Khôlles de Mathématiques - Semaine 3

George Ober

17 avril 2024

1 Preuve de l'inégalité triangulaire et de l'inégalité montrant que le module est 1-lipschitzien + dessin et interprétation géométrique

Pour tout $(z_1, z_2) \in \mathbb{C}^2$,

(i)
$$|z_1 + z_2| \leq |z_1| + |z_2|$$

(ii)
$$|z_1| - |z_2| \le |z_1 - z_2|$$

Démonstration. Soient $(z_1, z_2) \in \mathbb{C}^2$ fixés quelconques.

 \lozenge Si $z_2 = 0$ l'inégalité est évidente Sinon, $z_2 \neq 0$ alors $|z_1 + z_2| \leqslant |z_1| + |z_2| \iff \left|1 + \frac{z_1}{z_2}\right| \leqslant 1 + \left|\frac{z_1}{z_2}\right|$. Posons $u = \frac{z_1}{z_2}$

$$|1+u|^2 - (1+|u|)^2 = (1+u)(\overline{1+u}) - (1+2|u| + |u|^2)$$

$$= (1+u)(1+\overline{u}) - 1 - 2|u| - |u|^2$$

$$= u + \overline{u} - 2|u|$$

$$= 2(\operatorname{Re}(u) - u) \le 0$$

♦ Appliquons l'inégalité triangulaire

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2| \implies |z_1| - |z_2| \le |z_1 - z_2|$$

Puisque z_1 et z_2 jouent de rôles symétriques on a aussi

$$|z_2| - |z_1| \le |z_2 - z_1| = |z_1 - z_2|$$

Donc

$$\left| |z_1| - |z_2| \right| \leqslant |z_1 - z_2|$$

2 Caractérisation du cas d'égalité de l'inégalité triangulaire dans $\mathbb C$

 $D\acute{e}monstration.$ \star (\Longrightarrow) Supposons qu'il y ait égalité dans l'inégalité triangulaire

- $\Diamond \ {\rm Si} \ z_2 = 0$ alors z_1 et z_2 sont positivement liés
- ♦ Sinon $|1+u|^2 (1+|u|)^2 = 0$ donc Re(u) |u| = 0 Donc $u \in \mathbb{R}_+$ mais $z_1 = uz_2$. Donc z_1 et z_2 sont positivement liés.
- \star (\iff) Supposons que z_1 et z_2 sont positivement liés. Alors il existe $\lambda \in \mathbb{R}_+$ tel que $z_1 = \lambda z_2$ Si $z_1 = \lambda z_2$

$$|z_1 + z_2| = |(\lambda + 1)z_2| = |\lambda + 1||z_2| = (\lambda + 1)|z_2| = \lambda|z_2| + |z_2| = |\lambda z_2| + |z_2| = |z_1| + |z_2|$$

Donc l'inégalité est une égalité

Si $z_2=\lambda z_1,$ en échangeant les rôles joués par z_1 et z_2 on obtient que l'inégalité est une égalité.

3 Calcul de $\sum_{k=0}^{n} \cos(k\theta)$ pour tout $\theta \in \mathbb{R}$

Démonstration. Soit $\theta \in \mathbb{R}$ fixé quelconque, $n \in \mathbb{N}$ fixé quelconque.

$$\begin{split} C_n(\theta) &= \sum_{k=0}^n \cos(k\theta) = \sum_{k=0}^n \mathrm{Re}(e^{ik\theta}) \\ &= \mathrm{Re}\left(\sum_{k=0}^n e^{ik\theta}\right) \\ &= \mathrm{Re}\left(\sum_{k=0}^n (e^{i\theta})^k\right) \text{ par les formules de moivre} \end{split}$$

Ainsi, si $e^{i\theta} = 1 \iff \theta \equiv 0[2\pi],$

$$C_n(\theta) = \text{Re}\left(\sum_{k=0}^{n} (1)^k\right) = \text{Re}(n+1) = n+1$$

Sinon,

$$C_n(\theta) = \operatorname{Re}\left(\frac{1 - (e^{i\theta})^{n+1}}{1 - e^{i\theta}}\right)$$

Simplifions donc ce quotient.

$$\frac{1 - (e^{i\theta})^{n+1}}{1 - e^{i\theta}} = \frac{1 - e^{i\theta(n+1)}}{1 - e^{i\theta}} = \frac{e^{\frac{i\theta(n+1)}{2}} \left(e^{-\frac{i\theta(n+1)}{2}} - e^{\frac{i\theta(n+1)}{2}}\right)}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}\right)}$$

$$= e^{i\frac{\theta n}{2}} \left(\frac{-2i\sin\left(\frac{\theta(n+1)}{2}\right)}{-2i\sin\frac{\theta}{2}}\right)$$

$$= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}} \left(\cos\frac{\theta n}{2} + i\sin\frac{\theta n}{2}\right)$$
(\$\black\$)

