Лабораторная работа № 1.04

Исследование равноускоренного вращательного движения (маятник Обербека)

Содержание

Введение	2
Экспериментальная установка	5
Проведение измерений	7
Обработка результатов	8
Контрольные вопросы	11
Литература	12
Приложение	13

Цели работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

Задачи

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

Введение

Груз m (см. Рис. 1) подвешен на нити, которая перекинута через неподвижный блок Бл и намотана на ступицу Ст крестовины Кр. В ступице закреплены четыре спицы Сп, на каждой из которых размещен груз—утяжелитель $m_{\rm ут}$. Расстояние R утяжелителей от оси вращения крестовины одинаково для всех утяжелителей. Это расстояние, можно изменять, изменяя тем самым момент инерции крестовины с утяжелителями.

Рис. 1. Схема измерительного стенда

Груз m, опускаясь, раскручивает крестовину. Если пренебречь силой сопротивления воздуха, то груз движется равноускорено под действием векторной суммы силы тяжести mg и силы T натяжения нити. Его ускорение a определяется вторым законом Ньютона:

$$ma = mg - T. (1)$$

Это ускорение можно вычислить по формуле

$$a = \frac{2h}{t^2},\tag{2}$$

где h - расстояние, пройденное грузом за время t от начала движения.

Нить не проскальзывает по ступице, поэтому угловое ускорение ε крестовины согласовано с линейным ускорением груза. Это угловое ускорение вычисляется по формуле

$$\varepsilon = \frac{2a}{d},\tag{3}$$

где d - диаметр ступицы.

Используя уравнение (1) выразим силу натяжения нити:

$$T = m(g - a), (4)$$

и найдём момент этой силы

$$M = \frac{md}{2}(g - a). (5)$$

Предполагая, что кроме момента силы натяжения на раскручивание крестовины влияет тормозящий момент силы трения, запишем основной закон динамики вращения для крестовины в виде

$$I\varepsilon = M - M_{\rm Tp}.$$
 (6)

Здесь I - момент инерции крестовины с утяжелителями.

В соответствии с теоремой Штейнера момент инерции крестовины зависит от расстояния между центрами грузов и осью вращения по формуле

$$I = I_0 + 4m_{\rm vr}R^2, (7)$$

где I_0 - сумма моментов инерции стрежней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей.

Экспериментальная установка

Рис. 2. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 2. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

Техника безопасности

- 1. Утяжелители должны быть плотно закреплены на спицах во избежание вылета с установки.
 - 2. Нельзя класть сторонние предметы на пути каретки.
- 3. Требуется контролировать, не слетела ли нить с неподвижного блока или ступицы.
- 4. Требуется контролировать, что передняя крестовина вращается независимо от задней.

Проведение измерений

- 1. Списать или сфотографировать данные об установке на рабочем месте.
- 2. Ознакомится с лабораторным стендом (см. рис. 2). Отвернуть рукоятку 2 сцепления крестовин, так чтобы передняя крестовина вращалась независимо от задней.
- 3. Положение каждого утяжелителя на крестовине задается номером риски (канавки на спице), по которой выравнивается грань утяжелителя, ближайшая к оси вращения. Установить все утяжелители на первую риску
- 4. Установить в качестве подвешенного груза каретку 10 с одной шайбой 9; остальные три шайбы 9 закрепить наверху трубчатой направляющей 6. Измерить три раза время прохождения кареткой из неподвижного положения пути от отметки $h_1=700$ мм до отметки $h_2=0$. При этом $h=h_1-h_2=700$ мм. Массу m_1 каретки с одной шайбой и результаты измерения времени $t_1,\,t_2,\,t_3$ занести в соответствующие ячейки таблицы 1.
- 5. Не изменяя положение утяжелителей крестовины повторить п. 4 для каретки с двумя шайбами (масса m_2), тремя шайбами (масса m_3) и четырьмя шайбами (масса m_4).
- 6. Повторить измерения пп. 4,5 при положении утяжелителей на второй, третьей, . . . , шестой рисках.

Обработка результатов

- 1. Найти среднее время падения гири для всех масс гири и всех положениях утяжелителей на крестовине. Для первого значения $t_{\rm cp}$ рассчитать погрешность среднего значения времени Δt .
- 2. Используя найденные значения $t_{\rm cp}$ рассчитать ускорение a груза, угловое ускорение ε крестовины и момент M силы натяжения нити. Результаты оформить в виде таблицы. Для первых значений a, ε и M вычислить их погрешности и записать соответствующие доверительные интервалы.
- 3. Для каждого положения утяжелителей на крестовине в координатах $M(\text{ордината}) \varepsilon(\text{абсцисса})$ на одном рисунке нанести точки найденных зависимостей $M(\varepsilon)$. Отметить значения погрешностей $\Delta \varepsilon$ и ΔM , вычисленные в п. 8, у тех точек, для которых они найдены.
- 4. Для каждого положения утяжелителей на основе таблицы M и ε по методу наименьших квадратов (МНК) рассчитать момент I инерции крестовины с утяжелителями и момент силы трения $M_{\rm Tp}$. Из формулы (6) следует, что теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины описывается уравнением

$$M = M_{\rm TD} + I\varepsilon, \tag{8}$$

т.е. зависимость $M(\varepsilon)$ является линейной, а величины I и $M_{\rm Tp}$ – коэффициенты этой зависимости. Формулы расчета коэффициентов линейной зависимости по МНК приведены в разделе «6.5. Обработка совместных измерений. Метод наименьших квадратов» пособия «Обработка экспериментальных данных» (см. список литературы).

- 5. Используя вычисленные в п. 10 значения I и $M_{\rm TP}$, на том же рисунке , что и точки п. 9.,построить графики зависимости (8) для всех положений утяжелителей.
- 6. Для каждого положения утяжелителей найти расстояние (см. рис. (см. Рис. 3)) между осью О вращения и центром С утяжелителя по формуле

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b, \tag{9}$$

Здесь l_1 — расстояние от оси вращения до первой риски; n — номер риски, на которой установлены утяжелители; l_0 — расстояние между соседним рисками; b — размер утяжелителя вдоль спицы. Вычислить R^2 .

Рис. 3. K определению расстояния от центра груза-утяжелителя до оси вращения.

7. Объединить значения R, R^2 , I в таблицу и на основе этой таблицы в координатах I(ордината) – R^2 (абсцисса) отметить экспериментальные точки зависимости $I(R^2)$.

- 8. На основе найденных значений I и R^2 с помощью МНК определить значения I_0 и $m_{\rm ут}$, а также их погрешности ΔI_0 и $\Delta m_{\rm ут}$. В соответствии с формулой (7) величина I_0 свободное слагаемое в линейной зависимости $I(R^2)$, $m_{\rm ут}$ четверть от углового коэффициента наклона этой зависимости. Формулы расчета по МНК коэффициентов линейной зависимости и их погрешностей приведены в разделе «6.5. Обработка совместных измерений. Метод наименьших квадратов» пособия «Обработка экспериментальных данных» (см. список литературы).
- 9. Построить график зависимости (7), используя значения I_0 и m_{vr} , вычисленные в п. 14, на том же рисунке, что и точки п. 13.

В отчет по лабораторной работе должны входить:

- Доверительные интервалы для ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- Погрешности измерения свободного слагаемого в линейной зависимости $I(R^2)$ и четверти от углового коэффициента наклона этой зависимости.
- На одной координатной сетке графики зависимости момента силы натяжения нити и углового ускорения крестовины для всех положений утяжелителей
- График зависимости момента инерции крестовины от расстояния между центрами грузов и осью вращения

Контрольные вопросы

- 1. Что такое инерция?
- 2. Как в данной лабораторной работе угловое ускорение зависит от линейного ускорения груза?
- 3. Как звучит основной закон динамики вращательного движения?
- 4. О чём говорит теорема Штейнера?
- 5. Моменты каких сил участвуют в основном законе динамики вращательного движения для данной работы?
- 6. Как изменятся параметры установки, если увеличить расстояние утяжелителей от оси?
- 7. Что такое момент инерции? Как его можно найти?
- 8. Что такое момент силы? Как его можно найти?
- 9. В каких единицах измеряется момент инерции? В каких единицах измеряется момент силы?
- 10. Как изменятся параметры установки, если увеличить массу утяжелителей?

Литература

- 1. Детлаф А. А., Яворский Б. М. Курс физики.— 8-е изд., стер. М. : Издательский центр "Академия 2009 .
- 2. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Методические указания к лабораторным работам. СПб, 2003.–57 с.

Приложение

Таблица 1: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Macca	Положение утяжелителей						
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
m_1	t_1						
	t_2						
	t_3						
	$t_{ m cp}$						
m_2							
m_3							
m_4							