| We write to prove
$$\int_{-10}^{10} N(x/u, \delta^{2}) dx = 1$$

Let $I = \int_{-10}^{10} \exp(-\frac{1}{26^{2}}x^{2}) dx$
 $\Rightarrow I^{2} = \int_{-10}^{10} \int_{-10}^{10} \exp(-\frac{1}{26^{2}}(x^{2}+y^{2})) dxdy$

Let $X = r\cos\theta$, $y = r\sin\theta$

Rewrite I^{2} as

 $I^{2} = \int_{-10}^{10} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) r dr d\theta$
 $= 2\pi \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) r dr$
 $= 2\pi \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) \frac{1}{2} dr^{2}$

Let $U = r^{2}$
 $= \frac{2\pi}{2} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) du$
 $= \frac{2\pi}{2} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) dx$
 $= \frac{1}{12\pi} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) dx$
 $= \frac{1}{12\pi} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) dx$
 $= \frac{1}{12\pi} \int_{-10}^{10} \exp(-\frac{1}{20^{2}}r^{2}) dx$