Ayrık Matematik

Bağıntılar ve Fonksiyonlar

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2011

Lisans

©2001-2011 T. Uyar, A. Yayımlı, E. Harmancı

- to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
 - Noncommercial You may not use this work for commercial purposes.
 - Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only

Legal code (the full license):

http://creativecommons.org/licenses/bv-nc-sa/3.0/

Konular

Bağıntılar

Giris Bağıntı Nitelikleri Eşdeğerlilik

Fonksivonlar

Giris

Güvercin Deliği İlkesi

Rekürsiyon

Bağıntı

Tanım

bağıntı:
$$\alpha \subseteq A \times B \times C \cdots \times N$$

- coklu: bağıntının her bir elemanı
- α ⊆ A × B: ikili bağıntı
- α ⊆ A × A: A kümesinde ikili bağıntı
- gösterilim:
 - cizerek
 - matrisle

Bağıntı Örneği

Örnek

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}$$

$$\alpha = \{(a_1, b_1), (a_1, b_3), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3), (a_4, b_1)\}$$

	b_1	0 1 0 0	<i>b</i> ₃		1 1	٥	
a ₁	1	0	1	$M_{\alpha} =$	١n	1	
a_2	0	1	1	$M_{\alpha} =$	l 1	0	
a_3	1	0	1		l î	0	
a4	1	0	0		1	J	

Bağıntı Bileşkesi

Tanım

bağıntı bileskesi:

 $\alpha \subseteq A \times B \land \beta \subseteq B \times C$

 $\Rightarrow \alpha\beta = \{(a, c)|a \in A, c \in C, \exists b \in B[a\alpha b \land b\beta c)]\}$

$$M_{\alpha\beta} = M_{\alpha} \times M_{\beta}$$

Bağıntı Bileşkesi Örneği

Örnek

$$M_{\alpha} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} \qquad M_{\beta} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix} \qquad M_{\alpha\beta} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$

Bağıntı Bileşkesi Matrisi Örneği

$$M_{\alpha\beta} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\alpha \beta =
\begin{vmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{vmatrix}$$

Bağıntı Bileşkesinde Birleşme

Teorem

 $(\alpha\beta)\gamma = \alpha(\beta\gamma) = \alpha\beta\gamma$

Bağıntı Bileskesinde Birlesme

Tanit.

$$(\mathbf{a},\mathbf{d})\in(\alpha\beta)\gamma$$

$$\Leftrightarrow \exists c[(a, c) \in \alpha\beta \land (c, d) \in \gamma]$$

 $\Leftrightarrow \exists c[\exists b[(a, b) \in \alpha \land (b, c) \in \beta] \land (c, d) \in \gamma]$

$$\Leftrightarrow \exists b[(a,b) \in \alpha \land \exists c[(b,c) \in \beta \land (c,d) \in \gamma]]$$

$$\Leftrightarrow \exists b[(a,b) \in \alpha \land (b,d) \in \beta \gamma]$$

 \Leftrightarrow $(a, d) \in \alpha(\beta \gamma)$

Bağıntı Bileşkesi Teoremleri

- $\triangleright \alpha, \delta \subseteq A \times B \wedge \beta, \gamma \subseteq B \times C$
 - α(β ∪ γ) = αβ ∪ αγ
 - ▶ $\alpha(\beta \cap \gamma) \subseteq \alpha\beta \cap \alpha\gamma$
 - $(\alpha \cup \delta)\beta = \alpha\beta \cup \delta\beta$
 - $\bullet (\alpha \cap \delta)\beta \subset \alpha\beta \cap \delta\beta$
 - $(\alpha \subset \delta \land \beta \subset \gamma) \Rightarrow \alpha\beta \subset \delta\gamma$

Bağıntı Bileşkesi Teoremleri

$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma.$$

$$(x, y) \in \alpha(\beta \cup \gamma)$$

$$(x,y) \in \alpha(\beta \cup \gamma)$$

$$\Leftrightarrow \exists z[(x, z) \in \alpha \land (z, y) \in (\beta \cup \gamma)]$$

