Fifth Semester B.E. Makeup Examination, January 2020 FORMAL LANGUAGES AND AUTOMATA THEORY

Time: 3 Hours

1

Max. Marks: 100

Instructions: 1. Answer ANY FIVE full questions from Each UNIT

2. Assume any missing data

UNIT - I

L CO I

M

a. What is Automata? With Neat schematic representation explain the working of Automata?

(01) (01) (08)

b. Construct DFA for the following Languages

i. Set of all strings over $\Sigma = \{0,1\}$ starting with substring 01

ii. Set of all strings over $\Sigma = \{0,1\}$ ending with substring 011

iii. L= { $|w| \mod 3 \Leftrightarrow 0$, where $w \in \Sigma^*$ for $\Sigma = \{a, b\}$ }

iv. L= { $|w| \mod 3 \ge |w| \mod 2$, where $w \in \Sigma^*$ for $\Sigma = \{a, b\}$ }

(03) (01) (03) (12)

OR

2 a. Define ε -NFA and Construct the ε -NFA with four states for the following Language and Compute $\delta^*(q0, aabba)$

 $L = \{a^n \mid n \ge 0 \} \bigcup \{b^n a \mid n \ge 1 \}$

(03) (01) (02) (08)

b. Apply Subset Construction Scheme by lazy evaluation and Convert the following E-NFA into an equivalent DFA

				No A
δ	3	a	b	C
$\rightarrow p$	Φ	{p}	{q} _^	{r}
q	{p}	{q}	{r}	Φ
*r	{q}	{r}	Φ	{p}

(03) (01) (12) (12)

UNIT – II

CO PO M

3 a. Define Regular expression and build the Regular expression for the following languages

i. To accept a language consisting of strings of a's and b's of odd length.

ii. To accept a language consisting of strings of 0's and 1's that do not end with 01.

iii. L= { $vuv \mid u, v \in \Sigma^* \text{ for } \Sigma = \{a, b\} \text{ and } |v| = 2$ }

iv. $L=\{ |w| \mod 3 = |w| \mod 2, \text{ where } w \in \Sigma^* \text{ for } \Sigma=\{a,b\} \}$

(03) (02) (03) (10)

b. Apply State elimination method to identify the Regular Expression for the following finite Automata

(03) (02) (02) (10)

OR

a. State and prove the Pumping Lemma for Regular Languages. Apply Pumping Lemma and discover that the following language is Non-Regular

 $L = \{ 0^n \mid n \text{ is perfect Square} \}$

(03) (03) (12) (10)

((03)(03)(05)PO

CO

- UNIT III
- Obtain a context free grammar to generate a language consisting of equal number of a's and b's. 5 (1)(3)(2)
 - Ъ. Consider the context free grammar with productions.

$$E \rightarrow I$$
 $E \rightarrow E + E$

$$E \rightarrow E^*E$$
 $E \rightarrow (E)$

Write leftmost derivation and parse tree for the string (a101+b1)*(a1+b).

Eliminate Useless symbols in the grammar.

$$S \rightarrow aA \mid bB$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB$$

ALLE LANGE SERVICE SER

$$E \rightarrow aC \mid d$$

OR

(2)(3)(1)

(3)

(1)

(1)

Show that the following grammar is ambiguous. 6

Eliminate Useless symbols in the grammar.

(2)(3) (1) (

$$S \rightarrow aA \mid a \mid Bb \mid cC$$

$$A \rightarrow aB$$

Eliminate all ϵ -productions from the grammar.

(3) (1) ((2)

$$A \rightarrow BC|b$$

$$B \rightarrow b \mid \epsilon$$

$$D \rightarrow d$$

(3) (1) UNIT - IV

L CO PO M

a. Define Push Down Automata-PDA and Construct PDA for the following language by final state. Draw Transition Diagram and write the sequence of Instantaneous Description – ID's to trace the input string for n = 2.

 $L = \{a^n b^{2n} \mid a, b \in \Sigma, n \ge 0\}$

(03) (04) (03) (10)

Define language acceptance of PDA and Construct PDA by empty stack for the following Grammar and write the sequence of Instantaneous Description - ID's to trace the input string - W = aanaan

 $S \to aAS \mid bAB \mid aB$

 $A \rightarrow bBB \mid aS \mid a$

 $B \rightarrow bA \mid a$

7

A GO

(03) (04) (03) (10)

OR

a. Define Turing machine and With neat schematic diagram explain the working of Basic Turing machine.

(02) (04) (02) (10)

 Construct Turing Machine to accept the following language and write the sequence of Instantaneous Description – ID's to trace the input string w = "aabb"

 $L = \{a^nb^n \mid a, b \in \Sigma, n \ge 0\}$

(03) (04) (03) (10)

UNIT-V

L CO PO M

9 a. Explain the structure of LEX specification format with suitable example

(02) (05) (01) (10)

b. Develop a LEX program to count the number of identifiers, integer and floating point constants present in the input stream.

(03) (05) (03) (10)

OR

0 a. Explain the structure of YACC specification format with suitable example

(02) (05) (01) (10)

b. Develop a YACC program to recognize and evaluate the arithmetic expression involving additive operators (+, -) and multiplicative operators (*, /).

(03) (05) (03) (10)

(6) (2) (1) (10)

(3) (2) (1) (05)

G

C

H

5 a. Define Context Free Grammar and Construct Context Free Grammar for the following Languages i. Set of strings of a's and b's starting with substring 'ab' ii. L= { a'' b'' c' n=m+k, for k, m>=0} (03) (02) (02) (06) b. The following grammar generates the language of RE - 0*1(0+1)* S → A B A → 0A E B → 0B IB E Determine leftmost, rightmost derivations and Parse Tree for the following strings a) 00101 b) 1001 c. Prove that the family of Context free Languages is under UNION. OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS E A → aAS E A → aAS B B → SbS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → a b B → b UNIT - IV 10 (03) (02) (12) (06) UNIT - IV 11 (03) (02) (10) (05) (03) (12) (04) (05) (03) (12) (04) (05) (03) (02) (12) (06) (07) (08) (08) (09) (09) (12) (09) (10) (09) (10) (10) (09) (10) (10) C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → ab A → ab B → b UNIT - IV (08) (09) (09) (10) (09) (10)		c. State and Prove Pumping Lemma for regular languages.	(3) L	CO	PO	M
ii. L= { a^n b^n c^k n=m+ k, for k, m>=0} (03) (02) (06) b. The following grammar generates the language of RE - 0*1(0+1)* S → A B A → 0A E B → 0 M E A → 0A E B → 0 M E A → 0A E B → 0 M E B →	5	UNIT - III	c the fo	llowing	Langua	ages
ii. L= { a* b*n* c* n=m+ k, for k, m>=0} (03) (02) (02) (06) b. The following grammar generates the language of RE - 0*1(0+1)* S → A B A → 0A E B → 0 B IB E Determine lettmost, rightmost derivations and Parse Tree for the following strings a) 00101 b) 1001 (03), (02) (02) (04) c. Prove that the family of Context free Languages is under UNION. (05) (03) (12) (04) OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS (05) (02) (12) (06) b. Simplify the following grammar by removing redundancies. S → ASB S A → aAS B A → aB A A → B A	3	d. Define Context Free Grammar and Construct Context Free Gramma	ir for the 10	110		
b. The following grammar generates the language of RE - 0*1(0+1)* S \rightarrow A B A \rightarrow 0 c B \rightarrow 01(10) b c C. Prove that the family of Context free Languages is under UNION. OR a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string abb S \rightarrow 3 aSbS c OS (05) (02) (12) (06) b. Simplify the following grammar by removing redundancies. S \rightarrow ASB c A \rightarrow AS a B \rightarrow SS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S \rightarrow AB AB A \rightarrow As ab B \rightarrow b Show that the PDA to accept the language L(M) = {w w c (a+b)* having equal number of a' \forall \forall b' \forall b' \forall s' \forall \forall b' \forall \foral		or or or a saily of signification with elinetring and				
b. The following grammar generates the language of RE - 0*1(0+1)* S \rightarrow A B A \rightarrow 0 c B \rightarrow 01(10) b c C. Prove that the family of Context free Languages is under UNION. OR a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string abb S \rightarrow 3 aSbS c OS (05) (02) (12) (06) b. Simplify the following grammar by removing redundancies. S \rightarrow ASB c A \rightarrow AS a B \rightarrow SS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S \rightarrow AB AB A \rightarrow As ab B \rightarrow b Show that the PDA to accept the language L(M) = {w w c (a+b)* having equal number of a' \forall \forall b' \forall b' \forall s' \forall \forall b' \forall \foral		11. $L = \{ a'' b''' c' \mid n = m + k, \text{ for } k, m > = 0 \}$		(02)	(02)	(06)
S \rightarrow \ B \\ A \rightarrow \ A \righ			(03)	(02)	(02)	(00)
B → OB IB c Determine letimost, rightmost derivations and Parse Tree for the following strings a) 00101 b) 1001 c. Prove that the family of Context free Languages is under UNION. OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS a5bS (05) (02) (12) (06) b. Simplify the following grammar by removing redundancies. S → ASB c A → AAS a B → SbS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S → Aba AB A → aab B → b UNIT - IV		S \rightarrow A B				
