METODOLOGÍA DE LA PROGRAMACIÓN

- ÁREA DE PROGRAMACIÓN -

PROBLEMARIO 2: DISEÑO ESTRUCTURADO USANDO DIAGRAMAS DE FLUJO Y PSEUDOCÓDIGO

Docente: Prof.^a. Patricia Silva Sánchez

Alumno: Jesús Huerta Aguilar

Matricula: 202041509

NRC: 31673 Sección: 005

PRIMER SEMESTRE

Puebla, Pue. Fecha de entrega: 10/02/2021

1. Escribir un programa que calcule al perímetro y área de un círculo dado su radio.

PSEUDOCÓDIGO

```
Algoritmo area perimetro
       Definir RAD, PER, ARE Como Real
3
       Escribir '¿Cual es el radio del circulo?'
4
       Leer RAD
       Si RAD > 0 Entonces
5
           PER <- 2*PI*RAD
6
           ARE <- PI*RAD^2
7
8
           Escribir 'Perimetro: ', PER
9
           Escribir 'Área: ', ARE
10
       SiNo
           Escribir "ERROR: el radio debe de ser positivo"
11
       FinSi
12
13 | FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valor entero.

т		Memoria	a		Omanación	Salida
L	RAD	PER	ARE	PI	Operación	
2	REAL	REAL	REAL	π	Definir variables	
3						¿Cuál es el radio del
3						circulo?
4	12					
5					$RAD > 0 \Rightarrow V$	
6		75.39822			$PER = 2 \cdot \pi \cdot 12$	
7			452.3893		$ARE = \pi(12)^2$	
8						Perímetro: 75.3982236862
9						Área: 452.3893421169

Tabla 1: Entero.

SEGUNDA CORRIDA: Valor decimal.

т		Memoria	a		Omanación	Salida
L	RAD	PER	ARE	PI	Operación	
2	REAL	REAL	REAL	π	Definir variables	
3						¿Cuál es el radio del circulo?
4	4.2					
5					$RAD > 0 \Rightarrow V$	
6		26.38937			$PER = 2 \cdot \pi \cdot 4.2$	
7			55.41769		$ARE = \pi (4.2)^2$	
8						Perímetro: 26.3893782902
9						Área: 55.417694409

Tabla 2:Decimal.

TERCERA CORRIDA: Valor negativo.

T		Memoria	a		- Operación	Salida
L	RAD	PER	ARE	PI	Operación	Sanda
2	REAL	REAL	REAL	π	Definir variables	
3						¿Cuál es el radio del circulo?
4	-5					
5					$RAD > 0 \Rightarrow F$	
11						ERROR: el radio debe de ser positivo

Tabla 3:Negativo.

Diagrama 1:Ejercicio 1.

2. Escribir un programa que calcule el cociente y el residuo dados dos números enteros.

PSEUDOCÓDIGO

```
Algoritmo cociente residuo
       Definir DNDO, DSOR, COCI, RESI Como Entero
3
       Escribir "Dividendo:"
       Leer DNDO
       Escribir "Divisor:"
5
       Leer DSOR
6
7
       COCI <- trunc(DNDO/DSOR)
       RESI <- DNDO mod DSOR
8
       Escribir "Cociente: " COCI
9
       Escribir "Residuo: " RESI
10
11 FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

T		Memo	oria		Operación	Salida
L	DNDO	DSOR	COCI	RESI	Operacion	Sanda
2	ENT	ENT	ENT	ENT	Definir variables	
3						Dividendo:
4	26					
5						Divisor:
6		3				
7			8		COCI = 26 div 3	
8				2	$RESI = 26 \mod 3$	
9						Cociente: 8
10						Residuo: 2

Tabla 4: Positivos.

SEGUNDA CORRIDA: Valores negativos.

