Mais algoritmos

Alexsandro Santos Soares prof.asoares@gmail.com

Universidade Federal de Uberlândia Faculdade de Computação

Exercício

Exercício 1

Escreva um algoritmo que leia um número natural e verifique se ele é par ou ímpar.

- Escreva-o na forma de fluxograma.
- 2 Reescreva-o na forma de pseudocódigo.
- Use uma tabela de rastreamento para testar seu algoritmo. Use como conjunto de testes os números: 2 5 0.

Solução – fluxograma

Solução – pseudocódigo

Algoritmo 1: paridade

```
1 leia o número natural num
2 r \leftarrow \text{RESTO}(n \div 2)
3 se r = 0 então
4 | escreva "número é par"
5 senão
6 | escreva "número é ímpar"
7 fim se
```

num = 2, saída número é par.

ware 2, saraa namere e par.					
Linha	num	r	saída		
1	2				

```
ı leia o número natural \mathit{num}
```

```
r \leftarrow \text{RESTO}(n \div 2)
```

з se
$$r=0$$
 então

7 fim se

num = 2, saída número é par.

70 2, Saida Hamoro o par.					
Linha	num	r	saída		
1	2				
2	2	0			

```
1 leia o número natural num
2 r \leftarrow \text{RESTO}(n \div 2)
3 se r = 0 então
4 | escreva "número é par"
5 senão
6 | escreva "número é ímpar"
7 fim se
```

num = 2, saída número é par.

2, saida namero e par.					
Linha	num	r	saída		
1	2				
2	2	0			

```
1 leia o número natural num
2 r \leftarrow \text{RESTO}(n \div 2)
```

- ser = 0 então
- 4 escreva "número é par"
- 5 senão
- 6 escreva "número é ímpar"
- 7 fim se

num = 2	saída	número	é	par.
---------	-------	--------	---	------

manie – 2, saida namero e par.					
Linha	num	r	saída		
1	2				
2	2	0			
4	2	0	número é par		

```
ı leia o número natural \mathit{num}
```

```
r \leftarrow \text{RESTO}(n \div 2)
```

з se
$$r=0$$
 então

5 senão

6 escreva "número é ímpar"

7 fim se

num = 2,	saída	número	é	par.
----------	-------	--------	---	------

mani — 2, saida numero e par.					
Linha	num	r	saída		
1	2				
2	2	0			
4	2	0	número é par		

- ı leia o número natural num
- $r \leftarrow \text{RESTO}(n \div 2)$
- з se r=0 então
- 4 escreva "número é par"
- 5 senão
- 6 escreva "número é ímpar"
- 7 fim se

num = 5, saída número é ímpar.

num = 2, saida número é par.						
Linha	num	r	saída			
1	2					
2	2	0				
4	2	0	número é par			

1 leia o número natural num

2
$$r \leftarrow \text{RESTO}(n \div 2)$$

з se r=0 então

4 escreva "número é par"

5 senão

6 escreva "número é ímpar"

7 fim se

num = 5, saída número é ímpar

num = 0, saida numero e impar.					
Linha	num	r	saída		
1	5				

num = 2	, saída :	núme	ero é par.
Linha	num	r	saída
1	2		
		_	

- 1 leia o número natural num
- $r \leftarrow \text{RESTO}(n \div 2)$
- з se r=0 então
- escreva "número é par"
- 5 senão
- escreva "número é ímpar"
- 7 fim se

mam = 5, saida numero e impar.					
Linha	num	r	saída		
1	5				
2	5	1			

número é par

num = 2	, saida :	nume	ero e par.
Linha	num	r	saída
1	2		
2	2	Ω	

- 1 leia o número natural num
- $r \leftarrow \text{RESTO}(n \div 2)$
- з se r=0 então
- 4 escreva "número é par"
- 5 senão
- 6 escreva "número é ímpar"
- 7 fim se

num = 5 saída número é ímpar

nu	num = 5, saida numero e impar.					
L	inha	num	r	saída		
1		5				
	2	5	1			

número é par

	Linha	num	r	saída
	1	2		
	2	2	0	
leia o número natural num	4	2	0	número é par
Tela o numero naturar mam				

num	= 5,	saída	número	é	ímpar.

num = 2, saída número é par.

vant o, saraa namoro o impar.							
Linha	num	r	saída				
1	5						
2	5	1					
6	5	0	O número é ímpar				

1	leia o número natural num						
2	$r \leftarrow \text{RESTO}(n \div 2)$						
3	se $r=0$ então						
4	escreva "número é par"						
5	senão						
6	escreva "número é ímpar"						

7 fim se

	Linha	num	r	saída
	1	2		
	2	2	0	
leia o número natural num	4	2	0	número é par
i ieia o numero naturar mam				

$$r \leftarrow \text{RESTO}(n \div 2)$$

з se r=0 então

escreva "número é par"

5 senão

escreva "número é ímpar"

7 fim se

num = 5, saída número é ímpar.

num = 2, saída número é par.

Linha	num	r	saída
1	5		
2	5	1	
6	5	0	O número é ímpar

num = 0, saída número é par.

num = 2, saída número é par.

mant = 2, saida numero e par.						
Linha	num	r	saída			
1	2					
2	2	0				
4	2	0	número é par			

1 leia o número natural num

$$r \leftarrow \text{RESTO}(n \div 2)$$

з se r=0 então

4 escreva "número é par"

5 senão

6 escreva "número é ímpar"

7 fim se

num = 5,	saída	número	é	ímpar
----------	-------	--------	---	-------

o, saraa mamoro o mpar.					
Linha	num	r	saída		
1	5				
2	5	1			
6	5	0	O número é ímpar		

num=0, saída número é par

recerre o	, baraa .	11 4111	TO O Pur.
Linha	num	r	saída
1	0		

$$r \leftarrow \text{RESTO}(n \div 2)$$

ser=0 então

escreva "número é par"

5 senão

escreva "número é ímpar"

7 fim se

num = 5, saída número é ímpar.

num = 2, saída número é par.

o, saida Hamoro o Impar.					
Linha	num	r	saída		
1	5				
2	5	1			
6	5	0	O número é ímpar		

num = 0, saída número é par.

Linha	num	r	saída
1	0		
2	0	0	

	Linha	num	r	saída
	1	2		
	2	2	0	
l leia o número natural num	4	2	0	número é par

2 $r \leftarrow \text{RESTO}(n \div 2)$ num = 5, saída número é impar.

Linha	num	r	saída
1	5		
2	5	1	
6	5	0	O número é ímpar

3	se $r = 0$ entao
4	escreva "número é par"
5	senão
6	escreva "número é ímpar"
7	fim se

num = 0, saída número é par.

 $\underline{num=2,\,\mathrm{sa\'ida}\,\mathrm{n\'umero}}$ é par.

	, baraa .		ro o par.
Linha	num	r	saída
1	0		
2	0	0	

```
        Linha
        num
        r
        saída

        1
        2
        0

        2
        2
        0
        número é par
```

- ı leia o número natural num
- $r \leftarrow \text{RESTO}(n \div 2)$
- з se r=0 então
- 4 escreva "número é par"
- 5 senão
- 6 escreva "número é ímpar"
- 7 fim se

num = 5 saída número é ímpar

num = 2, saída número é par.

mant = 0, saida numero e impar.											
Linha	num	r	saída								
1	5										
2	5	1									
6	5	0	O número é ímpar								

num = 0, saída número é par

	, baraa .		ro o par.
Linha	num	r	saída
1	0		
2	0	0	
4	0	0	número é par

Exercício

Exercício 2

Escreva um algoritmo para resolver equações do segundo grau na forma

$$ax^2 + bx + c$$

O programa deve ler os três números reais a, b e c. O coeficiente a deve ser diferente de zero e, nesse caso, sempre haverá duas raízes reais ou complexas. Se a for zero, o algoritmo deve imprimir a deve ser um número real diferente de zero. As raízes complexas, se existirem, devem ser impressas no formato x + iy.

- Elabore um conjunto significativo de casos de testes.
- Expresse o algoritmo na forma de fluxograma e na de pseudocódigo.
- 3 Use os dados de testes elaborados e teste o algoritmo usando tabela de rastreamento.

```
Algoritmo 2: resolve2grau

1 leia o número real a
```

```
2 se a=0 então
         escreva "a deve ser um número real diferente de zero"
 4 senão
         leia o número real b
         leia o número real c
 6
         delta \leftarrow b^2 - 4ac
 7
         se delta \ge 0 então
                                                                       // As raízes são reais
 8
             x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}
 9
             x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2}
10
              escreva "x1 = ", x_1, "e x2 = ", x_2
11
         senão
                                                                 // As raízes são complexas
12
              real \leftarrow \frac{-b}{2a}
13
             imag \leftarrow \frac{\sqrt{-delta}}{2}
14
              escreva "x1 = ", real, "+ i(", imag, ")"
15
              escreva "x2 = ", real, - i(", imag, ")"
16
         fim se
17
18 fim se
```

Solução – Fluxograma

Solução – casos de testes

Podemos pensar em vários casos de testes para o algoritmo

- $\mathbf{0}$ a = 0 com b e c possuindo valores quaisquer.
- $oldsymbol{a} < 0$ com b e c ora positivos, negativos ou zeros, com 9 casos no total.
- \bullet a > 0 com $b \in c$ ora positivos, negativos ou zeros, com 9 casos no total.

Para simplificar vamos escolher os testes que forcem a executação das linhas do algoritmo pelo menos uma vez:

- \bullet a = 0 com $b \in c$ possuindo valores quaisquer.
- **6** $b^2 4ac \ge 0$ e assim, $b^2 \ge 4ac$.
- $b^2 4ac < 0$ e assim, $b^2 < 4ac$.

Vamos escolher os seguintes dados de teste:

- a = 0, b = 1, c = 1
- a = 1, b = 1, c = 1
- a = 1, b = 2, c = 1

_	a=0,	b =	1, c	= 1							
1]	leia o número real a	Lin	a	b	с	Δ	x_1	x_2	re	im	saída
2 8	se $a = 0$ então	1	0								
3	escreva "a dif. zero"										
4 8	senão										
5	leia o número real b										
6	leia o número real c										
7	$delta \leftarrow b^2 - 4ac$										
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$ $x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 f	îm se										

		a = 0,	b = 1	, c =	= 1						
1 1	eia o número real a	Lin		b	c	Δ	x_1	x_2	re	im	saída
2 S	e a = 0 então	1	0								
3	escreva "a dif. zero"										
4 S	enão										
5	leia o número real b										
6	leia o número real c										
7	$delta \leftarrow b^2 - 4ac$										
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$ $x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

=		a = 0,	b =	1, c	= 1						
1	leia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
2	se $a = 0$ então	1	0								11.0
3	escreva "a dif. zero"	3	0								a dif. zero
4	senão										
5	leia o número real b										
6	leia o número real $\it c$										
7	$delta \leftarrow b^2 - 4ac$										
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18	fim se										

