Operációs rendszerek BSc

3. Gyak.

2022. 05. 12.

Készítette:

Juhász Tibor

Mérnökinformatikus BSc. levelező

X7KWVG

1, Feladat leírás:

Adott négy processz a rendszerbe, melynek beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p_uspri = 60.

Az A, B, C processz p_nice = 0, a D processz p_nice = 5.

Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 201. óraütés-ig.

- a.) Határozza meg az ütemezést RR nélkül és az ütemezést RR-nal külön-külön táblázatba.
- b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c.) Igazolja a számítással a tanultak alapján.

Megoldás:

a, és b,

RR nélkül:

RR nélkül	A process		B process		C process		D process		Reschedule	
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0		A
1	60	1	60	0	60	0	60	0	Α	Α
2	60	2	60	0	60	0	60	0	Α	Α
3	60	3	60	0	60	0	60	0	Α	Α
99	60	99	60	0	60	0	60	0	Α	A
100	60+50/4	100/2	60	0	60	0	60	0	A	В
100	72	50								
101	75	50	60	1	60	0	60	0	В	В
102	75	50	60	2	60	0	60	0	В	В
199	75	50	60	99	60	0	60	0	В	В
200	60+25/4	50/2	60+50/4 1 72	100/2	60	0	60	0	В	С
	66	25		50						
201	66	25	75	50	60	1	60	0	С	С

RR-al:

RR	A pro	ocess	B pro	ocess	C pro	ocess	D pro	ocess	Resche	edule
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0		Α
1	60	1	60	0	60	0	60	0	Α	Α
2	60	2	60	0	60	0	60	0	Α	A
3	60	3	60	0	60	0	60	0	Α	Α
9	60	9	60	0	60	0	60	0	Α	A
10	60	10	60	0	60	0	60	0	Α	В
11	60	10	60	1	60	0	60	0	В	В
19	60	10	60	9	60	0	60	0	В	В
20	60	10	60	10	60	0	60	0	В	С
21	60	10	60	10	60	1	60	0	С	С
30	60	10	60	10	60	10	60	0	С	D
40	60	10	60	10	60	10	60	10	D	Α
50	60	20	60	10	60	10	60	10	Α	В
60	60	20	60	20	60	10	60	10	В	С
70	60	20	60	20	60	20	60	10	С	D
80	60	20	60	20	60	20	60	20	D	Α
90	60	30	60	20	60	20	60	20	A	В
	60+6	30*0,86	60+6	30*0,86	60+4	20*0,86	60+4+10	20*0,86		
100	66	26	66	26	64	17	74	17	В	С
110	66	26	66	26	64	27	74	17	с	С
120	66	26	66	26	64	37	74	17	С С	С
130	66	26	66	26	64	47	74	17	с	С С
140	66	26	66	26	64	57	74	17	C	c
150	66	26	66	26	64	67	74	17	C	С
160	66	26	66	26	64	77	74	17	с	С
170	66	26	66	26	64	87	74	17	С	С
180	66	26	66	26	64	97	74	17	С	С
190	66	26	66	26	64	107	74	17	С	С
***	60+5	26*0,8	60+5	26*0,8	60+22	107*0,8	60+13	17*0,8		
200	65	26*0,8	65	26*0,8	82	86	73	1/*0,8	С	A
	-									

c,

RR nélkül:

Az A processz 100-ig fog futni. Mivel csak ő futott, ebben az esetben csak nála szükséges számolnunk.

p_uspri = P_USER (esetünkben konstans 60) + p_cpu/4+2*p_nice = 60 + 50/4 = 72

Innentől 200-ig a B processz fog futni.

200-nál ismét szükséges számolnunk, itt már az A-nál és B-nél is.

A processz:

$$p_cpu = p_cpu * KF = 50/2 = 25$$

 $p_uspri = P_useri = P_us$

B processz:

$$p_cpu = p_cpu * KF = 100/2 = 50$$

 $p_uspri = P_uspri = P_us$

201-nél a C processz fog futni.

RR-al:

A processzek 10 óraütést futnak, utána a következő azonos/alacsonyabb prioritású processz fog futni.

100-ig nem szükséges számolnunk.

100-nál mind a négy processznél szükséges számolnunk, mivel mind a négy futott már.

$$KF = 2*3/2*3+1 = 0.86$$

A processz:

 $p_uspri = P_useri = P_us$

B processz:

 $p_uspri = P_useri = P_us$

C processz:

 $p_uspri = P_useri = P_us$

D processz:

 $p_uspri = P_uspri = P_us$

Innentől a 200. óraütésig a legalacsonyabb prioritású processz a C lesz, végig ő fog futni.

64 < 66 < 74

A 200. óraütésnél kell újra számolnunk.

$$KF = 2*3/2*3+1 = 0.86$$

A processz:

 $p_uspri = P_useri = P_us$

B processz:

p uspri = P USER (esetünkben konstans 60) + p cpu/4+2*p nice = 60 + 21/4 = 65

C processz:

 $p_uspri = P_uspri = P_us$

D processz:

p cpu = p cpu * KF =
$$17 * 0.86 = 14$$

p uspri = P USER (esetünkben konstans 60) + p cpu/4+2*p nice = 60 + 14/4 + 2*5 = 73

Most a legalacsonyabb prioritású processz az A lesz, emiatt ő fog futni.

3, Feladat leírás:

Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy csővezetéket, a gyerek processz beleír egy szöveget a csővezetékbe (A kiírt szöveg: XY neptunkod), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre.

Mentés: neptunkod_unnamed.c

Megoldás:

A program megírása után terminálban fordítom és futtatom.

```
tibi@tibi-VirtualBox:~$ gcc -o X7KWVG_unnamed X7KWVG_unnamed.c
tibi@tibi-VirtualBox:~$ ./X7KWVG_unnamed
Olvasas eredmenye: Juhasz Tibor X7KWVG
tibi@tibi-VirtualBox:~$
```

A programban a szülő processz létrehoz egy csővezetéket, a gyermek processz beleírja a "Juhasz Tibor X7KWVG" sztringet, amit a szülő processz kiolvas és kiírja a standard kimenetre.

4, Feladat leírás:

Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy nevesített csővezetéket (neve: neptunkod), a gyerek processz beleír egy szöveget a csővezetékbe (A hallgató neve:pl. Keserű Ottó), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre.

Mentés: neptunkod_named.c

Megoldás:

A program megírása után terminálban fordítom és futtatom.

```
tibi@tibi-VirtualBox:~$ gcc -o X7KWVG_named X7KWVG_named.c
tibi@tibi-VirtualBox:~$ ./X7KWVG_named
Olvasas eredmenye: Juhasz Tibor
tibi@tibi-VirtualBox:~$
```

A szülő processz létrehoz egy X7KWVG nevű csővezetéket, a gyerek processz beleírja a "Juhasz Tibor" sztringet. A szülő kiolvassa és kiírja a standard kimenetre.

5, Feladat leírás:

Adott egy rendszerbe az összes osztály-erőforrások száma: R (R1: 10; R2: 9; R3: 12)

A rendszerbe 4 processz van: P1, P2, P3, P4.

Biztonságos-e holtpontmentesség szempontjából a rendszer - a következő kiinduló állapot alapján?

- a) Határozza meg a folyamatok által igényelt erőforrások mátrixát?
- b) Határozza meg pillanatnyilag szabad erőforrások számát?
- c) Igazolja az egyes processzek végrehajtásának lehetséges sorrendjét számolással?"

		MAX.IGÉN'	Y		FOGLAL		
	R1	R2	R3		R1	R2	R3
P1	4	4	5	P1	2	2	3
P2	1	4	3	P2	1	2	2
Р3	6	7	7	P3	0	1	3
P4	3	7	10	P4	2	1	2

Feladat megoldása:

IGÉNY meghatározása.

IGÉNY = MAX.IGÉNY - FOGLAL

IGÉNY						
R1	R2	R3				
2	2	2				
0	2	1				
6	6	4				
1	6	8				

Szabad erőforrások száma:

Összes erőforrás – FOGLAL (adott erőforrásból). Pl.: R1: 10 az összes. 5 a FOGLAL, tehát 10 - 5 = 5 KÉSZLET: (5, 3, 2)

Következő lépésként megnézzük, hogy van-e olyan processz, amelynek az igénye kielégíthető.

A P1 processz igénye kielégíthető, mivel az igénye (2, 2, 2), a készletünk pedig (5, 3, 2).

P1 futása után az általa foglalt erőforrás felszabadul, az új készletünk: (7, 5, 5)

Most a P2 processz is kielégíthető.

A P2 processz lefut.

P2 futása után az általa foglalt erőforrás felszabadul, az új készlet: (8, 7, 7)

A P3 processz igénye is kielégíthető.

Lefut a P3 processz.

P3 futása után az új készlet: (8, 8, 10)

Ezután kielégíthető a P4 processz is.

A P4 processz lefut, és minden erőforrás felszabadul.