such that $z \in \bigwedge^2 W$, we calculate $u^* \, \lrcorner \, z$, where $u^* \in \bigwedge^1 E^*$. The multilinearity of $\, \lrcorner \,$ implies it is enough to calculate $u^* \, \lrcorner \, z$ for $u^* \in \{e_1^*, e_2^*, e_3^*, e_4^*\}$. Proposition 34.18 (4) implies that

$$\begin{aligned} e_1^* \, \lrcorner \, z &= e_1^* \, \lrcorner \, (e_1 \wedge e_2 + e_2 \wedge e_3) = e_1^* \, \lrcorner \, e_1 \wedge e_2 = -e_2 \\ e_2^* \, \lrcorner \, z &= e_2^* \, \lrcorner \, (e_1 \wedge e_2 + e_2 \wedge e_3) = e_1 - e_3 \\ e_3^* \, \lrcorner \, z &= e_3^* \, \lrcorner \, (e_1 \wedge e_2 + e_2 \wedge e_3) = e_3^* \, \lrcorner \, e_2 \wedge e_3 = e_2 \\ e_4^* \, \lrcorner \, z &= e_4^* \, \lrcorner \, (e_1 \wedge e_2 + e_2 \wedge e_3) = 0. \end{aligned}$$

Thus W is the two-dimensional vector space generated by the basis $\{e_2, e_1 - e_3\}$. This is not surprising since $z = -e_2 \wedge (e_1 - e_3)$ and is in fact decomposable. As this example demonstrates, the action of the left hook provides a way of extracting a basis of W from z.

Proposition 34.25 implies the following corollary.

Corollary 34.26. Any nonzero $z \in \bigwedge^p E$ is decomposable iff the smallest subspace W of E such that $z \in \bigwedge^p W$ has dimension p. Furthermore, if $z = u_1 \wedge \cdots \wedge u_p$ is decomposable, then (u_1, \ldots, u_p) is a basis of the smallest subspace W of E such that $z \in \bigwedge^p W$

Proof. If $\dim(W) = p$, then for any basis (e_1, \ldots, e_p) of W we know that $\bigwedge^p W$ has $e_1 \wedge \cdots \wedge e_p$ has a basis, and thus has dimension 1. Since $z \in \bigwedge^p W$, we have $z = \lambda e_1 \wedge \cdots \wedge e_p$ for some nonzero λ , so z is decomposable.

Conversely assume that $z \in \bigwedge^p W$ is nonzero and decomposable. Then, $z = u_1 \wedge \cdots \wedge u_p$, and since $z \neq 0$, by Proposition 34.8 (u_1, \ldots, u_p) are linearly independent. Then for any $v_i^* = u_1^* \wedge \cdots u_{i-1}^* \wedge u_{i+1}^* \wedge \cdots \wedge u_p^*$ (where u_i^* is omitted), we have

$$v_i^* \mathrel{\lrcorner} z = (u_1^* \land \cdots u_{i-1}^* \land u_{i+1}^* \land \cdots \land u_p^*) \mathrel{\lrcorner} (u_1 \land \cdots \land u_p) = \pm u_i,$$

so by Proposition 34.25 we have $u_i \in W$ for i = 1, ..., p. This shows that $\dim(W) \geq p$, but since $z = u_1 \wedge \cdots \wedge u_p$, we have $\dim(W) = p$, which means that $(u_1, ..., u_p)$ is a basis of W.

Finally we are ready to state and prove the criterion for decomposability with respect to left hooks.

Proposition 34.27. Any nonzero $z \in \bigwedge^p E$ is decomposable iff

$$(u^* \, \lrcorner \, z) \wedge z = 0, \qquad \text{for all } u^* \in \bigwedge^{p-1} E^*.$$

Proof. First assume that $z \in \bigwedge^p E$ is decomposable. If so, by Corollary 34.26, the smallest subspace W of E such that $z \in \bigwedge^p W$ has dimension p, so we have $z = e_1 \wedge \cdots \wedge e_p$ where e_1, \ldots, e_p form a basis of W. By Proposition 34.25, for every $u^* \in \bigwedge^{p-1} E^*$, we have $u^* \, \exists \, z \in W$, so each $u^* \, \exists \, z$ is a linear combination of the e_i 's, say

$$u^* \rfloor z = \alpha_1 e_1 + \cdots + \alpha_n e_n$$