2. BEADANDÓ PROGRAM

Legkisebb négyzetes közelítés.

Adott t_1, \ldots, t_m alappontok és f_1, \ldots, f_m függvényértékek esetén a négyzetesen legjobban közelítő legfeljebb n-edfokú polinom meghatározása, illetve a polinom helyettesítési értékének meghatározása adott z_1, \ldots, z_M helyeken.

Ha a közelítő polinom

$$F(t) = \sum_{i=0}^{n} c_i t^i,$$

akkor az $A^TAx = A^Tf$ Gauss-féle normálegyenletben

$$A^{T}A = \begin{pmatrix} m & \sum_{i=1}^{m} t_{i} & \sum_{i=1}^{m} t_{i}^{2} & \cdots & \sum_{i=1}^{m} t_{i}^{n} \\ \sum_{i=1}^{m} t_{i} & \sum_{i=1}^{m} t_{i}^{2} & \sum_{i=1}^{m} t_{i}^{3} & \cdots & \sum_{i=1}^{m} t_{i}^{n+1} \\ \sum_{i=1}^{m} t_{i}^{2} & \sum_{i=1}^{m} t_{i}^{3} & \sum_{i=1}^{m} t_{i}^{4} & \cdots & \sum_{i=1}^{m} t_{i}^{n+2} \\ \vdots & & & \vdots \\ \sum_{i=1}^{m} t_{i}^{n} & \sum_{i=1}^{m} t_{i}^{n+1} & \sum_{i=1}^{m} t_{i}^{n+2} & \cdots & \sum_{i=1}^{m} t_{i}^{2n} \end{pmatrix},$$

és

$$A^{T}f = \begin{pmatrix} \sum_{i=1}^{m} f_{i} \\ \sum_{i=1}^{m} f_{i}t_{i} \\ \sum_{i=1}^{m} f_{i}t_{i}^{2} \\ \vdots \\ \sum_{i=1}^{m} f_{i}t_{i}^{n} \end{pmatrix}.$$

A normálegyenletet megoldásásnál az 1. feladatként programozott Cholesky-felbontást használják! Ha a felbontás során kiderül, hogy a mátrix nem pozitív definit (tehát a legkisebb négyzetes feladat megoldása nem egyértelmű), akkor a szingularis üzenet jelenjen meg.

A normálegyenlet megoldásával megkapjuk a keresett polinom c_0, \ldots, c_n együtthatóit, ezekből Horner-algoritmus segítségével (ld. Stoyan Gisbert: Numerikus matematika mérnököknek és programozóknak, 110. oldal) meg kell határozni a polinom z_1, \ldots, z_M pontokban felvett helyettesítési értékét.

Az outputban 8 tizedes jegyig legyenek kiírva a számok.

Input: A beolvasás a standard inputról történik. Az input első sora a megoldandó feladatok számát tartalmazza $(N, \text{ ahol } N \leq 20)$, a következő sorban az első feladatra vonatkozó m, n, M értékek szerepelnek (egymástól szóközzel elválasztva), az ezt követő 3 sorban rendre a t_1, \ldots, t_m alappontok, az f_1, \ldots, f_m függvényértékek és a z_1, \ldots, z_M értékek. Ezt követően ugyanezek az adatok következnek a többi feladatra vonatkozóan.

Output: N részből áll: minden feladat esetén a keresett polinom együtthatóit (c_0, \ldots, c_n) , és a polinom z_1, \ldots, z_M pontokban felvett helyettesítési értékét tartalmazza. Ha az adott feladat esetén az egyenletrendszer mátrixa nem pozitív definit, akkor csak a szingularis üzenet jelenjen meg.

Példainput:

Itt 3 feladatot akarunk megoldani, az első esetben 5 darab mérési eredményünk van (m=5), elsőfokú polinommal szeretnénk közelíteni az adatokat (n=1), és 2 helyen kell kiszámítani a polinom értékét (M=2). A t_i értékek: -1, -1, 1, 2, 3, az f_i értékek: 1, 0.5, 0, -0.5, 0. A z_i értékek: -0.5, 1.5. A második esetben m=4, n=1, M=3, a t_i értékek: 1, 1, 1, 1, az f_i értékek: 1, 2, 1, 2, a z_i értékek: 1, 2, 3, 4, az f_i A harmadik esetben m=4, n=3, M=2, a t_i értékek: 1, 2, 3, 4, az f_i

A harmadik esetben m=4, n=3, M=2, a t_i értékek: 1, 2, 3, 4, az f_i értékek: 1, 8, 27, 64, a z_i értékek: 0, -1.

Az első esetben az A^TA mátrix és az A^Tf vektor:

$$A^T A = \begin{pmatrix} 5 & 4 \\ 4 & 16 \end{pmatrix}, \qquad A^T f = \begin{pmatrix} 1 \\ -\frac{5}{2} \end{pmatrix}.$$

A Gauss-féle normálegyenlet megoldása után azt kapjuk, hogy $c_0=\frac{13}{32}=0.40625,\ c_1=-\frac{33}{128}=-0.2578125.$ A $-0.5,\ 1.5$ helyen vett helyettesítési értékek: $0.53515625,\ 0.01953125.$

A második esetben elsőfokú polinommal akarunk közelíteni, de mind a négy t_i érték megegyezik, így a Gauss-féle normálegyenlet szinguláris.

A harmadik esetben látható, hogy a (t_i, f_i) értékek az $F(t) = t^3$ függvényből származnak, és itt a feladat egy legfeljebb harmadfokú modell illesztése, így a Gauss-féle normálegyenlet megoldása után visszakapjuk az $F(t) = t^3$ függvényt, azaz $c_0 = c_1 = c_2 = 0$, $c_3 = 1$. A helyettesítési értékek: 0, -1.

Példaoutput: