The Virtual Learning Environment for Computer Programming

Odd-even increasing sequences

X55755_en

A sequence x_1, x_2, \ldots, x_n of integers is *odd-even increasing* if the subsequence of elements in odd positions is increasing, and the subsequence of elements in even positions is also increasing, that is, the sequence is odd-even increasing if and only if $x_2 \le x_4 \le x_6 \le \cdots$ and $x_1 \le x_3 \le x_5 \le \cdots$. Notice that, by definition, any sequence of length ≤ 2 is odd-even increasing. Furthermore a sequence is odd-even increasing if and only if for all i in $\{1, \ldots, n-2\}$ we have $x_i \le x_{i+2}$. For example 1 3 4 6 5 6 5 is odd-even increasing, but 2 3 4 1 6 7 is not.

Write a program that reads a sequence of integers from the standard input channel (cin) and tells whether the sequence is odd-even increasing or not. To this end, your program must define and use a Boolean function

```
bool is odd even increasing();
```

which reads a sequence of $n \ge 0$ integers from the standard input channel (cin) and returns true if and only if the given sequence is odd-even increasing.

Note: A function reading as few elements from the input as possible will be scored better, as it has less execution time.

Note: Recall that at this point of the course using vectors or any other method to store massive data is not allowed.

Exam score: 2.5 Automatic part: 40%

Input

A sequence of $n \ge 0$ integers.

Output

The program outputs "yes" if the given sequence is odd-even increasing and "no" otherwise.

Sample input 1	Sample output 1
3 1	yes
Sample input 2	Sample output 2
1 3 2 5 3 6 5	yes
Sample input 3	Sample output 3
2 4 6 7 9 8 9 9	yes
Sample input 4	Sample output 4
2 4 5 7 3	no
Sample input 5	Sample output 5
2 4 5 7 7 6	no

Sample input 6

2 4 5 7 7 6 5 8 9

Sample input 7

2 4 6 7 8 8 9 10 12 18

Sample input 8

1

Sample input 9

Sample input 10

1 2 0 4 5

Sample input 11

1 2 3 1 5 8

Sample input 12

1 2 3 4 2

Sample input 13

1 2 3 4 5 3

Problem information

Author: PRO1

Generation: 2015-11-02 13:00:09

© *Jutge.org*, 2006–2015. http://www.jutge.org Sample output 6

no

Sample output 7

yes

Sample output 8

yes

Sample output 9

yes

Sample output 10

no

Sample output 11

no

Sample output 12

no

Sample output 13

no