

Mini course: Julia Lecture 1: Introduction

Friederike, Gaston & Juan

friederike.metz@oist.jp

February 22, 2021

- Introduction
 - Why does Julia exist
 - What is wrong with the status quo
- ② Getting started
- 3 Language syntax and semantics
- The ecosystem

Why does Julia exist?

Key Points

- Low-level languages are fast, but high level languages are readable.
- 2 Recent advances in compiler design could bridge these two aspects.
- 3 Julia is being openly developed by researchers, for researchers.

The old mission statement is available here and some good discussion is available at here.

My personal reason

A fast, open-source, high level language that is powerful enough to do serious numerical work, while being designed to encourage good code.

The other contenders

The typical languages used in science are

- O Python
- Matlab
- R

Once a problem is becoming to big we usually move to

- **●** C/C++
- ② Fortran

This is called the 2+ language problem and Julia is trying to solve that.

Python and Numpy

- The compilers that exist (Numba) only work on primitive types and not user defined ones.
- GIL (Global Interpreter Lock) mask multi-threading hard.
- For fast code you need to write it in C.
- Numpy is great, but awful syntax for math.

Matlab

- It costs a lot of money and is not open-source.
- Matlab will only be fast for a subset of operations.
- Matlab tends to hide the computer from the programmer.

A (biased) performance comparision

The REPL

The Read-Eval-Print-Loop

The REPL is a command-line interface to Julia and is ideal for short experiments.

julia>

In the REPL you can use ? to switch your REPL mode into help mode and get information about functions.

IDEs

There are two main IDEs that are *feature* complete and can be used for Julia. The main one is based on Atom and is called Juno http://junolab.org/.

The second one is based on on Visual Studio Code and available at https://marketplace.visualstudio.com/items?itemName=julialang.language-julia.

We will not be using these during the course, but you are welcome to try them out

Jupyter

Jupyter is an interactive web-based client for Python, Julia, R and many other languages. It offers a programming environment that is well suited for explorative data analysis or prototyping.

Installation

```
julia> ENV["JUPYTER"] = "'
julia> ] add IJulia
```

Starting a Jupyter session

```
julia> using IJulia
julia> notebook()
```

JuliaBox

There is an online service provided by JuliaComputing at https://juliabox.com that gives you a cloud version of Jupyter.

Variables and datatypes

Julia is a dynamic language and so you can simply create variables in any scope.

```
x = 1 # x will be of type Int64
y = 1.0 \# y \text{ will be of type Float64}
z = 1.0 - 2.0im # z will be an Complex{Float64}
1//2 # Rational numbers
"This is a String"
.....
This is a multiline
String
.....
'C' # Character literal
1.0f0 # Float32 literal
```

Use typeof to check the type of any variable. Variable names can be unicode and so greek symbols can be used. In the REPL and most editors you can insert them by entering their LATEX name and press [Tab].

Variables and datatypes

Exercise

Create a variable λ that stores the value of π . Check the type of λ . Look up the docs for the convert function. Convert λ to float.

Solution

```
# \lambda + <tab> = \pi + <tab> \lambda = \pi typeof(\lambda) ?convert convert(Float32, \lambda)
```

Data structures


```
# Tuple: (item1, item2, ...)
okinawa = ("Onna", "Nago", "Naha")
okinawa[1]
# NamedTuple: (name1 = item1, name2 = item2, ...)
okinawa = (central = "Onna", north = "Nago", south = "Naha")
okinawa.north
# Dictionaries: Dict(key1 => value1, key2 => value2, ...)
number = Dict("Jeremie" => "12345", "Juan" => nothing)
number["Juan"] = "4444"
# Arrays: [item1, item2, ...]
fibonacci = [1, 1, "two", 3, "five", 8, 13]
fibonacci[3] = 2
```

Julia is 1-based indexing, not 0-based like Python!!! You can add or remove elements using push! and pop!.

