디지털지형항법 소프트웨어 FTG V2 실행방법 매뉴얼 (DTNS)

FTG V2 업데이트

- 오토파일럿 비행 모드 고도화
 - 자세 유지, 고도 유지, 경로점 비행, ATF, AGCAS, PARS 등의 비행모드 분리
- RALT 센서 모델 업데이트
 - 출력 구조체 추가 (RALT 참값)
 - 측정치 오차 구현: 고도에 따른 백색 가우시안 잡음 추가
- GPS 센서 모델 업데이트
 - 입력 구조체 추가 (GPS 상태 제어를 위함)
 - 측정치 오차 구현: FOM 테이블에 근거한 간이 오차 모델링 (백색 가우시안 잡음)
- INS 센서 모델 업데이트
 - 입력 구조체 추가 (INS 상태 제어를 위함)
 - 측정치 오차 구현: Strap-down INS 알고리즘과 Aviation grade IMU을 이용한 오차를 가진 INS 구현

- MATLAB 실행
 - 1) MATLAB 현재 경로를 DTNS(FTG) 프로젝트 경로로 설정
 - 2) 하위폴더(\FTG) 선택하여 FTG.slx 실행
 - 3) "Open Project and Model" 선택

- DTNS MAP 폴더 설정
 - 1) SIMULINK 프로젝트 상에서 MAP 데이터에 접근하기 위해 DTNS MAP 데이터가 저장된 폴더를 설정해주어야 함
 - 2) FTGInitializeMAP() 함수의 pathDTED와 pathDVOF를 수정
 - 3) SENSOR_RALT 작동을 위해서는 RALT 모델 안의 RALTInitializeMAP()도 수정


```
function [successDTED, successDVOF] = FTGInitializeMAP()

flagDTED = int32(1);

flagDVOF = int32(1);

pathDTED = 'C:\\Users\\ASCL\\Documents\\GitHub\\DTNS\\MAP\\MAP_DB\\';

pathDVOF = 'C:\\Users\\ASCL\\Documents\\GitHub\\DTNS\\MAP\\DVOF\\';

strLenDTED = int32(strlength(pathDTED));

strLenDVOF = int32(strlength(pathDVOF));

flagDTED = coder.ceval('InitialMap', pathDTED, strLenDTED );

flagDVOF = coder.ceval('InitialMap', pathDVOF, strLenDVOF );

successDTED = flagDTED;
successDVOF = flagDVOF;
```


- 초기 항공기 상태값 제어
 - 1) FTG_initState.m 스크립트 수정 후 재실행
 - 2) 저장해둔 FTGScenario 파일을 이곳에서 불러올 수 있음
 - 3) FTGScenario 파일은 FTG.slx의 입력변수

- FTG.slx 입력변수 조작
 - 1) MATLAB 작업공간 확인
 - 2) 변수 탭 확인
 - 3) 수정 원하는 입력변수 선택하여 시계열 데이터 입력

- FTG.slx 입력변수 조작
 - 1) MATLAB 작업공간 확인
 - 2) 변수 탭 확인
 - 3) 수정 원하는 입력변수 선택하여 시계열 데이터 입력

- FTGScenario{4}: IN_FLIGHT_CMD 설정
 - 1) 시험 목적에 맞게 FTGScenario 구성하여 사용
 - 2) 기본 제공 시나리오: FTG_INPUT_SCENARIOS_STRG.mat
 - 북위 35.7도, 동경 128.25도, 1000m, 250m/s를 목표로 하는 경로점 비행
 - 3) 아래의 TRN 시험시 입력값 설정 추천값과 다음 쪽의 오토파일럿 상태 기계를 참고

파라미터	추천값	비고	파라미터	추천값	비고
flightMode	1	자동 비행모드	nextLat	~	경로점 입력
switchPARS	0	(=1, 즉시 회복기동)	nextLon	~	경로점 입력
switchGCAS	0, 1	OFF 혹은 수동 GCAS	nextAlt	~	경로점 고도가 아닌, 정확히 는 설정 고도임
swtichTF	0, 1	OFF 혹은 수동 TF	refSpeed	100~340 m/s	
switchRoll	1	경로점 비행	setRoll	~	경로점 비행시 불필요
switchPitch	2	경로점 비행 (고도유지)	setPitch	~	경로점 비행시 불필요
			setHeading	~	경로점 비행시 불필요

• 참고) 오토파일럿 상태기계

피치축 오토파일럿 상태

값	상태	설명	PARS	GCAS	TF	Roll	Pitch
0	OFF	오토파일럿 미작동	0				0, (1,2)
1	ATT HOLD	입력받은 피치자세각을 유지한다	0		0, 1	0	1
2	ALT HOLD	입력받은 고도를 유지한다	0		0, 1		2
3	ATF	DBTF의 수직가속도 명령을 추종 한다	0		2		
4	AGCAS	AGCAS의 회복기동 절차를 수행 중이다	0	2*			
5	PARS	PARS 절차를 수행해 롤자세 및 수 평을 회복한다	1				

■ 스위치(PARS)

값	상태	설명
0	NORM	미입력 상태
1	PARS	PARS 절차 수행 트리거

■ 스위치(GCAS)

값	상태	설명
0	NOT SELECTED	PGCAS 미선택
1	SELECTED	PGCAS 선택 (STBY)
2	AUTO GCAS	PGCAS 선택 및 Auto-GCAS 활성화

■ 스위치(TF)

값	상태	설명
0	NOT SELECTED	DBTF 미선택
1	SELECTED	DBTF 선택 (STBY)
2	AUTO TF	DBTF 선택 및 Auto-TF 활성화

플로 오토파일 상태

값	상태	설명	PARS	GCAS	TF	Roll	Pitch
0	OFF	오토파일럿 미작동	0			(1, 2)	0, (1)
1	STRG SEL	입력받은 경로점으로 진 행한다	0			1	2
2	ATT HOLD	입력받은 롤 자세각을 유 지한다	0			0	1, 2
3	HDG SEL	입력받은 기수방위각을 추종한다	0			2	2
4	AGCAS	AGCAS의 회복기동 절차 를 수행 중이다	0	2*			
5	PARS	PARS 절차를 수행해 롤 자세 및 수평을 회복한다	1				

^{*} AGCAS is invoked when Auto-GCAS is on and PGCAS Time-to-go is less than pullUpTimeSec

■ 스위치(Roll)

값	상태	설명
0	ATT HOLD	입력 롤 자세 유지
1	STRG SEL	경로점 비행
2	HDG SEL	입력 기수방위각 추종

■ 스위치(Pitch)

값	상태	설명
0	AP OFF	오토파일럿 비활성화
1	ATT HOLD	입력 피치자세각 유지 스위치
2	ALT HOLD	입력 고도 유지 스위치

- FTG.slx 최상위 실행 화면
 - 1) 실행 버튼 확인
 - 2) 최초 실행시 컴파일에 1~2분 시간이 소요될 수 있음

- 실행결과 확인
 - 1) bus selector 블록으로 원하는 결과 데이터 추출
 - 2) scope 블록으로 결과 데이터 그래프 도시

2. INS 오차 수준 제어

- INS 오차 수준은 SNU-84-1을 만족하는 Aviation-grade IMU로 모델되었음
- 시험시 필요에 따라 M_INS 내 simulateIMU 함수를 수정

