Deep Learning

 Success of Deep Learning techniques attributable to concurrence of big data sets, scalable hardware, and high-level

software

Neural networks were originally motivated by the brain

Artificial neural nets – neurons in layers (multi-layer perceptron)

The input from other neurons are "activations"

• h() is the activation function: $y = h(w_1x_1 + w_2x_2 + w_3x_3)$

A typical h() is the sigmoid:

- Neural networks are <u>not</u> accurate models of the brain
- But they are statistical models*
- Prior to 2006 it was difficult to train deep neural networks
 - ("deep" means > 2 hidden layers)

*Mike D. Richard and Richard P. Lippmann, "Neural Network Classifiers Estimate Bayesian a Posteriori Probabilities," *Neural Computation*, 3, 461-483,1992

• Neural networks are a composition of functions: $q(W_0f(W_1g(W_2h(W_3x))))$

Last layer activation q() depends on task:

Task	Classification	Regression
Output	Posterior $p(c x)$	Mean $E[y x]$
Final activation	Soft-max	Identity
Objective function	Normalized cross entropy (NCE)	Mean squared error (MSE)
Data requirements	Class labels (c)	Targets (y)

- (D)NN Training Algorithm Stochastic Gradient Descent:
 - 1. Initialize network weights (random or use "pretraining")
 - 2. Compute gradient using "back propagation" (chain rule)
 - 3. Update weights using the gradient and a learning rate
 - 4. Stop when error rate goes up on held-out data
- Note: for N nodes and M layers, # param is MN²

DNNs for Classification

- Two major approaches when applying DNN systems to classification tasks
- End-to-end (direct)
 - DNN does feature extraction and final classification
 - Mainly applicable for tailored, closed-set classification with lots of data per class
 - Can be tricky to modify classes and adapt
- Representation learning (indirect)
 - DNN is for feature extraction only
 - Typically done via bottleneck features learned with a end-to-end DNN using proxy classes (also referred to as transfer learning)
 - Separation of feature generation and final classifier allows for more flexible classifier (classes and compensation/adaptation)

DNN Representation Learning

DNNs learn more abstract representation at deeper layers

Bottleneck Features

- We can take advantage of the abstraction:
 - A narrow bottleneck can be used to reduce dimensionality
- First part of network is used for feature extraction
- Last part of network is a simple classifier

