Lecture o Course Overview

TIC1001 Introduction to Computing and Programming I 13 Aug 2020

Welcome to NUS

WHY WHAT HOW

But introductions first...

Dr Leong Wai Kay

Background

Contact

- Office: COM2 02-11
- Email: waikay@comp.nus.edu.sg

Why take TIC1001?

To obtain a foundation in programming methodology

because BTech Computing

Unfortunately,

it is easier said than done

Teaching Assistants/Tutors

Siddharth Bhatia

Saif Uddin Mahmud

Teo Wei Jie, Shaun

Michael Dinata

Ang Cheng Jun

Bloom's Taxonomy

Computers only do what you say, not what you mean.

Natural language is not precise

Not trivial to code-switch

A man sees his wife busy in the kitchen and offers to help She says, "take this bag of potatoes, peel half of them, and put them in a pot to boil"

My wife said, "Please go to the store and buy a carton of milk. If they have eggs, get 12."

They had eggs

So how?

Split across two semesters

1 semester

CS1010S

TIC1002

Half content in first semester

TIC1001

Programming

Computing Topics

The Two Threads

Why teach C/C++

TIOBE Programming Community Index

Programming language used in modules

Programming language used in modules

Why teach C/C++ and not Python?

Analogy: Suppose you are learning to drive

- Which car to use?

Why teach C/C++ and not Python?

Analogy: Suppose you want to learn to cook

Why teach C/C++

Expose Low Level Internals

High Performance

Cultivates Good Habit

Why teach Computing Topics?

Kickstart

Context

Future Modules

Course Objectives

Expose students to computing principles

Abstraction and Composition

Introduce key computing concepts:

- Computer organization
- Operating systems
- Data management

Introduce basic programming methodologies and problem solving techniques

Using simple structured programming language

Specific Learning Outcomes

After taking this module, students should be able to:

- Appreciate the use of abstractions and composition to deal with complexities in computing systems
- Able to seek out and use existing tools to explore how computer systems and applications works
- Explain commonly used computing terms and the relations between them
- Understand how data and programs are represented and executed within a computer
- Develop simple programs using branches, loops, standard input/output, and functions

Calendar

Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
1				Lecture (P)		Technical Support	
2				Lecture (P)		Lab	
3				Lecture (C)		Tutorial 1 + Lab	
4				Lecture (P)		Tutorial 2 + Lab	
5				Lecture (C)		Tutorial3 + Lab	
6				Lecture (P)		Practical Exam 1	
R							

Calendar

Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
7				Midterm Test		Tutorial 4 + Lab	
8				Lecture (P)		Tutorial 5 + Lab	
9				Lecture (C)		Tutorial 6 + Lab	
10				Lecture (P)		Tutorial 7 + Lab	
11				Lecture (C)		Tutorial 8 + Lab	
12				Lecture (P)		Tutorial 9 + Lab	
13				Practical Exam 2			
R							
Е							
Е		Final Exam					

Typical Weekly Schedule

Mon Wed Thu Fri Tue Sat Sun Lecture Lecture Quiz Tutorial **Problem Set** Lecture Quiz Discuss Tutorial in Problem Set Tut/Lab

Week X

Week X+1

Tutorial/Lab Timing

Saturday Morning/Afternoon

$\begin{array}{ccc} \textbf{Tutorial} & \textbf{Lab} \\ 1 \text{ hour} & 2 \text{ hours} \\ 9.30 - 10.30 \text{am} & 10.30 - 12.30 \text{pm} \\ (2 - 3 \text{pm}) & (3 - 5 \text{pm}) \end{array}$

- Length of tutorial / lab is dynamic (i.e. adjustable depending on the topics)
- Total length is fixed though (at most 3 hours)

Assessment Weightage

Week 7 During Lecture

Resources

LumiNUS

- Gradebook
- Webcast (Panopto)

Coursemology

- Announcements
- Quizzes
- Trainings
- Problem Sets
- Forum participation

Coursemology

Quizzes

Trainings

Problem Sets

Participation

Experience Points

Level Up From 0 to 25

References

No textbook needed

Save money

If you die die need a book

Problem Solving and ProgramDesign in C

