Remote LCD

Remote LCD to szczególnie rozwiązanie do zastosowania, kiedy hotspot jest umieszczony w zupełnie innym miejscu (strych, garaż, inny pokój) w stosunku do miejsca, gdzie używamy radia do nadawania ze względów, aby zmniejszyć wpływ urządzeń nadawczych na pracę hotspota. Dane z SVXLinka i systemu są wysyłane poprzez sieć na adres IP Remote LCD, który wyświetla otrzymane dane.

Remote LCD składa się z wyświetlacza I2C LCD2004 (**rekomendowany żółto/zielony**) oraz z płytki **Wemos D1 mini** (można zastosować inne płytki na bazie układów ESP8266). Firmware używane w Wemos D1 to ESPEasy. Schemat podłączenia I2C LCD2004 z Wemos D1:

Warto podłączyć pomiędzy pinem 5V a GND kondensator elektrolityczny 47 mikroF (lub większy) + 100 nF ceramiczny.

Uwaga: poprawne połączenie LCD2004 powinno być poprzez konwerter napięć/poziomów na szynie I2C z logiki 5V na 3.3V ale w układzie LCD który odbiera dane jest możliwe podłączanie bez konwertera poziomów (musisz sam zdecydować o tym – prototyp był wykonany bez konwertera poziomów).

Wemos D1 zasilamy zewnętrznym zasilaczem 5V podłączonym do pinu 5V jak na rysunku powyżej (można wykorzystać przetwornicę MT3608 lub Mini-360, aby

dostarczyć 5V z zasilacza np. 12V) lub poprzez mikroUSB złącze. Zaletą używania zasilania 5V jest to, że możemy nasz LCD+Wemos D1 podłączyć do Power Bank dzięki temu mamy mobilne rozwiązanie w ramach zasięgi WIFI naszej lokalnej sieci.

Wgrywanie firmware ESPEasy

Aby wgrać firmware do Wemos D1 musisz podłączyć poprzez kabel USB do komputera i do microUSB Wemos D1.

Możesz zrobić to wg filmu: https://www.youtube.com/watch?v=bgkyHB1U0cA

Program do wgrywania i firmware do Wemos D1 znajdziesz tu paczce zip: https://github.com/radioprj/remotelcd/ESPeasyFlasher/

Należy uruchomić program **ElasherESP8266.exe**, który jest prostą nakładką do programu esptool.exe. Należy wskazać COMx port, do którego jest podłączony wcześniej do komputera Wemos D1 oraz wybrać firmware do wgrania. Firmware jest dostępny w pobranym pliku zip i ma nazwę:

ESP Easy mega 20240822 normal ESP8266 4M1M.bin

internecie.

Po wgraniu firmware do naszego Wemos D1 nasz układ pracuje w trybie Access Point AP i powinien przedstawić się nam w sieci jako ESP_Easy-0 lub ESP_Easy- z hasłem dostępu configesp. Jeśli jednak tak się nie stanie należy zresetować Wemos D1 używając przycisku na płytce. Po zestawieniu połączenia z AP ESP_Easy należy w przeglądarce podać adres http://192.168.4.1 aby wykonać wstępna konfiguracje. Po połączeniu się z AP Wemos D1 możemy ustawiać obsługę WIFI Wemos D1. Musisz wybrać nazwę sieci WIFI, do której będzie się łączył Wemos D1i hasło do wybranej sieci WIFI. Następnie kliknij na CONNECT i następnie rozłącz się z AP "ESP_Easy-" i poszukaj, pod jakim adresem IP jest dostępny nasz Wemos używając np. darmowego programu https://www.advanced-ip-scanner.com/pl/ Jeśli opisane wyżej informacje o wgrywaniu firmware do Wemos D1 są

niewystarczające możesz skorzystać z dużej dostępnej informacji o tym temacie w

Konfiguracja ESPEasy

Po połączeniu się poprzez przeglądarkę z ESPEasy możesz w zakładce menu **Config** ustawić nazwę urządzenia w **Unit Name** np. **RemoteLCD.** oraz sprawdzić ustawienia sieciowe lub ustawić stały adres IP Wemos D1 (zalecane) np:

WiFi IP Settings	
ESP WiFi IP:	192.168.1.42
ESP WiFi Gateway:	192.168.1.1
ESP WiFi Subnetmask:	255.255.255.0
ESP WiFi DNS:	8.8.8.8
ı	Note: Leave empty for DHCP

po wprowadzeniu zmian klikasz na "SAVE"

Następnie sprawdź zakładkę Tools i wybierz opcje Advanced ustaw opcje Rules Enable Rules Cache. W części zakładki Time source ustaw opcje Use NTP i wpisz w NTP hostname pl.pool.ntp.org oraz wpisz wartość 60 w polu Timezone Offset(UTC+). Włączy opcje DST automatyczną zmianę czasu z letniego na zimowy i odwrotnie. Wyłącz tez opcje Enable Serial Port Console

Po wprowadzaniu zmian, kliknij na "Submit"

