Table 22: List of the artificial data sets.

Dataset	N	p	K*	reference
2d-10c	2990	2	9	[76]
2d-3c-no123	715	2	3	[76]
2d-4c	1261	2	4	[76]
2d-4c-no4 2d-4c-no9	863 876	2 2	4	[76] [76]
		2	3	
3clusters_elephant 4clusters_corner	700 1575	2	3 4	
4clusters_twins	612	2	4	
5clusters_stars	1050	2	5	
A1	3000	2	20	[77]
A2	5250	2	35	[77]
curves1	1000	2	2	[67]
D31	3100	2	31	[78]
diamond9 dim032	3000 1024	2 32	9 16	[79] [77]
dim064 dim1024	1024 1024	64 1024	16 16	[77]
dim1024 dim128	1024	128	16	[77] [77]
dim256	1024	256	16	[77]
dim512	1024	512	16	[77]
DS-577	577	2	3	[80]
DS-850	850	2	5	[80]
ds4c2sc8	485	2	8	[81]
elliptical_10_2	500	2	10	[82]
elly-2d10c13s	2796	2	10	[76]
engytime	4096	2	2	FCPS [52]
exemples1_3g	525	2	3	
exemples10_WellS_3g	975	2	3	
exemples2_5g exemples3_Uvar_4g	1375 1000	2 2	5 4	
exemples4_overlap_3g	1050	2	3	
exemples5_overlap2_3g	1550 2250	2 2	3	
exemples6_quicunx_4g exemples7_elbow_3g	788	2	3	
exemples8_Overlap_Uvar_5g	2208	2	6	
exemples9_YoD_6g	2208	2	6	
fourty	1000	2	40	[67]
g2-16	2048	16	2	[77]
g2-2	2048	2	2	[77]
g2-64	2048	64	2	[77]
hepta	212	3	7	FCPS [52]
long1	1000	2	2	[83]
long2 long3	1000 1000	2 2	2 2	[83] [83]
longsquare	900	2	6	[83]
R15	600	2	15	[78]
s-set1	5000	2	15	[77]
s-set2	5000	2	15	[77]
s-set3	5000	2	15	[77]
s-set4	5000	2	15	[77]
sizes1	1000	2	4	[83]
sizes2	1000	2	4	[83]
sizes3	1000	2	4	[83]
sizes4 sizes5	1000 1000	2 2	4	[83] [83]
spherical_4_3	400	3 2	4 5	[82]
spherical_5_2 spherical 6 2	250 300	2	6	[82] [82]
square1	1000	2	4	[83]
square2	1000	2	4	[83]
square3	1000	2	4	[83]
square4	1000	2	4	[83]
square5	1000	2	4	[83]
st900	900	2	9	[82]
tetra	400	3	4	FCPS [52]
triangle1	1000	2	4	[83]
triangle2	1000 1000	2 2	4 20	[83]
twenty twodiamonds	800	2	20	[67] FCPS [52]
wingnut	1016	2	2	FCPS [52]
xclara	3000	2	3	[84]
zelnik2	303	2	3	[85]
zelnik4	622	2	5	[85]