 $\Leftrightarrow \exists z[(x, z) \in \alpha \land ((z, y) \in \beta \lor (z, y) \in \gamma)]$

$$\Leftrightarrow \exists z[(x,z) \in \alpha \land (z,y) \in \beta \lor$$

 $\Leftrightarrow \exists z[((x,z) \in \alpha \land (z,y) \in \beta)$

$$\forall ((x,z) \in \alpha \land (z,y) \in \beta)$$

 $\forall ((x,z) \in \alpha \land (z,y) \in \gamma)$

$$\forall ((x,z) \in \alpha \land (z,y) \in \gamma)$$

$$\Leftrightarrow$$
 $(x, y) \in \alpha\beta \lor (x, y) \in \alpha\gamma$
 \Leftrightarrow $(x, y) \in \alpha\beta \cup \alpha\gamma$

$$\Leftrightarrow$$

Evrik Bağıntı

Tanım $\alpha^{-1}: \{(y,x)|(x,y) \in \alpha\}$ • $M_{\alpha^{-1}} = M_{\alpha}^T$

Evrik Bağıntı Teoremleri

Evrik Bağıntı Teoremleri

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}$$

$$\begin{array}{ll} \Leftrightarrow & (y,x) \in \overline{\alpha} \\ \Leftrightarrow & (y,x) \notin \alpha \\ \Leftrightarrow & (x,y) \notin \underline{\alpha^{-1}} \\ \Leftrightarrow & (x,y) \in \overline{\alpha^{-1}} \end{array}$$

 $(x,y) \in \overline{\alpha}^{-1}$

Evrik Bağıntı Teoremleri

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}.$$

 $(x,y) \in (\alpha \cap \beta)^{-1}$
 $\Leftrightarrow (y,x) \in (\alpha \cap \beta)$

$$\Leftrightarrow (y, x) \in \alpha \land (y, x) \in \beta$$

$$\Leftrightarrow (x, y) \in \alpha^{-1} \land (x, y) \in \beta^{-1}$$

$$\Leftrightarrow (x, y) \in \alpha^{-1} \cap \beta^{-1}$$

Evrik Bağıntı Teoremleri

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}.$$

$$(\alpha - \beta)^{-1} = (\alpha \cap \overline{\beta})^{-1}$$

$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$

$$= \alpha^{-1} \cap \beta^{-1}$$

$$= \alpha^{-1} - \beta^{-1}$$

Bağıntı Bileşkesi Evriği

Teorem $(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$

 $(\alpha\beta) = \beta = 0$

Tanıt.

 $(c, a) \in (\alpha \beta)^{-1}$

Bileşke Evriği Matrisi Örneği

 \Leftrightarrow $(a, c) \in \alpha\beta$ $\Leftrightarrow \exists b[(a, b) \in \alpha \land (b, c) \in \beta]$

 $\Leftrightarrow \exists b[(a,b) \in \alpha \land (b,c) \in \beta]$ $\Leftrightarrow \exists b[(c,b) \in \beta^{-1} \land (b,a) \in \alpha^{-1}]$

 \Leftrightarrow $(c, a) \in \beta^{-1}\alpha^{-1}$

.,...

Bileşke Evriği Matrisi

$$M_{(\alpha\beta)^{-1}} = M_{\beta^{-1}} \times M_{\alpha^{-1}}$$

$$M_{\alpha\beta}^T = M_{\beta}^T \times M_{\alpha}^T$$

Örnek

$$M_{\alpha} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} \qquad M_{\beta} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

$$M_{\alpha\beta^{-1}} = \begin{vmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{vmatrix}$$

Bağıntı Nitelikleri

- $ightharpoonup \alpha \subseteq A \times A$
- $\triangleright \alpha\alpha : \alpha^2$ $\triangleright \alpha\alpha \dots \alpha : \alpha^n$
- birim bağıntı: E = {(x,x)|x ∈ A}
 nitelikler: yansıma, bakışlılık, geçişlilik

