GGPLOT2 CONCEPTS

Outline

- 1. A layered grammar
- 2. Geometrical layers
- 3. Statistical layers
- 4. Facets
- 5. Storing a ggplot as an object

A layered grammar of graphics

- ggplot2 works on the philosophy of adding layers to the visualization
- there are 7 components of a plot

A layered grammar of graphics

- only 3 of these components are necessary to make a layer:
 - data are the subjects & objects of the data visualization
 - Aesthetic mappings (aes) substitute visual properties (aesthetics) for the data
 - The **geom** is what relates the data to a visual element.
- these three components allow us maximum flexibility to make subtle changes in each layer to clearly communicate our message.

The grammar of {ggplot2}

Component	Function	Explanation
Data	ggplot(data)	The raw data that you want to visualise.
Aesthetics	aes()	Aesthetic mappings between variables and visual properties.
Geometries	geom_*()	The geometric shapes representing the data.

The grammar of {ggplot2}

Component	Function	Explanation
Data	ggplot(data)	The raw data that you want to visualise.
Aesthetics	aes()	Aesthetic mappings between variables and visual properties.
Geometries	geom_*()	The geometric shapes representing the data.
Statistics	stat_*()	The statistical transformations applied to the data.
Scales	scale_*()	Maps between the data and the aesthetic dimensions.
Coordinate System	coord_*()	The positioning of the data in a 2D data visualization.
Facets	facet_*()	The arrangement of the data into a grid of plots.
Themes	<pre>theme() and theme_*()</pre>	The overall visual defaults of a plot.

Example

The Data

OECD's Program for International Student Assessment (PISA)

- aims to inform educational policies and practices
- 540,000 15-year-olds from 72 participating countries and economies
- designed to gauge mastery of key subjects (math, science, reading)
- background questionnaire with questions about themselves, their family and home, and their school and learning experiences

```
## devtools::install_github("haleyjeppson/NCME23data")
library(NCME23data)
## weighted US sample of size 99
data(pisa_usa)
## weighted sample of 1000
data(pisa_small)
```

Data Variables

```
"OECD"
##
    [1] "country"
##
    [3] "id"
                                     "weight"
    [5] "sex"
                                     "grade"
    [7] "computer"
                                     "software"
    [9] "internet"
                                     "addit time math"
                                     "parent support"
   [11] "addit time science"
   [13] "parent status"
                                     "want best grades"
   [15] "want best student"
                                     "test anxiety"
   [17] "enjoy cooperation"
                                     "sense_of_belonging"
   [19] "parent_support emotional"
                                    "HOMESCH"
   [21] "ENTUSE"
                                     "ICTHOME"
        "ICTSCH"
                                     "wealth"
                                     "learning mins"
   [25] "parent edu"
                                     "teacher support science"
   [27] "escs index"
        "teacher direct science"
                                     "inquiry based science"
## [31] "science self efficacy"
                                     "math"
## [33] "reading"
                                     "science"
## [35] "learning hours"
                                     "region"
```

Data

ggplot(data = pisa_usa)

Aesthetic Mapping

Link variables in data to graphical properties

- Axes: x, y
- Grouping: group
- Other visual properties: color, fill, alpha (transparency), size, shape, linetype
- Other: weight, z, xmin, xmax, ymin, ymax, ...

Aesthetic Mapping

Use the aes() function inside ggplot()

```
ggplot(data = pisa_usa,
  mapping = aes(x = math, y = reading))
```


Aesthetic Mapping

Use implicit matching

Geometrical Layers

How to interpret aesthetics as graphical representations

We build up a data visualization in ggplot2 with the + operator.

```
ggplot(
  pisa_usa,
  aes(x = math, y = reading)
  ) +
  geom_point()
```


Define mappings for a particular geom only

```
ggplot(pisa_usa) +
  geom_point(aes(x = math, y = reading)
```


Define data for a particular geom only

Visual Properties of Layers

The geom_*() suite of functions can take many arguments, which vary by the geom type

```
ggplot(
    pisa_usa,
    aes(x = math, y = reading)
) +
geom_point(
    color = "#3C5488",
    alpha = .7,
    shape = 17,
    stroke = 1,
    size = 5
)
```


Setting vs Mapping Visual Properties

```
ggplot(
    pisa_usa,
    aes(x = math, y = reading)
) +
geom_point(
    color = "#3C5488",
    alpha = .7
)
```

```
ggplot(
    pisa_usa,
    aes(x = math, y = reading)
) +
geom_point(
    aes(color = sex),
    alpha = .7
)
```


Local vs. Global Encoding

```
ggplot(
    pisa_usa,
    aes(x = math, y = reading)
) +
geom_point(
    aes(color = sex),
    alpha = .7
)
```

```
ggplot(
    pisa_usa,
    aes(x = math, y = reading,
        color = sex),
) +
    geom_point(
    alpha = .7
)
```


Other geoms

There are many types of geoms and their mapping requirements differ

```
ggplot(pisa_usa) +
  geom_point(
   aes(x = math, y = reading),
  color = "#3C5488",
  alpha = .7)
```



```
ggplot(pisa_usa) +
  geom_density(
   aes(x = math),
  color = "#3C5488",
  fill = "#3C5488",
  alpha = .7)
```


Other geoms

There are many types of geoms and their mapping requirements differ

```
ggplot(pisa_usa) +
  geom_point(
   aes(x = math, y = reading,
       color = parent_edu),
  alpha = .7)
```


Your Turn

Use code below to create a histogram of the math scores.

- Can you modify the width of the bins? (Hint: run **?geom_histogram**)

```
ggplot(pisa_usa, aes(x = math)) +
   ## your code here
```

Use code below to create boxplots of math scores by sex.

- Can you make a violin plot instead a boxplot?
- Can you add color to the boxplots/violins? (Hint: run **?geom_violin**)

```
ggplot(pisa_usa, aes(x = sex, y = math)) +
    ## your code here
```

Adding Layers

Begin with plot with one layer

```
ggplot(
   pisa_usa,
   aes(x = parent_edu, y = reading,
        fill = parent_edu,
        color = parent_edu)
) +
geom_boxplot(
   alpha = .2
)
```


Adding Layers

Layers are stacked in the order of code appearance

```
ggplot(
   pisa_usa,
   aes(x = parent_edu, y = reading,
        fill = parent_edu,
        color = parent_edu)
) +
geom_boxplot(
   alpha = .2
) +
geom_point(
   alpha = .5
)
```


Overwrite Global Aesthetics

What did we need?

Data, Aesthetics, Geometries

Everything else has sensible defaults

Statistical Layers

Statistics

Describes how the data are modified in order to be expressed through the **geom**.

Stats and geoms go together.

- Every **geom** has a default **stat** and vice versa.
 - Count number of observations in each category for a bar chart
 - Calculate summary statistics for a boxplot.
- stat can be specified inside of a geom and vice versa.

geom_bar() uses stat_count() by default

```
ggplot(pisa_usa, aes(x = parent_edu)) +
  geom_bar()
```


If you have precomputed data, use identity stat

```
pisa_usa_counted <- pisa_usa %>%
  count(parent_edu)

pisa_usa_counted
```

If you have precomputed data, use identity stat

```
pisa_usa_counted <- pisa_usa %>%
  count(parent_edu)

ggplot(pisa_usa_counted,
        aes(x = parent_edu)) +
  geom_bar(aes(y = n),
        stat = 'identity')
```


... or use the **geom_col()** shortcut

Use after_stat() to modify mapping from stats

Facets

Facets

Split data into multiple panels by categories

- shows the same visualization for different subsets of the data
 aka conditioning
- a way to avoid overplotting

Two faceting functions:

- facet_grid()
 - create a grid of graphs, by rows and columns
- facet_wrap()
 - create small multiples by "wrapping" a series of plots

facet grid()

• use vars () to call on the variables

facet_wrap()

- use vars () to call on the variables
- nrow and ncol arguments for dictating shape of grid

Your Turn

Use nrow or ncol to alter the shape of the grid in the facet_wrap() example to have two columns. Then again with one row.

