5

10

KL. 12 p 10 // INTERNAT.KL. C 07 d

DEUTSCHES

AUSLEGESCHRIFT 1153 023

C 23977 IV d/12p

ANMELDETAG: 26. APRIL 1961

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER

AUSLEGESCHRIFT: 22. AUGUST 1963

1

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von 4-Hydroxy-pyrazolo[3,4-d]pyrimidinen der allgemeinen Formel

$$\begin{array}{c|c}
OH \\
\hline
N_5 \\
\hline
R_3 \\
\hline
N \\
N \\
\hline
N \\
R_1
\end{array}$$

$$R_2$$

worin R₁ ein Wasserstoffatom, einen Alkyl-, Hydroxyalkyl- oder Oxaalkylrest, R2 ein Wasserstoff- 15 atom oder einen niederen Alkylrest und R3 einen gegebenenfalls durch Halogenatome oder Hydroxygruppen oder niedere Alkyl- oder Alkoxygruppen substituierten Phenylalkyl- oder Diphenylalkylrest bedeutet, und von ihren Salzen.

R₁ ist beispielsweise ein niederer Alkylrest, wie ein Methyl-, Äthyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, Pentyl-(1)-, Pentyl-(2)-, Pentyl-(3)-, 2-Methyl-butyl-(3)- oder Hexylrest, ein 3-Oxapentyl- oder 5-Oxaheptyl-(2)-rest oder ein niederer Hydroxy- 25 alkylrest, wie ein Hydroxyäthylrest. In den genannten Alkoxygruppen sind die Alkylreste insbesondere niedere Alkylreste, z. B. die genannten.

Als niederer Alkylrest R2 kommt vor allem der

Methylrest in Frage.

R₃ bedeutet insbesondere einen niederen Phenylalkylrest, worin der Alkylenrest z. B. ein Methylen-, Äthylen- oder Propylenrest ist. R₃ ist z. B. ein gegebenenfalls, wie angegeben, substituierter 1- oder 2-Phenyläthyl-, 1-Phenylpropyl- oder Phenylmethyl-. 35 rest oder ein Diphenylmethylrest.

Die neuen Verbindungen besitzen wertvolle pharmakologische Eigenschaften. Insbesondere sind sie coronarerweiternd wirksam. Die neuen Verbindungen können somit als Heilmittel, insbesondere bei 40 Durchblutungsstörungen des Herzmuskels, aber auch als Zwischenprodukte zur Herstellung solcher Heilmittel dienen.

Die neuen Verbindungen sind bekannten Verbindungen gleicher Wirkungsrichtung überlegen. 45 So bewirken beispielsweise das 1-Methyl-4-hydroxy-6-p-chlorbenzyl-pyrazolo[3,4-d]pyrimidin, das 1 - Isopropyl - 4 - hydroxy - 6 - (3',4',5' - trimethoxyphenylmethyl) - pyrazolo[3,4 - d]pyrimidin und das 1-[1'-Äthoxy-butyl-(3')-4-hydroxy-6-benzyl-pyr- 50 azolo[3,4-d]pyrimidin am isolierten Kaninchenherzen in der Versuchsanordnung nach Langendorff in

Verfahren zur Herstellung von 4-Hydroxy-pyrazolo[3,4-d] pyrimidinen

Anmelder:

CIBA Aktiengesellschaft, Basel (Schweiz)

Vertreter: Dipl.-Ing. E. Splanemann, Patentanwalt, Hamburg 36, Neuer Wall 10

Beanspruchte Priorität:

Schweiz vom 11. Mai 1960 und 4. April 1961 (Nr. 5403 und 3931)

Dr. Paul Schmidt, Therwil, Dr. Kurt Eichenberger und Dr. Max Wilhelm, Basel (Schweiz), sind als Erfinder genannt worden

einer Konzentration von 1 y/ml eine Vermehrung des Coronardurchflusses von 40, 50 bzw. 50% und in einer Konzentration von 10 γ/ml eine solche von 90, 90 bzw. 120%, während das gemäß dem Verfahren der deutschen Auslegeschrift 1056613 erhältliche 1-Isopropyl-4-diäthylamino-pyrazolo[3,4-d]pyrimidin in einer Konzentration von $1 \gamma/\text{ml}$ und $10 \gamma/\text{ml}$ nur eine Steigerung von 20 bzw. $60^{0}/_{0}$ bewirkt. Ferner erwies sich das 1-Isopropyl-4-hydroxy-6-p-chlorobenzyl-pyrazolo [3,4-d] pyrimidin in vivo an der Katze als 5mal wirksamer als das gemäß dem Verfahren der deutschen Auslegeschrift 1056613 erhältliche 1-Isopropyl-4-diäthylamino-pyrazolo-[3,4-d]pyrimidin.

Besonders wertvoll als coronarerweiternde Mittel sind Verbindungen der allgemeinen Formel

$$R_3$$
 N
 R_2
 N
 R_1

worin R₁ ein Wasserstoffatom, einen niederen Alkylrest, z. B. die Methyl-, Äthyl-, Propyl-, Iso-

309 668/321

propyl-, Butyl-(2)-, 3-Methyl-butyl-(2)-, Pentyl-(2)-oder Pentyl-(3)gruppe, einen niederen Hydroxy-alkylrest, wie den Hydroxyäthylrest, oder einen niederen Oxaalkylrest, wie die 3-Oxapentylgruppe, darstellt, R₂ ein Wasserstoffatom ist und R₃ für 5 einen niederen Phenylalkylrest, vor allem den Phenylmethylrest, steht, wobei die Phenylreste, wie oben gezeigt, substituiert sein können, und die Salze dieser Verbindungen.

Besonders wertvoll sind weiter die Verbindungen 10 der allgemeinen Formel

$$\begin{array}{c|c} OH & & & \\ \hline N & & & \\ R_3 & & N & \\ \hline N & & & \\ R_1 & & & \\ \end{array}$$

worin R_1 einen niederen Alkylrest, R_2 ein Wasserstoffatom und R_3 einen unsubstituierten oder im 25 Phenylrest durch Chloratome, Methoxy- oder Methylgruppen mono-, di- oder trisubstituierten Benzylrest darstellt, und ihre Salze.

