Main Idea ---- 1

is a shortest path from s to d

Then

- (i) all subpaths are shortest optimal substructure!
- (ii) After $\delta(s, \pi(v))$ is known, we can get $\delta(s, v)$ by Relax($\pi(v), v, w$)

 e.g. After $\delta(s, c) = 9$ is known, we have $\delta(s, d) = 9 + w(c, d) = 12$

Main Idea ---- 2

24-3b

If G contains no negative cycles,

- (i) every shortest path is a simple path
- (ii) every shortest path has at most n 1 edges

(For ease of discussion, assume that there are no 0-cycles)

Main Idea: Bellman-Ford (no negative cycles)

shortest path tree

- * U_i: vertices whose shortest paths having i edges
 - * U_0 phase 1 U_1 phase 2 U_2 U_2 U_0 main idea 1 correctness
- * A simple path has at most n 1 edges

$$\Box$$
 $\bigcup_{n} = \bigcup_{n+1} = \bigcup_{n+2} = \dots = \emptyset$

 $rac{1}{2}$ n - 1 phases is sufficient!

main idea 2 - time complexity

Traditional approach: DP (See 15-14a)

24-6a

$$\begin{cases} d(s) = 0 \\ d(v) = MIN \{d(u) + w(u, v)\} \\ (u, v) \in E \end{cases}$$

bottom-up computation (left-to-right)

$$\pi(x) \in \{t, u, v\}$$

$$d(x) = \begin{cases} d(t) + 2, \\ d(u) + 1, \\ d(v) + (-2) \end{cases}$$

DP: 有答案的存起來等別人問 (+, u, v等 x 來 問答案)

24.2: 有答案的主動去修正有需要的人 (t, u, v主動用答案修正x)

- * all edges are from left to right \rightarrow
- * $\pi(v_i)$ is one of $v_0, v_1, v_2, ..., v_{i-1}$ (or NIL)
- * Once $v_0, v_1, v_2, ..., v_{i-1}$ ok $\Rightarrow v_i$ ok!
- * Initially, $d(v_0)$ is correct v_0 does "relax" with correct $d(v_0)
 ightharpoonup d(v_1)$ is correct
- \Rightarrow v_1 does "relax" with correct $d(v_1)$ \Rightarrow $d(v_2)$ is correct
- \Rightarrow v₂ does "relax" with correct d(v₂) \Rightarrow d(v₃) is correct
- \Rightarrow • all $d(v_i)$ are correct (by induction)

24-10a

(shortest path tree of 24-5 Fig.)

Prim's MST

 $\pi[v]$: nearest vertex in T $u \leftarrow ExtractMin(Q)$ $T \leftarrow T \cup \{u\}$ reduce key[·] of Adj(u) (decrease-key)

Dijkstra's shortest path

key[v]: shortest edge to T d[v]: known shortest distance to s

 $\pi[v]$: current predecessor $u \leftarrow ExtractMin(Q)$ $5 \leftarrow 5 \cup \{u\}$ relax d[·] of Adj(u) (decrease-key)