

논리 표현들. Boolean 타입 변수들. 논리 연산들

참과 거짓을 판단하는 논리 표현들을 사용할 수 있게 됩니다. 크고 작은 것을 비교할 수 있게 됩니다.

할당^{assignment} 구문 오른쪽에는 산술 표현식뿐만 아니라 논리 표현식 등 다양한 유형의 표현식들이 올 수 있다.

논리^{Logical} 표현식(불리언^{Boolean} 표현식) 의 결과는 True^참 또는 False^{거짓} 중 하나이다. 이 결과 즉 논리 표현식의 결과는 Boolean^{불리언} 변수에 넣는다.

논리^{logical} 변수 예문

var

Exist: Boolean;

불리언^{Boolean}이라는 이름은 수학 논리의 기초를 세운 영국의 수학자 조지 불^{George Boole}을 기리기 위해 붙여졌다. 불리언^{Boolean}과 논리적^{Logical} 은 대개 같은 뜻으로 쓰인다.

논리 표현식은 산술 표현식, 관계 연산자, 논리 연산자로 작성할 수 있다.

관계^{Relational} 연산자들

관계^{Relational} 연산자는 두 값을 비교한다. 결과는 True^참 또는 False^{거짓}이다.

관계 연산자들

=	같다
$\langle \rangle$	같지 않다
<	더 작다
ζ=	더 작거나 같다
>	더 크다
>=	더 크거나 같다

예문

```
var
    X: Real;
    Exist, Ok: Boolean;
begin
    X:= 2.5;
    Ok:= X > 0;
    Exist:= (X = 3-27);
end;
```

이 프로그램을 실행한 결과, Ok 변수에는 True가, Exist 변수에는 False가 저장된다.

논리^{Logical} 연산자들

논리^{Logical} 연산자는 논리 값(True 또는 False)들과 함께 사용되며, 결과 역시 논리 값이다. 논리 연산자들은 다음과 같다.

NOT

AND

OR

논리 연산자들과 값들

Х	Y	Not X	X And Y	X Or Y
False	False	True	False	False
False	True	True	False	True
True	False	False	False	True
True	True	False	True	True

표현식의 값을 계산할 때는 정해진 계산 우선 순위가 있다.

연산자 우선 순위 표

표현 유형	연산자
괄호 안의 값을 도출	()
- 함수의 값을 도출	함수(Function)들
단항 ^{Unary} 연산자	not, 단항 연산자인 '-' (이것은 음수를 양수로, 양수를 음수로 바꾼다)
곱셈 같은 연산자	*/div mod and
덧셈 같은 연산자	+ — or
비교 ^{Relational} 연산자	= \langle \langle \langle \langle = \rangle =

우선 순위가 같은 연산자는 표현식에 적힌 왼쪽부터 오른쪽으로 순서대로 값을 계산한다. 연산자의 순서를 살펴보기 위해 $(a^*2)b$) or not (c=7) and (d-1(=3)) 수식에 a=2, b=4, c=6, d=4 를 대입해서 계산해보자.

```
(2*2>4) or not (6=7) and (4-1<=3)
(4>4) or not (6=7) and (3<=3)

False or not False and True

False or True and True

True
```

산술 구문 $-4 < x \le 18.3$ 은 델파이로 다음과 같이 적는다.

(x > -4) and (x <= 18.3)

실습

10 | 혹시 연습문제가 너무 어려우면 표시해두고 다음으로 넘어가세요. 좀더 알게 되면, 표시해둔 연습문제에 다시 도전해보세요.

Exercise 1.

폼을 하나 만들고 레이블 하나를 올린다. 버튼 하나를 올리고, 이 버튼을 사용하여 레이블 에 표시되는 글을 On과 Off로 바꿔보자.

Exercise 2.

"교통 신호등": 폼을 하나 만들고 레이블 3개와 버튼 3개를 올린다. 버튼은 각자 자기의 레이블(빨강, 노랑, 녹색)을 켜고, 다른 색상을 가진 레이블은 끈다.

Exercise 3.

폼을 하나 만들고, 텍스트박스 2개와 버튼 하나를 올린다. 버튼을 누르면 텍스트박스에 있는 값을 서로 비교하여 첫 번째 텍스트박스의 값이 더 큰 경우에는 True라는 레이블이 나타나고 그렇지 않은 경우에는 False라는 레이블이 나타나도록 하자.

Exercise 4.

세 자리 정수가 텍스트박스에 입력되는 프로그램을 작성한다. 3 개의 숫자 중에서 어느 2 개 수의 합이 나머지 하나와 같은 경우 True라는 레이블이 나타나고 그렇지 않은 경우에는 False라는 레이블이 나타나도록 하자.