VGG16 Base BN

April 10, 2025

```
[1]: import os
     import torch
     import torch.nn as nn
     import torch.optim as optim
     from torchvision import transforms, datasets
     from torch.utils.data import Dataset, DataLoader, random_split
     from PIL import Image
     from tqdm import tqdm
     import matplotlib.pyplot as plt
     import numpy as np
     from sklearn.metrics import classification_report, confusion_matrix
     import seaborn as sns
     from torch.cuda.amp import GradScaler, autocast
     import random
     import torch.nn.functional as F
[2]: torch.manual_seed(42)
     np.random.seed(42)
     random.seed(42)
[3]: device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
[4]: class ARSL256Dataset(Dataset):
         def __init__(self, root_dir, transform=None):
             self.root_dir = root_dir
             self.transform = transform
             self.img_paths = []
             self.labels = []
             self.class_to_idx = {}
             folders = sorted(os.listdir(root dir))
             for idx, folder in enumerate(folders):
                 folder_path = os.path.join(root_dir, folder)
                 if os.path.isdir(folder_path):
                     self.class_to_idx[folder] = idx
                     for img_name in os.listdir(folder_path):
                         img_path = os.path.join(folder_path, img_name)
```

```
self.img_paths.append(img_path)
                         self.labels.append(idx)
         def __len__(self):
             return len(self.img_paths)
         def __getitem__(self, idx):
             image = Image.open(self.img_paths[idx]).convert('RGB')
             label = self.labels[idx]
             if self.transform:
                 image = self.transform(image)
             return image, label
[5]: transform_basic = transforms.Compose([
         transforms.Resize((64, 64)),
         transforms.ToTensor()
     ])
     transform_aug = transforms.Compose([
         transforms.Resize((64, 64)),
         transforms.RandomHorizontalFlip(),
         transforms.RandomRotation(10),
         transforms.ToTensor()
     ])
[6]: data_dir = "dataset"
     full_dataset = ARSL256Dataset(root_dir=data_dir, transform=None)
     train_size = int(0.8 * len(full_dataset))
     val_size = len(full_dataset) - train_size
     train_set, val_set = random_split(full_dataset, [train_size, val_size])
[7]: train_set_aug, val_set_aug = random_split(ARSL256Dataset(root_dir=data_dir,_u
     →transform=None), [train_size, val_size])
     # Assign transforms
     train_set.dataset.transform = transform_basic
     val_set.dataset.transform = transform_basic
     train_set_aug.dataset.transform = transform_aug
     val_set_aug.dataset.transform = transform_basic
[8]: batch_size = 16
     train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
     val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False)
     train_loader_aug = DataLoader(train_set_aug, batch_size=batch_size,_
      ⇔shuffle=True)
```

```
[9]: # Model Definitions
     # 1. Base model without BatchNormalization
     class VGG16 withoutBN(nn.Module):
         def __init__(self, num_classes=31):
             super(VGG16_withoutBN, self).__init__()
             self.features = nn.Sequential(
                 nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(inplace=True),
                 nn.MaxPool2d(2, 2),
                 nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(inplace=True),
                 nn.MaxPool2d(2, 2),
                 nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(inplace=True),
                 nn.MaxPool2d(2, 2),
                 nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.MaxPool2d(2, 2),
                 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(inplace=True),
                 nn.MaxPool2d(2, 2),
             self.classifier = nn.Sequential(
                 nn.Linear(512 * 2 * 2, 4096),
                 nn.ReLU(inplace=True),
                 nn.Dropout(0.5),
                 nn.Linear(4096, 4096),
                 nn.ReLU(inplace=True),
                 nn.Dropout(0.5),
                 nn.Linear(4096, num_classes)
             )
         def forward(self, x):
             x = self.features(x)
             x = x.view(x.size(0), -1)
             x = self.classifier(x)
             return x
```

```
[10]: # 2. Model with BatchNormalization
      class VGG16_BN(nn.Module):
          def __init__(self, num_classes=31):
              super(VGG16_BN, self).__init__()
              self.features = nn.Sequential(
