The Examination Timetabling Problem Project work

Ainur Almukambetova

Vendel Péter Kupás

University of Verona

2023.07.25.

Content

- Problem
- 2 Basic model
 - Data initialization
 - Modelling constraints
- Advanced model
 - Equity measures
 - Additional restrictions
- Experiments

Problem

Data

- exams: $E = \{e_1, e_2, \dots, e_n\}$
- students: $S = \{s_1, s_2, \dots, s_m\}$. Each student is enrolled in a non-empty subset of exams.
- time slots: $Ts = \{t_1 \leq t_2 \leq \ldots \leq t_T\}$
- n_{e_1,e_2} = number of students enrolled both e_1 and e_2 if $n_{e_1,e_2} > 0$ then e_1 and e_2 are conflicting.

Constraints

- each exam is scheduled exactly once during the examination period
- 2 two conflicting exams are not scheduled in the same time-slot
- **9** given two exams $e_1, e_2 \in E$ scheduled at distance i of time-slots, with $1 \le i \le 5$, the relative penalty is

$$rp_{e_1,e_2} = 2^{(5-i)} \frac{n_{e_1,e_2}}{|S|}$$

we would like to minimize the sum of the penalties:

$$\min \sum_{(e_1,e_2):\ e_1,e_2\in E,\ e_1\neq e_2} rp_{e_1,e_2}$$

Basic Model

Data initialization

- exams: List for the exams
- time slots: List for the time slots from 1 to T.
- enrollment _matrix: a dictionary for the enrollments. The students
 are the keys and a list of exams belongs to a key.
- students: keys of the enrollment_matrix
- conflicting exams: A dictionary for the conflicting exams. For every pair of conflicting exams we indicated n_{e_1,e_2} , the number of conflicts.

Modelling Constraints

• We modeled the exercise as an integer (binary) programming problem.

•

$$x_{t,e} = \begin{cases} 1, \text{ if the } e \in E \text{ exam is held in the } t \in \mathit{Ts} \text{ time-slot} \\ 0, \text{ otherwise} \end{cases}$$

Modelling Constraints

• Each exam is scheduled exactly once during the examination period.

$$\sum_{k=1}^{T} x_{t_k,e} = 1, \quad \forall e \in E$$

Two conflicting exams are not scheduled in the same time-slot.

$$x_{t,e_1} + x_{t,e_2} \le 1, \quad \forall t \in \mathit{Ts}, \ \forall (e_1,e_2) \in \mathsf{conflicting_exams}$$

Modelling Constraints

- For every conflicting pair of exams let u_{e_1,e_2} be the penalty if the distance between them is not more then 5 time slots.
 - Then the objective function is

$$\min \sum_{(e_1,e_2) \text{ conflicting exams}} u_{e_1,e_2}$$

• For every conflicting pair (e1, e2), for every $i \in \{1, 2, 3, 4, 5\}$ and for every $t \in \{t_1, \dots, t_{T-i}\}$

$$u_{e_1,e_2} \ge 2^{5-i} (x_{t,e_1} + x_{t+i,e_2} - 1) \frac{n_{e_1,e_2}}{|S|}$$

$$u_{e_1,e_2} \ge 2^{5-i} (x_{t+i,e_1} + x_{t,e_2} - 1) \frac{n_{e_1,e_2}}{|S|}.$$

Advanced Model

Equity measures

Maximum distance

• Let *u* be smaller or equal with the number of time-slots between any two conflicting exams.

max II

• For every (e_1, e_2) conflicting pair and for every $t_1 \le t_2$ time slots:

$$u \leq (x_{t_1,e_1} + x_{t_2,e_2} - 1)(t_2 - t_1 - T) + T$$

$$u \leq (x_{t_2,e_1} + x_{t_1,e_2} - 1)(t_2 - t_1 - T) + T$$

Number of students with back-to-back exams

• Let u_s be the next binary variable for every student $s \in S$:

$$u_s = \begin{cases} 1, & \text{if student } s \text{ have two conflicting exams scheduled} \\ & \text{in consecutive time-slots} \\ 0, & \text{otherwise} \end{cases}$$

ullet Then we would like to minimize the number of students, where $u_s=1$

$$\min \sum_{s \in S} u_s$$

• For every $t \in \{t_1, \dots, t_{T-1}\}$, for every (e_1, e_2) conflicting pair, if $s \in e_1$ and $s \in e_2$ then

$$u_s \ge x_{t,e_1} + x_{t+1,e_2} - 1$$

 $u_s \ge x_{t+1,e_1} + x_{t,e_2} - 1$

Additional restrictions

At most 3 consecutive time slots can have conflicting exams

- This means that two consecutive time slots can not have conflicting exams.
- For every $t \in Ts$, (e_1, e_2) conflicting pair set the next constraint:

$$x_{t,e_1} + x_{t+1,e_2} \le 1$$

 $x_{t+1,e_1} + x_{t,e_2} \le 1$

If two consecutive time slots contain conflicting exams, then no conflicting exam can be scheduled in the next 3 time slots

• Let $u2_t$ and $u3_t$ be the next binary variables:

$$u2_t = \begin{cases} 1, \text{ if there is a conflicting pair in time periods } \{t, t+1\} \\ 0, \text{ otherwise} \end{cases}$$

$$u3_t = \begin{cases} 1, \text{ if there is a conflicting pair in time periods } \{t, t+1, t+2\} \\ 0, \text{ otherwise} \end{cases}$$

• Then the additional constraint is equivalent with this expression:

$$u2_t + u3_{t+2} \le 1 \quad \forall t \in \{t_1, \dots, t_{T-4}\}$$

If two consecutive time slots contain conflicting exams, then no conflicting exam can be scheduled in the next 3 time slots

ullet For every $t_1,t_2\in\{t,t+1\}$ and (e_1,e_2) conflicting pair

$$u2_t \ge x_{t_1,e_1} + x_{t_2,e_2} - 1$$

and for every $t_1, t_2 \in \{t, t+1, t+2\}$ and (e_1, e_2) conflicting pair

$$u3_t \ge x_{t_1,e_1} + x_{t_2,e_2} - 1.$$

Bonus Profit

• For every $t_1, t_2 \in \{t, t+1, \dots, t+5\}$ and (e_1, e_2) conflicting pair let $u6_t$ be a binary variable with the next constraints:

$$u6_t \ge x_{t_1,e_1} + x_{t_2,e_2} - 1,$$

Then would like to minimize the next expression

$$\min \sum_{t:\ t \le T-6} b \cdot u 6_t$$

Changing the constraints: at most 3 conflicting pairs can be scheduled in the same time slot

• Let u_{t,e_1,e_2} be the next binary variable for every $t \in Ts$ and for every (e_1, e_2) conflicting pair:

$$u_{t,e_1,e_2} = egin{cases} 1, & ext{if } e_1 ext{ and } e_2 ext{ is held in time slot } t \ 0, & ext{otherwise} \end{cases}$$

• We can express u_{t,e_1,e_2} with the variables $x_{t,e}$ easily again:

$$u_{t,e_1,e_2} \ge x_{t,e_1} + x_{t,e_2} - 1$$

• Then the constraint for every $t \in Ts$:

$$\sum_{(e_1,e_2) \text{ conflicting pair}} u_{t,e_1,e_2} \leq 3.$$

Experiments

Experiments

- We implemented all of the variants of the model in python
- We couldn't try out the implementation on the instances
- We got proper results in small instances