MP* - Théorème d'inversion locale

Les énoncés ci-après sont valables dans le cadre des espaces de Banach, hors-programme. Nous nous limiterons à la dimension finie.

Partout, E, F sont des \mathbb{R} -ev de dimensions finies, dont des normes sont notées $|| \cdot ||$.

Propriété 1: Théorème du point fixe de Picard

Soit K un fermé de E, $C \in [0,1[$ et $f:K \to K$ C-lipschitzienne. Alors, $\exists ! x \in K; f(x) = x$.

Démonstration:

1. Existence:

Soit $x_0 \in K$. On pose par récurrence $x_{n+1} = f(x_n)$. Par récurrence triviale, $\forall n, \ ||x_{n+1} - x_n|| \leq C^n ||x_1 - x_0||$, donc $\sum_n (x_{n+1} - x_n)$ converge absolument, donc converge, et donc (x_n) converge vers $x \in K$ car K est fermé. f est continue car lipschitzienne, donc $x_{n+1} = f(x_n)$ donne à la limite x = f(x).

2. Unicité:

Soient x, y deux point fixes. $||x-y|| = ||f(x)-f(y)|| \le C||x-y||$. Comme C < 1, il en résulte ||x-y|| = 0 ie x = y.

Au passage, donnons deux autres propriétés de point fixe usuelles, qui ne servirons pas dans la suite:

Propriété 2:

- 1. Soit K un compact d'un evn, et $f: K \to K$ telle que $x \neq y \Longrightarrow ||f(x) f(y)|| < ||x y||$. Alors f a un point fixe.
- 2. Soit K un compact convexe et $f: K \to K$ 1-lipschitzienne. Alors f a un point fixe.

Démonstration:

- 1. f est continue car 1-lipschitzienne, donc $g: x \mapsto ||f(x) x||$ aussi. Par compacité, $\min(g)$ existe. Soit a tel que $g(a) = \min(g)$. Si $f(a) \neq a$, ||f(f(a)) - f(a)|| < ||a - f(a)||, donc g(f(a)) < g(a) ce qui est absurde.
- 2. Soit $a \in K$. En considérant $g: x \in K a \mapsto f(x+a) a$, on est ramené au cas où $0 \in K$. Si $n \in \mathbb{N}^*$, soit $f_n = (1 1/n)f$. $f_n: K \to K$ par convexité de K. f_n est (1 1/n)-lipschitzienne, donc par le théorème de Picard possède un point fixe x_n . $(1 1/n)f(x_n) = x_n$ (*). On considère une extraction de (x_n) convergeant vers $x \in K$. La relation (*) donne alors à la limite f(x) = x (f est continue car 1-lipschitzienne).

Propriété 3: Théorème d'inversion locale

On suppose $\dim(E) = \dim(F)$. W est un ouvert de E, et $f \in \mathcal{C}^1(W, F)$. Soit $x_0 \in W$. On suppose que $df_{x_0} \in GL(E, F)$.

Alors il existe U voisinage ouvert de x_0 , et V voisinage ouvert de $f(x_0)$ tels que f réalise une bijection de U dans V, et que sa réciproque locale $h:V\to U$ soit \mathcal{C}^1 .

De plus $d_{f(x_0)}(h) = (d_{x_0}f)^{-1}$, et si f est \mathcal{C}^p , $p \ge 1$, h aussi.

Démonstration

On note ||| ||| la norme sur $\mathcal{L}(E)$ subordonnée à la norme || || de E.

1. Réduction du problème:

Soit $q = d_{x_0} f$. q et q^{-1} sont \mathcal{C}^{∞} , bijectives, de différentielles constantes égales à elles-mêmes. Donc f a la propriété voulue si et seulement si $q^{-1} \circ f$ l'a.

On remplace f par $q^{-1} \circ f$, ce qui ramène au cas E = F, et $d_{x_0} f = id$.

Ensuite, en remplaçant f par $x \mapsto f(x+x_0) - f(x_0)$, on est ramené au cas $x_0 = 0$ et f(0) = 0.

2. Bijectivité locale:

Soit $g: x \mapsto x - f(x)$. g(0) = 0, $dg_0 = 0$, et dg est continue car f est \mathcal{C}^1 , donc on peut se donner r > 0 tel que $||x|| \le r \Longrightarrow |||dg_x||| \le \frac{1}{2}$. g est donc $\frac{1}{2}$ -lipschitzienne sur $\overline{B(0,r)}$ par IAF et convexité de $\overline{B(0,r)}$.

Soit $y \in \overline{B(0, r/2)}$. Soit $g_y : x \mapsto y + x - f(x)$.

 $d(g_y) = dg$, donc g_y est $\frac{1}{2}$ -lipschitzienne sur $\overline{B(0,r)}$.

Si $x \in \overline{B(0,r)}$, $||g_y(x)|| \le ||y|| + ||g(x)|| \le r/2 + (1/2)||g(x) - g(0)|| \le r/2 + r/2 = r$.

Ainsi, $\overline{B(0,r)}$ (fermé, et en fait compact) est stable par g_y .

De plus, si $x_1, x_2 \in \overline{B(0, r)}$, $||g_y(x_1) - g_y(x_2)|| = ||g(x_1) - g(x_2)|| \le \frac{1}{2}||x_1 - x_2||$.

On peut donc appliquer le théorème de Picard: il existe un unique $x \in \overline{B(0,r)}$ tel que $g_y(x) = x$, ie f(x) = y.