                  nn.Conv2d(3, 64, 3, padding=1), nn.BatchNorm2d(64), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(64, 64, 3, padding=1), nn.BatchNorm2d(64), nn.
       →ReLU(inplace=True),
                  nn.MaxPool2d(2, 2),
                  nn.Conv2d(64, 128, 3, padding=1), nn.BatchNorm2d(128), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(128, 128, 3, padding=1), nn.BatchNorm2d(128), nn.
       →ReLU(inplace=True),
                  nn.MaxPool2d(2, 2),
                  nn.Conv2d(128, 256, 3, padding=1), nn.BatchNorm2d(256), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(256, 256, 3, padding=1), nn.BatchNorm2d(256), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(256, 256, 3, padding=1), nn.BatchNorm2d(256), nn.
       →ReLU(inplace=True),
                  nn.MaxPool2d(2, 2),
                  nn.Conv2d(256, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(512, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(512, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.MaxPool2d(2, 2),
                  nn.Conv2d(512, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(512, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.Conv2d(512, 512, 3, padding=1), nn.BatchNorm2d(512), nn.
       →ReLU(inplace=True),
                  nn.MaxPool2d(2, 2),
              )
              self.classifier = nn.Sequential(
                  nn.Linear(512 * 2 * 2, 4096),
                  nn.ReLU(inplace=True),
                  nn.Dropout(0.5),
                  nn.Linear(4096, 4096),
```

```
[11]: def train(model, train_loader, val_loader, epochs=20, lr=0.001,

→model_name="Model"):
          model.to(device)
          criterion = nn.CrossEntropyLoss()
          optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, __
       ⇒weight_decay=1e-4)
          scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max',_
       →patience=3, factor=0.5)
          train_losses, val_losses = [], []
          train_accs, val_accs = [], []
          best_val_acc = 0.0
          for epoch in range(epochs):
              model.train()
              running_loss, correct, total = 0.0, 0, 0
              loop = tqdm(train_loader, desc=f"{model_name} - Epoch [{epoch+1}/

√{epochs}]")
              total_grad_norm = 0
              for images, labels in loop:
                  images, labels = images.to(device), labels.to(device)
                  optimizer.zero_grad()
                  outputs = model(images)
                  loss = criterion(outputs, labels)
                  loss.backward()
                  optimizer.step()
                  grad_norm = 0
                  for p in model.parameters():
                      if p.grad is not None:
                          grad_norm += p.grad.data.norm(2).item()
                  total_grad_norm += grad_norm
```

```
running_loss += loss.item()
                  _, preds = torch.max(outputs, 1)
                  total += labels.size(0)
                  correct += (preds == labels).sum().item()
                  loop.set_postfix(loss=loss.item(), acc=100.0 * correct / total)
              avg_grad_norm = total_grad_norm / len(train_loader)
              print(f"Average Gradient Norm: {avg_grad_norm:.4f}")
              epoch_acc = 100.0 * correct / total
              epoch_loss = running_loss / len(train_loader)
              train_losses.append(epoch_loss)
             train_accs.append(epoch_acc)
             print(f"Train Accuracy: {epoch_acc:.2f}%")
              # Validation
              val_loss, val_correct, val_total = 0.0, 0, 0
              model.eval()
              with torch.no_grad():
                  for images, labels in val_loader:
                      images, labels = images.to(device), labels.to(device)
                      outputs = model(images)
                      loss = criterion(outputs, labels)
                      val loss += loss.item()
                      _, preds = torch.max(outputs, 1)
                      val_total += labels.size(0)
                      val_correct += (preds == labels).sum().item()
             val_acc = 100.0 * val_correct / val_total
              val_losses.append(val_loss / len(val_loader))
              val_accs.append(val_acc)
             print(f"Validation Accuracy: {val_acc:.2f}%\n")
              scheduler.step(val_acc)
              if val_acc > best_val_acc:
                  best_val_acc = val_acc
                  torch.save(model.state_dict(), f'best_{model_name.lower().replace("u
       torch.cuda.empty_cache()
         return train_losses, val_losses, train_accs, val_accs
[12]: def plot_metrics(train_losses, val_losses, train_accs, val_accs, model_name):
```

