ОПЕРАЦИИ НАД ЯЗЫКАМИ

§ 9.1. Замкнутость относительно элементарных операций

В этой главе мы применяем операции объединения, конкатенации, обращения, замыкания и т.д. к языкам разных типов. Интересно выяснить, какие операции какие классы языков сохраняют, т.е. отображают языки некоторого класса в тот же самый класс. Есть ряд причин интересоваться этим вопросом. Во-первых, знание, сохраняет операция или нет данный класс языков, помогает характеризовать этот класс. Во-вторых, часто бывает легче узнать, что сложный язык относится к некоторому классу, при помощи того факта, что эта принадлежность является результатом различных операций над другими языками в данном классе, чем путем непосредственного конструирования грамматики для этого языка. В-третьих, знание, полученное из изучения операций над языками, может быть использовано при доказательстве теорем, как это было сделано в гл. 7, где мы показали, что класс рекурсивно перечислимых множеств строго содержит рекурсивные множества, используя при доказательстве тот факт, что рекурсивные множества замкнуты относительно дополнения.

Начнем с рассмотрения операций объединения, конкатенации, замыкания Клини и обращения. Используем следующую лемму о "нормальной форме" для контекстно-зависимых языков и языков типа 0:

Лемма 9.1. Каждый контекстно-зависимый язык порождается контекстно-зависимой грамматикой, в которой все правила имеют форму либо $\alpha \to \beta$, где α и β — цепочки, состоящие из одних только нетерминалов, либо $A \to b$, где A — нетерминал, ab — терминал. Каждый язык типа 0 порождается грамматикой типа 0, правила которой имеют указанную форму.

Доказательство. Пусть $G = (V_N, V_T, P, S)$ — контекстно-зависимая грамматика. Каждому $a \in V_T$ сопоставим новый символ X_a . Рассмотрим грамматику $G_1 = (V_N', V_T, P_1, S)$, где $V_N' = V_N \cup \{X_a \mid a \in V_T\}$. Множество P_1 включает все правила вида $X_a \to a$. Если $\alpha \to \beta \in P$, то $\alpha_1 \to \beta_1 \in P_1$, где цепочки α_1 и β_1 получаются из цепочек α и β путем замещения в них каждого терминала a символом X_a . Доказательство тривиально и мы оставляется его читателю в качестве упражнения. Подобное же доказательство применимо к грамматикам типа 0.

Теорема 9.1 Классы регулярных, контекстно-свободных, контекстно-зависимых и рекурсивно перечислимых множеств замкнуты относительно объединения, конкатенации, замыкания и обращения.

Доказательство. Для класса регулярных множеств доказательство было дано в гл. 3.

Рассмотрим две грамматики: $G_1 = (V_N^{(1)}, V_T^{(1)}, P_1, S_1)$ и $G_2 = (V_N^{(2)}, V_T^{(2)}, P_2, S_2)$, причем обе либо контекстно-свободные, либо контекстно-зависимые, либо типа 0. Без потери общности можно предполагать, что $V_N^{(1)} \cap V_N^{(2)} = \emptyset$.

Кроме того, согласно лемме 9.1 и теореме 4.5 можно считать, что правила грамматик G_1 и G_2 имеют форму $\alpha \to \beta$ и $A \to a$, где α и β — цепочки, состоящие из одних только нетерминалов, A — одиночный нетерминал, а a — одиночный терминальный символ. Кроме того, если G_1 и G_2 — контекстно-свободные грамматики, то $\beta = \varepsilon$ подразумевает, что α есть S_1 или S_2 и что α никогда не появляется в правой части никакого правила.

Объединение. Пусть $G_3 = (V_N^{(1)} \cup V_N^{(2)} \cup \{S_3\}, V_T^{(1)} \cup V_T^{(2)}, P_3, S_3)$, где $S_3 \notin V_N^{(1)} \cup V_N^{(2)}$, а множество P_3 содержит правила $S_3 \to S_1$, $S_3 \to S_2$ и все правила из множеств P_1 и P_2 за исключением $S_1 \to \varepsilon$ и $S_2 \to \varepsilon$, если G_1 и G_2 — контекстнозависимы. В случае, когда G_1 и G_2 — контекстно-зависимы и $S_1 \to \varepsilon \in P_1$ или $S_2 \to \varepsilon \in P_2$, добавим правило $S_3 \to \varepsilon$ к множеству правил P_3 . Теперь грамматика G_3 — того же типа, что и грамматики G_1 , G_2 , и $L(G_3) = L(G_1) \cup L(G_2)$.

Конкатенация. Пусть $G_4 = (V_N^{(1)} \cup V_N^{(2)} \cup \{S_4\}, V_T^{(1)} \cup V_T^{(2)}, P_4, S_4)$, где $S_4 \notin V_N^{(1)} \cup V_N^{(2)}$, а множество P_4 содержит правило $S_4 \to S_1S_2$ и все правила из множеств P_1 и P_2 , за исключением правил $S_1 \to \varepsilon$ и $S_2 \to \varepsilon$, если G_1 и G_2 — контекстно-зависимы. В случае, когда G_1 и G_2 — контекстно-зависимы и $S_1 \to \varepsilon \in P_1$, добавим правило $S_4 \to S_2$ к множеству правил P_4 ; если $S_2 \to \varepsilon \in P_2$, то добавим правило $S_4 \to S_1$ к множеству P_4 . Если $S_1 \to \varepsilon \in P_1$ и $S_2 \to \varepsilon \in P_2$, то добавим правило $S_4 \to \varepsilon$ к множеству $S_4 \to$

Рис. 9.1.

