Master of Management Analytics

Medical Insurance Fraud Investigation—Medicare

Criteria for Fraud Detection

October 22, 2020

Prepared by: Aichen Liu

Colleen Liu

Rita Lyu

William Chien

Overview

- Introduction
 - Objectives and background
 - Data
- Key Variables and Correlation
- Model Selection and Implication
- Recommendation
- Appendix
 - Appendix 1

- Appendix 4

- Appendix 2

- Appendix 5

- Appendix 3

- Appendix 6

Here's where it changes.

Introduction

Introduction

Rotman

Objectives and Background

- Insurance fraud is usually an attempt to exploit an insurance contract for financial gain. Specialists
 found that physicians and providers associated with Medicare have involved in many cases of fraud.
- This exploratory research focuses on fraud investigations and recommendations on how to combat Medicare fraud.
- Medicare is the federal health insurance program for people who are 65 or older. Medicare has four parts, but in this research, we focus on Part A and Part B.
- Part A: Hospital insurance covers inpatient hospital stays, skilled nursing care, hospice care
- Part B: Doctor and outpatient services, covers doctor visits, lab tests, diagnostic screenings

Introduction Data

- The data contains over fifty thousand observations and sixty variables, which involves 5410 providers and 506 of them are flagged as Fraud.
- Key variables considered:
 - Provider ID
 - Claims ID
 - Beneficiary ID
 - Reimbursed Amount each claim
 - Number of inpatients claims each provider made between Dec 2008 and Dec 2009
 - Number of outpatients claims each provider mad between Dec 2008 and Dec 2009
 - Diagnosis group code
 - Beneficiary's gender
 - Beneficiary's race
 - Types of chronic disease beneficiary have(such as Cancer, Alzheimer)
 - Whether beneficiary have Renal disease
 - Duration in hospital
 - Whether beneficiary is died
 - Whether beneficiary have surgery

Key Variables and Correlation

By looking at these bar charts, we can see that the proportion of fraud is higher for inpatients claims than for outpatients claims.

These plots indicate the number of claims each providers made. Blue bars represent potential fraud providers and red bars represent normal providers. As indicated, providers who are potential fraud are more likely to make claims than non-flagged provides.

This plot groups claims by diagnosis groups. The x-axis represents each diagnosis group. The length of the blue and red bars represent the proportion of fraud claims and the proportion of the normal claims respectively. There are some diagnosis groups which their bars are all blue. Those are the groups contain only fraud claims(Arrows). They are: 113, 115, 116, 124, 768, 776, 843, 846, 927, 955. These groups should be paid more attention.

Similar as above, the x-axis of this plot represent the types of chronic disease. It is obvious that 'ischemicheart' has the highest proportion of fraud claims. Therefore, claims for ischemic heart should be paid more attention.

These plots indicate the reimbursed amount for one selected claim for each provider. Blue bars represent potential fraud providers and red bars represent normal providers. As indicated, providers who are potential fraud tend to make larger amount claims than normal providers.

The relationship between fraud and gender, race, whether have renal disease, or whether have surgery are subtle. It is not very evident from the graphs.

Rotman

Overlapping inpatients and outpatients period

BENE100075 was in hospital from 2008-12-31 to 2009-01-07, but in the same period, BID was used by 6 different providers to claim outpatient reimbursement.

Similar potential fraud claims can be found for other BID.

Model Selection and Implication

Since Fraud can take two value 1(fraud) and 0(no fraud), we use logistic model in this case.

The first equation gives that Yi follows Binomial distribution where Yi is the number of fraud claims, Ni is the number of students in group i. µi is the estimated probability that the ith claim is a fraud.

In the second equation, logit(p) represents the log of odds of claim being a fraud.

$$Y_i \sim Binomial(N_i, \mu_i),$$

$$logit(p) = eta_0 + eta_1 I_{IschemicHeart} + eta_2 X_{AmtReimbursed} + \ eta_3 X_{numofclaims} + eta_4 I_{RenalDisease} + eta_5 I_{surgery}$$

<u>Inpatient claim</u>

	est	0.5 %	99.5 %
(Intercept)	0.143	0.125	0.165
Chronic_IschemicHeart	1.020	0.925	1.125
AmtReimbursed	1.000	1.000	1.000
num_claims	1.040	1.038	1.041
RenalDisease1	0.998	0.922	1.079
surgeryYes	1.003	0.933	1.078

Outpatient claim

	est	0.5 %	99.5 %
(Intercept)	0.083	0.080	0.086
Chronic_IschemicHeart	1.004	0.980	1.028
AmtReimbursed	1.000	1.000	1.000
num_claims	1.003	1.003	1.003
RenalDiseaseY	1.021	0.995	1.048
surgeryYes	0.988	0.962	1.015

The first column is the estimated value of the odds of being fraud. The second and last columns give the confidence interval for each subgroup. (On a natural scale)

As indicated, since confidence interval for reimbursement amount and number of claims don't contain 1, Therefore, they are significantly affecting whether the provider is fraud.

Recommendation

Recommendations

Based on the analysis, our team proposes to audit the providers who submitted claims include ...

Category	Criteria	Remark			
Diagnosis Group Code	113, 115, 116	 Research suggests that these codes does not exist Most likely these claims are fake 			
	124, 768, 776, 843, 846, 927 and 955	All providers who submit claims in these codes are all flagged			
Beneficiary's chronic disease	ischemic heart	Contains the highest proportion of fraud claims among all the chronic disease			
Number of claims submitted	over 200 impatient claims	From the model, this factor significantly drives the outcome of the fraud test			
	over 2000 outpatient claims	 From the graphs, fraud providers exhibit the features that submit higher volume of claims 			
Reimbursement of a claim	over \$500,000 for a outpatient claim	 From the model, this factor significantly drives the outcome of the fraud test From the graphs, the reimbursement amount of claims submitted by fraud providers is significantly higher 			
	over \$2,000,000 for an inpatient claim	- Casimica by mada providere to digitilicantly ingrior			

Recommendations Cont.

Based on the analysis, our team proposes to audit the providers who submitted claims include ...

Category	Criteria	Remark		
Overlapping inpatient and outpatient periods	over the same period, a BID is associate with one inpatient claim and multiple outpatient claims	Outpatient claims made by other provides are likely to be the fraud claims.		
Frequency of claiming same diagnosis code	over 7 times of the common diagnosis code	 Fraud claims usually happen with high reimbursement in a short period. If a provider claims the same diagnosis code within a given 		
	over 3 times of the un-common diagnosis code	 period, it is considered a potential fraud. Common diagnosis code include 486, v5789, 0389, 41401, 49121, etc., which are frequent among all providers. Therefore can set a higher limit for fraud. 		

