

ANALIZA MATEMATYCZNA I (Lista 13, 09.01.2023)

Całka podwójna.

Zad. 1. Obliczyć całki podwójne (w prostokącie):

- a) $\iint x^2 (2 + 4y) dx dy$, gdy prostokąt P opisany jest nierównościami: $0 \le x \le 3$, $1 \le y \le 2$.
- b) $\iint_D (x-y)e^{x+y}dxdy$, gdy prostokąt D opisany jest nierównościami: $0 \le x \le 1$, $-1 \le y \le 1$.

Zad. 2. Obliczyć całki podwójne: (w obszarze normalnym):

- d) $\iint_{D: x+y=0, x=y^2} \frac{dx \, dy}{(x+1)^2}$ b) $\iint_{D} (x^3 + 4y) dx dy, \text{ gdzie } D \text{ jest obszarem ograniczonym krzywymi: } y = x^2, y = 2x.$
 - \bigcirc $\iint_D (sinxcosy) dxdy$, gdzie obszar całkowania D jest trójkątem o wierzchołkach: (0,0), (1,1), (0,2).

Zad. 3. Zmiana kolejności całkowania.

- a) obliczyć całkę $\iint_D \left(\frac{x^2}{v^2}\right) dx dy$, gdzie D jest ograniczony przez $0 \le x \le 1$, $x^2 \le y \le 1$ $2-x\ (D$ jest to obszarem normalnym względem osi OX). Następnie, zmieniając kolejność całkowania obliczyć tę całkę (obszar D jest wówczas sumą dwóch rozłącznych obszarów normalnych względem osi OY).
- b) obliczyć całkę $\int_0^1 \int_1^{2-y} (x+y)^2 dx dy$. Następnie, zmienić kolejność całkowania i obliczyć tę całkę.

Zad. 4. Korzystając ze współrzędnych biegunowych $(x = rcos\varphi, y = rsin\varphi)$, obliczyć

a) $\iint x^2 y dx dy$, gdzie *D* jest obszarem leżącym w pierwszej ćwiartce układu

współrzędnych ograniczony okręgami $x^2 + y^2 = 1$ i $x^2 + y^2 = 4$,

b) $\iint_D \sqrt{4 - (x^2 + y^2)} dx dy$, gdzie *D* jest opisany przez $x^2 + y^2 \le 4$.

- **Zad. 5.** Pole powierzchni figury płaskiej $\iint_D dxdy$ pole D. Obliczyć pole figury:

 (a) ograniczone łukiem krzywej $f(x) = x^3 + x^2 2x$, osią OX oraz prostymi x = -2 i x = 2
 - b) pomiędzy osią OX, funkcją sin, na przedziałe $[0,\pi]$. $\bigcirc \{(x,y) \in \mathbb{R}^2 : x \geqslant \sqrt{3}, \ x^2 + y^2 \leqslant 12 \}$

 ${\bf Zad.}$ 6. Obliczyć pole płata powierzchniowego, którego rzutem jest obszar D

$$\left(\iint_{D} \sqrt{1 + \left(\frac{\partial f(x,y)}{\partial x}\right)^{2} + \left(\frac{\partial f(x,y)}{\partial y}\right)^{2}} \, dx dy.\right)$$

- a) z = x + 4y + 2 leżącego nad prostokątem $0 \le x \le 1$, $0 \le y \le 2$, b) wyciętego walcem $x^2 + y^2 = 16$ z powierzchni $x^2 + y^2 + z^2 = 25$.

Zad. 7. Objętość bryły nad obszarem D i ograniczonej powierzchniami z = f(x, y) i $z = g(x, y), \iint_D (g(x, y) - f(x, y)) dx dy$. Obliczyć objętość brył:

- a) x = y = z = 0, x = y = 1, x + y + z = 2,b) $x = y = 0, x = y = 1, z = x^2 + 2y^2, z = -x^2 2y^2.$