Yansıma

yansımalı

 $\alpha \subseteq A \times A$ $\forall a [a\alpha a]$

a [aαa] ► vansımasız:

∃a [¬(aαa)] ▶ ters yansımalı:

∀a [¬(aαa)]

22 / 95

Yansıma Örnekleri

 $\begin{array}{ll} \ddot{O}rnek & \ddot{O}rnek \\ \mathcal{R}_1 \subseteq \{1,2\} \times \{1,2\} & \mathcal{R}_2 \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R}_1 = \{(1,1),(2,2)\} & \mathcal{R}_2 = \{(1,1),(2,2)\} \end{array}$

lacktriangledown \mathcal{R}_1 yansımalıdır lacktriangledown \mathcal{R}_2 yansımasızdır

Yansıma Örnekleri

Örnek $\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ $\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$

 $ightharpoonup \mathcal{R}$ ters yansımalıdır

Yansıma Örnekleri

Örnek $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$

 $(a,b) \in \mathcal{R} \equiv ab \geq 0$ ► R yansımalıdır

Bakışlılık

bakışlı

 $\alpha \subseteq A \times A$

 $\forall a, b[(a = b) \lor (a\alpha b \land b\alpha a) \lor (\neg(a\alpha b) \land \neg(b\alpha a))]$

 $\forall a, b[(a = b) \lor (a\alpha b \leftrightarrow b\alpha a)]$

bakışsız:

 $\exists a, b[(a \neq b) \land (a\alpha b \land \neg(b\alpha a)) \lor (\neg(a\alpha b) \land b\alpha a))]$

ters bakıslı:

 $\forall a, b \ [(a = b) \lor \neg(a\alpha b) \lor \neg(b\alpha a)]$

 $\Leftrightarrow \forall a, b [\neg(a\alpha b \land b\alpha a) \lor (a = b)]$

 \Leftrightarrow $\forall a, b [(a\alpha b \land b\alpha a) \rightarrow (a = b)]$

Bakışlılık Örnekleri

Örnek $\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ $\mathcal{R} = \{(1,2), (2,1), (2,3)\}$

▶ R bakışsızdır

Bakışlılık Örnekleri

Örnek $\mathcal{R} \subset \mathbb{Z} \times \mathbb{Z}$

 $(a,b) \in \mathcal{R} \equiv ab > 0$

▶ R bakışlıdır

Evrik Bağıntı Nitelikleri

Teorem

 $Yansıma,\ bakışlılık\ ve\ geçişlilik\ nitelikleri\ evrik\ bağıntıda\ korunur.$

Örtüler

- ▶ vansımalı örtü:
 - $r_{\alpha} = \alpha \cup E$
- ▶ bakışlı örtü: $s_{\alpha} = \alpha \cup \alpha^{-1}$
- ▶ geçişli örtü: $t_{\alpha} = \bigcup_{i=1...n} \alpha^{i} = \alpha \cup \alpha^{2} \cup \alpha^{3} \cup \cdots \cup \alpha^{n}$

- 0/=1...*II*

34/1

Özel Bağıntılar

önce gelen - sonra gelen

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $(a, b) \in \mathcal{R} \equiv a - b = 1$

- ters yansımalı
- ters bakışlı
- ▶ ters geçişli

Özel Bağıntılar

bitişiklik

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $(a, b) \in \mathcal{R} \equiv |a - b| = 1$

- ters yansımalı
- bakışlı
- ters geçişli

25.70

Özel Bağıntılar

dar sıra

 $\mathcal{R} \subset \mathbb{Z} \times \mathbb{Z}$ $(a, b) \in \mathcal{R} \equiv a < b$

- ters yansımalı
- ters bakışlı
- gecişli

Özel Bağıntılar

kısmi sıra

 $\mathcal{R} \subset \mathbb{Z} \times \mathbb{Z}$ $(a, b) \in \mathcal{R} \equiv a \leq b$

