Final Review

String Basics

Theorem. If A is an alphabet with k symbols, there are k^n strings of size nover \mathcal{A} for all $n \geq 0$.

Theorem. If A is an alphabet with k symbols, there are k! permutations over \mathcal{A} .

Theorem. If n and k are positive integers with $0 \le k \le n$, the number of ways to choose k elements from a set of size n is equal to

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Theorem. If x and y are variables and n is a positive integer:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Example: $(x+y)^4 = {4 \choose 0} \times {4 \choose 1} \times {4 \choose 1} \times {4 \choose 2} \times {4 \choose 2} \times {4 \choose 3} \times {4 \choose 3} \times {4 \choose 4} \times {4 \choose 5} \times {4 \choose$ x + 4 x 3 + 6x 2 2 + 1/2 3 + 42

Multinomials. Let (n_1, n_2, \dots, n_k) be a sequence of k non-negative numbers summing to n. The number of strings over an alphabet of size k with content (n_1, n_2, \dots, n_k) is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! \, n_2! \cdots n_k!}.$$

How many ways can the letters of the word ACCESS be arranged? What if the word must contain the string SAS?

$$2 C'' 2 S'' \left(\frac{6}{1,2,1,2}\right) = \frac{6!}{2 \cdot 2} \quad possible$$

$$SAS = X \quad CCEX \qquad \underline{4!} \quad possible \quad with SAS$$

Counting by inclusion-exclusion

Inclusion-Exclusion

- Let S be the ground set (i.e. all possible elements) and assume |S| = N.
- Let C_1, \ldots, C_t be properties that elements of S may or may not satisfy.
- We let \overline{N} denote the number of elements of S satisfying none of the properties C_1, C_2, \ldots, C_t
- For a subset of properties, say $\{C_1, C_3, C_6\}$ we let $N(C_1C_3C_6)$ denote the number of elements of S that satisfy C_1 and C_3 and C_6 .

Theorem:
$$\overline{N} = \sum_{k=0}^{t} (-1)^k S_k = S_0 - S_1 + S_2 - S_3 \dots + (-1)^t S_t$$

Here each S_k denotes the sum over all possible sets of k conditions of the number of elements satisfying all k of these conditions. So for instance $S_3 = N(C_1C_2C_3) + N(C_1C_2C_4) + \dots$

Examples:

• For two conditions C_1, C_2 we have

$$\overline{N} = S_0 - S_1 + S_2$$

$$= N - \left(N(C_1) + N(C_2)\right) + \overline{N(C_1C_2)}$$

• For three conditions C_1, C_2, C_3 we have

$$\overline{N} = S_0 - S_1 + S_2 - S_3
= N - \left(N(C_1) + N(C_2) + N(C_3) \right)
+ \left(N(C_1C_2) + N(C_1C_3) + N(C_2C_3) \right) - N(C_1C_2C_3)$$

Note: inclusion-exclusion problems come in two varieties:

- 1. There are few conditions and you must evaluate each term individually.
- 2. The terms contributing to each S_k are equal.

Example of type 1: There are 100 students taking an intro course in three subjects: Math, History, and Economics. 30 of these students get an A in math, 40 get an A in history, and 35 get an A in econ. There are 20 who get an A in math and econ, 25 who get an A in history and econ, and 15 who get an A in math and History. Finally, assume that there are 10 people who get an A in all three classes. How many of the 100 students did not get an A?

$$C_{1} = A \text{ in mod}$$

$$C_{2} = A \text{ in hist}$$

$$V = N - (N(C_{1}) + N(C_{2}) + N(C_{3}))$$

$$+ (N(C_{1}C_{2}) + N(C_{1}C_{3}) + N(C_{2}C_{3}))$$

$$- N(C_{1}C_{2}C_{3})$$

$$= 100 - (30 + 40 + 35) + (25 + 15 + 20) - 10$$

Example of type 2: How many functions from $\{1, 2, ..., 10\}$ to $\{A, B, C, D, E\}$ are onto (Recall: a function f from X to Y is onto if every $y \in Y$ has some $x \in X$ with f(x) = y)

