

METHOD AND DEVICE FOR TESTING AN INTEGRATED CIRCUIT,
INTEGRATED CIRCUIT TO BE TESTED, AND WAFER WITH A LARGE NUMBER
5 OF INTEGRATED CIRCUITS TO BE TESTED

Background of the Invention:

Field of the Invention:

The present invention relates to a method and to a device for
10 testing an integrated circuit using a self-test device
contained in the integrated circuit. The present invention
also relates to an integrated circuit with a self-test device,
and to a wafer with a large number of integrated circuits.

15 Integrated circuits and methods for their production have been
known for many years in an extremely wide range of
embodiments.

It is likewise known that integrated circuits, semiconductor
20 chips containing integrated circuits or components containing
semiconductor chips have to be tested during or after their
production.

In this case, integrated circuits which are not operating
25 properly are repaired by deactivating the faulty parts and
activating equivalent redundant parts (this is often the case,

in particular, in memory modules), or if this is not possible, the faulty parts are separated out.

Various possible ways of testing integrated circuits are

5 known. The most widespread method consists of connecting the integrated circuits still located on the wafer, or the semiconductor chips already cut out of the wafer, or the semiconductor chips already provided with a housing, to an external testing device and then testing them by supplying
10 suitable test signals.

Additionally or alternatively, the testing of integrated circuits can also be carried out by using self-test devices which are integrated in the integrated circuits and are frequently also referred to as built-in self-test modules or
15 BIST modules. BIST modules which operate particularly efficiently are disclosed, for example, by European Publication EP 0 492 624 A1, U.S. Patent No. 5,388,104, European Publication EP 0 568 239 A2, U.S. Patent No. 5 570 20 374 and by Sampath Rangarajan et al.: "Built-In Testing of Integrated Circuit Wafers", IEEE Transactions on Computers, Vol. 39, No. 2, February 1990, pages 195 ff. With the assistance of such or other BIST modules, the integrated circuits can, at least to some extent, check themselves for
25 freedom from faults.

Experience shows that the testing of integrated circuits is becoming increasingly more complicated and more costly, in spite of test methods becoming better and better and more and more efficient. The facts which are responsible for this are,

5 in particular:

The clock frequency at which the integrated circuits are operated is continually increasing (this makes it increasingly more complicated to carry out the tests under the real
10 operating conditions);

The clock frequency at which the integrated circuits are operated is increasing less rapidly than the number of constituents to be tested, such as the memory cells of a
15 memory to be tested in the integrated circuit (this leads to the test time becoming increasingly longer); and

The number of components present in the integrated circuit is increasing sharply, while the number of input and/or output
20 terminals on the integrated circuits is increasingly

comparatively little (this leads to an increasingly more difficult and more time-consuming ability to observe the integrated circuit).

25 The ever more complicated and more time-consuming tests of integrated circuits have the negative effect that the testing

of the integrated circuits gives rise to higher and higher costs. This is understandably a disadvantage.

Summary of the Invention:

5 It is accordingly an object of the invention to provide an apparatus and a method for testing integrated circuits which overcomes the above-mentioned disadvantageous of the prior art apparatus and methods of this general type. In particular, it
is an object of the invention to test integrated circuits
10 rapidly and simply.

With the foregoing and other objects in view there is provided, in accordance with the invention, a method of testing an integrated circuit, that includes: providing an
15 integrated circuit that includes a self-test device; starting to perform a test of the integrated circuit with the self-test device; and subsequently, connecting the integrated circuit to an external testing device that performs a function selected from the group consisting of reading out results of the test
20 and evaluating the results of the test.

In accordance with an added mode of the invention, the test is completed before performing the step of connecting the integrated circuit to the external testing device.

In accordance with an additional mode of the invention, the test is at least partially completed while performing a function selected from the group consisting of temporarily storing the integrated circuit and transporting the integrated circuit to the external testing device.

5 In accordance with another mode of the invention, the method includes steps of: providing a self-test control device that causes performance of the test of the integrated circuit; and
10 moving the control device together with the integrated circuit.

15 In accordance with a further mode of the invention, the method includes a step of taking at least parts of the integrated circuit out of operation after the parts have been tested by the self-test device.

20 In accordance with a further added mode of the invention, the method includes steps of: with the self-test device, writing data into a test result memory; and after testing the integrated circuit with the self-test device, taking out of operation, components of the integrated circuit that are not needed to continue to store the data in the test result memory.

In accordance with a further additional mode of the invention,
the step of taking at least parts of the integrated circuit
out of operation includes not supplying a clock signal, which
is needed to operate the integrated circuit, to the parts of
5 the integrated circuit.

In accordance with another further mode of the invention, the
step of taking at least parts of the integrated circuit out of
operation includes not supplying a supply voltage, which
supplies the integrated circuit with power, to the parts of
10 the integrated circuit.

In accordance with yet a further added mode of the invention,
the method includes simultaneously testing a plurality of
15 integrated circuits with the self-test device.

In accordance with yet a further additional mode of the
invention, the method includes a step of providing the
plurality of the integrated circuits on at least one wafer.
20

With the foregoing and other objects in view there is
provided, in accordance with the invention, an apparatus for
testing an integrated circuit using a self-test device that is
located in the integrated circuit. The apparatus includes a
25 self-test control device for causing testing of the integrated
circuit by the self-test device before the integrated circuit

is connected to an external testing device that performs a function selected from the group consisting of reading out results of the test and evaluating the results of the test.

