

加速计算基础 —— CUDA Python

GPU 加速应用程序与 CPU 应用程序对比

在 CPU 应用程序中, 数据在 CPU 上进行分配

与给定核函数启动相关联的块的 **集合称**为网格

CUDA 提供的线程层次结构变量

协调并行线程

数据

0 | 4

1 | 5

2 | 6

3 ||

0 4

5

不过,**我**们还可通过一个惯用方法来计 算该值。回想一下,每个线程都可以 通过 blockDim.x 访问所在块的大小

GPU 数据

6

3

1

0

5

2

6

3

7

1 | 5

4

0

2 | 6

3 | 7

0 | 4

1 | 5

2 | 6

3 | 7

利用这些变量,threadIdx.x + blockIdx.x * blockDim.x 公式将返回当前线程在整个网格中的唯一索引,之后我们便可将其映射至数据元素。

5

6

7 3

data_index

6

7 3

data_index

3

5

6

7 3

data_index

6

7 3

data_index

threadIdx.x blockldx.x blockDim.x 0 4 0 5

data_index

6

3

GPU

GPU

数据

 0
 4

 1
 5

threadIdx.x
 + blockIdx.x
 * blockDim.x
 4
 data_index

GPU 数据

2 6

3 | 7

?

0 4 threadIdx.x + blockIdx.x

GPU
数据

data_index

2 6 ?

3 | 7

3 /

GPU

blockDim.x

6

数据 2

3 7

3 | 7

3

do_work[2, 4](d_a) 3 3 0

DEEP LEARNING INSTITUTE

学习更多课程,请访问 www.nvidia.cn/DLI