Computational Numerical Methods

CS 374

Prosenjit Kundu

Roor finding

an+5=C.

Monlinear equations

$$f(n) = n^6 - n - 1 = 0$$

f(n) = 0 find the roots

سلعمد .

 $\begin{cases} f: \left[2,5 \right] \rightarrow R.$

FEC' [a, b]

roots on iso (ared

Roor of a say 20 rER. HOP) = 0 27 1 in a root.

Approximan rool (a) 2 Y is root.

 $f(x) \approx 0$. 1 10 approximate 3006.

Day [n-r] 15 norsufficient.

I terative marcad.

1mm = f(1ma, 1m), ... 1)

Starting SPP-

inital quess (values.

Improvement SKP.

 $\chi_{n} = \chi_{n-1} + \chi_{n-2}$. 1,1,2,3,5,8...

Impe I teremon process to reduce the rerror

Two winds of iterative method.

O closed domain mertal/ Bracketing mathods.

· Bisection method.

· Regular Falsinethd.

Adv -> it converges.

dis -> wed some i'dea

about original solk

Den domain / Nou brueneum merhod.

· Secant method.

· Newton rapson methods.

· Fined point iteration.

Adv: no need for.

iden of original 1210

dis adv: may non converge.

or Mercad of Bisection f(x) enist in $[a_0, b_0]$. f(n) is con f: [ao, so] - R. on whingon · f(a0) f(60) < 0

Algorithm Sep! For N=0,1,2... which in the mind point of the internal [an isn] One of the following of the two cases. hold. · non linear en 5 =) f(nnn) =0 Either flan) flann) (0 w Hish) (0 define $[AnH] = [AnH] = [AnH] (f(An) \cdot f(AnH) \in O$ $[AnH] \cdot SnH = [AnH] \cdot f(AnH) \cdot f(AnH) \cdot o$

Step3 Stop (Le iteration it one of the following happens.

case 1 in step 2 to hold =0 Cosider

uny on the root

(bn+1-an+1) (5 shipfinimply small from
An+2 as come we unsidered on the root.

$$f(n) = \chi^6 - \chi - 1$$

Fix a root accurate to

withim & 20.00/

$$f(1) = -1$$

 $f(2) = 61$

2000 Minor 2006 2201.1338

1. Harano	1	97	1,	04	(-	6-	- C .	}	(1)
1		1		2	1	.5	8	.5	8	.8906
2		1		1.5		1.25	C	٠ ٢٢	1	5647
3		1		1. 65	1	.12	0	.125	-	0.0977
4		(.12)		1.25	1	1.187	25 0	.061	3	0.6167
5	+	1.125		1.187	4	1.11	762	0-031	2	3.2337
	1									
9		1.132	8	7.13	, 6	7/1	1348	00.0	2	0.0007
(0		1.132		Y 1·13	G	8 1	1338	0.00	n 98	5/0006