OSPF路由协议

www.huawei.com

會前 言

- OSPF(Open Shortest Path First)是IETF组织开发的一个基于 链路状态的内部网关协议(Interior Gateway Protocol)。
- OSPF作为基于链路状态的协议,具有收敛快、路由无环、可 扩展等优点,成为优秀的内部网关协议被快速接受并广泛使 用。

%培训目标

- 学完本课程后,您应该能:
 - □ 描述在OSPF配置过程中出现的参数的意义和作用
 - □ 在NE系列路由器组成的网络中,配置OSPF
 - □ 分析和处理NE系列路由器上OSPF配置过程中出现的常见故障

- 1. OSPF协议概述
- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

1. OSPF协议概述

- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

OSPF基本特点

- 支持无类域间路由(CIDR)
- 无路由自环
- 收敛速度快
- 使用IP组播收发协议数据
- 支持多条等值路由
- 支持协议报文的认证

链路状态算法路由计算过程

OSPF协议概述自测题

- 1. 下面关于OSPF路由协议说法正确的是()。
 - A. OSPF是链路状态算法路由协议
 - B. OSPF 是距离矢量路由协议
 - C. OSPF 是IGP(内部网关协议)
 - D. OSPF 是EGP(外部网关协议)

- 1. OSPF协议概述
- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

AS (Autonomous System)

 在OSPF协议中,一个自治系统(Autonomous System)是指 使用同一种路由协议交换路由信息的一组路由器。

 在上图中,所有的路由器都运行OSPF路由协议,所有运行 OSPF的路由器属于同一个自治系统。

Router ID

 Router ID是用于在自治系统中唯一标识一台运行OSPF的路由 器的32位整数, Router ID的格式和IP地址的格式是一样的。

在本例中,通过命令router id 1.1.1.1配置该路由器的Router ID为1.1.1.1。配置完成后,用命令display router id查看,显示该路由器Router ID为1.1.1.1。

Cost

- OSPF的开销值为一个16位无符号整数,范围为1——65535。
 - 1. 缺省情况下端口的开销值计算方法为108/BW(bps)。
 - 2. 可直接配置OSPF端口的开销值。

3. 可配置带宽参考值,在配置带宽参考值时请注意,必须保证该 进程中所有路由器的带宽参考值一致。

OSPF区域(1/2)

OSPF区域(2/2)

路由器角色

OSPF基本概念自测题

- 1. 在OSPF路由域内,唯一标示OSPF路由器的是()。
 - A. Area ID
 - B. AS号码
 - C. Router ID
 - D. Cost

OSPF基本概念自测题

- 2. 在 OSPF 网络中,以下关于骨干区域的描述正确的是 ()
 - A. 骨干区域号的 Area ID 是 0.0.0.0
 - B. 所有非骨干区域必须与骨干区域相连
 - C. 所有非骨干区域之间不能直接相连
 - D. ABR 连接的区域中至少有一个是骨干区域

OSPF基本概念自测题

- 3. 在OSPF路由域中,引入了外部路由的路由器被称为()
 - A. ABR
 - B. BR
 - C. ASBR
 - D. IR

- 1. OSPF协议概述
- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

3. OSPF路由计算

- 3.1 OSPF协议报文
- 3.2 邻居与邻接关系建立
- 3.3 邻接关系建立与LSDB同步
- 3.4 OSPF路由计算

OSPF报文类型

Туре	报文名称	报文功能
1	Hello	发现和维护邻居关系
2	Database Description	发送链路状态数据库摘要
3	Link State Request	请求特定的链路状态信息
4	Link State Update	发送详细的链路状态信息
5	Link State Ack	发送确认报文

OSPF报文头验证一接口验证

配置纯文本密码"huawei"

[RTA-Ethernet0/0]ospf authentication-mode simple
plain huawei
[RTB-Ethernet0/0]ospf authentication-mode simple
plain huawei

