

Coherent Temporal Synthesis for Incremental Action Segmentation

Guodong Ding, Hans Golong, and Angela Yao National University of Singapore

Task & Motivation

Temporal Action Segmentation

Temporally segment untrimmed procedural videos and assign frame-wise semantic labels

Continual Learning

- Each procedural activity as a novel task
- Learn new activity without catastrophic forgetting

Data Replay

Re-expose model to samples of previous tasks

Challenges

- How can minute-long videos be stored efficiently for replay?
- Can temporal continuity be maintained in replay videos?

Temporally Coherent Action Modeling

Model actions with a conditional VAE conditioned on:

- one-hot action label a_n
- temporal coherence c_i
- $c_i = (i-1)/(\ell-1)$ and $c_i \in [0,1]$

$$\mathcal{L}_{ ext{TCA}} = \underbrace{\mathbb{E}_z \log p_{ heta}(x|z,a,c)}_{\mathcal{L}_{ ext{recon}}} - \underbrace{D_{ ext{KL}}(q_{\phi}(z|x,a,c)||p(z))}_{\mathcal{L}_{ ext{reg}}}$$

Coherence variable helps to model how features evolve as an action progresses

Replay Data Generation

- Symbolic action sequences sampling $\hat{\mathbf{s}}_b \sim \text{Uniform}(\mathbf{S}_b)$
- Generate temporally coherent segments

$$\hat{x}_i = p_{\theta}(x|z_n, a_n, c_i) \text{ and } i \in [1, ..., \ell]$$

Concatenate segments to form videos

$$\hat{v} = \operatorname{concat}(\hat{\mathbf{x}}_1, ..., \hat{\mathbf{x}}_{\hat{N}})$$

Incremental Training

Action Segmentation

- Construct replay data with past task generators
- Train segmentation model on new and replay data

Video Replay

- Train generator on incoming data
- Cache generator alongside past task models

Performance

# Tasks		MSTCN					ASFormer				
		Acc	Edit	F1 @	{10, 2	5, 50}	Acc	Edit	F1 @	{10, 25	5, 50}
						Brea	kfast				
10	Finetune	7.4	7.2	7.5	7.0	5.4	9.9	9.8	10.3	9.4	7.5
	Exemplar	16.1	13.3	13.8	12.5	9.5	12.4	11.2	11.7	10.7	8.5
	Ours	29.4	25.9	26.3	23.5	17.7	34.2	32.4	33.1	30.1	23.4
	Original	43.1	41.1	41.2	37.6	29.5	48.1	45.2	45.9	42.4	34.2
 -	Finetune	15.4	15.8	16.6	15.8	12.7	15.7	16.1	16.9	15.8	13.2
	Exemplar	32.5	28.9	30.8	28.5	22.9	29.5	27.5	28.7	26.7	22.0
5	Ours	54.5	49.4	51.1	46.9	37.7	57.2	56.8	58.3	54.0	43.6
	Original	60.4	59.1	60.3	56.1	46.0	65.1	64.2	65.6	61.5	51.0
		YouTube Instructional									
5	Finetune	13.6	2.8	3.6	2.7	0.6	13.9	11.5	11.1	9.8	6.3
	Exemplar	30.8	19.7	19.8	16.0	9.3	22.1	18.9	17.7	15.3	10.0
	Ours	30.2	25.0	21.9	18.5	11.1	25.2	20.9	20.1	17.5	11.4
	Original	55.9	39.4	38.1	32.2	19.1	59.2	51.1	45.4	39.1	25.5

- Significant improvements over baselines
- Performance gap compared to direct sampling

Diversity vs. Coherence

	SD	FD	TC	Acc	Edit	F1 @	$\{10, 25\}$	5, 50}
Exemplar	√	X	X	27.8	35.6	36.1	31.7	24.3
Ours _{random}	√	√	X	32.9	38.9	40.0	35.6	27.2
Ours _{static}	√	X	X	37.9	42.9	43.8	38.9	29.0
Ours	√	√	√	41.8	45.0	47.0	41.5	32.0

SD – segment-level diversity

FD – feature diversity

TC – temporal coherence

- Without temporal coherence, static segments work better than segments with high diversity
- Balance of diversity and coherence achieves best performance

Replay Buffer Size

M	Acc	Edit	F1 @	$\{10, 25\}$	5, 50}
30	34.0	39.6	41.0	34.8	24.7
60	35.4	41.2	42.3	36.0	25.6
90	36.2	42.3	43.9	37.3	26.8
120	38.0	42.3	44.0	37.1	26.2

Larger replay size gets better performance

TCA Training Data

	$\mathcal{T}(\%)$	Acc	Edit	F1 @	$\{10, 25\}$	5, 50}
Exemplar	_	22.6	34.8	36.0	32.4	25.2
	25	41.7	43.2	46.1	40.9	31.5
Our	50	42.1	43.3	45.1	40.5	31.5
Ours	75	45.3	45.9	47.8	43.7	34.7
	100	47.4	46.9	48.2	42.8	33.4

More real data gets better generative ability

Task Sequence Order

follow a downward trend

 Task order matters, final performance can differ up to 7%

Segment Visualization

Action segment exhibits continuity in feature space

Temporal Coherence

Temporal coherence of generated training samples is necessary for good performance

Generative Video Replay

Generative data replay approaches work well for incremental video understanding

Incremental Action Segmentation

Incremental learning in videos is underexplored and warrants further exploration