divergence and terminalpa attributes.

return_dendritic

logical if TRUE, a divergence attribute is required (2 indicates diverted path, 1 is main) and diverted paths will be treated as headwaters. If this is FALSE, the return value is a data.frame including the comid and tocomid attributes.

missing integer

integer value to use for terminal nodes.

remove_coastal

logical remove coastal features prior to generating tocomid values? ftype or fcode are required if 'TRUE'. fcode == 56600 or fcode == "Coastline" will be

removed.

add

logical if TRUE, a tocomid column will be added, otherwise a data.frame with two columns will be returned.

Value

data.frame containing comid and tocomid attributes or all attributes provided with comid and tocomid in the first and second columns..

```
source(system.file("extdata", "sample_flines.R", package = "nhdplusTools"))
tocomid <- get_tocomid(sample_flines)</pre>
```

get_UM 47

```
tocomid <- get_tocomid(sample_flines, return_dendritic = FALSE)</pre>
```

get_UM Navigate Upstream Mainstem

Description

Traverse NHDPlus network upstream main stem

Usage

```
get_UM(network, comid, distance = NULL, sort = FALSE, include = TRUE)
```

Arguments

network	data.frame NHDPlus flowlines including at a minimum: COMID,Pathlength, LevelPathI, and Hydroseq.
comid	integer identifier to start navigating from.
distance	numeric distance in km to limit how many COMIDs are
sort	if TRUE, the returned COMID vector will be sorted in order of distance from the input COMID (nearest to farthest)
include	if TRUE, the input COMID will be included in the returned COMID vector returned. The COMID that exceeds the distance specified is returned.

Value

integer vector of all COMIDs upstream of the starting COMID along the mainstem

48 get_vaa

get_UT

Navigate Upstream with Tributaries

Description

Traverse NHDPlus network upstream with tributaries

Usage

```
get_UT(network, comid, distance = NULL)
```

Arguments

network data.frame NHDPlus flowlines including at a minimum: COMID, Pathlength,

LENGTHKM, and Hydroseq.

comid integer Identifier to start navigating from.

distance numeric distance in km to limit how many COMIDs are returned. The COMID

that exceeds the distance specified is returned.

Value

integer vector of all COMIDs upstream with tributaries of the starting COMID.

Examples

get_vaa

NHDPlusV2 Attribute Subset

Description

Return requested NHDPlusV2 Attributes.

get_vaa 49

Usage

```
get_vaa(
  atts = NULL,
  path = get_vaa_path(),
  download = TRUE,
  updated_network = FALSE
)
```

Arguments

atts character The variable names you would like, always includes comid

path character path where the file should be saved. Default is a persistent system data

as retrieved by nhdplusTools_data_dir. Also see: get_vaa_path

download logical if TRUE, the default, will download VAA table if not found at path.

updated_network

logical default FALSE. If TRUE, updated network attributes from E2NHD and

National Water Model retrieved from doi:10.5066/P976XCVT.

Details

The VAA data is a aggregate table of information from the NHDPlusV2 elevslope.dbf(s), PlusFlow-lineVAA.dbf(s); and NHDFlowlines. All data originates from the EPA NHDPlus Homepage here. To see the location of cached data on your machine use get_vaa_path. To view aggregate data and documentation, see here

Value

data.frame containing requested VAA data

```
## Not run:
# This will download the vaa file to the path from get_vaa_path()
get_vaa("slope")
get_vaa(c("slope", "lengthkm"))
get_vaa(updated_network = TRUE)
get_vaa("reachcode", updated_network = TRUE)
#cleanup if desired
unlink(dirname(get_vaa_path()), recursive = TRUE)
## End(Not run)
```

get_vaa_names

get_vaa_names

Available NHDPlusV2 Attributes

Description

Find variables available from the NHDPlusV2 attribute data.frame

Usage

```
get_vaa_names(updated_network = FALSE)
```

Arguments

```
updated_network
```

logical default FALSE. If TRUE, updated network attributes from E2NHD and National Water Model retrieved from doi:10.5066/P976XCVT.

Details

The VAA data is a aggregate table of information from the NHDPlusV2 elevslope.dbf(s), PlusFlow-lineVAA.dbf(s); and NHDFlowlines. All data originates from the EPA NHDPlus Homepage here. To see the location of cached data on your machine use get_vaa_path. To view aggregate data and documentation, see here

Value

character vector

```
## Not run:
# This will download the vaa file to the path from get_vaa_path()
get_vaa_names()

#cleanup if desired
unlink(dirname(get_vaa_path()), recursive = TRUE)

## End(Not run)
```

get_vaa_path 51

get_vaa_path

File path to value added attribute (vaa) Cache

Description

nhdplusTools will download and cache an 'fst' file with NHDPlusV2 attribute data sans geometry. This function returns the file path to the cached file. Will use the user data dir indicated by nhdplusTools_data_dir.

Usage

```
get_vaa_path(updated_network = FALSE)
```

Arguments

updated_network

logical default FALSE. If TRUE, returns path to updated network parameters. See get vaa for more.

