### Model Checking



#### Outline

Introduction – How to Build Reliable Software

Formal Verification (in a nutshell)

Model Checking

Linear Temporal Logic

The NuSMV Model Checker

#### **Critical Software**

### Single programs

- · Operating systems
- Crypto routines
- Financial systems
- Medical devices
- · Flight control systems
- Power plants
- · Home security
- ٠..

#### **Programming languages**

- Static type systems
- Data abstraction and modularity
- Security controls
- · Compiler correctness



#### **Building Reliable Software**

- Suppose you work at (or run) a software company.
- Suppose, like Frege, you've sunk 30+ person-years into developing the "next big thing":
  - Boeing Dreamliner2 flight controller
  - Autonomous vehicle control software for Nissan
  - Gene therapy DNA tailoring algorithms
  - Super-efficient green-energy power grid controller
- Suppose, like Frege, your company has invested a lot of material resources that are also at stake.
- How do you avoid getting a letter like the one from Russell?

Or, worse yet, *not* getting the letter, with disastrous consequences down the road?

### **Approaches to Software Reliability**

- Social
  - Code reviews
  - Extreme/Pair programming
- Methodological
  - Design patterns
  - Test-driven development
  - Version control
  - Bug tracking
- Technological
  - "lint" tools, static analysis
  - Fuzzers, random testing
- Mathematical
  - Sound type systems
  - Formal verification

Less "formal": Lightweight, inexpensive techniques (that may miss problems)

This isn't an either/or tradeoff... a spectrum of methods is needed!

Even the most "formal" argument can still have holes:

- · Did you prove the right thing?
- · Do your assumptions match reality?
- Knuth: "Beware of bugs in the above code; Ihave only proved it correct, not tried it"

More "formal": eliminate with certainty as many problems as possible.

#### How to Build Reliable Software

► Your Project Proposal

#### Definition

- Create a formal model of some system of interest
  - Hardware
  - Communication Protocol
  - ► Software, esp. concurrent software
- Describe formally a specification that we desire to model to satisfy
- Check the model satisfies the specification
  - Theorem Proving (usually interactive but not necessarrily)
  - Model Checking

# Example of Specification: SpaceWire Protocol (European Space Agengy Standard)

#### 8.5.2.2 ErrorReset

- a. The ErrorReset state shall be entered after a system reset, after link operation is terminated for any reason or if there is an error during link initialization.
- b. In the *ErrorReset* state the Transmitter and Receiver shall all be reset.
- c. When the reset signal is de-asserted the ErrorReset state shall be left unconditionally after a delay of 6,4  $\mu s$  (nominal) and the state machine shall move to the ErrorWait state.
- d. Whenever the reset signal is asserted the state machine shall move immediately to the ErrorReset state and remain there until the reset signal is de-asserted.

# Interpreatation $\models$ Formula

The relationship between interpretations M and formulas  $\phi$ :

$$M \models \phi$$

We say M models  $\phi$ .

Questions we can ask:

- **1.** For a fixed  $\phi$ , is  $M \models \phi$  true for all M?
  - $\blacktriangleright$  Validity of  $\phi$
  - ► This can be done via proof in a theorem prover e.g. Isabelle.
- **2**. For a fixed  $\phi$ , is  $M \models \phi$  true for some M?
  - Satisfiability
- **3**. For a fixed (class of) M, what  $\phi$ s make  $M \models \phi$  true?
  - ► "Theory discovery"/"Learning from Data"/"Generalisation"
  - Not in this course
- **4.** For a fixed *M* and *P*, is it the case that  $M \models \phi$ ?
  - ► Model Checking

# Model Checking - Definition

At a high level, many tasks can be rephrased as model checking.

| "Interpretations" M   | $=$ "Formulas" $\phi$  | Task                   |
|-----------------------|------------------------|------------------------|
| sequences of tokens   | = grammars             | parsing                |
| database tables       | = SQL queries          | query execution        |
| email texts           | = spam rules           | spam detection         |
| sequences of letters  | = dictionary           | spellchecking          |
| audio data            | = acoustic/lang. model | speech recognition     |
| finite state machines | = temporal logic       | specification checking |

Details differ widely, but question of "is this data consistent with this statement? (and to what degree?)" is extremely common.

Historically, "Model Checking" usually refers to the last one.

# Model Checking - Models

A model of some system has:

- ► A finite set of **states**
- ► A subset of states considered as the initial states
- ▶ A **transition relation** which, given a state, describes all states that can be reached "in one time step".

#### Good for

- ► Software, sequential and concurrent
- ► Digital hardware
- ► Communication protocols

Refinements of this setup can handle: Infinite state spaces, Continuous state spaces, Continuous time, Probabilistic Transitions. Good for hybrid (*i.e.*, discrete and continuous) and control systems.

# Model Checking - Models



- Model Checking (MC) is
  - check whether a program satisfies a property by exploring its state space
  - systematic state-space exploration = exhaustive testing
  - "check whether the system satisfies a temporal-logic formula"
- Simple yet effective technique for finding bugs in high-level hardware and software designs
- Once thoroughly checked, models can be compiled and used as the core of the implementation

### Insight: Model Checking is Super Testing

· Simple yet effective technique for finding bugs



# Software Model Checking

- How to apply model checking to analyze software?
  - "Real" programming languages (e.g., C, C++, Java),
  - "Real" size (e.g., 100,000's lines of code)
- Two main approaches to software model checking:



### Model Checking - Specification

We are interested in specifying behaviours of systems over time.

► Use Temporal Logic

Specifications are built from:

- 1. Primitive properties of individual states *e.g.*, "is on", "is off", "is active", "is reading";
- **2.** propositional connectives  $\land, \lor, \neg, \rightarrow$ ;
- 3. and temporal connectives: e.g.,

At all times, the system is not simultaneously *reading* and *writing*. If a *request* signal is asserted at **some time**, a corresponding *grant* signal will be asserted **within 10 time units**.

The exact set of temporal connectives differs across temporal logics. Logics can differ in how they treat time:

► Linear time vs. Branching time

These differ in reasoning about *non-determinism*.

#### Non-Determinism

In general, system descriptions are non-deterministic.

A system is *non-deterministic* when, from some state there are **multiple** alternative next states to which the system could transition.

Non-determinism is good for:

- Modelling alternative inputs to the system from its environment (External non-determinism)
- Under-specifying the model, allowing it to capture many possible system implementations (*Internal non-determinism*)

# Linear vs. Branching Time

#### Linear Time

- Considers paths (sequences of states)
- ▶ If system is non-deterministic, many paths for each initial state
- Questions of the form:
  - ► For all paths, does some path property hold?
  - ▶ Does there exist a path such that some path property holds?

#### Branching Time

- ► Considers tree of possible future states from each initial state
- ▶ If system is non-deterministic from some state, tree forks
- ▶ Questions can become more complex, *e.g.*,
  - For all states reachable from an initial state, does there exist an onwards path to a state satisfying some property?
- Most-basic branching-time logic (CTL) is complementary to most-basic linear-time logic (LTL)
- ▶ Richer branching-time logic (CTL\*) incorporates CTL and LTL.

### LTL - Syntax

LTL = Linear(-time) Temporal Logic

Assume some set *Atom* of atomic propositions

Syntax of LTL formulas  $\phi$ :

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \to \phi \mid \mathbf{X}\phi \mid \mathbf{F}\phi \mid \mathbf{G}\phi \mid \phi \mathbf{U}\phi$$

where  $p \in Atom$ .

#### Pronunciation:

- $\triangleright$  X $\phi$  neXt  $\phi$
- ▶  $\mathbf{F}\phi$  Future  $\phi$
- ▶  $\mathbf{G}\phi$  Globally  $\phi$
- $\blacktriangleright \phi \mathbf{U} \psi \phi \text{ Until } \psi$

Other common connectives: W (weak until), R (release).

Precedence high-to-low:  $(X, F, G, \neg), (U), (\land, \lor), \rightarrow$ .

▶ E.g. Write  $\mathbf{F}p \wedge \mathbf{G}q \rightarrow p\mathbf{U}r$  instead of  $((\mathbf{F}p) \wedge (\mathbf{G}q)) \rightarrow (p\mathbf{U}r)$ .

#### LTL - Informal Semantics

LTL formulas are evaluated at a position i along a path  $\pi$  through the system (a path is a sequence of states connected by transitions)

- $\blacktriangleright$  An atomic p holds if p is true the state at position i.
- The propositional connectives ¬, ∧, ∨, → have their usual meanings.
- ► Meaning of LTL connectives:
  - $\mathbf{X}\phi$  holds if  $\phi$  holds at the next position;
  - $\mathbf{F}\phi$  holds if there exists a future position where  $\phi$  holds;
  - $G\phi$  holds if, for all future positions,  $\phi$  holds;
  - φUψ holds if there is a future position where ψ holds, and φ holds for all positions prior to that.
  - $\phi R\psi$  holds if there is a future position where  $\phi$  becomes true, and  $\psi$  holds for all positions prior to and including that i.e.  $\phi$  'releases'  $\psi$ .
    - ▶ It is equivalent to  $\neg(\neg \phi \mathbf{U} \neg \psi)$ .
    - ► Thus **R** is the dual of **U**.

#### A Taste of LTL - Examples

- 1. G invariant
  - invariant is true for all future positions
- **2.**  $G \neg (read \land write)$

In all future positions, it is not the case that *read* and *write* 

**3.**  $G(request \rightarrow Fgrant)$ 

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

**4.**  $G(request \rightarrow (request \cup grant))$ 

At every position in the future, a *request* implies that there exists a future point where *grant* holds, and *request* holds up until that point.

- 5. GF enabled
  - In all future positions, there is a future position where *enabled* holds.
- 6. FG enabled

There is a future position, from which all future positions have *enabled* holding.

#### LTL - Semantics: Formally

We want to define formally the satisfaction relation:  $\sigma \models \phi$ .

What kind of object is  $\sigma$  ?

An infinite trace of **sets of atomic propositions**:

$$\sigma \in (2^P)^\omega$$
.

That is,

$$\sigma = \sigma_0, \sigma_1, \sigma_2, \cdots$$

where  $\sigma_i \subseteq P$  for all i. P is the set of all atomic propositions.

Let  $P = \{p, q\}$ . Examples of traces:

$$\begin{array}{lll} \sigma & = & \{p\}, \{q\}, \{p\}, \{q\}, \{p\}, \ldots \\ \rho & = & \{p\}, \{p\}, \{p\}, \{p\}, \{p\}, \ldots \\ \tau & = & \{p\}, \{q\}, \{p, q\}, \{\}, \{p, q\}, \ldots \end{array}$$

. .

#### LTL - Semantics: Formally

Let

$$\sigma = \sigma_0, \sigma_1, \sigma_2, \cdots$$

Notation:  $\sigma[i..] = \sigma_i, \sigma_{i+1}, \sigma_{i+2}, \cdots$ 

Satisfaction relation defined recursively on the syntax of a formula:

```
\begin{array}{lll} \sigma \models p & \text{iff} & p \in \sigma_0 & p \text{ holds at the first (current) step} \\ \sigma \models \phi_1 \wedge \phi_2 & \text{iff} & \sigma \models \phi_1 \text{ and } \sigma \models \phi_2 \\ \sigma \models \neg \phi & \text{iff} & \sigma \not\models \phi \\ \sigma \models \mathsf{G}\phi & \text{iff} & \forall i = 0, 1, \dots : \sigma[i..] \models \phi & \phi \text{ holds for every suffix of } \sigma \\ \sigma \models \mathsf{F}\phi & \text{iff} & \exists i = 0, 1, \dots : \sigma[i..] \models \phi & \phi \text{ holds for some suffix of } \sigma \\ \sigma \models \mathsf{X}\phi & \text{iff} & \sigma[1..] \models \phi & \phi \text{ holds for the suffix starting at the next step} \\ \sigma \models \phi_1 \, \mathsf{U} \, \phi_2 & \text{iff} & \exists i = 0, 1, \dots : \sigma[i..] \models \phi_2 \, \wedge \\ & \forall 0 \leq j < i : \sigma[j..] \models \phi_1 \\ \phi_2 & \text{holds for some suffix of } \sigma \text{ and} \\ \phi_1 & \text{holds for all previous suffixes} \end{array}
```

#### LTL - Formal Semantics: Transition Systems and Paths

#### **Definition (Transition System)**

A transition system (or model)  $\mathcal{M} = \langle S, \rightarrow, L \rangle$  consists of:

$$\begin{array}{ll} S & \text{a finite set of states} \\ \rightarrow \subseteq S \times S & \text{transition relation} \\ L: S \rightarrow \mathcal{P}(Atom) & \text{a labelling function} \end{array}$$

such that  $\forall s_1 \in S$ .  $\exists s_2 \in S$ .  $s_1 \rightarrow s_2$ 

Note: *Atom* is a fixed set of atomic propositions,  $\mathcal{P}(Atom)$  is the powerset of *Atom*.

Thus, L(s) is just the set of atomic propositions that is true in state s.

#### **Definition (Path)**

A path  $\pi$  in a transition system  $\mathcal{M} = \langle S, \rightarrow, L \rangle$  is an infinite sequence of states  $s_0, s_1, ...$  such that  $\forall i \geq 0$ .  $s_i \rightarrow s_{i+1}$ .

Paths are written as:  $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ 

#### Execution Traces of a State Machine

A run of a Mealy machine  $(I,O,S,s_0,\delta,\lambda)$  is a (finite or infinite) sequence of states / transitions:

$$s_0 \xrightarrow{x_0/y_0} s_1 \xrightarrow{x_1/y_1} s_2 \xrightarrow{x_2/y_2} s_3 \cdots$$

such that

- $\forall i: x_i \in I, y_i \in O$
- $\bullet \ \forall i: s_{i+1} = \delta(s_i, x_i)$
- $\bullet \ \forall i: y_i = \lambda(s_i, x_i)$

The observable I/O behavior (trace) corresponding to the above run is

$$\{x_0, y_0\} \longrightarrow \{x_1, y_1\} \longrightarrow \{x_2, y_2\} \longrightarrow \cdots$$

Here we assume that only I/O are observable. We could also define traces that expose the internal state of the machine. E.g., we may want to state the requirement that a certain register never has a certain value.

#### LTL - Formal Semantics: Alternative Satisfaction By Path

Alternatively, we can define  $\pi \models \phi$  using the notion of *i*th suffix  $\pi^i = s_i \to s_{i+1} \to \dots$  of a path  $\pi = s_0 \to s_1 \to \dots$ 

For example, the alternative definition of satisfaction for G would be:

$$\pi \models \mathbf{G} \phi$$
 iff  $\forall j \ge 0. \ \pi^j \models \phi$ 

instead of

$$\pi \models^0 \mathbf{G} \phi$$
 iff  $\forall j \geq 0. \ \pi \models^j \phi$ 

Satisfaction in terms of  $\models$  for the other connectives is left as an exercise.

- $\pi \models^i \phi$  is better for understanding, and needed for past-time operators.
- $\pi \models \phi$  is needed for the semantics of branching-time logics, like CTL.

### LTL Semantics: Satisfaction by a Model

For a model  $\mathcal{M}$ , we write

$$\mathcal{M}, s \models \phi$$

if, for every execution path  $\pi \in \mathcal{M}$  starting at state s, we have

$$\pi \models^0 \phi$$

### A Taste of LTL - Examples

1.  $\pi \models^i G invariant$ 

invariant is true for all future positions

$$\forall j \geq i. \ \pi \models^j invariant$$

$$\forall j \geq i. \ invariant \in L(s_j)$$

**2.**  $\pi \models^i \mathbf{G} \neg (read \land write)$ 

In all future positions, it is not the case that *read* and *write* 

$$\forall j \geq i. \ read \notin L(s_j) \lor write \notin L(s_j)$$
  
3.  $\pi \models^i G(request \rightarrow Fgrant)$ 

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

$$\forall j \geq i. \ request \in L(s_i) \ implies \ \exists k \geq j. \ grant \in L(s_k).$$

**4.**  $\pi \models^i \mathbf{G}(request \rightarrow (request \mathbf{U} \ grant))$ 

At every position in the future, a *request* implies that there exists a future point where *grant* holds, and *request* holds up until that point.

$$\forall j \geq i. \ request \in L(s_j) \ implies$$
  
 $\exists k \geq j. \ grant \in L(s_k) \ and \ \forall l \in \{j, k-1\}. \ request \in L(s_l).$ 





Let **M** be a model, i.e., a **state-transition graph**.

Let **f** be the **property** in temporal logic.

Find all states **s** such that **M** has property **f** at state **s**.

#### Model Checker Architecture



**Model Checker** 

# The State Explosion Problem

#### **System Description**



**State Transition Graph** 

Combinatorial explosion of system states renders explicit model construction infeasible.



#### **Exponential Growth of ...**

- ... global state space in number of concurrent components.
- ... memory states in memory size.

Feasibility of model checking inherently tied to handling state explosion.

# **Combating State Explosion**



- Binary Decision Diagrams can be used to represent state transition systems more efficiently.
   Symbolic Model Checking 1992
- Semantic techniques for alleviating state explosion:
  - Partial Order Reduction.
  - Abstraction.
  - Compositional reasoning.
  - Symmetry.
  - Cone of influence reduction.
  - Semantic minimization

# Mochel Checking and Testing (papers and tools)

- Software Verification: Testing vs. Model Checking
  - https://www.sosy-lab.org/research/test-study/
- Sofware Testing via Model Checking
  - https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/main-24.pdf
- Reference Papers posted in BB (week 4)
- Spin: http://spinroot.com/spin/whatispin.html
- NuSMV: https://nusmv.fbk.eu/

#### **NuSMV**

NuSMV is a symbolic model checker developed by ITC-IRST and UniTN with the collaboration of CMU and UniGE.

The NuSMV project aims at the development of a state-of-the-art model checker that:

- is robust, open and customizable;
- can be applied in technology transfer projects;
- can be used as research tool in different domains.

#### NuSMV is OpenSource

developed by a distributed community, "Free Software" license

#### NuSMV

#### NuSMV provides:

- 1. A language for describing finite state models of systems
  - ► Reasonably expressive
  - ▶ Allows for modular construction of models
- 2. Model checking algorithms for checking specifications written in LTL and CTL (and some other logics) against finite state machines.

#### A first SMV program

```
MODULE main

VAR

b0 : boolean

ASSIGN

init(b0) := FALSE;

next(b0) := !b0;
```

#### An SMV program consists of:

- ▶ Declarations of state variables (b0 in the example); these determine the state space of the model.
- Assignments that constrain the valid initial states (init(b0) := FALSE).
- Assignments that constrain the transition relation (next(b0) := !b0).

# **Declaring state variables**

```
SMV data types include:
boolean:
x : boolean;
enumeration:
st : {ready, busy, waiting, stopped};
bounded integers (intervals):
n: 1..8;
arrays and bit-vectors
arr : array 0..3 of {red, green, blue};
bv : signed word[8];
```

```
Assignments
   initialisation:
   ASSIGN
   init(x) := expression ;
   progression:
   ASSTGN
   next(x) := expression ;
   immediate:
   ASSTGN
   y := expression ;
   or
   DEFINE.
   y := expression;
```

### **Assignments**

- ► If no init() assignment is specified for a variable, then it is initialised non-deterministically;
- ► If no next() assignment is specified, then it evolves nondeterministically. i.e. it is unconstrained.
  - Unconstrained variables can be used to model nondeterministic inputs to the system.
- Immediate assignments constrain the current value of a variable in terms of the current values of other variables.
  - Immediate assignments can be used to model outputs of the system.

# **Expressions**

```
symbolic constant
                        atom
            expr ::=
                        number numeric constant
                                     variable identifier
                        id
                        ! expr logical not
                        expr \bowtie expr binary operation
                        expr[expr] array lookup
                        next(expr) next value
                        case_expr
                        set_expr
where \bowtie \in \{\&, |, +, -, *, /, =, ! =, <, <=, ...\}
```

# **Case Expression**

```
case\_expr ::=
case
expr_{a1} : expr_{b1};
...
expr_{an} : expr_{bn};
esac
```

- Guards are evaluated sequentially.
- ► The first true guard determines the resulting value

### **Set expressions**

Expressions in SMV do not necessarily evaluate to one value.

- ► In general, they can represent a set of possible values. init(var) := {a,b,c} union {x,y,z};
- destination (lhs) can take any value in the set represented by the set expression (rhs)
- constant c is a syntactic abbreviation for singleton {c}

# **LTL Specifications**

- ► LTL properties are specified with the keyword LTLSPEC: LTLSPEC <1tl\_expression> ;
- < <li><ltl\_expression> can contain the temporal operators:
   X\_ F\_ G\_ \_U\_
- ► E.g. condition out = 0 holds until reset becomes false: LTLSPEC (out = 0) U (!reset)

### **ATM Example**

```
MODULE main
VAR.
  state: {welcome, enterPin, tryAgain, askAmount,
          thanksGoodbye, sorry};
  action: {cardIn, correctPin, wrongPin, ack, cancel,
           fundsOK, problem, none};
ASSIGN
  init(state) := welcome;
 next(state) := case
    state = welcome & action = cardIn : enterPin;
    state = enterPin & action = correctPin : askAmount ;
    state = enterPin & action = wrongPin
                                           : tryAgain;
    state = tryAgain & action = ack
                                           : enterPin;
    state = askAmount & action = fundsOK
                                           : thanksGoodbye;
    state = askAmount & action = problem
                                           : sorry;
    state = enterPin & action = cancel
                                           : thanksGoodbye;
    TRUE.
                                           : state:
  esac;
LTLSPEC F( G state = thanksGoodbye
           | G state = sorry
         );
```

## **Running NuSMV**

#### Batch

\$ NuSMV atm.smv

#### Interactive

```
$ NuSMV -int atm.smv
NuSMV > go
NuSMV > check_ltlspec
NuSMV > quit
```

- go abbreviates the sequence of commands read\_model, flatten\_hierarchy, encode\_variables, build\_model.
- ► For command options, use -h or look in the NuSMV User Manual.

## **Expected Failure**

```
NuSMV > check ltlspec
-- specification F ( G state = thanksGoodbye
                         G state = sorry) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
  state = welcome
  input = cardIn
-> State: 1.2 <-
  state = enterPin
  input = correctPin
-- Loop starts here
-> State: 1.3 <-
  state = askAmount
  input = ack
-> State: 1.4 <-
```

### **Unexpected Failure**

```
-- specification
    ( F ( G !(state = askAmount)) ->
     F ( G state = thanksGoodbye | G state = sorry))
        is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 2.1 <-
  state = welcome
  input = cardIn
-- Loop starts here
-> State: 2.2 <-
  state = enterPin
  input = ack
-> State: 2.3 <-
```

### Success

```
-- specification

( G (((state = welcome -> F input = cardIn) & (state = enterPin ->

F (state = enterPin & (input = correctPin | input = cancel)))) & (state = askAmount -> F (input = fundsOK | input = problem))) ->

F ( G state = thanksGoodbye | G state = sorry)) is true
```

### **Modules**

```
MODULE counter
VAR digit : 0..9;
ASSIGN
  init(digit) := 0;
  next(digit) := (digit + 1) mod 10;

MODULE main
VAR c0 : counter;
   c1 : counter;
   sum : 0..99;
ASSIGN
  sum := c0.digit + 10 * c1.digit;
```

- ► Modules are instantiated in other modules. The instantiation is performed inside the VAR declaration of the parent module.
- ► In each SMV specification there must be a module main. It is the top-most module.
- ► All the variables declared in a module instance are visible in the module in which it has been instantiated via the dot notation (e.g., c0.digit, c1.digit).

### **Modules**

```
MODULE counter
VAR digit: 0..9;
ASSIGN
  init(digit) := 0;
  next(digit) := (digit + 1) mod 10;
MODULE main
VAR c0 : counter;
    c1 : counter;
    sum : 0..99;
ASSTGN
    sum := c0.digit + 10 * c1.digit;
I.TI.SPEC
 F sum = 13;
```

► Is this specification satisfied by this model?

- -- specification F sum = 13 is false
  -- as demonstrated by the following execution sequence
- Trace Description: LTL Counterexample
- Trace Type: Counterexample
- -- Loop starts here -> State: 1.1 <
  - c0.digit = 0
  - c1.digit = 0
- -> State: 1.2 <
  - c0.digit = 1
  - c1.digit = 1
- sum = 11
  -> State: 1.3 <
  - c0.digit = 2 c1.digit = 2
- sum = 22

# Modules with parameters

```
MODULE counter(inc)
VAR digit: 0..9;
ASSIGN
  init(digit) := 0;
 next(digit) := inc ? (digit + 1) mod 10
                      : digit;
DEFINE top := digit = 9;
MODULE main
VAR c0 : counter(TRUE);
    c1 : counter(c0.top);
    sum : 0..99;
ASSIGN
  sum := c0.digit + 10 * c1.digit;
```

- ► Formal parameters (inc) are substituted with the actual parameters (TRUE, c0.top) when the module is instantiated.
- ► Actual parameters can be any legal expression.
- ► Actual parameters are passed by reference.

-- specification F sum = 13 is true