# **Assignment 3**

# 1. Clock Divider

# Verilog code:

```
module clock divider(
   input rst,
   input clk,
  output reg div_by_2,div_by_4,div_by_8,div_by_16
    reg [3:0]count;
   always @ (posedge clk)
   begin
   if(rst==0)
   count=4'b0000;
   else
   count = count + 1;
   div_by_2 = count[0];
   div_by_4 = count[1];
   div_by_8 = count[2];
   div_by_16 = count[3];
end
endmodule
```

#### Testbench:

# Simulation:



#### Schematic:



### Synthesis report:

```
Start Writing Synthesis Report
Report BlackBoxes:
+-+---+
| |BlackBox name |Instances |
+-+---+
+-+---+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
    |BUFG |
             1|
|1
12
    |LUT1 |
|3
    |LUT2 |
            1|
| 4
    LUT3 |
             11
|5
    |LUT4 |
            1|
16
    FDRE
|7
    |IBUF |
             2|
|8
    OBUF |
+----+
Report Instance Areas:
+----+
    |Instance |Module |Cells |
    |top
           - 1
                - 1
                   16|
+----+
Finished Writing Synthesis Report : !
```

### Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

**Total On-Chip Power:** 3.777 W

**Design Power Budget:** Not Specified

**Power Budget Margin:** N/A Junction Temperature: 32.1°C

Thermal Margin: 52.9°C (27.9 W)

1.9°C/W Effective &JA:

Power supplied to off-chip devices: 0 W

Confidence level:

Launch Power Constraint Advisor to find and fix



# 2. Johnson Counter

### Verilog code:

```
module johnson_counter( out, reset, clk);
input clk, reset;
output [3:0] out;
reg [3:0] q;
always @(posedge clk)
begin
if (reset)
q=4'd0;
 else
    begin
        q[3]<=q[2];
        q[2]<=q[1];
        q[1]<=q[0];
        q[0] \le (\sim q[3]);
    end
 end
assign out=q;
endmodule
```

#### Testbench:

# Simulation:



# Schematic:



### Synthesis report:

| Start  | Writing   | Synthesis | Report |  |
|--------|-----------|-----------|--------|--|
|        |           |           |        |  |
|        |           |           |        |  |
| Report | t BlackBo | oxes:     |        |  |

#### Report Cell Usage:

| +  | +    | ++    |
|----|------|-------|
| L  | Cell | Count |
| +  | +    | ++    |
| 1  | BUFG | 1     |
| 12 | LUT1 | 1     |
| 3  | FDRE | 4     |
| 4  | IBUF | 2     |
| 5  | OBUF | 4     |
|    |      |       |

#### Report Instance Areas:

| i | Instance  | Module | Cells |
|---|-----------|--------|-------|
| 1 | top<br> - | İ      | 12    |

Finished Writing Synthesis Report :

#### Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.074 W

Power Budget Margin: N/A
Junction Temperature: 27.0°C

Thermal Margin: 58.0°C (30.6 W)

**Not Specified** 

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

**Design Power Budget:** 



# 3. Ring Counter

# Verilog code:

```
module ring_counter(
    input clk,
    input rst,
    output reg [3:0] q
    );
     always @(posedge clk)
     begin
          if(rst==1)
              q <= 4'b0001;
           else
               begin
                   q[0]<=q[3];
                   q[1]<=q[0];
                   q[2] \le q[1];
                    q[3]<=q[2];
               end
    end
endmodule
```

# Testbench:

```
module ring_counter_tb(
    );
    reg clk;
   reg rst;
    wire [3:0]q;
    ring_counter uut(clk,rst,q);
    initial begin
    #0 clk=1'b0;
    #0 rst = 1'b0;
    end
    always
    #10 clk = ~clk;
    initial
    begin
    #10 rst =1'b1;
    #20 rst =1'b0;
    #500 $finish;
     end
endmodule
```

# Simulation:



# Schematic:



### Synthesis report:

# Start Writing Synthesis Report

#### Report BlackBoxes:

| +-+      |      | +         | + |
|----------|------|-----------|---|
| BlackBox | name | Instances | I |
| +-+      |      | +         | + |
| 4-4      |      |           | _ |

# Report Cell Usage:

| +  | -+   | -++   | ۰ |
|----|------|-------|---|
| 1  | Cell | Count |   |
| +  | -+   | -++   |   |
| 1  | BUFG | 1     |   |
| 12 | FDRE | 3     |   |
| 3  | FDSE | 1     |   |
| 4  | IBUF | 2     |   |
| 5  | OBUF | 4     |   |
| +  | -+   | -++   |   |

#### Report Instance Areas:

| 1 | Instance | Module    | Cel | ls |
|---|----------|-----------|-----|----|
| 1 |          | <br> <br> |     | 11 |
|   |          |           |     | +  |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

1.069 W **Total On-Chip Power:** 

**Design Power Budget: Not Specified** 

**Power Budget Margin:** N/A Junction Temperature: 27.0°C

58.0°C (30.6 W) Thermal Margin:

Effective &JA: 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 4. 5 Input Majority circuit

# Verilog code:

```
module majority_of_five(input [4:0] sw, output led);

assign led = (sw[0] & sw[1] & sw[2]) |
            (sw[0] & sw[1] & sw[3]) |
            (sw[0] & sw[1] & sw[4]) |
            (sw[0] & sw[2] & sw[3]) |
            (sw[0] & sw[2] & sw[4]) |
            (sw[0] & sw[3] & sw[4]) |
            (sw[1] & sw[2] & sw[3]) |
            (sw[1] & sw[2] & sw[4]) |
            (sw[1] & sw[2] & sw[4]) |
            (sw[1] & sw[3] & sw[4]) ;
endmodule
```

#### Testbench:

```
module majority_of_five_tb;

reg [4:0] sw;
wire led;

majority_of_five cut (.sw(sw),.led(led));

integer k;

initial
begin
    sw = 0;

for (k=0; k<32; k=k+1)
    #20 sw = k;

#20 $finish;
end
endmodule</pre>
```

#### Simulation:



# Schematic:



# Synthesis report:

| Start Writing Synthesis Report                                            |
|---------------------------------------------------------------------------|
| Report BlackBoxes:<br>  +-++<br>    BlackBox name   Instances  <br>  +-++ |
| Report Cell Usage:                                                        |
| ++                                                                        |
| Cell  Count                                                               |
| ++                                                                        |
| 1  LUT5   1                                                               |
| 2  IBUF   5                                                               |
| 3  OBUF   1                                                               |
| ++                                                                        |
| Report Instance Areas:                                                    |
| Instance   Module   Cells                                                 |
| 1  top     7                                                              |
| ++                                                                        |
|                                                                           |
| Finished Writing Synthesis Report                                         |

# Power report:

**Total On-Chip Power:** 

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

0.478 W

| Design Power Budget:                | Not Specified   |
|-------------------------------------|-----------------|
| Power Budget Margin:                | N/A             |
| Junction Temperature:               | 25.9°C          |
| Thermal Margin:                     | 59.1°C (31.2 W) |
| Effective $\vartheta JA$ :          | 1.9°C/W         |
| Power supplied to off-chip devices: | 0 W             |
| Confidence level:                   | Low             |

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity



# 5. Parity Generator

# Verilog code:

```
module parity_genrator(
    input x,
    input y,
    input z,
    output out
    );

xor (out,x,y,z);
endmodule
```

# Testbench:

```
module parity_genrator_tb(
    );
    reg x,y,z;
    wire out;
    parity_genrator uut(x,y,z,out);
    initial
    begin
    #00 x=0; y=0; z=0;
    #100 x=0 ; y=0 ; z=1;
    #100 x=0; y=1; z=0;
    #100 x=0; y=1; z=1;
    #100 x=1; y=0; z=0;
    $100 x=1 ; y=0 ; z=1;
    #100 x=1 ; y=1 ; z=0;
    #100 x=1 ; y=1 ; z=1;
    #100 x=0; y=0; z=0;
    end
    initial begin
       $dumpfile("dump.vcd");
       $dumpvars(0);
    end
endmodule
```

