ASSOCIATION RULE: TUTORIAL 2

Explain the following observation for PCY algorithm

- If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent

PCY Algorithm – First Pass

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

Few things to note:

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair, a bucket can still be frequent ☺
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent ©
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:
 Only count pairs that hash to frequent buckets

Example: PCY Algorithm 2nd Pass

For $\{i, j\}$ to be a candidate pair:

- **1.** Both i and j are frequent items
- The pair $\{i, j\}$ hashes to a bucket whose bit in the bit vector is **1** (i.e., a **frequent bucket**)

Candidate Pairs & Counts

	$\frac{(1,4)}{(2,3)}$, $(2,3) \rightarrow h(i,j) = 0$
without any	$(1,5),(2,4) \rightarrow h(i,j) = 1$
frequent pair,	$(2,5), \frac{(3,4)}{(3,4)} \rightarrow h(i,j) = 2 \longrightarrow$
a bucket can	$(1,2),(3,5)\to h(i,j)=3$
still be	$(1,3), \frac{(4,5)}{(1,i)} \rightarrow h(i,i) = 4$
frequent	

Pair	Count
(2,3)	4
(2,5)	3
(1,2)	2
(3,5)	2
(1,3)	4

→ Frequent Itemsets are: {1}, {2}, {3}, {5}, {1, 3}, {2, 3}, {2, 5}

Q2

- Given a dataset, minsup threshold, which of the following has the largest number of itemsets? Which has the smallest number of itemsets?
 - Frequent itemsets
 - Maximal frequent itemsets
 - Closed frequent itemsets

Maximal Frequent vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Q3

- Discuss the impact of the following characteristics of a transaction table on the use of the FP tree to mine frequent itemsets from the table:
- □ (a) Number of unique items in table
- (b) Average number of items in a transaction
- (c) Number of transactions in table

Q3-Ans

- □ (a) Number of unique items in table
 - (1) the header table increases linearly,
 - (2) the number of possible patterns to be mined (i.e., FP-tree) increases non-linearly,
 - (3) time spent in exploring fp-tree (i.e., fp-growth) increases non-linearly.

Q3-Ans

- (b) Average number of items in a transaction
 - the height of FP-tree is limited by the maximal length of the transactions. We may find more longer patterns and the number of possible patterns to be mined may increase

- (c) Number of transactions in table
 - Time of building Fp-tree increases linearly

Example experimental results of Fp-tree

Q4

□ A database has four transactions. Let min_sup = 60% (equivalent to 2.4 out of 4) and min_conf = 80%.

TID	Date	Items_bought
T100	20006-01-01	{K, A, D, B}
T200	20006-01-01	{D, A, C, E, B}
T300	20006-01-01	{C, A, B, E}
T400	20006-01-01	{B, A, D}

□ Find all frequent itemsets using FP-growth.

TID	Date	Items_bought
T100	2006-01-01	{K, A, D, B}
T200	2006-01-01	{D, A, C, E, B}
T300	2006-01-01	{C, A, B, E}
T400	2006-01-01	{B, A, D}

TID	Items_bought
T100	{A, B, D}
T200	{A, B, D}
T300	{A, B}
T400	{A, B, D}

TID	Items_bought
T100	{A, B, D}
T200	{A, B, D}
T300	{A, B}
T400	{A, B, D}

TID	Items_bought
T100	{A, B, D}
T200	{A, B, D}
T300	{A, B}
T400	{A, B, D}

TID	Items_bought
T100	{A, B, D}
T200	{A, B, D}
T300	{A, B}
T400	{A, B, D}

Collect all patterns that ends at D

If the conditional FP-tree contains a single path, simply enumerate all patterns.

Frequent patterns contain D: $\{\{D\}, \{A, D\}, \{B, D\}, \{A, B, D\}\}$

Collect all patterns that ends at B

Collect all patterns that ends at A

Q5 Candidate Generation

- <(a),(b),(c)> can be merged with <(b),(c),(f)> to produce <(a),(b),(c),(f)>
- $<\{a\},\{b\},\{c\}>$ cannot be merged with $<\{b,c\},\{f\}>$
- <(a},{b},{c}> can be merged with <{b},{c,f}> to produce <{a},{b},{c,f}>
- $<\{a,b\},\{c\}>$ can be merged with $<\{b\},\{c,f\}>$ to produce $<\{a,b\},\{c,f\}>$
- <{a,b,c}> can be merged with <{b,c,f}> to produce <{a,b,c,f}>
- <a}{b}{a}> can be merged with <{b}{a}{b}> to produce <{a},{b},{a},{b}>
- <b\{a\}{a\}{b\}<a> to produce<b\,\{a\},\{a\},\{a\}>