Lesson 23: Integrating Factors - $\mu(x)$ and $\mu(y)$ Cases

ODE 1 - Prof. Adi Ditkowski

1 Introduction to Integrating Factors

Definition 1 (Integrating Factor). For a non-exact equation M(x,y)dx + N(x,y)dy = 0, an *integrating factor* $\mu(x,y)$ is a function such that

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

is exact.

An integrating factor converts a non-exact equation into an exact one without changing the solution curves.

2 Integrating Factor Depending Only on x

Theorem 1 (Test for $\mu(x)$). If $\frac{\partial M/\partial y - \partial N/\partial x}{N}$ depends only on x, then there exists an integrating factor $\mu(x)$ satisfying:

$$\frac{d\mu}{dx} = \mu \cdot \frac{\partial M/\partial y - \partial N/\partial x}{N}$$

Finding $\mu(x)$:

- 1. Calculate $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$
- 2. Compute $\frac{\partial M/\partial y \partial N/\partial x}{N}$
- 3. Check if this expression contains only x (no y terms)
- 4. If yes, solve $\frac{d\mu}{dx} = \mu \cdot \frac{\partial M/\partial y \partial N/\partial x}{N}$
- 5. Multiply original equation by $\mu(x)$
- 6. Verify the result is exact and solve

3 Integrating Factor Depending Only on y

Theorem 2 (Test for $\mu(y)$). If $\frac{\partial N/\partial x - \partial M/\partial y}{M}$ depends only on y, then there exists an integrating factor $\mu(y)$ satisfying:

$$\frac{d\mu}{dy} = \mu \cdot \frac{\partial N/\partial x - \partial M/\partial y}{M}$$

Memory Aid:

- For $\mu(x)$: " $(M_y N_x)/N$ " \to function of x only
- For $\mu(y)$: " $(N_x M_y)/M$ " \to function of y only

Note the sign flip and denominator change!

Complete Examples 4

Example 1 (Finding $\mu(x)$). Solve: $(3xy + y^2)dx + (x^2 + xy)dy = 0$

Step 1: Check exactness $\frac{\partial M}{\partial y} = 3x + 2y$, $\frac{\partial N}{\partial x} = 2x + y$ Not equal \Rightarrow Not exact Step 2: Test for $\mu(x)$ $\frac{M_y - N_x}{N} = \frac{(3x + 2y) - (2x + y)}{x^2 + xy} = \frac{x + y}{x(x + y)} = \frac{1}{x}$

This depends only on x!

Step 3: Find $\mu(x)$ $\frac{d\mu}{dx} = \frac{\mu}{x} \Rightarrow \mu = x$

Step 3. Find $\mu(x) = \frac{1}{dx} - \frac{1}{x} \Rightarrow \mu - x$ Step 4: Multiply and solve $x(3xy + y^2)dx + x(x^2 + xy)dy = 0$ $(3x^2y + xy^2)dx + (x^3 + y^2)dx + (x^3 + y$ $(x^2y)dy = 0$

Verify exactness: $\frac{\partial}{\partial y}(3x^2y + xy^2) = 3x^2 + 2xy = \frac{\partial}{\partial x}(x^3 + x^2y)$

Example 2 (Finding $\mu(y)$). Solve: (2y)dx + (3x)dy = 0Test for $\mu(y)$: $\frac{N_x - M_y}{M} = \frac{3-2}{2y} = \frac{1}{2y}$

This depends only on y!

 $\frac{d\mu}{dy} = \frac{\mu}{2y} \Rightarrow \mu = y^{1/2}$

Multiplied equation: $(2y^{3/2})dx + (3xy^{1/2})dy = 0$

Solution: $H = 2xy^{3/2} = C$

Decision Flow 5

Complete Strategy:

- 1. Test for exactness first
- 2. If not exact, test for $\mu(x)$: check if $(M_y N_x)/N$ depends only on x
- 3. If not, test for $\mu(y)$: check if $(N_x M_y)/M$ depends only on y
- 4. If neither works, try special forms (Lesson 24)

5. After finding μ , multiply equation and solve as exact

Common Mistakes:

- \bullet Forgetting to multiply both M and N by the integrating factor
- Sign errors in $(M_y N_x)$ vs $(N_x M_y)$
- Confusing which denominator to use (N vs M)
- Not verifying exactness after multiplication

Prof. Ditkowski's Patterns:

- Often gives equations where both $\mu(x)$ and $\mu(y)$ exist
- May ask you to find the integrating factor, not the full solution
- \bullet Watch for simple integrating factors like $x,\,y,\,x^2,\,y^{-1}$
- Sometimes disguises as "Show that $\mu = \dots$ is an integrating factor"