Заметим, что поскольку $V_{\rm N}^{(1)} \cap V_{\rm N}^{(2)} = \emptyset$ и все правила из множеств P_1 , P_2 имеют нетерминалы исключительно слева, невозможно, чтобы строка, образованная правым концом сентенциальной формы грамматики G_1 , за которой следует левый конец сентенциальной формы грамматики G_2 , могла быть левой стороной правила в множестве P_4 . Это означает, что левая часть любого правила целиком состоит из нетерминалов только одной из двух грамматик (см. рис. 9.1). Соответственно и все правило относится к одной исходной грамматике. Доказательство того, что $L(G_4) = L(G_1)L(G_2)$ просто.

Замыкание. Пусть $G_5 = (V_N, V_T^{(1)}, P_5, S_5)$, где $V_N = V_N^{(1)} \cup \{S_5, S_5'\}$, а $P_5 = P_1 \cup \{S_5 \to S_1 S_5, S_5 \to \epsilon\}$, если G_5 — контекстно-свободная грамматика, иначе $P_5 = P_1 \cup \{S_5 \to \epsilon, S_5 \to S_1, S_5 \to S_1 S_5'\} \cup \{a S_5' \to a S_1, a S_5' \to a S_1 S_5' \mid a \in V_T^{(1)}\}$. Однако в случае, когда G_1 — контекстно-зависимая грамматика, правило $S_1 \to \epsilon$, если оно имеется, отбрасывается. Грамматика G_5 является грамматикой того же типа, что и G_1 , и $L(G_5) = (L(G_1))^*$.

Теперь рассмотрим операции пересечения и дополнения.

Теорема 9.2. Класс контекстно-свободных языков не замкнут относительно пересечения.

Доказательство. Языки $L_1 = \{a^nb^nc^i \mid n \geq 1, i \geq 0\}$ и $L_2 = \{a^jb^nc^n \mid n \geq 1, i \geq 0\}$ являются контекстно-свободными, поскольку они порождаются граммати-ками $G_1 = (\{S,T\}, \{a,b,c\}, \{S \rightarrow Sc,S \rightarrow T, T \rightarrow aTb, T \rightarrow ab\}, S)$ и $G_2 = (\{S,T\}, \{a,b,c\}, \{S \rightarrow aS, S \rightarrow T, T \rightarrow bTc, T \rightarrow bc\}, S)$ соответственно. Теперь язык $L = L_1 \cap L_2 = \{a^nb^nc^n \mid n \geq 1\}$, который не контекстно-свободен по тривиальному следствию из теоремы 4.7. Действительно, все цепочки L не соответствуют требуемому условию: в L должна быть цепочка uvwxy, такая, что все цепочки вида uv^nwx^ny при любом n тоже принадлежали бы языку L. Мы могли бы считать $u = y = \varepsilon$, но ядро w должно быть в первой степени, а в цепочках из языка L оно тоже в степени n.

Теорема 9.3. Класс контекстно-свободных языков не замкнут относительно дополнения.

Доказательство. Поскольку класс контекстно-свободных языков замкнут относительно объединения, но не пересечения, то он не может быть замкнут относительно дополнения, поскольку $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.

Teopema 9.4. Класс контекстно-свободных языков замкнут относительно пересечения с регулярным множеством.

Доказательство. Пусть L — контекстно-свободный язык, а R — регулярное множество. Предположим, что $P_1 = (Q_P, \Sigma, \Gamma, \delta_P, p_0, Z_0, F_P)$ — недетерминированный магазинный автомат (npda), принимающий язык L, а $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ — детерминированный конечный автомат (dfa), принимающий множество R. Построим недетерминированный магазинный автомат (npda) $P_2 = (Q_P \times Q_A, \Sigma, \Gamma, \delta, [p_0, q_0], Z_0, F_P \times F_A)$, который принимает $L \cap R$. Функция δ определяется следующим образом. Для всех $p \in Q_P$, $q \in Q_A$, $a \in \Sigma \cup \{\epsilon\}$ и $Z \in \Gamma$ функция $\delta([p, q], a, Z)$ содержит $([p', \delta_A(q, a)], \gamma)$ всякий раз, как $\delta_P(p, a, Z)$ содержит (p', γ) . (Напомним, что $\delta_A(q, \epsilon) = q$ для всех $q \in Q_A$.) Неформально npda P_2 хранит след состояний npda P_1 и dfa A в своем конечном управлении.

І. Предположим, что $x \in L \cap R$. Пусть $x = a_1 a_2 \dots a_n$, где $a_i \in \Sigma \cup \{\epsilon\}$, $1 \le i \le n$, так что существуют состояния $q_0, q_1, \dots, q_n \in Q_A$, $p_0, p_1, \dots, p_n \in Q_P$ и цепочки $\gamma_0, \gamma_1, \dots, \gamma_n \in \Gamma^*$, для которых имеют место $\delta_A(q_i, a_{i+1}) = q_{i+1}$ и $(p_i, a_{i+1} \dots a_n, \gamma_i) \mid_{\overline{P_1}}^*$

 $(p_{i+1},\ a_{i+2}...a_n,\ \gamma_{i+1})$ при условии, что $0 \le i < n,\ \gamma_0 = Z_0,\ q_n \in F_A,\ p_n \in F_P$. Тогда $([p_i,q_i],a_{i+1}...a_n,\gamma_i)$ $\stackrel{*}{\underset{F_2}{\vdash}}([p_{i+1},q_{i+1}],a_{i+2}...a_n,\gamma_{i+1})$ и $([p_0,q_0],x,Z_0)$ $\stackrel{*}{\underset{F_2}{\vdash}}([p_n,q_n],\varepsilon,\gamma_n)$, при том, что $[p_n,q_n] \in F_P \times F_A$, так что $x \in T(P_2)$.

