432 Class 04

https://thomaselove.github.io/432-2023/

2023-01-26

Today's Agenda

- Fitting two-factor ANOVA/ANCOVA models with 1m
 - Incorporating an interaction between factors
 - Incorporating polynomial terms
 - Incorporating restricted cubic splines
- Regression Diagnostics via Residual Plots
- Validating / evaluating results with yardstick

Appendix

How the class4im data were created from smart_ohio.csv

 Data Ingest, Cleaning, and Single Imputation to deal with missingness (assumes MAR)

Chapters 6-13 of the Course Notes are relevant here.

Today's R Setup

```
knitr::opts chunk$set(comment = NA)
library(janitor)
library(broom)
library(knitr)
library(mosaic)
library(patchwork)
library(naniar)
library(simputation)
                         ## single imputation of missing data
library(rsample)
                         ## data splitting
library(yardstick)
                         ## evaluating fits
library(rms)
                         ## regression tools (Frank Harrell)
library(tidyverse)
theme set(theme bw())
```

Section 1

The class4im data (creation described in some detail in Appendix)

Codebook for useful class4im variables

- 894 subjects in Cleveland-Elyria with bmi and no history of diabetes (missing values singly imputed: assume MAR)
- There are 9 variables in the data but we'll use only these five today.

Variable	Description
ID	subject identifying code
bmi	(outcome) Body-Mass index in kg/m^2 .
exerany	any exercise in the past month: $1 = yes$, $0 = no$
genhealth	self-reported overall health (5 levels)
fruit_day	average fruit servings consumed per day

- All subjects have hx_diabetes (all 0), and MMSA (Cleveland-Elyria).
- See Course Notes Chapter on BRFSS SMART data for variable details
- Appendix provides details on data development.

Data Load

```
class4im <- read_rds("c04/data/class4im.Rds")
class4im |> n_miss()
[1] 0
```

 ${\tt identical(nrow(class4im),\ n_distinct(class4im\$ID))}$

[1] TRUE

Splitting the Sample

```
set.seed(432)  ## for future replication
class4im_split <- initial_split(class4im, prop = 3/4)
train_c4im <- training(class4im_split)
test_c4im <- testing(class4im_split)
c(nrow(class4im), nrow(train_c4im), nrow(test_c4im))</pre>
```

[1] 894 670 224

Models We'll Build Today

- Predict bmi using exer_any and genhealth (both categorical)
- without and then with an interaction between the two predictors
- Add in a quantitative covariate, fruit_day, first simply as a main (and linear) effect
- Incorporate the fruit_day information using a quadratic polynomial instead.
- Incorporate the fruit_day information using a restricted cubic spline with 4 knots instead.

We'll fit all of these models with 1m, and assess them in terms of in-sample (training) fit and out-of-sample (testing) performance.

We could, but won't transform our outcome.

bmi means by exerany and health

```
summaries_1 <- train_c4im |>
    group_by(exerany, health) |>
    summarise(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries_1 |> kable(digits = 2)
```

exerany	health	n	mean	stdev
0	Е	18	27.49	3.56
0	VG	54	26.87	5.27
0	G	58	30.32	7.45
0	F	31	35.12	9.95
0	Р	8	36.17	12.13
1	E	92	25.78	4.49
1	VG	191	26.80	4.89
1	G	152	29.12	6.27
1	F	49	27.20	5.52
1	Р	17	28.50	8.61

Code for Interaction Plot

- Note the use of factor here since the exerany variable is in fact numeric, although it only takes the values 1 and 0.
 - \bullet Sometimes it's helpful to treat 1/0 as a factor, and sometimes not.
- Where is the evidence of serious non-parallelism (if any) in the plot on the next slide that results from this code?

Resulting Interaction Plot

health

Section 2

Fitting a Two-Way ANOVA model for BMI

Building a Model (m_1) without interaction

• How well does this model fit the training data?

r.squared	adj.r.squared	sigma	nobs	df	df.residual	AIC	BIC
0.089	0.082	6.12	670	5	664	4335.8	4367.3

Tidied ANOVA for m_1

```
tidy(anova(m_1)) |>
kable(dig = c(0, 0, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	896.51	896.51	23.97	0
health	4	1526.49	381.62	10.21	0
Residuals	664	24830.10	37.39	NA	NA

Tidied summary of m_1 coefficients

```
tidy(m_1, conf.int = TRUE, conf.level = 0.90) |>
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	27.90	0.74	37.57	0.000	26.68	29.12
exerany	-2.20	0.55	-4.00	0.000	-3.10	-1.29
healthVG	0.63	0.70	0.89	0.374	-0.53	1.78
healthG	3.14	0.72	4.35	0.000	1.95	4.33
healthF	3.72	0.91	4.10	0.000	2.22	5.21
healthP	4.55	1.36	3.35	0.001	2.31	6.78

Interpreting m_1

Name	exerany	health	predicted bmi
Harry	0	Excellent	27.91
Sally	1	Excellent	27.91 - 2.20 = 25.71
Billy	0	Fair	27.91 + 3.71 = 31.62
Meg	1	Fair	27.91 - 2.20 + 3.71 = 29.42

- Effect of exerany?
- Effect of health = Fair instead of Excellent?

m_1 Residual Plots (conclusions?)

Section 3

Fitting ANOVA model m_1int including interaction

Adding the interaction term to m_1

• How does this model compare in terms of fit to the training data?

```
bind_rows(glance(m_1), glance(m_1int)) |>
    mutate(mod = c("m_1", "m_1int")) |>
    select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
        sigma, nobs, df, df.res = df.residual, AIC, BIC) |>
    kable(digits = c(0, 3, 3, 2, 0, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	nobs	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	670	5	664	4335.8	4367.3
m_1int	0.126	0.114	6.01	670	9	660	4315.7	4365.3

ANOVA for the m_1int model

```
tidy(anova(m_1int)) |>
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	896.51	896.51	24.85	0
health	4	1526.49	381.62	10.58	0
exerany:health	4	1019.61	254.90	7.07	0
Residuals	660	23810.49	36.08	NA	NA

ANOVA test comparing m_1 to m_1int

```
Analysis of Variance Table
Model 1: bmi ~ exerany + health
Model 2: bmi ~ exerany * health
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 664 24830
2 660 23811 4 1019.6 7.0656 1.424e-05 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
```

anova(m 1, m 1int)

Tidied summary of m_1int coefficients

```
tidy(m_1int, conf.int = TRUE, conf.level = 0.90) |>
    rename(se = std.error, t = statistic, p = p.value) |>
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	27.49	1.42	19.42	0.000	25.16	29.82
exerany	-1.70	1.55	-1.10	0.272	-4.25	0.85
healthVG	-0.61	1.63	-0.38	0.707	-3.31	2.08
healthG	2.84	1.62	1.75	0.081	0.17	5.51
healthF	7.64	1.78	4.29	0.000	4.70	10.57
healthP	8.68	2.55	3.40	0.001	4.48	12.88
exerany:healthVG	1.63	1.80	0.90	0.368	-1.35	4.60
exerany:healthG	0.50	1.80	0.28	0.783	-2.47	3.47
exerany:healthF	-6.22	2.07	-3.00	0.003	-9.64	-2.81
exerany:healthP	-5.96	3.00	-1.98	0.048	-10.91	-1.01

Interpreting the m_1int model

Name	exerany	health	predicted bmi
Harry	0	Excellent	27.49
Sally	1	Excellent	27.49 - 1.69 = 25.80
Billy	0	Fair	27.49 + 7.64 = 35.13
Meg	1	Fair	27.49 - 1.69 + 7.64 - 6.22 = 27.22

- How do we interpret effect sizes here? It depends.
- Effect of exerany?
 - If health = Excellent, effect is -1.69
 - If health = Fair, effect is (-1.69 6.22) = -7.91
- Effect of health = Fair instead of Excellent?
 - If exerany = 0 (no), effect is 7.64
 - If exerany = 1 (yes), effect is (7.64 6.22) = 1.42

Plot the Residuals from model m_1int?

Section 4

Incorporating a Covariate (as a main and linear effect) into our two-way ANOVA models

Adding in the covariate fruit_day to m_1

• How well does this model fit the training data?

```
bind_rows(glance(m_1), glance(m_2)) |>
    mutate(mod = c("m_1", "m_2")) |>
    select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
        sigma, df, df.res = df.residual, AIC, BIC) |>
    kable(digits = c(0, 3, 3, 2, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	5	664	4335.8	4367.3
m_2	0.098	0.090	6.09	6	663	4331.1	4367.2

ANOVA for the m_2 model

```
tidy(anova(m_2)) |>
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
fruit_day	1	467.13	467.13	12.60	0
exerany	1	761.38	761.38	20.53	0
health	4	1439.70	359.93	9.71	0
Residuals	663	24584.90	37.08	NA	NA

Tidied summary of m_2 coefficients

```
tidy(m_2, conf.int = TRUE, conf.level = 0.90) |>
   kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	28.67	0.80	35.93	0.000	27.36	29.99
fruit_day	-0.55	0.21	-2.57	0.010	-0.90	-0.20
exerany	-2.05	0.55	-3.72	0.000	-2.96	-1.14
healthVG	0.56	0.70	0.80	0.423	-0.59	1.71
healthG	3.01	0.72	4.17	0.000	1.82	4.19
healthF	3.55	0.91	3.92	0.000	2.06	5.04
healthP	4.56	1.35	3.37	0.001	2.34	6.79

m_2 Residual Plots (non-constant variance?)

Who is that poorest fit case?

Plot suggests we look at row 28

```
train_c4im |> slice(28) |>
    select(ID, bmi, fruit_day, exerany, health) |> kable()
```

ID	bmi	fruit_day	exerany	health
320	63	1	0	Р

What is unusual about this subject?

```
train_c4im |> arrange(desc(bmi))
```

```
ID bmi inc_imp fruit_day drinks_wk female exerany head chr> <dbl> <dbl> <dbl> <dbl> <int> <fcr 1 320 63 20581 1 0.7 1 0 P 2 959 59.0 5720 0.1 0 1 0 F
```

A tibble: 670 x 9

What if we included the interaction term?

ANOVA for the m_2int model

```
tidy(anova(m_2int)) |>
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
fruit_day	1	467.13	467.13	13.10	0
exerany	1	761.38	761.38	21.35	0
health	4	1439.70	359.93	10.09	0
exerany:health	4	1079.20	269.80	7.56	0
Residuals	659	23505.69	35.67	NA	NA

Tidied summary of m_2int coefficients

```
tidy(m_2int, conf.int = TRUE, conf.level = 0.90) |>
    rename(se = std.error, t = statistic, p = p.value) |>
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	28.27	1.43	19.73	0.000	25.91	30.63
fruit_day	-0.61	0.21	-2.92	0.004	-0.95	-0.27
exerany	-1.45	1.54	-0.94	0.349	-3.99	1.09
healthVG	-0.66	1.63	-0.40	0.686	-3.33	2.02
healthG	2.75	1.61	1.71	0.089	0.09	5.40
healthF	7.59	1.77	4.29	0.000	4.67	10.50
healthP	9.07	2.54	3.57	0.000	4.89	13.26
exerany:healthVG	1.60	1.79	0.89	0.374	-1.36	4.55
exerany:healthG	0.42	1.79	0.24	0.814	-2.53	3.38
exerany:healthF	-6.41	2.06	-3.11	0.002	-9.81	-3.01
exerany:healthP	-6.50	2.99	-2.17	0.030	-11.43	-1.57

ANOVA comparison of m_2 and m_2int

```
Analysis of Variance Table

Model 1: bmi ~ fruit_day + exerany + health

Model 2: bmi ~ fruit_day + exerany * health

Res.Df RSS Df Sum of Sq F Pr(>F)

1 663 24585

2 659 23506 4 1079.2 7.5641 5.829e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' '
```

anova(m 2, m 2int)

Residual plots for model m_2int?

Which of the four models fits best?

In the training sample, we have...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.089	0.082	6.12	5	664	4335.8	4367.3
m_2	0.098	0.090	6.09	6	663	4331.1	4367.2
m_1int	0.126	0.114	6.01	9	660	4315.7	4365.3
m_2int	0.138	0.124	5.97	10	659	4309.1	4363.1

- Adjusted R^2 , σ , AIC and BIC all improve as we move down from m1 towards m2_int.
- BUT the training sample cannot judge between models accurately.
 Our models have already seen that data.
- For fairer comparisons, we'll need to also consider the (held out) testing sample.

Model predictions of bmi in the test sample

We'll use augment from the broom package...

```
m1_test_aug <- augment(m_1, newdata = test_c4im)
m1int_test_aug <- augment(m_1int, newdata = test_c4im)
m2_test_aug <- augment(m_2, newdata = test_c4im)
m2int_test_aug <- augment(m_2int, newdata = test_c4im)</pre>
```

This adds fitted values (predictions) and residuals (errors) ...

```
m1_test_aug |> select(ID, bmi, .fitted, .resid) |>
    slice(1:2) |> kable()
```

ID	bmi	.fitted	.resid
4	26.51	28.84456	-2.334562
5	24.25	28.84456	-4.594562

What does the yardstick package do?

For each subject in the testing set, we will need:

- estimate = model's prediction of that subject's bmi
- truth = the bmi value observed for that subject

Calculate a summary of the predictions across the n test subjects, such as:

- ullet $R^2=$ square of the correlation between truth and estimate
- mae = mean absolute error ...

$$mae = \frac{1}{n} \sum |truth - estimate|$$

rmse = root mean squared error ...

$$rmse = \sqrt{\frac{1}{n}\sum (truth - estimate)^2}$$

Testing Results (using R^2)

We can use the yardstick package and its rsq() function.

```
testing_r2 <- bind_rows(
    rsq(m1_test_aug, truth = bmi, estimate = .fitted),
    rsq(m1int_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2int_test_aug, truth = bmi, estimate = .fitted)) |>
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_r2 |> kable(dig = 4)
```

.metric	.estimator	.estimate	model
rsq	standard	0.0716	m_1
rsq	standard	0.0397	m_1int
rsq	standard	0.0652	m_2
rsq	standard	0.0364	m_2int

Mean Absolute Error?

Consider the mean absolute prediction error ...

```
testing_mae <- bind_rows(
    mae(m1_test_aug, truth = bmi, estimate = .fitted),
    mae(m1int_test_aug, truth = bmi, estimate = .fitted),
    mae(m2_test_aug, truth = bmi, estimate = .fitted),
    mae(m2int_test_aug, truth = bmi, estimate = .fitted)) |>
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_mae |> kable(dig = 2)
```

.metric	.estimator	.estimate	model
mae	standard	4.43	m_1
mae	standard	4.62	m_1int
mae	standard	4.48	m_2
mae	standard	4.71	m_2int

Root Mean Squared Error?

How about the square root of the mean squared prediction error, or RMSE?

```
testing_rmse <- bind_rows(
    rmse(m1_test_aug, truth = bmi, estimate = .fitted),
    rmse(m1int_test_aug, truth = bmi, estimate = .fitted),
    rmse(m2_test_aug, truth = bmi, estimate = .fitted),
    rmse(m2int_test_aug, truth = bmi, estimate = .fitted)) |>
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_rmse |> kable(digits = 3)
```

.estimator	.estimate	model
standard	5.729	m_1
standard	6.025	m_1int
standard	5.769	m_2
standard	6.082	m_2int
	standard standard standard	standard 6.025 standard 5.769

Other Summaries for Numerical Predictions

Within the yardstick package, there are several other summaries, including:

- rsq_trad() = defines R^2 using sums of squares.
 - The rsq() measure we showed a few slides ago is a squared correlation coefficient and is guaranteed to fall in (0, 1).
- mape() = mean absolute percentage error
- mpe() = mean percentage error
- huber_loss() = Huber loss (often used in robust regression), which is less sensitive to outliers than rmse().
- ccc() = concordance correlation coefficient, which attempts to measure both consistency/correlation (like rsq()) and accuracy (like rmse()).

See the yardstick home page for more details.

Section 5

Incorporating Non-Linearity into our models

Incorporating a non-linear term for fruit_day

Suppose we wanted to include a polynomial term for fruit_day:

```
lm(bmi ~ fruit_day, data = train_c4im)
lm(bmi ~ poly(fruit_day, 2), data = train_c4im)
lm(bmi ~ poly(fruit_day, 3), data = train_c4im)
```


Polynomial Regression

A polynomial in the variable x of degree D is a linear combination of the powers of x up to D.

For example:

- Linear: $y = \beta_0 + \beta_1 x$
- Quadratic: $y = \beta_0 + \beta_1 x + \beta_2 x^2$
- Cubic: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
- Quartic: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$
- \bullet Quintic: $y=\beta_0+\beta_1x+\beta_2x^2+\beta_3x^3+\beta_4x^4+\beta_5x^5$

Fitting such a model creates a polynomial regression.

Raw Polynomials vs. Orthogonal Polynomials

Predict bmi using fruit_day with a polynomial of degree 2.

Call:

```
lm(formula = bmi ~ fruit_day + I(fruit_day^2), data = train_c4
```

Coefficients:

```
(Intercept) fruit_day I(fruit_day^2)
29.5866 -1.2726 0.1052
```

This uses raw polynomials. Predicted bmi for $fruit_day = 2$ is

```
bmi = 29.5925 - 1.2733 (fruit_day) + 0.1051 (fruit_day^2)
= 29.5925 - 1.2733 (2) + 0.1051 (4)
= 27.466
```

Does the raw polynomial match our expectations?

```
augment(temp1, newdata = tibble(fruit_day = 2)) |>
   kable(digits = 3)
```

fruit_day .fitted 2 27.462

and this matches our "by hand" calculation. But it turns out most regression models use *orthogonal* rather than raw polynomials...

Fitting an Orthogonal Polynomial

Predict bmi using fruit_day with an *orthogonal* polynomial of degree 2.

```
(temp2 <- lm(bmi ~ poly(fruit_day,2), data = train_c4im))</pre>
```

Call:

```
lm(formula = bmi ~ poly(fruit_day, 2), data = train_c4im)
```

```
Coefficients:
```

```
(Intercept) poly(fruit_day, 2)1 poly(fruit_day, 2)2
    28.084
                        -21.613
                                                8.011
```

This looks very different from our previous version of the model.

• What happens when we make a prediction, though?

Prediction in the Orthogonal Polynomial Model

Remember that in our raw polynomial model, our "by hand" and "using R" calculations both concluded that the predicted bmi for a subject with $fruit_day = 2$ was 27.466.

Now, what happens with the orthogonal polynomial model temp2 we just fit?

```
augment(temp2, newdata = data.frame(fruit_day = 2)) |>
   kable(digits = 3)
```

fruit_day	.fitted
2	27.462

• No change in the prediction.

Fits of raw vs orthogonal polynomials

Comparing Two Methods of Fitting a Quadratic Polynomial

Why do we use orthogonal polynomials?

- The main reason is to avoid having to include powers of our predictor that are highly collinear.
- Variance Inflation Factor assesses collinearity...

```
vif(temp1) ## from rms package
```

```
fruit_day I(fruit_day^2)
4.652178 4.652178
```

 Orthogonal polynomial terms are uncorrelated with one another, easing the process of identifying which terms add value to our model.

```
vif(temp2)
```

Why orthogonal rather than raw polynomials?

The tradeoff is that the raw polynomial is a lot easier to explain in terms of a single equation in the simplest case.

Actually, we'll usually avoid polynomials in our practical work, and instead use splines, which are more flexible and require less maintenance, but at the cost of pretty much requiring you to focus on visualizing their predictions rather than their equations.

Adding a Second Order Polynomial to our Models

Comparison to other models without the interaction...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.0889	0.0820	6.12	5	664	4335.8	4367.3
m_2	0.0979	0.0897	6.09	6	663	4331.1	4367.2
m_3	0.0979	0.0884	6.09	7	662	4333.1	4373.7

Tidied summary of m_3 coefficients

term	est	se	t	р	conf.low	conf.high
(Intercept)	27.86	0.74	37.53	0.000	26.64	29.09
poly(fruit_day, 2)1	-15.86	6.16	-2.57	0.010	-26.01	-5.70
poly(fruit_day, 2)2	1.08	6.24	0.17	0.862	-9.19	11.36
exerany	-2.03	0.56	-3.64	0.000	-2.95	-1.11
healthVG	0.56	0.70	0.80	0.424	-0.59	1.71
healthG	3.00	0.72	4.16	0.000	1.81	4.19
healthF	3.55	0.91	3.92	0.000	2.06	5.05
healthP	4.53	1.36	3.32	0.001	2.29	6.78

m_3 Residual Plots

Add in the interaction

• Comparison to other models with the interaction...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1int	0.1263	0.1144	6.01	9	660	4315.7	4365.3
m_2int	0.1375	0.1244	5.97	10	659	4309.1	4363.1
m_3int	0.1376	0.1232	5.98	11	658	4311.0	4369.6

Tidied summary of m_3int coefficients

term	est	se	t	р	conf.low	conf.high
(Intercept)	27.40	1.41	19.43	0.000	25.07	29.72
poly(fruit_day, 2)1	-17.70	6.06	-2.92	0.004	-27.68	-7.71
poly(fruit_day, 2)2	-1.63	6.29	-0.26	0.795	-11.99	8.73
exerany	-1.47	1.55	-0.95	0.342	-4.01	1.08
healthVG	-0.66	1.63	-0.40	0.686	-3.34	2.02
healthG	2.75	1.61	1.70	0.089	0.09	5.40
healthF	7.58	1.77	4.28	0.000	4.66	10.50
healthP	9.22	2.61	3.54	0.000	4.93	13.52
exerany:healthVG	1.60	1.79	0.89	0.374	-1.36	4.55
exerany:healthG	0.43	1.80	0.24	0.809	-2.53	3.39
exerany:healthF	-6.40	2.06	-3.10	0.002	-9.80	-3.00
exerany:healthP	-6.65	3.05	-2.18	0.030	-11.68	-1.62

m_3int Residual Plots

How do models m_3 and m_3int do in testing?

```
m3 test aug <- augment(m 3, newdata = test c4im)
m3int test aug <- augment(m 3int, newdata = test c4im)
testing_r2 <- bind_rows(</pre>
    rsq(m1_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2_test_aug, truth = bmi, estimate = .fitted),
    rsq(m3_test_aug, truth = bmi, estimate = .fitted),
    rsq(m1int_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2int_test_aug, truth = bmi, estimate = .fitted),
    rsq(m3int_test_aug, truth = bmi, estimate = .fitted)) |>
    mutate(model = c("m_1", "m_2", "m_3", "m_1int",
                     "m 2int", "m 3int"))
```

• I've hidden my calculations for RMSE and MAE here.

