## **Semi-Supervision with Adversarial Learning**

Paul English, Data Science @ Nav penglish@nav.com
http://qithub.com/log0ymxm

## **Domain Adaptation**

- Overcoming the domain gap, i.e. the differences between the source and target distributions, without any supervision from the target domain.
- Domain adaptation: Csurka (2017)
- Also known as
  - Domain-invariant learning: Hoffman et al., 2013; Herath et al., 2017; Yan et al., 2017; Ganin & Lempitsky, 2015
  - Statistical Alignment: Tzeng et al., 2014; Long et al., 2015
- Used when lacking ground truth in the target domain.

## **Domain Adaptation**



## **Domain Adaptation**



## **SimGAN**



### **SimGAN**

Adapt synthetic images (eye gaze direction, hand pose estimation) to the domain of real images.

#### What they do:

- Refiner: Generator that accepts synthetic image as input
- Self-regularizing loss for the refiner network
  - Penalize large changes between synthetic image and generated (refined) image
- GAN training stabilization via replay buffer
- Local Adversarial loss. "Patch Discriminator"

## SPIGAN - Use of privileged information



### **SPIGAN**

- Here a simulator is used for the source of unsupervised data that includes a wealth of extra information not available to even the supervised domain.
- PI: Depth map information from the simulator

## Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation



# Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation

- Patch discriminator, i.e. local adversarial loss as described in the SimGAN work, with 4 outputs for: source-real, source-fake, target-real, target-fake
- ACGAN / Auxiliary Classifier architecture
  - Use of labels to help improve the generator only for the source domain.

## Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks

