

Introduction

Besoins

- Remplacement des câbles par des liens sans fil et flexibilité
- Collecte de données issues de capteurs sans fil
- Suivi santé patient
- Monitoring de structures
- ...
- Autonomie énergétique
- Faible maintenance
- Faible coût

Bluetooth (IEEE 802.15.1)

Connectique sans fil

IEEE 802.15.4 / ZigBee Réseaux de capteurs sans fil

Sommaire

- 1.Introduction
- 2.Bluetooth
- 3.IEEE 802.15.4 / ZigBee
- 4.Conclusion

Bluetooth Origines et Objectifs

Famille des protocoles IEEE 802.15 pour les réseaux faible portée

- Remplacement des câbles par un lien sans fil pour la connexion faible distance
 - Souris, oreillette…
- Connectivité réseau
 - Synchronisation, partage d'accès...

<u>Unification</u> du moyen de communication entre les périphériques

Harald la Dent Bleue

<u>Unification</u> des royaumes du Danemark, de Suède et de Norvège au 10^e siècle

Bluetooth Origines et objectifs

Caractéristiques

- Faibles coûts et intégration importante
- Faible portée
- Econome en énergie
- Interopérabilité totale sans intervention extérieure

Architecture

Electronique et interopérabilité

Point de vue protocolaire

- Remplacement de liens variés
 - Série
 - Voix
- Formats
- Fonctionnalités réseau
- Contraintes temporelles et Qualité de Service

Classification des protocoles

Bluetooth Core

Baseband

LMP

L2CAP

SDP

Cable Replacement

RFCOMM

Telephony Control

TCS Binary

AT-commands

Adopted Protocols

PPP

UDP/TCP/IP

OBEX

WAP

vCard

vCal

IrMC

WAE

SDP: Service Discovery Protocol

L2CAP: Logical Link Control and Adaptation Protocol

LMP: Link Management Protocol

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device manager

Link Mgt Protocol

Baseband

Link controller

Bluetooth Couche physique

Caractéristiques

- Transmissions effectuées dans la bande ISM (Industrial, Scientific and Medical) 2.4GHz
 - FI= 2.400 GHz; Fh= 2.4835 GHz
- Canal découpé en 79 sous-canaux
 - Espacement entre les canaux : 1MHz
- Frequency Hopping Spread Spectrum
 - Sauts rapides de fréquence
 - Minimisation des interférences avec d'autres technologies utilisant la même bande de fréquence
 - WiFi, 802.15.4 DSSS…
 - Séquence de saut dépendant de l'adresse du nœud-maître
 - Séquence partagée avec les autres membres du réseau pour maintenir la communication
 - Un saut toute les 625 microsecondes => 1600 changements par seconde
 - Faible taille de paquets car la bande est bruitée (taux d'erreur important)

Couche physique

Le FHSS à la mode Bluetooth

- Quand un nœud en a le droit, il entame la conversation sur un slot pair.
- Les réponses lui parviennent sur un slot impair
- La trame peut occuper le médium pendant 1, 3 ou 5 slots
- Le saut de fréquence se fait entre deux transmissions
- Robustesse par rapport à une occupation statique du canal
 - Evitement de brouilleur bande étroite

Bluetooth Couche physique

Caractéristiques (suite)

- Classes de modules radio
 - Classe 1
 - 100mW
 - Portée: 100m
 - Classe 2
 - 2,5mW
 - Portée: 10m
 - Classe la plus répandue
 - Classe 3
 - 1mW
 - Portée: 1m

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device manager

Link Mgt Protocol

Baseband

Link controller

Bluetooth Bande de base et *Link Control*

Services fournis

- Création d'un lien radio entre deux nœuds
 - Etablissement de connexion
 - Synchronisation des horloges des nœuds
 - Synchronisation des séquences de saut de fréquence
- Mécanismes de correction d'erreurs
- Cryptage bas niveau
- Adressage sur 48 bits équivalent à une adresse MAC

Typologie de liens

- SCO Synchronous Connection-Oriented
 - Audio ou Audio+Données
 - Allocation périodique de slots temporels (temps de parole)
- ACL Asynchronous Connection-less Link
 - Données uniquement
 - Taille de trame variable

