MATHEMATICS-II (MA10002)(Integral Calculus)

1. Find the Jacobian of the following transformations T:

(a)
$$T: u = e^{x^2 - y^2}, v = e^{x^2 + y^2}$$

(b)
$$T: u = e^x \cos y, v = e^x \sin y$$

(c)
$$T: x = \frac{u}{v}, \ y = u^2 - 4v^2$$

(d)
$$T: x = \rho \sin\phi \cos\theta$$
, $y = \rho \sin\phi \sin\theta$, $z = \rho \cos\phi$.

2. Calculate the following double/tripple integrals (by changing the variables).

$$I = \iint_{R} (y - x) dx dy$$

where the region R is bounded by y = x + 1, y = x - 3, $y = -\frac{x}{3} + 2$, $y = -\frac{x}{3} + 4$.

(b) Evaluate

$$I = \iint_{R} dx dy$$

where the region R is bounded by the parabolas $y^2 = 2x$, $y^2 = 3x$ and hyperbolas xy = 1, xy = 2.

(c) Compute

$$I = \iint_{R} (x+y)dA$$

where R is the trapezoidal region with vertices (0,0), (5,0), $(\frac{5}{2},\frac{5}{2})$ and $(\frac{5}{2},-\frac{5}{2})$ using the transformation x=2u+3v and y=2u-3v.

(d) Evaluate

$$I = \int_0^1 dx \int_0^x \sqrt{x^2 + y^2} dy$$

by tranforming to polar coordinates.

(e) Show that

$$\iint_{R} \sqrt{4a^2 - x^2 - y^2} dx dy = \frac{4}{9} (3\pi - 4)a^3$$

, where R is the upper half of the circle $x^2 + y^2 - 2ax = 0$.

(f) Evaluate

$$I = \int_0^3 \int_0^4 \int_{y/2}^{y/2+1} (x + \frac{z}{3}) dx dy dz$$

In xyz-space by using the transformation $u = \frac{2x-y}{2}, v = \frac{y}{2}$ and $w = \frac{z}{3}$. Integrate over appropriate region in uvw-sapce.

(g) Calculate the integral

$$\iiint\limits_{U}e^{(x^2+y^2+z^2)^{\frac{3}{2}}}dxdydz$$

1

where the region U is the unit ball $x^2 + y^2 + z^2 \le 1$

3. Evaluate the following integrals.

(a) Find the surface area of that part of the sphere $z=\sqrt{a^2-x^2-y^2}$ which lying inside the cylinder $x^2+y^2=ay$. Here a is a positive constant.

(b) Evaluate

$$\iint_{S} 40y dS$$

where S is the portation of $y = 3x^2 + 3z^2$ that lies behind y = 6

(c) Find the area of the region in the xy plane bounded by the lemniscate $\rho^2 = a^2 \cos 2\phi$.

(d) Find the volume of the parallelepiped defined by the inequalities. $0 \le 2x-3y+z \le 5$, $1 \le x+2y \le 4$, $-3 \le x-z \le 6$.

(e) Find the area of the ellipse cut on the plane 2x + 3y + 6z = 60 by the circular cylinder $x^2 + y^2 = 2x$

(f) Evaluate

$$\iint_{S} z^{2} dS$$

where S is the hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \ge 0$.

(g) Find the volume of the solid prism shown in the diagram below.

(h) Determine the value of the integral

$$\iiint_D e^{x^2+y^2} dV$$

where D is the region in bounded by the planes y=0,z=0,y=x and the paraboloid $z=4-x^2-y^2$.

2