Master of Management Analytics

Thank you for watching

October 22, 2020

Prepared by: Aichen Liu

Colleen Liu

Rita Lyu

William Chien

Appendix


```
```{r setup, include=FALSE}
 inpatients = inpatients %>% mutate(chronic = case when(
knitr::opts chunk$set(echo = TRUE)
library(dplyr)
 Chronic Alzheimer == 2 ~ "Alzheimer",
library(ggplot2)
 Chronic Heartfailure == 2~"Heartfailure",
library(tidyverse)
 Chronic KidneyDisease==2~"KidneyDisease",
library(cowplot)
 Chronic Cancer==2~"Cancer".
inpatients = read.csv("merged_data_in.csv")
 Chronic ObstrPulmonary==2~"ObstrPulmonary",
outpatients = read.csv("merged data out.csv")
 Chronic Depression==2~"Depression",
inpatients$Fraud = as.factor(inpatients$Fraud)
 Chronic Diabetes==2~"Diabetes",
inpatients = inpatients %>% mutate(death = case when(
 Chronic IschemicHeart==2~"IschemicHeart",
 is.na(inpatients$DOD) ~ "No"))
 Chronic Osteoporasis==2~"Osteoporasis",
inpatients$death[is.na(inpatients$death)] <- "Yes"
 Chronic rheumatoidarthritis==2~"rheumatoidarthritis",
outpatients = outpatients %>% mutate(death = case when(
 Chronic stroke==2~"stroke"
 is.na(outpatients$DOD) ~ "No"))
))
outpatients$death[is.na(outpatients$death)] <- "Yes"
outpatients$Fraud[outpatients$Fraud=="No"] <- 0
 outpatients = outpatients %>% mutate(chronic = case when(
outpatients$Fraud[outpatients$Fraud=="Yes"] <- 1
 Chronic Alzheimer == 2 ~ "Alzheimer",
#outpatients$RenalDisease[outpatients$RenalDisease=="Y"] <- "1"
 Chronic Heartfailure == 2~"Heartfailure",
inpatients = inpatients %>% mutate(chronic = case when(
 Chronic KidneyDisease==2~"KidneyDisease",
 Chronic Alzheimer == 2 ~ "Alzheimer",
 Chronic Cancer==2~"Cancer",
 Chronic Heartfailure == 2~"Heartfailure",
 Chronic ObstrPulmonary==2~"ObstrPulmonary",
 Chronic KidneyDisease==2~"KidneyDisease",
 Chronic Depression==2~"Depression",
 Chronic Cancer==2~"Cancer",
 Chronic Diabetes==2~"Diabetes",
 Chronic ObstrPulmonary==2~"ObstrPulmonary",
 Chronic IschemicHeart==2~"IschemicHeart",
 Chronic Depression==2~"Depression",
 Chronic Diabetes==2~"Diabetes",
 Chronic Osteoporasis==2~"Osteoporasis",
 Chronic IschemicHeart==2~"IschemicHeart",
 Chronic rheumatoidarthritis==2~"rheumatoidarthritis",
 Chronic Osteoporasis==2~"Osteoporasis",
 Chronic stroke==2~"stroke"
 Chronic rheumatoidarthritis==2~"rheumatoidarthritis",
))
 Chronic stroke==2~"stroke"
```

```
inpatients = inpatients %>% mutate(death = case when(
 DOD !=NA ~ 1.
outpatients = outpatients %>% mutate(death = case when(
 DOD !=NA ~ 1.
mma1 =inpatients %>% ggplot(aes(x=Fraud)) +
geom bar(fill="steelblue")+xlab("0:No Fraud, 1:Fraud") +
ylab("number of inpatients claims")+ggtitle("Inpatients")
mma2=outpatients %>% ggplot(aes(x=Fraud)) +
geom bar(fill="steelblue")+ggtitle("Outpatients")+xlab("0:No
Fraud, 1:Fraud") + ylab("number of outpatients claims")
plot grid(mma1, mma2, labels = "AUTO")
mma3=ggplot(inpatients, aes(x=PID,color=Fraud)) +
geom bar()+ xlab("providers") + ylab("number of impatient
claims")
mma4=ggplot(outpatients, aes(x=PID,color=Fraud)) +
geom bar()+ xlab("providers") + ylab("number of outpatients
claims")
plot grid(mma3, mma4, labels = "AUTO")
c = data.frame(inpatients %>% select(PID) %>%
table(useNA="always"))
names(c)[1] <- "PID"
inpatients = merge(x = inpatients, y = c, by = "PID", all.x =
TRUE)
names(inpatients)[63] <- "num claims"
```

```
d = data.frame(outpatients %>% select(PID) %>%
table(useNA="always"))
names(d)[1] <- "PID"
outpatients = merge(x = outpatients, y = d, by = "PID", all.x
= TRUE)
names(outpatients)[56] <- "num claims"
ggplot(inpatients,
aes(x=DiagnosisGroupCode,color=Fraud)) +
geom bar(position = "Fill")+xlab("Diagnosis Group Code") +
ylab("Proportion of Fraud")+ggtitle("Proportion of Fraud
within each diagnosis group code(inpatients")
a = inpatients%>% select(DiagnosisGroupCode) %>%
table(useNA="always")
a = data.frame(a)
sub yes = filter(inpatients, Fraud == 1)
b = data.frame(sub_yes%>% select(DiagnosisGroupCode)
%>% table(useNA="always"))
Diagn GroupCode = merge(x = a, y = b, by = ".", all.x =
TRUE)
Diagn GroupCode = Diagn GroupCode %>%
mutate(yes p = Freq.y/Freq.x)
Diagn GroupCode F = filter(Diagn GroupCode, yes p ==
1)
Diagn GroupCode F$.
inpatients$Gender = as.factor(inpatients$Gender)
mma5=ggplot(inpatients, aes(x=Gender,color=Fraud)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ ylab("number of inpatients claims")
```

#### Rotman

```
inpatients$Gender = as.factor(inpatients$Gender)
mma5=ggplot(inpatients, aes(x=Gender,color=Fraud)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ ylab("number of inpatients claims")
outpatients$Gender = as.factor(outpatients$Gender)
mma6=ggplot(outpatients, aes(x=Gender,color=Fraud)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ ylab("number of outpatients claims")
plot grid(mma5, mma6, labels = "AUTO")
mma7=ggplot(inpatients, aes(x=Race,color=Fraud)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ylab("number of inpatients claims")
mma8=ggplot(outpatients, aes(x=Race,color=Fraud)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ylab("number of outpatients claims")
plot grid(mma7, mma8, labels = "AUTO")
inpatients$RenalDisease = as.factor(inpatients$RenalDisease)
mma9 = ggplot(inpatients, aes(x=Fraud,color=RenalDisease)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ylab("number of inpatients claims")
outpatients$RenalDisease =
as.factor(outpatients$RenalDisease)
mma10=ggplot(outpatients, aes(x=Fraud,color=RenalDisease))
+ geom bar(position = position dodge(preserve =
"single"),fill="white")+ylab("number of outpatients claims")
plot grid(mma9, mma10, labels = "AUTO")
```

```
mma11 = ggplot(inpatients, aes(x=chronic,color=Fraud)) +
geom bar(position = "fill", fill="white",)+theme(axis.text.x =
element text(colour = "grey20", size = 12, angle = 90, hiust = 0.5, viust =
0.5),
 axis.text.y = element text(colour = "grey20", size = 12),
 text = element text(size = 16))+ylab("Proportion of
Fraud")+ggtitle("Proportion of Fraud for each chronic disease(inpatients")
```{r}
mma12=ggplot(inpatients, aes(x=chronic,color=Fraud)) +
geom bar(position = "fill", fill="white", )+theme(axis.text.x =
element text(colour = "grey20", size = 12, angle = 90, hjust = 0.5, vjust =
0.5),
               axis.text.y = element text(colour = "grey20", size = 12),
      text = element text(size = 16))+ylab("Proportion of
Fraud")+ggtitle("Proportion of Fraud for each chronic
disease(outpatients")
plot grid(mma11, mma12, labels = "AUTO")
ggplot(inpatients, aes(x=Fraud, y=Duration hospital)) +
 geom boxplot()+ ylab("number of days")+ggtitle("Number of days of
In-hospital care ")
ggplot(inpatients, aes(x = PID, y = AmtReimbursed, fill = Fraud)) +
     geom_bar(stat = "identity")+ ylab("dollars")+ggtitle("Reimbursment
amount for each inpatient claims")
ggplot(outpatients, aes(x = PID, y = AmtReimbursed, fill = Fraud)) +
     geom bar(stat = "identity")+ ylab("dollars")+ggtitle("Reimbursment
amount for each outpatient claims")
```

Rotman

```
inpatients = inpatients %>% mutate(surgery = case when(
 is.na(inpatients$OperatingPhysician) ~ "No"))
inpatients$surgery[is.na(inpatients$surgery)] <- "Yes"
mma13=ggplot(inpatients, aes(x=Fraud,color=surgery)) +
geom_bar(position = position_dodge(preserve = "single"),fill="white") +
ylab("number of inpatients claims")
outpatients = outpatients %>% mutate(surgery = case when(
 is.na(outpatients$OperatingPhysician) ~ "No"))
outpatients\surgery[is.na(outpatients\surgery)] <- "Yes"
mma14=ggplot(outpatients, aes(x=Fraud,color=surgery)) +
geom bar(position = position dodge(preserve =
"single"),fill="white")+ylab("number of outpatients claims")
plot grid(mma13, mma14, labels = "AUTO")
```{r}
inpatients$death = as.factor(inpatients$death)
ggplot(inpatients, aes(x=death,color=Fraud)) + geom bar(position =
"fill",fill="white") + ylab("proportion of Fraud") + ggtitle("Proportion of
Fraud VS. Death")
logi inpatients = glm(Fraud ~
Chronic IschemicHeart+AmtReimbursed+num claims +
RenalDisease+surgery,
data=inpatients, family='binomial')
aaa = cbind(est=logi inpatients$coef, confint(logi inpatients,
level=0.99))
```