Details

The VAA data is a aggregate table of information from the NHDPlusV2 elevslope.dbf(s), PlusFlow-lineVAA.dbf(s); and NHDFlowlines. All data originates from the EPA NHDPlus Homepage here. To see the location of cached data on your machine use get_vaa_path. To view aggregate data and documentation, see here

Value

character file path

Examples

```
get_vaa_path()
get_vaa_path(updated_network = TRUE)
```

get_waterbodies

Find NHDPlusV2 Water Bodies

Description

Subsets NHDPlusV2 waterbody features by location (POINT), area (POLYGON), or set of IDs. See download_nhdplusv2 for source data documentation.

52 get_waterbody_index

Usage

```
get_waterbodies(AOI = NULL, id = NULL, t_srs = NULL, buffer = 0.5)
```

Arguments

AOI	sf (MULTI)POINT or (MULTI)POLYGON. An 'area of interest' can be pro-
	vided as either a location (sf POINT) or area (sf POLYGON) in any Spatial
	Reference System.
id	NHD Waterbody COMID(s)

id NHD Waterbody COMID(s)

t_srs character (PROJ string or EPSG code) or numeric (EPSG code). A user specified

- target -Spatial Reference System (SRS/CRS) for returned objects. Will default

to the CRS of the input AOI if provided, and to 4326 for ID requests.

buffer numeric. The amount (in meters) to buffer a POINT AOI by for an extended

search. Default = 0.5

Details

The returned object(s) will have the same Spatial Reference System (SRS) as the input AOI. If a individual or set of IDs are used to query, then the default geoserver CRS of EPSG:4326 is preserved. In all cases, a user-defined SRS can be passed to t_srs which will override all previous SRS (either input or default). All buffer and distance operations are handled internally using in EPSG:5070 Albers Equal Area projection

Value

a simple features (sf) object

get_waterbody_index
Get Waterbody Index

Description

given an sf point geometry column, return waterbody id, and COMID of dominant artificial path

Usage

```
get_waterbody_index(waterbodies, points, flines = NULL, search_radius = NULL)
```

Arguments

waterbodies sf data.frame of type POLYGON or MULTIPOLYGON including COMID at-

tributes.

points sfc of type POINT

flines sf data.frame of type LINESTRING or MULTILINESTRING including CO-

MID, WBAREACOMI, and Hydroseq attributes

search_radius units class with a numeric value indicating how far to search for a waterbody

boundary in units of provided projection. Set units with set_units.

get_wb_outlet 53

Value

data.frame with two columns, COMID, in_wb_COMID, near_wb_COMID, near_wb_dist, and outlet_fline_COMID. Distance is in units of provided projection.

Examples

get_wb_outlet

Get Waterbody Outlet

Description

Get Waterbody Outlet

Usage

```
get_wb_outlet(lake_id, network)
```

Arguments

lake_id integer COMID (or character permanent identifier for hi res) of lake.

network data.frame of network features containing wbareacomi, and Hydroseq

Value

sf data.frame with single record of network COMID associated with most-downstream reach in the NHD Waterbody

```
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
fline <- sf::read_sf(sample_data, "NHDFlowline_Network")
wtbdy <- sf::read_sf(sample_data, "NHDWaterbody")</pre>
```

54 get_xs_point

```
lake_COMID <- wtbdy$COMID[wtbdy$GNIS_NAME=='Lake Mendota 254']
get_wb_outlet(13293262, fline)</pre>
```

get_xs_point

Get Cross Section From Point (experimental)

Description

Uses a cross section retrieval web services to retrieve a cross section given a point and specified width. Orientation is determined based on direction of a the flowline found near point. This function uses a 10m National Elevation Dataset request on the back end.

Usage

```
get_xs_point(point, width, num_pts)
```

Arguments

sfc POINT including crs as created by: sf::st_sfc(sf::st_point(...,..), crs)crs.

width Cross section width in meters.

num_pts numeric number of points to retrieve along the cross section.

Value

sf data.frame containing points retrieved.

```
point <- sf::st_sfc(sf::st_point(x = c(-105.97218, 36.17592)), crs = 4326)

(xs <- get_xs_point(point, 300, 100))

if(inherits(xs, "sf")) {

bbox <- sf::st_bbox(xs) + c(-0.005, -0.005, 0.005, 0.005)

nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)

plot(sf::st_transform(sf::st_geometry(xs), 3857), pch = ".", add = TRUE, col = "red")
plot(sf::st_transform(sf::st_sfc(point, crs = 4326), 3857), add = TRUE)

plot(xs$distance_m, xs$elevation_m)
}</pre>
```

get_xs_points 55

get_xs_points

Get Cross Section Endpoints (experimental)

Description

Uses a cross section retrieval web services to retrieve a cross section between two endpoints.

