Rozpoznawanie obrazów - lab.7 Poprawa jakości klasyfikacji.

1. Wstęp

Celem ćwiczenia była poprawa jakości klasyfikacji zdjęć odzieży ze zbioru danych Fashion MNIST dostępnej pod adresem:

https://github.com/zalandoresearch/fashion-mnist

Plik do zadania laboratoryjnego zawierał wyjścia, wcześniej nauczonych, 7 klasyfikatorów. - a dokładnie wynik klasyfikacji czyli przypisaną etykietę. Rozwiązanie polega na zbudowaniu metaklasyfikatora, wykorzystującego wyniki klasyfikacji indywidualnych klasyfikatorów. Ostateczna decyzja podejmowana jest na podstawie 7 głosów zgodnie z trzema politykami:

- Polityka jednomyślności
- · Polityka absolutnej większości
- Polityka zwykłej większości

Jakość klasyfikacji rozwiązania referencyjnego:

	Jednomyślność			Absolutna większość			Zwykła większość		
	OK.	Error	Reject	OK.	Error	Reject	OK.	Error	Reject
Współczynniki rozpoznania i funkcja celu dla zbioru walidacyjnego	85,45	2,73	11,82	92,62	6,82	0,56	92,76	7,00	0,24
	79,99			78,98			78,76		
Współczynniki rozpoznania i funkcja celu dla zbioru testowego	84,30	2,99	12,71	91,82	7,63	0,55	91,95	7,80	0,25
	78,32			76,56			76,35		

Celem ćwiczenia było zatem stworzenia metaklasyfikatora o lepszej jakości klasyfikacji niż powyżej przedstawione wyniki referencyjne.

2. Propozycja rozwiązania oraz wyniki

Pomysłem na poprawę rozwiązania jest pogrupowanie dostępnych klasyfikatorów w komitety głosujące - podział ten nastąpi zgodnie z efektywnością danej pary. Tzn. Klasyfikatory zostaną pogrupowane w pary, które maksymalizują jakość klasyfikacji.

W tym celu zmodyfikowano funkcję dokonującą głosowania jednomyślnego (justVoteUni.m) oraz główny skrypt (mainscript_m.m), który w bieżącej wersji postępuje następująco:

- 1. Iteracja po wszystkich możliwych kombinacjach par klasyfikatorów.
- 2. Dla każdej pary klasyfikatorów przeprowadzenie klasyfikacji (klasyfikatory zgodne co do klasy para oddaje jeden wspólny głosuje na tę klasę, klasyfikatory niezgodne co do klasy odpowiedź wymijająca.
- 3. Obliczenie wartości funkcji celu dla komitetu-pary
- 4. Wybranie pary o największej wartości
- 5. Usunięcie wybranych przed chwilą klasyfikatorów z puli do parowania.

(Ponieważ dysponujemy nieparzystą liczbą klasyfikatorów, ostani nie do pary zostaje dołączony jako samotny klasyfikator i jako jedyny głosuje samodzielnie)

Dla rozpatrywanego zestawu klasyfikatorów - a raczej wyników ich głosowania najlepszymi parami okazały się {2,7}, {1,4}, {5,6}.

Ilustracja procesu grupowania klasyfikatorów w głosujące pary.

Poniżej przedstawiono wyniki klasyfikacji otrzymane w tak zmodyfikowanym podejściu:

Zbiór walidacyjny

	<u>Jednomyślność</u>			Absol	utna więk	<u>szość</u>	Zwykła większość		
	ок	NOK	Reject	ОК	NOK	Reject	ок	NOK	Reject
	85,45%	2,73%	11,82%	88,93%	4,21%	6,86%	90,09%	4,97%	4,94%
f. celu	79,9%			80,51%			80,15%		

Zysk jakości na zbiorze walidacyjnym: /79,99% - 80,51% / = 0,52%

Zbiór testowy

	<u>Jednomyślność</u>			Absolutna większość			Zwykła większość		
	ок	NOK	Reject	ОК	NOK	Reject	ОК	NOK	Reject
	84,30%	2,99%	12,71%	88,17%	4,76%	7,07%	89,24%	5,47%	5,29%
f. celu	78,32%			78,65%			78,30%		

Zysk jakości na zbiorze testowym: /78,32% - 78,65% / = 0,33%

3. Podsumowanie i wnioski

Zaproponowana i zrealizowana metoda przyniosła zamierzony skutek tj. poprawę jakości metaklasyfikatora zarówno na zbiorze walidacyjnym jak i testowym. Okazało się również, że dla takiego zestawu głosujących *par-klasyfikatorów* głosowanie absolutną większością zaskutkowało najlepszym wynikiem f.celu - w przeciwieństwie do głosowania indywidualnych klasyfikatorów, gdzie najlepszy wynik osiągnięto poprzez głosowanie jednomyślne.