[UFMG] TRUPE DA BIOLOGIA (2017-18)

Contents

-	T C	
1	1nCc	ontests
	1.1	Makefile
	1.3	Vimrc
	1.3	Template
2	Grai	ph Algorithms
-	2.1	2 SAT
	2.2	Kosaraju
	2.3	LCA
	2.4	Bridges and Articulation Points
	2.5	Eulerian Tour
	2.6	Floyd Warshall
	2.7	Closest Pair of Points
	2.8	Centroid Decomposition Example
3	Strir	ngs
	3.1	Aho Corasick
	3.2	KMP
	3.3	Z algorithm
	3.4	Hashing
	3.5	Suffix Array
	3.6	Suffix Array 2
	3.7	Suffix Array Dilson
	3.8	Manacher Algorithm
	3.9	Recursive Match
	0.5	itecursive water
4	Nun	nerical Algorithms
	4.1	Fast Fourier Transform
	4.2	Fast Fourier Precision
	4.3	Fast Fourier XOR Transform
	4.4	Fast Fourier OR Transform
	4.5	Fast Fourier AND Transform
	4.6	NTT Fera
	4.7	Simpson Algorithm
	4.8	Matrix Exponentiation
	4.9	Karatsuba
5	Mat	hematics
	5.1	Chinese Remainderi confiavel
	5.2	Chinese Remainder 2
	5.3	Matrix Exponentiation
	5.4	Pascal Triangle
	5.5	Eulers Totient Function
	5.6	Pollard Rho
	5.7	Extended Euclidean Algorithm
	5.8	Multiplicative Inverse
	5.9	Multiplicative Inverse 2
	5.10	Gaussian Elimination
	5.11	Gaussian Elimination with MOD
	5.12	Gaussian Elimination with XOR
	5.13	Determinant
6		binatorial Optimization
	6.1	Dinic
	6.2	Hopcroft-Karp Bipartite Matching
	6.3	Max Bipartite Matching 2
	6.4	Maximum Matching in General Graphs (Blossom)
	6.5	Min Cost Matching
	6.6	Min Cost Max Flow
	6.7	Min Cost Max Flow Dilson
	6.8	Find Maximum Clique in Graphs
_	_	
7	Dyn	amic Programming

	7.1	Convex Hull Trick	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
	7.2	Dinamic Convex Hull Trick .																											19
	7.3	Divide and Conquer Example																											19
	7.4	Lichao Tree	•		•	•		•	•			•	•		•	•	٠			•		•			•				19
8	Geor	metry																											20
	8.1	Convex Hull Monotone Chain																											20
	8.2	Fast Geometry in Cpp																											20
	8.3	Point Inside Polygon O(lg N)																											22
	8.4	Minimum Enclosing Circle O(N)	•			•														•	•			•				23
9	Data	Structures																											23
	9.1	Disjoint Set Union																											23
	9.2	Persistent Segment Tree																											23
	9.3	Sparse Table																											24
	9.4	Cartesian Tree																											24
	9.5	Cartesian Tree 2																											25
	9.6	Dynamic MST			•		•								•	•					•	•			•				26
10	Miscellaneous														26														
	10.1	Invertion Count																											26
	10.2	Distinct Elements in ranges .																											27
	10.3	Maximum Rectangular Area in	Ηi	sto	gr	$_{ m am}$																							27
	10.4	Multiplying Two LL mod n .																											27
	10.5	Josephus Problem																											27
	10.6	Josephus Problem 2																											27
	10.7	Ordered Static Set (Examples)																											27

1 InContests

1.1 Makefile

```
CXX=g++
CXXFLAGS=-std=c++11 -Wall
SRC=$(*.cpp)
OBJ=$(SRC: %.cpp=%)
```

1.2 Vimrc

```
set ts=2 si ai sw=2 number mouse=a syntax on
```

1.3 Template

```
#include <bits/stdc++.h>
using namespace std;
#define sc(a) scanf("%d", &a)
#define sc2(a, b) scanf("%d&d", &a, &b)
#define sc3(a, b, c) scanf("%d&d\d", &a, &b)
#define pri(x) printf("%d\n", x)
#define prie(x) printf("%d\n", x)
#define mp make_pair
#define by push_back
#define BUFF ios::sync_with_stdio(false);
#define db(x) cerr << #x << " == " << x << endl
typedef long long int l1;
typedef long double ld;
typedef pair<int, int> ii;
typedef vector<int> vi;
tonst int INF = 0x3f3f3f3f;
const ld pi = acos(-1);
```

2 Graph Algorithms

2.1 2 SAT

```
/* Supondo que cada vertice u, o seu
* positivo e 2*u, e negativo e 2*i+1
 * resposta[i]=0, significa que o positivo de i e resposta
 * resposta[i]=1, significa que o negativo de i e resposta
 * chamar Sat(n) , n e o numero de vertices do grafo
 * contando com os negativos .. na maioria dos problemas
 * chamar 2*n;
 * testado em :http://codeforces.com/contest/781/problem/D
int resposta[N];
vi graph[N], rev[N];
int us[N]:
stack<int> pilha:
void dfs1(int u)
    us[u] = 1;
    for (int v : graph[u])
       if (!us[v]) dfs1(v);
    pilha.push(u);
void dfs2(int u, int color)
    us[u] = color;
    for (int v : rev[u])
        if (!us[v]) dfs2(v, color);
int Sat (int n)
    for (int i = 0; i < n; i++)
        if (!us[i]) dfs1(i);
    int color = 1;
    memset(us, 0, sizeof(us));
    while (!pilha.empty())
        int topo = pilha.top();
        pilha.pop();
        if (!us[topo]) dfs2(topo, color++);
   for (int i = 0; i < n; i += 2) {
   if (us[i] == us[i + 1]) return 0;</pre>
        resposta[i / 2] = (us[i] < us[i + 1]);
    return 1:
inline void add(int u, int v)
    graph[u].pb(v);
    rev[v].pb(u);
```

2.2 Kosaraju

```
vii graph[N], rev[N];
int us[N];
stack<int> pilha;
int n, m;
void dfsl(int u)
    for (ii v : graph[u])
   if (!us[v.first]) dfsl(v.first);
    pilha.push(u);
void dfs2(int u, int color)
    for (ii v : rev[u])
        if (!us[v.first]) dfs2(v.first, color);
int Kos(int b)
    for (int i = 1; i \le n; i++)
    if (!us[i]) dfs1(i);
int color = 1;
    memset(us, 0, sizeof(us));
    while (!pilha.empty()) {
         int topo = pilha.top();
         pilha.pop();
```

```
if (!us[topo]) dfs2(topo, color++);
}
return color;
}
inline void add(int u, int v, int w)
{
   graph[u].pb(mp(v, w));
   rev[v].pb(mp(u, w));
```

2.3 LCA

```
//antes de usar as queries de lca, e etc..
//certifique-se de chamar a dfs da arvore e
//process()
const int N = 100000;
const int M = 22;
int P[N][M];
int big[N][M], low[N][M], level[N];
vii graph[N];
int n;
void dfs(int u, int last, int l)
  level[u] = 1;
  P[u][0] = last;
  for (ii v : graph[u])
   if (v.first != last) {
      big[v.first][0] = low[v.first][0] = v.second;
dfs(v.first, u, 1 + 1);
void process()
 for (int j = 1; j < M; j++)
  for (int i = 1; i <= n; i++) {
    P[i][j] = P[P[i][j - 1]][j - 1];
    big[i][j] = max(big[i][j - 1], big[P[i][j - 1]][j - 1]);
    low[i][j] = min(low[i][j - 1], low[P[i][j - 1]][j - 1]);</pre>
int lca(int u, int v)
  if (level[u] < level[v]) swap(u, v);</pre>
  for (int i = M - 1; i >= 0; i--)
  if (level[u] - (1 << i) >= level[v]) u = P[u][i];
  if (u == v) return u;
for (int i = M - 1; i >= 0; i--) {
    if (P[u][i] != P[v][i]) u = P[u][i], v = P[v][i];
  return P[u][0];
int maximum(int u, int v, int x)
  for (int i = M - 1; i >= 0; i--)
    if (level[u] - (1 << i) >= level[x]) {
      resp = max(resp, big[u][i]);
       u = P[u][i],
  for (int i = M - 1; i >= 0; i--)
    if (level[v] - (1 << i) >= level[x]) {
       resp = max(resp, big[v][i]);
       v = P[v][i];
  return resp:
int minimum(int u, int v, int x)
   for (int i = M - 1; i >= 0; i--)
    if (level[u] - (1 << i) >= level[x]) {
      resp = min(resp, low[u][i]);
       u = P[u][i];
  for (int i = M - 1; i >= 0; i--)
if (level[v] - (1 << i) >= level[x]) {
       resp = min(resp, low[v][i]);
       v = P[v][i],
  return resp;
```

2.4 Bridges and Articulation Points

```
class ponte {
private:
  vvi graph;
  vi usados;
  vi e_articulacao;
 vi dfs_low;
 vi dfs_prof;
  vector<ii> pontes;
  int tempo;
public:
  ponte(int N)
    graph.clear();
    graph.resize(N);
    usados.assign(N, 0);
    dfs_low.assign(N, 0);
    dfs_prof.assign(N, 0);
    e_articulacao.assign(N, 0);
    tempo = 0;
  void AddEdge(int u, int v)
    graph[u].pb(v);
    graph[v].pb(u);
  void dfs(int u, int pai)
    usados[u] = 1;
    int nf = 0;
    dfs_low[u] = dfs_prof[u] = tempo++;
    for (int v : graph[u]) {
      if (!usados[v]) {
         dfs(v, u);
         nf++:
         if (dfs_low[v] >= dfs_prof[u] and pai != -1) e_articulacao[u] = true;
if (pai == -1 and nf > 1) e_articulacao[u] = true;
if (dfs_low[v] > dfs_prof[u]) pontes.pb(mp(u, v));
         dfs_low[u] = min(dfs_low[u], dfs_low[v]);
       else if (v != pai)
         dfs_low[u] = min(dfs_low[u], dfs_prof[v]);
  void olha_as_pontes()
    for (int i = 0; i < graph.size(); i++)
if (!usados[i]) dfs(i, -1);</pre>
    if (pontes.size() == 0)
      cout << " Que merda! nao tem ponte!" << endl;</pre>
    else (
      for (ii i : pontes) cout << i.first << " " << i.second << endl;</pre>
  void olha_as_art()
    for (int i = 0; i < graph.size(); i++)</pre>
      if (!usados[i]) dfs(i, -1);
    for (int i = 0; i < e_articulacao.size(); i++)
  if (e_articulacao[i]) cout << " OIAAA A PONTE " << i << endl;</pre>
```

2.5 Eulerian Tour

```
multiset<int> graph[N];
stack<int> path;
// -> It suffices to call dfs! just
// one time leaving from node 0.
// -> To calculate the path,
// call the dfs from the odd degree node.
// -> O(n * log(n))
void dfs!(int u)
{
    while (graph[u].size())
    {
        int v = *graph[u].begin();
        graph[u].erase(graph[u].begin());
        graph[v].erase(graph[v].find(u));
        dfs!(v);
    }
    path.push(u);
```

2.6 Floyd Warshall

2.7 Closest Pair of Points

```
double INF = 1e100;
double EPS = 1e-12;
struct PT {
  11 x, y;
  PT() {}
  PT(11 x, 11 y) : x(x), y(y) {}
 PT(const PT &p) : x(p.x), y(p.y)
11 dist2(PT p, PT q) { return (p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y); }
int n;
PT pts[100005];
int id[100005];
bool cmpx(const int &a, const int &b) {
 return pts[a].x < pts[b].x;</pre>
bool empy(const int &a, const int &b) {
 return pts[a].y < pts[b].y;</pre>
pair<11, ii> getStrip(vi &strip, 11 dmax) {
  sort(strip.begin(), strip.end(), cmpy);
  pair<11, ii > ret = mp(LINF, mp(-1, -1));
  int id1, id2;
  ll delta;
  for(int i = 0; i < strip.size(); i++) {</pre>
    idl = strip[i];
for(int j = i + 1; j < strip.size(); j++) {</pre>
     id2 = strip[j];
      delta = pts[id1].y - pts[id2].y;
      if(delta * delta > dmax) break;
      ret = min(ret, mp(dist2(pts[id1], pts[id2]), mp(id1, id2)));
  return ret;
pair<11, ii> solve(int b, int e) {
  if(b >= e) return mp(LINF, mp(-1, -1));
  int mid = (b + e) / 2;
  11 xsplit = pts[id[mid]].x;
  pair<11, ii> p1 = solve(b, mid), p2 = solve(mid + 1, e);
  pair<11, ii> ret = min(p1, p2);
  ll dmax = ret first;
  vi strip;
  11 delta;
  for(int i = mid; i <= e; i++) {</pre>
    int idx = id[i];
    delta = pts[idx].x - xsplit;
    if(delta * delta > dmax) break;
    strip.pb(idx);
  for(int i = mid - 1; i >= b; i--) {
    int idx = id[i];
    delta = xsplit - pts[idx].x;
    if(delta * delta > dmax) break;
    strip.pb(idx);
```

```
} pair<11, ii> aux = getStrip(strip, dmax);
return min(aux, ret);
}

int main() {
    BUFF;
    cin >> n;
    for(int i = 0; i < n; i++) {
        cin >> pts[i].x >> pts[i].y;
        id[i] = i;
} sort(id, id + n, cmpx);
    pair<11, ii> ans = solve(0, n - 1);
    if(ans.second.first > ans.second.second) swap(ans.second.first, ans.second.second);
    cout << setprecision(6) << fixed;
    cout << ans.second.first < " " << ans.second.second << " " << sqrt(ans.first) << endl;
    return 0;
}
</pre>
```

2.8 Centroid Decomposition Example

```
MUST CALL DECOMP(1,-1) FOR A 1-BASED GRAPH
vi g[MAXN];
int forb[MAXN];
int sz[MAXN];
int pai[MAXN];
int n, m;
unordered_map<int, int> dist[MAXN];
void dfs(int u, int last) {
  sz[u] = 1;
  for(int v : g[u]) {
    if(v != last and !forb[v]) {
      dfs(v, u);
      sz[u] += sz[v];
int find_cen(int u, int last, int qt) {
  int ret = u;
  for(int v : g[u])
    if(v == last or forb[v]) continue;
    if(sz[v] > qt / 2) return find_cen(v, u, qt);
  return ret;
void getdist(int u, int last, int cen) {
  \quad \text{for} (\text{int } v \ : \ g[u]) \ \{
    if(v != last and !forb[v]) {
      dist[cen][v] = dist[v][cen] = dist[cen][u] + 1;
      getdist(v, u, cen);
void decomp(int u, int last) {
  dfs(u, -1);
 int qt = sz[u];
int cen = find_cen(u, -1, qt);
forb[cen] = 1;
pai[cen] = last;
dist[cen] [cen] = 0;
  getdist(cen, -1, cen);
for(int v : g[cen]) {
    if(!forb[v]) {
      decomp(v, cen);
int main() {
  for(int i = 0; i < n - 1; i++) {
    int a, b;
    sc2(a, b);
    g[a].pb(b);
    g[b].pb(a);
  decomp(1, -1);
```

return 0;

