Seonah Lee Gyeongsang National University

안전성 (Safety) 아키텍처 전술

▶ 안전성 (Safety) ▶ 품질 속성 시나리오:정의 ▶ 품질 속성 시나리오: 안전성 시나리오 예제 ▶ 안전성 (Safety) 아키텍처 전술 ▶ 안전성에 대한 설계 체크리스트 생각해 볼 문제

Safety

- ▶ 안전성 (Safety)
 - A system's ability to avoid astraying into states that cause or lead to damage, injury, or loss of life to actors in its environment

Unsafe States	Descriptions
Omissions	The failure of an event to occur
Commission	The spurious occurrence of an undesirable event
Timing	The occurrence of an event before (or after) the time required
Problems with system values	Incorrect but detectable values; Incorrect and undetectable values
Sequence omission and commission	An event is missing or an unexpected event is inserted
Out of sequence	A sequence of event arrive, not in the prescribed order

Quality Attribute Scenario for Safety

Component	Description
Source	A data source, a time source, or a user action
Stimulus	An omission, commission, or occurrence of incorrect data or timing
Environment	System operating mode
Artifact	Some part of the system
Response	The system does not leave a safe state space The system returns to a safe state space The system continues to operate in a degraded mode to minimize damage Users are advised of the unsafe state or the prevention The even is logged
Response Measure	Tine to return to safe state space Damage or injury caused

Quality Attribute Scenario Example for Safety

- A sensor in the patient monitoring system fails to report a life-critical value after 100 ms.
- The failure is logged, a warning light is illuminated on the console, and a backup (lower-fidelity) sensor is engaged.
- The system monitors the patient using the back sensor after no more than 300 ms.

Sensor

Artifact: Patient

monitoring system

Environment:

Normal operations

Response:

The failure is logged

A warning light is illuminated on the console

The system monitors the patient using a backup sensor

Respose Measure:

After no more than 300 ms

Safety tactics may be broadly categorized as unsafe state avoidance, unsafe state detection, or unsafe state remediation.

Unsafe state

entered or

imminent

Safety Tactics

Unsafe state detected, avoided, or contained; recovery occurs, and safe operation continues

Unsafe State Avoidance

Substitution

- Protection mechanism for potentially dangerous software design features
 - Watchdogs, monitors, and interlocks

A model that predicts the state of health of system processes, resources, or other properties

Unsafe State Detection

- **▶** Timeout
 - ▶ to determine whether the operation of a component is meeting its timing constraints

- ▶ to detect incorrect sequences of events, primarily in distributed message-passing systems
- Condition Monitoring
 - Condition monitoring identifies system states that may lead to hazardous behavior.

Unsafe State Detection

Sanity Checking

The sanity checking tactic checks the validity or reasonableness of specific operation results, inputs or outputs of a component

Comparison

The comparison tactic allows the system to detect unsafe states by comparing the outputs produced by a number of synchronized or replicated elements.

Containment: Redundancy

- Replication
 - It just involves having clones of a component
- Functional Redundancy
 - It makes design diversity to address the issue of common mode failures in components
- Analytic Redundancy
 - It permits not only diversity of components, but also a higher-level diversity that is visible at the input and output level

Containment: Limit Consequences

- Masking
 - ▶ It masks a fault by comparing components

▶ Abort

- Degradation
 - maintains the most critical system functions in the presence of component failures

Containment: Barrier

- Firewall
 - ▶ A firewall limits access to specified resources
- Interlock
 - The interlock protects against failures arising from incorrect sequencing of events.

Recovery

Rollback

It permits the system to revert to a saved copy of a previous known good state—the rollback line—upon the detection of a failure.

Reconfiguration

It attempts to recover from component failures by remapping the logical architecture onto the (potentially limited) resources left functioning.

Repair State

- It repairs an erroneous state and then continues execution.
- It increases the set of states that a component can handle competently, without failure

Radiation Therapy Machine

Therac - 25 (파생 모델 - <mark>방사선 누출)</mark>

- 암종양제거를 위한 방사선 치료기
- Therac-20의 SW를 재사용
- Therac-20에서 문제없었으나 Therac-25에서 문제 발생
 → HW 개선으로 속도가 빨라지면서 ' 잠재된 ' 버그가 동작

'이전에 안전했던 소스'가 안전을 담보하지 못함

Radiation Therapy Machine

Radiation therapy machine

Question?

Seonah Lee saleese@gmail.com