Lecture 4 Class Activities

Edge Detection

Wed. Sept 16, 2020

Example: edge detection

(By the way, what are edges?)

edge(I, 'Canny')

Overview of lecture 4 topics

- Image gradient
- Classical filters (Sobel, Prewitt)
- 1st versus 2nd derivative of step edge
- derivative of Gaussian filter
- Laplacian of Gaussian filter
- Marr-Hildreth edge detection
- Canny edge detection

The plan for today is to walk through these topics and pose small problems for you to work on individually.

(No breakout rooms today.)

Example: step edge

$$\frac{d I(x)}{dx} \approx \frac{1}{2}I(x+1) - \frac{1}{2}I(x-1)$$

$$\frac{d^2 I(x)}{dx^2} \approx I(x+1) - 2I(x) + I(x-1)$$

Example: step edge

$$\frac{d I(x)}{dx} \approx \frac{1}{2}I(x+1) - \frac{1}{2}I(x-1)$$

$$\frac{d^2 I(x)}{dx^2} \approx I(x+1) - 2I(x) + I(x-1)$$

Gaussian function

$$G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Example: blurred step edge

$$G(x,\sigma)*I(x) =$$

$$\frac{d G(x,\sigma) * I(x)}{dx} \approx$$

$$\frac{d^2G(x,\sigma)*I(x)}{dx^2} \approx$$

Example: blurred step edge

$$I(x) = \frac{d G(x,\sigma) * I(x)}{dx} = \frac{d^2 G(x,\sigma) * I(x)}{dx^2} \approx \frac{d^2 G(x,\sigma) * I(x)}{dx^2}$$

1D Gaussian

Exercise:

Guess the missing values:

x	$\frac{G(x; \mu=0,\sigma)}{G(0; \mu=0,\sigma)}$	$\int_{-x}^{x} G(u; \mu = 0, \sigma) du$
σ		
2σ		
3σ		
4σ		
5σ		

1D Gaussian

Exercise:

x	$\frac{G(x; \mu=0,\sigma)}{G(0; \mu=0,\sigma)}$	$\int_{-x}^{x} G(u; \mu = 0, \sigma) du$
σ	0.61	.68
2σ	0.14	.95
3σ	0.01	.997
4σ	0.003	.999
5σ	0.000003	1

Derivative of Gaussian

Exercise: Sketch

• 1st derivative of a Gaussian

• 2nd derivative of a Gaussian

Derivative(s) of Gaussian

$$\frac{d G(x,\sigma)}{dx}$$

$$\frac{d^2 G(x,\sigma)}{d x^2}$$

Exercise:

Sketch the first and second derivatives of "roof edge"

"roof edge"

first derivatives of "roof edge"

second derivatives of "roof edge"

Exercise:

What is the equation of the line below? (high school math)

Exercise:

Write out the equation of a line. (Grade 10 math?)

Can you compute I(x) for this line segment in Matlab without using a for loop?

```
N = 100;
I = zeros(N,1);
I(1:x0) = 20;
x0 = 20;
x1 = 40;
Ix0 = 20;
Ix1 = 100;
I(x0:x1) = Ix0 + (Ix1 - Ix0) ./ (x1 - x0) .* ((x0:x1) - x0);
% called 'vectorization'
```

Image gradient

Exercise:
$$\nabla I(x,y) \equiv \left(\frac{\partial}{\partial x}I(x,y), \frac{\partial}{\partial y}I(x,y)\right)$$

Draw the (discrete) gradient for these images.

Image gradient

Exercise:
$$\nabla I(x,y) \equiv \left(\frac{\partial}{\partial x}I(x,y), \frac{\partial}{\partial y}I(x,y)\right)$$

Draw the (discrete) gradient for these images.

Exercise:
Sketch the gradient of a 2D Gaussian.

Exercise:

Sketch the gradient of a 2D Gaussian.

```
g = fspecial('gaussian', 40, 4);
quiver(conv2(g, [1 0 -1], 'same'), conv2(g, [1 0 -1]', 'same'))
```


Derivative(s) of 2D Gaussian

$$\frac{\partial G(x,y,\sigma)}{\partial x}$$

$$\frac{\partial G(x,y,\sigma)}{\partial x} \qquad \frac{\partial G(x,y,\sigma)}{\partial y}$$

$$\left(\frac{\partial G(x,y,\sigma)}{\partial x}, \frac{\partial G(x,y,\sigma)}{\partial y}\right)$$

"Steerable filter"

Suppose you are given the responses of the 1st derivative of Gaussian filters on some image I(x, y)

$$\left(\frac{\partial G(x,y,\sigma)}{\partial x} * I(x,y), \frac{\partial G(x,y,\sigma)}{\partial y} * I(x,y)\right)$$

We would now like to know the *directional derivative* in some other direction ($\cos \theta$, $\sin \theta$).

Exercise: How could we obtain it?

у

"Steerable filter"

Suppose you are given the responses of the 1st derivative of Gaussian filters on some image I(x, y)

$$\left(\frac{\partial G(x,y,\sigma)}{\partial x} * I(x,y), \frac{\partial G(x,y,\sigma)}{\partial y} * I(x,y)\right)$$

The *directional derivative* in direction ($\cos \theta$, $\sin \theta$) is the inner product:

$$\cos\theta \left\{ \frac{\partial G(x,y,\sigma)}{\partial x} * I(x,y) \right\} + \sin\theta \left\{ \frac{\partial G(x,y,\sigma)}{\partial y} * I(x,y) \right\}$$

Recall Example: blurred step edge

$$I(x) = \frac{1}{0.8}$$

$$G(x,\sigma) * I(x) = \frac{d G(x,\sigma) * I(x)}{dx}$$

$$\frac{d^2G(x,\sigma) * I(x)}{dx^2} \approx \frac{d^2G(x,\sigma) * I(x)}{dx^2}$$

Laplacian of a Gaussian (filter)

$$\nabla^2 G(x, y, \sigma) \equiv \frac{\partial^2 G(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 G(x, y, \sigma)}{\partial y^2}$$

Laplacian of a Gaussian (filter)

$$\nabla^2 G(x, y, \sigma) \equiv \frac{\partial^2 G(x, y, \sigma)}{\partial x^2} + \frac{\partial^2 G(x, y, \sigma)}{\partial y^2}$$

Exercise: (tricky one)

What would be the response of the $\nabla^2 G(x, y, \sigma)$ filter when convolved with this image?

Note that color maps differ in these figures!

Example: vertical step edge

What is $I(x,y) * \nabla^2 G(x,y,\sigma)$?

Marr-Hildreth edge detection (1979)

Compute
$$\nabla^2 G(x, y, \sigma) * I(x, y)$$

Then the edges are the points (x, y) where there is a zero-crossing.

Marr-Hildreth edge detection (1979)

I(x,y)

 $\nabla^2 G(x, y, \sigma) * I(x, y)$

I(x,y)

 $\nabla^2 G(x,y,\sigma) * I(x,y)$

Positive values white & negative values black

 $\nabla^2 G(x,y,\sigma) * I(x,y)$

Zero crossings

HEADS UP: The locations & number of zero crossing vary with σ .

Canny edge detection

Exercise:

What are the three steps?

Hint:

- 1. Compute gradient magnitude
- 2. ?
- 3. ?

Canny edge detection (discuss?)

1. Compute gradient magnitude

- 2. Thinning (non-maxima suppression)
- 3. Hysteresis* (linking edges based on lower threshold)

*"Hysteresis" (definition): the phenomenon in which the value of a physical property lags behind changes in the effect causing it, as for instance when magnetic induction lags behind the magnetizing force.