imagenes/uta.png

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

CARRERA DE TECNOLOGIAS DE LA INFORMACION

CICLO ACADÉMICO: MARZO – JULIO 2025

imagenes/fisei.png

INFORME DE GUÍA PRÁCTICA

1 Portada

Tema: APE 8. Uso de Arreglos Multidimensionales

Unidad de Organización Curricular: Elige un elemento.

Nivel y Paralelo: 1-B

Alumnos participantes: Barragán Alexis

.....

Asignatura: Fundamentos de Programación **Docente:** Ing. Hernan Naranjo, Mg.

2 Informe de guía práctica

2.1 Objetivos

2.1.1 General

Desarrollar aplicaciones utilizando matrices

2.1.2 Específicos

- Utilizar matrices para almacenar y organizar datos.
- Aplicar algoritmos que manipulen matrices de forma eficiente.
- Desarrollar aplicaciones prácticas que integren el uso de matrices.

2.2 Modalidad

Precencial

2.3 Tiempo de duración

Presenciales: 4 No Presenciales: 0

2.4 Instrucciones

Acciones previas: Ingrese al aula virtual de la asignatura en donde se halla el trabajo del tema tratado. Elabore el trabajo siguiendo las definiciones, conceptos, procesos aprendidos en clase. Leer y subrayar cada problema.

2.5 Listado de equipos, materiales y recursos

Listado de equipos y materiales generales empleados en la guía práctica:

TAC (Tecnologías para el Aprendizaje y Conocimiento) empleados en la guía práctica:

□ Plataformas educativas

imagenes/uta.png

 $FACULTAD\ DE\ INGENIERÍA\ EN\ SISTEMAS$ $ELECTRÓNICA\ E\ INDUSTRIAL$

CARRERA DE TECNOLOGIAS DE LA INFORMACION

CICLO ACADÉMICO: MARZO – JULIO 2025

imagenes/fisei.png

	Simuladores y laboratorios virtuales
x	Aplicaciones educativas
x	Recursos audiovisuales
	Gamificación
x	Inteligencia Artificial
•	Otros (Especifique):

2.6 Actividades por desarrollar

Con la información propuesta en la tarea: Analice la información de cada uno de los ejercicios propuestos Realice el Diseño, prueba, codificación y posteriormente compilar, ejecutar y verificar el resultado. Arribe a conclusiones. Subir a la plataforma el archivo en formato .PDF del trabajo hasta la fecha indicada

2.7 Resultados obtenidos

De acuerdo con el tipo de trabajo, se plasmarán los resultados alcanzados en la guía práctica una vez ejecutadas las actividades. Se pueden emplear figuras y tablas las cuales deben ser numeradas.

2.8 Habilidades blandas empleadas en la práctica

- □ Liderazgo
 □ Trabajo en equipo x Comunicación asertiva x La empatía x Pensamiento crítico x Flexibilidad
- \boldsymbol{x} La resolución de conflictos
- x Adaptabilidad
- x Responsabilidad

2.9 Conclusiones

Las matrices son estructuras clave para organizar y procesar grandes volúmenes de datos en programación. Su uso permite simplificar la implementación de algoritmos en diversas aplicaciones como cálculos matemáticos, procesamiento de datos o simulaciones. La correcta manipulación de matrices mejora la eficiencia y legibilidad del código en proyectos reales.

imagenes/uta.png

 $FACULTAD\ DE\ INGENIERÍA\ EN\ SISTEMAS$ $ELECTRÓNICA\ E\ INDUSTRIAL$

CARRERA DE TECNOLOGIAS DE LA INFORMACION

CICLO ACADÉMICO: MARZO – JULIO 2025

imagenes/fisei.png

2.10 Recomendaciones

Practicar con ejercicios variados para dominar el uso de matrices unidimensionales y bidimensionales. Utilizar métodos y funciones para modularizar el trabajo con matrices, facilitando la reutilización del código. Aplicar matrices en proyectos reales como juegos, sistemas de gestión o análisis de datos para fortalecer el aprendizaje práctico.[?]

2.11 Referencias

Guia appe

2.12 Anexos

imagenes/uta.png

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

CARRERA DE TECNOLOGIAS DE LA INFORMACION

CICLO ACADÉMICO: MARZO – JULIO 2025

```
import java.util.Scanner;
public class Ejerciocio1 {
    public static void main(String[] args) {
        int[][] matriz = new int[5][5];
        Scanner scanner = new Scanner(System.in);
        System.out.println(x:"Ingrese los valores enteros para la matriz 5x5:");
        for (int fila = 0; fila < 5; fila++) {
            for (int col = 0; col < 5; col++) {
                System.out.println(x:"-----
                System.out.print("Elemento [fila " + fila + "][columna " + col + "]: ");
                matriz[fila][col] = scanner.nextInt();
        System.out.println(x:"\nSuma de elementos por fila (horizontal):");
        for (int fila = 0; fila < 5; fila++) {</pre>
            int sumaFila = 0;
            for (int col = 0; col < 5; col++) {
                sumaFila += matriz[fila][col];
            System.out.println("Fila " + fila + ": " + sumaFila);
        // Sumar y mostrar la suma de cada columna
        System.out.println(x:"\nSuma de elementos por columna (vertical):");
        for (int col = 0; col < 5; col++) {
            int sumaColumna = 0;
            for (int fila = 0; fila < 5; fila++) {</pre>
                sumaColumna += matriz[fila][col];
            System.out.println("Columna " + col + ": " + sumaColumna);
```

Figure 1: Enter Caption

imagenes/uta.png

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public class Ejercicio2 {
    public static void MatrizDiagonal(String[] args) {
        final int TAM = 5;
        int[][] diagonal = new int[TAM][TAM];
        // Cargar la matriz con 1 en la diagonal principal y 0 en el resto
        for (int i = 0; i < TAM; i++) {
            for (int j = 0; j < TAM; j++) {
                if (i == j) {
                    diagonal[i][j] = 1;
                } else {
                    diagonal[i][j] = 0;
        System.out.println(x:"Matriz con 1 en la diagonal y 0 en el resto:");
        for (int i = 0; i < TAM; i++) {
            for (int j = 0; j < TAM; j++) {
                System.out.print(diagonal[i][j] + " ");
            System.out.println();
```

Figure 2: Enter Caption

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

imagenes/uta.png

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public classEjercicio3 {
   public static void MatrizMarco(String[] args) {
       final int FILAS = 5;
       final int COLUMNAS = 15;
       int[][] marco = new int[FILAS][COLUMNAS];
       // Cargar la matriz con 1 en los bordes y 0 en el interior
       for (int i = 0; i < FILAS; i++) {
           for (int j = 0; j < COLUMNAS; j++) {
               if (i == 0 || i == FILAS - 1 || j == 0 || j == COLUMNAS - 1) {
                   marco[i][j] = 1;
                   marco[i][j] = 0;
       // Mostrar la matriz en pantalla
       System.out.println(x:"Matriz tipo marco (1 en bordes, 0 en interior):");
       for (int i = 0; i < FILAS; i++) {
           for (int j = 0; j < COLUMNAS; j++) {
               System.out.print(marco[i][j]);
           System.out.println();
```

Figure 3: Enter Caption

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

imagenes/uta.png

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public class Ejercicio4 {
   public static void main(String[] args) {
       System.out.println(x:"\nPregunta #3");
       System.out.println("Cantidad del artículo 3 en sucursal 1 = " + cantidades[0][2]);
       System.out.println(x:"\nPregunta #4");
       for (int f = 0; f < recaudacion.length; f++) {</pre>
           double sumaSucursal = 0;
           for (int c = 0; c < recaudacion[0].length; c++) {</pre>
               recaudacion[f][c] = cantidades[f][c] * precioArticulos[c];
               sumaSucursal += recaudacion[f][c];
           recaudacionSucursal[f] = sumaSucursal;
           System.out.println("Sucursal " + (f + 1) + " recaudó: $" + sumaSucursal);
       System.out.println(x:"\nPregunta #5");
       double totalEmpresa = 0;
       for (int i = 0; i < recaudacionSucursal.length; i++) {</pre>
           totalEmpresa += recaudacionSucursal[i];
       System.out.println("Recaudación total de la empresa: $" + totalEmpresa);
       System.out.println(x:"\nPregunta #6");
       double mayor = recaudacionSucursal[0];
       int posicion = 0;
       for (int i = 1; i < recaudacionSucursal.length; i++) {</pre>
           if (recaudacionSucursal[i] > mayor) {
               mayor = recaudacionSucursal[i];
       System.out.println("La sucursal con mayor recaudación es la sucursal " + (posicion + 1) + " con $" + mayor);
```

Figure 4: Enter Caption

imagenes/uta.png

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public class Ejercicios {
    public static void InventarioTiendas(String[] args) {
     }
     System.out.println("\n Inventario total en el almacén 1: " + totalAlmacen1 + " unidades");

     // 3. Stock del producto 4 en el almacén 2
     int stockProdAlm2 = stock[3][3];
     System.out.println("\n Stock del producto 4 en el almacén 2: " + stockProdAlm2 + " unidades");

     // 4. Valor total del inventario de la cadena
     double valorTotal = 0;
     for (int a = 0; a < 3; a++) {
          for (int p = 0; p < 8; p++) {
                valorTotal += stock[a][p] * precios[p];
          }
     }
     System.out.println("\n Valor total del inventario: $" + valorTotal);

     // 5. Determinar el almacén con mayor cantidad de productos
     int mayorCantidad = 0;
     int totalAlmacen = 0;
     for (int a = 0; a < 3; a++) {
          int totalAlmacen = 0;
          for (int p = 0; p < 8; p++) {
                totalAlmacen = 0; stock[a][p];
          }
          if (totalAlmacen > mayorCantidad) {
               mayorCantidad = totalAlmacen;
                almacenMayor = a;
     }
}

System.out.println("\n El almacén con mayor cantidad de productos es el Almacén " + (almacenMayor + 1) + " con " + mayorCantidad + " unidades");
}
```

Figure 5: Enter Caption

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

imagenes/uta.png

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public static void RegistroAsistencia(String[] args) {
    System.out.println(x:"\n Porcentaje de asistencia por facultad:");
        int suma = 0;
        for (int m = 0; m < 5; m++) {
           suma += asistencia[f][m];
       totalPorFacultad[f] = suma;
       totalGeneral += suma;
       double porcentaje = (totalPorFacultad[f] * 100.0) / totalGeneral;
       System.out.printf(format:"Facultad %d: %.2f%% del total\n", (f + 1), porcentaje);
    int facultadMayor = 0;
    int mayorAsistencia = totalPorFacultad[0];
    for (int f = 1; f < 4; f++) {
       if (totalPorFacultad[f] > mayorAsistencia) {
           mayorAsistencia = totalPorFacultad[f];
            facultadMayor = f;
   System.out.println("\n La facultad con mayor asistencia es la Facultad " + (facultadMayor + 1) +
           " con " + mayorAsistencia + " asistencias");
    sc.close();
```

Figure 6: Enter Caption

imagenes/uta.png

FACULTAD DE INGENIERÍA EN SISTEMAS ELECTRÓNICA E INDUSTRIAL

CARRERA DE TECNOLOGIAS DE LA INFORMACION CICLO ACADÉMICO: MARZO – JULIO 2025

```
public class Ejercicio7 {
   public static void OperacionesMatrices(String[] args) {
       System.out.println(x:"\n Suma de las dos matrices:");
           for (int j = 0; j < n; j++) {
               suma[i][j] = matrizA[i][j] + matrizB[i][j];
               sumaTotal += matrizA[i][j] + matrizB[i][j];
               if (suma[i][j] > mayorSuma) {
                   mayorSuma = suma[i][j];
               System.out.print(suma[i][j] + "\t");
           System.out.println();
       double promedio = (double) sumaTotal / totalElementos;
       System.out.printf(format:"\n Promedio de todos los elementos: %.2f\n", promedio);
       System.out.println(x:"\n Producto de las dos matrices (A ⋈ B):");
       for (int i = 0; i < n; i++) {
           for (int j = 0; j < n; j++) {
               producto[i][j] = 0;
               for (int k = 0; k < n; k++) {
                   producto[i][j] += matrizA[i][k] * matrizB[k][j];
               System.out.print(producto[i][j] + "\t");
           System.out.println();
       System.out.println("\n El mayor elemento en la matriz suma es: " + mayorSuma);
       sc.close();
```

Figure 7: Enter Caption

imagenes/uta.png

 $FACULTAD\ DE\ INGENIERÍA\ EN\ SISTEMAS$ $ELECTRÓNICA\ E\ INDUSTRIAL$

CARRERA DE TECNOLOGIAS DE LA INFORMACION

CICLO ACADÉMICO: MARZO – JULIO 2025

```
import java.util.Scanner;
public class Ejercicio8 {
    public static void SistemaEcuacionesCramer(String[] args) {
        Scanner sc = new Scanner(System.in);
        // Ingreso de coeficientes
        System.out.println(x:"Resolviendo el sistema:");
        System.out.println(x:"a1*x + b1*y = c1");
        System.out.println(x:"a2*x + b2*y = c2\n");
        System.out.print(s:"Ingrese a1: ");
        double a1 = sc.nextDouble();
        System.out.print(s:"Ingrese b1: ");
        double b1 = sc.nextDouble();
        System.out.print(s:"Ingrese c1: ");
        double c1 = sc.nextDouble();
        System.out.print(s:"Ingrese a2: ");
        double a2 = sc.nextDouble();
        System.out.print(s:"Ingrese b2: ");
        double b2 = sc.nextDouble();
        System.out.print(s:"Ingrese c2: ");
        double c2 = sc.nextDouble();
        // Determinantes
        double D = a1 * b2 - b1 * a2;
        double Dx = c1 * b2 - b1 * c2;
        double Dy = a1 * c2 - c1 * a2;
        // Verificación del sistema
        if (D == 0) {
            if (Dx == 0 && Dy == 0) {
                System.out.println(x:"El sistema tiene infinitas soluciones.");
            } else {
                System.out.println(x:"El sistema no tiene solución.");
        } else {
            double x = Dx / D;
            double y = Dy / D;
            System.out.printf(format: "La solución es: x = %.2f, y = %.2f\n", x, y);
        sc.close();
```

Figure 8: Enter Caption