PRÉDICTION DEMANDE EN ÉLECTRICITÉ

La transition énergétique commence aujourd'hui

ÉNERGIES RENOUVELABLES

- intermittentes
- donc difficile de prévoir les capacités de production d'électricité
- demande en électricité des utilisateurs varie au cours du temps
- dépend de paramètres comme la météo (température, luminosité, etc.)

Besoin de mettre en adéquation l'offre et la demande!

PROJET

Consommation

Météo

Modélisation

Prévision

Python / Notebook Jupyter / Colab

QUESTIONS

- Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

DONNÉES

DONNÉES

Consommation

Degré Jour Unifié (DJU)

Données:

- RTE pour la France
- 1182 obs
- 22 variables

France:

• Consommation totale janvier 2012 à mai 2020

Soit 101 observations.

- Écart entre la T° d'une journée donnée et un seuil de T° préétabli (18 °C)
- Effet température sur consommation
- Corriger effet température (volatile)

Données:

- CEGIBAT
- 18°C
- Orly (94)
- Janvier 2012 à juin 2019

DONNÉES

- Absence valeurs atypiques
- Données manquantes pour DJU semestre 2 sur 2019

90 observations (Consommation totale et DJU) de Janvier 2012 à juin 2019

"date" en DateTime et index

	Consommation	totale	dju
date			
2012-01-01		51086	365.4
2012-02-01		54476	466.9
2012-03-01		43156	247.1
2012-04-01		40176	257.4
2012-05-01		35257	109.4

ANALYSE DESCRIPTIVE

TENDANCES CENTRALES

	Consommation totale	dju
count	90.000000	90.000000
mean	40187.800000	204.544444
std	7138.137168	142.359230
min	31004.000000	4.300000
25%	33757.750000	65.275000
50%	37488.500000	197.150000
75%	45631.750000	321.175000
max	57406.000000	498.800000

CV

Consommation: 17%

DJU: 69%

Influence DJU sur consommation?

EXPLORATION GRAPHIQUE

CORRELATION

Corr = 0.97

CORRECTION EFFET TEMPÉRATURE

MODÉLISATION

DJU

Consommation

Dep. Vari	able:	Cons	ommati	on to	tale	R-squa	ared:		0.942
Model:					OLS	Adj. F	R-squared:		0.941
Method:		Least Squares F-statistic:					1424		
Date:		W	ed, 08	Jul	2020	Prob	(F-statist	ic):	3.98e-56
Time:				09:3	3:46	Log-L:	ikelihood:		-797.82
No. Obser	vations:				90	AIC:			1600.
Df Residu	als:				88	BIC:			1605.
Df Model:					1				
Covarianc	e Type:			nonro	bust				
		oef	std	err		t	P> t	[0.025	0.975]
const	3.023e-	+04	320.	783	94.	252	0.000	2.96e+04	3.09e+04
dju	48.66	606	1.	290	37.	735	0.000	46.098	51.223

MODÉLISATION

Kolmogorov-Smirnov

H0 = adhésion loi normale p > 0.05

Pas de rejet de H0, adhésion loi normale.

CORRECTION EFFET TEMPÉRATURE

Consommation corrigée = Consommation totale - (DJU * coef)

QUESTIONS

 Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?

-> **OUI**

- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

AD Fuller

H0 = non stationnairep > 0.05

Pas de rejet de H0, non stationnaire

AD Fuller

H0 = non stationnairep < 0.05

Rejet de H0, stationnaire

Saisonnalité estimée à 6 mois, 1 différence

Additif

Contant

Multiple pics de consommation mensuel par an

CORRECTION VARIATIONS SAISONNIÈRES

Consommation CVS = Consommation corrigée effet température - composante saisonnière

QUESTIONS

- 1. Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle?
- -> OUI : hypothèse de 6 mois
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

PRÉDICTIONS

PRÉDICTIONS

Holt Winters

SARIMA

NN

Train, Test split 60 obs / 30 obs Consommation corrigée effet température

PRÉDICTIONS : paramètres

Holt Winters

SARIMA

Scoring: RMSE et MAPE

- Lissage exponentiel
- Saisonnalité à 6 mois et 12 mois

HW 6 mois

- Recherche sur grille
- Saisonnalité à 6 mois et sur 12 mois
- Critère d'information d'Akaike (AIC)

SARIMA (4,0,2)x(0,1,0,12), AIC (1329)

PRÉDICTIONS : paramètres

NN


```
def build RNN model(hp):
 model = tf.keras.models.Sequential()
 model.add(tf.keras.layers.SimpleRNN(
   hp.Int('units_1', min_value=32, max_value=256, step=32),
   input_shape=[None, 1],return_sequences=True)),
 model.add(tf.keras.lavers.SimpleRNN(
   hp.Int('units_2', min_value=32, max_value=256, step=32),
   input_shape=[None, 1], return_sequences=True)),
 model.add(tf.keras.layers.SimpleRNN(
   hp.Int('units_3', min_value=32, max_value=256, step=32),
   input_shape=[None, 1], return_sequences=True)),
 model.add(tf.keras.layers.SimpleRNN(
   hp.Int('units 4', min value=32, max value=256, step=32))),
 model.add(tf.keras.layers.Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.2))),
 model.add(tf.keras.layers.Dense(1))
 hp_learning_rate = hp.Choice('learning_rate', values=[1e-1,1e-2, 1e-3, 1e-4, 1e-5])
 model.compile(loss="mse",
   optimizer=tf.keras.optimizers.SGD(learning_rate=hp_learning_rate, momentum=0.9), metrics = ["mse"])
 return model
```

- CNN, RNN, LSTM
- Séquence 6 mois et 12 mois
- 3 couches RNN + Drop out + output
- Tuner Hyperband Keras (couches + Ir)
- loss = rmse
- callbacks val_rmse

PERFORMANCES

Model	RMSE	MAPE
0 Holt Winters - 6 mois	1212.278831	3.300000
1 SARIMA - 12 mois	1250.320847	3.460000
2 Holt Winters - 12 mois	1267.683605	3.620000
3 RNN-6 mois	1377.958922	3.410000
4 SARIMA - 6 mois	1393.075229	3.840000

PRÉDICTIONS : évaluation modèle

PRÉDICTIONS : évaluation modèle

PRÉDICTIONS : évaluation modèle

Shapiro

H0 = adhésion loi normale

p > 0.05

Pas de rejet de H0, adhésion loi normale.

QUESTIONS

- 1. Il y a t-il un effet température sur les données de consommation mensuelles dues au chauffage électrique ?
- 2. Il y a t-il une saisonnalité de la consommation mensuelle ?
- 3. Quelle est la meilleure modélisation pour une prédiction de la consommation mensuelle

Holt Winter 6 mois est le meilleur modèle disponible.

CONCLUSION

CONCLUSION

HOLT WINTERS 6 mois

HOLT WINTERS

REMARQUE

Holt Winters 6 mois est le meilleur modèle disponible, mais :

- prédiction consommation corrigée de l'effet température
- consommation finale dépend de paramètres comme la météo (température, luminosité, etc.)

MERCI!

@xavbarbier

https://www.linkedin.com/in/barbierxavier/

https://github.com/xavierbarbier/

contact@xavierbarbier.com