

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

ESTRUCTURAS DISCRETAS

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

Tarea 02: Lógica Proposicional.

Segundo Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontran Eliut Treviño Puebla Héctor Jerome

Tarea 02: Lógica Proposicional

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontran Eliut Treviño Puebla Héctor Jerome

12 de octubre de 2024

Ejercicio 1

1. De las siguientes expresiones, identificar las proposiciones atomicas y los conectores lógicos. Traducir de lenguaje natural a lenguaje lógico:

a) Penélope es griega.

b) Alonso Quijano no está cuerdo.

c) Si Juan fue al cine, seguro que Lupe también.

d) Melibea no está triste, porque cursó Estructuras Discretas.

a) p = Penélope es griega

b) $p = \mbox{ Alonso Quijano está cuerdo} \label{eq:policy}$

c) p = Juan fue al cine q = Lupe fue al cine

d) $p = \mbox{ Melibea curs\'o Estructuras Discretas}$ $q = \mbox{ Melibea est\'a triste}$

e) p = Juan come q = Juan bebe

e) Juan come y bebe.

f) Cuando María estudia, no reprueba los exámenes.

g) Armin no fuma ni bebe.

h) Juana juega fútbol, pero no baloncesto.

p

 $\neg j$

 $p \implies q$

 $q \implies \neg q$

 $p \wedge q$

f)

p = María estudia $p \implies \neg q$

q = Maria reprueba los exámenes

g) $p = \text{Armin fuma} \qquad \neg p \wedge \neg q$ q = Armin bebe

h) $p = \text{Juana juega fútbol} \qquad \qquad p \wedge \neg q$

 $q=\,$ Juana juega baloncesto

Ejercicio 2

Para las siguientes parejas, escribir en lenguaje natural las fórmulas:

$$p \wedge q, \quad p \vee q, \quad \neg p \wedge q, \quad p \wedge \neg q, \quad \neg p \vee q, \quad p \vee \neg q$$

a) p = 1 es primo, q = 1 es natural

- $p \land q$: 1 es primo y 1 es natural.
- $p \lor q$: 1 es primo o 1 es natural.
- $\neg p \land q$: No es cierto que 1 sea primo y 1 es natural.
- $p \land \neg q$: 1 es primo y no es cierto que 1 sea natural.
- $\neg p \lor q$: No es cierto que 1 sea primo o 1 es natural.
- $p \vee \neg q$: 1 es primo o no es cierto que 1 sea natural.

b) p = El gato no es un vegetal, q = El perro es mamífero

- $p \wedge q$: El gato no es un vegetal y el perro es mamífero.
- $p \lor q$: El gato no es un vegetal o el perro es mamífero.
- $\neg p \land q$: El gato es un vegetal y el perro es un mamifero.
- $p \land \neg q$: El gato no es un vegetal y el perro no es mamífero.
- $\neg p \lor q$: El gato es un vegetal o el perro es mamífero.
- $\bullet \ p \vee \neg q \text{: El gato no es un vegetal o el perro no es mamífero.}$

c) p = 5 < 7, $q = 3 \le 10$

- $\blacksquare \ p \wedge q \text{: } 5$ es menor que 1 y 5 es menor que 10.
- $p \lor q$: 5 es menor que 1 o 5 es menor que 10.
- $\neg p \land q$: 5 no es menor que 1 y 5 es meno que 10.
- $p \land \neg q$: 5 es menor que 1 y 5 no es menor que 10.
- $\neg p \lor q$: 5 no es menor qe 1 o 5 es mayor que 10.
- $p \vee \neg q$: 5 es menor que 1 o 5 no es menor que 10.

