(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-226052

(43)公開日 平成6年(1994)8月16日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ			Ħ	術表示	箇所
B 0 1 D	53/36	102 I	9042-4D						
		ZAB	9042-4D						
	53/34	129 E	3						
B01J	29/06	ZAB A	A 9343-4G						
				審査請求	未請求	請求項の数 2	OL	(全 9	頁)
(21)出願番号	寻	特顧平5-13580	_	(71)出願人		08			

三菱重工業株式会社 (22)出願日 平成5年(1993)1月29日 東京都千代田区丸の内二丁目5番1号 (72)発明者 野島 繁 広島県広島市西区観音新町四丁目 6番22号 三菱重工業株式会社広島研究所内 (72)発明者 飯田 耕三 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内

(74)代理人 弁理士 内田 明 (外2名)

(54) 【発明の名称 】 窒素酸化物の浄化方法

(57)【要約】

【目的】 窒素酸化物を浄化する方法に関する。

【構成】 窒素酸化物を含有する排ガスに有機物を添加 し、温度100~800℃の条件下において、特定の触 媒に接触させて排ガス中の窒素酸化物を浄化する方法。

【特許請求の範囲】

【請求項1】 窒素酸化物を含有する排ガスに有機物を添加し、温度100~800℃の条件下において、下記触媒群の一種の触媒と接触させることを特徴とする排ガス中の窒素酸化物の浄化方法。

① 脱水された状態において酸化物のモル比で表わして、(1 ± 0 . 6) R_2 O・ $\{aM_2$ O $_3$ ・b A I_2 O $_3$ ・c Me O $\}$ ・ y S i O $_2$ (上記式中、Rはアルカリ 金属イオン及び/又は水素イオン、MはVIII族金属、希 土類金属、チタン、バナジウム、クロム、ニオブ、アン チモン、ガリウムからなる群から選ばれた 1 種以上の金属、Me はアルカリ土類金属、 $a\geq0$, $b\geq0$, $c\geq0$, a+b=1, y/c>12, y>12) の化学式を 有し、かつ本文で詳記する表Aで示される X 線パターンを有する結晶性シリケートに銅、コバルト、ニッケル、鉄、クロム、亜鉛、マンガンよりなる群から選ばれた 1 種以上の金属を担持した触媒

② 組成式で表わして、 Al_2O_3 、 ZrO_2 、 TiO_2 又は SiO_2 の酸化物並びに Al_2O_3 ・ TiO_2 、 Al_2O_3 ・ ZrO_2 、 ZrO_2 ・ TiO_2 又は SiO_2 ・ Al_2O_3 の複合酸化物よりなる群から選ばれた 1種以上の酸化物又は複合酸化物よりなる触媒

③ Y型ゼオライト、モルデナイト、L型ゼオライト、 クリノプチロライト、フェリエライト、ZSM-5型ゼ オライト、A型ゼオライトよりなる群から選ばれた1種 以上のゼオライトよりなる触媒

④ SO_4/ZrO_2 、 SO_4/ZrO_2 ・ Al_2O_3 、 SO_4/ZrO_2 ・ TiO_2 、 SO_4/TiO_2 よりなる群から選ばれた1 種以上の固体超強酸よりなる触媒。

【請求項2】 添加する有機物がエタン、プロパン、ブタン、ペンタン、ヘキサンのパラフィン類、エチレン、プロピレン、ブテンのオレフィン類、アセチレン、ブタジエンのジエン類、メタノール、エタノール、プロパノ

(上記式中、Rはアルカリ金属イオン及び/又は水素イオン、MはVIII族金属、希土類金属、チタン、パナジウム、クロム、ニオブ、アンチモン、ガリウムからなる群

から選ばれた1種以上の金属、Meはアルカリ土類金

ール、ブタノールのアルコール類、ベンゼン、トルエン、キシレンの芳香族類、アセトン、メチルエチルケトンのケトン類、ジメチルエーテル、ジエチルエーテルのエーテル類、酢酸、ギ酸のカルボン酸類、ホルムアルデヒド、アセトアルデヒドのアルデヒド類、ギ酸メチルからなる群から選ばれた少なくとも1種の物質又はガソリン、灯油、軽油などの混合物燃料であることを特徴とする請求項1記載の窒素酸化物の浄化方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒素酸化物(以後、NOxと略称)を浄化する方法に関するものである。

[0002]