_		a=0,	b =	1, c	= 1						
1 1	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
2 S	e a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
	zero"	a=1,	b =	1. c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c										
7	$delta \leftarrow b^2 - 4ac$										
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a=0,	b = 1	, c:	= 1						
1 1	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
2 S	e $a = 0$ então	1	0								
3	escreva "a dif.	3	0								a dif. zero
Ü	zero"	a=1,	b = 1	, c =	= 1						
4 S	enão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1							
7	$delta \leftarrow b^2 - 4ac$										
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	$ ightharpoonup$ escreva $\operatorname{re} + \operatorname{i} \operatorname{im}$										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a=0,	b =	1, c	= 1						
1 1	eia o número real a	Lin	a	b	с	Δ	x_1	x_2	re	im	saída
2 S	e $a = 0$ então	1	0								
3	escreva "a dif.	3	0								a dif. zero
J	zero"	a = 1,	b =	1, c	= 1						
4 S	enão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1	-1						
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1						
8	se $delta \ge 0$ então										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escrevare + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
	$\mathbf{e} \ a = 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	1	0								
3	escreva "a dif.	3	0								a dif. zero
Ü	zero"	a=1,	b =	1. c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1	-						
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	se $delta \ge 0$ então	1	1	1	1	-0					
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
	$\mathbf{e} \ a = 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	1	0								
3	escreva "a dif.	3	0								a dif. zero
Ü	zero"	a=1,	b =	1. c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1							
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	se $delta \ge 0$ então	1	1	1	1	-3					
	_										
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
3	zero"	a=1,	b =	1. c	= 1						
4 80	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1							
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	se $delta \ge 0$ então	13	1	1	1	-3			$-\frac{1}{2}$		
	_	10			_	J					
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$										
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	$\operatorname{escreva} \operatorname{re} + \operatorname{i} \operatorname{im}$										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
3	zero"	a=1,	h —	1 0	_ 1						
4 56	e não	$\frac{a-1}{\text{Lin}}$	<i>0</i> —	1, с b	— 1 С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1			_	w 1	W 2	10		baraa
6	leia o número real c	5	1	1							
		6	1	1	1						
7	$delta \leftarrow b^2 - 4ac$	7	1	1	1	-3					
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{então}$	13	1	1	1	-3			$-\frac{1}{2}$		
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$										
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	с	Δ	x_1	x_2	re	im	saída
	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
3	zero"	a=1,	b =	1, c	= 1						
4 Se	enão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1	-1						
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	$\mathbf{se} \ delta > 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	13	1	1	1	-3			$-\frac{1}{2}$		
Ü	_	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$									$\frac{2}{\sqrt{3}}$	$1 \cdot \sqrt{3}$
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	$\operatorname{escreva} \operatorname{re} + \operatorname{i} \operatorname{im}$										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a=0,	b =	1. c	= 1						
1 10	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
3	zero"	a=1,	b =	1, c	= 1						
4 S	enão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1	-						
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	se $delta > 0$ então	13	1	1	1	-3			$-\frac{1}{2}$		
	_	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$			-	_					$\frac{\overline{2}}{\sqrt{3}}$	1
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$
		14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} - i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2										
12	senão										
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	escreva re + i im										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a=0,	b =	1, c	= 1						
1 16	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
2 86	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
3	zero"	a=1,	b =	1, c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real $\it b$	1	1								
6	leia o número real c	5	1	1	-						
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1	-3					
8	se $delta \ge 0$ então	13	1	1	1	-3			$-\frac{1}{2}$		
	_	_								$\sqrt{3}$	
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1/3
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$
-		14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} - i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2	-	1	0	-						
12	senão	a=1,	b =	2, c	= 1						
13	$re \leftarrow \frac{-b}{2a}$										
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$										
15	$\operatorname{escreva} \operatorname{re} + \operatorname{i} \operatorname{im}$										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1, c	= 1							
1 le	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
2 86	e a = 0 então	1	0									
3	escreva "a dif.	3	0								a dif. zer	0
3	zero"	. 1	1.	1 .	1							
		a=1,										
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
_	$delta \leftarrow b^2 - 4ac$	6	1	1	1							
7		7	1	1	1	-3						
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{ent ilde{ao}}$	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		
	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b - \sqrt{4C16a}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}-i\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2											
12	senão	a=1,		_								
13	$re \leftarrow \frac{-b}{2a}$	Lin 1	a 1	b	С	Δ	x_1	x_2	re	im	saída	
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$									I		
15	$\operatorname{escreva}\operatorname{re} + \operatorname{i}\operatorname{im}$											
16	escreva re - i im											
17	fim se											
18 fi	m se											

		a=0,	b =	1, c	= 1						
1 1	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída
2 80	a = 0 então	1	0								
3	escreva "a dif.	3	0								a dif. zero
	zero"	a=1,	b =	1, c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1							
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1						
8		7	1	1	1	-3 -3			1		
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{ent\tilde{ao}}$	_							$-\frac{1}{2}$	/2	
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	
	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i\frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b-\sqrt{\det a}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} - i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2										
12	senão	a=1,	b =		=1						
13	$re \leftarrow \frac{-b}{2a}$	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
10		1	1								
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2							
15	escreva $re + i im$										
16	escreva re - i im										
17	fim se										
18 fi	m se										

		a = 0,	b =	1, c	= 1							
1 1	eia o número real a	Lin	a	b	с	Δ	x_1	x_2	re	im	saída	
2 S	$\mathbf{e} \ a = 0 \ \mathbf{então}$	1	0									
3	escreva "a dif.	3	0								a dif. zero	С
3	zero"											
		a=1,	b =	1, c	= 1							
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1							
		7	1	1	1	-3						
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{então}$	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		
	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i \frac{\sqrt{2}}{2}$	<u>'3</u>
10	$x_2 \leftarrow \frac{-b - \sqrt{4c_1c_2}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}-i\frac{\sqrt{2}}{2}$	$\frac{3}{2}$
11	escreva x_1, x_2											
12	senão	a=1,		_								
13	$re \leftarrow \frac{-b}{2a}$	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
10		1	1									
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2								
15	escreva re + i im	6	1	2	1							
16	escreva re - i im											
17	fim se											
18 fi	im se											

a = 0 b = 1 c = 1

		a = 0,	b =	1. c	= 1							
1 1	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
	$\mathbf{e} \ a = 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	1	0									
	1	3	0								a dif. zer	O
3	escreva "a dif.											
	zero"	a=1,	b =	1, c	=1							
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
7	$delta \leftarrow b^2 - 4ac$	6	1	1	1							
		7	1	1	1	-3						
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{então}$	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$		
	2a	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i \frac{\sqrt{2}}{2}$	<u>3</u>
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}-i\frac{\sqrt{2}}{2}$	3
11	escreva x_1, x_2										1 4	
12	senão	a = 1,	b =	2, c	=1							
10		Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
13	$re \leftarrow \frac{-b}{2a}$	1	1									
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2								
		6	1	2	1							
15	escreva re + i im	7	1	2	1	0						
16	escreva re - i im											
17	fim se											
18 fi	im se											

		a = 0,	b =	1. c	= 1						
1 1	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
	$\mathbf{e} \ a = 0 \ \mathbf{ent\tilde{ao}}$	1	0								
	I	3	0								a dif. zero
3	escreva "a dif. zero"										
	l .	a=1,	b =	1, c	= 1						
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída
5	leia o número real b	1	1								
6	leia o número real c	5	1	1							
_	$delta \leftarrow b^2 - 4ac$	6	1	1	1						
7		7	1	1	1	-3					
8	$\operatorname{se} \frac{delta}{\geq 0} \operatorname{ent ilde{ao}}$	13	1	1	1	-3			$-\frac{1}{2}$		
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$	
	2a	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i \frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} - i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2										1 2 2
12	senão	a = 1,	b =	2, c	=1						
1.0		Lin	a	b	c	Δ	x_1	x_2	re	im	saída
13	$re \leftarrow \frac{-b}{2a}$	1	1								
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2							
		6	1	2	1						
15	escreva re + i im	7	1	2	1	0					
16	escreva re - i im										
17	fim se										
18 fi	im se										

		a=0,	b =	1, c	= 1							
1 1	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída	
2 5	$\mathbf{e} \ a = 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	1	0									
	1	3	0								a dif. z	ero
3	escreva "a dif.											
	zero"	a=1,	b =	1, c	= 1							
4 S	enão	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
		6	1	1	1							
7	$delta \leftarrow b^2 - 4ac$	7	1	1	1	-3						
8	se $delta \ge 0$ então	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$		
	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} +$	$i\frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b - \sqrt{\det a}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2			_			•	•				
12	senão	a=1,	b =	_	= 1							
13	$re \leftarrow \frac{-b}{2a}$	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
13		1	1									
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2								
	1 24	6	1	2	1							
15	escreva re + i im	7	1	2	1	0						
16	escreva re - i im	9	1	2	1	0	-1					
17	fim se											
18 f	im se											

_		a=0,	b =	1, c	= 1							
1 1	eia o número real a	Lin	a	b	c	Δ	x_1	x_2	re	im	saída	
2 8	se $a=0$ então	1	0									
3	escreva "a dif.	3	0								a dif. zero)
3		a = 1,	b =	1, c	= 1							
4 S	senão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
	$delta \leftarrow b^2 - 4ac$	6	1	1	1							
7		7	1	1	1	-3						
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{então}$	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		
	1 dolts	15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i \frac{\sqrt{3}}{2}$	3
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}-i\frac{\sqrt{3}}{2}$	3
11	escreva x_1, x_2										1 2 2	
12	senão	a=1,	b =	_	=1							
13	$re \leftarrow \frac{-b}{2a}$	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
13	1 200	1	1									
14	$im \leftarrow \frac{\sqrt{-delta}}{2a}$	5	1	2								
	24	6	1	2	1							
15	escreva re + i im	7	1	2	1	0						
16	escreva re - i im	9	1	2	1	0	-1					
17	fim se	10	1	2	1	0	-1	-1				
18 f	im se											

		a = 0,	b =	1, c	= 1							
1 1	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
2 8	$e \ a = 0 \ ent{ ilde ao}$	1	0									
	1	3	0								a dif. z	ero
3	escreva "a dif.											
	zero"	a=1,	b =	_	=1							
4 S	enão	Lin	a	b	c	Δ	x_1	x_2	re	im	saída	
5	leia o número real b	1	1									
6	leia o número real c	5	1	1								
		6	1	1	1							
7	$delta \leftarrow b^2 - 4ac$	7	1	1	1	-3						
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{ent} \mathbf{\tilde{ao}}$	13	1	1	1	-3			$-\frac{1}{2}$			
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$		
		15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} +$	$i\frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$i\frac{\sqrt{3}}{2}$
11	escreva x_1, x_2											
12	senão	a=1,	b =	_	=1							
13	$re \leftarrow \frac{-b}{2a}$	Lin 1	a 1	b	С	Δ	x_1	x_2	re	im	saída	
		5	1	2								
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	6	1	2	1							
15	escreva re + i im	7				0						
			1	2	1	0	-1					
16	escreva re - i im	9	1	2	1	0	-1	1				
17	fim se	10	1	2	1	0	-1	-1				
18 fi	m se	11	1	2	1	0	-1	-1			-1, -1	

		a = 0,	b =	1, c	= 1							
1 1	eia o número real a	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
2 8	e $a=0$ então	1	0									
3	escreva "a dif.	3	0								a dif. ze	ero
3	zero"	. 1	1.	1 .	-1							
		a=1,	1	$\frac{1, c}{b}$		Λ				:	saída	
4 S	enão '	Lin 1	a 1	D	С	Δ	x_1	x_2	re	im	saida	
5	leia o número real b	5	1	1								
6	leia o número real c	6			1							
7	$delta \leftarrow b^2 - 4ac$	7	1	1	1	- 2						
			-	1	1	-3			1			
8	$\mathbf{se} \ delta \geq 0 \ \mathbf{ent\tilde{ao}}$	13	1	1	1	-3			$-\frac{1}{2}$	/2		
9	$x_1 \leftarrow \frac{-b + \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		
		15	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2} + i$	$i\frac{\sqrt{3}}{2}$
10	$x_2 \leftarrow \frac{-b - \sqrt{\text{delta}}}{2a}$	14	1	1	1	-3			$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{9}-i$	$\sqrt{3}$
11	escreva x_1, x_2		l								1 2	
12	senão	a = 1,	b =	_	=1							
13	-b	Lin	a	b	С	Δ	x_1	x_2	re	im	saída	
13	$re \leftarrow \frac{-b}{2a}$	1	1									
14	$\operatorname{im} \leftarrow \frac{\sqrt{-\operatorname{delta}}}{2a}$	5	1	2								
		6	1	2	1							
15	escreva re + i im	7	1	2	1	0						
16	escreva re - i im	9	1	2	1	0	-1					
17	fim se	10	1	2	1	0	-1	-1				
18 fi	m se	11	1	2	1	0	-1	-1			-1, -1	

Exercício 3

Escreva um algoritmo que leia três números reais $x,\ y$ e z e verifique se eles podem ser os comprimentos dos lados de um triângulo e, neste caso, informe qual tipo de triângulo: equilátero, isósceles ou escaleno. Se os números não formarem um triângulo, escreva uma mensagem. Considere que:

- O comprimento de cada lado de um triângulo é menor do que a soma dos outros dois lados.
- \bullet Chama-se equilátero o triângulo que possui os $tr\hat{e}s$ lados de comprimentos iguais.
- Denomina-se isósceles o triângulo que possui o comprimento de dois lados iguais.
- Recebe o nome de escaleno o triângulo que possui os três lados diferentes.
- Elabore um conjunto significativo de casos de testes.
- Expresse o algoritmo na forma de fluxograma e na de pseudocódigo.
- 3 Use os dados de testes elaborados e teste o algoritmo usando tabela de rastreamento.

Algoritmo 3: Triângulos

```
1 leia o número real x
 2 leia o número real y
 3 leia o número real z
 4 se x < y + z E y < x + z E z < x + y então
       se x = y \to y = z então
           escreva "Triângulo equilátero"
       senão
 7
           se x = y Ou x = z Ou y = z então
               escreva "Triângulo isósceles"
 9
           senão
10
               se x \neq y Ou x \neq z Ou y \neq z então
11
                  escreva "Triângulo escaleno"
12
               fim se
13
           fim se
14
       fim se
15
16 senão
       escreva "Essas medidas não formam um triângulo"
```


 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real y
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
 5
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
                   se x \neq y Ou x \neq z Ou
11
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
17
```

```
Linha x y z saída
```

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

    leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \mathbf{E} y = z então
 5
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                    escreva "isósceles"
 9
              senão
10
                    se x \neq y Ou x \neq z Ou
11
                      y \neq z então
                         escreva "escaleno"
12
                    fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
17
```

Linha	x	У	z	saída
1	1			
2	1	3		

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

   leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
    leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \mathbf{E} y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

```
1 leia o número real x
  leia o número real y
  leia o número real z
  se x < y + z E y < x + z E z < x + y então
       se x = y \mathbf{E} y = z então
            escreva "equilátero"
       senão
             se x = y Ou x = z Ou y = z
              então
```

senão

fim se

fim se

fim se

escreva "não é triângulo"

9

10 11

12

13 14

15

16 senão

18 fim se

escreva "isósceles"

se $x \neq y$ Ou $x \neq z$ Ou $y \neq z$ então

escreva "escaleno"

x = 1, y = 3, z = 1, saída não é triângulo.

