Lignumvitae (I)

General information

Designation

Guaiacum spp. (L)

Typical uses

Bearing & bushing blocks; lining of stern tubes for steamship propeller shafts; underwater use; mallets; pulley sheaves; caster wheels; stencil; chisel block; turned articles; brush backs.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O				
Material family	Natural			
Base material	Wood (tropic	cal)		
Renewable content	100		%	
Composition detail (polymers and natural materia	als)			
Wood	100		%	
Price				
Price	* 3.04 -	4.88	USD/lb	

Price

Physical properties

Density	0.0401	-	0.0488	lb/in^3
---------	--------	---	--------	---------

Mechanical properties

Mechanical properties				
Young's modulus	* 1.75	-	2.15	10^6 psi
Yield strength (elastic limit)	* 11.5	-	14.1	ksi
Tensile strength	* 19.3	-	23.6	ksi
Elongation	* 2.97	-	3.63	% strain
Compressive strength	10.3	-	12.5	ksi
Flexural modulus	1.6	-	1.94	10^6 psi
Flexural strength (modulus of rupture)	* 20.8	-	25.4	ksi
Shear modulus	* 0.131	-	0.16	10^6 psi
Shear strength	* 3	-	3.67	ksi
Bulk modulus	* 0.753	-	0.848	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	4.7			
Hardness - Vickers	* 23.7	-	28.9	HV
Hardness - Brinell	* 19.8	-	24.1	ksi
Hardness - Janka	* 5.32e3	-	6.5e3	lbf
Fatigue strength at 10^7 cycles	* 6.24	-	7.63	ksi

Mechanical loss coefficient (tan delta)	* 0.0068	-	0.0083	
Differential shrinkage (radial)	* 0.32	-	0.39	%
Differential shrinkage (tangential)	* 0.53	-	0.65	%
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%
Work to maximum strength	* 2.58	-	3.16	ft.lbf/in^3

Impact & fracture properties

Fracture toughness	* 12.2	-	14.9	ksi.in^0.5	
--------------------	--------	---	------	------------	--

Thermal properties

Glass temperature	171	-	216	°F
Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F
Thermal conductivity	* 0.312	-	0.381	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	* 1.11	-	6.11	µstrain/°F

Electrical properties

Electrical resistivity	* 6e13	-	2e14	μohm.cm
Dielectric constant (relative permittivity)	* 12	-	14.7	
Dissipation factor (dielectric loss tangent)	* 0.15	-	0.183	
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil

Magnetic properties

	·	
Magnetic type		Non-magnetic

Optical properties

Transparency	Opaque

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

Highly flammable

	g,					
Primary production energy, CO2 and water						
Embodied energy, primary production	* 4.99e3 - 5.5e3 BTU/lb					
CO2 footprint, primary production	* 0.574 - 0.633 lb/lb					
Water usage	* 1.84e4 - 2.03e4 in^3/lb					
Processing energy, CO2 footprint & water						
Coarse machining energy (per unit wt removed)	* 465 - 514 BTU/lb					
Coarse machining CO2 (per unit wt removed)	* 0.0811 - 0.0897 lb/lb					
Fine machining energy (per unit wt removed)	* 2.81e3 - 3.11e3 BTU/lb					
Fine machining CO2 (per unit wt removed)	* 0.491 - 0.542 lb/lb					
Grinding energy (per unit wt removed)	* 5.42e3 - 5.99e3 BTU/lb					
Grinding CO2 (per unit wt removed)	* 0.946 - 1.05 lb/lb					
Recycling and end of life						
Recycle	×					
Recycle fraction in current supply	8.55 - 9.45 %					
Downcycle	✓					
Combust for energy recovery	✓					
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb					
Combustion CO2	* 1.69 - 1.78 lb/lb					
Landfill	✓					

Notes

Biodegrade

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse			
Reference			
Shape			