Definição 1: As referências para cristais podem ser obtidas por meio de:

Frequência
$$\pm$$
 ppm. (1)

Em que, ppm significa parte por milhão.

Definição 2: O erro absoluto para uma medição de resistência em longa derivação é dada por:

$$\Delta_{\rm L} \triangleq |R_{\rm m} - R_{\rm x}| = R_{\rm a},\tag{2}$$

em que, $R_{\rm m}$ é uma resistência dada pela Lei de Ohm, ao considerar a tensão medida (pelo voltímetro) e a corrente medida (pelo amperímetro), $R_{\rm x}$ é o valor da resistência que seja deseja obter e $R_{\rm a}$ é a resistência do amperímetro.

Definição 3: O erro absoluto para uma medição de resistência em curta derivação é dada por:

$$\Delta_{\rm C} \triangleq |R_{\rm m} - R_{\rm x}| = \frac{R_{\rm x}^2}{R_{\rm x} + R_{\rm v}},\tag{3}$$

em que, $R_{\rm m}$ é uma resistência dada pela Lei de Ohm, ao considerar a tensão medida (pelo voltímetro) e a corrente medida (pelo amperímetro), $R_{\rm x}$ é o valor da resistência que seja deseja obter e $R_{\rm v}$ é a resistência do voltímetro.

Exercícios

- 1) Considere um um cristal com as seguintes características: 50 MHz \pm 50 ppm. Com base nisso, determine:
 - a) O erro absoluto;
 - b) O intervalo de variação da frequência;
 - c) O erro ao longo de um dia, de uma semana e de um mês.
- 2) Qual a expressão do erro relativo (δ) para a medição de resistência:
 - a) em longa derivação;
 - b) em curta derivação.
- 3) Um voltímetro possui uma resistência interna, $R_{\rm v}$, de 10 M Ω e um amperímetro apresenta uma resistência, $R_{\rm a}$, de 0,001 Ω . Neste caso, para qual valor de resistência desconhecida, $R_{\rm x}$, deve-se usar a configuração em curta derivação e a partir de qual valor de $R_{\rm x}$ é aconselhável utilizar a configuração em longa derivação?