OSPF报文头验证一区域验证

配置纯文本密码"huawei"

Area 1

RTA

RTB

[RTA-ospf-1-area-0.0.0.1] authentication-mode simple plain huawei [RTB-ospf-1-area-0.0.0.1] authentication-mode simple plain huawei

3. OSPF路由计算

- 3.1 OSPF协议报文
- 3.2 邻居与邻接关系建立
- 3.3 邻接关系建立与LSDB同步
- 3.4 OSPF路由计算

邻居(Neighbor)和邻接(Adjacency)

OSPF支持的网络类型一点到点和广播型

OSPF支持的网络类型一NBMA网络

非广播网络-非广播多路访问(NBMA)

OSPF支持的网络类型一点到多点类型

非广播网络 - 点到多点(Point-to-MultiPoint)

常见链路层协议对应的默认网络类型

网络类型	常见链路层协议
Point-to-point	PPP链路; LAPB链路; HDLC链路
Broadcast	以太网链路
NBMA	帧中继链路;ATM链路

DR和BDR

我有三个邻居, 但是 只有两个邻接 **RTA** 10.1.1. 10.1.1.2 Ethernet 10.1.1.3 10.1.1.4 **BDR** DR

DR和BDR的选举

DR和BDR不是人为指定的,而是由本网段中所有的路由器共同选举出来的。路由器接口的DR优先级决定了该接口在选举DR、BDR时所具有的资格。

DR和BDR的选举

由于选举DR与BDR将耗费一定的时间,考虑到对OSPF路由收敛速度的影响,在OSPF实际应用中,通常将广播网及NBMA网络类型修改为点到点类型,避免进行DR与BDR的选举。

```
[RTB-Ethernet0/0] ospf network-type p2p
```

• 各网络类型邻居邻接关系建立情况:

网络类型	是否和邻接建立邻接关系
Point-to-Point	总是和邻居建立邻接关系
Point-to-MultiPoint	总是和邻居建立邻接关系
Broadcast NBMA	DR总是和其他所有路由器包括BDR建立邻接关系; BDR总是和其他所有路由器包括DR建立邻接关系; 处于DROther端口状态的路由器只与DR和BDR建立邻接关系

邻居关系建立过程(1/3)

• 广播网邻居关系的建立:

邻居关系建立过程(2/3)

• 1-way与2-way的区别:路由器收到Hello报文中包含有自己的Router ID就是2-way状态,如果没有包含就是1-way。

```
OSPF Process 1 with Router ID 4.4.4.4

Neighbors

Area 0.0.0.1 interface 10.1.1.4(Ethernet0/0)'s neighbor(s)
RouterID: 1.1.1.1 Address: 10.1.1.1

State: 2 Way Mode: None Priority: 1
DR: 10.1.1.2 BDR: 10.1.1.3
Dead timer expires in 37s
Neighbor has been up for 00:00:00
```

邻居关系建立过程(3/3)

• 点到点网络邻居关系建立过程:

在点到点、点到多点和虚连接的链路上,不需要选举DR和BDR。

3. OSPF路由计算

- 3.1 OSPF协议报文
- 3.2 邻居与邻接关系建立
- 3.3 邻接关系建立与LSDB同步
- 3.4 OSPF路由计算

邻接关系建立过程(1/2)

邻接关系建立过程(2/2)

查看OSPF邻居状态

```
[RTA] display ospf peer
               OSPF Process 1 with Router ID 1.1.1.1
                              Neighbors
 Area 0.0.0.0 interface 10.1.1.1 (Ethernet 0/0) 's neighbor(s)
 RouterID: 2.2.2.2
                         Address: 10.1.1.2
       State: Full Mode: Nbr is Master Priority: 1
       DR: 10.1.1.1 BDR: 10.1.1.2
       Dead timer expires in 35s
       Neighbor has been up for 04:35:02
```

