

3 – ÉTUDE CINÉMATIQUE DES SYSTÈMES DE SOLIDES DE LA CHAÎNE D'ÉNERGIE ANALYSER - MODÉLISER - RÉSOUDRE CHAPITRE 2: MODÉLISATION DES SYSTÈMES MÉCANIQUES

Objectifs

Lire et interpréter un dessin de définition 2D.

Compétence : Communiquer

- Com1-C1-S1: Produire des documents techniques adaptés à une communication (interne et externe).
- Com1-C1-S2: Décoder une représentation 2D.

1°- CONCEPTION DES PRODUITS INDUSTRIELS	
A. Préliminaires	
B. Dessin d'ensemble - Dessin de définition	
C. Cycle en Vé	Erreur ! Signet non défini.
2°- Dessin 2D - Projection orthogonale	Erreur! Signet non défini.
3°- LES PROJECTIONS DE BASE	Erreur! Signet non défini.
A. Pièces simples	Erreur ! Signet non défini.
1- Pièce n°1	Erreur ! Signet non défini.
2- Pièce n°2	Erreur ! Signet non défini.
3- Pièce n°3	Erreur ! Signet non défini.
4- Pièce n°4	Erreur ! Signet non défini.
5- Pièce n° 5	Erreur ! Signet non défini.
B. Pièces plus complexes	Erreur ! Signet non défini.
1- Pièce n°1	Erreur ! Signet non défini.
2- Pièce n°2	•
3- Pièce n°3	Erreur ! Signet non défini.
4°- LES COUPES ET LES SECTIONS	Erreur! Signet non défini.
A. Les sections	Erreur ! Signet non défini.
1- Sections sorties	Erreur ! Signet non défini.
2- Sections rabattues	Erreur ! Signet non défini.
B. Les coupes	Erreur ! Signet non défini.
3- Coupe par une seul plan et demi-coupe	Erreur ! Signet non défini.
4- Coupe brisée à plans parallèles ou à plans sécants	Erreur ! Signet non défini.
5- Coupe des nervures et coupe locale	Erreur ! Signet non défini.
6- Éléments non coupés	Erreur ! Signet non défini.
C. Application - levier	Erreur ! Signet non défini.
1- Perspective sommaire	Erreur ! Signet non défini.
2- Dessin de définition à compléter	Erreur ! Signet non défini.
5°- Intersections de cylindres	ERREUR! SIGNET NON DÉFINI.
A. Cylindres pleins même diamètre	Erreur ! Signet non défini.

1°- Conception des produits industriels

A. Préliminaires

• Une coupe représente la section et la fraction de l'objet située en arrière du plan sécant.

Règles importantes à retenir :

- les hachures ne traversent jamais un trait fort ;
- les hachures ne s'arrêtent jamais sur un trait interrompu fin.

I. Modélisation des solides et des liaisons

Modéliser permet d'appréhender le réel avec des concepts simplificateurs rendant possible l'utilisation des outils d'analyse et de calculs à disposition.

2°- Solide indéformable

• Un solide indéformable (ou parfait) est une entité matérielle :

- o de masse constante
- o dont la distance entre deux points quelconques est invariable dans le temps.
- Ce modèle sera utilisé en :
 - o *cinématique* (étude des mouvements)
 - o **statique** (étude des forces sur des solides en équilibre).
- En réalité les solides parfaits n'existent pas. Les plus rigides d'entre eux subissent de petites déformations provoquées par :
 - o la variation de température (dilatation)
 - o les actions mécaniques (efforts).

3°- Liaisons entre solides

B. Degré de liberté

- Considérons un solide parfait **1** complètement libre par rapport à un solide **0** (exemple : avion **1** par rapport au sol **0**). Son déplacement global peut se décomposer en deux déplacements.
 - o Rotation: l'orientation du solide 1 change par rapport à 0.
 - Translation: le solide 1 garde la même orientation par rapport à 0 mais sa position évolue.
- Le solide **1** évoluant dans l'espace à trois dimensions, chaque déplacement peut à son tour être décomposé en trois déplacements élémentaires (un sur chaque dimension).
- On suppose qu'un repère orthonormé direct $\Re = (0, x, y, z)$ est lié au solide **0**.
- La rotation se décompose donc en :
 - une rotation autour de x : R_x
 - une rotation autour de y : R_v
 - une rotation autour de z : R_z
- Ces six quantités (R_x, R_y, R_z, T_x, T_y, T_z) sont appelées degrés de liberté (ddl) du solide **1** par rapport au solide **0**.
- Les degrés de liberté sont indépendants les uns par rapport aux autres. Par exemple la translation suivant x peut s'effectuer sans aucune translation suivant y ou z.

