المتتاليات العددية

الدرس الثالث

	محتوى الدرس	
2	عموميات حول المتتاليات العددية	1
2	آ.1 تعاریف و مصطلحات	
3	2.1 المتتالية المكبورة - المتتالية المصغورة - المتتالية المحدودة	
3	3.1 رتابة متتالية	
4	المتتالية أُلحُسابية - المتتالية الهندسية	2

1. عموميات حول المتتاليات العددية

نشاط 1

1. لاحظ ثم أتمم بأربعة أعداد ملائمة اللوائح التالية:

 $\dots; 5; 3; 2; 1; 1; 0$ $\dots; \frac{16}{27}; -\frac{8}{9}; \frac{4}{3}; -2$ $\dots; -\frac{1}{2}; -1; -\frac{3}{2}; -2$ $\dots)$

2. لتكن (٣) دائرة قطرها [AB] بحيث AB = 10 cm.

نقسم القطعة [AB] على التوالي إلى قطعتين، ثم إلى ثلاث قطع، ثم إلى أربع قطع، كلها متساوية. و في كل مرحلة ننشئ أنصاف دوائر أقطارها القطع المحصل عليها من التقسيم و نهتم بمساحة الحيز المخدش من الشكل.

- a_3 و a_2 ه لساحات الأحياز المخدشة في المراحل 1 و 2 و 3. أحسب a_3 و a_2 و a_3 (ا)
 - a_4 بشئ الشكل المحصل عليه في المرحلة a_4 ثم أحسب a_4
- $a_n = \frac{25\pi}{2} imes \frac{n}{n+1}$ في المرحلة n، نقسم القطعة [AB] إلى n+1 من القطع المتساوية. تحقق من أن

1.1. تعاریف و مصطلحات

- كل لائحة غير منتهية من الأعداد الحقيقية تسمى متتالية عددية. كل عدد حقيقي من اللائحة يسمى حدا.
 - ليكن p عددا صحيحا طبيعيا، نضع $p > I = \{p; p+1; p+2; p+3; p+4; ...\}$ لدينا $I = \{p; p+1; p+2; p+3; p+4; ...\}$ نربط كل عنصر من $I = \{p; p+1; p+2; p+4; ...\}$ عددية و نستعمل الترميز الموالي:
 - : نرمز للحد n-1 من المتتالية بالرمز نرمز للحد n من المتتالية بالرمز
- u_p نرمن للحد الأول للمتتالية بالرمن u_p . نرمن للحد الثانى من المتتالية بالرمن u_{p+1} .
- u_{p+1} نرمز للحد الثالث من المتتالية بالرمز u_{p+2} .
- u_{p+3} نرمز للحد الرابع من المتتالية بالرمز
 - الكتابة u_i تقرأ الحد ذو المدل u_i
- تعبير الحد u_n بدلالة n يسمي الحد العام للمتتالية.
- نرمن للمتتالية العددية بالرمن $(u_n)_{n\in I}$ أو الرمن $(u_n)_{n\geqslant p}$
- (u_n) فإننا نرمن للمتتالية بالرمن (p=0) أي $I=\mathbb{N}$
- اذا كان تعبير المتتاليّة $(u_n)_{n\geqslant p}$ معرف بدلالة n فقط فإننا نقول إن المتتالية $(u_n)_{n\geqslant p}$ معرفة بصيغة صريحة. في هذه الحالة، حساب حدود المتتالية يتم بتعويض قيمة n.
 - $u_n = \frac{3}{n} + \sqrt{n}$ ، $u_n = 2^n$ ، $u_n = 3n 1$ على سبيل المثال المتتاليات
- و الخدود التي قبله $(u_n)_{n\geqslant p}$ فإننا نقول إن $(u_n)_{n\geqslant p}$ فإننا نقول إن المتتالية $(u_n)_{n\geqslant p}$ معرفة بصيغة ترجعية.
 - في هذه الحالة، حساب حد من حدود المتتالية يتطلب معرفة الحد أو الحدود التي قبله.
 - $\begin{cases} u_1=0 \\ u_{n+1}=n\sqrt{u_n^2+1} \end{cases}$, $\begin{cases} u_2=-1 \\ u_{n+1}=\frac{u_n}{u_n-3} \end{cases}$, $\begin{cases} u_0=3 \\ u_{n+1}=3u_n-1 \end{cases}$ على سبيل المثال المثاليات $\begin{cases} u_1=0 \\ u_{n+1}=n\sqrt{u_n^2+1} \end{cases}$,

أمثلة

	$u_n = \frac{1}{3}n^2 - 1$ $\dots \qquad \qquad \dots$	• لتكن $(u_n)_{n \geq 3}$ المتتالية المعرفة بما يلي: لنحسب الحدود الأربعة الأولى:
{	$v_0 = 0$ $v_{n+1} = \frac{1}{3}v_n^2 - 1$	لتكن (u_n) المتتالية المعرفة بما يلي:
		لنحسب الحدود الأربعة الأولى:

2.1. المتتالية المكبورة - المتتالية المصغورة - المتتالية المحدودة

تعاريف

لتكن $(u_n)_{n \geq p}$ متتالية عددية.

- $\forall n \geqslant p: u_n \leqslant M$ بخيث: M متتالية مكبورة إذا وجد عدد حقيقي M بحيث: $(u_n)_{n \geqslant p}$
- $\forall n \geq p: \ u_n \geq m$ بحيث: $m \geq n$ بخيث: مصغورة إذا وجد عدد حقيقي
- نقول إن $n \ge p$: $m \le u_n \le M$ متتالية محدودة إذا وجد عددين حقيقيين m و M بحيث:

تمرين 1

 $\forall n \in \mathbb{N}$: $u_n = \frac{2n+3}{n+4}$ یلي: المتتالیة المعرفة بما یلي: 1.

