Zusatzaufgaben 13

Aufgabe 1: Grammatiken und reguläre Ausdrücke

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die regulären Sprachen S-> as | 656 |T (ctatbtc)3 $A_1 \triangleq \{ w \in \Sigma^* \mid |w| \leq 3 \}$

$$A_1 \triangleq \{ w \in \Sigma^* \mid |w| \leqslant 3 \}$$

$$A_2 \triangleq \{ wab \mid w \in \Sigma^* \land |w|_b \mod 2 = 0 \}$$

$$\{ a + ba b \}^* ab$$

$$7 \Rightarrow ab$$

$$A_2 \triangleq \{ wab \mid w \in \Sigma^* \land |w|_b \mod 2 = 0 \}$$
 (a + bab) ab

$$A_3 \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land (n+m) \bmod 3 = 0 \}$$

$$A_4 \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land n \bmod 3 < m \bmod 3 \}$$

$$\{ a^n b^m \mid n, m \in \mathbb{N} \land n \bmod 3 < m \bmod 3 \}$$

und die Grammatiken $G_5=(\{\ S,\ T,\ U\ \},\Sigma,P_5,S)$ und $G_6=(\{\ S,\ T,\ U\ \},\{\ \alpha,\ b,\ c\ \},P_6,S)$ mit

1.a) Gib einen regulären Ausdruck e_1 so an, dass $L(e_1) = A_1$.

$$e_1 = \epsilon + a + b + aa + ab + ba + bb + aaa + aab + aba + abb + baa + bab + bba + bbb$$

= $(\epsilon + a + b) \cdot (\epsilon + a + b) \cdot (\epsilon + a + b)$

1.b) Gib eine Grammatik G_1 so an, dass $L(G_1) = A_1$. -----------(Lösung)-

$$G_1 = (\{\; S,\; T,\; U\;\}, \Sigma, P_1, S) \; mit \; P_1 \colon$$

$$S \to T \mid \alpha T \mid bT$$

$$T \to U \mid \mathfrak{a}U \mid \mathfrak{b}U$$

$$U \to \epsilon \mid \alpha \mid b$$

/Lösung

1.c) Gib einen regulären Ausdruck e_2 so an, dass $L(e_2) = A_2$. -------Lösung)----- $e_2 = (a + ba*b)*ab$

1.d) Gib Eine Grammatik G_2 an, sodass $L(G_2) = A_2$. ------(Lösung)-----

$$G_2 = (\{\; S,\; T\;\}, \Sigma, P_2, S) \; mit \; P_2 \text{:} \;$$

$$S \rightarrow aS \mid bT \mid ab$$

$$T \to \mathfrak{a}T \mid \mathfrak{b}S$$

/Lösung

1.e) Gib einen regulären Ausdruck e_3 so an, dass $L(e_3) = A_3$. ------[Lösung]---- $e_3 = ((aaa)^* (bbb)^*) + ((aaa)^* a (bbb)^* bb) + ((aaa)^* aa (bbb)^* b)$ /Lösung

1.0) Gib die Sprache $L(\varepsilon + ((\Diamond \Diamond)^* \Box)^*)$ explizit an. $(\{ \Diamond \Diamond \}^* \cdot \{ \Box \})^*$ /Lösung

Aufgabe 2: Pumping-Lemma

Sei $n \in \mathbb{N}$ beliebig und fest. Wir wählen das Wort $w = a^n b^{n+1} c^{n+2}$ mit $w \in A$, denn $n \leqslant n+1 \leqslant n+2$, und $|w| \geqslant n$. Sei w = xyz eine beliebige Zerlegung mit $y \neq \epsilon$ und $|xy| \leqslant n$. Dann ist $x = a^i$, $y = a^j$ und $z = a^{n-i-j} b^{n+1} c^{n+2}$ für ein $j \neq 0$ und $i+j \leqslant n$. Wir wählen k=3. Dann ist $xy^3z = a^{n+2j}b^{n+1}c^{n+2}$. $xy^3z \notin A_4$, denn n+2j > n+1 für $j \neq 0$. Da \neg **PUMP-REG** (A), ist A nach dem Pumping-Lemma nicht regulär.

