	100	1k	10k	50k
Linear Search	37	312	3337	13146
Bubble Sort + BS	23183	23148	23643	23182
Selection Sort + BS	6185	5976	6076	6150
Insertion Sort + BS	9921	9270	9397	9466
Merge Sort + BS	78	84	93	159
Quick Sort + BS	63	52	60	109
Radix Sort + BS	85	54	66	133

Time-running table (in millisecond)

In case of tiny-size-data, Linear Search takes a bit advantage among these sort algorithms.

Then, in this experiment: We are using Binary Search for all remain cases.

That mean BS running time seems to be meaningless. And really it be.

So, look at this table: It is showing us time-performances of sort algorithms as well.

According to the result of last week homework, Quick Sort still take advantages and Radix Sort is runner-up as usual.