CIÊNCIA DE DADOS COM LINGUAGEM R

Richard Guilherme dos Santos

Contents

1	Introdução	5				
2	Introdução a Probabilidade					
3	Introdução ao R	9				
4	Medidas Descritivas	11				
	4.1 Tipos de Variáveis	11				
	4.2 Medidas de Posição	12				
	4.3 Medidas de Dispersão	12				
	4.4 Quantis Empíricos	13				
	4.5 Box Plot	13				
	4.6 Transformações	13				
5	Tipos de Distribuições Discretas	15				
6	Tipos de Distribuições Contínuas	17				
7	Introdução as bibliotecas do R	19				
	7.1 Dplyr	19				
	7.2 Tidyr	19				
	7.3 GGPlot2	19				
Q	Rogrossão Linear	91				

4 CONTENTS

Introdução

Este livro tem como objetivo servir como guia para as aulas do curso Ciência de Dados com R. Nele apresentaremos os conceitos de:

- 1. Estatística Básica: Nesta parte do curso abordaremos conceitos de estatística como variáveis, tipos de distribuições discretas e contínuas, medidas descritivas e distribuição normal.
- 2. Manipulação de dados no R: Neste tópico serão abordados as principais formas de manipulação de dados utilizando a linguagem R, com ênfase nas bibliotecas dplyr e tidyr. Além disso, abordaremos a criação de gráficos pelo pacote ggplot2.
- 3. Modelos de Regressão Linear: Parte final do curso, onde o aluno aprenderá sobre diagrama de dispersão, coeficiente de correlação linear, regressão linear simples, múltipla e regressão logística, ganhando a capacidade de começar a criar modelos utilizando a linguagem R.

Introdução a Probabilidade

Introdução ao R

Aqui introduziremos alguns comandos da linguagem R. A linguagem utiliza de funções para realizar operações que vão desde leitura e manipulação de dados a operações matemáticas.

Comecemos criando um vetor de números:

```
x \leftarrow c(1,3,2,5)
# x = c(1,3,2,5) # Também podemos utilizar "=" para atribuir variáveis x "## [1] 1 3 2 5
```

O comando acima combina os números 1,3,2 e 5 em um vetor de números e os salva em um objeto denominado x. Escrevemos x para recebermos os atributos do vetor.

A partir disto podemos utilizar outras funções para calcularmos informações destes atributos, como o tamanho de um vetor:

```
length(x)
```

[1] 4

ou sua média:

```
mean(x)
```

```
## [1] 2.75
```

Há outros tipos de objetos que podem ser criados quando trabalhamos com R. Os mais importantes para manipulação de dados são as matrizes:

1

2

Carol

Alfredo

3 Godoberto

18

23

19

69

75

```
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

Funções aceitam os mais diversos tipos de argumentos, para termos uma ideia de quais utilizarmos e seus atributos devemos consultar na biblioteca do R:

```
help(matrix)
```

E os data.frames, tabelas que aceitam dados de diversos tipos:

```
nomes = c('Carol', 'Alfredo', 'Godoberto')
idade = c(18, 23, 19)
peso = c(69, 75, 80)
altura = c(1.70, 1.80, 1.85)
ICM = peso/altura^2
df = data.frame(nomes, idade, peso, altura, ICM)
df

## nomes idade peso altura ICM
```

1.70 23.87543

1.80 23.14815

80 1.85 23.37473

Medidas Descritivas

4.1 Tipos de Variáveis

Antes de analisarmos conjuntos de dados propriamente, é necessário termos um conhecimento sobre tipos de variáveis. Para isto, consideremos a seguinte tabela:

nome	est_civil	escolaridade	n_filhos	$\operatorname{salario}$	idade
Guilherme	Solteiro	Ensino médio completo	1	1500	21
Leon	Casado	Pós-graduação	0	3000	39
Nilce	Casado	Superior completo	0	3000	32

Variáveis como sexo, escolaridade e estado civil apresentam realizações de uma qualidade ou atributo do indivíduo pesquisado, enquanto outras como número de filhos, salário e idade apresentam números como resultados de uma contagem ou mensuração. Chamamos as do primeiro tipo de **qualitativas** e as do segundo de **quantitativas**

Cada uma das duas ainda pode ser dividida em dois tipos:

 Variável qualitativa nominal: atributos não apresentam uma ordem lógica;

- Variável qualitativa ordinal: atributos apresentam uma ordem lógica bem estabelecida;
- Variável quantitativa discreta: dados de contagem, assumem apenas valores inteiros;
- Variável quantitativa contínua: dados que podem assumir qualquer tipo de valor.

Muitas vezes queremos resumir estes dados, apresentando um ou mais valores que sejam representativos da série toda. Neste contexto entram às **medidas de posição e dispersão**.

4.2 Medidas de Posição

Usualmente utilizamos uma das seguintes medidas de posição (ou localização): **média, mediana ou moda**. Vamos as suas definições:

- Moda: valor mais frequente do conjunto de valores observados.
- Mediana: valor que ocupa a posição central das observações quando estas estão ordenadas em ordem crescente.
 - Quando o número de observações for par, usa-se como mediana a média aritmética das duas observações centrais.
- Média: soma de todos os elementos do conjunto dividida pela quantidade de elementos do conjunto

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

4.3 Medidas de Dispersão

O resumo de um conjunto de dados por uma única medida representativa de posição esconde toda a informação sobre a variabilidade de um conjunto de

observações. Consideremos que cinco alunos realizaram cinco provas, obtendo as seguintes notas:

```
alunoA alunoB alunoC alunoD alunoE
##
## alunoA
          3
                      5
                           3
                1
## alunoB
          4
                 3
                       5
                             5
          5
                     5
## alunoC
                 5
                            5
                                  5
           6
                 7
## alunoD
## alunoE
            7
                       5
```

4.4 Quantis Empíricos

4.5 Box Plot

4.6 Transformações

$$y = x^2$$

Tipos de Distribuições Discretas

Tipos de Distribuições Contínuas

Introdução as bibliotecas do ${\bf R}$

- 7.1 Dplyr
- 7.2 Tidyr
- 7.3 GGPlot2

Regressão Linear