

2ACE: SPECTRAL PROFILE-DRIVEN MULTI-RESOLUTIONAL COMPRESSIVE SENSING FOR MMWAVE CHANNEL ESTIMATION

Yiwen Song Carnegie Mellon University

Changhan Ge UT Austin

Lili Qiu UT Austin & Microsoft Research Asia

Yin Zhang

October 24 2023 @ Washington DC, United States of America

Sub-6GHz band is becoming more and more crowded...

mmWave provides:

Higher bandwidth, higher throughput.

Higher directionality.

More sensing opportunities.

mmWave can be easily blocked. X

mmWave

Beamforming to combat occlusions.

Channel estimation is critical to beamforming

Adjust the **phase & amplitude** at each antenna to obtain optimal beam patterns.

To set the correct combiner and precoder, one need to estimate channel, i.e., How the wave propagates.

mmWave asks for fast and accurate channel estimation methods.

Complex indoor environment

Large antenna array

NOKIA AirScale [1] 64Tx 64Rx Massive MIMO mmWave antenna array

High Mobility

Channel estimation is accomplished through a probing process.

known variables: precoders and combiners

RSS
$$|b|$$
 measured & fed back by Rx $\longrightarrow |b| = |\mathbf{w}^T \mathbf{H} \mathbf{f} \gamma + \sigma|$

Variable needs to recover: CSI Matrix

Phase retrieval & difficult problem

Existing approaches on channel estimation

802.11ad Sector Level Sweeping (SLS)

Sweep through pre-defined directions. Fast but inaccurate.

ACO [MobiCom'18]

Special codebook. Medium overhead, but coarse channel estimation.

PhaseLift [CPAM'13]

Compressive sensing recovery. Accurate, but slow & requires large number of probes.

PLGAMP/PLOMP [MobiHoc'19]

Low-rank CSI assumption-based compressive sensing. Fast when channel is sparse, otherwise inaccurate.

2ACE investigates how channel matrices looks like, and use the matrix property to improve compressive sensing.

2ACE: Accelerated & Accurate Channel Estimation.

Overcoming low-rank structure

Speed up estimation

Support different probing budgets

Support dynamic environment

Spectral profile: describe CSI matrix structure.

Enhancements.

Multi-resolution algorithm.

Confidence indicator.

How does actual channel matrix look like?

We use a lower-bound to characterize the energy captured by the first *K* singular values— Called Spectral Profile.

Spectral Profile: First K eigenvalues account x% energy.

K, x can be defined according to different matrices.

Use the spectral profile as a regularization – 2ACE

Minimize the squared error.

Regularization through spectral profile *P*.

The problem can be solved via Alternating Direction Method of Multiplier (ADMM).

We then have the Augmented Lagrangian as follow:

$$L(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{M}, \mathbf{N}, \mu) = \frac{1}{2} ||\mathbf{Y}| - \mathbf{b}||_2^2 + I(\mathbf{Z}, P) + \langle \mathbf{M}, \mathbf{A}\mathbf{X} - \mathbf{Y} \rangle + \langle \mathbf{N}, \mathbf{X} - \mathbf{Z} \rangle + \frac{\mu}{2} ||\mathbf{A}\mathbf{X} - \mathbf{Y}||_2^2 + \frac{\mu}{2} ||\mathbf{X} - \mathbf{Z}||_2^2$$
(See our paper for step-by-step math)

2ACE: Enhancements

Dynamic Update of μ

Define primal residue

$$r_{\text{prim}} = \sqrt{\|\mathbf{A}\mathbf{X}^{(t+1)} - \mathbf{Y}^{(t+1)}\|_{2}^{2} + \|\mathbf{X}^{(t+1)} - \mathbf{Z}^{(t+1)}\|_{2}^{2}}$$

How the constraints are satisfied

Define combined residue

$$r_{\text{comb}}^{(t+1)} = \mu r_{\text{prim}}^2 + \mu(\|\mathbf{Y}^{(t+1)} - \mathbf{Y}^{(t)}\|_2^2 + \|\mathbf{Z}^{(t+1)} - \mathbf{Z}^{(t)}\|_2^2)$$

How large is the step length

Algorithm 2 Adaptation of μ

1: **if**
$$r_{\text{comb}}^{(t+1)} > 0.8 r_{\text{comb}}^{(t)}$$
 then
2: $\mu^{(t+1)} = 1.03 \mu^{(t)}$

2:
$$\mu^{(t+1)} = 1.03\mu^{(t)}$$

3: **else**

4:
$$\mu^{(t+1)} = \mu^{(t)}$$

5: end if

2ACE: Enhancements

$$\min_{\mathbf{X}} \quad \frac{1}{2} |||\mathbf{Y}| - \mathbf{b}||_{2}^{2} + I(\mathbf{Z}, P)$$

subject to $\mathbf{A}\mathbf{X} = \mathbf{Y}$ and $\mathbf{X} = \mathbf{Z}$

Parallel refinement

Solving r candidate X in parallel

Spectral Initialization

 Initialize the candidate X according to the best rank-r estimation.

2ACE: Enhancements

Choice of Spectral Profiles

Algorithm 4 2ACE Algorithm to incorporate dynamic profile

```
1: if m >= 3n then
2: // no need to use spectral profile w/ enough constraints
3: P = \{\}
4: else if m < n then
5: // focus on estimating 1st singular vector w/ too few constraints
6: P = \{(r_1, 0.95)\}
7: else
8: P = \{(r_1, f_1), (r_2, f_2), (r_3, f_3), (r_4, f_4)\}
9: end if
```

#Probes m is dependent on the size of the channel matrix.

