

Cutting Starbucks' Cold Drink Costs Through Smarter Sourcing and Roasting

Presented By:

Team 2 Aastha Surana, Jooyeon Lee, Zicheng Wang

Starbucks' Cost Challenge & Strategic Opportunity

75%

Over **75% of Starbucks beverage sales are now cold drinks**, Make bean quality differences less noticeable

\$4.4

Arabica prices hit **\$4.40/lb** in 2024 → *47-year high* Driven by **climate disruptions** and **supply shortages** in Brazil & Colombia

Introducing **Robusta beans** in beverages allow Starbucks to **reduce costs**, diversify sourcing, improve environmental sustainability.

What's the Optimization Goal?

Optimization Objective

Minimize total system cost of producing 100M+ beverages by strategically incorporating cost-effective Robusta beans, while maintaining quality standards & operational feasibility.

Robusta Benefits

- **40–60% cheaper** than Arabica (\$2.00–\$2.50/lb)
- Higher caffeine & bolder taste
- More climate-resilient, needs less water/altitude
- Well-suited for cold beverages diluted with milk/sugar

DECISION VARIABLES

	BEAN MIX	ROAST	BEAN ORIGIN	TRANSPORTATION	INVENTORY
VARIABLES	arabica_hot, robusta_hot, arabica_cold, robusta_cold	r_blonde, r_medium, r_dark	origin_brazil, origin_colombia, origin_ethiopia, origin_vietnam	t_air, t_ocean, t_land	inventory
MEANING	Controls the proportion of Arabica and Robusta beans in hot vs. cold beverages	Determines the roast level mix to balance flavor, cost, and customer preferences	Decides how much beans comes from each country	Allocates bean volumes across air, ocean, and land transportation modes	Sets minimum storage level to prevent disruptions and ensure supply chain resilience

CONSTRAINTS

DEMAND

- 100M beverages = 2.2M lbs beans
- 25% hot, 75% cold drinks

BLEND

- Hot: Max 15% Robusta
- Cold: 100% Robusta allowed

ROAST

- Blonde ≤ 30%
- Medium, dark required for balance

ORIGIN

No more than 40% from a single origin

INVENTORY

Minimum 20% buffer

TRANSPORT

At least 10% via ocean, air and land each

OBJECTIVE FUNCTION

MINIMIZE TOTAL COST

$$Z = 4.4 * a_{arabica} + 2.4 * a_{robusta}$$
 (bean sourcing cost)
$$+ 4.0 * r_{blonde} + 4.5 * r_{medium} + 5.0 * r_{dark}$$
 (roasting cost)
$$+ 0.03 * t_{land} + 0.01 * t_{ocean} + 4.6 * t_{air}$$
 (transportation cost)
$$+ 0.5 * W$$
 (inventory holding cost)

OPTIMAL SOLUTION

ROAST

Blonde: 660,000 lbs

(30%)

Medium: 1,320,000 lbs

(60%)

Dark: 220,000 lbs (10%)

TRANSPORT

Ocean: 1,760,000 lbs

(80%)

Land: 220,000 lbs (10%)

Air: 220,000 lbs (10%)

ORIGIN

Brazil: 187,000 lbs (8.5%)

Colombia: 187,000 lbs (8.5%)

Ethiopia: 93,500 lbs (4.2%)

Vietnam: 0 lbs (0%)

INVENTORY

20%

(440,000 lbs)

BUSINESS IMPLICATIONS

COST REDUCTION OPPORTUNITY

Compared to a \$21M all-Arabica baseline, the optimized model saves \$5M~5.5M annually

Aligns sourcing with

consumer preferences while

preserving brand equity in

quality-sensitive products

ROAST MIX OPTIMIZATON

Balances roast variety with cost-60% Medium, 30% Blonde, 10% Dark-to meet demand without overspending on niche roasts

OPERATIONAL STABILITY

20% inventory buffer (440,000 lbs) reduces stockout risk and ensures consistent roasting and delivery during supply disruptions

SUPPLY CHAIN RESILIENCE EFFICIENT TRANSPORTATION MIX

Enhances sourcing flexibility and mitigates regional supply risk while maintaining flavor standards

80% ocean shipping minimizes cost; 10% land and 10% air ensure freshness and flexibility across markets

Key Findings from Sensitivity Analysis

Constraint / Variable	Value	Shadow Price / Reduced Cost	Interpretation	
Hot_Demand	550,000 lbs	\$8.84/lb	High-cost due to Arabica-heavy blend	
Cold_Demand	1,650,000 lbs	\$7.14/lb	Fully met with 100% Robusta	
Hot_Arabica_Quality	≥ 85% Arabica	\$2.00/lb	Binding; raising threshold increases cost	
Min_Transport_Air	220,000 lbs	\$2.30/lb	Required, but expensive	
Blonde_Max (≤30%)	660,000 lbs	- \$0.50/lb	Relaxing cap would reduce cost	
Arabica_cold	0 lbs	\$2.00/lb (Reduced Cost)	Too expensive for cold drinks	
Min_Inventory (20%)	440,000 lbs	\$0.50/lb	Adds cost, but ensures supply buffer	

Key Findings from Sensitivity Analysis

Summary Insights

- Starbucks is operating at the cost-optimal edge of quality, inventory, and logistics trade-offs.
- Many constraints are **binding**, confirming no slack in key areas like demand, roast balance, and quality.

Cost levers:

- Relaxing Arabica % in hot drinks would reduce cost, but compromise quality.
- Relaxing **air transport minimum** saves \$2.30/lb.
- Increasing blonde roast cap saves \$0.50/lb.

Key Findings from Scenario Analysis

Arabica Price	Hot Arabica Min %	Total Cost (\$)	Arabica Hot %	Arabica Cold %
4.4	85%	16,633,100	85%	0%
4.4	70%	16,468,100	70%	0%
4.4	60%	16,358,100	60%	0%
5.0	85%	16,913,600	85%	0%
5.0	70%	16,699,100	70%	0%
5.0	60%	16,556,100	60%	0%
6.0	85%	17,381,100	85%	0%
6.0	70%	17,089,600	70%	0%
6.0	60%	16,886,100	60%	0%

Key Findings from Scenario Analysis

Insights & Implications

- Cost rises with Arabica price and higher quality thresholds.
 - \rightarrow E.g., raising Arabica price from \$4.4 to \$6.0 at 85% quality \rightarrow +\$748K
- Arabica in cold drinks is avoided entirely due to its cost.
 - ➤ The model sticks to 100% Robusta in cold beverages across all cases.
- Relaxing the hot Arabica requirement (from $85\% \rightarrow 60\%$)
 - ➤ Saves up to \$495K, depending on Arabica price.
- Recommendation:

Starbucks should **re-evaluate quality thresholds** (especially for cold drinks) to explore a better **cost-quality balance**.

Challenges

Single-period scope

It does not account for seasonality, inventory rollover, or dynamic planning.

X

Only brewed coffee is considered, with no time-decay or shelf-life effects.

Deterministic inputs

Demand and supply conditions are assumed fixed, without capturing uncertainty.

Workforce capacity and carbon emissions are not yet included.

No disruption modeling

The model excludes risks like climate events, strikes, or geopolitical shocks.

Threshold-driven Structure

Next Steps

Validate
Assumption
s with
Internal
Data

Incorporate Regional Demand Forecasts

Expand
Model
Scope to
Sustainabili
ty Metrics

Leverage Advanced Analytics

Extend to
Multi-Perio
d and
Stochastic
Planning

Revisit Quality Thresholds

Thank you Q&A