PRODUITS /FR/SOLUTIONS) **FORMATIONS** /FR/FORMATION)

VERSION D'ESSAI (HTTPS://WWW.XLSTAT.COM (HTTPS://WWW.XLSTAT.COM (HTTPS://WWW.XLSTAT.COM (HTTPS://WWW.XLSTAT.COM /FR/TELECHARGEMENT)

NEWS /FR/ARTICLES)

COMMANDER (HTTPS://WWW.XLSTAT.COM /FR/#ORDER-CART)

CENTRE DE SUPPORT XI STAT

Besoin d'un coup de main? Toute l'aide dont vous avez besoin en quelques clics

Vous avez une q... Q

MY PROFILE

GUIDE DE CHOIX DE TEST STATISTIQUE

Guide pour choisir un test statistique approprié en fonction de la situation

Nous avons établi la grille ci-dessous pour vous quider dans le choix d'un test approprié en fonction de votre problématique et vos données. Le quide propose une formulation de l'hypothèse nulle (/s/article/quest-ce-quun-test-statistique?language=fr) et un exemple pour chaque situation. Les conditions de validité associées aux tests paramétriques sont affichées dans le paragraphe qui suit la grille. Lorsqu'ils existent, des équivalents non-paramétriques sont affichés. Dans certaines situations, il n'y a pas de solution paramétrique et seules des solutions non-paramétriques sont proposées.

Pour plus de détails sur la théorie des tests statistiques, veuillez lire ce tutoriel (/s/article/quest-ce-quun-test-statistique?language=fr). Pour une introduction rapide aux différences entre tests paramétriques et non-paramétriques, veuillez lire ce tutoriel (/s/article/quelle-estla-difference-entre-un-test-parametrique-et-un-test-non-parametrique?language=fr).

La grille

Les tests affichés sont les tests les plus couramment utilisés en statistique. Ils sont tous disponibles dans XLSTAT. La liste n'est cependant pas exhaustive. D'autres situations / tests existent.

Question	Données	Hypothèse nulle	Exemple	Tests paramétriques	Conditions de validité (tests paramétriques)	Equivalents non- paramétriques
Comparaison d'une moyenne observée avec une tendance théorique	mesures sur 1 échantillon ; moyenne théorique (1 chiffre)	moyenne observée = moyenne théorique	Comparaison à une norme d'un taux de pollution mesuré	Test t pour un échantillon (/s/article/tests-t-et-z-pour- un-echantillon-dans- excel?language=fr)	2	Test de Wilcoxon pour un échantillon (/s/article/test-de-wilcoxon-pour-un-echantillon-dans-excel?language=fr)
Comparaison de deux positions* observées (échantillons indépendants) (/s/article/quelle-est-la-difference-entre-tests-pour-echantillons-independants-et-apparies?language=fr)	mesures sur 2 échantillons	Les positions* sont identiques	Comparaison de notes d'étudiants entre deux classes	Test t pour échantillons indépendants (/s/article /test-t-de-student-sur-deux- echantillons- independants?language=fr)	1;3;5	Mann-Whitney (/s/article /test-de-mann-whitney-dans- excel?language=fr)
Comparaison de plusieurs positions* observées (échantillons indépendants) (/s/article/quelle-est-la-difference-entre-tests-pour-echantillons-independants-et-apparies?language=fr)	mesures sur plusieurs échantillons	Les positions* sont identiques	Comparaison du rendement de maïs selon 4 engrais différents	ANOVA (/s/article/anova- a-un-facteur-et-tests-de- comparaisons-multiples- dans-excel?language=fr)	1;3;4;6	Kruskal-Wallis (/s/article/test- de-kruskal-wallis-tutoriel- avec-excel?language=fr)

