

General Description

The MAX6035 is a high-voltage, precision micropower voltage reference. This three-terminal device is available with output voltage options of 2.5V, 3.0V, and 5.0V. It is an excellent upgrade for industry-standard devices such as the REF02 and REF43. The MAX6035 offers 14x lower power than the REF02 and 5x lower power than the REF43, as well as a reduced package size from an 8-pin SO to a 3-pin SOT23. The MAX6035 features a proprietary temperature coefficient curvature-correction circuit and laser-trimmed, thin-film resistors that result in a very low temperature coefficient of 25ppm/°C (max) and an initial accuracy of ±0.2% (max).

The MAX6035 typically draws only 73µA of supply current and can source 10mA or sink 2mA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, this device offers a supply current that is virtually independent of the supply voltage and does not require an external resistor. Additionally, this internally compensated device does not require an external compensation capacitor, but is also stable with capacitive loads up to 5µF. Eliminating the external compensation capacitor saves valuable board area in space-critical applications. The supply independent, ultra-low supply current makes this device ideal for battery-operated, high-performance systems.

The MAX6035 is available in a 3-pin SOT23 package and is specified for operation from -40°C to +125°C.

Applications

4mA to 20mA Industrial Control Loops Li+ Battery Chargers 12-Bit A/D and D/A Converters

Digital Multimeters Portable Data-Acquisition Systems Low-Power Test Equipment

Typical Operating Circuit

Features

- ♦ Wide Supply Voltage Range: Up to 33V
- ♦ 25ppm/°C (max) Temperature Coefficient (-40°C to +85°C)
- ♦ ±0.2% (max) Initial Accuracy
- ♦ 95µA (max) Quiescent Supply Current
- ♦ 10mA Source Current, 2mA Sink Current
- ♦ No Output Capacitor Required
- ♦ Stable with Capacitive Loads up to 5µF

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX6035AAUR25-T	-40°C to +125°C	3 SOT23-3	FZMW
MAX6035BAUR25-T	-40°C to +125°C	3 SOT23-3	FZMX
MAX6035ESA25	-40°C to +85°C	8 SO	_
MAX6035AAUR30-T	-40°C to +125°C	3 SOT23-3	FZMY
MAX6035BAUR30-T	-40°C to +125°C	3 SOT23-3	FZMZ
MAX6035AAUR50-T	-40°C to +125°C	3 SOT23-3	FZNA
MAX6035BAUR50-T	-40°C to +125°C	3 SOT23-3	FZNB

Note: The 3-pin SOT23 package code is U3-1. The 8-pin SO package code is S8-2.

Selector Guide

PART	MAXIMUM TEMPCO (ppm/°C) (-40°C to +85°C)		OUTPUT VOLTAGE (V)
MAX6035AAUR25	25	0.20	2.5
MAX6035BAUR25	65	0.50	2.5
MAX6035ESA25	40	0.20	2.5
MAX6035AAUR30	25	0.20	3.0
MAX6035BAUR30	65	0.50	3.0
MAX6035AAUR50	25	0.20	5.0
MAX6035BAUR50	65	0.50	5.0

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

40°C to +85°C
40°C to +125°C
65°C to +150°C
+150°C
+300°C

Note 1: Continuous power dissipation should also be observed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6035_AUR25 and MAX6035ESA25 (2.5V)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 2)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
Output Voltage	V _{OUT}	T _A = +25°C	MAX6035AAUR, MAX6035ESA (0.2%)	2.4950	2.5000	2.5050	V
			MAX6035BAUR	2.4875	2.5000	2.5125	ĺ
		T 000 to 7000	MAX6035AAUR			20	
		$T_A = 0$ °C to +70°C	MAX6035BAUR			50	
Output Voltage			MAX6035AAUR			25	
Temperature Coefficient	TCV _{OUT}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6035ESA			40	ppm/°C
(Notes 3 and 6)			MAX6035BAUR			65	
		$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	MAX6035AAUR			30	
		TA = -40 C t0 + 125 C	MAX6035BAUR			75	
Line Regulation (Note 4)	A\/\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	()/ 0)/))/ 00)/	$T_A = +25^{\circ}C$		4	15	uV/V
Line Regulation (Note 4)	Δνουι/ΔνιΝ	$(V_{OUT} + 2V) \le V_{IN} \le 33V$	$T_A = T_{MIN}$ to T_{MAX}			20	μν/ν
		T _A = +25°C, MAX6035_AUR	Sourcing: 0 ≤ I _{OUT} ≤ 10mA		25	70	
			Sinking: -2mA ≤ I _{OUT} ≤ 0		45	180	
		$T_A = T_{MIN}$ to T_{MAX} , $MAX6035_AUR$	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			85	
Load Degulation (Note 4)	∆V _{OUT} /		Sinking: -2mA ≤ I _{OUT} ≤ 0			225	\//m A
Load Regulation (Note 4)	ΔI _{OUT}	T _A = +25°C,	Sourcing: 0 ≤ I _{OUT} ≤ 10mA		105	175	μV/mA
		MAX6035ESA	Sinking: -2mA ≤ I _{OUT} ≤ 0		205	375	
		$T_A = T_{MIN}$ to T_{MAX} ,	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			350	
		MAX6035ESA	Sinking: -2mA ≤ I _{OUT} ≤ 0			500	
OLIT Chart Circuit Comment	la a	Short to GND	•		27		т Л
OUT Short-Circuit Current	I _{SC}	Short to IN			-4		mA mA

ELECTRICAL CHARACTERISTICS—MAX6035_AUR25 and MAX6035ESA25 (2.5V) (continued)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
		$I_{OUT} = 10\mu A$				1.9	V
Dropout Voltage (Note 7)	V _{IN} - V _{OUT}	$I_{OUT} = 10mA$				2.25	V
Thermal Hysteresis (Note 5)	ΔV _{OUT} /cycle				135		ppm
Long-Term Stability	ΔV _{OUT} /time	1000hr at +25°C			110		ppm/ 1000hr
DYNAMIC CHARACTERISTI	cs						
Output Naise Valtage		f = 0.1Hz to $10Hz$	= 0.1Hz to 10Hz		21		μV _{P-P}
Output Noise Voltage	en	f = 10Hz to 1kHz			20		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 5V \pm 100 \text{mV}, f = 1$	20Hz		86		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1%	C _{OUT} = 50pF		35		110
Turn-Orr Settling Time		of final value	$C_{OUT} = 1\mu F$		240		μs
Capacitive-Load Stability (Note 6)	Cout			0		5	μF
INPUT CHARACTERISTICS							
Supply Voltage Range	V _{IN}	Inferred from line regulation and dropout voltage		4.4		33	V
Quiescent Supply Current	I _{IN}				73	95	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$4.4 \text{V} \leq \text{V}_{\text{IN}} \leq 33 \text{V}$			0.4	0.7	μΑ/V

ELECTRICAL CHARACTERISTICS—MAX6035_AUR30 (3.0V)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CONDITIO	DNS	MIN	TYP	MAX	UNITS
Output Voltage	Vour	T _A = +25°C	MAX6035A (0.2%)	2.9940	3.0000	3.0060	V
Output voitage	V _{OUT}	1A = +23 C	MAX6035B (0.5%)	2.9850	3.0000	3.0150	V
		$T_A = 0$ °C to +70°C	MAX6035A			20	
		1A = 0 C t0 +70 C	MAX6035B			50	
Output Voltage	TCV	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6035A			25	nnm/°C
Temperature Coefficient (Note 3)	TCV _{OUT}	TA = -40 C t0 +65 C	MAX6035B			65	ppm/°C
(11010 0)		T. 40°C to 1105°C	MAX6035A			30	<u> </u>
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	MAX6035B			75	
	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 1.75V) \le V_{IN} \le 33V$	$T_A = +25^{\circ}C$		4.5	15	μV/V
Line Regulation (Note 4)			$T_A = 0^{\circ}C \text{ to } +125^{\circ}C$			24	
		$(V_{OUT} + 2V) \le V_{IN} \le 33V$	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			24	
		T 125°C	Sourcing: 0 ≤ I _{OUT} ≤ 10mA		30	81	
Load Regulation (Note 4)	ΔV _{OUT} /	T _A = +25°C	Sinking: -2mA ≤ I _{OUT} ≤ 0mA		54	170	υ\//m Λ
	Δl _{OUT}		Sourcing: 0 ≤ I _{OUT} ≤ 10mA			96	μV/mA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	Sinking: -2mA ≤ I _{OUT} ≤ 0mA			230	

