离散数学讲义

陈建文

May 13, 2022

第 六 章 图的基本概念

设V为一个集合,V的一切二元子集之集合记为 $\mathcal{P}_2(V)$,即

$$\mathcal{P}_2(V) = \{A|A \subseteq V \perp |A| = 2\} \circ$$

定义6.1. 设V为一个非空有限集合, $E \subseteq \mathcal{P}_2(V)$,二元组G = (V, E)称为一个无向图。V中的元素称为无向图G的顶点,V为顶点集;E中的元素称为无向图G的边,E为边集。无向图简称图。如果|V| = p,|E| = q,则称G为一个(p,q)图,即G是一个具有p个顶点q条边的图。

定义6.2. 在图G=(V,E)中,如果 $\{u,v\}\in E$,则称顶点u与v邻接;若x与y是图G的两条边,并且仅有一个公共端点,即 $|x\cap y|=1$,则称边x与y邻接;如果 $x=\{u,v\}$ 是图G的一条边,则称u与x互相关联,同样的,称v与x互相关联。

定义6.3. 如果一个图中两个顶点间允许有多于一条边存在,则称为多重图,这些边称为多重边;如果一个图中允许联结一个顶点与其自身的边存在,则称为带环图,这些边称为环;允许有环或多重边存在的图,称之为伪图。

定义6.4. 设G = (V, E)为一个图,如果 $E = \Phi$,则称G为零图; (1, 0)图称为平凡图。

定义6.5. 设v为图G = (V, E)的任意一个顶点,G中与v关联的边的数目称为顶点v的度,记为 $\deg v$ 。

定理6.1. 设G = (V, E)为一个具有p个顶点q条边的图,则G中各顶点度的和等于边的条数q的两倍,即

$$\sum_{v \in V} \deg v = 2q$$

定理6.2. 在任一图中, 度为奇数的顶点的数目必为偶数。

定义6.6. 图G称为r度正则图,如果G的每个顶点的度都等于r。 3 度正则图也叫三次图。一个具有p个顶点的p-1度正则图称为包含p个顶点的完全图,记为 K_p 。

定义6.7. 设G = (V, E)为一个图,图 $H = (V_1, E_1)$ 称为G的一个子图,当且仅当 V_1 为V的非空子集且 E_1 为E的子集。如果 $H \neq G$,则称H为G的真子图。

定义6.8. 设G=(V,E)为一个图,如果 $F\subseteq E$,则称G的子图H=(V,F)为G的一个生成子图。

定义6.9. 设图G的子图H具有某种性质,若G中不存在与H不同的具有此性质且包含H的子图,则称H是具有此性质的极大子图。

定义6.10. 设S为图G = (V, E)的顶点集V的非空子集,则G的以S为顶点集的极大子图称为由S导出的子图,记为 $\langle S \rangle$ 。形式的,

$$\langle S \rangle = (S, \mathcal{P}_2(S) \cap E)$$

定义6.11. 设G = (V, E), H = (U, F)为两个图,如果存在一个一一对应 $\phi: V \to U$,使得 $\{u, v\} \in E$ 当且仅当 $\{\phi(u), \phi(v)\} \in F$,则称G与H同构。

定义6.12. 设G = (V, E)为一个图。G的一条**通道**为G的顶点和边的一个交错序列

$$v_0, x_1, v_1, x_2, v_2, x_3, \dots, v_{n-1}, x_n, v_n$$

其中 $x_i=\{v_{i-1},v_i\},i=1,2,\ldots,n$ 。n称为该通道的长。这样的通道常称为 v_0-v_n 通道,并简记为 $v_0v_1v_2\ldots v_n$ 。当 $v_0=v_n$ 时,则称此通道为**闭通道**。

定义6.13. 如果图中一条通道上的各边互不相同,则称此通道为图的**迹**。如果一条闭通道上的各边互不相同,则称此闭通道为**闭迹**。

定义6.14. 如果一条迹上的各顶点互不相同,则称此迹为路。如果一条长度大于0的闭迹上除终点外各顶点互不相同,则称此闭迹为**圈**,或**回路**。

定义6.15. 设G = (V, E)为一个图,如果G中任两个不同顶点间至少有一条路联结,则称G为一个连通图。

定义6.16. 图G的极大连通子图称为G的一个支。

定理6.3. 设G = (V, E)是一个图。在V上定义二元关系 \cong 如下:

 $\forall u, v \in V, u \cong v$ 当且仅当u与v间有一条路,

定义6.17. 设G = (V, E)是一个图,图 $G^c = (V, \mathcal{P}_2(V) \setminus E)$ 称为G的补图。如果 $G = G^c$ 同构,则称G是自补图。

定理6.4. 对任一有6个顶点的图G, G中或 G^c 中有一个三角形。

证明. 设图G的顶点集为 $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$,考虑顶点 v_1 。

- 存在三个顶点,其中的每个顶点都与顶点 v_1 相邻接。不失一般性,不妨设这个三个顶点为 v_2, v_3, v_4 。
 - 在顶点 v_2, v_3, v_4 中, 存在两个顶点相邻接, 此时G中存在三角形。
 - 在顶点 v_2, v_3, v_4 中,任意两个顶点都不邻接,此时 G^c 中存在三角形。
- 存在三个顶点,其中的每个顶点都与顶点 v_1 不邻接。不失一般性,不妨设这个三个顶点为 v_2, v_3, v_4 。
 - 在顶点 v_2, v_3, v_4 中,存在两个顶点不邻接,此时 G^c 中存在三角形。
 - 在顶点 v_2, v_3, v_4 中,任意两个顶点互相邻接,此时G中存在三角形。

定义6.18. 对任意的正整数 $m, n, m \ge 2, n \ge 2, 求一个最小的正整数<math>r(m,n)$,使得任何有r(m,n)个顶点的图G中一定含有一个 K_m 或者图G°中一定含有一个 K_n ,这里的数r(m,n)称为拉姆齐数。

定义6.19. 设G=(V,E)为一个图,如果G的顶点集V有一个二划分 $\{V_1,V_2\}$,使得G的任一条边的两个端点一个在 V_1 中,另一个在 V_2 中,则称G为偶图。如果 $\forall u\in V_1,v\in V_2$ 均有 $uv\in E$,则称G为完全偶图,记为 $K_{m,n}$,其中 $|V_1|=m,|V_2|=n$ 。

定义6.20. 设G=(V,E)是一个图,u和v是G的顶点。联结u和v的最短路的长称为u与v之间的距离,并记为d(u,v)。如果u与v间在G中没有路,则定义d(u,v) = ∞ 。

 \mathbf{c} **理6.5.** 图G为偶图的充分必要条件为它不包含奇数长的圈。

A graph is bipartite if and only if it contains no cycles with odd lengths.

Proof. Suppose that G is bipartite with bipartition (X, Y), and let $C = v_0 v_1 \dots v_k v_0$ be a cycle of G. Without loss of generality we may assume that $v_0 \in X$. Then, since $v_0 v_1 \in E$ and G is bipartite, $v_1 \in Y$. In general, $v_{2i} \in X$ and $v_{2i+1} \in Y$. Since $v_0 \in X$, $v_k \in Y$. Thus k = 2i + 1, for some i, and it follows that C is even.

It clearly suffices to prove the converse for connected graphs. Let G be a connected graph that contains no odd cycles. We choose an arbitrary vertex u and define a partition (X, Y) of V by setting

$$X = \{x \in V | d(u, x) \text{ is even} \}$$
$$Y = \{y \in V | d(u, y) \text{ is odd} \}$$

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are two vertices of X. Let P be a shortest (u,v)-path and Q be a shortest (u,w)-path. Denote by u_1 the last vertex common to P and Q. Since P and Q are shortest paths, the (u,u_1) -sections of both P and Q are shortest (u,u_1) -paths and, therefore, have the same length. Now, since the lengths of both P and Q are even, the lengths of the (u_1,v) -section P_1 of P and the (u_1,w) -section Q_1 of Q must have the same parity. It follows that the (v,w)-path from v to u_1 along P_1 reversely and then from v to v along v is of even length. If v were joined to v, the path from v to v along v to v along v to v along the edge v would be a cycle of odd length, contrary to the hypothesis. Therefore no two vertices in X are adjacent; similarly, no two vertices in Y are adjacent.

