

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM

QCVN 32:2011/BTTTT

QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ CHỐNG SÉT CHO CÁC TRẠM VIỄN THÔNG VÀ MẠNG CÁP NGOẠI VI VIỄN THÔNG

National technical regulation on lightning protection for telecommunication stations and outside cable network

Mục lục

1. QUY ĐỊNH CHUNG	4
1.1. Phạm vi điều chỉnh	4
1.2. Tài liệu viện dẫn	4
1.3. Giải thích từ ngữ và chữ viết tắt	4
1.4. Quy trình quản lý rủi ro thiệt hại do sét	8
1.5. Các tiêu chí cơ bản về bảo vệ chống sét	9
1.5.1. Mức bảo vệ chống sét	9
1.5.2. Vùng bảo vệ chống sét	9
2. QUY ĐỊNH KỸ THUẬT	10
2.1. Yêu cầu về rủi ro do sét gây ra cho công trình viễn thông	10
2.1.1. Yêu cầu đối với nhà trạm viễn thông	10
2.1.2. Yêu cầu đối với cáp ngoại vi viễn thông	11
2.2. Phương pháp tính toán rủi ro do sét	11
2.2.1. Tính toán rủi ro do sét gây ra đối với nhà trạm viễn thông	11
2.2.2. Tính toán rủi ro do sét gây ra đối với cáp ngoại vi viễn thông	14
2.3. Các biện pháp bảo vệ chống sét cho công trình viễn thông	16
2.3.1. Các biện pháp bảo vệ chống sét cho nhà trạm viễn thông	16
2.3.2. Các biện pháp bảo vệ chống sét cho cáp ngoại vi viễn thông	19
3. QUY ĐỊNH VỀ QUẢN LÝ	21
4. TRÁCH NHIỆM CỦA TỔ CHỨC, CÁ NHÂN	21
5. TỔ CHỨC THỰC HIỆN	21
PHŲ LŲC A (Quy định) Xác định vị trí lắp đặt điện cực thu sét	22
PHỤ LỤC B (Quy định) Xác định dòng gây hư hỏng cho cáp kim loại và cáp quang có thành phần kim loại	
PHỤ LỤC C (Quy định) Tính toán hệ số che chắn của dây chống sét ngầm bảo vệ cáp thông tin chôn ngầm	
PHỤ LỤC D (Tham khảo) Đặc điểm dông sét của Việt Nam	33
PHỤ LỤC E (Tham khảo) Tính toán rủi ro tổn thất cho một trạm viễn thông điển hình	40
THƯ MUC TÀI LIÊU THAM KHẢO	43

Lời nói đầu

QCVN 32:2011/BTTTT được xây dựng trên cơ sở soát xét, chuyển đổi Tiêu chuẩn Ngành TCN 68-135:2001 "Chống sét bảo vệ các công trình viễn thông - Yêu cầu kỹ thuật" ban hành theo Quyết định số 1061/2001/QĐ-TCBĐ ngày 21/12/2001 của Tổng cục trưởng Tổng cục Bưu điện (nay là Bộ Thông tin và Truyền thông)

Các yêu cầu kỹ thuật và phương pháp tính trong QCVN 32:2011/BTTTT được xây dựng trên cơ sở tiêu chuẩn IEC 62305 phần 1, 2, 3 (2006), và các Khuyến nghị K.39 (1996), K.40 (1996), K.25 (1999) và K.47 (2008) của ITU-T.

QCVN 32:2011/BTTTT do Viện Khoa học Kỹ thuật Bưu điện biên soạn, Vụ Khoa học và Công nghệ trình duyệt, Bộ Thông tin và Truyền thông ban hành kèm theo Thông tư số 10/2011/TT-BTTTT ngày 14/04/2011 của Bô trưởng Bô Thông tin và Truyền thông.

QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ CHỐNG SÉT CHO CÁC TRẠM VIỆN THÔNG VÀ MẠNG CÁP NGOẠI VI VIỆN THÔNG

National technical regulation on lightning protection for telecommunication stations and outside cable network

1. QUY ĐỊNH CHUNG

1.1. Phạm vi điều chỉnh

Quy chuẩn kỹ thuật quốc gia này quy định:

- Rủi ro thiệt hại cho phép do sét gây ra đối với trạm viễn thông và cáp ngoại vi viễn thông;
- Phương pháp tính toán tần suất thiệt hại do sét gây ra đối với trạm viễn thông và cáp ngoại vi viễn thông;
- Các biên pháp chống sét bảo vê tram viễn thông và cáp ngoại vi viễn thông.

Quy chuẩn này được áp dụng cho các công trình viễn thông có trạm viễn thông, cáp ngoại vi viễn thông nhằm hạn chế các thiệt hại do sét gây ra, đảm bảo an toàn cho con người và khả năng cung cấp dịch vụ của các công trình viễn thông.

1.2. Tài liệu viện dẫn

QCVN 9:2010/BTTTT, Quy chuẩn kỹ thuật quốc gia về tiếp đất cho các trạm viễn thông.

TCVN 8071:2009, Công trình viễn thông - Quy tắc thực hành chống sét và tiếp đất.

1.3. Giải thích từ ngữ và chữ viết tắt

1.3.1. Diên tích rủi ro (risk area)

Diện tích rủi ro là diện tích của miền bao quanh công trình viễn thông, khi sét đánh vào diện tích này có thể gây nguy hiểm cho công trình viễn thông.

1.3.2. Dòng xung sét (lightning impulse current)

Dòng xung sét là xung dòng điện dải tần số thấp, xuất hiện không có chu kỳ nhất định, tăng vọt đến giá trị đỉnh, rồi giảm xuống đến giá trị không. Các đặc trưng của dòng xung sét là:

- Giá trị đỉnh (biên độ) xung, I;
- Thời gian sườn trước đạt giá trị đỉnh, T₁;
- Thời gian sườn sau giảm đến nửa giá trị đỉnh, T₂;
- Dạng sóng dòng xung, T₁/T₂;

Hình 1 trình bày dạng sóng dòng sét chuẩn và cách xác định các thông số dòng sét.

Hình 1 - Dạng sóng dòng sét chuẩn

1.3.3. Điện áp xung (impulse voltage)

Điện áp xung có các đặc điểm đặc trưng theo cách tương tự như dòng xung. Hình 2 trình bày dạng sóng điện áp sét chuẩn và cách xác định các thông số điện áp sét.

Hình 2 - Dạng sóng điện áp sét chuẩn

1.3.4. Dòng gây hư hỏng (cho cáp) (failure current)

Dòng gây hư hỏng là dòng sét nhỏ nhất gây hư hỏng cho cáp viễn thông, gây ra gián đoạn dịch vụ.

1.3.5. Dòng đánh thủng vỏ (cáp) (sheath breakdown current)

Dòng đánh thủng vỏ là dòng điện nhỏ nhất chạy trong vỏ kim loại của cáp, gây ra điện áp đánh xuyên giữa các thành phần kim loại trong lõi cáp và vỏ kim loại cáp, dẫn đến hư hỏng cáp.

1.3.6. Dòng thử (test current)

Dòng thử là dòng điện nhỏ nhất chạy trong vỏ kim loại của cáp, gây ra hư hỏng cho cáp do các tác động cơ hoặc nhiệt.

1.3.7. Dòng điện mối nối (đối với cáp quang) (connection current)

Dòng điện mối nối là dòng điện nhỏ nhất chạy trong các thành phần kết nối của cáp quang, gây ra hư hỏng cho cáp do các tác động của cơ hoặc nhiệt.

1.3.8. Điện áp đánh xuyên (breakdown voltage)

Điện áp đánh xuyên là điện áp xung đánh thủng giữa các thành phần kim loại trong lõi cáp và vỏ kim loại của cáp.

1.3.9. Mật độ sét (lightning density)

Mật độ sét là số lần sét đánh xuống một đơn vị diện tích mặt đất trong một năm (lấy bằng 1 km²).

1.3.10. Mức Keraunic (Keraunic level)

Mức Keraunic là giá trị ngày đông trung bình trong một năm, lấy từ tổng số ngày đông trong một chu kỳ hoạt đông 12 năm của mặt trời, tại một tram quan trắc khí tương.

1.3.11. Ngày dông (thunder day)

Ngày đông là ngày mà về đặc trưng khí tượng, người quan trắc có thể nghe rõ tiếng sấm.

1.3.12. Sét (lightning strike, flash)

Sét là hiện tượng phóng điện có tia lửa kèm theo tiếng nổ trong không khí, nó có thể xảy ra bên trong đám mây, giữa hai đám mây mang điện tích trái dấu hoặc giữa đám mây tích điện với đất. Các công trình viễn thông trong quá trình khai thác, chịu tác động của sét như sau:

- Tác động do sét đánh trực tiếp: là tác động của dòng sét đánh trực tiếp vào công trình viễn thông;
- Tác động do sét lan truyền và cảm ứng: là tác động thứ cấp của sét do các ảnh hưởng tĩnh điện, điện từ, galvanic...

1.3.13. Tần suất thiệt hai (frequency of damage)

Tần suất thiệt hại do sét là số lần sét đánh trung bình hàng năm gây thiệt hại cho công trình viễn thông.

1.3.14. Thiết bi bảo vê xung (Surge Protective Device - SPD)

Thiết bị bảo vệ xung là phương tiên han chế quá áp đột biến và rẽ các dòng xung.

1.3.15. Trở kháng truyền đạt (trở kháng ghép) của vỏ che chắn kim loại của cáp (transfer (coupling) impedance of metal cable sheath)

Trở kháng truyền đạt (trở kháng ghép) của vỏ che chắn kim loại của cáp là tỉ số giữa điện áp sụt từ mặt trong ra mặt ngoài vỏ che chắn kim loại của cáp trên toàn bộ dòng điện chảy trong vỏ che chắn kim loại.

1.3.16. Vùng chống sét (Lightning Protection Zone - LPZ)

Vùng chống sét là vùng được phân chia trong một khu vực trạm viễn thông, được đặc trưng bởi mức đô khắc nghiệt của trường điện từ và ảnh hưởng do sét gây nên.

1.3.17. Xác suất thiệt hại (probability of damage)

Xác suất thiệt hại do sét là xác suất một lần sét đánh gây thiệt hại cho công trình viễn thông.

1.3.18. Růi ro (Risk - R)

Là giá trị trung bình có thể có của tổn thất hàng năm (về con người và dịch vụ) do sét, tương ứng với tổng giá trị (về con người và dịch vụ) của đối tượng được bảo vệ.

1.3.19. Růi ro chấp nhận được (tolerable risk - R_T)

Là giá trị rủi ro lớn nhất có thể chấp nhận được đối với công trình được bảo vệ.

1.3.20. Mức bảo vệ chống sét (Lightning Protection Level - LPL)

Là con số liên quan đến một tập hợp các tham số dòng sét tương ứng với xác suất mà các giá trị thiết kế lớn nhất và nhỏ nhất sẽ không bị vượt quá trong hiện tượng sét đánh tự nhiên.

1.3.21. Các biên pháp bảo vê (protection measures)

Là các biện pháp được áp dụng với đối tượng cần bảo vệ để làm giảm rủi ro.

1.3.22. Hệ thống bảo vệ chống sét (Lightning Protection System - LPS).

Là một hệ thống hoàn chỉnh được dùng để làm giảm các thiệt hại vật lý do sét đánh vào công trình.

1.3.23. Hệ thống bảo vệ chống sét bên ngoài (External Lightning Protection System)

Là phần của hệ thống bảo vệ chống sét bao gồm hệ thống điện cực thu sét, hệ thống dẫn sét xuống và hệ thống điện cực tiếp đất.

1.3.24. Hệ thống bảo vệ chống sét bên trong (Internal Lightning Protection System).

Là phần của hệ thống bảo vệ chống sét bao gồm các kết nối đẳng thế và/ hoặc cách điện với hệ thống bảo vệ chống sét bên ngoài.

1.3.25. Hệ thống điện cực thu sét (air-termination system)

Là một phần của hệ thống chống sét bên ngoài, sử dụng các thành phần kim loại như thanh, các dây dẫn dạng lưới nhằm mục đích thu các tia sét.

1.3.26. Hệ thống dẫn sét xuống (down-conductor system)

Là một phần của hệ thống chống sét bên ngoài, nhằm mục đích dẫn dòng sét từ hệ thống điện cực thu sét xuống hệ thống điện cực tiếp đất.

1.3.27. Hệ thống điện cực tiếp đất (earth-termination system)

Là một phần của hệ thống chống sét bên ngoài, nhằm mục đích dẫn và phân tán dòng sét vào trong đất.

1.3.28. Các bộ phận dẫn bên ngoài (external conductive parts)

Là các bộ phận kim loại đi vào hoặc đi ra công trình cần bảo vệ, như các hệ thống đường ống, cáp kim loại, ống dẫn kim loại... có thể mang một phần dòng sét.

1.3.29. Kết nối đẳng thế (lightning equipotential bonding)

Là kết nối với hệ thống bảo vệ chống sét của các bộ phận kim loại tách biệt, bằng các kết nối trực tiếp hoặc qua các thiết bị bảo vệ xung, để làm giảm chênh lệch điện thế do dòng sét gây ra.

1.3.30. Dây che chắn (shielding wire)

Là dây kim loại dùng để làm giảm thiệt hại vật lý do sét đánh xuống đường dây viễn thông.

1.3.31. Hệ thống các biện pháp bảo vệ chống xung điện từ do sét (LEMP Protection Measures System – LPMS)

Là một hệ thống hoàn chỉnh của các biện pháp bảo vệ chống lại xung điện từ do sét (LEMP) cho các hệ thống lắp đặt bên trong công trình.

1.3.32. Tram viễn thông (telecommunication station)

Một khu vực bao gồm một hoặc nhiều nhà trạm trong đó chứa các thiết bị viễn thông, cột cao ăng ten và các loại trang thiết bị phụ trợ để cung cấp dịch vụ viễn thông. Trạm viễn thông không bao gồm nhà và các thiết bi nhà thuê bao.

1.3.33. Công trình viễn thông (telecommunication plant)

Công trình xây dựng, bao gồm hạ tầng kỹ thuật viễn thông thụ động (nhà, trạm, cột, cống, bể) và thiết bi mang được lắp đặt vào đó.

1.3.34. Nhà trạm viễn thông (telecom building)

Là nhà trong đó đặt hệ thống thiết bị viễn thông.

1.3.35. Các chữ viết tắt

SPD	Thiêt bị bảo vệ xung	Surge Protective Device
LEMP	Xung điện từ do sét	Lightning Electromagnetic Impulse
LPZ	Vùng bảo vệ chống sét	Lightning Protection Zone
LPL	Mức bảo vệ chống sét	Lightning Protection Level
LPMS	Hệ thống các biện pháp bảo vệ chống xung điện từ do sét	LEMP protection measures system

1.4. Quy trình quản lý rủi ro thiết hai do sét

Việc cần thiết trang bị các biện pháp bảo vệ chống sét cho các công trình viễn thông cần được xác định thông qua quy trình quản lý rủi ro như sau:

Hình 3- Quy trình quản lý rủi ro thiết hai do sét

1.5. Các tiêu chí cơ bản về bảo vệ chống sét

Các biện pháp bảo vệ, được áp dụng để giảm thiệt hại và tổn thất, cần phải được thiết kế đối với một tập hợp các tham số dòng sét đã xác định, mà việc bảo vệ là cần thiết đối với dòng sét này (mức bảo vệ chống sét).

1.5.1. Mức bảo vệ chống sét

Quy chuẩn này quy định 4 mức bảo vệ chống sét. Với mỗi mức LPL, một tập hợp các tham số dòng sét được ấn định.

Giá trị lớn nhất của tham số dòng sét tương ứng với mức LPL I sẽ không bị vượt quá với xác suất là 99%.

Giá trị lớn nhất của tham số sét tương ứng với LPL I sẽ giảm xuống tới 75% đối với LPL II và 50% đối với các mức III và IV.

Bảng 1- Giá tri tham số dòng sét theo LPL

LPL	I	II	III	IV
Dòng đỉnh lớn nhất , kA	200	150	100	100
Dòng đỉnh nhỏ nhất, kA	3	5	10	16

Các giá trị lớn nhất và nhỏ nhất của các tham số dòng sét đối với các mức bảo vệ chống sét khác nhau được cho trong Bảng 1 và được sử dụng để thiết kế các thành phần của hệ thống bảo vệ chống sét (ví dụ, thiết diện dây dẫn, độ dày của vỏ kim loại, khả năng chịu dòng của SPD, khoảng cách cách ly để tránh đánh lửa gây nguy hiểm).

Các giá trị nhỏ nhất của biên độ dòng sét đối với các LPL khác nhau được sử dụng để xác định bán kính quả cầu lăn để xác định vùng bảo vệ LPZ 0_B mà sét đánh trực tiếp không tiếp cận được (xem 1.5.2 và Hình 4). Giá trị nhỏ nhất của tham số dòng sét cùng với bán kính quả cầu lăn tương ứng được cho trong Bảng 2. Các số liệu này dùng để định vị hệ thống điện cực thu sét và xác định vùng bảo vệ chống sét LPZ 0_B (xem 1.5.2).

Bảng 2 - Giá trị nhỏ nhất của dòng sét và bán kính quả cầu lăn tương ứng với LPL

Tiêu chí	LPL			
		II	III	IV
Dòng đỉnh nhỏ nhất I, kA	3	5	10	16
Bán kính quả cầu lăn r, m	20	30	45	60

1.5.2. Vùng bảo vệ chống sét

Các biện pháp bảo vệ như LPS, các dây che chắn, che chắn điện từ và SPD sẽ quyết định các vùng bảo vệ chống sét. Việc phân biệt các vùng bảo vệ chống sét được đặc trưng bởi sự chênh lệch đáng kể của xung điện từ do sét tại các vùng bảo vệ.

Tuỳ theo mức đô ảnh hưởng của sét, các vùng bảo vê chống sét sau đây được định nghĩa:

LPZ 0_A Là vùng có nguy cơ chịu sét đánh trực tiếp và toàn bộ trường điện từ do sét. Các hệ thống trong đó có thể chịu toàn bộ hoặc một phần dòng xung sét;

LPZ 0_B Là vùng đã được bảo vệ khỏi sét đánh trực tiếp nhưng vẫn chịu sự đe doạ của toàn bộ trường điện từ do sét. Các hệ thống trong đó có thể chịu một phần dòng

xung sét;

- LPZ 1 Là vùng trong đó dòng xung được hạn chế do sự chia dòng và các SPD tại vị trí ranh giới. Việc che chắn không gian có thể làm suy giảm trường điện từ do sét;
- LPZ 2,..., n Là vùng trong đó dòng xung được hạn chế hơn nữa do sự chia dòng và các SPD bổ sung tại vị trí ranh giới. Việc che chắn không gian bổ sung có thể làm suy giảm hơn nữa trường điện từ do sét.

CHÚ THÍCH 1: Nói chung, mức của một LPZ càng cao thì các tham số môi trường điện từ càng thấp.

Nguyên tắc chung của việc bảo vệ là, đối tượng cần bảo vệ phải nằm trong vùng LPZ có các đặc tính về điện từ tương thích với khả năng của chịu đựng của đối tượng với tác động do sét gây ra thiệt hại cần phải giảm bớt (thiệt hại vật lý, hư hỏng các hệ thống điện và điện tử do quá áp).

Hình 4 - Minh hoa phân vùng chống sét LPZ tai tram viễn thông

2. QUY ĐỊNH KỸ THUẬT

2.1. Yêu cầu về rủi ro do sét gây ra cho công trình viễn thông

2.1.1. Yêu cầu đối với nhà trạm viễn thông

Nhà trạm viễn thông phải được trang bị các biện pháp bảo vệ sao cho giá trị rủi ro không được vượt quá giá trị rủi ro chấp nhận được sau:

Bảng 3 - Giá trị rủi ro chấp nhận được đối với nhà trạm viễn thông

Loại tổn thất	R _T (năm ⁻¹)
Rủi ro tổn thất về con người R _{injury}	10 ⁻⁵
Rủi ro tổn thất về dịch vụ R _{loss}	10 ⁻³

2.1.2. Yêu cầu đối với cáp ngoại vi viễn thông

Cáp ngoại vi viễn thông phải được trang bị các biện pháp bảo vệ sao cho giá rị rủi ro không được vượt quá giá trị rủi ro chấp nhận được sau:

Bảng 4 - Giá trị rủi ro chấp nhận được đối với cáp ngoại vi viễn thông

Loại tổn thất	R_T (năm ⁻¹)
Rủi ro tổn thất về dịch vụ R _{loss}	10 ⁻³

CHÚ THÍCH: Đối với các cáp ngoại vi viễn thông, không xét đến rủi ro tổn thất về con người.

Phương pháp tính toán rủi ro do sét gây ra đối với nhà trạm viễn thông và đường dây viễn thông được trình bày trong 2.2.

2.2. Phương pháp tính toán rủi ro do sét

2.2.1. Tính toán rủi ro do sét gây ra đối với nhà trạm viễn thông

Rủi ro do sét gây ra đối với nhà trạm viễn thông được tính theo công thức sau:

$$R_{injury} = L.p_{inj} \Sigma F_i. \quad (2.1)$$

$$R_{loss} = L \Sigma F_i \quad (2.2)$$

Trong đó:

F_i: Tần suất thiệt hại do sét gây ra đối với nhà trạm, do các nguyên nhân sét đánh trực tiếp vào nhà trạm, sét đánh vào cột anten kề bên, sét đánh xuống đất gần nhà trạm, sét lan truyền qua các đường dây đi vào nhà tram; được tính toán theo 2.2.1.1.

L: Trọng số tổn thất, thể hiện mức độ tổn thất trong một lần thiệt hại do sét gây ra đối với nhà tram.

- Với rủi ro tổn thất về con người: L = 1;
- Với rủi ro tổn thất về dịch vụ $L = 2.74 \times 10^{-3}$.

p_{inj}: xác suất giảm nhỏ thiệt hại cho con người, do các biện pháp bảo vệ trong Bảng 8 và Bảng 9.

2.2.1.1 Tính toán tần suất thiệt hại do sét gây ra đối với khu vực nhà trạm viễn thông

Tần suất thiệt hại (F) tại một trạm viễn thông với mật độ sét của khu vực đặt trạm (N_g) khi xét đến hiệu quả của các biện pháp bảo vệ vốn có hoặc bổ sung, được xác định bằng công thức:

$$F = N_q (A_d.p_d + A_n.p_n + A_s.p_s + A_a.p_a)$$
 (2.3)

Hay:

$$F = F_d + F_n + F_s + F_a$$
 (2.4)

Trong đó:

 N_g : Mật độ sét đánh tại khu vực đặt trạm, được tính tuỳ theo khu vực địa lý, xem Bảng D1, Phu luc D.

p: Các hệ số xác suất thiệt hại khác nhau phụ thuộc vào các biện pháp bảo vệ hiện có nhằm làm giảm tần suất thiệt hại (F), xem 2.2.1.2;

 $F_d = N_g.A_d.p_d$ - Tần suất thiệt hại do sét đánh trực tiếp vào nhà trạm (d);

 $F_n = N_g.A_n.p_n$ - Tần suất thiệt hại do sét đánh xuống đất gần khu vực trạm (n);

 $F_s = N_g.A_s.p_s$ - Tần suất thiệt hại do sét đánh vào cáp hoặc vùng lân cận cáp dẫn vào trạm (s);

 $F_a = N_g.A_a.p_a$ - Tần suất thiệt hại do sét đánh trực tiếp vào các vật ở gần, ví dụ cột anten có liên kết bằng kim loại với nhà trạm viễn thông (a).

A_d - Diên tích rủi ro sét đánh trực tiếp vào nhà tram viễn thông:

$$A_d = (9\pi h^2 + 6ah + 6bh + ab).10^{-6}, km^2$$
 (2.5)

Trong đó:

a: Chiều rộng của nhà trạm viễn thông, m;

b: Chiều dài của nhà trạm viễn thông, m;

h: Chiều cao của nhà trạm, m.