Hinweis: Man hätte hier zum Beispiel auch das Wort $w = b^n c^n$ mit k = 2 oder das Wort $w = b^n c^{n+1}$ mit k = 3 oder das Wort $w = a^n b^n c^n$ mit k = 2 und jeweils den entsprechenden Zerlegungen wählen können. Die Variante $w = b^n c^n$ mit k = 2 ist wahrscheinlich die einfachste Möglichkeit.

/Lösung

Aufgabe 3: DFA und NFA

3.a) Gegeben sei die Sprache A_2 aus Aufgabe 1 Gib einen NFA M_2 so an, dass $L(M_2) = A_2$.

 $M_2=(\{\ q_0,\ q_1,\ q_2,\ q_3\ \},\{\ a,\ b\ \},\Delta_2,\{\ q_0\ \},\{\ q_3\ \}),$ wobei Δ_2 durch den folgenden Graph gegeben ist:

3.b) Gegeben sei die Sprache A_3 aus Aufgabe 1 Gib einen NFA M_3 so an, dass $L(M_3) = A_3$.

 $M_3 = (\{ q_0, q_1, q_2, q_3, q_4, q_5, q_6 \}, \{ a, b \}, \Delta_3, \{ q_0 \}, \{ q_0, q_4 \}),$ wobei Δ_3 durch den folgenden Graph gegeben ist:

3.c) Gegeben sei der NFA $M=(\{q_0, q_1, q_2, q_3\}, \{a, b\}, \Delta, \{q_0\}, \{q_3\})$, wobei Δ durch den folgenden Graph gegeben ist:

Berechne mit Hilfe der Untermengenkonstruktion einen DFA M' mit L(M') = L(M).

----- (Lösung)-----

		a	ь	
S	$\{ q_0 \}$	$\{ q_0, q_1 \}$	$\{ q_0, q_2 \}$	s_0
	$\{ q_0, q_1 \}$	$\{ q_0, q_1 \}$	$\{ q_0, q_2, q_3 \}$	s_1
	$\{ q_0, q_2 \}$	$\{ q_0, q_1, q_3 \}$	$\{ q_0, q_2 \}$	s_2
F	$\{ q_0, q_2, q_3 \}$	$\{ q_0, q_1, q_3 \}$	$\{ q_0, q_2 \}$	s ₃
F	$\{ q_0, q_1, q_3 \}$	$\{q_0, q_1, q_3\}$	$\{ q_0, q_2, q_3 \}$	s_4

Damit ergibt sich der DFA $M' = (\{ q_0, q_{01}, q_{023}, q_{02}, q_{013} \}, \{ a, b \}, \delta', q_0, \{ q_{023}, q_{013} \})$ mit δ' :

3.d) Gegeben sei der DFA $M=(\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_0, \{q_4\})$, wobei δ durch den folgenden Graph gegeben ist:

Berechne: Benutze den Table-Filling Algorithmus, um einen minimalen DFA M' zu erstellen, so dass L(M') = L(M).

------Lösung

Schritt 1 (eliminiere nicht erreichbare Zustände): alle Zustände sind erreichbar Schritt 2 (Table-Filling):

Schritt 3 (gib alle Äquivalenzklassen von Zuständen und eine Umbenennung an):

Schritt 4 (gib den minimierten DFA an): $M' = (\{s_0, s_1, s_2, s_3\}, \Sigma, \delta', s_0, \{s_3\})$, wobei δ' durch den folgenden Graphen gegeben ist:

Aufgabe 4: Myhill-Nerode

4.a) Gegeben sei die Sprache A \triangleq { $w01 \mid w \in \{0, 1\}^*$ }. *Gib* die Äquivalenzklassen der Myhill-Nerode Relation bezüglich A und den A-Äquivalenzklassenautomaten M_A *an*.

Lösung

[2]=A= {2,1,NM [6]=A= {NO [01]=A

 $M_A = (\{ [\epsilon], [0], [01] \}, \{ 0, 1 \}, \delta_A, [\epsilon], \{ [01] \}) \text{ mit } \delta_A$:

4.b) Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ und die Sprache $B \triangleq \{ a^n b^n c^n \mid n \in \mathbb{N} \}$. Gib die Äquivalenzklassen der Myhill-Nerode Relation bezüglich B an und beweise, dass B nicht regulär ist.

