

Group Theory

Solutions to Problems in Homework Assignment 04

Spring, 2020

1. The multiplication table for the group $D_3 = \{E, D, F, A, B, C\}$ is given by

- (a) Determine the dimensions of all the inequivalent irreducible representation of D_3 .
- (b) Find the character table for D_3 .

(a) We found in Homework Assignment 02 that the classes of D_3 are given by

$$C_1 = \{E\}, C_2 = \{D, F\}, C_3 = \{A, B, C\}.$$

Because D_3 has three classes, it has three inequivalent irreducible representations. We use d_1 , d_2 , and d_3 to denote respectively the dimensions of these three inequivalent irreducible representations. We then have

$$d_1^2 + d_2^2 + d_3^2 = 6.$$

The solutions to the above equation are given by

$$d_1 = d_2 = 1, \ d_3 = 2,$$

where we have arranged the three inequivalent irreducible representations in the order of increasing dimensionality. We use Γ^1 , Γ^2 , and Γ^3 to denote the three inequivalent irreducible representations of D_3 with Γ^1 the identity representation.

(b) We know that, for the two one-dimensional representations, $\chi^{1,2}(C_k) = \pm 1$ with k = 1, 2, 3.

i. $\chi^{1,2}(C_1)$. Because $\chi^{1,2}(E) = 1$, we have $\chi^{1,2}(C_1) = 1$. ii. $\chi^{1,2}_{1,2}(C_2)$. From $D^2 = F$, we have $\chi^{1,2}(D)^2 = \chi^{1,2}(F)$, which implies that $\chi^{1,2}(F) = 1$. We thus have $\chi^{1,2}(C_2) = 1.$

iii. $\chi^{1,2}(C_3)$. Making use of $A^2 = E$, we have $\chi^{1,2}(C_3) = \pm 1$. We choose $\chi^1(C_3) = 1$ so that the characters of all the classes in the identity representation are all equal to one. We then have $\chi^2(C_3) = -1$.

iv. $\chi^{3}(C_{1}), \, \chi^{3}(C_{2}), \, \text{and} \, \chi^{3}(C_{3}).$ We use

$$\frac{1}{g} \sum_{T \in G} \chi^p(T)^* \chi^q(T) = \delta_{pq} \text{ and } \frac{1}{g} \sum_{T \in G} |\chi(T)|^2 = 1$$

to determine the characters in the representation Γ^3 . We have

$$\chi^{3}(C_{1}) + 2\chi^{3}(C_{2}) + 3\chi^{3}(C_{3}) = 0,$$

$$\chi^{3}(C_{1}) + 2\chi^{3}(C_{2}) - 3\chi^{3}(C_{3}) = 0,$$

$$\chi^{3}(C_{1})^{2} + 2\chi^{3}(C_{2})^{2} + 3\chi^{3}(C_{3})^{2} = 6.$$

Subtracting the first two equations, we have $\chi^3(C_3)=0$. Thus, $\chi^3(C_1)+2\chi^3(C_2)=0$, which leads to $\chi^3(C_1)=-2\chi^3(C_2)$. Inserting $\chi^3(C_1)=-2\chi^3(C_2)=0$ and $\chi^3(C_3)=0$ into the third equation yields $6\chi^3(C_2)^2 = 6$. Thus, $\chi^3(C_2) = \pm 1$. Choosing the character of the identity element in Γ^3 to be a positive number, we have $\chi^3(C_1) = 2$ and $\chi^3(C_2) = -1$.

Alternatively, we can make use of the fact that $\chi^p(E) = d_p$ to infer that $\chi^3(C_1) = 2$. Then we can obtain $\chi^3(C_2) = -1$ from $\chi^3(C_1) = -2\chi^3(C_2)$. In this approach, the third equation $\chi^3(C_1)^2 + 2\chi^3(C_2)^2 + 3\chi^3(C_3)^2 = 6$ is not used. Note that it is satisfied by the characters determined in this approach.

The character table of D_3 is then given by

2. The transformation matrices in two-dimensional real space for the elements of the group $D_3 = \{E, D, F, A, B, C\}$ are given by

$$R(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, R(D) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}, R(F) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix},$$

$$R(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, R(B) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}, R(C) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}.$$

The basis functions of a carrier space for D_3 are given by $\psi_1(\vec{\rho}) = x^2 F(\rho)$, $\psi_2(\vec{\rho}) = xy F(\rho)$, and $\psi_3(\vec{\rho}) = y^2 F(\rho)$, where $F(\rho)$, a function of $\rho = \sqrt{x^2 + y^2}$, ensures that the basis functions are normalizable. Using

$$Q(T)\psi_n(\vec{\rho}) = \psi_n(R(T)^{-1}\vec{\rho}) = \sum_{m=1}^{3} \Gamma(T)_{mn}\psi_m(\vec{\rho}), \ n = 1, 2, 3,$$

find the representation matrix $\Gamma(F)$ of the element F of D_3 . Here Q(T) is the scalar transformation operator and $\vec{\rho}$ is the position vector of a point in two-dimensional real space.

For T = F, we have

$$R(F)^{-1} = R(F)^{t} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix},$$

$$R(F)^{-1} \vec{\rho} = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -x - \sqrt{3} y \\ \sqrt{3} x - y \end{pmatrix}.$$

 $Q(F)\psi_n(\vec{\rho})$ for n=1, 2, 3 are then given by

$$\begin{split} Q(F)\psi_1(\vec{\rho}) &= \frac{1}{4}(x+\sqrt{3}y)^2 F(\rho) = \frac{1}{4}(x^2+2\sqrt{3}\,xy+3y^2) F(\rho) = \frac{1}{4}\psi_1(\vec{\rho}) + \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{3}{4}\psi_3(\vec{\rho}), \\ Q(F)\psi_2(\vec{\rho}) &= -\frac{1}{4}(x+\sqrt{3}\,y)(\sqrt{3}\,x-y) F(\rho) = -\frac{1}{4}(\sqrt{3}\,x^2+2xy-\sqrt{3}\,y^2) F(\rho) \\ &= -\frac{\sqrt{3}}{4}\psi_1(\vec{\rho}) - \frac{1}{2}\psi_2(\vec{\rho}) + \frac{\sqrt{3}}{4}\psi_3(\vec{\rho}), \\ Q(F)\psi_3(\vec{\rho}) &= \frac{1}{4}(\sqrt{3}\,x-y)^2 F(\rho) = \frac{1}{4}(3x^2-2\sqrt{3}\,xy+y^2) F(\rho) = \frac{3}{4}\psi_1(\vec{\rho}) - \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{1}{4}\psi_3(\vec{\rho}). \end{split}$$

Making use of

$$Q(T)\psi_n(\vec{\rho}) = \psi_n(R(T)^{-1}\vec{\rho}) = \sum_{m=1}^{3} \Gamma(T)_{mn}\psi_m(\vec{\rho}), \ n = 1, 2, 3$$

for T = F, we obtain

$$\Gamma(F)_{11}\psi_1 + \Gamma(F)_{21}\psi_2 + \Gamma(F)_{31}\psi_3 = \frac{1}{4}\psi_1(\vec{\rho}) + \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{3}{4}\psi_3(\vec{\rho}),$$

$$\Gamma(F)_{12}\psi_1 + \Gamma(F)_{22}\psi_2 + \Gamma(F)_{32}\psi_3 = -\frac{\sqrt{3}}{4}\psi_1(\vec{\rho}) - \frac{1}{2}\psi_2(\vec{\rho}) + \frac{\sqrt{3}}{4}\psi_3(\vec{\rho}),$$

$$\Gamma(F)_{13}\psi_1 + \Gamma(F)_{23}\psi_2 + \Gamma(F)_{33}\psi_3 = \frac{3}{4}\psi_1(\vec{\rho}) - \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{1}{4}\psi_3(\vec{\rho}).$$

Making use of the fact that ψ_1, ψ_2 , and ψ_3 are linearly independent, we obtain from the above results

$$\Gamma(F)_{11} = \frac{1}{4}, \quad \Gamma(F)_{12} = -\frac{\sqrt{3}}{4}, \quad \Gamma(F)_{13} = \frac{3}{4},$$

$$\Gamma(F)_{21} = \frac{\sqrt{3}}{2}, \quad \Gamma(F)_{22} = -\frac{1}{2}, \quad \Gamma(F)_{23} = -\frac{\sqrt{3}}{2},$$

$$\Gamma(F)_{31} = \frac{3}{4}, \quad \Gamma(F)_{32} = \frac{\sqrt{3}}{4}, \quad \Gamma(F)_{33} = \frac{1}{4}.$$

Thus, the representation matrix of the element F is given by

$$\Gamma(F) = \begin{pmatrix} \frac{1}{4} & -\frac{\sqrt{3}}{4} & \frac{3}{4} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{3}{4} & \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}.$$

3. Using the information given in the previous problem, find the representation matrix $\Gamma(B)$ of the element B of D_3 .

