MAT389 Fall 2013, Problem Set 5

Conformal transformations

- **5.1** Determine the angle of rotation at the point z = 2 + i of the transformation $f(z) = z^2$ and illustrate it for some particular curve. Show that the scale factor of the transformation at that point is $2\sqrt{5}$.
- **5.2** Show that the angle of rotation at a nonzero point $z = r_0 e^{i\theta_0}$ under the transformation $f(z) = z^n \ (n \ge 1)$ is $(n-1)\theta_0$. Determine the scale factor of the transformation at that point.

Transformation of harmonic functions

- 5.3 (i) Show that the transformation $w = e^z$ takes the horizontal strip $0 < \text{Im } z < \pi$ to the (open) upper half plane $\{w \in \mathbb{C} \mid \text{Im } w > 0\}$.
 - (ii) Use the fact that $h(u, v) = \text{Re } w^2 = u^2 v^2$ is harmonic on the upper half plane, and the transformation $w = e^z$ to show that $H(x, y) = e^{2x} \cos 2y$ is a harmonic function on the strip.
- **5.4** Suppose that a holomorphic function w = f(z) = u(x, y) + iv(x, y) maps a domain D_z in the z plane onto a domain D_w in the w plane; and let a function h(u, v), with continuous partial derivatives of the first and second order, be defined on D_w . Use the chain rule for partial derivatives to show that if H(x, y) = h(u(x, y), v(x, y)), then

$$H_{xx}(x,y) + H_{yy}(x,y) = \left[h_{uu}(u,v) + h_{vv}(u,v)\right] |f'(z)|^2$$

Hint: in the simplifications you will need to use the Cauchy-Riemann equations for f, the fact that u and v are harmonic on D_z , and that the continuity of the partial derivatives of h ensure $h_{uv} = h_{vu}$.

5.5 Let p(u, v) be a function that has continuous partial derivatives of the first and second orders and satisfies *Poisson's equation*

$$p_{uu}(u,v) + p_{vv}(u,v) = \Phi(u,v)$$

in a domain D_w of the w plane, where Φ is a prescribed function. Show how it follows from the previous problem that if a holomorphic function w = f(z) = u(x, y) + iv(x, y) maps a domain D_z onto the domain D_w , then the function

$$P(x,y) = p(u(x,y), v(x,y))$$

satisfies the Poisson equation

$$P_{xx}(x,y) + P_{yy}(x,y) = \Phi(u(x,y),v(x,y))|f'(z)|^2$$

on D_z .