SEQUENCE LISTING

```
<110> Beetham, P.
            Avissar, P.
            Walker, K.
            Metz, R.
      <120> NON TRANSGENIC HERBICIDE RESISTANT PLANTS
      <130> 7991 086
      -150- 60/158,027
      <151> 1999-10-07
      <150> 60/173,564
      <151> 1999-12-30
      <160> 44
      <170> FastSEO for Windows Version 3.0
      <210> 1
      <211> 2763
      <212> DNA
      <213> Arabidopsis thaliana
      <400> 1
costicated stittegraga aaccocatta totttottag ggsccaatte aaaacccaca
ttttotttoa ootaasooas caaagoottg casatgttga ogtgaacaso aaactaacac
                                                                       120
gtgtcatact gccagtggtt atgataaatg ctcataccat accagagttca tagagttttt
                                                                       130
ggttggtgaa agatttgacg gatgccttct totoatttct caccaactec stecaaacec
                                                                       240
aacaaaatgt ttatattago aaagoogooa aagtgtaaao gaaagtttat aaatttoatt
                                                                       300
totgtgatet tapgtaattg gaggaagate aaaattttea atooccatte ttogattget
                                                                       360
tcaattgaag titteteegat ggegeaagtt ageagaatet geaatqqtqt qeaqaaceea
                                                                       420
totottatot opaatototo gasatopagt daadqoaaat otopottato qqtttototq
                                                                       480
aagacgcago agcatocacq agottatoog atthogtogt ogtggggatt gaagaagagu
                                                                       540
gggatgacgt taattggcto tgagottogt octottaagg toatqtotto tqtttocacq
                                                                       €00
goggagaaag ogtoggagat tgtacttcaa occattagag aaatotoogg tottattaag
                                                                       €60
                                                                       720
cticotgget ccaagtetet atcaaategg atcetgette tegetgetet gtetgaggta
                                                                       780
tarateastt sgittsgies tieteigtaa teigaaetta gattataaag attgataett
talcattttg ctgtggtttt atagggaaca actgtagtgg acaacttgtt gaatagcgat
                                                                       8.40
garatoaatt adatgottga tqoqttgaag aqattgggab ttaatqtqqa nactqadaqt
gasaataato gigoigiagi igaaggalgi ggogggalal toocagotto calagalica
sagaytgata togaabitta obtogqtaat qoaqqaabaq baatqoqtoo abttaboqqt
riggtbactg otgbaggtgg alangbaagg tagattgaag gagttgatg: ttuttggtat
it jatgitta aggaatggag ettinginga igbittatga bebandidan beagthangi.
                                                                      1145
Prityatgga grynningia igagagasag adutataggg gailitggitg ittggtottaa.
                                                                      1200
geagetiggt gotgatgtig aatgtactet tggaactaac tgccctcctg ttogtgtcaa.
                                                                      1260
egotiaatggt ggoottooog gtggaaaggt tagatottge aaatggcatg tgaatatgta
                                                                      1320
atotogitoo tiadtotatg aacastigoa gaaatgigig tidatsatag oottagotig
                                                                      1380
acaagantto agiittitaat olacioloaa ogyalggati olaaaalaga aloggatitg
                                                                      1440
grigatinggit frogtholog attacognit togingtang attichigat taacaattag
                                                                      1500
gagacatgtt atgeatttg: aggtgaaget ttetdgatea affadfadfe adfanffdir
```

aaaaggtgaa	tgattcaggt	otoogggtaa	tgcgtatgta	gaaggtgatg	cttctagtge	1860
atgttattt	ttggctggtg	otgocattac	cggtgaaact	gtcacagtcg	aaggttgtgg	1920
aactaccagc	ttgcaggtaa	tatttgtata	ctgaatcatc	gacgaggctg	ttaagtttat	1980
agtgaaatto	gtctaggtca	aagtttcatc	ttttgacaag	ttgtatataa	catattogoa	2040
agattetaag	ctcaattttt	gtgatgaatc	tctagggaga	tgtaaaatto	googaggtoo	2100
ttgagaaaat	gggatgtaaa	gtgtootgga	cagagaacag	tgtgastgtg	acaggaccac	2160
ctagagatgc	ttttggaatg	agadadttgd	gggctattga	tgtcaacatg	aacaaaatgo	2221
ctgatgtagz	catgaccett	googtogttg	statatttga	tgacggtcca	accaccatta	22.34
gagatggtaa	gtaaaaagst	ctctcttata	attaaggttt	ctcaatattc	atgateaett	2340
aattotgttt	ggttaatata	gtggctagct	ggagagtaaa	ggagacagaa	aggatgattg	2400
ccatttgcac	agagcttaga	aaagtaagag	attettatet	ctctcttct	gtotottgac	2460
agtgeteatt	ctaagtaatt	agctcataaa	tttgtgtgtt	tgtgttcagc	tgggagctac	2520
agtggaagaa	ggttcagatt	attgtgtgat	aactccgccc	aaaaaggtga	aaacggcaga	2580
gattgataca	tatgatgatc	atagaatggc	aatggcattc	totottgcag	cttgtgctga	2640
tgttccaatc	accatcaacg	actitggttg	caccaggaaa	accttccccg	actacttcca	2700
agtactigaa	agaatcacaa	agcactaaac	aataaactct	gttttttttt	ctgatccaag	2760
ctt						2763

<210> 2

<:211> 520

<212> PRT

<:213> Arabidopsis thaliana

<400> 2

	12.4	# O O >	<u></u>												
Met 1	Ala	Gln	Val	Ser 5	Arg	Ile	Cys	Asn	Gly 10	Val	Gln	Asn	Pro	Ser 15	Leu
lle	Ser	Asn	Leu 20	Ser	Lys	Ser	Ser	Gln 25	Arg	Lys	Ser	Pro	Leu 30	Ser	Val
Ser	Leu	Lys 35	Thr	Gln	Gln	His	Pro 40	Arg	Ala	Tyr	Pro	Ile 45	Ser	Ser	Ser
Trp	31 _Y 50	Leu	Lys	Lys	Ser	Gly 55	Met	Thr	Leu	Ile	Gly 60	Ser	Glu	Leu	Arg
Pro 65	Leu	Lys	Val	Met	Ser 70	Ser	Val	Ser	Thr	Ala 75	Glu	Lys	Ala	Ser	Glu 80
Ile	Val	Leu	Gln	Pro 85	Ile	Arg	Glu	Ile	Ser 90	Gly	Leu	Ile	Lys	Leu 95	Pro
Gly	Ser	Lys	Ser 100	Leu	Ser	Asn	Arg	Ile 105	·.eu	Leu	Leu	Лlа	Ala 110	Leu	Ser
Glu	Gly	Thr 115	Thr	Val	Val	Asp	Asn 120	Leu	Leu	Asn	Ser	Asp 125	Asp	lle	Àsr.
Tyr	Met 130	Leu	Asp	Ala	Leu	Lys 135	Arg	Leu	Gly	Leu	Asn 140	Val	Glu	Thr	Asp
Ser 145	Glu	Asn	Asn	Arg	Ala 150	∀a l	∵a i	G.u	Gly	Cyrs 1.5.5	gl;	aly	, , i .	Phe	Pro 160
Ala	Ser	He	Asp	Ser 165	Lys	Ser	Asp	1 . e	Glu imo	Leu	Тут	Leu	9.7	Asn 175	Ala
diy	Thr	Aia	Met 180	Arg	Pro	Leu	Thr	Ala 185	Ala	Va l	Thr	Ala	Ala .90	Gl;	Gly
Asn	Ala	Ser 195	Tyr	Val	Leu	Asp	Gly 200	Val	Pro	Arg	Met:	Arg 205	Glu	Arg	Pro
lle	Glγ 210	Asp	Leu	Val	Val	Gly 215	Leu	Lys	Gln	Leu	Gly 220	Ala	Asp	Val	Glu
1778 125	Thr	Leu	317	Thr	Asn 230		Pro	Pro	Val	Arg 235		Asn	Ala	Asn	Gly car

```
Glu Ile Glu Ile Val Asp Lys Leu Ile Ser Val Pro Tyr Val Glu Met
 275 280 285
Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser Val Glu His Ser Asp
290 295 300
Ser Trp Asp Arg Phe Phe Val Lys Gly Gly Gln Lys Tyr Lys Ser Pro
305 310 315
Gly Ash Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala Cys Tyr Phe Leu
         325 330 335
Ala Gly Ala Ala Ile Thr Gly Glu Thr Val Thr Val Glu Gly Cys Gly
      340 345 350
Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu Val Leu Glu Lys
355 360
                       365
Met Gly Cys Lys Val Ser Trp Thr Glu Asn Ser Val Thr Val Thr Gly
370 375 380
Pro Pro Arg Asp Ala Phe Gly Met Arg His Leu Arg Ala Ile Asp Val
385 390 395 400
Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu Ala Val Val Ala
         405
                         410
Leu Phe Ala Asp Gly Pro Thr Thr Ile Arg Asp Val Ala Ser Trp Arg
        420 425
                          430
Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr Glu Leu Arg Lys
   435
        440 445
Leu Gly Ala Thr Val Glu Glu Gly Ser Asp Tyr Cys Val Ile Thr Pro
450 455 460
Pro Lys Lys Val Lys Thr Ala Glu Ile Asp Thr Tyr Asp Asp His Arg
465 470 475 480
Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp Val Pro Ile Thr
         485 490 495
Ile Asn Asp Ser Gly Cys Thr Arg Lys Thr Phe Pro Asp Tyr Phe Gln
    500 505
                             510
Val Leu Glu Arg Ile Thr Lys His
    515
    ·:210:- 3
    <:211: 33
    <212: DNA
    <213: Arabidopsis thaliana
    <:220:
    <221: CDS
    +:222: (1)...(33)
   4:400: 3
cto ggt aat goa goa uca goa atg ogt oca ott
                                                   3.5
Leu Jly Asr Ala Ala Thr Ala Met Arg Pro Leu
   4210: 4
    <211: 11
    <212> PRT
    <213: Arabidopsis thaliana
```

3

< 400 % 4

```
<211: 33
      <212> DNA
      <213> Arabidopsis thaliana
      <220>
      :221> CDS
      :2225 (1)...(33)
     -:400× 5
ctc ggt aat gca gga ata gca atg cgt cca ctt
                                                                        33
Leu Gly Ash Ala Gly Ile Ala Met Arg Pro Leu
     -:210 > 6
      <211 - 11
     -:212 - PRT
     -:213 - Arabidopsis thaliana
     <400 % 6
Leu Gly Asn Ala Gly Ile Ala Met Arg Pro Leu
                                    10
     :210 - 7
      -:211 33
      <212. DNA
      <213 : Arabidopsis thaliana
     -:220÷
     4:221> CDS
      :222: (1)...(33)
     -:400:- 7
ctc ggt aat gca gca ata gca atg cgt cca ctt
                                                                        33
Leu Gly Asn Ala Ala Ile Ala Met Arg Pro Leu
1
                5
                                     10
     <210> 8
     -:211:- 11
     -:212:- PRT
     213> Arabidopsis thaliana
     ~ 400: 8
Leu Giv Ast Ala Ala IIe Ala Met Arg Pro Leu
     . 210. 9
     <211: 33
      <212: DNA
      <213> Arabidopsis thaliana
     . 220 .
     +221: CDS
```

		gsa gga ata gca atg cgt to: Ala Gly Ile Ala Met Arg Se 5 10	c Leu	33
	<210 S < 211 + < 212 + < 213 + < 213 + < 310 S	1 1		
Leu 1	:400 × Gly Asr	10 Ala Gly Ile Ala Met Arg Ser 5 10	^ Leu	
	<pre><210 <211 <212 < <213</pre>	11 33 DNA Arabidopsis thaliana		
	-:220° -:221: -:222:	CDS (1)(33)		
		11 gca gca aca gca atg cgt tca Ala Ala Thr Ala Met Arg Ser 5	Leu	33
	<210><211><211><212><212><213>	11		
Leu 1	44005 Gly Asn	12 Ala Ala Thr Ala Met Arg Ser 5 10	Leu	
	<210><211><211><212><213>	3 3		
	220 	CDS : !!		
		l3 gca gca ata gca atg cgt tca Ala Ala Ile Ala Met Arg Ser 5 10	Leu	33

<210 · 14

```
<400 > 14
Leu Gly Asm Ala Ala Ile Ala Met Arg Ser Leu
                5
                                    10
      :210 - 15
      :211 - 33
      -:212 - DNA
      :213 - Arabidopsis thaliana
     -:220
      :221 · CDS
      :222 · (1) . . . (33)
     <400 - 15
ctc ggt aa' gca gga gta gca atg cgt tca ctt
                                                                         3.3
Leu Gly Asn Ala Gly Val Ala Met Arg Ser Leu
                                    10
     -:210 16
     :211 - 11
     4212 · PRT
      :213 - Arabidopsis thaliana
     -:400 / 16
Leu Gly Asn Ala Gly Val Ala Met Arg Ser Leu
1
                5
                                     10
     <210⇒ 17
     <211> 33
     <212> DNA
      <213> Arabidopsis thaliana
     4:220:
     -:221: CDS
     <222: (1)...(33)
     <4(0> 17
ctc ggt aat gca gga tta gca atg cgt tca ctt
                                                                         33
Leu Gly Asn Ala Gly Leu Ala Met Arg Ser Leu
1
                 5
                                     1. 0
     +210 + 18
     -211-11
     ADDE - PRT
     +213 - Arabidopsis thaliana
     <400> 18
Leu Gly Asn Ala Gly Leu Ala Met Arg Ser Leu
                                     10
     -.210 - 19
     <211 - 33
```

```
<221 > CDS
      <222 - (1) . . . (33)
      .400 · 19
ctc ggt aat gca gca gta gca atg cgt cca ctt
                                                                         3.3
Leu Gly Asn Ala Ala Val Ala Met Arg Pro Leu
                 5
      -210 - 20
      <211 - 11
      :212 - PRT
      <213 Arabidopsis thaliana</p>
      <400 20
Leu Gly Asr. Ala Ala Val Ala Met Arg Pro Leu
                 5
                                     10
     <210 21
      :211 33
      -.212 DNA
      :213 - Arabidopsis thaliana
     -:220:-
     <221> CDS
      <222: (1)...(33)
     -:400> 21
ctc ggt aat gca gca tta gca atg cgt cca ctt
                                                                         33
Leu Gly Asn Ala Ala Leu Ala Met Arg Pro Leu
                 5
                                     10
     - 210:- 22
     <211: 11
      .212: PRT
      213: Arabidopsis thaliana
     <400: 22
Leu Gly Asn Ala Ala Leu Ala Met Arg Pro Leu
                                    10
      :210> 23
       211 - 3831
       .012 - DMA
       213 - Fraceisca nique
      . . . .
      .221> modified_base
      <:222> 1...3831
      <223> n=a, c, g, or t
     -.400 - 23
adatottaaa ggotottito caqtotoaco tachaalaant athadaalat hharitiintii 🦠 🧳
```

