

Ehong Technology Co.,Ltd

EH-MC30

Low Energy Module Data Sheet EH-20170218-DS Rev1.1

Bluetooth® Radio

- Fully embedded Bluetooth® v4.2 single mode
- TX power+1.5dBm,-93dbm RX sensitivity
- 128-bit encryption security
- Range up to 80m
- Integrated chip antenna
- Multipoint capability (2devices at master)
- 32-bit ARM Cortex M0 CPU core

Support Profiles

- BLE (Master and slave) the same
- The generic attribute profile (GATT)
- HID Health care, Sports and fitness, Proximity sensing
- Alerts and timer profiles
- HID (keyboards, remote)

User Interface

- UART (CTS/RTS)
- SPI master/Slave interface
- Debug SPI interface for programming (SWD)
- I²C master controller
- Quadrature Decoder (QDEC)
- Real Timer Counter (RTC)
- 4 x LED PWMs
- 10 bit Aux ADC
- 256 KB internal flash

• General I/O

- 22 general purpose I/Os
- 5 analogue I/O (10bit ADC)
- Single voltage supply: 3.3V typical
- Small form factor: 15.72 x 9.15x 2.2mm
- Operating temperature range: -25 °C to 75 °C

Feb 18 2017

VERSION HISTORY

Version	Comment
V1.0	Current consumption added
V1.1	Certification information updated.

Confidential and Proprietary - Ehong Technology Co.,Ltd

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DCC@ehlink.com.cn.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Ehong Technology Co.,Ltd or its affiliated companies without the express approval of Ehong Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Ehong Technology Co.,Ltd.

This Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Ehong Technologies. All other trademarks listed herein are owned by their respective owners.

© 2016 Ehong Technology Co.,Ltd All rights reserved.

1. Contents

1.	De	scription	5
2.	Ар	plications	5
3.	EH	-MC30 Product numbering	5
		_	
4.	Ele	ectrical Characteristics	5
4.	.1 Re	ecommended Operation Conditions	5
4.	.2 Al	bsolute Maximum Rating	6
4.	.4 Pc	ower Consumption	6
5.	Pin	nout and Terminal Description	7
5.	1 Pi	n Configuration	7
6.	Ph	ysical Interfaces	8
6	.1.	Power Supply	8
6	.2.	PIO	
6	.3.	AIO	9
6	.4.	PWMs	9
6	.5.	UART	9
6	.6.	I2C Master/ Slave	10
6	.7.	SPI Master/Slave	11
6	.8.	SPI Debug	12
7.	Re	ference Design	13
8.	Lay	yout Guidelines	13
9.	Me	chanical and PCB Footprint Characteristics	14
10	FH	-MEVK-MC30	14
	0.1.	EH-MEVK-MC30-PCB	
	0.2.	EH-MEVK-MC30-SCH	
11.	Pa	cking	16
12.	So	Idering Recommendations	16
13	Co	ntact Information	17

2. Table of Tables

	ECOMMENDED OPERATION CONDITION	
TABLE 2: A	BSOLUTE MAXIMUM RATING	6
	SD Protection	
	URRENT CONSUMPTION	
	N TERMINAL DESCRIPTION	
	OSSIBLE UART SETTINGS	
3 Ta	ble of Figures	
J. 16	ible of Figures	
	PINOUT OF EH-MC30	
FIGURE 2:	POWER SUPPLY PCB DESIGN	9
FIGURE 3:	CONNECTION TO HOST DEVICE	10
FIGURE 4:	WTI SPECIFICATIONS	10
FIGURE 5:	SCL/SDA TIMING	11
	TWI TIMING PARAMETERS	
FIGURE 7:	SPI SPECIFICATIONS	11
FIGURE 8:	SPI TIMING DIAGRAM, ONE BYTE TRANSMISSION, SPI MODE	12
FIGURE 9:	SPI TIMING PARAMETERS	12
FIGURE 10:	REFERENCE DESIGN	13
FIGURE 11:	CLEARANCE AREA OF ANTENNA	13
FIGURE 12:	PHYSICAL DIMENSIONS AND RECOMMENDED FOOTPRINT (UNIT: MM, DEVIATION:0.02MM)	14
FIGURE 13:	EH-MEVK-MC30-PCB	14
FIGURE 14:	EH-MEVK-MC30-SCH	15

1. Description

EH-MC30 Bluetooth® low energy single mode module is a single mode device targeted for low power sensors and accessories.

The module offers all Bluetooth® low energy features V4.2: radio, stack, profiles and application space for customer applications, internal integration Cortex-M0 CPU so no external processor is needed. The module also provides flexible hardware interfaces to connect sensors, simple user interfaces or even displays directly to the module.

The module can be powered directly with a standard 3V coin cell batteries or pair of AAA batteries. In lowest power sleep mode it consumes only 2.6uA and will wake up in few hundred microseconds.

After buying Bluetooth® module, we provide free technical support APP of iOS or Android.

2. Applications

- HID: keyboards, mice, touchpads, advanced remote controls with voice activation
- Sports and fitness sensors: heart rate, runner/cycle speed and cadence
- Health sensors: blood pressure, thermometer and glucose meters
- Mobile accessories: watches, proximity tags, alert tags and camera controls
- Smart home: heating/lighting control

3. EH-MC30 Product numbering

4. Electrical Characteristics

4.1 Recommended Operation Conditions

Operating Condition	Min	Typical	Max	Unit
Operating Temperature Range	-25	+25	+75	°C
Battery (VDD_BAT) operation	2.1	+3.0	+3.6	V
I/O Supply Voltage (VDD_PIO)	1.8	+3.0	+3.6	V
AIO input	0	-	+3.6	V
Frequency Range	2402		2480	MHz

Table 1: Recommended Operation Condition

4.2 Absolute Maximum Rating

Rating	Min	Max	Unit
Storage Temperature	-40	+125	°C
Battery (VBAT) operation*	-0.3	3.9	V
I/O supply voltage	-0.3	+VDD+0.3V	V
Other Terminal Voltages except RF	Vss-0.4	VBAT+0.4	V

Table 2: Absolute Maximum Rating

^{*} Short-term operation up to a maximum of 10% of product lifetime is permissible without damage, but output regulation and other specifications are not guaranteed in excess of 4.2V.

Condition	Class	Max Rating
Human Body Model Contact Discharge per JEDEC EIA/JESD22-A114	1C	4000V (all pins)
Charged Device Model Contact Discharge per JEDEC EIA/JESD22-C101	C1	750V (all pins)

Table 3: ESD Protection

4.4 Power Consumption

The current consumption are measured at the VBAT

Mode	Description	Total typical current at 3.3V (average)
TX at - 1.5dBm	3V using on-chip DC-DC	6.3mA
TX at 0dBm	3V using on-chip DC-DC	10.5mA
TX at + 1.5dBm	3V using on-chip DC-DC	11.8mA
RX mode	3V using on-chip DC-DC	13 mA
Sleep mode	SYSTEM-OFF, no RAM retention	0.6uA
Sleep mode	SYSTEM-OFF, 8KB RAM retention	1.2uA
Sleep mode	SYSTEM-ON, All peripherals in idle mode	2.6uA

Table 4: Current Consumption

5. Pinout and Terminal Description

5.1 Pin Configuration

Figure 1: Pinout of EH-MC30

Symbol	Pin	PAD Type	Description
GND	1	Ground	Ground
GND	2	Ground	Ground
GND	3	Ground	Ground
GND	4	Ground	Ground
GND	5	Ground	Ground
GND	6	Ground	Ground
GND	7	Ground	Ground
VBAT	8	Power supply	Power supply 3.3V
SWDCLK 9 Digital input		Hardware debug and flash	
SWDCLK 9		Digital Iliput	programming I/O.
			System reset (active low).
SWDIO	10	Digital IO	Hardware debug and flash
			programming I/O.
P0.21	11	Digital IO	General purpose I/O pin

P0.22	12	Digital IO	General purpose I/O pin
P0.23	13	Digital IO	General purpose I/O pin.
P0.24	14	Digital IO	General purpose I/O pin
P0.25	15	Digital IO	General purpose I/O pin
P0.29	16	Digital IO	General purpose I/O pin
VBAT	17	Power supply	Power supply 3.3V
GND	18	Ground	Ground
P0.30	19	Digital IO	General purpose I/O pin
P0.00	20	Digital IO	General purpose I/O pin
(AREF0)	20	Analog input	ADC/LPCOMP reference input 0
P0.03	21	Digital IO	General purpose I/O pin
(AIN4)	۷1	Analog input	ADC/LPCOMP reference input4
P0.04	22	Digital IO	General purpose I/O pin
(AIN5)	22	Analog input	ADC/LPCOMP reference input5
P0.05	23	Digital IO	General purpose I/O pin
(AIN6)	20	Analog input	ADC/LPCOMP reference input6
P0.06		Digital IO	General purpose I/O pin
(AIN7)	24	Analog input	General purpose I/O pin
		<u> </u>	ADC/LPCOMP reference input7
GND	25	Ground	Ground
P0.07	26	Digital IO	General purpose I/O pin
P0.08	27	Digital IO	General purpose I/O pin
P0.09	28	Digital IO	General purpose I/O pin
P0.10	29	Digital IO	General purpose I/O pin
P0.11	30	Digital IO	General purpose I/O pin
P0.12	31	Digital IO	General purpose I/O pin
P0.13	32	Digital IO	General purpose I/O pin
P0.14	33	Digital IO	General purpose I/O pin
P0.17	34	Digital IO	General purpose I/O pin
P0.18	35	Digital IO	General purpose I/O pin
GND	36	Ground	Ground

Table 5: PIN Terminal Description

Note: The module UARTs and I2C can be mapped any PIOs.

6. Physical Interfaces

6.1. Power Supply

- The module power supply 3v coin cell batteries or DC 3.3v
- Power supply pin connection capacitor to chip and pin as far as possible close
- Capacitor decouples power to the chip
- Capacitor prevents noise coupling back to power plane.
- Support power on reset

Figure 2: Power Supply PCB Design

6.2. PIO

The general purpose I/O is organized as one port with up to 19 I/Os (dependent on package) enabling access and control of up to 19 pins through one port. Each GPIO can be accessed individually with the following user configurable features:

- Input/output direction
- Output drive strength
- Internal pull-up and pull-down resistors
- Wake-up from high or low level triggers on all pins
- Trigger interrupt on all pins
- All pins can be used by the PPI task/event system.

The maximum number of pins that can be interfaced through the PPI at the same time is limited by the number of GPIOTE channels. All pins can be individually configured to carry serial interface or quadrature demodulator signals.

6.3. AIO

The 10 bit incremental Analog to Digital Converter (ADC) enables sampling of up to 8 external signals through a front-end multiplexer. The ADC has configurable input, reference presaging, and sample resolution (8, 9, and 10 bit)

6.4. PWMs

The module has 4 independently configurable PWM instances.

6.5. **UART**

The module has 1 UART interface. The Universal Asynchronous Receiver/Transmitter offers fast, full-duplex, asynchronous serial communication with built-in flow control (CTS, RTS) support in hardware up to 1Mbps baud. Parity checking is supported. The GPIOs used for each UART interface line can be chosen from any GPIO on the device and are independently configurable. This enables great flexibility in device pinout and efficient use of board space and signal routing.

Parameter		Possible Values
Poud Poto	Minimum	1200 baud (≤2%Error)
Baud Rate	IVIIIIIIIIIIII	9600 baud (≤1%Error)
Maximum		2M baud (≤1%Error)
Parity		None, Odd or Even
Number of Stop Bits		1 or 2
Bits pe	er Byte	8

Table 6: Possible UART Settings

Figure 3: Connection To Host device

6.6. I2C Master/ Slave

The module has 1 I²C master/slave general interface for communication with external peripherals and sensors.

Symbol	Description	Note	Min	Тур.	Max.	Units	Test Level
I _{2W100K}	Run current for TWI at 100 kbps.			380		μΑ	1
I _{2W400K}	Run current for TWI at 400 kbps.			400		μΑ	1
f _{2W}	Bit rates for TWI.		100		400	kbps	N/A
t _{TWI,START}	Time from STARTRX/STARTTX task is given until start condition.	Low power mode. 1 Constant latency mode. 1		3 1	4.4	μs	1

For more information on how to control the sub power modes, see the Series Reference Manual.

Figure 4: WTI specifications

Figure 5: SCL/SDA timing

Symbol	Description	Standard		Fast		Uni	Test
J		Min.	Max.	Min.	Max.	ts	level
f _{SCL}	SCL clock frequency.		100		400	kHz	1
t _{HD_STA}	Hold time for START and repeated START condition.	5200		1300		ns	1
t _{SU_DAT}	Data setup time before positive edge on SCL	300		300		ns	1
t _{HD_DAT}	Data hold time after negative edge on SCL.	300		300		ns	1
t _{SU_STO}	Setup time from SCL goes high to STOP condition.	5200		1300		ns	1
t _{BUF}	Bus free time between STOP and START conditions.	4700		1300		ns	1

Figure 6: TWI timing parameters

Note: Strong pull is sufficient for I²C on all PIO pads.

6.7. SPI Master/Slave

Symbol	Description	Min.	Тур.	Max.	Units	Test level
I _{GPIOTE,IN}	Run current with 1 or more GPIOTE active channels in Input mode.		22		μΑ	1
I _{GPIOTE,OUT}	Run current with 1 or more GPIOTE active channels in Output mode.		0.1		μΑ	1
I _{GPIOTE,IDLE}	Run current when all channels are in Idle mode. PORT event can be generated with a delay of up to [†] 1V2		0.1		μΑ	1

Figure 7: SPI specifications

Figure 8: SPI timing diagram, one byte transmission, SPI mode

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
t _{DC}	Data to SCK setup.		10			ns	1
t _{DH}	SCK to data hold.		10			ns	1
t _{CD}	SCK to data valid.	C _{LOAD} = 10 pF			97 ²	ns	1
t _{CL}	SCK low time.		40			ns	1
t _{CH}	SCK high time.		40			ns	1
f _{sck}	SCK frequency.		0.125			MHz	1
t _R ,t _F	SCK rise and fall time.					ns	1

Figure 9: SPI timing parameters

6.8. SPI Debug

The two pin Serial Wire Debug (SWD) interface provided as a part of the Debug Access Port (DAP) offers a flexible and powerful mechanism for non-intrusive debugging of program code. Breakpoints and single stepping are part of this support.

7. Reference Design

Figure 10: Reference Design

8. Layout Guidelines

For optimal performance of the antenna place the module at the corner of the PCB as shown in the figure 3. Do not place any metal (traces, components, battery etc.) within the clearance area of the antenna. Connect all the GND pins directly to a solid GND plane. Place the GND via as close to the GND pins as possible. Use good layout practices to avoid any excessive noise coupling to signal lines or supply voltage lines. Avoid placing plastic or any other dielectric material closer than 6 mm from the antenna. Any dielectric closer than 6 mm from the antenna will detune the antenna to lower frequencies.

Figure 11: Clearance area of antenna

9. Mechanical and PCB Footprint Characteristics

Figure 12: Physical Dimensions and Recommended Footprint (Unit: mm, Deviation:0.02mm)

10. EH-MEVK-MC30

10.1. EH-MEVK-MC30-PCB

Figure 13: EH-MEVK-MC30-PCB

- A. EH-MEVK-MC30 has two power supplies: LDO_3V3 and cell battery.
- B. USB RS232 interface, connect to module UART.
- C. SWD PIN, Button and LED interface.
- D. Any more information, please document of EH-MEVK-MC30 using guide.

10.2. EH-MEVK-MC30-SCH

Figure 14: EH-MEVK-MC30-SCH

11. Packing

Figure 15: EH-MC30 Packaging (Pallet)

Remark: Packing for the pallet, one packaging quantity is 80 PCS.

12. Soldering Recommendations

EH-MC30 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.

SMT stencil making requirements

- ♦ If bluetooth module PIN pitch ≥ 0.25mm and other component PIN pitch ≥ 0.25mm ,so you choose SMT stencil thickness 1.5mm。
- ♦ If bluetooth module PIN pitch ≥ 0.25mm and other component PIN pitch ≤ 0.25mm, so you choose SMT Ladder stencil Bluetooth module thickness 1.5mm other component thickness 1.3mm.
- ♦ Solder pad open via ratio Length 1:1.2, width 1:1.

13. Contact Information

Sales: sales@ehlink.com.cn

Technical support: support@ehlink.com.cn

Website: http://www.ehlink.com.cn

Phone: +86 21 64769993

Fax: +86 21 64765833

Street address: Rom505, Blk 1st ,No.833 South Hong Mei Rd ,Ming hang district Shanghai

FCC/IC Statements

(OEM) Integrator has to assure compliance of the entire end-product incl. the integrated RF Module. For 15 B (§15.107 and if applicable §15.109) compliance, the host manufacturer is required to show compliance with 15 while the module is installed and operating.

Furthermore the module should be transmitting and the evaluation should confirm that the module's intentional emissions (15C) are compliant (fundamental / out-of-band). Finally the integrator has to apply the appropriate equipment authorization (e.g. Verification) for the new host device per definition in §15.101.

Integrator is reminded to assure that these installation instructions will not be made available to the end-user of the final host device.

The final host device, into which this RF Module isintegrated" hasto be labelled with an auxilliary lable stating the FCC IDofthe RF Module, such as "Contains FCC ID:2ACCRMC30"

"This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

(1)this devicemay not cause harmful interference, and (2)this devicemust accept any interference received, including interference thatmay cause undesired operation."

"Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment."

the Integrator will be responsible to satisfy SAR/ RF Exposure requirements, when the module integrated into the host device.

The final host device, into which this RF Module isintegrated" hasto be labelled with an auxilliary lable stating the IC ofthe RF Module, such as "Contains transmitter module IC:20625-EHMC30

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help

This transmitter/module must not be collocated or operating in conjunction with any other antenna or transmitter.

Module statement

The single-modular transmitter is a self-contained, physically delineated, component for which compliance can be demonstrated independent of the host operating conditions, and which complies with all eight requirements of § 15.212(a)(1) as summarized below.

- 1) The radio elements have the radio frequency circuitry shielded.
- 2) The module has buffered modulation/data inputs to ensure that the device will comply with Part 15 requirements with any type of input signal.
- 3) The module contains power supply regulation on the module.
- 4) The module contains a permanently attached antenna.
- 5) The module demonstrates compliance in a stand-alone configuration.
- 6) The module is labeled with its permanently affixed FCC ID label
- 7) The module complies with all specific rules applicable to the transmitter, including all the conditions provided in the integration instructions by the grantee.
- 8) The module complies with RF exposure requirements.