HOMEWORK 6 – MATH 392 February 16, 2018

ALEX THIES athies@uoregon.edu

Problem 9.13. In the proof of Theorem 9.9 the polynomial $q(x) \in K[x]$ was defined as $\ker(f_c) = \langle q(x) \rangle$. Prove that q(x) is irreducible over K.

Proof.

Problem 9.14. Find the minimum polynomial for $u = \sqrt[3]{10}$ over \mathbb{Q} . Be sure to prove your polynomial is irreducible.

Proof. Consider $a(x) = x^3 - 10$, we compute $a(\sqrt[3]{10}) = 0$, since a(x) is obviously monic it remains to show that it is irreducible over \mathbb{Q} . By the rational roots theorem we have the set of all potential rational roots $R_a = \{\pm 10\}$, and its clear that neither of these are actually rational roots of a(x). Therefore, since $\deg a(x) = 3$ and a(x) has no rational roots, it is irreducible over \mathbb{Q} . Hence, $a(x) = x^3 - 10$ is the minimum polynomial for $u = \sqrt[3]{10}$ over \mathbb{Q} .

Problem 9.18. Find the minimum polynomial for $\sqrt{2} + \sqrt{7}$ over \mathbb{Q} . Be sure to prove your polynomial is irreducible.

Proof. Consider $a(x) = x^4 - 18x^2 + 25$, we compute $a(\sqrt{2} + \sqrt{7}) = 0$, since a(x) is monic it remains to show that it is irreducible over \mathbb{Q} . Since $a_0 = 5^2$ we cannot use Eisenstein's Criterion, thus, we must resort to the method of undetermined coefficients; but the Rational Roots Theorem will help us eliminate one case here. By the Rational Roots Theorem we have the set of all potential rational roots $R_a = \{\pm 5, \pm 25\}$, we compute:

$$a(\pm 5) = 200,$$

 $a(\pm 25) = 379400.$

Thus, a(x) has no rational roots and therefore no linear factors. Since $\deg a(x) = 4$, it can be factored into either the product of degree two polynomials, or the product of a degree three polynomial and a linear (degree one) polynomial. We've ruled out the case with a linear factor

of a(x), it remains to show that $a(x) \neq b(x)c(x)$ where $\deg b(x) = \deg c(x) = 2$. We compute the following:

$$a(x) = x^4 - 18x^2 + 25,$$

= $(x^2 + ax + b)(x^2 + cx + d),$
= $x^4 + x^3(a+c) + x^2(b+d+ac) + x(ad+bc) + bd.$

First, we have the very convenient fact that $bd = 25 \iff b = d = 5$. Next, we see that a = -c, which allows us to compute:

$$-18 = b + d + ac,$$

$$= b + d - c^{2},$$

$$= 10 - c^{2},$$

$$c^{2} = 28,$$

$$c = \pm 2\sqrt{7}.$$

Hence, we have the *unique* factorization of a(x) into degree two polynomials with irrational coefficients. Therefore, a(x) cannot be factored into the product of degree two polynomials that are irreducible over \mathbb{Q} , as we aimed to show. Thus, we conclude that $a(x) = x^4 - 18x^2 + 25$ is the minimum polynomial for $u = \sqrt{2} + \sqrt{7}$ over \mathbb{Q} .

Problem 9.19. Find the minimum polynomial for $u = \sqrt[4]{2i}$ over \mathbb{Q} . Be sure to prove your polynomial is irreducible.

Proof. Consider $a(x) = x^8 + 4$, we compute $a(\sqrt[4]{2i}) = 0$, but unfortunately WolframAlpha tells us that $a(x) = (x^4 - 2x^2 + 2)(x^4 + 2x^2 + 2)$, so a(x) is not the polynomial we're looking for. Fortunately, by the zero product property, one the factors of a(x) should be good candidate for the minimum polynomial for u over \mathbb{Q} . Consider $\tilde{a}(x) = x^4 - 2x^2 + 2$, we compute $\tilde{a}(\sqrt[4]{2i}) = 0$, since $\tilde{a}(x)$ is monic and upon invoking Eisenstein's Criterion with p = 2, we can see that $\tilde{a}(x)$ is irreducible over \mathbb{Q} . Hence, $\tilde{a}(x) = x^4 - 2x^2 + 2$ is the minimum polynomial for $u = \sqrt[4]{2i}$ over \mathbb{Q} .

Problem 9.21. Prove (i) of Theorem 9.12.

Theorem 9.12. Suppose K is a field, E is a field extension of K, and $c \in E$ is algebraic over K with minimum polynomial $p(x) \in K[x]$.

- (i) Using the homomorphism $f_c: K[x] \to E$ as defined by Theorem 9.5, $\ker(f_c) = \langle p(x) \rangle$.
- (ii) If $b(x) \in K[x]$ is a nonzero polynomial with $b(c) = 0_E$, then b(x) = p(x)q(x) for some $q(x) \in K[x]$.

Proof. Let K, E, c, p(x) be as above, we will show $\ker f_c = \langle p(x) \rangle$ by double inclusion. Let us begin with the case where $\langle p(x) \rangle \subseteq \ker (f_c)$. By definition, since p(x) is the minimal polynomial for c over K, we have p(c) = 0. Using the distributive property, and the fact that f_c is a homomorphism, we compute the following:

$$f_c(\pi(x)) = f_c(p(x)\sigma(x)),$$

$$= f_c(p(x))f_c(\sigma(x)),$$

$$= p(c)\sigma(c),$$

$$= 0 \cdot \sigma(c),$$

$$= 0 \cdot \sum_{i=0}^n \sigma_i c^i,$$

$$= \sum_{i=0}^n (0 \cdot \sigma_i)c^i,$$

$$= 0(x).$$

Thus $\pi(x)$, an arbitrarily chosen element of $\langle p(x) \rangle$ is also an element of ker f_c which allows us to conclude that $\langle p(x) \rangle \subseteq \ker f_c$; it remains to show that $\langle p(x) \rangle \supseteq \ker f_c$.

 \vdots

Problem 9.22. Explain how (ii) follows from (i) in Theorem 9.12.

Proof. Since p(x) is the minimal polynomial for c over K, we have that p(c) = 0. To show b(x) = p(x)q(x) for some $q(x) \in K[x]$, let's write something silly:

$$b(c) = 0 = 0 \cdot q(c) = p(c)q(c).$$

Problem 9.31. Consider the polynomial $a(x) = 5+3x+4x^2+6x^3+x^4$ in $\mathbb{Q}[x]$. Prove that a(x) is irreducible over \mathbb{Q} (try Theorem 8.37 to help), then if u is a root of a(x) in an extension field of \mathbb{Q} , describe carefully the elements of $\mathbb{Q}(u)$.

Proof.

Problem 9.46. Find the complete addition and multiplication tables for the field $\mathbb{Z}_2(c)$ where c is a root of the polynomial $p(x) = 1 + x + x^2$ which is irreducible over \mathbb{Z}_2 .

Proof.

Problem 9.52. Find the complete addition and multiplication tables
for the field $\mathbb{Z}_3(c)$ where c is a root of the polynomial $p(x) = 2 + x + x^2$
which is irreducible over \mathbb{Z}_3 .

Proof.	
Problem 9.55. Suppose K is a field and c is algebraic over K	7. Prove
$[K(c):K]=1$ if and only if $c\in K$.	
Proof.	