

Centro de Ciências Exatas, Ambientais e de Tecnologias

Faculdade de Análise de Sistemas Curso Sistemas de Informação

Projeto Integrado C 1º Trabalho do 1º Semestre de 2018

O propósito deste trabalho é, usando pilhas e filas, construir em Java o programa de uma <u>Calculadora Lógica</u> apropriadamente orientado a objetos. Nele, uma expressão lógica deverá ser avaliada e seu resultado deverá ser calculado e exibido. Veja o exemplo abaixo:

Entrada: $((T \lor F \to T) \land (T \to F)) \to (\sim F \to T)$ Saída: T

Para solucionar o problema devido a mudança de prioridade pelo parêntese, o matemático polonês *Jan Lukasiewicz* elaborou uma saída para representarmos e avaliarmos expressões sem nos preocuparmos com as prioridades das operações e, até mesmo, abrir mão dos parênteses. Podemos considerar três formas para representar uma expressão:

- Ø Infixa: operador está entre os operandos. (A + B)
- Ø Pré-Fixa: Operador precede os operandos (+ AB)
- Ø Pós-Fixa: Operador após os operandos (AB +)

Saída (Notação Posfix): 34+

Esta implementação utilizará pilhas e filas como estruturas de dados e a técnica utilizada será a de transformar a expressão fornecida da tradicional notação infixa para notação pós-fixa e, a partir desta última, calcular o valor da expressão. Veja o exemplo:

Entrada (Notação Infix): 3 + 4 Passos: 1) Leve 3 para a fila de saída (sempre que um número é lido é empurrado para a fila de saída) Fila de Saída Início 3 Fim 2) Leve + (ou sua identificação) na pilha do operador Pilha de Operador + B Top 3) Leve 4 para a fila de saída Fila de Saída Fim Início 4) Depois de ler a expressão, retire os operadores da pilha e adicione-os à fila de saída. Neste caso, existe apenas um, "+". Fila de Saída Início 3

OBS: Expressões mal formadas também poderão ser entradas e a má formação deverá ser detectada e sinalizada.

As formas pré-fixa e pós-fixa são conhecidas como notação polonesa (PN) e notação polonesa reversa (RPN), respectivamente, em que a última tem mostrado ser a mais eficiente para construção de algoritmos.

O programa que vamos implementar não uma calculadora aritmética, e sim uma <u>calculadora lógica</u>. Para você entender melhor como funciona uma calculadora lógica, sugiro que você visite o site http://www.calculadoraonline.com.br/tabela-verdade. Neste site você encontra uma calculadora lógica online. Inclusive, você poderá utilizar esta calculadora lógica para testar a sua calculadora.

Para o funcionamento da nossa calculadora, os seguintes símbolos poderão ser utilizados como entrada:

Símbolo	Significado	Funcionamento
Т	Verdadeiro	
F	Falso	
٨	Conjunção	A conjunção é verdadeira se e somente se os operandos são verdadeiros.
	(operador AND)	
V	Disjunção	A disjunção é falsa se, e somente se ambos os operandos forem falsos.
	(operador OR)	
~	Negação	A negação da proposição "V" é a proposição "~V", ou seja, é falsa, e vice-versa.
	(operador NOT)	
->	Implicação	A conjunção é falsa se, e somente se, o primeiro operando é verdadeiro e o segundo
		operando é falso.
<->	Equivalência	A conjunção é verdadeira se, e somente se, ambos operandos forem falsos ou
		ambos verdadeiros
()	Parentetização	

Essa calculadora considera a precedência dos operadores e os parênteses durante o cálculo da expressão. A tabela seguinte mostra a precedência dos operadores, da maior precedência no começo para os de menor precedência.

Símbolo	Significado
~	Negação (operador NOT)
٨	Conjunção (operador AND)
V	Disjunção (operador OR)
->	Implicação
<->	Equivalência

Observação: Havendo operadores de mesma prioridade (como é o caso da Implicação e da Equivalência), sua calculadora deverá resolver a expressão da esquerda para direita, ou seja, o que aparecer primeiro.

