Proyecto final

Axel Arriola Fonseca Pablo Rafael García Gordillo

Introducción

El ser humano conforme pase el tiempo evoluciona a pasos agigantados hablando tecnológicamente, esto con la finalidad de facilitar la vida cotidiana y más en el lado industrial, por eso conforme pasan los años aparece gente preparándose para ser futuros ingenieros y el mayor conocimiento para el ingeniero es el control de su tecnología, como la palabra control lo dice es tener los parámetros justos para que nuestra tecnología o mecanismos estén estables sin llegar a dañar a otras personas o que su rendimiento baje y sean pérdidas económicas para la

industria

Objetivo

GENERAL

Reforzar los conocimientos aprendidos en la materia y también aplicar los conocimientos del software Labview ya que este nos dará una ayuda visual del comportamiento de nuestro proyecto final.

ESPECÍFICO

Realizar el diseño de un servosistema utilizando como planta un motor de corriente directa. Se deben de considerar las especificaciones técnicas del motor elegido para la obtención del modelo matemático.

Servosistema

Desarrollo - Motor PW16D

Parámetros	Símbolo	Valor
Resistencia	R	0,4 Ω
Inductancia	L	100 uH
C. electromotriz	Ke	10 V/(rad/s)
C. de torque	Kt	10 Nm/A
C. de inercia	J	0.5 kg-m^2
C. de fricción	В	0,2 Nms/rad
C. de Coulomb	Kc	0,5 NmS

Función de transferencia

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K}{(Js+b)(Ls+R)+K^2} \qquad \left[\frac{rad/sec}{V} \right]$$

Espacio de Estados

$$\frac{d}{dt} \left[\begin{array}{c} \theta \\ \dot{\theta} \\ i \end{array} \right] = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{array} \right] \left[\begin{array}{c} \theta \\ \dot{\theta} \\ i \end{array} \right] + \left[\begin{array}{c} 0 \\ 0 \\ \frac{1}{L} \end{array} \right] V$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \dot{\theta}$$

Resultados - Panel Frontal

Diagrama de bloque

Entrada cuadrada de 2 segundos

Entrada de variable de control

