CLAIMS

What is claimed is:

1	1.	A method comprising the computer-implemented steps of:
2		gathering statistics about XML resources that are stored in a database repository;
3		storing said statistics; and
4		in response to a request for access to one or more XML resources from said database
5		repository, computing a computational cost associated with each of one or
6		more methods of accessing said one or more XML resources from said
7		database repository, based on said statistics.
1	2.	The method of Claim 1, wherein said XML resources are logically organized in a
2		hierarchy of nodes in which each node is either a container or a resource, and
3		wherein the step of gathering statistics comprises gathering one or more data from a
4		group consisting of
5		a total number of nodes in said hierarchy that are accessible via a path through
6		a specified node,
7		a total number of containers in said hierarchy that are accessible via a path
8		through said specified node,
9		a total number of nodes in said hierarchy that are accessible via a path through
10		said specified node and that are in a level of said hierarchy that is
11		immediately under a level of said specified node,
12		a total number of containers in said hierarchy that are accessible via a path
13		through said specified node and that are in a level of said hierarchy
14		that is immediately under said level of said specified node, and

15		a number of levels from a root node of said hierarchy, at which said specified
16		node is organized in said hierarchy.
1	3.	The method of Claim 1, wherein said XML resources are logically organized in a
2		hierarchy of nodes in which each node is either a container or a resource, and
3		wherein the step of gathering statistics comprises gathering each of
4		a total number of nodes in said hierarchy that are accessible via a path through
.5		a specified node,
6		a total number of containers in said hierarchy that are accessible via a path
7		through said specified node,
8		a total number of nodes in said hierarchy that are accessible via a path through
9		said specified node and that are in a level of said hierarchy that is
10		immediately under a level of said specified node,
11		a total number of containers in said hierarchy that are accessible via a path
12		through said specified node and that are in a level of said hierarchy
13		that is immediately under said level of said specified node, and
14		a number of levels from a root node of said hierarchy, at which said specified
15		node is organized in said hierarchy.
1	4.	The method of Claim 1, wherein the step of storing statistics comprises storing said
2		statistics in a relational table of a database of which said database repository is part.
1	5.	The method of Claim 4, wherein said relational table is a first relational table that is a
2		different table than a second relational table in which said XML resources are stored
3		in said database repository.

1	6.	The method of Claim 4, wherein said relational table is a relational table in which
2		said XML resources are stored in said database repository.

- 7. The method of Claim 1, wherein the step of storing statistics comprises storing said

 statistics in a hierarchical index table in which said XML resources are indexed to

 said database repository.
- The method of Claim 1, wherein the step of computing a computational cost comprises computing a selectivity value for each of one or more predicates, from said request, that contain operators on said database repository.
- The method of Claim 8, wherein each of said XML resources is logically organized in a hierarchy of nodes and stored, in association with a location of said XML resource in said hierarchy, in a column of a table in said database repository, and wherein said operator is an operator that determines whether a particular XML resource can be located in said database repository through a particular specified path through a portion of said hierarchy.
- 1 10. The method of Claim 8, wherein each of said XML resources is logically organized in a hierarchy of nodes and stored, in association with a location of said XML resource in said hierarchy, in a column of a table in said database repository, and wherein said operator is an operator that determines whether a particular XML resource can be located in said database repository at a terminal location of a particular specified path through a portion of said hierarchy.

1	11.	The method of Claim 1, wherein the step of computing a computational cost
2		comprises computing a computational cost of traversing, to locate a particular XML
3		resource specified in said request, an index in which said XML resources are indexed
4		to said database repository.
1	12.	The method of Claim 11, wherein computing said computational cost of traversing an
2		index comprises computing a computational cost associated with one or more CPUs
3		used for said traversing.
1	13.	The method of Claim 11, wherein computing said computational cost of traversing an
2		index comprises computing a computational cost associated with reading data blocks
3		in which portions of said index are stored.
1	14.	The method of Claim 11, wherein computing said computational cost of traversing an
2		index comprises computing (a) a computational cost associated with one or more
3		CPUs used for said traversing and (b) a computational cost associated with reading
4		data blocks in which portions of said index are stored.
1	15.	The method of Claim 1, wherein the step of computing a computational cost
2		comprises (a) computing a selectivity value for each of one or more predicates, from
3		said request, that contain operators on said database repository and (b) computing a
4		computational cost of traversing, to locate a particular XML resource specified in said
5		request, an index in which said XML resources are indexed to said database
6		repository.

1	16.	The method of Claim 1, wherein said request for access to one or more XML
2		resources from said database repository is a SQL query.
1	17.	The method of Claim 16, wherein each of said XML resources is logically organized
2		in a hierarchy of nodes and stored, in association with a location of said XML
3		resource in said hierarchy, in a column of a table in said database repository, and
4		wherein said SQL query comprises a mechanism for providing one possible path
5		through said hierarchy to each of said XML resources.
1	18.	The method of Claim 17, wherein the step of computing a computational cost
2		comprises computing a computational cost component for one or more predicates,
3		from said request, that contain an operator in conjunction with said mechanism acting
4		on said database repository.
1	19.	The method of Claim 16, wherein each of said XML resources is logically organized
2		in a hierarchy of nodes and stored, in association with a location of said XML
3		resource in said hierarchy, in a column of a table in said database repository, and
4		wherein said SQL query comprises a mechanism for providing all possible paths
5		through said hierarchy to each of said XML resources.
1	20.	The method of Claim 19, wherein the step of computing a computational cost
2		comprises computing a computational cost component for one or more predicates,
3		from said request, that contain an operator in conjunction with said mechanism acting
4		on said database repository

1	21.	The method of Claim 1, wherein said database repository is part of a relational
2		database management system.
1	22.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 1.
1	23.	A computer-readable medium carrying one or more sequences of instructions which
2 .		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 2.
1	24.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 3.
1	25.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 4.
1	26.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 5.
1	27.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 6.

1	28.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 7.
1	29.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 8.
1	30.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 9.
1	31.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 10.
1	32.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 11.
1	33.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 12.
1	34.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to

-29-

perform the method recited in Claim 13.

3

1	35.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 14.
1	36.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 15.
1	37.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 16.
1	38.	A method comprising the computer-implemented steps of:
2		gathering, by a database management system, statistics about XML resource that are
3		stored in a repository of said database management system; and
4		storing said statistics in said database management system.
1	39.	The method of Claim 38, wherein the step of storing comprises storing said statistics
2		as XML data type in a schema-based table in said database management system.
1	40.	The method of Claim 38, wherein said XML resources are logically organized in a
2		hierarchy of nodes in which each node is either a container or a resource, and
3		wherein the step of gathering statistics comprises gathering each of
4		a total number of nodes in said hierarchy that are accessible via a path through
5		a specified node,

6		a total number of containers in said hierarchy that are accessible via a path
7		through said specified node,
8		a total number of nodes in said hierarchy that are accessible via a path through
9		said specified node and that are in a level of said hierarchy that is
10		immediately under a level of said specified node, and
11		a total number of containers in said hierarchy that are accessible via a path
12		through said specified node and that are in a level of said hierarchy
13		that is immediately under said level of said specified node.
1	41.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 38.
1	42.	A method comprising the computer-implemented steps of:
2		in response to a request for access to one or more XML resources from a database
3		repository within a database management system,
4		accessing, from said database management system, statistics about the
5		structure of a hierarchy in which said one or more XML resources are
6		logically organized; and
7		computing a computational cost associated with each of one or more methods
8		of accessing said one or more XML resources from said database
9		repository, based on said statistics.

1	43.	The method of Claim 42, wherein the step of computing a computational cost
2		comprises computing a selectivity value for each of one or more predicates, from said
3		request, that contain operators on said database repository.
1	44.	The method of Claim 42, wherein the step of computing a computational cost
2		comprises computing a computational cost of traversing, to locate particular XML
3		resources specified in said request, an index in which said XML resources are
4		indexed to said database repository.
1	45.	The method of Claim 42, wherein the step of computing a computational cost
2		comprises (a) computing a selectivity value for each of one or more predicates, from
3		said request, that contain operators on said database repository and (b) computing a
4		computational cost of traversing, to locate a particular XML resource specified in said
5		request, an index in which said XML resources are indexed to said database
6		repository.
1	46.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 42.
1	47.	A database system comprising:
2		an XML data repository within a relational database management system; and
3		a query optimizer that receives a database query and, in response to said query,
4		formulates a query execution plan based on computational costs of access
5		paths associated with XML data stored in said repository, wherein said

6		computational costs are based on statistics about an organizational structure of
7		said XML data.
1	48.	A system comprising:
2		means for gathering statistics about XML resources that are stored in a database
3		repository;
4		means for storing said statistics; and
5		means for computing, in response to a request for access to one or more XML
6		resources from said database repository and based on said statistics, a
7		computational cost associated with each of one or more methods of accessing
8		said one or more XML resources from said database repository.