Formelsammlung Physik

Mario Felder

14. Dezember 2013

Inhaltsverzeichnis

1	Bewegung					
	1.1	Gerade Bewegung				
		1.1.1 Spezialfall: konstante Beschleunigung a 5				
	1.2	Bewegung im Raum				
		1.2.1 Bahnkurve				
		1.2.2 Kreisbewegung				
	1.3	Schiefer Wurf				
		1.3.1 $x(t), y(t) \leftrightarrow y(x)$				
		1.3.2 schräge Zerlegung				
2	Kra	.ft				
	2.1	Übersicht				
	2.2	Federkraft				
	2.3	Reibung				
		2.3.1 Kontaktkräfte: Normal- & Reibungskraft 11				
		2.3.2 Luftwiderstand				
	2.4	Kurvenkräfte				
		2.4.1 Zentripetalkraft				
		2.4.2 Neigungswinkel				
3	Arb	peit und Energie 15				
	3.1	Arbeit				
	3.2	Energie				
	3.3	Leistung				
		3.3.1 Bewegung mit konstanter Leistung 16				

INHALTSVERZEICHNIS

4	Impuls und Kraftstoss					
	4.1	Impuls \vec{p}	19			
	4.2	Kraftstoss \vec{J}	19			
	4.3	Impulserhaltung	20			
		4.3.1 elastischer Stoss	20			
		4.3.2 inelastischer Stoss	20			
5	Sch	werpunkt	23			
	5.1	Bewegung des Schwerpunktes	23			
	5.2	Raketenantrieb	24			
6	Rotation 25					
	6.1	Übersicht	25			
	6.2	Kreisbewegung	25			
	6.3	Trägheitsmoment	26			
		6.3.1 Parallel Axis Theorem:	26			
		6.3.2 Trägheitsmoment regelmässiger Körper	27			
	6.4	Perfektes Rollen	27			
		6.4.1 Momentane Drehachse P	27			
	6.5	Drehmoment \vec{M}	27			
	6.6	Arbeit und Leistung (rot.)	28			
	6.7	Drehimpuls \vec{L} und Drallsatz	28			
	6.8	Präzession				

Bewegung

1.1 Gerade Bewegung

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{x}$$

$$\Delta x = \lim_{\Delta t_i \to 0} \sum_{i=1}^{n} v_i \cdot \Delta t = \int_{tA}^{tB} v \mathrm{d}t$$

1.1.1 Spezialfall: konstante Beschleunigung a

$$a(t) = a = \text{konstant}$$

$$v(t) = v_0 + a \cdot t$$

$$x(t) = x_0 + v_0 \cdot t + \frac{1}{2}a^2$$

$$\Delta x = x - x_0 = v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$$

$$v^2 = v_0^2 + 2a\Delta x$$

$$a = \frac{v(t)^2 - v_0^2}{2 \cdot \Delta s}$$

1.2 Bewegung im Raum

Postition, Geschwindigkeit und Beschleunigung sind Vektoren.

$$\vec{\Delta r} = \vec{r_2} - \vec{r_1} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$v \to \vec{v} = \lim_{\Delta t \to 0} \frac{\vec{\Delta r}}{\Delta t} = \frac{d\vec{r}}{dt} = (\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt})$$

$$a \to \vec{a} = \lim_{\Delta t \to 0} \frac{\vec{\Delta v}}{\Delta t} = \frac{\vec{dv}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

1.2.1 Bahnkurve

Die Geschwindigkeit liegt immer tangential an der Bahnkurve.

Die Beschleunigung zeigt immer nach innen.

1.2.2 Kreisbewegung

Bei einer **gleichförmigen** Kreisbewegung (v = konst.) gilt:

$$a_{ZP} = a_{radial} = \frac{v^2}{r} = \omega^2 \cdot r$$

Bei einer **ungleichförmigen** Kreisbewegung gilt:

$$a_{radial} = \frac{v^2}{r} = \omega^2 \cdot r$$
 $a_{tangential} = \frac{\mathrm{d}|v|}{\mathrm{d}t}$

1.3 Schiefer Wurf

x- und y-Bewegung sind unabhängig:

horizontal:	vertikal:
$a_x = 0$	$a_y = -g$
$v_x = v_0 * \cos \alpha_0$	$v_y = v_0 * \sin \alpha_0 - g \cdot t$
$x = (v_0 * \cos \alpha_0) \cdot t$	$y = (v_0 * \sin \alpha_0) \cdot t - \frac{1}{2}g \cdot t^2$
	$v_y^2 = v_{0y}^2 - 2gy$

Wurfdauer:

$$t_R = \frac{2 \cdot v_{0y}}{g} = \frac{2v_0 \cdot \sin \theta}{g}$$

Wurfweite:

$$R = x(t_r) = \frac{v_0^2 \sin 2\theta}{g}$$

1.3.1 $x(t), y(t) \leftrightarrow y(x)$

$$y(x) = \tan \theta_0 \cdot x - \frac{g}{2(v_0 \cos \theta_0)^2} \cdot x^2$$

1.3.2 schräge Zerlegung

Die Komponentenzerlegung eines Vektors ist beliebig. Manchmal ist eine schräge Zerlegung besser als eine Senkrechte, beispielsweise in die

 $\vec{v_0}$ und \vec{g} Richtung:

$$s = v_0 \cdot t \qquad \qquad y = \frac{1}{2}g \cdot t^2$$

Kraft

Die 4 fundamentalen Käften sind:

- Gravitationskraft (Anziehung zwischen Massen) (Bsp: Anziehung zwischen Sonne und Erde, Gezeitenkräfte)
- Elektromagnetische Kraft (Kräfte zwischen Ladungen) (Bsp: Reibung, Seilkraft, Lorentzkraft)
- Schwache Kraft und starke Kraft (Kernkräfte) (Bsp: Radioaktiver Zerfall, Anziehung zwischen Protonen und Neutronen)

• Kräfte sind Vektoren:

$$\vec{F}_{Res} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \dots$$

 $\vec{F} = (F_x, F_y, F_z) = (F_r, F_\varphi, F_z)$

• Trägheitsgesetz (1. Axiom)

$$\vec{F}_{Res} = 0 \leftrightarrow \vec{a} = 0 \leftrightarrow \vec{v} = \text{konstant}$$

• Bewegungsgleichung (2. Axiom)

$$\vec{F}_{Res} = m \cdot \vec{a} \leftrightarrow F_x = m \cdot a_x, F_y = m \cdot a_y, F_z = m \cdot a_z$$

• Wechselwirkungsgesetz (3. Axiom)

$$\vec{F}_{K\ddot{o}rper\ A\ auf\ K\ddot{o}rper\ B} = -\vec{F}_{K\ddot{o}rper\ B\ auf\ K\ddot{o}rper\ A}$$

2.1 Übersicht

Kraft	Gleichung	Ursprung und Bemer- kung
Feder	$F_{Feder} = k \cdot x \; (\vec{F}_H = -k \cdot \vec{x})$	(em); lineare Näherung - Hooke'sches Gesetz
Normalkraft	$F_N = F_g \cdot \cos \theta$	(em); F_N ist immer senkrecht zur Kontaktfläche
Hangkraft	$F_H = m \cdot g \cdot \sin \theta$	(em); F_H ist immer parallel zu Kontaktfläche
Haftreibung	$F_{HR} < F_{HR,max} = \mu_{HR} \cdot F_N$	(em); Parallel zur Kontakt- fläche und der angreifenden Kraft engegengesetzt
Gleitreibung	$F_{GR} = \mu_{GR} \cdot F_N$	(em); Der Bewegung entgegengesetzt; Van der Waals Kräfte
Lorentzkraft	$F_L = qvB \cdot \sin \theta$	(em); $\vec{F}_L = q(\vec{v} \times \vec{B})$
Hydrostatische Kraft	$F_{hydr} = \rho g h \cdot A = \int \rho g h dA$	Gravitation (und em); $p_{hydr} = \rho gh$ ist der hydrostatische Druck
Auftrieb	$F_A = \rho_{Fluid}gV_{K\"{o}rper}$	Gravitation (und em)

2.2 Federkraft

Hooke'sches Gesetz:

$$F_{Feder} = k \cdot \Delta x$$
 $[k] = \frac{N}{m}$

Federn in Serie:

$$F_{Res} = k_{Res} \cdot \Delta x$$

wobei:

$$k_{Res} = \frac{k_1 \cdot k_2}{k_1 + k_2}$$

oder allgemein:

$$k_{Res} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \dots}$$

Federn parallel:

$$F_{Res} = k_{Res} \cdot \Delta x = F_{H,1} + F_{H,2} + \dots = (k_1 + k_2 + \dots) \cdot \Delta x$$

2.3 Reibung

2.3.1 Kontaktkräfte: Normal- & Reibungskraft

Die Normalkraft steht immer senkrecht auf der Kontaktfläche.

Die Reibungskraft zeigt immer parallel zu Kontaktfläche.

