

Normalización

- Proceso de Normalización.
- Forma Normal Boyce/Codd.
- Dependencia Multivalor y Cuarta Forma Normal
- Proceso Total

Resumen de 1FN, 2FN y 3FN

Primera Forma Normal (1FN)

 Todos los atributos de cada tupla contienen un solo valor tomado de sus dominios respectivos (valores atómicos).

Segunda Forma Normal (2FN)

 Es 1FN y cada atributo no clave de la relación es total y funcionalmente dependiente (DFC) de su clave primaria.

Tercera Forma Normal (3FN)

 Es 2FN y ningún atributo no-clave en la relación esta en DF con algún otro atributo no-clave.

Clave Candidata:

- Es un atributo o conjunto de atributos que pueden representar de forma única a cada registro de una entidad o relación.
- Cuando en una relación hay más de una clave candidata, una se designa como clave primaria.

ASESORIA

NoEstudiante	NoCurso	NoAsesor
Gómez	Mate I	Arias
Gómez	Física	Flores
Pérez	Mate I	Arias
Pérez	Álgebra	Sánchez
Ramos	Física	Flores
Ramos	Mate I	García

Restricciones:

- Para cada curso (C), cada estudiante(E), tiene un solo asesor(A)
- □ Cada curso tiene varios asesores (A), pero cada profesor asesora en un solo curso

• Para cada curso, cada estudiante tiene un solo asesor

$$(E, C) \rightarrow A$$

 Cada profesor asesora en un solo curso, pero cada curso tiene varios asesores

$$(E, A) \rightarrow C$$

- Existen dos clave candidatas que se traslapan o están sobrepuestas (E,C) y (E,A).
- Tenemos además la dependencia funcional:

$$A \rightarrow C$$

- Anomalías de eliminación (Identifique alguna)
- El problema existe porque hay un atributo que es determinante pero no es clave candidata: NoAsesor
- Es conveniente crear dos relaciones nuevas:
 - ASESORIA_ESTUDIANTE (\underline{E} , \underline{A}) y
 - ASESOR (\underline{A} ,C)

ASESORIA

NoEstudiante	NoCurso	NoAsesor
Gómez	Mate I	Arias
Gómez	Física	Flores
Pérez	Mate I	Arias
Pérez	Álgebra	Sánchez
Ramos	Física	Flores
Ramos	Mate I	García

ASESORÍA_ ESTUDIANTE

NoEstudiante	NoAsesor
Gómez	Arias
Gómez	Flores
Pérez	Arias
Pérez	Sánchez
Ramos	Flores
Ramos	García

ASESOR

NoAsesor	NoCurso
Arias	Mate 1
Flores	Física
Sánchez	Álgebra
García	Mate 1

Una relación está en forma normal Boyce Codd (BCFN) si y solo si todo determinante es una clave candidata

PROYECTO_TAREA_EMPLEADO

CoProyecto	NoTarea	NoEmpleado
P01	Análisis	Juana Paz
P01	Calidad	Mario Gómez
P15	Diseño	Ana Llanos
P20	Análisis	Juana Paz
P30	Análisis	Ramón Díaz

REGLAS:

- En cada proyecto, cada tarea tiene un solo empleado especialista responsable, aún cuando el empleado esté en varios proyectos,
- Un proyecto está asociado a distintas tareas,
- Un empleado se especializa en un tipo de tarea,
- Una misma tarea puede ser responsabilidad de distintos empleados en distintos proyectos.

 Esta relación tiene dos claves candidatas sobrepuestas:

(Proyecto, Tarea) y (Proyecto, Empleado),

 Existe un determinante de Tarea que es Empleado, pero Empleado no es clave candidata.

Empleado -> Tarea

- Anomalías de inserción. ¿Cuáles?
- Anomalías de eliminación. ¿Cuáles?
- El problema existe porque hay un atributo que es determinante pero no clave candidata: Empleado
- Creamos dos relaciones nuevas:
 - PROYECTO_EMPLEADO y
 - EMPLEADO_TAREA

PROYECTO_TAREA_EMPLEADO

CoProyecto	NoTarea	NoEmpleado
P01	Análisis	Juana Paz
P01	Calidad	Mario Gómez
P15	Diseño	Ana Llanos
P20	Análisis	Juana Paz
P30	Análisis	Ramón Díaz

PROYECTO_EMPLEADO

CoProyecto	NoEmpleado
P01	Juana Paz
P01	Mario Gómez
P15	Ana Llanos
P20	Juana Paz
P30	Ramón Díaz

EMPLEADO_TAREA

NoEmpleado	NoTarea
Juana Paz	Análisis
Mario Gómez	Calidad
Ana Llanos	Diseño
Ramón Díaz	Análisis

CUADRO DE MÉRITOS

NoCurso	NoEstudiante	NuPosicion
Lengua	Pérez	5
Matemática	Pérez	1
Lengua	Gómez	1
Matemática	Gómez	3
Historia	Pérez	2
Historia	Gómez	1

REGLA:

•No hay empates; es decir, dos estudiantes no pueden ocupar la misma posición en la misma materia.

 Esta relación tiene dos claves candidatas sobrepuestas, de acuerdo con las reglas dadas: (NoEstudiante, NoCurso) y (NoCurso, NuPosición),

 Sin embargo, esta relación si está en BCFN porque estas claves candidatas son los únicos determinantes.

