Optimisation-RO

Clément Royer

Certificat Chef de Projet IA - Université Paris Dauphine-PSL

15 novembre 2021

Certificat IA

Clément Royer

- Maître de conférences @ Dauphine-PSL;
- Chercheur permanent @ LAMSADE;
- Chaire tremplin en optimisation @ PRAIRIE;
- Ingénieur @ ENSEEIHT;
- Docteur @ Université de Toulouse.

https://github.com/clementwroyer/opt-ro-psl

- Transparents de cours;
- Notebooks Python.

Déroulé de la formation

- Lundi 15/11 matin+après-midi (C. Royer) : Optimisation douce et optimisation convexe;
- Mardi 16/11 après-midi+Jeudi 18/11 matin (P. Ablin): Méthodes stochastiques à grande échelle;
- Jeudi 18/11 après-midi (C. Royer) : Optimisation sans dérivées.

Pour la séance de ce matin

- Introduction
- 2 Concepts de base en optimisation
- Optimisation sans contraintes

Table des matières

- Introduction
- Concepts de base en optimisation
- 3 Optimisation sans contraintes

Ce dont tout le monde parle

- Sciences des données (data science);
- Analyse de données (data analysis);
- Fouille de données (data mining);
- Apprentissage machine/profond (machine/learning);
- Intelligence artificielle (IA);
- Big Data;
- ...

Terminologie

Ce dont tout le monde parle

- Sciences des données (data science);
- Analyse de données (data analysis);
- Fouille de données (data mining);
- Apprentissage machine/profond (machine/learning);
- Intelligence artificielle (IA);
- Big Data;
- ...

Ce dont nous allons parler

- Optimisation pour la science des données en général...
- ...et pour l'IA en particulier (ou vice-versa).

Ce que sera l'IA pour nous

Un ensemble de problèmes basés sur des données

- Extraction d'information à partir de la donnée : statistiques, attributs principaux, structures;
- Utilisation de cette information pour la prédiction du comportement de données futures.

Ce que sera l'IA pour nous

Un ensemble de problèmes basés sur des données

- Extraction d'information à partir de la donnée : statistiques, attributs principaux, structures;
- Utilisation de cette information pour la prédiction du comportement de données futures.

Composantes de l'IA/de la science des données

- Statistiques;
- Informatique (gestion de la donnée, calcul parallèle, etc);
- Optimisation pour la modélisation des problèmes et leur résolution par des algorithmes.

Optimisation et apprentissage

 $Source: https://blogs.sas.com/content/subconsciousmusings/2017/04/12/\ machine-learning-algorithm-use/subconsciousmusings/2017/04/12/\ machine-learning-algorithm-use/subconsciousmusings/20$

Changement de paradigme

Optimisation numérique

- Montée en puissance en 1970-1980;
- Succès des algorithmes en ingénierie (chimique, aéronautique, etc).
- Pratique standard en calcul scientifique: utiliser une méthode de points intérieurs (basée sur Newton, développée dans les années 2000s).

Optimisation pour l'IA

- Problèmes basés sur de grands volumes de données;
- Les méthodes standard en optimisation ne sont pas les plus efficaces!

Pratique classique en IA: Utiliser une approche de gradient stochastique avec momentum (1950s + article théorique de 1983).

Les changements

Contexte de données massives/Big Data

- Les calculs usuels (fonction, dérivées) sont très coûteux car ils accèdent à toute la donnée.
- La précision souhaitée n'est pas forcément très grande en raison du bruit sur les données.

10

Les changements

Contexte de données massives/Big Data

- Les calculs usuels (fonction, dérivées) sont très coûteux car ils accèdent à toute la donnée.
- La précision souhaitée n'est pas forcément très grande en raison du bruit sur les données.

Communauté de l'IA

- Le problème d'optimisation est souvent un moyen plus qu'une fin;
- Propriétés statistiques des solutions;
- Théorie et pratique différentes de la communauté d'optimisation "classique".

Table des matières

- Introduction
 - Un example : classification binaire
- 2 Concepts de base en optimisation
- Optimisation sans contraintes

Problème d'apprentissage statistique

Point de départ : Jeu de de données $\{(x_1, y_1), \dots, (x_n, y_n)\}$.

- **x**_i vecteur d'attributs à *d* coordonnées;
- y_i label binaire égal à 1 ou -1.

Problème d'apprentissage statistique

Point de départ : Jeu de de données $\{(x_1, y_1), \dots, (x_n, y_n)\}$.

- x_i vecteur d'attributs à d coordonnées;
- y_i label binaire égal à 1 ou -1.

Exemple : classification de documents

Soit un dictionnaire de d mots.

• **x**_i représente les mots contenus dans le document i:

$$[\mathbf{x}_i]_j = \left\{ egin{array}{ll} 1 & ext{si le mot } j ext{ est dans le document } i, \\ 0 & ext{sinon}. \end{array}
ight.$$

• y_i égal à +1 si le document traite de l'automobile, à -1 sinon.

Différentes solutions

Source: S. J. Wright, Optimization Algorithms for Data Analysis, 2018.

- Points : \mathbf{x}_i , rouges/bleus : $y_i = 1/y_i = -1$;
- Nuages rouges/bleus : distribution des documents;
- Deux techniques de classification linéaires;
- Figure de droite : solution à marge maximale (SVM).

Deux points de vue sur le problème

Optimiseur

- Le problème peut être modélisé comme un programme quadratique convexe, et résolu de manière efficace;
- Potentiellement plusieurs solutions.

Deux points de vue sur le problème

Optimiseur

- Le problème peut être modélisé comme un programme quadratique convexe, et résolu de manière efficace;
- Potentiellement plusieurs solutions.

Applicatif

- Le modèle doit s'appliquer à tous les documents de la distribution ⇒ généralisation;
- Mieux d'avoir une unique solution bien définie, qui ne varie pas trop par rapport aux données.

Deux points de vue sur le problème

Optimiseur

- Le problème peut être modélisé comme un programme quadratique convexe, et résolu de manière efficace;
- Potentiellement plusieurs solutions.

Applicatif

- Le modèle doit s'appliquer à tous les documents de la distribution ⇒ généralisation;
- Mieux d'avoir une unique solution bien définie, qui ne varie pas trop par rapport aux données.

Après discussion (data scientist?)

- Prise en compte de certaines problématiques dans la formulation du problème

 Solution unique avec meilleure généralisation.
- Plus de connaissances sur le problème ⇒ Meilleure optimisation.

Bilan de l'exemple

- Possible de définir des problèmes d'optimisation basés sur des données et de les résoudre efficacement;
- Potentiellement décorrélé du but originel : trouver un modèle sur la distribution des données.

15

- Possible de définir des problèmes d'optimisation basés sur des données et de les résoudre efficacement;
- Potentiellement décorrélé du but originel : trouver un modèle sur la distribution des données.

Autres problématiques

- Quantité massive d'attributs (tous les mots du dictionnaire) ?
- Quantité massive de données (articles Wikipedia)?
- Classification impossible par modèles linéaires ?

- Possible de définir des problèmes d'optimisation basés sur des données et de les résoudre efficacement;
- Potentiellement décorrélé du but originel : trouver un modèle sur la distribution des données.

