COLLISION DETECTION

Homepage: https://sites.google.com/site/doc4code/

Email: sj6219@hotmail.com

2011/9/21

게임 엔진을 만들다 보면, 처음 막히는 부분이 충돌 처리 부분이다. 또, 구현하기 가장 어려운 부분이기도 한다. 이 문서에서는 게임에서 충돌 부분을 어떻게 처리하는지에 대해 설명해 보고자한다.

목차

30	4	2
	Linearly Independent	2
	Affine Combination	3
	Affine Hull	3
	Affinely Independent	3
	Convex	4
	Convex Hull	5
	Polytope	6
	Vertex	6
	Simplex	6
	Minkowski Addition	6

Configuration Space Obstacle(CSO)	
Distance	8
Penetration Depth	9
Static Intersection Test	9
Convex Polygon vs Convex Polygon	9
Rectangle vs Rectangle in 2D space	10
Convex Polyhedron vs Convex Polyhedron	13
Box vs Triangle	13
Dynamic Intersection Test	16
Rectangle vs Rectangle in 2D space	17
Frustum Culling	19
Box Culling	22
Sweep and Prune algorithm	24

정의

우선 몇 가지 용어에 대해서 정의부터 해보자

LINEARLY INDEPENDENT

어떤 유한 Vector 집합 $\{V_1, V_2, ..., V_n\}$ 이 다음 조건을 만족하면 linearly independent 하다고 말한다.

$$\alpha_1 \mathbf{V_1} + \alpha_2 \mathbf{V_2} + \dots + \alpha_n \mathbf{V_n} = \mathbf{0} \rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

AFFINE COMBINATION

점 $P_1, P_2, ..., P_n$ 에 대해, $P = \alpha_1 P_1 + \alpha_2 P_2 + \cdots + \alpha_n P_n$ 이고, $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$ 이면, 점 P를 $P_1, P_2, ..., P_n$ 의 Affine Combination 이라고 부른다.

AFFINE HULL

점들의 집합 P에 대해, P 원소들의 Affine CombinationAffine Combination 으로 이루어진 점들의 집합을 Affine Hull 으로 정의하고, aff(P)로 표기한다.

그림 1. $aff({P_1, P_2})$

그림 1의 경우 P_1 , P_2 를 통과하는 직선이 aff(P)이 된다.

AFFINELY INDEPENDENT

점들의 집합 $P=\{P_1,P_2,...,P_n\}$ 에서, $\{P_2-P_1,...,P_n-P_1\}$ 이 Linearly Independent 하면, 집합 P 를 affinely independent 하다고 정의한다.

CONVEX

물체에 속해 있는 임의의 두 점을 연결하는 선분이 그 물체에 포함될 때, 이 물체를 convex 하다고 정의한다. 또, Convex 하지 않은 물체를 concave 하다고 정의한다.

그림 2. CONVEX

그림 3. CONCAVE

CONVEX HULL

점들의 집합 A 를 모두 포함하는 가장 작은 Convex 한 물체를 Convex Hull 이라고 정의하고, conv(A) 로 표시한다.

$$A = \{P_1, P_2, ..., P_n\}$$
 라면

$$\operatorname{conv}(\mathbf{A}) = \{\alpha_1 \mathbf{P_1} + \alpha_2 \mathbf{P_2} + \dots + \alpha_n \mathbf{P_n}: \ \alpha_1 + \alpha_2 + \dots + \alpha_n = 1, \qquad \alpha_1 \geq 0, \alpha_2 \geq 0, \dots, \alpha_n \geq 0\}$$
 our like

그림 4. $conv(\{P_1, P_2\})$

그림 5. $conv({P_1, P_2, P_3})$

그림 4 와 그림 5 처럼 $P_1, P_2, ..., P_n$ 의 내부가 $conv(\{P_1, P_2, ..., P_n\})$ 이다.

POLYTOPE

유한개의 점들의 집합(finite point set)의 Convex Hull 을 Polytope 이라고 말한다.

VERTEX

주어진 Polytope P에 대하여, conv(X) = P를 만족하는 점들의 집합 중 가장 작은 개수의 집합 X를 vert(P)라고 표기하고, X의 원소를 P의 vertex 라고 부른다.

또, X = vert(P)를 아래와 같이 정의할 수도 있다.

- conv(X) = P
- 모든 conv(A) = P인 집합 A 에 대해, X⊆A

SIMPLEX

Affinely Independent 한 점들의 Convex Hull 을 simplex 라고 말한다.

점(point), 선분(line segment), 삼각형(triangle), 사면체(tetrahedral)등이 simplex 이다.

MINKOWSKI ADDITION

두 물체 A 와 B 에 대하여, 다음과 같이 Minkowski Addition을 정의하고, A+B로 표기한다.

$$A + B = \{x + y : x \in A, y \in B\}$$

또, -B를 다음과 같이 정의한다.

$$-B = \{-y: y \in B\}$$

CONFIGURATION SPACE OBSTACLE (CSO)

configuration space obstacle(CSO)을 다음과 같이 정의하고, A-B로 표기한다.

$$A - B = A + (-B)$$

물체 A 와 B 가 Polytope 이라고 하면, 그 CSO 도 Polytope 이다.

그림 6.A 와 B

그림 7. A 와 -B

그림 8. A-B

DISTANCE

distance(A,B)가 두 물체간의 거리라고 하면

 $\mathsf{distance}(\mathsf{A},\mathsf{B}) = \min\{|x-y| : x \, \in \mathsf{A}, y \in \mathsf{B}\} = \min\{|x| : x \, \in \mathsf{A} - \mathsf{B}\}$

로 표현할 수 있다.

즉, 두 물체간의 거리를 구하는 문제는 그 CSO 와 원점간의 거리를 구하는 문제로 변환해서 풀수 있다.

PENETRATION DEPTH

Penetration depth 는 두 물체가 충돌하고 있을 때, 서로 떼어 놓기 위해 이동시켜야 할 최소 거리이다.

PenetrationDepth(A, B) =
$$\inf\{|\mathbf{x}| : \mathbf{x} \notin A - B\}$$

여기서 infimum 은 최소값(minimum)과 비슷한데, 주어진 수의 집합의 모든 원소보다 작거나 같은 값 중 가장 큰 값을 말한다.

Infimum 에 대해 더 알고 싶으면 Wikipedia 에 참조하면 된다.

STATIC INTERSECTION TEST

두 개의 Convex 물체간의 충돌 여부를 검사하는 것에 대해 알아보자.

우선 쉬운 2 차원 문제부터 알아보자.

CONVEX POLYGON VS CONVEX POLYGON

Convex 한 두 물체 A 와 B 가 서로 떨어져 있다면, 두 물체를 가르는 직선이 존재한다.

이 직선의 수직 방향을 Seperating Axis 라고 부른다.

그림 1.

그림 1 에서 N 이 물체 A 와 B 의 Separating Axis 이다.

그림 2.

그런데 A 와 B 의 충돌여부는 A-B 와 원점의 충돌문제와 같다.

A 와 B 가 Convex polygon 이라면 A-B 도 Convex Polygon 이다.

또, A-B 의 각 변의 방향은 A 또는 B의 변의 방향 중의 하나이다.

그래서 다음의 모든 방향에 대해 Seperating Axis 인지 검사하면 두 물체가 충돌하는지 알 수 있다.

- A의 변의 수직 방향
- B의 변의 수직 방향

RECTANGLE VS RECTANGLE IN 2D SPACE

그림 3.

그림과 같이 직사각형(Rectangle)과 직사각형의 충돌 검사를 해보자. 직사각형은 변의 방향이 2 개이니까, 총 4의 축 A_0, A_1, B_0, B_1 에 대해서 검사해 보면 된다.

$$\mathbf{D} = \mathbf{C}_{\mathbf{A}} - \mathbf{C}_{\mathbf{B}}$$

라고 표기하자.

$$A = \{C_A + sA_0 + tA_1 : -1 \le s \le 1, -1 \le t \le 1\}$$

$$B = \{C_B + sB_0 + tB_1 : -1 \le s \le 1, -1 \le t \le 1\}$$

로 표현할 수 있다.

그림 4. $|C_A \cdot L - C_B \cdot L| \le |A_0 \cdot L| + |A_1 \cdot L| + |B_0 \cdot L| + |B_1 \cdot L|$

우선 Seperating Axis 를 \mathbf{L} 로 표기하고, $\mathbf{L} = \mathbf{A_0}$ 인 경우부터 알아보자.

$$\begin{aligned} |\mathbf{A}\cdot\mathbf{L} - \mathbf{C}_{\mathbf{A}}\cdot\mathbf{A}_{0}| &\leq |\mathbf{A}_{0}\cdot\mathbf{A}_{0}| + |\mathbf{A}_{0}\cdot\mathbf{A}_{1}| = \mathbf{A}_{0}\cdot\mathbf{A}_{0} \\ \\ |\mathbf{B}\cdot\mathbf{L} - \mathbf{C}_{\mathbf{B}}\cdot\mathbf{A}_{0}| &\leq |\mathbf{A}_{0}\cdot\mathbf{B}_{0}| + |\mathbf{A}_{0}\cdot\mathbf{B}_{1}| \end{aligned}$$

이어야 한다.

$$|(C_A - C_B) \cdot A_0| = |D \cdot A_0| \leq A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|$$

는 A 과 B 가 충돌하기 위한 필요조건이다.