#### Simulation:



#### Schematic:



# Synthesis report:



#### Power report:

invalid switching activity

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

| Total On-Chip Power:                                   | 0.661 W         |  |
|--------------------------------------------------------|-----------------|--|
| Design Power Budget:                                   | Not Specified   |  |
| Power Budget Margin:                                   | N/A             |  |
| Junction Temperature:                                  | 26.2°C          |  |
| Thermal Margin:                                        | 58.8°C (31.0 W) |  |
| Effective $\vartheta JA$ :                             | 1.9°C/W         |  |
| Power supplied to off-chip devices:                    | 0 W             |  |
| Confidence level:                                      | Low             |  |
| <u>Launch Power Constraint Advisor</u> to find and fix |                 |  |



# 6. Binary to one hot encoder

# Verilog code:

```
"timescale 1ns / 1ps

module binary_to_one_hot_encoder(
    input [3:0] a,
    output [15:0] b
    );

    assign b = 1'b1 <<a;
endmodule</pre>
```

#### Testbench:

```
timescale 1ns / 1ps
module binary_to_one_hot_encoder_tb;
    reg [3:0] a;
    wire [15:0] b;
    binary_to_one_hot_encoder uut(a,b);
    initial begin
    #10 a=4'b0000;
    #10 a=4'b0001;
    #10 a=4'b0010;
    #10 a=4'b0011;
    #10 a=4'b0100;
    #10 a=4'b0101;
    #10 a=4'b0110;
    #10 a=4'b0111;
   #10 a=4'b1000;
    #10 a=4'b1001;
    #10 a=4'b1010;
    #10 a=4'b1011;
    #10 a=4'b1100;
    #10 a=4'b1101;
    #10 a=4'b1110;
    #10 a=4'b1111;
    end
    initial begin
       $dumpfile("dump.vcd");
       $dumpvars(0);
     end
endmodule
```

# Simulation:



# Schematic:



# Synthesis report:

| Report BlackBoxes: +-+                                                                                                                                                                                | Start W | Triting Syr | nthesis I | Report |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-----------|--------|
| +-+                                                                                                                                                                                                   |         |             |           |        |
| +-+                                                                                                                                                                                                   |         |             |           |        |
| BlackBox name  Instances   +-++  Report Cell Usage: ++      Cell  Count   ++  1  LUT4   16   2  IBUF   4   3  OBUF   16  ++  Report Instance Areas: ++      Instance  Module  Cells   ++  1  top   36 | Report  | BlackBoxes  | 3:        |        |
| +-++  Report Cell Usage:                                                                                                                                                                              | +-+     |             | +         | +      |
| #-++  Report Cell Usage:                                                                                                                                                                              | Blac    | kBox name   | Instand   | ces    |
| Report Cell Usage: +++      Cell  Count   ++  1    LUT4   16   2    IBUF   4   3    OBUF   16  ++   Report Instance Areas: ++                                                                         | +-+     |             | -+        | +      |
| ++                                                                                                                                                                                                    | +-+     |             | -+        | +      |
| ++                                                                                                                                                                                                    |         |             |           |        |
|                                                                                                                                                                                                       | Report  | Cell Usage  | e:        |        |
| ++  1  LUT4   16   2  IBUF   4   3  OBUF   16  ++  Report Instance Areas: ++    Instance  Module  Cells   ++  1  top     36                                                                           | +       | +           | +         |        |
| 1                                                                                                                                                                                                     | 1       | Cell  Cou   | ınt       |        |
| 2                                                                                                                                                                                                     | +       | +           | +         |        |
| 3                                                                                                                                                                                                     | 1       | LUT4        | 16        |        |
| Report Instance Areas: ++    Instance   Module   Cells   ++  1  top     36                                                                                                                            | 12      | IBUF        | 4         |        |
| Report Instance Areas: ++     Instance   Module   Cells   ++  1   top     36                                                                                                                          | 3       | OBUF        | 16        |        |
| Instance   Module   Cells                                                                                                                                                                             | +       | +           | +         |        |
| Instance   Module   Cells                                                                                                                                                                             |         |             |           |        |
| Instance  Module  Cells   ++                                                                                                                                                                          | Report  | Instance A  | Areas:    |        |
| 1  top   36                                                                                                                                                                                           | +       | +           | +         | -++    |
| 1  top     36                                                                                                                                                                                         | 1       | Instance    | Module    | Cells  |
|                                                                                                                                                                                                       | +       | +           | +         | -++    |
| ++                                                                                                                                                                                                    | 1       | top         | I         | 36     |
|                                                                                                                                                                                                       | +       | +           | +         | -++    |
|                                                                                                                                                                                                       |         |             |           |        |
|                                                                                                                                                                                                       |         |             |           |        |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.765 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.3°C

Thermal Margin: 56.7°C (29.9 W)

Effective  $\vartheta JA$ : 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 7. 4-Bit BCD Synchronous Counter

# Verilog code:

```
timescale 1ns / 1ps
module bcd_4_bit_synchronous_counter(
   input clk,
   input rst,
   output reg [3:0] count
   reg [3:0]t;
   always @ (posedge clk)
   begin
     if (rst)
     begin
      t <= 4'b0000;
       count <= 4'b0000;
     end
     else
     begin
       t <= t + 1;
       if (t == 4'b1001)
       begin
        t <= 4'b0000;
       end
       count <= t;
      end
    end
endmodule
```

#### Testbench:

```
`timescale 1ns / 1ps
module bcd_4_bit_synchronous_counter_tb(
   );
    reg clk;
    reg rst;
    wire [3:0] count;
    bcd_4_bit_synchronous_counter uut(clk,rst,count);
    initial begin
      clk = 0;
       forever #5 clk = ~clk;
     end
     initial begin
      rst = 1;
      #10 rst = 0;
       $monitor ("T=%0t out=%b", $time, count);
       #150 rst = 1;
      #10 \text{ rst} = 0;
      #200
      $finish;
endmodule
```

#### Simulation:



#### Schematic:



### Synthesis report:

Start Writing Synthesis Report Report BlackBoxes: +-+----+ | |BlackBox name |Instances | +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |BUFG | 1| 11 12 |LUT1 | |3 |LUT3 | 1| 2| | 4 |LUT4 | |5 |FDRE | 8 | |IBUF | 16 2 | 17 |OBUF | +----+ Report Instance Areas:

| i | Instance | Module | Cells |
|---|----------|--------|-------|
| 1 | •        | Ī      | 19    |
|   |          |        |       |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.609 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 31.8°C

Thermal Margin: 53.2°C (28.1 W)

Effective vJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 8. 4-Bit carry lookahead adder

# Verilog code:

```
`timescale 1ns / 1ps
```

```
module carry_lookahead_adder_4bit(
input [3:0]A, B,
input Cin,
output Cin,
output Cout

);
    wire [3:0] Ci;

assign Ci[0] = Cin;
assign Ci[1] = (A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]);
assign Ci[2] = (A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0])));
assign Ci[3] = (A[2] & B[2]) | ((A[2]^B[2]) & ((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]))));
assign Cout = (A[3] & B[3]) | ((A[3]^B[3]) & ((A[2] & B[2]) | ((A[2]^B[2]) & ((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0]^B[0]) & Ci[0])))));
assign S = A^B^Ci;
```

#### Testbench:

```
`timescale 1ns / 1ps
module carry lookahead adder 4bit tb(
    ) ;
      reg [3:0]A, B;
  reg Cin;
  wire [3:0] S;
  wire Cout;
  wire[4:0] add;
  carry_lookahead_adder_4bit uut(A, B, Cin, S, Cout);
  assign add = {Cout, S};
  initial begin
   $monitor("A = %b: B = %b, Cin = %b --> S = %b, Cout = %b, Addition = %0d", A, B, Cin, S, Cout, add);
    A = 1; B = 0; Cin = 0; #3;
    A = 2; B = 4; Cin = 1; #3;
    A = 4'hb; B = 4'h6; Cin = 0; #3;
    A = 5; B = 3; Cin = 1;
  end
endmodule
```