Haftreibungskraft:

$$F_{Zug} = F_{HR} \le \mu_{HR} \cdot F_N$$

Die Haftreibung muss überwunden werden, damit sich der Körper in Bewegung setzt.

Solange die angreifende Kraft F_{Zug} nicht grösser als $F_{HR,max} = \mu_{HR}$.

 F_N ist, ist die Haftreibungskraft gleich der Zugkraft.

Gleitreibung:

$$F_{GR} = \mu_{GR} \cdot F_N$$

Die Gleitreibung zwischen festen Körpern hängt nicht von deren relativer Geschwindigkeit v ab.

 $\mu_{GR} < \mu_{HR}!$

2.3.2 Luftwiderstand

Im Gegensatz zur Reibung zwischen festen Körpern ist der Luftwiderstand von der Fahrgeschwindigkeit v abhängig.

 $F_{LW,l} = b \cdot v$ langsam, kleines v schnell, grosses v

2.4 Kurvenkräfte

2.4.1 Zentripetalkraft

$$F_{rad} = F_{Zentripetal} = m \cdot a_{rad} = m \frac{v^2}{R} = m\omega^2 R = m \frac{4\pi^2 R}{T^2}$$

2.4.2 Neigungswinkel

Bei hängenden Massenen:

$$\tan \beta = \frac{\omega^2 R}{g} = \frac{R}{H}$$

mit $H=\frac{g}{\omega^2}$; die Höhe unter der Aufhängung ist einzig eine Funktion der Kreisfrequenz ω und g, nicht der Seillänge L!

Steilwandkurven:

$$\tan \beta = \frac{F_{ZP}}{F_g} = \frac{v^2}{R \cdot g}$$

In die Kurve liegen (Winkel β gegenüber horizontalen sonst wie bei Steilwandkurve):

$$\tan \beta = \frac{F_g}{F_{ZP}} = \frac{R \cdot g}{v^2}$$

Arbeit und Energie

3.1 Arbeit

Eine Kraft verrichtet Arbeit an einem Körper, wenn sie sich mit diesem verschiebt.

Bei konstanter Kraft:

$$W = F_{||} \cdot s = F \cdot \cos \theta \cdot s$$

$$[W] = N \cdot m = \frac{kg \cdot m^2}{s^2} = J = Joule$$

Bei veränderlicher Kraft:

$$W = \sum_{i} F_{||}(x_i) \cdot dx_i = \int_a^b F_x(x) \cdot dx$$

Federarbeit:

$$W = \int_{a}^{b} F_{x} \cdot \mathrm{d}x = k \int_{a}^{b} x \cdot \mathrm{d}x$$

3.2 Energie

Energie kann weder vergehen noch entstehen. Energie kann nur umgewandelt oder zwischen Körpern ausgetauscht werden.

Beschleunigungsarbeit	kinetische Energie
$W_{beschl} = ma \cdot \Delta x$	$\Delta E_{kin} = \frac{1}{2}mv_B^2 - frac12mv_A^2$
Reibungsarbeit	innere, thermische Energie
$W_{gleiten} = \mu_{GleitR} F_N \cdot \Delta x$	ΔQ
Hubarbeit	potentielle Energie der Höhe
$W_{hub} = mg \cdot \Delta h$	$\Delta E_{pot} = mg \cdot \Delta h$
Dehnarbeit an der Feder	potentielle Energie der Spannung
$W_{dehnen} = \int_0^s F_{zug} \cdot \mathrm{d}x = \frac{1}{2}ks^2$	$\Delta E_{elast} = \frac{1}{2}ks^2$
	Rotationsenergie
	$E_{rot} = \frac{1}{2}I\omega^2$

3.3 Leistung

Definition Leistung:

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{F \cdot \mathrm{d}s}{\mathrm{d}t} = F \cdot v$$

Durchschnittliche Leistung:

$$\langle P \rangle = \frac{\int_{t_1}^{t_2} P \mathrm{d}t}{t_2 - t_1} = \frac{\Delta W}{\Delta t}$$

$$[P] = W = \frac{J}{s} = \frac{kg \cdot m^2}{s^3}$$

1PS = 735.5W

3.3.1 Bewegung mit konstanter Leistung

$$v = \sqrt{\frac{2 \cdot P \cdot t}{m}}$$

$$\Delta t = (v_2^2 - v_1^2) \frac{m}{P}$$

$$s = \int v \cdot dt = \sqrt{\frac{2 \cdot P}{m}} \int \sqrt{t} \cdot dt = \frac{2}{3} \sqrt{\frac{2 \cdot P \cdot t^3}{m}} \bigg|_{t_A}^{t_B}$$

Impuls und Kraftstoss

4.1 Impuls \vec{p}

Definition:

$$\vec{p} = m \cdot \vec{v}$$

Das zweite Newtonsche Gesetz verallgemeinert:

$$\sum \vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

4.2 Kraftstoss \vec{J}

Definition des Kraftstosses (Impulsänderung):

$$\vec{J} = \int_{t_1}^{t_2} (\sum \vec{F}) dt = \vec{p}_2 - \vec{p}_1$$

Durchschnittliche Kraft:

$$\vec{F}_{average} = \frac{1}{\Delta t} \int_{t_1}^{t_2} \vec{F}(t) \mathrm{d}t = \frac{\vec{J}}{\Delta t}$$

4.3 Impulserhaltung

Definition Gesamtimpuls:

$$\vec{P} = \vec{p}_A + \vec{p}_B + \vec{p}_C + \dots$$

Ist die Vektrosumme aller äusseren Kräfte auf ein System Null, bleibt der Gesamtimpuls erhalten:

$$\sum \vec{F}_{extern} = 0 \leftrightarrow \vec{P} = konst.$$

4.3.1 elastischer Stoss

Definition:

Beim elastischen Stoss bleibt die kinetische Energie vor und nach dem Stoss vollständig erhalten.

Mit dem Energie- und Impulserhalt:

$$\frac{1}{2}m_A v_{A1}^2 + \frac{1}{2}m_B v_{B1}^2 = \frac{1}{2}m_A v_{A2}^2 + \frac{1}{2}m_B v_{B2}^2$$
$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = m_A \vec{v}_{A2} + m_B \vec{v}_{B2}$$

ergibt sich:

$$v_{A2} = \frac{m_A \cdot v_{A1} + m_B (2 \cdot v_{B1} - v_{A1})}{m_A + m_B}$$
$$v_{B2} = \frac{m_B \cdot v_{B1} + m_A (2 \cdot v_{A1} - v_{B1})}{m_A + m_B}$$

4.3.2 inelastischer Stoss

Definition:

Beim inelastischen Stoss wird ein Teil der kinetischen Energie in Verformungsarbeit gesteckt.

Gemeinsame Geschwindigkeit nach dem Stoss:

$$\vec{v}_{A2} = \vec{v}_{B2} = \vec{v}_2$$

$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = (m_A + m_B) \cdot \vec{v}_2$$

 \vec{v}_2 ist die Geschwindigkeit des Schwerpunktes der beiden Körper.

Schwerpunkt

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$
$$y_{cm} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

oder durch integrieren:

$$x_{cm} = \frac{1}{M} \int_0^M x \cdot dm$$
$$y_{cm} = \frac{1}{M} \int_0^M y \cdot dm$$

5.1 Bewegung des Schwerpunktes

$$v_{cm,x} = \frac{m_1 v_{1x} + m_2 v_{2x} + m_3 v_{3x} + \dots}{m_1 + m_2 + m_3 + \dots} = \frac{\mathrm{d}x_{cm}}{\mathrm{d}t}$$

Gesamtimpuls des Systems:

$$M \cdot \vec{v}_{cm} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + \ldots = \vec{P}$$

Ableitung nach Zeit:

$$M \cdot \vec{a}_{cm} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3 + \dots = \frac{d\vec{P}}{dt} = \vec{F}_{res} = \sum \vec{F}_{ext}$$

5.2 Raketenantrieb

$$m \cdot a = v_{rel} \frac{\mathrm{d}m}{\mathrm{d}t} + \sum F_{ext}$$
$$v_{rel} \frac{\mathrm{d}m}{\mathrm{d}t} \Rightarrow \text{Schubkraft}$$

Im Fall $F_{ext} = -mg$ und einem konstanten Massentrom $R = \frac{\mathrm{d}m}{\mathrm{d}t}$:

$$a(t) = \frac{v_{rel}}{m} \frac{\mathrm{d}m}{\mathrm{d}t} - g = \frac{v_{rel} \cdot R}{m_0 - R \cdot t} - g$$

 \boldsymbol{v}_{rel} : realtive ausstossgeschw. des Gases (gegenüber der Rakete)

