Best Available Copy

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-346032

(43)公開日 平成11年(1999)12月14日

(51) Int.Cl.⁶ H 0 1 S 3/18

識別記号 624 FI

H01S 3/18

624

H01L 33/00

H01L 33/00

С

審査謝求 有 請求項の数10 OL (全 6 頁)

(21)出願番号

特願平11-136252

(62)分割の表示

特願平2-414843の分割

(22)出願日

平成2年(1990)12月26日

(71)出額人 000241463

豊田合成株式会社

愛知県西春日井郡春日町大字落合字長畑1

番地

(71)出額人 591014949

赤崎 勇

愛知県名古屋市西区浄心1丁目1岳38-

805

(71)出願人 591014950

天野 浩

愛知県名古屋市名東区山の手2丁目104

宝マンション山の手508号

(74)代理人 弁理士 藤谷 修

最終頁に続く

(54) 【発明の名称】 室化ガリウム系化合物半導体発光素子

(57)【要約】

【課題】短波長である青色、紫色領域或いは紫外光領域 におけるレーザを得ること。

【解決手段】サファイア基板1の上に、AlN 層2、Siドープn型GaAlN 層3 (n層)、GaN 層4 (活性層)、MgドープGaAlN 層5 (p層)が形成されている。ドープGaAlN 層5 (p層)上にSiO,層7を堆積した後、縦1㎜、横50μmの短冊状に恋7Aを開け、ドープGaAlN 層5 (p層)の恋8の部分と、Siドープn型GaAlN 層3 (n層)に、それぞれ、金属電極が形成されている。

【特許請求の範囲】

【請求項1】 n型導電性を示す窒化ガリウム系化合物 半導体 ((Al,,Ga,-,,),,In,-,,N:0≤x1≤1,0≤y1≤1)か ら成るn層と、

窒化ガリウム系化合物半導体 ((Al_xGa_{r-x})_nIn_{r-n}N: 0≤x2≤1,0≤y2≤1)から成る活性層と、

p型導電性を示す窒化ガリウム系化合物半導体 ((Al.33 a₁₋₁₃), In₁₋₁₃N:0≦x3≦1, 0≦y3≦1) から成る p 層とから成る窒化ガリウム系化合物半導体発光素子。

【請求項2】 前記発光素子は、レーザダイオードであ 10 ることを特徴とする請求項1に記載の窒化ガリウム系化 合物半導体発光素子。

【請求項3】 前記 p 層の上に、短冊状の窓を有する絶縁膜を有し、この窓を介して前記 p 層に対する金属電極が形成されていることを特徴とする請求項2に記載の窒化ガリウム系化合物半導体発光素子。

【請求項4】 前記 n 層に対する電極は、n 層の上に形成されている層をエッチングして露出された面に形成されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の窒化ガリウム系化合物半導体発光素子。

【請求項5】 前記 n 層に対する電極は、前記 n 層上の電極形成部にマスクを形成してその上の層を選択成長させた後、マスクを除去することで露出された面に形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の窒化ガリウム系化合物半導体発光素子。

【請求項6】 前記活性層はn型導電性であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の 窒化ガリウム系化合物半導体発光素子。

【請求項7】 前記 n 層、前記活性層、前記 p 層は、サファイア基板上に形成されていることを特徴とする請求項1万至請求項6のいずれか1項に記載の窒化ガリウム系化合物半導体発光素子。

【請求項8】 前記 n 層、前記活性層、前記 p 層は、S i、6 H - S i C、又は、G a N から成る基板上に形成されていることを特徴とする請求項1 乃至請求項6 のいずれか1項に記載の窒化ガリウム系化合物半導体発光素子。

【請求項9】 前記 n 層、前記活性層、前記 p 層は、S 40 i、6 H - S i C、又は、G a N から成る基板上に形成されており、前記 n 層に対する電極が前記基板の裏面に形成されていることを特徴とする請求項1乃至請求項3のいずれか1項、又は、請求項6に記載の変化ガリウム系化合物半導体発光素子。

【請求項10】 前記n層は成長初期に高濃度でドナー 不純物をドーピングして、接合付近ではドーピングしな いか又は低濃度にドーピングした層としたことを特徴と する請求項1乃至請求項9のいずれか1項に記載の室化 ガリウム系化合物半導体発光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、可視単波長、特に、青色領域から紫色領域まで、及び紫外光領域で発光可能な発光素子、例えば、半導体レーザダイオードに関する。

2

【0002】本発明の発光素子、例えば、半導体レーザダイオードは、本発明者らにより初めて明らかにされた電子線照射処理による((A1,Ga,...),In,-N:0≦x≦1,0 ≤y≦1)層のp型化技術を基盤として、新たに開発さた技術を加えて、初めて、((A1,Ga,...),In,-N:0≦x≦1,0≤y≦1)半導体レーザダイオードの製作が可能となったものである。

[0003]

【従来の技術】現在、実用化されている最短波長の電流 注入型半導体レーザダイオードは、リン化インジウムガ リウムアルミニウム(InGaAlP)系結晶により作製されて いる。その発振波長は可視長波長領域、即ち、赤色領域 である $0.6 \sim 0.7 \mu$ m帯に属する。

20 [0004]

【発明が解決しようとする課題】しかしながら、更に、 短波長である青色、紫色領域或いは紫外光領域での発光 が可能な半導体レーザを実現するのは、この材料では物 性上困難である。より広い禁制帯幅を持つ半導体材料を 用いる必要がある。(A1,Ga,...),In,...,N はその候補の一 つである。

【0005】(Al,Ga,-,),In,-,N、特に、GaNは室温(300K)で光励起により誘導放出することが確認されている(H. Amano 等; Japanese Journal of Applied Physics 第29巻1990年 L205-L206頁)。このことから、上記半導体でレーザダイオードが構成できる可能性がある。 【0006】しかしながら、上記系統の化合物半導体はp型単結晶薄膜の作製が困難であるため、現在に到るま

で(Al,Ga,..),In,.,N を用いた電流注入による半導体レ

ーザダイオードは実現していない。

【0007】本発明は、上記の課題を解決するために成されたものであり、その目的とするところは、短波長である青色、紫色領域或いは紫外光領域における発光素子、例えば、レーザを得ることである。

[0008]

【課題を解決するための手段】本発明は、n型導電性を示す窒化ガリウム系化合物半導体 ((Al,Ga,L,),,In In,N:0≤x1≤1,0≤y1≤1)から成る n 層と、窒化ガリウム系化合物半導体 ((Al,Ga,L,),,In,L,N:0≤x2≤1,0≤y2≤1)から成る層と、p型導電性を示す窒化ガリウム系化合物半導体 ((Al,3a,L,1),,In,L,N:0≤x3≤1,0≤y3≤1)から成る p 層とから成る窒化ガリウム系化合物半導体発光素子である。

【0009】又、他の発明は、発光素子は、レーザダイ 50 オードであることを特徴とする。又、他の発明は、p層

の上に、短冊状の窓を有する絶縁膜を有し、この窓を介 してp層に対する金属電極が形成されていることを特徴 とする。又、他の発明は、n層に対する電極は、n層の 上に形成されている層をエッチングして露出された面に 形成されていることを特徴とする。又、他の発明は、n 層に対する電極は、n層上の電極形成部にマスクを形成 してその上の層を選択成長させた後、マスクを除去する ことで露出された面に形成されていることを特徴とす る。又、他の発明は、活性層はn型導電性であることを 特徴とする。又、他の発明は、n層、活性層、p層は、 サファイア基板上に形成されていることを特徴とする。 又、他の発明は、n層、活性層、p層は、Si、6H-SiC、又は、GaNから成る基板上に形成されている ことを特徴とする。又、他の発明は、n層、活性層、p 層は、Si、6H-SiC、又は、GaNから成る基板 上に形成されており、n層に対する電極が基板の裏面に 形成されていることを特徴とする。さらに、他の発明 は、n層は成長初期に高濃度でドナー不純物をドーピン グして、接合付近ではドーピングしないか又は低濃度に ドーピングした層としたことを特徴とする。

3

【0010】以下、次のような構成とするとも可能である。 n層及びp層を、禁制帯幅が同一な窒化ガリウム系化合物半導体で構成しても良い。 p n接合を、禁制帯幅の比較的大きい窒化ガリウム系化合物半導体から成る層と、禁制帯幅の比較的小さい窒化ガリウム系化合物半導体から成る層との接合により構成しても良い。

【0011】又、禁制帯幅の比較的小さい層(活性層) を、相互に禁制帯幅及び混晶組成が同一又は異なり、そ の層に対して禁制帯幅の比較的大きい層で挟んだ構造を 有することを特徴とする。

【0012】又、禁制帯幅の異なる層を2つ以上積層した構造でも良い。

【0013】又、アクセプタ不純物をドープした窒化ガリウム系化合物半導体から成る層に電子線を照射してp型化させた層を有しても良い。

【0014】又、p型化された窒化ガリウム系化合物半 導体から成る層とその層に対する電極用金属との接触部 分の形状を短冊状としても良い。

【0015】基板には、サファイア、Si、6H-SiC又はGa N を用いることができる。

[0016]

【作用及び効果】 $((Al,Ga,..),In,.,N:0 \le x \le 1,0 \le y \le 1)$ 半導体において、本発明者等により、初めてp 型電導性を示す層の製作が可能となった。これにより、上記の窒化ガリウム系化合物半導体で構成されたキャリア注入型の発光素子、例えば、レーザダイオードの製作及びその発振が可能となった。

【0017】本発明のように電子線照射処理による(A1, ウム(cd), 炭素(C) を含 Ga_n,),In_n,N のp型化効果と、構造を工夫することに クセプタ不純物をドーフ より、青色から紫色及び紫外光領域の発振波長を持つ発 50 (p層)の成長を行う。

光素子、例えば、半導体レーザダイオードが実現された。

[0018]

【発明の概要】上記発明において、室化アルミニウムガリウムインジウム(Al.Ga...)、Inn.、N単結晶作製用基板には、サファイア、珪素(Si)、6H 炭化珪素(6H-SiC)ないし室化ガリウム(GaN) を用いることができる。

【0019】サファイアを基板とする場合には少なくとも低温(例えば約600℃)で堆積したAIN薄膜を含む唇を緩衝層とするのが望ましい。

【0020】Siを基板とする場合には少なくとも3C-SiC 薄膜一層か或いは3C-SiC薄膜及びAIN 薄膜の二層を含む 層を緩衝層とするのが望ましい。

【0021】6H-SiCを基板とする場合には直接ないしGaNを緩衝層とするのが望ましい。GaNを基板とする場合には直接単結晶作製が行なわれる。Si,6H-SiC及びGaNを基板とする場合にはn型単結晶が用いられる。

【0022】まず、同一組成同士の結晶によるpn接合構造を作製する場合につき述べる。サファイアを基板とする場合、(Al,Ga,_),In,_N を成長させる直前に、基板温度を所望の値(例えば 600℃)に設定し、成長炉内に少なくともアルミニウム(Al) を含む化合物及び窒素の水酸化物を導入し、サファイア基板表面にAIN 薄膜緩衝層を形成する。

【0023】その後、A1を含む化合物の導入を止め、基板温度の再設定を行う。そして、所望の混晶組成となるようにA1を含む化合物、ガリウム(Ga)を含む化合物及びインジウム(In)を含む化合物を導入してn型(A1,Ga,..),In,.,N 単結晶の成長を行う。

30 【0024】なお、この場合 n 型単結晶の抵抗率を下げるためにSi, 酸素(0),硫黄(S),セレン(Se), テルル(Te) などドナー不純物となる元素を含む化合物を同時に導入しても良い。

【0025】ドナー不純物をドーピングする場合、その 濃度に関しては n層に均一にドーピングしても良い。 又、n層のオーム性電極形成を容易にするために n層成 長初期に高濃度にドーピングし、p n接合付近ではドー ピングしないか或いは低濃度にドーピングしても良い。 【0026】次に、一度、ウエハを成長炉から取り出

し、試料表面の一部を選択成長用マスクとなる物質、例えば酸化珪素(SiO₄) により覆い、再びウェハを成長炉に戻す。又は、ウェハを取り出さずそのまま成長を続ける。

【0027】少なくとも所望の混晶組成となるようなAIを含む化合物、Gaを含む化合物、Inを含む化合物及び室素の水素化物及びアクセプタ不純物となる元素、例えばベリリウム(Be)、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(cd)、炭素(C)を含む化合物を成長炉に導入してアクセプタ不純物をドープした(AI,Ga,..)、In,...N 単結晶(p層)の成長を行う。

5

(0028) アクセプタドーブ層の成長膜厚は電子線照射処理する場合の電子線侵入長を考慮して決定する。次にウェハを成長炉から取り出し、アクセプタドープ(Al. Ga.,)、In., N 層の電子線照射処理を行う。

【0029】電子線照射処理する領域は試料表面全体或いは一部、例えば短冊状とする。試料表面全体に電子線を照射する場合には、更に、アクセプタドープ層(p層)の上に絶縁層を堆積し、その絶縁層の一部に短冊状の恋を開け、その恋の上に金属を接触させ、p層に対するオーム性電極を形成する。 短冊状に電子線照射処理 10する場合には、電子線の照射された領域の一部或いは全部を覆うように金属を接触させ、p層に対するオーム性電極を形成する。

【0030】 最終的に、p層と金属の接触する部分の形状は短冊である。 n層の電極は選択成長用マスクを取り外して、その後に形成するか、或いはアクセプタドープ層 (p層)の一部を表面側からエッチングして下層のn層に対して窓を開け、金属を接触させオーム性電極を形成する。

【0031】n型のSi、6H-SiC或いはGaNを基板として 20 用いる場合もほぼ同様の手段により素子作製を行う。しかし、選択成長技術は用いず、p層とn層に対する電極は素子の上下の両側に形成する。即ち、n層電極は基板裏面全体に金属を接触させオーム性電極を形成する。

【0032】以上が同一組成の結晶によるpn接合構造の発光素子、例えば、半導体レーザダイオードを作製する場合の基本的方法である。異種混晶組成の結晶の接合、いわゆるヘテロ接合を利用した素子を作製する場合にも、pn接合を形成するという点では上記同一混晶組成の結晶の接合を利用する場合と同様である。

【0033】単一のヘテロ接合を形成する場合、同一混晶組成の結晶によるpn接合に加え、更にn層側に禁制 帯幅が大きいn型の結晶を接合して少数キャリアである 正孔の拡散阻止層とする。

【0034】(A1,Ga₁₋₁),In₁₋₁N 系単結晶の禁制帯幅付近の発光はn層で特に強いため、活性層はn型結晶を用いる必要がある。(A1,Ga₁₋₁),In₁₋₁N 系単結晶のバンド構造は(A1,Ga₁₋₁),In₁₋₁As系単結晶や(A1,Ga₁₋₁),In₁₋₁P 系単結晶と似ており、バンド不連続の割合は価電子帯

よりも伝導帯の方が大きいと考えられる。しかし、(A), 40 Ga,,,),In,,N 系単結晶では正孔の有効質量が比較的大きいためn型同士のヘテロ接合は正孔拡散阻止として有効に作用する。

【0035】二つのヘテロ接合を形成する場合、禁制帯幅の比較的小さいn型の結晶(活性層)の両側に各々禁制帯幅の大きいn型及びp型の結晶(n層、p層)を接合し禁制帯幅の小さいn型の結晶を挟む構造とする。

【0036】多数のヘテロ接合を形成する場合、n型の 比較的禁制帯幅の大きい薄膜結晶と比較的禁制帯幅の小 さい薄膜結晶を複数接合し、その両側にそれぞれ更に禁 50

制帯幅の大きいn型及びp型の結晶を接合し、多数のヘテロ接合を挟む。

【0037】(A1,Ga,-,),In,-,N 系単結晶の禁制帯幅付近での光の屈折率は禁制帯幅が小さい程大きいため、他の(A1,Ga,-,),In,-,As系単結晶や(A1,Ga,-,),In,-,P 系単結晶による半導体レーザダイオードと同様、禁制帯隔の大きい結晶で挟むヘテロ構造は光の閉じ込めにも効果がある。

【0038】ヘテロ接合を利用する場合も、同一組成の結晶によるpn接合の場合と同様に、オーム性電極組成を容易にするため電極と接触する部分付近のキャリア環度は高濃度にしても良い。

【0039】n型結晶のキャリア濃度はドナー不純物のドーピング濃度により、またp型結晶のキャリア濃度はアクセプタ不純物のドーピング濃度及び電子線照射処理条件により制御する。又、特にオーム性電極形成を容易にするため高キャリア濃度実現が容易な結晶を金属との接触用に更に接合してもよい。

[0040]

【実施例】以下、本発明を具体的な実施例に基づいて説明する。($(A1,Ga_{1-})$, $In_{1-}N$: $0 \le x \le 1$, $0 \le y \le 1$) 半導体レーザダイオード用単結晶の作製には横型有機金属化合物気相成長装置を用いた。以下基板としてサファイア、Si, GH-SiC及UGaN を用いた場合各々について成長手順を示す。