 (u_n) بين أن (u_n) مصغورة بالعدد

را) بين أن (u_n) مكبورة بالعدد 2. (v_n) مصغ (ا) بين أن (u_n) مكبورة بالعدد 2. $v_0 = -1$ $v_{n+1} = \frac{5v_n + 3}{v_n + 7}$ عدودة بالعددين 3- و 1.

ملاحظة

 $\forall n \geq p: |u_n| \leq \alpha$ بحيث: عدد حقيقي موجب α بحيث: تكون متتالية وجد عدودة إذا وجد عدد حقيقي

3.1. رتابة متتالية

تعاريف

لتكن $(u_n)_{n \geq p}$ متتالية عددية.

- نقول إن u_n متتالية تزايدية إذا كانت تحقق: $\forall n \ge p : n < m \Rightarrow u_n \le u_m$
- نقول إن u_n متتالية تناقصية إذا كانت تحقق: $\forall n \ge p : n < m \Rightarrow u_n \ge u_m$
 - نقول إن u_n متتالية ثابتة إذا كانت تحقق: $\forall n \ge p : n < m \Rightarrow u_n = u_m$

خاصیات

لتكن $(u_n)_{n \geq p}$ متتالية عددية.

- $\forall n \geqslant p: \ u_n \leqslant u_{n+1}$ حتتالية تزايدية إذا كانت تحقق: $(u_n)_{n \geqslant p}$ •
- $\forall n \geqslant p: \ u_n \geqslant u_{n+1}$ خقق: کانت تحقق: اقصیة إذا کانت تحقق (u_n)
 - $\forall n \geqslant p: \ u_n = u_{n+1}$ عقق: تعقق أذا كانت تحقق $(u_n)_{n \geqslant p}$

تمرين 2

أدرس رتابة المتتالية $(u_n)_{n\geqslant p}$ في الحالات التالية:

 $n \in \mathbb{N}, \ u_n = \frac{2^{n+3}}{3^n} \ \left(\mathbf{s} \right) \qquad n \in \mathbb{N}, \ u_n = n \left(\frac{1}{2} \right)^n \ \left(\mathbf{s} \right) \qquad n \in \mathbb{N}^*, \ u_n = 3n - \frac{2}{n} \ \left(\mathbf{s} \right) \qquad n \in \mathbb{N}, \ u_n = 1 - \sqrt{n+2} \ \left(\mathbf{l} \right)$

2. المتتالية الحسابية - المتتالية الهندسية

المتتالية الهندسية	المتتالية الحسابية	
ننتقل فيها من حد إلى حد يليه بالضرب في نفس العدد q الذي يسمى الأساس.	ننتقل فيها من حد إلى حد يليه بإضافة نفس العدد r الذي يسمى الأساس.	تعریف
$(u_n)_{n \geqslant p} : \begin{cases} u_p \in \mathbb{R} \\ u_{n+1} = u_n \times q \end{cases}$	$(u_n)_{n \ge p} : \begin{cases} u_p \in \mathbb{R} \\ u_{n+1} = u_n + r \end{cases}$	العلاقة الترجعية
$\forall n \geqslant p: \ u_n = u_\alpha \times q^{n-\alpha}$	$\forall n \geqslant p: \ u_n = u_\alpha + r(n - \alpha)$	الحد العام u_{α} حد معلوم)
$\forall n \ge p(\ge 1): \ u_{n-1} \times u_{n+1} = u_n^2$	$\forall n \ge p(\ge 1): u_{n-1} + u_{n+1} = 2u_n$	العلاقة بين ثلاث حدود متتابعة
$u_i + u_{i+1} + \dots + u_j = u_i \times \frac{1 - q^{j-i+1}}{1 - q}$	$u_i + u_{i+1} + \dots + u_j = \frac{(j-i+1)(u_i + u_j)}{2}$	مجموع حدود متتابعة

تمرين 3

- $\forall n \in \mathbb{N}: \ u_n = \frac{1}{2}n 1$ نعتبر المتتالية (u_n) المعرفة بما يلي:
- $S = u_2 + u_1 + \dots + u_{16}$ متتالية حسابية محددا أساسها و حدها الأول. (ب) أحسب المجموع (u_n) متتالية حسابية محددا
 - $\forall n \in \mathbb{N}: \ v_n = -6\left(\frac{1}{3}\right)^n$ يلي: $v_n = -6\left(\frac{1}{3}\right)^n$ نعتبر المتتالية (v_n) المعرفة بما يلي:
 - $S' = v_0 + v_1 + \dots + v_7$ متتالية هندسية محددا أساسها و حدها الأول. (ب) أحسب المجموع (v_n) متتالية هندسية محددا
 - $x_5 = \frac{1}{12}$ و $x_3 = \frac{3}{4}$ د. لتكن (x_n) متتالية حسابية بجيث $x_5 = \frac{1}{12}$ و
 - (۱) أحسب x_4 و استنتج أساس المتتالية (x_n) . $((x_n)$ حدد الحد العام المتتالية (x_n)
 - $y_6 = \frac{1}{14}$ و $y_4 = \frac{2}{7}$ متتالية هندسية بحيث $y_6 = \frac{1}{14}$ و $y_7 = \frac{1}{14}$
 - (۱) أحسب y_5 و استنتج أساس المتتالية (y_n) علما أنه سالب. (ψ) حدد الحد العام المتتالية (y_n)
- $S_2 = 1 + 2 + 4 + 8 + 16 + \dots + 2n$ (ب) $S_1 = 1 + 3 + 5 + 7 + 9 + \dots + (2n+1)$ (l) $S_1 = 1 + 3 + 5 + 7 + 9 + \dots + (2n+1)$