Ainsi, pour tout $y \in \overline{B(0, r/2)}$, $\exists ! x \in \overline{B(0, r)}$; f(x) = y.

Notons $K = f^{-1}(\overline{B(0, r/2)}) \cap \overline{B(0, r)}$. K est fermé, et contient 0 car f(0) = 0.

 $f:K \to \overline{B(0,r/2)}$ est donc bijective. Notons $h:\overline{B(0,r/2)} \to K$ sa réciproque.

3. Continuité de h:

Si $y_1, y_2 \in \overline{B(0, r/2)}$, et $x_1 = h(y_1), x_2 = h(y_2)$:

 $||x_1 - x_2|| = ||x_1 - f(x_1) + f(x_1) - x_2 + f(x_2) - f(x_2)|| = ||g(x_1) - g(x_2) + f(x_2) - f(x_1)|| \le ||f(x_2) - f(x_1)|| + ||g(x_1) - g(x_2)|| = ||y_1 - y_2|| + ||g(x_1) - g(x_2)||.$

Comme g est $\frac{1}{2}$ -lipschitzienne sur $\overline{B(0,r)}$, on a $||x_1 - x_2|| \le ||y_1 - y_2|| + \frac{1}{2}||x_1 - x_2||$, donc $||x_1 - x_2|| \le 2||y_1 - y_2||$.

Ainsi, h est 2-lipschitzienne, donc continue.

4. Définition des ouverts:

On pose V = B(0, r/2), et U = h(V). V est ouvert, U et V contiennent 0, et $f: U \to V$ est bijective, d'inverse $h: V \to U$.

 $U = f^{-1}(V) \cap B(0, r/2)$, intersection d'ouverts est ouvert.

On restreint désormais h à V.

5. Caractère C^p de h:

Notons d'abord que si $x \in U$, $df_x \in GL(E)$:

On a $dg_x = id - df_x$, et $|||dg_x||| \le 1/2$.

Ainsi, si $v \in Ker(df_x)$, $||dg_x(v)|| \le \frac{1}{2}||v||$ donne $||v|| \le \frac{1}{2}||v||$, donc v = 0. Étant en dimension finie, df_x est inversible.

Si
$$y, y_1 \in V$$
, $x = h(y)$, $x_1 = h(y_1)$ (on a donc $f(x) = y$, $f(x_1) = y_1$): $||h(y) - (h(y_1) + (df_{x_1})^{-1}(y - y_1))|| = ||x - x_1 - (df_{x_1})^{-1}(f(x) - f(x_1))||$

 $= ||x - x_1 - (df_{x_1})^{-1}(df_{x_1}(x - x_1) + o(x - x_1))|| = ||(df_{x_1})^{-1}(o(x - x_1))||.$ $(df_{x_1})^{-1} \text{ est } C\text{-lipschitzienne avec } C = |||(df_{x_1})^{-1}|||.$

Ainsi, $||(df_{x_1})^{-1}(o(x-x_1))|| \le C \times o(||x-x_1||) = o(||x-x_1||).$

Mais h est 2-lipschitzienne, donc $o(||x-x_1||) = \sum_{y \to y_1} o(||y-y_1||)$.

Ainsi, $h(y) - (h(y_1) + (df_{x_1})^{-1}(y - y_1)) \underset{y \to y_1}{=\!=\!=\!=} o(||y - y_1||)$, ce qui donne que h est différentiable en y_1 , avec $dh_{y_1} = (df_{x_1})^{-1} = (df_{h(y_1)})^{-1}$ (*). Comme $h, x \mapsto df_x$, et $\phi \in GL(E) \mapsto \phi^{-1}$ sont continues, $y \mapsto dh_y$ est continue, et h est \mathcal{C}^1 .

Comme $h, x \mapsto df_x$, et $\phi \in GL(E) \mapsto \phi^{-1}$ sont continues, $y \mapsto dh_y$ est continue, et h est \mathcal{C}^1 . Si f est \mathcal{C}^p , (*) donne par récurrence h \mathcal{C}^k pour tout $k \leq n$, sachant que $\phi \in GL(E) \mapsto \phi^{-1}$ est \mathcal{C}^{∞} .

Propriété 4: Conséquence: surjectivité locale

On reprend les mêmes hypothèses.

Alors $\forall r > 0$ assez petit de sorte que $B(x_0, r) \subset W$, $f(B(x_0, r))$ est un voisinage ouvert de $f(x_0)$, et f réalise une bijection de $B(x_0, r)$ dans $f(B(x_0, r))$.

Démonstration:

On se donne U, V, g comme dans la propriété précédente. Pour r assez petit, $B(x_0, r) \subset U$, donc $f(B(x_0, r)) \subset V$, et f réalise une bijection de $B(x_0, r)$ dans $f(B(x_0, r))$. $f(B(x_0, r)) = h^{-1}(B(x_0, r))$ est un ouvert de V, ouvert, donc un ouvert.

Propriété 5: Théorème d'inversion globale

 $\dim(E) = \dim(F), k \in \mathbb{N}^*$. Soient U un ouvert de E, et $f \in \mathcal{C}^k(U, F)$.

On suppose f injective, et $\forall x \in U, d_x f \in GL(E, F)$.

Alors f(U) est ouvert, et f réalise un \mathcal{C}^k -difféomorphisme de U dans f(U).

Démonstration:

f réalise une bijection de U dans f(U).

Par la propriété 4, f(U) est ouvert, et par la propriété 3, f^{-1} est localement \mathcal{C}^k , donc \mathcal{C}^k .

