Дисциплина: Численные методы

Лабораторное задание №2

Отчет

Тема: Применение точных методов решения систем линейных алгебраических уравнений.Метод Халецкого решения СЛАУ с ленточными матрицами

Выполнила: студентка 3 курса 62 группы Пахомова П.В.

Проверила: старший преподаватель Фролова О.А.

1. Постановка задачи

Решение системы линейных уравнений с разреженными матрицами специального вида

Вариант 1. Метод Халецкого решения СЛАУ с ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

А – массив размерности N(2L-1) – содержащий ленту матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Символическое изображение схемы хранения ленточной матрицы:

Требуется написать алгоритм решения системы со стандартной ленточной матрицей.

При численной реализации недопустимо использование матриц размерности N*N Для решения использовать метод Халецкого

Необходимо написать 3 теста для средней относительной погрешности системы.

При записи погрешностей используются 2–3 значащие цифры, не более.

2. Теоретическая часть

Получение ВС разложения матрицы методом Халецкого

Puc. 1.1.1

Нетрудно видеть, что справедливы формулы:

$$b_{ij} = a_{ij} - \sum_{k=1}^{j-1} b_{ik} c_{kj}, \quad j = 1 \div N, \quad i = j \div N,$$
 (1.1.2)

$$c_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} b_{ik} c_{kj}\right) / b_{ii}, \quad i = 1 \div N, \quad j = i+1 \div N. \quad (1.1.3)$$

Нахождение решения системы линейных уравнений

Puc. 1.1.4

Компоненты векторов х и у определяются по формулам

$$y_i = \left(f_i - \sum_{k=1}^{i-1} b_{ik} y_k \right) / b_{ii}, \quad i = 1 \div N,$$
 (1.1.8)

$$x_i = y_i - \sum_{k=i+1}^{N} c_{ik} x_k, \quad i = N \div 1.$$
 (1.1.9)

Вычисление элементов матриц B, C по формулам (1.1.2), (1.1.3) называется **прямым ходом метода Халецкого**, а определение y, x по формулам (1.1.8), (1.1.9) – обратным ходом метода Халецкого.

Преобразование индексов

$$\begin{cases} i^* = i, \\ j^* = j - i + L. \end{cases}$$

Матрица со случайно сгенерированными элементами с очень большой вероятностью хорошо обусловлена.

Пусть L — случайная нижнетреугольная матрица с малыми ненулевыми диагональными элементами и поддиагональными элементами умеренной величины, v — аналогичная верхнетреугольная матрица. Тогда A = LV - nлохо обусловленная матрица.

Матрица Гильберта H с элементами $H_{ij} = 1/(i+j-1)$ очень nnoxo обусловлена:

Размерность <i>Н</i>	2	3	4	5	6	7	9	10
μ (Η)	2*10 ¹	5*10 ²	2*10 ⁴	5*10 ⁵	2*10 ⁷	5*10 ⁸	5*10 ¹¹	2*10 ¹³

1. В отчете должны быть приведены данные о решении систем уравнений с ленточными матрицами порядка 10^1 , 10^2 с диапазоном элементов матриц $-10^1 \div 10^1$ и отношением $L/N \cong 1/10$, 1/L. Например, если тестируется матрица размерности N=40 (400), то значение L можно взять 4 и 10 (38 и 90). Результаты тестирования помещаются в таблицу.

No	Размерность системы	Отношение	Средняя относительная по-	
теста		L/N	грешность решения	
1				

Минимальное количество строк таблицы равно 4.

О вычислении средней относительной погрешности решения см. замечание о тестировании в задании № 1.

2. В отчете должны быть приведены данные о решении систем уравнений с хорошо обусловленными квадратными матрицами. Хорошо обусловленная система уравнений (см. п. 3 раздела «О составлении численных примеров...») тестируется для двух размерностей порядка 10¹ и двух размерностей порядка 10². Результаты тестирования заносятся в таблицу.

№ теста	Размерность системы	Средняя относительная		
	т измерность спетемы	погрешность решения		
1				

Минимальное количество строк таблицы равно 4.

3. В отчете должны быть приведены данные о решении систем уравнений с плохо обусловленными матрицами. Плохо обусловленные системы уравнений тестируется для двух размерностей порядка 10^1 . При построении тестовых матриц (см. п. 4 раздела «О составлении численных примеров...») малые диагональные элементы матриц L, U получаются следующим образом. Матрицы L, U заполняются случайно сгенерированными элементами в диапазоне $-10^1 \div 10^1$, а затем диагональные элементы умножаются на 10^{-k} . В отчете должны быть данные для k = 2,4,6. Результаты вычислительных экспериментов помещаются в таблицу.

No	Порядок	Размерность сис-	Средняя относительная		
теста	<u>k</u>	темы	погрешность решения		
1					

$$\delta_{x} = \max_{i} \delta x_{i},$$

$$\delta x_i = \left\{ egin{aligned} \left| rac{x_i - x_i^*}{x_i^*}
ight|, & ecnu & \left| x_i^*
ight| > q \ \left| x_i - x_i^*
ight|, & ecnu & \left| x_i^*
ight| \leq q, \end{aligned}
ight.$$

3. Алгоритм

Условия для работы алгоритма:

- При решении в матрице ВС диагональный элемент не может быть 0

Данный алгоритм является методом решения системы линейных уравнений. Переменные

matrix- ленточная матрица, при решении становится матрицей BC matrixCopy – оригинальная лента

accuracyMatrixLU-BC матрица генерируемая для оценки погрешности плохо обусловленной матрицы

- N Размер обычной матрицы NxN
- L Половина ширины ленты

solved – флаг решена ли матрица illConditionedMatrices - флаг нужна ли оценка погрешности для плохо обусловленных матриц

- х массив решения
- f правый вектор системы уравнений
- q маленькое число для погрешности

ассигасуX — случайно сгенерированный массив решения системы для расчёта погрешности

solutionForAccuracyX – решение сгенерированной системы для расчёта погрешности

accuracyF – полученный через асcuracyX вектор системы уравнений meanRatioRelativeAccuracy - средняя относительная погрешность

accuracyLUF - полученный через accuracyMatrixLU и accuracyX вектор системы уравнений

solutionForAccuracyLUX – решение сгенерированной матрицы BC meanRatioRelativeAccuracyIllConditionedMatrices - средняя относительная погрешность через ассигасуМаtrixLU

Шаг 1

Получаем разложение начальной матрицы на верхне и нижнетреугольную

Пусть дана матрица matrix размером N x 2L-1, где N - количество строк, а 2L-1 - количество столбцов.

- 1. Проверяем условие: если matrix[0][L-1] равно 0, возвращаем false (противоречие условию)
- 2. Для каждого і от L до 2L-1 выполняем: matrix[0][i] = matrix[0][i] / matrix[0] [L-1]
- 3. Для каждого і от 1 до N выполняем:
 - Создаем переменные newUpLine, newUpCol, newLeftLine, newLeftCol и sum со значениями i-1, L, i, L-2 и 0 соответственно.
 - Создаем переменную new_v со значением L-2.
 - Для каждого k от 0 до L выполняем:
 - Обновляем newUpLine, newUpCol, newLeftLine и newLeftCol на следующие значения.
 - Если newUpLine находится в пределах от 0 до N, newUpCol находится в пределах от 0 до 2L-2, newLeftLine находится в пределах от 0 до N и newLeftCol находится в пределах от 0 до 2L-2, выполняем следующее:
 - Добавляем к sum произведение matrix[newUpLine]
 [newUpCol] и matrix[newLeftLine][newLeftCol].
 - Вычитаем sum из matrix[i+k][new_v+1], если i+k находится в пределах от 0 до N и new_v+1 находится в пределах от 0 до 2L-1.
 - Уменьшаем new_v на 1.

- Создаем переменную new v со значением L.
- Для каждого k от 0 до L-1 выполняем:
 - Обновляем newUpLine, newUpCol, newLeftLine и newLeftCol на следующие значения.
 - Если newUpLine находится в пределах от 0 до N, newUpCol находится в пределах от 0 до 2L-2, newLeftLine находится в пределах от 0 до N и newLeftCol находится в пределах от 0 до 2L-2, выполняем следующее:
 - Добавляем к sum произведение matrix[newUpLine]
 [newUpCol] и matrix[newLeftLine][newLeftCol].
 - Если matrix[i][L-1] не равно 0, выполняем следующее:
 - Присваиваем matrix[i][new_v] значение (matrix[i][new_v] sum) / matrix[i][L-1].
 - Иначе возвращаем false (противоречие условию)
 - Увеличиваем new v на 1.
- 4. Возвращаем true, говоря что удалось построить разложение.

Шаг 2

Проверяем, если удалось построить разложение, переходим к Шагу 3, иначе алгоритм прекращает свою работу из-за противоречия условию

Шаг 3

Находим решение системы уравнений как Ly=f, Ux=y

1. Решение Ly=f:

Пусть дана матрица matrix размером N x 2L-1, вектор у размером N и вектор f размером N.

- Для каждого і от 0 до N-1 выполняем:
 - Создаем переменные sum и accuracySum со значениями 0.
 - Для каждого ј от 0 до L-2 выполняем:
 - Если i-j-1 находится в пределах от 0 до N-1, выполняем следующее:

- Добавляем к sum произведение y[i-j-1] и matrix[i][L-j-2].
- Добавляем к accuracySum произведение accuracyY[i-j-1] и matrix[i][L-j-2].
- Присваиваем y[i] значение (f[i] sum) / matrix[i][L-1].
- Присваиваем ассигасуY[i] значение (accuracyF[i] accuracySum) / matrix[i][L-1].

2. Решение Ux=y:

Пусть дана матрица matrix размером N х 2L-1, вектор х размером N и вектор у размером N.

- Для каждого і от N-1 до 0 выполняем:
 - Создаем переменные sum и accuracySum со значениями 0.
 - Для каждого ј от 0 до L-2 выполняем:
 - Если i+j+1 находится в пределах от 0 до N-1, выполняем следующее:
 - Добавляем к sum произведение x[i+j+1] и matrix[i][L+j].
 - Добавляем к accuracySum произведение solutionForAccuracyX[i+j+1] и matrix[i][L+j].
 - Присваиваем x[i] значение y[i] sum.
 - Присваиваем solutionForAccuracyX[i] значение accuracyY[i] accuracySum.

Шаг 4

Проверяем что найденное решение корректно, подставим полученные х в matrixСору и проверим что погрешность не превышает допустимую Пусть даны:

- Матрица matrixCopy размером N x 2L-1 исходная матрица из системы уравнений
- Вектор х размером N найденное решение системы уравнений Ux=y.
- Вектор f размером N правая часть системы уравнений Ly=f.
- Число q маленькое число, задающее максимально допустимую погрешность при проверке.

Алгоритм проверки выглядит следующим образом:

- 1. Устанавливаем флаг check в значение true.
- 2. Для каждого і от 0 до N-1 выполняем:
 - Создаем переменную sum со значением 0.
 - Если і находится в диапазоне от 0 до L-1 включительно, то:
 - Задаем переменную count равной L+i-1.
 - Если і находится в диапазоне от L до N-L-1 включительно, то:
 - Задаем переменную count равной 2L-1.
 - Если і находится в диапазоне от N-L до N-1 включительно, то:
 - Задаем переменную count равной 2L-N+i.
 - Для каждого і от 0 до min(count, N-1) выполняем:
 - Если і находится в диапазоне от 0 до L-1 включительно, то:
 - Добавляем к sum произведение x[j] и matrixCopy[i][2L-1-count+j].
 - Если і находится в диапазоне от L до N-1 включительно, то:
 - Добавляем к sum произведение x[i-L+1+j] и matrixCopy[i] [i].
 - Если f[i] sum больше q или меньше q*(-1), то:
 - Задаем флаг check в значение false.
- 3. Возвращаем значение флага check.

Шаг 5

Если проверка прошла успешно устанавливаем solved в true и находим среднюю относительную погрешность заданную пользователем Иначе завершаем алгоритм, говоря что решение найти не удалось

Шаг 6

находим среднюю относительную погрешность (meanRatioRelativeAccuracy) для ассuracyF

и если задано k, то ещё среднюю относительную погрешность (meanRatioRelativeAccuracyIllConditionedMatrices) для ассuracyLUF

Инициализируем переменную Er2 значением 11.

