Chapitre 4

Opérateurs compacts

0.1 Définitions et propriétés

Définition 0.1. Un opérateur $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est dit compact (ou complètement continu), si pour toute suite bornée $(x_n)_n$ de \mathcal{H} , la suite $(Ax_n)_n$ admet une sous-suite convergente dans \mathcal{H}_2 .

Exemples 1. Si $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est de rang fini (dim $ImA < +\infty$), alors A est compact.

En effet, soit $(x_n)_n \subset \mathcal{H}_1$, $||x_n|| = 1$. Alors, la suite $(Ax_n)_n$ est bornée dans l'espace ImA de dimension finie $\dim ImA = rg(A)$. Comme ImA est isomorphe à $\mathbb{C}^{rg(A)}$, la suite $(Ax_n)_n$ admet donc une sous-suite convergente dans \mathcal{H}_2 .

2. Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ avec dim $\mathcal{H}_1 < +\infty$. Alors A est borné. Comme

$$\forall x \in \mathcal{H} : x = \sum_{k=1}^{n} \langle x, e_k \rangle e_k$$

on a

$$Ax = \sum_{k=1}^{n} \langle x, e_k \rangle Ae_k$$

où $(e_k)_{k=1}^n$ est une base orthonormale de \mathcal{H}_1 (dim $\mathcal{H}_1 = n, n \ge 1$). Alors, ImA est de dimension finie. A est donc compact d'après (1).

3. L'opérateur identité $I_{\mathcal{H}}$ sur un espace de Hilbert \mathcal{H} de dimension infinie n'est pas compact. En effet, si $(x_n)_n$ est une suite orthonormale dans \mathcal{H} , alors

$$||Ix_n - Ix_m|| = ||x_n - x_m|| = \sqrt{2}$$

D'où, la suite $(Ix_n)_n$ n'admet aucune sous-suite convergente.

0.1.1 Théorème de Bolzano-Weierstrass

1 2

Théorème 0.1. [?] Un espace métrique (\mathcal{X}, d) est compact si et seulement si de toute suite d'éléments de \mathcal{X} , on peut extraire une sous-suite convergente dans \mathcal{X} .

Remarque Compte-tenu de la linéarité de A, il est équivalent de dire que A est compact si pour toute suite $(x_n)_n$ d'éléments de la boule unité fermée $\overline{B}(0,1)$, la suite $(Ax_n)_n$ admet une sous-suite convergente.

Soit encore

Définition 0.2. $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est compact si l'image par A, de la boule unité fermée est relativement compacte dans \mathcal{H}_2 , i.e., $\overline{A(\overline{B}(0,1))}$ est compacte dans \mathcal{H}_2 .

Exemples 1. Dans l'exemple 3 précédent, où dim $\mathcal{H} = +\infty$, on a

$$I_{\mathcal{H}}(\overline{B}(0,1)) = \overline{B}(0,1)$$

n'est pas compacte dans \mathcal{H} d'après le Théorème de Riesz relatif à la compacité de la boule unité fermée. Par conséquent, $I_{\mathcal{H}}$ n'est pas compact.

On a donc les propriétés suivantes

Théorème 0.2. Soient $A, B \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ deux opérateurs compacts. Alors :

- *i.* A + B est compact.
- *ii.* λA *est compact,* $(\lambda \in \mathbb{C})$

A. Nasli Bakir 2 2018/2019

^{1.} Bernard Bolzano, 1781-1848, est un mathématicien bohémien germanophone.

^{2.} Karl Weierstrass, 1815-1897, est un grand mathématicien allemand, nommé "Père de l'analyse".

Théorème 0.3. Tout opérateur compact est borné.

Ce résultat montre que $K(\mathcal{H}_1, \mathcal{H}_2) \subset \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ où

$$\mathcal{K}(\mathcal{H}_1, \mathcal{H}_2) = \{ A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2), A \text{ compact} \}$$

De plus, on a

Corollaire 0.1. L'ensemble $K(\mathcal{H}_1, \mathcal{H}_2)$ est un sous-espace vectoriel de $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$.

Théorème 0.4. Soient $A, B: \mathcal{H} \to \mathcal{H}$ deux opérateurs linéaires tels que A est compact et B est borné. Alors les opérateurs AB et BA sont compacts.

De même, comme A est compact, la suite $(Ax_n)_n$ admet une sous-suite convergente $(Ax'_n)_n$. Comme B est continu car borné, la suite $(BAx'_n)_n$ converge également, et BA est compact.

Corollaire 0.2. L'espace $K(\mathcal{H}_1, \mathcal{H}_2)$ est un idéal bilatère de $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$.

Théorème 0.5. $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est compact si et seulement si A^* est compact.

0.2 Convergence d'une suite d'opérateurs compacts

0.2.1 Types de convergence et propriétés

Soit (x_n) une suite dans un espace de Hilbert \mathcal{H} , et soit $x \in \mathcal{H}$.

Définition 0.3. Convergence faible : $(x_n)_n$ est dite faiblement convergente vers x, et l'on écrit $x_n \stackrel{w}{\rightharpoonup} x$, si

$$\forall y \in \mathcal{H} : \lim_{n \to +\infty} \langle x_n, y \rangle = \langle x, y \rangle$$

Définition 0.4. Convergence forte : $(x_n)_n$ est dite fortement convergente vers x, et l'on écrit $x_n \stackrel{s}{\to} x$, si

$$\lim_{n \to +\infty} ||x_n - x|| = 0$$

Définition 0.5. Convergence en norme : $(x_n)_n$ est dite convergente en norme vers x si

$$\lim_{n \to +\infty} \|x_n\| = \|x\|$$

Exercice Soit (x_n) une suite dans un espace de Hilbert \mathcal{H} , et soit $x \in \mathcal{H}$. Alors,

- 1. $(x_n \stackrel{s}{\rightarrow} x) \Rightarrow (x_n \stackrel{w}{\rightharpoonup} x)$
- 2. Si $x_n \stackrel{w}{\rightharpoonup} x$ et $\lim_{n \to +\infty} \|x_n\| = \|x\|$, alors $x_n \stackrel{s}{\to} x$

Proposition 0.1. Toute suite faiblement convergente dans un espace de Hilbert est bornée.

Autrement dit, la suite $(f_n)_n$ est simplement bornée. Comme \mathcal{H} et \mathbb{C} sont complets, le Théorème de Banach-Steinhaus nous confirme que la suite $(f_n)_n$ est uniformément bornée. i.e., il existe M>0 tel que

$$\sup_{n\geq 1} \|f_n\| \leq M \tag{1}$$

Or,

$$f_n(x_n) = ||x_n||^2, n \ge 1$$

D'où,

$$||f_n|| \ge ||x_n||, \quad (n \ge 1)$$
 (2)

Le résultat s'atteint donc par (??)et (??) ■

0.2.2 Autre définition d'un opérateur compact

On a donc le résultat important suivant

Théorème 0.6. Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Alors, A est compact si et seulement si A transforme toute suite faiblement convergente dans \mathcal{H}_1 en une suite fortement convergente dans \mathcal{H}_2 . Autrement dit, si $(x_n)_n$ est une suite faiblement convergente dans \mathcal{H}_1 , alors $(Ax_n)_n$ est une suite fortement convergente dans \mathcal{H}_2 .

Remarque Ce résultat montre que la propriété de compacité d'un opérateur linéaire est plus forte que la propriété de continuité, et donc donne raison à l'appellation d'opérateur complètement continu pour un opérateur compact dans certaines littératures.

Exemples 1. Le shift right S_r sur ℓ_2 n'est pas compact. En effet, soit $(e_n)_{n\geq 1}$ la suite de la base standard orthonormale de ℓ_2 . Comme

$$\forall x \in \ell_2 : x = \sum_{k=1}^{+\infty} \langle x, e_k \rangle e_k$$

et par l'égalité de Parseval

$$||x||^2 = \sum_{k=1}^{+\infty} |\langle x, e_k \rangle|^2$$

La série numérique réelle $\sum\limits_{k=1}^{+\infty} |\langle x,e_k \rangle|^2$ est donc convergente. Par conséquent

$$\forall x \in \ell_2 : \lim_{n \to +\infty} |\langle x, e_k \rangle| = \lim_{n \to +\infty} \langle x, e_k \rangle = 0 = \langle x, 0 \rangle$$

ce qui montre que $e_n \stackrel{w}{\rightharpoonup} 0$. Or,

$$\lim_{n \to +\infty} ||S_r(e_n)|| = \lim_{n \to +\infty} ||e_{n+1}|| = \lim_{n \to +\infty} 1 = 1 \neq 0$$

i.e., la suite $(S_r(e_n))_n$ ne converge pas fortement vers 0. Par le Théorème précédent, S_r n'est pas compact.

