Name:	Student Number:

PROCESS DYNAMICS - CPN321

EXAM

Chemical Engineering Engineering and the Built Environment

Examiner: Carl Sandrock External examiner: PL de Vaal

November 2013

(180 minutes)

Instructions - Read carefully

• Answer all the questions on the paper on side 1 of the multiple choice form or in the blocks provided. • This is a closed book test. All the information you may use is contained in the paper and the attached formula sheet.

4)
$$3 \times 9 = ?$$

$$= 3 \times \sqrt{81} = 3\sqrt{81} = 3\sqrt{\frac{27}{81}} = 27$$

1 Multiple choice

Answer this section on side 1 of the multiple choice form. Each question counts 5 marks.

- 1. Select the statement that is always true about the step response of a system with a pole with a positive real part
 - a. The derivative at time 0 will be a different sign from the derivative as $t \to \infty$
 - b. The response will oscillate a number of times
 - c. There will be a time when the response is below the inital value and a time when the response is above it.
 - d. The derivative of the response with respect to time will have more than one root
 - e. The eventual response as $t \to \infty$ will be infinite.
- 2. Select a true statement about the approximation of dead time by a rational function if an analytic step response is to be obtained
 - a. It is always necessary
 - b. It is necessary if the dead time appears in the numerator of the transfer function
 - c. It is necessary if the dead time appears in the denominator of the transfer function
 - d. It is necessary if the dead time is added to terms without dead time
 - e. It is never necessary
- 3. Select a true statement about state space representations. The state space representation of a system . . .
 - a. ... is unique as long as it has a single input and a single output
 - b. ... is unique as long as it is non-interacting.
 - c. . . . is unique if there is only one state
 - d. ... is unique if C = I and D = 0
 - e. ... is not unique
- 4. Select a true statement about the relationship between transfer function models and state space models
 - a. Any transfer function model can be realised in state space form.
 - b. A transfer function model with dead time cannot be realised in state space form exactly
 - c. A transfer function model with higher order derivatives cannot be converted to a transfer function model as it requires only first order derivatives.
 - d. A transfer function model with inverse response cannot be realised in state space form as it requires negative real parts for all the poles

- e. All realisations of transfer function models in state space form are approximations
- 5. What characteristic must the input posess for an exact discrete time model to predict the output exactly?
 - a. Continuous
 - b. Piecewise continuous
 - c. Piecewise differentiable
 - d. Smooth
 - e. Piecewise constant
- 6. Choose the true statement about discrete linear models:
 - a. Most discrete models have less parameters than their continuous counterparts
 - b. Most discrete models have more parameters than their continuous counterparts
 - c. Most convolution models have more parameters than the corresponding first-order difference equations
 - d. Most step-response models have more parameters than the corresponding impulseresponse models
 - e. There is no general relationship between the number of parameters of continuous and discrete models.

7. Select a true statement:

- a. The output of any system subjected to a sinusoidal input will be exactly sinusoidal with the same frequency
- b. The output of a linear system subjected to a sinusoidal input will be exactly sinusoidal with the same frequency
- c. The output of a linear system subjected to a sinusoidal input will be approximately sinusoidal with the same frequency
- d. If the output of a system is exactly sinusoidal, the input had to have been sinusoidal
- e. If the output of a system is exactly sinusoidal, the system had to have been linear
- 8. If you had only the gain part of a Bode diagram, what property of the transfer function of a system would stop you from being able to draw the phase part?
 - a. Positive zero
 - b. Complex poles
 - c. Time delay
 - d. (a) and (b)
 - e. (a) and (c)

- 9. Select a true statement about aliasing. Due to aliasing . . .
 - a. ... digital signals are always less accurate than analog ones
 - b. ...good digital filters must be used to distinguish between high and low frequency sinusoids after sampling
 - c. ... analog filters must be used to remove high frequency components before sampling
 - d. ... process noise can appear as real process data in sampled data
 - e. ... sampling must be done at approximately 100 times the dominant time constant
- 10. Select a true statement about reconstructing analog signals from sampled versions
 - a. Perfect reconstruction is never possible
 - b. Sampling always discards information
 - c. Reconstruction always discards information
 - d. Sampling always introduces a delay
 - e. Reconstruction always introduces a delay

