Assignment 3 (Finetuning)

Fine-tuning BERT for Text Classification

1. Project Overview

This project focuses on fine-tuning a pre-trained BERT (Bidirectional Encoder Representations from Transformers) model for a text classification task. The primary goal is to classify tweets into two categories (binary classification), likely indicating whether a tweet is about a real disaster or not. The project involves data preprocessing, BERT tokenization, model training, validation, and generating predictions on a test set.

2. Environment Setup and Libraries

- **numpy**: For numerical operations, especially with arrays.
- pandas: For data manipulation and analysis, primarily with DataFrames.
- torch, torch.nn: PyTorch library for building and training neural networks.
- torch.utils.data.TensorDataset, DataLoader, RandomSampler, SequentialSampler, random_split: PyTorch utilities for efficient data handling and batching.
- **sklearn.model_selection.train_test_split**: For splitting data into training and validation sets.
- **transformers**: Hugging Face Transformers library, crucial for working with pre-trained BERT models, tokenizers, and optimizers. Specifically:
 - BertForSequenceClassification: The BERT model architecture configured for sequence classification.
 - AdamW: An optimized Adam optimizer, commonly used with Transformers models.
 - BertConfig: Configuration class for BERT.
 - BertTokenizer: The tokenizer for BERT, responsible for converting text into token IDs.
 - get_linear_schedule_with_warmup: A learning rate scheduler.

3. Data Loading and Initial Exploration

The training data is loaded from a CSV file named train.csv (located at ../input/nlp-getting-started/train.csv). The initial rows of the DataFrame are displayed to understand the data structure, which includes columns like id, keyword, location, text (the tweet content), and target (the label for classification).

4. Data Preprocessing

A crucial step in preparing text data for NLP models is preprocessing. The project implements a clean_text function to perform several cleaning operations on the tweet text:

- Lowercasing: Converts all text to lowercase to ensure consistency.
- Removing URLs: Strips out URLs from the text using regular expressions.
- Removing HTML Tags: Eliminates any HTML tags present in the tweets.
- Removing Punctuations: Removes a predefined set of punctuation marks.
- Removing Stopwords: Filters out common English stopwords (e.g., "the", "is", "a") using NLTK's stopwords list, as these words typically do not carry significant meaning for classification.
- Removing Emojis: Removes various Unicode emoji characters.

This clean_text function is then applied to the text column of the DataFrame. After cleaning, the text and target columns are extracted into tweets and labels NumPy arrays, respectively.

5. BERT Tokenization

BERT models require input in a specific tokenized format. This section handles the tokenization process:

- Tokenizer Initialization: A BertTokenizer is loaded from the bert-base-uncased pre-trained model. do_lower_case=True is specified to ensure consistency with the preprocessed text.
- Tokenization Example: An example tweet is tokenized and its corresponding token IDs are displayed, illustrating how text is converted into a numerical format BERT can understand.
- Maximum Sentence Length Calculation: The maximum length of tokenized sentences (including special [CLS] and [SEP] tokens) is determined across the entire dataset. This max_len is used to ensure all input sequences have a uniform length.

- **Encoding Tweets**: Each tweet is encoded using tokenizer.encode_plus. This function:
 - Adds special tokens ([CLS] at the beginning and [SEP] at the end).
 - Pads or truncates sequences to max_len.
 - Generates an attention mask, which tells the model to ignore padded tokens.
 - Returns PyTorch tensors.
- **Tensor Creation**: The encoded input_ids and attention_masks are concatenated into single PyTorch tensors. The labels are also converted into a PyTorch tensor.

6. Data Splitting and DataLoader

To train and evaluate the model effectively, the data is split into training and validation sets:

- Dataset Creation: TensorDataset is used to combine input_ids, attention_masks, and labels into a single dataset.
- **Train-Validation Split**: 80% of the data is allocated for training and 20% for validation using random_split.
- DataLoader Setup: DataLoader objects are created for both the training and validation sets.
 - RandomSampler is used for the training set to shuffle data within each epoch, promoting robust learning.
 - SequentialSampler is used for the validation set to ensure consistent evaluation order.
 - A batch_size of 32 is used for both data loaders.

7. Model Initialization and Optimizer

The BERT model for sequence classification is initialized:

Model Loading:

BertForSequenceClassification.from_pretrained('bert-base-uncased', ...) loads the pre-trained BERT model.

- num_labels = 2 indicates a binary classification task.
- output_attentions and output_hidden_states are set to False as they are not needed for this specific classification task, reducing memory and computation.
- Device Placement: The model is moved to the selected device (GPU or CPU).

• Optimizer: The AdamW optimizer is configured with a learning rate (1r) of 2e-5 and an epsilon (eps) of 1e-8. AdamW is a variant of Adam that incorporates weight decay for better regularization.

8. Model Fine-tuning

The core of the project is the fine-tuning process.

- **Epochs**: The model is trained for 4 epochs.
- Learning Rate Scheduler: get_linear_schedule_with_warmup is used to adjust the learning rate during training, linearly decaying it after an initial warmup phase (warmup steps are 0 here).
- Accuracy Function: flat_accuracy is a helper function to calculate the accuracy of predictions.
- **Time Formatting**: format_time is a utility to display elapsed time in a readable hh:mm:ss format.
- Reproducibility: Random seeds are set for random, numpy, and torch to ensure reproducible results.
- Training Loop:
 - For each epoch, the model is set to train() mode.
 - It iterates through batches in train_dataloader.
 - o Inputs, masks, and labels are moved to the device.
 - Gradients are zeroed using optimizer.zero_grad().
 - The model performs a forward pass, calculating loss and logits.
 - loss.backward() computes gradients.
 - torch.nn.utils.clip_grad_norm_ is used to prevent exploding gradients by clipping them.
 - optimizer.step() updates model parameters.
 - o scheduler.step() updates the learning rate.
 - o Training loss and time are tracked.

Validation Loop:

- After each training epoch, the model is set to eval() mode (disables dropout and batch normalization for consistent evaluation).
- It iterates through batches in validation_dataloader.
- torch.no_grad() is used to disable gradient calculations during evaluation, saving memory and speeding up computation.
- Validation loss and accuracy are calculated.
- The model saves the best performing model (based on validation accuracy) to a file named bert_model.

• **Training Statistics**: Training loss, validation loss, validation accuracy, and training/validation times are recorded for each epoch in training_stats.

Training Results Summary:

The training process completed in approximately 3 minutes and 57 seconds. The validation accuracy was consistently around 0.83 to 0.84, indicating good performance on unseen data.

====== Epoch 1 / 4 ====== Training... Average training loss: 0.47 Training epoch took: 0:00:53 Running Validation... Accuracy: 0.83 ====== Epoch 2 / 4 ====== Training... Average training loss: 0.36 Training epoch took: 0:00:54 Running Validation... Accuracy: 0.84 ====== Epoch 3 / 4 ====== Training... Average training loss: 0.29 Training epoch took: 0:00:53 Running Validation... Accuracy: 0.83 ====== Epoch 4 / 4 ====== Training... Average training loss: 0.25 Training epoch took: 0:00:53 Running Validation... Accuracy: 0.83

Training complete!

Total training took 0:03:57 (h:mm:ss)

9. Prediction on Test Data

After training, the model is used to make predictions on a separate test dataset:

- Load Test Data: test.csv is loaded, and its text column undergoes the same clean_text preprocessing as the training data.
- **Load Best Model**: The previously saved bert_model (the one with the best validation accuracy) is loaded.
- **Tokenize Test Tweets**: Test tweets are tokenized using the same tokenizer and encoding process as the training data, ensuring consistency in input format.
- **Test DataLoader**: A DataLoader is created for the test dataset to process predictions in batches.
- Generate Predictions:
 - The model is set to eval() mode.
 - It iterates through batches in test_dataloader.
 - torch.no_grad() is used.
 - The model performs a forward pass to get logits.
 - logits are moved to CPU and converted to NumPy arrays.
 - onp.argmax is used to get the predicted class (0 or 1) for each tweet.
 - o Predictions are collected into a list.
- Submission File Generation: The id from the test DataFrame and the predictions are combined into a new DataFrame. This DataFrame is then saved as submission.csv without the index, ready for submission to a platform like Kaggle.

10. Conclusion

This project successfully demonstrates the process of fine-tuning a BERT model for a text classification task. Key steps included:

- Thorough data preprocessing to clean raw tweet text.
- Utilizing the transformers library for efficient BERT tokenization and model handling.
- Setting up robust training and validation loops with appropriate optimizers and learning rate schedulers.
- Saving the best-performing model to prevent overfitting.
- Generating predictions on unseen test data and preparing a submission file.

The achieved validation accuracy of approximately 83-84% suggests that the fine-tuned BERT model performs well on this specific text classification problem.