3 Strings

3.1 Aho Corasick

```
//{\it N}= tamanho da trie, M tamanho do alfabeto
int to[N][M], Link[N], fim[N];
int idx = 1:
void add_str(string &s)
  int v = 0;
  for (int i = 0; i < s.size(); i++) {
  if (!to[v][s[i]]) to[v][s[i]] = idx++;</pre>
  fim[v] = 1;
void process()
  gueue<int> fila:
  fila.push(0);
  while (!fila.empty()) {
   int cur = fila.front();
    fila.pop();
    int 1 = Link[cur];
     fim[cur] |= fim[1];
    for (int i = 0; i < 200; i++) {
      if (to[cur][i]) {
         if (cur != 0)
           Link[to[cur][i]] = to[1][i];
         else
           Link[to[cur][i]] = 0;
         fila.push(to[cur][i]);
       else {
         to[cur][i] = to[1][i];
int resolve(string &s)
  int v = 0, r = 0;
for (int i = 0; i < s.size(); i++) {
  v = to[v][s[i]];</pre>
    if (fim[v]) r++, v = 0;
  return r:
```

3.2 KMP

```
// example:
// s = aaaaaaa , size = 7
//-1 0 1 2 3 4 5 6
int p[N];
int n;
void process(vi &s) {
  int i = 0, j = -1;
  p[0] = -1;
   while (i < s.size()) {
    while (j \ge 0 \text{ and } s[i] != s[j])
     j = p[j];
    i++, j++;
    p[i] = j;
// s=texto , t= padrao
int match(string &s, string &t) {
  int ret = 0;
  process(t);
  int i = 0, j = 0;
while (i < s.size()) {
    while (j \ge 0 \text{ and } (s[i] != t[j]))
```

```
j = p[j];
i++, j++;
if (j == t.size()) {
    j = p[j];
    ret++;
}
return ret;
```

3.3 Z algorithm

```
// String matching com Algoritmo Z
// Complexidades:
// z - 0(|s|)
// match - O(|s| + |p|)
vector<int> get_z(string s) {
 int n = s.size();
  vector<int> z(n, 0);
  // intervalo da ultima substring valida
  int 1 = 0, r = 0;
  for (int i = 1; i < n; i++) {
   // estimativa pra z[i]
   if (i <= r)
     z[i] = min(r - i + 1, z[i - 1]);
    // calcula valor correto
   while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]])
     z[i]++;
   // atualiza [l, r]
   if (i + z[i] - 1 > r)
     1 = i, r = i + z[i] - 1;
  return z;
// quantas vezes p aparece em s
int match(string s, string p) {
  int n = s.size(), m = p.size();
  vector < int > z = get_z(p + s);
  int ret = 0;
  for (int i = m; i < n + m; i++)
   if (z[i] >= m)
     ret++;
  return ret:
```

3.4 Hashing

3.5 Suffix Array

```
* O(nlog^2(n)) para o sufix array
 * O(logn) para o LCP(i,j)
 * LCP de i para j;
struct SA {
  const int L;
  string s;
  vvi P;
  vector<pair< ii,int> > M;
  SA(const string &s) : L(s.size()), s(s), P(1, vi(L, 0)), M(L) { for (int i = 0; i < L; i++) P[0][i] =s[i]-'a'; for (int skip = 1, level = 1; skip < L; skip \star = 2, level++) {
       P.pb(vi(L, 0));
for (int i = 0; i < L; i++)
        M[i] = mp(mp(P[level-1][i], i + skip < L ? P[level-1][i + skip] : -1000), i);
       sort(M.begin(), M.end());
       for (int i = 0; i < L; i++)
          P[level][M[i].second] = (i > 0 \&\& M[i].first == M[i-1].first) ? P[level][M[i-1].second] : i; 
  vi GetSA() {
    vi v=P.back();
    vi ret(v.size());
    for (int i=0; i < v. size(); i++) {</pre>
      ret[v[i]]=i;
    return ret:
  int LCP(int i, int j) {
    int len = 0;
     if (i == j) return L - i;
    for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
      if (P[k][i] == P[k][j]) {
         i += 1 << k;
j += 1 << k;
         len += 1 << k;
    return len;
  vi GetLCP(vi &sa)
     vi lcp(sa.size()-1);
    for(int i=0;i<sa.size()-1;i++) {</pre>
       lcp[i]=LCP(sa[i],sa[i+1]);
    return lcp;
};
```

3.6 Suffix Array 2

```
Suffix Array. Builing works in O(NlogN).
  Also LCP array is calculated in O(NlogN).
  This code counts number of different substrings in the string.
  Based on problem I from here: http://codeforces.ru/gym/100133
const int MAXN = 205000;
const int ALPH = 256;
const int MAXLOG = 20;
int n;
char s[MAXN];
int p[MAXN]; // suffix array itself
int pcur[MAXN];
int c[MAXN][MAXLOG];
int num[MAXN];
int classesNum;
int lcp[MAXN];
void buildSuffixArray() {
  for (int i = 0; i < n; i++)
   num[s[i]]++;
  for (int i = 1; i < ALPH; i++)
   num[i] += num[i - 1];
  for (int i = 0; i < n; i++) {
   p[num[s[i]] - 1] = i;
   num[s[i]]--;
```

6

```
c[p[0]][0] = 1;
  classesNum = 1;
  for (int i = 1; i < n; i++) {
    if (s[p[i]] != s[p[i - 1]])
       classesNum++;
    c[p[i]][0] = classesNum;
  for (int i = 1; i++) {
    int half = (1 << (i - 1));</pre>
    for (int j = 0; j < n; j++) {
  pcur[j] = p[j] - half;
  if (pcur[j] < 0)</pre>
        pcur[j] += n;
    for (int j = 1; j <= classesNum; j++)</pre>
      num[j] = 0;
    for (int j = 0; j < n; j++)
  num[c[pcur[j]][i - 1]]++;</pre>
    for (int j = 2; j <= classesNum; j++)
  num[j] += num[j - 1];</pre>
    for (int j = n - 1; j >= 0; j--) {
  p[num[c[pcur[j]][i - 1]] - 1] = pcur[j];
  num[c[pcur[j]][i - 1]]--;
    c[p[0]][i] = 1;
    for (int j = 1; j < n; j++) {
      int p1 = (p[j] + half) % n, p2 = (p[j - 1] + half) % n;
      if (c[p[j]][i-1] != c[p[j-1]][i-1] || c[p1][i-1] != c[p2][i-1])
         classesNum++:
      c[p[j]][i] = classesNum;
    if ((1 << i) >= n)
      break;
  for (int i = 0; i < n; i++)
    p[i] = p[i + 1];
int getLcp(int a, int b) {
  int res = 0;
for (int i = MAXLOG - 1; i >= 0; i--) {
    int curlen = (1 << i);</pre>
    if (curlen > n)
      continue;
    if (c[a][i] == c[b][i]) {
      res += curlen;
      a += curlen;
      b += curlen;
  return res:
void calcLcpArray() {
  for (int i = 0; i < n - 1; i++)
    lcp[i] = getLcp(p[i], p[i + 1]);
int main() {
  assert(freopen("substr.in", "r", stdin));
  assert(freopen("substr.out", "w", stdout));
  gets(s);
  n = strlen(s);
  buildSuffixArray();
  // Now p from 0 to n - 1 contains suffix array of original string
  /*for (int i = 0; i < n; i++) {
  printf("%d ", p[i] + 1);
}*/
    calcLcpArray();
  long long ans = 0;
  for (int i = 0; i < n; i++)
     ans += n - p[i];
```

for (int i = 1; i < n; i++)

```
ans -= lcp[i - 1];
cout << ans << endl;
return 0;</pre>
```

3.7 Suffix Array Dilson

```
struct SuffixArray{
    const string& s:
    int n:
    vector<int> order, rank, lcp;
    vector<int> count, x, y;
    vector<int> sparse[22];
    SuffixArray(const string& s) : s(s), n(s.size()), order(n), rank(n),
    count (n + 1), x(n), y(n), lcp(n) {
         for(int i=0;i<22;i++) sparse[i].resize(n, 0);</pre>
         buildLCP();
    void build(){
         //sort suffiixes by the first character
         for(int i = 0; i < n; i++) order[i] = i;</pre>
         sort(order.begin(), order.end(), [&](int a, int b){return s[a] < s[b];});</pre>
         rank[order[0]] = 0;
         for(int i = 1; i < n; i++) {
    rank[order[i]] = rank[order[i - 1]];</pre>
             if(s[order[i]] != s[order[i - 1]]) rank[order[i]]++;
         //sort suffixex by the the first 2*p characters, for p in 1, 2, 4, 8,...
         for(int p = 1; p < n, rank[order[n - 1]] < n - 1; p <<= 1){</pre>
             for(int i = 0; i < n; i++) {</pre>
                  x[i] = rank[i];
                  y[i] = i + p < n ? rank[i + p] + 1 : 0;
             radixPass(v):
             radixPass(x);
             rank[order[0]] = 0;
             for(int i = 1; i < n; i++){</pre>
                  rank[order[i]] = rank[order[i - 1]];
                  if(x[order[i]] != x[order[i - 1]] or y[order[i]] != y[order[i - 1]]) rank[order[i
        }
    //Stable counting sort
    void radixPass(vector<int>& key) {
         fill(count.begin(), count.end(), 0);
for(auto index : order) count[key[index]]++;
for(int i = 1; i <= n; i++) count[i] += count[i - 1];</pre>
         for(int i = n - 1; i >= 0; i--) lcp[--count[key[order[i]]]] = order[i];
         order.swap(lcp);
    //Kasai's algorithm to build the LCP array from order, rank and s
    //For i \ge 1, lcp[i] refers to the suffixes starting at order[i] and order[i-1]
    void buildLCP() {
         lcp[0] = 0;
         int k = 0;
         for (int i = 0; i < n; i++) {
   if (rank[i] == n - 1) {</pre>
                  k = 0:
             }else{
                  int j = order[rank[i] + 1];
                  while (i + k < n \text{ and } j + k < n \text{ and } s[i + k] == s[j + k]) k++;
                  lcp[rank[j]] = k;
                  if(k) k--;
         for(int i=0;i<n;i++) sparse[0][i] = lcp[i];</pre>
         for(int j=1; j<22; j++)</pre>
             for(int i=n-1;i - (1 << (j-1) ) >=0; i--)
                  sparse[j][i] = min(sparse[j-1][i], sparse[j-1][i - (1<< (j-1))]);
     //Calcula o LCP do intervalo i e j.
    int LCP(int i, int j) {
         if(i>j) return 0;
         if(i==j) return n-order[j];
         int k = log2(j-i);
         while (j - (1 << k) > i) k++;
```

```
while(j - (1<<k) < i) k--;
    return min(sparse[k][j], sparse[k][i+ (1<<k) ]);
};

int main(){
    ios::sync_with_stdio(false);
    string s;
    cin >> s;
    SuffixArray sa(s);
    for(int i = 0; i < s.size(); i++) cout << sa.order[i] << '\n';
}</pre>
```

3.8 Manacher Algorithm

```
/*****************************
  Manacher's algorithm for finding all subpalindromes in the string.
  Based on problem L from here: http://codeforces.ru/gym/100133
******************************
const int MAXN = 105000;
string s;
int n:
int odd[MAXN], even[MAXN];
int 1, r;
long long ans;
 assert(freopen("palindrome.in", "r", stdin));
  assert (freopen ("palindrome.out", "w", stdout));
  getline(cin, s);
  n = (int) s.length();
  // Odd case
  1 = r = -1:
  for (int i = 0; i < n; i++) {
   int cur = 1;
      cur = min(r - i + 1, odd[1 + r - i]);
   while (i + cur < n \&\& i - cur >= 0 \&\& s[i - cur] == s[i + cur])
   odd[i] = cur;
   if (i + cur - 1 > r) {
     1 = i - cur + 1;
     r = i + cur - 1;
  // Even case
  1 = r = -1;
  for (int i = 0; i < n; i++) {</pre>
   int cur = 0;
      cur = min(r - i + 1, even[1 + r - i + 1]);
   while (i + cur < n \&\& i - 1 - cur >= 0 \&\& s[i - 1 - cur] == s[i + cur])
   even[i] = cur;
   if (i + cur - 1 > r) {
     1 = i - cur;
     r = i + cur - 1;
  for (int i = 0; i < n; i++) {</pre>
   if (odd[i] > 1) {
     ans += odd[i] - 1;
   if (even[i])
     ans += even[i];
  cout << ans << endl;
  return 0;
```

3.9 Recursive Match

```
// use: call process of kmp!
// erase all occurences of t in s
```

```
// example:
// s = XAABBB t = AB
// return s =X
string recursive_match(string s, string t) {
  vector<pair<char, int>> state;
  int v = 0;
  for (char c : s) {
    if (state.size() == 0)
      \mathbf{v} = 0;
    else
      v = state.back().second;
    while (v \ge 0 \text{ and } c != t[v])
     v = p[v];
    v++:
    state.pb({c, v});
    if (v == t.size()) {
      while (v > 0) {
       assert(state.size() > 0);
        state.pop_back();
        v--;
  string ret;
  for (auto x : state)
    ret.pb(x.first):
  return ret:
```

4 Numerical Algorithms

4.1 Fast Fourier Transform

```
// FFT - The Iterative Version
// Running Time:
     O(n*log n)
// How To Use:
    fft(a,1)
    fft (b, 1)
    mul(a,b)
    fft(a,-1)
// INPUT:
// - fft method:
       * The vector representing the polynomial
       * 1 to normal transform
       * -1 to inverse transform
// - mul method:
       * The two polynomials to be multiplyed
// - fft method: Transforms the vector sent.
// - mul method: The result is kept in the first vector.
// - You can either use the struct defined of define dificil as complex<double>
// SOLVED:
   * Codeforces Round #296 (Div. 1) D. Fuzzy Search
struct dificil {
 double real:
  double im;
  dificil()
   real=0.0;
    im=0.0;
  dificil(double real, double im):real(real),im(im){}
  dificil operator+(const dificil &o)const {
   return dificil(o.real+real, im+o.im);
  dificil operator/(double v) const {
   return dificil(real/v, im/v);
  dificil operator* (const dificil &o) const {
   return dificil(real*o.real-im*o.im, real*o.im+im*o.real);
```

```
dificil operator-(const dificil &o) const {
    return dificil(real-o.real, im-o.im);
dificil tmp[MAXN*2];
int coco, maiorpot2[MAXN];
void fft(vector<dificil> &A, int s)
  int n = A.size(), p = 0;
  while (n>1) {
    p++;
    n >>= 1;
  \mathbf{n} = (1 << \mathbf{p});
  vector<dificil> a=A;
  for (int i = 0; i < n; ++i) {
    int rev = 0;
    for(int j = 0; j < p; ++j){
      rev <<= 1;
      rev |= ( (i >> j) & 1 );
    A[i] = a[rev];
  dificil w, wn;
  for(int i = 1; i <= p; ++i) {
    int M = 1 << i;
int K = M >> 1;
    wn = dificil(cos(s*2.0*pi/(double)M), sin(s*2.0*pi/(double)M));
    for (int j = 0; j < n; j += M) {
      w = dificil(1.0, 0.0);
for(int 1 = j; 1 < K + j; ++1){
    dificil t = w;</pre>
         t = t * A[1 + K];
        dificil u = A[1];
        A[1] = A[1] + t;
         u = u-t;
        A[1 + K] = u;
        w = wn *w;
  if(s==-1){
    for (int i = 0; i < n; ++i)</pre>
      A[i] = A[i] / (double) n;
void mul(vector<dificil> &a, vector<dificil> &b)
  for(int i=0;i<a.size();i++)</pre>
    a[i]=a[i]*b[i];
```

4.2 Fast Fourier Precision

```
struct dificil {
    id real;
    id im;
    dificil() {
        real = 0.0;
        im = 0.0;
    }

    dificil(ld real, ld im) : real(real), im(im) {}

    dificil operator+(const dificil &o) const {
        return dificil(o.real + real, im + o.im);
    }

    dificil operator/(ld v) const { return dificil(real / v, im / v); }

    dificil operator+(const dificil &o) const {
        return dificil(real * o.real - im * o.im, real * o.im + im * o.real);
    }

    dificil operator-(const dificil &o) const {
        return dificil(real * o.real - im * o.im, real * o.im + im * o.real);
    }
```

```
return dificil(real - o.real, im - o.im);
};
vector<dificil> w[2];
void Pre(int n) {
  w[0].resize(n + 1);
  w[1].resize(n + 1);
  w[0][0] = dificil(1.0, 0.0);
  w[0][1] = dificil(cos(2.0 * pi / (ld)n), sin(2.0 * pi / (ld)n));
    \begin{tabular}{ll} w[1][0] &= dificil(1.0, \ 0.0); \\ w[1][1] &= dificil(\cos(-2.0 \ * \ pi \ / \ (ld)n), \ \sin(-2.0 \ * \ pi \ / \ (ld)n)); \\ \end{tabular} 
  for (int i = 2; i <= n; i++)
if (i & (i - 1))</pre>
      w[0][i] = w[0][i & (i - 1)] * w[0][i & -i];
      w[0][i] = w[0][i >> 1] * w[0][i >> 1];
  for (int i = 2; i <= n; i++)</pre>
    if (i & (i - 1))
      w[1][i] = w[1][i & (i - 1)] * w[1][i & -i];
    else
       w[1][i] = w[1][i >> 1] * w[1][i >> 1];
void fft(vector<dificil> &A, int s) {
  int n = A.size(), p = 0;
  while (n > 1) {
    p++;
    n >>= 1;
  n = (1 << p);
  if (w[0].size() == 0)
    Pre(n);
  vector<dificil> a = A;
  for (int i = 0; i < n; ++i) {
    int rev = 0;
    for (int j = 0; j < p; ++j) {
      rev <<= 1:
      rev |= ((i >> j) & 1);
    A[i] = a[rev];
  int ntmp = n;
  for (int i = 1; i <= p; ++i) {
    int M = 1 << i;</pre>
    int K = M \gg 1;
    ntmp >>= 1;
    ntmp >>= 1;
for (int j = 0; j < n; j += M) {
   for (int l = j; l < K + j; ++l) {
      dificil t = w[s][(ntmp * (l - j)) % n];
}</pre>
         t = t * A[1 + K];
         dificil u = A[1];
        A[1] = A[1] + t;
         u = u - t;
         A[1 + K] = u;
  if (s == 1) {
    for (int i = 0; i < n; ++i)</pre>
      A[i] = A[i] / (ld)n;
void mul(vector<dificil> &a, vector<dificil> &b) {
 for (int i = 0; i < (int)a.size(); i++) {</pre>
    a[i] = a[i] * b[i];
```

4.3 Fast Fourier XOR Transform

```
/*
Walsh-Hadamard Matrix:
1 1
1 -1
Inverse:
1 1
1 -1
v.size() power of 2
usage:
fft_xor(a, false);
```

```
fft_xor(b, false);
mul(a, b);
fft_xor(a, true);
*/

void fft_xor(vi &a, bool inv) {
    vi ret = a;
    ll u, v;
    int tam = a.size() / 2;
    for(int len = 1; 2 * len <= tam; len <<= 1) {
        for(int i = 0; i < tam; i += 2 * len) {
            for(int j = 0; j < len; j++) {
                 u = ret[i + j];
                 v = ret[i + len + j];
                 ret[i + len + j] = u - v;
            }
        }
        if(inv) {
        for(int i = 0; i < tam; i++) {
            ret[j] /= tam;
        }
        a = ret;</pre>
```

4.4 Fast Fourier OR Transform

```
Matrix :
  1 1
  1 0
  Inverse :
  1 -1
  v.size() power of 2
  usage:
   fft_or(a, false);
  fft_or(b, false);
  mul(a, b);
  fft_or(a, true);
void fft_or(vi &a, bool inv) {
  vi ret = a;
  11 u, v;
int tam = a.size() / 2;
for(int len = 1; 2 * len <= tam; len <<= 1) {</pre>
     for(int i = 0; i < tam; i += 2 * len) {</pre>
      for(int j = 0; j < len; j++) {
  u = ret[i + j];</pre>
          v = ret[i + len + j];
         if(!inv) {
           ret[i + j] = u + v;
ret[i + len + j] = u;
         else (
           ret[i + j] = v;
           ret[i + len + j] = u - v;
  a = ret;
void mul(vi &a, vi &b) {
  for(int i = 0; i < a.size(); i++) {</pre>
    a[i] = a[i] * b[i];
```

4.5 Fast Fourier AND Transform

```
/*
Matrix :
0 1
1 1
1 Inverse :
-1 1
1 0
v.size() power of 2
```

```
usage:
   fft_and(a, false);
   fft_and(b, false);
  mul(a, b);
  fft_and(a, true);
void fft_and(vi &a, bool inv) {
  vi ret = a;
  11 u, v;
   int tam = a.size() / 2;
  int tam = a.size() / 2;
for(int len = 1; 2 * len <= tam; len <<= 1) {
  for(int i = 0; i < tam; i += 2 * len) {
    for(int j = 0; j < len; j++) {
        u = ret[i + j];
        v = ret[i + len + j];
    }
}</pre>
           if(!inv) {
             ret[i + j] = v;
              ret[i + len + j] = u + v;
           else {
             ret[i + j] = -u + v;
              ret[i + len + j] = u;
  a = ret:
void mul(vi &a, vi &b) {
  for(int i = 0; i < a.size(); i++) {</pre>
     a[i] = a[i] * b[i];
```

4.6 NTT Fera

```
/*p = 998244353
factors = [2, 7, 17] # fatores de p-1
# testa se g eh raiz primitiva
for f in factors:
   if pow(g, (p-1)/f, p) == 1:
    print "Nao eh raiz"*/
typedef long long LL;
const int N = 300005;
const int P = 998244353;
const int inf = 1e9;
const LL Inf = 1e18;
int n, p[N], rev[N];
T.L. k:
const int G = 3;
int w[2][N], tn, t1;
void dft(int *a, int f) {
 FOR(i, 0, tn) if (i < rev[i]) swap(a[i], a[rev[i]]);
   for (int i = 1; i < tn; i <<= 1)</pre>
    for (int j = 0, t = tn / (i << 1); j < tn; j += i << 1)
       for (int k = 0, l = 0; k < i; k++, l += t) {
         int x = a[j + k];
         int y = (LL)a[j + k + i] * w[f][1] % P;
         a[j + k] = (x + y) % P;

a[j + k + i] = (x + P - y) % P;
  if (f) {
    int rn = Pow(tn, P - 2, P);
    FOR(i, 0, tn) a[i] = (LL)a[i] * rn % P;
int A[N], B[N], fac[N], ifac[N], T[N];
void prep(int n) {
  for (tn = 1, tl = -1; tn <= (n * 2); tn <<= 1, tl++)
   w[0][0] = w[1][0] = 1;
  int ng = Pow(3, (P - 1) / tn, P);
 ToR(i, 1, tn) {
    w(0)[i] = (LL)w[0][i - 1] * ng % P;
    w(1)[i] = Pow(w[0][i], P - 2, P);
    rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << t1);
```

4.7 Simpson Algorithm

```
const int NPASSOS = 100000;
const int W=1000000;
//W= tamanho do intervalo que eu estou integrando
double integral1()
{
    double h = W / (NPASSOS);
    double a = 0;
    double b = W;
    double b = W;
    double s = f(a) + f(b);
    for (double i = 1; i <= NPASSOS; i += 2) s += f(a + i * h) * 4.0;
    for (double i = 2; i <= (NPASSOS - 1); i += 2) s += f(a + i * h) * 2.0;
    return s * h / 3.0;
}
</pre>
```

4.8 Matrix Exponentiation

```
//Use: vector<vector<T>> result = MatPow<T>(m1, expoent)
       template<class T>
vector<vector<T>> MatMul(vector<vector<T>> &ml, vector<vector<T>> &m2)
       vector<vector<T>> ans:
       ans.resize(m1.size(), vector<T>(m2.size()));
       return ans:
       template<class T>
vector< vector<T> > MatPow(vector<vector<T>> &m1, 11 p)
       vector< vector<T>> ans;
       ans.resize(m1.size(), vector<T>(m1.size()));
       for (int i = 0; i < m1.size(); i++) ans[i][i] = 1;
       while (p>0) {
               if (p %2) ans = MatMul(ans, m1);
               m1 = MatMul(m1, m1);
               p>>=1;
       return ans;
// VETOR TEM N LINHAS E A MATRIZ E QUADRADA
       template<class T>
vector<T> MulVet(vector<vector<T>> &m1, vector<T> &vet)
       vector<T> ans;
       ans.resize(vet.size());
       for (int i = 0; i < m1.size(); i++)
    for (int j = 0; j < vet.size(); j++) {</pre>
                       ans[i] += (m1[i][j] * vet[j]);
ans[i] %= MOD;
       return ans:
```

4.9 Karatsuba

```
template <typename T> class Karatsuba {
  typedef typename vector<T>::iterator vTi;
  int cut;
  void convolve_naive(vTi a, vTi b, vTi c, int n) {
   int n2 = n * 2;
  for (int i = 0; i < n2; ++i)
      c[i] = 0;
  for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j)
      c[i + j] += a[i] * b[j];
  }
  void karatsuba(vTi a, vTi b, vTi c, int n) {
   if (n <= cut) {
      convolve_naive(a, b, c, n);
      return;
  }
}</pre>
```

```
int nh = n / 2;
    vTi al = a, ah = a + nh, as = c + nh * 10;
    vTi bl = b, bh = b + nh, bs = c + nh * 11;
    vTi x0 = c, x1 = c + n, x2 = c + n * 2, xh = c + nh;
    for (int i = 0; i < nh; ++i) {
     as[i] = al[i] + ah[i];
     bs[i] = bl[i] + bh[i];
    karatsuba(al, bl, x0, nh);
    karatsuba(ah, bh, x1, nh);
    karatsuba(as, bs, x2, nh);
    for (int i = 0; i < n; ++i)
     x2[i] = x0[i] + x1[i];
    for (int i = 0; i < n; ++i)
     xh[i] += x2[i];
public:
 Karatsuba(int _cut = 1 << 5) : cut(_cut) {}</pre>
  vector<T> convolve(vector<T> &_a, vector<T> &_b) {
    vector<T> a = _a, b = _b, c;
    int sz = max(a.size(), b.size()), sz2;
    for (sz2 = 1; sz2 < sz; sz2 *= 2)
    a.resize(sz2):
   b.resize(sz2);
    c.resize(sz2 * 6):
    karatsuba(a.begin(), b.begin(), c.begin(), sz2);
    c.resize(_a.size() + _b.size() - 1);
    return c:
};
```

5 Mathematics

5.1 Chinese Remainderi confiavel

```
typedef __int128 big;
11 mulmod(11 a, 11 b, 11 m) {
        return ll(big(a)*big(b))%m;
11 expmod(11 a, 11 e, 11 m) {
        11 ret = 1;
        while (e > 0) {
                 if (e % 2 != 0) ret = mulmod(ret, a, m);
                 a = mulmod(a, a, m);
                 e >>= 1:
        return ret;
11 invmul(11 a, 11 m) {
        return expmod(a, m - 2, m);
11 chinese(vector<11> r, vector<11> m) {
        int sz = m.size();
        11 M = 1;
        for (int i = 0; i < sz; i++) {
                M *= m[i];
        11 ret = 0;
        for (int i = 0; i < sz; i++) {
    ret += mulmod(mulmod(M / m[i], r[i], M), invmul(M / m[i], m[i]), M);</pre>
                 ret = ret % M;
        return ret;
```

5.2 Chinese Remainder 2

```
// Chinese remainder theorem (special case): find z such that // z % m1 = r1, z
// % m2 = r2. Here, z is unique modulo M = lcm(m1, m2). // Return (z, M). On
// failure, M = -1;
ii chinese_remainder_theorem(int m1, int r1, int m2, int r2)
{
   int s, t;
   int g = extended_euclid(m1, m2, s, t);
```

```
if (r1 % g != r2 % g) return mp(0, -1);
return mp(mod(s * r2 * m1 + t * r1 * m2, m1 * m2) / g, m1 * m2 / g);
}
// Chinese remainder theorem: find z such that // z % m[i] =
// r[i] for all i
// .Note that the solution is unique modulo M = lcm_i (m[i]).
// Return(z, M)
// .On // failure, M = -1. Note that we do not require the a[i] s
// to be relatively prime.
ii chinese_remainder_theorem(const vi &m, const vi &r)
{
    ii ret = make_pair(r[0], m[0]);
    for (int i = 1; i < m.size(); i++) {
        ret = chinese_remainder_theorem(ret.second, ret.first, m[i], r[i]);
    if (ret.second == -1) break;
}
return ret;</pre>
```

5.3 Matrix Exponentiation

```
//Use: vector<vector<T>> result = MatPow<T>(m1, expoent)
      template<class T>
vector<vector<T>> MatMul (vector<vector<T>> &m1, vector<vector<T>> &m2)
      vector<vector<T>> ans;
      return ans:
      template<class T>
vector< vector<T> > MatPow(vector<vector<T>> &m1, ll p)
       vector< vector<T>> ans;
      ans.resize(m1.size(), vector<T>(m1.size()));
      for (int i = 0; i < m1.size(); i++) ans[i][i] = 1;
      while (p>0) {
             if (p %2) ans = MatMul(ans, m1);
             m1 = MatMul(m1, m1);
             p>>=1;
      return ans;
// VETOR TEM N LINHAS E A MATRIZ E QUADRADA
      template<class T>
vector<T> MulVet(vector<vector<T>> &m1, vector<T> &vet)
      vector<T> ans;
      ans[i] %= MOD;
      return ans;
```

5.4 Pascal Triangle

```
//Fazer combinacao de N escolhe M
//por meio do triangulo de pascal
//Complexidade: O(m*n)
unsigned long long comb[61][61];
for (int i = 0; i < 61; i++) {
    comb[i][i] = 1;
    comb[i][0] = 1;
}
for (int i = 2; i < 61; i++)
    for (int j = 1; j < i; j++)
    c o mb [i][j] = comb[i - 1][j] + comb[i - 1][j - 1];</pre>
```

5.5 Euler's Totient Function

```
//retorna quantos elementos coprimos
/a N e menores que n existem
int phi (int n)
{
  int result = n;
  for (int i = 2; i * i <= n; ++i)
    if (n % i == 0) f
        while (n % i == 0) n /= i;
        result -= result / i;
    if (n > 1) result -= result / n;
    return result;
}
```

5.6 Pollard Rho

```
// Fatoracao pelo algoritmo Rho de Pollard
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
// Eh recomendado chamar srand(time(NULL)) na main
// Complexidades:
// prime - O(log^2(n))
// rho - esperado O(n^{(1/4)} \log(n)) no pior caso
// fact - esperado menos que O\left(n^{(1/4)} \log^2(n)\right) no pior caso
11 mdc(11 a, 11 b) { return !b ? a : mdc(b, a % b); }
ll mul(ll x, ll y, ll m) {
 if (!y)
    return 0;
  11 ret = mul(x, y >> 1, m);
  ret = (ret + ret) % m;
  if (y & 1)
   ret = (ret + x) % m;
  return ret:
11 pow(11 x, 11 y, 11 m) {
 if (!y)
    return 1:
  11 ret = pow(x, y >> 1, m);
  ret = mul(ret, ret, m);
  if (y & 1)
   ret = mul(ret, x, m);
  return ret;
// teste de primalidade de
// Miller-Rabin
bool prime(ll n) {
 if (n < 2)
    return 0;
  if (n <= 3)
    return 1;
  if (n % 2 == 0)
    return 0;
  11 d = n - 1;
  int r = 0;
  while (d % 2 == 0) {
    d /= 2;
  // com esses primos, o teste funciona garantido para n <= 3*10^18
  // funciona para n <= 3*10^24 com os primos ate 41
  vector<int> a = {2, 3, 5, 7, 11, 13, 17, 19, 23};
// outra opcao para n <= 2^64</pre>
  // vector<int> a= {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
  for (int i = 0; i < 9; i++) {
    if (a[i] >= n)
     break;
    11 x = pow(a[i], d, n);
    if (x == 1 \text{ or } x == n - 1)
      continue;
    bool deu = 1;
for (int j = 0; j < r - 1; j++) {</pre>
      x = pow(x, 2, n);
      if (x == n - 1) {
        deu = 0;
        break;
```

```
if (deu)
      return 0;
  return 1;
// acha um divisor de n
// tempo esperado no pior caso: O(n^{(1/4)} \log(n))
// na pratica, eh bem mais rapido
11 rho(11 n) {
 if (n == 1 or prime(n))
   return n;
  if (n % 2 == 0)
    return 2:
  while (1) {
    11 x = 2, y = 2;
    // tenta com essa constante
    11 c = (rand() / (double)RAND_MAX) * (n - 1) + 1;
    // divisor
    11 d = 1;
    while (d == 1) {
     x = (pow(x, 2, n) + c) % n;
      y = (pow(y, 2, n) + c) % n;
      y = (pow(y, 2, n) + c) % n;
      d = mdc(abs(x - y), n);
      // |x-y| = 0 -> ciclo
       // tenta com outra constante
      if (d == n)
        break;
   // sucesso -> retorna o divisor
if (d != n)
      return d;
11 rho(11 n) {
   if (n == 1 or prime(n))
   return n;
  if (n % 2 == 0)
    return 2;
  while (1) {
    11 x = 2, y = 2;
    ll ciclo = 2, i = 0;
    // tenta com essa constante
11 c = (rand() / (double) RAND_MAX) * (n - 1) + 1;
    // divisor
    11 d = 1:
    while (d == 1) {
      // algoritmo de Brent
      if (++i == ciclo)
        ciclo \star= 2, y=x;
      x = (pow(x, 2, n) + c) % n;
      // x = y \rightarrow ciclo
      // tenta com outra constante
      if (x == y)
        break;
      d = mdc(abs(x - y), n);
    // sucesso -> retorna o divisor
    if (x != y)
      return d;
void fact(ll n, vector<ll> &v) {
    return;
  if (prime(n))
    v.pb(n);
  else {
    11 d = rho(n);
    fact(d, v);
    fact (n / d, v);
```

5.7 Extended Euclidean Algorithm

```
/* parametros finais:
a -> gcd(a, b)
x -> "inverso aritmetico" de a mod b
y -> "inverso aritmetico" de b mod a
resolve d = ax + by
para outras solucoes:
x + t * b / d
y - t * a / d */
int extended_euclid(int a, int b, int &x, int &y)
  int xx = y = 0;
 int yy = x = 1;
  while (b) {
   int q = a / b;
   int t = b;
   b = a % b;
   a = t:
   t = xx
   xx = x - q * xx;
   x = t:
   t = yy;
   yy = y - q * yy;

y = t;
  return a;
```

5.8 Multiplicative Inverse

```
//computes b such that ab = 1(mod n), returns - 1 on failure
int mod_inverse(int a, int n)
{
  int x, y;
  int g = extended_euclid(a, n, x, y);
  if (g > 1) return -1;
  return (x+n)%n;
}
```

5.9 Multiplicative Inverse 2

```
//inverso multiplicativo de A % MOD
//certifique de MOD estar definido antes bonito!
//ccmplexidade: O(log(a))
ll mul_inv(ll a)
{
    ll pin0 = MOD, pin = MOD, t, q;
    ll x0 = 0, x1 = 1;
    if (pin = 1) return 1;
    while (a > 1) {
        q = a / pin;
        t = pin, pin = a % pin, a = t;
        t = x0, x0 = x1 - q * x0, x1 = t;
    }
    if (x1 < 0) x1 += pin0;
    return x1;
}
```

5.10 Gaussian Elimination

```
const int N=105;
//resolvendo o sisteminha Ax = B
//no final, B tem a solucao x
//det eh o determinante de A
// complexidade: O(n^3)

ld A[N][N], B[N];
int n;

void solve() {
    ld mult;
    ld det = 1;
```

```
for (int i=0; i<n; i++) {</pre>
        int nx = i;
        while (nx < n \text{ and } fabs(A[nx][i]) < 1e-9) nx++;
                 det = 0;
                 //NO SOLUTION or INFINITY SOLUTIONS
        if(nx != i) {
                 swap(A[nx], A[i]);
                 swap(B[nx], B[i]);
                 det = -det;
        det *= A[i][i];
        // normalizando
        mult = 1.00 / A[i][i];
        for(int j=0; j<n; j++) {</pre>
                 A[i][j] *= mult;
        B[i] *= mult;
        for(int j=0; j<n; j++) {
    if(j == i) continue;</pre>
                 if(fabs(A[j][i]) > 1e-9) {
                          mult = A[j][i];
                          for(int k=0; k<n; k++) {
                                  A[j][k] -= mult * A[i][k];
                          B[j] = mult * B[i];
```

5.11 Gaussian Elimination with MOD

```
const int N=105;
const int MAXN = 1e6+10:
//resolvendo o sisteminha Ax = B
//fazendo operacoes de mod p
//no final, B tem a solucao x
//det eh o determinante de A
// complexidade: O(n^3)
11 A[N][N], B[N];
11 inv[MAXN];
int n, p;
11 extended_euclid(int i, int p) {
11 soma(11 a, 11 b) {
        return ((a + b) % p + p) % p;
ll sub(ll a, ll b) {
       return ((a - b) % p + p) % p;
        return ((a * b) % p + p) % p;
void solve() {
        for(int i=1; i<p; i++) {
               inv[i] = extended_euclid(i, p);
        11 mult;
        11 det = 1;
        for (int i=0; i<n; i++) {</pre>
                int nx = i;
                while(nx < n and A[nx][i] == 0) nx++;</pre>
                if(nx == n) {
                        det = 0;
                        //NO SOLUTION or INFINITY SOLUTIONS
                if(nx != i) {
                        swap(A[nx], A[i]);
                        swap(B[nx], B[i]);
                det = mul(det, A[i][i]);
```

5.12 Gaussian Elimination with XOR

```
#include <bits/stdc++.h>
using namespace std;
#define sc(a) scanf("%d", &a)
#define sc2(a, b) scanf("%d%d", &a, &b)
#define sc3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define scs(a) scanf("%s", a)
#define pri(x) printf("%d\n", x)
#define prie(x) printf("%d ", x)
#define mp make_pair
#define pb push_back
#define BUFF ios::sync_with_stdio(false);
#define db(x) cerr << #x << " == " << x << endl
#define f first
#define s second
typedef long long int 11;
typedef long double ld;
typedef pair<11, 11> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const int INF = 0x3f3f3f3f;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f3f11;
const ld pi = acos(-1);
const int MOD = 1e9 + 7:
const int N=105;
//ateh o mp aguenta
//sisteminha Ax = B de xor, B quarda solucao
int A[N][N], B[N];
int n;
void solve() {
         int det = 1;
         for(int i=0; i<n; i++) {</pre>
                  int nx = i;
                   while (nx < n \text{ and } A[nx][i] == 0) nx++;
                   if(nx == n) {
                            //NO SOLUTION or MULTIPLE SOLUTIONS
                   if(nx != i) {
                            swap(A[nx], A[i]);
                            swap(B[nx], B[i]);
                  for(int j=0; j<n; j++) {
    if(j == i) continue;</pre>
                            if(A[j][i] != 0) {
    for(int k=0; k<n; k++) {</pre>
                                             A[j][k] ^= A[i][k];
                                     B[j] ^= B[i];
int main() {
         return 0;
```

5.13 Determinant

```
const int N=105;
//calculo do determinante
//COM COEFICIENTES INTEIROS --> PICA!
//seque a ideia do calculo do GCD
//complexidade: O(n^3 lg MX)
//0 erro de precisao
//0-based porque sim!
11 mat[N][N];
void limpa(int a) {
         for (int i=0; i<n; i++) {
                  mat[a][i] = -mat[a][i];
void troca(int a, int b) {
    for(int i=0; i < n; i++) {</pre>
                  swap(mat[a][i], mat[b][i]);
11 det() {
          ll ans = 1;
         for (int i=0; i<n; i++) {</pre>
                  for(int j=i+1; j<n; j++) {</pre>
                           int a = i, b = j;
                           if(mat[a][i] < 0)
                                                      limpa(a), ans = -ans;
                           if (mat[b][i] < 0)
                                                      limpa(b), ans = -ans;
                           while (mat[b][i] != 0) {
                                    11 q = mat[a][i] / mat[b][i];
for(int k=0; k<n; k++) {</pre>
                                            mat[a][k] = q * mat[b][k];
                                    swap(a, b);
                           if(a != i) {
                                    troca(i, j);
                  ans *= mat[i][i];
         return ans:
```

6 Combinatorial Optimization

6.1 Dinic

```
// grafo bipartido O(Esqrt(v))
// Para recuperar a resposta, e so colocar um bool
// de false na aresta de retorno e fazer uma bfs/dfs
// andando pelos vertices de capacidade =0 e arestas
// que nao sao de retorno
template <class T> struct Edge {
  int v, rev;
  Edge(int v_, T cap_, int rev_) : v(v_), cap(cap_), rev(rev_) {}
template <class T> struct Dinic {
  vector<vector<Edge<T>>> g;
  vector<int> level;
  queue<int> q;
  T flow;
  Dinic(int n_) : g(n_), level(n_), n(n_) {}
void AddEdge(int u, int v, T cap) {
   if (u == v)
      return;
    Edge<T> e(v, cap, int(g[v].size()));
```

```
Edge<T> r(u, 0, int(g[u].size()));
    g[u].push_back(e);
    g[v].push_back(r);
  bool BuildLevelGraph(int src, int sink) {
    fill(level.begin(), level.end(), -1);
    while (not q.empty())
      q.pop();
    level[src] = 0;
    q.push(src);
    while (not q.empty()) {
      int u = q.front();
      q.pop();
      for (auto e = g[u].begin(); e != g[u].end(); ++e) {
   if (not e->cap or level[e->v] != -1)
          continue;
        level[e->v] = level[u] + 1;
        if (e->v == sink)
          return true;
        q.push(e->v);
    return false:
  T BlockingFlow(int u, int sink, T f) {
  if (u == sink or not f)
      return f:
     T fu = f;
    for (auto e = g[u].begin(); e != g[u].end(); ++e) {
      if (not e->cap or level[e->v] != level[u] + 1)
      T mincap = BlockingFlow(e->v, sink, min(fu, e->cap));
      if (mincap) {
        g[e->v][e->rev].cap += mincap;
        e->cap -= mincap;
        fu -= mincap;
    if (f == fu)
     level[u] = -1;
    return f - fu;
  T MaxFlow(int src, int sink) {
    flow = 0;
    while (BuildLevelGraph(src, sink))
      flow += BlockingFlow(src, sink, numeric_limits<T>::max());
    return flow;
};
```

6.2 Hopcroft-Karp Bipartite Matching

```
/* O(v^3)
* Matching maximo de grafo bipartido de peso 1 nas arestas
* supondo que o grafo bipartido seja enumerado de 0-n-1
* chamamos maxMatch(n)
class MaxMatch {
  vi graph[N];
  int match[N], us[N];
 MaxMatch(){};
  void addEdge(int u, int v) { graph[u].pb(v); }
  int dfs(int u)
    if (us[u]) return 0;
    us[u] = 1:
    for (int v : graph[u]) {
      if (match[v] == -1 or (dfs(match[v]))) {
        match[v] = u;
        return 1;
    return 0;
  int maxMatch(int n)
    memset (match, -1, sizeof(match));
    int ret = 0;
for (int i = 0; i < n; i++) {</pre>
     memset(us, 0, sizeof(us));
      ret += dfs(i);
```

```
return ret;
};
```

6.3 Max Bipartite Matching 2

```
// This code performs maximum bipartite matching.
// Running time: O(|E|\ |V|) -- often much faster in practice
     INPUT: w[i][j] = edge \ between \ row \ node \ i \ and \ column \ node \ j
     OUTPUT: mr[i] = assignment for row node i, -1 if unassigned
             mc[i] = assignment for column node i, -1 if unassigned
             function returns number of matches made
#include <vector>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool FindMatch(int i, const VVI &w, VI &mr, VI &mc, VI &seen) {
  for (int j = 0; j < w[i].size(); j++) {</pre>
    if (w[i][j] && !seen[j]) {
      seen[j] = true;
      if (mc[j] < 0 \mid \mid FindMatch(mc[j], w, mr, mc, seen)) {
       mr[i] = j;
mc[j] = i;
        return true;
  return false:
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
 mr = VI(w.size(), -1);
  mc = VI(w[0].size(), -1);
  for (int i = 0; i < w.size(); i++) {</pre>
    VI seen(w[0].size());
    if (FindMatch(i, w, mr, mc, seen)) ct++;
  return ct;
```

6.4 Maximum Matching in General Graphs (Blossom)

```
GETS:
V->number of vertices
E->number of edges
pair of vertices as edges (vertices are 1..V)
output of edmonds() is the maximum matching
match[i] is matched pair of i (-1 if there isn't a matched pair)
Code for the SEAGRP problem at CodeChef.
SEAGRP's limits are: 1 <= V, E <= 100
The problem asked if there is a perfect matching.
#include <bits/stdc++.h>
using namespace std;
const int M=500;
struct struct_edge { int v; struct_edge* n; };
typedef struct_edge* edge;
struct_edge pool[M*M*2];
int topindex;
edge adj[M];
int V,E,match[M],qh,qt,q[M],father[M],base[M];
bool inq[M], inb[M], ed[M][M];
  memset (ed, false, sizeof (ed));
  topindex=0;
  for (int i = 0; i < M; i++)
    adj[i] = NULL;
void add_edge(int u,int v)
  edge top = &pool[topindex++];
  top->v=v,top->n=adj[u],adj[u]=top;
```

```
top = &pool[topindex++];
  top->v=u,top->n=adj[v],adj[v]=top;
int LCA (int root, int u, int v)
  static bool inp[M];
  memset(inp,0,sizeof(inp));
  while(1)
    inp[u=base[u]]=true;
    if (u==root) break;
    u=father[match[u]];
  while(1)
    if (inp[v=base[v]]) return v;
    else v=father[match[v]];
void mark_blossom(int lca,int u)
  while (base[u]!=lca)
    int v=match[u];
    inb[base[u]]=inb[base[v]]=true;
    u=father[v];
    if (base[u]!=lca) father[u]=v;
void blossom_contraction(int s,int u,int v)
  int lca=LCA(s,u,v);
  memset(inb,0,sizeof(inb));
  mark_blossom(lca,u);
  mark_blossom(lca,v);
  if (base[u]!=lca)
    father[u]=v;
  if (base[v]!=lca)
    father[v]=u;
  for (int u=0; u < V; u++)
    if (inb[base[u]])
      base[u]=lca;
      if (!inq[u])
        inq[q[++qt]=u]=true;
int find_augmenting_path(int s)
  memset(inq,0,sizeof(inq));
  memset (father, -1, sizeof (father));
  for (int i=0;i<V;i++) base[i]=i;</pre>
  inq[q[qh=qt=0]=s]=true;
  while (qh<=qt)
    int u=q[qh++];
    for (edge e=adj[u];e!=NULL;e=e->n)
      if (base[u]!=base[v]&&match[u]!=v)
        if ((v==s)|| (match[v]!=-1 && father[match[v]]!=-1))
          blossom_contraction(s,u,v);
        else if (father[v]==-1)
          father[v]=u;
          if (match[v]==-1)
            return v;
          else if (!inq[match[v]])
            inq[q[++qt]=match[v]]=true;
  return -1;
int augment_path(int s,int t)
  int u=t, v, w;
  while (\mathbf{u} ! = -1)
    v=father[u];
    w=match[v];
    match[v]=u:
    match[u]=v;
    u=w;
  return t!=-1;
int edmonds()
```

int matchc=0;

```
memset (match, -1, sizeof (match));
  for (int u=0; u<V; u++)
   if (match[u]==-1)
     matchc+=augment_path(u, find_augmenting_path(u));
  return matchc;
int main()
  int u, v, t;
 cin >> t;
  while (t--)
   cin >> V >> E;
    clean():
    while (E--)
      cin >> u >> v;
      if (!ed[u-1][v-1])
        add_edge(u-1, v-1);
        ed[u-1][v-1]=ed[v-1][u-1]=true;
    //cout << "UE\n";
//cout << V << " " << edmonds() << endl;
    //for (int i=0;i<V;i++)
    // if (i<match[i])
    // cout << i+1 << " " << match[i] +1 << endl;
    //cout << endl;
    if(2*edmonds() == V) cout << "YES\n";</pre>
    else cout << "NO\n";</pre>
  return 0;
```

6.5 Min Cost Matching

```
// Min cost bipartite matching via shortest augmenting paths
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
     cost[i][j] = cost for pairing left node i with right node j
    Lmate[i] = index of right node that left node i pairs with
    Rmate[j] = index of left node that right node j pairs with
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate)
  int n = int(cost.size());
  // construct dual feasible solution
  VD u(n);
  VD v(n);
  for (int i = 0; i < n; i++) {
    u[i] = cost[i][0];
    for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);</pre>
  for (int j = 0; j < n; j++) {
    v[j] = cost[0][j] - u[0];
    for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);</pre>
  // construct primal solution satisfying complementary slackness
  Lmate = VI(n, -1);
  Rmate = VI(n, -1);
  int mated = 0;
  for (int i = 0; i < n; i++) {
```

```
for (int j = 0; j < n; j++) {
    if (Rmate[j] != -1) continue;
    if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {</pre>
      Lmate[i] = j;
      Rmate[j] = i;
      mated++;
      break;
VD dist(n);
VI dad(n);
VI seen(n);
// repeat until primal solution is feasible
while (mated < n) {
  // find an unmatched left node
  int s = 0;
  while (Lmate[s] != -1) s++;
  // initialize Dijkstra
  fill(dad.begin(), dad.end(), -1);
  fill(seen.begin(), seen.end(), 0);
  for (int k = 0; k < n; k++) dist[k] = cost[s][k] - u[s] - v[k];
  int i = 0:
  while (true) {
    // find closest
     i = -1:
    for (int k = 0; k < n; k++) {
      if (seen[k]) continue;
      if (j == -1 || dist[k] < dist[j]) j = k;</pre>
    seen[j] = 1;
    // termination condition
    if (Rmate[j] == -1) break;
    // relax neighbors
    const int i = Rmate[j];
    for (int k = 0; k < n; k++) {
      if (seen[k]) continue;
      const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
if (dist[k] > new dist) {
        dist[k] = new_dist;
        dad[k] = j;
  // update dual variables
  for (int k = 0; k < n; k++) {
   if (k == j || !seen[k]) continue;
   const int i = Rmate[k];</pre>
    v[k] += dist[k] - dist[i]:
    u[i] -= dist[k] - dist[j];
  u[s] += dist[j];
  // augment along path
  while (dad[j] >= 0) {
    const int d = dad[j];
    Rmate[j] = Rmate[d];
    Lmate[Rmate[j]] = j;
    j = d;
  Rmate[j] = s;
Lmate[s] = j;
  mated++:
double value = 0;
for (int i = 0; i < n; i++) value += cost[i][Lmate[i]];</pre>
return value;
```

6.6 Min Cost Max Flow

```
#include<bits/stdc++.h>
using namespace std;
#define sc(a) scanf("%d", &a)
#define sc2(a,b) scanf("%d%d", &a, &b)
#define sc3(a,b,c) scanf("%d%d%d", &a, &b, &c)
#define pri(x) printf("%d\n", x)
#define mp make_pair
```

```
#define pb push_back
#define BUFF ios::sync_with_stdio(false);
#define imprime(v) for(int X=0;X<v.size();X++) printf("%d ", v[X]); printf("\n");</pre>
#define endl "\n"
const int INF= 0x3f3f3f3f;
const long double pi= acos(-1);
typedef long long int 11;
typedef long double ld;
typedef pair<int, double> ii;
typedef vector<int> vi;
typedef vector< vector< int > > vvi;
const int MAXN = 3505:
  s e t pre-definidos como MAXN - 1 e MAXN - 2.
  cnt_nodes qual o maior indice que voce usou. Caso nao saiba, use MAXN - 1.
  IMPORTANTE: DEFINA CNT_NODES antes de usar. Se nao, nao funciona.
  minCostFlow(f) computa o par (fluxo, custo) com o menor custo passando fluxo <= f de fluxo.
  Se passar INF, computa o fluxo maximo.
struct edge
  int to, rev, flow, cap, cost;
  edge() { to = 0; rev = 0; flow = 0; cap = 0; cost = 0; }
  edge(int _to, int _rev, int _flow, int _cap, int _cost)
    to = to: rev = rev:
    flow = _flow; cap = _cap;
    cost = cost:
1:
struct MCMF {
  int cnt_nodes = 0, s = MAXN - 1, t = MAXN - 2;
  vector<edge> G[MAXN];
  void addEdge(int u, int v, int w, int cost)
    edge t = edge(v, G[v].size(), 0, w, cost);
edge r = edge(u, G[u].size(), 0, 0, -cost);
    G[u].push back(t);
    G[v].push_back(r);
  deque<int> Q;
  bool is_inside[MAXN];
  int par_idx[MAXN], par[MAXN], dist[MAXN];
  bool spfa()
    for(int i = 0; i <= cnt_nodes; i++)</pre>
     dist[i] = INF;
    dist[t] = INF;
    O.clear():
    dist[s] = 0:
    is_inside[s] = true;
    Q.push_back(s);
    while(!Q.empty())
      int u = Q.front();
      is_inside[u] = false;
      Q.pop_front();
      for(int i = 0; i < (int)G[u].size(); i++)
        if(G[u][i].cap > G[u][i].flow && dist[u] + G[u][i].cost < dist[G[u][i].to])</pre>
          dist[G[u][i].to] = dist[u] + G[u][i].cost;
          par_idx[G[u][i].to] = i;
          par[G[u][i].to] = u;
          if(is_inside[G[u][i].to]) continue;
          if(!Q.empty() && dist[G[u][i].to] > dist[Q.front()]) Q.push_back(G[u][i].to);
          else Q.push_front(G[u][i].to);
          is_inside[G[u][i].to] = true;
    return dist[t] != INF:
  ii minCostFlow(int flow)
    int f = 0, ret = 0;
    while(f <= flow && spfa())</pre>
      int mn_flow = flow - f, u = t;
      while (u != s)
```

```
{
    mn_flow = min(mn_flow, G[par[u]][par_idx[u]].cap - G[par[u]][par_idx[u]].flow);
    u = par[u];
}

u = t;
while(u != s)
{
    G[par[u]][par_idx[u]].flow += mn_flow;
    G[u][G[par[u]][par_idx[u]].rev].flow -= mn_flow;
    ret += G[par[u]][par_idx[u]].cost * (double)mn_flow;
    u = par[u];
}

f += mn_flow;
}

return make_pair(f, ret);
}
```

6.7 Min Cost Max Flow Dilson

```
#define INF 0x3f3f3f3f3f
struct Edge {
        int v, rev, cap, cost, orig_cost;
        bool orig;
        Edge(int v_, int cap_, int cost_, int rev_, bool orig_) : v(v_),
rev(rev_), cap(cap_), cost(cost_), orig_cost(cost_), orig(orig_) {}
};
struct MinCostMaxFlow{
        vector<vector<Edge> > g;
         vector<int> p, pe, dist;
        int flow, cost, n;
        MinCostMaxFlow(int n_) : g(n_), p(n_), pe(n_), dist(n_), n(n_) \{ \}
        void addEdge(int u, int v, int cap, int cost){
                 if(u == v) return;
                 Edge e(v, cap, cost, int(g[v].size()), true);
                 Edge r(u, 0, 0, int(g[u].size()), false);
                 g[u].push_back(e);
                 g[v].push_back(r);
        bool findPath(int src, int sink) {
                 set<pair<int, int> > q;
                 fill(ALL(dist), INF);
                 dist[src] = 0;
                 p[src] = src;
                 q.insert(make_pair(dist[src], src));
                 while(not q.empty()){
                          int u = q.begin() -> second;
q.erase(q.begin());
                          FOREACH(e, q[u]) {
                                   if (not e->cap) continue;
                                   int newdist = dist[u] + e->cost;
                                   if(newdist < dist[e->v]){
                                            if(dist[e->v] == INF) q.erase(make_pair(dist[e->v], e->v));
                                            dist[e->v] = newdist;
                                            q.insert(make_pair(newdist, e->v));
                                            p[e->v] = u;
                                            pe[e->v] = int(distance(g[u].begin(), e));
                 return dist[sink] < INF:
         void fixCosts(){
                 FORN (u, 0, n)
                          FOREACH(e, g[u]) {
                                   if(e->cap)
                                            if(e->cap) e->cost = min(INF, e->cost + dist[u] - dist[e->v]);
                                   }else{
                                            e->cost = 0;
        void augmentFlow(int sink){
                 int mincap = numeric_limits<int>::max();
                 for(int v = sink; p[v] != v; v = p[v])
    mincap = min(mincap, g[p[v]][pe[v]].cap);
                 for (int v = sink; p[v] != v; v = p[v]) {
```

```
Edge& e = g[p[v]][pe[v]];
Edge& r = g[v][g[p[v]][pe[v]].rev];
                 e.cap -= mincap;
                 r.cap += mincap;
                 cost += (e.orig ? e.orig_cost : -r.orig_cost) * mincap;
        flow += mincap;
void fixInitialCosts(int src)
        fill(ALL(dist), INF);
        dist[src] = 0;
        FORN(i, 0, n) {
                FORN(u, 0, n) {
                         FOREACH(e, g[u]) {
                                  if(e->orig) dist[e->v] = min(dist[e->v], dist[u] + e->cost);
        fixCosts();
pair<int, int> maxFlow(int src, int sink){
        flow = 0:
        cost = 0;
        fixInitialCosts(src);
        while(findPath(src, sink)){
                fixCosts():
                 augmentFlow(sink);
        return make_pair(flow, cost);
```

6.8 Find Maximum Clique in Graphs

};

```
int n.k:
11 g[41];
11 dp[(1<<20)];
11 dp2[(1<<20)];
int t1, t2;
//graph is a bitmask
//meet in the middle technique
// complexity : O(sqrt(2)^n)
11 Adam_Sendler()
         t1=n/2;
         t2=n-t1;
         11 r=0;
         for(11 mask=1; mask<(111<<t1); mask++) {</pre>
                   for(11 j=0; j<t1; j++)
                            if(mask&(111<<j)) {
                                      ll outra= mask-(111<<j);
                                      11 r1= __builtin_popcountl1(dp[mask]);
11 r2= __builtin_popcountl1(dp[outra]);
                                      if(r2>r1) dp[mask] = dp[outra];
                   bool click=true;
                   for(11 j=0; j<t1; j++)
                            if( (111<<j)&mask)
                                      if( ((g[j]^mask)&mask)) click=false;
                   if(click) dp[mask]=mask;
                   11 r1= __builtin_popcountl1(dp[mask]);
                   r=max(r,r1);
         for(11 mask=1; mask<(111<<t2); mask++) {</pre>
                   for(11 j=0; j<t2; j++)
                            if(mask&(111<<j)) {
                                      11 outra= mask-(111<<j);</pre>
                                      11 r1= __builtin_popcountl1(dp2[mask]);
11 r2= __builtin_popcountl1(dp2[outra]);
                                      if(r2>r1) dp2[mask] = dp2[outra];
                   bool click=true;
                   for(11 j=0; j<t2; j++) {</pre>
                            if( (111<<j)&mask){
                                      11 m1= g[j+t1];
11 cara= mask<<t1;
if((m1^cara)&cara){</pre>
                                                click=false;
```

```
if(click) {
                             dp2[mask]=mask;
                    11 r1= __builtin_popcountl1(dp2[mask]);
                    if(r1==0) db(mask);
                    r=max(r,r1);
         for(11 mask=0; mask<(111<<t1); mask++) {</pre>
                   11 tudo= (111<<n) -1;
for(11 j=0; j<t1; j++)</pre>
                             if( (111<<j)&mask) tudo&=g[j];</pre>
                   11 x=_builtin_popcount11(dp[mask]);
11 y=_builtin_popcount11(dp2[tudo]);
                    r=max(r, x+y);
         return r;
int main()
         for (int i=0; i<n; i++) {</pre>
                   g[i] = (111 << i);
                   for(int j=0; j<n; j++) {
                             int x:
                             sc(x);
                             if(x) {
                                       q[i] = (111 << j);
         int m=Adam_Sendler();
          //db(m);
         cout<<fixed<<setprecision(10);</pre>
          cout << (k*k*(m-1))/(2.0*m) << end1;
         return 0;
```

7 Dynamic Programming

7.1 Convex Hull Trick

```
/∗ Esse convex hull trick e para achar a reta minima!
* Para maximizar a reta dada , basta trocar o '>' para
* para '<' na funcao query;
 * Nao chamar query com B ou A vazios! Atualizar dp para
* depois fazer a query =)
* ATENCAO COM O DOUBLE!! ESTA EM LONG LONG :)
vi A[N], B[N];
int pont[N];
bool odomeioehlixo(int r1, int r2, int r3, int j)
 void add(ll a, ll b, int j)
 B[j].pb(b);
  while (B[j].size() >= 3 and
       odomeioehlixo(B[j].size() - 3, B[j].size() - 2, B[j].size() - 1, j)) {
   B[j].erase(B[j].end() - 2);
   A[j].erase(A[j].end() - 2);
11 query(11 x, int j)
 A[j][pont[j]] * x + B[j][pont[j]]))
 return A[j][pont[j]] * x + B[j][pont[j]];
* http://www.spoj.com/problems/APIO10A/
* http://www.spoj.com/problems/ACQUIRE/
```

7.2 Dinamic Convex Hull Trick

```
* Given a set of pairs (m, b) specifying lines of the form y = m*x + b, process
 * set of x-coordinate queries each asking to find the minimum y-value when any
 * the given lines are evaluated at the specified x. To instead have the gueries
 * optimize for maximum y-value, set the QUERY_MAX flag to true.
 * The following implementation is a fully dynamic variant of the convex hull
 * optimization technique, using a self-balancing binary search tree (std::set)
 * support the ability to call add_line() and get_best() in any desired order.
 * Explanation: http://wcipeq.com/wiki/Convex_hull_trick#Fully_dynamic_variant
 * Time Complexity: O(n log n) on the total number of calls made to add_line(),
 * for
 * any length n sequence of arbitrarily interlaced add_line() and get_min()
 * Each individual call to add_line() is O(log n) amortized and each individual
 * call to get_best() is O(log n), where n is the number of lines added so far.
 * Space Complexity: O(n) auxiliary on the number of calls made to add_line().
#include <limits> // std::numeric_limits
#include <set>
class hull_optimizer {
  struct line (
    long long m, b, val;
    double xlo;
    bool is query;
    bool query max;
    line(long long m, long long b, long long val, bool is_query, bool query_max)
      this->m = m;
      this->b = b:
      this->val = val:
      this->xlo = -std::numeric limits<double>::max();
      this->is_query = is_query;
      this->query_max = query_max;
    bool parallel(const line &1) const { return m == 1.m; }
    double intersect (const line &1) const
      if (parallel(1)) return std::numeric_limits<double>::max();
     return (double) (1.b - b) / (m - 1.m);
    bool operator<(const line &1) const
      if (l.is_query) return query_max ? (xlo < l.val) : (l.val < xlo);</pre>
      return m < 1.m;
  std::set<line> hull;
  bool query max;
  typedef std::set<line>::iterator hulliter;
  bool has_prev(hulliter it) const { return it != hull.begin(); }
  bool has_next(hulliter it) const
    return (it != hull.end()) && (++it != hull.end());
  bool irrelevant (hulliter it) const
    if (!has_prev(it) || !has_next(it)) return false;
   hulliter prev = it, next = it;
    --prev:
    return _query_max ? prev->intersect(*next) <= prev->intersect(*it)
                     : next->intersect(*prev) <= next->intersect(*it);
  hulliter update_left_border(hulliter it)
    if ((_query_max && !has_prev(it)) || (!_query_max && !has_next(it)))
     return it;
   hulliter it2 = it;
double val = it->intersect(_query_max ? *--it2 : *++it2);
    line 1(*it):
    1.xlo = val;
    hull.erase(it++);
    return hull.insert(it, 1);
```

```
hull_optimizer(bool query_max = false) { this->_query_max = query_max; }
  void add_line(long long m, long long b)
    line 1(m, b, 0, false, _query_max);
    hulliter it = hull.lower_bound(1);
    if (it != hull.end() && it->parallel(l)) {
     if ((_query_max && it->b < b) || (!_query_max && b < it->b))
       hull.erase(it++);
      else
        return:
    it = hull.insert(it. 1):
    if (irrelevant(it)) {
      hull.erase(it);
    while (has_prev(it) && irrelevant(--it)) hull.erase(it++);
    while (has_next(it) && irrelevant(++it)) hull.erase(it--);
    it = update_left_border(it);
    if (has_prev(it)) update_left_border(--it);
   if (has_next(++it)) update_left_border(++it);
  long long get_best (long long x) const
    line q(0, 0, x, true, _query_max);
    hulliter it = hull.lower_bound(q);
    if (_query_max) --it;
    return it->m * x + it->b;
};
/*** Example Usage ***/
#include <cassert>
int main()
  hull_optimizer h;
 h.add_line(3, 0);
h.add_line(0, 6);
 h.add_line(1, 2);
 h.add line(2, 1);
  assert(h.get_best(0) == 0);
  assert(h.get_best(2) == 4);
  assert(h.get_best(1) == 3);
  assert(h.get_best(3) == 5);
  return 0;
```

7.3 Divide and Conquer Example

```
//Um exemplo de Divide and conquer:
int MOD = 1e9 + 7;
const int N = 1010;
int dp[N][N], cost[N][N], v[N], pref[N], n, m;
void compDP(int j, int L, int R, int b, int e)
{
    if (L > R) return;
    int mid = (L + R) / 2;
    int idx = -1;
    for (int i = b; i <= min(mid, e); i++)
        if (dp[mid][j] > dp[i][j - 1] + cost[i + 1][mid]) {
        idx = i;
        dp[mid][j] = dp[i][j - 1] + cost[i + 1][mid];
    }
    compDP[j, L, mid - 1, b, idx);
    compDP(j, mid + 1, R, idx, e);
}
//chamada!
for (int i = 1; i <= n; i++) dp[i][0] = cost[1][i];
for (int i = 1; i <= n; i++) compDP(i, 1, n, 1, n);
```

7.4 Lichao Tree

```
#include <bits/stdc++.h>
#define LL long long
#define lc (x << 1)
#define rc (x << 1 | 1)
#define rr (x << 1 | 1)
#define INF 0x7FFFFFFF // or 0x3f3f3f3f ?
using namespace std;</pre>
```

```
/*======== Header Template ======*/
const int N = 100000 + 5;
int vis[N << 1];</pre>
char op[100];
struct line {
  double k, b;
  line(double _k = 0, double _b = 0) {
    b = b;
  double get(double x) { return k * x + b; }
c[2 * N];
void modify(int x, int 1, int r, line v) {
  if (!vis[x]) {
    vis[x] = 1;
    c[x] = v;
    return:
  if (c[x].get(1) > v.get(1) && c[x].get(r) > v.get(r))
    return:
   \begin{tabular}{ll} \textbf{if} & (c[x].get(1) & < v.get(1) & & c[x].get(r) & < v.get(r)) & \\ \end{tabular} 
    c[x] = v;
    return:
  int m = (1 + r) >> 1;
  if (c[x].get(1) < v.get(1))</pre>
     swap(c[x], v);
  if (c[x].get(m) > v.get(m))
    modify(rc, m + 1, r, v);
  else {
    swap(c[x], v);
    modify(lc, l, m, v);
double get(int x, int 1, int r, int pos) {
  if (1 == r)
    return c[x].get(1);
  int m = (1 + r) >> 1;
  double ans = c[x].get(pos);
  if (pos <= m)
     ans = max(ans, get(lc, 1, m, pos));
  else
    ans = max(ans, get(rc, m + 1, r, pos));
  return ans;
```

8 Geometry

8.1 Convex Hull Monotone Chain

```
typedef struct sPoint {
        int x, y;
        sPoint(int _x, int _y)
                x = _x;
               y = y;
} point;
bool comp(point a, point b)
        if (a.x == b.x) return a.y < b.y;</pre>
        return a.x < b.x;
int cross(point a, point b, point c) // AB x BC
        a.x -= b.x;
        a.y -= b.y;
        b.x -= c.x;
        b.y -= c.y;
        return a.x * b.y - a.y * b.x;
bool isCw(point a, point b, point c) // Clockwise
        return cross(a, b, c) < 0;
// >= if you want to put collinear points on the convex hull
```

```
bool isCcw(point a, point b, point c) // Counter Clockwise
       return cross(a, b, c) > 0;
vector<point> convexHull(vector<point> p)
       vector<point> u, 1; // Upper and Lower hulls
        sort(p.begin(), p.end(), comp);
       for (unsigned int i = 0; i < p.size(); i++) {
               while (1.size() > 1 && !isCcw(1[1.size() - 1], 1[1.size() - 2], p[i]))
                       1.pop back();
               1.push_back(p[i]);
       for (int i = p.size() - 1; i >= 0; i--) {
               while (u.size() > 1 && !isCcw(u[u.size() - 1], u[u.size() - 2], p[i]))
                       u.pop_back();
               u.push_back(p[i]);
       u.pop_back();
       1.pop_back();
       1.insert(l.end(), u.begin(), u.end());
       return 1;
```

8.2 Fast Geometry in Cpp

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std;
double INF = 1e100:
double EPS = 1e-12;
struct PT {
  double x, y;
  PT() {}
  PT(double x, double y) : x(x), y(y) {}
  PT(const PT &p) : x(p.x), y(p.y)
  PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y);
  PT operator * (double c)
                                 const { return PT(x*c, y*c );
  PT operator / (double c)
                                 const { return PT(x/c, y/c ); ]
};
double dot(PT p, PT q)
                           { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream &operator << (ostream &os, const PT &p) {
 os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90 (PT p) { return PT(-p.y,p.x); }
PT RotateCW90 (PT p)
                        { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a. PT b. PT c) {
 return a + (b-a) *dot (c-a, b-a) /dot (b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment (PT a, PT b, PT c) {
  double r = dot(b-a, b-a);
  if (fabs(r) < EPS) return a;</pre>
  r = dot(c-a, b-a)/r;
  if (r < 0) return a;</pre>
  if (r > 1) return b;
  return a + (b-a) *r;
// compute distance from c to segment between a and b
double DistancePointSegment (PT a, PT b, PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
```

```
double DistancePointPlane (double x, double y, double z,
                          double a, double b, double c, double d)
  return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
 return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
     // determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
  if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
      dist2(b, c) < EPS || dist2(b, d) < EPS) return true;
    if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
     return false:
    return true:
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
  if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
  return true:
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
  assert(dot(b, b) > EPS && dot(d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b = (a+b)/2:
  c = (a+c)/2;
  return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon (const vector <PT> &p, PT q) {
  bool c = 0;
  for (int i = 0; i < p.size(); i++) {
    int j = (i+1)%p.size();
    if ((p[i].y <= q.y && q.y < p[j].y ||
  p[j].y <= q.y && q.y < p[i].y) &&</pre>
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
  return c;
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)
    if (dist2(ProjectPointSegment(p[i], p[(i+1)*p.size()], q), q) < EPS)</pre>
     return true;
    return false:
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ret;
  b = b-a;
  a = a-c:
  double A = dot(b, b);
  double B = dot(a, b);
  double C = dot(a, a) - r*r;
  double D = B*B - A*C;
  if (D < -EPS) return ret;</pre>
  ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
  if (D > EPS)
   ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret:
```

compute distance between point (x,y,z) and plane ax+by+cz=d

