6. laboratorijska vježba

Linux permissions and ACLs

U okviru ove vježbe upoznali smo se s osnovnim postupkom upravljanja korisničkim računima na Linux OS-u. Pri tome će se poseban naglasak staviti na **kontrolu pristupa (eng. access control)** datotekama, programima i drugim resursima Linux sustava.

A. Kreiranje novog korisničkog računa

U Linux-u svaka datoteka ili program ima vlasnika .Svakom korisniku pridjeljen je jedinstveni identifikator *User ID (UID)*. Svaki korisnik mora pripadati barem jednoj grupi , pri čemu više korisnika može dijeliti istu grupu. Linux grupe također imaju jedinstvene identifikatore *Group ID (GID)*.

Prvo smo provjerili UID i GID našeg računala pomoću naredbe id te je on ispao sljedeći. Također vidimo i grupe kojima pripadamo (najbitnije da pripadamo administratorskoj grupi sudo)

```
id
uid=1000(student) gid=1000(student)
groups=1000(student),4(adm),20(dialout),24(cdrom),
25(floppy),27(sudo),29(audio),30(dip),44(video),46(plugdev),114(netdev),1001(docker)
```

Sljedeći korak je bio dodavanje korisnika "alice" i "bob" pomoću pomoću naredbe (nama su nazvani alice5 i bob5 jer su prijašnje grupe već radile to). Bitno napomenuti da korisnike jedino možemo dodavati kada smo admin tj. student.

sudo adduser bob5

```
ma
     student@DESKTOP-700BASR:/mnt/c/Users/A507$ sudo adduser bob5
     Adding user 'bob5' ...
     Adding new group 'bob5' (1010) ...
     Adding new user 'bob5' (1008) with group 'bob5' ...
     Creating home directory '/home/bob5' ...
ng Sta
     Copying files from '/etc/skel' ...
k Note
     Enter new UNIX password:
onal H Retype new UNIX password:
     passwd: password updated successfully
List
     Changing the user information for bob5
     Enter the new value, or press ENTER for the default
nal
             Full Name []:
ing Li
             Room Number []:
rnost
             Work Phone []:
             Home Phone []:
VET C
             Other []:
rnost i
     Is the information correct? [Y/n] y
     student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$
rnost
```

Onda smo se logirali kao novi korisnik su -alice te provjerili id tog korisnika.

```
alice5@DESKTOP-7Q0BASR:~$ id
otion 🗘
           uid=1007(alice5) gid=1009(alice5) groups=1009(alice5)
           alice5@DESKTOP-7Q0BASR:~$ pwd
           /home/alice5
           alice5@DESKTOP-7Q0BASR:~$ cd
           alice5@DESKTOP-700BASR:~$ pwd
bers
           /home/alice5
           alice5@DESKTOP-7Q0BASR:~$ mkdir srp
           alice5@DESKTOP-700BASR:~$ cd srp/
ed
           alice5@DESKTOP-7Q0BASR:~/srp$ dir
           alice5@DESKTOP-700BASR:~/srp$ echo Hello world > security.txt
           alice5@DESKTOP-7Q0BASR:~/srp$ ls
ne
           security.txt
           alice5@DESKTOP-7Q0BASR:~/srp$ cat security.txt
           Hello world
           alice5@DESKTOP-7Q0BASR:~/srp$
```

B. Standardna prava pristupa datotekama

Kreirali smo novi direktorij ali kao korisnik alice5 tj. prvo na home direktoriju napravili srp direktorij i onda u njemu security.txt (taj postupak je prikazan na slici poviše)

```
# create a new directory
mkdir

# create a file with text
echo "Hello world" > security.txt

# print file content
cat security.txt
```

Da bi izlistali informacije o novom direktoriju koristili smo naredbe ls -1 ili getfacl

```
ls -s
-rw-rw-r-- 1 alice5 alice5 12 Jan 18 11:14 security.txt (koja prava ima lasnik(rw), grupa(rw) i svi ostali)
```

Tada smo pokušali oduzeti pravo pristupa datoteci security.txt vlasniku datoteke tj. alice5. Za tu promjenu koristili smo naredbu chmod :

```
alice5@DESKTOP-7Q0BASR:~/srp$ chmod u-r security.txt
alice5@DESKTOP-7Q0BASR:~/srp$ cat security.txt
cat: security.txt: Permission denied
alice5@DESKTOP-7Q0BASR:~/srp$
```

"u" - označava user, a -r znači oduzimanje prava čitanja datoteke I vidimo da je oduzimanje prava uspjelo.

Za dodat prava nazad samo umjesto "-" stavili smo "+".

Sljedeće smo provjerili da li bob5 ima pravo čitanja datoteke security.txt:

```
C:\Users\A507>wsl
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$ su - bob5
Password:
bob5@DESKTOP-7Q0BASR:~$ cat /home/alice5/srp/security.txt
Hello world
bob5@DESKTOP-7Q0BASR:~$ id
uid=1008(bob5) gid=1010(bob5) groups=1010(bob5)
bob5@DESKTOP-7Q0BASR:~$
```

Bob5 će moći pristupiti security.txt jer je stavljeno da ostali mogu čitati datoteku pri stvaranju txt-a.

Da mu maknemo pristup koristimo naredbu chmod o-r security.txt, tako smo onemogućili pristup svima koji pripadaju other. Ovu naredbu treba napisati kao alice5.

Da dodamo boba u grupu moramo se odlogirat od alice5 sa exit i napisat sudo usermod -aG alice5 bob5

Promjenu ćemo tek vidjeti kada se odlogiramo i ponovno logiramo u bob5.

