Seja $a, b \in R$ e a < b. Se f(x)é integrável em [a, x] com x [a, b]. Se f(x)é limitada em[a, b] verifica — se:

$$\int_{a}^{b} f(t)dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt$$

consequência da continuidade do integral indefinido

Se o intervalo de integração não é limitado ou seja é da forma

$$[a, +\infty[$$
 ou $]-\infty, b]$ ou $(-\infty, +\infty)$

Ou quando a função integranda tem descontinuidade infinita num ponto c do domínio de integração, ou seja

$$\lim_{x\to c} f(x) = \pm \infty$$

Os integrais são designados integrais impróprios

INTEGRAIS IMPRÓPRIOS DE 1ª ESPÉCIE

Seja f uma função definida no intervalo $I = [a, +\infty[$. Se f é uma função integrável num intervalo [a, x[com x > a, e:

$$\varphi(x) = \int_{a}^{x} f(t) dt$$

INTEGRAL IMPRÓPRIO (1ª espécie)

Se $\varphi(x)$ tem limite finito quando $x \to +\infty$ diz-se que f é integrável (em sentido impróprio) no intervalo I, ou que o integral impróprio

$$\int_{a}^{+\infty} f(t)dt$$

existe ou é convergente:

$$\int_{a}^{+\infty} f(t)dt = \lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

INTEGRAIS IMPRÓPRIOS DE 2ª ESPÉCIE

Seja I =]a,b[um intervalo limitado e f \acute{e} uma função cujo domínio contem o intervalo I. Adita-se que f \acute{e} integrável em qualquer intervalo da forma [x,b] com a < x < b, mas não \acute{e} limitada em I. Diz-se que o integral de f existe ou \acute{e} convergente sse a função $\int_x^b f(t)dt$ tiver limite quando $x \to a^+$:

$$\int_{a}^{b} f(t)dt = \lim_{x \to a^{+}} \int_{x}^{b} f(t)dt$$

INTEGRAL IMPRÓPRIO - APLICAÇÃO

Verifique se o integral impróprio existe:

$$\int_{-\infty}^{0} \frac{1}{\sqrt{1-x}} dx = \lim_{t \to -\infty} \int_{t}^{0} \frac{1}{\sqrt{1-x}} dx =$$

$$\lim_{t\to-\infty} \left[-2\sqrt{1-x}\right]^0_{t} = \lim_{t\to-\infty} \left(-2+2\sqrt{1-t}\right) = +\infty$$

O integral impróprio diverge

INTEGRAL IMPRÓPRIO - APLICAÇÃO

Verifique se o integral impróprio existe:

$$\int_{1}^{2} \frac{1}{(x-2)^{2}} dx = \lim_{t \to 2^{-}} \int_{1}^{t} \frac{1}{(x-2)^{2}} dx =$$

$$\lim_{t \to 2^{-}} \left[-\frac{1}{x-2} \right]_{1}^{t} = \lim_{t \to 2^{-}} \left(-\frac{1}{t-2} - 1 \right) = +\infty$$

O integral impróprio diverge