MATH 304

Lecture 20:

Linear Algebra

Inner product spaces.

Orthogonal sets.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \geq 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

•
$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \ p \ge 1.$$

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

$$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$$

Normed vector space

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_0)$ is small.

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

$$\mathbf{A} / \mathbf{V} / \mathbf{V} = \mathbf{V} / \mathbf{V} = \mathbf{V} / \mathbf{V}$$

 $\bullet \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$

 $\bullet \langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n,$

where $d_1, d_2, ..., d_n > 0$.

• $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y}),$ where D is an invertible $n \times n$ matrix

Problem. Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$.

Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$. Using bilinearity, we obtain

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

$$= x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

$$= x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$$

 $= 2x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$ It remains to check that $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ for $\mathbf{x} \neq \mathbf{0}$. $\langle \mathbf{x}, \mathbf{x} \rangle = 2x_1^2 - 2x_1x_2 + 3x_2^2 = (x_1 - x_2)^2 + x_1^2 + 2x_2^2$.

Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices.

•
$$\langle A, B \rangle = \operatorname{trace}(AB^T)$$
.

If $A = (a_{ij})$ and $B = (b_{ij})$, then $\langle A, B \rangle = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ij}$.

Examples. V = C[a, b].

- $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.
- $\langle f,g\rangle = \int_a^b f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle$.

The right-hand side is a quadratic polynomial in t (provided that $\mathbf{y} \neq \mathbf{0}$). Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ for all t, the discriminant D is nonpositive. But $D = 4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \, \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$||\mathbf{x} + \mathbf{y}||^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + |\langle \mathbf{x}, \mathbf{y} \rangle| + |\langle \mathbf{y}, \mathbf{x} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$< ||\mathbf{x}||^{2} + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^{2} = (||\mathbf{x}|| + ||\mathbf{y}||)^{2}.$$

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x} \cdot \mathbf{v} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx.$

Angle

Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y})$.

In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Pythagorean Law:

$$\mathbf{x} \perp \mathbf{y} \implies \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 $= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$

Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

Proof:
$$\|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
. Similarly, $\|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$. Then $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

Definition. A nonempty set $S \subset V$ of nonzero vectors is called an **orthogonal set** if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Examples. • $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$. The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$,

The standard basis $\mathbf{e}_1 = (1, 0, 0, ..., 0)$, $\mathbf{e}_2 = (0, 1, 0, ..., 0)$, ..., $\mathbf{e}_n = (0, 0, 0, ..., 1)$. It is an orthonormal set.

•
$$V = \mathbb{R}^3$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

$$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$

$$\begin{aligned} \mathbf{v}_1 \cdot \mathbf{v}_2 &= 0, & \mathbf{v}_1 \cdot \mathbf{v}_3 &= 0, & \mathbf{v}_2 \cdot \mathbf{v}_3 &= 0, \\ \mathbf{v}_1 \cdot \mathbf{v}_1 &= 50, & \mathbf{v}_2 \cdot \mathbf{v}_2 &= 50, & \mathbf{v}_3 \cdot \mathbf{v}_3 &= 25. \end{aligned}$$
Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not

Thus the set $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ is orthogonal but not orthonormal. An orthonormal set is formed by normalized vectors $\mathbf w_1 = \frac{\mathbf v_1}{\|\mathbf v_1\|}$, $\mathbf w_2 = \frac{\mathbf v_2}{\|\mathbf v_2\|}$, $\mathbf w_3 = \frac{\mathbf v_3}{\|\mathbf v_2\|}$.

•
$$V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

 $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

$$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

Thus the set $\{f_1, f_2, f_3, \dots\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g \rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

${\bf Orthogonality} \implies {\bf linear \ independence}$

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

$$\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \cdots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0.$$

$$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$

By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.

Orthonormal bases

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be an orthonormal basis for an inner product space V.

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$, (ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$

Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component \mathbf{p} is the **orthogonal projection** of the vector \mathbf{x} onto the subspace V_0 . We have

$$\|\mathbf{o}\| = \|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V_0} \|\mathbf{x} - \mathbf{v}\|.$$

That is, the distance from \mathbf{x} to the subspace V_0 is $\|\mathbf{o}\|$.

Let V be an inner product space. Let \mathbf{p} be the orthogonal projection of a vector $\mathbf{x} \in V$ onto a finite-dimensional subspace V_0 .

If V_0 is a one-dimensional subspace spanned by a vector \mathbf{v} then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V_0 then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

Indeed, $\langle \mathbf{p}, \mathbf{v}_i \rangle = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle$

$$\implies \langle \mathbf{x} - \mathbf{p}, \mathbf{v}_i \rangle = 0 \implies \mathbf{x} - \mathbf{p} \perp \mathbf{v}_i \implies \mathbf{x} - \mathbf{p} \perp V_0.$$