梯度下降法是用来计算函数最小值的。它的思路很简单,想象在山顶放了一个球,一松手它就会顺着山坡最陡峭的地方滚落到谷底:

凸函数图像看上去就像上面的山谷,如果运用梯度下降法的话,就可以通过一步步的滚动最终来到谷底,也就是找到了函数的最小值。

1动机

先解释下为什么要有梯度下降法?其实最简单的二维凸函数是抛物线 $^{\mathrm{Q}}f(x)=x^2$,很容易通过解方程 f'(x)=0 求出最小值在 x=0 处:

只是有一些凸函数,比如下面这个二元函数^Q(该函数实际上是逻辑回归的经验误差函数,在监督式学习中确实需要求它的最小值):

$$egin{align} f(w_0,w_1) &= rac{1}{6} \Big[\ln \Big(1 + e^{w_0 + 2w_1} \Big) + \ln \Big(1 + e^{-w_0 - 7w_1} \Big) \ &+ \ln \Big(1 + e^{-w_0 - 4w_1} \Big) + \ln \Big(1 + e^{w_0 + w_1} \Big) \ &+ \ln \Big(1 + e^{-w_0 - 5w_1} \Big) + \ln \Big(1 + e^{w_0 + 4.5w_1} \Big) \Big] \ \end{aligned}$$

要求它的最小值点就需要解如下方程组:

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial f}{\partial w_0} = \frac{1}{6} \Big[\frac{e^{w_0 + 2w_1}}{1 + e^{w_0 + 2w_1}} - \frac{e^{-w_0 - 7w_1}}{1 + e^{-w_0 - 7w_1}} \\ \\ \displaystyle - \frac{e^{-w_0 - 4w_1}}{1 + e^{-w_0 - 4w_1}} + \frac{e^{w_0 + w_1}}{1 + e^{w_0 + w_1}} \\ - \frac{e^{-w_0 - 5w_1}}{1 + e^{-w_0 - 5w_1}} + \frac{e^{w_0 + 4.5w_1}}{1 + e^{w_0 + 4.5w_1}} \Big] = 0 \\ \\ \displaystyle \frac{\partial f}{\partial w_1} = \frac{1}{6} \Big[\frac{2e^{w_0 + 2w_1}}{1 + e^{w_0 + 2w_1}} - \frac{7e^{-w_0 - 7w_1}}{1 + e^{-w_0 - 7w_1}} \\ - \frac{4e^{-w_0 - 4w_1}}{1 + e^{-w_0 - 4w_1}} + \frac{e^{w_0 + w_1}}{1 + e^{w_0 + w_1}} \\ - \frac{5e^{-w_0 - 5w_1}}{1 + e^{-w_0 - 5w_1}} + \frac{4.5e^{w_0 + 4.5w_1}}{1 + e^{w_0 + 4.5w_1}} \Big] = 0 \end{array} \right.$$

这个方程组实在太复杂了,直接求解难度太高,好在 $f(w_0,w_1)$ 的图像就像一座山谷:

所以可以用梯度下降法来找到 $f(w_0, w_1)$ 的谷底,也就是最小值。

2 最简单的例子

梯度下降法在本文不打算进行严格地证明和讲解,主要通过一些例子来讲解,先从最简单的凸函数 $f(x)=x^2$ 开始讲起。

2.1 梯度向量^Q

假设起点在 $x_0=10\,$ 处,也就是将球放在 $x_0=10\,$:

它的梯度为 1 维向量:

$$abla f(x_0) = f'(x_0) oldsymbol{i} = \left(f'(x_0)
ight) = \left(2x|_{x_0 = 10}
ight) = (20)$$

这是在x 轴上的向量,它指向函数值增长最快的方向,而 $-\nabla f(x_0)$ 就指向减少最快的方向:

将 x_0 也看作 1 维向量 (x_0) ,通过和 $-\nabla f(x_0)$ 相加,可以将之向 $-\nabla f(x_0)$ 移动一段距离得到新的向量 (x_1) :

$$(x_1) = (x_0) - \eta \nabla f(x_0)$$

其中 η 称为步长 $^{\circ}$,通过它可以控制移的动距离,本节设 $\eta=0.2$,那么:

$$(x_1) = (x_0) - \eta
abla f(x_0) = (10) - 0.2 imes (20) = (6)$$

此时小球 $^{\circ}$ (也就是起点)下降到了 $x_1=6$ 这个位置:

2.2 迭代

 x_1 的梯度为:

$$abla f(x_1) = f'(x_1) oldsymbol{i} = \left(f'(x_1)
ight) = \left(2x|_{x_1=6}
ight) = (12)$$

继续沿着梯度的反方向走:

$$(x_2) = (x_1) - \eta \nabla f(x_1) = (6) - 0.2 \times (12) = (3.6)$$

小球就滚到了更低的位置:

重复上述过程到第 10 次,小球基本上就到了最低点,即有 $x_{10} pprox 0$:

2.3 梯度下降法

把每一次的梯度向量 ∇f 的模长 $||\nabla f||$ 列出来,可以看到是在不断减小的,因此这种方法称为梯度下降法:

把每一次的梯度向量 ∇f 的模长 $||\nabla f||$ 列出来,可以看到是在不断减小的,因此这种方法称为梯度下降法:

	x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
$ \nabla f $	20	12	7.2	4.32	2.59	1.56	0.93	0.56	0.34	0.2	0.12

这也比较好理解, 当最终趋向于 0 时有:

$$||\nabla f|| = 0 \implies \nabla f = 0 \implies f'(x) = 0$$

所以梯度下降法求出来的就是最小值(或者在附近)。

3 步长

上面谈到了可以通过步长 η 来控制每次移动的距离,下面来看看不同步长对最终结果的影响。

3.1 过小

如果设 $\eta=0.01$ 就过于小了,迭代 20 次后离谷底还很远,实际上 100 次后都无法到达谷底:

3.2 合适

上面例子中用的 $\eta=0.2$ 是较为合适的步长,10 次就差不多找到了最小值:

3.3 较大

如果令 $\eta=1$,这个时候会来回震荡(下图看上去只有两个点,实际上在这两个点之间来来回回):

3.4 过大

继续加大步长,比如令 $\eta=1.1$,反而会越过谷底,不断上升:

3.5 总结

总结下,不同的步长 η ,随着迭代次数的增加,会导致被优化函数 f(x) 的值有不同的变化:

寻找合适的步长 η 是个手艺活,在工程中可以将上图画出来,根据图像来手动调整:

- f(x) 往上走(红线),自然是 η 过大,需要调低
- f(x) 一开始下降特别急,然后就几乎没有变化(棕线),可能是 η 较大,需要调

• f(x) 几乎是线性变化(蓝线),可能是 η 过小,需要调高

4 三维[°]的例子

原理都介绍完了,下面再通过一个三维的例子来加强对梯度下降法的理解。假设函数为:

$$f(\boldsymbol{x}) = x_1^2 + 2x_2^2$$

其图像及等高线^Q如下(等高线中心的蓝点表示最小值):

下面用梯度下降法来寻找最小值。

4.1 前进一步

设初始点为 $x_0 = (-3.5, -3.5)$, 此时梯度为:

$$abla f(m{x}_0) = (rac{\partial f(m{x}_0)}{\partial x_1}, rac{\partial f(m{x}_0)}{\partial x_2}) = (2x_1, 4x_2) \Big|_{x_1 = -3.5, x_2 = -3.5} = (-7, -14)$$

令步长 $\eta=0.1$,那么下一个点为:

$$egin{aligned} m{x}_1 &= m{x}_0 - \eta
abla f(m{x}_0) \ &= (-3.5, -3.5) - 0.1 imes (-7, -14) = (-2.8, -2.1) \end{aligned}$$

可以看到向最小值方向前进了一步:

4.2 迭代

同样的方法找到下一个点:

$$egin{aligned} m{x}_2 &= m{x}_1 - \eta
abla f(m{x}_1) \ &= (-2.8, -2.1) - 0.1 imes (-5.6, -8.4) = (-2.24, -1.26) \end{aligned}$$

此时又向最小值靠近了:

如此迭代20次后,差不多找到了最小值:

