

Совет Советских
Социалистических
Республик

Государственный комитет
Совета Министров СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(II) 620582

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-зу -

(22) Заявлено 04.01.76 (21) 2308455/22-03

(31) М. Кл²

с присоединением заявки № -

Б 21 В 29/06

(23) Приоритет -

(48) Опубликовано 25.08.78. Бюллетень № 31

(08) УДК 622.248.4
(088.8)

(45) Дата опубликования описания 11.07.78

(72) Авторы
изобретения

В.В. Еременко, С.В. Виноградов, Ф.Ф. Конрад, С.Ф. Петров,
В.Н. Савченко и В.А. Габец

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению
скважин и буровым растворам

(54) УСТРОЙСТВО ДЛЯ УСТАНОВКИ МЕТАЛЛИЧЕСКОГО ПЛАСТИРЯ ВНУТРИ ТРУБЫ

Изобретение относится к устройствам, применяемым в нефтяной и газовой промышленности при ремонте колонны труб в буровых и эксплуатационных скважинах.

Известно устройство для установки металлического пластира внутри трубы, содержащее упорный фланец на корпусе, переводник или якорь, жесткий и расширяющийся многосекторный конус, привод конусов, выполненный в виде гидроцилиндра, винтовая пары или тяги [1].

Недостаток указанного устройства заключается в том, что при его работе возникают значительные осевые нагрузки.

Наиболее близким решением из известных является устройство для установки металлического пластира внутри трубы, содержащее ходовой винт с гайкой, электропривод, якорь, заготовку пластира, распорную втулку, на которой установлены расширительный конус, цанговая головка и обоймы [2].

Недостатком его является то, что цанговая головка освобождается от фиксирующей обоймы до входления в гофрированный патрубок. При последующем входении уже расширившейся цанговой головки в гофрированный патрубок можно

пократно увеличивается сопротивление ее перемещению и осевые нагрузки на устройство в целом.

Цель изобретения - снижение осевых нагрузок на устройство при его работе.

Это достигается тем, что устройство скользит настолько свободно с обоймой хвостовиком с буртом и концентрически размещенной в хвостовике и связанный с ходовым звеном втулкой и с отверстием буртом.

На чертеже изображено устройство для установки металлического пластира внутри трубы, продольный разрез. Устройство имеет электрокабель 1, якорь цапфового типа 2, упор 3 заготовки пластира, расширяющийся конус 4, цанговую головку 5, обойму 6, хвостовик обоймы 7 с упорными буртами 8, втулку 9 с буртами 10 и 11, гайку 12/ходовой винт 13, распорную втулку 14 и электропривод 15.

Устройство работает следующим образом. Заготовку пластира в виде продольного гофрированного патрубка захватывают между упором 3 и конусом 4. В таком положении устройство спускают на кабеле в скважину, в интервал установки пластира. Затем выключают элек-

тройником 15 и закрепляются на ремонтной трубе. Ходовой винт 13 начинает вращаться, а гайка 12, перемещаясь вверх по винту, толкает перед собой через распорную втулку 14 расширяющий конус 4 и цапловую головку 5. При этом конус с головкой входит в гофрированный патрубок, правдоподобно расширять его, а хвостовик 7 обоймы 6 перемещается относительно втулки 9 до упора один в другой буртов 8 и 11. После этого обойма 6, остававшаяся винта, а цапловая головка, прошедшая сквозь обойму, выходит из нее, освобождаясь от обоймы, которую расширяется, расправляет гофры пластыря и прижимает его к ремонтной трубе. При дальнейшем движении расширяющегося конуса и цапловой головки обеспечивается равномерное прижатие пластыря к трубе по всей его длине. Осевая нагрузка на устройство определяется при этом в основном толщиной листьев гофрированного патрубка, и поэтому остается примерно постоянной.

Устройство работает без перегрузок, имеет высокую надежность и может применяться для установки различных метал-

лических пластырей в трубах малого диаметра и с ослабленными стенками.

Формула изобретения

Устройство для установки металлического пластыря внутри трубы, содержащее ходовой винт с гайкой, электропривод, игла, заготовку пластыря, распорную втулку, на которой установлена расширяющий конус, цапловая головка и обойма, отличающееся тем, что, с целью снижения осевой нагрузки при его работе, это устройство частично соединяется с обоймой хвостовиком с буртом и концентрическо размещено в хвостовике и связана с ходовым винтом втулкой с ответным буртом.

Источники информации, приведены во внимание при экспертизе:

1. Смирнов И.А. Усилитель герметичности обводных колонн в нефтяных и газовых скважинах. Обзор ВНИИСИГ, сер. Бурение, №., 1972, с. 56 - 61.

2. Патент США № 3179168, кл. 166-14 1963.

Чертёж
тираж 734 Заказ 4613/24
Подпись

Филиал ПНП "Патент",
г.Ужгород, ул.Проектная, 4

Union of Soviet Socialist Republics	SPECIFICATION OF INVENTOR'S CERTIFICATE	(11) 620582
[state seal]	(61) Inventor's certificate of addition — (22) Applied Jan 04 1976 (21) 2308455/22-03 with the attachment of application No. - (23) Priority - (43) Published Aug 25 1978. Bulletin No. 31 (45) Publication date of specification Jul 11 1978	[stamp] THE BRITISH LIBRARY -5 MAR 1979 SCIENCE REFERENCE LIBRARY (51) Int. Cl. ² E 21 B 29/00 (53) UDC 622.248.4 (088.8)
State Committee of the USSR Council of Ministers on Inventions and Discoveries		
(72) Inventors	V. V. Eremenko, S. V. Vinogradov, F. F. Konrad, S. F. Petrov, V. N. Savchenko, and V. A. Gabets	
(71) Applicant	All-Union Scientific-Research Institute of Well Casing and Drilling Muds	

(54) DEVICE FOR PLACING A METAL PATCH INSIDE A PIPE

1

The invention relates to devices used in the oil and gas industry for casing repair in drilled and development wells.

