Задания

24 марта 2021 г.

1. На второй лекции мы видели, что морфизм групп является мономорфизмом тогда и только тогда, когда мономорфизмом является соответствующая ему функция на множествах. Сейчас мы можем обобщить это утверждение. Забывающий функтор $U: \mathbf{Grp} \to \mathbf{Set}$ является правым сопряженным и строгим. Для любого функтора, удовлетворяющего этим двум условиям, можно доказать аналогичное утверждение.

Пусть $U: \mathbf{C} \to \mathbf{D}$ – некоторый функтор. Докажите следующие утверждения:

- (a) Если U является правым сопряженным, то он сохраняет мономорфизмы.
- (b) Если U является строгим, то обратное верно, то есть если U(f) мономорфизм, то f также является мономорфизмом.
- 2. Докажите, что у забывающего функтора $U: \mathbf{Cat} \to \mathbf{Graph}$, сконструированного в 5 ДЗ, существует левый сопряженный.
- 3. Докажите, что левый сопряженный к некоторому функтору U уникален с точностью до изоморфизма, то есть если $F\dashv U$ и $F'\dashv U$, то $F\simeq F'.$
- 4. Есть ли у забывающего функтора $U: \mathbf{Grp} \to \mathbf{Set}$ правый сопряженный? Докажите это.
- 5. Есть ли у забывающего функтора $U: \mathbf{Grp} \to \mathbf{Mon}$ правый сопряженный? Докажите это.
- 6. Пусть **rGraph** категорий рефлексивных графов. Объекты этой категории это графы, в которых для каждой вершины x выбрана петля id_x в этой вершине. Морфизмы морфизмы графов, сохраняющие тождественные петли.

Категория графов в данном упражнении не будет работать, но вместо **rGraph** можно взять категорию малых группоидов или категорию малых категорий; решение при этом не изменится.

Докажите, что у функтора $\Gamma: \mathbf{rGraph} \to \mathbf{Set}$, сопоставляющего каждому рефлексивному графу множество его вершин, существует правый сопряженный $C: \mathbf{Set} \to \mathbf{rGraph}$ и левый сопряженный $D: \mathbf{Set} \to \mathbf{rGraph}$, и у D существует левый сопряженный $\Pi_0: \mathbf{rGraph} \to \mathbf{Set}$. Таким образом, мы получаем следующую цепочку сопряженных функторов:

$$\Pi_0 \dashv D \dashv \Gamma \dashv C$$

- 7. Докажите, что категории \mathbf{Fam}_I и \mathbf{Set}/I эквивалентны.
- 8. Пусть **С** декартовая категория. Если A объект **С**, то мы можем определить функтор $A^*: \mathbf{C} \to \mathbf{C}/A$ как $A^*(B) = (A \times B, \pi_1)$ и $A^*(f) = \mathrm{id}_A \times f$.
 - (a) Докажите, что у A^* есть левый сопряженный.
 - (b) Докажите, что если ${\bf C}$ декартово замкнута и в ${\bf C}$ есть уравнители, то у A^* есть правый сопряженный.