Assignment 1

Hand in by April 14 to Søren (soren.wengel_mogensen@control.lth.se). Q&A via Zoom on April 12, find link online.

In this assignment, we will work with a certain characterization of d-separation. We first need to introduce some more terminology. An undirected graph, $\mathcal{U} = (V, E_U)$, is a pair of nodes, V, and a set of edges, E_U , all of which are undirected, i - j (see the example graphs in Figure 1).

Let $\mathcal{U}=(V,E_U)$ be an undirected graph. For $S\subseteq V$, we let $\mathcal{U}_{V\setminus S}$ denote the undirected graph obtained from \mathcal{U} by removing every node in S and every edge k-l such that $k\in S$ or $l\in S$. Similarly, when $\mathcal{D}=(V,E_D)$ is a DAG, we define $\mathcal{D}_{V\setminus S}$ as the DAG obtained by removing every node in S and every edge $k\to l$ such that $k\in S$ or $l\in S$. In an undirected graph, $\mathcal{U}=(V,E_U)$, we say that two nodes $i,j\in V$ are separated by S, if there is no path between i and j in the graph $\mathcal{U}_{V\setminus S}$.

In this assignment, we will explain how one can use undirected graphs to decide d-separation in DAGs. For this purpose, we need the concept of a moral graph. We say that two nodes, i and j, are adjacent if there exists an edge between them. In a DAG, i and j are adjacent if $i \to j$ or if $i \leftarrow j$ and in an undirected graph i and j are adjacent if i - j. Given a DAG, $\mathcal{D} = (V, E_D)$, we say that $i \in V$ and $j \in V$ are unshielded colliders if they are not adjacent and there exists $k \in V$ such that $i \to k \leftarrow j$.

Definition. Let $\mathcal{D} = (V, E_D)$ be a DAG. Its moral graph is the undirected graph obtained by adding the edge i - j whenever i and j are unshielded colliders and then replacing all directed edges with undirected edges. We denote the moral graph of \mathcal{D} by \mathcal{D}^m .

Theorem. Let $\mathcal{D} = (V, E_D)$ be a DAG and let $i, j \in V$, $C \subseteq V \setminus \{i, j\}$. We have that i and j are d-separated by C in \mathcal{D} if and only if i and j are separated by C in the undirected graph $(\mathcal{D}_{an(\{i,j\}\cup C)})^m$.

Figure 2 gives an example of how to apply this theorem.

After this lengthy introduction, we are ready to state your task. You need to solve Problem A or Problem B. You do not need to solve both. Hints are provided at the end of this document.

Problem A In this problem, we will prove the theorem. Let $\mathcal{D} = (V, E_D)$ be a DAG, let $i, j \in V$, and $C \subseteq V \setminus \{i, j\}$.

a. Assume that i and j are not separated by C in $(\mathcal{D}_{\operatorname{an}(A \cup B \cup C)})^m$. In this case, there is a path between i and j in $(\mathcal{D}_{\operatorname{an}(A \cup B \cup C)})^m$ such that no node on this path is in C. Construct from this a d-connecting path between i and j given C in \mathcal{D} .

Figure 1: Example of an undirected graph, \mathcal{U} . If we want to decide if 1 and 2 are separated by $\{2,4\}$ in this graph, we consider $\mathcal{U}_{1,3,5,6}$, the graph obtained by removing 2 and 4 (and their edges). In this smaller graph, there is no path between 1 and 3, and we say that 1 and 3 are separated by $\{2,4\}$ in \mathcal{U} . On the other hand, if we want to decide if 1 and 3 are separated by 2 in \mathcal{U} , we remove 2 (and its edges) to obtain $\mathcal{U}_{1,3,4,5,6}$. In this graph, 1-4-3 is a path between 1 and 3 and therefore 1 and 3 are not separated by $\{2\}$ in \mathcal{U} .

- b. Assume that i and j are not d-separated by C in \mathcal{D} . This means that there exists a d-connecting path between i and j given C in \mathcal{D} . Construct from this a path between i and j in $(\mathcal{D}_{\operatorname{an}(A \cup B \cup C)})^m$ such that no node is in C
- c. Use the above to conclude that the theorem is true.

Problem B In this problem, we will use the theorem to implement d-separation in a programming language of your choice. The definition of d-separation is in terms of paths and it can be tedious to check every path between two nodes. The theorem allows a simpler approach. The goal is to make a function which takes a DAG, $\mathcal{D} = (V, E_D)$, two nodes $i, j \in V$, and a set $C \subseteq V \setminus \{i, j\}$ as input and outputs TRUE if i and j are d-separated given C in \mathcal{D} , and FALSE otherwise.