For T = B, we have

$$R(B)^{-1} = R(B)^{t} = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix},$$

$$R(B)^{-1} \vec{\rho} = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -x + \sqrt{3} y \\ \sqrt{3} x + y \end{pmatrix}.$$

 $Q(B)\psi_n(\vec{\rho})$ for n=1, 2, 3 are then given by

$$Q(B)\psi_{1}(\vec{\rho}) = \frac{1}{4}(-x + \sqrt{3}y)^{2}F(\rho) = \frac{1}{4}(x^{2} - 2\sqrt{3}xy + 3y^{2})F(\rho) = \frac{1}{4}\psi_{1}(\vec{\rho}) - \frac{\sqrt{3}}{2}\psi_{2}(\vec{\rho}) + \frac{3}{4}\psi_{3}(\vec{\rho}),$$

$$Q(B)\psi_{2}(\vec{\rho}) = \frac{1}{4}(-x + \sqrt{3}y)(\sqrt{3}x + y)F(\rho) = \frac{1}{4}(-\sqrt{3}x^{2} + 2xy + \sqrt{3}y^{2})F(\rho)$$

$$= -\frac{\sqrt{3}}{4}\psi_{1}(\vec{\rho}) + \frac{1}{2}\psi_{2}(\vec{\rho}) + \frac{\sqrt{3}}{4}\psi_{3}(\vec{\rho}),$$

$$Q(B)\psi_{3}(\vec{\rho}) = \frac{1}{4}(\sqrt{3}x + y)^{2}F(\rho) = \frac{1}{4}(3x^{2} + 2\sqrt{3}xy + y^{2})F(\rho) = \frac{3}{4}\psi_{1}(\vec{\rho}) + \frac{\sqrt{3}}{2}\psi_{2}(\vec{\rho}) + \frac{1}{4}\psi_{3}(\vec{\rho}).$$

Making use of

$$Q(T)\psi_n(\vec{\rho}) = \psi_n(R(T)^{-1}\vec{\rho}) = \sum_{m=1}^{3} \Gamma(T)_{mn}\psi_m(\vec{\rho}), \ n = 1, 2, 3$$

for T = B, we obtain

$$\Gamma(B)_{11}\psi_1 + \Gamma(B)_{21}\psi_2 + \Gamma(B)_{31}\psi_3 = \frac{1}{4}\psi_1(\vec{\rho}) - \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{3}{4}\psi_3(\vec{\rho}),$$

$$\Gamma(B)_{12}\psi_1 + \Gamma(B)_{22}\psi_2 + \Gamma(B)_{32}\psi_3 = -\frac{\sqrt{3}}{4}\psi_1(\vec{\rho}) + \frac{1}{2}\psi_2(\vec{\rho}) + \frac{\sqrt{3}}{4}\psi_3(\vec{\rho}),$$

$$\Gamma(B)_{13}\psi_1 + \Gamma(B)_{23}\psi_2 + \Gamma(B)_{33}\psi_3 = \frac{3}{4}\psi_1(\vec{\rho}) + \frac{\sqrt{3}}{2}\psi_2(\vec{\rho}) + \frac{1}{4}\psi_3(\vec{\rho}).$$

Making use of the fact that ψ_1, ψ_2 , and ψ_3 are linearly independent, we obtain from the above results

$$\Gamma(F)_{11} = \frac{1}{4}, \qquad \Gamma(F)_{12} = -\frac{\sqrt{3}}{4}, \quad \Gamma(F)_{13} = \frac{3}{4},$$

$$\Gamma(F)_{21} = -\frac{\sqrt{3}}{2}, \quad \Gamma(F)_{22} = \frac{1}{2}, \qquad \Gamma(F)_{23} = \frac{\sqrt{3}}{2},$$

$$\Gamma(F)_{31} = \frac{3}{4}, \qquad \Gamma(F)_{32} = \frac{\sqrt{3}}{4}, \quad \Gamma(F)_{33} = \frac{1}{4}.$$

Thus, the representation matrix of the element B is given by

$$\Gamma(B) = \begin{pmatrix} \frac{1}{4} & -\frac{\sqrt{3}}{4} & \frac{3}{4} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{3}{4} & \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}.$$

4. Show that, if the projection operators P^p_{mn} and P^q_{jk} belong to two unitary irreducible representations Γ^p and Γ^q of G that are not equivalent if $p \neq q$ (but are identical if p = q), then $P^p_{mn}P^q_{jk} = \delta_{pq}\delta_{nj}P^q_{mk}$.

Making use of

$$P_{mn}^{p} = \frac{d_p}{g} \sum_{T \in G} \Gamma^{p}(T)_{mn}^* Q(T),$$

we have

$$P_{mn}^{p} P_{jk}^{q} = \frac{d_{p} d_{q}}{g^{2}} \sum_{T_{1}, T_{2} \in G} \Gamma^{p}(T_{1})_{mn}^{*} \Gamma^{q}(T_{2})_{jk}^{*} Q(T_{1}) Q(T_{2})$$
$$= \frac{d_{p} d_{q}}{g^{2}} \sum_{T_{1}, T_{2} \in G} \Gamma^{p}(T_{1})_{mn}^{*} \Gamma^{q}(T_{2})_{jk}^{*} Q(T_{1}T_{2}).$$

Let $T_1T_2 = T$. Then, we can express T_2 as $T_2 = T_1^{-1}T$. Changing the dummy summation group element variables from T_1 and T_2 to T and T_1 , we have

$$P_{mn}^{p} P_{jk}^{q} = \frac{d_{p} d_{q}}{g^{2}} \sum_{T, T_{1} \in G} \Gamma^{p}(T_{1})_{mn}^{*} \Gamma^{q}(T_{1}^{-1}T)_{jk}^{*} Q(T)$$

$$= \frac{d_{p} d_{q}}{g^{2}} \sum_{T, T_{1} \in G} \Gamma^{p}(T_{1})_{mn}^{*} \sum_{\ell} \Gamma^{q}(T_{1}^{-1})_{j\ell}^{*} \Gamma^{q}(T)_{\ell k}^{*} Q(T).$$

Making use of the fact that $\Gamma^q(T_1)$ is a unitary matrix, we have $\Gamma^q(T_1^{-1})_{j\ell}^* = \Gamma^q(T_1)_{\ell j}$. The above result then becomes

$$P_{mn}^{p} P_{jk}^{q} = \frac{d_{p} d_{q}}{g^{2}} \sum_{\ell} \sum_{T, T, \ell \in G} \Gamma^{p}(T_{1})_{mn}^{*} \Gamma^{q}(T_{1})_{\ell j} \Gamma^{q}(T)_{\ell k}^{*} Q(T).$$

Making use of the orthogonal relation

$$\frac{1}{g} \sum_{T_1 \in G} \Gamma^p(T_1)_{mn}^* \Gamma^q(T_1)_{\ell j} = \frac{1}{d_q} \delta_{pq} \delta_{m\ell} \delta_{nj},$$

we have

$$P_{mn}^{p} P_{jk}^{q} = \frac{d_{p}}{g} \delta_{pq} \delta_{nj} \sum_{T \in G} \sum_{\ell} \delta_{m\ell} \Gamma^{q}(T)_{\ell k}^{*} Q(T)$$
$$= \frac{d_{p}}{g} \delta_{pq} \delta_{nj} \sum_{T \in G} \Gamma^{p}(T)_{mk}^{*} Q(T).$$

Making use of the definition of the projector operators, we have

$$P_{mn}^p P_{jk}^q = \delta_{pq} \delta_{nj} P_{mk}^p.$$

5. Choosing $\phi(\vec{r}) = (xy + yz)e^{-r}$, construct the basis functions for the two-dimensional irreducible representation Γ^5 of the crystallographic point group D_4 .

We first write down the projection operators P_{11}^5 and P_{22}^5 . We have

$$\begin{split} P_{11}^5 &= \frac{1}{4} \sum_{T \in D_4} \Gamma^5(T)_{11}^* Q(T) = \frac{1}{4} \big[Q(E) + Q(C_{2x}) - Q(C_{2y}) - Q(C_{2z}) \big], \\ P_{22}^5 &= \frac{1}{4} \sum_{T \in D_4} \Gamma^5(T)_{22}^* Q(T) = \frac{1}{4} \big[Q(E) - Q(C_{2x}) - Q(C_{2y}) + Q(C_{2z}) \big]. \end{split}$$

