MATH 257: Homework #1

Jesse Farmer

06 October 2004

1. Prove that $a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0 \equiv a_n + a_{n-1} + \dots + a_0 \pmod{9}$. We will show that, in general, if $x \equiv y \pmod{n}$ then

$$a_m x^m + a_{m-1} x^{m-1} + \dots + a_0 \equiv a_m y^m + a_{m-1} y^{m-1} + \dots + a_0 \pmod{n}$$

This is equivalent to showing that $n \mid a_m(x^m - y^m) + a_{m-1}(x^{m-1} - y^{m-1}) + \cdots + a_1(x - y)$. It is therefore sufficient to show that $n \mid (x^r - y^r)$ for every $r \in \mathbb{N}$. This is easy to see since, by hypoethesis, we have $n \mid (x - y)$ and

$$n \mid (x - y) \sum_{k=1}^{r} x^{k-1} y^{r-k} = x^{r} - y^{r}$$

Therefore $n \mid a_r(x^r - y^r)$ for every $r \in \mathbb{N}$, and the congruence is proven. The problem is a special case where x = 10, y = 1, and n = 9.

2. Find the remainder of 37^{100} when divided by 29.

The answer is 23. It is easier to calculate if we use Fermat's Little Theorem since 29 is prime, so

$$37^{100} \equiv (8^{16})(8^{28})^3 \equiv 8^{16} \equiv (8^2)^8 \equiv 64^8 \equiv 6^8 \equiv (6^2)^4 \equiv 7^4 \equiv 400 \equiv 23 \pmod{29}$$

- 3. Define $\tau_x(a,b): \mathbb{Z}_n \to \mathbb{Z}_n$ as $\overline{x} \mapsto \overline{ax+b}$ and $G = \{\tau_x(a,b) \mid a,b \in \mathbb{Z}, (a,n) = 1\}.$
 - (a) Show that each element of G is a well-defined permutation on \mathbb{Z}_n . Let $x_1, x_2 \in \overline{x}$ so that $x_1 \equiv x_2 \pmod{n}$. By the fact that addition and multiplication are well-defined on \mathbb{Z}_n , $ax_1 + b \equiv ax_2 + b \pmod{n}$, i.e., $\overline{ax_1 + b} = \overline{ax_2 + b}$. The inverse of an arbitrary $\tau_x(a, b)$ is constructed explicitly below, and hence each $\tau_x(a, b) \in G$ is a bijection from \mathbb{Z}_n to \mathbb{Z}_n , i.e., a permutation of \mathbb{Z}_n .
 - (b) Show that if $\alpha, \beta \in G$ then $\alpha\beta, \alpha^{-1} \in G$. Let $\alpha, \beta \in G$ and define $\alpha := \tau_x(a, b)$ and $\beta := \tau_x(c, d)$. Since (a, n) = 1, a^{-1} exists. We claim $\alpha^{-1} = \gamma := \tau_x(a^{-1}, -a^{-1}b) \in G$.

$$x(\gamma\alpha) \equiv a(a^{-1}x - a^{-1}b) + b) \equiv aa^{-1}x - aa^{-1}b + b \equiv x - b + b \equiv x \pmod{\mathfrak{n}}$$

and

$$x(\alpha\gamma) \equiv a^{-1}(ax+b) - b \equiv a^{-1}ax + a^{-1}ab - b \equiv x + b - b \equiv x \pmod{n}$$

Moreover,

$$\alpha\beta = \overline{c(ax+b)+d} = \overline{cax+cb+d} = \tau_x(ca,cb+d) \in G$$

- (c) Find |G| if n is prime.
 - Let $\tau_x(a,b) = \tau_x(a',b')$ so that $ax+b \equiv a'x+b' \pmod{n}$. This implies $x(a-a')+(b-b') \equiv 0 \pmod{n}$, i.e., $a \equiv a'$ and $b \equiv b' \pmod{n}$. In general this means there are $\varphi(n)$ ways to choose a, where φ is Euler's totient function, and n ways to choose b, and hence $|G| = n\varphi(n)$. For n prime $\varphi(n) = n 1$ (since all elements of $\mathbb{Z}_n \setminus \{0\}$ are units), so in this case |G| = n(n-1).
- 4. Let $G = \{x \in \mathbb{R} \mid x \in [0,1)\}$ and for all $x,y \in G$ define $x \star y = x + y [x+y]$. Show that (G,\star) is an Abelian group.

Let $x, y \in G$ be arbitrary. If $0 \le x + y < 1$ then [x + y] = 0, so $0 \le x + y - [x + y] < 1$. Otherwise, if $1 \le x + y < 2$ then [x + y] = 1, so $0 \le x + y - [x + y] < 1$. Therefore $x \star y \in G$.

