§6. Замена переменной в определенном интеграле

Пусть требуется вычислить интеграл $\int_a^b f(x) dx$, где f(x) — непрерывная в [a,b] функция. Для его вычисления производим замену переменной интегрирования по формуле

$$x = \varphi(t), \tag{6.1}$$

где $\varphi(t)$ удовлетворяет условиям:

- 1) $\varphi(t)$ определена в промежутке $[\alpha, \beta]$ и имеет там непрерывную производную $\varphi'(t)$ (следовательно, и сама функция $\varphi(t)$ непрерывна в $[\alpha, \beta]$);
- 2) $\varphi(t)$ строго монотонная функция в $[\alpha, \beta]$; при этом выполняются условия соответствия концов промежутков:

$$a = \varphi(\alpha); \quad b = \varphi(\beta).$$
 (6.2)

Тогда справедлива формула

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f[\varphi(t)] \varphi'(t) dt.$$
 (6.3)

Заметим, что вместе с заменой переменной интегрирования по формуле (6.1) меняются и пределы интеграла по формуле (6.2). Возвращение к старой переменной не требуется.

№ Под обоими интегралами в формуле (6.3) стоят непрерывные функции, поэтому эти интегралы существуют, и можно для них воспользоваться формулой Ньютона — Лейбница. Заметим при этом, что в силу строгой монотонности $\varphi(t)$ и условий $\varphi(\alpha) = a$, $\varphi(\beta) = b$ значения функции $\varphi(t)$ не выходят за пределы промежутка [a,b], где определена функция f(x).

Пусть F(x) — одна из первообразных для f(x), т. е. F'(x) = f(x). Тогда $F[\varphi(t)]$ — первообразная для функции $f[\varphi(t)]\varphi'(t)$. Действительно,

$$(F[\varphi(t)])' = F_x'[\varphi(t)] \cdot \varphi'(t) = f[\varphi(t)] \cdot \varphi'(t).$$

Далее, по формуле Ньютона – Лейбница (4.4) получаем:

$$\int_{a}^{b} f(x) dx = F(b) - F(a); \qquad \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt = F[\varphi(\beta)] - F[\varphi(\alpha)] = F(b) - F(a). \blacktriangleleft$$