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x - 3 y - 3 z - 3 saída equilátero

x = 0, y =	- 0, ~	_ 0,	Barac	cquiractio.
Linha	x	У	z	saída
1	3			

x = 1, y = 3, z = 1, saída não é triângulo.

```
    leia o número real x

   leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x - 3 y - 3 z - 3 saída equilátero

x = 3, y =	- 3, 2	_ 3,	Saide	equitatero.
Linha	x	У	z	saída
1	3			
2	3	3		

```
    leia o número real x

    leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \mathbf{E} y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                    escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                      y \neq z então
                         escreva "escaleno"
12
                    fim se
13
              fim se
14
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero.

x = 3, y = 3, z = 3, saida equitatero.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				

```
    leia o número real x

   leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \mathbf{E} \ y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                    escreva "isósceles"
 9
              senão
10
11
                    se x \neq y Ou x \neq z Ou
                      y \neq z então
                         escreva "escaleno"
12
                    fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

 $x=1,\,y=3,\,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero.

x = 3, y = 3, z = 3, saida equitatero.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

    leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \to y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3, saída equilátero.

x = 0, g =	- 0, 2	- 0,	Barac	cquiractio.
Linha	x	У	z	saída
1	3			
2	3	3		
3	3	3	3	

```
    leia o número real x

   leia o número real y
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

18 fim se

x = 1, y = 3, z = 1, saída não é triângulo.

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x - 3 y - 3 z - 3 saída equilátero

x = 0, y = 0, z = 0, saida equitatero.								
Linha	х	У	z	saída				
1	3							
2	3	3						
3	3	3	3					
6	3	3	3	equilátero				

 $x=1,\,y=3,\,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 3, y =	- 3, 2	_ 3,	Saide	equitatero.
Linha	х	У	z	saída
1	3			
2	3	3		
3	3	3	3	
6	3	3	3	equilátero

$x=3,y=4,z=3,\mathrm{sa\'ida}$ isósceles.							
Linha	x	У	z	saída			
1	3						

x = 1, y = 3, z = 1, saída não é triângulo.

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x - 3 y - 3 z - 3 saída equilátero

x - 3, y -	x = 3, y = 3, z = 3, saida equitatero.								
Linha	х	У	z	saída					
1	3								
2	3	3							
3	3	3	3						
6	3	3	3	equilátero					

x = 3, y = 4, z = 3, saída isósceles. Linha saída х 3 4

3

2

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
```

escreva "não é triângulo"

16 senão

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 0, y = 0, z = 0, saida equitatero.							
Linha	х	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

x = 3, y = 4, z = 3, saída isósceles.

, 3	-,	-,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

z = 0, y = 0, z = 0, saida equitatero.								
Linha	х	У	z	saída				
1	3							
2	3	3						
3	3	3	3					
6	3	3	3	equilátero				

x = 3, y = 4, z = 3, saída isósceles.

y = 0, $y = 1$, $z = 0$, barda 150500105.								
Linha	x	У	z	saída				
1	3							
2	3	4						
3	3	4	3					

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = y \to y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
```

fim se

escreva "não é triângulo"

fim se

14

15

16 senão

18 fim se

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 3, y =	x = 3, y = 3, z = 3, saida equitatero.						
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isósceles.

, 3	-,	~,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3, saída equilátero

x = 0, y = 0, z = 0, saida equifaceio.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

x = 3, y = 4, z = 3, saída isósceles.

- / 0	,	- ,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	

 $x=1,\,y=3,\,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
    leia o número real x

   leia o número real u
    leia o número real z
    se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                         escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 0, y = 0, z = 0, saida equifuccio.							
Linha	х	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

x = 0, y = 1, z = 0, barda ibobooliss.							
Linha	x	У	z	saída			
1	3						
2	3	4					
3	3	4	3				
9	3	4	3	isósceles			

x = 1, y = 3, z = 1, saída não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x - 3 y - 3 z - 3 saída equilátero

x = 0, y = 0, z = 0, saida equifuccio.							
Linha	х	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

x = 3, y = 4, z = 3, saída isósceles.

, 3	-,	~,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

x = 3, y = 4, z = 5, saída escaleno.

, 9	-,	-,		
Linha	х	У	z	saída
1	3			

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 0, y = 0, z = 0, saida equitatero.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

, 5	-,	~,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

x = 3, y = 4, z = 5, saída escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 0, y = 0, z = 0, saida equitatero.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

, 9	-,	-,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

 $x=3,y=4,z=5,\,\mathrm{sa\'ida}$ escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	5	

x = 1, y = 3, z = 1, saída não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

m = 2 n = 2 m = 2 coido oquilátoro

x = 3, y = 3, z = 3, saida equitatero.							
Linha	x	У	z	saída			
1	3						
2	3	3					
3	3	3	3				
6	3	3	3	equilátero			

x = 3, y = 4, z = 3, saída isósceles.

, 9	-,	-,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

x = 3, y = 4, z = 5, saída escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	5	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = y \to y = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
         escreva "não é triângulo"
```

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

z = 0, y = 0, z = 0, saida equifaceio.						
Linha	х	У	z	saída		
1	3					
2	3	3				
3	3	3	3			
6	3	3	3	equilátero		

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

, 9	-,	-,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

 $x=3,y=4,z=5,\,\mathrm{sa\'ida}$ escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	5	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

z = 0, y = 0, z = 0, saida equifaceio.						
Linha	х	У	z	saída		
1	3					
2	3	3				
3	3	3	3			
6	3	3	3	equilátero		

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

, 9	-,	-,		
Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

 $x=3,y=4,z=5,\,\mathrm{sa\'ida}$ escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	5	

x = 1, y = 3, z = 1, saída não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

m = 2 n = 2 m = 2 coido oquilátoro

x = 3, y = 3, z = 3, saida equitatero.						
Linha	x	У	z	saída		
1	3					
2	3	3				
3	3	3	3			
6	3	3	3	equilátero		

x = 3, y = 4, z = 3, saída isósceles.

Linha	х	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

x = 3, y = 4, z = 5, saída escaleno.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	5	

 $x=1,y=3,z=1,\,\mathrm{sa\'ida}$ não é triângulo.

```
1 leia o número real x
   leia o número real u
   leia o número real z
   se x < y + z E y < x + z E z < x + y então
         se x = u \to u = z então
              escreva "equilátero"
         senão
              se x = y Ou x = z Ou y = z
                então
                   escreva "isósceles"
 9
              senão
10
11
                   se x \neq y Ou x \neq z Ou
                     y \neq z então
                        escreva "escaleno"
12
                   fim se
13
14
              fim se
15
         fim se
16 senão
```

escreva "não é triângulo"

18 fim se

Linha	x	У	z	saída
1	1			
2	1	3		
3	1	3	1	
17	1	3	1	não é triângulo

x = 3, y = 3, z = 3,saída equilátero

x = 0, y =	- 0, ~	- 0,	Barac	cquiractio.
Linha	х	У	z	saída
1	3			
2	3	3		
3	3	3	3	
6	3	3	3	equilátero

 $x=3,y=4,z=3,\,\mathrm{sa\'ida}$ isoʻsceles.

Linha	x	У	z	saída
1	3			
2	3	4		
3	3	4	3	
9	3	4	3	isósceles

x = 3, y = 4, z = 5, saída escaleno.

Γ	Linha	х	У	z	saída
Γ	1	3			
Γ	2	3	4		
Γ	3	3	4	5	
	12	3	4	5	escaleno

Exercício 4

Escreva um algoritmo que leia a altura **a** em centímetros e o sexo **s** (um caracter) de uma pessoa e depois calcule e mostre o peso ideal. Use as fórmulas Hammond

- para homens: $48 + 1.1 \times (a 150)$
- para mulheres: $45 + 0.9 \times (a 150)$
- Elabore um conjunto significativo de casos de testes.
- Expresse o algoritmo na forma de fluxograma e na de pseudocódigo.
- 3 Use os dados de testes elaborados e teste o algoritmo usando tabela de rastreamento.

Algoritmo 4: Peso ideal

10

11

12

fim se

fim se

```
1 leia o número inteiro a
2 leia o caracter s
3 se s = 'm' então
                                                    // Pessoa do sexo masculino
      peso \leftarrow 48 + 1.1 \times (a - 150)
      escreva "Peso ideal =", peso
6 senão
                                                     // Pessoa do sexo feminino
      se s = 'f' então
          peso \leftarrow 45 + 0.9 \times (a - 150)
          escreva "Peso ideal =", peso
      senão
```

escreva "O sexo deve ser indicado por 'm' ou 'f'."

Fluxograma


```
leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
          fim se
12
13 fim se
```

```
        Linha
        a
        s
        peso
        saída

        1
        175
        ...
```

a = 175, s = m, saída 75.5.

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
        escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
```

13 fim se

Linha	a	s	peso	saída
1	175			
2	175	m		

```
1 leia o número inteiro a
    leia o caracter s
    se s = m então
         peso \leftarrow 48 + 1.1 \times (a - 150)
        escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
```

13 fim se

Linha	a	s	peso	saída
1	175			
2	175	m		

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
        escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
              escreva "Peso ideal =", peso
        senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
```

13 fim se

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

```
    leia o número inteiro a

   leia o caracter s
   se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
        escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
        senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Lir	nha	a	s	peso	saída
1		175			
2		175	m		
4		175	m	75.5	
5		175	m	75.5	Peso ideal = 75.5

a = 154, s = f, saída 48.6

a = 104, s = f, saida 40.0.							
Linha	a	s	peso	saída			
1	154						

```
1 leia o número inteiro a
   leia o caracter s
   se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
        escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
              escreva "Peso ideal =", peso
        senão
10
11
               escreva "O sexo deve ser indicado
                por 'm' ou 'f'."
12
         fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

a=154, s=f, saída 48.6

a = 104, s = f, saida 40.0.							
Linha	a	s	peso	saída			
1	154						
2	154	f					

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
 9
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
Lillia		8	peso	Saida
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

	. , .				
Linha	a	s	peso	saída	
1	154				
2	154	f			

```
1 leia o número inteiro a
   leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Ι	Linha	a	s	peso	saída
1		175			
	2	175	m		
	4	175	m	75.5	
	5	175	m	75.5	Peso ideal = 75.5

. , .				
Linha	a	s	peso	saída
1	154			
2	154	f		

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
              peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
 9
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Ι	Linha	a	s	peso	saída
1		175			
	2	175	m		
	4	175	m	75.5	
	5	175	m	75.5	Peso ideal = 75.5

	. , .			
Linha	a	s	peso	saída
1	154			
2	154	f		
8	154	f	48.6	

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
 8
              escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
Lillia		8	peso	Saida
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

Linha	a	s	peso	saída
1	154			
2	154	f		
8	154	f	48.6	
9	154	f	48.6	Peso ideal = 48.6

```
    leia o número inteiro a

    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
 6 senão
         se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
        senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

 $a=154, s=f, \, \mathrm{saída}$ 48.6.

a = 101, 0 = J, Saraa 10101							
Linha	a	s	peso	saída			
1	154						
2	154	f					
8	154	f	48.6				
9	154	f	48.6	Peso ideal = 48.6			

a = 175, s = t, saida sexo e m ou i.							
Linha	a	s	peso	saída			
1	175						

```
    leia o número inteiro a

    leia o caracter s
    se s = 'm' então
          peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
   senão
          se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
         senão
10
11
                escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Li	nha	a	s	peso	saída
1		175			
2		175	m		
4		175	m	75.5	
5		175	m	75.5	Peso ideal = 75.5

 $a=154, s=f, \, \mathrm{saída}$ 48.6.

	3,					
Linha	a	S	peso	saída		
1	154					
2	154	f				
8	154	f	48.6			
9	154	f	48.6	Peso ideal = 48.6		

	,				
Linha	a	s	peso	saída	
1	175				
2	175	i			

```
1 leia o número inteiro a
    leia o caracter s
    se s = 'm' então
         peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
   senão
         se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

 $a=154, s=f, \, \mathrm{saída}$ 48.6.

Linha	a	s	peso	saída		
1	154					
2	154	f				
8	154	f	48.6			
9	154	f	48.6	Peso ideal = 48.6		

	-,				
Linha	a	s	peso	saída	
1	175				
2	175	i			

```
    leia o número inteiro a

    leia o caracter s
    se s = 'm' então
          peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
   senão
          se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
               escreva "Peso ideal =", peso
         senão
10
11
               escreva "O sexo deve ser indicado
                 por 'm' ou 'f'."
12
          fim se
13 fim se
```

a = 175, s = m, saída 75.5.

Linha	a	s	peso	saída
1	175			
2	175	m		
4	175	m	75.5	
5	175	m	75.5	Peso ideal = 75.5

 $a=154, s=f, \, \mathrm{saída}$ 48.6.

Linha	a	S	peso	saída		
1	154					
2	154	f				
8	154	f	48.6			
9	154	f	48.6	Peso ideal = 48.6		

	-,				
Linha	a	s	peso	saída	
1	175				
2	175	i			

```
    leia o número inteiro a

    leia o caracter s
    se s = 'm' então
          peso \leftarrow 48 + 1.1 \times (a - 150)
         escreva "Peso ideal =", peso
   senão
          se s = 'f' então
               peso \leftarrow 45 + 0.9 \times (a - 150)
 8
               escreva "Peso ideal =", peso
 9
         senão
10
                escreva "O sexo deve ser indicado
11
                 por 'm' ou 'f'."
          fim se
12
13 fim se
```

a = 175, s = m, saída 75.5.

г	T . 1				(1
П	Linha	a	s	peso	saída
Г	1	175			
Г	2	175	m		
Г	4	175	m	75.5	
	5	175	m	75.5	Peso ideal = 75.5

 $a=154, s=f, \, \mathrm{saída}$ 48.6.

Linha	a	s	peso	saída		
1	154					
2	154	f				
8	154	f	48.6			
9	154	f	48.6	Peso ideal = 48.6		

Linha	a	s	peso	saída
1	175			
2	175	i		
11	175	i		O sexo é m ou f

Exercício 5

Usa-se a seguinte fórmula para o cálculo do fatorial de um número natural \boldsymbol{n}

$$n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$$

Escreva um algoritmo que leia um número natural ${\bf n}$ e depois calcule e imprima o fatorial desse número.

- Elabore um conjunto significativo de casos de testes.
- Expresse o algoritmo na forma de fluxograma e na de pseudocódigo.
- 3 Use os dados de testes elaborados e teste o algoritmo usando tabela de rastreamento.

Algoritmo 5: Fatorial

