ESC407 Lab 3

Maggie Wang

October 30, 2023

1. Elliptical orbit of a comet

(a) The function $fit_ellipse(x, y)$ in Lab3_Q1.py fits a dataset of (x, y) coordinates to the general equation of an ellipse,

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Fy + G = 0, (1)$$

by solving the corresponding eigenvalue problem, described as follows. Equation 1 can be written as

$$f(a, X) = X \cdot a = 0,$$

where a = (A, 2B, C, 2D, 2F, G) and $X = (x^2, xy, y^2, x, y, 1)$. The parameters of the best fit ellipse are those that minimize the squared distance for each data point i,

$$\delta(a, x) = \sum_{i=1}^{N} f(a, X)^{2} = a^{T}(X^{T}X)a.$$
 (2)

To exclude the trivial solution, we impose the constraint $\gamma(a) = B^2 - 4AC < 0$ on $\delta(a, x)$. The constrained equation can be written as

$$L(a) = \delta(a, X) - \lambda(\gamma(a) - \phi) \tag{3}$$

$$= a^T (X^T X)a - \lambda (a^T Y a - \phi), \tag{4}$$

where $\phi < 0$ and Y is a (6×6) constraint matrix such that

$$a^T Y a = 4AC - B^2. (5)$$

To minimize L, we solve for where the derivative of L with respect to a is 0. Differentiating Equation 4 gives us the following eigenvalue problem, where $S = X^T X$,

$$\frac{1}{\lambda}a = S^{-1}Ya,\tag{6}$$

which can be solved with np.linalg.eig.

Solving for the entries y_{ij} of Y from Equation 5, we find Y has the form of any skew-symmetric matrix Y' plus the sparse matrix Y_s where the only non-zero entries are $y_{s,22} = -1/4$ and $y_{s,31} = 4$:

$$Y = Y' + \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & -\frac{1}{4} & \ddots & & \\ 4 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & & \cdots & 0 & 0 & 0 \end{pmatrix}.$$
 (7)

In the implementation of Equation 6, X can be written as an $N \times 6$ matrix where each row is the vector $X_i = (x_i^2, x_i y_i, y_i^2, x_i, y_i, 1)$ of the i^{th} data point. For simplicity, we will set all upper diagonal entries of Y' to 1. Thus, we can find the parameters A, B, C, D, F, G from a.

(b) Figure 1 shows the best-fit ellipse from the given dataset.

Figure 1: Best fit ellipse and data points, with A = -0.0353, B = -0.0268, C = -0.0460, D = -0.2625, F = 0.1640, and G = 0.7813.

2. How many computational physicists does it take to screw in a lightbulb?

(a) get_etas(T, 11, 12, 1N) in Lab3_Q2.py calculates the efficiency of a perfect blackbody (light-bulb) at temperature T, for radiation between λ_1 =11 and λ_2 =12. The energy radiated between λ_1 and λ_2 ,

$$E(\lambda_1, \lambda_2) = \int_{\lambda_1}^{\lambda_2} I(\lambda) d\lambda, \tag{8}$$

is calculated using Gaussian Quadrature with 1N points. The total energy emitted by the lightbulb, $E(0, \infty)$, can be derived analytically when $\lambda_1 = 0$ and $\lambda_2 = \infty$ as

$$E(0,\infty) = \frac{4Ak_b^4 \pi^5 T^4}{15c^2 h^3}. (9)$$

The area A is a constant factor for all E, which drops out of the calculation of η . For simplicity, we set A=1 m² (and omit it from the code). To determine an appropriate 1N, we compare $E(0,\infty)$ obtained analytically and using Gaussian Quadrature (after applying a change of variables $\lambda=\frac{z}{1-z}$ to the improper integral).

Figure 2: $E(0,\infty)$ obtained analytically and using Gaussian Quadrature for A=1 m².

- (b) Using ln=10,000, we plot the efficiency η from 300 K to 10,000K in Figure 3 a).
- (c) Using the golden ratio method to find the temperature of maximum efficiency, we find $T_{max} = 6913K$ and $\eta_{max} = 0.49$. Albeit slow, golden ratio suffices in this instance, since the majority of computational power in evaluating η arises from finding the weights and positions for Gaussian Quadrature, which only needs to be computed once across all iterations (since the integration bounds are constant)¹.
- (d) For a lightbulb emitting in the infrared, using the same calculation procedure as in a) and c) (with 11=780 nm and 12=2250 nm), we find that the temperature of maximum efficiency is now $T_{max} = 2925 K$ with $\eta_{max} = 0.67$. The IR efficiency from 300 to 10000 K is shown in Figure 3 b). The temperature of maximum efficiency is impractical for both wavelength ranges, requiring temperatures in the 1000° Cs. However, the effective temperature of the sun, at 5772 K, is just below the maximum efficiency for emission in the visible wavelength range 2 .

Figure 3: η from 300 K to 10,000K for a) visible (380-780 nm) and b) IR (780-2250 nm) radiation.

¹To speed up the calculation, we could also take the first derivative of η and search for its roots using Newton's method (Binary search is computationally equivalent to Golden Ratio, and it would be hard to isolate for T in $\partial \eta(T)_T$ with which to use the Relaxation method). However, we would then also need to take the second derivative (which has a complicated expression and increases roundoff error due to added operations).

²David Williams. Sun Fact Sheet. NASA, Nov. 1973. URL: https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html