AMENDMENTS TO THE CLAIMS

- (Currently Amended) A method of congestion control in transmission of data in packets over a network link using a transport layer protocol, wherein.
 - a)—the number of unacknowledged packets in transit in the link is less than or equal to a congestion window value cwndi; comprising;
 - a) b) varying the value of cwnd_i is varied—according to an additive-increase multiplicative-decrease (AIMD) law having ana rate of increase parameter α_i, and
 - b) -e)—increasing the value of α_i is increased-during each congestion epoch,
 - e) d) responsive to detection of network congestion during a kth congestion epoch at a time when the value of cwnd_i is w_i(k), setting the value of cwnd_i to βw_i(k)-δ where δ = 0 initially and δ_i = β_i(α_i^H α_i^L) after an increase in the value of α_i, and
 - d) permitting packets to be transmitted over the network link in accordance with the value of cwnd_i set in step c).
- (Currently Amended) A method of congestion control according to claim 1, further
 <u>comprising increasing in which</u> the value of α_l increases at a fixed time after the start
 of each congestion epoch.
- (Currently Amended) A method of congestion control according to claim 2 <u>further</u> <u>comprising calculating in which</u> the fixed time is <u>calculated</u> as a fixed multiple of the round-trip time for a data packet to travel over the network link.
- (Currently Amended) A method of congestion control according to claim 1 further
 <u>further comprising increasing in which</u> the value of a_i increases at a plurality of fixed times
 after the start of each congestion epoch.
- (Currently Amended) A method of congestion control according to claim 4 <u>further</u> <u>comprising calculating in which cach fixed time is calculated as a respective fixed</u> multiple of the round-trip time for a data packet to travel over the network link.

(Currently Amended) A method of congestion control according to claim 1 further
 <u>further comprising setting in which</u> the value of α_i is to unity at the start of each congestion
 epoch.

7. (Canceled)

- (Currently Amended) A method of congestion control according to claim 71 in
 whichfurther comprising increasing α_i increases—as a polynomial function of time
 from the start of a congestion epoch.
- 9. (Canceled)
- (Canceled)
- 11. (Currently Amended) A method according to claim 101, further comprising in which during each congestion epoch, at a time prior to increase in the value of α_i, the method implements implementing the transport control protocol (TCP) having standard congestion control.
- 12. (Currently Amended) A networking component for transmission of data in packets over a network link using a transport layer protocol, the networking component being operative to implement congestion control, wherein:
 - a) the number of unacknowledged packets placed by the networking component in transit on the link is less than or equal to a congestion window value cwnd;
 - a)b)the value of cwnd_i is varied according to an additive-increase multiplicative-decrease (AIMD) law having ana rate of increase parameter α_i; and

b)e) the value of α_i is increased during each congestion epoch,

e) the physical point of the state of the value of cwnd_i is $w_i(k)$, the value of cwnd_i is $w_i(k)$, the value of cwnd_i is set to $\beta_i w_i(k)$ - δ where $\delta = 0$ initially and $\delta_i = \beta_i \left(\alpha_i^{ii} - \alpha_i^{ii}\right)$ after an increase in the value of α_i , and

- d) packets are transmitted over the network link in accordance with the value of cwnd_i set in step c).
- 13. (Original) A networking component according to claim 12 in which the value of α_i is increased at a fixed time after the start of each congestion epoch.
- 14. (Original) A networking component according to claim 13 in which the fixed time is calculated as a fixed multiple of the round-trip time, being the interval between the networking component placing the packet on the network link and its receiving an acknowledgement of receipt of the packet.
- 15. (Original) A networking component according to claim 12 in which the value of \(\alpha_i\) is increased at a plurality of fixed times after the start of each congestion epoch.
- 16. (Original) A networking component according to claim 15 in which each fixed time is calculated as a respective fixed multiple of the round-trip being the interval between the networking component placing the packet on the network link and its receiving an acknowledgement of receipt of the packet.
- 17. (Original) A networking component according to claim 12 in which the value of α_i is unity at the start of each congestion epoch.
- 18. (Canceled)
- (Currently Amended) A networking component according to claim 1812 in which α_i is increased as a polynomial function of time from the start of a congestion epoch.
- 20. (Canceled)
- 21. (Currently Amended) A networking component according to claim 12 implemented in executable computer code stored on a computer readable medium.
- 22. (Currently Amended) A method of congestion control in transmission of data in packets over a network link using a transport layer protocol, to transmit a plurality of data flows on the link there being a respective round-trip time RTT, associated with

the ith data flow sharing the link, RTT_i being the interval between a networking component placing a packet on the network link and its receiving an acknowledgement of receipt of the packet, the shortest round-trip time being designated $RTT_{max,i}$ and the greatest round-trip time being designated $RTT_{max,i}$ wherein:

- the number of unacknowledged packets in transit in the link is less than or equal to a congestion window value cwnd_i, comprising;
- b)a)varying the value of cwnd is varied—according to an additive-increase multiplicative-decrease (AIMD) law having a multiplicative decrease parameter β_i, and
- e)b)sctting the value of β_i is-set as a function of one or more characteristics of one or more data flows earried over the network link $\beta_i = \frac{RT_{min}}{RT_{min}I}$, and
- e) permitting packets to be transmitted over the network link in accordance with the value of cwnd_i.
- 23. (Canceled)
- 24. (Canceled)
- 25. (Currently Amended) A method of congestion control according to claim $\frac{2422 \text{ in}}{\text{which}}$ which further comprising monitoring the values of $RTT_{min,i}$ and $RTT_{max,i}$ are monitored and re-evaluating the value of $\beta_i = \frac{RTT_{min,i}}{RTT_{max}}$ is re-evaluated-periodically.
- 26. (Currently Amended) A method of congestion control according to claim 22 in which the additive-increase multiplicative-decrease law has an a rate of increase parameter α_i, and comprising varying α_i is varied as a function of β_i.
- 27. (Currently Amended) A method of congestion control according to claim 26 in which and further comprising varying a_i is varied as $\alpha_i = 2(1 \beta_i)$.

- 28. (Canceled)
- 29. (Canceled)
- 30. (Canceled)
- 31. (Canceled)
- 32. (Currently Amended) A networking component for transmission of data in packets over a network link using a transport layer protocol, the networking component being operative to transmit a plurality of data flows on the link there being a respective round-trip time RTT_i associated with the ith data flow sharing the link, RTT_i being the interval between the networking component placing a packet on the network link and its receiving an acknowledgement of receipt of the packet, the shortest round-trip time being designated RTT_{max,i} and the greatest round-trip time being designated RTT_{max,i} the component being operative to implement congestion control, wherein:
 - the number of unacknowledged packets placed by the networking component in transit on the link is less than or equal to a congestion window value cwnd;
 - b)<u>a</u>)the value of cwnd_i is varied according to an additive-increase multiplicative-decrease (AIMD) law having a multiplicative decrease parameter β_i, and
 - e)b) the value of β_i is set as a function of one or more characteristics of one or more data flows earried over the network link $\beta_i = \frac{RT_{me}}{RT_{me},i}$ and
 - c) packets are transmitted over the network link in accordance with the value of cwnd_i.
- 33. (Canceled)
- 34. (Canceled)

- 35. (Currently Amended) A networking component according to claim 3432 operative to determine the values of RTT_{min,l} and RTT_{max,l} and re-evaluate the value of β_l periodically.
- 36. (Original) A networking component according to claim 35 that calculates the value of RTT_{max.t} from the value of β_t during previous congestion epochs.
- 37. (Canceled)
- 38. (Canceled)
- 39. (Canceled)
- 40. (Canceled)
- 41. (Canceled)
- 42. (Canceled)
- (Currently Amended) A networking component according to claim 3332 implemented in executable computer code stored on a computer readable medium.
- 44. (New) A networking component for transmission of data in packets over a network link using a transport layer protocol, the networking component being operative to implement congestion control.
 - wherein the number of unacknowledged packets placed by the networking component in transit on the link is less than or equal to a congestion window value *cwndi*;
 - a) the value of cwnd_i is varied according to an additive-increase multiplicative-decrease (AIMD) law having a multiplicative decrease parameter β_i and a rate of increase parameter α_i, and which is operative to vary α_i as α_i = 2(1 β_i);
 - b) the value of β_i is set as a function of one or more characteristics of one or more data flows carried over the network link, and

- packets are transmitted over the network link in accordance with the value of cwndi.
- 45. (New) A networking component for transmission of data in packets over a network link using a transport layer protocol, the networking component being operative to transmit a plurality of data flows on the link there being a respective round-trip time RTT_i associated with the ith data flow sharing the link, RTT_i being the interval between the networking component placing a packet on the network link and its receiving an acknowledgement of receipt of the packet, the shortest round-trip time being designated RTT_{min,i} and the greatest round-trip time being designated RTT_{max,i}, the component being operative to implement congestion control.

wherein the number of unacknowledged packets placed by the networking component in transit on the link is less than or equal to a congestion window value *cwndi*;

- a) the value of cwnd_i is varied according to an additive-increase multiplicativedecrease (AIMD) law having a multiplicative decrease parameter β_i;
- b) the value of β_i is set by:
 - during data transmission, periodically monitoring the value of the mean interpacket time IPT_{min} or the mean throughput;
 - ii) upon the measured value of IPTmin or the mean throughput moving outside of a threshold band, resetting the value of β_i to β_{reset}, and
 - iii) upon IPT_{min} or the mean throughput returning within the threshold band, setting $\beta_i = \frac{RT_{min}}{RT_{max}}$ and periodically resetting β_i in response to changes in the value of RTTmin,i or RTTmax,i or the mean throughput; and
- packets are transmitted over the network link in accordance with the value of cwndi.

46. (New) A networking component for transmission of data in packets over a network link using a transport layer protocol, the networking component being operative to implement congestion control,

wherein the number of unacknowledged packets placed by the networking component in transit on the link is less than or equal to a congestion window value *cwndi*;

- a) the value of ewnd_i is varied according to an additive-increase multiplicative-decrease (AIMD) law having a rate of increase parameter α_i;
- b) the value of α_i is increased during each congestion epoch as a function of time from the start of a congestion epoch, and
- packets are transmitted over the network link in accordance with the value of cwndi.