Detection of brain area with Focal Cortical Dysplasia

Butylin Andrey Kashuk Ekaterina

Advisor: Nadezhda Alsahanova

Focal cortical dysplasia (FCD) is one of the most common causes of *drug-resistant epilepsy*. However, its diagnosis remains extremely difficult, particularly in mild or "MRI-negative" cases. Traditional visual assessment methods, such as Tlw, T2w, and FLAIR, *strongly depend on the radiologist's experience* and often fail to detect subtle microstructural changes.

- Lamination is lost except for an expanded layer I
- Neurons are dispersed through layers II–VI
- Often extend into the white matter, obscuring the gray–white boundary

A radiomics nomogram based on multiparametric MRI for diagnosing focal cortical dysplasia and initially identifying laterality (Chen et al. 2024)

Modality	Sets	AUC(95%CI)	
Model-T1w	Training	0.762(0.625-0.898)	
	Validation	0.671(0.400-0.943)	
Model-T2w	Training	0.805(0.679-0.931)	
	Validation	0.814(0.606-1.000)	Most of useful
Model-T2FLAIR	Training	0.733(0.597-0.868)	
	Validation	0.714(0.374-1.000)	→ features from T2w
Model-Combination	Training	0.847(0.747-0.946)	
	Validation	0.857(0.618-1.000)	contrast
Model-radiologists	Training	0.664(0.543-0.784)	
	Validation	0.521(0.148-0.893)	
Model-Combination	Hold-out	0.828(0.619-1.000)	
Model-radiologists	Hold-out	0.571 (0.363-0.778)	

- 43 patients with histologically confirmed FCD.
- Comparison of radiomic signs of a healthy hemisphere and a hemisphere with diagnosed FCD.
- The signs stood out from three different contrasts, which led to an increase in ROC-AUC.
- The key model is Logistic regression.
- Finding a correlation between the signs and duration of the disease

Multi-level Fusion of FDG PET and MRI for Automated Epileptic Lesion Detection (Zijun et al. 2024)

$$C_{A, \text{ fused}} = w_A \cdot C_{A, \text{ PET}} + (1 - w_A) \cdot C_{A, \text{ T1}}$$

DWT (Discrete Wavelet Transform)

$$C_{\text{D, fused}} = w_{\text{D}} \cdot C_{\text{D, PET}} + (1 - w_{\text{D}}) \cdot C_{\text{D, T1}}$$

$$C_{\text{D, fused}} = \max\{|C_{\text{D, PET}}|, |C_{\text{D, T1}}|\}$$

- Combining two approaches: MRI (T1w) object structure, PET - strict localization
- 93 radiomics features
- An approach based on separate approaches and based on a merget image
- Not only detection, but also surgical navigation

Approximation components (CA) — contain a low-frequency, general structure (global shapes); Low-pass filter

Detailed components (CD) — contain high-frequency details (edges, textures, borders); High-pass filter

Goal: build a patient-wise machine-learning pipeline using the provided dataset, which enforce zero False Negatives while minimizing False Positives in FCD zones identification and provide clinical and feature-level interpretation of results.

Tasks:

- 1. Split data for train-test by patients, not areas.
- 2. Choose and train model on train set correctly (choice of hyperparameters, model selection done using train set)
- 3. On train set, achieve O False Negatives and as small as possible False Positives (for each patient there should be at least one True Positive)
- 4. Assess the best model on test set
- 5. Make an interpretation of the results

Initial dataset information:

- Total samples: 11088
- Healthy samples: 10660
- FCD samples: 428
- Unique subjects: 168
- Unique brain areas: 66
- Total radiomics features: 93

Increasing the number of features

FLAIR

Initial dataset: 93 features

Tlw data: 93 features

T2w data: 93 features

Top significant features by Mann-Whitney U test

FLAIR

original_gldm_DependenceVariance

increased local cluster size variability consistent with patchy cortical organization

original_gldm_DependenceNonUniformityNormalized

reduced neighborhood dependency uniformity, consistent with overall heterogeneity of tissue

indicates large high-intensity homogeneous

patches on T1

original_glrlm_ShortRunEmphasis_T2

original_gldm_LargeDependenceHighGrayLevelEmphasis_T1

TIW

Healthy (n=10660) FCD (n=428)

indicates characteristic tissue disorganization and loss of normal lamination

Applied a **StandardScaler** to 279 features to make radiomics measures comparable

Held out 30% of subjects as a final test set (no overlap with training set) to evaluate generalization

Train subjects: 117 **Train** samples: 7722

Test subjects: 51 **Test** samples: 3366

Model selection with a **GroupKFold** (n_splits=5) so that every fold contained only whole patients and no region from the same subject appeared in both training and validation sets.

