IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant(s):

KAGAWA, Shuichi and SUGIURA, Hiroaki

Application No.:

Group:

Filed:

October 13, 2000

Examiner:

For:

COLOR CONVERSION DEVICE AND METHOD OF MANUFACTURING THE

SAME

LETTER

Assistant Commissioner for Patents Box Patent Application Washington, D.C. 20231

October 13, 2000 1190-0467P

Sir:

Under the provisions of 35 USC 119 and 37 CFR 1.55(a), the applicant hereby claims the right of priority based on the following application(s):

Country

Application No.

Filed

JAPAN

291897/99

10/14/99

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. 1.16 or under 37 C.F.R. 1.17; particularly, extension of time fees.

Respectfully submitted,

Best Available Copy

MICHAEL K. MUTTER

Reg. No. 29, 80

P. O. Box 747

Falls Church, Virginia 22040-0747

BIRCH, STEWART, KOLASCH & BIRCH, LLP

Attachment (703) 205-8000 /rem

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

KAGAWA etal. October 13,2000 Birch, Stewart, Kolasch J-Birch, UP 703-205-8000 1190-467P

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed th this Office.

出願年月日 late of Application:

1999年10月14日

· 願 番 号

平成11年特許顯第291897号

類 人

三菱電機株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

Best Available Copy

2000年 9月18日

特許庁長官 Commissioner, Patent Office

特平11-291897

【書類名】

特許願

【整理番号】

520841JP01

【提出日】

平成11年10月14日

【あて先】

特許庁長官 殿

【国際特許分類】

H04N 1/40

H04N 1/60

【発明者】

【住所又は居所】

東京都千代田区丸の内二丁目2番3号 三菱電機株式会

社内

【氏名】

香川 周一

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目2番3号 三菱電機株式会

社内

【氏名】

杉浦 博明

【特許出願人】

【識別番号】 000006013

【氏名又は名称】 三菱電機株式会社

【代理人】

【識別番号】

100102439

【弁理士】

【氏名又は名称】

宮田 金雄

【選任した代理人】

【識別番号】 100103894

【弁理士】

【氏名又は名称】 家入 健

【選任した代理人】

【識別番号】 100092462

【弁理士】

【氏名又は名称】 高瀬 彌平

特平11-291897

【手数料の表示】

【予納台帳番号】 011394

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

不要

【書類名】 明細書

【発明の名称】 色変換装置及び色変換方法

【特許請求の範囲】

【請求項1】 赤、緑、青の3色で表現する画像データR、G、Bを画素毎に色変換する色変換装置において、画素毎の画像データにおける最大値βと最小値αを算出する算出手段と、画像データと上記算出手段からの出力である最大値βと最小値αにより色相データr、g、bおよびy、m、cを算出する色相データ算出手段と、上記色相データ算出手段からの出力である各色相データを用いた第1の比較データを生成する手段と、上記第1の比較データを生成する手段からの出力である第1の比較データを用いた第2の比較データを生成する手段と、マトリクス係数を記憶する係数記憶手段を備え、該係数記憶手段に対し所定の係数を設定する係数設定手段を備えるとともに、上記第1の比較データを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第2の比較データと、上記色相データ算出手段からの色相データ、および上記算出手段からの最小値αを用いて、上記係数記憶手段からの係数によるマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする色変換装置。

【請求項3】 上記最大値 β と最小値 α を算出する算出手段が画像データ R 、G、Bより補色データC(シアン)、M(マゼンタ)、Y(イエロー)を求め 、上記補色データC、M、Yにおける最大値βと最小値αを算出する手段を備え 、上記色相データ算出手段が画像データR、G、Bより補色データC、M、Yを 求め、上記補色データC、M、Yと上記算出手段からの出力である最大値βと最 小値 α からの減算処理 $r = \beta - C$ 、 $g = \beta - M$ 、 $b = \beta - Y$ および $y = Y - \alpha$ 、 m=M-α、c=C-αにより色相データr、g、bおよびy、m、cを算出す る手段を備えるとともに、上記第1の比較データを生成する手段が、色相データ r、g、b間およびy、m、c間における比較データを求める手段を備え、上記 第2の比較データを生成する手段が、上記第1の比較データを生成する手段から の出力である第1の比較データに所定の演算係数を乗算する乗算手段と、上記乗 算手段からの出力を用いた比較データを求める手段とを備え、上記第1の比較デ ータを生成する手段からの第1の比較データと、上記第2の比較データを生成す る手段からの第2の比較データと、上記色相データ算出手段からの色相データ、 および上記算出手段からの最小値αを用いて、マトリクス演算を行うことにより 色変換された画像データを得ることを特徴とする請求項1記載の色変換装置。

【請求項4】 上記第1の比較データを生成する手段が、色相データ r、 g、 b、 y、 m、 cを用いて、第1の比較データ h 1 r = m i n (m、 y)、 h 1 g = m i n (y、 c)、 h 1 b = m i n (c、 m)、 h 1 c = m i n (g、 b)、 h 1 m = m i n (b、 r)、 h 1 y = m i n (r、 g) (m i n (A、 B) は A、 Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データ h 1 r、 h 1 g、 h 1 b、 h 1 c、 h 1 m、 h 1 yを用いて、第2の比較データ h 2 r y = m i n (a q 1 × h 1 y、 a p 1 × h 1 r)、 h 2 r m = m i n (a q 2 × h 1 m、 a p 2 × h 1 r)、 h 2 g y = m i n (a q 3 × h 1 y、 a p 3 × h 1 g)、 h 2 g c = m i n (a q 4 × h 1 c、 a p 4 × h 1 g)、 h 2 b m = m i n (a q 5 × h 1 m、 a p 5 × h 1 b)、 h 2 b c = m i n (a q 6 × h 1 c、 a p 6 × h 1 b)を求めるとともに、上記係数記憶手段から該係数記憶手段に記憶されている所定のマトリクス係数E i j (i = 1 ~ 3、 j = 1 ~ 12

)を発生し、色相データと、上記第1の比較データと、第2の比較データおよび 上記算出手段の出力である最小値αに対し、式(1)のマトリクス演算式により マトリクス演算を行うことにより色変換された画像データを得ることを特徴とす る請求項1または2に記載の色変換装置。

【数1】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1r \\ h1g \\ h1b \\ h1c \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (1)$$

【請求項5】 上記第1の比較データを生成する手段が、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m=min(b、r)、h1y=min(r、g)(min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、上記係数記憶手段から該係数記憶手段に記憶されている所定のマトリクス係数Eij(i=1~3、j=1~12)を発生し、色相データと、上記第1の比較データと、第2の比較データおよび

上記算出手段の出力である最小値αに対し、式(2)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項1または3に記載の色変換装置。

【数2】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h l m \\ h l y \\ h 2ry \\ h 2rm \\ h 2gy \\ h 2gc \\ h 2bm \\ h 2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

上記第1の比較データを生成する手段が、色相データr、g 【請求項 6.】 、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1 g = min(y, c), hlb = min(c, m), hlc = min(g, b)hlm = min(b, r), hly = min(r, g) (min(A, B)はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成 する手段が、上記第1の比較データh1r、h1g、h1b、h1c、h1m、 hlyを用いて、第2の比較データh2ry=min (aq1×hly、ap1 \times h1r), h2rm=min (aq2 \times h1m, ap2 \times h1r), h2g $y=min (aq3 \times h1y, ap3 \times h1g), h2gc=min (aq4$ \times hlc, ap $4\times$ hlg), h2bm=min (aq $5\times$ h1m, ap $5\times$ h 1 b)、 h 2 b c = m i n (a q 6×h 1 c、a p 6×h 1 b) を求めると ともに、上記係数記憶手段から、該係数記憶手段に記憶されている所定のマトリ クス係数Eij ($i=1\sim3$ 、 $j=1\sim3$)とFij ($i=1\sim3$ 、 $j=1\sim1$ 3) を発生し、色相データと、上記第1の比較データと、第2の比較データおよ び上記算出手段の出力である最小値αに対し、式(3)のマトリクス演算式によ りマトリクス演算を行うことにより色変換された画像データを得ることを特徴と する請求項1または2に記載の色変換装置。

【数3】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{pmatrix} h \\ h \\ h \end{pmatrix} y \\ h \\ 2ry \\ h \\ 2gy \\ h \\ 2gc \\ h \\ 2bm \\ h \\ 2bc \\ \alpha \end{bmatrix} \cdots \vec{\Xi} (3)$$

【請求項7】 上記第1の比較データを生成する手段が、色相データr、 g 、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1 g = min (y, c), h1b = min (c, m), h1c = min (g, b)hlm = min(b, r), hly = min(r, g) (min(A, B)はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成 する手段が、上記第1の比較データhlr、hlg、hlb、hlc、hlm、 hlyを用いて、第2の比較データh2ry=min (aq1×hly、ap1 \times h1r), h2rm=min (aq2 \times h1m, ap2 \times h1r), h2g $y = min (aq3 \times h1y, ap3 \times h1g), h2gc = min (aq4$ \times h1c, ap4 \times h1g), h2bm=min (aq5 \times h1m, ap5 \times hlb)、 h2bc=min (aq6×hlc、ap6×hlb)を求めると ともに、上記係数記憶手段から、該係数記憶手段に記憶されている所定のマトリ クス係数Eij ($i=1\sim3$ 、 $j=1\sim3$)とFij ($i=1\sim3$ 、 $j=1\sim1$ 3) を発生し、色相データと、上記第1の比較データと、第2の比較データおよ び上記算出手段の出力である最小値αに対し、式(4)のマトリクス演算式によ りマトリクス演算を行うことにより色変換された画像データを得ることを特徴と する請求項1または3に記載の色変換装置。

【数4】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{bmatrix} h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{x} (4)$$

【請求項8】 上記係数記憶手段が、式(5)の所定のマトリクス係数Eij ($i=1\sim3$ 、 $j=1\sim3$)を発生することを特徴とする請求項1 乃至7 のいずれかに記載の色変換装置。

【数5】

$$Eij = \begin{bmatrix} 1 & 00 \\ 0 & 10 \\ 0 & 01 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (5)$$

【請求項9】 上記第2の比較データを生成する手段における、各第1の比較データに所定の演算係数 a q 1~a q 6および a p 1~a p 6を乗算する乗算手段が、演算係数 a q 1~a q 6および a p 1~a p 6を1、2、4、8、…となる整数値とし、ビットシフトにより各第1の比較データと上記演算係数との演算を行うことを特徴とする請求項1乃至8のいずれかに記載の色変換装置。

【請求項10】 上記画像データにおける最大値 β と最小値 α を算出する算出手段が、画像データを用いて最大値 β と最小値 α を算出するとともに、最大お

よび最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成し出力する手段を備え、上記算出手段から出力される識別符号に基づき、上記第1の比較データを生成する手段において第1の比較データを生成し、上記係数記憶手段から、該係数記憶手段に記憶されているマトリクス係数を発生するとともに、上記算出手段からの識別符号に応じて上記係数記憶手段からの係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得ることを特徴とする請求項1乃至9のいずれかに記載の色変換装置。

【請求項11】 赤、緑、青の3色で表現する画像データR、G、Bを画素毎に色変換する色変換方法において、画素毎の画像データにおける最大値βおよび最小値αを算出し、上記画像データと上記最大値βおよび最小値αにより色相データr、g、bおよびy、m、cを算出し、上記各色相データを用いて第1の比較データを生成し、該第1の比較データを用いて第2の比較データを生成し、マトリクス係数を記憶し、該マトリクス係数に対する所定の係数を設定するとともに、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値αを用いて、上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする色変換方法。

【請求項12】 入力された画像データR、G、Bと上記最大値 β および最小値 α とからの減算処理 $r=R-\alpha$ 、 $g=G-\alpha$ 、 $b=B-\alpha$ および $y=\beta-B$ 、 $m=\beta-G$ 、 $c=\beta-R$ により色相データr、g、bおよびy、m、cを算出するとともに、上記色相データr、g、b間およびy、m、c間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項11に記載の色変換方法。

【請求項13】 画像データR、G、Bより補色データC(シアン)、M(マゼンタ)、Y(イエロー)を求め、上記補色データC、M、Yにおける最大値βおよび最小値αを算出し、上記画像データR、G、Bより補色データC、M、Yを求め、上記補色データC、M、Yと上記最大値βおよび最小値αとからの減

算処理 r = β - C、g = β - M、b = β - Yおよび y = Y - α、m = M - α、c = C - αにより色相データ r、g、bおよび y、m、cを算出するとともに、上記色相データ r、g、b間および y、m、c間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、第2の比較データ、上記色相データおよび上記最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項11に記載の色変換方法。

【請求項14】 色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y=min(r、g)(min(A、B)はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~12)とを発生し、色相データ、上記第1の比較データ、上記第2の比較データおよび上記最小値αに対し、式(1)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項11または12に記載の色変換方法。

【数6】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1n \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (1)$$

色相データr、g、b、y、m、cを用いて、第1の比較 【請求項15】 \vec{r} -gh1r=min(m,y),h1g=min(y,c),h1b=min(c, m), h1c=min(g, b), h1m=min(b, r), h1y= min (r、g) (min (A、B) はA、Bの最小値を示す。) を求め、 上記第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用い て、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、 $h2rm=min (aq2 \times h1m, ap2 \times h1r), h2gy=min ($ $aq3 \times h1y$, $ap3 \times h1g$), $h2gc=min(aq4 \times h1c$, a $p4 \times h1g$), $h2bm=min(aq5 \times h1m, ap5 \times h1b)$, h 2bc=min (aq6×h1c、ap6×h1b) を求め、記憶されている所 定のマトリクス係数Eij($i=1\sim3$ 、 $j=1\sim3$)とFij($i=1\sim3$ 、 j=1~12) とを発生し、上記色相データ、上記第1の比較データ、上記第2 の比較データおよび最小値αに対し、式(2)のマトリクス演算式によりマトリ クス演算を行うことにより色変換された画像データを得ることを特徴とする請求 項11または13に記載の色変換方法。

【数7】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{bmatrix} hlr \\ hlg \\ hlb \\ hlc \\ hlm \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

【請求項16】 色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y = min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)とを発生し、上記色相データ、上記第1の比較データと、上記第2の比較データおよび最小値αに対し、式(3)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項11または12記載の色変換方法。

【数8】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} hlr \\ hlb \\ hlc \\ hlm \\ hly \\ h2ry \\ h2gr \\ h2gr \\ h2br \\ h2br \\ a \end{bmatrix} \cdots \vec{x} (3)$$

【請求項17】 色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)とを発生し、色相データ、上記第1の比較データ、上記第2の比較データおよび最小値αに対し、式(4)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする請求項11または13に記載の色変換方法。

【数9】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{x} (4)$$

【請求項18】 式(5)の所定のマトリクス係数Eij($i=1\sim3$ 、 $j=1\sim3$)を発生することを特徴とする請求項11乃至17のいずれかに記載の色変換方法。

【数10】

$$Eij = \begin{bmatrix} 1 & 00 \\ 0 & 10 \\ 0 & 01 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (5)$$

【請求項19】 各第1の比較データに所定の演算係数aq1~aq6およびap1~ap6を乗算する際、演算係数aq1~aq6およびap1~ap6を1、2、4、8、…となる整数値とし、ビットシフトにより各第1の比較データと上記演算係数との演算を行うことを特徴とする請求項11乃至18のいずれかに記載の色変換方法。

【請求項20】 画像データを用いて最大値βと最小値αを算出するとともに、最大および最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成して出力し、該識別符号に基づ

き、第1の比較データを生成し、記憶されているマトリクス係数を発生するとともに、上記識別符号に応じて上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得ることを特徴とする請求項11乃至19のいずれかに記載の色変換方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、プリンタやビデオプリンタ、スキャナ等のフルカラー印刷関連機器、コンピュータグラフィックス画像を作成する画像処理機器、あるいはモニター等の表示装置等に使用するデータ処理に係わり、中でも赤/緑/青の3色で表現する画像データを使用機器等に合わせて色変換処理する色変換方法および装置に関する。

[0002]

【従来の技術】

印刷における色変換は、インクが純色でないことによる混色性や印画の非線形性で発生する画質劣化を補正し、良好な色再現性を持つ印刷画像を出力するために必須の技術である。また、モニター等の表示装置においても、入力された色信号を表示する際、使用条件等に合わせ所望の色再現性をもつ画像を出力(表示)するため、色変換処理が行われている。

[0003]

従来、上記のような場合での色変換方式には、テーブル変換方式とマトリクス 演算方式の2種類がある。

[0004]

テーブル変換方式の代表的な例として三次元ルックアップテーブル方式があるが、この方式は、赤と緑と青(以下、「R、G、B」と記す。)で表現した画像データを入力し、ROMなどのメモリに予め記憶しているR、G、Bの画像データあるいはイエローとマゼンタとシアン(以下、「Y、M、C」と記す。)の補色データを求める方法であり、任意の変換特性を採用できるため、色再現性に優れた色変換を実行できる長所がある。

[0005]

しかし、画像データの組合せ毎にデータを記憶させる単純な構成では、約400Mbitの大容量メモリになる。例えば、特開昭63-227181号公報には、メモリ容量の圧縮法法を開示しているが、それでも約5Mbitになる。したがって、この方式には、変換特性毎に大容量メモリを必要とするため、LSI化が困難な課題と、使用条件等の変更に柔軟に対応できないと言う課題がある。

[0006]

一方、マトリクス演算方式は、例えばR、G、Bの画像データよりY、M、C の印刷データを求める場合は、下記の式(27)が基本演算式である。

[0007]

【数11】

$$\begin{bmatrix} Y \\ M \\ C \end{bmatrix} = (Aij) \begin{bmatrix} R \\ G \\ B \end{bmatrix} \qquad \cdots \neq (27)$$

[0008]

227, $i = 1 \sim 3$, $j = 1 \sim 37$

[0009]

しかし、式(27)の単純な線形演算では、印画等の非線形性により良好な変換特性を実現できない。

[0010]

上記の変換特性を改良した方法が、特公平2-30226号公報の色補正演算 装置に開示されており、下記の式(28)のマトリクス演算式を採用している。

[0011]

【数12】

$$\begin{bmatrix} Y \\ M \\ C \end{bmatrix} = (Dij) \begin{bmatrix} R \\ G \\ B \\ R \times G \\ G \times B \\ B \times R \\ R \times R \\ G \times G \\ B \times B \\ N \end{bmatrix}$$
 …式 (28)

[0012]

ここで、Nは定数、 $i=1\sim3$ 、 $j=1\sim10$ である。

[0013]

上記式(28)は、無彩色成分と色成分が混在する画像データを直接使用する ため、演算の相互干渉が発生する。つまり、係数を1つ変更すると、着目してい る成分または色相以外にも影響を与え、良好な変換特性を実現できないという課 題がある。

[0014]

また、特開平7-170404号公報の色変換方法は、この解決策を開示している。図15は、特開平7-170404号公報におけるR、G、B画像データを印刷データC、M、Yに変換する色変換方法を示すブロック回路図であり、100は補数器、101はαβ算出器、102は色相データ算出器、103は多項式演算器、104はマトリクス演算器、105は係数発生器、106は合成器である。

[0015]

次に、動作を説明する。補数器100は、画像データR、G、Bを入力とし、1の補数処理した補色データCi、Mi、Yiを出力する。 α β 算出器101は、この補色データの最大値 β と最小値 α および各データを特定する識別符号Sを出力する。

[0016]

色相データ算出器 102 は、補色データC i、M i、Y i と最大値 β と最小値 α を入力とし、 $r=\beta-C$ i、 $g=\beta-M$ i、 $b=\beta-Y$ i および y=Y i $-\alpha$ 、m=M i $-\alpha$ 、c=C i $-\alpha$ の減算処理によって、6 つの色相データ r、g、b、y、m、c を出力する。ここで、これら 6 つの色相データは、この中の少なくとも 2 つがゼロになる性質がある。

[0017]

なお、以降の説明においては、積を表すのに、図中、アスターリスク(*)を 用いることもある。

[0018]

係数発生器105は、識別信号Sの情報をもとに、多項式データの演算係数U (Fij)と固定係数U (Eij)を発生する。マトリクス演算器104は、色相データy、m、cと多項式データT1~T4および係数Uを入力とし、下記の式(29)の演算結果を色インクデータC1、M1、Y1として出力する。

[0019]

【数13】

$$\begin{bmatrix} C1\\ M1\\ Y1 \end{bmatrix} = (Eij) \begin{bmatrix} c\\ m\\ y \end{bmatrix} + (Fij) \begin{bmatrix} c\\ m \\ b \times r \\ c \times m/(c+m) \\ m \times y/(m+y) \\ y \times c/(y+c) \\ r \times g/(r+g) \\ g \times b/(g+b) \\ b \times r/(b+r) \end{bmatrix} \cdots \stackrel{?}{\operatorname{I}} (29)$$

[0020]

合成器106は、色インクデータC1、M1、Y1と無彩色データである α を加算し、印刷データC、M、Yを出力する。したがって、印刷データを求める演算式は、式 (30)となる。

[0021]

【数14】

$$\begin{bmatrix} C1\\ M1\\ Y1 \end{bmatrix} = (Eij) \begin{bmatrix} c\\ m\\ y \end{bmatrix} + (Fij) \begin{bmatrix} c\\ m \times y\\ y \times c\\ r \times g\\ g \times b\\ b \times r\\ c \times m/(c+m)\\ m \times y/(m+y)\\ y \times c/(y+c)\\ r \times g/(r+g)\\ g \times b/(g+b)\\ b \times r/(b+r) \end{bmatrix} + \begin{bmatrix} \alpha\\ \alpha\\ \alpha\\ \alpha \end{bmatrix} \quad \dots \stackrel{*}{\Longrightarrow} (30)$$

[0022]

なお、式(30)では、画素集合に対する一般式を開示している。

[0023]

ここで、図16(A)~(F)は、赤(R)、青(G)、緑(B)、イエロー(Y)、シアン(C)、マゼンタ(M)の6つの色相と色相データッ、m、c、r、g、bの関係を模式的に示した図であり、各色相データは、3つの色相に関与している。また、図17(A)~(F)は、上記6つの色相と乗算項y×m、r×g、c×y、g×b、m×c、b×rの関係を模式的に示した図であり、それぞれ6つの色相のうち特定の色相に関与していることが分かる。

[0024]

したがって、式(30)における6つの乗算項 $y \times m$ 、 $m \times c$ 、 $c \times y$ 、 $r \times g$ 、 $g \times b$ 、 $b \times r$ は、それぞれ赤、青、緑、イエロー、シアン、マゼンタの6つの色相のうち特定の色相にのみ関与し、つまり、赤に対しては $y \times m$ 、青に対しては $m \times c$ 、緑に対しては $c \times y$ 、イエローに対しては $r \times g$ 、シアンに対しては $g \times b$ 、マゼンタに対しては $b \times r$ のみが有効な乗算項となる。

[0025]

また、式(30) における6つの乗除算項 $y \times m / (y + m)$ 、 $m \times c / (m + c)$ 、 $c \times y / (c + y)$ 、 $r \times g / (r + g)$ 、 $g \times b / (g + b)$ 、 $b \times r / (b + r)$ についても、それぞれ6つの色相のうち、特定の色相にのみ関与することとなる。

[0026]

以上より、上述の図15における色変換方法によると、特定の色相に関与する 乗算項および乗除算項に係る係数を変化させることにより、着目している色相の みを、他の色相に影響を与えることなく、調整できる。

[0027]

また、上記の乗算項は、彩度に対して2次的な演算となり、乗除算項は、彩度に対して1次的な演算となる。したがって、乗算項と乗除算項を共に用いることにより、彩度に対する印画などの非線形性をも補正することができる。

[0028]

但し、この色変換法においても、好みに応じて、特定の色相の色空間に占める 領域の拡大または縮小が望まれる場合、具体的には、マゼンタ~赤~イエローと 変化する色空間において、赤の占める領域の拡大または縮小が望まれるような場合に、この要求を満たすことが出来ない。

[0029]

【発明が解決しようとする課題】

従来の色変換方法または色変換装置は、ROMなどのメモリによる三次元ルックアップテーブルテーブル変換方式で構成されている場合は、大容量メモリが必要になり、変換特性を柔軟に変更することができない問題点があり、また、マトリクス演算方式で構成される場合は、着目する色相のみを調整できるが、赤、青、緑、イエロー、シアン、マゼンタの6つ色相間の変化の度合いを補正できないため、全色空間において良好な変換特性を実現できない問題点があった。

[0030]

この発明は上記のような問題点を解消するためになされたもので、画像データR、G、Bを画素毎に色変換する色変換方法および色変換装置において、赤、青、緑、イエロー、シアン、マゼンタの6つの色相に加え、更に赤〜イエロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の6つの色相間の領域を独立に補正することにより、上記6つの色相間の変化の度合いをも補正でき、また変換特性を柔軟に変更でき、しかも3次元ルックアップテーブルのごとき大容量メモリを必要としない色変換方法または色変換装置を得ることを目的とする。

[0031]

【課題を解決するための手段】

この発明に係る色変換装置は、入力画像データR、G、Bに関して、最大値 β と最小値 α を算出する算出手段と、入力画像データR、G、Bと上記算出手段からの出力である最大値 β と最小値 α により色相データr、g、b および y、m、c を算出する色相データ算出手段と、上記色相データ算出手段からの出力である各色相データを用いた第1の比較データを生成する手段と、上記第1の比較データを生成する手段と、立即1の比較データを生成する手段と、マトリクス係数を記憶する係数記憶手段と、該係数記憶手段に対し所定の係数を設定する係数設定手段を備えるとともに、上記第1の比較デ

ータを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第2の比較データと、上記色相データ算出手段からの色相データ、および上記算出手段からの最小値αを用いて、上記係数記憶手段からの係数によるマトリクス演算を行うことにより色変換された画像データを得る。ここで、上記係数設定手段は、係数書き込み信号により、上述した係数を設定あるいは、変更可能とするものである。

[0032]

また、この発明に係る色変換装置は、上記最大値βと最小値αを算出する算出手段が入力画像データR、G、Bにおける最大値βと最小値αを算出する手段を備え、上記色相データ算出手段が入力された画像データR、G、Bと上記算出手段からの出力である最大値βと最小値αからの減算処理 r=R-α、g=G-α、b=B-αおよびy=β-B、m=β-G、c=β-Rにより色相データr、g、bおよびy、m、cを算出する手段を備えるとともに、上記第1の比較データを生成する手段が、色相データr、g、b間およびy、m、c間における比較データを求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データを生成する手段からの出力である第1の比較データに所定の演算係数を乗算する乗算手段と、上記乗算手段からの出力を用いた比較データを求める手段とを備え、上記第1の比較データを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第2の比較データと、上記色相データ算出手段からの色相データ、および上記算出手段からの最小値αを用いて、マトリクス演算を行うことにより色変換された画像データを得る。

[0033]

また、この発明に係る色変換装置は、上記最大値 β と最小値 α を算出する算出手段が画像データ R、G、B より補色データ C、M、Y を求め、上記補色データ C、M、Y における最大値 β と最小値 α を算出する手段を備え、上記色相データ 算出手段が画像データ R、G、B より補色データ C、M、Y を求め、上記補色データ C、M、Y と上記算出手段からの出力である最大値 β と最小値 α からの減算処理 $r=\beta-C$ 、 $g=\beta-M$ 、 $b=\beta-Y$ および $y=Y-\alpha$ 、 $m=M-\alpha$ 、 $c=C-\alpha$ により色相データ r、g、b および y、m、c を算出する手段を備えると

ともに、上記第1の比較データを生成する手段が、色相データ r、 g、 b 間および y、 m、 c 間における比較データを求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データを生成する手段からの出力である第1の比較データに所定の演算係数を乗算する乗算手段と、上記乗算手段からの出力を用いた比較データを求める手段とを備え、上記第1の比較データを生成する手段からの第1の比較データと、上記第2の比較データを生成する手段からの第2の比較データと、上記色相データ算出手段からの色相データ、および上記算出手段からの最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得る。

[0034]

また、この発明に係る色変換装置は、上記第1の比較データを生成する手段が 、色相データェ、g、b、y、m、cを用いて、第1の比較データh1r=mi n (m, y), h 1 g = m i n (y, c), h 1 b = m i n (c, m), h 1 c=min (g, b), h1m= min (b, r), h1y= min (r, g) (min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2 の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b 、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(ag $1 \times h 1 y$, $a p 1 \times h 1 r$), $h 2 r m = m i n (a q 2 \times h 1 m, a p 2)$ \times h1r), h2gy=min (aq $3\times$ h1y, ap $3\times$ h1g), h2g $c=min (aq4 \times h1c, ap4 \times h1g), h2bm=min (aq5)$ \times h 1 m, a p 5 \times h 1 b), h 2 b c = m i n (a q 6 \times h 1 c, a p 6 \times h 1 b) を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶され た所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~ 3、j=1~12)を発生し、色相データと、上記第1の比較データと、第2の 比較データおよび上記算出手段の出力である最小値αに対し、式(1)のマトリ クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 る。

[0035]

【数15】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1r \\ h1g \\ h1b \\ h1c \\ h1m \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (1)$$

[0036]

また、この発明に係る色変換装置は、上記第1の比較データを生成する手段が 、色相データァ、g、b、y、m、cを用いて、第1の比較データh1r=mi n (m, y), h 1 g = m i n (y, c), h 1 b = m i n (c, m), h 1 c= min(g, b), hlm = min(b, r), hly = min(r, g)(min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2 の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b 、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq $1 \times h 1 y$, $ap 1 \times h 1 r$), $h 2 r m = m i n (aq 2 \times h 1 m, ap 2)$ \times h1r), h2gy=min (aq3 \times h1y, ap3 \times h1g), h2g $c = min (aq4 \times h1c, ap4 \times h1g), h2bm = min (aq5)$ \times h 1 m, ap 5 \times h 1 b), h 2 b c = m in (aq 6 \times h 1 c, ap 6 \times hlb)を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶され た所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~ 3、 j=1~12) を発生し、色相データと、上記第1の比較データと、第2の 比較データおよび上記算出手段の出力である最小値αに対し、式(2)のマトリ クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 る。

[0037]

【数16】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{bmatrix} hlr \\ hlb \\ hlc \\ hlm \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (2)$$

[0038]

また、この発明に係る色変換装置は、上記第1の比較データを生成する手段が、色相データ r、g、b、y、m、cを用いて、第1の比較データ h 1 r = m i n (m、y)、h 1 g = m i n (y、c)、h 1 b = m i n (c、m)、h 1 c = m i n (g、b)、h 1 m = m i n (b、r)、h 1 y = m i n (r、g) (m i n (A、B) はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データ h 1 r、h 1 g、h 1 b、h 1 c、h 1 m、h 1 y を 用いて、第2の比較データ h 2 r y = m i n (a q 1×h 1 y、a p 1×h 1 r)、h 2 r m = m i n (a q 2×h 1 m、a p 2×h 1 r)、h 2 g y = m i n (a q 3×h 1 y、a p 3×h 1 g)、h 2 g c = m i n (a q 4×h 1 c、a p 4×h 1 g)、h 2 b m = m i n (a q 5×h 1 m、a p 5×h 1 b)、h 2 b c = m i n (a q 6×h 1 c、a p 6×h 1 m、a p 5×h 1 b)、h 2 b c = m i n (a q 6×h 1 c、a p 6×h 1 b)を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶された所定のマトリクス係数 E i j (i = 1~3、j = 1~3)と F i j (i = 1~3、j = 1~13)を発生し、色相データと、上記第1の比較データと、第2の比較データおよび上記算出手段の出力である最小値 α に対し、式 (3)のマトリ

クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 る。

[0039]

【数17】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{pmatrix} h1r \\ h1g \\ h1b \\ h1c \\ h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix}$$
... $\stackrel{\bigstar}{\bigstar}$ (3)

[0040]

また、この発明に係る色変換装置は、上記第1の比較データを生成する手段が、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g)(min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶された所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~

3、j=1~13)を発生し、色相データと、上記第1の比較データと、第2の 比較データおよび上記算出手段の出力である最小値αに対し、式(4)のマトリ クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 る。

[0041]

【数18】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \\ y \end{bmatrix} + (Fij) \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix}$$
 ... $\stackrel{\bigstar}{\bigstar}$ (4)

[0042]

また、この発明に係る色変換装置は、上記係数記憶手段が、該係数記憶手段に記憶された式(5)の所定のマトリクス係数Eij($i=1\sim3$ 、 $j=1\sim3$)を発生する。

[0043]

【数19】

$$Eij = \begin{bmatrix} 1 & 00 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (5)$$

[0044]

また、この発明に係る色変換装置は、上記第2の比較データを生成する手段における、各第1の比較データに所定の演算係数aq1~aq6およびap1~ap6を1p6を乗算する乗算手段が、演算係数aq1~aq6およびap1~ap6を1、2、4、8、…となる整数値とし、ビットシフトにより各第1の比較データと上記演算係数との演算を行う。

[0045]

また、この発明に係る色変換装置は、上記入力画像データR、G、Bにおける最大値βと最小値αを算出する算出手段が、画像データを用いて最大値βと最小値αを算出するとともに、最大および最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成し出力する手段を備え、上記算出手段から出力される識別符号に基づき、上記比較データを生成する手段において比較データを生成し、上記係数記憶手段から、該係数記憶手段に記憶されたマトリクス係数を発生するとともに、上記算出手段からの識別符号に応じて上記係数記憶手段からの係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得る。

[0046]

この発明に係る色変換方法は、赤、緑、青の3色で表現する画像データR、G、Bを画素毎に色変換する色変換方法において、画素毎の画像データにおける最大値βおよび最小値αを算出し、上記画像データと上記最大値βおよび最小値αにより色相データr、g、bおよびy、m、cを算出し、上記各色相データを用いて第1の比較データを生成し、該第1の比較データを用いて第2の比較データを生成し、マトリクス係数を記憶し、該マトリクス係数に対する所定の係数を設定するとともに、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値αを用いて、上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする。

[0047]

この発明に係る色変換方法は、入力された画像データR、G、Bと上記最大値 β および最小値 α とからの減算処理 $r=R-\alpha$ 、 $g=G-\alpha$ 、 $b=B-\alpha$ および $y=\beta-B$ 、 $m=\beta-G$ 、 $c=\beta-R$ により色相データr、 g、 b および g、 m

、cを算出するとともに、上記色相データr、g、b間およびy、m、c間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とする。

[0048]

この発明に係る色変換方法は、画像データR、G、Bより補色データC(シアン)、M(マゼンタ)、Y(イエロー)を求め、上記補色データC、M、Yにおける最大値βおよび最小値αを算出し、上記画像データR、G、Bより補色データC、M、Yを求め、上記補色データC、M、Yと上記最大値βおよび最小値αとからの減算処理 r = β - C、g = β - M、b = β - Yおよび y = Y - α、m = M - α、c = C - αにより色相データr、g、bおよびy、m、cを算出するとともに、上記色相データr、g、b間およびy、m、c間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、第2の比較データ、上記色相データおよび上記最小値αを用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とする。

[0049]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)と

Fij(i=1~3、j=1~12)とを発生し、色相データ、上記第1の比較データ、上記第2の比較データおよび上記最小値αに対し、式(1)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする。

[0050]

【数20】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{pmatrix} hlm \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (1)$$

[0051]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、上記第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求め、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~12)とを発生し、上記色相データ、上記第1の比較デー

タ、上記第2の比較データおよび最小値αに対し、式(2)のマトリクス演算式 によりマトリクス演算を行うことにより色変換された画像データを得ることを特 徴とする。

[0052]

【数21】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{vmatrix} hlm \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

[0053]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g)(min(A、B)はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)と下ij(i=1~3、j=1~13)とを発生し、上記色相データ、上記第1の比較データと、上記第2の比較データおよび最小値αに対し、式(3)のマトリ

クス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とする。

[0054]

【数22】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{pmatrix} hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix}$$
... $\stackrel{\bigstar}{\Rightarrow}$ (3)

[0055]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)とを発生し、色相データ、上記第1の比較データ、上記第2の比較データおよび最小値αに対し、式(4)のマトリクス演

算式によりマトリクス演算を行うことにより色変換された画像データを得ること を特徴とする。

[0056]

【数23】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \overrightarrow{R} (4)$$

[0057]

この発明に係る色変換方法は、式 (5) の所定のマトリクス係数 Eij (i=1~3) を発生することを特徴とする。

[0058]

【数24】

$$Eij = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \cdots \quad \vec{\mathbf{x}} \quad (5)$$

[0059]

この発明に係る色変換方法は、各第1の比較データに所定の演算係数aq1~aq6およびap1~ap6を乗算する際、演算係数aq1~aq6およびap1~ap6を1、2、4、8、…となる整数値とし、ビットシフトにより各第1の比較データと上記演算係数との演算を行うことを特徴とする。

[0060]

この発明に係る色変換方法は、画像データを用いて最大値 B と最小値 α を算出するとともに、最大および最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成して出力し、該識別符号に基づき、第1の比較データを生成し、記憶されているマトリクス係数を発生するとともに、上記識別符号に応じて上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得ることを特徴とする。

[0061]

【発明の実施の形態】

以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。 実施の形態 1.

図1はこの発明の一実施形態による色変換方法および色変換装置の構成の一例を示すブロック図である。図において、1は入力された画像データR、G、Bの最大値βと最小値αを算出し、各データを特定する識別符号S1を生成して出力するαβ算出手段、2は画像データR、G、Bと上記αβ算出手段1からの出力より色相データr、g、b、y、m、cを算出する色相データ算出手段、3は多項式演算手段、4はマトリクス演算器、5は係数記憶手段、6は合成手段、15は、係数設定手段である。

[0062]

また、図2は、上記多項式演算手段3の一構成例を示すブロック図である。図において、7は入力された色相データのうちゼロとなるデータを除去するゼロ除去手段、9a、9b、9cは入力されたデータの最小値を選択し出力する最小値選択手段、11は上記αβ算出手段1からの識別符号に基づき、係数記憶手段に記憶された係数を選択し出力する演算係数選択手段、10a、10bは上記演算係数選択手段11から出力される演算係数と、最小値選択手段9a及び9bの出力との乗算を行う演算手段である。

[0063]

次に動作について説明する。赤、緑、青の三色に対応した入力信号Ri、Gi

、Biは、 $\alpha\beta$ 算出手段1および色相データ算出手段2へと送られ、 $\alpha\beta$ 算出手段1は、入力画像データRi、Gi、Biの最大値 β と最小値 α を算出して出力するとともに、入力画像データRi、Gi、Biのうち最大値となるデータと最小値となるデータを特定する識別符号S1を生成し出力する。色相データ算出手段2は、入力画像データRi、Gi、Biと上記 $\alpha\beta$ 算出手段1からの出力である最大値 β と最小値 α を入力とし、 $r=Ri-\alpha$ 、 $g=Gi-\alpha$ 、 $b=Bi-\alpha$ および $y=\beta-Bi$ 、 $m=\beta-Gi$ 、 $c=\beta-Ri$ の減算処理を行い、6つの色相データr、g、b、y、m、c を出力する。

[0064]

このとき、上記 α β 算出手段 1 において算出される最大値 β 、最小値 α は、 β = MAX (Ri、Gi、Bi)、 α = MIN (Ri、Gi、Bi)であり、色相データ第出手段 2 において算出される 6 つの色相データ r、g、b、y、m、c は、r = Ri $-\alpha$ 、g = Gi $-\alpha$ 、b = Bi $-\alpha$ および y = β - Bi、m = β - Gi、c = β - Riの減算処理によって得られているので、これら 6 つの色相データは、この中の少なくとも 2 つがゼロになる性質がある。例えば、最大値 β が Ri、最小値 α が Gi である場合(β = Ri、 α = Gi)は、上記の減算処理より g = 0 および c = 0 となり、また、最大値 β が Ri、最小値 α が Bi である場合(β = Ri、 α = Bi)は、 α = Bi)は、 α = α + α +

[0065]

したがって、上記αβ算出手段1においては、6つの色相データのうちゼロとなるデータを特定する識別符号S1を生成し出力する。この識別符号S1は、最大値βと最小値αがRi、Gi、Biのうちどれであるかにより、データを特定する6種類の識別符号S1を生成することができる。図3は識別符号S1とRi、Gi、Biにおける最大値βと最小値αおよびゼロとなる色相データの関係を示す図である。なお、図中の識別符号S1の値はその一例を示すものであり、この限りではなく、他の値であってもよい。

[0066]

次に、色相データ算出手段2からの出力である6つの色相データr、g、bおよびy、m、cは多項式演算手段3へと送られ、また、r、g、bについてはマトリクス演算手段4へも送られる。多項式演算手段3には上記αβ算出手段1から出力される識別符号S1も入力されており、r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作を図2に従って説明する。

[0067]

多項式演算手段3において、色相データ算出手段2からの色相データと α β算出手段からの識別符号S1はゼロ除去手段7へと入力される。ゼロ除去手段7では、識別符号S1に基づき、r、g、b中でゼロでない2つのデータQ1、Q2とy、m、c中でゼロでない2つのデータP1、P2を出力する。Q1、Q2、P1、P2は、例えば図4に示すように決定され、出力される。例えば図3、4から、識別符号S1=0となる場合、r、bからQ1、Q2が、y、mからP1、P2が得られ、Q1=r、Q2=r0、r1 、r2=r2 とりて出力する。なお、上記図3と同様、図4中の識別符号S1の値はその一例を示すものであり、この限りではなく、他の値であってもよい。

[0068]

また、最小値選択手段9 aでは、上記ゼロ除去手段7からの出力データQ1、Q2のうちの最小値T4=min(Q1,Q2)を選択して出力し、最小値選択手段9 bでは、上記ゼロ除去手段7からの出力データP1、P2のうちの最小値T2=min(P1,P2)を選択して出力する。最小値選択手段9 a および9 b から出力されるT4 およびT2が、第1の比較データである。

[0069]

演算係数選択手段11には上記αβ算出手段1からの識別符号S1が入力され、演算手段10a、10bにおいて第1の比較データT4およびT2に対し乗算を行うための係数記憶手段に記憶された演算係数aq、apを示す信号を識別符号S1に基づき選択し、演算手段10aへ演算係数aqを、演算手段10bへは演算係数apを出力する。なお、この演算係数aq、apはそれぞれ識別符号S1に応じて6種類与えられる。演算手段10aでは上記最小値選択手段9aから

の第1の比較データT4が入力され、演算係数選択手段11により選択された演算係数aqと第1の比較データT4による乗算aq×T4を行い、その出力を最小値選択手段9cへ送り、演算手段10bでは上記最小値選択手段9bからの第1の比較データT2が入力され、演算係数選択手段11からの演算係数apと第1の比較データT2による乗算ap×T2を行い、その出力を最小値選択手段9cへ送る。

[0070]

最小値選択手段9cでは、演算手段10aおよび10bからの出力の最小値T5=min(ap×T2、aq×T4)を選択して出力する。最小値選択手段9cから出力されるT5が、第2の比較データである。以上、上述した多項式データT2、T4、T5が、多項式演算手段3の出力である。そして、この多項式演算手段3の出力はマトリクス演算手段4へと送られる。

[0071]

一方、図1の係数記憶手段5は、識別符号S1に基づき、該係数記憶手段に記憶された多項式データの演算係数U(Fij)と固定係数U(Eij)を出力し、マトリクス演算手段4へと送る。マトリクス演算手段4は、上記色相データ算出手段2からの色相データ r、g、bと多項式演算手段3からの多項式データT2、T4、T5、係数設定手段5からの係数Uを入力とし、下記の式(6)の演算結果を画像データR1、G1、B1として出力する。

[0072]

【数25】

$$\begin{bmatrix} R1 \\ G1 \\ B1 \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} T2 \\ T4 \\ T5 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (6)$$

[0073]

なお、式(6) において、(Eij)では $i=1\sim3$ 、 $j=1\sim3$ 、(Fij)では $i=1\sim3$ 、 $j=1\sim3$ である。

[0074]

ここで、図5は、上記マトリクス演算手段4における部分的な一構成例を示す ブロック図であり、R1を演算し出力する場合について示している。図において 、12a、12c、12e、12fは乗算手段、13a、13d、13eは加算 手段である。

[0075]

次に、図5の動作を説明する。乗算手段12a、12c、12e、12fは、色相データrと多項式演算手段3からの多項式データT2、T4、T5と係数発生手段5からの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力する。加算手段13aは、各乗算手段12c、12eの出力である積を入力とし、入力データを加算し、その和を出力する。加算手段13dは加算手段13aからの出力と乗算手段12fの出力を加算する。そして加算手段13eは加算手段13dの出力と乗算手段12aの出力を加算して、総和を画像データR1として出力する。なお、図5の構成例において、色相データrをgまたはbに置換すれば、画像データG1、B1を演算できる。

[0076]

本実施の形態による色変換方法あるいは、色変換装置の演算速度が問題になる場合には、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用されるので、図5の構成をr、g、bに対し並列に3つ使用すれば、より高速なマトリクス演算が可能になる。

[0077]

合成手段 6 は、上記マトリクス演算手段 4 からの画像データ R 1 、 G 1 、 B 1 と上記 α β 算出手段 1 からの出力である無彩色データを示す最小値 α が入力され、加算を行い、画像データ R 、 G 、 B を出力する。よって、上記図 1 の色変換方法により色変換された画像データ R 、 G 、 B を求める演算式は、式 (1) となる

[0078]

【数26】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1r \\ h1g \\ h1b \\ h1c \\ h1y \\ h2ry \\ h2rv \\ h2gv \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (1)$$

[0079]

ここで、(Eij)ではi=1~3、j=1~3、(Fij)ではi=1~3、j=1~12であり、h1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g)、h2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)であり、aq1~aq6およびap1~ap6は上記図2における演算係数選択手段11において選択される演算係数である。

[0080]

なお、式(1)の演算項と図1における演算項の数の違いは、図1における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、式(1)は画素集合に対する一般式を開示している点にある。つまり、式(1)の多項式データは、1画素について、12個のデータを3個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。

[0081]

また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像 データでは全ての多項式データが有効になる。

[0082]

図6(A)~(F)は、6つの色相(赤、イエロー、緑、シアン、青、マゼンタ)と色相データッ、m、c、r、g、bの関係を模式的に示したものであり、 各色相データはそれぞれ3つの色相に関与している。

例えば、図6(A)に示すyであれば、赤、イエロー、緑の3つの色相に関与する。

[0083]

上記式(6)と式(1)は、各色相の1つだけに有効な第1の比較データを含んでいる。この第1の比較データは、h1r=min(y,m)、h1y=min(r,g)、h1g=min(c,y)、h1c=min(g,b)、h1b=min(m,c)、h1m=min(b,r)の6つである。図7(A)~(F)は、6つの色相と第1の比較データh1r、h1y、h1g、h1c、h1b、h1mの関係を模式的に示したものであり、各第1の比較データが特定の色相に関与していることが分かる。

[0084]

例えば、Wを定数として、赤に対してはr=W、 g=b=0なので、 y=m=W、 c=0となる。したがって、min(y,m)=Wとなり、他の5つの第 1の比較データは全てゼロになる。つまり、赤に対しては、h1r=min(y,m)のみが有効な第1の比較データになる。同様に、緑にはh1g=min(c,y)、青にはh1b=min(m,c)、シアンにはh1c=min(g,b)、マゼンタにはh1m=min(b,r)、イエローにはh1y=min(r,g)だけが有効な第1の比較データとなる。

[0085]

図8 (A) ~ (F) は、6つの色相と、第2の比較データh2ry=min (h1y, h1r)、h2gy=min (h1y, h1g)、h2gc=min (h1c, h1g)、h2bc=min (h1c, h1b)、h2bm=min (h1m, h1b)、h2rm=min (h1m, h1r)の関係を模式的に示し

たものであり、上記式(1)でのh2ry=min(aq1×h1y、ap1×h1r)、h2gy=min(aaa×h1y、ap3×h1g)、h2gc=min(aa4×h1g)、h2bc=min(aa6×h1c、ap4×h1g)、h2bc=min(aa6×h1c、ap6×h1b)、h2bm=min(aa5×h1m、ap5×h1b)、h2rm=min(aa2×h1m、ap2×h1r)における演算係数aa1~aa6およびap1~ap6の値を1とした場合について示している。図8のそれぞれより、各第2の比較データが赤~イエロー、イエロー~緑、緑~シアン、シアン~青、青~マゼンタ、マゼンタ~赤の6つの色相間の中間領域の変化に関与していることが分かる。つまり、赤~イエローに対しては、b=c=0であり、h2ry=min(h1y,h1r)= min(min(r,g),min(y、m))を除く他の5項は全てゼロになる。よって、h2ryのみが有効な第2の比較データになり、同様に、イエロー~緑にはh2gy、緑~シアンにはh2gc、シアン~青にはh2bc、青~マゼンタにはh2bm、マゼンタ~赤にはh2rmだけが有効な第2の比較データとなる。

[0086]

また、図9(A) \sim (F)は上記式(6)および式(1)でのhry、hrm、hgy、hgc、hbm、hbcにおける演算係数 $aq1\sim aq6$ および $ap1\sim ap6$ を変化させた場合の6つの色相と第2の比較データの関係を模式的に示したものであり、図中の破線 $a1\sim a6$ で示す場合は、 $aq1\sim aq6$ を $ap1\sim ap6$ より大きい値とした場合の特性を示し、破線 $b1\sim b6$ で示す場合は、 $ap1\sim ap6$ を $aq1\sim aq6$ より大きい値とした場合の特性を示している

[0087]

すなわち、赤〜イエローに対してはh2ry=min(ag1×h1y,ap 1×h1r)のみが有効な第2の比較データであるが、例えばag1とap1の 比を2:1とすると、図9(A)での破線a1のように、ピーク値が赤よりに関 与する比較データとなり、赤〜イエローの色相間における赤に近い領域に有効な 比較データとすることができる。一方、例えばag1とap1の比を1:2とす ると、図9(A)での破線b1のような関係となり、ピーク値がイエローよりに 関与する比較データとなり、赤~イエローの色相間におけるイエローに近い領域に有効な比較データとすることができる。同様に、イエロー~緑にはh2gyにおけるaq3、ap3を、緑~シアンにはh2gcにおけるaq4、ap4を、シアン~青にはh2bcにおけるaq6、ap6を、青~マゼンタにはh2bmにおけるaq5、ap5を、マゼンタ~赤にはh2rmにおけるaq2、ap2を変化させることにより、それぞれの色相間の領域においても、その有効となる領域を変化させることができる。

[0088]

図10(a)および(b)は、6つの色相および色相間領域と有効な演算項の関係を示している。よって、係数記憶手段5において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算手段3における演算係数選択手段11で選択される係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる。

[0089]

ここで、上記図1による実施の形態1での係数記憶手段5での係数の一例を述べる。式(5)は、上記係数記憶手段5において発生する係数U(Eij)の一例を示している。

[0090]

【数27】

$$Eij = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (5)$$

[0091]

上記の場合で係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。また、下記式(7)では、係数U(Fij)の係数において、第1の比較データと第2の比較データに係わる係数を例えばArl~ Ar3、A

特平11-291897

y1~ Ay3、Ag1~ Ag3、 Ac1~ Ac3、Ab1~ Ab3、Am1~ Am3、およびAry1~Ary3、Agy1~Agy3、Agc1~Agc3、Abc1~Abc3、Abm1~Abm3、Arm1~Arm3に示す値とした場合を示す。

[0092]

【数28】

… 式(7)

[0093]

上記においては、第1の比較データと第2の比較データにより補正を行うので、線形的に色相または、色相間の領域のみの調整を行え、変化させたい色相または色相間の領域に関する1次演算項に係わる係数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を行える。例えば、赤に関するh1rに係わる係数Ar1~Ar3を設定すれば、赤の色相を変化させ、赤~イエローの色相間の割合を変化させるにはh2ryに係わる係数Ary1~Ary3を用いることとなる。

[0094]

また、多項式演算手段3において、h2ry=min (aq1×h1y、ap1×h1r)、h2rm=min (aq2×h1m、ap2×h1r)、h2gy=min (aq3×h1y、ap3×h1g)、h2gc=min (aq4×h1c、ap4×h1g)、h2bm=min (aq5×h1m、ap5×h1

b)、h2bc=min(aq6×h1c、ap6×h1b)における演算係数 $aq1\sim aq6$ および $ap1\sim ap6$ の値を1、2、4、8、 \cdots の整数値で変化 させれば、演算手段10aおよび10bにおいてビットシフトにより乗算を行うことができる。

[0095]

以上より、特定の色相に関与する第1の比較データおよび第2の比較データに係る係数を変化させることにより、係数U (Fij)の係数を独立に補正して、上記6つの色相間の変化の度合いをも補正できる。よって、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換方法または色変換装置を得ることができる。

[0096]

なお、上記実施の形態 1 では、入力画像データR、G、Bをもとに色相データ r、g、bおよび y、m、cと最大値 β 、最小値 α を算出して各色相に係わる演 算項を得て、マトリクス演算後、画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、R、G、Bを補色データC、M、Yに変換してもよく、上記と同様の効果を奏する。

[0097]

また、上記実施の形態1では、ハードウェアにより図1の構成の処理を行う場合について説明しているが、ソフトウェアなどにより同様の処理を行う色変換方法としても効果的であるは言うまでもなく、上記実施の形態1と同様の効果を奏する。上記係数記憶手段に関して、その構成は、ランダムアクセスメモリ、リードオンリーメモリ、いわゆるレジスタなど、所期の値の係数を設定できるものであれば、その種類、構成はいずれであっても良い。

[0098]

実施の形態 2.

実施の形態1では、入力画像データR、G、Bをもとに色相データr、g、b および y、m、cと最大値 β 、最小値 α を算出して各色相に係わる演算項を得て、マトリクス演算後、画像データR、G、Bを得る場合として説明したが、入力画像データR、G、Bを補色データC、M、Yに変換後、入力を補色データC、

M、Yとして色変換を行うように構成することもできる。

[0099]

図11はこの発明の実施形態2による色変換方法および色変換装置の構成の一例を示すブロック図である。図において、3、4、5、6、15は上記実施の形態1の図1におけるものと同一のものであり、14は補数手段、1bは補色データの最大値 β と最小値 α および色相データを特定するための識別符号S1を生成する α β 算出手段、2bは上記補数手段14からの補色データC、M、Yと α β 算出手段1bからの出力より色相データr、g、b、y、m、cを算出する色相データ算出手段である。

[0100]

次に、動作を説明する。補数手段14は、画像データR、G、Bを入力とし、 1の補数処理した補色データCi、Mi、Yiを出力する。 α β 算出手段1bでは、この補色データの最大値 β と最小値 α および各色相データを特定するための 識別符号S1を出力する。

[0101]

[0102]

次に、色相データ算出手段 2 b からの出力である 6 つの色相データ r 、 g 、 b および y 、 m 、 c は多項式演算手段 3 へと送られ、また、 c 、 m 、 y についてはマトリクス演算手段 4 へも送られる。多項式演算手段 3 には上記 α β 算出手段 1

bから出力される識別符号S1も入力されており、 r、g、b中でゼロでない2つのデータQ1、Q2と、y、m、c中でゼロでない2つのデータP1、P2を選択して演算を行うのであるが、この動作は上記実施の形態1における図2の動作と同一であるので、その詳細な説明は省略する。

そして、この多項式演算手段3の出力はマトリクス演算手段4へと送られ、係数発生手段5は、識別符号S1に基づき、多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリクス演算手段4へと送る。マトリクス演算手段4は、上記色相データ算出手段2bからの色相データc、m、yと多項式演算手段3からの多項式データT2、T4、T5、係数発生手段5からの係数Uを入力とし、下記の式(8)の演算結果を画像データC1、M1、Y1として出力する。

[0104]

【数29】

$$\begin{bmatrix} C1\\ M1\\ Y1 \end{bmatrix} = (Eij) \begin{bmatrix} c\\ m\\ y \end{bmatrix} + (Fij) \begin{bmatrix} T2\\ T4\\ T5 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (8)$$

[0105]

なお、式(8) において(Eij) では $i=1\sim3$ 、 $j=1\sim3$ 、(Fij) では $i=1\sim3$ 、 $j=1\sim5$ である。

[0106]

なお、マトリクス演算手段4における動作は、上記実施の形態1における図5において、入力される色相データをc(またはm、y)とし、C1(またはM1、Y1)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。

[0107]

合成手段6は、上記マトリクス演算手段4からの補色データC1、M1、Y1 と上記αβ算出手段1bからの出力である無彩色データを示す最小値αが入力さ

44

れ、加算を行い、画像データC、M、Yを出力する。よって、上記図11の色変換方法により色変換された画像データC、M、Yを求める演算式は、式(2)となる。

[0108]

【数30】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{bmatrix} h1n \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

[0109]

ここで、式 (2) において (Eij) では $i=1\sim3$ 、 $j=1\sim3$ 、 (Fij) では $i=1\sim3$ 、 $j=1\sim1$ 2であり、h1r=min (m、y)、h1g=min (y, c)、h1b=min (c, m)、h1c=min (g, b)、h1m=min (g, g) 、h1g=min (g) 、h1g=min (g) 、h1g=min (g) 、h1g=min (g) 、g) 、g0 、g1 × g2 × g3 × g4 × g3 × g4 × g3 × g4 × g5 × g6 × g6 × g8 × g9 × g9

[0110]

なお、式(2)の演算項と図11における演算項の数の違いは、図11におけ

る演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、式(2)は画素集合に対する一般式を開示している点にある。つまり、式(2)の多項式データは、1 画素について、1 2 個のデータを3 個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。

[0111]

また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像 データでは全ての多項式データが有効になる。

[0112]

そして、上記式(2)の多項式演算手段による演算項は、実施の形態1における式(1)の演算項と同一であり、したがって、6つの色相および色相間領域と有効な演算項の関係は図10(a)および(b)に示す場合と同一となる。よって、実施の形態1と同様、係数発生手段5において、調整したい色相または色相間の領域に有効な演算項に係わる係数を変化させれば、その着目する色相のみを調整でき、色相間の変化の度合いをも補正することができる。また、多項式演算手段3における演算係数選択手段11での係数を変化させれば、色相間領域での演算項が有効となる領域を他の色相に影響することなく変化させることができる

[0113]

ここで、上記実施の形態2での係数記憶手段5での係数の一例としては、上記 実施の形態1の場合と同様、式(5)による係数U(Eij)となり、係数U(Fij)の係数を全てゼロとすると、色変換を実施しない場合となる。また、式 (7)に示す係数U(Fij)の係数において、第1の比較データと第2の比較 データに係わる係数により補正を行うことで、色相または色相間の領域のみの調 整を行え、変化させたい色相または色相間の領域に関する1次演算項に係わる係 数を定め、他の係数をゼロとすれば、その色相または色相間の領域のみの調整を 行える。

[0114]

以上より、特定の色相に関与する第1の比較データに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相において着目

している色相のみを、他の色相に影響を与えることなく調整でき、更に、第2の 比較データに係る係数を変化させることにより、赤~イエロー、イエロー~緑、 緑~シアン、シアン~青、青~マゼンタ、マゼンタ~赤の6つの色相間の領域を 独立に補正して、上記6つの色相間の変化の度合いをも補正できる。よって、変 換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変換方法また は色変換装置を得ることができる。

[0115]

なお、上記実施の形態2では、ハードウェアにより図11の構成の処理を行う場合について説明しているが、ソフトウェアなどにより同様の処理を行う色変換方法としても効果的であるは言うまでもなく、上記実施の形態2と同様の効果を奏する。上記係数記憶手段に関して、その構成は、ランダムアクセスメモリ、リードオンリーメモリ、いわゆるレジスタなど、所期の値の係数を設定できるものであれば、その種類、構成はいずれであっても良い。

[0116]

実施の形態3.

実施の形態1ではマトリクス演算手段4における部分的な一構成例を図5に示すブロック図であるとし、式(1)に示すように、色相データと各演算項および無彩色データであるR、G、Bの最小値αを加算して画像データR、G、Bを出力するよう構成したが、図12に示すように、係数発生手段において無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。

[0117]

図12はこの発明の実施形態3による色変換方法および色変換装置の構成の一例を示すブロック図である。図において、1、2、3、15は上記実施の形態1の図1におけるものと同一のものであり、4bはマトリクス演算手段、5bは係数記憶手段である。

[0118]

次に動作を説明する。入力データより $\alpha\beta$ 算出手段1 において最大値 β 、最小値 α および識別符号S1を求め、色相データ算出手段2により6つの色相データ

を算出し、多項式演算手段3において演算項を求める動作は上記実施の形態1と同一であるのでその詳細な説明は省略する。

[0119]

図12の係数記憶手段5bは、識別符号S1に基づき、該係数記憶手段に記憶された多項式データの演算係数U(Fij)と固定係数U(Eij)を出力し、マトリクス演算手段4bな、上記色相データ算出手段2からの色相データr、g、bと多項式演算手段3からの多項式データT2、T4、T5、αβ算出手段1からの最小値αおよび係数発生手段5bからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の式(9)を使用し、無彩色成分を調整する。

[0120]

【数31】

$$\begin{bmatrix} R1 \\ G1 \\ B1 \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} T2 \\ T4 \\ T5 \\ \alpha \end{bmatrix} \qquad \cdots \quad \Re (9)$$

[0121]

なお、式 (9) において (E i j) では $i=1\sim3$ 、 $j=1\sim3$ 、 (F i j) では $i=1\sim3$ 、 $j=1\sim4$ である。

[0122]

ここで、図13はマトリクス演算手段4bの部分的な構成例を示すブロック図であり、図13において、12a、12c、12e、12f、13a、13d、13eは上記実施の形態1でのマトリクス演算手段4と同一のものであり、12gは図1における α β算出手段1からの無彩色成分を示す最小値 α と係数発生手段5bからの係数Uを入力とし、その乗算を行う乗算手段、13fは加算手段である。

[0123]

次に、図13の動作を説明する。乗算手段12a、12c、12e、12fは

、色相データェと多項式演算手段3からの多項式データT2、T4、T5と係数発生手段5bからの係数U(Eij)およびU(Fij)を入力とし、それぞれの積を出力し、加算手段13a、13d、13eにおいて、それぞれの積および和を加算するのであるが、その動作は実施の形態1におけるマトリクス演算手段4での動作と同一である。乗算手段12gには、αβ算出手段1からの無彩色成分に相当するR、G、Bデータの最小値αと係数記憶手段5bからの係数U(Fij)が入力されて乗算を行い、その積を加算手段13fへと出力し、加算手段13fで上記加算手段13eからの出力と加算して、総和を画像データRの出力Rとして出力する。なお、図13の構成例において、色相データェをgまたはbに置換すれば、画像データG、Bを演算できる。

[0124]

ここで、係数(Eij)と(Fij)は、それぞれの色相データr、g、bに対応した係数が使用され、図14の構成をr、g、bに対し並列に3つ使用すれば、高速なマトリクス演算が可能になる。

[0125]

以上より、マトリクス演算手段4 b は各演算項および無彩色データである最小値 a に対し係数により演算を行い、色相データと加算して画像データR、G、B を出力し、このときの画像データを求める演算式は、式(3)となる。

[0126]

【数32】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h | r \\ h | b \\ h | c \\ h | m \\ h | 1y \\ h | 2ry \\ h | 2rm \\ h | 2gy \\ h | 2gc \\ h | 2bm \\ h | 2bc \\ \alpha \end{bmatrix}$$
... $\stackrel{\bigstar}{\bigstar}$ (3)

[0127]

ここで、式 (3) において (E i j) では $i = 1 \sim 3$ 、 $j = 1 \sim 3$ 、 (F i j) $i = 1 \sim 3$ 、 $j = 1 \sim 1$ 3である。

[0128]

なお、式(3)の演算項と図12での演算項の数の違いは、上記実施の形態1の場合と同様に、図12の多項式データ演算手段における演算項がゼロとなるデータを除く画素毎の演算方法を開示しているのに対して、式(3)は画素集合に対する一般式を開示している点にある。つまり、式(3)の多項式データは、1 画素について、13個のデータを4個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。

[0129]

また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像 データでは全ての多項式データが有効になる。

[0130]

ここで、上記最小値 α に係わる係数を全て 1 とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリクス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色

成分を調整できる。

[0131]

以上より、特定の色相に関与する乗算項および第1の比較データと、色相間領域に関与する第2の比較データそれぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整できるのみならす、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。

[0132]

なお、上記実施の形態3では、マトリクス演算後画像データR、G、Bを得る場合として説明したが、上記出力画像データR、G、Bを得た後、 R、G、Bを補色データC、M、Yに変換してもよく、マトリクス演算における係数を各色相および色相間領域と無彩色データである最小値αに対して変化できれば、上記と同様の効果を奏する。

[0133]

また、上記実施の形態 1 と同様、実施の形態 3 においても、ソフトウェアなどにより同様の処理を行う色変換方法としても効果的であるは言うまでもなく、上記実施の形態 3 と同様の効果を奏する。上記係数記憶手段に関して、その構成は、ランダムアクセスメモリ、リードオンリーメモリ、いわゆるレジスタなど、所期の値の係数を設定できるものであれば、その種類、構成はいずれであっても良い。

[0134]

実施の形態4.

実施の形態2では式(2)に示すように、色相データと各演算項および無彩色データである最小値αを加算するよう構成したが、図14に示すように、係数記憶手段5bにおいて無彩色データである最小値αに対する係数を発生することにより、無彩色成分を調整するよう構成することもできる。

[0135]

図14はこの発明の実施形態4による色変換方法および色変換装置の構成の一例を示すブロック図である。図において、14、1b、2b、3、15は上記実施の形態2の図11におけるものと同一のものであり、4b、5bは上記実施の形態3の図12におけるものと同一のものである。

次に動作を説明する。入力画像データR、G、Bは補数手段14に入力され、 1の補数処理した補色データCi、Mi、Yiが出力され、αβ算出手段1bで 最大値β、最小値αおよび識別符号S1を求め、色相データ算出手段2bにより 6つの色相データを算出し、多項式演算手段3において演算項を求める動作は上 記実施の形態2の補色データC、M、Yの場合の処理と同一であるので、その詳 細な説明は省略する。

[0137]

図14の係数記憶手段5bは、識別符号S1に基づき、該係数記憶手段5bに記憶された多項式データの演算係数U(Fij)と固定係数U(Eij)を発生し、マトリクス演算手段4bへと送る。マトリクス演算手段4bは、上記色相データ算出手段2bからの色相データc、m、yと多項式演算手段3からの多項式データT2、T4、T5、αβ算出手段1bからの最小値αおよび係数発生手段5bからの係数Uを入力とし、演算を行うのであるが、その演算式は下記の式(10)を使用し、無彩色成分を調整する。

【数33】

$$\begin{bmatrix} C1\\ M1\\ Y1 \end{bmatrix} = (Eij)\begin{bmatrix} c\\ m\\ y \end{bmatrix} + (Fij)\begin{bmatrix} T2\\ T4\\ T5\\ \alpha \end{bmatrix} \qquad \cdots \quad \stackrel{\text{R}}{\text{R}} (1\ 0)$$

[0139]

なお、式 (10) において (E i j) では $i=1\sim3$ 、 $j=1\sim3$ 、 (F i j) では $i=1\sim3$ 、 $j=1\sim4$ である。

[0140]

なお、マトリクス演算手段4bにおける動作は、上記実施の形態3における図13において、入力される色相データをc(またはm、y)とし、C(またはM、Y)を演算し出力する場合であり、同様の動作を行うので、その詳細な説明は省略する。

[0141]

以上より、マトリクス演算手段 4 b は各演算項および無彩色データである最小値 α に対し係数により演算を行い、色相データと加算して補色データ C、M、Y を出力し、このときの画像データを求める演算式は、式 (4)となる。

【数34】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \\ y \\ + (Fij) \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \\ \end{bmatrix}$$
... $\stackrel{\star}{\star}$ (4)

[0143]

ここで、式 (4) において (E i j) では $i=1\sim3$ 、 $j=1\sim3$ 、 (F i j) $i=1\sim3$ 、 $j=1\sim13$ である。

[0144]

なお、式(4)の演算項と図14での演算項の数の違いは、上記実施の形態2 の場合と同様に、図14の多項式データ演算手段における演算項がゼロとなるデ ータを除く画素毎の演算方法を開示しているのに対して、式(4)は画素集合に対する一般式を開示している点にある。つまり、式(4)の多項式データは、1 画素について、13個のデータを4個の有効データに削減でき、この削減は、色相データの性質を巧みに活用して達成している。

[0145]

また、有効データの組合せは、着目画素の画像データに応じて変わり、全画像 データでは全ての多項式データが有効になる。

[0146]

ここで、上記最小値 α に係わる係数を全て1とすると、無彩色データは変換されず、入力データにおける無彩色データと同一の値となる。そして、マトリクス演算において係数を変化させれば、赤みの黒、青みの黒等の選択ができ、無彩色成分を調整できる。

[0147]

以上より、特定の色相に関与する第1の比較データと、色相間領域に関与する第2の比較データそれぞれに係る係数を変化させることにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整できるのみならす、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することができ、例えば標準の黒、赤みの黒、青みの黒等の選択を行うことができる。

[0148]

また、上記実施の形態と同様、実施の形態4においても、ソフトウェアなどにより同様の処理を行う色変換方法としても効果的であるは言うまでもなく、上記 実施の形態4と同様の効果を奏する。上記係数記憶手段に関して、その構成は、 ランダムアクセスメモリ、リードオンリーメモリ、いわゆるレジスタなど、所期 の値の係数を設定できるものであれば、その種類、構成はいずれであっても良い

[0149]

以上の実施の形態の説明では、主に画像出力装置用について述べたが、カメラ

、スキャナなどの画像入力装置用としても同様に適用することができ、同様の効果があることは言うまでもない。

[0150]

【発明の効果】

以上のように、この発明による色変換装置は、画素毎の入力画像データにおけ る最大値βと最小値αを算出する算出手段と、画像データと上記算出手段からの 出力である最大値βと最小値αにより色相データr、g、bおよびy、m、cを 算出する色相データ算出手段と、上記色相データ算出手段からの出力である各色 相データを用いた第1の比較データを生成する手段と、上記第1の比較データを 生成する手段からの出力である第1の比較データを用いた第2の比較データを生 成する手段と、所定のマトリクス係数を発生する係数記憶手段と、該係数記憶手 **段へ係数を設定する係数設定手段を備えるとともに、上記第1の比較データを生** 成する手段からの第1の比較データと、上記第2の比較データを生成する手段か らの第2の比較データと、上記色相データ算出手段からの色相データ、および上 記算出手段からの最小値αを用いて、上記係数記憶手段からの係数によるマトリ クス演算を行うことにより色変換された画像データを得ることを特徴とするので 、赤、青、緑、イエロー、シアン、マゼンタの6つの色相に加え、更に赤〜イエ ロー、イエロー〜緑、緑〜シアン、シアン〜青、青〜マゼンタ、マゼンタ〜赤の 6つの色相間の領域を、それぞれの色相、それぞれの領域に関係した係数のみを 独立に設定可能することにより、上記6つの色相間の変化の度合いをも補正でき 、また、変換特性を柔軟に変更できて、しかも大容量メモリを必要としない色変 換方法または色変換装置を得ることができると言う効果がある。さらに、係数設 定手段により、係数を設定可能とすることにより出力デバイスの特性あるいは、 使用者の好みの色変換特性などを考慮した色再現性を得ることが可能となる。係 数を使用者が自由に設定可能とすることは、すなわち個々に嗜好の異なる使用者 の色再現性に対し容易に変換可能となるという絶大な効果を奏することを意味す る。従来例のように3次元ルックアップテーブルによる方法においても、使用者 が、個々の好みに応じ色再現性を変換可能であるが、上述したように5Mbit のデータを設定する必要があるため、例えばこれをクロック周波数が5MHzの 3線シリアル方式で全てのデータを設定しようとした場合、少なくとも約1秒の時間を要するが、本方式においては、数百ビットのデータを設定するのみで、所望の色変換特性が得られるようになるため、それに要する時間は、多くとも100マイクロ秒程度であり、少しづつ色変換特性を変化させ、その変化の結果を観測しつつ所望の特性を得ようとする場合、リアルタイムなマンマシンインターフェースが可能となる。一方、色彩画像を表示する表示装置等の製造時においては、例えば、液晶表示装置の液晶表示パネルがの個々の色再現性のバラツキを吸収するために本発明による色変換装置を具備することにより、短時間でそのバラツキを補正するための色変換に必要な係数を、係数記憶装置としての例えば、リードオンリーメモリに設定できるため、量産性の観点からも、本発明の色変換装置あるいは、色変換方法は、好適なものであるといえる。

また、マトリクス演算における上記6つの色相間の中間領域の変化に関与する演算項として、上記第1の比較データを用いて算出される上記第2の比較データを生成して用いるので、上記6つの色相間の中間領域の変化に関与する演算項の算出に、第1の比較データを用いず、上記色相データr、g、b、y、m、cを用いて算出する場合と比較して、演算項の算出に必要な演算が少なくなるという効果もある。

[0151]

 第2の比較データを生成する手段からの第2の比較データと、上記色相データ算出手段からの色相データ、および上記算出手段からの最小値αを用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色相データ算出手段を入力された画像データR、G、Bと上記算出手段からの出力である最大値βと最小値αからの減算処理を用いて構成することが可能であるとともに、上記第1の比較データを生成する手段、上記第2の比較データを生成する手段を比較演算処理、加減算処理、乗算処理などの簡単な演算手段を用いて構成することが可能であるという効果もある。

[0152]

