

Discrete Structures for Computer Science

Dr. N. L. Bhanu Murthy Computer Science & Information Systems Department

Foundations of Logic

Mathematical Logic is a tool for working with elaborate compound statements.

> It includes:

- ✓ A formal language for expressing them.
- ✓ A concise notation for writing them.
- ✓ A methodology for objectively reasoning about their truth or falsity.
- ✓ It is the foundation for expressing formal proofs in all branches of mathematics.

Foundations of Logic: Overview

- Propositional logic:
 - Basic definitions.
 - Equivalence rules & derivations.
- Predicate logic.
 - Predicates.
 - Quantified predicate expressions.
 - Equivalences & derivations.

Propositional Logic

Propositional Logic is the logic of compound statements built from simpler statements using so-called Boolean connectives.

Some applications in computer science

- ✓ Design of digital electronic circuits.
- ✓ Expressing conditions in programs.
- ✓ Queries to databases & search engines.

George Boole (1815-1864)

Chrysippus of Soli (ca. 281 B.C. – 205 B.C.)

Definition of a Proposition

Definition: A *proposition* (denoted *p*, *q*, *r*, ...) is simply:

- ✓ a statement (i.e., a declarative sentence)
 - with some definite meaning, (not vague or ambiguous)
- ✓ having a truth value that's either true (T) or false (F)
 - it is never both, neither, or somewhere "in between!"
 - However, you might not know the actual truth value,
 - and, the truth value might depend on the situation or context.

Examples of Propositions

- "It is raining." (In a given situation.)
- "Beijing is the capital of China."
- \rightarrow "1 + 2 = 3"

But, the following are **NOT** propositions:

- "Who's there?" (interrogative, question)
- "La la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- "1 + 2" (expression with a non-true/false value)

Operators / Connectives

- ✓ An operator or connective combines one or more operand expressions into a larger expression. (E.g., "+" in numeric exprs.)
 - ✓ Unary operators take 1 operand (e.g., -3);
 - √ binary operators take 2 operands (eg 3 × 4).
- ✓ Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.

Some Popular Boolean Operators

Formal Name	<u>Nickname</u>	<u>Arity</u>	<u>Symbol</u>
Negation operator	NOT	Unary	7
Conjunction operator	AND	Binary	^
Disjunction operator	OR	Binary	V
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

The Negation Operator

➤ The unary *negation operator* "¬" (*NOT*) transforms a prop. into its logical *negation*.

E.g. If
$$p =$$
 "I have Honda City Car"
then $\neg p =$ "I do **not** have Honda City Car."

> The *truth table* for NOT:

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \\ \hline \\ \text{Operand } \\ \text{column} & \text{column} \\ \end{array}$$

The Conjunction Operator

✓ The binary conjunction operator "∧" (AND) combines two
propositions to form their logical conjunction.

Example

If p="I will have salad for lunch." and q="I will have steak for dinner.", then $p \land q$ ="I will have salad for lunch **and** I will have steak for dinner."

Conjunction Truth Table

Note that a conjunction $p_1 \wedge p_2 \wedge ... \wedge p_n$ of n propositions will have 2^n rows in its truth table.

$$\begin{array}{c|cccc} \textbf{Operand columns} \\ \hline p & q & p \land q \\ \hline F & F & F \\ F & T & F \\ T & F & F \\ T & T & T \end{array}$$

Remark. ¬ and ∧ operations together are sufficient to express *any* Boolean truth table!

The Disjunction Operator

➤ The binary *disjunction operator* "∨" (*OR*) combines two propositions to form their logical *disjunction*.

p="My car has a bad engine."

q="My car has a bad carburetor."

p∨q="Either my car has a bad engine, or my car has a bad carburetor."

Meaning is like "and/or" in English.

After the downward-pointing "axe" of "\" splits the wood, you can take 1 piece OR the other, or both.

Disjunction Truth Table

- Note that p∨q means that p is true, or q is true, or both are true!
- So, this operation is also called *inclusive or*, because it **includes** the possibility that both p and q are true.

<u>p</u>	q	$p\vee$	q
F	F	F	Note
F	T	\mathbf{T}	difference
<u>.</u> T	F	T	from AND
T	T	T	

Nested Propositional Expressions

- Use parentheses to group sub-expressions:
 "I just saw my old friend, and either he's grown or I've shrunk." = f \((g \times s) \)
 - $(f \land g) \lor s$ would mean something different
 - $ightharpoonup f \wedge g \vee s$ would be ambiguous
- By convention, "¬" takes precedence over both "∧" and "∨".
 - $ightharpoonup \neg s \wedge f$ means $(\neg s) \wedge f$, **not** $\neg (s \wedge f)$

A Simple Exercise

- Let
 p="It rained last night",
 q="The sprinklers came on last night,"
 r="The lawn was wet this morning."
- Translate each of the following into English:
- $\rightarrow \neg p$ = "It didn't rain last night."
- $r \wedge \neg p$ = "The lawn was wet this morning, and it didn't rain last night."
- "Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

The Exclusive Or Operator

- ➤ The binary exclusive-or operator "⊕" (XOR) combines two propositions to form their logical "exclusive or" (exjunction?).
- $\triangleright p =$ "I will earn an A in this course,"
- > q ="I will drop this course,"
- $p \oplus q =$ "I will either earn an A in this course, or I will drop it (but not both!)"

