Calculus(Midterm 4)

- 1. (15%) 二維向量函數F(x,y) = (y,-x),C為曲線, $C = \{(t,t^2)|1 \le t \le 2\}$,求 $\int_C \vec{F} dr$
- 2. (15%) 函數 $f(x,y,z)=x^2e^{y\cdot z}$,向量函數 F(x,y,z)=(yz,xz,xy) (F可以表成 $yz\vec{\imath}+xz\vec{\jmath}+xy\vec{k}$)
 - (a). 求∇·F (散度)與 ∇×F
 - (b). 求∇·f 與 ∇×(∇f) ^凡
 - (c). 求∇²f
- 3. (15%) $P(x,y,z) = (x^2 + y^2) \cdot z \cdot F(x,y,z) = \nabla P \cdot C$ 為曲線, $C = \{(3\cos t, 4\sin t, t^2 + 1) | 0 \le t \le 1\}$ 求 $\int_C \vec{F} dr$
- 4. (15%) $F(x, y, z) = y\vec{i} + x\vec{j} + z\vec{k}$ $S = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$ $\Re \iint_S F \cdot \vec{n} \, dA$
- 6. (20%) $F(x, y, z) = \frac{1}{r^3}(x, y, z)$, $r^2 = x^2 + y^2 + z^2$ 曲面 S 是一椭球, \vec{n} 是向外的 unit normal vector $S = \left\{ (x, y, z) | x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1 \right\}$

求 $\iint_{S} \vec{F} \cdot \vec{n} dA$