15

3

4

8

10

10

2

Part - A

Note: The question paper contains two parts, A and B.

Part A: This sheet – three questions - 35 marks

Part B: To be given (1 Hr later) - 3X 15 = 45 marks, 1 Hr.

Q1. For the transfer function

$$G(s) = (s+500)/\{s(s^2+10s+100)\}$$

- a. Write the accurate expression of the *Magnitude* in decibels.
- b. Write the approximate expressions for the magnitude in decibels in different ranges of the sinusoidal frequency
- c. Sketch the asymptotic Bode *Magnitude* plot only, but clearly showing the relevant corner frequencies, slopes and the point of intersection with the vertical axis (y-intercept).
- Q2. A unity feedback closed loop system has the forward path transfer function $G(s) = (s+5)/\{(s+1)(s+3)(s+10)\}$

Obtain the complete root-locus for the closed loop system, clearly obtaining and showing the imaginary –axis crossing if any, asymptotic lines for branches going to infinity if any, break-in or break-off points if any (in case you can not solve for accurate value, show approximate representative location with an identified range), in addition to starting and ending points.

Q3. A state-space system has

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} ; \text{ and } B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

The matrix A has its eigenvalues as -1 and 2, with corresponding eigenvectors $v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} -1 & 2 \end{bmatrix}^T$

- a. Obtain a modal decomposition of the system
- b. Identify any uncontrollable that exist, if any
- C. In case it exists, suggest a change in B that would make system controllable. If not, just say no change required.

- 1. For a closed loop 2-order system the gain is varied, for which the two poles move straight vertically upward and downward parallel to the imaginary axis. Therefore
 - a. Settling time remains fixed
 - b. Damping ratio remains fixed
 - c. Natural Frequency remains fixed
 - d. None of the above remains fixed
- 2. A 2^{nd} order system is such that its damped freq. of oscillation is $1/\sqrt{2}$ times its natural freq. Then the % overshoot is

a. $e^{-\pi}$ b. e^{-1} c. $e^{-\pi/2}$ d. None of these

3. A state system is given by a A, B, C, and D=0. There exists a matrix P such that $P^{-1}AP =$ and $P^{-1}B =$;

The transfer function of the system can be

a. $s/\{(s+4)(s+5)\}$ b. $1/\{(s+4)(s+5)\}$ c. $1/\{(s+2)(s-3)\}$ d. Can not be said

- 4. The system given in the previous problem is
 - a. Unstable b. Stable c. Uncontrollable d. Marginally stable
- 5. A standard mass-spring system has a single mass M=1/2 and a nonlinear spring with force-displacement curve being $F = 2x^3+3x$ How many physically meaningful equilibrium points does it have?

a. 1 b. 2. c. 3 d. 0

6. An LTI system with transfer function $G(s) = 9/(s^2+2s+9)$ is excited by an input $r(t) = 5 \sin 100t$. At steady state, the frequency of the output is

a. 3 Hz b. 6Hz c. 50 Hz. d. Harmonics of 50 Hz, 10 Hz etc.

7. A feedback system with G(s) = 1/(s+a) and H(s) = 1/s is excited by a unit-step inout. The steady state value of the *output* is

a. 0 b. 1 c. 1/a d. None of these

- 8. Auxiliary polynomial o the Routh Array gives
 - a. Poles on imaginary axis only
 - b. Unstable poles only
 - c. Stable poles only

d. None of these
9. For the state-space system $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$; $B = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and D = 0,

If the output y(t) is completely given for all t>0, then the state x(t) at t=0 can be computed completely.

a. False b. True c. Can not be said d. True iff D > 0

a.	Stable	b. Proper.	c. Well-posed	d. Non-singular
11. A row	entirely of z	eroes in a Routh	-Hurwitz array indica	tes
	Poles located symmetrically about the real axis			
b.	Poles located symmetrically about the imaginary axis			
c.	Poles located symmetrically about the origin.			
d.	Poles located co-incidentally on some points (Repeated roots)			
12. A lead	compensato	r is generally use	ed to improve	
a.	The steady state response			
b.	The transient response			
	c. The position error constant			
d.	None of these			
have			e low-frequency char	
	Similar transient responses b. Similar steady state response			
			n freq. and time respo	onses
		oonse to noise-si		1 1 CC //
			and its root locus, the	e break-oii /break-in
-	Critical dar		ition between instabil	ity and stability
		ystem d. None		ity and stability
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
15. A mata	rix A has eig	envalues –2 and	-5. Then the eigenva	lues of e ^A are
a.	+2 & + 5	b. –7 and 10	c. e ⁻² & e ⁻⁵	d. No such rela
b.				

k