epochs = range(1, len(train_losses)+1)

plt.figure(figsize=(12, 5))

```
plt.subplot(1, 2, 1)
plt.plot(epochs, train_losses, 'b-', label='Train Loss')
plt.plot(epochs, val_losses, 'r-', label='Val Loss')
plt.title(f'{model_name} - Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, train_accs, 'b-', label='Train Accuracy')
plt.plot(epochs, val_accs, 'r-', label='Val Accuracy')
plt.title(f'{model_name} - Accuracy over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.tight_layout()
plt.show()
```

```
[13]: def evaluate_model(model, data_loader, class_to_idx):
          model.eval()
          all_preds = []
          all_labels = []
          with torch.no_grad():
              for images, labels in data_loader:
                  images = images.to(device)
                  labels = labels.to(device)
                  outputs = model(images)
                  _, preds = torch.max(outputs, 1)
                  all preds.extend(preds.cpu().numpy())
                  all_labels.extend(labels.cpu().numpy())
          print(classification_report(all_labels, all_preds,__
       atarget_names=list(class_to_idx.keys()), zero_division=0))
          cm = confusion_matrix(all_labels, all_preds)
          plt.figure(figsize=(10, 8))
          sns.heatmap(cm, annot=False, fmt='d', cmap='Blues')
          plt.title('Confusion Matrix')
          plt.ylabel('True Label')
          plt.xlabel('Predicted Label')
          plt.show()
```

```
[14]: # Training and Evaluation
```

```
# Model 1: Base VGG16 without BatchNorm
print("\n=== Training Base VGG16 without BatchNormalization ===\n")
model_no_bn = VGG16_withoutBN(num_classes=31)
train_losses_no_bn, val_losses_no_bn, train_accs_no_bn, val_accs_no_bn = train(
    model_no_bn, train_loader, val_loader, epochs=10, lr=0.001,
 →model_name="Base VGG16")
plot_metrics(train_losses_no_bn, val_losses_no_bn, train_accs_no_bn,_u
 →val_accs_no_bn, "Base VGG16")
evaluate model (model no bn, val loader, full dataset class to idx)
=== Training Base VGG16 without BatchNormalization ===
Base VGG16 - Epoch [1/10]: 100%| | 393/393 [03:10<00:00, 2.06it/s,
acc=3.85, loss=3.43]
Average Gradient Norm: 0.8801
Train Accuracy: 3.85%
Validation Accuracy: 3.69%
Base VGG16 - Epoch [2/10]: 100% | 393/393 [02:41<00:00, 2.43it/s,
acc=4.12, loss=3.43]
Average Gradient Norm: 0.8847
Train Accuracy: 4.12%
Validation Accuracy: 3.69%
Base VGG16 - Epoch [3/10]: 100% | 393/393 [02:38<00:00, 2.47it/s,
acc=4.04, loss=3.43]
Average Gradient Norm: 0.8856
Train Accuracy: 4.04%
Validation Accuracy: 3.69%
Base VGG16 - Epoch [4/10]: 100% | 393/393 [02:40<00:00, 2.45it/s,
acc=3.91, loss=3.4]
Average Gradient Norm: 0.8903
Train Accuracy: 3.91%
Validation Accuracy: 3.95%
Base VGG16 - Epoch [5/10]: 100% | 393/393 [02:39<00:00, 2.46it/s,
acc=3.93, loss=3.46]
Average Gradient Norm: 0.8891
Train Accuracy: 3.93%
```

Validation Accuracy: 3.69%

Base VGG16 - Epoch [6/10]: 100% | 393/393 [02:39<00:00, 2.46it/s,

acc=3.68, loss=3.44]

Average Gradient Norm: 0.9003

Train Accuracy: 3.68% Validation Accuracy: 3.95%

Base VGG16 - Epoch [7/10]: 100% | 393/393 [02:39<00:00, 2.46it/s,

acc=3.56, loss=3.44]

Average Gradient Norm: 0.9035

Train Accuracy: 3.56% Validation Accuracy: 3.69%

Base VGG16 - Epoch [8/10]: 100%| | 393/393 [02:39<00:00, 2.47it/s,

acc=3.98, loss=3.43]

