AMS526: Numerical Analysis I (Numerical Linear Algebra)

Lecture 18: Computing SVD; Sensitivity of Eigenvalues; Review for Midterm #2

Xiangmin Jiao

Stony Brook University

Outline

① Computing SVD (NLA§31)

Sensitivity of Eigenvalues (MC§7.2)

Review for Midterm #2

Xiangmin Jiao Numerical Analysis I 2 / 15

Computing the SVD

- Intuitive idea for computing SVD of $A \in \mathbb{R}^{m \times n}$:
 - ▶ Form A^*A and compute its eigenvalue decomposition $A^*A = V \Lambda V^*$
 - Let $\Sigma = \sqrt{\Lambda}$, i.e., diag $(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})$
 - Solve system $U\Sigma = AV$ to obtain U
- This method can be very efficient if $m \gg n$.
- However, it is not very stable, especially for smaller singular values because of the squaring of the condition number
 - ▶ For SVD of A, $|\tilde{\sigma}_k \sigma_k| = O(\epsilon_{\text{machine}} ||A||)$, where $\tilde{\sigma}_k$ and σ_k denote the computed and exact kth singular value
 - If computed from eigenvalue decomposition of A^*A , $|\tilde{\sigma}_k \sigma_k| = O(\epsilon_{\mathsf{machine}} \|A\|^2 / \sigma_k)$, which is problematic if $\sigma_k \ll \|A\|$
- If one is interested in only relatively large singular values, then using eigenvalue decomposition is not a problem. For general situations, a more stable algorithm is desired.

Computing the SVD

- Typical algorithm for computing SVD are similar to computation of eigenvalues
- Consider $A \in \mathbb{C}^{m \times n}$, then Hermitian matrix $H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}$ has eigenvalue decomposition

$$H\begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix},$$

where $A = U\Sigma V^*$ gives the SVD. This approach is stable.

- In practice, such a reduction is done implicitly without forming the large matrix
- Typically done in two or more stages:
 - ► First, reduce to bidiagonal form by applying different orthogonal transformations on left and right,
 - Second, reduce to diagonal form using a variant of QR algorithm or divide-and-conquer algorithm

Outline

Computing SVD (NLA§31)

2 Sensitivity of Eigenvalues (MC§7.2)

3 Review for Midterm #2

Xiangmin Jiao Numerical Analysis I 5 / 15

Sensitivity of Eigenvalues

Condition number of matrix X determines sensitivity of eigenvalues

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a nondefective matrix, and suppose $A = X \Lambda X^{-1}$, where X is nonsingular and Λ is diagonal. Let $\delta A \in \mathbb{C}^{n \times n}$ be some perturbation of A, and let μ be an eigenvalue of $A + \delta A$. Then A has an eigenvalue λ such that

$$|\mu - \lambda| \le \kappa_p(X) \|\delta A\|_p$$

for $1 \le p \le \infty$.

- $\kappa_p(X)$ measures how far eigenvectors are from linear dependence
- For normal matrices, condition number $\kappa_2(X) = 1$ and $\kappa_p(X) = O(1)$, so eigenvalues of normal matrices are always well-conditioned

Sensitivity of Eigenvalues

Proof.

Let $\delta \Lambda = X^{-1}(\delta A)X$. Then

$$\|\delta\Lambda\|_{p} \leq \|X^{-1}\|_{p} \|\delta A\|_{p} \|X\|_{p} = \kappa_{p}(X) \|\delta A\|_{p}.$$

Let y be an engenvector of $\Lambda + \delta \Lambda$ associated with μ . Suppose μ is not an eigenvalue of A, so $\mu I - \Lambda$ is nonsingular.

$$(\Lambda + \delta \Lambda)y = \mu y \Rightarrow (\mu I - \Lambda)y = (\delta \Lambda)y \Rightarrow y = (\mu I - \Lambda)^{-1}(\delta \Lambda)y$$
. Thus

$$\|(\mu I - \Lambda)^{-1}\|_p^{-1} \le \|\delta\Lambda\|_p.$$

 $\|(\mu I - \Lambda)^{-1}\|_{p} = |\mu - \lambda|^{-1}$, where λ is the eigenvalue of A closest to μ . Thus,

$$|\mu - \lambda| \le \|\delta\Lambda\|_p \le \kappa_p(X) \|\delta A\|_p.$$

Left and Right Eigenvectors

- To analyze sensitivity of individual eigenvalues, we need to define left and right eigenvectors
 - $Ax = \lambda x$ for nonzero x then x is *right eigenvector* associated with λ
 - $y^*A = \lambda y^*$ for nonzero y, then y is *left eigenvector* associated with λ
- Left eigenvectors of A are right eigenvectors of A^*

Theorem

Let $A \in \mathbb{C}^{n \times n}$ have distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ with associated linearly independent right eigenvectors x_1, \ldots, x_n and left eigenvectors y_1, \ldots, y_n . Then $y_j^* x_i \neq 0$ if i = j and $y_j^* x_i = 0$ if $i \neq j$.

Proof.

If $i \neq j$, $y_j^*Ax_i = \lambda_i y_j^*x_i$ and $y_j^*Ax_i = \lambda_j y_j^*x_i$. Since $\lambda_i \neq \lambda_j$, $y_j^*x_i = 0$. If i = j, since $\{x_i\}$ form a basis for \mathbb{C}^n , $y_i^*x_i = 0$ together with $y_i^*x_j = 0$ would imply that $y_i = 0$. This leads to a contradiction.

Sensitivity of Individual Eigenvalues

We analyze sensitivity of individual eigenvalues that are distinct

Theorem

Let $A \in \mathbb{C}^{n \times n}$ have n distinct eigenvalues. Let λ be an eigenvalue with associated right and left eigenvectors x and y, respectively, normalized so that $\|x\|_2 = \|y\|_2 = 1$. Let δA be a small perturbation satisfying $\|\delta A\|_2 = \epsilon$, and let $\lambda + \delta \lambda$ be the eigenvalue of $A + \delta A$ that approximates λ . Then

$$|\delta\lambda| \leq \frac{1}{|v^*x|}\epsilon + O(\epsilon^2).$$

- $\kappa = 1/|y^*x|$ is condition number for eigenvalue λ
- A simple eigenvalue is sensitive if its associated right and left eigenvectors are nearly orthogonal

9 / 15

Sensitivity of Individual Eigenvalues

Proof.

We know that $|\delta\lambda| \leq \kappa_p(X)\epsilon = O(\epsilon)$. In addition, $\delta x = O(\epsilon)$ when λ is a simple eigenvalue (proof omitted). Because $(A + \delta A)(x + \delta x) = (\lambda + \delta \lambda)(x + \delta x)$, thus

$$(\delta A)x + A(\delta x) + O(\epsilon^2) = (\delta \lambda)x + \lambda(\delta x) + O(\epsilon^2).$$

Left multiplying by y^* and using equation $y^*A = \lambda y^*$, we obtain

$$y^* (\delta A) x + O(\epsilon^2) = (\delta \lambda) y^* x + O(\epsilon^2)$$

and hence

$$\delta\lambda = \frac{y^*(\delta A)x}{y^*x} + O(\epsilon^2).$$

Since $|y^*(\delta A)x| \le ||y||_2 ||(\delta A)||_2 ||x||_2 = \epsilon$, $|\delta \lambda| \le \frac{1}{|y^*x|} \epsilon + O(\epsilon^2)$.

Sensitivity of Multiple Eigenvalues and Eigenvectors

- Sensitivity of multiple eigenvalues is more complicated
 - ► For multiple eigenvalues, left and right eigenvectors can be orthogonal, hence very ill-conditioned
 - ▶ In general, multiple or close eigenvalues can be poorly conditioned, especially if matrix is defective
- Condition numbers of eigenvectors are also difficult to analyze
 - ▶ If matrix has well-conditioned and well-separated eigenvalues, then eigenvectors are well-conditioned
 - ▶ If eigenvalues are ill-conditioned or closely clustered, then eigenvectors may be poorly conditioned

Outline

Computing SVD (NLA§31)

2 Sensitivity of Eigenvalues (MC§7.2)

3 Review for Midterm #2

Xiangmin Jiao Numerical Analysis I 12 / 15

Algorithms

- QR factorization
 - Classical and modified Gram-Schmidt
 - QR factorization using Householder triangularization and Givens rotation
- Solutions of linear least squares
 - Solution using Householder QR and other QR factorization
 - Alternative solutions: normal equation; SVD
- Conditioning and stability of linear least squares problems
- QR factorization with pivoting

Eigenvalue Problem

- Eigenvalue problem of $n \times n$ matrix A is $Ax = \lambda x$
- Characteristic polynomial is $det(A \lambda I)$
- Eigenvalue decomposition of A is $A = X \Lambda X^{-1}$ (does not always exist)
- Geometric multiplicity of λ is dim(null($A \lambda I$)), and algebraic multiplicity of λ is its multiplicity as a root of p_A , where algebraic multiplicity \geq geometric multiplicity
- Similarity transformations preserve eigenvalues and their algebraic and geometric multiplicities
- Schur factorization $A = QTQ^*$ uses unitary similarity transformations

Eigenvalue Algorithms

- Underlying concepts: power iterations, Rayleigh quotient, inverse iterations, convergence rate
- Schur factorization is typically done in two steps
 - Reduction to Hessenberg form for non-Hermitian matrices or reduction to tridiagonal form for hermitian matrices by unitary similarity transformation
 - Finding eigenvalues of Hessenberg or tridiagonal form
- Finding eigenvalue of tridiagonal forms
 - QR algorithm with shifts, and their interpretations as (inverse) simultaneous iterations