Low-density parity-check (LDPC) codes

- Performance similar to turbo codes
- Do not require long interleaver to achieve good performance
- Better block error performance
- Error floor occurs at lower BER
- Decoding is not based on trellises
- Iterative decoding
 - More iterations than turbo decoding
 - Simpler operations in each iteration step
- Not covered by patents!

Introduction

- A binary full rank parity check matrix $\mathbf{H}_{J \times n}$ is given
- The null space of $\mathbf{H} = \{ \mathbf{v} \in \mathrm{GF}(2)^n : \mathbf{v}\mathbf{H}^T = \mathbf{0} \}$ is a binary linear code
- Regular LDPC code: The null space of a matrix **H** which has the following properties:
 - Its J rows are not necessarily linearly independent
 - There are ρ 1s in each row
 - There are γ 1s in each column
 - No pair of columns has more than one common 1
 - ρ and γ are small compared to the number of rows (*J*) and columns (*n*) in **H**
- Density $r = \rho/n = \gamma/J$
- Irregular LDPC code: The number of 1s in the rows/columns may vary

Example

- J=n=15
- $\rho = \gamma = 4$

```
0
                    0 \ 0 \ 0
                           0
                              0
                           0
                    0 \ 0 \ 0
                              0
                                0
                      0 \quad 0
                           0
                              0 0 0
                       0 0 0 0 0 0
\mathbf{H} =
                         0
                           0 0 0 0 0 0 1
                            0 0 0 0 0 0 0
                              0 0 0 0 0 0
                            0
                              0
```

Gallager's LDPC codes

- Select ρ and γ
- Form a $k\gamma \times k\rho$ matrix **H** consisting of γ submatrices **H**₁, ..., **H**_{γ}, each of dimension $k \times k\rho$
- \mathbf{H}_1 is a matrix such that its *i*th row has its ρ 1s confined to columns $(i-1)\rho+1$ through $i\rho$, i=1,...,k
- The other submatrices are column permutations of \mathbf{H}_1
- The actual column permutations give the properties of the code

Gallager's LDPC codes: Example

- Select $\rho = 4$, $\gamma = 3$, and k = 5
- Column permutations for \mathbf{H}_2 and \mathbf{H}_3 are selected so that no two columns have more than one 1 in common
- This is a (20,7,6) code

```
0
                                                      0
H =
       0
```

Rows and parity checks

- Each row of H forms a parity check
- Let A_l be the set of rows $\{\mathbf{h}_1^{(l)}, ..., \mathbf{h}_{\gamma}^{(l)}\}$ that have a one in position l
- Since no pair of columns has more than one common 1, any code bit other than bit l is checked by at most one of the rows in A_l
- Thus, there are γ rows orthogonal on l, and any error pattern of weight \leq floor($\gamma/2$) can be decoded by one-step majority logic (MLG) decoding. However, (especially when γ is small) this gives poor performance
- Gallager proposed two iterative decoding algorithms, one hard decision algorithm and one soft decision algorithm

Brief overview of graph theoretic notations

- An undirected graph is denoted by G(V,E)
- The degree of a vertex/node is the number of edges adjacent to it
- Two edges are adjacent if they are connected to the same vertex
- A path in a graph is an alternating sequence of vertices and edges (starting and ending in a vertex), where all vertices are distinct except for maybe the first and the last
- A tree is a graph without cycles
- If there is a path between any pair of vertices, the graph is connected
- If the set of vertices can be partitioned into two disjoint parts; so that each edge goes from a vertex in one part to a vertex in the other, then the graph is bipartite

Graphical description of LDPC codes

- Tanner graph: A bipartite graph G(V,E) where $V = V_1 \cup V_2$ and
 - V_1 is a set of n code bit nodes v_0 , ..., v_{n-1} , each representing one of the n code bits
 - V_2 is a set of J check nodes $s_0, ..., s_{J-1}$, each representing one of the J parity checks
 - There is an edge between $v \in V_1$ and $s \in V_2$ iff. the code bit corresponding to v is contained in the parity check corresponding to s
- No cycles of length 4 in the Tanner graph of an LDPC code

