Exercício de laboratorio 3

Contrastes

César A. Galvão - 19/0011572

2022-07-06

Contents

1	Que	Questao 1					
	1.1	Analise o experimento para avaliar se os funcionários diferem significativamente. Apresente o modelo, as hipóteses e a tabela da análise de variância. Use alfa = 0,05	3				
	1.2	Considere que o funcionário 2 é novo na empresa e construa um conjunto de contrastes ortogonais a partir dessa informação. Apresente as hipóteses que serão testadas, as conclusões e a estatística de teste considerada.	4				
	1.3	Calcule a probabilidade do erro tipo 2 considerando que a diferença entre dois funcionários seja de 1 unidade	5				
	1.4	Qual deve ser o número de repetições nesse experimento para que o erro seja menor que 5%?	5				
2	Exe	rcício de simulação	7				

1 Questao 1

Químico		% de álcool metílico	
1	84.99	84.04	84.38
П	85.15	85.13	84.88
III	84.72	84.48	85.16
IV	84.20	84.10	84.55

1.1 Analise o experimento para avaliar se os funcionários diferem significativamente. Apresente o modelo, as hipóteses e a tabela da análise de variância. Use alfa = 0,05.

A comparação das médias dos grupos será realizada mediante análise de variância. O modelo escolhido para tal é o modelo de efeitos, expresso na equação a seguir

$$y_{ij} = \mu + \tau_i + e_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., n$$

em que μ é a média geral, τ_i é a média ou efeito dos grupos — cada químico sendo considerado um tratamento — e e_{ij} é o desvio do elemento. Os grupos são indexados por i e os indivíduos de cada grupo indexados por j.

As hipóteses do teste são as seguintes:

$$\begin{cases} H_0: \tau_1=\ldots=\tau_a=0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

que equivale dizer

$$\begin{cases} H_0: \mu_1 = \dots = \mu_a \\ H_1: \exists \mu_i \neq \mu_j, i \neq j. \end{cases}$$

Neste exercício, pressupõe-se normalidade dos dados – e consequentemente dos resíduos – e igualdade de variâncias. Não sendo necessário proceder com os testes diagnósticos, apresenta-se tabela de análise de variância a seguir:

Fonte de variação	g.l.	SQ	MQ	Estatística F	p-valor
chemist	3	1.0446	0.3482	3.2458	0.0813
Residuals	8	0.8582	0.1073	NA	NA

Considerando $\alpha=0,05$ não se rejeita a hipótese nula. Ou seja, não se pode dizer que há um químico cuja média de percentual de álcool metílico é diferente dos demais.

3

1.2 Considere que o funcionário 2 é novo na empresa e construa um conjunto de contrastes ortogonais a partir dessa informação. Apresente as hipóteses que serão testadas, as conclusões e a estatística de teste considerada.

Compararemos dois subgrupos, formados a partir do conjunto inicial de tratamentos, para realizar o teste de comparação de médias utilizando contrastes. A saber, compararemos a média das medidas do químico 2 com a média dos demais. Construimos os seguintes contrastes:

$$\Gamma_1 = \sum_{i=1}^a c_i \mu_i \quad \text{em que } \sum_{i=1}^4 c_i = 0; \text{ e } c_i = \left\{ -\frac{1}{3}, 1, -\frac{1}{3}, -\frac{1}{3} \right\} \tag{1}$$

Para a construção dos demais contrastes ortogonais, fazemos

$$\Gamma_{2} = \sum_{i=1}^{3} c_{i} \mu_{i} \longrightarrow c_{i} = \left\{1, 0, -\frac{1}{2}, -\frac{1}{2}\right\}$$

$$\Gamma_{3} = \sum_{i=1}^{2} c_{i} \mu_{i} \longrightarrow c_{i} = \{0, 0, 1, -1\}$$

de modo que todos os c_i , i=1,2,3 são ortogonais entre si. Dessa forma, as hipóteses testadas são as seguintes:

$$\begin{array}{l} \text{Contraste 1: } \begin{cases} H_0: \mu_2 = \frac{\mu_1 + \mu_3 + \mu_4}{3} \\ H_1: \mu_2 \neq \frac{\mu_1 + \mu_3 + \mu_4}{3} \end{cases} \\ \text{Contraste 2: } \begin{cases} H_0: \mu_1 = \frac{\mu_3 + \mu_4}{2} \\ H_1: \mu_2 \neq \frac{\mu_3 + \mu_4}{2} \end{cases} \text{ e} \\ \text{Contraste 3: } \begin{cases} H_0: \mu_3 = \mu_4 \\ H_1: \mu_3 \neq \mu_4 \end{cases} \end{cases}$$

A estatística de teste para a realização dos contrastes é definida conforme a expressão a seguir, em que QMRES é a soma de quadrados dos resíduos da ANOVA exposta anteriormente:

$$\frac{\left(\sum\limits_{i=1}^{n}c_{i}\,\bar{y}_{i.}\right)^{2}}{\sum\limits_{i=1}^{n}c_{i}^{2}\,\frac{\text{QMRES}}{n}}\sim F(1,an-a=8) \tag{2}$$

Além disso, considera-se

$$\frac{\left(\sum\limits_{i=1}^{n}c_{i}\,\bar{y}_{i.}\right)^{2}}{\sum\limits_{i=1}^{n}c_{i}^{2}}=\frac{\mathsf{SQContraste}_{i}}{1\left(g.l.\right)}=\mathsf{QMContraste}_{i}\tag{3}$$

tal que, se os contrastes forem calculados da forma correta, a soma dos quadrados médios dos contrastes deve ser igual ao quadrado médio dos tratamentos.

As estatísticas são expostas na tabela de análise de variância a seguir, decomposta em seus contrastes.

Fonte de variação	g.l.	SQ	MQ	Estatística F	p-valor
chemist	3	1.0446	0.3482	3.2458	0.0813
C1	1	0.2187	0.2187	6.1161	0.0385
C2	1	0.0028	0.0028	0.0788	0.7861
C3	1	0.1267	0.1267	3.5425	0.0966
Residuals	8	0.8582	0.1073	NA	NA

De fato, sob $\alpha=0,05$, só se pode rejeitar a hipótese nula sob o Contraste 1. Isso significa que, se o químico 2 for comparado aos demais químicos, sua média de concentração de álcool é estatisticamente diferente. Além disso, é possível verificar que a soma dos quadrados médios dos contrastes equivale ao quadrado médio dos tratamentos, o que confere validade aos cálculos.

1.3 Calcule a probabilidade do erro tipo 2 considerando que a diferença entre dois funcionários seja de 1 unidade

Desejamos calcular $\beta(\tau_1=0.5,\,\tau_2=-0.5,\,\tau_3=0,\,\tau_4=0)$. Para isso, utilizaremos $n=3,\,\alpha=0,05$ e $\sigma^2=\frac{\text{QMRES}}{n}$. A probabilidade será calculada da seguinte forma:

$$P\left(F_{\text{obs}} < F_{\text{crit}} \middle| \phi^2 = \frac{n}{\sigma^2} \sum_{i=1}^4 \tau_i^2 \right),\tag{4}$$

considerando a variância para os resíduos. Portanto,

$$\phi^2 = \frac{n}{\mathsf{QMRES}} \sum_{i=1}^4 \tau_i^2 \tag{5}$$

é o parâmetro de não-centralidade (pnc ou, em inglês, ncp) da distribuição F e, sob H_0 , $\phi^2 = 0$.

O valor $F_{\text{crit}} = F(\gamma = 0, 95; gl_1 = 3; gl_2 = 8, \phi^2 = 0)$ é de 4.066. Considerando $\phi^2 =$ 13.9828, obtém-se

$$\begin{split} P\left(F_{\mathrm{obs}} < F_{\mathrm{crit}} \middle| \phi^2 \text{ sob } H_1\right) &= P\left(F_{\mathrm{obs}} < 4,066 \middle| \phi^2 = 13,982\right) \\ &= 0,312 \end{split}$$

1.4 Qual deve ser o número de repetições nesse experimento para que o erro seja menor que 5%?

Considerando os métodos de cálculo já utilizados, constroi-se a tabela a seguir:

n	ϕ^2	ϕ	g.l.	F_{crit}	β	Poder
3	13.98	3.74	8	4.07	0.31	0.69
4	18.64	4.32	12	3.49	0.12	0.88
5	23.30	4.83	16	3.24	0.04	0.96

Considerando os valores da tabela, para que o erro tipo II seja menor que 5% são necessários 5 repetições para cada tratamento nesse experimento.

2 Exercício de simulação

Considerando uma diferença já conhecida entre os efeitos de tratamento, ($\tau_1=0.5,\,\tau_2=-0.5,\,\tau_3=0,\,\tau_4=0$), foram realizadas 1000 iterações da expressão a seguir, visando obter empiricamente a probabilidade de erro tipo II.

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij} \tag{6}$$

em que $\varepsilon_{ij} \sim N(0, \text{QMRES})$ representa o erro aleatório, cuja variância e distribuição são os mesmos de y_{ij} .

Sabe-se que há uma diferença entre os tratamentos, motivo pelo qual uma análise de variância para cada conjunto y_{ij} , i=1,2,3,4,j=1,2,3 deveria apontar p-valor inferior a 0,05. Considera-se portanto a probabilidade desejada como a proporção dos casos em que não se rejeitaria a hipótese nula, que tem valor 0.314