FINITE SUBGROUPS OF $PGL_2(K)$

ARNAUD BEAUVILLE

ABSTRACT. We classify, up to conjugacy, the finite subgroups of $\operatorname{PGL}_2(K)$ of order prime to $\operatorname{char}(K)$.

Introduction

The aim of this note is to describe, up to conjugacy, the finite subgroups of $\operatorname{PGL}_2(K)$, for an arbitrary field K. Throughout the paper, we consider only subgroups whose order is prime to the characteristic of K.

When $K = \mathbb{C}$, or more generally when K is algebraically closed, the answer is well known: any such group is isomorphic to \mathbb{Z}/r , D_r (the dihedral group), \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 , and there is only one conjugacy class for each of these groups. If K is arbitrary, the group $\operatorname{PGL}_2(K)$ is contained in $\operatorname{PGL}_2(\overline{K})$, so the subgroups of $\operatorname{PGL}_2(K)$ are among the previous list; it is not difficult to decide which subgroups occur for a given field K, see §1.

So the only question left is to describe the conjugacy classes in $\operatorname{PGL}_2(K)$ of the subgroups in the list. In §2 we give a general answer for subgroups of G(K), for an algebraic group G, in terms of (non-abelian) Galois cohomology. We illustrate the method on one example in §3, and apply it to the case $G = \operatorname{PGL}_2$ in §4.

The motivation for looking at this question was to understand the appearance of the Brauer group in the case of $(\mathbf{Z}/2)^2$ considered in [B]. The result is somewhat disappointing, as it turns out that this case (which could be treated directly, as in [B]) is the only one where some second Galois cohomology group plays a role. At least our method explains this role, and hopefully may be useful in other situations.

Date: September 22, 2009.

1. The possible subgroups

We repeat that whenever we mention a finite group, we always assume that its order is prime to the characteristic of K. The following is classical (see [S2], 2.5).

Proposition 1.1. 1) $\operatorname{PGL}_2(K)$ contains \mathbb{Z}/r and D_r^{-1} if and only if K contains $\zeta + \zeta^{-1}$ for some primitive r-th root of unity ζ .

- 2) $\operatorname{PGL}_2(K)$ contains \mathfrak{A}_4 and \mathfrak{S}_4 if and only -1 is the sum of two squares in K.
- 3) $\operatorname{PGL}_2(K)$ contains \mathfrak{A}_5 if and only if -1 is the sum of two squares and 5 is a square in K.

Proof: One way to prove this is to use the isomorphism $\operatorname{PGL}_2(K) \xrightarrow{\sim} \operatorname{SO}(K,q)$, where q is the quadratic form $q(x,y,z) = x^2 + yz$ on K^3 ([D], II.9). If a group H embeds into $\operatorname{SO}(K,q)$, we have a faithful representation ρ of H in K^3 , which preserves an indefinite quadratic form.

- Case $H = \mathbf{Z}/r$: let g be a generator; the existence of q forces the eigenvalues of $\rho(g)$ in \overline{K} to be of the form $(\zeta, \zeta^{-1}, 1)$, with ζ a primitive r-th root of 1. This implies $\zeta + \zeta^{-1} \in K$. Conversely, if $\lambda := \zeta + \zeta^{-1}$ is in K, the homography $z \mapsto \frac{(\lambda + 1)z 1}{z + 1}$ is an element of order r of $\mathrm{PGL}_2(K)$.
- Case $H = D_r$: by the previous case, if $D_r \subset \operatorname{PGL}_2(K)$, $\lambda := \zeta + \zeta^{-1}$ is in K. Conversely if $\lambda \in K$, the homographies $z \mapsto 1/z$ and $z \mapsto \frac{(\lambda + 1)z 1}{z + 1}$ generate a subgroup of $\operatorname{PGL}_2(K)$ isomorphic to D_r .
- Cases $H = \mathfrak{A}_4$, \mathfrak{S}_4 or \mathfrak{A}_5 . The representation ρ must be irreducible. Each of the groups \mathfrak{A}_4 and \mathfrak{S}_4 has exactly one irreducible 3-dimensional representation with trivial determinant, which is defined over the prime field; the only invariant quadratic form (up to a scalar) is the standard form $q_0(x, y, z) = x^2 + y^2 + z^2$. Thus \mathfrak{A}_4 and \mathfrak{S}_4 are contained in $\operatorname{PGL}_2(K)$ if and only if q_0 is equivalent to λq for some $\lambda \in K^*$, which means that q_0 represents 0.