- La translation se décompose donc en :
 - une translation suivant x : T_x
 - une translation suivant y : T_v
 - une translation suivant z : T_z

C. Liaison

• En construction mécanique, on n'a besoin que de certains degrés de liberté (on dit aussi mobilités) entre deux solides (par exemple le solide 1 doit posséder uniquement une rotation autour de x par rapport au solide 0; cas d'une porte). Les autres degrés de liberté ne doivent pas exister.

1- Réalisation :

- On met les deux solides en contact par l'intermédiaire d'une surface S_1 appartenant à $\mathbf{1}$ et d'une surface S_0 appartenant à $\mathbf{0}$.
- Au cours du mouvement, la surface S₁ glisse sur la surface S₂ . Les conditions à remplir sont :
 - Non pénétration d'une surface dans l'autre
 - o Non séparation des surfaces.

2- Liaison parfaite

DÉFINITION

Une liaison parfaite est une **modélisation** d'une liaison réelle entre deux solides indéformables, qui permet d'étudier le fonctionnement d'un mécanisme.

- Les qualités d'une liaison parfaite sont :
 - surfaces ayant une géométrie parfaite
 - pas d'adhérence ni de frottement
 - pas de déformation sous l'effort
 - pas de jeu ni de serrage entre les pièces

4°- Liaisons normalisées parfaites

A. Liaison sphère plan

B. Liaison linéaire rectiligne

C. Sphère cylindre ou linéaire annulaire

D. Liaison sphérique ou rotule

E. Liaison Appui plan

F. Liaison sphérique à doigt

G. Liaison pivot glissant

H. Liaison hélicoïdale

I. Liaison pivot

J. Liaison glissière

5°- Tableau des liaisons normalisées

REMARQUE TRÈS IMPORTANTE

Ce tableau est à connaitre par cœur!

• L'énoncé des degrés de liberté que possède une liaison sous-entend le choix d'un repère orthonormé direct lié à un solide. L'orientation de ce repère définit la base qui lui est associée.

Nom complet de la liaison	Vue de face Vue de profil	Perspective	Axe primaire \vec{x} lié à	Axe secondaire \vec{y} lié à	Degrés de liberté
Sphère plan de normale Ax (A : centre de la sphère)		$\begin{array}{ c c } \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ \end{array}$	2		$R_x 0$ $R_y T_y$ $R_z T_z$
Linéaire rectiligne d'axe Ax et de normale Ay (A milieu de la ligne)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	y 1 x x x x x x x x x x x x x x x x x x	axe de contact entre 1 et 2	2	$ \begin{array}{ccc} R_x & T_x \\ R_y & 0 \\ 0 & T_z \end{array} $
Linéaire annulaire d'axe Ax (A : centre de la sphère)	$\begin{array}{c c} A & A & A & A & A & A & A & A & A & A $	1 x	axe de 2		$R_x T_x \\ R_y 0 \\ R_z 0$
Sphérique de centre A (ou rotule)	1 <u>2</u>	1 <u>2</u>			$R_x 0$ $R_y 0$ $R_z 0$
Appui plan de normale Ax (A lié à 1 ou à 2)	$\frac{\frac{x}{A}}{1}$	A 1 2	plan commun (1 ou 2)		$R_x = 0$ $0 = T_y$ $0 = T_z$
Sphérique à doigt de centre A, de doigt Ax et de normale Ay (A : centre de la sphère)	1 O y A	1 2 y	1	2	$\begin{array}{ccc} R_x & 0 \\ R_y & 0 \\ 0 & 0 \end{array}$
Pivot glissant d'axe Ax (A milieu du tube)	$\begin{array}{c} A \\ \downarrow \\ \downarrow \\ \downarrow \\ 2 \end{array} \qquad \begin{array}{c} X \\ \downarrow \\ 2 \end{array}$	A X	axe commun (1 ou 2)		$R_x T_x \\ 0 0 \\ 0 0$
Hélicoïdale d'axe Ax (A milieu du tube)	1 A ×	Logo 1 x	axe commun (1 ou 2)		R_x T_x 0 0 0

				$T_x = k R_x$
Pivot d'axe Ax (A milieu du tube)	$\begin{array}{c} A \\ \hline \\ 2 \\ \end{array}$	A X X	axe commun (1 ou 2)	$egin{array}{cccc} R_x & 0 & & & \\ 0 & 0 & & & \\ 0 & 0 & & & \end{array}$
Glissière d'axe Ax (A milieu du tube)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 A x	axe commun (1 ou 2)	0 T _x 0 0 0 0
Encastrement de centre A	2 A 1	2 1		0 0 0 0 0 0

II. Association de liaisons

6°- Liaison sphère-plan

Serti	
	T

7°- Liaison linéaire rectiligne

8°- Liaison linéaire annulaire

		·
Ţ	12/1/1	
+	Serie	
+		

9°- Liaison appui plan

10°- Liaison rotule

10/11

11°- Liaison pivot glissant

12°- Liaison pivot

02_Cin_02_Modelisation.docx

13°- Liaisons glissière

02_Cin_02_Modelisation.docx 11/11