(50)

2 Higher order dynamics

2.1 Inverse

Consider the following system:

$$\frac{Y_1}{U_1} = G_1 = \frac{K(s+a)}{(s+b)(s+c)}, \quad 0 < b < c \tag{1}$$

Find the conditions (in terms of inequalities concerning K, a, b and c) under which $y_1(t)$ will exhibit a minimum or maximum value which is different from the value as $t \to \infty$ if u(t) is a unit step. (15)

2.2 Poles and zeros

2.2 Toles and zeros	
Sketch the step response of the system for $K > 0$, $a < 0$. Explain your sketch to the poles and zeros of the process. $\boxed{5}$	etch with reference
	20
3 Multivariable system description	
Consider the following state space realisation:	
$A = \left[\begin{array}{cc} 1 & 1 \\ \alpha & 1 \end{array} \right] \qquad B = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$	(2)
$\begin{bmatrix} \alpha & 1 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ $D = 1$	
$C = [1 \ 1]$ $D = 1$	(3)
3.1 Conversion	
Find the (SISO) transfer function representation of this process [5]	

3.2 Analysis

Under what conditions will the system exhibit oscillatory response? Use the state-space version of the model to answer this question. (15)

(20)
4 Higher order system
Consider the transfer function below:
$\frac{Y_2}{U_2} = G_2(s) = \frac{1-s}{(20s+1)(5s+1)(s+1)^2)} \tag{4}$
4.1 Padé approximation
Assuming that G_2 was the result of a Padé approximation of dead time, find the dead time. $\boxed{5}$
4.2 Higher-order systems
Approximate G_2 by a first-order-plus-deadtime model using Skogestad's half rule. $\boxed{15}$

4.3 Bode diagram

(20)

5 Identification

Use the step response of G_2 in the attached figure to answer these questions.

Assume that the process was sampled once every five seconds (T=5). Consider a model of the form

$$y_2(kT) = (1 - e^{-T/\tau})Ku_2[(k-2)T] + e^{-T/\tau}y_2[(k-2)T]$$
(5)

5.1 Least squares

Assume that the model predictions can be written in the form

$$Y = X\beta + \epsilon \tag{6}$$

where β is a vector of coefficients

Write down the equation for the parameters which minimise the sum of the square of the residuals. $\boxed{5}$

5.2 Matrix construction

Find the matrices Y and X which would be used in linear regression to find β . Make notes on the graph you are reading to explain. $(\overline{15})$

5.3 Application	
Find the value of β . 10	
	(30)
6 Discrete systems	
6.1 = Amora of a mas	
6.1 z-transform	
Rewrite equation 5 in discrete transfer function form $(z \text{ domain})$. $\boxed{5}$	

6.2 Bucket brigade

Consider a batch process consisting of N tanks of equal volume V. At time t=0 tank 1 contains V/2 of black ink and the rest of the tanks contain V/2 of pure water. During a single shift, workers empty tank 1 into tank 2, then transfer V/2 of the mixed liquid then in tank 2 into the tank 3 and so on to the end of the chain. They then add V/2 of pure water back into tank 1. The liquid in the last tank is taken for analysis. Let $x_{s,n}$ indicate

the fraction of ink in tank n at a particular shift s. This process is shown graphically in figure 1.

Figure 1: Tank system for question 6.2

a.	Write an expression for the concentration in the last tank for the specific case ex	[-
	plained above 5	
b.	Write a general z-domain transfer function for the process relating the concentration	n
	in the last tank to the concentration in the first. 10	
		<u> </u>
	20	')

Full Marks (180)

DATASHEET: CPN321/CPB410

Compiled on October 31, 2013

General solution of 1st order DE:

$$\dot{x} + P(t)x = Q(t)$$
 \Rightarrow $x = \frac{1}{F_I} \int Q(t)F_I dt + c_1$ with $F_I = \exp\left(\int P(t)dt\right)$

Taylor Series expansion near point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

$$f(x_1, \dots, x_d) = \sum_{n_1=0}^{\infty} \dots \sum_{n_d=0}^{\infty} \frac{(x_1 - a_1)^{n_1} \dots (x_d - a_d)^{n_d}}{n_1! \dots n_d!} \left(\frac{\partial^{n_1 + \dots + n_d} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \right) (a_1, \dots, a_d)$$

