10.8: Choosing a Convergence Test

Example. Consider the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$. Is this series conditionally convergent, absolutely convergent, or divergent? Which test do you use?

abs convergence:
$$\sum_{K=1}^{\infty} \left| \frac{(-1)^{K+1}}{K} \right| = \sum_{K=1}^{\infty} \frac{1}{K} \quad \text{diverges ble } p-svies \quad \text{with } p=1 \le 1$$

$$\sum_{K=1}^{\infty} \left(\frac{(-1)^{K+1}}{K} \right) = \sum_{K=1}^{\infty} \frac{1}{K} \quad \text{diverges ble } p-svies \quad \text{with } p=1 \le 1$$

$$\sum_{K=1}^{\infty} \left(\frac{(-1)^{K+1}}{K} \right) = \sum_{K=1}^{\infty} \frac{1}{K} \quad \text{diverges ble } p-svies \quad \text{with } p=1 \le 1$$

$$\begin{array}{c}
O \quad a_{k} = \frac{1}{k} \\
a_{k+1} = \frac{1}{|k|}
\end{array}$$

$$\begin{array}{c}
Ast = \frac{1}{|k|} \\
Ast = \frac{1}{|k|}
\end{array}$$

$$\begin{array}{c}
Ast = \frac{1}{|k|} \\
Ast = \frac{1}{|k|}
\end{array}$$

$$\begin{array}{c}
Ast = \frac{1}{|k|} \\
Ast = \frac{1}{|k|}
\end{array}$$

$$\begin{array}{c}
Ast = \frac{1}{|k|} \\
Ast = \frac{1}{|k|}
\end{array}$$

$$\begin{array}{c}
Ast = \frac{1}{|k|} \\
Ast = \frac{1}{|k|}
\end{array}$$

Conditionally conveyet

Example. Consider the series $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k^2}$. Is this series conditionally convergent, absolutely convergent, or divergent? Which test do you use?

$$\left| \frac{1}{|C^2|} \right| = \left| \frac{1}{|C^2|} \right|$$

abs convergent
$$\sum_{k=1}^{\infty} \left| \frac{(1)^{k+1}}{|C^2|} \right| = \sum_{k=1}^{\infty} \frac{1}{|C^2|}$$

$$50 \text{ Series converges}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{|c^2|}$$

$$AST \qquad 1) \qquad \kappa^2 < (\kappa + 1)^2 \Rightarrow \frac{1}{(\kappa + 1)^2} < \frac{1}{\kappa^2}$$

2. many choice

Consider the series $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k^2}$. Select all statements that are TRUE about this series.

A. This series is absolutely convergent.

B. This series is conditionally convergent.

C. This series is absolutely convergent by the Alternating Series Test.

D. This series is conditionally convergent by the Alternating Series Test

E. This series is convergent by the Alternating Series Test.

F. This series is divergent by the Alternating Series Test.

Example. Which of the following series can be rewritten as a *p*-series?

$$\sum_{k=1}^{\infty} \frac{(-1)^{2k}}{k\sqrt{k}} = \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^5}$$

P-seics U/ p=3/2

$$\sum_{k=1}^{\infty} \frac{k^2 + k + 1}{k^4 + 2}$$

$$\sum_{k=1}^{\infty} \frac{3^k}{k^4}$$

Not a p-seics

Not a p-seres Note: can compare to a p-series & 1

$$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k^2} = \sum_{k=1}^{\infty} \frac{1}{\left|k\right|^{3/2}}$$

$$\rho$$
-series $\nu/\rho=3/2$

$$k^{1/2} = k^{-2} = k^{1/2}$$

Example. Which test *cannot* be used to determine the convergence of $\sum_{k=1}^{\infty} \frac{k^2 2^{k-1}}{(-5)^k}$?

Example. For the following series, which test should be used to determine if the series converges or diverges? Use your selected test to show convergence or divergence.

$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{k+2} \qquad \text{Diveger} \qquad \text{Test limits } \quad \alpha_{\mathsf{K}} = | \neq \emptyset \quad \text{Diveger}$$

$$\sum_{k=1}^{\infty} \frac{k!}{2^{k}(k+2)!} \qquad \text{Ratio } \int_{cst} \frac{k!}{(k+1)!}$$

$$F = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_{k}} \right| = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{k!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{k!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{k!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{a_{k}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} = \lim_{k \to \infty} \left| \frac{(k+1)!}{z^{k+1}} \right|$$

$$\sum_{k=1}^{\infty} \frac{(k+1)!}{z^{k+1}} =$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}-1}$$

$$\sum_{k=2}^{\infty} \frac{1}{k\sqrt{\ln(k)}} \qquad f'(\chi) = -\left(\chi \int_{\ln(x)}^{1}\right)^{-2} \left(\int_{\ln(x)}^{1} - \frac{1}{2\sqrt{\ln(x)}}\right) = -\frac{\left(\sqrt{\ln(x)} - \frac{1}{2\sqrt{\ln(x)}}\right)}{\chi^{2} \int_{\ln(x)}^{1}} < 0$$

