

School Name:	UDAAN
Test Name:	Weekly Assessment Class XI Week 10
Total Questions:	45
Marks:	45
Duration:	90 minutes

Instructions for Assessment:

- The test is of 11/2 hours (90 minutes) duration.
- The test consists of **45 questions**.
- There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 15 questions in each part of equal weightage.
- There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response.
- No candidate is allowed to use any textual material, printed or written, pager, mobile, any electronic device, etc

Section	: Physics
Questions: 15	Marks: 15

1.	Force F on a particle moving in a straight line varies with distance as shown in the figure. The work done on the particle during its displacement of 12 m is: a. 9 J b. 13 J c. 18 J d. 12 J	1.0
2.	A force acts on a particle of mass 3 g, such that the position of the particle is a function of time and is given by $x = 3t - 4t^2 + t^3$, x in metres, t in seconds. Which of the following could be the magnitude of work done in four seconds? a. 360 mJ b. 570 mJ c. 576 mJ d. 912 mJ	1.0
3.	F = 7-2x+3x ² N, acts on a small body of mass 2 kg and displaces it from x = 0 m to x = 5 m. The work done in joules is: a. 135 J b. 270 J c. 100 J d. 30 J	1.0
4.	Two bodies of masses m and 4m are moving with equal kinetic energies. The ratio of their linear momenta is: a. 2:1 b. 1:1 c. 1:4 d. 1:2	1.0
5.	Work done by centripetal force is:	1.0

	a. 0 b. F.S	
	c. 1	
	$\mathbf{d.}$ $\overline{F} \times \overline{S}$	
	The work done in stretching of a spring of force constant k from length l ₁ to l ₂ is:	1
	a. $k(l_2^2 - l_1^2)$	
6.	b. $\frac{1}{2}k(l_2^2-l_1^2)$	1.0
0.	c. $\frac{1}{2}k(l_2-l_1)$	1.0
	$\mathbf{c.} \frac{1}{2} \kappa (l_2 - l_1)$	
	d. $\frac{1}{2}k(l_2^2+l_1^2)$	
	_	
	Power can be expressed as	
	$\mathbf{a.}$ $\vec{F}.\vec{\mathbf{v}}$	
	1 = 2	
7.	b. $\frac{1}{2}\vec{F}.v^2$	1.0
	$\mathbf{c.}$ $\vec{F}.\vec{t}$	
	$\mathbf{d.} \vec{F} \times \vec{\mathbf{v}}$	
	If $\vec{F} = (60\hat{i} + 15\hat{j} - 3\hat{k})N$ and $\vec{v} = (2\hat{i} - 4\hat{j} + 5\hat{k})$ ms^{-1} then what is the magnitude of instantaneous	
	power is	
	a. 45 W	
8.		1.0
	b. 195 W	
	c. 75 W	
	d. 85 W	
	A body of mass m accelerates uniformly from rest to v_1 in time t_1 . The instantaneous power	
	delivered to the body as a function of time t is:	
	a. mav	
	2473 ² t	
	b. $\frac{mv_1t}{t^2}$	
9.	ι_1	1.0
	$c \frac{mv_1^2}{c}$	
	t_1	
	t_1	
	b. $\frac{mv_1^2t}{t_1^2}$ c. $\frac{mv_1^2}{t_1}$ d. $mv_1\frac{t_1}{t_2}$	
	A body is moving along a straight line by a machine delivering constant power. The distance	
10.	moved in time t is proportional to:	1.0
	mo tee m ame the proportional to.	

	a. $t^{\frac{3}{2}}$	
	b. $t^{-1/2}$	
	\mathbf{c} . $t^{\frac{1}{2}}$	
	d. $t^{-\frac{3}{2}}$	
	A wind powered generator converts wind energy into electrical energy. For a constant wind speed	
	v, the electrical power output is likely to be proportional to:	
	a. _V	
11.	b. v^3	1.0
	\mathbf{c} . \mathbf{v}^2	
	d. v^{-1}	
	An elevator weighing 500 kg is to be lifted up at a constant velocity of 0.4 m/s. What should be	
	the minimum horse power of the motor?	
12.	a. 16.4 hP	1.0
12.	b. 18.2 hP	1.0
	c. 1462160 hP	
	d. 2.62 hP	
	A body is A body moves from point A to B to move along y-axis, under the action of force	
	$\vec{F} = i - \hat{j} + 2\hat{k}$. It moves 2 m along y-axis, calculate the work done by the force.	
13.	a. 2 J	1.0
10.	b. –2 J	1.0
	c. 1 J	
	d. −1 J	
	Calculate the work done if a force of 10 N is applied on a body of mass 5 kg as shown in the	
	figure.	
	F = 10N	
	120° x-axis 5kg 5kg	
14.		1.0
	a. 25 J	
	b. -25 J	
	c. 50 J	
	d. −202.5 J	

