AWN Term-Project Proposal

· Student Info.

1. 學號:r11922202

2. 姓名:游凱雯

• Term-Project Topic

SDN/NFV and Core Network

Research Topic

Dynamic Adaptive Scaling Strategy for NFV Routers on Kubernetes

Abstract

傳統router的硬體限制導致系統缺乏flexibility與scalibility。為達成flexibility,需要將功能軟體化,目標為以通用硬體實現各種功能;然後在scalibility方面,面對動態網路流量,軟體化的router在scalibility上仍然存在問題,因此希望實現虛擬化。綜上所述,NFV router是一種解決方案,可讓router功能運行在一個個積木上,並且像積木一樣作堆砌。此次研究最終將在Kubernetes平台上實施並進行相應的實驗,以對不同的scaling strategy在NFV router上的表現進行評估。

Background

1. SDN

What is the problem in a network system before SDN appeared?
 SDN發展之前,將傳統網路分為兩方面來看:
 在control plane方面: 傳統routing和forwarding方式都是根據各自建立在每個 router中的forwarding table,每台router就相當於根據自己的大腦做事,若是 routing路徑中,有中繼點fail了,不相鄰的router將無法直接得知,需要另外程序來作forwarding table的更新。

management方面:若需要新增新的可到達的network,可能就需要手動新增網域中每台router之ip allocation、policy opening、routing changes、bandwidth allocation、end to end reachability和最終的service testing,過程非常的繁瑣且耗時。

What is SDN and how it solves the problem?

SDN是一個網路架構,相較於傳統網路使用network intelligence來安排路徑,SDN使用中央控制節點來控制每個router的routing方向,使的網路能變得fully programmable,更加動態化,並且易於管理。

4 key principles of the SDN networks:

- make networking & IP routing flexible: 在software和動態算法的幫助下, 相較於過去人工的調整routing table來實現新網路的可達性這樣繁瑣的流程, SDN讓IP routing和networking的調整與實現變得敏捷且快速。
- Decoupling control & data plane: 傳統網路中,各router相當於大腦的的 control plane和data forwarding plane緊密結合座落在每個router中,為 使我們的routing機制能偏向參考全局的觀點,我們得先將大腦統一管 理,首要是將control plane和data plane分離開來。
- Having a central view of resources:
 在將routing機制由centralized controller統一管理之後,就能擁有全局的 視野,當有router crash時能馬上調整routing path,又或是增加新的 node,開啟新的routing path於網路上時,相較於以往一台台router作 configuration方便很多。
- programmable network,centrally managed,agile for any need:
 SDN使的network變得programmable,因此操作員能提供夠多的機制,像是:動態提升頻寬,自動擴充node,新增新功能,新增新network node等等,這些機制以往都須耗費多時才可完成,現在在SDN這樣 programmable並且可達成動態化網路幫助下,幾秒內可部屬設定完成。

2. NFV

What is the problem in a network system before NFV appeared?
 在網絡功能虛擬化(NFV)出現之前,傳統的網絡架構通常採用專用硬件設備來實現網絡功能。這些專用硬件設備通常包括路由器、防火牆、特定應用程式的負載平衡器等等,它們的功能是固定的,無法進行靈活的擴展或升級。這種傳統網絡架構的缺點是昂貴、複雜和缺乏靈活性。每次需要增加或

更改網絡功能時,需要購買新的專用硬件設備,並且需要對網絡進行重新配置和調整。這種方式不僅浪費時間和金錢,而且還會導致網絡變得非常複雜和難以維護。

因此,為了解決這些問題,NFV被提出。NFV可以擺脫傳統硬體的限制,使的網路功能變得programmable,可以更加靈活和可制定,從而使網絡變得更加靈活、可擴展和易於管理。同時,透過將網路功能虛擬化,網路運營商可以更輕鬆地擴展和升級網路,從而更好地適應快速變化的市場需求。

· What is NFV?

softwarization

- purpose build hardware to generic hardware: NFV將傳統單一功能 的且昂貴的多種hardware轉為使用軟體提供服務的通用 server(VNFs)。
- app running on software: 這些VNF能與physical network表現出一樣的效果,能運作出各種網路功能。

virtualization

- separation of network function and capacity: decouple services 和 依附的專門硬體作分離的同時,也達成了network function和capacity 分離,輔助後續capacity scaling。
- VM are building blocks: NFV使用了virtual machine作為應用程式運行環境;這些virtual machine具有彈性的capacity,並且可以支援任何application。

orchestration

 easy capacity scale up and down: 在services和hardware decouple 的基礎上,只要將許可配置的computation和storage增加/減少,就 能簡單的完成capacity scaling。

3. SDN vs. NFV

	SDN	NFV
Concept	Network abstraction	Same as SDN

	SDN	NFV
Customer benefit or end user benefit	Drives down complexity and cost and increases agility.	Same as SDN
Strategy	Splits the control and data forwarding planes	Replaces hardware network devices with software
Where the applications will run?	Applications run on industry standard servers or switches	Applications run on industry standard servers
Initial applications	Cloud orchestration and networking	Routers, firewalls, gateways, CDN, WAN accelerators, SLA assurance
Life example	Road transportation	Buildings

4. Core network

核心網路,又稱為骨幹網路,是通訊網路的核心,主要希望達成網域之間連通的效能和可靠性。core network提供routing機制和達成不同網域之間的連接性和並控制之間的傳輸流量。舉例來說,core network連接了不同地區或是國家,並將網路router到外部網路中,例如internet和cloud services。core network的設計重點是快速、可靠、可擴張和安全的。

5. Relation between SDN, NFV, and Core Network

core network的組成是由一系列的網路硬體設備組成,其中最多應屬於switch和router。

由於core network的複雜性,自然面臨到自動化部屬和維護等問題,而推動網路軟體化的概念後,結合core netowork和SDN/NFV幾乎是自然而然走上的道路。

網路的快速成長與變遷下,基礎設施的分歧與多樣性也對提供的寬頻服務的可靠性構成威脅。此時軟體化的核心網路也能也能更好的應變各種分歧,確保電信業者能在技術快速成長下提供服務的品質保證。同時,在藉由軟體使自動化部屬和維護變得簡單後,能減少其停機時間和平均維護時間,因而減輕core network之運行負擔。

Motivation

在傳統的router中,功能綁定於硬體,這導致了兩個主要問題:首先,在功能、需求 更新的情況下,硬體限制了系統的flexibility。為了解決這個問題,我們需要將硬體與 功能分離,並將router功能軟體化,達成使用通用硬體來實現各種功能。然而,在面臨動態流量變化的情況下,這樣的router在scalibility上存在問題;為解決此問題,有了想讓這些router能像積木一樣作堆砌的想法;綜合上述動機,NFV router是符合的解決辦法。

而現存的scaling strategy有很多種,我們需要去evalute各種演算法應用在NFV router 上的performance。

Problem Statement

1. Input: Network traffic

2. Output: Number of nodes

3. Objective: Minimize cost

4. Constraints: latency < latency threshold (0.1 ms)

Reference

- 1. https://drivenets.com/resources/education-center/what-is-a-core-network/
- 2. https://www.telecomtutorial.info/blog/categories/telco-cloud-series
- 3. https://www.rfwireless-world.com/Terminology/difference-between-SDN-and-NFV.html