INVARIANT GRAPH NETWORKS & EXPRESSIVITY

02/04/25

Khushee Kapoor

Master of Data Science and Artificial Intelligence

INVARIANT AND EQUIVARIANT GRAPH NETWORKS

Haggai Maron, Heli Ben-Hamu, Nadav Shamir & Yaron Lipman

Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot, Israel

On the Universality of Invariant Networks

Haggai Maron ¹ Ethan Fetaya ²³ Nimrod Segol ¹ Yaron Lipman ¹

Provably Powerful Graph Networks

Haggai Maron* Heli Ben-Hamu* Hadar Serviansky* Yaron Lipman
Weizmann Institute of Science
Rehovot, Israel

ALGEBRAIC VIEW OF GRAPH NEURAL NETWORKS

neural network architectures suitable for learning irregular data in the form of graphs - hypergraphs trade-off between expressivity and efficiency

MULTI LAYER PERCEPTRON

 $[100 \times 100 \times 3] \rightarrow [100 \times 100 \times 3] \sim 10^{9}$

LINEAR INVARIANT FUNCTIONS

$$x \mapsto L(x) = Ax + b$$
 $L(x) = L(T.x)$

one dimensional vector space ~ sum operator

EQUIVARIANT LINEAR OPERATORS

$$L(T.x) = T.L(x)$$

REPRESENTING GRAPHS AS TENSORS

Definition of graph:

- **n** elements/ nodes
- x_i information attached to i-th element
- some information attached to edges x_{ij}

Representation as tensor:

- $X \in \mathbb{R}^{n \times n}$
- diagonal elements $X_{i,i} = x_i$ encode node data
- off-diagonal elements $X_{i,j} = x_{i,j}$ encode edge data

simple graph as tensor

hypergraph of order 3 as tensor

SYMMETRIES OF GRAPHS

- Transformations that do not change the input data are called symmetries.
- Two graphs *X*, *Y* are considered isomorphic if

$$Y = p.X$$
 and (*i-j*)th entry of X is $X_{p^{-1}(i),p^{-1}(j)}$

Generalizing for hypergraphs

$$(i_1, ..., i_k)$$
th entry of X is $X_{p^{-1}(i_1),...,p^{-1}(i_k)}$

INVARIANT GRAPH NETWORKS

- Trying to consider linear transformations of graph data that are invariant leads to a poor space of operators.
- Networks using only such invariant layers could not distinguish two graphs if they have the same number of nodes and edges.
- Remedy comes from considering equivariant operators. L(p,x) = p.L(x)

$$f(X) = L_1(X) \circ \cdots \circ L_k \circ H \circ M$$

Invariant Graph Network

equivariant linear operators can map between different order tensors $\mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$

LINEAR OPERATORS AND THE FIXED-POINT EQUATIONS

Characterizing affine transformations $\mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$ equivariant $(l \ge 1)$ or invariant (l = 0) to $X \mapsto p.X$:

- Ignoring the bias, $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$ can be treated as a tensor $L \in \mathbb{R}^{n^{k+l}}$
- Above is similar to $\mathbb{R}^k \to \mathbb{R}^l$ represented using matrix $\mathbb{R}^{k \times l}$
- L(p.x) = p.L(x) can be expressed compactly as p.L = L

The space of equivariant/ invariant operators $L: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$ is characterized by all tensors $L \in \mathbb{R}^{n^{k+l}}$ that are fixed by the action of the permutation group.

SOLVING FIXED-POINT EQUATIONS

Any solution *L* should be constant along the orbit of the permutation group.

- Considering k = l = 2, corresponding to equivariant operators $\mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$
- Taking p = (12), then $L_{1,1,1,1} = p$. $L_{1,1,1,1} = L_{p^{-1}(1), p^{-1}(1), p^{-1}(1), p^{-1}(1)} = L_{2,2,2,2}$ implying $L_{i,i,i,i}$ is constant
- Similarly, $L_{1,1,2,3}$ equals all entries of the form $L_{i,i,j,s}$

L is constant along all indices that preserve equality and inequality relations between pairs

Bell Number

no. of different orbits

no. of different equality patterns of indices

no. of partitions of a set with elements = indices

SOLVING FIXED-POINT EQUATIONS

- An orthogonal basis to the equivariant operators can be constructed using an equality pattern α and the indicator tensor $B_{i,i,s,t}^{\alpha} = 1$ if and only if $(i,j,s,t) \in \alpha$ and o otherwise.
- Applying equivariant operators can be done in $O(n^2)$ operations
- Thus, the linear equivariant operator has the form $L = \sum_{\alpha} w_{\alpha} B^{\alpha}$
- Solving fixed point equations for $l, k \in \mathbb{N}$ reduces to fixed point equation for $L \in \mathbb{R}^{n^{k+l}}$, in this case we will have bell(k+l) basis elements the basis is given by the indicator tensors B^{α} of these equality patterns.

HOW EXPRESSIVE ARE IGNs?

Function Approximation POV

- 2-IGNs can approximate MPNNs on compact sets.
- IGNs are universal for large tensor order k, approximating any continuous invariant function.

Graph Discrimination POV

• k-IGNs match or exceed the graph discrimination power of k-WL, distinguishing graphs like 3-WL distinguishes regular graphs.

EXPRESSIVE VARIANT OF IGNS

- Drawback of k-IGNs: storing and processing k-order tensors.
- 2-IGN+: atleast as expressive as 3-WL test. Composed of:
 - 3 different MLPs
 - input 2-tensor
 - output of two multiplied feature-wise
 - output of third concatenated to product

Strengths:

- MLPs on feature dimension can be implemented on
 1x1 image convolution
- matrix multiplication supported by all DL frameworks

SUMMARY OF IGN EXPRESSIVENESS

UNIVERSITY OF WATERLOO

FACULTY OF MATHEMATICS