САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра вычислительной техники

Отчёт по лабораторной работе № 3 по дисциплине «Теория автоматов» Вариант №4

Студент: Куклина М. Р3301

Преподаватель: Ожиганов А.А.

Цель и постановка задачи

Цель

Освоение метода перехода от абстрактного автомата к структурному автомату.

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

Исходный абстрактный автомат

δ	a_1	a_2	a_3	a_4
z_1	a_2	a_2	a_4	a_2
z_2	a_3	a_1	a_2	a_3

Таблица 1. Функция переходов

λ	a_1	a_2	a_3	a_4
z_1	w_2	w_2	w_1	w_1
z_2	w_2	w_1	w_2	w_2

Таблица 2. Функция выходов

Граф исходного автомата

Переход к структурному автомату

Кодирование абстрактного автомата

δ	x_0
z_1	0
z_2	1

Таблица 3. Кодирование входов автомата

δ	y_0
w_2	0
w_1	1

Таблица 4. Кодирование выходов автомата

λ	Q_0	Q_1
a_2	0	0
a_3	0	1
a_1	1	0
a_4	1	1

Таблица 5. Кодирование состояний автомата

Получившийся структурный автомат имеет один вход, один выход и четыре состояния.

$$x_0 \to CK \to y_0$$

Структурный автомат

Q_0Q_1	00	01	10	11
x_0				
0	00	11	00	00
1	10	00	01	01

Таблица 6. Функция переходов

Функция переходов автомата: $Q_0Q_1 = \delta(Q_0,Q_1,x_0)$.

Q_0Q_1	00	01	10	11
x_0				
0	0	1	0	1
1	1	0	0	0

Таблица 7. Функция выходов

Функция выходов автомата: $y_0 = \lambda(Q_0, Q_1, x_0)$.

По таблице выходов строим ДНФ: $y_0 = \bar{Q_0}\bar{Q_1}x_0 \lor \bar{Q_0}Q_1\bar{x_0} \lor Q_0Q_1\bar{x_0}$

Сигналы функции возбуждения для триггеров

D-триггер

На основе закона функционирования D-триггера по таблице переходов структурного автомата строим таблицу сигналов функции возбуждения.

Q	0	1
X		
0	0	0
1	1	1

Таблица 8. Закон функционирования D-триггера

Q_0Q_1	00	01	10	11
$ x_0 $				
0	00	11	00	00
1	10	00	01	01
	D_0D_1	D_0D_1	D_0D_1	D_0D_1

Таблица 9. Таблица сигналов функции возбуждения: $D_0D_1=\mu(Q_0,Q_1,x_0)$

ДНФ для сигналов функции возбуждения:

 $D_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0}$

 $D_1 = \bar{Q}_0 Q_1 \bar{x}_0 \lor Q_0 \bar{Q}_1 x_0 \lor Q_0 Q_1 x_0.$ Для построения функциональной схемы рассмотрим ДНФ:

 $y_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0Q_1\bar{x_0}$

 $D_0 = \bar{Q_0} \bar{Q_1} x_0 \vee \bar{Q_0} \bar{Q_1} \bar{x_0}$ $D_1 = \bar{Q_0} \bar{Q_1} \bar{x_0} \vee \bar{Q_0} \bar{Q_1} \bar{x_0} \vee \bar{Q_0} \bar{Q_1} \bar{x_0} \vee \bar{Q_0} \bar{Q_1} \bar{x_0} \vee \bar{Q_0} \bar{Q_1} \bar{x_0}$ $y_0 = 1 \vee 2 \vee 3$

 $D_0 = 1 \lor 2$ $D_1 = 2 \lor 4 \lor 5$

Входное закодированное слово: [0,0,1,1,0,1,0,0,1,1,1]Выходное закодированное слово: [0,0,1,0,1,0,1,1,1,0,0]Ожидаемое закодированное слово: [0,0,1,0,1,0,1,1,1,0,0]

Т-триггер

Q T	0	1
0	0	1
1	1	0

Таблица 10. Закон функционирования Т-триггера

На основе закона функционирования Т-триггера по таблице переходов структурного автомата строим таблицу сигналов функции возбуждения.