Average Gradient Norm: 0.9132

Train Accuracy: 3.98% Validation Accuracy: 3.69%

Base VGG16 - Epoch [9/10]: 100%| | 393/393 [02:40<00:00, 2.45it/s,

acc=4.15, loss=3.43]

Average Gradient Norm: 0.9063

Train Accuracy: 4.15% Validation Accuracy: 3.69%

Base VGG16 - Epoch [10/10]: 100% | 393/393 [02:39<00:00, 2.46it/s,

acc=3.69, loss=3.39]

Average Gradient Norm: 0.9105

Train Accuracy: 3.69%

Validation Accuracy: 3.69%

	precision	recall	f1-score	support
Ain	0.00	0.00	0.00	44
Al	0.00	0.00	0.00	60
Alef	0.00	0.00	0.00	39
Beh	0.04	1.00	0.07	58
Dad	0.00	0.00	0.00	35
Dal	0.00	0.00	0.00	56
Feh	0.00	0.00	0.00	53
Ghain	0.00	0.00	0.00	50
Hah	0.00	0.00	0.00	51
Heh	0.00	0.00	0.00	56
Jeem	0.00	0.00	0.00	49
Kaf	0.00	0.00	0.00	47
Khah	0.00	0.00	0.00	48
Laa	0.00	0.00	0.00	51
Lam	0.00	0.00	0.00	41
Meem	0.00	0.00	0.00	51
Noon	0.00	0.00	0.00	45
Qaf	0.00	0.00	0.00	40
Reh	0.00	0.00	0.00	52
Sad	0.00	0.00	0.00	62
Seen	0.00	0.00	0.00	46
Sheen	0.00	0.00	0.00	60
Tah	0.00	0.00	0.00	50
Teh	0.00	0.00	0.00	62
Teh_Marbuta	0.00	0.00	0.00	52
Thal	0.00	0.00	0.00	39
Theh	0.00	0.00	0.00	65
Waw	0.00	0.00	0.00	56
Yeh	0.00	0.00	0.00	52
Zah	0.00	0.00	0.00	51

Zain	0.00	0.00	0.00	50
accuracy			0.04	1571
macro avg	0.00	0.03	0.00	1571
weighted avg	0.00	0.04	0.00	1571


```
plot_metrics(train_losses_with_bn, val_losses_with_bn, train_accs_with_bn,_u val_accs_with_bn, "VGG16 with BN")
evaluate_model(model_with_bn, val_loader, full_dataset.class_to_idx)
```

=== Training VGG16 with BatchNormalization ===

VGG16 with BN - Epoch [1/20]: 100%| | 393/393 [02:45<00:00, 2.38it/s,

acc=3.85, loss=3.35]

Average Gradient Norm: 49.0934

Train Accuracy: 3.85% Validation Accuracy: 5.28%

VGG16 with BN - Epoch [2/20]: 100%| | 393/393 [02:47<00:00, 2.35it/s,

acc=8.26, loss=2.92]

Average Gradient Norm: 40.4051

Train Accuracy: 8.26%

Validation Accuracy: 14.19%

VGG16 with BN - Epoch [3/20]: 100% | 393/393 [02:47<00:00, 2.34it/s,

acc=25, loss=1.86]

Average Gradient Norm: 67.6938

Train Accuracy: 24.97%

Validation Accuracy: 20.69%

VGG16 with BN - Epoch [4/20]: 100% | 393/393 [02:48<00:00, 2.34it/s,

acc=44, loss=2.08]

Average Gradient Norm: 76.4847

Train Accuracy: 44.03% Validation Accuracy: 43.41%

VGG16 with BN - Epoch [5/20]: 100% | 393/393 [02:41<00:00, 2.44it/s,

acc=59.3, loss=1.17]

Average Gradient Norm: 74.7896

Train Accuracy: 59.26%

Validation Accuracy: 46.98%

VGG16 with BN - Epoch [6/20]: 100% | 393/393 [02:38<00:00, 2.48it/s,

acc=68.1, loss=0.724]

