CONVEX ANALYSIS WORKSHOP

RYUTO SAITO

1. Convex functions

I made this material referring to [1].

1.1. Definitions.

Definition 1.1.1 (Convex function): A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is convex if **dom** f is a convex set and

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f, \forall t \in [0, 1], f(t\boldsymbol{x} + (1 - t)\boldsymbol{y} \le tf(\boldsymbol{x}) + (1 - t)f(\boldsymbol{y})) \quad (1)$$

where **dom** f is the effective domain of f:

$$\mathbf{dom}\,f \coloneqq \{\boldsymbol{x} \mid f(\boldsymbol{x}) < \infty\}. \tag{2}$$

Definition 1.1.2 (Non-decreasing and non-increasing): A function $f : \mathbb{R} \to \mathbb{R}$ is called *non-decreasing* if

$$\forall a, b \in \mathbb{R}, a \le b \Longrightarrow f(a) \le f(b). \tag{3}$$

Likewise, a function $f: \mathbb{R} \to \mathbb{R}$ is called *non-increasing* if

$$\forall a, b \in \mathbb{R}, a \le b \Longrightarrow f(a) \ge f(b). \tag{4}$$

1.2. Exercise.

Proposition 1.2.1 (Scalar composition): For $h : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$, $g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, define $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ by

$$f(\boldsymbol{x}) \coloneqq h(g(\boldsymbol{x})) \tag{5}$$

with

$$\operatorname{dom} f = \{ \boldsymbol{x} \in \operatorname{dom} g \mid g(\boldsymbol{x}) \in \operatorname{dom} h \}. \tag{6}$$

Then f is convex if

- h is convex and nondecreasing and g is convex, or
- h is convex and nonincreasing and g is concave.

Proof: First, we prove that f is convex if h is convex and nondecreasing and g is convex.

Let $x, y \in \text{dom } f$, and $t \in [0, 1]$. Since $x, y \in \text{dom } f$, we have $x, y \in \text{dom } g$ and $g(x), g(y) \in \text{dom } h$. From the convexity of dom g, $tx + (1-t)y \in \text{dom } g$. Then, since g is convex, we have

$$g(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \le tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y}). \tag{7}$$

Since $g(\mathbf{x}), g(\mathbf{y}) \in \operatorname{dom} h$ and $\operatorname{dom} h$ is convex, we have $tg(\mathbf{x}) + (1 - t)g(\mathbf{y}) \in \operatorname{dom} h$. Then,

$$tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y}) < \infty. \tag{8}$$

From (7) and (8), we get

$$g(t\boldsymbol{x} + (1-t)\boldsymbol{y}) < \infty, \tag{9}$$

which means $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{\mathbf{dom}} h$. Since $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{\mathbf{dom}} g$ and $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{\mathbf{dom}} h$, we get $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{\mathbf{dom}} f$. Therefore, $\operatorname{\mathbf{dom}} f$ is convex set. Using the assumption that h is nondecreasing and (7), it follows that

$$h(g(t\boldsymbol{x} + (1-t)\boldsymbol{y})) \le h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})). \tag{10}$$

From the convexity of h,

$$h(tg(x) + (1-t)g(y)) \le th(g(x)) + (1-t)h(g(y)).$$
 (11)

From (10) and (11), we get

$$h(g(tx + (1-t)y)) \le th(g(x)) + (1-t)h(g(y)).$$
 (12)

That is

$$f(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \le tf(\boldsymbol{x}) + (1-t)f(\boldsymbol{y}). \tag{13}$$

Then, we have shown that f is convex if h is convex and nondecreasing and g is convex.

Next, we prove that f is convex if h is convex and nonincreasing and g is concave.

$$h(g(tx + (1-t)y)) \le th(g(x)) + (1-t)h(g(y)).$$
 (14)

That is

$$f(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \le tf(\boldsymbol{x}) + (1-t)f(\boldsymbol{y}). \tag{15}$$

Then, we have shown that f is convex if h is convex and nonincreasing and g is cocave.

REFERENCES

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

Email address: j2200071@gunma-u.ac.jp