

ABERDEEN 2040

Exploratory Data Analysis in Practice

Data Mining & Visualisation Lecture 4

Today...

- Exploring your data
- Cleaning and pre-processing
- Dealing with missing data
- Class imbalance
- Split–Apply–Combine

Exploring Your Data

The first step in data analysis is often to understand what our dataset 'looks like'.

Pandas has lots of tools to help explore a given dataset.

Let's say we load in the Titanic dataset...

```
# Load the 'titanic' example dataset
titanic = sns.load_dataset("titanic")
```

Exploring Your Data - head()

What do the first few rows of your data look like?

# Show the first five rows of the titanic dataset titanic.head()															
	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

The state of the s

Exploring Your Data - tail()

What do the last few rows of your data look like?

# Show the last ten rows titanic.tail(n=10)															
	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
881	0	3	male	33.0	0	0	7.8958	s	Third	man	True	NaN	Southampton	no	True
882	0	3	female	22.0	0	0	10.5167	S	Third	woman	False	NaN	Southampton	no	True
883	0	2	male	28.0	0	0	10.5000	s	Second	man	True	NaN	Southampton	no	True
884	0	3	male	25.0	0	0	7.0500	S	Third	man	True	NaN	Southampton	no	True
885	0	3	female	39.0	0	5	29.1250	Q	Third	woman	False	NaN	Queenstown	no	False
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True

Note that for both head() and tail(), you can change the number of rows returned with n.

Exploring Your Data - shape

How many variables (columns) does your dataset have? How many rows?

```
titanic.shape
(891, 15)
```


Exploring Your Data - info()

What are the data types of the variables?

```
titanic.info()
 ✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
     Column
                  Non-Null Count Dtype
    survived
                  891 non-null
                                  int64
     pclass
                  891 non-null
                                  int64
                  891 non-null
                                  object
                  714 non-null
                                  float64
                  891 non-null
                                  int64
                  891 non-null
                                  int64
     parch
                  891 non-null
                                  float64
                                  object
     embarked
                  889 non-null
     class
                  891 non-null
                                  category
                                  object
                  891 non-null
     adult male 891 non-null
                                  bool
                  203 non-null
                                  category
 12 embark_town 889 non-null
                                  object
                                  object
    alive
                  891 non-null
                  891 non-null
                                  bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
```

Think about their levels of measurement.

Think about what these variables represent!

ABERDEEN 2

Exploring Your Data - describe()

What are the central tendencies of the variables? What are their variability?

Think about how each of the variables are distributed.

What does that tell us about the data?

Cleaning Data ABERDEEN 2040

Cleaning Data

In Al lectures and tutorials, there's often an assumption that your data is 'clean'— i.e. free from issues and ready for analysis.

In that case, you can fetch data from a Python library, Kaggle, or GitHub repository and you're ready to go!

Cleaning Data

In practice, however, this is often not the case!

Data can be 'messy', and the process of **cleaning data** seeks to address any issues in the dataset.

By cleaning the data properly before you analyse it, your analysis can be more accurate and robust.

Cleaning Data - Examples

- Some examples of messy data:
 - Erroneous values (e.g. spelling mistakes)
 - Duplicated rows
 - Partial data (e.g. abandoned questionnaires)
 - Missing values
 - Extreme outliers

Erroneous Values

Let's say we want to check how many people embarked the Titanic from each town.

```
# Count the number of rows with each embark town
titanic['embark_town'].value_counts()

O.0s

Southampton 644
Cherbourg 167
Queenstown 77
Cherbuorg 1
Name: embark_town, dtype: int64
```


Erroneous Values

Let's say we want to check how many people embarked the Titanic from each town.

Probably a spelling mistake in the data!

This is particularly an issue worth checking when dealing with user-input data.

Is_purchaser	time_on_site	pages_visited	location	was_referred
True	0-9 minutes	4	UK	True
True	10-20 mins	13	UK	False
False	0-9 minutes	?	US	True
False	10-20 minutes	7	UK	False
True	0-9 minutes	3	US	False

What can we do if we have some missing data within the dataset?

We could delete the row(s) where data is missing.

But this might result in lots of missing data, and in practice, that column might not be that interesting or useful anyway!

Instead, we could insert the mean, median, or mode of the variable.

This is a reasonable solution, but it feels a little primitive.

We can do better!

We could copy across the value held within a similar row, e.g. using its 'nearest neighbour', or use other methods to find similar rows.

This method is more sophisticated, but it may have pros and cons depending on the context, and the data at hand.

Missing Data - Overview

In short, there are many ways of addressing missing data, and there are no real 'right' or 'wrong' approaches.

Missing data can appear in many ways. Could be "None"; Could be "NaN"; Could be ""; Could be ""; Could be ""; Could be "{}" etc.

Many approaches will exist in popular packages (e.g. pandas).

Outliers

Outliers are data points that differ significantly from other observations.

Sometimes, a value might be so large or small that it severely distorts some of your analysis.

E.g. think of the average annual salary for a group of 100 people (but one of them happens to be a billionaire).

Dealing With Outliers

We could opt to remove the row of data, or impute some other value to the data (e.g. 2 std devs above the mean).

However, removing or changing data can be a contentious issue (particularly within research contexts).

By removing or changing data, you are at risk of modifying your dataset in order to 'look for the right answer'.

Dealing With Outliers - Risks

Removing or changing data to get more favourable results is often referred to as 'p-hacking' your data, or 'data dredging'.

It is a significant problem in science as a whole. And as such, removing outliers is not something to be taken lightly!

Again, whether and how you deal with outliers will often be contextual, but your decision should be justifiable!

Data Pre-Processing

Say you've cleaned your data, addressing common issues.

Next, we consider how we might want to pre-process the data, to get it ready for analysis.

We'll outline a few examples, but there are many options for pre-processing and 'feature engineering'.

Data Pre-Processing - Dummy Coding

Dummy coding refers to converting a categorical variable to a set of numerical (Boolean) values, representing the same data.

This can be particularly useful when dealing with nominal or ordinal variables.

Data Pre-Processing - Dummy Coding Example

Let's say we have a categorical variable *height*, which can contain either {short, medium, tall}.

animal	height
giraffe	tall
cat	medium
hamster	short
dog	medium
elephant	tall

Data Pre-Processing - Dummy Coding Example

Dummy coding this variable would give us three new variables: height_short; height_medium; height_tall.

animal	height	height_short	height_medium	height_tall
giraffe	tall	0	0	1
cat	medium	0	1	0
hamster	short	1	0	0
dog	medium	0	1	0
elephant	tall	0	0	1

For each row of data, only the variable corresponding to the correct categorical value would be 1; the rest would be 0....

Data Pre-Processing - Bucketing

In contrast, there may be times when we want to convert numerical (interval or scale) data into ordinal categories.

This can be useful when we want to deal with groups which each share some similar numerical properties.

It is sometimes referred to as binning, because we are placing our numerical data into 'bins', or 'buckets'.

Data Pre-Processing - Bucketing Example

Let's say we have an *age* variable, containing quantitative values: [15, 17, 24, 28, 33, 45]

We might choose to convert these values into: [11-19, 20-29, 30-39, 40+]

Or, instead we might choose to use: [Adolescent, Adolescent, Adult, Adult, Adult]

It is our choice how we engineer and pre-process our data

Class Imbalance - Fraud Example

Let's say you want to predict fraud in purchasing records.

However, you have very few examples of fraudulent transactions within your dataset (~2%).

You build a predictive model, which ends up having 98% accuracy. Great! ...right?

Class Imbalance

You may want to predict rare events, with very few examples within your dataset.

You want to make sure that the model doesn't 'cheat'.

One way to do this is by addressing the underlying class imbalance. There are two main approaches for doing so.

Data Downsampling

Option one – Downsampling: We sample the majority class, such that its n = n of the minority class.

We can do this via random sampling, though other (more advanced) approaches exist (we won't cover these).

The upside is balanced classes. The downside is we now have way less data!

Data Upsampling

Option two – Upsampling: We duplicate instances of the **minority class**, such that its n = n of the majority class.

This gets us way more data overall, and we avoid throwing any of our data away!

However, this can lead to models 'overfitting' the data.

The Split-Apply-Combine Paradigm

'Split-apply-combine' is a very common, and very powerful paradigm for data analysis:

- [Split] a dataset into groups based on some criteria
- [Apply] some functions to each group
- [Combine] the results into a newly transformed dataset

Split-Apply-Combine - Example

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

- [Split] based on class
- [Apply] mean('age')
- [Combine] (happens automatically)

class
First 38.233441
Second 29.877630
Third 25.140620
Name: age, dtype: float64

Split-Apply-Combine - Example

Note: If this sounds very similar to querying a database, that's because it is!

'SELECT sex, mean(age) FROM titanic GROUP BY sex'

Many data analysis methods and libraries take heavy inspiration from SQL.

Summary

Summary

Some think of EDA as the bit before you analyse your data.

In reality, it is an ongoing part of the analysis process...

Summary

There are many ways to clean and process your data.

Importantly, these will often bring with them implications and consequences!

Appropriate use of these methods will be contextual.