动态规划—矩阵优化DP 学习笔记

前置知识:矩阵、矩阵乘法。

矩阵乘法优化线性递推

斐波那契数列

在斐波那契数列当中, $f_1=f_2=1$, $f_i=f_{i-1}+f_{i-2}$,求 f_n 。

而分析式子可以知道,求 f_k 仅与 f_{k-1} 和 f_{k-2} 有关;

所以我们设矩阵 $F_i = egin{bmatrix} f_{i-1} & f_{i-2} \end{bmatrix}$ 。

设矩阵 Base, 使得 $F_{i-1} \times \text{Base} = F_i$, 接下来考虑 Base 是什么;

带入可得 $\begin{bmatrix} f_{i-2} & f_{i-3} \end{bmatrix} imes \mathrm{Base} = \begin{bmatrix} f_{i-1} & f_{i-2} \end{bmatrix}$ 。

即 $\begin{bmatrix} f_{i-2} & f_{i-3} \end{bmatrix} imes ext{Base} = \begin{bmatrix} f_{i-2} + f_{i-3} & f_{i-2} \end{bmatrix}$;

根据矩阵乘法的规则可知 \mathbf{B} ase 的第 1 列应为 $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathrm{T}}$,第 $\mathbf{2}$ 列应为 $\begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathrm{T}}$ 。

所以求得 Base $= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ 。

然后考虑 f_i 的值应该是多少;

根据前面的公式可以知道 $f_i=F_{n+1}$ 的第一个数,所以就是求这个数。

根据 $f_1=f_2=1$,可以知道 $F_3=\begin{bmatrix}f_2&f_1\end{bmatrix}=\begin{bmatrix}1&1\end{bmatrix}$,我们将这个作为边界值;然后有 $F_4=F_3 imes \mathrm{Base},\ F_5=F_4 imes \mathrm{Base}=F_3 imes \mathrm{Base} imes \mathrm{Base}$ 。

因为矩阵乘法有结合律,所以 $F_{n+1}=F_3 imes \mathrm{Base}^{n-2}=egin{bmatrix}1&1\1&0\end{bmatrix}^{n-2}$ 。

因为矩阵没有交换律,所以 F_3 (前) 和 Base^{n-2} (后) 一定不能写反了!

例题 1

$$\left\{ egin{array}{l} f_1 = f_2 = 0 \ f_i = f_{i-1} + f_{i-2} + 1 \end{array}
ight.$$

 f_i 仅与 f_{i-1} 和 f_{i-2} 有关,同时还包括了常数 1,所以我们设 $F_i = egin{bmatrix} f_{i-1} & f_{i-2} & 1 \end{bmatrix}$,

然后设 Base 使得 $F_{i-1} \times \text{Base} = F_i$,

即
$$egin{bmatrix} f_{i-2} & f_{i-3} & 1 \end{bmatrix} imes ext{Base} = egin{bmatrix} f_{i-1} & f_{i-2} & 1 \end{bmatrix}$$
。

因为 $f_{i-1} = f_{i-2} + f_{i-3} + 1$, 所以易知:

$$\mathrm{Base} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{bmatrix}.$$

边界条件为 $F_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$, 所以 $F_{n+1} = F_3 imes \mathrm{Base}^{n-2}$ 。

即可求出 f_n .

例题2

$$\left\{egin{array}{l} f_1=0 ext{ , } f_2=1 \ f_i=f_{i-1}+f_{i-2}+i \end{array}
ight.$$

▼ 点击查看题解

 f_i 仅与 f_{i-1} 、 f_{i-2} 和 i 有关,为实现 i 的递增,还需设置常量 1;所以我们设 $F_i=egin{bmatrix} f_{i-1} & f_{i-2} & i \end{bmatrix}$,

由
$$F_{i-1} imes \mathrm{Base} = F_i$$
 得 $\mathrm{Base} = egin{bmatrix} 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 \end{bmatrix}.$

边界条件为 $F_3 = \begin{bmatrix} 1 & 0 & 3 & 1 \end{bmatrix}$.

$$F_{n+1} = F_3 imes \mathrm{Base}^{n-2}$$
; 即可求出 f_n 。

例题3(来自 OI-Wiki)

$$\left\{ egin{array}{l} f_1 = f_2 = 0 \ f_n = 7f_{n-1} + 6f_{n-2} + 5n + 4 imes 3^n \end{array}
ight.$$

▼ 点击查看题解

我的解法与 OI-Wiki 上的有所不同:

设
$$F_n = egin{bmatrix} f_{n-1} & f_{n-2} & n & 3^n & 1 \end{bmatrix}$$
 .

易知 Base =
$$\begin{bmatrix} 7 & 1 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

边界值 $F_3 = \begin{bmatrix} 0 & 0 & 3 & 27 & 1 \end{bmatrix}$.

则
$$F_{n+1} = F_3 \times \operatorname{Base}^{n-2}$$
.

