Proyecto de Logica para Ciencias de la Computacion

Juan Camilo Rodriguez y Daniel Forero

Programa de Matematicas Aplicadas y Ciencias de la Computacion Universidad del Rosario

2019-2

Contenido

Representacion de situaciones sin condiciones iniciales

Problema sin condiciones iniciales

(Inisertar tablero vacio)

Considere un tablero vacio de tamaño 3x3.

El problema consiste en lograr obtener las posiciones para para completar una linea recta de longitud 3 (Vertical, Horizontal o Diagonal).

(Inisertar tablero con triqui)

Por ejemplo, al ubicar de esta manera las "X" se forma la linea de 3 necesaria para terminar el juego.

Claves de representacion (1)

(Inisertar tablero enumerado) Lo primero sera, enumerar las casillas del tablero.

Claves de representacion (2)

(Inisertar tablero con Xi) Se asigna una letra propocicional " X_i ", para la casilla i. X_i es verdadera, sii hay una X ocupando la casilla en la posicion i.


```
(Inisertar tablero con X en posicion 6)
```

- $\neg X_1$: No hay X en la posicion 1
- $\neg X_2$: No hay X en la posicion 2
- $\neg X_3$: No hay X en la posicion 3
- $\neg X_4$: No hay X en la posicion 4
- $\neg X_5$: No hay X en la posicion 5
- X_6 : Hay X en la posicion 6
- $\neg X_7$: No hay X en la posicion 7
- $\neg X_8$: No hay X en la posicion 8
- $\neg X_9$: No hay X en la posicion 9

Reglas

Regla 1: Tiene que haber exctactamente 3 figuras iguales seguidas, en este caso "X".

Regla 1

(Insertar tablero con triqui superior) (
$$X_1 \wedge \neg X_2 \wedge \neg X_3 \wedge \neg X_4 \wedge X_5 \wedge \neg X_6 \wedge \neg X_7 \wedge \neg X_8 \wedge X_9$$
)

Regla 1

(Insertar tablero con triqui superior) (
$$X_1 \wedge \neg X_2 \wedge \neg X_3 \wedge \neg X_4 \wedge X_5 \wedge \neg X_6 \wedge \neg X_7 \wedge \neg X_8 \wedge X_9$$
)

Contenido

Representacion de situaciones con condiciones iniciales

Problema con condiciones iniciales

(Insertar con circulo arriba a la izquierda)

Dado un circulo ubicado en la posicion 1 del tablero 3x3, el problema consiste en ubicar todas las X de tal manera de que:

- 1) No haya una X en la misma pocion que el circulo.
- 2) Se logre hacer una linea de tres solo con las X's.

Reglas

Regla 1: Tiene que haber exctactamente 3 figuras iguales seguidas, en este caso "X".

Regla 2: No puede haber dos figuras en una misma posicion.

Regla 3: Debe haber al menos un circulo como condicion inicial.

Una letra propocicional O_i y otra X_i para cada casilla i. O_i es verdadera sii hay un circulo en la posicion del tablero i. X_i es verdadera sii hay una X en la posicion del tablero i. El metodo para saber si una casilla esta disponible es: comparar mediante el operador logico $\lor lasentradas O_i$ y X_i y negar el resultado.

 $\mathsf{DISPOINBILIDAD}_i = \neg(\mathsf{O}_i \vee \mathsf{X}_i)$

(instertar O en 1 X en 9)la representación logica para este ejemplo especifico seria:

$$\begin{array}{l} \big(\ \neg X_1 \ \land \ \neg X_2 \ \land \ \neg X_3 \ \land \ \neg X_4 \ \land \ \neg X_5 \ \land \ \neg X_6 \ \land \ \neg X_7 \ \land \ \neg X_8 \ \land \ X_9 \ \big) \ \land \ \big(O_1 \\ \land \ \neg O_2 \ \land \ \neg O_3 \ \land \ \neg O_4 \ \land \ \neg O_5 \ \land \ \neg O_6 \ \land \ \neg O_7 \ \land \ \neg O_8 \ \land \ \neg O_9 \big) \\ \text{es decir que nuestra representacion de disponibilidad seria:} \\ \big(\ \neg DISPONIBILIDAD_1 \ \land \ DISPONIBILIDAD_2 \ \land \ DISPONIBILIDAD_3 \\ \land \ DISPONIBILIDAD_4 \ \land \ DISPONIBILIDAD_5 \ \land \ DISPONIBILIDAD_6 \\ \end{array}$$

 \land DISPONIBILIDAD₇ \land DISPONIBILIDAD₈ $\land \neg$ DISPONIBILIDAD₉)

(insertar O en pos 7 y 9)Sea O_7 y O_9 nuestras condiciones iniciales.


```
(insertar triki vertical en el centro) Nuestra representacion de disponibilidad seria:
```

```
( DISPONIBILIDAD_1 \land DISPONIBILIDAD_2 \land DISPONIBILIDAD_3
```

 $\land \ \mathsf{DISPONIBILIDAD_4} \ \land \ \mathsf{DISPONIBILIDAD_5} \ \land \ \mathsf{DISPONIBILIDAD_6}$

 $\land \neg \mathsf{DISPONIBILIDAD_7} \land \mathsf{DISPONIBILIDAD_8} \land \neg \mathsf{DISPONIBILIDAD_9}$

(insertar triki vertical en el centro) Nuestra representacion de las figuas para obtener una linea de tres formada por X, seria:

[
$$(\neg X_1 \land X_2 \land \neg X_3 \land \neg X_4 \land X_5 \land \neg X_6 \land \neg X_7 \land X_8 \land \neg X_9) \land (\neg O_1 \land \neg O_2 \land \neg O_3 \land \neg O_4 \land \neg O_5 \land \neg O_6 \land O_7 \land \neg O_8 \land O_9)$$
] $\lor ...$

El programa ha de retornar la representacion de las figuras que contenga la solucion requerida.

