Characteristic Functions

Fu Tianwen Yao Chaorui Zhao Feng

the Chinese University of Hong Kong

April 7, 2019

Raindrops Again and Again and ...

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Raindrops Again and Again and ...

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Our intuition tells us that it should be $Poisson(2\lambda)$.

Raindrops Again and Again and ...

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Our intuition tells us that it should be $Poisson(2\lambda)$. But why?

The Normal Sum Problem

 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$ X_1, X_2 are independent. Distribution of $Y = X_1 + X_2$?

The Normal Sum Problem

 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$ X_1, X_2 are independent. Distribution of $Y = X_1 + X_2$?

Observation:

- $E[Y] = E[X_1] + E[X_2]$
- $Var[Y] = Var[X_1] + Var[X_2]$

The Normal Sum Problem

 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$ X_1, X_2 are independent. Distribution of $Y = X_1 + X_2$?

Observation:

- $E[Y] = E[X_1] + E[X_2]$
- $Var[Y] = Var[X_1] + Var[X_2]$

But what is the distribution?

Characteristic Functions

To deal with the sums of random variables, **characteristic function** is a powerful weapon for us.

Definition

Let X be a random variable and denote by F the cumulative distribution function of X (or f the probability density function). The characteristic function $\varphi = \varphi_X$ of X (or of F, in which case we also write φ_F) is defined by

$$\varphi_X(t) := E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} dF(x) = \int_{-\infty}^{\infty} e^{itx} f(x) dx, t \in \mathbb{R}$$

Recall Complex Numbers

If you have forgotten everything about complex numbers, all you need to recall is the following:

- i is the imaginary unit,
- $i^2 = -1$,
- $e^{i\theta} = \cos \theta + i \sin \theta$. (This formula comes from Taylor Series)

Theorem (Uniqueness Theorem)

Let X be a real random variable with distribution function F and characteristic function φ . Similarly, let Y have distribution function G and characteristic function ψ . If $\varphi(t) = \psi(t)$ for all $t \in \mathbb{R}$ then F(x) = G(x) for all $x \in \mathbb{R}$.

From this we may easily conclude the distribution of a random variable if we can prove that its characteristic function is of the same form as a known distribution.

Even if we cannot find the distribution in the lookup table, we may also retrieve it from characteristic functions by hand:

Even if we cannot find the distribution in the lookup table, we may also retrieve it from characteristic functions by hand:

Theorem (Inversion Formula)

If $\int_{\mathbb{R}} |arphi(t)| dt < \infty$ then X has bounded continuous density

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi(t) dt$$

Theorem

If X and Y are independent random variables then the characteristic function of their sum is

$$\varphi_{X+Y}(t) = \varphi_X \cdot \varphi_Y.$$

This gives us a much simpler way than convolution.

Theorem

If X and Y are independent random variables then the characteristic function of their sum is

$$\varphi_{X+Y}(t) = \varphi_X \cdot \varphi_Y.$$

This gives us a much simpler way than convolution.

If X and Y are random variables such that $\varphi_{X+Y} = \varphi_X \cdot \varphi_Y$, then in general we do not conclude X and Y are independent. This is called **subindependence**.

Theorem

For any $a,b\in\mathbb{R}$,

$$\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at).$$

Example (Characteristic Function for Exponential)

Find the characteristic function for $X \sim Exponential(\lambda)$.

Example (Characteristic Function for Exponential)

Find the characteristic function for $X \sim Exponential(\lambda)$.

$$\varphi_X(t) := E[e^{itX}]$$

$$= \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

$$= \int_{0}^{\infty} e^{itx} \cdot \lambda e^{-\lambda x} dx \quad \text{By distribution of } x$$

$$= \frac{\lambda}{it - \lambda} e^{(it - \lambda)x} \Big|_{0}^{\infty}$$

$$= \frac{\lambda}{\lambda - it} \quad \text{By Squeeze Theorem}$$

Fu, Yao, Zhao (CUHK)

The last two steps

$$\left. \frac{\lambda}{it - \lambda} e^{(it - \lambda)x} \right|_0^{\infty} = \frac{\lambda}{\lambda - it}$$

can be justified by

$$\lim_{x\to\infty}|e^{(it-\lambda)x}|=\lim_{x\to\infty}|e^{-\lambda x}|=0 \text{ for positive }\lambda$$

11/23

The table below shows some common distributions and their characteristic functions:

Table: Characteristic Functions for Common Distributions

Distribution	Characteristic Function
Constant $X \equiv a$	$\varphi_X(t)=e^{iat}.$
Binomial $X \sim Binomial(m, p)$	$\varphi_X(t) = (pe^{it} + (1-p))^m$
Poisson $X \sim Poisson(\lambda)$	$\varphi_X(t) = e^{\lambda(e^{it}-1)}$
Exponential $X \sim \textit{Exponential}(\lambda)$	$\varphi_{X}(t) = \frac{\lambda}{\lambda - it}$
Normal $ extit{X} \sim extit{N}(0,1)$	$\varphi_X(t)=e^{-\frac{t^2}{2}}$
Normal $Y \sim N(\mu, \sigma^2)$	$\varphi_{Y}(t) = e^{it\mu - \frac{\sigma^2 t^2}{2}}$

So what "characteristics" are these weird "characteristic functions" talking about?

So what "characteristics" are these weird "characteristic functions" talking about?

To understand this, first we need some knowledge about moments.