Average Gradient Norm: 74.2100

Train Accuracy: 68.11%

Validation Accuracy: 63.91%

VGG16 with BN - Epoch [7/20]: 100%| | 393/393 [02:38<00:00, 2.48it/s,

acc=76.5, loss=0.526]

Average Gradient Norm: 70.9177

Train Accuracy: 76.46% Validation Accuracy: 67.54%

VGG16 with BN - Epoch [8/20]: 100%| | 393/393 [02:38<00:00, 2.49it/s,

acc=82.9, loss=0.938]

Average Gradient Norm: 68.0874

Train Accuracy: 82.94%

Validation Accuracy: 69.45%

VGG16 with BN - Epoch [9/20]: 100% | 393/393 [02:38<00:00, 2.49it/s,

acc=85.3, loss=0.516]

Average Gradient Norm: 67.5667

Train Accuracy: 85.30% Validation Accuracy: 70.08%

VGG16 with BN - Epoch [10/20]: 100%| | 393/393 [02:37<00:00, 2.49it/s,

acc=88.8, loss=0.417]

Average Gradient Norm: 61.4190

Train Accuracy: 88.80% Validation Accuracy: 77.15%

VGG16 with BN - Epoch [11/20]: 100% | 393/393 [02:38<00:00, 2.49it/s,

acc=92.1, loss=0.641]

Average Gradient Norm: 55.5908

Train Accuracy: 92.08% Validation Accuracy: 72.25%

VGG16 with BN - Epoch [12/20]: 100% | 393/393 [02:38<00:00, 2.48it/s,

acc=93, loss=0.379]

Average Gradient Norm: 54.4108

Train Accuracy: 92.98% Validation Accuracy: 80.71%

VGG16 with BN - Epoch [13/20]: 100% | 393/393 [02:38<00:00, 2.49it/s,

acc=94.6, loss=0.308]

Average Gradient Norm: 47.5210

Train Accuracy: 94.57% Validation Accuracy: 78.49%

VGG16 with BN - Epoch [14/20]: 100% | 393/393 [02:38<00:00, 2.49it/s,

acc=95.9, loss=0.246]

Average Gradient Norm: 39.2487

Train Accuracy: 95.94%

Validation Accuracy: 79.31%

VGG16 with BN - Epoch [15/20]: 100% | 393/393 [02:38<00:00, 2.48it/s,

acc=95.8, loss=0.00824]

Average Gradient Norm: 44.3443

Train Accuracy: 95.83% Validation Accuracy: 78.93%

VGG16 with BN - Epoch [16/20]: 100% | 393/393 [02:46<00:00, 2.35it/s,

acc=96.5, loss=0.172]

Average Gradient Norm: 39.6715

Train Accuracy: 96.50%

Validation Accuracy: 81.29%

VGG16 with BN - Epoch [17/20]: 100% | 393/393 [02:42<00:00, 2.42it/s,

acc=97.8, loss=0.354]

Average Gradient Norm: 30.8125

Train Accuracy: 97.77%

Validation Accuracy: 81.86%

VGG16 with BN - Epoch [18/20]: 100% | 393/393 [02:40<00:00, 2.45it/s,

acc=97.6, loss=0.016]

Average Gradient Norm: 31.6541

Train Accuracy: 97.58%

Validation Accuracy: 82.81%

VGG16 with BN - Epoch [19/20]: 100%| | 393/393 [02:44<00:00, 2.38it/s,

acc=97.5, loss=0.0905]

Average Gradient Norm: 34.2605

Train Accuracy: 97.49%

Validation Accuracy: 81.92%

acc=97.6, loss=0.0441]

Average Gradient Norm: 30.8299

Train Accuracy: 97.64%

Validation Accuracy: 82.30%

	precision	recall	f1-score	support
Ain	0.83	0.80	0.81	44
Al	0.95	0.98	0.97	60
Alef	0.83	0.90	0.86	39
Beh	0.79	0.93	0.86	58
Dad	0.91	0.91	0.91	35
Dal	0.74	0.70	0.72	56
Feh	0.57	0.68	0.62	53
Ghain	0.90	0.72	0.80	50
Hah	0.84	0.84	0.84	51
Heh	0.75	0.80	0.78	56
Jeem	0.79	0.78	0.78	49
Kaf	0.74	0.83	0.78	47
Khah	0.88	0.88	0.88	48
Laa	0.82	0.88	0.85	51
Lam	0.86	0.88	0.87	41
${\tt Meem}$	0.84	0.63	0.72	51
Noon	0.84	0.82	0.83	45
Qaf	0.49	0.75	0.59	40
Reh	0.75	0.79	0.77	52
Sad	0.89	0.89	0.89	62
Seen	0.87	0.85	0.86	46
Sheen	0.94	0.97	0.95	60

Tah	0.68	0.84	0.75	50
Teh	0.91	0.97	0.94	62
Teh_Marbuta	0.90	0.90	0.90	52
Thal	0.78	0.72	0.75	39
Theh	0.92	0.75	0.83	65
Waw	0.93	0.93	0.93	56
Yeh	1.00	0.87	0.93	52
Zah	0.97	0.55	0.70	51
Zain	0.84	0.72	0.77	50
accuracy			0.82	1571
macro avg	0.83	0.82	0.82	1571
weighted avg	0.83	0.82	0.82	1571


```
[16]: # Model 3: VGG16 with BatchNorm + Augmentation
     print("\n=== Training VGG16 with BatchNormalization and Data Augmentation ∪
      ⇒===\n")
     model_with_bn_aug = VGG16_BN(num_classes=31)
     train_losses_with_bn_aug, val_losses_with_bn_aug, train_accs_with_bn_aug,_u
      oval_accs_with_bn_aug = train(
         model_with_bn_aug, train_loader_aug, val_loader_aug, epochs=20, lr=0.001, u
      →model_name="VGG16 with BN+Aug")
     plot_metrics(train_losses_with_bn_aug, val_losses_with_bn_aug,_
      evaluate model (model with bn aug, val loader aug, full dataset class to idx)
     === Training VGG16 with BatchNormalization and Data Augmentation ===
     VGG16 with BN+Aug - Epoch [1/20]: 100% | 393/393 [02:48<00:00,
     2.34it/s, acc=3.37, loss=3.59]
     Average Gradient Norm: 43.8965
     Train Accuracy: 3.37%
     Validation Accuracy: 4.65%
     VGG16 with BN+Aug - Epoch [2/20]: 100% | 393/393 [02:48<00:00,
     2.34it/s, acc=5.79, loss=2.77]
     Average Gradient Norm: 32.2120
     Train Accuracy: 5.79%
     Validation Accuracy: 9.80%
     VGG16 with BN+Aug - Epoch [3/20]: 100%| | 393/393 [02:47<00:00,
     2.35it/s, acc=15.1, loss=2.58]
     Average Gradient Norm: 54.4495
     Train Accuracy: 15.09%
     Validation Accuracy: 19.61%
     VGG16 with BN+Aug - Epoch [4/20]: 100%| | 393/393 [02:43<00:00,
     2.40it/s, acc=34.9, loss=1.7]
     Average Gradient Norm: 74.0377
     Train Accuracy: 34.95%
     Validation Accuracy: 32.59%
     VGG16 with BN+Aug - Epoch [5/20]: 100% | 393/393 [02:41<00:00,
     2.44it/s, acc=54.1, loss=1.56]
```

Average Gradient Norm: 76.9847

Train Accuracy: 54.12% Validation Accuracy: 56.59%

VGG16 with BN+Aug - Epoch [6/20]: 100% | 393/393 [02:39<00:00,

2.46it/s, acc=65.5, loss=0.537]

Average Gradient Norm: 73.5713

Train Accuracy: 65.47% Validation Accuracy: 66.65%

VGG16 with BN+Aug - Epoch [7/20]: 100%| | 393/393 [02:42<00:00,

2.42it/s, acc=73.8, loss=1.02]

Average Gradient Norm: 73.9310

Train Accuracy: 73.79% Validation Accuracy: 68.68%

VGG16 with BN+Aug - Epoch [8/20]: 100% | 393/393 [02:40<00:00,

2.45it/s, acc=80.3, loss=0.25]

