Министерство науки и высшего образования Российской Федерации ФГАОУ ВО «Южно-Уральский государственный университет (НИУ)» Институт естественных и точных наук

Кафедра прикладной математики и программирования Направление: 01.03.02 Прикладная математика и информатика

Решение задачи сегментации факела выбросов на основе данных тепло-видео системы наблюдения

Руководитель: доцент кафедры ПМиП В.А. Сурин

Автор работы: студент группы ET-412 Д.Д. Кормилин

Челябинск, 2023

введение	6
1 СОВРЕМЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ И ФИЗИЧЕСКИХ ПАРАМЕТРОВ ФАКЕЛА ВЫБРОСОВ	8
1.1 Методы контроля выбросов загрязняющих веществ в атмосферу .	8
1.1.1 Инструментальный метод	8
1.1.2 Расчетный метод	14
1.2 Применение тепловизоров для контроля выбросов загрязняющих веществ в атмосферу	20
1.2.1 Тепловизоры и области их применения	20
1.2.2 Применение тепловизоров для решения смежных проблем	24
2 СЕГМЕНТАЦИЯ ФАКЕЛА ВЫБРОСОВ С ПОМОЩЬЮ ТЕПЛОВЫХ СНИМКОВ	26
2.1 Постановка задачи сегментации факела выбросов	26
2.2 Подготовка данных	27
2.2.1 Работа с тепловизором	27
2.2.2 Преобразование цветовой карты	28
2.2.3 Наложение карты абсолютных температур на оптические снимки	33
2.3 Решение задачи сегментации факела выбросов с помощью оптических и тепловых снимков	35
2.3.1 Задача детекции трубы	35
3 РАЗРАБОТКА И ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА СЕГМЕНТАЦИИ ФАКЕЛА ВЫБРОСОВ	44
3.1 Разработка алгоритма подготовки данных	44
3.2 Алгоритм сегментации факела выбросов с помощью оптических и тепловых снимков.	50
3.2.1 Алгоритм детекции трубы	50
3.2.1 Алгоритм детекции трубы	50

Целью данной работы является расчет геометрических и физических свойств выбросов предприятий. Для достижения данной цели необходимо решить следующие задачи:

- исследование существующих методов для контроля выбросов;
- **2** исследование современных способов применения оптических и тепловых снимков;
- **3** разработка алгоритма для сегментации факела выбросов с использованием тепловых и оптических снимков.

Преемущества тепловизоров

- большая дешевизна;
- 2 относительно высокая точность.

Рисунок – Преемущество перед сегментацией оптических снимков, где (a) оптическое изображение; (б) тепловизионное

Задача

Введение

Необходимо востановить целевую функцию

$$f: X \to Z,$$
 (1)

где X – пространство пар из RGB изображений и матриц температур; Z - пространство масок где каждый элемент – принадлежность пикселя дыму.

Задача

Рисунок – Примеры полученых изображений, где (a) RGB изображение;(б) матрица температур; (г) полученная маска

Подготовка данных • ○ ○ ○ ○ ○ ○ ○ ○

Подготовка данных

00000000

Рисунок – Примеры полученых изображений, где (а) оптический снимок; (б) тепловой снимок

Рисунок - Алгоритм сохранения снимков

Подготовка данных 000€00000

Рисунок – Примеры преобразования цветовой карты, где (a) до; (б) после

Подготовка данных

agicagona

Введение

Работает на основе метода k-ближайших соседей, реализованого через структуру данных «k-мерное дерево».

Рисунок – Пример построения k-мерного дерева

Рисунок – Алгоритмы преобразования цветов, где (а) алгоритм подготовки классификатора цветов; (б) алгоритм преобразования

Метрика точности преобразования цветов

$$Acc = 1 - \frac{\sum_{i=1}^{h} \sum_{j=1}^{w} |P_{ij}^{true} - P_{ij}^{conv}|}{255wh},$$
 (2)

где W — высота кадра;

h — размеры кадра;

Введение

 P^{true} – некоторое изображение в оттенках серого;

 P^{conv} – то же самое изображение, но с наложеной цветовой картой, сжатое с помощью JPEG и обработанное алгоритмом преобразования.

Метрика точности преобразования цветов

Рисунок – Зависимость точности от степени сжатия

Рисунок – Алгоритм подготовки данных

Результаты

Рисунок – Примеры полученых изображений, где (a) RGB изображение; (б) матрица температур; (г) полученная маска

Результаты

Введение

Итоговая точность – 86,2%

Рисунок – Алгоритм подготовки данных