Results comparing all six models (testing)

model	rsquare	rmse	mae
m_1	0.0716	5.729	4.428
m_2	0.0652	5.769	4.476
m_3	0.0656	5.768	4.476
m_1int	0.0397	6.025	4.624
m_2int	0.0364	6.082	4.707
m_3int	0.0357	6.090	4.707

• Did the polynomial term in m_3 and m_3int improve our predictions?

Splines

- A linear spline is a continuous function formed by connecting points (called knots of the spline) by line segments.
- A restricted cubic spline is a way to build highly complicated curves into a regression equation in a fairly easily structured way.
- A restricted cubic spline is a series of polynomial functions joined together at the knots.
 - Such a spline gives us a way to flexibly account for non-linearity without over-fitting the model.
 - Restricted cubic splines can fit many different types of non-linearities.
 - Specifying the number of knots is all you need to do in R to get a reasonable result from a restricted cubic spline.

The most common choices are 3, 4, or 5 knots.

- 3 Knots, 2 degrees of freedom, allows the curve to "bend" once.
- 4 Knots, 3 degrees of freedom, lets the curve "bend" twice.
- 5 Knots, 4 degrees of freedom, lets the curve "bend" three times.

A simulated data set

```
set.seed(4322021)
sim_data <- tibble(</pre>
    x = runif(250, min = 10, max = 50),
    y = 3*(x-30) - 0.3*(x-30)^2 + 0.05*(x-30)^3 +
        rnorm(250, mean = 500, sd = 70)
head(sim data, 2)
# A tibble: 2 x 2
      X
  <dbl> <dbl>
```

1 42.5 397.

The sim_data, plotted.

Fitting Restricted Cubic Splines with 1m and rcs

```
sim_linear <- lm(y ~ x, data = sim_data)
sim_poly2 <- lm(y ~ poly(x, 2), data = sim_data)
sim_poly3 <- lm(y ~ poly(x, 3), data = sim_data)
sim_rcs3 <- lm(y ~ rcs(x, 3), data = sim_data)
sim_rcs4 <- lm(y ~ rcs(x, 4), data = sim_data)
sim_rcs5 <- lm(y ~ rcs(x, 5), data = sim_data)</pre>
```

Looking at the Polynomial Fits

Looking at the Restricted Cubic Spline Fits

Fitting Restricted Cubic Splines with 1m and rcs

For most applications, three to five knots strike a nice balance between complicating the model needlessly and fitting data pleasingly. Let's consider a restricted cubic spline model for bmi based on fruit_day again, but now with:

- in temp3, 3 knots, and
- in temp4, 4 knots,

```
temp3 <- lm(bmi ~ rcs(fruit_day, 3), data = train_c4im)
temp4 <- lm(bmi ~ rcs(fruit_day, 4), data = train_c4im)</pre>
```

Spline models for bmi and fruit_day

Let's try an RCS with 4 knots

Comparing 4 models including the exerany*health interaction...

mod	fruit	r.sq	adj.r.sq	sigma	df	AIC	BIC
m_1int	not in	0.1263	0.1144	6.006	9	4315.7	4365.3
m_2int	linear	0.1375	0.1244	5.972	10	4309.1	4363.1
m_3int	poly(2)	0.1376	0.1232	5.977	11	4311.0	4369.6
m_4int	rcs(4)	0.1379	0.1221	5.980	12	4312.8	4375.9

Tidied summary of m_4int coefficients

term	est	se	t	р	lo90	hi90
(Intercept)	28.56	1.54	18.50	0.000	26.02	31.11
rcs(fruit_day, 4)fruit_day	-1.21	1.27	-0.96	0.339	-3.30	0.87
rcs(fruit_day,	2.31	5.82	0.40	0.691	-7.28	11.91
4)fruit_day'						
rcs(fruit_day,	-5.95	16.58	-0.36	0.720	-33.26	21.37
4)fruit_day''						
exerany	-1.36	1.55	-0.87	0.383	-3.92	1.20
healthVG	-0.64	1.63	-0.39	0.696	-3.32	2.04
healthG	2.77	1.61	1.72	0.086	0.11	5.43
healthF	7.64	1.77	4.30	0.000	4.71	10.56
healthP	9.05	2.56	3.53	0.000	4.82	13.27
exerany:healthVG	1.57	1.80	0.87	0.382	-1.39	4.53
exerany:healthG	0.37	1.80	0.21	0.836	-2.59	3.34
exerany:healthF	-6.47	2.07	-3.13	0.002	-9.87	-3.06
exerany:healthP	-6.50	3.02	-2.15	0.032	-11.47	-1.52

m_4int Residual Plots

How do models m_4 and m_4int do in testing?

