

DISCIPLINA: MECÂNICA DO VOO - TURMA A

PROFESSOR: WILLIAM REIS SILVA

Data: 24/09/2021

E-MAIL: reis.william@unb.br

Prova 2 – Mecânica do Voo

Nome:______ Matrícula: ______ Nota: _____

1. (Valor: 2,0 pontos) Utilizando a figura 1 encontre uma expressão para o momento de arfagem da empenagem em torno do CG. Refaça o desenho com a decomposição de força e momento na empenagem.

Figura 1. Representação de forças, momentos e relações angulares em uma aeronave

- 2. (Valor: 2,0 pontos) O McDonnell Douglas C-17 é um avião de transporte a jato com quatro motores STOL.
 - i. Encontre A e \bar{c} para a asa usando os dados geométricos.
 - ii. Das curvas experimentais das Figuras 3 e 4 e da geometria especificada, localize $C_{m_{\delta_e}}$ e h_n . Encontre $C_{m_{\alpha}}$ para h=0.30.

Dados geométricos

Wing area, $S = 3.800 \ ft^2 \ (353,0 \ m^2)$ Wing span, $b = 165 \ ft \ (50,29 \ m)$ Root chord, $c_r = 37,3 \ ft \ (11,37 \ m)$ Tip chord, $c_t = 8,8 \ ft \ (2,68 \ m)$ $\frac{1}{4} \ chord \ line \ sweep, \ \Lambda = 25^\circ$ $\frac{1}{2} \ chord \ line \ sweep, \ \Lambda_{c/2} = 22^\circ$ Tail area, $S_t = 870 \ ft^2 \ (80,83 \ m^2)$ $a = 5,05 \ rad^{-1}$

Figura 2. McDonnell Douglas C-17

Figura 3. C_m versus C_L

Figura 4. δ_e versus C_L

3. (Valor: 2,0 pontos) Os seguintes dados foram obtidos de um teste de voo de um avião Cherokee-6 PA-32R-300.

Figura 5. Cherokee-6 PA-32R-300

Altitude		V_E		Mass		i_{r}	x_{CG}	
(ft)	(km)	(mph)	(m/s)	(slugs)	(kg)	(deg)	(in)	(cm)
4540	1.384	91.0	40.7	113.4	1656	1.5	93.89	238.5
4560	1.390	109	48.7	113.0	1650	0	93.89	238.5
4700	1.433	126	56.3	112.9	1649	-1.0	93.89	238.5
4580	1.396	155	69.3	112.7	1646	-2.0	93.89	238.5
5320	1.622	89.0	39.8	100.4	1466	4.5	86.82	220.5
4620	1.408	105	46.9	100.2	1463	2.0	86.82	220.5
4740	1.445	123	55.0	100.0	1461	0.3	86.82	220.5
4900	1.494	151	67.5	99.84	1458	-1.0	86.82	220.5
4880	1.487	87.0	38.9	88.51	1293	7.2	80.43	204.3
4820	1.469	103	46.0	88.35	1290	3.5	80.43	204.3
4880	1.487	122	54.5	88.20	1288	1.5	80.43	204.3
4740	1.445	152	68.0	88.04	1286	0	80.43	204.3

Figura 1. Dados do Exercício 8

Os dados foram coletados em voo nivelado trimado. x_{CG} é a distância do CG após o nariz da aeronave. A aeronave tem uma empenagem toda móvel e, portanto, i_t é usada em vez de δ_e , para trimar a aeronave. A área da asa é $S=174,5~ft^2~(16,21~m^2)$.

- i. Faça uma tabela com o ângulo de incidência da empenagem i_t , em relação ao coeficiente de sustentação da aeronave para cada um dos três locais de CG.
- ii. Plote os pontos de dados em (i) com três linhas retas tendo uma interceptação comum (consulte a Fig. 2.18).
- iii. Use uma técnica gráfica para encontrar a localização do ponto neutro à manche fixo em relação ao nariz da aeronave (consulte a Fig. 2.21).
- 4. (Valor: 2,0 pontos) Encontre uma expressão para o ângulo do profundor por g na forma dimensional. Denote as derivadas de L e M em relação α e q por $\frac{\partial L}{\partial a} = L_q$, e assim por diante. Existem duas escolhas:
- i. Fazer a derivação em forma dimensional desde o início, ou
- ii. Converter o resultado não dimensional (3.1.6) para a forma dimensional.

Faça as duas coisas e verifique que eles concordam.

5. (Valor: 2,0 pontos) Dois aviões são semelhantes, mas um é movido a jato e o outro tem um motor a pistão e hélice. A linha de impulso em cada caso está bem abaixo do CG com $\frac{z_p}{\bar{c}}=0$,4. O momento de arfagem de partida a $\delta_e=0$ é $C_m=0$,1 -0,2 C_L . A tração para um dado nível de voo com fornece $C_L=0$,4 e $\frac{L}{D}=12$.

Considere vários voos retilíneos tendo condições com a mesma configuração de tração, mas configurações diferentes de profundor, valores de C_L e ângulos de trajetória de voo. Encontre $\frac{\partial c_m(\alpha)}{\partial c_L}$ (para $\delta_e=0$) para:

- i. Avião a Jato
- ii. Avião a Hélice
- iii. Ambos ao passar pela altitude correspondente às condições de nível de voo. Conforme indicado na Sec. 3.4 e $(6.4.10) \frac{\partial C_m}{\partial C_L}$ é um índice da estabilidade longitudinal estática sob certas condições. Supondo que essas condições sejam atendidas neste problema, como será a estabilidade das duas aeronaves quando a aeronave desacelera?