```
oddsMat = exp(aaa)
knitr::kable(oddsMat, digits=3)
outpatients$Fraud = as.factor(outpatients$Fraud)
logi outpatients = glm(Fraud ~
Chronic IschemicHeart+AmtReimbursed+num claims +
RenalDisease+surgery,
data=outpatients, family='binomial')
#knitr::kable(logi outpatients, digits=3,caption = "Figure 2")
#summary(logi outpatients)
bbb = cbind(est=logi outpatients$coef,
confint(logi outpatients, level=0.99))
oddsMat = exp(bbb)
knitr::kable(oddsMat, digits=3)
$$ Y i \sim {Binomial}(N {i},\mu {i}),$$
$$logit(p)=\beta 0
+\beta 1I {IschemicHeart}+\beta 2X {AmtReimbursed}+\b
eta 3X {numof
claims}+\beta 4I {RenalDisease}+\beta 5I {surgery}$$
```



#### Appendix 5. Sanity check on dates

	Inpatients	Outpatients
StartDt > EndDt (eg. StartDt = 2009-01-09 EndDt = 2009-01-01)	0	1,986
StartDt = EndDt	605	495,189
StartDt < EndDt	39,869	20,562

	31	# Sanity check if EndDt is before StartDt				
	32 •	• SELECT BID, CID, StartDt, EndDt				
	33	FROM	outpatient	ts		
	34	WHER	E StartDt	> EndDt		
<						
• • • • • • • • • • • • • • • • • • • •		1				A
	BID		CID	StartDt	EndDt	
Þ	BENE 1	00036	CLM607135	2009-01-09	2009-01-01	_
	BENE 1	00075	CLM578054	2009-01-09	2009-01-01	
	BENE 1	00209	CLM602028	2009-01-09	2009-01-01	
	BENE 1	00235	CLM573690	2009-01-09	2009-01-01	
	BENE 1	00292	CLM605404	2009-01-09	2009-01-01	
	BENE 1	00305	CLM593516	2009-01-09	2009-01-01	
	BENE 1	00305	CLM603685	2009-01-09	2009-01-01	
	BENE 1	00398	CLM591000	2009-01-09	2009-01-01	
	BENE 1	00564	CLM574601	2009-01-09	2009-01-01	
					0_	

- Majority of outpatients records are on the same day.
- Outpatients whose StartDt > EndDt, are all starting and ending on the same date.





#### Appendix 6. Frequent claimed diagnosis/procedure code by PID

```
frequent diagnosis/procedure code
 52
 53
 # Inpatients/outpatients Diagnosis 1-10
 SELECT PID, DiagnosisCode 1, COUNT(DiagnosisCode 1)
 54 •
 FROM inpatients
 55
 56
 GROUP BY PID, DiagnosisCode 1
 57
 ORDER BY COUNT(DiagnosisCode_1) DESC
 58
Result Grid
 Export:
 Wrap Cell Content: TA Fetch r
 Filter Rows:
 PID
 DiagnosisCode_1
 COUNT(DiagnosisCode_1)
 PRV55462
 486
 22
 PRV52019
 486
 20
 19
 PRV52019
 V5789
 PRV52019
 49121
 15
 14
 PRV52019
 0389
 14
 PRV52019
 41401
 PRV52019
 42731
 14
 13
 PRV55462
 V5789
 13
 PRV55462
 41071
 13
 PRV55209
 486
 13
 PRV55209
 0389
 12
 PRV54367
 486
 12
 PRV57191
 41401
 PRV54367
 V5789
 11
 11
 PRV52120
 42731
 PRV51501
 11
 486
```