-

ccatggcgtg	cagaacccat	gtgttatcat	stocaatsto	tocaaatoca	addaaaacaa	360
ateacettte	idegtataat	tgaagacgca	teagestaga	gettettegt	ggggattgaa	420
gaagagtgga	acgatgotaa	acggttctgt	aattogooog	gttaaggtaa	aagattatgt	491
	gagaaagstt			atbagagaaa		54.0
cattaagcta	occggatoca	aatotototo		ataattattg		603
tgaggtarat	atacttgctt	aytgttaggc	atttgatgtg	agattttggg	aastatagas	66 1
aatttagtaa	gaatttatat	ataattttt		dagaagdota		** *** ***
aatttttcca	aaatttttgg	aggttatagg	ottatgttad	accattetag	totgoatott	731
				tatagggaac		3.4 0
				atgogttgaa		9.000
				ttgaaggatg		960
				accttgggaa		1020
				gdaadgdgag		1080
				atgettttag		1140
				aagaddtata		1200
				tettggeact		1240
				ggtgatittc		1320
				getteacatt		1380
				aattgggtct		1440
				attactaagt		1500
				ggccccaaaa		1560
				naaatettag		1620
				gaattttcag		1680
				ggcagctcct		1740
				tccatatgtt		1800
				tgatagctgg		1850
				aagttgagag		1920
				gtagaatggt		1930
				tgctgccatt		2040
				agtttatcca		2100
				agcttttaaa		2160
				aaattttcca		2220
				aatgtaaaat		2280
				aaacagaggg		2340
				gttttgtaag		2400
				gtgaaatteg		2460
				gtgactgtga		2510
				gtdaacatga		2580
				gatggtccaa		2640
				taaaagatto		2700
				aggagacaga		2760
				ctcatgetet		2820
gttaatogtt	gcataactitt	ttgcggtttt	tittittgrg	ttdagdftgg	agotacagtg	2800
				aggtgasacc		2940
gatacgtatg	atgatcatag	astggcgatg	gagttataga	ttgpagettg	tgotgatgtt	3 (100)
				torrigadia		3 () + 7
				atccaaatgt		31.00
				caaagtgtgt		37.80
				aatcagtttt		32:40
aaagggttta	ggaagetgea	gcgagatgat	tgtttttgat	cgatcatctt	tgaaaatgtg	3300
				aagaaasact		3360
				gttgttggca		3420
				gatgggtgat		3480
ttccatgtgt				tadatdadtd		2 € .1 ↑

ggagagagaa atcgaagaag	catttacctt	ttqtcqqaqa	gtaatagatc	t	3.331
	Ų.	3 33 3	J J		
<210> 24					
<211> 1944					
<212> DNA					
<213> Petunia h	ybrida				
<400> 24					
gaattoooto aatotttact	ttcaagaatg	gcacaaatta	acaacatgge	tcaagggata	·50
caaaccetta atcccaattc					120
ottgtttttg gatctaaaaa					130
gattcaattt ttatgcaaaa					240
cagaageett etgagatagt	gttgcaaccc	attaaagaga	tttcaggcac	tgttaaattg	3 0 0
cotggotota aatcattato	taatagaatt	ctccttcttg	ctgccttate	tgaaggaaca	360
actgtggttg acaatttact	aagtagtgat	gatattcatt	acatgcttgg	tgccttgaaa	420
adacttggad tgdatgtaga					430
ggtgggettt teeetgttgg	taaagagtcc	aaggaagaaa	ttcaactgtt	ccttggaaat	540
gcaggaacag caatgoggoo	actaacagca	gcagttactg	tagctggtgg	aaattcaagg	6:00
tatgtauttg atggagttcc	tcgaatgaga	gagagaccaa	ttagtgattt	ggttgatggt	650
cttaaacagc ttggtgcaga					720
attgtcagca agggaggtct					780
caatacttga ctgcfcfgct	tatggctgct	ccactggctt	tayyayalgt	ggagattgaa	8 ₹ (1
atcattgaca aactaattag					900
tttggtattt ctgtggagca					960
aaatacaagt ctcctggaaa					1020
ttggctggtg cagcagtcac	aggtggaact	atcactgttg	aaggttgtgg	gacaaacagt	1080
ttacaggggg atgtcaaatt					1140
acagagaaca gtgtcacagt					1200
cgtgccattg atgtgaacat					1260
geactitatg etgatggice					1320
actgagegea tgategeeat					1380
ggaccagact actgcataat					1440
tacgatgatc acaggatggc					1500
accatcaatg accetggetg					1560
cagtacticca ageattgaac					1620
gagtttagtt cttgtacaag					1680
catttcagtt cagaagggca					1740
aatgtatttg ttagagttga	gettetttt	gtctttaagg	aatgtacact	aatagagtta	1800
agaattacta gtatgggcca					1860
gagtttigtc aaggatetgg		aactastygt	taattitatt	gacaatetea	1920
tgtgtctaaa tgaaattgtt	tgat				1944
· 210> 25					
+211> 1335					
+ 212 - DNA					
-213 - Zea mays					
+ 400 + 25					
gegggtgeeg aggagategt	antamaden	atraardade	tataaaaaa	catcaeacta	€.0
onggigtoca agtogottto					120
acagtggttg ataacctgct					180
actottggto totatgtoga					240
gqtqgaaagt toccaqttga					300
ggaastgcaa tgcggccatt					3.50
		,	. , , - , , , , , , , , , , , , , , , ,		

