Exercice 1. Identité du parallélogramme : Montrer que pour tout $(z,z') \in \mathbb{C}^2$, $|z+z'|^2+|z-z'|^2=2(|z|^2+|z'|^2)$. Interpréter géométriquement.

Exercice 2. Soit $z = \frac{\sqrt{3}+i}{1-i}$. Donner la forme exponentielle, puis la forme algébrique de z^2 .

Exercice 3. Déterminer le module et un argument de $z = \sqrt{2+\sqrt{2}} + i\sqrt{2-\sqrt{2}}$.

Exercice 4. Pour $\theta \in]-\pi,\pi]$, déterminer le module et un argument de $1+e^{i\theta}$, $1-e^{i\theta}$, $\frac{e^{i\theta}-1}{e^{i\theta}+1}$, $e^{i\theta}+e^{i\theta'}$, $e^{i\theta}-e^{i\theta'}$

Exercice 5. Déterminer tous les complexes z tels que $|z| = \left|\frac{1}{z}\right| = |z+1|$.

Exercice 6. Soient a, b, c trois nombres complexes de module 1. Montrer que |a+b+c| = |ab+ac+bc|.

Exercice 7. Résoudre les équations $e^z + 1 = 0$ et $e^z + e^{-z} + 1 = 0$ (inconnue $z \in \mathbb{C}$).

Exercice 8. Soit $z \in \mathbb{C} \setminus \mathbb{R}^-$, de forme algébrique z = a + ib, $(a, b) \in \mathbb{R}^2$. Montrer que l'argument principal de z est $\theta = 2 \arctan\left(\frac{-b}{a + \sqrt{a^2 + b^2}}\right)$.

Exercice 9. Soit $z \in \mathbb{C}$ tel que $|z| \leq 1$.

- 1. Montrer que $|z^2 + 2iz| \le 3$.
- 2. Quels sont les z pour lesquels cette inégalité est en fait une égalité ?

Exercice 10. Soit $n \in \mathbb{N}^*$.

- 1. Donner la forme exponentiel de $(1+i)^n$
- 2. Calculer $S_1 = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k}$ et $S_2 = \sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^k \binom{n}{2k+1}$.

Exercice 11. Déterminer $\left\{\frac{1}{1-z}: z \in U \setminus \{1\}\right\}$.

Exercice 12. Soit $z \in U \setminus \{1\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que $|z^n - 1| > \sqrt{3}$.

Exercice 13. (Difficile) Un ensemble $X \subset \mathbb{C}$ est dit intégrable si pour tout $x, y \in X$, $|x - y| \in \mathbb{N}$. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un ensemble intégrable de n points distincts tous situés sur un même cercle.

Exercice 14. 1. Linéariser $\sin^3(x)$, $\sin^4(x)$ et $\sin^5(x)$. En déduire une primitive de $x \mapsto \sin^5(x)$.

2. Linéariser $\cos^2(2x)\sin^3(3x)$.

Exercice 15. Soit $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et soit $n \in \mathbb{N}^*$. Calculer $C_n = \sum_{k=1}^n \cos(k\theta)$ et $S_n = \sum_{k=1}^n \sin(k\theta)$.

Exercice 16. Pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$, calculer $C_n = \sum_{k=0}^n \binom{n}{k} \cos(k\theta)$ et $S_n = \sum_{k=0}^n \binom{n}{k} \sin(k\theta)$.

Exercice 17. (Polynômes de Tchebychev) Soit $n \in \mathbb{N}^*$.

- 1. Prouver qu'il existe des entiers a_0, a_1, \ldots, a_n tels que pour tout $\theta \in \mathbb{R}$, $\cos(n\theta) = \sum_{k=0}^{n} a_k \cos^k(\theta)$.
- 2. Montrer que $a_n = 2^{n-1}$.

Soit $w = \frac{3-4i}{5}$. Vérifier que $w \in U$, mais que $w \notin \bigcup_{n \in \mathbb{N}^*} U_n$, c'est-à-dire que w n'est pas une racine de l'unité.

Exercice 18. (Irrationalité de $\frac{1}{\pi}$ Arccos $\frac{1}{3}$ (Oral ENS)) Notons $\alpha = \frac{\text{Arccos } \frac{1}{3}}{\pi}$. Le but de cet exercice est de prouver que α est irrationnel, c'est-à-dire que $\alpha \notin \mathbb{Q}$.

- 1. Donner la forme algébrique de $e^{i\alpha}$.
- 2. Montrer que $\alpha \in \mathbb{Q}$ si et seulement si il existe $n \in \mathbb{N}^*$ tel que $(1+2i\sqrt{2})^n = 3^n$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, il existe des entiers a_n et b_n tels que $(1+2i\sqrt{2})^n = a_n + ib_n\sqrt{2}$, et tels que $a_n b_n$ ne soit pas divisible par 3. Conclure.

Exercice 19. Déterminer les racines cinquièmes de j et de $\frac{2\sqrt{2}}{i-1}$.

Exercice 20. Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. Résoudre l'équation $(1+z)^n = \cos(2na) + i\sin(2na)$.

Exercice 21. Soit $n \in \mathbb{N}^*$. Calculer $\prod_{\omega \in U_n} \omega$.

Exercice 22. (Banque CCINP 84) Soit $n \in \mathbb{N}^*$. Montrer que l'équation $(z+i)^n = (z-i)^n$, d'inconnue $z \in \mathbb{C}$ possède exactement n-1 solutions, qui sont toutes réelles.

Exercice 23. 1. Résoudre l'équation $Z^3 + Z^2 + Z - 1 = 0$, $Z \in \mathbb{C}$. 2. En déduire les solutions de $\left(\frac{z+i}{z-i}\right)^3 + \left(\frac{z+i}{z-i}\right)^2 + \frac{z+i}{z-i} + 1 = 0$.

Exercice 24. (Banque CCINP 89) Soit $n \in \mathbb{N}$, avec $n \geq 2$ et soit $\zeta = e^{2i\pi/n}$. 1. On suppose que $k \in [[1, n-1]]$. Déterminer le module et un argument du complexe $\zeta^k - 1$.

2. On pose $S = \sum_{k=1}^{n-1} |\zeta^k - 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

Exercice 25. Résoudre les équations suivantes, d'inconnue $z \in \mathbb{C}$:

1.
$$z^2 - 3z + 3 - i = 0$$

2.
$$z^2 + (1-2i)z - 2i = 0$$

3.
$$z^4 - z^2 + (1 - i) = 0$$

Exercice 26. 1. Résoudre les systèmes $\begin{cases} x+y=4 \\ xy=5 \end{cases}$ et $\begin{cases} x+y=3-2i \\ xy=5-i \end{cases}$,

d'inconnues $(x,y) \in \mathbb{C}^2$.

2. Pour quelles valeurs de $\lambda > 0$ existe-t-il des rectangles pour lesquels l'aire A et le périmètre p sont reliés par la relation $p = \lambda \sqrt{A}$?

Exercice 27. Résoudre les équations suivantes, d'inconnue $z \in \mathbb{C}$:

1.
$$z^2 = \overline{z}$$

$$2. \ z^2 = -\overline{z}^2$$

$$3. \ z^2 = 2\overline{z}$$

4.
$$z^2 = \frac{1}{\overline{z}^2}$$

Exercice 28. Résoudre l'équation $z^2 + 2|z| - 3 = 0$, d'inconnue $z \in \mathbb{C}$.

Exercice 29. Caractériser géométriquement l'ensemble des complexes $z \in \mathbb{C} \setminus \{i\}$ tels que $\frac{z+2}{1+iz} \in \mathbb{R}$.

Exercice 30. Soient $M_0, M_1, \ldots, M_{n-1}$ les sommets d'un polygone convexe régulier direct à n côtés, et pour tout $k \in [[0, n-1]]$, soit z_k l'affixe de M_k . Donner l'expression des z_k en fonction de z_0 et z_1 .

Exercice 31. Que peut-on dire de la composée de deux rotations ? De la composée de deux homothéties ?

Exercice 32. 1. Caractériser géométriquement la similitude associée à $z\mapsto (1+i\sqrt{3})z-i\sqrt{3}$.

2. Soit t la translation de vecteur $\vec{u}(-1,0)$ et soit r la rotation de centre O et d'angle $\frac{\pi}{2}$. Caractériser géométriquement $t \circ r$ et $t \circ r \circ t \circ r$.

3. Montrer qu'une similitude directe f réalise une bijection de \mathbb{C} sur \mathbb{C} , c'està-dire que tout complexe possède un unique antécédent par f. Prouver que f^{-1} est encore une similitude directe, et déterminer sa nature et ses éléments caractéristiques en fonction de ceux de f.

Exercice 33. 1. Les points d'affixes 1, z et z^2 sont-ils alignés ?

2. Les points d'affixes z, z^2 et z^3 sont-ils les sommets d'un triangle rectangle au point d'affixe z^2 ?

Exercice 34. Soient A, B, C trois points d'affixes respectives a, b et c. On note $j = e^{i\frac{2\pi}{3}}$.

- 1. Calculer j^2 et en déduire une expression de $e^{i\frac{2\pi}{3}}$ en fonction de j.
- 2. Montrer que ABC est équilatéral direct (c'est-à-dire avec $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3}$) si et seulement $a + bj + cj^2 = 0$.
- 3. Montrer que ABC est équilatéral si et seulement si $a^2+b^2+c^2=ab+ac+bc$.

Exercice 35. Soit $a \in U$, soit $n \in \mathbb{N}^*$ et soient $z_0, z_1, \ldots, z_{n-1}$ les n racines nèmes de a. Montrer que les points d'affixes $(1+z_k)$, $0 \le k \le n-1$ sont alignés.