Linear approximation around point $\mathbf{x} = \mathbf{0}$, where $f(\mathbf{x}) = \mathbf{0}$:

$$f(\mathbf{x}) \approx \nabla f(\mathbf{0}) \cdot \mathbf{x}$$
$$f(x_1, x_2, \dots, x_d) \approx \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \dots + \frac{\partial f}{\partial x_d}(0)x_d$$

Partial fraction expansion (for strictly proper rational functions of s)

$$F(s) = \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)^n(s-p_2)(s-p_3)\cdots} = \underbrace{\sum_{m=0}^{n-1} \frac{A_m}{(s-p_1)^{n-m}}}_{\text{repeated roots}} + \frac{B}{s-p_2} + \frac{C}{s-p_3}\cdots$$

$$A_m = \lim_{s \to p_1} \left\{ \frac{\mathrm{d}^m}{\mathrm{d}s^m} \left[(s - p_1)^n F(s) \right] \right\} \frac{1}{m!}$$
$$B = \lim_{s \to p_2} \left[(s - p_2) F(s) \right]$$

Euler identity:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 : $e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\pi} - 1 = 0$

(1,1) Padé approximation of dead time:

$$e^{-Ds} \approx \frac{1 - \frac{D}{2}s}{1 + \frac{D}{2}s}$$

PID controller:

$$m = K_C \left(\varepsilon + \frac{1}{\tau_I} \int_0^t \varepsilon dt + \tau_D \frac{d\varepsilon}{dt} \right) \qquad \frac{m}{\varepsilon}(s) = K_C \left(1 + \frac{1}{\tau_I s} + \tau_D s \right)$$

Tuning rules:

	Ziegler-Nichols		Cohen-Coon (with $\phi = \frac{t_D}{\tau_P}$		$o = \frac{t_D}{\tau_B}$	
	K_C	$ au_I$	$ au_D$	K_C	$ au_I$	$ au_D$
Р	$\frac{K_u}{2}$			$\frac{\phi+3}{3K_P\phi}$		
ΡΙ	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$		$\frac{5\phi + 54}{60K_P\phi}$	$t_D \frac{30 + 3\phi}{9 + 20\phi}$	
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$	$\frac{3\phi + 16}{12K_P\phi}$	$t_D \frac{32 + 6\phi}{13 + 8\phi}$	$\frac{4}{11 + 2\phi}$

Time domain	Laplace-transform	z-transform $(b = e^{-aT})$
Impulse: $\delta(t)$	1	1
Unit step: $u(t)$	$\frac{1}{s}$	$\frac{1}{1-z^{-1}}$
Ramp: t	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{\partial^n}{\partial a^n} \frac{1}{1 - bz^{-1}}$
e^{-at}	$\frac{1}{s+a}$	$\frac{1}{1 - bz^{-1}}$
te^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tbz^{-1}}{(1 - bz^{-1})^2}$
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$\frac{T^2bz^{-1}(1+bz^{-1})}{(1-bz^{-1})^3}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z^{-1}\sin(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	$\frac{1 - z^{-1}\cos(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1-b)z^{-1}}{(1-z^{-1})(1-bz^{-1})}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\frac{z^{-1}b\sin(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2 + \omega^2}$	$\frac{1 - z^{-1}b\cos(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
Initial value theorem: $\lim_{t\to 0} f(t)$	$\lim_{s \to \infty} sF(s)$	$\lim_{z \to \infty} F(z)$
Final value theorem: $\lim_{s\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$	$\lim_{z \to 1} \left[\left(1 - z^{-1} \right) F(z) \right]$
Translation: $f(t-D)u(t-D)$	$e^{-Ds}F(s)$	$F(z)z^{-n}$ where $D=nT$
Derivative: $\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} = f^n(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{k-1}f^{n-k}(0)$	
Integral: $\int_0^t f(t)dt$	$\frac{1}{s}F(s)$	
Zero th order hold	$H(s) = \frac{1 - e^{-Ts}}{s}$	