OSNOVI RAČUNARSTVA - MATLAB

Zoltan Pap

Visoka tehnička škola strukovnih studija

MATLAB - MATRIX LABORATORY

- interaktivan programski paket koji služi za numerički račun, za analizu i vizualizaciju podataka;
- integriše u sebe numeričku analizu, matrični račun, analizu i grafičku vizuelizaciju podataka;
- probleme rešava na numerički način sa konačnom tačnošću, ima mogućnost za programiranje;
- osnovna jedinica je matrica;

(Subotica Tech) Matlab 2 / 1

KOMANDNI JEZIK MATLABA

Enter	izvršavanje komande
↑	pozivanje prethodne komande
+	pozivanje naredne komande
\leftarrow	pomeranje kurzora u levo
\rightarrow	pomeranje kurzora u desno
Esc	brisanje komande
;	ne ispisuje rešenje na monitor
+	sabiranje
_	oduzimanje
*	množenje
/	deljenje
^	stepenovanje
()	argumenat funkcije, pristup elementima matrice

KOMANDNI JEZIK MATLABA

	decimalna tačka
[]	vektori i matrice
>	veće
<	manje
>=	veće ili jednako
<=	manje ili jednako
==	logička jednakost
~=	različito
&	logičko i
	logičko ili
~	logička negacija

BROJEVI

- jedna ili više cifara kojima može prethoditi znak + ili i decimalna tačka;
- Matlab pamti poslednji broj kao promenljivu sa nazivom ans;
- format brojeva može biti različit;
- eksponencijalni oblik: 12345.12345

 ⇔ 1.2345e + 04,
 0.1234

 ⇔ 1234.1234e 04;
- kompleksan broj: 1 + 5i;

(Subotica Tech) Matlab 6 / 1

LOGIČKE PROMENLJIVE

- 1 tačno;
- 0 netačno;

ZNAKOVNE KONSTANTE - STRING

- niz ASCII znakova izmedju apostrofa;
- 'Ovo je znakovna konstanta';

REDOSLED

• treba paziti na redosled operacija;

Redosled	Operacija
1.	stepenovanje
2.	deljenje i množenje
3.	sabiranje i oduzimanje

- kod operacija koje se nalaze u istoj hijerarhiji, operacije sa izvršavaju sleva na desno;
- hijerarhija se može menjati pomoću zagrada;

1. ZADATAK

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

B)
$$(2 + \frac{3}{4}) \cdot 5 = 13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

D)
$$(-5^2 - 3)^3 = -21952$$

E)
$$((-5)^2 - 3)^3 = 10648$$

2 Zadatak

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

B)
$$(2 + \frac{3}{4}) \cdot 5 = 13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

D)
$$(-5^2 - 3)^3 = -21952$$

E)
$$((-5)^2 - 3)^3 = 10648$$

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

B)
$$(2+\frac{3}{4})\cdot 5=13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

D)
$$(-5^2 - 3)^3 = -21952$$

E)
$$((-5)^2 - 3)^3 = 10648$$

2 Zadatak

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

B)
$$(2+\frac{3}{4})\cdot 5=13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

D)
$$(-5^2 - 3)^3 = -21952$$

E)
$$((-5)^2 - 3)^3 = 10648$$

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

B)
$$(2+\frac{3}{4})\cdot 5=13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

D)
$$(-5^2 - 3)^3 = -21952$$

E)
$$((-5)^2 - 3)^3 = 10648$$

2 Zadatak

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

D)
$$(-5^2 - 3)^3 = -21952$$

B)
$$(2+\frac{3}{4})\cdot 5=13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

E)
$$((-5)^2 - 3)^3 = 10648$$

2. Zadatak

• $\sqrt{a} \Leftrightarrow sqrt(a)$;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

D)
$$(-5^2 - 3)^3 = -21952$$

B)
$$(2+\frac{3}{4})\cdot 5=13.75$$

C)
$$2 + \frac{4^2}{2} = 10$$

E)
$$((-5)^2 - 3)^3 = 10648$$

•
$$\sqrt{a} \Leftrightarrow sqrt(a)$$
;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

1. Zadatak

A)
$$2 + \frac{3}{4} \cdot 5 = 5.75$$

D)
$$(-5^2 - 3)^3 = -21952$$

B)
$$\left(2 + \frac{3}{4}\right) \cdot 5 = 13.75$$

B)
$$(2 + \frac{4}{9}) \cdot 5 = 13.75$$

C) $2 + \frac{4^2}{2} = 10$

E)
$$((-5)^2 - 3)^3 = 10648$$

2. ZADATAK

• $\sqrt{a} \Leftrightarrow sqrt(a)$;

A)
$$\sqrt{25} + 9^2 = 86$$

B)
$$\sqrt[3]{125} + 9^2 = 86$$

TRIGONOMETRIJSKE FUNKCIJE

- sin(x), cos(x), tan(x), ctg(x) = 1/tan(x) = cot(x);
- inverzne trigonometrijske funkcije:
- asin(x); acos(x); atan(x);
- podrazumevana jedinica mere: rad;
- konverzija: $x^o = x \cdot \frac{\pi}{180} rad$, $y rad = y \cdot \frac{180}{\pi}$;

- A) $\cos 30^{\circ} = 0.86603$

TRIGONOMETRIJSKE FUNKCIJE

- sin(x), cos(x), tan(x), ctg(x) = 1/tan(x) = cot(x);
- inverzne trigonometrijske funkcije:
- asin(x); acos(x); atan(x);
- podrazumevana jedinica mere: rad;
- konverzija: $x^o = x \cdot \frac{\pi}{180} rad$, $y rad = y \cdot \frac{180}{\pi}$;

3. ZADATAK

A) $\cos 30^{\circ} = 0.86603$

c) $\arcsin 0.5 = 0.5236$

B) $ctg 60^{\circ} = 0.57735$

D) arctg 1 = 0.7854

(Subotica Tech) Matlab 10 / 1

TRIGONOMETRIJSKE FUNKCIJE

- sin(x), cos(x), tan(x), ctg(x) = 1/tan(x) = cot(x);
- inverzne trigonometrijske funkcije:
- asin(x); acos(x); atan(x);
- podrazumevana jedinica mere: rad;
- konverzija: $x^o = x \cdot \frac{\pi}{180} rad$, $y rad = y \cdot \frac{180}{\pi}$;

3. ZADATAK

A) $\cos 30^{\circ} = 0.86603$

c) $\arcsin 0.5 = 0.5236$

B) $ctg 60^{\circ} = 0.57735$

D) arctg 1 = 0.7854

TRIGONOMETRIJSKE FUNKCIJE

- sin(x), cos(x), tan(x), ctg(x) = 1/tan(x) = cot(x);
- inverzne trigonometrijske funkcije:
- asin(x); acos(x); atan(x);
- podrazumevana jedinica mere: rad;
- konverzija: $x^o = x \cdot \frac{\pi}{180} rad$, $y rad = y \cdot \frac{180}{\pi}$;

3. ZADATAK

A) $\cos 30^{\circ} = 0.86603$

c) $\arcsin 0.5 = 0.5236$

B) $ctg 60^{\circ} = 0.57735$

D) arctg 1 = 0.7854

(Subotica Tech) Matlab 10 / 1

TRIGONOMETRIJSKE FUNKCIJE

- sin(x), cos(x), tan(x), ctg(x) = 1/tan(x) = cot(x);
- inverzne trigonometrijske funkcije:
- asin(x); acos(x); atan(x);
- podrazumevana jedinica mere: rad;
- konverzija: $x^o = x \cdot \frac{\pi}{180} rad$, $y rad = y \cdot \frac{180}{\pi}$;

3. ZADATAK

A) $\cos 30^{\circ} = 0.86603$

c) $\arcsin 0.5 = 0.5236$

B) $ctg 60^{\circ} = 0.57735$

D) arctg 1 = 0.7854

(Subotica Tech) Matlab 10 / 1

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log10(x)$;

A)
$$e^5 = 148.41$$

$$e^{\circ} = 148.41$$

c)
$$\log_{10} 100 = 2$$

B)
$$\ln e^2 = 2$$
 D)

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log10(x)$;

A)
$$e^5 = 148.41$$

c)
$$\log_{10} 100 = 2$$

B)
$$\ln e^2 = 2$$

D)
$$\log_2 1 = \frac{\ln 1}{\ln 2} = 0$$

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log(x)$;