【従来の技術】排ガス及び汚染空気中のNOx除去法としては吸着法、酸化吸収法、接触還元法などがあるが、後処理不要の接触還元法が経済的、技術的にも有利とされている。接触還元法の中でボイラ排ガス中のNOxはアンモニア等の還元ガスを加える選択的還元法が主流であり、自動車排ガス中のNOx除去は共存するH2, CO, 炭化水素の還元性ガスによる非選択的還元法が主流である。

【0003】一方、近年、窒素酸化物の直接分解触媒に関する研究が鋭意実施されており、 Pt/Al_2O_3 , LaSrCoOx(ペロブスカイト構造), Al_2O_3 , Cu-ZSM-5等の触媒が報告されている。しかし、いずれの触媒とも、反応速度が遅く、 H_2O_3 0、等の共存ガスにより、活性が低下する問題点を有する。

【0004】又、本発明者らは酸化物のモル比で表わして下記式1の組成を有し、かつ結晶構造がX線回折にて後記表Aの回折パターンを有する結晶性シリケートに銅、ニッケル、コバルト、鉄、クロム、亜鉛、マンガンを担持した触媒が高活性であることを見い出しているが、実用化に到るまでの反応速度は有していない。

 $(1\pm0.~6)~R_2~O\cdot (aM_2~O_3~\cdot bAl_2~O_3~\cdot cMeO)~\cdot ySiO_2$

・・・(式1)

属、 $a \ge 0$, $b \ge 0$, $c \ge 0$, a + b = 1, y / c > 12, y > 1 2)

[0005]

【表1】

2 θ	I / I ₀
7. 9±0. 1	vs
8.8±0.1	vs
13.2±0.2	W
13.9±0.2	M
14.7±0.2	M
15.4±0.2	W
15.9±0.2	M
19.3±0.2	W
20.8±0.2	M
23.1±0.2	S
23.8±0.1	M
24.4±0.2	M
26.9±0.3	M
29.2±0.2	W
29.9±0.2	M
1	

W : 弱 M : 中級 S : 強 VS : 非常に強

VS . 升雨に加 (X線源:Cu)

I_o は最も強いピーク強度で I / I_o は相対強度 【0006】

【発明が解決しようとする課題】ボイラ排ガス中のNO x除去で用いられる触媒は通常 $V-W/TiO_2$ 系であり、還元剤はアンモニアが用いられているが高価であり、安全面に十分な注意を払う必要があるため代替の還元剤を望まれている。又、自動車排ガス中のNO x除去では、通常、 $Pt-Rh/Al_2O_3$ 系である三元触媒(排ガス中の炭化水素,一酸化炭素,NOxo3物質を同時に除去する触媒で空燃比14.6前後でのみNOx除去を実施しているが、y-vがーンガソリンエンジンやディーゼルエンジン等の高 O_2 濃度排ガス中では三元触媒によるNOx除去は不可能である。

【0007】又、地下トンネルや駐車場等の公共の場での希薄NOxの除去方法としては、PSA法により希薄NOxを吸着濃縮し、さらに濃縮NOxを触媒による直接分解法が提案されているが、 O_2 , H_2 Oの共存ガスが存在するため、NOx除去のためには多量の触媒量が必要となる不具合が生じている。

【0008】本発明は上記技術水準に鑑み、従来法におけるような不具合のないNOxの除去方法を提供しようとするものである。

[0009]

【課題を解決するための手段】本発明者らは前記した結 晶性シリケート触媒の有効的な利用方法を鋭意検討した 結果、ボイラ排ガス(NO:約500ppm、 O_2 :約 10%、 H_2 O:約10%)中のNOx除去には該触媒を用いてアンモニアの代わりに有機物が有効な還元剤として作用することを確認すると共に、組成式にて、 $A1_2$ O_3 , Z r O_2 、T i O_2 又はS i O_2 のような酸化物、 $A1_2$ O_3 ・T i O_2 , $A1_2$ O_3 ・Z r O_2 ,Z r Z r Z r Z r Z で

【0010】さらに、添加する有機物としては、エタン、プロパン、プタン、ペンタン、ヘキサンのパラフィン類、エチレン、プロピレン、ブテンのオレフィン類、アセチレン、ブタジエンのジエン類、メタノール、エタノール、プロパノール、ブタノールのアルコール類、ベンゼン、トルエン、キシレンの芳香族類、アセトン、メチルエチルケトンのケトン類、ジメチルエーテル、ジエチルエーテルのエーテル類、酢酸、ギ酸のカルボン酸類、ホルムアルデヒド、アセトアルデヒドのアルデヒド類、ギ酸メチルからなる群から選ばれた少なくとも1種の物質又はガソリン、灯油、軽油などの混合物燃料がいずれも有効な還元剤として窒素酸化物の浄化反応に有効であることを確認した。

【0011】本発明は上記知見によって完成されたものであって、本発明は

- (1) 窒素酸化物を含有する排ガスに有機物を添加し、 温度100~800℃の条件下において、下記触媒群の 一種の触媒と接触させることを特徴とする排ガス中の窒 素酸化物の浄化方法。
- ① 脱水された状態において酸化物のモル比で表わして、 (1 ± 0.6) R₂ O・ $[aM_2O_3\cdot bAl_2O_3\cdot cMeO]$ ・ySiO₂ (上記式中、Rはアルカリ金属イオン及び/又は水素イオン、MはVIII族金属、希土類金属、チタン、バナジウム、クロム、ニオブ、アンチモン、ガリウムからなる群から選ばれた1種以上の金属、Meはアルカリ土類金属、 $a\ge0$, $b\ge0$, $c\ge0$, a+b=1, y/c>12, y>12) の化学式を有し、かつ本文で詳記する表Aで示されるX線パターンを有する結晶性シリケートに銅、コバルト、ニッケル、鉄、クロム、亜鉛、マンガンよりなる群から選ばれた1種以上の金属を担持した触媒
- ② 組成式で表わして、 Al_2O_3 、 ZrO_2 、 TiO_2 又は SiO_2 の酸化物並びに Al_2O_3 ・ TiO_2 、 Al_2O_3 ・ ZrO_2 、 ZrO_2 ・ TiO_2 又は SiO_2 ・ Al_2O_3 の複合酸化物よりなる群から選ばれた1 種以上の酸化物又は複合酸化物よりなる触媒
- ③ Y型ゼオライト、モルデナイト、L型ゼオライト、 クリノプチロライト、フェリエライト、ZSM-5型ゼ オライト、A型ゼオライトよりなる群から選ばれた1種 以上のゼオライトよりなる触媒
- ④ SO_4/ZrO_2 、 SO_4/ZrO_2 ・ Al_2O_3 、 SO_4/ZrO_2 ・ TiO_2 、 SO_4/TiO_2 よりなる群から選ばれた1種以上の固体超強酸よりなる触媒。
- (2) 添加する有機物がエタン、プロパン、ブタン、ペ ンタン、ヘキサンのパラフィン類、エチレン、プロピレ

$$C_3$$
 H_6 + $3/2O_2$ → 3 CH_2 O · (これが活性有機化合物と想定) CH_2 O · + O_2 → CO_2 + H_2 O · · · · · · · · ·

【0015】 【実施例】

(例1)

(触媒調製)本発明の一実施例にて用いる結晶性シリケートは脱水された状態で $Na_2O\cdot 0.5Al_2O_3\cdot 0.5Fe_2O_3\cdot 0.1CaO\cdot 25SiO_2$ で表わされ、前記表Aに示す結晶構造を有するものを使用した。なお、この結晶性シリケートは以下のように調製した。

【0016】水ガラス3号を水に溶解し溶液Aとする。また硫酸第二鉄、硫酸アルミニウム、酢酸カルシウムを水に溶解して溶液Bとする。なお、溶液A、溶液Bの仕込みモル数は36Na $_2$ O・ $[0.5Fe_2O_3\cdot0.5Al_2O_3\cdot0.1CaO]\cdot25SiO_2\cdot1600H_2Oのように調製し、溶液Aと溶液Bを等量ずつ別の容器に滴下しゲルを生成させる。中和によって生成し$

ン、ブテンのオレフィン類、アセチレン、ブタジエンの ジエン類、メタノール、エタノール、プロパノール、ブ タノールのアルコール類、ベンゼン、トルエン、キシレ ンの芳香族類、アセトン、メチルエチルケトンのケトン 類、ジメチルエーテル、ジエチルエーテルのエーテル 類、酢酸、ギ酸のカルボン酸類、ホルムアルデヒド、ア セトアルデヒドのアルデヒド類、ギ酸メチルからなる群 から選ばれた少なくとも1種の物質又はガソリン、灯 油、軽油などの混合物燃料であることを特徴とする上記 (1) 記載の窒素酸化物の浄化方法。である。

[0012]

