

# HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

## BỘ MÔN THỰC TẬP CƠ SỞ



# THỰC TẬP CƠ SỞ

Giảng viên hướng dẫn : KIM NGỌC BÁCH Họ và tên sinh viên : NGUYỄN XUÂN HẢI

Mã sinh viên : B22DCCN271 Lớp : D22CQCN07-B

Nhóm : 13

Báo Cáo Hàng Tuần Lần 5 ngày (6-12/4/2025)





# I. NHIỆM VỤ CỦA TUẦN NÀY

## 1. Xây dựng mô hình

Có 2 mô hình CNN nổi tiếng và nhiều chương trình dùng hiện nay là RESNET và EFFICENT NET **a, RESNET** 



- Ý tưởng: dùng các **residual block** để giải quyết vấn đề khi mất **Gradient** quá nhanh.
- **Cấu trúc đặc trưng:** Có các skip connections kiểu F(x) + x.
- Sơ đồ khối: x  $\rightarrow$  [Conv  $\rightarrow$  BN  $\rightarrow$  ReLU  $\rightarrow$  Conv  $\rightarrow$  BN]  $\rightarrow$  +  $\rightarrow$  ReLU  $\rightarrow$  y
- Có các phiên bản nổi tiếng: RESNET -18, RESNET -34, RESNET -50, RESNET -101

#### Ưu điểm:

- Dễ huấn luyện, ổn định, phù hợp cho việc fine-tune.(Resnet-18/-34)
- Dễ hiểu, phổ biến trong nghiên cứu và giảng dạy.

#### Nhược điểm:

- Mô hình lớn, tiêu tốn tài nguyên hơn. (Resnet -101)
- Không được tối ưu tốt cho tốc độ/hiệu suất trên thiết bị yếu.

## Gọi thư viện RESNET từ torchvision:

import torchvision.models as models import torch.nn as nn

# Tải mô hình ResNet-18 pretrained

model = models.resnet18(pretrained=True)

# Thay lớp fully connected cuối cùng (1000 → số lớp bạn muốn)

num\_classes = 15 # Ví dụ: 15 loài động vật

model.fc = nn.Linear(model.fc.in\_features, num\_classes)

## b, EFFICIENT NET



Khác với cách truyền thống (chỉ tăng chiều sâu hoặc chiều rộng), EfficientNet dùng cách **phóng to mô** hình cân bằng theo cả:

- 1. **Chiều sâu (depth)** số layer
- 2. **Chiều rộng (width)** số filter/channel mỗi layer
- 3. Kích thước ảnh đầu vào (resolution) -độ phân giải ảnh đầu vào

Tất cả được scale một cách đồng bộ bằng hệ số  $\phi$  theo công thức:

depth:  $d = \alpha \land \phi$ width:  $w = \beta \land \phi$ resolution:  $r = \gamma \land \phi$ 

 $\rightarrow$  with constraint:  $\alpha * \beta^2 * \gamma^2 \approx 2$ 

- Các phiên bản:

## Tên Depth Width Resolution Params Accuracy

| B0 | 1.0× | 1.0× | 224×224 | 5.3M | 77.1% |
|----|------|------|---------|------|-------|
| B1 | 1.1× | 1.0× | 240×240 | 7.8M | 79.1% |
| B2 | 1.2× | 1.1× | 260×260 | 9.2M | 80.1% |

#### Tên Depth Width Resolution Params Accuracy

| B3 | $1.4 \times$ | 1.2× | 300×300 | 12M | 81.6% |
|----|--------------|------|---------|-----|-------|
| B4 | 1.8×         | 1.4× | 380×380 | 19M | 82.9% |

## Ưu điểm:

- Hiệu suất cao vượt trội so với ResNet cùng kích cỡ.
- **Nhẹ**, chạy tốt trên cả CPU lẫn mobile.
- Dễ scale theo yêu cầu tài nguyên.

## Nhược điểm:

- Cấu trúc phức tạp hơn ResNet.
- Khó sử dụng với những người mới.

