Handout 7: 2.3 Toolkit Functions and Symmetry

1. Sketch a graph of each piecewise-defined function.

a.
$$h(t) = \begin{cases} -0.5t - 2, & t > 2\\ \frac{1}{t}, & 0 < t \le 2\\ t, & t \le 0 \end{cases}$$
 b. $q(x) = \begin{cases} x^2, |x| < 2\\ 2^x, & x \ge 2 \end{cases}$

- 2. Suppose g(x) is linear and g(3) = 4 and g(-2) = 0.
- a. Graph g(x).
- b. Write an equation for g(x).
- 3. Suppose h(x) is linear and you know h(0) = -2 and that h(x+4) h(x) = -6 for all x.
- a. Graph h(x).
- b. Write an equation for h(x).
- 4. Graph l(x) = 3x + 2.
- a. What would l(x + 1) l(x) be for all x?
- b. What would l(x + 3) l(x) be for all x?
- c. What would l(x-2) l(x) be for all x?
- 5. The graph shows the function k for which $x \ge 0$.

Sketch the graph of k for all x

- a. if *k* is an even function.
- b. if *k* is an odd function.
- c. if k is symmetric about x = 1.

6. Determine what type of symmetry each of the functions below has.

a.

х	f(x)
4	3
3	4
2	1
1	2
-1	-3
-3	-1

h

b.	
t	P(t)
-3	4
-2	0
-1	1
0	6
1	1
2	0
3	4

c

c.	
r	s(r)
-1	1
-2	6
-3	-5
1	-1
2	-6
3	5

7. If f(x) is symmetric about the line x = -3 and the point (1,1) is on its graph, what other point must be on the graph?

8. Determine whether the following are even, odd or neither, algebraically. a. $p(x) = x^2 + 7$ c. $q(t) = (t - 3)^2$ b. $r(n) = \frac{n}{n^5}$ d. $w(x) = x^3 + 5x$

a.
$$p(x) = x^2 + 7$$

b. $r(n) = \frac{n}{n^5}$

c.
$$q(t) = (t-3)^2$$

b.
$$r(n) = \frac{n}{n^5}$$

d.
$$w(x) = x^3 + 5x$$

9. Given a function f(x), determine the symmetry of

a.
$$g(x) = -2[f(x) + f(-x)]$$
 and
b. $h(x) = -2[f(x) - f(-x)]$.

b.
$$h(x) = -2[f(x) - f(-x)]$$