计算机设计与实践

——CPU 设计实验报告

学号: 1130310128

学院: 计算机科学与技术学院

姓名: 杨尚斌

指导老师: 罗丹彦

实验目的

- 1. 掌握 Xilinx ISE 集成开发环境和 ModelSIM 仿真工具的使用方法。
- 2. 掌握 WHDL 语言。
- 3. 掌握 FPGA 编程方法及硬件调试手段。
- 4. 深刻理解处理器结构和计算机系统整体工作原理。

实验环境

开发软件

Xilinx ISE 9.1

ModelSIM 6.5

开发板

COP2000+实验台

实验设计

CPU 接口信息定义

信号名	位	方向	来源/去向	意义
	数			
RST	1	in	外部复位信	系统复位使能端
			号	
CLK	1	in	外部时钟	系统时钟
ABUS	16	out	存储器	地址总线
DBUS	16	inou	存储器	数据总线
		t		
nMREQ	1	out	存储器	存储器片选
nRD	1	out	存储器	存储器读
nWR	1	out	存储器	存储器写
nBHE	1	out	存储器	存储器高位有效
nBLE	1	out	存储器	存储器低位有效

CPU 设计方案

1. 指令格式设计

指令由操作码和地址码两部分组成,在指令系统中所有的指令都是二进制指令。

通用寄存器有8个,所以需要3为地址与之对应。

访存的时候形式地址为8位。

定义指令的高5位为操作码。

因此,做下面的定义:

OP (5) AD1 (3)	AD2 (3)	
----------------	---------	--

(寄存器-寄存器型指令)

OP (5) AI	D1 (3)	AD2 (8)
-----------	--------	---------

(其他类型指令)

2. 微操作定义

指令名称	助记符	二进制操作码
加法操作	ADD	00000
减法操作	SUB	00001
寄存器传送	MOV	00010
立即数传送	MVI	10010
取数操作	LDA	11011
存数操作	STA	11000
无条件跳转操作	JMP	10001
条件跳转	JZ	10000

3. 节拍划分

共有5个节拍:

TO 取指

T1 PC+1

T2 运算器模块

T3 存储器模块

T4 回写

4. 处理器结构设计框图和功能描述

5. 各模块结构信号定义

a) 节拍计数器

模块说明: 此模块为时钟模块,是一个 5 节拍的计数器。当 clk 信号产生一个脉冲的时候,t 就会循环的改变第 i 位的值,最后达到节拍的效果。

接口说明:

信号	位	方向	来源/去向	意义
名	数			
clk	1	in	系统时钟	外接系统时钟
reset	1	in	系统复位	外接系统复位
t	5	out	各模块节拍	对外输出节拍(5节
				拍)

b) 取指模块

模块说明: 此模块为取指模块,负责取指令阶段,并且在取到指令之后对其他模块发出取到的指令 IR 和地址 PC,除此之外还接收回写模块发出的 pcupdate 和 pcnew 指令,用来回写 pc。此模块分为两个节拍进行,在 t0=1 的时候完成取指和 pc 的回写,在 t1=1 的时候完成 pc+1 的操作。

接口说明:

信号名	位	方	来源/去向	意义
	数	向		
Irnew:	16	In	访存控制 IR	接受从存储器中读取
				的新指令。
pcnew:	16	in	回写模块	接受从回写模块发出
			PCnew	的 pc 复写值。
clk:	1	In	系统时钟	接受系统时钟。
pcupdat	1	In	回写模块	pc 复写使能端。
e:			Pcupdate	
reset:	1	In	系统复位	接受复位信号,置
				pc=0 _°
t0、	1	In	时钟模块 t	节拍信号。
t1:				
irout:	16	Out	各模块 ir	对外输出指令 ir。
pcout:	16	Out	访存控制	对外输出 pc 值。
			PCout \	
			回写模块 PCin	
irreq:	1	Out	访存控制 irreq	发出读取 ir 的使能信
				号。

c) 运算模块

模块说明: 此模块为运算器模块 ALU, 负责各种计算任务。当回写使能信号 enable_wb 为 1 的时候,寄存器 ir 按照回写模块传送过来的 reg_wb 进行更新。当 enable_t(t(2))有效的时候,开始运行计算任务,并且把最后计算得出的值传给 sig_reg7aluout,如果计算内容和地址有关系,则传 R7 与地址并起来给访存控制模块。

接口说明:

信号名	位数	方向	来源/去向	意义
enable_t	1	In	时钟模块	驱动当前模块
Ir	16	In	取指模块	判断当前的运算
				方法以及需要的
				值
Sig_reg7alu	16	Out	访存控制模块	暂时寄存器
out			和存储模块	
Sig_reg7add	16	Out	访存控制模块	和 R7 并在一起,
rout				输入至访存控制
				模块
Enable_tb	1	In	回写模块	回写寄存器使能
				信号
Reg_wb	8	In	回写模块	要回写的寄存器
				的值

d) 存储模块

模块说明: 此模块为存储管理模块,主要负责运算模块输出的值和取数时访存控制的值,用来向回写模块提供寄存器要回写的值,在t3 = 1的时候进行驱动。

接口说明:

信号名	位数	方向	来源/去向	意义
Aluout	7	In	运算模块的 Sig_reg7aluout ,取低八位	接收 alu 传来的 值。
IR	16	In	取指模块	接收取指模块传出 的 ir。
Data	8	In	访存控制	接收取数时访存控 制中的数据。
Т	1	In	时钟模块 t	接收节拍。
Rtemp	8	Out	回写模块 Rtemp	对回写模块输出要 回写的数值
nMRD	1	Out	访存控制模块	读标志
nMWR	1	Out	访存控制模块	写标志

e) 回写模块

模块说明: 此模块为回写模块,主要用来对 Pc 和寄存器进行回写, 当 t4 = 1 的时候开始执行。顺便对 JZ 操作在这里进行相关的判断。

信号说明:

信号名	位	方	来源/去向	意义
	数	向		
PCin	16	In	取指模块	接收取指模块传来
				的 PC
Т	1	In	时钟模块	节拍控制
Rtemp	8	In	存储模块	接收存储模块的寄
				存器的值
Су	1	In	运算模块	接收 ALU 传来的进
				位
Rupdate	1	Out	运算模块	更新寄存器使能信
				号
Rdata	8	Out	运算模块	寄存器要更新的值
PCupdate	1	Out	取指模块	Pc 更新使能信号
PCnew	16	Out	取指模块	PC 要更新的值

f) 访存控制模块

模块说明: 此模块为访存控制模块,是 CPU 设计的核心模块。主要设计三部分,取指,取数,存数,分别由 irrep, nMRD, nMWR 驱动。当 Irrep = 1 时,主存片选有效,对主存 ABUS 输出地址,IR 得到 DBUS 的数据; 当 nMRD = 0 时,开始进行读数操作,主存片选有效,ABUS 输出地址,data 输出 DBUS 的低 8 位值; 当 nMWR = 0 时,开始写数 才做,主存片选有效,主存 ABUS 输出地址,DBUS 输出要写入的值。

信号说明:

信号名	位 数	方向	来源/去向	意义
IRreq	1	In	取指模块	IR 使能
IR	16	Out	取指模块	对取指模块输出 IR
PCout	16	In	取指模块	接收取指指令
ALUOUT	8	In	运算模块	写数时使用

Addr	16	In	运算模块	读数时使用
ABUS	16	Out	主存储器	对主存输出地址
DBUS	16	Ino	主存储器	数据总线
		ut		
nWR	1	Out	主存储器	写主存使能信号
nRD	1	Out	主存储器	读主存使能信号
nMREQ	1	Out	主存储器	片选信号
NBHE	1	Out	主存储器	高字节允许访问
nBLE	1	Out	主存储器	低字节允许访问
nMWR	1	In	存储模块	写数使能
nWRD	1	In	存储模块	读数使能
Data	8	Out	存储模块	对存储模块输出取
				到的数据

g) 总体设计

信号说明:

