Modelos Lineales y Lineales Generalizados

Manuel Gijón Agudo

Octubre 2018 -

${\bf \acute{I}ndice}$

1.	Reg	resión lineal	2
	1.1.	Regresión lineal simple	2
		1.1.1. Ejemplos	2
	1.2.	ANOVA	2
		1.2.1. Ejemplos	2
	1.3.	ANCOVA	2
		1.3.1. Ejemplos	2
	_		
2.	Reg	resión lineal generalizada	3
	2.1.	Genealidades	3
	2.2.	Binomial Response Models	3
	2.3.	Poisson Response Models	3

1. Regresión lineal

1.1. Regresión lineal simple

Objetivo: Nuestro objetivo será siempre explicar el comportamiento de una variable aleatoria Y en función de unos ciertos valores $X_1, ..., X_p$.

Dado un $n \in \mathbb{Z}^+$ denominaremos Y_i a la muestra de Y obtenida cuando $X_j = x_{ij} \in \mathbb{R} \ \forall i, j.$

Definición: denominamos el Modelo Lineal como:

$$\forall i, Y_i = \beta_0 + x_{i1}\beta_1 + \dots + x_{i(p-1)}\beta_{p-1} + e_i = \mu_i + e_i$$

donde β_0 es denominado intercepto (intercept) y los términos e_i los errores.

Hipótesis:

- $\forall i \in \{1, 2, ..., n\}, e_i \sim N(0, \sigma_i^2)$
- \bullet Homeodasticidad (homeodasticity): $\forall i \in \{1,2,...,n\}, \ \sigma_i^2 = \sigma^2$
- $\forall i, y \in \{1, 2, ..., n\}, i \neq j \ e_i \text{ es independiente } de \ e_j$
- \blacksquare Los valores de X son fijos o variables aleatorias **independientes** de los errores.

En forma matricial escribiremos el modelo de la siguiente manera:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & x_{13} & \cdots & x_{1(p-1)} \\ 1 & x_{21} & x_{22} & x_{23} & \cdots & x_{2(p-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n3} & \cdots & x_{n(p-1)} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

1.1.1. Ejemplos

1.2. ANOVA

idem

1.2.1. Ejemplos

1.3. ANCOVA

idem

1.3.1. Ejemplos

Example 1.1 Tenemos datos sobre coche que utilizan diesel o no.

2. Regresión lineal generalizada

2.1. Genealidades

2.2. Binomial Response Models

Una variable aleatorio es tal que $Y \sim B(p)$ (Bernulli), $0 \le p \le 1$, si y solo sí toma valores 1 ó 0 con las siguientes probabilidades:

$$P(Y = 1) = p$$
 and $P(Y = 0) = 1 - p$

Una variable aleatoria es tal que $Y \sim Bin(n,p)$ (Binomial), con parámetros.... CONTINUAR AQUÍ

BALA BLA BLA BLA

Definimos los **odds** de una variable aleatoria Binomial como Odd = $\frac{p}{1-p} \in (0, +\infty)$, tal que verifica:

Odd =
$$\begin{cases} 5 & si & x \le 2 \\ x^2 - 6x + 10 & si & 2 < x < 5 \\ 4x - 15 & si & x \ge 5 \end{cases}$$

SUSTITUIR APROPIADAMENTE LA MIERDA DE AQUÍ ARRIBA IMPORTANTE!!

Para comparar p_1 con $p_2 \in (-1,1)$ CONTINUAR A1UÍ BLA BLA BLA BLA

$$\begin{cases} H_0: p_1 = p_2 & \iff H_0: p_1 - p_2 = 0 \\ H_1: p_1 \neq p_2 & \iff H_1: p_1 - p_2 \neq 0 \end{cases}$$

$$Y_i \sim Bin(m_i, p_i)$$

$$g(\mu) = X\beta \Leftrightarrow g(mp) = X\beta$$

Recordemos el link canónico, el parámetro de ddispersione y la función de varianza son respectivamente:

$$\theta_i = \log\left(\frac{p_i}{1 - p_i}\right)$$

$$\Phi = 1$$

$$V(\mu_i) = \mu_i \left(1 - \frac{\mu_i}{m_i} \right)$$

2.3. Poisson Response Models