Lista 1

Isabela Blucher - 9298170

11 de Agosto de 2017

Exercício 10

Compilação Para compilar apenas digite make no terminal.

Execução Para executar digite ./euler_graph <X>, onde <X> é um parâmetro que vai de 0 a 10 e representa a quantidade de vértices do grafo.

Relatório O programa euler_graph.c pega a mesma ideia da regra do pi descrita no enunciado e a aplica ao número de Euler (o arquivo euler.txt possui 1 milhão de dígitos desse número, sem a vírgula após o 2 para facilitar a leitura).

A regra é a seguinte: consideramos um dado X para nossos vértices irem de 0 a X - 1, ou seja se X = 10, usamos os números de 0 a 9. Dois números u e v serão adjacentes no grafo caso v siga u no número de Euler (se X = 10, temos os arcos 2-7, 7-1, 1-8, 8-2 e etc). Caso X não seja 10, deixamos de adicionar o arco que contém u e/ou v fora do intervalo de 0 a X - 1.

Ou seja com essa regra conseguimos gerar um total de 11 grafos diferentes: um grafo nulo, um com 1 vértices (0), um com 2 vértices (0, 1), até no máximo 10 vértices (0 a 9).

Meu experimento envolve verificar para cada grafo quantos dígitos são necessários até que o grafo se torne completo, ou seja, percorreremos o número de Euler em busca de pares de dígitos que satisfaçam as condições de cada teste (tanto o vértice inicial quanto o vértice final de um arco devem ser um número menor que X). Para o caso X=0, o grafo é nulo e para X=1, o grafo possui apenas um vértice e portanto é completo.

2 197 3 371 4 371 5 371 6 371 7 371 8 371 9 371 10 371	X	Quantidade de dígitos lidos até grafo completo
4 371 5 371 6 371 7 371 8 371 9 371	2	197
5 371 6 371 7 371 8 371 9 371	3	371
6 371 7 371 8 371 9 371	4	371
7 371 8 371 9 371	5	371
8 371 9 371	6	371
9 371	7	371
31.2	8	371
10 371	9	371
10	10	371

Os grafos com X = 2...10 possuem todos a mesma quantidade de dígitos lidos até o grafo tornar-se completo pois o último arco inserido em todos esses grafos é o arco 1-2.

Grafos Aleatórios Os grafos π e da Monalisa não são aleatórios pois essas regras gerarão sempre grafos com os mesmo arcos e vértices, independente da quantidade de vezes que o programa for executado.