## 高雄中學 108 學年度第2 學期 高二第2 次期中考數學科 試題卷 (社會組)

命題範圍:高二數學 矩陣 (數 A 範圍)

說明:請作答在答案卷上,須將答案填入正確欄位,否則不予計分。

- 一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得6分,只答錯兩個選項者得4分,其餘情形不給分。共16分。
  - 1. 二階方陣A滿足下列何選項之條件可使 $A^{-1}$ 必定存在?  $\begin{pmatrix} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$ 
    - (1)  $A^{10} = I$  (2)  $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ ,  $\theta$  為實數 (3)  $A = \begin{bmatrix} a-1 & a \\ a & a+1 \end{bmatrix}$ , a 為實數
    - (4) A 為轉移矩陣  $(5) (A+I)^2 = C$
  - 2. 下列選項中的矩陣 A 何者是轉移矩陣?

(B)

(1) 
$$A = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta \end{bmatrix}$$
,  $\theta \triangleq g$   $\Rightarrow$  (2)  $A = \begin{bmatrix} -0.2 & 0.3 \\ 1.2 & 0.7 \end{bmatrix}$  (3)  $A = \begin{bmatrix} 0.2 & 0.3 \\ 0.8 & 0.7 \end{bmatrix}^2$ 

$$(4) \quad A = \frac{1}{4} \left[ \begin{bmatrix} 0.2 & 0.3 \\ 0.8 & 0.7 \end{bmatrix}^2 + \begin{bmatrix} 0.6 & 0.8 \\ 0.4 & 0.2 \end{bmatrix}^2 \right) \qquad (5) \quad A = \frac{2}{3} \begin{bmatrix} 0.2 & 0.3 \\ 0.8 & 0.7 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 0.6 & 0.8 \\ 0.4 & 0.2 \end{bmatrix}$$

## 二、填充題:請將答案填入相應題號答案欄內,依下列配分表計分。共84分。

| 答對格數 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 總得分  | 10 | 19 | 27 | 35 | 42 | 49 | 55 | 61 | 66 | 70 | 74 | 78 | 81 | 84 |

1. 如右圖,編號  $1 \cdot 2 \cdot 3$  的村莊分別有道路(線條)相連,設矩陣  $A = \left[ a_{ij} \right]_{3\times 3}$ ,其中  $a_{ij}$  為編號 i 的村莊與編號 j 的村莊之間相互連接的道路數,例:  $a_{11} = 0$  ,  $a_{12} = 3$  。則  $A = \underline{\hspace{0.5cm}}$  (A)



2. 解方程組  $\begin{cases} 2y+4z=12\\ x+y+5z=2 \end{cases}$  先利用列運算將增廣矩陣  $\begin{bmatrix} 0 & 2 & 4 & 12\\ 1 & 1 & 5 & 2\\ 1 & 2 & 7 & 8 \end{bmatrix}$  化簡成  $\begin{bmatrix} 1 & 0 & a & b\\ 0 & 1 & c & d\\ 0 & 0 & 0 & 0 \end{bmatrix}$  ,求數對 (a,b,c,d)=

3. 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
,  $B = \begin{bmatrix} 99 & 9 \\ 98 & 8 \\ 97 & 7 \end{bmatrix}$ ,  $C = \begin{bmatrix} 98 & 9 \\ 97 & 8 \\ 96 & 7 \end{bmatrix}$ ,  $\emptyset AB - AC = \underline{\quad (C)}$ 

4. 
$$A = \begin{bmatrix} 1 & a & b \\ 3 & 1 & c \\ 2 & 1 & 1 \end{bmatrix}$$
 ,  $B = \begin{bmatrix} d & e \\ 1 & f \\ -1 & 3 \end{bmatrix}$  , 且  $AB$  為零矩陣,則  $f = \underline{\quad (D)}$ 

5. 
$$P = \begin{bmatrix} 50 & 60 \\ 70 & 80 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2019 & 2020 \\ 2021 & 2022 \end{bmatrix}$ ,  $A = PBP^{-1}$ ,  $A = PBP^{-1}$ 

6. 
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
,  $\mbox{if } A^{99} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ ,  $\mbox{if } a+b+c+d = \underline{\qquad (F)}$ 

7. 二階方陣 
$$A \, \cdot \, B$$
 满足  $A + A^T = \begin{bmatrix} 18 & 9 \\ 9 & 6 \end{bmatrix}$  ,  $A + B = \begin{bmatrix} 10 & 2 \\ 8 & -1 \end{bmatrix}$  ,  $A + B^T = \begin{bmatrix} 10 & 7 \\ 3 & -1 \end{bmatrix}$  , 則  $A = \underline{\quad (G)}$ 

- 8. 甲袋中有二個 10 元硬幣 , 乙袋中有一個 10 元硬幣與一個 5 元硬幣 , 每個硬幣在袋中被取出的機會均等。自甲袋中任取一硬幣放入乙袋中 , 再自乙袋中任取一硬幣放入甲袋中 , 這樣稱為一個回合 。如此進行兩個回合 , 求甲袋中仍為二個 10 元硬幣之機率為何? (H)
- 9. 有一個電競比賽共 1200 人參加,依參賽者實力區分為第一級賽事與第二級賽事各若干人分開進行,各賽事內所有人以每 50 人為一組(隨機分組)進行組內競賽,每週結算一次成績,依該成績給予獎勵並進行成員調整,調整規則為:第一級賽事每一組 50 人之中排名前 15 名者留在第一級賽事,其餘 35 人調整至第二級賽事;第二級賽事每一組 50 人之中排名前 25 名者晉升至第一級賽事,其餘 25 人留在第二級賽事。調整完再重新分組進行下一週競賽,已知第一級賽事的參賽人數每週皆不變,則第一級賽事共有多少人參加? (I)

