Smoothing Methods for Time Series with Trend and Seasonality

Lesson 2.4

Holt-Winters' seasonal method

Holt (1957) and Winters (1960) extended Holt's method to capture seasonality. The Holt-Winters seasonal method comprises the forecast equation and three smoothing equations — one for the level l_t , one for the trend b_t , and one for the seasonal component s_t , and with corresponding smoothing parameters α , β^* , and γ . We use m to denote the frequency of the seasonality, i.e., the number of seasons in a year. For example, for quarterly data m=4 and for monthly data m=12.

There are two variations to this method that differ in the nature of the seasonal component: additive method, multiplicative method.

The additive method is preferred when the seasonal variations are roughly constant through the series, while the multiplicative method is preferred when the seasonal variations are changing proportional to the level of the series. With the additive method, the seasonal component is expressed in absolute terms in the scale of the observed series, and in the level equation the series is seasonally adjusted by subtracting the seasonal component. Within each year, the seasonal component will add up to approximately zero.

While with the multiplicative method, the seasonal component is expressed in relative terms (percentages), and the series is seasonally adjusted by dividing through by the seasonal component. Within each year, the seasonal component will sum up to approximately m.

The component form for the additive method is:

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t + \ell_{t-1} - b_{t-1}) + (1 - \gamma)(s_{t-m}) \end{split}$$

where k is the integer part of $\frac{h-1}{m}$ which ensures that the estimates of the seasonal indices used for forecasting come from the final year of the sample.

The level equation shows a weighted average between the seasonally adjusted observation $(y_t - s_{t-m})$ and the non-seasonal forecast $(l_{t-1} + b_{t-1})$. The trend equation is identical to Holt's linear method and the seasonal equation shows a weighted average between the current seasonal index $(y_t + \ell_{t-1} - b_{t-1})$ and the seasonal index of the same season last year (i.e., m time periods ago)

Holt-Winters' additive method

The equation for the seasonal component is often expressed as

$$s_t = \gamma^* (y_t - \ell_t) + (1 - \gamma^*) s_{t-m}$$

- If we substitute ℓ_t from the smoothing equation for the level of the component form above, we get

$$s_t = \gamma^*(1 - \alpha)(y_t - \ell_{t-1} - b_{t-1}) + [1 - \gamma^*(1 - \alpha)]s_{t-m}$$

This is identical to the smoothing equation for the seasonal component we specify here, with $\gamma = \gamma^*(1-\alpha)$. The usual parameter restriction is $0 \le \gamma^* \le 1$, which translate to $0 \le \gamma \le 1-\alpha$.

As an example, let us apply Holt-Winters' method with both additive and seasonality to forecast quarterly visitor nights in Australia spent by international tourists

```
library(tidyverse)
library(fpp2)
library(forecast)
aust <- window(austourists, start=2005)
fit1 <- hw(aust, seasonal="additive", h=8) #additive seasonality
summary(fit1)</pre>
```

Forecast method: Holt-Winters' additive method

Model Information:

Holt-Winters' additive method

Call:

hw(y = aust, h = 8, seasonal = "additive")

Smoothing parameters:

alpha = 0.3063 beta = 1e-04 gamma = 0.4263

Initial states:

1 = 32.2597

b = 0.7014

s = 1.3106 - 1.6935 - 9.3132 9.6962

sigma: 1.9494

AIC AICc BIC 234.4171 239.7112 250.4748

Error measures:

ME RMSE MAE MPE MAPE MASE Training set 0.008115785 1.763305 1.374062 -0.2860248 2.973922 0.4502579 ACF1

Training set -0.06272507

Forecasts:

	Point	${\tt Forecast}$	Lo 80	Hi 80	Lo 95	Hi 95
2016 Q	1	76.09837	73.60011	78.59664	72.27761	79.91914
2016 Q	2	51.60333	48.99039	54.21626	47.60718	55.59947
2016 Q	3	63.96867	61.24582	66.69153	59.80443	68.13292
2016 Q	4	68.37170	65.54313	71.20027	64.04578	72.69762
2017 Q	1	78.90404	75.53440	82.27369	73.75061	84.05747
2017 Q	2	54.40899	50.95325	57.86473	49.12389	59.69409
2017 Q	3	66.77434	63.23454	70.31414	61.36069	72.18799
2017 Q	4	71.17737	67.55541	74.79933	65.63806	76.71667

Holt-Winters' multiplicative method

The component form for the multiplicative method is:

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t)s_{t+h-m(k+1)} \\ \ell_t &= \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})}) + (1-\gamma)s_{t-m} \end{split}$$

Let us apply Holt-Winters' method with multiplicative seasonality to the Australian international tourists data.

```
fit2 <- hw(aust,seasonal="multiplicative",h=8)#multiplicative seasonality
summary(fit2)</pre>
```

```
Forecast method: Holt-Winters' multiplicative method
Model Information:
Holt-Winters' multiplicative method
Call:
hw(y = aust, h = 8, seasonal = "multiplicative")
  Smoothing parameters:
    alpha = 0.4406
    beta = 0.0134
    gamma = 0.0023
  Initial states:
    1 = 32.4875
    b = 0.6974
    s = 1.0237 \ 0.9618 \ 0.7704 \ 1.2442
  sigma: 0.0367
     AIC
             AICc
                       BIC
221.1313 226.4254 237.1890
Error measures:
                     ME
                            RMSE
                                      MAE
                                                    MPE
                                                           MAPE
                                                                     MASE
Training set 0.09206228 1.575631 1.25496 -0.0006505533 2.70539 0.4112302
                    ACF1
Training set -0.07955726
Forecasts:
        Point Forecast
                          Lo 80
                                    Hi 80
                                             Lo 95
                                                      Hi 95
2016 Q1
              80.08894 76.31865 83.85922 74.32278 85.85509
2016 Q2
              50.15482 47.56655 52.74309 46.19640 54.11324
2016 Q3
              63.34322 59.80143 66.88502 57.92652 68.75993
2016 Q4
              68.17810 64.08399 72.27221 61.91670 74.43950
```

```
2017 Q1 83.80112 78.43079 89.17146 75.58790 92.01434
2017 Q2 52.45291 48.88795 56.01787 47.00077 57.90504
2017 Q3 66.21274 61.46194 70.96353 58.94702 73.47845
2017 Q4 71.23205 65.85721 76.60690 63.01194 79.45217
```

The code chunk below will plot the series and the forecast for the 2 methods

```
autoplot(aust) +
  autolayer(fit1, series="HW additive forecasts", PI=FALSE) +
  autolayer(fit2, series="HW multiplicative forecasts", PI=FALSE) +
  xlab("Year") +
  ylab("Visitor nights (millions)") +
  ggtitle("International visitors nights in Australia") +
  guides(colour=guide_legend(title="Forecast"))
```

International visitors nights in Australia

Holt-Winters' damped method

Damping is possible with both additive and multiplicative Holt-Winters' methods. Holt-Winters method with a damped trend and multiplicative seasonality often provides accurate and robust forecasts for seasonal data.

$$\begin{split} \hat{y}_{t+h|t} &= \left[\ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t\right] s_{t+h-m(k+1)} \\ \ell_t &= \alpha \left(\frac{y_t}{s_{t-m}}\right) + (1-\alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)\phi b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1-\gamma)s_{t-m} \end{split}$$

• The Holt-Winters method with a damped trend and multiplicative seasonality can be implemented using the following code chunk

```
hw(y, damped=TRUE, seasonal="multiplicative")
```

