IV Funktionen und Graphen

1. Strecken, Verschieben, Spiegeln von Graphen

Beispiel:

$$f(x) = (x+2)^3$$

$$= x^3 + 3x^2 \cdot 2 + 3x \cdot 4 + 8$$

$$= x^3 + 6x^2 + 12x + 8$$

Exkurs: Pascalsches Dreicek

[<matplotlib.lines.Line2D at 0x13825a960>]

Wertetabelle:

Fragen:

• Welche Auswirkung hat es , wenn man jeden Funktionswert mit der gleichen Zahl d=-1 addiert?

x	-2	-1	0	1
f(x)	0	1	8	27

x	-2	-1	0	1
f(x) - 1	0-1	1-1	8-1	27-1

- => Alle Punkte des Funktionsgraphen liegen um eine Einheit tiefer, als bei der Ausgangsfunktion.
- => Verschiebung des Funktionsgraphen entlang der y-Achse.
 - Welche Auswirkung hat es, wenn man jeden Funktionswert mit der gleichen Zahl a=2 multipliziert?

- => Alle y-Werte der Punkte des ursprünglichen Funktionsgraphen werden mit a-vervielfacht und erhalten das entegengesetzte Vorzeichen.
- => Streckung des ursprünglichen Funktionsgraphen mit dem Faktor a.
 - Welche Auswirkung hat es, wenn man jeden Funktionswert mit der gleichen Zahl a=-1 multipliziert?

- => Alle y-Werte der Punkte des ursprünglichen Funktionsgraphen erhalten das entegengesetzte Vorzeichen.
- => Speigelung des ursprünglichen Funktionsgraphen an der x-Achse.
 - Welche Auswirkung hat es, wenn man von jeden x-Wert die gleiche Zahl c=2 subrahiert.

$$f(x)$$
 0 1 8 27 -8 -1 0 1

$$f(x-2)$$
 -1 0 1

- => Alle Punkte des Funktionsgraphen haben den Funktionswert, den der ursprüngliche Graph schon zwei Einheiten weiter links gehabt hat.
- => Der Graph wird verschoben auf entlang der x-Achse.

Satz:

Der Graph der Funktion g mit $g(x)=a\cdot f(x-c)+d,$ mit $a,c,d\in\mathbb{R},\quad a
eq 0$ entsteht aus dem Graphen der Funktion f durch

- Streckung in y-Richtung mit dem Faktor |a|
- Verschiebung entlag der y-Achse um d
- Verschiebung entlang der x-Achse um c.

Beispiel:

$$f(x) = e^x$$

[<matplotlib.lines.Line2D at 0x12fdf1400>]

Wertetabelle:

Fragen:

• Welche Auswirung hat es , wenn man jeden Funktionswert mit -1?

x	-2	-1	0	1
f(x)	0,135	0,368	1	e

=> Die y-Koordinaten aller Punkte des Grapen werden negativ. => Spiegelung des Funktionsgraphen an der x-Achse.

• Welche Auswirung hat es , wenn man die Funktionsvariable mit -1 multipliziert?

=> Alle Punkte des Grahen erhalten die y-Koordinaten ihrer negativen Pendants. => Spiegelung des Funktionsgraphen an der y-Achse.

• Welche Auswirung hat es, wenn man die Funktionsvariable mit -1 multipliziert und den Funktionswert auch mnit -1?

x
 -2
 -1
 0
 1

$$f(x)$$
 0,135
 0,368
 1
 e
 $f(-x)$
 -7,389
 $-e$
 -1
 -0,386

=> Alle Punkte des Grahen erhalten die y-Koordinaten ihrer negativen Pendants.

=> Alle y-kooridnaten der Punkte erhalten das entegegensgesetzte Vorzeichen.

=> Spiegelung des Funktionsgraphen am Ursprung O(0|0)

Satz:

Der Graph der Funktion g entsteht aus dem Graphen der Funktion f durch

•
$$g(x) = f(-x)$$
 mit einer Spiegelung an der y-Achse.

•
$$g(x) = -f(x)$$
 mit einer Spiegelung an der x-Achse.

-
$$g(x) = -f(-x)$$
 mit einer
Spiegelung am Ursprung $O(0|0)$

Satz:

Der Graph einer Funktion f ist genau dann

- ullet achsensymmetrisch zur y-Achse, wenn für alle $x\in D_f$ gil: f(-x)=f(x)
- ullet punktsymmetrisch zum Ursprung, wenn für alle $x\in D_f$ gil: f(-x)=-f(x)

Beispiel:

$$f(x) = x \cdot \sin(x)$$

$$f(-x) = -x \cdot \sin(-x)$$

$$= -(x \cdot \sin(-x))$$

$$= -(x \cdot (-\sin(x))$$

$$= x \cdot \sin(x)$$

 \Rightarrow Achsensymmetrie zur y-Achse.

[<matplotlib.lines.Line2D at 0x1383d3a40>]

