Image Classification

Agenda

1) The Data

2) Modelling

(3) The Final Test

π pi

α	β	γ	δ	ϵ epsilon	ζ	η	θ
alpha	beta	gamma	delta		zeta	eta	theta
ι	к	λ	μ	ν	ξ	π	ρ
iota	kappa	lambda	mu	nu	xi	pi	rho
σ	τ	φ	χ	ψ	ω	Γ	Δ
sigma	tau	phi	chi	psi	omega	Gamma	Delta
Θ	Λ	Ξ	Π	Σ	Ф	Ψ	Ω
Theta	Lambda	Xi	Pi	Sigma	Phi	Psi	Omega
	ع varepsilon	ห varkappa	യ varpi	g varrho	φ varphi	ϑ vartheta	

α	β	γ	δ	ϵ epsilon	ζ	η	θ
alpha	beta	gamma	delta		zeta	eta	theta
ι	к	λ	μ	ν	ξ	π	ρ
iota	kappa	lambda	mu	nu	Xİ	pi	rho
σ	τ	φ	χ	ψ	ω	Γ	Δ
sigma	tau	phi	chi	psi	omega	Gamma	Delta
⊖	Λ	Ξ	Π	Σ	Ф	Ψ	Ω
Theta	Lambda	Xi	Pi	Sigma	Phi	Psi	Omega
	٤ varepsilon	น varkappa	ത varpi	ę varrho	φ varphi	ϑ vartheta	

The Data

Known as HASYv2(1) and contains roughly 170,000 32x32 black and white images of various characters and mathematical symbols.

(1)Thoma, Martin. "The hasyv2 dataset." *arXiv* preprint arXiv:1701.08380 (2017).

Greek Letter Character Counts from the HASYv2 Dataset

Image Data

Computers view images as arrays.

Image Data

Computers view images as arrays.

0	0	0	0	0	0	0	0
0	0	0	255	255	0	0	0
0	0	255	255	0	0	0	0
0	0	255	0	0	0	0	0
0	255	255	255	255	255	0	0
0	255	255	0	0	255	0	0
0	255	255	0	0	255	0	0
0	0	255	255	255	255	0	0

Image Data

Computers view images as arrays.

Black and white images require a single array of size equal to the size of the image. Each value in the array ranges in value from 0 to 255 inclusively. O represents a black pixel and 255 a white pixel.

0	0	0	0	0	0	0	0
0	0	0	255	255	0	0	0
0	0	255	255	0	0	0	0
0	0	255	0	0	0	0	0
0	255	255	255	255	255	0	0
0	255	255	0	0	255	0	0
0	255	255	0	0	255	0	0
0	0	255	255	255	255	0	0

Modelling

Initial Models

A variety of different classification models were tried initially. These included a variety of "classical" models such as SVM and Random Forests and some Convolutional Neural Networks (CNN).

Convolutional Neural Networks (CNNs)

Through trial and error, I built various CNNs and measured their performance.

Fixing Overfitting

To remedy the overfitting I experimented with what's known as dropout. This is a regularisation technique that helps reduce overfitting.

Fixing Overfitting

To remedy the overfitting I experimented with what's known as dropout. This is a regularisation technique that helps reduce overfitting.

Metric	Test Result (%)		
Accuracy	89.48		
Precision	88.18		
Recall	84.23		
F1 Score	85.64		

The Final Test

My Handwriting

The model performs well on the data but can it successfully classify my handwriting?

Letter

Sigma

Phi

Psi

Omega

varepsilon

varkappa

varpi

varrho

varphi

vartheta

Predicted

My Handwriting

The model performs well on the data but can it successfully classify my handwriting?

The model achieved a 76.3% (29/38) accuracy score on my letters.

Thank You