Συνδυαστική Λογική

Βαρτζιώτης Φώτιος

Συνδυαστικά Κυκλώματα

- Η έξοδος είναι συνάρτηση μόνο της εισόδου
 - Δεν υπάρχει βρόχος ανάδρασης

Όταν αλλάζει η είσοδος, η έξοδος μπορεί να αλλάξει επίσης (με μια χρονική καθυστέρηση)

Συνδυαστικά Κυκλώματα

- Ανάλυση
 - ► Έστω ένα κύκλωμα, βρείτε τη λειτουργία του
 - Η λειτουργία μπορεί να εκφράζεται ως:
 - Boolean Συνάρτηση
 - Πίνακας Αληθείας
- ► /Σχεδίαση
 - Έστω μια επιθυμητή λειτουργία, βρείτε το κύκλωμα που την υλοποιεί.
 - Η λειτουργία μπορεί να εκφράζεται ως:
 - Boolean Συνάρτηση
 - Πίνακας Αληθείας

Προσέγγιση υπολογισμού της Boolean συνάρτησης

A B C	F_1	F_2
0 0 0	0	0

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0

A B C	F_1	F_2
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0

A B C	F_1	$\boldsymbol{F_2}$
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
0 0 1 1 0 0 1 0 1 0 0 1 1 0 1	A B C	F_1	F_2
0 1 0 0 1 1 0 1 1	0 0 0	0	0
0 1 1 0 1	0 0 1	1	0
0 1 1 0 1	0 1 0	1	0
1 0 0 1 0	0 1 1	0	1
	1 0 0	1	0

\boldsymbol{A}	B	C	F_1	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1

\boldsymbol{A}	B	C	F_1	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
·				

Αναλύστε τα παρακάτω κυκλώματα

Διαδικασία Σχεδίασης

- Έστω οι προδιαγραφές ενός κυκλώματος:
 - Καθορίστε τον αριθμό των εισόδων και εξόδων
 - Εξάγεται τον πίνακα αληθείας
 - Απλοποιήστε την Boolean έκφραση για κάθε έξοδο
 - Σχεδιάστε το Λογικό Διάγραμμα

Παράδειγμα:

Σχεδιάστε ένα κύκλωμα μετατροπής του κώδικα "BCD" σε κώδικα "Excess 3"

Διαδικασία Σχεδίασης

Μετατροπέας BCD-to-Excess 3

A B C D	w x y z
0 0/0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1/1 0	1 0 0 1
0/1 1 1	1 0 1 0
1000	1 0 1 1
/1 0 0 1	1 1 0 0
1 0 1 0	X X X X
1 0 1 1	X X X X
1 1 0 0	x x x x
1 1 0 1	x x x x
1 1 1 0	x x x x
1111	x x x x

$$w = A + BC + BD$$

$$y = C'D' + CD$$

$$x = B'C+B'D+BC'D'$$

$$z = D'$$

Διαδικασία Σχεδίασης

Μετατροπέας BCD-to-Excess 3

$$w = A + B(C+D)$$
 $y = (C+D)' + CD$
 $x = B'(C+D) + B(C+D)'$ $z = D'$

Seven-Segment Decoder

w x y z	abcdefg
0 0 0 0	1111110
$0 \ 0 \ 0/1$	0110000
0 0 /1 0	1101101
0 0 1 1	1111001
$0/1 \ 0 \ 0$	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1/0 0 1	1111011
1010	XXXXXXX
1 0 1 1	XXXXXXX
1 1 0 0	XXXXXXX
1 1 0 1	XXXXXXX
1 1 1 0	XXXXXXX
1111	XXXXXXX

$$a = w + y + xz + x'z'$$

$$b = \dots$$

$$c = \dots$$

$$d = \dots$$

- Ημιαθροιστής
 - Προσθέτει 1-bit συν 1-bit
 - Παράγει τις εξόδους Sum και Carry

x	→ TTA	$\rightarrow S$
y	→ HA	$\rightarrow C$

x y	C S
0 0	0 0
/ 0 1	0 1
1 0	0 1
1 1	1 0

- Πλήρης Αθροιστής
 - Προσθέτει 1-bit συν 1-bit συν 1-bit
 - ► Παράγει τις εξόδους Sum και Carry

$\begin{array}{c} x \\ y \end{array}$	FA	$\rightarrow S$
$z \rightarrow$		$\rightarrow C$

x y z	C S
0 0 0	0 0
0/0 1	0 1
0 1 0	0 1
0 1 1	1 0
1 0 0	0 1
1 0 1	1 0
1 1 0	1 0
111	1 1

			<i>y</i>		
	0	1	0	1	
\boldsymbol{x}	1	0	1	0	
		Z			

++	$\begin{array}{c} x \\ y \\ z \end{array}$
C	S

$$S = xy'z'+x'yz'+x'y'z+xyz = x \oplus y \oplus z$$

$$C = xy + xz + yz$$

Πλήρης Αθροιστής

Αθροιστής Διάδοσης Κρατούμενου (ΑΔΚ)

- Διάδοση κρατούμενων
 - Σκεφτείτε πότε είναι διαθέσιμες οι έγκυρες έξοδοι
 - Το κρίσιμο μονοπάτι του κυκλώματος μετράει (η μεγαλύτερη καθυστέρηση)
 - \blacksquare $(A_1, B_1, C_1) \to C_2 \to C_3 \to C_4 \to (C_5, S_4)$
 - Για ένα πλήρη άθροιστή 4-bits → 8 στάδια (ή επίπεδα) πυλών (n-bits: 2n στάδια πυλών)

Πλήρης αθροιστής με τις P και G συναρτήσεις

Παράλληλοι Αθροιστές

- Μείωση της καθυστέρησης που προκαλεί η διάδοση κρατούμενων
 - Χρησιμοποιούν γρηγορότερες πύλες
 - Πρόβλεψη κρατούμενου (περίπλοκος μηχανισμός, αλλά γρηγορότερος)
 - ightharpoonup Σήμα διάδοσης κρατούμενου: $P_i = A_i ⊕ B_i$

 - \neq Άθροισμα: $S_i = P_i \oplus C_i$
 - Κρατούμενο: C_{i+1} = G_i+P_iC_i
 - ► C₀ = Κρατούμενο εισόδου
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

4-bit Αθροιστής με Πρόβλεψη Κρατούμενου

 Λογικό διάγραμμα γεννήτριας πρόβλεψης κρατούμενου

4-bit Αθροιστής με Πρόβλεψη Κρατούμενου

Η καθυστέρηση
 διάδοσης των C₃, C₂ και
 C₁ είναι ίσες,

Αθροιστής BCD

- 4-bits συν 4-bits
- Οι παράγοντες και το αποτέλεσμα: 0 ως 9

	- X ₃			
Cv	S	S ₂	Sı	S

	X + Y	$x_3 x_2 x_1 x_0$	$y_3 y_2 y_1 y_0$	Sum	Cy	$S_3 S_2 S_1 S_0$
	0+0	0 0 0 0	0 0 0 0	= 0	0	0 0 0 0
	0 + 1	0 0 0 0	0 0 0 1	= 1	0	0 0 0 1
/	0+2	$0 \ 0 \ 0 \ 0$	0 0 1 0	= 2	0	0 0 1 0
	• • •	• • •	• • •	•••		• • •
	0 + 9	0 0 0 0	1 0 0 1	= 9	0	1 0 0 1
	1+0	0 0 0 1	0 0 0 0	= 1	0	0 0 0 1
	1+1	0 0 0 1	0 0 0 1	= 2	0	0 0 1 0
	•••	• • •	•••	• • •		• • •
	1+8	0 0 0 1	1 0 0 0	= 9	0	1 0 0 1
	1+9	0 0 0 1	1 0 0 1	$=\mathbf{A}$	0	$(1 \ 0 \ 1 \ 0)$
	2+0	0 0 1 0	0 0 0 0	= 2	0	0 0 1 0
	• • •	• • •	• • •	• • •		•
	9+9	1 0 0 1	1 0 0 1	= 18	1	0 0 1 0

Λάθος κώδικας

Λάθος ΒCD τιμή

0001 1000

Αθροιστής BCD

X+Y	$x_3 x_2 x_1 x_0$	$y_3 y_2 y_1 y_0$	Sum	Cy	$S_3 S_2 S_1 S_0$	Required BCD Output	Value
9+0	/1001	0 0 0 0	= 9	0	1 0 0 1	0 0 0 0 1 0 0 1	= 9
9 + 1	1 0 0 1	0 0 0 1	= 10	0	1 0 1 0	0 0 0 1 0 0 0 0	= 16
9 + 2	1 0 0 1	0 0 1 0	= 11	0	1 0 1 1	0 0 0 1 0 0 0 1	= 17
9+3	1 0 0 1	0 0 1 1	= 12	0	1 1 0 0	0 0 0 1 0 0 1 0	= 18
9 + 4	1/0 0 1	0 1 0 0	= 13	0	1 1 0 1	0 0 0 1 0 0 1 1	= 19
9 + 5	1 0 0 1	0 1 0 1	= 14	0	1 1 1 0	0 0 0 1 0 1 0 0	= 20
9+6	1 0 0 1	0 1 1 0	= 15	0	1 1 1 1	$0\ 0\ 0\ 1\ 0\ 1\ 0\ 1$	= 21
9 + 7	1 0 0 1	0 1 1 1	= 16	1	0 0 0 0	0 0 0 1 0 1 1 0	= 22
9+8	1 0 0 1	1 0 0 0	= 17	1	0 0 0 1	0 0 0 1 0 1 1 1	= 23
9+9	1 0 0 1	1 0 0 1	= 18	1	0 0 1 0	0 0 0 1 1 0 0 0	= 24
							A

+ 6

Αθροιστής BCD

- Διορθώστε την έξοδο του δυαδικού αθροιστή (+6)
 - Αν το αποτέλεσμα είναι μεταξύ των 'Α' και 'F'
 - Av Cy = 1

$S_3 S_2 S_1 S_0$	Err
0 0 0 0	0
• • •	
1 0 0 0	0
1 0 0 1	0
1 0 1 0	1
1 0 1 1	1
1 1 0 0	1
1 1 0 1	1
1 1 1 0	1
1 1 1 1	1

$$Err = S_3 S_2 + S_3 S_1$$

Binary Subtractor

- Χρησιμοποιήστε το συμπλήρωμα ως προς 2 με δυαδικό αθροιστή
 - x y = x + (-y) = x + y' + 1

Binary Adder/Subtractor

- Μ: Σήμα Ελέγχου (Λειτουργία)
 - \blacksquare M=0 \Rightarrow F = x + y
 - \longrightarrow M=1 \longrightarrow F = x y

Υπερχείλιση

Μη προσημασμένοι δυαδικοί αριθμοί

Προσημασμένοι δυαδικοί αριθμοί (Συμπλήρωμα ως προς 2)

Συγκριτής Μεγέθους

- ► Συγκρίνετε δύο 4-bit αριθμούς
 - 3 Εξόδους: < , = , >
 - ► Με δυνατότητα επέκτασης σε αριθμούς με περισσότερα bits

$$x_{3} = \overline{A}_{3} \overline{B}_{3} + A_{3} B_{3}$$

$$x_{2} \neq \overline{A}_{2} \overline{B}_{2} + A_{2} B_{2}$$

$$x_{1} = \overline{A}_{1} \overline{B}_{1} + A_{1} B_{1}$$

$$x_{0} = \overline{A}_{0} \overline{B}_{0} + A_{0} B_{0}$$

$$(A = B) = x_{3} x_{2} x_{1} x_{0}$$

$$(A > B) = A_{3} \overline{B}_{3} + x_{3} A_{2} \overline{B}_{2} + x_{3} x_{2} A_{1} \overline{B}_{1} + x_{3} x_{2} x_{1} A_{0} \overline{B}_{0}$$

$$(A < B) = \overline{A}_{3} B_{3} + x_{3} \overline{A}_{2} B_{2} + x_{3} x_{2} \overline{A}_{1} B_{1} + x_{3} x_{2} x_{1} \overline{A}_{0} B_{0}$$

Συγκριτής Μεγέθους

Συγκριτής Μεγέθους

Αποκωδικοποιητής 2-σε-4

$I_1 I_0$	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$$Y_3 = I_1 I_0$$
 $Y_2 = I_1 \bar{I}_0$
 $Y_1 = \bar{I}_1 I_0$ $Y_0 = \bar{I}_1 \bar{I}_0$

► Έλεγχος Επίτρεψης (Enable)

E	$I_1 I_0$	Y_3	Y_2	Y_1	Y_0
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

Επέκταση

$I_2 I_1 I_0$	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0	0	0	0	0	0	0	0	1
0 0 1	0	0	0	0	0	0	1	0
0 1 9	0	0	0	0	0	1	0	0
0 1/1	0	0	0	0	1	0	0	0
100	0	0	0	1	0	0	0	0
1 0 1	0	0	1	0	0	0	0	0
1 1 0	0	1	0	0	0	0	0	0
111	1	0	0	0	0	0	0	0

Active-High / Active-Low

$I_1 I_0$	Y_3	Y_2	Y_1	Y_{0}	$I_1 I_0$	Y_3 Y_2 Y_3	Y_0		
0 0	0	0	0	1	0 0	1 1 1	0		
0 1	0	0	1	0	0 1	1 1 0	1		
1 0	/0	1	0	0	1 0	1 0 1	1		
1 1/	1	0	0	0	1 1	0 1 1	1	7	Y_3
I_0	Anokos.	Y_3 Y_2 Y_1 Y_0			I_0 V_0	$ar{ar{Y}_3}$ o— $ar{ar{Y}_2}$ o— $ar{ar{Y}_1}$ o— $ar{ar{Y}_0}$ o—	I_1 —		Y_2 Y_1 Y_0

Υλοποίηση Συνδυαστικής Λογικής με Αποκωδικοποιητές

Δυαδικός Αποκωδικοποιητής

- Κάθε έξοδος είναι ένας ελαχιστόρος
- Παράγονται όλοι οι ελάχιστόροι
- Χρησιμοποιούμε τους ελαχιστόρους που χρειαζόμαστε

Παράδειγμα: Πλήρης Αθροιστής

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

 $C(x, y, z) = \sum (3, 5, 6, 7)$

Υλοποίηση Συνδυαστικής Λογικής με Αποκωδικοποιητές

Κωδικοποιητές

- Εισάγουμε "Πληροφορία" σε κώδικα
- Δυαδικός Κωδικοποιητής
 - Παράδειγμα: Δυαδικός Κωδικοποιητής 4-σε-2

Μόνο ένας διακόπτης πρέπει να ενεργοποιηθεί κάθε φορά

x_3	x_2	x_1	$y_1 y_0$
0	0	0	0 0
0	0	1	0 1
0	1	0	1 0
1	0	0	1 1

Κωδικοποιητές

Κωδικοποιητής 8-σε-3

I_7	<i>I</i> ₆	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	9/	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0/	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

$$Y_1 = I_7 + I_6 + I_3 + I_2$$

$$Y_0 = I_7 + I_5 + I_3 + I_1$$

Κωδικοποιητές Προτεραιότητας

V C		1	4 1 C
Κωδικοποιήτή	празтоап с	otntac	4-εισοδων
	2	3	

$I_3 I_2 I_1 I_0$	$Y_1 Y_0$	$oldsymbol{V}$
0 0 0 0	0 0	0
0 0 0 1	0 0	1
0 0 1 x	0 1	1
0 1 x x	1 0	1
$1/x \times x$	1 1	1

Ζεύγη Κωδικοποιητών / Αποκωδικοποιητών

Πολυπλέκτες

Πολυπλέκτες

■ Τετραπλός πολυπλέκτης 2-σε-1 (MUX)

Πολυπλέκτες

■ Παράδειγμα $F(x, y) = \sum (0, 1, 3)$

ΠαράδειγμαF(x, y, z) = ∑(1, 2, 6, 7)

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

■ Παράδειγμα $F(x, y, z) = \sum (1, 2, 6, 7)$

	x y z	$oldsymbol{F}$			
	0/0 0	0	.	$z - I_{\theta}$	
	0 0 1	1	F = z	$\overline{z} \longrightarrow I_1 \longrightarrow Y$	\boldsymbol{F}
	$\sqrt{0}$ 1 0	1		$0 - I_2$	
	0 1 1	0	$F = \overline{z}$	$1 - I_3 - I_{1} - I_{2}$	
	100	0	F=0		
V	1 0 1	0		$\boldsymbol{x} \boldsymbol{y}$	
\mathbb{N}	$1 \ 1 \ 0$	1	F=1		
_// \	1 1 1	1			

■ Παράδειγμα $F(A, B, C, D) = \sum(1, 3, 4, 11, 12, 13, 14, 15)$

	A B C D	F		
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0		$D \longrightarrow I_0$
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ 1	1	F = D	7
7	0 0 1 0	0	F = D	$D \longrightarrow I_1$
	0/0 1 1	1		\overline{D} — I_2
	0 1 0 0	1	$F = \overline{D}$	
	$\sqrt{0 \ 1 \ 0} \ 1$	0		
	0 1 1 0	0	F = 0	$0 \longrightarrow I_4$ WIUA $\frac{1}{2}$
	0 1 1 1	0		$D \longrightarrow I_5$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	F=0	$1 \longrightarrow I_6$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	F = D	
	1 0 1 1	1	$\int \Gamma - D$	$1 - I_7$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F=1	$(S_2 S_1 S_0)$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F = 1	
	1 1 1 1	1	7, -,	A B C

Multiplexer Expansion

8-to-1 MUX με χρήση δύο 4-σε-1 MUX

Αποπολυπλέκτες (DeMUX)

$S_1 S_0$	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	Ι
0 1	0	0	Ι	0
1 0	0	Ι	0	0
1 1	Ι	0	0	0

Ζεύγη MUX / DEMUX

DeMux Αποκωδικοποιητές

T I	ó <u>5</u>	<i>Y</i> ₃ —
I_0	αδικ τοκω	Y ₂
E	Δυ Απ	Y_0

$S_1 S_0$	Y_3	Y_2	Y_1	Y_0
Ø O	0	0	0	Ι
$\sqrt{0}$ 1	0	0	Ι	0
1 0	0	Ι	0	0
1 1	Ι	0	0	0

Τρισταθείς Πύλες

■ Τρισταθής Απομονωτής (Buffer)

C A	Y
0 x	Hi-Z
1 0	0
1 1	1

Τρισταθείς Πύλες