Determine leftmost, rightmost derivations and Parse Tree for the following strings a) 00101 b) 1001 c. Prove that the family of Context free Languages is under UNION. OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S \rightarrow a S aSbS s A \rightarrow a AS a B \rightarrow SS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S \rightarrow Aba AB A \rightarrow aba B \rightarrow b UNIT-IV 1						
C. Prove that the family of Context free Languages is under UNION. OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS ε A → aAS ε B → SbS A bb C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b UNIT - IV 10 (03) (02) (12) (06) (05) (02) (12) (06) (06) (07) (07) (12) (06) (07) (08) (08) (09) (19) (19) (19) (19) (19) (19) (19) (1		$B \rightarrow 0B 1B \varepsilon$				
C. Prove that the family of Context free Languages is under UNION. OR 6 a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS ε A → aAS ε B → SbS A bb C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b UNIT - IV 10 (03) (02) (12) (06) (05) (02) (12) (06) (06) (07) (07) (12) (06) (07) (08) (08) (09) (19) (19) (19) (19) (19) (19) (19) (1		Determine leftmost, rightmost derivations and Parse Tree for the fol	lowing stri	ngs	104.	
OR a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS € b. Simplify the following grammar by removing redundancies. S → ASB € A → aAS a B → SbS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S → Aba AB A → aab B → b UNIT - IV 103		a) 00101 b) 1001		12 N	y Y	
OR a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS € b. Simplify the following grammar by removing redundancies. S → ASB € A → aAS a B → SbS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S → Aba AB A → aab B → b UNIT - IV a. Design a turing machine to accept the language I = {0*1* n > = 1}. b. Show that the PDA to accept the language I = {0*1* n > = 1}. c. Define deterministic PDA. OR OR (1) (4) (1) (08) 10 (1) (09) (04) (003) (002) (10) (04) (03) (02) (10) (04) (03) (03) (03) (04) L CO PO M L CO PO M (05) (07) (07) (07) (07) (07) (08) (07) (08) (08) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09) (09)		The second secon	(03)	(02)	(02)	(10)
OR a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S \rightarrow as asbs \varepsilon \text{ (05)} (02) (12) (06) b. Simplify the following grammar by removing redundancies. S \rightarrow Ass \varepsilon \text{ A \rightarrow as As a B \rightarrow Sbs A bb} c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF S \rightarrow Aba AB A \rightarrow aab B \rightarrow b UNIT - IV	C	Prove that the family of Context free Language in the LINUX	1000			
OR Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string all both shades and prove that the following grammar is ambiguous for string all both shades and prove that the following grammar is ambiguous for string all both shades and prove that the following grammar is ambiguous for string all both shades are all both shades and prove that the following grammar by removing redundancies. S → ASB s		of Context free Languages is under UNION.	(05)	(03)	(12)	(04)
a. Define Ambiguous Grammar and Prove that the following grammar is ambiguous for string aab S → aS aSbS ε (05) (02) (12) (06) b. Simplify the following grammar by removing redundancies. S → ASB ε A → aAS a B → SbS A bb c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b UNIT - IV			1 (US)	(00)		
be in the Amorganous Grammar and Prove that the following grammar is ambiguous for string add by S \(\text{S} \) aS \(\text{ aSbS} \) \(\text{ (05)} \) (02) (12) (06) b. Simplify the following grammar by removing redundancies. \[S \to ASB \ a \\ A \text{ AS} \ a \\ A \text{ AS} \ a \\ B \to SbS \ A \ bb \\ c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form - CNF \[S \to Aba \ AB \\ A \to ab \\ B \to b \\ \[UNIT \cdot IV \\ A \to Aba \ AB \\ A \to Aba \\ B \to b \\ \[UNIT \cdot IV \\ A \to Aba \ AB \\ A \to Aba \\ B \to b \\ \[Design a turing machine to accept the language \$I = \{0^n 1^n n > = 1\}. \\ \[b. Show that the PDA to accept the language \$L(M) = \{w w \(\text{ (a+b)* having equal number of a's \$1 \to b's \} \) is nondeterministic. c. Define deterministic PDA. \[OR \\ A \to Aba \ AB \\ A \to Aba \\ AB \\ AB \\ AB \\ ABB \\ \[OR \\ ABB \ (1) \\ ABB \\ \[OR \\ ABB \ (2) \\ ABB \\ ABB \\ ABB \\ ABB \\ \[OR \\ ABB \ (1) \\ ABB \\ \[OR \\ ABB \ (2) \\ ABB \\ ABB \\ \[OR \\ ABB \ (3) \\ ABB \\ \[OR \\ ABB \ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB \\ ABB \\ ABB \\ ABB \\ \[A \to ABB \ ABB	6 a.					h
b. Simplify the following grammar by removing redundancies. S \to ASB \epsilon \text{ A \to aAS a B \to SbS A bb } 04 \to 03 \to 02 \to	-	Define Amorguous Grammar and Prove that the following grammar i	s ambiguo	us for s	tring aa	(D)
b. Simplify the following grammar by removing redundancies. S → ASB ε A → aAS a B → SbS A bb C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b CO PO M Design a turing machine to accept the language I.={0 ⁿ 1 ⁿ n>=1}. b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a's odd b's} is nondeterministic. c. Define deterministic PDA. Correct the language Consisting of all palindromes of 0's and 1's. Correct the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. Correct the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. Correct the language C(A) (1) (10) Local PO M Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. Correct the language L(M) (1) (10) Local PO M Design a PDA to accept the language L(M) (1) (10) Local PO M Design a PDA to accept the language L(M) (1) (10) Local PO M Explain the structure of lex program with an example. Correct the language L(M) (1) (10) Local PO M Design a PDA to accept the language L(M) (1) (10) Local PO M		$S \rightarrow aS \mid aSbS \mid \varepsilon$				2 3
A → AAS a B → SbS A bb C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b CO PO M The image of the point of the language of the l	1.	0: 110	(05)	(02)	(12)	(06)
B → SbS A bb C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB A → aab B → b CO PO M Design a turing machine to accept the language L={0^n}1^n n>=1}. b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a' ε 1 pd b's} is nondeterministic. c. Define deterministic PDA. CR Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. CR Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of	D.	$2 \rightarrow \text{A2B} \mid \mathcal{E}$				
c. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S→ Aba AB A → aab B → b UNIT - IV Design a turing machine to accept the language L={0^n1^n n>=1}. b. Show that the PDA to accept the language L(M) = {w w ∈ (a+b)* having equal number of a 's d o o o o o o o o o o o o o o o o o o						
C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB		$B \rightarrow SbS \mid A \mid bb$				
C. Organize the following grammar into an equivalent Grammar in Chomsky Normal Form − CNF S → Aba AB			(0.4.)	(02)	(02)	(10)
A → aab A → aab B → b UNIT - IV Design a turing machine to accept the language I.={0 ⁿ 1 ⁿ n>=1}. b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a 'ξ _{1,1} d b's } is nondeterministic. c. Define deterministic PDA. OR (1) (4) (1) (08) B a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. UNIT -V a. Explain the structure of lex program with an example. (3) (5) (3) (07) c. Explain yacc parser with an example.	c.	Organize the following grammar into an equivalent Grammar in Chor	nsky Norn	103) 11 Fort	(02) n – CN	(10) F
UNIT - IV Design a turing machine to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ having equal number of a 's_lip'} d$ b. Show that the PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ having equal number of a 's_lip'} d$ c. Define deterministic PDA. OR (1) (4) (1) (08) OR (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ where } w^R \text{ is reverse of } w \text{ by a final state.}$ UNIT -V (6) (4) (1) (10) state. UNIT -V (6) (4) (1) (10) L CO PO M Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07)		5 / Aba Ab				
UNIT - IV 1. CO PO M 2. CO PO M 3. Design a turing machine to accept the language I.={0^n1^n n>=1}. 4. Show that the PDA to accept the language L(M) = {w w \(\epsilon\) (a+b)* having equal number of a'\(\epsilon\) (b's \(\epsilon\) is nondeterministic. 5. Define deterministic PDA. 6. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. 6. Design a PDA to accept the language L(M) = {wCw^R w \(\epsilon\) (a+b)* where w^R is reverse of w by a final state. 6. UNIT - V 7. a. Explain the structure of lex program with an example. 6. UNIT - V 6. Co PO M 6. Co PO						
Design a turing machine to accept the language $L = \{0^n 1^n \mid n > 1\}$. b. Show that the PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ having equal number of a } in \}$ design a turing machine to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ having equal number of a } in \}$ design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ having equal number of a } in \}$ design a PDA to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language $L(M) = \{w \mid w \in (a+b)^* \text{ where } w \mid in \}$ is reverse of w by a final state. UNIT -V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example.		$R \rightarrow p$				
Design a turing machine to accept the language I.={0 ⁿ 1 ⁿ n>=1}. b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a's 10 d b's } is nondeterministic. c. Define deterministic PDA. C. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. C. Design a PDA to accept the language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final language L(M) = {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final lang			(03)	(03)	(03)	(04)
b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a's ξ _{1,1} , d b's } is nondeterministic. c. Define deterministic PDA. (2) (4) (1) (08) OR (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. UNIT-V (6) (4) (1) (10) (6) (4) (1) (10) L CO PO M Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. (1) (2) (3) (3) (07) C. Explain yacc parser with an example.		UNIT - IV				