Since \mathfrak{A}_5 contains elements of order 5, the condition $\sqrt{5} \in K$ is necessary. Suppose this is the case, and put $\varphi = \frac{1}{2}(1+\sqrt{5})$; the subgroup

¹We denote by D_r the dihedral group with 2r elements.

of $SO(K, q_0)$ preserving the icosahedron with vertices

$$\{(\pm 1, 0, \pm \varphi), (\pm \varphi, \pm 1, 0), (0, \pm \varphi, \pm 1)\}$$

is isomorphic to \mathfrak{A}_5 . It follows as above that \mathfrak{A}_5 embeds in SO(K,q) if and only if q_0 represents 0.

2. Some Galois Cohomology

2.1. In this section we consider an algebraic group G over K, and a subgroup $H \subset G(K)$. We choose a separable closure K_s of K, and put $\mathfrak{g} := \operatorname{Gal}(K_s/K)$. We are interested in the set of embeddings $H \hookrightarrow G(K)$ which are conjugate in $G(K_s)$ to the natural inclusion $i: H \hookrightarrow G(K)$, modulo conjugacy by an element of G(K). We denote this (pointed) set by $\operatorname{Emb}_i(H, G(K))$.

We will use the standard conventions for non-abelian cohomology, as explained for instance in [S3], ch. I, §5. We will also use the notation of [S3] for Galois cohomology: if G is an algebraic group over K, we put $H^{i}(K, G) := H^{i}(\mathfrak{g}, G(K_{s}))$.

Proposition 2.2. Let Z be the centralizer of H in $G(K_s)$. The pointed set $\operatorname{Emb}_i(H, G(K))$ is canonically isomorphic to the kernel of the natural map $H^1(K, Z) \to H^1(K, G)$.

Proof: Let $X \subset G(K_s)$ be the subset of elements g such that $g^{-1} \circ g \in Z$ for all $\sigma \in \mathfrak{g}$. The group G(K) (resp. Z) acts on X by left (resp. right) multiplication. By [S3], ch. I, 5.4, cor. 1, the kernel of $H^1(K,Z) \to H^1(K,G)$ is identified with the (left) quotient by G(K) of the subset of \mathfrak{g} -invariant elements in $G(K_s)/Z$; but this subset is by definition X/Z, so we can identify our kernel to the double quotient $G(K) \setminus X/Z$.

For every $g \in X$, the conjugate embedding gig^{-1} belongs to $\operatorname{Emb}_i(H, G(K))$. Any element $j \in \operatorname{Emb}_i(H, G(K))$ is of the form gig^{-1} for some $g \in G(K_s)$; for $\sigma \in \mathfrak{g}$, the element ${}^{\sigma}g$ again conjugates i to j, hence $g^{-1}{}^{\sigma}g \in Z$ and $g \in X$. Thus the map $g \mapsto gig^{-1}$ from X to $\operatorname{Emb}_i(H, G(K))$ is surjective. Two elements g and g' of X give the same element in $\operatorname{Emb}_i(H, G(K))$ if and only if g' belongs to the double coset G(K)gZ. Therefore the above map induces a canonical bijection $G(K)\backslash X/Z \xrightarrow{\sim} \operatorname{Emb}_i(H, G(K))$.