En prenant la partie réelle de ce résultat, on a

$$C_n(\theta) = \operatorname{Re}\left[\frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\left(\cos\frac{\theta n}{2} + i\sin\frac{\theta n}{2}\right)\right] = \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\cos\frac{n\theta}{2}$$

Donc

$$C_n(\theta) = \begin{cases} n+1 & \text{si } \theta \equiv 0[2\pi] \\ \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\cos\frac{n\theta}{2} & \text{sinon} \end{cases}$$

Remarque En prenant la partie imaginaire de $(\)$, on peut retrouver la somme $S_n(\theta)$:

$$S_n(\theta) = \sum_{k=0}^n \sin(k\theta) = \begin{cases} 0 & \text{si } \theta \equiv 0[2\pi] \\ \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}} \sin\frac{n\theta}{2} & \text{sinon} \end{cases}$$

4 Si z_0 est racine de la fonction polynômiale P, alors P se factorise par $(z - z_0)$

Soient
$$n \in \mathbb{N}$$
, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$ Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^n a_k z^k$ (i) Si $P(z_0) = 0$, alors $\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}$, $P(z) = (z - z_0)Q(z)$

Démonstration. Soit $z \in \mathbb{C}$ fixé quelconque,

$$P(z) = P(z) - P(z_0)$$

$$= \sum_{k=0}^{n} a_k z^k - \sum_{k=0}^{n} a_k z_0^k$$

$$= \sum_{k=0}^{n} a_k (z^k - z_0^k)$$

$$= \sum_{k=1}^{n} \left(a_k (z - z_0) \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right) \right)$$

$$= (z - z_0) \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right)$$

Donc en posant $Q(z) = \sum_{k=1}^n a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right), \in \mathbb{C}[z]$, on a montré que P se factorise.

5 Si z_1, \ldots, z_n sont n racines distinctes de la fonction polynômiale P de degré n, alors P(z) se factorise en ...

Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$ Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^n a_k z^k$ (ii) Si $\exists p \in \mathbb{N}^* : \exists (z_1, \dots, z_p) \in \mathbb{C}^p$ deux à deux distincts tels que $\forall k \in [1, p], P(z_k) = 0$ alors, $\exists Q \in \mathbb{C}[x] : \forall z \in \mathbb{C}, P(z) = Q(z) \times \prod_{k=1}^p (z - z_k)$.

Démonstration. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $p \in \mathbb{N}^*$ par

$$\mathcal{P}(p): \forall P \in \mathbb{C}[z], (\exists (z_1, \dots, z_p) \in \mathbb{C}^p, \ 2 \text{ à 2 distincts} : \forall i \in [1, p], P(z_i) = 0) \implies \exists Q \in \mathbb{C}[z]: P(z) = Q(z) \prod_{i=1}^p (z - z_i) = 0$$

- $\Diamond \mathcal{P}(1)$ est vraie d'après la preuve précédente.
- \Diamond Soit $p \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(p)$ est vraie. Soit $P \in \mathbb{C}[z]$ fq tq $\exists (z_1, \ldots, z_{p+1}) \in \mathbb{C}^{p+1}$ deux à deux distincts tels que $\forall i \in [1, p+1], P(z_i) = 0$. Appliquons $\mathcal{P}(p)$ à $P \in \mathbb{C}[z]$ dont (z_1, \ldots, z_p) sont les p racines deux à deux distinctes.

$$\exists Q_1 \in \mathbb{C}[z] : \forall z \in \mathbb{C}, P(z) = Q_1(z) \prod_{i=1}^p (z - z_i)$$

Évaluons cette expression en z_{p+1}

$$\underbrace{P(z_{p+1})}_{=0} = Q_1(z_{p+1}) \prod_{i=1}^{p} \underbrace{(z_{p+1} - z_i)}_{\neq 0 \text{ car distincts}}$$

Donc $Q_1(z_{p+1}) = 0$, ce qui permet d'appliquer (i) pour $P \leftarrow Q_1, z_0 \leftarrow z_{p+1}$.

$$\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}, Q_1(z) = (z - z_{p+1})Q(z)$$

Donc

$$\forall z \in \mathbb{C}, P(z) = (z - z_{p+1})Q(z) \prod_{i=1}^{p} (z - z_i) = Q(z) \prod_{i=1}^{p+1} (z - z_i)$$

Donc $\mathcal{P}(p+1)$ est vraie.

6 Calculer le module et un argument de $z=1+e^{i\theta}$ en fonction de $\theta\in[0,2\pi[$

Démonstration. Soit $\theta \in [0, 2\pi[$

$$z = 1 + e^{i\theta} = e^{i \times 0} + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right) = 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}}$$

Cette dernière notation est une notation exponentielle seulement si $2\cos\frac{\theta}{2}\geqslant 0$.

* Si $\theta \in [0, \pi[$,

$$\begin{cases} |z| = 2\cos\frac{\theta}{2} \\ \frac{\theta}{2} \in \operatorname{Arg}(z) \end{cases}$$

- \star Si $\theta=\pi,\,z=0$ donc |z|=0
- \star Si $\theta \in]\pi, 2\pi[$,

$$z = 2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}} = -2\left|\cos\frac{\theta}{2}\right|e^{i\frac{\theta}{2}}$$
$$= -2\left|\cos\frac{\theta}{2}\right|e^{i\left(\frac{\theta}{2} + \pi\right)}$$

Donc

$$\begin{cases} |z| = -2|\cos\frac{\theta}{2}| \\ \frac{\theta}{2} + \pi \in \operatorname{Arg}(z) \end{cases}$$

7 Décrire (avec preuve) l'ensemble des racines *n*-ièmes de l'unité et les localiser géométriquement dans le plan complexe.

Pour tout $n \in \mathbb{N}^* \setminus \{1\}$,

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

 $D\acute{e}monstration.$ — Description de l'ensemble \mathbb{U}_n

$$\begin{cases} z^{n} = 1 \\ z \in \mathbb{C} \end{cases} \iff \begin{cases} z^{n} = 1 \\ z \in \mathbb{C}^{*} \end{cases} \text{ ou } \begin{cases} z^{n} = 1 \\ z = 0 \end{cases}$$

$$\iff \begin{cases} \rho^{n}e^{in\theta} = 1 \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho^{n} = 1 \\ n\theta \equiv 0[2\pi] \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho = 1 \text{ car } \rho > 0 \\ \theta \equiv 0\left[\frac{2\pi}{n}\right] \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho = 1 \\ \exists k \in \mathbb{Z} : \theta = \frac{2k\pi}{n} \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \exists k \in \mathbb{Z} : z = e^{\frac{2ik\pi}{n}}$$

$$\iff z \in \begin{cases} e^{\frac{2ik\pi}{n}} \mid k \in \mathbb{Z} \end{cases}$$

L'ensemble des solutions est paramétré par l'entier k qui parcourt un ensemble infini. Toutefois, en représentant graphiquement les solutions, il semblerait que "tous les n", on fait un tour de cercle trigonométrique de plus, en redécrivant les solutions déjà obtenues pour $k \in [0, n-1]$.

— Localisation géométrique

 \star \mathbb{U}_3 est l'ensemble des sommets du triangle équilatéral inscrit dans le cercle unité, et dont 1 est l'un des sommets

- \star U₄ est l'ensemble des sommets du carré inscrit dans le cercle unité et dont 1 est l'un des sommets. Le côté du carré vaut $|1-i|=\sqrt{2}$.
- $\star~\mathbb{U}_5$ est l'ensemble des sommets du pentagone régulier inscrit dans le cercle unité et dont 1 est l'un des sommets.

8 Somme et Produit des racines n-ièmes

Démonstration. \Diamond **Méthode 1** En utilisant les relations coefficients racines. \mathbb{U}_n sont les n racines disctinctes de $z^n - 1$

$$S_n = -\frac{1}{\text{coefficient dominant}} \times (\text{coefficient de } z^{n-1} \text{ dans } z^n - 1) = \begin{cases} -0 & \text{si } n \ge 2 \\ -(-1) & \text{sinon} \end{cases}$$

$$P_n = (-1)^n \frac{\text{coefficient constant}}{\text{coefficient dominant}} = (-1)^n \times \frac{-1}{1} = (-1)^{n+1}$$

♦ Méthode 2 Manipulation des symboles sommatoires

$$S_n = \sum_{\omega \in \mathbb{U}_n} \omega = \sum_{k=0}^{n-1} \omega_0^k$$

$$= \begin{cases} 1 & \text{si } n = 1 \\ 1 \times \frac{1 - \omega_0^n}{1 - \omega_0} & \text{sinon} \end{cases}$$

Puisqu'on ne peut appliquer la formule de la somme des termes d'une suite géométrique seulement si la raison $\omega_0=1\iff e^{\frac{2i\pi}{n}}=1\iff \frac{2\pi}{n}\equiv 0[2\pi]\iff n=1$ De même

$$P_n = \prod_{\omega \in \mathbb{U}_n} \omega = \prod_{k=0}^{n-1} \omega_0^k = \omega_0^{\sum_{k=0}^{n-1} k} = \omega_0^{\frac{n(n-1)}{2}}$$

$$= \begin{cases} (\omega_0^n)^{\frac{n-1}{2}} = 1^{\frac{n-1}{2}} = 1 \\ e^{\frac{2i\pi n(n-1)}{2n}} = e^{i\pi(n-1)} = (-1)^{n-1} \end{cases} \quad \text{si } n \equiv 1[2]$$