Question	Scheme	
5	$\sqrt{2x+6} = \frac{x}{3} + 1 \Rightarrow 2x+6 = \frac{x^2}{9} + \frac{2x}{3} + 1 \Rightarrow \frac{x^2}{9} - \frac{4x}{3} - 5 = 0$	M1
	$\Rightarrow x^2 - 12x - 45 = 0 \Rightarrow (x+3)(x-15) = 0 \Rightarrow x = -3,15$	M1A1
	[When $x = 15$, $y = 6$]	
	$(V =) \pi \int_{-3'}^{15'} (2x+6) dx - \frac{1}{3} \times \pi \times 6'^2 \times (15'-5')$	M1M1
	$(V =)(\pi) \left[\frac{2x^2}{2} + 6x \right]_{-3}^{15} - 216\pi$	M1
AITlook	$(V =)\pi \left[\left(\frac{2 \times '15'^2}{2} + 6 \times '15' \right) - \left(\frac{2 \times ('-3')^2}{2} + 6 \times ('-3)' \right) \right] - 216\pi \left(= 324\pi - 216\pi \right) = 108\pi$	M1A1 [8]
ALT last 5 marks	OR	[٥]
5 marks	$(V =) \pi \int_{-3'}^{15'} (2x+6) dx - \pi \int_{-3'}^{15'} \left(\frac{x^2}{9} + \frac{2x}{3} + 1 \right) dx \text{ or } \pi \int_{-3'}^{15'} (2x+6) dx - \pi \int_{-3'}^{15'} \left(\frac{x}{3} + 1 \right)^2 dx$	M1M1
	$(V =)(\pi) \left[\frac{2x^2}{2} + 6x \right]_{-3}^{15} - \pi \left[\frac{x^3}{9 \times 3} + \frac{2x^2}{3 \times 2} + x \right]_{-3}^{15}$	M1
	$V = \pi \left[\left(\frac{2 \times '15'^2}{2} + 6 \times '15' \right) - \left(\frac{2 \times ('-3')^2}{2} + 6 \times ('-3') \right) \right]$	M1A1
	$-\pi \left[\left(\frac{'15'^3}{9 \times 3} + \frac{2 \times '15'^2}{3 \times 2} + 15 \right) - \left(\frac{\left('-3' \right)^3}{9 \times 3} + \frac{2 \times \left('-3' \right)^2}{3 \times 2} ' - 3' \right) \right] = 108\pi$	WHAI
Total 8 marks		3 marks

Mark	Notes			
M1	Sets the equation of the curve = equation of line and attempts to form a 3TQ, which must include			
	an attempt to expand $\left(\frac{1}{3}x+1\right)\left(\frac{1}{3}x+1\right)$. Allow only 1 error in processing overall.			
	Accept as a minimum for this mark: $\frac{x^2}{9} \pm Jx - K = 0$ or $x^2 \pm Lx - M = 0$ $J, K, L, M > 0$			
M1	Solves their 3TQ using a full and minimally acceptable method (see general guidance) to find two values. They must show their method if using an incorrect 3TQ. Note this is not a dependent mark, so the candidate can solve a 3TQ not of the form required for the first M mark.			
A1	x = -3, 15 M1 M1 A1 may be awarded for both correct values given without working.			
M1	For the correct expression for the volume of rotation under the curve including π and ft their $x = -3$, 15.			
M1	For the correct expression for the volume of the cone. Ft their $x = -3$, 15 and their value of y			
	only (must be clear they are using a value of y. '6' cannot be 15 or – 3). $\frac{1}{3} \times \pi \times '6'^2 \times ('15'-'-3')$			
M1	For an attempt to integrate their expression for the curve. Minimally acceptable attempt (see general guidance) – no power of x to decrease. π and limits don't need to be present.			
M1	For substitution of their limits into any changed expression representing their volume of the curve and evaluation of the final volume using their volume of the cone.			
	Not a dependent mark but substitution must be into their changed expression. This mark may be awarded for the work being done in parts and subtracted in any order at any			
	point, but there must be a subtraction. This M mark may be implied by a correct final answer.			
A1	For $V = 108\pi$			
	This mark may not be awarded if the subtraction is the incorrect way around and the sign of the answer is simply changed at the end.			
ALT 1	ast 5 marks			
M1	For the correct expression for the volume of rotation under the curve including π and ft their $x = -3, 15$			
M1	For the correct expression for the volume of rotation under the straight line including π and ft their $x = -3$, 15			
Where	candidates have combined the 2 expressions, M1 M1 can be awarded for $\pm \pi \int_{-3}^{15} \left(\frac{x^2}{9} - \frac{4x}{3} - 5 \right) dx$ or			
	ear attempt to combine the correct two expressions, even if the following simplification is incorrect.			
