See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/11961039

Aryloxy substituted N-arylpiperazinones as dual inhibitors of farnesyltransferase and geranylgeranyltransferase-I

ARTICLE in	BIOORGANIC &	& MEDICINAL CHEMISTRY LETTERS .	JULY 2001

Impact Factor: 2.42 · DOI: 10.1016/S0960-894X(01)00240-2 · Source: PubMed

CITATIONS	READS
26	17

14 AUTHORS, INCLUDING:

Marc T Abrams

Merck

30 PUBLICATIONS 936 CITATIONS

SEE PROFILE

Christopher J Dinsmore

Merck

57 PUBLICATIONS **1,308** CITATIONS

SEE PROFILE

Aryloxy Substituted N-Arylpiperazinones as Dual Inhibitors of Farnesyltransferase and Geranylgeranyltransferase-I

Jeffrey M. Bergman,^{a,*} Marc T. Abrams,^b Joseph P. Davide,^b Ian B. Greenberg,^b Ronald G. Robinson,^b Carolyn A. Buser,^b Hans E. Huber,^b Kenneth S. Koblan,^b Nancy E. Kohl,^b Robert B. Lobell,^b Samuel L. Graham,^a George D. Hartman,^a Theresa M. Williams^a and Christopher J. Dinsmore^a

^aDepartment of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA ^bDepartment of Cancer Research, Merck Research Laboratories, West Point, PA 19486, USA

Received 31 January 2001; accepted 29 March 2001

Abstract—A series of aryloxy substituted piperazinones with dual farnesyltransferase/geranylgeranyltransferase-I inhibitory activity was prepared. These compounds were found to have potent inhibitory activity in vitro and are promising agents for the inhibition of Ki-Ras signaling. © 2001 Published by Elsevier Science Ltd. All rights reserved.

Introduction

Oncogenically activated Ras protein has been implicated in the growth of 20–30% of all human tumors.¹ Transforming mutations eliminate the intrinsic GTPase activity of Ras, resulting in constitutively activated Ras and growth signaling independent of extracellular growth factors, leading to uncontrolled proliferation. Among the ras genes, Ki-ras is the most relevant target for an anticancer agent since this accounts for approximately 90% of the altered Ras found in human cancers. Strategies for controlling Ras mediated oncogenic cellular proliferation have focused on preventing the prenylation of Ras by inhibition of farnesyl-protein transferase (FPTase), an enzyme which catalyzes the Salkylation of a cysteine residue in the C-terminal tetrapeptide sequence of Ras.² This post translational modification is required for Ras activation and its inhibition in altered Ras should control proliferation. FPTase inhibitors (FTIs) have been shown to selectively inhibit ras-transformed cell growth in cell culture, to inhibit the growth of ras-dependent tumors in mice, and are currently undergoing human clinical trials both as single agents and in combination with other anti-cancer agents.3 However, Ki-Ras prenylation in FTI treated cells has been reported.⁴ When farnesylation of Ki-Ras

Inhibitor Design

A wide array of FPTase inhibitors that mimic the Ca₁a₂X tetrapeptide C-terminus of Ras have been described.3d,e Improvements in the biological properties of FTIs have been achieved through the use of non-peptide structural replacements for the central a₁a₂ portion, the deletion of the carboxyl-containing terminus, and substitution of the cysteine moiety with alternative non-thiol groups. Extensive work in this area resulted in the identification of piperazinone FTIs,⁵ such as 1 (Fig. 1), which underwent clinical evaluation.3c,e This compound is a dual prenylprotein transferase inhibitor (FPTase $IC_{50} = 2$ nM, GGPTase-I $IC_{50} = 98$ nM).⁶ Our desire to improve GGPTase-I inhibitory activity prompted investigation of piperazinone derivatives with substitution on the cyanobenzyl ring. Through this work, it was discovered that aryloxy substitution (e.g. 2) can have an enhancing effect on GGPTase-I activity. Herein, we describe the optimization of these compounds as dual prenyltransferase inhibitors.

is inhibited by an FTI, geranylgeranyltransferase-I (GGPTase-I), an analogous prenyltransferase, is able to activate Ki-Ras through geranylgeranylation. Thus, dual FPTase/GGPTase-I inhibitors should prevent prenylation of Ki-Ras, and have significant potential as cancer chemotherapeutic agents.

^{*}Corresponding author. Tel.: +1-215-652-8257; fax: +1-215-652-7310; e-mail: christopher dinsmore@merck.com

Synthesis of Inhibitors

The cyanofluorobenzyl imidazole aldehydes **6** were prepared from the corresponding bromofluorotoluenes as outlined in Scheme 1. For example, 1-(4-cyano-3-fluorobenzyl)-5-imidazolecarboxaldehyde **6a** was prepared in five steps starting from 4-bromo-3-fluorotoluene. Cyanation with zinc cyanide was followed by NBS bromination to give **4a**. A protected imidazole was alkylated with this benzyl bromide giving **5a**. Deprotection of the hydroxyl group and subsequent oxidation gave the aldehyde **6a**.

Reductive amination of aldehydes **6a** and **6b** with the piperazinone amine **7**⁷ was followed by treatment of the product with an aryloxide and cesium carbonate in DMF to give the desired aryloxypiperazinones **8** and **9** (Scheme 2). Compounds without the nitrile (e.g., **10**) were prepared by reductive alkylation of the appropriate aryl piperazinone **7** with aldehyde **6c**, followed by Ullmann coupling⁸ with phenol.

Structure-Activity Relationships

Aryloxy substitution on the cyanophenyl ring has a profound effect on GGPTase-I activity while leaving

Figure 1. Design of improved FTI-GGTIs.

Scheme 1. Reagents and conditions: (a) Pd(PPh₃)₄, Zn(CN)₂, DMF, $80\,^{\circ}$ C, 96%; (b) NBS, CCl₄, benzoyl peroxide, reflux, 43-50%; (c) 1-trityl-4-(acetoxymethyl)imidazole, EtOAc, $60\,^{\circ}$ C; MeOH, 79-93%; (d) LiOH, THF, H₂O, 68-83%; (e) pyridine–SO₃ complex, DMSO, Et₃N, 86-90%.

FPTase activity relatively unaffected (Table 1). Addition of phenoxide to the 3-position of 1 gave 8a (FPTase $IC_{50} = 7$ nM, GGPTase-I $IC_{50} = 22$ nM). This represented a 5-fold increase in affinity for GGPTase-I while maintaining FPTase potency similar to 1. Substituting thiophenoxy in this position (8b) reduced affinity for FPTase. In some cases, substitution on the aromatic ring had a significant effect on activities. The orthochlorophenoxy derivative 8c had the most profound effect, maintaining the high intrinsic FPTase potency of 1 while increasing GGPTase-I activity over 100-fold (GGPTase-I $IC_{50} = 0.7$ nM). The meta and para chloro analogues were equipotent to unsubstituted 8a in GGPTase-I inhibition. Increasing the size of the phenoxy substituent had a deleterious effect on GGPTase-I activity. Compounds 8g and 8h had reduced GGPTase-I inhibitory activity relative to 1 but maintained high potency versus FPTase.

It was found that some compounds behave as slow tight binders to GGPTase-I. 6a,b In these cases, in vitro studies in which IC $_{50}$ values are measured without prior incubation of the inhibitor and enzyme gave higher IC $_{50}$ values then those with a 30 min incubation period. For example, $\mathbf{8c}$ and $\mathbf{8i}$ exhibited ca. 30-fold differences in IC $_{50}$ (Table 1). Furthermore, inhibition of GGPTase-I by $\mathbf{8c}$ was determined to be competitive with geranylgeranylpyrophosphate (GGPP) and dependent on the presence of inorganic or organic phosphate ions. Many different phosphates could satisfy this requirement, and ATP was chosen because it is effective at physiological concentrations. 6a,b,10

Previous studies have documented the importance the cyano group plays in FPTase inhibition activity. ¹¹ It was anticipated that reorienting or removing this group could reduce FPTase activity while maintaining GGPTase-I activity. In an attempt to produce a GGPTase-I selective inhibitor, such modifications were explored (Table 2). In compound 9a the orientation of the nitrile and phenoxy groups was reversed. Unexpectedly, FPTase potency was maintained while GGPTase-I potency suffered. In compounds 10a-c the cyano group

Scheme 2. Reagents and conditions: (a) Na(OAc)₃BH, 4 Å sieves, DCE, 34–67%; (b) for 8 and 9; ArOH or ArSH, Cs₂CO₃, DMF, 31–60%; (c) for 10; PhOH, CuBr DMS, NaH, pyridine, reflux, 9–21%.

is deleted. In these cases, FPTase inhibitory potency has been drastically reduced yet these compounds remain moderately potent and selective GGPTase-I inhibitors. This supports the idea that the phenoxy group is important to GGPTase-I binding, and that selective inhibitors can be prepared by manipulating substituents.

In addition to the in vitro FPTase inhibition assay, FPTase binding in cells was also determined (Table 1). An unfortunate consequence of the added lipophilicity of these compounds was their poor performance in the cell based assay. For many analogues, cellular FPTase values were off by 10-fold or more as compared to in

vitro FPTase IC₅₀s. It is postulated that the increased lipophilicity of the aryloxy compounds impedes cell penetration. When polar substituents were introduced onto the aryloxy groups, cellular FPTase values responded positively. Substitution with O-(2-hydroxyethyl)resorcinol gave **8i** (FPTase IC₅₀=2.5 nM, GGPTase-I IC₅₀=1.3 nM, FPTase_{cell} IC₅₀=8 nM) which was more than 10-fold more active in the cell based assay than the unsubstituted phenyl compound **8a**. Replacement of the phenol in **8a** with 3-hydroxypyridine gave **8j**, the latter being 6-fold more potent in cells.

Inhibition of the geranygeranylation of Rapla is used as a measure of the ability of a GGTI to prevent prenylation

Table 1. FPTase and GGPTase-I inhibition data for anyloxy derivatives 8a-j

		In vitro (IC ₅₀ , nM)		In cell cul	In cell culture (nM)	
Compd	Y	FPTase ^a	GGPTase-l ^b	FPTase (IC ₅₀) binding ^d	Rapla (MIC) prenylation ^e	
1	Н	2	98	3	1000	
8a		7	18	110	300-1000	
8b	S	18	12	255	nd	
8c	CI	7	0.7 (20) ^c	41	300	
8d	OCI	4	20	93	nd	
8e	O CI	19	15	350	nd	
8f	OOBn	32	62	311	nd	
8g		1	199	48	nd	
8h		4	(290) ^c	nd	nd	
8i	OHO	2.5	1.3 (35)°	8	3000	
8j	° C	11	52	17	1000	

^aConcentration of compound required to reduce the human FPTase-catalyzed incorporation of [³H]FPP into recombinant Ras-CVIM by 50%. ^{9a} ^bConcentration of compound required to reduce the human GGPTase-I-catalyzed incorporation of [³H]GGPP into biotinylated peptide corresponding to the C-terminus of human Ki-Ras by 50%. Assay run with 30 min preincubation of enzyme and inhibitor in the presence of 5 mM ATP.⁶

^cSame as footnote b without prior incubation of inhibitor and enzyme.

^dConcentration of sample required to displace 50% of a radiolabeled farnesyltransferase inhibitor (FTI) from FPTase in cultured Ha-ras transformed RAT1 cells.^{9b}

^eMinimal concentration of compound required to inhibit Rap1a processing in PSN-1 cells.⁶

Table 2. FPTase and GGPTase-I inhibition for piperazinones 9a and 10a-c

$$X \longrightarrow N \longrightarrow N \longrightarrow R$$

Compd	X	Y	R	FPTase IC ₅₀ (nM) ^a	GGPTase-I IC ₅₀ (nM) ^b
8a	CN	OPh	3-Cl	7	18
9a	OPh	CN	3-C1	9	809
10a	Н	OPh	3-C1	1230	65
10b	Н	OPh	4-C1	670	136
10c	Н	OPh	$4-CF_3$	5770	155

^aSee footnote a in Table 1.

in cells. 6a,b The compounds in this series that were tested in the Rapla processing assay were active with MICs in the 0.3–3 μ M range, confirming GGPTase-I inhibition in cells. Interestingly, Rapla inhibition was not significantly greater than that for 1 in spite of these compounds having greater in vitro potency towards GGPTase-I. This is most likely due to their reduced cell penetration in comparison to 1.

In anchorage-independent growth inhibition assays in soft agar, 8a was less effective than 1 at blocking colony formation of v-H-ras transformed RAT1 cells (IC90 $8a = 0.3 \mu M$, IC₉₀ $1 = 0.1 \mu M$), consistent with its reduced FTase binding in cell culture (vide supra). General cell cytotoxicity elicited by 8a is only observed at \sim 30-fold higher concentrations (\sim 80% RAT1 cell survival up to 10 µM as assessed by viability staining with MTT). Interestingly, inhibition by 8a of K-ras transformed cell colonies required only slightly higher concentration (IC₉₀ = 0.3–1 μ M) than was required for H-ras, resulting in a ratio of K-ras/H-ras IC₉₀ which is lower than for previously characterized selective N-arylpiperazinone FTIs⁵ (ratio ca. 1–3 vs 10–20). A determination of whether this is the result of dual versus selective prenyltransferase inhibition will require further studies.

Conclusion

The inclusion of aryloxy substituents on the cyanobenzyl portions of certain dual FPTase/GGPTase-I inhibitors can substantially improve GGPTase-I inhibitory potency while leaving the relatively high intrinsic FPTase inhibitory potency unaffected. The poor cell penetration seen in this series can be positively addressed by the inclusion of polar functionality within the aryloxy substituent. Further modifications, leading to the deletion of the nitrile, yield GGPTase-I selective compounds. The ability to modulate the relative degree of FPTase and GGPTase-I inhibition could prove important in the design of antineoplasic drugs of the prenyl-protein transferase inhibitor class.

Acknowledgements

The authors are grateful to K. D. Anderson, P. A. Ciecko, A. B. Coddington, G. M. Smith, H. G. Ramjit, C. W. Ross III, B.-L. Wan, and M. M. Zrada for analytical support, J. R. Huff, D. C. Heimbrook, and A. I. Oliff for their support of this work, and M.A. Guttman for manuscript assistance.

References and Notes

1. Rodenhuis, S. Semin. Cancer Biol. 1992, 3, 241.

2. (a) Kato, K.; Cox, A. D.; Hisaka, M. M.; Graham, S. M.; Buss, J. E. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 6403. (b) Rowinsky, E. K.; Windle, J. L.; Von Hoff, D. D. *J. Clin. Oncol.* **1999**, *17*, 3631.

3. (a) Recent reviews: Oliff, A. Biochim. Biophys. Acta 1999 1423, C19. (b) End, D. W. Invest. New Drugs 1999, 17, 241. (c) Gibbs, J. B. J. Clin. Invest. 2000, 105, 9. (d) Dinsmore, C. J. Curr. Opin. Oncol. Endocr. Metab. Invest. Drugs 2000, 2, 26. (e) Bell, I. M. Expert Opin. Ther. Patents 2000, 10, 1813.

4. (a) Whyte, D. B.; Kirschmeier, P.; Hockenberry, T. N.; Nunez-Oliva, I.; James, L.; Catino, J. J.; Bishop, R. B.; Pai, J.-K. *J. Biol. Chem.* **1997**, *272*, 14459. (b) Sun, J.; Qian, T.; Hamilton, A. D.; Sebti, S. M. *Oncogene* **1998**, *16*, 1467.

5. Williams, T. M.; Bergman, J. M.; Brashear, K.; Breslin, M. J.; Dinsmore, C. J.; Hutchinson, J. H.; MacTough, S. C.; Stump, C. A.; Wei, D. D.; Zartman, C. B.; Bogusky, M. J.; Culberson, J. C.; Buser-Doepner, C.; Davide, J.; Greenberg, I. B.; Hamilton, K. A.; Koblan, K. S.; Kohl, N. E.; Liu, D.; Lobell, R. B.; Mosser, S. D.; O'Neill, T. J.; Rands, E.; Schaber, M. D.; Wilson, F.; Senderak, E.; Motzel, S. L.; Gibbs, J. B.; Graham, S. L.; Heimbrook, D. C.; Hartman, G. D.; Oliff, A. I.; Huff, J. R. J. Med. Chem. 1999, 42, 3779.

6. (a) Huber, H. E.; Abrams, M.; Anthony, N.; Graham, S.; Hartman, G.; Lobell, R.; Lumma, W.; Nahas, D.; Robinson, R.; Sisko, J.; Heimbrook, D. C. *Proc. Am. Assoc. Cancer Res.* **2000**, *41*, Abstract 2838. (b) Huber, H. E.; Robinson, R.; Watkins, A.; Nahas, D.; Abrams, M.; Buser, C.; Lobell, R.; Patrick, D.; Anthony, N.; Dinsmore, C.; Graham, S.; Hartman, G.; Lumma, W.; Williams, T.; Heimbrook, D. C. *J. Biol. Chem.*, in press. (c) Williams, T. M. et al., in preparation.

7. Weissman, S. A.; Lewis, S.; Askin, D.; Volante, R. P.; Reider, P. J. *Tetrahedron Lett.* **1998**, *39*, 7459.

8. Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113, 1427.

9. (a) Graham, S. L.; deSolms, S. J.; Giuliani, E. A.; Kohl, N. E.; Mosser, S. D.; Oliff, A. I.; Pompliano, D. L.; Rands, E.; Breslin, M. J.; Deanna, A. A.; Garsky, V. M.; Scholz, T. H.; Gibbs, J. B.; Smith, R. L. J. Med. Chem. 1994, 37, 725. (b) Lobell, R. B.; Gibson, R. et al., in preparation. The radiotracer used in the assay is $[^{125}I]$ 4-{ $[5-({(2S)-4-(3-iodophenyl)-2-[2-iodophenyl)-2-[2-iodophenyl)-2-[2-iodophenyl)-2-[2-iodophenyl)-2-[2-iodophenyl]-2-[2-iodo$ (methylsulfonyl)-ethyl]-5-oxopiperazin-1-yl}methyl)-1*H*-imidazol-1-yl]methyl}benzonitrile, which has ~50,000 high affinity binding sites (apparent K_d of ~ 1 nM) in the RAT1 cell line. The non-specific binding signal, determined by the addition of 1000-fold excess unlabeled competitor FTI, is typically 5-fold lower than the specific binding signal. The assay provides comparable results using a variety of cell lines. Cells are seeded at 200,000 cells per well in 24-well tissue culture plates and cultured for 16 h. The radiotracer (~300–1000 Ci/mmol) is diluted into culture media to a concentration of 1 nM, along with the desired concentration of test FTI, and then added to the cell monolayers. After a 4 h incubation at 37 °C, the cells are briefly rinsed with phosphate-buffered saline, removed from the culture plate by trypsinization, and then subjected to

^bSee footnote b in Table 1.

gamma counting using a Cobra II $^{\circledR}$ gamma counter (Packard Instrument Company). Dose–inhibition curves and IC $_{50}$ values are derived from a four-parameter curve-fitting equation using Sigma Plot $^{\circledR}$ software.

10. For 8c, the slope of a plot of $log(IC_{50})$ versus log[GGPP] is 0.93 in the presence of 5 mM ATP, suggestive of a GGPP-competitive inhibitor. In the absence of 5 mM ATP in the assay, GGPTase-I $IC_{50} = 140$ nM.

11. (a) Breslin, M. J.; deSolms, S. J.; Giuliani, E. A.; Stokker, G. E.; Graham, S. L.; Pompliano, D. L.; Mosser, S. D.; Hamilton, K. A.; Hutchinson, J. H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3311. (b) Anthony, N.; Gomez, R. P.; Schaber, M. D.; Mosser, S. D.; Hamilton, K. A.; O'Neil, T. J.; Koblan, K. S.; Graham, S. L.; Hartman, G. D.; Shah, D.; Rands, E.; Kohl, N. E.; Gibbs, J. B.; Oliff, A. I. *J. Med. Chem.* **1999**, *42*, 3356.