References

- [52] Alfred Ultsch. Clustering with SOM: U*C. In Workshop on Self Organizing Feature Maps, 2005.
- [53] Holger Hoos and Kevin Leyton-Brown. An efficient approach for assessing hyperparameter importance. In *International Conference on Machine Learning*, pages 754–762, 2014.
- [54] Shrinu Kushagra, Shai Ben-David, and Ihab Ilyas. Semi-supervised clustering for de-duplication. (D):1–18, 2018.
- [55] Milton Friedman. A comparison of alternative tests of significance for the problem of m rankings. *The Annals of Mathematical Statistics*, 11(1):86–92, 1940.
- [56] Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we really use post-hoc tests based on mean-ranks? *The Journal of Machine Learning Research*, 17(1):152–161, 2016.
- [57] Frank Wilcoxon. Probability tables for individual comparisons by ranking methods. *Biometrics*, 3(3):119–122, 1947.
- [58] Sture Holm. A simple sequentially rejective multiple test procedure. *Scandinavian journal of statistics*, pages 65–70, 1979.
- [59] Salvador Garcia and Francisco Herrera. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. *Journal of machine learning research*, 9(Dec):2677–2694, 2008.
- [60] Glenn W Milligan and Martha C Cooper. A study of the comparability of external criteria for hierarchical cluster analysis. *Multivariate behavioral research*, 21(4):441–458, 1986.
- [61] William M Rand. Objective criteria for the evaluation of clustering methods. *Journal of the American Statistical association*, 66(336):846–850, 1971.
- [62] Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of Classification*, 2(1):193–218, 1985.
- [63] Leslie C. Morey and Alan Agresti. The Measurement of Classification Agreement: An Adjustment of the Rand Statistic for Chance Agreement. *Educational and Psychological Measurement*, 44:33–37, 1984.
- [64] Edward B Fowlkes and Colin L Mallows. A method for comparing two hierarchical clusterings. *Journal of the American statistical association*, 78(383):553–569, 1983.
- [65] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. *The Journal of Machine Learning Research*, 11:2837–2854, 2010.
- [66] Luca Scrucca and Adrian E Raftery. Improved initialisation of model-based clustering using gaussian hierarchical partitions. *Advances in data analysis and classification*, 9(4):447–460, 2015.
- [67] Tomas Barton. Clustering benchmarks. https://github.com/deric/clustering-benchmark/.
- [68] M. Gagolewski. Clustering Benchmark Data. http://www.gagolewski.com/resources/data/clustering/.
- [69] NA Campbell and RJ Mahon. A multivariate study of variation in two species of rock crab of the genus leptograpsus. *Australian Journal of Zoology*, 22(3):417–425, 1974.
- [70] Adelchi Azzalini and Adrian W Bowman. A look at some data on the old faithful geyser. Journal of the Royal Statistical Society: Series C (Applied Statistics), 39(3):357–365, 1990.
- [71] Ronald A Fisher. The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7(2):179–188, 1936.
- [72] D.M.J. Tax M. van Breukelen, R.P.W. Duin and J.E. den Hartog. Handwritten digit recognition by combined classifiers. *Kybernetika*, 1998.
- [73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based Learning Applied to Document Recognition. In *Proceedings of the IEEE*, 1998.
- [74] J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994.

- [75] B Vandeginste. Parvus: An extendable package of programs for data exploration, classification and correlation, m. forina, r. leardi, c. armanino and s. lanteri, elsevier, amsterdam, 1988, price: Us 645 isbn 0-444-43012-1. *Journal of Chemometrics*, 4(2):191–193, 1990.
- [76] Julia Handl. Cluster generators. https://personalpages.manchester.ac.uk/staff/Julia.Handl/generators.html.
- [77] O. Virmajoki P. Fränti. Iterative shrinking method for clustering problems. *Pattern Recognition*, 2006.
- [78] M.J.T. Reinders Veenman, C.J. and E. Backer. A maximum variance cluster algorithm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2002.
- [79] S. Salvador and P. Chan. Determining the Number of Clusters/Segments in Hierarchical clustering/Segmentation Algorithm. In *ICTAI*.
- [80] C. H. Chou M. C. Su and C. C. Hsieh. Fuzzy C-Means Algorithm with a Point Symmetry Distance. *International Journal of Fuzzy Systems*, 2005.
- [81] Marcilio C. P. de Souto Katti Faceli, Tiemi C. Sakata and Andre C. P. L. F. de Carvalho. Partitions selection strategy for set of clustering solutions. *Neurocomputing*, 2010.
- [82] S. Bandyopadhyay and S. K. Pal. Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence. *Springer, Heidelberg*, 2007.
- [83] Julia Handl and Joshua Knowles. Multiobjective clustering with automatic determination of the number of clusters. 2004.
- [84] Vincent Arel-Bundock. xclara dataset. http://vincentarelbundock.github.io/ Rdatasets/datasets.html.
- [85] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In *Advances in Neural Information Processing Systems*, 2004.