```
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret;
  double d = sqrt(dist2(a, b));
  if (d > r+R \mid \mid d+min(r, R) < max(r, R)) return ret;
  double x = (d*d-R*R+r*r)/(2*d);
  double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
  if (y > 0)
    ret.push back(a+v*x - RotateCCW90(v)*y);
  return ret:
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
 return area / 2.0:
double ComputeArea(const vector<PT> &p) {
 return fabs (ComputeSignedArea (p));
PT ComputeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++) {
  int j = (i+1) % p.size();</pre>
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
  for (int i = 0; i < p.size(); i++)
    for (int k = i+1; k < p.size(); k++) {
      int j = (i+1) % p.size();
int l = (k+1) % p.size();
      if (i == 1 \mid \mid j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
        return false:
 return true:
int main() {
  // expected: (-5,2)
  cerr << RotateCCW90(PT(2,5)) << endl;</pre>
  // expected: (5,-2)
  cerr << RotateCW90(PT(2,5)) << endl;
  // expected: (-5,2)
  cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
  // expected: (5.2)
  cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
  // expected: (5,2) (7.5,3) (2.5,1)
  << ProjectPointSegment (PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
  // expected: 6.78903
  cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
  // expected: 1 0 1
  cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << "
       << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
<< LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;</pre>
  // expected: 0 0 1
  cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
       << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "</pre>
```

```
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
      << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " "
      << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;</pre>
cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
v.push\_back(PT(0,0));
v.push back(PT(5,0));
v.push_back(PT(5,5));
v.push back(PT(0,5));
// expected: 1 1 1 0 0
cerr << PointInPolygon(v, PT(2,2)) << " "
      << PointInPolygon(v, PT(2,0)) << " "
      << PointInPolygon(v, PT(0,2)) << " "
      << PointInPolygon(v, PT(5,2)) << " "
      << PointInPolygon(v, PT(2,5)) << endl;
// expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2,2)) << " "</pre>
      << PointOnPolygon(v, PT(2,0)) << " "
      << PointOnPolygon(v, PT(0,2)) << " "
      << PointOnPolygon(v, PT(5,2)) << " "
      << PointOnPolygon(v, PT(2,5)) << endl;
// expected: (1.6)
                (5,4) (4,5)
                 (4,5) (5,4)
                blank line
                (4,5) (5,4)
u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
// area should be 5.0
// centroid should be (1.166666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c << endl:
return 0:
```

8.3 Point Inside Polygon O(lg N)

```
/*
    * Solution for UVa 11072 - Points

*
    * On this problem you must calculate the convex hull on the
    * first set of points.

*
    * And for each point of the second set, answer if the point
    * is inside or outside the convex hull.
    */
    typedef struct sPoint {
        11 x, y;
        sPoint() {}
        sPoint() {}
        sPoint (11 x, 11 y) : x(x), y(y) {}
        bool operator<(const sPoint& other) const
        {
              if(x == other.x) return y < other.y;
              return x < other.x;
        }
        point;
    vector<point> vp, ch;

ll cross(point a, point b, point c) // AB x BC
```

```
a.x = b.x; a.v = b.v;
  b.x -= c.x; b.y -= c.y;
  return a.x*b.y - a.y*b.x;
vector<point> convexhull()
  sort(vp.begin(), vp.end());
  vector<point> 1, u;
  for(int i = 0; i < vp.size(); i++)</pre>
    \textbf{while} (1.size() > 1 \&\& cross(1[1.size()-2], 1[1.size()-1], vp[i]) <= 0)
      l.pop_back();
    1.pb(vp[i]);
  for(int i = vp.size()-1; i >= 0; i--)
     \mathbf{while}(\mathbf{u.size}() > 1 && \operatorname{cross}(\mathbf{u}[\mathbf{u.size}()-2], \ \mathbf{u}[\mathbf{u.size}()-1], \ \mathbf{vp}[\mathbf{i}]) <= 0)
      u.pop_back();
    u.pb(vp[i]);
  1.pop_back(); u.pop_back();
  l.insert(l.end(), u.begin(), u.end());
  return 1:
11 area(point a, point b, point c)
{ return llabs(cross(a, b, c)); }
bool insideTriangle(point a, point b, point c, point p)
  return area(a, b, c) == (area(a, b, p) +
      area(a, c, p) +
      area(b, c, p));
bool isInside(point p)
  if(ch.size() < 3) return false;</pre>
  int i = 2, j = ch.size()-1;
  while(i < j)
    int mid = (i+j)/2;
       c = cross(ch[0], ch[mid], p);
    if(c > 0) i = mid+1;
    else j = mid;
  return insideTriangle(ch[0], ch[i], ch[i-1], p);
int main()
  int n:
  while (true)
    ch.clear();
    vp.clear();
    if(not cin) break;
    while (n--)
      point p;
      cin >> p.x >> p.y;
      vp.pb(p);
    ch = convexhull();
    cin >> n;
    while (n--)
      point p;
      cin >> p.x >> p.y;
      if(isInside(p)) cout << "inside\n";</pre>
      else cout << "outside\n";</pre>
  return 0:
```

8.4 Minimum Enclosing Circle O(N)

```
const int MOD=1e9+7;
const 11 LINF=0x3f3f3f3f3f3f3f3f3f;
double INF = 1e100;
double EPS = 1e-12;
struct PT {
 double x, y;
  PT() {}
  PT(double x, double y) : x(x), y(y) {}
 PT (const PT &p) : x(p.x), y(p.y) {}
PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
 PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
 PT operator * (double c) const { return PT(x*c, y*c ); }
 PT operator / (double c)
                               const { return PT(x/c, y/c ); }
double dot(PT p, PT q)
                            { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q)
                             { return dot(p-q,p-q); }
double cross(PT p, PT q)
                           { return p.x*q.y-p.y*q.x; }
PT RotateCW90(PT p) { return PT(p.y,-p.x); }
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
  assert(dot(b, b) > EPS && dot(d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
PT ComputeCircleCenter(PT a, PT b, PT c) {
  return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
struct circle {
 PT cen:
  double r;
 circle() {}
 circle(PT cen, double r) ; cen(cen), r(r) {}
bool inside(circle &c, PT &p) {
 return (c.r * c.r + 1e-6 > dist2(p, c.cen));
PT bestOf3(PT a, PT b, PT c) {
 if(dot(b - a, c - a) < 1e-9) return (b + c) / 2.0;</pre>
  if(dot(a - b, c - b) < 1e-9) return (a + c) / 2.0;</pre>
  if(dot(a - c, b - c) < 1e-9) return (a + b) / 2.0;
  return ComputeCircleCenter(a, b, c);
circle minCirc(vector<PT> v) {
  int n = v.size();
  random_shuffle(v.begin(), v.end());
  PT p = PT(0.0, 0.0);
circle ret = circle(p, 0.0);
  for (int i = 0; i < n; i++) {
    if(!inside(ret, v[i])) {
      ret = circle(v[i], 0);
      for(int j = 0; j < i; j++) {
   if(!inside(ret, v[j])) {</pre>
          ret = circle((v[i] + v[j]) / 2.0, sqrt(dist2(v[i], v[j])) / 2.0);
           for (int k = 0; k < j; k++) {
            if(!inside(ret, v[k])) {
   p = best0f3(v[i], v[j], v[k]);
              ret = circle(p, sqrt(dist2(p, v[i])));
  return ret;
int main() {
  int n;
  srand(time(NULL));
  BUFF;
  vector<PT> v;
  cin>>n:
  for (int i = 0; i < n; i++) {
    PT p;
    cin>>p.x>>p.y;
    v.pb(p);
```

```
}
circle c = minCirc(v);
cout<<setprecision(6)<<fixed;
cout<<c.cen.x<<" "<<c.cen.y<<" "<<c.r<<endl;
return 0;</pre>
```

9 Data Structures

9.1 Disjoint Set Union

```
const int N=500010;
int p[N],Rank[N];
void Init()
        for(int i=0;i<N;i++) p[i]=i, Rank[i]=1;</pre>
int FindSet(int i)
        if(p[i]==i) return i;
        return p[i]=FindSet(p[i]);
bool SameSet(int i, int j)
        return (FindSet(i) == FindSet(j));
void UnionSet(int i, int j)
        if (!SameSet(i, j)) {
                 int x = FindSet(i), y=FindSet(j);
                 if (Rank[x] > Rank[y]){
                         Rank[x] += Rank[y];
                 else (
                         p[x] = y;
Rank[y] += Rank[x];
```

9.2 Persistent Segment Tree

```
//PRINTAR O NUMERO DE ELEMENTOS DISTINTOS
//EM UM INTERVALO DO ARRAY
const int N = 30010;
int tr[100 * N], L[100 * N], R[100 * N], root[100 * N];
int v[N], mapa[100 * N];
int cont = 1;
void build(int node, int b, int e)
    tr[node] = 0;
  else {
    L[node] = cont++;
    R[node] = cont++;
build(L[node], b, (b + e) / 2);
build(R[node], (b + e) / 2 + 1, e);
tr[node] = tr[L[node]] + tr[R[node]];
int update(int node, int b, int e, int i, int val)
  int idx = cont++;
  tr[idx] = tr[node] + val;
  L[idx] = L[node];
  R[idx] = R[node];
  if (b == e) return idx;
  int mid = (b + e) / 2;
  if (i <= mid)
    L[idx] = update(L[node], b, mid, i, val);
  else
    R[idx] = update(R[node], mid + 1, e, i, val);
  return idx:
int query(int nodeL, int nodeR, int b, int e, int i, int j)
  if (b > j \text{ or } i > e) \text{ return } 0;
  if (i <= b and j >= e) {
```

```
int p1 = tr[nodeR];
    int p2 = tr[nodeL];
    return p1 - p2;
  int mid = (b + e) / 2;
  return query(L[nodeL], L[nodeR], b, mid, i, j) +
         query(R[nodeL], R[nodeR], mid + 1, e, i, j);
int main()
  int n;
  sc(n);
 memset (mapa, -1, sizeof (mapa));
for (int i = 0; i < n; i++) sc(v[i]);
  build(1, 0, n - 1);
for (int i = 0; i < n; i++) {</pre>
    if (mapa[v[i]] == -1) {
      root[i + 1] = update(root[i], 0, n - 1, i, 1);
      mapa[v[i]] = i;
    else {
      root[i + 1] = update(root[i], 0, n - 1, mapa[v[i]], -1);
      mapa[v[i]] = i;
      root[i + 1] = update(root[i + 1], 0, n - 1, i, 1);
  int q;
  sc(a);
  for (int i = 0; i < q; i++) {
   int 1. r:
    sc2(1, r);
    int resp = query(root[1 - 1], root[r], 0, n - 1, 1 - 1, r - 1);
    pri(resp);
  return 0;
```

9.3 Sparse Table

```
//comutar RMQ, favor inicializar: dp[i][0]=v[0]
//sendo v[0] o vetor do rmq
//chamar o build!
int dp[200100][22];
int n;
int d[200100];
void build()
{
    d[0] = d[1] = 0;
    for (int i = 2; i < n; i++) d[i] = d[i >> 1] + 1;
    for (int j = 1; j < 22; j++) {
        for (int i = 0; i + (1 << (j - 1)) < n; i++) {
            dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
    }
}
int query(int i, int j)
{
    int k = d[j - i];
    int x = min(dp[i][k], dp[j - (1 << k) + 1][k]);
    return x;
}</pre>
```

9.4 Cartesian Tree

```
int bigrand() { return (rand() <<16) rand();}</pre>
struct Node {
        int prior, val, sum, subtr, pref, suf, maximo;
        Node *1, *r;
        Node () {}
        Node (int x): maximo(x), val(x), prior(bigrand()), sum(x), subtr(1), 1(NULL), r(NULL), pref
              (x), suf(x){}
struct Treap{
        Node *root;
        Treap() : root(NULL) {};
        int cnt(Node *t) {
                if(t) return t->subtr;
                return 0:
        int key(Node *t){
                if(t) return t->val;
                return 0;
```

```
int sum(Node *t) {
                   if(t) return t->sum;
                   return 0;
         int pref(Node *t){
                   if(t) return t->pref;
                   return -INF;
         int suf(Node *t) {
                  if(t) return t->suf;
                   return -INF;
         int maximo(Node *t) {
                  if(t) return t->maximo:
                   return -INF;
         void upd(Node* &t) {
                  if(t){
                            if(!(t->1)){
                                      t->pref= max(t->val, t->val + pref(t->r));
                            else
                                     t->pref= max( pref(t->1), max( sum(t->1) + t->val, sum(t->1) + t->val
                                             + pref(t->r)));
                            if(!(t->r)){
                                     t\rightarrow suf= max(t\rightarrow val, t\rightarrow val + suf(t\rightarrow l));
                            else
                                     t\rightarrow suf=max(suf(t\rightarrow r), max(sum(t\rightarrow r) + t\rightarrow val, sum(t\rightarrow r) + t\rightarrow val +
                            t\rightarrow maximo= max( suf(t\rightarrow 1) + t\rightarrow val, suf(t\rightarrow 1) + t\rightarrow val + pref(t\rightarrow r));
                            t\rightarrow maximo = max(t\rightarrow maximo , pref(t\rightarrow r) + t\rightarrow val);
                            t\rightarrow maximo = max(t\rightarrow maximo, max(maximo(t\rightarrow 1), maximo(t\rightarrow r)));
                            t->maximo= max(t->maximo, t->val);
                            t\rightarrow sum = sum(t\rightarrow r) + sum(t\rightarrow l) + t\rightarrow val;
                            t->subtr=cnt(t->1) + cnt(t->r) +1;
// junta todos menores que val e todos maiores ou iguais a val
Node* merge(Node* L, Node *R) {
                  if(!L) return R;
                   if(!R) return L;
                   if(L->prior > R->prior) {
                            L \rightarrow r = merge(L \rightarrow r, R);
                            upd(L);
                            return L:
                  R->1 = merge(L, R->1);
                   upd(R):
                   return R:
// separa t em todos menores que val , todos maiores ou igual a val
         pair<Node*, Node*> split(Node* t, int val, int add) {
                  if(!t){
                            return mp(nullptr, nullptr);
                   int cur_key= add+ cnt(t->1);
                   if(cur_key < val){</pre>
                            auto ret= split(t->r, val, cur_key+1);
                            t->r= ret.first;
                            return mp(t, ret.second);
                  auto ret= split(t->1, val , add);
                   t->1 = ret.second;
                   upd(t):
                   return mp(ret.first, t);
         int querymax(Node *&t, int i, int j) {
                  auto tr1= split(t, j+1, 0);
                   auto tr2= split(tr1.first, i, 0);
                   int prefi= pref(tr2.second->r);
                   int sufi= suf(tr2.second->1);
                   int val= key(tr2.second);
                   int r=maximo(tr2.second);
                   auto x= merge(tr2.first, tr2.second);
                  t= merge(x, tr1.second);
                   return r:
         void insert(Node* &t, int x, int y) {
                   Node *aux= new Node(y);
                   auto tr= split(t, x,0);
                   auto traux=merge(tr.first,aux);
```