요약하면,

L	condition
A_0	$ D \cdot A_0 \le A_0 \cdot A_0 + A_0 \cdot B_0 + A_0 \cdot B_1 $
A ₁	$ \mathbf{D} \cdot \mathbf{A}_1 \le \mathbf{A}_1 \cdot \mathbf{A}_1 + \mathbf{A}_1 \cdot \mathbf{B}_0 + \mathbf{A}_1 \cdot \mathbf{B}_1 $
B ₀	$ \mathbf{D} \cdot \mathbf{B}_0 \le \mathbf{B}_0 \cdot \mathbf{B}_0 + \mathbf{A}_0 \cdot \mathbf{B}_0 + \mathbf{A}_1 \cdot \mathbf{B}_0 $
B ₁	$ \mathbf{D} \cdot \mathbf{B}_1 \le \mathbf{B}_1 \cdot \mathbf{B}_1 + \mathbf{A}_0 \cdot \mathbf{B}_1 + \mathbf{A}_1 \cdot \mathbf{B}_1 $

조건을 모두 만족하면 두 물체는 충돌한 것이다.

CONVEX POLYHEDRON VS CONVEX POLYHEDRON

이제 3차원일 때는 어떤지 알아보자.

물체 A 와 B 가 Convex polyhedron 이라면 A-B 도 Convex Polyhedron 이다.

또, A-B 의 각 면(face)의 수직 방향은 아래 방향 중의 하나이다.

- A의 면의 수직 방향
- B의 면의 수직 방향
- (A 의 모서리 방향) × (B 의 모서리 방향)

그래서 위의 모든 방향에 대해 Seperating Axis 인지 검사하면 두 물체가 충돌하는지 알 수 있다.

BOX VS TRIANGLE

그림 5.

그림과 같이 직육면체와 삼각형의 충돌 검사를 해보자. 총 13 개의 방향에 대해서 검사해야 한다.

$$\mathbf{D}=\mathbf{V_0}-\mathbf{C},$$

$$E_0 = V_1 - V_0,$$

$$\mathbf{E_1} = \mathbf{V_2} - \mathbf{V_1},$$

$$\mathbf{E}_2 = \mathbf{V_0} - \mathbf{V_2},$$

$$N = E_0 \times E_1$$

으로 표기하면, 직육면체는 $B=\{\mathbf{C}+p\mathbf{A_0}+q\mathbf{A_1}+r\mathbf{A_2}:-1\leq p\leq 1,-1\leq q\leq 1,-1\leq r\leq 1\}$ 이고, 삼각형은 $T=\{\mathbf{V_0}+s\mathbf{E_0}-t\mathbf{E_2}:0\leq s\leq 1,0\leq t\leq 1,s+t\leq 1\}$ 로 표현된다.

우선 Seperating Axis 를 \mathbf{L} 로 표기하고, $\mathbf{L} = \mathbf{N}$ 인 경우부터 알아보자.

$$-|A_0\cdot N|-|A_1\cdot N|-|A_2\cdot N|\leq (B-C)\cdot L\leq |A_0\cdot N|+|A_1\cdot N|+|A_2\cdot N|$$

 $(\mathbf{V_0}-\mathbf{C})\cdot\mathbf{L}=\mathbf{p_0}, (\mathbf{V_1}-\mathbf{C})\cdot\mathbf{L}=\mathbf{p_1}, (\mathbf{V_2}-\mathbf{C})\cdot\mathbf{L}=\mathbf{p_2}$ 로 표기하면,

$$p_0 = \boldsymbol{D} \cdot \boldsymbol{N}$$

$$p_1 = p_0$$

$$p_2 = p_0$$

이다.

그러므로,

 $\min\{p_0,p_1,p_2\} \leq |\mathbf{A_0}\cdot\mathbf{N}| + |\mathbf{A_1}\cdot\mathbf{N}| + |\mathbf{A_2}\cdot\mathbf{N}| \text{ and } \max\{p_0,p_1,p_2\} \geq -|\mathbf{A_0}\cdot\mathbf{N}| - |\mathbf{A_1}\cdot\mathbf{N}| - |\mathbf{A_2}\cdot\mathbf{N}|$ 는 B 와 T 가 충돌하기 위한 필요조건이다.

이번에, $L = A_0$ 인 경우에 대해 알아보자.

