Directions: Answer questions as concisely as possible. NO CREDIT if answer is more words than indicated. Bring a pristine, non-marked, stapled copy of this exam to the final (-5% for not doing this).

(don't write in this table – used for grading) Total points: 290 3 7 Total 6 **Architecture (17pts)** (1pt) Summarize Smart Objects in <= 6 words: (hint: use "agent" as one of your words) (2pt) Name 2 benefits of using a complex scripting language (<=3 words each). (2pt) Name 2 problems with using a complex scripting language (<=3 words each). (4pt) Subsumption has layers of code that run: . The priority is with the _____layers. The ______layers make requests to the ______layers. (2pt) Describe 2 key benefits of a subsumption architecture (<=3 words each). (1pt) Name 2 advantages of a limited, focused, scripting system like a trigger system? (<=3 words each) (2pt) What game and person popularized Game: _____ Person: ____ the use of behavior trees? (1pt) Why is a behavior tree better than a FSM: (2pt) Name two declarative AI architectures (other than planning): **State Machines and the State Machine Language (13pts)** (2pt) Name 2 major problems with using a state machine for game AI (<=3 words each).

(3pt) Name 3 major benefits of the State Machine Language (SML) approach (<=3 words each):

CS380/CS580 Final, version 20120720	NAME
(1pt) In SML, what is the key benefit of the global message response feature (not what it does)? (<= 3 words):	· · · · · · · · · · · · · · · · · · ·
(1pt) Name 1 disadvantage that SML has compared to a traditional scripting language. (<=3 words)	
to the substate, state, or state machine. Scoping was introduced into SML to solve what problem? (<=9 words)	
(2pt) If a delayed message is scoped to the state and the state never changes fro sent, will the message be delivered to a global message response if it isn't hand	
Planning (7 points)	
(2pt) Based on Jeff Orkin's GDC talk, actions are composed of	and
(1pt) Jeff Orkin used what algorithm to search through possible sequences of ac	ctions that would achieve a goal state:
(1pt) In planning, what did Jeff Orkin use as his heuristic? (the answer is NOT "Cost Per Action")	
(1pt) Jeff Orkin's planning is based on what academic planning system?	
(2pt) Why is planning a declarative architecture?	
Agent Awareness (10 points)	
(3pt) Conceptually, agents have a,,	cycle that they loop through every frame.
(3pt) What are the three agent vision checks in order from least expensive to most expensive? (least)	(most)
(2pt) Agent hearing can most efficiently be modeled with event-driven messages that are sent based on	and
(2pt) Agents must avoid flip-flopping decisions. Agents should stick with a decision until	or
Agent Coordination and Cooperation (5 p	ooints)
What is the cost/time complexity of: (1pt) Manager coordination with <i>n</i> agents: (1pt) Using a blackboard architecture with <i>n</i> agents: (1pt) Coordination using decentralized agent communication with <i>n</i> agents:	O() O()
(2pt) Describe a blackboard architecture:	

Movement (20pts)

(2pt) Generally, there are 2 types of movement.	and	movement.
(2pt) Describe the data structure and content of a flow	field:	
(2pt) In flocking, group behavior emerges from what?		
(3pt) List the 3 flocking rules (one word each):		
(3pt) Name 3 other rules/steering behaviors to enhance flocking (randomness is not an answer). (<=2	words each).	
(2pt) Name the father of flocking (the person who cam	e up with the algorithm):	
(2pt) What are flocking creatures called? (1 word)	_	
(4pt) Formations can be said to have 2-level steering. What are the 2 levels? (<=5 words each)	1 st level:	

Pathfinding (151pts)

(30pt) Draw the following search space representations (include <u>ALL</u> details – be careful and accurate!):