A)
$$e^5 = 148.41$$

B)
$$\ln e^2 = 2$$

c)
$$\log_{10} 100 = 2$$

D)
$$\log_2 1 = \frac{\ln 1}{\ln 2} = 0$$

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log(x)$;

A)
$$e^5 = 148.41$$

$$\circ$$
 log₁₀ 100 =2

B)
$$\ln e^2 = 2$$

D)
$$\log_2 1 = \frac{\ln 1}{\ln 2} = 0$$

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log(x)$;

A)
$$e^5 = 148.41$$

$$^{\circ}$$
 log₁₀ 100 =2

B)
$$\ln e^2 = 2$$

D)
$$\log_2 1 = \frac{\ln 1}{\ln 2} = 0$$

EKSPONENCIJALNE I LOGARITAMSKE FUNKCIJE

• $e^x \Leftrightarrow exp(x)$; $\ln x \Leftrightarrow log(x)$; $\log_{10} x \Leftrightarrow log(x)$;

A)
$$e^5 = 148.41$$

$$C) \log_{10} 100 = 2$$

B)
$$\ln e^2 = 2$$

D)
$$\log_2 1 = \frac{\ln 1}{\ln 2} = 0$$

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$Z_1 - Z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$Z_1 - Z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

$$\rho_{z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat:
$$\varphi_{Z_1} = 0.9828$$

(Subotica Tech) Matlab 12 / 1

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - 1$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

(Subotica Tech) Matlab 12/1

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{Z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

(Subotica Tech) Matlab 12 / 1

APSOLUTNA VREDNOST, FAKTORIJEL I KOMPLEKSNI BROJEVI

• $|x| \Leftrightarrow abs(x)$; $n! \Leftrightarrow factorial(x)$; $\rho = abs(z)$; $\varphi = angle(z)$;

5. Zadatak

$$z_1 = 2 + 3i$$
, $z_2 = 3 - 5i$

A)
$$|-5|=5$$

B)
$$z_1 + z_2 = 5 - 2i$$

C)
$$z_1 - z_2 = -1 + 8i$$

D)
$$z_1 \cdot z_2 = 21 - i$$

E) moduo:

$$\rho_{z_1} = \sqrt{a^2 + b^2} = 3.6056$$

F) argumenat: $\varphi_{Z_1} = 0.9828$

(Subotica Tech) Matlab 12 / 1

FORMATI BROJEVA

NAREDBA FORMAT

- short tačnost sa 4 decimala:
- long tačnost sa 16 decimala;
- short e tačnost sa 4 decimala eksponencijalni oblik broja;
- long e tačnost sa 16 decimala eksponencijalni oblik broja;
- bank tačnost sa 2 decimale;
- rat razlomak;

6. ZADATAK

Izračunati 5 : 3 i rezultat prikazati u različitim formatima.

(Subotica Tech) Matlab 13 / 1

OZNAKE PROMENLJIVIH

- prvi znak oznake promenljive mora biti slovo;
- oznaka promenljive ne može sardžavati više od 19 znaka;
- Matlab pravi razliku izmedju malih i velikih slova;
- ako ne definišemo naziv promenljive, tada će Matlab sačuvati poslednju vrednost pod nazivom ans;
- ako ne želimo da Matlab ispiše vrednost neke promenljive, koristimo ;;

7. ZADATAK

Izračunati:

A)
$$x = 3 - \frac{2^4}{3}$$
;

- B) $y = x^2 3x + 4$; staviti ; posle formule;
- c) Pozvati vrednost promenljive y;
- D) X + y = ;

8. Zadatak

A)
$$a = 1, b = 12; c=3 + \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} + \sqrt{\frac{a}{b}} = 4.8944;$$

B)
$$e = 2, f = 3, g = 4, h = \frac{e}{1 + \sqrt{\log(f + \sin^3(2\pi - g))}} = 1.1548$$

<□ > <回 > <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の の ○ </p>

7. ZADATAK

Izračunati:

- A) $x = 3 \frac{2^4}{3}$;
- B) $y = x^2 3x + 4$; staviti; posle formule;
- c) Pozvati vrednost promenljive y;
- D) X + y = ;

8. ZADATAK

A)
$$a = 1, b = 12; c=3 + \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} + \sqrt{\frac{a}{b}} = 4.8944;$$

B)
$$e = 2, f = 3, g = 4, h = \frac{e}{1 + \sqrt{\log(f + \sin^3(2\pi - a))}} = 1.1548;$$

7. ZADATAK

Izračunati:

- A) $x = 3 \frac{2^4}{3}$;
- B) $y = x^2 3x + 4$; staviti; posle formule;
- c) Pozvati vrednost promenljive y;
- D) X + y = ;

8. Zadatak

A)
$$a = 1, b = 12; c=3 + \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} + \sqrt{\frac{a}{b}} = 4.8944;$$

B)
$$e = 2, f = 3, g = 4, h = \frac{e}{1 + \sqrt{\log(f + \sin^3(2\pi - a))}} = 1.1548;$$

Izlistavanje i brisanje promenljivih

- who izlistava promenljive;
- whos izlistava promenljive i daje detaljnije informacije o njima;
- clear briše promenljive;
- clc briše sadržaj komandnog prozora;

9. Zadatak

- A) izlistati promenljive pomoću obe naredbe;
- B) izbrisati vrednost promenljive y;
- c) izbrisati sve promenljive;

Konstante

SPECIJALNE KONSTANTE

- eps: relativna preciznost prilikom operacija nad realnim brojevima;
- i ili j: imaginarna jedinica;
- Inf: beskonačno;
- pi: π iracionalan transcendentan broj;
- NaN: broj koji nije definisan, npr. ovakav broj se dobija prilikom deljenja sa nulom;
- realmax: najveći realan broj sa kojim Matlab zna operisati;
- realmin: najmanji realan poyitivan broj sa kojim Matlab zna operisati;

OPŠTI OBLIK

aritmetički izraz relacioni operator aritmetički izraz

- relacioni operatori: <, >, <=, >=, ==, ~=;
- rezultat relacionih izraza 1 tačno, ili 0 netačno;

10. ZADATAK

- A) 5 > 2.1;
- B) 5 == 5 :1,
- c) 5 $\sim = 5:0;$

OPŠTI OBLIK

aritmetički izraz relacioni operator aritmetički izraz

- relacioni operatori: <, >, <=, >=, ==, ~=;
- rezultat relacionih izraza 1 tačno, ili 0 netačno;

10. ZADATAK

- A) 5 > 2:1;
- B) 5 == 5 :1;
- c) 5 $\sim = 5.0$;

OPŠTI OBLIK

aritmetički izraz relacioni operator aritmetički izraz

- relacioni operatori: <, >, <=, >=, ==, ~=;
- rezultat relacionih izraza 1 tačno, ili 0 netačno;

10. ZADATAK

- A) 5 > 2:1;
- B) 5 == 5 :1;
- c) 5 $\sim = 5.0$;

OPŠTI OBLIK

aritmetički izraz relacioni operator aritmetički izraz

- relacioni operatori: <, >, <=, >=, ==, ~=;
- rezultat relacionih izraza 1 tačno, ili 0 netačno;

10. ZADATAK

- A) 5 > 2:1;
- B) 5 == 5 :1;
- c) 5 $\sim = 5.0$;

LOGIČKI IZRAZI

OPŠTI OBLIK

logički izraz logički operator logički izraz

- logički izraz se sastoji od: logičke konstante, relacionog izraza, čija vrednost može biti 0 ili 1;
- logički operatori: & logičko i, | logičko ili, -logička negacija;
- isključivo ili xor(a,b), istinitosna tablica ovog operatora je:

		1
		1
1	1	

11. Zadatak

A) 1&1:1;

B) 0|0:0.

OPŠTI OBLIK

logički izraz logički operator logički izraz

- logički izraz se sastoji od: logičke konstante, relacionog izraza, čija vrednost može biti 0 ili 1;
- logički operatori: & logičko i, | logičko ili, -logička negacija;
- isključivo ili xor(a,b), istinitosna tablica ovog operatora je:

xor	0	1
0	0	1
1	1	0

11. ZADATAK

A) 1&1 :1;

OPŠTI OBLIK

logički izraz logički operator logički izraz

- logički izraz se sastoji od: logičke konstante, relacionog izraza, čija vrednost može biti 0 ili 1;
- logički operatori: & logičko i, | logičko ili, -logička negacija;
- isključivo ili xor(a,b), istinitosna tablica ovog operatora je:

xor	0	1
0	0	1
1	1	0

11. ZADATAK

A) 1&1:1;

OPŠTI OBLIK

logički izraz logički operator logički izraz

- logički izraz se sastoji od: logičke konstante, relacionog izraza, čija vrednost može biti 0 ili 1;
- logički operatori: & logičko i, | logičko ili, -logička negacija;
- isključivo ili xor(a,b), istinitosna tablica ovog operatora je:

xor	0	1
0	0	1
1	1	0

11. ZADATAK

A) 1&1:1;

OPŠTI OBLIK

logički izraz logički operator logički izraz

- logički izraz se sastoji od: logičke konstante, relacionog izraza, čija vrednost može biti 0 ili 1;
- logički operatori: & logičko i, | logičko ili, logička negacija;
- isključivo ili xor(a,b), istinitosna tablica ovog operatora je:

xor	0	1
0	0	1
1	1	0

11. ZADATAK

A) 1&1:1;

B) 0|0 :0;

Unos

• Opšti oblik $m \times n$ dimenzione mmatrice:

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right]$$

unos:

$$A = [a_{11}, a_{12}, \dots, a_{1n}; a_{21}, a_{22}, \dots, a_{2n}; a_{m1}, a_{m2}, \dots, a_{mn}]$$

Unos

• Opšti oblik $m \times n$ dimenzione mmatrice:

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right]$$

unos:

$$A = [a_{11}, a_{12}, \dots, a_{1n}; a_{21}, a_{22}, \dots, a_{2n}; a_{m1}, a_{m2}, \dots, a_{mn}]$$

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- c) Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- c) Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- c) Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- c) Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

12. ZADATAK

A) Uneti sledeće matrice u Matlab:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- B) Uneti a = [12, 62, 93, -8, 22] vektor vrstu;
- c) Neka je vektor b transponovani vektor vektora a;
- D) Uneti vektor kolonu c = [1, 2, 3, 4]!

NAREDBE U VEZI SA MATRICAMA

- dimenzija matrice A: size(A);
- broj elemenata vektora b: length(b);
- transponovana matrica matrice A: A' ili transpose(A);
- zbir elemenata kolona matrice A: sum(A);
- elementi glavne dijagonale matrice A: diag(A);

13. ZADATAK

Data je matrica A iz 12. zadatka.

- A) Odrediti dimeniju matrice!
- B) Sabrati elemente kolone matrice A;
- c) Sabrati elemente vrsta matrice A;
- D) sabrati elemente koji se nalaze na glavnoj dijagonali matrice A;
- E) Sabrati sve elemente matrice!

13. ZADATAK

- A) Odrediti dimeniju matrice!
- B) Sabrati elemente kolone matrice A;
- c) Sabrati elemente vrsta matrice A;
- D) sabrati elemente koji se nalaze na glavnoj dijagonali matrice A;
- E) Sabrati sve elemente matrice!

13. ZADATAK

- A) Odrediti dimeniju matrice!
- B) Sabrati elemente kolone matrice A;
- c) Sabrati elemente vrsta matrice A;
- D) sabrati elemente koji se nalaze na glavnoj dijagonali matrice A;
- E) Sabrati sve elemente matrice!

13. ZADATAK

- A) Odrediti dimeniju matrice!
- B) Sabrati elemente kolone matrice A;
- c) Sabrati elemente vrsta matrice A;
- D) sabrati elemente koji se nalaze na glavnoj dijagonali matrice A;
- E) Sabrati sve elemente matrice!

13. ZADATAK

- A) Odrediti dimeniju matrice!
- B) Sabrati elemente kolone matrice A;
- c) Sabrati elemente vrsta matrice A;
- D) sabrati elemente koji se nalaze na glavnoj dijagonali matrice A;
- E) Sabrati sve elemente matrice!

- Nula matrica dimenizje m x n: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije $n \times n$: E=eye(n):

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Nula matrica dimenizje $m \times n$: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije $n \times n$: E=eye(n):

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Nula matrica dimenizje $m \times n$: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije $n \times n$: E=eye(n):

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Nula matrica dimenizje $m \times n$: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije $n \times n$: E=eye(n):

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Nula matrica dimenizje $m \times n$: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije $n \times n$: E=eye(n):

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- Nula matrica dimenizje m x n: O=zeros(m,n);
- Matrica dimenzije $m \times n$, koja ima sve elemente 1: l=ones(m,n);
- Jedinična matrica dimenzije n × n: E=eye(n):

$$E = \left[\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{array} \right]$$

14. ZADATAK

Uneti sledeću matricu koristeći specijalne matrice:

A)
$$B = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

GENERISANIE VEKTORA POMOĆII

- pomoću znaka : možemo generisati takve nizove ili vektore, čiji elementi rastu ili opadaju sa konstantnim korakom;
- sintaksa:

početni elemenat vektora : korak : poslednji element vektor

14. ZADATAK

Uneti sledeću matricu koristeći specijalne matrice:

A)
$$B = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

GENERISANIE VEKTORA POMOĆIJ

- pomoću znaka : možemo generisati takve nizove ili vektore, čiji elementi rastu ili opadaju sa konstantnim korakom;
- sintaksa:

početni elemenat vektora : korak : poslednji element vektor

14. Zadatak

Uneti sledeću matricu koristeći specijalne matrice:

A)
$$B = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$$

B) $C = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 2 & 2 & 2 \end{array} \right]$

GENERISANJE VEKTORA POMOĆU:

- pomoću znaka: možemo generisati takve nizove ili vektore, čiji elementi rastu ili opadaju sa konstantnim korakom;
- sintaksa:

početni elemenat vektora korak

poslednji element vektora

15. ZADATAK

Unesimo u Matlab sledeće vektore pomoću znaka ::

A) p = [1, 2, 3, 4, 5, 6];

- c) r = [0, 0.2, 0.4, 0.6, 0.8, 1];
- B) q = [1, 1.5, 2, 2.5, 3, 3.5, 4];
- D) s = [1, 0.5, 0, -0.5, -1];

IZDVAJANJE ELEMENATA MATRICE I VEKTORA

- izdvajanje elementa matrice A koji se nalazi u preseku k-te vrste i I-te kolone matrice: A(k,I);
- izdvajanje cele k-te vrste matrice A: A(k,:);
- izdvajanje /-te kolone matrice A: A(:,I);

(Subotica Tech) Matlab 26 / 1

16. ZADATAK

A) Uneti sledeću matricu pomoću specijalnih matrica i znaka ::

$$D = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 \\ 4 & 5 & 6 & 1 & 1 \\ 7 & 8 & 9 & 1 & 1 \\ 5 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ -5 & -4 & -3 & -2 & -1 \end{bmatrix}$$

(Subotica Tech) Matlab 27 / 1

17. ZADATAK

- B) izabrati elemenat matrice koji se nalazi u preseku 9. vrste i 3. kolone;
- c) izabrati celu 4. kolonu;
- izabrati one elemente matrice, koji se nalaze u preseku 3. vrste i 2,3,4. kolone;
- E) izabrati one elemente matrice, koji se nalaze u preseku 2. kolone i 2, 4, 6, 8. vrste;
- F) izabrati podmatricu D_1 matrice D, čiji se elementi nalaze u preseku 5-8. vrste i 1-4. kolone;

(Subotica Tech) Matlab 28 / 1

ALGORITMI

OSNOVNI POJMOVI

- predstavlja niz naredbi koje služe za rešavanje odredjenog zadatka;
- osnovni zahtevi koje jedan algoritam mora zadovoljiti:ulaz, izlaz, konačnost;
- algoritmi se mogu prikazati i grafički;
- osnovni znakovi: početak i kraj algoritma, ulaz, izlaz, korak u kojem se dodeljuje vrednost, odluka o daljem izvršavanju algoritma, tačka prekida (ako algoritam ne može stati na jednu stranicu, oznaka za potprogram;

ALGORITMI

ALGORITMI

PROGRAMIRANJE U MATLAB-U

Uvod

- Matlab je pogodan za programiranje;
- ima svoje okruženje u kojem se mogu pisati programi: Editor;
- prozor Editora se poziva pomoću komande edit;
- program u Matlabu se još naziva i m-fajl, jer je njegova ekstenzija .m;
- Matlab m-fajlove čuva u nekom predefinisanom folderu za koji ima definisanu putanju;
- ako ne sačuvamo napisani program u tom folderu, Matlab neće znati izvrišiti taj program;
- postoje dve vrste m-fajlova u Matlabu: script i funkcija;

PROGRAMIRANJE U MATLAB-U

SKRIPTOVI

- predstavlja niz Matlab komandi;
- Matlab izvršava skript na isti način kao što izvršava i komande ukucane u komandni prozor;
- skript se korist tada, ako se isti niz komandi mora izvršiti više puta;

18. ZADATAK

Data je jednačina $x^2 + 5x + 6 = 0$ drugog reda. Nacrtati algoritam koji služi za rešavanje ove jednačine i napisati Matlab skript za rešavanje date jednačine!

