ELECTRIC MOTORS

By Shimi Cohen

Table of Contents

Motor Fundamentals	3
Motor Classification and Selection	3
Performance Parameters and Specifications	4
Power and Thermal Considerations	5
DC Motors and Control Systems	6
Brushed DC Motors	6
Brushless DC Motors (BLDC)	7
Coreless DC Motors	8
Precision Control Motors	9
Servo Motors	9
Stepper Motors	10
Micro Stepper Motors	11
Specialized Motor Technologies	12
Piezoelectric Motors (PZT)	12
Voice Coil Motors (VCM)	13
Vibration Motors	14
Motor Driver Circuit Design	15
Driver Topologies and Selection	15
Power Electronics and Switching	16
Control Signal Processing	17
Integration and Implementation	18
PCB Layout Considerations	18
EMI/EMC and Signal Integrity	19
Thermal Management	20
Real-World Applications	21
Smartphone Camera Module:	21
CNC Machine Tool Spindle:	22
Insulin Pump Dosing System:	23
Conclusion	24

MOTOR FUNDAMENTALS

Motor selection drives the entire system architecture. Understanding fundamental principles ensures optimal performance and cost-effective design solutions.

MOTOR CLASSIFICATION AND SELECTION

Motors are classified by operating principle, control method, and construction type. Each category offers distinct advantages for specific applications.

MOTOR TYPE	SIZE RANGE	TYPICAL VOLTAGE	COMPLEXITY	APPLICATIONS
DC BRUSHED	6-50MM	3-24V	LOW	TOYS, FANS, PUMPS
BLDC	8-40MM	5-48V	HIGH	DRONES, COOLING
SERVO	20-35MM	4.8-7.4V	MEDIUM	ROBOTICS, POSITIONING
STEPPER	8-35MM	5-24V	MEDIUM	3D PRINTERS, CNC
PZT	5-20MM	50-200V	HIGH	OPTICS, PRECISION

SELECTION CRITERIA:

- Torque requirements and speed range
- Power consumption constraints
- Control precision needs
- Environmental operating conditions
- Cost and complexity targets

PERFORMANCE PARAMETERS AND SPECIFICATIONS

Key specifications determine motor suitability for target applications. Understanding parameter relationships prevents design issues.

CRITICAL PARAMETERS:

- Rated Torque: Continuous torque at rated speed and voltage
- Peak Torque: Maximum short-term torque capability
- Speed Range: No-load to rated speed specifications
- Efficiency: Power output to input ratio at rated conditions
- Thermal Resistance: Junction to ambient thermal path

TORQUE-SPEED CHARACTERISTICS:

- DC motors: Linear torque-speed relationship
- Stepper motors: Torque decreases with speed
- Servo motors: Constant torque across speed range

POWER AND THERMAL CONSIDERATIONS

Thermal management directly impacts motor reliability and performance. Power dissipation calculations guide cooling system design.

POWER LOSS COMPONENTS:

- Copper losses (I²R heating)
- Iron losses (eddy currents, hysteresis)
- Mechanical losses (bearing friction, windage)
- Electronic losses (driver switching, conduction)

THERMAL DESIGN GUIDELINES:

- Maximum winding temperature: 120-150° C
- Thermal time constants: 5-30 minutes typical
- Forced cooling reduces thermal resistance by 50-70%
- Heat sinking improves continuous torque rating

DC MOTORS AND CONTROL SYSTEMS

DC motors provide simple control interfaces with predictable performance characteristics.

Driver circuit complexity varies significantly between brushed and brushless variants.

BRUSHED DC MOTORS

Brushed DC motors offer the simplest control interface. Mechanical commutation eliminates complex electronics at the cost of maintenance and EMI.

CONSTRUCTION CHARACTERISTICS:

- Permanent magnet stator construction
- Carbon brush commutation system
- Typical efficiency: 70-85%
- Life expectancy: 1000-5000 operating hours

DRIVER REQUIREMENTS:

- H-bridge for bidirectional control
- PWM speed control capability
- Current limiting and protection
- Flyback diode protection

PARAMETER	SMALL (10MM)	MEDIUM (20MM)	LARGE (35MM)
VOLTAGE	3-6V	6-12V	12-24V
CURRENT	50-200MA	200-800MA	0.5-2A
TORQUE	0.5-2MNM	5-20MNM	50-200MNM
SPEED	8000-15000 RPM	5000-12000 RPM	3000-8000 RPM

REAL-WORLD EXAMPLE:

Automotive window motor application uses 12V brushed motor with 50:1 gearbox. Driver provides 15A peak current with thermal protection. PWM frequency set to 20kHz to minimize audible noise.