Training and optimization

Dataset is highly imbalanced, **RandomUnderSampler** was used on the training portion of each fold to rebalance classes for model fitting

Training and optimization

Best parameters to test

BEST params: {'C': 0.01, 'penalty': '12'}
BEST avg fp: 885.6
BEST avg rec region: 0.9057813332489303
BEST threshold (mean from folds): 0.354

Per-fold thresholds were averaged and used for the final evaluation

```
Testing params: ('C': 100.0, 'penalty': '11')
fold0: t-0.000, fp=1530, pfn=0, rec region=1.000, rec patient=1.000, spec region=0.000
fold1: t=0.000, fp=1525, pfn=0, rec region=1.000, rec_patient=1.000, spec_region=0.000
fold2: t=0.070, fp=1023, pfn=0, rec_region=0.912, rec_patient=1.000, spec_region=0.294
fold3: t=0.000, fp=1470, pfn=0, rec_region=1.000, rec_patient=1.000, spec_region=0.000
fold4: t=0.000, fp=1476, pfn=0, rec_region=1.000, rec_patient=1.000, spec_region=0.000
avg fp: 1404.8 total patient fin: 0 avg threshold: 0.014 avg rec_region: 0.9589
```

Optimized a decision threshold per fold using the rule **False Negative patients == 0** "every positive patient must have ≥1 True Positive detected region on that training fold"

Thresholds that satisfy that constraint → selection the one that **minimize fold False Positives**

- **GridSearch** for 6 different models
- Logistic Regression: C, penalty
- SVM: C ,kernel, gamma
- KNN: n_neighbors, p, weights
- Gradient Boosting: loss, learning_rate, n_estimators, subsample, criterion
- Random Forest: n_estimators, criterion, max_depth, max_features, class_weight
- XGBoost: n_estimators, max_depth, learning_rate

Results on test

Best models: Logistic Regression and Random Forest

Results

Model	Best parameters	Specificity on Train	Region Recall on Train	Patient Recall on Train	Specificity on Test	Region Recall on Test	Patient Recall on Test	AUC
Logistic Regression	{'C':0.01,'penalty':'l2'}	0.4059	0.9058	1	0.38	0.904	0.941	0.727
SVM (linear)	{'C':0.01,'kernel':'linear ','gamma':'scale'}	0.4004	0.9217	1	0.364	0.898	0.922	0.724
KNN	{'n_neighbors':50,'we ights':'distance','p':2}	0.3825	0.8623	1	0.418	0.752	0.922	0.629
Random Forest	{'n_estimators':200,'c riterion':'entropy','ma x_features':'sqrt','clas s_weight':'balanced_ subsample'}	0.3872	0.9061	1	0.379	0.873	0.922	0.72
Gradient Boosting	{'n_estimators':300,' max_depth':3,'learnin g_rate':0.01}	0.4244	0.8515	1	0.404	0.752	0.863	0.65
XGBoost	{'n_estimators':100,' max_depth':3,'learnin g_rate':0.05}	0.9071	0.3444	1	0.315	0.866	0.922	0.701

Top important features

distorted but structured spatial organization

patchy voxel pattern in FCD, mirroring its tissue disorganization

The tissue texture is **less coarse** and **more fine-grained**

Patchy mix of disorganized and abnormally smooth tissue

Feature modalities

Logistic Regression top 20 features

Random Forest top 20 features

Usage

This solution reduces the area of manual data inspection by a radiologist.

Conclusions

- Based on the literature review, the list of Tlw and T2W features has been expanded with contrasts
- We achieved a high Recall on validation and test sample (~0.941 for LogReg)
- Logistic regression and Random Forest models showed the best results based on the selected hyperparameters
- The most significant features reflect the morphological characteristic of the FCD
- All the modalities (FLAIR, T1w, T2w) turned out to be significant features
- The model reduces the examination area for radiologists and can be used in combination with other models

What else could be done

- Advanced models, including deep learning, could reveal complex patterns beyond classical radiomics
- Feature interactions (for example, via SHAP) and clinical correlations could be explored

Contributions

Ekaterina Kashuk: EDA, development of the pipeline, hyperparameter tuning for LogRegression, KNN, SVM, XGBoost, biological interpretation of important features, report writing

Andrey Butylin: literature review, hyperparameter tuning for Random Forest and Gradient Boosting, presentation + GitHub project page

