_ Galois Theory

Our goal will be to prove that polynomials with degree n > 5 are not always solvable using radicals.

Any polynomial ax + bx + c = 0, $a,b,c \in \mathbb{D}$ of degree n = 3 is solvable using only its coefficients a,b,c and basic mathematical operations.

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

But we will see that's not the case with fuintic and higher order polynomials.

An example is

x5-16x+2=0

P , n + °+°

Uroup Characteristics

Let (G_0, \cdot) be a group and $(F_0, +, \cdot)$ be a field. And $F^* = F \setminus \{0\}$.

The character of G in F is a growf homomorphism o: G -> F

For example, $G = \{ \bot, x \} \text{ and } F = \emptyset$

$$\Rightarrow \sigma(1.x) = \sigma(1).\sigma(x)$$

of is thus a group homomorphism from

Let o, , on be the characteristics of

Gin F. They are independent if $a, 0, + \cdots + a_n \circ_n = 0$ where $a, \dots, a_n \in F$. $\Rightarrow (a, 0, + \cdots + a_n \circ_n)(g) = 0$ $\Rightarrow (a, 0, (g) + \cdots + (a_n \circ_n)(g) = 0$ $\Rightarrow (a, 0, (g) + \cdots + (a_n \circ_n)(g) = 0$ $\Rightarrow (a, 0, (g) + \cdots + (a_n \circ_n)(g) = 0$

Amy set of distinct characteristics of Gin Fare independent.

For n=1, let $a, \sigma_1 = 0$ $\Rightarrow (a_1 \sigma_1)(g) = 0 + g \in G$ $\Rightarrow (a_1 \sigma_1)(1_G) = 0$ $\Rightarrow (a_1 \sigma_1)(1_G) = 0$ $\Rightarrow (a_1 \sigma_1)(1_G) = 0$

The statement holds true. Let it be true for n = (m-1). Then, when

$$a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1} = 0 \Rightarrow a_{1} = \cdots = a_{m-1}^{2}$$

$$Now \text{ for } m = m, \text{ when}$$

$$(a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1}) + a_{m}\sigma_{m} = 0$$

$$\text{let } a_{m} \neq 0. \text{ Dividing by } a_{m},$$

$$\Rightarrow (a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1}) + \sigma_{m} = 0$$

$$\Rightarrow (a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1} + \sigma_{m})(g) = 0 + g \in G.$$

$$\text{Since } \sigma_{1} \neq \sigma_{m}, \exists \alpha \in G \text{ such that}$$

$$\sigma_{1}(\alpha) \neq \sigma_{m}(\alpha) \neq 0.$$

$$(a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1} + \sigma_{m})(g\alpha) = 0$$

$$\Rightarrow (a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1} + \sigma_{m})(g\alpha) = 0$$

$$(a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m-1} + \sigma_{m})(g\alpha) = 0$$

$$\Rightarrow a_{1}\sigma_{1}(\alpha) = 0$$

$$\Rightarrow a_{1}\sigma_{1}(\alpha) = 0$$

$$\Rightarrow a_{1}\sigma_{1}(\alpha) = 0$$

$$\Rightarrow (a_{1}\sigma_{1} + \cdots + a_{m-1}\sigma_{m})(\alpha) = 0$$

$$\Rightarrow (a_{1}\sigma_{1} + \cdots$$

$$\Rightarrow$$
 $a_1 - a_1 \sigma_m^{-1}(\alpha) \sigma_1(\alpha) = 0$

$$\Rightarrow a_1 - a_1 \sigma_m^{-1}(\alpha) \sigma_1(\alpha)$$

=
$$\int_{m}^{\infty} (\alpha) = \int_{\eta}^{\infty} (\alpha) = \int_{\eta}^{\infty}$$

Let K and L be 2 fields. of, ..., on be field homomorphisms from K* to L*. Then the above statement holds true for them as well.