Curso: Engenharia de Computação

Sistemas Digitais

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Flip Flops

Flip Flop SC (SET-CLEAR) ou SR (SET-RESET)

Entradas			Saída	
S	С	CLK		Q
0	0	1		Q ₀ (não muda)
1	0	↑		1
0	1	1		0
1	1	1		Ambígua

Flip Flop JK

J	K	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	1	1
0	1	1	0
1	1	1	Q (comuta)

Flip Flop D

D	CLK	Q
0	1	0
1	1	1

Flip Flop T

J	CLK	Q
0	1	Q ₀ (não muda)
1	1	Q ₀ (comuta)

Aplicações com Flip Flops

Transferência serial de dados

Registradores de deslocamento

- Grupo de FF que são cascateados de modo que a cada pulso de clock o bit armazenado vai sendo transferido
- Os FF são organizados em série cada FF armazena um bit da sequência serial a ser armazenada

Transferência serial de dados

Registradores de deslocamento

Transferência paralela de dados

Registradores paralelo

Transferência paralela de dados

Registradores paralelo

 Grupo de registradores paralelos que são organizados em paralelo de modo que a cada pulso de clock os bits de cada saída sejam transferidos simultaneamente.

Transferência paralela entre registradores de 3-bits

Transferência paralela de dados

Registradores paralelos

Divisores de frequência

- Dois FF cascateados em que a saída de um FF alimenta a entrada de clock do FF seguinte pode produzir uma divisão de frequência (duplicação do período).
- Usando o número apropriado de FF é possível dividir uma frequência por qualquer potência de 2.

Divisores de frequência

• Além de funcionar como divisor de frequência, esse tipo de circuito pode funcionar como um contador binário.

Contador binário

Diagrama de estados

- Os diagramas de estados representam o comportamento dinâmico de sistemas. Cada estado representa um conjunto de informações (status) do sistema em um tempo. O estado muda quando ocorre um evento, provocando uma transição para outro estado.
- No caso da contagem binária, cada estado representa o valor da saída dos FF utilizados.
- As transições são provocadas pelo gatilhamento do clock, provocando o incremento de 1 bit.

Diagrama de estados Contador módulo 8

- Número de estados distintos que o contador atinge antes de **reciclar** iniciar um novo ciclo.
- O módulo pode ser aumentado adicionando-se mais FF ao contador, de modo que

 $M
otin dulo = 2^N$, onde N é o número de FF utilizados

Contadores de módulo < 2^N

Entradas assíncronas

- As entradas dos FF estudas até agora são chamadas entradas de controle (S, C, J, K, D, T).
- A maioria também possui entradas chamadas de entradas assíncronas (entradas de sobreposição), que podem ser usadas em qualquer instante independentemente das condições das demais.
- As entradas de sobreposição permitem limpar o contador.

PRESET	CLEAR		Resposta do FF
1	1	1000	Operação com clock*
0	1		Q = 1
1	0		Q = 0
0	0		Não usada

^{*}Q irá responder a J, K e CLK

Contadores de módulo < 2^N

- O estado que não pertence ao ciclo é anulado pela inserção de uma porta NAND.
- No exemplo quando B=C=1, a entrada clear se torna 0 durante um intervalo de tempo para reciclar o contador.

• O contador BCD – contador de módulo 10 ou decádico.

Diagrama de estados

sequência não crescente

Sequência não crescente

Sequência não crescente

CIS contadores

- Os contadores assíncronos não trocam de estado em exato sincronismo com o sinal de clock.
- Circuitos Integrados contadores 74LS293

Cis contadores

- 4 FF JK com saídas Q₀ a Q₃
- CP_1 e CP_0 são entradas de clock CP_1 para FF_1 e CP_0 para FF_0 isso permite usar o CI como contador de 3 ou 4 bits.
- As entradas MR_1 e MR_2 permitem o reset geral. Ambas devem estar em alto para resetar o contador.

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

