TER M1 : NN and RKHS

Matthieu Denis 17 juin 2021

Table des matières

1	Intr	Introduction : Réseau de neurone simple			
	1.1	Lois sı	uivant la largeur des couches m	9	
	1.2	Choix	de γ	ţ	
	1.3	Gradie	ents	Ę	
	1.4	Descei	nte de gradient	ļ	
		1.4.1	Choix de η	(
		1.4.2	Ordres de grandeur des écarts relatifs	(
		1.4.3	Choix de α	7	

Introduction : Réseau de neurone simple 1

Commencons par étudier un NN très simple : une fonction $\Phi: (\mathbb{R}^m \times \mathbb{R}^{m \times m} \times \mathbb{R}^m) \times \mathbb{R} \to \mathbb{R}$ combinaison d'applications linéaires, sans non linéarités intermédiaires :

$$\Phi((\beta, A, u), x) := \frac{1}{m^{\alpha}} \beta^{T} \left(\frac{1}{m^{\gamma}} A\right) ux$$

On initialise $\theta^0 := (\beta^0, A^0, u^0)$ de manière standarde : $\forall i, j \in \{1, \dots, m\}, \ u_i^0, A_{ij}^0, \beta_i^0 \sim_{iid} N(0, 1)$ Nous montrerons quelques propriétés asymptotiques en la largeur des couches, et sur l'évolution des paramètres lors du premier pas de la descente de gradient.

Lois suivant la largeur des couches m1.1

• Loi de $||u^0||_2^2$ pour m grand

Comme $||u^0||_2^2 = \sum_{i=1}^m (u_i^0)^2 \sim \chi^2(m)$ et $u_i^0 \sim \chi^2(1)$, en appliquant le TCL aux u_i^0 , on a :

$$\frac{||u^0||_2^2 - m}{\sqrt{2m}} \sim_{m \to \infty} N(0, 1)$$

C'est-à-dire que $||u^0||_2^2 \sim N(m,2m)$ [en particulier, $||u^0||_2^2 \sim m$] pour m grand.

• Loi de $\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x$ sachant u^{0}

 $(A^0u^0)_i = \sum_{j=1}^m A^0_{ij} u^0_j$. En sachant u^0 , comme A^0_i est un vecteur gaussien, $(A^0u^0)_i \sim N(0, ||u^0||_2^2)$. De même, part indépendance des A_{ij}^0 , les $(A^0u^0)_i$ sont indépendants et [conditionnellement à u_0] $A^0u^0 \sim N(0_m, ||u^0||_2^2 Id_m).$

Ainsi, [la loi de] $\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x$ [sachant] u^{0} et $N(0_{m},\left(\frac{x}{m^{\gamma}}\right)^{2}||u^{0}||_{2}^{2}Id_{m})$.

[Voici l'argumentation pour la suite

Lemme : si $X_n \sim N(\mu_n, \sigma_n)$ avec $\mu_n \to \mu$ et $\sigma_n \to \sigma$, alors (X_n) converge en loi vers $X_\infty \sim N(\mu, \sigma)$ conséquence : si $\gamma < 1/2$ la loi conditionnelle de $\left(\frac{1}{m^{\gamma}}A^0u^0x\right)_i$ sachant u^0 converge vers une dirac en zero, donc $\left(\frac{1}{m^{\gamma}}A^0u^0x\right)_i$ converge en loi (et en proba) vers 0. Si $\gamma=1/2$ les lois de $\left(\frac{1}{m^{\gamma}}A^0u^0x\right)_i$ sachant u^0 converge vers une $N(0,x^2)$. Comme cette loi est indépendante de u^0 , on a donc que $\left(\frac{1}{m^{\gamma}}A^0u^0x\right)_i$ converge en loi vers une variable de loi $N(0,x^2)$. Si $\gamma>1/2$, $\left(\frac{1}{m^{\gamma}}A^0u^0x\right)_i$ diverge vers l'infini.]

