

MÁS SOBRE EL ALGORITMO DE EUCLIDES

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 05) 19.JULIO.2024

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

Luego

Si
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
, y como det $\mathbf{M} = (-1)^n$, entonces $\mathbf{M}^{-1} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$, y tenemos

$$\begin{pmatrix} r_n \\ o \end{pmatrix} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

En particular $(a,b) = r_n = (-1)^n (m_{22}a - m_{12}b)$, da los coeficientes en el Teorema de Bézout.

La eficiencia computacional del algoritmo de Euclides se ha estudiado a fondo.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2\log_2 b + 1$.
- ÉMILE LÉGER (1837), estudió el peor caso.
- GABRIEL LAMÉ (1844), refina el análisis de Finck. Mostró que el número de pasos requeridos nunca es más de cinco veces el número h de dígitos en base 10 del número menor b.

Obs! El peor caso corresponde a cuando todo cociente $q_i = 1$ en el sistema (??). Esto ocurre exactamente al tomar dos números de Fibonacci consecutivos.

Comparación de valores en el algoritmo de Euclides. (a) d=(a,b). (b) Número requerido de pasos. (c) Observe las diagonales que requieren más pasos coinciden con números a y b con una relación cercana al valor $\varphi=\frac{1+\sqrt{5}}{2}$, e.g. números de Fibonacci consecutivos.

Sean $a \ge b \ge$ o. Recordemos que si el Algoritmo de Euclides hace k+1 divisiones para hallar d=(a,b), entonces en cada paso $r_{k+1}=q_kr_{k-1}+r_k$, $q_k\ge 1$, $b>r\ge 0$, se tiene

$$a = qb + r \ge b + r > 2r, \Rightarrow r < \frac{a}{2}.$$

Similarmente, $r_1 < \frac{b}{2} \le \frac{a}{2}$, $r_2 < \frac{r}{2} < \frac{a}{4}$, $r_3 < \frac{r_1}{2} < \frac{b}{4} \le \frac{a}{4}$, ..., y en general

$$r_{2j} < \frac{a}{2^j}, \qquad r_{2j+1} < \frac{a}{2^j} \qquad \text{para } j = 1, 2, \dots, (k+1)/2.$$

Por otro lado, existe $t \in \mathbb{Z}^+$ tal que $a < 2^t \Rightarrow \log_2 a < t \Rightarrow r_{2t} < \frac{a}{2^t} < 1 \Rightarrow r_{2t} = 0$. (i.e., el algoritmo acaba a lo sumo en 2t pasos)

Si a tiene N dígitos en su representación decimal, entonces $a < 10^N$. Luego, $\log_2 a < N \log_2 10$.

Así

$$k+1=2t \le 2(|\log_2 a|+1) \le 2(N|\log_2 10|+1) \approx 6.6N.$$

(LAMÉ, 1844).

Se puede mostrar que para que el Algoritmo de Euclides efectúe n pasos (n=k+1), se debe tomar al menos $a=F_{n+2},\ b=F_{n+1}$. En particular $n<2\log_2 a \Rightarrow \frac{n}{2}<\log_2 a \Rightarrow a>2^{n/2}$.

Recordemos la **Fórmula de** BINET (1843)

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Como $\left(\frac{1-\sqrt{5}}{2}\right)^n \to o$, cuando $n \to \infty$, podemos simplificar

$$F_n pprox rac{1}{\sqrt{5}} \Big(rac{1+\sqrt{5}}{2}\Big)^n = rac{1}{\sqrt{5}} arphi^n,$$

donde $\varphi = \frac{1+\sqrt{5}}{2}$ es la razón aúrea. (*i.e.*, los F_n se parecen a los φ^n)

Recordemos que φ satisface $\varphi^2-\varphi-1=$ 0, de modo que $\varphi^2=\varphi+$ 1. Afirmamos que $F_n\geq \varphi^{n-1}$, para todo $n\geq 1$.

 $F_1=1\geq \varphi^0$, $F_2=2\geq \varphi$. Asumiendo la hipótesis inductiva que $F_k\geq \varphi^{k-1}$ siempre que $k\leq n$, entonces $F_{n+1}=F_n+F_{n-1}\geq \varphi^{n-1}+\varphi^{n-2}=\varphi^{n-2}(\varphi+1)=\varphi^{n-2}\varphi^2=\varphi^n$, lo que completa la afirmación.

Luego, $a=F_{n+2}\geq \varphi^{n+1}$ y vale que $n\leq n+1=\log_{\varphi}\varphi^{n+1}\leq \log_{\varphi}a$.

De esta última desigualdad, obtenemos

$$n \leq \log_{\varphi} a = \frac{\log_{10} a}{\log_{10} \varphi} \approx 4.7851..(\log_{10} a) < 5\log_{10} a \leq 5N.$$

(Teorema de LAMÉ, 1844).