# Digital Image Processing (CSE 478) Lecture 19-20: Image Compression

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

#### Motivation

- Consider a 2 hour, full HD video (resolution of 1920 × 1080)
- The storage space required per frame :1920  $\times$  1080  $\times$  24 bits = 6.22 MB
- Space required per second:  $1920 \times 1080 \times 24 \times 30$  bits
- Space required for entire movie:  $1920 \times 1080 \times 24 \times 30 \times 2 \times 60 \times 60$  bits =  $1920 \times 1080 \times 3 \times 30 \times 2 \times 60 \times 60$  bytes =  $1.34 \times 10^{12}$  bytes= **1340 GB**

To put it on a 25 GB blu ray disc: required compression factor = 53.6

#### Redundancy

- Coding redundancy
- Spatial and Temporal redundancy
- Irrelevant Information (often perceptually irrelevant)

Compression is all about exploiting these redundancies!

## Coding redundancy



| $r_k$                                | $p_r(r_k)$ | Code 1   | $l_1(r_k)$ | Code 2 | $l_2(r_k)$ |
|--------------------------------------|------------|----------|------------|--------|------------|
| $r_{87} = 87$                        | 0.25       | 01010111 | 8          | 01     | 2          |
| $r_{128} = 128$                      | 0.47       | 10000000 | 8          | 1      | 1          |
| $r_{186} = 186$                      | 0.25       | 11000100 | 8          | 000    | 3          |
| $r_{255} = 255$                      | 0.03       | 11111111 | 8          | 001    | 3          |
| $r_k$ for $k \neq 87, 128, 186, 255$ | 0          | _        | 8          | _      | 0          |

Average encoding length?

## Spatial and temporal redundancy



## Spatial and temporal redundancy



frame t frame t+1

## Spatial and temporal redundancy







 Not all visual information is perceived by eye/brain, so throw away those that are not























## Compression types and evaluations

#### Two kinds:

- 1. Lossless
- 2. Lossy



## Quality measurement: judged by human viewers

- Five scale system on the degree of impairment
  - 1. Impairment is not noticeable
  - 2. Impairment is just noticeable
  - 3. Impairment is definitely noticeable, but not objectionable
  - 4. Impairment is objectionable
  - 5. Impairment is extremely objectionable

Advantages: relies on HVS

Drawbacks: time, viewing conditions, viewers?





## Quality measurement: Signal to noise ratio

$$e(x,y) = f(x,y) - g(x,y).$$
  $E_{\text{ms}} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} e(x,y)^2$ 

$$SNR_{ms} = 10 \log_{10} \left( \frac{\sum_{x=0}^{N} \sum_{y=0}^{N} g(x, y)^2}{MN \cdot E_{ms}} \right)$$

$$PSNR = 10\log_{10}\left(\frac{255^2}{E_{\rm ms}}\right)$$

## Information theory: Self energy

- Information is defined as knowledge, fact, and news
- It can be measured quantitatively
- The carriers of information are symbols. Consider a symbol with an occurrence probability p. The amount of information contained in the symbol is defined as:

$$I = \log_2 \frac{1}{p}$$
 bits or  $I = -\log_2 p$ 

## Information theory: Entropy

- Consider a source that contains L possible symbols {s,i=0,1,2,...,L-1}
- With corresponding occurrence probabilities defined as  $\{p_i, i=0,1,2,...,L-1\}$

#### Entropy

$$H = -\sum_{i=0}^{L-1} p_i \log_2 p_i$$

| $r_k$                                | $p_r(r_k)$ | Code 1   | $l_1(r_k)$ | Code 2 | $l_2(r_k)$ |
|--------------------------------------|------------|----------|------------|--------|------------|
| $r_{87} = 87$                        | 0.25       | 01010111 | 8          | 01     | 2          |
| $r_{128} = 128$                      | 0.47       | 10000000 | 8          | 1      | 1          |
| $r_{186} = 186$                      | 0.25       | 11000100 | 8          | 000    | 3          |
| $r_{255} = 255$                      | 0.03       | 11111111 | 8          | 001    | 3          |
| $r_k$ for $k \neq 87, 128, 186, 255$ | 0          | _        | 8          | _      | 0          |
|                                      |            |          |            |        |            |