As an example, consider the hyndsight data which contains the daily pageviews on the Hyndsight blog of Prof. Rob Hyndman. It is a daily time series from April 30, 2014 to April 30, 2015

```
hs.ts <- subset(hyndsight,end=length(hyndsight)-35)
fc <- hw(hs.ts, damped = TRUE, seasonal="multiplicative", h=35)
summary(fc)</pre>
```

```
Forecast method: Damped Holt-Winters' multiplicative method

Model Information:
Damped Holt-Winters' multiplicative method

Call:
hw(y = hs.ts, h = 35, seasonal = "multiplicative", damped = TRUE)

Smoothing parameters:
alpha = 0.4189
beta = 1e-04
gamma = 0.0964
phi = 0.9533

Initial states:
1 = 1169.6237
b = 0.3841
s = 1.2235 1.0607 0.6176 0.7694 1.0574 1.1257
1.1455
```

sigma: 0.1984

AIC AICc BIC 5529.690 5530.842 5579.078

Error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 2.262107 222.5991 156.6953 -2.139331 12.86201 0.7069489 0.1305779

Forecasts:

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
48.57143		2035.252	1517.6913	2552.813	1243.71112	2826.793
48.71429		1810.067	1309.5271	2310.608	1044.55716	2575.578
48.85714		1353.964	951.4964	1756.431	738.44305	1969.485
49.00000		1015.333	693.7201	1336.945	523.46870	1507.196
49.14286		1523.818	1012.9460	2034.689	742.50688	2305.129
49.28571		2009.983	1300.6290	2719.337	925.11963	3094.847
49.42857		2044.262	1288.1910	2800.333	887.95102	3200.573
49.57143		2038.604	1235.0056	2842.203	809.60616	3267.602
49.71429		1813.044	1070.2535	2555.834	677.04402	2949.044
49.85714		1356.187	780.1671	1932.207	475.24057	2237.133
50.00000		1016.997	570.1636	1463.831	333.62415	1700.370
50.14286		1526.313	833.9390	2218.687	467.41837	2585.208
50.28571		2013.270	1071.9700	2954.570	573.67575	3452.865
50.42857		2047.601	1062.3701	3032.833	540.82019	3554.382
50.57143		2041.933	1018.6513	3065.215	476.95855	3606.908
50.71429		1816.001	882.4209	2749.582	388.21331	3243.789
50.85714		1358.397	642.7819	2074.012	263.95814	2452.836
51.00000		1018.653	469.2741	1568.032	178.45058	1858.855
51.14286		1528.795	685.4631	2372.128	239.02995	2818.561
51.28571		2016.542	879.6943	3153.389	277.88373	3755.199
51.42857		2050.925	870.1707	3231.680	245.11690	3856.734
51.57143		2045.248	831.5772	3258.919	189.09882	3901.397
51.71429		1818.947	718.5171	2919.377	135.98477	3501.909
51.85714		1360.599	521.9036	2199.294	77.92525	2643.272
52.00000		1020.303	379.8370	1660.768	40.79500	1999.810
52.14286		1531.270	552.9350	2509.604	35.03593	3027.503
52.28571		2019.803	706.9877	3332.618	12.02521	4027.581
52.42857		2054.240	696.5298	3411.951	-22.19881	4130.680
52.57143		2048.553	661.2225	3435.884	-73.18613	4170.293
52.71429		1821.885	568.5476	3075.222	-94.92900	3738.699
52.85714		1362.795	410.8094	2314.781	-93.14132	2818.732
53.00000		1021.949	297.2978	1746.600	-86.30930	2130.207

```
      53.14286
      1533.739
      430.1533
      2637.325
      -154.04978
      3221.528

      53.28571
      2023.059
      546.3999
      3499.718
      -235.29612
      4281.414

      53.42857
      2057.550
      534.5215
      3580.579
      -271.72132
      4386.822
```

```
hs.ts <- subset(hyndsight,end=length(hyndsight)-35)
fc <- hw(hs.ts, damped = TRUE, seasonal="multiplicative", h=35)</pre>
```

```
autoplot(hyndsight) +
autolayer(fc, series="HW multi damped", PI=FALSE)+
guides(colour=guide_legend(title="Daily forecasts"))
```


Daily forecasts

HW multi damped