Data Structures and Algorithms – (COMP SCI 2C03) Winter 2021 Tutorial - 9

April 5, 2021

- 1. How many letter comparisons would KMP algorithm perform on the text a^n and pattern $a^{m-1}b$.
- 2. Compute the border array of the string abaababaabaab
- 3. Compute the border array of the string $w = a^n$.
- 4. Consider the four variable-length codes shown in Figure 1. Which of the codes are prefix-free? Which of the codes are uniquely decodable? For those that are uniquely decodable, give the encoding of 1000000000000.

symbol	code 1	code 2	code 3	code 4
Α	0	0	1	1
В	100	1	01	01
C	10	00	001	001
D	11	11	0001	000

Figure 1: Table for Question 4

5. How many bits are needed to encode N copies of the symbol a, as a function of N) using run-length encoding? How many bits are needed to

- encode N copies of abc (as a function of N) using run-length encoding? (you may consider ASCII encoding)
- 6. Give the result of encoding the strings a, aa, aaa, aaa, ... (strings consisting of N a's) with run-length and Huffman encoding.
- 7. Compute the bitstream encoding of the binary trie given in Figure 2 representing prefix-free codes for letters A, B, C, D, E.

Figure 2: Prefix-free code binary trie

8. Consider the input string w = abababacaaaadaeaceeaabbb. Encoding w in 8-bit ASCII requires how many bits? How much savings in terms of bits is achieved if w is encoded using Huffman encoding (remember to include the number of bits required to encode the binary trie)?