```
## Warning in RecdistriMt$DistriMtMax[(RecdistriMt$Simul == "wRmAmHMt0" | RecdistriMt$Simul
== : le nombre d'objets remplacer n'est pas multiple de la taille du remplacement
    [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795 1.000 0.802
   [12] 1.000 1.000 1.000 1.000 0.583 1.000 0.947 0.821 1.000 0.519 0.355
   [23] 0.934 0.850 1.000 1.000 1.000 1.000 0.906 1.000 1.000 0.154
   [34] 1.000 1.000 1.000 1.000 1.000 1.000 1.000
##
     [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795 1.000 0.802
    [12] 1.000 1.000 1.000 1.000 0.583 1.000 0.947 0.821 1.000 0.519 0.355
##
    [23] 0.934 0.850 1.000 1.000 1.000 1.000 0.906 1.000 1.000 0.154
##
    [34] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.786 0.711 0.302
##
    [45] 1.000 0.989 0.149 0.544 1.000 1.000 0.453 0.990 1.000 0.908 0.381
    [56] 1.000 1.000 0.112 0.621 1.000 0.605 0.770 1.000 1.000 1.000 1.000
    [67] 1.000 1.000 1.000 1.000 0.993 0.264 1.000 1.000 0.864 1.000 1.000
##
    [78] 1.000 1.000 0.830 1.000 1.000 0.990 0.734 0.619 1.000 1.000 1.000
   [89] 0.971 0.431 0.950 0.743 0.760 0.504 1.000 1.000 1.000 1.000 1.000
##
   [100] 1.000
##
   [1] 0.78367
   [1] 0.81763
   [1] 0.76742
##
   [1] 0.3268576
##
   [1] 0.2793721
## [1] 0.3183194
```


All nuclear selection together:

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

(A) Mitochondrial introgression

(B) Autosomal introgression

(A) Sex-biased hybrid fitness

(A) Mitochondrial introgression

(B) Autosomal introgression

(B) Asymmetric crosses between taxa

nmetric crosses between taxa (20 loci for mat

(B) Invaded area

(A) Mitochondrial introgression

(B) Autosomal introgression

(C) Mito-nuclear discordance

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

[1] 0.001994615

[1] 0.736

(A) Invaded area, mitochondrial introgression

(B) Invaded area, autosomal introgression

					Table 1:				
	ϕ_M	f(M=1)	\overline{M}	\bar{D}	$\mathrm{f}(p_D<0.05)$	$\bar{F_s}$	$f(p_{F_s}<0.05)$		
1	1.000	0.000	0.009	-0.112	0.037	8.521	0	0.004	0.005
2	0.998	0.000	0.011	-0.086	0.036	8.592	0	0.006	0.005
3	0.995	0.000	0.011	-0.092	0.045	9.059	0	0.005	0.005
4	0.993	0.000	0.014	0.077	0.057	10.437	0	0.008	0.005
5	0.990	0.000	0.015	0.803	0.062	12.274	0	0.009	0.005
6	0.975	0.000	0.058	2.194	0.035	17.906	0	0.052	0.006
7	0.950	0.003	0.261	2.375	0.049	19.797	0	0.254	0.006
8	0.925	0.061	0.575	2.143	0.036	15.982	0	0.568	0.007
9	0.900	0.424	0.873	0.413	0.098	10.065	0	0.865	0.007
10	0.800	1.000	1.000	-0.167	0.000	2.454	0	0.992	0.008
11	0.700	1.000	1.000	-0.184	0.006	2.826	0	0.993	0.007