UFV- CCE - DET

EST 105 – 3^a avaliação - 2^0 semestre de 2014 – $29/\mathrm{nov}/14$

Nome:	Matrícula:
Assinatura:	Favor apresentar documento com foto.
pontos, FAVOR CONFER	
gada no sistema SAPIENS	
TURMA HORÁRIO	SALA PROFESSOR
T20: EST 085 T1 3=18:3 T20: EST 085 T3 5=16:0	0-20:10 PVA126 - Monitor II - Gabi Nunes 0-18:00 PVA361 - Monitor II
T1: 2=10-12 e 5=8-10	PVB310 - Ana Carolina
	PVB310 - CHOS (coordenador)
	PVB310 - Ana Carolina e Moysés
T6: 2=14-16 e 4=16-18	
T7: 4=8-10 e 6=10-12	PVB206 - Moysés
	20:30-22:10 PVB306 - Paulo Emiliano

- Interpretar corretamente as questões é parte da avaliação, **portanto não é permitido questionamentos durante a prova**!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- NOTA ZERO se mostrar a resposta correta e não apresentar os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA!!!.

FORMULÁRIO

Para
$$k = 1, 2, ..., n < \infty$$
 $E(X^k) = \sum_x x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$ $E(XY) = \sum_x \sum_y xy P(x, y)$ ou $E(XY) = \int \int xy f(x, y) dx dy$ $E(XY) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - [E(X)]^2$ $X \sim N(\mu, \sigma^2), \quad E(X) = \mu \quad \text{e} \quad V(X) = \sigma^2 \quad Z = \frac{X - \mu}{\sigma}, \quad Z \sim N(0, 1)$ $P(x) = \binom{N}{x} p^x (1 - p)^{N - x} \qquad \binom{N}{x} = \frac{N!}{x!(N - x)!} \qquad E(X) = Np \quad V(X) = Np(1 - p)$ $P(x) = \frac{e^{-m} m^x}{x!} \qquad E(X) = V(X) = m$ $X^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \quad \text{com } n \text{ graus de liberdade} \quad n = (h - 1)(k - 1)$ $Z = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$ $t = \frac{(\overline{X} A - \overline{X} B)}{\sqrt{S^2 \left(\frac{1}{1!} + \frac{1}{2n}\right)}} \qquad S^2 = \frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

-										
\mathbf{z}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	$0,\!1141$
0,3	0,1179	$0,\!1217$	$0,\!1255$	$0,\!1293$	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	$0,\!1517$
0,4	0,1554	$0,\!1591$	0,1628	$0,\!1664$	$0,\!1700$	0,1736	0,1772	$0,\!1808$	0,1844	$0,\!1879$
0,5	0,1915	$0,\!1950$	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	$0,\!2291$	0,2324	$0,\!2357$	0,2389	0,2422	0,2454	0,2486	0,2517	$0,\!2549$
0,7	0,2580	$0,\!2611$	0,2642	0,2673	$0,\!2703$	0,2734	$0,\!2764$	$0,\!2794$	0,2823	$0,\!2852$
0,8	0,2881	$0,\!2910$	0,2939	$0,\!2967$	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	$0,\!3665$	$0,\!3686$	$0,\!3708$	$0,\!3729$	0,3749	0,3770	$0,\!3790$	0,3810	0,3830
1,2	0,3849	$0,\!3869$	$0,\!3888$	$0,\!3907$	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	$0,\!4066$	$0,\!4082$	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	$0,\!4319$
1,5	0,4332	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	$0,\!4463$	$0,\!4474$	$0,\!4484$	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	$0,\!4545$
1,7	0,4554	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	0,4608	0,4616	0,4625	$0,\!4633$
1,8	0,4641	0,4649	$0,\!4656$	$0,\!4664$	0,4671	0,4678	$0,\!4686$	0,4693	0,4699	$0,\!4706$
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	0,4744	$0,\!4750$	$0,\!4756$	$0,\!4761$	$0,\!4767$
2,0	0,4772	$0,\!4778$	$0,\!4783$	$0,\!4788$	0,4793	0,4798	$0,\!4803$	$0,\!4808$	$0,\!4812$	$0,\!4817$
2,1	0,4821	$0,\!4826$	$0,\!4830$	$0,\!4834$	$0,\!4838$	$0,\!4842$	$0,\!4846$	$0,\!4850$	0,4854	$0,\!4857$
2,2	0,4861	$0,\!4864$	$0,\!4868$	$0,\!4871$	$0,\!4875$	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	$0,\!4916$
2,4	0,4918	$0,\!4920$	$0,\!4922$	$0,\!4925$	0,4927	0,4929	0,4931	0,4932	0,4934	$0,\!4936$
2,5	0,4938	$0,\!4940$	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	$0,\!4952$
2,6	0,4953	$0,\!4955$	$0,\!4956$	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	$0,\!4964$
2,7	0,4965	$0,\!4966$	$0,\!4967$	$0,\!4968$	0,4969	0,4970	0,4971	0,4972	0,4973	$0,\!4974$
2,8	0,4974	$0,\!4975$	$0,\!4976$	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	$0,\!4981$
2,9	0,4981	$0,\!4982$	$0,\!4982$	$0,\!4983$	0,4984	0,4984	0,4985	0,4985	0,4986	$0,\!4986$
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores χ^2 na distribuição de qui-quadrado com n graus de liberdade tais que $P\left(\chi_n^2 \geq \chi^2\right) = p \times 100\%$.

