Algoritmos em strings: compressão de texto

R. Rossetti, L. Ferreira, H. L. Cardoso, F. Andrade FEUP, MIEIC, CAL

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

Teoria da Informação

- O que é?
 - "É uma ferramenta matemática para determinar a quantidade mínima de dados para representar informação"
- Representação da Informação
 - Como é que se representa texto?
 - Como é que se representam imagens?
 - Como é que se representa som?
 - Técnicas simples de correção de erros?
 - Dispositivos de armazenamento de informação?

FEUP Universidade do Porto Faculdade de Engenharia

AL - Algoritmos em strings: compressão de texto

./rr (1)

Teoria da Informação

- Por que comprimir?
 - Preencher o hiato entre procura e capacidade
 - Utilizadores têm procurado aplicações com media cada vez mais sofisticados (Web 2.0, Big Data, data streaming em tempo real, ...)
 - Meios de transmissão e armazenamento são limitados

Por exemplo:

Livro de 800 páginas; cada página com 40 linhas; cada linha com 80 caracteres: 800 * 40 * 80 (* 1 byte por carácter) = 2,44 MB

Vídeo digital c/ "qualidade de TV digital" (aproximadamente): 1 segundo ~ 216Mbits 2 horas ~ 194GB = 42 DVDs (ou 304 CD-ROMs)!

 "compressão vai se tornar redundante em breve, com as capacidades de armazenamento e transmissão a aumentarem" ... (Será?!!!)

CAL - Algoritmos em strings: compressão de texto

Técnicas de compressão

- Codificador fonte e descodificador destino
 - Em sistemas multimédia, a informação é frequentemente comprimida antes de ser armazenada ou transmitida

Algoritmos de compressão: principal tarefa do codificador fonte

Algoritmos de descompressão: principal tarefa do descodificador destino

Implementação dos algoritmos de compressão/descodificação

Em Software: quando o tempo para compressão/descompressão não é crítico

Em Hardware: quando a aplicação é dependente do tempo, ou seja, quando o tempo para compressão/descompressão é crítico

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

./rr (2)

Representação de carateres

- ASCII: American Standard Code for Information Interchange
- Tradicionalmente utilizava-se 7bits para representar os diversos caracteres
 - 7bits → 128 combinações diferentes possíveis
 - Por exemplo: $'A' = (1000001)_2 = (65)_{10}$
- Mais tarde, os 7bits foram estendidos a 8, permitindo assim representar 256 caracteres diferentes
 - Unicode (16 bits) \rightarrow 65.536
 - ISO* (32 bits) → 4.294.967.296

*International Organization for Standardization

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

Representação de carateres

■ Tabela ASCII (7 bits)

Right	ASCII									
Left Digit Digit(s)	0	1	2	3	4	5	6	7	8	9
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	НТ
1	LF	VT	FF	CR	SO	SI	DLE	DC1	DC2	DC:
2	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS
3	RS	US		!	"	#	\$	96	&	,
4	()	•	+	,	-		1	0	1
5	2	3	4	5	6	7	8	9	:	;
6	<	=	>	?	@	Α	В	C	D	E
7	F	G	H	I	J	K	L	M	N	0
8	P	Q	R	S	T	U	V	W	X	Y
9	Z	[1]	^	_	,	a	b	c
10	d	e	f	g	h	i	j	k	1	m
11	n	0	p	q	r	s	t	u	v	W
12	x	у	z	{	1	}	~	DEL		

FEUP Universidade do Porto

L - Algoritmos em strings: compressão de texto

Representação de carateres

■ Unicode (16 bits)

FEUP Universidade do Porto Faculdade de Engenharia

Code (Hex)	Character	Source
0041	Α	English (Latin)
042F	Я	Russian (Cyrillic)
OE09	ฉ	Thai
13EA	Ø	Cherokee
211E	R	Letterlike Symbols
21CC	1	Arrows
282F	• • • • • • • • • • • • • • • • • • • •	Braille
345F	梹	Chinese/Japanese/ Korean (Common)

Representação de texto é simplesmente uma sequência de carateres

"O L A"

79 76 65 Código ASCII

1001111 1001100 1000001

./rr (4)

Técnicas de compressão de texto

- Apesar do espaço de armazenamento estar continuamente a aumentar, é desejável por vezes comprimir dados
 - Transmissão pela rede
 - Armazenamento de longa duração
 - Em geral... maior eficiência e aproveitamento de recursos
- Três métodos comuns de compressão de texto (sem perdas)
 - · Keyword encoding
 - Run-length encoding (RLE)
 - Huffman codes
- Na prática aplica-se muitas vezes uma combinação de técnicas

CAL - Algoritmos em strings: compressão de texto

Keyword encoding

- Substituir palavras muito comuns por caracteres especiais ou sequências especiais de caracteres
- As palavras são substituídas de acordo com uma tabela de frequências (ocorrências)

Chave	Significado
%	carro
\$	acidente
&	senhor
#	do

FEUP Universidade do Porto Faculdade de Engenharia

L - Algoritmos em strings: compressão de texto

10

Keyword encoding (exemplo)

"No acidente estiveram envolvidos três carros. O carro do senhor António ficou destruído. O carro do senhor José não sofreu grandes danos no acidente. O carro do senhor Carlos... bom, depois do acidente, nem se pode chamar aquilo um carro!"

 \rightarrow 241bytes

"No \$ estiveram envolvidos três carros. O % # & António ficou destruído. O % # & José não sofreu grandes danos no \$. O % # & Carlos... bom, depois # \$, nem se pode chamar aquilo um %!" → 185bytes (76% do original)

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

11

Run-length encoding (RLE)

- Tipicamente utilizado quando o mesmo padrão/letra surge muitas vezes seguidas numa sequência de dados;
- Não é comum em texto, mas em muitos outros tipos de dados (por exemplo: imagem, vídeo)
- Técnica utilizada em muitas aplicações comuns. Basicamente, uma sequência de caracteres que se repetem é substituída por:
 - um marcador especial (*)
 - o carácter em questão
 - número vezes que o carácter aparece

AAAAAAAAA \rightarrow *A10

AABBBBBBBBAMMKKKKKKKKKM ightarrow AA*B8AMM*K9M

FEUP Universidade do Porto

CAL - Algoritmos em strings: compressão de texto

12

./rr (6)

Algoritmo de Huffman

Codificação constante

- Código de tamanho fixo.
 - Se |alfabeto| = $C \rightarrow \text{c\'odigo com} \lceil \log_2(C) \rceil$ bits
 - Ex: caracteres ASCII visíveis \cong 100 \rightarrow necessário código de 7 bits
- Representação possível
 - Árvore binária com caracteres só nas folhas
 - Na descodificação:
 - se é folha, então encontrou-se o carácter
 - se o bit corrente do código for 0, visita-se a sub-árvore esquerda se o bit corrente do código for 1, visita-se a sub-árvore direita

Códigos de Huffman

- Código de tamanho variável Caracteres mais frequentes → código mais pequeno
- Utiliza uma árvore binária com os símbolos só nas folhas
- Os símbolos nas folhas permitem descodificação não ambígua (código não prefixo)
- Ao usar uma árvore completa (full tree) todos os nós da árvore (excepto folhas) têm dois descendentes
- Minimiza o custo da codificação $\Sigma f_i d_i$ onde f_i é a frequência relativa e d_i é a profundidade na árvore

FEUP Universidade do Porto Faculdade de Engenharia

AL - Algoritmos em strings: compressão de texto

18

Algoritmo de Huffman

- O algoritmo de Huffman consiste de três passos básicos:
 - Cálculo da frequência de cada carácter no texto
 - Execução do algoritmo para construção de uma árvore binária
 - Codificação propriamente dita
- Inicialmente existe uma floresta de árvores só com raiz
- O peso de cada árvore é a soma das frequências relativas dos símbolos nas folhas
- Escolher as duas árvores com pesos menores e torná-las sub-árvores de uma nova raiz (algoritmo ganancioso)
- Repetir o passo anterior até haver uma só árvore
- Empates são resolvidos aleatoriamente

FEUP Universidade do Porto

CAL - Algoritmos em strings: compressão de texto

19

./rr (10)

./rr (11)

Algoritmo de Huffman

Construção da árvore binária:

Algoritmo de Huffman:

Entrada: Um conjunto C de n caracteres.

Saída: Árvore de Huffman.

```
\begin{split} n &\leftarrow |C|; \\ Q &\leftarrow C; \\ \text{para } i \leftarrow 1 \text{ até } n-1 \text{ faça} \\ &\quad CriaNo(z); \\ x &\leftarrow z.esq \leftarrow ExtraiMinimo(Q); \\ y &\leftarrow z.dir \leftarrow ExtraiMinimo(Q); \\ f[z] &\leftarrow f[x] + f[y]; \\ Insere(Q,z); \\ \text{retorne } ExtraiMinimo(Q); \end{split}
```

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

26

Exercício: Compressão de texto (Huffman)

- Considere o texto "pimpampumcadabolamataum":
 - Defina um sistema de codificação constante para o texto acima. Qual é o tamanho mínimo do código e o custo de codificação para o texto dado?
 - Determine a árvore de codificação de Huffman para este texto, explicando detalhadamente todo o processo. Qual o custo de codificação neste caso?
 - https://people.ok.ubc.ca/ylucet/DS/Huffman.html
 - Utilizando a árvore de Huffman calculada na alínea anterior, apresente a codificação da frase "pimpampum" e o seu custo. Apresente também a codificação dos caracteres individualmente.

CAL - Algoritmos em strings: compressão de texto

27

Referências e mais informação

- "Introduction to Algorithms", Second Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press, 2001
- "The Algorithm Design Manual", Steven S. Skiena, Springer-Verlag, 1998
- David A. Huffman, *A Method for the Construction of Minimum-Redundancy Codes*, Proceedings of the Institute of Radio Engineers, 40(9):1098-1101
- Com base em slides de R. Camacho

FEUP Universidade do Porto Faculdade de Engenharia

CAL - Algoritmos em strings: compressão de texto

28

./rr (14)

Strings/Files: Compressão