Number Theory - I

Q1: Compute the final two (decimal) digits of 3^{1000} (by hand). Hint: The answer is $[3^{1000} \mod 100]$.

A1: Remember a theorem¹ and corollary²:

Theorem 0.1. Let $N = \prod_i p_i^{e_i}$ where $\{p_i\}$ are distinct primes and $e_i \geq 1$. Then we can find the order:

$$|\mathbb{Z}_N^*| = \phi(N) = \Pi_i p_i^{e_i - 1} (p_i - 1)$$

Corollary 0.2. For a finite group G with order m > 1, $\forall x \in G$ and integers x it holds that:

$$g^x = g^{[x \bmod m]}$$

We have $100 = 2^2 5^2$ so we can find the order $\mathbb{Z}_1 00^* = 2^{2-1} (2 - 1) 5^{2-1} (5-1) = 40$. So, $3^{1000} = 3^{[1000 \mod 40]} \mod 100$. We find the result 1 from this.

Q2: Compute [4651 mod 55] (by hand) using the Chinese Remainder Theorem.

A2: We shall notice that $55 = 11 \times 5$ and gcd(11, 5) = 1. CRT says that $\mathbb{Z}_{55} \simeq \mathbb{Z}_{11} \times \mathbb{Z}_5$. An instance of this isomorphism is:

$$4651 \bmod 55 \iff (9 \bmod 11)(1 \bmod 5)$$

Then we apply the algorithm in page 301 (right above example 8.30) in KL Book 2nd ed.:

- (1) $x \times 5 + y \times 11 \implies x = -2, y = 1$
- (2) $1_p = 11 \mod 55, 1_q = -10 \mod 55 = 45 \mod 55$
- (3) $x = (1 \times 11 + 9 \times 45) \mod 55 = 31 \mod 55$

The result is therefore 31.

Q3: What is a group? What are the properties of a group? Which groups are called abelian? Explain your answer.

A3: A group is a way to reason about objects with same underlying nature and share the same mathematical structure. More formally, a group (G, \cdot) is a set G along with a binary operation \cdot for which the following hold:

- (Closure): $\forall g, h \in G : g \cdot h \in G$
- (Existence of Identity): $\exists e \in G : \forall g \in G \text{ s.t. } e \cdot g = g \cdot e = g$

¹Theorem 8.19 from KL Book 2nd ed.

²Corollary 8.15 from KL Book 2nd ed.

- (Existence of Inverses): $\forall g \in G : \exists h \in G \text{ s.t. } h \cdot g = g \cdot h = e.$ We also denote and inverse of g as $h = g^{-1}$
- (Associativity): $\forall g_1, g_2, g_3 \in G : (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

A group (G, \cdot) is Abelian if the binary operation \cdot is **commutative**: $\forall g, h \in G : g \cdot h = h \cdot g$.

Q4: For each of the following groups, write down their elements and inverses³ of each elements.

- a. \mathbb{Z}_6
- b. \mathbb{Z}_6^*
- c. \mathbb{Z}_7
- d. \mathbb{Z}_7^*

A4:

- a. $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, only 1 and 5 have an inverse, explained in next bullet.
- b. $\mathbb{Z}_6^* = \{1, 5\}$ and their inverses are respectively: $\{1, 5\}$.
- c. $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$, all except 0 have an inverse, explained in the next bullet.
- d. $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$ and their inverses are respectively: $\{1, 4, 5, 2, 3, 6\}$.

Q5: What is a cyclic group? Is the multiplicative group \mathbb{Z}_7^* a cyclic group? If yes, what is the generator? What is the order of element 2 in this group? Explain your answer.

A5: A group G where |G| = n is cyclic if $\exists g \in G$ s.t. $\{1, g^1, g^2, \ldots, g^{n-2}\} = G$, and such g is called a "generator". The group $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$ is a cyclic group, which we know from Euler's theorem that says for a prime p the group \mathbb{Z}_p^* is cyclic. The generator of this group is 3: $\{1, 3^1, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$. The order of 2, also shown as $ord_7(2)$ is 3, because $\{1, 2^1, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$ and the size of this group is 3.

Q6: Formally define the RSA assumption.

A6: The RSA assumption is that there exists a GenRSA algorithm relative to which the RSA problem is **hard**. GenRSA is a probabilistic polynomial-time algorithm that when given 1^n , it outputs a modulus N that is the product of two n-bit long primes e and d such that $gcd(e, \phi(N)) = 1$ and $ed = 1 \mod \phi(N)$.

³The inverse of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N such that xy = 1 in \mathbb{Z}_N .

Q7: Formally define the Discrete Logarithm assumption.

A7: The Discrete Logarithm assumption is the assumption that solving the discrete logarithm $log_g h$ for a cyclic group G, generator g and $h \in G$, is **hard**.