Peer-graded Assignment: Regression models

Steven Michiels 4/20/2020

Executive summary

Questions to be answered: 1) "Is an automatic or manual transmission better for MPG" and 2) "Quantify the MPG difference between automatic and manual transmissions".

A two-sided t-test showed that the mpg for manual transmission is signicantly (p=0.001) higher than for automatic transmission. A linear model with the transmission type (am) as only predictor, however, showed that the transmission type only explains roughly 1/3 of the variability in mp.

A three-predictor linear model including the weight, the qsec and the am achieves to explain aournd 85% of the variability in mpg, and weight appears to be the most important predictor. When accounting for the weight and for the qsec, the linear coefficient of am is 2.9+/-1.4, which means that moving from automatic to manual transmission increased the mpg with a value of 2.9+/-1.4.

Exploratory data analyses

Boxplots and violinplots of the mpg in function of the transmission type suggest that there may indeed be a significant association between the transmission type and the mpg. See the appendix for these plots.

We make subgroups of the data per transmission type and perform a two-sided t-test for the null-hypothesis that the mean mpg is not different between the subgroups. At a significance level of .05, we reject this null-hypothesis with a p-value of .1%, meaning there is a significant association between the transmission type and the mpg.

Model building

One-variable model: transmission type

We create a linear regression with the transmission type as the predictor for the mpg. We find a linear coefficient of 7.25 + /-1.8, indicating that a change from automatic to manual transmission increases the number of miles per gallon with 7.25 + /-1.8. We find an R^2 value and an adjusted R^2 -value of only .36 and .34 respectively, however, which means that only roughly a third of the variability in mpg is explained by the transmission type.

We make a **correlation plot** to see which other variables may affect the mpg as well. Besides the transmission type, **the weight and the number of cylinders**, **for instance**, **are candidate predictors** as well. Note that we'll have to be careful, as **considerable collinearity** between the independent variables exist.

Best subset three-variables model: wt, gsec and am

We make a **new linear model** using **best subset analysis** (function regsubsets) and take the number of variables with the **lowest BIC-value**. This yields **three variables** to be included for the new model: **the weigth, the time in seconds for 1/4 mile and the transmission type**. The linear coefficients are -3.9+/-.7 (wt), 1.2+/-.3 (qsec) and 2.9 +/- 1.4 (am). When accounting for other significant variables,

the effect of the transmission type thus is reduced. The effect of the transmission type moreover has a large standard error. The largest part of the variability (R^2=75%) of the variability in mpg is explained by the weight.

The R^2-value and the adjusted R^2 values for this model are .83 and .85, respectively, which explains quite a bit of the variability for the mpg. When we plot the **residuals**, however, we do see a pattern in the residuals that are **indicating non-linearity or interaction terms** in the data.

Residuals plot for the linear model including wt, gsec and am

Tuned model

plot (modSel2)

We redo the best subset analysis, but now including interaction terms for the weight, the number of seconds for 1/4 mile and the transmission type. The lowest BIC is now reached again for three variables: qsec, am and am/wt. The R^2-value and the adjusted R^2 values for this model now reach .9 and .88, respectively, which is better than all the previous models. The linear coefficients are: 2.68+/-1.3 (qsec), 14.0+/-3.4 (am) and -4.1+/-1.2 (am/wt). When we plot the residuals, we see that the pattern has disappeared.

```
qsec 2.6831 1.3002 2.064 0.049171 *
am 14.0026 3.3918 4.128 0.000334 * wt 6.6931 7.4051 0.904 0.374379
am:wt -4.1411 1.1815 -3.505 0.001675 qsec:wt -0.5401 0.4137 -1.306 0.203141
par(mfrow=c(2,2))
```


Appendix

Boxplots and violinplots of the mpg in function of the transmission type suggest that there may indeed be a significant association between the transmission type and the mpg.

Correlation plot to identify candidate predictors

Based on the best subset analysis, we include three variables in the model: wt, qsec and am. We create model plots for this model.

(Intercept) wt qsec am ## 9.617781 -3.916504 1.225886 2.935837

Summary plots for the tuned model that includes qsec, am and an interaction term $\operatorname{wt/am}$

par(mfrow=c(2,2))
plot(modSel2)

