An Enumeration Problem for a Congruence Equation*

Richard A. Brualdi** and Morris Newman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 9, 1969)

It is shown that the number of n-tuples $(x_0, x_1, \ldots, x_{n-1})$ of nonnegative integers such that

$$\sum_{i=0}^{n-1} x_i = n,$$

$$\sum_{i=0}^{n-1} ix_i \equiv 0 \mod n,$$

is given by

$$\frac{1}{n} \sum_{d \mid n} \binom{2d-1}{d} \varphi \left(\frac{n}{d} \right).$$

Key words: Circulants; congruences; permanents.

1. Introduction

In 1952 M. Hall, Jr. proved the following theorem 1 (see footnote 1): If G is a finite abelian group of order n with elements a_1, a_2, \ldots, a_n , and c_1, c_2, \ldots, c_n are n (not necessarily distinct) elements of G, then there exists a permutation σ of $\{1, 2, \ldots, n\}$ such that the differences $a_{\sigma(1)}-a_1, a_{\sigma(2)}-a_2, \ldots, a_{\sigma(n)}-a_n$ are c_1, c_2, \ldots, c_n in some order, if and only if

$$\sum_{i=1}^{n} c_i = 0. (1)$$

The necessity of (1) is trivial, and Hall gives an elegant proof that condition (1) implies the existence of such a permutation σ . If G is the cyclic group of order n, then Hall's theorem may be rephrased in terms of congruences as follows: Let $x_0, x_1, \ldots, x_{n-1}$ be n nonnegative integers with

$$\sum_{i=0}^{n-1} x_i = n.$$

Then there is a permutation σ of $\{1, 2, \ldots, n\}$ such that

$$\sigma(i) - i \equiv k \pmod{n}$$

has exactly x_k solutions in $i, 1 \le i \le n$, for each $k = 0, 1, \ldots, n-1$ if and only if

$$0x_0 + 1x_1 + \dots + (n-1)x_{n-1} \equiv 0 \pmod{n}.$$
 (2)

^{*}Partially supported by N.S.F. Grant No. GP-7073.

**Present address: Department of Mathematics, University of Wisconsin, Madison, Wis. 53706.

1 M. Hall, Jr., A Combinatorial Problem on Abelian Groups, Proc. A. M. S. 584 – 587 (1952).

The purpose of this note is to count the number of solutions of (2) in nonnegative integers x_i with $\sum_{i=0}^{n-1} x_i = n$. An application to the permanent of a circulant is given.

2. Main Result

The motivation having been given, we may now state and prove our main result.

Theorem: Let n be a positive integer. Let F(n) be the number of n-tuples $(x_0, x_1, \ldots, x_{n-1})$ satisfying:

$$x_i \ge 0$$
, $(i = 0, 1, ..., n-1)$,
$$\sum_{i=0}^{n-1} x_i = n$$
,
$$\sum_{i=0}^{n-1} ix_i \equiv 0 \pmod{n}$$
.

Then

$$F(n) = \frac{1}{n} \sum_{d \mid n} \left(\frac{2d-1}{d} \right) \varphi\left(\frac{n}{d} \right),$$

where the summation extends over all positive integers d dividing n, and where φ is Euler's function. Proof: The proof uses generating functions. Define

$$f_n(w, z) = [(1-z)(1-wz) . . . (1-w^{n-1}z)]^{-1}.$$

Then

$$f_n(\boldsymbol{w}, \boldsymbol{z}) = \left(\sum_{k=0}^{\infty} z^k\right) \left(\sum_{k=0}^{\infty} w^k z^k\right) \dots \left(\sum_{k=0}^{\infty} w^{k(n-1)} z^k\right),$$

and it is clear that F(n) is the sum of the coefficients of $z^n w^{nt}$, $0 \le t \le n-1$, in $f_n(w,z)$. Write

$$f_n(w, z) = \sum_{k=0}^{\infty} B_k z^k$$
 $(B_k = B_k(n, w)).$

Then because

$$f_{n+1}(w, z) = \frac{f_n(w, z)}{1 - w^n z},$$

and

$$f_n(w, wz) = [(1-wz)(1-w^2z) \dots (1-w^nz)]^{-1},$$

we obtain

$$f_n(w, wz) = (1-z)f_{n+1}(w, z) = \frac{1-z}{1-w^n z}f_n(w, z).$$

Thus

$$\sum_{k=0}^{\infty} B_k w^k z^k = \frac{1-z}{1-w^n z} \sum_{k=0}^{\infty} B_k z^k,$$

so that

$$\sum_{k=0}^{\infty} B_k w^k z^k - \sum_{k=0}^{\infty} B_k w^{n+k} z^{k+1} = \sum_{k=0}^{\infty} B_k z^k - \sum_{k=0}^{\infty} B_k z^{k+1}.$$