Use the labeller parameter to modify the panel labels in the facet_grid() example such that the row labels read 'OCED: Yes' and 'OCED: No'. (Hint: run ?labeller)

ggplots as objects

Save & inspect a ggplot object

```
pisa_plot <- ggplot(pisa_usa, aes(x = math, y = reading, color = sex)) +
   geom_point(alpha = .7)

class(pisa_plot)</pre>
```

```
## [1] "gg" "ggplot"
```

Inspect a ggplot object

str(pisa_plot)

```
## List of 9
##
   $ data
                : tibble [99 \times 36] (S3: tbl df/tbl/data.frame)
##
     ..$ country
                                : chr [1:99] "United States" "United States" "U
     ..$ OECD
                                : chr [1:99] "Yes" "Yes" "Yes" "Yes" ...
##
     ..$ id
                                : int [1:99] 84010767 84010299 84002440 8400490
##
##
     ..$ weight
                                : num [1:99] 759 688 610 462 823 ...
                                 chr [1:99] "Female" "Male" "Female" "Female"
##
     ..$ sex
##
     ..$ grade
                                : num [1:99] 10 10 10 10 10 10 11 10 10 10 ...
                                : chr [1:99] "Yes" "No" "Yes" "Yes" ...
##
     ..$ computer
##
     ..$ software
                                : chr [1:99] "Yes" "Yes" "Yes" "Yes" ...
##
     ..$ internet
                                : Factor w/ 2 levels "Yes", "No": 1 1 2 1 1 1 1
                                : int [1:99] 1 9 6 2 14 4 7 10 19 2 ...
##
     ..$ addit time math
##
     ..$ addit time science
                                : int [1:99] 2 11 6 1 14 1 7 10 19 5 ...
                                : chr [1:99] "Strongly agree" "Strongly agree"
     ..$ parent support
##
     ..$ parent status
                                : chr [1:99] "Strongly agree" "Agree" "Strongly
##
                                : Factor w/ 4 levels "Strongly agree",..: 1 1 1
##
     ..$ want best grades
     ..$ want best student
                                : chr [1:99] "Strongly agree" "Strongly agree"
##
                                : num [1:99] 0.857 -0.475 -0.539 1.724 -0.308 .
##
     ..$ test anxiety
##
     ..$ enjoy cooperation
                                : num [1:99] 0.946 1.042 0.576 2.288 -0.288 ...
     ..$ sense of belonging
                                : num [1:99] 0.445 -1.196 -0.988 -0.862 -0.338
##
##
     ..$ parent support emotional: num [1:99] 1.099 -0.75 0.566 1.099 1.099 ...
##
     ..$ HOMESCH
                                : num [1:99] NA ...
##
     ..$ ENTUSE
                                : num [1:99] NA ...
                                : int [1:99] NA ...
##
     ..$ ICTHOME
                                : int [1:99] NA ...
     ..$ ICTSCH
      ¢ wool+h
```

Add to a ggplot object

```
pisa_plot +
  geom_smooth(method = "lm")
```


Recap

- {ggplot2} is a powerful library for reproducible graphic design
- the components follow a consistent syntax
- each ggplot needs at least data, some aesthetics, and a layer
- we set constant propeties outside aes ()
- ... and map data-related properties inside aes ()
- local settings and mappings override global properties
- grouping allows applying layers for subsets
- we can store a ggplot object and add to it afterwards

Resources

- Documentation: http://ggplot2.tidyverse.org/reference/
- RStudio cheat sheet for ggplot2
- Sam Tyner's ggplot2 workshop
- Thomas Lin Pedersen's ggplot2 webinar: part 1 and part 2
- Cedric Scherer's "A ggplot2 tutorial for beautiful plotting in R"