ΑT	
KW	
LB	

Name:		
Class:	12MTX	
Teacher:		

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2005

YEAR 12

AP4 EXAMINATION

MATHEMATICS EXTENSION 1

Time allowed - 2 HOURS (Plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES:

- > Attempt all questions.
- All questions are of equal value.
- ➤ Each question is to be commenced on a new page clearly marked Question 1, Question 2, etc on the top of the page. **
- > Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.

**Each page must show your name and your class. **

- Let A be the point (-3.8) and let B be the point (5,-6). Find the (a) 2 coordinates of the point P that divides the interval AB internally in the ratio 1:3.
- What is the remainder when the polynomial $P(x) = x^3 + 3x^2 1$ is 2 (b) divided by x-2?
- 2 Use the table of standard integrals to find the exact value of (c)

$$\int_{0}^{1} \frac{1}{\sqrt{x^2 + 9}} dx.$$

- 3 Solve $\frac{2}{x+5} \le 1$. (d)
- Use the substitution u = x 1 to evaluate $\int_{2}^{4} \frac{x}{(x-1)^2} dx$. 3 (e)

Question 2 (12 marks)

- Sketch the graph of $y = 2\sin^{-1} 3x$ showing clearly the domain (a) 2 and range of the function as well as any intercepts.
- Let $f(x) = 4x^2 1$. (b) 2 Use the definition $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ to find the derivative of f(x) at x = a.

Question 2 (continued)

Marks

(c) Find $\frac{d}{dx} (3x^2 \cos^{-1} x)$

2

(d) Find $\int 4\cos^2 3x \, dx$.

2

(e) Solve the equation $\sin 2\theta = \sqrt{2} \cos \theta$ for $0 \le \theta \le 2\pi$.

4

Question 3 (12 marks)

(a) The variable point $(2\cos\theta, 3\sin\theta)$ lies on a curve. Find the Cartesian equation of this curve.

2

(b) The function $f(x) = \log_e x + 5x$ has a zero near x = 0.2. Using x = 0.2 as a first approximation, use one application of Newton's method to find a second approximation to the zero. Write your answer correct to 3 decimal places. 3

1

2

1

2

1

- (c) For the function $f(x) = \frac{1}{\sqrt{4-x^2}}$
 - (i) Find the natural domain of the function.
 - (ii) The sketch below shows part of the graph of y = f(x). The area under the curve for $0 \le x \le 1$ is shaded. Find the area of the shaded region.

- (d) A particle moves in simple harmonic motion about a fixed point O. The amplitude of the motion is 2 m and the period is $\frac{2\pi}{3}$ seconds. Initially the particle moves from O with a positive velocity.
 - (i) Explain why the displacement x, in metres, of the particle at time t seconds, can be given by

$$x = 2\sin 3t$$

- (ii) Find the speed of the particle when it is $\sqrt{3}$ m from O.
- (iii) What is the maximum speed reached by the particle?

Use mathematical induction to prove that (a)

$$1+6+15+...+n(2n-1)=\frac{1}{6}n(4n-1)(n+1)$$

for all positive integers n.

(b) (i) Show that
$$\frac{1}{1 - \tan x} - \frac{1}{1 + \tan x} = \tan 2x$$

(ii) Evaluate
$$\frac{1}{1-\tan\frac{\pi}{6}} - \frac{1}{1+\tan\frac{\pi}{6}}$$
 in simplest exact form

1

(c) In the diagram below, O is the centre of the circle and $AB \parallel DC$. AD and BC meet at P.

Prove: (i) CP = DP.

2

(ii) $\triangle ABP$ is isosceles.

2

(iii) OAPC is a cyclic quadrilateral.

2

(a) Solve for x

 $x^{\log_2 x} = 8x^2(x > 0)$

3

- (b) Consider the function $f(x) = x(x-2)^2$, $x \le a$ where a is a constant.
 - (i) Find the values of a given that the inverse function $f^{-1}(x)$ of f(x) exists.

2

(ii) State the domain of $f^{-1}(x)$.

1

(c) If α , β and γ are the roots of the cubic equation $x^3 - 4x^2 + 3x + 2 = 0$, find $\alpha^2 + \beta^2 + \gamma^2$.

2

(d) Factorise $m^3 - 3m + 2$ and solve the equation $(3x-4)^3 - 9x + 14 = 0$.

4

(a) A particle moves in a straight line with an acceleration given by

$$\frac{d^2x}{dt^2} = 9(x-2)$$

where x is the displacement in metres from an origin O after t seconds. Initially, the particle is 4 metres to the right of O so that x = 4 and has velocity v = -6.

- (i) Show that $v^2 = 9(x-2)^2$.
- (ii) Find an expression for v and hence find x as a function of t. 2
- (iii) Explain whether the velocity of the particle is ever zero. 2

Question 6 continues on the next page.

