WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 13/00, 15/04, 17/02 C07H 21/04, C12N 15/09, 15/31 A61K 39/02

(11) International Publication Number:

WO 93/19090

(43) International Publication Date:

30 September 1993 (30.09.93).

(21) International Application Number:

PCT/US93/02166

A1

(22) International Filing Date:

16 March 1993 (16.03.93)

(81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority data:

9205704.1

16 March 1992 (16.03.92) GB **Published**

With international search report.

(71)(72) Applicant and Inventor: BARENKAMP, Stephen, [US/US]; 16 Villawood Lane, Webster Grove, MO 63119-4954 (US).

(74) Agent: BERKSTRESSER, Jerry, W.; Shoamaker and Mattare, 2001 Jefferson Davis Highway, 1203 Crystal Plaza Building 1, P.O. Box 2286, Arlington, VA 22202-0286

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINES OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable Haemophilus influenzae which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FR .	France	MR	Mauritania
	Australia	GA	Gabon	MW	Malawi
AU		GB	United Kingdom	NL	Netherlands
BB	Barbados	GN	Guinea	NO	Norway
BE	Belgium	GR	Greece	NZ	New Zealand
BF	Burkina Faso	HU	Hungary	PL	Poland
BG	Bulgaria			PT	Portugal
BJ	Benin	IE	ireland	RO	Romania
BR	Brazil	iΤ	lialy	RU	Russian Federation
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CC	Congo		of Korea	SK	Slovak Republic
CH	Switzerland	KR	Republic of Korea		Senegal
CI.	Côte d'Ivoire	ΚZ	Kazakhstan -	SN	
	Cameroon	£1	Licchtenstein	SU	Soviet Union
CM		LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	1.U	Luxembourg	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark			VN	Viet Nam
ES	Spain	MI.	Mali		
FI	Finland	MN	Mongolia		

WO 93/19090 PCT/US93/02166

TITLE OF INVENTION

HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

FIELD OF INVENTION

This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

Non-typeable <u>Haemophilus</u> influenzae are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known <u>H. influenzae</u> capsular antigens.

These organisms commonly inhabit the upper respiratory tract of humans and are frequently responsible for infections, such as otitis media. sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide they are not controlled by the present capsule, Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides. The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

There have previously been identified by Barenkamp et al (Pediatr. Infect. Dis. J., 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

5

10

15

20

25

30

35

10

15

20

25

30

₹`

>

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable Haemophilus strain have cloned, expressed and almost completely sequenced the genes coding for two additional immunodominant HMW proteins (designated HMW3 and HMW4) from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

Figure 5B shows the restriction map of the T7 expression vector pT7-7;

10

15

20

25

30

35

Figure 6 contains the DNA sequence of a gene cluster for the <u>hmw1</u> gene (SEQ ID NO: 5), comprising nucleotides 351 to 4958 (ORF <u>a</u>) (as in Figure 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs <u>b</u>, nucleotides 5114-6748 and <u>c</u> nucleotides 7062-9011;

Figure 7 contains the DNA sequence of a gene cluster for the https://mx.pmc.nc.edu/mx.2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in Figure 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and <a href="https://mx.pmc.nc.edu/mx.pmc.n

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. Ιt has further been shown that

10

15

20

25

30

35

4

antigenically-related proteins are produced by the majority of the non-typeable strains of <u>Haemophilus</u>. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the <u>B. pertussis</u> FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the <u>B. pertussis</u> FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable <u>Haemophilus</u> was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

10

15

20

25

30

35

reading frames (ORFs), designated \underline{b} and \underline{c} , respectively, (see Figures 6 and 7).

The <u>b</u> ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of <u>hmwl</u> and nucleotides 5375 to 7009 in the case of <u>hmw2</u>, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of <u>P. mirabilis</u> and <u>S. marcescens</u>.

The <u>c</u> ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.nucleotides 7249 to 9198 in the case of https://mwl.

The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

the proteins provided herein are cross-reactive antigens and are present in the majority of non-typeable Haemophilus strains, it is evident that these HMW proteins may become integral constituents of a universal <u>Haemophilus</u> vaccine. Indeed, these proteins may be used not only as protective antigens against otitis. sinusitis and bronchitis caused by non-typeable <u>Haemophilus</u> strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

10

15

20

25

30

<u>\$</u>

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable <u>Haemophilus</u> strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.

In addition, mutants of non-typeable <u>H. influenzae</u> strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in <u>E. coli</u> and have been examined for <u>in vitro</u> adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other <u>H. influenzae</u> surface structures.

With the isolation and purification of the high molecular weight proteins, the inventors are able to

35

10

15

20

25

30

35

determine the major protective epitopes by conventional epitope mapping and synthesize peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying length that constitute portions of the molecular-weight proteins, that can be used to induce immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable <u>Haemophilus</u> strains. The variants may be constructed by partial deletions or mutations of the genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES

Example 1:

Non-typeable <u>H.influenzae</u> strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λ EMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of E. coli LE392.

For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the

10

15

20

25

30

35

3

1

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosome-binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

Western immunoblot analysis was performed identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells YT plates were solubilized in electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS) -polyacrylamide electrophoresis was performed on 7.5% 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the highmolecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable influenzae. One such serum sample was used as the screening antiserum after having been extensively absorbed with LE392 cells.

To identify recombinant proteins being produced by $\underline{E.~coli}$ transformed with recombinant plasmids, the plasmids of interest were used to transform $\underline{E.~coli}$ BL21 (DE3)/pLyss. The transformed strains were grown to an A_{600} of 0.5 in L broth containing 50 μg of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates

10

15

20

25

30

35

containing 100 μ g of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the <u>E. coli</u>-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat antihuman IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous typeable H. influenzae strains expressed high-molecularweight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel and transferred to electrophoresis, nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IaG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable <u>Haemophilus</u> strains related expressed proteins antigenically to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murine immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphataseconjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, <u>E. coli</u>
BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g for 30 min. The recombinant protein fractionated with the

10

15

20

25

30

35

pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host <u>E. coli</u> strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 μ l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit lgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3ethylbenzthiazoline-6-sulfonic acid) (Sigma) concentration of 0.54 in mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable H. influenzae strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an E. coli-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

10

15

20

25

30

35

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins. Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of LE392 infected with the λEMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive E. coli proteins or \(\lambda EMBL3-encoded \) pro-Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

these latter subclones were similar to those observed with the HMW1 constructs.

direction The approximate location and of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). plasmid was constructed by inserting the 8.5-kb BamHI-SalI fragment from \(\lambda\text{HMW1}\) into \(\text{BamHI}\)- and \(\text{Sal}\)I-cut pT7-7. E. coli transformed with pHMW1 expressed immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb religation. Plasmid pHMW1-2 and constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from λHMW1 into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

5

10

15

20

25

30

35

10

15

20

25

30

35

transformants were substantially lower than those with the pHMW1-2 transformants described above. pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. transformed with pHMW1-7 also expressed immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the \(\lambda\)HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. size discrepancy was disconcerting. One possible explanation was that an additional gene or necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and inserting the 7.6-kbp NdeI-MluI and isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation products. The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the Interestingly, phage lysates. the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

10

15

20

25

3.0

35

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosomebinding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other inframe ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. tandem repeats stop 100 bp 5' of the putative initiation An 8-bp inverted repeat characteristic of a rhoindependent transcriptional terminator is beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. downstream of the BamHI site would be predicted to encode a protein of 111 kDa, in good agreement with the 115 kDa

10

15

20

25

30

35

estimated for the apparent molecular mass of the pHMW1- encoded fusion protein.

The sequence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG codon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 is noted, beginning at nucleotide 4804. discrepancy in the lengths of the two genes principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. derived amino acid sequence of the protein encoded by the HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. The magnitudes of

10

15

20

25

30

35

the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three sequences. Twelve of the first 22 amino acids in the predicted peptide sequences were identical. In additional, the sequences demonstrated a common five-amino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was The rHMW1 assessed. antiserum demonstrated ELISA reactivity with filamentous hemagglutinin in a dose-Preimmune rabbit serum had minimal dependent manner. reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native <u>Haemophilus</u> protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable <u>H. influenzae</u> strains, a panel of <u>Haemophilus</u> strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

When used to screen heterologous non-typeable <u>H. influenzae</u> strains, rHMW1 antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody 10 directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. 15 A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. antibody X3C recognized both the molecular-weight proteins in non-typeable H. influenzae 20 strain 12 which were recognized by the recombinantprotein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous nontypeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. 25 On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein Overall, monoclonal antibody X3C recognized antiserum. high-molecular-weight protein bands identical to those 30 recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains. Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

35

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamHl fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoRl fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2 mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission

5

10

15

20

25

30

35

10

15

20

25

30

35

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, bacteria were inoculated into broth and allowed to grow to a density of -2×10^9 cfu/ml. Approximately 2 x 107 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at 165 x g for 5 minutes to facilitate contact between bacteria and the epithelial After incubation for 30 minutes at 37°C in 5% surface. CO2, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2') was also quite efficient and comparable to that by the wild type strain. In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1) was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1'/HMW2') was decreased even further, approximately 50-fold compared with the wild type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the, HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

10

15

20

25

30

35

3

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmw1-like (designated hmw3) locus, a second with an insertion in the <a href="https://www.new.au a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmw1like locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the, HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other <u>H. influenzae</u> surface structures, the <u>hmw1</u> and the <u>hmw2</u> gene clusters were introduced into <u>E. coli</u> DH5α, using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into <u>E. coli</u> DH5α. Western blot

10

15

20

25

30

35

analysis demonstrated that <u>E. coli</u> DH5 α containing the <u>hmwl</u> genes expressed a 125 kDa protein, while the same strain harboring the <u>hmw2</u> genes expressed a 120-kDa protein. <u>E. coli</u> DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the <u>E. coli</u> strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5a containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5α harboring the hmw1 gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5a with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with <u>E. coli</u> HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable <u>H. influenzae</u> (NTHI) strain 12 in the following manner. Non-typeable <u>Haemophilus</u> bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37° C in an incubator with 5° CO₂. 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 μ g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter

10

15

20

25

30

35

*

culture was grown until the optical density (O.D. - 600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume of 250 ml of an extraction solution comprising 0.5 M NaCl, 0.01 M Na₂EDTA, 0.01 M Tris 50 μ M phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 xg for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The

10

15

20

25

30

35

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 μg of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals verus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multicomponent NTHI vaccine.

Example 7:

A number of synthetic peptides were derived from HMW1. Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence

10

VDEVIEAKRILEKVKDLSDEEREALAKLG (SEQ ID NO:9), and represents bases 1498 to 1576 in Figure 10.

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct reading frame and that peptides derived from the sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable Haemophilus, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

Table 1. Effect of mutation of high molecular weight proteins on adherence to Chang epithelial cells by nontypable H. influenzae.

ADHERENCE*

Strain	inoculum	relative to wild type†
Strain 12 derivatives		
wild type	87.7 ± 5.9	100.0 ± 6.7
HMW1-mutant	6.0 ± 0.9	6.8 ± 1.0
HMW2-mutant	89.9 <u>+</u> 10.8	102.5 ± 12.3
HMW1-/HMW2- mutant	2.0 ± 0.3	2.3 ± 0.3
Strain 5 derivatives		
wild type	78.7 ± 3.2	100.0 ± 4.1
HMW1-like mutant	15.7 ± 2.6	19.9 <u>+</u> 3.3
HMW2-like mutant	103.7 ± 14.0	131.7 <u>+</u> 17.8
double mutant	3.5 ± 0.6	4.4 ± 0.8
	· ·	

^{*} Numbers represent mean (± standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

[†] Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

Table 2. Adherence by E. coli DH5 α and HB101 harboring hmwl or hmw2 gene clusters.

	Adherence relative to
Strain*	H. influenzae strain 12†
DH5α (pT7-7)	0.7 ± 0.02
DH5α (pHMW1-14)	114.2 <u>+</u> 15.9
DH5α (pHMW2-21)	14.0 ± 3.7
HB101 (pT7-7)	1.2 ± 0.5
HB101 (pHMW1-14)	93.6 ± 15.8
HB101 (pHMW2-21)	3.6 <u>+</u> 0.9

^{*} The plasmid pHMW1-14 contains the hmw1 gene cluster, while pHMW2-21 contains the hmw2 gene cluster; pT7-7 is the cloning vector used in these constructs.

Numbers represent the mean (+ standard error of the mean) of measurements made in triplicate from representative experiments.

CLAIMS

What I claim is:

- 1. An isolated and purified gene encoding a high molecular weight protein of a non-typeable <u>Haemophilus</u> strain.
- 2. The gene of claim 1 encoding protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining the immunological ability to protect against disease caused by a non-typeable <u>Haemophilus</u> strain.
- 3. The gene of claim 2 having the DNA sequence shown in Figure 1 and encoding protein HMW1 having the derived amino acid sequence of Figure 2.
- 4. The gene of claim 2 having the DNA sequence shown in Figure 3 and encoding protein HMW2 having the derived amino acid sequence of Figure 4.
- 5. The gene claimed in claim 2 having the partial DNA sequence shown in Figure 8 and encoding protein HMW3 having the derived amino acid sequence of Figure 10.
- 6. The gene claimed in claim 2 having the partial DNA sequence shown in Figure 9 and encoding protein HMW4 having the derived amino acid sequence of Figure 10.
- 7. A purified and isolated gene cluster comprising a nucleotide sequence for a structural gene encoding a high molecular weight protein of a non-typeable <u>Haemophilus</u> strain and at least one downstream nucleotide sequence for an accessory gene for effecting expression of a gene product fully encoded by said structural gene.
- 8. The gene cluster claimed in claim 7 comprising a DNA sequence coding for protein HMW1 or HMW2 and two downstream accessory genes.
- 9. The gene cluster of claim 8 having the DNA sequence shown in Figure 6.
- 10. The gene cluster of claim 8 having the DNA sequence shown in Figure 7.
- 11. A high molecular weight protein of non-typeable Haemophilus which is encoded by a gene as defined in

- claim 1, or any variant or fragment thereof retaining the immunological ability to protect against disease caused by a non-typeable <u>Haemophilus</u> strain.
- 12. The protein of claim 11 which is HMW1 encoded by the DNA sequence shown in Figure 1, having the derived amino acid sequence of Figure 2 and having an apparent molecular weight of 125 kDa.
- 13. The protein claim 11 which is HMW2 encoded by the DNA sequence shown in Figure 3 and having the derived amino acid sequence of Figure 4 and having an apparent molecular weight of 120 kDa.
- 14. An isolated and purified high molecular weight protein of non-typeable <u>Haemophilus influenzae</u> which is antigenically related to the filamentous hemagglutinin surface protein of <u>Bordetella pertussis</u>.
- 15. The protein of claim 14 which is HMW1, HMW2, HMW3 or HMW4.
- 16. A conjugate comprising a protein as claimed in claim 11 or 14 linked to a antigen, hapten or polysaccharide for eliciting an immune response to said antigen, hapten or polysaccharide.
- 17. The conjugate as claimed in claim 16 wherein said polysaccharide is a protective polysaccharide against Haemophilus influenzae type b.
- 18. A synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of non-typeable <u>Haemophilus</u> influenzae.
- 19. The peptide of claim 18 wherein said protein is HMW1, HMW2, HMW3 or HMW4.

