VECTOR SPACES.

* Consider 2 Vectors
$$\vec{u} * \vec{v}$$
, both 3 component vectors

$$\overrightarrow{\mathcal{U}} : \begin{pmatrix} \mathcal{U}_1 \\ \mathcal{U}_2 \\ \mathcal{U}_3 \end{pmatrix} \qquad \overrightarrow{\mathcal{V}} : \begin{pmatrix} \mathcal{V}_1 \\ \mathcal{V}_2 \\ \mathcal{V}_3 \end{pmatrix}$$

Consider
$$\overrightarrow{u} : \overrightarrow{u} + \overrightarrow{v}$$

$$= \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\overrightarrow{W} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}$$

For Some Scalar, a, real

$$\frac{\cancel{\alpha} \cdot \cancel{u}}{\cancel{u}} = \cancel{\alpha} \cdot \cancel{u}_1$$

$$\frac{\cancel{u}_2}{\cancel{u}_3} = \frac{\cancel{\alpha} \cdot \cancel{u}_1}{\cancel{\alpha} \cdot \cancel{u}_2}$$

$$\cancel{\alpha} \cdot \cancel{u}_2$$

$$\cancel{\alpha} \cdot \cancel{u}_3$$

 $A = \begin{bmatrix} a_1 & a_2 & B_1 & b_1 & b_2 \\ a_3 & a_4 & b_3 & b_4 \end{bmatrix}$ $A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix}$ k, Scalar, Real $k \cdot A : k \cdot \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} : \begin{bmatrix} k \cdot a_1 & k \cdot a_2 \\ k \cdot a_3 & k \cdot a_4 \end{bmatrix}$

Algebraic properties like add n & Scalar multiplich on a Set of real mxn motrices & that of n-component vectors -> Are similar.

Generaliza of objects that possess Similar properties as above. Vector Space: Algebraic Structure. The Scalar multiplication, with operations having properties a rule for multiplying a Similar to that of operations on real no × a vector from n-Component vectors.

Vector Space Over R. R: Real field.

Defn: A vector space over R, is a nonempty set by vectors, along with an operation called vector addition, a rule for adding & vectors from V and another operation called

· For every vector u, v, w in I (V) There exists the element OEV u+0 = u = 0+u Identity and real numbers of, B. for addn) (i) u+v ∈ V → Closure under addition. (Vi) There exists -u ∈ V st? Additive u+(-u)=(-u)+u= 0 51 nverse. (ii) du E V Closure under Scalar Multipli (Vii) $\alpha(u+v) = \alpha u + \alpha v$ Distributive (iii) u+v=v+u Commutativity (viii) $(\alpha+\beta)u=\alpha u+\beta u$ Multiplic on Add.

(iv) u+(v+w)=(u+v)+w associativity (ix) $(\alpha\beta)u=\alpha(\beta u)\Rightarrow$ Associativity

(x) $1\cdot u=u$ \Rightarrow Identity element

(Ü) For Scalar & $\alpha \vec{u} = \alpha \cdot (u_1) = (\alpha u_1)$ αü e V. (iii) Q vector: $Q \in V$. $Q \in \mathbb{R}$ is a vector space! Ex:3: $\mathcal{M}^{2\times 2}$: Set of all real Symmetric 2x2 matrices.

A = $\begin{pmatrix} a_1 & a_2 \\ a_2 & a_3 \end{pmatrix}$ $\begin{pmatrix} B = \begin{pmatrix} b_1 & b_2 \\ b_2 & b_3 \end{pmatrix}$.

A+B= $\begin{pmatrix} a_1 & a_2 \\ a_2 & a_3 \end{pmatrix}$ + $\begin{pmatrix} b_1 & b_2 \\ b_2 & b_3 \end{pmatrix}$.

= $\begin{pmatrix} a_1 + b_1 & a_2 + b_2 \\ a_2 + b_2 & a_3 + b_3 \end{pmatrix} \in \mathcal{M}^{2\times 2}$

For Real Scalar α , $Q: (0 0) \in M^{2\times 2}$. $\alpha A: \alpha (a_1 a_2)$ $a_2 a_3$ $\dots M^{2\times 2}$ is a vector space over R. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$. $A = (\alpha a_1 \alpha a_2) \in M^{2\times 2}$.