LING 572 Hw1

Due: 11pm on Jan 16, 2020

Q1 (25 points): Let X and Y be two random variables. The values for P(X,Y) are shown in Table 1, H(X) is the entropy of X, and MI(X,Y) is the mutual information of X and Y. Please write down the formulas and the results for the following.

- (a) 1 pt: P(X)
- **(b) 1 pt:** P(Y)
- (c) 2 pt: P(X | Y)
- (d) 2 pt: P(Y | X)
- (e) 2 pts: Are X and Y independent? Why or why not?
- (f) 2 pts: H(X)
- (g) 2 pts: H(Y)
- (h) 2 pts: H(X,Y)
- (i) 2 pts: H(X | Y)
- (j) 2 pts: $H(Y \mid X)$
- (k) 2 pts: MI(X,Y)
- (1) 5 pts: The value for Q(X,Y) are shown in Table 2. What is the value for KL(P(X,Y) || Q(X,Y))? What is the value for KL(Q(X,Y) || P(X,Y))? Are they the same?

Table 1: The joint probability P(X,Y)

	X=1	X=2	X=3
Y=a	0.10	0.20	0.30
Y=b	0.05	0.15	0.20

Table 2: The joint probability Q(X,Y)

	X=1	X=2	X=3
Y=a	0.10	0.20	0.40
Y=b	0.01	0.09	0.20

Q2 (10 points): Let X be a random variable for the result of tossing a coin. P(X = h) = p; that is, p is the possibility of getting a head, and 1 - p is the possibility of getting a tail.

(a) 1 pt: H(X) is the entropy of X. Write down the formula for H(X).

- (b) 2 pts: Let $p^* = arg \ max_p \ H(X)$; that is, p^* is the p that results in the maximal value of H(X). What is p^* ?
- (c) 7 pts: Prove that the answer you give in (b) is correct. Hint: recall how you calculate the optimal solution for a function f(x) in your calculus class. In this case, H(X) is a function of p.
- Q3 (25 points): Permutations and combinations:
- (a) 6 pts: The class has n students, and n is an even number. The students are forming teams to work on their homework. Each team has exactly 2 students and each student has to appear in exactly one team. How many distinct ways are there to form the teams for the class? Write down the formula. Hint: when n=4, there are 3 ways. For instance, if student #1 and #2 are in the same team, students #3 and #4 would have to be in the same team too.
- (b) 5 pts: There are 10 balls: 5 are red, 3 are blue, and 2 are white. Suppose you put the balls in a line, how many different color sequences are there?
- (c) 14 pts: Suppose you want to create a document of length N by using only the words in a vocabulary $\Sigma = \{w_1, w_2, ..., w_n\}$. Let $[t_1, t_2, ..., t_n]$ be a list of non-negative integers such that $\sum_i t_i = N$.
 - (c1) 7 points: How many different documents are there which satisfy the condition that, for each w_i in the vocabulary Σ , the occurrence of the word w_i in the document is exactly t_i ? That is, how many different word sequences are there which contain exactly t_i w_i 's for each w_i in Σ ?

Hint: The answer to (c1) is very similar to the answer to (b).

(c2) 7 pts: Let P(X) be a unigram model on the vocabulary Σ ; that is, $P(X = w_i)$ is the probability of a word w_i , and $\sum_{w_i \in \Sigma} P(X = w_i) = 1$.

Suppose a document of length N is created with the following procedure: for each position in a document, you pick a word from the vocabulary according to P(X); that is, the probability of picking w_i is $P(X = w_i)$. What is the probability that you will end up with a document where the occurrence of the word w_i (for each $w_i \in \Sigma$) in the document is exactly t_i ?

Hint: As (c1) shows, there will be many documents that contain exactly t_i w_i 's. The answer to (c2) should be the sum of the probabilities of all these documents.

- Q4 (10 points): Suppose you want to build a trigram POS tagger. Let T be the size of the tagset and V be the size of the vocabulary.
- (a) 2 pts: Write down the formula for calculating $P(w_1, ..., w_n, t_1, ..., t_n)$, where w_i is the i-th word in a sentence, and t_i is the POS tag for w_i .
- (b) 8 pts: Suppose you will use an HMM package to implement a trigram POS tagger.
 - What does each state in HMM correspond to? How many states are there?

- What probabilities in the formula for (a) do transition probability a_{ij} and emission probability b_{jk} correspond to? $a_{i,j}$ is the transition probability from state s_i to s_j , and b_{jk} is the probability that State s_j emits symbol o_k .
- Q5 (10 points): In a POS tagging task, let V be the size of the vocabulary (i.e., the number of words), and T be the size of the tagset. Suppose we want to build a classifier that predicts the tag of the current word by using the following features:
 - 1. Previous word w_{-1}
 - 2. Current word w_0
 - 3. Next word w_{+1}
 - 4. Surrounding words w_{-1} w_{+1}
 - 5. Previous tag t_{-1}
 - 6. Previous two tags t_{-2} t_{-1}
- (a) 3 pts: How many unique features are there in total? You just need to give the answer in the Big-O notation (e.g., $O(V^3)$).
- (b) 2 pts: A classifier predicts class label y given the input x. In this task, what is x? what is y?
- (c) 5 pts: For the sentence Mike/NN likes/VBP cats/NNS, write down the feature vector for each word in the sentence. The feature vector has the format "InstanceName classLabel feat-Name1 val1 featName2 val2". For the instanceName, just use the current word.
- Q6 (10 points): Suppose you want to build a language identifier (LangID) that determines the language code of a given document. The training data is a set of documents with the language code for each document specified. The test data is a set of documents, and your LangID needs to determine the language code of each document.
- (a) 7 pts: How do you plan to build the LangID system? For instance, if you want to treat this as a classification problem, what would x (the input) be? what would y (the output) be? What would be good features? Name at least five types of features (e.g., one feature type is the word unigrams in the document).
- (b) 3 pts: What factors (e.g., the amount of training data) could affect the system performance? Name at least three factors, excluding the amount of training data.
- Q7 (10 "free" points): If you are not familiar with Mallet, please go over the Mallet slides at the course website¹

Set up the package in your patas environment, run some experiments. We will use Mallet in later assignments. If you do not have a patas account, you should contact me right away.

¹ "Background" on the first day in the schedule.

Submission: In your submission, include the following:

- readme.(txt|pdf) that includes your answers to Q1-Q6. No need to submit anything for Q7.
- \bullet Since this assignment does not require programming, there is no need to submit hw.tar.gz, and no need to run check_hwX.sh script.