LSDB同步

- 同步的LSDB是OSPF正确计算路由的基础,在邻接关系建立的同时,OSPF路由器完成与邻接路由器的LSDB同步。
- 在邻接关系建立和LSDB同步之后,LSA的更新存在两种形式:
 - □ **周期性更新**——OSPF路由器每隔30分钟将本区域LSDB中的LSA泛 洪给相应区域的邻接路路由器
 - **触发更新**──当网络拓扑发生变化时,路由器将生成新的LSA并 泛洪出去,使网络中的拓扑信息保持正确与一致。

3. OSPF路由计算

- 3.1 OSPF协议报文
- 3.2 邻居与邻接关系建立
- 3.3 邻接关系建立与LSDB同步
- 3.4 OSPF路由计算

什么是LSA?

LS Type	LSA名称	LSA描述		
1	Router-LSA	每一个路由器都会生成。这种LSA描述某区域内路由器端口链路状态的集合。只在所描述的区域内泛洪。		
2	Network-LSA	由DR生成,用于描述广播型网络和NBMA网络。这种LSA 包含了该网络上所连接路由器的列表。只在该网络所属的 区域内泛洪。		
3	Network-Summary- LSA	由区域边界路由器(ABR)产生,描述到AS内部本区域外部某一网段的路由信息,在该LSA所生成的区域内泛洪		
4	ASBR-Summary-LSA	由区域边界路由器(ABR)产生,描述到某一自治系统边界路由器(ASBR)的路由信息,在该LSA所生成的区域内泛洪		
5	AS-external-LSA	由自治系统边界路由器(ASBR)产生,描述到AS外部某 一网段的路由信息,在整个AS内部泛洪		

区域内路由计算

区域间路由计算

AS外部路由计算(1/2)

AS外部路由计算(2/2)

目的网段	Туре	Cost	下一跳
N1	1	101	RTA
N1	2	20	RTB

特殊区域的路由计算一Stub区域(1/3)

特殊区域的路由计算一Stub区域(2/3)

特殊区域的路由计算一Stub区域(3/3)

[RTA] display ospf lsdb

OSPF Process 1 with Router ID 1.1.1.1
Link State Database

Area: 0.0.0.1

Type	LinkState ID	AdvRouter	Age	Len	Sequence	Metric
Router	2.2.2.2	2.2.2.2	165	36	80000004	1
Router	1.1.1.1	1.1.1.1	165	36	80000003	1
Network	10.1.1.2	2.2.2.2	166	32	8000001	0
Sum-Net	0.0.0.0	2.2.2.2	228	28	8000001	1
Sum-Net	10.2.1.0	2.2.2.2	228	28	80000001	1

RTB只通告一条默认路由, 不通告AS-external-LSA 区域间路由信息仍然被通告 到Stub区域中

特殊区域的路由计算一完全Stub区域(1/2)

[RTB-ospf-1-area-0.0.0.1] stub no-summary

特殊区域的路由计算一完全Stub区域(2/2)

[RTA] display ospf lsdb

OSPF Process 1 with Router ID 1.1.1.1

Link State Database

Area: 0.0.0.1

Type	LinkState ID	AdvRouter	Age	Len	Sequence	Metric
Router	2.2.2.2	2.2.2.2	10	36	80000008	1
Router	1.1.1.1	1.1.1.1	10	36	80000008	1
Network	10.1.1.1	1.1.1.1	14	32	8000001	0
Sum-Net	0.0.0.0	2.2.2.2	550	28	80000001	1

只通告一条默认路由 不通告任何区域间路由信息 不通告任何AS-external-LSA

特殊区域的路由计算一Not So Stubby Area (NSSA)

OSPF路由聚合一ABR路由聚合

[RouterA-ospf-1-area-0.0.0.19]abr-summary 19.1.0.0 255.255.0.0

OSPF路由聚合一ASBR路由聚合

[RouterB-ospf-1]asbr-summary 19.1.0.0 255.255.0.0

- 1. OSPF中详细描述路由器的链路状态信息的协议报文是()
 - A. LSR
 - B. LSU
 - C. Router LSA
 - D. AS-External LSA

- 2. 以下那种情况下,两台路由器会建立邻接关系()
 - A. Point-to-Point链路中的两台路由器
 - B. Broadcast网络中的DR和DR other路由器
 - C. Broadcast网络中的DR和BDR路由器
 - D. NBMA网络中的DR other和DR other路由器

- 3. 在建立邻居和邻接关系的时候,表示稳定的邻居状态的是 (),表示稳定的邻接状态的是(),此时LSDB已经 同步。
 - A. Exchange
 - B. Full
 - C. 2-Way
 - D. Init

- 4. OSPF依据()完成区域内路由计算,依据()完成区域间路由计算,依据()完成区域外路由计算。
 - A. Type 1 LSA
 - B. Type 2 LSA
 - C. Type 3 LSA
 - D. Type 4 LSA
 - E. Type 5 LSA

◎目录

- 1. OSPF协议概述
- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

OSPF在城域网中典型应用场景

配置举例—拓扑描述

拓扑中共4台路由器,其中两台作为CR,两台作为AR,每个 AR双上行分别连接至两台CR。

OSPF基础配置步骤

步骤	操作	视图	命令
1	配置router id	[Quidway]	router id router id
2	进入OSPF进程	[Quidway]	ospf process id
3	配置OSPF区域	[Quidway-ospf-1]	area area id
4	通告区域所包	[Quidway -ospf-1-	network ip-address
	含的网段	area-0.0.0.1]	wildcard-mask

基础配置一CR1的配置

基础配置一AR1的配置

基础配置一查看OSPF邻居关系

```
[AR1] display ospf peer
        OSPF Process 1 with Router ID 3.3.3.3
                Neighbors
Area 0.0.0.1 interface 20.1.1.1 (Ethernet0/0/0)'s neighbors
Router ID: 1.1.1.1 Address: 20.1.1.2
  State: Full Mode: Nbr is Slave Priority: 1
  DR: 20.1.1.1 BDR: 20.1.1.2 MTU: 0
  Dead timer due in 34 sec
  Retrans timer interval: 5
  Neighbor is up for 00:19:45
  Authentication Sequence: [ 0 ]
                Neighbors
Area 0.0.0.1 interface 21.1.1.1 (Ethernet 0/0/1)'s neighbors
Router ID: 2.2.2.2 Address: 21.1.1.2
  State: Full Mode: Nbr is Slave Priority: 1
  DR: 21.1.1.1 BDR: 21.1.1.2 MTU: 0
  Dead timer due in 33 sec
  Retrans timer interval: 5
  Neighbor is up for 00:06:21
  Authentication Sequence: [ 0 ]
```

基础配置一查看IP路由表

```
[AR1] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
                         Routes: 15
       Destinations: 13
Destination/Mask
                Proto Pre Cost
                                                               Interface
                                          Flags NextHop
       1.1.1.1/32 OSPF
                         10
                                               20.1.1.2
                                                               Ethernet0/0/0
                              1
                                            D
       2.2.2.2/32 OSPF 10
                                               21.1.1.2
                                                               Ethernet0/0/1
                                            D
       3.3.3.3/32
                   Direct 0
                               ()
                                               127.0.0.1
                                                               InLoopBack0
       4.4.4.4/32
                   OSPF
                          10
                                               21.1.1.2
                                                               Ethernet0/0/1
                                            D
                                               20.1.1.2
                                                               Ethernet0/0/0
                   OSPF
                         10
      10.1.1.0/30
                   OSPF
                         10
                                               20.1.1.2
                                                               Ethernet0/0/0
                                            D
                   OSPF
                          1 0
                                               21.1.1.2
                                                               Ethernet0/0/1
                                            D
      20.1.1.0/30
                   Direct 0
                                               20.1.1.1
                                                               Ethernet0/0/0
      20.1.1.1/32
                   Direct 0
                                               127.0.0.1
                                                               InLoopBack0
      21.1.1.0/30
                   Direct 0
                                               21.1.1.1
                                                               Ethernet0/0/1
                                            \Box
                   Direct 0
                                               127.0.0.1
      21.1.1.1/32
                                                               InLoopBack0
      30.1.1.0/30
                   OSPF 10
                                               20.1.1.2
                                                               Ethernet0/0/0
      31.1.1.0/30
                   OSPF 10
                                                               Ethernet0/0/1
                                               21.1.1.2
                                            D
     127.0.0.0/8
                   Direct 0
                                               127.0.0.1
                                                               InLoopBack0
                                            D
     127.0.0.1/32
                   Direct 0
                                                127.0.0.1
                                                               InLoopBack0
                               0
                                            \Box
```

