Huashan Sun

sunhuashan910@gmail.com ♦ (+86) 18780084109 ♦ Homepage ♦ Google Scholar ♦ GitHub

EDUCATION

Beijing Institute of Technology

Beijing, China

Master of Engineering Candidate, Artificial Intelligence

09/2023 - 06/2026

Bachelor of Engineering, Artificial Intelligence

09/2019 - 06/2023

RESEARCH EXPERIENCE

SoLoPO: Unlocking Long-Context Capabilities in LLMs via Short-to-Long Preference Optimization

Under review 02/2025 - 05/2026

First Author, paper link, work conducted at Tongyi Lab

- Proposed SoLoPO framework, enhancing mainstream PO algorithms with better performance and improved efficiency.
- Theoretically proved long-context PO can be decoupled into short-context PO and short-to-long reward alignment.
- SoLoPO achieves superior results on various long-context benchmarks compared to original algorithms (DPO, SimPO, and ORPO), reducing DPO run time by 52% while doubling the max trainable sequence length.

Unveiling and Addressing Pseudo Forgetting in Large Language Models

ACL 2025 Findings

First Author, paper link, work conducted at Beijing Institute of Technology (BIT)

10/2024 - 02/2025

- Identified and validated the pseudo forgetting phenomenon in LLMs, demonstrating that performance degradation on previously learned tasks stems from reduced instruction dependency rather than actual capability loss.
- Proposed Rationale-Guidance Difficulty based Replay framework for continual learning, achieving 1.8% reduction in forgetting rate and 2.4% improvement in average performance compared to Random-Replay.

PSST: A Benchmark for Evaluation-driven Text Public-Speaking Style Transfer

EMNLP 2024 Findings

First Author, paper link, work conducted at BIT

10/2023 - 06/2024

- Proposed PSST benchmark for evaluating LLMs' complex style transfer capabilities in the long-context scenarios.
- Developed a fine-grained evaluation framework for long-text style transfer, incorporating document-level style strength score, style strength distribution, and QA-based semantic consistency assessment.
- Key findings of current LLMs: over-stylization, uneven style strength distribution, and severe semantic degradation.

MindLLM: Lightweight large language model pre-training, evaluation and domain application

AI Open 10/2023 - 06/2024

Co-first author, paper link, work conducted at BIT

- Pre-training: (1) participated in data mixture experiments; (2) implemented "effective" pre-training sample construction experiments and multi-GPU training for MindLLM-3B, achieving 2-point improvement in MMLU with ICL promoting.
- o Instruction Tuning: conducted diversified high-quality instruction-following data construction and selection.
- Evaluation: developed multi-dimensional ability evaluation framework for benchmarking against mainstream LLMs.
- Achievements: MindLLM-1.3B and 3B outperform or match LLMs with more parameters and training data on general knowledge, bilingual alignment, and numerical computation benchmarks. (open-source link of MindLLM-1.3B)

Contributing author publications

[1] How far can in-context alignment go? exploring the state of in-context alignment (EMNLP 2024 Findings, link)

[2] Fundamental capabilities and applications of large language models: A survey (ACM Computing Surveys, link)

[3] EduBench: A Comprehensive Benchmarking Dataset for Evaluating LLMs in Diverse Educational Scenarios (link)

Internship Experience

Tongyi Lab, Alibaba Group

Beijing, China

Research Internship 12/2024 - Present

- Currently focusing on sparse attention, and reinforcement learning of long-context LLMs and long memory agents.
- Proposed SoLoPO, a unified framework for better and efficient long-context alignment.

Recommendation Algorithm Intern

Beijing, China

10/2022 - 02/2023

- Spark-based data construction and model training of multi-dimensional attention recall system.
- Developed and tested code of data preprocessing & model training in RedAir project.

TECHNIQUES AND SKILLS

Rednote

- Deep learning frameworks: PyTorch, Transformers, DeepSpeed, veRL, vLLM, OpenCompass
- Efficient training algorithms: Ulysses, ZeRO, FSDP, Flash-Attention, LoRA