- 2.3. Let us write down the correspondence explicitly: a class in our kernel is represented by a 1-cocycle $\mathfrak{g} \to Z$ which becomes a coboundary in G, hence is of the form $\sigma \mapsto g^{-1} {}^{\sigma} g$ for some $g \in X$; we associate to this class the embedding gig^{-1} .
- 2.4. We are actually more interested in the set $\operatorname{Conj}(H, G(K))$ of subgroups of G(K) which are conjugate to H in $G(K_s)$, modulo conjugacy by G(K). Associating to an embedding its image defines a surjective map $im : \operatorname{Emb}_i(H, G(K)) \to \operatorname{Conj}(H, G(K))$. The normalizer N of H in $G(K_s)$ acts on H by automorphisms, hence also on $\operatorname{Emb}_i(H, G(K))$. Two embeddings with the same image differ by an automorphism of H, which must be induced by an element of N if the embeddings are conjugate under $G(K_s)$. It follows that im induces an isomorphism $\operatorname{Emb}_i(H, G(K))/N \xrightarrow{\sim} \operatorname{Conj}(H, G(K))$.
- 2.5. Let us translate this in cohomological terms. Let $H^1(K, Z)_0$ denote the kernel of the map $H^1(K, Z) \to H^1(K, G)$. An element n of N acts on $\operatorname{Emb}_i(H, G(K))$ by $j \mapsto j \circ \operatorname{int}(n^{-1})$; if $j = gig^{-1}$, this amounts to replace g by gn, hence the 1-cocycle $\varphi : \sigma \mapsto g^{-1} {}^{\sigma} g$ by $n^{-1} \varphi^{\sigma} n$. This formula defines an action of N on $H^1(K, Z)$ which preserves $H^1(K, Z)_0$; the map $g \mapsto gHg^{-1}$ induces an isomorphism of pointed sets $H^1(K, Z)_0/N \stackrel{\sim}{\longrightarrow} \operatorname{Conj}(H, G(K))$.

3. An example

3.1. In this section we fix an integer $r \geq 2$, prime to $\operatorname{char}(K)$, and we assume that K contains a primitive r-th root of unity ζ . We consider the matrices $A, B \in \operatorname{M}_r(K)$ defined on the canonical basis (e_1, \ldots, e_r) of K^r by

$$A \cdot e_i = e_{i+1} \quad , \quad B \cdot e_i = \zeta^i e_i$$

for $1 \le i \le r$, with the convention $e_{r+1} = e_1$.

The matrices A and B generate the K-algebra $M_r(K)$, with the relations

$$A^r = B^r = I$$
 , $BA = \zeta AB$.

Their classes \bar{A}, \bar{B} in $\operatorname{PGL}_r(K)$ commute; we consider the embedding $i: (\mathbf{Z}/r)^2 \hookrightarrow \operatorname{PGL}_r(K)$ which maps the two basis vectors to \bar{A} and \bar{B} . The image H of i is its own centralizer; in particular, H is a maximal commutative subgroup of $\operatorname{PGL}_r(K)$.

By the Kummer exact sequence (and the choice of ζ), the group $\mathrm{H}^1(K,\mathbf{Z}/r)$ is identified with K^*/K^{*r} ; the pointed set $\mathrm{H}^1(K,\mathrm{PGL}_r)$ can be viewed as the set of isomorphism classes of central simple K-algebras of dimension r^2 ([S1], X.5).

Lemma 3.2. Let $\alpha, \beta \in K^*$, and let $\bar{\alpha}, \bar{\beta}$ be their images in K^*/K^{*r} . The map $H^1(i): H^1(K, \mathbf{Z}/r)^2 \to H^1(K, \mathrm{PGL}_r)$ associates to $(\bar{\alpha}, \bar{\beta})$ the class of the cyclic K-algebra $A_{\alpha,\beta}$ generated by two variables x, y with the relations $x^r = \alpha$, $y^r = \beta$, $yx = \zeta xy$.

Proof: We choose α', β' in K_s with $\alpha'^r = \alpha$ and $\beta'^r = \beta$. The Kummer isomorphism associates to (α, β) the homomorphism $(a, b) : \mathfrak{g} \to (\mathbf{Z}/r)^2$ defined by

$${}^{\sigma}\!\alpha' = \zeta^{a(\sigma)}\alpha' \qquad {}^{\sigma}\!\beta' = \zeta^{b(\sigma)}\beta' \qquad \text{for each } \sigma \in \mathfrak{g}$$
 .

Its image in $H^1(K, \operatorname{PGL}_r(K_s))$ is the class of the 1-cocycle $\sigma \mapsto \bar{A}^{a(\sigma)}\bar{B}^{b(\sigma)}$.

Now let us recall how we associate to the algebra $A_{\alpha,\beta}$ a cohomology class $[A_{\alpha,\beta}]$ in $\mathrm{H}^1(K,\mathrm{PGL}_r)$ (loc. cit.). We choose an isomorphism of K_s -algebras $u:\mathrm{M}_r(K_s)\stackrel{\sim}{\longrightarrow} A_{\alpha,\beta}\otimes_K K_s$. For each $\sigma\in\mathfrak{g},\ u^{-1}{}^{\sigma}u$ is an automorphism of $\mathrm{M}_r(K_s)$, hence of the form $\mathrm{int}(g_\sigma)$ for some g_σ in $\mathrm{PGL}_r(K_s)$. Then $[A_{\alpha,\beta}]$ is the class of the 1-cocycle $\sigma\mapsto g_\sigma$.

In our case we define u on the generators A, B by $u(A) = \beta' y^{-1}$, $u(B) = \alpha'^{-1} x$. Then the automorphism $u^{-1} \sigma u$ multiplies A by $\zeta^{b(\sigma)}$ and B by $\zeta^{-a(\sigma)}$, which gives $g_{\sigma} = \bar{A}^{a(\sigma)} \bar{B}^{b(\sigma)}$ as above.

3.3. The exact sequence

$$1 \to \mathbf{G}_m \to \mathrm{GL}_r \to \mathrm{PGL}_r \to 1$$

gives rise to a coboundary homomorphism $\partial_r: \mathrm{H}^1(K,\mathrm{PGL}_r) \to \mathrm{H}^2(K,\mathbf{G}_m) = \mathrm{Br}(K)$ which is injective (*loc. cit.*). The class $\partial_r[A_{\alpha,\beta}] \in \mathrm{Br}(K)$ is the *symbol* $(\alpha,\beta)_r$; it depends only on the classes of α and β (mod. K^{*r}). The map $(\ ,\)_r: (K^*/K^{*r})^2 \to \mathrm{Br}(K)$ is bilinear and alternating. Since ∂_r is injective, we find:

Proposition 3.4. The set $\mathrm{Emb}_i((\mathbf{Z}/r)^2, \mathrm{PGL}_r(K))$ is isomorphic to the set of couples (α, β) in $(K^*/K^{*r})^2$ such that $(\alpha, \beta)_r = 0$.

We will describe the correspondence more explicitly in the case r=2 in the next section.

4. Conjugacy classes in $PGL_2(K)$

Proposition 4.1. Assume that K is separably closed. Two finite subgroups of $\operatorname{PGL}_2(K)$ which are isomorphic (and of order prime to $\operatorname{char}(K)$) are conjugate.

Proof: Again this is certainly well-known; we give a quick proof for completeness. The possible subgroups are those which appear in Proposition 1.1.

An element of order r of $\operatorname{PGL}_2(K)$ comes from a diagonalizable element of $\operatorname{GL}_2(K)$, hence is conjugate to the homothety $z \mapsto \zeta z$ for some $\zeta \in \mu_r(K)^2$; thus a cyclic subgroup of order r of $\operatorname{PGL}_2(K)$ is conjugate to the group H_r of homotheties $z \mapsto \lambda z$, $\lambda \in \mu_r(K)$.

There is only one group D_r containing H_r , namely the subgroup generated by H_r and the involution $z \mapsto 1/z$; it follows that all dihedral subgroups of order 2r are conjugate to this subgroup.