CS380/CS580 Final, version	20120720			NAME_		
(2pt) If a heuristic is admissible in	A*, then it					_ the true cost.
(2pt) If A* uses an admissible heu	ristic, then what is g	uaranteed to be found if i	t exists? (<=2 wor	ds)		
(2pt) What positive effect does an	inadmissible heurist	ic cost have on the A* se	earch? (<=2 words))		
(3pt) The cost in a Dijkstra search	is the	cost from the		node to the		node.
(3pt) The cost in a Best-First search	ch is the	cost from the		node to the		node.
(2pt) If a search algorithm is comp guaranteed and under what conditi		(<=5 words)				
(1pt) At runtime, how does the Flo	oyd-Warshall generat	te paths faster than A*? (<=3 words)			
(1pt) Given that Floyd-Warshall is	s faster than A*, wha	t is the primary tradeoff	to get that speed?	(1 word)		
(1pt) Calculation for octile distance	e:					
(8pt) Name 4 search algorithms th	at are smart?					
(4pt) Name 2 search algorithms th						
(11pt) Given these optimizations of	or choices, judge whe	ther the benefit is LARC	SE or SMALL rela	tive to the a	verage s	earch cost.
Pathfinding Optimization or Choice	ce			Circ	le one or	the other
Choice of search space representat	tion			LA	RGE or	SMALL
Check for possible straight-line pa	th before running A	\$		LA	RGE or	SMALL
Overestimate heuristic				LA	RGE or	SMALL
Check if destination is unreachable	e using some other n	nethod before running A*	k	LA	RGE or	SMALL
Sort open list using priority queue				LA	RGE or 3	SMALL
Avoid considering parent node wh		oring nodes		LA	RGE or	SMALL
Avoid putting neighboring node of			lower cost		RGE or	
Cache failed start-end pairs		1			RGE or	
Hierarchical pathfinding					RGE or	
A* bidirectional pathfinding					RGE or	
Avoid allocating memory for node	es during search				RGE or	
(2pt) Is it better to: (circle answer) a. Perform a pathfinding sea b. Perform a pathfinding sea	arch simultaneously			eue.		
(10pt) For a grid search space that rank them from best to worst for n for each):						
Euclidean distance:	ADMISSIBLE	E or INADMISSIBLE	rank	1 2 3	4	5
Octile distance:		E or INADMISSIBLE	rank	1 2 3		5
Zero distance:		E or INADMISSIBLE	rank	1 2 3		5
Manhattan distance:		E or INADMISSIBLE	rank	1 2 3		5
Chebychev distance:		E or INADMISSIBLE	rank	1 2 3		5
(2pt) Pathfinding in Company of Fa. Grid search space b. Hierarch	Heroes used (circle al		nap e. Impass m	ap f. A*	g. IDA	<u>(</u> *

(2pt) The top level hierarchical map in Company of Heroes most resembled which classic search space representation?

(1pt) The pathfinding project used a ______ spline that was smooth in the _____

(2pt) What info does a Company of Heroes precise map contain?

(50pt) Given the following search space, start node (A), and goal node (G), calculate on this sheet of paper a path found using A* (recall the A* algorithm from memory). Please show all work using the Open and Closed lists, **crossing out items with a single strikethrough** when deleting a node **off of either list**. Please mark parent pointers and all cost terms. Use the indicated actual cost along each node-to-node connection and use the distance values in the table for the heuristic. (**NOTE: One mistake loses 25 points, two or more loses 50 points – don't make even one mistake – double check all math)**

Euclidean distance to Goal node (G) from any given node (use this table for the heuristic):

		\ /	J 0	\			/	
A	В	С	D	Е	F	G	Н	K
5.4	4.4	5.0	3.4	2.4	1.4	0.0	10.0	1.0

Open List:

Node	Parent	g(x)	h(x)	f(x)

Closed List:

Node	Parent	f(x)

Final Waypoint Path from start to goal:

Terrain Analysis (20 points)