 $\mathbf{A_1} \cdot \mathbf{A_0} = \mathbf{A_2} \cdot \mathbf{A_0} = 0$ 이므로

$$-\mathbf{A_0} \cdot \mathbf{A_0} \le (\mathbf{B} - \mathbf{C}) \cdot \mathbf{L} \le \mathbf{A_0} \cdot \mathbf{A_0}$$

이고,
$$p_0 = (V_0 - C) \cdot L$$
, $p_1 = (V_1 - C) \cdot L$, $p_2 = (V_2 - C) \cdot L$ 로 표기하면,

$$p_0 = \mathbf{D} \cdot \mathbf{A_0}$$

$$p_1 = p_0 + \mathbf{E_0} \cdot \mathbf{A_0}$$

$$p_2 = p_0 - \mathbf{E_2} \cdot \mathbf{A_0}$$

이다.

마찬가지로,

$$\min\{p_0,p_1,p_2\} \leq \boldsymbol{A_0} \cdot \boldsymbol{A_0} \text{ and } \max\{p_0,p_1,p_2\} \geq -\boldsymbol{A_0} \cdot \boldsymbol{A_0}$$

는 B와 T가 충돌하기 위한 필요조건이다.

이번에, $L = A_0 \times E_0$ 인 경우에 대해 알아보자.

그런데, 임의의 벡터 x, y, z에 대해

$$(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z} = (\mathbf{y} \times \mathbf{z}) \cdot \mathbf{x} = (\mathbf{z} \times \mathbf{x}) \cdot \mathbf{y} = \det[\mathbf{x} \quad \mathbf{y} \quad \mathbf{z}]$$

인 성질이 있다.

$$\begin{split} (A_0 \times E_0) \cdot A_0 &= (A_0 \times A_0) \cdot E_0 = 0 \text{이 ...} \\ (A_0 \times E_0) \cdot A_1 &= (A_1 \times A_0) \cdot E_0 \text{이 므로} \\ \\ -|(A_0 \times A_1) \cdot E_0| - |(A_2 \times A_0) \cdot E_0| &\leq (B - C) \cdot L \leq |(A_0 \times A_1) \cdot E_0| + |(A_2 \times A_0) \cdot E_0| \end{split}$$

이다.

$$p_0 = (\mathbf{V_0} - \mathbf{C}) \cdot \mathbf{L}, p_1 = (\mathbf{V_1} - \mathbf{C}) \cdot \mathbf{L}, p_2 = (\mathbf{V_2} - \mathbf{C}) \cdot \mathbf{L}$$
 로 표기하면,

$$p_0 = \mathbf{D} \cdot (\mathbf{A_0} \times \mathbf{E_0})$$

$$p_1 = p_0 + E_0 \cdot (A_0 \times E_0) = p_0$$

 $p_2 = p_0 - \mathbf{E_2} \cdot (\mathbf{A_0} \times \mathbf{E_0}) = p_0 + (\mathbf{E_0} + \mathbf{E_1}) \cdot (\mathbf{A_0} \times \mathbf{E_0}) = p_0 + (\mathbf{E_0} \times \mathbf{E_1}) \cdot \mathbf{A_0} = p_0 + \mathbf{N} \cdot \mathbf{A_0}$ 요약하면,