• Loi de $\left(\frac{1}{m^{\gamma}}A^0\right)u^0x$

HISTOIRE DE MEME TRIBU ENGENDREE PAR U0 ET LE RESTE IMPLIQUE QUE CEST LA MEME CHOSE DECONDITIONNEE

Donc
$$\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x \sim N(0_{m}, \left(\frac{x}{m^{\gamma}}\right)^{2}||u^{0}||_{2}^{2}Id_{m}).$$

• Loi de $||\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x||_{2}^{2}$ pour m grand

On a $\left(\left(\frac{1}{m^{\gamma}}A^0\right)u^0x\right)_i^2 \sim \left(\frac{x}{m^{\gamma}}\right)^2||u^0||_2^2 \cdot \chi^2(1)$, d'espérance $\mu \coloneqq \left(\frac{x}{m^{\gamma}}\right)^2||u^0||_2^2$ et de variance $\sigma^2 := 2\left(\left(\frac{x}{m^{\gamma}}\right)^2 ||u^0||_2^2\right)^2.$

Donc en appliquant le TCL à ceux ci, on a :

$$\frac{||\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x||_{2}^{2}-m\mu}{\sigma\sqrt{m}}\sim_{m\to\infty}N(0,1)$$

C'est-à-dire que || $\left(\frac{1}{m^{\gamma}}A^0\right)u^0x$ ||
 $_2^2\sim N(m\mu,m\sigma^2)$ pour m grand.

- [•] Loi de $\frac{1}{m^{\alpha}} (\beta^0)^T x_2$ sachant x_2 , avec $x_2 = \left(\frac{1}{m^{\gamma}} A^0\right) u^0 x$ On a $\frac{1}{m^{\alpha}} (\beta^0)^T x_2 | x_2 \sim N(0, \frac{1}{m^{2\alpha}} ||x_2||_2^2)$
- [•] Loi de $\frac{1}{m^{\alpha}}(\beta^0)^T x_2$ On a $\frac{1}{m^{\alpha}}(\beta^0)^T x_2 \sim N(0, \frac{1}{m^{2\alpha}}||x_2||_2^2)$

1.2 Choix de γ

On regarde la variance de chaque composante de $\left(\frac{1}{m^{\gamma}}A^{0}\right)u^{0}x$ pour m grand : $Var=x^{2}m^{-2\gamma}m$ comme $||u^{0}||_{2}^{2}$ se comporte en m pour m grand. Or on ne veut pas qu'elle tende vers 0 ou l'infini lorsque m tend vers l'infini car Φ prendrait des valeurs de 0 ou l'infini, ce qui impose le choix $\gamma=1/2$

Dans la suite, on prendra $\gamma = 1/2$.

1.3 Gradients

Trivialement,

$$\nabla_{\beta}\Phi = \frac{x}{m^{\alpha+1/2}}Au$$

$$\nabla_u \Phi = \frac{x}{m^{\alpha + 1/2}} A^T \beta$$

$$\nabla_A \Phi = \frac{x}{m^{\alpha + 1/2}} \beta u^T$$

Etudions les ordres de grandeur des normes correspondantes à l'initialisation pour m grand :

On va simplement utiliser les approximations données par la loi des grands nombres : $||u^0|| \simeq \sqrt{m}$, et comme vu plus haut, $||A^0u^0|| \simeq \sqrt{m}||u^0|| \simeq m$. Ainsi $||\nabla_{\beta}\Phi(\theta^0,x)|| \sim m^{-\alpha-1/2} \cdot m = m^{1/2-\alpha}$.

$$||\nabla_{\beta}\Phi(\theta^0, x)|| \sim m^{1/2-\alpha}$$

Exactement de la même manière, on aboutit à :

$$||\nabla_u \Phi(\theta^0, x)|| \sim m^{1/2 - \alpha}$$

Pour A, on prend la norme de Frobenius : la LGN nous dit que $||\beta^0(u^0)^T|| \simeq m$ [à détailler] et donc :

$$||\nabla_A \Phi(\theta^0, x)||_F \sim m^{1/2 - \alpha}$$

1.4 Descente de gradient

On va étudier ici le premier pas de descente de gradient.

