

Reinforcement Learning for Automated Trading

Pierpaolo Necchi pierpaolo.necchi@gmail.com

September 18, 2016

Plan

Basics of Reinforcement Learning

Asset Allocation with Transaction Costs

Implementation

Numerical Results

Conclusions and Future Developments

Markov Decision Processes

Reinforcement Learning

General class of algorithms that allow an agent to learn how to behave in a stochastic and possibly unknown environment by trial-and-error.

Markov Decision Process (MDP)

stochastic dynamical system specified by $<\mathbb{S},\mathbb{A},\mathcal{P},\mathcal{R},\gamma>$

- 1. $(\mathbb{S}, \mathcal{S})$ is a measurable state space
- 2. $(\mathbb{A}, \mathcal{A})$ is a measurable action space
- 3. $\mathcal{P}: \mathbb{S} \times \mathbb{A} \times \mathcal{S} \to \mathbb{R}$ is a Markov transition kernel
- 4. $\mathcal{R}: \mathbb{S} \times \mathbb{A} \to \mathbb{R}$ is a reward function
- 5. $0 < \gamma < 1$ is the discount factor.

Interaction Between Agent and Environment

Policy and Objective Function

Policy Gradient Theorem

Policy Gradient Theorem

Let π_{θ} be a differentiable policy. The policy gradient for the average reward formulation is given by

$$\nabla_{\theta} \rho(\theta) = \mathbb{E}_{\substack{S \sim d^{\theta} \\ A \sim \pi_{\theta}}} \left[\nabla_{\theta} \log \pi_{\theta}(S, A) Q_{\theta}(S, A) \right]$$

 $d^{ heta}$ is the stationary distribution of the Markov chain induced by $\pi_{ heta}.$

Monte-Carlo Policy Gradient Method

Algorithm 1 GPOMDP

Input:

- Initial policy parameters $\theta_0 = (\theta_0^1, \dots, \theta_0^{D_\theta})^T$
- Learning rate $\{\alpha_k\}$
- Number of trajectories M

Output: Approximation of the optimal policy $\pi_{\theta^*} \approx \pi_*$

- 1: Initialize k = 0
- 2: repeat
- 3: Sample M trajectories $h^{(m)} = \{(s_t^{(m)}, a_t^{(m)}, r_{t+1}^{(m)}\}_{t=0}^{T^{(m)}} \text{ of the MDP under policy } \pi_{\theta_k}$
- 4: Compute the optimal baseline

$$\widehat{b}_{k}^{n} = \frac{\sum_{m=1}^{M} \left[\sum_{i=0}^{T^{(m)}} \partial_{\theta_{k}} \log \pi_{\theta} \left(s_{i}^{(m)}, a_{i}^{(m)} \right) \right]^{2} \sum_{j=0}^{T^{(m)}} \gamma^{j} r_{j+1}^{(m)}}{\sum_{m=1}^{M} \left[\sum_{i=0}^{T^{(m)}} \partial_{\theta_{k}} \log \pi_{\theta} \left(s_{i}^{(m)}, a_{i}^{(m)} \right) \right]^{2}}$$

5: Approximate policy gradient

$$\frac{\partial}{\partial \theta^n} J_{\text{start}}(\theta_k) \approx \widehat{g}_k^n = \frac{1}{M} \sum_{m=1}^M \sum_{i=0}^{T^{(m)}} \frac{\partial}{\partial \theta^n} \log \pi_{\theta_k} \left(s_i^{(m)}, a_i^{(m)} \right) \left(\sum_{j=i}^{T^{(m)}} \gamma^j r_{j+1}^{(m)} - \widehat{b}_k^n \right)$$

- 6: Update actor parameters $\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$.
- 7: $k \leftarrow k + 1$
- 8: until converged

PyBrain's Architecture for a RL Problem

Experiment

Agent-Environment Interaction in C++

Adapting PyBrain's Architecture

- 1. Defined standard interfaces via pure abstract classes
- 2. Achieved modularity via polymorphic composition

Agent's Architecture in C++

Execution Pipeline

experiment_launcher.py

- 1. Program execution is handled by a Python script
- 2. Responsible for analyzing the output of the C++ engine

Synthetic Asset

Goal

Evaluate different RL algorithms in a controlled environment, i.e. on a synthetic asset with profitably tradable features

The synthetic asset price is given by

$$Z_t = \exp\left(\frac{z_t}{\max_t z_t - \min_t z_t}\right)$$

where $\{z_t\}$ is a random walk with autoregressive trend $\{\beta_t\}$

$$z_t = z_{t-1} + \beta_{t-1} + \kappa \epsilon_t$$
$$\beta_t = \alpha \beta_{t-1} + \nu_t$$

Convergence of RL algorithms

Backtest Performance of the Trading Strategies Learned

Impact of Transaction Costs

Conclusions and Future Developments

Conclusion

- Applied state-of-the-art RL algos to find a profitable long-short trading strategy
- 2. RL strategies outperform the simple B&H for a synthetic asset
- 3. RL strategies are able to adapt to transaction costs
- 4. RL seems suitable to deal with many financial decision problems

Future Developments

- 1. Improve the algos performance on historical data
- 2. Developing more complex features for the trading strategy
- 3. Apply RL techniques to other financial problems

Thank you for your attention!