Ejercicio 3

A partir de la siguiente gramática para expresiones proposicionales:

$$E \to T \mid \neg E \mid E \land E \mid E \lor E \mid E \to E \mid (E)$$
$$T \to p \mid q \mid r \mid a \mid b \mid c \mid d$$

a)
$$p \rightarrow q$$

$$\begin{array}{c}
\rightarrow\\/\\
p q
\end{array}$$

b)
$$\neg (p \lor q)$$

c)
$$(a \wedge b) \vee c \rightarrow (a \wedge d)$$

d)
$$(p \to a) \to (a \lor \neg b)$$

e)
$$\neg p \land \neg q \lor r$$

$$\mathbf{f)} \neg a \rightarrow (b \land \neg c) \leftrightarrow \neg d$$

Ejercicio 6

Elaborar las tablas de verdad para las siguientes propocisoiones:

$$a) \quad \neg (p \wedge q), \quad b) \quad \neg (p \vee q), \quad c) \quad (r \vee (p \wedge q)) \to r,$$

$$d) \quad (p \wedge (r \wedge q)) \rightarrow q, \quad e) \quad (p \rightarrow q) \leftrightarrow (p \rightarrow r)$$

a)

p	q	$p \wedge q$	$\neg (p \land q)$
V	V	V	F
V	F	F	V
F	V	F	V
F	F	V	V

b)

p	q	$p \lor q$	$\neg(p \lor q)$
V	V	V	F
V	F	F	F
F	V	F	F
F	F	F	V

c)

p	q	r	$r \lor (p \land q)$	$(r \lor (p \land q)) \to r$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	F	V
F	V	V	V	V
F	V	F	F	V
F	F	V	V	V
F	F	F	F	V

d)

p	q	r	$r \wedge q$	$p \wedge (r \wedge q)$	$(p \land (r \land q)) \to q$
V	V	V	V	V	V
V	V	F	F	F	V
V	F	V	F	F	V
V	F	F	F	F	V
F	V	V	V	F	V
F	V	F	F	F	V
F	F	V	F	F	V
F	F	F	F	F	V

e)

p	q	r	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \leftrightarrow (p \to r)$
V	V	V	V	V	V
V	V	F	V	F	F
V	F	V	F	V	F
V	F	F	F	F	V
F	V	V	V	V	V
F	V	F	V	V	V
F	F	V	V	V	V
F	F	F	V	V	V

7. Demuestra que la función del complemento regresa la negación de la fórmula.

Esto es, que $comp(E) = \neg E$

Proposición. Sea *comp* la siguiente función recursiva:

- 1. $comp(\top) = \bot$, $comp(\bot) = \top$, $comp(p) = \neg p$ son atómicas.
- 2. Si P y Q son fórmulas: $comp(\neg Q) = \neg comp(Q), \ comp(P \land Q) = comp(P) \land comp(Q), \ comp(P \lor Q) = comp(P) \lor comp(Q)$

Entonces se cumple que $comp(E) = \neg E$

Demostración: Por inducción estructural sobre las fórmulas.

Caos base. Cuando E es atómica tal que E=p donde p es una proposición ó $E=\top$ ó $E=\bot$

$$E = \top : \qquad E = \bot : \qquad E =$$

Hipótesis de inducción: Supongamos que se cumple para dos proposiciones P, Q tales que $comp(P) = \neg P$ y $comp(Q) = \neg Q$

Paso inductivo: Por demostrar que se cumple para los pasos recurisvos de la función $comp(E) = \neg E$

$$comp(\neg Q) = \neg comp(Q) \qquad comp(P \land Q) = comp(P) \land comp(Q) \qquad comp(P \lor Q) = \neg comp(P) \lor \neg comp(Q)$$

$$\text{Por H.I} = \neg \neg Q \qquad \qquad \text{Por H.I} = \neg P \lor \neg Q$$

$$\text{Por deMorgan} = \neg (P \lor Q) \qquad \qquad \text{Por deMorgan} = \neg (P \land Q)$$

... Se concluye que se cumple para todos los casos recurisvos de la función del complemento se cumple que

$$comp(E) = \neg E$$
, para cualquier fórmula

8. Demostra que a partir de los conjuntos de proposiciones dados Γ , si las siguientes proposiciones son o no consecuencias lógicas utilizando interpretaciones.