Rotation

6.1 Übersicht

ROTATION	LINEARE BEWEGUNG
Trägheitsmoment $[kg \cdot m^2]$	Masse
$I = \sum r_i^2 m_i = \int r^2 \mathrm{d}m$	m
Drehmoment $[N \cdot m]$	Kraft $[N]$
$M = I \cdot \alpha$	$F = m \cdot a$
Drehimpuls $\left[\frac{kg \cdot m^2}{s}\right]$	Impuls $[N \cdot s]$
$L = I \cdot \omega$	$p = m \cdot v$
Newtonsches Gesetz $[N \cdot m]$	Newtonsches Gesetz
$M = \frac{\mathrm{d}L}{\mathrm{d}t}$	$F = \frac{\mathrm{d}p}{\mathrm{d}t}$
Rotationsenergie $[J]$	Kinetische Energie
$E_{rot} = \frac{1}{2}I\omega^2$	$E_{kin} = \frac{1}{2}mv^2$
Leistung $[W]$	Leistung
$P = \frac{\mathrm{d}E}{\mathrm{d}t} = M \cdot \omega$	$P = F \cdot v$

6.2 Kreisbewegung

Bogenlänge s:

$$s = r \cdot \theta$$

Geschwindigkeit tagnetial v:

$$v = r \cdot \omega = r \cdot \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

Beschleunigung tangential a_{tan} :

$$a_{tan} = r \cdot \alpha = r \cdot \frac{\mathrm{d}^2 \theta}{\mathrm{d}^2 t}$$

Beschleunigung raidal a_{rad} :

$$a_{rad} = \frac{v^2}{r} = \omega^2 \cdot r$$

6.3 Trägheitsmoment

Definition bzgl. fester Achse:

$$I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots = \sum_i r_i^2 m_i = \int_i r^2 dm_i$$

$$[I] = kq \cdot m^2$$

Fehlende Massen haben negatives Trägheitsmoment!

Scheibe mit Loch: $I_{tot} = I^* + I_{Loch}$ $I^* \Rightarrow I$ der Scheibe ohne Loch $I_{Loch} \Rightarrow$ negatives Moment

6.3.1 Parallel Axis Theorem:

$$I_P = I_{cm} + m \cdot h^2$$

6.3.2 Trägheitsmoment regelmässiger Körper

TODO

6.4 Perfektes Rollen

$$v_{cm} = R \cdot \omega$$

6.4.1 Momentane Drehachse P

Beim perfekten Rollen ist der Kontaktpunkt P zwischen Rad und Unterlage momentan in Ruhe:

$$\boxed{E_{pot} = E_{kin,cm} + E_{rot,cm} = E_{rot,P}}$$

6.5 Drehmoment \vec{M}

Definition:

$$\vec{M} = \vec{r} \times \vec{F}$$

$$[M] = Nm$$

Das Drehmoment ist senkrecht zu \vec{F} und \vec{r} .

Rotation eines starren Körpers um feste Achse:

$$\boxed{\sum \vec{M}_i = \vec{M}_{res} = I\vec{\alpha}}$$

Teilchengeschwindigkeit:

$$\vec{v}_i = \vec{v}_{cm} + \vec{v}_{i,rel} = \vec{v}_{cm} + \vec{\omega} \times \vec{r}_i$$

6.6 Arbeit und Leistung (rot.)

Bei der Rotation verrichtete Arbeit:

$$W = \int_{\omega_1}^{\omega_2} I\omega_z d\omega_z = \frac{1}{2}I\omega_2^2 - \frac{1}{2}I\omega_1^2$$

Bei der Rotation verrichtete Leistung:

$$P = M_z \omega_z$$

6.7 Drehimpuls \vec{L} und Drallsatz

Definition:

$$\boxed{\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}}$$

$$[L] = \frac{kg \cdot m^2}{s}$$

Drehimpuls für Symmetrieachse von starrem Körper:

$$ec{L} = I \cdot \vec{\omega}$$

Drallsatz (Newton für die Rotation):

$$\boxed{\sum \vec{M} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}}$$

6.8 Präzession

Die Schwerkraft bewirkt das Drehmoment:

$$M = r \times mg$$

Mit r als Abstand des Schwerpunkts zum Unterstützungspunkt.

DaM senkrecht zu r und F_g ist, ist es auch senkrecht zum Drehimpuls L. Daher ändert sich nur dessen Richtung, nicht jedoch der Betrag. Somit dreht sich der Kreisel horizontal. Es ist:

$$\frac{\mathrm{d}L}{L} = \mathrm{d}\varphi$$

$$\Rightarrow M = \frac{\mathrm{d}L}{\mathrm{d}t} = L\frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

Die Winkelgeschwindigkeit ω_P diser Rotation beträgt $(w_P \ll w_K)$:

$$\omega_P = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{M}{L} = \frac{mgr}{I\omega_K}$$

 w_P auch als Ω

Abbildung 6.1: Päzession