- 5 In accordance with an added feature of the invention, the self-test control device is configured to complete the testing of the integrated circuit before the integrated circuit is connected to the external testing device.
- 10 In accordance with an additional feature of the invention, the self-test control device is configured to test the integrated circuit while allowing a function, selected from the group consisting of temporarily storing the integrated circuit and transporting the integrated circuit to the external testing device, to be performed.
- 15

In accordance with another feature of the invention, the self-test control device is constructed to be moved together with the integrated circuit.

- 20 In accordance with a further feature of the invention, the external testing device tests aspects of the integrated circuit that are not tested by the self-test device, the aspects selected from the group consisting of components of the integrated circuit and functions of the integrated circuit.

With the foregoing and other objects in view there is provided, in accordance with the invention, an integrated circuit, that includes: components; a self-test device for testing the components; and a device for, at a particular time, taking specific ones of the components out of operation.

5 The particular time is selected from the group consisting of during the testing and after the testing.

10 In accordance with an added feature of the invention, there is provided, a test result memory for receiving data from the self-test device and for storing the data; the specific ones of the components being ones of the components that are not needed in order to continue to store the data stored in the

15 test result memory.

In accordance with an additional feature of the invention, the device prevents a clock signal, which is needed to operate the components, from being applied to the specific ones of the

20 components.

In accordance with another feature of the invention, the device prevents a supply voltage, which is needed to operate the components, from being applied to the specific ones of the

25 components.

In accordance with a further feature of the invention, there
is provided: a test result memory for receiving data from the
self-test device and for storing the data; and a device for
insuring that the data can not be changed after completion of
5 the testing by the self-test device.

In accordance with a further added feature of the invention,
there is provided, a test result memory for receiving data
from the self-test device and for storing the data; and a
10 device for using the data stored in the test result memory to
determine whether the testing has been completed.

In accordance with a further additional feature of the
invention, there is provided, at least two different points
15 for receiving voltages and signals that have to be supplied so
that the self-test device can test the components.

In accordance with yet an added feature of the invention, the
at least two different points are electrically connected
20 together.

With the foregoing and other objects in view there is also
provided, in accordance with the invention, a wafer that
includes, a plurality of integrated circuits that are
25 configured for being separated apart by a subsequent cutting

process. The plurality of the integrated circuits are at least partially electrically connected to one another.

In accordance with an added feature of the invention, there is provided, a wafer substrate; and electrical connections formed by conductor tracks that are located on the wafer substrate and that electrically connect the plurality of the integrated circuits.

- 10 In accordance with an additional feature of the invention, there is provided, a self-test device located in the plurality of the integrated circuits. The plurality of the integrated circuits include points to which signals selected from the group consisting of voltages and test signals must be supplied such that the self-test device can test the plurality of the integrated circuits.
- 15

- In accordance with another feature of the invention, there is provided, a wafer substrate; and electrical connections formed by conductor tracks that are located on the wafer substrate and that electrically connect the plurality of the integrated circuits. The wafer substrate includes contact zones that are constructed such that voltages and signals applied to them can be led onward, via the electrical connections to a number of the plurality of the integrated circuits. The number of the plurality of the integrated circuits are selected from the

group consisting of all of the plurality of the integrated circuits and some of the plurality of the integrated circuits.

In accordance with a concomitant feature of the invention,

5 there is provided, a self-test device located in the plurality of the integrated circuits. The contact zones include at least two different contact zones for receiving the voltages and the signals such that the plurality of the integrated circuits can be tested by the self-test device.

10

The fact that the testing of the integrated circuit by the self-test device is begun before the integrated circuit is connected to an external testing device that reads out and/or evaluates the results of the self test means that the 15 residence time of the integrated circuit on the external testing device can be minimal, that is to say the external testing device is therefore utilized most efficiently.

Other features which are considered as characteristic for the 20 invention are set forth in the appended claims.

Although the invention is illustrated and described herein as embodied in a method and device for testing an integrated circuit, integrated circuit to be tested, and wafer with a 25 large number of integrated circuits to be tested, it is nevertheless not intended to be limited to the details shown,

since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

- 5 The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.

10

Brief Description of the Drawings:

Fig. 1 shows the construction of an integrated circuit containing a self-test device;

15

Fig. 2 shows the construction of a test result memory which is written to by the self-test device and that belongs to the integrated circuit shown in Fig. 1;

20

Figs. 3A and 3B show the construction of interface circuits provided between the self-test device and the test result memory;

25

Fig. 4 shows a configuration by means of which, after completion of the self test, the supply voltage feed to specific parts of the integrated circuit is automatically interrupted;

Fig. 5 shows the waveforms of specific voltages and signals which occur during testing of the integrated circuit shown in Fig. 1 by the self-test device;

5

Fig. 6 shows a configuration for generating reset signals that reset parts of the integrated circuit, on the basis of the variation in the supply voltage provided for the parts of the integrated circuit to be reset;

10

Fig. 7 shows a wafer carrying a large number of integrated circuits;