Usage

```
get_xs_points(point1, point2, num_pts, res = 1)
```

Arguments

```
point1 sfc POINT including crs as created by: sf::st_sfc(sf::st_point(.. ,..), crs)

point2 sfc POINT including crs.

num_pts numeric number of points to retrieve along the cross section.

res integer resolution of 3D Elevation Program data to request. Must be on of: 1, 3, 5, 10, 30, 60.
```

Value

sf data.frame containing points retrieved.

```
point1 <- sf::st_sfc(sf::st_point(x = c(-105.9667, 36.17602)), crs = 4326)
point2 <- sf::st_sfc(sf::st_point(x = c(-105.97768, 36.17526)), crs = 4326)

(xs <- get_xs_points(point1, point2, 100))

if(inherits(xs, "sf")) {

bbox <- sf::st_bbox(xs) + c(-0.005, -0.005, 0.005, 0.005)

nhdplusTools::plot_nhdplus(bbox = bbox, cache_data = FALSE)

plot(sf::st_transform(sf::st_geometry(xs), 3857), pch = ".", add = TRUE, col = "red")
plot(sf::st_transform(sf::st_sfc(point1, crs = 4326), 3857), add = TRUE)
plot(sf::st_transform(sf::st_sfc(point2, crs = 4326), 3857), add = TRUE)

plot(xs$distance_m, xs$elevation_m)
}</pre>
```

make_node_topology

get node topology from edge topology (DEPRECATED)

Description

creates a node topology table from an edge topology

Usage

```
make_node_topology(x, add_div = NULL, add = TRUE)
```

Arguments

x	data.frame with an identifier and to identifier in the first and second columns.
add_div	data.frame containing id and toid diverted paths to add. Should have id and toid fields in the first and second columns. Names are not used.
add	logical if TRUE, a tocomid column will be added, otherwise a data.frame with two columns will be returned.

Value

data.frame containing id, fromnode, and tonode attributes or all attributes provided with id, fromnode and tonode in the first three columns.

make_standalone 57

make_standalone

Make isolated NHDPlusHR region a standalone dataset

Description

Cleans up and prepares NHDPlusHR regional data for use as complete NHDPlus data. The primary modification applied is to ensure that any flowpath that exits the domain is labeled as a terminal path and attributes are propagated upstream such that the domain is independently complete.

Usage

```
make_standalone(flowlines)
```

Arguments

flowlines

sf data.frame of NHDPlusHR flowlines.

Value

sf data.frame containing standalone network

```
library(dplyr)
library(sf)
source(system.file("extdata/nhdplushr_data.R", package = "nhdplusTools"))
(outlet <- filter(hr_data$NHDFlowline, Hydroseq == min(Hydroseq)))</pre>
nrow(filter(hr_data$NHDFlowline, TerminalPa == outlet$Hydroseq))
hr_data$NHDFlowline <- make_standalone(hr_data$NHDFlowline)</pre>
(outlet <- filter(hr_data$NHDFlowline, Hydroseq == min(Hydroseq)))</pre>
nrow(filter(hr_data$NHDFlowline, TerminalPa == outlet$Hydroseq))
source(system.file("extdata/nhdplushr_data.R", package = "nhdplusTools"))
# Remove mainstem and non-dendritic stuff.
subset <- filter(hr_data$NHDFlowline,</pre>
                         StreamLeve > min(hr_data$NHDFlowline$StreamLeve) &
                           StreamOrde == StreamCalc)
subset <- subset_nhdplus(subset$COMID, nhdplus_data = hr_gpkg)$NHDFlowline
plot(sf::st_geometry(hr_data$NHDFlowline))
flowline_mod <- make_standalone(subset)</pre>
terminals <- unique(flowline_mod$TerminalPa)</pre>
```

58 map_nhdplus

```
colors <- sample(hcl.colors(length(terminals), palette = "Zissou 1"))
for(i in 1:length(terminals)) {
   fl <- flowline_mod[flowline_mod$TerminalPa == terminals[i], ]
   plot(st_geometry(fl), col = colors[i], lwd = 2, add = TRUE)
}
ol <- filter(flowline_mod, TerminalFl == 1 & TerminalPa %in% terminals)
plot(st_geometry(ol), lwd = 2, add = TRUE)</pre>
```

map_nhdplus

Make Interactive Map of NHDPlus

Description

Given a list of outlets, get their basin boundaries and network and return a leaflet map in EPSG:4326.

Usage

```
map_nhdplus(
  outlets = NULL,
  bbox = NULL,
  streamorder = NULL,
  nhdplus_data = NULL,
  gpkg = NULL,
  flowline_only = NULL,
  plot_config = NULL,
  overwrite = TRUE,
  cache_data = NULL,
  return_map = FALSE
)
```

Arguments

outlets list of nldi outlets. Other inputs are coerced into nldi outlets, see details. bbox object of class bbox with a defined crs. See examples. streamorder integer only streams of order greater than or equal will be returned nhdplus_data geopackage containing source nhdplus data (omit to download) path and file with .gpkg ending. If omitted, no file is written. gpkg flowline_only boolean only subset and plot flowlines only, default=FALSE plot_config list containing plot configuration, see details. passed on the subset_nhdplus. overwrite

map_nhdplus 59

cache_data	character path to rds file where all plot data can be cached. If file doesn't exist,
	it will be created. If set to FALSE, all caching will be turned off – this includes
	basemap tiles.
return_map	if FALSE (default), a data.frame of plot data is returned invisibly in NAD83 Lat/Lon, if TRUE the leaflet object is returned

Details

map_nhdplus supports several input specifications. An unexported function "as_outlet" is used to convert the outlet formats as described below.

