Научноисследоват. работа

Катнов Артем

Метод дискретных

Алгоритм метода

Описание

модели

Контактные

Силы

диссипации Кинематика

частиц Модель

разрушения Постановка

задачи

Реальные параметры

Доп.

Научно-исследоват. работа

Численное моделирование динамики частиц в рудоразмольной мельнице методом дискретных элементов

Катнов Артем

Московский государственный технический университет им. Н.Э.Баумана

21 мая 2021 г.

Научноисследоват. работа

Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание модели

модели Контактные

Силы диссипации

Диссипации Кинематика частиц

М одель разрушения

Постановка задачи

Реальные параметры

- 1 Метод дискретных элементов
 - Алгоритм метода
- 2 Описание модели
 - Контактные силы
 - Силы диссипации
 - Кинематика частиц
 - Модель разрушения
- 3 Постановка задачи
 - Реальные параметры
- 4 Доп. материалы

Метод дискретных элементов

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описани

модели

Контактные

диссипации К инематика частиц

частиц Модель разрушения

Постановка задачи

Реальные параметры

Доп.

Рис.: Демонстрация сыпучей среды

Cundall P. A. A computer model for simulating progressive, large-scale movement in blocky rock system //Proceedings of the International Symposium on Rock Mechanics, 1971. – 1971.

Цель работы Шаровая мельница

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели

Контактные силы

диссипации К инематика

частиц Модель

разрушения

ттостановка задачи

Реальные параметры

доп. материалы Цель работы: исследование динамики системы частиц дробии руды во вращающемся барабане рудоразмольной мельницы.

Рис.: Схематическое изображение шаровой мельницы

Метод дискретных элементов Алгоритм метода

Научноисследоват. работа

> Катнов Артем

Метод дискретных

Алгоритм метода

Описание

Модели Контактные

Силы диссипации Кинематика

частиц Модель разрушения

Постановка

Реальные параметры

Доп. материалы

Рис.: Общий алгоритм метода дискретных элементов

Метод дискретных элементов Алгоритм метода

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели Контактные

Контакт силы

Силы диссипа ции

К инематика частиц

Модель разрушения

Постановн

задачи

Реальные параметры

Рис.: Три возможных состояния шара

Метод дискретных элементов Алгоритм метода

Научноисследоват. работа

Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели

Контактные

Силы диссипации Кинематика

частиц Модель

разрушения Постанов

Реальные

параметры

- 1) Определение контактов
- 2) Расчет контактных сил
- 3) Определения кинематического закона
- 4) Определение нового положения шаров
- 5) Переход на п.1

Описание модели Контактные силы

Научноисследоват. работа

> Катнов Артем

Метод дискретны: элементов

Алгоритм метода

Описание

модели Контактные

силы Силы

диссипации Кинематика частиц

М одель разрушения

Постановка задачи

Реальные параметры

Доп.

Syed Z., Tekeste M., White D. A coupled sliding and rolling friction model for DEM calibration //Journal of Terramechanics. – 2017. – T. 72. – C. 9-20.

Описание модели

Контактные силы в нормальном направлении

Научноисследоват. работа

Катнов Артем

Метод дискретных элементов

Алгорити метода

Описанию модели

Контактные силы

силы Силы диссипации

К инематика частиц

Модель разрушения

Постановка задачи

Реальные параметры

доп.

$$F_n = k_n \cdot \delta_n \tag{1}$$

где F_n — контактная сила, возникающая в точке контакта и действующая на оба шара, [H]; k_n — коэффициент жёсткости, [H/м]; δ_n — взаимное проникновение, так называемое вхождение шаров друг в друга, [м].

$$k_n = \frac{4}{3} \cdot E_{eff} \cdot \sqrt{R_{eff} \cdot \delta_n} \tag{2}$$

где

$$\frac{1}{E_{\mathit{eff}}} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \qquad \qquad \frac{1}{R_{\mathit{eff}}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Описание модели

Контактные силы в тангенциальном и окружном направлениях

Научноисследоват. работа

> Катнов Артем

Алгоритм метода

Контактные

силы

диссипа ции Кинематика

частиц Модель разрушения

Реальные параметры

$$F_{s} = \mu_{s} \cdot F_{n} \cdot sign(v_{rel_tan}) \qquad v_{rel_tan} \neq 0$$

$$M_{s} = F_{s} \cdot R_{eff}$$

$$M_{r} = \mu_{r} \cdot F_{n} \cdot R_{eff} \cdot sign(\omega_{rel}) \qquad \omega_{rel} \neq 0$$

$$v_{rel_tan}^{1} = v_{y}^{1} - v_{y}^{2} - (\omega_{1} \cdot R_{1} + \omega_{2} \cdot R_{2})$$

$$\omega_{rel} = \omega_{1} + \omega_{2}$$

Описание модели Контактные силы скольжения

Научноисследоват. работа

> Катнов Артем

Алгоритм метода

Контактные

силы Силы

диссипации Кинематика частиц

Модель разрушения

Реальные

параметры

Рис.: Приведение силы трения скольжения к центру элемента

Описание модели

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

Модели Контактные

силы

диссипации Кинематика

частиц Модель

м одель разрушения

Постановка задачи

Реальные параметры

Доп.

$$\begin{aligned} D_n &= c_n \cdot v_{n_rel} \\ D_t &= c_t \cdot v_{t_rel} \\ c_n &= 2 \cdot \sqrt{m \cdot 2 \cdot E_{eff} \cdot \delta_n \sqrt{R_{eff}}} \cdot \zeta_n \\ c_t &= 4 \cdot \sqrt{m \cdot 2 \cdot G_{eff} \cdot \delta_n \sqrt{R_{eff}}} \cdot \zeta_t \end{aligned}$$

Караваев А. С., Копысов С. П., Сармакеева А. С. Моделирование динамики произвольных тел методом дискретных элементов //Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. — 2015. — Т. 25. — №. 4. — С. 473-482.

Описание модели Кинематика частиц

Научноисследоват. работа

Катнов Артем

Метод дискретны> элементов

Алгоритм метода

Описание

модели Контактные

Силы

диссипа ции К инематика

частиц Модель

разрушения

постановка задачи

Реальные параметры

$$x = x_0 + v_0^{x} \cdot \Delta t + \frac{a_0^{x} \cdot \Delta t^{2}}{2} + \frac{b_0^{x} \cdot \Delta t^{3}}{6}$$
 (3)

$$y = y_0 + v_0^y \cdot \Delta t + \frac{a_0^y \cdot \Delta t^2}{2} + \frac{b_0^y \cdot \Delta t^3}{6}$$
 (4)

$$\vartheta = \vartheta_0 + v_0^{\vartheta} \cdot \Delta t + \frac{a_0^{\vartheta} \cdot \Delta t^2}{2} + \frac{b_0^{\vartheta} \cdot \Delta t^3}{6}$$
 (5)

$$b_n = \frac{a_{t+\Delta t} - a_t}{\Delta t} \tag{6}$$

$$b_t = \frac{a_{t+\Delta t} - a_t}{\Delta t} \tag{7}$$

$$b_{\vartheta} = \frac{\varepsilon_{t+\Delta t} - \varepsilon_{t}}{\Delta t} \tag{8}$$

$$\{b\}^{glob} = [T] \cdot \{b\}^{loc}$$

Описание модели Блок-схема итерационного уточнения

Научноисследоват. работа

> Катнов Артем

Метод дискретных

Алгоритм метода

Описание

модели Контактные

силы Силы диссипации

Кинематика частиц

М одель разрушения

Постанови залачи

Реальные параметры

параметры

Описание модели Совокупность уравнений

Научноисследоват. работа

> Катнов Артем

Метод дискретных

Алгоритм метода

Описание

модели

Контактные

Силы диссипации

Кинематика частиц

Модель

разрушени

задачи

Реальные параметры

доп.

$$\begin{cases} \overline{m \cdot a_t} = \overline{F_n} + \overline{F_s} + \overline{D} + \overline{G} \\ \overline{I \cdot \varepsilon_t} = \overline{M_s} + \overline{M_r} \end{cases}$$

$$\overline{v}_t = \overline{v}_{t-\Delta t} + \overline{a}_t \cdot \Delta t + \frac{\overline{b}_t \cdot \Delta t^2}{2}$$

$$\overline{s}_t = \overline{s}_{t-\Delta t} + \overline{v}_{t-\Delta t} \cdot \Delta t + \frac{\overline{a}_t \cdot \Delta t^2}{2} + \frac{\overline{b}_t \cdot \Delta t^3}{6}$$

$$v_t^{\vartheta} = v_{t-\Delta t}^{\vartheta} + \varepsilon_t \cdot \Delta t$$

$$\vartheta_t = \vartheta_{t-\Delta t} + v_{t-\Delta t}^{\vartheta} \cdot \Delta t + \frac{\varepsilon_t \cdot \Delta t^2}{2} + \frac{b_t^{\vartheta} \cdot \Delta t^3}{6}$$

Описание модели Совокупность уравнений

Научноисследоват. работа

> Катнов Артем

Метод дискретных

Алгоритм метода

Описание

модели

Контактные

Силы диссипации

Кинематика частиц

М одель разрушения

Постановк задачи

Реальные параметры

материалы

$$\begin{cases} \overline{m \cdot a_t} = \overline{G} \\ \overline{I \cdot \varepsilon_t} = 0 \\ \overline{v}_t = \overline{v}_{t-\Delta t} + \overline{a}_t \cdot \Delta t \end{cases}$$

$$\overline{s}_t = \overline{s}_{t-\Delta t} + \overline{v}_{t-\Delta t} \cdot \Delta t + \frac{\overline{a}_t \cdot \Delta t^2}{2}$$

$$v_t^{\vartheta} = v_{t-\Delta t}^{\vartheta}$$

$$\vartheta_t = \vartheta_{t-\Delta t} + v_{t-\Delta t}^{\vartheta} \cdot \Delta t$$

