مدارهای الکتریکی و الکترونیکی فصل یازدهم: ترانزیستور

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- 🗖 انواع ترانزیستور
- 🗖 کاربرد ترانزیستورها
- □ مدل ترانزیستور در مدارهای دیجیتال
 - □ سوئيچ ايدهآل

ترانزيستور

- □ یک المان سهیایه، دارای دو نوع
 - BJT
 - **MOSFET**

- BJT: Bipolar Junction Transistor
- MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor

ترانزیستور BJT

- دارای سه پایه به نامهای:
 - (Base) B 🗖
 - (Collector) C 🗖
 - (Emitter) E 🗖

ساختار ترانزیستور BJT

نحوه عملکرد ترانزیستور BJT

□ عبور یک جریان کم از بیس، باعث عبور یک جریان زیاد بین کلکتور و امیتر میشود.

ترانزیستور MOSFET

نحوه عملکرد ترانزیستور MOSFET

□ اعمال یک ولتاژ کافی به گیت، باعث عبور جریان متناسب بین درین و سورس میشود.

تفاوتهای ترانزیستور BJT و MOSFET

MOSFET	BJT
ساختار متقارن	ساختار نامتقارن
ولتاژ گیت، جریان سورس-درین را	جریان بیس، جریان کلکتور-امیتر را
کنترل میکند	کنترل میکند.
توان مصرفی کم و مناسب برای مدارها	توان مصرفی زیاد (به دلیل غیرصفر
با تعداد بسیار زیاد ترانزیستور	بودن جریان ورودی)
مناسب برای مدارهای آنالوگ و	مناسب برای مدارهای آنالوگ فرکانس
دیجیتال	بالا
وابستگی کم بهره به دما	وابستگی زیاد بهره به دما

کاربردهای ترانزیستور

□ در مدارهای آنالوگ به عنوان تقویتکننده

مثال: تقویت کردن سیگنال صوتی دریافتی از میکروفن

کاربردهای ترانزیستور

□ در مدارهای آنالوگ به عنوان تقویتکننده

كاربردهاى ترانزيستور

□ در مدارهای دیجیتال به عنوان سوئیچ

مثال: گیت اینورتر

مدل ترانزیستور به عنوان سوئیچ

□ مثال: روشن و خاموش كردن يك لامپ توسط يك سوئيچ

□ در بسیاری از کاربردها سوئیچی لازم داریم که بتوان خودش را با سیگنال الکتریکی کنترل کرد.

مدل ترانزیستور NMOS به عنوان سوئیچ

- 🗖 حالت روشن
- $Control = 1 \rightarrow v = 0$

- □ حالت خاموش
- $Control = 0 \rightarrow i = 0$

ترانزیستور NMOS به عنوان سوئیچ

ترانزیستور NMOS

حالت قطع

حالت وصل

مینانه ترانزیستور NMOS و یک عدد مثبت است V_T \square

ساخت گیتهای منطقی

□ مثال: اتصال سری دو سوئیچ

ساخت گیتهای منطقی

مثال:

□ گیت منطقی زیر چیست؟

ترانزیستور PMOS به عنوان سوئیچ

ترانزیستور PMOS

حالت قطع

حالت وصل

یک عدد منفی است. PMOS در ترانزیستور V_T \square

فناورى CMOS

□ استفاده از ترانزیستورهای NMOS در طبقه پایین و گیتهای PMOS در طبقه بالا

□ چه مزیتی نسبت به پیادهسازی با NMOS و مقاومت دارد؟

تمرین کلاسی 1

🗖 مدار زیر بیانگر چه گیتی است؟

تمرین کلاسی 2

- را پیادهسازی کنید. $Y = \overline{A(B+CD)}$ تابع
 - □ فقط با استفاده از NMOS و مقاومت
 - □ با استفاده از ساختار CMOS