ELECTRICAL CHARACTERISTICS—MAX6035_AUR30 (3.0V) (continued)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OLIT Chart Circuit Current	la a	Short to GND			27		Λ
OUT Short-Circuit Current	ISC	Short to IN			-4		mA
		$T_A = 0$ °C to +125°C	$I_{OUT} = 10\mu A$			1.75	
Dropout Voltage (Note 7)	V _{IN} - V _{OUT}	$T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	$I_{OUT} = 10\mu A$			1.9	V
		TA = -40 C t0 + 125 C	I _{OUT} = 10mA			2.25	
Thermal Hysteresis (Note 5)	ΔV _{OUT} /cycle				135		ppm
Long-Term Stability	ΔV_{OUT} /time	1000hr at +25°C			120		ppm/ 1000hr
DYNAMIC CHARACTERISTI	CS						
Output Noise Voltage	0	f = 0.1Hz to 10Hz			25		μV _{P-P}
Output Noise Voltage	en	f = 10Hz to 1kHz	f = 10Hz to 1kHz		25		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	$V_{IN} = 5V \pm 100$ mV, $f = 120$ Hz			80		dB
T 0 0 W T		to Value 0.10/ of final value	C _{OUT} = 50pF		40		
Turn-On Settling Time	t _R	$V_{OUT} = 0.1\%$ of final value $C_{OUT} = 1\mu F$			250		μs
Capacitive-Load Stability (Note 6)	Соит			0		5	μF
INPUT CHARACTERISTICS							
Cupality Valtage Dange	V _n .	T _A = 0°C to +125°C, inferred and dropout voltage	from line regulation	4.75		33	M
Supply Voltage Range	VIN	T _A = -40°C to +125°C, inferred from line regulation and dropout voltage		4.9		33	V
Quiescent Current Supply	I _{IN}				73	95	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$4.9V \le V_{\text{IN}} \le 33V$			0.4	0.7	μΑ/V

ELECTRICAL CHARACTERISTICS—MAX6035_AUR50 (5.0V)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNITS
Output Voltage	\/o=	T 25°C	MAX6035A (0.2%)	4.9900	5.0000	5.0100	V
Output Voltage	V _{OUT}	$T_A = +25^{\circ}C$	MAX6035B (0.5%)	4.9750	5.0000	5.0250	V
		$T_A = 0$ °C to +70°C	MAX6035A			20	
	TCV _{OUT}	1A = 0 C t0 +70 C	MAX6035B			50	100
Output Voltage		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	MAX6035A			25	
Temperature Coefficient (Note 3)			MAX6035B			65	ppm/°C
(11010 0)			MAX6035A			30	
			MAX6035B			75	
Line Regulation (Note 4)	4\/o=/4\/	(\\au= + 0\\) < \\au= < 22\\	T _A = +25°C		7.5	25	\/\/
	AVOU1/AVIN	(V _{OUT} + 2V) ≤ V _{OUT} ≤ 33V	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		8	40	μV/V

ELECTRICAL CHARACTERISTICS—MAX6035_AUR50 (5.0V) (continued)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 2)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
		T _A = +25°C	Sourcing: 0 ≤ I _{OUT} ≤ 10mA		50	135	
Load Dagulation (Note 4)	ΔV _{OUT} /	TA = +25 C	Sinking: -2mA ≤ I _{OUT} ≤ 0mA		90	215	\
Load Regulation (Note 4)	Δl _{OUT}	T. 4000 to . 10500	Sourcing: 0 ≤ I _{OUT} ≤ 10mA			160	μV/mA
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	Sinking: -2mA ≤ I _{OUT} ≤ 0mA			300	
OUT Short-Circuit Current	laa	Shorted to GND			27		mA
OUT SHORT-CIRCUIT CURRENT	I _{SC}	Shorted to IN			-4		MA
Dropout Voltage (Note 7)	V _{IN} - V _{OUT}	I _{OUT} = 10μA				1.9	V
Bropout Voltage (Note 1)	VIIN VOOT	I _{OUT} = 10mA				2.25	V
Thermal Hysteresis (Note 5)	ΔV _{OUT} /cycle				135		ppm
Long-Term Stability	ΔV_{OUT} /time	1000hr at +25°C			160		ppm/ 1000hr
DYNAMIC CHARACTERIST	cs						
Output Noise Voltage	0	f = 0.1Hz to $10Hz$			68		μV _{P-P}
Output Noise Voltage	en	f = 10Hz to 1kHz			48		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 15V \pm 100 \text{mV}, f = 120$	OHz		72		dB
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final	Cout = 50pF		140		μs
Turri on octaining Time	'n	value	C _{OUT} = 1µF		300		μο
Capacitive-Load Stability (Note 6)	Соит			0		5	μF
INPUT CHARACTERISTICS				•	•		
Supply Voltage Range	VIN	Inferred by line regulation and dropout voltage		6.9		33	V
Quiescent Current Supply	I _{IN}				80	100	μΑ
Change in Supply Current	$\Delta I_{IN}/\Delta V_{IN}$	$6.9V \le V_{IN} \le 33V$			0.4	0.7	μΑ/V