Trong trường hợp diện tích rủi ro sét đánh trực tiếp vào cột anten che phủ một phần diện tích rủi ro sét đánh trực tiếp vào nhà trạm, diện tích A_d được giảm đi phần bị che phủ đó.

 A_n - Diện tích rủi ro do sét đánh xuống đất cạnh nhà trạm làm tăng thế đất ảnh hưởng đến trung tâm viễn thông. A_n được tính bằng diện tích của một miền tạo bởi một đường cách nhà một khoảng cách d = 500 m, trừ đi diện tích rủi ro do sét đánh trực tiếp vào nhà A_d .

Nơi nào có các vật ở gần như các công trình xây dựng cao khác (ví dụ: cột anten, nhà cao tầng) và các cáp dẫn vào thì diện tích A_n sẽ được giảm đi bởi phần diện tích rủi ro che phủ của các công trình đó, như minh hoạ trên Hình 5.

 A_s - Diện tích rủi ro do sét đánh xuống các đường cáp (thông tin, điện lực) dẫn vào trạm. Trường hợp tổng quát, cáp dẫn vào nhà trạm viễn thông gồm các loại treo và chôn, diện tích A_s được tính bằng công thức:

$$A_{s} = 2.\sum_{i=1}^{n} l_{i} d_{i}$$
 (2.6)

Trong đó:

 I_i : Chiều dài của mỗi đoạn đường dây, m;

 $d_{i} \!\!:$ Khoảng cách tương ứng của mỗi đoạn, m;

- Đối với cáp treo, d_i = 1000 m;
- Đối với cáp ngầm, d_i = 250 m;

n: Số đoạn đường dây chôn ngầm hoặc treo nổi;

A_a: Diện tích rủi ro sét đánh trực tiếp vào cột anten có liên kết bằng kim loại với nhà trạm.

- Đối với cột anten có dạng tháp, diện tích A_{a} được tính tương tự như $A_{\text{d}};$
- Đối với cột anten là cột trụ tròn, cột tam giác, cột tứ giác có dây co và kích thước nhỏ, A_a được tính bằng diện tích hình tròn bán kính 3h (h là chiều cao cột anten) $A_a = \pi (3h)^2$.

Các diện tích rủi ro do sét đánh vào khu vực trạm viễn thông được minh hoạ trên Hình 5.

Hình 5 - Mô tả các diện tích rủi ro sét đánh vào khu vực nhà trạm viễn thông

2.2.1.2 Xác định các hệ số xác suất thiệt hai p

Mỗi hệ số xác suất thiệt hại p thể hiện khả năng làm giảm số thiệt hại do sét của đặc tính bảo vệ tự nhiên của công trình lắp đặt (vật liệu nhà, mạng cáp treo nổi hoặc ngầm) và các biện pháp bảo vệ cho nhà hoặc tại các giao diện cũng như các biện pháp bảo vệ khác cả bên trong và bên ngoài (các thiết bị chống sét, lưới che chắn cáp, kỹ thuật cách điện...). Trong thiết kế chống sét, khi áp dụng một biện pháp bảo vệ sẽ giảm nhỏ xác suất hư hỏng do sét đánh tương ứng, thể hiện qua các hệ số p.

Nếu áp dụng một vài biện pháp bảo vệ cho một đối tượng thì hệ số xác suất thực sự sẽ bằng tích các giá trị riêng rẽ, có nghĩa là:

$$p_{tt} = \prod p_i$$
, (với $p_i \le 1$).

Các giá trị hệ số xác suất p được trình bày trong các bảng từ Bảng 5 đến Bảng 9.

Bảng 5- Các trị số p cho các vật liệu xây dựng nhà trạm

Các vật liệu làm nhà	p _d , p _a , p _n
Không có tính che chắn (gỗ, gạch, bê tông không có thép gia cường)	1
Bê tông cốt thép có kích thước lưới chuẩn	0,1
Kim loại	0,01

Bảng 6 - Các tri số p cho các biên pháp bảo vê bên ngoài nhà tram

Các biện pháp bảo vệ bên ngoài nhà trạm	p_d , p_{inj}
Không có chống sét cho nhà cả bên ngoài lẫn bên trong	1
Trang bị hệ thống LPS bên ngoài (theo quy định tại 2.3.1 1)	0,1

CHÚ THÍCH: p_{inj} là hệ số xác suất gây tổn thương cho con người

Bảng 7- Các trị số p cho các biện pháp bảo vệ trên cáp dẫn vào trạm

Các biện pháp chống sét cảm ứng	p _s , p _n
Khi cáp bên ngoài không được che chắn, không có các thiết bị chống sét	1
Cáp thông tin bên ngoài được che chắn, có trở kháng truyền đạt cực đại	0,5

$20~\Omega/km$ (theo quy định tại 2.3.1.2)	
Cáp thông tin bên ngoài được che chắn, có trở kháng truyền đạt cực đại $5 \Omega/\text{km}$ (theo quy định tại 2.3.1.2)	0,1
Cáp thông tin bên ngoài được che chắn, có trở kháng truyền đạt cực đại 1 Ω /km (theo quy định tại 2.3.1.2)	0,01
Lắp biến áp cách ly tại giao diện mạng hạ áp (điện áp đánh xuyên lớn hơn 20 kV) (theo quy định tại 2.3.1.2)	0,1
Lựa chọn và lắp thiết bị chống sét có phối hợp tốt với khả năng chịu đựng của thiết bị, kỹ thuật lắp đặt có chất lượng (theo quy định tại 2.3.1.2)	0,01
Sử dụng cáp quang phi kim loại (theo quy định tại 2.3.1.2)	0

Bảng 8- Các trị số p cho các biện pháp bảo vệ bên trong nhà trạm

Các biện pháp bảo vệ bên trong nhà trạm	p _d , p _a , p _n , p _{inj}
Thực hiện các cấu hình đấu nối và tiếp đất theo TCN 68 - 141:1999 (theo quy định tại phần a) mục 2.3.1.3)	0,5
Áp dụng đồng thời các kỹ thuật lắp đặt bên trong nhà trạm (theo quy định tại phần b) và c) mục 2.3.1.3)	0,1

Bảng 9- Các trị số p cho các lớp bề mặt sàn khác nhau để làm giảm điện áp chạm và điện áp bước

Loại bề mặt	P _{inj}
Bê tông ẩm	10 ⁻²
Bê tông khô	10 ⁻³
Nhựa đường, gỗ	10 ⁻⁵
Lớp cách điện bằng vật liệu có điện áp đánh thủng lớn	10 ⁻⁶

2.2.2. Tính toán rủi ro do sét gây ra đối với cáp ngoại vi viễn thông

Xét trường hợp tổng quát, tuyến cáp (cáp kim loại hoặc cáp quang có thành phần kim loại) bao gồm các đoạn chôn ngầm và treo. Rủi ro thiệt hại (R) cần xem xét là rủi ro tổn thất dịch vụ hàng năm do sét đánh trực tiếp. Rủi ro thiệt hại được tính bằng công thức:

$$R = F_{pa}.L_a + F_{pb}.L_b + F_{ps}.L_s$$
 (2.6)

Trong đó:

F_{pa}: Tần suất thiệt hại đối với đoạn cáp treo;

F_{pb}: Tần suất thiệt hại đối với đoạn cáp chôn ngầm;

F_{ps}: Tần suất thiệt hai do sét đánh trực tiếp vào kết cấu nơi cáp đi vào;

La : Lượng tổn thất dịch vụ trong một lần thiệt hại do sét đánh trực tiếp vào cáp treo;

L_b : Lượng tổn thất dịch vụ trong một lần thiệt hại do sét đánh trực tiếp vào cáp chôn ngầm;

- L_s : Lượng tổn thất dịch vụ trong một lần thiệt hại do sét đánh trực tiếp vào kết cấu mà cáp đi vào.
- Đối với tuyến cáp kim loại:

$$L_a = 2 \times 10^{-3}$$
;

$$L_b = 3 \times 10^{-3}$$
;

$$L_s = 2 \times 10^{-3}$$
.

- Đối với tuyến cáp quang:

$$L_a = L_b = L_s = 10^{-3}$$
;

2.2.2.1. Tần suất thiệt hại đối với đoạn cáp treo và chôn ngầm

Tần suất thiệt hại đối với đoạn cáp treo và chôn ngầm được tính bằng công thức:

$$F_{pa} = 2 \times N_g \times [L - 3(H_a + H_b)] \times D \times p(I_a) \times C_d \times 10^{-6}$$
, (thiệt hại/năm) (2.7)

$$F_{pb} = 2 \times N_q \times [L - 3(H_a + H_b)] \times D \times p(I_a) \times C_d \times K_d \times 10^{-6}$$
, (thiệt hại/năm) (2.8)

Trong đó:

L: Độ dài đường dây, (m);

Ha: chiều cao của công trình nối với đầu "a" của đường dây, (m);

H_b: chiều cao của công trình nối với đầu "b" của đường dây, (m);

p(I_a): Hệ số xác suất dòng gây hư hỏng, được tính bằng công thức:

$$p(i) = 10^{-2} e^{(a-bi)} v \acute{\sigma} i i \ge 0$$

$$a = 4,605 \text{ và b} = 0,0117 \text{ với i} \le 20 \text{ kA}$$

$$a = 5,063 \text{ và b} = 0,0346 \text{ với i} > 20 \text{ kA}$$

C_d: Hê số vi trí;

 C_d = 0,25 với vị trí bao quanh bởi các cấu trúc có độ cao bằng hoặc lớn hơn (ví dụ đường dây điện lực, cây cối,...);

C_d = 0,50 với vị trí bao quanh bởi các cấu trúc có độ cao nhỏ hơn;

C_d = 1,0 với vi trí biệt lập (không có cấu trúc nào ở lân cân);

C_d = 2,0 đối với vị trí trên đỉnh đồi hoặc gò.

N_a: Mật độ sét, (km⁻². năm⁻¹) (xem Phụ lục D);

D: Khoảng cách sét đánh, (m);

- Với cáp chôn:

D = 0,482
$$(\rho)^{1/2}$$
 với $\rho \le 100 \Omega.m$;

D = 0,283
$$(\rho)^{1/2}$$
 với ρ > 1000 Ω.m;

- Với cáp treo:

D = 3 H, (m); H là độ cao treo cáp (thường được quy định giữa 4 m đến 15 m);

I_a: Dòng gây hư hỏng, (kA) (xem Phụ lục B.1);

K_d: Hệ số hiệu chỉnh thiệt hại;

K_d = 2,5 với cáp chôn không được che chắn;

K_d = 1,0 với cáp chôn được che chắn;

2.2.2.2. Tần suất thiệt hại do sét đánh trực tiếp vào công trình mà cáp đi vào (Fps)

Tần suất thiệt hại do sét đánh trực tiếp vào công trình gây ra cho cáp được tính bằng công thức:

$$F_{ps} = N_g.A_d.p(I_a). C_d \text{ (thiệt hại/năm)};$$
 (2.9)

Trong đó:

A_d: Diện tích rủi ro sét đánh vào kết cấu, được tính bằng công thức:

$$A_d = (9\pi h^2 + 6ah + 6bh + ab) 10^{-6}, (km^2);$$

Trong đó: a = chiều dài, (m); b = chiều rộng, (m);

c = chiều cao, (m);

p(I_a) : Xác suất biên độ dòng sét đánh vào kết cấu tạo ra dòng điện gây hư hỏng cáp;

la : Dòng gây hư hỏng cáp, xem Phụ lục B.2.