Para implementar esta calculadora, seu programa deve realizar uma sequência de passos, a saber:

- 1. Você deverá nesta primeira etapa, construir o **Validador de Expressão**. Uma *string* deverá ser lida e quebrada em pedaços para verificar se é válida ou não:
 - 1.1. Solicitar a digitação de uma expressão lógica. Você deve ler a expressão digitada pelo usuário como uma string e remover todos os espaços em branco. Suponha que tenha sido:

$$((T V F -> T) \land (T -> F)) -> (\sim F <-> T)$$

1.2. Os símbolos de operadores da string que são compostos por mais de um caracter, você deverá substituir por um único símbolo, conforme tabela abaixo:

	DE	PARA
Implicação	->	-
Equivalência	<->	<

Veja como ficará a string do nosso exemplo:

$$(\;(\;\mathrm{TVF-T}\;)\;\Lambda\;(\;\mathrm{T-F}\;)\;\;)\;-\;(\;\sim\!\mathrm{F}\!<\!\mathrm{T}\;)$$

1.3. Agora que você já tem cada operador lógico representado por um único caracter, você deve implementar uma lógica para quebrar a string em partes. Na linguagem JAVA, você possui uma classe chamada StringTokenizer. Esta classe permite quebrar a string ("exp") em partes quando encontrar um delimitador ("~^v-<"). O true faz com que pegue os delimitadores também como pedaços.</p>

```
StringTokenizer quebrador = new StringTokenizer (exp, "~^v-<", true);</pre>
```

- 1.4. Os seguintes métodos desta classe deverão ser utilizados para que você quebre a string em pedaços:
 - Ø quebrador.nextToken(); // Lê os pedaços
 - Ø quebrador.hasMoreToken(); // Verifica se tem mais tokens
- 1.5. Por fim, você deverá verificar se a expressão lógica é válida. Caso não seja uma expressão válida, notificar o usuário. Caso seja válida, prosseguir para a segunda etapa.
- Você deverá nesta segunda etapa, construir <u>Conversor de Notação Infixa para Pós-fixa</u>. Nesta etapa, será utilizada uma pilha e uma fila para transformar a expressão da notação infixa para a notação pós-fixa:
 - 2.1. Devemos pegar um pedaço da expressão que foi quebrada no passo anterior:
 - 2.1.1. Se o pedaço for um **abre parênteses** ("("), colocaremos este pedaço na <u>Pilha de Operadores</u>.
 - 2.1.2. Se o pedaço for um valor lógico (T ou F), colocaremos este pedaço na Fila de Saída.
 - 2.1.3. Se o pedaço for um **operador lógico** (~, ^, v, -, <), deveremos realizar dois passos:
 - 2.1.3.1. Analisar se não temos elementos para remover da pilha. Você deverá utilizar a tabela a seguir, para decidir se irá remover elementos da <u>Pilha de Operadores:</u>
 - 2.1.3.1.1. Se o valor da tabela for 1 (true), o elemento da pilha deve ser desempilhado e colocado na <u>Fila de Saída</u>.
 - 2.1.3.1.2. Se o valor da tabela for 0 (false), o elemento da pilha não deve ser desempilhado e você deve ir para o passo 2.1.3.2.
 - 2.1.3.1.3. A remoção de elementos da pilha deve parar quando for encontrado o valor 0, ou seja, o passo 2.1.3.1 deverá ser repetido enquanto for encontrado o valor 1 (true) na tabela.

