Integrating Industry Standard Rendering Techniques for Visualizing Solvation in Molecular Dynamics Simulations Using The MolecularNodes Software Plug-in

By: Joyce Kim
External Capstone Supervisor: Dr. Jessica Nash (MolSSI)
Collaborator: Orion Cohen (Persson Group)

- Molecular Dynamics (MD)
 - MD Simulation
 - use computational methods to simulate the movement of molecules in their native environments

- Molecular Solvation
 - Solvation Box
 - A solvation box is a computational simulation box that contains a system(solute) surrounded by solvent molecules

- Molecular Solvation
 - Solvation Shell

• Refers to the structured arrangement of solvent molecules that surround a solute

- Software Libraries
 - Blender
 - open-source rendering software that uses ray-tracing for hyperrealistic visualization

- Software Libraries
 - MolecularNodes

• an open-source plugin for Blender, which is a molecular visualization

software

- Software Libraries
 - MDAnalysis
 - open-source software library that reads MD Simulation Data to a data structure (i.e. AtomGroup)

- Software Libraries
 - SolvationAnalysis
 - open-source software library that extends functionality of MDAnalysis to create a solution object

AIM

interoperability between MolecularNodes and SolvationAnalysis

APPROACH

Build a Separate Python Module

	•	
700		
	assets	Add nodes for backbone sel and SS color
	initpy	merged branch with all the UI features and the tutorial
	assembly.py	fix assembly bug
	coll.py	cleanup
	data.py	fixed vdw_radii import
	density.py	move import into functions to fix addon enabling
	load.py	minor cleanup
	md.py	fixes consistency in load_trajectory function call
	nodes.py	remove unused 'property exists' function
	pkg.py	Merge branch 'density' into density-compat
	pref.py	bring back PyPI mirror and minor refactors
	requirements.txt	update requirements.txt
	solv_ana.py	merged branch with all the UI features and the tutorial
	ui.py	update requirements.txt

APPROACH

Integrate New Module

Solvation Analysis User-Interface

UI to input a selection information

Solvation Analysis User-Interface

Molecular Dynamics Simulation Info

Sets the Blender display name, topology file, trajectory file, and frame of interest.

Solute Selection

Sets the solute of interest using MD Analysis selection syntax.

Solvent Selection

Set parts of the solvent using MD Analysis selection syntax. Specify type of shell to analyze by putting the appropriate number in "Shell Number Input"

COMPARISONS

NGLView Generated Image

Blender Generated Image

CAPSTONE PROJECT SOFTWARE AVAILABILITY

 Public repository under MolecularNodes in the future it will be available as part of MolecularNodes software distribution

DEMO

REFERENCES

- Kimjoyc, "KIMJOYC/molecularnodes: Addon and nodes for working with structural biology and molecular data in Blender.," GitHub. [Online]. Available: https://github.com/kimjoyc/MolecularNodes. [Accessed: 12-Apr-2023].

 B. Foundation, "Home of the blender project free and open 3D creation software," blender.org. [Online]. Available: https://www.blender.org/. [Accessed: 21-Feb-2023]. 1.
- B. Johnston, D. Marson, and Y. Yao, "Bradyajohnston/molecularnodes: V2.3.0 for Blender 3.4.1+," Zenodo, 26-Jan-2023. [Online]. Available: https://doi.org/10.5281/zenodo.7572290. [Accessed: 06-Feb-2023]. 3.
- 4.
- "nglview," Digital Object Identifier System. [Online]. Available: https://doi.org/10.1093/bioinformatics/btx789. [Accessed: 06-Feb-2023].
 R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
 MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. doi:10.25080/Majora-629e541a-00e Durrant JD. BlendMol: advanced macromolecular visualization in Blender. Bioinformatics. 2019 Jul 1;35(13):2323-2325. doi:
- 10.1093/bioinformatics/bty968. PMID: 30481283; PMCID: PMC6596883.

 O. Cohen, "MDAnalysis/Solvation-Analysis: A comprehensive suite of tools for analyzing liquid solvation structure.," GitHub. [Online]. Available: https://github.com/MDAnalysis/solvation-analysis. [Accessed: 16-Feb-2023]. 7.
- "Global structure of the intrinsically disordered protein tau emerges ..." [Online]. Available: https://pubs.acs.org/doi/pdf/10.1021/jacsau.1c00536. [Accessed: 21-Feb-2023]. 8.
- "MDAnalysis: A python package for the rapid analysis of molecular ..." [Online].

 Available: https://www.researchgate.net/publication/328774554_MDAnalysis_A_Python_Package_for_the_Rapid_Analysis_of_Molecular_Dynamics_Simulations. [Accessed: 13-Apr-2023]. 9.
- S. Han, "Structure and dynamics in the lithium solvation shell of nonaqueous electrolytes," Scientific Reports, vol. 9, no. 1, Apr. 2019, doi: https://doi.org/10.1038/s41598-019-42050-y.

 A. Smith et al., "Topological Analysis of Molecular Dynamics Simulations using the Euler Characteristic," Journal of Chemical Theory and Computation, vol. 19, no. 5, pp. 1553–1567, Feb. 2023, doi: https://doi.org/10.1021/acs.jctc.2c00766.

 I. V. Likhachev, N. K. Balabaev, and O. V. Galzitskaya, "Available Instruments for Analyzing Molecular Dynamics Trajectories," The Open 10.
- 11.
- 12.
- Biochemistry Journal, vol. 10, no. 1, pp. 1–11, Mar. 2016, doi: https://doi.org/10.2174/1874091x01610010001.

 A. Rácz, L. M. Mihalovits, D. Bajusz, K. Héberger, and R. A. Miranda–Quintana, "Molecular Dynamics Simulations and Diversity Selection by Extended Continuous Similarity Indices," Journal of Chemical Information and Modeling, vol. 62, no. 14, pp. 3415–3425, Jul. 2022, doi: 13. https://doi.org/10.1021/acs.jcim.2c00433. Molecular dynamics (2023) Wikipedia. Wikimedia Foundation. Available at:
- 14. https://en.wikipedia.org/wiki/Molecular dynamics#/media/File:MD water.gif (Accessed: April 27, 2023).

Questions?

ACKNOWLEDGMENT

Thank You Dr. Jessica Nash and Orion Cohen.

