4

Indukcja matematyczna

4.1. Metodą indukcji matematycznej wykaż, że dla każdej liczby naturalnej dodatniej *n* zachodzi równość:

a)
$$1+2+2^2+2^3+...+2^n=2^{n+1}-1$$
;

b)
$$1+5+5^2+5^3+...+5^n=\frac{5^{n+1}-1}{4}$$
;

c)
$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = 2 - \frac{1}{2^n}$$
;

d)
$$1 + \frac{1}{3} + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^3 + \dots + \left(\frac{1}{3}\right)^n = \frac{1}{2}\left(3 - \frac{1}{3^n}\right).$$

4.2. Metodą indukcji matematycznej wykaż, że dla każdej liczby naturalnej dodatniej *n* zachodzi równość:

a)
$$1+2+3+...+n=\frac{n(n+1)}{2}$$
;

b)
$$1+3+5+...+(2n-1)=n^2$$
;

c)
$$1+7+13+...+(6n-5)=n(3n-2)$$
;

d)
$$1+4+7+...+(3n-2)=\frac{n(3n-1)}{2}$$
;

e)
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{3}$$
;

f)
$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$
;

g)
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$
;

h)
$$1^3 + 3^3 + 5^3 + ... + (2n-1)^3 = n^2(2n^2 - 1)$$
.

4.3. Metodą indukcji matematycznej wykaż, że dla każdej liczby naturalnej dodatniej *n* zachodzi równość:

a)
$$\frac{1}{1.6} + \frac{1}{6.11} + \frac{1}{11.16} + \dots + \frac{1}{(5n-4)(5n+1)} = \frac{n}{5n+1}$$
;

b)
$$\frac{1}{1.5} + \frac{1}{5.9} + \frac{1}{9.13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$
;

c)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
;

d)
$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \left(1 - \frac{1}{4^2}\right) \cdot \dots \cdot \left(1 - \frac{1}{(n+1)^2}\right) = \frac{n+2}{2(n+1)}$$
.

4.4. Metodą indukcji matematycznej wykaż, że dla każdej liczby naturalnej dodatniej *n*:

- a) liczba $10^n + 2$ jest podzielna przez 6;
- b) liczba 7ⁿ 1 jest podzielna przez 3;
- c) liczba $10^{n-1} 1$ jest podzielna przez 9;
- d) liczba 10^{n+1} + 212 jest podzielna przez 12;
- e) liczba $5^{n-2} + 3$ jest podzielna przez 4;
- f) liczba $3^{4n+2} + 1$ jest podzielna przez 10.

4.5. Metodą indukcji matematycznej wykaż, że dla każdej liczby naturalnej dodatniej *n*:

- a) liczba $4^n + 15n 1$ jest podzielna przez 9;
- b) liczba $10^n + 4n 2$ jest podzielna przez 3;
- c) liczba $11^{n+1} + 12^{2n-1}$ jest podzielna przez 133;
- d) liczba $2^{6n+1} + 9^{n+1}$ jest podzielna przez 11;
- e) liczba $5 \cdot 49^{n+1} + 8^n$ jest podzielna przez 41;
- f) liczba $10^n (-1)^n$ jest podzielna przez 11;

- g) liczba $10^{3n+1} 3(-1)^n$ jest podzielna przez 7;
- h) liczba $n^3 3n^2 + 2n 3$ jest podzielna przez 3;
- i) liczba $n^3 + 17n$ jest podzielna przez 6.
- **4.6.** Wykaż metodą indukcji matematycznej, że dla każdej liczby naturalnej *n*, spełniającej podany warunek, zachodzi nierówność:
 - a) $2^n > 3n$ (dla $n \ge 2$);
 - b) $3^{n+1} > 4n + 7$ (dla $n \ge 2$);
 - c) $4^{n-1} \ge 3n^2 + 5$ (dla $n \ge 4$);
 - d) $5^{n-1} \ge 2n^2 + 1$ (dla $n \ge 5$);
 - e) $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$ (dla $n \ge 2$);
 - f) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 \frac{1}{n}$ (dla $n \ge 2$);
 - g) $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{3n+1} > 1$ (dla $n \ge 1$).