Autres problématiques

- Quantité massive d'attributs (tous les mots du dictionnaire) ? Réduction de dimension, recherche de parcimonie.
- Quantité massive de données (articles Wikipedia)?
 Algorithmes stochastiques.
- Classification impossible par modèles linéaires ?
 Optimisation non linéaire.

Objectifs du cours

- Fournir une boîte à outils moderne en optimisation;
- En lien avec la pratique courante en IA et sciences des données.

Procédure

- Présenter des problématiques et des algorithmes associés;
- De la théorie (mais pas tout);
- Des applications via des notebook Python.

Table des matières

- Introduction
- Concepts de base en optimisation
 - Notations et rappels d'analyse
 - Un problème d'optimisation
 - Algorithmes d'optimisation
- Optimisation sans contraintes

Table des matières

- Introduction
- 2 Concepts de base en optimisation
 - Notations et rappels d'analyse
 - Un problème d'optimisation
 - Algorithmes d'optimisation
- Optimisation sans contraintes

Cadre restreint

- Optimisation sur des variables réelles;
- En dimension finie;
- On utilisera la structure d'espace classique.

Mes notations pour aujourd'hui

- Scalaires : *a*, *b*, *c*, . . .
- Vecteurs : **a**, **b**, **c**, . . .
- Matrices : **A**, **B**, **C**, . . .
- Ensembles : A, B, C, \dots

Algèbre linéaire

- \mathbb{R}^d : ensemble des vecteurs à $d \geq 1$ coordonnées réelles;
- Pour tous $\mathbf{w} \in \mathbb{R}^d$ et $i \in \{1, ..., d\}$, $w_i \in \mathbb{R}$ est la i-ème coordonnée de $\mathbf{w} : \mathbf{w} = [w_i]_{1 \le i \le d}$;
- ullet On représente $oldsymbol{w} \in \mathbb{R}^d$ en colonnes : $oldsymbol{w} = \left[egin{array}{c} w_1 \ dots \ w_d \end{array}
 ight];$
- On utilise des vecteurs lignes comme "transposés" de vecteurs colonnes : $\mathbf{w}^{\mathrm{T}} := [w_1 \cdots w_d];$

20

Algèbre linéaire

- \mathbb{R}^d : ensemble des vecteurs à $d \geq 1$ coordonnées réelles;
- Pour tous $\mathbf{w} \in \mathbb{R}^d$ et $i \in \{1, ..., d\}$, $w_i \in \mathbb{R}$ est la i-ème coordonnée de $\mathbf{w} : \mathbf{w} = [w_i]_{1 \le i \le d}$;
- ullet On représente $oldsymbol{w} \in \mathbb{R}^d$ en colonnes : $oldsymbol{w} = \left[egin{array}{c} w_1 \\ \vdots \\ w_d \end{array}
 ight];$
- On utilise des vecteurs lignes comme "transposés" de vecteurs colonnes : $\mathbf{w}^{\mathrm{T}} := [w_1 \cdots w_d];$

Opérations vectorielles

- Addition dans \mathbb{R}^d : $\mathbf{w} + \mathbf{z} := [w_i + z_i]_{1 \leq i \leq d}$;
- Multiplication d'un vecteur de \mathbb{R}^d par un réel : $\lambda \mathbf{w} := [\lambda w_i]_{1 \leq i \leq d}$

Algèbre linéaire (2)

Norme euclidienne sur \mathbb{R}^d

La norme euclidienne (ou norme ℓ_2) d'un vecteur ${m w} \in \mathbb{R}^d$ est donnée par

$$\|\mathbf{w}\| := \sqrt{\sum_{i=1}^d w_i^2}.$$

Produit scalaire sur \mathbb{R}^d

Pour tous $\boldsymbol{w}, \boldsymbol{z} \in \mathbb{R}^d$, défini par

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{z} := \sum_{i=1}^{d} w_i \, z_i.$$

On a ainsi $\mathbf{w}^{\mathrm{T}}\mathbf{z} = \mathbf{z}^{\mathrm{T}}\mathbf{w}$ et $\mathbf{w}^{\mathrm{T}}\mathbf{w} = \|\mathbf{w}\|^{2}$.

21

Algèbre linéaire (3)

Matrices

- $\mathbb{R}^{n \times d}$: matrices à *n* lignes et *d* colonnes;
- $\mathbb{R}^{d \times 1} \simeq \mathbb{R}^d$.

Matrice transposée

Soit $\mathbf{A} = [\mathbf{A}_{ij}] \in \mathbb{R}^{n \times d}$. La matrice transposée de \mathbf{A} , notée \mathbf{A}^{T} , est la matrice à d lignes et n colonnes telle que

$$\forall i = 1, \ldots, n, \ \forall j = 1, \ldots, d, \qquad \left[\mathbf{A}^{\mathrm{T}} \right]_{ii} = \mathbf{A}_{ji}.$$

Algèbre linéaire (3)

Matrices

- $\mathbb{R}^{n \times d}$: matrices à *n* lignes et *d* colonnes;
- \bullet $\mathbb{R}^{d\times 1} \simeq \mathbb{R}^d$.

Matrice transposée

Soit $\mathbf{A} = [\mathbf{A}_{ij}] \in \mathbb{R}^{n \times d}$. La matrice transposée de \mathbf{A} , notée \mathbf{A}^{T} , est la matrice à d lignes et n colonnes telle que

$$\forall i = 1, \ldots, n, \ \forall j = 1, \ldots, d, \qquad \left[\mathbf{A}^{\mathrm{T}} \right]_{ii} = \mathbf{A}_{ji}.$$

Matrices carrées

- $\mathbf{A}^{\mathrm{T}} \in \mathbb{R}^{d \times d}$;
- **A** est dite symétrique si $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$.

Algèbre linéaire (4)

Inversion de matrice

Une matrice $\mathbf{A} \in \mathbb{R}^{d \times d}$ est dite *inversible* s'il existe $\mathbf{B} \in \mathbb{R}^{d \times d}$ telle que $\mathbf{B} \mathbf{A} = \mathbf{A} \mathbf{B} = \mathbf{I}_d$, avec \mathbf{I}_d matrice identité de $\mathbb{R}^{d \times d}$.

Dans ce cas, \boldsymbol{B} est l'unique matrice vérifiant cette propriété : on l'appelle l'inverse de la matrice \boldsymbol{A} et on la note \boldsymbol{A}^{-1} .

Caractère (semi)-défini positif

Une matrice $\mathbf{A} \in \mathbb{R}^{d \times d}$ est dite semi-définie positive si

$$\forall \mathbf{v} \in \mathbb{R}^d, \quad \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \geq 0.$$

Elle est définie positive lorsque $\mathbf{v}^{\mathrm{T}}\mathbf{A}\mathbf{v} > 0$ pour tout vecteur \mathbf{v} non nul.

Algèbre linéaire (5)

Valeurs propres et vecteur propres

Soit $\mathbf{A} \in \mathbb{R}^{d \times d}$. Un réel $\lambda \in \mathbb{R}$ est une valeur propre de \mathbf{A} si

$$\exists \mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\| \neq 0, \qquad \mathbf{A}\mathbf{v} = \lambda \mathbf{v}.$$

Le vecteur \mathbf{v} s'appelle alors un vecteur propre de \mathbf{A} (associé à λ).

