EE5313 Microprocessor Systems

SDRAM Controller Design

By,

Samyam Santosh 1001994596

Pranav Alle 1002058154

Under the Guidance of,

Instructor: Dr. Shahriar Shahabuddin

INDEX

1.	Aım	3
2.	Components Required and Specifications	3
3.	Interfacing	3
	a. Clock Generation	4
	b. Functional Block Diagram	5
	c. Implementation	6
	d. Top Level Diagram of Finite State Diagram	7
	e. Top Level State Transition Table	8
	f. Memory Address Mapping	8
4.	Initialization	9
	a. State Machine Initialization	10
	b. State Transition Table for Initialization	11
	c. Calculations	11
	d. Timing Diagram	12
	Load Mode Register	13
6.	Auto Refresh	14
	a. State Machine for Auto Refresh	14
	b. State Transition Table for Auto Refresh	15
	c. Calculations	15
	d. Timing Diagram	16
7.	Read	17
	a. Calculations for Read	17
	b. Steps for Read	18
	c. State Machine for Read	18
	d. State Transition Table for Read	19
	e. Timing Diagram	20
8.	Write	21
	a. Calculations for Write	21
	b. Steps for Write	21
	c. State Machine for Write	21
	d. State Transition Table for Write	22
	e. Timing Diagram	23
9.	Schematic for Compete Design	24 - 28

AIM:

The aim of the project is to design an SDRAM controller which allows SDRAM memory to be interfaced with microprocessor (80386Dx) having synchronous memory support. This report shows the complete design and theory of operations.

COMPONENTS REQUIRED AND SPECIFICATIONS:

- SDRAM Controller
- SDRAM

MT48LC16M4A2 – 4 Meg x 4 x 4 banks

4096 rows x 1024 columns x 4 banks

Operating Frequency = 100 MHz

Clock cycle time Tclcl: 10 ns

Speed Grade: -75 with access time: 5.4 ns Setup time: 1.5 ns and hold time: 0.8 ns.

Burst length: 8 CAS Latency = 2

Refresh time: 64 ms for 4096 rows

• 80386DX processor

32-bit address line and 32-bit data line.

INTERFACING:

- Clk (66 MHz) from the microprocessor is given to the controller.
- Clk for the SDRAM is 100 MHz this is attained by passing Clk2 to phase locked loop.
- 8086Dx microprocessor consists of 32-bit address lines in which A0 and A1 act as bank enable signals for BE0 to BE3.
- 32-bit data bus D0-D31 of 8086Dx microprocessor is meant for data transfer and receive from SDRAM device.
- Ready signal is given to the microprocessor from the controller to indicate the termination of current CPU bus cycle information.
- HOLD is also given to processor from controller.
- HLDA is hold acknowledgement is given to controller form 8086Dx processor.
- ADS, RD, WT signals generate read and write signals for controllers.
- CAS, RAS, WE are the signals given to the SDRAM for memory read and write operations.
- CKE is a clock enabled signal used to enable the operations in the SDRAM.
- VDD is supplied to all devices.
- VSS is the ground.

CLOCK GENERATION:

• The CLK2 of 8086Dx processor is given as an input clock with 66MHz clock frequency.

- To convert Clk frequency from 66 MHz to 100 MHz we are using Phase Locked Loop (PLL).
- PLL consists of lowpass filter, Voltage controlled Oscillator (VOC), Phase Lock Detector, Tri-State Buffer, and a divide by 2 phase comparators.
- This is used to generate output signal whose phase is related to the phase of an input signal.
- The 66 MHz from processor is sent to PLL unit to obtain the desired frequency of 100 MHz.
- When 100 MHz frequency is attained, it is given as an input to the controller and SDRAM.

FUNCTIONAL BLOCK DIAGRAM:

Figure 1: 16 Meg x 4 SDRAM

IMPLEMENTATION:

TOP LEVEL VIEW OF FINITE STATE MACHINE:

The SDRAM Controller FSM consists of main state diagram. It has 4 sub-state machines INITIALIZATION, READ, WRITE and REFRESH.

