

- LU3ME004 - Bases de la Mécanique des Milieux Continus -

Pré-requis d'analyse vectorielle et matricielle (Chapitre 1)

- 1. Rappeler les règles de la convention de sommation sur les indices répétés.
- 2. Soient une fonction scalaire $f(x_1, x_2, x_3)$, \underline{v} et \underline{w} deux champs de vecteurs de composantes $v_i(x_1, x_2, x_3)$ et $w_i(x_1, x_2, x_3)$, avec i = 1, 2, 3 et deux matrices (3×3) [A] et [B] inversibles de composantes $A_{ij}(x_1, x_2, x_3)$ et $B_{ij}(x_1, x_2, x_3)$ avec (i, j) = 1, 2, 3 dans le repère orthonormé $(O, \underline{e}_1, \underline{e}_2, \underline{e}_3)$ cartésien.

Exprimer les composantes des grandeurs suivantes dans le système de coordonnées cartésien en utilisant la convention de sommation sur les indices répétés.

- le produit scalaire \underline{v} . \underline{w} et le produit vectoriel $\underline{v} \wedge \underline{w}$ des vecteurs \underline{v} et \underline{w} , la norme $\|\underline{v}\|$ du vecteur \underline{v} .
- la transposée $[A]^T$ de la matrice [A], sa trace Tr[A].
- le produit $[A]\underline{v}$ de la matrice [A] par le vecteur \underline{v} , le produit [A][B] des matrices [A] et [B],
- les grandeurs $Tr([A]^T)$, Tr([A][B]), Tr([B][A]), $Tr(\lambda[A])$ où λ est un scalaire réel,
- la différentielle d'une fonction scalaire $f(x_1, x_2, x_3) : df$,
- le vecteur gradient de la fonction scalaire $f(x_1, x_2, x_3) : \nabla f$,
- le laplacien de la fonction scalaire $f(x_1, x_2, x_3) : \Delta f$,
- la divergence du vecteur $\underline{v}(x_1, x_2, x_3)$: div \underline{v} ,
- le rotationnel du vecteur $\underline{v}(x_1, x_2, x_3) : \underline{\operatorname{rot}}\underline{v}$,
- le laplacien du vecteur $\underline{v}(x_1, x_2, x_3), \underline{\Delta}\underline{v}$:
- la matrice gradient du vecteur $\underline{v}(x_1, x_2, x_3)$: $\underline{\nabla}\underline{v}$.

Donner les définitions intrinsèques des opérateurs ∇f , Δf , div \underline{v} .

- 3. Exercices d'applications d'auto-entrainement.
- 3.1. Soit $f(x_1, x_2, x_3)$ la fonction scalaire donnée par $f(x_1, x_2, x_3) = x_1^2 x_2 + x_3$ exprimée dans le repère cartésien orthonormé $(O, \underline{e}_1, \underline{e}_2, \underline{e}_3)$.
 - Calculer les dérivées partielles premières et secondes de la fonction $f(x_1, x_2, x_3)$.
 - Donner l'expression de la différentielle totale df de la fonction $f(x_1, x_2, x_3)$.
 - Donner l'expression du vecteur gradient ∇f .
 - Donner l'expression du laplacien de la fonction scalaire $f(x_1, x_2, x_3)$.
 - Calculer la norme du vecteur $v = \nabla f$.
 - Construire le vecteur $\underline{w}(x_1, x_2, x_3)$ unitaire (de norme 1) à partir du vecteur $\underline{v}(x_1, x_2, x_3)$.
- 3.2. Soit les champs de vecteurs $\underline{v}(x_1, x_2, x_3) = 2x_1x_2\underline{e}_1 + x_1^2\underline{e}_2 + \underline{e}_3$ et $\underline{w}(x_1, x_2, x_3) = 2x_1\underline{e}_2$ exprimés dans le repère cartésien orthonormé $(O, \underline{e}_1, \underline{e}_2, \underline{e}_3)$.
 - Calculer le produit scalaire des vecteurs $\underline{v}(x_1, x_2, x_3)$ et $\underline{w}(x_1, x_2, x_3)$.
 - Calculer le produit vectoriel des vecteurs $\underline{v}(x_1, x_2, x_3)$ et $\underline{w}(x_1, x_2, x_3)$.
 - Calculer la divergence du vecteur $\underline{v}(x_1, x_2, x_3)$.
 - Calculer le rotationnel du vecteur $v(x_1, x_2, x_3)$.
 - Calculer le vecteur laplacien du vecteur $v(x_1, x_2, x_3)$.
 - Calculer la matrice gradient du vecteur $v(x_1, x_2, x_3)$.

