Efficient Transmitter Design Techniques in Digital Communication

Theresh Babu Benguluri,Sandeep Kumar,Siddharth Mourya,Sai Manasa,Raktim Goswami,Abhishek Bairagi , G V V Sharma*

1

1

Modulation	Rows (for n _{ldpc} = 64 800)	Rows (for n _{ldpc} = 16 200)	Columns
8PSK	21 600	5 400	3
16APSK	16 200	4 050	4
32APSK	12 960	3 240	5

Fig. 1: Bit Interleaver Structure for various mapping schemes

CONTENTS

1 Interleaver/Deinterleaver

2 Physical Layer Framing(PLFRAMING)

3 Pulse Shaping

Abstract—A brief description about the Efficient Transmitter Design techniques. Which includes Interleaver/Deinterleaver for combating bursty errors, Physical Layer Framing for the efficient detection of Frame starting, and Pulse Shaping for combating the InterSymbol Interference.

1. Interleaver/Deinterleaver

For 8PSK, 16APSK, and 32APSK modulation formats, the output of the LDPC encoder shall be bit interleaved using a block interleaver. Data is serially written into the interleaver column-wise, and serially read out row-wise (the MSB of BBHEADER is read out first, except 8PSK rate 3/5 case where MSB of BBHEADER is read out third).

Fig. 1 shows the various interleaving methods. The configuration of the block interleaver for each modulation format is specified [?].

Fig. 2: Structure of PLFRAME.

PARAMETERS OF THE normal AND short PLFRAME

	normal frame: $\eta_{\rm LDPC} = 64800$ bits			short frame: $\eta_{LDPC} = 16200$ bits				
$\eta_{ ext{MOD}}$	S	$\alpha_{ t PIL}$	K	η (%)	S	α_{PIL}	K	η (%)
QPSK: 2	360	22	33282	97.35	90	5	8370	96.77
8PSK: 3	240	14	22194	97.32	60	3	5598	96.46
16APSK: 4	180	11	16686	97.09	45	2	4212	96.15
32APSK: 5	144	8	13338	97.17	36	2	3402	95.24

Fig. 3: paramters of plframe

2. Physical Layer Framing(PLFRAMING)

- In order to form the PLFRAME which is used for receiver synchronization, a header is inserted in the beginning of each frame.
- If pilots are used, then a 36 symbols pilot field is inserted every 16 slots of data symbols. Given that a PLFRAME cannot terminate to a pilot field, the total number of pilot fields is $\alpha_{PIL} = \left| \frac{(S-1)}{16} \right|$
- The total length of the PLFRAME in symbols is

$$K = \begin{cases} 90 \times (S+1) & \text{with out pilots} \\ 90 \times (S+1) + 36 \times \alpha_{PIL} & \text{with pilots} \end{cases}$$
(2.1)

• The different frame formats, parameters of the normal and short DVB-S2 frame for all constellation formats were tabulated in above table as specified in [?]

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

3. Pulse Shaping

- After randomization, the signals shall be square root raised cosine filtered. The roll-off factor shall be $\alpha=0.35,\,0.25$ and 0.20, depending on the service requirements.
- Suitable H(f) will be choosen from the [?].

$$H(f) = \begin{cases} 1 & |f| < f_N(1 - \alpha) \\ \left\{ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2} \left[\frac{f_N - |f|}{\alpha} \right] \right\}^{\frac{1}{2}} & |f| = f_N(1 - \alpha) \\ 0 & |f| > f_N(1 - \alpha) \end{cases}$$
(3.1)