(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年11 月4 日 (04.11.2004)

PCT

(10) 国際公開番号 WO 2004/094362 A1

(51) 国際特許分類⁷: C07C 217/28, 229/64, 233/54, 317/44, 323/62, 229/60, C07D 215/12, 213/80, 307/79, A61K 31/47, 31/343, 31/195, 31/216, A61P 19/10, 19/08, 19/02, 29/00, 3/14, 43/00

(21) 国際出願番号: PCT/JP2004/005886

(22) 国際出願日: 2004年4月23日(23.04.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2003-119131 2003 年4 月23 日 (23.04.2003) JP

(71) 出願人 (米国を除く全ての指定国について): 日本たばこ産業株式会社 (JAPAN TOBACCO INC.) [JP/JP]; 〒1058422 東京都港区虎ノ門二丁目2番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 品川 雄功 (SHI-NAGAWA, Yuko) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 井上 照彦 (INOUE, Teruhiko) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 木口 登志裕 (KIGUCHI, Toshihiro) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 池ノ上拓 (IKENOGAMI, Taku) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 小川 直樹 (OGAWA, Naoki) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 福田 賢治 (FUKUDA, Kenji) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本た

ばこ産業株式会社 医薬総合研究所内 Osaka (JP). 中川敬 (NAKAGAWA, Takashi) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 進藤 順紀 (SHINDO, Masanori) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP). 副島有紀 (SOEJIMA, Yuki) [JP/JP]; 〒5691125 大阪府高槻市紫町 1番 1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka (JP).

(74) 代理人: 高島 — (TAKASHIMA, Hajime); 〒5410044 大阪府大阪市中央区伏見町四丁目 2番 1 4 号 藤村 大和生命ビル Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CaSR ANTAGONIST

(54) 発明の名称: CaSRアンタゴニスト

(57) Abstract: A compound of the following formula (1), its pharmaceutically acceptable salt or an optically active substance thereof. (in the formula, the symbols are as defined in the description). In particular, a compound having calcium sensitive receptor antagonism and a pharmaceutical composition comprising the compound, especially a calcium receptor antagonist and a therapeutic agent for osteoporosis.

(57) 要約:

本発明は、下記式(1)で示される化合物、その薬学的に許容される塩またはその 光学活性体に関する。

(式中、各記号は明細書の記載と同義である。)本発明は、カルシウム感知受容体拮抗 作用を有する化合物、それら化合物を含有してなる医薬組成物、特にカルシウム受容 体拮抗薬並びに骨粗鬆症治療薬を提供する。

明細書

CaSRアンタゴニスト

技術分野

本発明は、カルシウム感知受容体(calcium-sensing receptor: CaSR、以下、 5 単にカルシウム受容体という。)拮抗作用を有する化合物、それら化合物を含有してな る医薬組成物、特にカルシウム受容体拮抗薬並びに骨粗鬆症治療薬に関する。

背景技術

カルシウム受容体は細胞外のCa²⁺濃度を感知して細胞内のCa²⁺を上昇させ、それによってCa²⁺代謝調節及び骨代謝調節に係る副甲状腺ホルモン(parathyroid hormone: PTH)の産生を抑制する働きをする。

10

25

正常な哺乳動物の血清カルシウム濃度は、厳格に約9~10mg/100ml(約2.5mM)に維持されており、これを生体のカルシウムホメオスタシス(calcium homeostasis)と呼ぶ。この値が50%以下に低下すると、テタニー(強直)を起こし、逆に50%上昇すると意識の混濁を起こし、いずれの場合も生命を脅かす状態となる。 このカルシウムホメオスタシスの維持には、十二指腸が Ca^{2+} の取込み器官として、 骨が Ca^{2+} の貯蔵器官として、また腎臓が Ca^{2+} の排泄器官としてそれぞれ役割を担っている。さらに、そのような Ca^{2+} 動態の制御は、「カルシウム調節ホルモン」と総称される種々のホルモンにより行われている。代表的ホルモンには、活性型ビタミンD $[1\alpha,25(OH)_2D_3]$ 、PTH、カルシトニン、副甲状腺ホルモン関連蛋白 (Parathyroid Hormone–Related Protein: PTH-related Protein: PTH r P)などが挙げられる。

骨は、生体の支持組織として、及び運動器官としての役割のみならず、その構成成分であるCa²⁺の貯蔵器官としての重要な役割を担っている。そのような機能を果たすために、骨組織は、一生涯の間、その形成(骨形成)と吸収(骨吸収)を繰り返している。骨形成は、間葉系細胞由来の骨芽細胞が主な役割を担っており、また骨吸収は、造血系細胞由来の破骨細胞が主な役割を担っている。骨形成のメカニズムは、骨形成表面に存在する骨芽細胞が産生する骨有機質(I型コラーゲンなどの骨基質蛋白)による類骨の形成とそれに引き続く石灰化を経るメカニズムである。一方、骨吸収のメカニズムは、破骨細胞が骨表面に付着し、プロテアーゼ酸分泌及びイオン輸送を介

して細胞内にCa²⁺を吸収し、吸収したCa²⁺を骨髄側に排出することにより、血中にCa²⁺を送り出すメカニズムである。破骨細胞により吸収された骨の欠損部は、骨芽細胞による骨形成により修復される。このような一連の現象は、骨のリモデリングと呼ばれ、リモデリングにより、古い骨が新しい骨に置換され、骨全体の強度が維持されるとともに、カルシウムホメオスタシスが維持されている。

PTHは、カルシウムホメオスタシスの維持に中心的な役割を果たすホルモンである。血中C a $^{2+}$ 濃度が低下すると副甲状腺から PTHの分泌が直ちに促進され、骨においては骨芽細胞に作用して(骨芽細胞による破骨細胞の活性化、骨有機質分解酵素の産生など)破骨細胞性骨吸収を促進し、骨から血中へC a $^{2+}$ を動員する。また、PTHは、腎臓においては、遠位尿細管でのC a $^{2+}$ の再吸収を促進するとともに、近位尿細管では 2 5 (OH) ビタミンD $_3$ の1 α 位を水酸化することで、腸管からのC a $^{2+}$ 吸収を促進する機能を有する活性型ビタミンD $_3$ [1 α , 2 5 (OH) $_2$ D $_3$] の産生を促す。またリンの腎臓での再吸収を抑制する。以上のように、PTHは直接又は間接的に血中C a $^{2+}$ 濃度を上昇させる働きを有する。

一方、血中C a **濃度が上昇すると、カルシウム受容体がそれを感知し、副甲状腺からのPTHの分泌を直ちに抑制して、血中へ供給されるC a **量を減少させる(ブラウン E. M. (Brown, E. M.) 著、「ホメオスタティックメカニズムズ レギュレイティング エクストラセルラー アンド イントラセルラー カルシウム メタボリズム イン ザ パラサイロイズ (Homeostatic mechanisms regulating extracellular and intracellular calcium metabolism in the parathyroids)」、(米国)、ラヴェン・プレス (Raven press)、1994年、p.19参照)。PTHの分泌はまた、活性型ビタミンD [1α, 25 (OH) 20] によっても抑制される。

PTHはC a ²⁺代謝調節及び骨代謝調節で重要な役割を担うホルモンであることから、骨粗鬆症治療に応用する試みが検討されている。1982年に Tam らは甲状腺/25 副甲状腺摘出ラットにウシPTH(1-84)を持続投与すると大腿骨の海綿骨の骨形成と骨吸収がともに亢進し正味の骨量が減少するが、皮下に間歇投与すると骨吸収の亢進は見られず骨形成のみが亢進し、骨量が増加することを見出した(「エンドクリノロジー(Endocrinology)」、第110号、1982年、p. 506-512参照)。更に、Uzawa らはPTHの持続投与と間歇投与の作用を若齢ラット長管骨骨端部と骨幹

端部海綿骨で比較した。その結果、PTHを持続投与すると軟骨内骨化の影響の大きい骨幹端部海綿骨で骨端板軟骨の肥厚や線維性骨炎などの異常所見を認めながらも骨量は顕著に増加したが、その影響の小さな骨端部海綿骨では骨吸収が著しく亢進し、また皮質骨の粗鬆化を伴って骨量が減少することを明らかにした(「ボーン (Bone)」、第16号、1995年、p. 477-484参照)。また、PTHを間歇投与した場合には、骨端部と骨幹端部海綿骨いずれにおいても破骨細胞の増加や皮質骨の減少を伴わずに骨量及び骨梁幅が有意に増加していた旨の報告もなされている。

さらに、Scutt らは、ニワトリ頭蓋冠由来骨芽細胞では、PTHの短時間(10~20分)処理は長時間(18時間)処理に比較して細胞増殖が促進することを報告している(「カルシファイド ティシュー インターナショナル(Calcified Tissue International)」、第55号、1994年、p. 208-215参照)。このことからしても、PTHの骨芽細胞に対する作用のいくつかは一過性であり、かつ、それらの作用が極めて短時間の処理で発現するという現象は、in vivo におけるPTHの持続投与と間歇投与とでは骨組織に対する作用が異なることと関連している可能性があると考えられる。

10

15

20

25

また、石津谷らは in vitro の実験系を用いて骨芽細胞の分化に対するPTHの作用を検討した結果、PTHの作用は処理時間に依存して異なることを明らかにしている。彼らは、まず培養したラット頭蓋冠由来骨芽細胞にPTHを持続的に作用させると、骨芽細胞の分化は強力に抑制され、in vitro の骨形成もほぼ完全に抑制されたが、48時間を1サイクルとして最初の6時間だけPTHを作用させることを繰り返すと、骨芽細胞の分化は有意に促進され、in vitro の骨形成が促進されたことを報告している。

また、PTHは骨粗鬆症モデルの骨量減少を予防するだけではなく、骨量減少が既に顕著に起こった動物に対しても骨量の回復効果を有すると考えられている。Wronski らは、卵巣摘出後4週間で海綿骨が明らかに減少する90日齢のSDラットを用いて、卵巣摘出後4週目から15週間、ヒトPTH(1-34)を間歇投与した。その結果、投与開始後5週目から10週目まで骨形成の亢進と骨吸収の抑制が認められ、骨量が疑似手術群の約2倍まで増加することを示した(「エンドクリノロジー(Endocrinology)、第132号、1993年、p.823-831参照)。また、彼ら

は、この実験でエストロゲンやビスホスホネートは卵巣摘出による骨量減少を防止したが、PTHのような骨量増加は認められないことを報告している。また彼らは、この実験系の皮質骨を詳細に解析し、ヒトPTH(1-34)間歇投与により骨膜側及び骨内膜側に骨形成促進像と骨量増加が認められたことから、PTHによる海綿骨の増加は皮質骨の減少を伴ったものではないことも明らかにした(「ボーン (Bone)」、第15号、1994年、p.51-58参照)。

さらに、Mosekilde らは、ヒトPTH (1-34) 又はヒトPTH (1-84) の 間歇投与により、ラット椎体骨の海綿骨(「エンドクリノロジー(Endocrinology)」、 第129号、1991年、p. 421-428参照) や皮質骨 (「ジャーナル オブ ーン アンド ミネラル リサーチ (Journal of Bone and Mineral Research)」、第 10 8号、1993年、p. 1097-1101参照) では骨量の増加だけでなく、骨質 の指標となる圧縮強度や曲げ強度も用量依存的に増加することを報告している。この ようにPTHは実験動物では明らかな骨量増加作用を示すが、実際に臨床応用する際 に想定される制約条件についても種々の検討が行われている。溝口は、骨粗鬆症の成 因の一つと考えられている血中PTHが有意に上昇している状態でもPTH間歇投与 15 による薬理作用が見られるか否かを検討し、通常通り骨量増加が起こることを認めて いる (「日骨形態誌」、第5巻、1995年、p. 33-39参照)。また、高尾らは、 PTHの投与間隔について検討し、正常ラットにおいて12週間、週1回の投与でも 骨吸収の亢進を殆ど伴わず、用量依存的に骨量が増加することを報告し(「日骨代謝誌」、 20 第12巻 (Suppl.)、1994年、p. S343参照)、臨床的に有用な低頻回投与が 有効である可能性を示唆した。以上の成績は、PTHは閉経後骨粗鬆症あるいは卵巣 摘出後骨粗鬆症の治療に対し、骨量増加とともに骨折率も低下させ得る、強力かつ有 望な治療薬となる可能性を示唆している。

これらの結果から、PTHを間歇投与することによって骨粗鬆症の治療が可能であることは明らかである。しかし、PTHの場合は投与手段として注射を採用しなければならず、多くの患者にとっては苦痛を伴うという問題も残っている。一方、血中のPTH濃度を間歇的に上昇させ得る経口投与可能な薬剤は、上記PTHや、従来のカルシトニンとは異なる新たな作用機序による骨粗鬆症治療薬として大いに期待される。ところで、カルシウム受容体はPTH分泌調節に必須の分子としてクローニングさ

れた、細胞膜を7回貫通するG蛋白質共役型受容体である。ヒトカルシウム受容体は1078個のアミノ酸からなり、ウシカルシウム受容体と93%のアミノ酸相同性を示している。ヒトカルシウム受容体は612個のアミノ酸からなる大きなN端細胞外領域と、250個のアミノ酸からなる細胞膜貫通領域、及び216個のアミノ酸からなるC端細胞内領域から構成されている。

カルシウム受容体は副甲状腺に加え、腎臓、甲状腺C細胞、脳などにも発現が認められ、骨においても骨髄細胞での発現が確認されている。

カルシウム受容体は Ca^{2+} などのリガンドと結合すると、 $G蛋白と共役してホスホリパーゼCを活性化し、イノシトール3リン酸の産生、細胞内<math>Ca^{2+}$ 濃度の上昇をもたらし、その結果、PTHの分泌が抑制される (「ネイチャー (Nature)」、第366号、1993年、p.575-580参照)。

10

15

上記の通り、カルシウム受容体の活性化を阻害する薬剤、即ちカルシウム受容体に 拮抗する薬剤は副甲状腺細胞におけるPTH分泌の抑制を解除し、PTH分泌を促進 させる。また、この時拮抗作用がPTHの血中濃度を非持続的、間歇的に上昇させ得 るものであるならば、その拮抗剤にはPTHを間歇投与した場合と同じ効果が期待で き、骨粗鬆症の治療に極めて有効な薬剤が得られるものと考えられる。

一方、シトクロム(cytochrome P450、以下、P450)はプロトへムを含有する分子量5万前後のタンパク質であり、その生理機能は多岐にわたる。例えば、薬物代謝において様々な反応を触媒する酵素としての機能を有する。P45 0 (CYP)のファミリーに属するCYP2D6は、ヒト薬物代謝酵素で重要なものであり、多くの化合物の代謝に関わっている。CYP2D6の代謝機能を阻害するような薬物を投与した場合、その薬物は体内に蓄積されることとなり、薬物の影響が強く出てしまうことがある。従って、薬物としては、CYP2D6の代謝機能阻害活性の弱い化合物が望ましい。

25 CaSR拮抗薬として有用な化合物は、これまでにも種々報告されている。 具体的には、例えば、下記一般式

$$X_1$$
 D
 D
 X_2
 D
 D
 X_3
 X_3
 $(CH_2)n$
 D
 X_4

 $[Aはアリール等、DはC又はN、<math>X_1$ 及び X_5 は水素、シアノ等、 X_2 、 X_3 及び X_4 は水素、ハロゲン、 C_{1-4} アルキル等である。

で表される化合物(国際公開第02/38106号パンフレット参照)、

5 また、下記一般式

$$X_1$$
 D D X_3 X_4 X_2 D D X_4

 $[Aはアリール等、DはC又はN、<math>X_1$ 及び X_5 は水素、シアノ等、 X_2 は水素等、 X_3 及び X_4 は水素、 C_{1-4} アルキル等である。

で表される化合物(国際公開第02/34204号パンフレット参照)、

10 また、下記一般式

[AはC又はN、DはC又はN、Xはシアノ、ニトロ等、Yは塩素、フッ素等、Arはフェニル、ナフチル等である。]

で表される化合物(国際公開第02/07673号パンフレット参照)、

15 また、下記一般式

[Xはシアノ、ニトロ等、Yは塩素、フッ素等、Arはフェニル、ナフチル等である。] で表される化合物 (特表2002-536330号公報、国際公開第00/45816号パンフレット、ヨーロッパ出願公開1148876号および米国特許6417215号参照)、

また、下記一般式

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{4}$$

$$X_{5}$$

$$X_{4}$$

$$X_{5}$$

$$X_{4}$$

また、CaSR拮抗薬として、下記一般式

$$\begin{array}{c|c}
 & R_3 \\
 & R_7 \\
 & R_8 \\
 & H
\end{array}$$

$$\begin{array}{c|c}
 & R_3 \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & R_5 \\
 & R_5
\end{array}$$

〔Xは、下式

$$\begin{array}{c} X_1 \\ X_2 \\ X_2 \\ X_4 \end{array}$$

$$(Ia)$$

(式中、 X_1 、 X_2 、 X_3 及び X_4 は独立に、CN、 NO_2 など、 $WはR_1$ 、 SO_2R_1 など、 R_2 はH、 C_{1-4} アルキルなど)など、 Y_1 は、共有結合、又は無置換若しくは置換アルキレンなど、 Y_2 は、無置換又は置換メチレン、 Y_3 は、共有結合、Oなど、 R_3 および R_4 は、独立にメチル、エチルなど、 R_5 は、ヘテロアリール、縮合ヘテロアリールなど、 R_7 は、H、OHなど、 R_8 は、H、 C_{1-4} アルキルなど、AおよびBは、独立に結合、 CH_2 など、Gは、共有結合、 CHR_6 (R_6 は、Hなど) などである。〕

10 で表される化合物 (特表 2002-510636号公報、国際公開第99/5124 1号パンフレット、ヨーロッパ出願公開1069901号および米国出願公開200 2052509参照)、

また、CaSR拮抗薬として下記一般式

$$X^{-2} - Y_{1} + R_{8} + Y_{2} + R_{3} + R_{4} + R_{5}$$

15 〔式中、 Y_1 は共有結合、アルキレンなど、 Y_2 は無置換又は置換メチレン、Zは共有結合、Oなど、 R_3 及び R_4 は独立に、メチル又はエチルなど、 R_5 はフェニル、ナフチルなど、Gは共有結合又は $C-R_6$ (ここで R_6 はH、OHなど)、 R_7 はH、OHなど、

 R_8 はH又は C_{1-4} アルキルなど、A-B部位は CH_2CH_2 、共有結合など Xは下式

$$R_2$$
 N
 X_1
 X_2
 X_1
 X_2
 X_3

(式中、Wは R_1 、 SO_2R_1 (ここで R_1 は水素、 C_{1-4} アルキルなど)など、 X_1 、 X_2 、 X_3 及び X_4 は独立に、CN、 NO_2 など、 R_2 は水素、 C_{1-4} アルキルなど)などである〕で表される化合物(特表 2001-523223 号公報、国際公開第 98/4525 5号パンフレット、ヨーロッパ出願公開 973730 号および米国特許 629453 1号参照)、

また、下記一般式

$$R_1 \xrightarrow{z} Y_1 \xrightarrow{R_6} Y_2 \xrightarrow{R_3} R_4 \xrightarrow{R_4} R_5$$

10

 $[R_1$ はアリール等、 R_2 は水酸基等、 R_3 及び R_4 は低級アルキル等、 R_5 は置換ナフチル、置換フェニル等、 Y_1 はアルキレン等、 Y_2 はアルキレン、 Y_3 はアルキレン、Zは酸素等である。

で表される化合物 (特表 2001-501584号公報、国際公開第97/3796 15 7号パンフレット、ヨーロッパ出願公開901459号および米国特許602289 4号参照)、

また、下記一般式

$$\begin{array}{c|c} X & & & \\ (CH_2)_m & -N & & \\ \end{array}$$

[Xはニトロ等、Yは水素等、QはC₁₋₄アルキル等、Arはフェニル、ナフチル等、

 $mt0 \sim 2$, $nt1 \sim 3$ rb3.

で表される化合物 (特表 2002-522499号公報、国際公開第00/0913 2号パンフレットおよびヨーロッパ出願公開1112073号参照)、

また、下記一般式

5

15

20

$$V$$
 D
 D
 C
 CH_2) D

[Xはシアノ等、Yは塩素等、Qは水素等、Wは酸素等、Dは水素等、nは $2\sim4$ である。]

で表される化合物 (特表 2002-522532号公報、国際公開第00/0949 1号パンフレットおよびヨーロッパ出願公開1104411号参照) が記載されてい 10 る。

Maxine Gowen らは、CaSR拮抗作用を有するNPS-2143と呼ばれる化合物

をOVXラットに経口投与して、その血中濃度や骨密度を測定することによって、該NPS-2143の骨形成に対する影響を試験し、その結果を報告している (「ザ ジャーナル オブ クリニカル インベスティゲイション (The Journal of Clinical Investigation)」、第105号、2000年、p. 1595-1604参照)。

それによれば、NPS-2143はPTHの放出を有意に促進するものの、in vitroでは骨芽細胞と破骨細胞に対して何ら直接的な効果を有しておらず、結果的には骨減少もなければ骨増加もなかったとのことである。その原因の一つとして、NPS-2143の血中半減期が長すぎることが指摘されている。即ち、OVXラットにラットPTH (1-34)を 5μ g/kgの用量で投与した場合は、血中PTH濃度は30分後には約175pg/m1のピークとなり、2時間後には再び元の状態に戻るのに対して、NPS-2143を100 μ mo1/kgの用量で投与した場合は、血中P

TH濃度は30分後に約115 pg/mlとなった後にもさらにPTH濃度は上昇し続け、4時間後においてさえその濃度は約140 pg/mlであった(「ザ ジャーナル オブ クリニカル インベスティゲイション(The Journal of Clinical Investigation)」、第105号、2000年、第1598頁、第3図参照)。

またこの時、NPS-2143自体の血中濃度は、投与8時間後でも100ng/m1以上に上昇したままであって、10ng/m1以下となって検出できなくなるのは24時間後であった。

上記 Maxine Gowen らの文献は、血中半減期があまりに長いカルシウム受容体拮抗剤は、あたかもPTHを持続的に投与した場合と同様の結果をもたらし、決して骨量増加を期待できないことを示すものである。このように従来の大半のカルシウム受容体拮抗剤はいずれも持続的に血中PTH濃度を上昇させるものであって、十分な骨形成促進作用を期待することができない。従来のカルシウム受容体拮抗剤中、優れたカルシウム受容体拮抗作用を有し、且つ経口、間歇投与可能であり、しかも血中PTH濃度を非持続的に、間歇的に上昇させることが可能である、下記一般式[I]

15

20

5

10

 $[R^1$ は置換されてもよいアリール基等、 R^2 は C_{1-6} アルキル基、 C_{3-7} シクロアルキル基等、 R^3 は水酸基等、 R^4 は水素原子等、 R^5 及び R^6 は C_{1-6} アルキル基等、 R^7 は置換されてもよいアリール基等、 X^1 は単結合、 C_{1-6} アルキレン等、 X^2 は置換されてもよい C_{1-6} アルキレン、 X^3 は単結合又は置換されてもよい C_{1-6} アルキレン、 X^4 及び X^5 は一緒になって単結合、メチレン等である。〕

で表される化合物が開示されている(国際公開第02/14259号パンフレット参照)。当該公報に開示されている範囲の化合物と、本発明化合物との活性を比較したところ、驚くべきことに本発明化合物がより高い活性を有し、かつ、代謝酵素CYP2D6の阻害作用が低い化合物であることが分かった。

25 しかしながら、このような有効な化合物の報告は少なく、さらなる研究が望まれている。

発明の開示

本発明は、優れたカルシウム受容体拮抗作用を有し、且つ経口、間歇投与可能であり、しかも血中PTH濃度を非持続的に、間歇的に上昇させることが可能な化合物を提供することを目的とする。また本発明は、該化合物を含有してなる、カルシウムホメオスタシスの異常を伴う疾患、即ち骨粗鬆症、上皮小体機能低下症、骨肉腫、歯周病、骨折、変形性関節症、慢性関節リウマチ、パジェット病、液性高カルシウム血症、常染色体優性低カルシウム血症等の治療薬、特に骨粗鬆症治療薬として有効な、経口投与可能な医薬組成物を提供することを目的とする。

また、血中カルシウムが増えることによって、脳内ドーパミンが増え、パーキンソン病や痴呆の症状が改善されることが最近報告された。本発明化合物は血中PTHを上昇させ、結果的に血中カルシウム濃度を上昇させることから、パーキンソン病や痴呆の治療薬としても期待される。

本発明者らは、上記課題を解決するために鋭意研究を行った結果、下記一般式(1)で表される化合物が優れたカルシウム受容体拮抗作用を有し、且つ経口、間歇投与可能なことを見出して、本発明を完成した。下記一般式(1)で表される化合物は驚くべきことに血中PTH濃度を非持続的に、間歇的に上昇させることが可能であり、優れた骨粗鬆症治療薬としての実用化が大いに期待できるものである。

本発明に係る下記一般式(1)で表される化合物は酸素原子に隣接する炭素原子が

$$\begin{array}{c|c}
 & & & & & & \\
R^1 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline$$

10

15

25

20 (式中、各記号は下記一般式(1)で定義する通りである)

の構造を有していることに特徴がある。後述の試験例からも明らかな通り、当該構造を有している本発明化合物は、優れたカルシウム受容体拮抗作用を有するばかりか、非持続的で、一過性のPTH分泌促進作用を有するものである。従って、本発明化合物を投与することによって、PTHを間歇投与した場合と同様の効果が得られ、骨粗鬆症の治療に極めて有効であると考えられる。しかも、本発明化合物は後記の試験例に示す通り、代謝酵素P450、特にCYP2D6の代謝機能阻害活性が弱く、医薬

品として望ましいといえる。本発明のPTH分泌促進作用は、従来知られている化合物に比べ低用量から認められる。また、本発明化合物は、経口吸収性や溶解性が改善されており、副作用が弱いことも明らかである。

本発明は、下記一般式(1)で示される化合物、該化合物を有効成分とするカルシウム受容体拮抗薬並びに骨粗鬆症治療薬に関する。より詳しくは、下記[1]乃至[4]に示す通りである。

[1] 下記式 (1) で示される化合物、その薬学的に許容される塩またはその光学活性体(以下、まとめて化合物(1)と略す場合もある。):

10 nは、0または1を示し、

20

pは、1乃至3の整数を示し、

R¹は、水酸基、C₁₋₆アルコキシ基またはR⁴を示し、

ここで、 R^{Λ} は、 R^{C} -OC(=O) $O-C_{1-4}$ アルキレン-O-またはOH-NH-を示し、

15 ここで、 R^{c} は、 C_{1-e} アルキル基又は C_{3-e} シクロアルキル基を示し、

 R^2 及び R^3 は、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、ハロ C_{1-6} アルキル基、カルボキシル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{1-7} アシルアミノー C_{1-6} アルキル基、 C_{2-6} アルケニル基、アラルキル基、フェニル基、 C_{1-6} アルキルアミノ基、ジ(C_{1-6} アルキル)アミノ基、

 C_{1-6} アルコキシー C_{1-6} アルキル基、メルカプト基、シアノ基、ニトロ基、モルホリノ基、ピペリジノ基またはピロリジノ基を示すか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 は、-C=C-、-C=N-、酸素原子又は硫黄原子を示し、

25 Z i t, -S - t, -S O - t, $-S O_2 - t$, $-(C H_2)_{m1} - O - t$, $-O - (C H_2)_{m1} - t$, $-(C H_2)_{m2} - N H - t$, -N H - t, $-(C H_2)_{m2} - t$, $-(C H_2)_{m3} - N$, $-(C H_3)_{m3} - N$

 H_3) - (CH_2) $_{m3}$ - 、 C_{1-4} アルキレン基、- S O_2 - N (CH_3) - 、- N (CH_3) - S O_2 - 、- N + C O N + 一または + C + アルケニレン基を示し、

ここで、m1、m2およびm3は、それぞれ0乃至2の整数を示し、

 X^2 は、-C=C-、酸素原子又は硫黄原子を示し、

5 R^4 は、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基を示し、

R⁵は、水素原子またはR^Bを示し、

ここで、R^Bは、カルボキシル基で置換されてもよいC₁₋₇アシル基を示し、

Yは、炭素原子または窒素原子を示し、かつ

 R^6 、 R^7 及び R^8 は、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アル キル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、カルボキシル基、水酸基、シアノ基、ニトロ基、フェニル基、 C_{3-6} シクロアルキル基、ジ(C_{1-6} アルキル)アミノカルボニル基またはヒドロキシー C_{1-6} アルキル基を示すか、あるいは隣接する R^6 と R^7 が一緒になって一CH=CH-CH=CH-、一C(OH) = CH-CH=CH-、一CH=CH-、一CH=CH-、一CH=CH-、CH=CH-、CH=CH-、CH=CH-、CH=CH-、CH=CH-、CH=CH- CH=CH- CH- C

ここで、k1は1乃至4の整数を示し、k2は $2\sim5$ の整数を示し、k3は $3\sim6$ の整数を示し、

但し、 R^2 および R^3 が共に水素原子であり、かつnが1である時、Zは $-SO_2-N$ (C H_3)-(式中、硫黄原子は環Vに結合し、かつ窒素原子は環Wに結合する)以外の基 である。

[2] 下記式 (1')

(式中、各記号は上記[1]と同義である。)

25 で表される立体配置を有する、上記[1]記載の化合物またはその薬学的に許容され

る塩。

[3] n が 1 である、上記 [1] または [2] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

- 5

[4] nが、1であり、

pが、1であり、

 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミ 10 ノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{2-6} アルケニル基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル)アミノ基またはニトロ基であるか、 あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 が、-C=C-または-C=N-であり、

15 $X^2 \dot{m}$, $-C = C - \tau \dot{m} \dot{p}$,

Zが、-S-、-SO-、 $-SO_2-$ 、 $-(CH_2)_{m1}-O-$ 、 $-O-(CH_2)_{m1}-$ 、 $-(CH_2)_{m2}-NH-$ 、 $-NH-(CH_2)_{m2}-$ 、 $-(CH_2)_{m3}-N(CH_3)-$ 、 $-N(CH_3)-$ ($CH_2)_{m3}-$ 、 $-(CH_2)_{m3}-$ 、 $-(CH_2)_{m3}-$ (C_{1-4} アルキレン基または C_{2-4} アルケニレン基であり、ここで、-0 ここで、-1 、-1 なおよび -3 が、それぞれ -2 の整数であり、

20 R^4 が、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基であり、 R^5 が水素原子であり、

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって

25 - CH=CH-CH=CH-を形成する、

上記 [3] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

[5] nが、1であり、pが、1であり、

 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルコキシ基または C_{1-6} アルキル基であり、

 $X^1 \check{n}$, $-C = C - \check{r} \check{n} \check{n}$,

Zが、-S-、-SO-、 $-SO_2-$ 、-(CH_2) $_{ml}-O-$ 、-O-(CH_2) $_{ml}-$ 、- CH_2-NH- 、 $-NH-CH_2-$ 、-N(CH_3)-、メチレンまたはビニレンであり、ここで、m1が、0または1であり、

 $X^2 \vec{m}$ 、 $-C = C - \vec{v}$ \vec{o} \vec{o}

R⁴が、メチル基またはシクロプロピル基であり、

10 R⁵が水素原子であり、

2.5

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子または C_{1-6} アルキル基であるか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-EH

15 上記 [4] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸メチル、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、

4-[2-[1-[(2R)-3-[1-(キノリン-3-イル)-2-メチルプ

ロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息 香酸、

- 4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル)
- -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ
- 5 エノキシ] 安息香酸、
 - $4 [2 [1 [(2R) 3 [[1 (3 7)\lambda + 7 4 4 + 4 + 7)]])$
 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、
 - 3-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル)]]
- 10 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、
 - 4-[2-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェニル]ビニル] 安息香酸、
- 3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸、
- 4-[2-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェ ニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチ 20 ル]フェニル] ビニル] 安息香酸、

 - 4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル)
- 25 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3, 5-ジメチル安息香酸、
 - 4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息香酸、

3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル] プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルフィニル] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルホニル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェニルアミノ] 15 メチル] 安息香酸、

2-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

3-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル 20 プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メ チル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(3-7)]]]]]-2-3 チルプロパン-2-7ル]アミノ]-2-2 ドロキシプロポキシ] エチル] フ

ェノキシ] メチル] 安息香酸、

3-フルオロー4-[[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

5 4-[[2-[1-[(2R)-3-[[1-(3-7)]]]]] -2-1

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ

10 エノキシ] -3,5-ジメトキシ安息香酸、

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-ニトロ安息香酸、

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)]

15 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -2-ニトロ安息香酸、

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

-2ーメチルプロパン-2ーイル]アミノ] -2ーヒドロキシプロポキシ] エチル] フェノキシ] -3ークロロ安息香酸、

20 4-[2-[1-[(2R)-3-[[1-(3-7)]]]] -2-7

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フ

25 ェノキシ] -2-トリフルオロメチル安息香酸、

4- [2- [1- [(2R) -3-[[1- (3-フルオロー4-メチルフェニル)

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-トリフルオロメチル安息香酸、

4-[2-[1-[(2R)]-3-[[1-(3-7)]な + 2] + 2] + 2]

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-フルオロ安息香酸、

4-[2-[1-[(2R)-3-[1-(4-クロロ-3-フルオロフェニル)]]

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ

5 エノキシ]安息香酸、および

4-[2-[1-[(2R)-3-[1-(4-クロロ-3-フルオロフェニル)

-2ーメチルプロパン-2ーイル]アミノ] -2ーヒドロキシプロポキシ] エチル] フェノキシ] -5ーメチル安息香酸

からなる群より選ばれる化合物である、上記[3]記載の化合物、その薬学的に許容 10 される塩またはその光学活性体。

[7] n n n 0 である、上記 [1] または [2] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

15 [8] nが、0であり、

pが、1であり、

 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、

20 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{2-6} アルケニル基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル) アミノ基またはニトロ基を示すか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 が、-C=C-または-C=N-であり、

 X^2 が、-C=C-であり、

25 R^4 が、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基であり、 R^5 が水素原子であり、

Yが、炭素原子または窒素原子であり、かつ、

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって

-CH=CH-CH=CH-を形成する、

上記 [7] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

[9] nが、0であり、

5 pが、1であり、

 R^1 が、水酸基または C_{16} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{2-6} アルケニル

10 基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル) アミノ基またはニトロ基であるか、 あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 が、-C=C-または-C=N-であり、

 $X^2 \vec{m}$, $-C = C - \vec{v}$ \vec{m}

R⁴が、メチル基またはシクロプロピル基であり、

15 R⁵が水素原子であり、

Yが、炭素原子であり、かつ、

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって -CH=CH-CH=CH-を形成する、

20 上記 [8] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

 $\begin{bmatrix} 1 \ 0 \end{bmatrix} \ 2$ ' $- \begin{bmatrix} 1 - \begin{bmatrix} (2R) - 3 - \begin{bmatrix} [1 - (3 - 7) \mu x - 4 - 4 - 4 + 4 \mu x - 4 \mu$

 2^{9} 2^{9} -[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-3メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - クロロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>-3 - メ

チルビフェニルー4ーカルボン酸、

2.5

2'-[1-[(2R)-3-[[1-(4-クロロー3-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (2, 3 - ジフルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 2 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

3-メチルー2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-イル)] -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-5-カルボン酸、

20 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル<math>-3, 5 -ジカルボン酸メチル、

2' - [1 - [(2R) - 3 - [[1 - (ナフタレン - 2 - イル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2' - [(シクロプロピル)](2R) - 3 - [[1 - (3 - フルオロ - 4 - メチルフ)]

ェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] メチル] -3-メチルビフェニル-4-カルボン酸、

- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 - メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 メチルビフェニル 4 カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] <math>- 3 3 メチルビフェニル 5 カルボン酸、
- 2' [(シクロプロピル)](2R) 3 [[1 (4 クロロー2 フルオロフ 10 エニル) 2 メチルプロパン 2 イル]アミノ] 2 ヒドロキシプロポキシ] メ チル] 3 メチルビフェニル 4 カルボン酸、
 - 2' [(シクロプロピル)](2R) 3 [[1 (4 クロロ 3 フルオロフェニル) 2 メチルプロパン 2 イル]アミノ] 2 ヒドロキシプロポキシ] メチル] 3 メチルビフェニル 4 カルボン酸、
- 15 2'- [1-[(2R)-3-[[1-(3-7)]]] 2 $-2+\sqrt{2}$ $-2+\sqrt{2}$
- 3-メチル-2'-[1-[(2R)-3-[[1-(3,4-ジメチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビ フェニル-4-カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、
- 2'-[1-[(2R) -3-[[1-(4-クロロー3-メトキシフェニル) -2
 25 ーメチルプロパンー2ーイル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニルー4ーカルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-エチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニルー4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-2,5-ジフルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニルー<math>4-カルボン酸、

- - 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-メトキシビフェニル-4-カルボン酸、
- 10 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロ パン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]<math>-3-(トリフルオ ロメチル) ビフェニル-4-カルボン酸、
- 2'-[1-[(2R)-3-[[1-(2-7)ルオロ-4-メトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-315 - (トリフルオロメチル) ビフェニル-4-カルボン酸、
 - 3-エチル-2' -[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、
- 2' [1-[(2R) -3-[[1-(3, 4-ジクロロフェニル) -2-メチル]] 20 プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-(トリフルオロメチル) ビフェニル-4-カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-イソプロピルビフェニル-<math>4-カルボン酸、
- 3-エチルー2' [1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル] ビフェニル-4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロー4 メチルフェニル) 2 メチルプロパン <math>- 2 7 2 7 2 7 2 7 3 7 3 7 3 7 1

