

2023-2024

Classe: **Bac Maths**

Série 23: Révision:

complexe et isométrie

Nom du Prof : Lahbib Ghaleb

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

5 pts

Le plan est orienté dans le sens direct.

On considère les points A, B et Ω distincts deux à deux et d'affixes respectives a, b et ω .

Déterminer une forme exponentielle du nombre complexe $\frac{\omega - p}{\omega - a}$.

 \bigcirc En déduire que \bigcirc AP est un triangle équilatèral direct.

Soit Q l'image de B par la rotation de centre Ω et d'angle $\left(-\frac{\pi}{3}\right)$. Montrer que Q est d'affixe $q = \omega + (b - \omega)e^{-i\frac{\pi}{3}}$.

Montrer que APQB est un rectangle si et seulement si $\frac{\omega - a}{\omega - h} = e^{i\frac{2\pi}{3}}$.

Construire le rectangle *APQB* dans le cas où a = 6 et $\omega = 2e^{i\frac{\pi}{4}}$.

Exercice 2

5 pts

Soit $a \in \mathbb{C} \setminus \{-i; i\}$

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Soit les points M, M_1, M_2 et Ω d'affixes respectifs : a, $z_1 = (1+i)a + 2i$, $z_2 = (1-i)a + 2i$ et 2i.

Vérifier que $z_2-2i=-i\,(z_1-2i)$, en déduire que $M_2=r\,(M_1)$ où ${\bf r}$ est la rotation de centre Ω et d'angle $-\frac{\pi}{2}$

Montrer que : $I = t (M_1)$ où t est une translation dont on déterminera l'affixe de son vecteur.

 \bigcirc Montrer que : $(I\Omega) \perp (M_1M_2)$.

Montrer que : $\frac{z_1 - a}{z_2 - a} \in i\mathbb{R}$ si et seulement si |a| = 2.

En déduire l'ensemble des points M(a) du plan complexe pour tel que M apparient au cercle circonscrit au triangle $\Omega M_1 M_2$

Exercice 3

40 min

5 pts

Le plan complexe est rapporté à un repère orthonormé $(O; \overrightarrow{u}, \overrightarrow{v})$.

On donne les points A et B d'affixes respectives 1 et $be^{i\frac{\pi}{3}}$ avec b un réel strictement positifs.

On considère les points C et D tels que OBC et AOD soient deux triangles équilatéraux directs.

Soit $R = R_C \circ R_D$ où R_C et R_D sont les rotations d'angle $\frac{\pi}{3}$ et de centre respectifs C et D.

- A) \uparrow Montrer que R est une rotation que l'on précisera l'angle.

 - Montrer que l'écriture complexe de R est $z'=e^{i\frac{2\pi}{3}}z+e^{i\frac{\pi}{3}}\left(b-e^{i\frac{\pi}{3}}\right)$.
- B) \bigcirc Soit Ω le centre de R. Montrer que l'affixe de Ω est $z_{\Omega} = \frac{\sqrt{3}}{3}i\left(b e^{i\frac{\pi}{3}}\right)$.
 - Vérifier que $A\Omega = \frac{\sqrt{3}}{3} \sqrt{\left(b \frac{1}{2}\right)^2 + \frac{3}{4}}$, puis montrer que Ω est le centre du cercle circonscrit du triangle OAB.
 - b étant donné. Donner un procédé de construction de Ω .
 - - Déterminer alors l'ensemble des points Ω lorsque b varie dans 0, +∞[.
 - Montrer que Ω est le milieu de [OB] si et seulement si b=2.
- C) Dans la suite b=2. On pose $f=R\circ S$ où S est la symétrie orthogonale d'axe (OA)
 - \uparrow Vérifier que Ω et D sont symétriques par rapport à (OA).
 - Déterminer f(A) et f(D) puis montrer que f est une symétrie glissante.
 - \mathfrak{F} Construire l'axe δ de f.
 - Pour tout M d'affixe z, on considère le points M' d'affixe z' telle que : $z' = e^{i\frac{2\pi}{3}} \overline{z} + \sqrt{3}e^{i\frac{\pi}{6}}.$
 - $\text{ V\'erifier que } e^{i\frac{\pi}{3}} \left(2 e^{i\frac{\pi}{3}} \right) = \sqrt{3} e^{i\frac{\pi}{6}}.$
 - Montrer que lorsque M varie alors le milieu du segment [MM'] varie sur une droite fixe que l'on précisera.