Resource Provisioning with using Deep Reinforcement Learning

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

IWQoS 2019, Phoenix, Arizona June 24, 2019

Resource assignment problems in general: minimize the job completion time by assigning resources

Solving resource assignment problems

Solving resource assignment problems

One running example today

Modern machine learning training workloads need a large amount of computation resources, and can take days to complete

Objective: complete the machine learning training workload as soon as possible

How? By optimally assigning devices — GPUs and CPUs — to neural network operations

Neural networks: computation graph

8

Same neural network, but in Python code

```
# activation function (use sigmoid)
f = lambda x: 1.0/(1.0 + np.exp(-x))
# random input vector of three numbers (3x1)
x = np.random.randn(3, 1)
# W1, W2, W3, b1, b2, b3 are learnable parameters
# calculate first hidden layer activations (4x1)
h1 = f(np.dot(W1, x) + b1)
# calculate second hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2)
# output neuron (1x1)
out = np.dot(W3, h2) + b3
```

Device placement with deep reinforcement learning

Objective: to find the **best** way to assign devices to operations to minimize training time

Mirhoseini et al. (Google Inc.), "Device placement optimization with reinforcement learning," in Proc. ICML 2017.

But what is deep reinforcement learning?

Recent success stories from DeepMind

- Deep Q-Network: Atari 2600 games (February 2015)
- AlphaGo (3:1 win over Lee Sedol, October 2016)
- AlphaGo Zero (100:0 win over AlphaGo, October 2017)
 - Learned from scratch using self-play with deep reinforcement learning and Monte-Carlo Tree Search

Let's start from the beginning

Reinforcement learning is "semisupervised," with not much more guidance than a reward from the environment

Toy example: Cartpole

States observed: [position of cart, velocity of cart, angle of pole, pole velocity at tip]

Possible actions: [push cart to the left, push cart to the right]

Cartpole: random agent

```
import gym
env = gym.make("CartPole-v0")
total_reward = 0.0
total\_steps = 0
obs = env.reset()
# start taking random actions
while True:
  action = env.action_space.sample()
  observation, reward, done, _ = env.step(action)
  total_reward += reward
  total_steps += 1
  if done:
    break
```

(pytorch) \$ python cartpole_random.py

Our first algorithm: the cross-entropy method

Model free: directly connects observations to actions, without building a model of the environment or the reward

Our first algorithm: the cross-entropy method

Cross-entropy: training

- Play N episodes using our current model and environment
- Calculate the total reward for every episode and decide on a reward boundary (say, 70%)
- Throw away all episodes with a reward below the boundary
- Train on the remaining elite episodes
- Repeat until we are satisfied with the result

Cross-entropy: an iterative algorithm

$$\pi_{i+1}(a|s) = \underset{\pi_{i+1}}{\arg \min} - \mathbb{E}_{z \sim \pi_i(a|s)}[R(z) \ge \phi_i] \log \pi_{i+1}(a|s)$$

Basic idea: we sample episodes using our current policy (starting with some random initial policy), and minimize the **negative log-likelihood** of the most successful samples using our policy

 happens to the be same as minimizing the cross-entropy (and the Kullback-Leibler (K-L) divergence that quantifies the distance between two probability distributions)

Defining our neural network using PyTorch

```
import torch.nn as nn
class Net(nn.Module):
    def __init__(self, obs_size, hidden_size, n_actions):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
    def forward(self, x):
        return self.net(x)
```

Starting a loop to interact with the environment

```
while True:
  obs_v = torch.FloatTensor([obs])
  act_probs_v = sm(net(obs_v))
  act_probs = act_probs_v.data.numpy()[0]
  action = np.random.choice(len(act_probs),
                            p=act_probs)
  next_obs, reward, is_done, _= env.step(action)
  episode_reward += reward
```

