CrInGeCrInGeProduction. Supercringeint roduction here:

$\mathbf{2}$ Some basic knowledge about researching problem...

```
Parameters and constants we use in this work:
   Constants (3):
e = 2.718282
pi = 3.141593
AbObA = 1337.228690
Variables (3):
a = 3.141500
kek = 13.000000
x = 1.000000
Parameters of exploration:
Number of differentiates: 2
Macloren's accuracy: 3
Tanget point: 0.200000
Delta coverage of tangent point: 2.500000
Graph diapasone: [-1:15]
   Firstly, let's insert all constants: f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{1337.229}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln 2.718)} - 0.000)\right)
   And simplify this expression (if possible): f(a, kek, x) = \cos(a + kek) + \ln(1.000 + x \cdot kek)
\mathbf{3}
     Exploration the expression as a function of multiple variables
```

```
So let's calculate smth with a given function: f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{AbObA}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln e)} - 0.000)\right)
Calculation value of function in the point BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!!
   In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.73157
   Personally, I've always thought about first derivation of something like that function... Haven't you?
   But now, by using informatics and math skills I feel that I'm prepared enough to calculate it!
   1 step: Finding a derivation of kek
   While preparing for exams, I learned a lot of new things, for example:
   (kek)' =
= 1.000
   2 step: Finding a derivation of x
   Only after two cups of beer you might understand it:
   (x)' =
= 1.000
   3 step: Finding a derivation of x \cdot kek
   Never say it to girls:
   (x \cdot kek)' =
= kek + x
   4 step: Finding a derivation of 1.000
   Only by using special skills we might know::
   (1.000)' = \dots = [top secret] = \dots =
   5 step: Finding a derivation of 1.000 + x \cdot kek
   What if:
   (1.000 + x \cdot kek)' =
= kek + x
   6 step: Finding a derivation of \ln (1.000 + x \cdot kek)
   Even my two-aged sister knows that:
   (\ln(1.000 + x \cdot kek))' =
= \frac{1.000}{1.000+x \cdot kek} \cdot (kek+x)
7 step: Finding a derivation of kek
   The first task in MIPT was to calculate:
   (kek)' =
= 1.000
   8 step: Finding a derivation of a
   Never say it to girls:
   (a)' =
= 1.000
   9 step: Finding a derivation of a + kek
   It's simple as fuck:
    (a + kek)' = \dots = [top secret] = \dots =
   10 step: Finding a derivation of \cos(a + kek)
   As we know:
   (\cos(a+kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
   11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
   I was asked not to tell anyone that:
\begin{array}{l} (\cos{(a+kek)} + \ln{(1.000 + x \cdot kek)})' = \\ = 2.000 \cdot (-1.000) \cdot \sin{(a+kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x) \end{array}
   Congratulations! The first derivation of the expression is:
   f'(a, kek, x) = 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.84017
Finding the 2 derivation Let's find the 1 derivation of the expression:
   1 step: Finding a derivation of kek
   Only after two cups of beer you might understand it:
   (kek)' = \dots = [\mathbf{top} \ \mathbf{secret}] = \dots =
= 1.000
   2 step: Finding a derivation of x
   Even my two-aged sister knows that:
```

```
(x)' =
= 1.000
```

```
3 step: Finding a derivation of x \cdot kek
    Even my two-aged sister knows that:
    (x \cdot kek)' =
= kek + x
    4 step: Finding a derivation of 1.000
    When I was a child, my father always told me: "Remember, son:
= 0.000
    5 step: Finding a derivation of 1.000 + x \cdot kek
    I have no words to describe this fact:
    (1.000 + x \cdot kek)' = \dots = [\text{top secret}] = \dots =
= kek + x
    6 step: Finding a derivation of \ln(1.000 + x \cdot kek)
    My roommate mumbled it in his sleep all night:
    (\ln(1.000 + x \cdot kek))' = \dots = [\text{top secret}] = \dots =
= \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
    7 step: Finding a derivation of kek
    I have no words to describe this fact:
    (kek)' = \dots = [top secret] = \dots =
= 1.000
    8 step: Finding a derivation of a
    While preparing for exams, I learned a lot of new things, for example:
    (a)' =
= 1.000
    9 step: Finding a derivation of a + kek
    It's really easy to find:
    (a + kek)' =
= 2.000
    10 step: Finding a derivation of \cos(a + kek)
    What if:
    (\cos(a+kek))' = \dots = [\mathbf{top\ secret}] = \dots =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
    11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
    You should be aware of the fact that:
\begin{array}{l} (\cos{(a+kek)} + \ln{(1.000+x\cdot kek)})' = \\ = 2.000 \cdot (-1.000) \cdot \sin{(a+kek)} + \frac{1.000}{1.000+x\cdot kek} \cdot (kek+x) \end{array}
    So the 1 derivation of the expression is:
    2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
    Let's find the 2 derivation of the expression:
    1 step: Finding a derivation of x
    A true prince must know that:
    (x)' =
= 1.000
    2 step: Finding a derivation of kek
    For centuries, people have hunted for the secret knowledge that:
    (kek)' =
= 1.000
    3 step: Finding a derivation of kek + x
    I spend the hole of my life to find the answer and finally it's:
    (kek + x)' = \dots = [top secret] = \dots =
    4 step: Finding a derivation of kek
    Never say it to girls:
    (kek)' =
= 1.000
    5 step: Finding a derivation of x
    It's really easy to find:
    (x)' =
= 1.000
    6 step: Finding a derivation of x \cdot kek
    Sometimes I hear the same voice in my head, it always says:
    (x \cdot kek)' = \dots = [\mathbf{top} \ \mathbf{secret}] = \dots =
= kek + x
    7 step: Finding a derivation of 1.000
    Even my two-aged sister knows that:
    (1.000)' =
= 0.000
    8 step: Finding a derivation of 1.000 + x \cdot kek
    Only by using special skills we might know::
    (1.000 + x \cdot kek)' =
= kek + x
    9 step: Finding a derivation of 1.000
    My friends always beat me, because I didn't know that:
    (1.000)' = \dots = [top secret] = \dots =
= 0.000
    10 step: Finding a derivation of \frac{1.000}{1.000+x\cdot kek}
    A true prince must know that:
  (\frac{1.000}{1.000+x \cdot kek})' = \dots = [\text{top secret}] = \dots = \frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}}
   11 step: Finding a derivation of \frac{1.000}{1.000+x \cdot kek} \cdot (kek+x) Sometimes I hear the same voice in my head, it always says:
    (\frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x))' = \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek} 
    12 step: Finding a derivation of kek
    Only by using special skills we might know::
    (kek)' = \dots = [\mathbf{top} \ \mathbf{secret}] = \dots =
= 1.000
    13 step: Finding a derivation of a
    While preparing for exams, I learned a lot of new things, for example:
```

```
(a)' =
= 1.000
    14 step: Finding a derivation of a + kek
    She: please, never speak with my dad about math... Me: ok) Also me after homework of matan:
    (a + kek)' = \dots = [top secret] = \dots =
    15 step: Finding a derivation of \sin(a + kek)
    My roommate mumbled it in his sleep all night:
    (\sin(a+kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot \cos\left(a + kek\right)
    16 step: Finding a derivation of -1.000
    A true prince must know that:
    (-1.000)' = \dots = [top secret] = \dots =
= 0.000
    17 step: Finding a derivation of (-1.000) \cdot \sin(a + kek)
    A true prince must know that:
    ((-1.000) \cdot \sin(a + kek))' =
= (-1.000) \cdot 2.000 \cdot \cos(a + kek)
    18 step: Finding a derivation of 2.000
    If someone asked me that in the middle of the night, I wouldn't hesitate to say:
    (2.000)' =
= 0.000
    19 step: Finding a derivation of 2.000 \cdot (-1.000) \cdot \sin(a + kek)
    When I was a child, my father always told me: "Remember, son:
    (2.000 \cdot (-1.000) \cdot \sin(a + kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek)
    20 step: Finding a derivation of 2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
    thanks to the results of my colleagues' scientific work, I know that:
thanks to the results of my coneagues selection (2.000 · (-1.000) · \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} · (kek + x))' = = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}
    So the 2 derivation of the expression is:
    2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}
    Finally... The 2 derivation of the expression:
    f^{(2)}(\mathbf{a}, \text{ kek}, \mathbf{x}) = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos\left(a + kek\right) + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}
    BRITISH SCIENTISTS WERE SHOCKED AGAIN, WHEN THEY COUNT THE 2 DERIVATION OF THIS EXPRESSION!!!
    In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 2.77280
Finding partical derivations Partial derivation of the expression on the variable a:
     \frac{\partial f}{\partial a} = (-1.000) \cdot \sin\left(a + 13.000\right)
    In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.42008!!!
    Partial derivation of the expression on the variable kek:
     \frac{\partial f}{\partial kek} = (-1.000) \cdot \sin(3.142 + kek) + \frac{1.000}{1.000 + kek}
```

