

Forecast in a Bank/Finance Sector

Business Data Challenge: CCH Tagetik

Course: Fundamentals of Business Management

Accademic Year: 2023/2024

Our Team

- · Cattari Simona
- Poiani Marco
- Carella Alessandro
- Jallow Ebrima

Challenge Presentation

Problem

A company in the banking sector wants to incorporate the Net Inflow forecast as a starting point for its 2023 budget, based on macroeconomic data and operational / promotion costs to perform margin simulations and react to adverse scenarios.

Our Goal

Mock up of a dashboard with KPIs useful for a what-if analysis after the forecast results considering the assumptions changes and the impacts on the EBIT

Tasks

These are the main 4 macro-tasks necessary to solve our problem.

Task 1

Choice of the most significant P&L items as collection drivers

Task 2

Choice of the most significant

Task 3

Preparation and choice of one or more ML models for the train and forecast phases.

Task 4

Choice of output evaluation metrics.

Target Banks

We built our dataset extracting data from the financial reports of the first 5 banks in Italy by assets. Data spans from 2018 to 2022.

Unicredit
Intesa Sanpaolo
MPS
Bper Banca
Banco BPM

Financial Statements

The selection of the correct items from financial statements has been a determinant for the success of our project.

We decided to extract information from the Income Statement, also known as the P&L statement, because it contains all the necessary elements.

Consolidate P&L statement

Tipically banks are groups, so they must prepare a consolidated Income statement.

The distinction between the income statement and the consolidated version is that the first one includes only the financial results of a single company, the second one incorporates the results of both the parent company and its subsidiaries.

Items breakdown

All the items presented so far are in turn made up of multiple values and variables.

For instance, if we break down item "10", we realize that it is the result of several elements

Relevant items

Besides the Net Income and the EBIT we considere other 6 items relevant for our task:

- Net Interest Margin
- Net fees and commissions
- Operating Income
- Net profit from financial activities
- Administrative expenses
- Operating costs

	YE	AR
ITEMS	2022	
10. Interest income and similar revenues	16,339	
of which: interest income calculated with the effective interest method	13,426	

DEBT SECURITIES	LOANS	OTHER TRANSACTIONS	TOTAL
246	102	845	1,193
158	12	845	1,015
2	-	_	2
86	90	-	176
747	-	X	747
780	11,899	Х	12,679
101	1,682	X	1,78
679	10,217	Х	10,89
Х	X	278	27
X	X	468	46
Х	X	Х	97
1,773	12,001	1,591	16,33
2	331	-	33
Χ	463	X	46
	158 2 86 747 780 101 679 X X X 1,773	246 102 158 12 2 - 86 90 747 - 780 11,899 101 1,682 679 10,217 X X X X X X X X X X X X X X X X X X X X X X X X X X 1,773 12,001 2 331	DEBT SECURITIES LOANS TRANSACTIONS 246 102 845 158 12 845 2 - - 86 90 - 747 - X 780 11,899 X 101 1,682 X 679 10,217 X X X 278 X X 468 X X X 1,773 12,001 1,591 2 331 -

KPIs

Generic and useful KPIs for the What-if analysis. For our project, we used those extractable from the Income statement. Exploiting the right KPIs we can measure and analyze the overall performance of a business.

Net Profit Margin

It is a percentage that represents the profitability of a company in relation to its revenue.

It measure of how much profit a company makes for every dollar of revenue it generates.

Operating Expenses Ratio

It is calculated by dividing all operating expenses less depreciation by operating income. A lower operating expense ratio is more desirable for investors because it means that expenses are minimized relative to revenue.

ROA

It measure the overall profitability. It is calculated by dividing net income by average total assets. We did not use this indicators in our project because the total assets is a number reported on the balance sheet.

Macroeconomic values

Where we have found the values

Official website of banks

Banks are required to maintain a certain level of transparency for their shareholders and the general public.

They have regulatory obligations that require the disclosure of certain financial and macroeconomic data.

Transparency can positively influence the perception of the public and stakeholders.

Financial analysts regularly examine the macroeconomic data of banks to assess their financial strength and ability to manage risks.

Banks that follow these practices can be considered more reliable and professional.

Macroeconomic values

Where we have found the values

An international organization that collects and publishes data reflecting global economic and social conditions.

We used this resource to perform a thorough comparative analysis of macroeconomic variables found in the financial reports of different banks.

This approach provided a detailed understanding of economic dynamics.

Gross Domestic Product (GDP): It reflects the economic health of a nation. Its variations influence the demand for financial services and the attitude towards risk. A growing GDP indicates a favorable environment for investments, while a contraction may suggest the opposite.

Unemployment Rate: A key indicator of labor market stability, influences loan demand, consumer confidence, and the real estate sector. High unemployment may lead to reduced loan repayment capacity and a decline in financial services demand.

Macroeconomic variables used

These are key macroeconomic indicators that play a significant role in shaping the economic landscape.

Producer Price Index (PPI): An indicator reflecting the changing dynamics of production costs, plays a crucial role in influencing profit margins in the banking sector. An increase in production costs can put pressure on profit margins, while a decrease could contribute to improving the profitability of the sector.

Consumer Price Index: Represents inflation and monitors changes in prices of goods and services consumed. It plays a crucial role in influencing real interest rates and the overall demand for financial services. A high inflation rate can erode the purchasing power of the currency.

Exchange Rates: Influence the relative value of currencies. They have a deep impact on international trade, import-export operations, and the activities of multinational companies. Fluctuations in exchange rates can affect profits from foreign currency activities and the ability of a company to compete effectively on a global scale.

Real Interest Rate: Considering the effect of inflation on nominal interest rates, plays a decisive role in shaping incentives for investments and borrowing. A negative real interest rate can encourage investments and access to credit, while a positive rate may have the opposite effect.

Covid Stringency Index: Reflects the degree of limitations and restrictions related to the pandemic. This index can influence economic mobility and business activities, with potential direct effects on sectors such as loans, investments, and business operations.

Problem

The task of the project was to build a machine learning model to make predictions based on the retrieved data.

The process of building the model was harder than expected since we could not find a big and therefore reliable amount of data to build the models using the ones my colleagues and I have been working on during our data mining and machine learning courses.

Our Goal

Researching through the internet for models that can be considered reliable with as few data point as the ones we have on our hands I was puzzled by deciding whether to go for a one shot model or linear regression models.

Linear regression

Linear regression is a statistical method used for modeling the relationship between a dependent variable and one or more independent variables by fitting a linear equation to observed data.

The basic idea is to find the best-fitting straight line (or hyperplane, in the case of multiple independent variables) that minimizes the sum of the squared differences between the observed and predicted values

Ridge

Variance of linear regression technique that is an extension of ordinary least squares (OLS) regression. It is used when there is multicollinearity in the data, which means that the independent variables are highly correlated.

The goal is to minimize the sum of squared differences between the observed and predicted values while also penalizing large coefficients.

Lasso Elastic net

The Lasso (Least Absolute Shrinkage and Selection Operator) is a statistical technique and a regularization method used in linear regression to improve the model's performance and prevent overfitting. It adds a penalty term to the standard linear regression objective function, which helps to shrink the coefficients of some features to zero.

Elastic Net is a linear regression model that combines the L1 (Lasso) and L2 (Ridge) regularization techniques.

Decision tree regressor

Dataset

GDPIndex, UnemploymentRate, PPI, ExchangesRatesPercentage, CPIIndex, CovidStringencyIndex, RealInterestRate

Fixed for a determinate year.

