Санкт-Петербургский Политехнический Университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе N-1

 \mathbf{Kypc} : «Администрирование компьютерных сетей»

Тема: «Виртуальное макетирование компьютерных сетей»

Выполнил студент:

Ерниязов Тимур Ертлеуевич Группа: 13541/2

Проверил:

Малышев Игорь Алексеевич

Содержание

1	Лаб	бораторная работа №1
	1.1	Цели работы
		Сведения о системе
		Создание виртуальных машин
		Структура сети
		Настройки операционных систем
		1.5.1 Windows 98
		1.5.2 Windows XP
		1.5.3 NetBSD
		1.5.4 FreeBSD
	1.6	Тестирование

Лабораторная работа №1

1.1 Цели работы

- 1. Изучить технологию виртуального макетирования компьютерных сетей в среде VMware Workstation.
- 2. Разработать и настроить полунатуральный эмулятор компьютерной сети.

1.2 Сведения о системе

Работа производилась на реальной системе, со следующими характеристиками:

Элемент	Значение
Имя ОС	Майкрософт Windows 10 Pro (Registered Trademark)
Версия	10.0.16299 Сборка 16299
RAM	16 ГБ
Процессор	$\rm Intel(R)$ Core(TM) i5-7300HQ CPU @ 2.50GHz, 2496 МГц

Для выполнения работы использовалась VMware Workstation 12 pro (12.5.7 build-5813279)

1.3 Создание виртуальных машин

С помощью средств **VMware** были созданы виртуальная машины, с использованием ниже представленных операционных систем, с соответствующим выделением оперативной памяти.

Название	Версия	Объем RAM
${f NetBSD}$	7.1.1 64-bit x86	256 MB
FreeBSD	11.1-RELEASE 64 -bit $x86$	256 MB
Kali Linux	2017.2 64-bit x86	1.5 GB
Windows XP Professional	5.1.2600 SP3 Сборка 2600	512 MB
Windows 98	4.10.2222A	256 MB

1.4 Структура сети

Была создана ККС, состоящая из трех основных сегментов (VMnet1, Vmnet2, VMnet3) и одного вспомогательного (VMnet4). Каждый представитель подсетей (VMnet1, Vmnet2, VMnet3) имеет один сетевой адаптер, шлюз – два, а маршрутизатор – три сетевых адаптера.

Название сети	Адрес сети	Подключенные узлы	DHCP
VMnet1	192.168.40.0	Kali Linux, NetBSD, FreeBSD	-
VMnet2	192.168.80.0	FreeBSD, Windows XP	+
VMnet3	192.168.120.0	FreeBSD, Windows 98	-
VMnet4	192.168.32.0	${ m NetBSD}$	+

Хост Win98 имеет статический адрес 192.168.120.15, хост Kali Linux также имеет статический адрес 192.168.40.32, а хост WinXP получает адрес 192.168.80.128 динамически с помощью виртуального сервера DHCP.

Маршрутизатору(FreeBSD) были назначены следующие адреса: 192.168.40.2 (для связи с сетью VMnet1), 192.168.80.2 (для связи с сетью VMnet2), 192.168.120.2 (для связи с сетью VMnet3).

Функциональное назначение шлюза (обеспечение взаимодействия ККС с внешними сетями) предполагает наличие какого-нибудь механизма сопряжения IP-адресов. Таким механизмом является служба NAT (преобразование сетевых адресов), подключённая к вспомогательной сети VMnet4, в которую (кроме устройства

NAT) входит DHCP-сервер и шлюз. Адрес «внешнего» сетевого адаптера шлюза назначается динамически (DHCP-сервером сети VMnet4) – 192.168.32.128, а адрес «внутреннего» сетевого адаптера шлюза (входящего в сеть VMnet1) статически – 192.168.40.57.

1.5 Настройки операционных систем

1.5.1 Windows 98

В свойствах ТСР/ІР были заданы:

- 1. IP-адрес = 192.168.120.15
- 2. Маска подсети = 255.255.255.0
- $3. \, \, \text{Шлюз} = 192.168.120.2$

1.5.2 Windows XP

В свойствах ТСР/ІР были заданы:

- 1. DNS-cepsep = 192.168.80.254
- 2. Шлюз = 192.168.80.2

1.5.3 NetBSD

- 1. Узнать названия сетевых адаптеров с помощью команды ifconfig, в моем случае это pcn0, pcn1.
- 2. Разрешаем ip forwarding добавляя в файл /etc/sysctl.conf:

```
net.inet.ip.forwarding=1
```

- 3. Внести следующие настройки в файл /etc/rc.conf:
 - (а) Указание шлюза по умолчанию:

```
defaultroute = 192.168.32.2
```

(b) Задаем ір адрес и сетевую маску для одного из интерфейсов:

```
ı | ifconfig_pcn0=inet 192.168.40.57 netmask 255.255.255.0
```

(с) Разрешаем настройку по DHCP.

```
dhclient=yes
dhclient_flags=pcn1
ifconfig_pcn1=DHCP
```

(d) Разрешаем запуск NAT:

```
i ipnat=yes
```

4. Задаем правила NAT в файле /etc/ipnat.conf:

```
map pcn1 192.168.40.0/24 -> 0/32 portmap tcp/udp 40000:60000
map pcn1 192.168.40.0/24 -> 0/32
```

5. В консоли прописываем следующие команды:

```
route add —net 192.168.80.0 —netmask 255.255.255.0 192.168.40.2 route add —net 192.168.120.0 —netmask 255.255.255.0 192.168.40.2
```

Так как например Windows 98 находится в другом широковещательном домене, были добавлены маршруты, чтобы NetBSD знал куда отвечать.

1.5.4 FreeBSD

- 1. Узнать названия сетевых адаптеров с помощью команды ifconfig, в моем случае это em0, em1, em2.
- 2. Внести следующие настройки в файл /etc/rc.conf:

```
gateway_enable="YES"
```

(a) Разрешаем ip forwarding при помощи команды:

```
defaultrouter = 192.168.40.57
```

(b) Задаем ір адрес и сетевую маску для всех интерфейсов:

```
ifconfig_em0=inet 192.168.40.2 netmask 255.255.255.0 ifconfig_em1=inet 192.168.80.2 netmask 255.255.255.0 ifconfig_em2=inet 192.168.120.2 netmask 255.255.255.0
```

(c) Разрешаем запуск NAT:

```
ı | ipnat_enable="YES"
```

3. После этого необходимо задать правила NAT для сопряжения адресов. Это делается путем редактирования файла /etc/ipnat.rules:

```
map em0 192.168.80.0/24 \rightarrow 0.0.0.0/32 portmap tcp/udp 40000:60000 map em0 192.168.80.0/24 \rightarrow 0.0.0.0/32 map em0 192.168.120.0/24 \rightarrow 0.0.0.0/32 portmap tcp/udp 40000:60000 map em0 192.168.120.0/24 \rightarrow 0.0.0.0/32
```

Эти строки позволяет корректно обрабатывать tcp, udp, icmp пакеты.

1.6 Тестирование

Тестирование заключалось в проверке возможности выхода в интернет из каждой системы, путем отправки ping на адрес 8.8.8.8 (публичный DNS Google). Во всех системах данная команда отработала корректно, что говорит о правильно настроенной ККС.

Вывод

В данной работе была рассмотрена эмуляция корпоративной компьютерной сети(ККС), которая содержит три основных и один вспомогательный сегмент сети. Средствами VMWare были созданы:

- Виртуальные машины, с различными представителями операционных систем.
- Виртуальные сети(с различными параметрами).
- Адаптеры для виртуальных машин.

Это позволило эмулировать заданную ККС, в которой использовались:

- Статическая адресация;
- Динамическое выделение IP адреса;
- Статическая и динамическая маршрутизация.

Также имелась возможность выхода в сеть "Интернет" из каждой операционной системы.

На мой взгляд VMware Workstation в большей степени подходит для визуализации какой-либо требуемой операционной системы, так как нередки случаи необходимости использования платформозависимого программного обеспечения. Макетирование сетей в данной программе является не лучшим решением, ввиду отсутствия какого-либо визуального редактора. Для подобных целей, лучше использовать специализированное ПО, например Graphical Network Simulator 3.