

VITICULTURE & ENOLOGY

Searching for grapevine (*Vitis vinifera* L.) optimal stomatal traits using the FSPM HydroShoot

Megan BARTLETT
Viticulture and Enology Dept., UC Davis, USA

Rami ALBASHA
INRAE, UMR759 LEPSE, Montpellier, France itk, Clapiers, France

Oakville

Background and objective

Climate change will increase water and heat stress in many wine growing regions (Hannah et al., 2013). Stomatal conductance plays a pivotal role in adapting viticulture to these adverse conditions (Bartlett and Sinclair 2021; Dayer et al., 2022). We examined the maximum stomatal conductance ($g_{s, max}$) and water potential at 50% stomatal closure ($g_{s, y50}$) that optimize grapevine performance historical and future climatic conditions for economically important wine regions in California, using the FSPM HydroShoot (Albasha et al., 2019).

Procedure

1. Meta-analysis of published grapevine traits

 $^{^{1}}$ For each variable, the values correspond to the 5th, 50th, and 95th percentile values compiled from the literature for 21 field-grown winegrape cultivars. The value of m_0 is deduced

2. FSPM simulations

Jointly simulate the hydraulic structure, leaf gas and energy exchange rates using **HydroShoot**.

3 Climate scenarios

Historical (1990 – 2010) RCP 4.5 RCP 8.5

Row orientations

North-South NorthEast-SouthWest East-West

6 Stomatal trait group (cf. table above)

Results

Water saving traits are likely to increase water use efficiency.

 $(WUE = \frac{Canopy\ Net\ Carbon\ Assimilation}{Canopy\ Transpiration}$

Water use efficiency of each trait group reported to its value with the baseline traits.

Fresno

Most water-use-efficient traits (elite) would lead to 50% drop in net carbon assimilation

Leaf temperature increase with water-saving traits is likely to be limited to +2 °C compared to baseline traits under all examine climatic conditions..

Conclusion and Perspectives

Shifting stomatal traits to more water-saving values would improve water-use efficiency. Our results suggest that breeding should however avoid targeting extremely weak stomatal conductance values (i.e. *elite* traits) and rather focus on varieties having a higher sensitivity to water stress (i.e. higher $\mathbf{g}_{s,\Psi50}$).

More work is needed to evaluate whether the benefits for water savings outweigh the consequences of minor declines in carbon gain for ripening, especially for high-production wine regions.

from g_{s, max}.

² Parameter values correspond to "Super Elite" ideotypes.