Mathematik I Gruppen

Prof. Dr. Doris Bohnet Sommersemester 2020

Lernziele

- Begriffe bzw. Aussagen kennen:
 - √ (abelsche) Gruppe, Untergruppe, Ordnung
 - ✓ Inverses Element
 - ✓ Satz von Euler bzw. "Kleiner Fermat"
- Beispiele von Gruppen kennen
- Nachweisen können, dass es sich bei einem Beispiel um eine Gruppe handelt
- Untergruppen einer Gruppe, Ordnung einer Gruppe bzw. eines Elements bestimmen können
- Inverse Elemente ausrechnen können

Wiederholungsfragen...

1.
$$(x,y) \in \mathbb{R} = 0 \times 2^{2} - y^{2} = x - y$$
 $1^{2} - 0^{2} = 1 - 0 = 0 \quad 0^{2} - 1^{2} = 0 - 1 = 0 \times 2^{2} = x - y$

fix x,y beliebing mit $x^{2} - y^{2} = x - y$
 $= 0 \quad y^{2} - x^{2} = y - x = 0 \quad (y,x) \in \mathbb{R}$
 $= 0 \quad y^{2} - x^{2} = y - x = 0 \quad (y,x) \in \mathbb{R}$

2.
$$\mathbb{Z}_{8}^{*} = \int a \in \mathbb{Z}_{8} | \log | \operatorname{ggT}(q_{8}) = 1$$
, $\mathbb{Z}_{8} = \int 0, 1, 2, 3, 4, ..., 7$
 $= \int 1, 3, 5, 7$ $= \int 1, 3, 5, 7$ Alle Chemente, die Linke word $= \int 1, 3, 5, 7$ $= \int 1, 3, 5, 7$

$$3.$$
 $3 \times = 1 \mod 7$

4.
$$\varphi(n) = |Z_n^*|$$

$$\varphi(p) = p-1$$

3.
$$3 \times = 1 \mod 7$$
, $\times = 5$, dem $15 = 1 \mod 7$

ggT
$$(n,m)=1$$
 ° $(\varphi(n \circ m) = \varphi(n)\varphi(m))$
 $\varphi(57)=\varphi(3 \circ 19)$
 $=\varphi(3)\cdot \varphi(19)=2 \circ 18$

Beispiel – Cäsar-Verschlüsselung

Verschlüsselung

Wie sieht
$$f^{-1}$$
 aus? (so dars $f^{-1}(f(a)) = a$)

Entschlisselung

$$g^{-1}$$
: $7L_{26} - p 7l_{26}$

$$Q \mapsto Q + 23 \mod 26$$

$$= 23 \mod 26 \quad \text{von } 3$$

$$f^{-1}(f(a)) = f^{-1}(a+3 \mod 26) = a+3 \mod 26 + 23 \mod 26$$

= $a \mod 26$

Beispiel – inverse Elemente

Definition Sei Geine Menge and o: (x & -> & eine Verhnüpfung;

mit folgenden Eigenschaften: (g,h) +> goh

(G1) assoziativ: (goh) oi = go(hoi) + gh,i ∈ (a)

(G2) neutrales Element: ∃e ∈ a: +ge a: goe = g

(G3) inverse Elemente: +ge a ∃gi ∈ (a: gogi = e)

dann heißt (a,o) eine Gruppe.

Gruppe - Definition

Sei a eine Gruppe. Falls (a4) kommutativ: $\forall g, h \in G: goh = hog,$ denn heißer a abelsch |G1 = Ansold du Elemente heizer Didnung Beispiele: 1) (Z, +): n+m∈Z ∀n,m∈Z (a1) silt / $(G2) \quad n+0=n \quad \forall n\in \mathbb{Z}$ $(G3) \quad n+n\in \mathbb{Z} \quad \exists m\in \mathbb{Z}: n+m=0$ Guppe na alide m=-n 2) (No, +): n+m ∈ IN, Vu, m ∈ No (G1) / , (G2) ~10= ~ Vn € iNo teine Guppe (G3) YNENO ZMENO: N+M=0?

04.05.2020

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 7

NEIN, deur m=-n & N

Gruppe

Eine Menge G zusammen mit einer Verknüpfung $\circ: G \times G \to G$ heißt **Gruppe,** falls gilt:

- (G1) assoziativ: $(a \circ b) \circ c = a \circ (b \circ c)$
- (G2) Existenz eines neutralen Element: Es gibt $e \in G$: $a \circ e = a$, für alle $a \in G$
- (G3) Existenz inverser Elemente: Zu jedem $a \in G$ existiert ein $a^{-1} \in G$ so dass: $a^{-1} \circ a = e$

Gilt zusätzlich:

(G4) kommutativ: $a \circ b = b \circ a$

heißt die Gruppe abelsch.

Die Mächtigkeit der Menge |G| wird als **Ordnung** der Gruppe bezeichnet.

Gruppen - Beispiele

3)
$$(\mathbb{Z}_{n}, +)$$
 is eine Gruppe für $n \in \mathbb{N}$
 \mathbb{Z}_{9} . \mathbb{Z}_{9} : $\{1, 2, 3\}$ $= \{1, 2, 3\}$

7.)
$$S_3 = 3$$
 g: $71,2,3$ -3 $71,2,3$ g is byte try $S_3 = 3$.

(S_3) is eine Gruppe

Verkningtung von Abrildungen

(A = (123), S₁ = (132), S₂ = (213), S₃ = (231), S₄ = (312)

(A = (123), S₁ = (132), S₂ = (213), S₃ = (231)

(A = (123), S₃ = (132), S₄ = (132)

(A = (123), S₄ = (132), S₅ = (132)

(A = (123), S₄ = (132), S₅ = (132)

(A = (123), S₄ = (132), S₅ = (132)

(A = (123), S₄ = (132), S₅ = (132)

(A = (123), S₅ = (132), S₇ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (132), S₈ = (132)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A = (123), S₈ = (123), S₈ = (123)

(A =

04.05.2020

Gruppen - Beispiele

(C3) Inverse?
$$S_{1} = (132)$$

$$S_{1} = (132) \circ (132) = (123) = id$$

$$von S_{1} = (132) \circ (132) = id$$

$$von S_{1} = (132) \circ (132) = id$$

$$von S_{1} = (1323) \circ (132) = id$$

$$S_{2} = (213) \circ (213) = (123)$$

$$S_{2} \circ S_{2} = (213) \circ (213) = (123)$$

Son Permutationsque pre oder symmetische Gruppe R Permutationer vou v Elementer.

Gruppen - Beispiele

04.05.2020

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesung 7

Troesses

Wiederholung: \mathbb{Z}_n^*

$$Z_n^* = \{a \in Z_n \setminus \{o\} \mid ggT(a,n) = 1\}$$
 $Z_+^* = \{1,3\} \mid 1Z_+^* \mid = 2$

lette Valesung: $ggT(n,a) = 1$ $a = D$ $\exists x,y : n \times + ay = 1$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$

ell gemein: (Z_n^*, \cdot) is eine Suppe

 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$
 $\Rightarrow \exists y : ay = 1 \mod n$

Untergruppe

Eine Teilmenge $H \subseteq G$ heißt **Untergruppe** von einer Gruppe (G, \circ) , falls 1. $g, h \in H \Rightarrow g \circ h \in H$, o" Verknipfung Z.B. "+" "" ? ecH 2. $a \in H \Rightarrow a^{-1} \in H$. Man schreibt: H < GSatz: 14/ teilt 16/, falls a eine endliche Juppe Beispül: • $\mathbb{Z}_{6}^{*} = \{1,5\}$ $\varphi(6) = \varphi(2\cdot3) - \varphi(2)\cdot\varphi(3)$ 172 * 1 = 2, also taine Untergruppen oußer 21} • $\mathbb{Z}_{8}^{*} = \{1,3,5,7\}$ $|\mathbb{Z}_{8}^{*}| = 4$ Teiler von 4:2Sibres eine Untergruppe aus 2 Elementeer?

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesungsübersicht $H = \sqrt{1}, 7$ $7^2 = 1$ 04.05.2020

Ordnung von Untergruppen & Elementen

Sei G eine Gruppe und $a \in G$. Example Die kleinste Zahl $n \in \mathbb{N}$, so dass

$$a^n = e$$

heißt Ordnung des Elementes $a \in G$.

Man schreibt: ord(a) = n.

Gibt es kein solches n, dann setzt man: $ord(a) = \infty$.

$$28^* = \{1,3,5,7\}$$
 $172_8^* = 4$
 $172_8^* = 4$
 $172_8^* = 4$
 $172_8^* = 4$
 $192_8^* = 4$
 $192_8^* = 4$

$$7^{2} \mod 8 = 1 \mod 8$$

also $\mod (7) = 2$
 $3^{2} \mod 8 = 1 \mod 8$

also: $\mod (3) = 2$
 $5^{2} \mod 8 = 1 \mod 8$
 $= 2 \mod (5) = 2$

Ordnung von Untergruppen & Elementen

Satz: Sei G eine endliche Gruppe. Dann gilt für alle Untergruppen H < G und alle Elemente $a \in G$: $|H| \mid |G| | |ord(a)| \mid |G|$

Wiederholung: Eulersche Phi-Funktion

Es gilt für ggT(n, m) = 1:

$$\phi(n \cdot m) = \phi(n) \cdot \phi(m)$$

und

$$\phi(n) = \prod_{i=1}^{k} (p_i - 1)p_i^{a_i - 1}, n = p_1^{a_1} \cdot ... \cdot p_k^{a_k}$$

Insbesondere gilt für Primzahlen: $\phi(p) = p - 1$

Beispiel:

Wir berechnen $\phi(26)$:

Primfaktorzerlegung von 26: $26 = 2 \cdot 13$

Damit ist $\phi(26) = \phi(2)\phi(13) = 12$.

Wir berechnen $\phi(48)$:

Primfaktorzerlegung von 48: $48 = 2^4 \cdot 3$

Damit ist $\phi(48) = (2-1) \cdot 2^3 \cdot (3-1) \cdot 3^0 = 8$.

Satz von Euler

Sei
$$n \in \mathbb{N}, n \geq 2$$
. Dann gilt für alle $a \in \mathbb{Z}_n^*$: $|\mathbb{Z}_n^*| = \varphi(n)$

$$|\mathbb{Z}_8^*| = 4 \qquad \mathbb{Z}_n^4 = 1 \mod n$$

"Kleiner Fermat"

Sei $n \in \mathbb{N}$, $n \geq 2$. Dann gilt für alle $a \in \mathbb{Z}_n \setminus \{0\}$:

 $n \ Primzahl \Leftrightarrow a^{n-1} \equiv 1 \ mod \ n.$