Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	08 November 2022		
Team ID	PNT200022TMTD36897		
Project Name	Web Phishing Detection		
Maximum Marks	8 Marks		

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.researchgate.net/figure/Phishing-URLs-datasets-analysis_tbl1_343945791

https://www.data-in-brief.com/article/S2352-3409(20)31320-2/fulltext

Reference:

[1]The Directory of the Web (dmoztools.net)

[2]The Directory of the Web (dmoztools.net)

[3] Yuguang Huang, Lei Li, Beijing University of Posts and Telecommunications, Beijing, China, 'Naive Bayes Classification Algorithm Based on Small Sample Set', in Proceedings of IEEE CCIS2011

[4] Sadia Afroz, Rachel Greenstadt Department of Computer Science Drexel University Philadelphia, PA 19104 Email: sa499@drexel.edu, 2011

'PhishZoo: Detecting Phishing Websites By Looking at Them' in 2011 Fifth IEEE International Conference on Semantic Computing.