T		Memo	oria		Operación	Salida
L	DNDO	DSOR	COCI	RESI		
2	ENT	ENT	ENT	ENT	Definir variables	
3						Dividendo:
4	-10					
5						Divisor:
6		3				
7			-3		$COCI = -10 \ div \ 3$	
8				-1	$RESI = -10 \ mod \ 3$	
9						Cociente: -3
10						Residuo: -1

Tabla 5: Negativos.

Diagrama 2: Ejercicio 2.

3. Escribir un programa que calcule el área y perímetro de un pentágono.

PSEUDOCÓDIGO

```
Algoritmo pentagono
       Definir LAD, APO, PER, ARE Como Real
       Escribir 'Longitud de un lado del pentágono:'
       Leer LAD
5
       Si LAD>0 Entonces
           APO <- (LAD/(2*tan(72*PI/360)))
           PER <- 5★LAD
           ARE <- (PER*APO)/2
8
           Escribir 'Perimetro: ', PER
9
10
           Escribir 'Area: ',ARE
       SiNo
11
12
           Escribir "ERROR: Ingresa un valor positivo"
13
       FinSi
14 | FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

T		Men	noria		Omenaelán	Calida
L	LAD	APO	PER	ARE	Operación	Salida
2	REAL	REAL	REAL	REAL	Definir variables	
3						Longitud de un lado del pentágono:
4	12					
5					$LAD > 0 \Rightarrow V$	
6		8.2			$APO = \frac{12}{2 \cdot \tan\left(\frac{72\pi}{360}\right)}$	
7			60		$PER = 5 \cdot 12$	
8				247.7	$ARE = \frac{PER \cdot APO}{2}$	
9						Perímetro: 60
10						Área: 247.7487

Tabla 6: Medidas positivas.

SEGUNDA CORRIDA: Valores negativos.

T		Men	noria		Operación	Salida
L	LAD	APO	PER	ARE		
2	REAL	REAL	REAL	REAL	Definir variables	
3						Longitud de un lado del pentágono:
4	-5					
5					$LAD > 0 \Rightarrow F$	
12						ERROR: Ingresa un valor positivo

Tabla 7: Medidas positivas.

Diagrama 3: Ejercicio 3.

4. Escribir un programa que realice la suma de dos números enteros.

PSEUDOCÓDIGO

```
1 Algoritmo suma_enteros
2 Definir NUNO,NDOS Como Entero
3 Escribir "Primer numero entero:"
4 Leer NUNO
5 Escribir "Segundo numero entero"
6 Leer NDOS
7 RES ← NUNO + NDOS
8 Escribir "La suma es: " RES
9 FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

T		Memoria		Onorgajón	Salida
L	NUNO	NDOS	RES	Operación	Sanua
2	ENT	ENT	ENT	Definir variables	
3					Primer número entero:
4	49				
5					Segundo número entero:
6		50			
7			99	RES = 49 + 50	
8					La suma es: 99

Tabla 8: Enteros positivos.

SEGUNDA CORRIDA: Valores negativos.

T		Memoria		Onorgajón	Salida		
L	NUNO	NDOS	RES	Operación	Sanda		
2	ENT	ENT	ENT	Definir variables			
3					Primer número entero:		
4	150						
5					Segundo número entero:		
6		-33					
7			117	RES = 150 + (-33)			
8					La suma es: 117		

Tabla 9: Enteros negativos.

Diagrama 4: Ejercicio 4.

5. Escribir un programa que calcule el cuadrado de 25.

PSEUDOCÓDIGO

```
1 Algoritmo cuadrado_25
2 Definir A Como Entero
3 A = 25^2
4 Escribir "El cuadrado de 25 es: " A
5 FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Cuadrado de 25.

L	Memoria A	Operación	Salida
2	ENT	Definir variables	
3	625	$A = 25^2$	
4			El cuadrado de 25 es: 625

Tabla 10: Cuadrado de 25

Diagrama 5: Ejercicio 5.

6. Escribir un programa que calcule el perímetro y área de un rectángulo.

PSEUDOCÓDIGO

```
Algoritmo rectangulo
       Definir ALT, LAR, PER, ARE Como Real
3
       Escribir "Alto: "
4
       Leer ALT
5
       Escribir "Largo: "
6
       Leer LAR
7
       Si ALT>0 y LAR>0 Entonces
8
            PER \leftarrow 2*ALT + 2*LAR
            ARE ← ALT*LAR
9
10
            Escribir "Perimetro: " PER
            Escribir "Area: " ARE
11
       SiNo
12
13
            Escribir "ERROR: Ingresa un valor positivo"
14
       FinSi
15 | FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

т		Men	noria		Omanación	Salida
L	ALT	LAR	PER	ARE	Operación	Sanda
2	REAL	REAL	REAL	REAL	Definir variables	
3						Alto:
4	12					
5						Largo:
6		16				
7					$ALT > 0 \land LAR > 0 \Rightarrow V$	
8			56		$PER = 2 \cdot ALT + 2 \cdot LAR$	
9				192	$ARE = ALT \cdot LAR$	
10						Perímetro: 56
11						Área: 192

Tabla 11: Valores positivos.

SEGUNDA CORRIDA: Valores negativos.

Т		Men	noria		Operación	Salida
L	ALT	LAR	PER	ARE		Sanda
2	REAL	REAL	REAL	REAL	Definir variables	
3						Alto:
4	-22					
5						Largo:
6		-10				
7					$ALT > 0 \land LAR > 0 \Rightarrow F$	
13						ERROR: Ingresa un valor
13						positivo

Tabla 12: Valores negativos.

Diagrama 6: Ejercicio 6.

7. Escribir un programa que lea de teclado la marca y modelo de un auto e imprima en pantalla el modelo y la marca (orden inverso a lo que se lee, invirtiendo el valor de las variables)

PSEUDOCÓDIGO

```
Algoritmo modelo_marca
Definir MAR,MODE Como Caracter
Escribir "Marca del auto:"
Leer MAR
Escribir "Modelo del auto:"
Leer MODE
Escribir MODE ", " MAR
FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Primer auto.

T	Mer	noria	Onemaién	Salida
L	MAR	MODE	Operación	
2	CAR	CAR	Definir variables	
3				Marca del auto:
4	Honda			
5				Modelo del auto:
6		AX50		
7				AX50, Honda

Tabla 13: Honda.

SEGUNDA CORRIDA: Segundo auto.

Ţ	Mer	noria	Oparación	Salida
L	MAR	MODE	Operación	
2	CAR	CAR	Definir variables	
3				Marca del auto:
4	Tesla			
5				Modelo del auto:
6		S		
7				S, Tesla

Tabla 14: Tesla.

Diagrama 7: Ejercicio 7.

8. Escribir un programa que calcule la hipotenusa de un triángulo rectángulo.

PSEUDOCÓDIGO

```
Algoritmo hipotenusa
       Definir CAT1, CAT2, HIP Como Real
       Escribir 'Medida del primer cateto:'
       Leer CAT1
       Escribir 'Medida del segundo cateto:'
       Leer CAT2
6
7
       Si CAT1>=0 y CAT2>=0 Entonces
            HIP <- rc(CAT1^2+CAT2^2)</pre>
8
            Escribir 'Hipotenusa: ',HIP
9
10
       SiNo
11
            Escribir "ERROR: Ingresa un valor positivo"
       FinSi
12
13 | FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

L	Memoria			Onorgaión	Salida
L	CAT1	CAT2	HIP	Operación	Sanua
2	REAL	REAL	REAL	Definir variables	
3					Medida del primer cateto:
4	5				
5					Medida del segundo cateto:
6		12			
7				$CAT1 \ge 0 \land CAT2 \ge 0 \Rightarrow V$	
8			13	$HIP = \sqrt{(5)^2 + (12)^2}$	
9					Hipotenusa: 13

Tabla 15: Valores positivos.

SEGUNDA CORRIDA: Valores negativos.

T	Memoria			Omanasián	Salida
L	CAT1	CAT2	HIP	Operación	Sanda
2	REAL	REAL	REAL	Definir variables	
3					Medida del primer cateto:
4	-32				
5					Medida del segundo cateto:
6		-23			
7				$CAT1 \ge 0 \land CAT2 \ge 0 \Rightarrow F$	
11					ERROR: Ingresa un valor positivo

Tabla 16: Valores negativos

Diagrama 8: Ejercicio 8.

9. Escribir un programa que calcula el porcentaje de una cantidad dada por el usuario.

PSEUDOCÓDIGO

```
Algoritmo porcentaje

Definir NUM,PTJ,RES Como Real

Escribir "Numero a extraer porcentaje:"

Leer NUM

Escribir "Porcentaje a extraer:"

Leer PTJ

RES <- NUM*PTJ/100

Escribir "El " PTJ "% de " NUM " es: " RES

FinAlgoritmo
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: Valores positivos.

T	Memoria			Omorooión	Calida
L	NUM	PTJ	RES	Operación	Salida
2	REAL	REAL	REAL	Definir variables	
3					Numero a extraer porcentaje:
4	500				
5					Medida del segundo cateto:
6		40			
7			200	$RES = NUM \cdot \frac{PTJ}{100}$	
8					El 40% de 500 es: 200

Tabla 17: Valores positivos.

SEGUNDA CORRIDA: Valores positivos decimales.

т	Memoria			Omorogión	Calido
L	NUM	PTJ	RES	Operación	Salida
2	REAL	REAL	REAL	Definir variables	
3					Numero a extraer porcentaje:
4	132.31				
5					Medida del segundo cateto:
6		31.11			
7			41.16	$RES = NUM \cdot \frac{PTJ}{100}$	
8					El 31.11% de 132.31 es: 41.16

Tabla 18: Valores positivos decimales

Diagrama 9: Ejercicio 9.

10. Elabore SOLO la prueba de escritorio del siguiente algoritmo e indique lo que hace el algoritmo.

```
Dado: n = 3 \text{ y } n = 8
```

```
Inicio
       Escribir("Introduce un numero:")
2
       Leer(n)
       Suma ← 0
5
       Mientras (n Mod 2 = 0) Hacer
6
           Suma ← suma+n
7
           Escribir("Introduce un numero:")
8
           Leer(n)
9
       FinMientras
       Escribir ("El resultado es = ", suma)
10
11 Fin
```

PRUEBAS DE ESCRITORIO

PRIMERA CORRIDA: n = 3

T	Mei	moria	Omorogión	Calida
L	n	suma	Operación	Salida
2				Introduce un número:
3	3			
4		0		
5			$3 \bmod 2 = 0 \Rightarrow F$	
10				El resultado es $= 0$

Tabla 19: n=3.

SEGUNDACORRIDA: n = 8

Ţ	Memoria		Oporogión	Salida
L	n	suma	Operación	Sanda
2				Introduce un número:
3	8			
4		0		
5			$8 \bmod 2 = 0 \Rightarrow V$	
6		8	suma = 0 + 8	
7				Introduce un número:
8		6		
_	Mei	moria		G 11.1
L	n	suma	Operación	Salida
5			$6 \bmod 2 = 0 \Rightarrow V$	
6		14	suma = 8 + 6	
7				Introduce un número:
8		10		
_	Memoria		0 '/	g 11.1
L	n	suma	Operación	Salida
5			$10 \bmod 2 = 0 \Rightarrow V$	
6		24	suma = 10 + 14	
7				Introduce un número:
8		7		
Memoria		moria	0 1/	9.11.1
L	n	suma	Operación	Salida
5			$7 \bmod 2 = 0 \Rightarrow F$	
10				El resultado es = 24

Tabla 20: n=8

¿Qué hace el algoritmo?

Cuando es introducido un numero par es registrado en la variable "suma", la cual, sumara todos los números pares sucesivos de manera cíclica, por otro lado, para dejar de sumar los números pares, basta con introducir un numero impar.