信号名	位 数	方向	来源/去向	意义
RST	1	in	外部复位信 号	系统复位使能端
CLK	1	in	外部时钟	系统时钟
ABUS	16	out	存储器	地址总线
DBUS	16	inou	存储器	数据总线
		t		
nMREQ	1	out	存储器	存储器片选
nRD	1	out	存储器	存储器读
nWR	1	out	存储器	存储器写
nBHE	1	out	存储器	存储器高位有效
nBLE	1	out	存储器	存储器低位有效

元件例化代码:

signal t: STD_LOGIC_VECTOR(4 downto 0); --正常节拍

signal IR_C_F: STD_LOGIC_VECTOR(15 downto 0); -- 取指模块取出的 ir

signal PCout_F_CW: STD_LOGIC_VECTOR(15 downto 0); -- PC 送往访存控制取指,送

回写模块

signal PCnew_W_F: STD_LOGIC_VECTOR(15 downto 0); -- 跳转的时候要更新的 PC

signal PCupdate_W_F: STD_LOGIC; -- 跳转更新 PC 使能信号

signal irout_F_ASW: STD_LOGIC_VECTOR(15 downto 0); --取指模块取到的 Ir,会送往

ALU 存储 和回写

```
-- 取指送往访存控制,告诉要取指
signal irreq_F_C : STD_LOGIC;
令了
signal ALUOUT_A_CS: STD_LOGIC_VECTOR(15 downto 0); ---ALU 送往其他模块的
signal Addr_A_C: STD_LOGIC_VECTOR(15 downto 0); --- ALU 送往访存的 addr
signal Rupdate_W_A: STD_LOGIC;
                                                    ---回写模块送往 ALU 的
更改寄存器使能信号
signal Rdata_W_A: STD_LOGIC_VECTOR(7 downto 0);
                                                    ----回写模块输出的要更
新的寄存器的值
signal data_C_S: STD_LOGIC_VECTOR(7 downto 0);
                                                    -- 取数的时候使用
                                                       --写数使能
signal nMWR S C:STD LOGIC;
signal nMRD S C:STD LOGIC;
                                                       --读数使能
signal Rtemp_S_W: STD_LOGIC_VECTOR(7 downto 0);
                                                     -- 存储模块向回写模
                                                      --进位
signal cy_A_W: STD_LOGIC;
    u1: clock port map(CLK, RST, t);
  u2: fetch port map(IR_C_F, PCnew_W_F, CLK, PCupdate_W_F, RST, t(0), t(1),
irout_F_ASW, PCout_F_CW, irreq_F_C);
  u3: ALU port map(t(2), irout_F_ASW, ALUOUT_A_CS, Addr_A_C, Rupdate_W_A,
Rdata W A, cy A W);
  u4: control port map(irreq_F_C, IR_C_F, PCout_F_CW, ALUOUT_A_CS(7 downto 0),
Addr A C, ABUS, DBUS, nWR, nRD, nMREQ, nBHE, nBLE, nMWR S C, nMRD S C,
data_C_S);
  u5: save port map(t(3), ALUOUT A CS(7 downto 0), data C S, nMWR S C,
irout F ASW, nMRD S C, Rtemp S W);
  u6: write_back port map(PCout_F_CW, t(4), Rtemp_S_W, irout_F_ASW, cy_A_W,
Rupdate_W_A, Rdata_W_A, PCupdate_W_F, PCnew_W_F);
 波形仿真
      节拍计数器
a)
```

6.

```
entity clock is
    Port ( clk : in STD_LOGIC;
             reset: in STD_LOGIC;
             t:out STD_LOGIC_VECTOR (4 downto 0));
end clock;
process(clk, reset)
    variable tep: integer range 0 to 6 := 0;
    begin
```

```
if(reset = '1') then
          t <= "00000";
          tep := 0;
     elsif (clk = '1' and clk' event) then
          tep := tep + 1;
          if tep = 6 then
                tep := 1;
          end if;
          case tep is
                when 1 => t <= "00001";
                when 2 \Rightarrow t \le "00010";
                when 3 \Rightarrow t \le "00100";
                when 4 => t <= "01000";
                when 5 => t <= "10000";
                when others => NULL;
          end case;
     end if;
end process;
```


b) 取指模块

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
```

```
entity fetch is
                                                                --访存模块输入的
    Port (irnew: in STD_LOGIC_VECTOR (15 downto 0);
IR
            pcnew : in STD_LOGIC_VECTOR (15 downto 0);
                                                                   --回写模块,
更新 PC
            clk: in STD_LOGIC;
                                                                    --节拍
                                                                    --告诉要更新
            pcupdate : in STD_LOGIC;
PC 了
                                                                    --复位
            reset: in STD_LOGIC;
            t0: in STD_LOGIC;
            t1:in STD LOGIC;
            irout : out STD_LOGIC_VECTOR (15 downto 0);
                                                                   --输出的 IR
            pcout : out STD_LOGIC_VECTOR (15 downto 0);
                                                                    --使能
            irrep : out STD_LOGIC);
end fetch;
architecture Behavioral of fetch is
signal pc: STD_LOGIC_VECTOR (15 downto 0);
begin
    process(clk, reset, t0, t1, pcupdate)
         begin
             if reset = '1' then
                  irrep <= '0';
                  pc <= "000000000000000";
             elsif t0 = '1' then
                  irrep <= '1';
                  irout <= irnew;
             elsif t1 = '1' then
                  irrep <= '0';
                  if (clk = '1' and clk' event) then
                       pc <= pc + 1;
                  end if;
             elsif pcupdate = '1' then
                  pc <= pcnew;
                  irrep <= '0';
             end if;
             pcout <= pc;</pre>
    end process;
end Behavioral;
```


c) 运算模块

```
entity ALU is
port(
       -- 实现准备和运算功能
      enable_t:in std_logic; -- 准备和运算功能使能信号
      ir : in std_logic_vector(15 downto 0);
      -- 向访存控制模块输出
      sig_reg7aluout: out std_logic_vector (15 downto 0); -- 暂存器输出端口
      sig_reg7addrout: out std_logic_vector (15 downto 0); -- 8 位地址输出端
\Box
      --reg7 out : out std logic vector ( 7 downto 0 );
      -- 实现回写功能
      enable_wb:in std_logic;-- 回写功能使能
      reg_wb:in std_logic_vector (7 downto 0); -- 回写接收端口
      -- 进位标志
      cy: out std_logic
      );
end ALU;
architecture Behavioral of ALU is
type registers 8 is array (7 downto 0) of std logic vector(7 downto 0);
signal reg: registers_8; -- 数组型 8 个 8 位寄存器
signal addr: std_logic_vector (7 downto 0); -- 暂存器
begin
get_ready : process (enable_t,addr)
variable a,b : std_logic_vector ( 7 downto 0 );
variable tempa, tempb, tempsum: std_logic_vector (8 downto 0); -- 进位标志计
算
begin
a := reg(conv_integer(ir(10 downto 8)));
b := reg(conv_integer(ir(2 downto 0)));
addr <= ir( 7 downto 0 );
tempa := '0'&a;
tempb := '0'&b;
    if enable_t = '1' then
        case ir(15 downto 11) is
             when "00000"=> tempsum := tempa + tempb;
                                                                  --ADD
```

tempsum := tempa - tempb;

--SUB

when "00001"=>

