

LINMA2491 Operational Research

Simon Desmidt Issambre L'Hermite Dumont

Academic year 2024-2025 - Q2

Contents

1	Definition and notation	2
2	TO DO	4

Definition and notation

- Given Ω , a sigma-algebra \mathcal{A} is a set of subsets of Ω , with the elements called events, such that:
 - $-\Omega \in \mathcal{A}$
 - **-** if A ∈ A then also Ω − A ∈ A
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcup_{i=1}^{\infty} A_i \in A$
 - if $A_i \in \mathcal{A}$ for i = 1, 2, ... then also $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- Consider:

- The state space is the set of all values of the system at each stage.

$$S_0 = \{C\}, \quad S_1 = \{C_u, C_d\}, \quad S_2 = \{C_{uu}, C_{ud}, C_{dd}\}$$
 (1.1)

- The sample space is the set of all possible combination of the system.

$$\Omega = S_0 \times S_1 \times S_2 = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), \dots \}$$
 (1.2)

- The power set of Ω is the set of all of the subsets, denoted $\mathcal{B}(\Omega)$.
- The probability space is the triplet (Ω, \mathcal{A}, P) where P is a probability measure.
 - $-P(\emptyset)=0$
 - $-P(\Omega)=1$
 - $P(\bigcup_{i=1}^{\infty} A_i) = \sum_i P(A_i)$ if A_i are disjoint
- $\forall t$, A_t is the set of events on which we have information at stage t. For example, $A_0 = \{C\}$, $A_1 = \{C, C_u, C_d\}$. Thus is it evident that $t_1 \leq t_2 \Rightarrow A_{t_1} \subseteq A_{t_2}$

• Consider the following problem with $x \in \mathbb{R}^n$ and domain \mathcal{D} :

$$min f_0(x), \quad s.t.$$

 $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, j = 1, ..., p$

$$(1.3)$$

Then the Lagrangian function is defined as $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (1.4)

• The Lagrange dual function is defined as $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
 (1.5)

• TODO: suite, stopped at CM1 (background), slide 35

TO DO