15) Tensor Operations and Stochastic Gradient Descent (SGD)

Vitor Kamada

August 2019

Reference

Goodfellow et al. (2016): Ch 2, 4, and 8.

https://www.deeplearningbook.org/

Chollet (2018): Ch 2.

https://www.manning.com/books/deep-learning-with-python

Tensor Rank (R)

Scalar (0R)

Vector (1R)

S

$$V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_r \end{bmatrix}$$

Matrix (2R)

$$M = \left[egin{array}{cccc} m_{11} & m_{12} & \cdots & m_{1c} \ m_{12} & m_{22} & \cdots & m_{2c} \ dots & dots & \ddots & dots \ m_{r1} & m_{r2} & \cdots & m_{rc} \ \end{array}
ight]$$

Data Tensors

	Cross-Sectional (2R)	Time Series (3R)
Sample	100 Firms	100 Firms
Time		10 years
Features	Sales, R&D, Size	Sales, R&D, Size

	Image (4R)	Video (5R)
Sample	128	4
Frames		240
Height	256 pixels	256 pixels
Width	256 pixels	256 pixels
Colors	3	3

Dot Product

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$$

$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

$$\vec{u} \cdot \vec{v} = ||\vec{u}||||\vec{v}|| \cos\theta$$

Law of Cosines

$$||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2||\vec{u}|| ||\vec{v}|| \cos\theta$$

$$||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$$

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos\theta$$

Vitor Kamada ECO 7110 Econometrics II August 2019 6 / 19

Minimizing $f(x) = \frac{1}{2}x^2$

Directional Derivative and Gradient

Vitor Kamada

Directional Derivatives

$$z = f(x, y)$$

$$\widehat{\mathbf{u}} = (\cos\theta)\widehat{\mathbf{i}} + (\sin\theta)\widehat{\mathbf{j}}$$

$$||\widehat{\mathbf{u}}|| = [\cos\theta]^2 + [\sin\theta]^2 = 1$$

$$D_{\overrightarrow{\boldsymbol{u}}}f(x, y) = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta$$

Vitor Kamada ECO 7110 Econometrics II August 2019

Gradient

$$\vec{\nabla} f(x, y) = \frac{\partial z}{\partial x} \hat{\mathbf{i}} + \frac{\partial z}{\partial y} \hat{\mathbf{j}}$$

$$D_{\vec{u}} f(x_0, y_0) = \vec{\nabla} f(x_0, y_0) \cdot \hat{\mathbf{u}}$$

$$= ||\vec{\nabla} f(x_0, y_0)||||\hat{\mathbf{u}}|| \cos \varphi$$

$$= ||\vec{\nabla} f(x_0, y_0)|| \cos \varphi$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト り ぬ ○ ○

Gradient Descent

$$D_{\vec{\boldsymbol{u}}}f(x_0,y_0) = ||\vec{\nabla}f(x_0,y_0)||\cos\varphi$$

If
$$\varphi=\pi$$
 then $cos \varphi=-1$

 $\therefore \overrightarrow{\nabla} f(x_0, y_0)$ and $\widehat{\mathbf{u}}$ point in opposite directions

Min Value of
$$D_{\vec{\boldsymbol{u}}}f(x_0, y_0)$$
 is $-||\vec{\nabla}f(x_0, y_0)||$

Deterministic vs SGD

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(x_i, y_i, \theta)$$

$$\nabla_{\theta}J(\theta) = \frac{1}{n}\sum_{i=1}^{n}\nabla_{\theta}L(x_i,y_i,\theta)$$

m: minibatch (power of 2)

$$g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x_i, y_i, \theta)$$

Epoch: each iteration over all the training data

Stochastic Gradient Descent

 ϵ : learning rate or step

Momentum or Velocity

V: Exponentially Decaying Average of the Gradient

14 / 19

Red Path Gradient with Momentum

Black Path Gradient wastes time moving back and forth

Nesterov Momentum

$$g \leftarrow \nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} L[(x_i; \theta), y_i]$$

$$g \leftarrow \nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} L[(x_i; \theta + \alpha v), y_i]$$
$$v \leftarrow \alpha v - \epsilon g$$
$$\theta \leftarrow \theta + v$$

AdaGrad (Adaptive Gradient)

$$r \leftarrow r + g \odot g$$

$$\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$$

Adapts learning rates (ϵ) , scaling them inversely proportional to past squared values of the gradient (r)

 $\delta = 10^{-7}$ for numerical stability

 Vitor Kamada
 ECO 7110 Econometrics II
 August 2019
 17 / 19

RMSProp

$$r \leftarrow
ho r + (1 -
ho) g \odot g$$
 $\Delta heta = -rac{\epsilon}{\sqrt{\delta + r}} \odot g$

Discard extreme past, using exponentially decaying average (ρ)

$$\theta \leftarrow \theta + \Delta \theta$$

Vitor Kamada ECO 7110 Econometrics II August 2019 18 / 19

RMSProp + Nesterov Momentum

$$\frac{\tilde{\theta} \leftarrow \theta + \alpha v}{g \leftarrow \nabla_{\tilde{\theta}} \frac{1}{m} \sum_{i=1}^{m} L[f(x_i; \tilde{\theta}), y_i]}$$

$$r \leftarrow \rho r + (1 - \rho)g \odot g$$

$$v \leftarrow \alpha v - \frac{\epsilon}{\sqrt{r}} \odot g$$

$$\theta \leftarrow \theta + v$$