Finding full derivation Full derivation:

 $\frac{\partial f}{\partial x} = 13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}$

Partial derivation of the expression on the variable x:

```
\sqrt{\left((-1.000) \cdot \sin\left(a + 13.000\right)\right)^{2.000} + \left((-1.000) \cdot \sin\left(3.142 + kek\right) + \frac{1.000}{1.000 + kek}\right)^{2.000} + \left(13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}\right)^{2.000}}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.13150 !!!
```

4 Exploration the expression as a function of the first variable

Now let's consider the expression as a function of the first variable a: $f(a) = \cos(a + 13.000) + 2.639$

```
Decomposing on Macloren's formula Maklorens formula for a \rightarrow a_0 = 3.142: f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})
```

Graphics Graph $f(a) = \cos(a + 13.000) + 2.639$ on the diapasone $a \in [-1:15]$:

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.49151 !!!

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.92857 !!!


```
Equations in the point Tangent equation in the point a_0 = 0.200:
```

 $f(a) = (-0.592) \cdot (a - 0.200) + 3.445$

Normal equation in the point $a_0 = 0.200$:

 $f(a) = 1.689 \cdot (a - 0.200) + 3.445$

Their graphs in $\delta = 2.50000$ coverage of the point $a_0 = 0.200000$

5 Conclusion

Ultrar cringe conclusion here: