Vorrausberechnung der Straßenverkehrsentlastung durch eine Reaktivierung der Steigerwaldbahn Schweinfurt-Gerolzhofen-Wiesentheid-Kitzingen

vorgelegt von Andreas Witte, unterstützt durch Stephan Wohlfeil im Mai, 2020

Inhaltsverzeichnis

1	verk	kehrsfachliche Methodik	7
	1.1	Fahrgastaufkommen	7
	1.2	Bezugsstraßenverkehr	8
		1.2.1 Messstellen	8
		1.2.2 Fehlende Messungen	8
	1.3	Ermittlung der Wege im Straßenverkehr	8
	1.4	Berechnung	9
2	date	entechnische Methodik	10
	2.1	reationale Datenbanken	10
	2.2	Modellierung der Potenziale	10
		2.2.1 Tabelle places	11
		2.2.2 Tabelle potentials	12
	2.3	Modellierung der Straßeninfrastruktur	13
		2.3.1 Tabelle streets	14
	2.4	Modellierung der Wege aus den Potenzialen im Straßenverkehr	14
		2.4.1 Tabelle routes	14
	2.5	vollständiger Datenbank-Dump	16
3	Vera	arbeitung	17
	3.1	Ermittlung der Fahrzeugbewegungen	17
		3.1.1 Schweinfurt	17
		3.1.2 Sennfeld	17
		3.1.3 Gochsheim	18
		3.1.4 Gochsheim OT Weyer	18
		3.1.5 Schwebheim	18
		3.1.6 Grettstatt	19
		3.1.7 Grettstatt OT Dürrfeld	19
		3.1.8 Donnersdorf	19
		3.1.9 Sulzheim	20
		3.1.10 Alitzheim	20
		3.1.11 Mönchstockheim	20

	Vögnitz	21
3.1.13	Kolitzheim	21
3.1.14	Kolitzheim OT Herlheim	21
3.1.15	Kolitzheim OT Oberspießheim	21
3.1.16	Kolitzheim OT Unterspießheim	22
3.1.17	Kolitzheim OT Zeilitzheim	22
3.1.18	Gerolzhofen	22
3.1.19	Dingolshausen	23
3.1.20	Dingolshausen OT Bischwind	23
3.1.21	Michelau	23
3.1.22	Frankenwinheim	24
3.1.23	Oberschwarzach	24
3.1.24	Volkach	24
3.1.25	Lülsfeld	25
3.1.26	Schallfeld	25
3.1.27	Prichsenstadt	25
3.1.28	Prichsenstadt OT Altenschönbach	26
3.1.29	Prichsenstadt OT Bimbach	26
3.1.30	Prichsenstadt OT Brünnau	27
3.1.31	Järkendorf	27
3.1.32	Prichsenstadt OT Kirchschönbach	28
3.1.33	Prichsenstadt OT Laub	28
3.1.34	Prichsenstadt OT Neudorf	29
3.1.35	Prichsenstadt OT Neuses	29
3.1.36	Prichsenstadt OT Stadelschwarzach	29
3.1.37	Wiesentheid	30
3.1.38	Wiesentheid OT Feuerbach	30
3.1.39	Wiesentheid OT Geesdorf	30
3.1.40	Wiesentheid OT Reupelsdorf	31
3.1.41	Wiesentheid OT Untersambach	31
3.1.42	Rüdenhausen	31
3.1.43	Abtswind	32
3.1.44	Kleinlangheim	32
3.1.45	Wiesenbronn	32
3.1.46	Großlangheim	33
3.1.47	Kitzingen	33
3.1.48	Würzburg	33

3.2	Übertr	agung der Potentiale auf Straßen	34
	3.2.1	Schweinfurt	34
	3.2.2	Sennfeld	34
	3.2.3	Gochsheim	34
	3.2.4	Gochsheim OT Weyer	34
	3.2.5	Schwebheim	34
	3.2.6	Grettstatt	34
	3.2.7	Grettstatt OT Dürrfeld	34
	3.2.8	Donnersdorf	34
	3.2.9	Sulzheim	34
	3.2.10	Alitzheim	34
	3.2.11	Mönchstockheim	34
	3.2.12	Vögnitz	34
	3.2.13	Kolitzheim	34
	3.2.14	Kolitzheim OT Herlheim	36
	3.2.15	Kolitzheim OT Oberspießheim	36
	3.2.16	Kolitzheim OT Unterspießheim	36
	3.2.17	Kolitzheim OT Zeilitzheim	36
	3.2.18	Gerolzhofen	36
	3.2.19	Dingolshausen	36
	3.2.20	Dingolshausen OT Bischwind	36
	3.2.21	Michelau	36
		Frankenwinheim	36
	3.2.23	Oberschwarzach	36
	3.2.24	Volkach	36
	3.2.25	Lülsfeld	36
	3.2.26	Schallfeld	36
	3.2.27	Prichsenstadt	36
	3.2.28	Prichsenstadt OT Altenschönbach	36
	3.2.29	Prichsenstadt OT Bimbach	36
	3.2.30	Prichsenstadt OT Brünnau	36
	3.2.31	Järkendorf	36
	3.2.32	Prichsenstadt OT Kirchschönbach	36
	3.2.33	Prichsenstadt OT Laub	36
	3.2.34	Prichsenstadt OT Neudorf	36
		Prichsenstadt OT Neuses	36
		Prichsenstadt OT Stadelschwarzach	36
		Wiesentheid	36

		3.2.38	Wiesentheid OT Feuerbach	36
		3.2.39	Wiesentheid OT Geesdorf	36
		3.2.40	Wiesentheid OT Reupelsdorf	36
		3.2.41	Wiesentheid OT Untersambach	36
		3.2.42	Rüdenhausen	36
		3.2.43	Abtswind	36
		3.2.44	Kleinlangheim	36
		3.2.45	Wiesenbronn	36
		3.2.46	Großlangheim	36
		3.2.47	Kitzingen	36
		3.2.48	Würzburg	36
4	Aus	wertung	g	37
		7	edener Gesamtverkehr	37
		4.1.1	vermiedene Verkehrsemissionen	37
		4.1.2	vermiedene Verkehrsunfälle und Folgeschäden	41
		4.1.3	vermiedene Betriebskosten für PKWs	42
	4.2	Veränd	lerung des Straßenverkehrs auf einzelnen Straßen	45
		4.2.1	Gesamtliste	45
		4.2.2	hervorgehobene Neuralgische Punkte im Straßennetz	45
	4.3	Verlage	erung der Einzelorte	45
		4.3.1	Schweinfurt	45
		4.3.2	Sennfeld	45
		4.3.3	Gochsheim	45
		4.3.4	Gochsheim OT Weyer	45
		4.3.5	Schwebheim	45
		4.3.6	Grettstatt	45
		4.3.7	Grettstatt OT Dürrfeld	45
		4.3.8	Donnersdorf	45
		4.3.9	Sulzheim	45
		4.3.10	Alitzheim	45
		4.3.11	Mönchstockheim	45
		4.3.12	Vögnitz	45
		4.3.13	Kolitzheim	45
		4.3.14	Gerolzhofen	45
			Dingolshausen	45
		4.3.16	Michelau	45
		4317	Frankenwinheim	15

5	Listi	ngs	47
	4.5	Zugewinn an Umsteigern	46
	4.4	gewonnene Produktivität	45
		4.3.43 Würzburg	45
		4.3.42 Kitzingen	45
		4.3.41 Großlangheim	45
		4.3.40 Wiesenbronn	45
		4.3.39 Kleinlangheim	45
		4.3.38 Abtswind	45
		4.3.37 Rüdenhausen	45
		4.3.36 Wiesentheid OT Untersambach	45
		4.3.35 Wiesentheid OT Reupelsdorf	45
		4.3.34 Wiesentheid OT Geesdorf	45
		4.3.33 Wiesentheid OT Feuerbach	45
		4.3.32 Wiesentheid	45
		4.3.31 Prichsenstadt OT Stadelschwarzach	45
		4.3.30 Prichsenstadt OT Neuses	45
		4.3.29 Prichsenstadt OT Neudorf	45
		4.3.28 Prichsenstadt OT Laub	45
		4.3.27 Prichsenstadt OT Kirchschönbach	45
		4.3.26 Järkendorf	45
		4.3.25 Prichsenstadt OT Brünnau	45
		4.3.24 Prichsenstadt OT Bimbach	45
		4.3.23 Prichsenstadt OT Altenschönbach	45
		4.3.22 Prichsenstadt	45
		4.3.21 Schallfeld	45
		4.3.20 Lülsfeld	45
		4.3.19 Volkach	45
		4.3.18 Oberschwarzach	45

1 verkehrsfachliche Methodik

Diese Berechnung nimmt an, dass für jeden Fahrgast die korrespondierende Autofahrt entfällt und ermittelt somit die Verlagerung von der Straße auf die Schiene.

Die Berechnung schätzt an einzelnen Stellen eine Verkehrsneuinduktion, insbesondere dort, wo mit dem PKW der Bahnhof erreicht werden muss. Hierfür wird ein Hol- und Bringverkehr angenommen.

Dadurch kann man eine Veränderung des Straßenverkehrs vorraus berechnet werden.

1.1 Fahrgastaufkommen

Dr. Konrad Schliephake legte im Dezember 2016 zusammen mit Dipl.-Geogr. Stefan Albrecht und cand. Geogr. Moritz Gerber die Studie "Die Nachfrage nach Personenverkehrsleistungen bei einem Regelbetrieb der Bahnstrecke Schweinfurt-Gerolzhofen-Kitzingen" vor. Gemeinhin ist dieses Werk als "Schliephake-Studie" in der Region bekannt.

Darin berechnet die Arbeitsgruppe auf Basis eines einwohnerbezogenen Verkehrserzeugungsmodells die regelmäßigen Nutzerzahlen an regulären Werktagen vorraus, sofern die Steigerwaldbahn gemäß den Infrastrukturkriterien der BEG mit einem stündlichen Zugpaar für den Personenverkehr reaktiviert würde. Unberücksichtigt blieben dabei Tourismusverkehre und Sonderverkehre wie zum Beispiel anläßlich von Weinfesten und der Schülerverkehr. Diese Verkehre wird auch diese Berechnung daher nicht erfassen.

Die Ergebnisse dieser Studie beinhalten bereits große Abschläge und werden daher ohne weitere Veränderung als gegeben angenommen. Das bayerische Saatsministerium hat diese Studie geprüft und schriftlich mitgeteilt, dass diese Studie als "belastbar" angesehen werden kann. Es ist somit die wohl reputativste Studie, die den gesamten Abschnitt der Steigerwaldbahn beleuchtet.

Der Studie können für jeden Ort Fahrgäste entnommen werden und die Studie nennt deren Fahrziele einzeln ortsgenau.

1.2 Bezugsstraßenverkehr

Als Bezug des Straßenverkehrs werden die Verkehrszählungen des "Bayerischen Staatsministeriums für Wohnen, Bau und Verkehr" aus dem Jahr 2015 herran gezogen. Dieses sind einerseits die neuesten Daten, korrespondieren diese Daten sehr gut mit dem Veröffentlichungszeitpunkt der "Schliephake-Studie". Die Verkehrszählungen und die Lage der Messpunkte können durch die "BAYSIS Datenabfrage (Straßenverkehrszählungen)" online von jedem abgerufen werden. https://www.baysis.bayern.de/web/content/verkehrsdaten/SVZ/strassenverkehrszaehlungen.aspx

1.2.1 Messstellen

Viele der Messstellen, insbesondere auf nachrangigeren Straßen wie Staats- und Kreisstraßen werden oft für Abschnitte über mehrere Orte verwendet. Wo dies der Fall ist werden diese Zuordnungen, die durch das bay. Staatsministerium für Wohnen Bau und Verkehr vorgenommen wurden, nicht verändert. Vereinzelt lässt sich bestimmt diskutieren und anzweifeln, ob die Messstelle für den gesamten Abschnitt repräsentativ ist, diese Diskussion ist jedoch mit dem Staatsministerium für Wohnen, Bau und Verkehr zu führen. Eine Veränderung oder verkehrsfachliche Interpratation im Zuge dieser Berechnung wäre unnötig angreifbar.

1.2.2 Fehlende Messungen

Fehlende Messungen, zum Beispiel im Zuge des Umgehungsstraßenbaus von Rüdenhausen werden nicht aufgefüllt.

Für betreffende Straßenabschnitte wird lediglich eine absolute Veränderung des MIV angegeben, aber kein Bezug zum IST-Verkehr (relative Veränderung, Neue geschätzte Anzahl Leichtskraftfahrzeuge, ...) hergestellt.

1.3 Ermittlung der Wege im Straßenverkehr

Bevor man die Veränderungen des MIV aufsummieren kann, ist es nötig, die Veränderungen auf die Straßen zu übertragen.

Für jede dieser einzelnen Wege wurde ein Query an die Google Maps API versendet. Aktuell verlangt Google pro 1000 Requests 5,00 USD. Die Kosten für die Nutzung der API sind bei der geringen Anzahl an Einzel-Verbindungen, die im Schritt davor ausfindig gemacht wurden, doch sehr überschaubar, verglichen damit, wie viel Zeit und Aufwand man hätte aufwenden müssen, um das gleiche Ergebnis ohne eine solche API zu erzielen.

1.4 Berechnung

Die Berechnung der Veränderung des Straßenverkehrs erfolgt durch Abzug der Bewegungen (Hin und Rückfahrten) aus der "Schliephake-Studie" unter der Annahme, dass ¼ der entfallenden Fahrzeuge eine zweite Person transportiert haben.

Die entfallenden Fahrzeuge werden dem Straßenverkehr abgezogen, auf der Route, die Google Maps als Dominantestes Navigationssystem für PKWs bei normaler Verkehrslage empfielt.

Wo Potenziale angenommen wurden, die nicht direkt im Ort einen Bahnhof haben, wird konservativ rechnend angenommen, dass diese Personen mit dem MIV zum jeweils angegebenen nächsten Bahnhof gelangt. Dabei wird angenommen, dass ¼ der Personen für einen Weg zwei PKW-Fahrten verursachen, da sie geholt oder gebracht werden.

Konservativ rechnend werden entfallende Fahrten abgerundet und neue Fahrten aufgerundet. Ebenfalls werden halbe Netto-Potentiale konservativ rechnend abgerundet.

2 datentechnische Methodik

Die Berechnung wird nur nachvollziehbar, wenn die verwendete Methodik zur Berechnung dazu dokumentiert ist. Aus diesem Grund erlätert dieses Kapitel die dahinter liegende, vorgenommene Datenverarbeitung.

2.1 reationale Datenbanken

Eine relationale Datenbank ist eine digitale Datenbank, die zur elektronischen Datenverwaltung in Computersystemen dient und auf einem tabellenbasierten relationalen Datenbankmodell beruht. Grundlage des Konzeptes relationaler Datenbanken ist die Relation.

Hier wurde das relationale Datenbankmanagementsystem mariadb 10.4 verwendet. Dies verwendet die standartisierte Querysprache SQL um Abfragen aus den Daten oder Manipulationen an den Daten vorzunehmen.

Die Relationalisierung wurde so weit wie sinnvoll vorgenommen. Zur Eingabe wurde ein kleines Webinterface mit dem MVC-Framework Cakephp4 gebaut, das an dieser Stelle keine weitere Betrachtung findet.

Im folgenden werden immer die verwendeten SQL-Queries angegeben, mit denen sich ein Ergebnis nachvollziehen lässt.

2.2 Modellierung der Potenziale

In der Schliephake-Studie sind die als "Netto-Potential" genannten Bewegungen (Hinund Rückfahrten) relevant. Diese finden sich in dem Dokument einzeln aufgelistet, teilweise im Text mit verkehrsfachlichen Begründungen, teilweise in Tabellenform.

Deren gemeinsames Merkmal ist, dass das Potential von einem Ort ausgeht und zu einem Ort zielt. Daher werden diese Orte in einer Tabelle erfasst.

Die Potentiale sind verbindungen zwischen zwei Strecken, aus deren Netto-Potential wir die Veränderung des MIV ableiten und denen wir auch eine Fahrstrecke auf der Straße bezüglich Länge und Zeit zuordnen können.

Die meisten Orte lassen sich klar zuordnen. Bei manchen Angaben aus der "Schliephake-Studie", wie zum Beispiel "Nürnberg, Erlangen" wurden Punkte gewählt, die beiden Orten aus MIV-Sicht einen optimalen Zugang gewähren (in diesem Beispiel das Autobahnkreuz Nürnberg-Erlangen), wo diese gemeinsamen Orte nicht gegeben waren, wurde das Ziel oder die Quelle jeweils auf das mutmaßlich überwiegende Ziel oder Quelle gelegt (zum Beispiel "Haßfurt, Bamberg" wurde Bamberg zugeordnet).

2.2.1 Tabelle places

In der Tabelle places speichern wir die Orte, also Quelle und Ziel, und deren Koordinaten.

In der Auswertung werden wir die Koordinaten brauchen um unsere Karten zu gernerieren. LAT und LONG sind Fließkommazahlen, die Notation in Minten und Sekunden wird in der Datenbank nicht angewendet. Um auf der Karte entsprechend einen Ort auch gemessen an seiner Wichtigkeit und Größe darzustellen, Typisieren wir nach den nachfolgenden Kategorien. Die Kategorien haben keinerlei Einfluss auf das rechnerische Ergebnis und dienen ausschließlich um später ein passendes Rendering in den Grafiken erzeugen zu können.

• "city": Größere Städte

• "smallcity": Kleinere Städte

• "town": Gemeinden

• "village": Dörfer

• "traffic": Orte die wir zur Modellierung der Straßen anlegen, zum Beispiel Autobahnausfahrten.

Die Tabelle hat also folgenden Aufbau:

id	name	LAT	LONG	type
ID des Ortes	Name des Ortes	Breitengrad	Längengrad	Typisierung des Ortes

Mit SQL kann diese folgenderweise erstellt werden:

```
name VARCHAR(100) NOT NULL DEFAULT '' COLLATE

'utf8mb4_general_ci',

LAT VARCHAR(11) NOT NULL DEFAULT '0.0000000' COLLATE

'utf8mb4_general_ci',

LONG VARCHAR(11) NOT NULL DEFAULT '0.0000000' COLLATE

'utf8mb4_general_ci',

type ENUM('city','smallcity','town','village','traffic') NULL

DEFAULT NULL COLLATE 'utf8mb4_general_ci',

PRIMARY KEY ('id') USING BTREE,

UNIQUE INDEX `name` (`name`) USING BTREE

''D COLLATE 'utf8mb4_general_ci'

ENGINE = InnoDB;
```

2.2.2 Tabelle potentials

In dieser Tabelle Tragen wir die "Netto-Potenziale" aus der "Schliephake-Studie" in der Spalte "netto" ein und Errechnen daraus die Veränderung der Fahrzeugbewegungen in die Spalte "miv-change". Die Quelle wird über die "from_id" aus der Tabelle "places" zugeordnet, das Ziel des Potenzials wird mit der "to_id" aus der Tabelle "places" zugeordnet. Das "Netto-Potenzial" wird in die Spalte "netto" übernommen. Ebenfalls Werden die Wege zu den Bahnhöfen als "Potentialeërhoben. Die Veränderung des motorisierten Individualverkehrs wird in der Spalte "miv-change" hinterlegt. Aus Google Maps wird die Länge der Strecke entnommen und in der Spalte "length" in Metern gespeichert. Die Fahrdauer wird genau so entnommen und in der Spalte "miv-duration" in vollen Minuten gespeichert.

