pcaGAN: Improving posterior-sampling cGANs via principal component regularization

Matthew Bendel, Rizwan Ahmad, and Philip Schniter Supported by NIH grant R01EB029957

Image inverse problems

Goal: Recover image x from measurements $y = \mathcal{M}(x)$:

- $\longrightarrow \mathcal{M}(\cdot)$ masks, distorts, and/or corrupts \boldsymbol{x} with noise.
- lacksquare Solution typically posed as finding single best recovery $\widehat{m{x}}$, known as "point-estimation"

Challenges with point-estimation:

- Inability to navigate the perception-distortion tradeoff [1]
- Inability to quantify reconstruction uncertainty

 $p_{\mathsf{y}|\mathsf{x}}(oldsymbol{y}|oldsymbol{x})p_{\mathsf{x}}(oldsymbol{x})$ **Solution:** Sample from posterior distribution $p_{\mathsf{x}|\mathsf{y}}(\boldsymbol{x}|\boldsymbol{y}) = -q$ $\int p_{\mathsf{y}|\mathsf{x}}(oldsymbol{y}|oldsymbol{x})p_{\mathsf{x}}(oldsymbol{x})\,\mathrm{d}oldsymbol{x}$

Existing approaches:

- Conditional VAEs, conditional NFs, conditional GANs
- Langevin/Diffusion methods

Our contribution

Our approach: We build on rcGAN [2], a type of Wasserstein cGAN:

- Generator G_{θ} : outputs $\widehat{\boldsymbol{x}}_i = G_{\theta}(\boldsymbol{z}_i, \boldsymbol{y})$ for code realization $\boldsymbol{z}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$
- Discriminator D_{ϕ} : aims to distinguish true $(\boldsymbol{x}, \boldsymbol{y})$ from fake $(\widehat{\boldsymbol{x}}_i, \boldsymbol{y})$
- Training:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left\{ \mathbb{E}_{\mathsf{x},\mathsf{z},\mathsf{y}} \{ D_{\boldsymbol{\phi}}(\boldsymbol{x},\boldsymbol{y}) - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z},\boldsymbol{y}),\boldsymbol{y}) \} + \mathcal{R}(\boldsymbol{\theta}) - \mathcal{L}_{\mathsf{gp}}(\boldsymbol{\phi}) \right\}$$

 \blacksquare rcGAN's regularization $\mathcal{R}(\theta)$ rewards correctness in conditional mean and conditional trace-covariance

Our method: A new $\mathcal{R}(\theta)$ that also enforces correctness in the K principal components of the conditional covariance matrix, given by

$$\mathcal{R}(\boldsymbol{\theta}) = \mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{evec}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{eval}}(\boldsymbol{\theta}),$$

where $\mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathsf{x},\mathsf{z}_1,...,\mathsf{z}_\mathsf{P},\mathsf{y}} \left\{ \| \boldsymbol{x} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle (P)} \|_1 \right\} - \beta_{\mathsf{std}} \sum_{i=1}^P \mathbb{E}_{\mathsf{z}_1,...,\mathsf{z}_P,\mathsf{y}} \left\{ \| \widehat{\boldsymbol{x}}_i - \widehat{\boldsymbol{x}}_{\scriptscriptstyle (P)} \|_1 \right\}$ and $\widehat{m{x}}_{\scriptscriptstyle (P)} = \sum_{i=1}^P \widehat{m{x}}_i$.

- $\{(\widehat{m{v}}_k, \widehat{\lambda}_k)\}_{k=1}^K$ are the principal evecs/evals of $\text{Cov}\{\widehat{m{x}}_i|m{y}\}$
- $\{(\boldsymbol{v}_k, \lambda_k)\}_{k=1}^K$ are the principal evecs/evals of $\text{Cov}\{\boldsymbol{x}|\boldsymbol{y}\}$
- We dub our approach pcaGAN

Eigenvector regularization:

$$\mathcal{L}_{\mathsf{evec}}(oldsymbol{ heta}) = - \, \mathbb{E}_{\mathsf{y}} \, ig\{ \, \mathbb{E}_{\mathsf{x}, \mathsf{z}_1, \dots, \mathsf{z}_P | \mathsf{y}} \, ig\{ \, \sum_{k=1}^K [\widehat{oldsymbol{v}}_k^\mathsf{T} (oldsymbol{x} - oldsymbol{\mu}_{\mathsf{x} | \mathsf{y}})]^2 ig| oldsymbol{y} ig\} ig\}$$