15

Fig. 8 shows the construction of one of the integrated circuits on the wafer shown in Fig. 7;

20

Fig. 9 shows electrical connections via which the integrated circuits on the wafer shown in Fig. 7 are connected to one another;

Figs. 10A and 10B show a wafer contacting device, by means of which contact can be made with contact points provided on the wafer shown in Fig. 7;

Figs. 11A to 11C show a device by means of which a wafer lying on a carrier can be removed from the carrier without interrupting the supply of voltages or signals fed to it;

- 5 Fig. 12 shows a test box, in which the integrated circuits of a plurality of wafers can be tested simultaneously by the self-test devices contained in them;

Fig. 13 shows a configuration in which the integrated circuits

- 10 to be tested are transported on a turntable to an external testing device, and on the way there, are tested by the self-test devices contained in them;

Fig. 14 shows a configuration by means of which components

- 15 containing semiconductor chips can be tested efficiently; and

Figs. 15A and 15B show various views of a component carrier employed in the configuration shown in Fig. 14.

- 20 Description of the Preferred Embodiments:

By means of the measures described in more detail below, integrated circuits may be tested rapidly and simply. The measures relate to constructing an integrated circuit to be tested, and to the wafer that is used for simultaneously producing a plurality of integrated circuits and which, at the end of production, carries a large number of integrated

circuits. The measures also relate to a method and to devices for testing the integrated circuits.

It is possible for the integrated circuits to be tested

5 particularly rapidly and simply if use is made of all of the special features described. However, the integrated circuits can be tested more rapidly and more simply than was previously possible even if use is made only of individual or of several of the special features described below.

10

The integrated circuits to be tested are, in the example considered, semiconductor circuits that are implemented using CMOS technology (systems on silicon), but they can also be any other desired circuits. They are a constituent part of a semiconductor chip or will be further processed to form a semiconductor chip. The function of the integrated circuits to be tested is not subject to any restrictions.

15

The integrated circuits considered contain a self-test device, using which, they can themselves test certain components or functions. In the example considered, the self-test device is a built-in self-test module or BIST module, as it is known.

20

As will be described more precisely later, in response to an external request, the BIST module carries out a test of the components and functions of the integrated circuit that can be

tested by it (for example of a memory contained in the integrated circuit) and writes the result of this self test into a test result memory (likewise contained in the integrated circuit). The test result stored in the test result

- 5 memory is output by the integrated circuit to an external testing device when requested by the latter and is evaluated there. This external testing device in the example considered is a testing device which, in addition to evaluating the results of the self test of the integrated circuit, in
- 10 addition tests those components or functions of the integrated circuit which cannot be or are not tested by the BIST module, or only partially so, by supplying suitable signals and by evaluating the reaction to these.

- 15 In the example considered, the test of the integrated circuit by the BIST module contained therein is begun before the integrated circuit is connected to the external testing device, for example, as early as during temporary storage of the relevant integrated circuit and/or during the transport of
- 20 the relevant integrated circuit to the external testing device. The test of the integrated circuit by the BIST module contained therein has preferably already been concluded when the integrated circuit is connected to the external testing device.

As a result, after producing the connection to the integrated circuit to be tested, the external testing device can immediately begin: reading out and evaluating the results of the test carried out by the BIST module, and testing the

5 components and functions of the integrated circuit which are not tested by the BIST module.

Since the external testing device does not itself have to perform the initiation of the test to be carried out by the

10 BIST module, and does not then have to wait until the end of this test before it can begin with reading out and evaluating the results of the test carried out by the BIST module and/or continue testing of the integrated circuit to be tested, the residence time of the integrated circuit to be tested on the

15 external testing device is minimal, and the utilization of the external testing device is optimal.

Shortening the residence time of the integrated circuit to be tested on the external testing device may appear to be

20 unimportant. However, if one takes account of the immense number of integrated circuits which have to be tested by the external testing device over the course of time, then, even if only a fraction of a second can be saved on each integrated circuit, the result is an enormous saving in time.

The initiation and the implementation of the test to be carried out by the BIST test module without concomitant action by the external testing device does not present any kind of problems. As will be better understood later on, for this

- 5 purpose it is merely necessary to make contact with only a few terminals of the integrated circuit and to apply to them the voltages and signals needed to initiate the test; the test itself can proceed automatically (without any external control).

10

Referring now to the figures of the drawing in detail and first, particularly, to Fig. 1 thereof, there is shown an integrated circuit that is particularly suitable for the above-described procedure. For completeness, it should be

- 15 noted that, of this integrated circuit, only the BIST module, the test result memory and the constituent parts of the integrated circuit that are needed for its proper operation are shown and described.

- 20 The integrated circuit shown in Fig. 1 contains a self-test device in the form of a BIST module BIST, a test result memory formed in the example considered by a register block REGB, a number of interface circuits IPCT, and input terminals, formed by pads, as they are known, for the supply of an external
25 clock signal EXTCLK, a first supply voltage Vdd that supplies the integrated circuit with power, with the exception of the

register block REGB, a second supply voltage VddR that supplies only the register block REGB with power, a control signal RST_N that controls the BIST module BIST, a control signal ITESTMODE that controls the BIST module BIST and the 5 register block REGB, and a control signal RSTREG_N that controls the register block REGB. It is possible for the terminal for the external clock signal EXTCLK to be dispensed with if the integrated circuit has an internal clock signal generator CLKGEN, which may be the case here.

10

The BIST module BIST: is supplied with power by the first supply voltage Vdd already mentioned, is clocked by a clock signal CLK generated by the internal clock signal generator CLKGEN, receives the control signals ITESTMODE and RST_N 15 already mentioned from outside the integrated circuit, receives from the register block REGB a control signal READY, and data Q2 to Q5, and outputs to the register block REGB a control signal STROBE, and data D2 to D5.

20

The register block REGB: is supplied with power by the second supply voltage VddR already mentioned, is clocked by a clock signal CLK generated by the internal clock signal generator CLKGEN, receives the control signals ITESTMODE and RSTREG_N from outside the integrated circuit, receives the control 25 signal STROBE and the data D2 to D5 from the BIST module BIST, outputs the control signal READY and the data Q2 to Q5 to the

BIST module BIST, and outputs a control signal CLKOFF to the internal clock signal generator CLKGEN or to a device that can exert an influence on the external clock signal EXTCLK.

- 5 The construction of the register block REGB is shown in Fig.
2. The register block REGB in the example considered contains a number of registers (five in the example considered) DREG1 to DREG5, AND elements AND1 to AND3, and an inverter INV.
- 10 Of the registers DREG1 to DREG5, each contains a data input terminal D, a data output terminal Q, a reset terminal R and a clock terminal C. The output signal from the first AND element AND1 is input to the data input terminal D of the register DREG1. The data D2 to D5 is input to the data input terminal D of the registers DREG2 to DREG5. The data item Q1 (used as the READY signal) is output from the data output terminal Q of the register DREG1. The data Q2 to Q5 is output from the data output terminals Q of the registers DREG2 to DREG5. The signal RSTREG_N is applied to the reset terminals R of the registers
- 15 DREG1 to DREG5. The output signal from the third AND element AND3 is applied to the clock terminals C of the registers DREG1 to DREG5. The first AND element AND1 forms an AND combination of the data Q2 and Q3 output from the output terminals Q of the registers DREG2 and DREG3. The second AND
- 20 element AND2 generates an AND combination of the signals READY and ITESTMODE and generating a signal CLKOFF. The third AND
- 25

element AND3 forms an AND combination of the signals CLK, STROBE and inverted READY.

The interface circuits IPCT already mentioned are connected upstream of the input terminals of the register block REGB for the signals generated within the integrated circuit, that is to say for the signals CLK, STROBE, D2, D3, D4 and D5. Their task is to ensure that the aforementioned signals assume defined states or waveforms when the devices that generate the signals are deactivated, which is the case in particular, as will be explained in more detail later, when the supply voltage Vdd supplying these devices with power is switched off; the aforementioned signals must not float.

Two options for the practical implementation of such interface circuits are shown in Fig. 3A and Fig. 3B. These circuits ensure that defined potentials, more precisely V_{ddR} or 0 V, are supplied to the register block REGB both when the supply voltage Vdd is applied and when the supply voltage Vdd is switched off.

The interface circuits IPCT shown in Figs. 3A and 3B differ only in the construction of the input stage, however, this has no influence on their function and mode of action.

The interface circuits IPCT shown in Figs. 3A and 3B function as follows:

When the supply voltage Vdd (=VddR) is applied, the signal

- 5 present on an input terminal IN is transmitted in inverted form to a junction K and onward from the latter, via a transistor N3, to a Schmitt trigger ST which, depending on the potential of the signal supplied to it (and therefore also depending on the signal supplied to the input terminal IN of
- 10 the interface circuit IPCT), outputs VddR or 0 V. The output signal OUT of the Schmitt trigger ST forms the output signal from the respective interface circuit IPCT.

When Vdd is switched off, the transistor N3 turns off, and the

- 15 voltage VddR is fed to the Schmitt trigger ST via a transistor P3, as a result of which, irrespective of the signal supplied to the input terminal IN of the interface circuit IPCT, VddR is output from the Schmitt trigger ST and the interface circuit IPCT.

20

The testing of the integrated circuit by the BIST module BIST

proceeds as follows: At the start of the test, both supply

voltages Vdd and VddR and control signals ITESTMODE=1, RST_N=0

and RSTREG_N=0 are applied. RST_N=0 and resets the BIST module

- 25 BIST, RSTREG_N=0 and resets the registers DREG1 to DREG5, and ITESTMODE=1 and causes the BIST module (after the latter has

been reset) to test the integrated circuit. After the expiration of a time, within which the BIST module BIST and the registers DREG1 to DREG5 are reliably reset by the signals RST_N=0 and RSTREG_N=0, the signals RST_N and RSTREG_N are set
5 to the value 1.

When the test of the integrated circuit carried out by the BIST module in response to the signal ITESTMODE=1 is concluded, the BIST module transmits data representing the

10 test result and data representing the test status to the register block REGB.

In the example considered, two individual tests are carried out by the BIST module, and test result data and an item of
15 test status data are generated for each individual test. These items of data each include one bit. Test result data with the value 0 indicates that the relevant test was not passed. Test result data with the value 1 indicates that the relevant test was passed successfully. Test status data with the value 0 indicates that the relevant test has not yet finished, and test status data with the value 1 indicates that the relevant test has finished.

