DMath_u6_bf

6.5

a)

0

Prove:

Let A, B be sets. If A is uncountable and $A \succeq B$ then B is uncountable.

Proof:

(using Lemma 3.15.(ii): The relation \succeq is transitive: $A \succeq B \land B \succeq C \implies A \succeq C$)
(using Definition 3.42.(iii): A set A is called countable if $A \succeq N$, and uncountable otherwise)

 $\mathbb{N} \succeq A \wedge A \succeq B \Longrightarrow \mathbb{N} \succeq B \Longrightarrow$ This is not sufficient to prove that B is uncountable. Note that when $A \sim \mathbb{N}$ then $\mathbb{N} \preceq A$ and $\mathbb{N} \succeq A$ but A is countable.

Prove:

The set $S = \{\text{functions } \{0, 1\} \to \{0, 1\}^{\infty}\}$ is uncountable.

Proof:

We will prove this using contradiction. Let's assume the set S is countable, so $S \sim \mathbb{N}$. This means, that there is a one to one mapping onto each unique value (bijection) between functions f_n to \mathbb{N} . Let us define f_n as follows:

 $f_n \stackrel{def}{=} \beta_{n,\,0},\,\beta_{n,\,1},\,\beta_{n,\,2},\,\beta_{n,\,3},\,\ldots \implies \text{where does \mathcal{B} come from? A function in S maps}$ For some $n \in \mathbb{N}$ So,is to a binary sequence so there are up to So,is to a binary sequence so there are up to Let $\beta_{n,\,i}$ be the i-th bit in the n-th sequence S.

Let $\beta_{n,\,i}$ be the i-th bit in the n-th sequence f_n where for convenience we begin numbering the bits with i=0.

Let \overline{b} be the complement of a bit $b \in \{0, 1\}$.

We define a new semi-infinite binary sequence α as follows:

 $\alpha \stackrel{def}{=} \overline{\beta_{n,\,0}}, \, \overline{\beta_{n,\,1}}, \, \overline{\beta_{n,\,2}}, \, \overline{\beta_{n,\,3}}, \, \ldots \, \overline{\mathcal{B}_{0,0}} \, \overline{\mathcal{B}_{1,1}} \, \overline{\mathcal{B}_{3,1}} \, \overline{\mathcal{B}_{3,3}} \, , \, \ldots$ Shere you actually want $\overline{\mathcal{B}_{0,0}} \, \overline{\mathcal{B}_{1,1}} \, \overline{\mathcal{B}_{3,1}} \, \overline{\mathcal{B}_{3,3}} \, , \, \ldots$

Obviously, $\alpha \in \{0, 1\}^{\infty}$ but there is no $n \in \mathbb{N}$ such that $\alpha = f_n$ since α is constructed so as to disagree in at least one bit (actually the i-th bit) with every sequence f_n for $n \in \mathbb{N}$. This shows that there cannot be an bijection from f_n to \mathbb{N} , which concludes the proof. We have shown that $\mathbb{N} \succeq S$ and S is thus uncountable using Cantor's diagonalization argument.

You've only proven that the set $50,13^{20}$ is uncountable because your list for only contains the set $50,13^{20}$.