定理6.6. 所有具有p个顶点而没有三角形的图中最多有 $Lp^2/4$ 」条边。

练习**6.1.** 证明: 唯一没有三角形的 $(p, [\frac{p^2}{4}])$ 图为 $K(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)$ 。

证法一. 我们证明如下结论:唯一没有三角形的包含p个顶点且边数 $q \geq { \binom{p^2}{4} }$ 的图一定为 $K(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{6} \rceil)$ 。设G为一个没有三角形,包含p个顶点且边数 $q \geq { \binom{p^2}{4} }$ 的图。设V为G的顶点集合, v_0 为G中度最大的顶点, V_1 为所有与 v_0 邻接的顶点构成的集合, $V_2 = V \setminus V_1$ 。以下证明 V_1 中任意两个不同的顶点互相不邻接, V_2 中任意两个不同的顶点互相不邻接, $|V_1|$ 和 $|V_2|$ 最多相差1,从而完成定理的证明。

首先,由 V_1 中的每个顶点都与 v_0 邻接,G中没有三角形知 V_1 中任意两个不同的顶点互相不邻接。

构造一个完全偶图G', G'的顶点集为 $V_1 \cup V_2$, V_1 中任意两个不同的顶点互相不邻接, V_2 中任意两个不同的顶点互相不邻接, V_1 和 V_2 中的任意两个顶点互相邻接。由 v_0 为G中度最大的顶点知对任意的 $v \in V$, v在G中的度d(v)小于等

于v在G'中的度d'(v)。而一个图中所有顶点的度数之和为边数的两倍,从而G中的边数g'小于等于G'中的边数g',即

$$q \le |V_1||V_2| \tag{6.1}$$

易验证

$$|V_1||V_2| \le \left[\frac{p^2}{4}\right] \tag{6.2}$$

由 $q \geq [\frac{p^2}{4}]$ 知(6.1)式和(6.2)式中的等号成立。由(6.1)式中的等号成立知在G中 V_1 中的每个顶点必与 V_2 中的每个顶点邻接,再由G中没有三角形知, V_2 中任意两个不同的顶点在G中不邻接。由 $|V_1|+|V_2|=p$ 知(6.2)中的等式成立当且仅当 $|V_1|$ 与 $|V_2|$ 最多相差1。

证法二. 用数学归纳法证明以下结论:唯一没有三角形的包含p个顶点且边数 $q \geq [\frac{p^2}{4}]$ 的图一定为 $K(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)$ 。施归纳于顶点数p,只证p为奇数的情况,p为偶数的情况是类似的。

1) 当p=1时,唯一没有三角形的包含一个顶点且边数 $q\geq 0$ 的图一定为K(0,1),结论显然成立。(注:我们把(1,0)图也称为偶图,并记为K(0,1)或K(1,0))。

2)假设当 $p = 2k - 1(k \ge 1)$ 时结论成立,往证当p = 2k + 1时结论也成立。设G为一个没有三角形,顶点数p = 2k + 1,边数 $q \ge [\frac{p^2}{4}]$ 的图。显然,G中至少有两个邻接的顶点u和v。图 $G' = G - \{u\} - \{v\}$ 中没有三角形,有2k - 1个顶点。因为G中没有三角形,如果u与G'的x个顶点邻接,则v至多能与G'中剩余的2k - 1 - x个顶点邻接,于是G'中的边数

$$q' \ge q - x - (2k - 1 - x) - 1$$

$$\ge \left[\frac{(2k + 1)^2}{4}\right] - 2k$$

$$= k^2 - k$$

$$= \left[\frac{(2k - 1)^2}{4}\right]$$

由归纳假设,G'为 $K(\lfloor \frac{2k-1}{2} \rfloor, \lceil \frac{2k-1}{2} \rceil)$,即K(k-1,k)。以下证明G必为K(k,k+1)。

假设偶图G'的顶点集有一个二划分为 $\{V_1,V_2\}$,使得G'的任意一条边的两个端点一个在 V_1 中,一个在 V_2 中, $|V_1|=k-1$, $|V_2|=k$ 。由G中没有三角形知 V_1 和 V_2 中的每个顶点在G中至多与顶点u和顶点v中的一个邻接。另外, V_1 和 V_2 中的每个顶点在G中必与顶点u和顶点v中的一个邻接,否则,G中的边数 $q<(k-1)k+(2k-1)+1=k^2+k=[\frac{(2k+1)^2}{4}]$,矛盾。不妨设在G中 V_2 中的某个顶点与v相邻接,由G中没有三角形知v不能与 V_1 中的顶点相邻接,从而u与 V_1 中每个顶点相邻接,v与 V_2 中的每个顶点相邻接。这证明了G为K(k,k+1)。

定义6.21. 包含图的所有顶点和所有边的闭迹称为欧拉闭迹。存在一条欧拉闭迹的图称为欧拉图。

定理6.7. 图G为欧拉图当且仅当G为连通的且每个顶点的度为偶数。

证明. 首先,假设图G为欧拉图,往证G为连通的且每个顶点的度为偶数。

由图G为欧拉图知G中有一条包含所有边和所有顶点的闭迹 $T:v_0,x_1,v_1,\ldots,x_n,v_n$,其中 $v_n=v_0$ 。显然G是连通的。顶点 v_0 在T中的第一次出现与一条边相关联, 最后一次出现与一条边相关联,其余的每次出现均与两条边相关联,因此其度 为偶数。除 v_0 之外的其他顶点在T中的每次出现均与两条边相关联,因此其度 也为偶数。

其次,假设G为连通的且每个顶点的度为偶数,往证G为欧拉图。

设 $v_0, x_1, v_1, \dots, x_n, v_n$ 为图G的一条最长的迹,记为Z,则Z为闭迹。否则, $v_n \neq v_0, v_n$ 在迹Z中的最后一次出现与一条边相关联,其他的每次出现均与两条边相关联,由 v_n 的度为偶数知, v_n 在G中还有一条与之关联的边没有在Z中出现,记为 $x_{n+1} = v_n v_{n+1}$ 。则 $v_0, x_1, v_1, \dots, x_n, v_n, x_{n+1}, v_{n+1}$ 构成了图G的一条更长的迹,这与 $v_0, x_1, v_1, \dots, x_n, v_n$ 为图G的一条最长的迹矛盾。接下来证明Z包含了图G的所有的边。若不然,则图G中有一条边x不在Z中出现,并且x有一个端点在Z中出现。在图G中去掉Z中的所有边,得到图G'。取图G'中一条包含x的最长的迹Z',由图G'中所有顶点的度均为偶数易知Z'为闭迹(与前面证明Z为闭迹的过程相类似)。于是Z和Z'可以联结成一条更长的迹,这与 $v_0, x_1, v_1, \dots, x_n, v_n$ 为图G的一条最长的迹矛盾。

定义6.22. 包含图的所有顶点和边的迹称为欧拉迹。一条欧拉迹如果不是欧拉闭迹,则称其为欧拉开迹。

定理6.8. 图 G有一条欧拉开迹当且仅当G为连通的且恰有两个奇度顶点。

证明. 设图G有一条欧拉开迹 $Z:v_0,x_1,v_1,\dots,x_n,v_n$,其中 $x_i=v_{i-1}v_i,i=1,2,\dots,n$ 。显然,图G是连通的。顶点 v_0 在Z中除了其首次出现与一条边相关联外,其余的每次出现均与两条边相关联,因此顶点 v_0 的度为奇数;同理, v_n 的度为奇数。除了 v_0 和 v_n 之外其余的每个顶点在Z中的每次出现均与两条边相关联,因此其度为偶数。这证明了图G恰有两个奇度顶点。

设图G是连通的,且恰有两个奇度顶点u和v。在顶点u和v之间加一条边,得到图G'。则图G'是连通的且每个顶点的度为偶数,因此有一条欧拉闭迹。在该欧拉闭迹上去掉新加的顶点u与顶点v之间的边,便得到了图G的一条欧拉开迹。

定理6.9. 设G为连通图,G恰有2n个奇度顶点, $n \ge 1$,则G的全部边可以排成n条开迹,且不能排成少于n条开迹。

证明. 设连通图G有2n个奇度顶点 $u_1, v_1, u_2, v_2, \ldots, u_n, v_n$ 。在G中加入n条边 $u_1v_1, u_2v_2, \ldots, u_nv_n$,得到图G'。则G'是连通的,且每个顶点的度为偶数,因此存在一条欧拉闭迹Z。在Z中去掉新加入的边 $u_1v_1, u_2v_2, \ldots, u_nv_n$,则得到图G的n条开迹。

假设图G的所有边能排成m条开迹,m < n。则只有这m条开迹的端点可能为奇度顶点,因此图G至多有2m个奇度顶点,这与图G有2n个奇度顶点矛盾。

定义6.23. 图G的一条包含所有顶点的路称为G的一条哈密顿路;图G的一个包含所有顶点的圈称为G的一个哈密顿圈。具有哈密顿圈的图称为哈密顿图。

定理6.10. 设G = (V, E)为哈密顿图,则对V的每个非空子集S,均有

$$\omega(G-S) \le |S|$$

其中G-S是从G中去掉S中那些顶点后所得到的图, $\omega(G-S)$ 是图G-S的支数。

定理6.11. 设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1,$$

则G为连通的。

证明. 用反证法。假设G不连通,则G至少有两个支。设 $G_1=(V_1,E_1)$ 为其中的一个支,其他各支构成的子图为 $G_2=(V_2,E_2)$ 。取 V_1 中的任意一个顶点u和 V_2 中的任意一个顶点v,则顶点u和顶点v不邻接并且

$$\deg u + \deg v \le (|V_1| - 1) + (|V_2| - 1) = p - 2$$

矛盾。

定理6.12. 设G为一个有p个顶点的图,如果对G的每一对不临接的顶点u和v,均有

$$\deg u + \deg v \ge p - 1$$
,

则G有哈密顿路。

证明. 当p=1,2,3时,易验证结论成立。以下证明当 $p\geq 4$ 时结论成立。设G中的最长路为 $v_1v_2\cdots v_k$,只需证明k=p。

用反证法,假设k < p,易验证此时 $k \ge 3$ 。以下证明 $v_1v_2 \cdots v_k$ 必在同一个圈上。由 $v_1v_2 \cdots v_k$ 为最长路知 v_1 只能与 $v_2, v_3, \ldots, v_{k-1}, v_k$ 中的顶点邻接, v_k 只能与 $v_1, v_2, v_3, \ldots, v_{k-1}$ 中的顶点邻接。设 $v_{i_1}, v_{i_2}, \ldots, v_{i_r}$ 与 v_1 邻接, $\mathbf{2} = i_1 < i_2 < \cdots < i_r \le k$,则 v_k 必与某个 v_{i_s-1} 邻接。否则, v_k 至多与最长路上其余的顶点邻接,所以

$$\deg v_1 + \deg v_k \le r + ((k-1) - r) = k - 1$$

矛盾。于是, $v_1v_2\cdots v_{i_{s-1}}v_kv_{k-1}\cdots v_{i_s}v_1$ 为G中的一个圈。

由于G为连通的,k < p,所以G必有某个顶点v,v不在C上,但与C上某个顶点 v_i 邻接。于是得到G的一条更长的路,这就出现了矛盾。

定理6.13. 设G为有 $p(p \ge 3)$ 个顶点的图。如果对G的任一对不邻接的顶点u和v,均有

$$\deg u + \deg v \ge p,$$

则G为一个哈密顿图。

证明. 由定理6.12知,G有哈密顿路,记为 $v_1v_2\cdots v_p$ 。以下证明 $v_1v_2\cdots v_p$ 必在同一个圈上,从而G中有哈密顿圈。设 $v_{i_1},v_{i_2},\ldots,v_{i_r}$ 与 v_1 邻接, $2=i_1< i_2<\cdots< i_r\leq p$,则 v_p 必与某个 v_{i_s-1} 邻接。否则, v_p 至多与最长路上其余的顶点邻接,所以

$$\deg v_1 + \deg v_p \le r + ((p-1) - r) = p - 1$$

与已知条件矛盾。于是, $v_1v_2\cdots v_{i_{s-1}}v_nv_{n-1}\cdots v_{i_s}v_1$ 为G中的一个圈。

定义6.24. 设G = (V, E)为一个图, $V = \{v_1, v_2, \dots, v_p\}$ 。 $p \times p$ 矩阵 $A = (a_{ij})$ 称为G的邻接矩阵,其中

$$a_{ij} = \begin{cases} 1, \text{ un} \{v_i, v_j\} \in E \\ 0, \text{ un} \{v_i, v_j\} \notin E \end{cases}$$

定理6.14. 设G = (V, E)为一个(p,q)图, $p \times p$ 矩阵A为G的邻接矩阵,则G中 v_i 与 v_j 间 长为l的通道的条数等于 A^l 的第i行第j列元素的值。

