Recitation Material: Linear Algebra

10-606

September 2025

PSD Matrices and Inverses

- 1. Show that if A is invertible, then its eigenvalues are all nonzero. Conversely, if an eigenvalue is zero, why can't A^{-1} exist?
- 2. If A is invertible, verify that

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u},$$

as long as the denominator is nonzero.

3. A norm is a function ρ that satisfies (i) $\rho(x) \geq 0$ for all x, (ii) $\rho(x) = 0$ if and only if x = 0, (iii) $\rho(cx) = |c|\rho(x)$ for all x and scalars c, and (iv) $\rho(x+y) \leq \rho(x) + \rho(y)$ for all x,y. If A is a positive-definite matrix A, show that $\rho(x) = ||x||_A$ where $||x||_A \sqrt{x^\intercal A x}$ defines a norm. Recall that A is positive-definite if $x^\intercal A x > 0$ for all nonzero x. Hint: You may use the Cauchy-Schwarz inequality $x^\intercal A y \leq ||x||_A ||y||_A$ without proof.

SVD and Rank

- 1. What's the singular value decomposition of a matrix A?
- 2. Show that if $A = uv^{\top}$ with $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ and $u, v \neq 0$, then rank(A) = 1.
- 3. What is the relation between singular values of A and eigenvalues of $A^{\top}A$?
- 4. Compute the nonzero singular value of $A = uv^{\top}$.
- 5. If $A = U\Sigma V^{\top}$, what is the SVD of A^{\top} ?