## **EXPT.-07**

**AIM:** - Design and Simulate Up Counter using Verilog HDL.

**Software:** - Xilinx Vivado 2019.1

**Theory:** -

Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied. Counters are of two types.

- · Asynchronous or ripple counters.
- Synchronous counters.

# Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are being used. But we can use the JK flip-flop also with J and K connected permanently to logic 1. External clock is applied to the clock input of flip-flop A and Q<sub>A</sub> output is applied to the clock input of the next flip-flop i.e. FF-B.

#### Logical Diagram



#### Operation

| S.N. | Condition                                        | Operation                                                                                                    |
|------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1    | Initially let both the FFs be in the reset state | $Q_BQ_A = 00$ initially                                                                                      |
| 2    | After 1st negative clock edge                    | As soon as the first negative clock edge is applied, FF-A will toggle and Q <sub>A</sub> will be equal to 1. |

|   |                               | $Q_A$ is connected to clock input of FF-B. Since $Q_A$ has changed from 0 to 1, it is treated as the positive clock edge by FF-B. There is no change in $Q_B$ because FF-B is a negative edge triggered FF. $Q_BQ_A = 01$ after the first clock pulse.                                 |
|---|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | After 2nd negative clock edge | On the arrival of second negative clock edge, FF-A toggles again and $Q_A = 0$ . The change in $Q_A$ acts as a negative clock edge for FF-B. So it will also toggle, and $Q_B$ will be 1. $Q_BQ_A = 10$ after the second clock pulse.                                                  |
| 4 | After 3rd negative clock edge | On the arrival of 3rd negative clock edge, FF-A toggles again and $Q_A$ become 1 from 0.  Since this is a positive going change, FF-B does not respond to it and remains inactive. So $Q_B$ does not change and continues to be equal to 1. $Q_BQ_A = 11$ after the third clock pulse. |
| 5 | After 4th negative clock edge | On the arrival of 4th negative clock edge, FF-A toggles again and Q <sub>A</sub> becomes 1 from 0.  This negative change in Q <sub>A</sub> acts as clock pulse for                                                                                                                     |

|  | FF-B. Hence it toggles to change Q <sub>B</sub> from 1 to 0. |
|--|--------------------------------------------------------------|
|  | $Q_BQ_A = 00$ after the fourth clock pulse.                  |

#### **Truth Table**

| Clock     | Counter output |   | State  | Deciimal<br>Counter output |
|-----------|----------------|---|--------|----------------------------|
| CIOCK     | Qs Qs          |   | number |                            |
| Initially | 0              | 0 | 573    | 0                          |
| 1st       | 0              | 1 | 1      | 1                          |
| 2nd       | 1              | 0 | 2      | 2                          |
| 3rd       | 1              | 1 | 3      | 3                          |
| 4th       | 0              | 0 | 4      | 0                          |

# Synchronous counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a counter is called as synchronous counter.

#### 2-bit Synchronous up counter

The  $J_A$  and  $K_A$  inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. The  $J_B$  and  $K_B$  inputs are connected to  $Q_A$ .

## Logical Diagram



## Operation

| S.N. | Condition                                        | Operation                                                                                                                                                                                                                                                |
|------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Initially let both the FFs be in the reset state | $Q_BQ_A = 00$ initially.                                                                                                                                                                                                                                 |
| 2    | After 1st negative clock edge                    | As soon as the first negative clock edge is applied, FF-A will toggle and $Q_A$ will change from 0 to 1.  But at the instant of application of negative clock edge, $Q_A$ , $J_B = K_B = 0$ . Hence FF-B will not change its state. So $Q_B$ will remain |
|      |                                                  | 0. $Q_BQ_A = 01$ after the first clock pulse.                                                                                                                                                                                                            |
| 3    | After 2nd negative clock edge                    | On the arrival of second negative clock edge, FF-A toggles again and Q <sub>A</sub> changes from 1 to 0.                                                                                                                                                 |
|      |                                                  | But at this instant $Q_A$ was 1.<br>So $J_B = K_B = 1$ and FF-B will toggle. Hence $Q_B$ changes from 0 to 1.                                                                                                                                            |
|      |                                                  | $Q_BQ_A = 10$ after the second clock pulse.                                                                                                                                                                                                              |
| 4    | After 3rd negative clock edge                    | On application of the third falling clock edge, FF-A will toggle from 0 to 1 but there is no change of state for FF-B. $Q_BQ_A = 11$ after the third clock pulse.                                                                                        |
| 5    | After 4th negative clock edge                    | On application of the next clock pulse, Q <sub>A</sub> will change                                                                                                                                                                                       |

|                               | ASIC Design Lab            |
|-------------------------------|----------------------------|
| from 1 to 0 a change from     | as Q₅ will also<br>1 to 0. |
| $Q_BQ_A = 00$ at clock pulse. | fter the fourth            |

# Classification of counters

Depending on the way in which the counting progresses, the synchronous or asynchronous counters are classified as follows –

- Up counters
- Down counters
- Up/Down counters

#### **UP/DOWN** Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode control (M) input is also provided to select either up or down mode. A combinational circuit is required to be designed and used between each pair of flip-flop in order to achieve the up/down operation.