Die Tabelle hat also folgenden Aufbau:

id	from_id	to_id	netto
ID des Potentials	Quelle (aus "places")	Ziel (aus "places")	Netto-Potential laut Berechnung Dr. Ko

Mit SQL kann diese folgenderweise erstellt werden:

```
`miv-change` INT(11) NOT NULL COMMENT 'Veränderung des
          → MIV-Verkehrs durch Reaktivierung',
          `length` INT(11) NULL DEFAULT NULL COMMENT 'Länge des Pfades in

→ metern',
          `miv-duration` INT(10) UNSIGNED NULL DEFAULT NULL COMMENT
             'Fahrdauer ohne besonderen Verkehr im PKW',
         PRIMARY KEY ('id') USING BTREE,
         UNIQUE INDEX `from_id_to_id` (`from_id`, `to_id`) USING BTREE,
         INDEX `FK potentials places` (`to id`) USING BTREE,
         CONSTRAINT `FK potentials places` FOREIGN KEY (`to id`)
             REFERENCES `schliephake-miv-berechnung3`.`places` (`id`) ON
             UPDATE RESTRICT ON DELETE RESTRICT,
         CONSTRAINT `FK_potentials_places_from` FOREIGN KEY (`from_id`)
13
            REFERENCES `schliephake-miv-berechnung3`.`places` (`id`) ON
             UPDATE RESTRICT ON DELETE RESTRICT
14)
15 COLLATE='utf8mb4 general ci'
16 ENGINE=InnoDB;
```

Anmerkung: Der Einsatz von Unique Indexes und Constraints stellt hierbei die Integrität der bei der Eingabe sicher. Die Verwendung dieser Funktionen ist nicht zwingend, aber gilt als Best-Practice in der Informationstechnologie.

2.3 Modellierung der Straßeninfrastruktur

Die Straßenverkehrsinfrastruktur wird als einzelne Straßen abgebildet, welche zwei Orte verbinden. Die Richtung der Verbindung ist unerheblich für die Benutzung der Straßen. Orte können auch "virtuellërfundene Orte sein, zum Beispiel Autobahnausfahrten. Diese liegen selten am Ort, nach dem Sie benannt sind.

Die Betrachtung erfolgt hier nur für

- Autobahnen (Kürzel "A"); die höchste Straßenkategorie in Deutschland;
- Bundesstraßen (Kürzel "B"); meist hochwertig ausgebaute Fernstraßen für den deutschlandweiten und internationalen Verkehr, deren Baulast bei der Bundesrepublik liegt;
- Staatsstraßen (Kürzel "St"); Straßen, welche für den bayerischen Straßenverkehr vom Freistaat Bayern unterhalten werden;
- Kreisstraßen (Kürzel "WÜ" für den Landkreis Würzburg, "KT" für den Landkreis Kitzingen, "SW" für den Landkreis Schweinfurt)

Überörtliche Ortstraßen sind ohnehin kaum betroffen und werden hier nicht weiter berücksichtigt.

Ebenfalls unberücksichtigt bleibt der innerörtliche Verkehr, wenn keine Durchgangsstraße durch den jeweiligen Ort verläuft, weil die Auflösung des "Netto-Potenzialsäus der Studie von Dr. Konrad Schliephake bereits nicht Straßengenau erfolgt ist und dadurch sich diese Studie eine Präzision anmuten würde, die sie defakto nicht besitzt und nicht besitzen kann. Die Abbildung erfolgt in der Regel bis zum Ortsrand.

2.3.1 Tabelle streets

2.4 Modellierung der Wege aus den Potenzialen im Straßenverkehr

Ein Potenzial verläuft mindestens entlang einer Straße, wenn Ziel und Quelle mit dem Beginn und Ende der Straße zusammen fallen. Benutzten die Fahrer einer Relation mehrere Straßen nacheinander um von Ihrer Quelle zum Ziel und zurück zu kommen, müssen mehrere Straßen dem Potenzial zugeordnet werden. Gleichzeitig kann aber auch eine Straße von den Fahrzeugen mehrerer Potentiale genutzt werden, um von der Quelle zum Ziel und wieder zurück zu gelangen.

Diese Zuordnung nennt man in relationalen Datenbanken "n:m-Beziehungen", wobei "n:m" die Kardinalität der Beziehung spezifiziert. n:m-Beziehungen benötigen eine eigene Tabelle, welche auf die beiden Tabellen je eine Spalte mit einem Fremdschlüssel beinhaltet.

Durch die Zuordnung von Straßen zu Potenzialen und Potenzialen zu Straßen, kann einerseits der Weg, der für die Fahrzeuge eines Potentials angenommen wurde, nachvollzogen werden; andererseits können die Potenziale und die Veränderungen im Straßenverkehr für jede Straße aus den Potenzialen aufaddiert werden. Dadurch entsteht am Ende die Fähigkeit, vorrauszusagen, wie viel Straßenverkehr auf jeder Straße durch die Reaktivierung der Steigerwaldbahn entfallen könnte.

2.4.1 Tabelle routes

In dieser Tabelle verbinden wir die Potentiale aus der Tabelle "potentials" in der Spalte "potential_id" mit den Straßen aus der Tabelle "streets" in der Spalte "street_id". Damit bei einer Auswertung der Route für ein Potenzial die Straßen in der richtigen Reihenfolge

von Quelle zu Ziel auftauchen, wird zusätzlich beginnend mit "0" in der Spalte "number_- on route" hochgezählt.

Die Tabelle hat also folgenden Aufbau:

id	potential_id	street_id
ID der Route	Zuordnung eines Potentials (aus "potentials")	Zuordnung einer Straße (aus "streets")

Mit SQL kann diese folgenderweise erstellt werden:

```
1 CREATE TABLE `routes` (
         id INT(10) UNSIGNED NOT NULL AUTO INCREMENT,
          `potential id` INT(10) UNSIGNED NOT NULL DEFAULT 'O' COMMENT
          → 'Referenz zur Potential-ID',
          `street id` INT(10) UNSIGNED NOT NULL DEFAULT 'O' COMMENT
          → 'Referenz zur Straßen-ID',
          `number on route` INT(10) UNSIGNED NOT NULL DEFAULT 'O' COMMENT
          → 'beginnend mit 0, die Nummerierung in der Abfolge',
         PRIMARY KEY ('id') USING BTREE,
         UNIQUE INDEX `potential_id_street_id_number_on_route`
             (`potential_id`, `street_id`, `number_on_route`) USING
          → BTREE,
         UNIQUE INDEX `potential_id_street_id` (`potential_id`,
          → `street id`) USING BTREE,
         INDEX `FK_routes_streets` (`street_id`) USING BTREE,
         INDEX `FK routes potentials` (`potential id`) USING BTREE,
         CONSTRAINT `FK_routes_potentials` FOREIGN KEY (`potential_id`)
             REFERENCES `schliephake-miv-berechnung3`.`potentials` (`id`)
             ON UPDATE RESTRICT ON DELETE RESTRICT,
         CONSTRAINT `FK routes streets` FOREIGN KEY (`street id`)
12
             REFERENCES `schliephake-miv-berechnung3`.`streets` (`id`) ON
             UPDATE RESTRICT ON DELETE RESTRICT
13 )
14 COLLATE='utf8mb4 general ci'
15 ENGINE=InnoDB;
```

Anmerkung: Der Einsatz von Unique Indexes und Constraints stellt hierbei die Integrität der bei der Eingabe sicher. Die Verwendung dieser Funktionen ist nicht zwingend, aber gilt als Best-Practice in der Informationstechnologie.

2.5 vollständiger Datenbank-Dump

Der vollständige Dump inklusive aller Daten findet sich hier:

1 Später einfügen...

3 Verarbeitung

3.1 Ermittlung der Fahrzeugbewegungen

In diesem Abschnitt werden zur Überprüfbarkeit und Nachvollziehbarkeit die aus der Schliephake-Studie übernommenen Netto-Potentiale und die daraus hervorgehende Veränderung für den MIV aufgelistet. Ebenfalls wird ein SQL-Query angegeben, mit dem dieser Vorgang aus der gegebenen Datenbank wiederholt werden könnte.