From the above expressions, we see that, to evaluate $P_{11}^5\phi(\vec{r})$ and $P_{22}^5\phi(\vec{r})$, we need first to evaluate $Q(E)\phi(\vec{r})$, $Q(C_{2x})\phi(\vec{r})$, $Q(C_{2y})\phi(\vec{r})$, and $Q(C_{2z})\phi(\vec{r})$. We know that $Q(E)\phi(\vec{r})=\phi(\vec{r})$. From $Q(T)\phi(\vec{r})=\phi(R(T)^{-1}\vec{r})$ and

$$R(C_{2x})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ R(C_{2y})^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ R(C_{2z})^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

we have

$$Q(C_{2x})\phi(\vec{r}) = (-xy + yz)e^{-r}, \ Q(C_{2y})\phi(\vec{r}) = -(xy + yz)e^{-r}, \ Q(C_{2z})\phi(\vec{r}) = (xy - yz)e^{-r}.$$

We then have

$$\begin{split} P_{11}^{5}\phi(\vec{r}) &= \frac{1}{4} \big[Q(E)\phi(\vec{r}) + Q(C_{2x})\phi(\vec{r}) - Q(C_{2y})\phi(\vec{r}) - Q(C_{2z})\phi(\vec{r}) \big] \\ &= \frac{1}{4} \big[(xy + yz) + (-xy + yz) + (xy + yz) - (xy - yz) \big] e^{-r} \\ &= yze^{-r}, \\ P_{22}^{5}\phi(\vec{r}) &= \frac{1}{4} \big[Q(E)\phi(\vec{r}) - Q(C_{2x})\phi(\vec{r}) - Q(C_{2y})\phi(\vec{r}) + Q(C_{2z})\phi(\vec{r}) \big] \\ &= \frac{1}{4} \big[(xy + yz) - (-xy + yz) + (xy + yz) + (xy - yz) \big] e^{-r} \\ &= xye^{-r}. \end{split}$$

Therefore, the basis functions for the two-dimensional irreducible representation Γ^5 of the crystallographic point group D_4 are

$$\psi_1(\vec{r}) = Ayze^{-r}, \ \psi_2(\vec{r}) = -Axye^{-r},$$

where A is the normalization constant and is given by

$$A = (xye^{-r}, xye^{-r})^{-1/2}$$
.

In the above expression of $\psi_2(\vec{r})$, we used an overall minus sign to be consistent with the result obtained by using $\psi_2(\vec{r}) = P_{21}^5 \psi_1(\vec{r})$. This is permissible because the normalization constant of a basis function can be determined only within a phase factor of magnitude of unity.

We now rederive $\psi_2(\vec{r})$ by making use of $\psi_2(\vec{r}) = P_{21}^5 \psi_1(\vec{r})$ with P_{21}^5 given by

$$P_{21}^5 = \frac{1}{4} \sum_{T \in D_4} \Gamma^5(T)_{21}^* Q(T) = \frac{1}{4} \left[Q(C_{4y}) - Q(C_{4y}^{-1}) + Q(C_{2c}) - Q(C_{2d}) \right].$$

From

$$R(C_{4y})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ R(C_{4y}^{-1})^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ R(C_{2c})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ R(C_{2d})^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

we have

$$R(C_{4y})^{-1}\vec{r} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \\ -x \end{pmatrix},$$

$$R(C_{4y}^{-1})^{-1}\vec{r} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -z \\ y \\ x \end{pmatrix},$$

$$R(C_{2c})^{-1}\vec{r} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ -y \\ x \end{pmatrix},$$

$$R(C_{2d})^{-1}\vec{r} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -z \\ -y \\ -x \end{pmatrix}.$$

From $Q(T)\psi_1(\vec{r}) = \psi_1(R(T)^{-1}\vec{r})$, we have

$$Q(C_{4y})\psi_1(\vec{r}) = -xye^{-r}, \ Q(C_{4y}^{-1})\psi_1(\vec{r}) = xye^{-r}, \ Q(C_{2c})\psi_1(\vec{r}) = -xye^{-r}, \ Q(C_{2d})\psi_1(\vec{r}) = xye^{-r}.$$

We then have

$$\psi_{2}(\vec{r}) = P_{21}^{5}\psi_{1}(\vec{r})$$

$$= \frac{1}{4} \left[Q(C_{4y}) - Q(C_{4y}^{-1}) + Q(C_{2c}) - Q(C_{2d}) \right] \psi_{1}(\vec{r})$$

$$= \frac{1}{4} \left[-Axye^{-r} - Axye^{-r} - Axye^{-r} - Axye^{-r} \right]$$

$$= -Axye^{-r}.$$