【作用】リーンバーンエンジン排ガス(O₂ 濃度1~1 0%)中のNO x 除去に該触媒が有効に作用することも明らかとなり、排ガス中の有機物が還元剤として有効に働く。さらに、排ガス中の有機物が少ない場合、定置型エンジンでは連続的に、移動型エンジンでは還元剤の濃度に応じて有機物を供給すれば、所定のNO x 除去性能を有することが判明した。又、ディーゼルエンジンもガソリンエンジンと同様に、排ガス中に還元剤の濃度に応じて有機物を添加することにより所定のNO x 除去性能を有することを確認している。

【0013】なお、いずれの触媒、いずれの還元剤とも作用する温度は $100\sim800$ ℃と広範囲であり、共存するガス(SOx, H_2O , O_2 等)の影響も少ない。【0014】上記触媒(結晶性シリケート系、固体酸系)はNOx除去に用いる場合、NOxの直接分解($2NO\rightarrow N_2+O_2$)反応に有効に働くが、有機物が存在する場合、系内に存在する O_2 により有機物が活性化され、活性有機化合物が生成すると考えられる。炭化水素の O_3H_6 を例に採って示すと反応式は下記のようになると考えられる。

た上記スラリーゲルに硫酸を適当量添加し、ゲルのpH を9に合わせる。その後、有機窒素化合物として、テト ラプロピルアンモニウムブロマイドをFegOgとAl 2 O3 合計モル数の10倍加え、上記スラリとよく混合 し、3 リットルのステンレスオートクレーブにはり込 む。このスラリを300rpmにて攪拌しながら、16 0℃3日間反応させた。冷却後、固形分をろ過し、洗浄 水のpHが7になるまで充分水洗し、110℃で12時 間乾燥し、550℃で3時間焼成し結晶性シリケート1 を得た。該結晶性シリケートを0.04モル濃度酢酸水 液にて銅イオン交換を20℃、48時間連続して実施 し、イオン交換後、垂涎、乾燥し粉末触媒1を調製し た。担持Cu量はO. 70mmolであった。この粉末 触媒1にバインダーとしてアルミナゾル、シリカゾル、 水を加えて混合攪拌し、ウォッシュコート用スラリを調 製した。このスラリにコージェライトモノリス基材を浸 漬させ、余分なスラリを吹き払い、ハニカム触媒1を調製した。

【0017】(括性評価) ハニカム触媒1を用いてディーゼル排ガスの脱硝試験として下記模擬ガスにて活性評価試験を実施した。

○温度: 350℃, 450℃

OGHSV : 30000 h-1

○ガス組成 : NO:400ppm, O₂:8%, C O₂:10%, H₂O:10%, 残N₂

触媒の前段に還元剤として C_2 H_5 OHを1000 p p m (C_1 換算で2000 p p m) 均一に上記模擬ガスに供給して脱硝反応を実施した。活性評価結果を後記表 B に示す。

【0018】(例2)結晶性シリケートの調合時において、例1と同様に硫酸第二鉄の代わりに、塩化コバルト、塩化ルテニウム、塩化ロジウム、塩化ランタン、塩化セリウム、塩化チタン、塩化バナジウム、塩化クロム、塩化ニオブ、塩化アンチモン、塩化ガリウムを各々酸化物換算で Fe_2O_3 と同じモル数だけ添加した以外は結晶性シリケート1と同様の操作を繰り返して、結晶性シリケート2、3、4、5、6、7、8、9、10、11、12を調製した。

【0019】又例1と同様に結晶性シリケート調合時に おいて酢酸カルシウムの代わりに酢酸マグネシウム、酢 酸ストロンチウム、酢酸バリウムを各々酸化物換算でCaOと同じモル数だけ添加した以外は結晶性シリケート1と同様の操作を繰り返して結晶性シリケート13,14,15を調製した。

【0020】これらの結晶性シリケートを例1と同様の方法で粉末触媒化し、粉末触媒2~15を得、さらに例1と同様にハニカム触媒化し、ハニカム触媒2~15を調製した。

【0021】この例2で得たハニカム触媒2~15を例1の活性評価条件と同じ条件で評価した結果を、後記表Bに併せて示す。

【0022】(例3)結晶性シリケート1を用いて塩化コバルト、塩化ニッケル、塩化第二鉄、硝酸クロム、塩化亜銅、塩化マンガンの各0.04M水溶液にてイオン交換を60℃、48時間連続して実施し、イオン交換後、水洗、乾燥し粉末触媒16~21を得た。さらに例1と同様に粉末触媒16~21をハニカム化しハニカム触媒16~21を得た。

【0023】この例3で得たハニカム触媒16~21を例1の活性評価条件と同じ条件で評価した結果を下記表 Bに併せて示す。

[0024]

【表2】

表 B

活性評価結果	7 NOX (\$) (450°C)	28	99	25	56	54	53	53	23	25	51	53
	n Nox (%) (350°C)	09	99	35	99	20	53	58	09	25	49	55
C ₂ H ₅ OH添加量	(C ₁ 換算)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
結晶性シリケート組成	(脱水された形態)	(H · Na) ₂ 0 · (0. 5A1 ₂ 0 ₃ ·0. 5Fe ₂ 0 ₃ ·0. 1Ca0) · 25Si0 ₂	$(\text{H} \cdot \text{Na})_2 0 \cdot (0.5 \text{A})_2 0_3 \cdot 0.5 \text{Co}_2 0_3 \cdot 0.1 \text{Ca} 0) \cdot 25 \text{Si} 0_2$	$(H \cdot Na)_2 0 \cdot (0.5A)_2 0_3 \cdot 0.5Ru_2 0_3 \cdot 0.1Ca0) \cdot 25Si 0_2$	$(H \cdot Na)_2 O \cdot (O.5A)_2 O_3 \cdot 0.5Rh_2 O_3 \cdot 0.1CaO) \cdot 25SiO_2$	(H·Na)20 ·(0.5A1203-0.5La203 0.1Ca0) · 25Si02	(H·Na)20 · (0. 5A1203.0, 5Ce203 0. 1Ca0) · 25Si02	Cu (H · Na) ₂ O · (O. 5A1 ₂ O ₃ ·O. 5Ti ₂ O ₃ ·O. 1CaO) · 25SiO ₂	$(H \cdot Na)_2 0 \cdot (0.5 A I_2 0_3 \cdot 0.5 V_2 0_3 \cdot 0.1 Ca0) \cdot 25 Si 0_2$	(H·Na) ₂ 0 ·(0.5Al ₂ 0 ₃ ·0.5Cr ₂ 0 ₃ ·0.1Ca0)·25Si0 ₂	(H·Na)20 · (0.5A1203·0.5Nb203 0.1Ca0)·25Si02	Cu (H·Na) ₂ 0 ·(0.5Al ₂ 0 ₃ ·0.5Sb ₂ 0 ₃ ·0.1CaO)·25SiO ₂
拓	金属	no	3	Cu	Cu	Cu	ດດ	Cu	Cu	n	Cu	ກິ່ງ
ハニカム	触媒番号	1	2	3	4	2	ຍ ⊭ ລໄ	L	8	6	10	11

[0025]

しんな)
) B
茶

(၁.0

	価結果	7 NOx (%) (450	20	09	99	54	46	50	25	48	50	52
	活性評	n Nox (%) (350°C)	56	52	48	56	54	48	50	44	42	48
	C2H50H添加量	(C ₁ 換算)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
	結晶性シリケート組成	(既水された形態)	$({\rm H} \cdot {\rm Na})_2 0 \cdot (0.5 {\rm M}_2 0_3 \cdot 0.5 {\rm Ga}_2 0_3 \cdot 0.1 {\rm CaO}) \cdot 25 {\rm Si} 0_2$	$({\rm H \cdot Na})_2 0 \cdot (0.5 {\rm A})_2 0_3 \cdot 0.5 {\rm Fe}_2 0_3 \cdot 0.1 {\rm MgO}) \cdot 25 {\rm Si}_2 0_2$	(H · Na) ₂ 0 · (0. 5A1 ₂ 0 ₃ ·0. 5Fe ₂ 0 ₃ 0. ISrO) · 25S i 0 ₂	$(H \cdot Na)_2 0 \cdot (0.5 A I_2 0_3 \cdot 0.5 F e_2 0_3 \cdot 0.1 B a 0) \cdot 25 S i 0_2$	$(H \cdot Na)_2 O \cdot (0.5A_{12}O_{3} \cdot 0.5Pe_2 O_3 \cdot 0.1Ca O) \cdot 25S i O_2$	1 0	干 固	干 但	干 回	干 回
	拓胜	金属	Cu	no	Cu	იე	იე	Ni	Re	J)	Zn	Wn
战式机	ナンニカム	的触媒番号	12	k 13	14	15	91 点	17 17	S 18	19	20	21