3.1.1 Schweinfurt

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Schweinfurt	Sennfeld	0	0	1
Schweinfurt	Gochsheim	0	0	2
Schweinfurt	Grettstatt	36	-57	3
Schweinfurt	Gerolzhofen	139	-222	4
Schweinfurt	Wiesentheid	36	-57	5
Schweinfurt	Kitzingen	48	-76	6

siehe Listing 1 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.2 Sennfeld

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Sennfeld	Schweinfurt	109	-174	8
Sennfeld	Gerolzhofen	7	-11	10
Sennfeld	Kitzingen	12	-19	11
Sennfeld	Würzburg	23	-36	7

siehe Listing 2 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.3 Gochsheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Gochsheim	Schweinfurt	333	-532	15
Gochsheim	Gerolzhofen	16	-25	16
Gochsheim	Würzburg, Rottendorf	36	-57	12
Gochsheim	Bamberg, Haßfurt	20	-32	13
Gochsheim	Bad Kissingen	14	-22	14

siehe Listing 3 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.4 Gochsheim OT Weyer

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Gochsheim OT Weyer	Würzburg, Rottendorf	2	-3	17
Gochsheim OT Weyer	Bamberg, Haßfurt	1	-1	18
Gochsheim OT Weyer	Bad Kissingen	1	-1	19
Gochsheim OT Weyer	Schweinfurt	33	-82	20
Gochsheim OT Weyer	Gerolzhofen	1	-1	21
Gochsheim OT Wever	Gochsheim	*	22	22

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 4 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.5 Schwebheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Schwebheim	Schweinfurt	237	-379	23
Schwebheim	Gochsheim		592	24
Schwebheim	Gerolzhofen	6	-9	25
Schwebheim	Grettstatt		15	26

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 5 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.6 Grettstatt

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Grettstatt	Würzburg, Rottendorf	12	-19	27
Grettstatt	Bamberg, Haßfurt	4	-6	28
Grettstatt	Schweinfurt	215	-344	29
Grettstatt	Sennfeld	12	-19	30
Grettstatt	Gochsheim	131	-209	31
Grettstatt	Gerolzhofen	12	-19	32

siehe Listing 6 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.7 Grettstatt OT Dürrfeld

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Grettstatt OT Dürrfeld	Würzburg, Rottendorf	2	-3	33
Grettstatt OT Dürrfeld	Schweinfurt	22	-35	35
Grettstatt OT Dürrfeld	Gochsheim	27	-43	37
Grettstatt OT Dürrfeld	Gerolzhofen	2	-3	38
Grettstatt OT Dürrfeld	Grettstatt	*	85	39

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 7 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.8 Donnersdorf

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Donnersdorf	Schweinfurt	11	-17	40
Donnersdorf	Grettstatt	*	28	42

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 8 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.9 Sulzheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Sulzheim	Schweinfurt	54	-86	43
Sulzheim	Gochsheim	3	-4	44
Sulzheim	Sennfeld	2	-3	45
Sulzheim	Gerolzhofen	141	-225	46
Sulzheim	Kitzingen	2	-3	47
Sulzheim	Alitzheim	*	510	48

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 9 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.10 Alitzheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Alitzheim	Schweinfurt	39	-62	49
Alitzheim	Gochsheim	2	-3	50
Alitzheim	Sennfeld	2	-3	51
Alitzheim	Gerolzhofen	102	-163	52
Alitzheim	Kitzingen	2	-3	53

siehe Listing 10 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.11 Mönchstockheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Mönchstockheim	Schweinfurt	15	-24	54
Mönchstockheim	Gochsheim	1	-1	55
Mönchstockheim	Alitzheim	*	40	56

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 11 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.12 Vögnitz

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Vögnitz	Schweinfurt	8	-12	57
Vögnitz	Alitzheim		20	58

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 12 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.13 Kolitzheim

Berücksichtigt wurden nur die Ortsteile der Gemeinde, für die eine Benutzung der Schiene plausibel ist: - Herlheim

- Oberspießheim
- Unterspießheim
- Zeilitzheim

3.1.14 Kolitzheim OT Herlheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Herlheim	Schweinfurt	26	-41	59
Herlheim	Gochsheim	1	-1	60
Herlheim	Sennfeld	1	-1	61
Herlheim	Alitzheim	*	70	62

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 13 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.15 Kolitzheim OT Oberspießheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Oberspießheim	Kitzingen	1	-1	63
Oberspießheim	Alitzheim	*	3	64

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 14 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.16 Kolitzheim OT Unterspießheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Unterspießheim	Lülsfeld	1	-1	65
Unterspießheim	Wiesentheid	1	-1	66
Unterspießheim	Kitzingen	1	-1	67
Unterspießheim	Alitzheim	*	8	68

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 15 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.17 Kolitzheim OT Zeilitzheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Zeilitzheim	Wiesentheid	1	-1	69
Zeilitzheim	Kitzingen	1	-1	70
Zeilitzheim	Alitzheim	*	5	71

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 16 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.18 Gerolzhofen

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Gerolzhofen	Rottendorf	4	-6	72
Gerolzhofen	Würzburg	41	-65	73
Gerolzhofen	Haßfurt	12	-19	74
Gerolzhofen	Bad Kissingen	7	-11	75
Gerolzhofen	Schweinfurt	411	-657	76
Gerolzhofen	Sennfeld	17	-27	77
Gerolzhofen	Gochsheim	22	-35	78
Gerolzhofen	Lülsfeld	6	-9	79
Gerolzhofen	Prichsenstadt	16	-25	80
Gerolzhofen	Wiesentheid	23	-36	81
Gerolzhofen	Kitzingen	108	-172	82

siehe Listing 17 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.19 Dingolshausen

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Dingolshausen	Würzburg	3	-4	83
Dingolshausen	Schweinfurt	29	-46	84
Dingolshausen	Lülsfeld	1	-1	85
Dingolshausen	Kitzingen	8	-12	86
Dingolshausen	Gerolzhofen	*	102	87

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 18 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.20 Dingolshausen OT Bischwind

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Dingolshausen OT Bischwind	Würzburg	1	-1	88
Dingolshausen OT Bischwind	Schweinfurt	6	-9	89
Dingolshausen OT Bischwind	Kitzingen	2	-3	91
Dingolshausen OT Bischwind	Gerolzhofen	*	23	92

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 19 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.21 Michelau

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Michelau	Schweinfurt	12	-18	93
Michelau	Gerolzhofen	*	30	94

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 20 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.22 Frankenwinheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Frankenwinheim	Würzburg	6	-9	95
Frankenwinheim	Schweinfurt	20	-32	96
Frankenwinheim	Kitzingen	3	-2	97
Frankenwinheim	Gerolzhofen	*	65	98
Frankenwinheim	Lülsfeld	*	8	99

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 21 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.23 Oberschwarzach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Oberschwarzach	Schweinfurt	18	-28	100
Oberschwarzach	Lülsfeld	3	-2	101
Oberschwarzach	Wiesentheid	4	-3	102
Oberschwarzach	Kitzingen	3	-2	103
Oberschwarzach	Järkendorf	*	13	104
Oberschwarzach	Gerolzhofen	*	45	105

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 22 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.24 Volkach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Volkach	Schweinfurt	10	-16	106
Volkach	Kitzingen	18	-28	107
Volkach	Lülsfeld	*	45	108
Volkach	Gerolzhofen	*	25	109

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 23 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.25 Lülsfeld

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Lülsfeld	Schweinfurt	20	-32	110
Lülsfeld	Gerolzhofen	38	-60	111
Lülsfeld	Wiesentheid	2	-3	112
Lülsfeld	Kitzingen	4	-6	113

siehe Listing 24 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.26 Schallfeld

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Schallfeld	Schweinfurt	9	-14	114
Schallfeld	Wiesentheid	1	-1	115
Schallfeld	Kitzingen	2	-3	116
Schallfeld	Lülsfeld	*	30	117

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 25 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.27 Prichsenstadt

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Prichsenstadt	Bamberg, Haßfurt	3	-4	118
Prichsenstadt	Schweinfurt	9	-14	119
Prichsenstadt	Gerolzhofen	9	-14	120
Prichsenstadt	Lülsfeld	13	-20	121
Prichsenstadt	Wiesentheid	73	-116	122
Prichsenstadt	Kitzingen	47	-75	123
Prichsenstadt	Würzburg, Rottendorf	11	-17	124
Prichsenstadt	Nürnberg, Erlangen	3	-4	125

siehe Listing 26 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.28 Prichsenstadt OT Altenschönbach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Pote
Prichsenstadt OT Altenschönbach	Bamberg, Haßfurt	1	-1	126
Prichsenstadt OT Altenschönbach	Schweinfurt	2	-3	127
Prichsenstadt OT Altenschönbach	Gerolzhofen	2	-3	128
Prichsenstadt OT Altenschönbach	Lülsfeld	3	-4	129
Prichsenstadt OT Altenschönbach	Kitzingen	10	-16	130
Prichsenstadt OT Altenschönbach	Würzburg, Rottendorf	4	-6	131
Prichsenstadt OT Altenschönbach	Nürnberg, Erlangen	1	-1	132
Prichsenstadt OT Altenschönbach	Prichsenstadt	*	57	133

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 27 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.29 Prichsenstadt OT Bimbach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-I
Prichsenstadt OT Bimbach	Bamberg, Haßfurt	1	-1	134
Prichsenstadt OT Bimbach	Schweinfurt	1	-1	135
Prichsenstadt OT Bimbach	Gerolzhofen	1	-1	136
Prichsenstadt OT Bimbach	Lülsfeld	1	-1	137
Prichsenstadt OT Bimbach	Wiesentheid	6	-9	138
Prichsenstadt OT Bimbach	Kitzingen	4	-6	139
Prichsenstadt OT Bimbach	Würzburg, Rottendorf	2	-3	140
Prichsenstadt OT Bimbach	Nürnberg, Erlangen	1	-1	141
Prichsenstadt OT Bimbach	Järkendorf	*	43	142

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 28 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.30 Prichsenstadt OT Brünnau

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-I
Prichsenstadt OT Brünnau	Schweinfurt	1	-1	143
Prichsenstadt OT Brünnau	Gerolzhofen	1	-1	144
Prichsenstadt OT Brünnau	Lülsfeld	1	-1	145
Prichsenstadt OT Brünnau	Wiesentheid	7	-11	146
Prichsenstadt OT Brünnau	Kitzingen	5	-8	147
Prichsenstadt OT Brünnau	Würzburg, Rottendorf	2	-3	148
Prichsenstadt OT Brünnau	Järkendorf		43	149

