Langevin Dynamics as Nonparametric Variational Inference

Matt Hoffman, Yian Ma Google

Outline

- Nonparametric BBVI: The dream.
- Observation: The Fokker-Planck equation applies to nonparametric BBVI.
 - Therefore, Langevin dynamics ~ nonparametric BBVI.
- Provocative claim: If LD ~ NPBBVI, then we need to rethink statements like "MCMC is slower than VI".
 - More nuanced claim: MCMC wins on bias, VI wins on variance and amortization.
- Some plots and videos.

Nonparametric Normalizing-Flow VI: A Fantasy

Let $g(\varepsilon)$ be an arbitrary invertible function*, and define $q_g(\theta)$ as

$$q_g(\theta) = q_0(g^{-1}(\theta)) \left| \frac{dg^{-1}}{d\theta} \right|.$$

Suppose we want to make $q_g(\theta) \approx p(\theta \mid x)$.

Let's pretend we can do *functional* gradient descent on KL(q||p):

$$\frac{d}{\delta g(\epsilon)} \int_{\epsilon} q_0(\epsilon) \log \frac{q_g(g(\epsilon))}{p(g(\epsilon) \mid x)} d\epsilon = \nabla_{\theta} \log q_g(g(\epsilon)) - \nabla_{\theta} \log p(g(\epsilon), x)$$

Call this nonparametric BBVI.

* a.k.a. "normalizing flow", "transport map", or "bijector"

Aside: Parametric BBVI

Since we can't do nonparametric BBVI, in practice we use parametric flows $g_{\phi}(\epsilon)$.

Claim: Nonparametric BBVI > Parametric BBVI:

- g_{ϕ} can't represent arbitrary functions (asymptotic bias).
- We can only get stochastic estimates of the gradient (variance).
- The tangent field distorts the gradient-flow geometry (conditioning).

Nonparametric BBVI Obeys the Fokker-Planck Equation

Taking a functional gradient step of KL(qg | p) w.r.t. g

$$g'(\epsilon) = g(\epsilon) + \eta(\nabla_{\theta} \log p(g(\epsilon), x) - \nabla_{\theta} \log q_g(g(\epsilon)))$$

yields a new variational distribution

$$q_{g'}(\theta) = q_0(g'^{-1}(\theta)) \left| \frac{dg'^{-1}}{d\theta} \right|.$$

It turns out that

$$\begin{split} \frac{\log q_{g'}(\theta) - \log q_{g}(\theta)}{\eta} &= \nabla_{\theta} \log q_{g}(\theta)^{\mathsf{T}} (\nabla_{\theta} \log q_{g}(\theta) - \nabla_{\theta} \log p(\theta, x)) \\ &+ \operatorname{tr}(\nabla_{\theta}^{2} \log q_{g}(\theta) - \nabla_{\theta}^{2} \log p(\theta, x)) + O(\eta), \end{split}$$

which as $\eta \to 0$ is the Fokker-Planck Equation.

Langevin Dynamics

A classic MCMC algorithm:

$$\theta_{t+1} = \theta_t + \eta \nabla_{\theta} \log p(\theta_t, x) + \sqrt{2\eta} \xi_t; \quad \xi_t \sim \mathcal{N}(0, I).$$

For a Markov chain defined by repeatedly applying the Langevin kernel $T(\theta'\mid\theta)$, initialized with samples from some q_0 , define

$$q_t(\theta) \triangleq \int_{\theta_{0:t-1}} T(\theta_t \mid \theta_{t-1}) \cdots T(\theta_1 \mid \theta_0) q_0(\theta_0) d\theta_{0:t-1}$$

To first order in η , q_t also obeys the Fokker-Planck equation!

Summary: Langevin as Nonparametric BBVI

Nonparametric BBVI evolves q according to the Fokker-Planck equation.

So does Langevin.

So we can interpret Langevin MCMC as implicitly doing nonparametric BBVI, then drawing a sample from the result.

Hot Take:

Langevin ≈ NPBBVI > BBVI

(More nuanced take coming in a few slides.)

Gaussian Sanity Check

Unrealizable Setting

Unrealizable Setting

Larger Step Size for VI

Bias vs. Time

Bias and Variance

MCMC bias tends to go down faster than BBVI bias.

But MCMC *variance* dominates bias if we only run one chain.

But running many chains on GPUs is cheap!

Discussion

- Gradient-based MCMC and VI algorithms aren't so different.
- BBVI doesn't necessarily converge to a given level of bias faster than MCMC.
- VI's main advantages over MCMC are:
- Amortization schemes.
- Low-variance estimates (samples from q are cheap).
- But parallel hardware can cheaply reduce MCMC variance.

Ask Me About...

- Momentum
- Preconditioning (e.g., Adagrad, RMSProp, Adam)
- Stochastic Gradients (SVI, SGLD)
- Optimal Transport (JKO's 1998 variational interpretation of the Fokker-Planck equation)
- Cost geometry and Tangent Fields (e.g., Janowiak&Obermeyer, 2018)
- Unbiased MCMC (Jacobs et al., 2017)
- Sticking the Landing (Roeder et al., 2017)
- MCMC Variance Reduction (e.g., Pinto&Neal, 2001)
- SGD (e.g., Duvenaud et al., 2016; Mandt et al., 2017)
- Amortization gap (e.g., Krishnan et al., 2018; Cremer et al., 2018;
 Kim et al., 2018)