#### Simulation:

| Name               | Value | 0.000 ns 2.000 ns 4.000 ns 6.000 ns 8.000 ns |
|--------------------|-------|----------------------------------------------|
| > M A[3:0]         | 5     | 1 2 b                                        |
| > <b>W</b> B[3:0]  | 3     | 0 4 6                                        |
| <sup>1</sup> ■ Cin | 1     |                                              |
| > <b>W</b> S[3:0]  | 9     | 7 1                                          |
| 16 Cout            | 0     |                                              |
| > 💆 add[4:0]       | 09    | 01 07 11                                     |
|                    |       |                                              |

# Schematic:



# Synthesis report:

Start Writing Synthesis Report

#### Report BlackBoxes:

### Report Cell Usage:

| + | +    | ++    |
|---|------|-------|
| • |      | Count |
| + | +    | ++    |
| 1 | LUT3 | 2     |
| 2 | LUT5 | 4     |
| 3 | IBUF | 9     |
| 4 | OBUF | 5     |
| + | +    | ++    |

#### Report Instance Areas:

| + | +        | +      | +   | +  |
|---|----------|--------|-----|----|
| 1 | Instance | Module | Cel | ls |
| + | +        | +      | +   | +  |
| 1 | top      | L      | 1   | 20 |
| + | +        | +      | +   | +  |
|   |          |        |     |    |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.954 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.6°C

Thermal Margin: 54.4°C (28.7 W)

Effective  $\theta$ JA: 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 9. N-Bit Comparator

Verilog code:

```
`timescale 1ns / 1ps
module n_bit_comparator(
  input [n-1:0] a,
  input [n-1:0] b,
   output reg greater,
   output reg equal,
   output reg lesser
   );
   parameter n=3;
   always @ (a,b)
   begin
   if(a>b)
   begin
   greater = 1;
   equal = 0;
   lesser = 0;
   end
   else if(a==b)
      begin
      greater = 0;
       equal = 1;
      lesser = 0;
       end
    else if(a<b)
          begin
          greater = 0;
           equal = 0;
           lesser = 1;
           end
   end
endmodule
```

#### Testbench:

```
`timescale 1ns / 1ps
module n_bit_comparator__tb(
    );
   parameter n=3;
    reg [(n-1):0]a;
    reg[(n-1):0]b;
    wire greater, equal, lesser;
    n_bit_comparator uut(a,b,greater,equal,lesser);
    initial begin
    #10 a=3'b000; b=3'b111;
    #10 a=3'b001; b=3'b000;
    #10 a=3'b101; b=3'b101;
    #10 a=3'b011; b=3'b100;
    #10 a=3'b010; b=3'b010;
    #10 a=3'b111; b=3'b111;
    #10 $finish;
    end
     initial begin
       $dumpfile("dump.vcd");
       $dumpvars(0);
     end
endmodule
```

#### Simulation:



#### Schematic:



# Synthesis report:

Start Writing Synthesis Report Report BlackBoxes: +-+---+ | |BlackBox name |Instances | +-+----+ +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |LUT6 | |1 |LDC | 12 |3 |LDCP | 2|

#### Report Instance Areas:

|IBUF |

OBUF |

+----+

| 4

|5

| +       | +         | +        | ++       |
|---------|-----------|----------|----------|
| 1       | Instance  | Module   | Cells    |
| +       | +         | +        | ++       |
| 1       | top       | 1        | 17       |
| +       | +         | +        | ++       |
|         |           |          |          |
| Finishe | d Writing | Synthesi | s Report |

6|

3|

#### Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.341 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 25.6°C

Thermal Margin: 59.4°C (31.3 W)

Effective vJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 10. Serial in serial out shift register

Verilog code:

```
`timescale 1ns / 1ps
module serial_in_serial_out(
   input clk,
   input rst,
   output reg [3:0] q,
   input s_in,
   output reg s_out
   );
   always @ (posedge clk)
   begin
   if(rst)
   begin
   q=4'b0000;
   s_out=1'b0;
   end
   else
   begin
      q=q<<1;
      q[0]=s_in;
       s_out = q[3];
   end
  end
endmodule
```

#### Testbench:

```
timescale 1ns / 1ps
module serial_in_serial_out_tb(
    );
        reg clk,s_in;
        reg rst;
        wire [3:0]q;
        wire s_out;
        serial_in_serial_out uut(clk,rst,q,s_in,s_out);
        initial begin
              clk = 0;
              forever #5 clk = ~clk;
             initial
              begin
                 #10 rst = 1'b1;
                 #10 rst = 1'b0;
                 #100 $finish;
               end
             initial begin
               #10 s in = 1'b0;
               #10 s_in = 1'b1;
               #10 s_in = 1'b1;
               #10 s_in = 1'b0;
               #10 s in = 1'b1;
               #10 s_in = 1'b0;
               #10 s_in = 1'b1;
               #10 $finish;
               end
endmodule
```

#### Simulation:



# Schematic:



# Synthesis report:

Start Writing Synthesis Report

#### Report BlackBoxes:

+-+-----+ | |BlackBox name |Instances | +-+----+

#### Report Cell Usage:

| + | +    | -++   |
|---|------|-------|
| 1 | Cell | Count |
| + | +    | ++    |
| 1 | BUFG | 1     |
| 2 | LUT2 | 2     |
| 3 | FDRE | 4     |
| 4 | IBUF | 3     |
| 5 | OBUF | 5     |
| + | -+   | -++   |

#### Report Instance Areas:

| + | -+       | +      | +   | +  |
|---|----------|--------|-----|----|
| 1 | Instance | Module | Cel | ls |
| + | +        | +      | +   | +  |
| 1 | top      | I      | 1   | 15 |
| + | +        | +      | +   | +  |
|   |          |        |     |    |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.32 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 27.5°C

Thermal Margin: 57.5°C (30.3 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix



# 11. Serial in parallel out shift register

# Verilog code:

```
timescale 1ns / 1ps
module serial_in_parallel_out(
   input clk,
   input rst,
   input s_in,
   output [3:0] s_out_
      Dff d1(clk,reset,s_in,s_out[0]);
      Dff d2(clk,reset,s_out[0],s_out[1]);
      Dff d3(clk,reset,s_out[1],s_out[2]);
      Dff d4(clk,reset,s_out[2],s_out[3]);
endmodule
module Dff(
   input clk,
 input rst,
   input d,
   output reg q
     always @ (posedge clk)
    begin
     if(rst)
      q=0;
     else if(clk)
       q = d ;
     end
endmodule
```

#### Testbench:

```
module serial_in_parallel_out_tb(
   );
  reg clk,rst;
 reg s_in;
 wire [3:0]s_out;
   serial_in_parallel_out uut(clk,rst,s_in,s_out);
   initial begin
   clk = 1'b0;
    forever #5 clk = ~clk;
    end
    initial begin
    rst=1'b1;
     #10 rst = 1'b0;
     end
    always @ (posedge clk,s in)
    begin
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 s_in = 1'b1;
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 $finish;
   end
endmodule
```

#### Simulation:



# Schematic:



# Synthesis report:

```
Start Writing Synthesis Report
Report BlackBoxes:
+-+---+
| |BlackBox name |Instances |
+-+---+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
           1|
|1
    |BUFG |
12
    |FDRE |
|3
    |IBUF |
             2|
     OBUF |
```

#### Report Instance Areas:

| İ                         | Instance                            | Module                                 | Cells                      |  |  |  |  |
|---------------------------|-------------------------------------|----------------------------------------|----------------------------|--|--|--|--|
| 1<br> 2<br> 3<br> 4<br> 5 | top<br>  d1<br>  d2<br>  d3<br>  d4 | <br> Dff<br> Dff_0<br> Dff_1<br> Dff_2 | 11 <br>  1 <br>  1 <br>  1 |  |  |  |  |
| +                         | +                                   | +                                      | ++                         |  |  |  |  |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.075 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.0°C

Thermal Margin: 58.0°C (30.6 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 12. Parallel in parallel out register

