

Convolution Neural Network Based Polycrystalline Silicon Photovoltaic Cell Linear Defect Diagnosis Using Electroluminescence Images¹

Discente: Alan Marques da Rocha

(1) Autores: Wuqin Tang, Qiang Yang, Xiochen Hu, Wenjun Yan (Expert Systems With Applications).

Diagnóstico de Defeitos Lineares em Células Fotovoltaicas de Silício Policristalino Baseado em Rede Neural Convolucional Usando Imagens de Eletroluminescência¹

Discente: Alan Marques da Rocha

(1) Autores: Wuqin Tang, Qiang Yang, Xiochen Hu, Wenjun Yan (Expert Systems With Applications).

SUMÁRIO

MOTIVAÇÃO

OBJETIVOS

METODOLOGIA

MODELO BASEADO EM DEEP LEARNING PARA

DIAGNÓSTICO DE DEFEITOS

RESULTADOS E DISCUSSÕES

CONCLUSÕES E TRABALHOS FUTUROS

- Eficiência energética;
- Fontes alternativas de energia;
- Energia Fotovoltaica (FV);
- Aumento de instalação de sistemas fotovoltaicos (FVs).

Agência Internacional de Energia (IEA):

Capacidade FV instalada a nível mundial (IEA, 2019):

2019	(Previsão) 2024
$>627~\mathrm{GW}$	1209 GW

- Ausência de manutenção nos sistemas FVs (Li et al., 2019);
- Perda de eficiência;
- Prejuízos decorrentes de falhas;
- Métodos não invasivos para detecção de falhas;

Métodos de detecção de falhas comumente utilizados:

- Análise das curvas de I/V;
- Verificação da temperatura;
- Técnicas de termografia;
- Eletroluminescência (EL).

Técnica de Eletroluminescência (EL):

OBJETIVO GERAL

Diagnóstico automático de defeitos lineares baseados em Aprendizado Profundo (do inglês, Deep Learning) para células FVs de silício policristalino (Si-p) com base em imagens EL.

Objetivos Específicos

• Propor um algoritmo trifásico para diagnóstico automático de defeitos lineares em células FVs de Si-p.

METODOLOGIA

Característica básica de um módulo FV.

METODOLOGIA

Célula FV de Si-p em imagem EL.

Diferentes formas de defeitos lineares: (a) interrupção do dedo; (b) trincas; (c) rachadura e interrupção do dedo.

METODOLOGIA

Características das células de silício mono e policristalino.

Comparação de células de Si - m e Si - p. (a) Si - m sem defeitos; (b) Si - m com defeitos; (c) Si - p sem defeitos; (d) Si - p com defeitos; (e-h) é a distribuição de densidade correspondente.

VISÃO GERAL DO MÉTODO PROPOSTO

- Coleta de imagens EL através da inspeção em campo ou na própria fábrica;
- Implementação do algoritmo trifásico para extração e detecção dos defeitos das células FVs de Si-p.

VISÃO GERAL DO MÉTODO PROPOSTO

MÉTODO DE EXTRAÇÃO DE CARACTERÍSTICAS DE DEFEITOS BASEADOS NA MATRIZ HESSIANA

- Distinção do fundo da imagem dos defeitos da célula;
- Análise dos autovalores dos pixels da matriz da imagem;
- Descrever a característica da estrutura da imagem.

Matriz Jacobiana e sua relação com a Matriz Hessiana

Função vetorial de várias variáveis: $F: \mathbb{R}^m \to \mathbb{R}^n$ com $F(X) = (f_1(X), ..., f_n(X))$. A representação matricial da derivada quando existe é denominada de matriz Jacobiana.

Matriz Jacobiana e sua relação com a Matriz Hessiana

$$\operatorname{JF}(x_1, \dots, x_n) = \left[\begin{array}{c} f_1 \\ \vdots \\ f_n \end{array} \right]' = \left[\begin{array}{c} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{array} \right]$$

Quando m=n, a matriz jacobiana é uma matriz quadrada e o seu determinante é denominado de $função\ jacobiana$.

