EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

BAREM DE EVALUARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIE	CTUL I (30 de puncte)	(30 de puncte)	
1.	Numărul de submulțimi C_5^2	4p	
	$C_5^2 = 10$	1p	
2.	Funcția este crescătoare dacă $3m-1>0$	2p	
	$m \in \left(\frac{1}{3}, +\infty\right)$	3 p	
3.	$x_1 + x_2 = \frac{2a+1}{a}, \ x_1 x_2 = \frac{5}{a}$	2p	
	Finalizare	3 p	
4.	Condiții $\frac{3x-2}{x+2} > 0$, $x+2 \neq 0$	1p	
	$\frac{3x-2}{x+2}=2$	2p	
	x = 6 care verifică condițiile de existență, deci este soluție a ecuației	2p	
5.	Vectorul de poziție $\overrightarrow{r_G} = \frac{\overrightarrow{r_A} + \overrightarrow{r_B} + \overrightarrow{r_C}}{3}$	2p	
	Rezultă $\vec{r_G} = 2 \cdot \vec{i} + 3 \cdot \vec{j}$	3p	
6.	$m = tg45^{\circ} = 1$	2p	
	Ecuația dreptei este $y = x - 1$	3p	

	Letația diepter este $y = x - 1$	3p
SUBIECTUL al II-lea (30 de pu		(30 de puncte)
a.	(x * y) * z = x + y + z + 4	2p
	x*(y*z) = x + y + z + 4,	2 p
	finalizare	1p
b.	$11 \circ 1 = 11 - 22 - 2 + m = m - 13$	3p
	m=13	2 p
c.	$(x-1) \circ 4 = 4(x-1) - 2(x-1) - 8 + m = 2x - 10 + m$	2 p
	(3*3) + m = 3 + 3 + 2 + m = m + 8	2 p
	x = 9	1p
d.	Din $x \circ 3 = x \Rightarrow 3x - 6 - 2x + m = x \Rightarrow x - 6 + m = x$	3 p
	m=6	2 p
e.	$m=6 \Rightarrow e=3$	1p
	$x \circ x' = x' \circ x = 3 \Rightarrow x' = \frac{2x - 3}{x - 2}, x \in \mathbb{R} \setminus \{2\}$	2p
	$x' = \frac{3}{2} - x \Rightarrow \frac{2x - 3}{x - 2} = \frac{3}{2} - x \Rightarrow x \in \left\{0, \frac{3}{2}\right\}$	2 p
f.	a = 2x + 2, $b = 3x + 4$, $c = 4x + 6$	3p
	finalizare	2p

SUBIECTUL al III-lea		(30 de puncte)
a.	$C = I_3 + A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$	2 p
	$\det(A) = 0, \det(C) = 1, \det(A) + \det(C) = 1$	3р
b.	$\det(C) = 1 \neq 0$	2p
	$C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	3p
c.	$C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ $C - 2A + A^{2} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	3p
	$M = O_2$	2 p
d.	$I_3 + xA = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{pmatrix}$ $\det(I_3 + xA) = 1$	3p 2p
e.	$C + C^t = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3p
f.	$\det(C + C^{t}) = 4 \Rightarrow C + C^{t} \text{ este matrice inversabil}$	2p
1.	$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	2 p
	$A^3 = O_3$	2 p
	$\left(A^3\right)^{670} = \left(O_3\right)^{670} = O_3$	1p