Exploring Polarization-Splitting Grating Couplers on a Silicon-Nitride platform at 1550 nm

Tobias Thaller

March 25, 2024

Modes and effective indices

The Bragg equation for gratings

Important parameters:

- Period **\Lambda**
- Toothlength **d**
- Negative diffraction angle $\boldsymbol{\theta}$
- Refractive indices $n_c = n_{trench}$ and $\mathbf{n}_{\text{tooth}}$
- $l = sin(-\theta) * \Lambda$

$$n_{eff} \cdot \Lambda - n_c \cdot \Lambda \cdot sin(\theta) = \lambda$$
 (Bragg equation)

$$n_{eff} = FF \cdot n_{tooth} + (1 - FF) \cdot n_{trench} \; ; \quad FF := \frac{d}{\Lambda}$$

SiN platform

Low loss at 1550 nm

Self-imaging effect with apodized gratings

- Curved gratings achieve a focusing effect in transverse direction
- Circular gratings are a good approximation of the optimal shape

Polarization-Splitting Grating Coupler (PSGC)

 Symmetrical design of PSGC

$$\Rightarrow \varphi = 45^{\circ}$$

 In-house fiber array has polishing angle of 8 degrees

$$=> \theta_{45^{\circ}} = 8^{\circ}$$

Polarization-Splitting Grating Coupler (PSGC)

$$\cos \beta = \sin \theta_{45^{\circ}} \cdot \cos \phi$$

$$n_{eff} \cdot \Lambda - n_c \cdot \Lambda \cdot sin(\theta) = \lambda$$
 (Bragg 2D)

$$n_{eff} \cdot \Lambda + n_c \cdot \Lambda \cdot \cos(\beta) = \lambda$$
 (Bragg 3D)

$$\sin(\theta) = -\cos(\beta)$$

$$\theta = -\arcsin\left(\sin\theta_{45^{\circ}} \cdot \cos\phi\right) \approx -5.65^{\circ}$$

$$FF_{initial} + FF_{final} = FF = \frac{n_c \cdot \sin \theta + \frac{\lambda}{\Lambda} - n_{trench}}{n_{tooth} - n_{trench}}$$

- $\theta = -5.65^{\circ}$
- $\lambda = 1550 \text{ nm}$
- FF and Λ are coupled variables
- FF is composed of FF_{initial} and FF_{final}

 $FF_{initial} = 0.95$

 $FF_{initial} = 0.6$

- Best Gauss-fit for maximal FF_{initial}
- To be determined: optimal value for Λ between 880 and 900 μm

SMF-28 fiber

Refinement of simulation setup: in-coupling configuration

 $d_w = [90, 290] \mu m$ $d_x = [17, 22] \mu m$ $\Lambda = [880, 900] \mu m$

 $d_w = 190 \mu m$ $d_x = 19 \mu m$ $\Lambda = 892 \mu m$

Distances of the source from the chip d_w and x-position d_x become relevant.

T = 43.8% (mesh ~ 30 nm) T = 51.8% (mesh ~ 1 nm)

Simulation results for circular gratings and rotated source

Transmission

2D GC	Pos b	Pos a
43.8%	17.4%	10.6%
3.6 dB	7.6 dB	9.7 dB

Less than 3 dB loss for a polishing angle of 11.35°:

- < 1.5 dB for circular gratings
- < 1.5 dB for rotating the source

Polarization angle dependence

Outlook and improvement

- 1. Improvement suggestions for the 2D PC
- 2. Outlook PSGC

Possible improvements for the 2D GC

 n_{tooth} = 1.697 instead of n_{tooth} = 1.68 changes the diffraction angle from θ = -5.20° to θ = -5.65°

Possible improvements for the 2D GC

- Fabry-Pérot oscillations
- Increasing of the number of gratings above 50 (~ 0.3 dB improvement for 70 gratings expected)
- More complicated apodization

Outlook PSGC

- Scattering elements at intersections of the two GCs
- The shape of these scattering elements is crucial
- Introduction of Ψ to increase coupling efficiency

From Laere et al. (1)

Appendices:

Notes