Описание модели Модель разрушения

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели Контактные

силы

диссипации Кинематика частиц

Модель разрушения

Постановка задачи

Реальные параметры

доп.
материалы

$$E_t = E_{t-\Delta t} + E - E_{min} \tag{9}$$

$$E = \frac{k \cdot \delta^2}{2} \tag{10}$$

$$P = 1 - e^{-S \cdot E_t} \tag{11}$$

Белоглазов И. И., Иконников Д. А. Применение метода дискретных элементов для моделирования процесса измельчения горных пород в щековой дробилке //Известия высших учебных заведений. Приборостроение. — 2016. — Т. 59. — №. 9.

Описание модели Модель разрушения

Научноисследоват. работа

> Катнов Артем

Алгоритм метода

Контактные

диссипа ции Кинематика

частиц

Модель ра зруше ния

Реальные параметры

$$R_{old}^3 = 2 \cdot R_{new}^3 \qquad \rightarrow \qquad R_{new} = \frac{R_{old}}{\sqrt[3]{2}}$$

$$S_{old} = \frac{\pi \cdot R_{old}^2}{2} \qquad S_{new} = 2 \cdot \frac{\pi \cdot R_{new}^2}{2} = \sqrt[3]{2} \cdot \frac{\pi \cdot R_{old}^2}{2} = \sqrt[3]{2} \cdot S_{old}$$

Рис.: Демонстрация положения разрушенных частиц

Описание модели Модель разрушения

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели

Контактные

Силы диссипа ции

Кинематика частиц

Модель разрушения

постановк задачи

Реальные параметры

Доп.

Рис.: Демонстрация положения разрушенных частиц

Постановка задачи Рудоразмольная мельница

Научноисследоват. работа

Катнов Артем

Метод дискретны: элементов

Алгоритм метода

Описание

модели Контактные

силы

диссипации Кинематика частиц

Модель разрушения

Постановка задачи

Реальные параметры

Доп.

Схема работы шаровой мельницы.

Рис.: Схематическое изображение шаровой мельницы

Постановка задачи Реальные параметры

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели Контактные силы

Силы диссипации Кинематика

частиц Модель разрушения

Постановка задачи

Реальные параметры

Доп. материалы

Таблица: Реальные значения параметров

Модуль продольной упругости дроби	2×10 ¹¹ Па
Модуль сдвига дроби	8×10 ¹⁰ Па
Плотность дроби	7800 кг/м ³
Модуль продольной упругости руды	6×10 ¹⁰ Па
Модуль сдвига руды	2.4×10 ¹⁰ Па
Плотность руды	4800 кг/м ³
Размеры сито по ширине	1 м
Размеры сито по ширине	1 м
Пропускная способность сито	0.04 м
Радиус шаровой мельницы	2.5 м
Изначальный радиус шаров	0.1 м
Количество шаров	120
Процент заполненности мельницы	21 %
4 4 7	J

Постановка задачи Реальные параметры

Научноисследоват. работа

> Катнов Артем

Метод дискретных элементов

Алгоритм метода

Описание

модели Контактные

силы Силы диссипации

Кинематика частиц Модель

разрушения Постановк

задачи

Реальные параметры

Доп.

Таблица: Реальные значения параметров (продолжение)

Шаг по времени	$10^{-5}\;{ m ce}\kappa$
Период добавления руды	1 сек
К-т диссипации в норм-ом направлении	0.1
К-т диссипации в танген-ом направлении	0.1
К-т трения скольжения	0.1
К-т трения качения	0.05
Минимальная энергия разрушения руды	0.1 Дж
Параметр прочности	1 1/Дж

Научноисследоват. работа

> Катнов Артем

Метод дискретны: элементов

Алгоритм метода

Описание

модели

Контактные силы

Силы диссипации

Кинематика частиц

М одель разрушения

Постановка

Реальные параметры

Доп.

Спасибо за внимание!

Доп. материалы Шар-стенка

Научноисследоват. работа

> Катнов Артем

Метод дискретных

Алгоритм метода

Описание

модели Контактные

силы

Силы диссипа ции

Кинематика частиц

Модель разрушения

Постановка задачи

Реальные параметры

Доп. материалы Упрощения МДЭ

Научноисследоват. работа

> Катнов Артем

Алгоритм метода

Контактные силы

Силы диссипации

Кинематика

частиц Модель разрушения

Реальные

параметры

Научноисследоват. работа

Катнов Артем

Метод дискретны: элементов

Алгоритм

метода

Описание

Контактные

силы Силы

диссипации

Кинематика

частиц Модель разрушения

Постановк

Реальные

параметры