Rešenje

$$a = 1;$$

$$b = 5;$$

$$c = 6;$$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

18. ZADATAK

Data je jednačina $x^2 + 5x + 6 = 0$ drugog reda. Nacrtati algoritam koji služi za rešavanje ove jednačine i napisati Matlab skript za rešavanje date jednačine!

$$a = 1;$$

$$b = 5;$$

$$c = 6;$$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

18. ZADATAK

Data je jednačina $x^2 + 5x + 6 = 0$ drugog reda. Nacrtati algoritam koji služi za rešavanje ove jednačine i napisati Matlab skript za rešavanje date jednačine!

$$a = 1;$$

$$b = 5;$$

$$c = 6;$$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

18. ZADATAK

Data je jednačina $x^2 + 5x + 6 = 0$ drugog reda. Nacrtati algoritam koji služi za rešavanje ove jednačine i napisati Matlab skript za rešavanje date jednačine!

$$a = 1;$$

$$b = 5;$$

$$c = 6;$$

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$


```
a=1;
b=5;
c=6;
x_1=(-b+sqrt(b^2-4*a*c))/(2*a)
x_2=(-b-sqrt(b^2-4*a*c))/(2*a)
```

19. ZADATAK

Nacrtati algoritam i napisati m-fajl koji će generisati sledeću matricu:

Rešenje

Prvo generisati odgovarajuće podmatrice, pa pomoću tih podmatrica sastaviti traženu matricu.

(Subotica Tech) Matlab 36 / 1

19. ZADATAK

Nacrtati algoritam i napisati m-fajl koji će generisati sledeću matricu:

$$A = \left[\begin{array}{rrrrr} -3 & -3 & -3 & 0 & 0 \\ -3 & -3 & -3 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 3 & 2 & 4 \end{array} \right]$$

Rešenje

Prvo generisati odgovarajuće podmatrice, pa pomoću tih podmatrica sastaviti traženu matricu.

(Subotica Tech) Matlab 36 / 1

20. ZADATAK

Dati su sledeći brojevi u obliku vektora x = [2, 1, 4, 5, 3, 9, 8, 7, 6]. Nacrtati algoritam i napisati odgovarajući skript, koji će izračunati srednju vrednost datih brojeva, ispisaće najmanji i najveći broj i sortiraće brojeve po rastućem redosledu.

Rešenje

srednjavrednost=mean(x)
najmanjibroj=min(x)
najvecibroj=max(x)
redosled=sort(x)

20. Zadatak

Dati su sledeći brojevi u obliku vektora x = [2, 1, 4, 5, 3, 9, 8, 7, 6]. Nacrtati algoritam i napisati odgovarajući skript, koji će izračunati srednju vrednost datih brojeva, ispisaće najmanji i najveći broj i sortiraće brojeve po rastućem redosledu.

Rešenje

srednjavrednost=mean(x)

najmanjibroj=min(x) najvecibroj=max(x) redosled=sort(x)

20. Zadatak

Dati su sledeći brojevi u obliku vektora x = [2, 1, 4, 5, 3, 9, 8, 7, 6]. Nacrtati algoritam i napisati odgovarajući skript, koji će izračunati srednju vrednost datih brojeva, ispisaće najmanji i najveći broj i sortiraće brojeve po rastućem redosledu.

Rešenje

srednjavrednost=mean(x) najmanjibroj=min(x) najvecibroj=max(x)

najvecibroj=max(x) redosled=sort(x)

20. ZADATAK

Dati su sledeći brojevi u obliku vektora x = [2, 1, 4, 5, 3, 9, 8, 7, 6]. Nacrtati algoritam i napisati odgovarajući skript, koji će izračunati srednju vrednost datih brojeva, ispisaće najmanji i najveći broj i sortiraće brojeve po rastućem redosledu.

Rešenje

srednjavrednost=mean(x)
najmanjibroj=min(x)
najvecibroj=max(x)

20. ZADATAK

Dati su sledeći brojevi u obliku vektora x = [2, 1, 4, 5, 3, 9, 8, 7, 6]. Nacrtati algoritam i napisati odgovarajući skript, koji će izračunati srednju vrednost datih brojeva, ispisaće najmanji i najveći broj i sortiraće brojeve po rastućem redosledu.

Rešenje

srednjavrednost=mean(x)
najmanjibroj=min(x)
najvecibroj=max(x)
redosled=sort(x)

(Subotica Tech) Matlab 37 / 1


```
x=[2, 1, 4, 5, 3, 9, 8, 7, 6];

srednjavrednost = mean(x)

najmanjibroj = min(x)

najvecibroj = max(x)

redosled = sort(x)
```

PROGRAMIRANJE U MATLABU

FUNKCIJE

- funkcije su m-fajlovi, u čijem prvom redu se nalazi function ključna reč;
- funkcije imaju ulaz i izlaz;
- opšti oblik Matlab programa koji je funkcija:

```
function [vektor izlaza] = naziv-funkcije(ulaz)
niz naredbi;
izlaz = neka vrednost
```

PROGRAMIRANJE U MATLABU

FUNKCIJE

- naziv m-fajla mora da se poklapa sa nazivom funkcije;
- naziv funkcije asocira na sadržaj programa;
- u okviru funkcija možemo koristiti comment, pomoću znaka %;
- koment je tekst, koji Matlab ne uzima u obzir, medjutim daje važne informacije korisniku o tome, šta tekući komandni red znači;

21. ZADATAK

Nacrtati algoritam koji odredjuje korene proizvoljne kvadratne jednačine. Napisati program u Matlabu!

UPUTSTVO

• na prethodnom času smo napisali sličan skript;

21. ZADATAK

Nacrtati algoritam koji odredjuje korene proizvoljne kvadratne jednačine. Napisati program u Matlabu!

UPUTSTVO

na prethodnom času smo napisali sličan skript;


```
function [x_1, x_2] = kvadratna_jednacina(a, b, c)

x_1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);

x_2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);
```

22. ZADATAK

Nacrtati algoritam koji će izračunati aritmetičku i geometrijsku sredinu elemenata proizvoljnog vektora! Napisati odgovarajući Matlab program!

UPUTSTVO

- aritmetička sredina: $\bar{x}_a = \frac{x_1 + x_2 + \dots + x_n}{n}$;
- geometrijska sredina: $\bar{x}_g = \sqrt[n]{x_1 \cdot x_2 \cdot \cdots \cdot x_n}$;

22. ZADATAK

Nacrtati algoritam koji će izračunati aritmetičku i geometrijsku sredinu elemenata proizvoljnog vektora! Napisati odgovarajući Matlab program!

UPUTSTVO

- aritmetička sredina: $\bar{x}_a = \frac{x_1 + x_2 + \dots + x_n}{n}$;
- geometrijska sredina: $\bar{x}_g = \sqrt[n]{x_1 \cdot x_2 \cdot \cdots \cdot x_n}$;

(Subotica Tech) Matlab 43 / 1

22. ZADATAK

Nacrtati algoritam koji će izračunati aritmetičku i geometrijsku sredinu elemenata proizvoljnog vektora! Napisati odgovarajući Matlab program!

UPUTSTVO

- aritmetička sredina: $\bar{x}_a = \frac{x_1 + x_2 + \dots + x_n}{n}$;
- geometrijska sredina: $\bar{x}_g = \sqrt[n]{x_1 \cdot x_2 \cdot \cdots \cdot x_n}$;

(Subotica Tech) Matlab 43 / 1

Rešenje

REŠENJE

```
function [aritmeticka, geometrijska] = sredina(x)

n = length(x);

aritmeticka = sum(x)/n;

geometrijska = nthroot(prod(x),n);
```

NAPOMENA:

- ugradjena funkcija za odredjivanje aritmetičke sredine: mean(x);
- ugradjena funkcija za odredjivanje geometrijske sredine: geomean(x);

23. ZADATAK

Nacrtati algoritam koji će generisati matricu proizvoljne dimenzije, a elementi matrice su celi slučajni brojevi izmedju 1 i 10. Napisati odgovarajući Matlab program!