(25, 5				2		A 2 2				
10.2.2.00	Interessiattividaproventiassimilati	${\tt DiCuiInteressiAttiviCalcolatiConIlMetodoDellInteresseEffettivo}$	InteressiPassiviEOneriAssimilati	MargineDiInteresse	CommissioniAttive	ExchangesRatesPercentage	CPIIndex	CovidStringencyIndex	RealInterestRate	CostPerEmployee
count	25.000000	25.000000	25.000000	25.000000	25.000000	25.000000	25.000000	25.000000	25.000000	25.000000
mean	6288.933320	5792.892520	-1758.194040	4587.510720	8852.056240	0.884000	2.196000	31.580000	0.980000	-0.125240
std	5523.441782	4842.504005	1715.763965	3808.763532	21845.461588	0.037417	2.782307	32.757748	0.781025	0.190851
min	990.695000	1358.857000	-5715.000000	1122.437000	812.147000	0.850000	-0.100000	0.000000	-0.400000	-0.756000
25%	1975.109000	1863.740000	-3269.000000	1490.354000	1714.284000	0.850000	0.600000	0.000000	0.700000	-0.084000
50%	2513.924000	2468.870000	-615.476000	2016.140000	2018.601000		1.100000	21.990000	1.400000	-0.078000
75%	10486.000000	10565.000000	-460.005000	7993.000000	8105.000000	0.890000	1.900000	53.500000	1.600000	-0.071000
max	16339.000000	13426.000000	-192.233000	10853.127000	112087.000000	0.950000	8.200000	82.410000	1.600000	0.090000

Problem

Determining which model is the better was a hard task since the total number of data point is too low to perform a k fold cross validation, so I decided to find multiple metrics and other measures to compare the various models implemented

Mean Squared Error (MSE)

widely used metric for evaluating the performance of prediction models. When comparing different models, MSE provides a quantitative measure of the average squared differences between the predicted values and the actual values. The lower the MSE, the better the model's predictions align with the true outcomes. MSE is particularly useful in regression analysis, where the goal is to minimize the sum of squared errors.

Mean Absolute Error (MAE)

valuable metric for assessing the accuracy of a model's predictions. MAE quantifies the average absolute difference between the predicted values and the actual values in a dataset. Unlike other error metrics, MAE is particularly straightforward and easy to interpret, as it represents the average magnitude of errors without considering their direction. A lower MAE indicates better predictive performance, reflecting a closer alignment between the model's predictions and the true outcomes.

R2 score

also known as the coefficient of determination, is a metric used to assess the goodness of fit of a regression model. It measures the proportion of the variance in the dependent variable that is predictable from the independent variables. The R2 score ranges from 0 to 1, where a score of 1 indicates a perfect fit, meaning the model explains all the variability in the data. A score of 0 implies that the model does not explain any variability.

Explained variance score

metric used to evaluate the performance of prediction models, particularly in the context of regression analysis. It quantifies the proportion of variance in the target variable that the model can explain. The score ranges from 0 to 1, with 1 indicating a perfect match between the model's predictions and the actual values. While it complements other evaluation metrics, such as mean squared error or R-squared, the explained variance score focuses specifically on the explained variance, offering a concise measure of the model's effectiveness

Accuracy

Precision

Precision True Positives (TP) True Positives (TP) + False Positives (FP) Prediction True Positives (TP) + False Positives (FP) True Positives (TP) + False Positives (FP)

Recall

F1 score

```
F1

2 * Precision * Recall = 2 * 25% * 33% = 28%

Precision + Recall = 25% + 33%
```

Mean Squared Error: [616072.2435259 302263.27150354]

Mean Absolute Error: [657.32054194 352.24824301]

R-squared: [0.92595817 0.95878311]

Explained Variance Score: [0.92829973 0.97233646]

Accuracy: 0.8
Precision: 0.8
Recall: 0.8
F1 Score: 0.8

Predictions

To make predictions via the model on the dataset we have to set all the other parameters of the data.

It's better to specify all the known values but, after testing, we decided that having the option to input all the values of the data to predict on the actual developed web application results in a bad user experience.

