Liam Hardiman October 26, 2018

260A - Homework 1

Problem 1.

- (i) Show that ℓ^p , $1 \le p \le \infty$, is a Banach space.
- (ii) Prove that $\ell^{\infty} = (\ell^1)^*$, but $(\ell^{\infty})^* \neq \ell^1$.

Proof. (i) Let $a = (a^{(n)})$ and $b = (b^{(n)})$ be in ℓ^p , $1 . We have by Hölder's inequality for any complex <math>\lambda$

$$\begin{aligned} \|a + \lambda b\|_{p}^{p} &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{p} \\ &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq \sum_{n=1}^{\infty} |a^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq (\|a\|_{p} + |\lambda| \|b\|_{p}) \left(\sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{(p-1)\frac{p}{p-1}} \right)^{\frac{p-1}{p}} \\ &= (\|a\|_{p} + |\lambda| \|b\|_{p}) \|a + \lambda b\|_{p}^{p-1}, \end{aligned}$$

Which shows that $||a + \lambda b||_p \le ||a||_p + |\lambda| ||b||_p < \infty$. This shows both that ℓ^p , $1 , is a vector space (as linear combinations of elements of <math>\ell^p$ have finite p-norm) and that the p-norm satisfies the triangle inequality (take $\lambda = 1$).

 ℓ^1 is a vector space and the $\|\cdot\|_1$ norm satisfies the triangle inequality thanks to the triangle inequality on \mathbb{C} :

$$||a + \lambda b||_1 = \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|$$

$$\leq \sum_{n=1}^{\infty} |a^{(n)}| + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}|$$

$$= ||a||_p + |\lambda| ||b||_p.$$

Similarly, for $a, b \in \ell^{\infty}$ and $\lambda \in \mathbb{C}$ we have

$$\|a + \lambda b\|_{\infty} = \sup_{n \ge 1} |a^{(n)} + \lambda b^{(n)}| \le \sup_{n \ge 1} (|a^{(n)}| + |\lambda||b^{(n)}|) \le \sup_{n \ge 1} |a^{(n)}| + |\lambda| \sup_{n \ge 1} |b^{(n)}| = \|a\|_{\infty} + |\lambda| \|b\|_{\infty}.$$

We then have that ℓ^p is a normed complex vector space. We now need to show completeness. First let's treat the case of $p < \infty$. Suppose that $\{a_n\}$ is a Cauchy sequence in ℓ^p (here $a_i^{(j)}$ is the *j*-th entry in the *i*-th element of the sequence). Since this sequence is Cauchy we have that for any $\epsilon > 0$ we can find $N \in \mathbb{N}$ so that for all m, n > N

$$||a_m - a_n||_p < \epsilon \iff \sum_{k=1}^{\infty} |a_m^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Since each term in the above sum is nonnegative, we must have that $|a_m^{(k)} - a_n^{(k)}| < \epsilon$ for each k. In particular, we have that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers. Since $\mathbb C$ is complete, we have that $a_n^{(k)} \to a^{(k)} \in \mathbb C$ as $n \to \infty$.

Let a be the sequence of complex numbers whose k-th entry is built from our original Cauchy sequence by $a^{(k)} = \lim_{n \to \infty} a_n^{(k)}$. Our plan is to show that $a_n \to a$ in ℓ^p and that a is in ℓ^p . Fix $\epsilon > 0$. Then for some N we have that $||a_m - a_n||_p < \epsilon$ for all m, n > N. Our trick is to pass to a finite sum and then take limits in a particular order. For any L > 0 and m, n sufficiently large we have

$$\sum_{k=0}^{L} |a_m^{(k)} - a_n^{(k)}|^p \le ||a_m - a_n||_p^p < \epsilon^p.$$

Now the right-hand side does not depend on m, so taking $m \to \infty$ gives

$$\sum_{k=0}^{L} |a^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Then we take $L \to \infty$ which gives $||a - a_n||_p < \epsilon$, so $a_n \to a$ in ℓ^p . We can use this to show that a is in ℓ^p since for all n

$$||a||_p \le ||a - a_n||_p + ||a_n||_p$$
.

For n large enough the first term on the right is bounded by ϵ and the second term is finite since each a_n is in ℓ^p . Thus, ℓ^p is complete, and therefore, a Banach space for $1 \le p < \infty$.

Now let $p = \infty$. If $\{a_n\}$ is a Cauchy sequence in ℓ^{∞} then for $\epsilon > 0$ and m, n sufficiently large we have that $\sup_{k>0} |a_m^{(k)} - a_n^{(k)}| < \epsilon$. Just like in the finite p case, this implies that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers, so we can speak of the entrywise limit a. Also similar to the finite p case we have that for L large

$$\sup_{1 \le k \le L} |a_m^{(k)} - a_n^{(k)}| \le ||a_m - a_n||_{\infty} < \epsilon.$$

Sending m to infinity gives $\sup_{1 \le k \le L} |a^{(k)} - a_n^{(k)}| < \epsilon$ and then sending L to infinity gives $||a - a_n||_{\infty} \to 0$. The argument used in the $p < \infty$ case also shows that $a \in \ell^{\infty}$.

(ii) First we'll show that $(\ell^1)^* = \ell^\infty$ (i.e., they are isometrically isomorphic). Let $\varphi : \ell^\infty \to (\ell^1)^*$ be the map that sends $b \in \ell^\infty$ to T_b , where $T_b(a) = \sum_{k=1}^\infty a^{(k)} b^{(k)}$. That φ is linear is obvious. By Hölder's inequality we have that

$$|T_b(a)| \le \sum_{k=1}^{\infty} |a^{(k)}| |b^{(k)}| \le ||a||_1 \cdot ||b||_{\infty},$$

This shows that T_b is bounded, and therefore continuous, so the image of φ indeed lives in $(\ell^1)^*$. In particular, this shows that $\|\varphi(b)\| \leq \|b\|_{\infty}$ (so φ is a continuous map of vector spaces). To show that φ is an isometry, we need the reverse inequality.

Since $||b||_{\infty} = \sup_{k \geq 1} |b^{(k)}|$, for any $\epsilon > 0$, we can find a natural number N so that $|b^{(N)}| > ||b||_{\infty} - \epsilon$. Consequently, if we let e_n be the sequence in ℓ^1 whose n-th entry is 1 and whose other entries are 0, we have that we can always find N so that $|T_b(e_N)| = |b^{(N)}| > ||b||_{\infty} - \epsilon$. Since ϵ was arbitrary and $||e_n||_1 = 1$, we have that $||T_b||_{\infty} \geq ||b||_{\infty}$. Thus, $||\varphi(b)|| = ||b||_{\infty}$ and φ is an isometry.

Since isometries are injective, it remains to show that φ is surjective. Let T be a functional in $(\ell^1)^*$. For any $a \in \ell^1$ we have that $a = \sum_{k=1}^{\infty} a^{(k)} e_k$ where $\sum |a^{(k)}| < \infty$ and e_k is as it was above. Since $a = \lim_{N \to \infty} \sum_{k=1}^{N} a^{(k)} e_k$, continuity of T tells us that

$$T(a) = T\left(\sum_{k=1}^{\infty} a^{(k)} e_k\right) = \sum_{k=1}^{\infty} a^{(k)} T(e_k).$$

Since continuity is equivalent to boundedness, we have that $|T(e_k)| < M < \infty$ for some M. Thus, T is the image of the bounded sequence sequence $(T(e_1), T(e_2), \ldots)$ under φ , so φ is surjective. φ is then a surjective isometry $\ell^{\infty} \to (\ell^1)^*$.

Now let's show that $(\ell^{\infty})^* \neq \ell^1$. Let S be the subspace of ℓ^{∞} consisting of all convergent sequences and let $T: S \to \mathbb{C}$ be the map that sends a convergent sequence to its limit. T is clearly linear and it's bounded since

$$|T(a)| = |\lim_{k \to \infty} a^{(k)}| \le \limsup_{k \to \infty} |a^{(k)}| \le \sup_{k \ge 1} |a^{(k)}| = ||a||_{\infty}.$$

By the Hahn-Banach theorem, T extends to a continuous linear functional \tilde{T} on all of ℓ^{∞} that agrees with T on S.

If $\tilde{T}(a)$ could be written $\tilde{T}(a) = \sum_{k=1}^{\infty} a^{(k)} b^{(k)}$ for some $b \in \ell^1$, then for all n we would have $b^{(n)} = \tilde{T}(e_n) = T(e_n) = 0$. But then b would be the zero sequence and \tilde{T} is the zero functional, which is nonsense since $\tilde{T}(1,1,\ldots) = T(1,1,\ldots) = 1$. We conclude that \tilde{T} does not have the form required for $(\ell^{\infty})^* = \ell^1$.

