

Differential equations in one variable

A differential equation involves derivatives of some function

E.g.,
$$\frac{dy}{dx} = ay$$

where a is some real number

The solution to this equation is

$$y = A \exp(ax)$$

where A is an arbitrary constant

It is easy to verify solutions

but it can be harder to find them

First order differential equations

$$\frac{dy}{dx} = ay \text{ is a "first order" differential equation}$$

$$\text{no derivatives higher than first order}$$

$$\text{The solution}$$

$$y = A \exp(ax)$$

$$\text{has one undetermined constant } A$$

$$\text{and is called a "general solution"}$$

$$\text{Undetermined constants become}$$

$$\text{fixed using}$$

$$\text{boundary conditions}$$

Suppose a ramp has a slope

$$\frac{dy}{dx} = 0.4y$$

The general solution is

$$y = A \exp(0.4x)$$

If we also know the boundary condition that

at
$$x = 0$$
, $y = 1.5$
then, since $\exp(0) = 1$

Suppose a ramp has a slope

$$\frac{dy}{dx} = 0.4y$$

The general solution is

$$y = A \exp(0.4x)$$

If we also know the boundary condition that

at
$$x = 0$$
, $y = 1.5$
then, since $\exp(0) = 1$
 $y = 1.5 \exp(0.4x)$

With the same kind of ramp, i.e.,

$$\frac{dy}{dx} = 0.4y$$
 so $y = A \exp(0.4x)$

suppose we know instead that

at
$$x = 0$$
, $\frac{dy}{dx} = 0.6$

at
$$x = 0$$
, $\frac{dy}{dx} = 0.6$
Since $\frac{dy}{dx} = 0.4A \exp(0.4x)$,

then
$$\frac{dx}{dx}\Big|_{x=0} = 0.6 = 0.4A \exp(0) = 0.4A$$

With the same kind of ramp, i.e.,

$$\frac{dy}{dx} = 0.4y \quad \text{so} \quad y = A \exp(0.4x)$$

suppose we know instead that

at
$$x = 0$$
, $\frac{dy}{dx} = 0.6$

at x = 0, $\frac{dy}{dx} = 0.6$ Since $\frac{dy}{dx} = 0.4A \exp(0.4x)$,

then
$$\frac{dy}{dx}\Big|_{x=0} = 0.6 = 0.4A \exp(0) = 0.4A$$

so
$$A = 0.6 / 0.4 = 1.5$$

Boundary condition types

```
Boundary conditions that specify the
  value of a function
    at some position or "boundary"
       are called
          "Dirichlet" boundary conditions
Boundary conditions that specify the
  derivative or slope of a function
    at some position or "boundary"
       are called
          "Neumann" boundary conditions
```

Imaginary first derivative

Note that the equation

$$\frac{dy}{dx} = iby$$

with b real

has the general solution

$$y = A \exp(ibx) \equiv A(\cos bx + i\sin bx)$$

Note that

neither $\cos bx$ nor $\sin bx$

is a solution of this equation

Second-order differential equations

A second-order differential equation contains no derivatives higher

than second order, e.g.,

first derivatives

second derivatives

but no higher derivatives such as third order

 $\frac{dy}{dx}$

 $\frac{d^2 z}{dx^2}$

 $\frac{d^3y}{dx^3}$

Simple harmonic oscillator equation

One simple and important equation is

$$\frac{d^2y}{dt^2} = -\omega^2y$$

Any of the functions

 $\exp(i\omega t) = \exp(-i\omega t)$

is a solution

 $\cos(\omega t) \quad \sin(\omega t)$

If we think of t as time these all represent oscillations with "angular frequency" ω or frequency $f = \omega/2\pi$ hence the name

General solutions

rewritten as any other one

they are all equivalent

```
Since this is a second order equation
   the general solution needs two
    arbitrary constants
                                            y = A\cos(\omega t) + B\sin(\omega t)
      Possible general solutions
       include
                                            y = C \exp(i\omega t) + D \exp(-i\omega t)
         where A, B, C, D, F, and \Phi
                                            y = F \sin(\omega t + \Phi)
          are arbitrary constants
Any of these solutions can be
```