$$log(0.47) = -1.09$$
  
 $log(0.03) = -5.06$ 

## Information theory: Shannon's theorem

- Shannon's lossless source coding theorem states that for a discrete, memoryless, stationary information source, the minimum bit rate required to encode a symbol on average is equal to the entropy of the source.
- In other words: we can't do better than the entropy
- Lets understand with an example

| $r_k$                                | $p_r(r_k)$ | Code 1   | $l_I(r_k)$ | Code 2 | $l_2(r_k)$ |
|--------------------------------------|------------|----------|------------|--------|------------|
| $r_{87} = 87$                        | 0.25       | 01010111 | 8          | 01     | 2          |
| $r_{128} = 128$                      | 0.47       | 10000000 | 8          | 1      | 1          |
| $r_{186} = 186$                      | 0.25       | 11000100 | 8          | 000    | 3          |
| $r_{255} = 255$                      | 0.03       | 11111111 | 8          | 001    | 3          |
| $r_k$ for $k \neq 87, 128, 186, 255$ | 0          | _        | 8          | _      | 0          |

# Validity of the code?

• Lets take an example

| Symbol | Probability | Code1 | Code2 | Code3 | Code4 |
|--------|-------------|-------|-------|-------|-------|
| s1     | 1/2         | 0     | 0     | 0     | 0     |
| s2     | 1/4         | 0     | 1     | 10    | 01    |
| s3     | 1/8         | 1     | 00    | 110   | 011   |
| s4     | 1/8         | 10    | 11    | 111   | 0111  |









# Lossless compression

## Lets begin with simplest case: Lossless compression



#### Lossless compression: Huffman coding

- Already discussed in class
- Quick example : ABRAAKADABRAA

## Lossless compression: Run Length coding

- Already discussed in class
- 15 0's, 11 1's, 8 0's, 6 1's
- 1111101110000110

How many bits to store the count?

Give a scenario where run length coding will be extremely effective?

## Lossless compression: Arithmetic coding

| Source Symbol | Probability | Initial Subinterval |
|---------------|-------------|---------------------|
| $a_1$         | 0.2         | [0.0, 0.2)          |
| $a_2$         | 0.2         | [0.2, 0.4)          |
| $a_3$         | 0.4         | [0.4, 0.8)          |
| $a_4$         | 0.2         | [0.8, 1.0)          |

Input sequence:  $a_1 a_2 a_3 a_3 a_4$ 



Final code: 0.068 (could be anything between the computed range)

3 decimal digits for 5 symbols = 3/5 digits per symbol

How many bits per symbol?

## Lossless compression: Arithmetic coding

| Source Symbol | Probability | Initial Subinterval |
|---------------|-------------|---------------------|
| $a_1$         | 0.2         | [0.0, 0.2)          |
| $a_2$         | 0.2         | [0.2, 0.4)          |
| $a_3$         | 0.4         | [0.4, 0.8)          |
| $a_4$         | 0.2         | [0.8, 1.0)          |

Another sequence:  $a_1a_1$   $a_3$ 

## Lossless compression: Dictionary coding

- Important in presence of recurring patterns
- Static and adaptive
- Static example: a b r a c a d a b r a
- Dynamic dictionary
  - Build during compression after observing the data
  - Rebuild at the decompression step
  - LZW is the commonly used algorithm

| $A = \frac{1}{2}$ | {a, | b, | С, | d, | r | ļ |
|-------------------|-----|----|----|----|---|---|
| <i>7</i> 1 —      | ιu, | υ, | υ, | α, | • | ١ |

| Code | Entry |
|------|-------|
| 000  | а     |
| 001  | b     |
| 010  | С     |
| 011  | d     |
| 100  | r     |
| 101  | ab    |
| 110  | ac    |
| 111  | ad    |

Lossy compression (with a case study of JPEG)

## Lossy compression: JPEG



## Block transform coding

- Partition the image into small non overlapping n×n blocks
  - 8×8 blocks in JPEG



