~	_	10	_
_	•	FID	- '
~ -			

Num circuito RC série o condensador é de 1000 µ P. Para que a constante de tempo do circuito seja de 1 segundo, o valor da resistência deve ser de:

a)	1	Ω	
১)	10	Ω	

 \boxtimes

Nota:
$$T = RC$$
 ou $1 = R \times 1000 \times 10^{-6} = R \times 10^{3} \times 10^{-6} = 10^{-3}R$
 $\Rightarrow R = -\frac{1}{10^{-3}}3 = 10^{3} \Omega = 1000 \Omega = 1 k \Omega$

Ver "Nota" da pergunta nº. 2,5,10,1

2.5.11.1

Em relação à tensão, a corrente num condensador está:

a)	adiantada	de	90°		\boxtimes
b)	adiantada	ф	180°	***************************************	
c)	atrasada	de	90°	***************************************	
a١	atmanada	4.	1800		<u></u>

Nota: Num condensador a corrente está adiantada de 90° em relação à tensão, quer dizer, quando a tensão passa pelo valor zero, a corrente tem o valor máximo, e quando a tensão passa pelo valor máximo, a corrente tem valor nulo.

