Systèmes dynamiques

TD n°9

Yann Chaubet

17 novembre 2020

Exercice 1

1. Soit $\varphi:[0,1]\to\mathbb{R}$ continue. On a

$$\int_0^1 (\varphi \circ f) \mathrm{d}\mu = \int_0^{1/2} (\varphi \circ f) \mathrm{d}\mu + \int_{1/2}^1 (\varphi \circ f) \mathrm{d}\mu.$$

Or en effectuant le changement de variable x = 1 - y on a

$$\int_{1/2}^1 \varphi\left(2\sqrt{y(1-y)}\right) \frac{\mathrm{d}y}{2\sqrt{1-y}} = \int_0^{1/2} \varphi\left(2\sqrt{x(1-x)}\right) \frac{\mathrm{d}x}{2\sqrt{x}}.$$

On obtient

$$\int_0^1 (\varphi \circ f) \mathrm{d}\mu = \int_0^{1/2} \varphi \left(2 \sqrt{x(1-x)} \right) \frac{\mathrm{d}x}{2} \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x}} \right).$$

On pose maintenant $u = 2\sqrt{x(1-x)}$, ce qui donne, en utilisant $\sqrt{1-2\sqrt{x(1-x)}} = \sqrt{1-x} - \sqrt{x}$,

$$\frac{\mathrm{d}u}{2\sqrt{1-u}} = \frac{(1-2x)\mathrm{d}x}{\sqrt{x(1-x)}} \times \frac{1}{2\sqrt{1-2\sqrt{x(1-x)}}}$$
$$= \frac{(1-2x)\mathrm{d}x}{\sqrt{x(1-x)}} \times \frac{1}{2(\sqrt{1-x}-\sqrt{x})}$$
$$= \frac{(1-2x)\mathrm{d}x}{\sqrt{x(1-x)}} \times \frac{\sqrt{1-x}+\sqrt{x}}{2(1-2x)}$$
$$= \frac{\mathrm{d}x}{2} \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{1-x}}\right).$$

Ainsi on obtient

$$\int_0^1 (\varphi \circ f) \mathrm{d}\mu = \int_0^1 \varphi(u) \frac{\mathrm{d}u}{2\sqrt{1-u}} = \int_0^1 \varphi \mathrm{d}\mu$$

2. Pour tout $\varphi \in C^0(M)$ on a, puisque $f^n(x) = x$

$$\mu(\varphi \circ f) = \frac{1}{n} \sum_{k=1}^{n} (\varphi \circ f)(f^{k}(x))$$
$$= \frac{1}{n} \varphi(f^{k}(x))$$
$$= \mu(\varphi).$$

3. Soit $\varphi \in C^0([0,1])$. On a, si λ est la mesure de Lebesgue,

$$\int_0^1 (\varphi \circ f) d\lambda = \int_0^{1/2} \varphi(2x) dx + \int_{1/2}^1 \varphi(2 - 2x) dx$$
$$= 2 \int_0^{1/2} \varphi(2x) dx$$
$$= \int_0^1 \varphi(x) dx.$$

4. Soit $\varphi \in C^0(\mathbb{T}^d)$ et $\tilde{\varphi} = \varphi \circ \pi$ où $\pi : \mathbb{R}^d \to \mathbb{T}^d$ est la projection naturelle.

Soit $A \in M_d(\mathbb{Z})$ avec $\det(A) = \pm 1$, et $f_A : \mathbb{T}^d \to \mathbb{T}^d$ l'automorphisme associé. Alors

$$\begin{split} \int_{\mathbb{T}^d} (\varphi \circ f_A) \mathrm{d}\mu &= \int_{[0,1]^d} \tilde{\varphi}(Ax) \mathrm{d}x \\ &= \int_{A([0,1]^d)} \tilde{\varphi}(x) \mathrm{d}x \qquad \text{car } |\mathrm{det}(A)| = 1 \\ &= \int_{[0,1]^d} \tilde{\varphi}(x) \mathrm{d}x \qquad \text{par 1-p\'eriodicit\'e de } \tilde{\varphi} \\ &= \int_{\mathbb{T}^d} \varphi \mathrm{d}\mu. \end{split}$$

5. Il suffit de montrer que $\mu([a,b]) = \mu(f^{-1}([a,b])$ pour tout intervalle [a,b] avec a>0.

On a

$$f(x) \in [a,b] \iff \exists k \in \mathbb{N}_{\geqslant 1}, \quad \frac{1}{x} \in [a,b] + k.$$

Ainsi,

$$\log 2 \ \mu(f^{-1}([a,b])) = \sum_{k=1}^{\infty} \int_{\frac{1}{b+k}}^{\frac{1}{a+k}} \frac{1}{1+t} dt$$

$$= \sum_{k=1}^{\infty} \left(\log \left(1 + \frac{1}{a+k} \right) - \log \left(1 + \frac{1}{b+k} \right) \right)$$

$$= \sum_{k=1}^{\infty} \left(\log(a+k+1) - \log(a+k) - \log(b+k+1) + \log(b+k) \right)$$

$$= \log(b+1) - \log(a+1)$$

$$= \log 2 \ \mu([a,b]).$$

Exercice 2

Soit $(U_i)_{i\in\mathbb{N}}$ une base dénombrable d'ouverts.

Soit $i \in \mathbb{N}$; par le théorème de récurrence de Poincaré, il existe $V_i \subset U_i$ avec $\mu(U_i \setminus V_i) = 0$ tel que

$$\forall x \in V_i, \quad |\{n \in \mathbb{N}, \ f^n(x) \in U_i\}| = +\infty.$$

On définit l'ensemble $H \subset M$ de mesure nulle par

$$H = \bigcup_{i} (U_i \setminus V_i).$$

Soit $x \in \mathcal{C}H$, et $U \ni x$ un voisinage de x. Il existe $i \in \mathbb{N}$ tel que $U_i \subset U$. Alors $x \in V_i$ et donc $|\{n \in \mathbb{N}, f^n(x) \in U_i\}| = +\infty$, ce qui signifie que x est récurrent.

Exercice 3

1. La positivité et l'inégalité triangulaire sont claires. Il reste à montrer que $d_*(L, L') = 0 \implies L = L'$.

Si $d_*(L, L') = 0$ alors $(L - L')(f_i) = 0$ pour tout i. Soit $f \in E$ et $\varepsilon > 0$. Soit i tel que $||f - f_i|| < \varepsilon$. Alors

$$|(L-L')(f)| = |(L-L')(f-f_i)| \le ||L-L'||_* ||f-f_i|| \le ||L-L'|| \varepsilon.$$

Ceci étant vrai pour tout $\varepsilon > 0$, on a L = L'.

Montrons que d_{*} engendre la topologie faible, c'est à dire que

$$L_n \to L$$
 -faiblement \iff $d_(L_n, L) \to 0$.

 \implies : Soit $\varepsilon > 0$, et i tel que $2^{-i} < \varepsilon$. Alors pour tout n assez grand, on a

$$\sum_{j \le i} \frac{|L_n(f_j) - L(f_j)|}{2^j (1 + ||f_j||)} \le \varepsilon.$$

D'autre part on a

$$\sum_{j\geqslant i}^{+\infty} \frac{|L_n(f_j) - L(f_j)|}{2^j (1 + ||f_j||)} \leqslant 2^{-i} (||L_n||_* + ||L||_*) \leqslant \varepsilon (||L_n||_* + ||L||_*).$$

Or $||L_n|| \leq 1^1$, et donc $d_*(L_n, L) \leq 3\varepsilon$ si n est assez grand.

 $\underline{\underline{\iff}}$: Supposons que $d_*(L_n, L) \to 0$. Soit $f \in E$ et $\varepsilon > 0$. Soit $i \in \mathbb{N}$ tel que $||f - f_i|| < \varepsilon$. Alors

$$|L_n(f) - L(f)| \leq \varepsilon ||L_n - L||_* + 2^i (1 + ||f_i||) d_*(L_n, L)$$

$$\leq 2\varepsilon + 2^i (1 + ||f_i||) d_*(L_n, L).$$

Si n est assez grand on obtient donc $|L_n(f) - L(f)| < 3\varepsilon$, ce qui conclut.

$$\left(\forall x \in E, \quad \sup_{i} \|T_i(x)\|_F < +\infty\right) \quad \Longrightarrow \quad \sup_{i} \|T_i\|_{\mathcal{L}(E,F)} < +\infty.$$

^{1.} En fait toute suite qui converge faiblement est bornée, c'est une conséquence du théorème de Banach-Steinhaus, qui dit que si E, F sont deux Banach, et que (T_i) est une suite de $\mathcal{L}(E, F)$, alors

2. Notons B^* la boule unité. Puisqu'elle est métrisable, il suffit de montrer que toute suite de B^* admet une sous-suite qui converge faiblement.

Soit (L_n) une suite de B^* . On se donne $(f_i) \subset E$ une suite dense de E. Alors $(L_n(f_i))_n$ est bornée pour tout i.

Par un procédé d'extraction diagonale, il existe (n_k) telle que $L_{n_k}(f_i) \to g_i \stackrel{\text{not}}{=} L(f_i)$ pour tout i quand $k \to +\infty$.

Soit maintenant $f \in E$ et $\varepsilon > 0$. On a, si $||f - f_i|| \le \varepsilon$,

$$|L_{n_k}(f) - L_{n_\ell}(f)| \leq |L_{n_k}(f) - L_{n_k}(f_i)| + |L_{n_k}(f_i) - L_{n_\ell}(f_i)| + |L_{n_\ell}(f_i) - L_{n_\ell}(f)|$$

$$\leq 2\varepsilon + |L_{n_k}(f_i) - L_{n_\ell}(f_i)|.$$

Ainsi, si k, ℓ sont assez grands, on a, puisque $L_{n_k}(f_i) \to L(f_i)$,

$$|L_{n_k}(f) - L_{n_\ell}(f)| \leq 3\varepsilon.$$

Ainsi $(L_{n_k}(f))_k$ est de Cauchy et donc converge, vers un réel noté L(f).

L'application L est évidemment linéaire et elle vérifie $|L(f)| \leq \lim_k |L_{n_k}(f)| \leq \|f\|$, ce qui montre que $L \in B^*$. Ainsi B^* est compacte.

3. On note $\mathcal{P}(f)$ l'espace des probas sur M qui sont invariantes par f.

Alors pour tous $\mu, \nu \in \mathcal{P}(f)$, on a

$$t\mu + (1-t)\nu \in \mathcal{P}(f), \quad t \in [0,1],$$

donc $\mathcal{P}(f)$ est connexe par arcs donc connexe.

C'est un fermé de B^* car si $\mu_n \to \mu$ faiblement, on a pour tout $\varphi \in C^0(M)$,

$$\begin{split} \int_{M} (\varphi \circ f) \mathrm{d}\mu &= \lim_{n} \int_{M} (\varphi \circ f) \mathrm{d}\mu_{n} \\ &= \lim_{n} \int_{M} \varphi \; \mathrm{d}\mu_{n} \qquad \text{car } \mu_{n} \text{ est } f\text{-invariante} \\ &= \int_{M} \varphi \; \mathrm{d}\mu, \end{split}$$

et donc $\mu \in \mathcal{P}(f)$.

Enfin, $\mathcal{P}(f)$ est non vide. En effet, soit $x \in X$; on pose

$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k(x)}, \quad n \in \mathbb{N}_{\geqslant 1}.$$

Alors $\mu_n \in B^*$ et donc il existe $\mu \in B^*$ et une extraction (n_k) telle que $\mu_{n_k} \to \mu$ quand $k \to +\infty$.

Montrons que $\mu \in \mathcal{P}(f)$. Soit $\varphi \in C^0(M)$. Alors

$$\mu_{n_k}(\varphi \circ f) = \frac{1}{n} \sum_{j=0}^{n_k - 1} (\varphi \circ f)(f^j(x))$$

$$= \frac{1}{n_k} \sum_{j=0}^{n_k - 1} \varphi(f^j(x)) + \frac{\varphi(f^{n_k}(x)) - \varphi(x)}{n_k}$$

$$= \mu_{n_k}(f) + o(1).$$

Par conséquent, on obtient $\mu \in \mathcal{P}(f)$ puisque

$$\mu(\varphi \circ f) = \lim_{k} \mu_{n_k}(\varphi \circ f) = \lim_{k} \mu_{n_k}(\varphi) = \mu(\varphi).$$

On se ramène au cas \mathbb{R}^n avec une partition de l'unité. On note ϕ_t le flot de X. Soit $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. On a, si λ est la mesure de Lebesgue,

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} & \int (\varphi \circ \phi_t) \mathrm{d}vol_g = \sum_j \int X^j (\partial_j \varphi) \mathrm{d}vol_g \\ & = \sum_j \int X^j (\partial_j \varphi) \sqrt{|g|} \mathrm{d}\lambda \\ & = -\sum_j \int \varphi \ \partial_j \left(X^j \sqrt{|g|} \right) \mathrm{d}\lambda \\ & = -\int \varphi \sqrt{|g|} \mathrm{div}_g(X) \mathrm{d}\lambda. \end{aligned}$$

Ainsi, si la mesure vol_g est préservée par ϕ_t on a nécessairement $\operatorname{div}_q(X)=0.$

Réciproquement, supposons $\operatorname{div}_g(X) = 0$ et prenons $\varphi \in C^{\infty}(\mathbb{R}^n)$. Soit $t \in \mathbb{R}$; posons $\tilde{\varphi} = \varphi \circ \phi_t$.

On a par ce qui précède

$$0 = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \int (\tilde{\varphi} \circ \phi_s) \mathrm{d}vol_g$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \int (\varphi \circ \phi_t \circ \phi_s) \mathrm{d}vol_g$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \int (\varphi \circ \phi_{t+s}) \mathrm{d}vol_g$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=t} \int (\varphi \circ \phi_s) \mathrm{d}vol_g.$$

Par suite l'application $t \mapsto \int (\varphi \circ \phi_t) d\text{vol}_g$ est constante pour tout $\varphi \in C_c^{\infty}(\mathbb{R}^n)$.

Si $\varphi \in C_c^0(\mathbb{R}^n)$, on utilise un argument d'approximation pour obtenir $\int (\varphi \circ \phi_t) d\text{vol}_g = \int \varphi d\text{vol}_g$ pour tout t.

2. Soit $\varphi \in C_c^\infty(M)$ une fonction harmonique. Posons $X = \nabla^g \varphi$; alors ${\rm div}_q(X) = 0$.

En particulier, la mesure vol_g est préservée par le flot de X, noté ϕ_t .

Par l'**Exercice 2**, on sait que vol_g-presque tout point est récurrent par l'application $f = \phi_1 : M \to M$.

Par l'**Exercice 1** du TD n°8, on sait que pour tout $x, t \mapsto \varphi \circ \phi_t(x)$ est strictement décroissante au voisinage de t = 0 si $\nabla^g \varphi(x) \neq 0$.

Si tel est le cas, alors $\varphi(f(x)) < \varphi(x)$. Posons $\delta = \varphi(x) - \varphi(f(x))$, et $U = \{y \in M, \ \varphi(y) > \varphi(x) - \varepsilon/2\}$.

Alors U est un voisinage de x et comme $t \mapsto \varphi \circ \phi_t(x)$ décroit, on a $f^k(x) \notin U$ pour tout $k \geqslant 1$, donc x n'est pas récurrent.

Ainsi, puisque vol_g -presque tout point est récurrent, on a

$$\nabla^g \varphi = 0$$
 vol_q-presque partout.

Mais $\nabla^g \varphi$ est lisse et dans les cartes on a $\operatorname{vol}_g = \sqrt{|g|} \mathrm{d}\lambda$ où λ est la mesure de Lebesgue, ce qui implique que $\nabla^g \varphi = 0$, et donc φ est constante.