## **Block Transform coding**

- Process blocks using 2D transforms
- General forward transform of image g, size n×n:

$$T(u,v) = \sum_{x=0}^{n-1} \sum_{v=0}^{n-1} g(x,y) r(x,y,u,v)$$

Inverse transform

$$g(x,y) = \sum_{x=0}^{n-1} \sum_{v=0}^{n-1} T(u,v) s(x,y,u,v)$$

• r(x, y, u, v) and s(x, y, u, v) are basis functions or transformation kernels

## **Block Transform coding**

$$T(u,v) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} g(x,y) r(x,y,u,v) \qquad g(x,y) = \sum_{x=0}^{n-1} \sum_{v=0}^{n-1} T(u,v) s(x,y,u,v)$$

• 
$$r(x, y, u, v) = e^{-j2\pi(ux+vy)/n}$$
 and  $s(x, y, u, v) = \frac{1}{n^2}e^{j2\pi(ux+vy)/n}$ 

• 
$$r(x, y, u, v) = s(x, y, u, v) = \frac{1}{n} (-1)^{\sum_{i=0}^{m-1} \lfloor b_i(x) p_i(u) + b_i(y) p_i(v) \rfloor}$$

• 
$$r(x, y, u, v) = s(x, y, u, v) = \alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2n}\right]\cos\left[\frac{(2y+1)v\pi}{2n}\right]$$

#### Block Transform coding: which transform to use?

Apply transform to each 8×8 block

Keep highest 50% of the coefficients in each block

Reconstruct using the inverse transform on each block



**FIGURE 8.24** Approximations of Fig. 8.9(a) using the (a) Fourier, (b) Walsh-Hadamard, and (c) cosine transforms, together with the corresponding scaled error images in (d)–(f).

# Block Transform coding: which transform to use?



# Quantization



| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

Different coefficients quantized with different step-size

Finally encode the quantized output!

# Quantization (example)

| -415 | -29 | -62 | 25  | 55  | -20 | -1 | 3   |               | -26 | -3 | -6 | 2  | 2  | 0 | 0 | 0 |
|------|-----|-----|-----|-----|-----|----|-----|---------------|-----|----|----|----|----|---|---|---|
| 7    | -21 | -62 | 9   | 11  | -7  | -6 | 6   |               | 1   | -2 | -4 | 0  | 0  | 0 | 0 | 0 |
| -46  | 8   | 77  | -25 | -30 | 10  | 7  | -5  | 0             | -3  | 1  | 5  | -1 | -1 | 0 | 0 | 0 |
| -50  | 13  | 35  | -15 | -9  | 6   | 0  | 3   | u             | -4  | 1  | 2  | -1 | 0  | 0 | 0 | 0 |
| 11   | -8  | -13 | -2  | -1  | 1   | -4 | 1 - | $\rightarrow$ | 1   | 0  | 0  | 0  | 0  | 0 | 0 | 0 |
| -10  | 1   | 3   | -3  | -1  | 0   | 2  | -1  |               | 0   | 0  | 0  | 0  | 0  | 0 | 0 | 0 |
| -4   | -1  | 2   | -1  | 2   | -3  | 1  | -2  |               | 0   | 0  | 0  | 0  | 0  | 0 | 0 | 0 |
| -1   | -1  | -1  | -2  | -1  | -1  | 0  | -1  |               | 0   | 0  | 0  | 0  | 0  | 0 | 0 | 0 |
|      | •   | •   |     |     | •   |    |     |               |     |    | •  | •  | •  |   |   |   |

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 6  |
|----|----|----|----|-----|-----|-----|----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 5: |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 50 |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62 |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 7  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92 |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 10 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99 |
|    |    |    |    |     |     |     |    |

# Symbol encoding (Zigzag ordering)



| 0  | 1  | 5  | 6  | 14 | 15 | 27 | 28 |
|----|----|----|----|----|----|----|----|
| 2  | 4  | 7  | 13 | 16 | 26 | 29 | 42 |
| 3  | 8  | 12 | 17 | 25 | 30 | 41 | 43 |
| 9  | 11 | 18 | 24 | 31 | 40 | 44 | 53 |
| 10 | 19 | 23 | 32 | 39 | 45 | 52 | 54 |
| 20 | 22 | 33 | 38 | 46 | 51 | 55 | 60 |
| 21 | 34 | 37 | 47 | 50 | 56 | 59 | 61 |
| 35 | 36 | 48 | 49 | 57 | 58 | 62 | 63 |

JPEG uses run length encoding!