Posons une fonction de perte $F: \mathbb{R} \to \mathbb{R}$ t.q $F'(0) \neq 0$ et $\Delta F := F(\Phi(\theta^1, x)) - F(\Phi(\theta^0, x))$, avec $\theta^1 := \theta^0 - \eta \nabla_{\theta} F(\Phi(\theta^0, x))$

Il semble honnête de prendre η dépendant de m, le produit scalaire final ayant plus de chance d'exploser en grande dimension. Prenons $\eta := m^a$, $a \in \mathbb{R}$

1.4.1 Choix de η

On veut que ΔF ne diverge pas ni ne tende vers 0 lorsque m tend vers l'infini. Pour cela, on utilise l'approximation $\Delta F \simeq <\Delta \theta, \nabla_{\theta} F(\Phi(\theta^0, x))>$. On a

$$\Delta F \simeq \langle -\eta \nabla_{\theta} F(\Phi(\theta^0, x)), \nabla_{\theta} F(\Phi(\theta^0, x)) \rangle = -\eta ||\nabla_{\theta} F(\Phi(\theta^0, x))||^2$$

$$\nabla_{\theta} F(\Phi(\theta^0, x)) = \underbrace{F'(\Phi(\theta^0, x))}_{\text{constante en } m} \cdot \nabla_{\theta} \Phi(\theta^0, x)$$

Or
$$||\nabla_{\theta}\Phi(\theta^{0}, x)||^{2} = ||\nabla_{\beta}\Phi(\theta^{0}, x)||^{2} + ||\nabla_{u}\Phi(\theta^{0}, x)||^{2} + ||\nabla_{A}\Phi(\theta^{0}, x)||^{2}$$

Donc pour m grand :

$$\Delta F \simeq -\eta ||\nabla_{\theta} F(\Phi(\theta^{0}, x))||^{2}$$

$$\sim \eta ||\nabla_{\theta} \Phi(\theta^{0}, x)||^{2}$$

$$\simeq \eta (3 \cdot (m^{1/2 - \alpha})^{2})$$

$$\simeq m^{a} \cdot m^{1 - 2\alpha}$$

Ce qui impose le choix $a = 2\alpha - 1$

1.4.2 Ordres de grandeur des écarts relatifs

Pour cela introduisons $\Delta \theta := \theta^1 - \theta^0$. Remarquons que $\Delta \theta = -\eta \nabla_{\theta} F(\Phi(\theta^0, x))$.

$$||\Delta u|| \sim \eta ||\nabla_u \Phi(\theta^0, x)|| \tag{1}$$

$$\sim m^{2\alpha - 1} \cdot m^{1/2 - \alpha} \tag{2}$$

$$\sim m^{\alpha - 1/2} \tag{3}$$

Ce qui nous donne un ordre de grandeur de l'écart relatif :

$$\frac{||\Delta u||}{||u^0||} \sim m^{\alpha - 1}$$

On a le même résultat pour l'écart relatif de β^0 :

$$\frac{||\Delta\beta||}{||\beta^0||} \sim m^{\alpha-1}$$

Pour A, la LGN nous donne $||A^0||_F \simeq m$ pour m grand, on a alors par les mêmes calculs :

$$\frac{||\Delta A||_F}{||A^0||_F} \sim m^{\alpha - 3/2}$$

Concernant l'écart entrywise de A, on a $|\Delta A_{ij}| \sim \eta |(\nabla_A \Phi(\theta^0, x))_{ij}| \sim m^{2\alpha - 1} \cdot m^{-1/2 - \alpha} \cdot 1 \sim m^{\alpha - 3/2}$ car $|\beta^0(u^0)^T| \sim 1$. $|A_{ij}| \sim 1$, donc :

$$\frac{|\Delta A_{ij}|}{|A_{ij}|} \sim m^{\alpha - 3/2}$$

Maintenant avec la norme opétateur : le corollaire 7.9 du cours de MIA2 nous donne une majoration sur $|A^0|_{op}:|A^0|_{op} \leq \sqrt{m} + 7\sqrt{m+\xi} \sim \sqrt{m}$, [plutôt $O(\sqrt{m})$ ici] avec $\xi \sim Exp(1)$. De plus, on peut trouver la la norme opérateur de ΔA comme suit : tout le travail est de trouver