A device is known for placing a metal patch inside a pipe that contains a support flange on a housing, a sub or an anchor, a rigid and a multisector expanding cone, a drive for the cones implemented in the form of a hydrocyclone, a screw pair, or a linkage [1].

A disadvantage of the aforementioned device involves the fact that significant axial loads arise during its operation.

The closest known design is a device for placing a metal patch inside a pipe that contains a feed screw with nut, an electric drive, an anchor, a patch blank, a spacer bushing with an expanding cone, a collet head, and a holder mounted thereon [2].

A disadvantage of this design is the fact that the collet head is released from the locking holder before it enters the corrugated sleeve. Upon subsequent entry of the already expanded collet head into the corrugated sleeve,

the resistance to its motion and the axial loads on the device as a whole increase many-fold.

The aim of the invention is to reduce the axial loads on the device during its operation.

This is achieved by the fact that the device is equipped with a liner that is rigidly connected with the holder and that has a shoulder, and a bushing concentrically disposed in the liner and connected with a feed screw and with a mating shoulder.

The drawing depicts the device for placing a metal patch inside a pipe, in longitudinal section.

The device has electric cable 1, anchor slips 2, support 3 for the patch blank, expanding cone 4, collet head 5, holder 6, liner 7 of the holder with thrust shoulder 8, bushing 9 with shoulders 10 and 11, nut 12, feed screw 13, spacer bushing 14, and electric drive 15.

The device operates as follows. The patch blank in the form of a longitudinally corrugated sleeve is secured between support 3 and cone 4. In that position, the device is lowered on the cable into the well, to the interval where the patch is to be set. Then electric drive 15 is turned on

and it is secured in the pipe to be repaired. Feed screw 13 begins to rotate, while nut 12 moving upward along the screw, pushes ahead of it expanding cone 4 and collet head 5 through spacer bushing 14. Then the cone with the head enters the corrugated sleeve, pre-expanding it, while liner 7 of holder 6 moves relative to bushing 9 as far as shoulder 8 will go to the other shoulder 11. After this, holder 6 stops, while the collet head, continuing to move, is released from the holder, is elastically expanded, straightens out the corrugations of the patch, and squeezes it against the pipe to be repaired. Further motion of the expanding cone and collet head ensures that the patch is uniformly squeezed against the pipe over its entire length. The axial load on the device in this case is determined mainly only by the rigidity of the corrugated sleeve and so remains approximately constant.

The device operates without overloading, has high reliability, and can be used to place long metal

patches in small-diameter pipes even with weakened walls.

Claim

A device for placing a metal patch inside a pipe, containing a feed screw with nut, an electric drive, an anchor, a patch blank, a spacer bushing with an expanding cone, collet head, and holder mounted thereon, *distinguished* by the fact that, with the aim of reducing axial loads during its operation, it is equipped with a liner that is rigidly connected with the holder and that has a shoulder, and a bushing concentrically disposed in the liner and connected with a feed screw and with a mating shoulder.

Information sources considered in the examination

1. I. A. Sidorov, Repairing Leaks in Oil and Gas Wells. Drilling Series. [in Russian], VNIIOENG, Moscow (1972), pp. 56-61.
2. US Patent No. 3179168, cl. 166-14, 1965.

[see Russian original for figure]

TsNIIPI* Order 4613/24
Run 734 Subscription edition

Branch of "Patent" Printing Production Plant,
4 ul. Proektnaya, Uzhgorod

*Translator's Note: TsNIIPI = Central Scientific Research Institute of Patent Information and Technical and Economic Research

TRANSPERFECT | TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

ATLANTA	RU2016345 C1
BOSTON	RU2039214 C1
BRUSSELS	RU2056201 C1
CHICAGO	RU2064357 C1
DALLAS	RU2068940 C1
DETROIT	RU2068943 C1
FRANKFURT	RU2079633 C1
HOUSTON	RU2083798 C1
LONDON	RU2091655 C1
LOS ANGELES	RU2095179 C1
MIAMI	RU2105128 C1
MINNEAPOLIS	RU2108445 C1
NEW YORK	RU21444128 C1
PARIS	SU1041671 A
PHILADELPHIA	SU1051222 A
SAN DIEGO	SU1086118 A
SAN FRANCISCO	SU1158400 A
SEATTLE	SU1212575 A
WASHINGTON, DC	SU1250637 A1
	SU1295799 A1
	SU1411434 A1
	SU1430498 A1
	SU1432190 A1
	SU 1601330,A1
	SU 001627663 A
	SU 1659621 A1
	SU 1663179 A2
	SU 1663180 A1
	SU 1677225 A1
	SU 1677248 A1
	SU 1686123 A1
	SU 001710694 A
	SU 001745873 A1
	SU 001810482 A1
	SU 001818459 A1
	350833
	SU 607950
	SU 612004
	620582
	641070
	853089
	832049
	WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart
Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serina

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.