10. 矩陣 
$$M \setminus A$$
 滿足  $M \begin{bmatrix} 1 \\ 2 \end{bmatrix} = A$  ,  $M \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 2A$  , 若  $M \begin{bmatrix} 5 \\ 6 \end{bmatrix} = kA$  , 其中  $k$  為實數 , 則  $k = \underline{\qquad (J)}$ 

11. 矩陣 
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & a & 0 & 1 \end{bmatrix}$$
 經列運算後可化為  $\begin{bmatrix} 1 & 0 & 4 & p \\ 0 & 1 & q & r \end{bmatrix}$ , 則  $r = \underline{\quad (K)}$ 

12. 數列
$$\langle a_n \rangle$$
、 $\langle b_n \rangle$ 满足 $\begin{cases} a_{n+1} = (\sqrt[3]{2} \cos 10^\circ) a_n - (\sqrt[3]{2} \sin 10^\circ) b_n \\ b_{n+1} = (\sqrt[3]{2} \sin 10^\circ) a_n + (\sqrt[3]{2} \cos 10^\circ) b_n \end{cases}$ ,且 $\begin{cases} a_1 = 1 \\ b_1 = 1 \end{cases}$ ,則矩陣 $\begin{bmatrix} a_{10} \\ b_{10} \end{bmatrix} = \underline{\qquad (L)}$ 

13. 實數 
$$a, b, c, d$$
 依序成等比,  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ ,已知  $a + b = \frac{1}{3}$ ,且  $(A - I)^{-1}$  不存在,則  $A = \underline{\quad (M)}$ 

14. 
$$A = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$$
 ,  $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  ,  $\dot{z} (A^3 + 4I)(A^3 - 4I) = sA + tI$  , 其中  $s,t$  皆為實數 ,則數對 $(s,t) = \underline{\quad (N)}$ 

分

得

| 高雄中學 108 學年度第 2 學期 高二第 2 次期中考數學科 答案卷 (社會: | 高雄中學 | 108 學年度第 2 | 2 學期 高. | 二第2次期 つ | 中考數學科 | 答案卷 | (社會組 |
|-------------------------------------------|------|------------|---------|---------|-------|-----|------|
|-------------------------------------------|------|------------|---------|---------|-------|-----|------|

|        | 127 — | N 7 5C301 1 | 7 30 7 11 | 古れる | (一日) |
|--------|-------|-------------|-----------|-----|------|
| 班級:2 年 | _班    | 座號:         | 姓名        | :   |      |

一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得6分,只答錯兩個選項者得4分,其餘情形不給分。共16分。

| 1. | 2. |  |
|----|----|--|
|    |    |  |

二、填充題:請將答案填入相應題號答案欄內,依下列配分表計分。共84分。

| 答對格數 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12        | 13 | 14 |
|------|----|----|----|----|----|----|----|----|----|----|----|-----------|----|----|
| 總得分  | 10 | 19 | 27 | 35 | 42 | 49 | 55 | 61 | 66 | 70 | 74 | <i>78</i> | 81 | 84 |

| (A) | (B) | (C) | (D) |  |
|-----|-----|-----|-----|--|
| (E) | (F) | (G) | (H) |  |
| (1) | (J) | (K) | (L) |  |
| (M) | (N) |     |     |  |

| То | • | 師 | , | 請指正 | • |
|----|---|---|---|-----|---|
|    |   |   |   |     |   |

高雄中學 108 學年度第 2 學期 高二第 2 次期中考數學科 答案卷 (社會組) << 參考解答>>

一、多重選:每題至少有一個正確選項。每一題完全答對得8分,只答錯一個選項者得6分,只答錯兩個選項者得4分,其餘情形不給分。共16分。

| 1. | 1235 | 2. | 135 |
|----|------|----|-----|
|    |      |    |     |

二、填充題:請將答案填入相應題號答案欄內,依下列配分表計分。共84分。

| 答對格數 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 總得分  | 10 | 19 | 27 | 35 | 42 | 49 | 55 | 61 | 66 | 70 | 74 | 78 | 81 | 84 |

| (A) | $ \begin{bmatrix} 0 & 3 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} $                  | (B) | (3,-4,2,6) | (C) | $\begin{bmatrix} 6 & 0 \\ 15 & 0 \end{bmatrix}$ | (D) | -3                                      |
|-----|----------------------------------------------------------------------------------------|-----|------------|-----|-------------------------------------------------|-----|-----------------------------------------|
| (E) | -2                                                                                     | (F) | -2         | (G) | $\begin{bmatrix} 9 & 4 \\ 5 & 3 \end{bmatrix}$  | (H) | <u>5</u><br>9                           |
| (1) | 500                                                                                    | (J) | 3          | (K) | $\frac{1}{2}$                                   | (L) | $\begin{bmatrix} -8 \\ 8 \end{bmatrix}$ |
| (M) | $\begin{bmatrix} \frac{1}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{8}{9} \end{bmatrix}$ | (N) | (32,-16)   |     |                                                 |     |                                         |