Training our neural network

```
env = gym.make("CartPole-v0")
obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
                                                combines softmax (exp) and
                                                cross-entropy (log) into one
net = Net(obs_size, HIDDEN_SIZE, n_actions)
                                               function for numerical stability
objective = nn.CrossEntropyLoss() ←
optimizer = optim.Adam(params=net.parameters(), lr=0.01)
for iter_no, batch in enumerate(iterate_batches(env, net,
BATCH_SIZE)):
  obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE)
  optimizer.zero_grad()
  action_scores_v = net(obs_v)
  loss_v = objective(action_scores_v, acts_v)
  loss_v.backward()
  optimizer.step()
```

(pytorch) \$ python cartpole_cross_entropy.py

Our second algorithm: policy gradient

- A policy gradient method, called REINFORCE, was used by Google's ICML 2017 paper to solve the device placement problem
- The cross-entropy method uses the elite episodes with high rewards, and discards the bad episodes with low rewards
- But can we use a more fine-grained separation of episodes?
 - Perhaps an episode with a total reward of 100 should contribute more than another episode with a total reward of 50?

REINFORCE: Monte-Carlo Policy Gradient

- Play N episodes using our current model and environment
- For every step t in every episode k, calculate a discounted total reward for subsequent steps:

$$Q_{k,t} \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

• An episode with rewards [1, 1, 1, 1] now becomes [3.9404, 2.9701, 1.99, 1.0] ($\gamma = 0.99$)

REINFORCE: Monte-Carlo Policy Gradient

Update the neural network weights to minimize the loss function:

$$-\mathbb{E}_{k,t}[Q_{k,t}\log\pi(a_{k,t}|s_{k,t};\theta)]$$

discounted total reward

policy function

Training our neural network

```
optimizer.zero_grad()
states_v = torch.FloatTensor(batch_states)
batch_actions_t = torch.LongTensor(batch_actions)
batch_qvals_v = torch.FloatTensor(batch_qvals)
logits_v = net(states_v)
                                          combines softmax (exp) and
log_prob_v = F.log_softmax(logits_v,
                                        log into one function for
                             dim=1)
                                          numerical stability
log_prob_actions_v = batch_qvals_v *
   log_prob_v[range(len(batch_actions)), batch_actions t]
loss_v = -log_prob_actions_v.mean()
loss_v.backward()
optimizer.step()
```

(pytorch) \$ python cartpole_reinforce.py

We are not done yet: Proximal Policy Optimization

- Motivation: improve the stability of policy updates during training
 - We wish to train as fast as we can, making large steps in Stochastic Gradient Descent (SGD) updates
 - But since our policy is very nonlinear, a large update can ruin the policy we've just learned — making a bad update once may not be recoverable later
 - One can make tiny steps in SGD updates, but this will slow down convergence

Lesson learned: distance in parameter space \neq distance in policy space

Proximal Policy Optimization

Update the neural network weights to minimize the loss function:

$$-\mathbb{E}_{k,t}[Q_{k,t}\frac{\pi(a_{k,t}|s_{k,t};\theta)}{\pi(a_{k,t}|s_{k,t};\theta_{\text{old}})} - \beta D_{\text{KL}}[\pi(\cdot|s_{k,t},\theta) \parallel \pi(\cdot|s_{k,t},\theta_{\text{old}})]$$

policy parameters before the update Kullback-Leibler (K-L) divergence

source: Wikipedia

Back to our device placement problem using deep reinforcement learning

ICML 2017: a variant of REINFORCE policy gradient

Neural network model: a sequence-to-sequence model with an attention layer **Reward**: square root of the average running time over several iterations

Our recent work: PPO + cross-entropy

Reward: $\bar{R}-R$

Every K steps: update the policy using PPO

Every N steps: update the policy using cross-entropy

Training progress over time

Deep RL may perform quite well in resource assignment problems

Using DRL to solve real-world problems

- Using DRL for traffic optimization in datacenter networks
- Congestion control
- Scheduling distributed machine learning workloads in clusters
- Federated learning

Problems with reinforcement learning

- Sample inefficiency: learning a policy usually needs more samples than you think it will
- It's difficult to design the reward function

Slides and source code: iqua.ece.toronto.edu/~bli/iwqos-talk-baochunli.zip

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

IWQoS 2019, Phoenix, Arizona June 24, 2019