- generisanje matrice dimenzije m × n sa slučajnim elementima izmedju 0 i 1 se može izvršiti naredbom rand(m,n);
- zaokruživanje racionalih i iracionalnih brojeva na broj koji je veći od datog broja se radi pomoću naredbe ceil;

23. ZADATAK

Nacrtati algoritam koji će generisati matricu proizvoljne dimenzije, a elementi matrice su celi slučajni brojevi izmedju 1 i 10. Napisati odgovarajući Matlab program!

- generisanje matrice dimenzije m × n sa slučajnim elementima izmedju 0 i 1 se može izvršiti naredbom rand(m,n);
- zaokruživanje racionalih i iracionalnih brojeva na broj koji je veći od datog broja se radi pomoću naredbe ceil;

23. ZADATAK

Nacrtati algoritam koji će generisati matricu proizvoljne dimenzije, a elementi matrice su celi slučajni brojevi izmedju 1 i 10. Napisati odgovarajući Matlab program!

- generisanje matrice dimenzije m x n sa slučajnim elementima izmedju 0 i 1 se može izvršiti naredbom rand(m,n);
- zaokruživanje racionalih i iracionalnih brojeva na broj koji je veći od datog broja se radi pomoću naredbe ceil;

23. ZADATAK

Nacrtati algoritam koji će generisati matricu proizvoljne dimenzije, a elementi matrice su celi slučajni brojevi izmedju 1 i 10. Napisati odgovarajući Matlab program!

- generisanje matrice dimenzije m x n sa slučajnim elementima izmedju 0 i 1 se može izvršiti naredbom rand(m,n);
- zaokruživanje racionalih i iracionalnih brojeva na broj koji je veći od datog broja se radi pomoću naredbe ceil;

Rešenje

REŠENJE

```
function M = slucajna\_matrica(m, n)

M = ceil(10*rand(m, n));
```

24. ZADATAK

Grafički prikazati algoritam koji računa površinu proizvoljnog trapeza. Napisati i odgovarajući Matlab program.

Rešenie

Površina trapeza: $P = \frac{a+b}{2} \cdot h$.

24. ZADATAK

Grafički prikazati algoritam koji računa površinu proizvoljnog trapeza. Napisati i odgovarajući Matlab program.

Rešenje

Površina trapeza: $P = \frac{a+b}{2} \cdot h$.

Rešenje

48 / 1

REŠENJE

```
function P = povrsina\_trapeza(a,b,h)

P = 0.5*(a+b)*h;
```


PROGRAMIRANJE U MATLABU

USLOVNO GRANANJE

- koristi se if struktura
- opšti oblik:

if uslov naredbe end

 značenje: ako se zadati uslov ispuni, Matlab će izvršiti date naredbe, inače ih neće uzeti u obzir;

PROGRAMIRANJE U MATLABU

USLOVNO GRANANJE

- koristi se if struktura
- opšti oblik:

if uslov naredbe end

 značenje: ako se zadati uslov ispuni, Matlab će izvršiti date naredbe, inače ih neće uzeti u obzir;

PROŠIRENA VERZIJA

if uslov komande 1 else komande 2 end

 značenje: ako sa zadatu uslov ispuni, tada će Matlab izvršiti komande 1 a ako uslov nije ispunjen, onda će se izvršiti komande 2;

(Subotica Tech) Matlab 50 / 1

PROŠIRENA VERZIJA

if uslov komande 1 else komande 2 end

 značenje: ako sa zadatu uslov ispuni, tada će Matlab izvršiti komande 1 a ako uslov nije ispunjen, onda će se izvršiti komande 2;

Proširena verzija

if uslov komande 1 else komande 2 end

 značenje: ako sa zadatu uslov ispuni, tada će Matlab izvršiti komande 1 a ako uslov nije ispunjen, onda će se izvršiti komande 2;

JOŠ PROŠIRENIJA VERZIJA

• značenje: ako je uslov 1 ispunjen, onda će se izvršiti komande 1, a ako nije ispunjen, onda će Matlab proveriti da li je ispunjen uslov 2. Ako je taj uslov ispunjen, onda će izvršiti komande 2 a ako ni taj uslov nije ispunjen, izvršiće komande 3;

(Subotica Tech) Matlab 51 / 1

JOŠ PROŠIRENIJA VERZIJA

 značenje: ako je uslov 1 ispunjen, onda će se izvršiti komande 1, a ako nije ispunjen, onda će Matlab proveriti da li je ispunjen uslov 2. Ako je taj uslov ispunjen, onda će izvršiti komande 2 a ako ni taj uslov nije ispunjen, izvršiće komande 3;

(Subotica Tech) Matlab 51 / 1

Još proširenija verzija

 značenje: ako je uslov 1 ispunjen, onda će se izvršiti komande 1, a ako nije ispunjen, onda će Matlab proveriti da li je ispunjen uslov 2. Ako je taj uslov ispunjen, onda će izvršiti komande 2 a ako ni taj uslov nije ispunjen, izvršiće komande 3;

25. Zadatak

Nacrtati algoritam, koji će proveriti da li je proizvoljno zadat broj paran. Ako jeste, ispisaće da je broj paran, inače će ispisati da je neparan. Napisati i odgovarajući Matlab program!

- proverimo, da li je broj deljiv sa 2 bez ostatka;
- ostatak pri deljenju $\frac{x}{y}$ se može odrediti pomoću naredbe mod(x,y)

25. Zadatak

Nacrtati algoritam, koji će proveriti da li je proizvoljno zadat broj paran. Ako jeste, ispisaće da je broj paran, inače će ispisati da je neparan. Napisati i odgovarajući Matlab program!

- proverimo, da li je broj deljiv sa 2 bez ostatka;
- ostatak pri deljenju $\frac{x}{v}$ se može odrediti pomoću naredbe mod(x,y)

25. Zadatak

Nacrtati algoritam, koji će proveriti da li je proizvoljno zadat broj paran. Ako jeste, ispisaće da je broj paran, inače će ispisati da je neparan. Napisati i odgovarajući Matlab program!

- proverimo, da li je broj deljiv sa 2 bez ostatka;
- ostatak pri deljenju $\frac{x}{y}$ se može odrediti pomoću naredbe mod(x,y)

25. Zadatak

Nacrtati algoritam, koji će proveriti da li je proizvoljno zadat broj paran. Ako jeste, ispisaće da je broj paran, inače će ispisati da je neparan. Napisati i odgovarajući Matlab program!

- proverimo, da li je broj deljiv sa 2 bez ostatka;
- ostatak pri deljenju $\frac{x}{y}$ se može odrediti pomoću naredbe mod(x,y)

Rešenje

REŠENJE

```
function parnost = provera_parnosti(x)
ostatak = mod(x,2); % racunamo
  ostatak pri deljenju sa 2
if ostatak == 0
    parnost = 'Broj je paran';
else
    parnost = 'Broj je neparan';
end
```

26. ZADATAK

Nacrtati algoritam koji će izračunati apsolutnu vrednost proizvoljnog broja. Napisati i odgovarajući Matlab program!

- apsolutna vrednost je udaljenost broja na realnoj pravi od nule;
- apsolutna vrednost broja x:

$$|x| = \begin{cases} x & , ako je \ x \ge 0 \\ -x & , ako je \ x < 0 \end{cases}$$

26. Zadatak

Nacrtati algoritam koji će izračunati apsolutnu vrednost proizvoljnog broja. Napisati i odgovarajući Matlab program!

- apsolutna vrednost je udaljenost broja na realnoj pravi od nule;
- apsolutna vrednost broja x:

$$|x| = \begin{cases} x & \text{, ako je } x \ge 0 \\ -x & \text{, ako je } x < 0 \end{cases}$$

26. Zadatak

Nacrtati algoritam koji će izračunati apsolutnu vrednost proizvoljnog broja. Napisati i odgovarajući Matlab program!

- apsolutna vrednost je udaljenost broja na realnoj pravi od nule;
- apsolutna vrednost broja x:

$$|x| = \begin{cases} x & \text{, ako je } x \ge 0 \\ -x & \text{, ako je } x < 0 \end{cases}$$

26. Zadatak

Nacrtati algoritam koji će izračunati apsolutnu vrednost proizvoljnog broja. Napisati i odgovarajući Matlab program!

