ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ №1 ВАРИАНТ 1			
Измерения прямой ветви диода даны в виде таблицы:	Uд	Ід	
Задание:	400 mV 600 mV 750 mV	0 mA 3 mA 100 mA	
а) перевести таблицу в вид, пригодный для использования в прог сохранить в виде текстового файла.	рамме Ма	thCad и	
б) прочитать файл процедурой READPRN программы MathCad и показать результат			
в) вывести график указанной табличной функции			
г) Ответить на вопрос: что такое легирование полупроводника, как образуется р-п-переход, что такое контактная разность потенциалов?			

Для диода 1N966A из библиотеки Microcap построить модель стенда для исследования BAX (обратная ветвь BAX) в соответствии со схемой

Задать сопротивления прибора измерения тока 2 Ом, сопротивление вольтметра равное 5000 Ом, напряжение источника питания 10 В.

Построить график обратного тока через диод в зависимости от напряжения (от 0 до 10 В). Определить величину обратного тока при обратном напряжении 5В.

Как устроен полупроводниковый диод и какое он имеет сопротивление при прямом и обратном смещении.

Экспериментальные данные измерений получены в виде таблицы:

$$U_{\rm H_2}$$
 0,733 $I_{\rm H_2}$ 10 mA

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

Уравнение, связывающее параметры диода

Задание: а) вычислить неизвестные коэффициенты в программе MathCad по формулам:

$$Rb = (Ud_1 - 2Ud_2 + Ud_3)/Id_1$$

$$NFt = (3Ud_2 - 2Ud_1 - Ud_3)/ ln2$$

$$I_0 = Id_1 \exp[(Ud_3 - 2Ud_2) / NFt]$$

- б) построить график функции Id = f(Ud) в программе MathCad
- в) Ответить на вопрос: что такое легирование полупроводника, как образуется р-п-переход, что такое контактная разность потенциалов?

ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ №1 ВАРИАНТ 4 Экспериментальные данные получены в виде таблицы: Ud Id

708 mV 40 mA 758 mV 150 mA 798 mV 303 mA 855 mV 578 mA

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

Уравнение, связывающее параметры диода Задание: а) методом GIVEN MINNER получить параметры диода Rb, I_0 (I_s), N, Ft. Начальное приближение выбрать самостоятельно.

- б) объяснить, что эти параметры означают в модели диода.
- в) объяснить работу р-п-перехода.

Для диода 1N959A из библиотеки Microcap, построить модель стенда для исследования ВАХ (прямая ветвь ВАХ) в соответствии со схемой

Задать сопротивления прибора измерения тока 5 Ом, сопротивление вольтметра равное 5000 Ом, напряжение источника питания 2B.

Настроить интерфейс программы Microcap для передачи данных эксперимента в виде, пригодном для программы MCAD.

Ввести данные из файла в программу MCAD и построить график BAX. Объяснить устройство полупроводникового диода и работу при прямом смещении.

ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ №1 ВАРИАНТ 6			
Измерения прямой ветви диода даны в виде таблицы:	Uд	Ід	
Задание:	300 mV 400 mV 450 mV	3 mA	
а) перевести таблицу в вид, пригодный для использования в прогр сохранить в виде текстового файла.	рамме Mat	hCad и	
б) прочитать файл процедурой READPRN программы MathCad и показать результат			
в) вывести график указанной табличной функции			
г) ответить на вопрос: чем отличаются полупроводник от провод на прямую и обратную проводимость в полупроводниках.	ников, как	че токи влияют	

Для диода 1N966A из библиотеки Microcap построить модель стенда для исследования BAX (обратная ветвь BAX) в соответствии со схемой

Задать сопротивления прибора измерения тока 10 Ом, сопротивление вольтметра равное 10 000 Ом, напряжение источника питания 10 В.

Построить график обратного тока через диод в зависимости от напряжения (от 0 до 10

В). Определить величину обратного тока при обратном напряжении 5В.

Какие носители электрического тока имеются в проводниках и полупроводниках, объяснить работу диода при обратном смещении.

Экспериментальные данные измерений получены в виде таблицы:

$$U_{\text{Д}_2}$$
 0,433 $I_{\text{Д}_2}$ 10 mA

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

Уравнение, связывающее параметры диода

Задание: a) вычислить неизвестные коэффициенты в программе MathCad по формулам:

$$Rb = (Ud_1 - 2Ud_2 + Ud_3)/Id_1$$

$$NFt = (3Ud_2 - 2Ud_1 - Ud_3)/ ln2$$

$$I_0 = Id_1 \exp[(Ud_3 - 2Ud_2) / NFt]$$

- б) построить график функции Id = f(Ud) в программе MathCad
- в) Ответить на вопрос: что такое легирование полупроводника, как образуется р-nпереход, что такое контактная разность потенциалов?

ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ №1 ВАРИАНТ 9

Экспериментальные данные получены в виде таблицы: Ud Id

40 mA 408 mV 458 mV 150 mA 498 mV 303 mA 555 mV 578 mA

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

Уравнение, связывающее параметры диода

Задание: а) методом GIVEN MINNER получить параметры диода Rb, I_0 (I_s), N, Ft. Начальное приближение выбрать самостоятельно.

- б) объяснить, что параметры I_0 и R_6 означают в модели диода.
- в) объяснить устройство и работу полупроводникового диода.

Для диода 1N959A из библиотеки Microcap, построить модель стенда для исследования BAX (прямая ветвь BAX) в соответствии со схемой

Задать сопротивления прибора измерения тока 15 Ом, сопротивление вольтметра равное 15 000 Ом, напряжение источника питания 5В.

Настроить интерфейс программы Microcap для передачи данных эксперимента в виде, пригодном для программы MCAD.

Ввести данные из файла в программу МСАD и построить график ВАХ.

Ответить на вопрос: как устроен p-n-переход и как он работает при изменении напряжения на нем.