ESP Easy Mega: RemoteOLED		
∆Main ©Config © Controlle	ers ≸ Hardware ≧Devices :→Rules ⊠N	
Advanced Settings 🧴		
Rules Settings		
Rules:		
Enable Rules Cache:		
Tolerant last parameter:	Note: Perform less strict parsing on last arg	
SendToHTTP wait for ack:		
SendToHTTP Follow Redirects:		
Time Source		
Use NTP:	\checkmark	
NTP Hostname:	pl.pool.ntp.org	
External Time Source:	None	
DST Settings		
	Last	
Start (week, dow, month):	Sun	
	Mar	
Start (localtime, e.g. 2h→3h):	2	
	Last	
End (week, dow, month):	Sun	
	Oct	
End (localtime, e.g. 3h→2h):	3	
DST:		
Location Settings		
Timezone Offset (UTC +):	60 [minutes]	

Następnie wybierz zakładkę w menu **Devices** gdzie dodamy nasz podłączony LCD2004. Kliknij na **Add** i z listy dostępnych urządzeń wybierz **Display–LCD2004** i wprowadź konfiguracje LCD2004 wg poniższych ustawień jakie są na obrazkach. Ważniejsze ustawienia. W **Name** wpisz nazwę np. **RemoteLCD**. Ustaw opcje **Enabled, I2C Address** ustaw adres LCD w większości przypadkach jest to **0x27**. Ustaw **Force Slow I2C speed**. W **Display Size** ustaw **4x20** a w **Display Timeout** na **300**, opcje **LCD Command Mode** ustawa na **Trunacate exceeding message**, opcje **Interval** ustaw na **60**. Po wprowadzeniu zmian, kliknij na **Submit**

Po dodaniu obsługi LCD2004 dodajemy nowy **Device**, który pozwoli nam wyswietlać poziom sygnału WIFI w procentach. W tym celu z emnu należy wybrac **Device** i nacisnąć **Add** z listy wybrać **Generic -System info**

Ustawić wszystkie opcje wg poniższego obrazka. Zwróć uwagę na miejsce, gdzie wprowadza się formułę, która przelicza RSSI z dB an procenty:

((%value%) +100)*2

Zmiany zapisać klikając na Submit

Wgrywanie pliku rules1.txt

Wybierz z menu **Tools - > File browser** kliknij na **Upload** aby wgrać plik o nazwie **rules1.txt** który zawiera niezbędne zasady/reguły wyświetlania danych. Plik rules1.txt jest w katalogu projektu /opt/fmpoland/remoteoled/ lub na github:

https://github.com/radioprj/remoteoled/blob/main/rules1.txt

Przejdź do zakładki w menu Rules aby sprawdzić zawartość wgranych reguł z pliku rules1.txt

Możesz przystąpić do konfiguracji na hotspocie.

Musisz uruchomić skrypt instalacji niezbędnych pakietów do systemu uruchamiając polecenie:

sudo -s

/opt/fmpoland/remotelcd/install-pkg.sh

Na hotspocie musisz skonfigurować plik o nazwie **remotelcd.ini** w katalogu

/opt/fmpoland/remotelcd/

```
[remotelcd]
# IP adres Wemos/ESP32
ip_address = 192.168.1.45

# wylaczenie podswietlenia po jakim czasie w minutach
# np 1 lub 2 minutach
# 0 brak wylaczenia podswietlenia
backlight_time = 2

# czujnik temperatury ds18b20 TAK=True, NIE=False
# patrz opis /opt/fmpoland/ds18b20/
ext temp sensor = False
```

Uwaga wyświetlacze niebiesko/białe nie pokazują dobrze informacji w trybie wyłączonego podświetlenia więc dla tych wyświetlaczy należy ustawić na stałe podświetlanie backlight_time = 0

Aby uruchomić ręcznie skrypt, użyj następującego polecenia:

sudo systemctl start remotelcd

Aby skrypt uruchamiał się automatycznie przy starcie systemu, należy wykonać polecenie:

sudo systemctl enable remotelcd

Aby zatrzymać automatyczne uruchamianie przy starcie systemu, użyj polecenia:

sudo systemctl disable remotelcd

Obudowy 3D Print do LC2004

Dla wyświetlacz LCD2004 polecana obudowa do wydruku 3D:

https://www.thingiverse.com/thing:4299455 https://www.printables.com/model/308120-box-for-lcd-2004-with-wemos-d1

Można regulować podświetlenie potencjometrem: w miejsce zworki należy podłączyć potencjometr **10 koM**. Można go umieścić na obudowie w ten sposób możesz zawsze regulować jasność diody podświetlenia.

https://www.youtube.com/watch?v=pLIQTQMENck

Warto zapoznać się z uwagami na temat zasilania płytek typu Wemos itp.:

 $\underline{https://www.letscontrolit.com/wiki/index.php/Power}$

Przykład realizacji Remote LCD2004:

Używasz na własną odpowiedzialność i autor nie ponosi odpowiedzialności za wykorzystane rozwiązanie i wynikające z niego skutki.