FEI - USTHB

L2-ACAD (Section A & C)

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

Exercice 1:

Construire les automates reconnaissant les langages suivants :

1)
$$L_1 = \{ w \in \{a, b, c\}^* / |w|_c = 2p+1, p \ge 0 \}$$

Exemple : $L_1 = \{c, acba, ccc, abccbacbbab, ... \}$

Remarque: Les mots de L₁ sont ceux composés des lettres a, b et c ayant un nombre impair de c.

Un mot quelconque peut avoir soit un nombre **pair** de c soit un nombre **impair**. Ainsi, l'automate reconnaissant L_1 contient deux états : l'un représente les mots ayant un nombre pair de c (noté P) et l'autre un nombre impair (noté I).

Si un mot contient un nombre pair de c et on lit a ou b, le nombre de c reste pair. Si on lit c il devient impair

Si un mot contient un nombre impair de \mathbf{c} et on lit \mathbf{a} ou \mathbf{b} , le nombre de \mathbf{c} reste impair. Si on lit \mathbf{c} , il devient pair. L'état initial est celui représentant les nombres pairs car $|\epsilon|_c$ est égal à 0. L'état d'acceptation (final) est celui représentant les mots ayant un nombre impair de \mathbf{c} .

D'où l'automate:

C'est un automate simple déterministe complet.

2)
$$L_2 = \{ w \in \{a, b, c\} */ |w|_a + 2|w|_b \equiv 3[5] \}$$

Exemple: $L_2 = \{ab, ba, ccacbccc, accaa, ccbcabccaabcc, ... \}$

Remarque : Les mots de L_2 sont ceux composés des lettres \mathbf{a} , \mathbf{b} et \mathbf{c} où le nombre de \mathbf{a} plus deux fois le nombre de \mathbf{b} est un multiple de 5 plus 3.

Dans un mot quelconque : le nombre de a plus deux fois le nombre de b peut être : (5*p) ou (5*p+1) ou (5*p+2) ou (5*p+3) ou (5*p+4). Ainsi, l'automate reconnaissant L_2 contient cinq états.

Si un mot est dans l'état (5*p) et on lit \mathbf{c} il reste toujours dans (5*p). Si on lit un \mathbf{a} , on va à l'état (5*p+1). Si on lit un \mathbf{b} , on va à l'état (5*p+2). Remarquez que le nombre de \mathbf{b} est doublé. Le raisonnement est similaire pour les autres états. L'état initial est (5p) car $|\epsilon|_a+2|\epsilon|_b$ est égal à zéro donc de la forme 3p. L'état d'acceptation est (5*p+3).

D'où l'automate:

FEI - USTHB

L2-ACAD (Section A & C)

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

C'est un automate simple déterministe complet.

3)
$$L_3 = \{a^n b^m / n + m \equiv 0[3]\}$$

Exemple: $L_3 = \{ \varepsilon, \text{ aaa, aab, abb, bbb, aaaabb, abbbbb, ... }$

Remarque : Les mots de L_3 sont composés d'une suite de **a** suivi d'une suite de **b** où le nombre de **a** plus le nombre de **b** est un multiple de 3.

On a $n+m \equiv 0[3]$ ssi (n=3p et m=3q) ou (n=3p+1 et m=2+3q) ou (n=3p+2 et m=1+3q).

Donc, dans les mots de ce langages, il faut que le nombre de $\bf a$ et le nombre de $\bf b$ soient dans l'une des combinaisons suivantes : (3p, 3q) ou (3p+1, 2+3q) ou (3p+2, 1+3q). La première composante de chaque couple représente le nombre de $\bf a$ et la deuxième composante représente le nombre de $\bf b$.

D'où l'automate:

Explication de l'automate: Dans l'état q1, le nombre de a est 3p+1 et en transitant vers q3 par bb le nombre de b dans l'état q3 serait 3p+2. Par contre, à l'état q2, le nombre de a est 3p+2 et en transitant vers q3 par b le nombre de b dans l'état q3 serait 3p+1. Dans l'état q0, le nombre de a est 3p et en transition par le mot vide vers l'état q3, le nombre de b dans l'état q3 serait 3P.

L'automate précédent peut être compacté comme suit :

Remarque : Le langage L_3 peut s'écrire comme suit : $\{a^{3p}wb^{3q} / w = \epsilon \text{ ou abb ou aab et p, } q \ge 0\}$.