证明. 用数学归纳法证明, 施归纳于1。

当l=1时,结论显然成立。

假设当l=k时结论成立,往证当l=k+1时结论也成立。由矩阵乘法的计算规则知:

$$(A^{k+1})_{ij} = (A^k A)_{ij} = \sum_{h=1}^{p} (A^k)_{ih} A_{hj}$$

由归纳假设, $(A^k)_{ih}$ 为从顶点 v_i 到顶点 v_h 长度为k的通道的条数。

由从顶点 v_i 到顶点 v_j 长度为k+1的通道的条数为从顶点 v_i 到顶点 v_j 长度为k+1且倒数第二个顶点依次为 v_1 , v_2 ,…, v_p 的通道的条数之和知 $(A^{k+1})_{ij}$ 为从顶点 v_i 到顶点 v_j 长度为k+1的通道的条数。

练习6.1. 设G是一个(p,q)图,证明: 若 $q \ge p+4$,则G中有两个边不重的圈。

证明. 当q>p+4时,可以在G中任意去掉一些边,使得剩余的边数恰好比顶点数多4。如果此时得到的新图中有两个边不重的圈,则原来的图G中也一定有两个边不重的圈。因此,以下只需证当q=p+4时,图G中有两个边不重的圈。

用数学归纳法证明,施归纳于顶点数p。

- (1)当 $p \le 4$ 时,图G最多有p(p-1)/2条边,易验证此时q = p + 4不可能成立。当p = 5时,q = 9。设此时图G的顶点集为 $\{v_1, v_2, v_3, v_4, v_5\}$,除了 v_1 和 v_5 之间没有边关联之外,其余的任意两个顶点之间均有边关联,则此时 $v_1v_2v_3v_1$ 和 $v_3v_4v_5v_3$ 就是图G中两个边不重的圈。
- (2)假设当p=k时结论成立,往证当p=k+1时结论也成立。设图G有k+1个顶点。分以下四种情况进行验证:
- (i)当 $\delta(G)=0$ 时,去掉图G中任意一个度为0的顶点和任意一条边,得到的图G'中有p'个顶点,q'条边,则q'=p'+4。由归纳假设,图G'中有两个边不重的圈,它们也是图G中两个边不重的圈。
- (ii) 当 $\delta(G) = 1$ 时,去掉图G中任意一个度为 1 的顶点及其与之关联的边,得到的图G'中有p'个顶点,q'条边,则q' = p' + 4。由归纳假设,图G'中有两个边不重的圈,它们也是图G中两个边不重的圈。
- (iii) 当 $\delta(G) = 2$ 时,设u为图G中度为2的顶点,与之邻接的两个顶点为v和w。分两种情况讨论。在第一种情况下,v和w之间没有边关联,去掉顶点u及其与之关联的两条边uv和uw,添加一条边vw,得到的图G'中有p'个顶点,q'条边,则q' = p' + 4。由归纳假设,图G'中有两个边不重的圈。如果新添加的边vw不在这两个圈上,则这两个圈就是图G中两个边不重的圈;如果新添加的边vw在其中的一个圈上,将其替换为图G中的两条边vu和uw,则所得到的圈与另一个圈一起构成图G中两个边不重的圈。在第二种情况下,v和w之间有边关联,此时uvwu构成图G中的一个圈,去掉该圈上的三条边,得到的图G'中有p'个顶点,q'条边。此时q' = p' + 1,因此图G'中必定有一个圈,与原来图G中的圈uvwu构成图G中两个边不重的圈。
- (iv) $\exists \delta(G) \geq 3$ 时, $2q \geq 3p$,即 $2(p+4) \geq 3p$,可以得到 $p \leq 8$ 。此时若图G中有长度小于等于4的圈,将其上的 4 条边去掉,得到的图G'中有p'个顶点,q'条边,则 $q' \geq p'$,图G'中必定有一个圈,与原来图G中去掉的边所构成的圈一起构成图G中两个边不重的圈。若图G中所有圈的长度至少为5,设C为其中长度最短的一个圈。由 $\delta(G) \geq 3$ 知圈C上的每个顶点至少与圈外的一个顶点相邻接,而其中任意两个不同的顶点不能同时与圈外同一个顶点相邻接,否则将产生一个长度更小的圈。由圈C上至少有 5 个顶点知图G中至少有10个顶点,与 $p \leq 8$ 矛盾。这说明图G中所有圈的长度至少为5的情况不可能出现。

练习6.2. 菱形12面体的表面上有无哈密顿圈?

第七章