BRUSHLESS DC MOTORS (BLDC)

BLDC motors eliminate brush maintenance while requiring electronic commutation. Threephase construction provides smooth torque delivery with high efficiency.

ELECTRONIC COMMUTATION:

Electronic switching replaces mechanical brushes. Hall sensors or encoders provide rotor position feedback for precise timing control.

CONTROL METHODS:

- Six-step commutation: Simple
- Sinusoidal control: Smooth operation,
- Field-oriented control: Max efficiency

DRIVER ARCHITECTURE:

- Three-phase bridge configuration
- Gate driver circuits for MOSFETs
- Current sensing and protection
- Position feedback processing

SPECIFICATION	TYPICAL RANGE	DESIGN IMPACT
POLE COUNT	2-12 POLES	AFFECTS COMMUTATION FREQUENCY
HALL RESOLUTION	60° ELECTRICAL	DETERMINES CONTROL PRECISION
BACK EMF	0.5-5V/KRPM	INFLUENCES DRIVER VOLTAGE
PHASE RESISTANCE	0.5-10Ω	CURRENT CONTROL REQUIREMENTS

REAL-WORLD EXAMPLE:

Drone motor application: 22mm BLDC with 14-pole design. ESC provides 30A continuous current with regenerative braking. Control loop operates at 32kHz switching frequency.

CORELESS DC MOTORS

Coreless construction eliminates cogging torque and reduces rotor inertia. Hollow rotor design enables rapid acceleration and precise speed control.

DESIGN ADVANTAGES:

- Zero cogging torque
- Linear torque-speed characteristics
- Low rotor inertia (fast response)
- Reduced electrical noise

APPLICATION BENEFITS:

- Smooth operation at low speeds
- Precise positioning capability
- High speed operation potential
- Minimal vibration generation

DRIVER CONSIDERATIONS:

- Lower inductance requires careful PWM design
- Higher current ripple due to reduced inductance
- Fast current rise time needs protection
- EMI filtering more critical

PRECISION CONTROL MOTORS

Precision applications demand accurate positioning and predictable motion control. Servo and stepper motors provide deterministic positioning with different control approaches.

SERVO MOTORS

Servo motors integrate motor, gearbox, and control electronics in compact packages. Closed-loop control ensures accurate positioning despite load variations.

SYSTEM COMPONENTS:

Servo systems combine DC motor, position sensor, control electronics, and mechanical gearing. Feedback control maintains position accuracy under varying loads.

Control Signal Types:

PWM position control: 1-2ms pulse width

Analog voltage control: 0-5V or ±2.5V

Digital communication: UART, I²C, CAN protocols

PERFORMANCE SPECIFICATIONS:

PARAMETER	MICRO SERVO	STANDARD SERVO	HIGH-TORQUE SERVO
TORQUE	0.8-1.5KG·CM	3-6KG⋅CM	15-35KG⋅CM
SPEED	0.10-0.15 S/60°	0.15-0.25 S/60°	0.20-0.30 S/60°
WEIGHT	8-12G	40-60G	65-85G
VOLTAGE	4.8-6V	4.8-7.4V	6-8.4V

STEPPER MOTORS

Stepper motors provide open-loop positioning without feedback sensors. Step-by-step motion enables precise positioning with simple control interfaces.

OPERATING PRINCIPLES:

Electromagnetic stepping creates discrete angular movements. Step resolution depends on motor construction and drive technique.

STEP RESOLUTION TYPES:

- Full-step: Basic resolution (1.8° typical)
- Half-step: Double resolution with alternating energization
- Micro stepping: Subdivision using current modulation

DRIVER TYPES:

- Unipolar drivers: Simple, lower torque
- Bipolar drivers: Higher torque, complex switching
- Micro stepping drivers: Smooth motion, high resolution

MOTOR SIZE	STEP ANGLE	HOLDING TORQUE	RATED CURRENT
NEMA 8	1.8°	2-6MNM	0.2-0.6A
NEMA 11	1.8°	8-25MNM	0.4-1.2A
NEMA 14	1.8°	20-50MNM	0.8-2.0A

MICRO STEPPER MOTORS

Miniaturization challenges require specialized design approaches. Micro steppers enable precision positioning in space-constrained applications.

CONSTRUCTION CHALLENGES:

Heat dissipation limitations

Reduced magnetic flux density

Wire bonding complexity

Assembly precision requirements

PERFORMANCE TRADE-OFFS:

Lower torque output per size

Increased thermal sensitivity

Higher precision manufacturing cost

Limited speed capability

APPLICATIONS:

Medical instruments requiring precise dosing

Optical systems with focus adjustment

Miniature robotics and automation

Precision measurement equipment

SPECIALIZED MOTOR TECHNOLOGIES

Advanced applications require specialized motor technologies. Piezoelectric and voice coil motors provide unique capabilities for precision positioning and linear motion.

PIEZOELECTRIC MOTORS (PZT)

Piezoelectric motors use ceramic material deformation for ultra-precise positioning.

Nanometer resolution enables advanced optical and scientific applications.

Operating Principles: Piezoelectric effect converts electrical energy to mechanical

displacement. Ceramic stack or tube construction provides linear or rotary motion.

KEY ADVANTAGES:

- Nanometer positioning resolution
- High force-to-size ratio
- Zero backlash operation
- Silent operation capability
- Magnetic field immunity

- High voltage amplification (100-200V)
- Precision voltage control
- Fast switching capability
- Capacitive load management

ACTUATOR TYPE	DISPLACEMENT	FORCE	RESOLUTION	RESPONSE TIME
STACK	10-150 m M	100-5000N	0.1NM	<1MS
TUBE	10-50 M M	10-500N	0.5NM	<2MS
BENDER	0.1-2MM	1-50N	1NM	<5MS

VOICE COIL MOTORS (VCM)

Voice coil motors provide linear motion without mechanical transmission. Electromagnetic force generation enables rapid response and precise positioning.

CONSTRUCTION FEATURES:

Permanent magnet assembly creates uniform magnetic field. Moving coil generates force proportional to applied current. Linear relationship simplifies control design.

PERFORMANCE CHARACTERISTICS:

- Force directly proportional to current
- No cogging or stiction effects
- · Unlimited continuous positioning
- High acceleration capability
- Reversible motion without switching

CONTROL CONSIDERATIONS:

- Current-mode control for force regulation
- Position feedback for closed-loop operation
- Thermal management for continuous operation
- Power amplifier linearity requirements

REAL-WORLD EXAMPLE:

Smartphone camera autofocus uses 8mm VCM with 50mN force capability. Voice coil resistance: $15\,\Omega$, inductance: 0.1mH. Control system achieves focus lock in 200ms with $2\,\mu$ m positioning accuracy.

VIBRATION MOTORS

Vibration motors provide haptic feedback through controlled mechanical oscillation. Eccentric weight rotation or linear oscillation creates tactile sensations.

MOTOR TYPES:

- Eccentric rotating mass (ERM): Rotational vibration
- Linear resonant actuator (LRA): Controlled oscillation
- Coin vibrators: Ultra-compact ERM design

DESIGN PARAMETERS:

- Vibration amplitude and frequency
- Start-up and brake-down time
- Power consumption optimization
- Mechanical mounting considerations

TYPE	SIZE	FREQUENCY	AMPLITUDE	POWER
ERM COIN	10X3MM	150-250HZ	VARIABLE	50-150MW
ERM CYLINDER	6X15MM	100-200HZ	VARIABLE	100-300MW
LRA	8X3MM	150-250HZ	FIXED	80-200MW

REAL-WORLD EXAMPLE:

Gaming controller uses LRA for realistic feedback. Resonant frequency: 175Hz, Q-factor: 15. Driver provides overdrive voltage for fast attack time. Control system synchronizes vibration with game events.

MOTOR DRIVER CIRCUIT DESIGN

Driver circuits interface control signals with motor power requirements. Proper driver selection and design ensures reliable operation and optimal performance.

DRIVER TOPOLOGIES AND SELECTION

Driver topology selection depends on motor type, power level, and control requirements. Each topology offers specific advantages and limitations.

H-BRIDGE DRIVERS:

H-bridge configuration enables bidirectional current flow for DC motor control. Four switching elements provide forward, reverse, and braking modes.

Bridge Types:

- Discrete MOSFET bridges: Custom design flexibility
- Integrated bridge ICs: Simplified implementation
- Smart bridge modules: Built-in protection features

Selection Criteria:

- Current rating with safety margin
- Voltage rating above maximum supply
- Switching frequency capability
- Protection feature requirements
- Thermal package considerations

DRIVER TYPE	CURRENT	FEATURES	APPLICATIONS
LOGIC LEVEL	0.5-3A	PWM INPUT, DIRECTION CONTROL	SMALL DC MOTORS
POWER MODULE	5-50A	INTEGRATED PROTECTION	INDUSTRIAL DRIVES
GATE DRIVER	VARIABLE	MOSFET CONTROL ONLY	CUSTOM DESIGNS

50

0.011

0.015

50

Single

TO-252

POWER ELECTRONICS AND SWITCHING

Switching power electronics enable efficient motor control. MOSFET selection and gate driving directly impact system efficiency and EMI performance.

MOSFET SELECTION:

Power MOSFET characteristics determine driver performance and efficiency. Key parameters guide selection for specific applications.

V_{DS} (V)

 $I_D(A)$

Configuration

Package

 $R_{DS(on)}(\Omega)$ at $V_{GS} = 10 \text{ V}$ $R_{DS(on)}(\Omega)$ at $V_{GS} = 4.5 \text{ V}$

Critical Parameters:

- RDS(on): Conduction resistance at rated gate voltage
- Gate charge: Switching energy and speed
- Safe operating area: Current and voltage limits
- Thermal resistance: Heat dissipation capability

Gate Driving Requirements:

- Gate voltage: 10-15V for full enhancement
- · Gate current: Fast switching requires high current
- Dead time: Prevents shoot-through currents
- Protection: Over-current, over-temperature monitoring

CONTROL SIGNAL PROCESSING

Control signal conditioning converts low-level control signals to motor drive commands. Signal processing enables advanced control features and protection functions.

PWM GENERATION:

Pulse width modulation controls average motor voltage. PWM frequency selection balances switching losses with ripple current.

Frequency Selection Guidelines:

- 20-50kHz: Audible noise elimination
- Motor time constant: 10x PWM period minimum
- Switching loss consideration
- EMI regulation compliance

CURRENT SENSING:

Current feedback enables protection and advanced control modes. Sensing methods offer different accuracy and cost trade-offs.

Sensing Methods:

- Shunt resistor: High accuracy, power loss
- Hall effect sensor: Isolated, moderate accuracy
- Current transformer: AC sensing only
- Integrated sensing: Built into driver ICs

INTEGRATION AND IMPLEMENTATION

Successful motor integration requires careful consideration of PCB layout, electromagnetic compatibility, and thermal management. Poor integration compromises system reliability and performance.

PCB LAYOUT CONSIDERATIONS

PCB layout directly affects motor driver performance and EMI characteristics. Strategic component placement and routing minimize interference and voltage drops.

Power Distribution Design: High current motor circuits require robust power distribution.

Copper weight and trace width calculations prevent voltage drops and heating.

TRACE WIDTH GUIDELINES:

1oz copper: 1A per mm trace width

2oz copper: 1.5A per mm trace width

Temperature rise: 10° C maximum recommended

Via current: 0.5A per via typical

GROUND PLANE STRATEGY:

- Separate analog and power grounds
- Single-point ground connection
- Ground plane splits at high current paths
- Return current path optimization

COMPONENT PLACEMENT:

- Gate drivers close to MOSFETs
- Decoupling capacitors near power pins
- Current sense resistors in ground return
- Heat-generating components separated

EMI/EMC AND SIGNAL INTEGRITY

Motor switching generates electromagnetic interference requiring careful design attention.

EMI mitigation prevents interference with sensitive circuits and regulatory compliance.

