DROUGHT AND CLIMATE CHANGE IMPACTS ON THE WATER QUALITY OF THE RIVER THAMES

G. Bussi, P. Whitehead, B. Guillod School of Geography and the Environment, University of Oxford

The problem: pollution in the Thames

- Nitrogen: high nitrate content due to intensive agriculture and fertiliser use
- <u>Phosphorus</u>: from effluent (36 STWs, ~ 3M PE) and from fertilisers
- Phytoplankton: algal blooms in summer due to high temperature, radiation and high nutrient availability
- Others: suspended solids, organics, pathogens, microplastics...

The problem: drought & climate change

Drought:

- Low flows = low effluent dilution capacity (P), high residence times (phytoplankton)
- When water availability is low, water quality becomes a concern for water supply

Climate change:

- Increase in temperature
- Dryer summers and wetter winters
- Low flows likely to decrease

The problem: drought & climate change

 weather@home (w@h) climate data: climate model run on volunteers' computers around the world

Baseline : 1975-2004 ~ 100 time series

Near future: 2020-2049 ~ 100 time series

Far future: 2070-2099 ~ 100 time series

Case-study: the River Thames

- ~10,000 km²
- 158 km (non-tidal)
- Drinking water supply for ~14M
- Prec.: 730 mm/year
- Temp.: 11C (4.6-16.4)
- Arable land: 39%
- Urban land: up to 30% in the lowlands

Nitrogen: drought impacts

- During drought:
 - reduced agricultural runoff and drainage
 - increased denitrification due to longer water residence times
- During drought termination (or drought recovery):
 - nitrate flushed from the catchment soils

Thames at **Farmoor**

Flow: INCA model

Nitrogen: climate change

- Decrease in nitrate concentration:
 - Less runoff: lower export of nitrogen from soils to the rivers
 - Increased plant uptake (?)
 - Lower flows expected in summer: lower nitrate concentration due to increased denitrification (longer residence times)
- But...increase in drought termination nitrate peaks:
 - Increase in winter precipitation: larger export of nitrogen from soils
 - Increase in torrentiality and floods: more nitrogen "flushed" from soils after droughts

Nitrogen: methodology

Nitrogen: model calibration

- Monte Carlo-based sensitivity analysis on the model parameters
- 20 "behavioural" model selected (i.e., the best models)

Drought definition

 Parry et al, 2016, Progress in Physical Geography (CEH and Uni. Loughborough)

- INCA model driven by weather@home data
 - Monthly flow vs nitrate concentration relationship

INCA model driven by weather@home data

Monthly flow and nitrate values depending on the drought phase

Increase in NO₃ concentration from drought to drought termination ~

+17%

- INCA model driven by weather@home data
 - Climate change impact on flow

- INCA model driven by weather@home data
 - Climate change impact on nitrate concentration

- Climate change impact on drought termination nitrate concentration:
 - 1975-2004: 8.44 (±σ: 7.11-9.76) mg/l
 - 2020-2049: 8.19 (±σ: 6.77-9.61) mg/l
 - 2070-2099: 7.77 (±σ: 6.08-9.47) mg/l
- Climate change impact on drought to drought termination nitrate concentration increase:
 - 1975-2004: +17%
 - **2**020-2049: +17%
 - **2070-2099: +21%**

Phosphorus: drought and climate change impacts

- Predominantly point sources (STWs)
- Droughts cause lack of dilution and increase in P concentration
- Climate change is expected to cause lower summer flows

Thames at Teddington

Data from the Env. Agency

Phosphorus: methodology

Phosphorus: model calibration

- Monte Carlo-based sensitivity analysis on the model parameters
- 20 "behavioural" model selected (i.e., the best models)

Phosphorus: results

- INCA model driven by weather@home data
 - Phosphorus control during droughts: <u>flow</u>

Phosphorus: results

- INCA model driven by weather@home data
 - Climate change impact

Phosphorus: results

Tipping point flow:

- 1975-2004: $p(Q_{month}) \approx 99\%$
- 2020-2049: $p(Q_{month}) \approx 98\%$
- 2070-2099: $p(Q_{month}) \approx 90\%$

Conclusions

- Primary control for droughts & water quality: <u>flow</u>
- Increase of ~17% in nitrate concentration during drought recovery
- Nitrate concentration expected to decrease due to CC (especially in summer)
- Phosphorus concentration controlled by flow (dilution)
- Phosphorus concentration expected to increase in summer due to CC, up to 0.5 mg/l in average (WFD limit: 0.1 mg/l)

THANK YOU!

G. Bussi, P. Whitehead, B. Guillod School of Geography and the Environment, University of Oxford