 $|\beta^0(u^0)^T|_{op} := \sup\{||\beta^0(u^0)^T x|| \text{ avec } ||x|| = 1\}.$

$$(\beta^0 (u^0)^T x)_{ij} = \beta_i^0 u_i^0 [soucis \ dans \ cette \ formule]$$

$$(4)$$

$$(\beta^{0}(u^{0})^{T}x)_{i} = \sum_{j=1}^{m} (\beta^{0}(u^{0})^{T}x)_{ij} \cdot x_{j} \ [ici \ aussi]$$
 (5)

$$=\beta_i^0 < u^0, x > \tag{6}$$

$$||\beta^{0}(u^{0})^{T}x|| = |\langle u^{0}, x \rangle| \cdot ||\beta^{0}||$$
(7)

Donc le sup est bien atteint en $x=u/||u^0||$ et est égal à $||u^0||\cdot||\beta^0||$. En utilisant les approximations précédentes, on a donc $|\beta^0(u^0)^T|_{op} \simeq m$. Ainsi on a $|\Delta A|_{op} \sim m^{2\alpha-1} \cdot m^{-1/2-\alpha} \cdot m \sim m^{\alpha-1/2}$. et :

$$\frac{|\Delta A|_{op}}{|A^0|_{op}} \sim m^{\alpha - 1}$$

1.4.3 Choix de α

α < 1

Dans ce cas là, tous les écarts relatifs d'ordre $m^{\alpha-1} \xrightarrow[m \to \infty]{} 0$. On a donc pour m grand :

$$||\Delta u|| \ll ||u^0||$$

$$||\Delta\beta|| \ll ||\beta^0||$$

$$|\Delta A|_{op} \ll |A^0|_{op}$$

Regardons maintenant les Δ des gradients en u pour la première itération :

$$\Delta \nabla_u \Phi := \nabla_u \Phi(\theta^1, x) - \nabla_u \Phi(\theta^0, x) \tag{8}$$

$$\sim m^{-\alpha - 1/2} \underbrace{\left((\beta^1)^T A^1 - (\beta^0)^T A^0 \right)}_{(\star)} \tag{9}$$

$$(\star) = (\beta^0 - \eta \nabla_{\beta} F(\Phi(\theta^0, x)))^T (A^0 - \eta \nabla_A F(\Phi(\theta^0, x))) - (\beta^0)^T A^0$$
(10)

$$= \eta^2 [\nabla_{\beta} F(\Phi)]^T [\nabla_A F(\Phi)] - \eta [\nabla_{\beta} F(\Phi)] A^0 - \eta \beta^0 [\nabla_A F(\Phi)] \tag{11}$$

$$= (\Delta \beta)^{T} (\Delta A) - (\Delta \beta) A^{0} - \beta^{0} (\Delta A) [des + partout non?]$$
 (12)