2.3. Các biện pháp bảo vệ chống sét cho công trình viễn thông

2.3.1. Các biện pháp bảo vệ chống sét cho nhà trạm viễn thông

Để giảm nhỏ rủi ro thiệt hại đến mức cho phép quy định trong 2.2.1, cần áp dụng một số hoặc toàn bộ các biện pháp bảo vệ sau:

2.3.1.1. Hệ thống LPS bên ngoài (chống sét đánh trực tiếp)

Hệ thống LPS bên ngoài (chống sét đánh trực tiếp) phải bao gồm các thành phần cơ bản sau:

- Hệ thống điện cực thu sét;
- Hệ thống dây dẫn sét;
- Hệ thống tiếp đất;
- Kết cấu đỡ.
- a) Hệ thống điện cực thu sét
- Các điện cực thu sét phải được bố trí, lắp đặt ở các vị trí sao cho nó tạo ra vùng bảo vệ che phủ hoàn toàn đối tượng cần bảo vệ. Vị trí lắp đặt của các điện cực thu sét được xác định bằng các phương pháp sau:
- + phương pháp góc bảo vệ, phù hợp với các toà nhà có dạng đơn giản, nhưng hạn chế về chiều cao;
- + phương pháp quả cầu lăn, phù hợp với mọi trường hợp;
- + phương pháp lưới, phù hợp với việc bảo vệ các bề mặt bằng phẳng.

Chi tiết về các phương pháp trên được nêu trong Phụ lục A. Giá trị của góc bảo vệ, bán kính quả cầu lăn, kích thước lưới đối với mỗi mức của LPS được quy định trong Bảng 10.

Bảng 10 – Giá trị lớn nhất của bán kính quả cầu lăn, kích thước lưới và góc bảo vệ tương ứng với mức của LPS

Mức LPS	Phương pháp bảo vệ				
	Bán kính quả cầu lăn r,	Góc bảo vệ α ⁰			
	m				
I	20	5 x 5	Xem Hình 6		
II	30	10 x 10			
Ш	45	15 x 15			
IV	60	20 x 20			

CHÚ THÍCH:

- 1- Không áp dụng được với các giá trị lớn hơn giá trị được đánh dấu bởi ●
- 2- H là độ cao của điện cực thu sét so với mặt phẳng chuẩn của diện tích được bảo vệ.
- 3- Góc bảo vệ không thay đổi với các giá trị H dưới 2 m.

Hình 6 – Xác định góc bảo vệ tương ứng với mức của LPS

- Các điện cực thu sét có thể sử dụng các dạng: thanh, dây, mắt lưới và kết hợp.
- Có thể dùng các thành phần bằng kim loại của công trình như tấm kim loại che phủ vùng cần bảo vệ, các thành phần kim loại của cấu trúc mái, các ống, bình chứa bằng kim loại làm các điện cực thu sét "tự nhiên", miễn là chúng thoả mãn các điều kiện sau:
- + Có tính dẫn điện liên tục bền vững;
- + Không bi bao phủ bởi các vật liêu cách điện;
- + Không gây ra các tình huống nguy hiểm khi bị thủng hay bị nung nóng do sét đánh.
- Các điện cực thu sét có thể có kết cấu đỡ là bản thân đối tượng cần bảo vệ; Nếu dùng kết cấu đỡ bằng cột, phải làm bằng vật liệu đảm bảo độ bền cơ học, phù hợp với điều kiện khí hâu.
- b) Hệ thống dây dẫn sét

- Các dây dẫn sét phải được phân bố xung quanh chu vi của công trình cần bảo vệ sao cho khoảng cách giữa hai dây không vượt quá 30 m. Trong mọi trường hợp, cần ít nhất hai dây dẫn xuống.
- Các dây dẫn sét phải được nối với hệ thống điện cực tiếp đất.
- Các dây dẫn sét phải được lắp đặt thẳng, đứng, sao cho chúng tạo ra đường dẫn ngắn nhất, thẳng nhất xuống đất và tránh tạo ra các mạch vòng. Không lắp đặt các dây dẫn sét ở các vị trí gây nguy hiểm cho con người.
- c) Hệ thống tiếp đất
- Hệ thống tiếp đất bao gồm các điện cực, dây nối các điện cực và cáp nối đất.
- Hệ thống tiếp đất phải được thiết kế và có giá trị điện trở tiếp đất theo quy định trong QCVN 9:2010/BTTTT, Quy chuẩn kỹ thuật quốc gia về tiếp đất cho các tram viễn thông.
- Phải lựa chọn dạng điện cực tiếp đất, cấu trúc bố trí các điện cực sao cho phù hợp với điều kiện địa hình thực tế nơi trang bị tiếp đất.
- Hệ thống điện cực tiếp đất phải được liên kết với các hệ thống tiếp đất khác (nếu có) theo quy định trong QCVN 9:2010/BTTTT, Quy chuẩn kỹ thuật quốc gia về tiếp đất cho các trạm viễn thông.

d) Vât liêu

Vật liệu và kích thước vật liệu được lựa chọn làm hệ thống chống sét đánh trực tiếp phải đảm bảo sao cho hệ thống này không bị hư hỏng do ảnh hưởng điện, điện từ của dòng sét, ảnh hưởng của hiện tượng ăn mòn và các lực cơ học khác.

e) Các điện cực thu sét, dây dẫn sét phải được cố định và liên kết với nhau một cách chắc chắn, đảm bảo không bị gãy, đứt hoặc lỏng lẻo do các lực điện động hoặc các lực cơ học khác. Các mối nối phải được đảm bảo bằng các phương pháp hàn, vặn vít, lắp ghép bằng bu lông và có số lương càng nhỏ càng tốt.

2.3.1.2. Chống sét lan truyền từ bên ngoài nhà tram

Các thiết bị điện tử bên trong nhà trạm viễn thông có thể bị hư hỏng do sét lan truyền và cảm ứng qua các đường dây thông tin, điện lực bằng kim loại dẫn vào nhà trạm. Để hạn chế các ảnh hưởng đó, phải áp dụng các biện pháp sau:

- a) Biện pháp bảo vệ đối với đường dây thông tin đi vào trạm
- Lựa chọn loại cáp viễn thông dẫn vào và đi ra khỏi nhà trạm có vỏ che chắn với trở kháng truyền đạt nhỏ hoặc cáp quang không có thành phần kim loại; vỏ che chắn cáp phải được liên kết đẳng thế theo quy định trong QCVN 9:2010/BTTTT, Quy chuẩn kỹ thuật quốc gia về tiếp đất cho các trạm viễn thông.
- Lắp đặt các thiết bị bảo vệ xung (SPD) trên đường dây thông tin tại giao diện dây máy theo quy định trong TCVN 8071:2009, Công trình viễn thông Quy tắc thực hành chống sét và tiếp đất.
- b) Biện pháp bảo vệ đối với đường dây điện lực đi vào nhà trạm
- Lắp đặt thiết bị bảo vệ xung trên đường dây điện lực, nơi đường dây dẫn vào trạm theo quy định trong TCVN 8071:2009, Công trình viễn thông - Quy tắc thực hành chống sét và tiếp đất.
- Dùng máy biến thế hạ áp riêng để cung cấp nguồn điện cho nhà trạm.
- 2.3.1.3. Hệ thống LPS bên trong (Chống sét lan truyền và cảm ứng bên trong nhà trạm)
- a) Liên kết đẳng thế

Thực hiện liên kết đẳng thế tại ranh giới giữa các vùng chống sét (LPZ) đối với các thành phần và hệ thống kim loại (các đường ống dẫn kim loại, các khung giá cáp, khung giá thiết bị).

- b) Thực hiện các biện pháp che chắn bên trong nhà trạm
- Liên kết các thành phần kim loại của toà nhà với nhau và với hệ thống chống sét đánh trực tiếp, ví dụ mái nhà, bề mặt bằng kim loại, cốt thép và các khung cửa bằng kim loại của tòa nhà.
- Dùng các loại cáp có màn chắn kim loại hoặc dẫn cáp trong ống kim loại có trở kháng thấp. Vỏ che chắn hoặc ống dẫn bằng kim loại phải được liên kết đẳng thế ở hai đầu và tại ranh giới giữa các vùng chống sét (LPZ). ống dẫn cáp phải được chia làm hai phần bằng vách ngăn bằng kim loại, một phần chứa cáp thông tin, một phần chứa cáp điện lực và các dây dẫn liên kết.
- c) Thực hiện cấu hình đấu nối và tiếp đất trong nhà trạm viễn thông

Phải thực hiện các quy định về cấu hình đấu nối và tiếp đất bên trong nhà trạm theo QCVN 9:2010/BTTTT Quy chuẩn kỹ thuật quốc gia về tiếp đất cho các trạm viễn thông.

2.3.2. Các biện pháp bảo vệ chống sét cho cáp ngoại vi viễn thông

2.3.2.1. Nguyên tắc chung

Các thành phần kim loại của cáp phải liên tục suốt chiều dài của cáp, nghĩa là chúng phải được kết nối qua tất cả các măng sông, bộ tái tạo... Các thành phần kim loại phải được kết nối (trực tiếp hoặc qua SPD) với thanh liên kết đẳng thế tại các đầu cáp.

Việc áp dụng các biện pháp bảo vệ đường dây viễn thông sẽ làm giảm tần suất thiệt hại do sét, được thể hiện qua hệ số bảo vệ (K_p) như sau:

$$F'_{d} = F_{d} \cdot K_{p}$$
 (2.10)

Trong đó:

F'_d là tần suất thiệt hại sau khi áp dụng biện pháp bảo vệ;

F_d là tần suất thiệ hại trước khi áp dụng biện pháp bảo vệ.

Có nhiều biện pháp bảo vệ sẽ làm giảm tần suất thiệt hại bằng cách tăng dòng gây hư hỏng. Trong trường hợp này, hê số bảo vê được tính bởi công thức:

$$\begin{split} K_p &= \exp \left[b_1 (I_{a^-} I_{a^\prime}) \right] & \text{v\'oi} \ I_a \ \text{v\'a} \ I_{a^\prime} \leq 20 \ \text{kA} \\ K_p &= \exp \left[b_2 (I_{a^-} I_{a^\prime}) \right] & \text{v\'oi} \ I_a \ \text{v\'a} \ I_{a^\prime} > 20 \ \text{kA} \\ K_p &= \exp \left[(a_2 - a_1) + (b_1 I_a - b_2 I_{a^\prime}) \right] & \text{v\'oi} \ I_a \leq 20 \ \text{kA} \ \text{v\'a} \ I_{a^\prime} > 20 \ \text{kA} \end{split}$$

Trong đó:

la là dòng hư hỏng trước khi áp dung biên pháp bảo vê;

la' là dòng hư hỏng sau khi áp dung biên pháp bảo vê;

 $a_1 = 4,605$

 $a_2 = 5,063$

 $b_1 = 0.0117$

 $b_2 = 0.0346$.

- 2.3.2.2 Các biên pháp bảo vệ chống sét đánh trực tiếp vào cáp
- a) Đối với cáp chôn, có thể xem xét các biên pháp bảo vê sau:
- Sử dụng dây che chắn, thường là dây thép mạ kẽm;

- Sử dung ống thép, thường là ống thép ma kẽm.
- b) Đối với cáp treo, có thể xem xét các biện pháp bảo vệ sau:
- Sử dụng dây đỡ làm dây che chắn (xem phần a), mục 2.3.2.3);
- Thay thế bằng tuyến cáp chôn và áp dụng các biện pháp bảo vệ theo a).
- c) Đối với cả cáp treo và cáp chôn, có thể xem xét các biện pháp sau:
- Thay thế bằng cáp quang không có thành phần kim loại hoặc đường truyền vô tuyến (xem phần a), mục 2.3.2.3);
- Sử dung cáp có dòng điện đánh thủng vỏ lớn (xem phần b), mục 2.3.2.3);
- Sử dụng cáp có điện áp đánh thủng vỏ lớn (xem phần c), mục 2.3.2.3).
- 2.3.2.3 Lưa chon cáp
- a) Cáp sợi quang không có thành phần kim loại

Cáp quang không có thành phần kim loại sẽ không bị sét đánh trực tiếp, vì vậy sử dụng cáp quang phi kim loại sẽ cho $K_p = 0$.

b) Cáp có dòng đánh thủng vỏ lớn

Nếu dòng gây hư hỏng (I_a) được xác định bởi dòng điện đánh thủng vỏ (I_s), có thể chọn cáp có dòng điện đánh thủng vỏ lớn hơn bằng cách:

- tăng điện áp đánh thủng vỏ bằng cách chọn vật liệu cách điện bằng nhựa thay vì bằng giấy hoặc tăng cường sự cách điện tại các mối nối;
- giảm điện trở lớp vỏ bằng cách dùng vỏ kim loại dày hơn.

Hệ số bảo vệ đạt được khi tăng dòng gây hư hỏng được tính bằng công thức 2.11.

c) Cáp có điện áp đánh thủng lớn

Nếu dòng gây hư hỏng được xác định bởi dòng thử (I_t), có thể chọn cáp có dòng thử cao hơn bằng cách:

- dùng vỏ có độ bền cơ khí cao (ví dụ bằng sắt);
- dùng vỏ kim loại dày hơn.

Hệ số bảo vệ đạt được khi tăng dòng gây hư hỏng được tính bằng công thức 2.11.

2.3.2.4 Sử dung thiết bi bảo vê xung SPD

SPD có thể được lắp đặt tại điểm đường dây đi vào công trình có khả năng bị sét đánh trực tiếp, để làm giảm tần suất thiệt hại do sét đánh vào công trình (F_{ps}). SPD phải được nối giữa các sợi của cáp với thanh liên kết đẳng thế của công trình.

Việc lắp đặt SPD sẽ làm tặng dòng đánh thủng vỏ cáp I_s (xem Phu luc B.3)

Hệ số bảo vệ đạt được khi tăng dòng gây hư hỏng vỏ cáp được tính theo công thức 2.11 và B.4 (theo Phu luc B).

2.3.2.5. Trang bi dây chống sét ngầm cho cáp chôn

Để giảm nhỏ dòng sét đánh vào cáp chôn, dùng dây chống sét ngầm bằng kim loại chôn phía trên, dọc theo tuyến cáp để thu hút một phần dòng sét. Như vậy, dây chống sét ngầm có tác dụng làm tăng dòng gây hư hỏng (I_a) và làm giảm tần suất thiệt hại. Dây chống sét ngầm phải được bố trí dọc theo toàn bộ chiều dài đoạn cáp cần được bảo vệ và kéo dài thêm một đoạn Y, với Y được tính bằng công thức:

$$Y \ge 2.5. (\rho)^{1/2}, (m)$$
 (2.12)

Trong đó:

 ρ = Điện trở suất của đất, Ω .m.

Giá trị dòng gây hư hỏng mới (l'a) được tính bằng công thức:

$$I'_a = I_a/\eta$$
, (kA); (2.13)

Trong đó, η là hệ số che chắn, xem Phu lục C.

3. QUY ĐỊNH VỀ QUẢN LÝ

Các trạm viễn thông và mạng cáp ngoại vi viễn thông của doanh nghiệp thiết lập hạ tầng mạng viễn thông phải tuân thủ các yêu cầu quy định tại Quy chuẩn này.

4. TRÁCH NHIỆM CỦA TỔ CHỨC, CÁ NHÂN

- 4.1. Các doanh nghiệp thiết lập hạ tầng mạng viễn thông có trạm viễn thông và mạng cáp ngoại vi viễn thông có trách nhiệm đảm bảo các trạm viễn thông và mạng cáp ngoại vi viễn thông phù hợp với Quy chuẩn trong quá trình thiết kế, lắp đặt, vận hành, bảo dưỡng.
- 4.2. Các doanh nghiệp thiết lập hạ tầng mạng viễn thông có trạm viễn thông và mạng cáp ngoại vi viễn thông có trách nhiệm thực hiện công bố hợp quy theo các quy định, hướng dẫn của Bộ Thông tin và Truyền thông và chịu sự kiểm tra thường xuyên, đột xuất của cơ quan quản lý nhà nước theo các quy định hiện hành.

5. TỔ CHỨC THỰC HIỆN

- 5.1. Cục Quản lý chất lượng Công nghệ thông tin và Truyền thông và các Sở Thông tin và Truyền thông có trách nhiệm hướng dẫn và tổ chức triển khai quản lý các trạm viễn thông và mạng cáp ngoại vi viễn thông theo Quy chuẩn này.
- 5.2. Quy chuẩn này được áp dụng thay thế Tiêu chuẩn Ngành TCN 68-135:2001 "Chống sét bảo vệ các công trình viễn thông Yêu cầu kỹ thuật".
- 5.3. Trong trường hợp các quy định nêu tại Quy chuẩn này có sự thay đổi, bổ sung hoặc được thay thế thì thực hiện theo quy định tại văn bản mới.

PHU LUC A

(Quy định)

Xác định vị trí lắp đặt điện cực thu sét

A.1. Xác định vị trí của hệ thống điện cực thu sét sử dụng phương pháp góc bảo vệ

Vị trí của hệ thống điện cực thu sét được coi là thoả đáng nếu đối tượng cần bảo vệ được đặt hoàn toàn bên trong vùng được bảo vệ do hệ thống điện cực thu sét tạo nên.

Để xác định vùng được bảo vệ, cần xem xét kích thước vật lý của hệ thống điện cực thu sét bằng kim loại.

A.1.1 Vùng được bảo vệ bởi hệ thống điện cực thu sét gồm 1 điện cực thẳng đứng

Vùng được bảo vệ bởi 1 điện cực thu sét thằng đứng có dạng một hình nón có đỉnh nằm trên đỉnh của điện cực thu sét, nửa góc đỉnh là α , phụ thuộc vào mức của LPS và chiều cao của điện cực thu sét, theo như Bảng 10. Ví dụ về vùng được bảo vệ được thể hiện trên Hình A.1 và A.2.

A Đỉnh của điện cực thu sét:

B Mặt phẳng chuẩn;

OC Bán kính vùng được bảo vệ;

h₁ Chiều cao của điện cực thu sét so với mặt phẳng chuẩn, trong khu vực cần bảo

vệ;

α Góc bảo vệ theo Bảng 10

Hình A.1 - Vùng được bảo vệ bởi một điện cực thu sét thẳng đứng

h1 chiều cao vật lý của một điện cực thu sét

CHÚ THÍCH: Góc bảo vệ α_1 tương ứng với độ cao h_1 của điện cực thu sét, là độ cao so với mái của bề mặt được bảo vệ; góc bảo vệ α_2 tương ứng với độ cao h_2 = h_1 + H, với mặt đất là mặt phẳng chuẩn;

Hình A.2 - Vùng được bảo vệ bởi một điện cực thu sét thẳng đứng

A.1.2. Vùng được bảo vệ bởi điện cực thu sét dạng dây

Vùng được bảo vệ bởi một dây thu sét được xác định bằng tập hợp của vùng được bảo vệ của các điện cực các thẳng đứng liên tiếp nhau có các đỉnh nằm trên dây. Xem ví dụ trên Hình A.3.

Hình A.3 - Vùng được bảo vệ bởi điện cực thu sét dạng dây

A.1.3. Vùng được bảo vệ bởi các dây dẫn dạng lưới

Vùng được bảo vệ bởi các dây dẫn kết hợp lại thành lưới được xác định bởi tập hợp các vùng được bảo vệ bởi từng dây dẫn riêng lẻ.

Ví dụ về vùng được bảo vệ bởi các dây dẫn dạng lưới được thể hiện ở Hình A.4 và A.5.

Hình A.4 – Vùng được bảo vệ bởi các dây dẫn dạng lưới tách biệt, xác định theo phương pháp góc bảo vệ và phương pháp quả cầu lăn

Hình A.5 – Vùng được bảo vệ bởi các dây dẫn dạng lưới không tách biệt, xác định theo phương pháp mắt lưới và phương pháp quả cầu lăn

A.2. Xác định vị trí của hệ thống điện cực thu sét bằng phương pháp quả cầu lăn

Áp dụng phương pháp này, việc định vị hệ thống điện cực thu sét là thoả đáng khi không có một điểm nào của vùng được bảo vệ chạm vào một hình cầu có bán kính r, phụ thuộc vào mức của LPS (xem Bảng 10), lăn xung quanh và trên đỉnh của công trình theo tất cả các hướng. Như vậy, quả cầu chỉ chạm vào hệ thống điện cực thu sét (xem Hình A.6).

CHÚ THÍCH 1: Bán kính quả cầu lăn phải tuân theo mức LPS được lựa chọn (xem Bảng 10) CHÚ THÍCH 2: H= h

Hình A.6 - Thiết kế hệ thống điện cực thu sét theo phương pháp quả cầu lăn

Trên các cấu trúc có độ cao lớn hơn bán kính quả cầu lăn, có thể xảy ra hiện tượng các tia sét đánh vào thân cấu trúc. Mỗi điểm ở mặt bên của cấu trúc mà quả cầu lăn chạm phải sẽ là điểm có thể bị sét đánh. Tuy nhiên, xác suất này có thể bỏ qua với các cấu trúc thấp hơn 60 m.

Với các cấu trúc cao hơn, phần lớn các tia sét sẽ đánh vào đỉnh, các cạnh chính nằm ngang. Chỉ một lượng nhỏ các tia sét sẽ đánh vào thân cấu trúc.

Ngoài ra, các số liệu thu thập được cho thấy xác suất các tia sét đánh vào thân cấu trúc giảm nhanh chóng như độ cao của điểm sét đánh trên các cấu trúc cao khi đo từ mặt đất. Do vậy, cần phải lắp đặt điện cực thu sét ở phần thân trên cao của cấu trúc (thường là ở phần 20% phía trên cao của độ cao của cấu trúc). Trong trường hợp này, phương pháp quả cầu lăn chỉ áp dụng để định vị điện cực thu sét của phần trên của cấu trúc.

A.3. Định vị hệ thống điện cực thu sét dùng phương pháp lưới

Với mục đích bảo vệ các bệ mặt bằng phẳng, điện cực thu sét dạng lưới được coi là bảo vệ được toàn bô bề mặt, nếu tất cả các điều kiên sau được thoả mãn:

- a) Các dây dẫn thu sét được đặt tại:
- các đường canh của mái;
- phần nhô ra trên mái;
- tại các đường trên chóp của mái, nếu độ dốc của mái vượt quá 1/10. CHÚ THÍCH:

- Phương pháp lưới thích hợp với các mái bằng hoặc nghiêng mà không cong;
- Phương pháp lưới thích hợp với các bề mặt phẳng ở cạnh của cấu trúc để bảo vệ khỏi sét đánh vào cạnh thân của cấu trúc;
- Nếu độ dốc của mái vượt quá 1/10, có thể dùng các dây dẫn thu sét song song với nhau thay vì dạng lưới, miễn là khoảng cách giữa các dây không lớn hơn độ rộng của mắt lưới theo yêu cầu.
- b) Kích thước của lưới phải không lớn hơn các giá trị cho ở Bảng 10.
- c) Hệ thống điện cực dạng lưới phải được lắp đặt sao cho dòng sét luôn luôn đi vào 2 đường dây dẫn riêng biệt xuống hệ thống điện cực tiếp đất.
- d) Không có bộ phận kim loại nào nằm ngoài vùng được bảo vệ bởi hệ thống điện cực thu sét.
- e) Các dây dẫn thu sét, thu sét cần phải đi theo các đường ngắn nhất và thẳng nhất.

PHŲ LỤC B

(Quy định)

Xác định dòng gây hư hỏng cho cáp kim loại và cáp quang có thành phần kim loại

B.1. Xác định dòng gây hư hỏng đối với cáp chôn ngầm và cáp treo trong trường hợp sét đánh trực tiếp vào cáp

B.1.1. Dòng gây hư hỏng cho cáp kim loại

Dòng gây hư hỏng cho cáp kim loại, la, được xác định như sau:

$$I_{a} = \begin{cases} I_{t} & \text{n\'eu } I_{t} < 2I_{s} \\ 2I_{s} & \text{n\'eu } I_{t} > 2I_{s} \end{cases}$$
 (B.1)

Trong đó:

It: Dòng thử;

I_s: Dòng đánh thủng vỏ (xem mục B.3);

B.1.2. Dòng gây hư hỏng cho cáp quang có thành phần kim loại

Dòng gây hư hỏng cho cáp quang có thành phần kim loại, la, được xác định như sau:

$$I_{a} = \begin{cases} I_{t} \text{ n\'eu } I_{t} < 2I_{c} \text{ v\'a } I_{t} < 2I_{s} \\ 2I_{c} \text{ n\'eu } 2I_{c} < I_{t} \text{ v\'a } 2I_{c} < 2I_{s} \\ 2I_{s} \text{ n\'eu } 2I_{s} < I_{t} \text{ v\'a } 2I_{s} < 2I_{c} \end{cases}$$
(B.2)

Trong đó:

It: Dòng thử;

l_c: Dòng điện mối nối;

 I_s : Dòng đánh thủng vỏ (đối với cáp quang có thành phần kim loại ở cả vỏ và lõi) (xem mục B.3).