```
1 leia o número natural n
```

- $i \leftarrow 0$
- **3** fat $\leftarrow 1$
- 4 enquanto i < n faça

 - $i \leftarrow i + 1$
- $fat \leftarrow fat \times i$
- 7 fim enqto
- escreva "Fatorial(", n, ") = ", fat

/* contador de iterações */

/* acumula o valor do fatorial */

Fluxograma

n=0, saída 1.

Linha	n	i	fat	saída
1	0			

ı leia o número natural n

- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- $\mathbf{4}$ enquanto i < n faça
- $i \leftarrow i + 1$ $fat \leftarrow fat \times i$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n=0, saída 1.

Linha	n	i	fat	saída
1	0			
2	0	0		

- ı leia o número natural n
- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- $\mathbf{4}$ enquanto i < n faça
- $\begin{array}{c|c} \mathbf{5} & i \leftarrow i+1 \\ \mathbf{6} & \mathrm{fat} \leftarrow \mathrm{fat} \times i \end{array}$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

= 0, sa	ıda 1.	
Linha	n	

Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	

- ı leia o número natural n
- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- $\mathbf{4}$ enquanto i < n faça
- $\begin{array}{c|c} \mathbf{5} & i \leftarrow i+1 \\ \mathbf{6} & \mathrm{fat} \leftarrow \mathrm{fat} \times i \end{array}$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n=0, saída 1.

Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	

- ı leia o número natural n
- $i \leftarrow 0$
- з fat $\leftarrow 1$
- 4 enquanto i < n faça
- $\begin{array}{c|c} \mathbf{5} & i \leftarrow i+1 \\ \mathbf{6} & \mathrm{fat} \leftarrow \mathrm{fat} \times i \end{array}$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n=0, saída 1.

Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1

- ı leia o número natural n
- $i \leftarrow 0$
- з fat $\leftarrow 1$
- $\mathbf{4}$ enquanto i < n faça
- $\begin{array}{c|c} \mathbf{5} & i \leftarrow i+1 \\ \mathbf{6} & \mathrm{fat} \leftarrow \mathrm{fat} \times i \end{array}$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, saida 1.								
Linha	n	i	fat	saída				
1	0							
2	0	0						
3	0	0	1					
8	0	0	1	Fatorial(0) = 1				

	1	leia	o	número	natural	n
--	---	------	---	--------	---------	---

 $\mathbf{3}$ fat ← 1

 ${f 4} \; {
m enquanto} \; i < n \; {
m faça}$

 $\begin{vmatrix} i \leftarrow i + 1 \\ \text{fat} \leftarrow \text{fat} \times i \end{vmatrix}$

7 fim enqto

s escreva "Fat(", n, ") = ", fat

n=1, saída 1.

Linha	n	i	fat	saída
1	1			

n = 0, saída 1.							
Linha	n	i	fat	saída			
1	0						
2	0	0					
3	0	0	1				
8	0	0	1	Fatorial(0) = 1			

n	=	1,	saida	1.

t = 1, saida 1.							
Linha	n	i	fat	saída			
1	1						
2	1	0					

- ${f 1}$ leia o número natural n
- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- $\mathbf{4}$ enquanto i < n faça
- $i \leftarrow i+1$
- $\mathsf{fat} \leftarrow \mathsf{fat} \times i$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, saída 1.							
Linha	n	i	fat	saída			
1	0						
2	0	0					
3	0	0	1				
8	0	0	1	Fatorial(0) = 1			

n	=

1 anida 1

1 — 1, Saida 1.								
Linha	n	i	fat	saída				
1	1							
2	1	0						
3	1	0	1					
					-			

- 1 leia o número natural n
- $i \leftarrow 0$
- \mathbf{s} fat $\leftarrow 1$
- $\mathbf{4}$ enquanto i < n faça
- $i \leftarrow i+1$
- fat \leftarrow fat $\times i$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, saída 1.							
Linha	n	i	fat	saída			
1	0						
2	0	0					
3	0	0	1				
8	0	0	1	Fatorial(0) = 1			

n	=	1,	saida	1.	

n=1, saida 1.								
Linha	n	i	fat	saída				
1	1							
2	1	0						
3	1	0	1					

- ı leia o número natural n
- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- 4 enquanto i < n faça
- $i \leftarrow i+1$
- $fat \leftarrow fat \times i$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, saída 1.							
Linha	n	i	fat	saída			
1	0						
2	0	0					
3	0	0	1				
8	0	0	1	Fatorial(0) = 1			

n	=	1,	saida	1.	

_	n = 1, saida 1.								
	Linha	n	i	fat	saída				
	1	1							
	2	1	0						
	3	1	0	1					
	5	1	1	1					

- ı leia o número natural n $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1
- $\mathbf{4}$ enquanto i < n faça

 - $\begin{vmatrix} i \leftarrow i + 1 \\ \text{fat} \leftarrow \text{fat} \times i \end{vmatrix}$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, sai	ída 1.			
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1

Li

n = 1, sai	da 1.				
Linha	n	i	fat	saída	
1	1				
2	1	0			
3	1	0	1		
5	1	1	1		
6	1	1	1		

- ı leia o número natural n
- $i \leftarrow 0$ $\mathbf{3}$ fat ← 1
- ${f 4} \; {
 m enquanto} \; i < n \; {
 m faça}$
- $i \leftarrow i + 1$ $fat \leftarrow fat \times i$
- 7 fim enqto
- s escreva "Fat(", n, ") = ", fat

n = 0, sai	da 1.			
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1

_	n = 1, sai	da 1.				
	Linha	n	i	fat	saída	
	1	1				
	2	1	0			
	3	1	0	1		
	5	1	1	1		
	6	1	1	1		

- $i \leftarrow 0$
- $\mathbf{3}$ fat ← 1

ı leia o número natural n

- 4 enquanto i < n faça
- $i \leftarrow i+1$ $fat \leftarrow fat \times i$
- 7 fim enqto s escreva "Fat(", n, ") = ", fat

n = 0, sai	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1

ı leia o número natural n

$$i \leftarrow 0$$

 $\mathbf{3}$ fat ← 1

$\mathbf{4}$ enquanto i < n faça

 $i \leftarrow i+1$

$$fat \leftarrow fat \times i$$

7 fim enqto

n — 1, sai	ua I.			
Linha	n	i	fat	saída
1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
6	1	1	1	
8	1	1	1	Fatorial(1) = 1

n=0, sa	ída 1.			
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1

	1	leia	o	número	natural	n
--	---	------	---	--------	---------	---

U	ш	aı	7	b

$$i \leftarrow 0$$

$$\label{eq:continuous} \begin{array}{l} \mathbf{3} & \mathrm{fat} \leftarrow 1 \\ \mathbf{4} & \mathbf{enquanto} \ i < n \ \mathbf{faça} \end{array}$$

$$\begin{array}{c|c}
\mathbf{5} & i \leftarrow i+1 \\
\mathbf{6} & \text{fat} \leftarrow \text{fat} \times i
\end{array}$$

7 fim engto

onquo		
	<i>,</i>	

s escreva "Fat(", n, ") = ", fat

n = 1, saída 1. Linha

1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
6	1	1	1	
8	1	1	1	Fatorial(1) = 1

fat

saída

n = 5, saída 120.

1	Linha	n	i	fat	saída
	1	5			

$n \equiv 0$, saida 1.						
Linha	n	i	fat	saída		
1	0					
2	0	0				
3	0	0	1			
8	0	0	1	Fatorial(0) = 1		
n=1, sai	da 1.					
Linha	n	i	fat	saída		
1	1					
2	1	0				
	Linha $ \begin{array}{c c} \hline Linha \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 8 \\ \end{array} $ $n = 1, sai$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

 ${f 4} \; {
m enquanto} \; i < n \; {
m faça}$

 $i \leftarrow i + 1$ $fat \leftarrow fat \times i$

 $\mathbf{3}$ fat ← 1

7 fim enqto

s escreva "Fat(", n, ") = ", fat

n = 5, saída 120.

5

ſ	Linha	n	i	fat	saída
	1	5			
ſ	2	5	0		

Fatorial(1) = 1

	n = 0, saida 1.				
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sat	ída 1.			
7	Linha	n	i	fat	saída
1 leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$z \in 0$	3	1	0	1	
$3 \text{ fat } \leftarrow 1$	5	1	1	1	
0 100 (1	6	1	1	1	
4 enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1

 $i \leftarrow i + 1$ $fat \leftarrow fat \times i$

s escreva "Fat(", n, ") = ", fat

7 fim enqto

n = 0, saída 1.

n = 5, saída 120. Linha

3

n

0

0

fat

saída

	Linha	n	;	fat	saída
	Lillia		1	lat	saida
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	da 1.			
	Linha	n	i	fat	saída
leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$t \leftarrow 0$	3	1	0	1	
$fat \leftarrow 1$	5	1	1	1	
100 / 1	6	1	1	1	
enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$	n = 5, sai	da 12	.0.		

eva	"Fat(",	n,	")	=	",	fat
	,	,	•		,	

8 escr

 $\mathsf{fat} \leftarrow \mathsf{fat} \times i$

Linha	n	i	fat	saída
1	5			
2	5	0		
3	5	0	1	

	n = 0, sa	ída 1.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sa	ída 1.			
	Linha	n	i	fat	saída
ı leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$i \leftarrow 0$	3	1	0	1	
$\mathbf{a} \mathbf{fat} \leftarrow 1$	5	1	1	1	
, 1au (1	6	1	1	1	
$i \in n$ faça	8	1	1	1	Fatorial(1) = 1
$ \begin{array}{c c} 5 & i \leftarrow i+1 \\ 6 & \text{fat} \leftarrow \text{fat} \times i \end{array} $	n = 5, sa	ída 12	20.		
a fot / fot / i	Linha	n	i	fat	saída
$\mathbf{b} + 1\mathbf{a}\mathbf{t} \leftarrow 1\mathbf{a}\mathbf{t} \times \mathbf{t}$	1	-		1	

5	$i \leftarrow i + 1$
6	$\mathrm{fat} \leftarrow \mathrm{fat} \times i$
7	fim enqto

Linha	n	i	fat	
1	5			Γ
2	5	0		
	-	_		г

Linha	n	i	fat	saída
1	5			
2	5	0		
3	5	0	1	
5	5	1	1	

	n - 0, 5a	ida I.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
lais a múmana matumal m	Linha	n	i	fat	saída
leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
	3	1	0	1	
$fat \leftarrow 1$	5	1	1	1	
_	6	1	1	1	
enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$ $\text{fat} \leftarrow \text{fat} \times i$	n=5, sai	ída 12	.0.		
$fat \leftarrow fat \times i$	Linha	n	i	fat	saída
$1at \leftarrow 1at \wedge t$	1	5			
fim engto	2	5	0		
iiii ciiqio	3	5	0	1	
escreva "Fat(", n , ") = ", fat	5	5	1	1	

	n = 0, sai	da 1.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	da 1.			
ı leia o número natural n	Linha	n	i	fat	saída
i lela o numero naturar n	1	1			
$i \leftarrow 0$	2	1	0		
	3	1	0	1	
$\mathbf{s} \mathbf{fat} \leftarrow 1$	5	1	1	1	
	6	1	1	1	7
i < n faça	8	1	1	1	Fatorial(1) = 1
$ \begin{array}{c c} i \leftarrow i + 1 \\ \text{fat} \leftarrow \text{fat} \times i \end{array} $	n=5, sai	da 12	20.		
e fot / fot / i	Linha	n	i	fat	saída
$a \mid ai \leftarrow iai \wedge i$	1	5			
7 fim engto	2	5	0		
inn enquo	3	5	0	1	
s escreva "Fat(", n , ") = ", fat	5	5	1	1	
, , , , , , , , , , , , ,	6	F .	1	1	· · · · · · · · · · · · · · · · · · ·

	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
leia o número natural n	Linha	n	i	fat	saída
lela o numero natural n	1	1			
$i \leftarrow 0$	2	1	0		
2 0 1 0	3	1	0	1	
$\mathbf{s} \text{ fat } \leftarrow 1$	5	1	1	1	
	6	1	1	1	
enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$ \begin{array}{c c} i \leftarrow i + 1 \\ \text{fat} \leftarrow \text{fat} \times i \end{array} $	n=5, sai	ída 12	:0.		
fot / fot / i	Linha	n	i	fat	saída
t	1	5			
fim engto	2	5	0		
min enquo	3	5	0	1	

5

6

1

s escreva "Fat(", n, ") = ", fat

n=0,saída 1.

	n=0, sat	ída 1.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
7	Linha	n	i	fat	saída
leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$\iota \leftarrow 0$	3	1	0	1	
$fat \leftarrow 1$	5	1	1	1	
	6	1	1	1	
enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$ $fat \leftarrow fat \times i$	n=5, sai	ída 12	.0.		
$fat \leftarrow fat \vee i$	Linha	n	i	fat	saída
Tat V Tat X t	1	5			
fim engto	2	5	0		
•	3	5	0	1	
escreva "Fat(", n , ") = ", fat	5	5	1	1	
· · · · · · · · · · · · · · · · · · ·	_ 6	5	1	1	
	5	5	2	1	
	6	5	2	2	

	n = 0, sai	ída 1.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	_ ,	(1. a			
	n = 1, sai	n n	i	fat	saída
leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$i \leftarrow 0$	3	1	0	1	
$fat \leftarrow 1$	5	1	1	1	
	6	1	1	1	
enquanto $i < n$ faça	- 8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$ $fat \leftarrow fat \times i$	n = 5, sai	ída 12	20.		
fot / fot / i	Linha	n	i	fat	saída
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	1	5			
fim engto	2	5	0		
•	3	5	0	1	
escreva "Fat(", n , ") = ", fat	5	5	1	1	
	6	5	1	1	
	5	5	2	1	
	6	5	2	2	

	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	- 8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
ı leia o número natural n	Linha	n	i	fat	saída
1 lela o numero natural n	1	1			
$i \leftarrow 0$	2	1	0		
2 0 1 0	3	1	0	1	
$3 \text{fat} \leftarrow 1$	5	1	1	1	
	6	1	1	1	
4 enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$ \begin{array}{c c} 5 & i \leftarrow i+1 \\ 6 & \text{fat} \leftarrow \text{fat} \times i \end{array} $	n=5, sai	ída 12			_
$6 \qquad \text{fat} \leftarrow \text{fat} \times i$	Linha	n	i	fat	saída
	1	5			
7 fim engto	2	5	0		
•	3	5	0	1	
s escreva "Fat(", n , ") = ", fat	5	5	1	1	
	_ 6	5	1	1	
	5	5	2	1	
	6	5	2	2	
	5	5	3	2	

	n=0, sai	uu I.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
7	Linha	n	i	fat	saída
leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$t \leftarrow 0$	3	1	0	1	
