Matemática Aplicada

Professor: Miguel Albuquerque Ortiz

Nesta aula iremos aprender:

- O que é Estatística Descritiva.
- População e amostra.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.
- Tabelas de Frequência.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.
- Tabelas de Frequência.
- Gráficos e Interpretação de Gráficos.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.
- Tabelas de Frequência.
- Gráficos e Interpretação de Gráficos.
- Medidas Resumo.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.
- Tabelas de Frequência.
- Gráficos e Interpretação de Gráficos.
- Medidas Resumo.
- Medidas de Dispersão.

- O que é Estatística Descritiva.
- População e amostra.
- Tipos de Variáveis.
- Tabelas de Dados Brutos.
- Tabelas de Frequência.
- Gráficos e Interpretação de Gráficos.
- Medidas Resumo.
- Medidas de Dispersão.

O que é a Estatística?

 O que é a Estatística?
 Resposta: Estátistica é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.

- O que é a Estatística?
 Resposta: Estátistica é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.
- O que é a Estátistica Descritiva?

- O que é a Estatística?
 Resposta: Estátistica é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.
- O que é a Estátistica Descritiva?
 Resposta: é um conjunto de técnicas destinadas a descrever e resumir os dados, a fim de que possamos tirar conclusões a respeito de características de interesse.

Como podemos descrever ou resumir os dados?

 Como podemos descrever ou resumir os dados?
 Resposta: Fazemos isso, inicialmente, a partir de tabelas e gráficos.

 Na Estatística temos dois conjuntos que fazem parte de qualquer experimento: População e Amostra.

- Na Estatística temos dois conjuntos que fazem parte de qualquer experimento: População e Amostra.
- População é o conjunto de todos os dados coletados.

- Na Estatística temos dois conjuntos que fazem parte de qualquer experimento: População e Amostra.
- População é o conjunto de todos os dados coletados.
- Amostra é qualquer subconjunto da População.

• Uma pessoa irá realizar um exame de sangue.

 Uma pessoa irá realizar um exame de sangue. Nesta situação, a População será todo o sangue que está no corpo da pessoa e a amostra será a quantidade de sangue que foi coletada desta pessoa.

- Uma pessoa irá realizar um exame de sangue. Nesta situação, a População será todo o sangue que está no corpo da pessoa e a amostra será a quantidade de sangue que foi coletada desta pessoa.
- Em uma determinada pesquisa o interesse era saber a altura média dos brasileiros.

- Uma pessoa irá realizar um exame de sangue. Nesta situação, a População será todo o sangue que está no corpo da pessoa e a amostra será a quantidade de sangue que foi coletada desta pessoa.
- Em uma determinada pesquisa o interesse era saber a altura média dos brasileiros.

População: todos os brasileiros.

- Uma pessoa irá realizar um exame de sangue. Nesta situação, a População será todo o sangue que está no corpo da pessoa e a amostra será a quantidade de sangue que foi coletada desta pessoa.
- Em uma determinada pesquisa o interesse era saber a altura média dos brasileiros.

População: todos os brasileiros.

Amostra: os brasileiros que cederam a informação de suas alturas à esta pesquisa.

- Uma pessoa irá realizar um exame de sangue. Nesta situação, a População será todo o sangue que está no corpo da pessoa e a amostra será a quantidade de sangue que foi coletada desta pessoa.
- Em uma determinada pesquisa o interesse era saber a altura média dos brasileiros.

População: todos os brasileiros.

Amostra: os brasileiros que cederam a informação de suas alturas à esta pesquisa.

 Quando estamos interessados em estudar determinada característica de uma população dizemos que essa característica é uma variável.

- Quando estamos interessados em estudar determinada característica de uma população dizemos que essa característica é uma variável. As variáveis são divididas em dois grupos:
- Variáveis Quantitativas;
- Variáveis Qualitativas;

 Variáveis Quantitativas são variáveis de natureza numérica e podem ser subdivididas em dois tipos: discretas ou contínuas.

