Домашнее задание

21 сентября 2023 г.

Задача 1.

Пусть даны множества A, B и C. Выразить следующие множества через A, B и C при помощи операций \cup, \cap, \setminus и \triangle .

- а) Множество элементов, принадлежащих всем трём множествам.
- b) Множество элементов, принадлежащих хотя бы двум из множеств A, B и C.
- с) Множество элементов, принадлежащих ровно двум из множеств A, B и C.
- d) Множество элементов, принадлежащих хотя бы одному из множеств A, B и C.
- е) Множество элементов, принадлежащих ровно одному из множеств A, B и C.

Задача 2.

- а) Доказать, что множества [0,1), (0,1], (0,1) равномощны отрезку [0,1] (и следовательно имеют мощность континуума).
- b) Доказать, что множества \mathbb{R} , $[0,\infty)$, $(0,\infty)$, $(-\infty,0)$, $(-\infty,0]$ имеют мощность континуум.

Задача 3.

Игральный кубик подбрасывается один раз. В первый момент времени наблюдатель узнаёт, выпала ли чётная грань или нет. Во второй момент времени наблюдатель дополнительно узнаёт, выпала ли грань больше двух или нет. В третий момент времени наблюдатель точно узнаёт, какая грань выпала. Укажите множество элементарных событий и соответствующие три алебры событий.

Задача 4.

Пусть $\Omega = [0,1]$ и на нём задана система множеств $C = \{[0,0.4],[0.3,1]\}$. Постройте минимальную σ -алгебру, содержащую C.

Задача 5.

Пусть $\Omega = \{a, b, c\}$ – объемлющее пространство, на котором заданы две системы множеств

$$\mathcal{T}_1 = \{\emptyset, \Omega, \{a\}, \{a, b\}\}\$$
 и $\mathcal{T}_2 = \{\emptyset, \Omega, \{a\}, \{b, c\}\}.$

- а) Являются ли \mathcal{T}_1 , \mathcal{T}_2 сигма-алгебрами? Топологиями?
- b) Найдите наименьшую топологию, содержащую \mathcal{T}_1 и \mathcal{T}_2 .
- c) Найдите наименьшую σ -алгебру, содержащую \mathcal{T}_1 и \mathcal{T}_2 .