Varying-Censoring Aware Matrix Factorization (VAMF) for scRNA-seq

yhou@Single.Cell.Batches 08/03/2017

Motivation and basic idea

- Issue in "Smushing":
 - high proportion of non-biological zeroes -> Clustering based on detection ability
- Previous approach: Consider existence of zero as the result of censoring

censoring is a condition in which the value of a measurement or observation is only partially known.

- Model unobserved expression levels with one factor across all the cells -- Zero Inflated Factor Analysis (ZIFA. Paper & SourceCode)
- O But, are all cells equal?

Detection rate varies across cells

• Binary indicator (Z_{ng}) : Whether a gene is detected or not:

$$Z_{ng} = 1_{Y_{ng} > \delta}$$

 Y_{ng} is the normalized scRNA-seq data, where n=1,...,N are cell indexes, g=1,...,G are gene indexes. δ is the threshold. Here $\delta=1$

 Detection rate (P_n): Ratio of genes detected

$$P_n \equiv \frac{1}{G} \sum_g Z_{ng}$$

VAMF: Cell-specific censoring

Censoring mechanism:

•
$$f_n(\eta_{ng}) \equiv \Pr(Z_{ng} = 1 \mid \eta_{ng})$$

•
$$E[\log(M_g)] = E[\eta_{ng}]$$

•
$$f_n(\eta_{ng}) \approx \Pr(Z_{ng} \mid M_g)$$

• Unobserved log-transformed expression level (η_{ng}):

$$\bullet \ \eta_{ng} = y_0 + wg + u'_n v_g$$

 η_{ng} : unobserved logtransformed expression level \mathbf{M}_{g} : normalized bulk RNA-seq data

 y_0 : global intercept w_g : gene/feature-specific effect $u_n \sim$ principal components $v_g \sim$ loadings (correlation coefficients)

Modeling the censoring mechanism

- From: $f_n(\eta_{ng}) \approx \Pr(Z_{ng} \mid M_g)$
 - Use scRNA-seq/bulk RNA-seq pair to compare Z_{ng} vs. log₂(M_g)

$$Pr(Z_{ng} = 1 \mid \eta_{ng}) = \frac{1}{1 + \exp\{-(\beta_{0n} + \beta_{1n}\eta_{ng})\}}$$

 β_{0n} and β_{1n} accounts for the cell-specific censoring

Model fitting:

- Borrow info across cells through empirical Bayesian hierarchical model
- Learn correct latent dimensionality through Automatic Relavance Determination (ABD)
- (Parameter est. relies on paired bulk RNA-seq data)

VAMF can remove the batch effect

• Two-batches dataset:

VAMF can remove the batch effect

Five-tumor dataset

VAMF outperforms other approaches

• Simulation:

- 2 generated datasets.
- Mimicked batch effect with difference in detection rate.