b. Show that the PDA to accept the language L(M) = {w w ε (a+b)* having equal number of a's d b's } is nondeterministic. c. Define deterministic PDA. (2) (4) (1) (08) OR (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. (6) (4) (1) (02) Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. UNIT-V (6) (4) (1) (10) L CO PO M Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. (6) (4) (1) (10) L CO PO M C. Explain the structure of lex program with an example. (2) (5) (3) (07) C. Explain yacc parser with an example.	7 a.	Design a turing machine to accept the language $L = \{0^n 1^n \mid n \ge 1\}$	L	CO	ro	171
c. Define deterministic PDA. (2) (4) (1) (08) OR 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w \(\epsilon\) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. (6) (4) (1) (10) L CO PO M C. Explain yacc parser with an example. (3) (5) (3) (07)			(6)			
c. Define deterministic PDA. OR (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w \(\varepsilon\) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (4) (1) (02) (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.	b.	Show that the PDA to accept the language $L(M) = \{w \mid w \in (a+b)^*\}$	(0)	(4)	(1)	(10)
c. Define deterministic PDA. OR (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w \(\varepsilon\) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (4) (1) (02) (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.		b's } is nondeterministic.	iving equa	I numb	er of a'	ક્ષાત્રી
OR 1 (1) (4) (1) (02) 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's: b. Design a PDA to accept the language L(M)= {wCw ^R w \(\epsilon\) (a+b)* where w ^R is reverse of w by a final UNIT-V (6) (4) (1) (10) L CO PO M Design a PDA to accept the language L(M)= {wCw ^R w \(\epsilon\) (a+b)* where w ^R is reverse of w by a final UNIT-V L CO PO M Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example.						W.
OR 8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w \(\epsilon\) (a+b)* where w ^R is reverse of w by a final state. UNIT-V (6) (4) (1) (10) L CO PO M (6) (4) (1) (10) L CO PO M (7) (10) Explain the structure of lex program with an example. (8) (1) (4) (1) (10) (9) (1) (10) (1) (2) (2) (3) (3) (07) (1) (2) (3) (5) (3) (07)	c.	Define deterministic PDA.	(2)	(4)	(1)	(08)
Besign a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w \(\varepsilon \) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example.			· .		ei .	• /
8 a. Design a turing machine to accept the language consisting of all palindromes of 0's and 1's. b. Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where w ^R is reverse of w by a final state. UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example.		A	(1)	(4)	(1)	(02)
b. Design a PDA to accept the language L(M)= {wCw ^R w \(\) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.	8 .	Description of turing most live ((-)	(02)
b. Design a PDA to accept the language L(M)= {wCw ^R w \(\) (a+b)* where w ^R is reverse of w by a final UNIT-V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.	٠. ت	esign a turning machine to accept the language consisting of all palinds	comes of O	ond 1		
b. Write a word counting lex program. (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.	41		(6)	S all I	S.	
b. Write a word counting lex program. (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example.	0. 1	Design a PDA to accept the language L(M)= {wCw ^R w ε (a+b)* where	e w ^R is	(4)	(1)	(10)
UNIT -V a. Explain the structure of lex program with an example. b. Write a word counting lex program. (6) (4) (1) (10) L CO PO M (2) (5) (3) (07) c. Explain yacc parser with an example. (3) (5) (3) (07)	Promise S	tate.	c w is rev	erse of	w by a	final
b. Write a word counting lex program. (1) (10) (1) (10) (2) (5) (M (3) (07) (4) (1) (10) (6) PO M (7) (1) (10) (8) PO M (9) M (1) (10) (1) (10) (1) (10) (1) (10) (2) (5) (3) (07)	,				1 1 2	_
a. Explain the structure of lex program with an example. b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example. (3) (5) (3) (07)		UNIT .V	(6)	(4)	(1)	(10)
b. Write a word counting lex program. (2) (5) (3) (07) c. Explain yacc parser with an example. (3) (5) (3) (07)	9 a. E	xplain the structure of lex program with an arrow 1	${f L}$	CO		
c. Explain yacc parser with an example. (3) (5) (3) (07)		The state of lox program with an example.			Ю	M
c. Explain yacc parser with an example. (3) (5) (3) (07)	h W	rite a word counting law	(2)	(5)		
c. Explain yacc parser with an example. (3) (5) (3) (07)	<i>U</i> . **	a word counting lex program.	(4)	(5)	(3)	(07)
(0)		그 사람은 경영하는 특별하다 하는 것은 것들은 것들이 없다.	(-			•
(0)	c. Ex	xplain yacc parser with an example.	(3)	(5)	(3)	(07)
Note: L (Level),CO (Course Outcome), PO (Programme Outcome)					(- <i>)</i>	(07)
		Note: L (Level), CO (Course Outcome), PO (Programme Outcome)	(2)	(5)	(1)	10.0

