Deep Learning in Computational Biology Final Project

Predicting PBM binding from HT-SELEX data

Roy Hirsch Amit Zeligman

August 6, 2018

Main Goal:

Given a set of HT_SELEX data of different TF's. Learn a binding model for each TF and use it to rank PBM models.

Input

- 123 training sets of different TF's. Each set include:
 - HT_SELEX: 4-6 sequence file with number of counts of each sequence.
 - Sorted PBM probes: a sorted List of sequences with their binding probs.
- 123 test sets (HT-SELEX data + unsorted PBM file).

Output

• A sorted PBM file - same sequences as in the input, only sorted.

Network Architecture[1]:

Parameters:

Learning Rate	1e-6		
Learning Rate Decay	1e-6		
Batch Size	32		
Epochs	10		
Conv Kernel Size	[8,12,24]		
Conv Filter Size	[80,80,96]		
Conv Strides	1		
Pool Size	10		
Conv Activation	Relu		
Optimizer	Adam		
Loss Function	Binary Cross		
LOSS FUNCTION	entropy		
Dropout	0.5		
FC Hidden Size	128		
Hidden Layer Activation	Relu		
FC activation	Sigmoid		

Parameter Search

Depth	Dropout	FC Hidden Size	Lr decay	Max Pool	Optimizer	Samples Number	Mean AUPR	Std AUPR
[80, 80, 96]	0.5	128	1.00E-06	10	adam	15	0.1389	0.1334
[80, 80, 96]	0.5	128	1.00E-06	14	adam	20	0.1206	0.1373
[80, 80, 96]	0.5	128	1.00E-06	2	adam	15	0.1069	0.0977
[80, 80, 96]	0.5	256	1.00E-06	6	adam	15	0.1065	0.1087
[80, 80, 96]	0.5	128	1.00E-06	12	adam	20	0.1051	0.1074
[80, 80, 96]	0.5	128	1.00E-07	6	adam	15	0.1039	0.1045
[80, 80, 96]	0.5	256	1.00E-06	12	adam	20	0.1032	0.0946
[80, 80, 96]	0.25	32	0	4	adam	15	0.0883	0.0886
[80, 80, 96]	0.5	128	1.00E-06	6	adam	20	0.0857	0.0957
[80, 80, 96]	0.5	64	0	2	ada_delta	15	0.082	0.0674
[80, 80, 96]	0.5	32	1.00E-06	2	adam	15	0.0813	0.089
[80, 80, 96]	0	64	0	6	adam	15	0.0798	0.0694
[40, 40, 48]	0.25	64	0	2	adam	15	0.0781	0.0885
[80, 80, 96]	0.5	64	1.00E-06	6	adam	20	0.0767	0.0899
[40, 40, 48]	0.5	64	0	2	adam	15	0.0758	0.0722
[80, 80, 96]	0	32	0	2	adam	15	0.0757	0.0673
[80, 80, 96]	0.5	128	0	6	ada_delta	15	0.0746	0.0681
[40, 40, 48]	0	32	1.00E-07	6	adam	15	0.0724	0.0544
[80, 80, 96]	0.25	64	1.00E-06	4	ada_delta	15	0.0636	0.0531
[40, 40, 48]	0	32	0	6	ada_delta	15	0.0554	0.0507
[80, 80, 96]	0.25	32	1.00E-07	2	ada_delta	15	0.0552	0.0497
[40, 40, 48]	0	64	1.00E-06	4	ada_delta	15	0.0529	0.0407

Preprocessing

• One - Hot encoding + quarter padding:

The sequences encoded two one-hot format and then padded with quarters such that:

Input size = [max(PBM length, SELEX length), 4]

• Labeling + Data Size Balance:

The training data were divided into two classes: Class 0 - SELEX 0, Class 1 - all the other SELEX.

Each SELEX pair (class 0 + class 1) filtered such that the number of samples for class 0 and class 1 will be equal.

 $Number\ of\ Sample[i] = \min(n, m)$ $i = 1 \dots Number\ of\ SELEX$

Training Scheme

The model was trained on each SELEX pair individually (i.e. loss evaluation and backpropagation evaluated after each SELEX pair train). In order to let the model to learn "strong" features, short training time (training steps) was given to the first SELEX pair (0+1), while long time given to the last pair.

The model was trained for 10 Epochs. Each epoch composed from N-1 training on SELEX pairs, Where N is the number of SELEX cycles. The training time(training steps) decreased linearly after each epoch.

Training Results

AUPR:

Average	High	Low	Std
0.0753	0.5819	0.0021	0.0072

Performance

Average memory usage:5.393 GB Average run-time: 1h 7m (01:07:00)

Average CPU: 2367%

References

[1] High-Order Convolutional Neural Network Architecture for Predicting DNA-Protein Binding Sites, QinHu Zhang, Lin Zhu, and De-Shuang Huang, Senior Member, IEEE

Appendix

Detail Network weights and structure:

Layer (type)	Output Shape	Param #	Connected to	
=== input_1 (InputLayer)	(None, 36, 4)	0		
conv1d_1 (Conv1D)	(None, 36, 80)	2640	input_1[0][0]	
conv1d_2 (Conv1D)	(None, 36, 80)	3920	input_1[0][0]	
conv1d_3 (Conv1D)	(None, 36, 96)	9312	input_1[0][0]	
max_pooling1d_1 (MaxP	ooling1D) (None, 3,	80) 0	conv1d_1[0][0]	
max_pooling1d_2 (MaxP	ooling1D) (None, 3,	80) 0	conv1d_2[0][0]	
max_pooling1d_3 (MaxP	ooling1D) (None, 3,	96) 0	conv1d_3[0][0]	
dropout_1 (Dropout)	(None, 3, 80)	0	max_pooling1d_1[0][0]	
dropout_2 (Dropout)	(None, 3, 80)	0	max_pooling1d_2[0][0]	
dropout_3 (Dropout)	(None, 3, 96)	0	max_pooling1d_3[0][0]	
concatenate_1 (Concate	enate) (None, 3, 2	56) 0	dropout_1[0][0] dropout_2[0][0] dropout_3[0][0]	
flatten_1 (Flatten)	(None, 768)	0	concatenate_1[0][0]	
dense_1 (Dense)	(None, 128)	98432	flatten_1[0][0]	
dropout_4 (Dropout)	(None, 128)	0	dense_1[0][0]	
dense_2 (Dense)	(None, 1)	129	dropout_4[0][0]	
===				

Total params: 114,433 Trainable params: 114,433 Non-trainable params: 0