1.40 Theorem. For any integers a and b not both 0, there are integers x and y such that ax + by = (a, b).

Proof. Let d=(a,b) and ax+by=k for $k\in\mathbb{N}$. Since d|a and d|b, d|k. Thus, $d\leq k$. Let $S=\{\text{all } c \text{ that can be written as } ax+by\mid c\in\mathbb{N}\}$. Letting x=a and b=y, we find that a^2+b^2 equals a natural number. Thus, the set is non-empty. By the WOANN, there exists a smallest element, call it k. Suppose k does not divide a. By TDA,

$$a = kq + r,$$

 $r = a - kq$ with $0 < r < k.$

Substituting k = ax + by into r,

$$r = a - q(ax + by)$$

$$= a - aqx + bqy$$

$$= a(1 - qx) + b(qy).$$

Notice now that r can be written as ax' + by' which contradicts k being the smallest that can be expressed in that form. Thus, k|a. Without loss of generality, the same argument can be such that k|b. Thus, k = (a, b) = d.

Gathering our info, we have $(a,b) \leq k$ and (a,b) = k. Since k cannot be greater than AND equal to (a,b), it must be that k = (a,b). Thus, ax + by = (a,b).