- SURF-SHYFEM Development
 - Current State
 - Main developments
 - Mesh generation
 - Structured to unstructured data interpolation
 - Write input files in shyfem readable format (.dat)
 - Bathymetry manipulation
- Next steps

SURF-SHYFEM Development

Current State

• Pre-processing: 99.9%

• Simulation: 100%, using version:

```
SHYFEM - Finite Element Model for coastal seas
Copyright (c) The Shyfem Team 1985-2015

version: 7.5.0
routine: 3D FEM model

------

[...]

program stop at time = 604800 seconds
iterations = 12103

NUMBER OF MPI THREADS USED = 1

NUMBER OF OMP THREADS USED = 1

TIME TO SOLUTION (WALL) = 2011.6726238419999 0

TIME TO SOLUTION (CPU) = 2011.9556470000000 0

TIMESTEPS TIME (WALL) = 2010.2527838630001 0

MPI_TIME = 2011.5478877119999 0

Parallel_TIME = 2011.5478874109999 0
```

- Post-processing: ~70%
 - Visualization of results on both structured and unstructured grid

- Structured: uses same module already implemented for surf_nemo
- Unstructured: based on matplotlib.tri.Triangulation

Main developments

Mesh generation

- Automatized generation and boundary extraction
- Rounded open sea corners with Bezier curves

 Structured to unstructured data interpolation

Write input files in shyfem readable format (.dat)

boundn_1.dat:

```
0 2 957839 41 1 1 1
20210330 000000
water level [m]
1.3378153056773958
1.3378885358461328
1.3390002590041732
1.339215317250322
[...]
```

Bathymetry manipulation

• Filtering (with Gaussian filter)

o Interpolation (on element centroid locations)

• Generation of 3d • bas file, as required by SHYFEM.

Next steps

- Post-processing module
- Code freeze
- Documentation