Transformer for Vision

Deep Learning

Aziz Temirkhanov Lambda, HSE

Transformer

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

Transformer

ViT

ViT training

- Large amount of data
- Data Augmentation and Model Regularization
 - Random Augment
 - Label Smoothing
 - Stochastic Depth
 - CutMix and MixUp
 - Erasing
- AdamW (or Adam) instead of SGD
- Large weight decay value like 0.1 (recall that for CNN this value is usually around 10e4-10e3)
- Warmup Ir scheduler

ViT

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

DeiT

$$egin{aligned} \mathcal{L} &= (1-\lambda)\mathcal{L}_{CE}(y_{pred}, y_{true}) + \lambda au^2 D_{KL}(y_{pred}/ au, y_{teacher}/ au) \ \mathcal{L} &= rac{1}{2}\mathcal{L}_{CE}(y_{pred}, y_{true}) + rac{1}{2}\mathcal{L}_{CE}(y_{pred}, y_{teacher}) \end{aligned}$$

	Supervision		ImageNet top-1 (%)			
method ↓	label	teacher	Ti 224	S 224	B 224	B↑384
DeiT- no distillation	1	X	72.2	79.8	81.8	83.1
DeiT- usual distillation	X	soft	72.2	79.8	81.8	83.2
DeiT-hard distillation	X	hard	74.3	80.9	83.0	84.0
DeiTn: class embedding	1	hard	73.9	80.9	83.0	84.2
DeiT: distil. embedding	1	hard	74.6	81.1	83.1	84.4
DeiTa: class+distillation	1	hard	74.5	81.2	83.4	84.5

PVT

- FPN introduced a novel approach into object detection
- Deeper layers is responsible for larger features
- Whereas first layers focusing on little details and smaller objects

PVT

Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l+1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

A. Temirkhanov, HSE. 27.05.24 11/24

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

$$\begin{split} \hat{\mathbf{z}}^l &= \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1}, \\ \mathbf{z}^l &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^l\right)\right) + \hat{\mathbf{z}}^l, \\ \hat{\mathbf{z}}^{l+1} &= \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^l\right)\right) + \mathbf{z}^l, \\ \mathbf{z}^{l+1} &= \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$

(a) Regular ImageNet-1K trained models						
method	image	#param.	EI ODa	throughput	ImageNet	
method	size	πparain.	TLOFS	(image / s)	top-1 acc.	
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0	
RegNetY-8G [48]	$ 224^{2} $	39M	8.0G	591.6	81.7	
RegNetY-16G [48]	224^{2}	84M	16.0 G	334.7	82.9	
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6	
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9	
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6	
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0	
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3	
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9	
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5	
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8	
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8	
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1	
Swin-T	224^{2}	29M	4.5G	755.2	81.3	
Swin-S	224^{2}	50M	8.7G	436.9	83.0	
Swin-B	224^{2}	88M	15.4G	278.1	83.5	
Swin-B	384^{2}	88M	47.0G	84.7	84.5	

(b) ImageNet-22K pre-trained models

	R-152x4 [38] 480 ² 937M 840.5G - 85.4 ViT-B/16 [20] 384 ² 86M 55.4G 85.9 84.0					
	method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.
•	R-101x3 [38]	384 ²	388M	204.6G	9 2 9	84.4
	R-152x4 [38]	480^{2}	937M	840.5G	<u>-</u>	85.4
	ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	84.0
	ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2
	Swin-B	224^{2}	88M	15.4G	278.1	85.2
	Swin-B	384 ²	88M	47.0G	84.7	86.4
	Swin-L	384^{2}	197M	103.9G	42.1	87.3

COCO object detection

(a) Various frameworks							
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	#param.	FLOPs	FPS
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3
	Swin-T	47.2	66.5	51.3	36M	215G	22.3
RepPointsV2	R-50	46.5	64.6	50.3	42M	274G	13.6
	Swin-T	50.0	68.5	54.2	45M	283G	12.0
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4

