Информационные ресурсы глобальных систем мониторинга океана для задач гидроакустики

Магазов Сергей Солимович

к.ф.-м.н.

доцент каф. «Теоретическая информатика и компьютерные технологии»

МГТУ им. Н.Э. Баумана

Уравнение гидролокации

- УИ 2ПР+СЦ (УП ПН)=ПО.
- уровень излучения (УИ);
- уровень собственных помех (УП);
- показатель направленности в режиме приема (ПН);
- порог обнаружения (ПО).
- Параметрами, определяемыми средой, являются:
- потери при распространении (ПР);
- уровень реверберации (УР);
- уровень окружающих шумов (УШ).
- а параметрами, определяемыми целью:
- сила цели (СЦ);
- уровень цели (УЦ).

Задача информационного обеспечения расчета акустических полей

Спецификация акустического канала

• Верхнее полупространство

- Волнение/ лед
- Коэффициенты отражения
- коэффициенты рассеивания
- Твердость,
- шероховатость,
- плотность
- скорость продольная (Z)
- скорость поперечная (Z)
- затухание продольное (Z)
- затухание поперечное (Z)
- Водная среда
- скорость продольная (Z)
- скорость поперечная (Z)
- затухание продольная (Z)
- затухание поперечная (Z)
- плотность (Z)
- Движение
- Наличие биологических объектов
- Дно
- Тип дна (акустически эластичное, отражающее и т.д.)
- скорость продольная (Z)
- скорость поперечная (Z)
- затухание поперечное (Z)
- затухание подпольное (Z)
- плотность (Z)

Состояние дел

- Расчеты в отложенном времени
- Расчеты здесь и сейчас (RT, NRT)

• Глобальных систем мониторинга океана

Фрагменты международных и национальных организаций участвующие в развитие и эксплуатации GOOS. (Пунктирные линии обозначают информационные связи)

	имы Всемирной Службы Погоды – <mark>World Weather Watch</mark>)	Космические программы (WMO Space Programme)	Программы по морской метеорологии и океанографии (MMOP-Marine Meteorology and Oceanography Programme)
- гл - гл	побальные системы наблюдений; побальные системы связи; побальные системы обработки анных и прогнозирования;	 интегрированные космические системы наблюдения; доступ к спутниковым данным; подготовка кадров. 	 регулирование, координации и содействия устойчивого обеспечения данными наблюдений глобального и регионального масштаба стран участниц WMO; развитие технологий интегрального представления данных; разработка технических стандартов;
уг - вс м - вс	спомогательные программы правления данными; спомогательные программы систем ониторинга; спомогательных программы Всемирна перативного информационного	я Метеорологическая Организация п	- разработка систем управление данными и сервисных систем. редставляющие интерес для гидроакустичес
об - пр	бслуживания; рограммное обеспечение приборов аблюдения; етодики наблюдения за океаном.		

Программы международного обмена океанографическими данными и информацией (IODE-

"International Oceanographic Data and Information Exchange")
- Таблицы 2 Программы ЮНЕСКО представляющие интерес для гидроакустических исследований.
- развивать исследования океана путем обмену океанографическими разработка системы мониторинга потока д данными и информацией в режимах: реального времени, близкому к реальному времени и задержки;

- содействовать использованию международных стандартов, в соответствии с Политика МОК;
- поощрять долгосрочное архивирование, сохранение, документирование, управление и услуги по всем морским данным и получению новых данных и информации;
- разработать или использовать существующие методы управления, обмена морским данным и информацией,
- контроль качества и информационных технологий международным стандартам;
- оказывать помощь членамІОС в приобретении необходимого потенциала для управления морскими исследованиями и управления данными;
- поддержка международных научных и оперативных морских программ, включая рамочные программы наблюдений за океаном.

Глобальные программы измерения профайлов температуры и солености

- разработка системы мониторинга потока данных в режиме реальном времени и данных в отложенном режиме.
- контроля качества данных согласно международным требованиям.
- развитию систем анализа, данные
- формирования глобальной баз данных температуры, профайлов солености (GTSPP)
- обеспечить доступ к данным (температура, соленость) в режиме реального времени.
- данные от якорных буев.

Цели NOAA

- обеспечение адаптации нации к изменению климата;
- смягчение последствий изменения климата;
- наблюдение за состоянием океана и прибрежными зонами;
- наблюдение за экосистемами.

- База данных содержит записи за период с **1772** года по настоящее время. На начало 2014 года база хранит в себе около 13 миллионов профилей температуры, и чуть менее шести миллионов измерений солености. В сборе данных приняло участие более 90 стран.
- И Россия?

Росгидрометцентром (Росгидромет)

Всероссийский научноисследовательский институт гидрометеорологической информации (ВНИИГМИ)

JASON 1/2

Таблица 3. Научные инстру

Инструмент		радиомет		
наблюдения		р		
Jason-1	Poseidon-2	JMR		
Jason-2	Poseidon-3	AMR	Экспериментальные	инструменты
			Carmen-2, LPT и T2L2	
METEOSAT		SEVIRI		
POES		AVHRR		

ARGO

Заселённость ARGO

Технологии глобальных систем наблюдения за океаном

JASON-1

Оптический радиометр SEVIRI

Скаттерометр спутника Aquarius/SAC-D

Спутник/Инструмент наблюдения	Альтиметр	Микроволновый радиометр	Примечание
Jason-1	Poseidon-2	JMR	
Jason-2	Poseidon-3	AMR	Экспериментальные инструменты Carmen-2, LPT and T2L2
METEOSAT		SEVIRI	
POES		AVHRR	

