Chapter 7: ANOVA with Interaction and Factorial Designs

Harsha Perera

Key Topics

- ANOVA with Interaction
- Design : The Two-Way Factorial Experiment

ANOVA with Interaction

- One-way ANOVA
 - Continuous response vs. one categorical predictor
- ► Two-way ANOVA
 - Continuous response vs. two categorical prediction (treatments)
- In two-way ANOVA we assumed,
 - response can be estimated by adding grand mean, treatment effects and Interaction effect
 - ▶ i.e. an additive model is adequate TO explore the source variation in response
- Most of the time the factors do interact
- ▶ When factors interact we need to introduce additional information to the two-way ANOVA model (Interaction Term)

ANOVA with Interaction

- ► Interaction occurs when,
 - Effect of one variable depends on the value of the other variable

- Simple example:
 - ► Two Factors:
 - ► Type of food (hot dog, ice cream)
 - Condiment (ketchup, chocolate sauce)
 - Response: satisfaction

ANOVA with Interaction...

- Satisfaction of the type of food depends on the condiment
- Satisfaction will be higher
 - Hot dog with ketchup
 - lce cream with chocolate sauce

- Satisfaction will be lower
 - Hot dog with chocolate sauce
 - Ice cream with ketchup
- Here, we can determine the need for an interaction term based on the context

ANOVA with Interaction: Numeric Differences

- Objective: investigates interaction numerically
- Example: Birds and hormones
 - Research question: do male and female birds respond in the same way to a hormone supplement added to their food?
 - Response: blood calcium levels
 - Factors: sex (male/female) vs. hormone supplement (with/without)

Example: Birds and hormones

Example: Birds and hormones - No Interaction

	Hormone: No	Hormone: Yes	Diff
Male	12.12	27.78	15.66
Female	14.88	31.08	16.20
Diff	2.76	3.30	

- ▶ Difference of row means are approximate same (≈ 16)
- ▶ Difference of column means are approximately same (≈ 3)
- Relationship between Calcium and presence and absence of hormone does not depend on sex of the bird
 - ► No interaction effect

Example: Pigs and Vitamins

	No Antibiotics	with antibiotics	Diff
No B12	19	3	-16
With B12	22	54	32
Diff	3	51	

- Row means are different
- Column means are different

- Relationship between Weight and presence and absence of Vitamin B12 does depend on presence and absence of antibiotics in the diet
 - Need to include an interaction effect

Birds and hormones: interaction plot - parallel lines suggests no interaction

Pigs and vitamins: interaction plot - non-parallel lines suggests need for an interaction term

More on interaction effect

▶ In both examples, there are more than one measure for each combination of factors

► This is called replication

- Replication helps to measure unit-to-unit variation
- ▶ In order to measure interaction, we need to replicate
 - i.e to more than one measurement per cell
 - e.g we looked at the difference of means, not the difference of each observation
 - ► Interaction is a "difference of differences"

Two-Way Factorial Design

- A continuous response variable
- ► Two categorical predictors (2 factors)
- There are more than one measurements for each combination of factors

- ▶ If each cell has same number of measurements, we call the factorial design is balanced
 - Example: birds and hormones / pigs and vitamins