

ELMo

(Embeddings from Language Model)

실무형 인공지능 자연어처리

ELMo

• ELMo(Embeddings from Language Model)는 Allen NLP에서 2018년에 발표한 워드 임베딩

• ELMo는 세서미 스트리트라는 미국 인형극의 케릭터

• 사전 훈련된 언어 모델(Pre-trained language model)을 사용

- 활용
 - 기계 번역 (Machine Translation)
 - 언어 모델링 (Language Modeling)
 - 텍스트 요약 (Text Summarization)
 - 개체명 인식 (NER, Named Entity Recognition)
 - 질문-답변 시스템 (QA, Question Answering)

ELMo

My watch was a birthday gift

선물

He has a gift for music

재능

- 전통적 단어 임베딩(Word2Vec, FastText, GloVe) 사용시 "gift"는 유일한 벡터로 표현 ⇒ 문맥이 고려되지 않음
- ELMo는 문맥에 따라 임베딩

ELMo 성능

2018년 주요 NLP task에서 SOTA를 달성

	TASK	PREVIOUS SOTA			ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
QA 자연어추론 의미역결정 상호참조 개체인식 감정분석	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%
	Coref NER	Lee et al. (2017) Peters et al. (2017)	$67.2 \\ 91.93 \pm 0.19$	67.2 90.15	70.4 92.22 ± 0.10	3.2 / 9.8% 2.06 / 21%

ELMo - 문장 임베딩

https://towardsdatascience.com/elmo-contextual-language-embedding-335de2268604

ELMo의 구조

- RNN으로 단어를 예측하는 것은 문맥을 고려한 단어 예측
- ELMo는 순방향 / 역방향으로 예측하는 biLM으로 사전 훈련

ELMo 사전학습과 활용

• ELMo는 "언어모델 사전학습"과 "자연어처리 Task 적용" 2단계로 수행

언어 모델 사전학습 (biLM 사전학습)

Bidirectional LSTM으로 언어모델
 사전학습

자연어처리 태스크 적용 (ELMo 표현)

- "단어 임베딩 + 중간 단어 임베딩"의 가중합으로 ELMo 표현
- 자연어처리 태스크에 적용하여 가중치 학습

biLM(Bidirectional Language Model)의 사전 훈련

순방향 LSTM

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k \mid t_1, t_2, \dots, t_{k-1}).$$

역방향 LSTM

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N).$$

biLM(Bidirectional Language Model)의 사전 훈련

char CNN

- ELMo 입력 단어의 임베딩 방법으로 char CNN를 사용
- 글자(character) 단위로 CNN을 적용하여 임베딩 함으로써, 문맥과 상관없이 단어안에 포함된 서브단어(sub word)도 임베딩 가능
- OOV(Out of Vocabulary)에 견고
- 글자단위로 함으로써 한국어, 일본어에도 적용가능

Task에 적용

1단계: 레이어 출력값을 연결

2단계: 출력값 가중 합 (Task 학습)

3단계: ELMo 표현 (스케일 조정)

ELMo representation

ELMo
$$_k^{task} = Eig(R_k; \Theta^{task}ig) = \gamma^{task} \sum_{j=0}^L s_j^{task} h_{k,j}^{LM}$$

$$egin{aligned} \sum_{k=1}^N \log Pig(t_k \mid t_1,...,t_{k-1}; \Theta_x, \Theta_{LSTM}^{
ightarrow}, \Theta_sig) \ + \log Pig(t_k \mid t_{k+1},...,t_N; \Theta_x, \Theta_{LSTM}^{\leftarrow}, \Theta_sig) \end{aligned}$$

$$egin{aligned} R_k &= \left\{ x_k^{LM}, h_{k,j}^{
ightarrow LM}, h_{k,j}^{\leftarrow LM} \mid j = 1, ..., L
ight\} \ &= \left\{ h_{k,j}^{LM} \mid j = 1, ..., L
ight\} \end{aligned}$$

ELMo
$$_k^{task} = Eig(R_k; \Theta^{task}ig) = \gamma^{task} \sum_{j=0}^L s_j^{task} h_{k,j}^{LM}$$

- Char CNN으로 단어 벡터 입력
- 순방향(Forward)는 특정 단어와 이전 단어들의 컨텍스트가 포함
- 역방향(Backward)은 특정 단어와 이후 단어들의 컨텍스트가 포함
- 순방향 및 역방향으로부터 정보 쌍은 중간 단어 벡터를 생성
- 중간 단어 벡터는 다음 레이어의 입력으로 사용
- 최종 단어 벡터는 "Char CNN 단어벡터"
 와 2개 "중단 단어벡터"의 가중 합

"Stacking" 의 효과

단어의미 모호성 (Word sense disambiguation)

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

품사 태깅 (PoS Tagging)

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

NLP Task 적용

ELMo 표현을 NLP Task에 적용할 때는 "기존 임베딩 + ELMo 표현"을 입력값으로 사용하여 적용

감사합니다.

Insight campus Sesac

