

Learn to Scale: Generating Multipolar Normalized Density Map for Crowd Counting

参赛队员:梁定康、徐晨丰、徐志良、陈习武、杨贤

指导老师: 许永超、白翔

参赛单位: 华中科技大学(MCLAB VLR_Group)

参加赛道:平安城市——人流密度统计

人流密度统计在公共安全、监控等扮演重要角色

本次实战项目需要参赛者 基于给定的场景图片,开 发出能够同时适用于密集 和稀疏等多种复杂场景的 人数统计算法,准确输出 图片中的总人数

面临多尺度、光照、遮挡、模糊等多种复杂问题

人头检测 or 回归密度图

比赛数据集提供了两种标注方式

- 提供bounding box标注 (大人头)
- 提供point标注 (小人头)

- 基于检测的方法,由于有些人头没有给出bounding box标注,因此在密集区域,很难训练检测网络,同时,人头与人头之间还会存在多尺度、遮挡、光照等复杂问题,实际测试时难以检测出人头位置。
- 基于回归的方法,通过回归密度图的方式,能较好的解决密集、遮挡等问题,同时也仅需提供point标注。

生成Ground Truth

- 统一用Point标注,对于bounding box则求取中心
- 对每个坐标点,做高斯变换得到密度图
- 对密度图积分得到总人数

普通人如何计数 / 工作人员如何标注数据

http://www.vlrlab.net/

密集区域

放大再计数/标注

稀疏区域

直接计数/标注

让网络学会去放大 (learn to scale)

http://www.vlrlab.net/

过大 过小

比赛数据集多为监控摄像头所拍摄,成像质量<mark>较差</mark>,放过大会失真,放过小<mark>不利于</mark>计数

L2SM: Generating Multipolar Normalized Density Map for Crowd Counting

本次比赛采用的网络基于本团队发表于ICCV 2019的工作改进而来

https://arxiv.org/abs/1907.12428

本质在于如何能同时优化稀疏、密集区域

L2SM改进工作——本次比赛所用网络

- 直接寻找Attention region
- 更好的baseline
- Refine原图, 而非feature
- 共享权重
- 速度更快 (10FPS)

Baseline

- 采用FPN生成初始预测密度图
- VGG16 作为Backbone
- 经过FPN得到的feature,即用于生成密度图,也用于后续训练放大网络(L2SM)

寻找密集区域——结合传统方法

对密集区域优化(放大再预测)

- 简而言之,希望所有的密集区域的密度能趋于一个密度中心。
- ・ 此处的密度采用平均KNN距离衡 量 (k取1)
- 结合Center Loss, 优化不同密 集区域趋于一个密度中心
- 对密集区域放大,通过共享FPN 生成新的密度图

损失函数

$$L_m = ||D - \hat{D}||_2$$

$$L_c = \frac{1}{2} \sum_{i=1}^{M} \|S_i \times r_i^2 - \overline{S}\|_2^2, M \le N$$

$$L_{total} = L_{m_{init}} + L_{m_{repre}} + \lambda_1 \times L_c$$

- L_m 代表MSE Loss
- *L_c*代表center loss
- **λ**取0.1

L2SM前后密度分布

- Baseline中不同密集区域之间的 密度差异非常大。
- 经过L2SM之后,不同密集区域的密度差异变小,符合现实中人喜欢把不同密集区域缩放到相似密度的特点。

结果

排名	用户名	score
1	dklianghust1	0.09011
2	pcalab4049	0.11172
3	click00	0.11191
4	commissarma2019	0.12088
5	kongbangwa11	0.12266
6	csmanlyt666	0.12966
7	xuwei2838	0.19765
8	уу798533133	0.24572
9	fengjin2019	0.34845
10	iseekseek58	0.39211

- FPN +L2SM取得了第一名的成绩。
- 经过对比测试,采用所提出的L2S模块后
 结果会提高近2个点(0.1098->0.09011)

实现细节

- 比赛数据集较大,普遍为1920 * 1080的分辨率,易爆显存,将长边resize至1024,短边按照相同比例resieze。
- 数据增强: 0.8-1.3倍随机缩放、50%概率水平翻转、50%概率增加椒盐噪声。实际测试效果: 随机缩放>椒盐噪声>翻转
- 寻找联连通区域阈值为density map均值
- 学习率1e-5, 每50 epoch 衰减0.5倍

谢谢聆听!

http://www.vlrlab.net/