In the example considered, the test result data are the data
25 D4 and D5, and the test status data are the data D2 and D3.

Reference should be made at this point to the fact that the BIST module BIST can in principle carry out an arbitrary number of individual tests, and that the data about the tests that are output to the register block REGB can in principle be 5 any desired amount of data, of any desired length, can be encoded in any desired way, and can represent any desired information.

The data is output by the BIST module BIST to the register 10 block REGB, and if the STROBE signal already mentioned, more precisely STROBE=1, is output by the BIST module BIST at the same time, the data is taken into the registers D2 to D5 and is stored in the latter with the respective next rising edge of the clock signal CLK. Using the STROBE signal, the BIST 15 module BIST can determine whether and, if appropriate, when data are stored in the register block REGB. This makes it impossible for the wrong data to be mistakenly written in the register block REGB, and makes it possible for the power consumption in the register block REGB to not be higher than 20 is absolutely necessary.

When the BIST module BIST has finally carried out the two individual tests to be carried out by it, in each case the value 1 is present in the registers DREG2 and DREG3. The 25 contents of these registers are subjected to an AND combination by the first AND element AND1, and the result of

this AND combination is written to the register DREG1. The value stored in the register DREG1 therefore indicates whether the BIST module BIST has finally carried out all of the individual tests to be carried out by it. A DREG content of 0 5 indicates that the tests have not yet all finally been carried out, and a DREG content of 1 indicates that all the tests have been carried out.

The content of the register DREG1, which can be tapped off on 10 the output terminal Q of the same, is the READY signal which has already been mentioned and which is output from the register block REGB to the BIST module BIST.

The READY signal also controls the value of the signal CLKOFF, 15 and whether the clock terminals C of the registers DREG1 to DREG5 are supplied with a clock signal.

The signal CLKOFF is the result of the AND combination, formed by the AND element AND2, of the signals READY and ITESTMODE.

20 Whether the clock terminals of the registers DREG1 to DREG5 are supplied with a clock signal depends on the result of the AND combination, formed by the AND element AND3, of the negated READY signal and the signals STROBE and CLK.

25 The signal CLKOFF becomes 1 when the integrated circuit is in the test operating mode (ITESTMODE=1) and the test carried out

by the BIST module has been completed (READY=1). The signal CLKOFF is used for the purpose of preventing the clock signal CLK from being supplied to the register block REGB and to the remaining components of the integrated circuit. As a result,
5 after the completion of the test carried out by the BIST module, the integrated circuit can automatically be put into a state in which it exhibits a minimal power consumption.

It is even better if, additionally or alternatively, CLKOFF=1
10 is used to automatically switch off supply of the supply voltage Vdd that supplies the integrated circuit with power, with the exception of the supply VddR to the registered block REGB. One possibility for the practical implementation of this is for an output terminal belonging to the integrated circuit
15 (a pad) to be provided for the signal CLKOFF, and for a switch provided outside the integrated circuit in the Vdd path and, for example, formed by a transistor, to be operated by the signal output via this pad. Another possibility for switching off the supply voltage is illustrated in Fig. 4. In the
20 integrated circuit illustrated in Fig. 4, the switch by means of which Vdd is connected or disconnected is formed by a transistor T provided within the integrated circuit and controlled by CLKOFF. This has the positive effect that the integrated circuit only has to be supplied with a single
25 supply voltage (VddR in the example considered) from the outside. This single supply voltage is supplied both to the

register block and, via the transistor T, to the remainder of the integrated circuit, designated by ROC.

Interrupting the supply of Vdd is advantageous at times during

5 which the integrated circuit has nothing else to do than to ensure that the data stored in the register block REGB are not lost, which, for example, is the case between the end of the test carried out by the BIST module and the time of reaching the external testing device that continues testing of the
10 integrated circuit. As a result, the power consumption of the integrated circuit can be reduced, which is of great importance in particular when the test carried out by the BIST module is carried out simultaneously for all of the integrated circuits on one or more wafers.

15

The fact that, as has already been mentioned above, the clock terminals C of the registers DREG1 to DREG5 have a signal applied to them which is the result of an AND combination of the signals CLK, STROBE and the inverted signal READY, has the
20 positive effect that, in the registers DREG1 to DREG5, it is possible to write data only when the BIST module permits this by outputting STROBE=1. Also, the writing of data into the registers DREG1 to DREG5 is automatically prevented when the tests to be carried out by the BIST module have been
25 concluded.

The register block REGB can be kept in operation while the rest of the integrated circuit is deactivated or switched off. Also, by means of the self-locking mechanism described above, it is ensured that the results of the tests carried out by the 5 BIST module, which are stored in the register block REGB, can no longer be overwritten under any circumstances after the conclusion of the test. These two factors provide ideal preconditions for permitting the data stored in the register block REGB to be read out and evaluated at any desired time 10 after the end of the test.

In order to read out the data stored in the register block REGB and output the data from the integrated circuit (for example to the external testing device), ITESTMODE=0 and 15 RST_N=0 are set and the signal RSTREG_N remains at the value 1.

