Capítulo 13 - Administração de Usuários

Saber administrar os usuários do sistema é ter total poder sobre o sistema de permissionamento de arquivos e diretórios. Nesse capítulo vamos nos aprofundar nesses assuntos.

Objetivos

- Descobrir o sistema de permissionamento;
- Gerenciar usuários e grupos;
- Entender o papel da "umask" e das permissões especiais;

Começando pelo.... começo

- Usuário Administrador;
- Usuário de Sistema;
- Usuários Comuns;

Permissões ...

- Conhecendo novos horizontes...
- UGO
- OCTAL

Recapitulando

\$Is -I /etc/passwd

-rw-r--r-- 1 root root 1528 2008-10-28 17:41 /etc/passwd

Nº of related objects

Visualisando e entendendo.

-	rw-	r	r	
	U	G	0	
	S	R	T	
	Е	0	Н	
	R	U	Е	
		Р	R	

read write execute

Conhecer o sistema de permissionamento é fundamental para seu dia-a-dia.

Atribuindo permissões

chmod

<u>Grupos</u>	<u>Operadores</u>	<u>Perms</u>
u – user	+	r
g – grupo	-	W
o – outros	=	X
a – todos		

Exemplos

chmod a+x arquivo

chmod u+rw,g-w diretório

chmod a=rw arquivo

chmod u+w,g-w,o-rwx arquivo

Facilitando com o modo OCTAL

r=4	w=2	x=1	Octal	Perm
0	0	0	0	
0	0	1	1	X
0	1	0	2	-W-
0	1	1	3	-WX
1	0	0	4	r
1	0	1	5	r-x
1	1	0	6	rw-
1	1	1	7	rwx

OCTAL >>> 0-7

Para o seu dia-a-dia é muito mais prático aprender o modo octal de permissionamento UNIX. De quebra, memoriza-o para prova da LPI. Sempre lembre dos valores:

$$r=4 w=2 x=1$$

Então

- chmod 644 arquivo
- chmod 500 diretório
- chmod 666 arquivo

MAS NUNCA!

chmod 777 / -R

Definindo dono e grupo dono

- chown
- chgrp

MiiiiauUUUUU!!

Usando o "chown" de maneira prática e rápida:

\$ chown user.user arq2

Arquivos importantes

/etc/passwd

/etc/shadow

/etc/group

/etc/gshadown

Pwconv e pwunconv

Senhas de sombra podem ser ativadas e desativadas através dos comandos:

\$ pwconv

Ativa

\$ pwunconv

Desativa

Por que ativar ... análise de permissões ;;;

O arquivo de Senhas

getent passwd

Linux Essentials – 450 – Slide - 17

Manipulando Hardware e dispositivos

Comandos para a administração

- ▶ id
- finger
- users
- who
- ► W

Last logged users

Para vermos os últimos usuários logados no sistema, podemos utilizar o comando:

\$ last

Adicionando e removendo usuários

- adduser X useradd
- userdel

adduser.conf

Configurar a adição de usuários através do arquivo de configuração "adduser.conf" otimiza diversas opções que deixam de ser configuras manualmente, como adição do usuário em grupos ou mesmo definição de QUOTA

/etc/adduser.conf

userdel -r

Para não gerar heranças de diretórios no sistema sempre apague o diretório "home" na exclusão do usuário. Para isso:

\$ userdel -r user

Adcionando e removendo grupos

- groupadd x addgroup
- groupdel
- groups

Linux Essentials - 450 - Slide - 23

Manipulando Hardware e dispositivos

Gerenciando Grupos

- gpasswd
- usermod

Falando de umask

Permissões de criação padrão

Padrão 022

Diretórios devem sempre ser diminuidos de 777.Por exemplo:

777
 <u>015 - umask definida</u>
 765 Permissões padrões do sistema

Falando de umask

- Atenção especial para arquivos;
- Quando par, diminuir de 6;
- Quando impar, diminuir de 7;

677

015 - umask definida

662 Permissões padrões do sistema

UMASK

Apesar de muitas divergências nesse assunto, o cálculo de "umask" é bem simples, podendo ser pensado de duas formas:

Fórmula (Par e impar)

e

Tirando permissões de exec.

Permissões especiais

	SUID	SGID	Sticky
Aonde	U	G	Ο
Como	S s	S s	T t
Quanto	4	2	1

Exemplos
SUID => -rwsrw-rwSGUI => -rwxrwSrwx
Sticky => -rwxrwxrwt

chmod 4766 arq
chmod 2767 arq
chmod 1777 arq

Permissões especiais

O uso da permissão "SUID bit" deve ser feito com muita cautela, pois com uma permissão atribuída de maneira errada a um binário importante, pode-se comprometer totalmente a segurança do sistema.

Exercícios:

Respostas dos Exercícios

- 1. Restrições na permissão de outros tornam o arquivo mais seguro, evitando um ataque por "brute force".
- 2. É um exigência do sistema, precisamos dele para criar qualquer tipo de objeto.
- 3. Administradores, sistema, comum
- 4. Evitar problemas de herança
- 5. getent passwd
- 6. gpasswd adicionausermod deixa teste1 somente no grupo cdrom
- 7. rw-r--r--, rwxr-r-x,
- 8. dir=765 arqs=664

Conclusão

Temos o domínio da manipulação de usuários e arquivos do sistema.

Iremos estudar agora a Administração do shell.