Bande de base et *Link Control*

Création de liens => Création d'un réseau

Piconet

- 1 maître, n esclaves
 - Au plus 7 esclaves actifs dans le piconet
 - Possibilité d'avoir 255 esclaves passifs
- Séquence de sauts de fréquence et horloge imposées par le maître
- Emissions du maître : slots pairs
- Emissions des esclaves : slots impairs
- Temps de parole alloué par le maître
- Pas d'échange entre les esclaves

Bande de base et *Link Control*

Création de liens => Création d'un réseau

Communications en *Time Division Duplex*

- Division en slots de 625μs
- Changement de fréquence à chaque paquet
- Polling des esclaves par le maître
- Un esclave ne peut parler qu'immédiatement après avoir été « pollé »
- Collisions dans un piconet vs Collisions entre piconets voisins

Bande de base et *Link Control*

Création de liens => Création d'un réseau

Scatternetnet

- Combinaison de *piconets*
- Arbre d'étoiles
- Maître de niveau n, esclave de niveau n-1
- Au plus 10 *piconets*, 72 nœuds actifs
- Intersection de *piconets* : station relais

Bande de base et *Link Control*

Format de paquets

Format général

LSB	68/72	54	0-2745	MSB
Cod	de d'accès	En-tête	Charge utile	

- Utilisé pour la synchronisation
- Préambule de 4 bits
- Mot de synchronisation de 64 bits
- Types:
 - DAC ou Device Access Code: utilisé dans la phase de paging
 - CAC ou Channel Access Code: utilisé durant la phase où les nœuds sont connectés
 - GIAC ou *Generic Inquiry Access Code*: phase d'enquête générale, identification des nœuds voisins
 - DIAC ou *Dedicated Inquiry Access Code* : recherche d'un type spécifique de voisin

Bande de base et *Link Control*

Format de paquets

Format général

LSB	68/72	54	0-2745	MSB
Cod	de d'accès	En-tête	Charge utile	

18 bits utiles protégés => 54 bits

Champs:

- Adresse de l'esclave visé
- Type de paquet*
- Bit de contrôle de flux : permet d'interrompre temporairement le flux de trafic
- Bit d'accusé de réception
- Bit de numérotation
- Mot de contrôle d'intégrité des paquets

Bande de base et Link Control

Format de paquets

Format général

LSB 68/72 54 0-2745 MSB

Code d'accès En-tête Charge utile

Communs à tous types de communications

• Paquet FHS : code d'accès, en-tête et 160bits de données

- Paquet Poll: code d'accès et en-tête, acquitté
- Communications synchrones
 - Synchronous Connection Oriented (SCO)
 - Parfois une portion de données asynchrones avec CRC et retransmission
 - Normalement, pas de CRC ni de retransmissions
 - Extended SCO (eSCO)
 - CRC associé aux données, retransmissions possibles
- Communications asynchrones: Asynchronous Connection-Less (ACL)
 - Données utiles et CRC

Types de paquets

Architecture

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device

Link Mgt Protocol

Baseband

Link controller

Link Management Protocol

Services fournis

- Gestion du *piconet*
 - Ajout/suppression d'esclaves du piconet
 - Basculement du rôle (maître/esclave)
 - Etablissement des liaisons SCO/ACL
 - Contrôle du cycle d'activité (duty-cycle) de la radio
 - Contrôle des états de connexion des nœuds dans le *piconet*
 - Hold: permet à une station de se libérer de son piconet pour une durée fixe
 - Sniff: écoute périodique du canal pendant une durée prédéfinie
 - Park: station restant synchronisée avec le maître mais qui n'intervient pas ce qui lui permet de réintégrer rapidement le piconet
- Sécurité
 - Authentification des périphériques
 - Échange de clés

Link Management Protocol

Economie d'énergie et modes des esclaves

Dépenses d'énergie

- Transmission de trames
- Réception de message
- Idle Listening
- **Sniff**: mode applicable dans un contexte de trafic périodique avec des débits faibles
- Hold: mode permettant d'effectuer d'autres activités (inquiry, établissement de connexion, participation à d'autres piconets…)
- Park : mode permettant d'avoir plus de
 7 esclaves dans un piconet

Etablissement de connexion

Etats actifs

Modes économes en énergie

Link Management Protocol

Etablissement de connexion : phase *Inquiry*

: nœud disponible (A) : nœud cherchant à se connecter à des voisins (B)

