(Computer Exercise)

Department of Computer Science Pattern Recognition

1. Prove that in the centered model, i.e., $\mathbf{X}_c = \mathbf{X}_1 - \frac{1}{n}\mathbf{J}\mathbf{X}_1$,

$$\mathbf{1}'\mathbf{X}_c = 0.$$

2. For the centered model, prove that

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} 1/n & \mathbf{0}' \\ \mathbf{0} & (\mathbf{X}_c'\mathbf{X}_c)^{-1} \end{pmatrix}$$

- 3. Prove that different linear transformations for two r.v. will preserve ρ .
- 4. Consider the previous homework regression problem: $Y = \sin X + \varepsilon$. For N = 50, use a regularized model with p = 20.
 - Use the large testing set to select the value of best λ .
 - Compare the best model to the best model obtained from the previous homework using nested stepwise regression.
 - For each λ , plot the value of each β_i , $i = 1, \ldots, p$.

.