The following Listing of Claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) A rotary fluid machine comprising:

a cylinder having an annular cylinder chamber formed as a space between a cylindrical inner periphery and a cylindrical outer periphery of the annular cylinder chamber;

an annular piston disposed in the cylinder chamber to be eccentric to the cylinder, the annular piston dividing the cylinder chamber into an outer working chamber and an inner working chamber, the annular piston having a cylindrical inner piston surface facing the inner periphery of the cylinder chamber and a cylindrical outer piston surface facing the outer periphery of the cylinder chamber; and

a blade arranged in the cylinder chamber, the blade extending in a radius direction from the outer periphery to the inner periphery of the cylinder chamber to divide each of the outer and inner working chambers into a high pressure region and a low pressure region, the cylinder and the piston making relative rotations,

the cylinder chamber having a <u>radial</u> width <u>measured between the inner and outer</u> <u>peripheries of the cylinder chamber</u> that is varied <u>about along</u> a circumference of the cylinder chamber such that <u>a gap between the inner periphery of the cylinder chamber and the inner piston surface of the piston and a gap between <u>the outer periphery of the cylinder chamber</u> and the outer <u>piston a wall surface of the cylinder and a wall</u> surface of the piston <u>are</u> is kept to a predetermined value during the rotations.</u>

2. (Currently Amended) A rotary fluid machine comprising:
a cylinder having an annular cylinder chamber formed as a space between a
cylindrical inner periphery and a cylindrical outer periphery of the annular cylinder chamber;

an annular piston disposed in the cylinder chamber to be eccentric <u>relative</u> to the cylinder, the annular piston dividing the cylinder chamber into an outer working chamber and an inner working chamber, the annular piston having a cylindrical inner piston surface facing the inner periphery of the cylinder chamber and a cylindrical outer piston surface facing the outer periphery of the cylinder chamber; and

a blade arranged in the cylinder chamber, the blade extending in a radius direction from the outer periphery to the inner periphery of the cylinder chamber to divide each of the outer and inner working chambers into a high pressure region and a low pressure region, the cylinder and the piston making relative rotations without spinning by themselves,

the piston <u>having</u> has a <u>radial</u> width <u>measured between the inner and outer piston</u> <u>surfaces</u> that is varied <u>about</u> along a circumference of the piston such that <u>a gap between the inner periphery of the cylinder chamber and the inner piston surface of the piston and a gap between <u>the outer periphery of the cylinder chamber and the outer piston</u> a <u>wall surface of the cylinder and a wall</u> surface of the piston <u>are</u> is kept to a predetermined value during the rotations.</u>

3. (Previously Presented) The rotary fluid machine according to claim 2, wherein

the cylinder chamber has a width that is varied along a circumference of the cylinder chamber such that the gap between the wall surface of the cylinder and the wall surface of the piston is kept to a predetermined value during the rotations.

4. (Currently Amended) The rotary fluid machine according to claim 3, wherein

the blade has a center line that is a starting point of the circumference of the cylinder chamber, a width of a part of the cylinder chamber ranging from the starting point to a point at a rotation angle of 180° from the starting point is large<u>r than and</u> a width of another part of the cylinder chamber ranging from the 180° point to a point at a rotation angle less than 360° from the starting point is small.

5. (Previously Presented) The rotary fluid machine according to claim 4, wherein

a center of an inner circumference of the cylinder chamber is deviated from a center of the outer circumference of the cylinder chamber when viewed along a longitudinal axis of the cylinder chamber.

6. (Currently Amended) The rotary fluid machine according to claim 3, wherein

the cylinder chamber is divided into four regions <u>about along</u> the circumference thereof such that the cylinder chamber has <u>wide</u> regions <u>that are wider than other</u> and narrow regions formed in a continuous and alternate manner <u>therebetween</u>.

7. (Currently Amended) The rotary fluid machine according to claim 2, wherein

the piston and the blade make relative swings at a predetermined swing center, and the swing center of the blade and the piston is a starting point of the circumference of the piston, a width of a part of the piston ranging from the starting point to a point at a rotation angle of 180° from the starting point is smaller than and a width of another part of the piston ranging from the 180° point to a point at a rotation angle of 360° from the starting point is large.

8. (Previously Presented) The rotary fluid machine according to claim 7, wherein

a center of an inner circumference of the piston is deviated from a center of the outer circumference of the piston when viewed along a longitudinal axis of the piston.

9. (Currently Amended) The rotary fluid machine according to claim 2, wherein

the piston and the blade make relative swings at a predetermined swing center and the piston is divided into four regions <u>about along</u> the circumference thereof such that the piston has <u>two narrow</u> regions <u>that are narrower than two other</u> and <u>wide</u> regions formed in a continuous and alternate manner <u>therebetween</u>.

10. (Previously Presented) The rotary fluid machine according to claim 1, wherein

the annular piston is C-shaped to form a gap,

the blade extends from an inner wall surface to an outer wall surface of the cylinder chamber and passes through the gap of the piston, and

a swing bushing is provided in the gap of the piston to contact the piston and the blade via the surfaces thereof such that the blade freely reciprocates and the blade and the piston make relative swings.

11. (Currently Amended) The rotary fluid machine according to claim 1, wherein

the blade has a center line that is a starting point of the circumference of the cylinder chamber, a width of a part of the cylinder chamber ranging from the starting point to a point at a rotation angle of 180° from the starting point is large<u>r than and</u> a width of another part of the cylinder chamber ranging from the 180° point to a point at a rotation angle less than 360° from the starting point is small.

12. (Previously Presented) The rotary fluid machine according to claim 11, wherein

a center of an inner circumference of the cylinder chamber is deviated from a center of the outer circumference of the cylinder chamber when viewed along a longitudinal axis of the cylinder chamber.

13. (Currently Amended) The rotary fluid machine according to claim 3, wherein

the cylinder chamber is divided into four regions <u>about along</u> the circumference thereof such that the cylinder chamber has <u>two</u> <u>wide</u> regions <u>that are wider than two other</u> and narrow regions formed in a continuous and alternate manner <u>therebetween</u>.

14. (Currently Amended) The rotary fluid machine according to claim 3, wherein

the piston and the blade make relative swings at a predetermined swing center, and the swing center of the blade and the piston is a starting point of the circumference of the piston, a width of a part of the piston ranging from the starting point to a point at a

rotation angle of 180° from the starting point is small<u>er than and</u> a width of another part of the piston ranging from the 180° point to a point at a rotation angle of 360° from the starting point is large.

15. (Previously Presented) The rotary fluid machine according to claim 14, wherein

a center of an inner circumference of the piston is deviated from a center of the outer circumference of the piston when viewed along a longitudinal axis of the piston.

16. (Currently Amended) The rotary fluid machine according to claim 3, wherein

the piston and the blade make relative swings at a predetermined swing center, and the piston is divided into four regions about along the circumference thereof such that the piston has two narrow regions that are narrower than two other and wide regions formed in a continuous and alternate manner therebetween.