# Verilog code:

```
module parallel_in_parallel_out(
input clk,
   input rst,
   input [3:0] d,
   output reg [3:0] q
   );
    always @ (posedge clk,d)
   begin
   if(rst)
q<=4'b0000;
   else
   q<=d;
    end
endmodule
```

```
Testbench:
 module parallel_in_parallel_out_tb(
     );
     reg clk,rst;
 reg [3:0]d;
 wire [3:0]q;
      parallel_in_parallel_out uut(clk,rst,d,q);
   initial begin
     $monitor("%t | d = %b | q = %b",$time,d,q);
   initial begin
    clk=1'b0;
     forever #5 clk=~clk;
   end
   initial begin
    rst = 1'b1;
     #10 rst = 1'b0;
   end
   initial begin
      #00 d=4'b0000;
      #10 d=4'b1001;
      #10 d=4'b1011;
      #10 d=4'b1101;
      #10 d=4'b0101;rst=1'b1;
      #10 d=4'b1010;rst=1'b0;
      #10 d=4'b1100;
       #10 d=4'b1111;
      #10 $finish;
       end
endmodule
```

#### Simulation:

| Name              | Value | 0.000 ns |   | 10.000 n |   | 20.000 г | is | 30.000 |   | 40.000 n |   | 50.000 л |     | 60.000 n |   | 70.000 n | ıs |
|-------------------|-------|----------|---|----------|---|----------|----|--------|---|----------|---|----------|-----|----------|---|----------|----|
| <sup>1</sup> clk  | 1     |          |   |          |   |          |    |        |   |          |   |          |     |          |   |          |    |
| ₩ rst             | 0     |          |   |          |   |          |    |        |   |          |   |          |     |          |   |          |    |
| > <b>W</b> d[3:0] | f     | C        | · | 9        | • | 1        | )  |        | d |          | i |          | a ) | (        | ; | 1        | £  |
| > <b>⊌</b> q[3:0] | f     | C C      |   | 9        | ) | '        | ,  |        | d | (        | 1 |          | a   | •        | • | 1        | f  |
|                   |       |          |   |          |   |          |    |        |   |          |   |          |     |          |   |          |    |

#### Schematic:



# Synthesis report:



Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.093 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.1°C

Thermal Margin: 57.9°C (30.6 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 13. Parallel in serial out register

# Verilog code:

```
module parallel_in_serial_out(
    input clk, ld, rst, [3:0] d,
   output out,
   output [3:0]q
    );
    wire x1,x2,x3;
    d_ff d1(clk,rst,d[0],x1);
    logic s1(d[1],x1,ld,q[0]);
     d_ff d2(clk,rst,q[0],x2);
     logic s2(d[2],x2,ld,q[1]);
     d_ff d3(clk,rst,q[1],x3);
     logic s3(d[3],x3,ld,q[2]);
    d_ff d4(clk,rst,q[2],out);
endmodule
module d_ff(
input clk, rst,d,
output reg q
);
always @ (posedge clk)
    begin
       if(rst)
       q = 1'b_0;
       else
       q = d;
endmodule
module logic(
input d, si, ld,
output q
assign q = (si & ld) | (d & ~ld);
endmodule
```

## Testbench:

```
module parallel_in_serial_out_tb(
);
reg clk,ld;
reg rst;
reg [3:0]d;
wire out;
parallel_in_serial_out uut(clk,ld,rst,d,out);
  initial begin
  clk = 1'b0;
  forever #5 clk = ~clk;
  end
  initial begin
     rst = 1'b1; ld = 1'b1;
  #10 rst = 1'b0; ld = 1'b0;
   end
    initial begin
      #00 d=4'b0000;
      #10 d=4'b1001;
      #10 d=4'b1011;
      #10 d=4'b1101;
      #10 d=4'b0101;
      #10 d=4'b1010;
      #10 d=4'b1100;
      #10 d=4'b1111;
      #10 $finish;
      end
endmodule
```

### Simulation:

| Name              | Value | 0.000 ns | 10.000 ns | 20.000 ns | 30.000 ns | 40.000 ns | 50.000 ns | 60.000 ns | 70.000 ns |
|-------------------|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ¹₽ clk            | 1     |          |           |           |           |           |           |           |           |
| 18 Id             | 0     |          |           |           |           |           |           |           |           |
| 10 rst            | 0     |          |           |           |           |           |           |           |           |
| > <b>™</b> d[3:0] | f     | 0        | 9         | ь         | d         | 5         | a         | c         | f         |
| 18 out            | 1     |          |           |           |           |           |           |           |           |

# Schematic:



# Synthesis report:

Start Writing Synthesis Report

\_\_\_\_\_

Report BlackBoxes:

| |BlackBox name |Instances | +-+----+

Report Cell Usage:

| +  | +     | -++   |
|----|-------|-------|
| 1  | Cell  | Count |
| +  | +     | -++   |
| 1  | BUFG  | 1     |
| 12 | LUT3  | 3     |
| 3  | LUT4  | 2     |
| 4  | FDRE  | 4     |
| 5  | IBUF  | 7     |
| 16 | OBUF  | 4     |
| 7  | OBUFT | 1     |
| +  | +     | -++   |

# Report Instance Areas:

| +  | -+       | -+      | ++ |
|----|----------|---------|----|
| I  | Instance | •       |    |
| +  | -+       | -+      | +  |
| 1  | top      | 1       | 22 |
| 12 | d1       | d_ff    | 2  |
| 3  | d2       | d_ff_0  | 2  |
| 4  | d3       | d_ff_1  | 1  |
| 5  | d4       | d_ff_2  | 1  |
| 6  | s1       | logic   | 1  |
| 7  | s2       | logic_3 | 1  |
| 8  | s3       | logic_4 | 1  |
| +  | -+       | -+      | ++ |

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.636 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.1°C

Thermal Margin: 56.9°C (30.0 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 14. Bidirection shift register

# Verilog code:

```
module bidirection_shift_register(
input clk, rst, dir, d,
output reg [n-1:0]q,
 output reg out
    );
 parameter n = 4;
  always @ (posedge clk)
   begin
      if(rst)
         q = 4'b0000;
       else
          begin
           case(dir)
             0 : begin q = {q[n-2:0],d}; out <= q[0]; end</pre>
              1 : begin q = {d,q[n-1:1]}; out <= q[0]; end
           endcase
          end
endmodule
```

#### Testbench:

```
module bidirection shift register tb();
    parameter n = 4;
         reg clk,rst,dir,d;
         wire [n-1:0]q;
         wire out;
         bidirection shift register uut(clk,rst,dir,d,q,out);
         initial begin
         $monitor("clk = %t | dir = %b | d = %b | q = %b",$time,dir,d,q);
         end
         initial begin
         clk = 1'b0;
         forever #5 clk = ~clk;
         end
         initial begin
         #10 rst = 1'b1;
         #10 rst = 1'b0;
         end
         initial begin
         #10 dir = 0 ; d=1'b0;
          #10 dir = 0 ; d=1'b1;
          #10 dir = 0 ; d=1'b1;
          #10 dir = 0 ; d=1'b0;
          #10 dir = 0 ; d=1'b1;
          #10 dir = 1 ; d=1'b0;
         #10 dir = 1 ; d=1'b1;
         #10 dir = 1 ; d=1'b1;
         #10 dir = 1 ; d=1'b0;
         #10 dir = 1 ; d=1'b1;
endmodule
```

# Simulation:



# Schematic:



## Synthesis report:



### Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.716 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.1°C

Thermal Margin: 54.9°C (28.9 W)

Effective  $\vartheta JA$ : 1.9°C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity



# 15.PRBS Sequence generator

# Verilog code:

```
module prbs(
   input clk,
   input rst,
   output out
);
reg [3:0] temp;

always @ (posedge clk or posedge rst)
begin
   if(rst)
      temp =4'b1000;
   else if(clk)

temp <={temp[1] ^ temp[0],temp[3],temp[2],temp[1]};
   end
assign out = temp[0];
endmodule</pre>
```

#### Testbench:

```
module prbs_tb();
   reg clk, rst;
   wire out;
   prbs uut ( clk, rst,out);
  initial begin
  $monitor("clk = %t | rst = %b | out = %b ",$time,rst,out);
   end
  initial begin
    clk <= 0;
  forever #5 clk <= ~clk;
    end
   initial begin
          rst = 1;
    #10 rst = 0;
   end
    initial begin
      #500 $finish;
    end
endmodule
```

# Simulation:



# Schematic:



# Synthesis report:

| Start Writing Synthesis Report                                      |
|---------------------------------------------------------------------|
| Report BlackBoxes:<br>+-++<br>   BlackBox name  Instances  <br>+-++ |
| Report Cell Usage: ++     Cell   Count   ++  1   OBUF   1  ++       |
| Report Instance Areas:                                              |
| Instance   Module   Cells                                           |
| 1  top   1   1                                                      |
| Finished Writing Synthesis Report                                   |

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.079 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 25.1°C

Thermal Margin: 59.9°C (31.6 W)

Effective vJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: High

Launch Power Constraint Advisor to find and fix



#### 16.8-Bit Subtractor

# Verilog code:

```
module subtractor 8bit(
 input [7:0] a, [7:0] b, [7:0]D,
  output Borrow
    );
    wire x1,x2,x3,x4,x5,x6,x7;
     full_subtractor s1(a[0],b[0],1'b0,x1,D[0]);
     full_subtractor s2(a[1],b[1],1'b0,x2,D[1]);
    full_subtractor s3(a[2],b[2],1'b0,x3,D[2]);
    full_subtractor s4(a[3],b[3],1'b0,x4,D[3]);
    full subtractor s5(a[4],b[4],1'b0,x5,D[4]);
    full_subtractor s6(a[5],b[5],1'b0,x6,D[5]);
     full_subtractor s7(a[6],b[6],1'b0,x7,D[6]);
     full_subtractor s8(a[7],b[7],1'b0,Borrow,D[7]);
 endmodule
module full_subtractor(
    input x, y, z,
    output borrow, diff
     );
    assign diff = x^y^z;
    assign borrow = \sim x^y \mid \sim x^z \mid y^z;
 endmodule
Testbench:
module subtractor_8bit_tb(
    );
    req[7:0]a;
    req[7:0]b;
    wire [7:0] D;
    wire Borrow;
    initial begin
       subtractor_8bit uut(a,b,D,Borrow);
```

```
$monitor($time | " $time | a = %b | b = %b | borrow = %b | D = %b | borrow = %b ",a,b,Borrow,D);
      initial begin
        #000 a=8'b11000011; b=8'b10000001;
       #100 a=8'b01000011; b=8'b11001001;
       #100 a=8'b11011011; b=8'b10001111;
       #100 a=8'b11110011; b=8'b10100101;
        #100 a=8'b01000011; b=8'b11100001;
        #100 a=8'b00000111; b=8'b10001001;
        #100 a=8'b00100011; b=8'b11000001;
        #100 a=8'b00000011; b=8'b00000001;
       #100 $finish;
        end
      initial begin
        $dumpfile("dump.vcd");
       $dumpvars(0);
      end
endmodule
```

# Simulation:

| Name              |    | 0.000 ns |    |    |     | 400.000 ns |    | 600.000 ns | 700.000 ns |
|-------------------|----|----------|----|----|-----|------------|----|------------|------------|
| > <b>W</b> a[7:0] | 03 | е3       | 43 | db | f3  | 43         | 07 | 23         | 03         |
| > <b>W</b> b[7:0] | 01 | 81       | c9 | 8£ | a.5 | e1         | 89 | c1         | 01         |
| > <b>W</b> D[7:0] | 02 | 42       | 8a | 54 | 56  | a2         | 8e | e2         | 02         |
| <b>™</b> Borrow   | 1  |          |    |    |     |            |    |            |            |
|                   |    |          |    |    |     |            |    |            |            |

# Schematic:



## Synthesis report:

#### Start Writing Synthesis Report \_\_\_\_\_

#### Report BlackBoxes:

| +- | -+       |      | -+        | + |
|----|----------|------|-----------|---|
| 1  | BlackBox | name | Instances | I |
| +- | +        |      | +         | + |
|    |          |      |           |   |

#### Report Cell Usage:

| +  | +    | ++    |
|----|------|-------|
| I  | Cell | Count |
| +  | +    | ++    |
| 1  | LUT2 | 1     |
| 12 | IBUF | 2     |
| 3  | OBUF | 1     |
| +  | +    | ++    |

#### Report Instance Areas:

| +          | +                      | +      | ++    |
|------------|------------------------|--------|-------|
| 1          | Instance               | Module | Cells |
| +          | +                      | +      | ++    |
| 1          | top                    | 1      | 4     |
| +          | +                      | +      | ++    |
|            |                        |        |       |
| m1 - 1 - 1 | A result of the second | a      |       |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

**Total On-Chip Power:** 0.321 W

**Design Power Budget: Not Specified** 

**Power Budget Margin:** N/A Junction Temperature: 25.6°C

59.4°C (31.3 W) Thermal Margin:

Effective &JA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 17.8-Bit Adder/subtractor

# Verilog code:

```
module bit8_adder_sub(
    input [7:0] a,
    input [7:0] b,
    input mode,
    output reg [7:0] result,
    output reg v
    );
    reg [7:0]com;
    always @ (a,b,mode)
     begin
       if (mode == 1)
       begin
          com = \sim b + 1'b1;
          result = a + com;
            v = (a[7]\&com[7]\&com[7]\&com[7]\&com[7]\&com[7]);
        end
       else if(mode == 0)
        begin
           result = a + b;
            v = (a[7] \&b[7] \& -result[7]) | (-a[7] \& -b[7] \& result[7]);
        end
      end
endmodule
```

### Testbench:

```
module bit8_sub_add_tb(
   );
       reg [7:0] a,b;
       reg mode;
       wire [7:0] result;
       wire v;
        initial begin
                $monitor($time | " $time | a = %b | b = %b | mode = %b | v = %b | result = %b ",a,b,mode,v,result);
              bit8_adder_sub uut(a,b,mode,result,v);
              initial begin
               #000 mode = 1'b1; a=8'b11000011; b=8'b10000001;
                #100 mode = 1'b1; a=8'b01000011; b=8'b11001001;
                #100 mode = 1'b1; a=8'b11011011; b=8'b10001111;
                #100 mode = 1'b1; a=8'b11110011; b=8'b10100101;
                #100 mode = 1'b0; a=8'b01000011; b=8'b11100001;
                #100 mode = 1'b0; a=8'b00000111; b=8'b10001001;
                #100 mode = 1'b0; a=8'b00100011; b=8'b11000001;
                #100 mode = 1'b0; a=8'b00000011; b=8'b00000001;
                #100 $finish;
                end
              initial begin
               $dumpfile("dump.vcd");
                $dumpvars(0);
```

### Simulation:

| Name                   | Value | 0.000 ns | 100.000 ns | 200.000 ns | 300.000 ns | 400.000 ns | 500.000 ns | 600.000 ns | 700.000 ns |
|------------------------|-------|----------|------------|------------|------------|------------|------------|------------|------------|
| > <b>W</b> a[7:0]      | 03    | c3       | 43         | db         | £3         | 43         | 07         | 23         | 03         |
| > <b>W</b> b[7:0]      | 01    | 81       | c9         | 8f         | a5         | e1         | 89         | c1         | 01         |
| <sup>™</sup> mode      | 0     |          |            |            |            |            |            |            |            |
| > <b>W</b> result[7:0] | 04    | 42       | 7a         | 4c         | 4e         | 24         | 90         | e4         | 04         |
| ¹ĕ v                   | 0     |          |            |            |            |            |            |            |            |
|                        |       |          |            |            |            |            |            |            |            |

# Schematic:



# Synthesis report:

Start Writing Synthesis Report

#### Report BlackBoxes:

| |BlackBox name |Instances | +-+-----+

#### Report Cell Usage:

| +  | -+     | -++   |
|----|--------|-------|
| 1  | Cell   | Count |
| +  | +      | ++    |
| 1  | CARRY4 | 4     |
| 2  | LUT2   | 16    |
| 3  | LUT3   | 8     |
| 4  | LUT4   | 2     |
| 5  | LUT6   | 1     |
| 16 | IBUF   | 17    |
| 7  | OBUF   | 9     |
| +  | +      | -++   |

#### Report Instance Areas:

| Ī | Instance | Module | Cells | i |
|---|----------|--------|-------|---|
| 1 | top      | Ī      | ] 5   | 7 |
|   |          |        |       |   |

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 6.45 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 37.1°C