- Note 2: All devices are 100% production tested at TA = +25°C and are guaranteed by design for TA = TMIN to TMAX, as specified.
- Note 3: Temperature Coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} is divided by the maximum ΔT .
- **Note 4:** Line and load regulation are measured with pulses and do not include output voltage fluctuation due to die-temperature changes.
- Note 5: Thermal Hysteresis is defined as the change in the output voltage at T_A = +25°C before and after cycling the device from TMAX to TMIN.
- Note 6: Guaranteed by design.
- **Note 7:** Although the source current is guaranteed to be 10mA, exercise caution to ensure that the package's absolute power dissipation rating is not exceeded.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

_Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Figure 1. Load-Transient Test Circuit

Figure 2. Load-Transient Test Circuit

Pin Description

Р	IN	NAME	EUNCTION			
SOT23	so	INAIVIE	FUNCTION			
1	2	IN	Input Voltage			
2	6	OUT	Reference Output			
3	4	GND	Ground			
	1, 3, 5, 7, 8	N.C.	No Connection. Not internally connected.			

Applications Information

Input Bypassing

For the best line-transient performance, decouple the input with a 0.1µF ceramic capacitor as shown in the *Typical Operating Circuit*. Locate the capacitor as close to the device as possible. Where transient performance is less important, no capacitor is necessary.

Output/Load Capacitance

Devices in the MAX6035 family do not require any output capacitance for frequency stability. In applications where the load or the supply can experience step changes, an output capacitor of at least 0.1µF reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Many applications do not require an external capacitor, and the MAX6035 family can offer a significant advantage in these applications when board space is critical.

Supply Current

The quiescent supply current of the MAX6035 seriesmode family is typically 73 μ A and is virtually independent of the supply voltage, with only a 0.7 μ A/V (max) variation with supply voltage. In contrast, the quiescent current of a shunt-mode reference is a function of the input voltage due to a series resistor connected to the

power supply. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present at the time. In the MAX6035 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

Thermal Hysteresis

Thermal hysteresis is the change of output voltage at $T_A = +25$ °C before and after the device is cycled over its entire operating temperature range. The typical temperature hysteresis value is 135ppm.

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 240µs. Increased output capacitance also increases turn-on time.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 3 shows the maximum allowable reference-voltage temperature coefficient to keep the conversion error to less than 1LSB, as a function of the operating temperature range (TMAX - TMIN) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes

Figure 3. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Chip Information

TRANSISTOR COUNT: 84 PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.

- NOTES:

 1. D&E DO NOT INCLUDE MOLD FLASH.
 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15mm (.006*).
 3. CONTROLLING DIMENSION. MILLIMETERS.
 4. REFERENCE JEDEC TD236-VARIATION AB.
 5. LEADS TO BE COPLANAR WITHIN 0.10mm.

 DIMENSIONS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.

 MARKING SHOWN IS FOR PACKAGE DRIENTATION REFERENCE ONLY.

		HOLLO		I HILLETINE I ENG				
DIM	MIN	NDM	MAX	MIN	NDM	MAX		
Α	0.035	0.0394	0.044	0.890	1.000	1.120		
A1	0.0004	0.0024	0.004	0.010	0.060	0.100		
В	0.012	0.0165	0.020	0.300	0.420	0.500		
b1	0.012		0.018	0.300		0.450		
С	0.003	0.047	0.071	0.085	0.120	0.180		
c 1	0.003		0.071	0.080		0.160		
D	0.110	0.115	0.120	2.800	2.920	3.040		
Ε	0.047	0.0512	0.055	1.200	1.30	1.400		
е	0.037 BSC.			0.	950 BS	C.		
e1	0.075 BSC.			1.	900 BS	С.		
Н	0.083	0.0925	0.104	2.100	2.350	2.640		
Г	0.015	0.0205	0.023	0.400	0.520	0.600		
L1	(0.021 RE	F	0.54 REF				
S	0.018	0.0213	0.024	0.45	0.540	0.60		
α	0*	5•	8*	0*	2	8*		
PKC	PKG CDDES: U3-1, U3-2							

INCHES

DALLAS / VI / JX I / VI PACKAGE DUTLINE 3L SDT-23 DOCUMENT CONTROL NO. 21-0051 REV. 1/2

MILLIMETERS

-DRAWING NOT TO SCALE-

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

_Revision History

Pages changed at Rev 2: 1, 2, 3, 12, 15 Pages changed at Rev 3: 1, 2, 15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.