

General information

Designation

C: pure, graphite

Typical uses

Brushes; electrodes; jigs; casting molds; thermal insulation; bearings; rocket nozzles; composites; refractory bricks; nuclear seals;

Composition overview

Compositional summary

100% C	
Material family	Ceramic (technical)
Base material	C (Carbon)

Composition detail (metals, ceramics and glasses)

C (carbon)	100	%
		70

Price

Price	* 11.2	-	17	USD/kg
Price per unit volume	* 2.46e4	-	3.84e4	USD/m^3

Physical properties

Density	2.2e3	-	2.26e3	kg/m^3
Porosity (closed)	0			%
Porosity (open)	0			%

Mechanical properties

10	-	25	GPa
* 10	-	110	MPa
10	-	110	MPa
* 0.04	-	1.1	% strain
* 43	-	350	MPa
* 10	-	25	GPa
* 5.2	-	42	MPa
* 3	-	9	GPa
30	-	36	GPa
0.22	-	0.3	
14.2			
4	-	50	HV
* 26.9	-	31.3	MPa
* 8e-4	-	0.004	
	* 10 10 * 0.04 * 43 * 10 * 5.2 * 3 30 0.22 14.2 4 * 26.9	* 10	* 10

Impact & fracture properties	
Fracture toughness	0.9 - 1.1 MPa.m^0.5
Thermal properties	0.05-00.00-00
Melting point	3.65e3 - 3.83e3 ℃
Maximum service temperature	1.3e3 - 1.7e3 ℃
Minimum service temperature	-273 ℃
Thermal conductivity	80 - 240 W/m.°C
Specific heat capacity	700 - 720 J/kg.℃
Thermal expansion coefficient	0.6 - 4.3 µstrain/℃
Latent heat of fusior	* 1.61e3 - 1.81e3 kJ/kg
Electrical properties	
Electrical resistivity	34.7 - 6.03e3 μohm.cm
Galvanic potential	0.2 - 0.28 V
Magnetic properties	Non magnetia
Magnetic type	Non-magnetic
Optical properties	
Color	Black
Transparency	Opaque
Critical materials risk	
Contains >5wt% critical elements?	No
Goritaine / Gitt/G Gittigal Glotherite .	
Durability	
Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Excellent
Strong acids	Acceptable
Weak alkalis	Excellent
Strong alkalis	Unacceptable
Organic solvents	Excellent
Oxidation at 500C	Limited use
UV radiation (sunlight)	Excellent
Halogens	Acceptable
Metals	Acceptable
Flammability	Non-flammable
Primary production energy, CO2 and wa	ater
Embodied energy, primary production	209 - 230 MJ/kg

Sources 198 MJ/kg (Jungbluth, 2008); 240 MJ/kg (Jungbluth, 2008)				
CO2 footprint, primary production	15.8	- 17.4	kg/kg	
Sources 14.8 kg/kg (Jungbluth, 2008); 18.3 kg/kg (Jungbluth,				
Water usage	* 291	- 322	l/kg	
Processing energy, CO2 footprint & water				
Grinding energy (per unit wt removed)	* 10.9	- 12.1	MJ/kg	
Grinding CO2 (per unit wt removed)	* 0.82	- 0.906	kg/kg	
Recycling and end of life Recycle	×			
Recycle fraction in current supply	4.73	- 5.22	%	
Downcycle	✓			
0				
Combust for energy recovery	✓			
Heat of combustion (net)	* 32	- 33.6	MJ/kg	
<u>. , , , , , , , , , , , , , , , , , , ,</u>		- 33.6 - 3.76	MJ/kg kg/kg	
Heat of combustion (net)	* 32			

Notes

Other notes

Price depends very strongly on form - lump, chip and flake graphite is 4-5x the price of amorphous graphite. Graphite has excellent thermal shock resistance and good abrasion resistance.

Links

ProcessUniverse		
Producers		
Reference		
Shape		