

Control 3

Integrantes: Adolfo Rojas V. Profesor: Juan Manuel Barrios Ayudantes: Andrés Calderón

Martina Navarro Scarleth Betancurt Sebastián Sáez

Fecha de realización: 24 de junio de 2025 Fecha de entrega: 24 de junio de 2025

Santiago de Chile

Semana 9

1. Semana 9

1) a. En la tabla 1 se muestran los cálculos para el miniset de palabras

Id	Palabra	Documentos	Inverse Document Frequency
1	artificial	1	$log\left(\frac{10000}{1}\right) = 4$
2	es	1000	$log\left(\frac{10000}{1000}\right) = 1$
3	inteligencia	10	$log\left(\frac{10000}{10}\right) = 3$
4	mi	1000	$log\left(\frac{10000}{1000}\right) = 1$
5	mucha	1000	$log\left(\frac{10000}{1000}\right) = 1$
6	perro	100	$log\left(\frac{10000}{100}\right) = 2$
7	satélite	10	$log\left(\frac{10000}{10}\right) = 3$
8	Suchai	10	$log\left(\frac{10000}{10}\right) = 3$
9	tiene	1000	$log\left(\frac{10000}{1000}\right) = 1$
10	un	1000	$log(\frac{10000}{1000}) = 1$

Tabla 1: IDF por palabra con N = 10,000

b. Por dimensionalidad (y en parte porque tampoco tenemos el vocabulario completo del corpus) trabajaremos en \mathbb{R}^2 con *inteligencia* de primera coordenada y *artificial* de segunda

Tabla 2: TF-IDF normalizado

	inteligencia	artificial	vector	norma	$TF - IDF_{norm}$
Q	$1 \cdot 3$	$1 \cdot 4$	(3,4)	$\sqrt{3^2 + 4^2} = 5$	$\left(\frac{3}{5}, \frac{4}{5}\right) = (0.6, 0.8)$
D_1	$0 \cdot 3$	$1 \cdot 4$	(0,4)	4	(0,1)
D_2	$1 \cdot 3$	$0 \cdot 4$	(3,0)	3	(1,0)

c. Dado que nuestros 3 descriptores se encuentran normalizados, la similitud coseno será el producto punto entre estos.

$$\cos(Q, D_1) = 0.6 \cdot 0 + 0.8 \cdot 1 = 0.6 \tag{1a}$$

$$\cos(Q, D_2) = 0.6 \cdot 1 + 0.8 \cdot 0 = 0.8 \tag{1b}$$

d. Utilizando los mismos vectores normalizados tenemos lo siguiente

$$||D_1 - Q||_2 = \sqrt{(0 - 0.6)^2 + (1 - 0.8)^2} \approx 0.632$$
 (2a)

$$||D_2 - Q||_2 = \sqrt{(1 - 0.6)^2 + (0 - 0.8)^2} \approx 0.894$$
 (2b)

Semana 10

2. Semana 10

1) Lo primero es ver que |T|=50,000; |V|=200 con $T\subset V$ el conjunto de tokens y V el vocabulario del dataset

- a. En base a esto tenemos que el total de elementos en el unigrama / BoW simple es |V| = 200 mientras que para n = 2 es $200^2 = 40,000$ por lo que la cantidad de términos totales del bigrama será de 40,200. En consecuencia la cota superior de la dimensión de vectores TF-IDF es de 40,200
- b. Calculamos la cantidad de términos con n=3 que es $200^3=8,000,000$ por lo que (siendo más formales) el total de términos es $|V_{\leq 3}|:=8,000,000+40,200=8,040,200$ y se debe cumplir por cota que $\forall \vec{d} \in \text{TF-IDF}_{\leq 3}(V), \dim(\vec{d}) \leq |V_{\leq 3}|$
- 2) Para facilitar el rellenado de las matrices, cada casilla tiene un par ordenado con la distancia y la operación usada, las abreviaciones de cada operación son : no hacer nada, I : insertar, D : eliminar, RZ : reemplazo entre z-s, RV : reemplazo entre vocales, R : reemplazo para los casos restantes.
 - a. salos \rightarrow zorros

		z	0	r	r	0	s
	(0, -)	(2,I)	(4, I)	(6, I)	(8, I)	(10, I)	(12, I)
s	(2,D)	(0.3, RZ)	(2.3, I)	(4.3, I)	(6.3, I)	(8.3, I)	(10, -)
a	(4,D)	(2.3, D)	(0.8, RV)	(2.8, I)	(4.8, I)	(6.8, RV)	(8.8, I)
l	(6,D)	(4.3, D)	(2.8, D)	(1.8, R)	(3.8, R)	(5.8, R)	(7.8, R)
0	(8,D)	(6.3, D)	(4.3, -)	(3.8, R)	(2.8, R)	(3.8, -)	(5.8, I)
s	(10, D)	(8.3, RZ)	(6.3, D)	(5.3, R)	(4.8, R)	(3.8, R)	(3.8, -)