- 1. if outlets is omitted, the bbox input is required and all nhdplus data in the bounding box is plotted.
- 2. If outlets is a list of integers, it is assumed to be NHDPlus IDs (comids) and all upstream tributaries are plotted.
- 3. if outlets is an integer vector, it is assumed to be all NHDPlus IDs (comids) that should be plotted. Allows custom filtering.
- 4. If outlets is a character vector, it is assumed to be NWIS site ids.
- 5. if outlets is a list containing only characters, it is assumed to be a list of nldi features and all upstream tributaries are plotted.
- 6. if outlets is a data.frame with point geometry, a point in polygon match is performed and upstream with tributaries from the identified catchments is plotted.

See plot_nhdplus for details on plot configuration.

Value

data.frame or leaflet map (see return_map)

```
map_nhdplus("05428500")
map_nhdplus("05428500", streamorder = 2)
map_nhdplus(list(13293970, 13293750))
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
map_nhdplus(list(13293970, 13293750), streamorder = 3, nhdplus_data = sample_data)
#return leaflet object
map_nhdplus("05428500", return_map = TRUE)
```

60 navigate_network

Description

Provides a full feature network navigation function that will work with local or web service data. Parameter details provide context.

Usage

```
navigate_network(
   start,
   mode = "UM",
   network = NULL,
   output = "flowlines",
   distance_km = 10,
   trim_start = FALSE,
   trim_stop = FALSE,
   trim_tolerance = 5
)
```

Arguments

start list, integer, sf, or sfc if list must be a valid NLDI feature if integer must be a

valid comid. If sf, must contain a "comid" field.

mode character chosen from c(UM, DM, UT, or DD)

network sf should be compatible with network navigation functions If NULL, network

will be derived from requests to the NLDI

output character flowline or a valid NLDI data source

distance_km numeric distance to navigate in km

trim_start logical should start be trimmed or include entire catchment?

trim_stop logical should stop(s) be trimmed or include entire catchment(s)? # Not sup-

ported

trim_tolerance numeric from 0 to 100 percent of flowline length. If amount to trim is less than

this tolerance, no trim will be applied.

navigate_nldi 61

navigate_nldi

Navigate NLDI

Description

Navigate the Network Linked Data Index network.

Usage

```
navigate_nldi(
  nldi_feature,
  mode = "upstreamMain",
  data_source = "flowlines",
  distance_km = 10
)
```

Arguments

nldi_feature list with names 'featureSource' and 'featureID' where 'featureSource' is derived from the "source" column of the response of get_nldi_sources and the

'featureID' is a known identifier from the specified 'featureSource'.

mode character chosen from ("UM", "UT", DM", "DD"). See examples.

data_source character chosen from "source" column of the response of get_nldi_sources or

empty string for flowline geometry.

distance_km numeric distance in km to stop navigating.

Value

sf data.frame with result

Examples

```
library(sf)
library(dplyr)
nldi_nwis <- list(featureSource = "nwissite", featureID = "USGS-05428500")</pre>
navigate_nldi(nldi_feature = nldi_nwis,
              mode = "upstreamTributaries")$UT %>%
  st_geometry() %>%
  plot()
navigate_nldi(nldi_feature = nldi_nwis,
              mode = "UM")$UM %>%
  st_geometry() %>%
  plot(col = "blue", add = TRUE)
nwissite <- navigate_nldi(nldi_feature = nldi_nwis,</pre>
                           mode = "UT",
                           data_source = "nwissite")$UT_nwissite
st_geometry(nwissite) %>%
  plot(col = "green", add = TRUE)
nwissite
```

Description

Provides an interface to adjust nhdplusTools 'memoise' cache.

Mode and timeout can also be set using environment variables. 'NHDPLUSTOOLS_MEMOISE_CACHE' and 'NHDPLUSTOOLS_MEMOISE_TIMEOUT' are used unless overriden with this function.

Usage

```
nhdplusTools_cache_settings(mode = NULL, timeout = NULL)
```

Arguments

mode character 'memory' or 'filesystem'

timeout numeric number of seconds until caches invalidate

nhdplusTools_data_dir

Value

list containing settings at time of calling. If inputs are NULL, current settings. If settings are altered, previous setting values.

Description

if left unset, will return the user data dir as returned by 'tools::R_user_dir' for this package.

Usage

```
nhdplusTools_data_dir(dir = NULL)
```

Arguments

dir

path of desired data directory

Value

character path of data directory (silent when setting)

Examples

```
nhdplusTools_data_dir()
nhdplusTools_data_dir("demo")
nhdplusTools_data_dir(tools::R_user_dir("nhdplusTools"))
```

nhdplus_path

NHDPlus Data Path

Description

Allows specification of a custom path to a source dataset. Typically this will be the national seamless dataset in geodatabase or geopackage format.

Usage

```
nhdplus_path(path = NULL, warn = FALSE)
```

plot_nhdplus

Arguments

path character path ending in .gdb or .gpkg
warn boolean controls whether warning an status messages are printed

Value

0 (invisibly) if set successfully, character path if no input.