- yansımalı
- ters bakışlı
- geçişli

Özel Bağıntılar

önsıra

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $(a,b) \in \mathcal{R} \equiv |a| \leq |b|$

- yansımalı
- bakışsız
- geçişli

Özel Bağıntılar

sınırlı fark

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $(a,b) \in \mathcal{R} \equiv |a-b| \leq m$

- yansımalı
- bakışlı
- geçişsiz

40 / 95

Özel Bağıntılar

karsılastırılabilirlik

 $\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$ $(a,b) \in \mathcal{R} \equiv (a \subseteq b) \lor (b \subseteq a)$

- yansımalı
- bakışlı
- geçişsiz

Özel Bağıntılar

kardeşlik

- ters yansımalı
- bakışlı
- geçişli
- ▶ bir bağıntı bakışlı, geçişli ve ters yansımalı olabilir mi?

/95

Uyuşma

Tanım

uyuşma bağıntısı: γ

- yansımalı
- bakışlı
- çizerek gösterilim yönsüz
- matris gösterilimi merdiven şeklinde
- $ightharpoonup lpha lpha^{-1}$ bir uyuşma bağıntısıdır

Uyuşma Örnekleri

Örnek

$$A = \{a_1, a_2, a_3, a_4\}$$

 $\mathcal{R} = \{$

$$(a_1, a_1), (a_2, a_2),$$

 $(a_3, a_3), (a_4, a_4),$

$$(a_1, a_2), (a_2, a_1), (a_2, a_4), (a_4, a_2),$$

Uyuşma Örnekleri

Örnek $(\alpha \alpha^{-1})$ A: kişiler, B: diller

 $A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ $B = \{b_1, b_2, b_3, b_4, b_5\}$

 $\alpha \subseteq A \times B$

$$M_{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$M_{\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{vmatrix}$$

Uyuşma Örnekleri

$$\label{eq:main_main_substitute} \begin{split} & \ddot{\mathrm{O}}\mathrm{rnek} \left(\alpha\alpha^{-1}\right) \\ & \alpha\alpha^{-1} \subseteq A \times A \\ & \\ & M_{\alpha\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{vmatrix} \end{split}$$

46 / 95

Uyuşanlar Sınıfı

Tanım

Tanım uyuşanlar sınıfı: $C \subseteq A$ $\forall a, b \mid a \in C \land b \in C \rightarrow a \gamma b \mid$

- en üst uyuşanlar sınıfı:
- başka bir uyuşanlar sınıfının altkümesi değil
- ▶ bir eleman birden fazla EÜS'ye girebilir
- ▶ eksiksiz örtü: C_γ

tüm EÜS'lerin oluşturduğu küme

Uyuşanlar Sınıfı Örnekleri

Örnek
$$(\alpha \alpha^{-1})$$

$$C_{\gamma}(A) = \{ \{a_1, a_2, a_4, a_6\}, \{a_3, a_4, a_6\}, \{a_4, a_5\} \}$$

.

Eşdeğerlilik

Tanım

eşdeğerlilik bağıntısı: ϵ

- yansımalı
- bakışlı
- geçişli
- ► eşdeğerlilik sınıfları
- ▶ her eleman tek bir eşdeğerlilik sınıfına girer
- eksiksiz örtü: C,

9/95

Bölmeleme

- her eşdeğerlilik bağıntısı tanımlandığı kümeyi ayrık eşdeğerlilik sınıflarına bölmeler
- ▶ her bölmeleme bir eşdeğerlilik bağıntısına karşı düşer

sn / os

Eşdeğerlilik Örneği

Örnek $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $(a, b) \in \mathcal{R} \equiv 5 \mid |a - b|$

➤ x mod 5 işlemi Z kümesini 5 eşdeğerlilik sınıfına bölmeler

Kaynaklar

Grimaldi

- ► Chapter 5: Relations and Functions
- ► 5.1. Cartesian Products and Relations
- ► Chapter 7: Relations: The Second Time Around
 - 7.1. Relations Revisited: Properties of Relations
 7.4. Equivalence Relations and Partitions
- Yardımcı Kitap: O'Donnell, Hall, Page

