

Breaking Cloud Cognitive

Lab 1: Procesamiento cognitivo del lenguaje natural

Tabla de contenidos

Introducción al laboratorio		3
1-	Creamos el servicio de Watson Natural Language Understanding	4
2-	Analizamos textos con Watson NLU	7
3-	Analizamos recetas con Watson NLU	13

Introducción al laboratorio

En este laboratorio, adquirirás los conocimientos necesarios para utilizar Watson AI en el procesamiento del lenguaje natural. Para ello, utilizaremos en primer lugar el servicio de **Natural Language Understanding** (NLU) para analizar las características semánticas de los textos y más tarde, utilizaremos **Watson Knowledge Studio** para crear nuestros propios anotadores y entrenar nuestro modelo de **machine learning**.

Requisitos:

- Tener cuenta de IBM Cloud
- Acceso a Internet

1- Creamos el servicio de Watson Natural Language Understanding

Para crear el servicio de Watson NLU, necesitamos acceder al catálogo de **IBM Cloud** desde la siguiente URL: bluemix.net

Una vez hemos accedido a **IBM Cloud**, hacemos click en catálogo (barra superior) como se muestra en la imagen:

En el menú de la izquierda, donde se muestran todos los servicios de IBM Cloud, buscamos la categoría **Watson** debajo de **Plataforma** como se muestra en la imagen y hacemos click en ella:

En este caso, entre todo el conjunto de servicios, vamos a elegir desplegar Natural Language Understanding, así que lo buscamos y hacemos click sobre el mismo:

En la siguiente pantalla, debemos asignarle un nombre al servicio (por ejemplo: lab1), una región (recomendable EEUU), nuestra organización y el espacio de trabajo donde queremos desplegarlo. Hacemos click en **crear**.

Una vez creado el servicio, accedemos a las credenciales ya que vamos a necesitarlas para poder invocar al servicio. Así que, desde el panel lateral izquierdo accedemos a las credenciales del servicio como se muestra en la imagen:

Y hacemos click en nuevas credenciales. Asignamos un nombre (Por ejemplo: credencialesNLU) y le damos a añadir.

Una vez creadas, hacemos click en ver credenciales y las copiamos en cualquier editor de texto para poder acceder a ellas más tarde.

¡Enhorabuena! Has completado la primera parte del laboratorio. Ya sabes cómo desplegar un servicio de Watson en IBM Cloud.

2- Analizamos textos con Watson NLU

Ahora nos ponemos manos a la obra y empezamos a trabajar con **Watson NLU**. Primero, como **Watson NLU** no tiene una interfaz web y sólo es consumible via API REST, necesitamos una herramienta que nos permita realizar peticiones HTTP a nuestro servicio de IBM Cloud.

Para ello, vamos a acceder en una nueva pestaña del navegador a https://www.hurl.it/, una herramienta que nos va a permitir simular peticiones HTTP desde nuestro propio navegador.

Vamos a definir la petición HTTP para invocar a **Watson NLU**, así que vamos a elegir como método en este caso POST. Para la URL, vamos a utilizar la que hemos recogido en la credenciales del servicio (por ejemplo: https://gateway-fra.watsonplatform.net/natural-language-understanding/api) y vamos a añadirle el path **/v1/analyze?version=2017-02-27** como se muestra en la imagen:

¡CUIDADO!, la URL del servicio puede cambiar dependiendo de la región donde hayamos desplegado el servicio

Añadimos la cabecer de autenticación básica para que la petición pueda ser autenticada correctamente por el servicio y nos de acceso seguro a la información. Hacemos click en +Add Authentication, elegimos Basic, y añadimos como usuario y contraseña las credenciales del servicio que nos habíamos guardado anteriormente:

Añadimos una cabecera, donde le vamos a indicar al servicio que el contenido que le enviamos está en formato JSON. Para ello, hacemos click en +Add Header(s) y añadimos como nombre Content-Type y como valor application/json como se muestra en la imagen:

Ya tenemos el destino de nuestra petición y las credenciales necesarias para acceder de forma segura a nuestro servicio. Ahora vamos a definir el cuerpo de la petición, donde le vamos a indicar a Watson NLU que campos queremos obtener y qué texto queremos analizar (en este caso la página de notícias de Antena 3).

Para ello hacemos click en +Add Body , y añadimos el siguiente contenido en formato JSON:

```
{
  "url": "http://www.antena3.com/noticias/",
  "language": "es",
  "features": {
    "entities": {
        "emotion": true,
        "sentiment": true
    },
```



```
"keywords": {
   "emotion": true,
   "sentiment": true
  },
  "relations": {},
  "concepts": {},
  "semantic roles": {
   "entities": true
  },
  "categories": {},
  "emotion": {
   "document": true
  },
  "metadata": {}
 }
}
```

Analizamos en detalle la petición. Lo primero que incluimos es la URL del texto que queremos analizar, en este caso, la página web de Antena 3 notícias (http://www.antena3.com/noticias/) . También podríamos enviarle un documento HTML o un texto.

La siguiente línea, nos permite definir el idioma en el que queremos realizar el procesamiento del lenguaje natural, en nuestro caso el español.

Una vez definido el idioma y el texto a analizar, le indicamos las características que queremos analizar en el texto. Se describen a continuación las distintas posibilidades:

Entidades: Encuentra personas, lugares, eventos y otro tipo de entidades que se mencionan en tu contenido. Puedes ver una lista completa de tipos y subtipos de entidades <u>aquí</u>

Input

text: "IBM is an American multinational technology company headquartered in Armonk, New York, United States, with operations in over 170 countries."

Response

IBM: Company Armonk: Location

New York: Location United States: Location

Keywords: Busca palabras clave en el texto.