CHÚ THÍCH:

- Giá trị dòng I_s được xét đến trong trường hợp cáp quang có thành phần kim loại ở cả vỏ và lõi.
- Giá trị dòng I_t, I_c được xác định trong phòng thử nghiệm và có thể được cung cấp bởi nhà sản xuất cáp.

B.2. Xác định dòng gây hư hỏng, la, đối với cáp đi vào kết cấu bị sét đánh

Khi sét đánh trực tiếp vào kết cấu mà đường dây đi vào, gây hư hỏng cho cáp, dòng gây hư hỏng, l_a , được xác định với giả thuyết sau:

- 50% dòng sét chảy vào trong hệ thống tiếp đất của công trình;
- 50% dòng sét còn lại sẽ được chia giữa n đường dây dịch vụ đi vào công trình (đường dây viễn thông, đường dây điện lực, đường dẫn nước);
- Toàn bộ dòng sét qua đường dây viễn thông sẽ chảy vào trong vỏ của cáp có che chắn hoặc được chia giữa m sợi của cáp không có vỏ che chắn.

Đối với sét đánh xuống công trình mà đường dây viễn thông đi vào, dòng gây hư hỏng được tính như sau:

- Đối với cáp kim loại có che chắn:

$$I_a = 2.n.I_s$$
 (B.3)

- Đối với cáp kim loại không có che chắn:

$$I_a = 2.n.m.I_c$$
 (B.4)

Trong đó:

Is là dòng đánh thủng vỏ xác định theo mục B.3;

l_c là dòng chảy vào từng sợi:

- + Với cáp không có che chắn, không có SPD, I_c = 0;
- + Với cáp không có che chắn, có trang bị SPD, I_c = 8.S_c; [kA]

Trong đó, S_c là thiết diện ngang của dây dẫn, tính theo mm².

- Đối với cáp quang:

$$I_{a} = \begin{cases} 2.n.I_{s} \text{ n\'eu } I_{s} < I_{c}; \\ \\ 2.n.I_{c} \text{ n\'eu } I_{c} < I_{s}. \end{cases}$$
 (B.5)

Trong đó:

n: Số đường ống và cáp kim loại đi vào kết cấu (viễn thông, điện, nước..);

B.3. Xác định dòng đánh thủng vỏ cáp, Is

Công thức tính dòng đánh thủng vỏ cáp trong Phụ lục này được áp dụng với cáp có một lớp vỏ kim loại. Với các loại cáp viễn thông phổ biến, các giá trị điện áp đánh thủng sau được xem xét:

- Cáp có lớp cách điện bằng giấy: U_b = 1,5 kV
- Cáp có lớp cách điện bằng chất dẻo: U_b = 5 kV.

B.3.1. Dòng đánh thủng vỏ cáp chôn

Dòng đánh thủng vỏ cáp kim loại hoặc cáp quang (có thành phần kim loại ở cả vỏ và lõi) chôn ngầm được tính bằng công thức sau:

$$I_s = U_b/(K.R.\rho^{1/2}), kA;$$
 (B.4)

Trong đó:

K = 8 : Hê số dang sóng dòng sét (dang sóng 10/350 μ s), $(m/\Omega)^{1/2}$;

R : Điện trở trên một đơn vi đô dài của vỏ cáp, Ω/km ;

 $U_{\text{b}} \hspace{0.5cm} : \text{Điện áp đánh xuyên của cáp, V;} \\$

ρ : Điện trở suất của đất, Ω.m;

B.3.2. Dòng đánh thủng vỏ cáp treo

Dòng đánh thủng vỏ cáp kim loại hoặc cáp quang (có thành phần kim loại ở cả vỏ và lõi) treo, có vỏ kim loại được tiếp đất, được tính bằng công thức sau:

$$I_s = U_b/(K.R. \rho_e^{-1/2}), kA;$$
 (B.5)

Trong đó:

 ρ_e : Điện trở suất hiệu dụng của đất, $\Omega.m,$ được tính bằng công thức:

$$\rho_e = \pi.D.R_a/ln(2.H/a);$$
 (B.6)

Trong đó:

D : Khoảng cách giữa các điểm tiếp đất, m;

H : Độ cao của cáp, m;a : Bán kính của cáp, m;

 R_g : Giá trị điện trở tiếp đất, Ω .m.

PHŲ LỤC C

(Quy đinh)

Tính toán hệ số che chắn của dây chống sét ngầm bảo vệ cáp thông tin chôn ngầm

Tác dụng che chắn của dây chống sét ngầm phụ thuộc vào vị trí lắp đặt của dây chống sét ngầm và được đánh giá bằng hệ số che chắn η.

Hệ số che chắn η được xác định bằng tỉ số các dòng điện trên vỏ cáp khi có (l'sh) và không có (lsh) dây chống sét ngầm như sau:

n = l'sh/lsh

C.1. Hệ số che chắn của một dây chống sét ngầm

Hệ số che chắn của một dây chống sét ngầm được xác định bằng biểu thức:

$$\eta = \ln(x/s)/\ln(x^2/s.r) \tag{C.1}$$

Trong đó (xem Hình C.1 a):

r: Bán kính trung bình của vỏ cáp;

s: Bán kính của dây chống sét ngầm;

x: Khoảng cách giữa các trục của cáp và dây chống sét ngầm.

Bảng C.1 và C.2 cho các giá trị hệ số che chắn đối với một số kích thước dây dẫn và khoảng cách giữa dây dẫn và dây chống sét ngầm khác nhau.

Bảng C.1 - Hệ số che chắn với r = 10 mm

x (m)	s = 2 mm	s = 3 mm	s = 5 mm	s = 8 mm	s = 12 mm
0,15	0,61	0,59	0,56	0,52	0,48
0,25	0,60	0,58	0,55	0,52	0,49
0,50	0,59	0,57	0,54	0,51	0,49
1,00	0,57	0,56	0,53	0,51	0,49

Bảng C.2 - Hệ số che chắn với r = 20 mm

	Dang Giz Tip Co one onan vor i zo inin					
x (m)	s = 2 mm	s = 3 mm	s = 5 mm	s = 8 mm	s = 12 mm	
0,15	0,68	0,65	0,62	0,59	0,55	
0,25	0,65	0,63	0,60	0,57	0,54	
0,50	0,63	0,61	0,59	0,56	0,54	
1,00	0,61	0,60	0,58	0,55	0,53	

C.2. Hệ số che chắn của nhiều dây chống sét ngầm được bố trí trên một đường tròn xung quanh cáp

C.2.1. Trường hợp dùng hai dây chống sét ngầm

Xem Hình C.1 b.

Bảng C.3 - Hệ số che chắn của 2 dây chống sét ngầm

x (m)	g = 30°	g = 45°	g = 60°	g = 90°
0,15	0,38	0,36	0,34	0,33
0,25	0,38	0,35	0,34	0,33
0,50	0,37	0,35	0,34	0,33
1,00	0,37	0,35	0,34	0,33

C.2.2. Trường hợp dùng ba dây chống sét ngầm, với khoảng cách x = 0.25 m Xem Hình C.1 c.

Bảng C.4 - Hệ số che chắn của 3 dây chống sét ngầm (x = 0.25 m)

g = 30°	g = 60°	g = 90°	g = 120°
0,33	0,26	0,23	0,22

C.2.3. Trường hợp dùng n dây chống sét ngầm bố trí đối xứng xung quanh cáp, với khoảng cách x = 0.25 m

Xem Hình C.1 d, C.1 e, C.1 f.

Bảng C.5 - Hệ số che chắn của n dây chống sét ngầm bố trí đối xứng xung quanh cáp (với x = 0,25 m)

Γ			•
	n = 4	n = 6	n = 8
	0,16	0,09	0,06

Hình C.1 - Bố trí dây chống sét ngầm xung quanh cáp

PHŲ LỤC D

(Tham khảo)

Đặc điểm dông sét của Việt Nam

Bảng D.1- Mật độ sét tại các tỉnh, thành phố của Việt Nam

	Bang D.1- Mặt độ set tại các tinh, thanh phố của Việt Nam				
TT	Tỉnh, Thành phố	Huyện	Mật độ sét đánh		
	pilo		(số lần/km²/năm)		
1	An Giang	Tp. Long Xuyên, Tx. Châu Đốc, An Phú, Châu Phú, Châu Thành, Chợ Mới, Phú Tân, Tân Châu, Tịnh Biên, Thoại Sơn, Tri Tôn	13,7		
2	Bà Rịa Vũng Tàu	Tp. Vũng Tàu, Tx. Bà Rịa, Châu Đức,Côn Đảo, Long Điềm, Đất Đỏ, Xuyên Mộc	8,2		
		Tân Thành, Châu Đức	10,9		
3	Bắc Cạn	Tx. Bắc Kạn, Bạch Thông, Chợ Đồn, Chợ Mới, Na Rì, Ngân Sơn, Pác Nặm	8,2		
		Chợ Đồn	10,9		
4	Bắc Giang	Tx. Bắc Giang, Hiệp Hoà, Lạng Giang, Lục Nam, Lục Ngạn, Sơn Động, Tân Yên, Việt Yên, Yên Dũng, Yên Thế	8,2		
5	Bắc Ninh	Tx. Bắc Ninh, Gia Bình, Lương Tài, Quế Võ, Yên Phong	8,2		
		Từ Sơn, Tiên Du, Thuận Thành	10,9		
6	Bạc Liêu	Tx Bạc Liêu	10,9		
		Giá Rai, Đông Hải, Hồng Dân, Phước Long, Vĩnh Lợi	13,7		
7	Bến Tre	Tx. Bến Tre, Châu Thành, Chợ Lách, Giồng Trôm, Mỏ Cày	13,7		
		Thạnh Phú, Ba Tri, Bình Đại	10,9		
8	Bình Định	Tp.Quy Nhơn, Tuy Phước	5,7		
		An Lão, An Nhơn, Hoài Ân, Hoài Nhơn, Phù Cát, Phù Mỹ, Tây Sơn, Vân Canh, Vĩnh Thạnh	8,2		
9	Bình Dương	Tx. Thủ Dầu Một, Dĩ An, Tân Uyên, Thuận An	13,7		
		Bến Cát, Dầu Tiếng, Phú Giáo	14,9		
10	Bình Phước	Tx. Đồng Xoài, Bình Long, Chơn Thành, Đồng Phú	14,9		
		Bù Đốp, Bù Đăng, Lộc Ninh, Phước Long	13,7		
11	Bình Thuận	Tp. Phan Thiết, Hàm Tân, Hàm Thuận Bắc, Hàm Thuận Nam, Tánh Linh	8,2		

