解答解説のページへ

n を自然数とする。1 から 3n+1 までの自然数を並べかえて,順に a_1 , a_2 , …, a_{n+1} , b_1 , b_2 , …, b_n , c_1 , c_2 , …, c_n とおく。また,次の条件(C1),(C2) が成立しているとする。

- (C1) 3n 個の組 $|a_1-a_2|$, $|a_2-a_3|$, …, $|a_n-a_{n+1}|$, $|a_1-b_1|$, $|a_2-b_2|$, …, $|a_n-b_n|$, $|a_1-c_1|$, $|a_2-c_2|$, …, $|a_n-c_n|$ は、すべて互いに異なる。
- (C2) 1以上 n 以下のすべての自然数 k に対し、 $\left|a_k b_k\right| > \left|a_k c_k\right| > \left|a_k a_{k+1}\right|$ が成り立つ。

このとき以下の各問いに答えよ。

- (1) n=1かつ $a_1=1$ のとき、 a_2 、 b_1 、 c_1 を求めよ。
- (2) n=2かつ $a_1=7$ のとき、 a_2 、 a_3 、 b_1 、 b_2 、 c_1 、 c_2 を求めよ。
- (3) $n \ge 2$ かつ $a_1 = 1$ のとき、 a_3 を求めよ。
- (4) n = 2017 かつ $a_1 = 1$ のとき、 a_{29} 、 b_{29} 、 c_{29} を求めよ。

解答解説のページへ

xyz 空間において、点O(0, 0, 0) と点A(0, 0, 1) を結ぶ線分 OA を直径にもつ球面を σ とする。このとき以下の各問いに答えよ。

- (1) 球面 σ の方程式を求めよ。
- (2) xy 平面上にあって O と異なる点 P に対して、線分 AP と球面 σ との交点を Q と するとき、 $\overrightarrow{OQ} \perp \overrightarrow{AP}$ を示せ。
- (3) 点 $\mathbf{S}(p, q, r)$ を、 $\overrightarrow{OS} \cdot \overrightarrow{AS} = -|\overrightarrow{OS}|^2$ を満たす、xy 平面上にない定点とする。 σ 上 の点 \mathbf{Q} が $\overrightarrow{OS} \perp \overrightarrow{SQ}$ を満たしながら動くとき、直線 \mathbf{AQ} と xy 平面との交点 \mathbf{P} はどのような図形を描くか。p, q, r を用いて答えよ。

解答解説のページへ

連続関数 f(x) と定数 a が次の関係式を満たしているとする。

$$\int_0^x f(t)dt = 4ax^3 + (1 - 3a)x + \int_0^x \left\{ \int_0^u f(t)dt \right\} du + \int_x^1 \left\{ \int_u^1 f(t)dt \right\} du$$

このとき以下の各問いに答えよ。

- (1) $a \geq f(0) + f(1)$ の値を求めよ。
- (2) $g(x) = e^{-2x} f(x)$ とおくとき、g(x) の導関数 g'(x) を求めよ。ここで e は自然対数の底を表す。
- (3) f(x)を求めよ。

1 問題のページへ

(1) n=1のとき、1, 2, 3, 4を並べかえると、 a_1, a_2, b_1, c_1 となる。さて、 $a_1=1$ か ら, $\{a_2, b_1, c_1\} = \{2, 3, 4\}$ となり, 条件(C2)から, $|1-b_1| > |1-c_1| > |1-a_2|$

すると、 $b_1 = 4$ 、 $c_1 = 3$ 、 $a_2 = 2$ となり、 $(a_2, b_1, c_1) = (2, 4, 3)$

(2) n=2のとき、1, 2, 3, 4, 5, 6, 7を並べかえると、 a_1 , a_2 , a_3 , b_1 , b_2 , c_1 , c_2 と なる。さて、 $a_1=7$ から、 $\{a_2,\ a_3,\ b_1,\ b_2,\ c_1,\ c_2\}=\{1,\ 2,\ 3,\ 4,\ 5,\ 6\}$ となり、条 件(C2)から,

 $|7-b_1| > |7-c_1| > |7-a_2| \cdots$ $|a_2-b_2| > |a_2-c_2| > |a_2-a_3| \cdots 2$

なお、条件(C1)から、 $|7-b_1|$ 、 $|7-c_1|$ 、 $|7-a_2|$ 、 $|a_2-b_2|$ 、 $|a_2-c_2|$ 、 $|a_2-a_3|$ は異なり、1, 2, 3, 4, 5, 6 のいずれかである。このとき $|a_2-b_2| \le 5$ なので、 $6 = |7 - b_1|$ すなわち $b_1 = 1$ となり、①から、

 $6 > |7 - c_1| > |7 - a_2| \cdots 3$

なお、条件(C1)から、 $|7-c_1|$ 、 $|7-a_2|$ 、 $|a_2-b_2|$ 、 $|a_2-c_2|$ 、 $|a_2-c_3|$ は異なり、

1, 2, 3, 4, 5 のいずれかである。このとき $|a_2-b_2| \le 4$ なので、 $5=|7-c_1|$ すなわち

 $c_1 = 2$ となり、③から、 $5 > |7 - a_2| \cdots$

なお、条件(C1)から、 $|7-a_2|$ 、 $|a_2-b_2|$ 、 $|a_2-c_2|$ 、 $|a_2-a_3|$ は異なり、1、2、3、4 のいずれかである。このとき $|a_2-b_2| \le 3$ なので、 $4=|7-a_2|$ すなわち $a_2=3$ とな

り、②から、 $|3-b_2| > |3-c_2| > |3-a_3| \cdots$

なお、条件(C1)から、 $|3-b_2|$ 、 $|3-c_2|$ 、 $|3-a_3|$ は1,2,3のいずれかである。

すると、5から、 $b_2 = 6$ 、 $c_2 = 5$ 、 $a_3 = 4$ となり、

 $(a_2, a_3, b_1, b_2, c_1, c_2) = (3, 4, 1, 6, 2, 5)$

(3) $1, 2, 3, \cdots, 3n+1$ を並べかえると、 $a_1, \cdots, a_{n+1}, b_1, \cdots, b_n, c_1, \cdots, c_n$ とな る。さて、 $a_1 = 1$ から、

 $\{a_2, \dots, a_{n+1}, b_1, \dots, b_2, c_1, \dots, c_n\} = \{2, 3, \dots, 3n+1\}$

条件(C2)から、 $2 \le i \le n$ として、

なお、条件(C1)から、 $|1-b_1|$ 、 $|1-c_1|$ 、 $|1-a_2|$ 、 $|a_2-b_2|$ 、 $|a_2-c_2|$ 、 $|a_2-a_3|$ 、 \dots , $|a_n-a_{n+1}|$ は異なり、1、2、3、 \dots 、3n のいずれかである。このとき $|a_i - b_i| \le 3n - 1$ なので、 $3n = |1 - b_1|$ すなわち $b_1 = 3n + 1$ となり、⑥から、

$$3n>|1-c_1|>|1-a_2|$$
 ………… ⑧ $\frac{a}{1}$ $\frac{b_1}{2}$ なお、条件 (C1) から、 $|1-c_1|$ 、 $|1-a_2|$ 、 $\frac{a}{1}$ $\frac{b_1}{2}$ $\frac{a_1}{3}$ $\frac{a$

(4) n=2017 のとき 3n+1=6052 となり、(2)(3)と同様にすると、 $a_1=1$ 、 $b_1=6052$ 、 $c_1=6051$ 、 $a_2=6050$ 、 $b_2=2$ 、 $c_2=3$ $a_3=4$ 、 $b_3=6049$ 、 $c_3=6048$ 、 $a_4=6047$ 、 $b_4=5$ 、 $c_4=6$ すると、 $29=2\times15-1$ より、帰納的に、 $a_{29}=1+3(15-1)=43$ $b_{29}=6052-3(15-1)=6010$ 、 $c_{29}=6051-3(15-1)=6009$

「解説]

実質的に時間無制限の整数問題です。数直線を利用すると、考えを整理しやすくなります。なお、(4)はエネルギー不足で、やや雑な記述になっています。

問題のページへ

(1) O(0, 0, 0), A(0, 0, 1)に対し、線分 OA が直径の球面 σ は、中心 $\left(0, 0, \frac{1}{2}\right)$ 、半径 $\frac{1}{2}$ より、その方程式は、

$$x^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2} = \frac{1}{4}$$

(2) xy 平面上の点 $P(P \neq O)$ に対して、3 点 O, A, P を含む 平面を考えると、この平面による球面 σ の切り口は OA が直径の円となるので、 $\overrightarrow{OQ} \perp \overrightarrow{AP}$ である。

(3) $P(x, y, 0) \ge \sharp = \Re (1 - t) = 1 - t = 1 -$

$$\overrightarrow{OQ} = (1-t)\overrightarrow{OA} + t\overrightarrow{OP} = (1-t)(0, 0, 1) + t(x, y, 0)$$
$$= (tx, ty, 1-t) \cdots$$