II. Теперь предположим, что $x \in T(P_2)$. Тогда существуют движения вида $([p_i, q_i], a_{i+1} \dots a_n, \gamma_i) \stackrel{*}{\vdash_{\overline{P}_2}} ([p_{i+1}, q_{i+1}], a_{i+2} \dots a_n, \gamma_{i+1})$ для $0 \le i < n$, причем $\gamma_0 = Z_0$, $[p_n, q_n] \in F_P \times F_A$. Тогда $\delta_A(q_i, a_{i+1}) = q_{i+1}$ для $0 \le i < n$, причем $q_n \in F_A$. Следовательно, $x \in R$. Аналогично $(p_i, a_{i+1} \dots a_n, \gamma_i) \stackrel{*}{\vdash_{\overline{P}_1}} (p_{i+1}, a_{i+2} \dots a_n, \gamma_{i+1})$ для $0 \le i < n$ и, как следствие, $(p_0, x, Z_0) \stackrel{*}{\vdash_{\overline{P}_1}} (p_n, \varepsilon, \gamma_n)$. Поскольку $p_n \in F_P$, то $x \in L$.

Из рассуждений I и II следует $T(P_2) = L \cap R$.

Мы уже видели в гл. 3, что класс регулярных множеств относительно пересечения и дополнения. В гл. 7 было показано, что класс рекурсивно перечислимых множеств не замкнут относительно дополнения. Таким образом мы имеем:

Теорема 9.5. Класс языков типа 0 не замкнут относительно дополнения.

В настоящее время неизвестно, замкнут ли класс контекстно-зависимых языков относительно дополнения. Однако как класс языков типа 0, так и класс контекстно зависимых языков замкнуты относительно пересечения. Доказательства для обоих классов аналогичны, и хотя концептуально просты, утомительны в деталях. Поэтому эти доказательства будут только намечены.

Teopema 9.6. Класс языков типа 0 и класс контекстно-зависимых языков замкнуты относительно пересечения.

Доказательство. Пусть L_1 и L_2 — языки типа 0 (контекстно-зависимые языки). Рассмотрим две одноленточные машины Тьюринга (два недетерминированных линейно ограниченных автомата) M_1 и M_2 , принимающие языки L_1 и L_2 соответственно. Легко построить машину Тьюринга (lba) M, имеющую одну оперативную ленту с тремя дорожками. Первая дорожка содержит ввод. Машина M моделирует машину M_1 , используя дорожку 2. Если машина M_1 достигает когда-либо принимающую конфигурацию, то машина M перемещает головку своей ленты на левый конец и моделирует машину M_2 на дорожке 3. Если машина M_2 доходит до принимающей конфигурации, то машина M принимает.

§ 9.2. Замкнутость относительно отображений

Теперь рассмотрим результаты отображений разных типов над языками. Первый тип, который мы рассмотрим, — *подстановка*.

<u>Определение 9.1.</u> Подстановка f есть отображение конечного множества Σ на подмножества Δ^* некоторого конечного множества Δ . Другими словами, подстановка f с каждым символом из множества Σ ассоциирует некоторый язык. Отображение f может быть распространено на строки из Σ^* следующим образом:

$$f(\varepsilon) = \varepsilon$$
, $f(xa) = f(x) f(a)$, где $x \in \Sigma^*$, $a \in \Sigma$.

Очевидно, что f(x) нужно понимать в обобщенном смысле, тогда как f(a) — в первоначальном.

Мы можем распространить подстановку f далее на языки, определяя $f(L) = \bigcup_{x \in I} f(x)$.

Пример 9.1. Пусть $f(0) = \{a\}$, $f(1) = \{ww^R | w \in \{b, c\}^*\}$. Подстановка f отображает множество $\{0^n 1^n | n \ge 1\}$ в множество $\{a^n w_1 w_1^R w_2 w_2^R \dots w_n w_n^R | w_i \in \{b, c\}^*$ для $1 \le i \le n\}$.

Говорят, что класс языков замкнут относительно подстановки, если для любого языка $L \subseteq \Sigma^*$ в данном классе и для любой подстановки f, такой, что f(a) в данном классе для всех $a \in \Sigma$, язык f(L) содержится в этом же классе.

Покажем, что классы регулярных множеств, контекстно-свободных языков и языков типа 0 замкнуты относительно подстановки. Так, в примере 9.1, поскольку f(0) и f(1) — оба контекстно-свободные языки и так как $L = \{0^n 1^n \mid n \ge 1\}$ — контекстно-свободный язык, то множество $f(L) = \{a^n w_1 w_1^R w_2 w_2^R \dots w_n w_n^R \mid w_i \in c\}^*$ для $1 \le i \le n\}$ также контекстно-свободный язык.