	An object is displaced from position vector $r_1 = (4\hat{i} + 6\hat{j})m$ to $r_2 = (8\hat{i} + 12\hat{j})m$ under a force	
	$F = (3x^2 \hat{i} + 2y \hat{j})N$. The work done, by this force, equals	
15.	552 J	1.0
	83 J	
	556 J	
	80 J	

Section:	Chemistry
Questions: 15	Marks: 15

	Molecular shape of SF ₄ , CF ₄ and XeF ₄ are	
16.	a. The same, with 2, 0 and 1 lone pair of electron respectively	1.0
10.	b. The same, with 1, 1 and 1 lone pair of electron respectively	1.0
	c. Different, with 0, 1 and 2 lone pairs of electron respectively	
	d. Different, with 1, 0 and 2 lone pairs of electron respectively	
	When N $_2$ and O $_2$ are converted to monoanions \overline{N}_2^- and \overline{O}_2^- respectively then	
	which of the following statements is wrong?	
17.	a. In N ₂ , the N–N bond weakens	1.0
17.	b. In O_2^- , O–O bond length increases	1.0
	c. In O_2^{-1} , bond order decreases	
	d. N_2^- becomes diamagnetic	
	a. 17 ₂ becomes diamagnetic	
	The total number of lone pairs of electrons for Xe in XeOF ₄ is	
10	a. 0	1.0
18.	b. 1	1.0
	c. 2	
	d. 3	
	Which of the following pair of molecules will have permanent dipole moment for	
	both members?	
	a NO and CO	
19.	a. NO ₂ and CO ₂	1.0
	b. NO ₂ and O ₃	
	c. SiF ₄ and CO ₂	
	d. SiF ₄ and NO ₂	
	Which of the following statements is true for N ₃ -?	
	a. It has a non linear structure.	
20.	b. It is called pseudohalogen.	1.0
	c. The formal charge of terminal N in this anion is -1.	
	d. It is isoelectronic with NO ₂ .	
	Which of the following oxides is expected to exhibit paramagnetic behavior?	
21.	a. CO ₂	1.0
	b. CIO ₂	
	c. SO_2	
	d. SiO ₂	
	-	1

	Assuming that Hund's rule is violated, the bond order and magnetic nature of diatomic molecule of B_2 is:	
22.	a. 0 and diamagneticb. 1 and paramagneticc. 0 and paramagneticd. 1 and diamagnetic	1.0
	OF and F ₂ can be compared in terms of	
23.	 a. OF is more stable towards dissolution into atoms b. OF is paramagnetic while F₂ is diamagnetic c. Both a & b are correct d. None of above is correct 	1.0
	Which of the following diatomic molecule would be stabilised by removal of an electron?	
24.	a. C ₂ b. CN c. H ₂ d. O ₂	1.0
	The shape of XeO ₂ F ₂ molecule is	
25.	a. Square planarb. Trigonal bipyramidalc. See-sawd. Tetrahedral	1.0
	Among KO_2 , $A\ell_2C\ell_6$, BaO_2 and NO_2^+ , unpaired electron is present in	
26.	a. NO_2^+ and BaO_2 b. KO_2 and Al_2Cl_6 c. KO_2 only d. BaO_2 only	1.0
27.	 The nodal plane in the \$\pi\$ -bond of ethene is located in a. the molecular plane. b. a plane parallel to the molecular plane. c. a plane perpendicular to the molecular plane which bisects the carbon - carbon \$\sigma\$ bond at right angle. d. a plane perpendicular to the molecular plane which contains the carbon-carbon \$\sigma\$ bond. 	1.0

	Number of bonding pairs (X) and lone pairs (Y) around the central atom in $\frac{1}{12}$ ion	
	are: X Y	
28.	a. 2 2 b. 2 3 c. 4 3 d. 3 2	1.0
29.	The nitrogen atoms in NH ₃ , NH_2^- and NH_4^+ are all surrounded by eight electrons. When these species are arranged in increasing order of H-N-H bond angle then correct order is: a. NH_2^-, NH_3, NH_4^+ b. NH_3, NH_2^-, NH_4^+ c. NH_4^+, NH_2^-, NH_3^- d. NH_3^+, NH_4^+, NH_2^-	1.0
30.	Which pair of substances will have most similar geometry $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1.0

