Lista 1 Extra de Exercícios - Geometria Analítica

Nome:	N	No
- 10		

Observações: O objetivo desta lista será auxiliar e direcionar os estudos. Não são exercícios triviais e não creio serem suficientes para sua avaliação. Procure outros exercícios em outras referências. Bom trabalho.

1 - Vários candidatos prestaram um concurso para preenchimento de duas vagas numa empresa. Somente quatro foram classificados, e suas notas foram divulgadas através da tabela:

	NOTAS					
Candidatos	Português	Matemática	Computação	Legislação	Média	Classificação
A	8,0	9,2	8,5	9,3	8,58	1
В	8,1	7,7	8,2	8,2	8,28	2
C	8,9	7,3	7,8	8,6	8,22	3
D	8,0	7,5	7,6	8,1	7,80	4

A empresa convocou os candidatos A e B. Entretanto, o candidato C não aceitou o resultado e procurou o gerente da empresa para se informar como as médias tinham sido calculadas, pois ele observou que não fora a média aritmética (neste caso sua média seria ______). A resposta do gerente fora que o critério seria a média ponderada. Baseado nesta informação o candidato C requereu à Justiça a anulação do concurso. Qual o veredicto do juiz designado para o caso e por que?

RESPOSTA: Sejam x, y, z, w os pesos aplicados em cada prova. Então podemos obter o seguinte sistema linear

$$\begin{cases} \frac{8,0x+9,2y+8,5z+9,3w}{x+y+z+w} = 8,58\\ \frac{8,1x+7,7y+8,2z+8,2w}{x+y+z+w} = 8,28\\ \frac{8,9x+7,3y+7,8z+8,6w}{x+y+z+w} = 8,22\\ \frac{8,0x+7,5y+7,6z+8,1w}{x+y+z+w} = 7,80 \end{cases}$$

que após alguns cálculos podemos obter o seguinte sistema linear homogêneo

$$\begin{cases}
-0.58x + 0.62y - 0.08z + 0.72w = 0 \\
-0.18x - 0.58y - 0.08z + 0.38w = 0 \\
0.68x - 0.92y - 0.42z + 0.38w = 0 \\
0.2x - 0.3y - 0.2z + 0.3w = 0
\end{cases}$$

A única solução obtida é a trivial, portanto não houve a aplicação da média ponderada

2 - Determine se o sistema abaixo tem ou não solução e se a solução é única (justifique sua resposta). Caso tenha solução(ões) encontre-a(s).

$$\begin{cases} 2x - y + 3z = 11 \\ 4x - 3y + 2z = 0 \\ x + y + z = 6 \\ 3x + y + z = 4 \end{cases}$$

RESPOSTA: $\{(-1,2,5)\}$

3 - Considere o sistema de equações lineares $(A - \alpha I)X = O$, sendo que αI é a matriz identidade multiplicada por uma constante α , e matriz A é dada por

$$A = \left[\begin{array}{rrr} 1 & 8 & 3 \\ 0 & 2 & 0 \\ 0 & 4 & 0 \end{array} \right]$$

(a) Para qualquer valor de α o sistema sempre tem solução? Justifique sua resposta.

RESPOSTA: Sim, por que o sistema linear $(A - \alpha I)X = 0$, é

- (b) Determine valores para α tais que o sistema tenha:
 - (i) Solução única.
 - (ii) Infinitas soluções.

RESPOSTA: Para que o sistema não tenha solução única, a trivial (por que?) o $\det(A - \alpha I) = 0$. Calculando o determinante chega-se a $\alpha = 0, 1, 2$. Quaisquer valores diferentes destes o $\det \neq 0$ e a solução será única igual a....

Neste último caso, escolha um dos valores de α encontrado e determine duas soluções distintas não-triviais.

RESPOSTA: escolhendo por exemplo $\alpha = 1$ obtemos a solução $\{(\beta, 0, 0), \beta \in \mathbb{R}\}$

4 - Ache os valores de a tais que o sistema

$$\begin{cases} x + 2y + 2az = 2a+2 \\ x + y + az = a+2 \\ -x - 2y + (a^2 - 2a - 1)z = -a - 1 \end{cases}$$

- (a) possua solução única.
- (b) não possua solução.
- (c) possua infinitas soluções.

RESPOSTA: Para que o sistema tenha solução única, após aplicarmos eliminação de Gauss, chegamos ao sistema

$$\begin{cases} x + 2y + az = 2a + 2 \\ - y = -a \\ (a^2 - 2a - 1)z = -a - 1 \end{cases}$$

Basta analisar a última linha e decidir pela resposta.