		Símbolo pego na Expressão						
		(~	٨	V	-	<)
<u>a</u>	(0	0	0	0	0	0	1
obo c	~	0	0	1	1	1	1	1
está no topo Operadores	٨	0	0	1	1	1	1	1
está Ope	V	0	0	0	1	1	1	1
o que ha de	-	0	0	0	0	1	1	1
Símbolo que está no topo da Pilha de Operadores	<	0	0	0	0	1	1	1
Sí)	0	0	0	0	0	0	0

- 2.1.3.2. Assim que o passo 2.1.3.1 for verificado e concluído, deveremos colocar o operador da expressão no topo da Pilha de Operadores.
- 2.1.4. Se o pedaço for um fecha parênteses (")"), devemos desempilhar um elemento da pilha e colocá-lo na fila. Repetimos este passo até encontrar o "(". Ambos os símbolos "(" como o ")" não irão para a fila. Eles simplesmente deverão ser descartados.
- 2.2. Veja que ao final do passo 2.1, você terá obtido a expressão em notação pós-fixa. Veja abaixo a aplicação destes passos para o nosso exemplo:

Expressão	Pilha de Operadores	Fila de Saída
((TVF-T)∧(T-F))-(~F <t)< td=""><td><u>Vazia</u></td><td><u>Vazia</u></td></t)<>	<u>Vazia</u>	<u>Vazia</u>
(TVF-T)∧(T-F))-(~F <t)< td=""><td></td><td><u>Vazia</u></td></t)<>		<u>Vazia</u>
T VF-T)∧(T-F))-(~F <t)< td=""><td>((</td><td><u>Vazia</u></td></t)<>	((<u>Vazia</u>
<mark>V</mark> F-T)∧(T-F))-(~F <t)< td=""><td>(</td><td>Т</td></t)<>	(Т
F-T) \(\lambda(\text{T-F})\) - (\simple F < T)	V (Т
<mark>-</mark> T)∧(T-F))-(~F <t)< td=""><td><u>v</u> (</td><td>TF</td></t)<>	<u>v</u> (TF
<mark>-</mark> T)Λ(T-F))-(~F <t)< td=""><td>Valor na tabela 1, remove v da <u>Pilha de Operadores</u> e coloca na <u>Fila de Saída</u>.</td><td>T F V</td></t)<>	Valor na tabela 1, remove v da <u>Pilha de Operadores</u> e coloca na <u>Fila de Saída</u> .	T F V
<mark>T</mark>)∧(T-F))-(~F <t)< td=""><td>Não há mais elementos da Pilha de Operadores para remover. Empilha-se o operador que estava na expressão.</td><td>TFV</td></t)<>	Não há mais elementos da Pilha de Operadores para remover. Empilha-se o operador que estava na expressão.	TFV
<mark>)</mark> ∧(T-F))-(~F <t)< td=""><td>- ((</td><td>T F V T</td></t)<>	- ((T F V T
<mark>)</mark> ∧(T-F))-(~F <t)< td=""><td>Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".</td><td>T F v T -</td></t)<>	Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".	T F v T -
<mark>^</mark> (T-F))-(~F <t)< td=""><td>Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.</td><td>T F v T -</td></t)<>	Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.	T F v T -

Expressão	Pilha de Operadores	Fila de Saída
<mark>(</mark> T−F))-(~F <t)< th=""><td>^ (</td><td>T F v T -</td></t)<>	^ (T F v T -
T-F))-(~F <t)< th=""><td>(^ (</td><td>T F v T -</td></t)<>	(^ (T F v T -
<mark>-</mark> F))-(~F <t)< th=""><td>(^ (</td><td>T F v T - T</td></t)<>	(^ (T F v T - T
F))-(~F <t)< th=""><td>- (^ (</td><td>T F v T - T</td></t)<>	- (^ (T F v T - T
))-(~F <t)< th=""><td>- (^ (</td><td>T F v T - T F</td></t)<>	- (^ (T F v T - T F
<mark>)</mark>)-(~F <t)< th=""><th>Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".</th><th>T F v T - T F -</th></t)<>	Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".	T F v T - T F -
<mark>)</mark> -(~F <t)< th=""><td>Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.</td><td>T F V T - T F -</td></t)<>	Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.	T F V T - T F -
<mark>)</mark> -(~F <t)< th=""><td>Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".</td><td>T F v T - T F - <mark>^</mark></td></t)<>	Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".	T F v T - T F - <mark>^</mark>
<mark>-</mark> (~F <t)< th=""><td>Vazia Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.</td><td>T F V T - T F - ^</td></t)<>	Vazia Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.	T F V T - T F - ^
<mark>(</mark> ∼F <t)< th=""><td>-</td><td>T F v T - T F - ^</td></t)<>	-	T F v T - T F - ^

