# Codifiche di linea Modulazione Multiplexing

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Come vengono trasmessi i segnali digitali in banda base?

• Sappiamo che i bit vanno convertiti in segnali elettrici

• Bisogna stabilire come rappresentare l'1 e lo 0

• Vediamo alcune codifiche di linea



il nome di questa codifica è molto strano... accettiamolo

i livelli potrebbero essere valori di tensione su doppino intrecciato, oppure assenza/presenza di un impulso luminoso su fibra ottica



il ricevitore rischia di perdere la sincronizzazione in corrispondenza di lunghe sequenze di 1 o di 0

#### Non-Return to Zero Inverted



1: transizione0: no transizione

le transizioni a metà del tempo di bit in corrispondenza degli 1 aiutano il ricevitore a sincronizzarsi, ma persiste il problema delle lunghe sequenze di 0

#### Manchester



1: transizione alto-basso 0: transizione basso-alto

le transizioni in corrispondenza di ciascun bit aiutano il ricevitore a sincronizzarsi

#### **Alternate Mark Inversion**



codifica su 3 livelli (bipolar encoding)

0: livello centrale

1: livello alto se l'1 precedente era basso, e viceversa

#### Modulazione

- La modulazione consiste nel variare alcune caratteristiche di un **segnale portante** (*carrier signal*) sulla base del contenuto informativo di un **segnale modulante**
- Il segnale portante ha frequenza molto più elevata del segnale modulante
- I parametri *modulabili* sono: ampiezza (**Amplitude Modulation**), frequenza (**Frequency Modulation**), fase (**Phase Modulation**). È possibile anche combinare le modulazioni
- Cerchiamo di comprendere intuitivamente l'Amplitude Modulation (applicata nella <u>radio AM</u>)

## Amplitude modulation (modulazione analogica)



#### Amplitude modulation (modulazione analogica)



#### Amplitude modulation (modulazione analogica)



# Amplitude Shift Keying (modulazione digitale)



# Amplitude Shift Keying (modulazione digitale)



## Multiplexing (multiplazione)

- Un canale trasmissivo può essere condiviso da diversi segnali
- **Multiplexing**: invece di utilizzare un canale distinto per ogni segnale, si utilizzano delle tecniche per convogliare più segnali nello stesso canale:
  - analogia: strada (canale) divisa in corsie (sottocanali)
- Esistono diverse tecniche di multiplexing

## FDM (Frequency Division Multiplexing)

- Con il FDM, gli utenti condividono il canale utilizzando frequenze diverse (ogni utente trasmette in una determinata banda di frequenze)
- Analogia: <u>coro a 4 voci</u>, soprano-contralto-tenore-basso. Possono cantare contemporaneamente, ma ad altezze (frequenze) diverse
- La **radio FM** (*Frequency Modulation*) utilizza questo schema di multiplexing: diverse stazioni trasmettono contemporaneamente su frequenze diverse (i canali radio su cui vi sintonizzate, ad esempio 88.1 MHz, 89.9 MHz etc...). Un discorso simile vale per la televisione

## TDM (Time Division Multiplexing)

- Le stazioni trasmettono a turni
- Analogia: <u>persone che si alternano nel parlare</u>. Parla sempre uno alla volta

ST1 ST2 ST3 ST1 ST2 ST3 ST1 ST2 transmits transmits transmits transmits transmits transmits transmits transmits

time

- Stiamo parlando di multiplexing per sistemi digitali, quindi le stazioni trasmettono sequenze di bit
- CDMA è utilizzato in vari standard per la telefonia cellulare e nel GPS
- Si basa sulle matrici di Hadamard/Walsh
- Inventato da Andrew Viterbi
- Lo spiegheremo con un esempio, comunque la Matematica che sta dietro questo schema è molto difficile
- Con il CDMA tutte le stazioni possono trasmettere contemporaneamente su tutte le frequenze... sembra un miracolo, ma come funziona?
- Analogia: <u>persone che parlano contemporaneamente, ma in lingue diverse</u>

• Ad ogni stazione viene assegnato un **chip code**, ossia una sequenza di 1 e -1 (nel nostro esempio di lunghezza 8):

$$(1, -1, 1, 1, -1, 1, 1, 1)$$

• Tutte le coppie di chip code devono essere ortogonali. *X* e *Y* sono ortogonali se:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}=0$$

- $\sum_{i=1}^{n} X_i Y_i$  è il prodotto scalare (inner product) tra i vettori X e Y
- Lavoriamo su un esempio in cui i chip code ortogonali sono già dati. Verifichiamone l'ortogonalità utilizzando la formula precedente

• Consideriamo 4 stazioni, con questi chip code:

```
ST1_chipcode = (-1, -1, -1, 1, 1, -1, 1, 1)

ST2_chipcode = (-1, -1, 1, -1, 1, 1, 1, -1)

ST3_chipcode = (-1, 1, -1, 1, 1, 1, -1, -1)

ST4_chipcode = (-1, 1, -1, -1, -1, -1, 1, -1)
```

- Una stazione, per trasmettere, segue queste regole:
  - per trasmettere il bit 1 trasmette il proprio chip code
  - per trasmettere il bit 0 trasmette la negazione del proprio chip code

• Vediamo come fa ST3 a trasmettere la sequenza di bit seguente:

- S significa silent, ossia, nessun bit trasmesso da ST3
- Ricordiamo però che le altre stazioni possono trasmettere contemporaneamente
- Facciamo in modo che ciascun segnale abbia tra le proprie componenti i chip code che codificano la sequenza di bit di ST3 scritta sopra

1. signal1 = ST3\_chipcode (1) 2. signal2 = ST2\_chipcode + ST3\_chipcode (1) 3. signal3 = ST1\_chipcode + ST2\_chipcode\_negated (\$) 4. signal4 = ST1\_chipcode + ST2\_chipcode\_negated + ST3\_chipcode (1) 5. signal5 = ST1\_chipcode + ST2\_chipcode + ST3\_chipcode + ST4\_chipcode (1) 6. signal6 = ST1\_chipcode + ST2\_chipcode + ST3\_chipcode\_negated + ST4\_chipcode (0)

 Dai 6 segnali trasmessi sopra è possibile ricavare la sequenza di bit inviata da ST3

• È sufficiente calcolare il prodotto scalare normalizzato tra i segnali e il chip code di ST3 (in generale, il chip code della stazione X se si vuole trovare la sequenza di bit trasmessa da X)

 Per evitare calcoli laboriosi a mano, scriviamo uno script Python che simula CDMA

- Abbiamo visto che questo sistema funziona (sembra un miracolo)
- I chip code però erano già pronti
- Esiste una procedura per trovare chip code ortogonali?
- Sì, si può generare una <u>matrice di Hadamard</u> tramite la costruzione di Sylvester (vedere la descrizione su Wikipedia)
- Con questa costruzione è possibile costruire una matrice di Hadamard la cui dimensione è una potenza di 2
- La matrice risultante sarà composta di 1 e −1, e ogni coppia di righe sarà ortogonale (condizione necessaria per generare chip code nel CDMA)

## Da vedere/leggere/visitare a casa

- <a href="https://en.wikipedia.org/wiki/Frequency\_modulation#/media/File:Amfm3-en-de.gif">https://en.wikipedia.org/wiki/Frequency\_modulation#/media/File:Amfm3-en-de.gif</a>
- https://en.wikipedia.org/wiki/Frequency-shift\_keying#/media/File:Fsk.svg