Dependencia Multivalor y Cuarta Forma Normal

Dependencia Multivalor

- Dada una relación R, se dice que un atributo R.y es dependiente multivalor (DMV) de un atributo R.x, si un rango específico de valores de y está determinado por un valor específico de x, con independencia del resto de atributos de R
- Se lee: "R.y es multivalor de R.x" o "R.x multidetermina a R.y".
- Importante: la DMV es siempre bidireccional:

$$R.x \rightarrow \rightarrow R.y = R.y \rightarrow \rightarrow R.x$$

Dependencia Multivalor

Curso	Profesor	Texto
•	Moreno Mora	Química Orgánica
		Físico Química
Matemáticas Merino	Merino	Análisis Vectorial
		Álgebra
		Trigonometría

- ✓ Cada *Curso* tiene un conjunto definido de *Profesores* y un conjunto de *Textos*.
- ✓ Los *profesores* son independientes de los *textos*.
- ✓ Un *profesor* puede dictar varios *cursos*, y un *texto* podría emplearse para más de una materia

Dependencia Multivalor

Curso	<u>Profesor</u>	<u>Texto</u>
Química	Moreno	Química Orgánica
Química	Moreno	Físico Química
Química	Mora	Físico Química
Química	Mora	Química Orgánica
Matemáticas	Merino	Análisis Vectorial
Matemáticas	Merino	Álgebra
Matemáticas	Merino	Trigonometría

Esta relación especifica que: el curso impartido puede ser dictado por varios profesores utilizando varios textos". Existen dos DMV:

Curso → → Profesor y Curso → → Texto

 La redundancia de datos causada por la DMV, se puede eliminar siguiendo <u>uno</u> de los siguientes métodos:

1. Crear una nueva relación para cada atributo DMV.

Curso → → Profesor Curso → → Texto

 $R1 = (\underline{Curso}, \underline{Profesor})$ $R2 = (\underline{Curso}, \underline{Texto})$

2. Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

Curso → (Texto1, Texto2, Texto3)

R3 = (Curso, texto1, texto2, texto3)

1. Crear una nueva relación para cada atributo DMV.

Curso → → Profesor Curso → → Texto

<u>Curso</u>	<u>Profesor</u>
Química	Moreno
Química	Mora
Matemáticas	Merino

<u>Curso</u>	<u>Texto</u>	
Química	Físico Química	
Química	Química Orgánica	
Matemáticas	Análisis vectorial	
Matemáticas	Álgebra	
Matemáticas	Trigonometría	

2. Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

Curso → (Texto1, Texto2, Texto3)

Curso	Texto 1	Texto 2	Texto 3
Química	Físico Química	Química Orgánica	
Matemáticas	Análisis Vectorial	Álgebra	Trigonometría

Cuarta Forma Normal

Una relación está en cuarta forma normal (4FN) si es BCFN y no contiene dependencias multivalor

Cuarta Forma Normal - Ejemplo

NACIMIENTOS

- En un nacimiento nace un niño (los mellizos se consideran dos nacimientos).
- En un nacimiento hay una sola madre, y pueden atender el parto una o más enfermeras y uno o más médicos.

R = (bebe, madre, enfermera, médico)

Cuarta Forma Normal - Ejemplo

NACIMIENTOS

Normalizando:

$$R1 = (\underline{bebe}, madre)$$

 No hay DT, y está en FNBC pero en R2 tenemos las dependencias multivaloradas:

Cuarta Forma Normal - Ejemplo

NACIMIENTOS

Procedimientos alternativos:

1. Crear una nueva relación para cada atributo DMV.

```
R3 = (\underline{bebe}, \underline{m\'edico}) R4 = (\underline{bebe}, \underline{enfermera})
```

2. Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

```
R5 = (<u>bebe</u>, médico1, médico2, médico3)
R6 = (<u>bebe</u>, enfermera1, enfermera2)
O
```

R7 = (bebe, médico1, médico2, médico3, enfermera1, enfermera2)

Normalización

Sin Normalizar

Datos almacenados redundantemente en archivo no plano

1FN

La relación tiene registros por separado para cada valor en cada campo del registro, o cada campo de un registro contiene un solo valor (PK definida)

2FN

Cada atributo depende total y funcionalmente de su clave principal

3FN

Ningún atributo no-clave depende transitivamente de su clave principal

BCFN

Todo determinante existente en la relación es clave candidata

4FN

La relación no contiene dependencias multivaloradas

- 1. Elaborar el diagrama que muestre las dependencias funcionales y multivaloradas entre los atributos.
- 2. Separar las relaciones DMV de un atributo y su determinante en otra nueva relación.
- Eliminar atributos no-clave para que todos los no-clave en las relaciones divididas sean total y funcionalmente dependientes de la clave principal.
- 4. Separar las no-claves transitivamente dependientes

• **PASO 1.** Construir diagrama de dependencias según la semántica de los datos:

• PASO 2. Separar las relaciones DMV:

 PASO 3. Separar no-claves que no son totalmente dependientes de la clave principal:

PASO 4. Eliminar dependencia transitiva en R5:

Objetivos Generales de la Normalización

- Evitar ciertas anomalías en la actualización de datos.
- Eliminar ciertos tipos de redundancia.
- Producir un diseño que sea una "buena" representación del mundo real: que sea fácil de entender intuitivamente y constituya una buena base para un crecimiento futuro.
- Simplificar la imposición de ciertas reglas de integridad.

