Билеты по матлогике

Содержание

Ι	Лог	гика и арифметика	3
	a.	Определения	3
		Булевы функции	3
		Классы булевых функций	3
		Замыкание класса булевых функций	4
		Композиция булевых функций	4
		Замкнутость	4
		Полнота	4
		Пропозициональные формулы	4
		Тавтология	4
		Противоречие	5
		КНФ, ДНФ	5
		Полином Жегалкина	5
	b.	Простые утверждения	5
		Т. о существовании КНФ/ДНФ	5
		Т. замкнутости классов Поста	6
	c.	Билеты на 3	7
		Теорема об однозначном представлении булевой функции многочленом Жегалкина	7
II	Teo	ория множеств	9
II	ІВы	числимость	9

I Логика и арифметика

а. Определения

1. *п-арной булевой функцией* называется произвольное отображение $\phi: \{0, 1\}^n \to \{0, 1\}$ Откуда тривиальным образом¹ получаем, что от n аргументов существует ровно $|\{0, 1\}|^{|\{0, 1\}^n|} = 2^{2^n}$ Стартерпак булевых функций:

От нуля переменных будет всего две функции: \bot - тавтологический $0, \top$ - тавтологическая 1

Инверсия (отрицание):

	x	$\neg x$
):	0	1
	1	0

Конъюнкция:

x_1	x_2	$x_1 \wedge x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкция:

	x_1	x_2	$x_1 \vee x_2$
	0	0	0
:[0	1	1
	1	0	1
ĺ	1	1	1

Импликация:

x_1	x_2	$x_1 \rightarrow x_2$
0	0	1
0	1	1
1	0	0
1	1	1

Исключающее или (XOR):

	x_1	x_2	$x_1 \oplus x_2$
	0	0	0
	0	1	1
	1	0	1
Ĭ	1	1	0

Эквиваленция:

	x_1	x_2	$x_1 \leftrightarrow x_2$
	0	0	1
:[0	1	0
	1	0	0
Ì	1	1	1

Штрих Шеффера (NAND):

	x_1	x_2	$x_1 x_2$
	0	0	1
):	0	1	1
	1	0	1
	1	1	0

Стрелка Пирса (NOR):

x_1	x_2	$x_1 \downarrow x_2$
0	0	1
0	1	0
1	0	0
1	1	0

2. Классы функций

 P_0 - Сохраняющие θ

 Knacc^2 булевых функций (далее бф), таких что на наборе $(0 \dots 0)$ они принимают значение 0.

 $^{^1}def$: A^B - множество всех отображений из B в A

 $^{^2}$ Множество

 P_1 - Сохраняющие 1

Класс булевых функций (далее бф), таких что на наборе (1 ... 1) они принимают значение 1.

S - cамодвойственные

Пусть $f^{(n)}$ 3 - n-арная бф, тогда двойственной к ней называется такая n-арная бф $g^{(n)}$, что $f(x_1 \dots x_n) = \neg g(\neg x_1 \dots \neg x_n)$

Тогда S - класс бф, являющихся двойственными по отношению к самим себе

M - монотонные

Класс бф, таких что $f(x_1 \dots x_n) \geqslant f(x'_1 \dots x'_n)$, если $\forall i \in \{1 \dots n\} \hookrightarrow x_i \geqslant x'_i$

A(L) - $A \phi \phi u$ ные (линейные)

Класс бф, таких что их представление полиномом Жегалкина является линейным. 4

- 3. Замыканием класса булевых функций называется класс бф, составленный из композиций исходного любого уровня вложенности, обозначается [Q], где Q класс булевых функций
- 4. Композицией булевых функций уровня вложенности n называется:
 - n = 0, Множество всех проекторов
 - n>0, Множество всех возможных композиций из n-1 уровня и функций из данного класса
- 5. Класс булевых функций Q называется **замкнутым**, если [Q] = Q
- 6. Класс булевых функций Q называется *полным*, если [Q] множество всех возможных булевых функций
- 7. Определение *пропозициональной формулы* (индуктивное):
 - 1. Если р переменная, то р пропозициональная формула
 - 2. Если ψ пропозициональная формула, то $\neg \psi$ тоже пропозициональная формула
 - 3. Если φ и ψ пропозициональные формулы, то $(\psi \land \varphi), (\psi \lor \varphi), (\psi \to \varphi)$ тоже пропозициональные формулы
- 8. Тавтологией называется формула, истинная на любом наборе переменных

Примеры: 5

- (а) Закон тождества $A \to A$
- (b) Закон непротиворечия $\neg (A \land \neg A)$
- (c) Закон исключенного третьего $\neg A \lor A$
- (d) Закон двойного отрицания $(A \to \neg \neg A) \land (\neg \neg A \to A)$
- (e) Закон контрапозиции $((A \to B) \to (\neg B \to \neg A)) \land ((\neg B \to \neg A) \to (A \to B))$
- (f) Законы де Моргана $(\neg(A \land B) \to (\neg A \lor \neg B)) \land ((\neg A \lor \neg B) \to \neg(A \land B))$ и $(\neg(A \lor B) \to (\neg A \land \neg B)) \land ((\neg A \land \neg B) \to \neg(A \lor B))$

³Будем вверху в скобках показывать арность функции

 $^{^4}$ Подробнее в пункте про полиномы Жегалкина

⁵Здесь я немного поменял примеры Мусатова - заменил эквиваленцию на конъюнкцию двух импликаций, чтобы подходило под определение пропозициональной формулы

- (g) Закон силлогизма $((A \to B) \to (B \to C)) \to (A \to C)$
- 9. Противоречием называется формула, ложная на любом наборе переменных
- 10. Литералом называется переменная или ее отрицание.