Теорема 9.7. Классы регулярных множеств, контекстно-свободных языков и языков типа 0 замкнуты относительно подстановки.

Доказательство. Рассмотрим грамматику $G = (V_N, \{a_1, a_2, ..., a_n\}, P, S)$. Пусть $G_i = (V_{N_i}, V_{T_i}, P_i, S_i)$ — грамматика, порождающая множество $f(a_i)$ для каждого i, $1 \le i \le n$. Без потери общности предполагаем, что все нетерминальные словари попарно не пересекаются.

Докажем теорему для случая, когда грамматики G и G_i , $1 \le i \le n$, являются контекстно-свободными. Читатель может доказать другие случаи аналогично, хотя в каждом необходимы дополнительные детали.

Построим новую грамматику:

$$G' = (V'_{\text{N}}, V'_{\text{T}}, P', S)$$
, где $V'_{\text{N}} = V_{\text{N}} \cup \bigcup_{i=1}^{n} V_{\text{N}_i}$, $V'_{\text{T}} = \bigcup_{i=1}^{n} V_{\text{T}_i}$.

Пусть h — подстановка $h(a_i) = \{S_i\}$ для $1 \le i \le n$ и $h(A) = \{A\}$ для любого $A \in V_N$; $P' = \bigcup_{i=1}^n P_i \cup \{A \to h(\alpha) \mid A \to \alpha \in P\}$. Ясно, что грамматика G' является контекстно-свободной, возможно, с правилами вида $A \to \varepsilon$. Очевидно, что f(L(G)) = L(G').

Пример 9.2. Пусть
$$L = \{0^n 1^n \mid n \ge 1\}$$
. Язык L порождается грамматикой $G = (\{S\}, \{0, 1\}, \{S \to 0S1, S \to 01\}, S)$.

Как и в примере 9.1, пусть

$$f(0) = \{a\} \text{ if } f(1) = \{ww^R | w \in \{b, c\}^*\};$$

f(0) порождается грамматикой

$$G_1 = (\{S_1\}, \{a\}, \{S \rightarrow a\}, S_1),$$

а f(1) — грамматикой

$$G_2 = (\{S_2\}, \{b, c\}, \{S_2 \to bS_2b, S_2 \to cS_2c, S_2 \to \epsilon\}, S_2).$$

Язык f(L) порождается грамматикой $G_3 = (\{S, S_1, S_2\}, \{a, b, c\}, \{S \to S_1 S S_2, S \to S_1 S_2, S_1 \to a, S_2 \to b S_2 b, S_2 \to c S_2 c, S_2 \to \epsilon\}, S)$. Первые два правила грамматики G_3 получились из правил $S \to 0S1$ и $S \to 01$ грамматики G_1 в результате подстановки символа S_1 вместо 0 и символа S_2 — вместо 1.

Контекстно-зависимые языки не замкнуты относительно подстановки. Однако мы можем несколько смягчить этот факт.

Определение 9.2. Подстановка f называется ε -свободной (ε -free), если $\varepsilon \notin f(a)$ для каждого $a \in \Sigma$.

Teopema 9.8. Класс контекстно-зависимых языков замкнут относительно *є-свободной подстановки*.

Доказательство. Рассмотрим контекстно-зависимую грамматику $G = (V_N, \{a_1, a_2, ..., a_n\}, P, S)$ и ε -свободную подстановку f. Пусть для каждого i, $1 \le i \le n$, $G_i = (V_{N_i}, V_{T_i}, P_i, S_i)$ — контекстно-зависимая грамматика, порождающая множество $f(a_i)$. Без потери общности предполагаем, что все нетерминальные словари попарно не пересекаются. Кроме того, предполагаем, что все правила, за возможным исключением $S \to \varepsilon$, имеют вид $\alpha \to \beta$ или $A \to a$, где α , β — непустые строки нетерминалов, A — отдельный нетерминал, а a — отдельный терминальный символ. Мы построим грамматику $G' = (V_N', V_T', P', S_L)$, где

1.
$$V'_{N} = V_{N} \cup \bigcup_{i=1}^{n} V_{N_{i}} \cup \{A_{L} \mid A \in V_{N} \}.$$

2.
$$V_{\rm T}' = \bigcup_{i=1}^n V_{{\rm T}_i}$$
.

- **3.** *P* ' содержит
 - а) $S_L \to \varepsilon$, если $S \to \varepsilon \in P$;
- б) $A_L \alpha \to B_L \beta$ и $A \alpha \to B \beta$, если $A \alpha \to B \beta \in P$ (заметим, что индекс L в обозначении A_L помечает самое левое вхождение соответствующего нетерминального символа в выводе в грамматике G до тех пор, пока этот символ не превратится в терминальный символ);
 - в) $A_L \to S_i$, если $A \to a_i \in P$,
 - $aA \rightarrow aS_i$ для всех $a \in V_T'$, если $A \rightarrow a_i \in P$;
 - г) все правила из множества $\{P_i \mid i = 1, 2, ..., n\}$.

Грамматика G' — контекстно-зависимая и L(G') = f(L(G)).

Teopema 9.9. Класс контекстно-зависимых языков не замкнут относительно подстановки

Доказательство. Пусть $G_1 = (V_N, V_T, P_1, S)$ — грамматика типа 0, такая, что $L(G_1)$ не является контекстно-зависимым языком. Снова мы предполагаем без потери общности, что все ее правила имеют вид $\alpha \to \beta$ или $A \to a$, где $\alpha \in V_N^+$, $\beta \in V_N^*$, $A \in V_N$, $a \in V_T$.

Пусть c — новый символ. Рассмотрим грамматику $G_2 = (V_N, V_T \cup \{c\}, P_2, S)$, в которой P_2 содержит

- 1) $\alpha \rightarrow \beta$, если $\alpha \rightarrow \beta \in P_1$ и $|\alpha| \le |\beta|$;
- 2) $\alpha \rightarrow \beta cc...c$, где $|\alpha| = |\beta cc...c|$, если $\alpha \rightarrow \beta \in P_1$ и $|\alpha| > |\beta|$;
- 3) $cA \rightarrow Ac$ для всех $A \in V_N$.

Грамматика G_2 является контекстно-зависимой, поскольку мы принудили правую часть каждого правила иметь, по крайней мере, такую же длину, как левая. Правила $cA \to Ac$ были добавлены для того, чтобы передвигать символы c к правому концу слов так, чтобы выводы в G_2 могли происходить, как в грамматике G_1 .

Теперь рассмотрим подстановку $f(a) = \{a\}$ для $a \in V_T$ и $f(c) = \{\epsilon\}$. Тогда $f(L(G_2)) = L(G_1)$ и, следовательно, подстановка не сохраняет класс csl.

Очень часто интерес представляют подстановки специальных типов.

<u>Определение 9.3.</u> Подстановка f называется конечной, если f(a) есть конечное множество для всех а из области определения f. Если f(a) — единственная строка, то f — гомоморфизм.

Конечная подстановка и гомоморфизм являются специальными классами подстановок. Из этого мы имеем следующие следствия:

Следствие **9.1.** Классы регулярных, контекстно-свободных и языков типа 0 замкнуты относительно конечной подстановки и гомоморфизма.

Доказательство очевидно из теоремы 9.7.

Следствие **9.2.** Класс контекстно-зависимых языков замкнут относительно є-свободной конечной подстановки и є-свободного гомоморфизма.

Доказательство очевидно из теоремы 9.8.

Следствие **9.3.** Класс контекстно-зависимых языков не замкнут относительно конечной подстановки и гомоморфизма.

Доказательство. Подстановка, использованная при доказательстве теоремы 9.9, является гомоморфизмом.

Мы докажем еще один результат, касающийся подстановок, поскольку он необходим для последующей теоремы.

<u>Определение 9.4.</u> Класс языков замкнут относительно k-ограниченного стирания, если для любого языка L этого класса и любого гомоморфизма h, обладающего тем свойством, что h никогда не отображает более, чем k последовательных символов любого предложения из языка L в ε , h(L) находится в этом же классе.

Покажем, что класс контекстно-зависимых языков замкнут относительно k-ограниченного стирания. Фактически справедливо более общее утверждение. Пусть $L \subseteq \Sigma^*$ — контекстно-зависимый язык и пусть f(a) для любого $a \in \Sigma$ тоже контекстно-зависим. Тогда язык f(L) контекстно-зависим при условии, что существует k > 0, такое, что для $x \in L$ и $y \in f(x)$ выполняется неравенство $|y| \ge k|x|$.

Лемма 9.2. Класс контекстно-зависимых языков замкнут относительно *к*-ограниченного стирания.

Доказательство. Пусть $G_1 = (V_N^{(1)}, V_T^{(1)}, P_1, S_1)$ — контекстно-зависимая грамматика. Без потери общности предположим, что правила, за возможным исключением $S_1 \to \varepsilon$, имеют вид $\alpha \to \beta$ или $A \to a$, где $\alpha, \beta \in {V_N^{(1)}}^+, A \in {V_N^{(1)}}$, а $a \in {V_T^{(1)}}$. Пусть h — гомоморфизм со свойством, что h никогда не отображает более, чем k последовательных символов любого предложения $x \in L(G_1)$ в ε . Пусть целое l больше, чем k+1, и больше длины самой длинной левой части любого правила. Рассмотрим грамматику

$$G_2 = (V_N^{(2)}, V_T^{(2)}, P_2, S_2),$$

где

$$V_{N}^{(2)} = \{ [\alpha] \mid \alpha \in (V_{N}^{(1)} \cup V_{T}^{(1)})^{*}, |\alpha| < 2l \},$$

 $V_{\rm T}^{(2)}$ содержит такие символы, находящиеся в строках w, что h(a) = w для некоторого $a \in V_{\rm T}^{(1)}$, $S_2 = [S_1]$, а множество правил P_2 содержит

