Regression Model for National Park Trails

Jeffrey Ng

Exploratory Data Analysis

Linear Regression / Modeling

https://www.kaggle.com/planejane/national-park-trails

EDA Breakdown of National Parks by State

California 20.7%

Washington 9.4%

Wyoming 9.1%

Utah 8.6%

Colorado 7.7%

Virginia 5.6%

Other 39%

EDA Key Questions to Consider

What are the characteristics of a poor trail? One that doesn't get visited

Do hikers prefer certain route types? Out n back, Loop, Point to Point

Do the length of trails vary from great National Parks, average National Parks, and Low Popularity parks? No (ANOVA, α =.10, pvalue=.79)

Is there a difference in trail level of difficulty between great, average and obscure National Parks? Yes, highly rated parks have higher difficulty (ANOVA, α =.10, p value=.015)

Does elevation gain play a role in popularizing a trail? Yes (ANOVA, α =.10, pvalue=.096) and Somewhat No

Building & Testing My Linear Regression

Model / Linear Regression

Dependent variable:

20

Popularity/Usage

30

1. Length

10

- 2. No. of reviews
- 3. Difficulty Rating²
- 4. Elevation gained ²
- 5. Length²

Correlation Heatmap

R²**= .743**Dependent variable:
Popularity/Usage

Independent variables:

- Length
- Elevation gain
- Difficulty rating
- Number of reviews
- Elevation gain squared
- Length squared
- Difficulty rating squared

Feature Selection

All Features
Length
Num_reviews
Difficulty Rating
Elevation Gained
Difficulty Rating^2
Elevation gained^2
Length^2

My Features	RFECV features	
Length	Length	
Num_reviews	Num_reviews	
Difficulty Rating^2	Difficulty Rating ^2	
Elevation gained ^2	Elevation gained	
Length^2	Difficulty rating	

Model Evaluation

	Train (5 feat)	Test (5 feat)	Train (RFECV)	Test (RFECV)
MAE	2.98	2.97	2.97	2.99
MSE	16.06	21.11	16.07	21.11
RMSE	4.01	4.59	4.00	4.59

Discussion

- Can this model be used to assess the usage rate of trails in smaller parks or camping areas?
- The model worked well but didn't predict hugely popular busy trails.
- Slight overfitting (Train vs Test Data)
- Didn't take in consideration certain natural landmarks such as Grand Canyon, Grand Teton, Mt. Ranier, etc.