```
t=merge(traux,tr.second);
        void replace(Node *&t, int x, int y) {
                Node *aux= new Node(y);
                erase(t, x);
                auto tr=split(t, x, 0);
                t=merge(tr.first,aux);
                //db(pref(t));
                //db(suf(t));
                t=merge(t, tr.second);
                        db(pref(t));
                        db(suf(t));
        void erase(Node * &t, int x) {
                auto tr=split(t,x+1,0);
                auto tr2=split(tr.first, x,0);
                t= merge(tr2.first, tr.second);
int main()
        int n;
        sc(n);
        Treap T:
        for (int i=0; i<n; i++) {
                int x;
                sc(x);
                T.insert(T.root, i, x);
        int q;
        while (q--) {
                 //db(T.cnt(T.root));
                char op;
                cin>>op;
if(op=='I'){
                        int x, y;
                        sc2(x, y);
                        x--:
                        T.insert(T.root, x, y);
                else if(op=='Q'){
                        int 1, r;
                        sc2(1,r);
                        pri(T.querymax(T.root, 1,r));
                else if(op=='R'){
                        int x, y;
                        sc2(x,y);
                        x--:
                        T.replace(T.root, x, y);
                else{
                        int x;
                        sc(x);
                        T.erase(T.root, x);
        return 0;
```

9.5 Cartesian Tree 2

```
int bigrand() { return (rand() <<16) ^rand();}</pre>
char r[500001];
struct Node {
        int prior , subtr, sujo;
        int val, add;
        Node *1, *r;
        Node (int c): add(0), val(c), prior(bigrand()), 1(NULL), r(NULL), subtr(1) {}
struct Treap{
        Node *root;
        Treap() : root(NULL) {};
        int cnt (Node *t) {
    if(t) return t->subtr;
                return 0;
        void upd(Node* &t) {
                if(t){
                         if(t->sujo){
                                  swap(t->1, t->r);
```

```
t->sujo=0;
                          if (t->1) {
                                   t->1->sujo^=1;
                          if(t->r){
                                   t->r->sujo^=1;
                  t->val+=t->add;
                  if(t->1) {
                          t->1->add+=t->add:
                  if(t->r) {
                          t->r->add+=t->add;
                  t->add=0;
                  t\rightarrowsubtr= cnt(t\rightarrow1) + cnt(t\rightarrowr) + 1;
Node* merge(Node *L, Node *R) {
         upd(R);
         upd(L);
         if(!L) return R;
         if(!R) return L:
         if(L-> prior > R->prior) {
    L->r = merge(L->r, R);
                 upd(L);
                 upd(R);
                 return L:
         R->1 = merge(L,R->1);
         upd(R);
         upd(L);
         return R;
//<, >= val
pair<Node*, Node*> split(Node *t, int val, int add) {
        if(!t) {
                 return mp(nullptr, nullptr);
         upd(t);
        int cur_key= add + cnt(t->1);
if(cur_key < val){</pre>
                 auto ret= split(t->r, val , cur_key+1);
                  t->r= ret.first;
                  upd(t);
                 return mp(t, ret.second);
         auto ret= split( t->1, val , add);
         t->1 = ret.second;
         upd(t):
         return mp(ret.first, t);
Node* inverte(Node* &t, int i, int j, int val) {
         if(i>j) return t;
         auto tr1= split(t, j+1, 0);
         auto tr2= split(tr1.first, i, 0);
                 tr2.second->sujo^=1;
                 tr2.second->add+=val;
         auto x=merge(tr2.first,tr2.second);
         x=merge(x,tr1.second);
         return x;
void att(Node* &t, int 1 , int r, int i, int j) {
    t = inverte(t,r+1,i-1,-1);
         t=inverte(t,1,j,1);
void imprime(Node* &t, int add) {
        if(t){
                  upd(t);
                  int cur_key= add + cnt(t->1);
                  imprime(t->1, add);
                  imprime(t->r, cur_key+1);
                  int aux=t->val+t->add;
                  aux%=26;
                  aux+=26;
                  aux%=26;
                 r[cur_key] =aux+'a';
void poe(Node* &t, string &s){
         for(int i=0;i<s.size();i++){</pre>
                  Node *aux = new Node(s[i]-'a');
                  auto tr= split(t, i, 0);
                  auto traux= merge(tr.first, aux);
```

```
t= merge(traux, tr.second);
int main()
        BUFF;
        int X;
        cin>>X;
        while (X--) {
                Treap T;
                string s;
                int op;
                cin>>s>>op;
                T.poe(T.root, s);
                 //T.imprime(T.root, 0);
                 //for(int i=0;i<s.size();i++) {
                      cout<<r[i];
                 //cout<<endl;
                 //assert (T.root!=NULL);
                while (op--) {
                         int 1, r, i, j;
                         cin>>l>>r>>i>>j;
                         1--, r--, i--, j--;
                         T.att(T.root, 1, r, i, j);
                 T.imprime(T.root, 0);
                for(int i=0;i<s.size();i++) cout<<r[i];</pre>
                cout << endl;
```

9.6 Dynamic MST

```
* Code for URI 1887
* It gives an tree and a bunch of queries to add
* edges from a to b with cost c.
const int MOD = 1e9 + 9;
struct ed{
        int u, v, w, t;
        ed(int _u, int _v, int _w, int _t) { u=_u,v=_v,w=_w,t=_t;}
        ed(){};
        bool operator < ( const ed &a) const
                return w<a.w;
};
const int N=50010;
int p[N],id[N];
void init(int n)
        for(int i=1;i<=n;i++) p[i]=i;</pre>
int findSet(int i)
        if(p[i]==i) return i;
        return p[i]=findSet(p[i]);
bool unionSet(int i, int j)
        int x=findSet(i),y=findSet(j);
        if(x==y) return false;
        return true:
void reduction(int 1, int r, int &n, vector<ed> &graph, int &res)
        vector<ed> g;
        init(n);
        sort(graph.begin(), graph.end());
        for(int i=0;i<graph.size();i++)</pre>
                if(graph[i].t<=r and (graph[i].t>=l or unionSet(graph[i].u,graph[i].v))){
void contraction(int 1,int r,int &n,vector<ed> &graph,int &res)
        vector<ed> g;
        init(n);
        sort(graph.begin(),graph.end());
        for (int i=0;i<(int)graph.size();i++)</pre>
```

```
if(graph[i].t>=1) unionSet(graph[i].u,graph[i].v);
        for(int i=0;i<(int)graph.size();i++){</pre>
                 if(graph[i].t<l and unionSet(graph[i].u,graph[i].v)){</pre>
                          g.pb(graph[i]);
                          res+=graph[i].w;
        init(n);
        for(int i=0;i<g.size();i++){</pre>
                 unionSet(g[i].u,g[i].v);
        int tot=0;
        for(int i=1; i<=n; i++) id[i]=0;
        for (int i=1; i<=n; i++) {</pre>
                 int f=findSet(i);
                 if(!id[f]) id[f]=++tot;
                 id[i]=id[f];
        for(int i=0;i<graph.size();i++){</pre>
                 graph[i].u=id[graph[i].u],graph[i].v=id[graph[i].v];
        n=tot:
void solve(int 1,int r,int n,vector<ed> graph,int res)
        reduction(l,r,n,graph,res);
        contraction(l,r,n,graph,res);
        if(l==r)
                 sort (graph.begin(),graph.end());
                  \texttt{for}(\texttt{int} \ i=0; i<(\texttt{int})\, \texttt{graph.size}(); i++) \\
                          if(unionSet(graph[i].u,graph[i].v)){
                                  res+=graph[i].w;
                          pri(res);
                 return:
        int mid=(1+r)/2:
        solve(l,mid,n,graph,res);
        solve(mid+1, r, n, graph, res);
int main()
        int T;
        sc(T);
        while (T--)
                 int n,m,q;
                 sc3(n,m,q);
                 vector<ed> graph;
                 for(int i=1;i<=m;i++)
                          int u, v, w;
                          sc3(u, v, w);
                          int t=0;
                          graph.pb(ed(u,v,w,t));
                 for(int i=1;i<=q;i++)
                          int t=i;
                          graph.pb(ed(u,v,w,t));
                 solve(1,q,n,graph,0);
        return 0;
```

10 Miscellaneous

10.1 Invertion Count

```
//conta o numero de inversoes de um array
//x e o tamanho do array, v e o array que quero contar
11 inversoes = 0;
void merge_sort(vi &v, int x)
{
    if (x == 1) return;
    int tam_esq = (x + 1) / 2, tam_dir = x / 2;
```

```
int esq[tam_esq], dir[tam_dir];
for (int i = 0; i < tam_esq; i++) esq[i] = v[i];</pre>
for (int i = 0; i < tam_dir; i++) dir[i] = v[i + tam_esq];</pre>
merge_sort(esq, tam_esq);
merge_sort(dir, tam_dir);
int i_esq = 0, i_dir = 0, i = 0;
while (i_esq < tam_esq or i_dir < tam_dir) {</pre>
 if (i_esq == tam_esq) {
    while (i_dir != tam_dir) {
      v[i] = dir[i_dir];
      i_dir++, i++;
 else if (i_dir == tam_dir) {
   while (i_esq != tam_esq) {
   v[i] = esq[i_esq];
      i_esq++, i++;
      inversoes += i_dir;
   if (esq[i_esq] <= dir[i_dir]) {</pre>
      v[i] = esq[i_esq];
      i++, i_esq++;
      inversoes += i_dir;
    else {
     v[i] = dir[i_dir];
      i++, i_dir++;
```

10.2 Distinct Elements in ranges

```
const int MOD = 1e9 + 7;
const int N = 1e6 + 10;
int bit[N], v[N], id[N], r[N];
ii querv[N]:
int mapa[N];
bool compare(int x, int y) { return query[x] < query[y]; }</pre>
void add(int idx, int val)
  while (idx < N) {
   bit[idx] += val;
    idx += idx & -idx;
int sum(int idx)
  int ret = 0;
  while (idx > 0) {
    ret += bit[idx];
    idx -= idx & -idx;
  return ret;
int main()
  memset(bit, 0, sizeof(bit));
  memset(mapa, 0, sizeof(mapa));
  for (int i = 1; i \le n; i++) sc(v[i]);
  int q;
  sc(a):
  for (int i = 0; i < q; i++) {
   sc2(query[i].second, query[i].first);
   id[i] = i;
  sort(id, id + q, compare);
  sort (query, query + q);
  for (int i = 0; i < q; i++) {
    int L = query[i].second;
    int R = query[i].first;
    while (j \le R) {
     if (mapa[v[j]] > 0) {
        add(mapa[v[j]], -1);
        mapa[v[j]] = j;
        add(mapa[v[j]], 1);
      else {
       mapa[v[i]] = i;
        add(mapa[v[j]], 1);
```

```
j++;
}
r[id[i]] = sum(R);
if (L > 1) r[id[i]] -= sum(L - 1);
}
for (int i = 0; i < q; i++) pri(r[i]);
return 0;</pre>
```

10.3 Maximum Rectangular Area in Histogram

```
* Complexidade : O(N)
ll solve(vi &h)
 int n = h.size();
 11 \text{ resp} = 0;
  stack<int> pilha;
  while (i < n) {
   if (pilha.empty() or h[pilha.top()] <= h[i]) {</pre>
     pilha.push(i++);
    else {
     int aux = pilha.top();
     pilha.pop();
     resp =
         max(resp, (ll)h[aux] * ((pilha.empty()) ? i : i - pilha.top()-1));
  while (!pilha.empty())
   int aux = pilha.top();
    pilha.pop();
    resp = max(resp, (ll)h[aux] * ((pilha.empty()) ? n : n - pilha.top()-1));
  return resp;
```

10.4 Multiplying Two LL mod n

10.5 Josephus Problem

```
/* Josephus Problem - It returns the position to be, in order to not die. O(n)*/
/* With k=2, for instance, the game begins with 2 being killed and then n+2, n+4, ... */
ll josephus(ll n, ll k) {
   if(n==1) return 1;
   else return (josephus(n-1, k)+k-1)%n+1;
}
```

10.6 Josephus Problem 2

10.7 Ordered Static Set (Examples)

```
///USANDO ORDERED STATIC SET PRA ESTRUTURA
//aqui vai o template
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace __gnu_pbds;
typedef struct cu {
        int a;
        int b;
        bool operator < (const struct cu &other) const {</pre>
                 if(a != other.a) return a < other.a;</pre>
                 return b < other.b;</pre>
        bool operator == (const struct cu &other) const {
    return(a == other.a and b == other.b);
bool cmp(const cuzao &a, const cuzao &b) {
         return true;
typedef tree<
        null_type,
        less<cuzao>.
        rb_tree_tag,
tree_order_statistics_node_update>
        ordered_set;
int main()
        ordered_set os;
        cuzao asd;
        asd.a = 1;
        asd.b = 2;
        os.insert(asd);
        asd.a = 4;
        os.insert(asd);
        cout<<(os.find(asd) == end(os))<<endl;//0</pre>
        cout <<os.order_of_key(asd) <<endl;//1
```

```
asd.a = 1;
          cout << os .order_of_key(asd) << endl; //0
          cout<<os.find_by_order(0)->a<<" "<<os.find_by_order(0)->b<<end1;//1 2
cout<<os.find_by_order(1)->a<<" "<<os.find_by_order(1)->b<<end1;//4 2</pre>
//aqui vai o template
//USANDO ORDERED STATIC SET PRA CONTAINER DO STL MESMO
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace __gnu_pbds;
typedef tree<
int,
          null_type,
          less<int>,
          rb_tree_tag,
         tree_order_statistics_node_update>
         ordered_set;//n multi
int main()
          ordered_set os;
          os.insert(1);
          os.insert(10);
          os.insert(1);
          os.insert(15);
          cout<<(os.find(10) == end(os))<<endl;//0 mesma coisa q !count</pre>
          cout<<os order_of_key(10)<<endl;//1 qual o indice do valor 10, se n tem o indice, pega o
          cout <<os.order_of_key(2) <<endl;//1</pre>
          cout<<*vos.upper_bound(2)<<end1;//10</pre>
          cout << *os.find_by_order(0) << endl; //1
          cout<<*os.find_by_order(2)<<endl;//15</pre>
          return 0;
```