Дизхюнктом называется дизъюнкция литералов

Конъюнктом называется конъюнкция литералов

Конъюнктивной нормальной формой $(KH\Phi)$ называется конъюнкция дизьюнктов

 ${\it Дизъюнктивной нормальной формой (ДНФ)}$ называется дизъюнкция конъюнктов

Совершенной контонктивной нормальной формой ($CKH\Phi$) называется такая $KH\Phi$, что в каждом дизъюнкте каждая переменная встречается не более одного раза

Совершенной дизъюнктивной нормальной формой (СДН Φ) называется такая ДН Φ , что в каждом конъюнкте каждая переменная встречается не более одного раза

11. *Мономом Жегалкина* называется конъюнкция переменных 6 , при чем принято опускать знак конъюнкции, как в обычных школьных алгебраических мономах.

Полиномом Жегалкина называется сумма мономов Жегалкина, где под суммой понимается исключающее или.

b. Простые утверждения

1. Наличие КНФ или ДНФ для любой бф

КНФ:

Пусть ψ - n-арная булева функция. Тогда по каждому набору (их 2^n), n-мерному вектору x, если функция ложна на нем, построим дизъюнкт по следующему правилу, если $x_i = 0$, то включим i-ую переменную в дизъюнкт, иначе - ее отрицание. Потом возьмем конъюнкцию всех дизъюнктов. Формально получим:

$$CNF_{\psi} = \bigwedge_{\substack{x \in \{0,1\}^n \\ f(x)=0}} \bigvee_{j=1}^n p_i^{1-x_i}, \quad \text{где } p_i^{x_i} = \begin{cases} p_i & x_1 = 1 \\ \neg p_i & x_i = 0 \end{cases}$$

Заметим, что каждый дизъюнкт $\bigvee_{j=1}^n p_i^{1-x_i}$ ложен только на своем наборе x, поэтому конечная формула будет ложна только на тех наборах, где бф принимает 0, значит, постоили для нее КНФ. Даже более того, СКНФ. Непокрытым остался лишь случай, когда функция - тавтологическая единица, тогда она представима в виде $p \vee \neg p$, но это не является СКНФ. Для тавтологий нет СКНФ.

 $^{^6}$ Важно отметить, что конъюнкция переменных (моном) \neq конъюнкт, т.к. второй допускает инверсию переменных, а в мономе никаких инверсий быть не может

 $^{^7}$ Будем обозначать і-ую переменную как p_i

ДНФ:

Пусть ψ - n-арная булева функция. Тогда по каждому набору (их 2^n), n-мерному вектору x, если функция истинна на нем, построим конъюнкт по следующему правилу, если $x_i = 0$, то включим i-ую переменную в конъюнкт, иначе - ее отрицание. Потом возьмем дизъюнкцию всех конъюнктов. Формально получим:

$$DNF_{\psi} = \bigvee_{\substack{x \in \{0,1\}^n \ f(x)=1}} \bigwedge_{j=1}^n p_i^{x_i}, \quad \text{где } p_i^{x_i} = \begin{cases} p_i & x_1 = 1 \\ \neg p_i & x_i = 0 \end{cases}$$

Заметим, что каждый конъюнкт $\bigwedge_{j=1}^{n} p_i^{x_i}$ истенен только на своем наборе x, поэтому конечная формула будет истинна только на тех наборах, где бф принимает 1, значит, постоили для нее ДНФ. Даже более того, СДНФ. Непокрытым остался лишь случай, когда функция - тавтологический ноль, тогда она представима в виде $p \land \neg p$, но это не является СДНФ. Для противоречий нет СДНФ.