$fat \leftarrow 1$	5	1	1	1	
	6	1	1	1	
enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$ $fat \leftarrow fat \times i$	n=5, sai	ída 12	20.		
$fat \leftarrow fat \times i$	Linha	n	i	fat	saída
	1	5			
fim enqto	2	5	0		
	3	5	0	1	
escreva "Fat(", n , ") = ", fat	5	5	1	1	
. , , . ,	_ 6	5	1	1	
	5	5	2	1	
	6	5	2	2	
	5	5	3	2	
	6	5	3	6	

	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	ída 1.			
1 leia o número natural n	Linha	n	i	fat	saída
1 lela o numero natural n	1	1			
$i \leftarrow 0$	2	1	0		
2 1 1 0	3	1	0	1	
$3 \text{fat} \leftarrow 1$	5	1	1	1	
	6	1	1	1	
4 enquanto $i < n$ faça	8	1	1	1	Fatorial(1) = 1
$5 i \leftarrow i+1$	n=5, sai	ída 12	20.		
$6 \text{fat} \leftarrow \text{fat} \times i$	Linha	n	i	fat	saída
\bullet $1at \leftarrow 1at \wedge t$	1	5			
7 fim engto	2	5	0		
i iiii ciiqto	3	5	0	1	
s escreva "Fat(", n , ") = ", fat	5	5	1	1	
	_ 6	5	1	1	
	5	5	2	1	
	6	5	2	2	
	5	5	3	2	
	6	5	3	6	

	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
_					
n	= 1, saí	da 1.			
	Linha	n	i	fat	saída
	1	1			
	2	1	0		
	3	1	0	1	
	5	1	1	1	
	6	1	1	1	
	8	1	1	1	Fatorial(1) = 1
\overline{n}	= 5, saí	da 12	.0.		
	= 5, saí Linha	da 12	:0. i	fat	saída
				fat	saída
	Linha	n		fat	saída
	Linha 1 2 3	n 5	i	fat	saída
	Linha 1 2	n 5 5	i 0		saída
	Linha 1 2 3	n 5 5	0 0	1	saída
	Linha 1 2 3 5	n 5 5 5	0 0 1	1 1	saída
	Linha 1 2 3 5 6	5 5 5 5 5	i 0 0 1 1	1 1 1	saída
	Linha 1 2 3 5 6 5	n 5 5 5 5 5 5	i 0 0 1 1	1 1 1	saída
	Linha 1 2 3 5 6 5 6	n 5 5 5 5 5 5 5 5	i 0 0 1 1 2	1 1 1 1 2	saída
	Linha 1 2 3 5 6 5 6 5 6 5	n 5 5 5 5 5 5 5	i 0 0 1 1 2 2	1 1 1 1 2 2	saída

ı leia o número natural n

4 enquanto i < n faça 5 $i \leftarrow i + 1$ 6 fat \leftarrow fat \times i

s escreva "Fat(", n, ") = ", fat

2 $i \leftarrow 0$ 3 $\text{fat} \leftarrow 1$

	n = 0, sai	da 1.			
	Linha	n	i	fat	saída
	1	0			
	2	0	0		
	3	0	0	1	
	8	0	0	1	Fatorial(0) = 1
	n = 1, sai	da 1.			
7	Linha	n	i	fat	saída
ı leia o número natural n	1	1			
$i \leftarrow 0$	2	1	0		
$z \in U$	3	1	0	1	
$\mathbf{a} \text{ fat } \leftarrow 1$	5	1	1	1	
	6	1	1	1	
i enquanto $i < n$ faça	- 8	1	1	1	Fatorial(1) = 1
$i \leftarrow i + 1$	n=5, sai	'da 12	.0.		
$6 \qquad \text{fat} \leftarrow \text{fat} \times i$	Linha	n	i	fat	saída
$a \leftarrow a \leftarrow b$	1	5			
fim engto	2	5	0		
•	3	5	0	1	
s escreva "Fat(", n , ") = ", fat	5	5	1	1	
- ,, - ,	6	5	1	1	
	5	5	2	1	

6

24

5

Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1
n = 1, sa	ída 1.			
Linha	n	i	fat	saída
1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
			-	
6	1	1	1	
6 8	1	1	1	Fatorial(1) = 1
n = 5, sa	1 ída 12	1	1	
n = 5, satisfies Linha	1 ída 12	1		Fatorial(1) = 1
8 n = 5, sa Linha 1	1 ída 12 n 5	1	1	
8 n = 5, sa Linha 1 2	1 ída 12 n 5	1 20.	1	
8 n = 5, sa Linha 1	1 ída 12 n 5	1 20. i	1 fat	
8 n = 5, sa. Linha 1 2 3	1 ida 12 n 5 5 5	1 i o o o	fat	
8 $ n = 5, sat $ $ Linha $ $ 1 $ $ 2 $ $ 3 $ $ 5$	1 (da 12 n 5 5 5 5	1 i o o o o o	1 fat 1 1	
8 $n = 5, \text{ sa}$ $\frac{\text{Linha}}{1}$ $\frac{2}{3}$ $\frac{5}{6}$	1 (da 12 n 5 5 5 5 5 5 5 5	1 0 0 1 1 1	1 fat 1 1 1	
8 $ n = 5, sa. $ $ Linha $ $ 1 $ $ 2 $ $ 3 $ $ 5 $ $ 6 $ $ 5$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 1 1 2	1 fat 1 1 1 1 1	
n = 5, sa. Linha 1 2 3 5 6 5 6	1 (da 12 n 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 1 2 2 2	1 fat 1 1 1 2	
8 n = 5, sa Linha 1 2 3 5 6 5 6 5	1 (da 12 n 5 5 5 5 5 5 5 5 5 5	1 0 0 0 1 1 1 2 2 2 3	1 fat 1 1 1 2 2 2	

ı leia o número natural n

4 enquanto i < n faça 5 $i \leftarrow i + 1$ 6 fat \leftarrow fat \times i

s escreva "Fat(", n, ") = ", fat

2 $i \leftarrow 0$ 3 $\text{fat} \leftarrow 1$

n=0, sa	ida i.			
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1
n = 1, sa	ída 1.			
Linha	n	i	fat	saída
1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
6	1	1	1	
6 8	1	1	1	Fatorial(1) = 1
-	1	1		Fatorial(1) = 1
8 $n = 5$, sa	1 ída 12	1	1	
$ \begin{array}{c} 8 \\ n = 5, \text{ sa} \\ \hline{\text{Linha}} \end{array} $	1 ída 12	1	1	
$n = 5, \text{ sa}$ $\frac{\text{Linha}}{1}$	1 ída 12 n 5	1 20.	1	
n = 5, sa Linha 1	1 ida 12 n 5 5	1 20. i	1 fat	
$n = 5, \text{ sa}$ $\begin{array}{c} \text{Linha} \\ 1 \\ 2 \\ 3 \end{array}$	1 ida 12 n 5 5 5	1 20. i 0 0	fat	
$n = 5, \text{ sa}$ $\begin{array}{c} \text{Linha} \\ 1 \\ 2 \\ 3 \\ 5 \\ \end{array}$	1 ida 12 n 5 5 5 5	1 20. i 0 0 1	1 fat 1 1	
8 n = 5, sa Linha 1 2 3 5 6	1 (da 12 n 5 5 5 5 5 5 5 5 5	0 0 1 1 1	1 fat 1 1 1	
$ \begin{array}{c c} 8 \\ n = 5, \text{ sa} \\ \hline \text{Linha} \\ 1 \\ 2 \\ \hline 3 \\ \hline 5 \\ \hline 6 \\ \hline 5 \\ \end{array} $	1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	0 0 1 1 2	1 fat 1 1 1 1	
$n = 5, \text{ sa}$ $\frac{\text{Linha}}{1}$ $\frac{2}{3}$ $\frac{3}{5}$ $\frac{6}{6}$	1 1 (da 12 n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 1 1 2 2 2	1 fat 1 1 1 2	
$ \begin{array}{c c} $	1 1 (da 12 n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 1 2 2 2 3	1 fat 1 1 1 2 2 2	
$ \begin{array}{c c} $	1 1 (da 12 n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 1 2 2 3 3 3	1 fat 1 1 1 2 2 6 6	

			,		
1	leia	O	número	natural	n

 $i \leftarrow 0$

з fat $\leftarrow 1$

 ${f 4} \; {
m enquanto} \; i < n \; {
m faça}$

 $i \leftarrow i+1$

 $fat \leftarrow fat \times i$

7 fim enqto

n=0, sa	ída 1.			
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1
n=1, sa	ída 1.			
Linha	n	i	fat	saída
1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
6	1	1	1	
8	1	1	1	Fatorial(1) = 1
n = 5, sa	_			
Linha	n	i	fat	saída
1	5			
2	5	0		
3	5	0	1	
5	5	1	1	
6	5	1		
5			1	
	5	2	1	
6	5	2 2	1 2	
6 5	5 5 5	2 2 3	1 2 2	
6 5 6	5 5 5 5	2 2 3 3	1 2 2 6	
6 5 6 5	5 5 5 5 5	2 2 3 3 4	1 2 2 6 6	
6 5 6 5	5 5 5 5 5 5	2 2 3 3 4 4	1 2 2 6 6 24	
6 5 6 5 6 5	5 5 5 5 5 5 5	2 2 3 3 4 4 5	1 2 2 6 6 6 24 24	
6 5 6 5	5 5 5 5 5 5	2 2 3 3 4 4	1 2 2 6 6 24	

m = 0 solds 1

ı leia o número natural n

 $i \leftarrow 0$

3 fat $\leftarrow 1$

4 enquanto i < n faça

 $\begin{array}{c|c}
i \leftarrow i + 1 \\
\text{fat} \leftarrow \text{fat} \times i
\end{array}$

7 fim enqto

n = 0, sa				
Linha	n	i	fat	saída
1	0			
2	0	0		
3	0	0	1	
8	0	0	1	Fatorial(0) = 1
n = 1, sa	ída 1.			
Linha	n	i	fat	saída
1	1			
2	1	0		
3	1	0	1	
5	1	1	1	
	1	1	1	
6	1 1			
8	1	1	1	Fatorial(1) = 1
	1	1	_	Fatorial(1) = 1
n = 5, sa	1 ída 12	1	1	
n = 5, sa Linha	1 ída 12	1	1	
8 n = 5, sa Linha 1 2 3	1 ida 12	1 20.	1	
8 n = 5, sa Linha 1 2	1 ida 12 n 5 5	1 20. i	fat	
8 n = 5, sa Linha 1 2 3	1 ida 12 n 5 5 5	1 20. i 0 0	fat	
$n = 5, \text{ sa}$ $\frac{\text{Linha}}{1}$ $\frac{2}{3}$ $\frac{3}{5}$	ida 12 n 5 5 5 5 5 5 5 5 5 5 5	0 0 1 1 2	fat 1 1 1	
$n = 5, \text{ sa}$ $\frac{\text{Linha}}{1}$ $\frac{2}{3}$ $\frac{5}{6}$	ida 12 n 5 5 5 5 5 5 5 5	0 0 1 1 1	1 fat 1 1 1	
8 n = 5, sa Linha 1 2 3 5 6 5	ida 12 n 5 5 5 5 5 5 5 5 5 5 5	0 0 1 1 2	1 fat 1 1 1 1 1	
n = 5, sa Linha 1 2 3 5 6 5 6	1 1 (da 12 n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 1 1 2 2 2	fat 1 1 1 1 1 2	
n = 5, sa Linha 1 2 3 5 6 5 6 5	1 ida 12 n 5 5 5 5 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 1 2 2 2 3	1 1 1 1 1 2 2 2	
n = 5, sa Linha 1 2 3 5 6 5 6	1 ida 12 n 5 5 5 5 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 1 2 2 3 3 3	1 1 1 1 1 2 2 6	Fatorial(1) = 1
n = 5, sa Linha 1 2 3 5 6 5 6 5 6 5 5 6 5 5 6 5 5	1 ida 12 n 5 5 5 5 5 5 5 5 5 5 5 5	1 20. i 0 0 1 1 2 2 2 3 3 3 4	1 1 1 1 1 2 2 6 6 6	

1	leia	0	número	natural	n

 $i \leftarrow 0$

з fat $\leftarrow 1$ 4 enquanto i < n faça

 $i \leftarrow i+1$ $\text{fat} \leftarrow \text{fat} \times i$

7 fim enqto

n = 0, sai	ída 1.							
Linha	n	i	fat	saída				
1								
2	0	0						
3	0	0	1					
8	0	0	1	Fatorial(0) = 1				
n=1, saída 1.								
Linha	n	i	fat	saída				

0 1

L	leia o número natural n	
2	$i \leftarrow 0$	

$$\begin{array}{l} \mathbf{3} \;\; \mathrm{fat} \leftarrow 1 \\ \mathbf{4} \;\; \mathbf{enquanto} \;\; i < n \;\; \mathbf{faça} \\ \end{array}$$

 $\begin{array}{c|c}
\mathbf{5} & i \leftarrow i+1 \\
\mathbf{6} & \text{fat} \leftarrow \text{fat} \times i
\end{array}$

7 fim enqto

s escreva "Fat(", n, ") = ", fat

n — 5 saída 120

3

	n = 3, Salua 120.											
	Linha	n	i	fat	saída							
	1	5										
	2	5	0									
	3	5	0	1								
	5	5	1	1								
_	6	5	1	1								
	5	5	2	1								
	6	5	2	2								
	5	5	3	2								
	6	5	3	6								
	5	5	4	6								
	6	5	4	24								
	5	5	5	24								
	6	5	5	120								
	8	5	5	120	Fatorial(5) = 120							

Fatorial(1) = 1

Exercício 6

Uma progressão aritmética (abreviadamente, P. A.) é uma sequência numérica em que cada termo, a partir do segundo, é igual à soma do termo anterior com uma constante r. O número r é chamado de razão da progressão aritmética.

Assim, se denominarmos o primeiro termo por a_0 , então teremos a P.A.

$$(a_0, a_0+r, a_0+2r, a_0+3r, \ldots,)$$

O n-ésimo termo da P.A. pode ser calculado por

$$a_n = a_{n-1} + r$$

ou por

$$a_n = a_0 + (n-1)r$$

Escreva um algoritmo que calcule e imprima a soma dos n primeiros termos de uma progressão aritmética. Para isso ele terá que ler três números: o primeiro termo a_0 , o número de termos n e a razão r da P.A.

- 1 Elabore um conjunto significativo de casos de testes.
- 2 Expresse o algoritmo na forma de fluxograma e na de pseudocódigo.
- 3 Teste o algoritmo usando tabela de rastreamento e os dados do item 1.

Algoritmo 6: Soma da progressão aritmética

- 1 leia o número real a_0 // primeiro termo leia o número inteiro n // número de termos
- 3 leia o número real r
- $i \leftarrow 0$
- $5 \text{ soma} \leftarrow 0$
- 6 $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$
- 10 fim enqto
- 12 escreva "Soma da P.A =", soma

- // razão
- // contador de iterações // acumula a soma
 - // o i-ésimo termo

Fluxograma

 $a_0 = 2, n = 0, r = 2$, saída 0, 0 iteração no laço.

	Linha	a_0	n	r	i	soma	a_i	saída	
-	1	2							

- 1 leia o número real a_0
- $\mathbf{2}$ leia o número inteiro n
- $\bf 3$ leia o número real r
- 4 i ← 0
- 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0=2, n=0, r=2,$ saída 0, ${\color{red}0}$ iteração no laço.

Linha	a ₀	n	r	i	soma	a_i	saída	
1	2							
2	2	0						

- 1 leia o número real a_0
- 2 leia o número inteiro n
- 3 leia o número real r
- 4 i ← 0
- 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0=2, n=0, r=2,$ saída 0, ${\color{red}0}$ iteração no laço.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	0					
3	2	0	2				

- 1 leia o número real a_0
- ${\bf 2}~$ leia o número inteiro n
- $\bf 3$ leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma ← 0
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0=2, n=0, r=2,$ saída 0, ${\color{red}0}$ iteração no laço.

	Linha	a_0	n	r	i	soma	a_i	saída
_	1	2						
	2	2	0					
	3	2	0	2				
	4	2	0	2	0			

- 1 leia o número real a_0
- ${\bf 2}~$ leia o número inteiro n
- ${f 3}$ leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma ← 0
- $a_i \leftarrow a_0$
- 7 enquanto i < n faça
 - soma \leftarrow soma $+ a_i$ $i \leftarrow i + 1$
- $\begin{array}{c|c} \mathbf{a} & i \leftarrow i + 1 \\ \mathbf{a}_i \leftarrow a_i + r \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n = 0, r = 2$, saída 0, 0 iteração no
--

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 1-4	2	2	0					
l leia o número real a_0	3	2	0	2				
2 leia o número inteiro n	4	2	0	2	0			
3 leia o número real r	5	2	0	2	0	0		

- 4 $i \leftarrow 0$ 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim engto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n = 0, r =$	= 2, saída 0, 🛭	iteração no laço.
-----------------------	-----------------	-------------------

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 -	2	2	0					
real a_0	3	2	0	2				
inteiro n	4	2	0	2	0			
real r	5	2	0	2	0	0		
	6	2	0	2	0	0	2	

- 3 leia o número 4 $i \leftarrow 0$
- 5 soma $\leftarrow 0$

leia o número
 leia o número

- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim engto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n = 0, r =$	= 2, saída 0, 🛭	iteração no laço.
-----------------------	-----------------	-------------------

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1-441 -	2	2	0					
