Exploring Thermal Avalanches in the Creep Regime

Sylvain Mortgat

Supervisor: Tom de Geus

Physics of Complex Systems Laboratory PCSL École Polytechnique Fédérale de Lausanne EPFL January 26, 2024

Part 1: Introduction

- Earthquakes in general and their phenomenology
- Model: driven elastic interface in a disordered medium
- Depinning and Creep

Motivation

- Causes of earthquakes?
 - Stick Slip
- Global localization
 - Interface between tectonic plates
- Local observations
 - Mainshocks and aftershocks
 - Aftershocks seem to be correlated with mainshock in space and time
 - Stake: aftershock forecasting
- Phenomenological laws?

Rahmani, S., et al. "Time-dependent and spatio-temporal statistical analysis of seismicity: application on the complete data set of the 2010 Beni–Ilmane earthquake sequence," in *Geophysical Journal International*, vol. 236, no. 3, pp. 1246-1261, 2023.

Omori-Utsu law

Decay rate
$$n(t) = \frac{k}{(c+t)^p}$$
, $p \approx 1$

Lucilla de Arcangelis, et al. "Statistical physics approach to earthquake occurrence and forecasting," in *Physics Reports*, vol. 628, pp. 1-91, 2016.

Gutenberg-Richter law

- $\bullet \log_{10} N(m) = a bm$
- → How to model earthquakes?

Lucilla de Arcangelis, et al. "Statistical physics approach to earthquake occurrence and forecasting," in *Physics Reports*, vol. 628, pp. 1-91, 2016.

Classical model

Kolton, A., et al. "Creep dynamics of elastic manifolds via exact transition pathways," in *Phys. Rev. B*, vol. 79, pp. 184207, 2009.

- Elastic interface in a disordered media
 - Elastic energy: minimal for flat interface
 - Disorder potential energy
 - External force *f*
- Equation of motion (d = 1):

Velocity — force characteristics at T = 0

3 regimes for the interface:

- $f < f_c$: pinned
- $f > f_c$: moves with finite v
- $f = f_c$: critical behaviour

Velocity → order parameter of the "depinning" transition:

$$v \sim (f - f_c)^{\beta}$$

Kolton, A., et al. "Creep dynamics of elastic manifolds via exact transition pathways," in *Phys. Rev. B*, vol. 79, pp. 184207, 2009.

Interface response for $f \sim f_c$ and T = 0

- Intermittent dynamics with large and fast reorganisations: avalanches
- Avalanches: divergent typical extent

$$\ell_{\rm dep} \sim |f - f_c|^{-\nu_{\rm dep}}$$

• Interface morphology: self-similar with roughness exponent $\zeta_{\rm dep}$

$$S \sim \ell^{d+\zeta_{\text{dep}}}$$

• Sizes *S*: power law distributed

$$P(S) \sim S^{-\tau_{\text{dep}}}$$

T. Geus, M. Wyart. "Scaling theory for the statistics of slip at frictional interfaces," in *Phys. Rev. E*, vol. 106, pp. 065001, 2022.

Velocity — force characteristics at T > 0

- Even for $f < f_c$, interface moves with finite v
- Thermal activations over the pinning potential
- 2 length scales:
 - $\ell_{\text{opt}}(f)$: elementary excitations (small)
 - $\ell_{\rm c}(T,f)$: thermal avalanches (cascades of elementary excitations).
- Below $\ell_{\rm c}$ avalanches are depinning-like $(\zeta_{\rm dep}, \nu_{\rm dep}, \tau_{\rm dep})$

Ferrero EE, et al. 2021
Annu. Rev. Condens. Matter Phys. 12:111–34

Model for T > 0

- Lattice of L^d mesoscopic blocks
- Block i has an applied force f_i and a yielding threshold $f_i^{
 m yield}$
 - Distance to yielding $x_i := f_i^{\text{yield}} f_i$
 - Local energy barrier: $E_i = |x_i|^{\alpha} \operatorname{sign}(x_i)$ $\begin{cases} \geq 0 \text{ stable,} \\ < 0 \text{ unstable} \end{cases}$
- When block *i* fails:
 - Force drops to small $\varepsilon = f_i \Delta$
 - Uniform stress kick to nearest neighbours
 - Facilitation can lead to avalanches

	$+\frac{\Delta}{4}$		
$+\frac{\Delta}{4}$	$-\Delta$	$+\frac{\Delta}{4}$	
	$+\frac{\Delta}{4}$		

Comparing depinning and creep

Creep exhibit spatio-temporal patterns like aftershocks following a mainshock

Ferrero, E., et al. "Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics," in *Physical Review Letters*, vol. 118, no. 14, 2017.

Part 2: Exploring Thermal Avalanches

Are there aftershocks-like sequences after big thermal avalanches?

- Numerical model
- Avalanches, Mainshocks, Aftershocks
- Spatio-temporal clusterings

Observations at T > 0

- Rapidly failing connected regions → Avalanches
- Various sizes

Avalanche definition

• Simple criterion:

• Two consecutive block failures are part of a same avalanche if the time difference Δt between them is smaller than a **temporal** threshold τ_0

- Avalanche characterised by:
 - Number of block failures S
 - Number of failing blocks A (counted uniquely)

Choice of τ_0 matters

Avalanche Statistics for different au_0

16

Mainshocks and Aftershocks

- Mainshocks: big avalanches s.t. $A > rL^d$, $r \in [0,1]$
- Aftershocks: subsequent events connected to the mainshock
- ➤ Are there spatio-temporal clusterings?

Are there spatio-temporal clusterings?

Are there spatio-temporal clusterings?

Comparison with real world data

Hirose, F., Miyaoka, K., Hayashimoto, N. *et al.* Outline of the 2011 off the Pacific coast of Tohoku Earthquake ($M_{\rm w}$ 9.0) —Seismicity: foreshocks, mainshock, aftershocks, and induced activity—. *Earth Planet Sp* 63, 1 (2011).

3. Questions?

Thank you for your attention!