[EVOL HW1]: BFS

- 1) Алгоритм для обхода графа в ширину (BFS) реализован в двух вариантах:
 - для графа в виде списка ребер
 - для графа в виде списка смежности 2) Время работы алгоритма для графа в виде списка смежности O(|V| + |E|), так как каждую вершину мы посещаем не более одного раза и смотрим не более **sum { deg(v_i) for v in V } = 2 * |E|** ребер. Для реализации в виде списка ребер мы так же посещаем все вершины не более одного раза, однако при этом просмтриваем все ребра для поиска нужных время работы O(|V| * |E|). valgrind не показал особых отличий в занимаемой памяти, однако бенчмаркинг времени работы сильно отличается:

• сравнение времени работы с opt-level = 0:

#		task	iterations	total d
	_	list of edges adjacency list	189 199060	784.2 2.067

• сравнение времени работы с opt-level = 1:

#		task	iterations	total d
	_	list of edges adjacency list	242 183099	976.0 1.900

• сравнение времени работы с opt-level = 2:

#	task	iterations	total d
	 list of edges adjacency list	249 193098	1.095 2.10

• сравнение времени работы с opt-level = 3:

#	task	iterations	total d
	list of edges adjacency list	257 131476	1.157 1.437

Таким образом, реализации с уровнем оптимизаций компилятора 0 и 1 получили наилучшие результаты. Большие оптимизации увеличили время работы. Кроме того, реализация на списке смежности во много раз быстрее реализации для списка ребер (что было ожидаемо).