Compact game state representation

Bert Douglas 2023-04-13

Concept

For any particular type of solitaire game there is a fixed number of groups of cards and a fixed number of cards. Each card must be In some group. There are no cards outside of a group. Some groups may initially be empty or become empty during play. Some empty groups may also become non-empty during play.

A group is represented by a group-byte followed by zero or more card-bytes comprising the group. The entire game state is represented by a simple concatenation of all the groups.

During game play cards can move between groups. However, these properties remain invariant:

- ordering of groups
- number of cards
- number of groups
- number of bytes used for each game state

The ordering of groups is typically used (elsewhere) to determine the role of each group, such as foundation, tableau, etc. However, this data structure contains no information regarding roles of groups.

Encoding of the Group Byte

Group Byte								
Bit position	7	6	5	4	3	2	1	0
Value or Use	1	Number of cards in group [0127]						

Encoding of the Card Byte

Card Byte								
Bit position	7	6	5	4	3	2	1	0
Value or Use	0	FaceUp	Suit	Rank				

FaceUp				
Bit Value	Bit Value Meaning			
0	Card is face down and not visible			
1	Card is face up and visible			

Rank						
Bit Value	Hex Value	Rank Full Name	Rank Abbreviation			
0b0000	0x0	Ace	А			
0b0001	0x1	Two	N2			
0b0010	0x2	Three	N3			
0b0011	0x3	Four	N4			
0b0100	0x4	Five	N5			
0b0101	0x5	Six	N6			
0b0110	0x6	Seven	N7			
0b0111	0x7	Eight	N8			
0b1000	0x8	Nine	N9			
0b1001	0x9	Ten	N10			
0b1010	0xA	Jack	J			
0b1011	0xB	Knight/Cavalier	С			
0b1100	0xC	Queen	Q			
0b1101	0xD	King	K			
0b1110	0xE	(reserved-R)	R			
0b1111	0xF	(reserved-S)	S			

Suit						
Card Byte	Suit	Round Top	Red	Unicode		
0b00	Spades	0	0	0xA0		
0b01	Diamonds	0	1	0xC0		
0b10	Clubs	1	0	0xD0		
0b11	Hearts	1	1	0xB0		

Relation to Unicode

The assignment of codes for Rank copies the values used in Unicode. See: https://en.wikipedia.org/wiki/Playing_cards_in_Unicode. Unicode is notable for having a card with rank of Knight/Cavalier in addition to the usual Jack, Queen, King. The Knight rank is reported to be used in Spain and Italy, instead of the Queen. Without much study, it seems wise to follow Unicode values for rank of cards.

Sadly the Unicode values for Suit are not convenient to use internally. Instead a different encoding is used, where one bit indicates if the card is black or red. The other bit has been whimsically chosen to indicate if the Suit symbol is pointed or rounded on the top. These two attributes happen to be orthogonal. This requires a small translation table to convert from Unicode to internal code.

The Unicode value (U) for a card may be calculated from the rank value (R) and the suit value (S) by:

$$U = 0x1F001 + ({A,C,D,B}[S] << 4) + R;$$

Estimation of memory usage

For Klondike there are 13 groups and 52 cards, for a total of 65 bytes per state. If it takes 200 moves to win, then this is 13,000 bytes. In today's computers, this is nearly insignificant. In one megabyte you could represent about 7700 states.