What if there is no enough probing budget? Probing budget $\langle N_r N_t \rangle$

Multiple antennas can be grouped as one "virtual" antenna.

The beamforming weights on these elements stay the same. The elements of the channel matrix are assumed to be the same.

2ACE: Multi-resolution Channel Estimation

- By grouping N_t/N_r antennas into K groups, we recover a CSI matrix of size $\frac{N_t}{K} \times \frac{N_r}{K}$ instead.
- Challenge: Minimize grouping error.
- -- Selecting antennas with similar channels.

How to identify antenna with similar channels without channel probing?

2ACE: Multi-resolution Channel Estimation

- Phase offset comes from two parts:
 - Hardware offset due to differences in length of transmission line.
 - Calibrate through the method in M-cube [2]
 - Phase difference in array response.
 - Estimate through a rough angle estimation.

We group the antennas with minimum sum of phase offset difference.

Effectiveness of Multi-resolution (Simulation)

2ACE: Confidence indicator

2ACE: Confidence indicator - High confidence

2ACE: Confidence indicator - Low confidence

Evaluation

- Simulation
 - Synthesize CSI matrix using multipath model.
 - Generate CSI matrix using Wireless Insite ray-tracing.
- Testbed
 - 2 laptops with Qualcomm QCA6320-based Baseband NIC
 - QCA6210-based 32-element antenna array.

CSI Estimation – NMSE (Simulation)

PLOMP and **PLGAMP** suffers from over-fitting, as reported.

PhaseLift and Nuclear converges much slower.

2ACE w/ Multi-resolution performs optimally across baselines.

Beamforming – RSS (Simulation)

We evaluate beamforming RSS in an indoor environment.

Beamforming – RSS (Testbed)

2ACE w/ Multi-resolution gives 1-9 dB increment compared to different baselines.

Sensing – AoD Estimation

Simulated Top-3 AoD Estimation Error is **nearly 0**.

Testbed dominant AoD Estimation Error is average **2.5 degree**.

Conclusion & Discussion

- Propose spectral profile to drive channel estimation
 - Spectral profile can also be applied to other domains besides channel estimation.
- Various optimization techniques for accelerating convergence.

- Multi-resolution for low measurement budget.
 - Multi-resolution can also be used for other compressive sensing algorithms.
- Simulation and testbed experiments show optimality on channel estimation, beamforming gain and angle estimation.

Acknowledgement

This work is supported in part by NSF Grant <u>CNS-2008824</u> and <u>CNS-2107037</u>. We appreciate the insightful feedback from ACM MobiHoc 2023 anonymous reviewers.

Ethical Concern

The personnel involved in the experiment are fully insured and paid. No personally identifiable information (PII) was collected during the exploration. This work does not raise any ethical concern.

Authors

Yiwen Song Carnegie Mellon University

Changhan Ge UT Austin

Lili Qiu UT Austin & Microsoft Research Asia

Yin Zhang

Carnegie Mellon University
Electrical & Computer Engineering

Thank You!

Questions?

Beam-training on commercial 802.11ad/ay devices

- Override Rx-side beam-training, i.e., Rx uses a quasi-omnidirectional beam.
- AP performs sector-level sweeping (SLS) and selects the precoder yielding strongest received signal strength (RSS)
- Pros: Simple and fast
- Cons:
 - Coarse and not optimal impossible to exhaustively try codebooks
 - No CSI estimation Only reports RSS

60 GHz WiFi
Access Point (AP)

60 GHz WiFi Station (STA)

Channel Estimation Problem

Recall that the received signal can be formulated as

known variables: precoders and combiners

RSS
$$|b|$$
 measured & fed back by Rx $\rightarrow b = \mathbf{w}^T \mathbf{H} \mathbf{f} \gamma + \sigma$

Variable needs to recover: CSI Matrix

• Hence, by vectorizing \mathbf{H} as \mathbf{x} and define $\mathbf{a} = \mathbf{w} \otimes f$ (Kronecker Product), we formulate channel estimation problem as

Known
$$A = [a_1, a_2, \cdots, a_m]$$
 and corresponding $b = [|b_1|, |b_2|, \cdots, |b_m|]$ recover x that $\min_{x} \ \left| |Ax| - b \right|^2$

Channel Estimation Methods – ACO & PhaseLift

- PhaseLift [2]: Compressive sensing-based recovery。
 - Pros: Relatively accurate given enough measurements.
 - o Cons:
 - Large measurement overhead takes $\geq 4N_tN_r$ measurements.
 - Computationally heavy long algorithm running time.
 - Sharp phase transition arbitrarily bad estimation given to few measurements.

- Adaptive Codebook Optimization (ACO) [3]: Leverage signal property
 - \circ Pros: medium overhead $4(N_t + N_r)$, relative accurate given simple environment
 - o Cons:
 - Requires a special codebook a few bad probe is fatal.
 - Low resolution the channel recovered is either $\mathbf{w}^T \mathbf{H}$ or $\mathbf{H} \mathbf{f}$, which is rank 1.

Channel Estimation Methods – PLOMP & PLGAMP

PLOMP & PLGAMP [4]: Find the complex channel from the dominant AoAs and AoDs.

- Pros: Fast convergence in certain low-rank scenarios.
- Cons:
 - Needs hardware-offset calibration need to measure $e^{j\Delta}$ first.
 - Fail when CSI matrix is not low-rank assume L is very small but this is not always true.
 - Fail if Tx and Rx not on the same elevation Only models signals on azimuth plane.
 - Still computationally heavy use PhaseLift as the first step.