Comparaison de deux positions* observées (échantillons dépendants) (/s/article /quelle-est-la-difference-entre-tests-pour-echantillons-independants-et-apparies?language=fr)	deux séries de mesures quanti sur les mêmes individus (avant- après)	Les positions* sont identiques	Comparaison du taux d'hémoglobine moyen avant / après l'application d'un traitement sur un groupe de patients	Test t pour échantillons appariés (/s/article/test- t-de-student-pour-deux- echantillons- apparies?language=fr)	10	Wilcoxon (/s/article/test-de- wilcoxon-pour-deux- echantillons-apparies-dans- excel?language=fr)
Comparaison de plusieurs positions* observées (échantillons dépendants) (/s/article /quelle-est-la- difference-entre-tests- pour-echantillons- independants-et- apparies?language=fr)	Plusieurs séries de mesures quanti sur les mêmes individus (avant- après)	Les positions* sont identiques	Suivi de la concentration d'un élément trace au cours du temps au sein d'un groupe de plantes	ANOVA à mesures répétées (/s/article/anova-a-mesures-repetees-dans-excel?language=fr); modèles mixtes (/s/article /anova-a-mesures-repetees-en-utilisant-les-modeles-mixtes?language=fr)	10 ; Sphéricité	Friedman (/s/article/test-de- friedman-tutoriel-dans- excel?language=fr)
Comparaison de plusieurs séries de mesures binaires (échantillons dépendants) (/s/article /quelle-est-la-difference-entre-tests-pour-echantillons-independants-et-apparies?language=fr)	Plusieurs séries de mesures binaires sur les mêmes individus (avant- après)	Les positions* sont identiques	Différents juges évaluent la présence/l'absence d'un attribut sur différents produits			Test Q de Cochran (/s/article /test-q-de-cochran-tutoriel- dans-excel?language=fr)
Comparaison de 2 variances (peut être utilisé pour tester condition 3)	Mesures sur deux échantillons	variance(1) = variance(2)	Comparaison de la dispersion naturelle de la taille de 2 variétés d'un fruit	Test de Fisher (/s/article /test-f-de-fisher-pour- comparer-2-variances-dans- excel?language=fr)		

Comparaison de plusieurs variances (peut être utilisé pour tester condition 3)	Mesures sur plusieurs échantillons	<pre>variance(1) = variance(2) = variance(n)</pre>	Comparaison de la dispersion naturelle de la taille de plusieurs variétés d'un fruit	Test de Levene (/s/article /tests-de-bartlett-et-de- levene-pour-comparer-des- variances?language=fr)	
Comparaison d'une proportion observée avec une proportion théorique	une proportion observée; son effectif associé; une proportion théorique	proportion observée = proportion théorique	Comparaison de la proportion de femelles à une proportion de 0.5 dans un échantillon	Test pour une proportion (khi²) (/s/article/test-pour-une-proportion-dans-excel?language=fr)	
Comparaison de plusieurs proportions observées	Effectif de chaque catégorie	<pre>proportion(1) = proportion(2) = proportion(n)</pre>	Comparaison des proportions de 3 couleurs d'yeux dans un échantillon	khi² (/s/article/test-du-khi- et-test-exact-de-fisher- dans-excel?language=fr)	
Comparaison de proportions observées à des proportions théoriques	Proportion théorique et effectif associés à chaque catégorie	proportions observées = proportions théoriques	Comparer les proportions de génotypes obtenus par croisement F1xF1 à des proportions mendéliennes (1/2, 1/4, 1/2)	Test d'ajustement multinomial (/s/article/test- dajustement-multinomial- dans-excel?language=fr)	

