DIODE CIRCUIT EXAMPLES

1)

In each circuit shown in Figure P2.50, the diode cut-in voltage is $V_{\gamma} = 0.6 \text{ V}$. (a) For the circuit in Figure P2.50(a), determine v_O for (i) $v_I = +5 \text{ V}$ and (ii) $v_I = -5 \text{ V}$. (b) Repeat part (a) for the circuit in Figure P2.50(b). (c) Plot the voltage transfer characteristics, v_O versus v_I , of each circuit over the range $-5 \le v_I \le +5 \text{ V}$.

(a) (i)
$$\upsilon_I = 5 \text{ V}$$
, D_1 and D_2 on
$$\frac{5 - \left(\upsilon_O + 0.6\right)}{5} + \frac{5 - \upsilon_O}{5} = \frac{\upsilon_O}{0.5} + \frac{\upsilon_O - 0.6}{0.5}$$

$$0.88 + 1.0 + 1.2 = \upsilon_O \left(0.20 + 0.20 + 2.0 + 2.0\right) \Rightarrow \upsilon_O = 0.7 \text{ V}$$
(ii) $\upsilon_I = -5 \text{ V}$

$$\upsilon_O = \left(\frac{0.5}{0.5 + 5}\right) \upsilon_I = -0.455 \text{ V}$$

(b) (i)
$$v_I = 5 \text{ V}, \ v_O = 4.4 \text{ V}$$

(ii) $v_I = -5 \text{ V}, \ v_O = -0.6 \text{ V}$

Consider the circuit in Figure P2.31. Let $V_{\gamma} = 0$. (a) Plot v_O versus v_I over the range $-10 \le v_I \le +10$ V. (b) Plot i_1 over the same input voltage range as part (a).

(a) For $-10 \le v_I \le 0$, both diodes are conducting $\Rightarrow v_O = 0$

For $0 \le v_I \le 3$, Zener not in breakdown, so $\frac{i_1 = 0, \quad v_O = 0}{i_1 = 0, \quad v_O = 0}$

For
$$v_I > 3$$
 $i_1 = \frac{v_I - 3}{20} mA$

$$v_o = \left(\frac{v_I - 3}{20}\right)(10) = \frac{1}{2}v_I - 1.5$$

At
$$v_I = 10 \ V$$
, $v_o = 3.5 \ V$, $i_1 = 0.35 \ mA$

(b) For $v_I < 0$, both diodes forward biased

$$-i_1 = \frac{0 - v_I}{10}$$
. At $v_I = -10 \ V$, $i_1 = -1 \ mA$

For
$$v_I > 3$$
, $i_1 = \frac{v_I - 3}{20}$. At $v_I = 10 \ V$, $i_1 = 0.35 \ mA$

3)

The parameters in the circuit shown in Figure P2.30 are $V_{\gamma} = 0.7 \text{ V}$, $V_{Z1} = 2.3 \text{ V}$, and $V_{Z2} = 5.6 \text{ V}$. Plot v_O versus v_I over the range of $-10 \le v_I \le +10 \text{ V}$.

For $-6.3 \le v_I \le 3 \text{ V}$, $v_O = v_I$

For
$$v_I > 3 \text{ V}$$
, $I = \frac{v_I - 3}{1.5}$ and $v_O = v_I - I(0.5)$

$$v_O = v_I - (0.5) \left(\frac{v_I - 3}{1.5} \right) = 0.667 v_I + 1.0$$

For
$$v_I < -6.3 \text{ V}$$
, $I = \frac{v_I + 6.3}{2.5}$ and $v_O = v_I - I(0.5)$

$$v_O = v_I - (0.5) \left(\frac{v_I + 6.3}{2.5} \right) = 0.8 v_I - 1.26$$

4)

For the circuit in Figure P2.32, (a) plot v_O versus v_I for $0 \le v_I \le 15$ V. Assume $V_{\gamma} = 0.7$ V. Indicate all breakpoints. (b) Plot i_D over the same range of input voltage.

(b)
$$i_D = 0$$
 for $0 \le v_I \le 5.7$

Then for $v_I > 5.7 V$

For $v_I = 15$, $i_D = 5.58 \ mA$

5)

(a) Consider a pn junction diode biased at $I_{DQ} = 1$ mA. A sinusoidal voltage is superimposed on V_{DQ} such that the peak-to-peak sinusoidal current is $0.05I_{DQ}$. Find the value of the applied peak-to-peak sinusoidal voltage.

(b) Repeat part (a) if $I_{DQ} = 0.1 \text{ mA}$.

a.
$$r_d = \frac{V_T}{I_{DQ}} = \frac{(0.026)}{1} = 0.026 \text{ k}\Omega = 26\Omega$$

 $i_d = 0.05I_{DQ} = 50 \text{ }\mu\text{A} \text{ peak-to-peak}$
 $v_d = i_d r_d = (26)(50) \text{ }\mu\text{A} \Rightarrow \underline{v_d} = 1.30 \text{ mV peak-to-peak}$

b. For
$$I_{DQ} = 0.1 \text{ mA} \Rightarrow r_d = \frac{(0.026)}{0.1} = 260\Omega$$

 $i_d = 0.05I_{DQ} = 5 \mu\text{A} \text{ peak-to-peak}$
 $v_d = i_d r_d = (260)(5) \mu\text{V} \Rightarrow v_d = 1.30 \text{ mV} \text{ peak-to-peak}$

All of the examples are taken from the textbook: Microlelectronics, Circuit Analysis and Design by D. A. Neamen