Funciones de Variable Real -Ejercicios y Procedimientos

Christian Bueno

Desarrollador de Software 15 de febrero del 2025 +593 99 028 8710 Guayaquil, Ecuador christianbueno.me

Contents

1	Funciones de Variable Real		
	1.1	Dominio	2
	1.2	Rango	4
	1.3	Gráfica de una función de variable real	6
	1.4	Monotonía	7

1 Funciones de Variable Real

1.1 Dominio

Ejercicio 1: Determinar el dominio de $f(x) = \frac{x+2}{x^2-4}$. Solución:

• Identificamos restricciones en el denominador:

$$x^{2} - 4 = 0 \Rightarrow (x - 2)(x + 2) = 0 \Rightarrow x = \pm 2$$

• El dominio es:

$$D_f = \mathbb{R} \setminus \{-2, 2\}$$

Ejercicio 2: Determinar el dominio de $f(x) = \sqrt{5-x}$. Solución:

• La raíz cuadrada requiere que el argumento sea no negativo:

$$5 - x \ge 0$$

• Resolviendo:

$$x \leq 5$$

• El dominio es:

$$D_f = (-\infty, 5]$$

Ejercicio 3: Determinar el dominio de $f(x) = \ln(3x - 2)$. Solución:

• La función logarítmica está definida cuando su argumento es positivo:

$$3x - 2 > 0$$

• Resolviendo:

$$x > \frac{2}{3}$$

• El dominio es:

$$D_f = \left(\frac{2}{3}, \infty\right)$$

Ejercicio 4: Determinar el dominio de $f(x) = \frac{1}{\sqrt{x-4}}$. Solución:

• La raíz cuadrada requiere que el argumento sea positivo (no solo no negativo, porque está en el denominador):

$$x - 4 > 0$$

• Resolviendo:

• El dominio es:

$$D_f = (4, \infty)$$

Ejercicio 5: Determinar el dominio de $f(x) = \frac{x}{x^2 - x - 6}$. Solución:

• Factorizamos el denominador:

$$x^{2} - x - 6 = (x - 3)(x + 2)$$

• Evitamos los valores que hacen el denominador cero:

$$x \neq -2, \quad x \neq 3$$

• El dominio es:

$$D_f = \mathbb{R} \setminus \{-2, 3\}$$

1.2 Rango

Ejercicio 1: Determinar el rango de $f(x) = x^2 - 4$. Solución:

- La función es una parábola con vértice en (0, -4).
- Como a > 0, la parábola abre hacia arriba.
- El mínimo valor es -4 y no tiene límite superior.
- El rango es:

$$R_f = [-4, \infty)$$

Ejercicio 2: Determinar el rango de $f(x) = \frac{1}{x}$. Solución:

- La función no se anula y toma todos los valores reales excepto 0.
- El rango es:

$$R_f = \mathbb{R} \setminus \{0\}$$

Ejercicio 3: Determinar el rango de $f(x) = e^x$. Solución:

- La función exponencial e^x solo toma valores positivos.
- No hay límite superior, pero sí un límite inferior en 0 (no se anula ni es negativa).
- El rango es:

$$R_f = (0, \infty)$$

Ejercicio 4: Determinar el rango de $f(x) = \sqrt{x-2}$. Solución:

- La raíz cuadrada solo toma valores no negativos.
- Cuando x = 2, f(x) = 0.
- A medida que $x \to \infty$, también $f(x) \to \infty$.
- El rango es:

$$R_f = [0, \infty)$$

Ejercicio 5: Determinar el rango de $f(x) = \sin(x) + 3$. Solución:

- $\bullet\,$ La función seno oscila entre-1y 1.
- $\bullet\,$ Sumando 3, los valores oscilan entre 2 y 4.
- El rango es:

$$R_f = [2, 4]$$

1.3 Gráfica de una función de variable real

Ejercicio 1: Graficar $f(x) = x^2 - 3x + 2$. **Solución:** Es una parábola con vértices en (1.5, -0.25), corta el eje x en x = 1, 2.

Ejercicio 2: Graficar $f(x) = \frac{1}{x}$. **Solución:** Hiperbola con asíntotas en x = 0 y y = 0.

Ejercicio 3: Graficar $f(x) = \ln(x)$. **Solución:** Creciente, pasa por (1,0) y no está definida para $x \le 0$.

Ejercicio 4: Graficar $f(x) = e^{-x}$. **Solución:** Decreciente, tiende a 0 cuando $x \to \infty$, pasa por (0,1).

Ejercicio 5: Graficar $f(x) = \sqrt{x} - 2$. **Solución:** Definida para $x \ge 0$, inicia en (-2) y crece lentamente.

1.4 Monotonía

Ejercicio 2: Determinar la monotonía de $f(x) = x^3 - 3x$. Solución:

• Para analizar cómo cambia la función, evaluamos algunos valores:

$$f(-2) = (-2)^3 - 3(-2) = -8 + 6 = -2$$

$$f(-1) = (-1)^3 - 3(-1) = -1 + 3 = 2$$

$$f(0) = 0^3 - 3(0) = 0$$

$$f(1) = 1^3 - 3(1) = 1 - 3 = -2$$

$$f(2) = 2^3 - 3(2) = 8 - 6 = 2$$

- Observamos que la función aumenta en $(-\infty, -1)$, luego disminuye en (-1, 1) y vuelve a aumentar en $(1, \infty)$.
- Por lo tanto:

Crece en
$$(-\infty, -1) \cup (1, \infty)$$
, Decrece en $(-1, 1)$.

Ejercicio 3: Determinar la monotonía de $f(x) = e^x - x^2$. Solución:

• Analizamos valores en la función:

$$f(0) = e^{0} - 0^{2} = 1$$

$$f(1) = e^{1} - 1^{2} = 2.718 - 1 = 1.718$$

$$f(2) = e^{2} - 2^{2} = 7.389 - 4 = 3.389$$

$$f(-1) = e^{-1} - (-1)^{2} = 0.368 - 1 = -0.632$$

- Observamos que antes de un cierto punto (aproximadamente x = 0.7), la función disminuye, y después de ese punto comienza a aumentar.
- Entonces:

Decrece en
$$(-\infty, 0.7)$$
, Crece en $(0.7, \infty)$.

Ejercicio 4: Determinar la monotonía de $f(x) = \ln(x) - x$. Solución:

• Probamos valores:

$$f(0.5) = \ln(0.5) - 0.5 \approx -0.693 - 0.5 = -1.193$$
$$f(1) = \ln(1) - 1 = 0 - 1 = -1$$
$$f(2) = \ln(2) - 2 \approx 0.693 - 2 = -1.307$$
$$f(3) = \ln(3) - 3 \approx 1.099 - 3 = -1.901$$

- Vemos que la función crece para x < 1 y decrece para x > 1.
- Entonces:

Crece en
$$(0,1)$$
, Decrece en $(1,\infty)$.

Ejercicio 5: Determinar la monotonía de $f(x) = x^4 - 4x^2 + 2$. Solución:

• Evaluamos algunos valores:

$$f(-2) = (-2)^4 - 4(-2)^2 + 2 = 16 - 16 + 2 = 2$$

$$f(-1) = (-1)^4 - 4(-1)^2 + 2 = 1 - 4 + 2 = -1$$

$$f(0) = 0^4 - 4(0)^2 + 2 = 2$$

$$f(1) = 1^4 - 4(1)^2 + 2 = 1 - 4 + 2 = -1$$

$$f(2) = 2^4 - 4(2)^2 + 2 = 16 - 16 + 2 = 2$$

- Notamos que la función disminuye entre $-\sqrt{2}$ y $\sqrt{2}$, y aumenta fuera de ese intervalo.
- Entonces:

Crece en
$$(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$
, Decrece en $(-\sqrt{2}, \sqrt{2})$.