Definition (Moment)

For probability density functions f (or cumulative density function F), the moments are given by

$$\mu'_n = E[X^n] = \int_{-\infty}^{\infty} x^n dF(x) = \int_{-\infty}^{\infty} x^n f(x) dx$$

13 / 23

So what "characteristics" are these weird "characteristic functions" talking about?

To understand this, first we need some knowledge about moments.

Definition (Moment)

For probability density functions f (or cumulative density function F), the moments are given by

$$\mu'_n = E[X^n] = \int_{-\infty}^{\infty} x^n dF(x) = \int_{-\infty}^{\infty} x^n f(x) dx$$

Relation with statistics. Observe that the first moment is simply the expectation. The second moment is related to the variance: $Var[X] = E[X^2] - (E[X])^2$.

4 D > 4 D > 4 E > 4 E > E 990

What about the third moment?

What about the third moment? A related concept is **skewness**:

Figure: Same expectation and variance, but different skewness

14/23

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Raindrops in two seconds

Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Solution

Let X, Y be two independent $Poisson(\lambda)$ random variables. Let Z = X + Y. Notice that characteristic functions for X (and respectively Y) is

$$\varphi_X(t) = e^{\lambda(e^{it}-1)}$$

Therefore we have

$$\varphi_{Z}(t) = \varphi_{X+Y}(t) = (\varphi_{X}(t))^{2} = e^{2\lambda(e^{it}-1)}$$

By uniqueness of characteristic functions we know that $Z \sim Poisson(2\lambda)$.

4 D F 4 P F F F F F F

Conclusion:

- This is the same as our intuition.
- By similar ideas, one can show that the sum of two independent poisson random variables has a possion distribution with an expectation of the sum of both expectations

The Normal Sum Problem

 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2). X_1, X_2$ are independent. Distribution of $Y = X_1 + X_2$?

The Normal Sum Problem

 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$ X_1, X_2 are independent. Distribution of $Y = X_1 + X_2$?

Solution

Similarly to previous problem

$$\varphi_{Y}(t) = \varphi_{X_1 + X_2}(t) = e^{it\mu_1 - rac{\sigma_1^2 t^2}{2}} \cdot e^{it\mu_2 - rac{\sigma_2^2 t^2}{2}}$$

Therefore we have

$$\varphi_{Y}(t) = e^{it(\mu_{1} + \mu_{2}) - \frac{(\sigma_{1}^{2} + \sigma_{2}^{2})t^{2}}{2}}$$

which implies that $Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

4 ロ ト 4 周 ト 4 三 ト 4 三 ト 9 9 0 0 0

Conclusion:

- Our result is consistent with the statistics.
- Sum of two independent normal random variables is still normal.

From Binomial To Poisson

Example

Show that $Poisson(\lambda)$ is the same as $\lim_{n\to\infty} Binomial(n, \frac{\lambda}{n})$.

19/23

From Binomial To Poisson

Example

Show that $Poisson(\lambda)$ is the same as $\lim_{n\to\infty} Binomial(n, \frac{\lambda}{n})$.

Solution

Take the limit of the characteristic function of the binomial distribution.

$$\lim_{n \to \infty} \varphi_B(t) = \lim_{n \to \infty} \left(\frac{\lambda}{n} e^{it} + (1 - \frac{\lambda}{n})\right)^n$$

$$= \lim_{n \to \infty} (1 + (e^{it} - 1)\frac{\lambda}{n})^n$$

$$= e^{\lambda(e^{it} - 1)}$$

Central Limit Theorem

First we need to prove a lemma that gives us the common characteristics of all distributions:

Lemma

For any random variable X with E[X] = 0, Var[X] = 1, we have $\varphi_X(t) = 1 - \frac{1}{2}t^2 + o(t^2)$.

Proof.

Directly from the definition and Taylor Series we have

$$\varphi_X(t) = E[e^{itX}] = E[1 + itX + \frac{1}{2}i^2t^2X^2 + o((tX)^2)]$$

By linearity of expectation,

$$\varphi_X(t) = E[1] + itE[X] - \frac{1}{2}t^2E[X^2] + o(t^2)$$

Also

$$E[X^2] = Var[X] - (E[X])^2 = 1$$

Therefore

$$\varphi_X(t) = 1 - \frac{1}{2}t^2 + o(t^2)$$

21 / 23

Central Limit Theorem

Theorem (Central Limit Theorem)

If X_i are independent identically distributed random variables with $E[X_i] = \mu$, $Var[X_i] = \sigma^2$, then $S_n^* = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu)$ converges weakly to N(0,1).

Proof.

By Lemma 20 we denote the characteristic function of $\frac{X_i - \mu}{\sigma}$ by $\varphi(t)$, then $\varphi(t) = 1 - \frac{1}{2}t^2 + o(t^2)$. Therefore the characteristic function of S_n^* is

$$\varphi^{n}(t/\sqrt{n}) = [1 - \frac{t^{2}}{2n} + o(t^{2}/n)]^{n}$$

Take $n \to \infty$ and we get the characteristic function of $\lim_{n \to \infty} S_n^*$

$$\Phi(t) = \lim_{n \to \infty} \varphi^n(t/\sqrt{n}) = \lim_{n \to \infty} \left[1 - \frac{t^2}{2n}\right]^n = e^{-\frac{t^2}{2}}$$

Therefore $\lim_{n\to\infty} S_n^*$ converges to N(0,1).

Q&A

Thanks for your attention!

24 / 23