Document enseignant – grille de notation en séance

I. Questions: sur 2,5 points

Couple $MnO_4^- + \frac{R}{5}$ $E = E^0_{MnO_4^-/Mn^{2+}} + \frac{R}{5}$ $MnO_4^- + 5 Fe^{2+}$ Calcul de la cor $\Delta_r G^0_T = -RTIn$		0,25				
$\Delta_{r}G_{T}^{0} = -RTIn$	es réactions $ + e^{-}, \text{ soit }_{E=E_{Fe^{3+}/Fe^{2+}}} = E_{Fe^{3+}/Fe^{2+}}^{0} + \frac{RT}{F} ln \left(\frac{\left[Fe^{3+} \right]}{\left[Fe^{2+} \right]} \right) $ $ 5 e^{-} + 8 H_{3}O^{+} \rightleftarrows Mn^{2+} + 12 H_{2}O, \text{ soit } $ $ + \frac{RT}{5F} ln \left(\frac{\left[MnO_{4}^{-} \right] \times \left[H_{3}O^{+} \right]^{8}}{\left[Mn^{2+} \right]} \right) $ $ e^{2+} + 8 H_{3}O^{+} \rightleftarrows Mn^{2+} + 5 Fe^{3+} + 12 H_{2}O $	0,75				
Définir une réa donc totale da Savoir définir la	constante d'équilibre à partir des potentiels standards	0.5				

II. Proposition de protocole : sur 5 points

Discussion décalage théorie/expérimentaux le cas échéant

	on the process of the control						
½ piles	Notion de ½ pile et pile						
	Conducteur (Pt)						
	Les paramètres à faire varier	5					
Suivi	Le paramètre mesuré (ddp) et déduction de $E_{(ox/red)}$						
	Appréhension du saut de potentiel						
	Choisir le matériel et verrerie en fonction de ce qui est disponible et de la						
	précision voulu						
Dans la pratique	Envisager un protocole précis avec les différents points envisagés.						
	Adapter le nombre de points de mesure à la proximité de l'équivalence.						
Exploitation	Figure à tracer, paramètre permettant de juger de la qualité des points expérimentaux obtenus.						
	Comparaison résultats attendus et obtenus expérimentalement						
Réalisati	on du protocole : sur 4 points						
Expérience	Savoir utiliser correctement le matériel (la manutention et rinçages						
	éventuels) : Savoir-faire.	4					
	eventuels) . Savon Tune.						
Résultats	s et interprétation sur 6 points		L	I	l	l	
71000710010							
	Axes légendés, titre explicite (avec mention de la température), graduation,						
Figures	position des axes, exploitation méthodes des tangentes.	3					
	Discussion de la qualité de leurs points expérimentaux.						
Interprétation	Discussion décalage théorie/eynérimentaux le cas échéant	3					

V. Partie 2 : montage de piles: sur 2,5 points

Définition piles	$2Ag^{+} + Cu \square Ag + Cu^{2+}$ ou $2Ag^{+} + Zn \square Ag + Zn^{2+}$	0,5				
Schéma et pont de jonction	Schéma Rôle pont de jonction : assurer l'électroneutralité	0,75				
Détermination du potentiel standard	On mesure : $\varepsilon = 421$ mV et on en déduit : $E_{\text{Cu}^{2^{+}}/\text{Cu}}^{0} = -0,421 + 0,8 + \frac{8,314 \times 298}{96500} \text{ln}(0,1) - \frac{8,314 \times 298}{2 \times 96500} \text{ln}(0,1^{2}) = 0,379 \text{ V}$ Ou Pour la pile Zn2+/Zn, $\varepsilon = E_{\text{Ag}^{+}/\text{Ag}} - E_{\text{Zn}^{2^{+}}/\text{Zn}}$ $\varepsilon = E_{\text{Ag}^{+}/\text{Ag}}^{0} + \frac{RT}{F} \text{ln}(\left[\text{Ag}^{+}\right]) - E_{\text{Zn}^{2^{+}}/\text{Zn}}^{0} - \frac{RT}{2F} \text{ln}(\left[\text{Zn}^{2^{+}}\right]^{2})$	0,75				
Variation d'enthalpie libre standard	$\begin{split} &\Delta_r G_T^0 = -n F \epsilon^0 \\ &\text{et } \Delta_r G_{T,P} = -n F \epsilon \\ &\text{Or ici, les concentrations des différentes solutions étant identiques, on obtient} \\ &\epsilon = \epsilon^0 \\ &\text{Pour la pile avec Cu:} \\ &\Delta_r G_{T,P} = \Delta_r G_T^0 = -n F \epsilon^0 = -2 \times 96500 \times (0,8-0,34) = -88,8 \text{ kJ.mol}^{-1} \\ &\text{Pour la pile avec Zn:} \\ &\Delta_r G_{T,P} = \Delta_r G_T^0 = -n F \epsilon^0 = -2 \times 96500 \times \left(0,8-\left(-0,75\right)\right) = -301 \text{ kJ.mol}^{-1} \end{split}$	0,5				