Machine learning in the Chinese stock market

Markus Leippold, Qian Wang, Wenyu Zhou Journal of Financial Economics, 2021 forthcoming

Long Zhen

Contents

- Introduction
 - Background
 - Motivation
 - Research problem
 - Contribution
- Research Design
 - Data
 - Method
- Empirical Results
- Conclusion

Introduction – Backgrounds

- The size and specificity of the Chinese stock market make it particular attractive.
- Three key features of the Chinese stock market:
 - Dominated by retail investors → increased turnover
 - Centrally controlled, bank-dominated, and uniquely relationship-driven
 - → SOEs' special treatment
 - Limited history of short sales
 - 2010.3 allow to short sell 90 stocks
 - 2016.12 expanded to 950 firms
 - → long-only portfolios

Introduction – Motivation

- Chinese stock market allow us to deepen our understanding of emerging market and complement our knowledge of financial systems in other institutional settings.
- Since China has been experiencing a highly dynamic development, which means highly flexible methods are required.
- Gu et al.(2020) suggest machine learning improves the description of expected return. But whether this result still hold for the Chinese market?

Introduction — Contribution

- Build a unique and comprehensive set of factors
- Apply the work of Gu et al.(2020) to the Chinese market and analysis the results reasonably.

Introduction – Research Problem

- How do the specificity of Chinese stock market influence its predictability?
- Whether machine learning methods improve the predictability just like that in US market?

Research Design – Data

- Wind & CSMAR
- 2000.1 ~ 2020.6
- All A-share stocks listed on the SH and SZ exchange
 - More than 3,900 stocks
 - Cross-sectionally rank characteristics and map into [-1,1]
 - 22 updated monthly, 51 quarterly, 6 semi-annually, 15 annually
 - 11 macroeconomic predictors (8 based on Welch(2008))
- 1-year government bond in China as the risk-free rate

Research Design

Variable construction:

- 90 stock-level characteristics
 - China-specific factors: abnormal turnover ratio(atr)/ the trend factor(er_trend)/ the top-10 shareholders ownership (top10holderrate)
- 11 macroeconomic predictors
- 80 industry dummy variables
- \rightarrow 90*(11+1) + 80 = 1,160

Methods:

- OLS / OLS-3 (only size, BM, and momentum)
- PLS / Lasso / Enet
- GBRT / RF/ VASA (variable subsample aggregation)
- NN1 ~ NN5

Research Design

- Model selection
 - Training sample: 2000-2008
 - Validation sample: 2009-2011
 - Testing sample: 2012-2020
 - Refit annually

Empirical Results

Out-of-sample predictability

$$R_{\text{oos},S}^2 = 1 - \frac{\sum_{(i,t)\in\mathcal{T}} (r_{i,t} - \hat{r}_{i,t}^{(S)})^2}{\sum_{(i,t)\in\mathcal{T}} r_{i,t}^2}$$

- Subsample
 - Size
 - A.M.C.P.S. = Market Cap/Number of Shareholders
 - SOE/non-SOE
- Which predictors matter?
- Portfolio analysis

• Full sample and subsample analysis $\hat{g}^{\text{VASA}}(\boldsymbol{z}_{i,t}) \coloneqq \sum_{k=1}^{B} \omega_b \hat{g}^{\text{OLS}}(\tilde{\boldsymbol{z}}_{i,t,b}) = \sum_{b=1}^{B} \omega_b (\hat{\alpha}_b + \tilde{\boldsymbol{z}}'_{i,t,b} \hat{\boldsymbol{\beta}}_b)$

$$\hat{g}^{\text{VASA}}(\boldsymbol{z}_{i,t}) := \sum_{b=1}^{B} \omega_b \hat{g}^{\text{OLS}}(\tilde{\boldsymbol{z}}_{i,t,b}) = \sum_{b=1}^{B} \omega_b (\hat{\alpha}_b + \tilde{\boldsymbol{z}}'_{i,t,b} \hat{\boldsymbol{\beta}}_b)$$