OSPF路由引入配置

配置任务:在AR1上配置静态路由,并将静态路由引入OSPF。

OSPF路由引入配置一AR1的配置

OSPF路由引入配置一AR1的路由表

```
[AR1] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
      Destinations: 16 Routes: 18
Destination/Mask Proto Pre Cost Flags NextHop
                                                       Interface
                                     D 20.1.1.2
                                                       Ethernet0/0/0
      1.1.1.1/32 OSPF 10 1
      31.1.1.0/30 OSPF 10
                                      D 21.1.1.2
                                                       Ethernet0/0/1
     100.1.1.0/24 Static 60
                                      D 0.0.0.0
                                                       NULLO
     100.1.2.0/24 Static 60
                           0
                                      D 0.0.0.0
                                                        NULLO
     100.1.3.0/24 Static 60
                                      D 0.0.0.0
                                                       NULLO
     127.0.0.0/8 Direct 0
                                      D 127.0.0.1
                                                        InLoopBack0
     127.0.0.1/32 Direct 0
                                      D 127.0.0.1
                                                        InLoopBack0
```

OSPF路由引入配置一AR2的路由表

```
[AR2] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
       Destinations: 16 Routes: 21
Destination/Mask Proto Pre Cost Flags NextHop
                                                          Interface
      31.1.1.2/32 Direct 0 0
                                            127.0.0.1
                                                          InLoopBack0
     100.1.1.0/24 O ASE 150 1
                                          30.1.1.1
                                                          Ethernet0/0/1
                  O ASE 150
                                        D 31.1.1.1
                                                          Ethernet0/0/0
     100.1.2.0/24 O ASE 150
                                        D 30.1.1.1
                                                          Ethernet0/0/1
                  O ASE 150
                                        D 31.1.1.1
                                                          Ethernet0/0/0
                 O ASE 150
                                        D 30.1.1.1
                                                          Ethernet0/0/1
     100.1.3.0/24
                                                          Ethernet0/0/0
                 O ASE 150
                                        D 31.1.1.1
     127.0.0.0/8 Direct 0
                                        D 127.0.0.1
                                                           InLoopBack0
     127.0.0.1/32 Direct 0
                                        D 127.0.0.1
                                                           InLoopBack0
```

OSPF路由聚合配置

• 将上一任务配置的静态路由在AR1上聚合成一条路由。

OSPF路由聚合配置一AR2的路由表

```
[AR2] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
      Destinations: 14 Routes: 17
Destination/Mask Proto Pre Cost Flags NextHop
                                                       Interface
     31.1.1.2/32 Direct 0
                                      D 127.0.0.1
                                                       InLoopBack0
                                      D 30.1.1.1
                                                       Ethernet0/0/1
     100.1.0.0/16 O ASE 150 2
                O ASE 150 2
                                      D 31.1.1.1
                                                       Ethernet0/0/0
     127.0.0.0/8 Direct 0
                                      D 127.0.0.1
                                                       InLoopBack0
     127.0.0.1/32 Direct 0
                                      D 127.0.0.1
                                                       InLoopBack0
```

