• Given Date $x = \{x_1, ..., x_n\}$, parameters $\{z_1, ..., z_m\}$. a family of Distribution Q. want to find $q^*(z) = avg$ min KL(q(z) | | p(z|x)).

and $KL(\{2\}) \parallel p(2|x)) = -\int_{2}^{2} q(2) \log \left[\frac{p(2|x)}{q(2)}\right] d2$ $= \int_{2}^{2} q(2) \log q(2) d2 - \int_{2}^{2} \log p(2|x) | q(2) d2$ $= E_{1} \left[\log q(2) \right] - E_{2} \left[\log \left(\frac{p(x|2) \cdot p(2)}{p(x)}\right) \right]$ $= E_{1} \left[\log q(2) \right] - E_{2} \left[\log \left(p(x|2) \cdot p(2)\right) \right] + E_{1} \left[\log p(x) \right]$ $= E_{1} \left[\log q(2) \right] - E_{2} \left[\log \left(p(x|2) \cdot p(2)\right) \right] + \log p(x).$

=> KL(q(z) 11 p(z(x)) = - ELBO(q(z)) + eligp(x).

Suppose Q is a family that $q^* \in \mathbb{Q}$ and q^* maximize ELBO $(q^*(2))$ for all $q \in \mathbb{Q}$, $KL(q(2)||p(2|x)) \ge 0$

= - ELBO(9(21)

 \Rightarrow log p(x) > ELBO(q(2)).

and q^{*} satisfies $\log p(x) = ELBO(q^{*}(z))$.

$$\mathbb{E}_{q*} \left[\log q^*(z) \right] = \mathbb{E}_{q*} \left[\log \left(\frac{P(x|z) \cdot P(z)}{P(x)} \right) \right]$$

$$(=)$$
 $q^*(2) = P(2|\times) = posterior Distribution.$