Regresión logística

Miguel Nunez-del-Prado, Ph. D.

Aplicaciones de la regresión logística

Analítica sanitaria: Regresión logística para reducir los reingresos de pacientes

Logistic Regression Model

Regresión logística

es un clasificador discriminativo que se utiliza para describir datos y explicar la relación entre una variable binaria dependiente y una o más variables independientes nominales, u ordinales.

Regresión logística

Los clasificadores de aprendizaje supervisado requieren un conjunto de datos de entrenamiento de m pares de entrada/salida $x^{(i)}$, $y^{(i)}$. Además, necesitamos:

- Un conjunto de características como entrada. Para cada observación de entrada x⁽ⁱ⁾, que es un vector de características [x₁;x₂;...;x_n]
- Una función de clasificación que calcula la clase estimada \hat{y} , mediante p(y|x) (e.g., Sigmoid)
- Una función objetivo para el aprendizaje, que suele implicar la minimización del error en los ejemplos de entrenamiento (e.g., cross-entropy loss function)
- Un algoritmo para optimizar la función objetivo. (algoritmo de **descenso de gradiente estocástico**).

La regresión logística tiene dos fases:

- entrenamiento: entrenamos los pesos w y b utilizando el descenso estocástico-gradiente y la pérdida de entropía cruzada.
- 2. prueba: Dado un ejemplo de prueba x, calculamos p(y|x) y devolvemos la etiqueta de mayor probabilidad y = 1 o y = 0.

Clasificación

Dada un vector de observación $x = [x_1; x_2; ...; x_n]$. La salida del clasificador y puede ser 1 (lo que significa que la observación es un miembro de la clase) o 0 (la observación no es un miembro de la clase). Queremos saber la probabilidad P(y = 1|x) de que esta observación sea un miembro de la clase.

¿Cómo aprender los pesos (w) y término de sesgo (b)?

La regresión logística aprende w y b, a partir de un conjunto de entrenamiento. Cada peso w_i es un número real y está asociado a una de las características de x_i . La ponderación w_i representa la importancia de esa característica de entrada para la decisión de clasificación, y puede ser positiva o negativa.

¿Cómo tomar una decisión?

el clasificador multiplica primero cada x_i por su peso w_i , suma las características ponderadas y añade el término de sesgo b. El número único resultante z expresa la suma ponderada de la evidencia para la clase.

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
 $z = w \cdot x + b$

La función sigmoide

Para obtener una probabilidad, pasaremos z por la función sigmoidea, $\sigma(z)$. La función sigmoide o función logística, da nombre a la regresión logística.

¿Cómo asignarle una clase a una observación?

Para una prueba x, decimos que <u>sí</u> cuando la probabilidad P(y = 1/x) es superior a 0.5, y <u>no</u> en caso contrario (i.e., límite de decisión)

$$\hat{y} = \begin{cases} 1, \ P(y=1|x) > 0.5 \\ 0, \ caso \ contrario \end{cases}$$

Ejemplo de clasificación

Las empresas necesitan comprender lo que sus clientes piensan de sus productos o servicios. Para ello podemos recurrir al análisis de comentarios de los clientes. Con el fin de saber si los comentarios son (+) o (-).

Representaremos las entradas por 6 características

V	ar Definition	Value
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2		2
<i>x</i> ₃	<pre> { 1 if "no" ∈ doc 0 otherwise }</pre>	1
x_4	(1 . 10 1	3
X5	$\int 1 \text{ if "!"} \in doc$	0
xe	log(word count of doc)	ln(66) = 4.19

Ejemplo de clasificación: Pesos

 W_1 indica la importancia del número de palabras del léxico positivo w_2 nos indica la importancia de las palabras del léxico negativo.

Note que $w_1 = 2.5$ es positivo, mientras que $w_2 = -5.0$, lo que significa que las palabras negativas están asociadas negativamente a una decisión de sentimiento positiva, y son aproximadamente el doble de importantes que las palabras positivas.

$$w_i = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$$

 $b = 0.1$

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

$$= 0.30$$

Ejemplo de clasificación: resultados

Dadas las 6 características de la entrada x, se pueden calcular P(+|x) y P(-|x) usando w y b antes definidos

¿Cómo se aprenden los parámetros del modelo, las ponderaciones w y el sesgo b?

Aprendizaje en regresión logística

- Queremos aprender los parámetros que acercan más cada observación de entrenamiento \hat{y} a la verdadera y. Para esto necesitamos dos elementos:
 - 1. Una función de distancia que permita saber cuan cerca \hat{y} esta del verdadero y. Para ello usaremos una función de costo llamada **crossentropy loss**
 - 2. Un algoritmo de optimización para actualizar iterativamente los pesos de forma que se minimice esta función de pérdida. El algoritmo estándar para esto es el **stochastic gradient descent**

La función de pérdida de entropía cruzada

- Debemos aprender pesos w y b que maximicen la probabilidad de la etiqueta correcta p(y|x).
- Como sólo hay dos resultados discretos (1 o 0), se trata de una distribución Bernoulli:

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

 Para convertir esto en función de pérdida a minimizar el resultado es la pérdida de entropía cruzada LCE:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

$$L_{CE}(\hat{y}, y) = -[y\log \sigma(w \cdot x + b) + (1-y)\log(1-\sigma(w \cdot x + b))]$$

Logistic Regression Example X

Retomando el ejemplo de clasificación

• Si la observación es positiva *y=1* la función de perdida es:

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log (1 - \sigma(w \cdot x + b))]$$

$$= -\log (.31)$$

$$= 1.17$$

• Si la observación es negativa *y=0* la función de perdida es:

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log \sigma(w \cdot x + b)]$$

$$= -\log(.69)$$

$$= .37$$

¿Por qué minimizar esta probabilidad logarítmica negativa hace lo que queremos?

- Un clasificador perfecto asignaría la probabilidad 1 al resultado correcto y la probabilidad 0 al resultado incorrecto.
- Cuanto \hat{y} más cerca esté de 1, mejor será el clasificador; cuanto \hat{y} más cerca de 0, peor será el clasificador.
- El logaritmo negativo de esta probabilidad es una métrica de pérdida que va de *0* (ninguna pérdida) a *infinito* (pérdida infinita).
- Esta función de pérdida también garantiza que, a medida que se maximiza la probabilidad de la respuesta correcta, se minimiza la probabilidad de la respuesta incorrecta, ya que ambas suman uno,

Gradient Descent – gradiente descendiente

- El objetivo de la gradiente descendiente es de encontrar los pesos óptimos para minimizar la función de pérdida definida para el modelo.
- Por lo tanto, el objetivo es encontrar el conjunto de pesos que minimice la función de pérdida $\theta=w.b$, promediando todos los ejemplos:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE} \left(f(x^{(i)}; \theta), y^{(i)} \right)$$

Gradient Descent : Intuición

La intuición detrás de la gradiente descendente es que si estás caminando en un cañón y tratas de descender lo más rápido posible hasta el río en el fondo, podrías mirar a tu alrededor 360 grados, encontrar la dirección en la que el suelo está más inclinado, y caminar cuesta abajo en esa dirección.

Gradient Descent

- Para la regresión logística, esta función de pérdida es convexa
- Una función convexa sólo tiene un mínimo (no hay mínimos locales)
- La magnitud de la cantidad a mover en el descenso de gradiente es el valor de la pendiente ponderado por una tasa de aprendizaje n

Gradient Descent en espacio N-dimensional

 El gradiente es un vector que expresa los componentes direccionales de la pendiente más pronunciada a lo largo de cada una de esas N dimensiones.

En 2 dimensiones de peso w y tasa de aprendizaje b, el gradiente es un vector con dos componentes ortogonales, cada uno de los cuales nos dice cuánto se inclina la pendiente en la dimensión w y b.

Gradient Descent en la regresión logística

• Para actualizar θ , necesitamos una definición de gradiente $\nabla L(f(x,\theta),y)$. Recordemos la función de pérdida de entropía cruzada:

Resulta que la derivada de esta función para un vector de observación
 x :

Algoritmo de gradiente decendiente estocastica

```
Algorithm 1 Stochastic Gradient Descent Algorithm returns \theta
 1: function Stochastic Gradient Descent Algorithm(L(), f(), x, y)
         \# L: Función de perdida
         \# f: Función parametrizada de \theta
         # x : Conjunto de entrada x^{(1)}, x^{(2)}, ..., x^{(m)}
# y : Conjunto de salida y^{(1)}, y^{(2)}, ..., y^{(m)}
         \theta = 0
 6:
         while \epsilon > \theta^{t+1} - \theta^t do
              for cada tupla de entrenamiento (x^i, y^i) do
                   \hat{y} = f(x^i, \theta)
                                                                                                        \triangleright Estimar \hat{y}
                                                                                     \triangleright Cuan lejos \hat{y}^i esta de y^i
                   L(\hat{y}^i, y^i)
10:
                   g = \nabla_{\theta} L(f(x^i, \theta), y^i) \rightarrow iCómo mover \theta para maximizar las pérdidas?
11:
                   \theta = \theta - \eta.g
                                                                                                     \triangleright Actualizar \theta
12:
         Regresa \theta
13:
```

Retomando el ejemplo de clasificación simplificado

Utilizaremos una versión simplificada del ejemplo de clasificación de sentimientos, ya que contempla una única observación x, cuyo valor correcto es y = 1, y sólo dos características:

- $x_1=3$ (conteo de palabras positivas)
- x₂=2 (conteo de palabras negativas)

Para la primera iteración:

$$w_1 = w_2 = b = 0$$
$$\eta = 0.1$$

Retomando el ejemplo de clasificación simplificado

El único paso de actualización requiere que calculemos el gradiente, multiplicado por la tasa de aprendizaje

$$\theta^{t+1} = \theta^t - \eta \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

En nuestro mini ejemplo hay tres parámetros (w_1 , w_2 y b). Podemos calcular el primer gradiente de la siguiente manera:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Retomando el ejemplo de clasificación simplificado

Ahora que tenemos un gradiente, calculamos el nuevo vector de parámetros θ^1 moviendo θ^0 :

$$\theta^1 = \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix} - \eta \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix} = \begin{bmatrix} .15 \\ .1 \\ .05 \end{bmatrix}$$

Después de un paso de descenso de gradiente, los pesos se han desplazado para ser: w1 = 0.15, w2 = 0.1, yb = 0.05.

Batch training

Al ver tantos ejemplos, el entrenamiento por lotes ofrece una estimación excelente de la dirección en la que hay que mover los pesos:

$$Cost(\hat{y}, y) = \frac{1}{m} \sum_{i=1}^{m} L_{CE}(\hat{y}^{(i)}, y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log \left(1 - \sigma(w \cdot x^{(i)} + b)\right)$$

El gradiente del lote es la media de los gradientes individuales:

$$\frac{\partial Cost(\hat{y}, y)}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m \left[\sigma(w \cdot x^{(i)} + b) - y^{(i)} \right] x_j^{(i)}$$

Animación

 Podemos apreciar como la curva L de perdida se va acomodando a medida que la gradiente hala su mínimo global

Takeaways

- La regresión logística es una técnica simple y eficaz
- No es necesario disponer de grandes recursos computacionales
- Los resultads son interpretables
- Los pesos w_i de cada una de las características determinan la importancia de esta en la decisión final

Gracias

¿Preguntas?