C₁ A not in range

C₂ B

$$\overline{N} = 4 \text{ onto finet.}$$

C

 $\overline{N} = 4 \text{ onto finet.}$
 $\overline{N} = 4 \text{ onto finet.}$
 $\overline{N} = 5^{10} - (5) 4^{10} + (5) 3^{10} - (5) 2^{10} + (5) 1$

Recurrences

Definition. An infinite sequence a_0, a_1, a_2, \ldots of integers satisfies a **recurrence relation** of **order** k if there exist functions f and g so that the following equation holds for all $n \geq k$

$$f(a_n, a_{n-1}, \dots, a_{n-k}) = g(n)$$

(we will always assume that f is a polynomial)

Notation:

- **linear** means that *f* is a polynomial of degree 1
- **homogeneous** means the g(n) = 0
- **constant coefficients** means that the coefficients of the a_i 's in the function f are constants not depending on n.

Finding recurrence relations. This is usually a matter of understanding how to recursively assemble (or disassemble) the objects of interest.

Ex: For every nonnegative integer n, let S_n be the set of strings over the alphabet $\{A, B, C\}$ with the property that every A and every B is immediately followed by a C. If $s_n = |S_n|$ find a recurrence relation for s_n .

$$AC(n-2)$$

$$BC(n-2)$$

$$C(n-1)$$

$$S_{1} = 1$$

$$S_{2} = 3$$

$$AC_{1}CC_{2}CC_{3}$$

$$S_{n} = S_{n-1} + 2S_{n-2}$$

Solving recurrence relations. We have only solved recurrence relations with order ≤ 2 that are linear with constant coefficients. Here there are three skills of interest:

1. **Find the general solution** to a homogeneous equation.

Ex: Find the general solution to

$$2a_{n} - 5a_{n-1} + 3a_{n-2} = 0$$

$$2r^{2} - 5c + 3 = 0$$

$$(2c - 3)(c - 1) = 0$$

$$r - (r - \frac{3}{2})^{n}$$

$$a_{n} = C + D(\frac{3}{2})^{n}$$

2. Find a particular solution to a nonhomogeneous equation.

Ex: Find a particular solution to

$$a_{n} - 5a_{n-1} + a_{n-2} = 2^{n}$$
Gue $a_{n} : C \cdot 2^{n}$

$$C \cdot 2^{n} - 5C \cdot 2^{n-1} + C \cdot 2^{n-2} = 2^{n}$$
by 2^{n-2}

$$YC - 10C + C = 4$$

$$-5C = 4$$

$$C = -\frac{4}{5}$$

3. Solve for initial conditions to **find unique solutions**.

Ex: Consider the recurrence relation

$$a_0 = 2$$
 $a_1 = 8$
$$a_n - 4a_{n-1} + 3a_{n-2} = 4$$
 for $n > 2$

You are given:

- the associated homogeneous equation $a_n 4a_{n-1} + 3a_{n-2} = 0$ has general solution $C + D3^n$
- the recursive equation $a_n 4a_{n-1} + 3a_{n-2} = 4$ has a particular solution $a_n = -2n$ (-2n) - 4(-2(n-1)) + 3(-2(n-2)) = 9

Find the unique solution to the given recurrence relation.

$$\bigcirc -0$$
 $6 = 2D - 2$ $D = 9$ $C = -2$

$$Q_{n} = -2 + 4.3^{n} - 2n$$

Generating Functions

Recall: A generating function $A(x) = a_0 + a_1x + a_2x^2 + \ldots = \sum_{n=0}^{\infty} a_nx^n$ is **not** a function. It is a *formal power series*, a convenient way of working with an infinite sequence of numbers.

Note: We work with generating functions A(x) in two forms:

- (i) $A(x) = \sum_{n=0}^{\infty} a_n x^n$ (an infinite sequence of coefficients)
- (ii) $A(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials (as rational functions)

Know:

•
$$1 + 2x + 3x^2 + 4x^3 + \dots = \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}$$

Problems.