leia o número real a_0	3	2	0	2				
leia o número inteiro n	4	2	0	2	0			
leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	

- $soma \leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n = 0, r =$	= 2, saída 0, (0 iteração no	laço.
-----------------------	-----------------	---------------	-------

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1-441 -	2	2	0					
leia o número real a_0	3	2	0	2				
leia o número inteiro n	4	2	0	2	0			
leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	
some / 0	12	2	0	2	0	0	2	Soma = 0

- $soma \leftarrow 0$ $a_i \leftarrow a_0$ $soma \leftarrow soma + a_i$
- enquanto i < n faça
- $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n$	= 0, r	= 2,	saida	υ, υ	neração	no raç
Tink.				- :		_

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	0					
3	2	0	2				
4	2	0	2	0			
5	2	0	2	0	0		
6	2	0	2	0	0	2	
12	2	0	2	0	0	2	Soma = 0

- 1 leia o número real a_0 leia o número inteiro n
- 3 leia o número real r
- $4 \quad i \leftarrow 0$
- $soma \leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$u_0 = z, n$	- 1,7	_ 2,	– 2, saida 1, 1 iteração no raço.							
Linha	a_0	n	r	i	soma	a_i	saída			
1	2									

$a_0 =$	2, n	= 0,	r	= 2,	saída	0, 0	iteração	$_{ m no}$	laço.

$a_0 = 2, n = 0, r = 2,$ saida 0, 0 iteração no iaço.							
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	0					
3	2	0	2				
4	2	0	2	0			
5	2	0	2	0	0		
6	2	0	2	0	0	2	
12	2	0	2	0	0	2	Soma = 0

1	leia	О	número	real a_0
2	leia	o	número	inteiro n

3 leia o número real r

 $4 \quad i \leftarrow 0$

 $soma \leftarrow 0$

 $a_i \leftarrow a_0$

enquanto i < n faça

 $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$

 $a_i \leftarrow a_i + r$ 10

11 fim enqto

12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 1, r = 2$, saída 1, 1 iteração no laço.

I	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
	2	2	1					

$a_0 = 2, n = 0, r =$	= 2, saída 0, 🛭	iteração no laço.
-----------------------	-----------------	-------------------

	Linha	a ₀	n	r	i	soma	a_i	saída
	1	2						
1	2	2	0					
leia o número real a_0	3	2	0	2				
leia o número inteiro n	4	2	0	2	0			
leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	
	12	2	0	2	0	0	2	Soma = 0

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	1					
3	2	1	2				

- 1 leia o número real a_0
- leia o número real r
- 4 $i \leftarrow 0$
- $soma \leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2$, n =	0, r	= 2,	$\operatorname{saída}$	0,	0	iteração	no	laço.
-----------	-------	------	------	------------------------	----	---	----------	----	-------

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
ć1 -	2	2	0					
úmero real a_0	3	2	0	2				
úmero inteiro n	4	2	0	2	0			
úmero real r	5	2	0	2	0	0		
	6	2	0	2	0	0	2	
	12	2	0	2	0	0	2	Soma = 0

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	1					
3	2	1	2				
4	2	1	2	0			

- 1 leia o nú
- leia o nú
- 3 leia o nú
- $4 \quad i \leftarrow 0$
- $soma \leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n = 0, r =$	= 2, saída 0, 🛭	iteração no laço.
-----------------------	-----------------	-------------------

	Linha	a ₀	n	r	i	soma	a_i	saída
	1	2						
1 leia o número real a_0	2	2	0					
*	3	2	0	2				
2 leia o número inteiro n	4	2	0	2	0			
3 leia o número real r	5	2	0	2	0	0		
4 i ← 0	6	2	0	2	0	0	2	
	12	2	0	2	0	Ω	2	Soma = 0

$4 \quad i \leftarrow 0$ $soma \leftarrow 0$

6
$$a_i \leftarrow a_0$$

7 enquanto
$$i < n$$
 faça

8 soma
$$\leftarrow$$
 soma $+ a_i$

$$\begin{array}{c|c}
\mathbf{9} & i \leftarrow i+1 \\
\mathbf{10} & a_i \leftarrow a_i + r
\end{array}$$

12 escreva "Soma da P.A =", soma

0 -,	-,.	-,		, -		3		
Linha	a_0	n	r	i	soma	a_i	saída	
1	2							
2	2	1						
3	2	1	2					
4	2	1	2	0				
5	2	1	2	0	0			Т

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 leia o número real a_0	2	2	0					
<u> </u>	3	2	0	2				
2 leia o número inteiro n	4	2	0	2	0			
3 leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	
	12	2	0	2	0	0	2	Soma = 0

 $4 \quad i \leftarrow 0$ $5 \quad \text{soma} \leftarrow 0$ $6 \quad a_i \leftarrow a_0$

7 enquanto i < n faça

8 soma \leftarrow soma $+ a_i$

 $\begin{array}{c|c}
\mathbf{9} & i \leftarrow i+1 \\
\mathbf{10} & a_i \leftarrow a_i + r
\end{array}$

11 fim enqto

12 escreva "Soma da P.A =", soma

 $a_0=2, n=1, r=2$, saída 1, 1 iteração no laço.

 $a_0=2, n=0, r=2,$ saída 0, ${\color{red}0}$ iteração no laço.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	1					
3	2	1	2				
4	2	1	2	0			
5	2	1	2	0	0		
6	2	1	2	0	0	2	
	Linha 1 2 3 4 5	Linha a_0 1 2 2 2 3 2 4 2 5 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

$a_0 =$	2, n	= 0, r	= 2,	saída	0, () iteração	no	laço.

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
leis a número real a-	2	2	0					
leia o número real a_0	3	2	0	2				
leia o número inteiro n	4	2	0	2	0			
leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	
soma ← 0	12	2	0	2	0	0	2	Soma = 0

6 $a_i \leftarrow a_0$

7 enquanto i < n faça

8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$

 $10 \qquad a_i \leftarrow a_i + r$

11 fim enqto

12 escreva "Soma da P.A =", soma

 $a_0=2, n=1, r=2,$ saída 1, $\color{red}1$ iteração no laço.

, , , ,	, ,	,		,			
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	1					
3	2	1	2				
4	2	1	2	0			
5	2	1	2	0	0		
6	2	1	2	0	0	2	

$a_0 = 2, n$	= 0, r	= 2,	saída	0, 0	iteração	no la	çо.

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 1-:	2	2	0					
1 leia o número real a_0	3	2	0	2				
2 leia o número inteiro n	4	2	0	2	0			
3 leia o número real r	5	2	0	2	0	0		
$i \leftarrow 0$	6	2	0	2	0	0	2	
	12	2	0	2	0	0	2	Soma = 0

5 soma ← 0

6 $a_i \leftarrow a_0$

7 enquanto i < n faça

8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$ 10 $a_i \leftarrow a_i + r$

11 fim enqto

12 escreva "Soma da P.A =", soma

	a0 = 2, 10 = 1, 7 = 2, barda 1, 1 recração no raço.												
	Linha	a_0	n	r	i	soma	a_i	saída					
	1	2											
	2	2	1										
	3	2	1	2									
	4	2	1	2	0								
	5	2	1	2	0	0							
	6	2	1	2	0	0	2						
_	8	2	1	2	0	2	2						

$a_0 = 1$	2, n	= 0, r	= 2,	saída	ι0, 0	iteração	no l	aço.

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 leia o número real a_0	2	2	0					
The state of the s	3	2	0	2				
2 leia o número inteiro n	4	2	0	2	0			
3 leia o número real r	5	2	0	2	0	0		
$4 i \leftarrow 0$	6	2	0	2	0	0	2	
	12	2	0	2	0	Ω	2	Soma = 0

- $4 \quad i \leftarrow 0$
- $soma \leftarrow 0$
- 6 $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

m = 2 spide 1 1 itempoño no leso

	$a_0 = z, n$	=1, r	= 2,	saida	ι 1, 1	neração	no raç	Ο.
	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
	2	2	1					
	3	2	1	2				
	4	2	1	2	0			
	5	2	1	2	0	0		
	6	2	1	2	0	0	2	
_	8	2	1	2	0	2	2	
	9	2	1	2	1	2	2	

_		\vdash
_		\vdash
1	leia o número real a_0	\vdash
2	leia o número inteiro n	\vdash
		\vdash
3	leia o número real r	L
4	$i \leftarrow 0$	L

- 5 soma $\leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

2 = 0 = 2 saída 0 = 0 itaração no laco

$u_0 = 2, n$	$-0, \tau$	_ 2,	Sarua	ιυ, υ	rteração	no raç	0.
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	0					
3	2	0	2				
4	2	0	2	0			
5	2	0	2	0	0		
6	2	0	2	0	0	2	
12	2	0	2	0	0	2	Soma = 0

- 1 m - 2 spída 1 1 itornaño no laso

	$a_0 = 2, n = 1, r = 2$, saida 1, 1 iteração no iaço.												
	Linha	a_0	n	r	i	soma	a_i	saída					
	1	2											
	2	2	1										
	3	2	1	2									
	4	2	1	2	0								
	5	2	1	2	0	0							
	6	2	1	2	0	0	2						
_	8	2	1	2	0	2	2						
	9	2	1	2	1	2	2						
	10	2	1	2	1	2	4						

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
1 1-2	2	2	0					
1 leia o número real a_0	3	2	0	2				

12

- 2 leia o número inteiro n
- 3 leia o número real r
- 4 i ← 0
- 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$
- $\begin{array}{c|c} \mathbf{a} & i \leftarrow i + 1 \\ \mathbf{a}_i \leftarrow a_i + r \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0 = 2$, n = 1, r = 2, saída 1, 1 iteração no laco.

 $a_0=2, n=0, r=2,$ saída 0, ${\color{red}0}$ iteração no laço.

	i = 1, r	= 2,	saida	ւ 1, ⊥	ıteraçao	no Iaç	
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	1					
3	2	1	2				
4	2	1	2	0			
5	2	1	2	0	0		
6	2	1	2	0	0	2	
_ 8	2	1	2	0	2	2	
9	2	1	2	1	2	2	
10	2	1	2	1	2	4	
							•

0

0

0

Soma = 0

_	
_	
1	leia o número real a_0
2	leia o número inteiro n
3	leia o número real r
4	$i \leftarrow 0$
5	soma ← 0

$$6 \quad a_i \leftarrow a_0$$

7 enquanto
$$i < n$$
 faça
8 soma \leftarrow soma $+ a_i$

$$\begin{array}{c|c}
\mathbf{9} & i \leftarrow i+1 \\
\mathbf{10} & a_i \leftarrow a_i + r
\end{array}$$

11 fim enqto

12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 0, r = 2$, saída 0, 0 iteração no laço

$u_0 = 2, n$	$-0, \tau$	_ 2,	Sarua	ιυ, υ	rteração	no raç	0.
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	0					
3	2	0	2				
4	2	0	2	0			
5	2	0	2	0	0		
6	2	0	2	0	0	2	
12	2	0	2	0	0	2	Soma = 0

	$a_0 = 2, n$	- 1, 7	_ 2,	Saida	ι 1, 1	rteração	no raç	0.
	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
	2	2	1					
	3	2	1	2				
	4	2	1	2	0			
	5	2	1	2	0	0		
	6	2	1	2	0	0	2	
_	8	2	1	2	0	2	2	
	9	2	1	2	1	2	2	
	10	2	1	2	1	2	4	
	12	2	1	2	1	2	4	Soma = 2

$$a_0=2, n=5, r=2,$$
saída 1.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						

- 1 leia o número real a_0
- $\mathbf{2}$ leia o número inteiro n
- 3 leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$$a_0 = 2, n = 5, r = 2, \, {\rm saída}$$
1.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					

- 1 leia o número real a_0
- 2 leia o número inteiro n
- 3 leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma ← 0
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma + a_i 9 $i \leftarrow i + 1$
- $\begin{array}{c|c} \mathbf{a} & \mathbf{c} & \mathbf{c} + \mathbf{1} \\ \mathbf{a}_i \leftarrow \mathbf{a}_i + r \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$$a_0=2, n=5, r=2, \, \mathrm{sa\acute{d}a}$$
1.

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
-	2	2	5					
	3	2	5	2				

- ${f 1}$ leia o número real a_0
- $\mathbf{2}$ leia o número inteiro n
- 3 leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma ← 0
- $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- $8 \quad | \quad soma \leftarrow soma + a_i$ $9 \quad | \quad i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$$a_0=2, n=5, r=2, \, \mathrm{sa\acute{d}a}$$
1.

	-)	,					
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					
3	2	5	2				
4	2	5	2	0			

- 1 leia o número real a_0
- $\mathbf{2}$ leia o número inteiro n
- ${f 3}$ leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma $\leftarrow 0$
- $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$
- 10 $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$$a_0=2, n=5, r=2, \, \mathrm{sa\acute{d}a}$$
1.

		-, .	-,						
	Linha	a_0	n	r	i	soma	a_i	saída	
	1	2							
_	2	2	5						
	3	2	5	2					
	4	2	5	2	0				
	5	2	5	2	0	0			

- 1 leia o número real a_0
- ${f 2}$ leia o número inteiro n
- ${f 3}$ leia o número real r
- $4 \quad i \leftarrow 0$
- 5 soma $\leftarrow 0$
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 10 | $a_i \leftarrow a_i$ 11 fim engto
- 12 escreva "Soma da P.A =", soma

$$a_0 = 2, n = 5, r = 2$$
, saída 1.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					
3	2	5	2				
4	2	5	2	0			
5	2	5	2	0	0		
6	2	5	2	0	0	2	

- ${\bf 1} \ \ {\tt leia} \ {\tt o} \ {\tt n\'umero} \ {\tt real} \ a_0$
- ${f 2}$ leia o número inteiro n
- ${f 3}$ leia o número real r
- 4 $i \leftarrow 0$
- 5 soma ← 0
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- $\mathbf{8} \qquad \qquad \mathbf{soma} \leftarrow \mathbf{soma} + a_i$
- $\begin{array}{c|c}
 \mathbf{9} & i \leftarrow i+1 \\
 \mathbf{10} & a_i \leftarrow a_i + r
 \end{array}$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0=2, n=5, r=2,$ saída 1.

	, .	,	Durac				
Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					
3	2	5	2				
4	2	5	2	0			
5	2	5	2	0	0		
6	2	5	2	0	0	2	

- ${\bf 1} \ \ {\tt leia} \ {\tt o} \ {\tt n\'umero} \ {\tt real} \ a_0$
- ${f 2}$ leia o número inteiro n