```
when "00010"=>
                                 tempsum := tempb;
MOV
             when "10010"=>
                               tempsum := '0'&addr;
                                                                      --MVI
             when "11011"=>
                                 tempsum := '0'&addr;
                                                                       --LDA
             when "11000"=>
                                 tempsum := tempa;
                                                                        --STA
             when "10001"=>
                                 tempsum := '0'&addr;
                                                                       --JMP
             when "10000"=> tempsum := tempa;
                                                                       --JZ
             --when "11111"=>
                                 tempsum := '0'&addr;
                                                                       --IN
             --when "11100"=>
                                 tempsum :=tempa;
OUT
              when others=>
                                 tempsum :="ZZZZZZZZZ";
         end case;
    sig_reg7aluout <= reg(7)&tempsum ( 7 downto 0 );</pre>
    cy <= tempsum (8);
    sig_reg7addrout <= reg(7)&addr;</pre>
    end if;
end process;
write_back : process (reg_wb,enable_wb)
begin
    if enable wb = '1' then
         reg(conv_integer(ir(10 downto 8))) <= reg_wb;</pre>
    end if;
end process;
end Behavioral;
```

仿真波形

d) 存储模块

核心代码:

```
entity save is
    Port (
         t:in STD_LOGIC;
         ALUOUT: in std_logic_vector(7 downto 0);
                                                   --- 取数的时候用
         data : in std_logic_vector(7 downto 0);
                                                  --- 接收区属的时候访存控
制的数据
         nMWR: out std_logic;
       IR: in STD_LOGIC_VECTOR (15 downto 0);
       nMRD: out STD_LOGIC;
         Rtemp: out std_logic_vector(7 downto 0));
                                                  --- 回写模块要输
end save;
architecture Behavioral of save is
begin
    process(t,data,ALUOUT,IR)
    begin
        if t = '1' then -- LDA 与 STA
            case IR(14 downto 12) is
                when "100" =>
                                         nMWR <= '0';
                     nMRD <= '1';
                     Rtemp(7 downto 0) <= ALUOUT(7 downto 0);
                 when "101" =>
                                         --- LDA
                                                   取数 11011
                     nMWR <= '1';
                     nMRD <= '0';
                     Rtemp(7 downto 0) <= data(7 downto 0);
                 when others =>
                     nMWR <= '1';
                     nMRD <= '1';
                     Rtemp(7 downto 0) <= ALUOUT(7 downto 0);
            end case;
        else
            nMWR <= '1';
            nMRD <= '1';
        end if;
    end process;
end Behavioral;
```

仿真波形:

e) 回写模块

```
entity write back is
Port (
    PCin:in std_logic_vector(15 downto 0);
                                               --接收取指模块传出的
PC, 用于 0 跳转和直接跳转
    t:in STD_LOGIC;
                                                   -- 回写使能
   Rtemp: in STD_LOGIC_VECTOR (7 downto 0);
                                                 -- 接收来自存储管理
模块的寄存器
                                                 -- 接收取指模块传出
    IR: in STD LOGIC VECTOR (15 downto 0);
的 IR
                                                    --接收 ALU 传出的 z
   --z:in STD_LOGIC;
                                                   --接收 ALU 传出的进
   cy:in STD_LOGIC;
位
                                                    -- 寄存器回写使能
    Rupdate : out STD_LOGIC;
信号
   Rdata: out STD_LOGIC_VECTOR (7 downto 0);
                                                 -- ALU 输出的寄存器回
写数据
                                                  -- PC 回写使能型号
   PCupdate : out STD LOGIC;
                                                   --输出 PC 回写的值
    PCnew: out STD_LOGIC_VECTOR (15 downto 0)
);
end write_back;
architecture Behavioral of write back is
--signal tempa:std_logic_vector(15 downto 0);
--signal tempb:std_logic_vector(15 downto 0);
  -- tempa<="00000000"&(IR(7 downto 0));
  process(t, cy, IR)
  begin
      if t='1' then
```

```
case IR(15 downto 11) is
                when "10001" =>
                     Rupdate <= '0'; --jmp
                    PCupdate <= '1';
                    PCnew <= "00000000"&(IR(7 downto 0));
                when "10000" =>
                                       --jz
                     Rupdate <= '0';
                     if (Rtemp(7 downto 0) = "00000000") then
                     --if z='1' then
                          PCnew <= "00000000"&(IR(7 downto 0));
                          PCupdate <= '1';
                 else
                          PCupdate<='0';
                    end if;
                when "11000" =>null;--STA
                when others =>
                     Rupdate<='1';
                    PCupdate <= '0';
                     Rdata(7 downto 0)<= Rtemp(7 downto 0);
           end case;
       else PCupdate<='0';Rupdate<='0';
       end if;
  end process;
end Behavioral;
```


f) 访存控制模块

核心代码:

entity control is

```
port(
                                            --ir 使能
   IRreq:in STD LOGIC;
                                            --对取指模块输出 ir
   IR:out STD_LOGIC_VECTOR (15 downto 0);
   PCout: in STD_LOGIC_VECTOR (15 downto 0);
                                            --接收取指指令
   ALUOUT: in STD_LOGIC_VECTOR (7 downto 0); --运算模块
                                           --运算模块
   Addr: in STD LOGIC VECTOR (15 downto 0);
   ABUS: out STD_LOGIC_VECTOR (15 downto 0); --对主存输出地址
   DBUS: inout STD_LOGIC_VECTOR (15 downto 0); --数据总线
   --给主存发
   nWR: out STD_LOGIC;
                                               --写主存使能
   nRD: out STD LOGIC;
                                               --读主存使能
                                              --主存片选信号
   nMREQ: out STD_LOGIC;
   nBHE: out STD_LOGIC;
                                              --主存高八位控制信号
   nBLE: out STD_LOGIC;
                                              --主存低八位控制信号
   --运算模块/取指模块给出,要不要访内存
                                               --ALU 写数使能
   nMWR: in STD_LOGIC;
   nMRD: in STD_LOGIC;
                                               --ALU 取数使能
  --来自存储模块
   data : out STD_LOGIC_VECTOR (7 downto 0)
                                          --对存储控制输出取到的
数据。
);
end control;
architecture Behavioral of control is
begin
   --IR <= DBUS;
   --DBUS<="00000000"&ALUOUT when nMWR='0' else "ZZZZZZZZZZZZZZZZZ;";
   --data <= DBUS(7 downto 0) when nMRD = '0' else "ZZZZZZZZZ";
   --ABUS<=PCout when IRreq='1' else Addr;
process(IRreq,nMRD,nMWR)
    begin
       DBUS<="ZZZZZZZZZZZZZZ;";
      if IRreg ='1' then
                     --取指模块
           nBHE <= '0';
           nBLE <= '0';--高低位
           nMREQ <= '0';
           nWR <= '1';
           nRD <= '0';--读有效, 低电位有效
           IR <= DBUS;</pre>
        --DBUS<="ZZZZZZZZZZZZZZ;";
           ABUS<=PCout;
```