- A en mode Inquiry Scan
 - En réception sur une fréquence dépendant de son adresse
- B transmet un train de paquets ID
 - IAC (*Inquiry Access Code*) indiquant le type de terminaux pouvant répondre
 - En général un GIAC (*General* IAC) qui permet de joindre tous les éléments
 - Pour certains éléments actifs, on peut utiliser un DIAC (*Dedicated* IAC)

En état *Inquiry Scan* sur une fréquence fk

Link Management Protocol

Etablissement de connexion : phase *Inquiry*

- : nœud disponible (A)
- : nœud cherchant à se connecter à des voisins (B)
- Un train T1 est émis 256 fois puis un second train T2 est émis 256 fois
 - Le temps total pour émettre ces 2 trains et récupérer suffisamment de réponses est de 10,24s
 - Néanmoins, si suffisamment de réponses sont collectées avant ce délai, le train peut être interrompu
 - Côté récepteur, le temps minimum d'écoute doit durer pendant un temps suffisant pour que les 16 fréquences soient couvertes
- A la réception d'un paquet d'*Inquiry*, A émet, après un temps d'attente aléatoire, un paquet *Inquiry Response*
 - Temps d'attente décompté en slot et évitement de collisions entre les réponses
 - Inquiry Response: séquence de sauts (FHS), informations d'horloge nécessaires pour l'état Page

Link Management Protocol

Etablissement de connexion : phase de *Paging*

: nœud disponible (A)

: nœud cherchant à se connecter à des voisins (B)

Objectifs:

- Répartir les rôles (maître-esclave)
- Synchroniser l'esclave au maître (horloge et séquence de sauts de fréquence (FHS))

Hypothèse de départ

 B connaît la FHS de A et son horloge

Processus

- L'initiateur devient le maître => A sera esclave
- B estime la position actuelle dans la FHS de A.
 - Estimation => possible erreur
- B transmet le message *Page* sur une plage de fréquence choisie à partir de la fréquence estimée.
 - Plage de 32 fréquences divisée en 2 trains de 16 fréquences.
- A choisit une des fréquences dédiées au Paging et attend le message

Architecture

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device manager

Link Mgt Protocol

Baseband

Link controller

Bluetooth Interface HCI

Host Controller Interface

- Interface entre les parties matérielles et logicielles de la pile protocolaire
- Fournit un interface de commande uniformisée à un contrôleur
 - Méthode d'accès aux fonctionnalités indépendante des détails de l'implémentation des couches basses de la pile protocolaire
- Types de commandes
 - Link: contrôle la création de lien avec d'autres équipements
 - *Policy* : contrôle le comportement du *Link Manager*
 - Informational, Status: accès aux registres du contrôleur
- Accessible via:
 - UART
 - USB
 - RS-232

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device

Link Mgt Protocol

Baseband

Link controller

Logical Link Control and Adaptation Protocol

L2CAP:

- Services de transmission de données en mode connecté et mode non connecté
 - Pas de gestion de liens SCO voix : la gestion est faite directement en bande de base
- Multiplexage des applications au-dessus des couches de transmission
 - Association des paquets aux protocoles de couches supérieures
- Adaptation : segmentation des messages (64ko) et réassemblage
- Gestion de la qualité de service (QoS)
 - QoS =f(bande passante ; délais)
 - L2CAP vérifie avec les couches sous-jacentes que cette QoS peut être assurée

Architecture

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device manager

Link Mgt Protocol

Baseband

Link controller

Bluetooth Profils

Profil Bluetooth : mode de fonctionnement de l'équipement

- Un service n'est supporté que si le profil correspondant est disponible sur tous les équipements impliqués dans la communication
- Un profil contient des informations au moins sur les points suivants
 - Les autres profils dont il dépend
 - Les interfaces à utiliser
 - Les parties de la pile Bluetooth à utiliser
- L'objectif des profils est de permettre une interopérabilité entre les équipements

Profils

Architecture

Applications

Profils

RFCOMM

SDP

L2CAP

Host Controller Interface

Device manager

Link Mgt Protocol

Baseband

Link controller

Bluetooth Couche application

Services

RFCOMM

Remplacement du câble Émulation lien série Transport de la voix

SDP

Application

Service Discovery Protocol

Découverte des équipements voisins

Découverte des profils

TCS BIN

Telephony Control Specification – Binary Protocole de signalisation des appels et d'établissement de communication pour la voix et les données => tels. portables équipés de Bluetooth L2CAP TX/RX

