

Probability Distribution Forecasts: Learning with Random Forests and Graphical Assessment

Moritz N. Lang, Reto Stauffer, Lisa Schlosser, Achim Zeileis https://topmodels.R-Forge.R-project.org/

LM, GLM

lm glm

Regression tree

rpart
party(kit)

Distributional:

• Specify the complete probability distribution (location, scale, shape, ...).

Tree:

- Automatic detection of steps and abrupt changes.
- Capture non-linear and non-additive effects and interactions.

Forest:

- Smoother effects.
- Stabilization and regularization of the model.

Tree:

1 Fit global distributional model $\mathcal{D}(Y;\theta)$: Estimate model parameters $\hat{\theta}$.

Tree:

1 Fit global distributional model $\mathcal{D}(Y;\theta)$: Estimate model parameters $\hat{\theta}$.

 $\mathcal{D}(Y;\hat{\theta})$

Tree:

1 Fit global distributional model $\mathcal{D}(Y;\theta)$: Estimate model parameters $\hat{\theta}$.

Tree:

1 Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- 2 Evaluate goodness of fit (for each parameter and each observation).

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.
- Repeat steps 1–4 recursively in the subgroups until some stopping criterion is met.

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.
- Repeat steps 1–4 recursively in the subgroups until some stopping criterion is met.

- ① Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.
- Repeat steps 1–4 recursively in the subgroups until some stopping criterion is met.

- Fit global distributional model $\mathcal{D}(Y; \theta)$: Estimate model parameters $\hat{\theta}$.
- Evaluate goodness of fit (for each parameter and each observation).
- **3** Choose covariate X with strongest influence on goodness of fit of $\mathcal{D}(Y; \hat{\theta})$ as split variable.
- Find the split point p which leads to the highest improvement.
- Repeat steps 1–4 recursively in the subgroups until some stopping criterion is met.

- Bootstrap or subsamples.
- Random input variable sampling.

Goal: Probabilistic precipitation forecasting.

Goal: Probabilistic precipitation forecasting.

Observation data:

- Daily 24h precipitation sums from July over 28 years (1985–2012).
- Observation station "Axams" in Tyrol, Austria.

Goal: Probabilistic precipitation forecasting.

Observation data:

- Daily 24h precipitation sums from July over 28 years (1985–2012).
- Observation station "Axams" in Tyrol, Austria.

Covariates:

- Numeric ensemble weather predictions of precipitation, temperature, air pressure, convective available potential energy, . . .
- 80 covariates based on ensemble min/max/mean/standard deviation.

Goal: Probabilistic precipitation forecasting.

Observation data:

- Daily 24h precipitation sums from July over 28 years (1985–2012).
- Observation station "Axams" in Tyrol, Austria.

Covariates:

- Numeric ensemble weather predictions of precipitation, temperature, air pressure, convective available potential energy, . . .
- 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

$$(precipitation)^{\frac{1}{1.6}} \sim c \mathcal{N}(\mu, \sigma^2)$$

Predictive performance: Distributional forests improve CRPS skill score compared to heteroscedastic linear model (EMOS) and competing GAMLSS.

However: Is the distributional fit calibrated?

However: Is the distributional fit calibrated?

Graphical assessments: Various possibilities suggested in different parts of the literature.

- (Randomized) quantile-quantile residuals plot.
- Probability integral transform (PIT) histogram.
- Rootogram.
- Reliability diagram at prespecified thresholds.
- Worm plot.

However: Is the distributional fit calibrated?

Graphical assessments: Various possibilities suggested in different parts of the literature.

- (Randomized) quantile-quantile residuals plot.
- Probability integral transform (PIT) histogram.
- Rootogram.
- Reliability diagram at prespecified thresholds.
- Worm plot.

In R: Different bits in various packages but no unifying and flexible infrastructure.

However: Is the distributional fit calibrated?

Graphical assessments: Various possibilities suggested in different parts of the literature.

- (Randomized) quantile-quantile residuals plot.
- Probability integral transform (PIT) histogram.
- Rootogram.
- Reliability diagram at prespecified thresholds.
- Worm plot.

In R: Different bits in various packages but no unifying and flexible infrastructure.

Now: topmodels (on R-Forge).

Packages and data:

```
R> install.packages("disttree", repos = "https://R-Forge.R-project.org")
R> install.packages("topmodels", repos = "https://R-Forge.R-project.org")
R> library("disttree")
R> library("topmodels")
R> data("RainAxams", package = "disttree")
```

Random forest:

```
R> forest <- distforest(robs ~ .,
+ family = dist_list_cens_normal,
+ data = RainAxams, ...)</pre>
```

Q-Q residuals plot: qqrplot(forest)

PIT histogram: pithist(forest)

Rootogram: rootogram(forest)

Reliability diagram: reliagram(forest)

Worm plot: wormplot(forest)

In contrast: Linear Gaussian model.

- Homoscedastic.
- Not accounting for excess zeros.
- Incorrect assumption of underlying response distribution.

```
R> linear <- lm(robs ~ tppow_mean, data = RainAxams)</pre>
```

Model comparison: Rootogram

```
R> rootogram(linear, plot = FALSE) |>
+ autoplot(legend = TRUE)
```


Model comparison: Rootogram

```
R> rootogram(linear, plot = FALSE, breaks = -9:14) |>
+ autoplot(legend = TRUE)
```


Model comparison: Rootogram

```
R> c(rootogram(forest, breaks = -9:14), rootogram(linear, breaks = -9:14)) |>
+ autoplot(legend = TRUE)
```


Model comparison: PIT histogram

```
R> pithist(forest, plot = FALSE) |>
+ autoplot(legend = TRUE)
```


Model comparison: PIT histogram

```
R> pithist(forest, plot = FALSE) |>
+ autoplot(legend = TRUE, style = "lines")
```


Model comparison: PIT histogram

```
R> c(pithist(forest, plot = FALSE), pithist(linear, plot = FALSE)) |>
+ autoplot(legend = TRUE, style = "lines", single_graph = TRUE, col = 1:2)
```


Model comparison: Q-Q residuals plot

```
R> qqrplot(forest, plot = FALSE) |>
+ autoplot(legend = TRUE)
```


Model comparison: Q-Q residuals plot

```
R> c(qqrplot(forest, plot = FALSE), qqrplot(linear, plot = FALSE)) |>
+ autoplot(legend = TRUE, single_graph = TRUE, col = 1:2)
```


Software

disttree: available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/pkg/disttree/

Concept: Fusion of tree-based models with distributional modeling.

Main functions:

distfit Distributional fits (ML, gamlss.family/custom list).

No covariates.

disttree Distributional trees (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forests (ensemble of disttrees).

Covariates as partitioning variables.

Software

topmodels: available on R-Forge at

https://topmodels.R-Forge.R-project.org/

Concept: Unifying toolbox for probabilistic forecasts and graphical model assessment.

Main functions:

procast Probabilistic forecasts ((g)lm, crch, disttree, more to come).

Computation of probabilities, densities, scores, and Hessians.

rootogram, pithist, ... Plotting rootograms, PIT histograms, ...

plot, autoplot Generic plot, autoplot function.

References

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2019). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." *The Annals of Applied Statistics*, **13**(3), 1564–1589. doi:10.1214/19-ADAS1247

Lang MN, Zeileis A et al. (2021). "topmodels: Infrastructure for Inference and Forecasting in Probabilistic Models." R package version 0.1-0. https://topmodels.R-Forge.R-project.org/

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." Journal of Machine Learning Research, **16**, 3905–3909. http://www.jmlr.org/papers/v16/hothorn15a

https://topmodels.R-Forge.R-project.org/