Section: N	Mathematics
Questions: 15	Marks: 15

	If there are 9 A.M.'s between 5 and 45 then sum of A.M.'s will be:	
21	a. 175	1.0
31.	b. 225	1.0
	c. 275d. 500	
	$m^{r+2} \perp n^{r+2}$	
	If $\frac{m^{r+2} + n^{r+2}}{m^{r+1} + n^{r+1}}$ is arithmetic mean of m and n there r is equal to:	
	a. -1	
32.	b. 0	1.0
	c. 1	
	d. −2	
	If 11 numbers are inserted between 1 and 49 such that the resulting sequence is an A.P., then sixth	
	number is:	
33.	a. 21	1.0
	b. 25	1.0
	c. 66	
	d. 91	
	If the A.M. between m th and n th term of an A.P. be equal to the A.M. between p th and q th term of	
	the A.P. then	
	$\mathbf{a.} \mathbf{m} - \mathbf{n} = \mathbf{p} - \mathbf{q}$	4.0
34.	b. $(m+n)-(p+q)=-4$	1.0
	c. m+n=p+q	
	d. None of these	
	The sum of two numbers a and b is $\frac{25}{12}$. An even number of arithmetic means are being inserted	
	between them and their sum exceeds their number by 2. The number of means inserted is:	
35.	a. 24	1.0
	b. 48	
	c. 96	
	d. 98 n arithmetic means are inserted between two sets of numbers p, 2q and 2p, q where p, $q \in R$.	
	Further, if the m th mean between these two sets of numbers is same, then p: q equals to	
36.	a. $m:(n-m+1)$	1.0
	b. $(m-1):(n-m+2)$	
	c. $(m-1):(n-m)$	

	d. (n-m+1): m	
	Three non-zero numbers p, q, r are in A.P. If on increasing p by 1 or increasing r by 2 the numbers	
	arrange in G.P., then q is equal to:	
37.	a. 8	1.0
	b. -6	1.0
	c. 2	
	d. 12	
	If A.M. of two positive numbers a and b is 5 and their G.M. is 4, then a is:	
	a. 8	
38.	b. 8 or 2	1.0
	c. 7 or 2	
	d. None of these	
	The difference between two numbers is 120 and the difference between their A.M. and their G.M.	
	is 50. Then, the greater of two numbers is:	
39.	a. 11	1.0
37.	b. 121	1.0
	c. 400	
	d. None of these	
	In a sequence of 17 terms, the first 9 terms ore in A.P. with common difference 3 and the last 9	
	terms are in G.P. with common ratio 2. If the middle term of A.P. be equal to the middle term of	
	the G.P., then the middle term of the entire sequence is:	
	a. $\frac{-4}{-}$	
40.	5	1.0
	b. -20	
	c. $\frac{-12}{5}$	
	d. $\frac{116}{5}$	
	If two G.M.s 'a' and 'b' and one A.M. 'm' be inserted between any two numbers x and y then the	
	value of m in terms of a and b is:	
41.		1.0
	a. $a^3 + b^3$	1.0
	b. $\frac{a^2 + b^2}{ab}$	
	αν	

		$a^3 + b^3$	
	c.	2ab	
	d.	$\frac{a^2+b^2}{2ab}$	
	If a, b,	c are m^{th} , nth and p^{th} terms of an A.P. and also of G.P. then the value of $a^{b-c}.b^{c-a}.c^{a-b}$	
	equals		
42.	a.	0	1.0
42.	b.	1	1.0
	c.	2	
	d.	None of these	
	If four	numbers are in G.P. such that their third term is greater than the first by 9 and the second	
	term is	greater than the fourth by 18. Then the numbers are:	
42	a.	3, 6, 12, 24	1.0
43.	b.	3, -6, 12, -24	1.0
	c.	6, -12, 24, -48	
	d.	None of these	
	There	are four numbers in G.P. whose sum is 85 and product is 4096. Then their common ratio is:	
		$\frac{5}{2}$	
44.	b.	$-2,\frac{-1}{2}$	1.0
	с.	2 or $\frac{1}{2}$	
	d.	4 or $\frac{1}{4}$	
	If four	numbers are in A.P. such that their sum is 32 and ratio of the product of extremes to the	
	produc	et of mean is 7:15 then the common difference is:	
45.	a.	2	1.0
45.	b.	±2	1.0
	c.	4	
	d.	±4	

Key

Question	Correct	Question	Correct	Question	Correct
Number	Option	Number	Option	Number	Option
1.	В	16.	D	31.	В
2.	С	17.	D	32.	A
3.	A	18.	В	33.	В
4.	D	19.	В	34.	C
5.	A	20.	С	35.	В
6.	В	21.	В	36.	A
7.	A	22.	D	37.	D
8.	A	23.	С	38.	В
9.	В	24.	D	39.	В
10.	A	25.	С	40.	A
11.	В	26.	С	41.	C
12.	D	27.	A	42.	В
13.	A	28.	В	43.	В
14.	В	29.	A	44.	D
15.	C	30.	С	45.	D

