Preduásta 22 - lineární LS
opacko: problem linearmich nejmensich otverce: AB = 5
portelad-interpolace: -> meins vyrazue voice mê ren (xi,fi) nez # koeficientis
polynomn. Napr. dici co nejlépe proložit danymi body
primer nebo parabolu. Pak
$\frac{\partial}{\partial primka} = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix} \qquad A \qquad primka = \begin{pmatrix} 1 & \chi_1 \\ \vdots & \vdots \\ 1 & \chi_m \end{pmatrix} \qquad primka = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$
$\frac{1}{\theta_{parabola}} = \begin{bmatrix} \theta_{o} \\ \theta_{1} \\ \theta_{2} \end{bmatrix}, A_{parabola} = \begin{bmatrix} 1 \times_{1} \times_{1}^{2} \\ \vdots & \vdots \\ 1 \times_{m} \times_{m}^{2} \end{bmatrix}, b_{parabola} = \begin{bmatrix} f_{1} \\ \vdots \\ f_{m} \end{bmatrix}$
-7 vivre, ze potend zvýší me stupen aprox. polynom, pak sloupce začmon být lineávně závisle
Stomple Zalmon byt linearne Zavisle
V praxi mame velui casto mnoho sloupar A «storo linearne zavisly'd
-> muze odpovidat « rilis musha parametrim pro vysvétlem dat " nebo « nevhodné zvolené parametrizaci/modeln".
=> často X(A) >> 1 => mais problém je citlivý ma perturbace dat
Steine jako u [AZ=b & AER"] -> nemížeme
ozekávat lepší přesnost než (C. K(A). Emach bez Ohledu na volbu algoritmu.
Ale cheeme algoritmes, Eten sam tuto chy on nezvetsi.

Tedy blasicky volime reside založené ma unitármich
transformación -> my zname ponze (QP-faktorizace (ale existují i iteracui alternativy)
Pozorovámi: maposledy jsme si odvodily «problém normálových rovnic» $f: \left(A^T A \vec{\theta} = A^T \vec{b}\right)$, jako prirozemý $\left(=\left(\nabla_{\vec{\theta}}\left(\ b-A\vec{\theta}\ ^2\right)=0\right)\right)$.
Protoze $\ A^TA\ = \ A\ ^2$ (to samé pro inverz) => $X(A^TA) = X(A)^2 =>$ mejenom, Ze je výpočetně náročné (*) se stavit m? mavíc nám výrazně zhorsí přesmost řesení.
Výpočet tedy provádíme řešením $\overrightarrow{A} \overrightarrow{\partial} = \overrightarrow{b}$ pomocí Ql-faktorizace předpočítané (pokud budeme řešit mnoho takových problémů $\overrightarrow{A}\overrightarrow{B}_i = \overrightarrow{b}_i$) aplikované (pokud maine jen tento jeden problém)
QR-fabtorizace predpocitaná 1. Spočítame QR-faktorizací A = QR & uložíme si faktory Q,R 2. Spočítame = = QT = R = = = = = = = = = = = = = = = = =
QR-faktorizace aplikovaná 1. Počítáme QR-faktorizaci A & všechny transformační matice aplikované na sloupce A aplikujeme i na B. (To odpovída výpočtu Ql-faktorizace prvních n sloupců matice [A16] m)
m) dostaneme R a c' R d c' 2 1/ Vyresime" R d = c' ->

Pokud rank (A) =: r < n =) I permentation metice
+, Ze A.P = [Ar A] kde Ar = R mér mé linear me
Me Závislé sloupce & kazdý sloupel A R lze zapsat jako linearmí kombinací sloupců Ar.
Pak QR-faktorizace A.P meim da
$A \cdot P = \begin{bmatrix} A_r & A_r \\ A_r & A_r \end{bmatrix} = \begin{bmatrix} Q_r \\ Q_r \end{bmatrix} \cdot \begin{bmatrix} Q_r \\ Q_r \end{bmatrix}$
Pak A=====
$APPT\vec{\theta} = \vec{b} \iff Qr \cdot [Rr \vec{x}] \vec{\vartheta} = \vec{b} \qquad \vec{x} = \vec{p} = \vec{p} \vec{\vartheta}$
$(=) \left[\begin{array}{c} \mathbb{R} & \widetilde{\mathbb{R}} \\ \mathbb{R} \end{array} \right] \left[\begin{array}{c} \widetilde{\mathcal{S}} \\ \widetilde{\mathcal{S}} \end{array} \right] = \mathbb{Q} \left[\begin{array}{c} \widetilde{\mathcal{S}} \\ \widetilde{\mathcal{S}} \end{array} \right]$
-> Lze ukázat: • tu permutační matici sloupiú P
lze pozitat za pochodu -> zcela analogické pivotaci u G.E./LU-faktorizace
· Fesen = Pr je to hledané (s mi ni mální 11.11)