Calcul indiciel

1. Donner les expressions des grandeurs suivantes :

$$\delta_{ii}, \quad \delta_{ij} v_i, \quad \delta_{ij} \delta_{jl},$$

où δ_{ij} désignant le symbole de Krönecker et \underline{v} un vecteur.

2. Soit \underline{A} un tenseur d'ordre 2, ${}^T\!\underline{A}$ sa transposée, écrire sous forme indicielle :

$$(trace \underline{\underline{A}})^2$$
, $trace (\underline{\underline{A}} \ ^T\!\underline{\underline{A}})$, $trace \underline{\underline{A}}^2$, $trace [(\underline{\underline{A}} \ ^T\!\underline{\underline{A}})^2]$.

3. Soient f une fonction scalaire, \underline{A} et \underline{B} deux champs de vecteurs, établir :

$$\operatorname{div} (f \underline{A}) = f \operatorname{div} \underline{A} + \underline{A} \cdot \underline{\nabla} f \qquad \underline{\operatorname{rot}} (f \underline{A}) = f \underline{\operatorname{rot}} \underline{A} + \underline{\nabla} f \wedge \underline{A},$$
$$\operatorname{div} (\underline{A} \wedge \underline{B}) = \underline{B} \cdot \underline{\operatorname{rot}} \underline{A} - \underline{A} \cdot \underline{\operatorname{rot}} \underline{B}.$$

- **4.** a) Vérifier que si A_{ij} est une quantité symétrique par rapport au couple d'indices (i, j) et B_{ij} une quantité antisymétrique, on a : $A_{ij} B_{ij} = 0$.
 - b) Soient α , β deux fonctions scalaires et \underline{v} un champ de vecteurs, calculer :

div
$$(\underline{\operatorname{rot}} \underline{v})$$
 $\underline{\operatorname{rot}} (\underline{\nabla} \alpha)$, div $(\underline{\nabla} \alpha \wedge \underline{\nabla} \beta)$.

5. Etablir les relations suivantes :

$$\epsilon_{ijk} \, \epsilon_{iqr} = \delta_{jq} \, \delta_{kr} - \delta_{jr} \, \delta_{kq}, \qquad \epsilon_{ijk} \, \epsilon_{ijp} = 2 \, \delta_{kp}, \qquad \epsilon_{ijk} \, \epsilon_{ijk} = 6.$$

On admettra la relation suivante où det désigne le déterminant de la matrice :

$$\det \begin{pmatrix} \delta_{ip} & \delta_{iq} & \delta_{ir} \\ \delta_{jp} & \delta_{jq} & \delta_{jr} \\ \delta_{kp} & \delta_{kq} & \delta_{kr} \end{pmatrix} = \epsilon_{ijk} \, \epsilon_{pqr}.$$

5. Etablir les formules suivantes pour \underline{u} , \underline{v} et \underline{w} sont des champs de vecteurs :

$$\underline{u} \wedge (\underline{v} \wedge \underline{w}) = (\underline{u} \cdot \underline{w})\underline{v} - (\underline{u} \cdot \underline{v})\underline{w}, \quad \underline{\operatorname{rot}}(\underline{\operatorname{rot}}\underline{u}) = \underline{\nabla}(\operatorname{div}\underline{u}) - \underline{\Delta}\underline{u},$$
$$(\underline{\underline{\nabla}}\underline{v}) \cdot \underline{v} = \frac{1}{2}\underline{\nabla}\underline{v}^2 + \underline{\operatorname{rot}}\underline{v} \wedge \underline{v}$$