Ordens de Fabrico	
Artur Pinto nº8230138	
Luís Garcês nº8230235 Wilkie Filho nº8230127	
Maio 2025	

i

Data de Receção	
Responsável	
Avaliação	
Observações	

Agradecimentos

Gostaríamos de expressar a nossa gratidão aos professores Vasco Santos e Bruno Oliveira, da UC Base de Dados, pelo suporte fornecido ao longo deste projeto e pelos conhecimentos transmitidos, que foram fundamentais para o desenvolvimento bem-sucedido deste trabalho.

Resumo

O presente relatório descreve o desenvolvimento de uma base de dados relacional para apoiar a gestão de ordens de fabrico numa fábrica de calçado, no âmbito da unidade curricular de Bases de Dados. O sistema implementado tem como objetivo registar e controlar os processos/etapas de produção, desde a emissão das ordens de fabrico até à monitorização das operações, das perdas, dos custos e das respetivas subcontratações, respondendo aos requisitos estabelecidos no enunciado do trabalho.

O projeto iniciou-se com a análise detalhada dos requisitos de negócio, tendo sido identificadas as entidades, relacionamentos e atributos essenciais para modelar as etapas de producão. Seguiu-se a construção do modelo conceptual, validado com diagramas ER e tabelas de apoio, e a sua posterior transformação num modelo lógico onde este foi normalizado, para garantir assim a consistência da base de dados, ou seja, a integridade e eficiência dos dados. Foram também implementadas as restrições de integridade, as regras de negócio e os mecanismos automáticos, como os *triggers* e as *stored procedures*, para assegurar o correto funcionamento da base de dados e o cumprimento das validações e restrições exigidas.

A implementação foi realizada utilizando o SQL Server Developer Edition da Microsoft, onde foi implementado a criação das tabelas, dos procedimentos de manipulação de dados, as vistas para realizar as consultas necessárias e os triggers para o controlo automático de eventos importantes, como os alertas de atrasos e as perdas excessivas. A base de dados permite também efetuar consultas avançadas, como a apresentação de relatórios de desempenho e custos, e a monitorização da eficiência de produção.

O trabalho encontra-se concluído, com todos os requisitos essenciais implementados e validados. O modelo de dados foi testado e demonstra capacidade para suportar o crescimento futuro e adaptações a novos requisitos. O seguinte relatório documenta todas as decisões tomadas na realização do trabalho, justificando as opções de modelação e implementação seguidas, que foram sempre adotadas de acordo com as melhores práticas estudadas nas aulas.

Índice

Índice

Agradecimentos	iii
Resumo	iv
Índice	v
Índice de Figuras	viii
Índice de Tabelas	x
Lista de Siglas e Acrónimos	1
1. Introdução	1
1.1 Contextualização	1
1.2 Apresentação do Caso de Estudo	1
1.3 Motivação e Objetivos	2
1.4 Estrutura do Relatório	2
2. Construção do Modelo Concetual	4
2.1 Identificação das Entidades	4
2.2 Identificação de relacionamentos e respetiva multiplicidade	5
2.3 Identificação e associação de atributos a entidades ou rela	cionamentos5
2.4 Identificação dos domínios de atributos	8
2.5 Escolha das chaves candidatas, primárias e alternativas	8
2.6 Verificação de redundância no modelo (Por Concluir)	9
2.7 Validação das transações	11
3. Construção do modelo lógico	12
3.1 Derivação de relações para o modelo de dados lógico	12
3.1.1 Entidades	12
3.1.2 Relacionamentos	16
3.2 Modelo de dados lógico resultante	18
3.3 Validar modelo lógico com Normalização	19
3.3.1 Normalização das Ordem de Fabrico	19
3.3.2 Normalização da Ficha Técnica	21
3.3.3 Modelo Lógico após Normalização	23

(3.4 Validação das transações com o modelo Lógico	24
(3.5 Identificação Restrições de Integridade dos dados	25
	3.5.1 Matéria Prima	25
	3.5.2 Produto	25
	3.5.3 SubContratados	26
	3.5.4 Operação	27
	3.5.4 Ficha Técnica	27
	3.5.5 Ordem de Fabrico	27
	3.5.6 Etapa de Produção	28
	3.5.7 Etapa da Ordem	28
	3.5.8 Restrições domínios	31
3	3.6 Regras de Negócio	31
	Gestão Automatizada de Ordens de fabrico	31
	Controlo de Produção	31
	Cálculos Automáticos	31
	Validações de Processo	31
	Relatórios e Consultas	32
;	3.7 Verificação do provável crescimento futuro F	32
4.	Construção do modelo físico	33
4	4.1 Criação das tabelas no SQL Server Management Studio	33
4	4.2 Procedures criadas para resolver os problemas de Negocio	34
	Criar registos de produção para todas as operações da ficha técnica	34
	Finish Orde stage	34
4	1.2 Criação das procedures de CUD (Create, Update, Delete) no SQL Server Manager	nent
,	Studio	36
4	4.3 Views	37
	Eficiência Media Produção Por Ano	37
	Eficiência Media Produção Por Mês	38
	Eficiência Media Produção Por Dia	38
	Média Perdas de Operação em Percentagem	38
	Operações pendentes Por Ordem	38
	Custo de Produção da Ordem de Fabrico	39

Custos Comparativos	39
Ordens Atrasadas	39
Perdas Superiores a 15%	40
Operações Problemáticas	40
Operações SubContratadas	40
Ordens Atrasadas	40
Ordens Fabrico Progresso	41
Tempo total estimado por ordem	41
4.4 Triggers	41
Validações operações pendentes Order	m42
Cálculo do custo total da ordem de prod	dução de uma ordem43
Verificação de possibilidade de alterar o	status de uma ordem de produção44
4.5 SQL Server Agent	44
5. Conclusões e Trabalho Futuro	1
Bibliografia	1
Referências WWW	2

Índice de Figuras

Figura 1 - 1º Diagrama ER modelo conceptual	5
Figura 2 - Diagrama de transações	11
Figura 3 - Modelo Lógico Resultante	18
Figura 4 - Exemplo de uma Ordem de Fabrico	19
Figura 5 - Legenda dos campos da Ordem de Fabrico	19
Figura 6 - Forma Não Normalizada da Ordem de Fabrico	19
Figura 7 -2FN Ordem Fabrico Dependencia Parcias	20
Figura 8 - 2FN dependencias parciais detetadas	20
Figura 9 - 3FN Ordem de Fabrico	20
Figura 10 - Exemplo de uma FichaTecnica	21
Figura 11 - Legenda dos campos	21
Figura 12 - Forma Não Normalizada Ficha Técnica	21
Figura 13 - 1FN da Ficha Técnica	21
Figura 14 - 2ºFN da Ficha Técnica	22
Figura 15 - 3º FN da Ficha Tecnica	22
Figura 16 - Modelo Lógico após Normalização	23
Figura 17 - Transações modelo lógico	24
Figura 18 - 1º img Registos de produção	34
Figura 19 - 2º img Registos de produção	34
Figura 20 - verifcação ordem das operacoes	35
Figura 21 - alertas de perdas superiores a 15%	35
Figura 22 - soma das perdas da operação	36
Figura 23 - Atualização automatica da ordem	36
Figura 24 - Storage procedures criadas	37
Figura 25 - Eficiencia Media Producao por ano	37
Figura 26 - Tabela da eficiencia media producao por ano	37
Figura 27 - Eficiencia Media Produção por Mês	38
Figura 28 - Tabela da Eficiencia Media Producao por Mês	38
Figura 29 - Eficiência Média Produção por dia	38
Figura 30 - Tabela Eficiência Média Produção por dia	38
Figura 31 - Media de Perdas de Operação em Perdas	38
Figura 32 - Operações Por ordem	38
Figura 33 - Tabela das Operações por Ordem	38
Figura 34 - Custo de Produção da Ordem de Fabrico	39
Figura 35 - Tabela do Custo de Produção da Ordem de Fabrico	39
Figura 36 - Custos Comparativos	39
Figura 37 - Tabela dos Custos Comparativos	39
Figura 38 - Ordens Atrasadas	39

Figura 39 - Tabela das Ordens Atrasadas	39
Figura 40 - Perdas Superiores a 15%	40
Figura 41 - Tabelas de Perdas Superiores a 15%	40
Figura 42 - Operações Problemáticas	40
Figura 43 - Tabela das Operações Problematicas	40
Figura 44 - Operações SubContratadas	40
Figura 45 - Tabelas Operacoes SubContratadas	40
Figura 46 - Ordens Atrasadas	40
Figura 47 - Tabelas das Ordens Atrasadas	40
Figura 48 - Ordens de Fabrico Progresso	41
Figura 49 - Tabela Progresso das Ordens de Fabrico	41
Figura 50 - Tempo total estimado por ordem	41
Figura 51 - Exemplo do funcionamento da vista Tempo total estimado por ordem	41
Figura 52 - Calculos custos da ordem	42
Figura 53- Validação Status da Ordem	42
Figura 54 - Trigger para cálculo automatizado do custo total da ordem de produção de uma o	ordem
	43
Figura 55 - Trigger que verifica se é possivel alterar o status de uma ordem de produção	para
concluida verificando se todas as etapas dessa ordem ja estão concluidas	44
Figura 56 - Storage Procedure ALERT_ORDER_LATE	45
Figura 57 - Tabela de alertas	45
Figura 58 - Nome do job	46
Figura 59 - Etapa do job	47
Figura 60 - Programação do Agente	47

Índice de Tabelas

Tabela 1 - Lista de Siglas e Acrónimos	1
Tabela 2 - Identificação das Entidades	4
Tabela 3 - Relacionamentos e multiplicidade	5
Tabela 4 - Entidades e atributos	8
Tabela 5 - Dominios dos atributos	8
Tabela 6 - Chaves Candidatas, Primarias e Alternativas	9
Tabela 7 - Diagrama conceptual com chaves primárias	9
Tabela 8 - Entidades Fortes	14
Tabela 9 - Chaves Primarias e Estrangeiras, entidades Fortes	14
Tabela 10 - Entidades Fracas	15
Tabela 11 - Chaves Entidades Fracas	16

Lista de Siglas e Acrónimos

Sigla	Designação
BD	Base de dados
SQL	Structured Query Language
РК	Chave Primária (<i>Primary Key</i>)
FK	Chave Estrangeira (Foreign Key)
1FN	1º Forma Normal
2FN	2º Forma Normal
3FN	3º Forma Normal

Tabela 1 - Lista de Siglas e Acrónimos

1. Introdução

1.1 Contextualização

A indústria do calçado em Felgueiras destaca-se pela sua importância económica, inovação e capacidade de adaptação às exigências do mercado nacional e internacional, revelando se como uma área de atividade industrial de importante valorização da região de Felgueiras como também do país, valorizando os seus trabalhadores e contribuindo para o crescimento económico do setor e de Portugal . O setor caracteriza-se por uma forte componente produtiva, onde a eficiência, o controlo de qualidade e a gestão rigorosa dos processos são determinantes para a competitividade das empresas. Neste contexto, a gestão eficaz das ordens de produção assume um papel fundamental, visto que permite monitorizar todas as etapas do fabrico e conceção de um artigo (calçado) , desde a receção da encomenda até à expedição do produto final, garantindo o controlo dos custos e uma resposta adequada às necessidades dos clientes. Com a crescente complexidade dos processos produtivos e a necessidade de integração de operações internas e subcontratadas, torna-se fundamental dispor de sistemas de informação robustos que permitam a recolha, armazenamento e análise dos dados obtidos ao longo do ciclo de produção. Neste sentido, a informatização destes processos, através do desenvolvimento e implementação de uma base de dados relacional, permite não só automatizar tarefas relacionadas com as operações e administração, como também fornecer dados sobre desempenho e a eficiência destas fábricas o que ajuda com base na informação recolhida a tomar melhores decisões para o negócio.