	OLS +H	OLS-3 +H	PLS	LASSO +H	Enet +H	GBRT +H	RF	VASA	NN1	NN2	NN3	NN4	NN5
All	0.81	0.77	1.28	1.43	1.42	2.71	2.44	1.37	2.07	2.04	2.28	2.49	2.58
Top 70%	-0.89	0.23	0.56	0.55	0.36	-0.38	-0.04	0.34	0.41	0.51	0.74	0.47	0.72
Bottom 30%	1.33	1.57	2.35	2.74	3.00	7.27	6.10	2.90	4.52	4.32	4.57	5.50	5.33
A.M.C.P.S. Top 70%	0.47	1.31	0.55	1.36	1.53	1.39	1.69	1.41	1.72	1.67	2.01	1.96	2.03
A.M.C.P.S. Bottom 30%	1.49	-0.31	7.08	1.12	1.22	1.48	3.93	1.29	2.78	2.79	2.84	3.56	3.67
SOE	-0.06	0.52	0.68	0.85	0.79	0.01	0.80	0.75	1.10	1.18	1.28	1.30	1.68
Non-SOE	1.12	0.87	1.50	1.64	1.65	3.67	3.02	1.60	2.41	2.35	2.64	2.92	2.90

- NN and tree-based models still outperform
- Predictability is more significant for subsamples of stocks in which retail traders play a much bigger role
- Predictability of SOEs is weaker than for non-SOEs \rightarrow non-transparent
- Same pattern for size and SOE/non-SOE subsamples \rightarrow strongly correlated
- The Chinese market reveals substantially more predictability.

Gu et al.

	OLS +H	OLS-3 +H				GLM +H		GBRT +H	NN1	NN2	NN3	NN4	NN5
All	-3.46	0.16	0.27	0.26	0.11	0.19	0.33	0.34	0.33	0.39	0.40	0.39	0.36
Top $1,000$	-11.28	0.31	-0.14	0.06	0.25	0.14	0.63	0.52	0.49	0.62	0.70	0.67	0.64
Bottom 1,000	-1.30	0.17	0.42	0.34	0.20	0.30	0.35	0.32	0.38	0.46	0.45	0.47	0.42

At annual horizons

	OLS +H	OLS-3 +H	PLS	LASSO +H	Enet +H	GBRT +H	RF	VASA	NN1	NN2	NN3	NN4	NN5
All	3.22	3.27	3.51	4.47	4.33	4.53	4.15	4.19	4.26	5.39	5.21	5.17	5.24
Top 70%	3.74	4.23	4.18	5.30	5.20	5.23	4.61	4.95	7.17	5.68	5.79	5.80	6.48
Bottom 30%	3.46	3.73	3.80	4.74	4.59	4.92	3.92	4.40	6.54	5.36	5.47	5.48	6.02
A.M.C.P.S. Top 70%	3.96	3.42	4.91	4.02	4.66	4.67	4.77	4.34	4.98	5.78	5.51	6.06	6.33
A.M.C.P.S. Bottom 30%	0.59	2.40	3.05	1.50	3.75	2.97	1.75	3.60	1.45	3.87	4.02	1.72	1.06
SOE	4.71	5.80	5.84	6.98	6.89	5.81	6.53	6.57	8.98	6.87	6.82	7.20	8.18
Non-SOE	3.08	3.12	3.09	4.10	3.99	4.77	3.22	3.80	5.88	4.87	5.07	4.87	5.32

- Annual OOS R2 are higher than their monthly counterparts
- Pattern reverses for subsample results. They attribute this result to retail investors' short-term speculative behavior in the Chinese stock market.

Monthly vs Annually / China vs US

Table 3

Average out-of-sample predictive R² in percentage for NN1 to NN5. This table reports the average out-of-sample predictive R² for the neural networks NN1 to NN5 for different subgroups of firms: (1) the sample including only the firms with the 30% bottom market values; (2) the sample excluding firms with bottom 30% market values; (3) the sample including the firms with the bottom 30% average market capitalization per shareholder; (4) the sample including firms with the top 70% average market capitalization per shareholder; (5) non-state-owned-enterprises; (6) state-owned-enterprises. In addition, we add the corresponding numbers for the top and bottom 1,000 companies for the US market as analyzed in Gu et al. (2020), their tables 1 and 2. All the numbers are expressed in percentage values. The numbers in parentheses are the average out-of-sample predictive R² for all models, excluding OLS.

	^	ı .			1	*	Ш		
	Bottom 30%	Top 70%	Small-shareholder	Large-shareholder	Non-SOE	SOE		US bottom	US top
Monthly Annual	4.85(4.18) 5.77(4.91)	0.57(0.37) 6.18(5.39)	3.13(2.62) 2.42(2.60)	1.88(1.55) 5.73(4.95)	2.64(2.26) 5.20(4.34)	1.31(0.91) 7.61(6.87)		0.44(0.36) 4.37(4.68)	0.62(0.41) 4.30(3.34)
							П		ı

- For small Chinese stocks, the OOS R2 is ten times higher than for the US small stocks
- Opposite pattern for Chinese and US market

Which predictor matter?

for a specific model, we calculate the reduction in predictive R₂ when setting all values of a given predictor to zero within each training sample, and average them into a single importance measure for each predictor

Macroeconomic variables

	PLS	LASSO +H	Enet +H	GBRT +H	RF	VASA	NN1	NN2	NN3	NN4	NN5
		111									
dp	0.00	8.65	4.07	9.11	9.44	1.34	2.17	2.96	3.31	4.01	1.63
de	0.00	1.06	1.78	9.40	8.59	1.32	5.46	5.86	5.28	6.57	5.78
bm	1.06	34.33	26.24	8.97	8.34	0.00	8.46	7.23	5.99	7.99	9.53
svar	0.00	0.00	0.13	7.76	8.86	15.88	2.12	2.93	3.23	3.97	1.59
ер	0.00	0.68	0.98	8.09	9.86	46.41	2.14	2.94	3.21	3.99	1.59
ntis	41.19	14.54	14.37	12.30	9.12	0.00	18.35	18.78	20.01	16.36	17.60
tms	0.00	0.00	0.52	8.74	9.17	12.86	2.13	2.93	3.31	4.00	1.58
infl	21.14	21.86	28.63	9.11	11.92	0.00	40.61	38.41	38.16	31.97	39.12
mtr	0.00	0.00	0.26	9.22	10.22	22.19	2.12	2.95	3.28	4.00	1.58
m2gr	18.33	16.57	19.12	8.22	7.12	0.00	8.19	7.57	6.63	8.51	9.50
itgr	18.28	2.32	3.91	9.52	7.36	0.00	8.24	7.44	7.57	8.62	10.50

Vary across different models

Stock characteristics

- The most relevant variables: Liquidity / fundamental factors......
 - Gu et al.: trend factors are important, and fundamentals are not.
- Notable differences across models
 - NNs tend to favor momentum and volatility factors over fundamentals
 - NNs, regularized linear models and VASA tend to emphasize a similar set of predictors
- There seem to be a gap in variable importance between the periods before and after 2015 → a structural change in the stock market

Alternative model selection

Performance of a given model under the USPA and CSPA tests.

					CSPA Test			
	USPA	infl	m2gr	bm	dp	mtr	svar	Total
OLS(+H)	10*	9*	11*	11*	10*	9	9	59
OLS-3(+H)	10*	8*	10*	9*	10*	9*	10*	56
PLS	3*	4*	5*	3	5*	6*	6	29
LASSO(+H)	3*	3	2	1	0	3	4	13
Enet(+H)	3	0*	2	1	1	2	5	11
GBRT(+H)	0	1	0	0	0	1	2*	4
RF	0	0	1	0	0	2*	2*	5
VASA	0	3*	1	0	1	2	6	13
NN1	0	1	0	0*	1	1	0	3
NN2	1*	2*	1*	3*	3*	3*	2	14
NN3	0	3	0	0	1*	1	1*	6
NN4	0	0	0	0	2	0	0	2
NN5	0*	4	0	0	0	0	0	4

$$\begin{split} Y_{j,t} &\equiv L\left(F_t^\dagger, F_{j,t}\right) - L\left(F_t^\dagger, F_{0,t}\right) \\ H_0^{UEPA} &: \mathbb{E}\left[Y_{j,t}\right] = 0, \quad 1 \leq j \leq J, \\ H_0^{CEPA} &: \mathbb{E}\left[Y_{j,t}|X_t = x\right] = 0, \quad x \in \mathcal{X}, \quad 1 \leq j \leq J, \end{split}$$

NN1, NN4, and NN5 have the smallest total number of CSPA test rejections.

