

Diodos

Eletrônica para Ciência da Computação

PROFESSOR: RUBENS T. HOCK JR.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE

Diodos Introdução

Introdução

Os diodos são constituídos de materiais semicondutores (Si, Ge, GaAs, etc).

Nas primeiras décadas após a descoberta do diodo, em 1939, e do transistor, em 1947, usou-se quase exclusivamente o germânio, mas foi substituído pelo silício, por que é menos afetado pela variação de temperatura. Junta-se ao fato que o silício é um dos materiais mais abundantes da terra.

Camada de valência

Introdução

A estrutura cristalina da pastilha de silício é ordenada da seguinte maneira:

Diodos Materiais Tipo P e N

Material Tipo N

Para criar um material do tipo N, a estrutura cristalina da pastilha de silício recebe impurezas (outros átomos) da ordem de uma parte em 10 milhões que possuem cinco elétrons na sua camada de valência (antimônio, arsênio e fósforo).

Dessa forma, há o excesso de elétrons dentro da pastilha dopada e esse elétrons está livre para se mover dentro da pastilha.

Material Tipo P

Para criar um material do tipo P, a estrutura cristalina da pastilha de silício recebe impurezas (outros átomos) da ordem de uma parte em 10 milhões que possuem três elétrons na sua camada de valência (boro, gálio e índio).

Dessa forma, há a falta de elétrons dentro da pastilha dopada e é criada uma lacuna.

Diodos O Diodo

Estrutura Básica de um Diodo

O diodo é criado pela simples junção de um material do tipo N com outro do tipo P. No instante em que os dois materiais são "unidos", os elétrons e as lacunas na região da junção se combinam, resultando em uma falta de portadores livres na região próxima à junção.

Polarização Reversa de um Diodo

Se um potencial externo de V volts for aplicado à junção P-N de modo que o terminal positivo seja ligado ao material do tipo N e o terminal negativo ao material do tipo P:

- O número de íons positivos descoberto na região de depleção do material do tipo N aumentará
- O número de íons negativos descoberto aumentará no material do tipo P

O efeito será um alargamento da região de depleção

Dessa forma, há um impedimento da passagem da corrente através do diodo, ou seja, $i_D = 0$ A

Polarização Direta de um Diodo

A polarização direta de um diodo é estabelecida quando se aplica o potencial positivo ao material do tipo P e o potencial negativo ao material do tipo N

- O número de íons positivos descoberto na região de depleção do material do tipo N diminuirá
- O número de íons negativos descoberto diminuirá no material do tipo P

O efeito será um estreitamento da região de depleção

Dessa forma, há facilitação da passagem da corrente através do diodo, ou seja, i_D > 0 A

Polarização de um Diodo

Com o aumento do potencial elétrico, a região de depleção diminuirá e haverá uma quantidade maior de carga elétrica circulando pelo diodo, que resulta em uma avalanche de corrente.

Valores de tensão de "joelho"

Semicondutor	$V_{K}(\mathbf{V})$
Ge	0,3
Si	0,7
GaAs	1,2

Características Reais de um Diodo

Diodo 1n4148

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
Repetitive peak reverse voltage		V _{RRM}	100	V					
Reverse voltage		V _R	75	V					
Peak forward surge current	t _p = 1 μs	I _{FSM}	2	Α					
Repetitive peak forward current		I _{FRM}	500	mA					
Forward continuous current		I _F	300	mA					
Average forward current	V _R = 0	I _{F(AV)}	150	mA					
Danier diam'r diam'r	I = 4 mm, T _L = 45 °C	P _{tot}	440	mW					
Power dissipation	I = 4 mm, T _L ≤ 25 °C	P _{tot}	500	mW					

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
Forward voltage	I _F = 10 mA	V _F			1	V			
	V _R = 20 V	I _R			25	nA			
Reverse current	V _R = 20 V, T _j = 150 °C	I _R			1 25 r 50 p	μA			
	V _R = 75 V	I _R			5	μA			
Breakdown voltage	$I_R = 100 \mu A, t_p/T = 0.01,$ $t_p = 0.3 \text{ ms}$	V _(BR)	100			V			

Características Reais de um Diodo

Diodo 1n400x

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)												
PARAMETER		SYMBO	L 1	N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT	
Maximum repetitive peak reverse voltage			V _{RRM}		50	100	200	400	600	800	1000	V
Maximum RMS voltage	Maximum RMS voltage		V _{RMS}		35	70	140	280	420	560	700	V
Maximum DC blocking voltage		V_{DC}		50	100	200	400	600	800	1000	٧	
Maximum average forward rectified current 0.375" (9.5 mm) lead length at T _A = 75 °C			I _{F(AV)}		1.0							Α
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load			I _{FSM}		30							Α
Non-repetitive peak forward		t _p = 1 ms			45							
surge current square waveform T _A = 25 °C (fig. 3)	n	t _p = 2 ms	I _{FSM}		35							
		$t_p = 5 \text{ ms}$			30							
Maximum full load reverse current, full cycle average 0.375" (9.5 mm) lead length T _L = 75 °C			I _{R(AV)}		30						μA	
ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)												
PARAMETER	TEST	CONDITIO	NS SYM	3OL	1N400	1 1N400	2 1N400	3 1N4004	1N4005	1N4006	1N4007	UNIT
Maximum instantaneous forward voltage	1.0 A V _F		:	1.1						V		

Diodo Ideal vs Real

O diodo ideal se comporta como um curtocircuito quando a tensão de polarização direta é maior que zero e como um circuito aberto caso contrário O diodo real possui uma queda de tensão devido à polarização acrescido de uma resistência elétrica intrínseca ao elemento

Diodo Ideal vs Real

A diferença entre os modelos pode ser vista no gráfico I_D vs V_D

Diodos Aplicações de Diodos

Portas lógicas AND e OR

Retificadores (Meia Onda)

Retificadores (Onda Completa)

Proteção (grampeamento)

Proteção (garantia de polaridade e tensão máxima)

Bibliografia

BOYLESTAD, R. L. Introdução à Análise de Circuitos. Prentice-Hall. São Paulo, 2004.

BOYLESTAD, R.; NASHELSKY, L. Dispositivos Eletrônicos e Teoria de Circuitos. 6ª edição, Prentice Hall do Brasil, 1998.

CIPELLI, Antonio Marco Vicari; MARKUS, Otavio; SANDRINI, Waldir João. Teoria e desenvolvimento de projetos de circuitos eletrônicos. 18 ed. São Paulo: Livros Erica, 2001. 445 p. ISBN 8571947597.