

Informe 6

Taller V: Electrónica digital y microcontroladores

Profesor: Belarmino Segura Giraldo

Sumador y Restador

Universidad Nacional de Colombia Sede Manizales

Nicolás Cortés Parra, Jacobo Gutiérrez Zuluaga, Sofia de los Ángeles Hoyos Restrepo

Marco teórico

Para introducir los semisumadores, sumadores de un (1) bit o sumadores de cuatro (4) bits se introduce el concepto de lógica combinacional.

En los circuitos que manejan lógica combinacional se tiene una entrada y una salida, mientras que en los secuenciales existe una retroalimentación que afecta una decisión posterior.

Ingeniería Mecafenix

Tomado de: https://www.ingmecafenix.com/electronica/digital/circuitos-combinacionales-v-secuenciales/

Por ahora nos concentraremos en la lógica combinacional ya que solo necesitamos sumadores completos de cuatro (bits) para realizar las operaciones de suma y resta, que no son retroalimentados.

Sumador completo de 4 bits:

Como se observó en clase, un sumador completo puede construirse con base a un sumador básico o sumador de un (1) bit.

A	В	C_i	C_0	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Tabla de la verdad para el sumador de un (1) bit.

Al poner 4 sumadores de un 1 bit se obtiene el sumador completo de 4 bits:

Como el procedimiento de la suma binaria, la suma se hace dígito por dígito teniendo en cuenta que los términos a la derecha, es decir A_0 y B_0 , son los menos significativos mientras que los términos A_3 y B_3 son los de "mayor peso" o más significativos. También se tiene un acarreo inicial C_i que permite reportar la suma con cinco (5) bits en total:

Cuatro (4) bits de la suma término a término.

Un (1) bit correspondiente al acarreo final C_0 .

Restador:

Puede construirse a partir de 2 sumadores completos de 4 bits además de las compuertas NOT y XOR, o una XNOR si puede conseguirse.

El número A ingresa directamente al sumador, teniendo en cuenta que el pin de entrada A_3 es la cifra más significativa y A_0 la menos significativa.

El número B se niega a la entrada y luego va al sumador, haciendo el complemento a 1 de B (sustraendo). En el segundo sumador se conecta cada bit de B a tierra, se suma con la salida del primer sumador y el resultado se lleva a una compuerta XNOR, que cumple la condición de que cuando el acarreo de la resta C_0 es cero hace complemento a 1, y si no, lo suma al resultado final.

El símbolo de la resta se representa por medio de un LED; cuando este está apagado indica resultado positivo y cuando se enciende indica el resultado de la resta negativo.

Simulación en Proteus:

Suma:

Resta:

Materiales:

- 2 dipswitch
- 3 sumadores74LS283
- 1 NOT 74LS04N
- 1 XOR 74LS86N
- Resistencias
- LED's

Montaje Físico:

Con los dos dipswitch se ingresan los 4 bits del número A y del número B. Se muestran circuitos independientes para suma y resta. El montaje del lado derecho que tiene el LED rojo, es el de la resta, y este LED indica el signo negativo del resultado.

Conclusiones:

- Es importante colocar las resistencias del mismo valor y máximo de $1k\Omega$ para que el cero lógico sea el mismo en cada entrada de las compuertas. Si se pone una resistencia muy alta, el voltaje registrado es mayor a 1V lo que hace que cualquier voltaje recibido a la entrada de las compuertas sea reconocido como el 1 lógico.
- Al poner los números A y B en los dipswitch se debe presionar cada uno de estos porque generalmente hace mal contacto con la Protoboard, lo que produce un resultado erróneo en la operación realizada.
- Siempre hay que tener en cuenta cual es la cifra más significativa de los números A y B para hacer la correcta lectura (de derecha a izquierda o viceversa) del resultado; de igual manera, se debe tener cuidado al ingresar los números en la simulación y verificar que la cifra más significativa se ingrese en el pin A₃ o B₃.

Referencias:

- Lógica combinacional y secuencial. Tomado de:
 <u>https://www.ingmecafenix.com/electronica/digital/circuitos-combinacionales-y-secuenciales/</u>
- Sumadores. Tomado de: chrome-
 extension://efaidnbmnnnibpcajpcglclefindmkaj/https://personales.unican.es/manzan
 om/Planantiguo/EDigitalI/Sum G5 08.pdf