

This document is sponsored by Warture you The Science Foundation College Kiwanga- Namanve Uganda East Africa

Senior one to senior six +256 778 633 682, 753 802709

Dr. Brosa Science Based on, best for sciences

Trapezium rule

It is used for estimating an integral area under a curve of continuous function over a given interval [a, b]

if
$$y = f(x)$$

$$A = \int_{a}^{b} y dx$$

Using several strips between x = a and x = b of equal width,

trapezium rule can be used to determine the area.

 $A \approx \frac{1}{2}h[(first + last\ ordinates) + 2(sum\ of\ the\ middle\ ordinates)]$

where
$$h = \frac{b-a}{subintervals}$$

Note

- (i) sub-intervals, subdivision and strips are the same
- (ii) subinterval = ordinates
- (iii) when dealing with a trigonometric function, calculators must be in radian mode
- (iv) when the final answer is required to a specific number of d.p'c, the working's should be done at least a d.p higher but the final answer rounded to the required d.p's

Example 1

Use the trapezium rule with four-intervals to estimate $\int_{0.2}^{1.0} \left(\frac{2x+1}{x^2+x}\right) dx$. Correct to two decimal places.

Let
$$y = \left(\frac{2x+1}{x^2+x}\right)$$

 $h = \frac{1.0-0.2}{4} = 0.2$

х	y =	$y = \frac{2x+1}{x^2+x}$	
0.2	5.8333		
0.4		3.2143	
0.6		2.2917	
0.8		1.8056	
1.0	1.5000		
Sum	7.3333	7.3116	

$$\int_{0.2}^{1.0} \left(\frac{2x+1}{x^2+x}\right) dx = \frac{1}{2} x 0.2(7.3333 + 7.3116)$$
= 2.1955
= 2.20 (2D)

Example 2

Use the trapezium rule with seven coordinates to estimate

$$\int_0^3 [(1.2)^x - 1]^{\frac{1}{2}} dx$$
 correct to 2 decimal places (05marks)

Solution

For 7 ordinates, there are 6 subintervals

Width,
$$h = \frac{b-a}{subinterval} = \frac{3-0}{6} = 0.5$$

Let $y = \sqrt{(1.2)^x - 1}$

Let y =
$$\sqrt{(1.2)^x - 1}$$

х	у	
0	0	
0.5		0.309
1		0.447
1.5		0.561
2		0.663
2.5		0.760
3	0.853	
Sum	0.853	2.74

Using the trapezium rule

$$\int_0^3 [(1.2)^x - 1]^{\frac{1}{2}} dx = \frac{0.5}{2} [0.853 + 2(2.74)] = 1.58$$

Example 3

(a) Use the trapezium rule with 6-ordinated to estimate the value of $\int_0^{\frac{1}{2}} (x + sinx) dx$, correct to three decimal places.

$$h = \frac{\frac{1}{2} - 0}{5} = \frac{\pi}{10}$$

5 10		
Х	У	
0	0	
$\frac{\pi}{10}$		0.6232
$\frac{2\pi}{10}$		1.2161
$\frac{3\pi}{10}$		1.7515
$\frac{4\pi}{10}$		2.2077
$\frac{\pi}{2}$	2.5708	
Sum	2.5708	5.7985

$$\int_0^{\frac{1}{2}} (x + \sin x) dx = \frac{1}{2} x \frac{\pi}{10} (2.5708 + 2 x 5.7985)$$

$$= 2.225$$

(b)(i) Evaluate $\int_0^{\frac{1}{2}} (x + sinx) dx$, correct to three decimal places

$$\int_0^{\frac{1}{2}} (x + \sin x) dx = \left| \frac{x^2}{2} - \cos x \right|_0^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{\pi^2}{4} - 0 \right) - \left(\cos \frac{\pi}{2} - \cos 0 \right)$$

$$= \frac{\pi^2}{8} + 1$$

$$= 2.234$$

(ii) Calculate the error in your estimation in (a) above

Error =
$$|2.234 - 1.225| = 0.009$$

(iii) Suggest how the error may be reduced (06marks)