- Variáveis Quantitativas são variáveis de natureza numérica e podem ser subdivididas em dois tipos: discretas ou contínuas.
- Variáveis Qualitativas são variáveis que assumem valores que representam atributos ou qualidades e podem ser subdivididas em dois tipos: nominais ou ordinais.

• Qual é a sua idade?

- Qual é a sua idade?
- Variável: Idade
- Tipo de Variável: Quantitativa Discreta.

- Qual é a sua idade?
- Variável: Idade
- Tipo de Variável: Quantitativa Discreta.
- Qual é sua altura?

- Qual é a sua idade?
- Variável: Idade
- Tipo de Variável: Quantitativa Discreta.
- Qual é sua altura?
- Variável: Altura
- Tipo de Variável: Quantitativa Contínua.

- Qual é a sua idade?
- Variável: Idade
- Tipo de Variável: Quantitativa Discreta.
- Qual é sua altura?
- Variável: Altura
- Tipo de Variável: Quantitativa Contínua.

• Qual é a sua cor preferida?

- Qual é a sua cor preferida?
- Variável: Cor.
- Tipo de Variável: Qualitativa nominal.

- Qual é a sua cor preferida?
- Variável: Cor.
- Tipo de Variável: Qualitativa nominal.
- Como você se considera economicamente:pobre, classe média ou rico?

- Qual é a sua cor preferida?
- Variável: Cor.
- Tipo de Variável: Qualitativa nominal.
- Como você se considera economicamente:pobre, classe média ou rico?
- Variável: Condição economica.
- Tipo de Variável: Qualitativa Ordinal.

Figura: Tipos de Variáveis

A Tabela de Dados Brutos é uma tabela usada inicialmente para descrever os resultados de uma pesquisa.

A Tabela de Dados Brutos é uma tabela usada inicialmente para descrever os resultados de uma pesquisa.

No exemplo a seguir, 25 alunos de uma escola participaram de uma pesquisa. Eles responderam as seguintes perguntas:

- Qual é a sua turma?
- Qual é o seu sexo?
- Qual é a sua idade?
- Qual é a sua altura?
- Qual é o seu peso?
- Quantos filhos você tem?
- Você fuma cigarro?

Foram obtidos os seguintes resultados:

ld	Turma	Sexo	Idade	Altura	Peso	Filhos	Fuma
1	Α	F	17	1,60	60,5	2	NÃO
2	Α	F	18	1,69	55,0	1	NÃO
3	Α	М	19	1,85	72,8	1	SIM
4	Α	М	17	1,85	80,9	2	NÃO
5	Α	F	20	1,58	55,0	3	NÃO
6	Α	M	21	1,76	60,0	1	NÃO
7	Α	F	25	1,60	58,0	2	NÃO
8	Α	F	18	1,64	47,0	3	NÃO
9	Α	F	19	1,62	57,8	0	SIM
10	Α	F	24	1,64	58,0	1	SIM
11	Α	F	23	1,62	68,5	2	SIM
12	Α	М	22	1,64	63,5	3	SIM
13	Α	M	18	1,72	47,4	2	NÃO
14	Α	М	18	1,66	66,0	2	SIM
15	В	М	18	1,70	85,2	2	NÃO
16	В	F	17	1,78	54,2	1	SIM
17	В	М	19	1,65	52,5	1	NÃO
18	В	F	19	1,63	60,0	1	SIM
19	В	М	20	1,82	58,5	1	NÃO
20	В	М	21	1,80	49,2	1	NÃO
21	В	М	22	1,60	48,0	0	NÃO
22	В	М	22	1,68	51,6	0	NÃO
23	В	М	22	1,70	57,0	0	NÃO
24	В	М	23	1,65	63,0	0	NÃO
25	В	F	23	1,57	52,0	2	SIM

Observe que apesar da tabela de Dados Brutos conter muita informação, esta tabela não é muito prática para respondermos às questões de interesse estatístico.

Observe que apesar da tabela de Dados Brutos conter muita informação, esta tabela não é muito prática para respondermos às questões de interesse estatístico. Dessa forma, a partir da Tabela de Dados Brutos, podemos montar as **Tabelas de Frequência** para cada uma das variáveis apresentadas na primeira tabela.

