TD 7 de processus stochastiques et mouvement brownien

Exercice 1 — Le retour du Poisson

Soit $(N_t)_{t\geq 0}$ un processus ponctuel de Poisson d'intensité 1, montrer que N_t-t est une martingale.

Exercice 2 — Uniforme cachée.

Soit B un mouvement brownien unidimensionnel issu de 1. Soit T le temps d'atteinte de 0 et X la valeur maximale de B sur [0,T].

Démontrer que pour $a \geq 1$, $\mathbb{P}(\sup_{t\geq 0} B_{t\wedge T} \geq a) = \frac{1}{a}$, en déduire que la variable aléatoire 1/X est de loi uniforme sur [0,1].

Exercice 3 — Croiser une droite.

Soient a et b deux réels strictement positifs. Soit B un mouvement brownien unidimensionnel issu de 0. Démontrer que $\mathbb{P}[\exists t \in \mathbb{R}, B_t = a + bt] = \exp(-2ab)$. ¹

Exercice 4 — Loi de Cauchy.

Dans cet exercice, on identifie le plan réel à la droite complexe. Soit donc B un mouvement brownien à valeurs dans \mathbb{C} et issu de \mathbf{i} .

- 1. Soit $\lambda \in \mathbb{R}$. Montrer que $\exp(\mathbf{i}\lambda B_t)$ est une martingale.
- 2. Soit T le temps d'atteinte de l'axe réel. Montrer que T est fini presque sûrement et que $\forall \lambda \in \mathbb{R}$, $\mathbb{E}[\exp(\mathbf{i}\lambda B_T)] = \exp(-|\lambda|)$.
- 3. En déduire la loi de B_T .

Exercice 5 — Moment d'un temps.

Soit B un mouvement brownien unidimensionnel issu de 0. On note T le temps d'atteinte de $\{-1,1\}$. Calculer $\mathbb{E}[T^2]$. (Les plus téméraires pourront également calculer $\mathbb{E}[T^2]$ pour T le temps d'atteinte de $\{a,b\}$, où a<0 et b>0.)

Exercice 6 — Un théorème d'arrêt.

Soit B un mouvement brownien unidimensionnel issu de 0. Soit T un \mathcal{F}^0 -temps d'arrêt tel que $\mathbb{E}[\sqrt{T}] < \infty$. On va démontrer que B_T est intégrable d'espérance nulle.

^{1.} On pourra même calculer la transformée de Laplace de ce temps, mais cela nécessite un peu plus de connaissance sur la théorie de martingale brownien.

- 1. On définit $\tau := \min\{k : 4^k \geq T\}$. On introduit également $M(t) := \max_{[0,t]} B$ et $X_k := M(4^k) 2^{k+2}$. Démontrer que le processus à temps discret (X_k) est une surmartingale pour sa filtration naturelle et que τ est un temps d'arrêt pour cette même filtration.
- 2. Démontrer que $\mathbb{E}[M(4^{\tau})] < \infty$.
- 3. Conclure.

Exercice 7 — Optimalité du théorème précédent.

Soit B un mouvement brownien unidimensionnel issu de 0. Soit T le temps d'atteinte de 1. Démontrer que, pour tout $\alpha \in]0,1/2[$, $\mathbb{E}[T^{\alpha}]<\infty$. En déduire que le théorème démontré dans l'exercice 6 est en un certain sens optimal.