universidade do minho miei

introdução aos sistemas dinâmicos

resolução dos exercícios de edos - método de euler

1

Trata-se de uma equação diferencial de primeira ordem de variáveis separáveis sujeita a uma condição inicial cuja solução analítica é dada por

$$x(t) = e^{4t}, \qquad t \in \mathbb{R}.$$

Para F(t,x) = 4x e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial para os valores de t enunciados, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, 1)$. Os resultados obtidos e os valores exactos, calculados pela solução analítica encontrada na alínea anterior, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k	$x(t_k)$
0.0	1.0000	1.0000
0.1	1.4000	1.4918
0.2	1.9600	2.2255
0.3	2.7440	3.3201
0.4	3.8416	4.9530
0.5	5.3782	7.3891
0.6	7.5295	11.023
0.7	10.541	16.445
8.0	14.758	24.532
0.9	20.661	36.598
1.0	28.926	54.598

_ 2

Trata-se de uma equação diferencial de primeira ordem de variáveis separáveis sujeita a uma condição inicial, cuja solução analítica é dada por

$$x(t) = \frac{e^t}{3 + e^t}, \qquad t \in \mathbb{R}.$$

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, 0.25)$. Os resultados obtidos e os valores exactos, calculados pela solução analítica encontrada na alínea anterior, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k	$x(t_k)$
0.0	0.25000	0.25000
0.1	0.26875	0.26921
0.2	0.28840	0.28934
0.3	0.30892	0.31032
0.4	0.33027	0.33212
0.5	0.35239	0.35466
0.6	0.37522	0.37787
0.7	0.39866	0.40165
0.8	0.42263	0.42590
0.9	0.44703	0.45051
1.0	0.47175	0.47537

_ 3.

Escolhendo

$$F(t,x) = \frac{6t^5 - 2t + 1}{1 + \cos(x) + e^x}$$

e $\Delta t=0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial para os valores de t enunciados, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$
 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, 1.865)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k
0.0	1.8650
0.1	1.8790
0.2	1.8900
0.3	1.8982
0.4	1.9039
0.5	1.9074
0.6	1.9100
0.7	1.9135
8.0	1.9217
0.9	1.9400
1.0	1.9761

Escolhendo $F(t,x) = \cos(t) - 3x$ e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial para os valores de t enunciados, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, 1)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k
0.0	1.0000
0.1	1.0540
0.2	1.0734
0.3	1.0612
0.4	1.0199
0.5	0.95228
0.6	0.86026
0.7	0.74548
8.0	0.60896
0.9	0.45098
1.0	0.27099

■ 5.

Escolhendo $F(t,x) = -8x + t^2 - 4t \operatorname{sen}(3t)$ e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial, para valores positivos de t no intervalo dado, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} + \Delta t$

e, para valores negativos de t no intervalo dado, utilizando

$$x_k = -F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 4;$$

 $t_k = t_{k-1} - \Delta t$

em ambos os casos a partir do ponto/condição inicial $(t_0, x_0) = (0, -2)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k
-0.4	-20.801
-0.3	-11.603
-0.2	-6.4692
-0.1	-3.6000
0.0	-2.0000
0.1	-0.40000
0.2	-0.090821
0.3	-0.059336
0.4	-0.096867
0.5	-0.15250
0.6	-0.20500
0.7	-0.23872
8.0	-0.24044
0.9	-0.20024
1.0	-0.11290

6.

Escolhendo

$$F(t,x) = \frac{1-t \sin x}{1+t^2}$$

e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial para os valores de t no intervalo dado, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$
 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, -2)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

x_k
-2.0000
-1.9000
-1.7916
-1.6767
-1.5576
-1.4369
-1.3173
-1.2010
-1.0901
-0.98588
-0.88917

Escolhendo

$$F(t,x) = \frac{t^2 - x}{6 + e^x}$$

e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial, para valores positivos de t no intervalo dado, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} + \Delta t$

e, para valores negativos de t no intervalo dado, utilizando

$$x_k = -F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 10;$$

 $t_k = t_{k-1} - \Delta t$

em ambos os casos a partir do ponto/condição inicial $(t_0, x_0) = (0, 2)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k
-1.0	2.1801
-0.9	2.1592
-0.8	2.1390
-0.7	2.1193
-0.6	2.1002
-0.5	2.0818
-0.4	2.0641
-0.3	2.0470
-0.2	2.0306
-0.1	2.0149
0.0	2.0000
0.1	1.9851
0.2	1.9709
0.3	1.9574
0.4	1.9448
0.5	1.9329
0.6	1.9218
0.7	1.9115
0.8	1.9020
0.9	1.8933
1.0	1.8854

Escolhendo $F(x) = 4\cos(t)x^2 + (2-t)e^{-t}$ e $\Delta t = 0.1$, o método de Euler permite-nos estabelecer estimativas para os valores da solução da equação diferencial para os valores de t no intervalo dado, utilizando a seguinte fórmula iterativa:

$$x_k = F(t_{k-1}, x_{k-1}) \times \Delta t + x_{k-1}, \qquad k = 1, \dots, 20;$$

 $t_k = t_{k-1} + \Delta t$

a partir do ponto/condição inicial $(t_0, x_0) = (0, -1)$. Os resultados obtidos, apresentados com cinco algarismos significativos, mostram-se na tabela que se segue:

t_k	x_k
0.0	-1.0000
0.1	-0.40000
0.2	-0.16440
0.3	-0.0064336
0.4	0.11952
0.5	0.23204
0.6	0.34192
0.7	0.45734
0.8	0.58589
0.9	0.73547
1.0	0.91469
1.1	1.1323
1.2	1.3949
1.3	1.7010
1.4	2.0296
1.5	2.3245
1.6	2.4886
1.7	2.4243
1.8	2.0901
1.9	1.7191
2.0	1.3384