

Discovering Neural Wirings

Mitchell Wortsman^{1,2}, Ali Farhadi^{1,2,3}, Mohammad Rastegari^{1,3}

¹ PRIOR @ Allen Institute for Al

² University of Washington

³XNOR.AI

MOTIVATION

- Traditionally, the connectivity patterns of neural networks are manually defined or largely constrained (even with methods of Neural Architecture Search (NAS) [1]).
- We allow for a much larger space of possible networks by relaxing the typical notion of layers and enabling channels to form connections independent of each other.
- The wiring of our network is not fixed during training as we learn the network parameters we also learn the connectivity.

CONTRIBUTIONS

- We present an algorithm, Discovering Neural Wirings (DNW), to efficiently learn the connectivity of a neural network.
- By learning the connectivity of MoileNetV1 (x0.25) [2] we boost the accuracy on ImageNet by 10%.
- We demonstrate that DNW can also be used to effectively train sparse neural networks in a single training run: We only ever train with 10% of weights (in the forward pass) and only lose 2.5% accuracy on ImageNet compared to our dense baseline.

KEY TAKEAWAYS

- It is possible to realize the benefits of overparameterization during training, even when the resulting model is sparse.
- As NAS becomes more fine grained, finding a good architecture is akin to finding a sparse subnetwork of the complete graph.

Forward Algorithm Backward $\mathcal{E} = \{w_{uv}: |w_{uv}| \geq \tau\}$ Update all edges in the graph via $w_{uv} \leftarrow w_{uv} + \left\langle Z_u, -\alpha \frac{\partial \mathcal{L}}{\partial I_v} \right\rangle$ and update the rest of the network parameters normally. $Z_u = f_{\theta_u} \left(\sum_{(q,u) \in \mathcal{E}} w_{qu} Z_q \right)$ $\frac{\partial \mathcal{L}}{\partial Z_u} = \sum_{(u,v) \in \mathcal{E}} \frac{\partial \mathcal{L}}{\partial I_v} w_{uv}$

Setting 1: Static

- $G = (V, \mathcal{E})$ is directed acyclic graph where w_{uv} is the weight of edge (u, v).
- Let Z_u denote the state of node u, and let I_u denote the input to node u.
- The state of a fixed set of input nodes are equal to some function g of the input data. For all other nodes, the state Z_u is computed as

$$Z_{u} = f_{\theta_{u}} \left(\sum_{(q,u) \in \mathcal{E}} \frac{I_{u}}{w_{qu} Z_{q}} \right)$$

Setting 2: Dynamic

- $G = (V, \mathcal{E})$ is directed possibly cyclic graph where w_{uv} is the weight of edge (u, v).
- Let $Z_u(t)$ denote the state of node u at time t, and let $I_u(t)$ denote the input to node u at time t.
- The initialization $Z_u(0)$ of a fixed set of input nodes are equal to some function g of the input data. For all other nodes, $Z_u(0) = 0$. The state $Z_u(t)$ is computed as

$$Z_u(t) = f_{\theta_u} \left(\sum_{(q,u) \in \mathcal{E}} \frac{I_u(t-1)}{w_{qu} Z_q(t-1)} \right) \quad \text{when } t \in \{0,1,\ldots,T-1\}$$

$$\frac{dZ_u(t)}{dt} = f_{\theta_u} \left(\sum_{(q,u) \in \mathcal{E}} w_{qu} Z_q(t) \right) \quad \text{when } t \in [0,T] \text{ as in } [2]$$

- We consider the case where the input and output of each node is a two-dimensional matrix, commonly referred to as a channel.
- The state of a fixed set of output nodes are taken to be the output of the network.
- We let f_{θ_n} at each non-output node be a batch-norm, (2 parameters), ReLU, 3x3 convolution (9 parameters) triplet.
- The goal is to learn a good graph with exactly \boldsymbol{k} edges.

Intuition

- If the gradient is pushing I_v in a direction which aligns with Z_u , then we strengthen the magnitude of the weight w_{uv} .
- If this alignment happens consistently then $|w_{uv}|$ will be eventually be strong enough to enter the edge set \mathcal{E} .
- If (u, v) enters \mathcal{E} , another edge will be removed. We show that when this swapping does occur, it is beneficial (i.e. it decreases the loss on the mini-batch under certain conditions).
- If the edge is already in the graph, the update rule is no different than standard SGD.

$$w_{uv} \leftarrow w_{uv} + \left\langle Z_u, -\alpha \frac{\partial \mathcal{L}}{\partial I_v} \right\rangle$$

Results

By learning the connectivity of MobileNetV1 [3], we boost the ImageNet accuracy by ~10% at ~41M FLOPS

Model	Params	FLOPs	Accura
MobileNetV1 (×0.25)	0.5M	41M	50.6%
X-4 MobileNetV1		> 50M	54.0%
MobileNetV2 $(\times 0.15)^*$		39M	44.9%
MobileNetV2 $(\times 0.4)^{**}$		43M	56.6%
DenseNet $(\times 0.5)^*$		42M	41.1%
Xception $(\times 0.5)^*$		40M	55.1%
ShuffleNetV1 ($\times 0.5, g = 3$)		38M	56.8%
ShuffleNetV2 $(\times 0.5)$	1.4M	41M	60.3%
MobileNetV1-Random Graph($\times 0.225$)	1.2M	55.7M	53.3%
MobileNetV1-DNW-Small ($\times 0.15$)	0.24M	22.1M	50.3%
MobileNetV1-DNW-Small ($\times 0.225$)	0.4M	41.2M	59.9%
MobileNetV1-DNW($\times 0.225$)	1.1 M	42.1M	60.9%
MnasNet-search1	1.9M	65M	64.9%
MobileNetV1-DNW($\times 0.3$)	1.3M	66.7M	65.0%
MobileNetV1 (×0.5)	1.3M	149M	63.7%
MobileNetV2 $(\times 0.6)^*$		141M	66.6%
MobileNetV2 $(\times 0.75)^{***}$		145M	67.9%
DenseNet $(\times 1)^*$		142M	54.8%
Xception $(\times 1)^*$		145M	65.9%
ShuffleNetV1 ($\times 1, g = 3$)		140M	67.4%
ShuffleNetV2 $(\times 1)$	2.3M	146M	69.4%
MobileNetV1-Random Graph($\times 0.49$)	1.8M	170M	64.1%
MobileNetV1-DNW($\times 0.49$)	1.8M	154M	70.4%

Comparing the Static vs. Dynamic Setting with a tiny (41k parameter) classifier on CIFAR-10.

	Model	Accuracy
-	Static (Random Graph) Static (DNW)	$76.1 \pm 0.5\%$ $80.9 \pm 0.6\%$
	Discrete Time (Random Graph) Discrete Time (DNW)	$77.3 \pm 0.7\%$ $82.3 \pm 0.6\%$
	Continuous (Random Graph) Continuous (DNW)	$78.5 \pm 1.2\%$ $83.1 \pm 0.3\%$

Contrasting with other methods of Discovering Wirings with a fixed structure and number of edges on CIFAR-10.

Model	Accuracy
MobileNetV1 (×0.25)	$86.3 \pm 0.2\%$
MobileNetV1-Random Graph($\times 0.225$)	$87.2 \pm 0.1\%$
No Update Rule	$86.7 \pm 0.5\%$
L1 + Anneal	$84.3 \pm 0.6\%$
Targeted Dropout $\rho = 0.95$	$89.2 \pm 0.4\%$
Lottery Ticket (one-shot)	$87.9 \pm 0.3\%$
MobileNetV1-DNW($\times 0.225$)	$89.7 \pm 0.2\%$

Sparse Neural Network Learning

Method	Weights (%)	Top-1 Accuracy	Top-5 Accura
Sparse Networks from Scratch	10%	72.9%	91.5%
Ours - All Layers Sparse	10%	74.0%	92.0%
Ours - First Layer Dense	10%	75.0%	92.5%
Sparse Networks from Scratch	20%	74.9%	92.5%
Ours - All Layers Sparse	20%	76.2%	93.0%
Ours - First Layer Dense	20%	76.6%	93.4%
Sparse Networks from Scratch	30%	75.9%	92.9%
Ours - All Layers Sparse	30%	76.9%	93.4%
Ours - First Layer Dense	30%	77.1%	93.5%
Sparse Networks from Scratch	100%	77.0%	93.5%
Ours - Dense Baseline	100%	77.5%	93.7%

We apply our algorithm to the task of training a sparse ResNet-50. The sparsity is maintained throughout training, as motivated by Sparse Networks From Scratch [4].

- [1] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. In ICLR, 2016.
- [2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt and David Duvenaud. Neural Ordinary Differential Equations. In NeurIPS, 2018.
- [3] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. In ArXiv, 2017.
- [4] Tim Dettmers and Luke Zettlemoyer. Sparse Networks from Scratch: Faster Training without Losing Performance. In ArXiv, 2019.

