Probabilidad

Ljercic	<u>i</u> 3.
V	
	1

Dados los sucesos A y B tales que P(A) > 0 y P(B|A) > 0. Demuéstrese que:

$$P(B|A) > 1 - \frac{P(B^C)}{P(A)}$$

$$P(A^{c})=1-P(A)$$

$$P(A^{c})=(-P(A^{c})$$

$$P(ADB) = [I - P(AC) - P(B)] + [I - P(AUB)]$$

$$P(ANB) = [1-P(A^c)-P(B^c)] + P((AUB)^c)$$

 $P(ANB) > 1-P(A^c)-P(B^c)$

$$P(A \cap B) > P(A) - P(B^{c})$$
or Dr. Conditional:

Finula Pab. Condigional: $P(B|A) = P(A \cap B) > P(A) - P(B^{c})$ P(A) P(A)

P(BC)
P(A).