[Note f	for final A mark correct integral is $\pi \int_{-3}^{15} \left(-\frac{x^2}{9} + \frac{4x}{3} + 5 \right) dx$			
M1	For an attempt to integrate the expression for either the curve or the line or what they intend to be their combined expression. Minimally acceptable attempt (see general guidance) – no power of x to decrease. π and limits do not need to be present for this mark.			
M1	For substitution of their limits into any changed expressions representing their volume of the line and the curve and evaluation of the final volume or their combined expression.			
	There must be at least one correct substitution of both limits into each expression. Not a dependent mark but substitution must be into changed expressions.			
	This mark may be awarded for the work being done in parts and subtracted in any order at any			
	point, but there must be a subtraction. This M mark may be implied by a correct final answer.			
A1	For $V=108\pi$ This mark may not be awarded if the subtraction is the incorrect way around and the sign of the answer is simply changed at the end.			

Questio	Scheme	Mark				
n DI EACE D	EMEMBED TO CHECK DIACDAM EOD DELEVANT L'ENCTRE AND WOL	S				
	EMEMBER TO CHECK DIAGRAM FOR RELEVANT LENGTHS AND WOI at the question where lengths are in brackets eg (AC =), this means you define the context of the c					
_	have to see $AC =$.					
But the ma	ark cannot be awarded for a clearly incorrect method eg $VO = \sqrt{x^2 + x^2}$ for	or the				
	od mark in (a) scores M0					
6(a)	$(AC =) \sqrt{x^2 + x^2} \left(= \sqrt{2}x \right) \text{ or } (AC =) \frac{x}{\sin 45} \text{ or } (AC =) \frac{x}{\cos 45}$ $(AO =) \sqrt{\left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2} \left(= \sqrt{\frac{x^2}{2}} = \frac{x}{\sqrt{2}} \right) \text{ or } (AO =) \frac{\frac{x}{2}}{\sin 45} \text{ or } (AO =) \frac{\frac{x}{2}}{\cos 45}$	M1				
	$(VO =) \sqrt{x^2 - \left(\frac{"\sqrt{2}x"}{2}\right)^2} \text{ or } \sqrt{x^2 - \left(\frac{1}{2}\sqrt{x^2 + x^2}\right)^2} \text{ or } \sqrt{x^2 - \frac{x^2}{2}} \left(= \sqrt{\frac{1}{2}x^2} \right)$ or $(VO =) \frac{\sqrt{2}}{2} \tan 45$	M1				
	$=\frac{\sqrt{2}}{2}x \text{ (cm)*}$	A1*cso [3]				
ALT	Any indication the candidate realises triangle <i>AVC</i> is right angled and isosceles.	M1				
	$\sin 45 = \frac{VO}{x} \text{or} x \sin 45 = VO$	M1				
	$VO = \frac{\sqrt{2}}{2} x^*$	A1*cs				
	$VO = \frac{1}{2}$	0				
(F)		[3]				
(b)	$(\angle AVC =)\cos^{-1}\left(\frac{x^2 + x^2 - (\sqrt{2}x)^2}{2 \times x \times x}\right) \text{ or } (\angle AVC =) 2 \times \sin^{-1}\left(\frac{\sqrt{2}}{2}x\right)$	M1				
	$\mathbf{or} \left(\angle AVC = \right) 2 \times \cos^{-1} \left(\frac{\sqrt{2}}{2} x \right) \mathbf{or} \left(\angle AVC = \right) 2 \times \tan^{-1} \left(\frac{\sqrt{2}}{2} x \right)$	A1				
	$=90^{\circ}$	[2]				

(c)	Let M be the midpoint of AB and let N be the midpoint of DC	
	$(VM = VN =)\sqrt{x^2 - \left(\frac{x}{2}\right)^2} = \left(\frac{\sqrt{3}}{2}x\right)$	M1
	$\cos MVN = \frac{\left(\frac{\sqrt{3}}{2}x''\right)^2 + \left(\frac{\sqrt{3}}{2}x''\right)^2 - x^2}{2 \times \left(\frac{\sqrt{3}}{2}x''\right) \times \left(\frac{\sqrt{3}}{2}x''\right)} \text{ or }$	
	$(\angle MVN =) \cos^{-1} \left(\frac{\left(\frac{\sqrt{3}}{2} x'' \right)^2 + \left(\frac{\sqrt{3}}{2} x'' \right)^2 - x^2}{2 \times \left(\frac{\sqrt{3}}{2} x'' \right) \times \left(\frac{\sqrt{3}}{2} x'' \right)} \right) $ or	M1
	$(\angle MVN =) 2 \times \cos^{-1} \left(\frac{\frac{\sqrt{2}}{2} x}{\frac{\sqrt{3}}{2} x''} \right) \text{or} (\angle MVN =) 2 \times \sin^{-1} \left(\frac{\frac{1}{2} x}{\frac{\sqrt{3}}{2} x''} \right)$	
	or $(\angle MVN =) 2 \times (\angle MVO =)$ and $\cos MVO = \frac{\sqrt{2} x}{\sqrt{3} x}$	
	$70.528^{\circ} \approx 70.5^{\circ}$	A1 [3]
	ALT	M1
	$OM = \frac{x}{2}$	
	$(\angle MVN =) 2 \tan^{-1} \left[\frac{\frac{x}{2}}{\frac{\sqrt{2}x}{2}} \right] = \left(2 \tan^{-1} \left[\frac{1}{\sqrt{2}} \right] = \right) 70.528^{\circ} \approx 70.5^{\circ}$	M1A1 [3]
(d)	Volume = $\frac{1}{3} \times \left(\frac{\sqrt{2}}{2}x\right) \times x^2 \left(=\frac{\sqrt{2}}{6}x^3\right)$ oe	M1
	$200 = \frac{1}{3} \times \left(\frac{\sqrt{2}}{2}x\right) \times x^2 \Rightarrow x =$	dM1
	$x = 9.4672 \approx 9.47 \text{ (cm)}$	A1 [3]
	Total 1	1 marks

Part	Mark	Notes
		must see the algebraic proof, including x throughout.
(a)	M1	For correct use of Pythagoras theorem or any correct appropriate trigonometry and a
, ,		complete method to find the length AC or AO ie candidates must rearrange correctly –
		minimum steps as shown in mark scheme and no errors must be present.
	M1	For a full, correct and complete method to find VO, using their AC/AO.
	A1	
	cso	For $\frac{\sqrt{2}}{2}x$ (cm) – correct solution only, no errors or omissions, minimum steps as
		shown.
ALT	M1	Any indication the candidate realises triangle <i>AVC</i> is right angled and isosceles. This
7121	1711	mark may be implied by correct working for the next method mark or present on the
		diagram.
	M1	For the correct trig minimum steps as shown and no errors.
	A1	E
	cso	For $\frac{\sqrt{2}}{2}x$ (cm) – correct solution only, no errors or omissions.
(b)	M1	For any correct appropriate trigonometry to find angle AVC. $(\angle AVC =)$
		If finding $\angle AVO$, must be doubled for this mark.
		$\sqrt{2}$
		AC must be $\sqrt{2}x$ oe, AO must be $\frac{\sqrt{2}}{2}x$ oe.
	A1	For 90°
		11A1 for candidates writing down the correct answer by inference.
Consiste		ion of x is permissible for all marks in part (b).
	M1	For correct Pythagoras theorem to find the lengths of VM or VN
(c)	M1	For any correct trigonometry to find angle <i>MVN</i> , such as the statements shown in the
	IVI I	mark scheme.
		mark scheme.
		The candidate can state, for example,
		cos(MVN) = fully correct expression (using their VN and VM)
		or, for example,
		\cos^{-1} (fully correct expression), where they do not have to write angle $MVN =$
		i.e – this can involve any fully correct method to reach an equation which would allow
		them to use inverse trig to find MVN or if they use inverse trig, a fully correct
		expression must be seen with the correct inverse trig function. Send any items where
		allocation of marks is unclear (potentially using other methods to the main and ALT) to
		Review.
		or fully correct method to find angle <i>MVO</i> which must then be doubled for this mark.
	A1	For any answer stated which rounds to 70.5° (ie more decimal places is condoned).
	ent omiss	ion of x is permissible for all marks in part (c).
ALT	M1	States or uses $OM = X$
		States or uses $OM = \frac{x}{2}$
	M1	For fully correct method to find angle <i>MVO</i> which must then be doubled for this mark.
	A1	For any answer stated which rounds to 70.5° (ie more decimal places is condoned).
(d)	M1	For a correct unsimplified expression for the volume of the pyramid as shown.
	dM1	For placing their expression = 200, which must involve a term in x^3 , and a fully correct
		method/rearrangement to solve.
		Note this mark is dependent on the first method mark, so they must have got the correct
		unsimplified expression even if then simplified incorrectly.
	A1	For any final answer stated which rounds to 9.47 (ie more decimal places is condoned).
		`