The identity is clearly 0 since for $x \in G$, [x] = 0. $x^{-1} = 1 - x$ since

$$x \star (1 - x) = x + (1 - x) - [x + (1 - x)] = 1 - [1] = 0$$

Commutativity is inherited from \mathbb{R} . Let $x, y, z \in G$, then

$$(x \star y) \star z = (x + y - [x + y]) \star z = x + y + z - [x + y] - [x + y + z - [x + y]]$$

$$x \star (y \star z) = x \star (y + x - [y + z]) = x + y + z - [y + z] - [x + y + z - [y + z]]$$

So it is sufficient to show

$$[x + y + z - [x + y]] - [y + z] = [x + y + z - [y + z]] - [x + y]$$
(1)

From the definition of G it is clear that $[x+y], [y+z] \in \{0,1\}$. If both are 0 or both are 1 then (1) is obvious, so assume without loss of generality that [x+y] = 0 and [y+z] = 1. Then, letting a = x + y + z,

$$\big[x + y + z - [x + y]\big] - \big[x + y + z - [y + z]\big] = [a] - [a - 1] = 1$$

but

$$[y+z] - [x+y] = 1$$

Combining the above two yields (1), and hence \star is associative. Therefore (G, \star) is an Abelian group.

5. Let $\pi \in S_n$ and define π^i recursively by $\pi^i = \pi^{i-1}\pi$. The order of π is

$$|\pi| = \min\{i \in \mathbb{N} \mid \pi^i = I\}$$

(a) Show that $|\pi|$ is the least common multiple of the lengths of the cycles of π .

Consider π as the product of disjoint cycles c_1, c_2, \ldots, c_k , and let the length of the cycle c_i be l_i . If $c_i^n = I$, the identity, then $n \mid l_i$ since, if some element is permuted by c_i it must be permuted some multiple of l_i times for it to return to its original position because of the injective nature of disjoint cycles. Since composition of disjoint cycles is commutative.

$$\pi^n = (c_1c_2\cdots c_k)^n = c_1^nc_2^n\cdots c_k^n$$

If $\pi^n = I$ then $c_i^n = I$ and hence $n \mid l_i$ for i = 1, 2, ..., k. The smallest such n to do this is by definition the least common multiple of the l_i , i.e., the least common multiple of the lengths of the cycles of π .

(b) Let N(n,m) be the number of permutations in S_n of order m. Determine N(n,m) for $n \leq 5$ and for all m.

Since $|S_n| = n!$, this provides a way of checking whether the calculated values are correct. Also, in general, there are $\binom{n}{m}(m-1)!$ cycles of length m. We can see this by choosing a subset of size m, calling the first element m_1 , and permuting the other m-1 elements.

 $\underline{n=1}$: Since all permutations are the identity, N(1,1)=1.

 $\underline{n=2}$: N(2,1)=1, and N(2,2)=1.

$$\underline{n=3}$$
: $N(3,1)=1$, $N(3,2)=\binom{3}{2}(2-1)!=3$, $N(3,3)=\binom{3}{3}(3-1)!=2$

$$\underline{n=4}$$
: $N(4,1)=1$, $N(4,2)=\binom{4}{2}(2-1)!+\frac{\binom{4}{2}}{2}=9$, $N(4,3)=\binom{4}{3}(3-1)!=8$, $N(4,4)=\binom{4}{4}(4-1)!=6$

$$\underline{n=5}: \ N(5,1)=1, \ N(5,2)=\binom{5}{2}+\binom{5}{2}\binom{3}{2}\binom{1}{1}=25, \ N(5,3)=\binom{5}{3}(3-1)!=20, \ N(5,4)=\binom{5}{4}(4-1)!=30, \ N(5,5)=4!=24, \ N(5,6)=\binom{5}{3}(3-1)!=20.$$

6. For what for $n, m \in \mathbb{Z}$ can the map $f : \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = x^2$ be considered as a map from \mathbb{Z}_n to \mathbb{Z}_m ?

The map must be well-defined, so for any two $x, y \in \overline{x}$, $f(x) \equiv f(y)$ (mod m). In particular, let $x \in \overline{x}$ be arbitrary and let y = x + n.

Simply expanding the required congruence, $x^2 \equiv (x+n)^2 \pmod{m}$ shows that f is well-defined if and only if the following is true:

$$2nx + n^2 \equiv 0 \pmod{m}, \forall x \in \mathbb{Z}$$
 (2)

We claim that (2) is true if and only if $m \mid 2n$ and $m \mid n^2$. That this condition is sufficient is obvious, so assume (2) is valid for all $x \in \mathbb{Z}$. In particular this means (2) must be valid for x = 0, and hence $m \mid n^2$. Similarly, it must be valid for x = 1, and hence (since $m \mid n^2$) $m \mid 2n$, which proves our claim. Note that this works even when considering the trivial group $\{0\}$, since $1 \equiv 0 \pmod{1}$ and certainly m will always divide 0.