- 1) $[S_1] \to \varepsilon$, если $S_1 \to \varepsilon \in P_1$ или если $x \in L(G_1)$ и $h(x) = \varepsilon$ (заметим, что $|x| \le k$, так что мы можем проверить, существует ли какая-нибудь такая цепочка x);
 - 2) [α] \rightarrow [β] для всех [α] и [β] из $V_{\rm N}^{(2)}$, таких, что $\alpha \underset{\mathcal{G}_1}{\Longrightarrow} \beta$ и | β | < 2l ;
- 3) $[\alpha] \to [\beta_1][\beta_2] \dots [\beta_m]$ для всех $[\alpha]$, $[\beta_1]$, $[\beta_2], \dots$, $[\beta_m]$ из $V_N^{(2)}$, таких, что $\alpha \Longrightarrow_{\overline{G_1}} \beta_1 \beta_2 \dots \beta_m$, $|\beta_i| = l$, $1 \le i < m$, $l \le |\beta_m| < 2l$;
- 4) $[\alpha_1][\alpha_2] \rightarrow [\beta_1][\beta_2]...[\beta_m]$ для всех $[\alpha_1]$, $[\alpha_2]$, $[\beta_1]$, $[\beta_2]$,..., $[\beta_m]$ из $V_N^{(2)}$, таких, что $\alpha_1\alpha_2 \Longrightarrow \beta_1\beta_2...\beta_m$, $l \leq |\alpha_1| < 2l$, $l \leq |\alpha_2| < 2l$, $|\beta_i| = l$, $1 \leq i < m$, $l \leq |\beta_m| < 2l$;
 - 5) $[x] \to h(x)$ для всех $[x] \in V_N^{(2)}$, $x \in V_T^{(1)*}$, $h(x) \neq \varepsilon$.

Грамматика G_2 является контекстно-зависимой и $L(G_2) = h(L(G_1))$. Отметим, что G_2 получается путем кодирования блоков по меньшей мере из k+1 символа грамматики G_1 в один символ. Поскольку не более k последовательных терминальных символов грамматики G_1 отображаются в ε , то в грамматике G_2 никогда не требуется иметь правило, в котором нетерминал, не равный начальному, порождал бы ε .

<u>Определение 9.5.</u> Обобщенная последовательная машина (gsm¹⁰) есть конечный автомат, который может выводить конечное число символов для каждого входного символа. Формально обобщенная последовательная машина есть система $S = (Q, \Sigma, \Delta, \delta, q_0, F)$, где Q—состояния; Σ —входной алфавит; Δ —выходной алфавит; δ — отображение типа $Q \times \Sigma \to 2^{Q \times \Delta^*}$; $q_0 \in Q$ — начальное

 $^{^{10}}$ Gsm — generalized sequential machine. В качестве синонима в настоящее время используется более современный термин конечный преобразователь (finite transducer — ft). 124

состояние; $F \subseteq Q$ — множество конечных состояний. Запись $(p,w) \in \delta(q,a)$ означает, что S в состоянии q, имея на входе символ a, может в качестве одного из возможных вариантов движения перейти в состояние p и вывести строку w.

Мы расширим область определения δ до $Q \times \Sigma^*$ следующим образом:

$$\delta(q, \varepsilon) = \{(q, \varepsilon)\},\$$

 $\delta(q,xa) = \{(p,w) \mid w = w_1w_2, (p',w_1) \in \delta(q,x)$ и $(p,w_2) \in \delta(p',a)\}$, если $x \in \Sigma^*$ и $a \in \Sigma$.

Определение 9.6. Пусть S — обобщенная последовательная машина и $S(x) = \{y \mid (p, y) \in \delta(q_0, x) \text{ для некоторого } p \in F\}$. Если L есть язык над Σ , то $S(L) = \{y \mid y \in S(x) \text{ для некоторого } x \in L\}$ называется gsm-отображением, а $S^{-1}(L) = \{y \mid x \in S(y) \text{ для некоторого } x \in L\}$ — обратным gsm-отображением.

Не обязательно истинно, что $S^{-1}(S(L)) = S(S^{-1}(L)) = L$, и потому отображение S^{-1} не является подлинно обратным

Пример 9.3. Пусть $S = (\{q_0, q_1\}, \{0, 1\}, \{a, b\}, \delta, q_0, \{q_1\})$ — обобщенная последовательная машина, где отображение δ определено следующим образом:

- 1) $\delta(q_0, 0) = \{(q_0, aa), (q_1, b)\},\$
- 2) $\delta(q_0, 1) = \{(q_0, a)\},\$
- 3) $\delta(q_1, 0) = \emptyset$,
- 4) $\delta(q_1, 1) = \{(q_1, \varepsilon)\}.$

Рис. 9.2.

Интуитивно, пока в gsm S вводятся нули (рис. 9.2), gsm S имеет выбор: выводить два символа a либо один символ b. Если gsm S выводит b, она переходит в состояние q_1 . Если gsm S находится в состоянии q_0 и в нее вводится символ 1, то она может выводить только символ a. В состоянии q_1 gsm S ничего не может поделать с 0 на входе, но может оставаться в состоянии q_1 без какого-либо вывода, если на входе 1.

Пусть
$$L = \{0^n 1^n | n \ge 1\}$$
. Тогда $S(L) = \{a^{2n}b | n \ge 0\}$.

Если обозначить S(L) при помощи L_1 , то $S^{-1}(L_1) = \{w01^i \mid i \ge 0 \text{ и } w \text{ имеет}^{11} \}$ четное число $1\}$. Заметим, что $S^{-1}(S(L)) \ne L$.

Характерная особенность gsm-отображения и обратного gsm-отображения состоит в том, что они сохраняют разные классы языков.

¹¹ При этом w может содержать любое число нулей.

Лемма 9.3. Каждый класс языков, замкнутый относительно конечной подстановки и пересечения с регулярным множеством, замкнут относительно gsm-отображений.

