전자 회로 프로그래밍

Arduino

Internet of Things

- 현실의 사물에 IP(외부 인터넷) 연결
- 그 사물들을 외부에서 제어할 수 있는 기술
- MCU + Sensor + Actuator + Internet + Database + AI + ETC

Atmega328

Atmel MCU ATmega328

내장 LED 제어하기

LED 소자 이해하기

- LED(Light Emitting Diode)
 - ❖ 순방향으로 전압을 가했을 때 발광하는 반도체 소자
 - ❖ Anode > + 극, Cathode > 극 연결

브레드보드 이해하기

꼬마전구회로를 아두이노로 변환

LED 연결하기

디지털 출력(Digital Output)

```
14x Digital IN/OUT
                              (6x PWM~ OUT)
                                 (5V, 40mA)
void setup() // 사용핀 입출력 방향 결정
  pinMode(13, OUTPUT); //(핀번호, 방향)
void loop() // 반복적인 실행문
  digitwalWrite(13. HIGH); //13번 핀에서 5V 출력
  delay(1000)
  digitalWrite(13, LOW); //13번 핀에서 0V 출력
  delay(1000)
```

삼색(RGB) LED 사용하기

❖ 3색 LED 일반 LED 3개를 하나로 합친 LED

- * R(RED), G(GREEN), B(BLUE), -(GND)
- ❖ 4개선으로 3색의 조합으로 다양한 색상 표현

아날로그 출력(Analog Output)

❖ LED 밝기 또는 모터 속도 제어

❖ analogWrite()는 0 ~ 255 크기

아날로그 출력(Analog Output)

```
void setup() // PWM 핀(3, 5, 6, 9, 10, 11)
  pinMode(3, OUTPUT); // PWM 핀결정
void loop() // 반복적인 실행문
  for(int i = 0; i < 255; i++)
      analogWrite(3,i);
      delay(100);
```

UART(Universal Asynchronous Receiver/Transmitter)

- 시리얼(Serial) 비동기 직렬통신
 - USB를 통해 원격지와 통신을 지원하는 방식
 - 통신하거나 데이터 송수신 가능

아두이노 직렬포트

❖ 아두이노 시리얼 함수

- ❖ Serial.write(val): 시리얼을 통해 1byte 또는 여러 바이트 데이터를 전송 함수
 - ❖ val: 여러 바이트 일 경우 문자열, 1byte 데이터일 경우 데이터의 값
- ❖ Serial.print(val, format): 시리얼을 통해 전송할 데이터를 ASCII문자열로 전송함수
 - ❖ val: 전송할 문자열 또는 데이터 값
 - ❖ Format : 입력받은 문자열 또는 데이터를 출력할 형식을 설정하는 옵션

아두이노 직렬포트

❖ 아두이노 시리얼 함수

- ❖ Serial.begin(speed): 사용할 UART와 통신 속도를 설정하는 함수
- ❖ Serial.available(): 수신된 데이터가 수신 버퍼에 몇 개 있는지 반환하는 함수
 - ❖ 문자 1개가 수신되면, '1' 반환
- ❖ Serial.read(): 수신 버퍼에서 1byte 데이터를 읽어오는 함수
 - ❖ 수신버퍼에서 데이터를 읽어온 후 데이터를 지움
- ❖ Serial.peek(): 수신 버퍼에서 1byte 데이터를 읽어오는 함수
 - ❖ 수신 버퍼에서 데이터를 읽어온 후 읽은 데이터를 지우지 않음

디지털 입력(Digital lutput)

```
14x Digital IN/OUT
                                (6x PWM~ OUT)
                                  (5V, 40mA)
void setup() // 사용핀 입출력 방향 결정
  pinMode(7, INPUT); //(핀번호, 방향)
  Serial.begin(9600);
void loop() // 반복적인 실행문
  int data = digitalRead(7); //13번 핀에서 입력
  Serial.println(data);
```


입력 값이 불안정하게 변하기 때문에 부정전압으로 오작동이 생성

- ❖ 풀업(Pull-up)저항
 - ❖ +5V쪽에 저항을 연결해주는 방법
 - ❖ 기본 1(HIGH) 신호 상태

입력 값이 불안정하게 변하기 때문에 부정전압으로 오작동이 생성

- ❖ 풀다운(Pull-down)저항
 - ❖ GND쪽에 저항을 연결해주는 방법
 - ❖ 기본 0(LOW) 신호 상태

아날로그 입력

- ❖ 포텐셔미터 or 가변 저항
 - ❖ 회로에 가변 저항값을 입력하는데 사용

아날로그 입력(Analog Input)


```
void setup() // 사용핀 입출력 방향 결정
  Serial.begin(9600);
void loop() // 반복적인 실행문
  int data = analogRead(A0); //13번 핀에서 입력
  Serial.println(data);
```

아날로그 출력(Analog Output)

- ❖ Servo 모터
 - ❖ 정해진 회전 반경(180)안에서 PWM 신호에 의해 제어

라이브러리 포함하기

서보모터 제어하기

```
1 #include <Servo.h>
 2 Servo servo;
 3 int angle = 0;
 4 void setup() {
 5
     servo.attach(9);
 6
   void loop() {
 8
     for (angle = 0; angle < 180; angle++)</pre>
 9
       servo.write (angle);
10
11
       delay(20);
12
13
     for(angle; angle > 0; angle--)
14
     1
       servo.write(angle);
15
16
       delay(20);
17
18 }
```

아날로그 출력(Analog Output)

- ❖ Servo 모터
 - ❖ 정해진 회전 반경(180)안에서 PWM 신호에 의해 제어

스텝모터 + 모터드라이브

- Stepping Moter(28BYJ-48) / Motor drive(ULN2003a)
 - ❖ 아두이노 최대 출력 전류 40mA
 - ❖ 모터구동 요구 출력 240mA


```
#include <Stepper.h>
#define STEPS 2037 // 한바퀴를 이루는 스텝 갯수 입력
Stepper stepper(STEPS, 8, 10, 9, 11); // 고정자 권선 순서 설정
void setup() {
 stepper.setSpeed(12); // 회전 속도 지정
void loop() {
 stepper.step(STEPS); // 정방향 회전
 delay(1000);
 stepper.step(-STEPS); // 역방향 회전
 delay(1000);
```

인터럽트의 개념

- ■마이크로 컨트롤러가 어떤 작업을 진행하고 있다가 갑자기 다른 일이 발생하여 먼저 처리해야 하는 상황이 발생할 경우
- ■현재 수행중인 일을 잠시 중단하고 급한 일을 처리한 후 원래 의 일을 다시 이어서 수행

인터럽트의 종류

- ■내부 인터럽트(소프트웨어 인터럽트) = 타이머 인터럽트
 - ⇒ 특정한 시간이 되면 인터럽트가 발생
- ■외부 인터럽트
 - ⇒ 하드웨어 / GPIO 상태를 모니터링

타이머인터럽트 사용

- ■Mstimer2 라이브러리 사용
 - ⇒ MsTimer2::set(ms, ISR)
 - 타이머 인터럽트를 사용할 때 필요한 타이머와 인터럽트 처리 함수 설정
 - ms: 타이머 시간
 - ISR: 인터럽트 루틴으로 정해진 타이머 마다 실행될 함수
 - MsTimer2::start()
 - 타이머 인터럽트 실행
 - ➡ MsTimer2::stop()하드웨어 / GPIO 상태를 모니터링
 - 타이머 인터럽트 정지

타이머인터럽트 사용

```
#include <MsTimer2.h>
void isr() {
  static boolean state = HIGH;
 digitalWrite(13, state);
  state = !state;
void setup() {
  pinMode(13, OUTPUT);
 MsTimer2∷set(1000, isr):
 MsTimer2∷start():
void loop() {
```

외부인터럽트 종류

외부입력 인식방법	동작 원리	처리방식	
폴링 (polling)	사용자가 명령어를 통하여 입력 핀의 값을 계속 조사하여 변화를 알아내는 방식 (순차 실행)	소프트웨어적 방법	
인터럽트 (interrupt)	MCU 자체가 하드웨어적으로 그 변화를 체크하여 변화가 발생하면 일정한 동작을 하는 방식	하드웨어적 방법	

UNO 외부인터럽트

인터럽트 번호	0	1	2	3	4	5
UNO보드 핀 번호	2	3				
Mega보드 핀 번호	2	3	21	20	19	18

외부 인터럽트 UNO 보드 2개

외부인터럽트 사용

- ■Mstimer2 라이브러리 사용
 - attachInterrupt(interrupt, function, mode)
 - Interrupt : 인터럽트 번호(0, 1)
 - function : 인터럽트 서비스 루틴으로 정해진 모드에 따라 실행될 함수
 - Mode: RISING / FALLING / CHANGE / LOW

외부인터럽트 사용

```
volatile byte state = HIGH;
void isr() {
  digitalWrite(13, state);
  state = !state;
void setup() {
  pinMode(13, OUTPUT);
  attachInterrupt(0, isr, FALLING);
void loop() {
```

외부인터럽트 사용(채터링 현상)

❖ 스위치의 상태가 변하는 순간 열림과 닫힘이 수회 반복되는 현상 또는 잡음

외부인터럽트 예제샘플

```
1 int duration = 500;
 2 unsigned long pre time = 0;
3 unsigned long cur time = 0;
 4
  void isr()
 6
     cur time = millis();
     if(cur time - pre time >= duration)
8
10
       Serial.println("push Button");
11
       pre time = cur time;
12
13 ]
14 void setup() {
15
    Serial begin (9600);
16
    attachInterrupt(0, isr, FALLING);
17 }
18 void loop() {
19 }
```

CDS(조도센서)

- ❖ 측정된 빛의 세기에 따라 저항값이 변하는 센서
 - ❖ 아날로그 입력

CDS(조도센서) 입력받기

```
1 void setup() {
2   Serial.begin(9600);
3 }
4 void loop() {
5   int val = analogRead(A0);
6   Serial.println(val);
7   delay(100);
8 }
```

Text LCD (연결)

Text LCD 라이브러리 추가


```
1 #include <LiquidCrystal I2C.h>
  LiquidCrystal I2C lcd(0x27, 16, 2);
 4
  void setup() {
    lcd.init();
    lcd.backlight();
 8 9
    lcd.print("hello, world!");
10
  void loop() {
12
    lcd.setCursor(0,1);
13
    lcd.print("2 line, INPUT");
14 }
```

Text LCD (슬레이브 주소 확인)

```
#include <Wire.h>
                                                    else if (error==4)
void setup() {
                                                        Serial.print("Unknown error at address 0x");
 Wire.begin();
                                                        if (address<16)
 Serial.begin(9600);
                                                          Serial.print("0");
                                                        Serial.println(address.HEX);
void loop() {
 byte error, address;
                                                     if (nDevices == 0)
 int nDevices = 0;
                                                       Serial.println("No I2C devices found₩n");
 for(address = 1; address < 127; address++)
                                                     else
                                                       Serial.println("done₩n");
  Wire.beginTransmission(address);
   error = Wire.endTransmission();
                                                     delay(5000);
                                                                          // wait 5 seconds for next scan
   if (error == 0)
    Serial.print("I2C device found at address 0x");
    if (address<16)
     Serial.print("0");
    Serial.print(address,BIN);
    Serial.println(" !");
    nDevices++;
```

피에조 부저

- ❖ 능동부저(Active Buzzer) 극성이 있으며 스스로 소리를 냄
- ❖수동부저(Passive Buzzer) 소리를 낼 수 없어 주파수를 만들어 사용

Passive Buzzer

Piezo Buzzer

(단위 : Hz)

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164,8138	329.6276	659.2551	1318.510	2637,020	5274.041
F(과)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

Piezo Buzzer

- ❖ 능동부저(Active Buzzer)
 - ❖ 제어명령 digitalWrite
- ❖ 수동부저(Passive Buzzer)
 - tone(pin, frequency) tone(pin, frequency, duration)
 - 핀번호 주파수 신호를 출력할 핀 번호를 설정 (PWM핀)
 - 주파수 31~65535 범위의 주파수(Hz)를 설정
 - 출력시간 밀리초단위(1000당 1초)입력, 얼마동안 주파수를 출력할지 설정
 - noTone(pin, frequency)
 - 주파수 신호 출력을 중지하기 위한 함수

```
❖ 능동부저(Active Buzzer)
                                ❖ 수동부저(Passive Buzzer)
                                  void setup() {
1 void setup() {
                                    pinMode (5, OUTPUT);
   pinMode (5, OUTPUT);
                                3
3
                                  void loop() {
                                    tone (5, 261);
  void loop() {
                                    delay(1000);
                                6
    digitalWrite(5, HIGH);
5
                                    noTone (5);
                                    delay(1000);
    delay(1000);
                                9
    digitalWrite(5, LOW);
                               10
                                    tone (5, 294);
                                    delay(1000);
    delay (1000);
                               11
                               12
                                    noTone (5);
                               13
                                    delay (1000);
```