1. Express the GF associated with the sequence $(-2,2,-2,2,-2,2,\ldots)$ as a rational function.

2. What is the coefficient of x^5 in $\frac{5x^2}{3-x}$?

$$\frac{5x^{2}}{3-x} = \frac{5}{3}x^{2}\left(\frac{1}{1-\frac{x}{3}}\right)$$

$$= \frac{5}{3}x^{2}\left(1+\frac{x}{3}+\frac{x^{2}}{3}+\frac{x^{2}}{23}+\dots\right)$$

$$= \frac{5}{3}x^{2}\left(1+\frac{x}{3}+\frac{x^{2}}{3}+\frac{x^{2}}{23}+\dots\right)$$

$$= \frac{5}{3}x^{2}\left(1+\frac{x}{3}+\frac{x^{2}}{3}+\frac{x^{2}}{23}+\dots\right)$$

3. Apply partial fractions to $\frac{1}{(x-2)(x-4)}$

$$\frac{1}{(x-2)(x-4)} = \frac{A}{x-2} + \frac{B}{x-4}$$

$$= \frac{1}{(x-2)(x-4)} = \frac{A}{x-2} + \frac{1}{x-2}$$

4. Assume that $A(x) = \sum_{n=0}^{\infty} a_n x^n$ where the sequence a_0, a_1, \ldots satisfies the recurrence relation

$$a_0 = 2 a_1 = 9$$

$$a_n - 3a_{n-1} + 7a_{n-2} = 0$$

Express A(x) as a rational function.

$$\left[x^{\Lambda} \right] \left(A(x) - 3x A(x) + 7x^{2} A(x) \right)$$

$$= q_{n} - 3q_{n-1} + 7q_{n-2}$$

$$= 0$$

$$\left(x^{O} \right) \left(A(x) - 3x A(x) + 7x^{2} A(x) \right) = q_{0} = 2$$

$$\left[x^{I} \right] \left(A(x) - 3x A(x) + 7x^{2} A(x) \right) = q_{1} - 3q_{0} = 3$$

$$A(x) - 3x A(x) + 7x^{2}A(x) = 2 + 3x$$

$$A(x) \left(1 - 3x + 7x^{2}\right)$$

$$A(1) = \frac{2+3x}{1-3x+7x^2}$$

Trees and Rooted Trees

Definition. A graph is a **tree** if it is connected and has no cycle.

Theorem. Let G = (V, E) be a graph and consider the following properties:

- 1. *G* is connected
- 2. G has no cycle
- 3. |V| = |E| + 1

If G has any two of these properties, then it has the third (and G is a tree)

Definition. A **rooted tree** is a pair (T, r) where T is a tree and $r \in V(T)$ is a distinguished vertex called the **root**.

Vocabulary for rooted trees.

- parent, children, ancestor, descendant
- The **level** of a vertex is the distance from the root.
- A rooted tree is **ordered** if the children of each vertex are equipped with a linear order.
- A rooted tree is m-ary if every vertex has at most m children. (2-ary also known as **binary**
- An m-ary tree is **complete** if every vertex has 0 or m children.
- An *m*-ary tree is **balanced** if every leaf is on the last or second-to-last level.

Ex: Draw all rooted binary trees with height 2.

Ex: Let t_n denote the number of ordered binary trees on n vertices. Find a recursive formula for t_n .

11

Graphs

Note:

- Know basic terminology
- Know basic graphs (complete, complete bipartite, paths, cycles)

Ex: Draw K_4 , $K_{3,3}$, P_5 and C_5 .

Theorem. For every graph G = (V, E)

$$2|E| = \sum_{v \in V} \deg(v).$$

Corollary. Every graph has an even number of vertices with odd degree.

Theorem (Euler). A connected graph G has an Euler circuit if and only if every vertex of G has even degree.

Ex: Do the following graphs have Euler circuits?

Terminology.

- (i) A *drawing* of a graph in the plane is an **embedding** if there are no crossings, so the edges tough other edges and vertices only at their ends
- (ii) A graph is **planar** if there exists an embedding of it in the plane.

Theorem (Kuratowski-Wagner) A graph G is planar if and only if G does not contain a subdivision of $K_{3,3}$ or a subdivision of K_5 as a subgraph.

Ex: Determine if the following graphs are planar. To do so, either find an embedding of the graph in the plane, or find a subdivision of $K_{3,3}$ or K_5 .

