A Long List of Problems for 33X

Jan Armendariz-Bones et al.

Last Updated: November 10, 2023

The idea for this page came from a YouTube video called "10,000" problems in Analysis, which can be found here!

Of course, the goal is to compile a long list of problems ranging from very difficult to near trivial, all to get a better grasp of what it means to do *real* advanced calculus problems.

Some shorthand on sources:

PMA = Principles of Mathematical Analysis (Rudin)

MSE = Mathematics StackExchange

Question 1

Source: Mathematics Discord (discord message)

By using the Cauchy Criterion for convergence, show that the sequence defined by

$${x_n}_1^{\infty} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}.$$

converges.

Question 2

Source: Spring 1981 UC Berkley Mahtematics PhD Prelims, Question 16. Let f(x) be defined as a real-valued function for all $x \ge 1$, such that f(1) = 1 and

$$f'(x) = \frac{1}{x^2 + (f(x))^2}.$$

Prove that

$$\lim_{x\to\infty}f(x)$$

exists and the limit is *less than* $1 + \frac{\pi}{4}$.

Question 3

Source: Real Analysis (Royden) Chapter 6.1 Question 2

Show that there exists a strictly increasing function f(x) over the interval [0, 1], but f(x) is continuous over only the irrationals in [0, 1]

Question 4

Source: PMA (Rudin) Chapter 5

Suppose f'(x) is continuous over an interval [a,b] and let $\varepsilon > 0$. Prove that there exists some $\delta > 0$

such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon$$

whenever $0 < |t - s| < \delta, x \in [a, b]; y \in [a, b]$.

If this property holds, we say that f is uniformly differentiable on [a, b].

Question 5

Source: PMA (Rudin) Chapter 5

If $f(x) = |x|^3$, compute f'(x) and f''(x) for all real x. Then show that $f^{(3)}(0)$ does not exist.

Question 6

Source: MSE (Question)

Determine the points of continuity of $h(x) = \lfloor \sin(x) \rfloor$, where $\lfloor x \rfloor$ is the greatest $m \in \mathbb{Z}$ such that $m \le x$ (floor function).

Question 7

Source: Sample UC Davids Real Analysis Questions (Has Solution)

- (a) Suppose $f_n: A \to \mathbb{R}$ is *uniformly continuous* on A for every $n \in \mathbb{N}$ and $f_n \to f$ uniformly on A. Prove that f is uniformly continuous on A.
- (b) Does the result in (a) remain true if $f_n \to f$ pointwise instead of uniformly?

Question 8

Source: Problems in Real Analysis (Rădlescu et. al) Chapter 5.2 No. 3 Let f(x) be a polynomial and a be a real number such that $f(a) \neq 0$. Show that there exists a polynomial with real coefficients g(x) such that p(a) = 1, p'(a) = 0, and p''(a) = 0, where p(x) = f(x)g(x).

Question 9

Source: Problems in Real Analysis (Rălescu et. al) Chapter 5.2 No 8 Find all integers a and b such that 0 < a < b and $a^b = b^a$.

Question 10

Source: Problems in Mathematical Analysis (Kazcor and Nowak) Exercise 2.2.29 Show that the only functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$\frac{f(x+h)-f(x)}{h}=f'(x+\frac{h}{2})$$

are polynomials of degree two.

Question 11

Source: Problems in Mathematical Analysis (Kazcor and Nowak) Exercise 2.2.31 Prove that if f is differentiable on an interval \mathbf{I} , then the Intermediate Value Theorem can be used on \mathbf{I} .

(This is referred to as *Darboux's Theorem*.)

Question 12

Source: Kazcor and Nowak Exercise 2.3.9.

Let f be an n+1 times differentiable function. Prove that for every $x \in \mathbb{R}$, there exists some $\theta \in (0,1)$ such that

(a)
$$f(x) = f(0) + xf'(x) - \frac{x^2}{2}f''(x) + \dots + (-1)^{n+1}\frac{x^n}{n!}f^{(n)}(x) + (-1)^{n+2}\frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x).$$

(b) $f\left(\frac{x}{1+x}\right) = f(x) - \frac{x^2}{1+x}f'(x) + \dots + (-1)^n \frac{x^{2n}}{(1+x)^n} \frac{f^{(n)}(x)}{n!} + (-1)^{n+1} \frac{x^{2n+2}}{(1+x)^{n+1}} \frac{f^{(n+1)}(\frac{x+\theta x^2}{1+x})}{(n+1)!} \qquad x \neq -1.$

Question 13

Source: MSE (Source)

Suppose we have a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f is smooth (C^{∞}). Furthermore, suppose that f has two global minima. Prove or disprove that f has a third critical point.

• What happens if we add the constraint that $f(x) \to \infty$ as $||x|| \to \infty$?

Question 14

Let $f,g:[0,1]\to\mathbb{R}$ be continuous functions such that for any continuous $\varphi:[0,1]\to\mathbb{R}$ where $\varphi(1)=\varphi(0)=0$, we have

$$\int_0^1 (f(x)\varphi'(x) + g(x)\varphi(x)) \, \mathrm{d}x = 0$$

Prove that *f* is continuous over it's domain and f'(x) = g(x).

This theorem is called the *du-Bois Reymond Lemma*.