Algèbre linéaire (5)

Valeurs propres et vecteur propres

Soit $\mathbf{A} \in \mathbb{R}^{d \times d}$. Un réel $\lambda \in \mathbb{R}$ est une valeur propre de \mathbf{A} si

$$\exists \mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\| \neq 0, \qquad \mathbf{A}\mathbf{v} = \lambda \mathbf{v}.$$

Le vecteur \mathbf{v} s'appelle alors un vecteur propre de \mathbf{A} (associé à λ).

Une matrice symétrique de $\mathbb{R}^{d \times d}$ possède d valeurs propres réelles. Étant données deux matrices symétriques $(\boldsymbol{A}, \boldsymbol{B}) \in \mathbb{R}^{d \times d}$, on utilisera les notations suivantes :

- $\lambda_{\min}(\mathbf{A})/\lambda_{\max}(\mathbf{A})$: plus petite/plus grande valeur propre de \mathbf{A} ;
- $\boldsymbol{A} \stackrel{"}{\succeq} \boldsymbol{B} \Leftrightarrow \lambda_{\min}(\boldsymbol{A}) \geq \lambda_{\max}(\boldsymbol{B});$
- $\mathbf{A} \stackrel{n}{\succ} \mathbf{B} \Leftrightarrow \lambda_{\min}(\mathbf{A}) > \lambda_{\max}(\mathbf{B}).$

Avec ces notations \boldsymbol{A} sera semi-définie positive (resp. définie positive) si et seulement si $\boldsymbol{A} \succeq 0$ (resp. $\boldsymbol{A} \succ 0$).

Calcul différentiel (2)

On considère une fonction lisse (ou douce, ou *smooth*) $f : \mathbb{R}^d \to \mathbb{R}$.

Calcul différentiel (2)

On considère une fonction lisse (ou douce, ou *smooth*) $f : \mathbb{R}^d \to \mathbb{R}$.

Dérivée à l'ordre 1

Si f est continûment dérivable sur \mathbb{R}^d , on définit pour tout $\mathbf{w} \in \mathbb{R}^d$ le gradient de f en \mathbf{w} par

$$\nabla f(\mathbf{w}) := \left[\frac{\partial f}{\partial w_i}(\mathbf{w})\right]_{1 \leq i \leq d} \in \mathbb{R}^d.$$

L'ensemble des fonctions continûment dérivables est noté $\mathcal{C}^1 \stackrel{n}{=} \mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$. On parle de fonction de classe \mathcal{C}^1 .

Calcul différentiel (2)

On considère une fonction lisse (ou douce, ou *smooth*) $f : \mathbb{R}^d \to \mathbb{R}^m$.

Matrice jacobienne

 $f: \mathbb{R}^d \to \mathbb{R}^m$ est dérivable en $\mathbf{w} \in \mathbb{R}^d$ si il existe une matrice $\mathbf{J}_f(\mathbf{x}) \in \mathbb{R}^{m \times d}$ telle que

$$\lim_{\substack{\substack{z \to w \\ z \neq w}}} \frac{\|f(z) - f(w) - J_f(w)(z - w)\|}{\|z - w\|} = 0.$$

 $J_f(w)$ s'appelle la (matrice) jacobienne de f en w.

Cas particuliers

- m=1: la jacobienne se ramène à un vecteur $\nabla f(\mathbf{x}) \equiv \mathbf{J}_f(\mathbf{x})^{\mathrm{T}}$, que l'on appelle le vecteur gradient;
- n = m = 1: la jacobienne est équivalente à un scalaire $f'(w)J_f(w)$, que l'on appelle la dérivée de f en w.

Calcul différentiel (3)

On considère une fonction lisse (ou douce, ou *smooth*) $f : \mathbb{R}^d \to \mathbb{R}$.

Calcul différentiel (3)

On considère une fonction lisse (ou douce, ou *smooth*) $f : \mathbb{R}^d \to \mathbb{R}$.

Dérivée d'ordre 2

Si f est deux fois continûment dérivable sur \mathbb{R}^d , on définit pour tout $\mathbf{w} \in \mathbb{R}^d$ la matrice hessienne de f en \mathbf{w} par

$$abla^2 f(\mathbf{w}) := \left[\frac{\partial^2 f}{\partial w_i \partial w_j}(\mathbf{w}) \right]_{1 \leq i,j \leq d} \in \mathbb{R}^{d \times d}.$$

Cette matrice est symétrique.

L'ensemble des fonctions deux fois continûment dérivables est noté C^2 (on dira que f est de classe C^2 .

Calcul différentiel (4)

Développement de Taylor à l'ordre 1

Si $f \in \mathcal{C}^1$, pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$.

$$f(\mathbf{w} + \mathbf{h}) = f(\mathbf{w}) + \int_0^1 \nabla f(\mathbf{w} + \mathbf{t} \, \mathbf{h})^{\mathrm{T}} \mathbf{h} \, d\mathbf{t}.$$

28

Calcul différentiel (4)

Développement de Taylor à l'ordre 1

Si $f \in \mathcal{C}^1$, pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) = f(\mathbf{w}) + \int_0^1 \nabla f(\mathbf{w} + \mathbf{t} \, \mathbf{h})^{\mathrm{T}} \mathbf{h} \, d\mathbf{t}.$$

Développement de Taylor à l'ordre 2

Si $f \in \mathcal{C}^2$, pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) = f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{1}{2} \int_{0}^{1} \mathbf{h}^{\mathrm{T}} \nabla^{2} f(\mathbf{w} + t \mathbf{h}) \mathbf{h} dt.$$

Continuité de Lipschitz

Définition

Une fonction $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^m$ est dite *L*-lipschitzienne si il existe L > 0 telle que

$$\forall (\boldsymbol{w}, \boldsymbol{z}) \in (\mathbb{R}^d)^2, \quad \|g(\boldsymbol{w}) - g(\boldsymbol{z})\| \leq L \|\boldsymbol{w} - \boldsymbol{z}\|.$$

La valeur L s'appelle une constante de Lipschitz pour g.

- Ex) Toute fonction linéaire est Lipschitzienne;
- $\mathcal{C}_L^{1,1}$: sous-ensemble de \mathcal{C}^1 des fonctions avec dérivée première L-lipschitzienne;
- $\mathcal{C}_L^{2,2}$: sous-ensemble de \mathcal{C}^2 des fonctions avec dérivée seconde L-lipschitzienne;

Caractère lipschitzien et approximations

Approximation de Taylor à l'ordre 1

Soit $f \in \mathcal{C}_L^{1,1}$. Pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \le f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

30

Caractère lipschitzien et approximations

Approximation de Taylor à l'ordre 1

Soit $f \in \mathcal{C}_L^{1,1}$. Pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \le f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

⇒ Une des inégalités majeures en optimisation non linéaire.

30

Caractère lipschitzien et approximations

Approximation de Taylor à l'ordre 1

Soit $f \in \mathcal{C}^{1,1}_{l}$. Pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^{d}$,

$$f(\mathbf{w} + \mathbf{h}) \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

⇒ Une des inégalités majeures en optimisation non linéaire.

Approximation de Taylor à l'ordre 2

Soit $f \in \mathcal{C}_L^{2,2}$. Pour tous $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \le f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathrm{T}} \nabla^2 f(\mathbf{w}) \mathbf{h} + \frac{L}{6} ||\mathbf{h}||^3,$$

- De nombreuses notes de cours disponibles;
- Annexes de nombreux ouvrages d'optimisation (voire d'IA)!

Mes recommandations

- En français : https://www.lpsm.paris/pageperso/bolley/poly-cdiff.pdf https://www.lpsm.paris/pageperso/bolley/poly-algebre3.pdf
- En anglais : http://vmls-book.stanford.edu/vmls.pdf (Chapters 1-3) https://sebastianraschka.com/pdf/books/dlb/appendix d calculus.pdf.

31

Table des matières

- Introduction
- Concepts de base en optimisation
 - Notations et rappels d'analyse
 - Un problème d'optimisation
 - Algorithmes d'optimisation
- Optimisation sans contraintes

Optimisation ?

- Recherche opérationnelle;
- Prise de décision;
- Sciences de la décision;
- Programmation mathématique;
- Optimisation mathématique.
- ⇒ Tous ces concepts peuvent correspondre à de l'optimisation.

33

Optimisation ?

- Recherche opérationnelle;
- Prise de décision;
- Sciences de la décision;
- Programmation mathématique;
- Optimisation mathématique.
- ⇒ Tous ces concepts peuvent correspondre à de l'optimisation.

Ma définition

Le but de l'optimisation est de prendre la meilleure décision parmi un ensemble de possibilités.

Formulation d'un problème d'optimisation

Un problème de minimisation sur d paramètres réels s'écrit sous la forme :

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} f(\boldsymbol{w}) \quad \mathsf{s. c. } \boldsymbol{w} \in \mathcal{F}$$

Formulation d'un problème d'optimisation

Un problème de minimisation sur d paramètres réels s'écrit sous la forme :

- w representé les variables de décision;
- d est la dimension du problème (on prendra toujours $d \ge 1$);
- $f(\cdot)$ est la fonction objectif/de coût/de perte;
- $m{\mathcal{F}}$ est l'ensemble réalisable/admissible regroupant les contraintes sur les variables de décision.

Formulation d'un problème d'optimisation

Un problème de minimisation sur d paramètres réels s'écrit sous la forme :

- w representé les variables de décision;
- d est la dimension du problème (on prendra toujours $d \ge 1$);
- $f(\cdot)$ est la fonction objectif/de coût/de perte;
- $m{\mathcal{F}}$ est l'ensemble réalisable/admissible regroupant les contraintes sur les variables de décision.

Maximiser f revient à minimiser -f.

Minimum local

- Un point \mathbf{w}^* est un minimum local du problème s'il existe un voisinage \mathcal{N} de \mathbf{w}^* sur lequel $f(\mathbf{w}^*) \leq f(\mathbf{w}) \ \forall \mathbf{w} \in \mathcal{N} \cap \mathcal{F}$;
- Cas sans contraintes : il existe $\epsilon > 0$, $f(\mathbf{w}^*) < f(\mathbf{w}) \ \forall \mathbf{w}, \|\mathbf{w} \mathbf{w}^*\| \le \epsilon$.

Minimum global

Un point \mathbf{w}^* est un minimum global du problème si $f(\mathbf{w}^*) \leq f(\mathbf{w}) \ \forall \mathbf{w} \in \mathcal{F}$.

Solutions locales et globales (2)

- Trouver des minima globaux est difficile en général;
- Trouver et certifier des minima locaux peut aussi être difficile.

Solutions locales et globales (2)

- Trouver des minima globaux est difficile en général;
- Trouver et certifier des minima locaux peut aussi être difficile.

Cas "faciles"

- Bonnes propriétés de la fonction objectif;
- Bonne géométrie de l'ensemble des contraintes, le cas échéant.
- ⇒ L'optimisation douce conduit à certains cas faciles.

Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe C^1 .

37

Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe \mathcal{C}^1 .

Condition nécessaire à l'ordre 1

Si w* est un minimum local du problème, alors

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

Conditions d'optimalité en optimisation douce

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe C^1 .

Condition nécessaire à l'ordre 1

Si w^* est un minimum local du problème, alors

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

- Cette condition est seulement nécessaire:
- Un point tel que $\|\nabla f(\mathbf{w}^*)\| = 0$ peut aussi être un maximum local ou un point selle.

Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe C^2 .

38

Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe C^2 .

Condition nécessaire à l'ordre 2

Si w* est un minimum local du problème, alors

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 et $\nabla^2 f(\mathbf{w}^*) \succeq 0$.

Conditions d'optimalité en optimisation douce (2)

Problème sans contraintes minimiser_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w})$, f de classe C^2 .

Condition nécessaire à l'ordre 2

Si w^* est un minimum local du problème, alors

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 et $\nabla^2 f(\mathbf{w}^*) \succeq 0$.

Condition suffisante à l'ordre 2

Si w* vérifie

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 and $\nabla^2 f(\mathbf{w}^*) \succ 0$,

alors c'est un minimum local du problème.

Table des matières

- Introduction
- Concepts de base en optimisation
 - Notations et rappels d'analyse
 - Un problème d'optimisation
 - Algorithmes d'optimisation
- Optimisation sans contraintes

Trois approches en optimisation

- Mathématique : Prouver l'existence de solutions, le côté bien posé d'une formulation souvent complexe.
- Logicielle : Programmer un algorithme pour résoudre une classe de problèmes en pratique.
- Numérique : Élaborer des algorithmes, établir des garanties théoriques et valider leur implémentation.

Trois approches en optimisation

- Mathématique : Prouver l'existence de solutions, le côté bien posé d'une formulation souvent complexe.
- Logicielle : Programmer un algorithme pour résoudre une classe de problèmes en pratique.
- Numérique : Élaborer des algorithmes, établir des garanties théoriques et valider leur implémentation.

On traitera essentiellement de la dernière catégorie.

Comment résoudre un problème d'optimisation douce ?

Approche idéale

- Trouver les solutions de $\|\nabla f(\mathbf{w})\| = 0$;
- Prendre celle avec la plus faible valeur à l'objectif.

Comment résoudre un problème d'optimisation douce ?

Approche idéale

- Trouver les solutions de $\|\nabla f(\mathbf{w})\| = 0$;
- Prendre celle avec la plus faible valeur à l'objectif.

<u>Problème</u>

- Résoudre l'équation n'est pas trivial;
- Il peut y avoir une infinité de solutions;
- L'implémentation de cette procédure doit être possible.

Comment procéder

De manière itérative

- Idée de base : étant donné un point courant, se déplacer vers un point potentiellement meilleur;
- Une itération représente l'ensemble des calculs nécessaires pour ce déplacement.

Notre but dans le reste du cours

- Proposer des algorithmes;
- Décrire leurs garanties théoriques;
- Vérifier leur intérêt pratique (notebooks).

Quelles garanties

Pour résoudre minimiser $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, l'algorithme devrait satisfaire les propriétés suivantes :

- Les points calculés tendent vers une solution;
- Les valeurs de l'objectif tendent vers la valeur optimale;
- Une condition d'optimalité est satisfaite à la limite.

Quelles garanties

Pour résoudre minimiser $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, l'algorithme devrait satisfaire les propriétés suivantes :

- Les points calculés tendent vers une solution;
- Les valeurs de l'objectif tendent vers la valeur optimale;
- Une condition d'optimalité est satisfaite à la limite.

Convergence des itérés

L'algorithme génère une suite $\{\boldsymbol{w}_k\}_k$ telle que

$$\|\boldsymbol{w}_k - \boldsymbol{w}^*\| \to 0$$
 lorsque $k \to \infty$,

où $\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w})$ est une solution globale du problème.

Convergence en valeur de fonction

$$f(\mathbf{w}_k) \to f^*$$
 lorsque $k \to \infty$,

où
$$f^* = \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$$
.

Quelles garanties (2)

Convergence en valeur de fonction

$$f(\mathbf{w}_k) \to f^*$$
 lorsque $k \to \infty$,

où
$$f^* = \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$$
.

Convergence vers un point stationnaire d'ordre 1

$$\|\nabla f(\mathbf{w}_k)\| \to 0$$
 lorsque $k \to \infty$.

Condition plus générale.

Pourquoi ces conditions?

Pratique \neq théorie :

- Solution optimale inconnue;
- Valeur à l'optimum inconnue.

Pourquoi ces conditions?

Pratique \neq théorie :

- Solution optimale inconnue;
- Valeur à l'optimum inconnue.

Du point de vue algorithmique, on peut observer:

- le comportement des itérés;
- le comportement des valeurs de la fonction objectif;
- le comportement de la norme du gradient.

Convergence et vitesses de convergence

• En optimisation, les résultats classiques sont asymptotiques

$$Ex: \|\nabla f(\mathbf{w}_k)\| \to 0 \text{ lorsque } k \to \infty.$$

Convergence et vitesses de convergence

En optimisation, les résultats classiques sont asymptotiques

$$Ex: \|\nabla f(\mathbf{w}_k)\| \to 0 \text{ lorsque } k \to \infty.$$

• Les vitesses de convergence sont de plus en plus à la mode

$$Ex: \|\nabla f(\boldsymbol{w}_k)\| = \mathcal{O}\left(\frac{1}{k}\right) \quad \Leftrightarrow \quad \exists C > 0, \|\nabla f(\boldsymbol{w}_k)\| \leq \frac{C}{k} \ \forall k.$$

tout comme la notion équivalente de complexité au pire cas:

$$Ex: Algorithm \ \mathcal{O}\left(\epsilon^{-1}\right) \Leftrightarrow \exists C > 0, \ \|\nabla f(\boldsymbol{w}_k)\| \leq \epsilon \ \text{quand} \ k \geq \frac{C}{\epsilon}.$$

- Garanties en temps/budget fini;
- Classiques en informatique théorique/statistiques.

Du côté machine

Langages typiques des optimiseurs

- C/C++/Fortran (calcul à hautes performances)
- Matlab, Python, Julia (interprétés).

Du côté machine

Langages typiques des optimiseurs

- C/C++/Fortran (calcul à hautes performances)
- Matlab, Python, Julia (interprétés).

Langages de modélisation

- GAMS, AMPL, CVX, Pyomo sont génériques;
- MATPOWER, PyTorch sont spécifiques à un domaine;
- La plupart peuvent être interfacés avec les langages ci-dessus.

Conclusions : concepts de base

Modélisation

- Objectif, variables et contraintes;
- Solutions locales et globales.

Conclusions : concepts de base

Modélisation

- Objectif, variables et contraintes;
- Solutions locales et globales.

Outils d'analyse

- Dérivées et développements de Taylor;
- Conditions d'optimalité.

Conclusions : concepts de base

Modélisation

- Objectif, variables et contraintes;
- Solutions locales et globales.

Outils d'analyse

- Dérivées et développements de Taylor;
- Conditions d'optimalité.

Principe algorithmique

- Processus itératifs : trouver une suite de points qui conduit à la solution;
- Étude de la vitesse de convergence.

Révisons! Bases de l'optimisation

- ① Comment s'écrit la condition d'optimalité à l'ordre 1 pour la minimisation d'une fonction de classe \mathcal{C}^1 ?
- **Q** Quel objet caractérise la dérivée à l'ordre 2 d'une fonction de classe \mathcal{C}^2 ?
- Quelle est la différence entre un minimum local et un minimum global ?

Table des matières

- Introduction
- Concepts de base en optimisation
- Optimisation sans contraintes
 - Moindres carrés linéaires
 - Méthode de descente de gradient

Problème

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, f(\boldsymbol{w}).$$

Hypothèses

- f minorée par f*;
- f douce/lisse ⇒ les dérivées de f peuvent être utilisées pour résoudre ce problème.

51

Deux classes de problèmes

Moindres carrés linéaires

- Reposent sur de l'algèbre linéaire;
- Caractérisation explicite des solutions possible;
- Application orientée données : Régression linéaire.

Optimisation douce sans contraintes

- Outil d'analyse : le gradient;
- But : Convergence itérative vers une solution;
- Application orientée données : Régression logistique.

Table des matières

- Introduction
- 2 Concepts de base en optimisation
- 3 Optimisation sans contraintes
 - Moindres carrés linéaires
 - Méthode de descente de gradient

Données

- Jeu de données à *n* éléments (individus, échantillons, etc);
- Chaque élément i est caractérisé par un vecteur $\mathbf{x}_i \in \mathbb{R}^d$ d'attributs ainsi qu'un label $y_i \in \mathbb{R}$.

$$\Rightarrow \mathsf{Matrice} \; \boldsymbol{X} = \left[\begin{array}{c} \boldsymbol{x}_1^{\mathrm{T}} \\ \vdots \\ \boldsymbol{x}_n^{\mathrm{T}} \end{array} \right] \; \in \; \mathbb{R}^{n \times d} \; \mathsf{et} \; \mathsf{vecteur} \; \boldsymbol{y} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right].$$

54

Données

- Jeu de données à *n* éléments (individus, échantillons, etc);
- Chaque élément i est caractérisé par un vecteur $\mathbf{x}_i \in \mathbb{R}^d$ d'attributs ainsi qu'un label $y_i \in \mathbb{R}$.

$$\Rightarrow \mathsf{Matrice} \; \boldsymbol{X} = \left[\begin{array}{c} \boldsymbol{x}_1^{\mathrm{T}} \\ \vdots \\ \boldsymbol{x}_n^{\mathrm{T}} \end{array} \right] \; \in \; \mathbb{R}^{n \times d} \; \mathsf{et} \; \mathsf{vecteur} \; \boldsymbol{y} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right].$$

But

On cherche un modèle linéaire $h: \mathbf{x} \mapsto \mathbf{x}^{\mathrm{T}} \mathbf{w}$ qui prédise correctement les y_i d'après les \mathbf{x}_i .

- Les modèles linéaires (dans le bon espace) sont souvent une bonne approximation;
- Utilisation d'algèbre linéaire (intérêt à la fois théorique et numérique).

Des modèles aux systèmes linéaires

Prédiction idéale

- Un vecteur $\mathbf{w} \in \mathbb{R}^d$ tel que $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = y_i$ pour tout i;
- Ces n equations peuvent s'écrire sous la forme d'un système linéaire: $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$.

Des modèles aux systèmes linéaires

Prédiction idéale

- Un vecteur $\mathbf{w} \in \mathbb{R}^d$ tel que $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = y_i$ pour tout i;
- Ces n equations peuvent s'écrire sous la forme d'un système linéaire: $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$.

Résoudre des systèmes d'équations linéaires

- Une histoire d'algèbre linéaire;
- L'existence de solutions ne dépend que de X et y.

Juste de l'algèbre linéaire ?

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n sont distincts (typique de mesures bruitées).

56

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n sont distincts (typique de mesures bruitées).

Expliquer les données par un modèle linéaire

- On cherche $\mathbf{w} = w \in \mathbb{R}$ tel que $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = x_i w = y_i \ \forall i$;
- Système linéaire :

$$\begin{cases}
w = y_1 \\
w = y_2 \\
\vdots \\
w = y_n
\end{cases}$$

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n sont distincts (typique de mesures bruitées).

Expliquer les données par un modèle linéaire

- On cherche $\mathbf{w} = w \in \mathbb{R}$ tel que $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = x_i w = y_i \ \forall i$;
- Système linéaire :

$$\begin{cases} w = y_1 \\ w = y_2 \\ \vdots \\ w = y_n \end{cases}$$

- Ce système n'a pas de solution !
- En revanche, il existe une solution au problème de "coller aux données" ("data fitting").

Formulation du problème

Étant donné $\{(x_i,y_i)\}_{1\leq i\leq n}$ avec $x_i\in\mathbb{R}^d$, on considère le problème d'optimisation :

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, \frac{1}{2} \, \| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \|^2 = \frac{1}{2} (\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y})^{\mathrm{T}} (\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y}),$$

avec
$$m{X} = \left[egin{array}{c} m{x}_1^{\mathrm{T}} \\ \vdots \\ m{x}_n^{\mathrm{T}} \end{array}
ight] \in \mathbb{R}^{n \times d} \ \mathrm{et} \ m{y} = \left[egin{array}{c} m{y}_1 \\ \vdots \\ m{y}_n \end{array}
ight] \in \mathbb{R}^n.$$

57

Formulation du problème

Étant donné $\{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq n}$ avec $\mathbf{x}_i \in \mathbb{R}^d$, on considère le problème d'optimisation :

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} \, \frac{1}{2} \, \| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \|^2 = \frac{1}{2} (\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y})^{\mathrm{T}} (\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y}),$$

avec
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_n^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{n \times d}$$
 et $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$.

Propriétés

- Problème sans contraintes;
- Fonction objectif minorée par 0;
- Objectif doux/lisse : polynomial en les coordonnées de w.

Résolution des moindres carrés linéaires

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, \frac{1}{2} \, \| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \|_2^2 \, .$$

58

Résolution des moindres carrés linéaires

$$\mathop{\mathsf{minimiser}}_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \left\| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \right\|_2^2.$$

• Si \mathbf{w}^* est une solution du système $\mathbf{X}\mathbf{w} = \mathbf{y}$, c'est aussi une solution du problème d'optimisation !

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, \frac{1}{2} \, \| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \|_2^2 \, .$$

- Si w^* est une solution du système Xw = y, c'est aussi une solution du problème d'optimisation !
- Quid du cas où le problème n'a pas de solution ?

Résolution de systèmes linéaires : cas agréable

Système carré

$$\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$$
, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ et $\boldsymbol{n} = \boldsymbol{d}$.

Cas 1 : **X** est inversible

$$\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y} \Leftrightarrow \boldsymbol{w} = \boldsymbol{X}^{-1} \boldsymbol{y}.$$

Le système possède une unique solution $\mathbf{w}^* = \mathbf{X}^{-1}\mathbf{y}$, qui est aussi le minimum global du problème d'optimisation minimiser $_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$.

Exemple avec d = n = 2

$$\begin{cases} w_1 + w_2 &= 0, \\ 3w_1 + 2w_2 &= 1. \end{cases}$$

L'unique solution est $\mathbf{w} = [1-1]^{\mathrm{T}}$.

Résolution de systèmes linéaires : autres cas

Système carré

 $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ et $\boldsymbol{n} = \boldsymbol{d}$.

Cas 2: X non inversible

- Il peut ne pas y avoir de solution;
- Il peut en avoir une infinité.

Dans les deux cas, on peut calculer une solution au sens des moindres carrés!

Résolution de systèmes linéaires : autres cas

Système carré

$$\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$$
, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ et $n = \boldsymbol{d}$.

Cas 2: X non inversible

- Il peut ne pas y avoir de solution;
- Il peut en avoir une infinité.

Dans les deux cas, on peut calculer une solution au sens des moindres carrés!

Autres cas

- $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$, $n \neq d$;
- Pas de solution, une ou une infinité!

Algèbre linéaire à la rescousse

Ce que l'on voudrait

- L'équivalent d'une inverse;
- Qui donne une solution qu'il en existe ou non.

61

Ce que l'on voudrait

- L'équivalent d'une inverse;
- Qui donne une solution qu'il en existe ou non.

Pseudo-inverse

Pour toute matrice $\mathbf{X} \in \mathbb{R}^{n \times d}$, il existe $\mathbf{A} \in \mathbb{R}^{d \times n}$ qui vérifie les équations de Moore-Penrose

$$\begin{cases} AXA &= A \\ XAX &= X \end{cases} \quad \text{and} \quad \begin{cases} (AX)^T &= AX \\ (XA)^T &= XA \end{cases}$$

Cette matrice s'appelle la pseudo-inverse de \boldsymbol{X} et on la note $\boldsymbol{A} = \boldsymbol{X}^{\dagger}$. Si \boldsymbol{X} est inversible, $\boldsymbol{X}^{\dagger} = \boldsymbol{X}^{-1}$.

Moindres carrés et pseudo-inverse

$$\mathbf{X} \in \mathbb{R}^{n \times d}, \quad \mathbf{y} \in \mathbb{R}^n.$$

Théorème

Pour tout $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{X}^\dagger \mathbf{y}$ est la solution du problème aux moindres carrés

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}\|^2.$$

de norme minimale. Pour tout $\hat{\boldsymbol{w}} \in \operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, on a :

Moindres carrés et pseudo-inverse

$$\mathbf{X} \in \mathbb{R}^{n \times d}, \quad \mathbf{y} \in \mathbb{R}^n.$$

Théorème

Pour tout $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{X}^{\dagger}\mathbf{y}$ est la solution du problème aux moindres carrés

$$\mathop{\mathsf{minimiser}}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{2} \| \boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y} \|^2.$$

de norme minimale. Pour tout $\hat{\boldsymbol{w}} \in \operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, on a :

- $f(\mathbf{X}^{\dagger}\mathbf{y}) = f(\hat{\mathbf{w}});$
- $\bullet \|\mathbf{X}^{\dagger}\mathbf{y}\| \leq \|\hat{\mathbf{w}}\|.$

$$m{X}m{w} = m{y}, \qquad m{X} = \left[egin{array}{c} 1 \\ dots \\ 1 \end{array}
ight], \ m{y} = \left[egin{array}{c} y_1 \\ dots \\ y_n \end{array}
ight].$$

Une solution

- Le problème minimiser $_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \| \boldsymbol{X} \boldsymbol{w} \boldsymbol{y} \|_2^2$ possède une infinité de solutions;
- Parmi celles-ci $w^* = X^{\dagger}y$ est de norme minimale;
- Cette solution est la moyenne $\mathbf{w}^* = \frac{1}{n} \sum_{i=1}^n y_i!$

Points clés

- Calcul de la pseudo-inverse;
- Ou son approximation!

