學號: R05222003 系級: 物理碩二 姓名: 吳愷訢

請實做以下兩種不同 feature 的模型,回答第 (1) ~ (3) 題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

feature	Private	Public	Sum
pm2.5	5.83648	7.39590	13.23238
all	5.59229	7.62214	13.21443

從結果可以看到,當只考慮 pm2.5 時, RMSE 較考慮所有 feature 來的高, 意思是當提供所有資訊的預測結果較好. 這是很合羅輯的, 因爲我們知道事實上 pm2.5 的確會受到比方說降雨等因素影響 (比方說下雨時 pm2.5 會下降,一定程度上相關),這意味着當提供這些 extra 的資訊可能會幫助預測.

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

feature	Private	Public	Sum
pm2.5	5.86272	7.52172	13.38444
all	5.44282	7.63383	13.07665

將 feature 改成 5hr 後,發現在考慮所有的 feature 情況,RMSE 是下降的(但其實變化不大) 但在只考慮 pm2.5 feature 時卻上升,有可能是因爲在只考慮 pm2.5 時,從 9hr 變成 5hr,實際上資訊量是變少的,故導致預測較差,但在考慮所有 feature 時,可能某些短期變化對 pm2.5 的影響高,故在考慮只有 5hr 時,較長時間的 data 不須 fitting 情形下,fitting 能狗得到較好的預測結果.

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

λ	Pm2.5 RMSE	All RMSE
	(public+private)	(public+private)
0.0001	13.23742	13.26916
0.001	13.28273	13.24471
0.01	13.72251	13.53497
0.1	16.58079	15.78113

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數 (loss function)為 $\sum_{n=1}^N \left(y^n - w \cdot x^n\right)^2$ 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 x^2 \dots x^N]$ 表示,所有訓練資料的標註以向量 $y = [y^1 y^2 \dots y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。

Ans: (c)

推導:

我們想求未知 w ,使得其儘可能滿足式 (1)

$$y = Xw \tag{1}$$

$$X^T y = X^T X w \tag{2}$$

$$(X^T X)^{-1} X^T y = (X^T X)^{-1} (X^T X) w$$
(3)

$$(X^T X)^{-1} X^T y = w \tag{4}$$

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$