Seminar 3 Maximum Likelihood criterion

- 1. Consider the problem of deciding between two constant signals, $s_0(t) = -1$ and $s_1(t) = 4$. The signals are affected by AWGN with distribution \mathcal{N} ($\mu = 0, \sigma^2 = 4$). The receiver takes one sample, at time $t_0 = 0.75$, and the obtained value is r = 1.8.
 - a. Write the expressions of the two conditional distributions of the sample, and sketch them
 - b. What is the decision taken with the Maximum Likelihood criterion?
 - c. What are the decision regions?
- 2. Consider the problem of deciding between two possible signals, $s_0(t) = cos(2\pi t)$ and $s_1(t) = sin(2\pi t)$. The signals are affected by AWGN with distribution \mathcal{N} ($\mu = 0, \sigma^2 = 4$). The receiver takes one sample, at time $t_0 = 0.75$, and the obtained value is r = 3.5.
 - a. Write the expressions of the two conditional distributions of the sample, and sketch them
 - b. What is the decision taken with the Maximum Likelihood criterion?
 - c. Compute the conditional probabilities for the four possible scenarios (correct rejection, false alarm, miss and correct detection) for the ML criterion
 - d. What is the **best** moment t_0 for sampling, in order to best discriminate between the signals? Justify.
 - e. What is the **worst** moment t_0 for sampling, in order to discriminate between the signals? Justify.
 - f. Repeat a) and b) in case the noise has uniform distribution $\mathcal{U}[-4,4]$. Is there a problem with the decision?
 - g. What is the maximum variance of a uniform noise, with zero-mean, in order to still be able to take a decision with the ML criterion for r = 3.5?