Test d'association entre deux variables qualitatives	Tableau de contingence	variable 1 et variable 2 sont indépendantes	La présence d'un attribut est-elle liée à la présence d'un autre attribut?	khi² (http://www.xlstat.com /fr/centre-d-apprentissage /tutoriels/effectuer-un-test- du-khi-et-un-test-exact-de- fisher-sur-un-tableau-de- contingence.html) sur un tableau de contingence (/s/article/test-du-khi-et- test-exact-de-fisher-dans- excel?language=fr)	1;9	Test exact de Fisher; (https://help.xlstat.com /s/article/test-du-khi-et-test- exact-de-fisher-dans- excel?language=fr) méthode de Monte Carlo
Test d'association entre deux variables quantitatives	mesures de deux variables sur un échantillon	variable 1 et variable 2 sont indépendantes	La biomasse de plante change- t-elle avec la concentration de Pb?	Corrélation de Pearson (/s/article/coefficient-de- correlation-de-pearson- dans-excel?language=fr)	7;8	Corrélation de Spearman (/s/article/correlation-de- spearman-dans- excel?language=fr)
Comparer une distribution observée à une distribution théorique	Mesures d'une variable quantitative sur un échantillon; paramètres de la distribution théorique	Les distributions observée et théorique sont les mêmes	Les salaires d'une société suivent-ils une distribution normale de moyenne 2500 et d'écart-type 150?			Kolmogorov-Smirnov (/s/article/test-de- kolmogorov-smirnov-dans- excel?language=fr)
Comparer deux distributions observées	Mesures d'une variable quantitative sur deux échantillons	Les deux échantillons suivent la même distribution	Les distributions de poids humain sont-elles différentes entre ces deux régions?			Kolmogorov-Smirnov (/s/article/test-de- kolmogorov-smirnov-dans- excel?language=fr)

Tests pour les valeurs extrêmes	Mesures sur un échantillon	L'échantillon ne comprend pas de valeur extrême (selon la distribution normale)	Cette donnée est- elle une valeur extrême?	Test de Dixon (/s/article /test-de-dixon-pour-les-valeurs-extremes-dans-excel?language=fr) / test de Grubbs (/s/article/test-de-grubbs-pour-les-valeurs-extremes-dans-excel?language=fr)	Boxplot (https://help.xlstat.com /s/article/boites- a-moustache-box-plots-avec- excel?language=fr)
Tests de normalité d'une série de mesures (peuvent être utilisés pour tester les conditions 2, 4, 7)	Mesures sur un échantillon	L'échantillon suit une distribution normale	La distribution observée s'écarte- t-elle d'une distribution normale?	Tests de normalité (https://help.xlstat.com /s/article/test-de-shapiro- wilk-et-autres-tests-de- normalite-dans- excel?language=fr)	

^{*}Les positions sont les moyennes (tests paramétriques) ou les rangs moyens (équivalents non-paramétriques)

Conditions de validité des tests paramétriques

Les conditions de validité suggérées sont uniquement des pistes qui peuvent changer en fonction du type de données et des domaines d'application spécifiques. Il est vivement recommandé de se référer aux recommandations propres à vos domaines.

- 1) Les mesures sont indépendantes
- 2) La population ayant généré l'échantillon suit une distribution normale (supposée ou vérifiée)
- 3) Les échantillons ont des variances égales
- 4) Les résidus suivent une distribution normale (supposée ou vérifiée)
- 5) Au moins 20 individus par échantillon, ou normalité des populations de chaque échantillon supposée ou vérifiée
- 6) Au moins 20 individus dans le dispositif, ou normalité des résidus supposée ou vérifiée
- 7) Chaque variable suit une distribution normale
- 8) Au moins 20 individus dans l'échantillon (recommandé)
- 9) Pas d'effectifs théoriques inférieurs à 5 dans les cases du tableau
- 10) Les différences entre séries suivent des distributions normales

ANALYSEZ VOS DONNÉES AVEC XLSTAT

ESSAYEZ GRATUITEMENT PENDANT 14 JOURS

(/)

Logiciel de statistique complet pour Microsoft Excel

A PROPOS (HTTPS://WWW.ADDINSOFT.COM/)

Copyright © 2020 Addinsoft (https://www.addinsoft.com/). Tous droits réservés.

MENTIONS LÉGALES (HTTPS://WWW.XLSTAT.COM/FR/LEGAL/MENTIONS-LEGALES) | COOKIES (HTTPS://WWW.XLSTAT.COM/FR/LEGAL/UTILISATION-COOKIES) | ENGAGEMENT DE CONFIDENTIALITÉ (HTTPS://WWW.XLSTAT.COM/FR/LEGAL/CONDITIONS-UTILISATION) | CONDITIONS DE VENTE (HTTPS://WWW.XLSTAT.COM/FR/LEGAL/CONDITIONS-VENTE)