E-Commerce Supply Chain Analysis

By: Sampurna Dey

Linkedin: www.linkedin.com/in/sampurna-dey-060573129

Github: https://github.com/sampurna-project

- Objective:

- 1. To find the revenue generated by different product type.
- 2. To analyze the sales by product type.
- 3. To find out the total revenue generated from shipping carriers.
- 4. To analyze revenue generated by each SKU (Stock Keeping Unit).
- 5. To analyze the shupping cost of carriers.
- 6. To find out the cost distribution by transportation modes.
- 7. To analyze the defect rate of the product during shipping.

```
#Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#Importing Data
Supplychain = pd.read_csv("/content/supply_chain_data.csv")
Supplychain
```

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary
1	skincare	SKU1	14.843523	95	736	7460.900065	Female
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary
95	haircare	SKU95	77.903927	65	672	7386.363944	Unknown
96	cosmetics	SKU96	24.423131	29	324	7698.424766	Non-binary
97	haircare	SKU97	3.526111	56	62	4370.916580	Male
98	skincare	SKU98	19.754605	43	913	8525.952560	Female

#Top 10 Data

Supplychain.head(10)

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics	:
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary	
1	skincare	SKU1	14.843523	95	736	7460.900065	Female	
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown	

#Bottom 10 Data
Supplychain.tail(10)

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics
90	skincare	SKU90	13.881914	56	320	9592.633570	Non-binary
91	cosmetics	SKU91	62.111965	90	916	1935.206794	Male
92	cosmetics	SKU92	47.714233	44	276	2100.129755	Male
93	haircare	SKU93	69.290831	88	114	4531.402134	Unknown
94	cosmetics	SKU94	3.037689	97	987	7888.356547	Unknown
95	haircare	SKU95	77.903927	65	672	7386.363944	Unknown
96	cosmetics	SKU96	24.423131	29	324	7698.424766	Non-binary
97	haircare	SKU97	3.526111	56	62	4370.916580	Male
98	skincare	SKU98	19.754605	43	913	8525.952560	Female
99	haircare	SKU99	68.517833	17	627	9185.185829	Unknown
10 rc	ows x 24 coli	ımns					+

	Price	Availability	Number of products sold	Revenue generated	Stock levels	Lead times	qu
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	10
mean	49.462461	48.400000	460.990000	5776.048187	47.770000	15.960000	4
std	31.168193	30.743317	303.780074	2732.841744	31.369372	8.785801	2
min	1.699976	1.000000	8.000000	1061.618523	0.000000	1.000000	
25%	19.597823	22.750000	184.250000	2812.847151	16.750000	8.000000	2
50%	51.239831	43.500000	392.500000	6006.352023	47.500000	17.000000	5
75%	77.198228	75.000000	704.250000	8253.976921	73.000000	24.000000	7
max	99.171329	100.000000	996.000000	9866.465458	100.000000	30.000000	ç

#Checking the dimensions or shape of a DataFrame

Supplychain.shape

(100, 24)

#Removing rows containing any missing values (NaN values)

print(Supplychain.dropna(inplace = True))

None

#Checking Missing Values

Supplychain.isna()

Number

Product type SKU Price Availability of Revenue Customer Stock products generated demographics levels sold

201

0 False False False False False False False False False False

Supplychain.isna().sum()

Product type 0 0 Price Availability 0 Number of products sold Revenue generated 0 Customer demographics 0 Stock levels 0 Lead times Order quantities Shipping times 0 Shipping carriers 0 Shipping costs Supplier name 0 Location 0 Lead time 0 Production volumes Manufacturing lead time Manufacturing costs 0 Inspection results 0 Defect rates 0 Transportation modes 0 0 Routes 0 Costs dtype: int64

```
#Creating a Visualization on Price of Products and Revenue Generated by them:

plt.figure(figsize = (10,10))
sns.lmplot(x='Price', y='Revenue generated', data=Supplychain, hue='Product type', ci=None, palette = 'magma')
plt.title("Price of Products and Revenue Generated", fontweight = 'bold')
plt.show()
```


- Conclusion:

Skincare products contribute significantly to the company's revenue, being the primary source

while cosmetics and haircare products generate comparatively lower revenue.

```
# Grouping the DataFrame by 'Product type' and calculate the sum of 'Number of products sold'
sales_data = Supplychain.groupby('Product type')['Number of products sold'].sum()
print(sales_data)
     Product type
     cosmetics
                 11757
     haircare
                  13611
                  20731
     Name: Number of products sold, dtype: int64
#Creating Visualization Based on Sales Data
plt.figure(figsize = (8,6))
sales_data.plot(kind='pie', autopct='%0.1f%%', startangle = 135)
plt.axis('equal')
plt.legend(sales_data.index , title='Product Type', loc='upper left')
plt.title("Sales by Product Type", fontweight = 'bold')
plt.show()
```


→ Conclusion :

Skincare leads the sales charts, with haircare following closely in second place and cosmetics claiming the last spot in terms of revenue generation.

