

Toxicology and safety assessment in DDD

Charlotte (Lotta) Nilsson

Education coordinator

Swetox

Swedish Toxicology Sciences Research Center

Charlotte Nilsson

- B.Sc., biology (+chemistry), SU
- M.Sc., toxicology, KI
- Ph.D., toxicology, KI
- Risk assessment, IMM, KI
- Toxicologist, AstraZeneca
- Education coordinator, IMM, KI
- Education coordinator etc, Swetox

From Jan 1, 2019:

Project leader at RI.SE

Toxicology and safety assessment in drug discovery and development

First part:

Tox and safety in DDD for small molecules

Second part:

Tox and safety for <u>biopharmaceuticals</u>

Discussions and questions throughout!

Questions or clarifications afterwards: charlotte.nilsson@swetox.se

Toxic?

Water Table salt "Alvedon" Bitter almonds Dioxin Botox

Paracelsus (1493-1541)

"What is that is not poison? Everything is poison. The dose alone makes something a poison."

Dose response curve

LOEL = Lowest Observed Effect Level **NOEL** = No Observed Effect Level

Time: not only for how long, but when...

Figure 1.4. Timing of organ development. Hormones affect each of these indicating that they are important, and in different ways, throughout life.

WHO/UNEP EDC report 2012

"Cornerstones of Toxicology"; Hayes & Dixon 2017

Main messages:

• Dose matters (and time)

People matter

Things change (= the body transforms the chemical)

Extrapolation from animal to man

Risk assessment

Dioxins and PCBs in organic eggs!!!

Which eggs do you choose in the store? "Regular eggs" OR "Organic (eko) eggs"

Do you choose differently due to the article?

START | NYHETER

Giftlarm om ekoägg

Av TT

Publicerad: 12 October 2016, 18:35

Halterna av miljögifterna dioxin och PCB har ökat i ekologiska ägg. Livsmedelsverket konstaterar att halterna är högre än i andra ägg.

Total intake of dioxin and PCB

Levels in mother's milk > organic eggs...

The DDD process

"If it is efficacy data but if it is to believe it, want to explain it away"....

It's all about EFFICACY & SAFETY!

Purpose of Toxicity testing and Safety Assessment:

- Find and characterize the adverse effects
 - Identify e.g. biomarkers
- Guide selection of safe dose to humans

The different functions/areas

Formulation

"What about side effects?

We have to check if this enzyme is doing something important in the brain. Is it also present somewhere else in the body? Can the molecules also affect other enzymes, etc?"

The different phases

Development

Launch

Nature Reviews | Drug Discovery

Not many drugs reach the market...

It's all about EFFICACY & SAFETY!

An analysis of the attrition of drug candidates from four major pharmaceutical companies

Michael J. Waring ¹ , John Arrowsmith ² , Andrew R. Leach ³ , Paul D. Leeson ^{5,4} ,	
Sam Mandrell ² , Robert M. Owen ⁵ , Garry Pairaudeau ¹ , William D. Pennie ^{6,7} ,	2015
Stephen D. Pickett ^s , Jibo Wang ⁸ , Owen Wallace ^{8,9} and Alex Weir ²	2013

Termination reason	Overall
Clinical safety	68 (11%)
Commercial	40 (7%)
Efficacy	55 (9%)
Formulation	9 (1%)
Non-clinical toxicology	240 (40%)
Patent issue	1 (0.2%)
Pharmacokinetics or bioavailability	29 (5%)
Rationalization of company portfolio	124 (21%)
Regulatory	2 (0.3%)
Scientific	33 (5%)
Technical	3 (1%)
Other	1 (0.2%)
Total	605

Year 2000-2010

"Once the compound is in the vial, all the properties are fixed. All that remains are for them to be discovered."

To that, add various aspects of **risk**: Risk assessment, risk perception, risk acceptance, risk communication, etc, etc...

Safety in DDD

Target-related vs. chemistry-related toxicity

Tools: in silico, in vitro, in vivo

Margin of safety!

Margin of safety

New data -> curves may shift (Efficacy curve usually shift to the right....

Judgement calls re which toxic effects are critical in humans, and when they start to appear! (NOAEL, LOAEL)

Target-related toxicity

and onwards

- On-target (pharmacological) effect too strong / unacceptable
 - Target organs (efficacy vs safety)
 - A sufficient safety margin?
 - Toxicity found in animals does not translate into humans?
- Off-target effects (affects related/other known targets)
 - Secondary Pharmacology
 - Screen (chemical series/lead compounds) in silico and in vitro

Target safety assessment

- Biological role of the target
- Tissue expression pattern
- Selectivity issues (biological role & expression)
- Phenotype caused by mutations in animals and humans.
- Pre-clinical or clinical safety data
- Consider also: indication, duration of treatment, patient population (age, sex, WÓCBP, co-morbidities), possible biomarkers
- Acceptable risk profile?
- Plan forward! Collaborate with other functions!

Chemistry-related toxicity

Collaborations during Hit and Lead phases

Target ID and Selection Hit ID and Selection Hit to Lead Optimization Pre-Clinical Development Phase II Phase II Phase III Approval Market

Example of a frontloaded screen: hERG

- hERG: human ether-a-go-go-related gene.
- An ion channel expressed in cardiac cells
- Outward flow of potassium ions through the hERG channel is one of the main currents responsible for the later repolarisation of the cell.

 Blocking of the hERG channel: increases AP duriation and QT interval, can lead to fatal arrhythmia (Torsade de Point)

SWETOX

hERG and drug discovery

Amount of cmpd Not rats Predicted Cmax...

- In silico screenings as early as possible
- In vitro screenings LI/LO
 - Activity IC₅₀ preferably below 10 μM
 - Activity IC₅₀ 30-100x higher than predicted human C_{max(free)}
- In vivo tests LO/prenomination/post-CD selection
 - Guinea pig MAPD90 test
 - Dog telemetry (measuring CV parameters)
 - No changes at 30-100x higher than predicted human C_{max(free)}
 - Criteria may differ for life-threatening diseases

Safety during DDD – lab work

GLP = Good Laboratory Practice – generating high-quality, trackable data IND = Investigational New Drug – for going into clinical studies NDA = New Drug Application – for beginning to sell the drug on the market

Safety in the Drug Discovery phase and beyond

- Continuous re-evaluation of the risk profile
 - Changes in margin of safety?
 - Use any available feedback!
 - From earlier CDs in-house; from competitors
- Prepare for Development and Clinical studies, eg:
 - suitable tox species?
 - tolerabe dose levels? (tox & FTIM)
- Collect tools for the future
 - endpoints, assays, biomarkers
- Avoid surprises in the 1-month tox study!
 - And of course in the clinic....

Safety in Development phase

- Regulatory toxicology, according to <u>Guide</u>lines
 - Non-standard studies can be added
 - Two species, rodent and non-rodent (rat&dog)
- GLP!
- Support upcoming clinical studies
- Provide data for registration

Alternatives?

- 3R
 - Replace animal models
 - Reduce the number of animals
 - Refine the experimental procedures to minimize suffering and increase value

REPLACE animal models: from rabbits to modern immunologic techniques

Season 4 episode of Mad Men, Roger Sterling asks Joan Harris, "Did you take a rabbit test?"

Joan, played by Christina Hendricks, deserves better than Roger's shoddy treatment. Photograph: BBC/AMC/Lionsgate/Frank Ockenfels 3 BBC/AMC/Lionsgate/Frank Ockenfels 3/AMC/Lionsgate

REDUCTION

method development for blood sampling

Drug safety study in rats: BEFORE

No of animals	Samples per animal	Volume	
SAFETY STUDY			
100			
EXTRA FOR BLOOD SAMPLING			
36	5	500 μΙ	
TOTAL			
136			

AFTER

No of animals	Samples per animal	Volume	
SAFETY STUDY			
100	2	25 μΙ	
EXTRA FOR BLOOD SAMPLING			
36	5	500 μl	
TOTAL			
136 -100			

Figure 3. Estimated reduction in number of animals used in toxicity studies at Safety Assessment Research Unit. Actual number of animals used in 2009 (black bars) compared with the estimated number of animals if no reduction projects would have been implemented (grey bars).

