- a) If the data is linearly separable, show that for some w, $y_n(w^Tx_n) \geq 1$ for n = 1, ...N.
- b) Formulate the task of finding a separator w for separable data as a linear program.
- c) If the data is not separable, the condition in (a) cannot hold for every n. Thus introduce the violation $\zeta_n \geq$ to capture the amount of violation for example x_n . So, for n=1...N, $y_n(w^Tx_n)\geq 1-\zeta_n$, $\zeta_n\geq 0$. We want to minimize the "amount of violation". One choice is to minimize $\sum_{n=1}^N \zeta_n$, i.e. we wish to find w which solves: Minimze $\sum_{n=1}^N \zeta_n$ s.t. $y_n(w^Tx_n)\geq 1-\zeta_n$, $\zeta_n\geq 0$, where the inequalities hold for n=1...N. Formulate this as a linear program.