

Prova 22 Abril, questões e respostas

Circuitos Lógicos (Universidade Estadual de Campinas)

NOME:	RA:	

EA-772 CIRCUITOS LÓGICOS – PROVA 2 – DATA: 14/05/2013

ATENÇÃO: A prova DEVE ser feita com caneta (preta ou azul). Questões resolvidas a lápis não serão consideradas.

- 1. (2 pontos). Dada a especificação: F(x, y, z, w) = S (0, 2, 4, 6, 8), monte a tabela verdade (0,25), apresente a função canônica (0,25), simplifique a função pelo método de Quine-McCluskey (1,0) e depois pelo mapa de Karnaugh (0,5). Deixe claro o que está sendo feito. Construa todas as tabelas necessárias e apresente os nomes de cada entrada da tabela. Não pule passos!
- 2. (2 pontos). Projete um subtrator completo. Apresente a tabela verdade e o MK (1,0). Apresente as equações e o circuito final (0,5). Simplifique as equações finais usando XOR (0,5). Use como variáveis: A, B, TE (transporte de entrada) e TS (transporte de saída).
- 3. (**2 pontos**). Um computador apresenta 3 bits para código de instruções. Construa um **decodificador** para fornecer os sinais indicativos de cada instrução. São instruções: ADD (adição), SUB (subtração), NOP (no-operation), JNE (Desvio se negativo), JMP (desvio incondicional), JCY (desvie se carry for 1), ADC (adiciona com o carry), HLT (pare).
- 4. (**2 pontos**). Demonstre <u>analiticamente</u> os seguintes teoremas, sem utilizar a função XOR.
 - a) Teorema de De Morgan: (a+b)' = a'. b'
 - b) Teorema do Consenso: ab + a'c + bc = ab + a'c
- 5. (2 pontos). Projete e construa o circuito de um decodificador para o painel indicador de direção conforme figura abaixo. A entrada é de 3 bits I1, I2 e I3. O painel indicará para a direita quando o número composto pelos 3 bits for par e para a esquerda quando for ímpar. Quando a entrada for nula o painel fica apagado.

Cada segmento é um indicador luminoso (LED).
Para indicar "vire à direita" serão ligados a, b, c e para a esquerda a, d, e.

Construa um multiplexador de dois bits. Justifique e demonstre o funcionamento do circuito. (Extra: **0,5**). Pontos não serão acumulados para outra prova. O valor final satura em **10,0**.

Gabarito - P2 EA772 1º Semestre de 2014

1)
$$F(x, y, z, w) = S(0, 2, 4, 6, 8)$$

Tabela da verdade:

X	у	Z	W	S
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1 0
0	1	1	0	1
0	1	1	1	1 0
1	0	0	0	1 0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Função canônica:

$$F(x, y, z, w) = x'y'z'w' + x'y'zw' + x'yz'w' + x'yzw' + xy'z'w'$$

Simplificação pelo mapa de Karnaugh:

F(x, y, z, w) = x'w' + y'z'w'

Por Quine McCluskey:

1º passo)

#1's	Produto	X	У	Z	W	Marca
0	(0)	0	0	0	0	/
1	(2)	0	0	1	0	~
1	(4)	0	1	0	0	~
1	(8)	1	0	0	0	~
2	(6)	0	1	1	0	✓

2º passo)

Mintermo	X	У	Z	W	Marca
(0,2)	0	0	-	0	✓
(0,4)	0	-	0	0	✓
(8,0)	-	0	0	0	
(2,6)	0	-	1	0	
(4,6)	0	1	-	0	✓
	(0,2) (0,4) (0,8) (2,6)	(0,2) 0 (0,4) 0 (0,8) - (2,6) 0	(0,2) 0 0 (0,4) 0 - (0,8) - 0 (2,6) 0 -	(0,2) 0 0 - (0,4) 0 - 0 (0,8) - 0 0 (2,6) 0 - 1	(0,2) 0 0 - 0 (0,4) 0 - 0 0 (0,8) - 0 0 0 (2,6) 0 - 1 0

3º passo)

4º passo)

$$F(x, y, z, w) = (0, 8) + (0, 2, 4, 6)$$

2ª etapa (Cobertura dos Mintermos)

PI	Produto					Mintermos				
	X	у	Z	W	0	2	4	6	8	
(0, 8)	-	0	0	0	X				X	Essencial
(0, 2, 4, 6)	0	-	-	0	X	X	X	X		Essencial

Portanto:

$$F(x, y, z, w) = x'w' + y'z'w'$$

2) Subtrator completo:

Tabela da verdade:

Α	В	T_{E}	S_{i}	T_{S}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Mapas de Karnaugh:

Simplificação da função Si:

$$S_{i} = A'B'T_{E} + A'BT_{E}' + ABT_{E} + AB'T_{E}'$$

$$S_{i} = A'(B'T_{E} + BT_{E}') + A(BT_{E} + B'T_{E}')$$

$$S_{i} = A'(B \oplus T_{E}) + A(B \oplus T_{E})'$$

$$S_{i} = A \oplus B \oplus T_{E}$$

Circuito final (com simplificação): (versão sem simplificação também foi considerada correta)

3) 3 bits \rightarrow x, y, z

Sugestão de tabela da verdade (o importante é que cada instrução seja ativada por uma única combinação de x, y, z):

X	У	Z	ADD	SUB	NOP	JNE	JMP	JCY	ADC	HLT	Função
0	0	0	1	0	0	0	0	0	0	0	ADD = x'y'z
0	0	1	0	1	0	0	0	0	0	0	SUB = x'y'z
0	1	0	0	0	1	0	0	0	0	0	NOP = x'yz
0	1	1	0	0	0	1	0	0	0	0	JNE = x'yz
1	0	0	0	0	0	0	1	0	0	0	JMP = xy'z
1	0	1	0	0	0	0	0	1	0	0	JCY = xy'z
1	1	0	0	0	0	0	0	0	1	0	ADC = xyz
1	1	1	0	0	0	0	0	0	0	1	HLT = xyz

Circuito de JNE para o caso desta tabela da verdade:

- **4)** (Abaixo estão sugestões das demonstrações), como feito em aula.
 - a) Teorema de DeMorgan: (a + b)' = a'.b'

Prova-se mostrando que a'.b'é o complemento de (a + b):

$$(a + b).a'.b' = (T. Distributividade)$$

$$= a.a'.b' + b.a'.b' = (P. Comutatividade, T. Complemento)$$

$$= 0 + 0 = 0$$

$$\rightarrow (a + b).a'.b' = 0$$

$$(a + b) + a'.b' = (T. Distributividade)$$

$$= (a + b + a').(a + b + b') = (T. Complemento)$$

$$= (1 + b).(a + 1) = (T. Elemento Nulo)$$

$$= 1.1 = 1$$

$$\rightarrow (a + b) + a'.b' = 1$$

Logo, (a + b)' = a'.b'

c.q.d.

b) Teorema do Consenso: a.b + a'.c + b.c = a.b + a'.c

1^a forma de demonstrar)

$$a.b + a'.c + b.c =$$
 (T. Combinação)
= $(a.b.c + a.b.c') + (a'.b.c + a'.b'.c) + (a.b.c + a'.b.c) =$ (P. Comutatividade, P. Associatividade)
= $(a.b.c + a.b.c) + a.b.c' + (a'.b.c + a'.b.c) + a'.b'.c =$ (T. Idempotência)
= $a.b.c + a.b.c' + a'.b.c + a'.b'.c =$ (T. Distributividade)
= $a.b.(c + c') + a'.c.(b + b') =$ (T. Complemento)
= $a.b + a'.c$ (T. Complemento)
= $a.b + a'.c$ (T. Complemento)

2ª forma de demonstrar)

```
a.b + a'.c + b.c = (T. Complemento)

= a.b + a'.c + b.c.(a + a') = (T. Distributividade)

= a.b + a'.c + b.c.a + b.c.a' = (T. Comutatividade, T. Distributividade)

= a'.c.(1 + b) + a.b.(1 + c) = (T. Elemento Nulo)

= a'.c + a.b = (T. Comutatividade)

= a.b + a'.c c.q.d.
```

Alguns alunos tentaram aplicar E de um mesmo termo dos dois lados da equação. Mesmo que o resultado final seja uma igualdade válida, isso não necessariamente implica que o teorema, que queremos demonstrar, seja válido. Veja este contra-exemplo:

Supondo:
$$0 = 1$$

 $0.0 = 1.0$
 $0 = 0$

Veja que o resultado final não implica que a primeira linha esteja correta!

Tabela da verdade:

I_1	I_2	I_3	a	b	c	d	e
0	0	0 1 0 1 0 1 0 1	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	1	1	0	0
0	1	1	1	0	0	1	1
1	0	0	1	1	1	0	0
1	0	1	1	0	0	1	1
1	1	0	1	1	1	0	0
1	1	1	1	0	0	1	1

Mapas de Karnaugh:

 $b = c = I_3'(I_1 + I_2)$

Extra)

Foram aceitos dois circuitos:

Circuito 1 (MUX de 1 bit):

Funcionamento:

$$\begin{array}{ccc}
E & S \\
\hline
0 & B \\
\underline{1} & A \\
S = E'B + EA
\end{array}$$

Circuito 2 (MUX de 2 bits):

Funcionamento:

$$\begin{tabular}{c|ccc} E & S_0 & S_1 \\ \hline 0 & B_0 & B_1 \\ \hline 1 & A_0 & A_1 \\ \hline $S_0 = E'B_0 + EA_0$ \\ $S_1 = E'B_1 + EA_1$ \\ \hline \end{tabular}$$