Evolutions: BLE

Bluetooth Low Energy ou Bluetooth Smart ou Version 4.0+

- Objets connectés
 - Durée de vie
 - Besoins en débit
 - Ex : wearables fitness, santé...
- Bluetooth Core : pile protocolaire largement adoptée par l'industrie
- Adaptation
 - Réduction de la consommation énergétique
 - Réduction du débit

Bluetooth

Evolutions: Backscatter

Bluetooth

Evolutions: Backscatter

Signal propre

Réflexion de signaux existants

Transmission à la demande

Source d'énergie locale

Transmission opportuniste

Exploitation de signaux WiFi ambiants

« Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices », J. F. Ensworth, M. S. Reynolds, IEEE International Conference on RFID, 2015

Sommaire

- 1.Introduction
- 2.Bluetooth
- 3.IEEE 802.15.4 / ZigBee
- 4.Conclusion

IEEE 802.15.4 / ZigBee Origines et Objectifs

Besoins

- Connectivité sans fil faible portée
- Capteurs communicants
- Facteur de forme
- Énergie limitée : pile bouton...
- Maintenance minimale

Technologies disponibles

- Wi-Fi
- Bluetooth
- Infrarouge
- Solutions propriétaires et interopérabilité
- Nouveau standard?

Couches hautes

Couches basses

Origines et Objectifs

Objectifs

- Connectivité réseau faible/moyenne portée à bas débit
 - Collecte de données issues de capteurs
 - Portée : 10-30m en intérieur ;
 150m en extérieur
- Autonomie énergétique
 - Maximiser durée de vie sur une pile bouton (années)
- Maintenance minimale et coût

Applications

Origines et Objectifs

IEEE 802.15.4

End manufacturer defined

defined

defined

Layer

function

interface

ZigBee

- Couches supérieures, de NWK à APP
- Support de différents profils applicatifs

Standard IEEE 802.15.4

- Low-Rate Low-Power WPAN
- Spécification couvrant les couches PHY et MAC
- Wireless Sensor Network et Device Layer de l'Internet of Things (IoT)

Pile protocolaire complète

Couche physique

Bandes de fréquence

· 780MHz, 868MHz, 915MHz, 2.4GHz (ISM), 3-10GHz

Technologies courantes (portée, débit, largeur de bande, disponibilité, applications spécifiques)

- Direct Sequence Spread Spectrum (DSSS): 250kb/s à 2,4GHz
- 16 Canaux de 5MHz
- Chirp Spread Spectrum (CSS): 250kb/s ou 1Mb/s à 2,4GHz
- 14 Canaux de 22MHz dont 3 sans recouvrement
- Ultra-Wide Band (UWB): 3-10 GHz
- 16 canaux :
- 1 canal à 499,2MHz
- 4 canaux entre 3 et 5GHz
- 11 canaux entre 6 et 10GHz
- Largeur de canal 499,2MHz ou 1,3GHz

IEEE 802.15.4 / ZigBee Couche MAC

Types de nœuds

- Full-function Device (FFD)
 - Peut jouer les rôles de PAN coordinator et de coordinator

- Reduced-function Device (RFD)
 - Nœud d'extrémité
 - Ne peut être un coordinateur
 - S'associe à un unique coordinateur
 - Ressources de calcul minimales

Couche MAC

- Toutes les communications passent par le PAN-C
- Le PAN-C relaie les informations entre les nœuds

- Un lien de communication est possible dès que les nœuds sont à portée radio
- Possibilité de routage multi-sauts
 d'une source vers sa destination 45
- Peut aller vers un réseau mesh

IEEE 802.15.4 / ZigBee Couche MAC

Méthodes d'accès *No-Beacon*

- Le coordinateur écoute en permanence le réseau pour détecter des transmissions
 - Nécessite qu'il soit relié à une source d'énergie
- Utilisation d'une méthode d'accès de type CSMA/CA + RTS/CTS
 - Écoute du support avant d'émettre
 - Utilisation d'espaces de temps entre les trames
 - Acquittement systématique par la station réceptrice
 - RTS/CTS pour gérer les terminaux cachés
 - Dans cette solution les stations terminales peuvent se mettre en veille périodiquement mais pas le coordinateur