- apsolutna vrednost je udaljenost broja na realnoj pravi od nule;
- apsolutna vrednost broja x:

$$|x| = \begin{cases} x & \text{, ako je } x \ge 0 \\ -x & \text{, ako je } x < 0 \end{cases}$$

26. Zadatak

Nacrtati algoritam koji će izračunati apsolutnu vrednost proizvoljnog broja. Napisati i odgovarajući Matlab program!

UPUTSTVO

- apsolutna vrednost je udaljenost broja na realnoj pravi od nule;
- apsolutna vrednost broja x:

$$|x| = \left\{ \begin{array}{c} x & \text{, ako je } x \geq 0 \\ -x & \text{, ako je } x < 0 \end{array} \right.$$

(Subotica Tech) Matlab 54 /

Rešenje

REŠENJE

```
function x_abs = apsolutno(x)
if x >= 0
    x_abs = x;
else
    x_abs = -x;
end
```

27. ZADATAK

Nacrtati algoritam koji će uporediti dva broja a i b i koji će izvršiti sledeće operacije nad brojevima c, d i e.

$$r = \left\{ \begin{array}{ll} (c+d)^e & \text{, ako je } a > b \\ c+d+e & \text{, ako je } a < b \\ c\cdot d\cdot e & \text{, ako je } a = b \end{array} \right.$$

UPUTSTVO

• koristiti strukturu if - elseif - else;

(Subotica Tech) Matlab 56 / 1

27. ZADATAK

Nacrtati algoritam koji će uporediti dva broja a i b i koji će izvršiti sledeće operacije nad brojevima c, d i e.

$$r = \left\{ \begin{array}{ll} (c+d)^e & \text{, ako je } a > b \\ c+d+e & \text{, ako je } a < b \\ c\cdot d\cdot e & \text{, ako je } a = b \end{array} \right.$$

UPUTSTVO

• koristiti strukturu if - elseif - else;

(Subotica Tech) Matlab 56 / 1

Rešenje

REŠENJE

```
function r = uporedjenje(a,b,c,d,e)
if a > b
    r = (c+d)^e;
elseif a < b
    r = c+d+e;
else
    r = c*d*e;
end</pre>
```

28. ZADATAK

Neka su a i b dva proizvoljna vektora. Napisati Matlab kod koji uporediti veličinu zbira elemenata ovih vektora. Ako je zbir elemenata a vektora veći od zbira elemenata b vektora, tada je izlaz programa 1, inače je 0.

- algoritam je radjen na predavanjima;
- ulaz programa su vektori a i b;
- *izlaz programa je broj c* \in {0, 1};

USLOVNO GRANANJE

28. ZADATAK

Neka su a i b dva proizvoljna vektora. Napisati Matlab kod koji uporediti veličinu zbira elemenata ovih vektora. Ako je zbir elemenata a vektora veći od zbira elemenata b vektora, tada je izlaz programa 1, inače je 0.

- algoritam je radjen na predavanjima;
- ulaz programa su vektori a i b;
- izlaz programa je broj $c \in \{0, 1\}$;

USLOVNO GRANANJE

28. ZADATAK

Neka su a i b dva proizvoljna vektora. Napisati Matlab kod koji uporediti veličinu zbira elemenata ovih vektora. Ako je zbir elemenata a vektora veći od zbira elemenata b vektora, tada je izlaz programa 1, inače je 0.

- algoritam je radjen na predavanjima;
- ulaz programa su vektori a i b;
- *izlaz programa je broj c* $\in \{0, 1\}$;

REŠENJE

```
function c=zbir_vektora(a,b)
zbir1=sum(a);
zbir2=sum(b);
if a>b
    c=1;
else c=0;
end
```

- petlje su strukture koje omogućavaju višestruko ponavljanje nekih naredbi;
- u Matlabu se koriste dve vrste petlji:
 - for petlja;
 - while petlja;

PETLIA

- ova petlja će n puta ponoviti date naredbe, gde je n je unapred zadat prirodan broj;
- opšti oblik:

```
for promenljiva = izraz
naredbe
end
```

- petlje su strukture koje omogućavaju višestruko ponavljanje nekih naredbi;
- u Matlabu se koriste dve vrste petlji:
 - for petlja;
 - while petlja;

PETLJA

- ova petlja će n puta ponoviti date naredbe, gde je n je unapred zadat prirodan broj;
- opšti oblik:

```
for promenljiva = izraz
    naredbe
end
```

- petlje su strukture koje omogućavaju višestruko ponavljanje nekih naredbi;
- u Matlabu se koriste dve vrste petlji:
 - for petlja;
 - while petlja;

PETLIA

- ova petlja će n puta ponoviti date naredbe, gde je n je unapred zadat prirodan broj;
- opšti oblik:

```
for promenljiva = izraz
naredbe
end
```

- petlje su strukture koje omogućavaju višestruko ponavljanje nekih naredbi;
- u Matlabu se koriste dve vrste petlji:
 - for petlja;
 - while petlja;

FOR PETLJA

- ova petlja će n puta ponoviti date naredbe, gde je n je unapred zadat prirodan broj;
- opšti oblik:

for promenljiva = izraz naredbe end

FOR PETLJA

- izraz u opštem obliku petlje predstavlja jedan vektor koji sadrži indekse koji označavaju broj izvršavanja naredbi;
- for petlja izvršava zadate naredbe u svakom koraku (iteraciji) petlje i na taj način dobijene vrednosti dodeljuje odgovarajućim promenljivama;

29. Zadatak

Nacrtati algoritam koji će ispisati kvadrat svih prirodnih brojeva od 0 do n, gde je n proizvoljan prirodan broj. Napisati i odgovarajući Matlab program!

UPUTSTVO

koristiti for petlju;

29. ZADATAK

Nacrtati algoritam koji će ispisati kvadrat svih prirodnih brojeva od 0 do n, gde je n proizvoljan prirodan broj. Napisati i odgovarajući Matlab program!

UPUTSTVO

koristiti for petlju;

Rešenje

REŠENJE

```
function n_2=kvadratni_brojevi(n)
for i = 1 : n
    n_2(i)=i^2;
end
```

30. ZADATAK

Napisati progam koji će za proizvoljan broj N napisati vektor y = [1, 2, 3, ..., N, N, N - 1, ..., 2, 1].

UPUTSTVO

- algoritam je nacrtan na predavanjima;
- vektor y se sastoji od 2N elemenata;
- prvih N elemenata raste;
- drugih N elemenata opada;

30. ZADATAK

Napisati progam koji će za proizvoljan broj N napisati vektor y = [1, 2, 3, ..., N, N, N - 1, ..., 2, 1].

UPUTSTVO

- algoritam je nacrtan na predavanjima;
- vektor y se sastoji od 2N elemenata;
- prvih N elemenata raste;
- drugih N elemenata opada;

30. ZADATAK

Napisati progam koji će za proizvoljan broj N napisati vektor y = [1, 2, 3, ..., N, N, N - 1, ..., 2, 1].

UPUTSTVO

- algoritam je nacrtan na predavanjima;
- vektor y se sastoji od 2N elemenata;
- prvih N elemenata raste;
- drugih N elemenata opada;

30. ZADATAK

Napisati progam koji će za proizvoljan broj N napisati vektor y = [1, 2, 3, ..., N, N, N - 1, ..., 2, 1].

UPUTSTVO

- algoritam je nacrtan na predavanjima;
- vektor y se sastoji od 2N elemenata;
- prvih N elemenata raste;
- drugih N elemenata opada;

30. ZADATAK

Napisati progam koji će za proizvoljan broj N napisati vektor y = [1, 2, 3, ..., N, N, N - 1, ..., 2, 1].