Supplychain.head()

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics	S [.] le
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary	
1	skincare	SKU1	14.843523	95	736	7460.900065	Female	
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown	
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary	
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary	
5 rows x 24 columns								•

```
#Groupby operation for calculating the sum of the "Revenue generated" for each "Shipping carriers"
total_revenue = Supplychain.groupby('Shipping carriers')['Revenue generated'].sum().reset_index()
print(total_revenue)
      Shipping carriers Revenue generated
     0
              Carrier A
                             142629.994607
    1
              Carrier B
                             250094.646988
     2
              Carrier C
                             184880.177143
#Creating Visualization on Revenue Generated through Shipping Carriers
fig = sns.barplot(x = total_revenue['Shipping carriers'] , y = total_revenue['Revenue generated'], palette = 'dark')
# Add count labels on top of each bar
for bars in fig.containers:
    fig.bar_label(bars)
plt.title("Total Revenue By Shipping Carriers", fontweight = 'bold')
plt.show()
```


- Conclusion:

Based on the above visualization, we observe that Carrier B generated the highest revenue.

Following that, Carrier C is ranked second in revenue generation, while Carrier A has the lowest revenue among the three carriers

```
#Creating Visualization on Revenue Generated through Shipping Carriers

plt.figure(figsize=(22, 15))
sns.lineplot(x = 'SKU', y = 'Revenue generated', data = Supplychain , marker='o', color='r')

plt.xticks(fontsize = 10, rotation = 90)
plt.yticks(fontsize = 12)

plt.xlabel('SKU', fontsize = 20)
plt.ylabel('Revenue Generated', fontsize = 16)
plt.title('Revenue Generated by SKU', fontsize = 20, fontweight = 'bold')

plt.show()
```



```
#Groupby operation for calculating the sum of the "Shipping costs" for each "Shipping carriers#
shipping_cost = Supplychain.groupby('Shipping carriers')['Shipping costs'].sum().reset_index()
print(shipping_cost)
```

	Shipping carriers	Shipping costs
0	Carrier A	155.537831
1	Carrier B	236.897620
2	Carrier C	162.379457

#Creating Visualization on Shipping Cost through Shipping Carriers

```
fig = sns.barplot(x = shipping_cost['Shipping carriers'] , y = shipping_cost['Shipping costs'], palette = 'dark')
# Add count labels on top of each bar
for bars in fig.containers:
    fig.bar_label(bars)
```

plt.title("Shipping Cost By Shipping Carriers", fontweight = 'bold')
plt.show()

▼ Conclusion :

The shipping cost of Carrier B is the highest at 236.898, followed by Carrier C at 162.379, and Carrier A at 155.538.

```
#Grouping the "Transportation modes" column and then calculating the sum of the "Costs" for each group
transportation_cost = Supplychain.groupby('Transportation modes')['Costs'].sum()
print(transportation_cost)
     Transportation modes
            14604.527498
    Rail 15168.931559
     Road 16048.193639
     Sea
            7102.925520
    Name: Costs, dtype: float64
# Plotting the pie chart for transportation_cost
plt.figure(figsize=(8, 10))
transportation_cost.plot(kind='pie', autopct='%0.1f%', startangle=155)
plt.axis('equal')
plt.legend(transportation cost.index, title='Modes', loc='upper left')
plt.title("Transportation Costs by Mode", fontweight='bold')
plt.show()
```

Transportation Costs by Mode

Supplychain.head()

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics	S [.] le
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary	
1	skincare	SKU1	14.843523	95	736	7460.900065	Female	
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown	
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary	
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary	
5 r	nws × 24 cc	lumns						•

#Grouping the "Product type" column and then calculating the sum of "Defect rates" for each group
Total_Defect_Rates = Supplychain.groupby('Product type')['Defect rates'].sum().reset_index()
print(Total_Defect_Rates)

```
Product type Defect rates
0 cosmetics 49.901461
1 haircare 84.427107
2 skincare 93.387231
```

```
#Creating Visualization on Defect Rates by Product Type

fig = sns.barplot(x = Total_Defect_Rates['Product type'] , y = Total_Defect_Rates['Defect rates'], palette = 'dark')

# Add count labels on top of each bar
for bars in fig.containers:
    fig.bar_label(bars)

plt.title("Defect Rates by Product Type", fontweight = 'bold')
plt.show()
```


Conclusion:

Based on the above visualization, we observe that the defect rate is highest in skincare products,

followed by haircare products in the second position, and cosmetics with the lowest defect rate.