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 29 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.31 Järkendorf

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Järkendorf	Bamberg, Haßfurt	1	-1	150
Järkendorf	Schweinfurt	1	-1	151
Järkendorf	Gerolzhofen	1	-1	152
Järkendorf	Lülsfeld	2	-3	153
Järkendorf	Wiesentheid	10	-16	154
Järkendorf	Kitzingen	6	-9	155
Järkendorf	Würzburg, Rottendorf	2	-3	156
Järkendorf	Nürnberg, Erlangen	1	-1	157

siehe Listing 30 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.32 Prichsenstadt OT Kirchschönbach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Pote
Prichsenstadt OT Kirchschönbach	Bamberg, Haßfurt	1	-1	158
Prichsenstadt OT Kirchschönbach	Schweinfurt	2	-3	159
Prichsenstadt OT Kirchschönbach	Gerolzhofen	2	-3	160
Prichsenstadt OT Kirchschönbach	Lülsfeld	3	-4	161
Prichsenstadt OT Kirchschönbach	Kitzingen	10	-16	162
Prichsenstadt OT Kirchschönbach	Würzburg, Rottendorf	5	-8	163
Prichsenstadt OT Kirchschönbach	Nürnberg, Erlangen	1	-1	164
Prichsenstadt OT Kirchschönbach	Prichsenstadt	*	60	165

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 31 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.33 Prichsenstadt OT Laub

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Prichsenstadt OT Laub	Bamberg, Haßfurt	1	-1	166
Prichsenstadt OT Laub	Schweinfurt	1	-1	167
Prichsenstadt OT Laub	Gerolzhofen	1	-1	168
Prichsenstadt OT Laub	Lülsfeld	2	-3	169
Prichsenstadt OT Laub	Kitzingen	7	-11	170
Prichsenstadt OT Laub	Würzburg, Rottendorf	3	-4	171
Prichsenstadt OT Laub	Nürnberg, Erlangen	1	-1	172
Prichsenstadt OT Laub	Prichsenstadt	*	28	173
Prichsenstadt OT Laub	Stadelschwarzach	*	13	174

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 32 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.34 Prichsenstadt OT Neudorf

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-I
Prichsenstadt OT Neudorf	Schweinfurt	1	-1	175
Prichsenstadt OT Neudorf	Gerolzhofen	1	-1	176
Prichsenstadt OT Neudorf	Lülsfeld	1	-1	177
Prichsenstadt OT Neudorf	Wiesentheid	5	-8	178
Prichsenstadt OT Neudorf	Kitzingen	3	-4	179
Prichsenstadt OT Neudorf	Würzburg, Rottendorf	1	-1	180
Prichsenstadt OT Neudorf	Stadelschwarzach	*	30	181

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 33 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.35 Prichsenstadt OT Neuses

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Prichsenstadt OT Neuses	Lülsfeld	1	-1	182
Prichsenstadt OT Neuses	Wiesentheid	5	-8	183
Prichsenstadt OT Neuses	Kitzingen	3	-4	184
Prichsenstadt OT Neuses	Würzburg, Rottendorf	1	-1	185
Prichsenstadt OT Neuses	Stadelschwarzach	*	25	186

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 34 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.36 Prichsenstadt OT Stadelschwarzach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Stadelschwarzach	Bamberg, Haßfurt	2	-3	187
Stadelschwarzach	Schweinfurt	5	-8	188
Stadelschwarzach	Gerolzhofen	5	-8	189
Stadelschwarzach	Lülsfeld	7	-11	190
Stadelschwarzach	Wiesentheid	41	-65	191
Stadelschwarzach	Kitzingen	26	-41	192
Stadelschwarzach	Würzburg, Rottendorf	6	-9	193
Stadelschwarzach	Nürnberg, Erlangen	2	-3	194

siehe Listing 35 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.37 Wiesentheid

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Wiesentheid	Schweinfurt	22	-35	195
Wiesentheid	Gerolzhofen	19	-30	196
Wiesentheid	Prichsenstadt	35	-56	197
Wiesentheid	Kleinlangheim	7	-11	198
Wiesentheid	Kitzingen	172	-275	199
Wiesentheid	Würzburg, Rottendorf	52	-83	200
Wiesentheid	Nürnberg, Erlangen	3	-4	201

siehe Listing 36 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.38 Wiesentheid OT Feuerbach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-
Wiesentheid OT Feuerbach	Schweinfurt	2	-3	202
Wiesentheid OT Feuerbach	Gerolzhofen	2	-3	203
Wiesentheid OT Feuerbach	Prichsenstadt	3	-4	204
Wiesentheid OT Feuerbach	Kleinlangheim	1	-1	205
Wiesentheid OT Feuerbach	Kitzingen	13	-20	206
Wiesentheid OT Feuerbach	Würzburg, Rottendorf	4	-6	207
Wiesentheid OT Feuerbach	Nürnberg, Erlangen	1	-1	208

siehe Listing 37 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.39 Wiesentheid OT Geesdorf

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-II
Wiesentheid OT Geesdorf	Schweinfurt	1	-1	209
Wiesentheid OT Geesdorf	Gerolzhofen	1	-1	210
Wiesentheid OT Geesdorf	Kitzingen	1	-1	211
Wiesentheid OT Geesdorf	Würzburg, Rottendorf	6	-9	212
Wiesentheid OT Geesdorf	Wiesentheid	*	43	213

^{*} Neue Verkehre um den Bahnhof zu erreichen.

3.1.40 Wiesentheid OT Reupelsdorf

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzia
Wiesentheid OT Reupelsdorf	Schweinfurt	1	-1	214
Wiesentheid OT Reupelsdorf	Gerolzhofen	1	-1	215
Wiesentheid OT Reupelsdorf	Kleinlangheim	1	-1	216
Wiesentheid OT Reupelsdorf	Kitzingen	9	-14	217
Wiesentheid OT Reupelsdorf	Würzburg, Rottendorf	5	-8	218
Wiesentheid OT Reupelsdorf	Nürnberg, Erlangen	1	-1	219
Wiesentheid OT Reupelsdorf	Stadelschwarzach	*	5	220
Wiesentheid OT Reupelsdorf	Wiesentheid	*	40	221

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 39 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.41 Wiesentheid OT Untersambach

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenz
Wiesentheid OT Untersambach	Schweinfurt	1	-1	222
Wiesentheid OT Untersambach	Gerolzhofen	1	-1	223
Wiesentheid OT Untersambach	Kitzingen	7	-11	224
Wiesentheid OT Untersambach	Würzburg, Rottendorf	4	-6	225
Wiesentheid OT Untersambach	Wiesentheid	*	33	226

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 40 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.42 Rüdenhausen

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Rüdenhausen	Schweinfurt	3	-4	227
Rüdenhausen	Kitzingen	21	-57	228
Rüdenhausen	Würzburg, Rottendorf	12	-19	229
Rüdenhausen	Wiesentheid OT Feuerbach	*	83	230
Rüdenhausen	Wiesentheid	*	8	231

* Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 41 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.43 Abtswind

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Abtswind	Kitzingen	21	-57	232
Abtswind	Würzburg, Rottendorf	11	-17	233
Abtswind	Wiesentheid OT Feuerbach	*	80	234

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 42 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.44 Kleinlangheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Kleinlangheim	Schweinfurt	4	-6	235
Kleinlangheim	Gerolzhofen	5	-8	236
Kleinlangheim	Wiesentheid	25	-40	237
Kleinlangheim	Kitzingen	321	-513	238
Kleinlangheim	Würzburg, Rottendorf	5	-8	239

siehe Listing 43 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.45 Wiesenbronn

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Wiesenbronn	Schweinfurt	3	-4	240
Wiesenbronn	Gerolzhofen	2	-3	241
Wiesenbronn	Würzburg, Rottendorf	8	-12	242
Wiesenbronn	Kleinlangheim	*	13	243
Wiesenbronn	Großlangheim	*	20	244

^{*} Neue Verkehre um den Bahnhof zu erreichen.

siehe Listing 44 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.46 Großlangheim

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Großlangheim	Schweinfurt	5	-8	245
Großlangheim	Wiesentheid	7	-11	246
Großlangheim	Kitzingen	313	-500	247
Großlangheim	Würzburg, Rottendorf	25	-40	248

siehe Listing 45 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.47 Kitzingen

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Kitzingen	Schweinfurt	64	-102	249
Kitzingen	Gochsheim	9	-14	250
Kitzingen	Gerolzhofen	11	-17	251
Kitzingen	Prichsenstadt	18	-28	252
Kitzingen	Wiesentheid	49	-78	253
Kitzingen	Kleinlangheim	10	-16	254
Kitzingen	Großlangheim	37	-59	255

siehe Listing 46 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.1.48 Würzburg

Quelle	Ziel	NettoPotenzial	MIV-Veränderung	Potenzial-ID
Würzburg	Sennfeld	24	-38	256
Würzburg	Gochsheim	60	-96	257
Würzburg	Gerolzhofen	37	-59	258
Würzburg	Prichsenstadt	24	-38	259
Würzburg	Wiesentheid	46	-73	260

siehe Listing 47 - SQL-Query um dieses Ergebnis nachzuvollziehen.

3.2 Übertragung der Potentiale auf Straßen

In diesem Abschnitt werden zur Überprüfbarkeit und Nachvollziehbarkeit die aus Google Maps entnommenen Routenentscheidungen für jedes Potenzial aufgelistet. Dazu wird ein Link zu Google Maps angegeben, mit dem diese Routenentscheidung seitens des Kartendienstleisters überprüft werden kann. Ebenfalls wird ein SQL-Query angegeben, mit dem diese Routenentscheidung in der Datenbank nachvollzogen werden kann.

- 3.2.1 Schweinfurt
- 3.2.2 Sennfeld
- 3.2.3 Gochsheim
- 3.2.4 Gochsheim OT Weyer
- 3.2.5 Schwebheim
- 3.2.6 Grettstatt
- 3.2.7 Grettstatt OT Dürrfeld
- 3.2.8 Donnersdorf
- 3.2.9 Sulzheim
- 3.2.10 Alitzheim
- 3.2.11 Mönchstockheim
- 3.2.12 Vögnitz

3.2.13 Kolitzheim

Berücksichtigt wurden nur die Ortsteile der Gemeinde, für die eine Benutzung der Schiene plausibel ist:

- Herlheim
- Oberspießheim
- Unterspießheim
- Zeilitzheim

- 3.2.14 Kolitzheim OT Herlheim
- 3.2.15 Kolitzheim OT Oberspießheim
- 3.2.16 Kolitzheim OT Unterspießheim
- 3.2.17 Kolitzheim OT Zeilitzheim
- 3.2.18 Gerolzhofen
- 3.2.19 Dingolshausen
- 3.2.20 Dingolshausen OT Bischwind
- 3.2.21 Michelau
- 3.2.22 Frankenwinheim
- 3.2.23 Oberschwarzach
- 3.2.24 Volkach
- 3.2.25 Lülsfeld
- 3.2.26 Schallfeld
- 3.2.27 Prichsenstadt
- 3.2.28 Prichsenstadt OT Altenschönbach
- 3.2.29 Prichsenstadt OT Bimbach
- 3.2.30 Prichsenstadt OT Brünnau
- 3.2.31 Järkendorf
- 3.2.32 Prichsenstadt OT Kirchschönbach
- 3.2.33 Prichsenstadt OT Laub
- 3.2.34 Prichsenstadt OT Neudorf
- 3.2.35 Prichsenstadt OT Neuses
- 3.2.36 Prichsenstadt OT Stadelschwarzach
- 3.2.37 Wiesentheid
- 36
- 3.2.38 Wiesentheid OT Feuerbach
- 3.2.39 Wiesentheid OT Geesdorf
- 3.2.40 Wiesentheid OT Reupelsdorf

4 Auswertung

4.1 vermiedener Gesamtverkehr

Vermeidung Die Reaktivierung würde werktäglich eine Straßenverkersleistung von ca. 136.797 PKW-Kilometer aus dem Straßennetz herraus nehmen.

siehe Listing 48 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Neuinduktionen Es entsteht eine Neubelastung von ca. 9.831 PKW-Kilometern täglich. Diese enststeht vor allem aus den Hol- und Bringverkehr zum nächsten Bahnhof für Ortschaften, welche nicht selbst direkt an der Strecke liegen.

siehe Listing 49 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Verkehrssaldo Im Saldo bedeutet dies eine werktägliche Verkehrsentlastung von ca. 126.966 PKW-Kilometern auf den Straßen zwischen Bamberg, Nürnberg, Schweinfurt und Würzburg.

siehe Listing 50 - SQL-Query um dieses Ergebnis nachzuvollziehen.

4.1.1 vermiedene Verkehrsemissionen

Aus den vermiedenen Verkehren ergeben sich folgende Emissionensvermeidungen.

Kohlenstoffdioxid-Emissionen

Kohlenstoffdioxid ist das haupsächlich bei der motorischen Verbrennung anfallende Gas. Es ist für sich genommen nicht gefährlich, jedoch akkumuliert sich das CO2 aus der Verbrennung fossiler Brennstoffe in der Athmosphäre und trägt damit zum menschengemachten Klimawandel erheblich bei. Das Schweinfurter Becken und das Steigerwaldvorland sind bereits jetzt vom Klimawandel und ausbleibenden Niederschlägen getroffen, wie man an den sich nicht mehr auffüllenden Grundwasserreserven und dem Kitzinger Doppel-Temperaturrekord von 40,3°C am 5 Juli und 7. August 2015 sehen kann. Daher haben

CO2-Emissionen auch einen direkten Bezug zu der Region und deren Lebensgrundlagen, wie zum Beispiel dem Weinbau.

Seit 2020 ist ein Grenzwert von 95gr CO2 / km für alle neu zugelassenen Pkw in Kraft. Das Durchschnittsalter der Fahrzeuge beträgt gemäß Kraftfahr-Bundesamt 9,6 Jahre. Da mit einer Reaktivierung der Strecke nicht in unter 5-10 Jahren zu rechnen ist, dürfte dieser Grenzwert dann "durchschnittlich" sein. Auch wenn valide Zweifel an der Einhaltung des Grenzwertes in den letzten Jahren durch "Defeat Devices" in den Neu-Fahrzeugen angebracht erscheinen, verwende ich diesen wert, um die Berechnung fachlich nicht unnötig angreifbar zu machen. Aus diesem Grund wird mit dem heute neuestem Grenzwert für PKW-Co2-Emissionen die vermiedenen Emissionen berechnet. Das gleiche gilt auch für neu entstehenden Verkehr (zum Beispiel auf dem Weg zu Bahnhöfen).

Die Schliephake-Studie geht von Verkehren an normalen Werktagen aus. Die Werktage in Bayern sind kommunal unterschiedlich, zum Beispiel öffnen am 15. August in Kitzingen die Geschäfte und in anderen Gemeinden bleiben diese Geschlossen. Es wird folglich mit 249 "normalen" Werktagen gerechnet. Für die restlichen Tage wird nur die Hälfte des Verkehrs und somit auch die Hälfte der Entlastung angenommen, auch wenn dieser sehr grobe Ansatz den touristischen Angeboten weder hinsichtlich Tagestouristen noch hinsichtlich Ferientourismus fachlich der Schliephake-Studie in ihrer Feingleidrigkeit annähernd gerecht wird.

Die folgende Tabelle Zeigt die vermiedenen Emissionen an Werktagen für das gesamte Jahr, die vermiedenen Emissionen an Nicht-Werktagen für das gesamte Jahr und deren Summe für das ganze Jahr.

CO2 Werktags [t]	CO2 Nicht-Werktags [t]	CO2 Ganzjährig [t]
-3.003	-699	-3702

siehe Listing 51 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Emissionen an Kohlenwasserstoffen (HC)

Kohlenwasserstoffe sind eine Stoffgruppe, aus Kohlenstoffatomen und Wasserstoffatomen zusammen gesetzt ist. Sie entsteht bei der motorischen Verbrennung, da die reale motorische im unterschied zur idealen motorischen Verbrennung nie vollständig verläuft. Die meisten dieser unvollständig verbrannten Restprodukte verbrennen im Katalysator nach dem Motor, daher sind diese Emissionen heutzutage nicht mehr das größte Problem des Straßenverkehrs. Dies betrifft vor allem PKWs mit Fremdzünder / Ottomotor. Die Koh-

lenwasserstoffe gelten je nach einzelnem Stoff als Krebs-eregent, unweltschädlich und als starke Klimagase.

Ebenfalls wie den CO2-Emissionen verwenden wir die aktuellste Schadstoffregulierung für Neuwagen um die eingesparten Emissionen zu errechnen. Die begründung ist hier analog zu den Ausführungen in der Sektion "Kohlenstoffdioxid-Emissionen".

Für Euro6-PKW sind 100mg pro gefahrenen Kilometer zulässig.

Jedes Jahr könnte also die Freisetzung von knapp 4 Tonnen Kohlenwasserstoffen im Steigerwaldvorland vermieden werden.

Die folgende Tabelle Zeigt die vermiedenen Emissionen an Werktagen für das gesamte Jahr, die vermiedenen Emissionen an Nicht-Werktagen für das gesamte Jahr und deren Summe für das ganze Jahr.

HC Werktags [kg]	HC Nicht-Werktags [kg]	HC Ganzjährig [kg]
-3161	-736	-3898

siehe Listing 52 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Stickstoffoxid-Emissionen (NOx)

Stickstoffoxid ist eine Sammelbezeichnung für verschiedene gasförmige Verbindungen, die aus den Atomen Stickstoff (N) und Sauerstoff (O) aufgebaut sind.

Stickstoffoxide sind ein anhaltendes Problem, da nach aktuellen Regulierungen die Grenzwerte in der Außenluft mit 40 $\mu g/m^3$ nur an 18 Tagen je Jahr überschritten werden dürfen. Diese Grenzwertüberschreitungen treten also vor allem dort auf, wo der Straßenverkehr sehr gebündelt verläuft. Die Deutsche Umwelthilfe hat wegen lokaler Grenzwertüberschreitungen etliche Städte auf "Luftreinhaltung" verklagt und regelmäßig damit vor Gericht Erfolg. Die verringerung des Verkehrs durch die Reaktivierung der Steigerwaldbahn kann auch zur Verringerung der NOx-Emissionen beitragen und somit für Schweinfurt und Würzburg ein effektiver Baustein in einem "Luftreinhalteplan" sein und das Risiko auf "Luftreinhaltung" verklagt zu werden, abmildern.

Stickstoffoxiden wird vor allem eine langsame Schädigung der Lunge als gesundheitliche Folge aus langer, häufiger und grenzwert-überschreitender Exponation zugeschrieben.

Die Festlegung eines Wertes zur Berechnung vermiedenen Emissionen erfolgt analog zu den Ausführungen bei den CO2-Emissionen. Neu zugelassene Fahrzeuge dürfen nach Euro6-Norm lediglich 80 mg pro Gefahrenen Kilometer bei einem Selbstzünder-Motor und 60 mg pro gefahrenen Kilometer bei einem Fremdzünder-Motor emittieren. Daraus errechnet sich mit dem aktuellen Verhältnis der Neuzulassungen von Fremd- und Selbstzündern ein Schnitt von 73 mg pro gefahrenem Kilometer.

