

EVALUASI TENGAH SEMESTER GENAP 2023/2024 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Analisis II

Hari, Tanggal : Rabu, 19 Juni 2024 Waktu / Sifat : 100 menit / Closed Book

Kelas, Dosen : A. Sunarsini, S.Si, M.Si.

B, C. Dr. Mahmud Yunus, M.Si. D. Dr. Rinurwati, M.Si.

E, F. Dr.mont. Kistosil Fahim, M.Si.

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

1. Misal $A := [0, \infty)$, perhatikan barisan fungsi $(f_n(x))$ yang didefinisikan dengan

$$f_n(x) := nx/(1+nx^2)$$

untuk $x \in A$.

(a) Tunjukkan bahwa (f_n) terbatas pada A untuk semua $n \in \mathbb{N}$.

Jawab

Kita perhatikan bahwa $f_n(x) = \frac{nx}{1+nx^2}$. Karena $x \ge 0$ dan $n \in \mathbb{N}$, maka $nx \ge 0$ dan $1+nx^2 \ge 1$. Sehingga $f_n(x) \le \frac{nx}{1}$. Dengan demikian, $f_n(x)$ terbatas pada A untuk semua $n \in \mathbb{N}$.

- (b) Tunjukkan bahwa (f_n) konvergen titik-demi-titik ke suatu fungsi f, tetapi tidak terbatas. **Jawab**:
 - Untuk x = 0, kita punya $f_n(0) = 0$ untuk setiap $n \in \mathbb{N}$. Sehingga $f_n(x)$ konvergen ke 0.
 - Untuk x > 0, kita punya $f_n(x) = \frac{nx}{1 + nx^2} = \frac{1}{1/nx + x} \implies \frac{1}{x}$. Sehingga $f_n(x)$ konvergen ke 1/x.

Jadi, (f_n) konvergen titik-demi-titik ke suatu fungsi f yaitu $f(x) = \begin{cases} 0 & \text{jika } x = 0 \\ 1/x & \text{jika } x > 0 \end{cases}$.

Sekarang untuk menujukkan bahwa f tidak terbatas, kita gunakan kontradiksi. Asumsikan f terbatas, maka ada M > 0 sehingga $|f(x)| \leq M$ untuk setiap $x \in A$. Kita ambil x = 1/(2M), maka f(1/(2M)) = 2M yang mana bertentangan dengan asumsi bahwa f terbatas.

 $\therefore f$ tidak terbatas.

(c) Apakah (f_n) konvergen seragam pada A? Jelaskan! **Jawab**:

Teorema. Misalkan $f_n(x)$ adalah sebuah barisan fungsi kontinu pada suatu himpunan $A \subseteq \mathbb{R}$. Jika (f_n) konvergen seragam pada A ke fungsi $f: A \to \mathbb{R}$, maka f kontinu pada A.

Jelas bahwa $f_n(x)$ kontinu untuk $n \in \mathbb{N}$, hal ini diperoleh dari g(x) = 1 dan $h_n(x) = 1 + nx^2 \neq 0$ dimana kedua fungsi tersebut kontinu pada A, sehingga $f_n(x) = g(x)/h_n(x)$ kontinu pada A juga.

Dengan Modus Tolen, karena f tidak kontinu pada A maka (f_n) tidak konvergen seragam pada A.

2. Diberikan deret fungsi $\sum f_n$ dengan $f_n(x) = \sin(\frac{x}{n^2})$. Apakah deret tersebut konvergen seragam pada $[0, \pi]$? Jelaskan! (Petunjuk: Gunakan Weierstrass M-Test) **Jawab**:

Teorema (Weierstrass M-Test). Misalkan $f_n: A \to \mathbb{R}$ adalah fungsi pada himpunan $A \subseteq \mathbb{R}$. Jika ada barisan bilangan real positif M_n sehingga $|f_n(x)| \le M_n$ untuk setiap $x \in A$ dan $n \in \mathbb{N}$, dan deret $\sum M_n$ konvergen, maka deret $\sum f_n$ konvergen seragam pada A.

Perhatikan ketaksamaan $\sin(\alpha) \leq \alpha$ untuk setiap $\alpha \in \mathbb{R}$. Dari hal tersebut kita modifikasi dengan mensubsitusi $\alpha = \frac{x}{n^2}$, sehingga ketaksamannya menjadi $\sin\left(\frac{x}{n^2}\right) \leq \frac{x}{n^2}$ untuk $x \in [0, \pi] \subseteq \mathbb{R}$ dan $n \in \mathbb{N}$.

Kita definisikan $f_n(x) = \sin\left(\frac{x}{n^2}\right) \operatorname{dan} M_n(x) = \frac{x}{n^2}$, maka

$$|f_n(x)| \le M_n(x)$$
 untuk $x \in [0, \pi]$ dan $n \in \mathbb{N}$.

