Basic Machine Learning

Contents

- Standpoint
- 3 Types of Machine Learning
- Linear Regression + Hands-On
- Logistic Regression + Hands-On

Machine Learning is an algorithm

Machine Learning is an algorithm

* General Perspective

Input

* General Perspective

Input

Process (Algorithm)

* General Perspective

Input

Process (Algorithm)

Output

* General Perspective

Input _____ Process _____ Output (Algorithm)

* Machine Learning Perspective

Input _____ Process _____ Output (Algorithm)

* Machine Learning Perspective

* Machine Learning Perspective

* Machine Learning Perspective

* Machine Learning Perspective

* Disclaimer : The modal is based on supervised learning.

* Machine Learning Perspective

Input _____ Model _____ Output (Algorithm)

3 Types of Machine Learning

- 1. Supervised Learning
 - XY □ Algorithm
- 2. Unsupervised Learning
 - Finding pattern in a data
- 3. Reinforcement Learning
 - Learn by doing

3 Types of Machine Learning

- 1. Supervised Learning
 - XY □ Algorithm

* In fact, Andrew Ng once said that more than 80% of problems involve supervised learning.

- 2. Unsupervised Learning
 - Finding pattern in a data
- 3. Reinforcement Learning
 - Learn by doing

Unsupervised Learning

https://media.geeksforgeeks.org/wp-content/uploads/20190812011831/Screenshot-2019-08-12-at-1.09.42-AM.png

Reinforcement Learning

Reinforcement Learning

https://miro.medium.com/v2/resize:fit:1358/0*SKR7Fh-jTWGrFoVX.gif

name	experience	salary
Somchai	2	30000
Jedsada	1	15000
Somsak	2	37000
Pimchanok	4	20000
Phongkorn	5	50000

Linear Regression experience salary name 30000 Somchai Jedsada 15000 Somsak 37000 Pimchanok 20000 5 Phongkorn 50000

Linear Regression experience salary name 30000 Somchai Jedsada 15000 Somsak 37000 Pimchanok 20000 5 (2, 30000)Phongkorn 50000

salary

Linear Regression y = mx + c

Let's get hands-on

Linear Regression : Loss & Cost Functions

Logistic Regression

https://miro.medium.com/v2/resize:fit:1280/1*blOad1e0c5V8EsTx03chWg.gif

Logistic Regression

https://miro.medium.com/v2/resize:fit:1280/1*bIO ad1e0c5V8EsTx03chWg.gif

$$y = \frac{e^{\beta 0 + \beta 1 * x}}{1 + e^{\beta 0 + \beta 1 * x}}$$

https://miro.medium.com/v2/resize:fit:620/1*isi95 iX6bWwEkxhNzpfXNA.png

Let's get hands-on

Thank you !!!