Stochastic System: What and Why

Hong Wan, Fall 2022

1

Definition

A stochastic model represents a situation where uncertainty is present. In other words, it's a model for a process that has some kind of randomness.

https://www.random.org/dice/

3

5

A Simulation Example

- •Two components work as an active and spare, so the system fails if both are failed simultaneously.
- •The lifetime of a component is equally likely 1, 2, 3, 4, 5 or 6 days.
- •Repair takes exactly 2.5 days (only one repair at a time); the repaired component becomes the spare.
- •What can we say about the time to failure (TTF) for this system?
- •Discrete-event simulation updates the **state** of the system when **events** happen.
- -The *state* of the system is the number of functional components.
- -The events are the failure of a component and the completion of a repair.

Clock	System State	Next Failure	Next Repair
0	2	3	∞
3	1	3+ 5 =8	3+ <mark>2.5</mark> =5.5
5.5	2	8	∞
8	1	8+3=11	8 +2.5 =10.5
10.5	2	11	∞
11	1	11+ <mark>1</mark> =12	11+ <mark>2.5</mark> =13.5
12	0	∞	13.5

7

Clock	System	Next	Next
	State	Failure	Repair
0	2		∞

Your turn! But let's do it with a spreadsheet & psuedorandom dice

Outputs

- Replications are statistically independent repetitions of the model.
- We distinguish between within-replication and across-replication output data.
 - Your time of system failure Y and the number of functional components $\{S(t); t \ge 0\}$ are within-replication outputs.
 - Our times of system failure $Y_1, Y_2, ..., Y_n$, and the average number of functional components, $\bar{S}_1, \bar{S}_2, ..., \bar{S}_n$ from n replications are across-replication outputs.
- Notice that \bar{S} is a *time-average* because S(t) is a continuous-time output variable.

$$\overline{S} = \frac{1}{Y} \int_0^Y S(t) dt$$

ç

No calcula

$$\overline{S} = \frac{1}{Y} \int_0^Y S(t) dt$$

Average number of functional components

$$= \frac{1}{12} \begin{bmatrix} 2(3-0) + 1(5.5-3) + 2(8-5.5) + \\ 1(10.5-8) + 2(11-10.5) + 1(12-11) \end{bmatrix} = \frac{17}{12}$$

Steady-State Simulation

- The "average number of functional components up to the first system failure" is not very meaningful.
- But if we let the simulation continue, then the system comes back up and starts functioning again.
- The "long-run average number of functional components" *is* a meaningful summary measure.
- But how do we let $T \rightarrow \infty$ in a simulation?

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T S(t)dt$$