

Data Science

Introduction

Convolutional Neural Networks (CNNs) learns multi-level features and classifier in a joint fashion and performs much better than traditional approaches for various image classification and

Input

- An Image is a matrix of pixel values.
- If we considered a grayscale image, the value of each pixel in the matrix will range from 0 255.
- If we considered an RGB image each pixel will have the combined values of R,

What Computers See

Convolutional Layer

Convolutional Layer acts as a feature extractor that extracts features of the inputs such as edges, corners, and endpoints.

Pooling Layer

Pooling layer reduces the resolution of the image that reduce the precision of the translation (shift and distortion) effect.

Full Connected Layer

- Fully Connected layer have full connections to all activations in the previous layer.
- Fully connect layer act as classifier.

Output Image = (((ImageSize+2*Padding)- KernalSize)/ Stride) +1

Conv 3x3 with stride=1, padding=1

CNN Architectures

Year	CNN Architecture	Developed By
1998	LeNet	Yann LeCun et al.
2012	AlexNet	Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever
2013	ZFNet	Matthew Zeiler and Rob Fergus
2014	GoogleNet	Google
2014	VGGNet	Simonyan and Zisserman
2015	ResNet	Kaiming He
2017	DenseNet	Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger

What is K-train Classification?

K-train: a library to help build, train, debug, and deploy neural networks in the deep learning software framework, Keras using TensorFlow.

https://github.com/amaiya/ktrain/blob/master/examples/README.md

https://github.com/amaiya/ktrain

Simply says: Python library that makes deep learning and AI more accessible and easier to apply to your own dataset.

Convolutional Neural Networks in Python: Beginner's Guide to Convolutional Neural Networks in Python by Frank Millstein (Ebook) - Read free for 30 days. (2019). In Everand.

What is Remote Sensing?

Remote sensing is the acquisition of physical data of an object without touch or contact. (Lintz and Simoneet, 1776, p.1)

Remote sensing is the observation of a target by a device separated from it by some distance. (Barret and

Curtis, 1976, p.3)

Datasets

Satellite Images: Water | Vegetation

Datasets

Upload the code and datasets to GDrive

Open the Google Colab

Interface

Epoch and Batch Size

Change the learning fit base on the result

ResNet-50

```
[21] # Plot the Metric Performance
learner.validate(class names=preproc.get classes())
3/3 [======= ] - 24s 6s/step
             precision
                         recall f1-score support
 vegetation
                                    0.68
                 0.67
                           0.78
                                    0.72
      water
                                    0.70
   accuracy
                 0.70
                           0.70
                                    0.70
  macro avg
weighted avg
                 0.70
                           0.70
                                    0.70
array([[25, 15],
      [ 9, 31]])
```


How to do the test?

If you do not have test folder, you need to make new folder (same with train and validation, have water and vegetation folder inside)

How to do Test?

Remember to consider the directory

