Technische Informationssysteme - Zusammenfassung

Sonntag, 16. Juli 2017 19:24

1. Grundlegende Konzepte

- System: Menge von Elementen mit Eigenschaften, die zueinander in Beziehung stehen. Hat Systemgrenze und kann Beziehungen zu Umgebungssystemen haben
- Informationssysteme: Alle Ressourcen im Unternehmen: Hardware + Daten + Software + (Personal)
- Betriebliche Informationssysteme: Allumfassendes Daten-Handling, Bereitstellung von Informationen für den Benutzer zum Treffen von Entscheidungen
 - Verwaltungsaufgaben, Informationsaufgaben, Dispositionsaufgaben, Planungsaufgaben, Kontrollaufgaben, Steuerungsaufgaben
 - o Aufteilung:
 - Technische Bereiche
 - □ Unterstützt primäre Funktionen bei Produktentwicklung und -fertigung
 - z.B. Entwicklung, Konstruktion, Arbeits- und Betriebsmittelplanung, Fertigung, Produktionsplanung und -Steuerung, Qualitätssicherung
 - Nicht-technische Bereiche
 - □ Unterstützt sekundäre Funktionen bei Produktentwicklung und -fertigung
 - u z.B. Unternehmensführung, Controlling, Beschaffung, Personalwesen, Finanzwesen, Marketing/Vertrieb

Erfasster Bildschirmausschnitt: 16.07.2017 19:33

 Koordinationskosten: Kontrollinstanzen, Missverständnisse, Über/Unterproduktion, Abhängigkeiten, Machtfragen, Produktionszeiten. Informationssysteme können das besser gestalten und Fehler finden.

1.1. Grundlegende Kapitel des Wissensmanagements

• Informationssysteme dienen dem Wissensmanagement

Erfasster Bildschirmausschnitt: 16.07.2017 19:39

- o Daten: Zeichenmenge
- o Information: Daten + Kontext
- o Wissen: Zweckmäßig verknüpfte Information (also teils Erweiterung um weitere externe Informationen)
- Klassifizierungskategorien von Daten (Allgemein)
 - Struktur
 - Formatierte Daten
 - Unformatierte Daten
 - Art der Daten
 - Text, Bild, Audio, Video
 - Stellung im EDV Prozess
 - Eingabe oder Ausgabe
 - o Darstellungsform

- Digitale Daten
 - □ Alphabetisch, numerisch, alphanumerisch, logisch
- Analoge Daten
- Verschlüsselung
 - Verschlüsselt oder offen
- Klassifizierungskategorien von Daten (im Betrieblichen Kontext, vor allem ERP)
 - o Nutzdaten: passiv und zur Verarbeitung
 - Stammdaten: Metadaten zur Identifizierung, Klassifizierung und Charakterisierung von Sachverhalten
 - Bestandsdaten: Daten mit Zustand, kennzeichnen betriebliche Mengen- und Wertestruktur
 - Bewegungsdaten: Abwicklungsorientierte Daten, die durch betriebliche Leistungsprozesse entstehen
 - Metadaten: Beschreibende klassifizierende Informationen zur Verwaltung und Organisation von Nutzdaten
 - o Steuerdaten: aktiv, legen Art der Verarbeitung fest

1.2 Rechenmaschinen und Netzwerke

- Technische Informationssysteme sind Menge von Programmteilen, teils über mehrere Maschinen
- · Technischer Datenaustausch: Netzwerktechnik
- Konzeptueller Datenaustausch: Welche Art von Daten in welchem Programm wann?
- Ziel von Datenaustausch: gemeinsame Nutzung vorhandener Ressourcen
 - o Gemeinsame Datenhaltung
 - o Höhere Zuverlässigkeit
 - o Preiswerterer Betrieb
 - o Einfachere Kommunikation
 - o Performancesteigerung
- Klassifizierung von Rechnernetzen: (W)LAN, MAN, WAN
- Informationsaustausch zwischen Maschinen: Anwendungsschicht (HTTP), Transportschicht (TCP), Vermittlungsschicht (IP), Übertragungsschicht (Token Ring)
- Client vs Server
 - o Client: Entweder Programm, das Daten anfordert, oder Computer mit Client-Software
 - o Server: ebenso.
- Moderne 3-Schichten Architektur: Darstellung <-> Anwendungslogik <-> Daten. In modernen Systemen alles auf separate Systeme aufgeteilt.