14 }

초음파 센서(SR04)

- ❖ 20kHz 이상의 주파수를 가진 소리
 - ❖ 송신부와 송신부로 구성
 - ❖ 음파의 속도는 340m/s

초음파 센서(SR04)

- ❖ 1cm를 이동하는데 걸리는 시간은 약 29us
 - ❖ (이동하는데 걸린 시간) / 29 / 2 = CM거리 값

초음파센서 제어하기

```
1 int trig = 4;
  int echo = 3;
   void setup() {
 4
     pinMode (trig, OUTPUT);
    pinMode (echo, INPUT);
     Serial.begin (9600);
 6
  void loop() {
     digitalWrite(trig, LOW);
 9
10
    delayMicroseconds (2);
11
    digitalWrite(trig, HIGH);
12
    delayMicroseconds (10);
13
    digitalWrite(trig, LOW);
14
     long duration = pulseIn(echo, HIGH);
15
     long dis cm = duration/29/2;
     Serial.println(dis cm);
16
17
     delay(100);
18 }
```

적외선 센서

적외선 센서 라이브러리 추가

적외선 센서 코드

```
1 #include <IRremote.h>
 2 int RECV PIN=2;
 3 IRrecv irrecv (RECV PIN);
 4 decode results results;
  void setup() {
     Serial.begin (9600);
    irrecv.enableIRIn(); //Start the receiver
 9
10 void loop() {
     if (irrecv.decode (&results)) {
11
12
       Serial.println(results.value, HEX);
13
       irrecv.resume(); //Receive the next value
14
15
    delay(100);
16 }
```

아두이노 4x4 KEYPAD

아두이노 4x4 KEYPAD

아두이노 4x4 코드

```
1 #include < Keypad.h>
 2 const byte ROWS = 4; // 행(rows) 개수
 3 const byte COLS = 4; // 열(columns) 개수
 4 char keys[ROWS][COLS] = {
   ['1','2','3','A'],
   {'4','5','6','B'},
   {'7', '8', '9', 'C'},
   ['*','0','#','D']
9 };
10 byte rowPins[ROWS] = {6, 7, 8, 9}; // R1, R2, R3, R4 단자가 연결된 아두이노 핀 번호
11 byte colpins[COLS] = {5, 4, 3, 2}; // c1, c2, c3, c4 단자가 연결된 아두이노 핀 번호
12 Keypad keypad = Keypad (makeKeymap (keys), rowPins, colPins, ROWS, COLS);
13 void setup() {
14
    Serial.begin (9600);
15 }
16 void loop() {
17
    char key = keypad.getKey();
18
    if (key) {
      Serial.println(key);
19
20
21 }
```

아두이노 4x4 활용

```
#include <Servo.h>
#include <Keypad.h>
Servo myservo;
char* secretCode = "1234"; // 비밀번호를 설정(여기선 1234)
int position = 0;
int wrong = 0; // 입력 초기화
const byte ROWS = 4; // 행(rows) 개수
const byte COLS = 4; // 열(columns) 개수
char keys[ROWS][COLS] = {
 {'1'.'2'.'3'.'A'}.
 {'4'.'5'.'6'.'B'}.
 {'7', '8', '9', 'C'},
 {'*'.'0'.'#'.'D'}
};
byte rowPins[ROWS] = {6, 7, 8, 9}; // R1, R2, R3, R4 단자가 연결된 아두이노 핀 번호
byte colPins[COLS] = {5, 4, 3, 2}; // C1, C2, C3, C4 단자가 연결된 아두이노 핀 번호
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
void setup() {
 Serial.begin(9600);
 pinMode(13, OUTPUT);
 myservo.attach(11);
```

