ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4.09

"Исследование поляризации света (стопа Столетова)"

Группа: ОФ-3 ФПИ 1.1.1

Студенты: Стафеев И.А., Голованов Д.И.

Преподаватель: Середин А.А.

К работе допущен:

Работа выполнена:

Отчет принят:

1 Цель работы

Изучение поляризованного света и определение показателей преломления.

2 Задачи

Для достижения цели были поставлены следующие задачи:

- 1. экспериментально убедиться в справедливости закона Малюса;
- 2. экспериментально определить законы Брюстера;
- 3. определить угол Брюстера и показатель преломления стекла.

3 Объект исследования

Поляризация света, включая изучение законов Малюса и Брюстера, а также определение показателей преломления материалов.

4 Методы экспериментального исследования

Для исследования используются следующие методы:

- 1. Экспериментальная проверка закона Малюса измерение интенсивности света после прохождения через поляризатор и анализатор при различных углах между их осями.
- 2. Исследование отражения и преломления света изучение поляризации света при отражении от границы раздела сред и определение угла Брюстера.
- 3. Использование стопы Столетова анализ степени поляризации преломленного света при многократном прохождении через стеклянные пластинки.

5 Рабочие формулы и исходные данные

1. Закон Малюса

$$I = I_0 \cos^2 \varphi, \tag{1}$$

где I — интенсивность света после анализатора, I_0 — интенсивность поляризованного света, φ — угол между осями поляризатора и анализатора.

2. Закон Брюстера

$$\tan \varphi_{\rm Bp} = n_{21},\tag{2}$$

где φ_{Bp} – угол Брюстера, n_{21} – относительный показатель преломления второй среды относительно первой.

3. Формулы Френеля для коэффициентов отражения

$$R^{\parallel} = \left(\frac{E_{\text{refl}}^{\parallel}}{E_{\text{inc}}^{\parallel}}\right)^{2} = \frac{\tan^{2}(\varphi - \psi)}{\tan^{2}(\varphi + \psi)},\tag{3}$$

$$R^{\perp} = \left(\frac{E_{\text{refl}}^{\perp}}{E_{\text{inc}}^{\perp}}\right)^2 = \frac{\sin^2(\varphi - \psi)}{\sin^2(\varphi + \psi)},\tag{4}$$

где R^{\parallel} и R^{\perp} – коэффициенты отражения для параллельной и перпендикулярной составляющих, φ – угол падения, ψ – угол преломления.

4. Связь углов Брюстера и преломления

$$\varphi_{\rm Bp} + \psi = \frac{\pi}{2}.\tag{5}$$

5. Коэффициент пропускания

$$T = 1 - R, (6)$$

где T – коэффициент пропускания, R – коэффициент отражения.

6. Интенсивность естественного света после поляризатора

$$I_0 = \frac{1}{2}I_{\text{ect}},\tag{7}$$

где $I_{\rm ect}$ – интенсивность естественного света.

6 Измерительные приборы:

Таблица 1 — Измерительные приборы

№ п/п	Наименование
1	Микроскоп
2	Цировая камера E3ISPM20000KPA
3	Раздел построения фигур в Altami Studio
1	Оптическая скамья
2	Источник света (лампа накаливания)
3	Поляроиды (поляризатор и анализатор)
4	Стопа Столетова (набор стеклянных пластин)
5	Фоторезисторы для измерения интенсивности света
6	Фоторегистрирующее устройство
7	Лимбы для отсчёта углов

7 Схема установки

Схема лабораторной установки представлена на рисунке 1.

Рисунок 1 — Лабораторная установка

Цифрами на схеме обозначены:

- 1. Оптическая скамья
- 2. Источник света (лампа накаливания)
- 3. Поляризатор (поляроид в оправе с лимбом)
- 4. Лимб
- 5. Анализатор (второй поляроид)
- 6. Чёрное зеркало
- 7. Стопа Столетова (набор стеклянных пластин)
- 8. Рифленое кольцо
- 9. Центральная часть столика
- 10. Стойка рейтера
- 11. Зажимной винт
- 12. Фоторезистор на кронштейне
- 13. Кронштейн
- 14. Лимб столика
- 15. Отдельный фоторезистор

8 Прямые измерения

Таблица 2 — Измерения для изучения закона Малюса

Угол поворота α , $^{\circ}$	$\cos(\alpha)$	$\cos^2(\alpha)$	Фототок I , мк A	
0	1.00	1.00	0.1660	
10	0.98	0.97	0.1530	
20	0.94	0.88	0.1260	
30	0.87	0.75	0.0996	
40	0.77	0.59	0.0648	
50	0.64	0.41	0.0354	
60	0.50	0.25	0.0149	
70	0.34	0.12	0.0005	
80	0.17	0.03	0.0017	
90	0.00	0.00	0.0012	
100	-0.17	0.03	0.0032	
110	-0.34	0.12	0.0102	
120	-0.50	0.25	0.0294	
130	-0.64	0.41	0.0612	
140	-0.77	0.59	0.0965	
150	-0.87	0.75	0.1290	
160	-0.94	0.88	0.1550	
170	-0.98	0.97	0.1690	
180	-1.00	1.00	0.1680	

Таблица 3 — Измерения для изучения поляризованного света с помощью стопы Столетова.

Угол падения φ , $^{\circ}$	Фототок $i_{\pi p}^{(p)}$, мкА	Фототок $i_{\text{отр}}^{(p)}$, мкА	Фототок $i_{\pi p}^{(s)}$, мкА	Фототок $i_{\text{отр}}^{(s)}$, мкА
5	0.549	0.558	0.520	0.528
10	0.542	0.550	0.515	0.552
15	0.560	0.531	0.505	0.564
20	0.556	0.516	0.473	0.580
25	0.590	0.491	0.452	0.601
30	0.615	0.447	0.428	0.626
35	0.655	0.387	0.390	0.652
40	0.705	0.310	0.343	0.677
45	0.759	0.219	0.297	0.705
50	0.799	0.100	0.237	0.738
55	0.809	0.031	0.179	0.779
60	0.816	0.093	0.100	0.822
65	0.630	0.312	0.069	0.866
70	0.428	0.589	0.043	0.931
75	0.200	0.795	0.014	0.956
80	0.031	0.889	0.002	0.977

9 Расчёт результатов косвенных измерений

По графикам зависимостей $i_{\text{отр}}^{(p)}(\varphi)$ и $i_{\text{отр}}^{(s)}(\varphi)$ от угла падения φ (графики см. в разделе 10) был найден угол, при котором найти угол, при котором $i_{\text{отр}}^{(p)}$ достигает минимума. Это и есть угол Брюстера $\varphi_{\text{Бр}}$, равный, судя по графику, 55°.

По формуле 2 был найден показатель преломления, $n_{21}=n_2=\tan\,\varphi_{\rm Bp}=\tan(55^\circ)\approx 1.428.$

10 Графики

Рисунок 2 — График зависимости $I(cos^2(\alpha))$

Рисунок 3 — График зависимости $i_{ ext{orp}}^{(p)}$ и $i_{ ext{orp}}^{(s)}$ от угла падения arphi

Рисунок 4 — График зависимости $i_{\mathrm{np}}^{(p)}$ и $i_{\mathrm{np}}^{(s)}$ от угла падения φ

11 Окончательные результаты

По графику зависимости $I(cos^2(\alpha))$ можно утверждать, что на участках $(0, \frac{\pi}{2})$ и $(\frac{\pi}{2}, \pi)$ зависимость линейная, что соответствует закону Малюса. Экспериментальные данные полностью подтверждают закон Малюса. Мак-

симальная интенсивность наблюдается при совпадении осей поляризатора и анализатора ($\alpha=0^{\circ}$ или $\alpha=180^{\circ}$), минимальная — при $\alpha = 90^{\circ}$.

 $arphi_{
m Bp}=55^{\circ},\ n_{2}=1.428.$ Экспериментально вычисленный угол Брюстера отличается от теоретического на $\frac{|55-60|}{60}$ 100% = 8%, показатель преломления отличается на теоретического на $\frac{|\tan(55^\circ)-\tan(60^\circ)|}{\tan(60^\circ)} \cdot 100\% = 18\%$

Выводы и анализ результатов работы

В ходе выполнения лабораторной работы была изучена поляризация света с использованием стопы Столетова. Экспериментально была подтверждена справедливость закона Малюса: построенный график зависимости интенсивности света I от $\cos^2(\alpha)$ показал чёткую линейную зависимость на интервалах $(0,\frac{\pi}{2})$ и $(\frac{\pi}{2},\pi)$, что соответствует теоретическим ожиданиям. Максимальная интенсивность наблюдается при совпадении осей поляризатора и анализатора ($\alpha = 0^{\circ}$ или $\alpha = 180^{\circ}$), минимальная — при $\alpha = 90^{\circ}$.

Также была изучена зависимость интенсивности отражённого и преломлённого света от угла падения при разной поляризации. По полученному графику интенсивности отражённого р-поляризованного света был определён угол Брюстера $\varphi_{\rm Bp}$, на основе которого вычислен показатель преломления стекла $n={\rm tg}(55^\circ)\approx 1.428.$

Значения угла Брюстера отличается от теоретического на 8%, значение показателя преломления - на 18%, что соответствует умеренному отклонению. Основными источниками погрешности могли быть особенности юстировки установки, отклонения в углах поворота, а также неидеальная работа фоторезисторов. Несмотря на это, характер графиков подтверждает физическую природу явления и качественно соответствует теории.

Ответ на вопрос с замеров: почему коэффициент отражения R^{\perp} не равен 0, когда $R^{\parallel}=0$?

 $R^{\parallel}=rac{\mathrm{tg}^2(arphi-\psi)}{\mathrm{tg}^2(arphi+\psi)}=rac{\mathrm{tg}^2(arphi-\psi)\cdot\cos^2(arphi+\psi)}{\sin^2(arphi+\psi)}$ равен нулю при угле Брюстера, так как тогда $arphi+\psi=rac{\pi}{2}$ и $R^{\parallel}=rac{\mathrm{tg}^2(arphi-\psi)\cdot\cos^2(rac{\pi}{2})}{\sin^2(rac{\pi}{2})}=rac{\mathrm{tg}^2(arphi-\psi)\cdot 0}{1}=0$ $R^{\perp}=rac{\sin^2(arphi-\psi)\cdot 0}{\sin^2(arphi+\psi)}.$ При угле Брюстера $R^{\perp}=rac{\sin^2(arphi-\psi)}{\sin^2(rac{\pi}{2})}=\sin^2(arphi-\psi)\neq 0$ (точнее, R^{\perp} будет равен нулю при $arphi=\psi=rac{\pi}{4},$ но в рамках лабораторной работы это условие не выполняется)