$12a_{0716} \ (K12a_{0716})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{21} - u^{20} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{21} - u^{20} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 8u^{9} - 22u^{7} + 24u^{5} - 7u^{3} - 2u \\ u^{13} - 9u^{11} + 29u^{9} - 40u^{7} + 22u^{5} - 5u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{13} + 10u^{11} - 37u^{9} + 62u^{7} - 46u^{5} + 12u^{3} + u \\ u^{13} - 9u^{11} + 29u^{9} - 40u^{7} + 22u^{5} - 5u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{16} + 52u^{14} 268u^{12} + 696u^{10} 956u^8 4u^7 + 664u^6 + 24u^5 200u^4 40u^3 + 16u^2 + 16u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{21} + 9u^{20} + \dots + 7u + 1$
c_2, c_7	$u^{21} + u^{20} + \dots - u + 1$
c_3, c_4, c_5 c_6, c_9, c_{10} c_{11}, c_{12}	$u^{21} - u^{20} + \dots - u + 1$
c ₈	$u^{21} + 3u^{20} + \dots - 7u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} + 7y^{20} + \dots - 13y - 1$
c_{2}, c_{7}	$y^{21} - 9y^{20} + \dots + 7y - 1$
c_3, c_4, c_5 c_6, c_9, c_{10} c_{11}, c_{12}	$y^{21} - 33y^{20} + \dots + 7y - 1$
c ₈	$y^{21} - 5y^{20} + \dots + 47y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.986925 + 0.107343I	5.30460 - 0.94567I	15.9891 + 0.9603I
u = -0.986925 - 0.107343I	5.30460 + 0.94567I	15.9891 - 0.9603I
u = 0.964195 + 0.203562I	3.73785 + 5.76102I	12.8516 - 6.6283I
u = 0.964195 - 0.203562I	3.73785 - 5.76102I	12.8516 + 6.6283I
u = 0.693519	0.883815	10.3390
u = -1.43658	8.31325	10.1730
u = -0.381397 + 0.348992I	-0.51635 - 3.92137I	8.33191 + 8.74672I
u = -0.381397 - 0.348992I	-0.51635 + 3.92137I	8.33191 - 8.74672I
u = -1.50531 + 0.08944I	12.19490 - 6.89551I	13.5766 + 5.0714I
u = -1.50531 - 0.08944I	12.19490 + 6.89551I	13.5766 - 5.0714I
u = 1.51471 + 0.04973I	13.91340 + 1.56839I	16.0849 - 0.3015I
u = 1.51471 - 0.04973I	13.91340 - 1.56839I	16.0849 + 0.3015I
u = 0.453462 + 0.122416I	0.769941 + 0.070488I	13.52298 - 1.80552I
u = 0.453462 - 0.122416I	0.769941 - 0.070488I	13.52298 + 1.80552I
u = -0.113370 + 0.369174I	-1.30747 + 1.54741I	3.43030 - 0.59143I
u = -0.113370 - 0.369174I	-1.30747 - 1.54741I	3.43030 + 0.59143I
u = 1.85680	-18.6369	10.4160
u = 1.87144 + 0.02233I	-14.3542 + 7.5109I	13.7230 - 4.4405I
u = 1.87144 - 0.02233I	-14.3542 - 7.5109I	13.7230 + 4.4405I
u = -1.87368 + 0.01263I	-12.55530 - 1.91754I	16.0257 + 0.0622I
u = -1.87368 - 0.01263I	-12.55530 + 1.91754I	16.0257 - 0.0622I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{21} + 9u^{20} + \dots + 7u + 1$
c_2, c_7	$u^{21} + u^{20} + \dots - u + 1$
c_3, c_4, c_5 c_6, c_9, c_{10} c_{11}, c_{12}	$u^{21} - u^{20} + \dots - u + 1$
<i>C</i> ₈	$u^{21} + 3u^{20} + \dots - 7u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} + 7y^{20} + \dots - 13y - 1$
c_2, c_7	$y^{21} - 9y^{20} + \dots + 7y - 1$
c_3, c_4, c_5 c_6, c_9, c_{10} c_{11}, c_{12}	$y^{21} - 33y^{20} + \dots + 7y - 1$
c ₈	$y^{21} - 5y^{20} + \dots + 47y - 1$