Theorem (Euler) If G = (V, E) is a connected planar graph, embedded in the plane with face set F, then

$$|V| - |E| + |F| = 2.$$

Theorem. If G = (V, E) is a multigraph embedded in the plane with faces f_1, \ldots, f_k , then

$$\sum_{i=1}^k \deg(f_i) = 2|E|.$$

Definition. Let G be a multigraph embedded in the plane. To construct a **dual** multigraph G^* , put one vertex of G^* in each face of G, then for each edge $e \in E(G)$, if e lies on the boundary of faces f and f' (in the embedding of G), make an edge e^* in the dual graph G^* between the vertices corresponding to f and f' (this may be done so that e^* crosses e and G^* also ends up embedded in the plane).

Ex: Draw the planar dual of the following graph:

Ex: If G is a planar graph with 20 vertices and 36 edges, what is the average degree of a dual graph G^* of G?

$$2 = |V| - |E| + |F|$$

$$= 20 - 76 + |F|$$

$$5. |F| = 18$$

$$4.01 \text{ l.s. } 18 \text{ vert.} 36 \text{ adgs.} \text{ as dg} = \frac{2|E|^{13}}{|V|} = 4$$

Definition. Let G be a graph. A path of G is **Hamiltonian** if it contains every vertex of G. Similarly, a cycle of G is **Hamiltonian** if it contains every vertex of G.

Ex: Let $n \geq 2$ and let G_n be a graph with vertex set $\{u_1, \ldots, u_n, v_1, \ldots, v_n\}$ and edges:

- $\{u_i, u_j\}$ for all $1 \le i < j \le n$,
- $\{v_i, v_j\}$ for all $1 \le i < j \le n$,
- $\{u_1, v_1\}$ and $\{u_2, v_2\}$.

First draw G_4 . Then determine how many Hamiltonian cycles and paths are in G_n for every $n \geq 2$.

Theorem. Let G = (V, E) be a graph with a Hamiltonian cycle.

- 1. Then G v is connected for every $v \in V$.
- 2. If G is bipartite, with bipartition $\{V_1, V_2\}$, then $|V_1| = |V_2|$.

Proofs Techniques

- induction
- contradiction
- extreme choice
- construction

Ex: Prove that every graph with all vertices of degree k and no cycle of length 3 has at least 2k vertices. Hint: consider a longest path.

Optimization

Breadth-first and depth-first search trees

Ex: For the following graphs, indicate the breadth-first and depth-first search trees by shading the appropriate edges.

Dijkstra, Kruskal, and Prim. Kruskal and Prim's Algorithm compute min-weight spanning trees. Dijkstra's algorithm determines the distance of every vertex in the graph from an initial vertex v. However, the extended version of Dijkstra's algorithm also computes a shortest path tree for v.

Ex: Execute Dijkstra's algorithm to determine the shortest path three from v and the distance of every vertex from v in the graph below.

Ex: Execute Kruskal's algorithm on the graph below. In what order are the edges added?

Ex: Execute Prim's algorithm on the graph below. In what order are the edges added?

Colouring

Colouring. Let G = (V, E) be a graph. A proper k-colouring of G is a function $f: V \to \{1, 2, ..., k\}$ with the property that every edge $\{u, v\}$ satisfies $f(u) \neq f(v)$. The **Chromatic number** of a graph G, denoted $\chi(G)$, is the smallest k for which a proper k-colouring exists.

Chromatic Polynomial. For every graph G = (V, E) there is a polynomial, denoted $P(G, \lambda)$ and called the chromatic polynomial with the property that P(G, k) is the number of proper k-colourings of G for every integer $k \ge 1$.

The chromatic polynomial can be computed recursively using the equation

$$P(G, \lambda) = P(G - e, \lambda) - P(G/e, \lambda)$$

(here e is an edge of G, and G - e is the graph obtained from G by deleting the edge e while G/e is the graph obtained from G by contracting e.

Computing Help:

- $P(K_n, \lambda) = \lambda(\lambda 1)(\lambda 2) \dots (\lambda n + 1)$
- $P(P_n, \lambda) = \lambda(\lambda 1)^{n-1}$
- If G consists of G' plus an isolated vertex, $P(G, \lambda) = \lambda P(G', \lambda)$

Ex: Compute the chromatic polynomial of the following graph

$$P(D,\lambda) = P(D,\lambda) - P(\infty,\lambda)$$

$$= P(D,\lambda) - \lambda(\lambda-1)^{2}$$

$$= P(D,\lambda) - P(\Delta,\lambda) - \lambda(\lambda-1)^{2}$$