Post-Hoc

Cristian Vaca

2024-09-06

Contents

Datos	1
Análisis	1
Dibujos de práctica	2
Ejercicios de porcentajes	4

Datos

1. Cargar funciones necesarias

```
library(tidyverse)
library(data.table)
library(dtplyr)
library(readxl)
library(scales)
library("kableExtra")
```

2. Siguiente paso, crear tabla

```
data_social <- read_excel("./datos_social.xlsx")
data_crecimiento <- read_excel("./datos_crecimiento.xlsx")</pre>
```

Análisis

-Calcular el Chi-cuadrado

```
##Relación entre estilo de vida y habilidades sociales
ds <- data_social %>% select(-1) %>% as.matrix()
rownames(ds) <- data_social$IMC
chisq.test(ds)</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: ds
## X-squared = 54.559, df = 6, p-value = 5.69e-10
```

```
##Relación entre estilo de vida y crecimiento
dc <- data_crecimiento %>% select(-1) %>% as.matrix()
rownames(dc) <- data_crecimiento$IMC
chisq.test(dc)</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: dc
## X-squared = 23.503, df = 6, p-value = 0.0006445
```

• el siguiente paso es el análisis post-hoc

```
#de habilidades sociales
library("chisq.posthoc.test")

res_s <- chisq.posthoc.test(ds)

#de crecimiento

res_c <- chisq.posthoc.test(dc)
tabla_final <- res_s %>% full_join(res_c) %>% kable %>% kable_classic()
tabla_final
```

Dimension	Value	No saludable	Saludable	Muy saludable
Bajo	Residuals	2.2477805	-1.4379746	-0.4393235
Bajo	p values	0.2950820	1.0000000	1.0000000
Normal	Residuals	6.5522000	-3.6298267	-1.9974786
Normal	p values	0.0000000	0.0034030	0.5492790
Bueno	Residuals	-2.8934612	2.4614525	-0.2133561
Bueno	p values	0.0457230	0.1660510	1.0000000
Excelente	Residuals	-2.8886612	0.5702719	2.1948892
Excelente	p values	0.0464260	1.0000000	0.3380590
Bajo peso	Residuals	-0.4514267	0.6849023	-0.4171976
Bajo peso	p values	1.0000000	1.0000000	1.0000000
Peso normal	Residuals	-3.4018459	1.5663849	1.4430765
Peso normal	p values	0.0080320	1.0000000	1.0000000
Riesgo de sobrepeso	Residuals	0.4788940	-0.0975422	-0.3600495
Riesgo de sobrepeso	p values	1.0000000	1.0000000	1.0000000
Sobrepeso	Residuals	4.5582551	-2.5277320	-1.3863933
Sobrepeso	p values	0.0000620	0.1377620	1.0000000

Dibujos de práctica

```
mycolors2 <- c("#e0f3db", "#a8ddb5","#43a2ca")
ds %>% as_tibble(rownames= "cat") %>% pivot_longer(cols = -1,names_to = "EstiloVida", values_to = "n")
ggplot(aes(cat,n)) +
```

```
geom_col(aes(fill=EstiloVida), position = "dodge")+
scale_fill_manual(values = mycolors2)+
theme_light()+
labs(x="Habilidades Sociales")
```



```
dc %>% as_tibble(rownames= "cat") %>% pivot_longer(cols = -1,names_to = "EstiloVida", values_to = "n")
    ggplot(aes(cat,n)) +
        geom_col(aes(fill=EstiloVida), position = "dodge")+
        scale_fill_manual(values = mycolors2)+
        theme_light()+
    labs(x="IMC")
```


Ejercicios de porcentajes

```
per <- function(vector, x){
  names <- c(x, "%")
  x <- tibble(unlist(vector), "%"=label_percent(0.01) (unlist(prop.table(vector))))
  return( set_names(x, names)) }

data_h <- data_social %>% rename("Habilidades sociales"=IMC)

z <- data_h %>% select(-1)
  names_z <- colnames(z)
  map2(z,names_z,per) %>%
  reduce(~ cbind(.x, .y)) %>%
  cbind(data_h[1]) %>%
  kable() %>% kable_classic()
```

No saludable	%	Saludable	%	Muy saludable	%	Habilidades sociales
1	2.86%	0	0.00%	0	0.00%	Bajo
17	48.57%	11	7.75%	1	2.94%	Normal
17	48.57%	106	74.65%	23	67.65%	Bueno
0	0.00%	25	17.61%	10	29.41%	Excelente