

13. Microphone ArraysLocalizationBeamforming

Rahil Mahdian

5.04.2016

Overview

- Microphone Array
- Speaker position localization
- Spatial filtering (Beamforming)

Applications Microphone Arrays

Speech Control

Robotics

Seismology

Types of Arrays

ITD and IID – Human listening

Microphone directivity

Omnidirectional Unidirectional Bidirectional Semicardioid

Shotgun Cardioid Hypercardioid Supercardioid

Other Example Application

From "HEAD VISOR - System for Real-Time Identification of Sound Sources"

Array

Application to sound emission from car

Multi-sensor and localization

Imagination of the problem

Room Height 325

Existing Sound Source Localization Strategies

- 1) Based on Maximizing Steered Response Power (SRP) of a beamformer.
- 2) Techniques adopting high-resolution spectral estimation concepts.
- 3) Approaches employing Time Difference of Arrival (TDOA) information.

TDOA Based Locators

- Two-step method
 - TDOA estimation of sound signals between two spatially separated microphones (TDE).
 - Given array geometry and calculated TDOA estimate the 3D location of the source.
- High Quality of TDE is crucial.

Cross Correlation function

Generalized Cross-Correlation -Phase Transform: GCC-PHAT Steered Response power: SRP-PHAT

$$R_{12}(\tau) = \frac{1}{2\pi} \int_{0}^{2\pi} \psi_{12}(\omega) X_{1}(\omega) X_{2}^{*}(\omega) e^{j\omega\tau} d\omega \qquad \psi_{12}(\omega) = \frac{1}{|X_{1}(\omega)X_{2}^{*}(\omega)|}$$

$$\hat{\tau}_{12} = \underset{\tau}{\operatorname{argmax}} R_{12}(\tau) \qquad \qquad \tau_{q}(p) = \frac{\|p - m_{i}\| - \|p - m_{j}\|}{c}$$

$$SRP(p) = 4\pi \sum_{q=1}^{Q} R_{q}(\tau_{q}(p)) \qquad \qquad \hat{\mathbf{p}} = \underset{\mathbf{p}}{\operatorname{argmax}} SRP(\mathbf{p})$$

Remarks

• Use TDOA techniques for real time applications.

• Use Steered-Beamformer strategies in critical applications where robustness is important.

VAD – localize for active source (Tracking)

Beamforming vs. Blind Source Separation

Beamforming

Blind Source Separation

16

Beamforming

Is one of the simplest and most robust means of Spatial Filtering, i.e., discriminating between signals based on the physical locations of the signal source

Beam Steering of Beamformer

Delay & Sum beamforming

Signal source of interest

$$Y(\omega) = \mathbf{w}^{H}(\omega) \cdot \mathbf{X}(\omega)$$

$$= \mathbf{w}^{H}(\omega) \cdot S(\omega)\mathbf{v} + \mathbf{w}^{H}(\omega) \cdot \mathbf{N}(\omega)$$

$$S(\omega)$$

Optimization based BF - Goal

• The spatially filtered signal: $x(t) = [\mathbf{h}^* \mathbf{a}(\theta)] s(t)$

narrowband source with DOA= θ

Beampatterns (Gainpattern)

Delay-sum Beamformer

Frequency varying directivity pattern

Superdirective Beamformer

Robust directivity over frequency

Best Linear Unbias Estimate – MVDR BF

```
FFT (\omega) = V(\omega) \times S(\omega) + N(\omega) \times \in \mathbb{R}^{M}

V(\omega) = V(\omega) \times S(\omega) + N(\omega) \times \in \mathbb{R}^{N}
                                                                                    n & RM
         > The goal is to estimate sources based on observed
 X values at each frame. Let's assume that we can have a
  linear estimator, such that: \hat{S} = W^H X. We try to find
the Best Linear Unbiased Estimation §.
         Unbiased: \mathbb{E}\{\hat{S}\} = \mathbb{E}\{s\} \Rightarrow \mathbb{M}^H \mathbb{E}\{X\} = \mathbb{E}\{s\}
   \Rightarrow \underline{W}^{H}\underline{v} \mathbb{E}\{\underline{S}\}=\mathbb{E}\{\{\underline{S}\}\}=\mathbb{E}\{\underline{S}\}
=\mathbb{E}\{(\underline{W}^{H}\underline{X}-\underline{W}^{H}\mathbb{E}\{\underline{X}\})(\underline{W}^{H}\underline{X}-\underline{W}^{H}\mathbb{E}\{\underline{X}\})^{H}\}
                                 = MHE{(X-12)(X-12x)H}W = MHRXM
   => Problem: Wopt = organin WHRXW subject to WHY=1
```