Example

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Decoding of LDPC codes

- Several decoding techniques are available. Listed in order of increasing complexity (and improving performance):
 - Majority logic (MLG) decoding
 - Bit flipping (BF) decoding
 - Weighted bit flipping (WBF) decoding
 - Iterative decoding based on belief propagation (IDBP), also known as the sum-product algorithm (SPA)
 - A posteriori probability (APP) decoding

Decoding notations

- Assume BPSK modulation and an AWGN channel
- Codeword: $\mathbf{v} = (v_0, ..., v_{n-1})$
- Channel output: $\mathbf{y} = (y_0, ..., y_{n-1})$
- Hard decisions: $z = (z_0, ..., z_{n-1})$ where $z_j = 1$ (0) if $y_j > (<)$ 0
- Rows of H: $\mathbf{h}_1, ..., \mathbf{h}_J$
- Syndrome: $\mathbf{s} = (s_1, ..., s_J) = \mathbf{z} \cdot \mathbf{H}^T$ where $s_j = \mathbf{z} \cdot \mathbf{h}_j = \sum_{i=0...n-1} z_i h_{j,i}$
- Parity failure: At least one syndrome bit is nonzero
- Error pattern: e = v + z
- Syndrome: $\mathbf{s} = (s_1, ..., s_J) = \mathbf{e} \cdot \mathbf{H}^T$ where $s_j = \mathbf{e} \cdot \mathbf{h}_j = \sum_{i=0...n-1} e_i h_{j,i}$

MLG decoding

- One-step MLG decoding is described in Chapter 8*
- Let A_l be the set of rows $\{\mathbf{h}_1^{(l)}, ..., \mathbf{h}_{\gamma}^{(l)}\}$ that have a one in position l
- A set of γ parity check sums orthogonal on code bit l is

$$S_{l} = \{S_{j}^{(l)} = \mathbf{z} \cdot \mathbf{h}_{j}^{(l)} = \mathbf{e} \cdot \mathbf{h}_{j}^{(l)} = \sum_{i=0...n-1} e_{i} h_{j,i}^{(l)} : \mathbf{h}_{j}^{(l)} \in A_{l}\}$$

- If a majority of the parity check sums on bit l are satisfied; conclude that $e_l = 0$. Otherwise, conclude that $e_l = 1$
- This decoding is guaranteed to result in a correct decoding if at most floor($\gamma/2$) errors occur
- Problem: γ is by assumption a small number

BF decoding

- Introduced by Gallager in 1961
- First form the hard decision vector $\mathbf{z} = (z_0, ..., z_{n-1})$
- Compute the syndrome vector

$$\mathbf{s} = (s_1, ..., s_J) = \mathbf{z} \cdot \mathbf{H}^T \text{ where } s_j = \mathbf{z} \cdot \mathbf{h}_j = \sum_{i=0...n-1} z_i h_{j,i}$$

- For each bit l, find f_l = the number of failed parity checks for bit l
- Let S = the set of bits for which f_l is large
- Flip the values of the bits in S
- Repeat until all parity check sums are satisfied, or a maximum number of iterations have been reached

BF decoding (cont.)

- Let S = the set of bits for which f_l is large
- For example:
 - S = the set of bits for which f_l exceeds some threshold δ that depends on the code parameters ρ , γ , the minimum distance, and the channel SNR. If decoding fails, try again with a reduced value of δ
 - Simple alternative: S = the set of bits for which f_l is maximum
- Comments:
 - If few errors occur, decoding should commence in a few iterations
 - On a poor channel, the number of iterations should be allowed to grow large
 - Improvement: Adaptive thresholds