L	p_0	p_1	p ₂	R
N	D·N	p_0	p_0	$ \mathbf{A}_0 \cdot \mathbf{N} + \mathbf{A}_1 \cdot \mathbf{N} + \mathbf{A}_2 \cdot \mathbf{N} $
$\mathbf{A_0}$	D · A ₀	$p_0 + \mathbf{E_0} \cdot \mathbf{A_0}$	$p_0 - \mathbf{E_2} \cdot \mathbf{A_0}$	$\mathbf{A_0}\cdot\mathbf{A_0}$
A ₁	$\mathbf{D} \cdot \mathbf{A_1}$	$p_0 + \mathbf{E_0} \cdot \mathbf{A_1}$	$\mathbf{p_0} - \mathbf{E_2} \cdot \mathbf{A_1}$	${\bf A_1}\cdot {\bf A_1}$
\mathbf{A}_2	D·A ₂	$p_0 + \mathbf{E_0} \cdot \mathbf{A_2}$	$p_0 - \mathbf{E_2} \cdot \mathbf{A_2}$	$\mathbf{A_2}\cdot\mathbf{A_2}$
$A_0 \times E_0$	$\mathbf{D} \cdot (\mathbf{A}_0 \times \mathbf{E}_0)$	p_0	$p_0 + \mathbf{N} \cdot \mathbf{A_0}$	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_0 + (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_0 $
$A_0 \times E_1$	$\mathbf{D} \cdot (\mathbf{A_0} \times \mathbf{E_1})$	$p_0 - N \cdot A_0$	p ₀	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_1 + (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_1 $
$A_0 \times E_2$	$\mathbf{D}\cdot(\mathbf{A_0}\times\mathbf{E_2})$	$p_0 - \mathbf{N} \cdot \mathbf{A_0}$	$p_0 - \mathbf{N} \cdot \mathbf{A_0}$	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_2 + (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_2 $
$A_1 \times E_0$	$\mathbf{D}\cdot(\mathbf{A}_1\times\mathbf{E}_0)$	p_0	$p_0 + \mathbf{N} \cdot \mathbf{A_1}$	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_0 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_0 $
$A_1 \times E_1$	$\mathbf{D}\cdot(\mathbf{A}_1\times\mathbf{E}_1)$	$p_0 - N \cdot A_1$	p ₀	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_1 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_1 $
$A_1 \times E_2$	$\mathbf{D}\cdot(\mathbf{A}_1\times\mathbf{E}_2)$	$p_0 - N \cdot A_1$	$p_0 - \mathbf{N} \cdot \mathbf{A_1}$	$ (\mathbf{A}_0 \times \mathbf{A}_1) \cdot \mathbf{E}_2 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_2 $
$A_2 \times E_0$	$\mathbf{D}\cdot(\mathbf{A}_2\times\mathbf{E}_0)$	p ₀	$p_0 + \mathbf{N} \cdot \mathbf{A_2}$	$ (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_0 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_0 $
$A_2 \times E_1$	$\mathbf{D}\cdot(\mathbf{A}_2\times\mathbf{E}_1)$	$p_0 - N \cdot A_2$	p ₀	$ (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_1 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_1 $
$\mathbf{A}_2 \times \mathbf{E}_2$	$\mathbf{D}\cdot(\mathbf{A}_2\times\mathbf{E}_2)$	$\mathbf{p_0} - \mathbf{N} \cdot \mathbf{A_2}$	$p_0 - \mathbf{N} \cdot \mathbf{A_2}$	$ (\mathbf{A}_2 \times \mathbf{A}_0) \cdot \mathbf{E}_2 + (\mathbf{A}_1 \times \mathbf{A}_2) \cdot \mathbf{E}_2 $

 $\min\{p_0,p_1,p_2\} \leq R \; \text{and} \; \max\{p_0,p_1,p_2\} \geq -R$ 을 모두 만족하면 두 물체는 충돌한 것이다.

DYNAMIC INTERSECTION TEST

이번에는 두 물체가 움직일 때, 어떤 위치에서 충돌하게 되는지 알아내는 방법에 대해 알아보자.

Seperating Axis 를 검사할 때, 검사하는 방향마다 충돌이 시작하는 시간과 충돌이 끝나는 시간을 계산한다.

모든 방향의 교집합을 구해서, 그 교집합이 공집합이면 두 물체는 충돌하지 않는다.

공집합이 아니면, 그 교집합의 시작 시간이 바로 충돌 시간이다.

RECTANGLE VS RECTANGLE IN 2D SPACE

그림 6.

그림과 같이 직사각형(Rectangle)과 직사각형의 충돌에 대해 알아보겠다.

A의 속도를 \mathbf{v}_{A} , B의 속도를 \mathbf{v}_{B} 라고 하자.

시간 t가 0 부터 1까지 변할 때, 어느 순간에 충돌하는지 계산해 보자.

직사각형은 변의 방향이 2개이니까, 총 4의 축 A_0, A_1, B_0, B_1 에 대해서 검사해 보면 된다.

$$\mathbf{D} = \mathbf{C_A} - \mathbf{C_B}$$

라고 표기하자.

$$A = \{C_A + pA_0 + qA_1 : -1 \le p \le 1, -1 \le q \le 1\}$$

$$B = \{C_B + pB_0 + qB_1 : -1 \le p \le 1, -1 \le q \le 1\}$$

로 표현할 수 있다.

우선 Seperating Axis 를 \mathbf{L} 로 표기하고, $\mathbf{L} = \mathbf{A_0}$ 인 경우부터 알아보자.