- 5 Decida se as seguintes afirmativas são verdadeiras ou falsas, justificando suas respostas.
 - (a) Se A e B são matrizes de mesmo tamanho tais que os sistemas AX = 0 e BX = 0 têm as mesmas soluções então A = B.
 - (b) Se uma matriz quadrada A é tal que $A=A^3$ então $\det(A)=\pm 1$.
 - (c) Um sistema linear com três equações e quatro incógnitas tem sempre infinitas soluções.

$$A = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 3 & (\lambda + 1) \\ 2 & 1 & 4 \end{array} \right].$$

- (a) Encontre o valor do escalar λ para o qual a matriz A é não invertível (=singular). **RESPOSTA:** Lembrando que A é invertível se, e somente se, $\det(A) \neq 0$, obtemos $\lambda = -1$
- (b) Substitua $\lambda = 0$ e calcule a inversa, se existir, da matriz A. **RESPOSTA:** det(A) = -1 portanto existe a inversa dada por

$$\begin{bmatrix}
-11 & -2 & 6 \\
-2 & 0 & 1 \\
6 & 1 & -3
\end{bmatrix}$$

7 - Considere o sistema linear

$$\begin{cases} x - 3y + 2z = 4 \\ 4x - 5y + 3z = b \\ 6x + ay + 2z = 10 \\ 4x + 2y - 2z = 2 \end{cases}$$

(a) Encontre valores de *a* e *b* para os quais o sistema abaixo tenha **infinitas** soluções.

RESPOSTA: Aplicando eliminação de Gauss obtemos o sistema

$$\begin{bmatrix} 1 & -3 & 2 & 4 \\ 0 & 7 & -5 & b-16 \\ 0 & 0 & 20+5a & 190-ab+16a-18b \\ 0 & 0 & 0 & 18-2b \end{bmatrix}$$

Analisando a matriz acima chegamos aos valores b = 9, a = -4

(b) Substitua os valores de a e b encontrados e determine o conjunto solução.

RESPOSTA:
$$\{(\frac{6}{5} + \frac{1}{5}\alpha, \alpha, \frac{7}{5} + \frac{7}{5}\alpha), \alpha \in \mathbb{R}\}$$

8 - Encontre a(s) solução(ões) do sistema AX = 2X sendo que

$$A = \left[\begin{array}{rrr} 3 & 2 & -1 \\ -1 & 1 & 1 \\ -1 & 6 & 3 \end{array} \right] .$$

RESPOSTA: $\{(\alpha, 0, \alpha), \alpha \in \mathbb{R}\}$

9 - Sejam A e B matrizes tais que

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 20 & 10 & 0 \\ 40 & 10 & 0 \\ 0 & 0 & 30 \end{bmatrix}$$

(a) Mostre que a matriz A é invertível e calcule sua inversa.

RESPOSTA:

$$\begin{bmatrix} -1/2 & 1 & -1/2 \\ 1/2 & -1 & 3/2 \\ 0 & 1 & -2 \end{bmatrix}$$

(b) Calcule a inversa da matriz *AB*.

RESPOSTA:

$$(AB) = B^{-1}A^{-1} = \begin{bmatrix} -5 & 10 & 5\\ -15 & 30 & -5\\ 0 & 30 & -60 \end{bmatrix}$$

10 - Encontre uma matrix X tal que $XA - B = \overline{O}$ sendo que

$$A = \begin{bmatrix} 2 & -3 & 2 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}.$$

RESPOSTA: Observe que A é invertível. Portanto $XA - B = \overline{O} \Rightarrow XA = B$

$$\Rightarrow XAA^{-1} = BA^{-1} \Rightarrow X = BA^{-1} = \begin{bmatrix} -4 & 13 & 4 \\ -2 & 6 & 0 \\ -5 & 11 & -2 \end{bmatrix}$$

11 - Se D é a matriz abaixo, para quais valores de β a matriz escalonada reduzida da matriz D é a matriz identidade?

$$D = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 12 & \beta & -11 & 21 \\ 3 & 0 & -1 & 5 \\ 4 & 0 & 1 & \beta \end{bmatrix}$$

RESPOSTA: Este é um exercício interessante que melhor do que ser dada a resposta numérica, é pensar o que acontece com uma matriz quando a escalonada reduzida não é a identidade! Neste caso qual seria o valor do determinante? Se $\beta=0$ é possível escaloná-la à forma reduzida?

12 - Seja

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 3 \\ 2 & 3 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 4 \end{array} \right].$$

- (a) Calcule det A. RESPOSTA: 4
- (b) Calcule det $\left(2A^5(A^t)^{-1}\right)$. **RESPOSTA:** 2^44^4

- 13 Verifique se cada uma das proposições seguintes é falsa ou verdadeira, justificando sua resposta.
 - (a) Seja A uma matriz quadrada $n \times n$. Se n é par e $A^t = -A$, então det A = 0.
 - (b) Se A é uma matriz quadrada singular, então existe uma matriz $B \neq 0$ tal que AB = 0.