Conditionals

Julia has all the typical conditionals if, else, elseif which have to end in an end. Blocks in Julia are not whitespace sensitive and conditionals do not need to be wrapped in round brackets.

```
if rand() < 0.5
  println("Gaston is awesome!")
else
  println("Juan is awesome!")
end

# Ternary operator: a ? b : c
rand() < 0.5 ? println("Gaston is awesome!") : println("Juan
  is awesome!")</pre>
```

&& is the and operator, || is the or operator.

Conditionals

Exercise

Print an error message if a variable x is greater than zero

Solution

```
if x > 0 error("x cannot be greater than 0") end

# Ternary operator
x > 0 ? error("x cannot be greater than 0") : nothing

# Short-circuit evaluation
(x > 0) && error("x cannot be greater than 0")
```

Loops

Julia has for and while loops. A while loop takes a condition and a for loop takes an iterator. One can use break to break out of a loop and continue to skip to the next iteration.

```
for (i, x) in enumerate(['A', 'B', 'C'])
  if x == 'B'
    continue
  end
  println(i)
end

while true
  rand() < 0.1 ? break : println("You are trapped!")
end</pre>
```

Loops

Exercise

Create a dictionary that holds integers (up to the value 100) and their squares as key, value pairs.

Solution

```
squares = Dict()
for i in 1:100
    squares[i] = i^2
end
println(squares)

# Array comprehension
squares_array = [i^2 for i in 1:100]
```

Functions and lambdas

Julia uses functions to organize operations. Every function is compiled for the combination of input parameters.

```
function f(x, y)
  return x + y
end

g(x) = x^2
h = x -> 1/x # "anonymous" functions

# map takes a function as input and applies that function to
  every element of the data structure you pass it.
map(lowercase, ['A', 'B', 'C'])
map(x->x+2, [1, 2, 3])
```

By convention, functions followed by ! alter their contents and functions lacking ! do not, e.g. sort() vs. sort!().

Types

Julia's type system allows you to restrict functions to certain types and specialized functions for others. You can also create your own types. The names of types are typically captialized while functions are lowercase.

```
abstract type Entity end
mutable struct Player <: Entity
  mass::Float64
  name::String
  position::Tuple{Float64, Float64}
end
struct Object <: Entity
  position::Tuple{Float64, Float64}
end
newObject=Object(0,0)</pre>
```

Multiple dispatch in a nutshell

Julia is not an Object-Oriented programming language so functions do not belong to an object. A function is a set of multiple methods each with their own signatures. When you call a function the most specific methods is executed.

```
function h(x::Number)
  println("x is most definitly a number.")
end
function h(x::Integer)
  println("x is a integer")
end
function h(x::Int8)
  println("Specific method for Int8")
end
```

This becomes really powerful when having multiple arguments and being able to select the most specific method.

Modules

Julia code is organised as modules (namespaces). Module names are capitalised and you can nest modules as well.

```
module MyModule
  export f

g() = "Internal function"
  f() = println(g())
end
using Main.MyModule
```

Installing packages

Julia has an inbuilt package manager called Pkg. You can access it from the REPL by entering]. For example, to install and load the Julia package Distributions.jl in the REPL just run:

```
# Installing a package
] add Distributions
# Loading it afterwards
using Distributions
```

A few other commands:

```
# Updating all installed packages
] update
# What packages are installed?
] status
```

Look here for more information about Julia packages.

Resources


```
Documentation https://docs.julialang.org/en/v1.5/
Forum https://discourse.julialang.org
GitHub https://github.com/JuliaLang/julia
Slack https://julialang.org/slack/
YouTube https://www.youtube.com/user/JuliaLanguage
Learning https://julialang.org/learning/
```

OIST also has a Slack workspace: julia@oist

What is next?

Question?!

What do you want to hear/learn more about?

Wednesday How to use Julia for computation and plotting Friday Problem sets and ???