From Newton's Cooling to Quant Mean Reversion (OU), Half-Life & Trading

Author: Jesús Garví | GitHub | LinkedIn | Contact: jesus.garvigu@gmail.com

Date: 07/21

Data: water-cooling experiment (Δt=2 min, 0–30 min, Tamb=25 °C)

1) Problem Statement (Physics → Quant)

Estimate the exponential time constant τ of a physical cooling process and show the one-to-one mapping to quant mean-reversion (OU/AR(1)), half-life, and EWMA decay λ . Verify the model with two fits (linearized and nonlinear least squares), then translate the parameters into OU notation and a toy mean-reversion strategy.

2) Model

Newton's cooling (physics)

$$\frac{dT}{dt} = -k (T - T_{\infty}), \qquad T(t) = T_{\infty} + (T_0 - T_{\infty})e^{-t/\tau}, \quad \tau = \frac{1}{k}.$$

Let
$$\Delta T(t) = T(t) - T_{\infty} \Rightarrow \ln \Delta T(t) = \ln \Delta T_0 - \frac{t}{\tau}$$
.

OU / AR(1) (quant)

$$dX_t = -k(X_t - \mu) dt + \sigma dW_t \quad \Leftrightarrow \quad X_{t+\Delta} - \mu = \phi \left[X_t - \mu \right] + \varepsilon_t, \ \phi = e^{-k\Delta} = e^{-\Delta/\tau}.$$

Half-life $t_{1/2}=\frac{\ln 2}{k}=\tau \ln 2$. In discrete filters, EWMA decay \$\$ and span $\approx \frac{1}{1-\lambda}$.

3) Data & Fits (Physics)

- Ambient $T_{\infty} = 25.0$ °C; samples every 2 min for 30 min.
- Linearized fit (ambient fixed): slope $m=-0.1033~\mathrm{min}^{-1} \Rightarrow \tau^{2} = 9.682~\mathrm{mi}; 95\%$ CI [9.01, 10.35]; $R^{2}=0.972$, RMSE 1.592 °C.
- Nonlinear LS fit (ambient estimated): T_{∞} 22.30 °C, τ = 13.650 min, 95% CI [12.49, 14.81]; $R^2=0.998$, RMSE 0.411 °C.

Figure 1: Temperature vs time with both fits overlaid. The NLLS fit with free T_{∞} explains the early points better (lower RMSE).

Figure 2: Exponential decay of ΔT .

Figure 3: Linearization $\ln \Delta T$ vs time; slope $m = -1/\tau$.

Figure 4: Residuals vs fitted for NLLS—no major structure, supporting the exponential model.

Figure 9: Side-by-side comparison of τ : Linearized (9.68), NLLS (13.65), AR(1)/OU (14.08) with error bars. The "physics with free T_{∞} " and the "quant AR(1)" land in the same neighborhood.

Why the two physics fits differ: fixing $T_{\infty}=25\,^{\circ}\text{C}$ biases early points; letting T_{∞} float (NLLS) attributes part of the gap to ambient mis-specification and increases τ . That's expected with short windows and sensor noise.

4) Quant Mapping (Treat ΔT as a "spread")

Using $\Delta = 2$ min and AR(1) on ΔT :

- $\phi^2 = 0.8676 \pm 0.0164 \Rightarrow \hat{k} = 0.07104 \text{ min}^{-1}, \tau^2 = 14.078 \text{ min, half-life} = 9.758 \text{ min.}$
- EWMA: = 0.8676, span ≈ 7.6 samples (≈ 15.2 min).
- OU diffusion: $\sigma_{\rm diff} \approx 0.428$, stationary std $\sigma_{\rm stat} \approx 1.136$ (in °C units here).

AR(1)/OU impulse response ϕ^h . Shocks decay geometrically at rate ϕ .

Figure 5: Decay fractions after multiples of τ

5) Educational Demo: Synthetic OU & Toy Strategy

(Solely illustrative; ignores cointegration, financing, costs.)

- Synthetic OU: τ = 20 min, ϕ = 0.951.
- Simple z-score reversion with entry 1σ , exit 0.1σ , cap at 3 half-lives produced smooth cum-PnL in simulation.
- Don't read the absolute Sharpe (≈ 33 in "spread units") as tradable PnL—it reflects toy units and zero costs; the point is *mechanics* (signal, half-life, holding discipline).

Figure 7: Synthetic OU path with long/short regime shading; z-score shown for scale.

Figure 8: Cumulative "PnL in spread units" of the toy strategy.

6) Takeaways

- The same $e^{-t/\tau}$ behind cooling underpins mean reversion in markets..
- Estimation matters: freeing nuisance parameters (like T_{∞}) or switching to AR(1)/OU changes τ , but the order of magnitude is stable across methods—a good sign of model robustness.
- For real trading, replace ΔT with a cointegrated spread, re-estimate ϕ , τ , σ , and add costs/risk controls.

7) Key references

- 1. **Stochastic Calculus:** Shreve, S. E. (2004). *Stochastic Calculus for Finance II: Continuous-Time Models*. Springer.
- 2. **Time Series:** Brockwell, P. J., & Davis, R. A. (2016). *Introduction to Time Series and Forecasting* (3rd ed.). Springer.
- 3. **Quantitative Trading:** Chan, E. P. (2013). *Algorithmic Trading: Winning Strategies and Their Rationale*. Wiley.

A full, categorized bibliography is available in the accompanying Jupyter Notebook.

7) Repository & Full Code

The full, reproducible Jupyter notebook—including all diagnostics, plots, and a toy trading strategy simulation—is available for verification in Github.

Appendix: Reproducibility Summary (key numbers)

- Linearized (fixed T_{∞}): m = -0.10328, $\tau^{=9.682}$ min; 95% CI [9.01, 10.35]; $R^2 = 0.972$, RMSE 1.592 °C.
- NLLS (free T_{∞}): $T_{\infty}=22.302$ °C; τ ^=13.650 min; 95% CI [12.49, 14.81]; $R^2=0.998$, RMSE 0.411 °C.
- AR(1)/OU ($\Delta=2$ min): $\varphi=0.8676\pm0.0164$, $\hat{k}=0.0710$, $\tau=14.078$ min; half-life 9.758 min; $\lambda\approx0.868$, span ≈7.6 ; $\sigma_{\rm diff}\approx0.428$, $\sigma_{\rm stat}\approx1.136$.