Assignment No 10: Data Visualization 3

Importing Required Libraries

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
```

Reading csv into Dataframe

```
In [2]:
         df = pd.read_csv('iris.csv')
```

Out[2]:	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
•••	•••					
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Data preprocessing

```
In [3]:
```

df.shape

```
(150, 6)
Out[3]:
In [4]:
         df.columns
        Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
Out[4]:
                'Species'],
               dtype='object')
In [5]:
         df.dtypes
                            int64
Out[5]:
        SepalLengthCm
                          float64
        SepalWidthCm
                          float64
        PetalLengthCm
                          float64
        PetalWidthCm
                          float64
        Species
                           object
        dtype: object
In [6]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
         #
                             Non-Null Count
              Column
                                             Dtype
         0
                             150 non-null
                                              int64
             SepalLengthCm 150 non-null
         1
                                              float64
             SepalWidthCm
                             150 non-null
                                              float64
         2
         3
             PetalLengthCm 150 non-null
                                              float64
         4
             PetalWidthCm
                             150 non-null
                                              float64
              Species
                             150 non-null
                                              object
        dtypes: float64(4), int64(1), object(1)
        memory usage: 7.2+ KB
In [7]:
         df.describe()
```

Out	[7]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Data Visualization

```
In [9]: sns.distplot(df['SepalLengthCm'])
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x491aa5fec8>


```
In [10]: sns.distplot(df['SepalWidthCm'])
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x4919d7a808>


```
In [11]: sns.distplot(df['PetalLengthCm'])
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x491ad8f0c8>


```
In [18]: sns.distplot(df['PetalWidthCm'])
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x49203185c8>


```
In [13]: plt.hist(df['SepalLengthCm'])
```

Out[13]: (array([9., 23., 14., 27., 16., 26., 18., 6., 5., 6.]), array([4.3 , 4.66, 5.02, 5.38, 5.74, 6.1 , 6.46, 6.82, 7.18, 7.54, 7.9]), <a list of 10 Patch objects>)


```
In [14]: plt.hist(df['SepalWidthCm'])
```

Out[14]: (array([4., 7., 22., 24., 38., 31., 9., 11., 2., 2.]), array([2. , 2.24, 2.48, 2.72, 2.96, 3.2 , 3.44, 3.68, 3.92, 4.16, 4.4]), <a list of 10 Patch objects>)


```
In [15]: plt.hist(df['PetalLengthCm'])
```

Out[15]: (array([37., 13., 0., 3., 8., 26., 29., 18., 11., 5.]), array([1. , 1.59, 2.18, 2.77, 3.36, 3.95, 4.54, 5.13, 5.72, 6.31, 6.9]), <a list of 10 Patch objects>)


```
In [16]: plt.hist(df['PetalWidthCm'])
```

Out[16]: (array([41., 8., 1., 7., 8., 33., 6., 23., 9., 14.]), array([0.1 , 0.34, 0.58, 0.82, 1.06, 1.3 , 1.54, 1.78, 2.02, 2.26, 2.5]), <a list of 10 Patch objects>)


```
In [19]: sns.boxplot(df['SepalLengthCm'])
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x492033df88>


```
In [20]: sns.boxplot(df['SepalWidthCm'])
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x49203d7d48>


```
In [21]: sns.boxplot(df['PetalLengthCm'])
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x492043fe88>


```
In [22]: sns.boxplot(df['PetalWidthCm'])
```

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x492047cf88>


```
In [27]: sns.boxplot(data = df, x = df['SepalLengthCm'], y = df['Species'])
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x49206243c8>


```
In [28]: sns.boxplot(data = df, x = df['Species'], y = df['SepalWidthCm'])
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x49206b7688>


```
In [29]: sns.boxplot(data = df, x = df['Species'], y = df['PetalWidthCm'])
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x49207549c8>

In [30]: sns.boxplot(data = df, x = df['Species'], y = df['PetalLengthCm'])

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x49207d9ac8>