1. Для каждого і от 0 до N-1 выполняем:

- Создаем переменную er2 со значением погрешности solutionForAccuracyX[i] ассигасуX[i] . (положительное)
- Если |accuracyX[i]| больше q и accuracyX[i] не равно 0, то:
 - Делим er2 на |accuracyX[i]|.
- Находим максимум из er2 и записываем в Er2
- 2. Значение meanRatioRelativeAccuracy равно Er2.
- 3. Если указано, что нужно найти погрешность когда матрица плохо обусловлена (illConditionedMatrices = true), то:
 - Присваиваем Er2 значение 11.
 - Для каждого і от 0 до N-1 выполняем:
 - Создаем переменную erLU со значением погрешности (solutionForAccuracyLUX[i] accuracyX[i]) < 0 . (положительное)
 - Если |accuracyX[i]| больше q и accuracyX[i] не равно 0, то:
 - Делим erLU на |accuracyX[i]|.
 - Находим максимум из erLU и записываем в Er2
- 4. Значение meanRatioRelativeAccuracyIllConditionedMatrices равно Er2.

Конец алгоритма

Другие функции

построение accuracyF

- 1. Инициализация переменных sum и count
 - установка значения sum в 0.
 - если переменная count меньше 2L-1 и і меньше L, то увеличиваем count на 1.
 - если і больше N-L и N не равно L, то уменьшаем count на 1.
- 2. Цикл по ј от 0 до count-1 (или до N-1, если count больше N), в котором вычисляем скалярное произведение строки матрицы и вектора-решения:

- если і меньше L, то получаем j-ый элемент вектора-решения ассuracyX и (2L-1-count+j)-ый элемент строки матрицы matrixCopy[i]. Добавляем произведение этих элементов к переменной sum.
- если і больше или равно L, то получаем (i-L+1+j)-ый элемент векторарешения ассигасуХ и j-ый элемент строки матрицы matrixCopy[i]. Добавляем произведение этих элементов к переменной sum.
- 3. Присваиваем полученное значение переменной sum элементу ассuracyF[i] i- ому элементу правого вектора системы уравнений.

построение accuracyLUF

- 1. Инициализация переменных
 - создание векторов у и ассигасу Y размерности N.
 - заполнение вектора у значениями из вектора ассигасуХ.
 - заполнение вектора ассигасу Y значениями из вектора ассигасу X.
- 2. Решение системы Ux=у для вектора х (то есть нахождение вектора у)
 - для каждого индекса і вектора х, начиная с последнего элемента, выполняем следующее:
 - инициализируем переменную ассигасуSum значением 0.
 - для каждого значения j от 0 до L-2:
 - если i+j+1 меньше N, то добавляем к переменной ассигасуSum произведение ассигасуX[i+j+1] на элемент матрицы LU с индексами i и L+j.
 - вычисляем значение элемента y[i] как сумму ассигасуX[i] и ассигасуSum.
- 3. Нахождение правого вектора f, решая систему Ly=f
 - для каждого индекса і вектора f, начиная с первого элемента, выполняем следующее:
 - инициализируем переменную ассигасуSum значением 0.
 - для каждого значения ј от 0 до L-2:

- если i-j-1 больше или равно 0, то добавляем к переменной ассиracySum произведение ассuracyY[i-j-1] на элемент матрицы LU с индексами i и L-j-2.
- вычисляем значение элемента f[i] как произведение ассигасуY[i] на элемент матрицы LU с индексами i и L-1, прибавленное к ассигасуSum. Если элемент матрицы LU с индексами i и L-1 равен 0, то просто присваиваем f[i] значение ассигасуSum.

Тестирование

№Теста	Размерно	сть Отнош	иение L/N	 I Средняя	относительная погрешность
1	10	·	1/10	1.37e-1	6
2	100		1/10	1.06e-12	2
	 №Теста	Размерности	ь Сред	 цняя относит	ельная погрешность
	1	10	1.23	e-14	
	2	10	3.36	e-13	
	3	100	3.39	e-11	
	4	100	1.02	e-12	
 №Тест	га Размер	оность Ст	 епень k	Средняя с	относительная погрешность
	1 10	2		4.39e+00	
4	2 10	3		1.26e+12	
	3 10) 4		9.57e+18	