import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data = pd.read_csv('/content/drive/MyDrive/Datasets/Wholesale customers data.csv')
data.head()

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen	\blacksquare
0	2	3	12669	9656	7561	214	2674	1338	ılı
1	2	3	7057	9810	9568	1762	3293	1776	
2	2	3	6353	8808	7684	2405	3516	7844	
3	1	3	13265	1196	4221	6404	507	1788	
4	2	3	22615	5410	7198	3915	1777	5185	

from sklearn.preprocessing import normalize
data_scaled = normalize(data)
data_scaled = pd.DataFrame(data_scaled, columns=data.columns)
data_scaled.head()

		Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicas
	0	0.000112	0.000168	0.708333	0.539874	0.422741	0.011965	0.149505	0.074
	1	0.000125	0.000188	0.442198	0.614704	0.599540	0.110409	0.206342	0.111
	2	0.000125	0.000187	0.396552	0.549792	0.479632	0.150119	0.219467	0.489
	3	0.000065	0.000194	0.856837	0.077254	0.272650	0.413659	0.032749	0.115
	4	0.000079	0.000119	0.895416	0.214203	0.284997	0.155010	0.070358	0.205
•	•								

data_scaled.shape

(440, 8)

import scipy.cluster.hierarchy as shc
plt.figure(figsize=(10, 7))
plt.title("Dendrogram")
dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))

Dendrogram


```
plt.figure(figsize=(10, 7))
plt.title("Dendrograms")
dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
plt.axhline(y=6, color='r', linestyle='--')
```

Dendrograms

```
12 -
```

```
from sklearn.cluster import AgglomerativeClustering
cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward')
cluster.fit_predict(data_scaled)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglomerative.py:983: Future
 warnings.warn(
array([1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
      0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
      1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
      1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0,
      0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,
      0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
      0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
      0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
      0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
      0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
      1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
      0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
      1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
      1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1,
      1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1])
```

```
plt.figure(figsize=(10, 7))
plt.scatter(data scaled['Milk'], data scaled['Grocery'], c=cluster.labels )
```


ac3 = AgglomerativeClustering(n_clusters = 3, affinity='euclidean', linkage='ward')

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglomerative.py:983: Future
warnings.warn(


```
ac2 = AgglomerativeClustering(n_clusters = 4, affinity='euclidean', linkage='ward')
plt.figure(figsize =(6, 6))
plt.scatter(data_scaled['Milk'], data_scaled['Grocery'], c = ac2.fit_predict(data_scaled)
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_agglomerative.py:983: Future
warnings.warn(

from sklearn.metrics import silhouette_score

```
plt.bar([2,3,4], silhouette_scores)
plt.xlabel('Number of clusters', fontsize = 20)
plt.ylabel('S(i)', fontsize = 20)
plt.show()
```

