Amendments to the Claims

- 1. (Original) Method of reconstructing an image from measured line-integrals of an object, the method comprising the steps of: binning of the measured line-integrals into a plurality of temporal bins; determining a plurality of motion fields for the plurality of temporal bins; selecting first data from a selected bin of the plurality of temporal bins; forward-projecting an intermediate image for forming second data by using a motion field of the plurality of motion fields that belongs to the selected temporal bin; determining a difference between the first data and the second data; up-dating the intermediate image on the basis of the difference.
- 2. (Original) Method according to claim 1, wherein the intermediate image is up-dated on the basis of a back-projection performed by using the motion field that belongs to the selected temporal bin.
- 3. (Original) Method according to claim 1, wherein the plurality of motion fields contains information with respect to a location shift and a local deformation of basis functions of the intermediate image with regard to the measured line-integrals.
- 4. (Original) Method according to claim 1, wherein the steps of claim 1 are iteratively performed until an end criterion has been fulfilled.
- 5. (Original) Method according to claim 1, wherein the plurality of motion fields describes at least one of a motion and deformation of the object with respect to a reference grid of the intermediate image.
- 6.(Currently Amended) Method according to claim 1, wherein the plurality of motion fields is determined from a set of images where each image is reconstructed using data from one temporal bin of the plurality of temporal bins only.

- 7. (Currently Amended) Image processing device for reconstructing an image from measured line-integrals, comprising: a storage for storing the positron emission data; and an image processor for reconstructing the image from the measured line-integrals; wherein the image processor is adapted to performs the following operation: binning of the measured line-integrals into a plurality of temporal bins; determining a plurality of motion fields for the plurality of temporal bins; selecting first data from a selected bin of the plurality of temporal bins; forward-projecting an intermediate image for forming second data by using a motion field of the plurality of motion fields that belongs to the selected temporal bin; determining a difference between the first data and the second data; and updating the intermediate image on the basis of the difference.
- 8. (Currently Amended) Positron emission tomography system, wherein the positron emission tomography system includes a storage for storing measured line-integrals and an image processor, wherein the image processor is arranged to-performs the following operation: binning of the measured line-integrals into a plurality of temporal bins; determining a plurality of motion fields for the plurality of temporal bins; selecting first data from a selected bin of the plurality of temporal bins; forward-projecting an intermediate image for forming second data by using a motion field of the plurality of motion fields that belongs to the selected temporal bin; determining a difference between the first data and the second data; up-dating the intermediate image on the basis of the difference.
- 9. (Original) Computer program product comprising computer program means to cause a processor to execute the following steps when the computer program means are executed on the processor: binning of the measured line-integrals into a plurality of temporal bins; determining a plurality of motion fields for the plurality of temporal bins; selecting first data from a selected bin of the plurality of temporal bins; forward-projecting an intermediate image for forming second data by using a motion field of the plurality of motion fields that belongs to the selected temporal bin; determining a difference between the first data and the second data; up-dating the intermediate image on the basis of the difference.