Matriz Jacobiana e sua relação com a Matriz Hessiana

A matriz jacobiana (derivada) do gradiente (que é função vetorial) é denominado de matriz hessiana de f.

$$J \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

Matriz Hessiana

Derivadas parciais de segunda ordem de f(u). H(u) é uma matriz definida positiva.

Autovalores e Autovetores da Matriz Hessiana

Os autovalores (λ_1 e λ_2) e autovetores (v_1 e v_2) de H(u) podem definir a anisotropia¹ da mudança da imagem (Chen *et al.*, 2020).

$$\lambda_1 = K + \sqrt{K^2 - Q^2}$$

$$\lambda_2 = K - \sqrt{K^2 - Q^2}$$

$$\hat{\mathbf{U}}$$

$$K = (f_{xx} + f_{yy})/2, Q = \sqrt{f_{xx}f_{yy} - f_{xy}f_{yx}}$$

¹ Mudança das propriedades da imagem dependendo da direção em que são analisadas.

Autovalores e Autovetores da Matriz Hessiana

Círculo azul = estrutura nodular da imagem e curva em azul = estrutura em forma de linha nas imagens de células FVs.

1ª Fase – Extração dos Atributos pela matriz Hessiana

- O Método da 1^a Fase ainda não é robusto o suficiente;
- As estruturas nodulares ainda são caracterizadas como lineares..

Solução:

• Desenvolver um detector de linha multiescala.

Janela $M \times M$ em cada pixel da imagem; Nível de cinza médio representado por I_{avg}^{M} ; Doze linhas de comprimento L (15° entre as linhas); Nível de cinza de cada linha na janela pode ser calculado; Valor máximo do nível de cinza é indicado por $I_{máx}^{L}$.

- Retângulo azul = Pixel da imagem;
- Linha preta = Defeito linear;
- Linhas vermelhas = Detectores
- Retângulos amarelos são utilizados para calcular a resposta em diferentes escalas.

A resposta da linha de comprimento L na janela M pode ser calculada da seguinte forma:

$$R_M^L = I_{m\acute{a}x}^L - I_{avg}^M$$

Onde $1 \le L \le M$.

 $I_{m\acute{a}x}^L = \text{Valor m\'aximo do n\'ivel de cinza.}$

 I_{avg}^{M} = Nível de cinza médio.

Os defeitos nas células FVs em EL são mais escuras que o fundo, então:

• Para pixels da área defeituosa, R_M^L será maior.

A resposta em um pixel de uma escala diferente pode ser calculado por:

$$R = \frac{1}{n+1} \left(\sum_{r} R_M^L + P \right)$$

Onde n é o número de escalas aplicadas e P é o valor do pixel da posição correspondente.

Resultados do aprimoramento de características:

1^a Fase

2^a Fase

2ª Fase – Aprimoramento de Características do Defeito Baseado em Detector Multiescala

MODELO BASEADO EM DEEP LEARNING PARA DIAGNÓSTICO DE DEFEITOS DO MÓDULO

- Modelos de Deep Learning são utilizados nas mais variadas áreas de atuação;
- Alta taxa de precisão;
- Possibilidade de processamento de grandes volumes de informações (A depender do poder computacional).

MODELO BASEADO EM DEEP LEARNING PARA DIAGNÓSTICO DE DEFEITOS DO MÓDULO

- Inception4;
- Inception-ResNet-v2;
- Bloco Stem;
- Inception-A;
- Reduction-A;
- Inception-C.