イソプロピルビフェニルー4ーカルボン酸、

2-クロロ-6-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニル] ピリジン-3-カルボン酸、

- 5 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-プロピルビフェニル-4-カルボン酸、
- 2, 3-ジメチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-イル]]] -2-メチルプロパン-2-イル]アミノ-2-ヒドロキシプロポキシ] エチル-2-10 フェニル-2-10 フェニル-2-10 フェニル-2-10 フェニル-2-10 フェニル-2-10 アミノ-2-10 フェニル-2-10 アミノ-2-10 フェニル-2-10 アミノ-2-10 アミノ-2-1
- 2-クロロ-6-[2-[1-[(2R)-3-[[1-(3-)])] 2ークロロ-6-[2-[1-[(2R)-3-[1-(3-)]]] 2ーとドロキシプロポキシ] フェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ピリジン-3-カルボン酸、
 - 3, 5-ジメチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸、
- 20 2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-m-テルフェニルー4'-カルボン酸、
- 25 3-ジメチルビフェニルー4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 - メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3, 5 ジメチルビフェニル 4 カルボン酸、
 - 4- (ヒドロキシメチル) -2' [1- [(2R) -3-[[1- (ナフタレン-

2-4ル) -2-メチルプロパン-2-4ル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸、

- 3-4ソブチルー2' -[1-[(2R)-3-[[1-(ナフタレン-2-4ル) -2-メチルプロパン-2-4ル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 イソブチルビフェニル 4 カルボン酸、
- - 2' [1 [(2R) 3 [[1 (3 7) ルオロー4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル<math>] 3 (2 メチル 1 プロペニル) ビフェニル 4 カルボン酸、
- 2' [1 [(2R) 3 [[1 (ナフタレン 2 イル) 2 メチルプロ パン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 ヒドロキシビ フェニル 4 カルボン酸、
- 2'-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-20 ヒドロキシビフェニル-4-カルボン酸、
 - 3-xチルー2' -[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル] ビフェニルー<math>4-カルボン酸、
- 2'-[1-[(2R) -3-[[1-(4-クロロー3-フルオロフェニル) -2
 25 ーメチルプロパン-2ーイル]アミノ] -2ーヒドロキシプロポキシ] エチル] -3ーイソプロピルビフェニル-4ーカルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 - メチルプロパン 2 - イル] アミノ] 2 - ヒドロキシプロポキシ] エチル] 3 - (1 メチルプロピル) ビフェニル 4 カルボン酸、

2-メチルー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー4-カルボン酸、

3-メチル-2'-[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)]-2 5 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]ビフェ ニル-4-カルボン酸、

4-フルオロ-2'-[1-[(2R)-3-[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸、

10 2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2 - メチルビフェニル - 4 - カルボン酸、

6-フルオロー 2 ' - [1- [(2R)-3-[[1- (ナフタレンー 2-イル) - 2-メチルプロパンー 2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸、

15

3-フルオロ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸、

2' - [1-[(2R) - 3-[[1-(3-クロロフェニル) - 2-メチルプロパ 20 ン-2-イル]アミノ] - 2-ヒドロキシプロポキシ] エチル] - 3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

25 2-フルオロー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸、

メチルビフェニルー4ーカルボン酸、

- 2'-[(シクロプロピル)](2R)-3-[[1-(ナフタレン-2-イル)]-2 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]メチル]-3-フルオロビフェニル-4-カルボン酸、
- 5 2'-[(シクロプロピル)](2R)-3-[[1-(ナフタレン-2-イル)]-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]メチル]-2-フルオロビフェニル-4-カルボン酸、
- 2' [(シクロプロピル)](2R) 3 [[1 (ナフタレン 2 イル)] 2 メチルプロパン 2 4 10 メチルビフェニル 4 10 カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(3,4-ジクロロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-フルオロビフェニル-4-カルボン酸、
- - 2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-ニトロビフェニル-4-カルボン酸、
- 3-アミノ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー4-カルボン酸、
- 3-(アセチルアミノ)-2'-[1-[(2R)-3-[[1-(ナフタレン-2-4ル)-2-メチルプロパン-2-4ル]アミノ]-2-ヒドロキシプロポキシ]エ 25 チル] ビフェニル-4-カルボン酸、
 - 3-クロロー2'ー[1-[(2R)-3-[[1-(3-フルオロー4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル] ビフェニルー4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 メトキシ 4 メチルフェニル) 2]]

ーメチルプロパン-2ーイル]アミノ] -2ーヒドロキシプロポキシ] エチル] -3ーメチルビフェニル-4ーカルボン酸、

- 2, 3-ジヒドロ-5-[2-[1-[(2R) -3-[[1-(ナフタレン-2-4ル) -2-メチルプロパン-2-4ル] アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ベンゾフラン-7-カルボン酸、
- 2, $6-\tilde{\nu}$ メチルー2'ー[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー4ーカルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) 4 4 4 4 + 7)] 210 - メチルプロパン-2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2, 6 - ジメチルビフェニル-4 - カルボン酸、
 - 3-(ジメチルアミノ)-2'-[1-[(2R)-3-[[1-(ナフタレン-2-1ル)-2-メチルプロパン-2-1ル]アミノ]-2-ヒドロキシプロポキシ]ェチル] ビフェニル-4-カルボン酸、
- 3-ベンジルー2'- [1-[(2R)-3-[[1-(3-7)]]] フェニル) -2-メチルプロパンー2-イル]アミノ]-2-ヒドロキシプロポキシ] 20 エチル] ビフェニルー4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル)] 2 メチルプロパン 2 7 スチルプロパン 2 7 ストキシビフェニル 4 7 ルボン酸、
- 2' [1 [(2R) 3 [[1 (4 クロロ 2 フルオロフェニル) 225 - メチルプロパン-2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メトキシビフェニル-4 - カルボン酸、
 - 2' [1 [(2R) 3 [[1 (4 クロロ 3 フルオロフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 メトキシビフェニル 4 カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 2 - フルオロフェニル) - 2 5 -メチルプロパン-2 -イル]アミノ] -2 -ヒドロキシプロポキシ] エチル] -2 -メチルビフェニル-4 -カルボン酸、

4-メチル-2' -[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - フルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 4 - メチルビフェニル - 3 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 5 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビ フェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(2,5-ジフルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (5 - クロロ - 2 - フルオロ - 4 - メチルフ 20 エニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(3-クロロ-2-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (5 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 -

メチルビフェニルー4ーカルボン酸、

2'-[1-[(2R)-3-[[1-(3,5-ジトリフルオロメチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

- 5 2'-[1-[(2R)-3-[[1-(4-メチル-3,5-ジメトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] - 3-メチルビフェニル-4-カルボン酸、
- 2'-[1-[(2R)-3-[[1-(3,5-ジメトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチル ビフェニル-4-カルボン酸、
 - 2' [1-[(2R) -3-[[1-(4-クロロ-3-トリフルオロメチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、
- - 2'-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-tーブチルビフェニル-4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (4 クロロー 3 フルオロフェニル) 2 -メチルプロパン-2 -イル]アミノ] -2 -ヒドロキシプロポキシ] エチル] -3 -t -ブチルビフェニル-4 -カルボン酸、
- 2'-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-25 メトキシビフェニル-4-カルボン酸、
 - - 2' [1 [(2R) 3 [[1 (3 フルオロ 4 メチルフェニル) 2]]

ーメチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-(トリフルオロメトキシ) ビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(3-トリフルオロメチルー4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-(ヒドロキシメチル) ビフェニル-4-カルボン酸、および

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-210 ーメチルプロパン-2ーイル]アミノ]-2ーヒドロキシプロポキシ]ェチル]-3ーカルボキシルビフェニル-4ーカルボン酸

からなる群より選ばれる、上記[7]記載の化合物、その薬学的に許容される塩またはその光学活性体。

15 [11] 下記式 (1") で示される化合物、その薬学的に許容される塩またはその光学 活性体:

R¹'は、水酸基またはC₁₋₆アルコキシ基を示し、

 R^{2} は、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、ハロ C_{1-6} アルキル 20 基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、ジ(C_{1-6} アルキル)アミノ基またはニトロ基を示し、

R⁴ は、C₁₋₆アルキル基またはC₃₋₆シクロアルキル基を示し、

 R^{6} 'は、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロ C_{1-6} アルキル基を示すか、あるいは R^{7} 'が隣接する場合には R^{6} 'と R^{7} "が一緒になって-CH=CH-CH=CH-を形成する、

 R^{7} は、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロ C_{1-6} アルキル基を示す。

[12] 下記式(1'")で示される化合物、その薬学的に許容される塩またはその光 学活性体:

$$\begin{array}{c|c} R^{4''} & H_3C & CH_3 \\ \hline 0 & N & R^{7''} \\ \hline 0H & R^{2''} & OH \\ \hline \end{array}$$

10 R²"は、C₁₋₆アルキル基を示し、

R⁴"は、メチル基またはシクロプロピル基を示し、

R6"は、ハロゲン原子またはC1.6アルキル基を示し、

 R^{7} "は、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロ C_{1-6} アルキル基を示す。

15

[13] 2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル)] - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2'-[1-[(2R) -3-[[1-(4-クロロー3-フルオロフェニル) -2
 20 ーメチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ]エチル] -3-メチルビフェニル-4-カルボン酸、

25 2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - メチルフェニル) - 2 -

メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、

- 2' [1 [(2R) 3 [[1 (4 クロロー 2 フルオロフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 メチルビフェニル 4 カルボン酸、
- 2' [1 [(2R) 3 [[1 (4 エチル 3 フルオロフェニル) 2]10 - メチルプロパン - 2 - 1 アミノ] - 2 - 1 ドロキシプロポキシ] エチル] - 3 - 1 メチルビフェニル - 4 - 1 カルボン酸、
 - 2' [1-[(2R) -3-[[1-(3-フルオロ-4-メチルフェニル) -2 -メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、
- 15 2'-[1-[(2R)-3-[[1-(3-7)]]] 2'-[1-(3-7)] 2 -3 2
 - 2'-[(シクロプロピル)](2R)-3-[[1-(4-クロロ-2-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]メチル]-3-メチルビフェニル-4-カルボン酸、
 - 2' [(シクロプロピル)](2R) 3 [[1 (4 クロロ 3 フルオロフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] メチル] 3 メチルビフェニル 4 カルボン酸、
 - 3-メチル-2'-[1-[(2R)-3-[[1-(3,4-ジメチルフェニル)]
- 25 -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-メチルフェニル)-2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-メトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

3-xチルー2' -[1-[(2R)-3-[[1-(3-7) x + 2 x +

10 2'-[1-[(2R)-3-[[1-(3-7)]] -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -4

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル<math>] - 3 15 - プロピルビフェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル)-2 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3 -イソブチルビフェニル-4-カルボン酸、

3-エチルー2' - [1-[(2R)-3-[[1-(4-)00-3-]]ルオロフ 20 エニル)-2-メチルプロパン-2-イル] アミノ] -2-ヒドロキシプロポキシ] エチル]ビフェニルー4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-イソプロピルビフェニル-4-カルボン酸、

25 2'-[1-[(2R)-3-[[1-(3-7)]] 25 2'-[1-(2R)] 2-[1-(3-7)] 2-[1-(

2' - [1 - [(2R) - 3 - [[1 - (3 - クロロフェニル) - 2 - メチルプロパン-2 - イル] アミノ] - 2 - ヒドロキシプロポキシ]エチル] - 3 - メチルビフェニ

ルー4ーカルボン酸、

10

25

2'-[1-[(2R)-3-[[1-(3,4-ジクロロフェニル)-2-メチル プロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチル ビフェニルー<math>4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - メトキシー4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(3,5-ジクロロフェニル)-2-メチル プロパン-2-イル] アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチル ビフェニル-<math>4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-トリフルオロメチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 2 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - t - ブチルビフェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(3-トリフルオロメチルー4-メチルフェニル)-2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸

からなる群より選ばれる、上記 [11] 又は [12] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

[14] 2'-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

-2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロー 2 - フルオロフェニル) - 2]]10 - メチルプロパン - 2 - 1 アミノ] - 2 - 1 ドロキシプロポキシ] エチル] - 3 - 1 メチルビフェニル - 4 - 1 カルボン酸

からなる群より選ばれる、上記 [13] 記載の化合物、その薬学的に許容される塩またはその光学活性体。

- [15] 2'-[1-[(2R)-3-[[1-(3-フルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、その薬学的に許容される塩またはその光学活性体。
- 20 [16] 2'-[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル) -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、その薬学的に許容される塩またはその光学活性体。

[18] 2'ー[1ー[(2R) ー3ー[[1ー(4ークロロー2ーフルオロフェニル) ー2ーメチルプロパンー2ーイル] アミノ]ー2ーヒドロキシプロポキシ] エチル] ー3ーメチルビフェニルー4ーカルボン酸、その薬学的に許容される塩またはその光学活性体。

5

- [19] 薬学的に許容される担体と、有効成分として上記[1] 乃至[18] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなる 医薬組成物。
- 10 [20] 有効成分が上記[3] 乃至[6] のいずれかに記載の化合物、その薬学的に 許容される塩またはその光学活性体である、上記[19]記載の医薬組成物。
 - [21] 有効成分が上記[7] 乃至[10] のいずれかに記載の化合物、その薬学的 に許容される塩またはその光学活性体である、上記[19] 記載の医薬組成物。

15

- [22] 有効成分が上記[11] 乃至[18] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、上記[19] 記載の医薬組成物。
- [23] 薬学的に許容される担体と、有効成分として上記 [1] 乃至 [18] のいず 20 れかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなる 骨粗鬆症治療薬。
 - [24] 有効成分が上記[3] 乃至[6] のいずれかに記載の化合物、その薬学的に 許容される塩またはその光学活性体である、上記[23]記載の骨粗鬆症治療薬。

- [25] 有効成分が上記[7] 乃至[10] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、上記[23]記載の骨粗鬆症治療薬。
- [26] 有効成分が上記 [11] 乃至 [18] のいずれかに記載の化合物、その薬学

的に許容される塩またはその光学活性体である、上記[23]記載の骨粗鬆症治療薬。

[27]他の骨粗鬆症治療薬との併用のための上記[23]乃至[26]のいずれかに記載の骨粗鬆症治療薬。

5

[28]他の骨粗鬆症治療薬がカルシウム剤、ビタミンD製剤、ビタミンK製剤、女性ホルモン製剤、エストロゲンアンタゴニスト製剤、蛋白同化ステロイド製剤、副甲状腺ホルモン製剤、カルシトニン製剤、ビスホスホネート製剤およびイプリフラボン製剤からなる群より選ばれる、上記[27]記載の骨粗鬆症治療薬。

- [29] 骨粗鬆症患者に有効量の上記[1] 乃至[18] のいずれかに記載の化合物、 その薬学的に許容される塩またはその光学活性体を投与することを特徴とする骨粗鬆 症の治療方法。
- 15 [30] 薬学的に許容される担体と、有効成分として上記[1] 乃至[18] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなるカルシウム受容体拮抗薬。
- [31] 有効成分が上記[3] 乃至[6] のいずれかに記載の化合物、その薬学的に 20 許容される塩またはその光学活性体である、上記[30]記載のカルシウム受容体拮 抗薬。
- [32] 有効成分が上記[7] 乃至[10] のいずれかに記載の化合物、その薬学的 に許容される塩またはその光学活性体である、上記[30]記載のカルシウム受容体 25 拮抗薬。
 - [33] 有効成分が上記[11] 乃至[18] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、上記[30]記載のカルシウム受容体拮抗薬。

[34] カルシウム受容体拮抗作用の I C_{50} 値が、代謝酵素 P 450 の阻害作用の I C_{50} 値の 10 倍以上であるカルシウム受容体拮抗薬。

- 5 $\begin{bmatrix} 3 & 5 \end{bmatrix}$ カルシウム受容体拮抗作用の $\begin{bmatrix} C_{50} \\ \end{aligned}$ 値が、代謝酵素 $\begin{bmatrix} 2 & 4 \end{bmatrix}$ の阻害作用の $\begin{bmatrix} C_{50} \\ \end{aligned}$ 他の $\begin{bmatrix} 1 & 0 \\ \end{bmatrix}$ の倍以上である上記 $\begin{bmatrix} 3 & 4 \end{bmatrix}$ 記載のカルシウム受容体拮抗薬。
 - [36]代謝酵素P450がCYP2D6である上記[34]記載のカルシウム受容体拮抗薬。

10

- [37]代謝酵素P450がCYP2D6である上記[35]記載のカルシウム受容体拮抗薬。
- [38] カルシウム受容体拮抗作用の IC_{50} 値が 0.1μ M以下であり、かつ代謝酵 素CYP2D6の阻害作用の IC_{50} 値が 1μ M以上であるカルシウム受容体拮抗薬。
 - [39] カルシウム受容体拮抗作用の I C_{50} 値が 0. 1μ M以下であり、かつ代謝酵素 CYP2D6の阻害作用の I C_{50} 値が 1 O μ M以上である、上記 [38] 記載のカルシウム受容体拮抗薬。

- [40] カルシウム受容体拮抗薬が上記[30] 乃至[33] のいずれかに記載のカルシウム受容体拮抗薬である、上記[34] 乃至[37] のいずれかに記載のカルシウム受容体拮抗薬。
- 25 [41] 薬学的に許容される担体と、有効成分として上記[1] 乃至[18]のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなる PTH分泌促進剤。
 - [42] 有効成分が請求項3乃至6のいずれかに記載の化合物、その薬学的に許容さ

れる塩またはその光学活性体である、上記 [41] 記載のPTH分泌促進剤。

[43] 有効成分が上記[7] 乃至[10] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、上記[41]記載のPTH分泌促進剤。

5

[44] 有効成分が上記 [11] 乃至 [18] のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、上記 [41] 記載のPTH分泌促進剤。

10

発明を実施するための最良の形態

本明細書において使用する用語の定義は次の通りである。

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子であり、 好ましくはフッ素原子又は塩素原子であり、特に好ましくは塩素原子である。

「 C_{1-6} アルキル基」とは、炭素数1乃至6個、好ましくは1乃至4個の直鎖又は分 15 枝鎖アルキル基を表し、例えばメチル基、エチル基、プロピル基、イソプロピル基、 ブチル基、イソブチル基、tertーブチル基、ペンチル基、イソペンチル基、tertーペンチル基又はヘキシル基等が挙げられ、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基及びtertーブチル基から選 ばれる C_{1-4} アルキル基である。

20 「ハロC₁₋₆アルキル基」とは、前記「C₁₋₆アルキル基」に1又はそれ以上のハロゲン原子が置換したハロアルキル基を表し、その置換位置は化学的に許容されるならば、特に限定されるものではない。「ハロC₁₋₆アルキル基」としては、例えばフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、ジフロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、コードメチル基、ジョードメチル基、トリヨードメチル基、2ーフルオロエチル基、2,2ージフルオロエチル基、2,2ートリフロロエチル基、2ープロエチル基、2,2ージグロロエチル基、2,2ートリクロロエチル基、3ークロロプロピル基又は4ークロロブチル基等が挙げられ、好ましくはトリフルオロメ

チル基又は2, 2, 2-トリクロロエチル基のハロ C_{1-2} アルキル基であり、特に好ましくはトリフルオロメチル基である。

「ヒドロキシー C_{16} アルキル基」とは、前記「 C_{16} アルキル基」に水酸基が置換したヒドロキシアルキル基を表し、その置換位置は化学的に許容されるならば、特に限定されるものではない。「ヒドロキシー C_{16} アルキル基」としては、例えばヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、2-ヒドロキシプロピル基、2-ヒドロキシプロピル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシブチル基、3-ヒドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシー3-とドロキシアロピル基及び3-とドロキシブチル基から選ばれるヒドロキシー3-とドロキシアロピル基及び3-とドロキシブチル基から選ばれるヒドロキシー3-2のようには、前記のは、3-2のようには、3-

「 C_{1-6} アルコキシ基」とは、炭素数 1 乃至 6 個、好ましくは 1 乃至 4 個の直鎖又は 2 分枝鎖アルコキシ基を表し、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、2 は 2 は 2 に 2

20

25

「ハロ C_{1-6} アルコキシ基」とは、前記「 C_{1-6} アルコキシ基」に1又はそれ以上のハロゲン原子が置換したハロアルコキシ基を表し、その置換位置は化学的に許容されるならば、特に限定されるものではない。「ハロ C_{1-6} アルコキシ基」としては、例えばフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、クロロメトキシ基、ジブロモメトキシ基、ジグロロメトキシ基、トリクロロメトキシ基、ブロモメトキシ基、ジブロモメトキシ基、トリブロモメトキシ基、ヨードメトキシ基、ジョードメトキシ基、トリコードメトキシ基、2、2ージフルオロエトキシ基、2、2ージフルオロエトキシ基、2、2ージフロロエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロモエトキシ基、2、2ージブロポキシ基又は4

ークロロブトキシ基等が挙げられ、好ましくはトリフルオロメトキシ基又は2, 2, 2ートリクロロエトキシ基のハロ C_{1-2} アルコキシ基であり、特に好ましくはトリフルオロメトキシ基である。

「 C_{1-6} アルコキシー C_{1-6} アルキル基」とは、前記「 C_{1-6} アルキル基」に前記「 C_{1-6} アルコキシ基」が置換したアルコキシアルキル基を表し、その置換位置は化学的に許 容されるならば、特に限定されるものではない。「 C_{1-6} アルコキシー C_{1-6} アルキル基」 としては、例えばメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブト キシメチル基、ペンチルオキシメチル基、ヘキシルオキシメチル基、1-メトキシエ チル基、1-エトキシエチル基、2-メトキシエチル基、2-エトキシエチル基、1 ーメトキシプロピル基、1-エトキシプロピル基、2-メトキシプロピル基、2-エ トキシプロピル基、3ーメトキシプロピル基、3ーエトキシプロピル基、2ーメトキ シー1ーメチルエチル基、1ーメトキシブチル基、1ーエトキシブチル基、2ーメト キシブチル基、2-エトキシブチル基、3-メトキシブチル基、3-エトキシブチル 基、4ーメトキシブチル基、4ーエトキシブチル基、3ーメトキシー2ーメチルプロ ピル基、2-メトキシ-1、1-ジメチルエチル基、2-エトキシ-1、1-ジメチ 15 ルエチル基、5-メトキシペンチル基又は6-メトキシヘキシル基等が挙げられ、好 ましくはメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチ ル基、2-メトキシエチル基、3-メトキシプロピル基及び4-メトキシブチル基か ら選ばれる C1-4 アルコキシー C1-4 アルキル基である。

 Γ C₁₋₆アルコキシーカルボニル基」とは、 Γ C₁₋₆アルコキシ部が前記「 Γ C₁₋₆アルコキシ基」で示したアルコキシーカルボニル基を表し、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、 Γ C₁₋₆アルカーがニル基、イソブトキシカルボニル基、 Γ C₁₋₆アルカーが三ル基、グルガールが三ル基、グロポキシカルボニル基、グルガールが三ル基、グルガールボニル基である。好ま しくはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基又は Γ C₁₋₄アルコキシーカルボニル基である。

「C₁₋₆アルキルアミノ基」とは、前記「C₁₋₆アルキル基」がアミノ基に置換したアルキルアミノ基を表し、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、

イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、イソペンチルアミノ基、 $tert-ペンチルアミノ基又はヘキシルアミノ基等が挙げられ、好ましくはメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基及び<math>tert-ブチルアミノ基から選ばれるC_{1-4}$ アルキルアミノ基である。

「ジ(C_{1-6} アルキル)アミノ基」とは、アミノ基に前記「 C_{1-6} アルキル基」が2置換したジアルキルアミノ基を表し、アルキル基の種類は異なってもよい。例えばジメチルアミノ基、エチルメチルアミノ基、ジエチルアミノ基、メチルプロピルアミノ基、エチルプロピルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチル10 アミノ基、ジイソブチルアミノ基、ジーtert-ブチルアミノ基、ジペンチルアミノ基、ジイソペンチルアミノ基、ジーtert-ペンチルアミノ基又はジヘキシルアミノ基等が挙げられ、好ましくはジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基又はジーtert-ブチルアミノ基から選ばれるジ C_{1-4} アルキルアミノ基である。

「ジ(C₁₋₆アルキル)アミノカルボニル基」とは、アミノカルボニル基に前記「C 15 1-6アルキル基」が2置換したジアルキルアミノカルボニル基を表し、アルキル基の種 類は異なってもよい。例えばジメチルアミノカルボニル基、エチルメチルアミノカル ボニル基、ジエチルアミノカルボニル基、メチルプロピルアミノカルボニル基、エチ ルプロピルアミノカルボニル基、ジプロピルアミノカルボニル基、ジイソプロピルア ミノカルボニル基、ジブチルアミノカルボニル基、ジイソブチルアミノカルボニル基、 20 ジーtertーブチルアミノカルボニル基、ジペンチルアミノカルボニル基、ジイソ ペンチルアミノカルボニル基、ジーtertーペンチルアミノカルボニル基又はジヘ キシルアミノカルボニル基等が挙げられ、好ましくはジメチルアミノカルボニル基、 ジエチルアミノカルボニル基、ジプロピルアミノカルボニル基、ジイソプロピルアミ ノカルボニル基、ジブチルアミノカルボニル基、ジイソブチルアミノカルボニル基又 25 はジーtertーブチルアミノカルボニル基から選ばれるジ(C14アルキル)アミノ カルボニル基である。

「C₁₋₇アシル基」とは、炭素数1乃至7個のアルカノイル基、アルケノイル基又は アロイル基を表し、ホルミル基、アセチル基、プロピオニル基、ブチリル基、ピバロ

イル基、エテノイル基、プロペノイル基、ブテノイル基又はベンゾイル基等が挙げられる。好ましくはホルミル基、アセチル基、ピバロイル基又はベンゾイル基である。 当該アシル基はカルボキシル基で置換されていてもよく、例えばカルボキシアセチル 基、3-カルボキシプロピオニル基、4-カルボキシブチリル基等が挙げられる。

「 C_{1-7} アシルアミノ基」とは、アシル部の炭素数が好ましくは $1\sim7$ 、より好ましくは $2\sim5$ であり、鎖状(直鎖および分岐鎖)または環状であるアシルアミノ基である。アシル部としては、例えば、前記「 C_{1-7} アシル基」で例示したものが挙げられる。アシルアミノ基の例示としては、ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ブチリルアミノ基若しくはピバロイルアミノ基等のアルカノイルアミノ基;ベンゾイルアミノ基等のアロイルアミノ基である。好ましくはホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基又はベンゾイルアミノ基である。

「 C_{3-6} シクロアルキル基」とは、炭素数 3 乃至 6 個の環状アルキル基を表し、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基又はシクロペプチル基等が挙げられ、好ましくはシクロプロピル基、シクロブチル基又はシクロペンチル基等の C_{3-6} シクロアルキル基であり、より好ましくはシクロプロピル基又はシクロブチル基であり、特に好ましくはシクロプロピル基である。

「 C_{2-6} アルケニル基」とは、炭素数 2 乃至 6 個のアルケニル基を表し、例えばビニル基、1-プロペニル基、2-メチルー1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基又は5-ヘキセニル基等が挙げられ、好ましくはビニル基、2-メチルー1-プロペニル基又はアリル基等の C_{2-4} アルケニル基である。

「 C_{1-4} アルキレン基」とは、炭素数 1 乃至 4 個、好ましくは 1 乃至 3 の、直鎖状または分岐鎖状のアルキレン基を表し、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、

25

20

5

10

15

等が挙げられる。好ましくはメチレン基、エチレン基又はプロピレン基である。

また、R^Aに含まれる「C₁₋₄アルキレン基」としては、

が好ましく、特に

が好ましい。

15

20

25

「 C_{2-4} アルケニレン基」とは、炭素数 2 乃至 4 個、好ましくは 2 乃至 3 個のアルケニレン基を表し、例えばビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、3-ブテニレン基等が挙げられる。好ましくは ビニレン基、1-プロペニレン、2-プロペニレン基である。

「C₁₋₇アシルアミノーC₁₋₆アルキル基」とは、前記「C₁₋₇アシルアミノ基」が前記「C₁₋₆アルキル基」に置換した基であり、例えば、ホルミルアミノメチル基、アセチルアミノメチル基、プロピオニルアミノメチル基、ブチリルアミノメチル基、ピバロイルアミノメチル基、プロピオニルアミノエチル基、アセチルアミノエチル基、プロピオニルアミノエチル基、ブチリルアミノエチル基、ホルミルアミノエチル基、プロピオニルアミノエチル基、ホルミルアミノコピル基、アセチルアミノプロピル基、プロピオニルアミノプロピル基、アセチルアミノプロピル基、アセチルアミノプロピル基、アセチルアミノブチル基、アセチルアミノブチル基、プロピオニルアミノブチル基、ブチリルアミノブチル基、プロピオニルアミノブチル基、プロピオニルアミノブチル基、プロピオニルアミノベンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペンチル基、プロピオニルアミノペキシル基、ブチリルアミノへキシル基、プロピオニルアミノペキシル基、グロピオニルアミノペキシル基、ブチリルアミノへキシル基、グロピオニルアミノスキシル基、ブチリルアミノスキシル基、ベンゾイルアミノエチル基、ベンゾイルアミノコピル基、ベンゾイルアミノブチル基、ベンゾイルアミノ

げられ、中でもアセチルアミノメチル基又はアセチルアミノエチル基が好ましい。

「アラルキル基」とは、「アリール基」が前記「 C_{16} アルキル基」に置換した基であり、ここでいう「アリール基」としては好ましい炭素数が6 乃至14 であるアリール基が挙げられ、例えばフェニル基、ナフチル基、アントラニル基又はビフェニル基等が挙げられる。「アラルキル基」との例示としては、ベンジル基、フェネチル基、フェニルブチル基、フェニルプロピル基、フェニルペンチル基、フェニルへキシル基、ナフチルメチル基、アントラニルメチル基又はビフェニルメチル基などが挙げられ、中でもベンジル基が好ましい。

本発明化合物の「塩」としては、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩又は硝 酸塩等の無機酸付加塩;酢酸塩、プロピオン酸塩、コハク酸塩、グリコール酸塩、乳 10 酸塩、リンゴ酸塩、シュウ酸塩、酒石酸塩、クエン酸塩、マレイン酸塩、フマール酸 塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩又はア スコルビン酸塩等の有機酸付加塩;アスパラギン酸塩又はグルタミン酸塩等のアミノ 酸付加塩;ナトリウム、カリウム、カルシウム、マグネシウム又は亜鉛等との無機塩 基塩;メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、トリエチル 15 アミン、トリエタノールアミン、トリスヒドロキシメチルアミノメタン、ジシクロへ キシルアミン、エチレンジアミン、グアニジン、メグルミン又は2-アミノエタノー ル等との有機塩基塩;アスパラギン、グルタミン、アルギニン、ヒスチジン又はリジ ン等のアミノ酸との塩基塩が含まれるが、これらに限定されるものではない。好まし い塩は塩酸塩、ナトリウム塩、カリウム塩、カルシウム塩であり、特に塩酸塩又はナ 20 トリウム塩が好ましい。

本発明化合物は、溶媒和物を含むものであり、ここで化合物の「溶媒和物」とは、 結晶やアモルファス等の固体状態又は溶液中において、本発明化合物が水、アルコー ル等の溶媒分子とファンデルワールス力や、静電的相互作用、水素結合、電荷移動結 合、配位結合等の比較的弱い結合で結合したものを意味する。また、場合によっては、 含水物や含アルコール物等の固体状態中に溶媒が取り込まれているものであってもよ い。好ましい溶媒和物は水和物である。

化合物の「プロドラッグ」とは、化学的又は代謝的に分解し得る基を有し、加水分解や加溶媒分解によって、又は生理的条件下で分解することによって医薬的に活性を

示す本発明化合物の誘導体である。本発明に係る一般式 (1) における R^A で表される 置換基、及び R^B で表される置換基は、プロドラッグを指向した置換基であり、-CO R^A 及び/又は $-OR^B$ は生体内で $-CO_2$ H及び/又は-OHに変換される置換基である。

5 尚、本発明における「環V」とは、式(1)中の、

(式中、 X^1 は前記と同義である。)で表される環のことであり、「環W」とは、式 (1)中の、

10

(式中、X₂は前記と同義である。) で表される環のことである。

「カルシウム受容体拮抗作用の I C_{50} 値」は、本明細書の試験例 1 に記載されている方法により測定された値である。

15 「代謝酵素P450」は動物に存在するシトクロムP450を指すが、ヒト肝臓で の薬物代謝における寄与の高い分子種として、CYP2C9、CYP2D6、CYP 3A4が挙げられる。

「代謝酵素CYP2D6の阻害作用の IC_{50} 値」は、本明細書の試験例4に記載されている方法により測定された値である。

 Γ 「カルシウム受容体拮抗作用の Γ C Γ 値が、代謝酵素 C Y P 2 D 6 の阻害作用の Γ C Γ 値の Γ 0 倍以上」、「カルシウム受容体拮抗作用の Γ C Γ 値が、代謝酵素 C Y P 2 D 6 の阻害作用の Γ C Γ 値の Γ C Γ 値 及び「代謝酵素 C Y P 2 D 6 の阻害作用の Γ C Γ 位」を比較して算出した倍率である。

25 「カルシウム受容体拮抗作用のIC $_{50}$ 値が0.1 $\mu\,\mathrm{M}$ 以下」とは、上記「カルシウ

ム受容体拮抗作用の I C_{50} 値」が 0.1μ M以下であることである。

5 本発明に係る一般式(1)で表される化合物は、種々の異性体、例えば光学異性体、 立体異性体、幾何異性体、互変異性体等が存在し得る。本発明の範囲にはこれら全て の異性体及びそれらの混合物が包含される。

本発明に係る一般式(1)で示される化合物において、

 R^1 は、好ましくは水酸基、 C_{1-4} アルコキシ基であり、より好ましくは水酸基、メト 10 キシ基、エトキシ基であり、特に好ましくは水酸基である。

 R^2 及び R^3 は、好ましくは水素原子、水酸基、ハロゲン原子(特に好ましくは塩素原子、フッ素原子)、アミノ基、 C_{1-7} アシルアミノ基(特に好ましくは C_{1-4} アルキルカルボニルアミノ基)、ハロ C_{1-6} アルキル基(特に好ましくは C_{1-4} アルコキシ基)、カルボキシル基、 C_{1-6} アルコキシ基(特に好ましくは C_{1-4} アルコキシ基)、ハロ C_{1-6} アルコキシ基、ヒドロキシー C_{1-6} アルキル基(特に好ましくはヒドロキシー C_{1-4} アルコキシ基、ヒドロキシー C_{1-6} アルキル基(特に好ましくはヒドロキシー C_{1-4} アルカトル は、甘) C_{1-6} アルキル本・サ)

キル基)、 C_{1-7} アシルアミノー C_{1-6} アルキル基(特に好ましくは C_{1-4} アルキルカルボニルアミノー C_{1-4} アルキル基)、 C_{1-6} アルキル基(特に好ましくは C_{1-4} アルキル基)、 C_{2-4} アルケニル基、 C_{1-6} アルコキシーカルボニル基、ジ(C_{1-6} アルキル)アミノ基(特に好ましくはジ(C_{1-4} アルキル)アミノ基)またはフェニル基であるか、あるいは

 $R^2 \& R^3$ が一緒になってエチレンオキシ基を形成する。 $R^2 \& L$ して、より好ましくは水酸基、ハロゲン原子、アミノ基、 C_{1-1} アシルアミノ基、ハロ C_{1-6} アルキル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、 C_{1-6} アルキル基、EドロキシーE0、さらに好ましくはE1.6 アルキル基であり、特に好ましくはE1.7 アルキル基である。

25 R³として好ましくは水素原子である。

 X^1 は、好ましくは-C=C-又は-C=N-であり、特に好ましくは-C=C-であり、

 X^2 は、好ましくは-C=C-であり、

Zは、好ましくは-S-、-SO-、-SO₂-、-(CH₂) $_{ni}$ -O-、-O-(CH

 $_{2}$) $_{m1}$ -、- (CH $_{2}$) $_{m2}$ -NH-、-NH- (CH $_{2}$) $_{m2}$ -、- (CH $_{2}$) $_{m3}$ -N (CH $_{3}$) -、-N (CH $_{3}$) - (CH $_{2}$) $_{m3}$ -、C $_{1-4}$ アルキレンまたはC $_{2-4}$ アルケニレンであり、m $_{1}$ 、m $_{2}$ 及びm $_{3}$ は、それぞれ、好ましくは $_{1}$ 又は $_{1}$ であり、

Zにおけるアルキレンは、好ましくはメチレンまたはエチレンであり、

5 R^4 は、好ましくは C_{1-6} アルキル基またはシクロプロピル基であり、特に好ましくはメチル基等の C_{1-4} アルキル基であり、

R⁵は、好ましくは水素原子であり、

pは、好ましくは1であり、

Yは、好ましくは炭素原子であり、

- 10 R^6 、 R^7 及び R^8 は、好ましくは水素原子、ハロゲン原子(特に好ましくは塩素原子、フッ素原子)、 C_{1-4} アルキル基または C_{1-4} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって $-CH=CH-CH=CH-を形成する。また、<math>R^6$ と R^7 が ハロゲン原子及び C_{1-4} アルキル基から選ばれる群よりなる基であり、且つ R^8 が水素原子である場合が特に好ましい。
- 15 R⁶及びR⁷は、

又は

25

の置換位置が好ましい。

20 本発明に係る一般式(1)で示される化合物において、nが1の場合、例えば、 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{2-6} アルケニル基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル) アミノ基またはニトロ基であるか、

あるいはR²とR³が一緒になってエチレンオキシ基を形成し、

 X^1 が、-C=C-または-C=N-であり、

 $X^2 \vec{m}$ 、 $-C = C - \vec{v}$ \vec{m} \vec{m}

 $Z \dot{M}$, -S-, -SO-, $-SO_2-$, $-(CH_2)_{m1}-O-$, $-O-(CH_2)_{m1}-$, -

 $(CH_2)_{m2}$ -NH-、-NH-($CH_2)_{m2}$ -、-($CH_2)_{m3}$ -N(CH_3)-、-N(CH_4)-、-N(CH_4)- (CH_4)- (CH_4)- (CH_4) - (

ここで、m1、m2およびm3が、それぞれ0乃至2の整数であり、

 R^4 が、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基であり、

R⁵が、水素原子であり、

10 pが、1であり、

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{16} アルキル基または C_{16} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって -CH=CH-CH=CH-を形成する態様が好ましく、中でも

15 R^1 が、水酸基または C_{1-4} アルコキシ基、特に水酸基、メトキシ基またはエトキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子(特に塩素原子、フッ素原子)、アミノ基、 C_{1-7} アシルアミノ基(特に C_{1-4} アルキルカルボニルアミノ基)、トリフルオロメチル基、 C_{1-4} アルコキシ基(特にメトキシ基)、ヒド

20 ロキシー C_{1-4} アルキル基、 C_{1-4} アルキル基、 C_{2-4} アルケニル基、 C_{1-4} アルコキシーカルボニル基またはフェニル基であるか、あるいは R^2 及び R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 及び X^2 が、-C=C-であり、

 $Z \dot{D}^{S} - S - . - S O - . - S O_{2} - . - (C H_{2})_{m1} - O - . - O - (C H_{2})_{m1} - . - (C H_{2})_{m2} -$

25 H_2) $_{m2}$ -NH-、-NH-(CH_2) $_{m2}$ -、-(CH_2) $_{m3}$ -N(CH_3)-、-N(CH_3)- (CH_4) $_{m3}$ -、 C_{1-4} アルキレン基(特にメチレンまたはエチレン)または C_{2-4} アルケニレン基であり、

ここで、m1、m2およびm3が、0又は1であり

 R^4 が、 C_{1-6} アルキル基またはシクロプロピル基、特に C_{1-4} アルキル基 (メチル基等)

であり、

R⁵が水素原子であり、

pが1であり、

Yが、炭素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一または異なって、それぞれ水素原子、ハロゲン原子(好ましくは塩素原子、フッ素原子)、 C_{1-4} アルキル基または C_{1-4} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって、-CH=CH-CH=CH-を形成する態様が好ましい。

また、本発明に係る一般式(1)で示される化合物において、nが1の場合、例え 10 ば、

 R^1 が、水酸基または C_{1-6} アルコキシ基(好ましくはメトキシ基)であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、ハロゲン原子(好ましくはフッ素原子、塩素原子)、 C_{1-6} アルコキシ基(好ましくはメトキシ基)または C_{1-6} アルキル基(好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基)であり、

15 $X^1 \delta X - C = C - C \delta \delta X$

 $X^2 \vec{n} \setminus -C = C - \vec{n}$

Zが、-S-、-SO-、-SO₂-、-(CH₂) $_{mi}$ -O-、-O-(CH₂) $_{mi}$ -、-CH₂-NH-、-NH--CH₂-、-N(-CH₃)-、メチレンまたはビニレンであり、ここで、-M1が、-0または1であり、

20 R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

pが1であり、

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子(好ましくはフッ素原子、塩素原子)または C_{1-6} アルキル基(好ましくはメチル基)であるか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-を形成する態様がより好ましく、中でも、

 R^1 が、水酸基、 C_{1-4} アルコキシ基、特に水素原子、メトキシ基またはエトキシ基であり、

 R^2 及び R^3 が、同一または異なって、それぞれ水素原子または C_{1-4} アルキル基(特にメチル基)であり、

 $X^1 \check{m}$, $-C = C - \check{c} \check{m} \check{b}$,

 $X^2 \vec{m}$, $-C = C - \vec{v} \vec{m} \vec{p}$,

5 Zが、-S-、-SO-、-SO₂-、-(CH₂) $_{ni}$ -O-、-O-(CH₂) $_{ni}$ -、-CH₂-NH-、-NH-CH₂-、-N(CH₃)-、メチレンまたはビニレンであり、ここで、m1が、0または1であり、

R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

10 pが1であり、

Yが、炭素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一または異なって、それぞれ水素原子、ハロゲン原子(特に塩素原子、フッ素原子)、 C_{1-4} アルキル基(特にメチル基)であるか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-を形成する熊様が好ましい。

15 本発明に係る一般式(1)で示される化合物において、nが0の場合、例えば、 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{2-6} アルキル

20 基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル) アミノ基またはニトロ基であるか、 あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 $X^1 \dot{m}$, $-C = C - \pm c \dot{u} - C = N - c \dot{m}$

 $X^2 \vec{n} \setminus -C = C - \vec{n}$

R⁴が、C₁₋₆アルキル基またはC₃₋₆シクロアルキル基であり、

25 R⁵が水素原子であり、

pが1であり、

Yが、炭素原子または窒素原子であり、かつ、

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{16} アルキル基または C_{16} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって

-CH=CH-CH=CH-を形成する態様が好ましく、中でも

 R^1 が、水酸基または C_{1-4} アルコキシ基、特に水酸基、メトキシ基またはエトキシ基であり、

 R^2 及び R^3 が、同一または異なって、それぞれ水素原子、水酸基、ハロゲン原子(特に塩素原子、フッ素原子)、アミノ基、 C_{1-7} アシルアミノ基(特に C_{1-4} アルキルカルボニルアミノ基)、トリフルオロメチル基、 C_{1-4} アルコキシ基(特にメトキシ基)、ヒドロキシー C_{1-4} アルキル基、 C_{1-4} アルキル基、フェニル基、ジ(C_{1-6} アルキル)アミノ基、 C_{2-4} アルケニル基または C_{1-4} アルコキシーカルボニル基であるか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

10 $X^1 \vec{b}$, $-C = C - \pm c \vec{b} - C = N - \vec{c} \vec{b}$,

 $X^2 \vec{p}$, $-C = C - \vec{v} \vec{p}$,

 R^4 が、 C_{1-6} アルキル基またはシクロプロピル基、特に C_{1-4} アルキル基(メチル基等)であり、

R⁵が水素原子であり、

15 pが1であり、

20

Yが、炭素原子であり、

 R^6 、 R^7 及び R^8 が、同一または異なって、それぞれ水素原子、ハロゲン原子(特に塩素原子、フッ素原子)、 C_{1-4} アルキル基または C_{1-4} アルコキシ基であるか、あるいは 隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-を形成する態様が好ましい。

また、本発明に係る一般式(1)で示される化合物において、nが0の場合、例えば、

 R^1 が、水酸基または C_{1-6} アルコキシ基(好ましくはメトキシ基)であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子(好ま しくはフッ素原子、塩素原子)、アミノ基、 C_{1-7} アシルアミノ基(好ましくはアセチルアミノ基)、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基(好ましくはメトキシカルボニル基)、 C_{1-6} アルコキシ基(好ましくはメトキシ基)、 C_{1-6} アルキル基(好ましくはメチル基、エチル基、プロピル基、イソプロピル基、イソブチル基)、ヒドロキシー C_{1-6} アルキル基(好ましくはヒドロキシメチル基)、 C_{2-6} アルケニル基

(好ましくは2-メチル-1-プロペニル基)、フェニル基、ベンジル基、ジ(C_{1-} アルキル)アミノ基(好ましくはジメチルアミノ基)またはニトロ基であるか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 X^1 が、-C=C-または-C=N-であり、

 $5 \quad X^2$ が、-C=Cーであり、

R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

pが1であり、

Yが、炭素原子であり、かつ、

- 10 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子(好ましくはフッ素原子、塩素原子)、 C_{1-6} アルキル基(好ましくはメチル基、エチル基)または C_{1-6} アルコキシ基(好ましくはメトキシ基)であるか、あるいは隣接する R^6 と R^7 が一緒になって $-CH=CH-CH=CH-を形成する態様がより好ましく、中でも<math>R^1$ が、水酸基または C_{1-4} アルコキシ基(特にメトキシ基、エトキシ基)であり、
- 15 R^2 及び R^3 が、同一または異なって、それぞれ水素原子、水酸基、ハロゲン原子(特に塩素原子、フッ素原子)、アミノ基、 C_{1-7} アシルアミノ基(特に C_{1-4} アルキルカルボニルアミノ基(例えばアセチルアミノ基))、トリフルオロメチル基、 C_{1-4} アルコキシ基(特にメトキシ基)、ヒドロキシー C_{1-4} アルキル基(特にヒドロキシメチル基)、 C_{1-4} アルキル基(特にメチル基、エチル基、イソプロピル基、プロピル基、イソブチ
- 20 ル基)、 C_{2-4} アルケニル基(特に2-メチル-1-プロペニル基)、 C_{1-4} アルコキシーカルボニル基(特にアセチルカルボニル基)、ベンジル基またはフェニル基であるか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 $X^1 \tilde{m}$, $-C = C - \pm c \pm C - C = N - c \pm 0$,

 $X^2 \vec{m}$, $-C = C - \vec{v} \vec{m} \vec{n}$,

25 R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

pが1であり、

Yが、炭素原子であり、

R⁶、R⁷及びR⁸が、同一または異なって、それぞれ水素原子、ハロゲン原子(特に塩

素原子、フッ素原子)、 C_{1-4} アルキル基(特にメチル基)または C_{1-4} アルコキシ基(特にメトキシ基)であるか、隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CHーを形成する態様が好ましい。

本発明に係る一般式(1)の化合物は、下記式(1')

5

(式中、各記号は式(1)における各記号と同義である)

で表される立体配置を有するのが好ましい。

n=0である場合の好適な具体例を以下に示す。尚、化合物名の前に付した数字は 10 実施例番号に対応する。

1 - 1

2'-[1-[(2R)-3-[[1-(3-7)]]] - 2-1

15 1-2

2'-[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸

1 - 3

2'ー[1ー[(2R) -3-[[1-(3-クロロー4ーメチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

1 - 4

2'-[1-[(2R)-3-[[1-(4-クロロ-3-メチルフェニル)-2-25 メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メ チルビフェニル-4-カルボン酸

1 - 5

2' - [1 - [(2R) - 3 - [[1 - (2, 3 - ジフルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

51-6

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロー 2 - フルオロフェニル) - 2 - メチルプロパン- 2 - イル]アミノ] - 2 -ヒドロキシプロポキシ] エチル] - 3 -メチルビフェニル- 4 - カルボン酸

1 - 7

2'-[1-[(2R)-3-[[1-(2-フルオロー4ーメチルフェニル)-2-メチルプロパン-2ーイル]アミノ]-2ーヒドロキシプロポキシ]エチル]-3ーメチルビフェニルー4ーカルボン酸

1 - 8

2'-[1-[(2R)-3-[[1-(4-エチル-3-フルオロフェニル)-2 15 -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸

1 - 9

3-メチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-5-カルボン酸

1 - 10

20

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-3,5

 $25 \quad 1 - 1 \quad 1$

2' - [(シクロプロピル)](2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 3 - メチルビフェニル - 4 - カルボン酸

1-12, 1-13

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-メチルビフェニル-4-カルボン酸

1 - 14

1-15, 1-16

2' - [1-[(2R) -3-[[1-(3-7) + 1-4-7]]] - 210 -メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

1 - 17

1 - 18

15

2' - [(シクロプロピル) [(2R) - 3-[[1-(4-クロロ-2-フルオロフェニル) - 2-メチルプロパン-2-イル]アミノ] - 2-ヒドロキシプロポキシ] メチル] <math>-3-メチルビフェニル-4-カルボン酸

 $20 \quad 1 - 19$

2' - [(シクロプロピル) [(2R) - 3 - [[1 - (4 - クロロー3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] <math>-3 - メチルビフェニル -4 - カルボン酸

1 - 20

25 2'- [1-[(2R)-3-[[1-(3-7)]]] 2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3 -メチルビフェニル-4-カルボン酸

1 - 21

3-メチル-2'- [1-[(2R)-3-[[1-(3, 4ージメチルフェニル)

-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸

1 - 22

2' - [1 - [(2R) - 3 - [[1 - (4 - メチルフェニル) - 2 - メチルプロパ 5 ン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

1 - 23

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - メトキシフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

1 - 24

10

2'-[1-[(2R)-3-[[1-(4-エチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸

 $15 \quad 1-25$

2'-[1-[(2R)-3-[[1-(4-クロロ-2,5-ジフルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸

1 - 26

20 2'- [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロ パン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メトキシビフ ェニル-4-カルボン酸

1 - 27

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロ 25 パン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-メトキシビフェニル-4-カルボン酸

1 - 28

2' - [1 - [(2R) - 3 - [[1 - (ナフタレン - 2 - イル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - (トリフルオ

ロメチル) ビフェニルー4ーカルボン酸

1 - 29

2' - [1- [(2R) -3-[[1- (2-フルオロー4ーメトキシフェニル) - 2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3
 5 - (トリフルオロメチル) ビフェニル-4-カルボン酸

1 - 30

 $10 \quad 1 - 3 \ 1$

2' - [1-[(2R) -3-[[1-(3, 4-ジクロロフェニル) -2-メチル プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-(トリフルオロメチル) ビフェニル-4-カルボン酸

1 - 32

15 2'-[1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチルプロ パン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-イソプロピル ビフェニル-4-カルボン酸

1 - 33

3-xチルー2' -[1-[(2R)-3-[[1-(3-7)]] -[1-(3-7)] -

1 - 34

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - イソプロピルビフェニル - 4 - カルボン酸

1 - 35

2.5

2-クロロ-6-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニル] ピリジン-3-カルボン酸

1 - 36

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-プロピルビフェニル-4-カルボン酸

5 1 - 37

2, 3-ジメチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸

1 - 38

1 - 39

2-クロロ-6-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチル 15 フェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェニル]ピリジン-3-カルボン酸

1 - 40

3, 5-ジメチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビ

20 フェニルー4ーカルボン酸

1 - 41

2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-m-テルフェニルー4、一カルボン酸

 $25 \quad 1-42$

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2, 3 - ジメチルビフェニル - 4 - カルボン酸

1 - 43

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロー4 - メチルフェニル) - 2 - メチルプロパン-2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3, 5 - ジメチルビフェニル - 4 - カルボン酸

1 - 44

5 4-(ヒドロキシメチル)-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル<math>-3-カルボン酸

1 - 45

3-4ソブチルー2'- [1-[(2R)-3-[[1-(ナフタレン-2-4ル)

10 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビ フェニル-4-カルボン酸

1 - 46

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロー4 - メチルフェニル) - 2 - メチルプロパン<math>-2 - 7 - 2 - 7

15 イソブチルビフェニルー4ーカルボン酸

1 - 47

 $20 \quad 1 - 48$

2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル<math>]-3-ヒドロキシビフェニル-4-カルボン酸

1 - 50

2' - [1 - [(2R) - 3 - [[1 - (3 - フルオロ - 4 - メチルフェニル) - 2]]

ーメチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-ヒドロキシビフェニル-4-カルボン酸

1 - 51

1 - 52

10 イソプロピルビフェニルー4ーカルボン酸

1 - 53

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - (1 - メチルプロピル) ビフェニル - 4 - カルボン酸

 $15 \quad 1 - 5 \quad 4$

2-メチルー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー4-カルボン酸

1 - 5.5

3-メチルー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー4-カルボン酸

1 - 56

4-フルオロ-2' -[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)-2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフ

エニルー3ーカルボン酸

1 - 57

25

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2 - メチルビ

フェニルー4ーカルボン酸

1 - 58

6-フルオロ-2' -[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸

1 - 59

5

3-フルオロ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸

 $10 \quad 1 - 60$

1 - 61

15 2'-[1-[(2R) -3-[[1-(3, 4-ジクロロフェニル) -2-メチル プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

1 - 62

2-フルオロ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-20 2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸

1 - 63

1 - 64

2.5

1 - 65

2'-[(シクロプロピル)[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]メチル]-2-フルオロビフェニル-4-カルボン酸

5 1 - 66

2' - [(シクロプロピル)](2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 2 - メチルビフェニル - 4 - カルボン酸

1 - 67

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2 - フルオロ ビフェニル - 4 - カルボン酸

1 - 68

3-2-2-2 -[1-[(2R)-3-[[1-(ナフタレン-2-4ル)-2] -3+2-2-4-2 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2-2-4 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2 -3+2+2

1 - 69

2' - [1 - [(2R) - 3 - [[1 - (ナフタレン - 2 - イル) - 2 - メチルプロ パン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>-3 - ニトロビフェ

20 ニルー4ーカルボン酸

1 - 70

3-アミノ-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸

 $25 \quad 1 - 71$

3-(アセチルアミノ) -2'-[1-[(2R)-3-[[1-(ナフタレン-2-1ル)-2-メチルプロパン-2-1ル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸

1 - 72

3-クロロ-2' -[1-[(2R)-3-[[1-(3-)]2]2]2 -[1-(3-)]22

1 - 73

5 2'-[1-[(2R)-3-[[1-(3-メトキシー4-メチルフェニル)-2 ーメチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸

1 - 74

2, 3-ジヒドロ-5- [2-[1-[(2R)-3-[[1-(ナフタレン<math>-2-10 イル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ベンゾフラン-7-カルボン酸

1 - 75

2, 6-ジメチル-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビ

15 フェニルー4ーカルボン酸

1 - 76

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロー4 - メチルフェニル) - 2 - メチルプロパン-2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2, 6 - ジメチルビフェニルー4 - カルボン酸

 $20 \quad 1 - 77$

3-(ジメチルアミノ)-2'-[1-[(2R)-3-[[1-(ナフタレン-2-1ル)-2-メチルプロパン-2-1ル]アミノ]-2-ヒドロキシプロポキシ]エチル] ビフェニル<math>-4-カルボン酸

1 - 78

1 - 79

3ーベンジルー2'- [1- [(2R) -3-[[1- (3-フルオロー4ーメチル

フェニル) -2 - メチルプロパン -2 - イル] アミノ] -2 - ヒドロキシプロポキシ] エチル] ビフェニル -4 - カルボン酸

1 - 80

2'-[1-[(2R)-3-[[1-(3-フルオロー4ーメチルフェニル)-2
 5 ーメチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メトキシビフェニル-4-カルボン酸

1 - 81

10 メトキシビフェニルー4ーカルボン酸

1 - 82

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メトキシビフェニル-4-カルボン酸

 $15 \quad 1 - 83$

2'-[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-メチルビフェニル-4-カルボン酸

1 - 84

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロー2 - フルオロフェニル) - 2 -メチルプロパン-2 -イル]アミノ]-2 -ヒドロキシプロポキシ] エチル]-2 -メチルビフェニル-4 -カルボン酸

1 - 85

1 - 86

メチルビフェニルー3-カルボン酸

1 - 87

2' - [1 - [(2R) - 3 - [[1 - (3, 5 - ジクロロフェニル) - 2 - メチル プロパン<math>- 2 - 7ル]アミノ]- 2 - 2 + 7 アランプロポキシ] エチル]- 3 - 3 + 7 エチルビ

5 フェニルー4ーカルボン酸

1 - 89

2'-[1-[(2R)-3-[[1-(2,5-ジフルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸

 $10 \quad 1 - 90$

1 - 91

 2'-[1-[(2R) -3-[[1-(3-クロロー2-フルオロフェニル) -2 ーメチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

1 - 92

1 - 93

2' - [1 - [(2R) - 3 - [[1 - (5 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 -

25 メチルビフェニルー4ーカルボン酸

1 - 94

2' - [1 - [(2R) - 3 - [[1 - (3, 5 - ジトリフルオロメチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

1 - 95

2'-[1-[(2R)-3-[[1-(4-メチルー3,5-ジメトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-<math>4-カルボン酸

51 - 96

2' - [1 - [(2R) - 3 - [[1 - (3, 5 - ジメトキシフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

1 - 97

10 2'- [1-[(2R)-3-[[1-(4-クロロー3-トリフルオロメチルフェ-2) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

1 - 98

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロー4 - メチルフェニル) - 2]15 - メチルプロパン-2 - (7)

1 - 99

20 t ーブチルビフェニルー4ーカルボン酸

1 - 100

2'-[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-t-ブチルビフェニルー<math>4-カルボン酸

 $25 \quad 1 - 101$

1 - 102

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>- 3 - モルホリノビフェニル - 4 - カルボン酸

1 - 103

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>- 3 - (トリフルオロメトキシ) ビフェニル - 4 - カルボン酸

1 - 104

2'-[1-[(2R)-3-[[1-(3-N)]]] 2 -[1-[(2R)-3-[[1-(3-N)]]] -[3-N) -[3-N] -[3-

1 - 106

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロー 3 - フルオロフェニル) - 2 - メチルプロパン <math>-2 - 7ル]アミノ] -2 - 2 - 7ドロキシプロポキシ] エチル] -3 - 7

15 (ヒドロキシメチル) ビフェニルー4ーカルボン酸

1 - 107

2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-カルボキシルビフェニル-4-カルボン酸

n=1 である場合の好適な具体例を以下に示す。

2 - 1

 $25 \quad 2-2$

2 - 3

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸メチル

2 - 4

5 4-[2-[1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチル プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] 安 息香酸

2 - 5

4-[2-[1-[(2R)-3-[[1-(キノリン-3-イル)-2-メチルプ 10 ロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息 香酸

2 - 6

4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸

2 - 7

15

 $20 \quad 2 - 8$

3-[2-[1-[(2R)-3-[[1-(3-7)]]]] - 2-1 -

2 - 9

25 4-[2-[1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェニル] ビニル] 安息香酸

2 - 10

3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル]]]

プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸

2 - 11

4-[2-[2-[1-[(2R) -3-[[1-(3-フルオロ-4-メチルフェ 5 ニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ビニル] 安息香酸

2 - 12

4-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ

ェノキシ] -3, 5-ジメチル安息香酸

2 - 1.3

10

4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ]-3,5-ジメチル安息香酸

 $15 \quad 2-14$

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息香酸

2 - 15

3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息 香酸

2 - 16

4-[2-[1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチル 25 プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸

2 - 17

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルフ

ィニル〕安息香酸

2 - 18

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルホ

5 ニル] 安息香酸

2 - 19

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルアミノ] メチル] 安息香酸

 $10 \quad 2-20$

2-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸

2-21 :

3-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル] プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸

2 - 22

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル 20 プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェノキシ]メ チル]安息香酸

2 - 23

3-[[2-[1-[(2R)-3-[[1-(3-7) ルオロ-4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ビドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸

2 - 24

25

2 - 25

3-フルオロー4- [[2-[1-[(2R)-3-[[1-(3-フルオロー4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸

 $5 \quad 2-26$

4-[[2-[1-[(2R)-3-[[1-(3-7)]]]]] -2-1

2 - 27

2 - 28

10 4-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] <math>-3, 5-ジメトキシ安息香酸

15 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-ニトロ安息香酸

2 - 29

20 ェノキシ] -2-ニトロ安息香酸

2 - 30

 $25 \quad 2 - 3 \quad 1$

2 - 32

4-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] <math>-2-トリフルオロメチル安息香酸 2-33

4-[2-[1-[(2R) -3-[[1-(3-フルオロー4ーメチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-トリフルオロメチル安息香酸

2 - 34

4-[2-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)

10 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-フルオロ安息香酸

2 - 35

4-[2-[1-[(2R)-3-[1-(4-クロロ-3-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸

2 - 36

15

4-[2-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] -5-メチル安息香酸

20 本発明化合物を医薬品として用いる場合の形態としては、化合物それ自体(遊離体)、 化合物の塩、化合物の溶媒和物又は化合物のプロドラッグ体があるが、好ましい形態 は、遊離体、化合物の塩又は化合物の溶媒和物であり、特に好ましくは化合物の塩で ある。

本発明化合物はプロドラッグの形態でも用いることができる。その場合、例えばー 25 般式(1)で表される化合物の R^1 が水酸基である化合物を、 R^1 が R^4 、即ち、 C_{1-6} アルキルーOC(=O)O $-C_{1-4}$ アルキレン-O-、 C_{3-6} シクロアルキル-OC(=O)O $-C_{1-4}$ アルキレン-O- またはOH-NH-に変換した化合物、及び/又は R^5 が水素原子である化合物を R^5 が R^B 、即ち、カルボキシル基で置換されてもよい C_{1-7} アシル基に変換した化合物がプロドラッグとして用いられる。

本発明化合物を有効成分として含有する骨粗鬆症治療薬は、他の骨粗鬆症治療薬と 併用することができる。他の骨粗鬆症治療薬としては、例えば、カルシウム剤(乳酸 カルシウム(Calcium Lactate)、グルコン酸カルシウム(Calcium Gluconate)、Lーア スパラギン酸カルシウム(Calcium Aspartate)、塩化カルシウム(Calcium Chloride)、 リン酸水素カルシウム(Calcium Hydrogen Phosphate)等が挙げられる。)、ビタミンD 製剤(アルファカルシドール(Alfacalcidol)、カルシトリオール(Calcitriol)、マキ サカルシトール(Maxacalcitol)、ファレカルシトリオール(Falecalcitriol)等が挙げ られる。)、ビタミンK製剤(メナテトレノン(Menatetrenone)等が挙げられる。)、女性 ホルモン製剤(エストラジオール(Estradiol)、エストリオール(Estriol)等が挙げら れる。)、エストロゲンアンタゴニスト製剤(ラロキシフェン(Raloxifen)等が挙げら

- れる。)、蛋白同化ステロイド製剤、副甲状腺ホルモン製剤 (テリパラチド (Teriparatide)、PTH(1-84)等が挙げられる。)、カルシトニン製剤 (エルカトニン(Elcatonin)、サケカルシトニン(Calcitonin salmon)等が挙げられる。)、ビスホスホネート製剤 (アレンドロン酸ナトリウム水和物(Alendronate sodium hydrate)、
- リセドロン酸ナトリウム水和物(Sodium risedronate hydrate)、エチドロン酸二ナトリウム(Etidronate disodium)、パミドロン酸二ナトリウム(Pamidronate disodium)、インカドロン酸二ナトリウム(Incadronate didodium)等が挙げられる。)、イプリフラボン製剤(イプリフラボン(Ipriflavone))、その他骨粗鬆症治療剤、例えばラネル酸ストロンチウム(Strontium Ranelate)、WNT阻害剤、PPARγアゴニスト、オス
- 20 テオポンチン(Osteopontin)、スタチン製剤(Statin preparation)、RANK/RAN KL阻害剤、Src阻害剤、Pyk2阻害剤、オステオプロテジェリン

(Osteoprotegerin)などが挙げられる。本発明化合物および他の骨粗鬆症治療薬を含有する骨粗鬆症治療薬は、骨粗鬆症患者に有効量投与することができる。

カルシウム受容体拮抗薬は、そのカルシウム受容体拮抗作用の IC_{50} 値が、代謝酵 25 素 P450、特に CYP2D6 の阻害作用の IC_{50} 値の 10 倍以上であるのが好ましく、 100 倍以上であるのがより好ましい。

また、カルシウム受容体拮抗薬は、そのカルシウム受容体拮抗作用の IC_{50} 値が O. 1μ M以下であり、かつ代謝酵素 P450、特に CYP2D6 の阻害作用の IC_{50} 値が 1μ M以上である場合が好ましく、カルシウム受容体拮抗作用の IC_{50} 値が O. 1

 μ M以下であり、かつ代謝酵素 P 4 5 0、特に C Y P 2 D 6 の阻害作用の I C $_{50}$ 値が 1 0 μ M以上である場合がより好ましい。

次に、本発明に係る一般式(1)で示される化合物の製造方法を具体的に説明する。 しかしながら本発明はこれらの製造方法に限定されるものでないことは勿論である。 本発明化合物を構築するに際し、構築順序は適宜行い易い部位から行えばよい。また、 各工程において、反応性官能基がある場合は適宜保護、脱保護を行えばよく、反応の 進行を促進するために、例示した試薬以外の試薬を適宜用いることができる。

各工程で得られる化合物は全て常法で単離および精製することができるが、場合に よっては、単離精製せず次の工程に進むことができる。

以下に、nが0の場合と1の場合に分けて化合物(1)の製造方法を説明する。 < n = 0の場合の製造方法>

$$X^{2}$$
 OH 第1A工程 Y^{1} (IIIA) X^{2} 第2A工程 X^{2} (IVA) X^{2} 第2A工程 X^{2} (VA)

(式中、 R^1 は C_{16} アルコキシ基を表し、 Y^1 及び Y^2 はそれぞれ同一または異なって、ハロゲン原子 (前記と同義) 又はトリフルオロメタンスルホニルオキシ基を表し、 L^1 15 は脱離基、例えばハロゲン原子 (前記と同義) 又は3-ニトロベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p-ブロモベンゼンスルホニルオキシ基、メタンスルホニルオキシ基若しくはトリフルオロメタンスルホニルオキシ基等のスルホニルオキシ基を表し、その他の各記号はそれぞれ前記と同義である。)

20 第1A工程

化合物(IA)を、N, N-ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、水等あるいはこれらの混合溶媒中、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、N, N-ジイソプロピルエチルアミン、Nーメチルモルホリン、ピリジン、4-ジメチルアミノピリジン等の塩基存在下、0℃乃至室温で化合物(IIA)と反応させることにより、化合物(IIIA)が得られる。この場合、硫酸水素テトラブチルアンモニウム等の硫酸水素アルキルアンモニウムを加えることができる。

用いる試薬や脱離基の選択により、立体選択的な反応が行える。

10 例えば、化合物 (IA) を、N, Nージメチルホルムアミド中、水素化ナトリウム の存在下、(R) ーグリシジルメシレートと反応させることにより、化合物 (IIIA) が得られる。

第2A工程

この工程は、化合物 (I I I A) 又は (I V A) から鈴木カップリングにより化合 15 物 (V A) を得る工程である。

化合物 (I V A) を、ジメチルスルホキシド、N, Nージメチルホルムアミド、1, 4ージオキサン等あるいはこれらの混合溶媒中、ビス(ジフェニルホスフィノ)フェロセン塩化パラジウム (II) および酢酸カリウム等の塩基を用いて、ビスピナコレートジボロンと反応させて、化合物 (I V A) のボロン酸エステルを得、これをトルエ20 ン、エタノール、ベンゼン、アセトン、1, 4ージオキサン、テトラヒドロフラン、アセトニトリル、N, Nージメチルホルムアミド、1, 2ージメトキシエタン、ジメチルスルホキシド、水等あるいはこれらの混合溶媒中、ビス(ジフェニルホスフィノ)フェロセン塩化パラジウム (II)、テトラキス (トリフェニルホスフィン) パラジウム (0) などのパラジウム触媒と、炭酸ナトリウム、リン酸三カリウム (K₃PO₄)、炭25 酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の塩基を用いて、化合物(IIA)と反応させることにより、化合物 (V A) が得られる。

あるいは、第1A工程で得られる化合物(I I I A)を、ジメチルスルホキシド、N, N-ジメチルホルムアミド、1, 4-ジオキサン等あるいはこれらの混合溶媒中、ビス (ジフェニルホスフィノ) フェロセン塩化パラジウム (II)、テトラキス (トリフ

エニルホスフィン) パラジウム(0) などのパラジウム触媒、酢酸カリウムおよびビスピナコレートジボロンと反応させて化合物(IIIA)のボロン酸エステルを得、これを、トルエン、エタノール、ベンゼン、アセトン、1,4ージオキサン、テトラヒドロフラン、アセトニトリル、1,2ージメトキシエタン、ジメチルスルホキシド、水等あるいはこれらの混合溶媒中、ビス(ジフェニルホスフィノ)フェロセン塩化パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)などのパラジウム触媒及び炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸三カリウム等の塩基を用いて、化合物(IVA)と反応させることにより、化合物(VA)が得られる。

10 第3A工程

15

第2A工程で得られる化合物(VA)と化合物(VIA)を、メタノール、エタノール、n-プロパノール、イソプロパノール、テトラヒドロフラン、1, 4-ジオキサン、アセトニトリル、トルエン等あるいはこれらの混合溶媒中、室温~還流温度で反応させることにより、化合物(1-1)が得られる。この場合、過塩素酸リチウム等の過塩素酸アルカリを加えることが好ましい。

化合物(1-1)を常法にて加水分解することにより、 R^1 (C_{1-6} アルコキシ基)を水酸基に変換することができる。

第3A工程で用いる化合物 (VIA) は種々の方法により、調製することができる。以下、化合物 (VIA) の調製方法について説明する。

20 化合物 (VIA) の調製方法1

(式中、X³は、水素原子またはハロゲン原子(前記と同義)を表し、Rは、アルキル基(好ましくはメチル基、エチル基)を表し、その他の各記号はそれぞれ前記と同義

である。)

第4A工程

化合物 (XA) をテトラヒドロフランまたはジエチルエーテル中、化合物 (XIA) と反応させると、化合物 (VIIIA) が得られる。

5 第5A工程

この工程は、化合物(VIIIA)からリッター反応により化合物(VIIA)を得る工程であり、第4A工程で得られる化合物(VIIIA)を化合物(IXA)及び酢酸中で、硫酸を加えて反応させると、化合物(VIIA)が得られる。

第6 A工程

- 10 第5A工程で得られる化合物 (VIIA) において、X³がハロゲン原子である場合には、ハロアセチル基を除去する際に通常使用する条件で当該工程を行えばよく、例えば、水、メタノール、エタノール、nープロパノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン、酢酸等あるいはこれらの混合溶媒中、チオウレアを用いて加熱下で反応させることによって、化合物 (VIA) が得られる。
- また、X³が水素原子である化合物 (VIIA) の場合には、アセチル基を除去する際に通常使用する条件で当該工程を行えばよく、例えば、水、メタノール、エタノール、nープロパノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン、ジエチレングリコール等の溶媒中、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の塩基を用いて加熱下で反応させることによって、化合物 (VIA) が得20 られる。

化合物 (VIA) の調製方法2

(式中、X⁴はハロゲン原子(前記と同義)を表し、その他の各記号はそれぞれ前記と同義である。)

25 第7A工程

化合物(XVA)をテトラヒドロフラン又はジエチルエーテル中、マグネシウムと

反応させることにより、化合物 (XIVA) が得られる。

第8 A工程

第7A工程で得られる化合物(XIVA)をテトラヒドロフラン又はジエチルエー テル中、必要に応じてヨウ化銅を触媒として用いて、化合物(XIIIA)と反応さ せると、化合物(XIIA)が得られる。

第8A工程で得られる化合物(XIIA)は第5A工程と同様な反応に付すことにより化合物(VIIA)が得られ、これを第6A工程と同様な反応に付すことにより化合物(VIA)が得られる。

化合物 (VIA) の調製方法3

(式中、 X^5 はハロゲン原子(前記と同義)を表し、 RhO_2C ーはベンジルオキシカルボニル基、tertーブトキシカルボニル基等のアミノ基の保護基を表し、その他の各記号はそれぞれ前記と同義である。)

第9A工程

10

15 化合物(ia)を、テトラヒドロフラン、nーへキサン等の溶媒中、nーブチルリチウム等の塩基及びヘキサメチルホスホラミド存在下、化合物(iia)と反応させると、化合物(iia)が得られる。

第10A工程

この工程は第9A工程で得られる化合物(i i i a)から、クルチウス転位により 20 化合物(i v a)を得る工程である。化合物(i i i a)を水、アセトン、メチルエ チルケトン等あるいはこれらの混合溶媒中、トリエチルアミン、N, Nージイソプロ ピルエチルアミン等の塩基存在下でクロロ炭酸エチル等のハロゲン化炭酸アルキルと 反応させる。次いで、アジ化ナトリウムを反応させて得られた化合物を、加熱下で転

位させ、次いで式: Rh-OH(式中、Rhはベンジル基、 tertーブチル基等を表す。)で表されるアルコールと反応させることにより、化合物(iva)が得られる。第11A工程

15 化合物 (VIA) の調製方法4 (p=1)

(式中、X⁶はハロゲン原子(前記と同義)を表し、その他の記号はそれぞれ前記と同義である。)

第12A工程

10

20 化合物 (i i b) をテトラヒドロフラン、N, Nージメチルホルムアミド、ジメチルスルホキシド等の溶媒中、テトラブチルアンモニウムフルオリド等のテトラアルキルアンモニウムハライド及びtertーブチルジメチルクロロシラン等のトリアルキ

ルハロゲン化シラン存在下で化合物 (ib)と反応させると、化合物 (iib)が得られる。

第13A工程

第12A工程で得られる化合物 (i i i b) を塩化チオニル、塩化オキザリル等の ハロゲン化剤を用いてハロゲン化を行うと、化合物 (i v b) が得られる。この反応 では用いるハロゲン化剤それ自体を溶媒として用いてもよいし、ジクロロメタン、ク ロロホルム、1, 2ージクロロエタン、テトラヒドロフラン、1, 4ージオキサン等 の溶媒を用いてもよい。

第14A工程

10 第13A工程で得られる化合物(i v b)をメタノール、エタノール、ロープロパノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン、酢酸エチル等の溶媒中、パラジウム炭素、パラジウム黒、水酸化パラジウム炭素等の触媒存在下で水素添加反応を行なうと、化合物(v b)が得られる。この反応では、若干圧力をかけることが好ましい。

15 第15A工程

20

第14A工程で得られる化合物(v b)をメタノール、エタノール、nープロパノール、イソプロパノール、テトラヒドロフラン、1, 4ージオキサン、水等の溶媒中、ラネーニッケル、酸化白金、パラジウム炭素等の触媒を用いて水素添加反応を行うことによって、化合物(V I A)が得られる。この反応では、若干圧力をかけることが好ましい。また、化合物(V I A)は上記溶媒中、鉄、塩化スズ等による還元反応によっても得られる。

化合物 (VIA) の調製方法5

$$\frac{\text{CH}_3}{\text{H}_3\text{C} \text{NO}_2}$$
 $\frac{\text{H}_3\text{C}}{\text{(ivc)}}$ $\frac{\text{R}_3^6}{\text{(VC)}}$ $\frac{\text{H}_3\text{C}}{\text{(CH_2)}}$ $\frac{\text{H}_3\text{C}}{\text{(CH_2)}}$

