诚信应考, 考试作弊将带来严重后果!

《线性代数与解析几何》(全英课)试卷(A)—2020年1月6日

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共 8 大题, 满分 100 分, 考试时间 120 分钟.

题 号	_	=	Ξ	四	五.	六	七	八	总 分
得 分									
评卷人									

1. (14 points) Compute the following determinants:

	3	5	7	9				1	
(1)	11	13	15	17	(2)	2	4	8	16
	11 19	21	23	25	, (<i>2</i>)	3	9	8 27	81
	27	29	31	33				16	

2. (8 points) Calculate the area of the parallelogram determined by the points (-3, -5), (-1, 0), (3, -4) and (5, 1).

3. (15 points) For two matrices $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 0 \\ 0 & y \end{pmatrix}$,

(1) (6 points) if matrix equation $A\vec{x} = B\vec{x}$ has nonzero solutions, what is the value of y?

(2) (3 points) If A and B are similar to each other, what is the value of y?

(3) (6 points) Find a formula for A^k .

4. (16 points) For the following quadratic form

$$\vec{x}^T A \vec{x} = 3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1 x_2 + 2x_1 x_3 + 2x_2 x_3,$$

(1) (4 points) Give the matrix A of the quadratic form, and indicate which type this quadratic form is? (For example, negative definite, positive definite or indefinite?)

(2) (12 points) Find an orthogonal matrix P such that the change of variable $\vec{x} = P\vec{y}$ transforms $\vec{x}^T A \vec{x}$ into a new quadratic form with no cross-product term. Give the new quadratic form.

- 5. (20 points) In vector space \mathbb{P}_2 , the vector sets $B = \{-1, 2-t, -3-t-t^2\}$, and $C = \{1+t^2, t+t^2, -t\}$ are two bases.
- (1) (6 points) Find the coordinate vector $[p]_B$ of $p(t) = 1 2t + t^2$ relative to B.

(2) (6 points) Find the coordinate vector $[p]_C$ of $p(t) = 1 - 2t + t^2$ relative to C.

(3) (8 points) Find a matrix M, such that for any $p \in \mathbb{P}_2$, there is $[p]_B = M[p]_C$.

6. (11 points) For the vector space

$$H = \left\{ \begin{pmatrix} a - 3b + 6c \\ 5a + 4b + 4d \\ -2c - d \\ -a + 8b - 6c + 5d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\},$$

(1) (3 points) what is the dimension for H?

(2) (8 points) Find a set of basis for the orthogonal compliment H^{\perp} of H.

7. (8 points)
$$M = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 2 & -1 \\ 0 & 1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{pmatrix}$$
 is a 6×6 matrix. Find M^{-1}

8. (8 points) For a matrix A, det(A) = s and $s \neq 0$. If A has an eigenvalue λ , prove that the adjoint matrix A^* has an eigenvalue $\frac{s}{\lambda}$.