CSc 137, Fall 2020, Harvey

Adder/Mux (12 pts)

- 1. Design a Single cell -1 bit Carry propagate (Ripple Carry Adder) full adder. (6 pts)
 - a. Generate the truth table
 - Using K-map, determine the logical expression for Carry out (C-out) and Sum (S)
 - Based on the logical expression, create the schematic diagram for full adder

_									
1	I	npu	Outputs						
	X	Y	Z-in	S	Z-out				
	1	1	0	0	4				
	1	I	I	I	1				
	1	1	Ze	I	4				
	Ø	1	I	Ø	I				

Always Zero
S=Sum

b. Output Logical Expression

 $S = \overline{X} \overline{y} z - in + \overline{X} y \overline{z} - in + \overline{X} y \overline{z} - in + \overline{X} y \overline{z} - in$ Z-out = Xyz-in + Xyz-in + Xyz-in + Xyz-in

K-map of the Output Logical Expression

 $S = \overline{X} \overline{y} \overline{z} - in + \overline{X} \overline{y} \overline{z} - in + \overline{X} \overline{y} \overline{z} - in + \overline{X} \overline{y} \overline{z} - in$

* See what changes in the impotants * * (+) = XOR*

S-simplified = X (1) Y (1) Z-in

Z-out = Xyz-in + xyz-in + xyz-in + xyz-in

* See what changes in the impotants * Z-out simplified = XZ-in + XY + YZ-in

C. S-simplified = X (A) Y (A) Z-in

HW #3

CSc 137, Fall 2020, Harvey

Adder/Mux (12 pts)

- 2. Design a 1 bit, 2 to 1 multiplexer (Mux) (6 pts)
 - a. Generate the truth table
 - b. Using K-map, determine the logical expression for output
 - c. Based on the logical expression, create the schematic diagram for Mux

) [ctrl		iput snals	output
	S	×	Y	r
	0	•	Ø	0
	0	Ø	I	1
L	0	1	Ø	0
L	Ø	1	I	1
-	1	Q	Q	9
L	I	Q	I	0
L	1	1	Q	I
	I	1	I	I

$$r = \overline{S} \overline{X} y + \overline{S} X y + S X \overline{y}$$

$$S = \overline{5}y + Sx$$