Weighted MLG and BF decoding

- Use weighting to include soft decision/reliability information in the decoding decision
- First form the hard decision vector $\mathbf{z} = (z_0, ..., z_{n-1})$
- Weight: $|y_j|^{(l)}_{\min} = \min\{|y_i|: 0 \le i \le n-1, h_{j,i} = 1, h_j \in A_l\}$
 - The reliability of the *j*th parity check on *l*
- Weighted MLG decoding: Hard decision on
 - $E_l = \sum_{s_j(l) \in S_l} (2s_j^{(l)} 1) \cdot |y_j|^{(l)}_{\min}$
 - where $S_l = \{ s_j^{(l)} = \mathbf{z} \cdot \mathbf{h}_j^{(l)} = \mathbf{e} \cdot \mathbf{h}_j^{(l)} = \sum_{i=0...n-1} e_i h_{j,i}^{(l)} : \mathbf{h}_j^{(l)} \in A_l \}$
- Weighted BF decoding:
- Compute the syndrome vector $\mathbf{s} = (s_1, ..., s_J) = \mathbf{z} \cdot \mathbf{H}^T$
- For each bit l, compute E_l
- Flip the value of the bit for which E_i is the largest
- Repeat until all parity checks are satisfied, or a maximum number of iterations have been reached

SPA decoding

- Iterative decoding based on belief propagation
- Symbol-by-symbol SISO: The goal is to compute
 - $P(v_l|\mathbf{y})$
 - $L(v_l) = \log (P(v_l = 1 | \mathbf{y})/P(v_l = 0 | \mathbf{y}))$
- A priori probabilities: $p_l^x = P(v_l = x), x \in \{0,1\}$
- $q_{j,l}^{x,(i)} = P(v_l = x | \text{ check sums } \in A_l \setminus \{\mathbf{h}_j\} \text{ at the } i\text{th iteration}\}$
- $\mathbf{h}_{j} = (h_{j,0}, h_{j,1}, ..., h_{j,n-1});$ support of $\mathbf{h}_{j} = B(\mathbf{h}_{j}) = \{l: h_{j,l} = 1\}$
- $\sigma_{j,l}^{x,(i)} = \sum_{\{v_j: t \in B(\mathbf{h}_j) \setminus \{l\}\}} P(s_j = 0 | v_l = x, \{v_i: t \in B(\mathbf{h}_j) \setminus \{l\}\}) \cdot \prod_{t \in B(\mathbf{h}_j) \setminus \{l\}} q_{j,t}^{v_t,(i)}$
- $q_{j,l}^{x,(i+1)} = \alpha_{j,l}^{(i+1)} p_l^x \prod_{\mathbf{h}_t \in A_l \setminus \{\mathbf{h}_j\}} \sigma_{t,l}^{x,(i)}$
 - $\alpha_{j,l}^{(i+1)}$ chosen so that $q_{j,l}^{(0,(i+1))} + q_{j,l}^{(1,(i+1))} = 1$
- $P^{(i)}(v_l = x | y) = \beta_l^{(i)} p_l^x \prod_{\mathbf{h}_i \in A_l} \sigma_{j,l}^{x,(i-1)}$
 - $\beta_l^{(i)}$ chosen so that $P^{(i)}(v_l = 0|\mathbf{y}) + P^{(i)}(v_l = 1|\mathbf{y}) = 1$

SPA decoding on the Tanner graph

- $q_{j,l}^{x,(i)} = P(v_l = x | \text{ check sums } \in A_l \setminus \{\mathbf{h}_j\} \text{ at the } i\text{th iteration}\}$
- $\sigma_{j,l}^{x,(i)} = \sum_{\{v_t: t \in B(\mathbf{h}_j) \setminus \{l\}\}} P(s_j = 0 | v_l = x, \{v_t: t \in B(\mathbf{h}_j) \setminus \{l\}\}\}) \cdot \prod_{t \in B(\mathbf{h}_j) \setminus \{l\}} q_{j,t}^{v_t,(i)}$
- $\bullet \quad q_{j,l}^{x,(i+1)} = \boldsymbol{\alpha}_{j,l}^{(i+1)} \, p_l^{x} \, \prod_{\mathbf{h}_t \in A_l \setminus \{\mathbf{h}_j\}} \, \boldsymbol{\sigma}_{t,l}^{x,(i)}$