Die folgende Tabelle Zeigt die vermiedenen Emissionen an Werktagen für das gesamte Jahr, die vermiedenen Emissionen an Nicht-Werktagen für das gesamte Jahr und deren Summe für das ganze Jahr.

NOx Werktags [kg]	NOx Nicht-Werktags [kg]	NOx Ganzjährig [kg]
-2308	-538	-2845

siehe Listing 53 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Emissionen von Feinstaub-Partikeln

Deren Emissionen lassen sich zwar berechnen, werden aber gerade im ländlichen Kontext mit der weiten Verbreitung von Holzöfen von deren Emissionen saisonal stark überlagert. Eine mess- oder sogar spürbare Veränderung durch die Reaktivierung der Steigerwaldbahn ist in dieser Schadstoffklasse bestenfalls an der Mainbrücke der B286 in Schweinfurt an warmen Sommertagen nachweisbar. Auf den 300m über den Main wird jedoch nur ein kleiner Anteil der Verkehrsleistung der hier errechneten Gesamtverkehrsleistung erbracht. Eine Gesamtberechnung der Emissionen in dieser Schadstoffklasse erübrigt sich daher.

Reifenabrieb / Microplastik-Eintrag entlang von Straßen

Beim Fahren von PKWs verschleißen die Reifen wie auch die Bremsen. Das abgefahrene Gummi und der Bremsstaub lagern sich entlang von Straßen an, zum Beispiel in Absetzbecken und Gräben. Gelangt dieser Abrieb in Fließgewässer oder sickert in das Grundwasser ein, ist es möglich, dass aus diesen Stoffen Schwermetalle und Microplastik dauerhaft und irreversibel in die Umwelt gelangen. Eine Verminderung des Straßenverkehrs bedeutet ebenso, dass die Schadstoffbelastung durch abgefahrenen Gummi und Bremsabrieb in die Gräben und die ersten Meter der Ackerflächen neben den Straßen, welche zum Teil zur Lebensmittel- und Futtermittelproduktion genutzt werden, sich ebenfalls verringert. Zwar ist durch Lebensmittelkontrollen sichergestellt, dass die Mengen, die dadurch in die Nahrungskette zu uns als Menschen zurück kommen, sehr gering sind, ist vollkommen ungeklärt, was dieses unterschätzte Problem für die Umwelt bedeutet. (https://www.springer-

professional.de/fahrwerk/schadstoffe/unterschaetzte-umweltgefahr-reifenabrieb-/15490524)

Hersteller geben an, dass normale PKW-Reifen für eine Fahrleistung je nach Fahrstil von 40.000 bis 50.000 Kilometern ausgelegt sind. Die Gewichtsangaben aus Datenblättern verschiedener Hersteller, die ein Gewicht des Reifens spezifizieren, legen nahe, dass ein PKW innerhalb dieser Fahrstrecke ca. 3 kg Reifenabrieb entlang der Straßen und Wege verteilt. Dies korrespondiert auch grob mit der Berichterstattung zu Microplastik und Reifenabrieb, zum Beispiel in der ARD (12000km / 1,3kg): https://www.daserste.de/information/wissen-kultur/w-wie-wissen/reifenabrieb-100.html

Es liegt daher Nahe mit eine Schätzwert von 75 gr je 1000 gefahrenen Kilometern den vermiedenen Eintrag dieser Stoffe in die Umwelt zu beziffern. Die Annahmen zu Werkund Feiertagen sind bereits in der Sektion CO2-Emissionen erläutert.

Jedes Jahr könnten im Steigerwaldvorland kanpp 3 Tonnen Reifenabrieb weniger in die Umwelt gelangen.

Die folgende Tabelle Zeigt die vermiedenen Emissionen an Werktagen für das gesamte Jahr, die vermiedenen Emissionen an Nicht-Werktagen für das gesamte Jahr und deren Summe für das ganze Jahr.

Reifenabrieb an Werktagen [kg]	Reifenabrieb an Nicht-Werktagen [kg]	Reifenabrieb Ganzjährig [kg
-2371	-552	-2923

siehe Listing 54 - SQL-Query um dieses Ergebnis nachzuvollziehen.

4.1.2 vermiedene Verkehrsunfälle und Folgeschäden

Gemäß der Veröffentlichung "Verkehr in Zahlen 2018" des BMVI hatte Deutschland im Jahr 2017 3180 tötlich verletzte Straßenverkehrsteilnehmer. 66500 haben sich im Jahr 2017 schwer und 323800 leicht bei der Teilnahme am Straßenverkehr verletzt. 90100 Unfälle mit schweren Sachschäden gab es 2017. Die Veröffentlichung gibt je Milliarde Farzeugkilometer auf Straßen (Autobahnen sind bei den meisten Verkehrsbeziehungen untergeordnet relevant) 4,2 Getötete, 400 Unfälle mit Personenschäden und 516 Verletzte an. Download: https://www.bmvi.de/SharedDocs/DE/Publikationen/G/verkehr-in-zahlen_2018-pdf?__blob=publicationFile

Die Reaktivierung der Steigerwaldbahn verlagert werktäglich 126.966 PKW-Kilometer. Die Schliephake-Studie betrachtet ausschließlich den werktäglichen Verkehr. Daher wird für

die Nicht-Werktage lediglich die Hälfte dieses Verkehres angenommen, auch wenn dies nicht annähernd an die Präzision der Schliephake-Studie herranreicht. Weiterhin wird mit 249 Werktagen im Jahr gerechnet, auch wenn diese nicht in allen Kommunen an der Strecke gleich sind.

Im Jahr summiert sich damit vermiedene Leistung im Straßenverkehr auf knapp 40 Mio km.

Fahrleistung an Werktagen [km]	Fahrleistung an Nicht-Werktagen [km]	Fahrleistung Ganzjährig [kı
-31614558.900	-7364033.8000	-38978592.7000

siehe Listing 55 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Daraus ergeben sich folgende statistische Zahlen im Mittel:

- **vermiedene Getötete: 0.168 / Jahr** (oder als Kehrbruch ausgelegt: wenn man die Steigerwaldbahn nicht reaktiviert, akzeptiert man, dass **ca. alle 6 Jahre eine Person vermeidbar im Straßenverkehr im Steigerwaldvorland umkommt**)
- vermiedene Unfälle mit Personenschäden: 16 / Jahr
- vermiedene Verletzte: 21 / Jahr

Natürlich könnten diese Zahlen deutlich höher ausfallen, wenn man die Betrachtungsweise dahingehend verändert, dass man die Veränderung des Verkehrsfluss durch einzelne Unfallschwerpunkte und deren charakteristisches Unfallbild und deren charakteristische Unfallschwere einzeln betrachtet. Dies führt jedoch im Rahmen dieser Berechnung zu weit.

4.1.3 vermiedene Betriebskosten für PKWs

Aus der vermiedenen Fahrleistung lässt sich natürlich errechnen, wie hoch die Einsparungen von Betriebskosten von PKWs gesamtheitlich ausfallen dürften. Dies ist eine wichtige Kennzahl, denn durch das billigere Pendeln mit VGN-Verbundfahrkarten wird für den PKW-Betrieb gebundenes Einkommen frei, welches anderweitig ausgegeben werden kann. Es stellt sich die Vermutung an, dass Aufwendungen für den PKW Betrieb nur zu ganz kleinen Teilen in der Region verbleiben und mehrheitlich aus der Region abfließen. Die Verringerung der Benutzung des Automobils verringert also auch einen Abfluss der Kaufkraft und kann damit die Region wirtschaftlich stärken, da diese Kaufkraft lokal in den Wirtschafts-Kreislauf gelangt.

Der ADAC reportiert die "wahren Kosten" eines PKWs in "pro Monat" und "Cent pro Kilometer" für Neuwagen in dem Bericht "ADAC AutokostenHerbst/Winter 2019/2020". Dieser Bericht listet diese Kosten für Neufahrzeuge, die, sobald die Reaktivierung abgeschlossen sein wird, im Durchschnittsalter des Flottenmixes zugelassener Fahrzeuge sein werden. Besondere Aussagekraft hat dieses Dokument hinsichtlich des Umstandes, dass es keinen Neuwagen gibt, welcher mit den rund 30 Cent/km, welcher gerne aus der Finanzamtbasierten Kostenerstattung herangezogen wird, hinkommt. Jeder Neuwagen, den man aktuell kaufen kann, liegt deutlich darüber. Massenfahrzeuge liegen oft bei 60 bis 70 Cent/km.

Download: https://www.adac.de/ mmm/pdf/autokostenuebersicht 47085.pdf

Aus diesem Grund werde ich mit 55 cent / Kilometer rechnen.

Im Jahr summiert sich damit vermiedene Leistung im Straßenverkehr auf knapp 40 Mio km.

Fahrleistung an Werktagen [km]	Fahrleistung an Nicht-Werktagen [km]	Fahrleistung Ganzjährig [kı
-31614558.900	-7364033.8000	-38978592.7000

siehe Listing 56 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Somit ergeben sich folgende Vermiedene Betriebskosten:

vermiedene Betriebskosten Ganzjährig [T	[€]
-21438	

siehe Listing 57 - SQL-Query um dieses Ergebnis nachzuvollziehen.

Abzüglich der Kosten für die Fahrkarten, welche hier noch nicht gegengerechnet sind, stehen den Haushalten im Steigerwaldvorland also jedes Jahr ca. 21,4 Mio € zur Verfügung, welche wahrscheinlich vorwiegend lokal ausgegeben werden; zum Beispiel in der Gastronomie, für die Ausbildung der Kinder oder für Bau und/oder Unterhalt einer eigenen Immobilie (-> Handwerk). Dies entspricht einem kleinem Konjunkturprogramm für die Landkreise Kitzingen und Schweinfurt sowie die Kreisfreie Stadt Schweinfurt. Bei den Hauptkosten für einen PKW verbleibt die ausgegebene Kaufkraft hingegen im größeren Anteil nicht in den Landkreisen Schweinfurt und Kitzingen und kann daher als dem lokalen Wirtschaftskreislauf als größtenteils "entzogen" angesehen werden.

4.2 Veränderung des Straßenverkehrs auf einzelnen Straßen

- 4.2.1 Gesamtliste
- 4.2.2 hervorgehobene Neuralgische Punkte im Straßennetz

45

- 4.3 Verlagerung der Einzelorte
- 4.3.1 Schweinfurt
- 4.3.2 Sennfeld
- 4.3.3 Gochsheim
- 4.3.4 Gochsheim OT Weyer
- 4.3.5 Schwebheim
- 4.3.6 Grettstatt
- 4.3.7 Grettstatt OT Dürrfeld
- 4.3.8 Donnersdorf
- 4.3.9 Sulzheim
- 4.3.10 Alitzheim
- 4.3.11 Mönchstockheim
- 4.3.12 Vögnitz
- 4.3.13 Kolitzheim
- 4.3.14 Gerolzhofen
- 4.3.15 Dingolshausen
- 4.3.16 Michelau
- 4.3.17 Frankenwinheim
- 4.3.18 Oberschwarzach
- 4.3.19 Volkach
- 4.3.20 Lülsfeld
- 4.3.21 Schallfeld
- 4 3 22 Prichsenstadt

4.5 Zugewinn an Umsteigern

5 Listings

List of Listings

5.1	SQL-Abfrage der Netto-Potenziale und MIV-Veranderung mit der Quelle Schwei	n-
	furt	51
5.2	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Senn-	
	feld	51
5.3	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Gochs-	
	heim	52
5.4	${\bf SQL\text{-}Abfrage\ der\ Netto\text{-}Potenziale\ und\ MIV\text{-}Ver\"{a}nderung\ mit\ der\ Quelle\ Weyer}$	
5.5	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Schwel	
	heim	53
5.6	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Grett-	
	statt	53
5.7	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Dürrfel	d 54
5.8	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Don-	- 4
F 0	nersdorf	54
5.9	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Sulz-	
E 10	heim	55
5.10		55
5 11	heim	
3.11	stockheim	- 56
5 12	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Vö-	30
5.12	gnitz	56
5 13	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Herl-	50
0.10	heim	57
5.14	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Ober-	σ,
	spießheim	57
5.15	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Un-	
	terspießheim	58
5.16	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Zei-	
	litzheim	58
5.17	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Ge-	
	rolzhofen	59
5.18	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Din-	
	golshausen	59
5.19	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Bi-	
	schwind	60

5.20	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Mi-	
	chelau	60
5.21	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Fran-	
	kenwinheim	61
5.22	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Ober-	
	schwarzach	61
5.23	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Vol-	
	kach	62
5.24	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Lüls-	
	feld	62
5.25	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Schall-	
	feld	63
5.26	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Prich-	
	senstadt	63
5.27	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Al-	
	tenschönbach	64
5.28	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Bim-	
	bach	64
5.29	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Brünna	ıu 65
5.30	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Jär-	
	kendorf	65
5.31	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Kirch-	
	schönbach	66
5.32	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Laub	66
5.33	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Neu-	
	dorf	67
5.34	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Neu-	
	ses	67
5.35	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Sta-	
	delschwarzach	68
5.36	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Wie-	
	sentheid	68
5.37	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Feu-	
	erbach	69
5.38	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Gees-	
	dorf	69
5.39	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Reu-	
	pelsdorf	70
5.40	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Un-	
_	tersambach	70
5.41	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Rü-	
_	denhausen	71
5.42	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Abstwi	nd 71

5.43	SQL-Abfrage der Netto-Potenziale und MIV-veranderung mit der Quelle Klein-	
	langheim	72
5.44	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Wie-	
	senbronn	72
5.45	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Großla	ng.
	heim	73
5.46	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Kit-	
	zingen	73
5.47	SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Würz-	
	burg	74
5.48	SQL-Abfrage der vermiedenen werktäglichen Straßenverkehrsleistung	74
5.49	SQL-Abfrage der neu entstehenden werktäglichen Straßenverkehrsleistung	74
5.50	SQL-Abfrage des Saldos der werktäglichen Straßenverkehrsleistung	74
5.51	SQL-Abfrage der Veränderung der CO2-Emissionen	75
5.52	SQL-Abfrage der Veränderung der HC-Emissionen	75
5.53	SQL-Abfrage der Veränderung der NOx-Emissionen	76
5.54	SQL-Abfrage der Veränderung des Eintrags von Reifenabrieb in die Umwelt	76
5.55	SQL-Abfrage der jährlichen Gesamtfahrleistung	77
5.56	SQL-Abfrage der jährlichen Gesamtfahrleistung	77
	SQL-Abfrage der jährlich vermiedenen Betriebskosten	78

Listing 5.1: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Schweinfurt

Listing 5.2: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Sennfeld

Listing 5.3: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Gochsheim

Listing 5.4: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Weyer

Listing 5.5: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Schwebheim

Listing 5.6: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Grettstatt

Listing 5.7: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Dürrfeld

Listing 5.8: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Donnersdorf

Listing 5.9: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Sulzheim

Listing 5.10: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Alitzheim

Listing 5.11: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Mönchstockheim

Listing 5.12: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Vögnitz

Listing 5.13: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Herlheim

Listing 5.14: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Oberspießheim

Listing 5.15: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Unterspießheim

Listing 5.16: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Zeilitzheim

Listing 5.17: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Gerolzhofen

Listing 5.18: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Dingolshausen

Listing 5.19: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Bischwind

Listing 5.20: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Michelau

Listing 5.21: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Frankenwinheim

Listing 5.22: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Oberschwarzach

Listing 5.23: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Volkach

Listing 5.24: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Lülsfeld

Listing 5.25: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Schallfeld

Listing 5.26: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Prichsenstadt

Listing 5.27: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Altenschönbach

Listing 5.28: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Bimbach

Listing 5.29: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Brünnau

Listing 5.30: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Järkendorf

Listing 5.31: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Kirchschönbach

Listing 5.32: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Laub

Listing 5.33: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Neudorf

Listing 5.34: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Neuses

Listing 5.35: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Stadelschwarzach

Listing 5.36: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Wiesentheid

Listing 5.37: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Feuerbach

Listing 5.38: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Geesdorf

Listing 5.39: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Reupelsdorf

Listing 5.40: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Untersambach

Listing 5.41: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Rüdenhausen

Listing 5.42: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Abstwind

Listing 5.43: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Kleinlangheim

Listing 5.44: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Wiesenbronn

Listing 5.45: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Großlangheim

Listing 5.46: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle Kitzingen

```
1 SELECT
2 from_places . name AS Quelle,
3 to_places . name AS Ziel,
4 potentials . netto AS NettoPotenzial,
5 `potentials`.`miv-change` AS `MIV-Ver\"anderung`,
6 potentials `. `id ` AS `Potenzial-ID`
7 FROM `potentials`
& LEFT JOIN `places` `from_places` ON `from_places`.`id` =
  → `potentials`.`from_id`
9 LEFT JOIN `places` `to_places` ON `to_places`.`id` =
  → `potentials`.`to_id`
10 WHERE `from_places`.`name` = "W\\"urzburg";
 Listing 5.47: SQL-Abfrage der Netto-Potenziale und MIV-Veränderung mit der Quelle
             Würzburg
1 SELECT SUM(t1.gesamtfahrleistung)
3 (SELECT (potentials. `miv-change` * potentials. `length` * 0.001) AS

→ gesamtfahrleistung

4 FROM potentials
s WHERE potentials.`miv-change` < 0</pre>
6) t1
    Listing 5.48: SQL-Abfrage der vermiedenen werktäglichen Straßenverkehrsleistung
1 SELECT SUM(t1.gesamtfahrleistung)
<sub>2</sub> FROM
3 (SELECT (potentials.`miv-change` * potentials.`length` * 0.001) AS

→ gesamtfahrleistung

4 FROM potentials
5 WHERE potentials.`miv-change` > 0) t1
  Listing 5.49: SQL-Abfrage der neu entstehenden werktäglichen Straßenverkehrsleistung
1 SELECT SUM(t1.gesamtfahrleistung)
<sub>2</sub> FROM
3 (SELECT (potentials.`miv-change` * potentials.`length` * 0.001 AS

→ gesamtfahrleistung

4 FROM potentials) t1
```

Listing 5.50: SQL-Abfrage des Saldos der werktäglichen Straßenverkehrsleistung

Listing 5.51: SQL-Abfrage der Veränderung der CO2-Emissionen

Listing 5.52: SQL-Abfrage der Veränderung der HC-Emissionen

Listing 5.53: SQL-Abfrage der Veränderung der NOx-Emissionen

Listing 5.54: SQL-Abfrage der Veränderung des Eintrags von Reifenabrieb in die Umwelt

Listing 5.55: SQL-Abfrage der jährlichen Gesamtfahrleistung

Listing 5.56: SQL-Abfrage der jährlichen Gesamtfahrleistung

Listing 5.57: SQL-Abfrage der jährlich vermiedenen Betriebskosten