【0041】(1) サファイア基板の場合 図1は、サファイア基板を用いた半導体レーザダイオードの構造を示した断面図である。図1において、(0001)面を結晶成長面とするサファイア基板1を有機洗浄の後、結晶成長装置の結晶成長部に設置する。成長炉を真空排気の後、水素を供給し1200℃程度まで昇温する。これによりサファイア基板1の表面に付着していた炭化水素系ガスがある程度取り除かれる。

【0042】次に、サファイア基板1の温度を 600℃程度まで降温し、トリメチルアルミニウム(TMA) 及びアンモニア(NH₄) を供給して、サファイア基板1上に50nm程度の膜厚を持つAlN 層2を形成する。 次に、TMA の供給のみを止め、基板温度を1040℃まで上げ、TMA,トリメチルガリウム(TMG) 及びシラン(SiH₄) を供給しSiドープn型GaAlN 層3 (n層) を成長する。

【0043】一旦、ウェハを成長炉から取り出し、GaAl N 層3の表面の一部をSiO, でマスクした後、再び成長炉に戻して真空排気して水素及びNH,を供給し1040℃まで昇温する。次に、TMG を供給して、SiO,でマスクされていない部分に厚さ 0.5μmのGaN層4 (活性層)を成長させる。次に、TMA 及びビスシクロベンタディエニルマクネシウム(Cp,Mg) を更に供給してドーブGaAlN 層5 (p層)を 0.5μm成長する。

【0044】次に、マスクとして使用したSiO。を弗酸系エッチャントにより除去する。次に、ドープGaAIN 層

7

5 (p層)上にSiQ層7を堆積した後、縦1mm、横50μmの短冊状に窓7Aを開け、真空チャンパに移して、ドープGAAIN層5 (p層)に電子線照射処理を行う。典型的な電子線照射処理条件を表に示す。

【表1】

電子線加速電圧	1 5 K V
エミッション電流	120µA以上
電子線スポット径	60 µ m φ
試料湿度	297K

【0045】次に、ドーブGaAIN 層5 (p層) の窓8の 部分と、Siドープn型GaAIN 層3 (n層) に、それぞ れ、金属電極を形成する。結晶成長は以上である。

【0046】(2)Si 基板の場合

Si基板上に作成したレーザダイオードの構造を図2に示す。低抵抗 n型Siの(111) 面基板8を有機洗浄の後、弗 20 酸系エッチャントにより表面の酸化物を取り除き結晶成長部に設置する。成長炉を真空排気の後水素を導入し基板を1000℃まで昇温して、基板8の表面を洗浄化し、更に、プロパン(CH) 又はアセチレン(CH) を供給する。これにより表面に3C-SiC薄膜9が形成される。

【0047】この後、成長炉内を一旦真空排気して余分なガスを取り除く。次に成長炉に水素を供給し基板温度を 600℃にし、TMA 及びNH,を供給してAIN 薄膜 10を 3C-SiC薄膜 9上に形成する。次に、TMA の供給のみを止め基板温度を1040℃にして、TMG, TMA 及びSiH,を供給してn型GAAIN 層 11 (n層)を成長する。

【0048】次に、TMA 及びSiH、のみの供給を止めGaN 層12 (活性層)を 0.5 μ m成長し、再びTMA 及びCP, Mgを加えMgドープGaAlN 層13 (p層)を 0.5 μ m成長する。次に、MgドープGaAlN 層13 (p層)上にSiO,層15を堆積した後、縦1 mm、横50 μ mの短冊状に窓15 Aを開け、真空チャンバに移して、MgドープGaAlN 層13 (p層)に電子線を照射する。電子線の照射条件は前実施例と同様である。その後、SiO,層15側からMgドープGaAlN 層13 (p層)に対する電極14Aを形成し、他方、基板8の裏面にn型GaAlN 層11 (n層)に対する電極14Bを形成した。

【0049】(3)6H-SiC 基板の場合

6H-SiC基板上に作成したレーザダイオードを図3に示す。低抵抗 n型6H-SiCの(0001)面基板16を有機洗浄の後、王水系エッチャントによりエッチングの後、結晶成長部に設置する。成長炉を真空排気の後、水素を供給し、1200℃まで昇温する。次に、成長炉に水素を供給し基板温度を1040℃にして、TMG、SiH、及UNH、を供給してn型GaN 級衡層17を0.5~1μm程度成長する。次