2. L'opérateur identité $I_{\mathcal{H}}$ sur \mathcal{H} avec $\dim \mathcal{H} = +\infty$ n'est pas compact.

0.2.3 Convergence d'une suite d'opérateurs compacts

Théorème 0.7. Soit $(A_n)_{n\geq 1}$ une suite d'opérateurs compacts dans $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ convergeant vers un opérateur $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$, i.e.,

$$\lim_{n \to +\infty} ||A_n - A|| = 0 \quad (*)$$

Alors, A est compact.

Exemple Soit $(\lambda_n)_{n\geq 1}$ une suite complexe convergente vers 0. On considère l'opérateur diagonal

$$K \colon \ell_2 \to \ell_2$$

$$x = (x_i)_{i \ge 1} \mapsto Kx = (\lambda_k x_k)_{k \ge 1}$$

Pour tout $n, n \ge 1$, on définit l'opérateur

$$K_n \colon \ell_2 \to \ell_2$$

$$x = (x_i)_{i \ge 1} \mapsto K_n x = (\lambda_1 x_1, \lambda_2 x_2, ..., \lambda_n x_n, 0, 0, ...)$$

Les opérateurs K_n , $(n \ge 1)$ sont de rang fini. Ils sont donc compacts sur ℓ_2 . De plus, on a

$$||K_n - K|| \le c \sup_{k \ge n} |\lambda_k| \underset{n \to +\infty}{\longrightarrow} 0$$

car $\lim_{n\to +\infty} \lambda_n = 0.$ D'où, K est compact par le Théorème précédent.

0.3 Opérateurs de Hilbert-Schmidt

Soit \mathcal{H} un espace de Hilbert séparable, et soit $A \in \mathcal{L}(\mathcal{H})$. Soit $(e_k)_{k \geq 1}$ une base orthonormale de \mathcal{H} . On considère la quantité

$$\sum_{k=1}^{+\infty} \|Ae_k\|^2$$

Proposition 0.2. On a

$$\sum_{k=1}^{+\infty} ||Ae_k||^2 = \sum_{k=1}^{+\infty} ||A^*e_k||^2$$

Proposition 0.3. Si $(e'_k)_{k\geq 1}$ est une autre base orthonormale de \mathcal{H} , alors

$$\sum_{k=1}^{+\infty} \|Ae_k\|^2 = \sum_{k=1}^{+\infty} \|Ae'_k\|^2$$

Définition 0.6. Soit \mathcal{H} un espace de Hilbert séparable muni d'une base orthonormale $(e_n)_{n\geq 1}$, et soit $A\in\mathcal{L}(\mathcal{H})$. Posons

$$N(A) = (\sum_{k=1}^{+\infty} ||Ae_k||^2)^{\frac{1}{2}}$$

Si N(A) est finie, on dit que A est un opérateur de Hilbert-Schmidt.

Définition 0.7. Si la quantitéN(A) est finie, elle est dite norme de Hilbert-Schmidt de A.

Propriétés (TD) Soient $A, B \in \mathcal{L}(\mathcal{H})$. Alors

- 1. $||A|| \leq N(A)$
- 2. $N(A) \ge ||Ae_k||, (e_n)_{n \ge 1}$ est une base orthonormale de \mathcal{H} .
- 3. $N(AB) \le ||B|| N(A)$
- 4. N(A+B) < N(A) + N(B)

Théorème 0.8. Soit $A \in \mathcal{L}(\mathcal{H})$ un opérateur de Hilbert-Schmidt. Alors A est compact.

0.3.1 Application sur l'opérateur intégral

Exercice (L'opérateur intégral est compact) Soit l'opérateur

$$K : L_2([a,b]) \rightarrow L_2([a,b])$$

 $f \mapsto Kf$

défini par

$$(Kf)(t) = \int_{a}^{b} k(x,t)f(x)dx$$

avec

$$\int_{a}^{b} \int_{a}^{b} k(x,t) dx dt < +\infty$$

K est appelé l'opérateur intégral, et la fonction k est dite noyau de l'opérateur K.

