CPE201 Digital Design

By Benjamin Haas

Class 14: Adders

Outline

- Half Adder
- Full Adder
- Parallel Adders
- Ripple vs Look Ahead Carry

Combinational Logic Applications

- You now know the basics
 - Let's make cool stuff!
 - Adders
 - Comparators
 - Decoders/Encoders
 - Mux/Demux
 - And more!

Half Adder

Recall binary addition

$$-0+0=0$$

$$-0+1=1$$

$$-1+0=1$$

$$-1+1=10$$

A circuit that does this is a half adder

Half Adder

- 2 inputs, 2 outputs
 - Addition of 2 bits

\boldsymbol{A}	В	$C_{ m out}$	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\Sigma = \text{sum}$$
 $C_{\text{out}} = \text{output carry}$

Half Adder

•
$$C_{out} = AB$$

\boldsymbol{A}	В	$C_{ m out}$	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\Sigma = \text{sum}$$

 $C_{\rm out} = {\rm output \ carry}$

A and B = input variables (operands)

Half Adder+

- Can add two input bits together
 - Not complete for full binary addition

Needs input carry AND output carry

- 3 inputs, 2 outputs
 - Addition of 3 bits

A	В	$C_{\rm in}$	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in}=$ input carry, sometimes designated as CI $C_{\rm out}=$ output carry, sometimes designated as CO $\Sigma=$ sum

A and B = input variables (operands)

- $C_{out} = AB + (A B)C_{in}$
- $\Sigma = (A B) C_{in}$
- Not as obvious

\boldsymbol{A}	\boldsymbol{B}	$C_{\rm in}$	$C_{ m out}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in}=$ input carry, sometimes designated as CI $C_{\rm out}=$ output carry, sometimes designated as CO $\Sigma=$ sum

A and B = input variables (operands)

- Can add three input bits together
 - Complete for full binary addition
 - Let's do that!

Parallel Binary Adders

Two or more full adders cascaded

Example

• For 11 + 01 = 100

(MSB) Σ_3

• $A_1=1$ $A_2=1$ $B_1=1$ $B_2=0$

A	В	$C_{\rm in}$	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in} = {\rm input} \ {\rm carry}$, sometimes designated as CI $C_{\rm out} = {\rm output} \ {\rm carry}$, sometimes designated as CO $\Sigma = {\rm sum}$

A and B = input variables (operands)

(LSB)

4-Bit Parallel Adder

• You can buy those (74xx283)

Nibble Adder

C_{n-1}	A_n	\boldsymbol{B}_n	Σ_n	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Byte Adder

More Cascading

Problem = Ripple Carry Adder

- Carry bits are slow
- Total time = $(3n)\tau$ (time for 1 bit of adding)
- Mult/Division = Add/Subtr
- Faster addition makes all others

Generated and Propagated Carry

- C_q = AB
- $C_p = A + B$ book
- $C_p = A B web$
- $\Sigma = C_p C_{in}$
- $C_{out} = C_g + C_p C_{in}$

• $C_{out} = AB + (A B)C_{in}$ (Full Adder)

- All inputs are available at the same time
 - Create all C_qs and C_ps at the same time
- $C_{q,i} = A_i B_i$
- $C_{p,i} = A_i B_i$
- Same as a Half Adder

- Half Adder:
- $C_{out} = AB$
- Σ = A B

•
$$i = 0...3$$

- Create all Carry bits
- $C_{(i+1)} = C_{g,i} + C_{p,i} C_{i}$
- $C_0 = C_{in}$
- $C_4 = C_{out}$

- Last, create all sum bits
- $\Sigma_i = C_{p,i} C_i$

- Half Adder:
- $C_{out} = AB$
- $\Sigma = A \oplus B$

- 3 Stages of Logic with no ripple
- Total time = 4τ (time for 1 bit of adding)
- Ripple carry takes 9τ for 4 bits
- Tradeoff of more complex circuitry (w/ more gates)

Reading

- This lecture
 - Sections 6.1-6.3
- Next lecture
 - Sections 6.4-6.6