Simplifying Image Processing Using Dimensionality Reduction

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Dictionary learning for dimensionality reduction of image data

Feature detection using convolutional layers

Autoencoders for dimensionality reduction

Dictionary Learning and Feature Extraction

Dictionary Learning

Representation learning method to find a sparse representation of input data, often used in denoising of images.

Dictionary Learning for Image Denoising

Corpus of clean images

Should be free of noise

Feed into Dictionary Learner

Choose transformation algorithm

Implement numeric procedures

Several choices - Orthogonal Matching Pursuit (OMP), LARS

Perform Dictionary Learning

Express clean images in terms of atoms (sparse codings)

Each image is expressed as linear combination of atoms

Use of Image Denoising

Apply to new, noisy images

Reconstruct and express using atoms

Dictionary Learning

Several choices of solver

- Thresholding: Fast but inaccurate
- Orthogonal Matching Pursuit (OMP): Most accurate, unbiased
- Least-angle Regression
- Lasso Regression

Demo

Dictionary learning to learn sparse codings

Convolution Kernels for Feature Detection

"Sometimes the mind can see what is invisible to the eye"

All neurons in the eye don't see the entire image

Each neuron has its own local receptive field

It reacts only to visual stimuli located in its receptive field

Some neurons react to more complex patterns that are combinations of lower level patterns

In this context, a sliding window function applied to a matrix

In this context, a sliding window function applied to

a matrix

e.g. a matrix of pixels representing an image

In this context, a sliding window function applied to a matrix

Often called a kernel or filter

In this context, a sliding window function applied to a matrix

Kernel is applied element-wise in sliding-window fashion

Representing Images as Matrices

Representing Images as Matrices

= 36 pixels

Representing Images

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Kernel

0	0	0	0	0	0
0.2	8.0	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Kernel

Matrix

Convolution Result

The parameters of all neurons in a feature map are collectively called the filter

Why filter?

Because weights highlight (filter) specific patterns from the input pixels

Filters

Horizontal Filter

Neuron will detect horizontal lines in input

Vertical Filter

Neuron will detect vertical lines in input

Demo

Convolutional kernels for feature detection

Autoencoding

Choosing Autoencoders

Use Case

Extremely complex feature vectors

Images, video, documents

Pre-processing before using in neural networks

Possible Solution

Autoencoders

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

$$x = f(x)$$

Autoencoders Learn the Input!

The process is inherently unsupervised, but cleverly uses the input itself to train an algorithm

Autoencoder

Autoencoder

Autoencoder

Autoencoders are Neural Networks that learn efficient representations of data (e.g. PCA)

This Neural Network trivially "learns" the input

Just one layer, which serves as both input and output layer

In an autoencoder, the input and output layer must have same dimensionality as the input data

The autoencoder just passes the input through, so output is exactly equal to input

Now, let's constrain the network to force dimensionality reduction

Dimensionality of the NN is now lower than that of input data

Add a middle, hidden layer with just three neurons (3 < N)

The input and output layers must now be separated, since each must still have same dimensionality as the input

Why? Because autoencoder seeks to reconstruct input

This gives undercomplete autoencoders a characteristic sandwichlike appearance

This gives undercomplete autoencoders a characteristic sandwichlike appearance

The undercomplete autoencoder will try to exactly match the input, but it will likely not succeed completely

Now, because of the dimensionality reduction, output will not be exactly same as input

A reconstruction error will now exist

The autoencoder will be forced to learn the most significant characteristics of the data i.e. latent factors

The central hidden layer is called the coding layer

The first phase - from input to coding - is called encoding

The second phase - from coding to output - is called decoding

Autoencoder

Demo

Autoencoders to learn latent factors

Summary

Dictionary learning for dimensionality reduction of image data

Feature detection using convolutional layers

Autoencoders for dimensionality reduction

Related Courses

Building Features from Numeric Data Building Features from Nominal Data Building Features from Text Data

Related Courses

Image Classification with PyTorch

Style Transfer with PyTorch