11. Limits, Continuity and Differentiability

EE24BTECH11047 - Niketh Prakash Achanta

I. C: MCQs with one correct answer

1)
$$\lim_{x\to 0} \frac{\sin(\pi\cos^2 x)}{x^2}$$
 equals

a) $-\pi$
(2001S)

- b) π
- c) $\pi/2$
- d) 1

2) The left-hand derivative of
$$f(x) = [x] \sin(\pi x)$$
 at $x = k$, k an integer, is (2001S)

- a) $(-1)^k (-1) \pi$ b) $(-1)^{k-1} (k-1) \pi$
- c) $-1^k k\pi$
- d) $-1^{k-1}k\pi$

3) Let
$$f : \mathbf{R} \to \mathbf{R}$$
 be a function defined by $f(x) = \max\{x, x^3\}$. The set of all points where $f(x)$ is NOT differentiable is

- a) $\{-1, 1\}$
- b) $\{-1,0\}$
- c) $\{0, 1\}$
- d) $\{-1,0,1\}$

4) Which of the following functions is differentiable at
$$x = 0$$
 (2001S)

- a) $\cos(|x|) + |x|$
- b) $\cos(|x|) |x|$
- c) $\sin(|x|) + |x|$
- d) $\sin(|x|) |x|$

5) The domain of the derivative of the function
$$f(x) = \begin{cases} \tan^{-1} x & \text{if } |x| \le 0 \\ \frac{1}{2}(|x| - 1) & \text{if } x > 1 \end{cases}$$
 is (2002S)

- a) $\mathbf{R} \{0\}$
- b) $\mathbf{R} \{1\}$
- c) $\mathbf{R} \{-1\}$
- d) $\mathbf{R} \{-1, 1\}$

6) The integer n for which
$$\lim_{x\to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$$
 is a finite non-zero number is (2002S)

- a) 1
- b) 2
- c) 3
- d) 4

- 7) Let $f: \mathbf{R} \to \mathbf{R}$ be such that f(1) = 3 and f'(1) = 6. Then $\lim_{x \to 0} \left(\frac{f(1+x)}{f(1)}\right)^{1/x}$ equals (2002S)
 - a) 1
 - b) $e^{1/2}$
 - c) e^2
 - d) e^3
- 8) If $\lim_{x\to 0} \frac{((a-n)nx-\tan x)\sin nx}{x^2} = 0$, where n is nonzero real number, then a is equal to (2003S)
 - a) 0
 - b) $\frac{n+1}{n}$
 - c) n
 - d) $n + \frac{1}{n}$
- 9) $\lim_{h\to 0} \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(1)}$ given that f'(2) = 6 and f'(1) = 4 (2003S)
 - a) Does not exist
 - b) is equal to -3/2
 - c) is equal to 3/2
 - d) is equal to 3
- 10) If f(x) is differentiable and strictly increasing function, then the value of $\lim_{x\to 0} \frac{f(x^2)-f(x)}{f(x)-f(0)}$ is (2004S)
 - a) $(-1)^k (k-1) \pi$
 - b) $(-1)^{k-1}(k-1)\pi$
 - c) $(-1)^k k\pi$
 - d) $(-1)^{k-1} k\pi$
- 11) The function given by y = ||x| 1| is differentiable for all real numbers except the points (2005S)
 - a) $\{0, 1, -1\}$
 - b) ± 1
 - c) 1
 - d) -1
- 12) If f(x) is a continuous and differentiable function and $f(1/n) = 0 \ \forall \ n \ge 1 \ \text{and} \ n \in I$, then (2005S)
 - a) $f(x) = 0, x \in (0, 1]$
 - b) f(0) = 0, f'(0) = 0
 - c) $f(0) = 0 = f'(0), x \in (0, 1]$
 - d) f(0) = 0 and f'(0) need not be zero
- 13) The value of $\lim_{x\to 0} ((\sin)^{1/x} + (1+x)^{\sin x})$, where x > 0 is (2006 3M, -1)
 - a) 0
 - b) -1
 - c) 1
 - d) 2

- 14) Let f(x) be differentiable on the interval $(0, \infty)$ such that f(1) = 1, and $\lim_{t \to x} \frac{t^2 f(x) x^2 f(t)}{t x} = 1$ for each x > 0. Then f(x) is
 - a) $\frac{1}{3x} + \frac{2x^2}{3}$
 - b) $\frac{-1}{3x} + \frac{4x^2}{3}$
 - $c) \frac{-1}{x} + \frac{2}{x^2}$
 - d) $\frac{1}{x}$
- 15) $\lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\sec^{2} x} f(t)dt}{x^{2} \frac{\pi^{2}}{16}}$ equals (2007 - 3marks)

 - a) $\frac{8}{\pi}f(2)$ b) $\frac{2}{\pi}f(2)$ c) $\frac{2}{\pi}f(\frac{1}{2})$ d) 4f(2)