ADE20K semantic segmentation

ADE	20K	val	test	#morrorm	EL ODa	EDC
Method	Backbone	mIoU	score	#param.	FLOPS	FP3
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

SWIN for Video

Self Attention

Neighborhood Attention

k nearest neighboring key projections

$$\mathbf{A}_{i}^{k} = \begin{bmatrix} Q_{i}K_{\rho_{1}(i)}^{T} + B_{(i,\rho_{1}(i))} \\ Q_{i}K_{\rho_{2}(i)}^{T} + B_{(i,\rho_{2}(i))} \\ \vdots \\ Q_{i}K_{\rho_{k}(i)}^{T} + B_{(i,\rho_{k}(i))} \end{bmatrix}, \tag{2}$$

$$\mathbf{V}_{i}^{k} = \begin{bmatrix} V_{\rho_{1}(i)}^{T} & V_{\rho_{2}(i)}^{T} & \dots & V_{\rho_{k}(i)}^{T} \end{bmatrix}^{T}.$$
 (3)

$$NA_k(i) = softmax\left(\frac{\mathbf{A}_i^k}{\sqrt{d}}\right)\mathbf{V}_i^k,$$
 (4)

A. Temirkhanov, HSE. 27.05.24 19/24

Figure 5. An overview of our model, NAT, with its hierarchical design. The model starts off with a convolutional downsampler, then moves on to 4 sequential levels, each consisting of multiple NAT Blocks, which are transformer-like encoder layers. Each layer is comprised of a multi-headed neighborhood attention (NA), a multi-layered perceptron (MLP), Layer Norm (LN) before each module, and skip connections. Between the levels, feature maps are downsampled to half their spatial size, while their depth is doubled. This allows for easier transfer to downstream tasks through feature pyramids.

A. Temirkhanov, HSE. 27.05.24 20/24

ConvNext

VOLO

$$\hat{X} = ext{OutlookAttn}(ext{LN}(X)) + X$$
 $Z = ext{MLP}(ext{LN}(\hat{X})) + \hat{X}$

VOLO

Method	Backbone	Pretrained	mIoU 80.6	
DenseASPP [66]	DenseNet [28]	ImgNet-1k		
DeepLabv3+ [6]	Xception-65 [8]	ImgNet-1k	79.1	
DPC [5]	Xception-71 [8]	ImgNet-1k	80.8	
DANet [17]	ResNet-101	ImgNet-1k	81.5	
CCNet [31]	ResNet-101	ImgNet-1k	81.3	
Strip Pooling [24]	ResNet-101	ImgNet-1k	81.9	
SETR [75]	ViT-L [14]	ImgNet-22k	82.1	
PatchDiverse [18]	Swin-L [37]	ImgNet-22k	83.6	
SpineNet-S143+ [42]	SpineNet	ImgNet-1k	83.0	
SegFormer-B5 [64]	SegFormer	ImgNet-1k	84.0	
VOLO-D1	VOLO	ImgNet-1k	83.1	
VOLO-D4	VOLO	ImgNet-1k	84.3	

Method	Backbone	Pretrained	mIoU	Pixel
PSPNet [74]	ResNet-269	ImgNet-1k	44.9	81.7
UperNet [62]	ResNet-101	ImgNet-1k	44.9	-
Strip Pooling [24]	ResNet-101	ImgNet-1k	45.6	82.1
DeepLabV3+ [6]	ResNeSt200	ImgNet-1k	48.4	-
SETR [75]	ViT-Large	ImgNet-22k	50.3	83.5
SegFormer-B5 [64]	SegFormer	ImgNet-1k	51.8	-
Swin-B [37]	Swin-B	ImgNet-22k	51.6	-
Seg-L-Mask/16 [46]	ViT-Large	ImgNet-22k	53.2	-
Swin-L [37]	Swin-L	ImgNet-22k	53.5	-
VOLO-D1	VOLO	ImgNet-1k	50.5	83.3
VOLO-D3	VOLO	ImgNet-1k	52.9	84.6
VOLO-D5	VOLO	ImgNet-1k	54.3	85.0