Cursul 6

Numere Stirling de cicluri și mulțimi

Noiembrie 2015

Definiție

Numărul Stirling de cicluri, denotat cu $\begin{bmatrix} n \\ k \end{bmatrix}$, este numărul de feluri în care pot fi puse n persoane la k mese rotunde identice astfel încât nici o masă să nu rămână neocupată.

Definiție

Numărul Stirling de cicluri, denotat cu $\begin{bmatrix} n \\ k \end{bmatrix}$, este numărul de feluri în care pot fi puse n persoane la k mese rotunde identice astfel încât nici o masă să nu rămână neocupată.

Din observația precedentă rezultă că $\binom{n}{k}$ este numărul de n-permutări a căror structură ciclică are exact k cicluri.

Definiție

Numărul Stirling de cicluri, denotat cu $\begin{bmatrix} n \\ k \end{bmatrix}$, este numărul de feluri în care pot fi puse n persoane la k mese rotunde identice astfel încât nici o masă să nu rămână neocupată.

Din observația precedentă rezultă că $\begin{bmatrix} n \\ k \end{bmatrix}$ este numărul de n-permutări a căror structură ciclică are exact k cicluri.

• ÎNTREBARE: cum putem calcula direct $\binom{n}{k}$?

Definiție

Numărul Stirling de cicluri, denotat cu $\begin{bmatrix} n \\ k \end{bmatrix}$, este numărul de feluri în care pot fi puse n persoane la k mese rotunde identice astfel încât nici o masă să nu rămână neocupată.

Din observația precedentă rezultă că $\binom{n}{k}$ este numărul de n-permutări a căror structură ciclică are exact k cicluri.

- ÎNTREBARE: cum putem calcula direct $\binom{n}{k}$?
- Răspuns: căutam să identificăm o definiție recursivă a numerelor Stirling, pe care să o rezolvăm apoi.

Numere Stirling de cicluri Proprietăți evidente

1. Nu putem pune n persoane la 0 mese, decât dacă n=0 (în acest caz special, numărul se consideră a fi 1). Deci:

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = \left\{ \begin{array}{ll} 1 & \mathsf{dac} \ \ in = 0, \\ 0 & \mathsf{dac} \ \ in > 0. \end{array} \right.$$

2. $n \ge 1$ persoane pot fi puse la 1 masă în (n-1)! feluri. Deci:

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!$$
 dacă $n \ge 1$.

- 3. n persoane pot fi puse la n mese în doar 1 fel: fiecare persoană stă singură la o masă. Deci: $\binom{n}{n} = 1$.
- 4. n persoane pot fi puse la n-1 mese astfel: toate persoanele, cu excepția unui singur cuplu, stau singure la masă. Deci

$$\begin{bmatrix} n \\ n-1 \end{bmatrix} = \text{numărul de cupluri posibile} = \binom{n}{2}.$$

5. Dacă numărul de mese *k* este negativ sau dacă sunt mai multe mese decât persoane, problema nu are soluție. Deci:

$$\begin{bmatrix} n \\ k \end{bmatrix} = 0 \text{ dacă } k < 0 \text{ sau } k > n.$$

6. Orice permutare are o structură ciclică formată din k cicluri, unde $1 \le k \le n$. Conform regulii sumei

$$\sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$$

Găsirea unei relații de recurență

Cum putem pune n > 0 persoane la k > 0 mese rotunde?

Distingem 2 cazuri disjuncte:

- **1** Punem primele n-1 persoane la k-1 mese, iar apoi așezăm persoana n la masa k. Acest caz se poate efectua în $\binom{n-1}{k-1}$ feluri.
- ② Punem n-1 persoane la k mese iar apoi așezăm persoana n împreună cu alte persoane la o masă.
 - Punerea a n-1 persoane la k mese se poate face în $\binom{n-1}{k}$ feluri.
 - Punerea persoanei n la o masă = așezarea persoanei n la stânga uneia dintre persoanele $i \in \{1, 2, \dots, n-1\} \Rightarrow n-1$ feluri.
 - \Rightarrow Acest caz se poate face în $(n-1) \cdot {n-1 \brack k}$ feluri.

Conform regulii sumei

$${n \brack k} = (n-1){n-1 \brack k} + {n-1 \brack k-1} \quad \mathsf{dac} \ n \ge 1 \ \mathsf{si} \ k \ge 1.$$

Comparație cu numerele binomiale

• Ştim că are loc formula binomială $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. Pentru y=1 obținem

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Deasemenea, am demonstrat combinatorial în un curs anterior că

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Am demonstrat combinatorial că

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

Comparație cu numerele binomiale

• Ştim că are loc formula binomială $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. Pentru y=1 obținem

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Deasemenea, am demonstrat combinatorial în un curs anterior că

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Am demonstrat combinatorial că

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

Vrem să găsim o formulă pentru numerele Stirling de cicluri, asemănătoare cu formula binomială.

Identificarea unei funcții generative

Fie
$$G_n(x)=\sum_k {n\brack k} x^k$$
. Atunci $G_0(x)={0\brack 0} x^0=1\cdot 1=1$, iar pentru $n\geq 1$

$$G_{n}(x) = \sum_{k} {n \brack k} x^{k}$$

$$= (n-1) \sum_{k} {n-1 \brack k} x^{k} + \sum_{k} {n-1 \brack k-1} x^{k}$$

$$= (n-1)G_{n-1}(x) + x G_{n-1}(x)$$

$$= (x+n-1)G_{n-1}(x)$$

$$\Rightarrow G_n(x) = \underbrace{x \cdot (x+1) \cdot (x+2) \cdot \ldots \cdot (x+n-1)}_{\text{notatie: } x^{\bar{n}}}.$$

Deci
$$x^{\bar{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$
.

Numere Stirling de cicluri Triunghiul numerelor Stirling de cicluri

$\begin{bmatrix} n \\ k \end{bmatrix}$	k=0	1	2	3	4	5	6	7	8	n!
n = 0	1									1
1	0	1								1
2	0	1	1							2
3	0	2	3	1						6
4	0	6	11	6	1					24
5	0	24	50	35	10	1				120
6	0	120	274	225	85	15	1			720
7	0	720	1764	1624	735	175	21	1		5040
8	0	5040	13068	13132	6769	1960	322	28	1	40320

Formula de calcul recursiv folosită:

Numere binomiale

Triunghiul numerelor binomiale

$\binom{n}{k}$	k=0	1	2	3	4	5	6	7	8	n!
n = 0	1									1
1	1	1								1
2	1	2	1							2
3	1	3	3	1						6
4	1	4	6	4	1					24
5	1	5	10	10	5	1				120
6	1	6	15	20	15	6	1			720
7	1	7	21	35	35	21	7	1		5040
8	1	8	28	56	70	56	28	8	1	40320

Formula de calcul recursiv folosită:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Numere Stirling de mulțimi

Problemă

În câte feluri pot fi împărțite n persoane în k grupuri nevide disjuncte, dacă ordinea persoanelor din un grup nu contează?

Numere Stirling de mulțimi

Problemă

În câte feluri pot fi împărțite n persoane în k grupuri nevide disjuncte, dacă ordinea persoanelor din un grup nu contează?

Exemplu

Mulțimea $\{1,2,3\}$ poate fi partiționată in 2 grupuri nevide în 3 feluri: $\{1,2\},\{3\};\{1,3\},\{2\};$ și $\{1\},\{2,3\}.$

Numere Stirling de mulțimi

Problemă

În câte feluri pot fi împărțite n persoane în k grupuri nevide disjuncte, dacă ordinea persoanelor din un grup nu contează?

Exemplu

Mulțimea $\{1,2,3\}$ poate fi partiționată in 2 grupuri nevide în 3 feluri: $\{1,2\},\{3\};\{1,3\},\{2\};$ și $\{1\},\{2,3\}.$

Definiție

Numărul de feluri în care se poate partiționa o mulțime de n elemente în exact k submulțimi nevide disjuncte este numărul Stirling $\binom{n}{k}$ de mulțimi. Adesea în literatură se folosește notația S(n,k) în locul lui $\binom{n}{k}$.

Numere Stirling de mulțimi Proprietăti evidente

1. Există un singur mod de a pune *n* oameni în un grup, și un singur mod de a partiționa *n* oameni în *n* grupuri. Deci:

$$\binom{n}{1} = \binom{n}{n} = 1.$$

2. Nu putem pune n > 0 oameni în 0 grupuri. Dacă n = 0 atunci considerăm că există un mod de a îi pune în 0 grupuri. Deci:

3. Partiționarea a n oameni în n-1 grupuri presupune alegerea unui cuplu de persoane în un grup; restul sunt singure în grup. Deci

$$\binom{n}{n-1} = \binom{n}{2}.$$

4. Este evident că

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = 0 \quad \text{dacă } k < 0 \text{ sau } k > n.$$

Cum putem împărți n > 0 persoane în k > 0 grupuri nevide distincte?

Distingem 2 cazuri distincte:

- 1. Grupăm n-1 persoane în k-1 grupuri și apoi formăm un grup nou doar cu persoana $n\Rightarrow {n-1\choose k-1}$ posibilități.
- 2. Grupăm primele n-1 persoane în k grupuri $\Rightarrow {n-1 \choose k}$ posibilități și apoi adăugăm persoane la unul din cele k grupuri $\Rightarrow k \cdot {n-1 \choose k}$ posibilități.

Conform regulii sumei

$$\binom{n}{k} = k \cdot \binom{n-1}{k} + \binom{n-1}{k-1} \quad \mathsf{dac} \ \ n \geq 1 \ \mathsf{si} \ \ k \geq 1.$$

Numere Stirling de mulțimi Triunghiul numerelor Stirling de mulțimi

$\binom{n}{k}$	k=0	1	2	3	4	5	6	7	8
n = 0	1								
1	0	1							
2	0	1	1						
3	0	1	3	1					
4	0	1	7	6	1				
5	0	1	15	25	10	1			
6	0	1	31	90	65	15	1		
7	0	1	63	301	350	140	21	1	
8	0	1	127	966	1701	1050	266	28	1

Formula de calcul recursiv folosită:

$${n \brace k} = k \cdot {n-1 \brace k} + {n-1 \brace k-1}.$$

Bibliografie

- J. M. Harris, J. L. Hirst, M. J. Mossinghoff. Combinatorics and Graph Theory, Second Edition. Springer 2008. §2.7. Pólya's Theory of Counting.
- Q. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen, Acta Math. 68 (1937), 145–254; English transl. in G. Polýa and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (1987).