2. Elementare Methoden und Technologien

2.1 Prozessmodellierung

- Prozess: Sammlung von Vorgängen. Abstrakte Vorstellung, dass Teilvorgänge in logischem Zusammenhang stehen
- Modell: kla
- Prozessmodellierung: um Prozesse zu analysieren. Freestyle oder mit formalen Sprachen.
- ARIS: ARchitektur integrierter InformationsSysteme
 - o Komplette Unternehmensmodellierung in einem Modell

Erfasster Bildschirmausschnitt: 16.07.2017 21:13

Erfasster Bildschirmausschnitt: 16.07.2017 21:13

- o Nicht mehr aktuell, funktioniert nicht mehr in großen komplexen Unternehmen
- EPK: Ereignisgesteuerte ProzessKette

Erfasster Bildschirmausschnitt: 16.07.2017 21:23

- o Bestandteile:
 - Prozesswegweiser (oben nicht dargestellt): Beschreiben Anfang und Ende der EPK, optional, Darstellung: Viereck über Sechseck.
 - Aufgabe: Angestoßen durch Ereignis, ausgeführt von Organisationseinheit, benötigt und erzeugt Information, ergibt immer min. ein Ereignis
 - Verknüpfung: xor, v=oder, ^=und
- o Modellierung von Beispielprozess

Erfasster Bildschirmausschnitt: 16.07.2017 21:29

Erfasster Bildschirmausschnitt: 16.07.2017 21:30

- Probleme von EPK/ARIS Modellierung in der Realität: Detaillevel, viele Subprozesse können es noch unübersichtlicher machen. Komplexe Probleme wurden versucht mit Objektorientierung zu lösen, die aber nicht volle Ausdrucksmächtigkeit besitzt um vollständige Aussagen zu treffen.
- Ausführbare Prozessmodelle: Petri-Netze
 - TIS kann implizites Modell (informelle Beschreibung, überführt via Programmierer) oder explizites Modell (formal, überführt in Workflow-Engine) enthalten.
 - Prozess vs Workflow: Prozess schließt speziellere Workflows mit ein, Workflow beschreibt detaillierten Arbeitsablauf aus elementaren Aktionen.
 - o Petri-Netze: Prozess als gerichteten Graphen darstellen
 - Knoten sind entweder Stellen (Kreis) oder Transitionen (Viereck)
 - ☐ Stelle: Punkt markiert Positionen im Prozess, alle Punkte ergeben Zustand des Prozesses
 - ☐ Transition: Können gefeuert werden, was die Punkte durchtransportiert
 - Beispiel Lösung obigen Prozesses:

Erfasster Bildschirmausschnitt: 17.07.2017 11:22

S-BPM/PASS

- Prozessdenken: Prozess hat nur Input, Output, Attribute. Kann aber in lineare Teilprozesskette aufgesplittet werden, dabei müssen Input und Output passen (s. 2-43)
 - In-/Output Konzept erzeugt prozedurale Programmierung und nur bedingt für komplexe Systeme geeignet.
- o Deswegen: Subjektorientiertheit
 - Prädikatorientiert/Prozedural: Aktion steht im Vordergrund, Datenstrukturen werden implizit definiert.
 - Objektorientiert: Einzelne Objekte und was man mit ihnen machen kann stehen im Vordergrund, Abläufe müssen komplett im Passiv verfasst werden.
 - Subjektorientiert: Aktiv Handelnde steht im Vordergrund und deren Zustände und Interaktionen
- Subjektorientierte Prozessmodellierung (PASS, Parallel Activity Specification Schema als formale Modellierungssprache)
 - Subjekte = Menschen oder Maschinen
 - Natürliche Einteilung des Prozesskontextes, intuitiv schneller verständlich
 - Prozesse werden explizit für einzelne Subjekte modelliert
 - Grundlage für entsprechendes Geschäftsprozessmanagement: Subject-Oriented Business Process Managements (S-BPM)

Kurzeinführung Subjektorientierte Geschäftsprozess Modellierung mit PASS

Subject Interaction Diagram (SID)

Hinter jedem Subjekt steht ein: Subjekt Behaviour Diagram (SBD) Besteh aus Internen Aktionen (gelb/ F), sowie senden (grün/S) und Empfangen (rot/R) von "Nachrichten"

Erfasster Bildschirmausschnitt: 17.07.2017 11:34

- Notation:
 - □ Subjekte: Personen oder Systeme
 - Hat Inbox um einkommende Nachrichten zu lagern, bis sie vom Empfangszustand abgeholt werden
 - Nachrichten: zwischen Subjekten, definieren Informationen zwischen Prozessbeteiligten
 - □ Sendzustände: Punkte im Prozess, an dem ein Subjekt Nachrichten verschicken kann
 - □ Empfangszustände: Punkte, an dem ein Subjekt Nachrichten erwartet
 - □ Funktionszustände: Punkte, an dem ein Subjekt etwas ausführt ohne zu kommunizieren
- Verzweigungen sind immer XOR (=> keine Parallelität)
- TODO: Markiere Diagramm oben entsprechend 2-56ff
- PASS vs EPK
 - □ Pro PASS
 - ◆ Natural Context Separation: Natürliche Unterteilung in Akteure, Subprozesse linear und nachvollziehbar
 - Besser verständlich bei großen Prozessen
 - Präzise, formale Sprache => Direkte Ausführbarkeit
 - - ◆ EPKs für kleine Prozesse praktischer
 - ◆ PASS zwingt zur Aufteilung in Modellteile
 - Aufteilung in Aktion und Kommunikation gewöhnungsbedürftig und teils umständlich
- Beispielmodellierung:

Erfasster Bildschirmausschnitt: 17.07.2017 11:39

Verhaltensdiagramm Besteller

Verhaltensdiagramm Genehmiger

Erfasster Bildschirmausschnitt: 17.07.2017 11:39

■ Beispielmodellierung von obigen Prozess:

Erfasster Bildschirmausschnitt: 17.07.2017 11:40

SBD: Konstrukteur

SBD: Prüfer

SBD: Entwicklungsleiter

SBD: PT-B au

Erfasster Bildschirmausschnitt: 17.07.2017 11:41

- Subjekt vs Phasen
 - Phasenkonzept ist rückwärtsgewandt und auf einzelnes Objekt bezogen, beschreibt bestimmte Ausschnitte als linearen Verlauf.
 - ☐ Falsche Erwartung: Phase gibt vor, was zu tun ist
 - □ Realität: Was getan wird.
 - Phasen eignen sich nicht zur Planung, wenn Aktivität in Phasen immer gleich ist oder Phasen sehr grob beschrieben sind
- Fixed/variable Time/Content: Von drei Aspekten können nur zwei fixiert werden: Qualität/Ressourcen, Zeit, Umfang, da Qualität ein Minimum hat, sind nur Zeit _oder_ Umfang variabel.
- o Agile Vorgehensweise: Feste Zeitintervalle, variabler Inhalt
- Alternative Modellierungsarten: Flow Chart, UML Aktivitätsdiagramm, BPMN (Business Process Modelling Notation mit 100+ Shapes zur Prozessmodellierung), sonstige...

2.2 Grundlagen von Datensystemen und Semantische Informationssysteme

- Bedeutung von "Datenbank": Datensatz (Information über Sachverhalt), Systeme (DBMS)
- Nachteile dokumentenbasierter Informationsverwaltung: Hohe Redundanz, Inkonsistent, Undynamisch, Eingeschränkte Produktivität, Datenschutzprobleme => Lösung: Datenunabhängigkeit (physisch und logisch)
- Terminologie:
 - o Daten: klar
 - $\circ \quad {\sf Datenbank/Datenbasis:} \, {\sf Strukturierte Sammlung} \, {\sf von \, Daten}.$
 - o Datenbank Management System DBMS: Verwaltung von Daten, Regelung von Zugriffen
 - o Datenbanksystem: DBMS + Datenbank
- Informationsmodell
 - Abstraktes Informationsmodell: Abstraktion eines Realitätsauschnittes, unabhängig von Implementierung, zur Kommunikation. Informell.
 - o Konkretes Informationsmodell: Abbildung der Elemente des abstrakten Modells, Umsetzung in konkretes System.
- In Datenbanken: vgl. Klassen mit Tabellenschemata
- Einschränkungen, um Semantik klarer zu machen: Kardinalitätsrestriktionen, Eindeutigkeitsbedinungen, Werterestriktionen
- Abstraktionskonzepte:
 - o Klassifikation (Klasse von Objekte mit gemeinsamen Eigenschaften finden)
 - o Generalisierung (Gemeinsamkeiten zwischen Klassen)
 - o Aggregation (unterschiedliche Aspekte einer Klasse zusammenfassen)
 - Assoziation (Kollektion von Objekten desselben Typs als ein Objekt verwenden)
- Ableitung: Automatische Berechnung von Attributwerten von Objekten.

Daten-Modellierung mit Entity-Relationship (ER) Modellen

- SQL vs NoSQL:
 - o SQL
 - Relationale Datenbanken
 - o NoSQL
 - Dokumentorientierte DB
 - Schlüssel-Werte DB
 - Spalten DB
 - Objektdatenbank
 - Graphdatenbank

- Multimodelle DB
- ER Modell: Abstrakte Beschreibung der Relation zwischen Daten in Datenbank

Erfasster Bildschirmausschnitt: 17.07.2017 18:36

Graphische Notation

Erfasster Bildschirmausschnitt: 17.07.2017 18:37

- Is-a Relationship: E1 *subsetof* E2
- · Aggregation: Relationship wird als abstraktes Objekt behandelt, ermöglicht Relationships zwischen Relationships
- Grundzüge ordnungsgemäßer Modellierung
 - Grundsatz der Konstruktionsadäquanz: Problemangemessene Nachvollziehbarkeit einer Modellkonstruktion.
 - 2. Grundsatz der Sprachadäquanz: Verlangt die geeignete Sprache für das vorliegende Problem.
 - Grundsatz der Wirtschaftlichkeit: Verlangt, dass mit der Modellierung sparsam umgegangen werden soll.
 - Grundsatz des systematischen Aufbaus: Verlangt die Trennung des gegebenen Sachverhalts in unterschiedliche Sichten.
 - Grundsatz der Klarheit: Fordert, dass erstellte Modelle verständlich und lesbar sind. Dies impliziert im Allgemeinen, dass Modelle anschaulich sein müssen.
 - Grundsatz der Vergleichbarkeit: Gilt wenn für eine bestimmte Anwendungssituation mehrere Modelle nebeneinander existieren, und fordert, dass diese vergleichbar sind.

Erfasster Bildschirmausschnitt: 17.07.2017 18:40

Review-Fragen: ER-Modell

- 1. Was ist ER-Modell?
- 2. Was ist die Rolle vom ER-Modell in einem Datenbanksystem? Wozu brauchen wir ER-Modell?
- 3. Was kann man mit ER-Modell ausdrücken?
- 4. Was sind die Elemente eines ER-Modells? Was sind die Zwecke der Elemente?
- Was sind die Unterschiede zwischen ER-Modell und UML-Klassendiagramm?
- 6. Wie beschreibt man ein Entity?
- 7. Welche Eigenschaften von Relationships kann man ausdrücken?
- 8. Wie modelliert man eine Hierarchie von Objekten eines Entitys?
- 9. Wie bildet man Mengenkonstrukte in ER-Modell ab?

Erfasster Bildschirmausschnitt: 17.07.2017 18:41

Relationen, Schlüssel, Schemata und Anomalien

• Mit n Attributen A_i einer Relation R:

 $r(R) \subseteq (\text{dom}(A_1) \times \text{dom}(A_2) \times \dots \times \text{dom}(A_n))$

Erfasster Bildschirmausschnitt: 17.07.2017 18:42

- Referentielle Integrität: Nutzung von Fremdschlüsseln
- Schlüsselkandidat: Schlüssel mit minimaler Anzahl von Attributen
- Primärschlüssel: Beliebiger Schlüsselkandidat, ausgewählt
- Inhärente und explizite Einschränkungen sind durch DBMS gegeben, semantische Einschränkungen können dadurch nicht überprüft werden
- Datenbankschema = Menge von Relationen + Menge von Integritätsbedinungen
 - o Datenbank (Schema + Relationen) ist valide, wenn alle Integritätsbedinungen erfüllt sind
 - o Integritätsbedinungen: Z.B. Fremdschlüssel, Primärschlüssel entsprechend Definition...
- Anomalien: Lösch-, Update-, Einfüge-.
- SQL
 - Basiert auf CRUD: CREATE, READ, UPDATE, DELETE

2.3 Semantische Informationssysteme und Wissensmanagement

- Erinnerung: Zweckmäßig verknüpfte Informationen
- Maschinenverständliches Wissen: ...
- Wissenmanagementbausteine: Wissensziele, Wissensbewertung, Wissensidentifikation, Wissenserwerb, Wissensentwicklung, Wissenseintelung/Wissensverteilung, Wissensbewahrung, Wissensnutzung
- Ontologie: Gemeinsame Sprache, um Wissen zu teilen, für Wiederverwendbarkeit von Wissen, Trennung von Domänenwissen und operativen Wissen.
 - o Formal, Explizit, Geteilt, Abstrakt, Domänenbasiert
- Closed-World vs Open-World Semantik:
 - Closed World Assumption (CWA): Was derzeit nicht als wahr bekannt ist, ist falsch. Anwendung in vollständig bekannten Systemen
 - o Open World Assumption (OWA): Was derzeit nicht als wahr bekannt ist, muss nicht falsch sein. Annwendung in nicht vollständig bekannten Systemen (Onologien)
- Unique-Name Assumption (UNA) vs No-UNA:
 - $\circ\quad$ UNA: Ein Objekt hat genau eine Kennung
 - No-UNA: Ein Objekt kann mehrere Kennungen haben, ermöglicht Ausdrücke, ob Objekte gleich oder unterschiedlich sind
- Datenbank vs Ontologien

Datenbank	Ontologie	
CWA	OWA	
UNA	No-UNA	
Modell ist ein Abbild von einer bestimmten Anwendung	Das Ziel der Modellierung ist unabhängig von einer bestimmten Anwendung	
Querys	Reasoning und Querys	
Abfrage nur auf der Instanz	Abfrage und Reasoning auf Schema und Instanz	
Schwerpunkt der Modellierung ist das Schema.	Modellierung von Schema und Instanzen	
statisches Schema (Änderung nur zur Laufzeit)	dynamisches Schema (Veränderbar zur Laufzeit)	
zentralisierte Entwicklung	dezentralisierte und kollaborative Entwicklung	
eingeschränkte Ausdrucksfähigkeit (bedingt u.a. auch durch CWA und UWA)	mächtiger Ausdrucksfähigkeit: inverse, transitive Eigenschaften, disjunkte Klassen, Regeln, etc.	

Erfasster Bildschirmausschnitt: 18.07.2017 14:27

• Semantic Web: Informationen aus Ontologien sollen von überall zugreifbar sein, Ressource als URI => keine

Mehrdeutigkeiten

- o Framework, versch. Standards definiert: RDF, RDFS, OWL, SPARQL, SWRL
- RDF: Resource Description Framework: Formale Sprache für strukturierte Informationen
 - ☐ Gerichteter Graph, Knoten sind Ressourcen, Kanten sind Beziehungen
 - □ Ressourcen mit URIs
 - □ Properties (selbst eine Ressource, die Beziehungen darstellen)
 - □ Literal (Datenwerte, interpretierte Zeichenkette)
 - □ Datentyp (XML-Schema Datentypen)
 - □ Statements: Subjekt (Ressource) + Prädikat (Property) + Objekt (Ressource) oder Wert (Literal)
 - RDFS: RDF-Schema: Vokabular von RDF
 - Klassen, Klassen-Instanz-Relationen, Klassenhierarchien, Eigenschaftshierarchien, Eigenschaft-Randbedinungen
 - □ Beschreibt eher die Typen, während RDF eine "Instanz" der Typen abbildet
 - OWL: Web Ontology Language: RDFS + Beschreibungslogik
 - □ OWL Full: Ganz RDFS, ausdrucksstark, unentscheidbar, bedingte Unterstützung
 - □ OWL DL: Entscheidbar, vollständige Unterstützung
 - □ OWL Lite: Entscheidbar, weniger ausdrucksstark, geringere Komplexität
 - □ Besteht aus:
 - ◆ Klassen
 - Individuen (Instanzen)
 - ◆ Rollen (Properties)
 - ◆ Klassenbeziehungen
 - ♦ Subklasse
 - ♦ Disjunkte Klasse
 - ♦ Äquivalente Klasse
 - ◆ Komplexe Klassen
 - ♦ Konjunktion (Intersection, mehrfaches erben (?))
 - ♦ Disjunktion (Union)
 - ◆ Individuenbeziehungen (Instanzbeziehungen)
 - ♦ sameAs
 - ♦ differentFrom
 - ♦ AllDifferent mit distinctMember Attribut
 - Rolleneinschränkungen
 - ♦ allValuesFrom (schränkt Domäne von Rollenwerten bzw Propertiedomänen ein)
 - someValuesFrom (Existenzquantor für Rollen/Properties)
 - ♦ Cardinality, maxcardinality
 - ♦ hasValue
 - Rolleneigenschaften können sein: Transitiv, Symmetrisch, Invers, Funktional (sameAs wenn Rolle beide Elemente betrifft). (Können alle explizit für Rollen definiert werden)
 - SPARQL: SPARQL Protocol and RDF Query Language
 - □ Standard für die Abfrage von in RDF spezifizierten Informationen
 - ☐ Graphenmuster, SELECT (Hole Tabelle) oder CONSTRUCT (Hole formatiert) oder ASK (wahr oder falsch) mit Filtern und Modifikatoren (ORDER BY, LIMIT...)
 - □ Ähnlich wie SQL, nur ausdrucksstärker
 - SWRL: Semantic Web Rule Language.
 - Beschreibt Regeln aus Implikationen eines Antecedents (Body) und einer Konsequenz (Head),
 Prädikatenlogikähnlich
 - □ Verwende dann Reasoning Engine
- Warum teils trotzdem Datenbanken statt Ontologien: Ressourcenaufwendiger, DBMS sind weiter entwickelt
- Methoden zur Erstellung einer Ontologie
 - $\circ~$ Bestimmung der Domäne , Umfang, Art, Nutzungsart der Ontologie
 - o Wiederverwendung bestehender Ontologien
 - $\circ \quad \text{Aufz\"{a}hlen wichtiger Begriffe der Ontologie}$
 - o Klassen und -hierarchie definieren
 - o Rollen, Rollenfacetten, definieren, Instanzen erstellen
- Beispiel Prüfungsfragen:
 - 1. Was bedeutet "Wissen"? Wie kann man Wissen maschinenlesbar machen?
 - 2. Was ist die Rolle von Ontologien in Wissensmanagement?
 - Was sind die Unterschiede zwischen CWA und OWA sowie UNA und No-UNA?
 - 4. Was ist die Unterschiede zwischen der Fähigkeiten von Datenbanken und Ontologien?
 - 5. Erläutern Sie das Konzept von RDF anhand von Beispielen.
 - 6. Was ist die Rolle von RDFS in Ontologien?
 - 7. Was sind die Unterschiede zwischen ER-Modell und RDFS?
 - Erläutern Sie die Rolleeingenschaften "Transitive" und "Inverse" anhand von Besipiele
 - 9. Was kann SPARQL mehr als SQL?

