with global minima at index i_0 there are exactly $\sum_{i=1}^{i_0-1} (k-1)k^{i-1}$ descents by Theorem 5.3. The number of inversions can be expressed through the values of the permutation before the minimum: $I(k,n,w) = \frac{k^n(k-1)}{4} \sum_{i=1}^n (k^{n-i} - k^{n-i-(c_w)_i}) = \frac{k^n(k-1)}{4} \sum_{i=1}^{i_0-1} (k^{n-i} - k^{n-i-w_i+1}).$

Now, we describe some bounds on the number of descents and inversion in the stable configuration depending on the permutation. We start with permutations with an increasing tail.

Proposition 6.1. Given permutation w, if there exists an $i_0 \in \mathbb{N}$ such that for all indices $i \geq i_0$, we have $w_i < w_{i+1}$, then $C_{k,n,w}$ has at most $\sum_{j=1}^{i_0-1} (k-1)k^{j-1}$ descents and at most $\binom{k}{2} \sum_{i=1}^{i_0-1} k^{i-1} \binom{k^{n-i}}{2}$ inversions.

Proof. Because $w_i < w_{i+1}$ for all integers i such that $i \ge i_0$, we find that $(c_w)_i = 0$ for all $i \ge i_0$. Therefore, the support of c_w is a subset of $[i_0 - 1]$. Thus, by Theorem 5.3, we have that there are at most $\sum_{i=1}^{i_0-1} (k-1)k^{j-1}$ descents in $C_{k,n,w}$.

Because $(c_w)_i = 0$ for all $i \geq i_0$, we have

$$I(k, n, w) = {k \choose 2} \sum_{i=1}^{i_0-1} k^{i-1} {k^{(c_w)_i} \choose 2} k^{2n-2i-2(c_w)_i} = \frac{k-1}{4} \sum_{i=1}^{i_0-1} (k^{2n-i} - k^{2n-i-(c_w)_i}).$$

Since for each i, we have $(c_w)_i \leq n-i$ by definition of Lehmer code, we obtain

$$I(k,n,w) \leq \frac{k^n(k-1)}{4} \sum_{i=1}^{i_0-1} (k^{n-i} - k^{n-i-(n-i)}) = \frac{k(k-1)}{4} \sum_{i=1}^{i_0-1} k^{n-i} (k^{n-i} - 1) = \binom{k}{2} \sum_{i=1}^{i_0-1} k^{i-1} \binom{k^{n-i}}{2}.$$

One can observe that the upper bounds on the number of inversions and descents in Proposition 6.1 are tight.

Example 24. Consider any positive integers i_0, n, k such that $i_0 < n$ and $k \ge 2$. Let w be a permutation in S_n defined by $w_i = n+1-i$ for $i \in [i_0-1]$ and $w_i = i-i_0+1$ for $i \in \{i_0, i_0+1, \ldots, n\}$. This is a special case of a valley permutation, where the increasing part consists of smaller numbers than the decreasing part. We obtain that the Lehmer code of this permutation is $(c_w)_j = n-i$ for each $i \in [i_0-1]$ and $(c_w)_i = 0$ for $i \in \{i+1, i+2, \ldots, n\}$. Therefore we obtain from Theorem 4.1 that the number of inversions in the stable configuration $C_{k,n,w}$ resulting from firing strategy F_w is $\binom{k}{2} \sum_{i=1}^{i_0-1} k^{i-1} \binom{k^{n-i}}{2}$. This is exactly the upper bound on the number of inversions in $C_{k,n,w}$ for w with increasing tail starting at i_0 .

Also observe that Theorem 5.3 and the fact that $\operatorname{supp}(c_w) = [i_0 - 1]$ imply that $C_{k,n,w}$ has exactly $\sum_{i=1}^{i_0-1} (k-1)k^{k-1}$ descents. This is equal to the upper bound on the number of descents in $C_{k,n,w}$ from Proposition 6.1.

On a similar note, we calculate the lower bound for the number of inversions and descents in $C_{k,n,w}$ in the case where w has a decreasing tail.