OSPF特殊区域配置一NSSA区域配置(1/7)

配置任务:在城域网网络结构中,要求AR2上不接收CR路由器引入的外部路由,但可以引入用户网络的静态路由,因此将Area2配置成NSSA。

OSPF特殊区域配置一NSSA区域配置(2/7)

CR2上的NSSA基本配置:

OSPF特殊区域配置一NSSA区域配置(3/7)

AR2上的NSSA基本配置:

OSPF特殊区域配置一NSSA区域配置(4/7)

• AR2的路由表

```
[AR2] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
      Destinations: 15 Routes: 18
Destination/Mask Proto Pre Cost
                                    Flags NextHop
                                                       Interface
                                    D 31.1.1.1
      0.0.0.0/0 O NSSA 150 1
                                                     Ethernet0/0/0
                O NSSA 150 1 D 30.1.1.1
                                                      Ethernet0/0/1
      1.1.1.1/32 OSPF
                      10 1
                               D 30.1.1.1
                                                      Ethernet0/0/1
      127.0.0.1/32 Direct 0
                                       D 127.0.0.1
                                                        InLoopBack0
                            0
      200.1.1.0/24 Static 60
                                       D 0.0.0.0
                                                        NUTITIO
```

OSPF特殊区域配置一NSSA区域配置(5/7)

• AR2上的外部路由引入配置:

OSPF特殊区域配置一NSSA区域配置(6/7)

• CR2的路由表:

OSPF特殊区域配置一NSSA区域配置(7/7)

• AR1的路由表:

OSPF网络安全配置接口验证(1/2)

• AR1与CR1之间配置OSPF接口验证。

OSPF网络安全配置接口验证(2/2)

CR1的邻接状态信息:

```
[CR1]display ospf peer
        OSPF Process 1 with Router ID 1.1.1.1
                 Neighbors
Area 0.0.0.0 interface 10.1.1.1 (Ethernet 0/0/1) 's neighbors
  Authentication Sequence: [ 0 ]
                Neighbors
Area 0.0.0.1 interface 20.1.1.2 (Ethernet0/0/0) 's neighbors
Router ID: 3.3.3.3
                             Address: 20.1.1.1
  State: Full Mode: Nbr is Master Priority: 1
  DR: 20.1.1.1 BDR: 20.1.1.2 MTU: 0
  Dead timer due in 33 sec
  Retrans timer interval: 5
  Neighbor is up for 00:00:06
  Authentication Sequence: [ 3799]
```

OSPF接口cost值修改(1/3)

AR1与CR1之间配置OSPF接口验证。

OSPF接口cost值修改(2/3)

• AR1的路由信息(修改Cost值之前):

```
[AR1] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
                         Routes: 20
       Destinations: 17
Destination/Mask Proto Pre Cost
                                          Flags NextHop
                                                               Interface
       1.1.1.1/32 OSPF 10
                                                20.1.1.2
                                                               Ethernet0/0/0
                               1
       2.2.2.2/32
                  OSPF
                          10
                                                21.1.1.2
                                                               Ethernet0/0/1
                                            D
       3.3.3/32
                  Direct 0
                                               127.0.0.1
                                                               InLoopBack0
       4.4.4.4/32
                   OSPF
                                                21.1.1.2
                                                               Ethernet0/0/1
                          10
                   OSPF
                          10
                                                20.1.1.2
                                                               Ethernet0/0/0
      10.1.1.0/30
                  OSPF
                          10
                                                20.1.1.2
                                                               Ethernet0/0/0
                                            D
                   OSPF
                                                               Ethernet0/0/1
                          10
                                                21.1.1.2
      30.1.1.0/30
                                                20.1.1.2
                  OSPF
                          10
                                                               Ethernet0/0/0
                                            D
      31.1.1.0/30
                   OSPF
                          10
                                                21.1.1.2
                                                               Ethernet0/0/1
     200.1.1.0/24
                   O ASE
                         150
                                                21.1.1.2
                                                               Ethernet0/0/1
                                                20.1.1.2
                                                               Ethernet0/0/0
                         150
                   O ASE
```