Erfasster Bildschirmausschnitt: 18.07.2017 14:57

3. Spezielle Typen von Technischen Informationssystemen und ihre Ziele

- Durch Informationssysteme unterstützte Aufgabenbereiche
 - o Vertrieb: Kundenakquisition, Kundenbetreuung
 - o Entwicklung: Anforderungen, wie gut, Varianten?, PLM
 - Produktion/ Arbeitsvorbereitung: Lange- oder mittelfristige Vorbereitung, wie ressourcengünstige Produktion, wann wird was wo hergestellt?
 - o Produktion/ Fertigung: Feine Zeitplanung, Management, Produktinformationen bereitstellen
 - o Beschaffung: Alternativensuche, Problemsuche
 - o Lagerhaltung: Welches Material wann wo, wie transportieren
 - Controlling und Qualitätsmanagement: Was wird wie getan? Wer darf was machen? Was macht ein Produkt gut? Wie kann Qualität gewährleistet werden?
- Problem: Typische IT-Landschaft hat vollvermaschte Untersysteme

3.1 CAx, PDM, MES

 CAD-CAE Systeme (TODO:CAQ über alle Bereiche; TODO: x-Achse: Zeitverlauf der Produktion, y-.Achse: Steigender Grad der Abstraktion)

Erfasster Bildschirmausschnitt: 18.07.2017 17:06

- CAD: Computer Aided Design
 - Rechnerstützung in Entwicklung und Konstruktion
 - Digitale Modelle
 - □ Grafikmodell: unvollständig, ungenau, widersprüchlich (Reine Zeichnung)
 - ☐ Geometriemodell: vollständig, genau, widerspruchsfrei (Korrekte physische physikalische Modelle)
 - 3D Modell liefert Schnittstelle zu Aufgabenbereiche (2D Modelle mussten manuell umgesetzt werden)
 - Modellierungsarten:
 - □ Kanten/Drahtmodell: Körperkanten werden als gedachte Drahtgeometrie (Punkte und Linien) dargestellt
 - $\hfill \square$ Flächenmodell: Exakt definierte Flächen, Flächentopologie wird gespeichert
 - Volumen/Körpermodell: Modellierung durch Volumen (Zusammensetzung von Primitivkörper), idR
 zusätzliche Informationen über Werkstoff und Oberflächenbeschaffenheit
 - Weitere CAD Anwendungsgebiete: Außen-, Innenarchitektur, Großraumplanung, technische Gebäudeausrüstung, Fabrikplanung, Industrieanlagenbau
- $\circ \quad \text{CAE: Computer Aided Engineering: Berechnung und Simulation auf Basis von CAD Daten} \\$
 - Digital Engineering: Definition, Creation, Feedback, Analysis
 - Virtual Engineering: Digital Engineering + Virtualisation, Validation
 - Umfangreiche Anwendungsreihe, integrierte Prozesskette sorgt für Datenaustausch dazwischen
 - Simulation mittles mathematischer Berechnungsverfahren
 - □ Aufteilung in analytische Lösungen und Näherungslösungen
 - □ Simulationsmodell idealisiert und vereinfacht Realität
 - Wichtigsten CAE-Methoden
 - □ FEM: Finite Elemente Methode
 - ◆ Für fast alle Ingenieuraufgaben
 - "eine FEM machen": Simulationsdurchlauf parametrisieren, zu starten und auszuwerten
 - □ BEM: Boundary Elemente Methode
 - ◆ Teils alternativ zu FEM
 - FVM: Finite Volumen Methode bzw FDM: Finite Differenzen Methode
 - ◆ Berechnung in Strömungstechnik
 - □ MKS: Mehrkörpersysteme
 - ◆ Bewegungs- und Schwingungsaufgaben
 - $\ \ \Box \ \ Regelkreisbasierte \ CAE-Methoden$
 - Regelungssysteme
 - □ Integrierte CAE-Methoden
 - ◆ Kombinationen anderer Systeme
 - Datenaustausch zwischen CAD und CAE: Externe Schnittstelle, Integration ins Softwarepaket, gemeinsame Datenbasis
- CAM & CAP Systeme
 - Lang- und kurzfristige Arbeitsplanung, Arbeitssteuerung
 - Bereitstellung und Steuerung von Anlagen, Bereitstellenj von Informationen, Monitoring
 - Oft als Plugins in CAD Programmen

o CAM: Computer Aided Manufacturing

Erfasster Bildschirmausschnitt: 18.07.2017 17:39

o CAP: Computer Aided Production

Langfristig:

Erfasster Bildschirmausschnitt: 18.07.2017 17:40

Kurzfristig:

Hinweis: bei der kurzfristigen Planung sind die Grenzen zu MES/PPS Systemen fließend (siehe Kapitel 6)

Erfasster Bildschirmausschnitt: 18.07.2017 17:41

Aufgaben:

- □ Verwalten von Produktionsaufgaben und Produktionsdaten
- ☐ Generierung konkreter Produktionspläne
- ☐ In beiden Fällen Benutzereingriff notwendig

• PDM: Product Data Management

- o Betriebliches Wissen systematisch speichern
- o Vgl. mit git: Versionsmanagement, Langzeitarchivierung, Zentrale Speicherung für viele Benutzer
- o Datentypen: Ordner -> Element -> Änderungszustände -> Datensätze
 - Ersten drei sind Metadaten, Datensätze sind Nutzdaten
- o Ausprägung: Variante von Dokument (z.B. CAD-Repräsentation, 3D-Variante, Grafik-Variante)
- o Berechtigungskonzept: Read, Write, Delete, Print... via ACL: Access-Control-List
- o PDM Kernfunktionen müssen standordübergreifend sein

Erfasster Bildschirmausschnitt: 18.07.2017 17:54

- o Produktdatenaustausch: Direktschnittstellen (vollvermascht) oder Standardschnittstellen (Zentraler Knotenpunkt)
- o Geschichte
 - Manuelle Verwaltung
 - File-Server basierte Verwaltung
 - Dokumentklassifizierung durch Dateisystem
 - Dokumentenbasierte Verwaltung
 - ☐ Benutzerverwaltung, Workflowmanagement, Versionierung...
 - Produktstrukturbasierte Verwaltung
 - Speichert Informationen wie Zusammensetzung der Produkte, Beziehungen, Produktkomponenten, ...
 - Produktstruktur- und Prozessbasierte Verwaltung
 - □ Unternehmensweit ein integriertes Datenmodell ohne Dokumente
 - Vorteile von PDM
 - □ Effizienter (Suchfunktionen)
 - □ Prozessparallelisierung
 - Qualitätsverbesserung, Fehlervermeidung
 - □ Weniger Aufwandsredundanz
 - □ Vereinfachter Informationstransfer
- CAQ: Computer Aided Quality Assurance
 - o Meist nicht durch einziges Tool gestützt, sondern als Prinzipien und Aspekte in viele Tools integriert
 - o Funktionen:
 - Qualitätsplanung
 - □ Qualitätsmerkmale und -kriterien definieren
 - Qualitätsprüfung
 - ☐ Prüfen, inwieweit Qualitätsforderungen durch Produkt erfüllt werden
 - □ Prüfplanung, Prüfdatenerfassung, Prüfdatenauswertung, Prüfdatendokumentation
 - Qualitätslenkung
 - □ Aufbau von Regelkreisen zur Überwachung von Qualitätsanforderungen
 - Qualitätsdatenauswertung, Reklamationsmanagement, Dokumentenlenkung
 - o Ziele:
 - Geringere Fehlerquoten
 - Qualitätsbezogene Kosten analysieren, verwalten und senken
 - Qualitätsdatengeneration
 - Qualitätsdokumentation
 - Höhere Prozesssicherheit durch frühe Fehlererkennung

Die totale Überwachung ist ggf. sehr teuer und daher nicht Praktikabel

Erfasster Bildschirmausschnitt: 19.07.2017 14:33

- MES: Manufacturing Execution Systeme
 - o SCADA System: Supervisory Control And Data Acquisition: Überwacht und steuert techn. Prozess

Erfasster Bildschirmausschnitt: 19.07.2017 14:59

Ermöglichen computergestützte Durchführung in Echtzeit + Betriebsdatenerfassung, Maschinendatenerfassung,
 Personaldatenerfassung

3.2 PPS, ERP, CIM und APS

- PPS-Systeme: Produktions-Planung und Steuerung System
 - o *todo: image 6-4*

Erfasster Bildschirmausschnitt: 20.07.2017 17:35

- o Aachener PPS Modell:
 - Kernaufgaben: Datenverwaltung, Produktionsprogrammplanung, Produktionsbedarfsplanung, {Fremdbezugs,