$$U = \ln(x)$$

$$du = \frac{1}{\chi} d\chi$$

$$\int_{1}^{\infty} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi = \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi = \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi = \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} - 2 \int_{\ln(x)}^{1} = \infty \Rightarrow \sup_{k \to \infty} \sup_{k \to \infty} dx$$

$$\int_{1}^{\infty} \frac{2^{1/k} - 1}{\chi \int_{\ln(x)}^{1}} d\chi = \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} - 2 \int_{\ln(x)}^{1} = \infty \Rightarrow \sup_{k \to \infty} \int_{\ln(x)}^{1} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)}^{1}} d\chi$$

$$= \lim_{k \to \infty} 2 \int_{\ln(x)}^{1} \frac{1}{\chi \int_{\ln(x)$$

$$\sum_{k=3}^{\infty} \frac{1}{k^{2/5} \ln(k)} = \sum_{k=3}^{\infty} a_k$$

$$DCT: b_{K} = \frac{1}{|K| \ln(K)}$$
 $\Rightarrow \sum_{|C|=3}^{\infty} \frac{1}{|K| \ln(K)} diveges by Integral test (details omitted)$

$$|k^{2/5}|_{\Lambda(K)} >_{\sigma} = \sum_{k=1}^{\infty} \frac{1}{|k^{2/5}|_{\Lambda(K)}} >_{\sigma}$$

$$|k|_{\Lambda(K)} >_{\sigma} = \sum_{k=1}^{\infty} \frac{1}{|k|_{\Lambda(K)}} >_{\sigma}$$

$$|k| |u(\kappa) > 0 =$$
 $|k| = \frac{|u(\kappa)|}{|k|} > 0$

Since I by diviges, Ear diviges by DCT

$$\sum_{k=1}^{\infty} \frac{8(3k)!}{(k!)^3}$$

Rahio Histi

$$\Gamma = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{8(3k+3)!}{((k+1)!)^3} \cdot \frac{(k!)^3}{8(3k)!} \right| = \lim_{k \to \infty} \left| \frac{8(3k+3)!}{(3k)!} \cdot \left(\frac{k!}{(k+1)!} \right)^3 \right|$$

$$\sum_{k=1}^{\infty} \sin\left(\frac{9}{k^{12}}\right)$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$\log \left(\frac{9}{k^{12}}\right) \geq 0 \quad \text{for } k \geq 1$$

$$L = \lim_{|k \to \infty} \frac{q_k}{b_{1k}} = \lim_{k \to \infty} \frac{\sin\left(\frac{q}{k^{12}}\right)}{q_{k^{12}}} \frac{LR}{k \to \infty} \lim_{k \to \infty} \frac{\cos\left(\frac{q}{k^{12}}\right)}{-\log \frac{1}{k^{13}}} = \lim_{k \to \infty} \cos\left(\frac{q}{k^{12}}\right) = 1$$

Since L=1<0, Her both Eak and Ebk conceige by LCT

=				
Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
Geometric series	$\sum_{k=0}^{\infty} ar^k, \ a \neq 0$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$.
Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k \to \infty} a_k \neq 0$	Cannot be used to prove convergence.
Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing.	$\int_{1}^{\infty} f(x) dx $ converges.	$\int_{1}^{\infty} f(x) dx \text{ diverges.}$	The value of the integral is not the value of the series.
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \le 1$	Useful for comparison tests.
Ratio Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right < 1$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right > 1$	Inconclusive if $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = 1$
Root Test	$\sum_{k=1}^{\infty}a_k$	$\lim_{k \to \infty} \sqrt[k]{ a_k } < 1$	$\lim_{k \to \infty} \sqrt[k]{ a_k } > 1$	In conclusive if $\lim_{k\to\infty} \sqrt[k]{ a_k } = 1$
Comparison Test (DCT)	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0$	$a \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges.	$b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges.	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Limit Comparison Test (LCT)	$\sum_{k=1}^{\infty} a_k, \text{ where } $ $a_k > 0, b_k > 0$	$0 \le \lim_{k \to \infty} \frac{a_k}{b_k} < \infty$ and $\sum_{k=1}^{\infty} b_k$ converges.	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges.}$	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Alternating Series Test (AST)	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where } a_k > 0$	$\lim_{\substack{k \to \infty \\ 0 < a_{k+1} \le a_k}} a_k \text{ and }$	$\lim_{k \to \infty} a_k \neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
Absolute Convergence	$\sum_{k=1}^{\infty} a_k, a_k \text{ arbitrary}$	$\sum_{k=1}^{\infty} a_k \text{ converges.}$		Applies to arbitrary series