ARGO

	APEX	PROVOR-CTS3-DO	NINJA
Размеры:	диаметр16,5 см,	диаметр17,3 см,	диаметр19,3 см
	длина 196 см	длина 170 см	длина185
Macca	25 кг	34 кг	75 kg
Время жизниноминальная:	4 года, 150 циклов	6 года, 200 циклов	4 года,>120 циклов
Рабочая глубина погружения:	Программируемая до 2000 метров	Программируемаядо 2000 метров	Программируемаядо 3000 метров
Частота дискретизации:	ограничена скоростью передачи данных телеметрии	ограничена скоростью передачи данных телеметрии	ограничена скоростью передачи данных телеметрии
Температура:	Интервал -5°C до 35°C,	Интервал -5°С до 35°С,	Интервал -2°С до 35°С,
	Точность ± 0.002°СУход 0.002°С / в год	Точность ± 0.002°C	Точность ± 0.001°C
	(Sea-Bird electronics)	Уход 0.002°С / вгод.	Уход 0.002°С/в год.
		(Sea-Bird electronics)	(TheTsurumi-Seiki)
Давление:		Интервал 0 до 1000,	Интервал 0 до 1000,
		Точность ± 0,25%	Точность ± 0,25%
		Разрешимость 0,1 м.	Разрешимость 0,1 м.
		Стабильность 0,1% в месяц	Стабильность 0,1% в месяц
			(TheTsurumi-Seiki)
Проводимость:	Salinity 0.001 PSU	Salinity 0.001 PSU	Точность $\pm 0,001$ S/m Разрешимость $0,0001$ S/m .
	Sea-Bird electronics		Стабильность 0,0003 S/m в месяц
		Sea-Bird electronics	(TheTsurumi-Seiki)

Информационные ресурсы глобальных систем наблюдения

ARGO

Пути получения данных

Система обработки информации JASON -1/2

Особенности задачи интерполяции на основе данных от буев ARGO:

- НЕРЕГУЛЯРНОЕ РАСПРОСТРАНЕНИЕ УЗЛОВ, КАК В ПРОСТРАНСТВЕ, ТАК И ВО ВРЕМЕНИ;
- -НАЛИЧИЕ БОЛЬШОЙ ИСТОРИИ ДАННЫХ.
- -ДАННЫЕ ИМЕЮТ РАЗНУЮ СТЕПЕНЬ ДОСТОВЕРНОСТИ;
- -НАЛИЧИЕ АПРИОРНОЙ ИНФОРМАЦИИ О ХАРАКТЕРЕ ИНТЕРПОЛИРУЕМОЙ И ЭКСТРАПОЛИРУЕМОЙ ФУНКЦИИ

Интерполяция оперативных данных буев ARGO для ассимиляции данных в модели циркуляции Мирового океана

Н.Б. Захарова^{1,2}, С.А. Лебедев³

• Предлагается строить равномерные сетках с различным пространственными разрешениями, на различных горизонтах и метод кусочно-гармонической интерполяции геофизических данных на сферических поверхностях. С помощью методов строятся атласы наблюдаемых полей.

Среда проектирования гидроакустических систем

HDS

REGISTR

КОМПЛЕКС ПРОГРАММ «РЕГИСТР» СОСТОИТ ИЗ СЛЕДУЮЩИХ КОМПОНЕНТ:

- -HDS.EXE РАБОЧЕЕ МЕСТО ИССЛЕДОВАТЕЛЯ АКУСТИЧЕСКИХ ПОЛЕЙ (РМА);
- -MODE_C3.EXE -ПРОГРАММА РАСЧЕТА ПОЛЯ В СООТВЕТСТВИИ С МОДОВОЙ ТЕОРИЕЙ;
- -RAY.DLL БИБЛИОТЕКА КЛАССОВ ДЛЯ РАСЧЕТА ПОЛЕЙ В СООТВЕТСТВИИ С ЛУЧЕВОЙ ТЕОРИЕЙ;
- -WMOD.DLL БИБЛИОТЕКА КЛАССОВ ДЛЯ РАСЧЕТА ПОЛЕЙ В СООТВЕТСТВИИ С МОДОВОЙ ТЕОРИЕЙ;
- -РЕЛЯЦИОННАЯ БАЗА ДАННЫХ С ГИДРОЛОГИЧЕСКОЙ, ГЕОЛОГИЧЕСКОЙ И СЛУЖЕБНОЙ ИНФОРМАЦИЕЙ (REGISTRDB);
- -ФАЙЛОВАЯ БАЗА ДАННЫХ С ГИДРОЛОГИЧЕСКОЙ, ГЕОЛОГИЧЕСКОЙ И СЛУЖЕБНОЙ ИНФОРМАЦИЕЙ (HA3BAHUE REGISTRF).

Система «Регистр»:

- -обеспечивает работу с архивом расчетов;
- -поддерживает широкий набор моделей аппроксимации данных;
- -производит автоматический расчет параметров волновода, на основании данных полученных из ЕСИМО и аппроксимативных моделей;
- -обеспечивает ручной способ формирования и корректировка параметров волновод;
- -обеспечивает расчет полей, по лучевой и модовой методике;
- -обеспечивает инструменты анализа, и сопоставления различных расчетов полей;
- -представляет результаты расчетов, как в графическом (2D графика), так и в аналитическом виде.
- -поддержание online связи с базами данных ЕСИМО, осуществляет актуализацию геофизической информации, локальных баз данных из баз данных глобальных систем наблюдения в режиме реального или почти реального времени.