

planetmath.org

Math for the people, by the people.

proof of Barbalat's lemma

Canonical name ProofOfBarbalatsLemma

Date of creation 2013-03-22 15:10:45 Last modified on 2013-03-22 15:10:45

Owner ncrom (8997) Last modified by ncrom (8997)

Numerical id 7

Author ncrom (8997)

Entry type Proof

Classification msc 26A06

We suppose that $y(t) \not\to 0$ as $t \to \infty$. There exists a sequence (t_n) in \mathbb{R}_+ such that $t_n \to \infty$ as $n \to \infty$ and $|y(t_n)| \ge \varepsilon$ for all $n \in \mathbb{N}$. By the uniform continuity of y, there exists a $\delta > 0$ such that, for all $n \in \mathbb{N}$ and all $t \in \mathbb{R}$,

$$|t_n - t| \le \delta \implies |y(t_n) - y(t)| \le \frac{\varepsilon}{2}.$$

So, for all $t \in [t_n, t_n + \delta]$, and for all $n \in \mathbb{N}$ we have

$$|y(t)| = |y(t_n) - (y(t_n) - y(t))| \ge |y(t_n)| - |y(t_n) - y(t)| \ge$$

$$\ge \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}.$$

Therefore,

$$\left| \int_0^{t_n + \delta} y(t) dt - \int_0^{t_n} y(t) dt \right| = \left| \int_{t_n}^{t_n + \delta} y(t) dt \right| = \int_{t_n}^{t_n + \delta} |y(t)| dt \ge \frac{\varepsilon \delta}{2} > 0$$

for each $n \in \mathbb{N}$. By the hypothesis, the improprer Riemann integral $\int_0^\infty y(t)dt$ exists, and thus the left hand side of the inequality converges to 0 as $n \to \infty$, yielding a contradiction.