Examples

```
nhdplus_path("/data/NHDPlusV21_National_Seamless.gdb")
nhdplus_path("/data/NHDPlusV21_National_Seamless.gdb", warn=FALSE)
nhdplus_path()
```

plot_nhdplus

Plot NHDPlus

Description

Given a list of outlets, get their basin boundaries and network and return a plot in EPSG:3857 Web Mercator Projection.

Usage

```
plot_nhdplus(
  outlets = NULL,
  bbox = NULL,
  streamorder = NULL,
  nhdplus_data = NULL,
  gpkg = NULL,
  plot_config = NULL,
  basemap = "Esri.NatGeoWorldMap",
  zoom = NULL,
  add = FALSE,
  actually_plot = TRUE,
  overwrite = TRUE,
  flowline_only = NULL,
  cache_data = NULL
)
```

plot_nhdplus 65

Arguments

outlets list of nldi outlets. Other inputs are coerced into nldi outlets, see details.

bbox object of class bbox with a defined crs. See examples.

streamorder integer only streams of order greater than or equal will be returned nhdplus_data geopackage containing source nhdplus data (omit to download) path and file with .gpkg ending. If omitted, no file is written.

plot_config list containing plot configuration, see details.

basemap character indicating which basemap type to use. Chose from: get_tiles.

zoom integer passed on to get_tiles. This value will override the default set by the

package.

add boolean should this plot be added to an already built map.

actually_plot boolean actually draw the plot? Use to get data subset only.

overwrite passed on the subset_nhdplus.

flowline_only boolean only subset and plot flowlines only, default=FALSE

cache_data character path to rds file where all plot data can be cached. If file doesn't exist,

it will be created. If set to FALSE, all caching will be turned off – this includes

basemap tiles.

Details

plot_nhdplus supports several input specifications. An unexported function "as_outlet" is used to convert the outlet formats as described below.

- 1. if outlets is omitted, the bbox input is required and all nhdplus data in the bounding box is plotted.
- 2. If outlets is a list of integers, it is assumed to be NHDPlus IDs (comids) and all upstream tributaries are plotted.
- 3. if outlets is an integer vector, it is assumed to be all NHDPlus IDs (comids) that should be plotted. Allows custom filtering.
- 4. If outlets is a character vector, it is assumed to be NWIS site ids.
- 5. if outlets is a list containing only characters, it is assumed to be a list of nldi features and all upstream tributaries are plotted.
- 6. if outlets is a data.frame with point geometry, a point in polygon match is performed and upstream with tributaries from the identified catchments is plotted.

The plot_config parameter is a list with names "basin", "flowline", "outlets", "network_wtbd", and "off_network_wtbd". The following shows the defaults that can be altered.

1. basin

```
list(lwd = 1, col = NA, border = "black")
```

2. flowline

```
list(lwd = 1, col = "blue")
```

66 plot_nhdplus

3. outlets

If adding additional layers to the plot, data must be projected to EPSG:3857 with 'sf::st_transform(x, 3857)' prior to adding to the plot.

Value

data.frame plot data is returned invisibly in NAD83 Lat/Lon.

```
options("rgdal_show_exportToProj4_warnings"="none")
# Beware plot_nhdplus caches data to the default location.
# If you do not want data in "user space" change the default.
old_dir <- nhdplusTools::nhdplusTools_data_dir()</pre>
nhdplusTools_data_dir(tempdir())
plot_nhdplus("05428500")
plot_nhdplus("05428500", streamorder = 2)
plot_nhdplus(list(13293970, 13293750))
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
plot_nhdplus(list(13293970, 13293750), streamorder = 3, nhdplus_data = sample_data)
plot_nhdplus(list(list("comid", "13293970"),
                  list("nwissite", "USGS-05428500"),
list("huc12pp", "070900020603"),
                  list("huc12pp", "070900020602")),
             streamorder = 2,
             nhdplus_data = sample_data)
plot_nhdplus(sf::st_as_sf(data.frame(x = -89.36083,
                                     y = 43.08944),
                           coords = c("x", "y"), crs = 4326),
             streamorder = 2,
             nhdplus_data = sample_data)
plot_nhdplus(list(list("comid", "13293970"),
                  list("nwissite", "USGS-05428500"),
                  list("huc12pp", "070900020603"),
                  list("huc12pp", "070900020602")),
```

prepare_nhdplus 67

```
streamorder = 2,
             nhdplus_data = sample_data,
             plot_config = list(basin = list(lwd = 2),
                                 outlets = list(huc12pp = list(cex = 1.5),
                                                comid = list(col = "green"))))
bbox \leftarrow sf::st_bbox(c(xmin = -89.43, ymin = 43, xmax = -89.28, ymax = 43.1),
                    crs = "+proj=longlat +datum=WGS84 +no_defs")
fline <- sf::read_sf(sample_data, "NHDFlowline_Network")</pre>
comids <- nhdplusTools::get_UT(fline, 13293970)</pre>
plot_nhdplus(comids)
#' # With Local Data
plot_nhdplus(bbox = bbox, nhdplus_data = sample_data)
# With downloaded data
plot_nhdplus(bbox = bbox, streamorder = 3)
# Can also plot on top of the previous!
plot_nhdplus(bbox = bbox, nhdplus_data = sample_data,
             plot_config = list(flowline = list(lwd = 0.5)))
plot_nhdplus(comids, nhdplus_data = sample_data, streamorder = 3, add = TRUE,
             plot_config = list(flowline = list(col = "darkblue")))
nhdplusTools::nhdplusTools_data_dir(old_dir)
```