Eigenfertigungs \{-planung, -steuerung\}

- Querschnittsaufgaben: Datenverwaltung, Auftragskoordination, Lagerwesen, PPS-Controlling
- o Planungsaufgaben:

•	1.	MRP II	Geschäftsplanung
	2.	MRP II	Absatzplanung
	3.	MRP I+II	Produktionsprogrammplanung
	4.	MRP, MRP I+II	Mengenplanung
	5.	MRP I+II	Termin- und Kapazitätsplanung
	6.	MRP I+II	Auftragsfreigabe und -überwachung

- MRP + MRP I: Material Requirements Planning, reine Materialbedarfsplanung
- MRP II: Manufacturing Resources Planning
 - ☐ Fertigungssteuerung, BDE/PZE/MDE, Disposition, Vertrieb, Einkauf, Logistik
 - Schwächen: Planungsschwachstellen schlecht findbar, unberücksichtigte Abhängigkeiten zwischen Produktions- und Absatzplanung, keine Berücksichtigung von Erzeugnisstruktur-Mehrstufigkeit und von beschränkten Kapazitäten, feste Planvorlaufzeiten
- APS: Advanced Planning and Scheduling System: Modulbasiert, einzelne Planungsaufgaben, als Alternative zu MRP II (?)
- o Exkurs: Klassische Materialwirtschaft
 - Bestandteile: Materialbestandsplanung, Lagermengenplanung, Lagerdaten, ...
 - Umschlaghäufigkeit pro Zeitperiode: Periodenverbrauch / avgBestand
 - Verweildauer: 360 / Umschlaghäufigkeit
- ERP-Systeme: Enterprise Resource Planning
 - *todo 6-20 oder 6-48*
 - ERP = MRP II + Finanzbuchhaltung, Anlagenbuchhaltung, Kostenrechnung, Personalwesen, Controlling/MIS, Projektmanagement, Dokumentenmanagement
 - o Unternehmensweite Verwaltung von Ressourcen, Fokus auf Geschäftsprozesse
 - Mehrere Funktionsbereiche, modular, integrierte Datenbasis, Vereinheitlichung unternehmensweiter Produktionsprozesse, branchenspezifische Varianten
 - o Funktionsbereiche:
 - Produktion
 - Materialwirtschaft
 - □ Sachziele: Benötigte Güter nach Art, Menge, Zeit Ort, Qualität, Preis bereitstellen
 - Formalziele: Einsparungspotentiale finden und nutzen, Umweltschutzaspekte berücksichtigen
 - □ Funktionen:
 - Integrierte Materialwissenschaft: Beschaffung (Strategischer und operativer Einkauf), Logistik, Produktion
 - Erweitert integrierte Materialwissenschaft: obiges, Produktion
 - Total integrierte Materialwissenschaft: obiges, Logistik
 - Finanz- und Rechnungswesen
 - □ Branchen- und Bereichsunabhängig
 - Finanzwesen: Sicherung der Zahlungsfähigkeit, Sicherung der Verzinsung des Kapitals, Bewertung langfristiger Investitionen
 - Rechnungswesen: Finanzbuchhaltung (externes Rechnungswesen; Aufzeichnung von Geschäftsvorgängen, Bilanzermittlung, Beweismittel für Gerichte/Finanzämter), Kosten- und Leistungsrechnung (internes Rechnungswesen; Bewertungen, ...)
 - Controlling
 - $\ \square$ Planungs- und Berichtswesen, Überwachen von Wirtschaftlichkeit.
 - Aufgaben: Planungsaufgaben, Informations- und Dienstleistungsaufgaben, Steuerungsaufgaben, Koordinationsaufgaben
 - Personalwesen
 - □ Personalkosten vs Qualifikationen und Kompetenzen
 - □ Aufgaben: typische Personalbezogene Sachen...
 - Forschung und Entwicklung
 - Verkauf und Marketing
 - Stammdatenverwaltung
 - o Einführung von ERP Systemen in Unternehmen
 - Projektvorbereitung (~10%, ~20 Tage)
 - Business Blueprint erstellen (~15%, ~30 Tage)
 - Umsetzung (~35%, ~65 Tage)
 - Finale Vorbereitung (~20%, ~40 Tage)
 - Inbetriebnahme und Support (~10%, ~20 Tage)
- CIM: Computer Integrated Manufacturing
 - Unterstützung des Produktlebenslaufes von ersten Gestaltungsidee bis zur Vermarktung, beschreibt komplettes informationstechnische Zusammenwirken zwischen CAD, CAP, CAM, CAQ, PPS
 - o Problem: Zu große Komplexität der Thematik, daher CIM nur als Idee beschrieben
 - Vernetzte Systeme, Industrie 4.0: Schnellere Prozesse, flexiblere Fertigung, individuelle Produkte durch ganzheitliche Prozesskette

