How does the NN "learn" the transformations?

The matrix \mathbf{W} contains the "patterns" that serve to recognize the synthetic features created by each layer

 $oldsymbol{\mathbf{W}}_{(l),j}$ are the weights /pattern for feature $oldsymbol{\mathbf{y}}_{(l),j}$

How are these patterns discovered?

The answer is: exactly as we did in Classical Machine Learning

• Define a loss function that is parameterized by \mathbf{W} :

$$\mathcal{L} = L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

- Per example loss $\mathcal{L}^{(i)}$
- Average loss $\mathcal{L} = rac{1}{m} \sum_{i=1}^m \mathcal{L}^{(\mathbf{i})}$
- ullet Our goal is to find $old W^*$ the "best" set of weights

$$\mathbf{W}^* = \operatorname*{argmin}_W L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

• Find \mathbf{W}^* using Gradient Descent!

Very much in spirit of the multi-layer architecture

• We add a new layer (L+1) to compute the loss \mathcal{L} !

Additional Loss Layer (L+1)

Gradient Descent review

Gradient Descent is an iterative method for finding the minimum of a function.

• See the <u>Gradient Descent lecture (Gradient Descent.ipynb)</u> in the Classical ML part of the course for more details

Let's review Gradient Descent using our current notation

- ullet We start with an initial guess for f W and iteratively improve it.
- Compute the loss $\mathcal L$ given the current $\mathbf W$
 - ullet Average loss of the m examples in the training examples
- Compute the gradient

$$\frac{\partial \mathcal{L}}{\partial W}$$

- ullet Update f W in the direction of the *negative* of the gradient
- Scaled by a learning rate lpha

$$\mathbf{W} = \mathbf{W} - \alpha * \frac{\partial \mathcal{L}}{\partial W}$$

A unit change in \mathbf{W} increases \mathcal{L} by $\frac{\partial \mathcal{L}}{\partial W}$

- ullet That's why there is a negative sign: we proceed in the direction *opposite* the one that increases ${\cal L}$
- ullet We move only a fraction $lpha \leq 1$ of the (negative) of the gradient
- To avoid the possibility of over-shooting the minimum

 ${f W}$ is a multi-dimensional vector, not a scalar

- So the gradient is multi-dimensional
- See a Deeper Dive for background on matrix gradients

The loss \mathcal{L} is averaged over all m training examples.

This can be expensive to compute.

We can approximate ${\cal L}$ by sampling from the m training examples

- ullet Choose a random subset (of size $m' \leq m$) of examples: $I = \{i_1, \dots, i_{m'}\}$
- Approximate ${\cal L}$ on I

$$\mathcal{L} pprox rac{1}{|I|} \sum_{i \in I} \mathcal{L}^{(\mathbf{i})}$$

Minibatch gradient descent

- ullet Divides the m training examples
- Into b=m/m' disjoint batches of $m' \leq m$ examples each

- Iterates over the batches
 - Approximate the loss on the current batch
 - lacktriangle Update f W according to

$$\mathbf{W} = \mathbf{W} - \alpha * \frac{\partial \mathcal{L}}{\partial W}$$

Repeat until all the batches have been processed

Minibatch: Forward Pass From minibatch to Loss

Minibatch: Backwards Pass From minibatch Loss to Gradient

Thus, Minibatch Gradient Descent

- ullet Examines all m training examples
- In batches of size $m' \leq m$
- Resulting in $b=m/m^\prime$ updates to ${f W}$ for each complete pass through the m training examples

Minibatch Gradient Descent is faster than a single batch of size m

- ullet Update f W b times, rather than once
- ullet A complete pass through the b mini-batches is called an epoch

The Training loop

A single epoch of Gradient Descent encounters all m examples and makes b updates

We may need additional epochs to continue to drive down the Loss.

This iterative process is called the *training loop*.

Here is some pseudo-code:

It used to be the case that this fairly standard training loop was coded for each problem.
Just as sklearn wrapped common code into a high-level API
We will use a toolkit that hides the training loop behind a high level API

Scaling the inputs

Many times in this course we have pointed out that some models are scale sensitive.

Neural Networks are not *mathematically* sensitive but tend to be so *in practice*.

It is *highly recommended* to scale your data so their absolute values are around 1.0 or at least somewhat small.

Gradient Descent is the root of the problem:

- Two features on different scales can cause the optimizer to favor one over the other
- Activations can saturate
 - Output of dot product (Dense layer) is in the "flat* area of the activation"
 - Zero derivative: no learning
- The Cost/Loss may be large in initial epochs when the target values are too different from the dot products
 - Large gradients: unstable learning
 - Weights are typically initialized to values less than 1.0, leading to small dot products

Remember: if you re-scale the inputs, you will need to invert the transformation when communicating the results

```
In [4]: print("Done")
```

Done