Both DAGs and undirected graphs can be represented using adjacency matrices. If $\mathcal{D}=(V,E_D)$ is a DAG and |V|=n, then its adjacency matrix is the $n\times n$ matrix, M, such that $M_{ji}=1$ if and only if $i\to j$ is in \mathcal{D} . If $\mathcal{U}=(V,E_U)$ is an undirected graph and |V|=n, then its adjacency matrix is the $n\times n$ matrix such that $M_{ji}=M_{ij}=1$ if and only if i-j is in \mathcal{U} .

The following is a breakdown of how to implement a function that decides if i and j are d-separated given C in \mathcal{D} . Let $\mathcal{D} = (V, E_D)$ be a DAG, and let $i, j \in V$, and $C \subseteq V \setminus \{i, j\}$.

- a. Construct a function to output $\mathcal{D}_{\operatorname{an}(\{i,i\}\cup C)}$.
- b. Construct the moral graph of $\mathcal{D}_{\operatorname{an}(\{i,j\}\cup C)}$.
- c. Decide if i and j is separated by C in the moral graph from above.
- d. Subtasks a, b, and c defines the function we need. Now choose a DAG and i, j, and C and apply your function to decide d-separation of i and j given C in the DAG. Repeat this five times.

Figure 2: Example DAG, \mathcal{D} . The graph \mathcal{D}^m is its moral graph. We see that $1 \to 4 \leftarrow 3$ is an unshielded collider in \mathcal{D} and therefore 1-3 is in \mathcal{D}^m . Say we wish to decide if 1 and 3 are d-separated by $\{2,4\}$ in \mathcal{D} using the theorem. That is, we wish to decide if i and j are d-separated given C in \mathcal{D} , for $i=1,j=3,C=\{2,4\}$. We first need to find $\mathcal{D}_{\operatorname{an}(\{i,j\}\cup C)}$. By convention, a node is an ancestor of itself, so $\operatorname{an}(\{i,j\}\cup C)$ must contain 1,2,3, and 4. On the other hand, 5 is not an ancestor of any of the nodes in $\{i,j\}\cup C$, and therefore $\operatorname{an}_{\mathcal{D}}(\{i,j\}\cup C)=\{1,2,3,4\}$ and we obtain the graph $\mathcal{D}_{\operatorname{an}_{\mathcal{D}}(\{i,j\}\cup C)}$ by removing 5 and the edge $5\leftarrow 1$. Note that $1\to 4\leftarrow 3$ is the only unshielded collider in this graph, and we add 1-3 and make the other edges undirected to obtain its moral graph. Finally, we see that 1 and 3 are not separated by $\{2,4\}$ in $(\mathcal{D}_{\operatorname{an}_{\mathcal{D}}(\{1,2,3,4\})})^m$ and this means that 1 and 3 are not d-separated by $\{2,4\}$ in \mathcal{D} . On the other hand, we can go through the same procedure to see that 1 and 3 are d-separated given $\{2\}$ in \mathcal{D} .

Hints

- Problem A: The theorem is in Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks, 20(5), 491-505, see Proposition 3, link: https://www.stats.ox.ac.uk/~steffen/papers/ldll.pdf Look at its proof for inspiration. Note that we have stated the theorem with singleton A and B, i.e., $A = \{i\}$ and $B = \{j\}$ in our formulation.
- Problem B: a: Let M be the adjacency matrix of $\mathcal{D}=(V,E_D)$ and let \tilde{M} denote the matrix obtained from M by replacing every diagonal element with a 1. Consider the n'th power of \tilde{M} , n=|V|. It holds that $(\tilde{M}^n)_{kl}>0$ if and only if k is an ancestor of l in \mathcal{D} . Find the set $\operatorname{an}(\{i,j\}\cup C)$ using this. b: Nodes k and l are colliders if and only if there exists an m such that $M_{mk}=1$ and $M_{ml}=1$. Make another adjacency matrix, N, such that $N_{kl}=N_{lk}=1$ if and only if $M_{kl}=1$, $M_{lk}=1$, or k and l are colliders in \mathcal{D} . Note that N is symmetric in the sense that $N_{kl}=N_{lk}$ for all k,l. The matrix, N, is the adjacency matrix of the moral graph of $\mathcal{D}_{\operatorname{an}(A\cup B\cup C)}$. c: Construct a new matrix, O, from N, by letting $O_{kl}=N_{kl}$ if $k,l\notin C$ and $O_{kl}=0$ if $k\in C$ or $l\in C$. Add 1's to the diagonal of O. Nodes i and j are separated by C in $(\mathcal{D}_{\operatorname{an}(A\cup B\cup C)})^m$ if and only if $(O^n)_{ij}=0$.