Dissecting the predictability performance of NN4

We focus on the striking differences in the monthly and annual OOSR2 for small and large stocks generated by the NN4 model

From large stocks to small

• Fundamentals have less impact of smaller stocks, but sales-to-price doesn't.

Portfolio analysis

all stocks	are equ	ally-weighted Machine Learning Portfolios											
	"1/N"	OLS-3	PLS	LASSO	Enet	GBRT	RF	VASA	NN1	NN2	NN3	NN4	NN5
	Portfolio	+H		+H	+H	+H							
Long-Short													
Avg	_	1.80	3.17	3.72	3.79	3.15	2.22	4.49	5.17	4.75	5.50	5.40	5.53
Std	_	6.63	5.34	5.60	5.80	6.52	5.21	6.30	7.21	5.05	5.52	6.43	6.37
S.R.	_	0.94	2.05	2.30	2.27	1.67	1.47	2.47	2.48	3.25	3.45	2.91	3.01
Skew	_	0.58	-0.64	0.27	-0.63	-0.23	-0.76	1.21	3.53	1.35	2.49	3.44	2.29
Kurt	_	2.25	1.64	3.04	5.25	0.64	0.45	9.27	24.37	6.56	13.51	21.65	11.88
Max DD	_	45.97	17.57	15.49	29.78	24.21	16.08	16.79	13.54	7.91	5.29	6.29	6.95
Max 1M Loss	_	18.85	17.57	15.49	24.02	18.07	11.90	16.64	12.50	7.91	4.98	4.58	5.82
Long-Only													
Avg	1.56	2.45	2.74	3.37	3.35	2.59	2.22	4.04	4.23	3.84	4.36	4.50	4.55
Std	8.44	9.43	6.67	7.79	7.72	6.83	7.16	8.55	9.63	7.72	8.60	9.27	9.69
S.R.	0.64	0.89	1.42	1.49	1.50	1.31	1.07	1.64	1.52	1.72	1.76	1.68	1.63
Skew	0.26	0.49	-0.12	1.04	0.48	0.16	0.41	1.03	2.09	0.59	1.22	1.41	1.98
Kurt	1.26	1.36	1.45	4.65	2.11	2.77	1.70	4.81	10.72	2.97	5.98	6.46	10.25
Max DD	54.20	47.24	33.56	22.61	24.94	35.46	38.83	22.46	21.04	21.20	21.37	21.53	19.88
Max 1M Loss	25.56	24.66	19.66	20.95	21.42	22.54	18.49	21.22	21.04	20.28	20.34	20.16	19.88

 the COVID-19 pandemic in early 2020 does not lead to a notable downturn in portfolio levels

Performance of machine learning portfolios based on the top 70% sample (value-weighted)