## Gọi EfficientNet từ torchvision

```
from torchvision.models import efficientnet_b0
import torch.nn as nn

# Tåi EfficientNet-B0 pretrained
model = efficientnet_b0(pretrained=True)

# Thay lớp cuối cùng
num_classes = 15 # Số loài cần phân loại
```

model.classifier[1] = nn.Linear(model.classifier[1].in\_features, num\_classes)

- So sánh giữa 2 loại Model CNN:



- Dựa theo điều kiện Tranning của máy, độ chính xác và hiệu quả, em sẽ lựa chọn Model EfficientNet làm cấu trúc lớp CNN.

```
import torch
import torch.nn as nn
from torchvision.models import EfficientNet_B0_Weights, efficientnet_b0
def get_efficient(number_classes): 1usage
    #Call model Efficient B0
    model = efficientnet_b0(weights = EfficientNet_B0_Weights.DEFAULT)
    #Extract in_features from model (1280)
    in_features = model.classifier[1].in_features
    model.classifier[1] = nn.Linear(in_features, number_classes)
    return model
if __name__ == "__main__":
   model = get_efficient(19)
   batch_size = 64
    x = torch.rand(batch_size, 3, 224, 224)
    output = model(x)
    print(output)
```

## 2. Khởi tạo

- Khởi tạo 2 bộ train\_loader và test\_loader để có thể xử lí đồng thời nhiều bức ảnh từ bộ dataset.
- Biến đổi ảnh cho đúng định dạng mà Model cần:

- + Vì EfficientNet-B0 cần ảnh 224-224 pixel nên phải **Resize** ảnh về (224,224)
- + **Chuẩn hóa ảnh** theo **mean và std** đã dùng khi huấn luyện EfficientNet trên ImageNet, làm ảnh đầu vào có phân phối giống với ảnh gốc mà EfficientNet từng học.
- Gọi Model **EfficientNet**, khởi tạo **Loss function** và **Optimize function** Chú ý: Sử dụng argparse() để viết chương trình có thể nhận tham số từ dòng lệnh.

3. Huấn luyện mô hình

```
for epoch in range(start_epoch, args.epoch):
   # train_step
   model.train()
   train_loss = []
   progress_bar = tqdm(train_loader, colour = "cyan")
    for iter, (image, label) in enumerate(progress_bar):
        output = model(image)
        loss = criterion(output, label)
        optimize.zero_grad()
        loss.backward()
        optimize.step()
        train_loss.append(loss.item())
        avg_loss = np.mean(train_loss)
        writer.add_scalar(tag: 'train_loss', avg_loss, epoch * num_iter + iter)
        progress_bar.set_description("train_epoch {}/{}".format( *args: epoch+1, args.epoch))
        progress_bar.set_postfix(loss=f"{avg_loss:.4f}")
```

#### Quá trình huấn luyện

- 1. Lấy 1 batch ảnh và nhãn
- 2. Cho ảnh đi qua model → ra output
- 3. Tính loss giữa output và nhãn thật
- 4. Xóa gradient cũ
- 5. Tính gradient mới (backward)
- 6. Cập nhật trong số model
- 7. Ghi nhận loss để theo dõi quá trình học

```
Total params: 4,031,887

Trainable params: 4,031,887

Non-trainable params: 0

Input size (MB): 0.57

Forward/backward pass size (MB): 173.64

Params size (MB): 15.38

Estimated Total Size (MB): 189.60

train_epoch 1/100: 1%| | 9/601 [03:58<4:21:51, 26.54</br>
```

## 4. Kiểm thử mô hình

```
all_label = []
all_predict = []
all_loss = []
model.eval()
with torch.no_grad():
    progress_bar = tqdm(test_loader, colour = "yellow")
    for (image, label) in progress_bar:
       predict = model(image)
        loss = criterion(predict, label)
        max_predict = torch.argmax(predict, dim=1)
        all_loss.append(loss.item())
        all_predict.extend(max_predict.tolist())
        all_label.extend(label.tolist())
loss = np.mean(all_loss)
acc = accuracy_score(all_label, all_predict)
progress_bar.set_description("test_epoch: {}/{}".format( *args: epoch + 1, args.epoch))
progress_bar.set_postfix(loss=f"{loss:.4f}")
```

- model.eval(): Đặt mô hình sang chế độ eval(), giúp:
  - Tắt các layer như Dropout, BatchNorm hoạt động đúng kiểu đánh giá.
- torch.no grad(): Tắt tính toán gradient để:
  - **Tiết kiệm RAM**, tránh lưu lại các bước backward.
  - Chạy nhanh hơn, vì không cần tính toán cho việc huấn luyện.

#### Quá trình kiểm thử:

- 1. Dự đoán đầu ra từ mô hình
- 2. Tính loss giữa dự đoán và nhãn thực tế
- 3. Lấy nhãn dự đoán có xác suất cao nhất
- 4. Lưu kết quả để tính toán sau
- 5. Tính loss trung bình và accuracy cuối cùng
- 6. Cập nhật tiến trình hiển thị

5. Triển khai lên git