 $[\ b\]=\{\ xbay,xcay,xcby\ |\ x,y\in \Sigma^*\ \}$

 $\cup \{\ a^{\mathfrak{n}}b^{\mathfrak{m}}, a^{o}b^{\mathfrak{p}}c^{\mathfrak{q}} \mid \mathfrak{n}, \mathfrak{m}, o, \mathfrak{p}, \mathfrak{q} \in \mathbb{N} \wedge \mathfrak{n} < \mathfrak{m} \wedge ((o \neq \mathfrak{p} \wedge \mathfrak{q} \neq 0) \vee \mathfrak{p} < \mathfrak{q})\ \}$

$$= \Sigma^* \setminus \left(\left(\bigcup_{i \in \mathbb{N}} \left[\ \alpha^i \ \right] \right) \cup \left(\bigcup_{j,k \in \mathbb{N}^+, k < j} \left[\ \alpha^j b^k \ \right] \right) \cup \left(\bigcup_{l \in \mathbb{N}^+} \left[\ \alpha^l b^l \ \right] \right) \cup \left[\ \alpha bc \ \right] \right)$$

Zu den Äquivalenzklassen von \equiv_B gehören u.A. die Klassen:

$$[a^n] = \{a^n\}$$
 für $n \in \mathbb{N}$

Annahme: $n \neq m$.

Zu Zeigen: $\mathfrak{a}^n \not\equiv_B \mathfrak{a}^m$

Betrachte $z = b^n c^n$. Dann ist $a^n z \in B$ und $a^m z \notin B$, weil $n \neq m$.

Mit der Definition von \equiv_B gilt damit $\mathfrak{a}^n \not\equiv_B \mathfrak{a}^m$ (und damit $[\mathfrak{a}^n] \not= [\mathfrak{a}^m]$).

Damit ist der Index von \equiv_B unendlich. Nach Theorem 2.4.1 ist B damit nicht regulär.

Aufgabe 5: CYK-Algorithmus

Gegeben sei eine Menge Nicht-Terminale $V \triangleq \{ A, B, C \}$, ein Alphabet $\Sigma \triangleq \{ a, b \}$, sowie eine CNF-Grammatik $G \triangleq (V, \{ a, b \}, P, S)$ mit

 $\begin{array}{cccc} P: & S & \rightarrow & AB \mid AC \\ & A & \rightarrow & \alpha \\ & B & \rightarrow & b \\ & C & \rightarrow & SB \end{array}$

5.a) Berechne: Gegeben sei ein Wort $w_1 \triangleq aaabbb$. Löse mit dem CYK-Algorithmus das Wortproblem: $w_1 \in L(G)$ oder $w_1 \notin L(G)$?

 		- Lösı	ung)				 	
$CYK_{w}(i,j)$	1	2	3	4	5	6		
1: a	{ A }	Ø	Ø	Ø	Ø	{ S }		
2: a	{ A }		Ø	{ S }	{ C }			
2: a 3: a	{ A }	{ S }	{ C }	Ø				
4: b	{ B }	Ø	Ø					
5: b	{ B }	Ø						
6: b	{ B }							

Es gilt also $w_1 \in L(G)$, da $S \in CYK_w1, 6$.

(/Lösung

5.b) Berechne: Gegeben sei ein Wort $w_2 \triangleq aab$. Löse mit dem CYK-Algorithmus das Wortproblem: $w_2 \in L(G)$ oder $w_2 \notin L(G)$?

Es gilt also $w_2 \notin L(G)$, da $S \notin CYK_w1,3$.

Aufgabe 6: Kellerautomaten

Gegeben seien das Alphabet $\Sigma = \{0, 1\}$, die kontextfreie Sprache $A_1 \triangleq \{0w1w^R0 \mid w \in \Sigma^*\}$, die Grammatik $G_2 \triangleq (\{S, T\}, \Sigma, P_2, S)$ und der PDA $M_3 \triangleq (\{q_0\}, \Sigma, \{\Box, \bullet\}, \Box, \Delta_3, q_0, \{q_0\})$, wobei P_2 und Δ_3 wie folgt gegeben sind:

6.c) Gib an: Welchen Typ hat die Grammatik G_2 ?

 G_2 ist nicht regulär (Typ-3), aber kontextfrei (Typ-2) und damit auch kontext-sensitiv (Typ-1) und allgemein (Typ-0).

Hinweis: Die beiden Regeln T \rightarrow 0T0 | 1T1 verhindern hier, dass G_2 regulär ist.

[/Lösung]

6.d) Gib alle Ableitungen für das Wort 01010 in G₂ an.

Lösung ----

Es gibt nur die Ableitung:

$$\mathsf{S} \Rightarrow \mathsf{T} \Rightarrow \mathsf{0T0} \Rightarrow \mathsf{01T10} \Rightarrow \mathsf{01010}$$

Hinweis: Damit gilt $01010 \in L(G_2)$.

/Lösung

6.e) *Gib an*: L(G₂)

L(C) (... c 5* l... ... R)

 $L(G_2) = \left\{ w \in \Sigma^* \mid w = w^R \right\}$

- /Lösung

6.f) Gib an: Welchen Typ hat $L(G_2)$?

------(Lösung)-----

 $L(G_2)$ ist nicht regulär (Typ-3), aber kontextfrei (Typ-2, minimaler Typ) und damit auch kontextsensitiv (Typ-1) und allgemein (Typ-0).

6.g)	Gib an: Ist M ₃ deterministisch, also ein DPDA?					
	(Lösung)					
	Nein.					
	Hinweis: Die beiden Übergänge ϵ , \square/ϵ und 0 , $\square/\bullet\square$ erlauben es hier einen Weg zu wählen, wenn der Keller nur das Symbol \square enthält, deshalb ist M_3 nicht deterministisch.					
6.h)	Gib alle Ableitungen in M_3 für das Wort 1 an. Lösung					
	Es gibt nur die Ableitung:					
	$(q_0,1,\square) \nvdash$					
	<i>Hinweis: Damit gilt</i> $1 \notin L_{End}(M_3)$ <i>und</i> $1 \notin L_{Kel}(M_3)$. /Lösung					
6.i)	Gib alle Ableitungen in M ₃ für das Wort 010 an.					
	Losung					
	$(q_0,010,\square) \vdash (q_0,010,\epsilon) \nvdash$					
	$(q_0,010,\square) \vdash (q_0,10,\bullet\square) \vdash (q_0,0,\square) \vdash (q_0,0,\varepsilon) \nvdash$					
	$(q_0,010,\square) \vdash (q_0,10,\bullet\square) \vdash (q_0,0,\square) \vdash (q_0,\varepsilon,\bullet\square) \nvdash$					
	<i>Hinweis: Damit gilt</i> $010 \notin L_{Kel}(M_3)$ <i>aber die</i> 3. <i>Ableitung zeigt, dass</i> $010 \in L_{End}(M_3)$.					
6.j)	Gib die Sprachen $L_{\text{End}}(M_3)$ und $L_{\text{Kel}}(M_3)$ an.					
υ.j <i>)</i>						
	$L_{\text{End}}(M_3) = \{ w \in \Sigma^* \mid \text{ für jedes Päfix } v \text{ von } w \text{ gilt: } v _0 \geqslant v _1 \}$					
	$L_{Kel}(M_3) = \{ \ w \in \Sigma^* \mid w _0 = w _1 \ \text{und für jedes P\"afix } \nu \ \text{von } w \ \text{gilt: } \nu _0 \geqslant \nu _1 \ \}$					
	Hinweis: Beide Sprachen sind nicht regulär aber kontextfrei.					
6.k)	Gib an: Gibt es einen DPDA für die Sprache $L_{End}(M_3)$?					
	Lösung					
	 Ja.					
	Hinweis: Es genügt, den Übergang ϵ , \square/ϵ zu entfernen, um einen solchen DPDA mit der Sprache $L_{End}(M_3)$ zu erhalten.					
6.l)	Gib an: Gibt es einen DPDA für die Sprache L _{Kel} (M ₃)?					
	Nein.					
	Hinweis: Die beiden Wörter 0 und 01 sind beide Element der Sprache $L_{Kel}(M_3)$. Da die Sprache also Wörter enthält, bei denen ein Wort ein echtes Präfix eines anderen Wortes ist, kann diese Sprache nicht deterministisch über einen leeren Keller akzeptiert werden.					
	Lösung					