

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

Complex Numbers

Simplify Imaginary Numbers

The Imaginary Number i:

•
$$i^2 = -1$$
 and $i = \sqrt{-1}$

If b is a positive real number, then $\sqrt{-b} = i \sqrt{b}$

Example 1: Write Imaginary Numbers / Simplify in terms of i

a)
$$\sqrt{-25}$$

a)
$$\sqrt{-25}$$
 b) $\sqrt{-\frac{50}{9}}$ c) $\sqrt{-25} \cdot \sqrt{-9}$ d) $\frac{\sqrt{-50}}{\sqrt{-18}}$

c)
$$\sqrt{-25} \cdot \sqrt{-9}$$

d)
$$\frac{\sqrt{-50}}{\sqrt{-18}}$$

1.3 Complex Numbers

(2) Write Complex Numbers in the form *a*+*bi*

Complex Number:

$$a+bi$$

a: Real part

b: Imaginary part

Special Cases:

1) a = 0: pure imaginary 2) b = 0: real number

Example 2: Write Complex Numbers in standard form

a)
$$3 - \sqrt{-100}$$

b)
$$\frac{-6+\sqrt{-18}}{3}$$

1.3 Complex Numbers

(3) Perform Operations on Complex Numbers

$$i^1 = i$$

$$i^1 = i \qquad \qquad i^5 = i^4 \cdot i = i$$

$$i^9 = i$$

$$i^2 = -1$$

$$i^2 = -1$$
 $i^6 = i^4 \cdot i^2 = 1 \cdot (-1) = -1$

$$i^{10} = -1$$

$$i^3 = -i$$

$$i^{3} = -i$$
 $i^{7} = i^{4} \cdot i^{3} = 1 \cdot (-i) = -i$

$$i^{11} = -i$$

$$i^4 = 1$$

$$i^8 = i^4 \cdot i^4 = 1 \cdot 1 = 1$$

$$i^{12} = 1$$

Example 3: Simplify Powers of *i*

a)
$$i^{48}$$

b)
$$i^{50}$$

c)
$$i^{23}$$

d)
$$i^{-19}$$

1.3 Complex Numbers

Example 4: Add and Subtract Complex Numbers

a)
$$(5+2i)+(3-6i)-(-2+2i)$$

b) Subtract
$$(\frac{1}{2} + \frac{2}{3}i)$$
 from $(\frac{3}{4} + \frac{5}{6}i)$

Example 5: Multiply and Divide Complex Numbers

a)
$$(5+2i)(1-2i)$$

b)
$$(3+4i)(3-4i)$$

c)
$$\frac{5+2i}{1-i}$$

d)
$$(1-\sqrt{3}i)^{-1}$$

Quadratic Equations

Definition of a Quadratic Equation:

A quadratic equation in the variable is an equation of the form:

$$ax^2 + bx + c = 0$$

1 Solve by using the Zero product Property

Zero Product Property:

If mn = 0, then m = 0 or n = 0.

Example 1: Apply the Zero Product Property to solve the equations:

a)
$$x^2 - 8x = 0$$

b)
$$2x(2x-7)=-12$$
.

1.4 Quadratic Equations

2 Solve by using the Square Root Property

Square Root Property:

If
$$x^2 = k$$
, then $x = \sqrt{k}$ or $-\sqrt{k}$.

Example 2: Apply the Zero Product Property to solve:

a)
$$x^2 = 36$$

b)
$$9y^2 + 25 = 0$$

c)
$$(w-3)^2 = 50$$

1.4 Quadratic Equations

3 Complete the Square

Perfect Square Trinomial

Factored Form

$$x^2 + 10x + 25$$
 $(x+5)^2$

$$t^2 - 8t + 16$$
 $(t-4)^2$

$$z^2 + 12z + 36$$
 $(z+6)^2$

Example 3: Complete the Square

a)
$$x^2 + 12x$$

b)
$$x^2 - \frac{3}{5}x$$

c)
$$2x^2 - 9x$$