Input

url: "http://www-03.ibm.com/press/us/en/pressrelease/51493.wss"

Response

Australian Open
Tennis Australia
IBM SlamTracker analytics

Relations: Reconoce cuando dos entidades están relacionadas, e identifica el tipo de relación.

Input

text: "The Nobel Prize in Physics 1921 was awarded to Albert Einstein."

Response

"awardedTo" relation between "Noble Prize in Physics" and "Albert Einstein" "timeOf" relation between "1921" and "awarded"

Concepts: Identifica conceptos a alto nivel que necesariamente no tienen que estar directamente referenciados en el texto.

Input

text: "Natural Language Understanding uses natural language processing to analyze text."

Response

Linguistics

Natural language processing

Natural language understanding

Semantic Roles: Parsea las frases en sujeto-action-objeto, e identifica entidades y palabras clave que son sujetos o objetos de la acción.

Input

text: "In 2011, Watson competed on Jeopardy!"

Response

Subject: Watson Action: competed Object: on Jeopardy

Categories: Categoriza tu contenido utilizando una jerarquía de cinco niveles. Puedes consultar la lista de categorías <u>aquí</u>

Input

url: "www.cnn.com"

Response

/news

/art and entertainment /movies and tv/television

/news

/international news

Emotion: Analiza la emoción de algunas frase o de la totalidad del doumento. También, como se muestra en el JSON, se puede analizar para las entidades y palabras clave.

Input

text: "I love apples, but I hate oranges." targets: "apples", and "oranges"

Response

"apples": joy "oranges": anger

Metadata: Para páginas HTML, obtén el nombre del autor de la página web, el título de la página y la fecha de publicación.

Input

url: "https://www.ibm.com/blogs/think/2017/01/cognitive-grid/"

Response

Author: Stephen Callahan

Title: Girding the Grid with Cognitive Computing - THINK Blog

Publication date: January 31, 2017

Una vez definida nuestra consulta, seleccionamos **I'm not a robot** en el captcha y lanzamos la petición haciendo click en **Launch Request.**

Y el resultado aparecerá en la parte inferior de la pantalla en formato JSON, donde podemos ver todas las características semánticas que ha analizado el servicio de Watson NLU a partir de nuestro contenido. Tomaros vuestro tiempo para analizar el resultado e incluso cambiar los parámetros de la petición como la URL, para probar a analizar otros contenidos.

En la siguiente imagen se muestra un ejemplo de la respuesta:

```
"text_units": 1,
   "text_characters": 1969
"features": 7
"semantic roles": [
        "subject": {
            "text": "Prácticamente toda España"
         sentence": "Prácticamente toda España amanece este miércoles en aviso por lluvia, nieve o viento.",
        "object": {
            "text": "en aviso por lluvia, nieve o viento",
            "entities": [
                     "type": "Location",
"text": "España"
           i
        "action": {
            "text": "amanece
            "text": "El temporal"
         "sentence": "El temporal está siendo especialmente intenso en el tercio norte.",
            "text": "especialmente intenso en el tercio norte'
        "action": {
            "text": "está siendo"
```

¡Enhorabuena! Has completado la segunda parte del laboratorio. Ahora sabes invocar el servicio de Watson NLU y procesar textos en lenguaje natural.

Copyright IBM Corporation 2013-2017. All rights reserved.

{

3- Analizamos recetas con Watson NLU

Como paso final, y para ayudarnos a entender los próximos laboratorios, vamos a analizar una receta pública en internet (Karlos Arguiñano) para ver cuál es el ánalisis de Watson NLU.

"url": "https://www.hogarmania.com/cocina/recetas/ensaladas-verduras/201802/ensalada-pasta-

Para poder realizar el análisis, simplemente vamos al cambiar el cuerpo de la petición por el siguiente (el resto de campos los mantenemos) :

```
aguacate-rucula-39340.html",
 "language": "es",
 "features": {
  "entities": {},
  "keywords": { },
  "relations": {},
  "concepts": {},
  "semantic_roles": {
   "entities": true
  },
  "categories": {},
  "emotion": {
   "document": true
  },
  "metadata": {}
}
```

Y volvemos a seleccionar **I'm not a robot** en el captcha y lanzamos la petición haciendo click en **Launch Request.**

Analizamos el resultado:

}


```
"retrieved_url": "https://www.hogarmania.com/cocina/recetas/ensaladas-verduras/201802/ensalada-pasta-aguacate-rucula-39340.html",
"relations": [],
   netauata : र्
"title": "Receta de Ensalada de pasta, aguacate y rúcula - Karlos Arguiñano",
     "publication_date": ""
     "image": "https://www.hogarmania.com/archivos/201802/6128-2-ensalada-de-pasta-aguacate-y-tomate-xl-668x400x80xX.jpg",
     "feeds": [],
     "authors": [
       ₹ {
             "name": "Karlos Arguiñano"
 "language": "es",
 "entities": [],
  'concepts": I
         "text": "Ensalada",
         "relevance": 0.966978,
         "dbpedia_resource": "http://es.dbpedia.org/resource/Ensalada"
         "text": "Vinagre",
         "relevance": 0.867372,
         "dbpedia_resource": "http://es.dbpedia.org/resource/Vinagre"
```

Vemos que no es capaz de identificar relaciones ni entidades en este tipo de texto. Pero, por ejemplo, si es capaz de obtener conceptos, metadatos o roles semánticos.

A continuación, a modo demo vamos a ver como gracias a Knowledge Studio, vamos a ser capaces de crear nuestros propios anotadores para detectar entidades y relaciones y generar nuestro propio modelo de machine learning para analizar recetas culinarias.

¡Enhorabuena! Has completado el paso 3 del laboratorio y ya eres todo un experto en Watson Natural Language Understanding.

