STAT 230 SECTION 2 LECTURE 16

when you realize your instructor needs to quarantine and you will only have fun online lectures instead of fun in person lectures

Today's Agenda

Last time:

- Poisson Distribution
- Practice

Today's Agenda

Last time:

- Poisson Distribution
- Practice

Today (Lec 16, 06/09):

- Video 1: Poisson process (Section 5.8)
- Video 2: Combining other models with the Poisson process (Section 5.9)... this finishes Chapter 5!
- Video 3: Chapter 5 Recap

Today's Agenda

Last time:

- Poisson Distribution
- Practice

Today (Lec 16, 06/09):

- Video 1: Poisson process (Section 5.8)
- Video 2: Combining other models with the Poisson process (Section 5.9)... this finishes Chapter 5!
- Video 3: Chapter 5 Recap

Next Lectures:

 Lec 17 (synchronous online lecture on June-10) consists of practice again.

Poisson Distribution

A random variable X follows a Poisson distribution with intensity $\lambda > 0$, if X has probability function

$$f(x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, ...$$

There are two ways to interpret Poisson distribution.

Poisson Distribution

A random variable X follows a Poisson distribution with intensity $\lambda > 0$, if X has probability function

$$f(x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, ...$$

There are two ways to interpret Poisson distribution.

a) Limiting case of binomial distribution, where you fix $\lambda=np$, and let $n\to\infty$ and $p\to0$ (This can be a consequence of b))

Poisson Distribution

A random variable X follows a Poisson distribution with intensity $\lambda > 0$, if X has probability function

$$f(x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, ...$$

There are two ways to interpret Poisson distribution.

- a) Limiting case of binomial distribution, where you fix $\lambda=np$, and let $n\to\infty$ and $p\to0$ (This can be a consequence of b))
- b) Poisson Process

Example (Poisson process (counting events))

Consider counting the number of occurrences of an event that happens at random points in time (or space). Examples include

Example (Poisson process (counting events))

Consider counting the number of occurrences of an event that happens at random points in time (or space). Examples include

- Counting emissions of radioactive particles from a radioactive substance
- 2. Hits on a web site during a given time period.
- 3. Counting how many pokemon you encounter in an hour.

a) **Independence:** the number of occurrences in non-overlapping intervals are independent.

- a) **Independence:** the number of occurrences in non-overlapping intervals are independent.
- b) **Individuality:** for sufficiently short time periods of length Δt , the probability of 2 or more events occurring in the interval is close to zero

$$\frac{P\left(\text{2 or more events in } (t,t+\Delta_t)\right)}{\Delta_t} \rightarrow \text{0, } \Delta_t \rightarrow 0$$

- a) **Independence:** the number of occurrences in non-overlapping intervals are independent.
- b) **Individuality:** for sufficiently short time periods of length Δt , the probability of 2 or more events occurring in the interval is close to zero

$$rac{P\left(ext{ (2 or more events in } (t,t+\Delta_t)
ight)}{\Delta_t}
ightarrow 0, \;\; \Delta_t
ightarrow 0$$

c) Homogeneity or Uniformity: events occur at a uniform or homogeneous rate λ and proportional to time interval Δ_t , i.e.

$$rac{P\left(ext{one event in }(t,t+\Delta_t)
ight)-\lambda\Delta_t}{\Delta_t}
ightarrow 0.$$

If X = occurrences in a time period of length t, then

$$X \sim Poi(\lambda t)$$
.

Poisson Process

Definition

A process that satisfies the prior conditions on the occurrence of events is often called a **Poisson process**. More precisely, if X_t , for $t \ge 0$, (a random variable for each t) denotes the number of events that have occurred up to time t, then X_t is called a Poisson process.

Poisson Process

Definition

A process that satisfies the prior conditions on the occurrence of events is often called a **Poisson process**. More precisely, if X_t , for $t \ge 0$, (a random variable for each t) denotes the number of events that have occurred up to time t, then X_t is called a Poisson process.

Note that sometimes, t may not represent time, but area, volume, ...

A website is giving out prizes to every 300th visitor. Suppose that visitors visit the website at random at a rate of 10 visitors per minute on average, and they visit the site independently and individually from each other. Let X denote the number of prizes given out after 10 minutes. Then

A website is giving out prizes to every 300th visitor. Suppose that visitors visit the website at random at a rate of 10 visitors per minute on average, and they visit the site independently and individually from each other. Let X denote the number of prizes given out after 10 minutes. Then

- A) $X \sim Poi(100)$
- B) $X \sim Poi(10)$
- C) Neither A nor B are true.

Shiny versions of Pokemon are possible to encounter and catch starting in Generation 2 (Pokemon Gold/Silver). Normal encounters with Pokemon while running in grass occur according to a Poisson process with rate 1 per minute on average. 1 in every 8192 encounters will be a Shiny Pokemon, on average.

Shiny versions of Pokemon are possible to encounter and catch starting in Generation 2 (Pokemon Gold/Silver). Normal encounters with Pokemon while running in grass occur according to a Poisson process with rate 1 per minute on average. 1 in every 8192 encounters will be a Shiny Pokemon, on average.

- a) If Ashton runs around in grass for 15 hours, what is the probability he will encounter at least one Shiny pokemon?
- b) How long would Ashton have to run around in grass so that he has better than 50 percent chance of encountering at least one Shiny pokemon?

Partial Solution

- Let X be number of poke encountered after 1 hour, Y be the number of shiny encountered after one hour.
- $X \sim Poi(60)$ and $Y \sim Poi(60/8192)$
- If Z is the number of shiny encountered after 15 hours, then $Z \sim Poi(\frac{60}{8192} \cdot 15)$, and you know how to compute $P(Z \ge 1)$.
- If Z is the number of shiny encountered after t hours, then $Z \sim Poi(\frac{60}{8192} \cdot t)$. You solve $P(Z \ge 1) \ge 0.5$ for t.

Website hits for a given website occur according to a Poisson process with a rate of 100 hits per minute. We say a second is a "break" if there are no hits in that second.

- a) What is the probability p of a break in any given second?
- b) Compute the probability of observing exactly 10 breaks in 60 consecutive seconds.
- c) Compute the probability that one must wait for 30 seconds to get 2 breaks.

■ Break means zero hits in one sec. If X = number of hits in one sec, then $X \sim Poi(100/60) = Poi(5/3)$ and

$$p = P(X = 0) = e^{-\frac{5}{3}} \frac{\left(\frac{5}{3}\right)^0}{0!} \approx 0.189$$

■ Break means zero hits in one sec. If X = number of hits in one sec, then $X \sim Poi(100/60) = Poi(5/3)$ and

$$p = P(X = 0) = e^{-\frac{5}{3}} \frac{\left(\frac{5}{3}\right)^0}{0!} \approx 0.189$$

■ Take 60 one-sec intervals. Each interval has a probability of p of having a break. The number of one-sec intervals (from 60 one-sec intervals) with a break, say Y, then follows a binomial, $Y \sim Bin(60, p)$, and

$$P(Y = 10) = {60 \choose 10} p^{10} (1-p)^{50} \approx 0.124$$

■ Break means zero hits in one sec. If X = number of hits in one sec, then $X \sim Poi(100/60) = Poi(5/3)$ and

$$p = P(X = 0) = e^{-\frac{5}{3}} \frac{\left(\frac{5}{3}\right)^0}{0!} \approx 0.189$$

■ Take 60 one-sec intervals. Each interval has a probability of p of having a break. The number of one-sec intervals (from 60 one-sec intervals) with a break, say Y, then follows a binomial, $Y \sim Bin(60, p)$, and

$$P(Y = 10) = {60 \choose 10} p^{10} (1-p)^{50} \approx 0.124$$

Let Z be the number of one-sec intervals one needs to wait until observing the second break ("success"). Then, $Z \sim NegBin(k=2,p)$ and

$$P(Z=30) = {30+2-1 \choose 2-1} p^2 (1-p)^{30} \approx 0.002.$$

Today (Lec 16, 06/09):

- Video 1: Poisson process (Section 5.8)
- Video 2: Combining other models with the Poisson process (Section 5.9)... this finishes Chapter 5!
- Video 3: Chapter 5 Recap

So far, every problem could be solved by using one distribution.

However, many real-life problems may require more than one distribution to be modelled properly. Even within one setting, the type of questions you ask could change the required distribution.

At a super busy coffee chain, customers arrive at a rate of 5 per minute.

- a) Find the probability that that there are more than 2 customers in one minute.
- b) Suppose you record the number of customers in 5 consecutive one-minute intervals. What is the probability that in at least 3 of them there were more than 2 customers?
- c) Suppose you are waiting until finally, there is one minute with more than 2 customers. Denote by *X* the the number of minutes you need to wait. Find the probability function of *X*.
- d) Find the probability that a minute with more than 2 customers actually had 6 customers.
- e) Suppose in 3 minutes, there were n customers. Find the probability that x of these came in the first two minutes.

$$p = P(X > 2) = 1 - P(X \le 2)$$

= 1 - P(X = 0) - P(X = 1) - P(X = 2) \approx 0.875

$$p = P(X > 2) = 1 - P(X \le 2)$$

= 1 - P(X = 0) - P(X = 1) - P(X = 2) \approx 0.875

b) If X = number of one-minute intervals with more than two customers, then $X \sim Bin(5, p)$ with p from a). Thus,

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) \approx 0.984$$

$$p = P(X > 2) = 1 - P(X \le 2)$$

= 1 - P(X = 0) - P(X = 1) - P(X = 2) \approx 0.875

b) If X = number of one-minute intervals with more than two customers, then $X \sim Bin(5, p)$ with p from a). Thus,

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) \approx 0.984$$

c) If X = number of minutes until first minute with more than 2 customers, then $X \sim Geo(p)$. Thus,

$$P(X = x) = (1 - p)^{x} p, \quad x = 0, 1, 2, ...$$

$$p = P(X > 2) = 1 - P(X \le 2)$$

= 1 - P(X = 0) - P(X = 1) - P(X = 2) \approx 0.875

b) If X = number of one-minute intervals with more than two customers, then $X \sim Bin(5, p)$ with p from a). Thus,

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) \approx 0.984$$

c) If X = number of minutes until first minute with more than 2 customers, then $X \sim Geo(p)$. Thus,

$$P(X = x) = (1 - p)^{x} p$$
, $x = 0, 1, 2, ...$

d) Let X = number of customers in one minute. We are looking for

$$P(X = 6 \mid X > 2) = \frac{P(X = 6 \text{ and } X > 2)}{P(X > 2)} = \frac{P(X = 6)}{P(X > 2)} \approx 0.167$$

■ We need

$$P(x \text{ in first } 2\min \mid n \text{ in } 3\min) = \frac{P(x \text{ in first } 2\min \text{ AND } n \text{ in } 3\min)}{P(n \text{ in } 3\min)}$$

■ We need

$$P(x \text{ in first 2min} \mid n \text{ in 3min}) = \frac{P(x \text{ in first 2min AND } n \text{ in 3min})}{P(n \text{ in 3min})}.$$

■ The number of customers in 3 minutes follows $Poi(5 \cdot 3)$, so that the denominator is

$$P(n \text{ in } 3 \text{ min}) = e^{-15} \frac{15^n}{n!}, \quad n = 0, 1, 2, \dots$$

We need

$$P(x \text{ in first 2min } | n \text{ in 3min}) = \frac{P(x \text{ in first 2min AND } n \text{ in 3min})}{P(n \text{ in 3min})}.$$

■ The number of customers in 3 minutes follows $Poi(5 \cdot 3)$, so that the denominator is

$$P(n \text{ in } 3 \text{ min}) = e^{-15} \frac{15^n}{n!}, \quad n = 0, 1, 2, \dots$$

■ The numerator becomes, since non-overlapping intervals are independent,

$$P(x \text{ in first 2min and } n \text{ in 3min}) = P(x \text{ in first 2min, } n-x \text{ in last min})$$

$$= P(x \text{ in first 2min}) \cdot P(n-x \text{ in last min}) = e^{-10} \frac{10^x}{x!} \cdot e^{-5} \frac{5^{n-x}}{(n-x)!}$$

■ We need

$$P(x \text{ in first 2min } | n \text{ in 3min}) = \frac{P(x \text{ in first 2min AND } n \text{ in 3min})}{P(n \text{ in 3min})}.$$

■ The number of customers in 3 minutes follows $Poi(5 \cdot 3)$, so that the denominator is

■ The numerator becomes, since non-overlapping intervals are

$$P(n \text{ in } 3 \text{ min}) = e^{-15} \frac{15^n}{n!}, \quad n = 0, 1, 2, \dots$$

independent, P(x in first 2min and n in 3min) = P(x in first 2min, n - x in last min)

$$= P(x \text{ in first 2min}) \cdot P(n-x \text{ in last min}) = e^{-10} \frac{10^x}{x!} \cdot e^{-5} \frac{5^{n-x}}{(n-x)!}$$

Combining and simplifying gives

$$P(x \text{ in first } 2\min \mid n \text{ in } 3\min) = \binom{n}{x} \left(\frac{2}{3}\right)^x \left(\frac{1}{3}\right)^{n-x}, \quad x = 0, 1, \dots, n,$$
 which is the pf of $Bin(n, 2/3)$.

Today (Lec 16, 06/09):

- Video 1: Poisson process (Section 5.8)
- Video 2: Combining other models with the Poisson process (Section 5.9)
- Video 3: Chapter 5 Recap

■ If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.

- If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.
- Denote by range(X) the set of all values X can take. If range(X) is at most countable, X is called discrete.

- If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.
- Denote by range(X) the set of all values X can take. If range(X) is at most countable, X is called discrete.
- If X is a discrete random variable, then

$$f(x) = P(X = x)$$

is the probability function of X, which is 0 when $x \notin \text{range}(X)$

- If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.
- Denote by range(X) the set of all values X can take. If range(X) is at most countable, X is called discrete.
- If *X* is a discrete random variable, then

$$f(x) = P(X = x)$$

is the probability function of X, which is 0 when $x \notin \text{range}(X)$

Note that

$$\sum_{x \in \mathsf{range}(X)} f(x) = 1.$$

- If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.
- Denote by range(X) the set of all values X can take. If range(X) is at most countable, X is called discrete.
- If X is a discrete random variable, then

$$f(x) = P(X = x)$$

is the probability function of X, which is 0 when $x \notin \text{range}(X)$

Note that

$$\sum_{x \in \mathsf{range}(X)} f(x) = 1.$$

■ If X is a random variable, then

$$F(x) = P(X \le x), \quad x \in \mathbb{R},$$

is the cumulative distribution function of X.

- If S is a sample space, a function $X : S \to \mathbb{R}$ is a random variable.
- Denote by range(X) the set of all values X can take. If range(X) is at most countable, X is called discrete.
- If X is a discrete random variable, then

$$f(x) = P(X = x)$$

is the probability function of X, which is 0 when $x \notin \text{range}(X)$

Note that

$$\sum_{x \in \mathsf{range}(X)} f(x) = 1.$$

■ If X is a random variable, then

$$F(x) = P(X \le x), \quad x \in \mathbb{R},$$

is the cumulative distribution function of X.

 We have seen some important special cases (uniform, bernoulli, binomial, hypergeometric, negative binomial, geometric, poisson)

• Given is the set $\{a, a+1, \ldots, b\}$, $a, b \in \mathbb{Z}$, a < b.

- Given is the set $\{a, a+1, \ldots, b\}$, $a, b \in \mathbb{Z}$, a < b.
- Suppose you pick one element of $\{a, a+1, \ldots, b\}$ uniformly at random (i.e., all elements have the same probability)

- Given is the set $\{a, a+1, \ldots, b\}$, $a, b \in \mathbb{Z}$, a < b.
- Suppose you pick one element of $\{a, a+1, ..., b\}$ uniformly at random (i.e., all elements have the same probability)
- If X is the element obtained, then $X \sim U[a, b]$ with probability function

$$f(x) = P(X = x) = \begin{cases} \frac{1}{b-a+1}, & x = a, a+1, \dots, b, \\ 0, & \text{otherwise.} \end{cases}$$

- Given is the set $\{a, a+1, \ldots, b\}$, $a, b \in \mathbb{Z}$, a < b.
- Suppose you pick one element of $\{a, a+1, ..., b\}$ uniformly at random (i.e., all elements have the same probability)
- If X is the element obtained, then $X \sim U[a, b]$ with probability function

$$f(x) = P(X = x) = \begin{cases} \frac{1}{b-a+1}, & x = a, a+1, \dots, b, \\ 0, & \text{otherwise.} \end{cases}$$

Examples: Roll a fair die, pick a number between 1 and 49,...

 Suppose you have N objects, which are either classified as "success" or "failure"

- Suppose you have N objects, which are either classified as "success" or "failure"
- Suppose r of the N objects are "success", the remaining N-r are failures,

- Suppose you have N objects, which are either classified as "success" or "failure"
- Suppose r of the N objects are "success", the remaining N-r are failures,
- Sample *n* objects at random without replacement

- Suppose you have N objects, which are either classified as "success" or "failure"
- Suppose r of the N objects are "success", the remaining N-r are failures,
- Sample *n* objects at random without replacement
- The number of successes, X, follows a HyperGeo(N, r, n)
 distribution with probability function

$$f(x) = P(X = x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}, \quad x = \max\{0, n-N+r\}, \dots, \min\{r, n\}.$$

- Suppose you have N objects, which are either classified as "success" or "failure"
- Suppose r of the N objects are "success", the remaining N-r are failures,
- Sample n objects at random without replacement
- The number of successes, X, follows a HyperGeo(N, r, n)
 distribution with probability function

$$f(x) = P(X = x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}, \quad x = \max\{0, n-N+r\}, \dots, \min\{r, n\}.$$

Example: Number of aces in a hand of 7 cards

■ Suppose an experiment has two outcomes, "success" and "failure" (1 and 0).

- Suppose an experiment has two outcomes, "success" and "failure" (1 and 0).
- Assume that P(success) = p.

- Suppose an experiment has two outcomes, "success" and "failure" (1 and 0).
- Assume that P(success) = p.
- If X is the outcome of the experiment, thenX follows a Bernoulli(p) distribution with probability function

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}, x \in \{0, 1\}.$$

- Suppose an experiment has two outcomes, "success" and "failure" (1 and 0).
- Assume that P(success) = p.
- If X is the outcome of the experiment, thenX follows a Bernoulli(p) distribution with probability function

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}, x \in \{0, 1\}.$$

Example: Result when flipping a coin

■ An experiment has outcomes "success" and "failure".

- An experiment has outcomes "success" and "failure".
- Assume you repeat the experiment independently *n* times.

- An experiment has outcomes "success" and "failure".
- Assume you repeat the experiment independently *n* times.
- Assume the success probability is always p

- An experiment has outcomes "success" and "failure".
- Assume you repeat the experiment independently *n* times.
- Assume the success probability is always p
- If X is the number of successes in n independent trials, then $X \sim Bin(n, p)$ with probability function

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, ..., n.$$

- An experiment has outcomes "success" and "failure".
- Assume you repeat the experiment independently *n* times.
- Assume the success probability is always p
- If X is the number of successes in n independent trials, then $X \sim Bin(n, p)$ with probability function

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, ..., n.$$

Example: Number of heads in 5 coin tosses.

■ An experiment has outcomes "success" and "failure".

- An experiment has outcomes "success" and "failure".
- Assume the success probability is always p.

- An experiment has outcomes "success" and "failure".
- Assume the success probability is always *p*.
- Assume you repeat the experiment independently until you observe k successes.

- An experiment has outcomes "success" and "failure".
- Assume the success probability is always *p*.
- Assume you repeat the experiment independently until you observe
- If X is the number of failures before the kth success, X ~ NegBin(k, p) with probability function

$$f(x) = P(X = x) = {x+k-1 \choose k-1} p^k (1-p)^x, \quad x = 0, 1, 2, \dots$$

- An experiment has outcomes "success" and "failure".
- Assume the success probability is always *p*.
- Assume you repeat the experiment independently until you observe
- If X is the number of failures before the kth success, $X \sim NegBin(k, p)$ with probability function

$$f(x) = P(X = x) = {x+k-1 \choose k-1} p^k (1-p)^x, \quad x = 0, 1, 2, \dots$$

Example: Number of times you obtain heads until the 3rd tail.

- An experiment has outcomes "success" and "failure".
- Assume the success probability is always p.
- Assume you repeat the experiment independently until you observe
- If X is the number of failures before the kth success, X ~ NegBin(k, p) with probability function

$$f(x) = P(X = x) = {x+k-1 \choose k-1} p^k (1-p)^x, \quad x = 0, 1, 2, \dots$$

- Example: Number of times you obtain heads until the 3rd tail.
- Special Case: For k = 1 (one success), we have a Geometric distribution.

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

• X has a $Poi(\lambda)$ distribution if it has probability function

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

■ If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that
 - the number of occurrences in non-overlapping intervals are independent,

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that
 - the number of occurrences in non-overlapping intervals are independent,
 - probability of 2 or more events occurring in the interval is close to zero (individuality),

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that
 - the number of occurrences in non-overlapping intervals are independent,
 - ▶ probability of 2 or more events occurring in the interval is close to zero (individuality),
 - events occur at a uniform or homogeneous rate λ proportional to length of time interval ΔT (homogeneity),

• X has a $Poi(\lambda)$ distribution if it has probability function

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that
 - the number of occurrences in non-overlapping intervals are independent,
 - probability of 2 or more events occurring in the interval is close to zero (individuality),
 - events occur at a uniform or homogeneous rate λ proportional to length of time interval ΔT (homogeneity),

then the number of occurrences in a time period of length t follows $Poi(\lambda t)$.

Example: Number of customers at TH 5 minutes after opening.

• X has a $Poi(\lambda)$ distribution if it has probability function

$$f(x) = P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

- If n is large and p is small in a Binomial model, the number of success follows approximately a Poi(np) distribution.
- Generally, a Poisson models the number of occurrences of an event.
- Suppose that the events you are counting are such that
 - the number of occurrences in non-overlapping intervals are independent,
 - probability of 2 or more events occurring in the interval is close to zero (individuality),
 - events occur at a uniform or homogeneous rate λ proportional to length of time interval ΔT (homogeneity),

then the number of occurrences in a time period of length t follows $Poi(\lambda t)$.

Example: Number of customers at TH 5 minutes after opening.