1.2 Apresentação do Caso de Estudo

O caso de estudo apresentado neste trabalho assenta sobre a gestão de ordens de produção numa fábrica de calçado, onde são produzidos diversos artigos (sapatos, botas, sandálias), cada um com processos técnicos e operações específicas. Cada ordem de fabrico define os produtos a fabricar, as quantidades necessárias e o prazo de conclusão, sendo suportada por uma ficha técnica que apresenta a sequência de operações (ex.: corte, costura, montagem, acabamento), as matérias-primas envolvidas e os recursos necessários.

A base de dados a desenvolver deverá ser capaz de :

- Registar e acompanhar todas as ordens de fabrico, incluindo o estado e progresso das mesmas.
- Controlar as operações realizadas, quantidades produzidas, perdas e custos, tanto em operações internas como subcontratadas.
- Identificar atrasos, perdas excessivas e operações problemáticas.
- Apresentar relatórios , nomeadamente sobre eficiência de produção, custos e desempenho dos parceiros externos , ou seja , dos subcontratados

1.3 Motivação e Objetivos

A principal motivação para a realização deste trabalho reside na necessidade de dotar a fábrica de calçado de uma ferramenta informática que permita:

- Melhorar o acesso e o controlo das ordens de fabrico.
- Automatizar a gestão de alertas e restrições dos processos de produção, minimizando erros e desperdícios.
- Disponibilizar informação em tempo útil para apoio à decisão, nomeadamente através de relatórios e indicadores de desempenho.
- Facilitar a integração entre operações internas e subcontratadas, assegurando o cumprimento dos prazos e a otimização dos recursos disponíveis.

Os objetivos específicos do projeto incluem:

- Levantar e analisar os requisitos dos processos de produção de uma ordem de fabrico .
- Desenhar um modelo de dados relacional que represente a realidade da fábrica de calçado.
- Implementar a base de dados em SQL Server, incluindo a criação da tabelas, dos triggers, procedures e as views para suportar as regras de negócio e as consultas exigidas.
- Validar o sistema com dados aleatórios para garantir a consistência e a integridade dos dados e da base de dados

1.4 Estrutura do Relatório

O relatório encontra-se organizado e estruturado da seguinte forma:

- O Capítulo 1 apresenta a contextualização, o caso de estudo, a motivação e os objetivos do trabalho, bem como a estrutura do relatório.
- O Capítulo 2 descreve a construção do modelo conceptual, incluindo a identificação das entidades, relacionamentos, atributos e validação do modelo conceptual.

- O Capítulo 3 aborda a transformação do modelo conceptual para o modelo lógico, a normalização das relações, a definição das restrições de integridade e a validação e revisão do modelo lógico com o utilizador.
- O Capítulo 4 detalha a implementação do modelo físico em SQL Server, a criação das tabelas, procedimentos, triggers e views.
- O Capítulo 5 apresenta as conclusões, uma apreciação crítica do trabalho realizado e sugestões para desenvolvimentos futuros.
- Por fim, são incluídos anexos com informação adicional, referências bibliográficas e outros elementos de apoio à compreensão e à realização do trabalho

2. Construção do Modelo Concetual

2.1 Identificação das Entidades

Nome Entidade	Descrição	Pseudónimos	Ocorrências
Operacao	Termo geral que	Operações	Uma operação interna é realizada
	descreve todas as	internas das	em zero ou mais Fichas Técnicas.
	operações	empresas	Uma operação ela gerar um
	internas da		produto final (que é um material
	empresa		utilizado em outra operação)
SubContratado	Termo geral que	Operações	Uma operação sub Contratada
	descreve todas as	subcontratadas	pode ser contratada para zero ou
	operações	pela empresa	mais Ordens de Fabrico. Um
	subContratadas		SubContrato gera um produto final
			(que é um material utilizado em
			outra operação)
FichaTecnica	Termo geral que	Ficha técnica do	Uma ficha técnica é composta
	descreve todas as	produto	pelas etapas de produção (que
	fichas técnicas		são um conjunto de operações),
	dos produtos		todos os materiais utilizados na
			etapa de produção e vai
			referenciar um produto
Produto	Termo geral que	Artigos	Um produto possui zero ou mais
	descreve todos os		fichas técnicas.
	produtos que a		
	empresa		
	comercializa		
MateriaPrima	Termo geral que	Material	Um material pode ser utilizado em
	descreve os		zero ou mais subContratos e em
	Materiais		zero ou mais FichasTecnicas
	utilizados pela		
	empresa nas suas		
	Etapas de		
	Produção		
OrdemFabrico	Termo geral que	Ordens de	Uma ordem de fabrico inclui um ou
	descreve todas as	Fabrico	mais produtos e zero ou mais
	ordens de fabrico		operações subContratadas

Tabela 2 - Identificação das Entidades

2.2 Identificação de relacionamentos e respetiva multiplicidade

Nome Entidade	Multiplicidade	Relacionamentos	Multiplicidade	Nome Entidade
Produto	11	Descreve_possui	0*	Ficha Tecnica
FichaTecnica	11	EtapasDeProducao	1*	EtapaProducao
SubContratado	11	PodePossuir	0*	EtapaOrdem
OrdemFabrico	11	FazParteDe	1*	EtapaOrdem
Operacao	0*	OperacoesNecessarias	1*	EtapaProducao

Tabela 3 - Relacionamentos e multiplicidade

De maneira que seja mais percetível a identificação dos relacionamentos e respetiva multiplicidade é possível observar abaixo um pequeno esboço do diagrama do modelo conceptual.

Figura 1 - 1º Diagrama ER modelo conceptual

2.3 Identificação e associação de atributos a entidades ou relacionamentos

Após identificarmos todas as entidades e as suas relações chegamos há etapa de definir os atributos de cada uma.

Nome Entidade	Atributos	Descricão	Tipo	de	Dado	e Nulls	Multi-
Nome Emidade	Allibutos	Descrição	Tama	nho			valued

	MatNo		Codigo único da matéria prima	MatNo	Não	Não
	Name		Nome do Material	50 nvarchar	Não	Não
	PriceU	'n	Preço unitário desse material	PriceUn	Não	Não
Matéria Prima	Stock	quantidade	do material	int	Não	Não
	Otook	unidadeStock	Unidade de medida desse stock	5 nvarchar	Não	Não
	Obs		Observações sobre a Materia Prima	250 nvarchar	Sim	Não
	SubCo	ontratadoNo	Código Único da operação subContratada	SubContratadoNo	Não	Não
	Price		Preço da operação	float	Não	Não
	ExpectedTime		Tempo esperado de duração do subContrato	intt	Não	Não
SubContratada s	QuantidadeEnviada		Quantidade de material enviado ao subContratado		Não	Não
	Quanti a	dadeRecebid	Quantidade do material final recebida do subContratado		Não	Não
	Quanti	dadePerdas	Quantidade de material defeituoso enviado pelo subContratado	int	Não	Não
	OpNo		Código único da operação	OpNo	Não	Não
Operação	Name		Nome da operação	30 nvarchar	Não	Não
	Obs		Observação sobre a operação	250 nvarchar	Sim	Não
FichaTecnica	FichTe	ecNo	Codigo Único da Ficha Técnica	FichTecNo	Não	Não
. Iona i comoa	Produc	ctionCost	Custo de Produção da Ficha Técnica	float	Não	Não

			Quantidade Esperada			
	ExpectedQuantity		da produção do	int	Não	Não
			produto			
	Mad- ^	l m ou ref	Quantidade real		NI# e	Não
	iviade	Amount	produzida	int	Não	Não
	Diagor	dad A may not	Quantidade de		Não	Não
	Discar	dedAmount	produto desperdiçado	int	Não	Não
	Quanti	tyMaterial	Quantidade de	int	Não	Sim
	Quanti	ty Matorial	material utilizado		1100	J
	Obs		Observações da ficha	250 nvarchar	Sim	Não
			Técnica	200 11741 01141	<u> </u>	. 100
	Produc	ctNo	Código único do produto	ProductNo	Não	Não
	PriceU	n	Preço do unitário do produto	float	Não	Não
	Name		Nome do produto	30 nvarchar	Não	Não
	produc	tType	Tipo do produto	20 nvarchar	Não	Não
	Descri	ção	Descrição do produto	250 nvarchar	Sim	Não
Produto	Tamanhos		Tamanhos fabricaveis do produto (Ex: 41-45)	5 nvarchar	Não	Não
	Peso		Peso total do produto		Não	Não
			Identifica o género a			
	Género		quem se identifica o		Não	Não
			produto			
	0 111		Quantidade em stock		N.1~	
	011	Quantidade	do produto	int	Não	N.1~ .
	Stock	unidada	Unidade da	E nyorobor	Não	_Não
		unidade	quantidade de stock	5 nvarchar	Não	
	Manuf	acturingNo	Código único da	ManufacturingNo	Não	Não
	ivialiule	aotamigiNO	ordem de fabrico	, manarataningi w	1400	1400
	CostCl	harged	Custo cobrado ao	float	Não	Não
OrdemFabrico			cliente pelos produtos		1.00	
	Status		Estado atual da	1 nchar	Não	Não
			ordem			
	Creation	onDate	Data de criação da	DateTime	Não	Não
			ordem.			
			Data de início da			
	StartDa	ate		DateTime	Sim	Não
			iniciada a produção.			

