Def: Doto un gas fatto di porticelle cle si muovono di volocità Vi, _ V, la velocità quadrotico media è $\langle V \rangle = \sqrt{\frac{V_1^2 + V_2^2 + \dots + V_N^2}{N}} = \sqrt{\frac{\sum_{j=1}^N V_j^2}{N}}$ Oss: Supponendo de le molecole di un gos orbbiano tutte mosso m $\begin{array}{c} \begin{array}{c} \frac{1}{2}mV_1^2 + \frac{1}{2}mV_2^2 + \ldots + \frac{1}{2}mV_N^2 \\ \end{array} \\ \begin{array}{c} \frac{1}{2}m\left(V_1^2 + V_2^2 + \ldots + V_N^2\right) \\ \end{array} \\ \begin{array}{c} \text{Translazionala} \\ \text{(Solo traslazioni)} \end{array}$ $\begin{array}{c} \text{Km, trase} = \frac{1}{2}m\langle V \rangle^2 \\ \end{array} \\ \begin{array}{c} \text{No notazione e teta aposta} \\ \text{Per overe wa s niture del tro} \\ \text{Km, trase} \end{array}$ Teorema (no dim): (1) la pressione di un gas perfetto è doute agli urti delle motecole sulle pareti del recipiente (2) se la molecole sono tutte della stesso sostenza vale de $\mathcal{P} = \frac{\mathcal{N} \cdot \mathbf{w} \cdot \langle v \rangle^2}{3V}$ N numero di molecole, V volume

Consequence: In an gas perfetto valgano
$$PV = nRT$$

$$P = \frac{Nm \langle v \rangle^2}{3V} \sim_2 PV = \frac{Nm \langle v \rangle^2}{3}$$

Poniamo le due formule uguali e otteniamo:

 $nRT = \frac{Nm \langle v \rangle^2}{3}$ \sim Goal: trovore une formula per $k_{m,trare}$ Moltiplico per $\frac{1}{2}$ do entrambe la parti

 $N = n \cdot N_A \sim N_A = N_A$ $\frac{1}{2} \text{ m} \langle v \rangle^2 \frac{N}{3} = \frac{1}{2} \text{ nRT}$ $k_{m,trase} = \frac{3}{2} \frac{N}{N} RT$ ms $k_{m,trase} = \frac{3}{2} \frac{R}{N_{A}} T$ Def: Il numero $\frac{R}{N_A} = k_B$ si chiama costante di Boltzman e vole cle $k_B = \frac{R}{N_A} = \frac{8/31 \cdot \frac{J}{mol \cdot k}}{6/022 \cdot 10^{23} \cdot \frac{J}{mol}} \approx 1/381 \cdot 10^{-23} \cdot \frac{J}{k}$ Nella formula sopra Tè in Kelvin e vole dunque che Km, trace = 3 kg. T Oss: la formula ci dice de Temporatura in telvin à direttam. propazionale a km che rappresenta il marimento Oss: k_{m, troce} = ½m <v>² cle è sempre positive; di cousegueuza T deve essere sempre positivo. Ma quindi NON esiste une temperaturo in gradi kalvin de ve sotto la Ok Sott's to Ok.

Per quents detts Ok è la zero assoluts, non si può avere una temperatura più bassa. Oss: Si può ricovore una formula per «vo a pertire della sel prec. Km trase = 3 kgT $\frac{1}{2}$ m (V)² = $\frac{3}{2}$ kgT $\langle v \rangle^2 = 3 \frac{k_B}{m} T$