Notation for time derivatives

Since derivatives with respect to time arise in many situations

there is a shorthand notation

using dots above the variable being differentiated with respect to time with the number of dots indicating the order of differentiation

e.g.,
$$\dot{a} \equiv \frac{da}{dt}$$
 and $\ddot{a} = \frac{d^2a}{dt^2}$

Helmholtz equation

With the same mathematics but with the second derivative in position z instead of time t

$$\frac{d^2y}{dz^2} = -k^2z \text{ or equivalently } \frac{d^2y}{dz^2} + k^2z = 0$$

which describes oscillations in space rather than time an example of a "wave equation"

Example – amplitude of a "standing wave" on a string

Classical one-dimensional scalar wave equation

The equation

$$\frac{\partial^2 \phi(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \phi(z,t)}{\partial t^2} = 0$$

relates how strongly curved a function ϕ is (from the second spatial derivative)

to the second time (or temporal) derivative

We could write it more completely as

$$\frac{\partial^2 \phi(z,t)}{\partial z^2} \bigg|_{t} - \frac{1}{c^2} \frac{\partial^2 \phi(z,t)}{\partial t^2} \bigg|_{z} = 0$$
but usually we will not bother to do so

Classical one-dimensional scalar wave equation

For this equation
$$\frac{\partial^2 \phi(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \phi(z,t)}{\partial t^2} = 0$$

we can easily check that any functions of the form f(z-ct) or g(z+ct) are solutions

E.g., by the chain rule, at some time t_o with $s = z - ct_o$

$$\left. \frac{\partial f\left(z - ct_{o}\right)}{\partial z} = \frac{df\left(s\right)}{ds} \right|_{s = z - ct_{o}} \times \frac{\partial s}{\partial z} \right|_{t = t_{o}} = \left. \frac{df\left(s\right)}{ds} \right|_{s = z - ct_{o}}$$

$$\frac{\partial f^{2}(z-ct)}{\partial z^{2}} = \frac{\partial}{\partial z} \left[\frac{df(s)}{ds} \bigg|_{s=z-ct_{o}} \right] = \frac{d^{2}f(s)}{ds^{2}} \bigg|_{s=z-ct_{o}} \times \frac{\partial s}{\partial z} \bigg|_{t=t_{o}} = \frac{d^{2}f(s)}{ds^{2}} \bigg|_{s=z}$$

Classical one-dimensional scalar wave equation

Similarly, at some position
$$z_o$$
 with $s = z_o - ct$

$$\frac{\partial f(z - ct_o)}{\partial t} = \frac{df(s)}{ds} \bigg|_{s = z_o - ct} \frac{\partial s}{\partial t} \bigg|_{z = z_o} = -c \frac{df(s)}{ds} \bigg|_{s = z_o - ct}$$

$$\frac{\partial f\left(z, ct_{o}\right)}{\partial t} = \frac{\partial f\left(s\right)}{\partial s} \bigg|_{s=z_{o}-ct} \frac{\partial s}{\partial t} \bigg|_{z=z_{o}} = -c \frac{\partial f\left(s\right)}{\partial s} \bigg|_{s=z}$$

$$-ct = -c \frac{\partial f\left(s\right)}{\partial s} \bigg|_{s=z}$$

 $\frac{\partial f^{2}(z-ct)}{\partial t^{2}} = \frac{\partial}{\partial t} \left| -c \frac{df(s)}{ds} \right|_{s=z-ct} = \frac{-c d^{2}f(s)}{ds^{2}} \left|_{s=z-ct} \times \frac{\partial s}{\partial z} \right|_{z=z_{0}} = \frac{c^{2}d^{2}f(s)}{ds^{2}} \right|_{s=z-ct}$ So, at some position z_o and time t_o $\frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = \frac{d^2 f(s)}{ds^2} - \frac{1}{c^2} \left\{ \frac{c^2 d^2 f(s)}{ds^2} \right\} = 0$ as required for any f(z-ct) to be a solution

Wave equation solutions – forward waves

The difference between

the function $f(z-ct_1)$ and the function $f(z-ct_2)$ is that $f(z-ct_2)$ is shifted to the "right" by $c(t_2-t_1)$