(式中、Phはフェニル基を示し、その他の記号はそれぞれ前記と同義である。) 第16A工程

化合物 (i c) を、エタノール、イソプロパノール、tert-ブタノール、アセトン、水、塩化メチレン、ジエチルエーテル、N, N-ジメチルホルムアミド等あるいはこれらの混合溶媒中、室温~還流温度で化合物 (i i c) と反応させることにより、化合物 (i i c) が得られる。

第17A工程

化合物 (i v c) を、ジメチルスルホキシド、N, Nージメチルホルムアミド、テ 10 トラヒドロフラン、ジエチルエーテル等あるいはこれらは混合溶媒中、ナトリウムメトキシド、水素化ナトリウムなどの存在下、第16A工程で得られる化合物 (i i i c) と反応させることにより、化合物 (v c) が得られる。

第18A工程

第17A工程で得られる化合物 (vc) を第15A工程と同様な反応に付すことに 15 より、化合物 (VIA) が得られる。

<nが1の場合の製造方法>

Zが一O一である場合

(式中、X⁷はハロゲン原子(前記と同義)を表し、その他の記号はそれぞれ前記と同義である。)

第18工程

N, Nージメチルアセトアミド、N, Nージメチルホルムアミド、ジメチルスルホキシドなどあるいはこれらの混合溶媒中、炭酸カリウム、炭酸ナトリウムなどの塩基の存在下、化合物(IB)と化合物(IIB)を室温~還流温度で反応させることにより、化合物(IIB)が得られる。

第2B工程

10 イソプロパノール、テトラヒドロフラン、トルエン、メタノールなどあるいはこれらの混合溶媒中、第1B工程で得られる化合物(IIIB)を、-10℃乃至室温で、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素リチウム等の還元剤により還元することによって、化合物(IVB)が得られる。また、化合物(IIB)を、B-0ロロジイソピノカンフェイルボラン、(S)-5、5-ジフェニルー2-メチル-3、4-プロパノ-1、3、2-オキサザボロリジン等の不斉還元剤を用いた還元反応や、ジクロロ[(S)-2、2、-ビス(ジフェニルホスフィノ)-1、1、-ビナフチル][(S)-1、1、-ビス(-1、2-1、2-2のアミン]ルテニウム(II)等のルテニウム錯体及びカリウム

-tert-ブトキシドを用いた不斉水素化反応に付すことにより、立体選択的に反応が進行し、化合物(IVB)のR体が得られる。

第3B工程

第2B工程で得られる化合物(IVB)と化合物(IIA)を、第1A工程と同様な反応に付すことにより、化合物(VB)が得られる。

第4B工程

第3B工程で得られる化合物 (VB) と化合物 (VIA) を、第3A工程と同様な 反応に付すことにより、化合物 (1-2) が得られる。

(式中、 Z^1 は C_{2-4} アルケニレン基(Zにおける C_{2-4} アルケニレン基と同義)であり、 X^7 はハロゲン原子(前記と同義)であり、その他の記号は前記と同義である。) 第 5 B工程

アセトニトリル、N, Nージメチルホルムアミド、トルエン等あるいはこれらの混合溶媒中、トリエチルアミン、炭酸カリウム、炭酸ナトリウム等の塩基及び、トリ(oートリル)ホスフィン又はトリフェニルホスフィン存在下、ジアセトキシパラジウム、ジクロロパラジウム等のパラジウム触媒を用いて、化合物(VIB)と化合物(VIIB)を室温~還流温度で反応させることにより、化合物(VIIIB)が得られる。第5B工程で得られる化合物(VIIIB)を第4B工程と同様な工程に付すこと

により、Zが C_{2-4} アルケニレン基である化合物(1-9)が得られる。 Zが-(C H_2) $_{m2}$ -NH-である場合

メタノール、エタノール、テトラヒドロフラン、ジエチルエーテルなどあるいはこ 10 れらの混合溶媒中、水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを用いて、 化合物(IXB)を反応させることにより、化合物(XB)が得られる。 第7B工程

第6B工程で得られる化合物 (XB) と化合物 (IIA) を、第1A工程と同様な 反応に付すことにより、化合物 (XIB) が得られる。

15 第8 B 工程

第6日工程

第7B工程で得られる化合物(XIB)と化合物(VIA)を、第3A工程と同様な反応に付すことにより、化合物(XIIB)が得られる。

第9B工程

テトラヒドロフラン、エタノール、水、メタノール等あるいはこれらの混合溶媒中、 鉄および塩化アンモニウムを用いて化合物(XIIB)を反応させることにより、化 合物(XIIIB)が得られる。

5 第10B工程

第9B工程で得られる化合物(XIIIB)のアミノ基を常法にて保護することにより、化合物(XIVB)が得られる。例えば、アミノ基をトリフルオロアセチル基で保護する場合、クロロホルム、塩化メチレン、テトラヒドロフラン、トルエン、酢酸エチル等あるいはこれらの混合溶媒中、ピリジン、トリエチルアミンなどの塩基の存在下、トリフルオロ酢酸無水物(Trifluoroacetic anhydride)と反応させる。

第118工程

10

15

第10B工程で得られる化合物(XIVB)の水酸基を常法にて保護することにより、化合物(XVB)が得られる。例えば、水酸基をアセチル基で保護する場合、クロロホルム、塩化メチレン、テトラヒドロフラン、トルエン、酢酸エチル等あるいはこれらの混合溶媒中、ピリジン、トリエチルアミンなどの塩基の存在下、無水酢酸と反応させる。

第12日工程

N, N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、ジメチルスルホキシド、アセトン、アセトニトリルあるいはこれらの混合溶媒中、水素化ナ20 トリウム、炭酸カリウム、炭酸ナトリウムなどの塩基の存在下、第11B工程で得られる化合物(XVB)と化合物(XVIB)を反応させることにより、化合物(XVIB)が得られる。

第13B工程

Zが一CONH一である場合

第12B工程で得られる化合物(XVIIB)を常法にて脱保護することにより、 25 化合物(1-3)が得られる。例えば、アミノ基がトリフルオロアセチル基で保護され、水酸基がアセチル基で保護されている場合、テトラヒドロフランーメタノール中、 水酸化ナトリウム存在下で反応させる。

(式中、 X^9 はハロゲン原子 (前記と同義)を示し、その他の記号は前記と同義である。) 第14B工程

第9B工程で得られる化合物 (XIIIB) を、クロロホルム、塩化メチレン、テトラヒドロフラン、トルエン、酢酸エチル、あるいはこれらの混合溶媒中、ピリジン、トリエチルアミン、N, Nージイソプロピルエチルアミンなどの塩基の存在下、化合物 (XVIIIB) と反応させることにより、化合物 (1-4) が得られる。

化合物(1-4)を常法にて加水分解することにより、 R^{1} (C_{16} アルコキシ基)を水酸基に変換することができる。例えば、メタノールーテトラヒドロフラン一水の 混合溶媒中、水酸化ナトリウムを用いて化合物(1-4)を加水分解する。

Zが一S一である場合

5

(式中、各記号は前記と同義である。)

第15B工程

化合物(IXXB)と化合物(IIB)を、第1B工程と同様な反応に付すことにより、化合物(XXB)が得られる。原料として、式

(式中、各記号は前記と同義である。)

5 で表わされる化合物を用いる場合、予め-CO₂H基を-COR¹基に変換して化合物 (IXXB)を調製する。例えば、メタノール、エタノール等のC₁-6アルコール中、 濃硫酸を用いて変換することができる。

第16日工程

第15B工程で得られる化合物 (XXB) と化合物 (XIA) を、第4A工程と同 10 様な反応に付すことにより、化合物 (XXIB) が得られる。

第17B工程

第16B工程で得られる化合物(XXIB)と化合物(IIA)を、第1A工程と同様な反応に付すことにより、化合物(XXIIB)が得られる。

第18日工程

第17B工程で得られる化合物(XXIIB)と化合物(VIA)を、第3A工程 と同様な反応に付すことにより、化合物(1-5)が得られる。

化合物(1-5)を常法にて加水分解することにより、 $R^{1'}$ (C_{16} アルコキシ基)を水酸基に変換することができる。例えば、テトラヒドロフラン、メタノールなどあるいはこれらの混合溶媒中、水酸化ナトリウム存在下で加水分解する。

20 Zが C_{1-4} アルキレン基である場合

$$R^{1}$$
 Z^{2} $Z^{$

(式中、 Z^2 は C_{1-4} アルキレン基(Zにおける C_{1-4} アルキレン基と同義)であり、各記号は前記と同義である。)

第19B工程

5 化合物 (IIIA) を化合物 (XXIIIB) と、第2A工程と同様な反応に付す ことにより、化合物 (XXIVB) が得られる。

第20B工程

第19B工程で得られる化合物(XXIVB)を化合物(VIA)と、第3A工程と同様な反応に付すことにより、化合物(1-6)が得られる。

10 化合物(1-6)を常法にて加水分解することにより、 $R^{1'}$ (C_{1-6} アルコキシ基)を水酸基に変換することができる。例えば、化合物(1-6)を、テトラヒドロフラン、メタノール等あるいはこれらの混合溶媒中、水酸化ナトリウム存在下で加水分解する。

Zがー $(CH_2)_{m1}$ ーOーである場合 1

(式中、 Z^3 は-(CH_2) $_{m1}$ -(ここでいうm1は、Zにおけるm1と同義)であり、 X^{10} はハロゲン原子(前記と同義)であり、その他の記号は前記と同義である。) 第21B工程

5 N, Nージメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、ジメチルスルホキシド、アセトン、アセトニトリル等あるいはこれらの混合溶媒中、水素化ナトリウム、炭酸カリウム、炭酸ナトリウム等の塩基の存在下、化合物 (XXVB) を化合物 (XXVIB) と反応させることにより、化合物 (XXVIIB) が得られる。

10 第22B工程

第21B工程で得られる化合物(XXVIIB)を化合物(IIA)と、第1A工程と同様な反応に付すことにより、化合物(XXVIIIB)が得られる。

第23B工程

第22B工程で得られる化合物 (XXVIIIB) を化合物 (VIA) と、第3A 15 工程と同様な反応に付すことにより、化合物 (1-7) が得られる。

化合物(1-7)を常法にて加水分解することにより、 R^1 (C_{16} アルコキシ基)を水酸基に変換することができる。例えば、化合物(1-7)を、テトラヒドロフラン、メタノール等あるいはこれらの混合溶媒中、水酸化ナトリウム存在下で加水分解する。

20 光学活性な化合物 (XXVB) を用いることもでき、光学活性な化合物 (XXVB)

は、以下のような方法にて製造することができる。

(式中、 Pro_3 は Pro_2 と同義であり、その他の記号は前記と同義である。) 第24B工程

5 化合物 (i d) を、常法にて水酸基を保護することにより、化合物 (i i d) が得られる。例えば、水酸基をベンジル基で保護する場合、N, Nージメチルホルムアミド中、炭酸カリウム、水素化ナトリウムなどの塩基の存在下、ベンジルハライド (例えば、ベンジルブロマイド) と反応させる。

第25B工程

10 第24B工程で得られる化合物(i i d)を、テトラヒドロフラン、トルエン、塩 化メチレン、ヘキサン等あるいはこれらの混合溶媒中、ボランジメチルスルフィド錯 塩の存在下、化合物(i i i d)と反応させることにより、化合物(i v d)が得ら れる。

第26日工程

15 第25B工程で得られる化合物(i v d)を、常法にて脱保護することにより、光 学活性な化合物(XXVB)が得られる。例えば、水酸基がベンジル基で保護されて いる場合、テトラヒドロフラン、メタノール、エタノール、酢酸エチル等あるいはこ れらの混合溶媒中、パラジウム炭素存在下、水素添加する。

Zが- (CH₂) m-O-である場合2

(式中、 Pro_4 は Pro_2 と同義であり、その他の記号は前記と同義である。) 第27B工程

化合物 (XXIXB) を化合物 (IIA) と、第1A工程と同様な反応に付すこと 5 により、化合物 (XXXB) が得られる。

第28日工程

第27B工程で得られる化合物(XXXB)を化合物(VIA)と、第3A工程と 同様な反応に付すことにより、化合物(XXXIB)が得られる。

第29B工程

10 第28B工程で得られる化合物(XXXIB)を、常法にて脱保護反応に付すことにより、化合物(XXXIIB)が得られる。例えば、化合物(XXXIB)の水酸基が2-(トリメチルシリル)エトキシメチル基で保護されている場合、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン中、テトラブチルアンモニウムハライド(例えば、テトラブチルアンモニウムフルオライドなど)およびMS4Aの存在下で脱保護する。

第30B工程

第29B工程で得られる化合物(XXXIIB)を化合物(XXVIB)と、第21B工程と同様な反応に付すことにより、化合物(1-7)が得られる。

化合物 (1-7) を常法にて加水分解することにより、 $R^{1'}$ $(C_{1-6}$ アルコキシ基) 20 を水酸基に変換することができる。例えば、化合物 (1-7) を、テトラヒドロフラ

ンーメタノール中、水酸化ナトリウム存在下で加水分解する。

第27B工程は光学活性な化合物(XXIXB)を用いて行うこともでき、例えば、化合物(id)を、第24B工程および第25B工程に付すことにより、光学活性な化合物(XXIXB)が得られる。例えば、水酸基が2-(トリメチルシリル)エトキシメチル基で保護された光学活性な化合物(XXIXB)を所望の場合は、第24B工程において、クロロホルム中、ジイソプロピルエチルアミンの存在下、化合物(id)を2-(トリメチルシリル)エトキシメチルハライド(例えば、2-(トリメチルシリル)エトキシメチルハライド(例えば、2-(トリメチルシリル)エトキシメチルクロライド)と反応させる。

また、 R^1 が R^A 、特にOH-NH-である化合物を所望の場合、 R^1 が水酸基である化合物(1)をN,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、ジメチルスルホキシド、アセトン、アセトニトリル等あるいはこれらの混合溶媒中、ジシクロヘキシルカルボジイミド、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド、ジイソプロピルカルボジイミド、ジフェニルホスホリルアジド、2-エトキシー1-エトキシカルボニルー1,2-ジヒドロキノリン(EEDQ)等の縮合剤及び1-ヒドロキシベンゾトリアゾール、4-ジメチルアミノピリジン等の添加剤存在下、トリメチルシリルオキシアミンと反応させる。次いで、上記溶媒中でテトラブチルアンモニウムフルオリドを作用させることにより、 R^1 がOH-NH-である化合物(1)が得られる。

20

25

R⁵がR⁸である化合物(1)の製造方法は、例えば、下式で示すように、第3A工程で得られる化合物(1-1)を、クロロホルム、塩化メチレン、テトラヒドロフラン、トルエン、酢酸エチル等あるいはこれらの混合溶媒中、ピリジン、トリエチルアミン、ジメチルアミノピリジンなどの塩基の存在下、無水酢酸、無水コハク酸、無水

マレイン酸等の酸無水物またはハロゲン化アシルと反応させることにより、化合物(1-8)が得られる。

(式中、各記号は前記と同義である。)

5 一般式(1)で表される化合物の塩を所望の場合、公知の方法を用いることができる。例えば、酸付加塩を所望の場合、一般式(1)で表される化合物を水、メタノール、エタノール、nープロパノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、1,4ージオキサン、酢酸エチル、ジクロロメタン、1,2ージクロロエタン又はクロロホルム等あるいはこれらの混合溶媒に溶解させ、所望の酸を溶解した上記溶媒を加えて析出する結晶を濾取するか、減圧濃縮すればよい。更に、混合溶媒を用いて塩の結晶を得る場合、化合物を溶解力の高い溶媒に溶解させ、所望の酸を溶解した上記溶媒を加えた後、溶解力の低い溶媒を加えて析出する結晶を濾取することが好ましい。

また、塩基塩を所望の場合、一般式(1)で表される化合物を水、メタノール、エタノール、nープロパノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン等あるいはこれらの混合溶媒に溶解させ、所望の塩基を当量溶解した上記溶媒を加えて析出する固体を濾取するか、減圧濃縮すればよい。更に、混合溶媒を用いて塩の結晶を得る場合、化合物を溶解力の高い溶媒に溶解させ、所望の塩基を溶解した上記溶媒を加えた後、溶解力の低い溶媒を加えて析出する結晶を濾取することが好ました。

また、一般式(1)で表される化合物の酸付加塩を遊離体にする場合、一般式(1)で表される化合物の酸付加塩を炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の塩基の水溶液に加え、水溶液のpHを中性~弱酸性にした後、酢酸エチル、ジクロロメタ

ン、1,2-ジクロロエタン、クロロホルム、メチルエチルケトン又はトルエン等の 溶媒との2層系で分配することによって、一般式(1)で表される化合物の遊離体が 得られる。

また、一般式(1)で表される化合物の塩基塩を遊離体にする場合、一般式(1)で表される化合物の塩基塩の水溶液に塩酸、臭化水素酸、硫酸、酢酸、クエン酸等の酸の水溶液を加えて析出する固体を濾取するか、酢酸エチル、ジクロロメタン、1,2ージクロロエタン、クロロホルム、メチルエチルケトン又はトルエン等の溶媒との2層系で分配することによって、一般式(1)で表される化合物の遊離体が得られる。

また、光学活性体の塩を所望の場合、メタノール、エタノール、nープロパノール、10 イソプロパノール、テトラヒドロフラン、1,4ージオキサン、水等あるいはこれらの混合溶媒に懸濁させ、加熱して溶解させた後、冷却することによって結晶を析出させる。そうして得られる結晶を用いて、上述した方法により、塩の結晶を得ることができる。

かくして得られる本発明に係る一般式(1)で示される化合物は優れたカルシウム 5 受容体拮抗作用を有する。本発明化合物を骨粗鬆症、上皮小体機能低下症、骨肉腫、 歯周病、骨折、変形性関節症、慢性関節リウマチ、パジェット病、液性高カルシウム 血症、常染色体優性低カルシウム血症、パーキンソン病、痴呆等の治療薬として用いる場合、通常全身的、あるいは局所的に、経口又は非経口で投与される。

投与量は年齢、体重、症状、治療効果、投与方法、処置時間等により異なるが、通 20 常成人一人当たり 0.01 m g 乃至 10 g の範囲で、一日一回から数回経口あるいは 非経口投与される。

本発明化合物を経口投与のための固体組成物にする場合、錠剤、丸剤、散剤、顆粒剤等の剤形が可能である。このような固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、分散剤又は吸着剤等、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微晶性セルロース、澱粉、ポリビニルヒドリン、メタケイ酸アルミン酸マグネシウム又は無水ケイ酸末等と混合される。また、組成物は常法に従って、希釈剤以外の添加剤を混合させてもよい。

25

錠剤又は丸剤に調製する場合は、必要により白糖、ゼラチン、ヒドロキシプロピル セルロース又はヒドロキシメチルセルロースフタレート等の胃溶性あるいは腸溶性物

質のフィルムで皮膜してもよいし、二以上の層で皮膜してもよい。さらに、ゼラチン 又はエチルセルロースのような物質のカプセルにしてもよい。

経口投与のための液体組成物にする場合は、薬剤的に許容される乳濁剤、溶解剤、 懸濁剤、シロップ剤又はエリキシル剤等の剤形が可能である。用いる希釈剤としては、 例えば精製水、エタノール、植物油又は乳化剤等がある。また、この組成物は希釈剤 以外に浸潤剤、懸濁剤、甘味剤、風味剤、芳香剤又は防腐剤等のような補助剤を混合 させてもよい。

5

10

15

20

25

非経口のための注射剤に調製する場合は、無菌の水性若しくは非水性の溶液剤、可溶化剤、懸濁剤または乳化剤を用いる。水性の溶液剤、可溶化剤、懸濁剤としては、例えば注射用蒸留水、生理食塩水シクロデキストリン及びその誘導体、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、トリエチルアミン等の有機アミン類あるいは無機アルカリ溶液等がある。

水溶性の溶液剤にする場合、例えばプロピレングリコール、ポリエチレングリコールあるいはオリーブ油のような植物油、エタノールのようなアルコール類等を用いてもよい。また、可溶化剤として、例えばポリオキシエチレン硬化ヒマシ油、蔗糖脂肪酸エステル等の界面活性剤(混合ミセル形成)、又はレシチンあるいは水添レシチン(リポソーム形成)等も用いられる。また、植物油等非水溶性の溶解剤と、レシチン、ポリオキシエチレン硬化ヒマシ油又はポリオキシエチレンポリオキシプロピレングリコール等からなるエマルジョン製剤にすることもできる。

非経口投与のためのその他の組成物としては、一つ又はそれ以上の活性物質を含み、 それ自体公知の方法により処方される外用液剤、軟膏のような塗布剤、座剤又はペッ サリー等にしてもよい。

本発明化合物を医薬品として用いる場合の形態としては、化合物それ自体(遊離体)、 化合物の塩、化合物の溶媒和物又は化合物のプロドラッグ体があるが、好ましい形態 は、遊離体、化合物の塩又は化合物の溶媒和物であり、特に好ましくは化合物の塩で ある。

実施例

本発明に係る一般式 [I] で示される化合物及びその製造方法を、以下の実施例によって具体的に説明する。しかしながら本発明はこれらの実施例に限定されるもので

ないことは勿論である。

実施例1-1

2' - [(1R) - [(2R) - 3 - [[1 - (3 - 7) ルオロー4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

工程1

5

(2R) -2- [((1R) - (2-ブロモフェニル) エトキシ) メチル] オキシラン

10 (1R) - (2-ブロモフェニル) エタノール(30.0g)及び(R) - グリシジル 3 -ニトロベンゼンスルホネート(50.3g)をジメチルホルムアミド(300 ml)に溶解させ、水素化ナトリウム(7.76g、60%油性)を加えて室温で2時間攪拌した。反応混合物に10%クエン酸水溶液(600 ml)を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥させ、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1)にて精製して、表記化合物(32.9g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7.53-7.49 (2H, m), 7.37-7.32 (1H, m), 7.16-7.10 (1H, m), 4.89 (1H, q, J=6.4Hz), 3.62-3.57 (1H, m), 3.34-3.28 (1H, m), 3.18-3.12 (1H, m), 2.79-2.76 (1H, m), 2.58-2.55 (1H, m), 1.44 (3H, d, J=6.4).

20 工程2

4-ブロモー2ーメチル安息香酸メチル

4-ブロモ-2-メチル安息香酸(75.0 g)をメタノール(500 ml)に溶解させ、濃硫

酸(10 ml)を加えて、2 0 時間加熱還流させた。反応混合物を室温に戻し、減圧濃縮して得られた残渣に水(150 ml)を加え、酢酸エチル(150 ml)で抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥させた後、減圧濃縮して、表記化合物(78.0 g)を得た。

5 ¹H-NMR (400MHz, δ ppm, CDCl₃) 8.20 (1H, s), 8.86 (1H, d, J=8.0Hz), 7.30 (1H, d, J=8.0Hz), 3.91 (3H, s), 2.45 (3H, s).

工程3

3-メチル-2' -[(1R)-((R)-オキシラニルメトキシ) エチル] ビフェニル-4-カルボン酸メチル

10

15

20

工程 2 で得られた 4 ーブロモー 2 ーメチル安息香酸メチル (9.16 g)をジメチルスルホキシド (120 ml) に溶解させ、ビス(ジフェニルホスフィノ)フェロセン塩化パラジウム(II) (1.46 g)、酢酸カリウム (11.8 g)、ビスピナコレートジボロン (11.2 g)を加えて 8 0 $^{\circ}$ で 3 時間攪拌した。反応液を室温に戻し、水を加えて酢酸エチルで抽出した。有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥させ、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 9 : 1)にて精製した化合物をトルエン (80 ml)及びエタノール (80 ml)に溶解させ、ビス(ジフェニルホスフィノ)フェロセン塩化パラジウム(II)(1.17 g)及び工程 1 で得られた (2 R) ー 2 ー [((1 R) ー (2 ー ブロモフェニル)エトキシ)メチル] オキシラン (10.5 g)のエタノール (80 ml)溶液を加え、さらに 2 M炭酸ナトリウム水溶液 (80 ml)を加えて 3 時間加熱還流させた。反応液を室温に戻し、ジエチルエーテルで抽出した。有機層を水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥させ、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5 : 1)にて精製し、表記化合物 (8.93 g) を得た。

 1 H-NMR (300MHz, δ ppm, CDCl₃) 7. 96 (1H, d, J=8. 6Hz), 7. 60 (1H, d, J=6. 7Hz),

7. 43-7.28(4H.m), 7. 18-7.13(1H.m), 4. 55(1H.g., J=6.4Hz), 3. 92(3H.g., S)

3. 44-3. 40 (1H, m), 3. 18-3. 12 (1H, m), 3. 07-3. 02 (1H, m), 2. 73-2. 70 (1H, m), 2. 65 (3H, s),

2. 47-2. 45 (1H, m), 1. 37 (3H, d, J=6. 4Hz).

工程4

5

10

20

(3-フルオロー4ーメチルフェニル) 酢酸メチル

$$MeO_2C$$
 F

(3ーフルオロー4ーメチルフェニル) 酢酸(105.3 g)をメタノール(740 ml)に溶解させ、濃硫酸(9.9 ml)を加えて85℃で1時間攪拌した。反応液を室温に戻し、減圧濃縮し、得られた残渣に水を加えて酢酸エチル(1 L)で抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥させた後、減圧濃縮して、表記化合物(114.2 g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7. 14-7. 10 (1H, m), 6. 96-6. 93 (2H, m), 3. 70 (3H, s), 3. 58 (2H, s), 2. 25-2. 24 (3H, s).

工程5

15 1- (3-フルオロー4-メチルフェニル) -2-メチルプロパン-2-オール

工程 4 で得られた(3 ーフルオロー 4 ーメチルフェニル)酢酸メチル(114.2 g)をテトラヒドロフラン(800 ml)に溶解させ、0 \mathbb{C} でアルゴン気流中 1 Mー臭化メチルマグネシウム(1.56 L)を滴下した。その後室温で 1 時間攪拌した。反応液を氷冷し、飽和塩化アンモニウム水溶液(155 ml)を滴下した後、硫酸マグネシウム(280 g)を加えた。反応混合物を濾過し、減圧濃縮して、表記化合物(130.1 g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7.11-7.08 (1H, m), 6.88-6.86 (2H, m), 2.71 (2H, s), 2.25 (3H, s), 1.22 (6H, s).

工程6

25 2-クロロ-N-[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロ

パン-2-イル] アセトアミド

工程 5 で得られた 1-(3-7)ルオロー 4-メチルフェニル) -2-メチルプロパンー 2-メチルプロパ (130.1 g) を、クロロアセトニトリル (139 ml) 及び酢酸 (115 ml) に溶解させ、氷冷下で濃硫酸 (33.4 ml) を滴下した。室温で 2 時間攪拌した後、氷冷下で 4 N -水酸化ナトリウム水溶液 (16 ml) を滴下し、トルエンで 2 回、酢酸エチルで 2 回抽出した。有機層を 1 0 %食塩水で 2 回洗浄し、減圧濃縮して表記化合物 (131.6 g) を得た。 1 H-NMR (300MHz, δ ppm, CDCl $_{3}$) 7.10-7.06 (1H, m), 6.80-6.76 (2H, m), 6.19 (1H, brs), 3.95 (2H, s), 3.00 (2H, s), 2.24 (3H, s), 1.37 (6H, s).

10 工程7

15

20

25

(1-(3-フルオロー4-メチルフェニル)-2-メチルプロパン-2-イル) アミン

工程 6 で得られた 2-クロローNー [1-(3-フルオロー4-メチルフェニル) -2-メチルプロパン-2-イル] アセトアミド (131.6g) を酢酸 (200 ml) 及びエタノール (1 L) に溶解させ、チオウレア (46.6g) を加えて 100 で終夜攪拌した。

反応液を室温に戻し、析出した結晶を濾過した。濾液を減圧濃縮し、得られた残渣に4N-水酸化ナトリウム(300 ml)を加えてトルエンで3回抽出した。有機層を飽和食塩水で洗浄し、減圧濃縮して得られた残渣をジエチルエーテル(1 L)に溶解させ、氷冷下で4N-塩酸/酢酸エチル溶液(255 ml)を滴下した。一時間攪拌し、析出した結晶を濾取した。得られた結晶をトルエンと4N-水酸化ナトリウム水溶液の混合液に加えた。トルエン層を分離し、水で2回洗浄し、減圧濃縮して表記化合物(57.9 g)を得た。

 1 H-NMR (300MHz, δ ppm, CDCl₃) 7.11-7.07 (1H, m), 6.85-6.82 (2H, m), 2.61 (2H, s), 2.25 (3H, s), 1.11 (6H, s).

 $MS (APCI, m/z) 182 (M+H)^{+}$.

工程8

2' - [(1R) - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 5 3 - メチルビフェニル - 4 - カルボン酸メチル

工程3で得られた3ーメチルー2'ー[(1R)ー((R)ーオキシラニルメトキシ) エチル]ビフェニルー4ーカルボン酸メチル(2.26~g)をトルエン(50~ml)に溶解させ、工程7で得られた(1-(3-7)ルオロー4ーメチルフェニル)ー2ーメチルプロパ ンー2ーイル) アミン(1.38~g)及び過塩素酸リチウム(815~mg) を順次加え、室温で終夜攪拌した。反応液を水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥させ、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(20 ロロホルム:メタノール=9:10 にて精製し、表記化合物(3.37~g)を得た。

 1 H-NMR (400MHz, δ ppm, DMSO-d₆) 7.95(1H, d, J=8.6 Hz), 7.56-7.53(1H, m),

15 7. 41-7. 37 (1H, m), 7. 32-7. 28 (1H, m), 7. 17-7. 12 (3H, m), 7. 06-7. 02 (1H, m), 6. 80-6. 77 (2H, m), 4. 48 (1H, q, J=6. 3Hz), 3. 92 (3H, s), 3. 66-3. 63 (1H, m), 3. 21-3. 13 (2H, m), 2. 72-2. 68 (1H, m), 2. 64 (3H, s), 2. 59-2. 54 (3H, m), 2. 23 (3H, m), 1. 35 (3H, d, J=6. 3Hz), 1. 02 (3H, s), 1. 00 (3H, s).

MS (ESI, m/z) 508 (M+H)⁺.

20 工程9

工程8で得られた 2, -[(1R) - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>-3 - メチルビフェニル -4 - カルボン酸メチル (3.37 g) をメタノール (25 ml) 及びテトラヒドロフラン (25 ml) に溶解させ、 2N - 水酸化ナトリウム (13.5 ml) を加えて、60 で 3 時間攪拌した。減圧濃縮して得られた残渣を水で希釈し、10 %クエン酸水溶液を加えて中和した。生成した白色沈殿物を濾過し、これを乾燥させることにより、表記化合物(3.06 g)を得た。

 1 H-NMR (300MHz, δ ppm, DMSO- d_{e}) 7.85 (1H, d, J=8.3Hz), 7.56-7.53 (1H, m),

7. 47-7. 42 (1H, m), 7. 37-7. 32 (1H, m), 7. 19-7. 13 (4H, m), 6. 97-6. 89 (2H, m),
4. 47 (1H, q, J=6. 4Hz), 3. 70 (1H, s), 3. 14 (2H, d, J=5. 3Hz), 2. 85-2. 80 (1H, m),
2. 73 (2H, s), 2. 63-2. 59 (1H, m), 2. 56 (3H, s), 2. 19 (3H, s), 1. 28 (3H, d, J=6. 4 Hz),
1. 05 (3H, s), 1. 04 (3H, s).

 $MS(ESI, m/z) 494(M+H)^{+}$.

15 実施例1-2

2' - [(1R) - [(2R) - 3 - [[1 - (4 - クロロー3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

工程1

20 1-クロロー2-フルオロー4-(2-メチルアリル)ベンゼン

テトラヒドロフラン(40 ml)にマグネシウム(2.43 g)及びヨウ素(10 mg)を加え、更

に4ーブロモー1ークロロー2ーフルオロベンゼン(21.0 g)のテトラヒドロフラン (40 ml)溶液を滴下して、室温で1時間攪拌し、グリニヤー試薬を調製した。反応液を 氷冷し、ヨウ化銅(1.90 g)を加え、3-クロロ-2-メチルー1-プロペン(14.8 ml)を加えて室温で1時間攪拌した。反応液を氷冷し、飽和塩化アンモニウム(10 ml)を加えた後、室温で20分間攪拌し、硫酸マグネシウム(40 g)を加えた。反応混合物を濾過し、濾液を減圧濃縮して、得られた残渣にヘキサン(100 ml)を加えた。不溶物を濾別し、減圧濃縮することにより、表記化合物(16.9g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7. 40-7. 20 (1H, m), 6. 99 (1H, dd, J=9. 9, 1. 8Hz), 6. 91 (1H, d, J=8. 1Hz), 4. 84 (1H, s), 4. 73 (1H, s), 3. 28 (2H, s), 1. 66 (3H, s).

10 工程2

5

2-クロロ-N-[1-(4-クロロ-3-フルオロフェニル) -2-メチルプロパン-2-イル] アセトアミド

工程3

20 $1-(4-\rho -3 - 7 \nu + 7 - 7 \nu + 7$

工程2で得られた2ークロローNー [1-(4-クロロー3-フルオロフェニル) -2-メチルプロパン-2-イル] アセトアミド(10.1 g)より、実施例1-1の工程 7と同様にして、表記化合物(6.90 g)を得た。

 1 H-NMR (400MHz, δ ppm, CDCl₃) 7. 30 (1H, dd, J=7. 9, 7. 9Hz), 6. 99 (1H, dd, J=10. 2, 2. 0Hz) 6. 91 (1H, dd, J=8. 1, 1. 9Hz), 2. 62 (2H, s), 1. 15 (6H, s). MS (ESI, m/z) 202 (M+H)⁺.

工程4

5 2' - [(1R) - [(2R) - 3 - [[1 - (4 - クロロー3 - フルオロフェニル) -2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸メチル

実施例1-1の工程3で得られた3-メチル-2' -[(1R)-((R)-オキシ) フェルメトキシ) エチル] ビフェニル-4-カルボン酸メチル(248 mg)及び工程3で得られた1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イルアミン(170 mg)より、実施例1-1の工程8と同様にして、表記化合物(413 mg)を得た。

 $^{1}\text{H-NMR}$ (300MHz, δ ppm, DMSO-d₆) 7.96 (1H, d, J=8.4Hz), 7.56-7.53 (1H, m),

7. 45-7. 39 (2H, m), 7. 19-7. 11 (3H, m), 6. 98-6. 88 (2H, m), 4. 48 (1H, q, J=6. 6Hz),

3.98(1H, m), 3.92(3H, s), 3.29-3.19(2H, m), 3.05-3.00(1H, m), 2.93(1H, m),

2.83(2H,s), 2.64(3H,s), 1.34(3H,d,J=6.6Hz), 1.21(3H,s), 1.19(3H,s).

MS(ESI, m/z) 528 (M+H)⁺.

工程5

2' -[(1R) - [(2R) - 3 - [[1 - (4 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン <math>- 2 -イル]アミノ] - 2 -ヒドロキシプロポキシ] エチル] - 3 -メチルビフェニル - 4 -カルボン酸

 1 H-NMR (400MHz, δ ppm, DMSO- d_{6}) 7.84 (1H, d, J=8.6Hz), 7.55-7.52 (1H, m),

7. 47-7. 41 (2H, m), 7. 36-7. 32 (1H, m), 7. 25-7. 22 (1H, m), 7. 18-7. 15 (3H, m),

7. 05-7. 03 (1H, m), 4. 47 (1H, q, J=6. 5Hz), 3. 68 (1H, m), 3. 13 (2H, d, J=5. 5Hz),

2.81-2.78(1H, m), 2.76(2H, s), 2.60-2.57(1H, m), 2.56(3H, s), 1.28(3H, d, J=6.2Hz),

10 1.05(3H, s), 1.03(3H, s).

MS (ESI, m/z) 514 (M+H) +.