Utilisation de solveurs d'algèbre linéaire

- Décomposition de X (QR, LU, SVD, etc) pour faciliter le calcul;
- Utilisation d'algèbre linéaire itératif (CG, LSQR, etc) pour calculer une solution approchée, prise en compte des erreurs d'arrondi;
- Éxécution dans des environnemments parallèles/distribués.

- Données : $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.
- But : calculer un modèle linéaire $h(x) = w^T x$ tel que $h(x_i) \approx y_i$ for i = 1, ..., n.
- Objectif: minimiser les carrés des erreurs $|h(x_i) y_i|$.

- Données : $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.
- But : calculer un modèle linéaire $h(x) = \mathbf{w}^{\mathrm{T}} \mathbf{x}$ tel que $h(\mathbf{x}_i) \approx y_i$ for $i = 1, \dots, n$.
- Objectif: minimiser les carrés des erreurs $|h(x_i) y_i|$.

Problème d'optimisation

minimiser
$$\frac{1}{w \in \mathbb{R}^d} \sum_{i=1}^n (h(x_i) - y_i)^2 = \frac{1}{2n} \|Xw - y\|_2^2$$
.

• On retrouve les moindres carrés linéaires !

Régression linéaire (2)

Qualité de la solution des moindres carrés

- Meilleure approximation possible en termes d'erreurs;
- Solution déterministe quand $\{(x_i, y_i)\}_i$ fixés.

Qualité de la solution des moindres carrés

- Meilleure approximation possible en termes d'erreurs;
- Solution déterministe quand $\{(x_i, y_i)\}_i$ fixés.

En présence de données bruitées

- Approche statistique : supposer que $\mathbf{y} = \mathbf{X} \mathbf{w}^* + \epsilon$ avec ϵ vecteur aléatoire de loi connue;
- Calculer l'estimateur du maximum de vraisemblance en résolvant un problème d'optimisation;
- ullet Équivalent aux moindres carrés pour ϵ gaussien.

Régression linéaire (2)

Qualité de la solution des moindres carrés

- Meilleure approximation possible en termes d'erreurs;
- Solution déterministe quand $\{(x_i, y_i)\}_i$ fixés.

En présence de données bruitées

- Approche statistique : supposer que $\mathbf{y} = \mathbf{X} \mathbf{w}^* + \epsilon$ avec ϵ vecteur aléatoire de loi connue;
- Calculer l'estimateur du maximum de vraisemblance en résolvant un problème d'optimisation;
- ullet Équivalent aux moindres carrés pour ϵ gaussien.

En bref : moindres carrés linéaires

Buts

- Trouver une relation linéaire entre composantes d'un jeu de données;
- Fonctionne même en l'absence d'un modèle sous-jacent !

Techniques

- Faire le lien avec les systèmes linéaires;
- Utilisation de solveurs d'algèbres linéaires pour le calcul explicite;
- Interprétation statistique possible, comme dans le contexte de la régression linéaire.

Table des matières

- Introduction
- Concepts de base en optimisation
- Optimisation sans contraintes
 - Moindres carrés linéaires
 - Méthode de descente de gradient

 $\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} f(\boldsymbol{w}).$

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{w}).$$

Hypothèses

- f est minorée par f_{low};
- f est lisse (au moins de classe C^1).

Exemple: Nonlinear regression

Contexte

- Jeu de données $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$;
- But : Classification via un modèle linéaire $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$.

Exemple: Nonlinear regression

Contexte

- Jeu de données $\{(\boldsymbol{x}_i,y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{0,1\}$;
- But : Classification via un modèle linéaire $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$.

Fonction objectif

- Basée sur la perte sigmoïde : $\phi(\mathbf{\textit{x}}_i; \mathbf{\textit{w}}) = \left(1 + e^{-\mathbf{\textit{x}}_i^{\mathrm{T}}\mathbf{\textit{w}}}\right)$;
- On pénalise l'erreur $(y_i \phi(x_i; \mathbf{w}))^2$.

Example: Régression non linéaire (2)

Problème d'optimisation

minimiser
$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \frac{1}{1 + e^{-x_i^{\mathrm{T}} \mathbf{w}}} \right)^2$$
.

Example: Régression non linéaire (2)

Problème d'optimisation

minimiser
$$f(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \frac{1}{1 + e^{-x_i^{\mathrm{T}} \mathbf{w}}} \right)^2$$
.

- Structure de moindres carrés non linéaires;
- Problème lisse : on applique la descente de gradient.

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimiser}} f(\boldsymbol{w}), \quad f \in \mathcal{C}^1.$$

Pour tout $\mathbf{w} \in \mathbb{R}^d$,

- Soit \mathbf{w} est un minimum local et donc $\nabla f(\mathbf{w}) = 0$;
- ② Soit f décroît localement depuis \mathbf{w} dans la direction de $-\nabla f(\mathbf{w})$. Preuve basée sur Taylor.

Algorithme de descente de gradient

Entrées : $\mathbf{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, $\varepsilon > 0$, $k_{\text{max}} \in \mathbb{N}$.

Set k = 0.

- Evaluer $\nabla f(\mathbf{w}_k)$; si $\|\nabla f(\mathbf{w}_k)\| < \varepsilon$ terminer.
- 2 Poser $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$.
- 3 Incrémenter k de 1; si $k = k_{max}$ terminer, sinon aller à l'étape 1.

Algorithme de descente de gradient

Entrées : $\mathbf{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, $\varepsilon > 0$, $k_{\text{max}} \in \mathbb{N}$.

Set k = 0.

- Evaluer $\nabla f(\boldsymbol{w}_k)$; si $\|\nabla f(\boldsymbol{w}_k)\| < \varepsilon$ terminer.
- Incrémenter k de 1; si $k = k_{max}$ terminer, sinon aller à l'étape 1.

Critères d'arrêt

- Convergence : $\|\nabla f(\boldsymbol{w}_k)\| < \varepsilon$;
- Budget : $k = k_{\text{max}}$.

Choix de la longueur de pas α_k

Pas constant

Si $f \in \mathcal{C}_I^{1,1}$, poser $\alpha_k = \frac{1}{I}$:

- Garantit une décroissance à chaque itération;
- Mais demande de connaître L.

