MATHEMATIK

2009-10

Übungsaufgaben zur 2. Arbeit

AUFGABEN AUS DER STUNDE VOR DEN FERIEN:

AUFGABE 1)

Die gegebene Funktion soll in einem Punkt untersucht werden. Zuerst einmal fehlt der y-Wert, dieser ist aber einfach f(1):

$$f(1) = 3 \cdot 1^2 + 2 \cdot 1 + 4 = 3 + 2 + 4 = 9$$

Also handelt es sich um den Punkt P(1|9). Die Steigung bestimmt sich wie immer mit der Steigungsformel, hier für den x-Wert 1:

$$m = \frac{f(1+h) - f(1)}{h} = \frac{[3 \cdot (1+h)^2 + 2 \cdot (1+h) + 4] - 9}{h}$$

Aufpassen, dass du die Klammern nicht vergisst! f(1)=9 haben wir ja gerade bestimmt, deshalb konnten wir direkt einsetzen. Den Bruch können wir noch um einiges vereinfachen:

$$m = \frac{3 \cdot (1 + 2h + h^2) + 2 + 2h + 4 - 9}{h} = \frac{(3 + 6h + 3h^2) + 2h - 3}{h} = \frac{8h + 3h^2}{h}$$

Also ist die mittlere Steigung zwischen den beiden Punkten P(1|9) und Q(1+h|f(1+h)) gerade

$$m = 8 + 3h$$

Rücken wir mit O immer näher an P heran, nähern wir uns der momentanen Steigung an. Diese ist erst für h=0 erreicht und so finden wir für die Steigung, die wir mit f' bezeichnen, diesen Wert:

$$f'(1) = 8$$

Das war's.

AUFGABE 2)

Die gegebene Funktion soll jetzt in einem beliebigen Punkt untersucht werden. Im Prinzip geht es wie in Aufgabe 1, nur ohne Zahlen, sondern mit mehr "x"en...

$$m = \frac{f(x+h) - f(x)}{h} = \frac{[3 \cdot (x+h)^2 + 2 \cdot (x+h) + 4] - [3 \cdot x^2 + 2 \cdot x + 4]}{h}$$

Aufpassen, dass du die Klammern nicht vergisst! Jetzt müssen wir ausmultiplizieren und hinten bei der Minusklammer alle Vorzeichen herumdrehen:

$$m = \frac{\left[3 \cdot (x^2 + 2xh + h^2) + 2x + 2h + 4\right] - 3x^2 - 2x - 4}{h}$$
$$= \frac{3x^2 + 6xh + 3h^2 + 2x + 2h + 4 - 3x^2 - 2x - 4}{h} = \frac{6xh + 3h^2 + 2h}{h} = 6x + 3h + 2$$

Wir haben also m=6x+3h+2 gefunden. Nun muss h wieder Null werden und so bleibt:

$$f'(x) = 6x + 2$$

für die gegebene Funktion. Mittlerweile kennen wir die Summenregel und wissen, dass die Ableitung von f(x) die Summe der Ableitungen von 3x2, von 2x und von 4 ist, wobei diese 6x, 2 und 0 sind und daher stimmt unser Ergebnis. Würden wir nun die Steigung für x=1 wissen wollen, können wir einfach einsetzen und erhalten sofort 8 als Ergebnis, wie auch in Aufgabe 1 erhalten. Damit ist eigentlich auch schon Aufgabe 3) gelöst, denn da kommen ja genau diese "Teilfunktionen" vor!

WEITERE ÜBUNGEN

1) Bestimme die Ableitungen folgender Funktionen mithilfe der neuen Regeln:

a)
$$f(x)=2x-7$$
 b) $f(x)=5$ c) $f(x)=7x^3-4x$ d) $f(x)=-\frac{1}{x^2}$ e) $f(x)=(x-2)^2$

d)
$$f(x) = -\frac{1}{x^2}$$
 e) $f(x) = (x-2)^2$

f)
$$f(x) = -3$$
 g) $f(x) = 5 - x$ h) $f(x) = 1700 - 4x^2$ i) $f(x) = -\frac{1}{x^2} - x$ j) $f(x) = (x-2)^2$

2) Bestimme die Steigung im Punkt P(1 | 1):

(A)
$$f(x) = 2x^2 - 1$$
 (B) $f(x) = \frac{1}{x}$ (C) $f(x) = 1$

Nachdem du die Steigung von (a) bestimmt hast, stelle eine Geradengleichung auf für die Gerade, die durch den Punkt P geht mit der Steigung $f\,\dot{}(x).$

ZEICHNE DIESE GERADE MIT DER PARABEL IN EIN GEEIGNETES KOORDINATENSYSTEM UND BESCHREIBE, WIE DIE BEIDEN KURVEN SICH IN P(1|1) zueinander verhalten.

WIEDERHOLE DIES AUCH FÜR (B) UND (C)!