

packet loss and delay

packets queue in router buffers

- Delay: if packet arrives to buffer, while, there are other packets in queue, then the new arrived packet experience DELAY.
- □ Loss: If buffer is full an new packet comes, router discards new packet.

Four sources of packet delay

nodal processing

- check bit errors
- determine output link
- typically < msec

queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)

d_{trans} and d_{prop}

propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2×10⁸ m/sec)

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{propagation}}$$

- d_{proc} = processing delay
 - typically a few msecs or less
- □ d_{queue} = queuing delay
 - depends on congestion
- \Box d_{trans} = transmission delay= L/R(packet)

length/bandwidth)

- a , significant for low-speed links
- dprop = propagation delay= d/s (link length/propagation speed)
 - a few microsecs to hundreds of msecs

Caravan Analogy

cars "propagate" at 100 km/hr

toll booth takes 12 sec to service car (bit transmission time)

car~bit; caravan ~ packet

Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both:
 100km/(100km/hr)= 1 hr
- A: 62 minutes

suppose cars now "propagate" at 1000 km/hr and suppose toll booth now takes one min to service a car *Q:* Will cars arrive to 2nd booth before all cars serviced at first booth?

 A: Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth.

Example

- Consider two hosts, A and B, connected by a single link of rate R bps. Suppose that the two hosts are separated by m meters, and suppose the propagation speed along the link is s meters/sec. Host A is to send a packet of size L bits to Host B.
- \square a) Express the propagation delay, dprop, in terms of m and s.
- \Box b) Determine the transmission time of the packet, dtrans, in terms of L and R.
- c) Ignoring processing and queuing delays, obtain an expression for the end-to-end delay.
- \Box d) Suppose Host A begins to transmit the packet at time t = 0. At time t = dtrans, where is the last bit of the packet?
- ullet e) Suppose dprop is greater than dtrans. At time t = dtrans, where is the first bit of the packet?
- \Box f) Suppose dprop is less than dtrans. At time t = dtrans, where is the first bit of the packet?
- \square g) Suppose $s = 2.5 \cdot 10^8$, L = 120 bits, and R = 56 kbps. Find the distance m so that dprop equals dtrans.

Example

- a) $d_{prop} = m/s$ seconds.
- b) $d_{trans} = L/R$ seconds.
- c) $d_{end-to-end} = (m/s + L/R)$ seconds.
- d) The bit is just leaving Host A.
- e) The first bit is in the link and has not reached Host B.
- f) The first bit has reached Host B.

g)
$$m = \frac{L}{R}s = \frac{120}{56 \times 10^3} (2.5 \times 10^8) = 536$$
 km.

Queueing delay

R: link bandwidth (bps)

L: packet length (bits)

a: average packet arrival rate

- La/R > I: more "work" arriving than can be serviced, average delay infinite
- ❖ La/R ~ 0: avg. queueing delay small
- ❖ La/R --> I: avg. queueing delay large

La/R ~ 0