Cross-Domain Feature Augmentation for Domain Generalization

IJCAI 2024

Domain generalization

Data in deep learning: i.i.d data

• Domain generalization: robust model for distribution shift

Related work

- Learning invariant representation
 - Employ regularizer
 - Data augmentation in input space

(0.5, 0.5)

Data augmentation in feature space

Related work

- Learning invariant representation
 - Employ regularizer
 - Data augmentation in input space: diversity

Data augmentation in feature space: feature semantics

- Feature semantics
 - Class-generic
 - Class-specific
 - Domain-generic
 - Domain-specific
- Robust model on domain shift

Class: horse

Domain: icon

Class: horse

Domain: realistic

- ullet Goal: f extracts domain-invariant class-specific information
 - Input/output: x/y
 - feature extractor $f: x \to z$
 - Classifier $c: z \to y$

- Overview of augmentation
 - Domain-invariant class-specific
 - Two samples: (class-specific, domain-specific), (class-generic, domain-specific)

class_score $(z^k) = \frac{\partial v_c}{\partial z^k} z^k$

Compute score

$$M_c[k] = \begin{cases} 1 & \text{if } \text{class_score}(z^k) > \tau_c \\ 0 & \text{otherwise} \end{cases}, \quad \text{domain_score}(z^k) = \frac{\partial v_d}{\partial z^k} z^k$$

$$M_d[k] = \begin{cases} 1 & \text{if domain_score}(z^k) > \tau_d \\ 0 & \text{otherwise} \end{cases}$$

$$domain_score(z^k) = \frac{\partial v_d}{\partial z^k} z^k$$

Compute score

$$M_c[k] = \begin{cases} 1 & \text{if class_score}(z^k) > \tau_c \\ 0 & \text{otherwise} \end{cases},$$
 $M_d[k] = \begin{cases} 1 & \text{if domain_score}(z^k) > \tau_d \\ 0 & \text{otherwise} \end{cases}$

$$Z_{c,d} = M_c \odot M_d \odot Z$$

$$Z_{c,\neg d} = M_c \odot (\mathbb{1} - M_d) \odot Z$$

$$Z_{\neg c,d} = (\mathbb{1} - M_c) \odot M_d \odot Z$$

$$Z_{\neg c,\neg d} = (\mathbb{1} - M_c) \odot (\mathbb{1} - M_d) \odot Z$$

$$class_score(z^k) = \frac{\partial v_c}{\partial z^k} z^k$$

$$domain_score(z^k) = \frac{\partial v_d}{\partial z^k} z^k$$

 v_c

- Overview of augmentation
 - Domain-invariant class-specific
 - Two samples: (class-specific, domain-specific), (class-generic, domain-specific)

- Augmentation ratio
 - λ_1, λ_2 : U(0,1)

$$\tilde{Z}_{c,d} = \lambda_1 Z_{c,d} + (1 - \lambda_1) Z_{ic,d},$$

$$\tilde{Z}_{\neg c,d} = \lambda_2 Z_{\neg c,d} + (1 - \lambda_2) Z_{j \neg c,d}$$

- Augmentation ratio
 - **■** *p*: *U*(0,1)

- $\tilde{Z} = \begin{cases} \tilde{Z}_{\neg c,d} + Z_{c,\neg d} + Z_{\neg c,\neg d} & \text{if } p \leq p_{\text{discard}} \\ \tilde{Z}_{c,d} + \tilde{Z}_{\neg c,d} + Z_{c,\neg d} + Z_{\neg c,\neg d} & \text{otherwise} \end{cases}$
- Focus on domain-invariant features
- $p_{discard}$: 0.2

- Training
 - Phase 1: use original dataset
 - Phase 2: use original + augmented dataset
 - \checkmark d: only use original dataset

d

C

- Reconstruction of samples
 - Complex background
 - Diversity
 - Not similar to the original

(a) Original

(c) XDomainMix

• Domain generalization performance

Method	Camelyon17	FMoW	PACS	TerraIncognita	DomainNet
ERM	70.3 ± 6.4	32.3 ± 1.3	85.5 ± 0.2	46.1 ± 1.8	43.8±0.1
GroupDRO	68.4 ± 7.3	30.8 ± 0.8	84.4 ± 0.8	43.2 ± 1.1	33.3 ± 0.2
RSC	77.0±4.9 [^]	$32.6 \pm 0.5^{\circ}$	85.2 ± 0.9	46.6 ± 1.0	38.9 ± 0.5
MixStyle	62.6±6.3 [^]	$32.9 \pm 0.5^{\circ}$	85.2 ± 0.3	44.0 ± 0.7	34.0 ± 0.1
DSU	69.6±6.3 [^]	$32.5 \pm 0.6^{\circ}$	$85.5 \pm 0.6^{\circ}$	$41.5\pm0.9^{\circ}$	$42.6\pm0.2^{\circ}$
LISA	77.1 ± 6.5	35.5 ± 0.7	$83.1 \pm 0.2^{\circ}$	$47.2 \pm 1.1^{\circ}$	$42.3\pm0.3^{\circ}$
Fish	74.7 ± 7.1	34.6 ± 0.2	85.5 ± 0.3	45.1 ± 1.3	42.7 ± 0.2
XDomainMix	80.9±3.2	35.9 ± 0.8	86.4 ± 0.4	48.2±1.3	44.0±0.2

Effectiveness of class/domain scores

• Visualization of features

Ablation study

mix	mix	discard	Camelyon17	FMoW
$Z_{c,d}$	$Z_{\neg c,d}$	$Z_{c,d}$		
			70.3 ± 6.4	32.3±1.3
\checkmark			78.3 ± 5.5	32.9 ± 2.2
	\checkmark		79.1 ± 6.0	33.6 ± 1.1
\checkmark	\checkmark		79.6 ± 7.0	31.9 ± 0.4
\checkmark	\checkmark	\checkmark	80.9±3.2	35.9 ± 0.8

Table 4: Ablation study.