

Einführung in die Programmierung

Bäume

Ein grundlegendes Problem

- Speicherung von Datensätzen
- Listen oft nicht ausreichend, da O(n) zu langsam ist

Beispiel

- Stammbaum
- Dateisysteme
- Entscheidungsbäume
- Suchbäume, z.B. für Lexika Daten
- Rekursionsbäume

Anforderungen

- Schneller Zugriff, d.h. schneller als O(n)
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Zugriff auf Daten

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt eine totale Ordnung auf den Schlüsseln)

Beispiel

- Lexika (Begriff, Erläuterung)
- Schlüssel: Begriff
- Totale Ordnung: Lexikographische Ordnung

Problem:

Gegeben sind n Objekte O₁,..., O_n mit zugehörigen Schlüsseln s(O_i)

Operationen:

- Suche(x); Ausgabe O mit Schlüssel s(O) = x;
 nil (NULL), falls kein Objekt mit Schlüssel x in Datenmenge
- Einfügen(O); Einfügen von Objekt O in Datenmenge
- Löschen(O); Löschen von Objekt O mit aus der Datenmenge

Datenstrukturen

Bisher haben wir folgenden grundlegende Datenstrukturen

- Felder/Arrays
- Sortierte Arrays
- Dynamische Arrays
- Doppelt verkettete Liste

Diskussion

- Alle Datenstrukturen haben Nachteile
- Listen helfen beim Speichermanagement
- Sortierung hilft bei Suche ist aber teuer aufrecht zu erhalten

Definition (Binärbaum)

- Ein Binärbaum T ist eine Struktur, die auf einer endlichen Menge definiert ist. Diese Menge nennt man auch die Knotenmenge des Binärbaums.
- Die leere Menge ist ein Binärbaum. Dieser wird auch als leerer Baum bezeichnet.
- Ein Binärbaum ist ein Tripel (v, T₁, T₂), wobei T₁ und T₂ Binärbäume mit disjunkten Knotenmengen V₁ und V₂ sind und v∉V₁∪V₂ Wurzelknoten heißt. Die Knotenmenge des Baums ist dann $\{v\}\cup V_1\cup V_2$.

Binärbaum

Darstellung von Binärbäumen

Darstellung von Binärbäumen

Häufig lässt man die leeren Bäume in der Darstellung eines Binärbaums weg

Definition (Binärbaum)

- Ein Binärbaum T ist eine Struktur, die auf einer endlichen Menge definiert ist. Diese Menge nennt man auch die Knotenmenge des Binärbaums.
- Die leere Menge ist ein Binärbaum. Dieser wird auch als leerer Baum bezeichnet.
- Ein Binärbaum ist ein Tripel (v, T₁, T₂), wobei T₁ und T₂ Binärbäume mit disjunkten Knotenmengen V₁ und V₂ sind und v∉V₁∪V₂ Wurzelknoten heißt. Die Knotenmenge des Baums ist dann $\{v\}\cup V_1\cup V_2$. T₁ heißt linker Unterbaum von v und T₂ heißt rechter Unterbaum von v.

Binärbaum Begriffe

Begriff	Erläuterung	Beispiel
Vorgänger (<i>predecessor</i>)	-	A ist Vorgänger von B
Nachfolger (successor)	-	B ist Nachfolger von A
Wurzel (<i>root</i>)	kein Vorgänger	A
Blatt (<i>leaf</i>)	kein Nachfolger	D, H, I, J, K
interner Knoten (inner node)	alle Nachfolger besetzt	A, B, C, G
Randknoten (<i>boundary node</i>)	nicht alle Nachfolger besetzt	D, E, F, H, I, J, K
Pfad (path)	Knotenfolge von einem Anfangs- bis zum Endknoten	Pfad von der Wurzel nach F: A,C,F
Pfadlänge (<i>path length</i>)	Anzahl der Kanten des Pfads	Pfadlänge von A nach F: 2
Tiefe eines Knotens (depth)	Pfadlänge zur Wurzel	Tiefe von F: 2
Höhe eines Baumes (<i>height</i>)	Größte Tiefe	3
Höhe eines Knotens ν	Höhe des Teilbaums von ν	Höhe von F: 1

Binärbaum

Binärbäume (Darstellung im Rechner)