$Minimum Variance Distortionless Response \ Beam Former$

$$\begin{array}{c}
X = V \stackrel{>}{>} + N \rightarrow R_{XX} = IE \left\{ \stackrel{\checkmark}{X} \stackrel{X}{X}^{H} \right\} \\
\Rightarrow R_{XX} = E \left\{ (\underbrace{VS + N}) (\underbrace{VS + N})^{H} \right\} = \underbrace{V} R_{SS} \stackrel{V}{V} + R_{NN} \\
\stackrel{Signal}{=} \stackrel{?}{N} N^{oise} \\
\Rightarrow Min W R_{XX} \stackrel{W}{W} = Min W \stackrel{V}{V} R_{SS} \stackrel{V}{V} \stackrel{W}{W} + W \stackrel{W}{W} \stackrel{W}{W} \stackrel{W}{=} \underbrace{\left\{ \underbrace{SN}^{H} \right\} - E \left\{ \underbrace{NS}^{H} \right\} - e}_{=1} \\
\Rightarrow Min W R_{XX} \stackrel{W}{W} = Min W \stackrel{V}{V} R_{SS} \stackrel{V}{V} \stackrel{W}{W} + W \stackrel{W}{W} \stackrel{W}{W} \stackrel{W}{=} \underbrace{\left\{ \underbrace{SN}^{H} \right\} - E \left\{ \underbrace{NS}^{H} \right\} - e}_{=1} \\
\Rightarrow Min W R_{XX} \stackrel{W}{W} = Min W \stackrel{W}{V} R_{SS} \stackrel{V}{V} \stackrel{W}{W} + W \stackrel{W}{W} \stackrel{W}{W} \stackrel{W}{=} \underbrace{\left\{ \underbrace{SN}^{H} \right\} - E \left\{ \underbrace{NS}^{H} \right\} - e}_{=1} \\
\Rightarrow Min W R_{XX} \stackrel{W}{W} = Min W \stackrel{W}{V} R_{SS} \stackrel{V}{V} \stackrel{W}{W} + W \stackrel{W}{W} \stackrel{W}$$

Noise Coherence Matrix-isotrpoic field

When noise field is homogeneous (isotropic)

$$R_{nn} = \bigoplus_{nn} \lceil \tau_{nn} \rceil; \quad \bigoplus_{n=1}^{\infty} \text{noise power}$$

$$\lceil \tau_{nn} = \text{noise Coherence motrix}$$

$$S_{n}(\omega) = S_{n}(\omega) \rightarrow S_{ij}(\omega) = S_{i}(\omega) e^{-j\frac{\omega}{\omega}dG_{n}\varphi} \left(\underset{1}{\times} = \underset{1}{\times}_{i}(t - \frac{\Delta}{\omega}) \right)$$

$$S_{n}(\omega) = S_{n}(\omega) \rightarrow S_{ij}(\omega) = S_{n}(\omega) e^{-j\frac{\omega}{\omega}dG_{n}\varphi} \left(\underset{1}{\times} = \underset{1}{\times}_{i}(t - \frac{\Delta}{\omega}) \right)$$

$$S_{n}(\omega) = S_{n}(\omega) \rightarrow S_{n}(\omega) = S_{n}(\omega) e^{-j\frac{\omega}{\omega}dG_{n}\varphi} \left(\underset{1}{\times} = \underset{1}{\times}_{i}(t - \frac{\Delta}{\omega}) \right)$$

$$S_{n}(\omega) = S_{n}(\omega) \rightarrow S_{n}(\omega) = S_{n}(\omega) e^{-j\frac{\omega}{\omega}dG_{n}\varphi} \rightarrow S_{n}(\omega) e^{-j\frac{\omega}{\omega}G_{n}\varphi} \rightarrow S_$$

Super Directive BF

Therefore, in a spenically isotropic noise field:

Super-Directive BF:

Lagrange multiplier:

$$W_{SDBF} = \frac{\Gamma_{nn}^{-1} V}{V^{+} \Gamma_{nn}^{-1} V}$$

 $\left(\sum_{n}^{n}\right)_{ij}^{n}(\omega) = \operatorname{Sinc}\left(\omega \frac{\|\mathbf{m}_{i} - \mathbf{m}_{j}\|}{C}\right)$

> Super-Directive Bf is the best BLUE Bf in isotropic noise field.

Calculation -- optional

Linear Constrained Minimum Variance BF

$$\mathbf{W}^{H} = \Gamma_{nn}^{-1} [V_1 \ V_2] ([V_1 \ V_2]^{H} \Gamma_{nn}^{-1} [V_1 \ V_2])^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Room Impulse Response

Beamforming problems

- Very sensitive to array geometry, need good calibration
- Has only directivity, no selectivity in range or other location parameters
- Frequency response is not flat
- Ambient noises are assumed to be spatially white
- Beam width (or selectivity) depends on the size of the array
- Spatial aliasing problem (For high frequencies- sampling ambiguity)

Thank you

Directivity of microphone arrays (omni directional microphones)