(b) A boy throws a ball and projects it with a speed of $V \text{ m s}^{-1}$ from a point 1 metre above the ground. The ball lands on top of a flowerpot in a neighbour's yard.

The angle of projection is θ as indicated in the diagram. The equations of motion of the ball are

$$\ddot{x} = 0$$
 and $\ddot{y} = -10$

where x and y are shown on the axes on the diagram. The position of the ball t seconds after it is thrown by the boy is described by the coordinates (x, y).

It has been found that $y = Vt \sin \theta - 5t^2 + 1$.

- (i) Show that $x = Vt \cos \theta$.
- (ii) When the ball is at its maximum height above the ground, it passes directly above a 1.5 metre high fence and clears the fence by 0.5 metres. Find an expression for V in terms of θ .
- (iii) Find the value of V given that $\theta = \tan^{-1} \frac{9}{40}$. 2

 Give your answer in m s⁻¹, correct to 2 decimal places.

(a)

A rectangular trapdoor is shown in the diagram as EFGH where EH = 1 m, EF = 2 m and BC divides the trapdoor in half.

A rope is anchored at point A on the floor 1 metre from point B and points A, B and K lie on a straight line.

The rope passes through a small loop on the edge of the trapdoor at point C and is anchored to the floor at point D.

As the trapdoor is being opened or closed, the rope running from A through C to D is kept taut by pulling it tight or letting it out through anchor point A.

Let $\angle ABC = \theta$, $0^{\circ} \le \theta \le 180^{\circ}$.

(i) Show that
$$AC = \sqrt{2 - 2\cos\theta}$$
.

(ii) Show that
$$CD = \sqrt{3 + 2\cos\theta}$$
.

(iii) Let *l* equal the length of the rope from *A* through *C* to *D*. find the maximum value of *l*. Justify your answer.

(b) A cup of soup with a temperature 95°C is placed in a room which has a temperature of 20°C. In 10 minutes the cup of soup cools to 70°C. Assuming the rate of heat loss is proportional to the excess of its temperature above room temperature, that is

$$\frac{dT}{dt} = -k (T - 20),$$

- (i) show that $T = 20 + Ae^{-kt}$ is a solution of $\frac{dT}{dt} = -k (T 20).$
- (ii) find the temperature of the soup after a further 5 min. to the nearest degree.
- (iii) how long will it take the soup to cool to 35°C?

 Give your answer correct to the nearest minute.
- (iv) find the rate of cooling when the soup is 35°C.

 Give your answer correct to 1 decimal place.

TRIAL SOLUTIONS AP4 EXT 1 2005

a)
$$P = \left(\frac{1 \times 5 + 3 \times -3}{4}, \frac{1 \times -6 + 3 \times 8}{4}\right) (1 + \frac{1}{4}) = \left(-1, 4\frac{1}{2}\right) \bigcirc$$

b)
$$P(x) = 2x^3 + 3x^2 - 1$$

using remainder Theorem

 $P(x) = 8 + 12 - 1$

(0)

= 19

theremainder is 19.

c)
$$\int \frac{1}{\sqrt{x^2+9}} dx = \left[\ln(x+\sqrt{x^2+9})\right]_0$$

= $\ln(1+\sqrt{10}) - \ln(0+3)$

d)
$$\frac{2}{(x+s)} \leq 1$$
 $\Rightarrow 2 \neq -s$

$$26(+5) \leq (2(+5))^{\frac{3}{2}}$$

$$2x+10 \leq x^{2}+10x+25^{-}$$

$$0 \le 3c^2 + 8x + 15$$
.
 $0 \le (x + 5)(x + 3)$ 0

but x \$ -5

and
$$P = (1 \times 5 + 3 \times -3, 1 \times -6 + 3 \times 8)$$

$$= (-1, 4\frac{1}{2}) \quad 0$$

a)
$$-iT \leq y \leq iT$$

$$-\frac{1}{3} \leq x \leq \frac{1}{3}$$
Ofor either

b)
$$f(a) = \lim_{h \to 0} \frac{4(a+h)^2 - 1 - [4a^2 - 1]}{h}$$

 $= \lim_{h \to 0} \frac{4a^2 + 8ah + 4h^2 - 1 - 4a^2 + 1}{h}$
 $= \lim_{h \to 0} \frac{8ah + 4h^2}{h}$
 $= \lim_{h \to 0} \frac{8a + 4h}{h}$

= 8a (D)

Question 2 (continued)

c)
$$\frac{d}{dx}(3x^2\cos^2x)$$

$$= 6x\cos^2x - \frac{3x^2}{(1-x^2)}$$

$$u = 3x^2 \qquad V = \cos^2 x$$

$$u' = 6x \qquad v' = \frac{-1}{\sqrt{1-x^2}}$$

d)
$$\int 4 \cos^2 3x \, dx$$

= $4 \int (\frac{1}{2} + \frac{1}{2} \cos 6x) \, dx$. (1)

since cos 0 = 1 + 1 cos 20.

$$\frac{1}{\sqrt{2}} \cos \theta = 0 \quad \text{or} \quad \sin \theta = \frac{1}{\sqrt{2}}$$

Question 3.

a)
$$x = 2 \cos \theta = \frac{x}{2}$$
 $y = 3 \sin \theta \implies \sin \theta = \frac{y}{3}$

since
$$\sin^2\theta + \cos^2\theta = 1$$

 $\frac{\chi^2}{4} + \frac{y^2}{9} = 1$. ①

b)
$$f(\alpha) = \log_{ex} + 5x$$
.
 $f'(\alpha) = \frac{1}{2} + 5$

$$x_0 = 0.2$$

Now $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
 $= 0.2 - \frac{log_e 0.2 + 5 \times 0.2}{l}$

c) i)
$$4-x^2 \ge 0$$
 so $-2 \le x \le 2$
but $\sqrt{4-x^2} \ne 0$: $x \ne -2$, 2

anestran 3 (continued)

$$A = \int \frac{1}{4-x^2} dx$$

$$= \left[s_{m}^{-1} \left(\frac{\chi}{2} \right) \right]_{0}^{1}$$

$$=\frac{\pi}{6}.$$

d) Particle steaks from tendre of motion with postre relocation (ie. x=0.) i general form of displacement time function is a = a sinnt.

Now a=2 ; period = 21 = 211

required equaturis

1 For correctly derived

$$V^{2} = n^{2}(a^{2} - x^{2})$$

$$= 9(4 - x^{2})$$
when $x = \sqrt{3}$

$$V^{2} = 9(4-3)$$

$$= 9$$

$$V = \pm 3$$

$$\text{Initially positive velocity:}$$

$$V = 3 \text{ m/s}$$

$$O$$

FOR SHM MAX speed occure at centre of motion e x=0 $V^{-2} = n^2(a^2 - x^2)$ = 9 (4-0) - 36 1 W = + 6 m/s

. Maximum speed is 6m/s.

avestion 4

a) For
$$n=1$$
 $\lambda H S = 1$
 $A H S = \frac{1}{6} [(4-1)(1+1)$
 $= \frac{1}{6} (3 \times 2)$
 $= \frac{1}{6} ...$

$$1+6+15+...+k(2k-1)+(k+1)(2k+$$

$$= \frac{1}{6}(k+1)\left(\frac{4k^2+11k+6}{4k+3}\right)$$

$$= \frac{1}{6}(k+1)\left(\frac{4k+3}{k+2}\right)$$

b)
$$\frac{1}{1-\tan x}$$
 $\frac{1}{1+\tan x}$

$$= \frac{1+\tan x-(1-\tan x)}{1-\tan^2 x}$$

$$= \frac{2+\tan x}{1-\tan^2 x}$$

$$= \tan 2x$$

i)
$$\angle PCD = \angle ABC$$
.

(corresp. $\angle s$; $ABIIDC$)

 $\angle PDC = \angle ABC$

(exterior $\angle of$ cyclic and
: $\angle PCD = \angle PDC$

... $\angle PCD$ is coscales.
... $PC = PD$.

Question 4 (continued)

iii) LAOC = 2 LABC 14 atcentre truce agle

at corunference)

= LPDC + LPCD

but LPDC +CPCD+CPD=1800

(Lsofa Dago

1. LAOL + LCPD = 1800

: . OAPC is a cyclic and. (opp els supplementery)

Question 5:

(a) Keys $\log_2 x = 8x^2$ take \log_2 on both which $\log_2(x^{\log_2 x}) = \log_2 8x^2$

log_2 x x log_2 x = log_8 + log_222

 $\frac{(\log_2 x)^2 - 2\log_2 x - 3 - 0}{(\log_2 x - 3)(\log_2 x + 1) = 0}$

: log x = 3 or log, x = -1

 $\therefore x = 8 \text{ or } x = \frac{1}{2} \bigcirc$

The inverse will exist if x & a where a is the feering

y1 = 3x2 -8x+4 = (3x-2)(x-2)y' =0 if

3x-1=0 or x-2=0コレーラ メニュ

findexists if a < 2 0

ii) Domai of FTX) is

 $\chi \leq \left(\frac{2}{3}-2\right)^2 \left(\frac{2}{3}\right)$

 $2 \leq \frac{32}{27} \quad 0 .$

Ø,

Question 5 (continued)

c) x+B+8=-6=#4.

αβ+β8+8α = = 3 0

XB7 = -d = -2

. x + β + x 2 = (x+β+8)2

- 2(xB+BT+)79

 $= 16 - \lambda(3)$

=10 . 0

d) let f(m) = m3-3m+2

f(1) = 1 - 3 + 2 = 0

m-1 is a factor O

 $\frac{m^{2}+m-2}{m^{3}-3m+2}$ $\frac{m^{3}-m^{2}}{m^{2}-3m}$

 $\frac{m^2-m}{-2m+2}$

· Factors are (m-1)(m2+m-2)

ie. (m-1)(m-1) (m+2) (1)

 $(3x-4)^{3}-3(2x-5)-(3x+1)$

= (3x-4)3 - 676 + 15-3x +1

 $= (3x-4)^3 - 9x + 14$

 $=(3x-4)^3-3(3x+4)+2$

 $(3x-4)^3-3(3x-4)+2=0$

let m = 3x - 4

 $(3x-4-1)^{2}(3x+4+2)=0$

1. (3x-5)2=0 or 376-2=0

 $(1.76 = \frac{5}{3})$ or $x = \frac{2}{3}$

Question 6

 $a)(1)\frac{d^2n}{n!+2} = 9(x-2)$

 $\frac{d_{12}v^{2}}{dv} = 9(3c-2)$

 $\frac{1}{2}v^2 = 9\int (2i-2) dx$

= $9(x^2 - 2x) + C$. initially x = 4, V = -6.

... 18 = 9(8-8) +C

-- c = 18. O

1 1 2 = 9 (x2 - 2x) +18

V2 = 922-36x +36 $=9(x^2-4x+4)$

 $=9(x-2)^2$

as required.

Question 6 (continued)

ii)
$$v^2 = 9(x-2)^2$$

 $v = \pm 3(x-2)$

$$V = -3(x-2)$$

$$\frac{50}{dt} = -3(x-2)$$

$$\frac{dt}{dn} = \frac{-1}{3(n-2)}$$

$$t = -\frac{1}{3} \int \frac{1}{x-1} dx$$

$$e^{3} = \frac{2}{x-2}$$

$$\chi - 2 = 2e^{-3}$$

$$\chi = 2(1+e^{-3t})(1$$

$$V = -3(2-2)$$
 $V = -3(2-2)$

If
$$\pi t = 2$$
 $e^{-3t} = 0$ which has no solution 0 .

Question 6 6 (continued

Now
$$y = V = \sqrt{2 \sin^2 \theta} - 5t^2 + 1$$

$$\frac{1}{2} = \sqrt{2 \sin^2 \theta} - 5\sqrt{2 \sin^2 \theta} + \frac{1}{2}$$

$$1 = \frac{V^2 S m^2 \theta}{20}$$

$$CD^{2} = 1^{2} + (\sqrt{2+2050})^{2} (1)$$

$$= 1 + 2 + 2\cos\theta$$

Question 7 (continued)

we require

dl =0.

de (52-2000)(13+2000)

dl =0 when.

Sind (13+2400 - 12-2000)-0

Sin 0 =0 ct 3+2000 = 12-2000.

0 = 0 cr 180 or 3+2000 = 2-2000

(1) Losso = - 1 0= cos (-1)

When 0-00 trap door fully

open destance = 55

. FO = 1800 trap door is closed. and L= AK+KD

- 2 +1

= 3m.

These two or end points.

of- function.

+ 12(3+20000) -x-25mo when 0 = cos (-1)

 $L = \sqrt{2 - 2\cos(\cos(-\frac{1}{4}))} +$

J3+2005(0=(-1)

 $= \sqrt{2 - 2 \times -\frac{1}{4}} + \sqrt{3 + 2 \times -\frac{1}{4}}$

= \(\frac{5}{2} + \sqrt{\frac{5}{2}} \)

- 2/5

= 510. (1)

. max length of L is Tro. Check for maximum

(03-1 (1) 2 1.8234 rad

0-1 dl 20.46 70

0-2 de 20.08 60

i change of sign.

Question 7 (continued)

a) (i)
$$T = 20 + Ae^{-kt}$$

$$\frac{dT}{dt} = -kAe^{-kt}$$

$$= -k(T-20) \bigcirc$$

$$A = 75$$

$$A = 75$$

$$T = 20 + 75e^{-kt}$$

$$1f = 10, T = 70$$

$$T = 20 + 75 e^{\frac{1}{10} \ln \frac{2}{3}(15)}$$

$$= 60.82...$$

$$= 61 ° C.$$

$$t = \frac{\ln \frac{1}{5}}{\frac{1}{10} \ln \frac{1}{3}}$$

$$= \frac{39.69}{40 \text{ min}}$$