Exclusive-Or Truth Table

- ➤ Note that $p \oplus q$ means that p is true, or q is true, but **not both**!
- This operation is called *exclusive or*, because it **excludes** the possibility that both *p* and *q* are true.

Natural Language is Ambiguous

- Note that <u>English</u> "or" can be <u>ambiguous</u> regarding the "both" case!
- Pat is a singer or Pat is a writer." -
- Pat is a man or Pat is a woman." -

- Need context to disambiguate the meaning!
- For this class, assume "or" means inclusive.

The Implication Operator

antecedent consequent

➤ The *implication*

$$p \rightarrow q$$

states that *p* implies *q*.

i.e., If *p* is true, then *q* is true; but if *p* is not true, then *q* could be either true or false.

E.g., let p = "You study hard."

q = "You will get a good grade."

 $p \rightarrow q$ = "If you study hard, then you will get a good grade." (else, it could go either way)

Implication Truth Table

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- $p \rightarrow q$ does **not** say that p causes q!
- $p \rightarrow q$ does **not** require that p or q **are ever true**!

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline F & F & T \\ F & T & T \\ \hline T & F & F \\ \hline T & T & The \\ \hline T & T & The \\ \hline T & T & The \\ \hline \end{array}$$

 \triangleright E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

Examples of Implications

- "If Tuesday is a day of the week, then I am a penguin." True or False
- "If 1+1=6, then Anna Hazare is president." True or False?
- "If the moon is made of green cheese, then I am richer than Bill Gates" *True* or *False*?

<u>p</u>	q	$p \rightarrow q$	<u></u>
F	F	T	
F	T	T	
T	F	F	The only False
T	T	T	case!

English Phrases Meaning p → q

- •"p implies q"
- •"if *p*, then *q*"
- •"if *p*, *q*"
- •"when *p*, *q*"
- •"whenever p, q"
- •"q if p"
- •"q when p"
- •"q whenever p"

- •"*p* only if *q*"
- •"p is sufficient for q"
- •"q is necessary for p"
- •"q follows from p"
- •"q is implied by p"
- •We will see some equivalent logic expressions later.

Converse, Inverse, Contrapositive

- Some terminology, for an implication $p \rightarrow q$:
- Its converse is: $q \rightarrow p$.
- Its *inverse* is: $\neg p \rightarrow \neg q$.
- Its contrapositive: $\neg q \rightarrow \neg p$.
- One of these three has the same meaning (same truth table) as p → q. Can you figure out which?

How do we know for sure?

 \triangleright Proving the equivalence of $p \rightarrow q$ and its contrapositive using truth tables:

The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.

p = "Congress wins 2014 election."

q = "Rahul will be prime minister for all of us in 2014."

 $p \leftrightarrow q$ = "If, and only if, Congress wins 2014 election, Rahul will be president for all of us in 2014."

Biconditional Truth Table

- $\checkmark p \leftrightarrow q$ means that p and q have the **same** truth value.
- ✓ Remark. This truth table is the exact opposite of ⊕'s!
 - ✓ Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

✓ $p \leftrightarrow q$ does **not** imply that p and q are true, or that either of them causes the other, or that they have a common cause.

Boolean Operations Summary

➤ We have seen 1 unary operator (out of the 4 possible) and 5 binary operators (out of the 16 possible).

Their truth tables are below.

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
						T	
F	T	T	F	T	T	T	F
T	F	F	F	T	T	F	F
T	T	F	T	T	F	T	T

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	П	^	>	\oplus	\rightarrow	\leftrightarrow
Boolean algebra:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	& &		!=		==
C/C++/Java (bitwise):	~	&		^		
Logic gates:	>>-		<u></u>	>>		

Bits and Bit Operations

- ✓ A bit is a binary (base 2) digit: 0 or 1.
- ✓ Bits may be used to represent truth values.
- ✓ By convention:0 represents "false";1 represents "true".

✓ Boolean algebra is like ordinary algebra except that variables stand for bits,
 + means "or", and multiplication means "and".

Bit Strings

- ✓ A Bit string of length n is an ordered sequence (series, tuple) of n≥0 bits.
- ✓ By convention, bit strings are (sometimes) written left to right:
 - \triangleright e.g. the "first" bit of the bit string "1001101010" is 1.
 - Watch out! Another common convention is that the rightmost bit is bit #0, the 2nd-rightmost is bit #1, etc.
- ✓ When a bit string represents a base-2 number, by convention, the first (leftmost) bit is the most significant bit. Ex. 1101₂=8+4+1=13.

Counting in Binary

- ✓ Did you know that you can count to 1023 just using two hands? How?
 - Count in binary!
 - Each finger (up/down) represents 1 bit.

✓ To increment: Flip the rightmost (low-order) bit.

If it changes $1\rightarrow 0$, then also flip the next bit to the left,

If that bit changes $1\rightarrow 0$, then flip the next one, etc.

Bitwise Operations

➤ Boolean operations can be extended to operate on bit strings as well as single bits.

E.g.:01 1011 011011 0001 1101

Bit-wise OR
Bit-wise AND
Bit-wise XOR

End

- •You have learned about:
- •Propositions: What they are.
- Propositional logic operators'
 - -Symbolic notations.
 - -English equivalents.
 - –Logical meaning.
 - -Truth tables.

- •Atomic vs. compound propositions.
- Alternative notations.
- Bits and bit-strings.
- •Next section: Propositional equivalences.
 - -How to prove them.

Thank You!!