また、この発明による色変換装置は、上記最大値βと最小値αを算出する算出 手段が入力画像データR、G、Bより補色データC、M、Yを求め、上記補色デ ータC、M、Yにおける最大値βと最小値αを算出する手段を備え、上記色相デ ータ算出手段が画像データR、G、Bより補色データC、M、Yを求め、上記補 色データC、M、Yと上記算出手段からの出力である最大値βと最小値αからの 減算処理 $r = \beta - C$ 、 $g = \beta - M$ 、 $b = \beta - Y$ および $y = Y - \alpha$ 、 $m = M - \alpha$ 、 c=C-αにより色相データr、g、bおよびy、m、cを算出する手段を備え るとともに、上記第1の比較データを生成する手段が、色相データェ、g、b間 およびy、m、c間における比較データを求める手段を備え、上記第2の比較デ ータを生成する手段が、上記第1の比較データを生成する手段からの出力である 第1の比較データに所定の演算係数を乗算する乗算手段と、上記乗算手段からの 出力を用いた比較データを求める手段とを備え、上記第1の比較データを生成す る手段からの第1の比較データと、上記第2の比較データを生成する手段からの 第2の比較データと、上記色相データ算出手段からの色相データ、および上記算 出手段からの最小値αを用いて、マトリクス演算を行うことにより色変換された 画像データを得ることを特徴とするので、上記色相データ算出手段を入力画像デ ータR、G、Bより補色データC、M、Yを求め、上記補色データC、M、Yと 上記算出手段からの出力である最大値βと最小値αからの減算処理を用いて構成 することが可能であるとともに、上記第1の比較データを生成する手段、上記第 2の比較データを生成する手段を比較演算処理、加減算処理、乗算処理などの簡 単な演算手段を用いて構成することが可能であるという効果もある。

[0153]

また、この発明による色変換装置は、上記第1の比較データを生成する手段が 、色相データr、g、b、y、m、cを用いて、第1の比較データhlr=mi n(m, y), hlg=min(y, c), hlb=min(c, m), hlc=min (g, b), h1m= min (b, r), h1y= min (r, g) (min (A、B) はA、Bの最小値を示す。) を求める手段を備え、上記第2 の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b 、hlc、hlm、hlyを用いて、第2の比較データh2ry=min(aq $1 \times h 1 y$, $ap 1 \times h 1 r$), $h 2 rm = min (aq 2 \times h 1 m, ap 2)$ \times h1r), h2gy=min (aq3 \times h1y, ap3 \times h1g), h2g $c=min (aq4 \times h1c, ap4 \times h1g), h2bm=min (aq5)$ $\times h1m$, ap5 $\times h1b$), h2bc=min (aq6 $\times h1c$, ap6 \times h 1 b) を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶され た所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~ 3、j=1~12)を発生し、色相データと、上記第1の比較データと、第2の 比較データおよび上記算出手段の出力である最小値αに対し、式(1)のマトリ クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 ることを特徴とするので、上記色変換された画像データは赤、緑、青の3色で表 現する画像データR、G、Bとして求められ、上記第1の比較データを生成する 手段を上記色相データを入力とする最小値選択処理のごとく簡単な演算手段を用 いて構成することが可能であるとともに、上記第2の比較データを生成する手段 を乗算処理と最小値選択処理の簡単な演算手段の組み合わせを用いて構成するこ とが可能であるという効果もある。

[0154]

【数35】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{pmatrix} h | h \\ h | h \\ h | y \\ h | 2ry \\ h | 2rm \\ h | 2gy \\ h | 2gc \\ h | 2bm \\ h | 2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\pi} \quad (1)$$

[0155]

また、この発明による色変換装置は、上記第1の比較データを生成する手段が 、色相データェ、g、b、y、m、cを用いて、第1の比較データh1r=mi n (m, y), hlg=min (y, c), hlb=min (c, m), hlc=min (g, b), h1m= min (b, r), h1y= min (r, g) (min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2 の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b 、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(ag $1 \times h 1 y$, $ap 1 \times h 1 r$), $h 2 rm = min (aq 2 \times h 1 m, ap 2$ \times h1r), h2gy=min (aq3 \times h1y, ap3 \times h1g), h2g $c = min (aq4 \times h1c, ap4 \times h1g), h2bm = min (aq5$ \times h 1 m, a p 5 \times h 1 b), h 2 b c = m i n (a q 6 \times h 1 c, a p 6 \times h 1 b) を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶され た所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~ 3、j=1~12)を発生し、色相データと、上記第1の比較データと、第2の 比較データと、色相データによる演算項および上記算出手段の出力である最小値 αに対し、式 (2) のマトリクス演算式によりマトリクス演算を行うことにより 色変換された画像データを得ることを特徴とするので、上記色変換された画像デ ータはシアン、マゼンタ、イエローの3色で表現する画像データC、M、Yとして求められ、上記第1の比較データを生成する手段を、上記色相データを入力とする最小値選択処理のごとく簡単な演算手段を用いて構成することが可能であるとともに、上記第2の比較データを生成する手段を乗算処理と最小値選択処理の簡単な演算手段の組み合わせを用いて構成することが可能であるという効果もある。

[0156]

【数36】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{bmatrix} hln \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

[0157]

また、この発明による色変換装置は、上記第1の比較データを生成する手段が、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g)(min(A、B)はA、Bの最小値を示す。)を求める手段を備え、上記第2の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5

×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶された所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)を発生し、色相データと、上記第1の比較データと、第2の比較データおよび上記算出手段の出力である最小値αに対し、式(3)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色変換された画像データは赤、緑、青の3色で表現する画像データR、G、Bとして求められ、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整できるのみならす、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することが可能であるという効果もある。

[0158]

【数37】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} hlr \\ hlg \\ hlb \\ hlc \\ hlm \\ hly \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{\pi} (3)$$

[0159]

また、この発明による色変換装置は、上記第1の比較データを生成する手段が 、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=mi n(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c

=min (g, b), h1m= min (b, r), h1y= min (r, g) (min (A、B) はA、Bの最小値を示す。) を求める手段を備え、上記第2 の比較データを生成する手段が、上記第1の比較データh1r、h1g、h1b 、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(ag $1 \times h 1 y$, $ap 1 \times h 1 r$), $h 2 r m = m i n (aq 2 \times h 1 m, ap 2)$ \times h1r), h2gy=min(aq $3\times$ h1y, ap $3\times$ h1g), h2g $c=min (aq4 \times h1c, ap4 \times h1g), h2bm=min (aq5)$ $\times h1m$, ap5 $\times h1b$), h2bc=min (aq6 $\times h1c$, ap6 \times h 1 b) を求めるとともに、上記係数記憶手段から、該係数記憶手段に記憶され た所定のマトリクス係数Eij (i=1~3、j=1~3)とFij (i=1~ 3、j=1~13)を発生し、色相データと、上記第1の比較データと、第2の 比較データおよび上記算出手段の出力である最小値αに対し、式(4)のマトリ クス演算式によりマトリクス演算を行うことにより色変換された画像データを得 ることを特徴とするので、上記色変換された画像データはシアン、マゼンタ、イ エローの3色で表現する画像データC、M、Yとして求められ、赤、青、緑、イ エロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目し ている色相のみを、他の色相に影響を与えることなく調整できるのみならす、無 彩色データである最小値αに係わる係数を変化させることにより、無彩色成分の みのを色相成分に影響を与えることなく調整することが可能であるという効果も ある。

[0160]

【数38】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{x} (4)$$

[0161]

また、この発明による色変換装置は、上記係数記憶手段が、該係数記憶手段に記憶された式(5)の所定のマトリクス係数Eij(i=1~3、j=1~3)を発生することを特徴とするので、色相データにかかる係数の乗算は計算する必要がなくなりながらも、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく線形的に調整することが可能であるという効果もある。

[0162]

【数39】

$$Eij = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (5)$$

[0163]

また、この発明による色変換装置は、上記第2の比較データを生成する手段における、各第1の比較データに所定の演算係数aq1~aq6およびap1~a

p6を乗算する乗算手段が、演算係数 a q 1 ~ a q 6 および a p 1 ~ a p 6 を 1 、 2、 4、 8、 …となる整数値とし、ビットシフトにより各第1の比較データと 上記演算係数との演算を行うことを特徴とするので、乗算処理をビットシフトの ごとく更に簡単な演算手段に置き換えることにより処理が簡単化されるという効果もある。

[0164]

さらに、この発明による色変換装置は、上記画像データにおける最大値 β と最小値 α を算出する算出手段が、画像データを用いて最大値 β と最小値 α を算出するとともに、最大および最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成し出力する手段を備え、上記算出手段から出力される識別符号に基づき、上記比較データを生成する手段において比較データを生成し、上記係数記憶手段から、該係数記憶手段に記憶されたマトリクス係数を発生するとともに、上記算出手段からの識別符号に応じて上記係数記憶手段により選択された係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得ることを特徴とするので、各画素においてマトリクス演算を行う演算項の数を削減することが可能となるという効果もある。

[0165]

この発明に係る色変換方法は、赤、緑、青の3色で表現する画像データR、G、Bを画素毎に色変換する色変換方法において、画素毎の画像データにおける最大値βおよび最小値αを算出し、上記画像データと上記最大値βおよび最小値αにより色相データr、g、bおよびy、m、cを算出し、上記各色相データを用いて第1の比較データを生成し、該第1の比較データを用いて第2の比較データを生成し、マトリクス係数を記憶し、該マトリクス係数に対する所定の係数を設定するとともに、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値αを用いて、上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、赤、青、緑、イエロー、シアン、マゼンタの6つの色相に加え、更に赤~イエロー、イエロー~緑、緑~シアン、シアン~青、青~マゼンタ、マゼンタ~赤の6つの色相間

の領域を、それぞれの色相、それぞれの領域に関係した係数のみを独立に設定可 能することにより、上記6つの色相間の変化の度合いをも補正でき、また、変換 特件を柔軟に変更できて、しかも大容量メモリを必要としない色変換方法または 色変換装置を得ることができると言う効果がある。さらに、係数設定手段により 、係数を設定可能とすることにより出力デバイスの特性あるいは、使用者の好み の色変換特性などを考慮した色再現性を得ることが可能となる。係数を使用者が 自由に設定可能とすることは、すなわち個々に嗜好の異なる使用者の色再現性に 対し容易に変換可能となるという絶大な効果を奏することを意味する。従来例の ように3次元ルックアップテーブルによる方法においても、使用者が、個々の好 みに応じ色再現性を変換可能であるが、上述したように5Mbitのデータを設 定する必要があるため、例えばこれをクロック周波数が5MHzの3線シリアル 方式で全てのデータを設定しようとした場合、少なくとも約1秒の時間を要する が、本方式においては、数百ビットのデータを設定するのみで、所望の色変換特 **性が得られるようになるため、それに要する時間は、多くとも100マイクロ秒** 程度であり、少しづつ色変換特性を変化させ、その変化の結果を観測しつつ所望 の特性を得ようとする場合、リアルタイムなマンマシンインターフェースが可能 となる。一方、色彩画像を表示する表示装置等の製造時においては、例えば、液 晶表示装置の液晶表示パネルがの個々の色再現性のバラツキを吸収するために本 発明による色変換装置を具備することにより、短時間でそのバラツキを補正する ための色変換に必要な係数を、係数記憶装置としての例えば、リードオンリーメ モリに設定できるため、量産性の観点からも、本発明の色変換装置あるいは、色 変換方法は、好適なものであるといえる。

また、マトリクス演算における上記6つの色相間の中間領域の変化に関与する演算項として、上記第1の比較データを用いて算出される上記第2の比較データを生成して用いるので、上記6つの色相間の中間領域の変化に関与する演算項の算出に、第1の比較データを用いず、上記色相データr、g、b、y、m、cを用いて算出する場合と比較して、演算項の算出に必要な演算が少なくなるという効果もある。

[0166]

この発明に係る色変換方法は、入力された画像データR、G、Bと上記最大値 β および最小値 α とからの減算処理 $r=R-\alpha$ 、 $g=G-\alpha$ 、 $b=B-\alpha$ および $y=\beta-B$ 、 $m=\beta-G$ 、 $c=\beta-R$ により色相データ r、 g、 b および y、 m、 c を算出するとともに、上記色相データ r、 g、 b 間および y、 m 、 c を算出するとともに、上記色相データ r、 g、 b 間および y、 m 、 c 間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、上記第2の比較データ、上記色相データおよび上記最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色相データ算出手段を入力された画像データを得ることを特徴とするので、上記色相データ算出手段を入力された画像データを得ることを特徴とするので、上記色相データ算出手段を入力された画像データを得ることを特徴とするので、上記色相データ算出手段を入力された画像データを得ることを特徴とするの出力である最大値 β と最小値 α からの減算処理を用いて構成することが可能であるとともに、上記第1の比較データを生成する手段、上記第2の比較データを生成する手段を比較演算処理、加減算処理、乗算処理などの簡単な演算手段を用いて構成することが可能であるという効果もある。

[0167]

この発明に係る色変換方法は、画像データR、G、Bより補色データC(シアン)、M(マゼンタ)、Y(イエロー)を求め、上記補色データC、M、Yにおける最大値 β および最小値 α を算出し、上記画像データR、G、Bより補色データC、M、Yを求め、上記補色データC、M、Yと上記最大値 β および最小値 α とからの減算処理 $r=\beta-C$ 、 $g=\beta-M$ 、 $b=\beta-Y$ および $y=Y-\alpha$ 、 $m=M-\alpha$ 、 $c=C-\alpha$ により色相データr、g、bおよびy、m、cを算出するとともに、上記色相データr、g、b間およびy、m、c 間における比較データを求め、上記第1の比較データに所定の演算係数を乗算し、該乗算の結果を用いて比較データを求め、上記第1の比較データ、第2の比較データ、上記色相データおよび上記最小値 α を用いて、マトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色相データ算出手段を入力画像データR、G、Bより補色データC、M、Yを求め、上記補色データC、M、Yと上記算出手段からの出力である最大値 β と最小値 α からの減算処理を用いて構成することが可能であるとともに、上記第1の比較データを生成する手段、上記第2の比較データを生成する手段と比較演算処理、加減算処理、乗算処理などの簡単

な演算手段を用いて構成することが可能であるという効果もある。

[0168]

この発明に係る色変換方法は、色相データァ、g、b、y、m、cを用いて、 第1の比較データhlr=min (m、y)、hlg=min (y、c)、h1 b = min(c, m), hlc = min(g, b), hlm = min(b, r))、h1y= min(r、g)(min(A、B)はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1 yを用いて、第2の比較データh2ry=min (aq1×h1y、ap1×h 1r), $h2rm=min(aq2\times h1m, ap2\times h1r), h2gy=$ min $(aq3 \times h1y, ap3 \times h1g), h2gc=min (aq4 \times h$ 1c, ap $4 \times h1g$), $h2bm=min(aq<math>5 \times h1m$, ap $5 \times h1$ b)、 h2bc=min (aq6×h1c、ap6×h1b) を求めるととも に、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)と Fij (i=1~3、j=1~12)とを発生し、色相データ、上記第1の比較 データ、上記第2の比較データおよび上記最小値αに対し、式(1)のマトリク ス演算式によりマトリクス演算を行うことにより色変換された画像データを得る ことを特徴とするので、上記色変換された画像データは赤、緑、青の3色で表現 する画像データR、G、Bとして求められ、上記第1の比較データを生成する手 段を上記色相データを入力とする最小値選択処理のごとく簡単な演算手段を用い て構成することが可能であるとともに、上記第2の比較データを生成する手段を 乗算処理と最小値選択処理の簡単な演算手段の組み合わせを用いて構成すること が可能であるという効果もある。

[0169]

【数40】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1r \\ h1g \\ h1b \\ h1c \\ h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{\Rightarrow} \quad (1)$$

[0170]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、 第1の比較データhlr=min (m、y)、hlg=min (y、c)、hl b=min(c, m), h1c=min(g, b), h1m=min(b, r))、h1y= min(r、g)(min(A、B)はA、Bの最小値を示す。)を求め、上記第1の比較データh1r、h1g、h1b、h1c、h1m、h 1yを用いて、第2の比較データh2ry=min(ag1×h1y、ap1× h1r), $h2rm=min(aq2\times h1m, ap2\times h1r)$, h2gy=min $(aq3 \times h1y, ap3 \times h1g), h2gc=min (aq4 \times h1g)$ h1c, $ap4 \times h1g$), h2bm=min ($aq5 \times h1m$, $ap5 \times h$ 1b)、 h2bc=min (aq6×h1c、ap6×h1b)を求め、記憶 されている所定のマトリクス係数Eij($i=1\sim3$ 、 $j=1\sim3$)とFij($i=1\sim3$ 、 $j=1\sim12$)とを発生し、上記色相データ、上記第1の比較デー タ、上記第2の比較データおよび最小値αに対し、式(2)のマトリクス演算式 によりマトリクス演算を行うことにより色変換された画像データを得ることを特 徴とするので、上記色変換された画像データはシアン、マゼンタ、イエローの3 色で表現する画像データC、M、Yとして求められ、上記第1の比較データを生 成する手段を、上記色相データを入力とする最小値選択処理のごとく簡単な演算 手段を用いて構成することが可能であるとともに、上記第2の比較データを生成する手段を乗算処理と最小値選択処理の簡単な演算手段の組み合わせを用いて構成することが可能であるという効果もある。

[0171]

【数41】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \end{bmatrix} + \begin{bmatrix} \alpha \\ \alpha \\ \alpha \\ \alpha \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (2)$$

[0172]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)とを発生し、上記色相データ、上記第1の

比較データと、上記第2の比較データおよび最小値αに対し、式(3)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色変換された画像データは赤、緑、青の3色で表現する画像データR、G、Bとして求められ、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整できるのみならす、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することが可能であるという効果もある。

[0173]

【数42】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = (Eij) \begin{bmatrix} r \\ g \\ b \end{bmatrix} + (Fij) \begin{bmatrix} h1r \\ h1g \\ h1c \\ h1m \\ h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{\mathbf{x}} (3)$$

[0174]

この発明に係る色変換方法は、色相データr、g、b、y、m、cを用いて、第1の比較データh1r=min(m、y)、h1g=min(y、c)、h1b=min(c、m)、h1c=min(g、b)、h1m= min(b、r)、h1y= min(r、g) (min(A、B) はA、Bの最小値を示す。)を求め、該第1の比較データh1r、h1g、h1b、h1c、h1m、h1yを用いて、第2の比較データh2ry=min(aq1×h1y、ap1×h

1r)、h2rm=min(aq2×h1m、ap2×h1r)、h2gy=min(aq3×h1y、ap3×h1g)、h2gc=min(aq4×h1c、ap4×h1g)、h2bm=min(aq5×h1m、ap5×h1b)、h2bc=min(aq6×h1c、ap6×h1b)を求めるとともに、記憶されている所定のマトリクス係数Eij(i=1~3、j=1~3)とFij(i=1~3、j=1~13)とを発生し、色相データ、上記第1の比較データ、上記第2の比較データおよび最小値αに対し、式(4)のマトリクス演算式によりマトリクス演算を行うことにより色変換された画像データを得ることを特徴とするので、上記色変換された画像データはシアン、マゼンタ、イエローの3色で表現する画像データC、M、Yとして求められ、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく調整できるのみならす、無彩色データである最小値αに係わる係数を変化させることにより、無彩色成分のみのを色相成分に影響を与えることなく調整することが可能であるという効果もある。

[0175]

【数43】

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = (Eij) \begin{bmatrix} c \\ m \\ y \end{bmatrix} + (Fij) \begin{pmatrix} h1y \\ h2ry \\ h2rm \\ h2gy \\ h2gc \\ h2bm \\ h2bc \\ \alpha \end{bmatrix} \cdots \vec{x} (4)$$

[0176]

この発明に係る色変換方法は、式(5)の所定のマトリクス係数Eij(i=

1~3、j=1~3)を発生することを特徴とするので、色相データにかかる係数の乗算は計算する必要がなくなりながらも、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間領域において着目している色相のみを、他の色相に影響を与えることなく線形的に調整することが可能であるという効果もある。

[0177]

【数44】

$$Eij = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \cdots \quad \vec{x} \quad (5)$$

[0178]

この発明に係る色変換方法は、各第1の比較データに所定の演算係数aq1~aq6およびap1~ap6を乗算する際、演算係数aq1~aq6およびap1~ap6を1、2、4、8、…となる整数値とし、ビットシフトにより各第1の比較データと上記演算係数との演算を行うことを特徴とするので、乗算処理をビットシフトのごとく更に簡単な演算手段に置き換えることにより処理が簡単化されるという効果もある。

[0179]

この発明に係る色変換方法は、画像データを用いて最大値βと最小値αを算出するとともに、最大および最小となる画像データまたは補色データの種類に応じて、ゼロとなる色相データを特定するための識別符号を生成して出力し、該識別符号に基づき、第1の比較データを生成し、記憶されているマトリクス係数を発生するとともに、上記識別符号に応じて上記マトリクス係数によるマトリクス演算を行うことにより色変換された画像データまたは補色データを得ることを特徴とするので、各画素においてマトリクス演算を行う演算項の数を削減することが可能となるという効果もある。

【図面の簡単な説明】

【図1】 この発明の実施の形態1による色変換装置の構成の一例を示すブ

ロック図である。

- 【図2】 この発明の実施の形態1による色変換装置における多項式演算手段3の構成の一例を示すブロック図である。
- 【図3】 この発明の実施の形態1による色変換装置における識別符号S1 と最大値βおよび最小値α、0となる色相データの関係の一例を示す図である。
- 【図4】 この発明の実施の形態1による色変換装置における多項式演算手段3のゼロ除去手段7の動作を説明するための図である。
- 【図5】 この発明の実施の形態1による色変換装置におけるマトリクス演算手段4の一部分の構成の一例を示すブロック図である。
 - 【図6】 6つの色相と色相データの関係を模式的に示した図である。
- 【図7】 この発明の実施の形態1による色変換装置における第1の比較データと色相の関係を模式的に示した図である。
- 【図8】 この発明の実施の形態1による色変換装置における第2の比較データと色相の関係を模式的に示した図である。
- 【図9】 この発明の実施の形態1による色変換装置における多項式演算手段3の演算係数選択手段11において、演算係数を変化させた場合の比較データによる演算項と色相の関係を模式的に示した図である。
- 【図10】 この発明の実施の形態1による色変換装置において各色相および色相間の領域に関与し、有効となる演算項の関係を示した図である。
- 【図11】 この発明の実施の形態2による色変換装置の構成の一例を示すブロック図である。
- 【図12】 この発明の実施の形態3による色変換装置の構成の一例を示すブロック図である。
- 【図13】 この発明の実施の形態3による色変換装置におけるマトリクス 演算手段4bの一部分の構成の一例を示す図である。
- 【図14】 この発明の実施の形態4による色変換装置の構成の一例を示すブロック図である。
 - 【図15】 従来の色変換装置の構成の一例を示すブロック図である。
 - 【図16】 従来の色変換装置における6つの色相と色相データの関係を模

式的に示した図である。

【図17】 従来の色変換装置におけるマトリクス演算器104での乗算項 と色相の関係を模式的に示した図である。

【符号の説明】

1、1b αβ算出手段、2、2b 色相データ算出手段、3 多項式演算手段、4、4b マトリクス演算手段、5、5b 係数記憶手段、6 合成手段、7 ゼロ除去手段、9a、9b、9c 最小値選択手段、10a、10b 演算手段、11 演算係数選択手段、12a、12c、12e、12f、12g 乗算手段、13a、13d、13e、13f 加算手段、14 補数手段、15 係数設定手段、100 補数器、101 αβ算出器、102 色相データ算出器、103 多項式演算器、104 マトリクス演算器、105 係数発生器、106 合成器。

【書類名】

図面

【図1】

[図2]

【図3】

識別符号S1	最大値段	最小値α	0となる色相データ*
0	Ri	Gi	g, c
1	Ri	Вi	b, c
2	Gi	Ri	r, m
3	Gi	Вi	b, m
4	Ві	Ri	r, y
5	Вi	Gi	g, y

* r=Ri- α 、g=Gi- α 、b=Bi- α 、 y= β -bi、m= β -gi、c= β -Ri \downarrow b

【図4】

識別符号S1	Q 1	Q 2	P 1	P 2
0	r	b	m	У
1	r	g	У	m
2	g	b	С	у
3	g	r	У	С
4	b	g	c	m
5	b	r	m	С

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

(a)

色相	有効な第1の比較データ
赤	h 1 r
緑	h1g
青	h 1 b
シアン	h 1 c
マゼンタ	h 1 m
イエロー	h 1 y

(b)

色相間領域	有効な第2の比較データ		
赤~イエロー	h2ry		
イエロー~緑	h2gy		
緑~シアン	h2gc		
シアン~青	h2bc		
青~マゼンタ	h 2 bm		
マゼンタ~赤	h2rm		

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【書類名】

要約書

【要約】

【課題】 6つの色相と各色相間の領域を独立に補正するための係数を設定することにより、変換特性を柔軟に変更して、大容量メモリを必要としない色変換方法または色変換装置を得る。

【解決手段】 3色の入力信号について、各色相に関与する比較データ、各色相間の領域に関与する比較データに対し、それぞれに係る係数を所望の値に設定することにより、赤、青、緑、イエロー、シアン、マゼンタの6つの色相および6つの色相間の領域において着目している色相のみを、他の色相に影響を与えることなく変化させて精度の高い色変換を行う。

【選択図】

図 1

出願人履歴情報

識別番号

[000006013]

1. 変更年月日 1990年 8月24日

[変更理由]

新規登録

住 所

東京都千代田区丸の内2丁目2番3号

氏 名

三菱電機株式会社