EMI GENERATION SOURCES:

- Fast current switching in motor windings
- Gate drive switching transitions
- Commutator brushing in DC motors
- Cable radiation from high dI/dt currents

MITIGATION TECHNIQUES:

- Switching frequency spreading
- Snubber circuits across switches
- Common-mode chokes in power lines
- Shielded motor cables
- PCB ground plane optimization

FREQUENCY RANGE	FILTER TYPE	IMPLEMENTATION
150KHZ-30MHZ	CONDUCTED	LC INPUT FILTERS
30-300MHZ	RADIATED	FERRITE BEADS, CABLES
>300MHZ	FAR-FIELD	SHIELDING, LAYOUT

THERMAL MANAGEMENT

Thermal management ensures reliable operation under maximum load conditions.

Temperature monitoring prevents damage and enables predictive maintenance.

HEAT GENERATION SOURCES:

Motor and driver components generate heat requiring dissipation. Thermal analysis guides cooling system design.

HEAT SOURCES:

- Motor copper losses: I²R heating in windings
- Driver switching losses: MOSFET switching energy
- Conduction losses: Forward voltage drops
- Core losses: Magnetic hysteresis and eddy currents

COOLING METHODS:

- Natural convection: Passive cooling, limited capacity
- Forced convection: Active cooling, higher capacity
- Heat sinks: Increased surface area
- Thermal interface materials: Improved heat transfer

REAL-WORLD APPLICATIONS

Practical implementation examples demonstrate motor and driver integration in commercial products. Case studies highlight design decisions and trade-offs.

SMARTPHONE CAMERA MODULE:

Voice coil motor provides autofocus functionality in space-constrained environment.

DESIGN REQUIREMENTS:

Package size: 8x8x4mm maximum

Focus range: 10cm to infinity

Focus speed: <300ms acquisition time

Power budget: 100mW maximum

Operating temperature: -20° C to +70° C

IMPLEMENTATION DETAILS:

- 6mm voice coil motor with integrated position sensor
- Linear driver with current control capability
- Closed-loop position control with PID algorithm
- Power management with sleep mode operation

PERFORMANCE RESULTS:

• Focus accuracy: $\pm 2 \mu$ m over full range

• Power consumption: 80mW active, 10μ W standby

Focus acquisition: 250ms average time

Reliability: 1M cycle minimum operation

CNC MACHINE TOOL SPINDLE:

High-speed brushless motor drives precision machining spindle with variable speed control.

SYSTEM SPECIFICATIONS:

Speed range: 1000-24000 RPM

Power output: 2kW continuous

• Speed regulation: $\pm 0.1\%$ at rated load

• Operating environment: $\pm 5^{\circ}$ C to $+40^{\circ}$ C

Duty cycle: 24/7 continuous operation

CONTROL IMPLEMENTATION:

Vector control with field-oriented algorithm

Encoder feedback: 4096 pulses per revolution

Current control bandwidth: 2kHz

Speed control bandwidth: 200Hz

Temperature monitoring with thermal model

INSULIN PUMP DOSING SYSTEM:

Micro stepper motor provides precise medication dosing with safety-critical requirements.

DESIGN CONSTRAINTS:

Dosing accuracy: ±2% over full range

Minimum increment: 0.025 units insulin

Battery operation: 3-month minimum life

Size constraints: 50x30x15mm maximum

Safety certification: IEC 60601 compliance

TECHNICAL IMPLEMENTATION:

8mm micro stepper motor with 400 steps/revolution

• Micro stepping driver with 64x subdivision

Optical encoder verification of dosing accuracy

Redundant position sensing for safety verification

· Low-power control electronics with sleep modes

SAFETY FEATURES:

- Occlusion detection through back-EMF monitoring
- Motor stall detection and fault reporting
- Battery voltage monitoring with early warning
- Self-test procedures on power-up
- Audit trail logging of all dosing events

CONCLUSION

Motor and driver integration success depends on systematic design approach considering all system interactions. Performance, cost, and reliability optimization requires understanding fundamental principles and practical implementation challenges.

KEY DESIGN PRINCIPLES:

- Motor selection drives entire system architecture
- Driver capability must exceed motor requirements
- Thermal management ensures long-term reliability
- EMI mitigation prevents system interference
- Integration quality affects overall performance

FUTURE TRENDS:

- Integrated motor-driver modules
- Digital control with embedded processors
- Advanced materials for higher power density
- IoT connectivity for predictive maintenance
- Al-enhanced control algorithms