P2Z Scaling Tracks and Bsize

Tres Reid

Scaling

- Made a new tuning script and updated to Makefile and source codes to allow the number of tracks and bsize to be changed when making a particular version
 - Defaults set when to defined in Makefile
 - Points are found from taking the average over 5 runs
- Scaling number of tracks
 - Values of {9600,12800,19200,38400,64000,96000}
 - = 128*{75,100,150,300,500,750}
 - Values chosen to be divisible by 128 (so nb is a whole number through the range of bsize: nb= ntrks/bsize)
 - · Quick scan across an order of magnitude starting from the previously used value
 - · Gap could be filled in later if necessary
 - Cuda is the only mode that is affected by the number of tracks
 - More tracks -> faster runtime per track
 - Affects both memory transfer time and compute time for cuda
 - Does not affect ACC memory transfer or compute time
- Scaling the size of bsize (size of simd operations)
 - Powers of 2: {1,2,4,8,16,32,64,128}
 - I stopped at 128 since 9600 isn't divisible by 256.
 - I think CUDA doesn't have enough shared memory space after 128 (eigen looses memory at 32)
 - GPU
 - Memory transfer time doesn't depend on bsize.
 - Clear trend that higher bsize decrease computation time by orders of magnitude
 - Flattens out a bit around 32-> warp size
 - CPU
 - Less clear, but there is still a trend for higher bsize to speedup region time/trk
 - Factor of ~2 speedup going from 1 to 128 in most cases
 - Expected to flatten ~16 but this doesn't seem to be the case.
 - Not true for eigen

TODO

- Tune CUDA streams, blocks/grid, threads/block
- Tune tbb block size
- Try higher values of bsize?
 - Find a cutoff for all modes
 - Investigate shared memory cutoff for CUDA
 - Double check bsize dependence on linear scale?
- Other remaining tasks
 - Fix CUDA memory transfer by stream
 - Redo eigen implementation
 - Finish alpaca GPU implementation

Cuda nvcc

3.50E-07 3.00E-07 2.50E-07 2.00E-07 Ei LO 1.50E-07 1.00E-07 5.00E-08 0.00E+00 32 128 16 64 bsize 9600 12800 19200 38400 64000

Cuda(nvcc) region time by ntrks

Cuda mem transfer time

Cuda computation time

Acc pgi

Acc mem transfer time

Acc computation time

OMP gcc

OMP(gcc) region time by bsize

OMP(gcc) region time by ntrks

9

OMP icc

OMP(icc) region time by ntrks

OMP pgi

OMP(pgi) region time by bsize

OMP(pgi) region time by ntrks

5/12/2020 11

Tbb gcc

tbb(gcc) region time by bsize

tbb(gcc) region time by ntrks

Tbb icc

tbb(icc) region time by bsize

tbb(icc) region time by ntrks

Eigen gcc

Eigen(gcc) region time by bsize

Eigen(gcc) region time by ntrks

Eigen icc

Eigen(icc) region time by ntrks

5/12/2020 15

Alpaka gcc

alpaka(gcc) region time by bsize

alpaka(gcc) region time by ntrks

5/12/2020 16