Average Gradient Norm: 69.5097

Train Accuracy: 80.28% Validation Accuracy: 70.66%

VGG16 with BN+Aug - Epoch [9/20]: 100%| | 393/393 [02:41<00:00,

2.44it/s, acc=84.3, loss=0.679]

Average Gradient Norm: 67.1732

Train Accuracy: 84.28%

Validation Accuracy: 73.58%

VGG16 with BN+Aug - Epoch [10/20]: 100%| | 393/393 [02:38<00:00,

2.47it/s, acc=89.1, loss=0.263]

Average Gradient Norm: 59.1353

Train Accuracy: 89.15%

Validation Accuracy: 77.34%

VGG16 with BN+Aug - Epoch [11/20]: 100%| | 393/393 [02:38<00:00,

2.48it/s, acc=90.6, loss=0.481]

Average Gradient Norm: 59.0719

Train Accuracy: 90.64%

Validation Accuracy: 80.39%

VGG16 with BN+Aug - Epoch [12/20]: 100%| | 393/393 [02:38<00:00,

2.47it/s, acc=93.3, loss=0.0552]

Average Gradient Norm: 52.6378

Train Accuracy: 93.25% Validation Accuracy: 79.89%

VGG16 with BN+Aug - Epoch [13/20]: 100% | 393/393 [02:41<00:00,

2.43it/s, acc=94.1, loss=0.0597]

Average Gradient Norm: 50.3129

Train Accuracy: 94.10% Validation Accuracy: 77.02%

VGG16 with BN+Aug - Epoch [14/20]: 100% | 393/393 [02:52<00:00,

2.28it/s, acc=96, loss=0.0504]

Average Gradient Norm: 40.9503

Train Accuracy: 95.97%

Validation Accuracy: 80.20%

VGG16 with BN+Aug - Epoch [15/20]: 100%| | 393/393 [02:44<00:00,

2.39it/s, acc=96.1, loss=0.205]

Average Gradient Norm: 42.3184

Train Accuracy: 96.12%

Validation Accuracy: 80.20%

VGG16 with BN+Aug - Epoch [16/20]: 100% | 393/393 [02:39<00:00,

2.46it/s, acc=98.8, loss=0.0462]

Average Gradient Norm: 19.0261

Train Accuracy: 98.82%

Validation Accuracy: 86.19%

VGG16 with BN+Aug - Epoch [17/20]: 100%| | 393/393 [02:43<00:00,

2.40it/s, acc=99.5, loss=0.00123]

Average Gradient Norm: 10.0756

Train Accuracy: 99.52%

Validation Accuracy: 87.08%

VGG16 with BN+Aug - Epoch [18/20]: 100%| | 393/393 [02:39<00:00,

2.47it/s, acc=99.8, loss=0.0216]

Average Gradient Norm: 6.9230

Train Accuracy: 99.79%

Validation Accuracy: 86.95%

VGG16 with BN+Aug - Epoch [19/20]: 100%| | 393/393 [02:39<00:00,

2.47it/s, acc=99.8, loss=0.00154]

Average Gradient Norm: 5.4104

Train Accuracy: 99.81%

Validation Accuracy: 86.57%

VGG16 with BN+Aug - Epoch [20/20]: 100%| | 393/393 [02:39<00:00,

2.47it/s, acc=99.8, loss=0.00133]

Average Gradient Norm: 4.6527

Train Accuracy: 99.84%

Validation Accuracy: 87.97%

precision	recall	f1-score	support
0.85	0.93	0.89	42
0.93	0.93	0.93	55
0.92	0.85	0.89	41
0.85	0.91	0.88	66
0.93	0.96	0.94	53
0.88	0.86	0.87	50
0.78	0.65	0.71	49
0.83	0.90	0.86	48
0.86	0.94	0.90	51
0.85	0.88	0.87	52
0.89	0.77	0.82	43
0.92	0.83	0.87	58
0.91	0.84	0.88	58
	0.85 0.93 0.92 0.85 0.93 0.88 0.78 0.83 0.86 0.85 0.89	0.85 0.93 0.93 0.93 0.92 0.85 0.85 0.91 0.93 0.96 0.88 0.86 0.78 0.65 0.83 0.90 0.86 0.94 0.85 0.88 0.89 0.77 0.92 0.83	0.85 0.93 0.89 0.93 0.93 0.93 0.92 0.85 0.89 0.85 0.91 0.88 0.93 0.96 0.94 0.88 0.86 0.87 0.78 0.65 0.71 0.83 0.90 0.86 0.86 0.94 0.90 0.85 0.88 0.87 0.89 0.77 0.82 0.92 0.83 0.87

