

B) For i # j

The (i,j) th entry of MM is a

sam of over all edges containing i and

j as end vertices of which them When {i,j} EE, the entry is 1

So, when i #j, the entry (MMT); is

the number of edges joining vertex;

to vertex j. 1001000 2 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 2 1

F) w is a central vertex for graph H
in part G.
$d(u,v) \subseteq d(u,\omega) + d(\omega,v)$
d(u, w) and $d(w, v)$ and $d(w, v)$
gradius of graph because Every longest
path has central vertex.
d(u,v) is a diameter of graph
:. Diameter (H) = 2 radius (H)

9-3	
	Given that Gis a graph without loops
	and or bois variety of Ge
	$u \approx \omega$
	and $d(x, u) = d(x, \omega)$
	u and w are at the same distance
	of 2.
	A.) For each verdex rev(a)
	we have $d(x, u) = d(x, u)$
	·: u ~ u = V(G)
	50, ~ is geflexive gelation
	B.) Suppose u, w = V(G) and u = W.
	$d(2, 2) = d(2, \omega)$
	$d(\mathfrak{R},\omega)=d(\mathfrak{R},u)$
	$\omega \approx \alpha$.
	So, u≈ w <=> w ≈ u, tu, w ∈ V(G)
	:. \approx is Symmetric relation.
	c) Suppose $u, v, \omega \in V(\omega)$ and $u \approx w$ and $\omega \approx v$ $d(2r, u) = d(2r, \omega) \text{ and } \omega \approx v$
	$d(2, u) = d(2, \omega)$ and
	$d(x, \omega) = d(x, V)$
	o, d(9,U) = d(9,V)
	:. 4× V

Thus usw and wsv => usv. +u,v,w EV(G) is a transitive relation Equivalence class [7] = { U such that and & {w such that n~w} :. [2] = {u: 2~u} = {w: 2~w} E) ru is an edge. i. d(2, u) = 1 : [u] = {v = V(G) | D(2, v) = 1} = The set of all vertices adjacent to the vertex U = N(u), the set of all neighbourny vertices of u (different from u).