The wave moves to the right with velocity c

Wave equation solutions – backward waves

The difference between

the function
$$g(z+ct_1)$$
 and the function $g(z+ct_2)$ is that $g(z+ct_2)$ is shifted to the "left" by $c(t_2-t_1)$

The wave moves to the left with velocity c

Signs and propagation directions

It is not the absolute sign of z or ct in f(z-ct) or in g(z+ct) that matters only the relative sign of z and ct f(ct-z) is still a wave going to the "right" though its shape is the opposite of f(z-ct)

Monochromatic waves

Often we are interested in waves oscillating at one specific (angular) frequency ω

i.e., temporal behavior of the form
$$T(t) = \exp(i\omega t)$$
, $\exp(-i\omega t)$, $\cos(\omega t)$, $\sin(\omega t)$

or any combination of these

Then writing
$$\phi(z,t) \equiv Z(z)T(t)$$
, we have $\frac{\partial^2 \phi}{\partial t^2} = -\omega^2 \phi$

leaving a wave equation for the spatial part

$$\frac{d^{2}Z(z)}{dz^{2}} + k^{2}Z(z) = 0 \quad \text{where} \quad k^{2} = \frac{\omega^{2}}{c^{2}}$$

the Helmholtz wave equation

Wave equations and linearity

The wave equation
$$\frac{\partial^2 \phi(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \phi(z,t)}{\partial t^2} = 0$$

and therefore also the Helmholtz equation

$$\frac{d^2Z(z)}{dz^2} + k^2Z(z) = 0$$

are linear

If $\phi_1(z,t)$ and $\phi_2(z,t)$ are both solutions so also is any combination $a\phi_1(z,t)+b\phi_2(z,t)$

"linear superposition"

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$


```
An equal combination of forward and backward waves, e.g., \phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)
\equiv 2\cos(\omega t)\sin(kz)
where k = \omega/c
gives "standing waves"
```

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$


```
An equal combination of forward and backward waves, e.g., \phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)
\equiv 2\cos(\omega t)\sin(kz)
where k = \omega/c
gives "standing waves"
```

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

An equal combination of forward and backward waves, e.g., $\phi(z,t) = \sin(kz - \omega t) + \sin(kz + \omega t)$ $\equiv 2\cos(\omega t)\sin(kz)$ where $k = \omega/c$ gives "standing waves"

with
$$k = 2\pi / L$$
 and $\omega = 2\pi c / L$

Laplacian operator

The Laplacian operator can be defined for ordinary Cartesian coordinates

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

A convenient way to say it is "del squared" Sometimes it is written Δ instead of ∇^2 though we will not use this notation

Wave equation in three dimensions

We can propose a three-dimensional wave equation

$$\frac{\partial^2 \phi(x, y, z, t)}{\partial x^2} + \frac{\partial^2 \phi(x, y, z, t)}{\partial y^2} + \frac{\partial^2 \phi(x, y, z, t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial \phi(x, y, z, t)}{\partial t^2} = 0$$

which we can write more compactly as

$$\nabla^2 \phi(x, y, z, t) - \frac{1}{c^2} \frac{\partial \phi(x, y, z, t)}{\partial t^2} = 0$$

or just as

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial \phi}{\partial t^2} = 0$$

With some simplifying assumptions

it describes many acoustic and electromagnetic waves

Gradient operator

The gradient of a scalar function f(x, y, z) is

$$\nabla f \equiv \operatorname{grad} f = \mathbf{i} \frac{\partial f}{\partial x} + \mathbf{j} \frac{\partial f}{\partial y} + \mathbf{k} \frac{\partial f}{\partial z}$$

For a function h(x, y) in two dimensions, such as the height of a hill

we could define a two-dimensional gradient

$$\nabla_{xy} h = \mathbf{i} \frac{\partial h}{\partial x} + \mathbf{j} \frac{\partial h}{\partial y}$$
 giving the magnitude and the vector direction of the largest slope

Gradient notation

Note that

- 1) though ∇f has no **bold font** or other vector notation it is a vector quantity
- 2) we do allow ourselves to put subscripts on it for clarity on how many and what coordinates we are considering as in ∇_{xy} to represent a two-dimensional gradient

The symbol ∇ can be called "del" or "nabla"

