Analysis of exponential decay models

MATMEK-4270

Prof. Mikael Mortensen, University of Oslo

Recap - Finite differencing of exponential decay

The ordinary differential equation

$$u'(t)=-au(t),\quad u(0)=I,\quad y\in (0,T]$$

where a > 0 is a constant.

Solve the ODE by finite difference methods:

• Discretize in time:

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t - 1} < t_{N_t} = T$$

• Satisfy the ODE at N_t discrete time steps:

$$u'(t_n) = -au(t_n), \qquad n \in [1, \dots, N_t], ext{ or } \ u'(t_{n+rac{1}{2}}) = -au(t_{n+rac{1}{2}}), \qquad n \in [0, \dots, N_t-1]$$

Finite difference algorithms

• Discretization by a generic θ -rule

$$rac{u^n-u^{n-1}}{ riangle t}=-(1- heta)au^{n-1}- heta u^n$$

$$egin{cases} heta=0 & ext{Forward Euler} \ heta=1 & ext{Backward Euler} \ heta=1/2 & ext{Crank-Nicolson} \end{cases}$$

Note
$$u^n = u(t_n)$$

ullet Solve recursively: Set $u^0=I$ and then

$$u^n = rac{1-(1- heta)a riangle t}{1+ heta a riangle t} u^{n-1} \quad ext{for } n>0$$

Analysis of finite difference equations

Model:

$$u'(t) = -au(t), \quad u(0) = I$$

Method:

$$u^{n+1} = rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}u^n$$

(i) Problem setting

How good is this method? Is it safe to use it?

Encouraging numerical solutions - Backwards Euler

$$I=1, a=2, heta=1, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Discouraging numerical solutions - Crank-Nicolson

$$I=1, a=2, heta=0.5, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Discouraging numerical solutions - Forward Euler

$$I=1, a=2, \theta=0, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Summary of observations

The characteristics of the displayed curves can be summarized as follows:

- The Backward Euler scheme *always* gives a monotone solution, lying above the exact solution.
- ullet The Crank-Nicolson scheme gives the most accurate results, but for $\Delta t=1.25$ the solution oscillates.
- The Forward Euler scheme gives a growing, oscillating solution for $\Delta t=1.25$; a decaying, oscillating solution for $\Delta t=0.75$; a strange solution $u^n=0$ for $n\geq 1$ when $\Delta t=0.5$; and a solution seemingly as accurate as the one by the Backward Euler scheme for $\Delta t=0.1$, but the curve lies *below* the exact solution.
- ullet Small enough Δt gives stable and accurate solution for all methods!

Problem setting

(i) We ask the question

• Under what circumstances, i.e., values of the input data I,a, and Δt will the Forward Euler and Crank-Nicolson schemes result in undesired oscillatory solutions?

Techniques of investigation:

- Numerical experiments
- Mathematical analysis

Another question to be raised is

• How does Δt impact the error in the numerical solution?

Exact numerical solution

For the simple exponential decay problem we are lucky enough to have an exact numerical solution

$$u^n = IA^n, \quad A = rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}$$

Such a formula for the exact discrete solution is unusual to obtain in practice, but very handy for our analysis here.

Note

An exact dicrete solution fulfills a discrete equation (without round-off errors), whereas an exact solution fulfills the original mathematical equation.

Stability

Since $u^n = IA^n$,

- A < 0 gives a factor $(-1)^n$ and oscillatory solutions
- ullet |A|>1 gives growing solutions
- Recall: the exact solution is monotone and decaying
- If these qualitative properties are not met, we say that the numerical solution is unstable

For stability we need

$$A > 0$$
 and $|A| \le 1$

Computation of stability in this problem

A < 0 if

$$rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t} < 0$$

To avoid oscillatory solutions we must have A>0

$$\Delta t < rac{1}{(1- heta)a}, heta < 1$$

- Always fulfilled for Backward Euler ($heta=1 o 1 < 1+a\Delta t$ always true)
- $\Delta t \leq 1/a$ for Forward Euler (heta=0)
- $\Delta t \leq 2/a$ for Crank-Nicolson (heta=0.5)

Computation of stability in this problem

 $|A| \leq 1 \, \mathrm{means} \, -1 \leq A \leq 1$

$$-1 \le rac{1 - (1 - heta)a\Delta t}{1 + heta a\Delta t} \le 1$$

-1 is the critical limit (because $A \leq 1$ is always satisfied):

Always fulfilled for Backward Euler (heta=0) and Crank-Nicolson (heta=0.5). For forward Euler or simply heta<0.5 we have

$$\Delta t \leq rac{2}{(1-2 heta)a},$$

and thus $\Delta t \leq 2/a$ for stability of the Forward Euler (heta=0) method

Explanation of problems with Forward Euler

- a. $a\Delta t = 2\cdot 1.25 = 2.5$ and A = -1.5: oscillations and growth
- b. $a\Delta t = 2\cdot 0.75 = 1.5$ and A = -0.5: oscillations and decay
- c. $\Delta t = 0.5$ and A = 0: $u^n = 0$ for n > 0
- d. Smaller Δt : qualitatively correct solution

Explanation of problems with Crank-Nicolson

a. $\Delta t = 1.25$ and A = -0.25: oscillatory solution

Never any growing solution

Summary of stability

- Forward Euler is *conditionally stable*
 - $\Delta t < 2/a$ for avoiding growth
 - $\Delta t \leq 1/a$ for avoiding oscillations
- The Crank-Nicolson is *unconditionally stable* wrt growth and conditionally stable wrt oscillations
 - $\Delta t < 2/a$ for avoiding oscillations
- Backward Euler is unconditionally stable

Comparing amplification factors

 u^{n+1} is an amplification A of u^n :

$$u^{n+1}=Au^n,\quad A=rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}$$

The exact solution is also an amplification:

$$egin{aligned} u(t_{n+1}) &= e^{-a(t_n + \Delta t)} \ u(t_{n+1}) &= e^{-a\Delta t}e^{-at_n} \ u(t_{n+1}) &= A_e u(t_n), \quad A_e &= e^{-a\Delta t} \end{aligned}$$

A possible measure of accuracy: $A_e - A$