n	p=99%	98%	$97,\!5\%$	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	$2,\!5\%$	2%	1%	$0,\!2\%$	0,1%	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	5,024	$5,\!412$	6,635	$9,\!550$	10,827	1
2	0,020	0,040	0,051	$0,\!103$	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,378	$7,\!824$	9,210	$12,\!429$	$13,\!815$	2
3	0,115	$0,\!185$	0,216	$0,\!352$	0,584	1,005	1,424	2,366	3,665	4,642	$6,\!251$	7,815	8,311	9,348	$9,\!837$	11,345	14,796	16,266	3
4	0,297	$0,\!429$	0,484	0,711	1,064	1,649	$2{,}195$	$3,\!357$	4,878	5,989	7,779	9,488	10,026	11,143	11,668	13,277	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	11,644	$12,\!832$	$13,\!388$	15,086	18,907	$20,\!515$	5
6	0,872	$1,\!134$	1,237	1,635	2,204	3,070	$3,\!828$	5,348	7,231	$8,\!558$	10,645	$12,\!592$	13,198	14,449	15,033	16,812	20,791	$22,\!457$	6
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	18,475	$22,\!601$	24,322	7
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	$13,\!362$	$15,\!507$	16,171	17,534	18,168	20,090	$24,\!352$	26,125	8
9	2,088	$2,\!532$	2,700	3,325	4,168	$5,\!380$	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	21,666	26,056	$27,\!877$	9
10	2,558	3,059	3,247	3,940	4,865	$6,\!179$	7,267	9,342	11,781	13,442	15,987	18,307	19,021	$20,\!483$	21,161	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	$5,\!578$	6,989	8,148	10,341	$12,\!899$	14,631	$17,\!275$	$19,\!675$	20,412	21,920	22,618	24,725	29,354	31,264	11
12	3,571	$4,\!178$	4,404	$5,\!226$	6,304	7,807	9,034	11,340	14,011	$15,\!812$	$18,\!549$	21,026	21,785	23,337	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	$22,\!362$	23,142	24,736	$25,\!472$	27,688	$32,\!535$	$34,\!528$	13
14	4,660	5,368	5,629	$6,\!571$	7,790	9,467	10,821	13,339	16,222	18,151	21,064	$23,\!685$	24,485	26,119	$26,\!873$	29,141	34,091	36,123	14
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	$22,\!307$	24,996	$25,\!816$	$27,\!488$	28,259	$30,\!578$	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	11,152	12,624	15,338	18,418	20,465	$23,\!542$	$26,\!296$	27,136	$28,\!845$	29,633	32,000	37,146	$39,\!252$	16
17	6,408	7,255	$7,\!564$	8,672	10,085	12,002	13,531	16,338	19,511	21,615	24,769	$27,\!587$	28,445	30,191	30,995	33,409	38,648	40,790	17
18	7,015	7,906	8,231	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	$28,\!869$	29,745	$31,\!526$	32,346	$34,\!805$	40,136	$42,\!312$	18
19	7,633	8,567	8,906	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,144	31,037	32,852	33,687	36,191	41,610	43,820	19
20	8,260	9,237	9,591	10,851	12,443	14,578	16,266	19,337	22,775	25,038	$28,\!412$	$31,\!410$	32,321	34,170	35,020	$37,\!566$	43,072	$45,\!315$	20
21	8,897	9,915	10,283	11,591	13,240	15,445	17,182	20,337	$23,\!858$	26,171	29,615	32,671	33,597	35,479	36,343	38,932	44,522	46,797	21
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	34,867	36,781	37,659	40,289	45,962	48,268	22
23	10,196	11,293	11,688	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	38,076	38,968	41,638	47,391	49,728	23
24	10,856	11,992	12,401	13,848	15,659	18,062	19,943	23,337	27,096	29,553	33,196	36,415	$37,\!389$	39,364	40,270	42,980	48,812	51,179	24
25	11,524	12,697	13,120	14,611	16,473	18,940	20,867	24,337	28,172	30,675	34,382	$37,\!652$	38,642	40,646	$41,\!566$	44,314	50,223	52,620	25
26	12,198	13,409	13,844	15,379	17,292	19,820	21,792	25,336	29,246	31,795	35,563	38,885	39,889	41,923	42,856	45,642	51,627	54,052	26
27	12,879	14,125	14,573	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	$55,\!476$	27
28	13,565	14,847	15,308	16,928	18,939	21,588	23,647	27,336	31,319	34,027	37,916	41,337	$42,\!370$	44,461	45,419	48,278	54,411	56,893	28
29	14,256	15,574	16,047	17,708	19,768	22,475	24,577	28,336	32,461	35,139	39,087	42,557	43,604	45,722	46,693	49,588	55,792	58,302	29
30	14,953	16,306	16,791	18,493	20,599	23,364	25,508	29,336	33,530	36,250	$40,\!256$	43,773	44,834	46,979	47,962	50,892	57,167	59,703	30
n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n
			-														-		

Adaptada de Bussab, W. O. e Morettin, P. A. Estatística Básica - Métodos Quantitativos, Editora Atual.

Tabela 3: Valores positivos t na distribuição t_n de Student com n graus de liberdade em níveis de 10% a 0,1% de probabilidade = $2 \times P(t_n \ge t)$, tabela bilateral.

	nível de probabilidade bilateral									
n	10%	5%	2%	1%	0,5%	0,1%				
1	6,31	12,71	31,82	63,66	127,32	636,62				
2	2,92	4,30	6,97	9,92	14,09	31,60				
3	$2,\!35$	3,18	$4,\!54$	5,84	$7,\!45$	12,94				
4	2,13	2,78	3,75	4,60	5,60	8,61				
5	2,02	$2,\!57$	3,37	4,03	4,77	$6,\!86$				
6	1,94	2,45	3,14	3,71	4,32	5,96				
7	1,90	2,36	3,10	3,50	4,03	$5,\!41$				
8	1,86	2,31	2,90	3,36	3,83	5,04				
9	1,83	2,26	2,82	$3,\!25$	3,69	4,78				
10	1,81	2,23	2,76	3,17	$3,\!58$	4,59				
11	1,80	2,20	2,72	3,11	3,50	$4,\!44$				
12	1,78	2,18	2,68	3,06	3,43	4,32				
13	1,77	2,16	2,65	3,01	3,37	4,22				
14	1,76	2,14	2,62	2,98	3,33	4,14				
15	1,75	2,13	2,60	2,95	$3,\!29$	4,07				
16	1,75	2,12	2,58	2,92	$3,\!25$	4,02				
17	1,74	2,11	2,57	2,90	$3,\!22$	3,97				
18	1,73	2,10	2,55	2,88	3,20	3,92				
19	1,73	2,09	$2,\!54$	2,86	$3,\!17$	3,88				
20	1,73	2,09	2,53	$2,\!84$	$3,\!15$	$3,\!85$				
21	1,72	2,08	2,52	2,83	$3,\!14$	3,82				
22	1,72	2,07	$2,\!51$	2,82	3,12	3,79				
23	1,71	2,07	2,50	2,81	3,10	3,77				
24	1,71	2,06	2,49	2,80	3,09	3,75				
25	1,71	2,06	2,49	2,79	3,08	3,73				
26	1,71	2,06	2,48	2,78	3,07	3,71				
27	1,70	2,05	2,47	2,77	3,06	3,69				
28	1,70	2,05	2,47	2,76	3,05	3,67				
29	1,70	2,04	2,46	2,76	3,04	$3,\!66$				
30	1,70	2,04	2,46	2,75	3,03	$3,\!65$				
40	1,68	2,02	2,42	2,70	2,97	$3,\!55$				
60	1,67	2,00	2,39	2,66	2,92	3,46				
120	1,65	1,98	$2,\!36$	2,62	2,86	$3,\!37$				
$-\infty$	1,65	1,96	2,33	2,58	2,81	3,29				

Adaptada de Frederico Pimentel Gomes, Curso de Estatística Experimental, 12^a ed.

1 (8 pts). Sejam X e Y variáveis aleatórias tais que,

$$E(Y^2) = 39,$$
 $V(X + 2Y) = 12,$ $V(X - 2Y) = 100,$ $E(X + 2Y) = 22$ e $E(X - 2Y) = -2.$

Pede-se: determine V(X)

Temos que

$$22 = E(X+2Y) = E(X) + 2E(Y)$$
 (1)

$$-2 = E(X - 2Y) = E(X) - 2E(Y)$$
 (2)

Assim

$$E(X) = 10 (3)$$

$$E(Y) = 6 (4)$$

$$12 = V(X+2Y) = V(X) + 4V(Y) + 4Cov(X,Y)$$
 (5)

$$100 = V(X - 2Y) = V(X) + 4V(Y) - 4Cov(X, Y)$$
(6)

Assim, subtraindo-se (5) e (6) temos 8Cov(X,Y) = -88, logo

$$Cov(X,Y) = -11. (7)$$

Além disso $V(Y) = E(Y^2) - (E(Y))^2 = 39 - 6^2 = 3$. De (5) temos que

$$V(X) = 12 - 4V(Y) - 4Cov(X, Y)$$

= $12 - 4 \times 3 - 4 \times (-11)$
= 44

2 (10 pts). Seja X o número de idosos não imunizados contra a gripe numa campanha de vacinação. Considere que 200 idosos foram vacinados e que a probabilidade de não imunização de um idoso vacinado seja igual a 0,01. Pede-se: calcule a probabilidade de que no mínimo 3 idosos não sejam imunizados.

a.(5 pts) Utilize o modelo Binomial.

$$N = 200$$

 $p = 0,01$

X = número de idosos não imunizados

$$\begin{split} P\left(X \geq 3\right) &= 1 - P(X < 3) = 1 - \left(P(X = 0) + P(X = 1) + P(X = 2)\right) \\ &= 1 - \left(\binom{200}{0}0, 01^0 \times 0, 99^{200} + \binom{200}{1}0, 01^1 \times 0, 99^{199} + \binom{200}{2}0, 01^2 \times 0, 99^{198}\right) \\ &= 1 - \left(0, 3140 + 0, 2707 + 0, 2707\right) \\ &= 0, 3233 \end{split}$$

b.(5 pts) Utilize o modelo Poisson.

$$m = 200 \times 0,01 = 2$$

$$\begin{split} P\left(X \geq 3\right) &= 1 - P(X < 3) = 1 - \left(P(X = 0) + P(X = 1) + P(X = 2)\right) \\ &= 1 - \left(\frac{e^{-2} \times 2^{0}}{0!} + \frac{e^{-2} \times 2^{1}}{1!} + \frac{e^{-2} \times 2^{2}}{2!}\right) \\ &= 1 - \left(0, 1353 + 0, 2707 + 0, 2707\right) \\ &= 0, 3233 \end{split}$$

3 (6 pts). A Tabela a seguir apresenta os resultados de um ensaio com 154 pacientes que apresentavam dor abdominal. Ao grupo Tratamento foi administrado Brometo de Pinavério (dois comprimidos/dia); ao grupo controle foi administrado um placebo (fármaco inerte).

Grupo	Sim	Não	Total
Tratamento	6 (14,73)	57 (48,27)	63
Controle	30 (21,27)	61(69,73)	91
Total	36	118	154

a.(1 pt) Complete a tabela à caneta.

b.(4 pts) Teste a independência entre as variáveis, adote 5% de significância. Informe os valores calculado e tabelado.

 $\begin{cases} H_0: & \text{Grupo e Permanência da dor abdominal são independentes} \\ H_1: & \text{Grupo e Permanência da dor abdominal não são independentes} \end{cases}$

Temos que n=(2-1)(2-1)=1 e $\alpha=0,05,$ assim o valor tabelado é

$$\chi^2_{(5\%;1)} = 3,841.$$

Valor calculado.

$$\chi_{\text{cal}}^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$= \frac{(6 - 14, 73)^{2}}{14, 73} + \frac{(57 - 48, 27)^{2}}{48, 27} + \frac{(30 - 21, 27)^{2}}{21, 27} + \frac{(61 - 69, 73)^{2}}{69, 73}$$

$$= 5, 17 + 1, 58 + 3, 58 + 1, 09$$

$$\cong 11, 42$$

c.(1 pt) Na prática (em termos do problema) como os resultados da tabela podem ser interpretados?

Como $\chi^2_{\rm cal} \in RC$, rejeita-se H_0 ao nível de 5%. Desta forma, o grupo ao qual o indivíduo pertence e a permanência da dor abdominal não são variáveis aleatórias independentes.

4 (8 pts). Seja X o número de pães de sal vendidos diariamente (demanda) na padaria do seu Manuel Vascaíno. Admita que X se distribua normalmente com média $\mu=200$ pães por dia e desvio padrão $\sigma=30$ pães. Seu Manuel deseja determinar quantos pães de sal (x_0) ele deve assar diariamente e ofertar para venda em sua padaria, de modo que a demanda diária X exceda este valor x_0 em apenas 0,52% dos dias. Pede-se: determine este valor x_0 e faça um desenho ilustrativo com a indicação dos valores na escala padronizada (Z) e original (X).

$$0,0052 = P(X > x_A) = P(\frac{X - 200}{30} > \frac{x_A - 200}{30}) = P(Z > \frac{x_A - 200}{30})$$
$$= 0, 5 - P(Z \le \frac{x_A - 200}{30})$$

Assim $P(Z \le \frac{x_A-200}{30}) = 0, 5-0,0052 = 0,4948$ Desta forma, $P(Z \le \frac{x_A-200}{30}) = 0,4948$ e, $P(Z \le 2,56) = 0,4948$. Logo

$$\frac{x_A - 200}{30} = 2,56,$$

donde $x_A = 200 + 2,56 \times 30 = 276,80$

Ele deve produzir 277 pães diariamente.

5 (8 pts). Será que existe um efeito do tipo de música, tipo A ou tipo B, sendo ouvido por um estudante enquanto ele executa uma série de atividades que requerem concentração mental? Para averiguar esta questão foram selecionados 16 estudantes, bastante homogêneos entre si quanto às principais variáveis que afetam a execução das atividades (idade, desempenho acadêmico e nível sócio econômico). Estes estudantes foram divididos em dois grupos com 8 estudantes e cada um dos grupos executou as mesmas tarefas em ambientes controlados, idênticos, sendo a única diferença o tipo de música ouvida pelos estudantes no ambiente. Cada um dos estudantes executou 40 tarefas enquanto ouvia música no ambiente controlado e registrou-se o número de acertos, cujos valores são sumarizados na tabela a seguir. Se existir um efeito devido ao tipo de música, então espera-se observar um maior número médio de acertos (μ) com algum dos dois tipos de música. Neste estudo, antes da coleta dos dados, não se suspeitava que A ou B fosse melhor.

Tipo de										
música			N'	o de	acert	os			Média	Variância
A	26	21	24	31	29	22	25	23	-25,13	11,8393
В	25	18	22	27	24	20	24	18	$22,\!25$	11,0714

Pede-se: teste a hipótese de igualdade entre o número médio de acertos, ou seja, de que não há efeito do tipo de música, conforme os itens a seguir.

a.(1 pt) Hipóteses estatísticas (complete H_1).

$$H_0: \mu_A = \mu_B \quad \mathrm{e} \quad H_1: \mu_A \neq \mu_B$$

b.(2 pts) Valor tabelado a 5% de significância.

$$t_{tab} = t_{(8+8-2:5\%)} = t_{(14:5\%)} = 2,14.$$

c.(3 pts) Valor calculado (estatística do teste)

$$S^{2} = \frac{(8-1) \times 11,8393 + (8-1) \times 11,0714}{8+8-2} = 11,4554$$
$$t_{cal} = \frac{(25,13-22,25)}{\sqrt{11,4554\left(\frac{1}{8} + \frac{1}{8}\right)}} = \frac{2,88}{1,6923} = 1,7018$$

d.(2 pts) Decisão do teste. Explique o que concluir quanto aos efeitos dos tipos de música. Como $t_{cal} \in RNRH_0$, não há indícios para rejeitarmos H_0 ao nível de 5% de significância. Desta forma não há indícios de que o tipo de música que é executada influencia o número médio de acertos.