Thermal Margin: 47.9°C (25.2 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 18.4-Bit Multiplier

# Verilog code:

```
module multiplier 4bit(
product, inp1, inp2
    );
      output [7:0]product;
 input [3:0]inp1;
 input [3:0]inp2;
  assign product[0]=(inp1[0]&inp2[0]);
  wire x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17;
  HA HA1(product[1],x1,(inp1[1]&inp2[0]),(inp1[0]&inp2[1]));
  FA FA1(x2,x3,inp1[1]&inp2[1],(inp1[0]&inp2[2]),x1);
  FA FA2(x4,x5,(inp1[1]&inp2[2]),(inp1[0]&inp2[3]),x3);
  HA HA2(x6,x7,(inp1[1]&inp2[3]),x5);
  HA HA3(product[2],x15,x2,(inp1[2]&inp2[0]));
  FA FA5(x14,x16,x4,(inp1[2]&inp2[1]),x15);
  FA FA4(x13,x17,x6,(inp1[2]&inp2[2]),x16);
  FA FA3(x9,x8,x7,(inp1[2]&inp2[3]),x17);
 HA HA4(product[3], x12, x14, (inp1[3]&inp2[0]));
  FA FA8(product[4], x11, x13, (inp1[3]&inp2[1]), x12);
  FA FA7(product[5], x10, x9, (inp1[3]&inp2[2]), x11);
  FA FA6(product[6],product[7],x8,(inp1[3]&inp2[3]),x10);
endmodule
module HA(sout,cout,a,b);
 output sout, cout;
 input a,b;
 assign sout=a^b;
 assign cout=(a&b);
endmodule
module FA(sout,cout,a,b,cin);
 output sout, cout;
 input a,b,cin;
 assign sout=(a^b^cin);
  assign cout=((a&b)|(a&cin)|(b&cin));
endmodule
```

# Testbench:

```
module multiplier_4bit_tb(
    );
   reg [3:0]inp1;
   reg [3:0]inp2;
   wire [7:0]product;
   multiplier_4bit uut(.inp1(inp1),.inp2(inp2),.product(product));
   initial
   begin
     inp1=10;
     inp2=12;
     #30 ;
     inp1=13;
     inp2=12;
     #30 ;
     inp1=10;
     inp2=22;
     #30 ;
     inp1=11;
     inp2=22;
     #30 ;
     inp1=12;
     inp2=15;
     #30 ;
     $finish;
   end
endmodule
```

### Simulation:

| Name                  | Value | 0.000 ns | 20.000 ns |    | 40.000 ns | 60.000 ns | 80.000 ns |       |   | 120.000 ns | 140.000 |
|-----------------------|-------|----------|-----------|----|-----------|-----------|-----------|-------|---|------------|---------|
| > <b>W</b> inp1[3:0]  | С     | a        | X         |    | d         | a         |           |       | b | ·          |         |
| > <b>!!</b> inp2[3:0] | f     | c        |           |    |           | 6         |           |       |   | £          |         |
| > • product[7:0]      | b4    | 78       |           | 9c |           | 3с        |           | 3c 42 |   | b4         |         |

# Schematic:



# Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

|    | -+       |      | +         | _  |
|----|----------|------|-----------|----|
| I  | BlackBox | name | Instances | I  |
| +- | +        |      | +         | +  |
| +- | +        |      | +         | -+ |

# Report Cell Usage:

| + | +    | -++   |
|---|------|-------|
| I | Cell | Count |
| + | +    | -++   |
| 1 | LUT2 | 1     |
| 2 | LUT4 | 6     |
| 3 | LUT6 | 11    |
| 4 | IBUF | 8     |
| 5 | OBUF | 8     |
|   |      |       |

## Report Instance Areas:

| +       | +         | +        | ++       |
|---------|-----------|----------|----------|
| 1       | Instance  | •        |          |
| +       | +         | +        | ++       |
| 1       | top       | 1        | 34       |
| +       | +         | +        | ++       |
|         |           |          |          |
| Finishe | d Writing | Synthesi | s Report |

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 4.135 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 32.8°C

Thermal Margin: 52.2°C (27.5 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 19. Fixed point division

# Verilog code:

```
module fixed_point_division(divisor, dividend, remainder, result);
input [7:0] divisor, dividend;
output reg [7:0] result, remainder;
integer i;
reg [7:0] divisor_copy, dividend_copy;
reg [7:0] temp;
always @(divisor or dividend)
begin
   divisor_copy = divisor;
    dividend_copy = dividend;
    temp = 0;
    for(i = 0; i < 8; i = i + 1)
    begin
        temp = {temp[6:0], dividend_copy[7]};
        dividend_copy[7:1] = dividend_copy[6:0];
        temp = temp - divisor copy;
        if(temp[7] == 1)
       begin
            dividend_copy[0] = 0;
            temp = temp + divisor_copy;
        end
        else
        begin
            dividend_copy[0] = 1;
        end
    end
    result = dividend copy;
    remainder = dividend - (divisor_copy*dividend_copy);
endmodule
```

# Testbench:

```
module fixed_point_division_tb;
    reg [7:0] divisor;
   reg [7:0] dividend;
    wire [7:0] remainder;
    wire [7:0] result;
    fixed_point_division uut (divisor, dividend, remainder, result);
    initial begin
        divisor = 13;
        dividend = 28;
        #100;
        divisor = 5;
        dividend = 25;
        #100
        divisor = 6;
        dividend = 37;
    end
    initial begin
        $monitor("Divisor: %d, Dividend: %d, Remainder: %d, Result: %d\n", divisor, dividend, remainder, result);
endmodule
```

### Simulation:

| Name                    | Value | 0.000 ns | 100.000 ns | 200.000 ns | 300.000 ns | 400.000 ns | 500.000 ns | 600.000 ns |
|-------------------------|-------|----------|------------|------------|------------|------------|------------|------------|
| > <b>W</b> divisor[7:0] | 06    | Od       | 05         | *          |            |            | 0          | 6          |
| > W dividend[7:0        | 25    | 1e       | 19         | *          |            |            | 2          | 5          |
| > <b>V</b> remainr[7:0  | 01    | 02       | 00         | *          |            |            | 0          | 1          |
| > <b>*</b> result[7:0]  | 06    | 02       | 05         | X          |            |            | 0          | 6          |
|                         |       |          |            |            |            |            |            |            |

### Schematic:



## Synthesis report:

Start Writing Synthesis Report

#### Report BlackBoxes:

#### Report Cell Usage:

| + | +      | ++    |
|---|--------|-------|
| İ |        | Count |
| + | +      | ++    |
| 1 | CARRY4 | 36    |
| 2 | LUT1   | 7     |
| 3 | LUT2   | 75    |
| 4 | LUT3   | 49    |
| 5 | LUT4   | 11    |
| 6 | LUT5   | 4     |
| 7 | LUT6   | 23    |
| 8 | IBUF   | 16    |
| 9 | OBUF   | 16    |
| + | +      | ++    |
|   |        |       |

#### Report Instance Areas:

| <br> <br> | +<br> Instance<br>+ | Module | Cells |
|-----------|---------------------|--------|-------|
| 1         |                     | !<br>! |       |
|           |                     |        |       |

Finished Writing Synthesis Report

### Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 17.212 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 57.4°C

Thermal Margin: 27.6°C (14.5 W)

Effective  $\vartheta$ JA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity



# 20. Master slave JK flip flop

# Verilog code:

```
module master_slave_ff(
  input clk,s,r,
   output Q,QBAR
      );
      wire w1, w2, w3, w4;
      wire sclk;
     assign sclk = ~clk;
      jk_flipflop master(clk,s,r,w1,w2);
      jk_flipflop slave(sclk,w1,w2,Q,QBAR);
  endmodule
  module jk_flipflop(
     input clk,
      input j,
      input k,
      output reg q,
      output reg qbar
      );
)
      always @ (posedge clk)
      begin
)
     case ({j,k})
)
        2'b00 : begin q <= q; qbar<= ~q; end
)
         2'b01 : begin q <= 0; qbar<= 1; end
)
        2'b10 : begin q <= 1; qbar<= 0; end
        2'b11 : begin q <= ~q; qbar<= q; end
      endcase
      end
  endmodule
```