UPUTSTVO

- algoritam je nacrtan na predavanjima;
- vektor y se sastoji od 2N elemenata;
- prvih N elemenata raste;
- drugih N elemenata opada;

REŠENJE

```
function y = niz(N)

for i=1:N

y(i)=i;

y(2*N-i+1)=i;

end
```

31. ZADATAK

Zadata je proizvoljna matrica A. Formirati niz b u koji će ulaziti zbir elemenata matrice A po vrstama (i-ti elemenat niza b jednak je zbiru svih elemenata iz i-te vrste matrice A)

- algoritam je radjen na predavanjima;
- niz (vektor) b ima toliko elemenata koliko ima matricaA redova;;
- koristiti for petlju;

31. ZADATAK

Zadata je proizvoljna matrica A. Formirati niz b u koji će ulaziti zbir elemenata matrice A po vrstama (i-ti elemenat niza b jednak je zbiru svih elemenata iz i-te vrste matrice A)

- algoritam je radjen na predavanjima;
- niz (vektor) b ima toliko elemenata koliko ima matricaA redova;;
- koristiti for petlju;

31. ZADATAK

Zadata je proizvoljna matrica A. Formirati niz b u koji će ulaziti zbir elemenata matrice A po vrstama (i-ti elemenat niza b jednak je zbiru svih elemenata iz i-te vrste matrice A)

- algoritam je radjen na predavanjima;
- niz (vektor) b ima toliko elemenata koliko ima matricaA redova;;
- koristiti for petlju;

31. ZADATAK

Zadata je proizvoljna matrica A. Formirati niz b u koji će ulaziti zbir elemenata matrice A po vrstama (i-ti elemenat niza b jednak je zbiru svih elemenata iz i-te vrste matrice A)

- algoritam je radjen na predavanjima;
- niz (vektor) b ima toliko elemenata koliko ima matricaA redova;;
- koristiti for petlju;

REŠENJE

```
function b = matrica zbir(A)
[m,n] = size(A);
b = NaN(m, 1);
for i = 1 : m
    osszeg = 0;
    for i = 1 : n
        osszeg = osszeg+A(i,i);
    end
    b(i) = osszeg;
end
function b = matrica_zbir(A)
b = sum(A');
```

32. ZADATAK

Na osnovu proizvoljnog prirodnog broja n formirati kvadratnu matricu A, dimenzija $n \times n$, sledećeg oblika:

$$A = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{bmatrix}$$

UPHTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

32. ZADATAK

Na osnovu proizvoljnog prirodnog broja n formirati kvadratnu matricu A, dimenzija $n \times n$, sledećeg oblika:

$$A = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{bmatrix}$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

32. ZADATAK

Na osnovu proizvoljnog prirodnog broja n formirati kvadratnu matricu A, dimenzija $n \times n$, sledećeg oblika:

$$A = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \dots & n \end{bmatrix}$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

REŠENJE

```
function A = generisanje_matrice(n)
for i = 1 : n
    A(i,:) = 1 : n;
end
```

33. ZADATAK

Napraviti od proizvoljne matrice A vektor krećući od prvog reda i tako do poslednjeg kao što je to uradjeno i na sledećem primeru:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \\ 4 & 4 & 4 \end{bmatrix} \Rightarrow a = [1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 4, 4].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

33. ZADATAK

Napraviti od proizvoljne matrice A vektor krećući od prvog reda i tako do poslednjeg kao što je to uradjeno i na sledećem primeru:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \\ 4 & 4 & 4 \end{bmatrix} \Rightarrow a = [1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 4, 4].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

33. ZADATAK

Napraviti od proizvoljne matrice A vektor krećući od prvog reda i tako do poslednjeg kao što je to uradjeno i na sledećem primeru:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \\ 4 & 4 & 4 \end{bmatrix} \Rightarrow a = [1, 2, 3, 2, 2, 2, 1, 1, 1, 4, 4, 4].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

REŠENJE

```
function a = matrix2vect(A)
[m, n] = size(A);
a = NaN(1,m*n);
l = 1;
for i = 1 : m
    for j = 1 : n
        a(l) = A(i,j);
        l = l+1;
    end
end
```

34. Zadatak

Napraviti matricu A od zadatog vektora a i prirodnog broja n na sledeći način.

Ako je a = [1, 2, 3, 4] i n = 5, onda je

$$A = \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{array} \right].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

34. ZADATAK

Napraviti matricu A od zadatog vektora a i prirodnog broja n na sledeći način.

Ako je a = [1, 2, 3, 4] i n = 5, onda je

$$A = \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{array} \right].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

34. ZADATAK

Napraviti matricu A od zadatog vektora a i prirodnog broja n na sledeći način.

Ako je a = [1, 2, 3, 4] i n = 5, onda je

$$A = \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{array} \right].$$

UPUTSTVO

- algoritam je radjen na predavanjima;
- koristiti for petlju;

REŠENJE

```
function A = vect_no(a,n)
a = a(:); % pravi vektor kolonu od bilo kojeg vektora
for i = 1 : n
    A(:,i) = a;
end
```

FOR PETLJA

35. ZADATAK

Napišite algoritam i Matlab kod koji će da generiše matricu sa brojem redova i kolona koliko korisnik unese, tako da je svaki član matrice jednak zbiru svojih indeksa. Na primer član koji se nalazi u preseku druge vrste i treće kolone je 5

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

FOR PETLJA

35. ZADATAK

Napišite algoritam i Matlab kod koji će da generiše matricu sa brojem redova i kolona koliko korisnik unese, tako da je svaki član matrice jednak zbiru svojih indeksa. Na primer član koji se nalazi u preseku druge vrste i treće kolone je 5

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

FOR PETLJA

35. ZADATAK

Napišite algoritam i Matlab kod koji će da generiše matricu sa brojem redova i kolona koliko korisnik unese, tako da je svaki član matrice jednak zbiru svojih indeksa. Na primer član koji se nalazi u preseku druge vrste i treće kolone je 5

- algoritam je radjen na predavanjima;
- koristiti dvostruku for petlju;

```
function A = generisanje_matrice(m,n)
for i = 1 : m
    for j = 1 : n
        A(i,j) = i+j;
    end
end
```

PETLJE U MATLABU

WHILE PETLJA

- izvršava grupu naredbi sve dok je zadati uslov ispunjen;
- opšti oblik:

while relacioni izraz naredbe end

• pomoću naredbe brake možemo prekinuti petlju;

PETLJE U MATLABU

WHILE PETLJA

- izvršava grupu naredbi sve dok je zadati uslov ispunjen;
- opšti oblik:

while relacioni izraz naredbe end

• pomoću naredbe brake možemo prekinuti petlju;

PETLJE U MATLABU

WHILE PETLJA

- izvršava grupu naredbi sve dok je zadati uslov ispunjen;
- opšti oblik:

while relacioni izraz naredbe end

• pomoću naredbe brake možemo prekinuti petlju;

WHILE PETLJA

36. ZADATAK

Napisati algoritam i kod u Matlabu koji će da nadje prvi parni član u ulaznom vektoru i kao rezultat dati redosled (indeks) tog člana. Ako u vektoru nema parnog broja, onda će Matlab za traženi indeks dati prazan skup.

- koristiti while petlju;
- u while petlji definisati dva uslova: uslov za indekse vektora i uslov za parnost broja
- koristiti if uslovno grananje za proveru da li vektor sadrži barem jedan parni broj;

WHILE PETLJA

36. ZADATAK

Napisati algoritam i kod u Matlabu koji će da nadje prvi parni član u ulaznom vektoru i kao rezultat dati redosled (indeks) tog člana. Ako u vektoru nema parnog broja, onda će Matlab za traženi indeks dati prazan skup.

- koristiti while petlju;
- u while petlji definisati dva uslova: uslov za indekse vektora i uslov za parnost broja
- koristiti if uslovno grananje za proveru da li vektor sadrži barem jedan parni broj;

WHILE PETLJA

36. ZADATAK

Napisati algoritam i kod u Matlabu koji će da nadje prvi parni član u ulaznom vektoru i kao rezultat dati redosled (indeks) tog člana. Ako u vektoru nema parnog broja, onda će Matlab za traženi indeks dati prazan skup.

- koristiti while petlju;
- u while petlji definisati dva uslova: uslov za indekse vektora i uslov za parnost broja
- koristiti if uslovno grananje za proveru da li vektor sadrži barem jedan parni broj;

WHILE PETLLJA

Rešenje


```
function i = vektor_indeks(a)
i = 1;
n = length(a);
while i <= n && mod(a(i),2)~=0
    i = i+1;
end
if i>n
i = [];
end
```

37. ZADATAK

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka svaki parni red ima sve članove jednake nuli.

ulaz:
$$a = [1,0,3,5]$$
, $izlaz$: $A = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

UPUTSTVO

• algoritam radjen na predavanjima;

37. ZADATAK

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka svaki parni red ima sve članove jednake nuli.

ulaz:
$$a = [1,0,3,5]$$
, izlaz: $A = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

UPUTSTVO

• algoritam radjen na predavanjima;

37. ZADATAK

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka svaki parni red ima sve članove jednake nuli.

ulaz:
$$a = [1,0,3,5]$$
, $izlaz$: $A = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

UPUTSTVO

• algoritam radjen na predavanjima;

```
function A=vect2matrix(a)
n = length(a);
A = zeros(n);
for i = 1 : 2 : n
    A(i,:) = a;
end
```

