Week 7 Exercise Sheet

The following exercises have different levels of difficulty indicated by (*), (**), (***). An exercise with (*) is a simple exercise requiring less time or effort to solve compared to an exercise with (***), which is a more complex exercise.

Neural Networks

1. (**) Consider a network with 1 hidden layer which can be described by the following equations:

$$\mathbf{h} = f\left(W^{(1)}\mathbf{x} + \mathbf{b}^{(1)}\right),\tag{1}$$

$$\mathbf{y} = f\left(W^{(2)}\mathbf{h} + \mathbf{b}^{(2)}\right),\tag{2}$$

where $W^{(1)}$ and $W^{(2)}$ are matrices. If the activation function is linear (f(a) = a), show that this is equivalent to a single layer $\mathbf{y} = W\mathbf{x} + \mathbf{b}$. Give expressions for W and \mathbf{b} in terms of $W^{(1)}$, $W^{(2)}$, $\mathbf{b}^{(1)}$ and $\mathbf{b}^{(2)}$.

2. (*) Consider the following input image:

$$x = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$
 (3)

If the convolutional filter is

$$W = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},\tag{4}$$

calculate the corresponding 3×3 output feature map. What feature does this filter detect?

3. (***) If we have a 512×512 RGB colour image that we apply 100.5×5 filters with a stride of 7 and a padding of 2. What is the output volume size and how many parameters are in this layer?