ExpectedEndDate	Date esperada de termino da ordem de produção		Não	Não
EndDate	Data de termino da ordem de produção	Date	Sim	Não
Priority	Prioridade da ordem de produção	smallint	Não	Não
Obs	Observações da ordem de Fabrico	250 nvarchar	Não	Sim

Tabela 4 - Entidades e atributos

2.4 Identificação dos domínios de atributos

Nome do Dominio	Descrição	Tipo de Dado e	Nulls
		Tamanho	
MatNo	Código Único do material	7 nchar	Não
ОрNо	Código Único de uma Operação	5 nchar	Não
SubContratadoNo	Código Único do SubContratado	5 nchar	Não
FichTecNo	Código Único de uma Ficha Técnica	5 nchar	Não
ProductNo	Código único de um produto	5 nchar	Não
ManufactoringNo	Código único de uma ordem de fabrico	5 nchar	Não

Tabela 5 - Dominios dos atributos

2.5 Escolha das chaves candidatas, primárias e alternativas

Entidade	Chave Primaria	Chaves Candidatas
Matéria Prima	MatNo	Nome
Sub Contratado	SubContratadoNo	Nome
Operação	OpNo	Nome
Ficha Técnica	FichTecNo	-
Produto	ProductNo	Nome

Ordem Fabrico ManufactoringNo -		
---------------------------------	--	--

Tabela 6 - Chaves Candidatas, Primarias e Alternativas

Tabela 7 - Diagrama conceptual com chaves primárias

2.6 Verificação de redundância no modelo (Por Concluir)

O processo de verificação de redundância no modelo de dados envolve várias etapas para garantir que não haja duplicações desnecessárias e que a integridade dos dados seja mantida. Este processo pode ser divido em várias etapas, sendo elas:

Etapa 1: Verificação de Relacionamentos 1 para1

Nesta primeira etapa verificamos se existem entidades com um relacionamento 1 para 1.

No nosso desenho conceptual não foi encontrado nenhum desses tipos de relacionamento, portanto não houve a necessidade de ajustes nesta etapa.

Etapa 2: Remover relacionamentos redundantes

Um relacionamento é redundante se a mesma informação puder ser obtida por meio de outros relacionamentos. Manter o modelo conceitual sucinto, eliminando ligações desnecessárias.

Ao rever o nosso diagrama não foi detetado nenhum desses problemas, visto que os únicos cenários possíveis era o relacionamento entre a Ficha Técnica e as Operações e a Ficha Técnica com as Matérias Prima, que já foi resolvido com um relacionamento Ternário, com o nome Etapa de Produção.

E outro possível problema que o relacionamento Binário resolve era o relacionamento entre as Ordens de Fabrico e as Etapas de Produção e as mesmas Etapas com os SubContratados. Logo o nosso diagrama não apresenta nenhum problema de relacionamentos redundantes.

Etapa 3: Dimensão Temporal

A dimensão temporal das relações é essencial para avaliar corretamente a presença de redundâncias no modelo de dados. Esta análise permite compreender o contexto temporal de cada relacionamento, ajudando a evitar a eliminação de relações que, embora pareçam redundantes num dado instante, são fundamentais para manter a coerência histórica e funcional do sistema.

No nosso modelo, identificámos uma limitação ao nível da gestão temporal dos preços. Atualmente, os valores dos materiais e produtos estão armazenados diretamente nas respetivas tabelas (Material e Produto). No entanto, esta abordagem não regista o histórico de preços. Se o preço unitário de um material for alterado, essa alteração afetará retroativamente o custo das ordens de fabrico já emitidas, o que compromete a fidelidade dos dados históricos e pode ter consequências negativas na análise de custos da empresa.

Apesar desta falha pontual, o nosso diagrama evita relacionamentos redundantes e, na generalidade, respeita os princípios da dimensão temporal. Contudo, recomendamos a introdução de uma entidade associativa para preços com validade temporal para garantir a rastreabilidade correta ao longo do tempo.

2.7 Validação das transações

Na imagem abaixo, é possível observar o nosso diagrama de transações. Embora a Ficha Técnica e o Produto não estejam diretamente envolvidos em nenhuma transação representada, ambos desempenham um papel fundamental no funcionamento do sistema.

O Produto é essencial, pois sem ele as ordens de fabrico perderiam o seu propósito — não haveria referência sobre o que deve ser produzido. Da mesma forma, a Ficha Técnica fornece os detalhes do processo de produção, como os materiais e operações necessárias para fabricar o produto. Sem essa informação, seria impossível executar corretamente a produção.

Assim, mesmo que não participem diretamente em transações específicas no diagrama, o Produto e a Ficha Técnica são elementos estruturais indispensáveis ao funcionamento coerente e completo do sistema.

Figura 2 - Diagrama de transações

Legenda do diagrama

- a → Listar Ordens em atraso com o respetivo tempo de atraso;
- b → Listar Operações Problemáticas;
- c → Custos Comparativos entre operação interna e externa;
- d → Consultar as Ordens de fabrico em curso com indicação do progresso;
- e → Relatório de operações com perdas superiores a 15%;
- f → Listar as Operações mais frequentemente subContratadas e respetivos custos;
- g → Determinar o custo total de produção de uma ordem;
- h → Consultar lista de operações pendentes para cada ordem, ordenadas por prioridade;
- i → Estimar o tempo total necessários para concluir uma ordem, com base no tempo médio das operações;
- j → Calcular a eficiência média de produção por período.

3. Construção do modelo lógico

3.1 Derivação de relações para o modelo de dados lógico

Neste tópico, vamos derivar os relacionamentos para o modelo lógico com base no modelo conceitual apresentado. Esta derivação inclui a definição de entidades, atributos, chaves primárias, chaves estrangeiras e a tradução de relacionamentos conforme identificado no modelo conceitual.

3.1.1 Entidades

3.1.1 Entidades Fortes

As entidades fortes são um tipo de entidade própria que cuja a sua existência não depende de outra, normalmente refeltida por uma única PK.

Nome Entidade	Atributos	Descrição	Tipo de Dado e Tamanho	Nulls
	<u>MatNo</u>	Código único da matéria prima	MatNo	Não
	Name			Não
	PriceUn	Preço unitário desse material	float	Não
Matéria Prima	QuantityStock	Quantidade em stock do material	Int	Não
	unidadeStock	desse stock	5 nchar	Não
	Obs	Observações sobre a Materia Prima	250 nvarchar	Sim
	<u>SubContratadoNo</u>	Código Único da operação subContratada		Não
SubContratadas	Name	Nome do SubContratado	30 nvarchar	Não
	Obs	Observação sobre o subContratado	250 nvarchar	Sim
Operação	<u>OpNo</u>	Código único da operação	OpNo	Não

	Name	Nome da operação	30 nvarchar	Não
	Obs	Observação sobre a operação	250 nvarchar	Sim
	<u>FichTecNo</u>	Código Único da Ficha Técnica	FichTecNo	Não
Ficha Técnica	ProductNo		ProductNo	Não
	Obs	Observações da ficha	250 nvarchar	Sim
	<u>ProductN</u>	Código único do produto	ProductNo	Não
	PriceUn	Preço do unitário do produto	float	Não
	Name	Nome do produto	30 nvarchar	Não
	productType	Tipo do produto	20 nvarchar	Não
	Description	Descrição do produto	250 nvarchar	Sim
Produto	Sizes	Tamanhos fabricaveis do produto (Ex: 41-45)	5 nchar	Não
	weight	Peso total do produto	float	Não
	gender	Identifica o género a quem se identifica o produto	1 char	Não
	quantityStock	Quantidade em stock	Int	Não
	unityStock	Unidade da quantidade de stock	5 nchar	Não
	ManufacturingNo	Código único da ordem de fabrico	ManufacturingNo	Não
	CreationDate	Data de criação da ordem.	DateTime	Não
OrdemFabrico	StartDate	Data de início da ordem, quando foi iniciada a produção.	DateTime	Sim
	EndDate	Data de termino da ordem de produção	DateTime	Sim
	ExpectedEndDate	Data Esperada da conclusão da Ordem de Fabrico		Não

TotTi	imeExpected	Tempo Total esperado para a conclusão da Ordem de Fabrico		Não
TotC	ostSubContract	Custo total em		Não
Prior	rity	Prioridade da ordem de produção	smallint	Não
Statu	ıs	Estado atual da ordem	char	Não
Obs		Observações da ordem de Fabrico		Não

Tabela 8 - Entidades Fortes

Abaixo é apresentada a tabela com as chaves Primárias de cada uma dessas entidades

Entidade	PK	FK
Produto	ProductNo	-
Operacao	OpNo	-
Materia Prima	MatNo	-
SubContratado	SubContratadoNo	-
Ficha Técnica	FichTecNo	ProductNo
Ordem Fabrico	ManufactoringNo	-

Tabela 9 - Chaves Primarias e Estrangeiras, entidades Fortes

3.1.2 Entidades Fracas

As entidades fracas são o oposto das entidades fortes, pois este tipo de entidades para existirem ele necessitam da existência de outras entidades.

Nome Entidade	Atributos	Descrição	Tipo de Dado e Tamanho	Nulls
	<u>FichTecNo</u>	Código da Ficha Técnica		Não
	<u>OpNo</u>	Código da operação	OpNo	Não
Etapa de Produção	<u>MaterialNo</u>	Código do Material Utilizado na ficha Tecnica		Não
		Tipo do Material Utilizado na Etapa de Produção Interna		Não
Etapa Ordem de		Código da ordem de fabrico	ManufacturingNo	Não
· .	<u>FichTecNo</u>	Código da Ficha Técnica	FichTecNo	Não
	<u>OpNo</u>	Código da Operação	OpN	Não

	Quantidade de	9	
QuantityMaterialOp	material utilizado na	a Int	Não
QuantityiviatenaiOp	Operação ou do		INAU
	material final		
	Quantidade de	9	
Oughtitul aatOn	material Perdida na	a Int	Não
QuantityLostOp	operação ou do		Não
	material final		
	Código Único da	a	
<u>OpSubNo</u>	operação	SubContratadoNo	Sim
	subContratada		
O and Material O	Quantidade de		0:
QuantityMaterialSub	material	Int	Sim
	Quantidade de	9	
QuantiryReceivedSub	material recebido do	Int	Sim
	subcontratado		
0	Quantidade de		0:
QuantityLostSub	material Perdido	Int	Sim
D: 0.1	Preço do)	0:
PriceSub	subContratado	Float	Sim
<u>MaterialNo</u>	Código do Material	MatNo	Não
Type	Tipo do Material	TypeMaterial	Não
TotQuantity	Quantidade Total	Int	Não
	Quantidade Tota	i	
TotQuantityLost	perdida	Int	Não
Priority	Prioridade da etapa	Int	Sim
-	Tempo estimado da	a	
TimeInMinutes	etapa	Int	Sim
Status	Estado da etapa	1 nchar	Sim
	Ordem em que a		
Ordem	operação é executada	lint	Sim

Tabela 10 - Entidades Fracas

Abaixo é possível ver a tabelas com as chaves primárias e chaves estrangeiras de cada uma destas entidades.

Entidade	PK			FK
Etapa Producao	FichTecNo, OpNo, MatNo,F		MatNo,	FichTecNo
	Type			OpNo

		MatNo
Etapa Ordem	ManufactoringNo, FichTecNo	o, ManufactoringNo
	OpNo, MatNo, Type	FichTecNo, OpNo, MatNo,
		Туре
		SubContratadoNo

Tabela 11 - Chaves Entidades Fracas

3.1.2 Relacionamentos

3.1.2.1 Relacionamentos 1 para 1

No nosso diagrama não obtivemos nenhum relacionamento deste tipo

3.1.2.2 Relacionamento 1 para muitos

Os relacionamentos de 1 para muitos que possuímos no nosso sistema são os seguintes

- Produto 1.1 -- 0..*Ficha Técnicas
 - o Entidade Pai: Produto
 - PK : ProductNo
 - o Entidade Filho: Ficha Técnica
 - PK: FichaTecNo
 - FK: ProductNo
- Ficha Técnica 1..1 1..* Etapa Producao
 - o Entidade Pai: Ficha Tecnica
 - PK: FichTecNo
 - o Entidade Filho: Etapa Producao
 - PK: FichTecNo, OpNo, MaterialNo, Type
 - FK: FichTecNo
- Operacao 1..1 0..* Etapa Producao
 - Entidade Pai: Operacao
 - PK: OpNo
 - o Entidade Filho: Etapa Producao
 - PK: FichTecNo, OpNo, MaterialNo, Type
 - FK: OpNo
- Materia Prima 1..1 0..* EtapaProducao
 - o Entidade Pai: Materia Prima
 - PK: MatNo
 - o Entidade Filho: Etapa Producao
 - PK: FichTecNo, OpNo, MaterialNo, Type
 - FK: MatNo

- SubContratado 0..1 0..* EtapasOrdem
 - o Entidade Pai: SubContratado
 - PK: SubContratadoNo
 - o Entidade Filho: EtapasOrdem
 - PK: ManufacturingNo, FichTecNo, OpNo, MaterialNo, Type
 - FK: SubContratadoNo
- OrdemFabrico 1..1 1..* Etapas Ordem
 - Entidade Pai: Ordem Fabrico
 - PK: ManufacturingNo
 - o Entidade Filho: Etapas Ordem
 - PK: ManufacturingNo, FichTecNo, OpNo, MaterialNo, Type
 - FK: ManufacturingNo
- Etapa Ordem 1..1 1..* Etapa Producao
 - o Entidade Filho: Etapa Producao
 - PK: FichTecNo, OpNo, MaterialNo, Type
 - FK: FichTecNo
 - FK: MatNo
 - FK: OpNo
 - o Entidade Filha: Etapa Ordem
 - PK: ManufacturingNo, FichTecNo, OpNo, MaterialNo, Type
 - FK: ManufacturingNo
 - FK: SubContratadoNo
 - FK: FichTecNo, OpNo, MaterialNo, Type

3.1.2.3 Relacionamento muitos para muitos

No nosso diagrama não obtivemos nenhum relacionamento deste tipo

3.2 Modelo de dados lógico resultante

Figura 3 - Modelo Lógico Resultante

3.3 Validar modelo lógico com Normalização

3.3.1 Normalização das Ordem de Fabrico

Na imagem abaixo é possível observar um exemplo de um documento de uma ordem de Fabrico

Figura 4 - Exemplo de uma Ordem de Fabrico

Legenda dos campos apresentados

Figura 5 - Legenda dos campos da Ordem de Fabrico

Forma Não Normalizada

Forma inicial do documento onde há redundância e possíveis grupos repetidos. Vamos normalizar isso passo a passo.

Figura 6 - Forma Não Normalizada da Ordem de Fabrico

1º Forma Normal

Figura 6 - 1º FN Ordem de Fabrico

Na 1º forma normal preenchemos a ficha técnica com todos os valores redundantes e identificamos uma PK, que nos permita identificar cada tuplo da ficha Técnica.

2º Forma Normal

Na 2º Forma iremos identificar as dependências parciais da PK detetada na 1FN

Figura 7 -2FN Ordem Fabrico Dependencia Parcias

Figura 8 - 2FN dependencias parciais detetadas

3º Forma Normal

Na 3º Forma Normal vamos tentar detetar as dependências transitivas do resultado da 2º FN e as FK de cada uma das dependências transitivas, caso tenham.

Figura 9 - 3FN Ordem de Fabrico

3.3.2 Normalização da Ficha Técnica

Ficha Te	cnica					
FichaNo	FT1					
ProdutoNo	PROD1					
Produto	Sapatilha da Nike					
Preço UN	120,99					
Tamanho	41					
	Conjunto de Oper	acoes e	materiais			
	OpNo	Nome	Obs	MatNo	Material	Tipo
	OP1	Corte	xxx	MAT1	Sola Cortada	Final
				MAT1	Sola Cortada	Utilizado
				MAT1	Agua	Utilizado

Figura 10 - Exemplo de uma FichaTecnica

Legenda dos campos apresentados

FichaNo	Α
ProdutoNo	В
Produto	C
Preço UN	D
Tamanho	E
OpNo	F
Nome	G
Obs	Н
MatNo	1
Nome	J
Tipo	K
Obs	L

Figura 11 - Legenda dos campos

Forma Não Normalizada

Forma inicial do documento onde há redundância e possíveis grupos repetidos. Vamos normalizar isso passo a passo.

<u>A</u>	В	С	D	E	F	G	Н	I	J	K	L
FT1	PROD1	Sapatilha da Nike	120,99	41	OP1	Corte	XXX	MAT1	Sola Corta	Final	as
								MAT2	Sola Corta	Utilizado	as
								MAT3	Agua	Utilizado	as

Figura 12 - Forma Não Normalizada Ficha Técnica

1º Forma Normal (1FN)

Na 1º forma normal preenchemos a ficha técnica com todos os valores redundantes e identificamos uma PK, que nos permita identificar cada tuplo da ficha Técnica

<u>A</u>	В	С	D	E	<u>F</u>	G	Н	<u>I</u>	J	<u>K</u>	L
FT1	PROD1	Sapatilha da Nike	120,99	41	OP1	Corte	XXX	MAT1	Sola Corta	Final	as
FT1	PROD1	Sapatilha da Nike	120,99	41	OP1	Corder	XXX	MAT2	Sola Corta	Utilizado	as
FT1	PROD1	Sapatilha da Nike	120,99	41	OP1	Corrte	XXX	MAT3	Agua	Utilizado	as
PK> A, F, I, K	(

Figura 13 - 1FN da Ficha Técnica

2º Forma Normal(2FN)

Na 2º Forma iremos identificar as dependências parciais da PK detetada na 1FN

	A>B, C, D, E					
	F> G, H					
	I> J, L					
	A, F, I, K					
Ficha Tecnica	<u>A</u>	В	С	D	E	
	PK> A					
Operacao	<u>F</u>	Н				
	PK> F					
Materia Prima	<u>l</u>	J				
	PK> I					
Etapa de Produção	A	<u>F</u>	<u>I</u>	M	N	
	PK> A, F, I					

Figura 14 - 2ºFN da Ficha Técnica

3º Forma Normal

Na 3º Forma Normal vamos tentar detetar as dependências transitivas do resultado da 2º FN e as FK de cada uma das dependências transitivas, caso tenham.

Figura 15 - 3º FN da Ficha Tecnica

3.3.3 Modelo Lógico após Normalização

Figura 16 - Modelo Lógico após Normalização

3.4 Validação das transações com o modelo Lógico

Na imagem abaixo, é possível observar o nosso diagrama de transações. Embora a Ficha Técnica e o Produto não estejam diretamente envolvidos em nenhuma transação representada, ambos desempenham um papel fundamental no funcionamento do sistema.

O Produto é essencial, pois sem ele as ordens de fabrico perderiam o seu propósito — não haveria referência sobre o que deve ser produzido. Da mesma forma, a Ficha Técnica fornece os detalhes do processo de produção, como os materiais e operações necessárias para fabricar o produto. Sem essa informação, seria impossível executar corretamente a produção.

Assim, mesmo que não participem diretamente em transações específicas no diagrama, o Produto e a Ficha Técnica são elementos estruturais indispensáveis ao funcionamento coerente e completo do sistema.

Figura 17 - Transações modelo lógico

Legenda do diagrama

- a → Listar Ordens em atraso com o respetivo tempo de atraso;
- b → Listar Operações Problemáticas;

- c → Custos Comparativos entre operação interna e externa;
- d → Consultar as Ordens de fabrico em curso com indicação do progresso;
- e → Relatório de operações com perdas superiores a 15%;
- f → Listar as Operações mais frequentemente subContratadas e respetivos custos;
- g → Determinar o custo total de produção de uma ordem;
- h → Consultar lista de operações pendentes para cada ordem, ordenadas por prioridade;
- i → Estimar o tempo total necessários para concluir uma ordem, com base no tempo médio das operações;
- j → Calcular a eficiência média de produção por período.

3.5 Identificação Restrições de Integridade dos dados

3.5.1 Matéria Prima

Atributos	Tipo de Dado e Tamanho	Restrições	Nulls
<u>MatNo</u>	MatNo	-	Não
Name	50 nvarchar	-	Não
PriceUn	float	Tem de ser superior ou igual a 0	Não
QuantityStock	Int	-	Não
unidadeStock	5 nchar	Só pode aceitar um destes valores:	Não
Obs	250 nvarchar	-	Sim

3.5.2 Produto

Atributos	Tipo de dados e	Restrições	Nulls
	Tamanho		
<u>ProductN</u>	ProductNo	-	Não
PriceUn	float	Tem de ser superior	Não
		ou igual a 0	

Name	30 nvarchar	-	Não
productType	20 nvarchar	Tem de ser um dos	Não
		seguintes valor:	
		● "Bota",	
		 "Sapatilha", 	
		• "Chuteira",	
		• "Sandália",	
		• "Chinelo",	
		• "Outro"	
Description	250 nvarchar	-	Sim
Sizes	5 nchar	-	Não
weight	float	Superior ou igual a 0	Não
gender	1 char	Só pode aceitar os	Não
		valores:	
		• "M";	
		• "F";	
		• "∪"	
quantityStock	Int	-	Não
unityStock	5 nchar	Só pode aceitar um	Não
		destes valores:	
		• Par	
		• Un	
		 Caixa 	
		• Lote	

3.5.3 SubContratados

Atributos	Tipo de dados e	Restrições	Nulls
	Tamanho		
SubContratadoNo	SubContratadoNo	-	Não
Name	30 nvarchar	Não pode haver dois	Não
		subContratados com	
		o mesmo nome	
		Unique Key	
Obs	250 nvarchar	-	Sim

3.5.4 Operação

Atributos	Tipo de dados e Tamanho	Restrições	Nulls
<u>OpNo</u>	OpNo	-	Não
Name	30 nvarchar	Não pode haver duas operações com o mesmo nome Unique Key	Não
Obs	250 nvarchar		Sim

3.5.4 Ficha Técnica

Atributo	Tipo de dados e	Restrições	Nulls
	Tamanho		
<u>FichTecNo</u>	FichTecNo	-	Não
ProductNo	ProductNo	-	Não
Obs	250 nvarchar	-	Sim

3.5.5 Ordem de Fabrico

Atributo	Tipo de dados e Tamanho	Restrições	Nulls
ManufacturingNo	ManufacturingNo	-	Não
CreationDate	DateTime	-	Não
StartDate	DateTime	Deve ser superior ou	Sim
		igual há data de	
		criação e inferior ou	
		igual as datas de fim	
EndDate	DateTime	Deve ser superior ou	Sim
		igual as datas de	
		criação e de começo.	
		Deve ser inferior ou	
		igual há data atual	
ExpectedEndDate	DateTime	Deve ser superior há	Não
		data de criação da	
		Ordem.	

		Deve ser inferior ou	
		igual há data criação	
TotTimeExpected	Int	Deve ser superior ou	Não
		igual a 0	
TotCostSubContract	Int	Deve ser superior ou	Não
		igual a 0	
Priority	smallInt	Pode assumir um	Não
		destes valores:	
		• 1: Alta	
		• 2: Medio	
		• 3: Baixo	
Status	char	Somente são	Não
		permitidos os	
		seguintes valores:	
		• P:"Pendente",	
		• E:"Execução",	
		C:"Concluída"	
Obs	250 nvarchar	-	Não

3.5.6 Etapa de Produção

Atributo	Tipo de dados e	Restrições	Nulls
	Tamanho		
<u>FichTecNo</u>	FichTecNo	-	Não
<u>OpNo</u>	OpNo	-	Não
<u>MaterialNo</u>	MatNo	-	Não
<u>Type</u>	TypeMaterial	-	Não

3.5.7 Etapa da Ordem

Atributo	Tipo de dados e	Restrições	Nulls
	Tamanho		
<u>ManufacturingNo</u>	ManufacturingNo	-	Não
<u>FichTecNo</u>	FichTecNo	-	Não
<u>OpNo</u>	OpN	-	Não

QuantityMaterialOp	Int	Tem de ser superior	Não
		ou igual a 0.	
QuantityLostOp	Int	Tem de ser superior	Não
		ou igual a 0	
<u>OpSubNo</u>	SubContratadoNo	-	Sim
QuantityMaterialSub	Int	Tem de ser Nulo	Sim
		quando a OpSubNo.	
		Caso não seja nulo	
		tem de ser superior	
		ou igual a 0.	
QuantiryReceivedSub	Int	Tem de ser Nulo	Sim
		quando a OpSubNo	
		é nula.	
		Quanto não for nulo	
		não pode ser	
		superior que a	
		quantidade de	
		material enviado	
QuantityLostSub	Int	Tem de ser Nulo se o	Sim
		OpSubNo for nulo	
		Caso não seja null	
		tem de ser superior	
		ou igual a 0	
PriceSub	Float	Tem de ser Nulo se o	Sim
		OpSubNo for nulo	
		Caso não seja null	
		tem de ser superior	
		ou igual a 0	
<u>MaterialNo</u>	MatNo	-	Não
Type	TypeMaterial	-	Não
TotQuantity	Int	O valor deve tem de	Não
		ser igual há soma	
		dos materais	
		utilizados pelas	
		operações +	
		subContratados	
TotQuantityLost	Int	O valor deve tem de	Não
		ser igual há soma	
		das perdas das	
		<u> </u>	<u> </u>

		operações +	
		subContratados	
Priority	Int	Quando o tipo de	Sim
		material é 'E' tem de	
		ser nulo.	
		Se não for nulo pode	
		assumir um destes	
		valores:	
		• 1 à Alta	
		• 2à Medio	
		3 à Baixo	
TimeInMinutes	Int	Quando o tipo de	Sim
		material é 'E' tem de	
		ser nulo.	
		Se não tem de ser	
		superior ou igual a 0	
Status	1 nchar	Quando o tipo de	Sim
		material é 'E' tem de	
		ser nulo.	
		Se não pode ter 4	
		valores admissíveis:	
		 Pendente 	
		• Em	
		Execução	
		 Suspenso 	
		 Finalizado 	
Ordem	int	Quando o tipo de	Sim
		material é 'E' tem de	
		ser nulo.	
		Se não tem de ser	
		superior ou igual a 0	
		e não pode ter	
		valores repetidos, na	
		mesma ficha técnica	
		de uma ordem de	
		fabrico	

3.5.8 Restrições domínios

Domínio	Restrição
TypeMaterial	Só pode aceitar:
	E: "Entrada"
	S : "Saída"

3.6 Regras de Negócio

Gestão Automatizada de Ordens de fabrico

- Quando uma ordem de fabrico é concluída (todo o material é recebido após a execução de todas as operações), o seu estado é atualizado
- Se o prazo de conclusão for ultrapassado, deve gerar um alerta, armazenando-o numa tabela específica de controlo

Controlo de Produção

- Criar registos de produção para todas as operações da ficha técnica.
- Ao registar uma operação como concluída, deve calcular automaticamente as perdas
- Se as perdas forem superiores a 15%, deve registar um alerta de qualidade registando a ocorrência numa tabela específica para o efeito.
- Deve impedir o registo de quantidades recebidas superiores às enviadas

Cálculos Automáticos

- Calcular o custo total de cada ordem considerando:
 - Operações internas (baseado em tempo estimado)
 - Operações subcontratadas (preço acordado)
- Determinar a eficiência média por operação e por período

Validações de Processo

- Garantir que a sequência de operações é respeitada
- Validar que não há operações pendentes antes de concluir uma ordem

Relatórios e Consultas

- Listar ordens atrasadas com o respetivo tempo de atraso
- Mostrar operações problemáticas (com maior índice de perdas)
- Apresentar custos comparativos entre produção interna e subcontratada

3.7 Verificação do provável crescimento futuro F

Dado que este trabalho foi desenvolvido num contexto académico e responde exatamente aos requisitos do projeto, não se prevê um crescimento significativo para além do que foi solicitado. Ainda assim mantivemos o modelo suficientemente flexível para permitir acréscimos pontuais sem comprometer a estrutura já existente. Desta forma, caso surjam necessidades adicionais no futuro, será possível estender o esquema de dados com alterações mínimas e mantendo a coerência do sistema.

4. Construção do modelo físico

4.1 Criação das tabelas no SQL Server Management Studio

Após a finalização do modelo lógico passamos para o SQL onde começamos pela criação das tabelas e a realização do diagrama, como dá para observar na imagem abaixo

4.2 Procedures criadas para resolver os problemas de Negocio

Criar registos de produção para todas as operações da ficha técnica

Para tratar deste requisitos criamos esta storage procedure que permite criar uma etapa para a produção de um produto da ordem de fabrico e indicar as quantidades utilizadas internamente e as que forma enviadas aos subcontratados.

```
### PROCEDURE [dbo].[CREATE_JAMUFACTORING_ORDER_STAGE]

#### GanufactoringBo dob.ManufactoringBo,
#### gitChTech dob.FichTech
### GanufactoringBo dob.FichTech
### GanufactoringBo dob.FichTech
### GanufactoringBo dob.FichTech
### GanufactoringBo
#
```

Figura 18 - 1º img Registos de produção

```
DCCLARE

#Total INT = @QuantityMatOp - @QuantityMatSub

IF @Prode INT = @QuantityMatOp - @QuantityMatSub

IF @Prode INT = @QuantityMatOp - @QuantityMatSub

IF @Orden INTL

THOWA $1000, "A orden da Operacao mão pode ser mula", 1;

INSET INTO ManufactoringOrderStage (MunufacturingMo, FichTecNo, OpNo, QuantityMaterialDo, MaterialMo, Type, QuantityMaterialSub, SubContratadoNo, PriceSub, Priority, Status, ExpectedTimeInMinutes, Orden, TotQuantity

WALUSS(@MunifactoringNo, @FichTecNo, @Polo, @QuantityMatorialDo, @FiceSub, @Prioridade, "P", @ExpectedTimeSinMinutes, @Orden, O);

ELSE

REGIN

INSERT INTO ManufactoringOrderStage (MunufacturingMo, FichTecNo, OpNo, QuantityMaterialDo, MaterialMo, PriceSub, @Prioridade, "P", @ExpectedTimeSinMinutes, @Orden, O);

ELSE

REGIN CATOR

COMMIT ERANSACTION;

END TW

COMMIT ERANSACTION;

END TW

RAISEMON("Erro ao criar etapa da Orden de Fabrico: No", 16, 1, @ErrMsg);

END CATOR;

RAISEMON("Erro ao criar etapa da Orden de Fabrico: No", 16, 1, @ErrMsg);

END CATOR;
```

Figura 19 - 2º img Registos de produção

Finish Orde stage

Esta storage procedure além de permitir atualizar o estado de uma operação de uma ordem fabrico para concluido, que permite:

 antes de atualizar ver se a ordem de operações está a ser cumprida atualizar a ordem caso essa seja a última operação que falta concluir.

```
TF EXISTS (
    SELECT 1
    FROM ManufactoringOrderStage mo
    WHERE ManufacturingNo = @ManufacturingNo
AND FichTecNo = @FichTecNo
AND OpNo = @OpNo
AND MaterialNo = @MaterialNo
AND Type = @Type
AND EXISTS (
        SELECT 1
        FROM dbo.ManufactoringOrderStage etapas_anteriores
        WHERE etapas_anteriores.ManufacturingNo = mo.ManufacturingNo
          AND etapas_anteriores.FichTecNo = mo.FichTecNo
          AND etapas_anteriores.Ordem < mo.Ordem
          AND etapas_anteriores.Status IS NULL
BEGIN
    PRINT 'Erro: Não é possível registar esta operação porque existem operações anteriores não realizadas.';
    ROLLBACK TRANSACTION;
    RETURN;
```

Figura 20 - verifcação ordem das operacoes

 Verificar se essa operação teve perdas superiores a 15% e caso sim registar um alerta de qualidade e registao numa tabela específica para o efeito, a tabela "error.SuperiorLost";

```
DECLARE @TotQuantity INT
SELECT @TotQuantity = TotQuantity
FROM ManufactoringOrderStage
WHERE ManufacturingNo = @ManufacturingNo
 AND FichTecNo = @FichTecNo
AND OpNo = @OpNo
  AND MaterialNo = @MaterialNo
  AND Type = @Type
  AND (
         (@SubContratadoNo IS NULL AND SubContratadoNo IS NULL) OR
         (@SubContratadoNo IS NOT NULL AND SubContratadoNo = @SubContratadoNo)
DECLARE @PercentagemLost FLOAT =
    ((\mathsf{ISNULL}(@\mathsf{QuantityLostSub},\ 0)\ +\ \mathsf{ISNULL}(@\mathsf{QuantityLostOp},\ 0))\ *\ 1.0)\ /\ \mathsf{NULLIF}(\ @\mathsf{Tot}\mathsf{Quantity},\ 0)
IF @PercentagemLost > 0.15
    INSERT INTO error.SuperiorLost (
         {\it ManufacturingNo, FichTecNo, OpNo, SubContratadoNo, MaterialNo, Type, QuantitatyLost}
    VALUES (
         @ManufacturingNo, @FichTecNo, @OpNo, @SubContratadoNo, @MaterialNo, @Type, @PercentagemLost
```

Figura 21 - alertas de perdas superiores a 15%

 Soma as perdas totais dessa operação, considerando o total de todos as perdas dos seus materiais;

```
UPDATE mos_final
SET TotQuantityLost = TotQuantityLost + perdas.TotalPerdas
FROM ManufactoringOrderStage mos final
INNER JOIN (
        mos.ManufacturingNo,
        mos.FichTecNo,
        mos.OpNo.
        SUM(ISNULL(mos.TotQuantityLost, 0)) AS TotalPerdas
    FROM ManufactoringOrderStage mos
    WHERE mos.ManufacturingNo = @ManufacturingNo
        AND mos.FichTecNo = @FichTecNo
        AND mos.OpNo = @OpNo
        AND mos.Type = 'E'
        AND ISNULL(mos.Type, '') != 'S'
    GROUP BY mos.ManufacturingNo, mos.FichTecNo, mos.OpNo) AS perdas
        ON mos_final.ManufacturingNo = perdas.ManufacturingNo
        AND mos_final.FichTecNo = perdas.FichTecNo
        AND mos_final.OpNo= perdas.OpNo
        AND mos_final.Type = 'S';
DECLARE @countStage INT;
SELECT @countStage = COUNT(stage.Status)
FROM ManufactoringOrderStage AS stage
WHERE stage.ManufacturingNo = @ManufacturingNo
  AND stage.Status IN ('P', 'E');
```

Figura 22 - soma das perdas da operação

 Atualizar a ordem de fabrico dessa operação especifica, caso ela seja a última operação da mesma, por concluir.

```
DECLARE @countStage INT;

SELECT @countStage = COUNT(stage.Status)
FROM ManufactoringOrderStage AS stage
WHERE stage.ManufacturingNo = @ManufacturingNo
AND stage.Status IN ('P', 'E');

IF @countStage = 0
BEGIN

UPDATE ManufactoringOrder
SET

Status = 'C',
EndDate = GETDATE()
WHERE ManufacturingNo = @ManufacturingNo
END
```

Figura 23 - Atualização automatica da ordem

4.2 Criação das procedures de CUD (Create, Update, Delete) no SQL Server Management Studio

Para alem das storage procedure que criamos para os requisitos especificados criamos um CUD para nos permitir gerir todas as tabelas da base de dados, que não iremos entrar em detalhes neste relatório, mas na imagem abaixo estão os nomes de todas as storage procedures que criamos.

⊞ ■ System Stored Procedures ⊞ ■ alert.ALERT_ORDER_LATE ⊞ **■** dbo.CREATE_FT ■ ■ dbo.CREATE_MANUFACTORING_ORDER_STAGE ⊞ ■ dbo.CREATE_OPERATION ⊞

■ dbo.CREATE_PRODUCT ⊞ ■ dbo.CREATE_ProductionStage ⊞ 🖪 dbo.CREATE_RM 🖽 🖪 dbo.DELETE_FT ■ ■ dbo.DELETE_MANUFACTORING_ORDER **⊞ ■** dbo.DELETE OPERATION ⊞ 🗉 dbo.DELETE_PRODUCT ■ dbo.DELETE_RM **■ ■ dbo.DELETE SUB CONTRACTOR** ■ dbo.ExecucaoManufatoringOrderStage ⊞ dbo.UPDATE FT **⊞** ■ dbo.UPDATE_OPERATION ⊞ 🖪 dbo.UPDATE_PRODUCT ■ dbo.UPDATE_RM ■ ■ dbo.UpdateStatusManufactoringOrder

Figura 24 - Storage procedures criadas

4.3 Views

Eficiência Media Produção Por Ano

SELECT DATEPART(YEAR, MO.EndDate) AS Ano, AVG(CAST(MOS.TotQuantity - MOS.TotQuantityLost AS DECIMAL(10, 4)) / NULLIF (MOS.TotQuantity, 0) * 100) AS EficienciaMedia from dbo.ManufactoringOrderStage AS MOS INNER JOIN dbo.ManufactoringOrder AS MO ON MOS.ManufacturingNo = MO.ManufacturingNo
WHERE (MOS.TotQuantity > 0) AND (MOS.Status <> 'P') AND (MOS.TotQuantityLost >= 0)
GROUP BY DATEPART(YEAR, MO.EndDate)

Figura 25 - Eficiencia Media Producao por ano

	Ano	EficienciaMedia
1	2025	88.095238095238066

Figura 26 - Tabela da eficiencia media producao por ano

Eficiência Media Produção Por Mês

DATEPART(MONTH, MO.EndDate) AS Mes, AVG(CAST(MOS.TotQuantity - MOS.TotQuantityLost AS DECIMAL(10, 4)) / NULLIF (MOS.TotQuantity, 0) * 100) AS EficienciaMedia dbo.ManufactoringOrderStage AS MOS INNER JOIN dbo.ManufactoringOrder AS MO ON MOS.ManufacturingNo = MO.ManufacturingNo

WHERE (MOS.TotQuantity > 0) AND (MOS.Status <> 'P') AND (MOS.TotQuantityLost > GROUP BY DATEPART(MONTH, MO.EndDate)

Figura 27 - Eficiencia Media Produção por Mês

	Mes	EficienciaMedia
1	5	88.095238095238066

Figura 28 - Tabela da Eficiencia Media Producao por Mês

Eficiência Media Produção Por Dia

DATEPART(WEEK, MO.EndDate) AS Dia, AVG(CAST(MOS.TotQuantity - MOS.TotQuantityLost AS DECIMAL(10, 4)) / NULLIF (MOS.TotQuantity, 0) * 100) AS EficienciaMedia dbo.ManufactoringOrderStage AS MOS INNER JOIN dbo.ManufactoringOrder AS MO ON MOS.ManufacturingNo = MO.ManufacturingNo

WHERE (MOS.TotQuantity > 0) AND (MOS.Status <> 'E') AND (MOS.TotQuantityLost >= 0) GROUP BY DATEPART(WEEK, MO.EndDate)

Figura 29 - Eficiência Média Produção por dia

	Dia	EficienciaMedia
1	21	100.0000000000000000

Figura 30 - Tabela Eficiência Média Produção por dia

Média Perdas de Operação em Percentagem

SELECT O.OpNo, O.Name AS NomeOperacao,

AVG(CAST(MOS.TotQuantityLost AS DECIMAL(10, 2)) / NULLIF (MOS.TotQuantity, 0) * 100) AS MediaPercentagemPerda FROM dbo.ManufactoringOrderStage AS MOS INNER JOIN

dbo.ManufactoringOrder AS MO ON MOS.ManufacturingNo = MO.ManufacturingNo INNER JOIN dbo.Operation AS O ON MOS.OpNo = O.OpNo

WHERE (MOS.Status = 'C') GROUP BY O.OpNo, O.Name

Figura 31 - Media de Perdas de Operação em Perdas

Operações pendentes Por Ordem

Nesta view como forma de contornar o facto de o SQL ignorar a clausula Order By nas view, utilizamos um TOP(100) PERCENT de maneira a mostrar todos os registos e forçar a ordenação.

SELECT TOP (100) PERCENT MO.ManufacturingNo AS NumeroOrdem, MO.Priority AS PrioridadeOrdem, MOS.OpNo AS CodigoOperacao, O.Name AS NomeOperacao, MOS.Priority AS PrioridadeOperacao, MOS.TotQuantity AS QuantidadeTotal, MOS.Status AS StatusOperacao FROM dbo.ManufactoringOrderStage AS MOS INNER JOIN dbo.ManufactoringOrder AS MO ON MOS.ManufacturingNo = MO.ManufacturingNo INNER JOIN

dbo.Operation AS O ON MOS.OpNo = O.OpNo

WHERE (MOS.Status = 'P') AND (MOS.Status IS NOT NULL)

ORDER BY NumeroOrdem, PrioridadeOrdem, PrioridadeOperacao

Figura 32 - Operações Por ordem

		-					
	NumeroOrdem	PrioridadeOrdem	CodigoOperacao	NomeOperacao	PrioridadeOperacao	QuantidadeTotal	StatusOperacao
1	M0001	1	OP004	Soldagem MIG	2	0	Р

Figura 33 - Tabela das Operações por Ordem

Custo de Produção da Ordem de Fabrico

SELECT mo.ManufacturingNo, SUM(COALESCE (mos.TimeInMinutes, 0)) AS TotTimeInMinutes,

SUM(COALESCE (mos.PriceSub, 0)) AS TotPaidToPartners, SUM(COALESCE (mos.TotQuantity, 0) * COALESCE (rm.PriceUn, 0)) AS TotalMaterialCost FROM dbo.ManufactoringOrder AS mo INNER JOIN

dbo.ManufactoringOrderStage AS mos ON mo.ManufacturingNo = mos.ManufacturingNo INNER JOIN

dbo.ProductionStage AS ps ON mos.FichTecNo = ps.FichTecNo AND mos.OpNo = ps.OpNo AND mos.MaterialNo = ps.MatNo AND mos.Type = ps.Type INNER JOIN

AND mos.Type = ps.Type INNER JOII dbo.RawMaterial AS rm ON ps.MatNo = rm.MatNo

GROUP BY mo.ManufacturingNo

Figura 34 - Custo de Produção da Ordem de Fabrico

	ManufacturingNo	TotTimeInMinutes	TotPaidToPartners	TotalMaterialCost
1	M0001	13333333	2312	359,25
2	M0002	0	2312	398,45

Figura 35 - Tabela do Custo de Produção da Ordem de Fabrico

Custos Comparativos

WITH TempoTotalPorOrdem AS (SELECT ManufacturingNo, SUM(TimeInMinutes) AS TotalMinutos FROM dbo.ManufactoringOrderStage

GROUP BY ManufacturingNo)

 ${\sf SELECT_mo.ManufacturingNo,\,mo.OpNo,\,o.Name\,AS\,\,NomeOperacao,\,mo.TimeInMinutes,\,mo.PriceSub,}$

CAST(m.TotInternalCostHoursWorked AS FLOAT) / NULLIF (tp.TotalMinutos, 0) AS CustoMinuto, mo.TimeInMinutes * (CAST(m.TotInternalCostHoursWorked AS FLOAT) / NULLIF (tp.TotalMinutos, 0)) AS CustoInternal costHoursWorked AS FLOAT) /

NULLIF (tp.TotalMinutos, 0)) AS DiferencaCusto

FROM dbo.ManufactoringOrderStage AS mo INNER JOIN

dbo.ManufactoringOrder AS m ON mo.ManufacturingNo = m.ManufacturingNo INNER JOIN $TempoTotalPorOrdem \ AS \ tp \ ON \ mo.ManufacturingNo = tp.ManufacturingNo \ LEFT \ OUTER \ JOIN$

dbo.Operation AS o ON mo.OpNo = o.OpNo

Figura 36 - Custos Comparativos

	ManufacturingNo	OpNo	NomeOperacao	TimeInMinutes	PriceSub	CustoMinuto	CustoInterno	DiferencaCusto
1	M0001	OP003	Dobra de Chapas	13333333	NULL	NULL	NULL	NULL
2	M0001	OP003	Dobra de Chapas	NULL	NULL	NULL	NULL	NULL
3	M0001	OP003	Dobra de Chapas	NULL	NULL	NULL	NULL	NULL
4	M0001	OP004	Soldagem MIG	NULL	2300	NULL	NULL	NULL
5	M0001	OP004	Soldagem MIG	NULL	12	NULL	NULL	NULL
6	M0002	OP003	Dobra de Chapas	NULL	NULL	NULL	NULL	NULL
7	M0002	OP003	Dobra de Chapas	NULL	NULL	NULL	NULL	NULL
8	M0002	OP003	Dobra de Chapas	NULL	NULL	NULL	NULL	NULL
9	M0002	OP004	Soldagem MIG	NULL	2300	NULL	NULL	NULL
10	M0002	OP004	Soldagem MIG	NULL	12	NULL	NULL	NULL

Figura 37 - Tabela dos Custos Comparativos

Ordens Atrasadas

SELECT ManufacturingNo, Priority, ExpectedEndDate, Status

FROM dbo.ManufactoringOrder

WHERE (ExpectedEndDate < GETDATE()) AND (Status <> 'C')

Figura 38 - Ordens Atrasadas

	ManufacturingNo	Priority	ExpectedEndDate	Status
1	M0001	1	2025-01-01 00:00:00.000	Р
2	M0005	3	2025-05-22 17:03:11.483	E

Figura 39 - Tabela das Ordens Atrasadas

Perdas Superiores a 15%

SELECT ManufacturingNo, FichTecNo, OpNo, MaterialNo, Type, SUM((COALESCE (QuantityLostSub, 0) + QuantityLostOp) * 1.0 / TotQuantity) AS PercentagemPerdas FROM dbo.ManufactoringOrderStage

GROUP BY ManufacturingNo, FichTecNo, OpNo, MaterialNo, Type

HAVING (SUM((COALESCE (QuantityLostSub, 0) + QuantityLostOp) / TotQuantity) > 0.15)

Figura 40 - Perdas Superiores a 15%

	ManufacturingNo	FichTecNo	OpNo	MaterialNo	Type	PercentagemPerdas
1	M0002	FT002	OP004	MAT14	S	1.071428571428

Figura 41 - Tabelas de Perdas Superiores a 15%

Operações Problemáticas

SELECT MO.ManufacturingNo, MO.OpNo, O.Name AS NomeOperacao, CASE WHEN MO.QuantityMaterialOp > 0 THEN CAST(MO.QuantityLostOp AS FLOAT) / MO.QuantityMaterialOp ELSE NULL END AS IndicePerdaInterna, CASE WHEN MO.QuantityMaterialSub > 0 THEN CAST(MO.QuantityLostSub AS FLOAT) / MO.QuantityMaterialSub ELSE NULL END AS IndicePerdaSubContratada FROM dbo.ManufactoringOrderStage AS MO LEFT OUTER JOIN dbo.Operation AS O ON MO.OpNo = O.OpNo

Figura 42 - Operações Problemáticas

	ManufacturingNo	OpNo	NomeOperacao	IndicePerdaInterna	IndicePerdaSubContratada
1	M0001	OP003	Dobra de Chapas	0,12	NULL
2	M0001	OP003	Dobra de Chapas	0	NULL
3	M0001	OP003	Dobra de Chapas	0	NULL
4	M0001	OP004	Soldagem MIG	0	NULL
5	M0001	OP004	Soldagem MIG	0	NULL
6	M0002	OP003	Dobra de Chapas	0	NULL
7	M0002	OP003	Dobra de Chapas	0	NULL
8	M0002	OP003	Dobra de Chapas	0	NULL
9	M0002	OP004	Soldagem MIG	0,833333333333333	2,5
10	M0002	OP004	Soldagem MIG	0	NULL

Figura 43 - Tabela das Operações Problematicas

Operações SubContratadas

SELECT MOS.OpNo, O.Name AS NomeOperacao, COUNT(*) AS TotalSubcontratacoes, SUM(ISNULL(MOS.QuantityMaterialSub, 0) * ISNULL(MOS.PriceSub, 0)) AS CustoTotal FROM dbo.ManufactoringOrderStage AS MOS INNER JOIN

dbo.Operation AS O ON MOS.OpNo = O.OpNo WHERE (MOS.SubContratadoNo IS NOT NULL)

WHERE (MOS.SubContratadoNo IS NOT NULL)
GROUP BY MOS.OpNo, O.Name

Figura 44 - Operações SubContratadas

	OpNo	NomeOperacao	TotalSubcontratacoes	CustoTotal
1	OP004	Soldagem MIG	4	9320

Figura 45 - Tabelas Operacoes SubContratadas

Ordens Atrasadas

\$ELECT ManufacturingNo, ExpectedEndDate, EndDate, Status, DATEDIFF(DAY, ExpectedEndDate, ISNULL(EndDate, GETDATE())) AS DiasAtraso FROM dbo.ManufactoringOrder AS MO

WHERE (EndDate IS NULL) AND (ExpectedEndDate < GETDATE()) OR (EndDate IS NOT NULL) AND (EndDate > ExpectedEndDate)

Figura 46 - Ordens Atrasadas

	_				
	ManufacturingNo	ExpectedEndDate	EndDate	Status	DiasAtraso
1	M0001	2025-01-01 00:00:00.000	2025-05-19 16:02:03.993	Р	138

Figura 47 - Tabelas das Ordens Atrasadas

Ordens Fabrico Progresso

 ${\sf SELECT}\ mo. Manufacturing No,\ SUM (mos. TotQuantity)\ AS\ Quantidade Material Produzido,$

 $SUM(mos. Quantity Material Op + COALESCE \ (mos. Quantity Material Sub, \ 0)) \ AS \ Total Material,$

ROUND(100.0 * SUM(mos.TotQuantity) / SUM(mos.QuantityMaterialOp + COALESCE (mos.QuantityMaterialSub, 0)), 2) AS ProgressoPercentual FROM dbo.ManufactoringOrder AS mo LEFT OUTER JOIN

dbo.ManufactoringOrderStage AS mos ON mos.ManufacturingNo = mo.ManufacturingNo

WHERE (mos.Type = 'S')

GROUP BY mo.ManufacturingNo

Figura 48 - Ordens de Fabrico Progresso

	ManufacturingNo	QuantidadeMaterialProduzido	TotalMaterial	ProgressoPercentual
1	M0001	100	114	87.720000000000
2	M0002	114	114	100.000000000000

Figura 49 - Tabela Progresso das Ordens de Fabrico

Tempo total estimado por ordem

SELECT MO.ManufacturingNo, SUM(ISNULL(MOS.ExpectedTimeInMinutes, 0)) AS TempoTotalEstimado_Minutos dbo.ManufactoringOrder AS MO INNER JOIN dbo.ManufactoringOrderStage AS MOS ON MO.ManufacturingNo = MOS.ManufacturingNo

dbo.ManufactoringOrderStage AS MOS ON MO.ManufacturingNo = MOS.ManufacturingNo GROUP BY MO.ManufacturingNo

Figura 50 - Tempo total estimado por ordem

		ManufacturingNo	Tempo Total Estimado_Minutos
1	1	M0001	24
2	2	M0002	24

Figura 51 - Exemplo do funcionamento da vista Tempo total estimado por ordem

4.4 Triggers

Para realizar o requisito "Calcular o custo total de cada ordem" criamos um trigger onde sempre que a ordem é atualiza é realizado o calculo automático dos seus custos internos e externos

```
ALTER TRIGGER [dbo].[TotalCostCalc]
ON [dbo].[ManufactoringOrder]
AFTER UPDATE
AS
BEGTN
   SET NOCOUNT ON:
    -- Atualiza os custos apenas para ordens cujo Status foi alterado para 'C'
       mo.TotCostSubContract = ISNULL(subs.TotalSubContract, 0),
       mo.TotInternalCostHoursWorked = ISNULL(ints.TotalInternalCost, 0)
   FROM dbo.ManufactoringOrder mo
   INNER JOIN inserted i ON mo.ManufacturingNo = i.ManufacturingNo
   INNER JOIN deleted d ON d.ManufacturingNo = i.ManufacturingNo
   LEFT JOIN (
        -- Subcontratação
       SELECT
           ManufacturingNo,
            SUM(ISNULL(PriceSub, 0)) AS TotalSubContract
        FROM dbo.ManufactoringOrderStage
       WHERE SubContratadoNo IS NOT NULL AND PriceSub IS NOT NULL
        GROUP BY ManufacturingNo
   ) subs ON mo.ManufacturingNo = subs.ManufacturingNo
   LEFT JOIN (
        -- Custo interno
        SELECT
           ManufacturingNo,
            SUM(ISNULL(TimeInMinutes, 0) / 60.0 * 5) AS TotalInternalCost
        FROM dbo.ManufactoringOrderStage
        GROUP BY ManufacturingNo
    ) ints ON mo.ManufacturingNo = ints.ManufacturingNo
    WHERE i.Status = 'C' AND d.Status <> 'C';
```

Figura 52 - Calculos custos da ordem

Validações operações pendentes Ordem

Para cumprir com a requisito "Validar que não há operações pendentes antes de concluir uma ordem", decidimos criar um Trigger onde sempre que o status da Ordem é atualizado ele verifica se não existem operações por concluir caso haja não deixa com que a ordem seja atualizada como concluída.

```
ALTER TRIGGER [dbo].[Validate_PendeteOp_StageManufactoringOrder]
ON [dbo].[ManufactoringOrder]
AFTER UPDATE

AS
BEGIN

SET NOCOUNT ON;

BEGIN TRY
BEGIN TRANSACTION

IF NOT UPDATE(Status)

RETURN;

SELECT 1
FROM inserted i
JOIN dbo.ManufactoringOrderStage st ON st.ManufacturingNo = i.ManufacturingNo
WHERE i.Status = 'C'
AND st.Status <> 'C'
AND st.Status is NOT NULL

IF (@@ROMCOUNT > 0)
BEGIN

RAISERROR('Não é possível alterar o status. Existem operações não concluídas.', 16, 1);
ROLLBACK TRANSACTION
END

COMMIT TRANSACTION
END TRY
BEGIN CATCH
ROLLBACK TRANSACTION
PRINT 'Surgui um erro no Tirgger para validar a alteração do status da Ordem';
END CATCH
END CATCH
```

Figura 53- Validação Status da Ordem

Cálculo do custo total da ordem de produção de uma ordem

```
SET ANSI_NULLS ON
 SET QUOTED_IDENTIFIER ON
 GO
☐ALTER TRIGGER [dbo].[TotalCostCalc]
 ON [dbo].[ManufactoringOrder]
 AFTER UPDATE
BEGIN
    SET NOCOUNT ON;
     -- Atualiza os custos apenas para ordens cujo Status foi alterado para 'C'
    SET
        mo.TotCostSubContract = ISNULL(subs.TotalSubContract, 0),
        mo.TotInternalCostHoursWorked = ISNULL(ints.TotalInternalCost, 0)
    FROM dbo.ManufactoringOrder mo
    INNER JOIN inserted i ON mo.ManufacturingNo = i.ManufacturingNo
     INNER JOIN deleted d ON d.ManufacturingNo = i.ManufacturingNo
         -- Subcontratação
        SELECT
            ManufacturingNo,
            SUM(ISNULL(PriceSub, 0)) AS TotalSubContract
        FROM dbo.ManufactoringOrderStage
        WHERE SubContratadoNo IS NOT NULL AND PriceSub IS NOT NULL
        GROUP BY ManufacturingNo
     ) subs ON mo.ManufacturingNo = subs.ManufacturingNo
    LEFT JOIN (
         - Custo interno
        SELECT
            ManufacturingNo,
            SUM(ISNULL(TimeInMinutes, 0) / 60.0 * 5) AS TotalInternalCost
        FROM dbo.ManufactoringOrderStage
        GROUP BY ManufacturingNo
     ) ints ON mo.ManufacturingNo = ints.ManufacturingNo
     WHERE i.Status = 'C' AND d.Status <> 'C';
```

Figura 54 - Trigger para cálculo automatizado do custo total da ordem de produção de uma ordem

Verificação de possibilidade de alterar o status de uma ordem de produção

```
USE [FabricaSapatos]
SET ANSI_NULLS ON
 SET QUOTED_IDENTIFIER ON
GO
-- Author:
              <Author,,Name>
 -- Create date: <Create Date,,>
 -- Description: <Description,,>
ALTER TRIGGER [dbo].[Validate_PendeteOp_StageManufactoringOrder]
   ON [dbo].[ManufactoringOrder]
AS
BEGIN
    -- SET NOCOUNT ON added to prevent extra result sets from
      - interfering with SELECT statements.
    SET NOCOUNT ON:
       BEGIN TRANSACTION
          IF NOT UPDATE(Status)
              RETURN:
           SELECT 1
           FROM inserted i
               JOIN dbo.ManufactoringOrderStage st ON st.ManufacturingNo = i.ManufacturingNo
              WHERE i.Status = 'C'
                  AND st.Status <> 'C'
                  AND st.Status IS NOT NULL
           IF (@@ROWCOUNT > 0)
              RAISERROR('Não é possível alterar o status. Existem operações não concluídas.', 16, 1);
              ROLLBACK TRANSACTION
       COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
       ROLLBACK TRANSACTION
       PRINT 'Surgui um erro no Tirgger para validar a alteração do status da Ordem';
    END CATCH
```

Figura 55 - Trigger que verifica se é possivel alterar o status de uma ordem de produção para concluida verificando se todas as etapas dessa ordem ja estão concluidas

4.5 SQL Server Agent

Para cumprir a regra de negócio "Se o prazo de conclusão for ultrapassado, deve gerar um alerta, armazenando-o numa tabela específica de controlo", decidimos utilizar o SQL Server Agent, onde criamos um job que executa a storage procedure que procura por todas as ordem de fabircas atrasadas, ou seja, as ordens cujo o estado não seja concluído e o dia atual seja superior há data de conclusão.

```
ALTER PROCEDURE [alert].[ALERT_ORDER_LATE]
BEGIN
    -- SET NOCOUNT ON added to prevent extra result sets from
    -- interfering with SELECT statements.
    SET NOCOUNT ON;
    BEGIN TRY
        BEGIN TRANSACTION
            INSERT INTO alert.LateManufactoringOrder (ManufacturingNo, AlertDate, ExpectedEndDate, Status, Priority)
                SELECT
                mo.ManufacturingNo,
                GETDATE(),
                {\tt mo.ExpectedEndDate},
                mo.Status,
                mo.Priority
            FROM dbo.ManufactoringOrder AS mo
            WHERE GETDATE() > mo.ExpectedEndDate AND mo.Status <> 'C';
        COMMIT TRANSACTION
    END TRY
    BEGIN CATCH
        IF ERROR_NUMBER() <> 2627
        THROW;
    END CATCH
END
```

Figura 56 - Storage Procedure ALERT_ORDER_LATE

E guarda essas Ordens na tabela de alertas. Como pode ver na imagem abaixo.

	IdAlert	ManufacturingNo	AlertDate	ExpectedEndDate	Status	Priority
1	1	M0001	2025-05-21 16:07:00.760	2025-01-01 00:00:00.000	Р	1
2	2	M0001	2025-05-21 16:46:27.307	2025-01-01 00:00:00.000	Р	1
3	3	M0001	2025-05-21 16:46:57.427	2025-01-01 00:00:00.000	Р	1
4	1002	M0001	2025-05-22 23:00:00.860	2025-01-01 00:00:00.000	Р	1
5	1003	M0005	2025-05-22 23:00:00.860	2025-05-22 17:03:11.483	E	3
6	1004	M0001	2025-05-23 10:33:32.090	2025-01-01 00:00:00.000	Р	1
7	1005	M0005	2025-05-23 10:33:32.090	2025-05-22 17:03:11.483	E	3

Figura 57 - Tabela de alertas

Para criar esse job, começamos por definir-lhe um nome.

Figura 58 - Nome do job

De seguida atribuímos um novo passo a esse job, que é a execução do storage Procedure.

Figura 59 - Etapa do job

Por fim programamos a data em que o job vai ser executado, onde optamos por definir que ele vai ser executado todos os dias as 23:00:00.

Figura 60 - Programação do Agente

5. Conclusões e Trabalho Futuro

O desenvolvimento deste trabalho permitiu abordar de forma integrada e sistemática o desafio da criação de uma base de dados para a gestão de ordens de produção numa fábrica de calçado, respondendo aos requisitos complexos do setor. Assim ao longo do projeto, foi possível aplicar metodologias de análise, modelação e implementação de bases de dados relacionais, com destaque no controlo da qualidade, eficiência das operações e automatização de processos . Uma vez concluído o trabalho e aplicados todos os conceitos adquiridos durante o semestre na unidade curricular de Base de Dados foi possível obter uma visão mais prática de como é, e como deve funcionar, uma base de dados e todas as etapas da sua criação. Posto isto, também é possível verificar que existem alguns aspetos que devem ser melhorados de maneira que se possa satisfazer totalmente a base de dados em questão.

Entre os principais pontos fortes do trabalho destacam-se:

- Cobertura dos requisitos do enunciado: Todos os requisitos de negócio foram analisados e implementados, incluindo mecanismos automáticos para controlo de atrasos, perdas excessivas, validações de processo e cálculos de custos detalhados.
- Metodologia seguida: Seguiu-se uma abordagem estruturada, desde a análise de requisitos, passando pela modelação conceptual, normalização e validação, até à implementação física em SQL Server, com documentação detalhada de todas as decisões e justificações.
- Automatização e controlo: Foram implementados triggers, procedures e views para garantir o registo automático de alertas, a atualização de estados das ordens e a apresentação de indicadores de desempenho, contribuindo para a redução de erros e para a melhoria do processo de produção.

No entanto, alguns desafios e limitações foram identificados:

- Complexidade do modelo: A necessidade de refletir toda a realidade produtiva e de subcontratação resultou num modelo com múltiplas entidades e relacionamentos, exigindo um esforço adicional de validação e documentação para garantir a compreensibilidade e a manutenção futura.
- Dependência de dados: A validação do sistema com dados simulados revelou a importância de testar a base de dados com cenários reais e históricos, para ajustar restrições, regras de negócio e relatórios à realidade da fábrica.
- Integração com outros sistemas: A solução desenvolvida foca-se no registo e controlo das ordens de produção, mas a sua integração com sistemas de gestão de stocks,

compras ou vendas poderá ser um passo futuro para garantir uma visão ainda mais abrangente e integrada do negócio.

Em conclusão, o trabalho foi concluído satisfatoriamente, abrangendo todos os pontos propostos.

Bibliografia

C. E. B. THOMAS M. CONNOLLY, DATABASE SYSTEMS -A Practical Approach to Design, Implementation, and Management, Pearson, 2015

Referências WWW

[01] https://stackoverflow.com/