First SEMESTER 2022-2023 Course Handout (Part II)

Date: 29/08/2022

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding this course.

Course No. : CHEM F325

Course Title : POLYMER CHEMISTRY Instructor-in-charge : Dr. Chanchal Chakraborty

- 1. Scope and Objective of the course: The objective of the present course is to introduce the foundation of the subject by studying types and structures of polymers, molecular weight of polymers, kinetics of polymerization, thermodynamics of polymer solutions, thermal and mechanical properties of solid polymers, polymer's viscoelasticity and rubber elasticity, commodity, network, engineering and specialty polymers and applications for polymers in separations, biotechnology and electronics.
- 2. **Text Book (TB):** Fried, Joel R., Polymer Science and Technology, 2nd Edition, Prentice-Hall of India Pvt. Ltd. New Delhi, 2005.
- **3. Reference Books (RB):** (a) Bahadur, P. and Sastry, N.V., Principles of polymer Science, Narosa Publishing House, New Delhi, 2002. (b) V R Gowarikar, NV Vishwanathan, Jayadev Sreedhar, First Edition 1986, Polymer Science, Reprint 2009. New age International limited (p).

The syllabus also includes lectures class notes.

4. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes	
1	Classification of polymers, structure of polymers, molecular weights and	(i) Classification of polymers	TB 1.1, RB(a) 1.2	Recognize various types of polymers based on their chemical structures, calculation of molecular weight of the	
2	chemical structure	(ii) Polymer structure and isomerism	TB 1.2, RB(a) 1.4	polymers and analysis	

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes	
3-4		(iii) Molecular weight and chemical	TB 1.3 & 1.4,		
		structure and thermal transitions	RB(a) 3.3.1		
5	Synthesis and kinetics of different	(i) Step-growth polymerization	TB 2.1, RB(a) 2.2	Demonstrate techniques and methodologies adopted polymers synthesis	
6-7	types of polymerizations	(ii) Chain-growth polymerization	TB 2.2, RB(a)2.1		
8-9	The different techniques of polymerization and the reactions of synthetic polymers	Polymerization techniques, reactions of synthetic polymers and special topic in polymer synthesis	TB 2.3-2.5	Envisage reactions of synthetic polymers and outline special topics encountered in polymers synthesis	
10	Different model to explain conformations and chain dimensions	Polymer conformation and chain dimension	TB 3.1	Comprehensive study of polymer conformations and their chain dimensions	
11	How thermodynamics of polymers	(i) Flory-Huggins theory and Flory- Krigbaum and modified Flory-Huggins theory	TB 3.2.1 & 3.2.2, RB (a) 4.3	Recognize the need of Flory- Huggins and related modiful theories to outline the thermodynamics of polyr solutions. Interpret interaction parameter and also	
12	solutions differs from the	(ii) phase equilibria	TB 3.2.4	predict the solubility of polymers in various solvents	
13	thermodynamics of ordinary solutions	(iii) Determination of interaction parameter and prediction of solubilities	TB 3.2.5 & 3.2.6 RB (a) 4.3		
14		(i) Osmometry	TB 3.3.1, RB (a) 3.3.3	Types of experimental methodology from simple laboratory to high end gel permeation techniques, involved to determine the	
15	The principles behind both primary and secondary methods for	(ii) Light-Scattering method	TB 3.3.2, RB (a) 3.3.3	molecular weight of polymers	
16	molecular-weight determination	(iii) Intrinsic-Viscosity measurement	TB 3.3.3 RB (a) 3.3.3		
17		(iv) Gel-Permeation Chromatography	TB 3.3.4		
18	Thermal and mechanical properties	(i) Amorphous state	TB 4.1.1-4.1.3	Acquire knowledge on different phases of solid polymeric	
19	of different solid states of polymers	(ii) Crystalline state	TB 4.2.1 - 4.2.4	materials and their thermal transitions. Glass transition	
20		(iii) Thermal transitions and properties	TB 4.3.1 & 4.3.2	temperature (Tg) and melting temperature (Tm), get	
21		(iv) Structure property relationships, effect of molecular weight, composition and pressure on Tg	TB 4.3.3 & 4.3.4	idea about the variation of Tg and Tm with polymer structure and functionalities. Importance of Tg regarding mechanical properties of polymers.	

Lecture No.	Learning objectives	Topics to be covered the		Learning Outcomes	
22		(v) Mechanical properties	TB 4.4		
23	Introduction to viscoelasticity and	(i) Introduction to viscoelasticity	TB 5.1.1, RB (a) 4.4	Experience the basic of viscoelasticity and rubber elasticity and will be able to describe a polymer's elastic behavior in	
24	rubber elasticity	(ii) Introduction to rubber elasticity	TB 5.2	light of its structure	
25	Effects of environmental agents on polymers	Polymer degradation, stability and management	TB 6.1 & 6.2	Knowledge of basic principles and mechanisms of degrad tion of synthetic polymers and environmental impacts synthetic polymeral polymeral than the technical application capabilities of the moused commodity plastics	
26	Effect of additives, blends and composites on the properties of	(i) Additives and blends	TB 7.1.1 - 7.1.3,7.2.1	The role of additives in polymer blend. Methods of polymomorphisms preparation and their applications	
27-28	polymers	(iii) Polymer composites	TB 7.3.1		
29	Polymers in biological systems and nature	Biopolymers and other naturally occur- ring polymers	TB 8.1	Acquire skill on the chemical structure and applications of naturally occurring biopolymers like proteins, polynucleotide and Polysaccharides and natural fibers.	
30	To know different types of thermoplastics and fibers and their	(i) Fibers	TB 8.2.1 - 8.2.3 RB 5.3	Discover the natural and synthetic fibers, cellulosics non-cellulosics etc. Idea about commodity thermoplas like polyolefins, vinyl polymers and thermoplas	
31	properties	(ii) Thermoplastics	TB 9.1 RB (a) 5.2	polyesters.	
32	To know different types of network polymers and their properties	(i) Elastomers	TB 9.2, RB (a) 5.4	Interpretation of the basic of elastomers and thermosed Idea about diene and non-diene elastomers and epoxy are phenol-formaldehyde resin type thermosets.	
		(ii) Thermosets	TB 9.3		
33	Introduction to different types of commonly used adhesives in polymer chemistry and their mechanism	Adhesives	RB (a) 5.5	Knowledge of common adhesive technology, characteristic, mechanism and choice of adhesive for different applications.	
34	Introduction to some outstanding polymers and their properties and comparison with commodity thermoplastics	(i) Engineering thermoplastics	TB 10.1	Apprehension about the engineering plastics like polyamides. ABS, polycarbonates, PEO, polysulfones etc.	
		(ii) Specialty polymers	TB 10.2, RB (a) Ch. 8	and polyimides and related specialty polymers and high performance fibers.	

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	Learning Outcomes
35-36	Applications for polymers in separations, biotechnology and electronics	(i) Membrane separations & preparation Membrane separation, Biomedical applications, applications in electronics and photonic polymers	TB 12.1.2	Recognize the membrane science and technology, barrier polymers etc. Awareness about biomedical engineering and polymer based controlled drug delivery system.
37-40	Lab components and discussion for the experiences in linear (polyaniline) and cross-linked polymer synthesis, molecular weight measurement, applications etc.			Students will get some experiences on polymer synthesis, characterizations and their properties.

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature
Mid Semester Examination	90 Minutes	30	02/11/2022 9:00 to 10:30 am	Closed BOOK
Lab component and quizzes/assignment on lab component	-	10	ТВА	OPEN BOOK
Surprise tests/Quizzes	-	20	Continuous	OPEN BOOK
Comprehensive Examination	3 hours	40	22/12/2022 FN	Closed Book

- Regular attendance in the class will be considered as a plus during the final evaluation.
- **6. Consultation Hour:** To be announced in the class
- **7. Notice:** Notices concerning this course will be displayed only on the CMS.
- **8. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

9. Make-up-policy: Make up would be considered only for very genuine reasons (*such as institute deputation outside for sports/cultural fest, hospitalization (with appropriate documentary proof)* and in case of any other extreme emergency situations.

Dr. Chanchal Chakraborty

Inst

ructor-in-charge, CHEM F325