아두이노 4x4 활용

```
void loop() {
 char key = keypad.getKey();
 if((key >= '0' \&\& key <= '9') || (key >= 'A' \&\& key <= 'D')
  있는 버튼이 맞을경우) 비교
   Serial.println(key);
   if(kev == '*' | kev == '#'){ // *. # 버튼을 눌렀을 경우
    position = 0;
    wrong = 0; // 입력 초기화
    setLocked(true); // 잠금상태로 세팅
   else if(key == secretCode[position]){ // 해당 자리에 맞는 비밀번호가 입력됬을 경우
   position++; // 다음 자리로 넘어 감
   wrong = 0; // 비밀번호 오류 값을 0으로 만듬
   else if(key != secretCode[position]){ // 해당 자리에 맞지 않는 비밀번호가 입력됬을 경우
   position = 0; // 비밀번호를 맞았을 경우를 0으로 만듬
   setLocked(true); // 잠금상태로 세팅
   wrong++; // 비밀번호 오류 값을 늘려준다
   if(position == 4){ // 4자리 비밀번호가 모두 맞았을 경우
   setLocked(false); // 잠금상태를 해제 함
   Serial.println("FULL INPUT");
   position = 0;
```

아두이노 4x4 활용

```
if(wrong == 4){ // 비밀번호 오류를 4번 했을 경우
   blink(); // LED를 깜빡여 준다.
   wrong = 0; // 비밀번호 오류 값을 0으로 만들어 준다.
 delay(100);
void setLocked(int locked){ // 잠금시와 해제시에 맞는 LED를 세팅해 주는 함수
 if(locked) { //잠금모드
   myservo.write(0);
   Serial.println("LOCK");
 else{ // 잠금해제
   myservo.write(180);
   Serial.println("UNLOCK");
void blink(){ // 비밀번호 4번 오류시 LED를 깜빡여 주는 함수.
 for(int i = 0; i < 5; i++){ // 딜레이 만큼 LED를 껐다 켰다 해준다.
  digitalWrite(13, LOW);
  delay(500);
  digitalWrite(13, HIGH);
  delay(500);
```


블루투스(AT 명령)

```
1 #include <SoftwareSerial.h>
 2 int TX = 2;
 3 int RX = 3;
 4 SoftwareSerial my blue(T, R);
 5 void setup() {
     Serial.begin (9600);
 6
    my blue.begin (9600);
 8
  void loop() {
     if (my blue.available()) {
10
       Serial.write(my blue.read());
11
12
13
     if (Serial.available()) {
       my blue.write(Serial.read());
14
15
```

1. 테스트

명령어 : AT 반환값 : OK

2. 버전 확인

명령어: AT+VERSION 반환값: OKlinvorV1.8

3. 이름 변경

명령어: AT+NAME이름

반환값: OKsetname

4. 보레이트 설정

명령어: AT+BAUD보레이트 메뉴값.

보레이트 메뉴:

1 - 1200, 2 - 2400, 3 - 4800, 4 - 9600

5 - 19200, 6 - 38400, 7 - 57600, 8 - 115200

반환값: OK보레이트 (예: OK9600)

5. PIN설정

명령어: AT+PIN네 자리 숫자

반환값 : OKsetPIN

RFID-RC522

<u>1. 연결도</u>


```
#1, SDA - 10~
#2, SCK - 13
#3, MOSI - 11
#4, MISO - 12
#5, IRQ - N.C(연결안함)
#6, GND - GND
#7, RST - 9
#8, 3.3V - 3.3V
```

RC522 카드 UID 확인

```
#include <SPI.h>
#include <MFRC522.h>
#define RST_PIN
#define SS_PIN
                  10
MFRC522 mfrc(SS_PIN, RST_PIN);
void setup() {
 Serial.begin(9600);
 SPI.begin();
 mfrc.PCD_Init();
void loop() {
if(!mfrc.PICC_IsNewCardPresent())
     return;
if(!mfrc.PICC_ReadCardSerial())
     return;
```

RC522 카드 인식

```
#include <SPLh>
#include <MFRC522.h>
#define RST_PIN
#define SS_PIN
                  10
MFRC522 mfrc(SS_PIN, RST_PIN);
void setup() {
 Serial.begin(9600);
 SPI.begin();
 mfrc.PCD_Init();
void loop() {
if(!mfrc.PICC_IsNewCardPresent())
     return;
if(!mfrc.PICC_ReadCardSerial())
     return;
```

```
if(mfrc.uid.uidByte[0] == 244 &&
    mfrc.uid.uidByte[1] == 181 &&
    mfrc.uid.uidByte[2] == 249 &&
    mfrc.uid.uidByte[3] == 233)
    {
        Serial.println("Authorized access");
        delay(500);
    }else {
        Serial.println("Access denied");
        delay(500);
    }
}
```