4.1

1/68

HIGH MOLECULAR WEIGHT PROTEIN OF FIG.1A. DNA SEQUENCE I (HMW1)

ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA

ACAATTACAA CACCTTTTTT GCAGTCTATA TGCAAATATT TTAAAAAATA

51

101

GTATAAATCC GCCATATAAA ATGGTATAAT CTTTCATCTT TCATCTTTCA

	ACATGCCCTG	GAGCTGAACG 0	AGGAGAAAAT	rgctttggt	AAAAAGGCA	AAGCCACTT	ATCTGTTTT	CACTATGC	CGATATCATT	AGTTTTACA	ACCAAATCT
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	TTCATCTTTC A	AATGAAGAGG	AACTAACCTT AG	CAAATTCAGC AAACGCCTGA ATGCTTTGGT	GAATTGGCAC GGGGTTGTGA CCATTCCACA GAAAAGGCA	TGCTCGCATG AAAGTGCGTC ACTTAGCGTT AAAGCCACTT	TACTATCTTT AGGTGTAACA TCTATTCCAC AATCTGTTTT	ACACGGCACA GCCACTATGC		GAAATGGTGC A	AACTCCGCCG TATTCAACCG TGTTACATCT AACCAAATCT
) ;;;) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	TCATCTTTCA TCTTTCATCT	GAGGGGCAAG	TTAATTGTTC		GGGGTTGTGA	AAAGTGCGTC	AGGTGTAACA	TTACAAGGAA TGGATGTAGT	TAATAAAACC ATTATCCGCA ACAGTGTTGA	AATTTAACAT CGACCAAAAT GAAATGGTGC	TATTCAACCG
	TCATCTTTCA	GGAAGGGAGG	ATAAAGTAAT	TATATCGTCT	GAATTGGCAC	TGCTCGCATG	TACTATCTTT	TTACAAGGAA	TAATAAAACC	AATTTAACAT	AACTCCGCCG
+ > + + + + + + + + + + + + + + + + + +	CTTTCATCTT	ATGAACCGAG	AACGCAAATG	ATGAACAAGC	TGCTGTGTCT	GCGAAAAACC	TCCGCTATGT	AGCAAGCGGC	AAGTAGATGG	AATTGGAAAC	AGAAAACAAC
TCT	201	251	301	351	401	451	501	551	601	651	701

FIG. 1B

(GCTT	AAŢŢ	rcac	3CAA	FTAC	racr /		SAAG	lGTT	TCA	TCA	GAA.	ATT	GCA.	GAC
	CTAATGGCTT	GCGCGTAATT	TGTGAATCAC	TTGGTGGCAA	ATTTCTTTAC	AACCAT	GCGATATTTT	CGAAACCAAG	CAATATTGTT	TTTCCGCTCA	GATAAAC	AGGGGG7	GCATTCAATT	GTATCAGGCA	GTTAATT
	ATTATTAACA	AAACATCAAG	TCGCTGAAAT	GTAAATCTTA	TGGTGGCAGC	TAATAAACCC AACCATTACT	GTCAATCTGG	TGCCACTATT	ATAAAAGCGG	GGCGGTGTAA	GATTACAGGC GATAAAGTCA	CAGGTAAAGA AGGGGGAGAA	GGTAAAAAGG	AAAAAGGCTC AACCATCAAT	GCGATATTGC
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAAAGACGCA	TTTCTAACGA	GATAAAGCGC	CTGTCGGTAA AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	CCGCGCCTGA AAATGAAGCG	ATGTCCGTGC	GTAAGCAAAG	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	AAAAAGGCTC	ATTGTGTGG GCGATATTGC GTTAATTGAC
	TCACAATAGG	ACGCTAGACA	GCAAACCAAA	CTGTCGGTAA	GAGGGTGTGA	AAAAATCACC	CCGCGCCTGA	GGTAACATTA	TGCTGATTCT	AAGAGGGTGA AGCGGAAATT	GCTAAAGGCG	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT
	CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	GTAAACTTTC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG
	801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501

FIG.1C

1551	GGCAATATTA	ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAAA	CCGGTGGTTT
1601	TGTGGAGACG	TCGGGGCATG	ATTTATTCAT	CAAAGACAAT	GCAATTGTTG
1651	ACGCCAAAGA	GTGGTTGTTA	GACCCGGATA	ATGTATCTAT	TAATGCAGAA
1701	ACAGCAGGAC	GCAGCAATAC	TTCAGAAGAC	GATGAATACA	CGGGATCCGG
1751	GAATAGTGCC	AGCACCCCAA	AACGAAACAA	AGAAAAGACA	ACATTAACAA
1801	ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCTTTGT	TAACATCACT
1851	GCTAATCAAC	GCATCTATGT	CAATAGCTCC	ATTAATTTAT	CCAATGGCAG
1901	CTTAACTCTT	TGGAGTGAGG	GTCGGAGCGG	TGGCGGCGTT	GAGATTAACA
1951	ACGATATTAC	CACCGGTGAT	GATACCAGAG	GTGCAAACTT	AACAATTTÄC
2001	TCAGGCGGCT	GGGTTGATGT	TCATAAAAAT	ATCTCACTCG	GGGCGCAAGG
2051	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCTTTGAG	AAAGGAAGCA
2101	ACCAAGTCAT	TACAGGTCAA	GGGACTATTA	CCTCAGGCAA	TCAAAAAGGT
2151	TTTAGATTTA	ATAATGTCTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT
2201	CACCACTAAA	AGAACCAATA	AATACGCTAT	CACAAATAAA	TTTGAAGGGA
2251	CTTTAAATAT	TTCAGGGAAA	GTGAACATCT	CAATGGTTTT	ACCTAAAAAT
2301	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	ACTTACTGGA	ATTTAACCTC

3/68

FIG. 1D.

TATA	; ; ;	FCAA	AATT	TGAT	TTAT	A AAAA	TTTAACTTTA 0	ATGG	GGAG	CAAT	TTGA	AGCG	TACC	ATGT	AAAG	CACC
	AAACGGTATA	CAAGAGTCAA	AGTTTGAATT	GAGTGTTGAT	GTGTAGTTAT	AGATTTAAAA	TTTAA(GCACCGATGG	TTTGAAGGAG	CGAAGGCAAT	CGGATTTTGA	ATTAATAGCG	AAATCI	CTTTTAATGT	ATTGCCAAAG	AAGCAT
	CTTATAATTT	GAACGAAATG	TAAGTATTCT	CGGGAGGGGG	CAAACCCCCG	GTCAAGTTTA	TAGAGAAAGA	CAAGTTGAAG	TAGCCAAAAA AAACATAACC	TAACAGAAAT	CTTATCGGTT	AGATGTCATC	ATATAGCCGG AAATCTTACC	ACAAATTTCA	AAATATTTCC	ATTGATAATT CCAAGAATTT AAGCATCACC
	CTTACCCAGC	CTTTAATGTT	TAGGGATAAA	ATTTCAGTTT	CTCTAACGTC	TTTCAACAGG	GGCTTCTCAA	AACACTTTTG	TAGCCAAAAA	AGGAAAGCCG TAACAGAAAT	TAACGTCACT	CTATTAAAAA	AATATTGTCA	CAAAGCTATC	AAGGCAATTC	ATTGATAATT
	TGCAGGCACA	AAGACACTAC	AAGGCACCAA	TAATGGAAAC	TCGCCTCATC	TACTTTAATG	AACAAAAACT	GAGGCAACAT	AAAGGCATTG	CTTTGGCTCC	ATAACAACGC	AAACCTTTAA	CGCTGGAGGC	ACGCTAATTT	TTTGACAACA	CTTTAAAGAC
	GAAGCGATAG	TCATTCAACA	CTTTGACATC	ACGCATCATT	TTCACACTTC	AAATTCTAAA	CTTCAGGCTC	AATGCCACCG	AATGATTGGT	GTAACATCAC	GTTACTATCA	CAACCATCAA	GCAACCTTAC	GTTGAAAGTA	AGGCGGCTTG	GAGGGGCTCG
	2401	2451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151

GTTACTGTTA CTGCAAATAG CGGTGCATTA ACCACTTTGG CAGGCTCTAC

3951

FIG. 1E

	•					5/	68							
ATATAACCAA	ACTGAAATGC	GTAATCTCAC GATTTCTTCT	GTGTTGATGG	ACCATTAAAA	TTTCAATAAA	GTAACACCAA U	CAGGTTAAAG	CAGCAAAGTG	ACAATAATGC	AATATTACTT	TACCACTAAA	TAACCGCTCA	TCTGTAACAC	GGGCAACACC
ATAAGCGGCA	AGGTAGTGAT	GTAATCTCAC	ATCAAGGCAG	TGCCAATCTA	ATATTTCAGG	TTAACTATTG	AACCTTTAAC	TGACACTACA CAGCAAAGTG	GATAGCAGTG	ATCGATGCAA AAAATGTAAC AGTAAACAAC AATATTACTT	GTGGAGAAAT	AACGTGGAGA	CAGCTCTGGC	CTTGCTGTAA GCAATATTTC GGGCAACACC
GCTCCACTTA CCGCACTATT	TTACGAACGA	CGATGTCTCG CAAAAAGAAG	ATATTACCAA ACAGATAACA	GATTCAGACG CGACAAACAA	GAAATTAACG CAAGACCTAA	CAGCTAAAGA TGGTAGTGAT	CCAAAAAAGT	CTCTGCTGAC GGTCACAAGG	CAACACTGAA	AAAATGTAAC	TCTGCGACAA	CCATTAACGC AACCACTGGT	GAATTGAGTC	CTTGCTGTAA
GCTCCACTTA	GATTTAAATA	CGATGTCTCG	ATATTACCAA	GATTCAGACG	GAAATTAACG	CAGCTAAAGA	GGTACTAATG	CTCTGCTGAC	GTAGTAATAA	ATCGATGCAA	AGTGAGCATC	CCATTAACGC	ATCCTAGGTG	CGAGGGCGCT
ACCAACTCCA	TAAAAACGGT	AAATTGGCGG	GACAAAATCA	GGAGAATTCC	CCAAAGAATT	GCAGAGATTA	TAGTGCTGAT	ATTCAAAAAT	GAAACATCCG	CGGCTTAACT	CTCACAAAGC	ACAGGTACAA	AACAGGTAGT	TTACTGCAAC
3201	3251	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901

FIG. 1F.

TACACAAAAT	TTACAGTCGA	AATAATACAA	TATTGAGCCA	CTGTACGTTT	1801
GGAGTAAGTG	AGCTAAACTT	GAGAAGCGTT	GATGAAGAAA	AGATTTATCT	1751
AGAAGGTAAA	CGCATCCTTG	TGAAGCGAAA	ATGAAGTAAT	GCAAGCGTAG	1701
ACCGGGTATA	AATACATTCA	ATTGATGTGA	AGGCGTTAAA	TACTGTTAAA	4651
ATAAACACCG	AAAAAACGGT	ATATCATTTC	AATGGATTAA	AATCACAATA	4601
CTGGGGATTT	GTGAACATCA	CTCAAGCAGA	TCGCGACAAC	GGCAGCGTAA	4551
AAATGGCTCC	CAACCAACGC	GTGGTAAATG	TAACCACACA	CAGCATTGGG	4501
CTAAATGGCG	AGACGCTGAG	TTAACGCAAA	ACCTTGGTTA	AACCAGCGGT	4451
ACATTAATGC	AAGGGTTCAA	AACTACCGTG	CAGGCACTTT	CTAAATACTA	4401
CAATGTGACA	TTAATGCCGC	GCAGGAAGTA	TGGTAGCGTT	CAGCTCAGGA	4351
GTAAATCTTT	CAAGGGTCAG	TTACTTCAGC	AGTTCACACA	TACCGAAGCT	4301
GCAAATTAAC	ACATCATCGG	AACCTTAACT	AAGGAGCTGC	AATGCGACAG	4251
CGCAGAAATT	TTGGGAATGG	GATTTAACAG	AAACGCTGGC	ATGTTACGGC	4201
AATACGGTAA	GATTTCCGGT	TTGGTGGTAC	ACAGGTACAA	AACAAGTGCA	4151
AGGCTAACGT	ACAACAGGCG	AATTAAAGCA	CCAATTCAAA	ACCACTCAAT	4101
CGAAAGTTTA	TTAAAGCAAC	ACAGTAGAGG	TTCTGGTGGC	GCGGTACGAT	4051
GGCGATATCG	AAGTCAATCA	TAACCACTTC	ACCGAGAGTG	AATTAAAGGA	4001

6/68

7/68

FIG. 1G

			ATTATG	ACAGGTTATT ATTATG	5101
AGTATTTTA	GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTA	AATTACGGAG	TCTTGTAAAA	GCTTTACCCA	5051
TTCAGTACGG	AGTCATTTTA TTTTCGTATT ATTTACTGTG TGGGTTAAAG TTCAGTACGG	ATTTACTGTG	TTTTCGTATT	AGTCATTTTA	5001
CCTGCAATGA	ACGGGCGGTA GCGGTCAGTA ATTGACAAGG TAGATTTCAT CCTGCAATGA	ATTGACAAGG	GCGGTCAGTA	ACGGGCGGTA	4951
ATCGCTGATA	GTGTTTCTCA AACAGTGATG GCGCGACGGT GTGCGTTAAT ATCGCTGATA	GCGCGACGGT	AACAGTGATG	GTGTTTCTCA	4901
AAGGCAGGGC	GAATITIGCAA CCAGACCATI AAGICGAAIA GIGATITICIG AAGGCAGGGC	AAGTCGAATA	CCAGACCATT	GAATTTGCAA	4851

WEIGHT HIGH MOLECULAR OF FIG. 2A. AMINO ACID SEQUENCE PROTEIN

8/68 KVRHLALKPL DKALAEIVNH IIRNSVDAII DSNGQVFLIN ISDIINPTIT VSKDKSGNIV IDLSGKEGGE IVWGDIALID DFDNVSINAE LKKGTFVNIT GTITSGNOKG DTRGANLTIY VNISMVLPKN ISVSGGGSVD LTOPYNLNGI EKGSEKPARM NQISQLKGIL RNQGKLSADS ARNFTFEQTK DKVTLKTGAV AIVDAKEWLL ATMQVDGNKT ISLLAGOKIT VSGKEKGGRA KGSNQVITGQ FEGTLNISGK EINNDITTGD TLTNTTLESI DSRGSDSAGT SLNYASFNGN ELARGCDHST NSAVFNRVTS TLDISNENIK LOGMDVVHGT GNINVRAATI VNLIGGKVKN EGVISVNGGS AKGGKLMITG TSLEKGSTIN SGHDLFIKDN STPKRNKEKT ITAKQDIAFE WSEGRSGGGV RTNKYAITNK KAPIGINKYS SESGEFNLTI SIPQSVLASG KRLNALVAVS EMVQFLQENN IINTNGFTAS VNLGDIFAKG GGVISAQNQQ GKNGIQLAKK IAKTGGFVET DEYTGSGNSA INLSNGSLTL ISLGAQGNIN ERNARVNFDI TGSGLQFTTK TYWNLTSLNV MNKIYRLKFS SAMLLSLGVT NWKQFNIDQN GLITVGKDGS YSIAAPENEA PNGITIGKDA TYLGGDERGE LSAKEGEAEI GNINAQGSGD TAGRSNTSED ANQRIYVNSS SFNKDTTFNV ESGYDKFKGR SGGWVDVHKN FRFNNVSLNG 51 101 201 151 51 301 351 401 451 501 551 601 651 701

FIG. 2B

	IADNGR	NSDGATVCVN	VISEGRACFS	EFATRPLSRI	1501
NNTITVDTQN	GVSAVRFIEP	DEEREALAKL	RILEKVKDLS	ASVDEVIEAK	1451
IDVKYIQPGI	INTVLLKGVK	NGLNIISKNG	VNITGDLITI	GSVIATTSSR	1401
VVNATNANGS	LNGAALGNHT	TLVINAKDAE	KGSNINATSG	LNTTGTLTTV	1351
AGSINAANVT	VNLSAQDGSV	SSHITSAKGO	TSSGKLTTEA	NATEGAATLT	1301
DLTVGNGAEI	NTVNVTANAG	TGTIGGTISG	TTGEANVTSA	TTQSNSKIKA	1251
TVEVKATESL	GDIGGTISGG	TESVTTSSQS	TTLAGSTIKG	VTVTANSGAL	1201
LAVSNISGNT	SVTLTATEGA	ILGGIESSSG	NVEITAQTGS	TGTTINATTG	1151
SATSGEITTK	NITSHKAVSI	IDAKNVTVNN	DSSDNNAGLT	ETSGSNNNTE	1101
GHKVTLHSKV	QVKDSKISAD	GTNAKKVTFN	LTIGNTNSAD	AEITAKDGSD	1051
QDLNISGFNK	TIKTKELKLT	DSDATNNANL	IKAGVDGENS	DKINITKQIT	1001
QKEGNLTISS	TEMQIGGDVS	DLNITNEGSD	ISGNITNKNG	TNSSSTYRTI	951
IDNSKNLSIT	IAKGGARFKD	FDNKGNSNIS	TNFTFNVGGL	VESNANFKAI	901
NIVNIAGNLT	INSGNLTAGG	KPLTIKKDVI	LIGSDFDNHQ	VTINNNANVT	851
RKAVTEIEGN	FEGGNITFGS	KGIVAKKNIT	QVEGTDGMIG	NATGGNITLL	801
GFSIEKDLTL	RFKTSGSTKT	YFNVSTGSSL	QTPGVVINSK	FTLLASSSNV	751

9/68

HIGH MOLECULAR WEIGHT OF FIG. 3A. AMINO ACID SEQUENCE PROTEIN II (HMW2)

TAAATATACA		AGATAATAAA	AGATAATAAA AATAAATCAA	GATTTTTGTG	ATGACAAACA	~
ACAATTACAA	_	CACCTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAT	٠
AGTATAAATC		CGCCATATAA	AATGGTATAA	TCTTTCATCT	TTCATCTTTA	
ATCTTTCATC		TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	
TCTTTCATCT		TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CACATGAAAT	~
GATGAACCGA		GGGAAGGGAG	GGAGGGGCAA	GAATGAAGAG	GGAGCTGAAC	10
GAACGCAAAT		GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA	/ 68
TATGAACAAG		ATATATCGTC	TCAAATTCAG	CAAACGCCTG	AATGCTTTGG	3
TTGCTGTGTC	-	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	
TTCCGCTATG	-	TTACTATCTT	TAGGTGTAAC	CACTTAGCGT	TAAAGCCACT	
TTCCGCTATG	- '	TTACTATCTT	TAGGTGTAAC	ATCTATTCCA	CAATCTGTTT	
TAGCAAGCGG	0	CTTACAAGGA	ATGGATGTAG	TACACGGCAC	AGCCACTATG	÷8.
CAAGTAGATG		GTAATAAAAC	CATTATCCGC	AACAGTGTTG	ACGCTATCAT	
TAATTGGAAA	0	CAATTTAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTTAC	.1
AAGAAAACAA	0	CAACTCCGCC	GTATTCAACC	GTGTTACATC	TAACCAAATC	

FIG. 3B

	CGTTAATTGA	GGCGATATTG	TATTGTGTGG	GCGGACGCGC	AAAGAAAAAG	1501
	TGTATCAGGC	CAACCATCAA	GAAAAAGGCT	TAGCAAAGAA AACCTCTTTA GAAAAAGGCT	TAGCAAAGAA	1451
	AGGTAAAAAC GGCATTCAAT	AGGTAAAAAC	AGCGCGGCGA	GGCGGTGACG	AACTTACCTT	1401
	AAGGGGGAGA	TCAGGTAAAG	TATCGACCTT	CAGGTGCAGT	ACATTAAAAA	1351
	CGATAAAGTC	TGATTACAGG	GGCAAGCTGA	AGCTAAAGGC	AAAATCAGCA	1301
•.	ATTTCCGCTC	TGGCGGTGTA	AAGCGGAAAT	AAAGAGGGTG	TCTTTCCGCC	1251
	GCAATATTGT	GATAAAAGCG	TGTAAGCAAA	CTGCTGATTC	GGTAAACTTT	1201
	TCGAAACCAA	CTGCCACTAT	AATGTCCGTG	TTGCCAAAGG CGGTAACATT	TTGCCAAAGG	1151
68	GGCGATATTT	GGTCAATCTG	AAAATGAAGC	GCCGCGCCTG	TTACAGCATT	1101
11/	CAACCATTAC	ATAATAAACC	CATCAGCGAT	CTCGCAGGGC AAAAAATCAC	CTCGCAGGGC	1051
	CATTTCTTTA	ATGGTGGCAG	ATTAGCGTAA	AAGTGAAAA CGAGGGTGTG	AAGTGAAAAA	1001
	ATTGGTGGCA	TGTAAATCTT	AAGACGGCAG	ACTGTCGGTA	CGGTTTAATT	951
	TTGTGAATCA	CTCGCTGAAA	AGATAAAGCG	AGCAAACCAA AGATAAAGCG	TTCACCTTCG	901
	GGCGCGTAAT	AAAACATCAA	ATTTCTAACG	TACGCTAGAC	TTACGGCTTC	851
	ACTAATGGCT	AATTATTAAC	GTAAAGACGC	ATCACAATAG	CCCAAATGGT	801
	TTTTAATCAA	AGATTCTAAC GGACAAGTCT	AGATTCTÄAC	TCCCAATTAA AAGGGATTTT	TCCCAATTAA	751

C)
~)
	•
C	
H	ł
Ē	1

ATACATTTCA	CCTTTATTAA	GCAAATTTTA	AGAGACAGGC	CTCTTAATCT	2351
AACGTCAGTG	TTCGCACTGG	CCAGCCATGA	TATTGGCAAA	GAACACCTCG	2301
CTACGAGAAA	ATTAACCAAA	GAATATAACA	ACATATCTGG	GGCACAATTA	2251
CAATCTTAGT	ATTTAACCCA	TCAGTGAATA	TATCATTTCA	AAGGTCTGAA	2201
GGAACGGGTA	ATCTTTAAAC	CTAACAACGT	GATTTCAGGG	AGAGGGAAAA	2151
CCATTACAGG	GGCACTGTAA	TGTCGCCCAG	ATGCTAAAAT	GACGCGGCAA	2101
CAAAGCACGC	GTGGAAATAA	GCTTTTGAAG	CGCTTCCGTA	ATATTACCGC	2051
GGTTTTTAA	GCTTGATCAG	AAAATATTAC	GATGTTCATA	CGGATGGGTT	2001
TTTATTCTGG	AATTTAACCA	TAAAGGCGGA	ATATTACTTC	ATTGATGGAG	1951
AGGCGTTCAG	AGCGTGGCGG	AGTAAAGGTC	AATTCTCCAT	ACTCCCACTT	1901
ATCGGAAGCA	CTCAATCAAC	CCGTTAATAG	AGAAAACTTA	AACGGCATCA	1851
CAATGAATAT	AACGCCTGGA		CTATTTCAAATTATCTGAAA	ACCAATACAA	1801
AACAACGCTA	GCGAACTCAA	AAAAAAATA	AAGCGACCCT	CCGGTGAAGC	1751
CCAACAGGCA	TGATGAATTC	CCGGTATAAA	CGCAATAATA	AGACCCCCTT	1701
TTGAAGCCGA	GATGTAACAA	AGACCCTGAT	AGTGGTTGCT	AAAACAAAAG	1651
TGCAATTGTT	TTGACAGCAA	TATTTATCCA	ATCGGGGCAT	TTGTGGAGAC	1601
ACCGGTGGTT	TATCGCTAAA	GTAGTGGTGA	AACGCTCAAG	CGGCAATATT	1551

12 /68

TIG. 3D.

						13 ,	/68								
CAATCTCAAA GAAGGAGCGA		AAGCAAACCT	GGGGCTCTGT	GAGTTAAAAA	AAATTCCCAT	CCATAAATGC	TTTTATGACG	CATTCTGGGC	TTACGGGGAA	AATAACGCC	CAGCTTGCTC	TTAAAGGCAA	AGAGATACCC	AATTAATATA	GTGATTTAA
	CAATCTCAAA	ACATGAACAC	GCCACTGGTG	CAGAGGGGCT	ATTTTACCTT	AAAGACTTAA	GAAAGATGAT	ACAACATATC	AGCAGCAGCA	GCTAGAAGCC AATAACGCCC	TAAAACTTGG	AATGCAGATA	AGGAAAGACT	GCACTGCCGA	ACCAATGATG GTGATTTAAA
	ACATGTCATT	CCAAACGAGA	CAATATCACA	ACCATTCTGG	AACGGCGCTA	TAAAATCAAC AAAGACTTAA	TCAGACAGAC	AATTCAACCT	CCCTTGGTGG ACAAAACTCA	CAAATGTTAC	GATAGAGTTA	AACTGGCGAA AATGCAGATA	CCACTTTTAA	ACCAATAATG	TGGCAATGTT
1	GTAAATGGCA	CAAATTAAAA	GGTTTTTAGC	ATATATGCCA	TAATATCTCT	ATGACGCTTT	AATTTCAGCC	CAATGCCATC	CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTTT	TGGTAAAACT
	TTTTAACGGC	AAGTTAATTT	TTACCAATTC	TTTTTTGAT	TGAGTGAAAT	GTTCGCGGCG	AACCAATTCA	GGTACGCACG	GGTAATGTCA	TATTACTATC	CTAATCAGCA	GTTAATGGGA	TCTCACTATT	TAAATATCAC	ACACAAGGAG
	451	501	551	601	651	2701	:751	2801	2851	2901	951	3001	3051	3101	3151

þ	-
~)
C	_
F	ł
1	ı

						1	4/6	68							
GGCGGAGATA	TAATGATGCT	AAAGAAGGCA ACCTCACGAT	AAAAAGGGTA	CAACCTAACT	TTTCAGGTTT	ACTATTGGCA	AACTTTTAAC .	TGACACTAAA	AGCAATAGCG	AGTAAACAAA	AAAAGGTTAC	GCAAGTATTA	CACGGTAAGT	AAATTGAAGC	ATTGGCGGTA
CACGCTAAAC GCAACCAAAG AAGCATCATC GGCGGAGATA	CAGACAGTAA		TCACCAAACA GATAACAATC AAAAAGGGTA	CAAGTAATGC	GACCTAAGTA	TAGAGATTTA	CCAAAACAGT	GGTCACAATG	CGGACGTGAA	ATTACTGCAA AAAATGTAGA AGTAAACAAA	ACCGCGTCGG AAAAGGTTAC	AAATGGCAAA GCAAGTATTA	TTTCCGGTAA CACGGTAAGT	TCCGGCTCAA	TAACAAGTGC AACAGGTACA ATTGGCGGTA
GCAACCAAAG	TTAAATATTA	TATCTCGCAA	TCACCAAACA	TCAGATGCGA	ATTGACAGAA	GAGATTACAG CCAAAGATGG	GGTGCCGAAG	CTCTGCTGAC	GCAGCAATGG	ATTACTGCAA	CTCTCAAAAC AGTAAATATC	TTAACGCAAC	AGCGGTACGA	AACCACTAAA	TAACAAGTGC
	AAAAGGAAGC	TTGGCGGCAA	AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC	ATTCAAAAAT	AAAACATCTA	CGGCTTAACT	CTCTCAAAAC	GGCTCGACCA	AGGTGATATC	CTGGTGATTT	GAGGCTAATG
CATTACCACT	TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG	TAGCAAAGTG	ACAACGATAC	GATATTACTT	CACCACAGCA	CAACCAAAAC	GTTAGCGCGA	GAAATCGGGT
3201	3251	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951

•
Ŀı
m
•
ひ
Н
Ŀı

TATTTACTGT	ATTTTCGTAT	AAGTCATTTT	TCCTGCAATG	GTAGATTTCA	4801
AATTGACAAG	CGTAGTCAGT	GATGGACAGC	TGTTGCTGAC	TATGTACCAA	4751
GGCGCACGAG	AAGTGGTAAT	CGTGTTTCTC	GAAGGTAAGG	GATAATTTCT	4701
CAAGTCAAGT	ACCAGACCGT	TGAATTTACA	ATACACAAAA	ATTACAGTCA	4651
AAATAATACA	TTGTTGAGCC	GCTGTACGTT	TGGTGTAAGT	TAGCTAAACT	4601
AGAGAAACAT	TGATGAAGAA	AAGATTTATC	GAAAAAGTAA	ACGCGTCCTT	4551
TTGAAGCGAA	GAAGAAGTAA	AGCAAGTGTA	AGCCAGGTGT	AAATATATCC	4501
AATTGAGGTG	GAGGCAAGGA	GTGCGCTTAA	TAGAAACACT	CGAAAGATGG	4451
AATATCATTT	AAATGGGTTA	TAAACACAGT	ACTGGGGATT	TGTGAATATC	4401
CCTCAAGCAG	ACTGCGGCAA	TGGTAGTGTG	CAAGCGGCTC	GCAGTCAACG	4351
AGAAGTGAAT	GTGATAGTAC	GATGCATCAG	GCTAAATGGT	AAGATGCTAA	4301
ATTAACGCAA	CACCTTGGTT	CAACCAGCGG	GATATTAAAG	GGCAGGCTCG	4251
TAACCACCGT	ACAGGCACCT	ATTAAATACT	CTAATGTGAC	ATTAATGCTG	4201
CGCAGGAAGC	ATGGTAGCAT	TTGGCTCAGA	GGTAGACCTC	CTAAGGGTCA	4151
ATCACTTCAA	CGGTTCTAGC	CTACTGAAGC	AATACCTTGA	CGCAACAGGG	4101
CAACCTTAAC	GAAGGAGCTG	TAATGCGACA	GCGCAGAAAT	GTTGGGAATG	4051
CGATTTAACA	CAAACGCTGG	AATGTTACGG	TAATACGGTA	CAATTTCCGG	4001

15 / 68

16/68

FIG. 3G.

GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAA AAATTACGGA GAATACAATA AAGTATTTTT AACAGGTTAT TATTATG 4901

HIGH MOLECULAR WEIGHT OF FIG. 4A. AMINO ACID SEQUENCE PROTEIN 2

ATMQVDGNKT IIRNSVDAII NQISQLKGIL DSNGQVFLIN				ISLLAGOKIT ISDIINPTIT	RNQGKLSADS VSKDKSGNIV ~	DKVTLKTGAV IDLSGKEGGE ®	VSGKEKGGRA IVWGDIALID	AIVDAKEWLL DFDNVSINAE	TTLTNTTISN YLKNAWTMNI	GVQIDGDITS KGGNLTIYSG	KARDAANAKI VAQGTVTITG	NLSGTINISG NITINQTTRK	YISSNSKGLT TQYRSSAGVN	KLKPNENMUT SKPLPIRFLA NITATGGGSV
	LQGMDVVHGT	NSAVFNRVTS NQIS	TLDISNENIK ARNFTFEQTK	EGVISVNGGS ISLI	GNINVRAATI RNQC	GGVISAQNQQ AKGGKLMITG DKVT	TSLEKGSTIN	SGHDLFIKDN AIVI	SDPKKNSELK TTLT	ILHSKGQRGG GVQI	ASVAFEGGNN	IISSVNNLTH	ETGANFTFIK	
	SIPQSVLASG	EMVQFLQENN	IINTNGFTAS	VNLIGGKVKN	VNLGDIFAKG	GGVISAQNQQ	GKNGIQLAKK	IAKTGGFVET	DEFPTGTGEA	SINIGSNSHL	LDQGFLNITA	SLNGTGKGLN	SHWNVSALNL	NLKEGAKVNF
	SAMLLSLGVT	NWKQFNIDQN	PNGITIGKDA	GLITVGKDGS	YSIAAPENEA	LSAKEGEAEI	TYLGGDERGE	GNINAQGSGD	DPLRNNTGIN	TASRKLTVNS	GWVDVHKNIT	EGKDFRANNV	NTSYWQTSHD	FNGVNGNMSF
	51	101	151	201	251	301	351	401	451	501	551	601	651	701

FIG. 4B

					1	8/9	68							
KINKDLTINA	ONSSSSITGN	TGENADIKGN	GNVTNDGDLN	ISQKEGNLTI	LTEDLSISGF	SADGHNVTLN	VNITASEKVT	TTKSGSKIEA	NATEGAATLT	LNTTGTLTTV	GSVTAATSSS	ASVEEVIEAK	EFTTRPSSQV	
NSHVRGDDAF	ILGGNVTLGG	SLLVNGSLSL	INITQGVVKL	NDAEIQIGGN	NLTIKTKELK	TFNNVKDSKI	VNKDITSLKT	TVSVSATVDL	DLTVGNGAEI	AGSINAANVT	EVNAVNASGS	IEVKYIQPGV	NNTITVNTQN	
NISNGANFTL	NAINSTYNIS	NIRDRVIKLG	GNFTNNGTAE	IIGGDIINK KGSLNITDSN	DSSSDATSNA	GNSGAEAKTV	GLTITAKNVE	GDISGTISGN	NTVNVTANAG	VDLLAQNGSI	LNGDASGDST	RNTVRLRGKE	GVSAVRFVEP	VADDGQP
RGAELKMSEI	KDDFYDGYAR	LEANNAPNQQ	GKTRDTLNIT	Ŋ	ITIKKGIDGE	RDLTIGNSND	GRESNSDNDT	NGKASITTKT	TGTIGGTISG	ATGNTLTTEA GSSITSTKGQ VDLLAQNGSI	TLVINAKDAK	NGLNIISKDG RNTVRLRGKE	DEERETLAKL	SGNGARVCTN VADDGQP
FFDIYANHSG	TNSNFSLRQT	ITIEKAANVT	LTISESATFK	ITTHAKRNQR	SSDKINITKÕ	NKAEITAKDG	SKVKTSSSNG	TTAGSTINAT	KSGEANVTSA	ATGNTLTTEA	AGSDIKATSG	VNITGDLNTV	RVLEKVKDLS	IISEGKACFS
751	801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451

FIG.5A.

F16.5B.

shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are (A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter 女10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a

multiple cloning site (37).

FIG. 6A

√	ACAGCGTTCT	CTTAATACTA	CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA	ACAATAAAAT	ATGACAAACA	
	ACAATTACAA	CACCTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAATA	
	GTATAAATCC	GCCATATAAA	GCCATATAAA ATGGTATAAT	CTTTCATCTT	TCATCTTTCA	
	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CATCTTTCAT	
	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ACATGAAATG	
	ATGAACCGAG	GGAAGGGAGG	GAGGGCAAG AATGAAGAGG GAGCTGAACG	AATGAAGAGG	GAGCTGAACG	_
	AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	TTAATTGTTC AACTAACCTT AGGAGAAAAT	
	ATGAACAAGA	TATATCGTCT	CAAATTCAGC	CAAATTCAGC AAACGCCTGA	ATGCTTTGGT Ö	
	TGCTGTGTCT	GAATTGGCAC	GGGGTTGTGA CCATTCCACA	CCATTCCACA	GAAAAAGGCA	
	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	ACTTAGCGTT	AAAGCCACTT	
	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	AGGTGTAACA TCTATTCCAC AATCTGTTTT	AATCTGTTTT	
	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	
	AAGTAGATGG	TAATAAAACC	TAATAAAACC ATTATCCGCA ACAGTGTTGA	ACAGTGTTGA	CGCTATCATT	
	AATTGGAAAC	AATTTAACAT CGACCAAAAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	
	AGAAAACAAC	AACTCCGCCG	TATTCAACCG	TGTTACATCT	AACCAAATCT	
	CCCAATTAAA	AGGGATTTTA	AGGGATTTTA GATTCTAACG GACAAGTCTT	GACAAGTCTT	TTTAATCAAC	

FIG. 6B

						2	22/6	86							
ATTATTAACA CTAATGGCTT	GCGCGTAATT	TGTGAATCAC	TTGGTGGCAA	ATTTCTTTAC	AACCATTACT				GATAAAGTCA	AGGGGGAGAA	GCATTCAATT	GTATCAGGCA	GTTAATTGAC	CCGGTGGTTT	GCAATTGTTG
		TCGCTGAAAT	GTAAATCTTA	TGGTGGCAGC	TAATAAACCC	GTCAATCTGG	TGCCACTATT	GGCGGTGTAA	GATTACAGGC	CAGGTAAAGA AGGGGGAGAA	GCGGTGACGA GCGCGGAA GGTAAAAACG GCATTCAATT	AACCATCAAT	GCGATATTGC	ATCGCTAAAA	
TAAAGACGCA	TTTCTAACGA	GCAAACCAAA GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	AAATGAAGCG	ATGTCCGTGC	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	AAAAAGGCTC	ATTGTGTGGG	TAGTGGTGAT	ATTTATTCAT
TCACAATAGG	ACGCTAGACA		CTGTCGGTAA	GAGGGTGTGA	TCGCAGGCA AAAAATCACC ATCAGCGATA	CCGCGCCTGA	GGTAACATTA	CTTTCCGCCA AAGAGGGTGA AGCGGAAATT	GCTAAAGGCG	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT	ACGCTCAAGG TAGTGGTGAT	TCGGGGCATG
CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG	GGCAATATTA	TGTGGAGACG
801	851	901	951	1001	1051	1101	1151	1251	1301	1351	1401	1451	1501	1551	1601

FIG. 6C

CAAGAGTCAA	GAACGAAATG	CTTTAATGTT	AAGACACTAC	TCATTCAACA	2451
AAACGGTATA	CTTATAATTT	CTTACCCAGC	TGCAGGCACA	GAAGCGATAG	2401
GACTCCAGAG	CCTCACTATT	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2351
ATTTAACCTC	ACTTACTGGA	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2301
ACCTAAAAAT	CAATGGTTTT	GTGAACATCT	TTCAGGGAAA	CTTTAAATAT	2251
TTTGAAGGGA	CACAAATAAA	AATACGCTAT	AGAACCAATA	CACCACTAAA	2201
GACTGCAATT	ACTGGCAGCG	TCTAAACGGC	ATAATGTCTC	TTTAGATTTA	2151
TCAAAAAGGT	CCTCAGGCAA	GGGACTATTA	TACAGGTCAA	ACCAAGTCAT	2101
AAAGGAAGCA	CGCCTTTGAG	AACAAGATAT	ATTACAGCTA	TAACATAAAC	2051
GGGCGCAAGG	ATCTCACTCG	TCATAAAAT	GGGTTGATGT	TCAGGCGGCT	2001
AACAATTTAC	GTGCAAACTT	GATACCAGAG	CACCGGTGAT	ACGATATTAC	1951
GAGATTAACA	TGGCGGCGTT	GTCGGAGCGG	TGGAGTGAGG	CTTAACTCTT	1901
CCAATGGCAG	ATTAATTTAT	CAATAGCTCC	GCATCTATGT	GCTAATCAAC	1851
TAACATCACT	GTACCTTTGT	CTAAAAAAG	TGAGAGTATA	ACACAACTCT	1801
ACATTAACAA	AGAAAAGACA	AACGAAACAA	AGCACCCCAA	GAATAGTGCC	1751
CGGGATCCGG	GATGAATACA	TTCAGAAGAC	GCAGCAATAC	ACAGCAGGAC	1701
TAATGCAGAA	ATGTATCTAT	GACCCGGATA	ACGCCAAAGA GTGGTTGTTA GACCCGGATA ATGTATCTAT TAATGCAGAA	ACGCCAAAGA	1651

23 / 68

FIG. 6D

2501	CTTTGACATC	AAGGCACCAA	TAGGGATAAA	CTTTGACATC AAGGCACCAA TAGGGATAAA TAAGTATTCT AGTTTGAATT	AGTTTGAATT
2551	ACGCATCATT	TAATGGAAAC	ATTTCAGTTT	CGGGAGGGGG	CGGGAGGGG GAGTGTTGAT
2601	TTCACACTTC	TCGCCTCATC	CTCTAACGTC	CAAACCCCCG	GTGTAGTTAT
2651	AAATTCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTTA	AGATTTAAAA
2701	CTTCAGGCTC	AACAAAAACT	GGCTTCTCAA	TAGAGAAAGA	TTTAACTTTA
2751	AATGCCACCG	GAGGCAACAT	AACACTTTTG	CAAGTTGAAG	GCACCGATGG
2801	AATGATTGGT	AAAGGCATTG	TAGCCAAAAA	TAGCCAAAAA AAACATAACC	TTTGAAGGAG N
2851	GTAAGATGAG	GTTTGGCTCC	GTTTGGCTCC AGGAAAGCCG	TAACAGAAAT	CGAAGGCAAT 0
2901	GTTACTATCA	ATAACAACGC	TAACGTCACT	CTTATCGGTT	CGGATTTTGA
2951	CAACCATCAA	CAACCATCAA AAACCTTTAA	CTATTAAAAA	CTATTAAAAA AGATGTCATC	ATTAATAGCG
3001	GCAACCTTAC	CGCTGGAGGC	AATATTGTCA		AAATCTTACC
3051	GTTGAAAGTA	ACGCTAATTT	CAAAGCTATC		CTTTTAATGT
3101	AGGCGGCTTG	TTTGACAACA	TTTGACAACA AAGGCAATTC AAATATTTCC		ATTGCCAAAG
3151	GAGGGGCTCG	CTTTAAAGAC	ATTGATAATT	CCAAGAATTT	AAGCATCACC
3201	ACCAACTCCA	GCTCCACTTA	CCGCACTATT	ATAAGCGGCA ATATAACCAA	ATATAACCAA
3251	TAAAAACGGT	GATTTAAATA	TTACGAACGA AGGTAGTGAT	AGGTAGTGAT	ACTGAAATGC

FIG. 6E

						25/	68								
GATTTCTTCT	GTGTTGATGG	ACCATTAAAA	TTTCAATAAA	GTAACACCAA	CAGGTTAAAG	TGACACTACA CAGCAAAGTG	ACAATAATGC	AATATTACTT	TACCACTAAA	TAACCGCTCA	TCTGTAACAC	GGGCAACACC	CAGGCTCTAC	GGCGATATCG	TTAAAGCAAC CGAAAGTTTA
CGATGTCTCG CAAAAAGAAG GTAATCTCAC GATTTCTTCT	ATCAAGGCAG	TGCCAATCTA	ATATTTCAGG	TTAACTATTG	AACCTTTAAC	TGACACTACA	GATAGCAGTG	AGTAAACAAC	GTGGAGAAAT	AACGTGGAGA	CAGCTCTGGC	GCAATATTTC	ACCACTTTGG	TAACCACTTC AAGTCAATCA GGCGATATCG	TTAAAGCAAC
CAAAAAGAAG	ATATTACCAA ACAGATAACA	CGACAAACAA	CAAGACCTAA	TGGTAGTGAT	CCAAAAAAGT	CTCTGCTGAC GGTCACAAGG	CAACACTGAA	AAAATGTAAC	TCTGCGACAA	AACCACTGGT	ATCCTAGGTG GAATTGAGTC	CTTGCTGTAA	CTGCAAATAG CGGTGCATTA		ACAGTAGAGG
CGATGTCTCG	ATATTACCAA	GATTCAGACG	GAAATTAACG	CAGCTAAAGA	GGTACTAATG	CTCTGCTGAC	GTAGTAATAA	ATCGATGCAA	AGTGAGCATC	CCATTAACGC	ATCCTAGGTG	CGAGGGCGCT	CTGCAAATAG	ACCGAGAGTG	TTCTGGTGGC
AAATTGGCGG	GACAAAATCA	GGAGAATTCC	CCAAAGAATT	GCAGAGATTA	TAGTGCTGAT	ATTCAAAAAT	GAAACATCCG	CGGCTTAACT	CTCACAAAGC	ACAGGTACAA	AACAGGTAGT	TTACTGCAAC	GTTACTGTTA	AATTAAAGGA	GCGGTACGAT
3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	4001	4051

FIG. 6F

	GTGCGTTAAT ATCGCTGATA	GTGCGTTAAT	GCGCGACGGT	AACAGTGATG	GTGTTTCTCA	4901
	AAGGCAGGGC	GTGATTTCTG	AAGTCGAATA	CCAGACCATT	GAATTTGCAA	4851
	TACACAAAAT	TTACAGTCGA	AATAATACAA	TATTGAGCCA	CTGTACGTTT	4801
	GGCGTAAGTG	AGCTAAACTT	GAGAAGCGTT	GATGAAGAAA	AGATTTATCT	4751
	AGAAGGTAAA	CGCATCCTTG	TGAAGCGAAA	ATGAAGTAAT	GCAAGCGTAG	4701
	ACCGGGTATA	AATACATTCA	ATTGATGTGA	AGGCGTTAAA	TACTGTTAAA	4651
	ATAAACACCG	AAAAAACGGT	ATATCATTTC	AATGGATTAA	AATCACAATA	4601
	CTGGGGATTT	GTGAACATCA	CTCAAGCAGA	TCGCGACAAC	GGCAGCGTAA	4551
,	AAATGGCTCC	CAACCAACGC	GTGGTAAATG	TAACCACACA	CAGCATTGGG	4501
700	CTAAATGGCG	AGACGCTGAG	TTAACGCAAA	ACCTTGGTTA	AACCAGCGGT	4451
20	ACATTAATGC	AAGGGTTCAA	AACTACCGTG	CAGGCACTTT	CTAAATACTA	4401
	CAATGTGACA	TTAATGCCGC	GCAGGAAGTA	TGGTAGCGTT	CAGCTCAGGA	4351
	GTAAATCTTT	CAAGGGTCAG	TTACTTCAGC	AGTTCACACA	TACCGAAGCT	4301
	GCAAATTAAC	ACATCATCGG	AACCTTAACT	AAGGAGCTGC	AATGCGACAG	4251
	CGCAGAAATT	TTGGGAATGG	GATTTAACAG	AAACGCTGGC	ATGTTACGGC	4201
			TTGGTGGTAC	ACAGGTACAA	AACAAGTGCA	4151
	AGGCTAACGT	ACAACAGGCG	AATTAAAGCA	CCAATTCAAA	ACCACTCAAT	4101

26/68

FIG. 6G

	AGTCTAGGTT	TCAACGTGTA	AGTTTAACTA	GGCGCAAGGG	TGATAATTTC	5701
	TTGTTTCCTA	ACGCGTAGCT	TTTTGGCAAA	GTTTTTCGCC	GTAGTTGCAG	5651
	CTCTGATTTG	AAAACAAAAC	TTAAACCCTA	GCATTACGAG	TCACTCGCGT	5601
	CCACTTAAAG	AAAAGAAAAT	TCAATATGGC	TTGCGTGAAT	GTGGTTCGAT	5551
	ATGGTCGTCA	GTGTATGAAG	ACAAGGAAAA	CATCTTTGAA	CGTAGCCTGC	5501
	AAATATCGCT	ATAGTGAAGA	AGCCAGGGTT	TTATAAGGCG	GCCAAGTTTT	5451
	GCCGCAGAAA	CTCGAAATCA GCCGCAGAAA	TTGAGCTAGT	AATATTATGT	TACGGATGGC	5401
	AACAAACCAT	ATATTGCCAC	GTTTGATGTG	AGCCAAATAA	GATAAGATTG	5351
68	GGCTGTGCTA 0	TTGAATTACA	ACAGCACAGC	AAACCTAAAA	AAACTTTAAC	5301
27/	CAAGGCTCGC	ATCTAAATAC	CAAAATCTTT	CTGTCTGTAG	AGACGCCCAA	5251
	CTTTAAGTGA	GCACTTGAAA	GTTATCTGGT	AAGGCTTTCA	TTTTTAGTAA	5201
	AGAAGAAGCG	CATTGTATGC	GCTTCTTCAT	GCTTGGCCTG	TATCAGTATT	5151
	CTCAGTGCAA	CAGATTAAAA	ATATAAAAAG	ATTATGAAAA	ACAGGTTATT	5101
	AGTATTTTA	AATACAATAA	AATTACGGAG	TCTTGTAAAA	GCTTTACCCA	5051
	TTCAGTACGG	TGGGTTAAAG	ATTTACTGTG	TTTTCGTATT	AGTCATTTA	5001
	CCTGCAATGA	TAGATTTCAT	ATTGACAAGG	GCGGTCAGTA	ACGGGCGGTA	4951

FIG. 6H.