- Schlüssel key und ggf. weitere Daten
- Zeiger lc(v) (rc(v)) auf linkes (rechtes) Kind von v
- Vaterzeiger p(v) auf Vater von v (blau)
- Wurzelzeiger root(T)

Binäre Suchbäume

Binäre Suchbäume

- Verwende Binärbaum
- Speichere Schlüssel "geordnet"

Binäre Suchbaumeigenschaft:

- Sei x Knoten im binären Suchbaum
- Ist y Knoten im linken Unterbaum von x, dann gilt key(y) ≤ key(x)
- Ist y Knoten im rechten Unterbaum von x, dann gilt key(y) > key(x)

Binäre Suchbäume

Unterschiedliche Suchbäume

- Schlüsselmenge 3,4,6,7,7,9
- Wir erlauben mehrfache Vorkommen desselben Schlüssels

Ausgabe aller Schlüssel

- Gegeben binärer Suchbaum
- Wie kann man alle Schlüssel aufsteigend sortiert in $\Theta(n)$ Zeit ausgeben?

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Aufruf über Inorder-Tree-Walk(root(T))

Binäre Suchbäume

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Binäre Suchbäume

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

- if x≠nil then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

3, 4, 6

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if x≠nil then

- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume Durchlaufen – Laufzeit

Ausgabe aller Schlüssel

- Gegeben binärer Suchbaum
- Wie kann man alle Schlüssel aufsteigend sortiert in ⊕(n) Zeit ausgeben?

Inorder-Tree-Walk(x)

- 1. if x≠nil then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Anzahl der Elemente: n

- n + 2 * # Blätter
- < n
- n
- < n
- \Rightarrow Laufzeit $\Theta(n)$

Suchen in Binärbäumen

- Gegeben ist Schlüssel k
- Gesucht ist ein Knoten mit Schlüssel k

Datenstrukturen

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

Baumsuche(x,k) Aufruf mit x=root(T)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

Binäre Suchbäume Suchen – Laufzeit?

Baumsuche(x,k)

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

// Entweder links
// oder rechts

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Knoten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Knoten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 1

Definition

 Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Knoten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 0

Definition

Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Knoten)
des längsten einfachen Weges (keine mehrfach vorkommenden Knoten)
von der Wurzel zu einem Blatt.

Beispiel

- Übereinkunft: Ein Baum mit einem Knoten hat Höhe 0
- Damit gilt:
 Höhe eines Baumes mit Wurzel v und
 Teilbäumen A und B ist
 1 + max{ Höhe(A), Höhe(B)}

- 1. if x=nil or k=key(x) then return x
- 2. **if** k<key(x) **then return** Baumsuche(lc(x),k)
- 3. **else** return Baumsuche(rc(x),k)

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

Aufruf mit x=root(T)

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

Aufruf mit x=root(T)

- while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

- 1. while x≠nil and k≠key(x) do
- 2. **if** k < key(x) **then** $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key(x) do
- 2. **if** k < key(x) **then** $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

Aufruf mit x=root(T)

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. **else** $x \leftarrow rc(x)$
- 4. return x

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while x≠nil and k≠key(x) do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

Funktionsweise wie (rekursive)
Baumsuche. Laufzeit ebenfalls O(h).

Minimum- und Maximumsuche

- Suchbaumeigenschaft:
 Alle Knoten im rechten Unterbaum eines Knotens x sind größer key(x)
- Alle Knoten im linken Unterbaum von x sind ≤ key(x)

Wird mit Wurzel aufgerufen

MinimumSuche(x)

- 1. while $lc(x)\neq nil$ do $x \leftarrow lc(x)$
- 2. return x

Wird mit Wurzel aufgerufen

Laufzeit O(h)

MinimumSuche(x)

- 1. while $lc(x)\neq nil$ do $x \leftarrow lc(x)$
- 2. return x

Wird mit Wurzel aufgerufen

Laufzeit O(h)

MaximumSuche(x)

- 1. while $rc(x)\neq nil$ do $x \leftarrow rc(x)$
- 2. return x

Nachfolgersuche

- Nachfolger bzgl. Inorder-Tree-Walk
- Wenn alle Schlüssel unterschiedlich, dann ist das der nächstgrößere Schlüssel

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))