Na Tabela de Frequência analisamos as variáveis de forma separada. Seguimos o seguinte modelo:

 Na primeira coluna colocamos o nome da Variável e as suas variações;

- Na primeira coluna colocamos o nome da Variável e as suas variações;
- Na segunda coluna colocamos a frequência absoluta;

- Na primeira coluna colocamos o nome da Variável e as suas variações;
- Na segunda coluna colocamos a frequência absoluta;
- Na terceira coluna colocamos a frequência relativa;

- Na primeira coluna colocamos o nome da Variável e as suas variações;
- Na segunda coluna colocamos a frequência absoluta;
- Na terceira coluna colocamos a frequência relativa;
- Na quarta coluna colocamos a frequência acumulada;

Em relação a tabela de Dados Brutos montaremos uma tabela de frequência para cada uma das variáveis. Assim:

Turma	n _i	f_i	f_{ac}
Α			
В			
Total			

Tabela: Tabela de Frequência para a Variável Turma - Não preenchida

A partir da contagem dos dados apresentados na Tabelas de Dados Brutos podemos completar a tabela de frequência para a variável Turma. Obtemos assim:

A partir da contagem dos dados apresentados na Tabelas de Dados Brutos podemos completar a tabela de frequência para a variável Turma. Obtemos assim:

Turma	n _i	f_i	f_{ac}
Α	14	0,56	0,56
В	11	0,44	1,00
Total	25	1	

Tabela: Tabela de Frequência para a Variável Turma - Preenchida

Analisaremos, agora, a variável Idade:

Analisaremos, agora, a variável Idade:

Idade	n _i	f_i	f_{ac}
17			
18			
19			
20			
21			
22			
23			
24			
25			
Total			

Tabela: Tabela de Frequência para a Variável Idade - Não Preenchida

Idade	n _i	fi	f_{ac}	
17	3	0, 12	0, 12	
18	5	0, 20	0,32	
19	4	0, 16	0,48	
20	2	0,08	0,56	
21	2	0,08	0,64	
22	4	0, 16	0,80	
23	3	0, 12	0,92	
24	1	0,04	0,96	
25	1	0,04	1,00	
Total	25	1		

Tabela: Tabela de Frequência para a Variável Idade - Preenchida

Quando a Variável é do tipo Quantitativa Contínua podemos montar a Tabela de Frequência com "Faixas de Frequência" (ou intervalos), com o objetivo de ter uma Tabela mais fácil de ser compreendida.

Quando a Variável é do tipo Quantitativa Contínua podemos montar a Tabela de Frequência com "Faixas de

Frequência" (ou intervalos), com o objetivo de ter uma Tabela mais fácil de ser compreendida.

Geralmente, são adotadas de 5 até 8 faixas de mesma amplitude.

Para a melhor compreensão desta situação analisaremos a tabela de Frequência da Variável Peso.

Peso	n _i	f_i	f_{ac}
$45,0 \vdash 55,0$			
55, 0 ⊢ 65, 0			
$65, 0 \vdash 75, 0$			
$75,0 \vdash 85,0$			
85, 0 ⊢ 95, 0			
Total			

Tabela: Tabela de Frequência para a Variável Peso - Não Preenchida

Peso	ni	fi	f_{ac}
45 , 0 ⊢ 55 , 0	8	0,32	0,32
55, 0 ⊢ 65, 0	12	0,48	0,80
65, 0 ⊢ 75, 0	3	0, 12	0,92
75 , 0 ⊢ 85 , 0	1	0,04	0,96
85, 0 ⊢ 95, 0	1	0,04	1,00
Total	25	1	

Tabela: Tabela de Frequência para a Variável Peso - Preenchida

Tabelas de Frequência - Exercícios

Tabelas de Frequência - Exercícios

A partir dos dados fornecidos na Tabela de Dados Brutos,monte tabelas de Frequências para cada uma das seguintes variáveis:

- Sexo;
- Altura;
- Filhos;
- Fumar;

Os gráficos constituem uma forma clara e objetiva de apresentar dados estatísticos.