Доказательство. Пусть C — класс языков, замкнутый относительно конечной подстановки (следовательно, также и гомоморфизма) и пересечения с регулярным множеством. Пусть $S = (Q, \Sigma, \Delta, \delta, q_0, F)$ — обобщенная последовательная машина. Определим конечную подстановку

$$f(a) = \{ [q, a, x, p] \mid q, p \in Q, a \in \Sigma, x \in \Delta^*, u(p, x) \in \delta(q, a) \}.$$

Пусть R — регулярное множество, содержащее все строки вида

$$[q_0, a_1, x_1, q_1][q_1, a_2, x_2, q_2]...[q_{n-1}, a_n, x_n, q_n],$$

такие, что для $1 \le i \le n$, $a_i \in \Sigma$, $x_i \in \Delta^*$, $q_i \in Q$, $(q_i, x_i) \in \delta(q_{i-1}, a_i)$. Также q_0 — начальное состояние и $q_n \in F$. Пусть h([q, a, x, p]) = x для всех [q, a, x, p].

Теперь для $L \in C$ имеем $S(L) = h(f(L) \cap R)$. Поскольку класс языков C замкнут относительно конечной подстановки и пересечения с регулярным множеством, то язык S(L) тоже находится в C. Заметим, что требуется замкнутость относительно конечной подстановки, а не ε -свободной конечной подстановки, поскольку в [q, a, x, p] цепочка x может быть равна ε , и в этом случае $h([q, a, x, p]) = \varepsilon$.

Теорема 9.10. Классы регулярных, контекстно-свободных и языков типа 0 замкнуты относительно gsm-отображений.

Доказательство. Теорема является прямым следствием леммы 9.3 и теорем 9.4, 9.6 и 9.7.

Отметим, что gsm-отображения не сохраняют контекстно-зависимых языков, поскольку каждый гомоморфизм является gsm-отображением.

Определение 9.7. Говорят, что gsm-отображение ε*-свободно*, если (p, ε) ∉ $\delta(q, a)$ для любых $q, p \in Q$ и $a \in \Sigma$.

Хотя контекстно-зависимые языки не замкнуты относительно произвольных gsm-отображений, они замкнуты относительно є-свободных gsm-отображений.

Теорема 9.11. Класс контекстно-зависимых языков замкнут относительно *є*-свободных gsm-отображений.

Доказательство. В лемме 9.3 конечная подстановка может быть заменена на є-свободную конечную подстановку при условии, что gsm-отображение є-свободно. Таким образом, поскольку класс контекстно-зависимых языков замкнут относительно є-свободной конечной подстановки и пересечения с регулярным множеством, то этот класс замкнут относительно є-свободных gsm-отображений.

Рассмотрим теперь обратные gsm-отображения. Как увидим, регулярные, контекстно-свободные, контекстно-зависимые и языки типа 0 все замкнуты относительно обратных gsm-отображений.

Лемма 9.4. Пусть C — класс языков, замкнутый относительно ε -свободной подстановки, k-ограниченного стирания и объединения и пересечения c регулярными множествами. Тогда класс C замкнут относительно обратных gsm-отображений.

Доказательство. Пусть $L \subseteq \Delta^*$ есть язык в классе C, а $S = (Q, \Sigma, \Delta, \delta, q_0, F)$ — обобщенная последовательная машина. Мы предполагаем без потери общности, что $\Sigma \cap \Delta = \emptyset$. Определим подстановку f следующим образом: $f(b) = \Sigma^* b$ для каждого $b \in \Delta$. (Отметим, что замкнутость относительно объединения и пересечения с регулярными множествами гарантирует принадлежность всех регулярных множеств классу C и, следовательно, $\Sigma^* b \in C$.)

Пусть $L_1 = f(L) \cup \Sigma^*$, если $\varepsilon \in L$, и $L_1 = f(L)$ в противном случае. Тогда L есть множество всех строк вида $y_1b_1y_2b_2...y_rb_r$, $r \ge 1$, где $b_i \in \Delta$, $y_i \in \Sigma^*$, $1 \le i \le r$, $b_1b_2...b_r \in L$, объединенное с Σ^* , если $\varepsilon \in L$. Применим теперь лемму 9.3 к классам регулярных, контекстно-свободных и языков типа 0.

Пусть R — регулярное множество, состоящее из всех слов вида $a_1x_1a_2x_2...$ a_mx_m , $m \ge 0$, таких, что

- 1) $a_i \in \Sigma$;
- 2) $x_i \in \Delta^*$, $1 \le i \le m$.

Существуют состояния q_0, q_1, \ldots, q_m , такие, что $q_m \in F$ и $(q_i, x_i) \in \delta(q_{i-1}, a_i)$ для $1 \le i \le m$.

Заметим, что цепочка x_i может быть равна ε . Нетрудно показать путем построения конечного автомата, принимающего R, что R — регулярное множество.

Теперь $L_1 \cap R$ есть множество всех слов вида $a_1x_1a_2x_2...a_mx_m$, $m \ge 0$, где $a_i \in \Sigma$, $x_i \in \Delta^*$, $1 \le i \le m$, $x_1x_2...x_m \in L$, $S(a_1a_2...a_m)$ содержит цепочку $x_1x_2...x_m$, и ни одна цепочка x_i не длиннее, чем k, причем k — длина самой длинной цепочки x, такой, что $(p, x) \in \delta(q, a)$ для некоторых состояний $p, q \in Q$ и $a \in \Sigma$.

