Analyze stock prices on May 11th, 2021

In this analysis, we look at the highest "highs" and lowest "lows" of 10 stocks:

- Facebook (FB)
- Shopify (SHOP)
- Beyond Meat (BYND)
- Netflix (NFLX)
- Pinterest (PINS)
- Square (SQ)
- The Trade Desk (TTD)
- Okta (OKTA)
- Snap (SNAP)
- Datadog (DDOG)

```
In [1]: # Load libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from datetime import datetime
```

1/8

```
In [2]: # Read data queried from AWS Athena
res = pd.read_csv("results.csv")
res
```

Out[2]:

	name	hour	highest_price
0	SHOP	3	1121.59
1	SHOP	1	1117.99
2	SHOP	2	1116.00
3	SHOP	11	1104.30
4	SHOP	12	1101.40
65	SNAP	1	52.67
66	SNAP	9	52.64
67	SNAP	10	52.63
68	SNAP	12	52.55
69	SNAP	11	52.25

70 rows × 3 columns

```
In [3]: # Convert to army time
    newhours = []
    for i in res['hour']:
        i = str(i)
        if i == "1":
            i = "13"
        elif i == "2":
            i = "14"
        elif i == "3":
            i = "15"
        i = datetime.strptime(i,"%H")
        newhours.append(i.hour)
    newhours
    res['nhours'] = newhours
    res.head()
```

Out[3]:

	name	hour	highest_price	nhours
0	SHOP	3	1121.59	15
1	SHOP	1	1117.99	13
2	SHOP	2	1116.00	14
3	SHOP	11	1104.30	11
4	SHOP	12	1101.40	12

Stock Name
name
SHOP
TTD
NFLX
FB
OKTA
SQ
BYND
DDOG
PINS
SNAP

Out[36]: <matplotlib.legend.Legend at 0x7fe5a0c0c790>

SHOP stock price stayed the highest out of all stocks. SHOP and TTD increased towards the end of the day while others didn't fluctuate much

file:///Users/jo/Downloads/Analysis (1).html

```
In [27]: # Get the highest high by stock
    df2 = res.groupby("name", as_index = False).agg({'highest_price':'mean'})
    df2 = df2.rename(columns = {'highest_price':'price'})
    df2['type'] = 'highest'
    df2
```

Out[27]:

	name	price	type
0	BYND	108.534286	highest
1	DDOG	78.347143	highest
2	FB	305.755714	highest
3	NFLX	495.310000	highest
4	OKTA	237.068571	highest
5	PINS	59.615714	highest
6	SHOP	1102.051429	highest
7	SNAP	52.808571	highest
8	SQ	219.520000	highest
9	TTD	499.014286	highest

```
In [28]: # Get lowest low by stock data queried from Athena
    df3 = pd.read_csv("result2.csv")
    df3['type'] = 'lowest'
    df3.columns = ['name', 'price', 'type']
    df3
```

Out[28]:

	name	price	type
0	NFLX	478.630005	lowest
1	SQ	205.690002	lowest
2	FB	299.769989	lowest
3	SHOP	1031.750000	lowest
4	PINS	55.602901	lowest
5	TTD	467.100006	lowest
6	BYND	100.818604	lowest
7	OKTA	218.550003	lowest
8	SNAP	50.139999	lowest
9	DDOG	73.040001	lowest

```
In [30]: # Combine two dataframes
df4 = df2.append(df3)
```

```
In [37]: # Plot the highest high and lowest low by stock
   plt.figure(figsize = (10,6))
    sns.barplot(x = 'name', y = 'price', hue = 'type', data = df4)
   plt.title("Highest High and Lowest Low by Stock")
   plt.xlabel("Stock")
   plt.ylabel("Price ($)")
```

Out[37]: Text(0, 0.5, 'Price (\$)')

The fluctuation between the highest and the lowest of SHOP is the largest then TTD and OKTA and SQ

The difference between the highest and the lowest is the lowest in SNAP, PINS, DDOG, FB, BYND