【0026】 (例4) 組成式にてA [$\frac{1}{2}$ Ω_3 (γ $\frac{1}{2}$ $\frac{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

型) $^{-1}$ さらに SO_4 $^{\prime}$ $^{\prime}$

【0027】例4で得られたハニカム触媒22~40を例1の活性評価条件と同じ条件で評価した結果を下記表 Cに併せて示す。

【0028】表Cの結果より上記触媒を用いることにより、高酸素濃度下においても C_2 H_5 OHを添加することにより効率的にNOxが浄化できることが判明した。【0029】

ハニカム	AL 144 77 544	C ₂ H ₅ OH添加量	活性評	価 結 果
触媒	触 媒 名 称 組 成 式	(C ₁ 換算)	7 NOx (%)	7 NOx (%)
番号	粗双式	ppm	(350°C)	(450°C)
22	Al ₂ O ₃ (7型)	2000	56	48
23	ZrO ₂	"	46	46
24	TiO2 (7+9-世型)	"	52	44
25	SiO ₂	"	38	36
26	A 1 2 O 3 · T i O 2	"	56	52
27	A l ₂ O ₃ · Z r O ₂	"	60	62
28	ZrO ₂ ·TiO ₂	"	62	60
29	SiO ₂ ·Al ₂ O ₃	"	48	50
30	Y型ゼオライト	"	42	60
31	モルデナイト	"	45	62
32	L型ゼオライト	"	52	48
33	クリノプチロライト	"	60	50
34	フェリエライト	"	48	52
35	ZSM-5型ゼオライト	"	5()	56
36	A型ゼオライト	"	48	49
37	SO ₄ /ZrO ₂	"	52	58
38	SO ₄ /ZrO ₂ · Al ₂ O ₃	"	48	60
39	SO ₄ /ZrO ₂ ·	"	46 i	48
40	SO ₄ /T i O ₂	"	46	44

【0030】(例5) ハニカム触媒1を用いて還元剤として下記炭化水素を添加して例1と同様の活性評価条件にて実施した。還元剤はエタン、プロパン、ブタン、ペンタン、ヘキサン、プロピレン、ブテン、アセチレン、ブタジエン、メタノール、エチレン、エタノール、プロパノール、ブタノール、ベンゼン、トルエン、キシレン、アセトン、メチルエチルケトン、ジメチルエーテル、ジエチルエーテル、酢酸、ギ酸、ホルムアルデヒド、アセトアルデヒド、ギ酸メチル、ガソリン、灯油、

軽油さらに各々 C_1 換算で2000ppm添加した。活性評価結果を表Dに示す。

【0031】表Dに示すように上記還元剤を添加することにより、高酸素濃度下においても効率的にNOxが浄化できることが判明した。なお、ハニカム触媒1以外のハニカム触媒2~21及び22~40においてもハニカム触媒1と同様に効率的にNOx浄化できることを確認している。

[0032]

表 D

	還 元 剤	価結果		
	(添加物)	(C ₁ 換算)	η _{NOx} (%) (350°C)	7 NOx(%) (450°C)
例5	エタン	2000	42	40
同上	プロパン	2000	43	42
配上	ブタン	2000	48	42
同上	ペンタン	2000	42	41
同上	ヘキサン	2000	49	38
配上	プロピレン	2000	62	52
同上	プテン	2000	60	54
同上	アセチレン	2000	62	60
同上	ブタジエン	2000	66	58
同上.	メタノール	2000	61	46
同上.	エチレン	2000	55	52
同上	エタノール	2000	58	52
同上	プロパノール	2000	58	56
同上	ブタノール	2000	64	60
同上	ベンゼン	2000	46	40
同上	トルエン	2000	46	44
同上	キシレン	2000	48	52
同上	アセトン	2000	60	52
同上	メチルエチルケトン	2000	61	54
同上	ジメチルエーテル	2000	64	54
同上	ジェチルエーテル	2000	63	52
同上	酢 酸	2000	44	40
同上.	ギ 酸	2000	48	36
同上	ホルムアルデヒド	2000	50	44
同上	アセトアルデヒド	2000	54	46
同上	ギ酸メチル	2000	54	52
同上	ガソリン	2000	48	42
同上	灯 油	2000	43	42
同上	軽 油	2000	38	38

[0033]

【発明の効果】本発明により実施例にて示すように窒素 酸化物を含有する排ガスに有機物を添加して触媒と接触 させることにより、排ガス中の窒素酸化物が有効に浄化 されることがわかった。