시간이 t일 때,

$$\begin{split} |\textbf{A}\cdot\textbf{L} - (\textbf{v}_{\textbf{A}}\cdot\textbf{A}_{\textbf{0}})\textbf{t} - \textbf{C}_{\textbf{A}}\cdot\textbf{A}_{\textbf{0}}| &\leq |\textbf{A}_{\textbf{0}}\cdot\textbf{A}_{\textbf{0}}| + |\textbf{A}_{\textbf{0}}\cdot\textbf{A}_{\textbf{1}}| = \textbf{A}_{\textbf{0}}\cdot\textbf{A}_{\textbf{0}} \\ \\ |\textbf{B}\cdot\textbf{L} - (\textbf{v}_{\textbf{R}}\cdot\textbf{A}_{\textbf{0}})\textbf{t} - \textbf{C}_{\textbf{R}}\cdot\textbf{L}| &\leq |\textbf{A}_{\textbf{0}}\cdot\textbf{B}_{\textbf{0}}| + |\textbf{A}_{\textbf{0}}\cdot\textbf{B}_{\textbf{1}}| \end{split}$$

이어야 한다.

$$|(v_A - v_B) \cdot A_0 t + (C_A - C_B) \cdot A_0| \le A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|$$

는 A 과 B 가 충돌하기 위한 필요조건이다. 위 조건을 다시 쓰면

$$\begin{aligned} -D \cdot A_0 + A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1| &\leq (v_A - v_B) \cdot A_0 t \leq -D \cdot A_0 + A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1| \\ (v_A - v_B) \cdot A_0 &> 0 & 일 때, \end{aligned}$$

$$\frac{-D \cdot A_0 - A_0 \cdot A_0 - |A_0 \cdot B_0| - |A_0 \cdot B_1|}{(v_A - v_B) \cdot A_0} \leq t \leq \frac{-D \cdot A_0 + A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{(v_A - v_B) \cdot A_0}$$

 $(\mathbf{v_A} - \mathbf{v_B}) \cdot \mathbf{A_0} < 0$ 일때,

$$\frac{-D \cdot A_0 + A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{(v_A - v_B) \cdot A_0} \leq t \leq \frac{-D \cdot A_0 - A_0 \cdot A_0 - |A_0 \cdot B_0| - |A_0 \cdot B_1|}{(v_A - v_B) \cdot A_0}$$

두 개의 식을 하나로 합치면

$$\frac{-D \cdot A_0}{(v_A - v_B) \cdot A_0} - \frac{A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{|(v_A - v_B) \cdot A_0|} \leq t \leq \frac{-D \cdot A_0}{(v_A - v_B) \cdot A_0} + \frac{A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{|(v_A - v_B) \cdot A_0|}$$

요약하면,

L	t _{min}	t _{max}
A ₀	$\frac{-D \cdot A_0}{(v_A - v_B) \cdot A_0} - \frac{A_0 \cdot A_0 + A_0 \cdot B_0 + A_0 \cdot B_1 }{ (v_A - v_B) \cdot A_0 }$	$ \left \begin{array}{c} -D \cdot A_0 \\ \hline (v_A - v_B) \cdot A_0 \end{array} + \frac{A_0 \cdot A_0 + A_0 \cdot B_0 + A_0 \cdot B_1 }{ (v_A - v_B) \cdot A_0 } \right \\ \end{array} \right $
A ₁	$\frac{-D \cdot A_1}{(v_A - v_B) \cdot A_1} - \frac{A_1 \cdot A_1 + A_1 \cdot B_0 + A_1 \cdot B_1 }{ (v_A - v_B) \cdot A_1 }$	$ \frac{-D \cdot A_1}{(v_A - v_B) \cdot A_1} + \frac{A_1 \cdot A_1 + A_1 \cdot B_0 + A_1 \cdot B_1 }{ (v_A - v_B) \cdot A_1 } $
B ₀	$\frac{-D \cdot B_0}{(v_A - v_B) \cdot B_0} - \frac{B_0 \cdot B_0 + A_0 \cdot B_0 + A_1 \cdot B_0 }{ (v_A - v_B) \cdot B_0 }$	$\frac{-D \cdot B_0}{(v_A - v_B) \cdot B_0} + \frac{B_0 \cdot B_0 + A_0 \cdot B_0 + A_1 \cdot B_0 }{ (v_A - v_B) \cdot B_0 }$

$$\begin{vmatrix} B_1 & \frac{-D \cdot B_1}{(v_A - v_B) \cdot B_1} - \frac{B_1 \cdot B_1 + |A_0 \cdot B_1| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot B_1|} & \frac{-D \cdot B_1}{(v_A - v_B) \cdot B_1} + \frac{B_1 \cdot B_1 + |A_0 \cdot B_1| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot B_1|} \end{vmatrix}$$

$$\begin{split} t_{\min} &= \text{max} \left\{ 0, \\ \frac{-D \cdot A_0}{(v_A - v_B) \cdot A_0} - \frac{A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{|(v_A - v_B) \cdot A_0|}, \\ \frac{-D \cdot A_1}{(v_A - v_B) \cdot A_1} - \frac{A_1 \cdot A_1 + |A_1 \cdot B_0| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot A_1|}, \\ \frac{-D \cdot B_0}{(v_A - v_B) \cdot B_0} - \frac{B_0 \cdot B_0 + |A_0 \cdot B_0| + |A_1 \cdot B_0|}{|(v_A - v_B) \cdot B_0|}, \\ \frac{-D \cdot B_1}{(v_A - v_B) \cdot B_1} - \frac{B_1 \cdot B_1 + |A_0 \cdot B_1| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot B_1|} \end{split}$$

$$\begin{split} t_{max} &= \min{\{1,} \\ \frac{-D \cdot A_0}{(v_A - v_B) \cdot A_0} + \frac{A_0 \cdot A_0 + |A_0 \cdot B_0| + |A_0 \cdot B_1|}{|(v_A - v_B) \cdot A_0|}, \\ \frac{-D \cdot A_1}{(v_A - v_B) \cdot A_1} + \frac{A_1 \cdot A_1 + |A_1 \cdot B_0| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot A_1|}, \\ \frac{-D \cdot B_0}{(v_A - v_B) \cdot B_0} + \frac{B_0 \cdot B_0 + |A_0 \cdot B_0| + |A_1 \cdot B_0|}{|(v_A - v_B) \cdot B_0|}, \\ \frac{-D \cdot B_1}{(v_A - v_B) \cdot B_1} + \frac{B_1 \cdot B_1 + |A_0 \cdot B_1| + |A_1 \cdot B_1|}{|(v_A - v_B) \cdot B_1|} \end{split}$$

라고 표기할 때,

 $t_{min} > t_{max}$ 이면 두 물체는 충돌하지 않는다.

 $t_{min} \le t_{max}$ 이면, t_{min} 인 순간에 두 물체가 충돌한다.

FRUSTUM CULLING

DirectX 환경에서 Frustum Culling 에 대해 알아보겠다.

그림 1.

Frustum Culling 의 평면 방정식을 계산해 보자.

near plane 을 구하는 방법은 다음과 같다.

Projection Space 에서 near plane 의 방정식은 아래와 같다.

$$z_{proj}/w_{proj} \leq 0$$

$$\begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix} \ge 0$$

그런데, 이 관계식의 변수를 View Space 로 치환하려면

$$\begin{bmatrix} x_{view} & y_{view} & z_{view} & 1 \end{bmatrix} M_{proj} = \begin{bmatrix} x_{proj} & y_{proj} & z_{proj} & w_{proj} \end{bmatrix}$$

이므로

$$\begin{split} & [0 \quad 0 \quad -1 \quad 0] \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix} \\ &= [0 \quad 0 \quad -1 \quad 0] M_{\text{proj}}^{\text{}} T \begin{bmatrix} x_{\text{view}} \\ y_{\text{view}} \\ z_{\text{view}} \\ 1 \end{bmatrix} \\ &= [-M_{\text{proj}}._13 \quad -M_{\text{proj}}._23 \quad -M_{\text{proj}}._33 \quad -M_{\text{proj}}._43] \begin{bmatrix} x_{\text{view}} \\ y_{\text{view}} \\ z_{\text{view}} \\ 1 \end{bmatrix} \geq 0 \end{split}$$

마찬가지로 far plane 의 방정식은

$$z_{proj}/w_{proj} \ge 1$$

$$\begin{bmatrix} 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix}$$

$$= [M_{proj}._13 - M_{proj}._14 \quad M_{proj}._23 - M_{proj}._24 \quad M_{proj}._33 - M_{proj}._34 \quad M_{proj}._43 - M_{proj}._44] \begin{bmatrix} x_{view} \\ y_{view} \\ z_{view} \\ 1 \end{bmatrix}$$

 ≥ 0

left plane 은

$$\frac{X_{\text{proj}}}{W_{\text{proj}}} \le -1$$

$$\begin{bmatrix} -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix}$$

$$= [-M_{\rm proj}._11 - M_{\rm proj}._14 \quad -M_{\rm proj}._21 - M_{\rm proj}._24 \quad -M_{\rm proj}._31 - M_{\rm proj}._34 \quad -M_{\rm proj}._41 - M_{\rm proj}._44] \begin{bmatrix} x_{\rm view} \\ y_{\rm view} \\ z_{\rm view} \\ 1 \end{bmatrix}$$

≥ 0

right plane 은

$$\frac{x_{\text{proj}}}{w_{\text{proj}}} \ge 1$$

$$\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix}$$

$$= [M_{\text{proj.}}_11 - M_{\text{proj.}}_14 \quad M_{\text{proj.}}_21 - M_{\text{proj.}}_24 \quad M_{\text{proj.}}_31 - M_{\text{proj.}}_34 \quad M_{\text{proj.}}_41 - M_{\text{proj.}}_44] \begin{bmatrix} x_{\text{view}} \\ y_{\text{view}} \\ z_{\text{view}} \\ 1 \end{bmatrix}$$

