

Differentiable Rendering

3D Graphics Systems | Al Graphics - Theory and Practice

Hallison Paz

IMPA, June 7th, 2023

Why Differentiable Rendering?

- Relate 2D pixels to 3D properties
- Image based 3D reasoning

Differentiable Rendering

Scene Properties

-

Differentiable Rendering

Bridging the Gap: Graphics <> Vision

Scene parameters: θ

$$f(heta) = I$$
 $E(heta) = ||f(heta) - I||^2$

Optimization using a Differentiable Renderer

Self supervised learning

Challenges

Rasterization Pipeline

Rendering = rasterization + shading

Rasterization

Z buffering

Traditional rasterization problem 1

Z discontinuity

Step change in pixel color

Traditional rasterization problem 2

XY discontinuity

Step change in pixel color

Commom approaches

Approximated gradients

- Open DR
- Neural 3D Mesh renderer

Approximated rendering

Soft Rasterizer

Open DR

Fig. 1. Partial derivative structure of the renderer.

Open DR

```
# Minimize the energy
light_parms = A.components
ch.minimize(E, x0=[translation])
ch.minimize(E, x0=[translation, rotation, light_parms])
```


Neural 3D Mesh Renderer

(a) Example of mesh & pixels

(b) Standard rasterization Forward pass of proposed method

(c) Derivative of (b)

No gradient flow

- (d) Modification of (b)

 Blurred image
- (e) Derivative of (d)

 Backward pass of proposed method

(a) Example of mesh & pixels

- (c) Derivative of (b)

 No gradient flow
- (d) Modification of (b)

 Blurred image
- (e) Derivative of (d)

 Backward pass of proposed method

Soft Rasterizer

Approximated rendering

Standard rendering

Rendered w/ larger γ

Rendered w/ larger γ and σ

Traditional rasterization problem 1

Z discontinuity

yellow

 $\begin{array}{c} y \\ z \\ \hline \\ \text{Shift} \\ \text{yellow} \\ \text{triangle} \\ \text{by } + \delta z \\ \text{overlap} \end{array}$

with red

Step change in pixel color

Solution using soft aggregation

Blend closest

Traditional rasterization problem 2

XY discontinuity

Step change in pixel color

Solution using soft aggregation

Fuzzy geometry

Probability map D_i at pixel p_i :

$$D^i_j = sigmoid(\delta^i_j * rac{d^2(i,j)}{\sigma})$$

$$\delta^i_j = \{+1, ext{if } p_i \in f_j; -1, ext{otherwise}\}$$

(a) ground truth (b)
$$\sigma = 0.003$$
 (c) $\sigma = 0.01$

(c)
$$\sigma = 0.01$$

(d)
$$\sigma = 0.03$$

Aggregation

$$I^i = A_S(\{C_j\}) = \sum_j w^i_j C^i_j + w^i_b C_b$$

$$w^i_j = rac{D^i_j exp(z^i_j/\gamma)}{\sum_k D^i_k exp(z^i_k/\gamma) + exp(\epsilon/\gamma)}$$

- $ullet z^i_j$ normalized inverse depth
- ϵ (for background)
- γ sharpness of the aggregate function.

PyTorch3D