Código del Curso: EP-3072 **Fecha:** 11/08/2021 & 2021-I

Practica Dirigida N°4

Semana 6

Cálculo de Variaciones II

Condición de Transversalidad & Diagrama de Fases

1. Condiciones de Transversalidad

1a)
$$V(y) = \int_{0}^{2} (t^2 + \dot{y}^2)dt$$
, con $y(0) = 4$, $y(2) = y_t$ $(y_t \, es \, libre)$

1b)
$$V(y) = \int_{0}^{T} (t + \dot{y}^2) dt$$
, con $y(0) = 4$, $y(T) = 5$ y $T \text{ es libre}$

1c)
$$V(y) = \int_{0}^{T} (t\dot{y} + \dot{y}^2)dt$$
, con $y(0) = 1$, $y(T) = 10$ y $T es \ libre$

1d)
$$V(y) = -\int_{0}^{T} (1 + \dot{y}^2)^{0.5} dt$$
, con $y(0) = 1$, $y(T) = 2 - 3T$

1e)
$$V(y) = \int_{0}^{T} (1 + \dot{y}^2)^{0.5} dt$$
, con $y(0) = 1$, $y(T) = 2 - T$

1f)
$$V(y) = \int_{0}^{\infty} e^{-\rho t} (y^2 + ay + b\dot{y} + c\dot{y}^2) dt$$
, $y(0) = d$, $(a, b, c, d, \rho > 0)$

- 2. Diagrama de Fases
 - 2a) Obtengan, matemáticamente, el diagrama de fases de la siguiente expresión

$$\dot{x} = -x + 2y$$

$$\dot{y} = -3y$$

2b) Se define el siguiente sistema de ecuaciones diferenciales lineales

$$\dot{y} = ay + bx + h$$
$$\dot{x} = cy + dx + k$$

Dibujar el diagrama de fases según las siguientes condiciones:

Caso I:
$$a > 0$$
, $b < 0$, $c > 0$, $d > 0$
Caso II: $a < 0$, $b > 0$, $c > 0$, $d < 0$
Caso III: $a > 0$, $b < 0$, $c < 0$, $d < 0$
Caso IV: $a = 0$, $b < 0$, $c > 0$, $d = 0$

2c) Realice el diagrama de fases de los siguientes sistemas de sistemas de ecuaciones diferenciale.

2c1)
$$\dot{y} = -3y + y^2 + 2$$

2c2) $\dot{x} = 3x - 18$ $\dot{y} = -2y + 16$

2c3)
$$\dot{x} = y - x^2 + 3$$
 $\dot{y} = y - x + 1$

2c4)
$$\dot{x} = y - x^3$$
 $\dot{y} = 1 - xy$

3. Aplicaciones económicas

3a) Modelo IS-LM

$$\dot{y} = a[E(Y - T, r) + G - Y] = f(Y, r)$$

$$\dot{r} = b \left[L(Y, r) - \frac{M}{P} \right] = g(Y, r)$$

Código del Curso: EP-3072

Fecha: 11/08/2021 & 2021-I

Donde Y es el nivel de producción, r es la tasa de interés, E es igual a la suma de los gastos en consumo e inversión, G es el gasto público, T son los pagos por impuestos y P el nivel de precios. Las constantes a y b son positivas y representan la velocidad de ajuste del mercado de bienes y del mercado de dinero, respectivamente.

Se asume G, T, M y P como fijos, además las funciones de gastos E y la demanda por dinero cumplen las siguientes propiedades.

$$0 < E_y < 1, \quad E_r < 0, \quad L_y > 0, \quad L_r < 0$$

Dibujar el diagrama de fases para este modelo y establecer los casos extremos.

3b) Interacción Demanda-Oferta

Supongamos que la demanda para un bien depende de su precio p y la oferta de su precio esperado p^e . Las cantidades demandadas y ofertadas son D(p) y $O(p^e)$ donde D y O son funciones tal que D'(p) < 0 y $O'(p^e) > 0$. Supongamos que el precio p reacciona al desequilibrio del mercado, con su tasa de cambio proporcional a su desequilibrio. Esto es

$$\dot{p} = \alpha [D(p) - O(p^e)], \quad \alpha > 0 \text{ constant}$$

Asumimos que el precio esperado tiene una tasa de cambio proporcional a su adaptación en el mercado.

$$\dot{p^e} = \beta(p - p^e), \quad \beta > 0$$
 constante

3c) Explotación óptima de peces

Suponga que una población de "N(t)" peces en cierto lago, crece a la siguiente tasa:

$$\dot{N}(t) = aN(t) - bN^2(t)$$

En ausencia de actividad de extracción. En una comunidad cercana al lago se consume una cantidad "C(t)" de pescado, que brinda una utilidad igual "U(c)" (U'(c) > 0, U''(c) < 0) y altera el crecimiento de la biomasa de la siguiente forma:

$$\dot{N}(t) = aN(t) - bN^2(t) - C(t)$$
 $(a, b > 0)$

El objetivo de la comunidad es maximizar las utilidades futuras descontadas con la

Código del Curso: EP-3072

Fecha: 11/08/2021 & 2021-I

$$\dot{V}(c) = \int_{0}^{\infty} e^{-\rho t} U(c) dt$$

Considerando la población actual de pesces $N_0 = \frac{a}{b}$, se le pide resolver el siguiente problema de cálculo de variaciones mediante el diagrama de fases.

4. Problema integrador

tasa ρ :

Aplicación: Modelo de crecimiento de Ramsey-Cass-Koopmans

Max
$$V[y] = \int\limits_0^\infty U(c)e^{-\rho t}dt$$
 Sujeto a
$$c = Ak - \dot{k} - \delta k$$

$$k(0) = 10$$

$$A - \delta > 0$$

$$A - \delta - \rho < 0$$

Donde $U(c) = \ln c$ y la función de producción f(k) = Ak

Resuelva el problema incluyendo:

- 4a) Condiciones Necesarias
- 4b) Condiciones de Transversalidad
- 4c) Condiciones Suficientes
- 4d) Diagrama de Fases