Recall: (Fermat's Theorem) $a \neq 0 \pmod{p} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$

- x^{p-1} and $(x-1)(x-2)\cdot ...\cdot (x-(p-1))$ have the same coefficients in mod p
 - $a^p = a \pmod{p}$ for all a.
- $x^{p}-x$ and $x(x-1)(x-2)\cdot...\cdot(x-(p-1))$ have the same coefficients in mod p.
- ① Compute 2 (mod 11)
- 2) Prove 30/n25-n
- (3) Solve $x^{17} + 6x^{14} + 2x^{5} + 1 \equiv 0 \pmod{5}$

We continue with some applications of Fermat's Theorem.

4 Wilson's Theorem: $n \ge 2$ is a prime if and only if $(n-1)! \equiv -1 \pmod{n}$

If n is not a prime, then n = ab for some $2 \le a, b \le n-1$.

 \Rightarrow (n-1)! is divisible by $a \Rightarrow (n-1)! \equiv 0 \pmod{a}$ However $(n-1)! \equiv -1 \pmod{n}$ will require $(n-1)! \equiv -1 \pmod{a}$, not possible. If n is a prime, then by Fermat's Theorem we have $x^{n-1} - 1 \equiv (x-1)(x-2) \cdot ... (x-(n-1)) \pmod{n}$ Plugging x=0 in, we get $-1 \equiv (-1) \cdot (-2) \cdot ... (-(n-1)) \pmod{n}$ $-1 \equiv (-1)^{n-1} \cdot (n-1)! \pmod{n}$ because n-1 is $-1 \equiv (n-1)! \pmod{n}$ even or n=2.

(5) Theorem: p odd prime. $x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$.

If $x^2 + 1 \equiv 0 \pmod{p}$ $\Rightarrow x^2 \equiv -1 \pmod{p}$ $\Rightarrow (x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$ $\Rightarrow x^{p-1} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$ $\Rightarrow 1 \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$ $\Rightarrow p = 4 + 1$.

```
If p \equiv 1 \pmod{4}, then we write p = 4k+1.

Choose x = (2k)! = 1 \cdot 2 \cdot 3 \cdot ... \cdot 2k, then
x^{2} \equiv (1 \cdot 2 \cdot 3 \cdot ... \cdot 2k) \cdot (1 \cdot 2 \cdot 3 \cdot ... \cdot 2k)
\equiv (1 \cdot 2 \cdot 3 \cdot ... \cdot 2k) \cdot (-4k \cdot -(4k-1) \cdot -(4k-2) \cdot ... \cdot -(2k+1))
\equiv (1 \cdot 2 \cdot 3 \cdot ... \cdot 2k) \cdot ((2k+1) \cdot ... \cdot 4k) \cdot (-1)^{2k}
\equiv (4k)! \longrightarrow (p-1)!
\equiv -1 \pmod{p}
```

To test whether n is a prime or not, Wilson's Theorem can be used

• $(n-1)! \not\equiv -1 \pmod{n} \Rightarrow n$ is not prime. not easy to compute

On the other hand, computing powers mod n is much easier:
(Successive squaring method)

Compute 11 (mod 53)

1 = 1 . 1 . 1

 $|1| \equiv |1| \pmod{53}$, $|1|^2 \equiv |5| \pmod{53}$, $|1|^4 \equiv |3| \pmod{53}$

 $11^8 = 10 \pmod{53}$, $11^{16} = -6 \pmod{53}$, $11^{32} = 36 \pmod{53}$

 \Rightarrow 11 42 = 36.10.15 = (-11).15 = -6 (mod 53)

Can we use Fermat's Theorem $a^p \equiv a \pmod{p}$ for primality testing?

- If $a^n \neq a \pmod{n} \Rightarrow n$ is not prime.
- Can we say n is not prime $\Rightarrow a^n \neq a \pmod{p}$?

 Answer is "No",

Let's say "n passes the base a test" if $a^n \equiv a \pmod{n}$.

Smallest value of a to try is a=2.

Question: Is there any composite number n which passes the base 2 test?

Yes and we'll call such numbers pseudoprimes.

• 341 = 11.31 is a pseudoprime:

To prove
$$2^{341} \equiv 2 \pmod{341}$$

• $2^{341} \equiv (2^{10})^{34} \cdot 2 \equiv 1^{34} \cdot 2 \equiv 2 \pmod{11}$

• $2^{341} \equiv (2^{30})^{11} \cdot 2^{11} \equiv 1^{11} \cdot 2^{11} \equiv 2 \pmod{31}$
 \downarrow
 $2^{5} \cdot 2^{5} \cdot 2 \equiv 2 \pmod{31}$

Theorem: There are infinitely many pseudoprimes

Proof: n pseudoprime $\Rightarrow 2^n-1$ is also pseudoprime

(Textbook Theorem 4.7.)