OSPF接口cost值修改(3/3)

AR1的路由信息(修改Cost值之后):

```
[AR1] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
       Destinations: 17 Routes: 17
Destination/Mask Proto Pre Cost
                                       Flags NextHop
                                                           Interface
       1.1.1.1/32 OSPF 10
                                             20.1.1.2
                             100
                                                           Ethernet0/0/0
                                                           Ethernet0/0/0
       2.2.2.2/32 OSPF 10
                            101
                                             20.1.1.2
       3.3.3/32
                 Direct 0
                            Ω
                                            127.0.0.1
                                                           InLoopBack0
       4.4.4.4/32 OSPF 10
                            101
                                             20.1.1.2
                                                           Ethernet0/0/0
                                             20.1.1.2
                                                           Ethernet0/0/0
      10.1.1.0/30
                            101
                 OSPF
                        10
                                             20.1.1.2
      30.1.1.0/30 OSPF
                        10
                           101
                                                           Ethernet0/0/0
      31.1.1.0/30 OSPF
                        10
                            102
                                             20.1.1.2
                                                           Ethernet0/0/0
     200.1.1.0/24
                  O ASE 150 1
                                             20.1.1.2
                                                           Ethernet0/0/0
```

OSPF快速收敛配置(1/3)

• CR1的配置

OSPF快速收敛配置(2/3)

• AR1的配置

OSPF快速收敛配置(3/3)

AR1的OSPF 邻接状态:

```
[AR1]display ospf peer
         OSPF Process 1 with Router ID 3.3.3.3
                Neighbors
 Area 0.0.0.1 interface 20.1.1.1 (Ethernet0/0/0) 's neighbors
Router ID: 1.1.1.1 Address: 20.1.1.2
  State: Full Mode: Nbr is Slave Priority: 1
  DR: None BDR: None MTU: 0
  Dead timer due in 8 sec
  Retrans timer interval: 4
  Neighbor is up for 00:01:17
  Authentication Sequence: [ 15488]
                 Neighbors
 Area 0.0.0.1 interface 21.1.1.1 (Ethernet0/0/1) 's neighbors
                           Address: 21.1.1.2
Router ID: 2.2.2.2
  State: Full Mode: Nbr is Slave Priority: 1
  DR: 21.1.1.1 BDR: 21.1.1.2 MTU: 0
  Dead timer due in 35 sec
  Retrans timer interval: 4
  Neighbor is up for 04:18:16
  Authentication Sequence: [ 0 ]
```


- 1. OSPF协议概述
- 2. OSPF基本概念
- 3. OSPF路由计算
- 4. NE路由器OSPF配置
- 5. OSPF协议上机练习

上机练习—拓扑描述

 在如上拓扑中,配置OSPF,其中AR所接用户网络使用 Loopback1,Loopback2,Loopback3模拟。

上机任务

任务	描述
1	按照拓扑中区域规划运行OSPF路由协议,完成设备间的各网段互
	联互通。
2	用户网段不能直接发布到OSPF中,需要作为外部路由注入OSPF,
	且在注入前需将连续网段聚合。
3	将Area2配置成OSPF特殊区域,要求CR路由器上的外部路由不能
	注入area2,但是不影响area2内注入其所连接的用户网段。
4	合理设置各链路的开销值,使AR路由器上行链路实现主备备份;
	且区域间流量不穿越骨干链路。
5	设置各链路的OSPF报文认证以提高网络的安全性。
6	合理设置OSPF网络类型及定时器以提高OSPF收敛。

- 本课程介绍的主要内容包括:
 - 。OSPF基本概念
 - 。OSPF路由计算过程
 - □ 在NE系列路由器上配置OSPF

谢谢

www.huawei.com