Explanation

Question	Explanation
Number	
1.	Work done = Area under F-d graph $w = \text{area of rectangle} + \text{area of triangle}$ $= (4 \times 2) + (\frac{1}{2} \times 5 \times 2)$ $= 8 + 5$
	= 8 + 3 $= 13 J$
2.	$x = 3t - 4t^{2} + t^{3}$ $v = \frac{dx}{dt} = 3 - 8t + 3t^{2}$ $a = \frac{dv}{dt} = -8 + 6t$ $m = 3 g$ $= 3 \times 10^{-3} \text{ kg}$ Acceleration at $t = 4$ sec $\therefore a = -8 + 6 \times 4$ $= -8 + 24$ $= 16 \text{ m/s}^{2}$ $w = F \times x$ $= m \times a \left[3t - 4t^{2} + t^{3} \right]$ $= 3 \times 10^{-3} \times 16 \left[3 \times 4 - 4 \times 4^{2} + 4^{3} \right]$ $= 3 \times 10^{-3} \times 16 \times 12 = 576 \text{ mJ}$
3.	$w = \int_{0}^{5} F dx = \int_{0}^{5} (7 - 2x + 3x^{2}) dx$ $= \left[7x - \frac{2x^{2}}{2} + \frac{3x^{3}}{3} \right]_{0}^{5} = \left[7x - x^{2} + x^{3} \right]_{0}^{5}$ $= 7 \times 5 - (5)^{2} + (5)^{3}$ $= 35 - 25 + 125$ $= 135 \text{ J}$
4.	E (Kinetic Energy) = $\frac{1}{2}mv^2 = \frac{1}{2}\frac{m^2v^2}{m}$

1	
	$E = \frac{1}{2} \frac{P^2}{m}$
	$\therefore P^2 = 2mE \text{ or } P = \sqrt{2mE}$
	i.e. P $\alpha \sqrt{m}$
	$\frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{m}{4m}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$
	$P_1: P_2 = 1:2$
	Centripetal force acts always towards the centre and displacement is tangential. Then angle between F and S is 90° .
5.	F dx
	$w = FS \cos\theta = FS \cos 90$
	= 0
	$W = u_2 - u_1 = \frac{1}{2}kl_2^2 - \frac{1}{2}kl_1^2$
6.	$= \frac{1}{2} k \Big(l_2^2 - l_1^2 \Big)$
	$= \frac{1}{2}k(l_2^2 - l_1^2)$ $\therefore W = \frac{1}{2}k(l_2^2 - l_1^2)$
	$P = \frac{\text{Work done}}{\text{Time}} = \frac{\vec{F} \cdot \vec{ds}}{dt}$
	$\frac{d\overline{s}}{dt} = \overline{\mathbf{v}}$
	$\therefore P = \vec{F} \cdot \vec{v}$
	$P = \vec{F} \cdot \vec{v}$
o	$= \left(60\hat{\mathbf{i}} + 15\hat{\mathbf{j}} - 3\hat{\mathbf{k}}\right) \cdot \left(2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}\right)$
8.	= 120 - 60 - 15
	= 120 - 75
	= 45 watts
9.	If a is uniform acceleration of the body,

	$v_1 = u_1 + at_1$
	$u_1 = 0 \Rightarrow a = \frac{V_1}{t_1}$
	Velocity of body at time t sec.
	$\mathbf{v} = 0 + \mathbf{at} = \frac{\mathbf{v}_1}{t_1} t$
	Power = $\overline{F}.\overline{v}$
	$= \text{ma.v} = m. \frac{\mathbf{v}_1}{t_1} \cdot \frac{\mathbf{v}_1}{t_1} t$
	$P = \frac{m\mathbf{v}_1^2}{t_1^2} t$
	$W = P x t = \frac{1}{2} m v^2 \qquad \therefore v^2 = \frac{2Pt}{m}$
	$\mathbf{v} = \left(\frac{2Pt}{m}\right)^{\frac{1}{2}} = \frac{ds}{dt}$
	$ds = \left(\frac{2Pt}{m}\right)^{\frac{1}{2}} dt$
10.	: Integrating on both the sides
	$\int ds = \int \left(\frac{2pt}{m}\right)^{1/2} dt$
	$s = \left(\frac{2P}{m}\right)^{\frac{1}{2}} \int t^{\frac{1}{2}} dt$
	$= K \cdot \frac{t^{\frac{3}{2}}}{3/2} = K \frac{2}{3} t^{\frac{3}{2}}$
	$\therefore S \alpha t^{3/2}$
	$P = \overline{F}.\overline{v} = \frac{d}{dt}(m\overline{v}).\overline{v} = v^2 \frac{dm}{dt} = v^2 \frac{d}{dt}(V \times \rho)$
4.5	Here V = volume and v is velocity
11.	$P = v^{2} \frac{d}{dt} (A.x \times \rho) = v^{2} A \rho. \frac{dx}{dt} = v^{2} A \rho(v)$
	$= v^3 A$
	\therefore P α v ³
12.	$P = \overline{F}.\overline{v} = \text{mgv} = 500 \text{ x } 9.8 \text{ x } 0.4$ =1960 watts

	10/0
	$P = \frac{1960}{746} \text{ hP} = 2.62 \text{ hP}$
	\therefore 1 hp = 746 watts
	$\vec{F} = \hat{i} - \hat{j} + 2\hat{k}$
	$\vec{s} = 2\hat{j}$
13.	(since the body moves along the y axis only)
	\therefore W = $\vec{F}.\vec{s}$
	$=(\hat{i}-\hat{j}+2\hat{k}).(2\hat{j})=-2J$
	Work done $W = Fscos120^{\circ}$
	$=$ $-$ Fs sin(30 $^{\circ}$)
14.	$=-10\times5\times\frac{1}{2}$
	=-25 J
	$\mathbf{W} = \int_{r_1}^{r_2} \overrightarrow{F} \cdot \overrightarrow{dr}$
	$= \int_{r_1}^{r_2} (3x^2 \hat{i} + 2y \hat{j}) \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})$ $= \int_{r_2}^{r_2} (3x^2 dx + 2y dy)$
15.	$= \int_{r}^{r_2} \left(3x^2dx + 2ydy\right)$
	$= \left[\frac{3x^3}{3} + \frac{2y^2}{2}\right]_{(4,6)}^{(8,12)}$
	$= \left[(8)^3 - (4)^3 \right] + \left[(12)^2 - (6)^2 \right]$
	= [512 - 64] + [144 - 36]
	$= 556 \mathrm{J}$
	F F G
16.	S Xe F
	Sea Saw Tetrahedral Square Planar

17.	$N_2 ightharpoonup \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \frac{\pi^2 p x^2}{\pi^2 p y^2} \sigma^2 p_z^2$ It is diamagnetic (No unpaired e") $N_2^- ightharpoonup \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \frac{\pi^2 p x^3}{\pi^2 p y^2} \sigma^2 p_z^2 \frac{\pi^* 2p x^3}{\pi^2 2p y} \sigma^* 2p_z$ One unpaired e" (paramagnetic)
	Acc to VSEPR Theory, in XeOF ₄ ,
	No. of electrons contributed by Xe = 8
	No. of electrons contributed by O = 2
	No. of electrons contributed by $4F = 4 (1 e^{-} \text{ by each F})$
	Total number of electrons around Xe in $XeOF_4 = 14$ (7 electron pairs)
	rotal names of circulant around he mixed 4 21 (7 circulant pane)
	Number of electrons used in 5σ bonds (1 Xe-O and 4 Xe-F) = 10
18.	Number of electrons used in 1 π bonds (1 Xe=O) = 2
	Total Number of Bonding pairs is therefore 6.
	Total Number of Non Bonding (lone) pairs is therefore $= 7-6 = 1$.
	F O F F F F F F F F F F F F F F F F F F
	Hybridisations of central atom, geometry and shapes of NO_2 and O_3 are
	NO_2 Hybridisation – sp^2 Geometry - triangular planar Shape – bent
19.	O_3 Hybridisation – sp^2 Geometry - triangular planar Shape – bent
	In both the molecules, individual bond moments do not cancel out each other's effects giving rise to a net permanent dipole moment in the molecule.

	The structure for azide ion is represented as
20.	:N=N=N: Formal charge on any bonded atom in a molecule (Lewis structure) is calculated as Formal charge = [Total number of valence electrons in the free atom] - [total number of non bonding electrons] - ½ [Total number of bonding electrons] Since both the terminal nitrogen atoms are identical, The formal charge on each terminal nitrogen atom = 5-4-½ (4) = 5-4-2 = -1
	CIO ₂ is an odd electron molecule.
21.	Total number of valence electrons in chlorine dioxide are
21.	23 [7(Cl) + 2 x 8 (O)].
	Thus one electron is always unpaired and is responsible for paramagnetism.
	$B_2 = \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \pi 2 p_x^2$ $B.O = \frac{1}{2} (6-4) = 1$
22.	$B.O = \frac{1}{6}(6-4) = 1$
	_
	No unpaired e ⁻ , so diamagnetic
	O-F (17), Bond order = 1.5
23.	Unpaired $e^- = 1$, paramagnetic F_2 (18), Bond order = 1
	No unpaired e ⁻ , diamagnetic
	$O_2 \rightarrow \sigma \ 1s^2 \ \sigma^* \ 1s^2 \ \sigma \ 2s^2 \ \sigma^* \ 2s^2 \ \sigma \ spz^2 \frac{\pi^2 p x^2}{\pi^2 p y^2} \frac{\pi^* + 2p x^3}{\pi^* + 2p y^3} \frac{\sigma^* 2pz}{\sigma^* 2pz}$
24.	B.O = $\frac{1}{2}(10-6)=2$
_ 	$O_2^+ \to \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma spz^2 \frac{\pi^2 p x^4}{\pi^2 p y^2} \frac{\pi^2 + 2p x^4}{\pi^2 + 2p y^4} \sigma^* 2pz$
	B.O = $\frac{1}{2}(10-5) = 2.5$