例题4

$$\left\{egin{array}{l} f_1 = f_2 = 0 \; \hbox{,} \; f_3 = 1 \ f_i = 3f_{i-1} + 2f_{i-2} + f_{i-3} + 5i + 7 \end{array}
ight.$$

▼ 点击查看题解

增加了 f_{i-3} , 但是本质是一样的。

可以设
$$F_i = egin{bmatrix} f_{i-1} & f_{i-2} & f_{i-3} & i & 1 \end{bmatrix}$$
,

易得 Base
$$= egin{bmatrix} 3 & 1 & 0 & 0 & 0 \ 2 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 5 & 0 & 0 & 1 & 0 \ 7 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

而
$$F_4 = \begin{bmatrix} 1 & 0 & 0 & 4 & 1 \end{bmatrix}$$
,

则
$$F_{n+1} = F_4 \times \mathrm{Base}^{n-3}$$
。

例题5

洛谷 P1939 矩阵加速(数列): https://www.luogu.com.cn/problem/P1939 考虑这道题 Base 该如何设置。

▼ 点击查看代码

```
1   const long long MOD = 1e9 + 7;
2   struct matrix
4   {
5     long long a[4][4];
```

```
6
        matrix operator*(const matrix &t) const
7
         {
8
             matrix res;
             memset(res.a, 0, sizeof res.a);
9
             for (int i = 1; i <= 3; ++i)
10
                 for (int j = 1; j <= 3; ++j)
11
12
                     for (int k = 1; k <= 3; ++k)
                         res.a[i][j] = (res.a[i][j] + a[i][k] * t.a[k][j] %
13
14
    MOD) % MOD;
15
             return res;
        }
16
17
    };
18
19
    int main()
20
    {
21
        int T = rr;
        while (T--)
22
23
             int n = rr;
24
25
             if (n <= 3)
26
27
                 printf("1\n");
28
29
                 continue;
30
             }
31
32
             matrix Base = \{\{\{0, 0, 0, 0\},
                              {0, 1, 1, 0},
33
                              {0, 0, 0, 1},
34
35
                              {0, 1, 0, 0}}};
             matrix res = \{\{\{0, 0, 0, 0\}, \}
37
                            {0, 1, 0, 0},
38
                             {0, 0, 1, 0},
39
                             {0, 0, 0, 1}}};
40
             int k = n - 3;
41
             while (k)
42
43
44
                 if (k & 1)
                    res = res * Base;
45
                 k >>= 1, Base = Base * Base;
46
47
48
49
             printf("%lld\n", (res.a[1][1] + res.a[2][1] + res.a[3][1]) %
```

```
50 | MOD);
51 | }
52 | return 0;
}
```

时间复杂度

矩阵乘法 $O(k^3)$ 其中 k 为矩阵的长(或宽); 快速幂 $O(\log n)$;

所以[矩阵乘法优化线性递推]的时间复杂度为 $O(k^3 \log n)$ 。

矩阵乘法优化 DP

朴素矩阵乘法

有
$$\operatorname{dp}[t][x][y] = \sum_{w=1}^{n} \operatorname{dp}[t][x][w] \times G[w][y]$$
,

则可以看为矩阵乘法的形式: $\mathrm{dp}_t = \mathrm{dp}_{t-1} imes G$,即 $\mathrm{dp}_t = Ans_0 imes G^t$ 。

广义矩阵乘法

对矩阵的乘法重载,即可用快速幂求解了。

具体的,可以看这篇文章: https://www.luogu.com.cn/blog/i207M/xie-ti-bao-gao-sp1716-gss3-can-you-answer-these-queries-iii。

多组询问的矩阵乘法优化 DP

例题: P6569 魔法值

我们要求一个 $\mathbf{Ans}_k = \mathbf{Ans}_0 \times \mathbf{Mp}^k$,其中 \mathbf{Ans}_i 是一个长度为 n 的行向量。那么,我们先预处理 \mathbf{Mp}^k ,即 \mathbf{Mp}^{2^i} 。

然后我们就是在求一个行向量和 $\log_2 k$ 个 $n \times n$ 的矩阵的乘积了。

在算答案的时候,我们先别算这 $\log_2 k$ 个方阵的乘积,先用 Ans_0 向量从左乘到右。

因为向量乘矩阵复杂度是 $O(n^2)$ 的!

这样复杂度就从 $O(q \times n^3 \log_2 t)$, 变成了 $O(n^3 \log_2 t + q \times n^2 \log_2 t)$ 。

练习题

见: https://www.luogu.com.cn/training/385249

Reference

- [1] https://oi-wiki.org/math/linear-algebra/matrix/
- [2] https://www.cnblogs.com/ningago/p/17472070.html
- [3] https://www.cnblogs.com/luckyblock/p/14430820.html
- [4] http://blog.tsawke.com/Data/Blog/content/DDP.html
- [5] https://blog.csdn.net/qq_41739081/article/details/128184363

本文来自博客园,作者: RainPPR, 转载请注明原文链接: https://www.cnblogs.com/RainPPR/p/matrix-dp.html

合集: 学习笔记

标签: 算法 , 学习笔记