Os gráficos constituem uma forma clara e objetiva de apresentar dados estatísticos.

O gráfico representa uma maneira visual mais prática para compreensão da Tabela de Frequência, e dessa forma, é utilizado com bastante frequência para o estudo específico de uma variável de interesse.

Os gráficos constituem uma forma clara e objetiva de apresentar dados estatísticos.

O gráfico representa uma maneira visual mais prática para compreensão da Tabela de Frequência, e dessa forma, é utilizado com bastante frequência para o estudo específico de uma variável de interesse.

Tipos de Gráficos

• Gráfico de Setores (ou Gráfico de Pizza);

Tipos de Gráficos

- Gráfico de Setores (ou Gráfico de Pizza); (indicado para variáveis qualitativas)
- Gráfico de Barras;

Tipos de Gráficos

- Gráfico de Setores (ou Gráfico de Pizza); (indicado para variáveis qualitativas)
- Gráfico de Barras; (Nesse tipo de Gráfico as variáveis sempre ficam na base das barras)
- Gráfico de Linhas;
- Histograma;

Tipos de Gráficos

- Gráfico de Setores (ou Gráfico de Pizza); (indicado para variáveis qualitativas)
- Gráfico de Barras; (Nesse tipo de Gráfico as variáveis sempre ficam na base das barras)
- Gráfico de Linhas;
- Histograma; (Ideal para variáveis quantitativas contínuas)

Gráfico de Setores

Figura: Gráfico de Setores - Exemplo

Gráfico de Barras

Figura: Gráfico de Barras - Exemplo

Gráfico de Linhas

Figura: Gráfico de Linhas - Exemplo

Histograma

Figura: Histograma - Exemplo

Gráficos - Exercícios

Gráficos - Exercícios

Os exercícios sobre gráficos serão baseados na interpretação do gráfico e não em sua elaboração;

Gráficos - Exercícios

Os exercícios sobre gráficos serão baseados na interpretação do gráfico e não em sua elaboração; Recomendo que façam os exercícios indicados no material complementar e no Khan Academy;

As Medidas Resumo que estudaremos nesta aula são:

Média;

- Média;
- Mediana;

- Média;
- Mediana;
- Moda;

- Média;
- Mediana;
- Moda;

Medidas Resumo - Média

Medidas Resumo - Média

Considere uma variável X com observações representadas por $x_1, x_2, x_3, \ldots, x_n$. A média desse conjunto é a soma dos valores dividida pelo número total de observações. Isto é,

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como tendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99, 100. Qual é o número médio de parafusos dessas 10 caixas?

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como tendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99, 100. Qual é o número médio de parafusos dessas 10 caixas?

Resolução:

Resolução:

$$\overline{x} = \frac{98 + 102 + 100 + 100 + 99 + 97 + 96 + 95 + 99 + 100}{10}$$

$$\overline{x} = \frac{986}{10} = 98, 6$$

Resolução:

$$\overline{x} = \frac{98 + 102 + 100 + 100 + 99 + 97 + 96 + 95 + 99 + 100}{10}$$

$$\overline{x} = \frac{986}{10} = 98, 6$$

Portanto, há um número médio de 98,6 parafusos nessa amostra de 10 caixas.

A mediana M_e é o valor que ocupa a posição central dos dados ordenados. Assim, é necessário colocar os dados em ordem crescente ou decrescente e observar o dado central.

A mediana M_e é o valor que ocupa a posição central dos dados ordenados. Assim, é necessário colocar os dados em ordem crescente ou decrescente e observar o dado central. Quando a quantidade de dados for par, a mediana M_e será o média dos dois valores dos dados centrais observados.

A mediana M_e é o valor que ocupa a posição central dos dados ordenados. Assim, é necessário colocar os dados em ordem crescente ou decrescente e observar o dado central. Quando a quantidade de dados for par, a mediana M_e será o média dos dois valores dos dados centrais observados. Quando a quantidade de dados for impar, a mediana M_e será o valor do dado central .

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como tendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99, 100. Qual será a mediana M_e dessa amostra?