Zu nennen sind besonders das 1-Isopropyl-4-hydroxy - 6 - p - chlorbenzyl - pyrazolo[3,4 - d]pyrimidin, 30 das 1 - Isopropyl - 4 - hydroxy - 6 - m - methoxybenzyl-pyrazolo[3,4 - d]pyrimidin, das 1 - Isopropyl - 4 - hydroxy-6-(3',4',5'-trimethoxyphenylmethyl)-pyrazolo-[3,4-d]pyrimidin und das 1-[Pentyl-(3')]-4-hydroxy-6-benzyl - pyrazolo[3,4-d]pyrimidin und ihre Salze. 35

Die neuen Verbindungen werden erhalten, wenn man in an sich bekannter Weise entweder

 a) eine 3 - Amino - pyrazol - 4 - carbonsäure der allgemeinen Formel

HOOC
$$R_2$$
 R_2
 R_1

oder ihre Ester oder Halogenide oder ihr Amid 50 gegebenenfalls in Gegenwart eines Kondensationsmittels mit einer Carbonsäure der allgemeinen Formel R₃ — COOH oder ihren Estern, Halogeniden oder Iminoäthern oder ihrem Anhydrid oder Amid oder deren Schwefel- 55 derivaten oder mit ihrem Amidin oder Nitril unter der Maßgabe umsetzt, daß die Kondensation in Gegenwart von Ammoniak durchgeführt wird, wenn nicht wenigstens eine der Carboxygruppen funktionell so abgewandelt ist. daß sie ein Stickstoffatom aufweist, und anschließend allenfalls als Zwischenprodukt erhaltene, an der Aminogruppe substituierte 3-Amino-pyrazolderivate durch gegebenenfalls in Gegenwart von Ammoniak durchgeführtes 65 Erhitzen auf höhere Temperaturen oder durch Erwärmen mit einem Kondensationsmittel cyclisiert oder

b) ein 3-Amino-4-cyan-pyrazol der allgemeinen Formel

$$\begin{array}{c|c}
NC & R_2 \\
 & N \\
 & N \\
 & R_1
\end{array}$$

mit einer Carbonsäure der allgemeinen Formel R₃ — COOH oder ihren Estern, Halogeniden, Iminoäthern oder ihrem Anhydrid umsetzt, in der so erhaltenen Verbindung die Cyangruppe in 4-Stellung durch Erwärmen mit einem Alkalihydroxyd und einem Oxydationsmittel in die Amidgruppe überführt, wobei gleichzeitig der Pyrimidinring geschlossen wird, oder c) ein 4-Oxo-pyrazolo[3,4-d]oxazin der allgemeinen Formel

mit Ammoniak erwärmt oder d) ein 4-Hydroxy-pyrimidin der allgemeinen Formel

worin X für eine freie oder verätherte Mercaptogruppe oder ein Halogenatom steht, mit einem Hydrazin der allgemeinen Formel

$$R_1 - NH - NH - R_4$$

worin R₄ ein Wasserstoffatom oder eine Acylgruppe bedeutet, umsetzt und gegebenenfalls vor oder gleichzeitig mit dem Ringschluß die Acylgruppe abhydrolysiert oder

e) ein 6-Hydrazino-4-hydroxy-pyrimidin der allgemeinen Formel

mit einer Säure der allgemeinen Formel R₂ — COOH oder einem reaktionsfähigen funktionellen Derivat einer solchen Säure erwärmt

und gegebenenfalls anschließend erhaltene freie Verbindungen mit Basen in ihre Salze oder erhaltene Salze in die freien Verbindungen überführt.

Die Reaktion gemäß Verfahrensweise a) kann z. B. so erfolgen, daß man die 3-Amino-pyrazol-4-carbonsäure oder einen Ester oder ein Halogenid davon mit dem Amid, Thioamid, Nitril oder Amidin allgemeinen Carbonsäure der R₃ — COOH oder ein 3-Amino-pyrazol-4-carbonsäureamid mit einer Carbonsäure der allgemeinen Formel R₃ — COOH, ihrem Anhydrid oder einem Ester, Halogenid, Iminoäther, Thioiminoäther oder ihrem Amid, Thioamid, Amidin oder Nitril umsetzt, 10 wobei ie nach den eingesetzten Stoffen noch Ammoniak zugesetzt wird.

Die Kondensation erfolgt vorzugsweise bei erhöhter Temperatur, gegebenenfalls in Anwesenheit von Verdünnungs- und/oder Kondensationsmitteln, im 15 aufgenommen. Die alkalische Lösung wird zur offenen oder geschlossenen Gefäß. Überraschenderweise wurde dabei gefunden, daß die Umsetzung sehr vorteilhaft unter Verwendung der in 2-Stellung durch den Rest R1 und in 5-Stellung durch den Rest R3 substituierten 3-Amino-pyrazol-4-carbonsäureester, 20 Man erhält so 1-Isopropyl-4-hydroxy-6-p-chlorbenz. B. der Alkylester, und eines Nitrils der allgemeinen Formel R₃ — CN verläuft, wobei zweckmäßig ein Kondensationsmittel, vorzugsweise ein Alkalimetall, z. B. Natrium, gegebenenfalls in Form seines Amids, Hydrids oder eines Alkoholates, oder eine andere 25 starke Base, wie Trimethyl-benzyl-ammoniumhydroxyd, verwendet wird. Hierbei ist auch die Verwendung von Verdünnungsmitteln, wie Benzol, Toluol, Xylol oder Äthern, vorteilhaft.

Bei der Verfahrensweise b) kommt als Oxydations- 30 mittel für die Überführung der Cyangruppe in die Carbamylgruppe beispielsweise Wasserstoffsuperoxyd in Frage.

Bei der Umsetzung gemäß Verfahrensweise c) wird intermediär das Säureamid gebildet. Das als 35 182° (Ausbeute: 6 g). Ausgangsstoff verwendete Oxazin wird z. B. durch Wasserabspaltung aus 4-Carboxy-pyrazolen der allgemeinen Formel

HOOC
$$R_3$$
COHN N

z. B. mittels Anhydride, wie Acetanhydrid, gewonnen. Bei der Verfahrensweise e) wird die Säure der allgemeinen Formel R2 — COOH vorzugsweise in 50 Form eines reaktionsfähigen Derivates, wie des Anhydrids, des Amids oder gegebenenfalls eines Orthoesters, verwendet.

Die genannten Reaktionen werden in üblicher Weise, gegebenenfalls in Anwesenheit von Ver- 55 dünnungs- und/oder Kondensationsmitteln und/oder Katalysatoren, bei gewöhnlicher oder gegebenenfalls erhöhter Temperatur durchgeführt.

Die erhaltenen Hydroxyverbindungen können in üblicher Weise in ihre Salze mit Basen, z. B. in ihre 60 Metallsalze, wie Alkalimetallsalze, z. B. Natriumoder Kaliumsalze, übergeführt werden, z. B. durch Behandlung mit entsprechenden Basen, z. B. mit Alkalihydroxyden. Die Salze ihrerseits lassen sich mäßig durch Behandlung mit Säuren.

Die Ausgangsstoffe sind bekannt oder lassen sich nach an sich bekannten Methoden herstellen.

Die Erfindung wird in den nachfolgenden Beispielen näher beschrieben. Die Temperaturen sind in Celsiusgraden angegeben.

Beispiel 1

In eine Schmelze von 50 g p-Chlorbenzylcyanid und 9,9 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol werden 2,3 g feinzerkleinertes Natrium eingetragen. Man erhitzt dann 4 Stunden unter Rühren auf 110 bis 120°, versetzt nach dem Erkalten mit 100 cm³ Alkohol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 150 cm³ 2 n-Natronlauge Abtrennung von Ungelöstem mit Chloroform ausgeschüttelt und dann mit 6 n-Salzsäure auf einen p_H-Wert von 5 bis 6 gestellt, wobei ein festes Produkt ausfällt. Letzteres wird aus Alkohol umkristallisiert. zyl-pyrazolo[3,4-d]pyrimidin der Formel

$$CI$$
 CH_2
 N
 N
 $CH(CH_3)_2$

in farblosen Kristallen vom Schmelzpunkt 181 bis

Beispiel 2

16,8 g 2-Isopropyl-3-amino-4-carbonamido-pyrazol werden in 60 cm³ p-Chlorbenzylcyanid 10 Stunden unter Rückfluß gekocht. Nach dem Abkühlen engt man im Vakuum stark ein. Der Rückstand wird mit 2 n-Natronlauge versetzt und 2mal mit Chloroform extrahiert. Die alkalische wäßrige Lösung behandelt man mit Kohle und filtriert. Das Filtrat stellt man mit 5 n-Salzsäure auf den pH-Wert 6, worauf sich das im Beispiel 1 beschriebene 1-Isopropyl-4-hydroxy-6-chlorbenzyl-pyrazolo [3,4-d] pyrimidin ausscheidet (Ausbeute: 7 g).

Beispiel 3

Zu einer Lösung von 8,5 g 2-Methyl-3-amino-4-carbäthoxy-pyrazol in 50 cm³ Benzylcyanid gibt man 2,3 g Natrium in kleinen Stücken und erwärmt anschließend unter Rühren auf 110 bis 120°. Nach 4 Stunden wird das Reaktionsgemisch abgekühlt und mit 100 cm³ Äthanol versetzt. Die Lösung wird im Vakuum zur Trockne eingedampft. Zum Rückstand gibt man 150 cm³ 2 n-Natronlauge und extrahiert das überschüssige Benzylcyanid mit Chloin die freien Oxyverbindungen umwandeln, zweck- 65 roform. Die wäßrige Phase wird durch Zugabe von 5 n-Salzsäure auf einen p_H-Wert von 5 bis 6 gestellt, wobei ein fester Niederschlag ausfällt, den man abfiltriert und mehrmals aus Äthanol umkristallisiert.

Man erhält das 1-Methyl-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin der Formel

in Kristallen; F. 236 bis 237° (Ausbeute: 6 g).

Beispiel 4

Ein Gemisch von 8,5 g 2-Methyl-3-amino-4-carbäthoxy-pyrazol und 50 g 3,4,5-Trimethoxy-benzyl-cyanid erwärmt man auf 110° und gibt unter Rühren 2,3 g Natrium in kleinen Stücken zu. Nach 4 Stunden wird das Reaktionsgemisch abgekühlt, mit 150 cm³ Äthanol versetzt und anschließend im Vakuum eingedampft. Zum Rückstand gibt man 150 cm³ 2 n-Natronlauge und extrahiert mit Chloroform. Die wäßrige Phase wird abgetrennt und durch Zugabe von 5 n-Salzsäure auf einen pH-Wert von 25 5 bis 6 gestellt. Es fällt ein Niederschlag aus, den man aus Chloroform-Petroläther umkristallisiert, Auf diese Weise wird das 1-Methyl-4-hydroxy-6-(3',4',5'-trimethoxy-phenyl-methyl)-pyrazolo[3,4-d]pyrimidin der Formel

in Kristallen vom Schmelzpunkt 245° erhalten (Ausbeute: 5,5 g).

Beispiel 5

2-Isopropyl-3-amino-4-carbäthoxy-pyrazol werden auf 80° erwärmt und mit 2,3 g Natrium in kleinen Stückchen versetzt. Man erhitzt dann 4 Stunden auf 110 bis 120°, läßt erkalten, zerstört das überschüssige Natrium mit Alkohol und dampft im Vakuum zur 50 Trockne ein. Der Rückstand wird in 200 cm³ 2 n-Natronlauge aufgenommen, und es wird mit 200 cm³ Chloroform zur Abtrennung von überschüssigem Trimethoxy-benzylcyanid ausgeschüttelt. Die wäßrige alkalische Lösung wird mit Aktivkohle behandelt 55 und filtriert. Das klare Filtrat stellt man mit 5 n-Salzsäure auf den pH-Wert 6, worauf sich 1-Isopropyl-4-hydroxy-6-(3',4',5'-trimethoxy-phenyl-methyl)pyrazolo[3,4-d]pyrimidin der Formel

$$CH_3O$$
 CH_3
 CH_2
 N
 N
 N
 N
 $CH(CH_3)_2$

ausscheidet, das nach Umkristallisation aus Alkohol bei 195 bis 196° schmilzt (Ausbeute: 5,6 g).

Beispiel 6

30 g p-Äthoxybenzylcyanid und 9,9 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol werden auf 60° erwärmt und mit 2,3 g Natrium in kleinen Stückchen versetzt. Man erhitzt dann 4 Stunden auf 110 bis 120°, läßt erkalten, zerstört das überschüssige 10 Natrium mit Alkohol und dampst im Vakuum zur Trockne ein. Der Rückstand wird in 200 cm³ 2 n-Natronlauge aufgenommen, und es wird mit 200 cm3 Chloroform zur Abtrennung von überschüssigem Äthoxybenzylcyanid ausgezogen. Die 15 wäßrige alkalische Lösung wird mit Aktivkohle behandelt und filtriert. Das klare Filtrat stellt man mit 5 n-Salzsäure auf den pH-Wert 6, worauf sich 1 - Isopropyl - 4 - hydroxy - 6 - p - äthoxybenzyl - pyrazolo[3,4-d]pyrimidin der Formel

30 ausscheidet, das nach Umkristallisation aus Alkohol bei 175 bis 176° schmilzt (Ausbeute: 6,2 g).