Couche MAC

Méthodes d'accès *Beacon enabled*

- Diffusion périodique de trames de signalisation (beacon)
 - Synchronisation
 - Allocation de ressources
- Structure temporelle
 - Beacon Interval
 - Supertrame de 16 slots
 - Contention Access Period (CAP)
 - Contention Free Period (CFP)
 - Sommeil et économie d'énergie

Compétition pour l'accès au médium avec CSMA/CA

Division en *Guaranteed Time Slots* (GTS), réservés chacun à un nœud

Couche MAC

Format et types de trames

- ID du réseau
- Peut être résumé pour des communications intra-PAN

Contrôle	Numéro	PAN ID destination	Adresse	PAN ID	Adresse source	En-tête	Charge	FCS
	De		De	source		de	utile	
	séquence		destination	300100		sécurité		

- Type de trames
 - Beacon
 - Données
 - Commandes
- ACK/No-ACK?
- Mode d'adressage

- EUI 64 bits
- Short address 16 bits

Contrôle d'intégrité de la trame

Réseau de capteurs « non-hobbyist »

- 1 couche PHY
- 1 couche MAC compatible *mesh*
- 1 couche NWK avec routage sur *mesh*
- 1 syntaxe standardisée au niveau application

IEEE 802.15.4

ZigBee

Empilez, raccorder les *Service Access Points* et servez!

Architecture protocolaire

IEEE 802.15.4 / ZigBee Couche NWK

Responsabilités de la couche réseau

- Initiation du réseau
- Association ou retrait d'un nœud dans le réseau
- Découverte de route
- Mise en place de la sécurité via le module de sécurité
 - Cryptage AES (*Advanced Encryption Standard*) 128bits
 - Pas d'échange de clés
- Assignation des adresses si le nœud est un coordinateur
 - Utilise un adressage réseau sur 16 bits
 - 2^16 nœuds supportés en théorie
 - En pratique pour des raisons d'accès au canal on estime qu'un réseau en étoile peut supporter 2000 nœuds
 - 256 sous-réseaux possibles (ou clusters)

Couche NWK

Création du réseau : utilisation de fonctionnalités de MAC et PHY

Démarrage d'un FFD

Scan des canaux de fréquence

Si aucun PAN détecté, prise de rôle : PAN-C

Transmission périodique de beacons

Scan des canaux de fréquence

Détection d'un PAN par ses *beacons*Lancement d'une procédure d'association
Échange de trames avec le FFD de rattachement
Éventuellement, demande de GTS

Sous-couche Application Support (APS)

Ex: un <u>nœud ZigBee</u> supportant

une <u>lampe à variateur</u>

Profils ZigBee

Utilisations

Domotique ou <i>Home Automation</i> (HA)	Sécurité, contrôle d'éclairage, contrôle d'accès			
Immotique ou Commercial <i>Building Automation</i> (CBA)	Sécurité, contrôle d'éclairage, contrôle d'accès, relevé de compteur			
Surveillance d'installation industrielle ou Industrial Plant Monitoring (IPM)	Gestion des biens, contrôle de processus, contrôle environnemental, gestion de l'énergie			
Application des télécommunications ou <i>Telecommunications Applications</i> (TA)	Livraison d'informations dans les zones à risques, enquêtes publiques, télécommandes			
Solutions de comptage automatique ou <i>Automatic Metering Initiative / Smart Energ</i> y 1 (AMI ZSE1)	Gestion de la consommation d'énergie, production de relevés de consommation			
Soins à domicile ou à l'hôpital ou <i>Personal</i> Home and Hospital (PHHC)	Surveillance d'un patient, surveillance de la forme physique			

WSNs et localisation

Où est ma montre?

Où sont mes clés?

Où est l'employé?

Où est le pompier?

Localisation

- Peu gourmande en énergie
- Efficace en indoor
- Précise (sub-room level)

Technologie — Protocoles — Algorithmes

DSSS → Puissance du signal

UWB → Temps de vol

5-6 m

5-15 cm LOS

X m NLOS

Centralisé vs distribué

Adaptatif:

- Énergie disponible
- Environnement