

MOSFET - N-Channel, POWERTRENCH®

200 V, 62 A, 27 m Ω

FDP2614

General Description

This N-Channel MOSFET is produced using onsemi's advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Features

- $R_{DS(on)} = 22.9 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 31 \text{ A}$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handing Capability
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Applications

- Consumer Appliances
- Synchronous Rectification
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies

MOSFET MAXIMUM RATINGS (T_C = 25°C, unless otherwise noted)

Symbol		Parameter	Value	Unit
V _{DS}	Drain to Source Voltage		200	V
V _{GS}	Gate to Source	Gate to Source Voltage		V
I _D	Drain Current	Continuous (T _C = 25°C)	62	Α
		Continuous (T _C = 100°C)	39.3	
I _{DM}	Drain Current	Pulsed (Note 1)	see Figure 9	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)		145	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5	V/ns
P_{D}	Power Dissipation (T _C = 25°C)		260	W
	Derate above 25	2.1	W/°C	
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C
TL	Maximum Lead pose, 1/8" from	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	R _{DS(on)} MAX	I _D MAX
200 V	27 mΩ @ 10 V	62 A

TO-220-3LD CASE 340AT

MARKING DIAGRAM

&Z&3&K FDP 2614

&Z = Assembly Plant Code &3 = 3-Digit Date Code

= 2-Digits Lot Run Traceability Code

FDP2614 = Specific Device Code

N-Channel

ORDERING INFORMATION

Device	Package	Shipping		
FDP2614	TO-220-3LD	800 Units / Tube		

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
R _θ JC	Thermal Resistance Junction to Case, Max.	0.48	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient, Max.	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS					
B _{VDSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_J = 25^{\circ}\text{C}$	200	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.2	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V	-	_	10	μΑ
		V _{DS} = 200 V, V _{GS} = 0 V, T _J = 125°C	-	_	500	1
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V	_	_	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V	_	_	-100	nA
ON CHARA	CTERISTICS		•		•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.0	4.0	5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 31 A	-	22.9	27	mΩ
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 31 A	-	72	-	S
DYNAMIC C	CHARACTERISTICS		•		•	
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz	-	5435	7230	pF
C _{oss}	Output Capacitance		-	505	675	pF
C _{rss}	Reverse Transfer Capacitance	1	-	110	165	pF
SWITCHING	CHARACTERISTICS		•		•	
t _{d(on)}	Turn-On Delay Time	V_{DD} = 100 V, I_{D} = 62 A, V_{GS} = 10 V, R_{GEN} = 25 Ω (Note 4)	_	77	165	ns
t _r	Turn-On Rise Time		-	284	560	ns
t _{d(off)}	Turn-Off Delay Time	1	-	103	220	ns
t _f	Turn-Off Fall Time		-	162	335	ns
Qg	Total Gate Charge	V _{DS} = 100 V, I _D = 62 A, V _{GS} = 10 V (Note 4)	-	76	99	nC
Q _{gs}	Gate-Source Charge		-	35	-	nC
Q _{gd}	Gate-Drain Charge	1	-	18	-	nC
DRAIN-SOL	JRCE DIODE CHARACTERISTICS AND	MAXIMUM RATINGS				
Is	Maximum Continuous Drain-Source Diode Forward Current		_	_	62	Α
I _{SM}	Maximum Pulsed Drain-Source Diode	Forward Current	-	-	186	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 62 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 62 A, dI _F /dt = 100 A/μs	-	145	-	ns
Q _{rr}	Reverse Recovery Charge	1	_	0.81	-	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions performance may not be indicated by the Electrical Characteristics if operated under different conditions.
1. Repetitive Rating: Pulse width limited by maximum junction temperature
2. L = 1 mH, I_{AS} = 17 A, V_{DD} = 50 V, R_G = 25 Ω, Starting T_J = 25°C
3. I_{SD} ≤ 62 A, di/dt ≤ 100 A/ms, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C
4. Essentially Independent of Operating Temperature Typical Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

V_{GS}, Gate-Source Voltage (V)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

3.0

R_{DS(on)}, (Normalized) Drain-Source On-Resistance 2.5 2.0 1.5 1.0 * Notes: 0.5 1. $V_{GS} = 10 V$ 2. $I_D = 31 A$ 0.0 -100 -50 50 100 150 200 T_J, Junction Temperature (°C)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On–Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1

SIDE VIEW

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales