1. 15% (Answer with the program only)

Suppose that $\theta = -\frac{\pi}{2} : \frac{\pi}{20} : \frac{\pi}{2}$, and t = 0:0.2:4, a = 5, and b = 2. Use MATLAB code to compute the following expression:

(a)
$$[e^{-0.2t}\sin(b\theta) + \ln(t+1)]\cos^2(2\theta)$$

(b)
$$\left[\sin^{-1}(at) + \ln(t^2 + 2t + 1)\right] \tan(\theta/2)$$

(c)
$$\frac{e^t + \sin(\theta)}{b}$$

- 2. Table 2.1 shows the costs associated with a certain product, and Table 2.2 shows the production volume for the four quarters of the business year. Use MATLAB to find:
 - (a) the quarterly costs for materials, labor, and transportation
 - (b) the total material, labor, and transportation costs for the year
 - (c) and the total quarterly costs.

(The answer should be multiplied by 10^3 .)

Unit costs (\$ × 10 ³)					
Product	ict Materials Labor Transportation		Transportation		
1	6	2	1		
2	2	5	4		
3	4	3	2		
4	9	7	3		

Table 2.1 Product cost

Product	Quarter 1	Quarter 2	Quarter 3	Quarter 4
1	10	12	13	15
2	8	7	6	4
3	12	10	13	9
4	6	4	11	5

Table 2.2 Quarterly production volume

3. 27%

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 4 & 100 \\ 7 & 9 & 7 \\ 3 & \pi & 42 \end{bmatrix}$$

Use MATLAB to find the following:

- a. Construct a matrix \mathbf{B} , it is the transpose of A.
- b. Construct a matrix **D**, deleting **3-nd row of A**.
- c. Construct vector \mathbf{x} , its elements is the only third row of \mathbf{B} .
- d. Calculate the sum of all the elements of x.
- e. Pointwise multiplication of the 2-nd row of A and 3-th column of B.
- 4. 15% Write a MATLAB SUB-function(name it as **func.m**) to evaluate the members of the sequence, where a, and n are the inputs and the sequence value of $x_n = \frac{na^n}{(n+1)!}$ is the output of this SUB-function and save it as a script file.

Then, write a main function to input the range of the value n from 0 to 20, and a = 2, and call the SUB-function to evaluate the sequence value, and display the value of n and x_n by using *fprintf*, as the following format:

n
$$x_n$$

0 0
1 1
2 4/3

Hint: By using rats(X, strlen) to show the fraction number

- 5. 20% A fenced enclosure consists of a rectangle of length L and width 2R and a semicircle of radius R, as shown in Figure 4. The enclosure is to be built to have an area A of 2000 ft². The cost of the fence is \$50 per foot for the curved portion and \$40 per foot for the straight sides.
 - (a) Use the fminbnd function to determine with a resolution of 0.01 ft the values of R and L required to minimize the total cost of the fence.
 - (b) compute the minimum cost.

Figure 4