						Ма	chine Learr	ing Portfol	ios				
	"1/N"	OLS-3	PLS	LASSO	Enet	GBRT	RF	VASA	NN1	NN2	NN3	NN4	NN5
	Portfolio	+H		+H	+H	+H							
Long-Short													
Avg	_	0.88	2.51	2.41	2.37	2.29	1.19	2.88	3.27	3.39	3.73	3.53	3.50
Std	_	5.83	5.17	4.73	5.47	6.28	5.00	4.84	4.41	4.08	4.03	4.79	4.49
S.R.	_	0.52	1.68	1.76	1.50	1.26	0.82	2.06	2.57	2.88	3.21	2.55	2.70
Skew	_	0.23	-0.41	-0.57	-1.10	-0.28	-0.88	-0.61	-0.07	0.08	0.18	0.98	0.31
Kurt	_	0.92	1.84	1.26	4.27	1.02	1.95	3.21	0.94	0.90	1.51	3.19	0.44
Max DD	_	53.80	18.29	15.22	30.78	25.69	21.90	17.01	13.54	9.50	6.25	8.59	7.52
Max 1M Loss	-	17.58	18.16	15.22	22.87	19.25	17.82	17.01	11.29	9.50	4.86	8.59	7.52
Long-Only													
Avg	1.10	1.54	1.93	2.03	1.83	1.62	1.10	2.35	2.26	2.55	2.47	2.60	2.50
Std	8.17	8.75	6.54	6.84	6.90	6.46	6.84	7.39	7.23	7.14	6.97	7.50	7.58
S.R.	0.47	0.61	1.02	1.03	0.92	0.87	0.56	1.10	1.08	1.24	1.23	1.20	1.14
Skew	0.10	0.23	-0.14	0.18	0.01	-0.37	-0.31	0.28	0.11	-0.03	-0.07	0.15	0.22
Kurt	1.32	1.10	1.68	1.82	2.27	3.85	3.41	1.68	2.24	1.68	1.67	1.97	1.99
Max DD	42.48	58.31	37.43	27.87	31.74	48.60	42.80	26.47	32.93	27.84	30.55	32.32	30.67
Max 1M Loss	26.44	24.80	20.26	22.81	23.46	25.41	26.36	22.76	23.77	22.83	22.31	23.80	23.65

 All portfolios achieve lower average monthly returns, Sharpe ratios, standard deviations, and extreme negative monthly returns because small stocks are excluded

2021/10/1 Long Zhen 22

Performance of machine learning portfolios based on SOEs (value-weighted)

						Ma	chine Learr	ning Portfol	ios				
	"1/N"	OLS-3	PLS	LASSO	Enet	GBRT	RF	VASA	NN1	NN2	NN3	NN4	NN5
	Portfolio	+H		+H	+H	+H							
Long-Short													
Avg	_	1.38	3.00	3.39	3.65	3.21	2.13	3.62	4.04	4.16	4.05	4.15	4.48
Std	_	4.88	4.06	3.99	4.19	3.88	3.10	4.53	3.73	3.67	3.70	3.88	3.76
S.R.	_	0.98	2.56	2.94	3.02	2.87	2.38	2.77	3.74	3.93	3.79	3.70	4.12
Skew	_	0.13	-0.57	-0.27	-0.62	-0.03	-0.76	-0.36	0.36	-0.26	-0.03	0.56	0.12
Kurt	_	0.06	0.91	0.75	2.29	-0.15	1.79	1.22	0.70	0.01	0.71	2.29	0.22
Max DD	_	34.70	14.71	10.72	16.70	8.26	9.81	13.22	7.43	6.54	10.20	10.10	9.76
Max 1M Loss	_	11.02	12.59	9.77	14.44	6.86	9.11	12.01	5.02	5.28	7.15	7.61	6.33
Long-Only													
Avg	1.13	2.00	2.42	2.62	2.86	2.67	2.17	2.87	3.04	3.16	3.11	3.18	3.35
Std	7.80	8.99	7.08	7.77	7.92	7.58	8.17	7.96	8.27	7.61	7.97	8.23	8.26
S.R.	0.50	0.77	1.19	1.17	1.25	1.22	0.92	1.25	1.27	1.44	1.35	1.34	1.41
Skew	-0.03	0.13	0.02	0.12	0.10	-0.36	-0.04	0.10	0.08	0.07	-0.04	0.23	0.18
Kurt	1.24	1.02	1.37	1.49	1.50	2.38	1.59	1.51	1.73	1.16	1.89	1.48	1.17
Max DD	54.23	52.24	30.46	26.64	24.78	34.91	41.63	25.18	28.96	23.57	25.95	25.60	24.52
Max 1M Loss	25.04	26.07	21.50	23.82	24.69	26.78	26.43	24.05	25.72	21.55	25.95	23.92	22.69

• The long-short strategy's performance in terms of the Sharpe ratio is considerably higher for SOEs than for the top 70% stocks, especially for neural networks.