- Type of up/down counters
- UP/DOWN ripple counters
- UP/DOWN synchronous counter

## **UP/DOWN Ripple Counters**

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-flops or JK flip-flops are to be used. The LSB flip-flop receives clock directly. But the clock to every other FF is obtained from (Q = Q bar) output of the previous FF.

- UP counting mode (M=0) The Q output of the preceding FF is connected to the clock of the
  next stage if up counting is to be achieved. For this mode, the mode select input M is at logic 0
  (M=0).
- **DOWN counting mode (M=1)** If M = 1, then the Q bar output of the preceding FF is connected to the next FF. This will operate the counter in the counting mode.

#### Example

3-bit binary up/down ripple counter.

- 3-bit hence three FFs are required.
- UP/DOWN So a mode control input is essential.
- For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next one.
- For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next one.
- For a ripple down counter, the Q bar output of preceding FF is connected to the clock input of the next one.
- Let the selection of Q and Q bar output of the preceding FF be controlled by the mode control
  input M such that, If M = 0, UP counting. So connect Q to CLK. If M = 1, DOWN counting. So
  connect Q bar to CLK.

#### **Block Diagram**



#### **Truth Table**

| Inputs |   | uts | Outputs |          |  |  |
|--------|---|-----|---------|----------|--|--|
| М      | Q | Q   | Υ       |          |  |  |
| 0      | 0 | 0   | 0       | Y=Q      |  |  |
| 0      | 0 | 1   | 0       | ∫ for up |  |  |
| 0      | 1 | 0   | 1       | counter  |  |  |
| 0      | 1 | 1   | 1       |          |  |  |
| 1      | 0 | 0   | 0       | Y = Q    |  |  |
| 1      | 0 | 1   | 1       |          |  |  |
| 1      | 1 | 0   | 0       | > for up |  |  |
| 1      | 1 | 1   | 1       | counter  |  |  |

# Operation

| S.N. | Condition                               | Operation                                                                                                                            |
|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Case 1 - With M = 0 (Up counting mode)  | If M = 0 and M bar = 1, then the AND gates 1 and 3 in fig. will be enabled whereas the AND gates 2 and 4 will be disabled.           |
|      |                                         | Hence $Q_A$ gets connected to the clock input of FF-B and $Q_B$ gets connected to the clock input of FF-C.                           |
|      |                                         | These connections are same as those for the normal up counter. Thus with M = 0 the circuit work as an up counter.                    |
| 2    | Case 2: With M = 1 (Down counting mode) | If M = 1, then AND gates 2 and 4 in fig. are enabled whereas the AND gates 1 and 3 are disabled.                                     |
|      |                                         | Hence Q <sub>A</sub> bar gets connected to the clock input of FF-B and Q <sub>B</sub> bar gets connected to the clock input of FF-C. |
|      |                                         | These connections will produce a down counter. Thus with M = 1 the circuit works as a down counter.                                  |

# Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as MOD-8 counter. So in general, an n-bit ripple counter is called as modulo-N counter. Where, MOD number =  $2^n$ .

# Type of modulus

- 2-bit up or down (MOD-4)
- 3-bit up or down (MOD-8)
- 4-bit up or down (MOD-16)

# Application of counters

- Frequency counters
- Digital clock
- Time measurement
- A to D converter
- Frequency divider circuits
- Digital triangular wave generator.

# Code: -

```
//JKFF
`timescale 1ns / 1ps
module JKFF(clk,J,K,clr,Q);
input clk, J, K, clr;
output reg Q;
always @(posedge clk)
begin
case({J,K})
2'b00:Q<=Q;
2'b01:Q<=0;
2'b10:Q<=1;
2'b11:Q<=~Q;
endcase
end
always @(posedge clr)
Q<=1'b0;
endmoduler
```

```
//up counter
`timescale 1ns / 1ps
module up_counter(clk,clr,q);
input clk,clr;
output [3:0] q;
wire [3:0] j.k;
assign j[0]=1'b1;
assign k[0]=1'b1;
JKFF FF0(clk,j[0],k[0],clr,q[0]);
assign j[1]=q[0];
assign k[1]=q[0];
JKFF FF1(clk,j[1],k[1],clr,q[1]);
assign j[2]=q[0]&q[1];
assign k[2]=q[0]&q[1];
JKFF FF2(clk,j[2],k[2],clr,q[2]);
assign j[3]=q[0]&q[1]&q[2];
assign k[3]=q[0]&q[1]&q[2];
JKFF FF3(clk,j[3],k[3],clr,q[3]);
endmodule
```

```
//tb
`timescale 1ns / 1ps
module tb_counter();
reg clk,clr;
wire [3:0] q;
up_counter Count(.clk(clk),.clr(clr),.q(q));
//JKFF FF(clk,j,k,clr,q);
initial
beain
clk=1'b0;
forever #3 clk=~clk;
end
initial
begin
clr=1'b1;
#10 clr=1'b0;
#50 clr=1'b1;
#10 clr=1'b0;
end
initial
$monitor($time,"q=%b,clk=%b,clr=%b",q,clk,clr);
initial
#150 $finish;
endmodule
```

# <u>Schematics and Simulated Waveforms: - Schematic:</u>

Up Counter



**JKFF** 



# **Waveform:**



# **Conclusion:** -

Hence, we have successfully designed and simulated Up counter using behavioral modeling style in Verilog HDL. Also verified simulated waveforms with actual truth tables using Xilinx Vivado 2019.1