TRATTAMENTO NUMERICO DEI DATI SPERIMENTALI APPELLO 10/06/2010 COMPITO 1

COGNOME		NOME	
MATR	FIRMA		

Creare una cartella dal nome **cognome_nome_matricola** nella vostra home directory: mkdir **cognome_nome_matricola**

Svolgere l'esercizio in tale cartella e, al termine dello svolgimento, copiare l'intera cartella in /home/comune/lab2_giu10_compito1 con i comandi: cd

cp -r cognome_nome_matricola /home/comune/lab2_giu10_compito1 La cartella deve contenere tutto il necessario per eseguire delle macro di ROOT o compilare ed eseguire un programma dando i comandi: make compito

./compito

ed un file di testo soluzione.txt contente le risposte alle domande nel testo e le eventuali istruzioni per eseguire il programma/macro.

Il circuito indicato in figura ha una resistenza di ingresso, $R_{in} = dV_{in}/di_{in}$, data dalla relazione $R_{in} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1 + R_2} .$

Volendo realizzare questo circuito in modo che R_{in} sia pari a 59 Ω , possiamo utilizzare delle resistenze dai valori nominali R_1 =90 Ω , R_2 =10 Ω , R_3 =50 Ω . Le componenti reali che possiamo utilizzare hanno però degli errori rispetto ai valori nominali. Ci proponiamo di calcolare le incertezze da richiedere sulle singole componenti in modo che l'incertezza risultante su R_{in} sia di 3 Ω .

- 1. Assumendo che tutte le resistenze abbiano la stessa incertezza σ_R , si calcoli con una simulazione Monte Carlo il valore risultante di σ_{Rin} , per σ_R ,=1 Ω , 3 Ω , 5 Ω , 7 Ω e 9 Ω .
- 2. Si mettano i valori così ottenuti in un grafico, e lo si parametrizzi con una funzione della forma: $\sigma_{R_m} = p_0 + p_1 \sigma_R^{p_2}$ ricordandosi di fornire valori iniziale adeguati per i parametri.
- 3. Calcolare numericamente per quale valore di σ_R si ottiene σ_{Rin} =3 Ω .

SOLUZIONE

Il valore di σ_{R} per cui si ottiene σ_{Rin} =3 Ω e' 2.34685 ohm.