2. Классы поста (P_0, P_1, S, M, A) замкнуты

 P_0 :

$$f^{(n)}, g^{(k)} = \begin{vmatrix} g_1^{(k)} \\ \vdots \\ g_n^{(k)} \end{vmatrix} \in P_0$$

$$h^{(k)} = f \circ g$$

$$h(0...0) = f(g(0...0))$$

$$g_i \in P_0 \Rightarrow h(0...0) = f(0...0) = 0 \Rightarrow h \in P_0$$

 P_1 :

$$f^{(n)}, g^{(k)} = \begin{vmatrix} g_1^{(k)} \\ \vdots \\ g_n^{(k)} \end{vmatrix} \in P_1$$
$$h(1...1) = f(g(1...1))$$
$$q_i \in P_1 \Rightarrow h(1...1) = f(1...1) = 1 \Rightarrow h \in P_1$$

M:

$$f^{(n)}, g^{(k)} = \begin{vmatrix} g_1^{(k)} \\ \vdots \\ g_n^{(k)} \end{vmatrix} \in M$$
$$h^{(k)} = f(q)$$

Пусть x, y - n-мерные векторы⁸ $x \geqslant y$ (покоординатно)

$$g_i \in M \Rightarrow g_i(x) \geqslant g_i(y) \Rightarrow g(x) \geqslant g(y)$$

 $^{^{8}}$ Компоненты векторов - 0 или 1, т.е. это есть не что иное, как наборы значений переменных

$$h(x) = f(g(x)) > f(g(y)) = h(y) \Rightarrow h \in M$$

S:

$$f^{(n)}, g^{(k)} = \begin{vmatrix} g_1^{(k)} \\ \vdots \\ g_n^{(k)} \end{vmatrix} \in S$$

$$g_i \in M \Rightarrow g_i(x) = \neg g_i(\neg x^9) \Rightarrow g(x) = \neg g(\neg x)$$

$$h(x) = f(g(x)) = f(\neg g(\neg x)) = \neg f(g(\neg x)) = \neg h(\neg x) \Rightarrow h \in S$$

A:

$$f^{(n)}, g^{(k)} = \begin{vmatrix} g_1^{(k)} \\ \vdots \\ g_n^{(k)} \end{vmatrix} \in A$$

$$g_m \in A \Rightarrow g_j = lpha_0^j \oplus igoplus_{i=1}^k lpha_i^j p_i$$
, где $lpha_i^j \in \{0,\,1\}$

$$f\in A\Rightarrow f=eta_0\oplusigoplus_{j=1}^neta_jq_j$$
, где $eta_j\in\{0,\,1\}$

$$h = f \circ g = \beta_0 \oplus \bigoplus_{j=1}^n \beta_j (\alpha_0^j \oplus \bigoplus_{i=1}^k \alpha_i^j p_i) = \beta_0 \oplus \bigoplus_{j=1}^n \beta_j \alpha_0^j \oplus \bigoplus_{j=1}^n \bigoplus_{i=1}^k \beta_j \alpha_i^j p_i$$

что является линейным полиномом $\Rightarrow h \in A$

с. Билеты на 3

1. Теорема об однозначном представлении булевой функции многочленом Жегалкина

Для любой $б\phi$ найдется и при том единственный до перестановки переменных и слагаемых полином $Жегалкина^{10}$

Доказательство

Всего функций от n переменных - 2^{2^n} штук. Мономов Жегалкина - 2^n штук (моном по сути - некоторое подмножество переменных, а всего подмножеств - мощность булеана), при чем перед каждым мономом стоит коэффициент 0 или 1. Итого всего 2^{2^n} полиномов Жегалкина от n переменных. Тогда, если мы покажем, что разным полиномам соответствуют разные функции, то мы докажем данное утверждение. Докажем, что разным полиномам сопоставляются разные функции. Предположим противное - пусть существуют два различных полинома, представляющих одну и ту же функцию. Вычтем их друг из друга и получим противоречие

Формально:

$$f=lpha_0\oplus igoplus_{j=1}^{2^n}lpha_j m_j$$
, где $lpha_j\in\{0,\,1\}$

 $^{^9\}Pi$ окомпонентная инверсия вектора

 $^{^{10}}$ Здесь предполагается, что все повторяющиеся мономы сокращены

Где m_j - это j-ый моном (т.е. занумеруем как-то мономы - их конечное число, поэтому данная операция проста и возможна)

$$f=eta_0\oplusigoplus_{j=1}^{2^n}eta_jm_j$$
, где $eta_j\in\{0,\,1\}$

$$\exists y \in \{0 \dots 2^n\} : \alpha_y \neq \beta_y$$

Приравняем два равенства:

$$\alpha_0 \oplus \bigoplus_{j=1}^{2^n} \alpha_j m_j = \beta_0 \oplus \bigoplus_{j=1}^{2^n} \beta_j m_j$$

Так как полином Жегалкина не спроста называется полиномом)) 11 , то перенесем все вправо и получим (Помним, что хог - это одновременно и сложение и вычитание):

$$\alpha_0 \oplus \bigoplus_{j=1}^{2^n} \alpha_j m_j \oplus \beta_0 \oplus \bigoplus_{j=1}^{2^n} \beta_j m_j = 0$$

$$(\alpha_0 \oplus \beta_0) \oplus \bigoplus_{j=1}^{2^n} (\alpha_j \oplus \beta_j) m_j = 0$$

Откуда: $\forall j \hookrightarrow \alpha_j \oplus \beta_j = 0 \Rightarrow \alpha_j = \beta_j$ - получили противоречие. **Ч.Т.Д.**

 $^{^{11}\}mbox{Это}$ все же лучше не говорить на экзамене

- II Теория множеств
- III Вычислимость