TOP LEVEL STATE TRANSITION TABLE:

Current State	Conditions	Next State
Power Up		Reset
Reset	Reset#=1	Reset
Reset	Reset# = 0	Initialization
Initialization	Int Done = 0	Initialization
Initialization	$Int_Done = 1$	Idle
Idle	Read_Request	Read
Read	$Read_Done = 0$	Read
Read	Read_Done = 1	Idle
Idle	Write Request	Write
Write	Write_Done = 0	Write
Write	Write_Done = 1	Idle
Idle	Refresh Request	Refresh
Refresh	$Refresh_Done = 0$	Refresh
Refresh	Refresh_Done = 1	Idle

MEMORY ADDRESS MAPPING:

DCD_SDRAM	BA [1:0]	ROW	COL
A31-23	A22-21	A20-9	A8-2
9bits	2bits	12bits	7bits

INITIALIZATION:

When powering up and initializing SDRAMs, it's important to follow the specified procedures, as other procedures may result in unpredictable behavior. After applying power and ensuring a stable clock signal, there should be a delay of at least 100 microseconds before issuing any command other than a NOP. During this 100 microsecond period, NOP commands should be continuously applied. Once this delay has passed and at least one NOP command has been applied, a PRECHARGE command should be issued.

After issuing the PRECHARGE command, it's necessary to wait for at least tRP time. During this time, a NOP2 command should be given. This ensures that all banks complete their precharge operations. After the precharge operation is complete, the SDRAM should move to the send_auto_refresh command. During this time, it should wait for at least tRFC time, which is equivalent to 7 clock cycles. NOP3 through NOP8 commands should be given during this waiting period.

After this waiting period, at least two Auto refresh cycles must be performed. During this time, NOP3 through NOP14 commands should be given.

After completing the auto refresh cycles, the SDRAM is ready for mode register programming. Since the mode register starts up in an unknown state, it should be programmed with the desired bit values before any operational command is applied. This can be done using the LOAD MODE REGISTER command to program the mode register.

After programming the mode register, a waiting period of at least tMRD time is necessary. In this case, as tMRD is 2 clocks, a NOP15 command should be applied during this waiting period. Once this waiting period is over, the SDRAM is ready for any valid command.

STATE MACHINE INITIALIZATION:

STATE TRANSITION TABLE FOR INITIALIZATION:

Current State	Condition	Next State
NA	Reset#=0	Reset
Reset	Next Clock, CKE=0	Wait Stable Clock
Wait Stable Clock	Lock=1	NOP1(100microsec)
NOP1	Power_up_wait! =0	NOP1
NOP1	Power_up_wait=0, CKE=1	Send_Precharge
Send_Precharge		NOP2
NOP2		Send_Auto refresh 1
Send-Auto refresh 1		NOP3
NOP3		NOP4
NOP4		NOP5
NOP5		NOP6
NOP6		NOP7
NOP8		Send_Auto refresh2
Send-Auto refresh2		NOP9
NOP9		NOP10
NOP10		NOP11
NOP11		NOP12
NOP12		NOP13
NOP13		NOP14
NOP14		Send Load Mode register
Send Load Mode register		NOP15
NOP15		IDLE

Clock Calculations	Value(ns)	No. of clocks
NOP1 (100 microsecond)	100 microsecond	83,000
Precharge Period (Trp)	20ns	2 Clocks
Auto Refresh Period (Trfc)	66ns	7 Clocks
Load Mode Register Period	20ns	2 Clocks
(Tmrd)		

TIMING DIAGRAM: Cook 3 20 84 INITIALIZATION TIMING DIAGRAM Ŧ 900 AppR CK/ DOM Aio RAS CAS 00 13

LOAD MODE REGISTER:

According to this diagram from the data sheet, Load Mode Register is set according to our specifications.

A11 A10 A9 A8 A7 A6 A3 A2 A1 A0 Address Bus A5 A4 Mode Register (Mx) Reserved WB Op Mode CAS Latency ВТ Burst Length Program Burst Length BA0, BA1, M11, M10 = "0, 0" M2 M1 M0 3 = 0 M3 = 1to ensure compatibility with future devices. 0 0 0 0 0 1 2 M9 Write Burst Mode 0 1 0 Programmed Burst Length 0 1 1 8 8 Single Location Access 1 0 0 Reserved Reserved 1 0 1 Reserved Reserved M8 M7 M6-M0 Operating Mode 1 Reserved 0 0 Defined Standard Operation 1 1 1 Full Page Reserved All other states reserved M3 **Burst Type** 0 Sequential Interleaved M6 M5 M4 **CAS Latency** 0 0 0 Reserved 0 0 1 Reserved 0 1 0 2 3 0 1 1 Reserved 1 0 0 Reserved 1 0 1 1 1 0 Reserved 1 1 1 Reserved

Figure 6: Mode Register Definition

According to our specifications, LMR for initialization is:

Function	Function Value	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
Burst length (BL)	8										0	1	1
Burst Type	Sequential									0			
CAS Latency	2						0	1	0				
Op mode	Standard operation				0	0							
Write Burst	Programmed			0									
Mode	Burst Mode												
Reserved		0	0										

LMR: 00 0 00 010 0 011

AUTO REFRESH:

During regular operation of the SDRAM, AUTO REFRESH is used to refresh the memory and is similar to the CAS#-BEFORE-RAS# (CBR) refresh in traditional DRAMs. This command is not saved permanently in the memory and must be issued every time a refresh is needed. Prior to issuing an AUTO REFRESH command, all active banks must be PRECHARGED.

It's important to wait for at least the minimum tRP time after the PRECHARGE command before issuing an AUTO REFRESH command, as specified in the Operation section.

During an AUTO REFRESH command, the internal refresh controller generates the addressing, which makes the address bits "Don't Care". For the 64Mb SDRAM, regardless of its width, it's necessary to perform 4,096 AUTO REFRESH cycles every 64ms. To meet this refresh requirement and ensure that each row is refreshed, a distributed AUTO REFRESH command can be provided every 15.625µs. This is done by REFRESH_REQUEST# command. When the signal REFRESH_REQUEST# goes low, the SDRAM enters the Auto_Refresh_Req state. During this state, it goes through NOP16-22 cycles to cover the tRFC time, which is equivalent to 7 clocks. Once this waiting period is over, the SDRAM returns to the idle state.

STATE MACHINE FOR AUTO REFRESH:

STATE TRANSITION TABLE:

Current State	Condition	Next State
IDLE	$Refresh_Request! = 0$	IDLE
IDLE	$Refresh_Request = 0$	Auto_Refresh_Req
Auto_Refresh_Req		NOP16
NOP16		NOP17
NOP17		NOP18
NOP18		NOP19
NOP19		NOP20
NOP20		NOP21
NOP21		IDLE

Clock Calculations	Value(ns)	No. of clocks
Precharge Period (Trp)	20ns	2 Clocks
Auto Refresh Period (Trfc)	66ns	7 Clocks

READ:

Calculations for READ:

Read Cycle Calculations:

Time Aeriod = 1 sec

Clock Frequency = 100 mHz

Clock Variant = -75

$$T_{CLK} = \frac{1}{100 \times 10^6} = 10 \text{ ns}$$

-) Auto-refresh period for $-75 = 66 \, \text{ns}$
- 2) Rows required to refresh = 4096 ie; 2^{12}
- 3) Refresh time for all rows at once = 4096×66 ns = 270.336 us
- 4) Refresh period of 4096 nows in -75 is 64 ms

 All rows to be refreshed in ISec = $\frac{1}{64 \times 10^3}$ = 15.625 = 16 times
- 5) Time consumed for refresh in Isec = 16 x 270.336 US = 4.325 ms
- 6) Time remaining for read cycle = 1 Time consumed for refresh= $1 - 4.325 \times 10^{3} \text{S}$ = 0.996 Sec= 996 mS.
- 7) trco (Row to Column Delay) for -75 = 20 ns = 2 clocks required $= \frac{trcn}{T_{CIK}} = \frac{20}{10}$ ns = 2 clocks

Considering CL=2 and BL=8Number of clocks required for read cycle = trcp + CL + BL= 2 + 2 + 8= 12 clocks

8) Number of read cycles = Time remaining for read cycle = $\frac{996 \text{ ms}}{120 \text{ ns}}$ = $8.3 \times 10^6 = 8300000 \text{ cycles}$.

STEPS FOR READ:

The READ command is used to read data from an active row. When the signal READ&!REF_REQ goes low, the SDRAM moves to the Active state where the row and bank are activated by setting RAS#=0, CAS#=1, and WE#=1. This is followed by the RD_NOP1 state, after which it moves to the READ state. In the READ state, the column address is provided along with the value of input A10 which determines whether auto precharge is used or not. In this case, auto precharge is used and A10 is set to high. After the READ state, the SDRAM must wait based on the value of CAS Latency, which in this case is 2. Therefore, it moves to the RD_NOP2 state, and in the next cycle, it moves to READ1. This process continues up to READ8, and in each read, 4 bits of data are obtained, resulting in a total of 32 bits of data. After the READ operation is complete, the READY signal is generated, and a minimum of 2 wait cycles is required because the SDRAM clock is twice as fast as the microprocessor clock.