### Testbench:

```
module master_slave_ff_tb(
    );
      reg clk;
       reg s;
       reg r;
       wire Q;
       wire QBAR;
       master_slave_ff uut(clk,s,r,Q,QBAR);
       initial begin
               $display("Time=%0t clk=%b s=%b r=%b Q=%b QBAR=%b", $time, clk, s, r, Q, QBAR);
        end
       initial begin
       clk=1'b0;
       forever #5 clk=~clk;
       end
       initial begin
      #10 s=1'b0; r=1'b0;
      #10 s=1'b0; r=1'b1;
      #10 s=1'b1; r=1'b0;
      #10 s=1'b1; r=1'b1;
      #10 s=1'b0; r=1'b0;
      #10 s=1'b0; r=1'b1;
      #10 s=1'b1; r=1'b0;
      #10 s=1'b1; r=1'b1;
      #10 $finish;
      end
endmodule
```

### Simulation:



### Schematic:



### Synthesis report:

```
Start Writing Synthesis Report
Report BlackBoxes:
+-+---+
| |BlackBox name |Instances |
+-+----+
+-+----+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
   |BUFG |
12
   |LUT1 |
|3
    |LUT3 |
            4 |
    FDRE
            4 |
| 4
|5
    |IBUF |
    OBUF |
Report Instance Areas:
+----+
    |Instance |Module
                    |Cells |
 ----+-----
   |top
          |1
                        15|
   | master |jk_flipflop |
    | slave |jk_flipflop_0 |
  ----+
Finished Writing Synthesis Report : Time
```

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.589 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.0°C

Thermal Margin: 57.0°C (30.1 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 21. Positive edge detector

# Verilog code:

#### Testbench:

```
module pos_edge_det_tb;
   reg sig;
   reg clk;
   wire pe;
   pos_edge_det uut (sig,clk, pe);
   always #5 clk = ~clk;
   initial begin
       clk <= 0;
       sig <= 0;
       #15 sig <= 1;
       #20 sig <= 0;
       #15 sig <= 1;
        #10 sig <= 0;
        #20 $finish;
   end
   initial begin
       $dumpvars;
      $dumpfile("dump.vcd");
endmodule
```

### Simulation:



### Schematic:



# Synthesis report:

| Start Writing Synthesis Report    |
|-----------------------------------|
|                                   |
|                                   |
| Report BlackBoxes:                |
| +-+                               |
| BlackBox name  Instances          |
| +-++                              |
| +-+                               |
|                                   |
| Report Cell Usage:                |
| ++                                |
| Cell  Count                       |
| ++                                |
| 1     BUFG   1                    |
| 2  LUT2   1                       |
| 3  FDRE   1                       |
| 4  IBUF   2                       |
| 5  OBUF   1                       |
| ++                                |
| I<br>I                            |
| Report Instance Areas:            |
| ++                                |
|                                   |
| ++                                |
| 1  top     6                      |
| ++                                |
|                                   |
| Finished Writing Synthesis Report |

# Power report:

invalid switching activity

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

| Total On-Chip Power:                | 0.335 W         |  |  |  |  |  |
|-------------------------------------|-----------------|--|--|--|--|--|
| Design Power Budget:                | Not Specified   |  |  |  |  |  |
| Power Budget Margin:                | N/A             |  |  |  |  |  |
| Junction Temperature:               | 25.6°C          |  |  |  |  |  |
| Thermal Margin:                     | 59.4°C (31.3 W) |  |  |  |  |  |
| Effective &JA:                      | 1.9°C/W         |  |  |  |  |  |
| Power supplied to off-chip devices: | 0 W             |  |  |  |  |  |
| Confidence level:                   | Low             |  |  |  |  |  |
| Launch Power Constraint Advisor to  | find and fix    |  |  |  |  |  |



### 22.BCD adder

# Verilog code:

```
module bcd_adder(
a,b,carry_in,sum,carry
    );
    input [3:0] a,b;
    input carry_in;
    output [3:0] sum;
    output carry;
    reg [4:0] sum_temp;
    reg [3:0] sum;
    reg carry;
    always @(a,b,carry_in)
    begin
        sum_temp = a+b+carry_in;
        if(sum temp > 9)
                          begin
           sum_temp = sum_temp+6;
           carry = 1;
           sum = sum_temp[3:0]; end
        else begin
           carry = 0;
           sum = sum_temp[3:0];
        end
    end
endmodule
```

#### Testbench:

```
module bcd_adder_tb(
      );
      reg [3:0] a;
      reg [3:0] b;
      reg carry_in;
      wire [3:0] sum;
      wire carry;
      bcd adder uut (
          .a(a),
          .b(b),
          .carry_in(carry_in),
          .sum(sum),
          .carry(carry)
      );
      initial begin
          a = 0; b = 0; carry_in = 0; #100;
          a = 6; b = 9; carry in = 0; #100;
          a = 3; b = 3; carry_in = 1;
          a = 4; b = 5; carry_in = 0; #100;
)
          a = 8; b = 2; carry_in = 0; #100;
)
          a = 9; b = 9; carry_in = 1;
                                         #100;
)
  endmodule
```

# Simulation:

| Name              | Value | 0.000 ns | l t | 200.000 ns |   | 400.000 ns |
|-------------------|-------|----------|-----|------------|---|------------|
| > <b>™</b> a[3:0] | 4     | 0        | 6   | 3          | 4 | 8          |
| > <b>™</b> b[3:0] | 5     | 0        | 9   | 3          | 5 | 2          |
| <b>□</b> carry_in | 0     |          |     |            |   |            |
| > 😽 sum[3:0]      | 9     | 0        | 5   | 7          | 9 | 0          |
| ¹a carry          | 0     |          |     |            |   |            |
|                   |       |          |     |            |   |            |
|                   |       |          |     |            |   |            |

### Schematic:



# Synthesis report:

Start Writing Synthesis Report

#### Report BlackBoxes:

#### Report Cell Usage:

| +  | +    | ++    |
|----|------|-------|
| 1  | Cell | Count |
| +  | +    | ++    |
| 1  | LUT3 | 1     |
| 12 | LUT5 | 2     |
| 3  | LUT6 | 4     |
| 4  | IBUF | 9     |
| 5  | OBUF | 5     |
| +  | +    | ++    |

### Report Instance Areas:

| Ī | +<br> Instance<br>+ | Module | Cells |
|---|---------------------|--------|-------|
| 1 | •                   | i<br>I | 21    |
|   |                     |        |       |

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.133 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.9°C

Thermal Margin: 54.1°C (28.5 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



# 23.4-Bit carry select adder

# Verilog code:

```
module carry_select_adder
        ( input [3:0] A,B,
            input cin,
            output [3:0] S,
            output cout
            );
wire [3:0] temp0, temp1, carry0, carry1;
//for carry 0
fulladder fa00(A[0],B[0],1'b0,temp0[0],carry0[0]);
fulladder fa01(A[1],B[1],carry0[0],temp0[1],carry0[1]);
fulladder fa02(A[2],B[2],carry0[1],temp0[2],carry0[2]);
fulladder fa03(A[3],B[3],carry0[2],temp0[3],carry0[3]);
1//for carry 1
fulladder fa10(A[0],B[0],1'b1,temp1[0],carry1[0]);
fulladder fa11(A[1],B[1],carry1[0],temp1[1],carry1[1]);
fulladder fa12(A[2],B[2],carry1[1],temp1[2],carry1[2]);
fulladder fa13(A[3],B[3],carry1[2],temp1[3],carry1[3]);
//mux for carry
multiplexer2 mux_carry(carry0[3],carry1[3],cin,cout);
//mux's for sum
multiplexer2 mux_sum0(temp0[0],temp1[0],cin,S[0]);
multiplexer2 mux_sum1(temp0[1],temp1[1],cin,S[1]);
multiplexer2 mux_sum2(temp0[2],temp1[2],cin,S[2]);
multiplexer2 mux_sum3(temp0[3],temp1[3],cin,S[3]);
endmodule
Testbench:
 module fulladder
            input a,b,cin,
              output sum, carry
```

```
);
assign sum = a ^ b ^ cin;
assign carry = (a & b) | (cin & b) | (a & cin);
endmodule
module multiplexer2
        ( input i0, i1, sel,
            output reg bitout
            );
always@(i0,i1,sel)
begin
if(sel == 0)
    bitout = i0;
else
    bitout = i1;
end
endmodule
```