Changing the signal ITESTMODE to the value 0 has the effect that the signal CLKOFF, generated on the basis of the former, 20 likewise assumes the value 0. This has the effect that, in turn, the entire integrated circuit is supplied with power, and/or that the clock signal CLK is generated again (in the case of an internal clock generator) or is forwarded (in the case of an external clock generator).

Since the signal READY maintains the value 1 during this process, the registers DREG1 to DREG5 can still not be written, however.

- 5 The BIST module is reset by the signal RST_N=0. The signal RST_N is set to the value 1 again at a time at which it can be assumed that the BIST module has been reset. After that, it is possible to arrange for the integrated circuit to read out the data stored in the register block REGB and to output these
- 10 data (data Q2 to Q5).

The processes described above are illustrated in Fig. 5, which shows the waveforms of Vdd, VddR, ITESTMODE, RST_N, RSTREG_N, READY and CLKOFF. The following times are indicated in Fig. 5:

15 t1 designates the time at which the integrated circuit is started up,

t2 designates the time at which resetting of the integrated 20 circuit has been concluded and at which the test of the integrated circuit by the BIST module begins,

t3 designates the time at which the self test has been concluded,

25 t4 designates the time at which Vdd is switched off,

t5 designates the time at which preparations to read out the test result memory are begun,

5 t6 designates the time at which Vdd is switched on again, and

t7 designates the time at which reading of the test result memory can be started.

10 As can be seen from the above explanations, contact only has to be made with a very small number of input and/or output terminals on the integrated circuit in order to test the integrated circuit using the BIST module contained in the latter. The number of input and/or output terminals with which

15 contact has to be made can be reduced even further if the reset signals RST_N and RSTREG_N are generated within the integrated circuit based on the waveform of the supply

voltages Vdd and VddR. A circuit for accomplishing this is shown in Fig. 6 and includes a resistor RST-R, a capacitor

20 RST-C and a Schmitt trigger ST. If this option is used, then the input terminals (pads) provided for the signals RST_N and RSTREG_N on the integrated circuit can be dispensed with, and in order to test the integrated circuit with the BIST module

25 contained therein, contact has to be made with even fewer

input and/or output terminals of the integrated circuit than would otherwise be the case.

The supply of power to the register block REGB, provided via the supply voltage VddR, is maintained uninterruptedly at least until the integrated circuit is connected to the external testing device and until the data stored in the register block are read out by means of the external testing device. However, the voltage source which supplies the supply voltage VddR and/or the contact-making elements via which the supply voltage VddR is applied to the integrated circuit may change. This is virtually inevitable, for example, when the integrated circuit is taken by a transport device that transports it to the external testing device, in order to be transported onward by a different transport device, in order to be stored temporarily, or in order to be connected to the testing device. In cases in which this is too complicated or impossible, the supply of the integrated circuit with the supply voltage VddR can be provided by a battery connected to the integrated circuit and carried along with the latter, or by a capacitor. This will be discussed in more detail later.

20

Furthermore, it must of course be ensured that the integrated circuit is supplied with the control signals RST_N, RSTREG_N and ITESTMODE, and if necessary with the clock signal CLK, during the test that is carried out by the BIST module. This can be done by means of a very simply constructed control device which, in the case in which the test is carried out

while the integrated circuit is being transported to the external testing device, is preferably a control device which can be carried along with the integrated circuit, at least during the test.

5

The test to be carried out by the BIST module is preferably carried out simultaneously in a plurality of integrated circuits, for example, in all of the integrated circuits belonging to one or more wafers.

10

The simultaneous performance of the test to be carried out by the BIST module in all of the integrated circuits belonging to a wafer may be implemented particularly simply in the case of a wafer as described below.

15

A wafer of this type is distinguished, inter alia, by the fact that, at least the points on the integrated circuits that receive the voltages and signals that are required for testing the integrated circuits using the BIST modules are connected electrically to one another.

One such wafer is illustrated in Fig. 7. In this case, the wafer is designated by the reference symbol W, the integrated circuits produced on it are designated by the reference symbol IC, and the electrical connections between the integrated circuits IC are designated by the reference symbol OVA. In the

example considered, the electrical connections OVA interconnect the points on the integrated circuits to which the supply voltages Vdd and VddR, the ground potential GND and the signals RST_N, RSTREG_N and ITESTMODE have to be supplied.

5

In the example considered, the electrical connections OVA are formed by line sections leading out from the integrated circuits IC, projecting into the interspaces present between adjacent integrated circuits IC and there overlapping with the respectively associated line sections of the adjacent integrated circuits. Such line sections lead away from a plurality of sides, preferably from all four sides of the integrated circuit. The line sections leading away from the various sides of the integrated circuit are interconnected by means of lines running inside or outside the integrated circuit. Such an integrated circuit is illustrated by way of example in Fig. 8. In this case, the line sections provided to form the connections OVA are designated by the reference symbol OVAP, and the lines connecting these are designated by the reference symbol OVAC. At this point, reference should be made to the fact that the lines OVAC that connect the line sections OVAP to one another can also have any other desired course and can also run outside the integrated circuits (in the interspaces present between adjacent integrated circuits). In the example considered, the lines OVAC that connect the line sections OVAP to one another are a constituent part of

one of the conductive layers of the integrated circuit. The lines, for example, consist of AlSiCu or of Cu sheathed with Ti or Ti/N.

- 5 In the example considered, the line sections OVAP extending beyond the integrated circuits (into the interspaces, also referred to as the snap frame, between adjacent integrated circuits) are produced together with the integrated circuits; in the operations during which the line sections OVAP are
- 10 produced, masks (reticules) are used which cover a region going beyond the edge of the integrated circuit to be produced.

The integrated circuits belonging to a wafer are produced in a large number of successive steps (deposition, exposure, etching, oxidization, implantation, lithography steps etc.), but without normally carrying out every step simultaneously for all of the integrated circuits. Specific steps, for example, the exposure of a resist, are carried out

15 individually and successively for each integrated circuit or for groups of integrated circuits each containing a plurality of integrated circuits. This can lead to the situation where no proper connections OVA are produced between integrated circuits which are not processed (for example exposed)

20 together. This can have various causes: first, it may occur that the mutually associated line sections OVAP of adjacent

25

integrated circuits or of adjacent groups of integrated circuits which are not exposed together do not align with one another, and secondly, it may occur that, at the points at which they overlap, the connections OVA can become narrower or 5 wider locally as a result of double exposure at these points, and as a result, become so narrow that no good connection is produced, or become so wide that adjacent connections OVA come into contact with each other. This can be prevented by providing a larger spacing between adjacent line sections OVAP than is usual in the technology used, and by designing the free ends (those that come to lie in the interspace between adjacent integrated circuits) of the line sections OVAP to be wider than the rest of the line sections. This is illustrated 10 in Fig. 9. Fig. 9 shows line sections OVAP1 and OVAP2 of a first integrated circuit, and line sections OVAP3 and OVAP4 of a second integrated circuit that are not exposed together with the first integrated circuit. The line sections OVAP1 to OVAP4 have end portions E which are widened as compared with the remainder. As can be seen from Fig. 9, the line sections OVAP1 15 and OVAP3, and respectively, OVAP2 and OVAP4 which are to be brought into contact with one another are properly in contact even when they are not aligned with one another. Because of the particularly large spacings between OVAP1 and OVAP2 and, respectively, between OVAP3 and OVAP4, there is no risk either 20 that short circuits will be produced.

In the case of a wafer in which a plurality or all of the integrated circuits formed on it are connected to one another as described or in a different manner, in order to initiate and to carry out the testing by the BIST modules contained in 5 the integrated circuits, it is sufficient for the voltages and the signals to be supplied to the wafer only at a single point or at a few points, for example, in one of the contact zones designated in Fig. 7 by the reference symbols C1, C2, C3 and C4.

510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
99

relevant contact zone. In the position in which the rod KET is shifted upward, there is no contact between the pins KE and the wafer.

- 5 The fact that the wafer has a plurality of contact zones C1 to C4 (four in the example considered but possibly also more or fewer), by which in each case all of the integrated circuits IC provided on the wafer can be supplied with the voltages and the signals needed for testing the same using the BIST modules contained therein, means that the supply of the voltages and the signals can then be maintained even if the wafer - for whatever reason - has to be removed from the carrier carrying it.
- 10
- 15 One possible way of removing the wafer W from the carrier WT while uninterruptedly maintaining the supply of the aforementioned voltages and signals to the integrated circuits is illustrated schematically in Figs. 11A to 11C. The device that removes the wafer W from the wafer carrier WT in the example considered is a fork F, whose prongs FZ can be inserted from the side of the carrier WT into associated slot-like recesses WTS in the carrier WT and can pull the wafer W away from the carrier WT whilst lifting the wafer slightly. Figure 11A shows the state in which the wafer W is still on the carrier WT and is still being supplied with the voltages and signals needed by the integrated circuits via the contact
- 20
- 25

zone C2. Figure 11B shows the state in which the fork F has been pushed into the wafer carrier. At this stage, the wafer initially continues to be supplied with the voltages and signals needed by the integrated circuits via the contact zone 5 C2. After the fork F has reached a specific relative position in relation to the wafer W (or the carrier WT carrying the latter), the contact points provided in the contact zone C1 of the wafer W have contact made with them by a contact-making device which is not shown in the Figures, but which is 10 arranged on the fork F. As a result of which, the integrated circuits provided on the wafer are then also supplied with the voltages and the signals needed by them via the contact zone C1. After this has been done, the supply of the voltages and the signals needed by the integrated circuits via the contact 15 zone C2 is interrupted by detecting the appropriate electrical connections. As has already been indicated, interrupting this connection does not result in interruption of the voltages and signals needed by the integrated circuits. These have been and are certainly still supplied via the contact zone C1. After 20 that, the wafer W can be lifted slightly by the fork F and drawn away from the carrier WT together with the fork; this is illustrated in Fig. 11C.

Removing the wafer W from the wafer carrier WT as described is 25 preferably carried out at a time at which the test of the integrated circuits carried out by the BIST module has already

been completed. It is then necessary for the integrated circuits still to be supplied only with the supply voltage VddR via the fork F and the contact zone C1. This can be effected, for example, by means of a battery or a capacitor,
5 which is provided in the device that removes the wafer W from the wafer carrier WT. If a capacitor is used, the capacitor can be charged up during the time that contact is made with the wafer both via the contact zone C1 and via the contact zone C2, and this can be accomplished using the power that is
10 supplied to the wafer via the contact zone C2.

It would also be conceivable to supply the wafer with the supply voltages Vdd and/or VddR by using a battery permanently connected to the wafer or by using a capacitor permanently
15 connected to the wafer. Under certain circumstances, this dispenses with the necessity of making contact with the wafer, as the latter is removed from the wafer carrier, via a contact-making device provided on the removal device.

20 Provision can also be made to test the integrated circuits of a plurality of wafers simultaneously. This is possible, for example, by means of a test box TB shown in Fig. 12. The test box TB shown contains a housing and a plurality of wafer carriers WT₁ to WT_n which are arranged one above another and
25 which are constructed in the same way as or similarly to the wafer carrier WT described with reference to Figs. 10 and 11.

In particular, each wafer carrier contains a contact-making device WK, the contact-making devices of all the wafer carriers are connected to a common control device CM that provides and generates the necessary voltages and signals. The 5 control device CM is either transported together with the test box, or is connected to the contact-making devices WK via lines which are so long that the test box TB and the control device CM can be moved relative to each other. The simultaneous testing of the integrated circuits produced on a 10 plurality of wafers makes it possible to reduce to a minimum the number of control devices CM to be provided for this purpose.

It should be clear that the simultaneous testing of the 15 integrated circuits of a plurality of wafers can also be carried out in a different way than by using the test box TB described above. One possibility for this is illustrated in Fig. 13. In the arrangement illustrated in Fig. 13, the wafer carriers WT₁ ... WT_n are arranged one beside another on a disk S that can be rotated about an axis A. The wafer carriers WT₁ 20 ... WT_n are once again constructed in the same way as or in a similar way to the wafer carriers WT described with reference to Figs. 10 and 11. Arranged beside the rotating disk S is an external testing device ET. Each time a wafer carrier WT with 25 a wafer W located on it runs past the external testing device ET, the disk S is stopped and the following is performed:

the integrated circuits IC on the wafer W are tested,

5 the wafer W whose integrated circuits have previously been
tested are removed from the wafer carrier WT carrying them,

the next wafer is placed on the wafer carrier from which the
previous wafer was removed, and

10 testing of the newly added wafer is started, immediately or
later.

Such a configuration has the advantage that, during the entire
test process of the integrated circuits provided on the wafer,
15 the wafers can remain lying on the wafer carriers WT₁ to WT_n
and do not have to be moved around in between times.

It should be clear that the device carrying the wafer carrier
may also be a conveyor belt or any other desired transport
20 device by means of which the wafer carriers, with the wafers
arranged on them, can be conveyed to the external testing
device.

Given appropriate modification, the method of testing
25 integrated circuits described above can also be employed in

the case of semiconductor chips containing integrated circuits and in the case of components containing semiconductor chips.

A configuration by means of which components containing
5 semiconductor chips can be tested is illustrated in Fig. 14.

The arrangement shown in Fig. 14 includes a component carrier BTT carrying a large number of components BT to be tested, and a control device CM, which ensures that testing of the

10 components by means of the BIST modules contained in them (in the integrated circuits of the same) is at least begun before they are connected to an external testing device (for the purpose of evaluating the self-test results and/or for continued testing). The control device CM supplies the
15 components with the voltages and signals which are needed to initiate and carry out the testing of the same by means of the BIST modules present in them, that is to say, for example, Vdd, VddR, GND, RST_N, RSTREG_N and ITESTMODE. The components are driven, at least partially, in parallel, as a result of
20 which in each case a plurality of components BT or all of the components BT on the component carrier BTT can be tested simultaneously by the BIST modules contained in them.

The arrangement of the components BT on the component carrier
25 BTT is preferably carried out by means of an intermediate carrier which carries the components, which can be placed on

the component carrier BTT, and which (together with the components) can be removed from the component carrier in such a way that the supply of the voltages and signals which must be supplied to the components at the relevant time is not

5 interrupted. An exemplary embodiment of such an intermediate carrier is shown in Figs. 15A and 15B. The intermediate carrier shown in Figs. 15A and 15B and designated by the reference signal ZT is a carrier plate TP having pins P running through it. The component BT is placed on the

10 intermediate carrier ZT and is fixed in such a way that the component terminals, which are needed for testing the component by means of the BIST module, and the external testing device are connected electrically to respectively associated pins. A component placed on such an intermediate

15 carrier is optionally able to be supplied with the voltages and the signals which have to be supplied to it for testing by means of the BIST module via the pin parts PU running underneath the carrier plate TP or via the pin parts PO running above the carrier plate TP. The supply is carried out

20 via the lower pin parts PU when and as long as the intermediate carrier ZT is placed on the carrier plate TP. The supply is carried out via the upper pin parts PO when the intermediate carrier ZT is removed from the carrier plate TP (for example in order to be connected to the external testing

25 device that continues the component test). Semiconductor chips can also be tested in a similar way.

The method and devices described make it possible to test integrated circuits rapidly and simply, irrespective of the details of the practical implementation.