AP Chemistry Equations & Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

ATOMIC STRUCTURE

$$E = h\nu$$
$$c = \lambda\nu$$

v= frequency $\lambda=$ wavelength Planck's constant, $h=6.626\times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ Speed of light, $c=2.998\times 10^8\,\mathrm{m}\,\mathrm{s}^{-1}$ Avogadro's number $=6.022\times 10^{23}\,\mathrm{mol}^{-1}$ Electron charge, $e=-1.602\times 10^{-19}$ coulomb

E = energy

EQUILIBRIUM

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$$

$$K_p = \frac{(P_C)^c(P_D)^d}{(P_A)^a(P_B)^b}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

$$= K_a \times K_b$$

$$pH = -\log[H^+], pOH = -\log[OH^-]$$

$$14 = pH + pOH$$

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a, pK_b = -\log K_b$$

Equilibrium Constants

 K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)

KINETICS

$$\ln[A]_t - \ln[A]_0 = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{0.693}{k}$$

$$k = \text{rate constant}$$

 $t = \text{time}$
 $t_{1/2} = \text{half-life}$

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where $X_A = \frac{\text{moles A}}{\text{total moles}}$

$$P_{total} = P_{\rm A} + P_{\rm B} + P_{\rm C} + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

KE per molecule =
$$\frac{1}{2}mv^2$$

Molarity, M =moles of solute per liter of solution

$$A=abc$$

$$P = pressure$$

$$V = \text{volume}$$

T =temperature

n = number of moles

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbancea = molar absorptivity

b = path length

c =concentration

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

= $0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$ = $62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$

1 atm = 760 mm Hg = 760 torr

 $STP = 0.00^{\circ}C \text{ and } 1.000 \text{ atm}$

THERMOCHEMISTRY/ ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ}$$
 products $-\sum S^{\circ}$ reactants

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products } -\sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products } -\sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$= -RT \ln K$$

$$=-n\,FE^{\circ}$$

$$I = \frac{q}{t}$$

$$q = \text{heat}$$

$$m = \text{mass}$$

$$c = \text{specific heat capacity}$$

$$T = temperature$$

$$S^{\circ}$$
 = standard entropy

$$H^{\circ}$$
 = standard enthalpy

$$G^{\circ}$$
 = standard free energy

$$n = \text{number of moles}$$

$$E^{\circ}$$
 = standard reduction potential

$$I = \text{current (amperes)}$$

$$q = \text{charge (coulombs)}$$

$$t = time (seconds)$$

Faraday's constant, F = 96,485 coulombs per mole of electrons

$$1 \text{volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$

,	Ž He	4 00	10	2	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Rn	(222)			
Ĺ	<u> </u>	4	-	_	_								3	×							
			0	^	1	19.00	17	C	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)			
			~	0	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	\mathbf{Po}	(209)			
(1		7	`	Z	14.01	15	Ь	30.97	33	As	74.92	51	$\mathbf{S}\mathbf{p}$	121.75	83	Bi	208.98			
LIN	 -		9		C	12.01	14	Si	28.09	32	Ge	72.59	50	\mathbf{Sn}	118.71	82	Pb	207.2			
RIODIC TABLE OF THE ELEMENTS			v	0	B	10.81	13	Al	26.98	31	Сa	69.72	49	In	114.82	81	Π	204.38			
EL										30	Zn	62.39	48	Cq	112.41	80	Hg	200.59			
THE										29	Cn	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(272)
OF?	 									28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(271)
LE										27	ပိ	58.93	45	Rh	102.91	77	ŗ	192.2	109	Mt	(368)
TAB										26	Fe	55.85	44	Ru	101.1	92	ŏ	190.2	108	Hs	(277)
DIC										25	Mn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)
2101										24	\mathbf{Cr}	52.00	42	Mo	95.94	74	×	183.85	106	So	(392)
PEI										23	>	50.94	41	S	92.91	73	Тa	180.95	105	Dp	(292)
										22	Ξ	47.90	40	\mathbf{Z}_{Γ}	91.22	72	Hľ	178.49	104	Rf	(261)
										21	Sc	44.96	39	X	88.91	57	*La	138.91	68	†Ac	227.03
			4	+	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	99	Ba	137.33	88	Ra	226.02 227.03
-	H	1 008	3	,	Ë	6.94	11	Na	22.99	_	K					_			87	Fr	(223)

	ŝ	23		10
*Lanthanide Series	Çe	Pr	PZ	Pm
	140.12	140.91	140.12 140.91 144.24	
	06	91	92	93
†Actinide Series	$\mathbf{T}\mathbf{h}$	Pa	Ω	ď

89	\mathbf{Er}	167.26	100	Fm
29	Ho	164.93	66	Es
99	Dy	162.50	86	Ct
65	$\mathbf{T}\mathbf{p}$	158.93	26	Bk
64	Сd	157.25	96	$\mathbf{C}\mathbf{m}$
63	En	151.97	95	Am
62	\mathbf{Sm}	150.4	94	Pu
61	Pm	(145)	93	ďΝ
09	Nd	144.24	92	n
59	Pr	140.91	91	Pa
58	Ç	140.12	06	Th

_				
71	Lu	174.97	103	Γ
70	ΧÞ	173.04	102	N _o
9	Tm	168.93	101	Md
	Er			
67	Ho	164.93	66	Es
99	Dy	162.50	86	Ct
65	Tp	158.93	62	Bk
49	Вd	157.25	96	Cm
63	Eu	151.97	95	Am

(262)

(257) (258) (259)

(252)

(247) (251)

(247) Cm

(243) Am

(237) (244)

232.04 231.04 238.03