- ${f 3}$ leia o número real r
- 4 $i \leftarrow 0$
- 5 soma ← 0
- 6 $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$
- 10 $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

a_0) =	= 2	, n	=	5,	r	=	2,	saida	1.

	a ₀ = 2, n = 3, r = 2, saraa 1.													
	Linha	a_0	n	r	i	soma	a_i	saída						
	1	2												
=	2	2	5											
	3	2	5	2										
	4	2	5	2	0									
	5	2	5	2	0	0								
	6	2	5	2	0	0	2							
	8	2	5	2	0	2	2							

- 1 leia o número real a_0
- ${f 2}$ leia o número inteiro n
- ${f 3}$ leia o número real r
- 4 $i \leftarrow 0$
- 5 soma $\leftarrow 0$
- $a_i \leftarrow a_0$
- 7 enquanto i < n faça
- 8 soma \leftarrow soma $+ a_i$ 9 $i \leftarrow i + 1$
- $10 \qquad a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 5, r = 2, \text{ saída 1.}$

	Linna	a_0	n	r	1	soma	a_i	saida
	1	2						
	2	2	5					
leia o número real a_0	3	2	5	2				
<u> </u>	4	2	5	2	0			
leia o número inteiro n	5	2	5	2	0	0		
B leia o número real r	6	2	5	2	0	0	2	
$i \leftarrow 0$	8	2	5	2	0	2	2	
	9	2	5	2	1	2	2	

- $soma \leftarrow 0$
- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 5, r = 2$, saída 1. Linha | ao | n | r | i | soma | a |

	Lillia	40	11	1	1	Soma	u_i	Saida
	1	2						
	2	2	5					
1 leia o número real a_0	3	2	5	2				
~	4	2	5	2	0			
2 leia o número inteiro n	5	2	5	2	0	0		
3 leia o número real r	6	2	5	2	0	0	2	
$i \leftarrow 0$	8	2	5	2	0	2	2	
5 soma ← 0	9	2	5	2	1	2	2	
oma ← 0	10	2	5	2	1	2	4	

- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 5, r = 2, \text{ saída 1.}$

	Linna	a_0	n	r	1	soma	a_i	saida
	1	2						
	2	2	5					
l leia o número real a_0	3	2	5	2				
~	4	2	5	2	0			
2 leia o número inteiro n	5	2	5	2	0	0		
3 leia o número real r	6	2	5	2	0	0	2	
$i \leftarrow 0$	8	2	5	2	0	2	2	
s soma ← 0	9	2	5	2	1	2	2	
soma ← 0	10	2	5	2	1	2	4	

- $a_i \leftarrow a_0$
- enquanto i < n faça
- $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

a_0	=	2, n	=	5, r	=	2,	saída	1.

	Linna	a_0	n	r	1	soma	a_i	saida
	1	2						
	2	2	5					
leia o número real a_0	3	2	5	2				
· ·	4	2	5	2	0			
leia o número inteiro n	5	2	5	2	0	0		
leia o número real r	6	2	5	2	0	0	2	
$i \leftarrow 0$	8	2	5	2	0	2	2	
$soma \leftarrow 0$	9	2	5	2	1	2	2	
Soliia ← 0	10	2	5	2	1	2	4	
$a_i \leftarrow a_0$	8	2	5	2	1	6	4	

- enquanto i < n faça
- $soma \leftarrow soma + a_i$ $i \leftarrow i + 1$
- $a_i \leftarrow a_i + r$ 10
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n$	= 5, r	= 2,	saída	ւ 1.			
Linha	<i>a</i> .o.	n	r	l i	soma	a_i	saída

		Lillia	40	111			BOIII	u_i	Baraa
		1	2						
_		2	2	5					
1	leia o número real a_0	3	2	5	2				
	· ·	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
K	$soma \leftarrow 0$	9	2	5	2	1	2	2	
		10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	

- $soma \leftarrow soma + a_i$
- $i \leftarrow i + 1$ $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n$	= 5, r	= 2,	saída	ι1.		
Linha	a_0	n	r	i	soma	a_i

saída

	1	2						
	2	2	5					
1 leia o número real a_0	3	2	5	2				
~	4	2	5	2	0			
2 leia o número inteiro n	5	2	5	2	0	0		
3 leia o número real r	6	2	5	2	0	0	2	
4 i ← 0	8	2	5	2	0	2	2	
5 soma ← 0	9	2	5	2	1	2	2	
5 soma ← 0	10	2	5	2	1	2	4	
6 $a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7 enquanto $i < n$ faça	9	2	5	2	2	6	4	
8 soma \leftarrow soma $+ a_i$	10	2	5	2	2	6	6	
$0 i \leftarrow i + 1$								

- 11 fim engto
- 12 escreva "Soma da P.A =", soma

 $a_i \leftarrow a_i + r$

$a_0 = 2, n$	= 5, r	= 2,	saída	ւ 1.			
Linha	a_0	n	r	i	soma	a_i	Г

saída

	1	2						
	2	2	5					
1 leia o número real a_0	3	2	5	2				
~	4	2	5	2	0			
2 leia o número inteiro n	5	2	5	2	0	0		
3 leia o número real r	6	2	5	2	0	0	2	
4 $i \leftarrow 0$	8	2	5	2	0	2	2	
5 soma $\leftarrow 0$	9	2	5	2	1	2	2	
	10	2	5	2	1	2	4	
$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7 enquanto $i < n$ faça	9	2	5	2	2	6	4	
8 soma \leftarrow soma $+ a_i$	10	2	5	2	2	6	6	

- $a_i \leftarrow a_i + r$
- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

 $a_i \leftarrow a_i + r$

12 escreva "Soma da P.A =", soma

11 fim enqto

 $a_0 = 2, n = 5, r = 2$, saída 1.

		1	2		
		2	2	5	
1 14	eia o número real a_0	3	2	5	2
	· ·	4	2	5	2
2 1	eia o número inteiro n	5	2	5	2
3 1	eia o número real r	6	2	5	2
4 <i>i</i>	← 0	8	2	5	2
5 sc	oma ← 0	9	2	5	2
5 St	oma ← 0	10	2	5	2
6 a	$i \leftarrow a_0$	8	2	5	2
7 e	nquanto $i < n$ faça	9	2	5	2
8	$soma \leftarrow soma + a_i$	10	2	5	2
9	$i \leftarrow i + 1$	8	2	5	2
9	<i>i</i> ← <i>i</i> + 1				

	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
_	2	2	5					
	3	2	5	2				
	4	2	5	2	0			
	5	2	5	2	0	0		
	6	2	5	2	0	0	2	
	8	2	5	2	0	2	2	
	9	2	5	2	1	2	2	
	10	2	5	2	1	2	4	
	8	2	5	2	1	6	4	
	9	2	5	2	2	6	4	
	10	2	5	2	2	6	6	
	8	2	5	2	2	12	6	

 $a_0 = 2, n = 5, r = 2$, saída 1.

=		2	2
1	leia o número real a_0	3	2
	leia o número inteiro n	4	2
_		5	2
3	leia o número real r	6	2
4	$i \leftarrow 0$	8	2
5	$soma \leftarrow 0$	9	2
6	$a_i \leftarrow a_0$	8	2
7	enquanto $i < n$ faça	9	2
8	$soma \leftarrow soma + a_i$	10	2
9	$i \leftarrow i + 1$	8	2
	· ·	9	2
10	$a_i \leftarrow a_i + r$		

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					
3	2	5	2				
4	2	5	2	0			
5	2	5	2	0	0		
6	2	5	2	0	0	2	
8	2	5	2	0	2	2	
9	2	5	2	1	2	2	
10	2	5	2	1	2	4	
8	2	5	2	1	6	4	
9	2	5	2	2	6	4	
10	2	5	2	2	6	6	
8	2	5	2	2	12	6	
9	2	5	2	3	12	6	

- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

$a_0 = 2, n$	= 5, r	= 2,	saída	ւ 1.			
Linha	a_0	n	r	i	soma	a_i	Г

saída

			1 -0		_	_			
		1	2						
_		2	2	5					
1	leia o número real a_0	3	2	5	2				
	· ·	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
	$soma \leftarrow 0$	9	2	5	2	1	2	2	
		10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9	$i \leftarrow i + 1$	8	2	5	2	2	12	6	
-		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	

- 11 fim enqto
- 12 escreva "Soma da P.A =", soma

11 fim enqto

12 escreva "Soma da P.A =", soma

 $a_0 = 2, n = 5, r = 2$, saída 1.

	Lillia	40	11			BOIII	u_i	Saraa
	1	2						
	2	2	5					
1 leia o número real a_0	3	2	5	2				
· ·	4	2	5	2	0			
2 leia o número inteiro n	5	2	5	2	0	0		
3 leia o número real r	6	2	5	2	0	0	2	
$4 i \leftarrow 0$	8	2	5	2	0	2	2	
5 soma ← 0	9	2	5	2	1	2	2	
	10	2	5	2	1	2	4	
$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7 enquanto $i < n$ faça	9	2	5	2	2	6	4	
8 soma \leftarrow soma $+ a_i$	10	2	5	2	2	6	6	
	8	2	5	2	2	12	6	
	9	2	5	2	3	12	6	
$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	

12 escreva "Soma da P.A =", soma

$a_0 = 2, n$	= 5, r	= 2,	saída	ι1.		
Linha	a_0	n	r	i	soma	a_i

			0			_			
		1	2						
		2	2	5					
1	leia o número real a_0	3	2	5	2				
	V	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
_	$soma \leftarrow 0$	9	2	5	2	1	2	2	
ъ	soma ← 0	10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
_	•	8	2	5	2	2	12	6	
9		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim enqto	8	2	5	2	3	20	8	

$a_0 = 2, n$	= 5, r	= 2,	saída	ւ 1.	
Linha	a_0	n	r	i	soma

saída

		1	2						
		2	2	5					
1	leia o número real a_0	3	2	5	2				
	leia o número inteiro n	4	2	5	2	0			
2	ieia o numero inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
5	$soma \leftarrow 0$	9	2	5	2	1	2	2	
		10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9		8	2	5	2	2	12	6	
	$i \leftarrow i + 1 \\ a_i \leftarrow a_i + r$	9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
12	escreva "Soma da P.A =" soma	9	2	5	2	4	20	8	

	a_0	=	2,	n	=	5,	r	=	2,	saída	1.
--	-------	---	----	---	---	----	---	---	----	-------	----

		Lillia	a ₀	111	1 1	1	Soma	u_i	Saida
		1	2						
=		2	2	5					
1	leia o número real a_0	3	2	5	2				
	· ·	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
	$soma \leftarrow 0$	9	2	5	2	1	2	2	
3	soma — 0	10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9		8	2	5	2	2	12	6	
		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
	escreva "Soma da P.A =", soma	9	2	5	2	4	20	8	
12	escreva soma da r.a = ", Soma	10	2	- 5	2	4	20	10	

a_0) =	= 2	, n	=	5,	r	=	2,	saida	1.

		Linna	$ a_0 $	11	Г	1	soma	a_i	saida
		1	2						
		2	2	5					
1	leia o número real a_0	3	2	5	2				
	· ·	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
	$soma \leftarrow 0$	9	2	5	2	1	2	2	
		10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9		8	2	5	2	2	12	6	
		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
		9	2	5	2	4	20	8	
12	escreva "Soma da P.A =", soma	10	2	5	2	1	20	10	

a_0	=	2, i	n =	= 5	5, r	=	2,	saída	1.

		-							
		1	2						
=		2	2	5					
1	leia o número real a_0	3	2	5	2				
	*	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
	$soma \leftarrow 0$	9	2	5	2	1	2	2	
Э	soma ← 0	10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9	$i \leftarrow i + 1$	8	2	5	2	2	12	6	
9		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
	escreva "Soma da P.A =", soma	9	2	5	2	4	20	8	
_	escreva Soma da r.a - , soma	10	2	5	2	4	20	10	
		8	2	-5	2	4	30	10	

a_0	=	2,	n	=	5,	r	=	2,	saida	1.	

		Lillia	a0	11	1	1	SOma	u_i	Saida
		1	2						
_		2	2	5					
1	leia o número real a_0	3	2	5	2				
	*	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
	$soma \leftarrow 0$	9	2	5	2	1	2	2	
Э		10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
9		8	2	5	2	2	12	6	
9		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
	escreva "Soma da P.A =", soma	9	2	5	2	4	20	8	
	escreva soma da r.a =", soma	10	2	5	2	4	20	10	
		8	2	5	2	4	30	10	
		0	2	-	2	-	20	10	

Linha	a_0	n	r	Г
1	2			L
 2	- 0	۲		Т

1	leia o número real a_0							
2	leia o número inteiro n							
3	leia o número real r							
4	$i \leftarrow 0$							
5	$soma \leftarrow 0$							
6	$a_i \leftarrow a_0$							
7	enquanto $i < n$ faça							
	$\mathrm{soma} \leftarrow \mathrm{soma} + a_i$							
9	$i \leftarrow i + 1 \\ a_i \leftarrow a_i + r$							
10	$a_i \leftarrow a_i + r$							
11	fim enqto							
12	escreva "Soma da P.A =", soma							

	$a_0 = 2, n$	= 5, r	= 2,	saida	ι 1.			
	Linha	a_0	n	r	i	soma	a_i	saída
	1	2						
=	2	2	5					
	3	2	5	2				
	4	2	5	2	0			
	5	2	5	2	0	0		
	6	2	5	2	0	0	2	
	8	2	5	2	0	2	2	
	9	2	5	2	1	2	2	
	10	2	5	2	1	2	4	
	8	2	5	2	1	6	4	
	9	2	5	2	2	6	4	
	10	2	5	2	2	6	6	
	8	2	5	2	2	12	6	
	9	2	5	2	3	12	6	
	10	2	5	2	3	12	8	
	8	2	5	2	3	20	8	
	9	2	5	2	4	20	8	
_	10	2	5	2	4	20	10	
	8	2	5	2	4	30	10	
	9	2	5	2	5	30	10	
	10	2	5	2	5	30	12	

a_0	=	2,	n	=	5,	r	=	2,	saí	$_{\mathrm{da}}$	1.
T	in	ho	_		a -					т	-;

		Lillia	40	111	1 1	1	Soma	u_i	Baraa
		1	2						
=		2	2	5					
1	leia o número real a_0	3	2	5	2				
	The state of the s	4	2	5	2	0			
2	leia o número inteiro n	5	2	5	2	0	0		
3	leia o número real r	6	2	5	2	0	0	2	
4	$i \leftarrow 0$	8	2	5	2	0	2	2	
_	$soma \leftarrow 0$	9	2	5	2	1	2	2	
э	soma ← 0	10	2	5	2	1	2	4	
6	$a_i \leftarrow a_0$	8	2	5	2	1	6	4	
7	enquanto $i < n$ faça	9	2	5	2	2	6	4	
8	$soma \leftarrow soma + a_i$	10	2	5	2	2	6	6	
_		8	2	5	2	2	12	6	
9		9	2	5	2	3	12	6	
10	$a_i \leftarrow a_i + r$	10	2	5	2	3	12	8	
11	fim engto	8	2	5	2	3	20	8	
		9	2	5	2	4	20	8	
	escreva "Soma da P.A =", soma	10	2	5	2	4	20	10	
		8	2	5	2	4	30	10	
		9	2	5	2	5	30	10	
		4.0					0.0		t

_							
1	leia o número real a_0						
2	leia o número inteiro n						
3	leia o número real r						
4	$i \leftarrow 0$						
5	$soma \leftarrow 0$						
6	$a_i \leftarrow a_0$						
7	enquanto $i < n$ faça						
8	$soma \leftarrow soma + a_i$						
9	$i \leftarrow i + 1$						
10	$a_i \leftarrow a_i + r$						
11	fim enqto						
12	escreva "Soma da P.A =", soma						

 $a_0 = 2, n = 5, r = 2$, saída 1.

Linha	a_0	n	r	i	soma	a_i	saída
1	2						
2	2	5					
3	2	5	2				
4	2	5	2	0			
5	2	5	2	0	0		
6	2	5	2	0	0	2	
8	2	5	2	0	2	2	
9	2	5	2	1	2	2	
10	2	5	2	1	2	4	
8	2	5	2	1	6	4	
9	2	5	2	2	6	4	
10	2	5	2	2	6	6	
8	2	5	2	2	12	6	
9	2	5	2	3	12	6	
10	2	5	2	3	12	8	
8	2	5	2	3	20	8	
9	2	5	2	4	20	8	
 10	2	5	2	4	20	10	
8	2	5	2	4	30	10	
9	2	5	2	5	30	10	
10	2	5	2	5	30	12	
12	2	5	2	5	30	12	Soma = 30

Para saber mais

• Ascencio, A. F. G & Campos, E. A. V. Fundamentos de programação de computadores: algoritmos, Pascal, C/C++ e Java. 2. ed. São Paulo: Pearson Prentice Hall, 2007.

Fontes

• Ascencio, A. F. G & Campos, E. A. V. Fundamentos de programação de computadores: algoritmos, Pascal, C/C++ e Java. 2. ed. São Paulo: Pearson Prentice Hall, 2007.