30.	Sp¹ hybridised sulphur Sp² hybridised carbon Both of them have triangular planar geometry.
	a = 5, l = 45 $a = 45$
	∴ there are 9 A.M.'s ∴ No. of terms = $9 + 2 = 11$ ∴ $S_n = \frac{n}{2}(a + l)$
31.	$=\frac{11}{2}(5+45)$
	$=\frac{11}{2}\times50=275$
	∴ Required sum= $275 - (5 + 45)$
	= 225
	$\frac{m^{r+2} + n^{r+2}}{m^{r+1} + n^{r+1}} = \frac{m+n}{2}$
	$\Rightarrow 2m^{r+2} + 2n^{r+2} = m^{r+2} + nm^{r+1} + mn^{r+1} + n^{r+2}$
	$\Rightarrow m^{r+1}(m-n) = n^{r+1}(m-n)$
	\Rightarrow $m^{r+1} = n^{r+1}$
32.	$\Rightarrow \left(\frac{m}{n}\right)^{r+1} = 1$
	$\Rightarrow \left(\frac{m}{n}\right)^{r+1} = \left(\frac{m}{n}\right)^{\circ}$
	\Rightarrow r + 1 = 0
	r = -1
	: 11 numbers are inserted
	$\therefore \text{Total no. of terms} = 11 + 2 = 13$
33.	$a_{13} = 49$
	a + 12d = 49
	a = 1

	∴ 12d = 49 – 1
	= 48
	$\therefore d = 4$
	Sixth no. is seventh term of A.P.
	$\therefore a_7 = a + 6d = = 1 + 6 \times 4 = 25$
	$a_{m} = a + (m-1)d$
	$a_n = a + (n-1)d$
	A.M. between m th and n th term
	$= A.M1 = \frac{a + (m-1)d + a + (n-1)d}{2}$
	$=\frac{2a+(m+n-2)d}{2}$
	$a_p = a + (p-1)d$
	$a_q = a + (q-1)d$
34.	A.M. between p th and q th term
	$= A.M2 = \frac{2a + (p + q - 2)d}{2}$
	$\therefore A.M_1 = A.M_2$
	$\therefore \frac{2a + (m+n-2)}{2} = \frac{2a + (p+q-2)d}{2}$
	\Rightarrow 2a + (m+n-2)d = 2a + (p+q-2)d
	$\Rightarrow (m+n-2)d-(p+q-2)d$
	\Rightarrow m+n-2=p+q-2
	\Rightarrow m+n=p+q
35.	$a+b=\frac{25}{12} \qquad (i)$
	Let 2n A.M.s are inserted
	So, total number of terms = $2n+2$
	$S_{2n+2} = \frac{2n+2}{2}(a+b)$

$$= \frac{2(n+1)}{2} \cdot \frac{25}{12}$$
 (ii)
$$= \frac{25(n+1)}{12}$$
 (ii)
Sum of A.M.s = S_{2n+2} (a+b)

$$=\frac{25(n+1)}{12}-\frac{25}{12}$$

$$=\frac{25(n+1-1)}{12}=\frac{25n}{12}$$
 (iii)

According to the questions:

Sum of A.M. =
$$2n + 2$$

$$\Rightarrow \frac{25n}{12} = 2n + 2 \qquad \text{(from iii)}$$

$$\Rightarrow$$
 25n = 24n + 24

$$\Rightarrow$$
 n = 24

$$\Rightarrow$$
 2n = 48

i.e. No. of terms inserted = 48

For first set

Since n arithmetic means are inserted between p and 2q, so total number of terms = n+2

Hence,
$$t_{n+2} = 2q$$

$$p + (n+2-1)d_1 = 2q$$

$$\Rightarrow$$
 p + (n + 1)d₁ = 2q

$$\Rightarrow d_1 = \frac{2q - p}{n + 1}$$

36.
$$\therefore m^{th} \text{ mean} = (m+1)^{th} \text{ term of A.P.}$$

$$= p + (m+1-1)d_{_1}$$

$$=p+m\frac{2q-p}{n+1} \hspace{1cm} (1)$$

Similarly,

For second set:

$$T_{n+2} = q$$

 $\Rightarrow 2p + (n+2-1)d_2 = q$

	q_2p
	$\Rightarrow d_2 = \frac{q - 2p}{n + 1}$
	\therefore m th mean = $(m+1)$ th term
	$=2p+(m+1-1)\frac{q-2p}{n+1}$
	$=2p+\frac{m q-2p}{n+1} \qquad (2)$
	According to the questions,
	$p + \frac{m(2q-p)}{n+1} = 2p + \frac{m(q-2p)}{n+1}$
	$\Rightarrow \frac{pn+p+2qm-mp}{n+1} = \frac{2pn+2p+mq-2mp}{n+1}$
	$\therefore n+1\neq 0$
	p(n+1-m) + 2qm = 2p(n+1-m) + mq
	$\Rightarrow qm = p(n+1-m)$
	$\frac{p}{q} = \frac{m}{n+1-m}$
	∴ p, q, r are in A.P.
	$\therefore 2q = p + r \qquad (i)$
	Also p+1, q, r are in G.P.
	$\therefore q^2 = (p+1) r(ii)$
	Also p, q and $r + 2$ are in G.P.
	$\therefore q^2 = p (r+2) $ (iii)
	From (ii) and (iii)
37.	pr + r = pr + 2p
	$\Rightarrow r = 2p \qquad (iv)$
	By putting this in (i):
	2q = p + 2p
	=3p
	$\therefore q = \frac{3}{2}p \qquad (v)$
	By putting values from (v) and (iv) in (ii),

	$\left(\frac{3}{2}p\right)^2 = (p+1)2p$
	$\Rightarrow \frac{9}{4}p^2 = 2p^2 + 2p$
	$\Rightarrow 9p^2 = 8p^2 + 8p$
	\Rightarrow p ² = 8p
	$\Rightarrow p = 8 \qquad \therefore p \neq 0$
	$\therefore q = \frac{3}{2} \times 8 = 12$
	$\frac{a+b}{2}=5$
	a+b=10 (i)
	$\sqrt{ab} = 4$
	ab = 16 (ii)
	$(a+b)^2 = 10^2$
	$a^2 + b^2 + 2ab = 100$
	$a^2 + b^2 = 100 - 2 \times 16$
38.	$a^2 + b^2 = 100 - 32$
	= 68
	$(a-b)^2 = a^2 + b^2 - 2ab$
	$=68-2\times16$
	= 68 - 32
	= 36
	$a - b = \pm 6 \qquad \text{(iii)}$
	Adding (i) + (ii)
	2a = 16 or 2a = 4
	a = 8 or $a = 2$
	Let the two numbers be a and b
39.	$\therefore a - b = 120 \text{ and } \frac{a + b}{2} - \sqrt{ab} = 50$

$$\Rightarrow (\sqrt{a})^2 - (\sqrt{b})^2 = 120 \text{ and } (\sqrt{a})^2 + (\sqrt{b})^2 - 2\sqrt{ab} = 100$$

$$\Rightarrow$$
 $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = 120$ and $(\sqrt{a} - \sqrt{b})^2 = 10^2$

$$\Rightarrow \sqrt{a} - \sqrt{b} = 10 \qquad (i)$$

$$\therefore (\sqrt{a} + \sqrt{b}).10 = 120$$

$$\Rightarrow \sqrt{a} + \sqrt{b} = 12$$
 (ii)

Adding (i) & (ii),

$$2\sqrt{a} = 22$$

$$\Rightarrow \sqrt{a} = 11$$

$$\therefore \sqrt{b} = 12 - 11 = 1$$
 [from eq. (ii)]

$$\therefore$$
 a = 121, b = 1

$$\therefore d = 3$$

$$\therefore a_9 = a + 8d = a + 8 \times 3 = a + 24 (1)$$

Middle term of A.P. $= a_5 = a + 4d = a + 4 \times 3$

$$= a + 12$$
 (2)

Last 9 terms are in G.P. with r = 2 and first term $= b = a_9 = a + 24$

Using (1)

Middle term of G.P. $t_5 = br^4 = b(2)^4$

$$=(a+24)^{16}$$

40. Now, according to the question,

$$\Rightarrow a+12=16a+384$$

$$\Rightarrow$$
 12 $-$ 384 $=$ 15a

$$\Rightarrow \frac{-375}{15} = a$$

$$\Rightarrow$$
 a = $\frac{-124}{5}$

$$\therefore b = a_9 = \frac{-124}{5} + 24 = \frac{-124 + 120}{5} = \frac{-4}{5}$$