Onda smo maknuli boba iz grupe alice5 sudo gpasswd -d bob alice.

C. Kontrola pristupa korištenjem Access Control Lists (ACL)

Da bi boba bas dodali u ACL(prije smo ga baš dodali u grupu) napišemo sudo setfacl -m u:bob5:r /home/alice5/srp/security.txt

```
getfacl: Removing leading '/' from absolut
# file: home/alice5/srp/security.txt
# owner: alice5
# group: alice5
user::rw-
user:bob5:r--
group::rw-
mask::rw-
other::---
```

Pomoću getfact vidimo da bob nije dodan u neku grupu nego je dodan u ACL.

Može se i napravit skroz nova grupa samo za čitanje

sudo setfacl -m g:alice_reading_group5:r /home/alice5/srp/security.txt

(g: - dio koji označava da je grupa a ne korisnik)

```
getfacl: Removing leading '/' from
# file: home/alice5/srp/security.t
# owner: alice5
# group: alice5
user::rw-
user:bob5:r--
group::rw-
group:alice_reading_group5:r--
mask::rw-
other::---
```

D. Linux procesi i kontrola pristupa

Svaki linux proces u izvršavanju ima svoj jedinstveni identifikator, *process identifier* PID. Osim toga, svaki proces ima i id vlasnika, UID. Na temelju UID-ja Kernel će odlučivati ima li proces pristup određenim resursima ili ne.

Trenutno aktivne procese možete izlistati korištenjem naredbe ps -ef.

```
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$ ps -ef
UID
            PID PPID C STIME TTY
                                               TIME CMD
                  0 0 10:54 ? 00:00:00 /init
1 0 10:54 ? 00:00:00 /init
112 0 10:54 ? 00:00:00 /init
root
            1
            112
root
root
            113
            114 113 0 10:54 pts/0 00:00:00 /mnt/wsl/docker-desktop/doc
123 112 0 10:54 ? 00:00:00 /init
root
root
           124 123 0 10:54 pts/1 00:00:01 docker serve --address unix
140 1 0 11:04 ? 00:00:00 /init
141 140 0 11:04 ? 00:00:00 /init
student
          140
root
root
student 142 141 0 11:04 pts/2 00:00:00 -bash
          root
root
student
            268 267 0 11:11 pts/3 00:00:00 -bash
          421 268 0 11:38 pts/3 00:00:00 su - bob5
root
bob5 422 421 0 11:38 pts/3 00:00:00 -su
student 460 142 0 11:49 pts/2 00:00:00 ps -ef
```

Da bi makli bob5 i ACL mičemo cijelu ACL sudo setfacl -b /home/alice5/srp/security.txt

Sljedeće smo otvorili WSL shell i u tekućem direktoriju napravili Python skriptu koja sadrži slijedeće:

```
import os
print('Real (R), effective (E) and saved (S) UIDs:')
```

```
print(os.getresuid())
with open('/home/alice5/srp/security.txt', 'r') as f:
    print(f.read())
#želimo procitat id usera koji pokrece process, tj. skriptu
#vratit će nam R, E , S UIDove korisnika
```

```
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$ python lab6_g5.py
Real (R), effective (E) and saved (S) UIDs:
  (1000, 1000, 1000)
Traceback (most recent call last):
  File "lab6_g5.py", line 6, in <module>
    with open('/home/alice5/srp/security.txt', 'r') as f:
IOError: [Errno 13] Permission denied: '/home/alice5/srp/security.txt'
student@DESKTOP-700BASR:/mnt/c/Users/A507$ id
```

Izbacuje error jer student pripada grupi other pa on nema pravo čitanja i pristupa, ali ako stavimo sudo python lab6.. onda će pokrenuti jer je to super user.

Ako probamo to pokrenuti sa boba ni on neće imati pravo pristupa.

Opcionalni zadatak

Ako pokusamo kod boba promjenit šifru sa passwd, mi to ne bi trebali moć izvest jer kod /etc/shadow other nemaju ovlasti pisanja. (Shadow je mjesto gdje se spremaju lozinke)

Ali ipak možemo promijeniti šifru, zašto?

getfacl \$(which passwd) gledamo kome pripada passwd

```
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$ getfacl $(which passwd)
getfacl: Removing leading '/' from absolute path names
# file: usr/bin/passwd
# owner: root
# group: root
# flags: s--
user::rwx
group::r-x
other::r-x
```

Vidimo da passwd process pripada vlasniku root koji ima ID 0, dok bob ima 1008.

To smo testirali na sljedeći način:

1. zvršite naredbu passwd (kao neprivilagirani korisnik).

```
passwd
Changing password for alice.
(current) UNIX password:
# !!! NEMOJTE UNOSITI NIKAKVU LOZINKU !!!
#ostavili smo da program "visi"
```

2. U drugom terminalu izvršite sljedeću naredbu (koja će vam ispisati tekuće procese sa njihovim stvarnim i efektivnim vlasnicima):

```
ps -eo pid,ruid,euid,suid,cmd
```

```
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$ ps -eo pid,ruid,euid,suid,cmd | 810 1008 0 0 passwd
815 1000 1000 1000 grep --color=auto passwd
student@DESKTOP-7Q0BASR:/mnt/c/Users/A507$
```

1008 real id od boba 0 efektivni id od roota

Vidimo da kod procesa 810 a to je naš nedovršeni proces passwd, RUID je jednak 1008, do je EUID i SUID jednak 0 tj. IDu roota koji je vlasnik passwd processa. Zbog toga korisnik bob5 može promijeniti svoju šifru.