model	rsquare	rmse	mae
m_1	0.0716	5.729	4.428
m_2	0.0652	5.769	4.476
m_3	0.0656	5.768	4.476
m_4	0.0686	5.763	4.470
m_1int	0.0397	6.025	4.624
m_2int	0.0364	6.082	4.707
m_3int	0.0357	6.090	4.707
m_4int	0.0395	6.091	4.703

I'll note that there's a fair amount of very repetitive code in the Quarto file to create that table.

• What are our conclusions?

Next Week

- Using the ols function from the **rms** package to fit linear regression models with non-linear terms.
- Be sure to submit Lab 2 to Canvas by Monday 2023-01-30 at 9 PM.

Section 6

Appendix: How The class4 and class4im data were built from the smart_ohio.csv data created in the Course Notes

Creating Today's Data Set

```
url1 <- "https://raw.githubusercontent.com/THOMASELOVE/432-date
smart_ohio <- read_csv(url1)</pre>
class4 <- smart ohio |>
    filter(hx diabetes == 0,
           mmsa == "Cleveland-Elyria",
           complete.cases(bmi)) |>
    select(bmi, inc_imp, fruit_day, drinks_wk,
           female, exerany, genhealth, race_eth,
           hx_diabetes, mmsa, SEQNO) |>
    type.convert(as.is = FALSE) |>
    mutate(ID = as.character(SEQNO - 2017000000)) |>
    relocate(ID)
```

Codebook for useful class4 variables

• 894 subjects in Cleveland-Elyria with bmi and no history of diabetes

Variable	Description
bmi	(outcome) Body-Mass index in kg/m ² .
${\tt inc_imp}$	income (imputed from grouped values) in \$
fruit_day	average fruit servings consumed per day
drinks_wk	average alcoholic drinks consumed per week
female	sex: $1 = \text{female}$, $0 = \text{male}$
exerany	any exercise in the past month: $1 = yes$, $0 = no$
genhealth	self-reported overall health (5 levels)
race_eth	race and Hispanic/Latinx ethnicity (5 levels)
	·

- plus ID, SEQNO, hx_diabetes (all 0), MMSA (all Cleveland-Elyria)
- See Course Notes Chapter on BRFSS SMART data for variable details

Basic Data Summaries

Available approaches include:

- summary
- mosaic package's inspect()
- Hmisc package's describe

all of which can work nicely in an HTML presentation, but none of them fit well on one of these slides.

Quick Histogram of each quantitative variable

Code for previous slide

```
p1 \leftarrow ggplot(class4, aes(x = bmi)) +
    geom histogram(fill = "navy", col = "white", bins = 20)
p2 \leftarrow ggplot(class4, aes(x = inc imp)) +
    geom_histogram(fill = "forestgreen", col = "white",
                    bins = 20)
p3 \leftarrow ggplot(class4, aes(x = fruit_day)) +
    geom histogram(fill = "tomato", col = "white", bins = 20)
p4 <- ggplot(class4, aes(x = drinks_wk)) +
    geom_histogram(fill = "royalblue", col = "white",
                    bins = 20)
(p1 + p2) / (p3 + p4)
```

I also used #| warning: false in the plot's code chunk label to avoid warnings about missing values, like this one for inc_imp:

Warning: Removed 120 rows containing non-finite values

Binary variables in raw class4

```
class4 |> tabyl(female, exerany) |> adorn_title()
```

```
exerany
female 0 1 NA_
0 95 268 20
1 128 361 22
```

- female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?

Binary variables in raw class4

```
class4 |> tabyl(female, exerany) |> adorn_title()
```

```
exerany
female 0 1 NA_
0 95 268 20
1 128 361 22
```

- female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?
- I think the 1/0 values and names are OK choices.

Multicategorical genhealth in raw class4

class4 |> tabyl(genhealth)

```
genhealth n percent valid_percent
1_Excellent 148 0.165548098 0.16573348
2_VeryGood 324 0.362416107 0.36282195
3_Good 274 0.306487696 0.30683091
4_Fair 112 0.125279642 0.12541993
5_Poor 35 0.039149888 0.03919373
<NA> 1 0.001118568 NA
```

- The variable is based on "Would you say that in general your health is
 ..." using the five specified categories (Excellent -> Poor), numbered
 for convenience after data collection.
- Don't know / not sure / refused were each treated as missing.
- How might we manage this variable?

Changing the levels for genhealth

Might want to run a sanity check here, just to be sure...

Checking health vs. genhealth in class4

```
health
 genhealth
                 VG G F P NA_
1 Excellent 148
              0 324 0
2_VeryGood
    3 Good
          0
                  0 274 0 0
                               0
    4 Fair
                     0 112 0
                 0 0
                        0 35
    5 Poor
                               0
     < NA >
              0
                  0
                     0
                               1
```

• OK. We've preserved the order and we have much shorter labels. Sometimes, that's helpful.

Multicategorical race_eth in raw class4

class4 |> count(race_eth)

```
# A tibble: 6 \times 2
  race eth
                                 n
  <fct>
                             <int>
1 Black non-Hispanic
                               167
2 Hispanic
                                27
3 Multiracial non-Hispanic
                                19
                                22
4 Other race non-Hispanic
 White non-Hispanic
                               646
                                 13
6 <NA>
```

"Don't know", "Not sure", and "Refused" were treated as missing.

• What is this variable actually about?

Multicategorical race_eth in raw class4

class4 |> count(race_eth)

```
# A tibble: 6 \times 2
  race_{eth}
                                  n
  <fct>
                              <int>
1 Black non-Hispanic
                                167
2 Hispanic
                                 27
3 Multiracial non-Hispanic
                                 19
                                 22
4 Other race non-Hispanic
5 White non-Hispanic
                                646
                                 13
6 <NA>
```

"Don't know", "Not sure", and "Refused" were treated as missing.

- What is this variable actually about?
- What is the most common thing people do here?

What is the question you are asking?

Collapsing race_eth levels *might* be rational for *some* questions.

- We have lots of data from two categories, but only two.
- Systemic racism affects people of color in different ways across these categories, but also *within* them.
- Is combining race and Hispanic/Latinx ethnicity helpful?

It's hard to see the justice in collecting this information and not using it in as granular a form as possible, though this leaves some small sample sizes. There is no magic number for "too small a sample size."

- Most people identified themselves in one of the categories.
- These data are not ordered, and (I'd argue) ordering them isn't helpful.
- Regression models are easier to interpret, though, if the "baseline" category is a common one.

Resorting the factor for race_eth

Let's sort all five levels, from most observations to least...

```
class4 <- class4 |>
  mutate(race_eth = fct_infreq(race_eth))
```

```
class4 |> tabyl(race_eth)
```

```
race_eth n percent valid_percent
White non-Hispanic 646 0.72259508 0.73325766
Black non-Hispanic 167 0.18680089 0.18955732
Hispanic 27 0.03020134 0.03064699
Other race non-Hispanic 22 0.02460850 0.02497162
Multiracial non-Hispanic 19 0.02125280 0.02156640

<NA> 13 0.01454139 NA
```

• Not a perfect solution, certainly, but we'll try it out.

"Cleaned" Data and Missing Values

```
# A tibble: 13 \times 3
  variable
             n miss pct miss
  <chr>
             <int>
                      <dbl>
1 inc imp
                120 13.4
                 42 4.70
2 exerany
3 fruit_day
              41 4.59
              39 4.36
4 drinks wk
5 race_eth
              13 1.45
                      0.112
6 health
7 genhealth
                      0.112
8 ID
                  0
```

Single Imputation Approach?

```
set.seed(43203)
class4im <- class4 |>
    select(ID, bmi, inc_imp, fruit_day, drinks_wk,
           female, exerany, health, race_eth) |>
    data.frame() |>
    impute cart(health ~ bmi + female) |>
    impute pmm(exerany ~ female + health + bmi) |>
    impute rlm(inc imp + drinks wk + fruit day ~
                   bmi + female + health + exerany) |>
    impute cart(race eth ~ health + inc imp + bmi) |>
    tibble()
prop_miss_case(class4im)
```

[1] 0

Saving the tidied data

Let's save both the unimputed and the imputed tidy data as R data sets.

```
write_rds(class4, "c04/data/class4.Rds")
write_rds(class4im, "c04/data/class4im.Rds")
```

To reload these files, we'll use read_rds().

 The main advantage here is that we've saved the whole R object, including all characteristics that we've added since the original download.