Introduction to Computing Section 1 – The Big Picture

A Computing System
The History of Computing
Computing as a Tool & a Discipline

Part 1 A Computing System

A Computing System

- A computer is just a device
- A computing system: dynamic entity, consists of:
 - Hardware: The physical elements of a computing system (printer, circuit boards, wires, keyboard...)
 - Software: The programs that provide the instructions for a computer to execute
 - Data

solve problems

Layers of a Computing System

 This is just <u>one of the views</u> about parts of computing systems

Part 2

The History of Computing

SCSE.

- Vacuum Tubes: Large, not very reliable, generated a lot of heat
- Magnetic Drum: Memory device that rotated under a read/write head
- Card Readers → Magnetic Tape
 Drives
 - Sequential auxiliary storage devices

Second Generation Hardware (1959-1965)

Transistor

 Replaced vacuum tube, fast, small, durable, cheap

Magnetic Cores

 Replaced magnetic drums, information available instantly

Magnetic Disks

 Replaced magnetic tape, data can be accessed directly

Third Generation Hardware (1965-1971)

- Integrated Circuits
 - Replaced circuit boards, smaller, cheaper, faster, more reliable.
- Transistors
 - Now used for memory construction
- Terminal
 - An input/output device with a keyboard and screen

Fourth Generation Hardware

SCSE

(1971-?)

15705

- Large-scale Integration
 - Great advances in chip technology
- PCs, the Commercial Market, Workstations
 - Personal Computers were developed
 - Workstations emerged.

IBM Roadrunner

Parallel Computing and Networking

- Parallel Computing
 - Computers rely on interconnected central processing units that increase processing speed.
- Networking
 - With the Ethernet small computers could be connected and share resources. A file server connected PCs in the late 1980s.
- ◆ ARPANET and LANs → Internet

Session 1 - The Big Picture

Hardua

First Generation Software (1951-1959)

Machine Language

Computer programs were written in binary (1s and os)

Assembly Languages and translators

Programs were written in artificial programming languages and were then translated into machine language

Programmer Changes

Programmers divide into application programmers and systems programmers

Second Generation Software (1959-1965)

High Level Languages

Use English-like statements and make programming easier. Fortran, COBOL, Lisp are examples.

Third Generation Software (1965-1971)

- Systems Software
 - utility programs,
 - language translators,
 - and the operating system, which decides which programs to run and when.
- Separation between Users and Hardware

Computer programmers began to write programs to be used by people who did not know how to program

User -) program -) todware

Third Generation Software (1965-1971)

Application Package

Systems Software

High-Level Languages

Assembly Language

Machine Language

Fourth Generation Software (1971-1989)

Structured Programming: Pascal, C, C++
New Application Software for Users: Spreadsheets, word
processors, database management systems

Fifth Generation Software (1990- present) Microsoft

The Windows operating system, and other Microsoft application programs dominate the market

Object-Oriented Design

Based on a hierarchy of data objects (i.e. Java)

World Wide Web

Allows easy global communication through the Internet

New Users

Today's user needs no computer knowledge

SharinginformationontheWorld WideWeb

Part 3 Computing as a Tool & a Discipline

Computing as a Tool

Computing as a Discipline

Four Necessary Skills

- 1. Algorithmic Thinking
- 2. Representation
- 3. Programming
- <mark>4.(</mark> Design

Quiz 1by individual

- 1. Summarize the history of hardware, software.
- 2. List at least three reasons why you choose SCSE to study and describe the future job you wish.