- If $\mu_{\mathsf{x}|\mathsf{v}} = \mathbb{E}\{m{x}|m{y}\}$ was known, minimizing over $m{ heta}$ would force $\{\widehat{m{v}}_k = m{v}_k\}_{k=1}^K$
- lacksquare We set $m{\mu}_{\mathsf{x}|\mathsf{v}}pprox\widehat{m{\mu}_{\mathsf{x}|\mathsf{v}}}=\mathsf{StopGrad}(\widehat{m{x}}_{(P_{\mathsf{pca}})})$ after $\widehat{m{x}}_{(P_{\mathsf{pca}})}$ stabilizes
- We compute $\{\widehat{\boldsymbol{v}}_k\}_{k=1}^K$ using an SVD of $\{\widehat{\boldsymbol{x}}_i\}_{i=1}^{P_{\mathsf{pca}}}$, where $P_{\mathsf{pca}} \approx 10K$

Eigenvalue regularization:

$$\mathcal{L}_{\mathsf{eval}}(oldsymbol{ heta}) = \mathbb{E}_{\mathsf{y}} \left\{ \mathbb{E}_{\mathsf{x}, \mathsf{z}_1, \dots, \mathsf{z}_P | \mathsf{y}} \left\{ \sum_{k=1}^K \left(1 - \lambda_k / \widehat{\lambda}_k \right)^2 | oldsymbol{y}
ight\}
ight\}$$

- If λ_k was known, minimizing over θ would force $\{\widehat{\lambda}_k = \lambda_k\}_{k=1}^K$
- We set $\lambda_k pprox \mathtt{StopGrad}(rac{1}{P_{\mathsf{pca}}+1} \| \widehat{m{v}}_k^\mathsf{T} [m{x} \widehat{m{\mu}_{\mathsf{x}|\mathsf{y}}}, \widehat{m{x}}_1 \widehat{m{\mu}_{\mathsf{x}|\mathsf{y}}}, \dots, \widehat{m{x}}_{P_{\mathsf{pca}}} \widehat{m{\mu}_{\mathsf{x}|\mathsf{y}}}] \|_2^2)$ after $\{\widehat{m v}_k\}$ stabilize, which is correct in expectation when $\widehat{m v}_k$ and $\widehat{m \mu_{\sf x|\sf v}}$ are
- We compute $\{\widehat{\lambda}_k\}_{k=1}^K$ using the same SVD as above

Toy Gaussian experiment

- lacksquare Here we recover $m{x} \sim \mathcal{N}(m{\mu}_{\mathsf{x}}, m{\Sigma}_{\mathsf{x}})$ from $m{y} = m{A}m{x} + m{w}$ with inpainting $m{A} \in \mathbb{R}^{rac{d}{2} imes d}$ and $m{w} \sim \mathcal{N}(m{0}, \sigma^2 m{I})$. Both $m{\mu}_{\mathsf{x}}$ and $m{\Sigma}_{\mathsf{x}}$ are random.
- Performance measured via Wasserstein-2 distance $\mathcal{W}_2(p_{\mathsf{x}|\mathsf{y}},p_{\widehat{\mathsf{x}}|\mathsf{y}})$

- lacksquare \mathcal{W}_2 decreases with K, and pcaGAN beats both rcGAN and NPPC [3] in \mathcal{W}_2
- NPPC directly estimates the posterior principal components

MNIST denoising results

We recovered MNIST digits $m{x}$ from measurements $m{y} = m{x} + m{w}$ with $oldsymbol{w} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$

Model	rMSE↓	$REM_5 \downarrow$	CFID↓	Time (128 samples)
$\overline{NPPC\;(K=5)}$	3.94	3.63	_	112 ms
rcGAN	4.04	<u>3.41</u>	63.44	<u>118</u> ms
pcaGAN (ours, $K=5$)	4.02	3.31	61.48	<u>118</u> ms

- $= \mathsf{REM}_5 \triangleq \mathbb{E}_{\mathsf{x},\mathsf{y}} \left\{ \| (\boldsymbol{I} \widehat{\boldsymbol{V}}_5 \widehat{\boldsymbol{V}}_5^{\mathsf{T}}) (\boldsymbol{x} \widehat{\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}}}) \|_2 \right\} \text{ where } \widehat{\boldsymbol{V}}_5 \triangleq [\widehat{\boldsymbol{v}}_1, \dots, \widehat{\boldsymbol{v}}_5]$
- Conditional FID (CFID) [4] like FID but for conditional distributions
- pcaGAN won in both REM and CFID (note NPPC is not generative)

pcaGAN:

NPPC:

- Principal eigenvectors $\{\boldsymbol{v}_k\}_{k=1}^K$ are shown above for K=5
- Also shown are $\widehat{\mu_{\mathsf{x}|\mathsf{v}}} \pm \alpha \widehat{\boldsymbol{v}}_k$ for $k \in \{1,4\}$ and $\alpha \in \{-3,-2,0,2,3\}$

Large-scale image completion results

We inpainted random masks on 256x256 FFHQ faces

Model	CFID↓	FID↓	LPIPS↓	Time (40 samples)↓
DPS [5] (1000 NFEs)	7.26	2.00	0.1245	14 min
DDNM [6] (100 NFEs)	11.30	3.63	0.1409	30 s
DDRM [7] (20 NFEs)	13.17	5.36	0.1587	5 s
pscGAN [8]	18.44	8.40	0.1716	325 ms
CoModGAN [9]	7.85	2.23	0.1290	325 ms
rcGAN [2]	7.51	2.12	0.1262	325 ms
pcaGAN (ours, $K=2$)	7.08	1.98	0.1230	325 ms

- pcaGAN outperformed all diffusion and cGAN competitors!
- cGANs are 15x to 2500x faster than the diffusion methods

Large-scale image completion example

pcaGAN generates samples that are both high quality and diverse

Accelerated MRI reconstruction results

We recovered fastMRI multicoil T2 brain images at acceleration R=8

Model	CFID	FID	PSNIR↑	SSIM↑	I PIPS I	DISTS	Time (4 samples)↓
E2E-VarNet [10]				0.9220			316ms
Langevin (Jalal [11])	48.59	52.62	33.90	0.9137	0.0579	0.1086	14 min
cGAN (Adler [12])	59.94	31.81	33.51	0.9111	0.0614	0.1252	217 ms
pscGAN [8]	39.67	43.39	34.92	0.9222	0.0532	0.1128	217 ms
rcGAN [2]	<u>24.04</u>	<u>28.43</u>	35.42	0.9257	0.0379	0.0877	217 ms
pcaGAN (ours, $K=1$)	21.65	28.35	<u>35.94</u>	0.9283	0.0344	0.0799	217 ms

 \blacksquare Metrics with * are reported for the optimal averaging constant P

- posterior samples from pcaGAN show meaningful variations without artifacts
- posterior samples from cGAN (Adler), Langevin (Jalal) show unwanted artifacts

Conclusion

We proposed pcaGAN, a novel regularized posterior sampling cGAN and showed that it outperforms cGAN and diffusion competitors in several different inverse problems.

References

Y. Blau and T. Michaeli, "The perception-distortion tradeoff," CVPR, 2018 M. Bendel, R. Ahmad, and P. Schniter, "A Regularized Conditional GAN for Posterior Sampling in Inverse Problems," NeurIPS 2023. E. Nehme, O. Yair, and T. Michaeli, "Uncertainty Quantification via Neural Posterior Principal Components," NeurIPS 2023 M. Soloveitchik, T. Diskin, E. Morin, and A. Wiesel, "Conditional Frechet inception distance," arXiv:2103.11521, 2021. H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J.-C. Ye, "Diffusion posterior sampling for general noisy inverse problems," ICLR 2023. Y. Wang, J. Yu, and J. Zhang, "Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model," ICLR 2023 B. Kawar, M. Elad, S. Ermon, and J. Song, "Bahjat Kawar and Michael Elad and Stefano Ermon and Jiaming Song," NeurIPS 2022. G. Ohayon, T. Adrai, G. Vaksman, M. Elad, and P. Milanfar, "High perceptual quality image denoising with a posterior sampling CGAN," ICCVW 2021 S.Zhao, J.Cui, Y.Sheng, Y.Dong, X.Liang, E.I.Chang, Y.Xu, "Large scale image completion via co-modulated generative adversarial networks," ICLR 2021. A. Sriram et al., "End-to-end variational networks for accelerated MRI reconstruction," MICCAI 2020 A. Jalal, M. Arvinte, G. Daras, E. Price, A. Dimakis, and J. Tamir, "Robust compressed sensing MRI with deep generative priors," NeurIPS 2021. J. Adler and O. Oktem, "Deep Bayesian inversion," arXiv:1811.05910, 2018