► Chapter 10: Relations

-- --

Fonksiyon

Tanım fonksivon: $f: X \to Y$

 $\forall x \in X \ \forall y_1, y_2 \in Y \ (x, y_1), (x, y_2) \in f \Rightarrow y_1 = y_2$

- X: tanım kümesi, Y: değer kümesi
- $(x, y) \in f \equiv y = f(x)$ y, x'in f altındaki görüntüsü

Altkiime Görüntüsü

Tanım

altküme görüntüsü:

 $f: X \to Y \land X_1 \subseteq X$

 $f(X_1) = \{y | y \in Y, x \in X_1 \land y = f(x)\}$

Altküme Görüntüsü Örnekleri

Örnek $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^2$

 $F(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$

▶ A = {-2,1} $f(A) = \{1, 4\}$ Birebir Fonksiyon

Tanım

 $f: X \to Y$ fonksiyonu birebir: $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Birebir Fonksiyon Örnekleri

Örten Fonksiyon

Tanım $f: X \rightarrow$

 $f: X \to Y$ fonksiyonu örten: $\forall y \in Y \ \exists x \in X \ f(x) = y$

► f(X) = Y

Bijektif Fonksiyon

Örten Fonksiyon Örnekleri

ÖrnekKarşı Örnek $f: \mathbb{R} \to \mathbb{R}$ $f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x^3$ f(x) = 3x + 1

Tanım

 $f: X \to Y$ fonksiyonu bijektif: f fonksiyonu birebir ve örten

59 / 95

60 / 95

Altküme Görüntüsü Özellikleri

- ▶ $f: A \rightarrow B \land A_1, A_2 \subseteq A$:
 - f(A₁ ∪ A₂) = f(A₁) ∪ f(A₂)
 - $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - f birebir ise: f(A₁ ∩ A₂) = f(A₁) ∩ f(A₂)

Fonksiyon Bileşkesi

Tanım

$$f: X \to Y, g: Y \to Z$$

 $g \circ f: X \to Z$
 $(g \circ f)(x) = g(f(x))$

- değişme özelliği göstermez
- birleşme özelliği gösterir: f ∘ (g ∘ h) = (f ∘ g) ∘ h

32 / 93

Fonksiyon Bileşkesi Örnekleri

Örnek (değişme özelliği)

$$f \cdot \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^2$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = x + 5$$

 $g \circ f : \mathbb{R} \to \mathbb{R}$

$$(g \circ f)(x) = x^2 + 5$$

$$f \circ g : \mathbb{R} \to \mathbb{R}$$

 $(f \circ g)(x) = (x+5)^2$

$$f: X \to Y, g: Y \to Z:$$

 $f \text{ birebir } \land g \text{ birebir } \Rightarrow g \circ f \text{ birebir}$

Fonksiyon Bileşkesi Teoremleri

Tanıt.

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$

$$\Rightarrow a_1 = a_2$$

Г

Fonksiyon Bileşkesi Teoremleri

Teorem

 $\forall z \in Z \ \exists y \in Y \ g(y) = z$ $\forall y \in Y \ \exists x \in X \ f(x) = y$ $\Rightarrow \forall z \in Z \ \exists x \in X \ g(f(x)) = z$

Birim Fonksiyon

Tanım

birim fonksiyon: 1_X

 $1_X: X \to X$ $1_X(x) = x$

Evrik Fonksiyon

Tanım

 $f: X \rightarrow Y$ fonksiyonu evrilebilir:

- $\exists f^{-1}: Y \to X \ f^{-1} \circ f = 1_X \land f \circ f^{-1} = 1_Y$
 - ▶ f⁻¹: f fonksiyonunun evriği

Evrik Fonksiyon Örnekleri

Örnek $f : \mathbb{R} \to \mathbb{R}$

 $f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 5

 $f^{-1} \cdot \mathbb{R} \to \mathbb{R}$

 $f^{-1}: \mathbb{R} \to \mathbb{R}$ $f^{-1}(x) = \frac{x-5}{2}$

 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x+5) = \frac{(2x+5)-5}{2} = \frac{2x}{2} = x$ $(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x-5}{2}) = 2\frac{x-5}{2} + 5 = (x-5) + 5 = x$

67 / 95

68 / 95

Fonksiyon Evriği

Teorem

Bir fonksiyon evrilebilirse evriği tektir.