Data från Jonsson et al., 2012 "Capillary microsampling of 25 μl blood for the determination of toxicokinetic parameters in regulatory studies in animals." Bioanalysis. 2012 Mar;4(6):661-74

REFINE the experimental procedures

animals (almost always) thrive in company

Group housing of male mice

- Calmer animals (-> better science!)
- Better work environment
- Lower costs

Data från Annas et al., 2013 "Group housing of male CD1 mice – reflections from toxicity studies" Laboratory Animals 2013, 47:127-129

Al in Drug Development

Now over to biologicals

Aspirin (acetylsalicylic acid) 180 Daltons

Small molecules v.s. biologicals

Small molecules

- Small!
- Species-independent
- Short-acting
- Metabolized
- Safety concern: toxicology (targetand/or chemistryrelated)

Biologicals

- Big!
- Species-specific
- Longer-acting
- Degraded
- Immunogenic
- Safety concerns: exaggerated pharmacology (target), immune response

No need for....

- Metabolism studies
 - Not relevant (degraded, not metabolized)
- Genotoxicity studies
 - Interactions with DNA unlikely
- Carcinogenicity/chronic toxicity studies
 - Difficult due to eventual immunogenicity
 - May be irrelevant due to no activity on eg rodent target
 - An issue, with more and more chronic treatments
 - While not genotoxic, could drive neoplasm growth

Exaggerated pharmacology

- I.e., target-mediated toxicity
- Depends on target and mechanism of action
 - Same idea & approach as for small molecules
 - Tested in a similar way
- Critical: animal species for tox testing must be relevant from a target perspective
 - "most relevant": often the non-human primates...
 - Transgenic animals (humanized mice) may be an option

Immunogenicity (anti-drug)

- All proteins may be recognized as foreign
 - The hypervariable region of a new ab = foreign
 - If the foreign protein is large enough: immune reaction
- Induction of antibodies against drug: anti-drug ab (ADA)
 - Can vary from low-titer, low-affinity, transient ADAs to hightiter, high affinity ones.
 - The end result of the immune response can vary from none to life-threatening...
- Even ab drugs that are homologues of human proteins can be immunogenic
 - Often related to manufacturing process rather than protein sequence!

 Tox and Safety in DDD Sep 13, 2018

Immunogenicity (ADAs)

- Binding antibodies (ADA):
 - Increases or decreases t½ of drug
 - Changed PK/PD
- Neutralizing antibodies (Nab):
 - Blocking of target binding
 - No (desired) clinical effect
- Cross-reactive ADAs:
 - If drug is identical to endogenous protein: -> autoimmunity (= immunotoxicity)

Immunotoxicity - too much/little

- Immunosuppression
 - Inhibition of the immune response, can lead to e.g. susceptibility to infections
 - Can be caused by a blocking ab without effector fxn
- Activation of the immune system
 - Drug acts as immunogen
 - Hypersensitivity
 - Autoimmunity
 - Ab with effector fxn
 - Which cells are activated? Cytokine release?
 - Desired in cancer indications

Recommended safety evaluations - Antibody projects

In silico tests of candidate antibodies for Immunogenicity*

Clinical example: TeGenero

- First clinical trial with TGN-1412, in 2006
 - Humanised mAb specific for the CD28 receptor on T lymphocytes.
 - Aim: to expand the T-cell pool in patients with an imbalance (chronic B-cell leukemia, MS, rheumatism.
- No toxicity in preclinical toxicity studies
- No immunogenicity or immunotoxicity
- No activation of cynomolgous (monkey) T cells

TeGenero, con't.

- 1/500 of the NOEL in monkeys was given to six healthy male volunteers (one after another....)
- A few minutes after a single injection:
 - Nausea, headache, back pain, unconsiousness and collapse of large organs (e.g. liver).
- Fast reaction caused by massive lymphocyte activation and cytokine release ("cytokine storm")
 - i.e., a target-related effect, no ADAs etc involved
- Species differences in CD28 expression on sub-population of T cells
 - Non-relevant species..?

N – Naive Tcm – Central memory Tem – Effector memory

5 of the 6 men recovered, the 6th had to amputate fingers and toes.

