Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 12. března 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 7:

Měření Poissonovy konstanty vzduchu

 $T=21,1~^{\circ}\mathrm{C}$ $p=98.4970~\mathrm{kPa}$ $\varphi=47.4~\%$

1. Úkoly

1. Pomocí U trubice ocejchujte diferenciální tlakové čidlo měřící proud

$$p = p_0 + \rho g h \tag{1}$$

$$I = I_0 + c\Delta p. (2)$$

- 2. Měření poissonovy konstanty Clément-Desormesovou metodou. Natlakujte velkou nádobu, změřte U-trubicí a průmyslovým tlakovým čidlem tlak před (p1) a po expanzi (p2) a spočítejte Poissonovu konstantu z obou čidel.
- 3. Pro několik různých frekvencí určete vlnovou délku stojatého vlnění v Kundtově trubici. Pro každou frekvenci najděte všechny polohy maxim v trubici, vyneste je do grafu a stanovte vlnovou délku. Určete rychlost zvuku ve vzduchu a stanovte Poissonovu konstantu vzduchu včetně nejistoty měření.

1.1. Pomůcky

- Aparatura pro měření Clément Desormovou metodou
- Kundutova trubice
- frekvenční generátor
- svinovací metr

2. Teorie

2.1. Clément Desormova metoda

Poissonova konstant vystupuje v adiabatickém ději jako

$$pV^{\kappa} = konst. \tag{3}$$

Měření Poissonovy konstanty přímo z tohoto vztahu by vyžadovalo počkat na ustálení soustavy. To je ale velmi těžko realizovatelné, když adiabatický děj musí probíhat v tepelné izolaci. Clément-Desormova je způsob, jak se tomuto vyhnout. Otevřeme ventil natlakované nádoby a po vyrovnání

tlaků, ale minimální výměně tepla, ho zase rychle uzavřeme. Takový děj odpovídá adiabatické expanzi $(p_1, T_1) \implies (p_2, T_2)$

$$p_1^{\frac{1}{\kappa}-1}T_1 = p_2^{\frac{1}{\kappa}-1}T_2. \tag{4}$$

Vzduch v nádobě je teď ochlazený adiabatickou expanzí a následuje izochorický ohřev okolím

$$\frac{p_2}{T_2} = \frac{p_3}{T_3},\tag{5}$$

kde $T_3=T_1$ je teplota okolí, p_2 tlak v laboratoři a p_3 tlak po ustanovení rovnováhy. Vyjádřením κ a dosazením (1) pro tlak měřený U trubicí dostáváme

$$\kappa = \frac{\ln \frac{p_1}{p_0}}{\ln \frac{p_1}{p_3}} = \frac{\ln \frac{p_0 + \rho g h_1}{p_0}}{\ln \frac{p_0 + \rho g h_1}{p_0 + \rho g h_3}}.$$
 (6)

Taylorovým rozvojem

$$\kappa = \frac{h_1}{h_1 - h_3} + \frac{1}{2} \frac{h_1 h_3 \rho g}{p_0 (h_1 - h_3)} + \dots$$
 (7)

Je-li změna tlaku ve srovnání s atmosférickým tlakem dostatečně malá, pak

$$\kappa \approx \frac{h_1}{h_1 - h_3}. (8)$$

2.2. Kundutova trubice

Pro rychlost zvuku v ideálním plynu platí vztah

$$c = \sqrt{\kappa \frac{p}{\rho}},\tag{9}$$

kde p je tlak, ρ hustota vzduchu a κ poissonova konstatnta. Ze stavové rovnice pro ideální plyn plyne

$$p = \frac{\rho RT}{M_{mol}}. (10)$$

Dosazení a vyjádřením c dostáváme

$$\lambda f = \sqrt{\kappa \frac{RT}{M_{mol}}},\tag{11}$$

kde λ je vlnová délka a f frekvence zvuku. Na generátoru sinusového signálu v Kundutově trubici nastavíme vhodnou frekvenci a zaznamenáváme polohy maximálních amplitud vlnění. Rozdíl každých dvou maxim je polovina vlnové délky.

3. Výsledky měření

3.1. Kalibrace diferenciálního čidla

Pro různé výšky vodního sloupce jsem odečetl proud protékající čidlem. Hodnoty lineárního fitu podle vztahu 2 jsou uvedeny v grafu 1.

Graf 1: závislost proudu protekájícího čidlem na výšce vodního sloupce

3.2. Měření Clément Desormovou metodou

Podle Clément Desormovy metody jsem postupně nepřímo měřil tlak p_1 před adiabatickou expanzí a tlak p_3 po izochorickém ohřevu. Výslednou Poissonovu konstantu spočítám jako sklon fitu rozdílu $p_1 - p_0$ a $p_1 - p_3$.

Graf 2: závislost rozdílu naměřených hodnot $h_1 - h_3$, na h_1

Graf 3: závislost rozdílu naměřených hodnot ${\cal I}_1-{\cal I}_3,$ na ${\cal I}_1-{\cal I}_0$

metoda	κ	
pomocí U trubice	(1.31 ± 0.04)	
pomocí kalibrace	(1.32 ± 0.04)	

Tabulka 1: Hodnoty spočítané z grafu 2 a 3 Použitím vztahu (8)

3.3. Kundutovou trubicí

V Kundutově trubici je posuvka nastavující její délku, generátor sinusového signálu a osciloskop. Na osciloskopu nastavím vhodnou frekvenci a posuvkou postupně prodlužuji její délku. Rozdíl každých dvou amplitud vzniklého interferenčního vlnění měřené osciloskopem odpovídá půlce vlnové délky. Výsledky pro 4 různé frekvence jsou uvedené v tabulce 2.

Graf 4: závislost n-tého maxima amplitudy vlnění na vzdálenosti

f [kHz]	$\frac{\lambda}{2}$ [cm]	$v_{\rm vzduchu}~[{\rm ms}^{-1}]$	κ
1.56	11.06 ± 0.02	345.1 ± 0.4	1.4 ± 0.2
1.89	9.06 ± 0.04	342.5 ± 0.8	1.4 ± 0.3
3.41	5.05 ± 0.004	344.41 ± 0.08	1.40 ± 0.03
5.04	3.403 ± 0.008	343.02 ± 0.02	1.39 ± 0.03

Tabulka 2: Hodnoty spočítané z grafu 2

4. Závěr

Opravdová poissonova konstanta pro vzduch za laboratorních podmínek $\kappa \approx 1.40$.

Měření Clément Desormovou metodou je chybné asi o 7 %. Myslím, že jsem pokaždé zavřel ventil na nádobě moc brzo a tlaky se nestihli vyrovnat. Proto je naměřená hodnota menší než skutečná. Měření Kundutovou trubicí je na druhou stranu docela přesné. Je i vidět, že pro větší hodnoty frekvence klesá vlnová délka, což zjednodušuje hledání maxima a vede k přesnějšímu měření.

Reference

[1] kalkulačka hustoty vzduchu https://www.omnicalculator.com/physics/air-density.