(2)より、 $\overrightarrow{OQ} \perp \overrightarrow{AP}$ なので、 $\overrightarrow{AP} = (x, y, -1)$ から、

$$tx^2 + ty^2 - (1-t) = 0$$
, $t = \frac{1}{x^2 + y^2 + 1} \cdots 2$

さて、 $\mathbf{S}(p,\ q,\ r)\ (r \neq 0)$ から $\overrightarrow{\mathrm{AS}} = (p,\ q,\ r-1)$ となり、 $\overrightarrow{\mathrm{OS}} \cdot \overrightarrow{\mathrm{AS}} = -\big|\overrightarrow{\mathrm{OS}}\big|^2$ より、

$$p^2 + q^2 + r(r-1) = -(p^2 + q^2 + r^2), \ 2(p^2 + q^2 + r^2) = r \cdots 3$$

さらに、 $\overrightarrow{OS} \perp \overrightarrow{SQ}$ なので、①から $\overrightarrow{SQ} = (tx - p, ty - q, 1 - t - r)$ となり、

$$p(tx-p)+q(ty-q)+r(1-t-r)=0$$

$$ptx + qty + r(1-t) = p^2 + q^2 + r^2 \cdots$$

③④ $\uplue \uplant \uplan$

②を代入すると、
$$\frac{2px}{x^2+y^2+1}+\frac{2qy}{x^2+y^2+1}-\frac{2r}{x^2+y^2+1}+r=0$$
となり、

$$2px + 2qy - 2r + r(x^2 + y^2 + 1) = 0$$
, $x^2 + y^2 - 1 + \frac{2p}{r}x + \frac{2q}{r}y = 0$

$$\left(x + \frac{p}{r}\right)^2 + \left(y + \frac{q}{r}\right)^2 = \frac{p^2 + q^2 + r^2}{r^2}$$

ここで、③から
$$r>0$$
 となり、 $\left(x+rac{p}{r}
ight)^2+\left(y+rac{q}{r}
ight)^2=rac{1}{2r}$

したがって、点 P は xy 平面上で、中心 $\left(-\frac{p}{r}, -\frac{q}{r}, 0\right)$ 、半径 $\frac{1}{\sqrt{2r}}$ の円を描く。

[解 説]

空間ベクトルの図形への応用問題です。上の解答例は,成分計算を主体として記述しています。

問題のページへ

すると、与えられた条件式は、

$$F(x) - F(0) = 4ax^{3} + (1 - 3a)x$$
$$+ \int_{0}^{x} F(u)du - F(0)x + F(1)(1 - x) - \int_{x}^{1} F(u)du \cdots \cdots \oplus \int_{x}^{1} F$$

①の両辺をxで微分すると、

$$F'(x) = 12ax^2 + (1-3a) + F(x) - F(0) - F(1) + F(x)$$
 $f(x) = 12ax^2 + 1 - 3a + 2F(x) - F(0) - F(1) \cdots$ ②
ここで、①に $x = 0$ を代入すると、 $0 = F(1) - \int_0^1 F(u) du \cdots$ 3

①に
$$x = 1$$
を代入すると、 $F(1) - F(0) = 4a + 1 - 3a + \int_0^1 F(u) du - F(0)$ より、
$$F(1) = a + 1 + \int_0^1 F(u) du \cdots \cdots \oplus$$

③④から、a+1=0となり、a=-1である。

すると、②から、
$$f(x) = -12x^2 + 4 + 2F(x) - F(0) - F(1) \cdots$$

⑤にx=0, x=1を代入すると,

$$f(0) = 4 + F(0) - F(1) \cdots \oplus f(1) = -8 + F(1) - F(0) \cdots \oplus f(1)$$

⑥⑦より、 $f(0)+f(1)=4-8=-4\cdots$ ・⑧である。

(2) ⑤の両辺を
$$x$$
で微分すると、 $f'(x) = -24x + 2F'(x) = -24x + 2f(x)$ ………⑨ ここで、 $g(x) = e^{-2x} f(x)$ とおくとき、⑨から、
$$g'(x) = -2e^{-2x} f(x) + e^{-2x} f'(x) = -2e^{-2x} f(x) + e^{-2x} \{-24x + 2f(x)\}$$
$$= -24xe^{-2x}$$

(3) (2)より、
$$g(x) = -24\int xe^{-2x}dx$$
 となり、 C を定数として、
$$g(x) = 12xe^{-2x} - 12\int e^{-2x}dx = 12xe^{-2x} + 6e^{-2x} + C = 6(2x+1)e^{-2x} + C$$
 すると、 $f(x) = e^{2x}g(x)$ より、 $f(x) = 6(2x+1) + Ce^{2x}$ となり、 $\otimes n$ ら、
$$(6+C) + (18+Ce^2) = -4, \quad C = -\frac{28}{1+e^2}$$
 以上より、 $f(x) = 6(2x+1) - \frac{28}{1+e^2}e^{2x}$ である。

[解 説]

いわゆる微分型の積分方程式を解く問題です。問題文で与えられた関係式には驚きますが、誘導がていねいなので、方針に迷うことはないでしょう。