```
elsif nMRD = '0' then --需要读内存(运算模块)---读取使能,低电平有
```

```
效
             nBHE <= '1';
             nBLE <= '0';
             nMREQ <= '0';
             nRD <= '0';
                          --?劣行?
             nWR <= '1';
             ABUS <= Addr;
             --data <= "00100101";
             data<=DBUS(7 downto 0);
             --DBUS<="ZZZZZZZZZZZZZZ;
        elsif nMWR = '0' then --写内存(运算模块)
            nBHE <= '1';
            nBLE <= '0';
            nMREQ <= '0';
            nRD <= '1';
            nWR <= '0';--写有效
             DBUS<="00000000"&ALUOUT;
             ABUS<=Addr;
        else
            nBHE <= '1';
            nBLE <= '1';
            nMREQ <= '1';
            nRD <= '1';
            nWR <= '1';
             data<="ZZZZZZZZ";
             DBUS<="ZZZZZZZZZZZZZZ;";
    end if;
```

end process; end Behavioral;

g) 总体波形仿真

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity CPU is
    Port ( RST : in STD_LOGIC;
            CLK: in STD_LOGIC;
            ABUS: out STD LOGIC VECTOR (15 downto 0);
            DBUS: inout STD_LOGIC_VECTOR (15 downto 0);
            nMREQ: out STD_LOGIC;
            nRD: out STD_LOGIC;
            nWR: out STD_LOGIC;
            nBHE: out STD LOGIC;
            nBLE: out STD_LOGIC);
end CPU;
architecture Behavioral of CPU is
    component clock is
         port (
             clk: in STD_LOGIC;
```

```
reset : in STD_LOGIC;
        t: out STD_LOGIC_VECTOR (4 downto 0)
        );
   end component;
   component fetch is
        port (
                                                           --访存模
            irnew: in STD_LOGIC_VECTOR (15 downto 0);
块输入的 IR
                                                         --回写模
         pcnew : in STD_LOGIC_VECTOR (15 downto 0);
块, 更新 PC
         clk: in STD_LOGIC;
                                                          --节拍
         pcupdate : in STD_LOGIC;
                                                          --告诉要更
新 PC 了
                                                         --复位
         reset : in STD_LOGIC;
         t0: in STD_LOGIC;
        t1:in STD_LOGIC;
         irout : out STD_LOGIC_VECTOR (15 downto 0);
                                                         --输出的 IR
         pcout : out STD_LOGIC_VECTOR (15 downto 0);
         irrep: out STD_LOGIC
        );
   end component;
   component ALU is
        port (
           -- 实现准备和运算功能
           enable_t: in std_logic; -- 准备和运算功能使能信号
            ir: in std_logic_vector(15 downto 0); --16 位的 IR 信号
            -- 向访存控制模块输出
            sig_reg7aluout: out std_logic_vector (15 downto 0); -- 暂存器输
出端口
            sig_reg7addrout : out std_logic_vector ( 15 downto 0 ); -- 8 位地址
输出端口
            --reg7_out : out std_logic_vector ( 7 downto 0 );
            -- 实现回写功能
            enable_wb:in std_logic;-- 回写功能使能
            reg wb:in std logic vector (7 downto 0); -- 回写接收端口
            -- 进位标志
            cy: out std_logic
        );
   end component;
```

```
component control is
       port (
           IRreq :in STD_LOGIC;
                                                  --ir 使能
                                                  --对取指模块
           IR:out STD_LOGIC_VECTOR (15 downto 0);
输出 ir
                                                  --接收取指指
           PCout: in STD LOGIC VECTOR (15 downto 0);
令
          ALUOUT: in STD_LOGIC_VECTOR (7 downto 0);
                                                  --运算模块
          Addr: in STD_LOGIC_VECTOR (15 downto 0);
                                                 --运算模块
          ABUS: out STD_LOGIC_VECTOR (15 downto 0); --对主存输出
地址
           DBUS: inout STD_LOGIC_VECTOR (15 downto 0); --数据总线
           --给主存发
           nWR: out STD_LOGIC;
                                                     --写主存使
能
           nRD: out STD_LOGIC;
                                                     --读主存使
能
           nMREQ: out STD_LOGIC;
                                                    --主存片选
信号
          nBHE:out STD_LOGIC;
                                                    --主存高八
位控制信号
                                                    --主存低八
          nBLE : out STD_LOGIC;
位控制信号
          --运算模块/取指模块给出,要不要访内存
           nMWR: in STD_LOGIC;
                                                     --ALU 写
数使能
                                                     --ALU 取数
           nMRD: in STD_LOGIC;
使能
          --来自存储模块
           data : out STD_LOGIC_VECTOR (7 downto 0)
                                                  --对存储控制
输出取到的数据。
       );
   end component;
   component save is
       port (
          t:in STD_LOGIC;
          ALUOUT: in std_logic_vector(7 downto 0);
                                              --- ALU 输出的值
           data : in std_logic_vector(7 downto 0);
                                              --- 接收区属的时
候访存控制的数据
```

```
nMWR: out std_logic;
          IR: in STD LOGIC VECTOR (15 downto 0);
           nMRD: out STD_LOGIC;
           Rtemp: out std logic vector(7 downto 0)
       );
   end component;
   component write_back is
       port (
           PCin:in std_logic_vector(15 downto 0); --接收取指模
块传出的 PC, 用于 0 跳转和直接跳转
          t:in STD LOGIC;
                                                      -- 回写
使能
           Rtemp: in STD_LOGIC_VECTOR (7 downto 0);
                                                    -- 接收来
自存储管理模块的寄存器
          IR: in STD_LOGIC_VECTOR (15 downto 0);
                                                    -- 接收取
指模块传出的 IR
          --z:in STD LOGIC;
                                                        --接收
ALU 传出的 z
           cy:in STD_LOGIC;
                                                       --接收
ALU 传出的进位
           Rupdate : out STD_LOGIC;
                                                       -- 寄存
器回写使能信号
           Rdata: out STD_LOGIC_VECTOR (7 downto 0); -- ALU 输
出的寄存器回写数据
          PCupdate : out STD_LOGIC;
                                                      -- PC 🗵
写使能型号
           PCnew: out STD LOGIC VECTOR (15 downto 0)
                                                      --输出 PC
回写的值
   end component;
                                     --正常节拍
signal t : STD LOGIC VECTOR(4 downto 0);
signal IR_C_F: STD_LOGIC_VECTOR(15 downto 0); -- 取指模块取出的 ir
signal PCout_F_CW: STD_LOGIC_VECTOR(15 downto 0); -- PC 送往访存控制取
指,送回写模块
signal PCnew W F: STD LOGIC VECTOR(15 downto 0); -- 跳转的时候要更
新的 PC
                                           -- 跳转更新 PC 使能
signal PCupdate W F: STD LOGIC;
信号
signal irout_F_ASW: STD_LOGIC_VECTOR(15 downto 0); --取指模块取到的 Ir,会
送往 ALU 存储 和回写
                                     -- 取指送往访存控制,告诉
signal irreq_F_C : STD_LOGIC;
要取指令了
```

```
signal ALUOUT_A_CS : STD_LOGIC_VECTOR(15 downto 0);  ---ALU 送往其他模
块的 aluout
signal Addr_A_C: STD_LOGIC_VECTOR(15 downto 0); --- ALU 送往访存的
addr
signal Rupdate_W_A : STD_LOGIC;
                                                      ---回写模块送往
ALU 的更改寄存器使能信号
signal Rdata_W_A : STD_LOGIC_VECTOR(7 downto 0);
                                                      ----回写模块输出
的要更新的寄存器的值
signal data_C_S: STD_LOGIC_VECTOR(7 downto 0);
                                                     -- 取数的时候使
用
signal nMWR S C: STD LOGIC;
                                                         --写数使能
signal nMRD S C: STD LOGIC;
                                                        --读数使能
signal Rtemp_S_W: STD_LOGIC_VECTOR(7 downto 0);
                                                       -- 存储模块向
回写模块
                                                        --进位
signal cy_A_W: STD_LOGIC;
begin
    u1: clock port map(CLK, RST, t);
    u2: fetch port map(IR_C_F, PCnew_W_F, CLK, PCupdate_W_F, RST, t(0), t(1),
irout F ASW, PCout F CW, irreq F C);
    u3: ALU port map(t(2), irout_F_ASW, ALUOUT_A_CS, Addr_A_C,
Rupdate_W_A, Rdata_W_A, cy_A_W);
    u4: control port map(irreq_F_C, IR_C_F, PCout_F_CW, ALUOUT_A_CS(7
downto 0), Addr A C, ABUS, DBUS, nWR, nRD, nMREQ, nBHE, nBLE, nMWR S C,
nMRD_S_C, data_C_S);
    u5: save port map(t(3), ALUOUT_A_CS(7 downto 0), data_C_S, nMWR_S_C,
irout_F_ASW, nMRD_S_C, Rtemp_S_W);
    u6: write_back port map(PCout_F_CW, t(4), Rtemp_S_W, irout_F_ASW,
cy_A_W, Rupdate_W_A, Rdata_W_A, PCupdate_W_F, PCnew_W_F);
end Behavioral;
```

									34.333 ns		
Name	۱۷	0 ns	5 ns	10 ns	15 ns	20 ns	25 ns	30 ns	35 ns	40 ns	45 ns
🕼 rst	0										
∏o cik	0										
▶ i dbus[15:0]	ZZ		222222222222222		10010111	00000010			22222222222222		
abus[15:0]	2.2		222222222222222		00000000	00000000	*		.222222222222		
🍱 nmreq	1										
Va nrd	1										
la nwr	1										
√o nbhe	1										
∏o nble	1										
le clk_period	10					10000 p	5				

						5	93. 6	78 ns																				
Name	v	585 ns		590	ns		. 1	595 ns			600	0 ns		605 n	5		610 ns		615	ns		6	320 ns	5	625 n	15	63	0
Ve rst	0																											
Ūe cik	0																											
▶ 😽 dbus[15:0]	22	22.	22222222	22222	Z				00	000000	0001	0000	0		Z2	222222	222222	ZZ	\subset		10010	0010	10000	00	ZZ	222222	2222222	
abus[15:0]	Z 2	22.	22222222	22222	Z				00	000001	0100	0010	1	X_	Z2	222222	222222	ZZ	\setminus		000000	0000	00011	.00	ZZ	222222	2222222	
Va nmreq	1																											
₩ nrd	1																		┖			4						
₩ nwr	1																											
Unbhe nbhe	1																		L			4						
Unble nble	1																											
🖟 clk_period	10													10	000	ps												

								į	638. 4	168	ns																									ı
Name	V	63	0 n	5		635	ns			640	ns		ı	645	ns		650) ns			6	555	ns		660	ns		6	65 ns			١	670 n	5		
la rst	0	T		_		_		-		Т									_	_	T	_		_			_	 Ť		_					_	Ï
Va cik	1																											F								Ī
dbus[15:0]	ZZ											ZZ:	ZZZ:	7,7,7,7	2222	ZZZ												X			11000	001	10000	110		ı
▶ 🌄 abus[15:0]	Z.2											ZZ	ZZZ	7.7.7.7	2222	ZZZ												X			00000	000	00001	101		i
🌡 nmreq	1																				T															ı
🖟 nrd	1																				1							1								ı
le nwr	1																				T							Ť								
🖟 nbhe	1																																			
la nble	1																																			
🖟 clk_period	10																100	00 p	5									Ī								

					1, 104. 023 N										
Name	Value	1, 148	ns	1, 150 ns	1, 155 ns	1, 160	ns	1, 165 ns	[1,	170 ns	1,175 ns	1, 180	ns	1, 185 ns	1, 190 n
V₀ rst	0														
Un clk	0														
dbus[* dbus[*	00000	Z		011111111		222222 <u>2</u> 22222 222222 <u>2</u> 22222		1	11000101100 000000000		₹		2222222222 2222222222		
U nmreq			000001	,10001001				\uparrow	0000000000	710111	\frown	2		222	
1 nrd	0														
lo nwr	1														
lo nbhe	1														
V₀ nble Ve clk_pe	10000							100	00 ps						
Le cir_pe	10000							100	oo ps						
									1, 200.						
Name	Value 0		1, 19	0 ns	1,195 ns	1, 200 ns	1,	205 ns	1, 210) ns	1, 215 ns	1, 220	ns	1,225 ns	1, 230 n
Ūg clk	1														
dbus[abus[ZZZZZ		:222222:222: :222222:222:			0011111111 1010010001	─ ∤	ZZZ ZZZ	ZZZ <mark>ezezzz</mark> ZZZ <mark>ezezzz</mark>	ZZZ ZZZ		00000001100			221222222 221222222
Un nmreq															
ll⊚ nrd ll⊚ nwr	1								_						_
\mathbb{U}_{a} nbhe \mathbb{U}_{b} nble	1														
le cik_pe									10000 ps						
						1,	244. 763 n	5							
Name	Value		I1 220 pc	1, 235 ns	1, 240	nc	245 ns	11 25	0 ns	1, 255 ns	1, 260 n	- 11	265 ns	1, 270 ns	11
Name 1 rst	Value 0		1,230 ns	1, 230 HS	1, 240	115	l, 245 ns	1, 25	O IIS	1, 200 HS	1, 200 H	• • •	, 265 ns	1,270 HS	
Ūg clk	0														
 dbus[* abus[* 	ZZZZZ ZZZZZ			22222122222222 22222122222222		X		0000000000 0000101001			.2222222 <u>2</u> 2222222 .222222 <u>2</u> 2222222			0001000010000	—}
U nmreq					133								000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
lo nrd	1														
lo nwr lo nbhe	1									_					
Un nble	1														
le cik_pe	10000							1000	0 ps						
						200 072									
					 	280.073 ns									
Name	Value		1, 270 n	1, 27	5 ns 1,	280 ns	1, 285 :	15	1, 290 ns	1, 295	ns 1, 3	00 ns	1, 305 ns	1, 310	ns
₹ rst	0														
Ū₀ clk	0														
> 😽 dbus[1	ZZZZZ		00100001000							22222222222					
▶ 🔣 abus[1		0000	00000001100	1					ZZZ	2222222222	Ž.				
la nmreq															
100	1														
100	1														
V _Q nbhe															
띦 nble ዬ clk_pe	10000							1000) 50						
Le cik_pe	10000							1000	בע ז						

			1, 325. 043 ns			
Name Value	1,310 ns	1,315 ns 1,320 ns	1, 325 ns 1, 330 ns	1,335 ns 1,340 ns	1,345 ns	1,350 ns 1,3
Vorst □						
∏o clk 1						
▶ 🕌 dbus[22222	222272222222222	1001001000000000		2222222222222222		
abus[1 zzzzz	2222222222222222	0000000000011010		2222222222222222		
Unmreq 1						
Unrd 1	_				_	
Va nwr 1						
Va nbhe 1						
10	_					
			10000			
☐ clk_pe 10000			10000 ps			
					1, 395. 000	U ns
Name Value	1,355 ns 1,360 ns	s 1,365 ns 1,370 n	ns 1,375 ns 1,380	0 ns 1,385 ns 1,3	90 ns 1,395 ns	1,400 ns
Vo clk 1						
b dbus[1 00000 1 1 1 1 1 1 1 1	2222222222222222	110000101001001 000000000001101		22222222222222		00000000000000
Va nmreq 0 ■		000000000000000000000000000000000000000		22222222		0001010010011
lo nrd 1						
la nwr 0						
la nble 0						
le cik_pe 10000			10000 ps			
		[1, 405.000 ns]			<u> </u>	
		2, 400. 000 113				
Name Value	1,400 ns	1,405 ns 1,410 ns	1,415 ns 1,420 ns	1,425 ns 1,430 ns	1,435 ns	1,440 ns 1,
Vorst 0 Vock 1						
▶ 😽 dbus[1 22222	000000000000000	222222222222	1000001000010000	27	22222222222222	
▶ 🎇 abus[1 ZZZZZ	0000001010010011	22222222222222	000000000011100	22	2222222222222	
lonmred 1						
la nwr 1						
la nbhe 1						
Un nble 1			10000 ps			
l cik_pe 10000			10000 ps			
					1, 475. 0	00 ns
					<u> </u>	
Name Value	1, 435 ns 1, 440	ns 1,445 ns 1,450) ns 1,455 ns 1,4	160 ns 1,465 ns 1,	470 ns 1,475 n	1, 480 ns
Voorst 0 Voorst 1						
dbus[¹ ZZZZZ]		2222222222222	Z	1000100000	000100	2222222222
▶ ■ abus[1 22222		222222222222		000000000		2222222222
la nmreq 1						
Ug nrd 1 Ug nwr 1						
le nbhe 1						
nble 1						
│ clk_pe 10000			10000			
			10000 ps			

					ı,	100.277 115							
Name		Value	 1,480 ns	1,485 ns		1,490 ns	1,495 ns	1,500 ns	1,505 ns	1,510 ns	1,515 ns	1,520 ns	1, 8
le	rst	0											
1 ₆	clk	1											
1	dbus[1	ZZZZZ					Z.	22222222222					
► 4 6	abus[1	ZZZZZ				ZZZZ	2222222222				00000000	00000100	Z•
L _o		1											
L.	nrd	1											
L.	nwr	1											
L.	nbhe	1											
Ų.	nble	1											
		10000						10000 ps					

实验感想

- 1. 设计过程: 在刚开始的设计中,出现了对整体的把握不是特别严谨的问题,尤其是在访存这块出现了比较严重的问题,没有比较好的理清几个访存操作,致使在写 VHDL 的过程中一直不能比较良好的解决问题。
- 2. 调试过程:数据总线采用的是 inout 类型,但是在整个过程中对 inout 的理解不是很好,在老师的辅导和同学的帮助中才慢慢的开始 理解他,最后解决了问题。
- 3. 下载过程: 本以为总的仿真波形没有问题之后可以很快的下载到开发 板上,结果就在生成 bit 文件的时候遇到了闭门羹——直接无法生成 bit 文件,遇到了 93 错误,还好在老师的提醒下修改了取指阶段的代码,让每一个 process 负责一个信号,即把 pc 和 ir 分来,放在两个 Process 中。接下来的过程还是遇到了很多奇怪的问题,出现了往主 存中写数写不出的错误,最后在老师的帮助下对一些信号接上了等,逐一去查找错误,最后发现问题出现在回写阶段,才比较好的解决了问题。

总的来说:虽然实验台比较老旧,甚至有的设备直接无法工作。但这次实验室特别有用的,自己开始按照自己的一些思路去设计 CPU,比较好的复习了计算机组成原理中的一些东西,也对 CPU 有了更深层次的认识。

附测试代码:

Clock_tb:

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY clock_tb IS
END clock_tb;
ARCHITECTURE behavior OF clock_tb IS
    -- Component Declaration for the Unit Under Test (UUT)
     COMPONENT clock
     PORT(
           clk: IN std_logic;
           reset: IN std_logic;
           t: OUT std_logic_vector(3 downto 0)
         );
     END COMPONENT;
   --Inputs
   signal clk : std_logic := '0';
   signal reset : std_logic := '0';
  --Outputs
   signal t : std_logic_vector(3 downto 0);
   -- Clock period definitions
   constant clk_period : time := 100 ns;
BEGIN
  -- Instantiate the Unit Under Test (UUT)
   uut: clock PORT MAP (
            clk => clk,
            reset => reset,
            t => t
```

```
);
            -- Clock process definitions
            clk_process :process
            begin
               clk <= '0';
               wait for clk_period/2;
               clk <= '1';
               wait for clk_period/2;
            end process;
           -- Stimulus process
            stim_proc: process
            begin
               -- hold reset state for 100 ns.
               reset <= '1';
               wait for 100 ns;
               reset <= '0';
               wait for clk_period*10;
               wait for 100ns;
               reset <= '1';
               -- insert stimulus here
               wait;
            end process;
        END;
Fetch_tb:
        LIBRARY ieee;
        USE ieee.std_logic_1164.ALL;
        -- Uncomment the following library declaration if using
        -- arithmetic functions with Signed or Unsigned values
        --USE ieee.numeric_std.ALL;
        ENTITY fetch_tb IS
        END fetch_tb;
        ARCHITECTURE behavior OF fetch_tb IS
             -- Component Declaration for the Unit Under Test (UUT)
```

```
COMPONENT fetch
    PORT(
          irnew : IN std_logic_vector(15 downto 0);
          pcnew : IN std_logic_vector(15 downto 0);
          clk: IN std logic;
          pcupdate : IN std_logic;
          reset: IN std_logic;
          t0: IN std_logic;
          t1: IN std logic;
          irout : OUT std_logic_vector(15 downto 0);
           pcout : OUT std_logic_vector(15 downto 0);
          irrep: OUT std_logic
         );
    END COMPONENT;
   --Inputs
   signal irnew: std_logic_vector(15 downto 0) := (others => '0');
   signal pcnew: std_logic_vector(15 downto 0) := (others => '0');
   signal clk : std_logic := '0';
   signal pcupdate : std logic := '0';
   signal reset : std_logic := '0';
   signal t0 : std_logic := '0';
   signal t1 : std_logic := '0';
  --Outputs
   signal irout : std_logic_vector(15 downto 0);
   signal pcout : std_logic_vector(15 downto 0);
   signal irrep : std_logic;
   -- Clock period definitions
   constant clk period : time := 100 ns;
BEGIN
  -- Instantiate the Unit Under Test (UUT)
   uut: fetch PORT MAP (
            irnew => irnew,
            pcnew => pcnew,
            clk => clk,
            pcupdate => pcupdate,
            reset => reset,
            t0 => t0,
            t1 => t1,
```

```
irout => irout,
        pcout => pcout,
        irrep => irrep
      );
-- Clock process definitions
clk_process :process
begin
   clk <= '0';
   wait for clk_period/2;
   clk <= '1';
   wait for clk_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
   -- hold reset state for 100 ns.
   wait for 100ns;
   reset <= '1';
   t0 <= '0';
   t1 <= '0';
   pcupdate <= '0';
   irnew <= "1111000011110000";
   pcnew <= "0000000111111111";
   wait for 100ns;
   reset <= '0';
   t0 <= '1';
   wait for 100ns;
   t0 <= '0';
   --pcupdate <= '1';
   wait for 150ns;
   pcupdate <= '0';
   t1 <= '1';
   wait for 100ns;
   --下面一行是刚才修改的
   t0 <= '1';
   pcupdate <= '1';
   t1 <= '0';
   wait for 100ns;
   reset <= '1';
```

```
wait for clk_period*10;
               -- insert stimulus here
               wait;
            end process;
        END;
ALU_tb:
     LIBRARY ieee;
     USE ieee.std_logic_1164.ALL;
     -- Uncomment the following library declaration if using
     -- arithmetic functions with Signed or Unsigned values
     --USE ieee.numeric_std.ALL;
     ENTITY ALU_tb IS
     END ALU_tb;
     ARCHITECTURE behavior OF ALU_tb IS
          -- Component Declaration for the Unit Under Test (UUT)
          COMPONENT ALU
          PORT(
                enable_t: IN std_logic;
                    ir : IN std_logic_vector(15 downto 0);
                sig_reg7aluout : OUT     std_logic_vector(15 downto 0);
                sig_reg7addrout : OUT std_logic_vector(15 downto 0);
                enable wb: IN std logic;
                reg_wb : IN std_logic_vector(7 downto 0);
                cy:OUT std_logic
               );
          END COMPONENT;
         --Inputs
         signal enable_t : std_logic := '0';
          signal ir : std_logic_vector(15 downto 0) := (others => '0');
         signal enable_wb : std_logic := '0';
         signal reg_wb : std_logic_vector(7 downto 0) := (others => '0');
```

-- Stimulus process
stim_proc: process
begin
-- 测试回写模
ir <= "0000011100000000";
reg_wb <= "00000000";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';

wait for 20 ns;

cy => cy

);

ir <= "0000011000000000";
reg_wb <= "11111111";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "00000101000000000";</pre>

reg_wb <= "11111111"; enable_wb <= '0';

```
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "000001000000000";
reg_wb <= "01000100";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "0000001100000000";
reg_wb <= "00110011";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "000000100000000";
reg_wb <= "00100010";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "000000100000000";
reg_wb <= "00010001";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
ir <= "000000000000000";
reg_wb <= "00000000";
enable_wb <= '0';
wait for 20 ns;
enable_wb <= '1';
wait for 20 ns;
enable_wb <= '0';
```

```
-- 测试操作码,同时测试进位标志
--ADD
ir <= "0000011000000110";
enable_t <= '0';
wait for 20 ns;
enable_t <= '1';
wait for 20 ns;
enable_t <= '0';
wait for 20 ns;
--SUB
ir <= "000011100000001";
enable_t <= '0';
wait for 20 ns;
enable_t <= '1';
wait for 20 ns;
enable_t <= '0';
wait for 20 ns;
--MOV
ir <= "0001010100000001";
enable_t <= '0';
wait for 20 ns;
enable_t <= '1';
wait for 20 ns;
enable_t <= '0';
wait for 20 ns;
--MVI
ir <= "1001011010101010";
enable t <= '0';
wait for 20 ns;
enable_t <= '1';
wait for 20 ns;
enable_t <= '0';
wait for 20 ns;
--LDA
ir <= "1101100010101010";
enable_t <= '0';
wait for 20 ns;
enable_t <= '1';
wait for 20 ns;
```

```
enable_t <= '0';
               wait for 20 ns;
               --STA
               ir <= "1100011010101010";
               enable_t <= '0';
               wait for 20 ns;
               enable_t <= '1';
               wait for 20 ns;
               enable_t <= '0';
               wait for 20 ns;
               --JMP
               ir <= "1000111010101010";
               enable_t <= '0';
               wait for 20 ns;
               enable_t <= '1';
               wait for 20 ns;
               enable_t <= '0';
               wait for 20 ns;
               --JZ
               ir <= "1000011010101010";
               enable_t <= '0';
               wait for 20 ns;
               enable_t <= '1';
               wait for 20 ns;
               enable_t <= '0';
               wait for 20 ns;
            wait;
         end process;
     END;
Control_tb:
     LIBRARY ieee;
     USE ieee.std_logic_1164.ALL;
     -- Uncomment the following library declaration if using
     -- arithmetic functions with Signed or Unsigned values
     --USE ieee.numeric_std.ALL;
     ENTITY control_tb IS
```

ARCHITECTURE behavior OF control_tb IS

-- Component Declaration for the Unit Under Test (UUT) COMPONENT control PORT(IRreq: IN std logic; IR : OUT std_logic_vector(15 downto 0); PCout: IN std_logic_vector(15 downto 0); ALUOUT: IN std_logic_vector(7 downto 0); Addr: IN std_logic_vector(15 downto 0); ABUS: OUT std_logic_vector(15 downto 0); DBUS : INOUT std_logic_vector(15 downto 0); nWR: OUT std_logic; nRD: OUT std_logic; nMREQ: OUT std_logic; nBHE: OUT std_logic; nBLE: OUT std_logic; nMWR: IN std logic; nMRD: IN std_logic; data: OUT std_logic_vector(7 downto 0)); **END COMPONENT;** --Inputs signal IRreq : std_logic := '0'; signal PCout : std_logic_vector(15 downto 0) := (others => '0'); signal ALUOUT : std_logic_vector(7 downto 0) := (others => '0'); signal Addr: std logic vector(15 downto 0) := (others => '0'); signal nMWR: std_logic:= '0'; signal nMRD : std_logic := '0'; signal DBUS: std logic vector(15 downto 0); --Outputs signal IR: std_logic_vector(15 downto 0); signal ABUS : std_logic_vector(15 downto 0); signal nWR: std_logic;

signal nRD : std_logic;
signal nMREQ : std_logic;

```
signal nBHE : std_logic;
signal nBLE : std_logic;
signal data : std_logic_vector(7 downto 0);
-- No clocks detected in port list. Replace <clock> below with
-- appropriate port name
```

BEGIN

```
-- Instantiate the Unit Under Test (UUT)
uut: control PORT MAP (
        IRreq => IRreq,
        IR => IR,
        PCout => PCout,
        ALUOUT => ALUOUT,
        Addr => Addr,
        ABUS => ABUS,
        DBUS => DBUS,
        nWR => nWR,
        nRD => nRD,
        nMREQ => nMREQ,
        nBHE => nBHE,
        nBLE => nBLE,
        nMWR => nMWR,
        nMRD => nMRD,
        data => data
     );
-- Stimulus process
stim_proc: process
begin
   -- hold reset state for 100 ns
     --- ??
     wait for 100 ns;
     nMRD <= '1';
     nMWR <= '1';
     DBUS <= "111111111111111";
     IRreq <= '1';
```

PCout <= "1111000011110000";

```
IRreq <= '0';
              nMRD <= '0';
              DBUS <= "1111111111111111;
              Addr <= "0101010101010101";
              wait for 100 ns;
              DBUS <= "ZZZZZZZZZZZZZZ; --gaozu
              wait for 100 ns;
              nMRD <= '1';
              nMWR <= '0';
              ALUOUT <= "00001111";
              Addr <= "1010101010101010";
            wait;
        end process;
     END;
Save_tb:
       LIBRARY ieee;
       USE ieee.std_logic_1164.ALL;
       -- Uncomment the following library declaration if using
       -- arithmetic functions with Signed or Unsigned values
       --USE ieee.numeric_std.ALL;
       ENTITY save_tb IS
       END save_tb;
       ARCHITECTURE behavior OF save_tb IS
            -- Component Declaration for the Unit Under Test (UUT)
            COMPONENT save
            PORT(
                 t:IN std_logic;
                 ALUOUT: IN std_logic_vector(7 downto 0);
                 data : IN std_logic_vector(7 downto 0);
                 nMWR: OUT std_logic;
                 IR : IN std_logic_vector(15 downto 0);
                 nMRD: OUT std_logic;
```

wait for 100 ns;

```
Rtemp: OUT std_logic_vector(7 downto 0)
         );
    END COMPONENT;
   --Inputs
   signal t : std_logic := '0';
   signal ALUOUT : std_logic_vector(7 downto 0) := (others => '0');
   signal data : std_logic_vector(7 downto 0) := (others => '0');
   signal IR: std_logic_vector(15 downto 0) := (others => '0');
  --Outputs
   signal nMWR : std_logic;
   signal nMRD : std_logic;
   signal Rtemp : std_logic_vector(7 downto 0);
   -- No clocks detected in port list. Replace <clock> below with
   -- appropriate port name
BEGIN
  -- Instantiate the Unit Under Test (UUT)
   uut: save PORT MAP (
           t => t,
           ALUOUT => ALUOUT,
            data => data,
            nMWR => nMWR,
            IR => IR,
            nMRD => nMRD,
            Rtemp => Rtemp
         );
   -- Stimulus process
   stim_proc: process
   begin
       -- hold reset state for 100 ns.
      wait for 100 ns;
      t <= '0';
      wait for 100 ns;
      t <= '1';
      IR <= "110110000000000";
                                      --取数
      data <= "01010011";
```