prepare_nhdplus

Prep NHDPlus Data

Description

Function to prep NHDPlus data for use by nhdplusTools functions

Usage

```
prepare_nhdplus(
   flines,
   min_network_size = 0,
   min_path_length = 0,
   min_path_size = 0,
   purge_non_dendritic = TRUE,
   warn = TRUE,
   error = TRUE,
   skip_toCOMID = FALSE,
   align_names = TRUE
)
```

Arguments

flines data.frame NHDPlus flowlines including: COMID, LENGTHKM, FTYPE (or

FCODE), TerminalFl, FromNode, ToNode, TotDASqKM, StartFlag, StreamOrde,

StreamCalc, TerminalPa, Pathlength, and Divergence variables.

min_network_size

numeric Minimum size (sqkm) of drainage network to include in output.

min_path_length

numeric Minimum length (km) of terminal level path of a network.

min_path_size numeric Minimum size (sqkm) of outlet level path of a drainage basin. Drainage

basins with an outlet drainage area smaller than this will be removed.

purge_non_dendritic

logical Should non dendritic paths be removed or not.

warn logical controls whether warning an status messages are printed

error logical controls whether to return potentially invalid data with a warning rather

than an error

skip_toCOMID logical if TRUE, toCOMID will not be added to output.

align_names logical

Value

data.frame ready to be used with the refactor_flowlines function.

Examples

rescale_catchment_characteristics

Rescale Catchment Characteristics

Description

Given catchment characteristics to retrieve or process will aggregate and / or split the characteristics according to a lookup table.

Usage

```
rescale_catchment_characteristics(
  vars,
  lookup_table,
  refactored_areas = NULL,
  catchment_characteristics = NULL,
  catchment_areas = NULL
)
```

Arguments

vars

data.frame containing 'characteristic_id' retrieved from get_characteristics_metadata and 'summary_statistic' indicating which summary statistic should be applied to rescale each characteristic. Accepted values are "sum," "length_weighted_mean," "area_weighted_mean," "min," and "max."

lookup_table

data.frame containing 'id' numeric vector of identifiers at the desired scale; "co-mid" is a numeric vector of NHDPlusV2 identifiers; "member_comid" contains formatted NHDPlusV2 COMIDs indicating that the catchments in question need to be split. If catchments have not been split, the columns "comid" and "member_comid" should be identical.

refactored_areas

data.frame containing columns "featureid" and "areasqkm." Used to retrieve adjusted catchment areas in the case of split catchments. If not provided, either no split catchments can be considered or the 'catchment_areas' parameter is required.

catchment_characteristics

data.frame containing columns "characteristic_id", "comid", "characteristic_value", and "percent_nodata". If not provided, it will be retrieved from get_catchment_characteristics using the characteristic ids from 'vars' and the comids from 'lookup_table'.

catchment_areas

data.frame containing columns "comid", "areasqkm", "split_catchment_areasqkm", and "split_area_prop". If not provided, it will be retrieved from 'refactored_areas' and/or get_vaa.

Details

NOTE: Since this algorithm works on catchment characteristics that are spatial averages, when splitting, the average condition is apportioned evenly to each split. In some cases, such as with land cover or elevation, this may not be appropriate and source data should be used to derive new characteristics. In addition, this function handles catchment areas for split catchments but makes no adjustments for the length of flowlines in those catchments. Therefore, requests for length-weighted mean values may not be appropriate when working with split catchments.

70 subset_nhdplus

```
comid = c(4146596, 4147382),
                                                                                                 member_comid = c(4146596, 4147382))
 rescale_catchment_characteristics(vars, lookup_table)
 vars <- data.frame(characteristic_id = c("CAT_ELEV_MIN","CAT_ELEV_MAX"),</pre>
                                                                    summary_statistic = c("min","max"))
lookup_table <- data.frame(id = rep(10012268, 2),</pre>
                                                                                                comid = c(4146596, 4147382),
                                                                                                member_comid = c(4146596, 4147382))
 rescale_catchment_characteristics(vars, lookup_table)
vars <- data.frame(characteristic_id = c("CAT_EWT","CAT_TWI", "CAT_BASIN_AREA"),</pre>
                                                           summary_statistic = c("area_weighted_mean", "area_weighted_mean", "sum"))
 lookup_table <- data.frame(id = c(10012268, 10012268, 10024047, 10024048),
                                                                                                 comid = c(4146596, 4147382, 4147396, 4147396),
\label{eq:comid_areas} \text{member\_comid} = \text{c("4146596", "4147382", "4147396.1", "4147396.2"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1", "4147396.2"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1", "4147396.2"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1", "4147396.2"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1", "4147396.2"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1", "4147396.1"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1"))} \\ \text{comid\_areas} <- \text{data.frame(featureid} = \text{c("4146596", "4147382", "4147396.1"))} \\ \text{comid\_areas} <- \text{data.frame(featureid)} \\ \text{c("4146596", "4147382", "4147396.1")} \\ \text{c("4146596", "4147396.1")} \\ \text{c("4146696", "4147496.1")} \\ \text{c("414
                                                                                                               areasqkm = c(0.9558, 11.9790, 6.513294, 1.439999))
 rescale_catchment_characteristics(vars, lookup_table, refactored_areas = comid_areas)
```

rpu_boundaries

RPU Boundaries Raster Processing Unit boundaries

Description

RPU Boundaries Raster Processing Unit boundaries

Usage

rpu_boundaries

Format

An object of class "sf"

subset_nhdplus

Subset NHDPlus

Description

Saves a subset of the National Seamless database or other nhdplusTools compatible data based on a specified collection of COMIDs. This function uses get_nhdplus for the "download" data source but returns data consistent with local data subsets in a subset file.

subset_nhdplus 71

Usage

```
subset_nhdplus(
  comids = NULL,
  output_file = NULL,
  nhdplus_data = NULL,
  bbox = NULL,
  simplified = TRUE,
  overwrite = FALSE,
  return_data = TRUE,
  status = TRUE,
  flowline_only = NULL,
  streamorder = NULL,
  out_prj = 4269
)
```

Arguments

comids	integer vector of COMIDs to include.
output_file	character path to save the output to defaults to the directory of the nhdplus_data.
nhdplus_data	character path to the .gpkg or .gdb containing the national seamless database, a subset of NHDPlusHR, or "download" to use a web service to download NHD-PlusV2.1 data. Not required if nhdplus_path has been set or the default has been adopted. See details for more.
bbox	object of class "bbox" as returned by sf::st_bbox in Latitude/Longitude. If no CRS is present, will be assumed to be in WGS84 Latitude Longitude.
simplified	boolean if TRUE (the default) the CatchmentSP layer will be included. Not relevant to the "download" option or NHDPlusHR data.
overwrite	boolean should the output file be overwritten
return_data	boolean if FALSE path to output file is returned silently otherwise data is returned in a list.
status	boolean should the function print status messages
flowline_only	boolean WARNING: experimental if TRUE only the flowline network and attributes will be returned
streamorder	integer only streams of order greater than or equal will be downloaded. Not implemented for local data.
out_prj	character override the default output CRS of NAD83 lat/lon (EPSG:4269)

Details

This function relies on the National Seamless Geodatabase or Geopackage. It can be downloaded here

The "download" option of this function should be considered preliminary and subject to revision. It does not include as many layers and may not be available permanently.

72 subset_nhdplus

Value

character path to the saved subset geopackage

```
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
nhdplus_path(sample_data)
sample_flines <- sf::st_zm(sf::read_sf(nhdplus_path(), "NHDFlowline_Network"))</pre>
plot(sf::st_geometry(sample_flines),
     1wd = 3)
start_point <- sf::st_sfc(sf::st_point(c(-89.362239, 43.090266)),
                           crs = 4326)
plot(start_point, cex = 1.5, lwd = 2, col = "red", add = TRUE)
start_comid <- discover_nhdplus_id(start_point)</pre>
comids <- get_UT(sample_flines, start_comid)</pre>
plot(sf::st_geometry(dplyr::filter(sample_flines, COMID %in% comids)),
     add=TRUE, col = "red", lwd = 2)
output_file <- tempfile(fileext = ".gpkg")</pre>
subset_nhdplus(comids = comids,
               output_file = output_file,
               nhdplus_data = sample_data,
               overwrite = TRUE,
               status = TRUE)
sf::st_layers(output_file)
catchment <- sf::read_sf(output_file, "CatchmentSP")</pre>
plot(sf::st_geometry(catchment), add = TRUE)
waterbody <- sf::read_sf(output_file, "NHDWaterbody")</pre>
plot(sf::st_geometry(waterbody),
     col = rgb(0, 0, 1, alpha = 0.5), add = TRUE)
# Cleanup temp
unlink(output_file)
# Download Option:
subset_nhdplus(comids = comids,
               output_file = output_file,
```

subset_rpu 73

```
nhdplus_data = "download",
               overwrite = TRUE,
               status = TRUE, flowline_only = FALSE)
sf::st_layers(output_file)
# NHDPlusHR
source(system.file("extdata/nhdplushr_data.R", package = "nhdplusTools"))
up_ids <- get_UT(hr_data$NHDFlowline, 15000500028335)</pre>
sub_gpkg <- file.path(work_dir, "sub.gpkg")</pre>
sub_nhdhr <- subset_nhdplus(up_ids, output_file = sub_gpkg,</pre>
                             nhdplus_data = hr_gpkg, overwrite = TRUE)
sf::st_layers(sub_gpkg)
names(sub_nhdhr)
plot(sf::st_geometry(hr_data$NHDFlowline), lwd = 0.5)
plot(sf::st_geometry(sub_nhdhr$NHDFlowline), lwd = 0.6, col = "red", add = TRUE)
unlink(output_file)
unlink(sub_gpkg)
```

subset_rpu

Subset by Raster Processing Unit

Description

Given flowlines and an rpu_code, performs a network-safe subset such that the result can be used in downstream processing. Has been tested to work against the entire NHDPlusV2 domain and satisfies a number of edge cases.

Usage

```
subset_rpu(fline, rpu, run_make_standalone = TRUE, strict = FALSE)
```

Arguments

fline

sf data.frame NHD Flowlines with comid, pathlength, lengthkm, hydroseq, levelpathi, rpuid, and arbolatesu (dnhydroseq is required if tocomid is not provided).

rpu character e.g. "01a"

run_make_standalone

logical default TRUE should the run_make_standalone function be run on result?

74 subset_vpu

strict

logical if TRUE, paths that extend outside the RPU but have no tributaries in the upstream RPU will be included in the output.

Value

data.frame containing subset network

Examples

```
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
sample_flines <- sf::read_sf(sample_data, "NHDFlowline_Network")</pre>
subset_rpu(sample_flines, rpu = "07b")
```

subset_vpu

Subset by Vector Processing Unit

Description

Calls subset_rpu for all raster processing units for the requested vector processing unit.

Usage

```
subset_vpu(fline, vpu, include_null_rpuid = TRUE, run_make_standalone = TRUE)
```

Arguments

fline

sf data.frame NHD Flowlines with comid, pathlength, lengthkm, hydroseq, levelpathi, rpuid, vpuid, and arbolatesu (dnhydroseq is required if tocomid is not

provided).

character e.g. "01"

include_null_rpuid

logical default TRUE. Note that there are some flowlines that may have a NULL

rpuid but be included in the vector processing unit.

run_make_standalone

logical default TRUE should the run_make_standalone function be run on result?

Value

data.frame containing subset network

vpu_boundaries 75

Examples

```
source(system.file("extdata/sample_data.R", package = "nhdplusTools"))
sample_flines <- sf::read_sf(sample_data, "NHDFlowline_Network")
subset_vpu(sample_flines, "07")</pre>
```

vpu_boundaries

VPU Boundaries Vector Processing Unit boundaries

Description

VPU Boundaries Vector Processing Unit boundaries

Usage

vpu_boundaries

Format

An object of class "sf"

Index

* data	<pre>get_nldi_feature, 34</pre>
	get_nldi_reature, 34 get_nldi_index, 34
rpu_boundaries, 70 vpu_boundaries, 75	get_nldi_sources, 9, 33, 34, 61
vpu_boundaries, 75	
add_plus_network_attributes, 3	get_nwis, 35
add_toids, 46	get_path_lengths, 36
	get_path_members, 37
adist, 7	get_pathlength, 36
align_nhdplus_names,4	get_pfaf, 38
calculate ambalate cum 5	get_raindrop_trace, 9, 39, 42
calculate_arbolate_sum, 5	get_sorted, 40
calculate_total_drainage_area, 6	get_split_catchment, 41
disambiguate_flowline_indexes, 7	get_streamlevel, 43
_	get_streamorder, 44
discover_geoconnex_reference, 8, 24	get_terminal, 45
discover_nhdplus_id, 9	get_tiles,65
download_nhd, 9	get_tocomid, 46
download_nhdplushr, 10	get_UM, 47
download_nhdplusv2, 11, 26, 27, 51	get_UT, 48
download_rf1, 12	get_vaa, 48, <i>51</i> , <i>69</i>
download_vaa, 13	get_vaa_names, 50
download_wbd, 13	get_vaa_path, <i>13</i> , <i>49</i> – <i>51</i> , 51
mat 2 dlag 14	<pre>get_waterbodies, 51</pre>
get_3dhp, 14	<pre>get_waterbody_index, 52</pre>
get_boundaries, 16	<pre>get_wb_outlet, 53</pre>
get_catchment_characteristics, 17, 69	get_xs_point, 54
get_characteristics_metadata, 17, 17, 69	get_xs_points, 55
get_DD, 18	maka mada tanalagu 56
get_DM, 19	make_node_topology, 56 make_standalone, 31, 57
get_elev_along_path, 20	map_nhdplus, 58
get_flowline_index, 7, 21	map_maprus, 56
get_gagesII, 22	navigate_network, 60
get_geoconnex_reference, 23	navigate_nldi, 61
get_hr_data, 24, 32	nhdplus_path, 63, 71
get_huc, 10, 25	nhdplusTools_cache_settings, 62
get_levelpaths, 4, 26	nhdplusTools_data_dir, 13, 49, 51, 63
get_nhdarea, 27	/ / /
get_nhdphr, 28	plot_nhdplus, 59, 64
get_nhdplus, 30, 70	prepare_nhdplus, 67
get_nhdplushr, 24, 31	1 6 24
get_nldi_basin, 32	read_sf, <i>24</i>

INDEX 77

```
rescale_catchment_characteristics, 68 rpu_boundaries, 70 set_units, 52 st_crs, 25 st_layers, 25 subset_nhdplus, 58, 65, 70 subset_rpu, 73, 74 subset_vpu, 74 vpu_boundaries, 75
```