Trabalho Teórico V

Pergunta 1: Qual é a diferença entre as notações $O, \Omega \in \mathbf{0}$?

Big O é o pior caso de um algoritmo, ou seja, você faz uma análise do algoritmo e observa qual é a quantidade máxima de passos que ele tem que fazer para conseguir atingir o objetivo. Big Omega é o melhor caso de um algoritmo, mas normalmente não é uma informação relevante fora da academia, existem exceções. Big Theta é a complexidade média de execução, ou seja, espera-se que esteja entre os dois conceitos anteriores. Mas, em muitos casos a média é o que queremos saber de verdade principalmente se a média ou próximo disto é o que mais acontecerá.

Exercícios PDF (Noções de Complexidade)

Exercicio 1: O(1), $\Omega(1)$ e O(1)

Exercicio 2: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 3: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 4: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 5: O(n), $\Omega(n) \in \Theta(n)$

Exercicio 6: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 7: O(n), $\Omega(n) \in \Theta(n)$

Exercicio 8: O(1), $\Omega(1)$ e O(1)

Exercicio 9: O(1), $\Omega(1)$ e O(1)

Exercicio 10: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 11: O(1), $\Omega(1)$ e O(1)

Exercicio 12: $O(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$

Exercicio 13: O(1), $\Omega(1)$ e $\Theta(1)$

Exercicio 14: $O(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$

Exercicio 15: $O(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$

Exercicio 16: $O(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$

Exercicio 17: $O(\log 2(n))$, $\Omega(\log 2(n)) \in \Theta(\log 2(n))$

Exercicio 18: O(n), $\Omega(n) \in \Theta(n)$

Exercicio 19: $O(n^2)$, $\Omega(n^2)$ e $O(n^2)$

Exercicio 20: $O(\log 2(n+1))$, $\Omega(\log 2(n+1)) \in \Theta(\log 2(n+1))$

Exercicio 21: $O(\log 2(2)), \Omega(\log 2(2)) \in \Theta(\log 2(2))$

Exercicio 22: $O(\log 2(2))$, $\Omega(\log 2(2))$ e $O(\log 2(2))$

Exercicio 23: $O(\log 2(2))$, $\Omega(\log 2(2))$ e $\Theta(\log 2(2))$

Exercicio 24: $O(n^2)$, $\Omega(n^2)$ e $O(n^2)$

Exercicio 25: $O(n^3)$, $\Omega(n^3)$ e $O(n^3)$

Exercicio 26: O(n), $\Omega(n) \in \Theta(n)$

Exercicio 27: $O(n^3)$, $\Omega(n^3)$ e $O(n^3)$

Exercicio 28: $O(n^4)$, $\Omega(n^4)$ e $\Theta(n^4)$

Exercicio 29: $O(\log 2(n))$, $\Omega(\log 2(n)) \in O(\log 2(n))$

Exercicio 30: O(n), $\Omega(n) \in \Theta(n)$