b. salsas \rightarrow zorros

		z	0	r	r	0	s
	(0, -)	(2,I)	(4,I)	(6, I)	(8, I)	(10, I)	(12, I)
s	(2,D)	(0.3, RZ)	(2.3, I)	(4.3, I)	(6.3, I)	(8.3, I)	(10, -)
a	(4,D)	(2.3, D)	(0.8, RV)	(2.8, I)	(4.8, I)	(6.8, RV)	(8.8, I)
l	(6,D)	(4.3, D)	(2.8, D)	(1.8, R)	(3.8, R)	(5.8, R)	(7.8, R)
s	(8,D)	(6.3,RZ)	(4.8, D)	(3.8, R)	(2.8, R)	(4.8, R)	(5.8, -)
a	(10, D)	(8.3, D)	(6.8, RV)	(5.8, R)	(4.8, R)	(3.3, RV)	(5.3, I)
s	(12, D)	(10.3, RZ)	(8.8, D)	(7.8, R)	(6.8, R)	(5.3, D)	(3.3, -)

3) Primero definimos los conceptos importantes: $|\mathcal{D}|=20,000.$ |V|=5,000 con \mathcal{D} el dataset de documentos, V el vocabulario y la matriz $A=[\vec{d}_1,\vec{d}_2,..,\vec{d}_{|\mathcal{D}|}]^T$ con \vec{d}_i el descriptor TF-IDF del i-ésimo documento $D_i \in \mathcal{D}$ por lo que $A \in \mathbb{R}^{20,000 \times 5,000}$

Semana 11 3

a. De esto tenemos que $\dim(B) = \dim(AA^T) = 20,000^2 = 400,000,000$, donde la matriz resultante contiene el producto punto / similitud entre documentos calculada en base a los términos ($\in V$) comúnes

- b. De lo comentado en un principio tenemos que $\dim(C) = \dim(A^T A) = 5,000^2 = 25,000,000$, donde la matriz resultante contiene el producto punto / similitud entre términos a través de todos los documentos ($\in \mathcal{D}$)
- c. Simil menos poderoso que embeddings, LSA mejora la efectividad al capturar relaciones semánticas latentes entre términos y documentos, identificando similitudes aunque no compartan términos exactos
- d. Simil a PCA, LSA reduce la dimensionalidad del espacio vectorial mediante SVD lo que acelera búsquedas y comparaciones

3. Semana 11

1) a. A continuación el proceso de inserción hecho a mano

2) a. Primero escribimos el resultado de aplicar la hash function $h(x) = \lfloor x/4 \rfloor \mod 6 = (x//4)\%6$

En base a esto conseguimos la siguiente tabla

Semana 12

Elemento	$f(x) = \lfloor x/4 \rfloor$	$h(x) = f(x) \mod 6$
10	2	2
24	6	0
37	9	3
40	10	4
46	11	5
56	14	2
72	18	0
76	19	1
84	21	3
92	23	5

Tabla 3: Resultado de aplicar la función hash

Figura 2: Hash Table resultante

b. Primero calculamos h(70) = 5, h(75) = 0, h(87) = 3. Con esto calculamos las distancias de los elementos correspondientes a la cadena compartida, $\min\{|70 - 46|, |70 - 92|\} = |70 - 92| = 22$ por lo que el más similar es **92**. Repitiendo el proceso $\min\{|75 - 24|, |75 - 72|\} = |75 - 72| = 3 \implies 72$. $\min\{|87 - 10|, |87 - 56|\} = |87 - 56| = 31 \implies 56$

4. Semana 12

- 1) a. Se inicializa heap=(), candidato a NN=null, distancia de corte pruning_dist= ∞
 - Se visita nodo raíz y se obtienen regiones R1, R2 y R3
 - Se calculan MINDIST de q a R1, R2, R3 y se agregan a la cola de prioridad
 - heap = (R1, R3, R2)
 - Extraer región de menor MINDIST en la cola: R1
 - Visita R1 y obtiene regiones R13, R12, R11

Semana 12 5

 Se calculan MINDIST a q a R13, R12, R11 y se agregan a la cola de prioridad (todas son menores que pruning_dist)

- cola de prioridad=(R13, R3, R2, R12, R11)
- Extrae la región de menor MINDIST en la cola: R13
- Visita R13 y obtiene dos puntos
- punto J (compara distancia, es el nuevo candidato a NN, se fija pruning_dist)
- b. Por otro lado como tenemos un total de 21 puntos se tiene que Linear Scan debe hacer 21 evaluaciones
- 2) i. Visitamos la hoja más cercana {G}, luego retornamos el vector G
 - ii. De i. actualizamos la pruning_dist con G, luego se pasa a la región {B}, como solo hay un vector (B) y este es < pruning_dist, se retorna
 - iii. De ii. actualizamos pruning_dist con B, pasamos a {L} y retornamos L al ser el más cercano
 - iv. De iii. actualizamos pruning_dist con L, pasamos a {J, I, H}, comparamos con cada vector de la hoja y retornamos J
 - v. De iv. actualizamos pruning_dist con J, pasamos a {C, D}, comparamos con cada cada vector de la hoja pero como ninguno mejora pruning_dist retornamos J
 - vi. Retornamos J (la siguiente región es {A, K}, pero su MINDIST es mayor que pruning_dist)