We decided than to select the most relevant ones and to use a representative value, extracted from the dataset the models are built onto, as a value for the other features when making a prediction.

```
"Interessiattividaproventiassimilati": 15500,
"DiCuiInteressiAttiviCalcolatiConIlMetodoDellInteresseEffettivo": 12000,
"InteressiPassiviEOneriAssimilati": -5000.
"MargineDiInteresse": 9000,
"CommissioniAttive": 7500,
"CommissioniPassive": -1200,
"CommissioniNette": 6000,
"DividendiEProventiSimili": 400,
"RisultatoNettoDellattivitaDiNegoziazione": 800,
"RisultatoNettoDellattivitaDiCopertura": 350,
"Utili(perdite)DaCessioneORiacquistoDi": 400,
"AttivitaFinanziarieValutateAlCostoAmmortizzato": 120,
"AttivitaFinanziarieValutateAlFairValueConImpattoSullaRedditivitaComplessiva": 120,
"PassivitaFinanziarie": 180,
"RisultatoNettoDelleAltreAttivitaEPassivitaFinanziarieValutateAlFairValueConImpattoAContoEconomico": 500,
"AttivitaEPassivitaFinanziarieDesignateAlFairValue": 1000,
"AltreAttivitaFinanziarieObbligatoriamenteValutateAlFairValue": -550,
"MargineDiIntermediazione": 18000,
"RettificheERipreseDiValoreNettePerRischioDiCreditoDi": -1900,
"AttivitaFinanziarieValutateAlCostoAmmortizzato2": 500,
"AttivitaFinanziarieValutateAlFairValueConImpattoSullaRedditivitaComplessiva2": 500,
"UtiliEPerditeDaModificheContrattualiSenzaCancellazioni": -1800,
"RisultatoNettoDellaGestioneFinanziaria": -50,
"RisultatoNettoDellaGestioneFinanziariaEAssicurativa": -5.
"SpeseAmministrative": 16000,
"SpesePerIlPersonale": 160.5,
"AltreSpeseAmministrative": -9500,
"AccantonamentiNettiAiFondiPerRischiEOneri": -5500,
"ImpegniEGaranzieRilasciate": -4000,
"AltriAccantonamentiNetti": 30,
"RettificheERipreseDiValoreNetteSuAttivitaMateriali": 40,
"RettificheERipreseDiValoreNetteSuAttivitaImmateriali": -10,
"AltriOnerERoventiDiGestione": -700,
"CostiOperativi": -500,
"Utili(perdite)DellePartecipazioni": 550,
"Utili(perdite)DaCessioneDiInvestimenti": -10000,
"ImposteSulRedditoDellesercizioDelloperativitaCorrente": 30,
"Utile(perdita)DiEsercizio": -800,
"PersonaleDipendente(valoreAssoluto)": 6200,
"GDPIndex": 6200,
"UnemploymentRate": 80000,
"PPI": 3.2.
"ExchangesRatesPercentage": 7.8,
"CPIIndex": 24,
"CovidStringencyIndex": 0.90,
"RealInterestRate": 8.50,
"CostPerEmployee": 20.99,
```

Integration of the systems

Technical Process

User Flow Illustration

Prediction: What-if Analysis

Forecasting

Evaluation: User Activate a model

dashboard

oredictions

Evaluation

Model Evaluation

Model	Mean Squared Error	Mean Absolute Error	R-squared	Explained Variance Score	Accuracy	Precision	Recall	F1 Score	Activate Model
Decision Tree	5703298.6	1591.43	0.31	0.48	0.8	1	0.8	0.88	ACTIVATE
RidgeModel	582488.16	617.12	0.85	0.85	0.4	0.4	0.4	0.4	ACTIVATE
Elastic Net	558678.7	662.55	0.89	0.9	0.4	0.4	0.4	0.4	ACTIVATE
Lasso	302263.27	352.24	0.92	0.92	0.8	0.8	0.8	0.8	ACTIVATE
LinearRegression	1078.28	0.75	1078.28	0.75	0.3	0.3	0.3	0.3	ACTIVATE

Dashboard

Exchan	gre Rate vs	Interest Rate	s			140
		Interest Rate				+45
						+4:
				e Rate (FX)	•	

0%

Strigency Index by Year

Employees			
Bank	Number of Employees	Cost Per Emp.	Total Cost per Emp.
bank 1	87352	0.04	37777
bank 2	20825	0.08	1648
bank 3	10751	0.34	36500
bank 4	91338	0.07	12504
bank 5	20563	0.08	33584

Responsive Site

Thank you.