Tanit.
$$f: X \to Y$$

$$g, h: Y \to X$$

$$g \circ f = 1_X \land f \circ g = 1_Y$$

 $h \circ f = 1_Y \land f \circ h = 1_Y$

$$h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$$

Evrilebilir Fonksiyon

Teorem

Bir fonksiyon yalnız ve ancak birebir ve örten ise evrilebilir.

69/95

Evrilebilir Fonksivon

Evrilebilir ise birebirdir.

 $f \cdot A \rightarrow B$

Evrilebilir ise örtendir.

$$f: A \rightarrow B$$

$$f(a_1) = f(a_2)$$

$$f(a_1) = f(a_2)$$
 b
 $\Rightarrow f^{-1}(f(a_1)) = f^{-1}(f(a_2))$ $= 1_B(b)$
 $\Rightarrow (f^{-1} \circ f)(a_1) = (f^{-1} \circ f)(a_2)$ $= (f \circ f^{-1})(b)$

$$\Rightarrow 1_{A}(a_{1}) = 1_{A}(a_{2}) = f(f^{-1}(b))$$

$$\Rightarrow$$
 $a_1 = a_2$

Evrilebilir Fonksivon

Rirehir ve örten ise evrilehilirdir $f \cdot A \rightarrow B$

▶ f örten $\Rightarrow \forall b \in B \exists a \in A f(a) = b$

r orten ⇒
$$\forall b \in B \exists a \in A \ r(a) = b$$

> $g : B \rightarrow A$ fonksiyonu $a = g(b)$ ile belirlensin

$$g(b) = a_1 \neq a_2 = g(b)$$
 olabilir mi?

Permutasyonlar

▶ permutasyon: küme içi bijektif bir fonksiyon

$$\left(\begin{array}{cccc} a_1 & a_2 & \dots & a_n \\ \rho(a_1) & \rho(a_2) & \dots & \rho(a_n) \end{array}\right)$$

ightharpoonup n elemanlı bir kümede n! permutasyon tanımlanabilir

Permutasyon Örnekleri

Örnek
$$A = \{1, 2, 3\}$$

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 $p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 $p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

$$\rho_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \rho_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

74 /

Çevrimli Permutasyon

- cevrimli permutasvon:
 - evrimii permutasyon.
 - elemanların bir altkümesi bir çevrim oluşturuyor
 - diğerleri yer değiştirmiyor

$$(a_i, a_j, a_k) = \left(\begin{array}{cccccc} \dots & a_i & \dots & a_n & \dots & a_j & \dots & a_k & \dots \\ \dots & a_j & \dots & a_n & \dots & a_k & \dots & a_i & \dots \end{array} \right)$$

▶ transpozisyon: 2 uzunluklu çevrimli permutasyon

Çevrimli Permutasyon Örnekleri

Örnek

Ornek
$$A = \{1, 2, 3, 4, 5\}$$

$$(1,3,5) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{array}\right)$$

Permutasyon Bileşkesi

▶ permutasyon bileskesi değisme özelliği göstermez

Örnek

$$A = \{1, 2, 3, 4, 5\}$$

7/95

Çevrimli Permutasyon Bileşkesi

 çevrimli olmayan her permutasyon ayrık çevrimlerin bileşkesi olarak yazılabilir

Örnek A = {1, 2, 3, 4, 5, 6, 7, 8}

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix} = (1,3,6) \diamond (2,4,5) \diamond (7,8)$$