 ≥ 0

up plane 은

$$\frac{y_{\text{proj}}}{w_{\text{proj}}} \ge 1$$

$$\begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix}$$

$$= [M_{\rm proj.}_12 - M_{\rm proj.}_14 \quad M_{\rm proj.}_22 - M_{\rm proj.}_24 \quad M_{\rm proj.}_32 - M_{\rm proj.}_34 \quad M_{\rm proj.}_42 - M_{\rm proj.}_44] \begin{bmatrix} x_{\rm view} \\ y_{\rm view} \\ z_{\rm view} \\ 1 \end{bmatrix}$$

 ≥ 0

down plane 은

$$\frac{y_{\text{proj}}}{w_{\text{proj}}} \le -1$$

$$\begin{bmatrix} 0 & -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{\text{proj}} \\ y_{\text{proj}} \\ z_{\text{proj}} \\ w_{\text{proj}} \end{bmatrix}$$

$$= [-M_{\rm proj}._12 - M_{\rm proj}._14 \quad -M_{\rm proj}._22 - M_{\rm proj}._24 \quad -M_{\rm proj}._32 - M_{\rm proj}._34 \quad -M_{\rm proj}._42 - M_{\rm proj}._44] \begin{bmatrix} x_{\rm view} \\ y_{\rm view} \\ z_{\rm view} \\ 1 \end{bmatrix}$$

 ≥ 0

Frustum 의 world space 에서의 관계식도 마찬가지로 구할 수 있다.

BOX CULLING

그림 2.

이제 Frustum 과 Box 와의 충돌 검사를 하는 방법을 알아보자.

위에서 View Space 에서 Frustum 의 각 평면 관계식을 구하는 방법을 알아보았다. 마찬가지로 하면, World Space 에서도 쉽게 구할 수 있다.

Frustum 의 한 평면 관계식이 다음과 같다고 하자.

$$\begin{bmatrix} P_a & P_b & P_c & P_d \end{bmatrix} \begin{bmatrix} x_{world} \\ y_{world} \\ z_{world} \\ 1 \end{bmatrix} \geq 0$$

그런데, Box B 의 내부는

$$B = \{C + pA_0 + qA_1 + rA_2 : -1 \le p \le 1, -1 \le q \le 1, -1 \le r \le 1\}$$

가 되고,
$$N = \begin{bmatrix} P_a \\ P_b \\ P_c \end{bmatrix}$$
으로 표기하면

$$\mathbf{N}\cdot\mathbf{C} - |\mathbf{N}\cdot\mathbf{A}_0| - |\mathbf{N}\cdot\mathbf{A}_1| - |\mathbf{N}\cdot\mathbf{A}_2| \leq \mathbf{N}\cdot\mathbf{B} \leq \mathbf{N}\cdot\mathbf{C} + |\mathbf{N}\cdot\mathbf{A}_0| + |\mathbf{N}\cdot\mathbf{A}_1| + |\mathbf{N}\cdot\mathbf{A}_2|$$

이다.

그러므로,

$$\mathbf{N} \cdot \mathbf{C} - |\mathbf{N} \cdot \mathbf{A_0}| - |\mathbf{N} \cdot \mathbf{A_1}| - |\mathbf{N} \cdot \mathbf{A_2}| + P_d \ge 0$$

이면 culling 되어야 한다.

Frustum 의 다른 평명 관계식에 대해서도 마찬가지로 검사한다.

여러 개 물체간의 충돌을 검사하려면 많은 시간이 걸린다.

이 알고리즘은 그림과 같이 각 축(axis)별로 최소값과 최대값을 관리한다.

n 개의 물체간의 충돌 여부를 검사할 때 brute force 한 알고리즘을 사용하면 $O(n^2)$ 의 처리시간이 걸린다. 하지만, Sweep and Prune 알고리즘을 사용하면 O(n)까지 처리 시간을 줄일 수 있다.

그림에서 물체 b 가 x 축 방향으로 약간 움직였다고 하자. 대개의 경우 물체 b 의 x 축 최소값이 물체 a 의 x 축 최대값보다 작은 지와, 물체 b 의 x 축 최대값이 물체 d 의 x 축 최소값과 작은 지만 비교하면 된다.

하지만, 비슷한 높이(z축 방향)에 여러 개의 오브젝트가 있는 경우에는 처리 속도가 느려질 수 있다.

자세한 알고리즘은 Christer Ericson. Real-Time Collision Detection 의 7.5.1 을 참고하기 바란다.