	Q_0Q_1	Q_0Q_1	Q_0Q_1	Q_0Q_1
x_0	00	01	10	11
0	00	10	10	11
1	10	01	11	10
	T_0T_1	T_0T_1	T_0T_1	T_0T_1

Таблица 11. Таблица сигналов функции возбуждения: $T_0T_1=\mu(Q_0,Q_1,x_0)$

ДНФ для сигналов функции возбуждения:

 $T_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0\bar{Q_1}\bar{x_0} \vee Q_0\bar{Q_1}x_0 \vee Q_0Q_1\bar{x_0} \vee Q_0Q_1x_0$

 $T_{1} = \overline{Q}_{0}Q_{1}x_{0} \lor Q_{0}Q_{1}x_{0} \lor Q_{0}Q_{1}x_{0}$ $T_{1} = \overline{Q}_{0}Q_{1}x_{0} \lor Q_{0}Q_{1}x_{0} \lor Q_{0}Q_{1}x_{0}$ $y_{0} = \overline{Q}_{0}\overline{Q}_{1}x_{0} \lor \overline{Q}_{0}Q_{1}x_{0} \lor Q_{0}Q_{1}x_{0}.$ $T_{0} = 1 \lor 2 \lor 3 \lor 4 \lor 5 \lor 6$ $T_{1} = 7 \lor 4 \lor 5$

 $y_0 = 1 \lor 2 \lor 5$

Входное закодированное слово: [0,0,1,1,0,1,0,0,1,1,1] Выходное закодированное слово: [0,0,1,0,1,0,1,1,1,0,0] Ожидаемое закодированное слово: [0,0,1,0,1,0,1,1,1,0,0]

RS-триггер

Q	0	1
RS RS		
00	0	1
01	1	1
10	0	0
11	-	-

Таблица 12. Закон функционирования RS-триггера

$Q_i \to Q_{i+1}$	R	S
$0 \rightarrow 0$	-	0
$0 \rightarrow 1$	0	1
$1 \rightarrow 0$	1	0
$1 \rightarrow 1$	0	-

Таблица 13. Система подставок RS-триггера

x_0	Q_0	Q_1	Q_0	Q_1	Q_0	Q_1	Q_0	Q_1
	0	0	0	1	1	0	1	1
0	-0	-0	01	0-	10	0-	10	10
1	01	-0	-0	10	10	01	10	0-
	R_0S_0	R_1S_1	R_0S_0	R_1S_1	R_0S_0	R_1S_1	R_0S_0	R_1S_1

Таблица 14. Таблица сигналов функции возбуждения: $R_0S_0R_1S_1=\mu(Q_0,Q_1,x_0)$

```
\begin{array}{l} \textstyle \Pi \Phi \colon \\ R_0 = \bar{x_0}Q_0\bar{Q_1} \vee x_0Q_0\bar{Q_1} \vee \bar{x_0}Q_0Q_1 \vee x_0Q_0Q_1 \\ S_0 = x_0\bar{Q_0}\bar{Q_1} \vee \bar{x_0}\bar{Q_0}Q_1 \\ R_1 = x_0\bar{Q_0}Q_1 \vee \bar{x_0}Q_0Q_1 \\ S_1 = x_0Q_0\bar{Q_1} \\ y_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0Q_1\bar{x_0} \\ R_0 = 1 \vee 2 \vee 3 \vee 4 \\ S_0 = 5 \vee 6 \\ R_1 = 7 \vee 3 \\ S_1 = 2 \\ y_0 = 5 \vee 6 \vee 3 \end{array}
```


Входное закодированное слово: [0,0,1,1,0,1,0,0,1,1,1] Выходное закодированное слово: [0,0,1,0,1,0,1,1,1,0,0] Ожидаемое закодированное слово: [0,0,1,0,1,0,1,1,1,1,0,0]

ЈК-триггер

Q	0	1
JK		
00	0	1
01	0	0
10	1	1
11	1	0

Таблица 15. Закон функционирования ЈК-триггера

$Q_i \to Q_{i+1}$	J	K
$0 \rightarrow 0$	0	-
$0 \rightarrow 1$	1	-
$1 \rightarrow 0$	-	1
$1 \rightarrow 1$	-	0

Таблица 16. Система подставок ЈК-триггера

x_0	Q_0	Q_1	Q_0	Q_1	Q_0	Q_1	Q_0	Q_1
	0	0	0	1	1	0	1	1
0	0-	0-	1-	-0	-1	0-	-1	-1
1	1-	0-	0-	-1	-1	1-	-1	-0
	J_0K_0	J_1K_1	J_0K_0	J_1K_1	J_0K_0	J_1K_1	J_0K_0	J_1K_1

Таблица 17. Таблица сигналов функции возбуждения: $R_0S_0R_1S_1=\mu(Q_0,Q_1,x_0)$

Входное закодированное слово: [0,0,1,1,0,1,0,0,1,1,1] Выходное закодированное слово: [0,0,1,0,1,0,1,1,1,0,0] Ожидаемое закодированное слово: [0,0,1,0,1,0,1,1,1,0,0]

Вывод

В ходе лабораторной работы был изучен структурный автомат и принципы постоения схем на его основе. Были пострены схемы с памятью на основе исходного автомата на D-, T-, RS- и JK-триггерах. Из всех вариантом лучшим считается схема на D-триггерах в силу малого количества элементов и трёх уровней вентилей. Корректность полученых схем была подтверждена тестовой проверкой реакции схем на выходные сигналы. Все результаты совпали с ожидаемыми.