Beispiel 7

Zu 200 cm³ Benzylcyanid gibt man 13,8 g Natrium 35 in kleinen Stückchen und anschließend 63,3 g 2-sek.-Butyl-3-amino-4-carbathoxy-pyrazol. Man erhitzt in etwa 30 Minuten auf 110 bis 120° und rührt dann bei dieser Temperatur noch 5 Stunden weiter. Nach dem Abkühlen versetzt man mit absolutem 40 Alkohol und engt im Vakuum ein. Zum Rückstand gibt man verdünnte Natronlauge und extrahiert mit Chloroform. Die wäßrige alkalische Lösung wird mit Aktivkohle behandelt und filtriert. Das klare Filtrat stellt man mit 5 n-Salzsäure auf den pH-Wert 6, 50 g 3,4,5-Trimethoxy-benzylcyanid und 9,9 g 45 worauf sich das 1-sek.-Butyl-4-hydroxy-6-benzylpyrazolo[3,4-d]pyrimidin der Formel

$$\begin{array}{c|c} OH \\ \hline \\ N \\ \hline \\ CH_2 \\ \hline \\ N \\ N \\ \hline \\ CH \\ CH_3 \\ C_2H_5 \end{array}$$

ausscheidet, das nach Umkristallisieren aus Alkohol 60 bei 154 bis 155° schmilzt (Ausbeute: 53,8 g).

Beispiel 8

Zu 66 cm³ Benzylcyanid gibt man 4,6 g Natrium und anschließend 17 g 2-[Pentyl-(3')]-3-amino-4-carb-65 äthoxy-pyrazol. Man erhitzt in etwa 30 Minuten auf 110 bis 120° und rührt bei dieser Temperatur noch 5 Stunden weiter. Nach dem Abkühlen versetzt man mit absolutem Alkohol und engt im Vakuum ein.

Zum Rückstand gibt man verdünnte Natronlauge und extrahiert mit Chloroform. Die alkalische wäßrige Lösung wird mit Aktivkohle behandelt und filtriert. Man stellt das klare Filtrat mit 5 n-Salzsäure auf den p_H-Wert 6, worauf sich das 1-[Pentyl-(3')]-4-hydroxy-6-benzyl-pyrazolo[3,4-d]-pyrimidin der Formel

$$CH_2$$
 N
 N
 CH_2
 CH_3
 C_2H_5
 C_2H_5

ausscheidet, das nach Umkristallisieren in absolutem ²⁰ Alkohol bei 144 bis 145° schmilzt (Ausbeute: 7,47 g).

Beispiel 9

Zu 250 cm³ Benzylcyanid gibt man in kleinen Stückchen 20,7 g Natrium und anschließend 59,7 g 2-(β-Hydroxy-äthyl)-3-amino-4-carbäthoxy-pyrazol. Man erhitzt in etwa 30 Minuten auf 110 bis 120° und rührt bei dieser Temperatur noch 5 Stunden weiter. Nach dem Abkühlen versetzt man mit absolutem Alkohol und engt im Vakuum ein. Zum Rückstand gibt man verdünnte Natronlauge und extrahiert mit Chloroform. Die alkalische wäßrige Lösung wird mit Aktivkohle behandelt und filtriert. Das klare Filtrat stellt man mit 5 n-Salzsäure auf den p_H-Wert 4, worauf sich das 1-(β-Hydroxy-äthyl)-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin der Formel

$$CH_2 \longrightarrow N$$

$$CH_2 - CH_2 - CH_2 - OH$$

ausscheidet, das nach Umkristallisieren in Alkohol bei 194 bis 195° schmilzt (Ausbeute: 17 g).

Das als Ausgangsstoff verwendete 2- $(\beta$ -Hydroxy-50 äthyl) - 3 - amino - 4 - carbäthoxy - pyrazol wird wie folgt hergestellt:

101,5 g Äthoxymethylencyanessigester und 66 g 70% iges β-Hydroxyäthyl-hydrazin werden in 700 cm³ Alkohol 10 Stunden zum Sieden erhitzt. Man dampft 55 dann im Vakuum ein und destilliert den Rückstand im Vakuum. 2-(β-Hydroxy-äthyl)-3-amino-4-carbäthoxy-pyrazol der Formel

siedet bei 0,6 mm Hg bei 180° und schmilzt bei 89 bis 91°.

Beispiel 10

In eine Lösung von 9,9 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol in 100 cm³ m-Methoxy-benzyl-5 cyanid werden 2,3 g Natrium fein zerkleinert eingetragen. Man erhitzt dann 4 Stunden unter Rühren auf 110 bis 120°, versetzt nach dem Erkalten mit 100 cm³ Alkohol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 150 cm³ 2 n-Natronlauge aufgenommen, die alkalische Lösung wird zur Abtrennung von Ungelöstem mit Chloroform ausgeschüttelt und dann mit 6 n-Salzsäure auf den p_H-Wert 6 gestellt, wonach ein schmieriges Produkt ausfällt. Dieses wird aus wenig Alkohol umkristallisiert. Man erhält so 1-Isopropyl-4-hydroxy-6-(m-methoxy-benzyl)-pyrazolo[3,4-d]pyrimidin der Formel

in farblosen Kristallen vom Schmelzpunkt 155 bis 158° (Ausbeute: 6,9 g).

Beispiel 11

Zu 15 g 2-[1'-Äthoxy-butyl(3')]-3-amino-4-carbäthoxy-pyrazol und 50 g Benzylcyanid gibt man 2,3 g Natrium in kleinen Stücken und erwärmt 4 Stunden unter Rühren auf 100 bis 110°. Nach dem Erkalten gibt man 150 cm³ Äthanol zu, dampft im Vakuum zur Trockne ein und extrahiert den Rückstand nach Zugabe von 150 cm³ 2 n-Natronlauge mit Chloroform. Die wäßrige Lösung wird mit Salzsäure angesäuert und mit Chloroform extrahiert. Den nach dem Trocknen und Eindampfen des Lösungsmittels verbleibenden Rückstand kristallisiert man aus Methanol—Wasser und erhält so das 1-[1'-Äthoxy-butyl-(3')]-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin der Formel

$$\begin{array}{c|c} OH \\ N \\ N \\ N \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ OC_2H_5 \\ \end{array}$$

in Kristallen; F. 111 bis 112° (Ausbeute: 7,8 g). Das als Ausgangsmaterial verwendete 2-[1'-Äthoxybutyl-(3')]-3-amino-4-carbäthoxy-pyrazol wird wie folgt hergestellt:

50 g 1-Äthoxy-butyl-(3)-hydrazin und 70 g Äthoxymethylencyanessigester werden 3 Stunden in 40 cm³ Alkohol gekocht. Das Lösungsmittel entfernt man hierauf durch Eindampfen im Vakuum und destilliert den Rückstand im Hochvakuum. Die genannte Verbindung siedet bei 120 bis 125°/0,1 mm.