For the three remaining groups, we use again the isomorphism $\operatorname{PGL}_2(K) \xrightarrow{\sim} \operatorname{SO}_3(K)$. The groups \mathfrak{A}_4 and \mathfrak{S}_4 have exactly one irreducible representation of dimension 3 with trivial determinant, while \mathfrak{A}_5 has two such representations which differ by an outer automorphism: this is elementary in characteristic 0, and the general case follows by [I], ch. 15. Therefore two isomorphic subgroups H and H' of $\operatorname{SO}_3(K)$ of this type are conjugate in $\operatorname{GL}_3(K)$. The only quadratic forms preserved by H or H' are the multiple of the standard form; thus the element g of $\operatorname{GL}_3(K)$ which conjugates H to H' must satisfy ${}^t g g = \lambda I$ for some $\lambda \in K$. Replacing g by $\pm \mu g$, with $\mu^2 = \lambda^{-1}$, we have $g \in \operatorname{SO}_3(K)$, hence our assertion.

Recall that the determinant induces a homomorphism $\overline{\det}$: $\operatorname{PGL}_2(K) \to K^*/K^{*2}$.

Theorem 4.2. 1) $\operatorname{PGL}_2(K)$ contains only one conjugacy class of subgroups isomorphic to \mathbf{Z}/r (r > 2), \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

2) The conjugacy classes of cyclic subgroups of order 2 of $\operatorname{PGL}_2(K)$ are parametrized by K^*/K^{*2} : to $\alpha \in K^* \pmod{K^{*2}}$ corresponds the involution $z \mapsto \alpha/z$.

²As usual we denote by $\mu_r(K)$ the group of r-th roots of unity in K.

- 3) The homomorphism $\overline{\det}: \operatorname{PGL}_2(K) \to K^*/K^{*2}$ induces a bijective correspondence between:
 - conjugacy classes of subgroups of $PGL_2(K)$ isomorphic to $(\mathbf{Z}/2)^2$;
- subgroups $G \subset K^*/K^{*2}$ of order ≤ 4 , such that $(-\alpha, -\beta)_2 = 0$ for all α, β in G (see (3.3)).
- 4) Assume that $\mu_r(K)$ has order r. The conjugacy classes of subgroups D_r of $\operatorname{PGL}_2(K)$ are parametrized by $K^*/K^{*2}\mu_r(K)$. The subgroup corresponding to $\alpha \in K^*$ (mod. $K^{*2}\mu_r(K)$) consists of the homographies $z \mapsto \zeta z$ and $z \mapsto \alpha \eta/z$, for $\zeta, \eta \in \mu_r(K)$.

Proof: Using Proposition 4.1 we can apply the method of §3. We give the list of the subgroups of $\operatorname{PGL}_2(K_s)$ and their centralizers:

Н	$\mathbf{Z}/2$	$\mathbf{Z}/r \ (r > 2)$	$\mathbf{Z}/2 \times \mathbf{Z}/2$	$D_r \ (r > 2)$	\mathfrak{A}_4	\mathfrak{S}_4	\mathfrak{A}_5
Z	$\mathbf{G}_m \rtimes \mathbf{Z}/2$	\mathbf{G}_m	$\mathbf{Z}/2 \times \mathbf{Z}/2$	$\mathbf{Z}/2$	1	1	1

In case 1), we have $H^1(K, \mathbb{Z}) = \{1\}$ (using $H^1(K, \mathbb{G}_m) = \{1\}$). The result follows from (2.5).

Case 2): We apply Proposition 2.2, taking for $i(\bar{1})$ the involution $z \mapsto 1/z$. The centralizer Z is the semi-direct product of a torus \mathbf{G}_m and the subgroup $\mathbf{Z}/2$ generated by the involution $\iota: z \mapsto -z$. The pointed set $\mathrm{H}^1(K, \mathbf{G}_m \rtimes \mathbf{Z}/2)$ is identified with $\mathrm{H}^1(K, \mathbf{Z}/2) \cong K^*/K^{*2}$. The map $\mathrm{H}^1(K, \mathbf{Z}/2) \to \mathrm{H}^1(K, \mathrm{PGL}_2)$ is trivial, for instance because the injection $\mathbf{Z}/2 \to \mathrm{PGL}_2$ factors through a torus \mathbf{G}_m . Hence the set of conjugacy classes of involutions of $\mathrm{PGL}_2(K)$ is identified with K^*/K^{*2} .

To describe the correspondence explicitly we follow (2.3). Let $\alpha \in K^*$, and let $\alpha' \in K_s^*$ such that $\alpha'^2 = \alpha$; the class of α (mod. K^{*2}) corresponds to the class of the 1-cocycle $a: \mathfrak{g} \to \mathbb{Z}/2$ given by ${}^{\sigma}\alpha' = (-1)^{a(\sigma)}\alpha'$. In $\mathrm{PGL}_2(K_s)$ we have $i(a(\sigma)) = g^{-1}{}^{\sigma}g$, where g is the homography $z \mapsto \alpha'z$. Thus the subgroup corresponding to α is gHg^{-1} , which is generated by the involution $z \mapsto \alpha/z$.

Case 3): Let $i: (\mathbf{Z}/2)^2 \hookrightarrow \operatorname{PGL}_2(K)$ be the embedding which maps the basis vectors e_1 and e_2 to the involutions $z \mapsto 1/z$ and $z \mapsto -z$. By Proposition 3.4 the set $\operatorname{Emb}_i((\mathbf{Z}/2)^2, \operatorname{PGL}_2(K))$ is canonically identified to the set of couples (α, β) in $(K^*/K^{*2})^2$ with $(\alpha, \beta)_2 = 0$. Again we make the correspondence explicit following (2.3). Let $\alpha, \beta \in K^*$ with $(\alpha, \beta)_2 = 0$. This means that the conic $x^2 - \alpha y^2 - \beta z^2 = 0$ is isomorphic to \mathbf{P}_K^1 , thus there exists λ, μ in K with $\lambda^2 - \alpha - \beta \mu^2 = 0$. We choose α' and β' in K_s such that $\alpha'^2 = \alpha$ and $\beta'^2 = \beta$; as above we define the homomorphisms a and $b : \mathfrak{g} \to \mathbf{Z}/2$ by

$${}^{\sigma}\alpha' = (-1)^{a(\sigma)}\alpha'$$
 and ${}^{\sigma}\beta' = (-1)^{b(\sigma)}\beta'$ for each $\sigma \in \mathfrak{g}$.

Put $\theta := \frac{\beta' \mu}{\lambda + \alpha'} = \frac{\lambda - \alpha'}{\beta' \mu}$; let $g \in \operatorname{PGL}_2(K_s)$ be the homography $z \mapsto \alpha' \frac{z - \theta}{z + \theta}$. An easy computation gives

$$g^{-1} \sigma g = i(a(\sigma), b(\sigma))$$
.

Thus the embedding of $(\mathbf{Z}/2)^2$ associated to (α, β) is gig^{-1} ; it maps e_1 to the homography $h_1: z \mapsto \frac{\lambda u - \alpha}{z - \lambda}$, and e_2 to $h_2: z \mapsto \alpha/z$. Note that $\overline{\det}(h_1) = -\beta$ and $\overline{\det}(h_2) = -\alpha$.

Now we have to take into account the action of the normalizer N of H in $\operatorname{PGL}_2(K_s)$. This is the subgroup \mathfrak{S}_4 generated by H and the homographies

$$n_1: z \mapsto \frac{z+1}{z-1}$$
 , $n_2: z \mapsto \iota z$,

where ι is a square root of -1. We apply the recipe of (2.5). Since $n_1 \in \operatorname{PGL}_2(K)$, it acts on $\operatorname{H}^1(K,H)$ through its action on H, which permutes e_1 and e_2 ; thus it maps $(\alpha,\beta) \in (K^*/K^{*2}) \times (K^*/K^{*2})$ to (β,α) . The action of n_2 on H fixes e_2 and exchanges e_1 with $e_1 + e_2$; to get the action on $\operatorname{H}^1(K,H)$ we have to multiply by the class of the cocycle $\sigma \mapsto n_2^{-1} {}^{\sigma} n_2$, that is, $\sigma \mapsto i((\sigma(\iota)/\iota) e_2)$. Hence n_2 acts on $\operatorname{H}^1(K,H)$ by

$$n_2 \cdot (\alpha, \beta) = (\alpha, -\alpha\beta)$$
.

Let $G_{\alpha,\beta}$ be the subgroup of K^*/K^{*2} generated by $-\alpha$ and $-\beta$; it is the image of H by the homomorphism $\overline{\det}: \operatorname{PGL}_2(K) \to K^*/K^{*2}$. If $G_{\alpha,\beta} \cong (\mathbf{Z}/2)^2$, the orbit $N \cdot (\alpha,\beta)$ in $(K^*/K^{*2}) \times (K^*/K^{*2})$ has 6 elements, which are the couples (-x,-y) with $x,y \in G_{\alpha,\beta}, x \neq y$. If $G_{\alpha,\beta} \cong (\mathbf{Z}/2)$, the orbit has 3 elements, which are the couples (-x,-y) with $x,y \in G_{\alpha,\beta}, (x,y) \neq (1,1)$. Finally if $G_{\alpha,\beta}$ is trivial the orbit consists only of (-1,-1). Thus the conjugacy classes of subgroups

 $(\mathbf{Z}/2)^2$ in $\operatorname{PGL}_2(K)$ are parametrized by the subgroups $G \subset K^*/K^{*2}$ of order ≤ 4 , with the property $(-\alpha, -\beta)_2 = 0$ for each α, β in G.

Case 4): The group D_r is generated by two elements s,t with the relations $s^2 = t^r = 1$ and $sts = t^{-1}$. We choose a primitive r-th root of unity ζ and consider the embedding $i: D_r \hookrightarrow \operatorname{PGL}_2(K)$ such that i(s) is the involution $z \mapsto 1/z$ and i(t) the homothety $z \mapsto \zeta z$. The centralizer is $\mathbb{Z}/2$, generated by the involution $z \mapsto -z$. As in case 2) it follows that $\operatorname{Emb}_i(D_r, \operatorname{PGL}_2(K))$ is isomorphic to $\operatorname{H}^1(K, \mathbb{Z}/2)$. Also the previous argument shows that the embedding corresponding to $\alpha \in K^*$ is the conjugate of i by the homography $z \mapsto \alpha' z$, with $\alpha'^2 = \alpha$, so it maps s to $z \mapsto \alpha/z$ and t to $z \mapsto \zeta z$.

To complete the picture we have to take into account the action of the normalizer N of $i(D_r)$ in $\operatorname{PGL}_2(K_s)$. This is the subgroup D_{2r} generated by $i(s): z \mapsto 1/z$ and the homothety $n: z \mapsto \eta z$, where $\eta \in K_s$ is a primitive 2r-th root of unity. The action of i(s) is trivial, and n acts by multiplication by the cocycle $\sigma \mapsto n^{-1} \sigma n$, which corresponds to the class of η^2 in K^*/K^{*2} . Since η^2 generates $\mu_r(K)$, the assertion 4) follows.

References

- [B] A. Beauville: *p*-elementary subgroups of the Cremona group. J. of Algebra **314** (2007), 553–564.
- [D] J. Dieudonné: La géométrie des groupes classiques. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.
- I. Isaacs: Character theory of finite groups. AMS Chelsea Publishing, Providence, RI, 2006.
- [S1] J.-P. Serre: Corps locaux. Hermann, Paris, 1962.
- [S2] J.-P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331.
- [S3] J.-P. Serre: Galois cohomology. Springer-Verlag, Berlin, 1997.

Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, Parc Valrose, F-06108 Nice cedex 2, France

E-mail address: arnaud.beauville@unice.fr