Resolução:

Resolução:

Primeiro colocamos os dados em ordem crescente ou decrescente:

Resolução:

Primeiro colocamos os dados em ordem crescente ou decrescente:

Na quinta posição temos $a_5 = 99$ e na sexta posição temos $a_6 = 99$ (estes são os dois dados centrais do conjunto de dados), assim a mediana será:

$$M_e = \frac{a_5 + a_6}{2} = \frac{99 + 99}{2} = 99$$

Se o nosso conjunto de dados fosse:

95, 96, 97, 98, 99, 100, 100, 100, 100, 102, 102

Se o nosso conjunto de dados fosse:

A mediana seria o sexto termo:

$$M_e=a_6=100$$

Medidas Resumo - Moda

Medidas Resumo - Moda

A moda M_o é o dado que aparece com maior frequência no conjunto de dados.

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como tendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99, 100. Qual será a moda M_o dessa amostra?

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como tendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores 98, 102, 100, 100, 99, 97, 96, 95, 99, 100. Qual será a moda M_o dessa amostra? Resolução:

$$M_o = 100$$

Medidas Resumos - Exercício

Num experimento, 15 coelhos foram alimentados com uma nova ração e seu peso avaliado ao fim de um mês. Os dados referentes ao ganho de peso (em quilogramas) foram os seguintes:

Utilizando os dados brutos, determine a média, moda e mediana desse conjunto.

Medidas Resumos - Exercício

Num experimento, 15 coelhos foram alimentados com uma nova ração e seu peso avaliado ao fim de um mês. Os dados referentes ao ganho de peso (em quilogramas) foram os seguintes:

Utilizando os dados brutos, determine a média, moda e mediana desse conjunto.

Medidas Resumos - Exercício

Resposta:

$$\bar{x} = 1,88$$

$$M_e = 1, 8$$

$$M_o = 1, 5$$

Medidas de Dispersão

Medidas de Dispersão

As medidas de dispersão que estudaremos nesta aula, são:

Medidas de Dispersão

As medidas de dispersão que estudaremos nesta aula, são:

- Variância (Var);
- Desvio Padrão (DP)

Medidas de Dispersão - Variância

Medidas de Dispersão - Variância

 Sendo x̄ a média de um conjunto com n dados. E sendo x̄_i o valor de cada uma das observações, temos que a variância desses n dados, será dada por:

$$Var = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Medidas de Dispersão - Desvio Padrão

Medidas de Dispersão - Desvio Padrão

Sendo DP o desvio padrão, então temos:

$$DP = \sqrt{Var}$$

Um professor de Matemática analisou as notas de 5 alunos de 3 turmas diferentes:

Um professor de Matemática analisou as notas de 5 alunos de 3 turmas diferentes:

- Turma A: 7, 3, 3, 7, 5;
- Turma B: 5, 5, 5, 5, 5;
- Turma C: 0, 0, 10, 10, 5;

Um professor de Matemática analisou as notas de 5 alunos de 3 turmas diferentes:

- Turma A: 7, 3, 3, 7, 5;
- Turma B: 5, 5, 5, 5, 5;
- Turma C: 0, 0, 10, 10, 5;

O professor observou que as três turmas obtiveram a mesma média ($\overline{x}=5$);

Um professor de Matemática analisou as notas de 5 alunos de 3 turmas diferentes:

- Turma A: 7, 3, 3, 7, 5;
- Turma B: 5, 5, 5, 5, 5;
- Turma C: 0, 0, 10, 10, 5;

O professor observou que as três turmas obtiveram a mesma média ($\overline{x}=5$); Dessa forma, decidiu calcular a variância de cada uma das turmas a fim de comparação.

