Contrôle 26 septembre 2017 sujet A

Exercice 1 (Bonus 1 point)

Soit a, b, c trois nombres réels. Développer l'expression suivante :

$$a \cdot \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

Exercice 2 (3 points)

- 1. Factoriser chacune des expressions suivantes en produit de facteurs du premier degré :
 - a. $4x^2 81$
- b. $x^2 6 \cdot x + 9$
- 2. Montrer que l'expression x^2+1 ne peut se factoriser sous la forme d'un produit de facteurs du premier degré. C'est à dire Il n'existe pas de nombre réels α , β , γ , δ tel que : $x^2 + 1 = (\alpha \cdot x + \beta)(\gamma \cdot x + \delta)$

Exercice 3 (3 points)

Exprimer chacun des polynômes ci-dessous sous la forme d'une expression du type : $(x-\alpha)^2 + \beta$ où α et β sont deux réels.

a.
$$x^2 - 4x + 1$$

b.
$$x^2 + x + 2$$

a.
$$x^2 - 4x + 1$$
 b. $x^2 + x + 2$ c. $x^2 + \frac{1}{2}x - 3$

Exercice 4 (6 points)

Résoudre les quations et inéquations suivantes :

a.
$$3x^2 - 5x + 7 = 0$$

b.
$$x^2 - 2x - 6 = 0$$

c.
$$x^2 + 2x - 15 = 0$$
 d. $6x^2 - 7x + 2 = 0$

d.
$$6x^2 - 7x + 2 = 0$$

e.
$$\frac{x^2 - x}{2x - 1} \le$$

e.
$$\frac{x^2 - x}{2x - 1} \le 0$$
 f. $\frac{x - 2}{x + 1} - \frac{3x - 1}{x - 1} < 0$

Exercice 5 (2 points)

Etablir le tableau de signe des expressions suivantes :

a.
$$3x^2 + 4x - 4$$

b.
$$-4x^2 + 2x + 6$$

Exercice 6 (3 points)

Montrer que la fonction inverse est strictement décroissante sur l'intervalle $]0;+\infty[$.

Exercice 7 (3 points)

On considère les deux fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = x^2 - 6 \cdot x + 7$$
; $g(x) = 2 \cdot x^2 - 2 \cdot x + 2$

Dans le plan muni d'un repère orthogonal (O; I; J), on donne les courbes \mathscr{C}_f et \mathscr{C}_g représentatives respectivement des fonctions f et g.

- 1. Dresser le tableau de variation de la fonction f.
- 2. Déterminer la position relative des courbes \mathscr{C}_f et \mathscr{C}_q .