Donc:

$$||\Delta \nabla_u \Phi|| \sim m^{-\alpha - 1/2} ||(\Delta \beta)^T (\Delta A) - (\Delta \beta) A^0 - \beta^0 (\Delta A)||$$
(13)

$$\lesssim m^{-\alpha - 1/2} (||\Delta\beta|| \cdot |\Delta A|_{op} + ||\Delta\beta|| \cdot |A^0|_{op} + ||\beta^0|| \cdot |\Delta A|_{op}) \tag{14}$$

$$\lesssim m^{-\alpha - 1/2} (m^{\alpha - 1/2} m^{\alpha - 1/2} + m^{\alpha - 1/2} m^{1/2} + m^{1/2} m^{\alpha - 1/2})$$
(15)

$$\leq m^{-\alpha - 1/2} (m^{\alpha - 1/2} m^{1/2} + m^{\alpha - 1/2} m^{1/2} + m^{1/2} m^{\alpha - 1/2}) \tag{16}$$

$$\lesssim m^{-1/2} \tag{17}$$

C'est-à-dire que $||\Delta \nabla_u \Phi|| = \mathcal{O}(m^{-1/2})$ pour m grand.

Par la même démarche on trouve $||\Delta \nabla_{\beta} \Phi|| = \mathcal{O}(m^{-1/2})$ et $||\Delta \nabla_{A} \Phi||_{F} = \mathcal{O}(m^{-1/2})$ pour m grand.

Ainsi : [c'est toujours un peu compliqué de discuter les ordres de grandeurs sans écrire des choses inexactes. En maths $a_m \sim b_m$ signifie que $a_m/b_m \to 1$. Pour dire qu'on a simultanément $a_m = O(b_m)$ et $b_m = O(a_m)$ on note souvent (même si ça n'est pas un standard universel) $a_m \approx b_m$. C'est une notation que tu peux utilement introduire en début de manuscrit, elle te sera utile pour discuter les ordres de grandeur]

$$||\Delta \nabla_{\beta/u/A} \Phi|| = \mathcal{O}(m^{-1/2}) \stackrel{\alpha < 1}{\leqslant} m^{1/2 - \alpha} \sim ||\nabla_{\beta/u/A} \Phi||$$

Cela traduit un comportement linéaire lorsque $\alpha < 1$ pour m grand.

On peut aussi remarquer que

$$\Delta \nabla_{\theta} F(\Phi) = F'(\Phi) \cdot \Delta \nabla_{\theta} \Phi$$

On a aussi:

$$||\Delta \nabla_{\beta/u/A} F(\Phi)|| = \mathcal{O}(m^{-1/2}) \stackrel{\alpha < 1}{\leqslant} m^{1/2 - \alpha} \sim ||\nabla_{\beta/u/A} F(\Phi)||$$

[ce qu'il faut discuter, c'est la chose suivante : on voit qu'après une étape de descente de gradient, $\Delta F \approx 1$ mais les variations relatives des paramètres et gradients tendent vers 0. Donc à l'étape suivante, les évaluations précédentes restent valables et le même phénomène se reproduira. In fine, après un nombre fini d'étape de gradient, on aura toujours $F(\Phi(\theta^t, x)) = F(\Phi(\theta^0, x)) + \langle \theta^t - \theta^0, \nabla_{\theta} F(\Phi(\theta^0, x)) \rangle + O(m^{-1/2})$. Cela signifie donc qu'on apprend un modèle linéaire relatif aux features $\nabla_{\theta} F(\Phi(\theta^0, x))$. Autrement dit on fait un apprentissage dans un RKHS de noyau

$$k(x,y) = \langle \nabla_{\theta} F(\Phi(\theta^{0},x)), \nabla_{\theta} F(\Phi(\theta^{0},y)) \rangle \stackrel{LGN}{=} \mathbb{E}[\langle \nabla_{\theta} F(\Phi(\theta^{0},x)), \nabla_{\theta} F(\Phi(\theta^{0},y)) \rangle].$$

En particulier, le noyau ne dépend que de l'architecture du réseau de neurones et de l'initialisation, pas des données (no feature learning).

Tu peux aussi mettre a remarque que pour $\alpha=1$ cela n'est plus vrai, il y a bien feature learning. Ici on a fait le calcul dans le cas le plus simple possible pour voir apparaître le phénomène. Dans la suite on va : voir que le calcul reste valable pour $\sigma(x) \neq x$ et $x \in \mathbb{R}^d$. Puis on dérivera proprement le résultat.