Automi e Linguaggi Formali – A.A. 2016/17

Appello 12.7.17 Parte II – Versione 2

Esercizio 1. (a) Descrivete in italiano il linguaggio accettato dalla macchina di Turing *M* definita dalla seguente tabella di transizione:

	0	1	В
q_0	(q_1, B, R)	(q_2, B, R)	(q_6, B, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_3, B, L)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_4, B, L)
q_3	(q_5, B, L)		(q_6, B, R)
q_4		(q_5, B, L)	(q_6, B, R)
q_5	$(q_5, 0, L)$	$(q_5, 1, L)$	(q_0, B, R)
$*q_6$			

(b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.

Soluzione: (a) La macchina di Turing accetta il linguaggio costituito dalle stringhe binarie palindrome. (b) Esempi di stringhe accettate sono 00, 101, 01010; esempi di stringhe non accettate sono 10, 001, 10011.

Esercizio 2. Definite una macchina di Turing M per il linguaggio $\{1^n0^m1^{m-1} \mid n \ge 0, m > 0\}$. Definite la specifica formale della TM M, riportando δ sia come tabella che come grafo di transizione.

Soluzione (una tra le possibili):

	0	1	X	Y	В
q_0	(q_1, X, R)	$(q_0, 1, R)$			
q_1	(q_2, X, R)			(q_4, Y, R)	(q_5, B, R)
q_2	$(q_2, 0, R)$	(q_3, Y, L)		(q_2, Y, R)	
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_1, X, R)	(q_3, Y, L)	
q_4				(q_4, Y, R)	(q_5, B, R)
*q ₅					

Esercizio 3. Scrivete le descrizioni istantanee della TM *M* definita nell'Esercizio 2 quando il nastro di input contiene: (a) 1001 (b) 0011 (c) 110.

Soluzione:

(a) q_01001 |- $1q_0001$ |- $1Xq_101$ |- $1XXq_21$ |- $1Xq_3XY$ |- $1XXq_1Y$ |- $1XXYq_4B$ |- $1XXYBq_5B$ termina accettando l'input

- (b) q_00011 |- Xq_1011 |- XXq_211 |- Xq_3XY1 |- Xq_3XY1 |- XXq_1Y1 |- $XXYq_41$ termina senza accettare l'input
- (c) q_0110 |- $1q_010$ |- $11q_00$ |- $11Xq_1B$ |- $11XBq_5B$ termina accettando l'input

Esercizio 4. Data la TM *M* definita nell'Esercizio 2, riportate (e descrivete) la sua rappresentazione binaria seguendo la codifica presentata a lezione.

Soluzione: data la tabella di transizione definita nell'esercizio 2, codifichiamo ogni $\delta(q_i, X_i) = (q_k, X_l, D_m)$ come $0^{i+1}10^i10^k10^l10^m$.

Gli stati saranno quindi codificati come q_0 =0, q_1 =00, ..., q_5 =00000; i simboli sono codificati come X_1 =0=0, X_2 =1=00, ..., X_5 =B=00000; le direzioni come D_1 =R=0 e D_2 =L=00.

La codifica della prima transizione C_1 , definita come $\delta(q_0, 0) = (q_1, X, R)$, sarà perciò 010100100010, quella di C_2 definita da $\delta(q_0, 1) = (q_0, 1, R)$ sarà 01001010010, etc. L'intera TM viene codificata concatenando tutti i codici delle transizioni separati da due simboli 1, cioè: $C_111 C_211...C_{n-1}11C_n$.

Quindi avremo ad es. 0101001000101101001010010...

Esercizio 5. (a) Date la definizione formale della classe dei problemi NP-completi. (b) A quale classe di problemi appartengono i problemi CSAT e 4SAT (riportatene anche la definizione)?

Soluzione: (a) Un problema è NP-completo se è definito da un linguaggio L tale che: (1) L è in NP, e (2) per ogni altro L' in NP esiste una riduzione polinomiale di L' a L. (b) Entrambi sono NP-completi. Il problema CSAT è definito come il problema di soddisfacibilità di espressioni booleane (SAT) espresse in forma normale CNF; 4SAT è un caso particolare di kSAT e riguarda la soddisfacibilità di espressioni booleane in forma 4CNF, ovvero espressioni formate da una o più clausole tra di loro in AND logico e dove ogni clausola contiene 4 letterali. Sia CSAT che 4SAT sono problemi NP-completi (così come il più generale SAT).

Esercizio 6. (a) Date la definizione del linguaggio universale L_u e della macchina di Turing Universale U. (b) A quale classe di linguaggi appartiene L_u (indicate la classe e datene la definizione)?

Soluzione: (a) Il linguaggio universale L_u è l'insieme delle stringhe binarie che codificano una coppia (M, w) dove $w \in L(M)$. Definiamo la TM U, tale che $L_u = L(U)$, come la "TM universale". (b) Il linguaggio L_u è RE ma non ricorsivo. I linguaggi RE non ricorsivi sono quelli per cui ho garanzia che la TM si arresterà se l'input è nel linguaggio, ma nel caso in cui non lo sia potrebbe proseguire in eterno.

Esercizio 7. Dite quali tra le seguenti affermazioni è corretta: (a) Un'espressione booleana è CNF se è congiunzione logica di una o più clausole.

- (b) Un linguaggio L è nella classe NP se è accettato in tempo non polinomiale da una macchina di Turing M, cioè L = L(M).
- (c) Il problema di corrispondenza di Post è un problema intrattabile.
- (d) I linguaggi che possiamo accettare usando una macchina di Turing sono detti RE.
- (e) Il linguaggio L_{ne} è ricorsivo ma non RE.

Soluzione: (a) corretta; (b) non corretta (è NP se è accettato in tempo polinomiale da una TM non-deterministica); (c) non corretta (no è un problema indecidibile); (d) corretta; (e) non corretta (è RE ma non ricorsivo).