10 a. Explain shift reduce parsing.

(2) (5) (1) (07)

b. What is regular expression? Explain characters that form a regular expression.

(2) (5) (1) (08)

c. Write lex specification for decimal numbers.

(3) (5) (1) (05)

Of the same

Contract of the contract of th

Ü;	SN	15CS52/1	51S52/	16 CS !	52/1619	§52
		Semester B.E. Fast Track Semester End Examination FORMAL LANGUAGES AND AUTOMATA Hours		ORY	st 201 Marks:	
		 Instructions: 1. UNIT I & V are Compulsory. 2. Answer any one full question from remaining 	each U	VITS.	14.	1
1	a. b.	UNIT - I (Compulsory) Define the following with examples. i) Alphabet ii) String iii) Language Design DFA for the following:	L (1)	CO (1)	PO (12)	(05)
	c.	 i) To accept the strings of a's and b's ending with 'ab'. ii) L={ w such that w mod3=0, w ∈ {a,b}* } Design an NFA to accept the strings of 0's and 1's that end with 10. Co 	(3) onvert th (3)	(1) e same (1)	(3) NFA to (3)	(08) DFA. (07)
2	a.	UNIT – II Define regular expression. Write regular expression for following: i) $L = \{ 0^n 1^m \mid (m+n) \text{ is even } \}$ ii) Strings of 0's and 1's whose 2^{nd} symbol from the end is 0.	L	CO	PO	M
	b. с.	Show that the language $L=\{a^nb^n\mid n>=1\}$ is not regular. Minimize the following DFA using table-filling algorithm.	(3)	(3)	(2) (1)	(05) (05)
		δ 0 1 >A B F B G C *C A C D C G E H F F C G G G E H G C				
		OR	(3)	(2)	(3)	(10)

Write regular expression for the following: i) $L = \{ a^n b^m \mid n \ge 4, m \le 3 \}$ ii) $L = \{ a^{2n} b^{2m+1} \mid m \ge 0, n \ge 0 \}$ a.

i)
$$L = \{ a^n b^m \mid n \ge 4, m \le 3 \}$$

ii)
$$L = \{ a^{2n}b^{2m+1} | m >= 0, n >= 0 \}$$

State and prove pumping lemma for regular languages. b.