Laa	0.95	0.93	0.94	56
Lam	0.98	0.94	0.96	52
Meem	0.80	0.76	0.78	49
Noon	0.78	0.91	0.84	46
Qaf	0.80	0.80	0.80	40
Reh	0.90	0.88	0.89	50
Sad	0.74	0.84	0.79	44
Seen	0.90	0.88	0.89	52
Sheen	1.00	0.95	0.97	60
Tah	0.92	0.89	0.91	38
Teh	0.89	0.96	0.92	70
Teh_Marbuta	0.88	0.83	0.85	52
Thal	0.86	0.78	0.82	32
Theh	0.86	0.93	0.89	71
Waw	0.94	0.93	0.93	54
Yeh	1.00	0.90	0.95	61
Zah	0.82	0.88	0.85	41
Zain	0.80	0.86	0.83	37
accuracy			0.88	1571
macro avg	0.88	0.87	0.87	1571
weighted avg	0.88	0.88	0.88	1571


```
[17]: plt.figure(figsize=(14, 5))

# Accuracy comparison
plt.subplot(1, 2, 1)
plt.plot(val_accs_no_bn, 'b-', label='Base VGG16')
plt.plot(val_accs_with_bn, 'g-', label='With BN')
plt.plot(val_accs_with_bn_aug, 'r-', label='With BN+Aug')
plt.title('Validation Accuracy Comparison')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()

# Loss comparison
plt.subplot(1, 2, 2)
plt.plot(val_losses_no_bn, 'b-', label='Base VGG16')
plt.plot(val_losses_with_bn, 'g-', label='With BN')
```

```
plt.plot(val_losses_with_bn_aug, 'r-', label='With BN+Aug')
plt.title('Validation Loss Comparison')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()

plt.tight_layout()
plt.show()
```


Model	+ Best Train Acc	Best Val Acc	
Base VGG16	•	3.95%	3.4362
·	97.77%	82.81% 	0.7548
With BN+Aug	•	87.97%	0.499

[1]: """

Key Findings:

- 1. **Data Augmentation Impact**:
 - Better generalization (reduced overfitting)
 - Higher validation accuracy than BN-only model
 - Much smaller gap between training and validation metrics
 - More stable validation loss curve
- 2. **Combined Effect**:
 - Using both BN and augmentation gives the best results
 - BN handles internal covariate shift while augmentation handles input $_{\sqcup}$ $_{\hookrightarrow}variability$
 - Leads to faster convergence and better generalization

Recommendations:

- 1. Always use BatchNormalization in deep CNNs
- 2. Implement appropriate data augmentation for your domain
- 3. Monitor both training and validation metrics to assess generalization
- 4. The combination of BN+Augmentation allows for higher learning rates and more $_{\!\!\!\!\perp}$ $_{\!\!\!\!\perp}$ training epochs
- [1]: '\n## Key Findings:\n\n\1. **Data Augmentation Impact**:\n Better generalization (reduced overfitting)\n Higher validation accuracy than BN-only model\n Much smaller gap between training and validation metrics\n More stable validation loss curve\n\n2. **Combined Effect**:\n Using both BN and augmentation gives the best results\n BN handles internal covariate shift while augmentation handles input variability\n Leads to faster convergence and better generalization\n\n## Recommendations:\n1. Always use BatchNormalization in deep CNNs\n2. Implement appropriate data augmentation for your domain\n3. Monitor both training and validation metrics to assess generalization\n4. The combination of BN+Augmentation allows for higher learning rates and more training epochs\n'