## CS & IT





**CPU Scheduling** 

**DPP 04** Discussion Notes



By- Anjnee Bhatnagar ma'am



TOPICS TO BE COVERED

01 Question

02 Discussion









It reduces waiting time for longer processes.



HRRN is preemptive in nature. - 0/80





HRRN's response ratio can be calculated as (S + W)/S, where S is the service time and W is the waiting time.



HRRN favours job with shorter burst time.

i) favors shortest jobs i) Limits Waiting time of longer jobs.



## Consider the below table



| Process | Arrival Time | <b>Burst Time</b> |
|---------|--------------|-------------------|
| P1      | 0            | 7                 |
| P2      | 2            | 4                 |
| Р3      | 4            | 1                 |
| P4      | 5            | 4                 |

A,B

Schedule the above processes using SRTF and SJF, and select the correct option from the following.

- A.
- TAT(SJF) > TAT(SRTF).
- В.
- Waiting time P4(SJF) > Waiting time P3 (SRTF)
- C.
- TAT(SRTF)> TAT(SJF)
- D.

Waiting time P2(SRTF) < Waiting time P1(SJF)



| + |         |      |                                                                                                 |              |               | 7   |                                                            |
|---|---------|------|-------------------------------------------------------------------------------------------------|--------------|---------------|-----|------------------------------------------------------------|
|   | Process | A:T  | B.T                                                                                             | C·T          | TAT           | W.T | D. TOT                                                     |
|   | R       | 0    | 75                                                                                              | 7            | 7             | 0   | Aug.TAT => 32 = Bunits                                     |
|   | P2      | 2    | 470                                                                                             | 12           | 10            | 6   | for SJF 4                                                  |
|   | P3      | 4    | XO                                                                                              | 8            | 4             | 3   | 32 units                                                   |
|   | P4      | 5    | 40                                                                                              | 16           | 11            | 7   | 32>28                                                      |
|   | RTF:    | 4453 | 16<br>P4 P1<br>P2<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3<br>P3 | C+ 16 7 5 11 | TA:T 16 5 1 6 |     | Pui 7 > P3:0  Aug TAT => 28 = 7 units for SRTF => 28 units |

SRTF



How many of the following scheduling algorithms may cause starvation?



i. First-come-first-serve

ii. Priority

iii. Shortest process next

iv. Shortest remaining time first \w





| CPU Sch. alg   | Starvation |  |
|----------------|------------|--|
| FCFS           | X          |  |
| SJF            |            |  |
| Preemp SJF     |            |  |
| Round Robin    | X          |  |
| Priority based |            |  |
| LJF            |            |  |
| LRTF           | X          |  |
| HRRN           | X          |  |

| Q.4 |
|-----|
| 4.4 |

Consider the following processes:



|   |    | X | 81. | 1  |
|---|----|---|-----|----|
| 6 | nd | 3 | 7   |    |
| 1 |    |   | /   | ~  |
|   | 5  | 8 | "   | 11 |
|   | 9  | 1 |     |    |

| Process | Arrival Time | <b>Burst Time</b> | CT | T. A.T | W·T |
|---------|--------------|-------------------|----|--------|-----|
| P1      | 0            | 84 320            | 20 | 20     | 15  |
| P2      | 1            | 5 4 3 70          |    | 18     | 13  |
| P3      | 2            | 54820             | 18 | 16     | 11  |
| P4      | 3            | 5 4 820           | 17 | 14     | 9   |

Calculate the sum of waiting time of process P4 and average turnaround time using LRTF scheduling algorithm? (if burst time of two process is same schedule the process with higher arrival



Consider the set of 5 processes whose arrival time and burst time are given below: [NAT]

| 1  | )  | 1 |
|----|----|---|
| ١, | II |   |
| 1  | W  | 1 |

| Process | Arrival Time | <b>Burst Time</b> |
|---------|--------------|-------------------|
| P0      | 0            | 4                 |
| P1      | 3            | 5                 |
| P2      | 4            | 6                 |
| P3      | 5            | 5                 |
| P4      | 8            | 3                 |

If the CPU scheduling policy is Highest Response Ratio Next, X is response ratio of last process scheduled, Y is the average turnaround time, and Z is the average waiting time. Calculate X \* Y + Z? (upto 1 decimal point)

|       | Proce 38 | A.T | BIT | C.T | TAT | W.T |  |
|-------|----------|-----|-----|-----|-----|-----|--|
|       | Po       | 0   | 4   | 4   | 4   | 0   |  |
|       | Pi       | 3   | 5   | 9   | 6   | ١   |  |
| 26:52 | P2       | 4   | 6   | 15  | 11  | 5   |  |
| 16    | 13       | 5   | 5   | २3  | 18  | 13  |  |
|       | P4       | 8   | 3   | 18  | 10  | 7   |  |
|       |          |     | V   |     | 419 |     |  |

 $RR_1 = 1+5 = 6 = 1.2$   $RR_2 = 0+6 = 1$ 

 $RR_{2} = \frac{5+6}{6} = 11 \Rightarrow 1.8$   $RR_{3} \Rightarrow \frac{4+5}{5} = \frac{9}{5} = 1.8$   $RR_{4} \Rightarrow \frac{1+3}{3} = \frac{4}{3} = 1.3$ 

$$RR_{4} = \frac{5}{7+3} = \frac{3}{10} = 3.33$$



## Match the following groups.



| Group-I                | Group-II                        |  |  |
|------------------------|---------------------------------|--|--|
| A. FCFS                | 1. Used in time sharing system  |  |  |
| B. SJF                 | 2. Used in real time system     |  |  |
| C. Priority scheduling | 3. Minimum average waiting time |  |  |
|                        | 4. Convoy effect                |  |  |

A. A-2, B-1, C-3 ×

B.

A-4, B-3, C-2

C.

A-2, B-3, C-1

D.

A-4, B-2, C-3





respectively. And the processing times are 15ms, 12ms and 5ms respectively. The three processes are pre-emptively scheduled on a single-CPU system using the shortest remaining processing time first scheduling policy. Which of the following shows the

order in which processes are completed? [MCQ

- A. P2, P1, P3
- B. P3, P1, P2
- c. P3, P2, P1
- D. P1, P2, P3





| Process | A.T | B.T   | C.T |  |
|---------|-----|-------|-----|--|
| P,      | D   | 18 18 | 20  |  |
| P2      | 5   | 12    | 32  |  |
| P3      | 8   | \$ D  | 13  |  |

P3 P, P2



Consider the following set of processes with the arrival times and burst times. Processes are scheduled using highest response ratio next.

| 0   | P |
|-----|---|
| nd  | W |
| tio |   |
|     |   |

| Process | Arrival Time | <b>Burst Time</b> |
|---------|--------------|-------------------|
| A       | 0            | 4                 |
| В       | 2            | 1                 |
| С       | 4            | 3                 |
| D       | 5            | 5                 |



|   | Respons | L     |
|---|---------|-------|
|   | Wts     | otio= |
| 1 | S       |       |

| Processes | A.T | B.T | C·T | TIT | WT |
|-----------|-----|-----|-----|-----|----|
| A         | 0   | 4   | 4   | 4   | 0  |
| В         | 2   | 1   | 5   | 3   | 2  |
| C         | 4   | 3   | 8   | 4   | 1  |
| D         | 5   | 5   | 13  | 8   | 3  |

| R.RB = 2+1 = 3            |  |
|---------------------------|--|
| $R \cdot R_c = 0 + 3 = 1$ |  |

5 | 13 | 8 | 3 | 
$$R:R_c = \frac{1+3}{3} = \frac{4}{3} = 1.33$$
  
Avg. W.T =>  $\frac{2+1+3+0}{4} \Rightarrow \frac{6}{4} \Rightarrow 1.5 \text{ millisec}$ 



