Nature's Design

Mark Whittle
Astronomy Department,
University of Virginia

April 20 2004, Designing Matter, #13

Outline

- 1) Design in Nature: the stage, actors and play.
- 2) Quick tour: from nuclei to distant galaxies.
- 3) Universe as a laboratory of extremes: size/mass/time/power/density/temperature.
- 4) Constituents, and their construction/creation: nuclei & atoms, particles, matter, forces.
- 5) Emergence of structure: stars, galaxies, clusters/voids.
- 6) Origin of energy.

Shakespeare: "As You Like It" Reflections on human life

"All the world's a stage,
And all the men and women merely players.
They have their exits and their entrances,
And one man in his time plays many parts,
His acts being in seven ages."

Deep Contents

- Space & Time (space-time)
- <u>Matter</u> (particles)
- <u>Forces</u> (act between particles) 4(5): strong, electromagnetic, weak, gravity, (QM)
- <u>Rules</u> (quantum/classical physics) (e.g. conservation laws, QED, QCD, GR)

Together, these make <u>four</u> basic structures

Four Basic Structures

Nuclei

FORCES strong, EM, QM

Atoms

EM, QM

• Stars/Planets

gravity, EM, QM

Galaxies

gravity

Lets begin our brief tour of these basic structures

4. <u>Creation of elements & particles</u>
We must go inside stars and back to the Big bang.

We consider the creation of <u>three</u> things:

- 1) heavy elements (nuclei) in stars
- 2) helium in the Big Bang (1-5 mins).
- 3) protons/electrons in the Big Bang (< 1sec)

What about helium ??

- He⁴ is extremely common: ~25% <u>everywhere</u>
- far too much to come from stars
- even <u>oldest</u> stars have ~24%
- → It was made before all stars, in the big bang
- We see the Universe expanding (with $v \propto d$) suggests all together 14Gyr ago
- →began with "Big Bang"

 High temp & density → lower temp & density

What about protons & electrons ??

- were p, n, e⁻ made at some earlier time?
- if so, how?
- what about other particles $(\mu, \nu, q...)$?
- what about anti-matter, was it also created?
- must consider energy \leftrightarrow matter interchange
- must visit much earlier times
 - well-known physics: back to ~1 us
 - ~known physics : back to $\sim 10^{-12}$ sec
 - ~rough guesses : back to $\sim 10^{-35}$ sec
 - profound ignorance: before ~10-43 sec

Energy / Matter Interchange Matter is <u>very</u> concentrated energy : $E = mc^2$

 $1 \text{kg} \equiv 10^{17} \text{ Joules} = 100 \text{ megatons } (\underline{\text{big}} \text{ H bomb})$

Examples of matter into energy:

In general: particle + anti-particle → energy

 $e^- + e^+ \rightarrow 2\gamma \ (\frac{1}{2} \text{ MeV photons created})$

Examples of energy into matter:

In general: energy → particle + anti-particle

 $2\gamma \rightarrow p + \bar{p} \text{ (need > 1 GeV } \gamma_s)$

KE can also create matter:

(need KE $> 2m_e c^2$

= threshold energy)

5. Origin of cosmic structures

- Today's Universe is extremely <u>lumpy</u>
 - clusters, galaxies, stars, planets, people.....
 - with very very little in between
- But, the Universe started out smooth
- How did the structure arise?
 - there must be <u>initial</u> variation/ripples
 - which are amplified (by gravity?)
- Observe the early Universe by looking <u>far away</u>
- → the Cosmic Microwave Background (CMB)

Nature of Cosmic Sound 1. Volume: pressure variations ~ 1/100,000 corresponds to about 90 dB → Loud but not cacophonous 2. Pitch: measured wavelengths 20,000 – 200,000 lyr pitch 10-12 – 10-13 Hz (v ~ 0.6c) → 48 – 52 octaves below concert A (440 Hz) 3. Quality: need to construct the "power spectrum"

Properties from the CMB

Age of Universe	13.7 Byr	(2%)
• Flatness	1.02	(2%)
• Atoms	4.4%	(9%)
Dark matter	23%	(15%)
Dark energy	73%	(5%)
 Hubble constant (km/s/Mpc) 	71	(6%)
Photon/proton ratio	1.6x10 ⁹	(5%)
Time of first stars	180 Myr	(50%)
• Time of CMB	380,000yr	(2%)

The cosmic concert hall

The universe is <u>not</u> a perfect concert hall There is distortion en-route and local noise.

Similar to carpet+drapes in a concert hall plus a noisy audience adding distractions.

Correct for these problems using detailed computer calculations of the early Universe.

Observed : $C(1) \rightarrow Pure : P(k)$

Into the fog: yet earlier times

The CMB shows the sound at 380,000 yrs What was the sound like **before** then?

We can't see beyond the CMB foggy wall! But computer models <u>can</u> take us there

Earlier times:

- → Gas only had time to fall into **smaller** "valleys"
- → Wavelengths are shorter, <u>frequencies higher</u>
- → Amplitudes lower, sound is **quieter**

Examples:

The first sound: striking the bell

Although gravity amplifies sound, there must be initial irregularities, what caused these?

Deep mystery, but recent progress:

- → Quantum roughness in early universe
- \rightarrow Amplified by ~10⁵⁰ during inflation at ~10⁻³⁵ sec
- → Inaudible quantum hiss made audible by inflation
- → All structure in the universe due to quantum effects!

What did the quantum hiss sound like?

- → Its power spectrum is **flat** → "white noise"
- → Gravity's amplifier then distorts the sound to make the final power spectrum with its harmonics

From sound to structure

Gravity amplifies sound into structure, right?

Wrong!! it is too quiet

at the CMB, the maximum fluctuations are $\sim 10^{-5}$ at the 1st peak (size $\sim 2 \times 10^{5}$ lyr), all others are weaker. This is too small to grow quickly into stars & galaxies.

→ We need something else with greater variation ??

Dark matter comes to the rescue

- → it feels no pressure
- → it keeps collapsing from early times (no rebound)
- \rightarrow At CMB, fluctuations are large (~10⁻²)
- → P.S. shows no harmonics, power at high frequencies

6. Origin of Energy

- In high school we learn:
 - many types of energy (heat/light/KE/chemical,nuclear..)
 - conversion from one type to another is possible
 - such conversions always conserve energy
 - energy can facilitate transformations: eg
 - sunlight drives/creates the biosphere
 - energy needed to purify and fabricate material things
- Where does all this energy <u>ultimately</u> come from?

Origin of Energy (ii)

- All energy arises when particles "drop" down the potential associated with one of the four forces
- Examples:
 - chemical energy: electrons closer to nucleus
 - nuclear energy: protons/neutrons packed tighter
 - gravitational energy: released when objects fall
- Sometimes need one to enable another eg: starlight (sunshine)
 - collapsing star (gravity) heats core (particle KE) enabling protons to overcome repulsion and combine, dropping down the (short range) nuclear potential

Origin of Energy (iii)

- Ultimately, then, energy arises because things are initially far apart, and then come closer.
- What separated everything initially?
 - → The Big Bang!!
 - → specifically, inflation which drove expansion
 - → inflation stored energy in all the force fields
 - → to be released later, when circumstances allow
- Without fluctuations, gravity could never have begun the process, energy production would have ceased following He⁴ production & recombination