38. ZADATAK

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka su svi članovi iznad glavne dijagonale jednaki 1.

ulaz:
$$a = [4, 3, 2, 5, 6, 7]$$
, $izlaz$: $A = \begin{bmatrix} 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 3 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 5 & 1 & 1 \\ 4 & 3 & 2 & 5 & 6 & 1 \\ 4 & 3 & 2 & 5 & 6 & 7 \end{bmatrix}$

- algoritam radjen na predavanjima;
- koristit dvostruku for petlju za generisanje vrsta matrica i svih elemenata matrice unutar vrste;

38. ZADATAK

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka su svi članovi iznad glavne dijagonale jednaki 1.

aki 1.

ulaz:
$$a = [4, 3, 2, 5, 6, 7]$$
, $izlaz$: $A = \begin{bmatrix} 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 3 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 5 & 1 & 1 \\ 4 & 3 & 2 & 5 & 6 & 1 \\ 4 & 3 & 2 & 5 & 6 & 7 \end{bmatrix}$

- algoritam radjen na predavanjima;
- koristit dvostruku for petlju za generisanje vrsta matrica i svih elemenata matrice unutar vrste;

38. Zadatak

Napraviti kvadratnu matricu od zadatog vektora tako da su redovi jednaki datom vektoru. Neka su svi članovi iznad glavne dijagonale jednaki 1.

ulaz:
$$a = [4,3,2,5,6,7]$$
, $izlaz$: $A = \begin{bmatrix} 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 3 & 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 & 1 & 1 \\ 4 & 3 & 2 & 5 & 1 & 1 \\ 4 & 3 & 2 & 5 & 6 & 1 \\ 4 & 3 & 2 & 5 & 6 & 7 \end{bmatrix}$

- algoritam radjen na predavanjima;
- koristit dvostruku for petlju za generisanje vrsta matrica i svih elemenata matrice unutar vrste;

```
function A = matrix2vect2(a)
n = length(a);
A = ones(n);
for i = 1 : n
    A(i,1:i) = a(1:i);
end
```

39. ZADATAK

Napisati algoritam i kod u Matlabu za izračunavanje sume članova glavne dijagonale kvadratne matrice. U slučaju da ulaz nije kvadratna matrica neka program javi da "Matrica nije kvadratna".

Uputstvo

algoritam radjen na predavanjima;

39. ZADATAK

Napisati algoritam i kod u Matlabu za izračunavanje sume članova glavne dijagonale kvadratne matrice. U slučaju da ulaz nije kvadratna matrica neka program javi da "Matrica nije kvadratna".

UPUTSTVO

algoritam radjen na predavanjima;

```
function zbir = zbir_dijagonale(A)
[m,n] = size(A);
if m == n
    zbir = 0:
    for i = 1 : n
        zbir = zbir + A(i,i);
    end
else
    zbir = 'Matrica nije kvadratna';
end
```

40. ZADATAK

Napisati algoritam i kod u Matlabu koji će da izračuna zbir svih pozitivnih elemenata vektora.

ulaz: a = [2, -3, 4, 5, -2, 8, -1]; izlaz: zbir = 19

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti for petlju;
- koristiti uslovno grananje za proveru pozitivnosti elemenata;

40. ZADATAK

Napisati algoritam i kod u Matlabu koji će da izračuna zbir svih pozitivnih elemenata vektora.

ulaz:
$$a = [2, -3, 4, 5, -2, 8, -1]$$
; $izlaz$: $zbir = 19$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti for petlju;
- koristiti uslovno grananje za proveru pozitivnosti elemenata;

40. ZADATAK

Napisati algoritam i kod u Matlabu koji će da izračuna zbir svih pozitivnih elemenata vektora.

ulaz:
$$a = [2, -3, 4, 5, -2, 8, -1]$$
; $izlaz$: $zbir = 19$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti for petlju;
- koristiti uslovno grananje za proveru pozitivnosti elemenata;

40. ZADATAK

Napisati algoritam i kod u Matlabu koji će da izračuna zbir svih pozitivnih elemenata vektora.

ulaz:
$$a = [2, -3, 4, 5, -2, 8, -1]$$
; $izlaz$: $zbir = 19$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti for petlju;
- koristiti uslovno grananje za proveru pozitivnosti elemenata;

40. ZADATAK

Napisati algoritam i kod u Matlabu koji će da izračuna zbir svih pozitivnih elemenata vektora.

ulaz:
$$a = [2, -3, 4, 5, -2, 8, -1]$$
; $izlaz$: $zbir = 19$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti for petlju;
- koristiti uslovno grananje za proveru pozitivnosti elemenata;

```
function zbir = zbir_vektora(a)
n = length(a);
zbir = 0;
for i = 1 : n
    if a(i) >=0
        zbir = zbir+a(i);
    end
end
```

41. ZADATAK

Napisati algoritam i kod u Matlabu koji će da zameni svaki negativni član unete matrice sa nulom.

ulaz:
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 9 & 2 & 5 \\ -1 & 8 & 10 \\ 0 & 7 & -7 \end{bmatrix}$$
; $izlaz$: $B = \begin{bmatrix} 1 & 0 & 3 \\ 9 & 2 & 5 \\ 0 & 8 & 10 \\ 0 & 7 & 0 \end{bmatrix}$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti dve for petlje za pozicioniranje na mestu svih elemenata;
- koristiti uslvono grananje u kojem ćemo proveriti dda li je odgovoarajući elemenat negativan;

(Subotica Tech) Matlab 77 / Technology

41. ZADATAK

Napisati algoritam i kod u Matlabu koji će da zameni svaki negativni član unete matrice sa nulom.

ulaz:
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 9 & 2 & 5 \\ -1 & 8 & 10 \\ 0 & 7 & -7 \end{bmatrix}$$
; izlaz: $B = \begin{bmatrix} 1 & 0 & 3 \\ 9 & 2 & 5 \\ 0 & 8 & 10 \\ 0 & 7 & 0 \end{bmatrix}$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti dve for petlje za pozicioniranje na mestu svih elemenata;
- koristiti uslvono grananje u kojem ćemo proveriti dda li je odgovoarajući elemenat negativan;

41. ZADATAK

Napisati algoritam i kod u Matlabu koji će da zameni svaki negativni član unete matrice sa nulom.

ulaz:
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 9 & 2 & 5 \\ -1 & 8 & 10 \\ 0 & 7 & -7 \end{bmatrix}$$
; izlaz: $B = \begin{bmatrix} 1 & 0 & 3 \\ 9 & 2 & 5 \\ 0 & 8 & 10 \\ 0 & 7 & 0 \end{bmatrix}$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti dve for petlje za pozicioniranje na mestu svih elemenata;
- koristiti uslvono grananje u kojem ćemo proveriti dda li je odgovoarajući elemenat negativan;

(Subotica Tech) Matlab 77 / Technology

41. ZADATAK

Napisati algoritam i kod u Matlabu koji će da zameni svaki negativni član unete matrice sa nulom.

$$ulaz: A = \begin{bmatrix} 1 & -2 & 3 \\ 9 & 2 & 5 \\ -1 & 8 & 10 \\ 0 & 7 & -7 \end{bmatrix}; izlaz: B = \begin{bmatrix} 1 & 0 & 3 \\ 9 & 2 & 5 \\ 0 & 8 & 10 \\ 0 & 7 & 0 \end{bmatrix}$$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti dve for petlje za pozicioniranje na mestu svih elemenata;
- koristiti uslvono grananje u kojem ćemo proveriti dda li je odgovoarajući elemenat negativan;

41. ZADATAK

Napisati algoritam i kod u Matlabu koji će da zameni svaki negativni član unete matrice sa nulom.

ulaz:
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 9 & 2 & 5 \\ -1 & 8 & 10 \\ 0 & 7 & -7 \end{bmatrix}$$
; izlaz: $B = \begin{bmatrix} 1 & 0 & 3 \\ 9 & 2 & 5 \\ 0 & 8 & 10 \\ 0 & 7 & 0 \end{bmatrix}$

UPUTSTVO

- algoritam radjen na predavanjima;
- koristiti dve for petlje za pozicioniranje na mestu svih elemenata;
- koristiti uslvono grananje u kojem ćemo proveriti dda li je odgovoarajući elemenat negativan;

```
function B = matrix2matrix(A)
[m,n] = size(A);
B = A;
for i = 1 : m
    for j = 1 : n
        if A(i,j) < 0
            B(i,j) = 0;
        end
    end</pre>
```