に、TMA を加え、n型GaN 緩衝層17の上にn型GaAlN層18 (n層) を成長する。

【0050】次に、n型GaAlN 層18の上に、前記のSi 基板を用いたレーザダイオードと同一構造に、同一ガスを用いて、同一成長条件で、それぞれ、GaN 層19 (活性層)を 0.5μm、MgドープGaAlN 層20 (p層)を 0.5μmの厚さに形成した。次に、MgドープGaAlN 層20上にSiO。層22を堆積した後、縦1mm、横50μmの短冊状に窓22Aを開け、真空チャンバに移して、MgドープGaAlN 層20 (p層) に電子線を照射した。電子線の照射条件は前実施例と同様である。

【0051】その後、SiO,層22側からMgドープGAAIN 層20 (p層) に対する電極21Aを形成し、他方、基 板16の裏面にn型GAAIN 層18 (n層) に対する電極 21Bを形成した。

【0052】(4)GaN基板の場合

GaN 基板上に作成したレーザダイオードを図4に示す。 低抵抗 n型GaN の(0001)面基板 2 3 を有機洗浄の後、リン酸+硫酸系エッチャントによりエッチングの後、この 基板 2 3 を結晶成長部に設置する。次に、成長炉を真空 排気の後、水素及びNH、を供給し、基板温度を1040 ℃にして、5分間放置する。次に、TMG 及びSiH、を更 に加えて n型GaN 緩衝層 2 4 を0.5 ~1 μ mの厚さに形 成した。

【0053】次に、TMA を加え、n型GaAIN 層25を成長させた。次に、n型GaAN層25の上に、前記のSi基板を用いたレーザダイオードと同一構造に、同一ガスを用いて、同一成長条件で、それぞれ、GaN 層26(活性層)を 0.5μ m、MgドープGaAIN 層27 (p層)を 0.5μ mの厚さに形成した。次に、MgドープGaAIN 層27上にSiO、層29を堆積した後、縦1 mm、横50 μ mの短冊状に恋29Aを開け、真空チャンバに移して、MgドープGaAIN 層27 (p層)に電子線を照射した。電子線の照射条件は前実施例と同様である。

【0054】その後、Si0₁層29側からMgドープGaAIN 層27 (p層) に対する電極28Aを形成し、他方、基 板23の裏面にn型GaAIN 層25 (n層) に対する電極 28Bを形成した。

【0055】上記のいづれの構造のレーザダイオードも、室温においてレーザ発振した。

【図面の簡単な説明】

【図1】 サファイア基板上に作製した本発明の具体的な 一実施例に係る ((Al,Ga,,),In,,N:0≦x≦i,0≦y≦i) 系半導体レーザダイオードの構成を示した断面図。

【図2】Si基板上に作製した本発明の具体的な一実施例 に係る ((A1,Ga,..),In,.,N:0≦x≦1,0≦y≦1)系半導体 レーザダイオードの構成を示した断面図。

【図3】6H-SiC基板上に作製した本発明の具体的な一実 施例に係る ((A1,Ga,,),In,,N:0≦x≦i,0≦y≦1)系半 50 導体レーザダイオードの構成を示した断而図。

【図4】GaN 基板上に作製した本発明の具体的な一実施 例に係る ((Al,Ga,L),In, N:0≤x≤1,0≤y≤1)系半導 体レーザダイオードの構成を示した断面図。

【符号の説明】

1…サファイアの(0001)面基板

- 2, 9, 17…AIN 緩衝層
- 3, 11, 18, 25…n型AlGaN 層 (n層)

* 4、12、19, 26…GaN 層 (活性層)

5, 13, 20, 27…MgドープAlGaN 層 (p層)

7, 15, 22, 29···Si0, 層

6A, 14A, 21A, 28A…電極 (MgドープAlGaN 層 (p層) に対する)

6B, 14B, 21B, 28B…電極 (n型AlGaN 層 (n層) に対する)

[図1]

[図3]

[図2]

[図4]

フロントページの続き

(72)発明者 岡崎 伸夫

爱知県西春日井郡春日町大字落合字長畑1 40

番地 豊田合成株式会社内

(72)発明者 真部 勝英

愛知県西春日井郡春日町大字落合字長畑1 Ж

番地 豊田合成株式会社内

※ (72) 発明者 赤崎 勇

愛知県名古屋市西区浄心1丁目1番38-

(72) 発明者 天野 浩

愛知県名古屋市名東区神丘町二丁目21 虹

ケ丘東団地25号棟505号室

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLATED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.