Beispiel 12

2,3 g Natrium werden in eine Mischung von 8,5 g 2-Methyl-3-amino-4-carbäthoxy-pyrazol und 50 g p-Chlorbenzylcyanid eingetragen. Man erwärmt dann 4 Stunden auf 110°, läßt erkalten, gibt 150 cm³ Äthanol zu und dampft im Vakuum zur Trockne 10 ein. Der Rückstand wird mit 150 cm³ 2 n-Natronlauge versetzt und mit Chloroform extrahiert. Die wäßrige Lösung wird filtriert und mit 2 n-Salzsäure auf einen pH-Wert von 5 bis 6 gestellt, worauf 1-Methyl-4-hydroxy-6-chlorbenzyl-pyrazolo[3,4-d]- 15 pyrimidin der Formel

ausfällt, das nach Umkristallisation aus Dimethylformamid-Wasser bei 268 bis 270° schmilzt (Ausbeute: 4,9 g).

Beispiel 13

2,3 g Natrium werden in kleinen Stücken in eine Mischung von 8,5 g 2-Methyl-3-amino-4-carbäthoxypyrazol und 50 g 2,3-Dimethoxy-benzylcyanid eingetragen. Man erwärmt dann 4 Stunden auf 110°, 35 läßt erkalten, gibt 100 cm3 Methanol zu und dampft zur Trockne ein. Der Rückstand wird mit 100 cm³ 2 n-Natronlauge versetzt und mit Chloroform extrahiert. Durch Zugabe von 2 n-Salzsäure zu der wäßrigalkalischen Lösung fällt das 1-Methyl-4-hy- 40 abscheidet, das nach Umkristallisation aus Äthanol droxy - 6 - (2',3' - dimethoxy - phenyl - methyl) - pyrazolo[3,4-d]pyrimidin der Formel

aus, das nach Umkristallisation auf Alkohol bei 190 bis 191° schmilzt (Ausbeute: 5,2 g).

Beispiel 14

In 100 cm³ Benzylcyanid werden 4,6 g Natrium fein zerkleinert und 15,5 g 3-Amino-4-carbäthoxypyrazol eingetragen. Man erhitzt dann 4 Stunden 60 unter Rühren auf 110 bis 120°, versetzt nach dem Erkalten mit 150 cm³ Äthanol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 150 cm³ 2 n-Natronlauge aufgenommen, die alkalische Lösung zur Abtrennung vom Ungelösten mit Chloroform 65 ausgeschüttelt und dann mit 6 n-Salzsäure auf einen p_H-Wert von 4 bis 5 gestellt, wobei ein festes Produkt ausfällt. Letzteres wird aus viel Äthanol umkristalli-

4-Hydroxy-6-benzyl-pyrsiert. Man erhält so azolo[3,4-d]pyrimidin der Formel

$$CH_2$$
 N
 N
 N
 N
 N

in farblosen Kristallen vom Schmelzpunkt 290 bis 292° (Ausbeute: 6,2 g).

Beispiel 15

40 g o-Methoxybenzylcyanid und 9,9 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol werden auf 60° erwärmt und mit 2,3 g Natrium in kleinen Stücken versetzt. Man erhitzt dann 4 Stunden auf 110 bis 120°, läßt erkalten, zerstört das überschüssige 20 Natrium mit Äthanol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 200 cm³ 2 n-Natronlauge aufgenommen, und es wird mit 200 cm3 Chloroform zur Abtrennung von überschüssigem o-Methoxybenzylcyanid ausgezogen. Die 25 wäßrige alkalische Lösung wird mit Aktivkohle behandelt und filtriert. Das klare Filtrat stellt man mit 5 n-Salzsäure auf den pH-Wert 6, worauf sich 1-Isopropyl-4-hydroxy-6-(o-methoxybenzyl)-pyrazolo[3,4-d]pyrimidin der Formel

bei 157 bis 159° schmilzt (Ausbeute: 7,1 g).

Beispiel 16

50 g 2-Methyl-3-methoxy-benzylcyanid und 9,9 g 45 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol werden auf 60° erwärmt und mit 2,3 g Natrium in kleinen Stücken versetzt. Man erhitzt dann 4 Stunden auf 110 bis 120°, läßt erkalten, zerstört das überschüssige Natrium mit Äthanol und dampft im Vakuum zur 50 Trockne ein. Der Rückstand wird in 200 cm³ 2 n-Natronlauge aufgenommen, und es wird mit 200 cm³ Chloroform zur Abtrennung von überschüssigem 2-Methyl-3-methoxy-benzylcyanid ausgezogen. Die wäßrige alkalische Lösung wird mit 55 Aktivkohle behandelt und filtriert. Das klare Filtrat stellt man mit 5-Salzsäure auf den pH-Wert 6, worauf sich 1-Isopropyl-4-hydroxy-6-(2'-methyl-3'-methoxy-benzyl)-pyrazolo[3,4-d]pyrimidin der Formel

ausscheidet, das nach Umkristallisation aus Äthanol bei 150 bis 151° schmilzt (Ausbeute: 7 g).

Beispiel 17

20 g Diphenylacetonitril und 19,7 g 2-Isopropyl- 5 3-amino-4-carbäthoxy-pyrazol werden auf 70° erwärmt und mit 2,3 g Natrium in kleinen Stücken versetzt. Man erhitzt dann 4 Stunden auf 110 bis 120°, läßt erkalten, zerstört das überschüssige Natrium mit Äthanol und dampft im Vakuum zur Trockne 10 ein. Der Rückstand wird mit 300 cm3 Wasser versetzt, und es wird mit 2 n-Salzsäure auf den pH-Wert 3 gestellt, worauf sich ein fester Niederschlag ausscheidet. Von letzterem nutscht man ab, kocht diesen mit viel Petroläther zur Abtrennung von noch 15 vorhandenem Ausgangsmaterial aus und kristallisiert den in Petroläther nicht gelösten Anteil aus Äthanol um. 1 - Isopropyl - 4 - hydroxy - 6 - (diphenylmethyl)pyrazolo[3,4-d]pyrimidin der Formel

wird so in weißen Kristallen vom Schmelzpunkt 30 226 bis 227° erhalten (Ausbeute: 12 g).

Beispiel 18

In 50 cm³ Benzylcyanid werden 2,3 g Natrium fein zerkleinert und 11,45 g 2-[3'-Methyl-butyl-(2')]- 35 0,24 g). 3-amino-4-carbäthoxy-pyrazol eingetragen. Man erhitzt 4 Stunden unter Rühren auf 110 bis 120°, versetzt nach dem Erkalten mit 100 cm3 Äthanol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 150 cm³ 2-Natronlauge aufgenom- 40 men, die alkalische Lösung wird zur Abtrennung von Ungelöstem mit Chloroform ausgeschüttelt und dann mit 6 n-Salzsäure auf den pH-Wert 3 gestellt, wobei ein festes Produkt ausfällt. Letzteres wird aus wenig Äthanol umkristallisiert. Man erhält so 45 Lösung tropfenweise zu einer Lösung von 19,7 g 1-[3'-Methyl-butyl-(2')]-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin der Formel

in farblosen Kristallen vom Schmelzpunkt 157 bis 50 1 - Isopropyl - 4 - hydroxy - 6 - (p - chlorbenzyl) - pyr-158° (Ausbeute: 7 g).

Beispiel 19

1,65 g Natrium werden in 50 cm³ wasserfreies auf 120° erhitzt und langsam bei dieser Temperatur eine Lösung von 7 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol in 19 g p-Chlorbenzylcyanid zuge-

tropft. Man erhitzt dann 5 Stunden unter Rühren auf 130°, versetzt nach dem Erkalten mit 24 cm³ Alkohol und dampft im Vakuum zur Trockne ein. Der Rückstand wird in 100 cm³ 2 n-Natronlauge aufgenommen, die alkalische Lösung wird zur Abtrennung vom Ungelösten mit Toluol ausgeschüttelt und dann mit 6 n-Salzsäure auf einen p_H-Wert von 5 bis 6 gestellt, wobei ein festes Produkt ausfällt. Letzteres wird aus wenig Alkohol umkristallisiert. Man erhält so 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)-pyrazolo[3,4-d]pyrimidin der Formel

$$Cl$$
 CH_2
 N
 N
 N
 $CH(CH_3)_2$

in farblosen Kristallen vom Schmelzpunkt 181 bis 182° (Ausbeute: 1,6 g).

Beispiel 20

19,7 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol und 45,6 g p-Chlorbenzylcyanid werden in 250 cm³ mit Ammoniak bei 0° gesättigtem Methanol 4 Stunden auf 190° erhitzt. Anschließend dampft man die Reaktionslösung ein, gibt 350 cm³ 2 n-Ñatronlauge hinzu und extrahiert mit Chloroform. Der wäßrige alkalische Anteil wird über Kohle filtriert und mit 6 n-Salzsäure auf den pH-Wert 6 gestellt, worauf sich das 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)pyrazolo[3,4 - d]pyrimidin ausscheidet (Ausbeute:

Beispiel 21

Zu 22,75 g p-Chlorbenzylcyanid in 150 cm³ Chloroform und 8,7 cm³ absolutem Alkohol leitet man bei -10° trockene Salzsäure bis zur Sättigung ein, läßt über Nacht bei Raumtemperatur stehen und dampft dann die Reaktionslösung im Vakuum bei höchstens 30° ein. Den Rückstand, enthaltend das Iminoätherhydrochlorid, löst man in Chloroform und gibt diese 2 - Isopropyl - 3 - amino - 4 - carbathoxy - pyrazol in 100 cm³ Chloroform und kocht 12 Stunden unter Rückfluß. Das während der Reaktion ausgeschiedene Kristallisat wird abgenutscht und das Filtrat zur Trockne eingedampft. Diesen Rückstand löst man in 200 cm3 Methanol, das zuvor mit Ammoniak bei 0° gesättigt wurde, und erhitzt im geschlossenen Rohr 4 Stunden auf 70 bis 80°. Anschließend dampft man die Reaktionslösung zur Trockne ein und erhitzt 55 den Rückstand 10 Stunden auf 180°. Das Reaktionsprodukt wird mit Chloroform und 2 n-Natronlauge ausgeschüttelt. Den alkalischen-wäßrigen Anteil stellt man mit 6 n-Salzsäure auf einen pH-Wert von etwa 6, worauf sich das im Beispiel 1 beschriebene azolo[3,4-d]pyrimidin ausscheidet (Ausbeute: 0,55 g).

Beispiel 22

Zu 34,2 g p-Chlorbenzylcyanid in 250 cm³ Chloro-Toluol gebracht, dann wird unter gutem Rühren 65 form und 13 cm3 Alkohol leitet man bis zur Sättigung bei -10° trockene Salzsäure ein, läßt über Nacht bei Raumtemperatur stehen und dampft dann die Reaktionslösung bei höchstens 30° ein. Den Rückstand, enthaltend das Iminoäther-hydrochlorid. wst man in 200 cm3 Chloroform auf, gibt eine Suspension von 16,9 g 2-Isopropyl-3-amino-4-carbonamidopyrazol in 1800 cm3 Chloroform hinzu und kocht unter Rühren 10 Stunden unter Rückfluß. Man 5 filtriert vom Ungelösten ab und dampft das Filtrat zur Trockne ein. Der Rückstand besteht aus rohem 2-Isopropyl-3-[a-äthoxy-β-(p-chlorphenyl)-äthylidenamino]-pyrazol-4-carbonsäureamid der Formel

$$CI \longrightarrow CH_2 - C = N \longrightarrow N$$
 $OC_2H_5 \longrightarrow CH$
 $CH_3 \longrightarrow CH_3$

a) Dieses Amid wird 10 Stunden auf 180° erhitzt. 20 Den Rückstand schüttelt man mit 2 n-Natronlauge und Chloroform aus. Der wäßrige alkalische Anteil wird mit 6 n-Salzsäure auf den p_H-Wert 6 gestellt, worauf sich das im Beispiel 1 beschriebene 1-Isopyrimidin ausscheidet (Ausbeute: 6,1 g).

b) Das obengenannte Amid wird mit einer Lösung von 18 g Natrium in 315 cm3 Methanol 30 Minuten unter Rückfluß gekocht. Nach Filtrieren der Reaktionslösung dampft man ein und extrahiert den 30 Rückstand mit Wasser und Chloroform. Die wäßrige alkalische Lösung wird mit 6 n-Salzsäure neutral gestellt, worauf sich das im Beispiel 1 beschriebene 1 - Isopropyl - 4 - hydroxy - 6 - chlorbenzyl - pyrazolo[3,4-d]pyrimidin ausscheidet (Ausbeute: 16,5 g). 35

Beispiel 23

8 g 2-Isopropyl-3-amino-4-carbamyl-pyrazol 40 werden mit 25 g p-Chlorphenylessigsäureamid 3 Stunden auf 200° erhitzt. Nach dem Erkalten wird das Reaktionsprodukt mit 150 cm3 1 n-Natronlauge und Chloroform ausgeschüttelt. Der wäßrige alkalische Teil wird mit 6 n-Salzsäure angesäuert, worauf sich das 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)pyrazolo[3,4 - d]pyrimidin ausscheidet (Ausbeute: 3,3 g).

Beispiel 24

6,1 g 1-Isopropyl-4-oxo-6-(p-chlorbenzyl)-pyrazolo[3,4-d]oxazin werden mit 50 cm3 Benzol und 15 cm³ flüssigem Ammoniak im geschlossenen Rohr 8 Stunden auf 100 bis 110° erhitzt. Das Reaktionsgemisch wird dann mit 2 n-Natronlauge versetzt, 55 die Benzollösung wird abgetrennt. Die alkalische wäßrige Lösung wird mit 6 n-Salzsäure auf einen pH-Wert von etwa 6 gestellt, worauf sich das 1-Isopropyl-4-hydroxy-6-p-chlorbenzyl-pyrazolo[3,4-d]pyrimidin ausscheidet (Ausbeute: 0,6 g).

Das als Ausgangsprodukt verwendete 1-Isopropyl-4 - oxo - 6 - (p - chlorbenzyl) - pyrazolo[3,4 - d]oxazin wird wie folgt hergestellt:

Zu 84,5 g 2-Isopropyl-3-amino-4-carboxy-pyrazol in 375 cm³ absolutem Dioxan und 40 cm³ Pyridin gibt man bei einer Temperatur zwischen 10 und 15° unter Rühren tropfenweise eine Lösung von 92,7 g p-Chlorphenylessigsäurechlorid in 125 cm³ Dioxan.

Nach dem Zutropfen rührt man noch 1 Stunde bei 10° und dann noch 2 Stunden bei Raumtemperatur weiter. Zur Aufarbeitung gibt man Wasser und verdünnte Salzsäure hinzu und extrahiert mit Äther. Die Ätherlösung wird getrocknet und eingedampft. Den Rückstand reibt man mit Wasser an und kristallisiert dann aus Aceton-Petroläther um. Man erhält so das 2-Isopropyl-3-(p-chlorphenyl-acetylamino)-4-carboxypyrazol der Formel

$$CI$$
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3

9,7 g 2-Isopropyl-3-(p-chlorphenyl-acetylamino)-4-carboxy-pyrazol werden mit 30 cm³ Acetanhydrid 3 Stunden unter Rühren auf 100 bis 110° erhitzt. Nach Eindampfen der Reaktionslösung kristallisiert man den Rückstand aus Äther-Petroläther um. propyl-4-hydroxy-6-p-chlorbenzyl-pyrazolo[3,4-d]- 25 Man erhält so das 1-Isopropyl-4-oxo-6-(p-chlorbenzyl)-pyrazolo[3,4-d]oxazin der Formel

$$CI$$
 CH_2
 N
 N
 CH_3
 CH_3

Beispiel 25

Zu 45,5 g 2-Isopropyl-3-amino-4-cyan—pyrazol in 325 cm³ absolutem Dioxan und 24 cm³ Pyridin gibt man tropfenweise unter Rühren eine Lösung von 55,8 g p-Chlorphenylessigsäurechlorid in 75 cm³ Dioxan bei einer Temperatur zwischen 10 und 15°. Nach dem Zutropfen rührt man noch 1 Stunde bei 10° und dann noch 2 Stunden bei Raumtemperatur. Nach Zugabe von 100 cm³ Wasser und 200 cm³ 2 n-Salzsäure kristallisiert das 2-Isopropyl-3-(p-chlorphenyl-acetylamino)-4-pyrazolcarbonsäurenitril der Formel

$$N \equiv C$$
 $CH_2 - CO - NH$
 CH_3
 CH_3
 CH_3

7,95 g 2-Isopropyl-3-(p-chlorphenyl-acetylamino)-4-pyrazol-carbonsäurenitril werden mit 27,2 cm³ 100/oiger Kalilauge und 102 cm³ 30/oigem Wasser-65 stoffsuperoxyd 10 Stunden auf 70° erwärmt. Anschließend filtriert man die Reaktionslösung und säuert mit 2 n-Salzsäure auf den pH-Wert 5 an, worauf sich das 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)-pyrazolo[3,4-d]pyrimidin ausscheidet (Ausbeute: 6.2 g).

Beispiel 26

32,6 g Natrium werden in 900 cm³ n-Butylalkohol gelöst, dazu gibt man eine Lösung von 70 g 2-Isopropyl-3-amino-4-carbathoxy-pyrazol und 108 g p-Chlorbenzyleyanid in 100 cm³ n-Butanol und kocht 5 Stunden unter Rückfluß. Anschließend wird 10 die Reaktionslösung mit 1,2 l 0,5 n-Natronlauge versetzt und mit Toluol ausgeschüttelt. Die wäßrige alkalische Lösung wird mit 5 n-Salzsäure neutral gestellt, worauf sich das 1-Isopropyl-4-hydroxyscheidet (Ausbeute: 11,5 g).

Beispiel 27

16,5 g Natrium werden in 120 cm³ Toluol in 20 einem 750 cm³ Sulfurierkolben bei einer Badtemperatur von 130° fein pulverisiert. Dann gibt man 240 cm³ thiophenfreies Benzol hinzu. Zu dieser bei 89° konstant siedenden Lösung gibt man 70 g 2 - Isopropyl - 3 - amino - 4 - carbathoxy - pyrazol in 182 g p-Chlorbenzylcyanid zu (Dauer des Zutropfens 2½ Stunden; Badtemperatur 120°; Innentemperatur 88 bis 90°). Nach dem Zutropfen kocht man unter Rühren noch weitere 10 Stunden unter Rückfluß.

Zur Aufarbeitung versetzt man mit 250 cm³ 30 absolutem Alkohol und dampft zur Trockne ein. Den Rückstand nimmt man in 1,211 n-Natronlauge auf und extrahiert dreimal mit 200 cm³ Toluol. Die alkalische Lösung wird mit 5 n-Salzsäure auf einen pH-Wert von 5 bis 6 gestellt; die kristalline 35 Fällung wird abfiltriert.

Dieses kristalline Filtergut wird in 340 cm³ Alkohol gelöst. Die Lösung wird mit Kohle behandelt und filtriert. Unter Eiskühlung kristallisiert das 1 - Isopropyl - 4 - hydroxy - 6 - p - chlorbenzyl - pyr- 40 azolo[3,3-d]pyrimidin (Ausbeute: 65 g).

Beispiel 28

19,7 g 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol 45 und 30,4 g p-Chlorbenzylcyanid werden mit 3 cm³ einer 40% igen Lösung von Trimethyl-benzyl-ammoniumhydroxyd in Isobutanol 5 Stunden auf 105° erhitzt. Nach dem Abkühlen wird die Reaktionslösung mit 1 n-Natronlauge und Toluol ausge- 50 schüttelt. Die wäßrige alkalische Lösung wird mit 6 n-Salzsäure auf den pH-Wert 6 gestellt, wobei sich das 1-Isopropyl-4-hydroxy-6-p-chlorbenzyl-pyrazolo[3,4-d]pyrimidin ausscheidet (Ausbeute: 0,6 g).

Beispiel 29

Zu 4,6 g pulverisiertem Natrium in 85 cm³ absolutem Toluol gibt man bei einer Temperatur von 90 bis 95° unter Rühren ein Gemisch von 19,7 g 60 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol und 49,5 g a-Phenyl-butyronitril. Anschließend rührt man noch 5 Stunden bei 90 bis 95° weiter. Zur Aufarbeitung versetzt man mit 50 cm3 Alkohol und dampft zur Trockne ein. Den Rückstand schüttelt 65 man mit 1 n-Natronlauge und Toluol aus. Die wäßrige alkalische Lösung stellt man mit 6 n-Salzsäure auf einen pH-Wert von etwa 6, worauf sich das

1 - Isopropyl - 4 - hydroxy - 6 - $(\alpha$ - phenyl - propyl) - pyrazolo[3,4-d]pyrimidin der Formel

$$\begin{array}{c|c} \text{OH} \\ \\ \text{CH} \\ \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \end{array}$$

6 - (p - chlorbenzyl) - pyrazolo[3,4 - d]pyrimidin aus- 15 ausscheidet, das nach Umkristallisieren aus Alkohol bei 142 bis 143 schmilzt (Ausbeute: 3,8 g).

Beispiel 30

Zu 4,6 g pulverisertem Natrium in 85 cm³ absolutem Toluol gibt man unter Rühren bei einer Temperatur von 90 bis 95° eine Lösung von 19,7 g 2-Isopropyl - 3 - amino - 4 - carbäthoxy - pyrazol und 45 g β -Phenyl-propionitril in 30 cm³ absolutem Toluol. Anschließend rührt man noch 5 Stunden bei 90 bis 95° weiter. Zur Aufarbeitung versetzt man mit 50 cm³ Alkohol und dampft zur Trockne ein. Den Rückstand schüttelt man mit 1 n-Natronlauge und Toluol aus. Die alkalische wäßrige Lösung stellt man mit 6 n-Salzsäure neutral, wobei sich das 1-Isopropyl-4-hydroxy-6-(β-phenyl-äthyl)-pyrazolo[3,4-d]pyrimidin der Formel

$$CH_2-CH_2$$
 N
 CH
 CH_3
 CH_3

ausscheidet, das nach Umkristallisieren aus Alkohol bei 124 bis 125° schmilzt (Ausbeute: 8,7 g).

Beispiel 31

Aus m-Hydroxybenzylcyanid und 2-Isopropyl-3-amino-4-carbäthoxy-pyrazol erhält man nach der im Beispiel 1 beschriebenen Methode nach der Umkristallisation aus Alkohol das 1-Isopropyl-4-hydroxy-6-(m-hydroxybenzyl)-pyrazolo[3,4-d]pyrimidin der Formel

in weißen Kristallen vom Schmelzpunkt 226 bis 227°.

PATENTANSPRUCH:

Verfahren zur Herstellung von 4-Hydroxypyrazolo[3,4 - d]pyrimidinen der allgemeinen Formel

OH
$$N_5$$
 R_3
 N_5
 N

worin R₁ ein Wasserstoffatom, einen Alkyl-, Hydroxyalkyl- oder Oxaalkylrest, R₂ ein Wasserstoffatom oder einen niederen Alkylrest und R₃ einen gegebenenfalls durch Halogenatome oder Hydroxygruppen oder niedere Alkyl- oder Alkoxy- ²⁰ gruppen substituierten Phenylalkyl- oder Diphenylalkylrest bedeutet, und von ihren Salzen, dadurch gekennzeichnet, daß man in an sich bekannter Weise entweder

 a) eine 3-Amino-pyrazol-4-carbonsäure der allgemeinen Formel

HOOC
$$R_2$$
 R_2
 R_1

oder ihre Ester oder Halogenide oder ihr 35 Amid gegebenenfalls in Gegenwart eines Kondensationsmittels mit einer Carbonsäure. der allgemeinen Formel R₃ — COOH oder ihren Estern, Halogeniden oder Iminoäthern oder ihrem Anhydrid oder Amid oder deren 40 Schwefelderivaten oder mit ihrem Amidin oder Nitril unter der Maßgabe umsetzt, daß die Kondensation in Gegenwart von Ammoniak durchgeführt wird, wenn nicht wenigstens eine der Carboxygruppen funktionell 45 so abgewandelt ist, daß sie ein Stickstoffatom aufweist, und anschließend allenfalls als Zwischenprodukte erhaltene, an der Aminogruppe substituierte 3-Amino-pyrazolderivate durch gegebenenfalls in Gegen- 50 wart von Ammoniak durchgeführtes Erhitzen auf höhere Temperaturen oder durch Erwärmen mit einem Kondensationsmittel cyclisiert oder

b) ein 3-Amino-4-cyan-pyrazol der allgemeinen 55 Formel

$$R_2$$
 R_2
 R_2
 R_1

mit einer Carbonsäure der allgemeinen Formel R₃—COOH oder ihren Estern, Halogeniden, Iminoäthern oder ihrem Anhydrid umsetzt, in der so erhaltenen Verbindung die Cyangruppe in 4-Stellung durch Erwärmen mit einem Alkalihydroxyd und einem Oxydationsmittel in die Amidgruppe übergeführt, wobei gleichzeitig der Pyrimidinring geschlossen wird, oder

 c) ein 4-Oxo-pyrazolo[3,4-d]oxazin der allgemeinen Formel

mit Ammoniak erwärmt oder d) ein 4-Hydroxy-pyrimidin der allgemeinen Formel

$$CO - R_2$$
 $R_3 - X$

worin X für eine freie oder verätherte Mercaptogruppe oder ein Halogenatom steht, mit einem Hydrazin der allgemeinen Formel R₁—NH—NH—R₄, worin R₄ ein Wasserstoffatom oder eine Acylgruppe bedeutet, umsetzt und gegebenenfalls vor oder gleichzeitig mit dem Ringschluß die Acylgruppe abhydrolysiert oder

 e) ein 6-Hydrazino-4-hydroxy-pyrimidin der allgemeinen Formel

mit einer Säure der allgemeinen Formel R_2 —COOH oder einem reaktionsfähigen funktionellen Derivat einer solchen Säure erwärmt

und gegebenenfalls anschließend erhaltene freie Verbindungen mit Basen in ihre Salze oder erhaltene Salze in die freien Verbindungen überführt.

In Betracht gezogene Druckschriften: Deutsche Auslegeschrift Nr. 1 056 613.