(2pt) What quality or property is a good tactical indicate	or in static terrain and	alysis?	
(3pt) Describe an influence map (data structure and algo	orithm):		
(1pt) An influence map is likely to use which equation to	o determine influenc	ee (where d stands fo	or distance)?
(1pt) An influence map can help you find: a. Badly damaged units. b. Chokepoints.	c. The front of	of the battle.	d. Ambush spots.
(1pt) An influence map should be calculated: a. From scratch each frame so that it stays accurate and c. By continuously updating it only when forces move.			eds to consult it, to avoid extra work. ames since forces tend to move slowly.
(2pt) If Agent A has a node visibility array of 0111010, visibility array of 0001010, then circle all nodes that are a. Second node b. Third node c.			001000, and Agent C has a node e. Seventh node
(2pt) If we want to attack Agent A and not be seen by A			
(1pt) In spatial terrain analysis, a visibility layer will we a. How many agents are close to a given grid cell. c. How close a grid cell is to static obstacles.	b. H	ow exposed a given	grid cell is to all other grid cells. I cell is to agent line-of-sight.
(1pt) In spatial terrain analysis, an area search layer willa. Potential hiding places for enemies.c. Which grid cells have been recently visited.	b. Pr	romising areas to se rid cells that do not	arch for enemies. contain enemy agents.
(2pt) What are the 2 qualities of a good sniper point?			
(2pt) Explain the algorithm that the Kynogon (AutoDesl	k) terrain analysis m	iddleware used to d	etermine good sniper points:
(2pt) Explain the algorithm you used in the terrain analy	sis project to determ	nine good sniper poi	nts:
Learning (32 points)			
(1pt) How can you fake learning (without using indirect	or direct adaptation)?	
(1pt) Circle all that apply to indirect adaptation: a. Riskier than direct adaptation once shipped. c. Constructs a model of how the game is being played.		s from training data adapts parameters t	. hat directly control the AI.
(1pt) Why is indirect adaptation preferred over direct ada. Indirect is more robust and stable.c. Indirect is easier to fix when behaving badly.	b. Indirect is	hat are true: usually computation sults in more novel	•
(1pt) Which kind of N-Gram would be most appropriate a. Uni-Gram b. Bi-Gram c. Tri-Gram d		1131832131413_ e. N-Gram would no	t be appropriate

		ur (4) questions to determint, Punch, Punch, Punch, Rick, Pu			peing a Kick:
Uni-Gram:	, Bi-Gram:	, Tri-Gram:	, Q	Quad-Gram:	
(3pt) Describe the genera	al Player Modeling	strategy/algorithm:			
(2pt) In player modeling,	, UsesSmokeGrenac	des is stored as what data	type?		
(2pt) In player modeling,	, list all possible val	ues that AttacksOnTwoFi	onts could have:		
(3pt) In player modeling,	, AttacksOnTwoFro	onts, UsesSmokeGrenades	, and CanDoTrickyJun	nps are example	es of
(3pt) What is the abstract	t strategy/algorithm	in Weakness Modificatio	n Learning that could	be applied to an	y game?
(1pt) In general, what are	e neural networks go	ood at?			
(1pt) Name a problem wi	ith using neural net	works:			
(1pt) What are genetic al	gorithms good at?				
(1pt) Name a problem w	ith using genetic alg	gorithms:			
(1pt) Name two learning	algorithms used in	the game Black & White:			
(2pt) Explain how n-gran	n recombination wo	orks:			
Gesture Reco	ognition (5	points)			
(1pt) With gesture recogn a. Size b. Curv		e must first be processed to c. Position	to minimize the effect of d. Weight		s? (circle all that apply) (number of samples)
(2pt) The player made a which gesture in the data a. [1,18,9,16]		of [5,18,9,12]. Using the notice of [8,15,12,12]	earest neighbor technic d. [10,18,9,		root mean square error, e. [5,18,9,18]
(2pt) Circle all algorithm a. Genetic algorithms d. Decision trees	s that are useful for	gesture recognition: b. Neural networks e. N-gram	c. Nearest r f. Weaknes	neighbor s modification l	earning
Randomness	(10 points)			
(2pt) When rand() is call	ed, it gives back a n	number in what range: [,]
(3pt) What was "Rabin's	Radical idea on Ra	indomness in Games"?			
	of 1). Your solution	ate Gaussian randomness in should make use of the r			RMAL distribution (which ns a uniform random