- a) $\Gamma = \{p \land q, r \lor q\}$, proposición: $p \land q \lor r$
- d) $\Gamma = \{p \lor q, q \to r, \neg r \lor s\}$, proposición: $(p \lor q) \to s$
- b) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\}$, proposición: $q \rightarrow s$
- c) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\}$, proposición: $\neg (p \land r)$
- e) $\Gamma = \{p \land q, q \to r, r \lor \neg s\}$, proposición: $(p \land q) \to r$

Mostrar que a) $\Gamma = \{p \land q, r \lor q\} \vDash p \land q \lor r$.

Por ambigüedad consideraremos dos casos:

- 1) (Sea $B = (p \land q) \lor r$) Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$
- Sea \mathcal{I} un modelo Γ . Tenemos que demostrar que $\mathcal{I}((p \wedge q) \vee r) = 1$.

Como $\mathcal{I}(p \land q) = 1$, entonces $\mathcal{I}(p) = 1 = \mathcal{I}(q)$ y para $\mathcal{I}(r \lor q)$ tenemos dos casos

- i) Cuando $\mathcal{I}(r)=1$, y como $\mathcal{I}(q)=1$ entonces $\mathcal{I}(q\vee r)=1$ siempre, por lo que $\mathcal{I}(p\wedge q\vee r)=1$ dodo que $\mathcal{I}(p\wedge q)=1$ y $\mathcal{I}(r)=1$
 - ii) Por otro lado, Cuando $\mathcal{I}(r)=0$, como $\mathcal{I}(q)=1$, entonces $\mathcal{I}(q\vee r)=1$
- $\mathcal{I}((p \land q) \lor r) = 1$
- 2) (Sea $B = p \land (q \lor r)$) Por otro lado, sin pérdida de generalidad sabemos que $\mathcal{I}(p) = 1 = \mathcal{I}(q)$ por lo que, para cualquier $\mathcal{I}(r)$ se cumple $\mathcal{I}(p \lor r)$, Esto quiere decir que $\mathcal{I}(p \lor r) = 1$.
- $\mathcal{I}(p \land (q \lor r)) = 1$
- \therefore se concluye que es onsecuencia lógica.

Mostrar que b) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\} \vDash q \rightarrow s$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i) Si $\mathcal{I}(q) = 0$ entonces $\mathcal{I}(q \to s) = 1$ por lo que es trivial.
- ii) Si $\mathcal{I}(q) = 1$, entonces $\mathcal{I}(p) = 1$ para que sea $\mathcal{I}(p \leftrightarrow q) = 1$, por lo que $\mathcal{I}(\neg r) = 1$ necesariamente, pues $\mathcal{I}(p \to \neg r) = 1$, entonces $\mathcal{I}(r) = 0$, quiere decir que $\mathcal{I}(r \to s) = 1$, en particular para $\mathcal{I}(s) = 0$, por lo que, si $\mathcal{I}(q) = 1$, como lo definimos anteriormente y si $\mathcal{I}(s) = 0$, quiere decir que $\mathcal{I}(r \to s) = 0$
- ∴ No es consecuencia lógica ■

Mostrar que c) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\} \vDash \neg (p \land r)$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i) Si $\mathcal{I}(p) = 0$, entonces $\mathcal{I}(\neg(p \land r)) = 1$ pues $\mathcal{I}(p \land r) = 0$.
- ii) Si $\mathcal{I}(p) = 1$ como $\mathcal{I}(p \leftrightarrow q) = 1$ entonces $\mathcal{I}(q) = 1$, esto quiere decir que, como $\mathcal{I}(q \to \neg r) = 1$, tiene que pasar que $\mathcal{I}(\neg r) = 1$, por lo que $\mathcal{I}(r) = 0$.

Esto quiere decir que $\mathcal{I}(p \wedge r) = 0$ y $\mathcal{I}(\neg(p \wedge r)) = 1$

∴ Si es consecuencia lógica.

Mostrar que d) $\Gamma = \{p \lor q, q \to r, \neg r \lor s\} \vDash (p \lor q) \to s$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i)Supongamos que $\mathcal{I}(q) = 1$, dado que $\mathcal{I}(p \to r) = 1$ quiere decir que $\mathcal{I}(r) = 1$, entonces $\mathcal{I}(\neg r) = 0$, y como $\mathcal{I}(\neg r \lor s) = 1$ tiene que pasar que $\mathcal{I}(s) = 1$, dado que suponemos que $\mathcal{I}(p \lor q) = 1$ es necesario que $\mathcal{I}(p) = 1$ pues $\mathcal{I}(q) = 0$ como suposimos anteriormente. $\mathcal{I}((p \lor q) \to s) = 1$
- ii)Supongamos $\mathcal{I}(q)=0$, entonces, en particular, suponemos que $\mathcal{I}(r)=0$, esto significa que $\mathcal{I}(\neg r)=1$, como $\mathcal{I}(\neg r\vee s)=1$ puede pasar que $\mathcal{I}(s)=0$, y dado que $\mathcal{I}(p\vee q)=1$ tiene que pasar que $\mathcal{I}(p)=1$ entonces decimos que $\mathcal{I}(p\vee q)\to s)=0$ puesto que $\mathcal{I}(p\vee q)=1$ pero $\mathcal{I}(s)=0$
- ∴ No es consecuencia lógica. ■

Mostrar que e) $\Gamma = \{p \land q, q \rightarrow r, r \lor \neg s\} \vDash (p \land q) \rightarrow r$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Dado que $\mathcal{I}(p \land q) = 1$ tiene que pasar que $\mathcal{I}(p) = 1 = \mathcal{I}(q)$, entonces es necesario que $\mathcal{I}(r) = 1$ pues $\mathcal{I}(q \to r) = 1$, quiere decir se cumple $\mathcal{I}(r \lor \neg s) = 1$ pues basta que al menos uno sea 1 para que la proposición se cumpla, lo que quiere decir que $\mathcal{I}((p \land q) \to r) = 1$

∴ Es consecuencia lógica. ■

Ejercicio 11

Demostrar que dada una fórmula de lógica proposicional E, la altura es menor o igual que la longitud. Esto es $h(E) \leq \text{len}(E)$.

1) Caso base: consideramos que len(E) = 1 y altura h(E) = 1, entonces este caso hace que se cumpla que

$$h(E) \le \operatorname{len}(E)$$

por lo tanto, es correcto.

2) Hipótesis de inducción: suponemos que para E_1 y E_2 se cumple que

$$h(E_1) \le \operatorname{len}(E_1)$$
 y $h(E_2) \le \operatorname{len}(E_2)$.

Queremos probar que para las fórmulas $E = E_1 \diamondsuit E_2$, o $\neg E_1$, también se cumple la desigualdad.

 \blacksquare Caso $E = E_1 \diamondsuit E_2$:

Longitud:

$$\operatorname{len}(E_1 \diamondsuit E_2) = \operatorname{len}(E_1) + \operatorname{len}(E_2) + 1$$

Altura:

$$h(E_1 \diamondsuit E_2) = 1 + \max(h(E_1), h(E_2))$$

Por la hipótesis de inducción, tenemos que $h(E_1) \le \text{len}(E_1)$ y $h(E_2) \le \text{len}(E_2)$. Entonces:

$$h(E_1 \wedge E_2) = 1 + \max(h(E_1), h(E_2)) \le 1 + \max(\ln(E_1), \ln(E_2)) \le \ln(E_1) + \ln(E_2) + 1$$

= $\ln(E_1 \wedge E_2)$

Por lo tanto, se cumple que $h(E_1 \wedge E_2) \leq \text{len}(E_1 \wedge E_2)$.

• Caso $E = \neg E_1$:

Longitud:

$$\operatorname{len}(\neg E_1) = \operatorname{len}(E_1) + 1$$

Altura:

$$h(\neg E_1) = h(E_1) + 1$$

Por la hipótesis de inducción, sabemos que $h(E_1) \leq \text{len}(E_1)$, entonces se cumple que

$$h(\neg E_1) = h(E_1) + 1 \le \text{len}(E_1) + 1 = \text{len}(\neg E_1)$$

Así, se cumple que $h(\neg E_1) \leq \text{len}(\neg E_1)$.

Conclusión: por inducción, sabemos que para una fórmula proposicional E, se cumple que

$$h(E) \le \operatorname{len}(E)$$