Problem 2 Prove that if Z is a subspace of a normed linear space X, and $y \in X$ has distance d from Z, then there exists $\Lambda \in X^*$ such that $\|\Lambda\| \le 1$, $\Lambda(y) = d$ and $\Lambda(z) = 0$ for all $z \in Z$.

Proof. Consider the subspace $Y = Z \oplus ky$ of X, where k the field over which X is defined. This sum is indeed direct since y is not in Z. Define the function $f: Y \to \mathbb{R}$ by $f(z + \alpha y) = \alpha d$. f is linear since

$$f[\gamma(z+\alpha y) + (w+\beta y)] = f[(w+\gamma z) + (\beta + \gamma \alpha)y]$$
$$= (\beta + \gamma \alpha)d$$
$$= \gamma f(z+\alpha y) + f(w+\beta y).$$

3

We claim that $|f(z+\alpha y)| \leq ||z+\alpha y||$. Intuitively, this is because $|f(z+\alpha y)|$ is the distance from $z+\alpha y$ to Z, which is at most $||z+\alpha y||$, since $0 \in Z$. Rigorously, since $0 \in Z$ we have

$$\begin{split} |f(z+\alpha y)| &= |\alpha \cdot d| \\ &= |\alpha| \cdot \inf_{w \in Z} \|y-w\| \\ &= \inf_{w \in Z} \|\alpha y + z - w\| \\ &\leq \|\alpha y + z - 0\| \\ &= \|\alpha y + z\|. \end{split}$$

By the Hahn-Banach theorem, f extends to a continuous (as |f(x)| < ||x|| on Y) linear function Λ on all of X that also satisfies $|\Lambda(x)| \le ||x||$. This gives $||\Lambda|| \le 1$. Furthermore, since Λ agrees with f on Y, we have that $\Lambda(y) = f(y) = d$ and $\Lambda(z) = f(z) = f(z + 0y) = 0$ for all $z \in Z$.

Problem 3. Show that linear combinations of functions of the form

$$\mathbb{R} \ni t \mapsto \frac{1}{t-z}, \quad \operatorname{Im}(z) \neq 0$$

are dense in the space of continuous functions on \mathbb{R} which tend to zero at infinity.

Proof. Let W be the set of linear combinations of functions of the given form. We'd like to apply Stone-Weierstrass, but unfortunately, W isn't a sub-algebra of $C_{(0)}(\mathbb{R})$ since it isn't closed under multiplication. Our plan is to make ourselves a sub-algebra.

By the spanning criterion we have that the closure of W in $C_{(0)}(\mathbb{R})$ is given by

$$\overline{W} = \bigcap_{\substack{T \in C_{(0)}(\mathbb{R})^* \\ T|_W = 0}} \ker T.$$

Now by Riesz-Markov-Kakutani, we have that the dual space, $C_{(0)}(\mathbb{R})^*$, is the set of all complex Radon measures on \mathbb{R} . It then suffices to show that for any $\mu \in C_{(0)}(\mathbb{R})^*$ that satisfies $\int_{\mathbb{R}} \varphi \ d\mu = 0$ for all $\varphi \in W$, then $\int_{\mathbb{R}} f \ d\mu = 0$ for all $f \in C_{(0)}(\mathbb{R})$.

Let μ be a measure such that $\int \varphi \ d\mu$ for all φ in W and let $f(z) = \int_{\mathbb{R}} \frac{1}{t+z} d\mu(t)$ for $\text{Im}(z) \neq 0$. By hypothesis, f is identically zero. By dominated convergence, f is infinitely differentiable with $f^{(n)}(z) = C_n \int_{\mathbb{R}} \frac{1}{(t+z)^{n+1}} d\mu(t) = 0$ for some constant C_n dependent on n.

Now the set, \mathcal{A} , of all linear combinations of functions of the form $t \mapsto \frac{1}{(t+z)^n}$ is an algebra of continuous functions that separates points and vanishes nowhere. By Stone-Weierstrass, their uniform closure is all of $C_{(0)}(\mathbb{R})$. Since any function in $C_{(0)}(\mathbb{R})$ can be uniformly approximated by an element of \mathcal{A} and $\mu(\mathbb{R})$ is finite, we have that $\int \psi d\mu = 0$ for any continuous function ψ . By the spanning criterion, the closure of W is all of $C_{(0)}(\mathbb{R})$.

Problem 4. Let V be a complex vector space and let f_j , $0 \le j \le N$, be linear forms on V such that

$$\bigcap_{j=1}^{N} \ker f_j \subseteq \ker f_0.$$

Show that f_0 is a linear combination of the f_j 's, $1 \le j \le N$.

Proof. (This is lemma 3.9 in Rudin's Functional Analysis.) In order to apply any result related to Hahn-Banach, we need to be working with a normed vector space, which V needn't be. Our plan is to map into \mathbb{C}^n , which clearly is a normed space. We'll apply Hahn-Banach there and use that to help us back in V. Define $f: V \to \mathbb{C}^n$ by $f(x) = (f_1(x), \dots, f_N(x))$. Now define the linear functional $T: f(V) \to \mathbb{C}$ by $T(f(x)) = f_0(x)$.

First we need to show that T is well-defined. Suppose f(x) = f(y). Then $f_j(x) = f_j(y)$ for j = 1, ..., N. In this case, x - y is in the kernel of each f_j , so by hypothesis, it's in the kernel of f_0 too, so T(f(x)) = T(f(y)). Any linear functional on the finite dimensional space \mathbb{C}^N is continuous, so T is a linear continuous functional on f(V). By Hahn-Banach, we can extend T to a linear functional, \tilde{T} , on all of \mathbb{C}^N .

Now any continuous linear functional on \mathbb{C}^N has the form

$$\tilde{T}(z_1,\ldots,z_N) = \alpha_1 z_1 + \cdots + \alpha_N z_N$$

for some complex numbers $\alpha_1, \ldots, \alpha_N$. This representation gives us exactly what we need. For any $x \in V$ we have

$$f_0(x) = \tilde{T}(f(x))$$

$$= \tilde{T}(f_1(x), \dots, f_N(x))$$

$$= \alpha_1 f_1(x) + \dots + \alpha_N f_N(x),$$

so f_0 is a linear combination of the f_j 's.

Problem 5. Let X be a Banach space such that X^* is separable. Prove that X is separable.

Proof. Let T_n be a countable and dense subset of X^* . For each n we can find an x_n in X so that $\frac{1}{2}||T_n|| \le |T_nx_n| \le |T_n||$ and $||x_n|| = 1$. We claim that the rational span of the x_n 's, Y, is a countable dense subset of X.

Suppose not. Then we can find an open neighborhood in X disjoint from \overline{Y} . By the geometric form of Hahn-Banach, we can find a closed affine hyperplane separating \overline{Y} and this neighborhood (since linear subspaces and their complements are convex). That is, we can find $T \in X^*$ that vanishes on \overline{Y} but is

not identically zero. Now by the density of the T_n 's, we can find a sequence T_{n_j} that limits to T in X^* . Now let's look at the norms of the T_{n_j} 's

$$\begin{split} \frac{1}{2} \|T_{n_j}\| &\leq |T_{n_j} x_{n_j}| \\ &\leq |T_{n_j} x_{n_j} - T x_{n_j}| + |T x_{n_j}| \\ &= |T_{n_j} x_{n_j} - T x_{n_j}| \\ &\leq \|T_{n_j} - T\|, \end{split}$$

which goes to zero by construction. But then T would be the zero functional - a contradiction. We conclude that $\overline{Y} = X$ and X is separable.

Problem 6. Show that the closure in $L^2(\mathbb{R})$ of the set of functions of the form

$$p(x)e^{-x^2}, \quad x \in \mathbb{R},$$

where p is a complex polynomial on \mathbb{R} , is equal to all of $L^2(\mathbb{R})$.

Proof. Let W be the set of all polynomials of the form $p(x)e^{-x^2}$. W is a linear subspace of $L^2(\mathbb{R})$, and since $L^2(\mathbb{R})$ is a Hilbert space, we have that $L^2(\mathbb{R}) = \overline{W} \oplus \overline{W}^{\perp}$. It then suffices to show that $W^{\perp} = \{0\}$.

Rather than dealing with general polynomials, we can consider W to be the span of functions of the form $f_n(x) = x^n e^{-x^2}$. Our plan is to show that if $f \in L^2(\mathbb{R})$ is orthogonal to each f_n , then its Fourier transform vanishes identically. Since the map that sends φ to its Fourier transform is an isometric isomorphism on $L^2(\mathbb{R})$, this will show that f itself is identically zero.

$$(\overline{f(x)e^{-x^2}})(t) = \int_{\mathbb{R}} \overline{f(x)}e^{-x^2}e^{-itx} dx$$

$$= \int_{\mathbb{R}} \overline{f(x)}e^{-x^2} \sum_{n=0}^{\infty} \frac{(-itx)^n}{n!} dx$$

$$= \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \int_{\mathbb{R}} \overline{f(x)}x^n e^{-x^2} dx$$

$$= \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} \langle f_n, f \rangle$$

$$= 0.$$

We used Fubini's theorem to switch the order of integration and summation since

$$\left| \overline{f}(x)e^{-x^2} \frac{(-itx)^n}{n!} \right| = |f(x)|e^{-x^2} \frac{|t|^n |x|^n}{n!}$$

is integrable in x (by Hölder's inequality) and summable in n. Now this shows that the Fourier transform of $\overline{f}(x)e^{-x^2}$ vanishes. But $\widehat{f}(x)e^{-x^2}(t) = \widehat{f(x)}e^{-x^2}$, so one vanishes if and only if the other does. Since e^{-x^2} is nonvanishing, we have that f must vanish.

Problem 7. Let $f \in L^1_{loc}(\mathbb{R})$ be 2π -periodic. Show that linear combinations of the translates f(x-a), $a \in \mathbb{R}$ are dense in $L^1(0, 2\pi)$ if and only if each Fourier coefficient of f is nonzero.

Proof. Suppose that the translates of f are dense in $L^1(0, 2\pi)$, but $\widehat{f}(n) = 0$ for some n. Let's look at the Fourier coefficients of the translates.

$$\widehat{f(x-a)}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x-a)e^{-inx} dx$$
$$= e^{-ina} \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt$$
$$= e^{-ina} \widehat{f}(n).$$

In particular, if $\hat{f}(n) = 0$, then the *n*-th Fourier coefficient of each translate also vanishes.

Now e^{-inx} is bounded for all real t, so the map $g \mapsto \frac{1}{2\pi} \int_0^{2\pi} g(x) e^{-inx} dx$ is a continuous (by Hölder's inequality) linear functional on $L^1(0,2\pi)$. By the above discussion, we have that this functional vanishes on all translates of f. Since these translates are dense in $L^1(0,2\pi)$ by hypothesis, we must have that this functional is the zero functional, which it clearly isn't. We conclude that none of f's Fourier coefficients vanish.

Suppose now that $\widehat{f}(n) \neq 0$ for all n and that some linear continuous functional T on $L^1(0, 2\pi)$ vanishes on the translates of f. More concretely, since the dual space of $L^1(0, 2\pi)$ is $L^{\infty}(0, 2\pi)$, there is some $h \in L^{\infty}(0, 2\pi)$ such that

$$T(f(x-a)) = \int_0^{2\pi} f(x-a)h(x) \ dx = 0 \quad \text{for all } a \in \mathbb{R}.$$

This says that the convolution f*h vanishes identically. Since $\widehat{f*h} = \widehat{f} \cdot \widehat{h}$, we have that $\widehat{f}(-t)\widehat{h}(t) = 0$ for all t. By hypothesis, $\widehat{f}(n) \neq 0$ for all n, so $\widehat{h}(n) = 0$ for all n. (Note that \widehat{h} exists since the Fourier transform is defined on $L^1(0,2\pi)$ and $L^\infty(0,2\pi) \subseteq L^1(0,2\pi)$, since $(0,2\pi)$ has finite measure.)

Now by Stone-Weierstrass, the linear space spanned by functions of the form e^{-ikx} is dense in the space of continuous functions on the torus. Since the continuous functions here are dense in $L^1(0, 2\pi)$, we have that the functional T vanishes on a dense subset of $L^1(0, 2\pi)$, and therefore on all of $L^1(0, 2\pi)$. By the spanning criterion, we have that the set of translates of f is then dense in $L^1(0, 2\pi)$.

Problem 8. Let E_1 be a finite-dimensional subspace of the normed space E. Show that there exists a continuous projection $P: E \to E_1$.

Proof. Suppose that E_1 is spanned by the vectors $e_1, \ldots, e_n \in E$ for some $1 \leq n < \infty$. Define the functionals $P_i : E_1 \to \mathbb{C}$ by $\sum_{j=1}^n \alpha_j e_j \mapsto \alpha_i$. We have that for any $x \in E_1$, $|P_i(x)| \leq ||x||$, so the P_i 's are continuous. By Hahn-Banach, we can extend each P_i to $\tilde{P}_i : E \to \mathbb{C}$. Now define $P : E \to E_1$ by

$$P(x) = \tilde{P}_1(x)e_1 + \dots + \tilde{P}_n(x)e_n.$$

Since the e_j 's are in E_1 , we have that the range of P is contained in E_1 . Furthermore, P restricts to the identity map on E_1 , so the range of P is all of E_1 and $P^2 = P$.