Expressão	Pilha de Operadores	Fila de Saída
∼F <t)< th=""><th><u>(</u></th><th>T F v T - T F - ^</th></t)<>	<u>(</u>	T F v T - T F - ^
F <t)< th=""><th>~ (-</th><th>T F V T - T F - ^</th></t)<>	~ (-	T F V T - T F - ^
<mark><</mark> T)	~ (-	T F v T - T F - ^ F
<mark><</mark> T)	Valor na tabela 1, remove ~ da Pilha de Operadores e coloca na Fila de Saída.	T F v T - T F - ^ F ~
T)	Não há mais elementos da Pilha de Operadores para remover. Empilha-se o operador que estava na expressão.	T F v T - T F - ^ F ~
)	(-	T F V T - T F - ^ F ~ T
)	Desempilhamos os elementos da <u>Pilha de</u> <u>Operadores</u> e colocamos na <u>Fila de Saída</u> até encontrar o "(".	T F v T - T F - ^ F ~ T <
<u>Vazia</u>	- Ambos os símbolos "(" como o ")" não foram para a fila - foram descartados.	T F v T - T F - ^ F ~ T <
<u>Vazia</u>	<u>Vazia</u>	T F v T - T F - ^ F ~ T < - Resultado Final: Expressão em notação pós-fixa.

- 3. Você deverá nesta terceira etapa, construir Calculadora de Expressão Lógica:
 - 3.1. Devemos definir 3 variáveis: dois valores lógicos (v1 e v2) e um char (opl). Lembre-se, nossa expressão pós-fixa está na <u>Fila de Saída</u>.
 - 3.2. Regra Geral Devemos remover um elemento da Fila de Saída e verificar:
 - 3.2.1. Se o elemento for um valor lógico (T ou F), devemos empilhá-lo na <u>Pilha Resultado</u>. Devemos repetir este passo 1 até que o elemento removido da <u>Fila de Saída</u> seja um operador lógico.
 - 3.2.2. Se o elemento removido da <u>Fila de Saída</u> for um operador lógico, devemos armazenálo na variável char definida como **opl**.
 - 3.2.3. Não pare por aí...ao encontrar um operador lógico e depois de armazená-lo em opl, devemos desempilhar um elemento e colocá-lo em v2. Em seguida, devemos fazer mais uma verificação:
 - 3.2.3.1. Se o operador lógico opl não for do tipo negação (~), devemos desempilhar mais um elemento e colocá-lo em v1. Em seguida, você deve calcular o resultado da expressão: v1 opl v2. Este resultado deve ser armazenado na Pilha Resultado.
 - 3.2.3.2. Se o operador lógico opl for do tipo negação (~), você deve calcular o resultado da expressão: opl v2. Este resultado deve ser armazenado na Pilha Resultado.
 - 3.3. Pronto! Caso haja ainda elementos na <u>Fila de Saída</u>, você deve aplicar a regra geral novamente (volte ao passo 3.2). Caso não haja elementos na <u>Fila de Saída</u>, deve ficar um único elemento na <u>Pilha Resultado</u> e este elemento será o resultado final da expressão.
 - 3.4. Veja que ao final do passo 3.3, você terá obtido o resultado final da expressão que a saída esperada do seu programa. Veja abaixo a aplicação destes passos para o nosso exemplo:

Fila de Saída (expressão em notação pós-fixa)	Pilha Resultado	Variáveis
T F V T - T F - ^ F ~ T < -	<u>Vazia</u>	v1 = v2 = opl =
F V T - T F - ^ F ~ T < -	Т	v1 = v2 = opl =
V T - T F - ^ F ~ T < -	F T	v1 = v2 = opl =
T - T F - ^ F ~ T < -	F T	v1 = v2 = opl = v
T - T F - ^ F ~ T < -	<u>Vazia</u>	v1 = T v2 = F opl = v Calcula-se a expressão T v F = T e seu resultado empilha na Pilha Resultado.
T - T F - ^ F ~ T < -	Т	v1 = v2 = opl =

Fila de Saída (expressão em notação pós-fixa)	Pilha Resultado	Variáveis
- TF-^F~T<-	T T	v1 = v2 = opl =
T F - ^ F ~ T < -	T T	v1 = v2 = opl = -
T F - ^ F ~ T < -	<u>Vazia</u>	v1 = T v2 = T opl = -
T F - ^ F ~ T < -	<u>Vazia</u>	v1 = T v2 = T opl = - Calcula-se a expressão T -> T = T e seu resultado empilha na Pilha Resultado.
T F - ^ F ~ T < -	T	v1 = v2 = opl =
F - ^ F ~ T < -	T	v1 = v2 = opl =
- ^ F ~ T < -	F T T	v1 = v2 = opl =
^ F ~ T < -	F T T	v1 = v2 = opl = -
^ F ~ T < -	T	v1 = T v2 = F opl = -
^ F ~ T < -	Т	v1 = T v2 = F opl = - Calcula-se a expressão T -> F = F e seu resultado empilha na <u>Pilha Resultado</u> .
^ F ~ T < -	F T	v1 = v2 = opl =
F ~ T < -	F T	v1 = v2 = opl = ^

Fila de Saída (expressão em notação pós-fixa)	Pilha Resultado	Variáveis
F ~ T < -	<u>Vazia</u>	v1 = T v2 = F opl = ^
F ~ T < -	<u>Vazia</u>	v1 = T v2 = F opl = ^ Calcula-se a expressão T ^ F = F e seu resultado empilha na Pilha Resultado
F ~ T < -	F	v1 = v2 = opl =
~ T < -	F F	v1 = v2 = opl =
T < -	F F	v1 = v2 = opl = ~
T < -	F	v1 = v2 = F opl = ~
T < -	F	v1 = v2 = F opl = ~ Calcula-se a expressão ~F = T e seu resultado empilha na Pilha Resultado
T < -	T F	v1 = v2 = opl =
< -	T T F	v1 = v2 = opl =
-	T T F	v1 = v2 = opl = <mark><</mark>
	I .	1

Fila de Saída (expressão em notação pós-fixa)	Pilha Resultado	Variáveis
-	F	v1 = T v2 = T opl = <
-	F	v1 = T v2 = T opl = < Calcula-se a expressão T <-> T = T e seu resultado empilha na
<u>•</u>	T F	Pilha Resultado. v1 = v2 = opl =
<u>Vazia</u>	T F	v1 = v2 = opl = -
<u>Vazia</u>	<u>Vazia</u>	v1 = F v2 = T opl = -
<u>Vazia</u>	<u>Vazia</u>	v1 = F v2 = T opl = - Calcula-se a expressão F -> T = T e seu resultado empilha na Pilha Resultado.
<u>Vazia</u>	Este é o resultado da expressão que deverá ser apresentado ao usuário como saída do programa.	v1 = v2 = opl =

Observações Finais:

- É imprescindível: (a) que o programa seja adequadamente dividido em classes; (b) que as classes Pilha e Fila sejam implementadas utilizando vetores (não podem ser utilizadas classes prontas da linguagem); (c) que todas as validações cabíveis sejam feitas por todos os métodos e que incorretudes sejam sinalizadas através de exceções que, posteriormente, sejam apropriadamente tratadas.
- O presente trabalho deve ser feito em grupos de até 3 alunos e deverá ser entregue, impreterivelmente no dia 27 de Março de 2018 (esta é a data de entrega para ambas turmas 0101 e 0102). Somente o representante do grupo é que poderá postar no seu escaninho o projeto.