项目编号:

百安交通大學

大学生创新训练项目 结题报告书

项目名称:基于多元数据分析的重症监护室

病人健康状态预警方法研究

起止年月:

负责人:

手 机:

邮 箱:

项目成员:

指导老师:

批准经费: 已用金额:

填报日期: 2025年1月21日

报告题目: 学生姓名: 指导老师:

> 中文摘要: 英文摘要: 关键词:

目录

1 绪论

2 数据集分析及预处理

- 2.1 数据集介绍
- 2.2 数据预处理
- 2.2.1 数据提取

数据全称	缩写	MIMIC-IV 数据编号
1. 血小板计数 (Platelet Count)	PLT	227457
2. 凝血酶原时间 (Prothrombin time)	PT	227465
3. 凝血酶原时间的国际标准化比值	INR	227467
(International Normalized Ratio)	IIVIX	
4. D-二聚体 (D-Dimer)	D-Dimer	225636
5. 纤维蛋白原 (Fibrinogen)	FIB	227468
6. 二氧化碳分压	pCO2	226062(动脉)
(Venous CO2 Pressure)	pCO2	220002 (<i>9</i> 5,000)
7. 酸碱度 (pH)	pН	223830(动脉)
8. 氧分压 (Venous O2 Pressure)	pO2	226063 (动脉)

表 1: 相关数据对应缩写及编号

- 2.2.2 数据插补
- 2.2.3 异常值矫正
- 2.2.4 数据填补
- 2.2.5 实时状态数据标记

3 模型训练与评估

- 3.1 数据集划分
- 3.2 模型评估

4 模型可解释性分析

- 4.1 SHAP 值基本原理
- 4.1.1 加性特征归因方法
- 4.1.2 加性特征归因方法中的唯一解
- 4.1.3 SHAP(SHapley Additive exPlanation) 值
- 4.1.4 LIME 解释方法
- 4.2 基于 SHAP 值的可解释性分析
- 4.2.1 整体数据可解释性分析
- 4.2.2 单个数据可解释性分析
- 5 结论与展望

参考文献

[1] Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L. A., & Mark, R. (2023). MIMIC-IV (version 2.2)[DB]. PhysioNet. https://doi.org/10.13026/6mm1-ek67.

A 附录

A.1 预处理后 SIC 和 DIC 数据量

时间段长度	插补策略	填补策略	SIC 标签数量	DIC 标签数量
4h	均值插补	临近填补	827 (占比 89.89%)	629 (占比 68.37%)
8h	均值插补	临近填补	1885 (占比87.55%)	1345 (占比 62.47%)
12h	均值插补	临近填补	1823 (占比 86.77%)	1267 (占比 60.30%)

表 2: 预处理后的 SIC 和 DIC 数据量

- A.2 数据集划分结果
- A.3 模型评估结果
- A.4 基于 SHAP 值的可解释性分析