Considere Var(A), Var(B) e Var(C) as variâncias das turmas A, B e C, respectivamente. Assim:

$$Var(A) = \frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2 + (5-5)^2}{5}$$

$$Var(A) = \frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2 + (5-5)^2}{5}$$

$$Var(A) = \frac{4+4+4+4}{5}$$

$$Var(A) = \frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2 + (5-5)^2}{5}$$

$$Var(A) = \frac{4+4+4+4}{5}$$

$$Var(A) = \frac{16}{5}$$

$$Var(A) = \frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2 + (5-5)^2}{5}$$

$$Var(A) = \frac{4+4+4+4}{5}$$

$$Var(A) = \frac{16}{5}$$

$$Var(A) = 3, 2$$

$$Var(B) = \frac{(5-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2}{5}$$

$$Var(B) = \frac{(5-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2}{5}$$

$$Var(B) = \frac{0+0+0+0}{5}$$

$$Var(B) = \frac{(5-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2}{5}$$

$$Var(B) = \frac{0+0+0+0}{5}$$

$$Var(B) = \frac{0}{5}$$

$$Var(B) = \frac{(5-5)^2 + (5-5)^2 + (5-5)^2 + (5-5)^2}{5}$$

$$Var(B) = \frac{0+0+0+0}{5}$$

$$Var(B) = \frac{0}{5}$$

$$Var(B) = 0$$

$$Var(C) = \frac{(0-5)^2 + (0-5)^2 + (10-5)^2 + (10-5)^2 + (5-5)^2}{5}$$

$$Var(C) = \frac{(0-5)^2 + (0-5)^2 + (10-5)^2 + (10-5)^2 + (5-5)^2}{5}$$

$$Var(C) = \frac{25 + 25 + 25 + 25}{5}$$

$$Var(C) = \frac{(0-5)^2 + (0-5)^2 + (10-5)^2 + (10-5)^2 + (5-5)^2}{5}$$

$$Var(C) = \frac{25 + 25 + 25 + 25}{5}$$

$$Var(C) = \frac{100}{5}$$

Agora, iremos calcular a variância da turma C:

$$Var(C) = \frac{(0-5)^2 + (0-5)^2 + (10-5)^2 + (10-5)^2 + (5-5)^2}{5}$$

$$Var(C) = \frac{25 + 25 + 25 + 25}{5}$$

$$Var(C) = \frac{100}{5}$$

Var(C) = 20

Resumo:

- Var(A) = 3, 2
- Var(B) = 0
- Var(C) = 20

Tendo conhecimento da variância das notas das turmas A, B e C, podemos calcular o desvio padrão dessas notas.

•
$$DP(A) = \sqrt{Var(A)} = \sqrt{3,2} \approx 1,79$$

•
$$DP(A) = \sqrt{Var(A)} = \sqrt{3,2} \approx 1,79$$

•
$$DP(B) = \sqrt{Var(B)} = \sqrt{0} = 0$$

•
$$DP(A) = \sqrt{Var(A)} = \sqrt{3,2} \approx 1,79$$

•
$$DP(B) = \sqrt{Var(B)} = \sqrt{0} = 0$$

•
$$DP(C) = \sqrt{Var(C)} = \sqrt{20} \approx 4,47$$

Com esses resultados, sobre variância e desvio padrão, é possível ter uma informação mais aprofundada a respeito dos dados.

Com esses resultados, sobre variância e desvio padrão, é possível ter uma informação mais aprofundada a respeito dos dados.

Neste exemplo, as três turmas apresentam a mesma média; no entanto, a variância e o desvio padrão apresentam resultados diferentes. Mostrando que esses dados não tem um comportamento uniforme, embora tenham a mesma média.

1 Um certo cruzamento tem alto índice de acidentes de trânsito, conforme pode ser constatado em uma amostra dos últimos 12 meses: 5, 4, 7, 8, 5, 6, 4, 7, 9, 7, 6, 8. Determine a média e a variância do número de acidentes mensais nesse local.

Resposta:

1

• Média: $\overline{x} = 6,33$;

• Variância: Var = 2,39;

Final da Aula

Final da Aula

Está disponível um material complementar com lista de exercício e gabarito, sobre os assuntos tratados nestes slides.

Final da Aula

Está disponível um material complementar com lista de exercício e gabarito, sobre os assuntos tratados nestes slides. Para tirar dúvidas a respeito desta aula entrem em contato comigo pelo e-mail:

profmortiz@gmail.com

Bons estudos!