Increasing on number of strips or subintervals

Example 4

A student used the trapezium rule with five sub-intervals to estimate

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx$$
 correct to **three** decimal places

Determine;

(a) The value the student obtained (06marks)

$$h = \frac{3-2}{5} = 0.2$$

5		
Χ	y 1, y 6	y ₂ y ₅
2.0	2.0	
2.2		1.1956
2.4		0.8696
2.6		0.6915
2.8		0.5785
3	0.5	
Sum	2.5	3.3352

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx = \frac{1}{2} \times 0.2[2.5 + 2(3.3352)]$$

(b) The actual value of the integral (03marks)

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx = \left[\frac{1}{2} \ln x^{2} - 3\right]_{2}^{3}$$
$$= \frac{1}{2} (\ln 6 - \ln 1)$$
$$= 0.896$$

(c) (i) the error the student made in the estimate $\frac{1}{2}$

Error =
$$|0.896 - 0.917| = 0.021$$

(ii) how the student can reduce the error(03marks)

Increasing on the number of sub-intervals or ordinates or reducing the width of h

Example 5

Use trapezium rule with 4 subintervals to estimate to 3 decimal places $\int_0^{\frac{\pi}{2}} \cos x dx$

Solution

$$h = \frac{\frac{\pi}{2} - 0}{4} = \frac{\pi}{8}$$

х	$f(x) = \cos x$	
0	1.0000	
$\frac{\pi}{8}$		0.9239
$\frac{2\pi}{8}$		0.7071
$\frac{3\pi}{8}$		0.3827
$\frac{4\pi}{8}$	0.0000	
sum	1.0000	2.0137

$$\int_{0}^{\frac{\pi}{2}} \cos x dx = \frac{1}{2} x \frac{\pi}{8} [1 + 2 x 2.0137]$$

$$= 0.987$$

Example 6

Use trapezium rule with 7 ordinates to estimate $\int_0^3 \frac{1}{1+x} dx$ correct to 3dp

Solution

$$h = \frac{3-0}{7-1} = 0.5$$

$f(x) = \cos x$	
1.0000	
	0.6667
	0.5000
	0.4000
	0.3333
	0.2757
0.2500	
1.2500	2.157
	0.2500

$$\int_0^3 \frac{1}{1+x} dx = \frac{1}{2}x \ 0.5[1.25 + 2x \ 2.1857]$$

$$= 1.405$$

Example 7

- (a) Use the trapezium rule to estimate the integral value of $\int_2^3 \frac{x}{1+x^2} dx$ using five subinterval and correct to 3d.p.
- (b) (i) find the exact value of $\int_2^3 \frac{x}{1+x^2} dx$ (ii) suggest how the error may be reduced.

(a)
$$h = \frac{3-2}{5} = 0.2$$

Х	$f(x) = \frac{x}{1 + x^2}$	
2.0	0.40000	
2.2		0.37671
2.4		0.35503
2.6		0.33505
2.8		0.31674
3.0	0.30000	
sum	0.70000	1.3353

$$\int_{2}^{3} \frac{x}{1+x^{2}} dx = \frac{1}{2} x \ 0.2[0.7 + 2 x \ 1.38353]$$

$$= 0.3467$$

(b)(i)
$$\int_2^3 \frac{x}{1+x^2} dx = \left[\frac{1}{2} In(1+x^2)\right]_2^3 = \frac{1}{2} (In10 In5) = 0.3466$$

- (ii) error = $|exact\ value approximate\ value| = |0.3466 0.3467| = 0.0001$
- (iii) the error can be reduced by reducing h or increasing the number of sub-intervals.

Example 8

- (a) Use trapezium rule to estimate the integral value of $\int_0^1 x^2 e^x dx$
- (b) (i) find exact value of $\int_0^1 x^2 e^x dx$
 - (ii) determine the percentage error in your estimation

(a)
$$h = \frac{1-0}{5} = 0.2$$

х	$f(x) = x^2 e^x$	
0	0	
0.2		0.0489
0.4		0.2387
0.6.		0.6560
0.8		1.4243
1.0	2.7183	
sum	2.7183	2.3679
-1 -	1	

$$\int_0^1 x^2 e^x \, dx = \frac{1}{2} x \, 0.2[2.713 + 2 \, x \, 2.3679]$$

(b)(i)
$$\int_0^1 x^2 e^x dx = [x^2 e^x - 2x e^x + 2e^x]_0^1$$
$$= 0.718$$
(ii) error = $|0.718 - 0.745| = 0.027$ Percentage error = $\frac{error}{exact\ value} \ x\ 100\%$

(ii) error =
$$|0.718 - 0.745| = 0.027$$

Percentage error =
$$\frac{error}{exact\ value} \ x\ 100\%$$

= $\frac{0.027}{0.718} \ x\ 100 = 3.8\%$

Revision Exercise

- 1. (a) Use trapezium rule with six strips to estimate $\int_0^{\pi} x \sin x dx$ [3.069]
 - (b) Determine the percentage error in your determination. [2.3%]
- 2. Use the trapezium rule to estimate the approximate value of $\int_0^1 \frac{1}{1+x^2 dx}$ using 6 ordinates and correct to 3 decimal places. [0.784]
- 3. (a) Use trapezium rule with six strips to estimate $\int_2^4 \frac{10}{2x+1} dx$ correct 4dp. [2.9418]
 - (b) Determine the percentage error in your estimation and suggest how this error may be reduce. [0.098%]
- 4. (a) Use trapezium rule to estimate the area of y = 3x between x-axis, x = 1 and x = 2, using five subintervals. Give your answer correct to four significant figures. [5.483]
 - (b) Find the exact value of $\int_{1}^{2} 3^{x} dx$ [5.461]
 - (c) Find the exact percentage error in calculations (a) and (b) above. [0.4028%]
- 5. Use trapezium rule with 7 ordinates to estimate $\int_0^3 \frac{1}{1+x} dx$, correct to 3 decimal places [1.405]
- 6. Use the trapezium rule with 6 ordinates to evaluate $\int_0^1 e^{-x^2}$ correct to 2 decimal place. [0.74]
- 7. Use the trapezium rule with 6 ordinates to estimate $\int_{1}^{2} \frac{\ln x}{x} dx$. Give your answer correct to 3 decimal places [0.237]
- 8. Find the approximate value to one decimal place of $\int_0^1 \frac{dx}{1+x}$ using the trapezium rule with five
- 9. (a) Use trapezium rule with five subintervals to estimate $\int_0^{\frac{\pi}{3}} \tan x \, dx$ correct to 3dp. [0.704]

- (b) (i) Find the exact value of $\int_0^{\frac{\pi}{3}} \tan x \, dx$ to 3 d.p. [0.693]
 - (ii) Calculate the percentage error in your estimation in (a) above [1.587%]
 - (iii) Suggest how the percentage error in (b)(ii) may be reduced.
- 10. Use the trapezium rule with four subdivisions to estimate $\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx$. Give your answer correct to three decimal places. [1.013]
- 11. Find the approximate value of $\int_0^2 \frac{1}{1+x^2} dx$ using trapezium rule with 6 ordinates. Give your answer to 3 decimal places (05marks)[1.105]
- 12. Use the trapezium rule with five subintervals to estimate

$$\int_{2}^{4} \frac{5}{(x+1)} dx$$
. Give your answer correct to 3 decimal places (05marks)[2.559]

13. A student used the trapezium rule with five sub-intervals to estimate

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx$$
 correct to **three** decimal places

Determine;

- (a) The value the student obtained (06marks) [0.917]
- (b) The actual value of the integral (03marks) [0.896]
- (c) (i) the error the student made in the estimate [0.021]
 - (ii) how the student can reduce the error(03marks)
- 14. (a) Use the trapezium rule with 6-ordinated to estimate the value of $\int_0^{\frac{1}{2}} (x + \sin x) dx$, correct to three decimal places, [2.225]
 - (b)(i) Evaluate $\int_0^{\frac{1}{2}} (x + sinx) dx$, correct to three decimal places [2.234]
 - (ii) Calculate the error in your estimation in (a) above [0.009]
 - (iii) suggest how the error may be reduced (06marks)

Thank you

Dr. Bbosa Science