Sekarang tinjau deret $\sum M_n = \sum \frac{x}{n^2}$. Dengan menggunakan sifat notasi sigma kita dapatkan $\sum \frac{x}{n^2} = x \sum \frac{1}{n^2}$. Karena deret $\sum \frac{1}{n^2}$ konvergen dengan nilai konvergennya adalah $\frac{\pi^2}{6}$, maka deret $\sum M_n$ konvergen pada $[0,\pi]$.

Dengan Weierstrass M-Test, kita dapatkan bahwa deret $\sum f_n$ konvergen seragam pada $[0,\pi]$.

3. Tunjukkan bahwa $A = \{1/n : n \in \mathbb{N}\}$ bukan himpunan tertutup. **Jawab**:

Teorema. Himpunan $A \subseteq \mathbb{R}$ adalah tertutup jika dan hanya jika A mengandung semua titik klusternya.

Pertama kita buktikan bahwa 0 adalah titik kluster dari A. Ambil sebarang $\varepsilon > 0$. Perhatikan bahwa $V_{\varepsilon}(0) \setminus \{0\} = (-\varepsilon, 0) \cup (0, \varepsilon)$. Sifat archimedean memberikan bahwa ada $n_{\varepsilon} \in \mathbb{N}$ sehingga $1/n_{\varepsilon} < \varepsilon$. Akibatnya $(V_{\varepsilon}(0) \setminus \{0\}) \cap A \neq \emptyset$ yang berarti 0 adalah titik kluster dari A.

Namun dapat dilihat bahwa $0 \notin A$, sehingga A tidak mengandung semua titik klusternya. Jadi, A bukan himpunan tertutup.

4. Tunjukkan bahwa (-2,1) tidak kompak di \mathbb{R} . Jawab:

Teorema (Heine-Borel). Himpunan $A \subseteq \mathbb{R}$ adalah kompak jika dan hanya jika A tertutup dan terbatas.

Cukup dibuktikan bahwa (-2,1) tidak tertutup. Ambil $x=1\notin (-2,1)$, maka untuk setiap $\varepsilon>0$ berapapun mengakibatkan $V_{\varepsilon}(1)\cap (-2,1)\neq \emptyset$. Jadi (-2,1) tidak tertutup.

Dengan demikian (-2,1) tidak kompak di \mathbb{R} .

5. Diberikan fungsi $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ yang didefinisikan oleh

$$d\left(\begin{bmatrix}x_1\\y_1\end{bmatrix},\begin{bmatrix}x_2\\y_2\end{bmatrix}\right):=|x_1-x_2|+|y_1-y_2|,\quad\text{untuk }x_1,x_2,y_1,y_2\in\mathbb{R}.$$

Buktikan bahwa pasangan (\mathbb{R}^2 , d) adalah ruang metrik.

Jawab:

Misalkan
$$v_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, v_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \in \mathbb{R}^2.$$

- (a) $d(v_1, v_2) = |x_1 x_2| + |y_1 y_2|$. Karena nilai mutlak selalu positif, maka $|x_1 x_2| \ge 0$ dan $|y_1 y_2| \ge 0$. Sehingga $|x_1 x_2| + |y_1 y_2| \ge 0$. (**kepositifan**)
- (b) Kiri ke kanan $\implies d(v_1, v_2) = 0 \iff |x_1 x_2| + |y_1 y_2| = 0 \iff |x_1 x_2| = 0 \text{ dan } |y_1 y_2| = 0 \iff x_1 = x_2 \text{ dan } y_1 = y_2 \iff v_1 = v_2.$ Kanan ke kiri $\iff v_1 = v_2 \iff x_1 = x_2 \text{ dan } y_1 = y_2 \implies d(v_1, v_2) = |x_1 x_2| + |y_1 y_2| = |x_1 x_1| + |y_1 y_1| = 0.$ (definit)
- (c) $d(v_1, v_2) = |x_1 x_2| + |y_1 y_2| = |x_2 x_1| + |y_2 y_1| = d(v_2, v_1)$. (simetri)
- (d) Misalkan $v_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} \in \mathbb{R}^2$.

$$\begin{split} d(v_1,v_2) &= |x_1-x_2| + |y_1-y_2| \\ &= |(x_1-x_3) + (x_3-x_2)| + |(y_1-y_3) + (y_3-y_2)| \\ &\leq |x_1-x_3| + |x_3-x_2| + |y_1-y_3| + |y_3-y_2| \\ &= d(v_1,v_3) + d(v_3,v_2) \quad \text{(ketaksamaan segitiga)} \end{split}$$

Jadi, (\mathbb{R}^2, d) adalah ruang metrik.