Pas décroissant

Choisir α_k tel que $\alpha_k \to 0$.

- Garantit une décroissance à partir d'un certain rang;
- Mais force la valeur à décrôitre.

Choix de la longueur de pas α_k (2)

En optimisation classique

- Recherche linéaire : À chaque itération, α_k obtenue par retour arrière (backtracking) sur un ensemble de valeurs en ordre décroissants (ex: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$).
- La value renvoyée vérifie une condition type décroissance de la valeur de l'objectif.

En apprentissage (notamment profond)

 $\alpha_k = Learning rate$

- Utiliser une valeur fixe pendant un certain nombre d'itérations;
- Diminuer progressivement cette valeur selon une règle fixée (scheduling).

Exemple: Minimiser une fonction quadratique

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} f(\boldsymbol{w}) = \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{w} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{w}$$

- Pour tout $\mathbf{w} \in \mathbb{R}^d$, $\nabla f(\mathbf{w}) = \mathbf{A}\mathbf{w} \mathbf{b}$;
- Si \boldsymbol{w} est un minimum local, $\nabla f(\boldsymbol{w}) = 0...$
- ...donc \mathbf{w} est une solution de $\mathbf{A}\mathbf{w} = \mathbf{b}$.
- Descente de gradient : Algorithme itératif pour résoudre $\mathbf{A}\mathbf{w} = \mathbf{b}$;
- Bien défini même quand le problème n'a pas de solution (càd lorsque
 A ≥ 0).

Analyse théorique de la descente de gradient

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}), \qquad f \in \mathcal{C}_L^{1,1}.$$

Rappels: Descente de gradient

- Itération : $\mathbf{w}_{k+1} = \mathbf{w}_k \alpha_k \nabla f(\mathbf{w}_k)$, terminer si $\nabla f(\mathbf{w}_k) = 0$.
- Choix de base en théorie : $\alpha_k = \frac{1}{L}$.

Résultats théoriques

- Convergence : Montrer que $\|\nabla f(\boldsymbol{w}_k)\| \to 0$;
- Vitesse de convergence : Décroissance de $\|\nabla f(\mathbf{w}_k)\|$.
- Complexité au pire cas : Effort requis pour obtenir $\|\nabla f(\boldsymbol{w}_k)\| \le \epsilon$ pour $\epsilon > 0$.

Complexité pour la descente de gradient

Théorème

Si $f \in \mathcal{C}_L^{1,1}$ et $\alpha_k = \frac{1}{L}$, la descente de gradient produit \boldsymbol{w}_k tel que $\|\nabla f(\boldsymbol{w}_k)\| \le \epsilon$ en au plus

$$2L(f(\mathbf{w}_0) - f_{\text{low}})\epsilon^{-2}$$
 itérations.

- Même résultat pour d'autres choix pour α_k , dont la recherche linéaire.
- On dit que la complexité de la descente de gradient est en $\mathcal{O}(\epsilon^{-2})$.

Théorème

Si $f \in \mathcal{C}_L^{1,1}$ et $\alpha_k = \frac{1}{L}$, alors pour tout $K \geq 1$, si $\{\boldsymbol{w}_k\}$ est la suite des itérés produite par l'algorithme de descente de gradient, on a

$$\min_{0 \leq k \leq K-1} \|\nabla f(\boldsymbol{w}_k)\| \leq \frac{\sqrt{2L(f(\boldsymbol{w}_0) - f_{\text{low}})}}{\sqrt{K}}.$$

Interpretation

- On dit que la vitesse de convergence de la descente de gradient est $\mathcal{O}\left(\frac{1}{\sqrt{K}}\right)$.
- Il existe une fonction telle que cette vitesse correspond exactement au comportement de la méthode !

Révisons! Optimisation sans contraintes

- Quel est l'avantage des moindres carrés linéaires sur les systèmes linéaires ?
- écrire l'itération de la descente de gradient.
- Quelle est la différence entre une garantie de complexité, une vitesse de convergence et une garantie de convergence ?

Conclusions

Optimisation

- Outil de modélisation;
- Outil de résolution de problèmes;
- Outil numérique!

Optimisation en IA

- Algorithmes classique
- Problèmes structurés et spécifiques;
- Descente de gradient comme méthode de base;
- Autres méthodes (régularisation, second ordre) peuvent aussi être employées).

Ouvrages:

- J. Nocedal et S. J. Wright, Numerical Optimization, 2nd Ed., Springer-Verlag, 2006.
- S. J. Wright, Optimization Algorithms for Data Analysis. In The Mathematics of Data, M. Mahoney, J. C. Duchi and A. Gilbert (eds), AMS, IAS/Park City Mathematics Institute and SIAM, 2018.

Codes:

- scipy : bibliothèque de base en calcul scientifique pour Python.
- MANOPT/PyMANOPT : codes MATLAB et Python.

Fin de la première partie

Notebook

- Quelques résultats sur la descente de gradient...
- ...et les moindres carrés.

Cet après-midi : Optimisation convexe.

Fin de la première partie

Notebook

- Quelques résultats sur la descente de gradient...
- ...et les moindres carrés.

Cet après-midi : Optimisation convexe.

Merci beaucoup!

Problème lisse

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, f(\boldsymbol{w})$$

où f est de classe C^2 .

Descente de gradient applicable mais :

- Pas invariante par transformation linéaire du problème;
- Pas d'utilisation de la dérivée seconde;
- Pas de vitesse de convergence pour un point stationnaire d'ordre deux.

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{d}_k, \quad \nabla^2 f(\mathbf{w}_k) \mathbf{d}_k = -\nabla f(\mathbf{w}_k).$$

- Algorithme dit de Newton appliqué à $\nabla f(\mathbf{w}) = 0$;
- Pas de garanties autres qu'au voisinage d'une solution en général;
- Peut être modifié (notamment en introduisant un pas α_k) pour obtenir des garanties de complexité/des vitesses de convergence.

Résultats récents

- Même complexité que la descente de gradient pour des problèmes C^2 génériques (ϵ^{-2}) ;
- Bien meilleurs résultats en pratique et sous d'autres hypothèses (voir séance suivante).

Problèmes sous contraintes

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\mathsf{minimiser}} \, f(\boldsymbol{w}) \quad \mathsf{s. c.} \quad \boldsymbol{w} \in \mathcal{F},$$

où $\mathcal{F} \subset \mathbb{R}^d$ est l'ensemble des valeurs admissibles pour \boldsymbol{w} .

Deux techniques modernes

- Utiliser la structure des contraintes;
- Régulariser plutôt que contraindre.

où $\boldsymbol{c}: \mathbb{R}^d \to \mathbb{R}^m$.

- Lorsque c est une fonction lisse/douce avec $m \le d$, l'ensemble réalisable est typiquement une variété riemannienne de \mathbb{R}^d (qui ressemble à \mathbb{R}^{d-m})
 - Ex) Sphère $c(w) = ||w||^2 1$.
- On peut définir une notions de gradient sur des variétés) $g_f(\mathbf{w}) = (\mathbf{I}_d \mathbf{w}\mathbf{w}^T)\nabla f(\mathbf{w}).$
- De nombreux algorithmes se généralisent alors à ce contexte.