MODELO BASEADO EM DEEP LEARNING PARA DIAGNÓSTICO DE DEFEITOS DO MÓDULO

Bloco Inception-A

Bloco Inception-C

Bloco Reduction-A

METODOLOGIA DO TREINAMENTO

- Otimizador: Stochastic Gradient Descent (SGD) ou Gradiente Descendente Estocástico;
- Pesos atualizados durante o processo de treinamento;

Descrição	Símbolo	Valor	
Tamanho do batch	b_s	64	
Taxa de Aprendizagem	η	1e - 3	
Queda do peso	λ	0.01	

3ª Fase – Modelo Baseado em Deep Learning para Diagnóstico de Defeitos

Informações a cerca do Dataset:

- 300 imagens fornecidas da base de (Deitsch et al., 2019);
- 200 Imagens fornecidas pela JinkoPower Company;
- 500 Imagens coletadas durante inspeções em fazendas FVs na China.
- 2.100 imagens foram criadas pelo método de aumento (Tang et al., 2020).

- 1^a e 2^a fase do algoritmo implementadas em MATLAB;
- Modelo de diagnóstico (3ª fase) implementadas em Python (Pythorch 1.6.0) com 4 GPUs NVIDIA TITAN.

Número de imagens EL para cada conjunto de dados $(m \times n \times l)$, m é o número de imagens iniciais, n é o número de tipos de defeito, l significa que o tamanho do conjunto de dados aumenta l vezes pelo aumento de dados (Tang $et\ al.,\ 2020$).

Conjunto de dados	Tamanho do conjunto de dados			
Conjunto de treinamento	$700 \times 2 \times 3$			
Conjunto de validação	$100 \times 2 \times 2$			
Conjunto de teste	$200 \times 2 \times 2$			

- Precisão média de 0,98 e 0,93 alcançada no conjunto de treinamento e validação;
- Valor mais alto da precisão obtido na 47^a época, após a
 48^a época houve ligeira diminuição em termos de precisão.

ESTUDOS DE CASO E COMPARAÇÕES

Comparação do método com as seguintes topologias:

- VGG 16;
- Inceptionv3 (Szegedy et al., 2015);
- ResNet50 (He et al., 2016);
 NASNet-A (Zoph et al., 2018);
- AmoebaNet-A (Real et al., 2019);
- PNASNet (Liu *et al.*, 2018).

ESTUDOS DE CASO E COMPARAÇÕES

Performance comparison with other models using the combined data augmentation method.

		ResNet50	InceptionV3	VGG16	Proposed solution
Total Params		26 M	24 M	40 M	5 M
Accuracy in different datasets	Part one	0.88	0.88	0.87	0.93
	Part two	0.87	0.88	0.86	0.92
	Part three	0.86	0.86	0.85	0.92

Performance comparison with other models using the combined data augmentation method.

	NASNet-A	AmoebaNet-A	PNASNet	Proposed solution	
Total Params	89 M	87 M	86 M	5 M	
Accuracy in different datasets	0.92	0.91	0.93	0.93	
	0.91	0.92	0.92	0.92	
	0.9	0.92	0.91	0.92	

ESTUDOS DE CASO E COMPARAÇÕES

Comparação de desempenho com diferentes conjuntos de dados:

Realizou-se variações de amostras em: 100, 200, 300, 400, 500,
 600 e 700 amostras.

N^{Ω} de Amostras	100	200	300	400	500	600	700
Precisão	0.72	0.81	0.85	0.89	0.93	0.93	0.93

CONCLUSÕES E TRABALHOS FUTUROS

- Sistema baseado em EL para detecção de defeitos em células FVs de silício policristalino dividido em três etapas;
- Distribuição numérica da imagem foi simplificada pelo extrator e aprimoramento de recursos aumentando a precisão do diagnóstico.
- Alto valor de precisão nos conjuntos de treino e validação, com 0,98 e 0,93 respectivamente.

CONCLUSÕES E TRABALHOS FUTUROS

- Aplicar o método proposto para células de silício monocristalino e policristalino;
- Realizar a detecção de outros tipos de defeitos;
- Implementação do modelo proposto em um Veículo Aéreo Não-Tripulado (VANT) para detecção automática diretamente nas fazendas FVs.

BIBLIOGRAFIA

Convolution neural network based polycrystalline silicon photovoltaic cell linear defect diagnosis using electroluminescence images

Obrigado!! eng.alanmarquesrocha@gmail.com.br