4

5

- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do

3

- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do

3

- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))

4

5

- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do

3

- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do

У

3

4

- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$

6. return y

6

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$

Datenstrukturen

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p(y)$
- 6. return y

Laufzeit O(h)

Binäre Suchbäume Vorgängersuche

Vorgängersuche

- Analog zur Nachfolgersuche
- Daher ebenfalls O(h) Laufzeit

Laufzeit O(h)

Dynamische Bäume

Ein grundlegendes Datenbank-Problem

Speicherung von Datensätzen

Beispiel

 Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)

Anforderungen

- Schneller Zugriff
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Dynamische Baumoperationen

Binäre Suchbäume

- Aufzählen der Elemente mit Inorder-Tree-Walk in O(n) Zeit
- Suche in O(h) Zeit
- Minimum/Maximum in O(h) Zeit
- Vorgänger/Nachfolger in O(h) Zeit

Dynamische Operationen?

- Einfügen und Löschen
- Müssen Suchbaumeigenschaft aufrecht erhalten
- Auswirkung auf Höhe des Baums?

Einfügen

- Ähnlich wie Baumsuche: Finde Blatt, an das neuer Knoten angehängt wird
- Danach wird nil-Zeiger durch neues
 Element ersetzt

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

y wird Vater des einzufügenden Elements

- 1. $y \leftarrow nil; x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. **else** $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. **else** $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. | if key(z) <= key(x) then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. **if** y=**nil** then root(T) \leftarrow z
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. **if** $key(z) \le key(y)$ **then** $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil; x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 1. $y \leftarrow nil$; $x \leftarrow root(T)$
- 2. while x≠nil do
- 3. $y \leftarrow x$
- 4. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 5. else $x \leftarrow rc(x)$
- 6. $p(z) \leftarrow y$
- 7. if y=nil then root(T) $\leftarrow z$
- 8. else
- 9. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Laufzeit O(h)

Löschen

- 3 unterschiedliche Fälle
- (a) zu löschendes Element z hat keine Kinder
- (b) zu löschendes Element z hat ein Kind
- (c) zu löschendes Element z hat zwei Kinder

Fall (a)

zu löschendes Element z hat keine Kinder

Fall (a)

- zu löschendes Element z hat keine Kinder
- Entferne Element

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (c)

Zu löschendes Element z hat 2 Kinder

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Nachfolger hat nur ein Kind

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger
- Schritt 3: Ersetze z durch Nachfolger

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Referenz auf z wird übergeben!

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

Löschen(T,z)

- 1. | if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

Löschen(T,z)

- 1. | if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. If $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Bestimme das Kind von y, falls existent

en(6)

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then y
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. If $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Aktualisiere Vaterzeiger von x öschen(6)

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. **if** p(y)=**nil then** $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** $y \leftarrow NachfolgerSuche(z)$
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** $y \leftarrow NachfolgerSuche(z)$
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. **else if** y=lc(p(y)) **then** $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then root(T Umkopieren des
- 7. else if y=lc(p(y)) then Inhalts von y nach z
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $|key(z) \leftarrow key(y)|$

Löschen(6)

3

Datenstrukturen

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Laufzeit O(h)

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- 2. **else** $y \leftarrow NachfolgerSuche(z)$
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Binäre Suchbäume

Binäre Suchbäume

- Ausgabe aller Elemente in O(n)
- Suche, Minimum, Maximum, Nachfolger in O(h)
- Einfügen, Löschen in O(h)

Bester Fall

- Beide Teilbäume sind vorhanden, d.h. beide Teilbäume sind gleich groß
 => der Baum ist vollständig balanciert
- D.h. die Höhe ist O(log n)

Schlechtester Fall

- Ein Teilbaum ist immer leer, d.h. der Baum degeneriert zu einer Liste
- D.h. die Höhe ist O(n)

Binäre Suchbäume

Erhoffter/erwünschter Fall

- Beide Teilbäume sind fast gleich groß => der Baum ist halbwegs balanciert
- D.h. die Höhe ist immer noch O(log n)

Frage

- Wie kann man eine solche "kleine" Höhe unter Einfügen und Löschen garantieren?
- Dafür gibt es selbstbalancierende Suchbäume, z.B. AVL oder Rot/Schwarzbäume – dazu mehr später