Наконец, пусть h — гомоморфизм, который отображает символ a в a для каждого $a \in \Sigma$ и символ b — в ϵ для каждого $b \in \Delta$. Тогда $S^{-1}(L) = h(L_1 \cap R)$ находится в классе C, поскольку h никогда не отображает больше k последовательных символов в ϵ .

Теорема 9.12. Классы регулярных, контекстно-свободных, контекстно-зависимых и языков типа 0 замкнуты относительно обратных gsm-отображений.

Доказательство следует непосредственно из леммы 9.4 и того факта, что названные классы замкнуты относительно є-свободной подстановки, *k*-ограниченного стирания, а также пересечения и объединения с регулярным множеством.

Теперь рассмотрим операцию деления.

Определение 9.8. Пусть L_1 и L_2 — любые два языка. Определим *частное от* деления L_1 на L_2 как множество $\{x \mid \text{для некоторой цепочки } y \in L_2, \text{ такой, чтобы } xy \in L_1\}.$

Пример 9.4. Пусть
$$L_1 = \{a^n b^n \mid n \ge 1\}$$
 и $L_2 = b^*$. Тогда $L_1 / L_2 = \{a^i b^j \mid i \ge j, i \ge 1\}, a L_2 / L_1 = \emptyset.$

Лемма 9.5. Каждый класс языков, замкнутый относительно конечной подстановки и пересечения с регулярным множеством, замкнут относительно деления на регулярное множество.

Доказательство. Пусть C — класс языков, замкнутый относительно названных операций. Пусть $L \in \Sigma_1^*$ — язык из класса C и $R \subseteq \Sigma_1^*$ — регулярное множество. Пусть $\Sigma_2 = \{a' \mid a \in \Sigma_1\}$ и f — конечная подстановка: $f(a) = \{a, a'\}$. Рассмотрим $L_2 = \Sigma_2^* R \cap f(L)$. Пусть h — гомоморфизм, определяемый следующим образом: $h(a) = \varepsilon$ и h(a') = a для всех $a \in \Sigma_1$. Теперь $L / R = h(L_2)$. Поскольку класс C замкнут относительно конечной подстановки и пересечения с регулярным множеством, то L / R находится в классе C.

Теорема 9.13. Классы регулярных, контекстно-свободных и языков типа 0 замкнуты относительно деления на регулярное множество.

Доказательство следует непосредственно из леммы 9.5.

На вопрос: замкнут ли класс контекстно-зависимых языков относительно деления на регулярное множество, ответим — нет.

Теорема 9.14. Если L_1 есть любой язык типа 0, то существует контекстно-зависимый язык L_2 и регулярное множество R, такие, что $L_1 = L_2 / R$.

Доказательство почти идентично доказательству теоремы 9.9. Пусть $G_1 = (V_N, V_T, P_1, S_1)$ — грамматика типа 0, такая, что $L(G_1) = L_1$ и пусть $G_2 = (V_N \cup \{S_1, D\}, V_T \cup \{c, d\}, P_2, S_2)$, где P_2 определяется следующим образом:

- 1) если $\alpha \rightarrow \beta \in P_1$ и $|\alpha| \le |\beta|$, то $\alpha \rightarrow \beta \in P_2$;
- 2) если $\alpha \rightarrow \beta \in P_1$ и $|\alpha| |\beta| = i$, i > 0, то $\alpha \rightarrow \beta D^i \in P_2$;
- 3) для всех $A \in V_N$ и $a \in V_T$ существуют правила $DA \to AD$ и $Da \to aD \in P_2$;
- 4) существуют правила $Dc \rightarrow cc$ и $Dc \rightarrow dc \in P_2$;
- 5) существует правило $S_2 \rightarrow S_1 Dc \in P_2$.

Обратим внимание читателя на сходство $L(G_2)$ с языком, определенным в теореме 9.9. Но здесь мы можем превращать все нетерминалы D в терминальные символы, если только они сначала мигрируют к правому концу сентенциальной формы. Причем как только нетерминал D превращается в терминал d, ни один символ D больше не может быть превращен ни в d, ни в c. Теорема следует из наблюдения, что $L(G_1) = L(G_2) / dc^*$.

В заключение главы приведем сводку описанных в ней свойств замкнутости для регулярных, контекстно-свободных, контекстно-зависимых и языков типа 0, — см. табл. 9.1.

Табл. 9.1

Замкнутость относительно операций	Класс языка			
	рег.	конт	конт	типа
		свобод.	завис.	0
Объединение	+	+	+	+
Конкатенация	+	+	+	+
Замыкание	+	+	+	+
Обращение	+	+	+	+
Пересечение	+	_	+	+
Дополнение	+	_	?	_
Пересечение с регулярным множеством	+	+	+	+
Подстановка	+	+	+	+
ε-Свободная подстановка	+	+	+	+
gsm-Отображение	+	+	+	+
ε-Свободное gsm-отображение	+	+	+	+
Обратные gsm-отображения	+	+	+	+
<i>k</i> -Ограниченное стирание	+	+	+	+
Деление на регулярное множество	+	+	+	+

В табл. 9.1 символом + отмечен тот факт, что соответствующий класс языков обладает свойством замкнутости относительно соответствующей операции; символ — (минус) обозначает отсутствие соответствующего свойства замкнутости для соответствующего класса языков; символ ? (вопросительный знак) означает, что пока не выяснено, замкнут ли класс контекстно-зависимых языков относительно дополнения или не замкнут.