		Đức Linh	10,9
		Phú Quý	7,0
		Bắc Bình	5,7
		Tuy Phong	3,4
12	Cà Mau	Tx. Cà Mau, U Minh, Thới Bình, Trần Văn Thời, Cái Nước, Đầm Dơi, Phú Tân, Năm Căn, Ngọc Hiển	13,7
13	Cao Bằng	Tx. Cao Bằng, Bảo Lạc, Bảo Lâm, Hà Quảng, Hạ Lang, Hà An, Nguyên Bình, Phục Hoà, Quảng Uyên, Thạch An, Thông Nông, Trà Lĩnh, Trùng Khánh	9,2
14	Cần Thơ	Q. Bình Thủy, Q. Cái Răng, Q. Ninh Kiều, Q. Ô Môn, Cờ Đỏ, Phong Điền,Thốt Nốt, Vĩnh Thạnh	13,7
15	Đà Nẵng	Q. Hải Châu, Q. Liên Chiểu, Q. Ngũ Hành Sơn, Q. Sơn Trà, Thanh Khê, Hòa Vang	8,2
		Hoàng Sa	7,0
16	Đắc Lắk	Tp. Buôn Ma Thuột, Buôn Đôn, Ea Súp, Cư M'Gar, Ea H'Leo, Krông Buk, Krông Năng	13,7
		Krông Păk, Krông Ana, Lắk, Krông Bông, Ea Kar	10,9
		M'Đrắk	8,2
17	Điện Biên	Tp. Điện Biên Phủ, Điện Biên, Điện Biên Đông	8,2
		Tx. Mường Lay, Mường chà, Mường Nhé, Tủa Chùa, Tuần Giáo	10,9
18	Đắc Nông	Đắk Nông, Krông Nô	10,9
		Đắk Mil, Đắk R' Lấp, Đắk Song	13,7
19	Đồng Nai		
	Dong Nai	Tp. Biên Hòa, Long Thành, Nhơn Trạch, Vĩnh Cửu, Trảng Bom	13,7
	Dong Nai		13,7
	Dong Ival	Cửu, Trảng Bom Tx. Long Khánh, Tân Phú, Định Quán, Thống	,
20	Đồng Tháp	Cửu, Trảng Bom Tx. Long Khánh, Tân Phú, Định Quán, Thống Nhất	10,9
20		Cửu, Trảng Bom Tx. Long Khánh, Tân Phú, Định Quán, Thống Nhất Xuân Lộc, Cẩm Mỹ Tx. Cao Lãnh, Lấp Vò, Sa Đéc, Tân Hồng, Tam Nông, Tháp Mười, Hồng Ngự, Cao	10,9
	Đồng Tháp	Cửu, Trảng Bom Tx. Long Khánh, Tân Phú, Định Quán, Thống Nhất Xuân Lộc, Cẩm Mỹ Tx. Cao Lãnh, Lấp Vò, Sa Đéc, Tân Hồng, Tam Nông, Tháp Mười, Hồng Ngự, Cao Lãnh, Thanh Bình, Lai Vung, Châu Thành Tx. An Khê, Chư Pah, Ia Grai, Mang Yang,	10,9 8,2 13,7
	Đồng Tháp	Cửu, Trảng Bom Tx. Long Khánh, Tân Phú, Định Quán, Thống Nhất Xuân Lộc, Cẩm Mỹ Tx. Cao Lãnh, Lấp Vò, Sa Đéc, Tân Hồng, Tam Nông, Tháp Mười, Hồng Ngự, Cao Lãnh, Thanh Bình, Lai Vung, Châu Thành Tx. An Khê, Chư Pah, Ia Grai, Mang Yang, Đắc Đoa, Đắc Pơ	10,9 8,2 13,7 8,2

		Quản Bạ, Vị Xuyên,	
		Hoàng Su Phì, Quang Bình, Xín Mần, Đồng Văn, Mèo Vạc, Yên Minh	8,2
23	Hà Nam	Tx. Phủ Lý, Kim Bảng, Thanh Liêm, Duy Tiên	10,9
25	l la Ivalli	Bình Lục, Lý Nhân	8,2
24	Hà Nội	Q. Ba Đình, Q. Cầu Giấy, Q. Đống Đa, Q. Hai Bà Trưng, Q. Hoàng Mai, Q. Hoàn Kiếm, Q. Long Biên, Q. Tây Hồ, Q. Thanh Xuân, Gia Lâm, Thanh Trì, Từ Liêm, Đông Anh	10,9
		Sóc Sơn	8,2
		Q. Hà Đông, Tx. Sơn Tây, Ba Vì, Chương Mỹ, Đan Phượng, Hoài Đức, Mỹ Đức, Phú Xuyên, Phúc Thọ, Quốc Oai, Thạch Thất, Thanh Oai, Thường Tín, Ứng Hòa	10,9
		Phúc Thọ, Đan Phượng, Thạch Thất, Quốc Oại, Hoài Đức	8,2
25	Hà Tĩnh	Tx. Hà Tĩnh, Cẩm Xuyên, Can Lộc, Đức Thọ, Hương Sơn, Kỳ Anh, Nghi Xuân, Thạch Hà, Vũ Quang	8,2
		Hương Khê	10,9
26	Hậu giang	Châu Thành, Phụng Hiệp	10,9
		Tx. Vị Thanh, Vị Thuỷ, Long Mỹ, Châu Thành A.	13,7
27	Hải Dương	Tp. Hải Dương, Bình Giang, Cẩm Giàng, Chí Linh, Gia Lộc, Nam Sách, Ninh Giang, Thanh Miện.	8,2
		Kinh Môn, Kim Thành, Thanh Hà, Tứ Kỳ	10,9
28	Hải Phòng	Q. Hồng Bàng, Q. Kiến An, Q. Lê Chân, Q. Ngô Quyền, An Dương, An Lão, Kiến An, Bạch Long Vĩ, Thủy Nguyên,	10,9
		Q. Hải An, Tx. Đồ Sơn, Tiên Lãng, Vĩnh Bảo, Kiến Thụy, Cát Hải.	8,2
29	Hoà Bình	Tx Hòa Bình, Đà Bắc, Kim Bôi, Kỳ Sơn, Lạc Thủy, Lương Sơn, Mai Châu.	10,9
		Cao Phong, Tân Lạc, Lạc Sơn, Yên Thủy.	13,7
30	Hưng Yên	Tx. Hưng Yên, Phù Cừ , Tiên Lữ.	8,2
		Ân Thi , Khoái Châu, Kim Động, Mỹ Hào, Văn Giang, Văn Lâm, Yên Mỹ.	10,9
31	Khánh Hoà	Tp. Nha Trang.	3,4
		Tx. Cam Ranh, Diên Khánh, Vạn Ninh, Ninh Hòa.	5,7

		Whánh Coin Whánh Vĩnh	0.0
		Khánh Sơn, Khánh Vĩnh.	8,2
32	Kiên Giang	Trường Sa. Tx. Rạch Giá, Tx. Hà Tiên, An Biên, An Minh, Châu Thành, Giồng Riềng, Gò Quao, Hòn Đất, Kiên Hải, Kiên Lương, Tân Hiệp, Vĩnh Thuận.	7,0 13,7
		Phú Quốc.	7,0
33	Kon Tum	Tx. Kom Tum, Kon Plông, Kon Rẫy, Đắk Glei, Đắk Hà, Sa Thầy.	8,2
		Đắk Tô, Ngọc Hồi.	5,7
34	Lâm Đồng	Tp. Đà Lạt , Đam Rông, Đơn Dương, Đức Trọng, Lâm Hà.	10,9
		Tx. Bảo Lộc, Bảo Lâm, Cát Tiên, Di Linh 8,2 Đạ Huoai, Đạ Tẻh	5,7
		Lạc Dương	13,7
35	Lào Cai	Tp Lào Cai, Sa Pa, Bắc Hà, Bát Xát, Mường Khương, Si Ma Cai	8,2
		Bảo Thắng, Bảo Yên, Văn Bàn	10,9
36	Lạng Sơn	TP. Lạng Sơn, Bắc Sơn, Bình Gia, Cao Lộc, Chi Lăng, Đình Lập, Hữu Lũng, Lộc Bình, Tràng Định, Văn Lãng, Văn Quan	8,2
	Lai Châu	Tx Lai Châu, Tx Lai Châu, Mường Tè, Phong Thổ, Sìn Hồ, Tam Đường, Than Uyên	8,2
37	Long An	Tx. Tân An, Bến Lức, Cần Đước, Cần Guộc, Châu Thành, Đức Hòa, Tân Trụ, Tân Hưng, Tân Thạnh, Thủ Thừa	13,7
		Đức Huệ, Mộc Hóa, Thạnh Hóa, Vĩnh Hưng	14,9
38	Nam Định	Tp. Nam Định, Giao Thủy, Hải Hậu, Mỹ Lộc, Nam Trực, Nghĩa Hưng, Trực Ninh, Vụ Bản, Xuân Trường, Ý Yên	8,2
39	Nghệ An	Tp. Vinh, Tx. Cửa Lò, Hưng Nguyên, Nam Đàn, Thanh Chương, Đô Lương, Yên Thành, Quỳnh Lưu, Diễn Châu	8,2
		Anh Sơn, Con Cuông, Nghĩa Đàn, Tân Kỳ, Tương Dương, Kỳ Sơn, Quế Phong	10,9
		Quỳ Châu, Quỳ Hợp	13,7
40	Ninh Bình	Tx. Ninh Bình Tx. Tam Điệp, Hoa Lư, Kim Sơn, Yên Khánh, Yên Mô	8,2
		Gia Viễn, Nho Quan	10,9
41	Ninh Thuận	Tx. Phan Rang, Ninh Phước	1,4
		Bắc Ái, Ninh Sơn	5,7

		Ninh Hải	3,4
42	Phú Thọ	Tp. Việt Trì, Tx. Phú Thọ, Đoan Hùng, Hạ Hoà, Lâm Thao, Phù Ninh, Cẩm Khê, Tam Nông, Thanh Ba, Thanh Sơn, Thanh Thuỷ, Yên Lập	10,9
43	Phú Yên	Tp. Tuy Hòa	3,4
		Đông Xuân, Sông Hinh, Sơn Hòa	8,2
		Phù Hòa, Sông Cầu, Tuy An, Tuy Hòa	5,7
44	Quảng Bình	Tp. Đồng Hới, Bố Trạch, Lệ Thủy, Minh Hóa, Quảng Ninh, Quảng Trạch	8,2
		Tuyên Hóa	10,9
45	Quảng Nam	Tx. Tam Kỳ, Tx. Hội An, Bắc Trà My, Duy Xuyên, Đại Lộc, Điện Bàn, Nam Trà My, Phú Ninh, Núi Thành, Quế Sơn, Thăng Bình, Tiên Phước, Hiệp Đức	8,2
		Đông Giang, Nam Giang, Phước Sơn, Tây Giang, Nam Trà My	10,9
46	Quảng Ngãi	Tx. Quảng Ngãi, Bình Sơn, Đức Phổ, Lý Sơn, Mộ Đức, Nghĩa Hành, Tư Nghĩa, Sơn Tịnh	8,2
		Ba Tơ, Minh Long, Sơn Hà, Sơn Tây, Tây Trà, Trà Bồng	10,9
47	Quảng Ninh	Tp. Hạ Long, Tx. Uông Bí, Đông Triều, Yêu Hưng, Hoành Bồ, Bình Liêu	8,2
		Tx. Móng Cái, Ba Chẽ, Cô Tô, Đầm Hà, Hải Hà, Hoành Bồ, Tiên Yên, Vân Đồ, Cẩm Phả	10,9
48	Quảng Trị	Tx. Đông Hà, Cam Lộ, Cồn Cỏ, Đa Krông, Gio Linh, Hải Lăng, Hướng Hóa, Vĩnh Linh	8,2
		Tx. Quảng Trị, Đa Krông, Hải Lăng, Triệu Phong	10,9
49	Sơn La	Tx Sơn La, Bắc Yên, Mai Sơn, Mộc Châu , Mường La, Phù Yên, Quỳnh Nhai, Sông Mã, Sốp Cộp, Thuận Châu, Yên Châu	10,9
50	Sóc Trăng	Tx. Sóc Trăng, Cù Lao Dung, Kế Sách, Long Phú, Mỹ Xuyên, Vĩnh Châu	10,9
		Mỹ Tú, Ngã Năm, Thạnh Trị	13,7
51	Tây Ninh	Tx. Tây Ninh, Châu Thành, Hòa Thành, Tân Biên, Tân Châu	13,7
		Gò Dầu, Trảng Bàng, Bến cầu, Dương Minh Châu	14,9
52	Thái Bình	Tp. Thái Bình, Đông Hưng, Hưng Hà, Kiến Xương, Quỳnh Phụ, Thái Thụy, Tiền Hải, Vũ	8,2

		Thư	
53	Thái Nguyên	Tp. Thái Nguyên, Định Hóa, Đồng Hỷ, Phổ Yên, Phú Bình, Phú Lương,Võ Nhai, Tx.Sông Công, Đại Từ	8,2
54	Thanh Hoá	Tp. Thanh Hóa, Tx. Bỉm Sơn, Tx. Sầm Sơn, Đông Sơn, Hà Trung, Hậu Lộc, Hoằng Hóa, Như Thanh, Như Xuân, Nông Cống, Nga Sơn, Thiệu Hóa, Thọ Xuân,Quảng Xương, Tĩnh Gia, Triêu Sơn, Vĩnh Lộc, Yên Định	8,2
		Bá Thước, Thạch Thành, Cẩm Thủy	13,7
		Lang Chánh, Mướng Lát, Quan Hóa, Quan Sơn, Thường Xuân, Ngọc Lặc, Cẩm Thủy	10,9
55	Thừa Thiên Huế	Tp. Huế, Phong Điền, Phú Lộc, Phú Vang, Quảng Điền	10,9
		A Lưới, Hương Trà, Hương Thủy, Nam Đông	13,7
56	Tiền Giang	Tp. Mỹ Tho, Tx. Gò Công, Cái Bè, Cai Lậy, Châu Thành, Tân Phước, Chợ Gạo, Gò Công Đông, Gò Công Tây	13,7
57	Tp. Hồ Chí Minh	Quận 2,Quận 3, Quận 4, Quận 5, Quận 6, Quận 7, Quận 8,Quận 9, Quận 10, Quận 11, Q. Tân Phú, Q. Bình Tân, Q. Bình Thạnh, Q. Gò Vấp, Q. Phú Nhuận, Q. Tân Bình, Q. Thủ Đức, Bình Chánh, Nhà	13,7
		Bè, Hóc Môn	
		Cần Giờ	10,9
		Củ Chi	14,9
58	Trà Vinh	Tx. Trà Vinh, Càng Long	13,7
		Cầu Kè, Cầu Ngang, Châu Thành, Duyên Hải, Tiểu Cần, Trà Cú.	10,9
59	Tuyên Quang	Tx. Tuyên Quang, Chiêm Hóa, Hàm Yên, Na Hang, Sơn Dương	10,9
		Sơn Dương	8,2
60	Vĩnh Long	Tx. Vĩnh Long, Long Hồ, Mang Thít	13,7
		Tam Bình, Trà Ôn, Vũng Liêm, Bình Minh	10,9
61	Vĩnh Phúc	Tp. Vĩnh Yên, Tx. Phúc Yên, Bình Xuyên, Lập Thạch, Tam Dương, Vĩnh Tường, Yên Lạc	10,9
		Tam Đảo, Mê Linh	8,2
62	Yên Bái	Tp. Yên Bái, Tx. Nghĩa Lộ, Lục Yên, Mù Cang Chải, Trạm Tấu, Trấn Yên, Văn Chấn, Văn Yên, Yên Bình	10,9

Bảng D.2 - Sự phân bố các đặc tính chính của sét mặt đất

тт	Đặc tính sét	Tỷ lệ phần trăm các khả năng trị số đặc tính có thể xảy ra lớn hơn giá trị sau đây							Đơn vị
			90	75	50	25	10	1	•
1	Số sét lặp	1	1	2	3	5	7	12	
2	Khoảng thời gian giữa các sét	10	25	35	55	90	150	400	ms
3	Dòng sét thứ nhất, I _{max}	5	12	20	30	50	80	130	kA
4	Biên độ dòng sét tiếp theo	3	6	10	15	20	30	40	kA
5	Độ dốc sét thứ nhất, (dl/dt)	6	10	15	25	30	40	70	GA/s
6	Độ đốc sét tiếp theo, (dl/dt)	6	15	25	45	80	100	200	GA/s

PHU LUC E

(Tham khảo)

Tính toán rủi ro tổn thất cho một trạm viễn thông điển hình

Tính toán rủi ro thiệt hại do sét cho một trạm viễn thông tại thành phố Tuy Hoà, tỉnh Phú Yên, có các số liệu cơ sở:

- Kích thước và vật liệu nhà trạm: (5 x 3 x 3) m; bê tông cốt thép;
- Độ cao anten và khoảng cách từ anten tới nhà: cao 80 m, cách nhà 4 m;
- Đặc điểm và chiều dài của các cáp vào nhà trạm:
 - + Cáp điện lực dài 600 m, không có che chắn, chôn ngầm;
 - + Cáp thông tin dài 1000 m, không có che chắn, treo nổi;

Hình E.1 – Mô hình trạm viễn thông có cột cao anten kề bên

E.1. Tính toán các diện tích rủi ro, A

- Diện tích rủi ro sét đánh trực tiếp vào nhà trạm, trong trường hợp này $A_d = 0$ (do nhà được bao phủ bởi diện tích rủi ro của cột anten);
- Diện tích rủi ro sét đánh trực tiếp vào cột anten:

 $A_a = \Pi (3h)^2 = \Pi. (3.80)^2 = 1800956 (m^2) = 0.2 (km^2);$

- Diên tích rủi ro sét đánh xuống đường cáp thông tin:

 $A_{\text{stele}} = 2.d_{\text{1tele}}.L_{\text{tele}} - A_{\text{a}}/2 = 2.1000.\ 1000 - 90000 = 1,91.\ 10^{-6}\ (\text{m}^2) = 1,9\ (\text{km}^2) - (\text{diện tích rủi ro sét đánh xuống các đường cáp được giảm do sự che phủ bởi diện tích rủi ro sét đánh xuống côt anten);$

- Diện tích rủi ro sét đánh xuống cáp điện lực:

$$A_{\text{spower}} = 2. \ d_{\text{1power}} \cdot L_{\text{power}} - A_{\text{a}}/2 = 2. \ 250. \ 600 - 90000 = 0.21. \ 10^{-6} \ (\text{m}^2) = 0.2 \ (\text{km}^2)$$

- Diện tích rủi ro sét đánh xuống lân cận nhà trạm, A_n , được giảm do sự bao phủ của diện tích rủi ro sét đánh vào cột anten và diện tích rủi ro sét đánh vào các đường dây, riêng từng trường hợp ta có:
 - + Trường hợp bao phủ bởi cáp thông tin:

$$A_{n(tele)} = \prod d^2/2 - A_a/2 = 0.3 \text{ (km}^2);$$

+ Trường hợp bao phủ bởi cáp điện lực :

 $A_{n(power)} = \Pi d^2/2 - A_a/2 + (\Pi d^2/3 - 2 d_1 d_1 \sqrt{3}/2) = 0,5 (km^2) - (các thành phần trong ngoặc biểu thị diện tích của mảnh vòng tròn khi d= 2 d_1)$

Hình E.2 - Các diện tích rủi ro

E.2. Tính toán tần suất thiệt hại

Mật độ sét của khu vực đặt trạm viễn thông tại thành phố Tuy Hoà, tỉnh Phú Yên, theo Bảng D.1, Phụ lục D là N_g = 3,7 lần/km².năm.

Tần suất thiệt hại F phụ thuộc vào N_g, các diện tích rủi ro vừa tính toán trên và các hệ số xác suất thiệt hại tương ứng với các biện pháp bảo vệ, có giá trị lấy theo các Bảng 5 đến Bảng 9.

Khi không có các biện pháp bảo vệ, chỉ xét che chắn của cấu trúc nhà và sự đấu nối vỏ che chắn của cáp anten vào trạm, tần suất thiệt hại sẽ là:

- Tần suất thiệt hại do sét đánh trực tiếp vào nhà trạm:

$$F_d = N_q.A_d. p_d = 0 (do A_d = 0)$$

Tần suất thiệt hại do sét đánh xuống đất gần khu vực nhà trạm:

$$F_n = N_a$$
. $A_n p_n = N_a \cdot (A_{n(tele)} + A_{n(power)}) \cdot p_n$

với p_n = 0,1 do toà nhà có cấu trúc bê tông cốt thép (theo Bảng 5),

$$F_n = 3.7. (0.3 + 0.5). 0.1 = 0.296 (lan/nam);$$

- Tần suất thiệt hại do sét đánh vào cáp hoặc vùng lân cận cáp:

$$F_s = N_g$$
. $(A_{s(tele)} + A_{s(power)})$. p_s

với p_s = 1 do không có các biện pháp bảo vệ trên cáp (theo Bảng 7):

$$F_s = 3.7. (1.9 + 0.2).1 = 7.7 (lan/nam)$$

- Tần suất thiệt hai do sét đánh trực tiếp vào côt anten:

$$F_a = N_g$$
. A_a . p_a

với p_a = 0,01 do toà nhà có cấu trúc bê tông cốt thép (theo Bảng 5) và giả thiết cáp được nối đất tốt với cốt thép toà nhà:

$$F_a = 3.7.0.2 \cdot 0.01 = 0.0047 \text{ (lần/ năm)};$$

E.3. Tính toán rủi ro tổn thất

- Rủi ro tổn thất cho con người ở bên trong khu vực trạm viễn thông được tính theo công thức 2.1, với giả thiết lớp bề mặt sàn làm bằng bê tông khô (p_{injury}= 10⁻³ theo Bảng 9):

$$R_{injury} = L.p_{injury}$$
. $\Sigma Fi = 1.10^{-3}$. $(0,296 + 7,7 + 0,0047) = 8.10^{-3}$

Rủi ro như trên là quá cao so với yêu cầu rủi ro cho phép (10⁻⁵), do vậy cần trang bị thêm các biện pháp bảo vệ.

- Rủi ro tổn thất dịch vụ được tính theo công thức 2.2:

$$R_{loss} = L.\Sigma Fi = 2,47.10^{-3}.8 = 19,76.10^{-3}$$

Rủi ro như trên là quá cao so với tiêu chuẩn rui ro cho phép (10⁻³), do vậy cần trang bị thêm các biện pháp bảo vệ.

Từ tính toán trên, ta thấy nguồn tần suất thiệt hại do sét lớn nhất là từ các đường dây thông tin và điện lực (F_s = 7,7 lần/năm), do vậy, cần phải lắp đặt trang bị bảo vệ trên các đường dây này. Nếu phương pháp lắp đặt có chất lượng, sẽ làm giảm F_n và F_s một hệ số p = 0,01. Nhờ vậy, tần suất thiệt hại sẽ là:

$$\Sigma F = 3.7.[0.8.10^{-1}.10^{-2} + 2.1.10^{-2} + 0.2.10^{-2}] = 8.51.10^{-2} \text{ (lần/ năm)}$$

- Rủi ro tổn thất cho con người có thể được giảm bằng cách trang bị hệ thống chống sét bên ngoài (p_{injury}= 0,1 theo Bảng 6) và bề mặt của diện tích làm việc được phủ bằng vật liệu nhựa đường hoặc gỗ (p_{injury}=10⁻⁵), thì rủi ro tổn thất cho con người sẽ là:

$$R_{injury} = 8,51.10^{-2}.10^{-1}.10^{-5} = 8,51.10^{-8}$$

Giá trị này là đạt so với tiêu chuẩn cho phép. Vì vậy, việc trang bị bảo vệ cho con người như trên là đã đủ.

- Rủi ro tổn thất dịch vu:

$$R_{loss} = 8,51.10^{-2}. 2,74.10^{-3} = 23,3.10^{-5} = 0,233.10^{-3}$$

Giá trị này là đạt so với tiêu chuẩn cho phép. Vì vậy, việc trang bị bảo vệ cho dịch vụ như trên là đã đủ.

THƯ MỤC TÀI LIỆU THAM KHẢO

- [1] IEC 62305 1: 2006, Protection against lightning Part 1: General principles
- [2] IEC 62305 2: 2006, Protection against lightning Part 2: Risk management
- [3] IEC 62305 –3: 2006, Protection against lightning Part 3: Physical damage to structures and life hazard
- [4] ITU-T Recommendation K. 39 (1996), Risk assessment of damages to telecommunication sites due to lightning discharges
- [5] ITU-T Recommendation K.40 (1996), Protection against LEMP in telecommunication centers
- [6] ITU-T Recommendation K. 25 (1999), Protection of optical fibre cables
- [7] ITU-T Recommendation K. 47 (2008), Protection of telecommunication lines using metallic conductors against direct lightning discharges