# Simulation:

| Name               | Value    | 0.000 ns | 10 000 ns | 20.000 ns | 30.000 ns | 40.000 ns | 50.000 ns | 60.000 ns | 70.000 ns | 80.000 ns | 90.000 ns | 100.000 ns | 110.000 ns | 120.000 ns | 130.000 ns | 140.000 ns | 150.000 ns |
|--------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|
| > ₩ A[3:0]         | 0        |          |           |           |           |           |           |           |           | ò         |           |            |            |            |            |            |            |
| ▶ <b>₩</b> B[3:0]  | 1        | 0        | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | a          | ь          | C          | d          | e          | f          |
| <sup>1</sup> cin   | 0        |          |           |           |           |           |           |           |           |           |           |            |            |            |            |            |            |
| ▼ S[3:0]           | 1        | 0        | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | a          | ь          | , c        | d          | e          | f          |
| ¹⊌ cout            | 0        |          |           |           |           |           |           |           |           |           |           |            |            |            |            |            |            |
| ▶ <b>™</b> i[31:0] | 00000000 |          |           |           |           |           |           |           | 0000      | 0000      |           |            |            |            |            |            | ·          |
| ▶ <b>™</b> j[31:0] | 0000001  | 00000000 | 00000001  | 00000002  | 00000003  | 00000004  | 00000005  | 00000006  | 00000007  | 00000008  | 00000009  | 0000000a   | 0000000ъ   | 0000000c   | 00000004   | 0000000e   | 0000000£   |
| ▶ ■ error[31:0]    | 00000000 |          |           |           |           |           |           |           | 00        | 000000    |           |            |            |            |            |            |            |
|                    |          |          |           |           |           |           |           |           |           |           |           |            |            |            |            |            |            |

# Schematic:



# Synthesis report:

| Start Writing Synthesis Report                                      |               |                 |  |
|---------------------------------------------------------------------|---------------|-----------------|--|
|                                                                     |               |                 |  |
| Report BlackBoxes:<br>+-++<br>   BlackBox name  Instances  <br>+-++ |               |                 |  |
| Report Cell Usage:                                                  |               |                 |  |
| 1                                                                   | Cell  Count   |                 |  |
| +                                                                   | -+            | +               |  |
| 1                                                                   | LUT3          | 2               |  |
| 12                                                                  | LUT5          | 4               |  |
| 3                                                                   | IBUF          | 9               |  |
| 4                                                                   | OBUF          | 5               |  |
| +                                                                   | -+            | +               |  |
|                                                                     |               |                 |  |
| Report                                                              | Instance Are  | eas:            |  |
| +                                                                   | -+            | +               |  |
| 1                                                                   | I Tratanas II | fodula [Colla ] |  |

|   | Instance | Module |     |
|---|----------|--------|-----|
| 1 |          | İ      | 201 |
|   |          |        |     |

Finished Writing Synthesis Report

# Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.956 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.6°C

Thermal Margin: 54.4°C (28.7 W)

Effective  $\vartheta JA$ : 1.9°C/W Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix



# 24. Moore FSM 1010 sequence detector

# Verilog code:

```
module moore_fsm_1010(
    input clk,
   input rst,
   input in,
    output reg out
    );
    reg [2:0]state,next_state;
    parameter s0 = 3'b001;
    parameter s1 = 3'b010;
    parameter s2 = 3'b011;
    parameter s3 = 3'b100;
    parameter s4 = 3'b101;
    always @ (state or in)
    begin
    case (state)
       s0: if (in == 1'b1)
             begin
            next_state = s1;
             out=1'b0;
              end
          else
             begin
             next_state = s0;
             out=1'b0;
              end
        s1: if (in == 1'b0)
             begin
             next_state = s2;
              out=1'b0;
              end
            else
             begin
             next state = s1;
             out=1'b0;
             end
```

```
s2: if (in == 1'b1)
             begin
             next state = s3;
              out=1'b0;
              end
           else
              begin
             next_state = s0;
              out=1'b0;
              end
        s3: if (in == 1'b0)
            begin
            next_state = s4;
            out=1'b0;
            end
          else
            begin
            next state = s1;
           out=1'b0;
            end
         s4: if (in == 1'b0)
           begin
           next_state = s0;
            out=1'b1;
            end
          else
           begin
           next_state = s1;
           out=1'b1;
            end
          default: next_state = s0;
      endcase
    end
    always@(posedge clk)
              begin
               if (rst)
                 state <= s0;
               else
                 state <= next_state;
              end
endmodule
```

### Testbench:

```
module moore_fsm_1010_tb(
     );
     reg clk;
     reg rst;
     reg in;
     wire out;
     moore_fsm_1010 uut(clk,rst,in,out);
     initial begin
     $monitor($time," | rst=%b | in=%b | out=%b",rst,in,out );
     end
     initial begin
     clk = 1'b0;
     forever #5 clk = ~clk;
     end
     initial begin
       rst = 1'b1;
      #10 rst = 1'b0; in=1'b0;
)
      #10 in=1'b1;
      #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b1;
    #10 in=1'b0;
      #10 in=1'b1;
)
      #10 in=1'b0;
      #10 in=1'b1;
)
      #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b0;
      #10 in=1'b0;
         end
  endmodule
```

#### Simulation:



### Schematic:



### Synthesis report:

Start Writing Synthesis Report Report BlackBoxes: +-+---+ | |BlackBox name |Instances | +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |BUFG | 1| 1 |LUT2 | 12 |LUT4 | 13 11 | 4 |LUT5 | 2| |FDRE | 15 4 | |FDSE | 16 1| 17 |LD | 1| 18 |IBUF | 3| 19 |OBUF | 11 Report Instance Areas:

| + | -+       | +      | +   | +  |
|---|----------|--------|-----|----|
| 1 | Instance | Module | Cel | ls |
| + | +        | +      | +   | +  |
| 1 | top      | L      | I   | 17 |
| + | +        | +      | +   | +  |
|   |          |        |     |    |

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.126 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 25.2°C

Thermal Margin: 59.8°C (31.5 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix



### 25.N:1 MUX

# Verilog code:

```
module mux_4_1(
   input [1:0] sel,
   input i0,i1,i2,i3,
   output reg y);

always @(*) begin
   case(sel)
    2'h0: y = i0;
    2'h1: y = i1;
    2'h2: y = i2;
    2'h3: y = i3;
    default: $display("Invalid sel input");
   endcase
   end
endmodule
```

### Testbench:

```
module tb;
reg [1:0] sel;
reg i0,i1,i2,i3;
wire y;

mux_4_1 mux(sel, i0, i1, i2, i3, y);

initial begin
    $monitor("sel = %b -> i3 = %0b, i2 = %0b ,i1 = %0b, i0 = %0b -> y = %0b", sel,i3,i2,i1,i0, y);
    {i3,i2,i1,i0} = 4'h5;
    repeat(6) begin
    sel = $random;
    $5;
    end
end
end
endmodule
```

#### Simulation:



# Schematic:



# Synthesis report:

Start Writing Synthesis Report \_\_\_\_\_ Report BlackBoxes: +-+---+ | |BlackBox name |Instances | +-+---+ +-+---+ Report Cell Usage:

| +  | -+   | -++   |
|----|------|-------|
| 1  | Cell | Count |
| +  | -+   | ++    |
| 1  | LUT6 | 1     |
| 12 | IBUF | 6     |
| 3  | OBUF | 1     |
| +  | -+   | ++    |

### Report Instance Areas:

|         | +         |           |          |
|---------|-----------|-----------|----------|
| Ī       | Instance  | Module    | Cells    |
| 1       | top<br>   | I         | 8        |
|         |           |           |          |
| Finishe | d Writing | Synthesis | s Report |
|         |           |           |          |

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.535 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 26.0°C

Thermal Margin: 59.0°C (31.1 W)

Effective  $\vartheta JA$ : 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level:

Launch Power Constraint Advisor to find and fix

