Chapitre 9

Produit scalaire

Dans tout le cours, on se place dans un plan muni d'un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

1 Norme d'un vecteur

Définition

Soient \overrightarrow{u} un vecteur et deux points A et B tels que $\overrightarrow{u} = \overrightarrow{AB}$. On appelle **norme** de \overrightarrow{u} le réel positif ou nul noté $\|\overrightarrow{u}\|$, défini par $\|\overrightarrow{u}\| = AB$.

Propriété

Soient λ un réel et \overrightarrow{u} un vecteur. On a $\|\lambda\overrightarrow{u}\| = |\lambda| \times \|\overrightarrow{u}\|$.

Propriété

Dans un repère orthonormé, la norme d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$.

Exemple

Soient
$$A(-1; 2)$$
 et $B(3; -1)$.
On a $\overrightarrow{AB}\begin{pmatrix}3-(-1)\\-1-2\end{pmatrix}$, donc $\overrightarrow{AB}\begin{pmatrix}4\\-3\end{pmatrix}$.
Ainsi, $\left\|\overrightarrow{AB}\right\| = \sqrt{4^2+(-3)^2}$
 $= \sqrt{16+9}$
 $= \sqrt{25}$
 $= 5$

2 Produit scalaire de deux vecteurs

Dans cette partie, on considère trois points A, B et C et \overrightarrow{u} et \overrightarrow{v} deux vecteurs tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

Définition - Avec des normes seulement (1)

Le **produit scalaire** de \overrightarrow{u} et \overrightarrow{v} est le réel noté $\overrightarrow{u}\cdot\overrightarrow{v}$ défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2 \right)$$

Propriété - Avec des normes seulement (2)

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right)$$

Propriété - Avec le projeté orthogonal

Soit H le projeté orthogonal de C sur la droite (AB).

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

$$= \begin{cases} AB \times AH & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ sont de même sens} \\ -AB \times AH & \text{si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ sont de sens opposés} \end{cases}$$

Propriété - Avec les coordonnées

Si, on a :
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'.$$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\theta)$

Propriété - Avec un angle

Exemple 1

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$$

$$= AB \times AH$$

$$= 6 \times 4$$

$$= 24$$

Exemple 2

$$\overrightarrow{u} \cdot \overrightarrow{v} = 4 \times 1 + 2 \times 2$$
$$= 8$$

Exemple 3

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$$
$$= 2 \times 2 \times \cos\left(\frac{2\pi}{3}\right)$$
$$= -2$$

Exemple 4

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(\left\| \overrightarrow{AB} \right\|^2 + \left\| \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{AB} - \overrightarrow{AC} \right\|^2 \right)$$

$$= \frac{1}{2} \left(AB^2 + AC^2 - CB^2 \right)$$

$$= \frac{1}{2} \left(4^2 + 6^2 - 3^2 \right)$$

$$= \frac{43}{2}$$

Remarque: Cas particuliers

- \cdot Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, alors

$$\overrightarrow{u} \cdot \overrightarrow{v} = \left\{ \begin{array}{ll} \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| & \text{si } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont de même sens} \\ -\|\overrightarrow{u}\| \times \|\overrightarrow{v}\| & \text{si } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont de sens opposés.} \end{array} \right.$$

Exemple 5

On a:

$$\overrightarrow{AB} \cdot \overrightarrow{AB} = \left\| \overrightarrow{AB} \right\|^2$$
$$= 9$$

On peut également écrire $\overrightarrow{AB}^2 = 9$.

On a aussi :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = - \left\| \overrightarrow{AB} \right\| \times \left\| \overrightarrow{AC} \right\|$$
$$= -3 \times 2$$
$$= -6$$

3 Propriétés du produit scalaire

Propriétés

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs et k un réel.

• symétrie : $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$.

 $\begin{array}{c} \cdot \ \operatorname{lin\'earit\'e}: (k \, \overrightarrow{u}) \cdot \overrightarrow{v} = k \, (\overrightarrow{u} \cdot \overrightarrow{v}) \\ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} \end{array}$

Propriété - Identités remarquables

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

$$(\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$$

$$(\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u}^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$$

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

$$(\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u}^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$$

$$\cdot (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$$

Preuve (du point 2)

$$(\overrightarrow{u} - \overrightarrow{v})^2 = (\overrightarrow{u} - \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v})$$

$$= (\overrightarrow{u} \cdot \overrightarrow{u}) - (\overrightarrow{u} \cdot \overrightarrow{v}) - (\overrightarrow{v} \cdot \overrightarrow{u}) + (\overrightarrow{v} \cdot \overrightarrow{v})$$

$$= \overrightarrow{u}^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$$

4 Vecteurs orthogonaux

Définition

Deux vecteurs non nuls \overrightarrow{AB} et \overrightarrow{CD} sont dits **orthogonaux** si les droites (AB) et (CD) sont perpendiculaires.

Remarque

Par convention, on dit que le vecteur nul $\overrightarrow{0}$ est orthogonal à tout vecteur.

Propriété

Deux vecteurs sont orthogonaux si, et seulement si, leur produit scalaire est nul.

Exemple

Les droites (CA) et (CB) sont-elles perpendiculaires?

On a :
$$\overrightarrow{CA}\begin{pmatrix}1\\-2\end{pmatrix}$$
 et $\overrightarrow{CB}\begin{pmatrix}4\\2\end{pmatrix}$

On calcule le produit scalaire :

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = 1 \times 4 + (-2) \times 2$$
$$= 4 - 4$$
$$= 0$$

Donc, les vecteurs \overrightarrow{CA} et \overrightarrow{CB} sont orthogonaux, c'est-à-dire que les droites (CA) et (CB) sont perpendiculaires.