# Symbol coding example

Zigzag scan (additional example)



Run length coding



Mean of Block: 185

(0,3) (0,1) (1,1) (0,1) (0,1) (0,1) (0,-1) (1,1)

(1,1) (0,1) (1,-3) (0,2) (0,-1) (6,1) (0,-1) (0,-1)

(1,-1) (14,1) (9,-1) (0,-1) EOB

# Lossy compression: JPEG



### Lest understand the entire procedure with an example

Consider a single 8×8 pixel block B:



- Intensity range → [0 255]
- Subtract 127 from each entry and computer 2D DCT

### Forward transform and quantization

DCT of image block

$$\hat{\mathbf{B}} = \begin{pmatrix} 118.9 & 187.7 & -17.7 & 16.8 & 14.4 & 2.4 & 5.3 & 3.5 \\ 104.1 & 187.1 & -30.8 & 10.0 & -1.0 & -4.7 & 0.6 & 0.3 \\ 46.3 & 10.4 & 9.1 & -9.0 & -15.7 & 0 & -1.3 & -2.7 \\ 76.8 & -12.1 & -10.7 & -0.2 & -10.4 & 4.8 & 2.7 & -3.3 \\ 6.4 & -15.3 & 1.7 & -1.7 & -1.1 & 2.5 & 1.1 & -2.5 \\ 10.6 & -5.6 & -6.5 & -0.6 & 2.6 & 0.9 & -1.4 & 2.4 \\ 0.4 & -2.3 & 1.2 & -1.7 & 2.3 & -0.5 & 0.1 & -0.1 \\ 3.2 & -0.7 & -0.9 & 2.6 & -1.1 & 1.5 & -1.8 & 0.2 \end{pmatrix}$$

Quantization and rounding

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

More than 75% entries are zero (notice their placement)

#### **Encoding**

Zigzag scan

| 0  | 1  | 5  | 6  | 14 | 15 | 27 | 28 |
|----|----|----|----|----|----|----|----|
| 2  | 4  | 7  | 13 | 16 | 26 | 29 | 42 |
| 3  | 8  | 12 | 17 | 25 | 30 | 41 | 43 |
| 9  | 11 | 18 | 24 | 31 | 40 | 44 | 53 |
| 10 | 19 | 23 | 32 | 39 | 45 | 52 | 54 |
| 20 | 22 | 33 | 38 | 46 | 51 | 55 | 60 |
| 21 | 34 | 37 | 47 | 50 | 56 | 59 | 61 |
| 35 | 36 | 48 | 49 | 57 | 58 | 62 | 63 |

[**7** 17 9 3 16 -2 1 -2 1 5 0 -1 1 1 1 0 0 0 0 -1 EOB]

Lets try to reconstruct

### Reconstruction: Decoding + Dequantization

[**7** 17 9 3 16 -2 1 -2 1 5 0 -1 1 1 1 0 0 0 0 -1 EOB]

Dequantization

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

#### Decoding

#### Compute IDCT and add 127

```
254
       233
             211
                    197
                           175
                                 142
                                        110
                                               93
                                               70
236
       216
             194
                    179
                           156
                                 120
                                        87
201
       184
             169
                           138
                                 105
                                               62
                    158
                                        76
166
       155
             149
                           137
                                 114
                                        94
                                               86
                    147
151
       144
             143
                    147
                           144
                                 130
                                        120
                                              119
                                              137
147
       140
             140
                    145
                           143
                                 135
                                        132
133
       127
             126
                    130
                           130
                                 126
                                        131
                                              140
                                               141/
116
       109
             109
                    114
                           117
                                 118
                                        128
```

#### Compare with original

| /245 | 239                                    | 227                                                            | 203                                                                                                                                                   | 174                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                   | 116                                                                                                                                                                                                                                                                                                   | 92 \                                                                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 229  | 216                                    | 197                                                            | 172                                                                                                                                                   | 150                                                                                                                                                                                                   | 119                                                                                                                                                                                                                                                   | 85                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                                                                                                                                                                                                                                 |
| 201  | 180                                    | 164                                                            | 152                                                                                                                                                   | 141                                                                                                                                                                                                   | 102                                                                                                                                                                                                                                                   | 77                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                                                                                                                                                                                                                                 |
| 174  | 153                                    | 148                                                            | 146                                                                                                                                                   | 140                                                                                                                                                                                                   | 112                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                                    | 91                                                                                                                                                                                                                                                                                                                                                 |
| 161  | 145                                    | 144                                                            | 146                                                                                                                                                   | 141                                                                                                                                                                                                   | 133                                                                                                                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                   | 114                                                                                                                                                                                                                                                                                                                                                |
| 149  | 139                                    | 143                                                            | 144                                                                                                                                                   | 142                                                                                                                                                                                                   | 139                                                                                                                                                                                                                                                   | 133                                                                                                                                                                                                                                                                                                   | 133                                                                                                                                                                                                                                                                                                                                                |
| 134  | 128                                    | 131                                                            | 132                                                                                                                                                   | 134                                                                                                                                                                                                   | 134                                                                                                                                                                                                                                                   | 139                                                                                                                                                                                                                                                                                                   | 137                                                                                                                                                                                                                                                                                                                                                |
| 119  | 114                                    | 112                                                            | 111                                                                                                                                                   | 111                                                                                                                                                                                                   | 119                                                                                                                                                                                                                                                   | 131                                                                                                                                                                                                                                                                                                   | 141/                                                                                                                                                                                                                                                                                                                                               |
|      | 229<br>201<br>174<br>161<br>149<br>134 | 229 216<br>201 180<br>174 153<br>161 145<br>149 139<br>134 128 | 229     216     197       201     180     164       174     153     148       161     145     144       149     139     143       134     128     131 | 229     216     197     172       201     180     164     152       174     153     148     146       161     145     144     146       149     139     143     144       134     128     131     132 | 229     216     197     172     150       201     180     164     152     141       174     153     148     146     140       161     145     144     146     141       149     139     143     144     142       134     128     131     132     134 | 229     216     197     172     150     119       201     180     164     152     141     102       174     153     148     146     140     112       161     145     144     146     141     133       149     139     143     144     142     139       134     128     131     132     134     134 | 229     216     197     172     150     119     85       201     180     164     152     141     102     77       174     153     148     146     140     112     93       161     145     144     146     141     133     120       149     139     143     144     142     139     133       134     128     131     132     134     134     139 |





#### Summary JPEG

- Divide into 8×8 subimages
- Compute DCT on each
- Quantize the coefficients
- Order coefficients in zigzag pattern
- Encode 1D sequence using run-length coding and Huffman coding

# **Color Images**



# **Color Images**



- Different quantization matrices for chrominance and luminance
- Chroma subsampling (use reduced resolution of chroma channels)

#### Quantization matrices

| 16 | 11 | 10 | 16 | 24  | 40  | 51  | 61  |
|----|----|----|----|-----|-----|-----|-----|
| 12 | 12 | 14 | 19 | 26  | 58  | 60  | 55  |
| 14 | 13 | 16 | 24 | 40  | 57  | 69  | 56  |
| 14 | 17 | 22 | 29 | 51  | 87  | 80  | 62  |
| 18 | 22 | 37 | 56 | 68  | 109 | 103 | 77  |
| 24 | 35 | 55 | 64 | 81  | 104 | 113 | 92  |
| 49 | 64 | 78 | 87 | 103 | 121 | 120 | 101 |
| 72 | 92 | 95 | 98 | 112 | 100 | 103 | 99  |

| 17 | 18 | 24 | 47 | 99 | 99 | 99 | 99 |
|----|----|----|----|----|----|----|----|
| 18 | 21 | 26 | 66 | 99 | 99 | 99 | 99 |
| 24 | 26 | 56 | 99 | 99 | 99 | 99 | 99 |
| 47 | 66 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |
| 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 |

Luminance

Chrominance

These matrices are scaled for higher compression!