Table 10Portfolio performance including transaction costs (value-weighted). This table reports the impact of transaction costs on the monthly return (in %) and the annualized Sharpe ratio of the portfolio strategies based on different machine learning algorithms.

innuanzed Sharpe rad	or the por				cimic rearring					
			Monthly retu	rn				Sharpe ratio)	
Long-Short										
Transaction costs	0 bps	20 bps	40 bps	60 bps	80 bps	0 bps	20 bps	40 bps	60 bps	80 bps
OLS(+H)	3.24	2.94	2.65	2.36	2.06	2.05	1.87	1.68	1.49	1.31
OLS-3(+H)	1.80	1.66	1.53	1.39	1.25	0.94	0.87	0.80	0.73	0.66
PLS	3.17	3.00	2.82	2.65	2.47	2.06	1.95	1.84	1.73	1.62
LASSO(+H)	3.72	3.48	3.23	2.98	2.74	2.30	2.15	1.99	1.84	1.68
Enet(+H)	3.79	3.53	3.26	2.99	2.72	2.27	2.11	1.95	1.78	1.62
GBRT(+H)	3.15	2.90	2.65	2.41	2.16	1.67	1.54	1.41	1.28	1.15
RF	2.22	2.01	1.80	1.59	1.38	1.47	1.33	1.20	1.06	0.92
VASA	4.49	4.27	4.06	3.84	3.62	2.47	2.35	2.23	2.11	1.99
NN1	5.17	4.91	4.65	4.39	4.12	2.48	2.36	2.23	2.10	1.97
NN2	4.75	4.50	4.24	3.98	3.73	3.26	3.08	2.91	2.73	2.55
NN3	5.50	5.24	4.98	4.72	4.47	3.45	3.28	3.12	2.96	2.79
NN4	5.40	5.14	4.87	4.61	4.35	2.91	2.76	2.62	2.48	2.34
NN5	5.53	5.25	4.97	4.69	4.41	3.01	2.85	2.70	2.55	2.39
Long-Only										
Transaction costs	0 bps	20 bps	40 bps	60 bps	80 bps	0 bps	20 bps	40 bps	60 bps	80 bps
OLS(+H)	3.03	2.87	2.72	2.56	2.41	1.34	1.28	1.21	1.14	1.07
OLS-3(+H)	2.45	2.35	2.26	2.17	2.07	0.90	0.86	0.83	0.80	0.76
PLS	2.74	2.64	2.55	2.46	2.37	1.42	1.37	1.33	1.28	1.23
LASSO(+H)	3.37	3.23	3.10	2.97	2.83	1.50	1.44	1.38	1.32	1.26
Enet(+H)	3.35	3.21	3.07	2.92	2.78	1.50	1.44	1.37	1.31	1.24
GBRT(+H)	2.59	2.47	2.35	2.22	2.10	1.31	1.25	1.19	1.13	1.07
RF	2.22	2.10	1.99	1.88	1.77	1.07	1.02	0.97	0.91	0.86
VASA	4.04	3.92	3.80	3.68	3.56	1.64	1.59	1.54	1.49	1.44
NN1	4.23	4.08	3.94	3.80	3.66	1.52	1.47	1.42	1.37	1.32
NN2	3.84	3.70	3.56	3.43	3.29	1.72	1.66	1.60	1.54	1.48
NN3	4.36	4.22	4.08	3.94	3.80	1.76	1.70	1.64	1.59	1.53
NN4	4.50	4.36	4.21	4.07	3.92	1.68	1.63	1.57	1.52	1.46
NN5	4.55	4.40	4.25	4.10	3.94	1.63	1.57	1.52	1.46	1.41
,,	_								_	

Conclusion

- Liquidity-based trading signals and fundamental factors are the most crucial factor categories, while price momentum only play a minor role.
- Short-termism of retail investors generates substantial predictability at short investment horizons, particular for small stocks.
- Substantial increase in SOEs' predictability at longer horizons.
- Portfolio analysis shows the high predictability translates into high Sharpe ratios. And machine learning can be more successful in other markets than the US.

Comparison

- This paper is organized from the perspective of specificity of the Chinese stock market. So they focus on the comparison between the Chinese market and the US market. It's not the prevailing models, but the analysis and the underlying economic intuition that matter for this paper.
- Tell Chinese stories like a native speaker.