attgataaat	taatotocat	teegtaegte	gaaatgarat	tgagattgat	ggagcgtttt	660
ggtgtgaaag	cagagcattc	tgatagetgg	gacagattct	acattaaggg	aggtcaaaaa	720
tacaagteee	ctaaaaatgc	statgttgaa	ggtgatgcct	caagcgcaag	ctatttcttg	780
gotggtgatg	caattactgg	agggactgtg	actgtggaag	gttgtggcac	caccagtttg	840
cagggtgatg	tgaagtttgc	tgaggtactg	gagatgatgg	gagcgaaggt	tacatggacc	900
gagactageg	taactgttac	tggcccaccg	cgggagccat	ttgggaggaa	acacctcaag	960
gogattgatg	teaacatgaa	caagatgcct	gatgtcgcca	tgactcttgc	tgtggttgcc	1020
statttgasg	atggedegad	agccatcaga	gacgtggctt	cctggagagt	aaaggagacc	1080
gagaggatag	ttgcgatccg	gacggagcta	accaagctgg	gagcatctgt	tgaggaaggg	1140
coggactact	gcatcatcac	geegeeggag	aagctgaacg	tgacggcgat	cgacacgtac	1200
gacgaccaca	ggatggccat	ggeettetee	cttgccgcct	gtgccgaggt	ccccgtcacc	1260
atcogggaco	ctgggtgcac	ccggaagacc	ttccccgact	acttcgatgt	gctgagcact	1320
ttogtcaaga	attaa					1335

<210> 26 <211> 516
<212> PRT
<213> Brassisca napus

<400> 26

			1.70	د، ۔.												
I	Met 1	Ala	Gln	Ser	Ser 5	Arg	lle	Cys	His	Gly 10	Val	Gln	Asn	Pro	Cys 15	Val
,	Ile	Ile	Ser	Asn 20	Leu	Ser	Lys	Ser	Asn 25	Gln	Asn	Lys	Ser	Pro 30	Phe	Ser
7	/al	Ser	Leu 35	Lys	Thr	His	Gln	Pro 40	Arg	Ala	Ser	Ser	Trp 45	Gly	Leu	Lys
]	Lys	Ser 50	Gly	Thr	Met	Leu	Asn 55	Gly	Ser	Val	lle	Arg 60	Pro	Val	Lys	Val
	Thr 55	Ala	Ser	Val	Ser	Thr 70	Ser	Glu	Lys	Ala	Ser	Glu	Ile	Val	Leu	Gln 80
]	Pro	Ile	Arg	Glu	Ile 85	Ser	Gly	Leu	Ile	Lys 90	Leu	Pro	Gly	Ser	Lys 95	Ser
Ι	Leu	Ser	Asn	Arg 100	Ile	Leu	Leu	Leu	Ala 105	Ala	Leu	Ser	Glu	Gly 110	Thr	Thr
7	/al	Val	Asp 115	Asn	Leu	Leu	Asn	Ser 120	Asp	Asp	Ile	Asn	Tyr 125	Met	Leu	Asp
		130					:35				Arg	140				
	Arg 145	Alā	Val	Val	Glu	Glγ 150	Cys	Gly	Glγ	Ile	Phe 155	Pro	Ala	Ser	Leu	Asp 160
Ş	Ser	Γλε	Ser	Asp	Ile 165	Glu	Leu	Tyr	Leu	Gly 170	Asn	Ala	Gly	Thr	Ala 175	Met
P	Arg	Pro	Leu	Thr 180	Ala	Ala	√al	Thr	Ala 185	Ala	G1ÿ	Gly	Asn	Ala 190	Ser	Tyr
	.Tai.	Let.	Asp 195	G.y	Val	Pro	Ārg	Met 100	Arg	Glu	Ārg	2ro	1.e 205	Gly	Asp	Leu
٠	. i.i.	Tal 111	Jiy	Leu	Lys	Jin	1eu 215	Gly	Ala	Asp	∵a ː	Glu 220	Cys	Thr	Leu	Gly
	Thr 225	Asn	Cys	Pro	Pro	Val 230	Arg	Val	Asn	Ala	Asn 235	Gly	Gly	Leu	Pro	Gly 240
(31 y	Lys	Val	Lys	Leu 245	Ser	Gly	Ser	lle	Ser 250	Ser	Gln	Tyr	Leu	Thr 255	Ala
,	u€°Ci	Leu	Me:	Ala 260	Ala	Pro	Leu	£1A	Leu 265	Gly	Asp	Val	Glu	116 270	Glu	He

Phe Phe Val Lys Gly Gly Gln Lys Tyr Lys Ser Pro Gly Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Gly Ala Ala The Thr Bly Glu Thr Val Thr Val Blu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Pne Ala Glu Val Leu Glu Lys Met Gly Cys Lys Val Ser Trp Thr Glu Asn Ser Val Thr Val Thr Gly Pro Ser Arg Asp Ala Phe Gly Met Arg His Leu Arg Ala Val Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Thr Ile Arg Asp Val Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Ser Asp Tyr Cys Val Ile Thr Pro Pro Ala Lys Val Lys Pro Ala Glu Ile Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp Val Pro Val Thr Ile Lys Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro Asp Tyr Phe Gln Val Leu Glu Ser Ile Thr Lys His <:2105 27 <211: 516 <212: PRT -:213> Petunia hybrida <:400> 27 Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu 2.0 Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile Ser Ala Ser Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln Pro The Lyn Glu The Ser Gly Thr Wal Lys Leu Pro Gly Ser Lys Ser Leu Ser Ash Arg lle leu Leu Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Ser Ser Asp Asp Ile His Tyr Met Leu Gly Ala Leu Lys Thr Leu Gly Leu His Val Glu Glu Asp Ser Ala Asn Gln Arg Ala Vai Val Glu Gly Cys Gly Gly Leu Phe Pro Val Gly ive Gio

			Thr 180					185					190		-
Val	Leu	Asp 195	Gly	Val	Pro	Arg	Met 200	Arg	Glu	Arg	Pro	Ile 205	Ser	Asp	Leu
	210		Leu			215					220	_			_
225			Pro		230	_				235	-	•			240
			Lys	245					250					255	
			Ala 260					265	•	-			270		
		275	Leu				280					285		_	
	290		Phe			295					300		_	_	_
305			Arg		310					315					320
			Asp	325					330					335	
			Gly 340					345			-		35 Ü		
		355	Val				360				_	365	_		
Val -	370		Thr			375					380				
385			Arg		390					395					400
			Val	405					410				-	415	_
			Ala 420					425					430		
		435	Ile				440				_	445	_		
	450		Gly			455					460			-	
465			Asp		470		_			475	_				480
			Ala	485			_		490					495	
			Arg 500	r}.a	Thr	Phe	Pro	Asn 505	Tyr	Phe	Asp	Val	Leu 510	Gin	GIn
Tyr	ser.	Lys 515	HIS												
		10 -													
	٠.5		PPT												
			Zea	mays	3										
		Ala	Glu		Tle	Val	Leu	Gln		Ile	Lys	Glu	He		Gly
l Thr	Val	Lys	Leu	5 Pro	Gly	Ser	Lys	Ser	10 Leu	Ser	Asn	Ara	i i ex	15 Leu	Leu

Ser Glu Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Val Gly Cys 70 7.5 Bly Bly Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe 90 Leu 3ly Asn Ala 3ly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 100 105 110 Ala Ala Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met 125 115 120 Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly 135 140 Ala Asp Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val 150 155 Asn Gly Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser 165 170 The Ser Ser Glm Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Ala 185 190 180 Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro 205 195 200 Tyr Val Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala 210 215 220 Glu His Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gly Gln Lys 225 230 235 Tyr Lys Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala 245 250 Ser Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val 265 270 Glu Gly Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu 285 275 280 Val Leu Glu Met Met Gly Ala Lys Val Thr Trp Thr Glu Thr Ser Val 290 295 300 Thr Val Thr Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys 315 310 Ala Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 330 Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 340 345 350 Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Val Ala Ile Arg Thr 360 365 Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys 375 380 the Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr Tyr 390 395 400 Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu 410 415 405 Tal Pro Val Thr He Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 425 Asp Tyr Phe Asp Val Leu Ser Thr Phe Val Lys Asn 435 440

k210 > 29

- 011 - 64

-212 - DNA

	<4.00%	29				
cgtttc cgag	cacc	tgcagcagtg abogcagogg	taagtggacg	cattgctgtt	gctgcattac	60 64
	4210 ·					
	:211					
	-:212 -					
		Artificial Sequence				
	·:220 ·					
	-:223 -	Mutant primer				
	-:400					
cgtttc cgag	racc	tgcagcagtg accgcagcgg	taagtggacg	cattgctatt	gctgcattac	60 64
	·:210 ·	31				
	:211 -	64				
	-:212 ·					
	·:213 ·	Artificial Sequence				
	·:220 -					
	·:223 ·	Mutant primer				
	·:400 ·	31				
cgtttc cgag	cacc	tgcagcagtg accgcagcgg	taagtgaacg	cattgctatt	cctgcattac	60 64
	·:210:-	32				
	:211:-	64				
	.:212:-					
	·:213:-	Artificial Sequence				
	.:220:-					
	-:223:-	Mutant primer				
	-:400:-	32				
cgtttc cgag	cacc	tgcagcagtg accgcagcgg	taagtgaacg	cattgctgtt	gctgcattac	60 64
	-:210:-	33				
	<211>					
	<212>	DNA				
	.2135	Artificial Sequence				
	- 220 -					
	- 223 -	Mutant primer				
	· 400 ·	33				
cgtttc cgag	cacc	tgcagcagtg accgcagcgg	taagtgaacg	cattgctatt	gctgcattac	60 6.1
	.210 -	3.1				
	. 211 .					

	<223:	Mutant primer				
	<400	34				
cgttt cgag	ccacc	tgcagcagtg accgcagcgg	taagtggacg	cattgctgtt	attgcattac	60 64
	:210	35				
	:211					
		DNA				
		Artificial Sequence				
	.:220					
	.:223	Mutant primer				
	<400	35				
cgtttc cgag	ccacc	tgcageagtg accgcagegg	taagtgaacg	cattgctact	cctgcattac	60 64
	.:210	36				
	:211	64				
	<212					
	:213:	Artificial Sequence				
	<220 =					
	<2233	Mutant primer				
	<400>					
cgtttc	cacc	tgcagcagtg accgcagcgg	taagtgaacg	cattgctaat	cctgcattac	60 64
	<210:	37				
	<211:	64				
	<212:	AMG				
	<213:	Artificial Sequence				
	:220>					
	-:223>	Mutant primer				
	.:400:	37				
cgtttc cgag	cacc	tgcagcagtg accgcagcgg	taagtggacg	cattgctact	gctgcattac	60 64
	:210:-	38				
	:211					
	:212:					
	213	Artificiai Sequence				
	.220					
	4223:	Mutant primer				
	<400>	38				
cgtttc cgag	cacc	tgcagcagty accgcagcgg	taagtggacg	cattgctaat	gctgcattac	60 64

Leu P	<400> he Leu	39 Gly Asn 5	
	<:210>		
	.:211 -		
	:212 -		
	-:213	Artificial Sequence	
	·:220 ·		
	.:223 -	Primer	
	:400	40	
gctct	agaga a	aagogtogga gattgtaott	30
	212		
	:210 · :211 ·		
	4212		
		Artificial Sequence	
	:220 -		
		Primer	
		1. TIME I	
	<400.		
gcaga	totga g	getettagtg etttgtgatt ettteaagta e	41
	«210»	42	
	:211:	28	
	<212:-	AIID	
	:213:	Artificial Sequence	
	<220°		
	-:223⊳	Primer	
	<400>	42	
gcgtc		aacgagata aggtgcag	28
	«210»	A 3	
	::2105 ::211:-		
	:212:		
		Artificial Sequence	
	<220 h		
	:1225:	Primer	
	- 400.		
gogga	tecto a	ggatttttt cgaaagcita tttaaatg	3.8
	<210:	44	
	<211:	20	
	<2120		
	<213:	Artificial Sequence	
	<220»		