STATE MACHINE FOR READ:

STATE TRANSITION TABLE:

Current State	Condition	Next State
IDLE	RD&! REF_REQ=0	ROW ACTIVE
ROW ACTIVE		RD_NOP1
RD_NOP1		READ
READ		RD NOP2
RD_NOP2		READ1
READ1		READ2
READ2		READ3
READ3		READ4
READ4		READ5
READ5		READ6
READ6		READ7
READ7		READ8
READ8		RD_NOP3
RD_NOP3		RD_NOP4
RD_NOP4		IDLE

TIMING DIAGRAM: Pre-change (p+wa) 413 Nop Dm+4 MOP Dm+3 DON NOP 9m+1 NOP Reach 4 Auto Recharge Coulumn BANK 2=70 READ Read tec=2 Nop (Row Address) Row Active ACTIVE BANK Activation ACTIVE, **-**5 101 A6/84 CKE RAS DOM CAS AppR S 13 AIO 8

WRITE:

Calculations for WRITE:

Trcd Active to Read/Write delay = 20ns = 2 clock cycles

Twr Write Recovery Time = 1 clk + 7.5 ns = 2 clock cycles

Trp Precharge Command Period = 20ns = 2 clock cycles

Telel = 10ns

STEPS FOR WRITE:

The WRITE command is used to initiate a write access to an active row in SDRAM. When the WRITE command along with the signal WR&!REF_REQ is received, the SDRAM moves to the Active state by activating the row and bank where RAS#=0, CAS#=1, WE#=1. This state is followed by WR_NOP1 state, and then it moves to the WRITE state where the column address and data to be written are provided. The write operation occurs in WRITE1 state, and this continues up to WRITE8 state, where a total of 32 bits of data (4 bits per write cycle) are written. After completion of WRITE, the SDRAM moves to WR_NOP2 state as per tWR timing requirements, and it takes 2 cycles from WRITE8 to WR_NOP3 state. Then, after a delay of trp=2 cycles, it moves to the IDLE state.

STATE TRANSITION TABLE:

Current State	Condition	Next State
IDLE	WR&!REF_REQ=0	ACTIVE
ACTIVE		WR_NOP1
WR_NOP1		WRITE1
WRITE1		WRITE2
WRITE2		WRITE3
WRITE3		WRITE4
WRITE4		WRITE5
WRITE5		WRITE6
WRITE6		WRITE7
WRITE7		WRITE8
WRITE8		WR_NOP2
WR_NOP2		WR_NOP3
WR_NOP3		WR_NOP4
WR_NOP4		IDLE

TIMING DIAGRAM: XBANK بائ NOP Dinte 40 WRITE CYCLE TIMING DIAGRAM FOR BL=8 WITHOUT AUTO-BRE-Charge. 8=79 BANK Witte 20 2 \$ Active NOP 4 Row ACTIVE BANK ACTIVE Tale to Apple MOO IN R RAS IS CAS ME

GENERATION OF CHIP SIGNALS:

Generation of Chip Select:

Generation of MRDC#:

Generation of MWTC#:

Generation of IOWC#:

Generation of IORC#:

Generation of functional command signal:

Name (Function)	RAS#	CAS#	WE#
LMR VALUE	L	L	L
AUTO REFRESH	L	L	Н
PRECHARGE	L	Н	L
ACTIVE	L	Н	Н
READ	Н	L	Н
WRITE	Н	L	Ĺ
NOP	Н	Н	Н

Generation of bank address:

Generation of DQM: BE0#

STAE=Active||Read||Write||Precharge

Data Latch for READ:

Data Mux for WRITE:

Generation of RAS#:

O RAS# MUX State 0=Active||Precharge||Auto Refresh||LMR state=1=NOP || Read|| Write

Generation of CAS#:

Generation of WE#: O MUX WE# O State=0=Write || Precharge || LMR Generation of CKE: O State = 0= Reset || Wait_clock_stable

state =1=Nop || Active||Read||Auto Refresh

Generation of Row and Column:

state=1=!(Reset || Wait_clock_stable)

Generation of Auto Precharge (A10):

Generation of READY Signal:

Generation of Clock Timer:

Clock_timer_count = 100microsec*100MHz = 10,000counts

Generation of Refresh Timer:

Refresh_timer_count = 64ms*100MHz = 6,400