```
wait for 100 ns;
              IR <= "110000000000000";
                                            --存数
              ALUOUT <= "11110000";
              -- insert stimulus here
              wait;
           end process;
       END;
Write_back_tb:
   LIBRARY ieee;
   USE ieee.std_logic_1164.ALL;
   -- Uncomment the following library declaration if using
   -- arithmetic functions with Signed or Unsigned values
   --USE ieee.numeric_std.ALL;
   ENTITY write_back_tb IS
   END write_back_tb;
   ARCHITECTURE behavior OF write_back_tb IS
       -- Component Declaration for the Unit Under Test (UUT)
       COMPONENT write_back
       PORT(
             PCin: IN std_logic_vector(15 downto 0);
             t:IN std_logic;
             Rtemp : IN std_logic_vector(7 downto 0);
             IR:IN std_logic_vector(15 downto 0);
             z: IN std logic;
             cy: IN std_logic;
             Rupdate : OUT std_logic;
             Rdata: OUT std_logic_vector(7 downto 0);
             PCupdate : OUT std_logic;
             PCnew: OUT std_logic_vector(15 downto 0)
            );
       END COMPONENT;
      --Inputs
      signal PCin: std_logic_vector(15 downto 0) := (others => '0');
      signal t : std_logic := '0';
```

```
signal Rtemp : std_logic_vector(7 downto 0) := (others => '0');
   signal IR: std_logic_vector(15 downto 0) := (others => '0');
   signal z : std_logic := '0';
   signal cy : std_logic := '0';
  --Outputs
   signal Rupdate: std_logic;
   signal Rdata : std_logic_vector(7 downto 0);
   signal PCupdate: std_logic;
   signal PCnew : std_logic_vector(15 downto 0);
   -- No clocks detected in port list. Replace <clock> below with
   -- appropriate port name
BEGIN
  -- Instantiate the Unit Under Test (UUT)
   uut: write_back PORT MAP (
```

```
PCin => PCin,
  t => t,
  Rtemp => Rtemp,
  IR => IR,
  z => z,
  cy => cy,
  Rupdate => Rupdate,
  Rdata => Rdata,
  PCupdate => PCupdate,
  PCnew => PCnew
);
```

```
-- Stimulus process
stim_proc: process
begin
   -- hold reset state for 100 ns.
   wait for 100 ns;
   t <= '0';
   wait for 100 ns;
   t <= '1'; ---JMP
   IR <= "1000100001010101";
```

```
wait for 100 ns;
          t <= '0';
          wait for 100 ns;
          t <= '1';
          IR <= "100000000001111";
          z <= '1';
          wait for 100 ns;
          t <= '0';
          wait for 100 ns;
          t <= '1';
          IR <= "1000001000001101";
          z <= '0';
          wait for 100 ns;
          t <= '0';
          wait for 100 ns;
          t <= '1';
          IR <= "11000111111110000";
                                         -- STA
          wait for 100 ns;
          t <= '0';
          wait for 100 ns;
          t <= '1';
          IR <= "0001000100000010";
          Rtemp <= "11111111";
          -- insert stimulus here
          wait;
       end process;
   END;
CPU_tb:
     LIBRARY ieee;
     USE ieee.std_logic_1164.ALL;
     -- Uncomment the following library declaration if using
     -- arithmetic functions with Signed or Unsigned values
     --USE ieee.numeric_std.ALL;
```

```
ENTITY CPU_tb IS
END CPU_tb;
ARCHITECTURE behavior OF CPU_tb IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT CPU
    PORT(
          RST: IN std_logic;
          CLK: IN std_logic;
          ABUS: OUT std_logic_vector(15 downto 0);
          DBUS : INOUT     std_logic_vector(15 downto 0);
          nMREQ: OUT std_logic;
          nRD: OUT std_logic;
          nWR: OUT std_logic;
          nBHE: OUT std_logic;
          nBLE: OUT std_logic
         );
    END COMPONENT;
   --Inputs
   signal RST : std logic := '0';
   signal CLK : std_logic := '0';
    --BiDirs
   signal DBUS : std_logic_vector(15 downto 0);
    --Outputs
   signal ABUS : std_logic_vector(15 downto 0);
   signal nMREQ : std_logic;
   signal nRD: std_logic;
   signal nWR: std_logic;
   signal nBHE : std_logic;
   signal nBLE: std_logic;
   -- Clock period definitions
   constant CLK_period : time := 10 ns;
BEGIN
```

-- Instantiate the Unit Under Test (UUT)

```
uut: CPU PORT MAP (
           RST => RST,
           CLK => CLK,
           ABUS => ABUS,
           DBUS => DBUS,
           nMREQ => nMREQ,
           nRD => nRD,
           nWR => nWR,
           nBHE => nBHE,
           nBLE => nBLE
         );
   -- Clock process definitions
   CLK_process :process
   begin
         CLK <= '0';
         wait for CLK_period/2;
         CLK <= '1';
         wait for CLK_period/2;
   end process;
   -- Stimulus process
   stim_proc: process
   begin
      -- hold reset state for 100 ns.
         --复位
         RST <= '1';
         DBUS <= "ZZZZZZZZZZZZZZ;
      wait for 10 ns;
         RST <= '0';
         wait for 5 ns;
                                                            --- MVI R7 00000000
         DBUS <= "1001011100000010";
9700
         wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZ;;
         wait for 40 ns;
         DBUS <= "1100011110000000";
                                                          --- STA R7 80h
                                                                             c780
         wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZ;
         wait for 40 ns;
```

```
DBUS <= "1001011000000010";
                                                      --- MVI R6 00000010
9600
      wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100011010000001";
                                                        --- STA R6
                                                                     81h
c681
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1001010100000100";
                                                        --- MVI R5 00000100
9504
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100010110000010";
                                                        --- STA R5 82h
c582
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "100101000001000";
                                                        --- MVI R4 00001000
9408
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
                                                        --- STA R4 83h
        DBUS <= "1100010010000011";
c483
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1001001100010000";
                                                        --- MVI R3 00010000
9310
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100001110000100";
                                                        --- STA R3 84h
c384
```

```
wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;";
        wait for 40 ns;
        DBUS <= "1001001000100000";
                                                        --- MVI R2 00100000
9220
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;";
        wait for 40 ns;
        DBUS <= "1100001010000101";
                                                        --- STA R2 85h
c285
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1001000101000000";
                                                        ---MVI R1 01000000
9140
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100000110000110";
                                                        --- STA R1 86h
c186
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "10010000111111111";
                                                        --- MVI R0 11111111
90ff
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100000010000111";
                                                        --- STA R0 87h
c087
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "000000000000110";
                                                        --- ADD R0 R6
11111111 + 10 0006
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
```

```
wait for 40 ns;
```

```
DBUS <= "110000010001000";
                                                        --- STA R0 88h
00000000 cy 1 c088
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "000011000000101";
                                                        --- SUB R4 R5
0c05
        wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100010010001001";
                                                       --- STA R4 89h
00000100
             1000-0100
                           c489
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;";
        wait for 40 ns;
        DBUS <= "0001011000000100";
                                                        --- MOV R6 R4
1604
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100011010010000";
                                                        --- STA R6 90h
0100
       c690
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1101110110001001";
                                                      --- LDA R5 10001001
89h
      r4
            dd89
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;";
        wait for 20 ns;
        DBUS <= "0000000111111111";
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 10 ns;
        DBUS <= "1100010110010001";
                                                        --- STA R5 91h
11111111 c591
```

```
wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZ;";
        wait for 40 ns;
        DBUS <= "1100011110010010";
                                                       --STA R7 92h
c792
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1000001000010000";
                                                       -- JZ R2 00001000
8210
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1001001000000000";
                                                       -- MVI R2 00000000
9200
        wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1100001010010011";
                                                       --STA R2 93h
                                                                         c293
        wait for 10 ns;
         DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "1000001000010000";
                                                       -- JZ R2 00010000
8210
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZZ;
        wait for 40 ns;
        DBUS <= "100010000000100";
                                                       -- JMP 00000100
8804
        wait for 10 ns;
        DBUS <= "ZZZZZZZZZZZZZZ;
        wait for 40 ns;
      -- insert stimulus here
      wait;
   end process;
```