実施例1-3~1-110

実施例1-1および1-2に基づいて、実施例 $1-3\sim1-1$ 10を得た。結果を表 1 および表 $2\sim4$ 4 に示す。

15

20

ļ	ŀ		

宇施岡		Reporter
5/10/1/	構造式	gene assay
番号		(Mrl)
	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	Y.
	7.85(1H,d,J=8.3Hz), 7.56-7.53(1H,m),	
	"3 H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ (1H,m), 7.37-7.32(1H,m),	
	7.19-7.13(4H,m), 6.97-6.89(2H,m),	
	H H 3.70(1H, q, J=6.4Hz), 3.70(1H, s),	0.024
	3.14(2H,d,J=5.3Hz), 2.85-2.80(1H,m),	H J O
	но но 2.73 (2H, s), 2.63-2.59 (1H, m), 2.56 (3H, s),	•
	2.19(3H,s), 1.28(3H,d, 7=6.4Hz),	0
	1.05(3H,s), 1.04(3H,s).	
	$MS(ESI, m/z) 494(M+H)^{+}$.	
	1-H-NMR (400MHz, Sppm, DMSO-d6)	
	7.84(1H, d, J=8.6Hz), 7.55-7.52(1H,m),	
	7	•
	1.25-7.22(1H,m), 7.18-7.15(3H,m),	
	F 4.47 (1H, q, J=6.5Hz),	
1-2	OH OH 3.68(1H, m), 3.13(2H, d, J=5.5Hz),	0.013
	2.81-2.78(1H,m), 2.76(2H,s),	
	2.60-2.57(1H,m), 2.56(3H,s),	
	o CH ₃ (3H, d, J=6.2Hz), 1.05(3H,s),	
	1.03(3H,s).	
	$ MS(ESI,m/z) $ 514 $(M+H)^{\dagger}$.	
	for the first tensor lawy	

級

	50	TH-NMR (400MHz, Oppm, DMSO-de)	,
	H ₃ C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7.82(1H,d,J=8.4Hz), 7.54(1H,d,J=7.9Hz),	
	7.	7.43(1H, dd, J=7.4, 7.4Hz),	
,	CI N CO N 12.	7.33(1H,dd,7.2,7.2Hz), 7.25-7.10(5H,m),	
1-3	L NO	7.04(1H, d, J=7.7Hz), 4.48(1H, q, J=6.5Hz),	0
	***	3.77-3.66(1H,m), 3.14(2H,d,J=5.8Hz),	0.0.0
	HO 2.	2.90-2.40(7H,m), 2.27(3H,s),	
		1.27(3H, d, J=6.2Hz), 1.05(3H,s),	
	, -i	1.04(3H,s)	
	SW .	$MS(ESI, m/z) 510(M+H)^{+}$.	
	C1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 H-NMR (400MHz, δ ppm, DMSO- d_{δ})	
		7.83(1H, d, J=8.4Hz), 7.54(1H, d, J=7.9Hz),	
		7.44(1H, dd, J=7.5, 7.5Hz),	
	130 H OH OH O	7.34(1H, dd, 7.5, 7.5Hz), 7.28(1H, d, 8.2Hz),	
5 1 →		7.20-7.10(4H,m), 7.01(1H,d,J=8.1Hz),	710
	HO C	4.48(1H,q,J=6.3Hz), 3.80-3.65(1H,m),	# H O
*		3.14(2H, d, J=5.6Hz), 2.90-2.40(7H,m),	
	0 043	2.28(3H,s), 1.27(3H,d,J=6.2Hz),	
		1.04(3H,s), 1.03(3H,s)	
	SW	$MS(ESI, m/z) 510(M+H)^{+}$.	
	H _T	¹ H-NMR (400MHz, Sppm, DMSO-ds)	
	H,C H,C CH, CH,	7.85(1H, d, J=8.4Hz), 7.54(1H, d, J=7.9Hz),	
		7.44(1H,dd,J=7.4,7.4Hz),	
٠.,	7 O N O O	7.34(1H, dd, 7.4, 7.4Hz), 7.20-7.12(3H, m),	
	F H G V	7.01-6.90(2H,m), 4.47(1H,q,J=6.5Hz),	600
T-2	HO, ————————————————————————————————————	3.75-3.60(1H,m), 3.13(2H,d,J=5.8Hz),	, , , ,
•))	2.90-2.70(3H;m), 2.65-2.40(4H,m),	0
	O CH ₃	2.24(3H,s), 1.27(3H,d,J=6.3Hz),	
		1.03(3H,s), 1.02(3H,s)	
	SW	$MS(ESI, m/z) = 512(M+H)^{+}$.	

;	っ
ı	И
I	И

-				0	070.0			,				· (*)				cro.o				•	
Cl AHC CH TH-NMR(400MHz, Sppm, DMSO-dk)	CH 3 CH3 CH3 7.84 (1H, d, J=8.4Hz),	7.54(1H, dd, J=7.9, 1.2Hz),	F H OH \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.38-7.25(3H,m), 7.20-7.13(4H,m),	HO 4.47(1H,q,J=6.2Hz), 3.75-3.60(1H,m),	3.12(2H,d,J=5.8Hz), 2.85-2.65(3H,m),	2.60-2.40(4H,m), 1.27(3H,d,J=6.2Hz),	1.02(3H,s), 1.00(3H,s)	$ MS(ESI,m/z) 514(M+H)^+$.	и С ти	13C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	F H OH 7.34(1H, ddd, J=7.4, 7.4, 1.2Hz),	7.20-7.07(4H,m), 6.96(1H,d,J=10.9Hz),	6.91(1H,d,7.9Hz), 4.48(1H,q,J=6.3Hz),	0 CH,	2.95-2.70(3H,m), 2.65-2.40(4H,m),	2.27(3H,s), 1.27(3H,d,J=6.3Hz),	1.04(6H,s)	MS(ESI, m/z) 494 (M+H) ⁺ .
	<u>-</u>	·	*	1-6		-	-		`.						1-1			•		× _	

-
Ţ
inhe/
ECHH
ΜÆ

	*	3				0.015	u) ,	(r		2 (3H, s)	,		{z},	1 (:	0.016				3) ,	m), (m			0.029			,
٠	1 H-NMR (400MHz, δ ppm, DMSO- d_6)	7.83(1H,d,J=8.3Hz),	7.53(1H, dd, J=7.8, 1.2Hz),	43(1H, ddd, J=7.7,7.7,1.2Hz),	33(1H, ddd, J=7.6, 7.6, 1.2Hz),	.20-7.12(4H,m), 6.98-6.87(2H,m),	4.48(1H, q, J=6.3Hz), 3.75-3.60(1H,m)	3.14(2H,d,J=5.5Hz), 2.85-2.65(3H,m)	2.60-2.45(6H,m), 1:27(3H,d,J=6.3Hz)	1.14(2H, t, J=7.5Hz) 1.03(3H, s), 1.02(3H, s)	$MS(ESI, m/z) 508(M+H)^+$.	¹ H-NMR (300MHz, Sppm, DMSO-d ₅)	7.87-7.18 (14H,m), 4.45 (1H,q,J=6.3Hz),	3.80-3.65(1H,m), 3:18(2H,d,J=5.1Hz),	2.95-2.80(3H,m), 2.70-2.60(1H,m),	2.40(3H,s), 1.26(3H,d,J=6.3Hz),	1.08(3H,s), 1.07(3H,s).	$MS(ESI_{r}m/z) 512(M+H)^{+}$.	1H-NMR (300MHz, Sppm, CDCl3) 8.69(1H,s)	8.16(1H,d,J=1.6Hz), 7.78-7.17(11H,m)	4.43(1H,q,J=6.4Hz), 3.95(6H,s),	3.80-3.70(1H,m), 3.30-3.15(2H,m),	90-2.75(3H,m), 2.75-2.65(1H,m),	1.33 (3H, d, J=6.4Hz), 1.12 (3H, s),	H,s).	, m/z) 570 (M+H) ⁺ .
	1H-NMR	7.83(1	CH, 7.53(1	7.43(1	7.33(1	7.20-7	4.48(1	3.14(2	2.60-2	1.14(2	MS (ESI			3.80-3	2.95-2	2.40(3		CH ₃ MS (ESI	1 TH-NMR	gH ₃ GH ₃ 8.16(1	4.43(1	Öн 3.80-3	0 / 2.90-2	1.33(3	(3H,s).	H ₃ C-O MS (ESI, m/z)
		HU DH V	HG \\3\\1.	,	ZH.			- C			***			O WH) o) OH	- 100	HO O'H C					Į p		
					,			•				•			1-9							1-10		••		

裘

級

900.0	0.012	0.011
¹ H-NMR(300MHz, Sppm, DMSO-d ₆) 7.85(1H, d, J=7.8Hz), 7.60(1H, d, J=6.6Hz), 7.50-7.30(2H, m), 7.20-7.10(4H, m), 7.20-7.10(4H, m), 7.00-6.90(2H, m), 3.86(1H, d, J=7.5Hz), 3.80-3.70(1H, m), 3.35-3.15(2H, m), 2.95-2.90(1H, m), 2.77(2H, s), 2.95-2.90(1H, m), 2.77(2H, s), 2.19(3H, s), 1.15-1.00(7H, m), 0.50-0.40(1H, m), 0.35-020(2H, m), -0.150.20(1H, m), MS(ESI, m/z) 520(M+H) ⁺ .	¹ H-NMR(400MHz, &ppm, DMSO-d ₆) 7.55-7.45(2H,m), 7.40-7.25(2H,m), 7.15-7.05(2H,m), 6.95-6.80(4H,m), 4.49(1H,q,J=6.4Hz), 3.55-3.50(1H,m), 3.09(2H,s), 2.60-2.35(6H,m), 2.18(3H,s), 1.24(3H,d,J=6.4Hz), 0.89(3H,s), 0.86(3H,s). MS(ESI,m/z) 494(M+2H-Na) ⁺ .	¹ H-NMR(400MHz, 5ppm, DMSO-d ₆) 12.7(1H, bs), 8.94(1H, bs), 8.49(1H, bs), 7.90(1H, d, J=8.0Hz), 7.60-7.15(7H, m), 7.00-6.90(2H, m), 5.55(1H, d, J=4.0Hz), 4.46(1H, q, J=6.3Hz), 3.95-3.85(1H, m), 3.20-2.65(6H, m), 2.59(3H, s), 2.21(3H, s), 1.31(3H, d, J=6.3Hz), 1.18(6H, s). MS(ESI, m/z) 494(M+H-HCL) ⁺ .
H ₃ C CH ₃ 7 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ T ₄	H ₃ C CH ₃ CH ₃ CH ₃ R 8 8 8 8 9
1-14	1-15	1-16

表

*.		0.015					0.016		-		ř				0.005				
	¹ H-NMK(400MHz, Sppm, DMSO-d ₆) 7.76(1H, s), 7.64(1H, s), 7.60-7.10(6H, m),	7.00-6.85(2H,m), 4.43(1H,q,J=6.4Hz), 3.80-3.65(1H,m), 3.15(2H,d,J=5.1Hz),	, 2.40(3H,s), 2.18(3H,s)	1Z), 1.U5(6H,S). (M+H) ⁺ .	H-NMR (300MHz, Sppm, DMSO-d ₆)	tz), 3.75-3.65(1H,m),	3.35-3.10(2H,m), 2.90-2.50(7H,m),	.15-0.95(7H,m), 0.50-0.40(1H,m),	0.30-0.20(2H,m), -0.050.20(1H,m).	·+(M+H)	pm, DMSO-d ₆)	7.84 (1H, d, J=8.4Hz), 7.59 (1H, d, J=7.9Hz),	7.50-7.15(7H,m), 7.10-7.00(1H,m),	85(1H, d, J=7.4Hz), 3.75-3.65(1H, m),	2.90-2.75(3H,m),	2.56(3H,s),	0.50-0.40(1H,m),	0.30-0.20(2H,m), -0.150.15(1H,m).	(M+H) +
	1 H-NMR(400MHz, 3 ppm, DMSO-d ₆) 7 .64(1H, s), 7 .60-7.10(6H, m),	7.00-6.85(2H,m), 3.80-3.65(1H,m),	3.80-3.55(4H,m),	MS(ESI, m/z) 494(M+H) ⁺ .	¹ H-NMR(300MHz, Sppm, DMSO-d ₆)	3.85 (1H, d, J=7.8Hz),	3.35-3.10(2H,m),	1.15-0.95(7H,m),	0.30-0.20(2H,m),	$ MS(ESI,m/z) 540(M+H)^{+}$	1 H-NMR (400MHz, δ ppm, DMSO- d_6)	7.84 (1H, d, J=8.4H	7.50-7.15(7H,m),	3.85 (1H, d, J=7.4H	3.30-3.15(2H,m);	2.70-2.60(1H,m),	1.15-1.10(7H,m),	0.30-0.20(2H,m),	MS(ESI,m/z) 540 (M+H)
	ਲੋਂ. ○=<	HO CH	O NH	™	J.C. CH.		Ho	HO		C CH ₃			$_{ m Jc}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H H	HO	— C	(C.1.3	
		$\begin{array}{c c} 1-17 & & \\ & & $	24		C1		1-18		-			C1) 	5 I I				

安め

		the state of the s	
		7.86(1H,d,J=8.4Hz), 7.57-7.54(1H,m),	-
	H ² C CH ³ CH ³	7.47-7.42 (1H,m), 7.37-7.32 (1H,m),	100
		7.19-7.13(4H,m), 6.79-6.68(2H,m),	···
-20	HO	4.48(1H, q, J=6.2Hz), 3.74(3H,s),	080
>	\	3.70(1H,m), 3.14(2H,d,J=5.5Hz),) *
) Hope	2.84-2.81(1H,m), 2.71(2H,s),	
	O CH ₃	2.62-2.59(1H,m), 2.56(3H,s),	11
		J3	~
		MS (ESI, m/z) 510 (M+H).	
		TH-NMK (400MHz, oppm, DMSO-de)	
	\ \ E		
	Hig CH,		,
	={	7.17-7.12(3H,m), 7.02-7.00(1H,m),	
	NH NH NH	6.93(1H,s), 6.88-6.86(1H,m),	
-21	No.	4.49(1H, q, J=6.5Hz), 3.77(1H, m),	0.013
	Но.	3.15(2H, d, J=5.8Hz), 2.92-2.89(1H,m),	
	>	2.73(2H,s), 2.66-2.64(1H,m), 2.54(3H,s),	
	EHD O	2.16(6H,s), 1.26(3H,d, J=6.2Hz),	
		1.06(6H,s).	,
		$MS(ESI, m/z) 490(M+H)^{+}$.	
		¹ H-NWR (400MHz, Sppm, DMSO-d ₆)	
,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.83(1H, d, J=8.3Hz), 7.55-7.53(1H,m),	
	HJC CHJ CHJ	7.46-7.42(1H,m), 7.36-7.32(1H,m),	
		7.19-7.15(3H,m), 7.09-7.04(4H,m),	;
1,00		4.49(1H,q,J=6.5Hz), 3.76(1H,m),	0.012
77	>	3.16-3.14(2H,m), 2.91-2.88(1H,m),	7
	DH OH		
	— СВ СВ	2.26(3H,s), 1.27(3H,d,J=6.5Hz),	
		1.06(6H,s).	7
		MS (ESI, m/z) 476 (M+H) +.	

崇

		*	4	_		0.016							,			000	0.00.0					es .		200		0.019			ò	
	H-NMR (400MHz, Sppm, DMSO-d ₆)	7.83(1H, d, J=8.6Hz), 7.54-7.52(1H,m),	7.46-7.42(1H,m), 7.36-7.29(2H,m),	7.19-7.14(3H,m), 6.95(1H,m),	6.78-6.75(1H,m), 4.48(1H,q,J=6.2Hz),	3.81(3H,s), 3.77-3.75(1H,m),	3.14(2H,d,J=5.8Hz), 2.89-2.87(1H,m),	2.80(2H,s), 2.66-2.61(1H,m), 2.56(3H,s),	1.28(3H,d,J=6.2Hz), 1.11(3H,m),	1.09(3H,m).	MS(ESI, m/z) 526(M+H) ⁺ .	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.85(1H,d,J=8.1Hz), 7.56-7.54(1H,m),	7.48-7.43(1H,m), 7.38-7.33(1H,m),	7.20-7.16(3H,m), 7.13-7.07(4H,m),	4.49(1H, q, J=6.2Hz), 3.75-3.74(1H, m),	3.15(2H, d, J=5.5Hz), 2.90-2.86(1H, m),	2.75(2H,s), 2.67-2.55(6H,m),	1.27(3H, d, J=6.2Hz), 1.16(3H, t, J=7.6Hz),	1.05(6H,s).	$MS (ESI, m/z) 490 (M+H)^{+}$.	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	7.84(IH, d, J=8.3Hz), 7.56-7.52(2H, m),	7.45-7.41(1H,m), 7.38-7.31(2H,m),	7.18-7.15(3H,m), 4.46(1H,q,J=6.5Hz),	3.66(1H,m), 3.12(2H,d, J=5.5Hz),	2.78-2.71(3H,m), 2.78-2.71(3H,m),	2.56(4H,m), 1.28(3H,d, J=6.5Hz),	1.04(3H,s), 1.03(3H,s).	MS(ESI,m/z) 532(M+H) ⁺ .
***************************************			CI CH. CH.	H.C. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	> 0 > 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	HO	HO,	— i	ਜੁੱ ਹ				· · · · · · · · · · · · · · · · · · ·	н ₃ с (п ₁ с сн д		HO H		Off	HO O				CT CH. CH.			HO:	HO, CH	>	O CH3	
						1-23										1-24		÷					e v			1-25		,	-	

波10

CH ₃ H ₃ C CH ₃ CH ₄ T. 66 (1H, d ₄ J=7.5Hz), 7.57-7.35 (6H, m), 7.23 (1H, d ₇ J=7.5Hz), 6.95 (1H, s), 6.96 (1H, s), 6.96 (1H, s), 7.27-7.35 (6H, m), 7.23 (1H, d ₇ J=7.9Hz), 4.52 (1H, g ₇ J=6.4Hz), 1.30 (3H, d ₇ J=7.9Hz), 4.52 (1H, g ₇ J=6.4Hz), 1.30 (3H, d ₇ J=6.4Hz), 1.31 (3H, s), 1.30 (3H, d ₇ J=6.4Hz), 1.31 (3H, d ₇ J=7.88 (3H, m), 7.76 (1H, m), 4.23-4.16 and 3.93-3.91 (1H, m), 4.23-4.16 and 3.93-3.91 (1H, m), 1.22 (3H, s), 1.22 (3H, s), 1.22 (3H, s), 1.22 (3H, m), 7.25-7.22 (1H, m), 7.90-7.84 (3H, m), 7.25-7.22 (1H, m), 7.61-7.36 (2H, m), 7.25-7.22 (1H, m), 7.61-7.36 (2H, m), 7.25-7.22 (1H, m), 7.41-7.36 (2H, m), 7.25-7.22 (1H, m), 7.41-7.36 (2H, m), 7.25-7.22 (1H, m), 7.25-7.2	1		100	T m	0.014		,				,	0.014								0.007			
1		C_{H_3} C_{H	7.66(1H, d, J=7.5Hz), 7.57-7.35(6H,m),	() OH H (7.23(1H, d, J=7.5Hz), 6.95(1H, s),	6.90(1H, d, J=7.9Hz), 4.52(1H, q, J=6.4Hz),		CH ₃ (3H, d, J=6.4Hz), 1.11(3H,s).	$MS(ESI, m/z) 528(M+H)^{+}$.	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	<u></u>	4.23-4.16and3.93-3.91(1H,m),	3.81-3.76(4H,m), 3.25-2.58(6H,m),	1		MS (ESI, m/z) 528 (M+H) +.	¹ H-NMR(300MHz, Sppm, DMSO-d ₆)	CH ₃ H ₃ C CH ₃ 7.90-7.84 (3H,m), 7.74-7.68 (2H,m),	7.63-7.57(2H,m), 7.53-7.47(4H,m),	-	4.556-4.47(1H,m), 3.93-3.92(1H,m),	3.26-3.07 (4H,m),	goo:	
1-26	-		···		56	 					27			·						8 8	•		

漱二

	0.082	0.007	0.005
	CH ₃ H ₃ C CH ₃ CH ₃ CH ₄ CH ₅ T.71(1H, d, J=8.0Hz), 7.60-7.57(2H, m), 7.52-7.18(2H, m), 6.82-6.74(2H, m), 4.51(1H, q, J=6.6Hz), 3.88-3.86(1H, m), 3.75(3H, s), 1.14(6H, s), 1.129(3H, d, J=6.6Hz), 1.14(6H, s). MS(ESI, m/z) 564(M+H) ⁺ .	CH ₃ H ₃ C CH ₃ CH ₃ T.87-7.80 (4H,m), 7.71 (1H,s), 7.57-7.32 (2H,m), 7.57-7.33 (2H,m), 7.57-7.32 (2H,m), 7.38-7.33 (2H,m), 7.57-7.42 (4H,m), 7.38-7.33 (2H,m), 7.21-7.17 (3H,m), 4.48 (1H,q,J=6.3Hz), 3.77-3.76 (1H,m), 3.17-2.91 (8H,m), 2.72-2.68 (1H,m), 1.28 (3H,q,J=6.3Hz), 1.18 (3H,t,J=7.4Hz), 1.12 (3H,s), 1.11 (3H,s), 1.11 (3H,s), 1.12 (3H,s), 1.11 (3H,s), 1.11 (3H,s), 1.12 (3H,s), 1.11 (3H,s), 1.11 (3H,s), 1.11 (3H,s), 1.12 (3H,s), 1.11 (3H,s), 1.1	CH ₃ H ₃ C CH ₃ (CH ₃ CH ₃) (1H, d, J=7.7Hz), 7.59-7.46(6H, m), 7.39(1H, ddd, J=7.3,7.3,1.4Hz), 7.39(1H, ddd, J=7.3,7.3,1.4Hz), 7.24-7.19(2H, m), 4.51(1H, q, J=6.3Hz), 3.85-3.84(1H, m), 3.21-2.92(5H, m), 2.74-2.70(1H, m), 1.28(3H, d, J=6.3Hz), 1.15(6H, s). MS(ESI, m/z) 584(M+H) ⁺ .
1			
	1-29	1-30	1-31

米

					0	700.0											0	c00.0				-	2
opm, DMSO-d ₆)	, 7.68(1H,s),	7.62(1H, d, J=8.1Hz), 7.54(1H, m),	.50-7.31(5H,m), 7.20-7.18(2H,m),	7,1.5Hz),	нz),	3.84(1H, sept, J=7.0Hz), 3.72-3.71(1H,m)	, 2.90(2H,s),	2.85-2.80(1H,m), 2.63-2.57(1H,m),	1.26(3H, d, J=6.2Hz), 1.19(6H, d, J=7.0Hz),	5(3H,s).	(M+H) ⁺ .	opm, DMSO-d ₆)	нz),	7,1.1Hz),	7.44(1H, ddd, J=7.7,7.7,1.1Hz), 7.34(1H,m),	7.20-7.13(4H,m), 6.96-6.88(2H,m),	4.48(1H,q,J=6.6Hz), 3.70-3.69(1H,m),	, 2.97(2H, q, J=7.3Hz),	2.81-2.71(3H,m), 2.59-2.47(1H,m),	2.18 (3H,s), 1.27 (3H,d,J=6.6Hz),	.17(3H, t, J=7.3Hz), 1.02(3H,s),		(M+H) +.
1 H-NMR (300MHz, δ ppm, DMSO- d_6)	7.87-7.77(3H,m), 7.68(1H,s)	7.62(1H, d, J=8.1]	7.50-7.31(5H,m)	7.10(1H, dd, J=7.7, 1.5Hz),	4.47 (1H, q, J=6.2Hz)	3.84 (1H, sept, J=	3.20-3.10(2H,m), 2.90(2H,s)	2.85-2.80(1H,m)	1.26(3H, d, J=6.2)	1.07(3H,s), 1.05(3H,s)	MS(ESI,m/z) 540	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.76(1H, d, J=8.5Hz),	7.54(1H, dd, J=7.7, 1.1Hz),	7.44 (1H, ddd, J=7	7.20-7.13 (4H, m)	4.48 (1H, q, J=6.6)	3.15-3.13(2H,m)	2.81-2.71 (3H, m)	2.18(3H,s), I.2	1.17 (3H, t, J=7.3]	1.01(3H, s).	MS(ESI, m/z) 508 (M+H) +
	, A	10 to 11	13 H ₃ C/CH ₃		H HO (COOH		£					EHO CH	3 H ₃ C/CH ₃		H HO		НООО				
		<u> </u>	; -		1-32	1)		<u></u>) E++				,				1-33))		\)ETT		

秋13

		n		0.005								0.010		,		1					200.0				
¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.64(3H, d, J=8.1Hz), 7.54(1H, dd, J=8.1, 1.1Hz),	CH ₃ H ₃ C _{CH₃ 7.44(1H, ddd, J=7.3, 7.3, 1.1Hz),}	7.34(1H, ddd, J=7.3,7.3,1.1Hz),	THO SHOW	3.82(1H, sept, J=6.6Hz), 3.69-3.68(1H,m),	H ₃ C CH ₃ 2.58-2.51(1H,m), 2.18(3H,s),	1.27(3H, d, J=6.3Hz), 1.20(6H, d, J=6.6Hz),	1.02(3H,s), 1.00(3H,s).	MS(ESI,m/z) 522(M+H) *.	CH, H C CH (300MHz, Jppm, DMSO-ds)) NIII	5 3.78-3.76(1H,m), 3.28-3.02(6H,m),	2.82-2.75(1H,m), 1.39(3H,d,J=6.1Hz),	COOH 1.20(6H,s).	CI MS (ESI, m/z) 533 (M+H) *.	1H-NMR (300MHz, Sppm, DMSO-d ₆)	GH ₃ H ₃ C _{CH₃}	7.53-7.38 (4H,m), 7.34-7.30 (2H,m),	7.17-7.05(3H,m), 4.49(1H,q,J=6.3Hz),	3.71-3.70(1H,m), 3.		1.58(2H, tq, J=7.2, 7.2Hz),	1.24(3H,d,J=6.3Hz), 1:06(3H,s),	CH ₃ (3H, s), 0.85(3H, t, J=7.2Hz).	MS(ESI,m/z) 540 (M+H) *.
				1-34								1-3										·	٠,		

	•
	_
ш	×
и	4

-			0.003										4	. (0.002				,	*				٠,	,	0.012	(1)			
TH-NMR (300MHz, 5ppm, DMSO-d ₆)	3 H3 CH3	H 4.31-4.25and4.13-	3.77-3.76(1H,m), 3.25-3.14(2H,m),	2.96-2.88 (3H,m),	лзс сооп 2.43(3H,s), 2.00and1.91(3H,s),	С ^П 3	MS(ESI,m/z) 526(M+H) ⁺ .	H-NMR (300MHz, Sppm, DMSO-de)	7.78 (1H, d, J=7.9Hz),	7 HJ &	CH3 H ₃ C, CH ₃ 7.43 (1H, ddd, J=7.6, 7.6, 1.4Hz),	7.	(, , , , , , , , , , , ,), (4H, m), (5.95-6.92(1H, m),	6.89(1H, dd, J=7.8, 1.2Hz),	4.45(lH, q, J=6.3Hz), 3.71-3.70(lH,m),	<u>e</u>	2.74(2H,s), 2.62-2.57(1H,m), 2.17(3H,s),	CH ₃	1.26(3H, d, J=6.3Hz), 1.04(3H, s),	1.03(3H,s), 0.86(3H,t,J=7.4Hz).	MS(ESI,m/z) 522 (M+H) ⁺ .	TH-NMR (300MHz, Sppm, DMSO-de)	CH, H CH CH3 (1H, d, J=7.6Hz), 7.58-7.47 (3H, m),	7.38-7.36(2H,m), 7.20(1H,dd,J=7.6Hz),	Ŀ, >	3.78-3.76(1H,m), 3.23-3.12(2H,m),	2.96-2.87 (2H,m),	Y COOH 2.18(3H,s), 1.39(3H,d,J=6.3Hz),	C1 1.15(6H,s).	MS(ESI,m/z) 515(M+H) ⁺ .
		I d	1-37		_									1-38				,								1-39				

歌与

	• •	e e		0.003	4.1	*				*	3		0.003		~	,							0.024					
1 L - SMC - Smar Smar	CH. (7.72 (14, m), 7.72 (14, s),		6.93(2H,s), 4.53(1H,q,J=6.3Hz),	3.81-3.80(1H,m), 3.21-3.16(2H,m),	3.02-2.98 (3H,m),	2.30(6H,s), 1.29(3H,d,J=6.3Hz),	1.16(6H,s).	$MS(ESI, m/z) 526(M+H)^{+}$.		1.85-7.76(3H,m), 7.61-7.59(2H,m),	7.53(1H, dd, J=7.6, 1.0Hz), 7.47-7.39(5H,m),	7.34-7.19(7H,m), 7.13(1H,d,J=1.6Hz),	4.60(1H, q, J=6.3Hz), 3.74-3.73(1H, m),	3.17-3.15(2H,m), 2.83-2.80(3H,m),	2.60-2.56(lH,m), 1.27(3H,d,J=6.3Hz),	0.97(6H,s).	$MS(ESI, m/z) 574(M+H)^{+}$.	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.53-7.39(3H,m), 7.33-7.29(1H,m),	CH, CH ₃ (7.15-7.11(1H, m), 7.03-6.99(1H, m),	(6.95-6.86(3H,m),	4.26-4.22and4.08-4.03(1H,m),	3.71-3.70(1H,m), 3.20-3.10(2H,m),	2.83-2.80(1H,m), 2.73-2.71(2H,m),	2.61-2.56(1H,m), 2.41and2.40(3H,s),	2.16(3H,s) 1.97and1.89(3H,s),	1.15-1.12(3H,m), 1.04-1.01(6H,m).	$ MS(ESI,m/z) 508(M+H)^+$.
,	CH, H,C		H HO	H. CH.	2	H002	CH ₃		CH HD			HO V		HOOD,	- (·	== •	• • • • • • • • • • • • • • • • • • •			CH, H.C			: 5		HOOO I JEH	EH.		
		:		1-40								1	1-41										1-42					

	3	_)
ı	-	•	•
l	u	٥	1
	I	١	ŗÌ,

|| || ||

(9)	()		.1Hz),	LHz),	37(2H,m),	'm',	78 (2H,m),	17(1H,m),	J=6.6Hz),	(3H,s),	5.6Hz),		,	6).	٠.		. ,	Hz),	Hz),	(m)	g, J=13.5Hz),	(1H, q, J=6.3Hz),	1 (2H,m),	(0)	(3)	(6H, S).	
H-NMR (300MHz, Sppm, DMSO-d6)	7.76(1H, d, J=7.7Hz),	7.54(1H, dd, J=7.7, 1.1Hz),	7.43 (1H, ddd, J=7.7,7.7,1.1	7.34 (1H, ddd, J=7.7,7.7,1.1Hz)	7.18-7.04(4H,m), 6.95-6.87(2H,m),	4.48(1H,q,J=6.2Hz), 3.65-3.64(1H,m)	3.12-3.09(2H,m), 2.93-2.78(2H,m)	2.70-2.66(3H,m), 2.54-2.47(1H,m),	2.18(3H,s), 1.88(1H,sept,J=6.6Hz)	1.26(3H,d,J=6.2Hz), 0.99(3H,s),	0.98(3H,s), 0.85(3H,d,J=6.6Hz)	0.84 (3H, d, J=6.6Hz).	$ MS(ESI,m/z) $ 536 $(M+H)^+$.	1H-NMR (300MHz, Sppm, DMSO-ds)	7.78 (1H, d, J=1.8Hz),	7.55(1H, dd, J=7.7, 1.2Hz),	7.50 (1H, d, J=8.0Hz),	7.43(1H, ddd, J=7.3, 7.3, 1.5Hz),	7.35 (1H, ddd, J=7.3, 7.3, 1.5Hz),	7.30(1H, dd, J=7.7,1.2Hz), 7.22-7.17(2H,m),	7.01-6.92(2H,m), 4.72(1H,q,J=13.5Hz),	4.66(1H, d, J=13.5Hz), 4.48(1H, q, J=6.3Hz)	3.85-3.84(1H,m), 3.23-3.21(2H,m),	2.96-2.91(1H,m), 2.86(2H,s)	2.76-2.70(1H,m), 2.20(3H,s)	1.29(3H, d, J=6.3Hz), 1.12(6H, s)	
		₽ <	CH, H,C,CH, CH,3				HOOD		\	$ m CH_3$							E. <	GH ₃ H ₃ C,CH ₃		H H H			HOOD				
			,			1-46		Þ				,							<u></u>	1-47	>				-		

淑18

					200.0											-	0.002	,				
¹ H-NMR (300MHz, &ppm, DMSO-d ₆)	7.51 (1H, dd, J=7.7, 1.1Hz),	7.31(1H, ddd, J=7.4, 7.4, 1.4Hz), 7.31(1H, ddd, L=7.4, 7.4, 1.1Hz)	7.15-7.10(3H,m), 7.00(1H,d,J=1.6Hz),	6.93-6.90(1H,m), 6.86(1H,dd,J=7.7,1.4Hz),	6.72(1H,s), 4.51(1H,q,J=6.5Hz),	3.69-3.68(1H,m), 3.10-3.08(2H,m),	2.80-2.76(1H,m), 2.70(2H,s),	2.56-2.51(1H,m), 2.16(3H,s), 1.78(3H,s),	1.67(3H,s), 1.25(3H,d,J=6.5Hz),	1.02(3H,s), 1.00(3H,s).	MS(ESI, m/z) 534 (M+H) +.	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.87-7.81(3H,m), 7.70-7.68(2H,m),	7.49-7.43 (3H,m),	7.37(1H, ddd, J=7.4,7.4,1.4Hz),	7.33(1H, dd, J=8.5, 1.8Hz),	7.28(1H, ddd, J=7.4,7.4,1.4Hz),	7.14(1H, dd, J=7.6, 1.4Hz), 6.50-6.47(2H,m),	4.54(1H, q, J=6.3Hz), 3.81-3.80(1H,m),	3.17-3.03(5H,m); 2.80-2.75(1H,m),	1.27(3H, d, J=6.3Hz), 1.17(6H,s).	MS(ESI,m/z) 514 (M+H) ⁺ .
	CH2 CH2	H ₃ C _{GH}		 	HOOO	m'C	***	CH3						CH, H.C CH			- FO	1000	COOH	E C		
······································				1-48										-	-	,	カ げ I	,				

漱59

			•		. 000	700.0							;		•	-	0.004					
 $^{\perp}$ H-NMR (300MHz, Šppm, DMSO-d $_{6}$)	7.67(3H, d, J=7.7Hz),	7.84(1H, dd, J=7.9, 1.2Hz),	7.37(1H, ddd, J=7.4, 7.4, 1.2Hz),	7.28 (1H, ddd, J=7.4,7.4,1.2Hz),	7.17(1H,dd,J=7.9,7.9Hz),	7.13(1H,dd,J=7.4,1.2Hz), 6.97-6.89(2H,m),	6.48-6.45(2H,m), 4.53(1H,q,J=6.3Hz),	3.77-3.76(1H,m), 3.14-3.07(2H,m),	2.98-2.70(4H,m), 2.17(3H,s),	1.27(3H,d,J=6.3Hz), 1.10(6H,s).	$ MS(ESI, m/z) 496(M+H)^+$.	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.76(1H,d,J=8.4Hz), 7.55-7.52(1H,m),	7.45-7.40(2H,m),	7.34(1H, ddd, J=7.3, 7.3, 1.5Hz),	7.24-7.12(4H,m), 7.03(1H,dd,J=8.1,1.5Hz),	4.46(1H,q,J=6.3Hz), 3.66-3.59(1H,m),	3.12-3.11(2H,m), 2.96(2H,q,J=7.3Hz),	2.72-2.67(3H,m), 2.53-2.47(1H,m),	1.26(3H, d, J=6.3Hz), 1.17(3H, t, J=7.3Hz),	0.99(3H,s), 0.97(3H,s).	MS(ESI,m/z) 528(M+H) ⁺ .
		₽ <	CH3 H,C, CH,			>		HO						CH, H,C CH,			1-51		TOON (H,C		

狀2(

	4	a				0	0.003	•					(0)			Ñ.		, i	CTO O			-	
1 H-NMR(300MHz, δ ppm, DMSO- d_{6})	7.56(1H, d, J=7.9Hz),	7.49(1H, dd, J=7.9, 1.4Hz), 7.41-7.36(2H,m),	7.30(1H, ddd, J=7.4,7.4,1.4Hz),	7.18(1H, dd, J=10.7, 1.8Hz),	7.15-7.13(2H,m), 7.06(1H,dd,J=7.9,1.6Hz),	6.99(1H, dd, J=8.3, 1.6Hz),	4.40(1H,q,J=6.3Hz),	3.77(1H, sept,J=7.0Hz), 3.63-3.57(1H,m),	3.11-3.03(2H,m), 2.71-2.43(4H,m),	1.24(3H, d, J=6.3Hz), 1.16(3H, d, J=7.0Hz),	1.15(3H,d,J=7.0Hz), 0.96(3H,s),	0.94(3H,s).	$MS(ESI, m/z) 542(M+H)^{+}$.	1 H-NMR (300MHz, Sppm, DMSO-d ₆)	7.62(1H, d, J=7.7Hz), 7.55-7.31(3H,m),	7.19-7.08(4H,m), 6.95-6.87(2H,m),	4.45(1H,q,J=6.2Hz), 3.64-3.57(2H,m),	3.13-3.09(2H,m), 2.78-2.69(3H,m),	2.56-2.53(1H,m), 2.18(3H,s),	1.67-1.47(2H,m), 1.27(3H,d,J=6.2Hz),	1.19(3H, d, J=1.5Hz), 1.01(3H,s),	0.99(3H,s), 0.79-0.74(3H,s).	MS(ESI,m/z) 536(M+H) ⁺ .
-		L		13 H3 17	T O N O		7	C00H	- T	n ₃ Cn ₃	-2	0	M		E CEI	13 H3 CH3 1	4 E	OH H	2	C00H		0	W
	,					1-52	7 H	,											1	•			

多ど

0.023	0.010	0.019
1-54 H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ (5H,m), 7.71(1H,s), 7.59-7.08(8H,m), 4.23and4.05(1H,q,J=6.2Hz), 3.75(1H,brs), 3.63-3.58(1H,m), 2.73-3.13(1H,m), 2.96-2.91(2H,m), 2.73-2.71(1H,m), 2.11and2.04(3H,s), 1.44(1H,m), 1.21(3H,d,J=6.2Hz), 1.11(6H,brs). MS(ESI,m/z) 512(M+H) ⁺ .	1-55 H ₃ C CH ₃ CH ₃ CH ₄ (AH,m), 7.71 (1H,s), 7.57-7.32 (6H,m), 7.21-7.18 (3H,m), 4.48 (1H,q,J=6.3Hz), 3.72 (1H,brs), 3.17-3.15 (2H,m), 2.96-2.87 (3H,m), 2.73-2.65 (1H,m), 2.58 (3H,s), 1.28 (3H,d,J=6.3Hz), 1.12 (3H,s), 1.11 (3H,s), MS (ESI,m/z) 512 (M+H) ⁺ .	1-56 H3C CH3 ÇH3 7.89-7.81(3H,m), 7.72(1H,s), 7.63-7.13(10H,m), 4.45(1H,q,J=6.5Hz), 3.81(1H,brs), 3.24-3.21(2H,m), 3.01(2H,s), 2.93-2.83(1H,m), 2.77-2.67(1H,m), 1.27(3H,d,J=6.5Hz), 1.14(6H,brs). MS(ESI,m/z) 516(M+H) ⁺ .

