National University of Computer and Emerging Sciences **Lahore Campus**

Q1 Task (b) Detect anomalies in 'Power Consumption' by computing z-scores. Also, comment on it with reason. Additionally, it is a standard normal with reason. Additionally, show that the z-scores of Power Consumption follows a standard normal distribution with a many 60 distribution with a mean of 0 and a standard deviation of 1.

	-
Measures	Marks = 10
Sum X = 4490	1
Sum $X^2 = 1857300$	2
or	
Sum $(X - 299.33)^2 = 513293.3$	
$Mean_X = 299.33$	1
SDx = 191.48	1
Sum $Z = 0.0002$	1
Sum Z ² =13.99942	2
Mean $Z = 0.000013 \sim 0$	1
$SDz = 0.99998 \sim 1$	1

OR shortly,

Measures	Marks = 10
$Mean_X = 299.33$	2
SDx = 191.48	3
Mean $Z = 0.000013 \sim 0$	• 2
$SDz = 0.99998 \sim 1$	3

- ✓ All the z scores lie b/w -3 to +3.
- 0.5+0.5=1✓ Hence No outlier detected.

Working:

Mean of
$$X = \frac{\Sigma X}{n} = \frac{4490}{15} = 299.3333$$

SD of X =
$$\sqrt{\frac{1}{n-1}} \left[\sum X_i^2 - \frac{\left(\sum X_i\right)^2}{n} \right]$$

= $\sqrt{\frac{1}{14}} \left[1857300 - \frac{(4490)^2}{15} \right]$
= 191.47796

Mean of
$$Z = \frac{\sum Z}{n} = \frac{0.0002}{15} = 0.000013 \sim 0$$

Z _i (4-decimal) -1.0932 -1.0410 -0.8843 -0.7799
(4-decimal) -1.0932 -1.0410 -0.8843 -0.7799
-1.0410 -0.8843 -0.7799
-0.8843
-0.7799
-0.6232
-0.5710
-0.5187
-0.4143
-0.2576
0.0035
0.5257
0.9435
1.0480
1.5702

0.25 for z-formula.

SD of Z =
$$\sqrt{\frac{1}{n-1}} \left[\sum Z_i^2 - \frac{\left(\sum Z_i\right)^2}{n} \right]$$

= $\sqrt{\frac{1}{14}} \left[13.99942 - \frac{(0.0002)^2}{15} \right]$
= $0.99998 \sim 1$

National University of Computer and Emerging Sciences Lahore Campus

CLO 1: Statistical Data Interpretation: Analyze and interpret various data types by computing measures of central tendency and dispersion, constructing frequency distributions, and utilizing graphical techniques for precise data representation.

_	ical techniques for precise data representation.	[Marl	cs:10	
2: Sr.	SCENARIOS	ANSWER	10	
		ANSWER	-	
1	A researcher records the daily count of security breaches in a	Time Series	1.	
	cloud server system for six months to analyze trends in cyber-	Time Series		
-	attacks. What type of study design is this? A sample of 50 website visitors is selected from a total user base			
2	of 10,000, but the selection missed users from a specific region.	Sampling Error		
		Sampling Error		
3	What type of error is this? IP addresses assigned to devices are an example of which scale		1	
3	of measurement?	Nominal	1	
4	TI 1 represents		1	
4	which scale of measurement?	Ratio		
5			1	
3	A network provider wants to classify internet speeds for		'	
	customer plans. The raw data consists of speeds in Mbps (e.g.,			
	10 Mbps, 50 Mbps, 100 Mbps). What is the nature of the	Categorical/Qualitative		
	variable if internet speed is categorized into groups such as	-		
	Slow (0–10 Mbps), Moderate (11–50 Mbps), Fast (51–100			
	Mbps), and Ultra-Fast (101+ Mbps)?	,	1	
6	Consider the response times (milliseconds) of a web server,	7.	1	
	where lower and upper quartile are 32 ms and 45 ms	Positively Skewed		
	respectively with a median of 35 ms. Identify the shape of the	·		
	distribution of response time.	Right		
7	A cloud computing company monitors server response times (in	o Server A	1	
	milliseconds) for two different setups; Server A: Mean = 200			
	ms, Standard Deviation = 20 ms and Server B: Mean = 500 ms,	o Server B		
	Standard Deviation = 50 ms. Calculate the relative variation in			
	response times for both servers and comment which server has more consistent response times. Both are Same			
	more consistent response times.	Dour are Same		
8	A computer science department analyzes exam scores from 100	Course A:	0.5	
	students in two different courses; Course A: Scores are mostly	Negatively Skewed		
	high, with a few students scoring very low (Mean = 85, Median	1 ()		
	= 95). Course B: Scores are more evenly spaced, with some	left.		
	students scoring both very high and very low (Mean = 70,	Course B:	0.5	
	Median = 70). The department wants to assess the distribution	Symmetric	80.00.700	
	of scores to understand if the performance in each course is	Normal		
	symmetric or skewed. Comment Accordingly.	Mornion		
9	A software testing team categorizes detected errors into: Syntax		1	
	Errors:50, Logic Errors:30, Runtime Errors:20. Which type of	Bar Chart/Pie Chart		
	graph is most suitable for visualizing these categories?	*		
10	A data center tracks CPU usage for 20 servers and provides the	Threshold:	0.5	
	following five-number summary: Min = 20, Q_1 = 35, Q_2 = 45,	85 upper fence		
	Q_3 = 55, Max = 95. Determine the threshold value used to flag	S C:1		
	anomalies and identify on which side the anomalies lie (above	Side: above	0.5	
	or below).	audve	14	

Tasks:

a) To effectively classify network performance, group 'Network Speed' into classes starting at 180 with a class width of 600. Draw cross-tabulation to compare these 'Network Speed' classifications with 'System Type' for meaningful insights.

b) Detect anomalies in 'Power Consumption' by computing z-scores. Additionally, show that the z-scores of Power Consumption follows a standard normal distribution with a mean of 0 and a standard deviation of 1.

Q1 Task (a) Solve here						
Network Speed	A STATE OF THE PARTY OF THE PAR	System Type	- 1			
	Personal	Workstation	Server			
180-779	2	3	0.			
780-1379	1	2	. 1			
1380-1979	1	0	1			
1980-2579	1	0	2			
2580-3179	0	0	1			

Network Speed System Type 2580-3179 1980-2579 1380-1979 780-1379 180-779 0 Personal 0 0 0 3. Workstation 0 Server

Each cell 0.5 as inside box all entries 7.5 and 0.5 each correct class interval 2.5 (Total =10)

Spring 2025

FAST School of Computing

Page 1 of 3

OR