Rachunek prawdopodobieństwa 2R 2023 lista 3: Warunkowa wartość oczekiwana i wyższe momenty

- 1. Niech Y i Z będą dowolnymi zmiennymi losowymi. Pokaż, że jeżeli zmienna Y jest $\sigma(Z)$ mierzalna, to istnieje borelowskia funkcja $h \colon \mathbb{R} \to \mathbb{R}$ taka, że Y = h(Z).
- 2. Pokaż, że dla zmiennych X i Y takich, że $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$ i σ -ciała $\mathcal{G} \subseteq \mathcal{F}$ zachodzi

$$|\mathbb{E}[XY|\mathcal{G}]| \leq \sqrt{\mathbb{E}[X^2|\mathcal{G}]} \sqrt{\mathbb{E}[Y^2|\mathcal{G}]}.$$

3. Niech $\kappa_{X,\mathcal{G}}$ będzie regularnym rozkładem warunkowym X pod warunkiem σ -ciała $\mathcal{G}\subseteq\mathcal{F}$. Pokaż, że dla każdej funkcji $f\colon\mathbb{R}\to\mathbb{R}$ takiej, że $\mathbb{E}[|f(X)]<\infty$ zachodzi

$$\mathbb{E}[f(X) \mid \mathcal{G}](\omega) = \int_{\mathbb{R}} f(x) \kappa_{X,\mathcal{G}}(\omega, dx).$$

4. (Nierówność Jensena) Dana jest funkcja wypukła $\phi \colon \mathbb{R} \to \mathbb{R}$, przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ oraz \mathcal{G} pod- σ -ciało \mathcal{F} . Załóżmy, że zmienne losowe X i $\phi(X)$ są całkowalne. Pokaż, że

$$\phi\left(\mathbb{E}[X|\mathcal{G}]\right) \leq \mathbb{E}\left[\phi(X)|\mathcal{G}\right].$$

- 5. Załóżmy, że wektor losowy (X, Y) ma dwuwymiarowy rozkład normalny.
 - (a) Znajdź $a \in \mathbb{R}$ takie, że zmienne X aY i Y są niezależne.
 - (b) Pokaż, że

$$\mathbb{E}[X|Y](\omega) = \mu_X + \frac{\text{Cov}(X,Y)}{\text{Var}(Y)} (Y(\omega) - \mu_Y),$$

gdzie $\mu_X = \mathbb{E}[X]$ oraz $\mu_Y = \mathbb{E}[Y]$.

- (c) Dla $y \in \mathbb{R}$ znajdź rozkład X pod warunkiem Y = y.
- 6. Załóżmy, że wektor losowy $(X, Y_1, ..., Y_n)$ ma n+1 wymiarowy rozkład normalny. Oznaczmy przez $C_{X,Y}$ wektor kowariancji X i $\mathbf{Y} = (Y_1, ..., Y_n)^T$:

$$C_{X,Y} = (Cov(X, Y_1), Cov(X, Y_2), \dots, Cov(X, Y_n))^T.$$

Oznaczmy przez C_Y macierz kowariancji wektora Y. Niech $\mathcal{G} = \sigma(Y_1, \dots, Y_n)$.

(a) Pokaż, że

$$\mathbb{E}[X|\mathcal{G}](\omega) = \mu_x + \langle C_{XY}, C_Y^{-1}(\mathbf{Y}(\omega) - m_{\mathbf{Y}}) \rangle,$$

gdzie $\mu_X = \mathbb{E}[X]$ a m_Y jest (pionowym) wektorem średnich Y. Tutaj $\langle \cdot, \cdot \rangle$ oznacza standardowy iloczyn skalarny w \mathbb{R}^n . Wskazówka: Znajdź wektor $\mathbf{z} \in \mathbb{R}^n$ taki, że zmienna losowa $X - \langle \mathbf{z}, \mathbf{Y} \rangle$ jest niezależna od wektora \mathbf{Y} .

- (b) Dla $\mathbf{y} \in \mathbb{R}^n$ znajdź rozkład X pod warunkiem $\mathbf{Y} = \mathbf{y}$.
- 7. Załóżmy, że sygnał X ma jednowymiarowy rozkład normalny $\mathcal{N}(0,1)$.
 - (a) Załóżmy, że obserwator odczytuje wartość sygnału z dokładnością do błędu W o rozkładzie $\mathcal{N}(0,\sigma^2)$ niezależnym od X, tj. obserwuje wartość Y=X+W. Jaka jest najlepsza estymacja (w sensie średniokwadratowym) X jeżeli obserwator odczytał wartość Y=y?
 - (b) Obserwator, chcąc znaleźć lepszy estymator dla wartości X, wykonuje dwa pomiary $Y_1 = X + W_1$ i $Y_2 = X + W_2$ dla niezależnych W_1 , W_2 o rozkładzie $\mathcal{N}(0,\sigma^2)$. Jaka powinna być estymacja X jeżeli obserwator odnotował wartości $Y_1 = y_1$ i $Y_2 = y_2$?
 - (c) Porównaj wariancję warunkową X pod warunkiem $\{Y = y\}$ (pkt (a)) oraz $\{Y_1 = y_1, Y_2 = y_2\}$ (pkt (b))