0 / 05

Transpozisyon Bileşkesi

 çevrimli her permutasyon transpozisyon bileşkesi olarak yazılabilir

Örnek

$$A = \{1, 2, 3, 4, 5\}$$

$$(1,2,3,4,5) = (1,2) \diamond (1,3) \diamond (1,4) \diamond (1,5)$$

Güvercin Deliği İlkesi

Tanım güvercin deliği ilkesi (Dirichlet kutuları):

m adet güvercin n adet deliğe yerleşirse ve m > n ise en az bir delikte birden fazla güvercin vardır

▶
$$f: X \to Y \land |X| > |Y|$$
 ise f birebir bir fonksiyon olamaz

$$ightharpoonup \exists x_1, x_2 \in X \ x_1 \neq x_2 \land f(x_1) = f(x_2)$$

Güvercin Deliği İlkesi Örnekleri

Örnek

- 367 kişinin bulunduğu bir yerde en az iki kişinin doğum günü aynıdır.
- 0 ile 100 arasında notlar alınan bir sınavda en az iki öğrencinin aynı notu alması için sınava kaç öğrenci girmiş olmalıdır?

Genelleştirilmiş Güvercin Deliği İlkesi

Tanım

genelleştirilmiş güvercin deliği ilkesi: m adet nesne n adet kutuya dağıtılırsa

en az bir kutuda en az $\lceil m/n \rceil$ adet nesne olur

Örnek

100kişinin bulunduğu bir yerde en az $\lceil 100/12 \rceil = 9$ kişi aynı ayda doğmuştur.

Güvercin Deliği İlkesi Örneği

Teorem

 $S = \{1,2,3,\ldots,9\}$ kümesinin 6 elemanlı herhangi bir altkümesinde toplamı 10 olan iki sayı vardır.

Güvercin Deliği İlkesi Örneği

Teorem

S kümesi en büyüğü 14 olabilen 6 elemanlı bir pozitif tamsayılar kümesi olsun. S'nin boş olmayan altkümelerinin elemanlarının toplamlarının hepsi birbirinden farklı olamaz.

Tanıt Denemesi

 $A \subseteq S$

s_A : A'nın elemanlarının toplamı

- ▶ delik: 1 < s_A < 9 + ··· + 14 = 69</p>
- ▶ g¨uvercin: 2⁶ 1 = 63

Tanıt.

|A| < 5 olan altkümelere bakalım.

- ► delik:
- $1 \leq s_A \leq 10+\cdots+14=60$
- ▶ g¨uvercin: 2⁶ 2 = 62

.

Güvercin Deliği İlkesi Örneği

Teorem

 $S = \{1, 2, 3, ..., 200\}$ kümesinden seçilecek 101 elemanın içinde en az bir cift vardır ki ciftin bir elemanı diğerini böler.

Tanıt Yöntemi

- ∀n ∃!p (n = 2^rp ∧ r ≥ 0 ∧ ∃t ∈ Z p = 2t + 1) olduğu gösterilecek
- bu teorem kullanılarak asıl teorem tanıtlanacak

Güvercin Deliği İlkesi Örneği

Teorem

$$\forall n \exists! p \ (n = 2^r p \land r \ge 0 \land \exists t \in \mathbb{Z} \ p = 2t + 1)$$

 Teklik Tanıtı. tek değilse:

$$n = 1$$
: $r = 0, p = 1$
 $n = 2$: $r = 1, p = 1$
 $n \le k$: $n = 2^r p$
 $n = k + 1$:

$$= 2^{r_1}p_1 = 2^{r_2}$$

 $\Rightarrow 2^{r_1-r_2}p_1 = p_2$

$$n \text{ asal}: r = 0, p = n$$

 $\neg (n \text{ asal}): n = n_1 n_2$
 $n = 2^{r_1} p_1 \cdot 2^{r_2} p_2$
 $n = 2^{r_1 + r_2} \cdot p_1 p_2$

86/9

Güvercin Deliği İlkesi Örneği

Teorem

 $S = \{1, 2, 3, \dots, 200\}$ kümesinden seçilecek 101 elemanın içinde en az bir çift vardır ki çiftin bir elemanı diğerini böler.

