CNN神经网络

Steven Tang

主要课程内容

AZ (39)=(49)PBJR

什么是特征提取? 3%加度

卷积的概念理解

卷积层,池化层,全连接层

简单的卷积神经网络框架

)=′大象′

That de

神经网络

模型评判标准

12/2

训练数据

传统模型

图像输)

深度学习=特征学习+浅层学习 特征学习 深度学习

传统神经网络模型 (MNIST 数据集)

一个小测试

6+9=2; 10+13=1 8+66=4 3+5=?

另一个测试

将下列六个汉字分为两组

1.中 2.国 3.人 4.口 5.日 6.本

传统神经网络进行图像特征检测的问题

100 x 100 x 3 x 1000

softmax

 3×10^7

100

局部图像特征检测

CZZNOGIR D CAW

连接一小块区域能够减少参数

特征检测器

单个神经元并不需要考虑整个图像。

局部不变性特征

自然图像中的物体都具有局部不变性特征。

尺度缩放、平移、旋转等操作不影响其语义信息。

全连接前馈网络很难提取这些局部不变特征。

因此, 卷积神经网络设计了一种能够提取局部特征的卷积操作。

wordow 1737 (2) D 2 3 5 picture picture 6 By YJango hidden By YJango input output input

直观理解卷积操作

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

直观理解卷积操作

Visualization of the receptive field

0	0	0	0	0	30
0	0	0_(50	50	50
0	0	20)50	0	0
0	0	<u>50</u>	50	0	0
0	0 (50	50	0	0
0	0	(50	50	0	0
0	0	50	50	0	0
	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 20 0 0 50 0 0 50 0 0 50	0 0 0 50 50 0 0 50 50 0 0 50 50 0 0 50 50	0 0 0 50 50 0 0 20 50 0 0 0 50 50 0 0 0 50 50 0

Pixel representation of the receptive field

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Visualization of the filter on the image

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Pixel representation of receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

1) Blato Frals

Pixel representation of filter

Multiplication and Summation = 0

更一數局 Lyi Education

局部感知和权值共享

局部感知和权值共享

局部感知和权值共享

卷积神经网络-CONV Layer

参数共享机制: 假设每个神经元连接数据窗的权重是固定的

固定每个神经元的连接权重,可以将神经元看成一个模板;也就是每个神经元只关注一个特性

需要计算的权重个数会大大的减少

一组固定的权重和不同窗口内数据做内积:卷积

$$s(i,j) = (X * W)(i,j) = \sum_{n} \sum_{m} x(i+m,j+n)w(m,n)$$

信号处理上的卷积

卷积经常用在信号处理中,用于计算信号的延迟累积。

假设一个信号发生器每个时刻t产生一个信号 x_t ,其信息的衰减率为 w_k ,即在k-1个时间步长后,信息为原来的 w_k 倍

。假设W₁ = 1,W₂ = 1/2,W₃ = 1/4

时刻t收到的信号yt为当前时刻产生的信息和以前时刻延迟信息的叠加

两维卷积

1	1	1	1	1
-1	0	-3	0	1
2	1	1	-1	0
0	-1	1	2	1
1	2	1	1	1

5=1*1+	1* 0	+ 1*0+
0*0+	- 3*-1	+0*0+
1*0+	1*0	+-1*-1

1	0	0
0	-1	0
0	0	-1

层次化特征

越深层的特征感受野越大

特征抽象

(34P2.18

(24

特征可视化

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

https://distill.pub/2018/building-blocks/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://poloclub.github.io/cnn-explainer/

卷积网络概述 224*224*3(RGB) 112*112*16 56*56*32 28*28*64 14*14*128