Hence for $k \ge 1$,

$$B_k w^k - B_{k-1} w^{n+k-1} = B_k - B_{k-1}$$

or

$$B_k = \frac{1 - w^{n+k-1}}{1 - w^k} B_{k-1} \qquad (k \ge 1).$$

Thus since $B_0 = 1$,

$$B_k = \prod_{r=1}^k \frac{1 - w^{n+r-1}}{1 - w^r} \qquad (k \ge 0),$$

an empty product being 1. Therefore

$$f_n(w, z) = \sum_{k=0}^{\infty} \left\{ \prod_{r=1}^{k} \frac{1 - w^{n+r-1}}{1 - w^r} \right\} z^k,$$

and F(n) is the sum of the coefficients of w^{nt} , $0 \le t \le n-1$, in

$$g_n(w) = \prod_{r=1}^n \frac{1-w^{n+r-1}}{1-w^r} = \prod_{r=1}^{n-1} \frac{1-w^{n+r}}{1-w^r}.$$

Now, $g_n(w)$ is a polynomial in w of degree $\sum_{r=1}^{n-1} \{n+r-r\} = n(n-1)$, and has nonnegative coefficients (since $f_n(w, z)$ has nonnegative coefficients). Since

$$\sum_{\zeta: \zeta^n = 1} \zeta^k = \begin{cases} n, & \text{if } n \text{ divides } k \\ 0, & \text{otherwise} \end{cases}$$

we have

$$nF(n) = \sum_{\zeta: \zeta^n = 1} g_n(\zeta),$$

the summations extending over all *n*th roots of unity.

Suppose now that ζ is a primitive dth root of unity, where d|n. Since

$$\lim_{w \to \zeta} \frac{1 - w^{n+r}}{1 - w^r} = \begin{cases} \frac{n+r}{r}, & \text{if } d \text{ divides } r \\ 1, & \text{otherwise} \end{cases}$$

we have that

$$g_n(\zeta) = \prod_{\substack{1 \le r \le n-1 \\ r \equiv 0 \bmod d}} \frac{n+r}{r} = \prod_{s=1}^{\frac{n}{d}-1} \frac{n+sd}{sd} = \begin{pmatrix} 2\frac{n}{d}-1 \\ \frac{n}{d} \end{pmatrix}.$$

Therefore, since there are $\varphi(d)$ nth roots of unity which are primitive dth roots of unity,

$$F(n) = \frac{1}{n} \sum_{d|n} {2 \frac{n}{d} - 1 \choose \frac{n}{d}} \varphi(d)$$
$$= \frac{1}{n} \sum_{d|n} {2d - 1 \choose d} \varphi\left(\frac{n}{d}\right).$$

This proves the theorem.

3. An Application

Let $A = [a_{ij}]$ be an $n \times n$ matrix. If σ is a permutation of $\{1, 2, \ldots, n\}$ then

$$a_{1\sigma(1)}a_{2\sigma(2)}$$
 . . . $a_{n\sigma(n)}$

is called a diagonal product of A. The permanent of A, denoted by per (A), is the sum of the diagonal products of A. Thus

per
$$(A) = \sum_{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)},$$

the summation extending over all permutations of $\{1, 2, \ldots, n\}$. Suppose A is the n by n circulant

$$egin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \ a_{n-1} & a_0 & \dots & a_{n-2} \ & \ddots & & \ddots & \ a_1 & a_2 & \dots & a_0 \end{bmatrix}.$$

Then the diagonal product $a_{1\sigma(1)}a_{2\sigma(2)}$. . . $a_{n\sigma(n)}$ equals $a_0^{x_0}a_1^{x_1}$. . . $a_{n-1}^{x_{n-1}}$ where x_k is the number of integers $i, 1 \le i \le n$, such that $\sigma(i) - i \equiv k \pmod{n}$.

By Hall's theorem, if $x_0, x_1, \ldots, x_{n-1}$ are integers satisfying the hypothesis of the theorem, then $a_0^{x_0}a_1^{x_1} \ldots a_{n-1}^{x_{n-1}}$ is a diagonal product of the circulant A. Thus we have the following corollary.

Corollary: The number of formally distinct diagonal products of an n by n circulant is given by

$$\frac{1}{n} \sum_{d \mid n} {2d-1 \choose d} \varphi \left(\frac{n}{d}\right).$$

Some other results on the permanent of a circulant are given by the authors in the reference $below.^2$

(Paper 74B1-315)

² R. A. Brualdi and M. Newman, Some Theorems on the Permanent, J. Res. Nat. Bur. Stand. (U.S.), 69B (Math. Sci.) No. 3, 159-163 (July-Oct. 1965).