※22

0.027	0.021	0.016
¹ H-NMR(300MHz, Sppm, DMSO-d ₆) 7.92(1H, s), 7.84(1H, t, J=6.5Hz), 7.59-7.34(5H, m), 7.27-7.08(3H, m), 4.21and4.03(1H, q, J=6.4Hz), 3.70(1H, brs), 3.62-3.58(2H, m), 3.21-3.14(2H, m), 2.80(2H, m), 2.10and2.05(3H, s), 1.22and1.16(3H, d, J=6.4Hz), 1.08(6H, brs). MS(ESI, m/z) 530(M+H) ⁺ .	¹ H-NMR(400MHz, 5ppm, DMSO-d ₆) 7.98-7.94(1H,m), 7.85-7.77(4H,m), 7.67(1H,s), 7.56-7.50(1H,m), 7.46-7.42(3H,m), 7.36-7.26(3H,m), 7.21-7.15(1H,m), 4.25(1H,q,J=6.5Hz), 3.78(1H,brs), 3.13(2H,brs), 2.97(2H,brs), 2.93-2.85(1H,m), 2.68-2.62(1H,m), 1.23(3H,brs), 1.10(6H,brs). MS(ESI.m/z) 516(M+H)*	<pre>1H-NMR(300MHz, Sppm, DMSO-d6) 7.90-7.82(4H,m), 7.74(1H,s), 7.58-7.34(6H,m), 7.23-7.12(3H,m), 4.53(1H,q,J=6.3Hz), 3.86(1H,brs), 3.21-3.19(2H,m), 3.07-3.00(3H,m), 2.83-2.71(1H,m), 1.29(3H,d,J=6.3Hz), 1.19(6H,brs). MS(ESI,m/z) 516(M+H)*.</pre>
C1 H ₃ C CH ₃ CH ₃ C1 N CH ₃ C1 N CH ₃ C1 N CH ₃	H OH F	H ₃ C CH ₃ CH ₃ H ₃ C CH ₃
1-57	1-58	۲ - د 55 - 69

※2

**				960.0			•	*					0.004				•		-	/(2	800.0		0	
TH-NMR (300MHz, Sppm, DMSO-de)	7.85-7.82(1H,d,J=8.5Hz),	7.55(1H, d, J=7.7Hz), 7.44(1H, t, J=7.5Hz)	7.34(1H, t, J=7.5Hz), 7.28-7.13(7H, m),	4.48(1H,q,J=6.2Hz), 3.66(1H,brs),	3.19-3.12(3H,m), 2.77-2.71(3H,m),	2.56(3H,brs), 1.27(3H,d,J=6.2Hz),	1.01(3H,s), 1.00(3H,s).	MS(ESI, m/z) 496 (M+H) ⁺ .	¹ H-NMR(300MHz, Sppm, DMSO-d ₆)	7.83(1H, d.J=8.2Hz), 7.55-7.31(5H,m),	7.18-7:14(4H,m), 4.47(1H,q,J=6.4Hz),	3.61(1H,brs), 3.13-3.11(3H,m),	2.70-2.64(3H,m), 2.55(3H,brs),	.26(3H, d, J=6.4Hz), 0.98(3H,s),	0.97(3H,s).	$MS(ESI, m/z) 530(M+H)^+$		¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.89-7.82(4H,m), 7.74(2H,s),	7.59-7.35(7H,m), 7.22-7.19(1H,d,J=7.7Hz),	4.34(1H, brs), 3.84(1H, brs), 3.18(1H, brs)	3.05-2.95(2H,m), 2.80-2.68(1H,m),	2.53-2.49(2H,brs), 1.28-1.08(9H,brs).	+ *** ** * * * * * * * * * * * * * * *
-H-		7.1			HO. — 3.7	2.5	0 CH_3	MS	-H ₁	CT/ (H3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 C		3.6 H 21.0	2.2	HO 1.3	0	O CH ₃		HJ CHJ CH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		m OH 4.3	3.6	2. Z	
10		Ţ		1-60			•		-		,	,	1-61		•			,		1-62				

聚27

*	 0.016			-	0.017	-		•		,	0.016	•	rý:	
	OH OH 3.84 (2H,m), 3.90-3.84 (2H,m), 3.68 (1H,brs), 3.34-3.21 (2H,m),	HO (1.07-0.97(7H,m), 2.55(3H,s), 1.07-0.97(7H,m), 0.42(1H,brs),	- ≥:	1.88-7.73(5H,m), 7.63-7.60(1H,m),		HO 1.25-1.00(7H,m), 0.44(1H,brs), 0.35-0.20(2H,m), -0.14(1H,brs).		¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	H ₃ C CH ₃ \ 7.17(1H,d,J=7.5Hz), 3.84(1H,brs),	3.74-3.72(1H,m), 3.43-3.18(3H,m),	3.0/-2.90(2H,m), 2.78-2.68(1H,m), HO (11.16-1.13(6H,m), 0.95(1H,brs),		0 -0.18(1H,brs).	$MS(ESI, m/z) 542(M+H)^{+}$.
	 1-63				1-64		-		······································	1 7 7	3			

ഥ
Š
IIIV
悧

. 0.017	5), 0.019	0.003
¹ H-NWR(300MHz, Sppm, DMSO-d ₆) 7.90-7.57(7H,m), 7.50-7.33(5H,m), 7.24-7.07(2H,m), 3.87-3.85(1H,m), 3.70(1H,brs), 3.57-3.53(1H,m), 3.31-3.17(2H,m), 2.95-2.80(2H,m), 2.77-2.65(1H,m), 2.09(3H,s), 1.12-1.05(6H,brs), 0.95(1H,brs), 0.38(1H,brs), 0.30-0.20(2H,m), -0.34(1H,brs), MS(ESI,m/z) 538(M+H) ⁺ .	¹ H-NMR(300MHz, Sppm, DMSO-ds) 7.82(1H, brs), 7.70(1H, d, J=6.8Hz), 7.58-7.47(4H, m), 7.39-7.27(2H, m), 7.19(2H, d, J=6.8Hz), 4.30(1H, brs), 3.70(1H, brs), 3.13(2H, brs), 2.88-2.75(3H, m), 2.63-2.53(1H, m), 1.22(3H, brs), 1.06(6H, brs). MS(ESI, m/z) 534(M+H) ⁺ .	¹ H-NMR(300MHz, δppm, DMSO-d ₆) 7.89-7:82(3H, m), 7.73(1H, s), 7.62-7.33(7H, m), 7.25-7.18(3H, m), 4.56(1H, q, J=6.2Hz), 3.88(1H, brs), 3.24-3.17(2H, m), 3.08-3.03(3H, m), 2.82-2.72(1H, m), 1.26(3H, d, J=6.2Hz), 1.19(6H, brs). MS(ESI, m/z) 532(M+H) ⁺ .
H ₃ C CH ₃ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$C1 \xrightarrow{H_3C} CH_3 \xrightarrow{\tilde{\mathbb{C}}H_3} \xrightarrow{\tilde{\mathbb{C}}H_3} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}}} \xrightarrow{\tilde{\mathbb{C}}} \xrightarrow{\mathbb{C}} \xrightarrow{\mathbb{C}} \xrightarrow{\mathbb{C}}} \xrightarrow{\mathbb{C}} \xrightarrow{\mathbb{C}$	$\begin{array}{c c} H_3C & CH_3 & CH_3 \\ \hline N & OH & OH \end{array}$
1 - 66	1-67	1 68 8

淑26

-				0.002	•								0.005		•							0.005	1	0	8	
¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.90-7.75(5H,m), 7.59-7.35(8H,m),	7.24(1H, d, J=7.7Hz), 4.55(1H, q, J=6.5Hz),	3.87(1H,brs), 3.24-3.23(2H,m),	3.05(3H,brs), 2.83-2.73(1H,m),	1.27(3H, d, J=6.5Hz), 1.17(6H, brs).	$ MS(ESI_{r}m/z) $ 543 $(M+H)^{+}$.		H-NMR (300MHz, Sppm, DMSO-de)	(s'HI) 69./ (HI, W) / (-88 (IH, S) /	7.55-7.28(6H,m), 7.15(1H,d,J=7.7Hz),	6.61(1H,s), 6.40(1H,d,J=8.0Hz),	4.55(1H, q, J=6.6Hz), 3.70(1H, brs),	3.16-3.14(2H,m), 2.89(2H,brs),	2.84-2.83(1H,m), 2.63-2.57(1H,m),	1.26(3H, d, J=6.6Hz), 1.07(3H, s),	1.05(3H,s).	MS(ESI, m/z) 513(M+H) ⁺ .	¹ H-NMR (400MHz, Sppm, DMSO-d ₆) 8.42 (1H, s),	8.05(1H, d, J=7.9Hz), 7.87-7.81(3H, m),	7.72(1H,s), 7.53-7.29(6H,m),	7.16(1H,d,J=7.4Hz), 6.88(1H,d,J=7.9Hz),	4.57(1H, q, J=6.3Hz), 3.84(1H,brs),	3.17-3.16(2H,m), 3.06(3H,brs),	2.81-2.79(1H,m), 2.02(3H,s),	1.29(3H, d, J=6.3Hz), 1.19(6H, brs).	MS(ESI, m/z) 555(M+H) +.
HZ 7 H	H3 CH3				HO H	+ X	0,0		LEC CET				· ·	OH	, MH, O	7		110 011	143 Cm3 Cm3		HOHO	UH))	O HN CH	C.	. 10
	,			ا ا ا								1-70		,								1-71	3			

※2

0.015	0.007	0.011
H ₃ C CH ₃ C _{H₃} C _T CH ₃ (2H ₃ C ₁ CH ₃ C ₁	H ₃ C CH ₃	NMR (300MH) 8-7.78 (3H) 9-7.16 (1H) 2 (2H, t, J= 1 (1H, brs) 7-3.15 (2H) 3-2.75 (1H) 7 (3H, d, J= 5 (3H, s)
1-72	1-73	1-74

כ	C	3	
-	·		
		3	
Н	k	3	
и	ı	ч	

0.012	0.022	0.021
H ₃ C CH ₃	H ₃ C CH ₃ CH ₃ C _H T ₁ (2H, d, J=7.3Hz), 7.56(1H, d, J=7.7Hz), 7.44-7.30(2H, m), 7.10(1H, t, J=8.0Hz), 6.98-6.86(3H, m), 3.94(1H, q, J=6.3Hz), 3.63(1H, brs), 3.17-3.16(2H, m), 2.75-2.71(1H, m), 2.65(2H, brs), 2.57-2.53(1H, m), 2.17(3H, s), 2.02(3H, s), 1.93(3H, s), 0.98(3H, s), 0.98(3H, s), MS (ESI. m/z) 5.08 (M+H) +	
1-75	1-76	1-77

ሯ	"
``	S
H	K
	٠,

	H-NMK(400MHz, oppm, DMSO-d ₆)	
	7.48-7.46(1H, d, J=7.7Hz), 7.40-7.25(4H,m),	
	7.14-7.09(2H,m), 6.93-6.85(2H,m),	
	4.58(2H,q,J=8.8Hz), 4.46(1H,q,J=6.3Hz),	
1-78	H ₃ C H ₃ C CH ₃ CH 3 CH 3 65(1H,brs), 3.20(2H,t,J=8.9Hz),	7
,	3.14-3.09(2H,m), 2.72-2.67(3H,m),	0.020
	H. B. O. () (2.53-2.51(1H,m), 2.15(3H,s),	
	J=6.3H2	
	0.97(3H,s).	
	$MS(ESI_f m/z) 522 (M+H)^+$.	
,	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	
	CH. H 7 CH (1H, d, J=7.9Hz), 7.46-7.23(3H,m),	•
	1.22-7.04(8H,m), 6.92-6.87(2H,m),	
,	6.83(1H, dd, J=7.7, 1.2Hz),	
1		
<u>.</u>	4.33(1H, d, J=14.4Hz), 3.63-3.61(1H, m),	0.004
	2.7	
	2.51-2.45(1H,m), 2.15(3H,s),	
	1.12(3H,d,J=6.5Hz), 0.97(3H,s),	
	0.96(3H,s).	
	MS(ESI, m/z) 570 (M+H) ⁺ .	
	H-NMR (300MHz, Sppm, DMSO-d ₆)	
	7.63(1H, d, J=7.9Hz), 7.53-7.41(2H, m),	
	GH3 H ₃ C, CH ₃ 7.33 (1H, ddd, J=7.5, 7.5, 1.2Hz),	
	7:21-7.13(2H,m), 6.95-6.85(4H,m),	
c	OH H OH H	
001	3.71-3.70(1H,m), 3.1	0.027
		,
	2	
	H ₃ C 1,29 (3H, d, J=6.3Hz), 1.05 (3H, s),	,
•, •	1.04(3H,s).	
	MS(ESI, m/z) . 494 (M+H) ⁺ ,	

	-	
ς	٧	כ
3		v
ì		₹
•	•	•

0.026	0.027	0.016
CH ₃ H ₃ C CH ₃ CH ₃ T.64 (1H, d, J=7.9Hz), 7.52 (1H, d, J=7.9Hz), 7.43-7.16 (6H, m), 6.93 (1H, s), 6.88-6.86 (1H, m), 4.47 (1H, q, J=6.4Hz), 3.79 (3H, s), 3.66-3.64 (1H, m), 2.80-2.74 (2H, m), 2.58-2.53 (1H, m), 1.28 (3H, d, J=6.4Hz), 1.01 (3H, s), 1.00 (3H, s). MS (ESI, m/z) 530 (M+H) ⁺ .	CH ₃ Me Me Cl 7.70(1H,d,J=8.0Hz), 7.57-7.22(6H,m), 7.07-6.89(3H,m), 4.49(1H,q,J=6.2Hz), 3.83(3H,s), 3.68-3.67(1H,m), 3.15-3.13(2H,m), 2.82-2.77(3H,m), 2.63-2.57(1H,m), 1.31(3H,d,J=6.2Hz), 1.05(3H,s), 1.04(3H,s). MS(ESI,m/z) 530(M+H) ⁺ .	C1 H ₃ C CH ₃ CH ₃ CH ₃ T.80 (1H, t, J=8.1Hz), 7.55 (1H, t, J=6.1Hz), 7.44 (1H, t, J=7.5Hz), 7.37-7.24 (3H,m), 7.20-7.06 (3H,m), 7.37-7.24 (3H,m), 4.20and4.02 (1H,q,J=6.2Hz), 3.58 (1H,brs), 3.20-3.03 (3H,m), 2.66 (3H,brs), 2.08and2.03 (3H,s), 0.96 (6H,brs). MS (ESI,m/z) 514 (M+H) ⁺ .
	ν , χ	. · · · .
1-81	1-82	1-83

·*	
0.022	0.004
¹ H-NMR(300MHz, \$ppm, DMSO-d ₆) 7.90(1H, brs), 7.80(1H, t, J=8.5Hz), 7.55(1H, t, J=6.3Hz), 7.47-7.32(3H,m), 7.25-7.02(4H,m), 4.21and4.02(1H, q, J=6.6Hz), 3.59(1H, brs), 3.18-3.04(3H,m), 2.70-2.64(3H,m), 2.09and2.03(3H,s), 1.19and1.13(3H, d, J=6.6Hz), 0.97(6H, brs). MS(ESI, m/z) 514(M+H) ⁺ .	¹ H-NMR(300MHz, \$ppm, DMSO-d ₆) 7.88-7.80(3H,m), 7.69-7.68(2H,m), 7.53(1H,dd,J=7.8,1.3Hz), 7.50-7.26(7H,m), 7.18(1H,q,J=6.3Hz), 3.78(1H,m), 4.48(1H,q,J=6.3Hz), 2.98(2H,s), 2.91(1H,dd,J=12,3.5Hz), 2.91(1H,dd,J=12,8.2Hz), 2.69(1H,dd,J=6.3Hz), 1.13(3H,s), 1.28(3H,d,J=6.3Hz), 1.13(3H,s), MS(ESI,m/z) 512(M+H) ⁺ .
Cl H ₃ C CH ₃ CH ₃ HO CH ₃	$\begin{array}{c c} & & & \\ & & &$
1-84	1 - 8 5
	138

表33

,						710	# TO • O			•			٠						# T O . O		× -		
	1 H-NMR (400MHz, 2 Ppm, DMSO- 2 G)	7.53(1H,dd,J=7.7,1.3Hz),	7.42(1H, ddd, J=7.6, 7.6, 1.4Hz),	1.35-7.25(3H,m), 7.18-7.14(2H,m),	6.95(1H, dd, J=11,1.2Hz),	6.90 (1H, dd, J=7.7, 1.4Hz),	4.46(1H,q,J=6.3Hz), 3.74(1H,m),	3.14(2H, d, J=5.6Hz),	2.84(1H,dd,J=12,3.5Hz), 2.77(2H,s),	2.62(1H, dd, J=12, 8.1Hz), 2.55(3H,s),	2.18(3H,s), 1.28(3H,d,J=6.3Hz),	1.06(3H,s), 1.05(3H,s).	MS(ESI, m/z) 494 (M+H) ⁺ .	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	7.85(1H, d, J=8.4Hz), 7.54(1H, d, J=7.9Hz),	.47-7.40(2H, m),	33(1H, ddd, 7.2, 7.2, 1.2Hz),	25(2H, d, 1.9Hz), 7.20-7.13(3H, m),	.47(1H,q,J=6.5Hz), 3.75-3.60(1H,m),	13(2H,d,J=5.6Hz), 2.85-2.65(3H,m),	2.60-2.55(4H,m), 1.28(3H,d,J=6.2Hz),	1.03(3H,s), 1.02(3H,s)	(ESI, m/z) 530 (M+H) *.
			H,C,	$\parallel \parallel_{\rm H_3C} \ll_{\rm H_3} \qquad \qquad \parallel 7.$	· 9	Ho Ho	•	H ₃ C 8	2.	2.	2.		MS	H ₁	C1 7.	7		,0,	HO HO	Ho. 13.		O CH ₃	MS (
						1 80	1				-							1-87) 			0	

CI HIC CH, CH,
X 2
ш
H ₃ C CH ₃ CH ₃
HO CH3

表34

11 - Kg.			σ	
*	0.002	*)	0.028	, ,,
¹ H-NMR(400MHz, \$ppm, DMSO-d ₆) 7.84(1H, d, J=8.6Hz), 7.54(1H, d, J=7.0Hz), 7.43(1H, dd, J=7.7, 1.4Hz),	7.35-7.29(2H,m), 7.19-7.16(4H,m), 4.47(1H,q,J=6.5Hz), 3.65(1H,m), 3.13(2H,d,J=5.8Hz), 2.76-2.67(3H,m), 2.57-2.56(4H,m), 2.28(3H,s),	1.27(3H,d,J=6,5Hz), 1.02(3H,s), 1.02(3H,s) MS(ESI,m/z) 528(M+H) ⁺ .	¹ H-NMR(400MHz, ôppm, DMSO-d ₆) 7.87(1H, d, J=8.4Hz), 7.57-7.54(1H, m), 7.47-7.42(1H, m), 7.38-7.32(1H, m), 7.27-7.09(5H, m), 4.46(1H, q, J=6.2Hz), 3.68-3.64(1H, m), 3.13(2H, d.J=5.5Hz)	
H ₃ C CH ₃ CH ₃	O HO OH		CI H ₃ C CH ₃ CH ₃	HO O CH ₃
	1-90		1-91	o o

		*
		1
	13 CH3 CH3 213 4.48(1H, Q, J=6.2Hz), 3.64(1H, m),	
0		
7.6-T	OH 2.59-2.57(4H,m), 1.28(3H,d,J=6.2Hz),	0.022
	HO 1.04-0.99(6H,m)	*
	MS(ESI,m/z) 548 (M+H) +	· · · · · · · · · · · · · · · · · · ·
	C C13	
	CI TH-NMR (400MHz, Sppm, DMSO-ds)	
	$\parallel \parallel \parallel_{3} C_{\text{CH}_3} \qquad \stackrel{\text{GH}_3}{=} \qquad \mid_{4.48(1\text{H,q,J=}6.2\text{Hz})}, 3.64(1\text{H,m}),$	
1–93	F 3.13(2H, d, J=4.8Hz), 2.75-2.72(3H, m),	,
	П. ÖH 2.57(3H,s), 1.28(3H,d,J=6.6Hz),	0.027
	H_{O}] 1.01(3H,s), 1.00(3H,s)	
	$MS(ESI,m/z) 514(M+H)^{+}$	· ,
	O CH ₃	,
		_

		er e
		-
	F C N N N S 12 (2H, m), 4.46 (1H, q, J=6.6Hz)	•
1 - 94	3.92-2.68(3H,m), 2.56(3H,s),	0.028
	HO 1.26(3H,d,J=6.2Hz), 1.02-0.99(6H,m)	,
	$\begin{array}{c} \left(\begin{array}{c} \times \\ \times \end{array}\right) & \left(\begin{array}{c} \times \times \times \times \end{array}\right) & \left(\begin{array}{c} \times \times \times \times \times \times \times \times $	
	1. Sppm, DMSO-d ₆)	
	7.87-7.82 (1H,m), 7.54-7.33 (3H,m),	
	5	
0.0	H_3C , H_3C	
1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2.91-2.72(3H,m), 2.57(3H,s),	
	HO (3H, d, J=6.2Hz),	
	0 CH_3 $1.12(3H,s), 1.10(3H,s)$	
	MS(ESI, m/z) 536 (M+H) +.	,
X		

·	- · · · ·	48 *	
		0.106	
	H ₃ C _O H ₄ C	Cl H ₃ C CH ₃ CH ₃ CH ₄ (1H,m), 7.65-7.32 (6H,m), 7.20-7.17 (3H,m), 4.46 (1H,m), 3.13 (2H,d,J=5.1Hz), 2.89-2.72 (3H,m), 2.58-2.54 (4H,m), 1.02 (3H,s), 1.02 (3H,s), 1.02 (3H,s), MS (ESI,m/z) 564 (M+H) ⁺ .	
	1-96	1-97	

		¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	
	C	7.54(1H,dd,J=7.7,1.1Hz),	
	HJ SH SH	7.47(1H,d,J=8.1Hz), 7.44-7.31(2H,m),	· · · · ·
		7.22-7.13(4H,m), 6.99-6.91(2H,m),	, O
1-98		4.49(1H,q,J=6.3Hz), 3.82-3.80(1H,m),	
		3.21-3.19(2H,m), 2.95-2.85(3H,m),	0.013
•	OH	2.74-2.67(IH,m), 2.20(3H,s),	
	= 0 #Bu	1.43(9H,s), 1.29(3H,d,J=6.3Hz),	•
		1.12(6H,s)	
		MS(ESI,m/z) 536(M+H) ⁺ .	
		¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	,
	E 3 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5	7.55-7.29(6H,m), 7.22-7.10(4H,m),	
	5	4.48(1H,q,J=6.4Hz), 3.77-3.75(1H,m),	
1-99))))	3.19-2.65(6H,m), 1.43(9H,s),	÷
	HO 1	1.29(3H,d,J=6.4Hz), 1.08(6H,s)	0.023
	НО	MS(ESI,m/z) 556(M+H) ⁺ .	
,	— C		
			4

H U H
) <
<u></u>
R S
-z
<u></u>
H, CH,
0
~ 공
´ ` =-₹
o :0
Ή

表41

	VE CONTE S TIMO ON A CIMINA III	- 10	
	H-MMK (400MHZ, oppm, DMSO-q ₆)		
· -	/.84 (1H, d, J=8.4Hz),		
້ ວັ້ ວັ້	gη ₃ 7.54(1H, d, J=6.9Hz), 7.48-7	7.48-7.40(2H,m),	0
Z	7.37-7.28 (3H,m), 7.20-7.12 (3H,m)	3H,m),	
I.	$\vec{b}_{H} \sim 1.46(1H,q,J=6.5Hz), 3.75-3$	3.75-3.60(1H,m),	000
	3.13(2H,d,J=5.6Hz), 2.85-2.75(3H,m)	75 (3H,m),	0.020
오	2.65-2.55(4H,m), 2.34(3H,s)		
	0 CH, 1.27(3H, d, J=6.5Hz), 1.03(3H, s	,(S),	
	3 1.02(3H,s)		
	MS(ESI, m/z) 544 (M+H) ⁺ .		
	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)		
	7.87(1H, d, J=7.9Hz),		
į	7.54(1H, d, J=7:9Hz), 7.50-7.40(2H, m)	40(2H,m),	
ту СН (СН	Ch3 (7.35(1H, dd, 7.5, 7.5Hz),		
\ Z:	O 7.25(1H, d, 10.5Hz), 7.21-7.14(3H, m)	4 (3H,m),	3
E	ŌH 7.05(1H, d, J=8.1Hz),		600.0
1/2H ₂ SO ₄ HO	4.46(1H,q,J=6.3Hz), 3.80-3	3.80-3.65(1H,m),	-= 1.
•	3.13(2H,d,J=5.4Hz), 2.95-2	2.95-2.75(3H,m),	• .
•	Ö CH ₃ 2.70-2.55(4H,m), 1.29(3H,d,J=6.3Hz)	J=6.3Hz),	
	1.08(3H,s), 1.07(3H,s))
0.	MS(ESI, m/z) 514(M+H-1/2H ₂ SO ₄ -1/2H ₂ O) ⁺	$_{4}-1/2H_{2}O)^{+}$.	

•		表42	
,			
		1 H-NMR (400MHz, δ ppm, DMSO-d $_{6}$)	
		7.87(1H,d,J=7.6Hz),	
	CH, CH, CH,	7.54(1H,d,J=7.7Hz), 7.49-7.37(3H,m),	100
	\ , \ \	7.34(1H,dd,7.4,7.4Hz),	
•)))))	7.25(1H,d,10.5Hz), 7.22-7.13(2H,m),	
1-106	Ho	7.05(1H,d,J=8.2Hz), 4.73(2H,s),	0.020
		4.49(1H,q,J=6.3Hz), 3.75-3.60(1H,m),	
	>	3.14 (2H, d, J=5.6Hz), 2.90-2.75 (3H, m),	0
	0	2.66-2.56(1H,m), 1.28(3H,d,J=6.3Hz),	
		1.07(3H,s), 1.05(3H,s)	
		$MS(ESI, m/z) = 530 (M+H)^+$.	-
		1H-NMR (400MHz, ôppm, DMSO-ds)	
		8.26(1H,d,J=7.9Hz),	
	H, C, CH, CH,	8.12(1H,d,J=1.8Hz), 7.60-7.42(4H,m).	
77	\checkmark		
1-107		7.29(1H,d,10.7Hz), 7.23(1H,d,7.6Hz),	*
		7.07(1H,d,J=8.3Hz),	0.200
	HO OH	4.45(1H,q,J=6.3Hz), 3.83-3.73(1H,m),	
		3.20-2.71(6H,m), 1.33(3H,d,J=6.3Hz),	
	HO()O)	1.14(6H,s)	
		MS(ESI, m/z) 544 (M+H) ⁺	

•	ر.
	+
	٧.
.H	Ŀ.
**	М
	í P.

	表43		
	TH-NMR (4	¹ H-NMR(400MHz, δ ppm, DMSO-d ₆)	,
	7.85(1H,	7.85(1H,d,J=8.6Hz),	7
	7.55(1H,	.55(1H,dd,J=1.1, 7.8Hz),	
	H_3^{C} H_1^{C} CH CH_2 $ 7.45 (1H)$.45(1H,ddd,J=7.4,7.4,0.9Hz),	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	35(1H, ddd, J=7.4, 7.41.4Hz),	
	F $\langle V \rangle$ 19-7.1	.19-7.16(4H,m), 6.98-6.90(2H,m),	·
1-108	HO	4.48(1H,q,J=6.5Hz), 3.76(1H, m),	0.014
	$1/2 \text{ H}_2\text{SO}_4 \text{HO}_2 \text{A}_3.14 (2\text{H}_4)$.14(2H,d,J=5.8Hz), 2.91-2.88(1H,m),	
	7 (2.79 (2H,	2.79(2H,m), 2.66-2.61(1H,m),	
	O CH ₃ 2.56(3H,	56(3H,s), 2.19(s,3H),	
	1.28(3H,	1.28(3H,d,J=6.3Hz), 1.08(3H,s),	
	1.07(3H,s)	(8,1)	• • • • •
	MS(ESI,m/z)	m/z) $494 (M+H-1/2H_2SO_4)^+$.	
	1H-NMR (4	1 H-NMR (400MHz, δ ppm, DMSO-d $_{6}$)	· ·
	7.88(1H,	7.88(1H,d,J=8.1Hz),	
	CH ₃ 7.56(1H,	.56(1H,dd,J=7.8, 1.2Hz),	ē ,
		.46(1H,ddd.J=7.4, 7.4, 1.2Hz),	
1-109	H S 0 7 1-7.2	.41-7.29(4H,m), 7.24-7.18(3H,m),	.)
) 	F 00H 4.47(1H,	4.47(1H,q,J=6.3Hz), 3.74(1H,m),	0.015
	1/2 H SO HO (3.13 (2H,	13(2H,d,J=5.3Hz), 2.91-2.84(3H,m),	
)—(2.68-2.61(1H,m), 2.57(3H,s),	
	O CH ₃ 1.28(3H,	1.28(3H,d,J=6.5Hz), 1.08(6H,s)	*
	MS (ESI, n	$MS(ESI,m/z) = 514 (M+H-1/2H_2SO_4)^+$.	44
	•		

) m
į
5

実施例2-1

5 工程1

4-(2-アセチルフェノキシ)安息香酸メチル

2' ーフルオロアセトフェノン(10.6 g)、4ーヒドロキシ安息香酸メチル(11.7 g) 及び炭酸カリウム(11.2 g)をジメチルアセトアミド(70 ml)に懸濁させ、1 4 0 ℃で1 10 日攪拌した。反応混合物を室温に戻し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=7:1)にて精製し、表記化合物(8.62 g)を得た。

 1 H-NMR (300MHz, δ ppm, CDCl₃) 8.03 (2H, d, J=6.6Hz), 7.88 (1H, m), 7.50 (1H, m),

15 7.27 (1H, m), 7.01-6.98 (3H, m), 3.90 (3H, s), 2.57 (3H, s).

工程2

4- [2-((1R) -ヒドロキシエチル) フェノキシ] 安息香酸メチル

工程1で得られた4-(2-アセチルフェノキシ)安息香酸メチル(3.0g)、ジクロ $\mu[(S) - 2, 2' - \forall X (ジフェニルホスフィノ) - 1, 1' - \forall Y フェニルホスフィノ) - 1, 1' - \forall Y フェニルホスフィノ) - 1, 1' - \forall Y フェニルホスフィノ) - 1, 1' - \dots + \dots$ -1, 1'-ビス (p-メトキシフェニル) -2-イソプロピルエタン-1, 2-ジ アミン]ルテニウム (II) (68 mg)及びカリウムーtertーブトキシド(301 mg)をイ 5 ソプロパノール(30 ml)に懸濁させ、室温で4.5時間中圧水素添加(3.0 kgf/cm²)し た。反応混合物に水(150 ml)を加え、酢酸エチル(150 ml)で抽出し、飽和食塩水で洗 浄した。有機層を硫酸ナトリウムで乾燥させた後、減圧濃縮し、得られた残渣をテト ラヒドロフラン(60 ml)及びメタノール(60 ml)に溶解させ、4 Nー水酸化リチウム(15 ml)を加えて室温で終夜攪拌した。反応液を減圧濃縮し、1N-塩酸(120 ml)を加えた 10 後、酢酸エチル(150 ml)で抽出した。有機層を水(50 ml)、飽和食塩水(50 ml)で順次 洗浄し、硫酸ナトリウムで乾燥させた後、減圧濃縮した。得られた残渣をメタノール (100 ml)に溶解させ、4 - ジメチルアミノピリジン(142 mg)及び1-エチル-3-(3 ージメチルアミノプロピル)カルボジイミド・塩酸塩(2.49 g)を加えて、26時間攪 拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサ 15 ン: 酢酸エチル=5:1~4:1) にて精製して、表記化合物(2.63g)を得た。 ¹H-NMR (300MHz, δ ppm, CDCl₃) 8.00 (2H, d, J=7.7Hz), 7.59 (1H, m), 7.30-7.21 (2H, m), 6. 97-6. 91 (3H, m), 5. 13 (1H, d, J=6. 5Hz), 3. 90 (3H, s), 1. 48 (3H, d, J=6. 5Hz). 工程3

20 4-[2-[(1R)-((R)-オキシラニルメトキシ) エチル] フェノキシ] 安 息香酸メチル

工程2で得られた4ー [2ー ((1R) ーヒドロキシエチル) フェノキシ] 安息香酸メチル(3.62g)をテトラヒドロフラン(15 ml) に溶解させ、氷冷した後、水素化ナトリウム(471 mg、60%油性)を加えて3分間攪拌した。次いで、(R) ーグリシジル 3ーニトロベンゼンスルホネート(3.62g)及びジメチルスルホキシド(3 ml)を加えて室温で終夜攪拌した。反応混合物に10%クエン酸水溶液(80 ml)を加え、酢酸エチル(150 ml)で抽出した。有機層を水(50 ml)、飽和食塩水(50 ml)で順次洗浄し、無水硫酸ナトリウムで乾燥させ、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1~3:1)にて精製して、表記化合物(315 mg)を得た。

¹H-NMR (300MHz, δ ppm, CDC1₃) 7.99 (2H, d, J=6.6Hz), 7.57 (1H, m), 7.31-7.23 (2H, m), 6.96-6.90 (3H, m), 4.80 (1H, d, J=6.6Hz), 3.89 (3H, s), 3.55 (1H, m), 3.26 (1H, m),

3. 25 (1H, m), 2. 74 (1H, m), 2. 51 (1H, m), 1. 41 (3H, d, J=6. 6Hz).

工程4

10

15

20

(3-フルオロー4-メチルフェニル) 酢酸メチル

(3ーフルオロー4ーメチルフェニル) 酢酸(105.3 g)をメタノール(740 ml)に溶解させ、濃硫酸(9.9 ml)を加えて85℃で1時間攪拌した。反応液を室温に戻し、減圧濃縮し、得られた残渣に水を加えて酢酸エチル(1 L)で抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥させた後、減圧濃縮して、表記化合物(114.2 g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7. 14-7. 10 (1H, m), 6. 96-6. 93 (2H, m), 3. 70 (3H, s), 3. 58 (2H, s), 2. 25-2. 24 (3H, s).

工程5

1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-オール

5

10

20

工程 4 で得られた(3-フルオロー4-メチルフェニル)酢酸メチル(114.2g)をテトラヒドロフラン(800 ml)に溶解させ、0 \$C\$でアルゴン気流中 1 M一臭化メチルマグネシウム(1.56 L)を滴下した。その後室温で $1 \text{ 時間攪拌した。反応液を氷冷し、飽和塩化アンモニウム水溶液(<math>155 \text{ ml}$)を滴下した後、硫酸マグネシウム(280 g)を加えた。反応混合物を濾過し、濾液を硫酸マグネシウムで乾燥させ、減圧濃縮して、表記化合物(130.1 g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7.11-7.08(1H, m), 6.88-6.86(2H, m), 2.71(2H, s), 2.25(3H, s), 1.22(6H, s).

工程6

15 $2-\rho - - N - [1 - (3-) - 4 -) + N - 2 -$

工程5で得られた1-(3-フルオロ-4-メチルフェニル) -2-メチルプロパン-2-オール(130.1 g)を、クロロアセトニトリル(139 ml)及び酢酸(115 ml)に溶解させ、氷冷下で濃硫酸(33.4 ml)を滴下した。室温で2時間攪拌した後、氷冷下で4N-水酸化ナトリウム水溶液(160 ml)を滴下し、トルエンで2回、酢酸エチルで2回抽出した。有機層を10%食塩水で2回洗浄し、減圧濃縮して表記化合物(131.6 g)を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7.10-7.06 (1H, m), 6.80-6.76 (2H, m), 6.19 (1H, brs), 3.95 (2H, s), 3.00 (2H, s), 2.24 (3H, s), 1.37 (6H, s).

工程7

[1-(3-フルオロー4-メチルフェニル)-2-メチルプロパン-2-イル] アミン

5 工程 6 で得られた 2 ークロローNー [1 ー (3 ーフルオロー4 ーメチルフェニル) ー 2 ーメチルプロパンー 2 ーイル] アセトアミド(131.6 g)を酢酸(200 ml)及びエタノール(1 L)に溶解させ、チオウレア(46.6 g)を加えて 1 O 0 ℃で終夜攪拌した。反応液を室温に戻し、析出した結晶を濾過した。濾液を減圧濃縮し、得られた残渣に 4 Nー水酸化ナトリウム(300 ml)を加えてトルエンで 3 回抽出した。有機層を飽和食塩水で10 洗浄し、減圧濃縮して得られた残渣をジエチルエーテル(1 L)に溶解させ、氷冷下で 4 Nー塩酸/酢酸エチル溶液(255 ml)を滴下した。一時間攪拌し、析出した結晶を濾取した。得られた結晶をトルエンと 4 Nー水酸化ナトリウム水溶液の混合液に加えた。トルエン層を分離し、水で 2 回洗浄し、減圧濃縮して表記化合物(57.9 g)を得た。 「HーNMR(300MHz, δ ppm, CDC1₃) 7.11-7.07(1H, m), 6.85-6.82(2H, m), 2.61(2H, s),

15 2.25(3H, s), 1.11(6H, s).

 $MS (APCI, m/z) 182 (M+H)^{+}$.

工程8

工程3で得られた4-[2-[(1R)-((R)-オキシラニルメトキシ) ェチル]フェノキシ] 安息香酸メチル(109 mg)をトルエン(3 ml)に溶解させ、工程7で得られた [1-(3-7)ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミン(87 mg)及び過塩素酸リチウム(51 mg)を順次加え、室温で15時間攪拌した。

反応液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル= $1:1\sim$ クロロホルム:メタノール=10:1) にて精製し、表記化合物(193 mg)を得た。

¹H-NMR (400MHz, δ ppm, CDCl₃) 7. 99 (2H, d, J=6. 9Hz), 7. 49 (1H, dd, J=5. 4, 2. 1Hz), 7. 35-7. 20 (2H, m), 7. 15-7. 10 (1H, m), 7. 00-6. 80 (5H, m), 4. 72 (1H, q, J=6. 5Hz),

10 4. 20-4. 10 (1H, m), 3. 89 (3H, s), 3. 50-3. 35 (2H, m), 3. 30-3. 20 (1H, m), 3. 10-2. 80 (3H, m), 2. 22 (3H, s), 1. 40-1. 20 (9H, m).

MS(ESI, m/z) 510 (M+H)⁺.

工程9

4-[2-[(1R)-[(2R)-3-[[1-(3-7)]]] 15 ル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェノキシ] 安息香酸

工程8で得られた4-[2-[(1R)-[(2R)-3-[[1-(3-7)ルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプ <math>4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプ 20 ロポキシ] エチル] フェノキシ] 安息香酸メチル(185 mg)をメタノール(3 ml)及びテトラヒドロフラン(3 ml)に溶解させ、2N-水酸化ナトリウム(1.5 ml)を加えて、室温で4時間攪拌した。反応液を減圧濃縮して得られた残渣を水で希釈し、10%クエン酸水溶液を加えて、析出した沈殿物を濾取することにより、表記化合物(152 mg)を

得た。

¹H-NMR (300MHz, δ ppm, DMSO-d₆) 7. 93 (2H, d, J=8. 7Hz), 7. 55 (1H, d, J=7. 5Hz),

7. 40-7. 25(2H, m), 7. 20-7. 10(1H, m), 7. 05-6. 85(5H, m), 4. 68(1H, q, J=6.3Hz),

3.80-3.65(1H, m), 3.24(2H, d, J=5.4Hz), 2.85-2.55(4H, m), 2.19(3H, s)

5 1.32 (3H, d, J=6.3Hz), 1.03 (3H, s), 1.02 (3H, s).

MS(ESI, m/z) 496 (M+H)⁺.

実施例2-2

 $4 - [2 - [1 - [(2R) - 3 - [[1 - (3 - 7)\lambda + 1 - 4 - 4 + 4 + 7)]]]$

-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]

10 フェノキシ] -3-メトキシ安息香酸

工程1

4-(2-アセチルフェノキシ)-3-メトキシ安息香酸メチル

2 $^{\prime}$ $^$

20 工程2

4-[2-(1-ヒドロキシエチル)フェノキシ]-3-メトキシ安息香酸メチル

工程1で得られた4ー(2ーアセチルフェノキシ)-3ーメトキシ安息香酸メチル $(1.24\,\mathrm{g})$ をメタノール $(20\,\mathrm{ml})$ に溶解させ、氷冷した後、水素化ホウ素ナトリウム $(312\,\mathrm{mg})$ を加えて2時間攪拌した。反応混合物を減圧濃縮し、水を加えて酢酸エチルで抽出した。有機層を $5\,\%$ クエン酸水溶液、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥させて得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)にて精製し、表記化合物 $(834\,\mathrm{mg})$ を得た。

¹H-NMR (300MHz, δ ppm, CDCl₃) 7. 70-7. 50 (3H, m), 7. 25-7. 10 (2H, m),

6. 90 (1H, d, J=8.4Hz), 6. 77 (1H, dd, J=6.6, 1. 5Hz), 5. 25-5. 15 (1H, m), 3. 94 (3H, s),

10 3.93 (3H, s), 2.53 (1H, d, J=4.2Hz), 1.53 (3H, d, J=6.6Hz).

工程3

3-メトキシー4-[2-[1-((R)-オキシラニルメトキシ) エチル] フェノキシ] 安息香酸メチル

15 工程2で得られた4-[2-(1-ヒドロキシエチル)フェノキシ]-3-メトキシ安息香酸メチル(660 mg)より、実施例2-1の工程3と同様にして、表記化合物(150 mg)を得た。

¹H-NMR (400MHz, δ ppm, CDCl₃) 7.70-7.50 (3H, m), 7.25-7.15 (2H, m), 6.80-6.70 (2H, m), 4.87 (1H, q, J=6.4Hz), 3.91 (6H, s), 3.60-3.50 (1H, m), 3.40-3.25 (1H, m), 3.15-3.10 (1H, m), 2.80-2.70 (1H, m), 2.60-2.50 (1H, m), 1.45-1.40 (3H, m). 工程 4

工程3で得られた3ーメトキシー4ー[2ー[1ー((R)ーオキシラニルメトキシ) エチル]フェノキシ] 安息香酸メチル(146 mg)、実施例2ー1の工程7で得られた1ー(3ーフルオロー4ーメチルフェニル)ー2ーメチルプロパンー2ーイルアミン(89 mg)より、実施例2ー1の工程8と同様にして、表記化合物(189 mg)を得た。 1 H-NMR(400MHz, δ ppm, CDCl $_3$) 7.65-7.45(3H, m), 7.25-7.00(3H, m), 6.85-6.70(4H, m), 4.83(1H, d, J=6.3Hz), 3.90(6H, s), 3.80-3.70(1H, m), 3.40-3.30(2H, m),

15 2.85-2.55(4H, m), 2.23(3H, s), 1.45-1.35(3H, m), 1.05(6H, s).
MS(ESI, m/z) 540(M+H)⁺

工程5

4-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フ ェノキシ] <math>-3-メトキシ安息香酸

工程4で得られた4-[2-[1-[(2R)-3-[[1-(3-7)]]] 工程4で得られた4-[2-[1-[(2R)-3-[[1-(3-7)]]] スチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-メトキシ安息香酸メチル(180 mg)より、実施例2-1の工程9と同様にして、表記化合物(160 mg)を得た。

¹H-NMR (300MHz, δ ppm, DMSO-d₆) 7.70-7.45 (3H, m), 7.30-7.10 (3H, m), 7.05-6.85 (3H, m), 6.75-6.70 (1H, m), 4.81 (1H, q, J=6.0Hz), 3.90-3.70 (4H, m), 3.30 (2H, d, J=5.1Hz), 2.95-2.60 (4H, m), 2.19 (3H, s), 1.36 (3H, d, J=6.0Hz), 1.05 (6H, s). MS (ESI, m/z) 496 (M+H)⁺.

10 実施例2-3~2-36

5

実施例2-1および2-2に基づいて、実施例 $2-3\sim2-3$ 6を得た。結果を表 $45\sim6$ 0に示す。

東路	構造式	が、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	
一 2-1		ゲー・ナー	
2-1		7710	gene assay
2-1	7	11 Anth / 200MI Same Division 2 1	(1777)
	H, CH, CH,	1. Mark (30 omn 2, Oppul, Dr.30−06) 7.93 (2H, d, J=8.7Hz),	
2-1	N	7.55(1H, d, J=7.5Hz), 7.40-7.25(2H,m),	
1 -	но	7.0	
	·. ;	4.68(1H,q,J=6.3Hz), 3.80-3.65(1H,m),	0.015
		J=5.4Hz)	
	>	2.19(3H,s) 1.32(3H,d,J=6.3Hz),	
	C H	1.03(3H,s), 1.02(3H,s).	
		$ MS(ESI, m/z) 496(M+H)^+$.	~
	HJC W	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	
		7.70-7.45(3H,m), 7.30-7.10(3H,m),	
2-0	O()	7.05-6.85(3H,m), 6.75-6.70(1H,m),	
1	0-	4.81(1H, q, J=6.0Hz), 3.90-3.70(4H, m),	7,00
	H,C.0	2H, d, J=5.1Hz),	T70.0
		2.19(3H,s), 1.36(3H,d,J=6.0Hz),	
•		1.05(6H,s).	
20	О ОН	MS(ESI, m/z) 496 (M+H) ⁺ .	
	(m)	¹ H-NMR (300MHz, δ ppm, DMSO- d_6)	
		8.00-7.75(5H,m), 7.69(1H,s),	
	0	7.65-7.25(6H,m), 7.15-6.95(3H,m),	
2-3	Ct.	4.66(1H, q, J=6.6Hz), 3.81(3H, s),	0 071
)	H ₃ C, CH ₃ CH ₃ O	3.75-3.65(1H,brs), 3.30-3.15(2H,m),	1/0.0
<u>}</u>		3.00-2.55(4H,m), 1.40-1.30(3H,m),	
	HO H	1.07(6H,s)	
	*	MS(ESI, m/z) 528 (M+H) ⁺ .	,

溃代

	•	¹ H-NMR(300MHz, &ppm, DMSO-d ₆) 8.00-7.75(5H, m), 7.70(1H, s),	
2-4		7.65-7.20(6H,m), 7.10-6.85(3H,m), 4.70(1H,q,J=6.4Hz), 3.90-3.70(1H,m),	0.010
	CAS CH3	3.0	
	NH NA	=6.4Hz),	· · · · · · · · · · · · · · · · · · ·
		Itt was (2002er S 2002)	
		$^{-}$ H-NMK (300MHz, oppm, DMSO- α_6) 8.74 (1H, s) 8.12 (1H, s)	
	0=	05-7.80(4H,m),	
	EO	7.71(1H, dd, J=7.6, 7.6Hz),	-
2-5	N H3C CH3 CH3 CH3 C	7.25(4H,m),	0.057
		(1H,q,J=6.2Hz), 3.80	
	НО Н	3.55-3.00(2H,m), 2.95-2.55(4H,m),	
		1.40-1.20(3H,m), 1.20-0.95(6H,m)	
		MS(ESI, m/z) 515 (M+H) ⁺ .	
		¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	
		7.93(2H, d, J=8.7Hz), 7.60-7.50(1H,m),	
		7.40-7.20(5H,m), 7.05-6.90(3H,m),	
2-6	TO THE STATE OF TH	.66(1H, q, J=6.3Hz),	000
1		3.20 (2H,m),	770.0
		1.31(3H, d, J=6.3Hz), 1.01(3H, s),	•
		1.00(3H,s).	
	О ОН	MS (ESI, m/z) 516 (M+H) $^{+}$.	
		D,	
	Ō	7.95(2H, d, J=8.7Hz), 7.58(1H, s),	
		7.55-7.29(2H,m), 7.21(1H,m),	
2-7	H,C, L, Ch, Ch, Ch, Ch, Ch, Ch, Ch, Ch, Ch, Ch	7.04-6.93(5H,m), 4.70(1H, q, J=6.2Hz),	710 0
1		.90(1H,m), 3.30-3.26(\ TO•0
-		3.00-2.72(4H,m), 2.20(3H,s),	*
		34 (3H, d, J=	-
		MS(ESI, m/z) 496(M+H) ⁺ .	

表 47

0.054	0.016	0.027
¹ H-NMR (300MHz, \$ppm, DMSO-d ₆) 7.63(1H, d, J=7.2Hz), 7.53(1H, m), 7.42(1H, m), 7.34-7.14(5H, m), 6.97-6.89(3H, m), 4.71(1H, q, J=6.3Hz), 3.76(1H, m), 3.32-3.21(2H, m), 2.86-2.62(2H, m), 2.75(2H, s), 2.18(3H, s), 1.32(3H, d, J=6.3Hz), 1.05(6H, s). MS(ESI, m/z) 496(M+H) ⁺ .	¹ H-NMR(300MHz, \$ppm, DMSO-d ₆) 7.95(2H, d, J=7.7Hz), 7.85-7.66(8H, m), 7.46-7.42(3H, m), 7.35-7.30(3H, m), 7.17(1H, d, J=16.2Hz), 4.99(1H, q, J=6.5Hz), 3.91(1H, m), 3.45(1H, m), 3.40(1H, m), 2.95(1H, m), 2.93(2H, s), 2.73(1H, m), 1.39(3H, d, J=6.5Hz), 1.08(6H, s). MS(ESI, m/z) 524(M+H) ⁺ .	¹ H-NMR (500 MHz, \$ppm, CD ₃ OD) 7.92-7.16 (15H,m), 5.07-5.02 (1H,m), 3.96-3.90 (1H,m), 3.40-3.32 (1H,m), 3.28-3.11 (4H,m), 3.04-2.98 (1H,m), 1.42-1.30 (9H,m). MS(ESI,m/z) 530 (M+H) ⁺ .
H ₃ C _H ³ C _H ³ F M OH OH	H ₃ C CH ₃ N OH OH	H ₃ C ₂ CH ₃ ξ^{H_3} ξ^{H_3} ξ^{H_3} ξ^{H_3} ξ^{H_3} ξ^{H_3} ξ^{H_3} ξ^{H_3}
2 - 8	2 - 0	2-10

_	·
•	1
H	K

0.021	0.005	0.022
¹ H-NMR(300MHz, 5ppm, DMSO-d ₆) 7.95(2H, d, J=8.0Hz), 7.78-7.69(4H, m), 7.44-7.31(3H, m), 7.20-7.11(2H, m), 6.95-6.86(2H, m), 4.97(1H, q, J=6.6Hz), 3.81(1H, brs), 3.39-3.25(3H, m), 2.83-2.77(1H, m), 2.66(2H, s), 2.61-2.55(1H, m), 2.17(3H, s), 1.38(3H, d, J=6.6Hz), 0.98(6H, brs). MS(ESI, m/z) 506(M+H) ⁺ .	¹ H-NMR(400MHz, ôppm, DMSO-d ₆) 7.74-7.69(2H,m), 7.47-7.42(1H,m), 7.13-6.87(5H,m), 6.15(1H,d,J=8.1Hz), 5.03(1H,q,J=6.3Hz), 3.75(1H,brs), 3.35-3.33(3H,m), 2.78-2.76(1H,m), 2.65-2.51(2H,m), 2.15(3H,s), 2.07(3H,s), 2.02(3H,s), 1.42(3H,d,J=6.3Hz), 0.99(6H,brs). MS(ESI,m/z) 524(M+H) ⁺ .	¹ H-NMR(400MHz, Sppm, DMSO-d ₆) 7.74-7.69(2H,m), 7.48-7.42(1H,m), 7.32-7.26(2H,m), 7.16-7.13(1H,m), 7.09-6.98(2H,m), 6.15(1H,d,J=8.1Hz), 5.03(1H,q,J=6.1Hz), 3.73(1H,brs), 3.38-3.30(3H,m), 2.80-2.55(3H,m), 2.07(3H,s), 2.03(3H,s), 1.43(3H,d,J=6.1Hz), 0.98(6H,brs). MS(ESI,m/z) 544(M+H) ⁺ .
	$\begin{array}{c c} H_3C & CH_3 \\ \hline F & & & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	$CI \xrightarrow{H_3C} CH_3$ $F \xrightarrow{H_3C} CH_3$ $H_3C \xrightarrow{CH_3}$
2-11	2-12	2-13

贵45

		IR(400MHz, oppm	
		7.48-7.41(2H,m), /.66(1H,S),	
	$\left(\begin{array}{ccc} & & \\ & & \\ & & \end{array}\right)_{H_3C \swarrow CH_3} \qquad CH_3$	7.39(1H, dd, J=7.5, 1.7Hz),	
		1H, dd, J=8.4,1.	
	HOH	-7.1	
		(1H, d, J=16Hz)	0.053
		, 3.09(2	,
	>	2.87(2H,s), 2.77(1H,dd,J=11,3.5Hz),	
		.57(1H, dd, J=11,7	
	O, OH		-
-		3H, s)	, , , , , , , , , , , , , , , , , , ,
	•	MS(ESI, m/z) 512 (M+H) +.	
		¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	-
		7.90-7.70(5H,m), 7.68(1H,s),	•
		4.68	
		4.10(2H,s), 3.80-3.50(1H,m),	•
		.20-2.90(2H,m), 2.86(2H,d,	0.030
		2.80-2.50(2H,m), 1.15(3H,d,J=6.3Hz),	
		(3H, s).	
	HO	MS(ESI, m/z) 512(M+H) ⁺ .	 6
1	7 t	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	
	The state of the s	7.89-7.70(6H,m), 7.52-7.34(6H,m),	<
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	75 (
	В ,,	3.16-3.07(2H,m), 2.95(2H,s),	6
		2.84(1H, dd, J=12, 2.9Hz),	0.010
		2.64(1H, dd, J=12, 7.7Hz),	
		1.18(3H, d, J=6.2Hz), 1.10(3H, s),	
	HO	1.09(3H, s).	
		$ MS(ESI, m/z) 512 (M+H)^{+}$	

変り

	D.H.	14-NMR (300MHz Snow DMS0-d)	
•		7.88-7.80(5H,m), 7.71(1H,s),	
		7.5	,
	HO H	2H, m),	
2-16		SHz), 3.	0.014
		3.26-3.14(2H,m), 2.96-2.87(3H,m),	
	<u></u>	•	
	- (1.11(6H,s).	
	O, OH	MS(ESI, m/z) 530 (M+H) ⁺ :	
		¹ H-NMR (400MHz, 5ppm, DMSO-d ₆)	
	H ₃ C CH ₃	8.12-8.03(2H,m), 7.89-7.65(7H,m),	
•		7.58-7.44(5H,m), 7.39-7.34(1H,m),	. 1
	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.21(0.25H, q, J=6.5Hz),	
-	No Ho	5.10(0.25H, q, J=6.5Hz),	•
2-17	→	4.98-4.93(0.5H,m), 3.87(1H,m),	0.148
		.25-2.68 (6H, m),	
	``.	4	
`			:
	O. OH	1.20-1.15(6H,m).	*
		MS(ESI, m/z) 546(M+H) ⁺ .	
	ED, J.H.J.C.	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	
*	. <	8.16-8.07(3H,m), 7.90-7.76(6H,m),	
	\(\rangle\)	7.73-7.67(2H,m), 7.65-7.60(1H,m),	
	N HO T	50 -	
2-18		5.16(0.5H, q, J=6.2Hz),	0.236
		07 (,
-	>	60	
-	40.	2.74-2.57(2H,m), 1.26-1.18(9H,m).	
	O OH	$MS(ESI, m/z) 562(M+H)^{+}$.	

表り

	1	TH-NIME (300MH7 Ann mach-1	
		7.94-7.80(5H,m), 7.70(1H,m),	,
		.51-7.44(4H,m),	
	TH3C CH	07 (1H, d, J=7.4Hz),	
		6.98(1H, ddd, J=8.1, 7.0, 1.3Hz),	-
		56(1H, dd, J=7.4,7	
	9 HO H	6.43(1H, d, J=8.1Hz), 6.12-6.03(1H, m),	
2-19	NH	4.67(0.5H, q, J=6.6Hz),	0.029
	4	.65(0.	
	HO 3	3.91(1H,m), 3.42-3.30(2H,m),	,
	(n)	3.00-2.90(3H,m), 2.82-2.73(1H,m),	,
	2	1.46(1.5H, d, J=6.6Hz),	3-1
		<u>, ;</u>	
		1.12-1.10(6H,m).	
	M	$MS(ESI, m/z) 527(M+H)^+$.	
	-	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	
		7.89-7.83(3H,m), 7.77-7.73(2H,m),	
		7.49-7.45(3H,m), 7.38-7.32(4H,m),	
		3.4,7.4,	-
		7.09(1H, d, J=8.4Hz),	
	9 N N N N N N N N N N N N N N N N N N N	6.96(1H, dd, J=7.4, 7.4Hz),	
2-20		5.58(1H, d, J=11Hz), 5.19(1H, d, J=11Hz),	0
) 	4	4.99(1H, q, J=6.3Hz), 4.01(1H, m),	0.020
	<u>E</u>	3.43(1H, dd, J=11, 6.8Hz),	
10	3	3.33(1H,dd,J=11,6.1Hz),	
	HO HO	3.12-3.07(3H,m),	
1	2	2.83(1H, dd, J=12, 6.5Hz),	
	—	1.26(3H, d, J=6.3Hz), 1.20(6H, s).	*
	A	4S(ESI, m/z) 528 (M+H) +.	

;	-2.	14-NMR (300MHz. Sppm. DMSO-d.)	
	H.C. CH.	8.00-7.65(5H,m), 7.60-7.30(7H,m),	8
	>	· .	
		7.10(1H, d, J=8.4Hz),	
	НОН	6.97(1H, dd, J=7.4, 7.4Hz),	,
2-20,		5.68(0.5H,d,J=10Hz),	0.021
		5.59(0.5H, d, J=10Hz),	
		5.25-4.90(2H,m), 4.25-3.95(1H,m),	
	C	3.50-3.20(2H,m), 3.15-2.95(2H,m),	-
		2.90-2.65(1H,m), 1.35-1.00(9H,m),	
		$MS(ESI, m/z) 528(M+H)^+$.	
		1 H-NMR (400MHz, δ ppm, DMSO- d_{6})	
	,	8.06(1H,s), 7.88-7.81(4H,m),	
,			
	H ₃ C CH ₃	7.20(1H, ddd, J=8.4, 7.4, 1.8Hz),	
	т. т	7.05(1H, d, J=8.4Hz),	
_		6.95(1H, dd, J=7.4, 7.4Hz),	0
,	HO #	5.27 (1H, d, J=13Hz), 5.22 (1H, d, J=13Hz),	2
2-21	\ \	4.97(1H, q, J=6.2Hz), 3.98(1H, m),	0.017
		3.40(1H,dd,J=10,6.1Hz),	
		3.33(1H, dd, J=10, 5.3Hz), 3.08(2H,s),	,
,		3.00(1H, dd, J=12, 3.5Hz),	* 0
	0, OH	2.78(1H, dd, J=12, 7.6Hz),	
		1.34(3H, d, J=6.2Hz), 1.18(3H, s),	
		1.17(3H,s).	•
		MS (ESI, m/z) 528 (M+H) +.	

※

0.026	0.017
2-21, H ₃ C CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH	2-22 H ₃ C CH ₃ CH ₃ CH ₄ CH ₇ CH, d, J=8.3Hz), 7.86-7.78(3H,m), 7.52(2H,d,J=8.3Hz), 7.48-7.43(2H,m), 7.37-7.34(2H,m), 7.22(1H,ddd,J=8.3,7.4,1.7Hz), 7.06(1H,d,J=8.3Hz), 7.06(1H,d,J=8.3Hz), 7.06(1H,d,J=8.3Hz), 7.84(1H,m), 7.37-7.9Hz), 7.06(1H,d,J=8.3Hz), 7.94-2.90(3H,m), 2.34-2.90(3H,m), 2.37(2H,m), 2.94-2.90(3H,m), 2.70(1H,dd,J=6.3Hz), 1.10(3H,s), 1.09(3H,s),

H3C CH3 CH3.	7.98(2H, d, J=8.3Hz), 7.87-7.78(3H, m), 7.70(1H, s), 7.53(2H, d, J=8.3Hz)	-
N H OH	7.49-7.35(4H,m), 7.23(1H,m), 7.06(1H,d, J=8.3Hz),	
	6.98(1H, dd, J=7.4, 7.4Hz), 5.21(2H, s), 4.91(1H, g. J=6 3Hz), 3.82(1H m)	0.023
HO	3.31(2H,m), 2.91-2.86(3H,m),	-
=0	2.77-2.64(1H,m), 1.32(3H,d,J=6.3Hz),	
)8 (6H, S).	
	$MS(ESI, m/z) 528(M+H)^{+}$.	
	¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	
	8.03(1H, s), 7.81(1H, d, J=7.7Hz),	
	7.51(1H, d, J=7.7Hz),	
CH CH	7.39(1H, dd, J=7.7,7.7Hz),	
	7.34 (1H, dd, J=7.7, 1.6Hz),	
	7.21-7.15(2H,m), 7.04(1H,d,J=7.7Hz),	
	7.00-6.92(3H,m), 5.27(1H,d,J=13Hz),	
	5.22(1H, d, J=13Hz),	0.027
	4.96(1H, q, J=6.4Hz), 3.93(1H, m),]
>	買	
	3.30(1H, dd, J=10, 5.4Hz),	
HO O	2.93-2.83(3H,m),	
	2.69(1H, dd, J=12, 7.3Hz), 2.18(3H, s),	
	1.33(3H, d, J=6.4Hz), 1.10(6H, s).	,
	MS (EST E/2) 510 (Mtm) +	

後の

••	0.057	*	0.065	
¹ H-NMR (400MHz, &ppm, DMSO-d ₆) 7.96 (2H, d, J=8.4Hz), 7.51 (2H, d, J=8.4Hz), 7.36 (1H, dd, J=7.6, 1.6Hz), 7.22 (1H, ddd, J=7.6, 1.6Hz), 7.15 (1H, ddd, J=8.1, 8.1Hz),	(1H, d, J=8.1Hz), 6.99 (1H, dd, J=7.6, 1.4Hz), (1H, q, J=6.4Hz), 3.80 -3.24(2H, m),	2.63(1H, dd, J=12, 8.1Hz), 2./3(2H, S), 2.63(1H, dd, J=12, 8.1Hz), 2.17(3H, S), 1.33(3H, d, J=6.4Hz), 1.04(3H, S), 1.03(3H, S). MS(ESI, m/z) 510(M+H) ⁺ .	R(300MHz, Sppm, DMSO-d 1H, dd, J=8.1,1.5Hz), 1H, dd, J=11,1.5Hz), 1H, dd, J=7.7,7.7Hz), 1H, dd, J=7.7,1.8Hz), 7.12(3H,m), 7.03-6.5 2H,s), 4.86(1H,q,J=6 1H,m), 3.30-3.22(2H,	2.38(1H,dd,J=12,2./Hz),, 2.83(2H,s), 2.72(1H,dd,J=12,8.8Hz), 2.18(3H,s), 1.30(3H,d,J=6.2Hz), 1.11(6H,s), MS(ESI,m/z) 528(M+H) ⁺ .
H ₃ C CH ₃ CH ₃	но н	=0	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ H ₄ OH OH	□
*	2-24		2-25	

١	-	2	•	
L	4		3	
	_	•	_	
ı	٠	h	ø	,
ŀ	н	Ľ	3	
B	•	١	v	١

. $ extstyle ext$		_			·	-	٠.			Т									- 1	
		•			0.024						101	•,			0.027			100		
¹ H-NMR (400MHz, Sppm, DMSO-d ₆)	7.78-7.76(2H,m), 7.51(1H,d, J=7.4Hz),	7.36(1H,m), 7.26-7.22(1H,m),	7.16-7.11(2H,m), 7.00-6.88(3H,m),	5:16(1H, d, J=13Hz), 5.14(1H, d, J=13Hz),	1H, m), 3.76(1)	2.83(1H,m), 2.70(2H,s), 2.60(1H,m),	2.37(3H,s), 2.17(3H,s),	1.30(3H, d, J=6.2Hz), 1.02(6H,s).	$MS(ESI, m/z) 524(M+H)^{+}$	¹ H-NMR (300MHz, Sppm, DMSO-d ₆)	7.40-7.30(1H,m), 7.29(2H,s),	7.12(1H, dd, J=7.9, 7.9Hz),	7.03(1H, dd, J=7.9, 7.9Hz),	6.97-6.88(3H,m), 6.31(1H,d,J=7.9Hz),		³¹ 3 3.37-3.31(2H,m), 2.85-2.77(1H,m),	2.70-2.55(3H,m)2.15(3H,s),	1.40(3H, d, J=6.3Hz),	1.01(3H,s),1.00(3H,s).	$ MS(ESI, m/z) 496(M+H)^{+}$
	H ₃ C CH ₃ CH,	X -\ -\	NH NH	5		OH	HD CH	••			。 つ 指	H ₃ C CH ₃ CH ₃	E N	HO H	-	H³c W CH	>	(C)	O OH	
				2-26										(2-27			-		

,	0.003			7			0.011	O-14.			
¹ H-NMR(300MHz, \$ppm, DMSO-d ₆) 8.42(1H, d, J=1.9Hz), 8.08(1H, dd, J=8.5, 1.8Hz),	7.56(1H,dd, =7.2, 2.0Hz), 7.36-7.27(2H,m), 7.17(1H,t,J=8.1Hz), 7.01-6.90(4H,m),	4.73(1H,q,J=6.3Hz), 3.85-3.75(1H,m), 3.26(2H,d,J=5.5Hz), 2.90-2.63(7H,m), 2.17(3H,s),	1.35(3H,d,J=6.2Hz), 1.08(3H,s), 1.08(3H, s) MS(ESI,m/z) 541(M+H) ⁺ .	1 H-NMR (300MHz , δ ppm, DMSO- d_6)	7.70(1H,d,J=1.9Hz), 7.56(1H,dd,J=7.6, 2.1Hz),	7.41-7.29(2H,m), 7.23-7.18(2H,m),	7.08-6.94(4H,m), 4.72(1H,q,J=6.6Hz),	3.90-3.74(1H,m), 3.27-3.23(2H,m),	3.05-2.71(7H,m), 2.20(3H,s),	1.35(3H,d,J=6.2Hz), 1.12(3H,s), 1.12(3H,s)	MS(ESI,m/z) 541 (M+H) ⁺ .
H ₃ C CH ₃ CH ₃	HO NO	7	ОДОН		H ₃ C CH ₃ CH ₃	HO)	O OH	
	2-28				******		2-29			1)	

表 28

		¥ -		0.003	•		i.			-		().			0.016					
	1 H $-$ NMR (300MHz, δ ppm, DMSO $-$ d $_{6}$)	8.00(1H,d,J=1.9Hz),	$H_3C / H_3C CH_3$ QH_3 $7.81(1H, dd, J=8.5, 1.8Hz),$	$\vec{O}H$ $\vec{O}H$ 7.16(1H, t, J=7.9Hz), 6.98-6.85(4H,m),	Cl (14.74(1H, q, J=6.2Hz), 3.83-3.73(1H, m),	3.27(2H,d,J=5.5Hz), 2.89-2.62(7H,m),	$_{HO}$ $_{O}$	1.05(3H,s)	MS(ESI, m/z) 530 (M+H) ⁺ .	1 H $-$ NMR (300MHz , $^{\circ}$ DMSO $-$ d $_{6}$)	7.59(1H, d, J=8.8Hz),	H ₃ C 7.54(1H, dd, J=5.5, 1.8Hz),	`` \ _ _e \	F C H C 7.03(1H, dd, 6.6, 1.5Hz), 6.98-6.88(3H, m),	6.81(1H,dd,J=8.5, 2.6Hz), 4.68(1H,q,J=6.6Hz),	[] 3.74-3.62(1H,m),	Cl (3.28-3.16(2H,m), 2.87-2.64(7H,m),	HO 0 2.19(3H,s), 1.34(3H,d,J=6.2Hz),	1.08(3H,s), 1.08(3H,s)	MS(ESI, m/z) 530 (M+H) ⁺ .
			į,	2-30	00.										2-31					

溃59

1				** ; .
0.014	, K		0.002	
¹ H-NMR(300MHz, \$ppm, DMSO-d ₆) 7.57(2H, t, J=8.8Hz), 7.40-7.28(2H, m), 7.22-7.13(2H, m), 7.09-7.02(2H, m), 6.98-6.91(2H, m), 4.71(1H, q, J=6.4Hz), 3.81-3.71(1H, m), 3.29-3.17(2H, m), 2.96-2.67(7H, m), 2.19(3H, s)	1.35(3H, d, J=6.6Hz), 1.12(3H, s), 1.12(3H, s) MS(ESI, m/z) 564(M+H) ⁺ .	¹ H-NMR(300MHz, Sppm, DMSO-d ₆) 8.22(1H, d, J=2.2Hz), 8.09(1H, dd, J=8.5, 1.8Hz), 7.58(1H, dd, J=7.4, 2.2Hz), 7.41-7.30(2H.m)	7.16(1H, t, J=8.0Hz), 7.03-6.90(3H, m), 6.83(1H, d, J=8.4Hz), 4.65(1H, q, J=6.2Hz), 3.84-3.71(1H, m), 3.29-3.20(2H, m),	2.91-2.63(7H,m), 2.17(3H,s), 1.33(3H,d,J=6.6Hz), 1.07(3H,s), 1.06(3H, s) MS(ESI,m/z) 564(M+H) ⁺ .
H ₃ C CH ₃	O OH HO	H³C CH³ CH³	T SE	ОДОН
2-32			2–33	

後8

	1	1 H-NMR (300MHz, δ ppm, DMSO- d_δ)	
	H ₃ C CH ₃ CH ₃	7.79(1H,d,J=1.8Hz), 7.71(1H,d,J=8.5Hz),	
	Z L	7.53(1H,dd,J=7.4, 2.2Hz), 7.34-7.22(2H,m),	
Č	HO HO	7.16(1H, t, J=7.9Hz), 6.98-6.87(4H,m),	2000
7-34		4.80(1H,q,J=6.6Hz), 3.81-3.71(1H,m),	0000
	<u></u>	3.28(2H,d,J=5.5Hz), 2.85-2.58(7H,m), 2.18(3H,s),	
	O → O →	1.36(3H,d,J=6.6Hz), 1.04(3H,s), 1.03(3H,s)	
,	* (1)	MS(ESI,m/z) 514 (M+H) ⁺ .	
	CI H,C CH, CH,	$^{1}{ m H-NMR}$ (400MHz, $\delta{ m ppm}$, ${ m DMSO-d_6}$)	
) N V	7.90(2H,m), 7.60-7.20(5H,m), 7.05-6.90(4H,m),	
C C	hō Hō	4.66(1H,q,J=6.4Hz), 3.70-3.60(1H,m),	110
CC_2		3.25-3.15(2H,m), 2.80-2.70(2H,m), 2.60-2.50(2H,m),	1
		1.35-1.30(3H,m), 1.05-0.95(6H,m)	*
	O_OH	MS(ESI,m/z) 516 (M+H) ⁺ .	•
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 H-NMR (300MHz, δ ppm, DMSO- d_{6})	
	Hic Chi	7.88(1H,s), 7.80-7.20(6H,m),	
	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.03(1H,d,J=7.8Hz), 6.87(1H,d,J=6.6Hz),	
2–36	>>> &	6.67(1H,d,J=9.0Hz), 4.68(1H,q,J=6.6Hz),	0.013
		3.70-3.60(1H,m), 3.30-3.15(2H,m), 2.70-2.50(4H,m),	
) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2.31(3H,s), 1.40-1.20(3H,m), 1.00-0.90(6H,m)	
	0 0	MS(ESI,m/z) 530 (M+H) ⁺ .	

[試験例]

次に、本発明化合物の生物活性について試験した。

試験例1

レポーター遺伝子を用いたカルシウム受容体に対する拮抗作用の評価

ェルに 50 mM塩化カルシウム含有培地を 1 ウェル当たり 10 μ 1 づつ加えた (終濃度 5 mM)。ブランク群には培地のみを添加した。 4 時間培養した後、ルシフェラーゼ基質を添加し、フォトルミノメーターでルシフェラーゼ活性を測定した。 得られた

15 測定値より、阻害率(%)を以下の式にて求めた。

これより50%阻害率を示す濃度(IC_{50})を求めた。結果を前記表 $1\sim60$ に示した。

試験例2

20 PTH分泌促進作用

20時間絶食させた5~9週齢雄性SDラット(日本チャールス・リバー)に被験化合物を溶媒(0.5%メチルセルロース水溶液)を用いて1 mg/5 m1/kgの用量で、経口投与した。コントロール群は溶媒のみを5 m1/kgの用量で経口投与した。被験化合物を投与15分、30分、60分及び120分後に尾静脈より採血し、

25 血清を採取した。血清中のPTH濃度をラットPTH ELISAキット (アマシャム バイオサイエンス) で測定した。結果を表 6 1 に示した。

また、比較例として下記化合物

でも、用量 $30 \, \text{mg} / 5 \, \text{ml} / \text{kg}$ で同様の試験を行ったが、PTH分泌促進作用は見られなかった。

表 61

	血清中PTH濃度 (pg/ml)			
14 EA (). A (L	15分後	30分後	60分後	120分後
被験化合物		ואכב]-ル群	
	1	被験化合	物投与群	
1-1	13.2±2.6	18.0±1.5	14.6±3.6	15.9±2.7
±	43.9±2.0	25.0±3.2	17.9±2.0	14.8±1.6
1-2	8.8±1.3	12.5±0.6	13.4±2.7	13.0±1.8
	28.5±5.3	27.1±2.3	10.5±1.3	. 12.4±1.6
1-3	8.8±1.3	12.5±0.6	13.4±2.7	13.0±1.8
	23.8±1.6	25.1±3.9	9.5±0.5	11.6±0.9
1-6	11.9±2.4	15.9±1.0	8.7±1.2	9.4±2.1
± -0	28.9±6.9	19.2±3.1	10.0±1.7	8.3±0.6
1-30	14.9±1.3	14.5±2.7	12.9±2.1	11.1±2.2
	26.1±2.3	24.2±3.3	18.2±1.3	13.8±0.6

5

試験例3.

PTH分泌促進作用

20時間絶食させた5~9週齢雄性SDラット(日本チャールス・リバー)に被験 化合物を溶媒(0.5%メチルセルロース水溶液)を用いて1mg/5m1/kgの用量で、経口投与した。コントロール群は溶媒のみを5m1/kgの用量で経口投与した。被験化合物を投与15分及び30分後に尾静脈より採血し、血清を採取した。血清中のPTH濃度をラットPTHELISAキット(アマシャム バイオサイエンス)で測定した。結果を表62に示した。

表 62

	血清中PTH濃度 (pg/ml)		
被験化合物	15分後	30分後	
	コントロール君羊		
	被験化合物投与群		
2-1	13.7±2.3	17.6±3.1	
2-1	25.1±2.3	19.1±0.9	

試験例4

代謝酵素CYP2D6阻害活性

5 代謝酵素CYP2D6の阻害測定キット (BD バイオサイエンス)を用い、キットの手順書に従い被験化合物の阻害活性を測定した。被験化合物無添加時の酵素活性を100%として、50%阻害率を示す濃度 (IC_{50})を求めた。結果を表 63 及び表 64に示した。表中、[>10]は 10μ M超を示す。

表 63

被験化合物	IC ₅₀ (μΜ)
1-57	>10
1-59	>10
1-26	>10
1-27	>10
1-32	10.0
1-33	>10
1-34	>10
1-35	>10
1-73	>10
1-39	>10
.1-48	>10
1-80	>10

10

- 表 64

被験化合物	IC ₅₀ (μM)
2-5	>10
2-20 '	>10

試験例5

15 被験化合物とエストロゲンの併用投与における骨吸収及びPTH分泌に及ぼす影響

両側卵巣摘出術を施した 13 週齢ラットを、コントロール群 (A群)、エストロゲン 単独投与群 (B群)、被験化合物単独投与群 (C群)、被験化合物及びエストロゲン併 用投与群 (D群)の4群に分けた。また、偽手術群についても、1群設定した (E群)。エストロゲンを投与する群 (B群及びD群)については、エストラジオールを 5%ベンジルアルコール・コーン油に溶解させ、 10μ g/k gの用量で皮下投与した。エストロゲンを投与しない群 (A群及びC群)については、5%ベンジルアルコール・コーン油を皮下投与した。被験化合物を投与する群 (C群及びD群)については、実施例 1-1 の化合物を 0.5%メチルセルロース溶液に懸濁させ、3m g/k gの用量で経口投与した。被験化合物を投与しない群 (A群及びB群)については 0.5%メチルセルロース溶液を経口投与した。

投与開始13日後、各群について尾静脈からの採血を実施し、血清を採取した。血中の骨吸収マーカーであるICTPの測定を市販ELISAキット (「RatLaps ELISAキット」、Nordic Bioscience Diagnostics)で実施した。

さらに、投与開始16日後に血中PTHの測定のために経時採血を実施した。各群 15 について経口投与直前及び0.25、0.5、1、2、4時間後に尾静脈より採血し、 血清を採取した。血清PTH測定には市販ELISAキット(「rat intact PTH ELISA キット」、Immutopics)を使用した。

血中ICTP測定結果を表65に、血中PTH測定結果を表66に示した。

20

表 65

~	血中ICTP濃度 (ng/ml)
A群	29.21±5.14
B群	20.93±3.18
C群	26.10±3.45
D群	21.77±3.34
E群	18.84±2.356

Mean \pm S.D., n=5

表66

0.25 hr
C
70./4T0.43 48.15H1U.13
53.65±56.31 56.55±21.71
371.21±77.74 370.78±98.28
. 52

ean +S D n=5

カルシウム受容体の作用を阻害することによってPTHの血中濃度を高めて、骨粗 鬆症を治療しようとする場合、それに用いる化合物は少なくとも下記のような特性を 有していなければならないと考えられる。

②それら化合物を投与することによって、血中PTH濃度が十分に向上すること。

③それら化合物を投与した時の経時的な血中濃度が非持続的であること。望ましく は化合物の投与3、4時間後には投与前のPTH濃度に復帰すること。

また、以下の2点の特性を有していることが好ましい。

10

- 15 (1) それら化合物を投与することによって、エストロゲン等の骨吸収抑制薬の作用を阻害しないこと。
 - (2) それら化合物のPTH分泌促進作用は、エストロゲン等の骨吸収抑制薬によって阻害されないこと。

上記試験結果からすると、本発明化合物は上記の特性を有していることは明らかで 20 ある。

①について;表1~表60に示した通り、本願発明化合物の IC_{50} 値はいずれも1 μ M以下であって、カルシウム受容体に対して十分な拮抗作用を有する。本願発明化合物は IC_{50} 値の観点からしても、いずれも好ましい化合物といえるだろう。

②について;表61及び表62に示した通り、15分後の血清中PTH濃度がn= 0の化合物についてはコントロールに比べて1.8~3.3倍、n=1の化合物については1.8倍あり、本願発明化合物はいずれも優れたPTH分泌促進作用を有することが確認された。

③について;表62に示した通り、本願発明化合物のPTH分泌は、投与15分後にピークに達し、その後急激に減少しておよそ1~2時間後には投与前の血清中PT

H濃度に復帰する。本願発明化合物はこの観点からも優れていることが明らかである。一方、文献に示されるNPS-2143について、我々も追試を行ったところ、NPS-2143のPTH分泌促進作用はやはり持続的であることが確認された。

- (1) について;表65に示すように、偽手術群とコントロール群を比較したところ、 卵巣摘出によりICTPの上昇が認められ、骨吸収が亢進していることが確認できた。 エストロゲン単独投与によりこの上昇は抑制され、また実施例1-1の併用投与によってもエストロゲンの抑制能に変化は認められなかった。
- (2) について;表66に示すように、投与前の血中PTHの値に、各群の間での差は認められなかった。経時変化について検討したところ、エストロゲン単独投与による血中PTHの上昇は認められなかったが、実施例1-1単独群及び、実施例1-1とエストロゲン併用投与群で、ともに一過性の上昇が認められた。

産業上の利用可能性

本発明に係る一般式(1)で示される化合物は、上記試験例1からも明らかな通り、 優れたカルシウム受容体拮抗作用を有する。従って、カルシウムホメオスタシスの異常を伴う疾患、即ち骨粗鬆症、上皮小体機能低下症、骨肉腫、歯周病、骨折、変形性関節症、慢性関節リウマチ、パジェット病、液性高カルシウム血症、常染色体優性低カルシウム血症、パーキンソン病、痴呆等の治療薬としての有用性が期待される。また、試験例2及び3からも明らかな通り、本願発明化合物は一過性のPTH分泌促進作用を有し、試験例4からも明らかな通り、代謝酵素CYP2D6阻害作用が弱い。従って、骨粗鬆症治療薬として特に有用である。さらに、試験例5から明らかなように、本発明化合物はエストロゲン等の骨吸収抑制薬の作用を阻害せず、また本発明化合物のPTH分泌促進作用はエストロゲン等の骨吸収抑制薬によって阻害されない。従って、本発明化合物とエストロゲン等の骨吸収抑制薬とを組み合わせて用いることは、骨粗鬆症に極めて有効であると考えられる。

本出願は、日本で出願された特願2003-119131を基礎としており、その内容は本明細書に包含されるものである。

請求の範囲

1. 下記式(1)で示される化合物、その薬学的に許容される塩またはその光学活性体:

nは、0または1を示し、

pは、1乃至3の整数を示し、

R¹は、水酸基、C₁₆アルコキシ基またはR⁴を示し、

ここで、 R^{Λ} は、 R° -OC(=O)O-C $_{1-4}$ アルキレン-O-またはOH-NH-10 を示し、

ここで、R^cは、C₁₆アルキル基又はC₂₆シクロアルキル基を示し、

 R^2 及び R^3 は、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、ハロ C_{1-6} アルキル基、カルボキシル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{1-7} アシルアミノー C_{1-6} アルキル基、 C_{2-6} アルケニル基、アラルキル基、フェニル基、 C_{1-6} アルキルアミノ基、ジ(C_{1-6} アルキル)アミノ基、 C_{1-6} アルコキシー C_{1-6} アルキル基、メルカプト基、シアノ基、ニトロ基、モルホリノ基、ピペリジノ基またはピロリジノ基を示すか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

- X^1 は、-C=C-、-C=N-、酸素原子又は硫黄原子を示し、 Zは、-S-、-SO-、 $-SO_2-$ 、 $-(CH_2)_{m1}-O-$ 、 $-O-(CH_2)_{m1}-$ 、 $-(CH_2)_{m2}-NH-$ 、 $-NH-(CH_2)_{m2}-$ 、 $-(CH_2)_{m3}-N(CH_3)-$ 、 $-N(CH_3)_{m3}-$ (CH_2) $-(CH_2)_{m3}-$ (CH_3) $-(CH_3)_{m3}-$ (CH_3) -(C
- 25 ここで、m1、m2およびm3は、それぞれ0乃至2の整数を示し、 X^2 は、-C=C-、酸素原子又は硫黄原子を示し、

 R^4 は、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基を示し、

R⁵は、水素原子またはR^Bを示し、

ここで、 R^B は、カルボキシル基で置換されてもよい C_{1-7} アシル基を示し、

Yは、炭素原子または窒素原子を示し、かつ

 R^6 、 R^7 及び R^8 は、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルキル基、ハロ C_{1-6} アルコキシ基、カルボキシル基、水酸基、シアノ基、ニトロ基、フェニル基、 C_{3-6} シクロアルキル基、ジ (C_{1-6} アルキル) アミノカルボニル基またはヒドロキシー C_{1-6} アルキル基を示すか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-、<math>-C (OH) =

10 CH-CH=CH-、-CH=C (OH) -CH=CH-、-O- (CH₂) _{k1}-O-、 -O- (CH₂) _{k2}-、- (CH₂) _{k3}-を形成する、

ここで、k1は1乃至4の整数を示し、k2は2~5の整数を示し、k3は3~6の整数を示し、

但し、 R^2 および R^3 が共に水素原子であり、かつnが1である時、Zは $-SO_2-N$ (C15 H_3) - (式中、硫黄原子は環Vに結合し、かつ窒素原子は環Wに結合する) 以外の基である。

2. 下記式(1')

20 (式中、各記号は請求項1と同義である。)

で表される立体配置を有する、請求項1記載の化合物またはその薬学的に許容される塩。

3. nが1である、請求項1または2記載の化合物、その薬学的に許容される塩また 25 はその光学活性体。

4. nが、1であり、

pが、1であり、

R¹が、水酸基またはC₁₆アルコキシ基であり、

5 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{2-6} アルケニル基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル)アミノ基またはニトロ基であるか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

10 X^1 が、-C=C-または-C=N-であり、

 $X^2 \vec{n}$, $-C = C - \vec{v}$ \vec{n}

Zが、-S-、-SO-、 $-SO_2-$ 、 $-(CH_2)_{m1}-O-$ 、 $-O-(CH_2)_{m1}-$ 、 $-(CH_2)_{m2}-NH-$ 、 $-NH-(CH_2)_{m2}-$ 、 $-(CH_2)_{m3}-N(CH_3)-$ 、 $-N(CH_3)-$ 、 $-N(CH_3) -(CH_2)_{m3} -(CH_$

15 ここで、m1、m2およびm3が、それぞれ0乃至2の整数であり、

 R^4 が、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基であり、

R⁵が水素原子であり、

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{16} アル キル基または C_{16} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって -CH=CH-CH=CH-を形成する、

請求項3記載の化合物、その薬学的に許容される塩またはその光学活性体。

5. nが、1であり、

25 pが、1であり、

 R^1 が、水酸基または C_{1-6} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルコキシ基または C_{1-6} アルキル基であり、

 X^1 が、-C=C-であり、

Zが、-S - 、-S O - 、-S O $_2$ - 、- (C H_2) $_{ml}$ - の - 、- O - (C H_2) $_{ml}$ - 、- C H_2 - N H - 、- N H - C H_2 - 、- N H - N H - 、- N H - N +

 $X^2 \vec{n}$, $-C = C - \vec{v}$ \vec{n}

5 R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

10

Yが、炭素原子または窒素原子であり、かつ

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子または C_{1-6} アルキル基であるか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-EH

請求項4記載の化合物、その薬学的に許容される塩またはその光学活性体。

6. 4-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ ェノキシ] 安息香酸、

4-[2-[1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチル 20 プロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸メチル、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、

4-[2-[1-[(2R)-3-[1-(キノリン-3-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ

エノキシ] 安息香酸、

3 - [2 - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] フェノキシ] 安息香酸、

4-[2-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2- メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル]フェニル] 10 ビニル] 安息香酸、

3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸、

4-[2-[2-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェ15 ニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ビニル] 安息香酸、

20 4-[2-[1-[(2R)-3-[[1-(4-クロロ-2-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] <math>-3, 5-ジメチル安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息 25 香酸、

3-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ベンジル] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル]]

プロパンー2ーイル]アミノ] -2ーヒドロキシプロポキシ] エチル] フェニルチオ] 安息香酸、

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルフィニル] 安息香酸、

5

4-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニルスルホニル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル] プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]フェニルアミノ]メチル] 安息香酸、

2-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

15 3-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メ <math>20 チル] 安息香酸、

4-[[2-[1-[(2R)-3-[[1-(3-7)]]]]] 25 -2-3 チルプロパン-2 - 2 -

3-フルオロ-4-[[2-[1-[(2R)-3-[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] 安息香酸、

- -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] メチル] -3-メチル安息香酸、
- 5 -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ]-3, 5-ジメトキシ安息香酸、

 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -3-ニトロ安息香酸、
- - ェノキシ] -2-ニトロ安息香酸、
 - -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フ
- 15 エノキシ] 3 クロロ安息香酸、

 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ
 - エノキシ] -2-クロロ安息香酸、
 - 4-[2-[1-[(2R)-3-[[1-(3-フルオロー4-メチルフェニル)
- 20 -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェノキシ] -2-トリフルオロメチル安息香酸、

 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ
 - ェノキシ] -3-トリフルオロメチル安息香酸、
- 25 4 [2 [1 [(2R) 3 [[1 (3 7) + 7 4 4 4 + 7] + 7])]
 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ
 - ェノキシ] -3-フルオロ安息香酸
 - -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フ

エノキシ] 安息香酸、および

4-[2-[1-[(2R)-3-[1-(4-クロロ-3-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェノキシ] -5-メチル安息香酸

- 5 からなる群より選ばれる化合物である、請求項3記載の化合物、その薬学的に許容される塩またはその光学活性体。
 - 7. nが0である、請求項1または2記載の化合物、その薬学的に許容される塩またはその光学活性体。

10

8. nが、0であり、

pが、1であり、

 R^1 が、水酸基または C_{16} アルコキシ基であり、

 X^1 が、-C=C-または-C=N-であり、

20 $X^2 \vec{m}$, $-C = C - \vec{v} \vec{n} \vec{n}$

 R^4 が、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基であり、

R⁵が水素原子であり、

Yが、炭素原子または窒素原子であり、かつ、

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アル

25 キル基または C_{1-6} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって-CH=CH-CH=CH-を形成する、

請求項7記載の化合物、その薬学的に許容される塩またはその光学活性体。

9. nが、0であり、

pが、1であり、

 R^1 が、水酸基または C_{16} アルコキシ基であり、

 R^2 及び R^3 が、同一又は異なって、それぞれ水素原子、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、トリフルオロメチル基、 C_{1-6} アルコキシーカルボニル基、

5 C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、 C_{2-6} アルケニル基、フェニル基、ベンジル基、ジ (C_{1-6} アルキル) アミノ基またはニトロ基であるか、あるいは R^2 と R^3 が一緒になってエチレンオキシ基を形成し、

 $X^1 \check{n}$, $-C = C - \bar{x} = C + C = N - C = N$

 X^2 が、-C=Cーであり、

10 R⁴が、メチル基またはシクロプロピル基であり、

R⁵が水素原子であり、

Yが、炭素原子であり、かつ、

 R^6 、 R^7 及び R^8 が、同一又は異なって、それぞれ水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基であるか、あるいは隣接する R^6 と R^7 が一緒になって

15 - CH=CH-CH=CH-を形成する、

請求項8記載の化合物、その薬学的に許容される塩またはその光学活性体。

10.2'-[1-[(2R)-3-[[1-(3-フルオロー4ーメチルフェニル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] 3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2' - [1-[(2R) -3-[[1-(4-クロロ-3-メチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (2, 3 - ジフルオロー4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2' - [1- [(2R) -3-[[1- (4-クロロー2-フルオロフェニル) -2
 5 -メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (2 - 7) ルオロー4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

15

3-メチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]ビフェニル-5-カルボン酸、

2' - [1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] ビフェニル-3,5

2' - [(シクロプロピル)](2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 220 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 3 - メチルビフェニル <math>- 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

2' -[(シクロプロピル)](2R) -3-[[1-(3-フルオロ-4-メチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] メチル] <math>-3-メチルビフェニル-4-カルボン酸、

 $2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル)] - 2 - メチルプロパン <math>- 2 - 7 \mu$ $- 3 - 2 - 2 - 2 \mu$ $- 3 - 2 \mu$ $- 3 - 2 \mu$ $- 3 - 2 \mu$

メチルビフェニルー4ーカルボン酸、

10

25

2'-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-5-カルボン酸、

5 2' - [(シクロプロピル) [(2R) -3-[[1-(4-クロロ-2-フルオロフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] メチル] -3-メチルビフェニル-4-カルボン酸、

2' - [(シクロプロピル)](2R) - 3 - [[1 - (4 - クロロー3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メトキシフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

3-メチルー2' - [1-[(2R)-3-[[1-(3,4-ジメチルフェニル)15 -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニルー4-カルボン酸、

20 2'- [1-[(2R)-3-[[1-(4-クロロ-3-メトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(4-エチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-メチルビフェニル-4-カルボン酸、

 $2' - [1 - [(2R) - 3 - [[1 - (4 - \rho - p - 2, 5 - ジフルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、$

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロ

パン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メトキシビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-メトキシビフェニル-4-カルボン酸、

2' - [1-[(2R) -3-[[1-(ナフタレン-2-イル) -2-メチルプロ パン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-(トリフルオロメチル) ビフェニル-<math>4-カルボン酸、

3-xチルー2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] <math>xチル] ビフェニルー4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - (トリフルオロメチル) ビフェニル - 4 - カルボン酸、

20

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-イソプロピルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 225 - -メチルプロパン - 2 -イソプロピルビフェニル - 4 -カルボン酸、

2-クロロ-6-[2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニル] ピリジン-3-カルボン酸、

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-プロピルビフェニル-4-カルボン酸、

- 2, $3-\tilde{y}$ メチルー2, -[1-[(2R)-3-[[1-(ナフタレン-2-イル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 プロピルビフェニル 4 カルボン酸、
- 2-クロロー6-[2-[1-[(2R)-3-[[1-(3-7)]]] フェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] フェニル〕ピリジン-3-カルボン酸、
- 3, 5-ジメチル-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル) -2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビ フェニル-<math>4-カルボン酸、
 - 2-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-m-テルフェニルー4'-カルボン酸、
- - 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3, 5 ジメチルビフェニル 4 カルボン酸、
- 4-(ヒドロキシメチル)-2,-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル] ビフェニル-3-カルボン酸、
 - 3-7 パッチルー2' -[1-[(2R)-3-[[1-(ナフタレン-2-7ル)-2-3-[[1-(ナフタレン-2-7ル]]]] -2-1 ドロキシプロポキシ] エチル] ビ

フェニルー4ーカルボン酸、

25

5 2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン <math>- 2 - 7 - 2 - 7 - 2 - 7 - 2 - 7 - 2 - 7 - 2 - 7 - 3 - 7 - 3 - 7 - 7 - 7 - 8

2' - [1 - [(2R) - 3 - [[1 - (ナフタレン - 2 - イル) - 2 - メチルプロ パン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - ヒドロキシビ フェニル - 4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 215 - メチルプロパン - 2 - 7ル]アミノ] - 2 - 2 + 7 ドロキシプロポキシ] エチル] - 3 - 2 + 7 ヒドロキシビフェニル - 4 - 7 ルボン酸、

3-xチルー2' -[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル] ビフェニルー<math>4-カルボン酸、

20 2'- [1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-イソプロピルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>- 3 - (1 - メチルプロピル) ビフェニル - 4 - カルボン酸、

2-メチルー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸、

3-メチル-2' -[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)-2]]

ーメチルプロパンー 2 ーイル]アミノ] ー 2 ーヒドロキシプロポキシ] エチル] ビフェニルー 4 ーカルボン酸、

4-7ルオロ-2' -[1-[(2R)-3-[[1-(ナフタレン-2-1ル)-2-メチルプロパン-2-1ル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル<math>-3-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 2 - メチルビフェニル - 4 - カルボン酸、

6-フルオロ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-10 2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-3-カルボン酸、

3-フルオロ-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル<math>-4-カルボン酸、

15 2'- [1-[(2R)-3-[[1-(3-クロロフェニル)-2-メチルプロパ ン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル<math>]-3-メチルビフェニ ルー4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 4 - ジクロロフェニル) - 2 - メチル プロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

20

2-フルオロ-2' -[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸、

2' - [(シクロプロピル)](2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 225 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 3 - メチルビフェニル <math>- 4 - カルボン酸、

2' - [(シクロプロピル)](2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 3 - フルオロビフェニル - 4 - カルボン酸、

2' - [(シクロプロピル)[(2R) - 3 - [[1 - (ナフタレン - 2 - イル)] - 2 - イルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] メチル] - 2 - フルオロビフェニル - 4 - カルボン酸、

2' - [(シクロプロピル) [(2R) -3-[[1-(ナフタレン-2-イル) -2
 5 -メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] メチル] -2-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(3,4-ジクロロフェニル)-2-メチル プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-2-フルオロビフェニル-4-カルボン酸、

3-クロロ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-] -メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-ニトロビフェ 15 ニルー<math>4-カルボン酸、

3-アミノ-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-<math>4-カルボン酸、

3-クロロ-2'-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]ビフェニル-4-カルボン酸、

25 2'-[1-[(2R) -3-[[1-(3-メトキシー4-メチルフェニル) -2 ーメチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2, 3-ジヒドロ-5- [2-[1-[(2R)-3-[[1-(ナフタレン<math>-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチ

ル] フェニル] ベンゾフラン-7-カルボン酸、

- 2, 6-ジメチル-2'-[1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 2, 6 ジメチルビフェニル 4 カルボン酸、
- - 2, 3-ジヒドロ-5- [2- [1- [(2R) -3-[[1- (3-フルオロ-4 -メチルフェニル) -2-メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] フェニル] ベンゾフラン-7-カルボン酸、
- 3-ベンジル-2' -[1-[(2R)-3-[[1-(3-)]2]2]2 -[1-(3-)]2
 - 2'-[1-[(2R)-3-[[1-(3-7)]]] 2-1
- 20 2' [1 [(2R) 3 [[1 (4 クロロー2 フルオロフェニル) 2 メチルプロパンー2 イル]アミノ] 2 ヒドロキシプロポキシ] エチル] <math>- 3 3 メトキシビフェニルー4 カルボン酸、
- 2' [1-[(2R) 3-[[1-(4-クロロ-3-フルオロフェニル) 2 メチルプロパン-2-イル]アミノ] 2-ヒドロキシプロポキシ] エチル] 3-25 メトキシビフェニル-4-カルボン酸、
 - 2' [1-[(2R) -3-[[1-(4-クロロ-3-フルオロフェニル) -2 -メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -2-メチルビフェニル-4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (4 クロロ 2 フルオロフェニル) 2]]

ーメチルプロパン-2ーイル]アミノ]-2ーヒドロキシプロポキシ] エチル]-2ーメチルビフェニル-4ーカルボン酸、

4-メチルー2' - [1-[(2R)-3-[[1-(ナフタレン-2-イル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニルー<math>3-カルボン酸、

2'-[1-[(2R)-3-[[1-(3,5-ジクロロフェニル)-2-メチル]] プロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(2,5-ジフルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] <math>-3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (5 - クロロ - 2 - フルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

20

2' - [1-[(2R) -3-[[1-(3-クロロ-2-フルオロフェニル) -2 -メチルプロパン-2-イル]アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸

2'-[1-[(2R)-3-[[1-(5-クロロ-3-フルオロフェニル)-225 ーメチルプロパンー2ーイル]アミノ]-2ーヒドロキシプロポキシ]ェチル]-3ーメチルビフェニル-4ーカルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3, 5 - ジトリフルオロメチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸、

2'-[1-[(2R)-3-[[1-(4-メチルー3,5-ジメトキシフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニルー<math>4-カルボン酸、

- 2'-[1-[(2R)-3-[[1-(3,5-ジメトキシフェニル)-2-メチ 5 ルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチル ビフェニル-4-カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-クロロ-3-トリフルオロメチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 t ブチルビフェニル 4 カルボン酸、
- 2' [1 [(2R) 3 [[1 (4 クロロ 2 フルオロフェニル) 2 メチルプロパン 2 イル]アミノ] 2 ヒドロキシプロポキシ] エチル] 3 15 t ブチルビフェニル 4 カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-t-ブチルビフェニル-4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 220 - メチルプロパン - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - 2 - (4 - 7) - (4 - 7
 - 2'-[1-[(2R)-3-[[1-(3-フルオロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-モルホリノビフェニル-4-カルボン酸、
- 25 2'- [1-[(2R)-3-[[1-(3-7)]]] 25 2'- [1-(2R)] 2-3-[1-(3-7)] 2-4-[1-
 - 2' [1 [(2R) 3 [[1 (3 F)]]] フルオロメチルー 4χ チルフェニル) -2χ チルプロパン -2χ アミノ] -2χ ドロキシプロポキシ] エチ

ル] -3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - (ヒドロキシメチル) ビフェニル - 4 - カルボン酸、および

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル]アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - カルボキシルビフェニル - 4 - カルボン酸

からなる群より選ばれる、請求項7記載の化合物、その薬学的に許容される塩またはその光学活性体。

10

11. 下記式(1")で示される化合物、その薬学的に許容される塩またはその光学活性体:

$$\begin{array}{c|c}
R^{4'} & H_3C & CH_3 \\
\hline
0 & N \\
0 & H
\end{array}$$

$$\begin{array}{c}
R^{6'} \\
R^{7'} \\
\end{array}$$

$$\begin{array}{c}
R^{2'} & \\
\end{array}$$

$$\begin{array}{c}
R^{1'} & \\
\end{array}$$

$$\begin{array}{c}
R^{1'} & \\
\end{array}$$

R¹'は、水酸基またはC₁₋₆アルコキシ基を示し、

 R^{2} は、水酸基、ハロゲン原子、アミノ基、 C_{1-7} アシルアミノ基、ハロ C_{1-6} アルキル基、 C_{1-6} アルコキシーカルボニル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、 C_{1-6} アルキル基、ヒドロキシー C_{1-6} アルキル基、ジ(C_{1-6} アルキル)アミノ基またはニトロ基を示し、

 R^4 は、 C_{1-6} アルキル基または C_{3-6} シクロアルキル基を示し、

20 R^6 ' は、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロ C_{1-6} アルキル基を示すか、あるいは R^7 ' が隣接する場合には R^6 ' と R^7 ' が一緒になって-CH=CH-CH=CH-を形成する、

 R^{7} は、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロC

16アルキル基を示す。

12. 下記式(1'")で示される化合物、その薬学的に許容される塩またはその光学活性体:

R²"は、C₁₋₆アルキル基を示し、

20

R⁴"は、メチル基またはシクロプロピル基を示し、

R⁶"は、ハロゲン原子またはC₁。アルキル基を示し、

 R^m は、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基またはハロ C_{1-6} アルキル基を示す。

15 2' - [1-[(2R) -3-[[1-(4-クロロ-3-フルオロフェニル) -2 -メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ]エチル] -3- メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(3-クロロ-4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2' - [1-[(2R) -3-[[1-(4-クロロ-3-メチルフェニル) -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 2 - フルオロフェニル) - 2] 25 -メチルプロパン-2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 -

メチルビフェニルー4ーカルボン酸、

2' - [1-[(2R) -3-[[1-(2-フルオロ-4-メチルフェニル) -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、

- - 2' [1-[(2R) -3-[[1-(3-フルオロ-4-メチルフェニル) -2 -メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-5-カルボン酸、
- 2' [(シクロプロピル)](2R) 3 [[1 (4 クロロー2 フルオロフ 15 エニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] メチル] 3 メチルビフェニル 4 カルボン酸、
 - 2'-[(シクロプロピル)](2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]メチル]-3-メチルビフェニル-4-カルボン酸、
- 3-メチル-2' -[1-[(2R)-3-[[1-(3,4-ジメチルフェニル)-2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] ビフェニル-4-カルボン酸、
- 2'-[1-[(2R)-3-[[1-(4-メチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニ ルー4-カルボン酸、
 - 2' [1-[(2R) -3-[[1-(4-クロロ-3-メトキシフェニル) -2 -メチルプロパン-2-イル] アミノ] -2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (4 エチルフェニル) 2 メチルプロパ

ンー2ーイル] アミノ]ー2ーヒドロキシプロポキシ] エチル] -3ーメチルビフェニルー4ーカルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 210 - メチルプロパン-2 - イル] アミノ] -2 - ヒドロキシプロポキシ] エチル] -3 - プロピルビフェニル-4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル<math>] - 3 - イソブチルビフェニル - 4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 3 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - イソプロピルビフェニル - 4 - カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - 7) ルオロ - 4 - メチルフェニル) - 2 - - メチルプロパン - 2 - - 2 - - 2 - - 4 - - 3 - - 4 -

2'-[1-[(2R)-3-[[1-(3-クロロフェニル)-2-メチルプロパ 25 ン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-メチルビフェニル-4-カルボン酸、

2'-[1-[(2R)-3-[[1-(3,4-ジクロロフェニル)-2-メチル プロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチル ビフェニル<math>-4-カルボン酸、

2' - [1 - [(2R) - 3 - [[1 - (3 - メトキシ - 4 - メチルフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] <math>- 3 - メチルビフェニル - 4 - カルボン酸、

- 2' [1-[(2R) -3-[[1-(3,5-ジクロロフェニル) -2-メチル5 プロパン-2-イル] アミノ] -2-ヒドロキシプロポキシ] エチル] <math>-3-メチル ビフェニル-4-カルボン酸、
 - 2'-[1-[(2R)-3-[[1-(4-クロロ-3-トリフルオロメチルフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、
- 2' [1 [(2R) 3 [[1 (3 7) ルオロ 4 メチルフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 t ブチルビフェニル 4 カルボン酸、

15

- 2' [1 [(2R) 3 [[1 (4 クロロ 2 フルオロフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ] エチル] 3 t ブチルビフェニル 4 カルボン酸、
- 2'-[1-[(2R)-3-[[1-(4-クロロ-3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]エチル]-3-t-ブチルビフェニル-4-カルボン酸、および
- 2'-[1-[(2R) -3-[[1-(3-トリフルオロメチル-4-メチルフェ 20 ニル) -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ]エチル] -3-メチルビフェニル-4-カルボン酸

からなる群より選ばれる、請求項11又は12記載の化合物、その薬学的に許容される塩またはその光学活性体。

- 25 14.2'-[1-[(2R)-3-[[1-(3-7) ルオロー4-メチルフェニル) -2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル] -3-メチルビフェニル-4-カルボン酸、
 - 2' [1 [(2R) 3 [[1 (4 クロロ 3 フルオロフェニル) 2 メチルプロパン 2 イル] アミノ] 2 ヒドロキシプロポキシ]エチル] <math>- 3 -

メチルビフェニルー4-カルボン酸、

2'-[1-[(2R)-3-[[1-(3-クロロ-4-メチルフェニル)-2-メチルプロパン-2-イル] アミノ]-2-ヒドロキシプロポキシ] エチル]-3-メチルビフェニル-4-カルボン酸、および

2' - [1 - [(2R) - 3 - [[1 - (4 - クロロ - 2 - フルオロフェニル) - 2 - メチルプロパン - 2 - イル] アミノ] - 2 - ヒドロキシプロポキシ] エチル] - 3 - メチルビフェニル - 4 - カルボン酸

からなる群より選ばれる、請求項13記載の化合物、その薬学的に許容される塩また はその光学活性体。

10

15

16. 2'ー[1-[(2R)-3-[[1-(4-クロロー3-フルオロフェニル)-2-メチルプロパン-2-イル]アミノ]-2-ヒドロキシプロポキシ]ェチル]ー3-メチルビフェニルー4-カルボン酸、その薬学的に許容される塩またはその光学活性体。

20

25

19. 薬学的に許容される担体と、有効成分として請求項1乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなる医薬組成物。

- 20. 有効成分が請求項3万至6のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項19記載の医薬組成物。
- 21. 有効成分が請求項7乃至10のいずれかに記載の化合物、その薬学的に許容さ 10 れる塩またはその光学活性体である、請求項19記載の医薬組成物。
 - 22. 有効成分が請求項11万至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項19記載の医薬組成物。
- 23. 薬学的に許容される担体と、有効成分として請求項1万至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなる骨粗鬆症治療薬。
- 24. 有効成分が請求項3乃至6のいずれかに記載の化合物、その薬学的に許容され 20 る塩またはその光学活性体である、請求項23記載の骨粗鬆症治療薬。
 - 25. 有効成分が請求項7万至10のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項23記載の骨粗鬆症治療薬。
- 25 26. 有効成分が請求項11乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項23記載の骨粗鬆症治療薬。
 - 27.他の骨粗鬆症治療薬との併用のための請求項23乃至26のいずれかに記載の 骨粗鬆症治療薬。

28. 他の骨粗鬆症治療薬がカルシウム剤、ビタミンD製剤、ビタミンK製剤、女性ホルモン製剤、エストロゲンアンタゴニスト製剤、蛋白同化ステロイド製剤、副甲状腺ホルモン製剤、カルシトニン製剤、ビスホスホネート製剤およびイプリフラボン製剤からなる群より選ばれる、請求項27記載の骨粗鬆症治療薬。

29. 骨粗鬆症患者に有効量の請求項1乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を投与することを特徴とする骨粗鬆症の治療方法。

10

- 30. 薬学的に許容される担体と、有効成分として請求項1乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなるカルシウム受容体拮抗薬。
- 15 31. 有効成分が請求項3万至6のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項30記載のカルシウム受容体拮抗薬。
 - 32. 有効成分が請求項7万至10のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項30記載のカルシウム受容体拮抗薬。

- 33. 有効成分が請求項11乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項30記載のカルシウム受容体拮抗薬。
- 34. カルシウム受容体拮抗作用の IC_{50} 値が、代謝酵素 P450 の阻害作用の IC_{50} 値の 10 倍以上であるカルシウム受容体拮抗薬。
 - 35. カルシウム受容体拮抗作用の IC_{50} 値が、代謝酵素 P450 の阻害作用の IC_{50} 値の 100 倍以上である請求項 34 記載のカルシウム受容体拮抗薬。

36. 代謝酵素P450がCYP2D6である請求項34記載のカルシウム受容体拮抗薬。

- - 38. カルシウム受容体拮抗作用の I C_{50} 値が 0. $1~\mu$ M以下であり、かつ代謝酵素 CYP2D6 の阻害作用の I C_{50} 値が $1~\mu$ M以上であるカルシウム受容体拮抗薬。
- 10 39. カルシウム受容体拮抗作用の IC_{50} 値が 0.1μ M以下であり、かつ代謝酵素 CYP2D6 の阻害作用の IC_{50} 値が 10μ M以上である、請求項 38 記載のカルシウム受容体拮抗薬。
- 40. カルシウム受容体拮抗薬が請求項30乃至33のいずれかに記載のカルシウム 5 受容体拮抗薬である、請求項34乃至37のいずれかに記載のカルシウム受容体拮抗 薬。
- 41. 薬学的に許容される担体と、有効成分として請求項1乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体を含んでなるPTH分20 泌促進剤。
 - 42. 有効成分が請求項3万至6のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項41記載のPTH分泌促進剤。
- 25 43. 有効成分が請求項7乃至10のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項41記載のPTH分泌促進剤。
 - 44. 有効成分が請求項11乃至18のいずれかに記載の化合物、その薬学的に許容される塩またはその光学活性体である、請求項41記載のPTH分泌促進剤。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2004/005886

A.	CLASSIFICATION	OF SUBJECT MATTER	

C07C217/28, 229/64, 233/54, 317/44, 323/62, 229/60, C07D215/12, 213/80, 307/79, A61K31/47, 31/343, 31/195, 31/216, A61P19/10, 19/08, 19/02, 29/00, 3/14, 43/00 Int.Cl7

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07C217/28, 229/64, 233/54, 317/44, 323/62, 229/60, C07D215/12, 213/80, 307/79, A61K31/47, 31/343, 31/195, 31/216, A61P19/10, Int.Cl7 19/08, 19/02, 29/00, 3/14, 43/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х .	WO 02/14259 A1 (Japan Tobacco Inc.), 21 February, 2002 (21.02.02), & JP 2003-12616 A & EP 1308436 A1 & US 2004/0006130 A1	1-2,7-9,19, 21,23,25, 27-28,30,32, 41,43
A	Example 86	3-6,10-18, 20,22,24,26, 31,33-40,42, 44
A	JP 2001-501584 A (NPS Pharmaceuticals, Inc.), 06 February, 2001 (06.02.01), & WO 97/37967 A1 & EP 901459 A1 & US 2002/0099220 A1	1-28,30-44

	•	
	Further documents are listed in the continuation of Box C.	See patent family annex.
* "A" "E" "L" "O" "P"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
Date	of the actual completion of the international search 25 May, 2004 (25.05.04)	Date of mailing of the international search report 15 June, 2004 (15.06.04)
	and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsi	mile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/005886

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: 29
because they relate to subject matter not required to be searched by this Authority, namely: It pertains to methods for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.
· ·

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. 7 C07C217/28, 229/64, 233/54, 317/44, 323/62, 229/60, C07D215/12, 213/80, 307/79, A61K31/47, 31/343, 31/195, 31/216, A61P19/10, 19/08, 19/02, 29/00, 3/14, 43/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) C07C217/28, 229/64, 233/54, 317/44, 323/62, 229/60, C07D215/12, 213/80, 307/79, Int. Cl. 7 A61K31/47, 31/343, 31/195, 31/216, A61P19/10, 19/08, 19/02, 29/00, 3/14, 43/00 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 WO 02/14259 A1 (日本たばこ産業株式会社) 1-2, 7-9, 19 \mathbf{X} , 21, 23, 25 2002, 02, 21 , 27–28, 30, 32 & JP 2003-12616 A & EP 1308436 A1 & US 2004/0006130 A1 実施例86 , 41, 43 3-6, 10-18, 20 Α , 22, 24, 26, 31 , 33-40, 42, 44 IP 2001-501584 A (エヌヒ゜ーエス・ファーマシウティカルス゛・インコーホ゜レイテット゛) 2001.02.06 1-28, 30-44Α & WO 97/37967 A1 & EP 901459 A1 & US 2002/0099220 A1 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 の日の後に公表された文献 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査報告の発送日 国際調査を完了した日 25.05.2004 15.6.2004 特許庁審査官(権限のある職員) 9049 4 H 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 本堂裕司 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3443

第II 欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. X 請求の節囲 2.9 は、この国際調査機関が調査をすることを興したい対象に係るものできる
つまり、
治療による人体の処置方法に関するものであり、PCT17条(2)(a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が国際調査をすることを要しない対象に係
るものである。
2. 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3 請求の範囲
従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.
4. □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意 道加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。