Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

Кафедра автоматизації та систем неруйнівного контролю Група ПМ-11

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №3

Дослідження характеристик і параметрів первинних засобів автоматизації на прикладі резистивного перетворювача

Керівник	(підпис)	д.т.н., проф. Черепанська І. Ю. (дата)
Виконавець	(підпис)	Погорєлов Б. Ю.

Лабораторна робота №3

Тема роботи

Дослідження характеристик і параметрів первинних засобів автоматизації на прикладі резистивного перетворювача

Мета роботи

Вивчити будову, принцип дії та основні характеристики первинних засобів автоматизації на прикладі резистивного перетворювача (терморезистора). Навчитися складати електричні принципові схеми їх підключення.

Обладнання та інструменти

- Термостат та кип'ятильник для підігріву води.
- Спиртовий термометр для вимірювання температури води у термостаті.
- Платиновий терморезистор (WZP PT100).
- Прилад для вимірювання опору (мультиметр Digital DT9205A).
- З'єднувальні провідники.

Порядок виконання роботи

- 1. Ознайомитись з теоретичними відомостями.
- 2. Вивчити будову та принцип роботи термочутливих перетворювачів.
- 3. Вивчити способи підключення резистивних перетворювачів (терморезисторів) та накреслити електричні принципові схеми.
- 4. Провести експериментальні дослідження основних параметрів та характеристик датчика температури.
- 5. Зробити висновки та відповісти на контрольні питання.
- 6. Оформити звіт згідно вимог.

					$\Pi M1109.04.00.03 ЛР$						
Зм.	Лист	№ докум.	Підпис	Дата	<u>'</u>						
Роз	роб.	Погорелов Б.Ю				·	Літ.		Аркуш	Аркушів	
Пер	рев.	Черепанська І.Ю.			Дослідження характеристик і параметріє				2	4	
					первинних засобів автоматизації на						
Н. Контр.					прикладі резистивного перетворювача		КПІ ім. І. Сікорського, .		ого, ПБФ		
Зат	В.	Черепанська І.Ю.									

Експериментальна частина

Терморезистор WZP РТ100 платиновий										
T°C	23	34	40	43	46	50	52	55	60	62
$R_{\partial i ar{u} c h e}$, Ом	108,74	112,92	115,2	116,34	117,48	119	119,76	120,9	122,8	123,56
R_{eum} , Om	108,8	113,1	115,4	116,3	117,6	118,8	119,8	120,7	122,4	123,4
$\Delta R = R_{eum} - R$, Om	0,06	0,18	0,2	-0,04	0,12	-0,2	0,04	-0,2	-0,4	-0,16
$\Delta R_{npu\pi}, \text{OM}$ $\Delta R_{npu\pi} = \frac{1.5 \cdot X_{\text{N}}}{100\%}$	0,16	0,17	0,17	0,17	0,18	0,18	0,18	0,18	0,18	0,19
$\Delta R_{\Sigma}, \text{OM}$ $\Delta R_{\Sigma} = \sqrt{\Delta R^2 + \Delta R_{npun}^2}$	0,17	0,25	0,26	0,18	0,21	0,27	0,18	0,27	0,44	0,24
α		0,0038								
R_0 , Om		100								
$\delta = \frac{\delta, \%}{R_{\text{GUM}}} \cdot 100\%$	0,1598	0,2187	0,2292	0,1539	0,1814	0,2255	0,1537	0,2235	0,3596	0,1983
$\gamma = \frac{\gamma, \%}{R_N} 100\%$	0,1599	0,2190	0,2296	0,1538	0,1816	0,2251	0,1537	0,2231	0,3584	0,1980

Рис. 3.1: Результати обчислень

Рис. 3.2: Таблиця залежності опору терморезистора від температури

Рис. 3.3: Схема підключення терморезистора

Змн.	Арк.	№ докум.	Підпис	Дата

Обробка результатів

Опір терморезистора обчислюється за формулою:

$$R = R_0(1 + \alpha t) \tag{1}$$

де R_0 — опір при t = 0°C, α — температурний коефіцієнт опору. Відносна похибка вимірювань визначається за формулою:

$$\delta = \frac{\Delta R}{R} \times 100\% \tag{2}$$

Висновки

В ході роботи було досліджено характеристики терморезистора, визначено його статичну характеристику та чутливість. Одержані результати відповідають теоретичним уявленням про роботу резистивних перетворювачів температури.

Контрольні питання з відповідями

- 1. **Що таке терморезистори і для чого вони використовуються?** Терморезистори це резистивні перетворювачі, які змінюють свій опір залежно від температури. Вони використовуються для вимірювання та контролю температури у різних технічних і промислових процесах.
- 2. Які датчики температури Ви знаєте? У чому різниця між ними?

Датчики температури поділяються на терморезистори, термопари, ртутні та спиртові термометри, пірометри. Основна різниця між ними—принцип роботи: терморезистори змінюють опір, термопари генерують термо-EPC, а ртутні та спиртові термометри використовують розширення рідини.

3. Яка залежність опору металевого терморезистора від температури?

Опір металевого терморезистора збільшується лінійно зі зростанням температури згідно з формулою $R = R_0(1 + \alpha t)$.

- 4. **Що таке температурний коефіцієнт опору терморезисторів?** Це коефіцієнт, що характеризує відносну зміну опору терморезистора при зміні температури на 1°C.
- 5. Чому термістори застосовуються рідше порівняно з металевими терморезисторами?

Термістори мають нелінійну характеристику, що ускладнює калібрування та обчислення температури, тоді як металеві терморезистори мають лінійну залежність.

						Арк.
Змн.	Арк.	№ докум.	Підпис	Дата	$\Pi M1109.04.00.03 \ \Pi P$	4