Tanıt.

- T ⊆ S, T kümesi S kümesinin bütün tek elemanlarından olusan altkümesi olsun: |T| = 100
- $f: S \rightarrow T, (s, t) \in f \equiv s = 2^r t \land r > 0$
 - ▶ S'den 101 eleman seçilirse en az ikisinin T'deki görüntüsü aynı olur: $f(s_1) = f(s_2) \Rightarrow 2^{m_1}t = 2^{m_2}t$

$$\frac{s_1}{s_2} = \frac{2^{m_1}t}{2^{m_2}t} = 2^{m_1-m_2}$$

Tanım

rekürsif fonksiyon:

Rekürsif Fonksivonlar

kendisi cinsinden tanımlanan fonksiyon

$$f(n) = h(f(m))$$

 tümevarımla tanımlanan fonksiyon: her rekürsiyonda boyut azalıyor

$$f(n) = \begin{cases} k & n = 0 \\ h(f(n-1)) & n > 0 \end{cases}$$

Rekürsif Fonksiyon Örnekleri

Örnek $f91(n) = \begin{cases} n-10 & n > 100 \\ f91(f91(n+11)) & n \le 100 \end{cases}$

Tümevarımla Tanımlanan Fonksiyon Örnekleri

Örnek (faktöryel) $f(n) = \begin{cases} 1 & n = 0 \\ n \cdot f(n-1) & n > 0 \end{cases}$ Örnek (fonksiyon kuvveti)

 $f^n = \begin{cases} f & n = 1 \\ f \circ f^{n-1} & n > 1 \end{cases}$

Euclid Algoritması

Örnek (ortak bölenlerin en büyüğü)

$$333 = 3 \cdot 84 + 81$$

$$84 = 1 \cdot 81 + 3$$

$$81 = 27 \cdot 3 + 0$$

obeb(333,84) = 3 $obeb(a,b) = \begin{cases} b & b | a \\ obeb(b,a \mod b) & b \nmid a \end{cases}$

Fibonacci Dizisi

Fibonacci dizisi
$$F_n = fib(n) = \begin{cases} 1 & n = 1\\ 1 & n = 2\\ fib(n-1) + fib(n-2) & n > 2 \end{cases}$$

92 / 95

-- ---

Fibonacci Dizisi

Teorem

 $\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$

Tanıt.

Tant.

$$n = 2$$
: $\sum_{i=1}^{2} F_i^2 = F_1^2 + F_2^2 = 1 + 1 = 1 \cdot 2 = F_2 \cdot F_3$
 $n = k$: $\sum_{i=1}^{k} F_i^2 = F_k \cdot F_{k+1}$

$$\begin{array}{ll} n=k+1: & \sum_{i=1}^{k+1} F_i^2 & = & \sum_{i=1}^{k} F_i^2 + F_{k+1}^2 \\ & = & F_k \cdot F_{k+1} + F_{k+1}^2 \\ & = & F_{k+1} \cdot (F_k + F_{k+1}) \end{array}$$

 $= F_{\nu+1} \cdot F_{\nu+2}$

Ackermann Fonksiyonu

Ackermann fonksivonu

$$ack(x,y) = \begin{cases} y+1 & x=0\\ ack(x-1,1) & y=0\\ ack(x-1,ack(x,y-1)) & x>0 \land y>0 \end{cases}$$

Kaynaklar

Grimaldi

- ► Chapter 5: Relations and Functions
 - ▶ 5.2. Functions: Plain and One-to-One
 - ▶ 5.3. Onto Functions: Stirling Numbers of the Second Kind
 - ▶ 5.5. The Pigeonhole Principle
 - ▶ 5.6. Function Composition and Inverse Functions

Yardımcı Kitap: O'Donnell, Hall, Page

► Chapter 11: Functions