Submission: Typed, pdf on Canvas (scanned submissions are not allowed)

The answers must be the original work of the author. While discussion with others is permitted and encouraged, the final work should be done individually. You are not allowed to work in groups. You are allowed to build on the material supplied in the class. Any other source must be specified clearly.

1. $(20+30 \ points)$ Let M be the following NFA- λ :

(a) Give the input transition function (t) for M in tabular form. Include a column for the λ -closure of each state. Remember that each state is a member of its λ -closure. this is the transition function(not the input transition function)

$$\begin{array}{c|ccccc} \delta & {\bf a} & {\bf b} & \lambda \\ q_0 & q_0 & \emptyset & q_1, q_3 \\ q_1 & q_2 & q_4 & \emptyset \\ q_2 & \emptyset & q_1 & \emptyset \\ q_3 & q_4 & q_3 & \emptyset \\ q_4 & \emptyset & \emptyset & \emptyset & \emptyset \end{array}$$

this is the λ -transition

' λ -closure'	λ -closure
q_0	q_0, q_1, q_3
q_1	q_1
q_2	q_2
q_3	q_3
q_4	q_4

this is the input transition

t	a	b
q_0	q_0, q_1, q_2, q_3, q_4	q_3, q_4
q_1	q_2	q_4
q_2	Ø	q_1
q_3	q_4	q_3
q_4	Ø	Ø

(b) Construct a state diagram of a DFA that is equivalent to M. Give the transition function and draw the state diagram of the equivalent DFA.

b a \emptyset q_0 q_0, q_1, q_3 q_0 q_4 q_1 q_1 q_2 this is the transition function(not the input transition function) Ø q_2 q_1 q_2 q_3 q_4 q_3 q_3 \emptyset q_4 q_4

2. (30+20 points) Consider the DFA below.

- (a) Construct a two dimensional table where the row and column headers are the states of the above DFA. Mark each cell with a '1' (or a higher number representing the iteration number) if the states are "different." Unmarked cells will represent indistinguishable states.
- (b) Construct a minimized DFA by collapsing (groups of) indistinguishable states into single states.