

Factory Production and Energy Supply Planning with Multistage Stochastic Optimization

ZOÉ FORNIER^{1,2}, VINCENT LECLÈRE²

¹ METRON, ² CERMICS (ECOLE DES PONTS)

MOTIVATIONS: STUDY CASE

Problem Find a production and energy supply plan minimizing expected daily energy costs (T = 24). Energy is bought in real time or in advance.

Decision Variables

Continuous: production, stocks, energy purchases, charge and stocks;

Binary:

 $b_t^{ij} = \mathbb{1}_{\{j \text{ produced by } i \text{ at } t\}}$

Constraints

Dynamic Equations for energy and product stocks;

Shared resources: hard constraints (binary)
Demand: by product.

Data

Deterministic energy prices and demand; Stochastic: solar energy $q_t^{\rm PV}$.

MATHEMATICAL MODEL

We consider the strategic problem:

(P):
$$\min_{\theta \in \Theta} I(\theta) + V(x_0; \theta)$$

where $V(x_0; \theta)$ is the optimal value of a multistage mixed-integer stochastic problem:

STATE OF THE ART

• Expected Value (EV) Strategy

Principle: replace every random variable by its expected value and solve a deterministic program. **Pros**: use of deterministic solvers, no stagewise independence. **Cons**: doesn't consider uncertainties.

• Model Predictive Control (MPC)

Principle: solve deterministic problems, adjusting trajectory as random realizations are revealed. **Pros**: use of deterministic solvers, no stagewise independence. **Cons**: no solution quality guarantee, slow online running time.

• Stochastic Dynamic Programming (SDP)

Principle: with stagewise independence, we solve the problem with dynamic equations.Pros: few assumptions, easily implementedCons: curse of dimensionality.

• Stochastic Dual Dynamic Programming (SDDP)

Principle: solves continuous multistage linear stochastic problems with Benders-like cuts. **Pros**: fast in practice, and theoretical guarantee.

Cons: cannot handle integer variables (without heavy computational burden, see SDDiP).

SOLVING THE OPERATIONAL PROBLEM

LOOK-AHEAD STRATEGY

$$V_t(x) = \min_{\boldsymbol{u} \in \mathcal{U}_t(x,\xi), x_t} \mathbb{E} \left[L_t^{\theta}(x, \boldsymbol{u}, \boldsymbol{\xi}_t) + \min_{\boldsymbol{x}_{t+1}, \boldsymbol{u}_{t+1}} \mathbb{E} \left[L_{t+1}^{\theta}(\boldsymbol{x}_t, \boldsymbol{u}_{t+1}, \boldsymbol{\xi}_{t+1}) + V_{t+2}(\boldsymbol{x}_{t+1}) \right] \right]$$

$$\boldsymbol{x}_t = D_t^{\theta}(x, \boldsymbol{u}, \boldsymbol{\xi}),$$

$$\boldsymbol{x}_{t+1} = D_{t+1}^{\theta}(\boldsymbol{x}_t, \boldsymbol{u}_{t+1}, \boldsymbol{\xi}_{t+1}),$$

$$\boldsymbol{u}_{t+1} \in \mathcal{U}_{t+1}(\boldsymbol{x}_t, \boldsymbol{\xi}_{t+1}),$$

$$\sigma(\boldsymbol{u}_{t+1}) \subset \sigma(\boldsymbol{\xi}_{t+1}).$$

By keeping integrity constraints at t + 1, we less often get non-admissible solutions.

SOLVING THE DESIGN PROBLEM

The problem (P) can be decomposed in two parts:

- 1. a design problem with variable θ
- 2. an operational sub-problem (P_{θ}) parametrized by θ .

NUMERICAL RESULTS

Evaluation Criterion

For a state-based feedback ψ , and a scenario $\xi_{[T]}$, we define the **Anticipative Regret (AR)**:

$$AR^{\psi}(\xi_{[T]}) = \frac{\hat{V}^{\psi}(x_0, \xi_{[T]}) - \hat{V}^{\psi_{ant}}(x_0, \xi_{[T]})}{|\hat{V}^{\psi_{ant}}(x_0, \xi_{[T]})|},$$

where $\hat{V}^{\psi_{ant}}$ is the value obtained knowing the full scenario from the beginning.

Operational problem results

SOC_{max}	0.5h			3h			6h		
Solar factor	L-A	MPC	EV	L-A	MPC	EV	L-A	MPC	EV
0.5	4.9	0.5	1.0	6.1	0.5	2.4	5.4	0.5	3.2
1.0	6.1	1.3	4.6	3.9	0.9	6.3	2.4	0.6	6.4
2.0	8.7	3.9	14	4.5	1.5	15	4.0	1.4	15
3.0	11	5.6	27	9.1	3.6	28	8.2	3.5	28

Table 1: Anticipative Regret (AR) in % for different methods (EV strategy, MPC, Lookahead) for the operational problem: **MPC** yields the most satisfactory results.

Design problem results

		OPT			AR (in %)	
Solar Factor	MPC	2stage	SDDP	MPC	2stage	SDDP
0.5	6067	6023	6038	1.6	0.9	1.1
1.0	5471	5483	5451	2.1	2.3	1.7
2.0	4552	4553	4481	4.2	4.2	2.5
3.0	3714	3691	3641	8.7	7.9	6.7

Table 2: Expected Cost (Opt) and Anticipative Regret (AR) for different methods (EV, 2–stage, SDDP) determining θ and then MPC.

REFERENCES

[1] Z. Fornier, D. Grosso, and V. Leclere. Joint production and energy supply planning of an industrial microgrid. https://hal.science/hal-03927692, Jan. 2023. working paper or preprint.