$$X+y=1 \rightarrow h(x,y)=x+y-1$$

 $X^2+y^2\leq 1 \rightarrow g(x,y)=x^2+y^2-1$

L(x,y,n,1)= f(x,y)+ m.h(x,y)+ d.g(x,y)=x2+y2+xy+ m(x+y-1)+1(x2+y2-1)

1)
$$\frac{dL}{dx} = 2x + y + \mu + 2\lambda x$$

$$1$$
 2 3
 1 1 1
 1 1 1
 1 (0,1)

$$2x+y+y=0 \rightarrow y=-2x-y$$

 $2y+x+y=0 \rightarrow y=-2y-x$
 $x=y$

$$\emptyset \rightarrow x + y - 1 = 0 \rightarrow x + x - 1 = 0 \rightarrow x = \frac{1}{2} \ge 0$$

$$\emptyset \rightarrow x + y - 1 = 0 \rightarrow x + x - 1 = 0 \rightarrow x = \frac{1}{2} \ge 0$$

$$\emptyset = \frac{1}{2} \ge 0$$
Put walling

$$C_{01} \lambda \neq 0$$

$$(2) \qquad (3) \qquad (4) \qquad ($$

$$\begin{cases} 2x + y + \mu + 2\lambda x = 0 \\ 2y + x + \mu + 2\lambda y = 0 \end{cases}$$

$$\begin{cases} 2x + y + \mu + 2\lambda y = 0 \\ x^{2} + y^{2} - 1 = 0 \end{cases} \xrightarrow{x^{2} + (1 - x)^{2} - 1 = 0} \xrightarrow{x = 0} \begin{cases} x = 1 \\ x = 0 \ge 0 \end{cases}$$

$$\begin{cases} x + y + \mu + 2\lambda x = 0 \end{cases} \xrightarrow{x^{2} + (1 - x)^{2} - 1 = 0} \xrightarrow{x = 0} \begin{cases} x = 1 \\ y = 0 \end{cases} \xrightarrow{x = 1} \begin{cases} x = 0 \ge 0 \\ y = 0 \end{cases} \xrightarrow{y = 1} \begin{cases} x = 0 \ge 0 \\ y = 0 \end{cases}$$

$$\begin{cases} x + y + \mu + 2\lambda x = 0 \end{cases} \xrightarrow{x = 1} \begin{cases} x = 1 \\ y = 0 \end{cases} \xrightarrow{y = 1} \begin{cases} x = 0 \end{cases} \xrightarrow{y = 1} \begin{cases} x = 0 \\ y = 0 \end{cases} \xrightarrow{y = 1} \begin{cases} x = 0 \end{cases} \xrightarrow{y = 0} \begin{cases} x = 0 \end{cases}$$

Problema 2)

1(x,g)=x2.4x+y2-6y L(x,y, 1, 12)=x2-4x+y2-6y+11(x+y-3)+12(-2x+y-2)

1)
$$\frac{dL}{dx} = 2x - 9 + \lambda_1 - 2\lambda_2 = 0 \rightarrow 0$$

$$\frac{dL}{dy} = 2y - 6 + \lambda_1 + \lambda = 0 \rightarrow 0$$

$$3)\lambda_1\geq 0,\lambda_2\geq 0$$

list, condidates

$$f(x,y) \rightarrow f(1/2) = 1^2 - 4.(2) + 2^2 - 6.(2)$$

$$= 1 - 8 + 4 - 12 = -15$$

$$9 \rightarrow \times = (9-1)/2 = 1$$
 $0 + 2 = 3$ $2) \sqrt{-3}$ lunt robbid

Condition (KT (tuber-Turker)

Condició neverni Postinolitat

Si tenin una famió f(x) (no lineal) com funció objection à reutriccions dignollet $h_i(x) = 0$; de designallet $g(x) \leq 0$ per i en $i \in 1,...,n$ i j & 7,..., h. Sugaren que x* 65 m junt fritible. Si x* ratifi les randicion KKT ; de regularital (independencia de restrucción), en aquest en xx és optim loss Al problems.

broblema 1

min f(x) =x2 net > X-1 = 0

Solució
$$\rightarrow L(x,\lambda) = f(x) + \lambda g_{i}(x)$$
 on $g_{i}(x) = x - 1$, $f(x) = x^{2}$

 $\min f(x) = x^2 + y^2$

net x+y-1=0 -> h(x,y)=x+y-1

 $x-y-1 \leq 0 \longrightarrow g(x,y)=x-y-1$

L(x,y, 1, n)=x3, y2 + N(x+y-1) + 1(x-y-1)

1)
$$\frac{dL}{dx} = 2x + \mu + \lambda = 0 \rightarrow \mu = -2x - \lambda$$

$$\frac{dL}{dy} = 2y + \mu + \lambda = 0 \rightarrow \mu = -2y - \lambda$$

$$\frac{dL}{dy} = 2y + \mu + \lambda = 0 \rightarrow \mu = -2y - \lambda$$

- 2) x-y-150
- 3) YFO, X, Y=0
- 7) x (x-y-1) = 0

Condinion

- 1) Extrumoni: $\nabla f(x^*) + \sum_i \lambda_i \nabla g_i(x^*) + \sum_j N_i \nabla h_j(x^*)$
- 2) Emulility jums: g; (x+) 50, h; (x+) =0
- 3) Enribellate dural: \(\lambda_i \geq 0\)
- Y) Complementon Slack: \(\lambda_i \theta_i \(\theta_i \text{ (x*) = 0}\)

1): 4)
$$\lambda(x-y-1)=0 \rightarrow (y-x)(x-y-1)=0 - y-x=0 \rightarrow x=y$$

 $(x-y-1)=0 \rightarrow x=y+1$
 $(x-y-1)=0 \rightarrow x=y+1$

 $\begin{array}{c}
2 \times 1 \leq 0 \Rightarrow 0.1 \leq 0 \\
\times = 0 & 31 \\
\lambda = -2 \times 20 \Rightarrow \lambda = 0 \geq 0
\end{array}$ $\begin{array}{c}
\text{Furt radial} \\
\times = 1 & 21 \times -7 \leq 0 \Rightarrow 1.1 \leq 0 \\
3) & \lambda = -2 \times 20 \Rightarrow -2 \leq 0
\end{array}$ Furt mo will

Problema 3

max 2: 2x2 -7x2+12xxx

not 2x1+5x2 598, x1,x2>0

g(x1,x2) = 2x1+5x2-98

L(x1,x2, 1) = f- lg = 2x12-722+12x1x2 - 1 (2x1+5x3-98)

dL = -14x2+12x1-9 \= 0 - 6

$$0 \frac{1}{2} + 12x = 0 \\ 0 - \frac{1}{2} + 12x = 0 \\ 0 = 0$$

3)
$$\lambda \ge 0 \times_{1}, \times_{1} \ge 0 \longrightarrow \times_{1} = 0 \ge 0 \times_{2} = 0 \ge 0 \sqrt{\frac{1}{2}}$$

Condition (1) dL = 2x+ \lambda = 0 -> \lambda = -2x

3) X ≥ 0, x ≥ 0

4 x(x.1)=0

$$0 \rightarrow 4x_1 + 12x_2 - 2\lambda = 0 \\ 0 \rightarrow -14x_2 + 12x_1 - 5\lambda = 0 \\ \lambda = 100$$

$$2) 2_{x_1} + 5_{x_2} - 98 \le 0$$

Problema 1

Minimity of $(x,y)=(x,3)^2+(y+4)^2$ But waton de $x \in \{1,2,3,4,5\}$ To be and al mitode de rours de grid Volon primon (directs)

×\M	-2	-3	ح ح	- 5	-6
1	8	5	4	5	8
2	5	~	1	2	5
3	7	~	0	1	7
7	5	2	1	2	5
	8	5	4	5	Q

min = g(3, -4) = 0

hoblema 2

Ajusta of valor de jerdur (lon) jels parametros W, b sutilitzant grid varich jer aptimitizan al resultat zel valor & { 0.1, 0.01, 0.001}. En troban valen do W, b sitilizen gradient diferent.

$$X_{i11} = X_i - \alpha \nabla L$$

$$W_{i+1} = W_i - \alpha \nabla L = W_i - \alpha \frac{\alpha L}{\alpha b}$$

$$W_{i+1} = b_i - \alpha \nabla L = b_i - \alpha \frac{\alpha L}{\alpha b}$$

510.6

Burgueur a creen un text que o pagni convinto o un embedding de matria de 4×4 dimension. Agasen orquet embedding per general esqui vectorial $\{v_1, v_2, v_3, v_n\}$ i utilitzen orqueto com població inicial per movinitzos la funció $\{(v) = 200 (\times) + \text{rin}(x) \text{ per } \times \in [0, 271] \text{ utilitzent genetica}$

amb jarametres

- Generation -> 2

- Població mida 1

- Representació -> Bimoni 4 lily

- Cronorer > 7 junty

· Mutarió -) 1 mm pleatari

- Selection > Roulete > 1:

Tronforman la atest i feu romprario la i la

intererent
blan

I fraves × 4 primers praules

	U	w	Si	llon	1	roblema	interest	Ami	يعلنو	molt	llm	M
V1	1	1	~	1		Ø	0	Ò	0	0	0	0
V	~	σ	~	0		1	~	0	0	0	0	0
V ₃	0	0	0	~		0	6	1	1	1	δ	0
Vy	0	1	1	0		d	0	0	0	6	1	1

 $\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}$ Po = $\{100, 1007, 1101, 1010\}$

1) bollavío inicil > 1100, 1001, 1101, 1010 -> X E [0, 27]	Normalityon -> + (min) -> +1.366
2) Evolusió films [a,b] = $X = A + \frac{lini}{2^{m}-1}(1-a) \rightarrow X = 0 + \frac{lini}{2^{n}-1}(2\pi - 0) \rightarrow V_{2} = \frac{6}{5}\pi \qquad V_{3} = \frac{26}{15}\pi$ [b) $V_{1} = \frac{9}{5}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,b] = $V_{2} = \frac{1}{5}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,b] = $V_{2} = \frac{1}{5}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,b] = $V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{2} = \frac{9}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi \qquad V_{4} = \frac{9}{15}\pi$ [c,c) = $V_{1} = \frac{9}{15}\pi \qquad V_{3} = \frac{26}{15}\pi \qquad V_{4} = \frac{9}{15}\pi \qquad V_{4} = $	

3) Selection
$$\rightarrow \underbrace{J(v_i)}_{\Sigma_1(v_i)} \rightarrow \underbrace{J(v_i)}_{Z.091} \rightarrow \underbrace{V_1 = 0.751}_{V_2 = 0.031} V_3 = 0.6$$

Roulete $\rightarrow \{0.2, 0.4, 0.5, 0.9\}$

$$(0.351, 0.392)$$

9) Cranover -> P,?

5) Mutrio

() Evolusió fitnen 3 /2?

Problems -> Algorithm genetics

Brown

Broblems 1

Subscioner població

Crowners

- Crowners

- Mutacion

whitzent abgorithm speritic. View 5 stoget per la gollosió

i (n=4) = condictory

Pollow mind -> 01100, moo1, 00101, 10011						$P(x_i) = \frac{f(x_i)}{\sum f(x_i)} \qquad \text{Expectation} = \frac{f(x_i)}{A_{reg}(\sum f(x_i))}$			
Num	P. inimo	X	f (x)	Brob	% bob	Egectarió	Volon och		ring (C) (V)
1	0 170 0	12	144	0.7247	12.77	0.4987	1	V	
7	71007	25	(825)	0.5411	54.47	2.7645	2		Ignorem el més baix
ζ	00707	5	25	0.0216	7.76	0.0816	O	×	
4	70077	19	367	0.3126	31.26	1.7511	1		
Sum			1155						
Ang			288,75						
Mrx			625						

Ang (E)(x;))	_	whove							
	Rejeta	m d min alt	لنه ها د	the d'alon				1	lajor a mox oiturion
Ignorum el más baix		Vm	Pare 1	mil	Vora	Crowson	×	}(×)	squata gen
June 19 Mary County		1	01100	1700 1	ч	01107	13	169	
	-	2	77001	01100	٦	M000	24	576	
		3	12001	10011	2	17077	27	729	
		7	10011	11001	Σ	10 007	17	289	
	-							1763 440,75 729	

			ı	ĺ			Max major
	Num	20 gen	Nutació	Laga mut	X	f(x)	ייניניייון איניין
•	1	07101	10000	11101	29	841	
	Σ	17 000	00000	11000	24	576	
	}	11011	0 0000	ררטרי	27	729	
_	7	10001	00101	10101	21	441	
						2587	

Movementyon f(x1=x2+2x gntre[0,2]

Pinis : 17070, 00177, 10710, 0010

11010 -> 16 -> 1.67? m : bit = 5ind + $\frac{\text{max} - \text{min}}{\text{max}^{m} - 1} = 0 + \frac{2 - 0}{2^{5} - 1}$ (26)

5
1
7
9
_