	V I V
	$A.M. (m) = \frac{x+y}{2}$
	$\Rightarrow 2m = x + y \tag{i}$
	x, a, b, y are in G.P. as a and b are Geometric Means b/w x & y
	$\therefore a^2 = xb \Rightarrow x = \frac{a^2}{b}$
41.	$b^2 = ay \Rightarrow y = \frac{b^2}{a}$
	$\therefore x + y = \frac{a^2}{b} + \frac{b^2}{a}$
	$\Rightarrow 2m = \frac{a^3 + b^3}{ab} \qquad [using (i)]$
	$\Rightarrow m = \frac{a^3 + b^3}{2ab}$
42.	$T_m = a = a_1 + (m-1)d = AR^{m-1}$
	$T_n = b = a_1 + (n-1)d = AR^{n-1}$
	$\begin{split} T_m &= a = a_1 + (m-1)d = AR^{m-1} \\ T_n &= b = a_1 + (n-1)d = AR^{n-1} \\ T_p &= c = a_1 + (p-1)d = AR^{p-1} \\ \therefore b - c = (n-p)d \\ c - a &= (p-m)d \\ a - b &= (m-n)d \end{split}$
	$\therefore b - c = (n - p)d$
	c-a=(p-m)d
	a-b=(m-n)d
	$\therefore a^{b-c}.b^{c-a}.c^{a-b} = \ AR^{m-1} \ ^{(n-p)d}. \ AR^{n-1} \ ^{(p-m)d}. \ AR^{p-1} \ ^{(m-n)d}$
	$=A^{(n-p+p-m+m-n)d}.R^{d(mn-mp-n+p+np-nm-p+m+pm-pn-m+n)}$
	$=A^{\circ}.R^{\circ}=1$
	Let the four numbers be a, ar, ar ² , ar ³
	So, $ar^2 - a = 9$ and $ar - ar^3 = 18$
43.	\Rightarrow a(r ² -1) = 9 and ar(1-r ²) = 18
	$\Rightarrow \frac{\operatorname{ar}(1-r^2)}{\operatorname{a}(r^2-1)} = \frac{18}{9}$
	$\Rightarrow -r = 2 \Rightarrow r = -2$ Now, $a(r^2 - 1) = 9 \Rightarrow a \cdot 3 = 9 \Rightarrow a = 3$
	Now, $a(r^2 - 1) = 9 \Rightarrow a \cdot 3 = 9 \Rightarrow a = 3$

Numbers	0440	2	6	10	~~4	2
numbers	are.	∵.⊃.	-0.	12	and	-24.

Let the four numbers in G.P. be $\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$ then $\frac{a}{r^3}, \frac{a}{r}$ ar. $ar^3 = 4096$

$$a^4 = 4096$$

$$a^4 = 8^4 \Rightarrow a = 8 \tag{i}$$

$$\frac{a}{r^3} + \frac{a}{r} + ar + ar^3 = 85$$

$$\Rightarrow 8\left(\frac{1}{r^3} + r^3\right) + 8\left(\frac{1}{r} + r\right) = 85$$

$$\Rightarrow 8 \left[\left(\frac{1}{r} + r \right)^3 - 3.\frac{1}{r}r.\left(\frac{1}{r} + r \right) \right] + 8 \left(\frac{1}{r} + r \right) = 85$$

$$\Rightarrow 8\left(\frac{1}{r}+r\right)^3-24\left(\frac{1}{r}+r\right)+8\left(\frac{1}{r}+r\right)=85$$

$$\Rightarrow 8\left(\frac{1}{r} + r\right)^3 - 16\left(\frac{1}{r} + r\right) - 85 = 0$$

44.
$$\Rightarrow$$
 Let $\frac{1}{r} + r = x$

$$\Rightarrow 8x^3 - 16x - 85 = 0$$

$$\Rightarrow$$
 (2x-5)(4x²+10x+17) = 0

$$\Rightarrow$$
 2x - 5 = 0 or 4x² + 10x + 17 = 0

$$\Rightarrow x - \frac{-10 \pm \sqrt{100 - 16 \cdot 17}}{8}$$

$$=\frac{-10\pm\sqrt{-172}}{8}=\frac{-10\pm\sqrt{172}i}{8}$$
 (Not possible)

$$\therefore x = \frac{5}{2}$$

$$\Rightarrow \frac{1}{r} + r = \frac{5}{2}$$

$$\Rightarrow \frac{1+r^2}{r} = \frac{5}{2}$$

$$\Rightarrow$$
 2r² + 2 = 5r

	$\Rightarrow 2r^2 - 5r + 2 = 0$
	$\Rightarrow (r-2)(2r-1)=0$
	$r = 2 \text{ or } r = \frac{1}{2}$
	\therefore Common Ratio = $r^2 = 4$ or $\frac{1}{4}$
	Let the four numbers be
	(a-3d), (a-d), (a+d), (a+3d)
	Then,
	a+3d+a-d+a+d+a+3d=32
	\Rightarrow 4a = 32
	\Rightarrow a = 8 (i)
	Further,
45.	$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15}$
	$\Rightarrow \frac{a^2 - 9d^2}{a^2 - d^2} = \frac{7}{15}$
	$\Rightarrow \frac{64 - 9d^2}{64 - d^2} = \frac{7}{15}$
	\Rightarrow 960 – 135d ² = 448 – 7d ²
	\Rightarrow 512 = 128d ²
	\Rightarrow d ² = 4
	$d = \pm 2$
	∴ Common Difference = 2d = ±4