LABORATOR 2

Dioda semiconductoare

Nume: Gîrniță Alexandra-Claudia + Popescu Maria-Teodora

Grupa: 322CC

1. Scopul laboratorului

Determinarea principalilor parametri ai diodelor semiconductoare, trasarea caracteristicii curent-tensiune pentru polarizare directă și inversă precum și studiul comportării lor în circuitele elementare.

2. Modul de lucru

Schema circuitului:

Transpunerea virtuala cu ajutorul simulatorului LTSpice

3. Notiuni teoretice

- În circuitele electronice, în mod ideal, diodele permit trecerea curentului într-un singur sens.
- Diodele sunt elemente de circuit polarizate de tip dipol, cu două terminale numite anod și catod.
- Simbolul electric al diodei este realizat dintr-o săgeată ce indică sensul curentului electric la polarizare normală (de la anod la catod).
- Din caracteristica volt-amperică se poate observa că diodele se comportă ca un întrerupător care permite trecerea curentului electric doar pentru tensiuni positive.
- Spre deosebire de modelul ideal, în realitate, la trecerea unui curent electric printr-o diodă, se manifestă o cădere de tensiune.
- În cazul diodelor de siliciu de uz general, la curenți de ordinul zecilor de miliamperi, căderea de tensiune este de aproximativ 0,6-0,7V.
- Acest model de diodă permite trecerea curentului electric numai dacă tensiunea de polarizare este mai mare decât o tensiune minimă, numită tensiune de deschidere a diodei.
- La polarizare inversă, curentul prin dioda ideală este nul.
- Dacă modulul tensiunii inverse depășește o valoare numită tensiune de străpungere, curentul invers IO crește brusc valoarea lui fiind limitată doar de circuitul exterior.
- LED-urile sunt realizate din semiconductori cu banda interzisă de circa 1,6-1,7eV.
- La LED-uri se emit cuante de lumină în spectrul vizibil, cu diferite culori, în funcție de lungimea de undă emise.
- Modelul matematic al diodei de siliciu.

$$i_D = I_0 \left(e^{rac{qu_0}{\gamma k T}} - 1
ight) = I_0 \left(e^{rac{u_d}{\gamma u_T}} - 1
ight) \qquad I_0 = q n_i^2 \left(rac{D_p}{L_p N_D} + rac{D_n}{L_p N_A}
ight) A$$

Caracteristica statică a diodei semi-conductoare

4. Prelucrarea datelor experimentale

Polarizare directa

- Voltmetru in paralel
- Ampermetru in serie

Nr. Măsuratoare	I (mA)	U (mV)
1	0.0234	606
2	0.0531	632
3	0.1017	653
4	0.1978	676
5	0.5012	704
6	1.0007	723
7	2.0053	741
8	5.0075	766
9	9.9986	783

Graficul caracteristicii I-U a diodei semiconductoare

Polarizare indirecta

- Curentul prin dioda este nul

Concluzie

Intensitatea curentului ce trece prin dioda semiconductoare creste exponential in raport cu tensiunea de la borne.

Graficul diodei se apropie mai mult de dioda ideală cu limită a tensiunii de deschidere și caracteristică rezistivă.

La curenți mari, polarizarea directă duce la o oarecare liniarizare a graficului, dioda reală având rol de blocare sau de conducție. Dioda electroluniscenta (LED- Light Emitting Diode)

Rise = 21ms

Fall = 18ms

Vmax = 11,6V

Vmin = -2V

T(perioada) = 111ms

Concluzie

Căderea de tensiune este cu mult mai mică pe diodă decât pe led.