- 1. Montrer que K est bien défini, i.e., $Kf \in L_2([a,b])$ pour tout $f \in L_2([a,b])$.
- 2. En déduire que *K* est borné, et donner une estimation de sa norme.
- 3. Montrer que K est un opérateur de Hilbert-Schmidt.
- 4. Que peut-on déduire?
- 5. Montrer que l'opérateur de Volterra $\mathcal{V}\colon L^2\left([0,1]\right)\to L^2\left([0,1]\right), f\mapsto \mathcal{V}f$ où

$$(\mathcal{V}f)(t) = \int_{t}^{1} f(s)ds, \ t \in [0, 1]$$

est compact.

Solution 1. Soit $f \in L^2\left([0,1]\right)$. Par l'inégalité de Cauchy-Scwartz, on aura

$$||Kf||_{2}^{2} = \int_{0}^{1} |(Kf)(t)|^{2} dt = \int_{0}^{1} \left| \int_{0}^{1} f(s)k(t,s)ds \right|^{2} dt \le \int_{0}^{1} \left(\left| \int_{0}^{1} f(s) \right|^{2} ds \right) \left(\int_{0}^{1} |k(t,s)|^{2} ds \right) dt$$
$$= \left| \int_{0}^{1} f(s) \right|^{2} ds \int_{0}^{1} \int_{0}^{1} |k(t,s)|^{2} ds = \int_{0}^{1} \int_{0}^{1} |k(t,s)|^{2} ds ||f||_{2}^{2}$$

Comme $\int\limits_0^1\int\limits_0^1\left|k(t,s)\right|^2dsdt<+\infty,$ $Kf\in L^2\left([0,1]\right)$, et donc K est bien défini.

2. De (1) découle que K est borné, et que $||K|| \le \sqrt{\int\limits_0^1 \int\limits_0^1 |k(t,s)|^2} \, ds dt$.

3. On a pour tout $n, n \ge 1$:

$$Ke_n(t) = \int_{0}^{1} e_n(s)k(t,s)ds = \left\langle e_n, \overline{k_t} \right\rangle$$

où $k_t(s) = k(t, s), t, s \in [0, 1]$. D'où,

$$\sum_{n=1}^{+\infty} \|Ke_n\|^2 = \sum_{n=1}^{+\infty} \int_0^1 |Ke_n(t)|^2 dt = \sum_{n=1}^{+\infty} \int_0^1 \left| \left\langle e_n, \overline{k_t} \right\rangle \right|^2 dt = \int_0^1 \sum_{n=1}^{+\infty} \left| \left\langle e_n, \overline{k_t} \right\rangle \right|^2 dt$$

car la série $\sum_{n=1}^{+\infty} \left| \left\langle e_n, \overline{k_t} \right\rangle \right|^2$ est convergente par l'égalité de Parseval et le système $(e_n)_n$ est une base orthonormale de $L^2([0,1])$. On aura donc

$$\sum_{n=1}^{+\infty} \|Ke_n\|^2 = \int_0^1 \sum_{n=1}^{+\infty} \left| \left\langle e_n, \overline{k_t} \right\rangle \right|^2 dt = \int_0^1 \left\| \overline{k_t} \right\|_2^2 dt = \left\| \overline{k_t} \right\|_2^2 = \int_0^1 \int_0^1 |k(t,s)|^2 ds dt < +\infty$$

Par conséquent, *K* est de Hilbert-Schmidt.

- 4. On déduit de (3) que K est compact.
- 5. On a pour tout $f \in L^{2}([0,1])$:

$$(\mathcal{V}f)(t) = \int_{t}^{1} f(s)ds = \int_{0}^{1} f(s)k(t,s)ds, \ t \in [0,1]$$

où

$$k(t,s) = \begin{cases} 1, & s \in [t,1] \\ 0, & s \in [0,t] \end{cases}$$

Comme

$$\int_{0}^{1} \int_{0}^{1} |k(t,s)|^{2} ds dt = \int_{0}^{1} \int_{t}^{1} ds dt = \int_{0}^{1} [s]_{t}^{1} dt = \int_{0}^{1} [1-t] dt = \left[t - \frac{t^{2}}{2}\right]_{0}^{1} = \frac{1}{2} < +\infty$$

Alors, V est un opérateur de Hilbert-Schmidt. V est donc compact.