												٠.				
							28	/68								
ACTAAAACCA					AAAATTAATT	AAACACCCTG	CAGGCATTGA	GATTTAACTC	GGAGCGCATT	GTTTAGGGTT	TTATCGGGTC	TGTAACAGGT	GTGAGCGCGG	CGCTTTCAAA	TAATAGCGAA	CTGCGGGTTT
ATGTATTAAA		CTTAAGTCTT	GATATCGACG GCTTACCAAG	GCGAATCTGA		CATCCGAGTT	GGCGTAAGTG	CTTTAATATT	CTTTTGGAAT	AGCACAGCCA	TAGCAGTCAA	ATTTATTCTC	GGTGCAAGTG	AAAATACACC	AGTTCCGTTA	ACGGTATCCT CTGCGGGTTT
TTGTAAATGC CAATTTGACC GGACATGATG	ATCAAAATCT	AACACCAATC		CAAAAGGTCA ATCTATCTCT	TTGGAATGGA	ATTAATCAAA	TGCAGTATCA	CTAAAACAAT	TTACCAGGCT	CTATCACATT	GTTGGCATTT	AGTAGCATAG	TAAATACGGC	TAAGTATGCC AAAATACACC	GATGCAGGTC	
CAATTTGACC	TAAAAGCACC	TTTTATGATA	TGATTCTAAT		ACATTTAACC	CTACCGCCAT	AGAAAAATT	CAATTTACCC	CGCGAGTAAA	TTAATCGCAG	TTTGCTCAAG	ACAAGATATA	TCAGAGGCTT	CGTAATGAAT	TGCGTTTTAT	AATGCTAAAA CTTACGGCGA AGATATGCAC
TTGTAAATGC	TTGACCAATG	TACTTATCCG	TGAGTTATGC	CGTAAATTAT	TTATCTCCCG	TAGGCTACAA	GGTGCAACGA	TGGACATATC	ATCATTATTA	GGCGAAACAT	GAGTCAAGAG	AGTTTACTCT	ACTTATGGCG	TCTTGTATGG	TCAGCCCTTA	AATGCTAAAA
5751	5801	5851	5901	5951	6001	5051	5101	5151	5201	5251	301	351	401	451	501	551

FIG. 6I

6601	AGGCATTAAA	ACCTCTCCTA	ACCTCTCCTA CACAAACTT AAGCTTAGAT GCTTTTGTTG	AAGCTTAGAT	GCTTTTGTTG	
6651	CTCGTCGCTT	TGCAAATGCC	AATAGTGACA	ATTTGAATGG	CAACAAAAA	
6701	CGCACAAGCT	CACCTACAAC	CTTCTGGGGT	AGATTAACAT	TCAGTTTCTA	
6751	ACCCTGAAAT	TTAATCAACT	GGTAAGCGTT	CCGCCTACCA	GTTTATAACT	
6801	ATATGCTTTA	CCCGCCAATT	TACAGTCTAT	ACGCAACCCT	GTTTCATCC	
6851	TTATATATCA	AACAAACTAA	AACAAACTAA GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	
6901	AACCAAGCAA	ACCAAGCAAA	ACCAAGCAAA CCAAGCAAAC	CAAGCAAACC	CAAGCAAACC AAGCAAACCA O	
6951	AGCAAACCAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	ATGCTAAAAA 0	
7001	ACAATTTATA	TGATAAACTA	TGATAAACTA AAACATACTC	CATACCATGG	CAATACAAGG	
7051	GATTTAATAA	TATGACAAAA	TATGACAAAA GAAAATTTAC AAAGTGTTCC	AAAGTGTTCC	ACAAAATACG	
7101	ACCGCTTCAC	TTGTAGAATC	AAACAACGAC	CAAACTTCCC	TGCAAATACT	
7151	TAAACAACCA	CCCAAACCCA	CCCAAACCCA ACCTATTACG	CCTGGAACAA	CATGTCGCCA	
7201	AAAAAGATTA	TGAGCTTGCT	TGAGCTTGCT TGCCGCGAAT	TAATGGCGAT	TTTGGAAAAA	
7251	ATGGACGCTA	ATTTTGGAGG	ATTTTGGAGG CGTTCACGAT	ATTGAATTTG	ACGCACCTGC	
7301	TCAGCTGGCA	TATCTACCCG	TATCTACCCG AAAAACTACT	AATTCATTTT	GCCACTCGTC	
7351	TCGCTAATGC	AATTACAACA	AATTACAACA CTCTTTTCCG ACCCCGAATT	ACCCCGAATT	GGCAATTTCC	

FIG. 67

7 7 7 7	1TA	H	T \(\frac{1}{2} \)	'GT	AT.	30) /6 }	AC 00	Ę	. SL	DL) <u>E</u>) E-
1 GACGC1 GAT	AATAAATATA		ATGTCAATAT				_	TCCATTAAAC	ACCGCTACCT	GTACTGCTTG	AACTTCAATG	ATGAGGGCGT	ATCAGTAGCA	CGAAACTTTC	TTACCACG
1771777777	CCATATTCTC			•	GTACTGCATC	AAAAAACTCG	TCATGATGTA	ATGTTAAGCG	GGATGGCAAG	TGTGATGATG	GCACGCATTC	GGCTTAGGCC	GTTCTTTGAA	GTAAACAGTG	GGCATGGATA
בייי בייס סיים בייי	TTAACGCAGA	GGTGGCTTTC	TTTTACTTA	CAGGGAATCA	CGTTTTATTG	GTGGTTTCCT	CAAATATCCT	AACAAGCACG	CCTCACGCAA	ACGGCAAACC	TCGATTTATC	CTATTTAGTC	TGTTTGACGA		
	TCCCCCTACG	AGATTCCGAA	AATTCTGTAT	GCGTTATGGG	GCAGTCTTCA	TGGTTTTACA	GAATTGCCTG	TTTAGCAAAA	GCAAGCATAT	GGTAAAAAGG	TTCGGGACAT	GAGAAAAATT	GGTCGAGAAG	GGAGAGACTG	TGTTCTATAT
	TTTTGCCTCT	ATATCAACCC	TCTATTGCTA	GAGTTTAGAT	GTTTTGCGTT	AAAAGAGCGG	TAATTTAGAT	GCAGTTATGA	GAACTTGTCC	TTACACCTTA	AACATTTTAA	ATTGCTGCTC	TGATAACATA	ATAATATAAT	CAACCCGCAG
	7451	7501	7551	7601	7651	7701	7751	7801	7851	7901	7951	8001	8051	8101	8151

K
9
•
C
H
Ēų

	ACCCTCGTCC CGGAAGCACT AATTTTCAAA
	ATTGAATGTG
	GGTCTGTTTA AACGCTTAGG
	GGTAATACTA ATGCAAAACG
8	ATCTGGCAAT
1/6	CTATTTAGGT 5
3	GGACAATCAA
	AAGAAATCAG
	TATTGCCGCT
	CAAAAAGTGG
	TACGCTTACC
	CGTAGAAGAT
	TCAAGCTGTA GCCTTGGGTC

32 /68

FIG. 6L.

		ζ	て、日本で見びべびごび、日本		0201
ACTAAAGACG	GCAATAGTTG GGTAATCAAA TTCAATTGTT GATACGGCAA ACTAAAGACG	TTCAATTGTT	GGTAATCAAA	GCAATAGTTG	9151
TAAAATTGTG	TCCCGCGCGC TGACAGTTTA TCTCTTTCTT AAAATACCCA TAAAATTGTG	TCTCTTTCTT	TGACAGTTTĀ	TCCCGCGCGC	9101
TTTATAACGC	GUG'I"I"I"I'AAA AACC'I'C'I'CAA AAATCAACCG CACTTTTATC TTTATAACGC	AAATCAACCG	AACCIICIICAA	GCGTTTTAAA	AO2T

FIG. 7A

	A	E	Ü	E	: [-	33 / ⊟	88 4	Æ	Æ	ر (ز)	()	F	A:	Ħ	ርካ
AAAG.I.GCGG	TAATTGTTCA	CTTTTTCGGT	ACAACTTTAC	GCGAATACGT	CATAATAGGT	TTTGCAAGAT W	TTTTAATTC.	TAAATATACA	ACAATTACA	AGTATAAATC	ATCTTTCATC	TCTTTCATCT	GATGAACCGA	GAACGCAAAT	TATGAACAAG
AACTAACCAA	AAGAACGAGG	GTTGGCGTTT	CAATCCACCA	GCTCTTCTTG	TCGGGATAAT	AATCATAAAT	AAATCGCCAA	ATCAACTGGT	ATGACAAACA ACAATTACAA	TTAAAAAAT	TTCATCTTTC	TCATCTTTCA	CACATGAAAT	GGAGCTGAAC	TAGGAGAAAA
CGCCACTTCA ATTTTGGATT GTTGAAATTC AACTAACCAA AAAGTGCGGT	GGTTGTAGTG	TTGGGCATTG	GACGACTATG	GTAAGTTCTT	TTTGTTTAGC AAGAAAATGA	AATAAATTTT GATGTTCTAA	ATTTGTGGCG	TCCCACTCAA	GATTTTTGTG	TGCAAATATT	TCTTTCATCT	CTTTCATCTT	TTTCATCTTT	GAATGAAGAG	CAACTAACCT
ATTTTGGATT	GGAGAAAATA	GCTCTCTTAA	TTATATTCTG	AAGCGTTAAT	TTTGTTTAGC		TTCAATACCT	GCATAATATT	AGATAATAAA AATAAATCAA	GCAGTCTATA	AATGGTATAA	CATCTTTCAT	ATCTTTCATC	GGGAAGGGAG GGAGGGGCAA	TTTAATTGTT
CGCCACTTCA	TAAAATCTGT	AAAGGATAAA	TAATAGTAAA	CGTTGGTTTT	AATCCCATTT	GTTGCCCAAA	ATTGTGGCAA	ATTTCTTGTA	AGATAATAAA	CACCTTTTTT	CGCCATATAA	TTTCATCTTT	TTCATCTTTC	GGGAAGGGAG	GATAAAGTAA
~- 1	51	101	151	201	251	301	351	401	451	501	551	601	651	701	751

FIG. 7B

						3∠	1/6	8				a			
TTGCTGTGTC	AGCGAAAAAC	TTCCGCTATG	TAGCAAGCGG	AACAA	TAATTGGAAA	AAGAAAACAA	TCCCAATTAA 0	C AŢGGT	GCTTC	CTTCG	LAATT	AAAAA	4GGGC	3CATT	1AAGG
	AGCGA	TTCCG	TAGCA	•	TAATT	AAGAA	TCCCA	CCCAAATGGT	TTACGGCTTC	TTCACCTTCG	CGGTTTAATT	AAGTGAAAAA	CTCGCAGGGC	TTACAGCATT	TTGCCAAAGG
AATGCTTTGG	AGAAAAAGGC	TAAAGCCACT	CAATCTGTTT	CAGTTTTTAC	ACGCTATCAT	CAGTTTTTAC	TAACCAAATC	TTTTAATCAA	ACTAATGGCT	GGCGCGTAAT	TTGTGAATCA	ATTGGTGGCA	CATTTCTTTA	CAACCATTAC	GGCGATATTT
TCAAATTCAG CAAACGCCTG	ACCATTCCAC	CACTTAGCGT	ATCTATTCCA	TGAAATGGTG	CATTATCCGC AACAGTGTTG	TGAAATGGTG	GTGTTACATC	AGATTCTAAC GGACAAGTCT	AATTATTAAC	AAAACATCAA	CTCGCTGAAA	TGTAAATCTT	ATGGTGGCAG	ATAATAAACC	
TCAAATTCAG	CGGGGTTGTG	GAAAGTGCGT	TAGGTGTAAC	TCGACCAAAA	CATTATCCGC	TCGACCAAAA	GTATTCAACC	AGATTCTAAC	GTAAAGACGC	ATTTCTAACG	AGATAAAGCG	AAGACGGCAG	ATTAGCGTAA	CATCAGCGAT	AAAATGAAGC GGTCAATCTG
ATATATCGTC	TGAATTGGCA	CTGCTCGCAT	TTACTATCTT	CAATTTAACA	GTAATAAAAC	CAATTTAACA	CAACTCCGCC	AAGGGATTTT	ATCACAATAG	TACGCTAGAC	AGCAAACCAA	ACTGTCGGTA	CGAGGGTGTG	AAAAAATCAC	GCCGCGCCTG
801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501	1551

FIG.7C

1601	CGGTAACATT		AATGTCCGTG CTGCCACTAT	TCGAAACCAA GGTAAACTTT	GGTAAACTTT	
1651	CTGCTGATTC	TGTAAGCAAA	GATAAAAGCG	GCAATATTGT	TCTTTCGCC	
1701	AAAGAGGGTG	AAAGAGGGTG AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC AAAATCAGCA	AAAATCAGCA	
1751	AGCTAAAGGC	AGCTAAAGGC GGCAAGCTGA	TGATTACAGG	CGATAAAGTC	ACATTAAAAA	
1801	CAGGTGCAGT	TATCGACCTT	TCAGGTAAAG	AAGGGGGAGA	AACTTACCTT	
1851	GGCGGTGACG	AGCGCGGCGA	AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	
1901	AACCTCTTTA	AACCTCTTTA GAAAAAGGCT	CAACCATCAA	TGTATCAGGC AAAGAAAAG	AAAGAAAAAG w	
1951	GCGGACGCGC	TATTGTGTGG	GGCGATATTG	CGTTAATTGA	CGTTAATTGA CGGCAATATT \	
2001	AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT	TTGTGGAGAC Ö	
2051	ATCGGGGCAT	TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	
2101	AGTGGTTGCT	AGACCCTGAT	GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	
2151	CGCAATAATA	CCGGTATAAA	TGATGAATTC	CCAACAGGCA CCGGTGAAGC	CCGGTGAAGC	
2201	AAGCGACCCT	AAAAAAATA	GCGAACTCAA	AACAACGCTA	ACCAATACAA	
2251	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	CAATGAATAT	AACGGCATCA	
2301	AGAAAACTTA	CCGTTAATAG	CTCAATCAAC ATCGGAAGCA	ATCGGAAGCA	ACTCCCACTT	
2351	AATTCTCCAT	AGTAAAGGTC	AGCGTGGCGG AGGCGTTCAG	AGGCGTTCAG	ATTGATGGAG	
2401	ATATTACTTC		TAAAGGCGGA AATTTAACCA TTTATTCTGG	TTTATTCTGG	CGGATGGGTT	

FIG. 7D

						36	/68								
ATATTACCGC	GACGCGGCAA	CCATTACAGG AGAGGGAAAA	AAGGTCTGAA	GGCACAATTA	GAACACCTCG	CTCTTAATCT (AGCAATAGCA ®	TTTTAACGGC	AAGTTAATT	TTACCAATTC	TTTTTTTT	ТGAGTGAAAT		AACCAATTCA	GGTACGCACG
GATGTTCATA AAAATATTAC GCTTGATCAG GGTTTTTTAA ATATTACCGC	CAAAGCACGC			CAATCTTAGT	GAATATAACA ATTAACCAAA CTACGAGAAA GAACACCTCG	AACGTCAGTG	ATACATTTCA		GAAGGAGCGA	AAGCAAACCT	GGGGCTCTGT				TTTTATGACG
GCTTGATCAG	CGCTTCCGTA GCTTTTGAAG GTGGAAATAA	GGCACTGTAA	ATCTTTAAAC	ATTTAACCCA	ATTAACCAAA	TTCGCACTGG	CCTTTATTAA	AGAAGCTCTG CAGGGGTGAA	CAATCTCAAA GAAGGAGCGA	ACATGAACAC AAGCAAACCT	GCCACTGGTG	CAGAGGGGCT	ATTTTACCTT		
AAAATATTAC	GCTTTTGAAG	TGTCGCCCAG	CTAACAACGT	TCAGTGAATA	GAATATAACA	TATTGGCAAA CCAGCCATGA	GCAAATTTTA	AACACAGTAT	ACATGTCATT	CCAAACGAGA	CAATATCACA GCCACTGGTG	ACCATTCTGG	AACGGCGCTA	TAAAATCAAC AAAGACTTAA	TCAGACAGAC
GATGTTCATA	CGCTTCCGTA	ATGCTAAAAT	GATTTCAGGG	TATCATTTCA	ACATATCTGG	TATTGGCAAA	AGAGACAGGC	AAGGCTTAAC	GTAAATGGCA	CAAATTAAAA	GGTTTTTAGC	ATATATGCCA	TAATATCTCT	ATGACGCTTT	AATTTCAGCC
2451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	3201

G.7
ט.
U
1
HH

GGTAATGTCA	TATTACTATC	CTAATCAGCA	GTTAATGGGA	TCTCACTATT	TAAATATCAC	, ACACAAGGAG	CATTACCACT	, TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG
CATTCTGGGC	TTACGGGGAA	AATAACGCCC	CAGCTTGCTC	TTAAAGGCAA	AGAGATACCC	AATTAATATA	GTGATTTAAA	GGCGGAGATA	TAATGATGCT	ACCTCACGAT	AAAAAGGGTA	CAACCTAACT	TTTCAGGTTT	ACTATTGGCA	AACTTTTAAC
ACAACATATC	AGCAGCAGCA	GCTAGAAGCC	TAAAACTTGG	AATGCAGATA	AGGAAAGACT	GCACTGCCGA	ACCAATGATG	AAGCATCATC	CAGACAGTAA	AAAGAAGGCA	GATAACAATC	CAAGTAATGC	GACCTAAGTA	TAGAGATTTA	CCAAAACAGT
AATTCAACCT	ACAAAACTCA	CAAATGTTAC	GATAGAGTTA	AACTGGCGAA	CCACTTTTAA	ACCAATAATG	TGGCAATGTT	GCAACCAAAG	TTAAATATTA	TATCTCGCAA	TCACCAAACA	TCAGATGCGA	ATTGACAGAA	CCAAAGATGG	GGTGCCGAAG
CAATGCCATC	CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTT	TGGTAAAACT	CACGCTAAAC	AAAAGGAAGC	TTGGCGGCAA	AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC
3251	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	4001

37/68

	GTG TPAC CTT GCA AAC CGA GGCA CGG CGG CGG CGG CGG CG															
TGACACTAAA TAGCAAAGTG	ACAACGATAC					GAAATCGGGT				CTAAGGGTCA	ATTAATGCTG		AAGATGCTAA	GCAGTCAACG	TGTGAATATC	CGAAAGATGG
TGACACTAAA		AGTAAACAAA	ACCGCGTCGG AAAAGGTTAC	TTAACGCAAC AAATGGCAAA GCAAGTATTA	TTTCCGGTAA CACGGTAAGT	AAATTGAAGC	ATTGGCGGTA	CGATTTÄACA	GAAGGAGCTG CAACCTTAAC	ATCACTTCAA	CGCAGGAAGC	TAACCACCGT	ATTAACGCAA AAGATGCTAA	AGAAGTGAAT	CCTCAAGCAG	AATATCATTT
GGTCACAATG	CGGACGTGAA	AAAATGTAGA		AAATGGCAAA	TTTCCGGTAA	TCCGGCTCAA	AACAGGTACA	CAAACGCTGG	GAAGGAGCTG	CTACTGAAGC CGGTTCTAGC	ATGGTAGCAT	ACAGGCACCT	CACCTTGGTT	GTGATAGTAC	ACTGCGGCAA	TAAACACAGT AAATGGGTTA
ATTCAAAAAT CTCTGCTGAC GGTCACAATG	AAAACATCTA GCAGCAATGG	ATTACTGCAA	AGTAAATATC		AGGTGATATC AGCGGTACGA	AACCACTAAA	TAACAAGTGC	AATGTTACGG	TAATGCGACA	CTACTGAAGC	TTGGCTCAGA	ATTAAATACT	CAACCAGCGG	GATGCATCAG	TGGTAGTGTG ACTGCGGCAA	TAAACACAGT
ATTCAAAAAT	AAAACATCTA	CGGCTTAACT	CTCTCAAAAC	GGCTCGACCA	AGGTGATATC	CTGGTGATTT	GAGGCTAATG	TAATACGGTA	GCGCAGAAAT	AATACCTTGA	GGTAGACCTC	CTAATGTGAC	GATATTAAAG	GCTAAATGGT	ACTGGGGATT	ACTGGGGATT
4051	4101	4151	4201	4251	4301	4351	4401	4451	4501	4551	4601	4651	4701	4751	4801	4851

FIG. 7G

,	Ē	E	A	E	Æ	39 &	/ 68 4		Ø	Ŋ	Æ	Ą	ບ	ප	ر ن
	ACGCGTCCTT	TAGCTAAACT	ATTACAGTCA	GATAATTTCT	TATGTACCAA	GTAGATTTCA W	GTGGGTTAAA	GAATACAATA	GCAGATTAAA	TCATTGTATG	TGCACTTGAA	TATCTAAATA	CTTGAATTAC	GATATTGCCG	TCTCGAAATC
) +)) ; ;) + + ; ; ; ;	TTGAAGCGAA	AGAGAAACAT	AAATAATACA	CAAGTCAAGT	GGCGCACGAG	AATTGACAAG	TATTTACTGT	AAATTACGGA	AATATAAAA	GGCTTCTTCA	AGTTATCTGG	GCAAAATCTT	AACAGCACAG	AATTTGATGT	TTTGAGCTAG
SIGCECTIAN GREECARGER ARTIGREGIE ARTIRIA	GAAGAAGTAA	TGATGAAGAA	TTGTTGAGCC	ACCAGACCGT	AAGTGGTAAT GGCGCACGAG	CGTAGTCAGT	ATTTTCGTAT	ATCTTGTAAA	TATTATGAAA	TGCTTGGCCT	AAAGGCTTTC	ACTGTCTGTA	CAAACCTAAA	GAGCCAAATA	CAATATCATG
1777 10000	AGCAAGTGTA	AAGATTTATC	GCTGTACGTT	TGAATTTACA	CGTGTTTCTC	GATGGACAGC	AAGTCATTTT	GGCTTTACCC	AACAGGTTAT	ATATCAGTAT	GTTTTTAGTA	AAGACGCCCA	CAAACTTTAA	AGATAAGATT	TTACGGATGG CAATATCATG
THERREACTE	AGCCAGGTGT	GAAAAAGTAA	TGGTGTAAGT	ATACACAAAA	GAAGGTAAGG	TGTTGCTGAC	TCCTGCAATG	GTTCAGTACG	AAGTATTTTT	ACTCAGTGCA	CAGAAGAAGC	ACTTTAAGTG	CCAAGGCTCG	AGGCTGTGCT	CAACAAACCA
430T	4951	5001	5051	5101	5151	5201	5251	5301	5351	5401	5451	5501	5551	5601	5651

FIG. 7H

								,								
r n	.4	ı				•	40/	68								
TATAGTGAAG		CAAAAGAAAA			ACCAACGTGT	GATGTGTTAA	GGCTTACCAA	AATCTATCTC TGCGAATCTG ®	AAGACCAATT	ACCTCCCC	AGGGGTAAGT	TCTTTAATAT	TCTTTTGGAA	TAGCACAGC	TTAGGCAGTCA	GATTTATTCT
TTTATAAGGC GAGCCAGGGT	AACAAGGAAA	TTTAATATGG	ACTAAACCCT	CTTTTGGTAA	CGGCGCGAGA GAGTTTAACT	TGGTCATGAT	TGATATCGAC	AATCTATCTC	CTTGGCATGG	TATTAATCAA	TTGCAGTATC	CCTAAAACAA	ATTACCAGGC	GCTATCACAT	GGTTGGCATT	TAGCAGTATA GATTTATTCT
	CCATCTTTGA	TTTGCGTGAA	TACATTACGA	GGCTTCTCGC		CCAATTTAAC	CTGATTCTAA	TCAAAAGGTC	ATTATCTCCC AACATTTAAC	TTAGGCTACA ACTACCGCCA	AAGAAAAAT	CCAATTTACC	ACGCGAGTAA	TTTAATCGCA		
AGAA AGCCAAGTTT	TCGTAGCCTG	AGTGGTTCGA	GTTACCCGTG	GATAATTGCG	ATGATAATTT	TTTGTTAATG	ATGAGTTATG	TCGTAAATTA	ATTATCTCCC	TTAGGCTACA	GGGTGAAACG	ATGGACATAT	CATCATTATT	TGGCGAAACA	TGAGTCAAGA	CAATTTACTC
AGCCGCAGAA	AAAATATCGC	GATGGTCGTC	CCCGCTTAAG	CCTCTAATTT	TTTATTTCTT	AAGCTTGGGT	TTATACCAGT	GTGCGATTAÀ	AAATGGAGTT	TAAAATTAAT	TAAATCGCTT	GCAGGCATTG	TGATTTAACT CATCATTATT	TGGAGCGCAT	AGTTTAGGGT	ATTATCAGGT
5701	5751	5801	5851	5901	5951	6001	6151	6201	6251	6301	6351	6401	6451	6501	6551	6601

FIG. 7I

						41/	68								
TTAAATACGG CGGTGCAAGT	CAAAATACAC	CAGTTCCGTT	CACGGTATCC	TAAGCCTAGA	AATTTGAATG	GAGATTAACA	TCCGCCTACC	TAGGCAACCC	GCTAAGCAAA	ATTTATATGA	TTAATAATAT	GCTTTACTTG	ACAACCACGC	AAGATTATGA	GACGCTAATT
TTAAATACGG	TTAAGTATGC	TGATGCAGGT	AAGATATGCA	ACACAAAACT	CAATAGTGAC	CCTTCTGGGG	TGGTAAGCGT	TTACAGTCTA	GCTAAGCTGA GCTAAGCAAA	TAAAAAAACA	TACAAGGGAT	AGATGCGACC	GAATATTTAA	ATCGCAAAAA AAGATTATGA	GGAAAAAATG
TACTTATGGC GTCAGAGGCT	GCGTAATGAA	ATGCGTTTTA	ACTTACGGCG	AACCTCTCCT	TTGCAAATGC	TCACCTACAA	TTTAATCAAC	ACCCGCCAAT	AAATAAACAA	CAAGTAATAC	GCCATGGCGA	AATTTGCAAA ACGCTCCTCA	ACTCCCCTGC	GGAACAACAT	TGGTGATTCT
TACTTATGGC	GTCTTGTATG	ATCAGCCCTT	AAATGCTAAA	TAGGCATTAA	GCTCGTCGCT	ACGCACAAGC	AACCCTGAAA	TATATGCTTT	CTTATATATC	TCAAGCAAGC	TATACTCCAT	AATTTGCAAA	CAACAATCAA	TATTACGCTT	CGTGAATTAA
CTGTAACAGG	GGTGAGCGCG	CCGCTTCCAA	ATAATAGCGA	TCTGCGGGTT	TGCTTTTGTT	GCAACAAAA	TTCAGTTTCT	AGTTTATAAC	TGTTTTACC	CCAAGCAAAC	TAAACTAAAG	GACAAAAGAA	CGGAATTAAG	AAGCCCAGCC	GTTTGCTTGT
6651	6701	6751	6801	6851	6901	6951	7001	7051	7101	7151	7201	7251	7301	7351	7401

FIG. 7J

7451	$ ext{TTGGAGGCGT}$	TCACGATATT	GAATTTGACG		CACCCGCTCA GCTGGCATAT
7501	CTACCCGAAA	AATTACTAAT	TTATTTGCC		CTAATGCAAT
7551	TACAACACTC	TTTCCGACC	_		
7601	TAAAGATGAT	' TAGCCTGCAA			
7651	CCCTACGTTA	•			_
7701	TTCCGAAGGT	GGCTTTCATT	_		
7751	TCTGTATTTT	TTACTTACCC		TCAATATCACT	THE SCIENCE A
7801	TTATGGGCAG	GGAATCAACA		TCATTGTGTT	12 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7851	GTCTTCACGT				8 8 1 1 5 C K C K C K C K C K C K C K C K C K C
7901	TTTTACAGTG				AGAGCGG1GG
7951	TTGCCTGCAA			AAATIGCTAA	T"I"I'AGATGAA
700		PIPICCIICA	IGAIGIAIAI	ATGCACTGCA	GTTATGATTT
TOOS	AGCAAAAAC	AGCAAAAAC AAGCACGATG	TTAAGCGTCC	ATTAAACGAA	CTTGTCCGCA
8051	AGCATATCCT	CACGCAAGGA	TGGCAAGACC	GCTACCTTTA	CACCTTAGGT
8101	AAAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAC	ATTTTAATTC
8151	GGGACATTCG	ATTTATCGTA	CACATTCAAC	TTCAATGATT	GCTGCTCGAG
8201	AAAAATTCTA	TTTAGTCGGC	TTAGGCCATG AGGGCGTTGA TAAAATAGGT	AGGGCGTTGA	ТААААТАССТ

FIG. 7K

ATAGAAAACA	TCGTTACATC	TTGAACTCCG	CAAGAACGCC	AGAAAACCAT	9051
TGCGTCTAGC	GAATGTGCTT	AACATATATT	ACACACGAGA	CTGATAGCCG	9001
ACCAGAATGG	GCTTAGGACT	CTGTTTAAAC	TGATGAAGGT	ATGAACATAT	8951
GATGAAGTAC	CAAAACGGGG	TTGGTGTATG	TTAGGTTTAG	TATGGTTACA	8901
GCATAATTGA	AATACTAACG	TCCTTTCGGT	TAAATCCGTT	GATATGCTAC	8851
GCGTGATTGC	TGGCAATATT	CACGATTATC	CGCACCTTAT	CACATCCCCA	8801
GATGCCACTG	TTTAGGTGAC	TCGAAAGCTA	AAATGGTTTA	CCCTTATGTC	8751
GCTTGACACA	CAATCAACAG	CGCACTTGGA	ATTTCATTT	GTCAAAATAC	8701
TAAAGCTAAA	AAATCAGAGA	ACATTGCAAG	ATTTTGCTA	TAAACCCTGA	8651
ACAATGAAAT	TGCCGCTACC	ATATCGGTAT	GAAGTAGTCA	GGAAAACCCT	8601
ATGTACTCAG	AAAGTGGATT	CGCCCCACAA	CTTCTGCACT	CCTTATGTAC	8551
AGATGCCCTA	GCTTACCCAA	ACCCTTTTAC	TTTCAGCGAA	GTGAAGATTG	8501
TATGTGGGCA	AGAAGATGAT	ATGTCATCGT	TTTATTGATT	GCATTCTGAA	8451
CTGCCACTAC	CTGGGTCATC	AGCTGTAGCC	CCCCTATTCA	ACTCGGCTTG	8401
TGTGAGCAAC	CCACGATTTT	ATGGATATTA	AAGCATTGGC	TCTATATGCC	8351
CCCGCAGTGT	AACTTTCCAA	AACAGTGCGA	TTTATCCGTA	GAGACTGTȚT	8301
ATATAATGGA	AGTAGCAATA	CTTTGAAATC	TTGACGAGTT	CGAGAAGTGT	8251

44/68

FIG. 7L

		AAA	AAATCACCAA TACCCACAAA AAA	AAATCACCAA	9401
TTGCACCACA	TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA	TAAAGGCTAA	TGGCAGAAAT	TAGCCAAAAC	9351
GCGGAGATTT	CAGTTTATCA GCCTCCGCC ATAAACTCC GCCTTTCATG GCGGAGATTT	ATAAAACTCC	GCCTCCCGCC	CAGTTTATCA	9301
CGCACGCTGA	CTCTCAAAAA TCAACCGCAC TTTTATCTTT ATAACGATCC CGCACGCTGA	TTTTATCTTT	TCAACCGCAC	CTCTCAAAAA	9251
TTTTAAAAAC	ACGGTTTTTT AAAGTAAAAG TGCGGTTAAT TTTCAAAGCG TTTTAAAAAC	TGCGGTTAAT	AAAGTAAAAG	ACGGTTTTTT	T076
GTAAAAAATA	CTGCTTAAGA AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAAATA	ATGGAAGCGG	AAACAAATGA	CTGCTTAAGA	9151
GGGCAAAATA	ACGGCTTACA AAAGCTTTTT ACAGGCGACC CTCGTCCATT GGGCAAATA	ACAGGCGACC	AAAGCTTTTT	ACGGCTTACA	7076

FIG.8A

						45	/68	3							
AATGTCCGCG	TGTAAGCAAA	AAGCGGAAAT	GGTAAGTTGA	TATCGACCTT	AGCGTGGCGA	GAAAAAGGCT	TATTGTATGG O	GTAAAGATAT	TTATCCATTG	CCCAGAGAAT	GTGCCGATAG	AAAAATAACA	TCTGAAAAGT	TTAATAGCTC	TCTCCACAGT GAAGGTCAGG
TGGTAACATT AATGTCCGCG	CTGCCGACTC	AAAGAAGGTG	AGCCAAAGGT	CGGGTGCAGT	GGCGGTGACG	AACCACTTTA	GTGGGCGCGC	AATGCCCAAG	GGGCCATTAC	GGCTACTAGA	GTCGAGCTGG	GACCCTAAAA AAAAATAACA	TTTCAAATCT	AAACTTACCG	
TTGCCAAAGG	GGTAAACTTT	TCTCTCTGCC	AAAATCAGCA	ACATTGAAAA	AACTTATCTT	TAGCAAAGAA	AAAGAAAAAG	CGGCAATATT	TGGAGACGTC	ACAAAAGAAT	CGCTTCTCGC	TGATAAAAGT	AATACAACCA	GGCAAGGAGA	GAAAGAGGCT CCCACTTAAT
GATCAATCTG GGCGATATTT	TCGCAATAAA	GTAACATTGT	ATTTCCGCTC AAAATCAGCA	CGATAAAGTT	AAGGGGGAGA	GGCATTCAAT	TGTGTCAGGT	CGTTAATTGA	GGTGGTTTTG	AATTGTTAAA	AAGCTCCTTC	TCGGCAGAGG TGATAAAAGT	AACACTAACC	TGAACATAAC GGCAAGGAGA	GAAAGAGGCT
GATCAATCTG	CTGCCACTAT	GATAAAAGTG	TGGCGGTGTA	TGATTACAGG	TCGGGTAAAG	AGGTAAAAAC	CAACAATTAA	GGCGATATTG	CGCTAAAACT	ATGATAACGC	GTGACTATTG	GAATTCCCAC	CCTCCTTGAC	GCCCACGTGG	TATCAGTATA
\vdash	51	101	151	201	251	301	351	401	451	501	551	601	651	701	751

FIG.8B

GCAATATAAC	GCCACCGGTG	AAACTTAAAC	AAAATGATTT	TTTTCAATAG	1601
AGAAACCGCT	AAGGTTCAAC	CTCAAGGCTG	AACTTTAAAT	CAGGAGGGTC	1551
TTTAATGTCT	ATCTCAAAAC	TAATTATAAA	ACCCCTGGCG	CAACATACAA	1501
CCTCATCTAG	AAACTTAACG	CGTTAATTTC	GGGGGGGTAG	TCAGTCTCAG	1451
TGAAGATATT	CATTATTAA	GCTAACTACG	TAAGAGTAAC	TAATGCCCTT	1401
AAGGCATCAA	CTTTAGCATC	CAACAGCTAA	GCACAAGGCT	TTTTAATATC	1351
ATAAAGCCAC	ATAACATTTA	ATTAAATGGC	GCAATGCAGA	CCAAGCATAC	1301
CTCAACAGGT	CAGGAAGTGG	ATTGACAGCA	TAACCTCTCC	GTAGTAAATT	1251
GTTACCTCGG	CACTTTAAAT	GGAACGTAAC	CGCACCTACT	AGACAAAGGA	1201
GGTTTTACAG	AAAGTCAGCT	GAAAGCACCC	ATATCTCAAT	GGAACTGTAG	1151
AAACATTTCC	ACGGAACGTT	AACAAATTTG	TAATATCTCA	GAACTAAGGG	1101
AGAGGTAGAA	CAGAGAGGAC	TTACTGACAG	AAGCTGAGCT	CCTTGGCGGA	1051
CTCTAAACAG	AACAACGTCT	CTTTAGATTT	ATAGTAACGG	ACCTCAGGTA	1001
AGGGACCATC	TTACAGCCCA	AACCTAACCA	TGGACGGAAC	AAGACAAGTC	951
ATCGCCTTCG	AGAAGGAGAT	TCACAACTAA	TTTTTAAACA	TGGTAGCGGC	901
ATATTACGCT	GTTCATAAAA	ATGGGTTGAT	ATTCTGGCGG	TTAACCATTT	851
AGGCGGAAAT	TTACTTCTGA	GATAAAGATA	TGTTCAGATT	GCGGTCAAGG	801

1651	AATCAGACAA	GTCGAGGGTA	CCGATTCACG	CGTCAACAAA	GGTGTCGCAG
1701	CCAAAAAAA	CATAACTTTT	AAAGGGGGTA	ATATCACCTT	CGGCTCTCAA
1751	AAAGCCACAA	CAGAAATCAA	AGGCAATGTT	ACCATCAATA	AAAACACTAA
1801	CGCTACTCTT	CGTGGTGCGA	ATTTGCCGA	AAACAAATCG	CCTTTAAATA
1851	TAGCAGGAAA	TGTTATTAAT	AATGGCAACC	TTACCACTGC	CGGCTCCATI
1901	ATCAATATAG	CCGGAAATCT	TACTGTTTCA	AAAGGCGCTA	ACCTTCAAGO
1951	TATAACAAAT	TACACTTTTA	ATGTAGCCGG	CTCATTTGAC	AACAATGGCG
2001	CTTCAAACAT	TTCCATTGCC	AGAGGAGGGG	CTAAATTTAA	AGATATCAAT
2051	AACACCAGTA	GCTTAAATAT	TACCACCAAC	TCTGATACCA	CTTACCGCAC
2101	CATTATAAAA	GGCAATATAT	CCAACAAATC	AGGTGATTTG	AATATTATTG
2151	ATAAAAAAG	CGACGCTGAA	ATCCAAATTG	GCGGCAATAT	CTCACAAAAA
2201	GAAGGCAATC	TCACAATTTC	TTCTGATAAA	GTAAATATTA	CCAATCAGAT
2251	AACAATCAAA	GCAGGCGTTG	AAGGGGGGCG	TTCTGATTCA	AGTGAGGCAG
2301	AAAATGCTAA	CCTAACTATT	CAAACCAAAG	AGTTAAAATT	GGCAGGAGAC
2351	CTAAATATT	CAGGCTTTAA	TAAAGCAGAA	ATTACAGCTA AAATGGCAG	AAATGGCAG
2401	TGATTTAACT	ATTGGCAATG	CTAGCGGTGG	TAATGCTGAT	GCTAAAAAAG

FIG. 8D.

2451	TGACTTTTGA	CAAGGTTAAA	TGACTTTTGA CAAGGTTAAA GATTCAAAAA TCTCGACTGA CGGTCACAAT	TCTCGACTGA	CGGTCACAAT
	GTAACACTAA		ATAGCGAAGT GAAAACGTCT	AATGGTAGTA	GCAATGCTGG
	TAATGATAAC	AGCACCGGTT	TAACCATTTC	CGCAAAAGAT	GTAACGGTAA
	ACAATAACGT	TACCTCCCAC	AAGACAATAA	ATATCTCTGC	CGCAGCAGGA
	AATGTAACAA	CCAAAGAAGG	CACAACTATC	AATGCAACCA	AATGCAACCA CAGGCAGCGT
	GGAAGTAACT	GCTCAAAATG	GTACAATTAA AGGCAACATT	AGGCAACATT	ACCTCGCAAA
	ATGTAACAGT		GACAGCAACA GAAAATCTTG	TTACCACAGA	GAATGCTGTC
	ATTAATGCAA	ATTAATGCAA CCAGCGGCAC	AGTAAACATT	AGTACAAAAA	CAGGGGATAT @
	TAAAGGTGGA	ATTGAATCAA	CTTCCGGTAA	TGTAAATATT	ACAGCGAGCG ®
	GCAATACACT	TAAGGTAAGT	AATATCACTG	GTCAAGATGT	AACAGTAACA
	GCGGATGCAG	GAGCCTTGAC	GCGGATGCAG GAGCCTTGAC AACTACAGCA GGCTCAACCA	GGCTCAACCA	TTAGTGCGAC
	AACAGGCAAT	AACAGGCAAT GCAAATATTA	CAACCAAAAC	AGGTGATATC	AACGGTAAAG
	TTGAATCCAG	CTCCGGCTCT	GTAACACTTG	TTGCAACTGG AGCAACTCTT	AGCAACTCTT
	GCTGTAGGTA	ATATTTCAGG	TAACACTGTT	ACTATTACTG	CGGATAGCGG
	TAAATTAACC	TCCACAGTAG GTTCTACAAT	GTTCTACAAT	TAATGGGACT	AATAGTGTAA
	CCACCTCAAG	CCACCTCAAG CCAATCAGGC GATATTGAAG	GATATTGAAG	GTACAATTTC	TGGTAATACA
	GTAAATGTTA	GTAAATGTTA CAGCAAGCAC TGGTGATTTA		ACTATTGGAA ATAGTGCAAA	ATAGTGCAAA

FIG. 8E

					49	/68·								
TCAGACAACT	CTGCTAATGT	TCAAAGATTA	CAAATTAGAT	ACGCAAGTGG	ATCACCGGGG	TGGTAGAAAC	TCCAACCAGG	CTTGAGAAGG	ACTTGGTGTA	TTAATACACA	TCTGAAGGTA	CAATGTTGCT	TCATCCTGCA	AAAGTTCAGT
CAAGCAATGG	AACATTAATG	TACAGGGGAT	CAAAAGATGC	AATGCAACTA	CAGCGTGAAT	TTTCGGAAAA	GTGAAATATA	GAAACGCGTC	CACTAGCCAA	GCCATTACGG	AGTGACAATT	GAGTATGTAC	AAGGTAGATT	TGTGTGGGTT
AGCATTACCT	TATCGCAGGA	CTTTAACTAC	ACAATCAATG	CACAGTAGTA	AAACCTCAAG	TTAAATATCA	GGAAATTGAT	TAATTGAAGC	GAAAGAGAAA	GCCAAATAAT	CATCAAGTCA	AATGGCGCAC	AGTAATTGAC	TATTATTAC
AACAGGCTCT	AGGATAGCAG	ACCACAGGCA	TGGTACCTTA	CAGGTGACCG	GTGACTGCGA	AATAAATGGG	TAAGAGGCAA	GTAGAAGAGG	ATCTGATGAA	GTTTCGTTGA	ACAACCAAAC	CTCAAGTGGT	AGCAGTAGTC	TTTATTTCG
TAACCACCCA	CTTACAGCCA	GACGTTAAAT	ACGCAACCAG	GGTGCTGCAT	CTCTGGTAAC	ATTTAAACAC	ACTGTGCGCT	TGTAGCAAGC	TAAAAGATTT	AGTGCTGTAC	AAACGAGTTT	AGGCGTGTTT	GACGATGGAC	ATGAAGTCAT
3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	4001	4051
	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG CTTACAGCCA GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATTTAAACAC AATAAATGGG TTAAATATCA TTTCGGAAAA	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTAA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTTA ACGCAAGTGG CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAATTAAAACAC AATAAATGGG TTAAAATTCA TTTCGGAAAA TGGTAGAAAAC ACTGTGCGCT TAAGAGGCAA GGAAATTGAT GTGAAATATA TCCAACCAGG	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA AATGCAACTA ACGCAAGTGG CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG ATTTAAACAC AATAAATGGG TTAAATATCA TTTCGGAAAA TGGTAGAAAACAC ACTGTGCGCT TAAGAGGCAA GGAAATTGAT GTGAAATATA TCCAACCAGG	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTAA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGAAGATG CACAGTGGCG CACAGTAGG CACAGTAGG CACAGTAGG CACAGTAGTA ACCCCGAGG CACAGTAGTA ACCTCGGTAAC GTGACTGCGA AAACCTCCAAG CAGCGTGAAATTAAAACAC AATAAATGGA GAAATTGAAG GTGAAATTGAAG GAAACGCGTC CTTGAGGAAGG TAAATTGAAGG GAAACGCCTC CTTGAGGAAGG TAAATTGAAGA CACTAGCCAA ACTTGAGGAAGG TAAAAGAAAAA CACTAGGCCAA ACTTGATGAAAAGATTT ATCTGATGAAAAAAAAA CACTAGGCCAA ACTTGGTGTAA	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAGATGA TCAAAGATTA ACGCAACCAG TGGTGACCG CACAGTAGTA AATGCAACTTA ACGCAACTGCG CACAGTAGTA AATGCAACTA ACGCAAGTGGA CTCTGGTAAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACGGGG ATTTAAAACAC AATAAATGGG TTAAATATCA TTCGGAAAATGAT TCCAACCAGG TGTAGCAAGC GTAGAAGGGG TAATTGAAGC GAAACGCGTC CTTGAGAAAC TGTAGCAAGC GTAGAAGAG TAATTGAAGA CACTAGCCAA ACTTGATGAAAA AGTGCTGTAC GTTTCGTTGA GAAAGAAAAATAAT GCCAATTACGG TTAATACACA	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAATTAGAT GGTGCTGCAT CAGGTGACG CACAGTAGT ACCCAGGG ATTTAAACAC GTGACTGCGA AAACCTCAAG CAGCGTGAAT ATCACCGGGG ATTTAAAACAC AATAAATGGG TTAAATTGAT GTGAAATTATA TCCTAGCGAA GGAAATTGAT GTGAAATATA TCCTAGAGGCAA GAAAGGAAA CACTTAGCCAA TGTAGCAAGC GTAGAAGAG TAATTGAAGC CATTGAGAAAGG TGTAGCAAGC TAAGAGGCAA GAAAGAGAAA CACTTGCGCAA AGTGCTGTAC GTTTCGTTGA GAAAGAAAA CACTTAGCGCA AAACGAGTTT ACAACCAAAAC CATCAAGTCA TCTGAAGGTA AAACGAGTTT ACAACCAAAC CATCAAGTCA TCTGAAGGTA	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC CAAATTAGAT GGTGCTGCAT CAGGTGACCG CACAGTAGTA ACTGCAACTG ACGCAAGTGG ATTTAAAACA GTGACTGCG AAAACCTCAAG CAGCGTGAAAT ATCACCGGGG ATTTAAAACA GAAATTGAT GTGAAATATA TCCAAACCAGG TGAAGCAGC TAAAAGAGGAAA CACTAGCCAA ACTTGGTGAAAGATTT AAAAGATTT ATCTGATGAA GAAAGAGAAA CACTAGCCAA ACTTGATGAAG AGTGCTGTAC GTTTCGTTGA GAAAGAGAAA TCTGAAAAGTTA ACAACCAAAC AAAACGATTT ACAACCAAAC CATCAAGTCA ACTGAAAGGTA AAACGAGTTT ACAACCAAAC CATCAAGTCA GAGTATTGCT AAAACGATTT CTCAAAGTGGT AATGGCGCAC CAATGTTGCT	TAACCACCCA AACAGGCTCT AGCATTACCT CAAGCAATGG TCAGACCAACT CTTACAGCCA AGGATAGCAG TATCGCAGGA AACATTAATG CTGCTAATGT GACGTTAAAT ACCACAGGCA CTTTAACTAC TACAGGGGAT TCAAAGATTA ACGCAACCAG TGGTACCTTA ACAATCAATG CAAAAGATGC CAAATTAGAT GGTGCTGCAT CAGGTGACG CACAGTAGTA AATGCAACTA ACGCAAGTGG ATTTAAACAC GTGACTGCGA AAACCTCAAG CAGCGTGAAAT ACTGTGGTAAC AATAAATGGG TTAAATTGAAG GTGAAATTATA TCCAACCAGG TGTAGCAAGG TAAAATGAA GAAAGAGAA CACTAGCCAA TAAAAGATTT ATCTGATGAA GAAAGAGAA CACTAGCCCAA AGTGCTGTAC GTTCGTTGA GAAAGAGAA CACTAGCCCAA AAACGAGTTT ACAACCAAAC CATCAAGTCA TCTGAAGAGTA AAACGAGTTT ACAACCAAAC CATCAAGTCA CAATGTTGCT GACGTTGTT CTCAAGTGC AATGGCCAC CAATGTTGCT GACGTTGTT CTCAAGTGC AATGGCCAC CAATGTTGCT GACGTTGTT CTCAAGTGC AATGGAC CAATGTTGCT

50/68

FIG.8F.

S SIRCAGARA ICAICGACGI AIGCAGAAGA			
こうじょう こうのは 一田のりょうりはょうは、ようももうじむももう。 じた	AA TATTGCTTGG CTTG	GCAATATCAA	1707
GT TATTATTATG AAAAACATAA AAAGCAGATT AAAACTCAGT	ATTATTATG AAAA	TTTAACAGGT	T C T #
ACGGGCTTTA CCCACCTTGT AAAAATTAC GAAAAATACA ATAAAGTATT	CCACCTTGT AAAA!	ACGGGCI'I'TA C	7 .

FIG.9A

GGGAATGAGC GTCGTACACG GTACAGCAAC CATGCAAGTA GACGGCAATA	GTCGTACACG GTACA	GTACA	GCAAC	CATGCAAGTA GACGGCAATA	GACGGCAATA	
4	MACCACTAT	CCGIAAIAGC	GICAAIGCIA	ICAICAAIIG	GAAACAALII	
AACP	AACATTGACC	AAAATGAAAT	GGAGCAGTTT	TTACAAGAAA GCAGCAACTC	GCAGCAACTC	
TGCC	TGCCGTTTTC	AACCGTGTTA	CATCTGACCA	CATCTGACCA AATCTCCCAA	TTAAAAGGGA	
TTT	TTTTAGATTC	TAACGGACAA	GTCTTTTAA	TCAACCCAAA	TGGTATCACA	
ATA	ATAGGTAAAG	ACGCAATTAT	TAACACTAAT GGCTTTACTG	GGCTTTACTG	CTTCTACGCT	5
AGA(AGACATTTCT	AACGAAAACA	TCAAGGCGCG	TAATTTCACC	CTTGAGCAAA	1/6
CCA	CCAAGGATAA	AGCACTCGCT	GAAATCGTGA	ATCACGGTTT	AATTACCGTT	8
GGT.	GGTAAAGACG	GTAGCGTAAA	CCTTATTGGT	GGCAAAGTGA	AAAACGAGGG	
CGT(CGTGATTAGC	GTAAATGGCG	GTAGTATTTC	TTTACTTGCA GGGCAAAAAA	GGGCAAAAA	
TCA(TCACCATCAG	CGATATAATA	AATCCAACCA	TCACTTACAG	CATTGCTGCA	
CCT(CCTGAAAACG	AAGCGATCAA	TCTGGGCGAT	ATTTTGCCA AAGGTGGTAA	AAGGTGGTAA	
CAT	CATTAATGTC	CGCGCTGCCA	CTATTCGCAA	TAAAGGTAAA	CTTTCTGCCG	
ACT(ACTCTGTAAG	CAAAGATAAA	AGTGGTAACA	TTGTTCTCTC	TGCCAAAGAA	
GGT	GGTGAAGCGG	AAATTGGCGG	TGTAATTTCC	TGTAATTTCC GCTCAAAATC AGCAAGCCAA	AGCAAGCCAA	
AGGT	AGGTGGTAAG	TTGATGATTA	CAGGTGATAA	CAGGTGATAA AGTCACATTA AAAACAGGTG	AAAACAGGTG	

FIG.9B

						1	52 <i>l</i>	68								
TCTTGGCGGT	AGAAAACCTC	AAAGGCGGGC	CATTAATGCT	CATCAGGACA	TGACGCTAAA GAGTGGTTAT	ACGCAATAAT	AAGAGTCACC N	ACTCTTGAGC (TAATAGAATT	CACTTCACAC	AACGAAAATG	TAAAAACATC	CTGTAGCTTT	CAAATTACCG	TAGATTCAAT	TTGCAAATCA
TCGA CCTTTCAGGT AAAGAAGGGG GAGAGACTTA	CAATTAGCGA	AGGCAAAGAA	TTAATGGTAA	TTTGTGGAAA	TGACGCTAAA	TTACATCTGG	GATGGGACTA	AACAAACTCA	TCACTGCTAA	GGCAGTTTAA	TATTACCTCA	TTGATGTTCA	GCTGGGGATT	AACAGATGCT	ATAAACAATT	TTAAAGTTTA
AAAGAAGGGG	GCGAAGGTAA AAATGGTATT	TTAATGTATC	ATTGCATTAA	AACTGGCGGC	ATGTGATTGT	ATTGAAACTC	TACAACAGGA	AACCTACATT	TATGTTAATA	CTTATCTAAT	TTAACGGTGA	GGCTCTTGGG	GAATATTGTC	CACGTAACGC	AATAAAGATG	GGGCAAGGGT
CCTTTCAGGT		TTTAGAAAA GGCTCGACAA	ATGGGGGCGAT	ATATTGCTAA	ATTGGTGATG	TGATGTGTCC	ACCAAGGATA	AGTATTTCTA	AAGAGGTTCT	GCTCCATCAA	GGAGTTAAAA	CATTAAAGCA	CGGGTTTTTT	GGCGATAAAG	GATAACCGTC	TTAACGGGAC GGGCAAGGGT
CAGTTATCGA	GATGAGCGTG	TTTAGAAAAA	GCGCTATTGT	CAAGGTAGCG	TGACTTATCC	TAGACCCAGA	ACCGGCGAAA	TAAAGGTAAT	AAATCCTAAG	TATGTTAATA	TAAACGAGAT	GTAATTTAAC	ACGCTTGGTA	TGAGAGAGAG	CACAAGGGAC	AATGTATCTA
801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501	1551	1601

FIG. 9C

GAGGGGAATT	TATATCTGTT	CTCTTGGCAA	AGAACTCTAA	CTTGAAGAAA	2401
GCAACACAGG	ACCAGCAACA	ACAAGCTGAC	ATGTTACATT	AATAAAGCAA	2351
CAATATCACC	CGGGCAATAT	AGTAGCATTA	AAATTCAAGC	TAGGTGGGGA	2301
AATGTCACTC	TCTTGGCGGC	ATCTAACCAT	TCAAGTCATA	CGCCATTAAC	2251
ACAGCAAACA	TATAATGAAT	AGATTCTTTT	AGCAAACGAA	TTTAGTCTTA	2201
TGGCTCGAAT	TAAATGCAAC	GACTTAACTA	AATCAAAAAA	ATGCTTTTGA	2151
CGCAATAGTA	ATCCCATAAT	TTTCCATAAC	GGGCTTGACT	CATTACCGGC	2101
ATTCAATTAA	ATAAACATGG	AGCTGCCGGC	TTACCTCTAG	CACGCCAATC	2051
GTTTGACATA	GCTCTGTGAT	AACAGTGATA	AGCTACCGGT	CCAACATTAC	2001
ACTTTTAACG	ATTACCTATT	CAAAAAAAGA	GCTACAGACC	ACCAAACGCC	1951
TTAAATTAAA	AAAGCCTTAT	AGCTAACGCA	TCAACATCGG	AAAACAAACT	1901
CATCGGAGGC	ATTTTAACGG	GCAGGCGTAC	TAGAAGTTTT	GGTCATCACG	1851
CAAGATTTGA	CTCAAATTCC	TTGATAGCGG	ATAAAATTCG	ATTTACCTTT	1801
CGGTGCAAAA	ACTTTGAATA	TTCTTCTCTT	ACTGGAATGT	AAAGACTCTT	1751
GAATGCATCA	TTAAATACTG	AAAAAAGATG	CCAAACCACG	TAACAATTAA	1701
TCTGGAATAG	AATTAACATA	TTGATGGCGA	ACTCATAAAT	AAATAATTTC	1651

FIG. 9D

ATGGTACAAT	ACTGCTCAAA	CGTGGAAGTA	CCACAGGCAG	ATCAATGCAA	3251
AGGCACAACT	CAACCAAAGA	GGAAATGTAA	TGCCGCAGCA	TAAATATCTC	3201
CACAAGACAA	CGTTACCTCC	TAAACAATAA	GATGTAACGG	TTCCGCAAAA	3151
GTTTAACCAT	AACAGCACCG	TGGTAATGAT	GTAGCAATGC	TCTAATGGTA	3101
AGTGAAAACG	TAAATAGCGA	AATGTAACAC	TGACGGTCAC	AAATCTCGAC	3051
AAAGATTCAA	TGACAAGGTT	AAGTGACTTT	GATGCTAAAA	TGGTAATGCT	3001
ATGCTAGCGG	ACTATTGGCA	CAGTGATTTA	CTAAAAATGG	GAAATTACAG	2951
TAATAAAGCA	TTTCAGGCTT	GACCTAAATA	ATTGGCAGGA	AAGAGTTAAA	2901
ATTCAAACCA	TAACCTAACT	CAGAAAATGC	TCAAGTGAGG	GCGTTCTGAT	2851
TTGAAGGGGG	AAAGCAGGCG	GATAACAATC	TTACCAATCA	AAAGTAAATA	2801
TTCTTCTGAT	ATCTCACAAT	AAAGAAGGCA	TATCTCACAA	TTGGCGGCAA	2751
GAAATCCAAA	AGCCGACGCC	AGAATATTAA	TTAAACATCA	AAAAGGCGAC	2701
TAACTAACGA	AACGGAAATA	AACCATTATT	GCACTCAAAA	AACGCCTCAG	2651
TATCACTACT	GTGGTTTAAA	ATCAATAAAG	AGGCGATATT	TAAAACTCCA	2601
CAAGGAGTGG	TAATATAAAA	CCGCCAACAT	AACAACGGTA	CACCTTTACC	2551
ACATCACCGG	GACAACCTAA	AGAAGCCAGT	CATTTAAAGG	GAAGATTCCA	2501
TTCTATTGCA	TCGGCAATCT	GCAAACATTG	TGGTGCAAAT	TAAGCCTAAC	2451

FIG.9E

TTAACAATCA	CAGTGGTACC	TTAACGCAAC	GATTCAAAGA	TACTACAGGG	1051
GCACTTTAAC	AATACCACAG	TGTGACGTTA	ATGCTGCTAA	GGAAACATTA	1001
CAGTATCGCA	CCAAGGATAG	ACTCTTACAG	TGGTCAGACA	CCTCAAGCAA	3951
TCTAGCATTA	CCAAACAGGC	AATTAACCAC	GAATCAGGCA	CTTAACTGCT	3901
GAGCTGCAAC	GCGAAAAATG	AAAAGTTGAA	GAAATAGTGC	TTAACTATTG	3851
CACTGGTGAT	TTACAGCAAG	ACAGTAAATG	TTCTGGTAAT	AAGGTACAAT	3801
GGCGATATTG	AAGCCAATCA	TAACCACCTC	ACTAATAGTG	AATTAATGGG	3751
TAGGTTCTAC	ACCTCCACAG	CGGTAAATTA	CTGCGGATAG	GTTACTATTA	3701
AGGTAACACT	GTAATATTTC	CTTGCTGTAG	TGGAGCAACT	TTGTTGCAAC	3651
TCTGTAACAC	CAGCTCCGGC	AAGTTGAATC	ATCAACGGTA	AACAGGTGAT	3601
TTACAACCAA	AATGCAAATA	GACAACAGGC	CCATTAGTGC	GCAGGCTCAA	3551
GACAACTACA	CAGGAGCCTT	ACAGCGGATG	TGTAACAGTA	CTGGTCAAGA	3501
AGTAATATCA	ACTTAAGGTA	GCGGCAATAC	ATTACAGCGA	TAATGTAAAT	3451
CAACTTCCGG	GGAATTGAAT	TATTAAAGGT	AAACAGGGA	ATTAGTACAA	3401
CACAGTAAAC	CAACCAGCGG	GTCATTAATG	AGAGAATGCT	TTGTTACCAC	3351
ACAGAAAATC	AGTGACAGCA	AAAATGTAAC	ATTACCTCGC	TAAAGGCAAC	3301

FIG.9F.

4101	ATGCAAAAGA	TGCCAAATTA	TGCCAAATTA GATGGTGCTG	CATCAGGTGA	CCGCACAGTA	
4151	GTAAATGCAA		CTAACGCAAG TGGCTCTGGT	AACGTGACTG	CGAAAACCTC	
4201	AAGCAGCGTG		AATATCACCG GGGATTTAAA CACAATAAAT	CACAATAAAT	GGGTTAAATA	
4251	TCATTTCGGA		AACACTGTGC	AAATGGTAGA AACACTGTGC GCTTAAGAGG		
4301	GATGTGAAAT	ATATCCAACC	AGGTGTAGCA	ATATCCAACC AGGTGTAGCA AGCGTAGAAG AGGTAATTGA	AGGTAATTGA	
4351	AGCGAAACGC	GTCCTTGAGA	GTCCTTGAGA AGGTAAAAGA	TTTATCTGAT	GAAGAAAGAG	
4401	AAACACTAGC	CAAACTTGGT	GTAAGTGCTG	TACGTTTCGT	TGAGCCAAAT	56/
4451	AATGCCATTA	CGGTTAATAC	ACAAAACGAG	TTTACAACCA AACCATCAAG		68
4501	TCAAGTGACA	ATTTCTGAAG	GTAAGGCGTG	TTTCTCAAGT GGTAATGGCG	GGTAATGGCG	
4551	CACGAGTATG	TACCAATGTT	GCTGACGATG	GACAGCAGTA GTCAGTAATT	GTCAGTAATT	
4601	GACAAGGTAG	ATTTCATCCT	GCAATGAAGT	CATTTTATTT	TCGTATTATT	
4651	TACTGTGTGG	GTTAAAGTTC	AGTACGGGCT	TTACCCACCT	TGTAAAAAT	
4701	TA					

					į	57/	68							
SEQUENCE	20		•	KVRHLALKPL	EKGSEKPARM KVRHLALKPL	·	100		TIRNSVNAII	TIRNSVNAII	TIRNSVNAII	150		DSNGQVFLIN
AMINO ACID		•		EKGSEKPARM				•	ATMQVDGNKT	ATMQVDGNKT	ATMQVDGNKT		•	DQISQLKGIL
DERIVED		•	•	ELARGCDHST	ELARGCDHST			•	GMSVVHGT	LQGMSVVHGT	LQGMSVVHGT		•	NSAVFNRVTS
COMPARISON OF			•	KRLNALVAVS	KRLNALVAVS				•	SIPQSVLASG	SIPQSVLASG		•	EMEQFLQESS
FIG.10A. COI		•		MNKIYRLKFS	MNKIYRLKFS		51	•	•	SAMLLSLGVT	SAMLLSLGVT	101	•	NWKQFNIDQN
H		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com

INLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV

Hmw3com

FIG. 10B

DSNGQVFLIN	DSNGQVFLIN	200
FNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNGQVFLIN	INIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNGQVFLIN	
NSAVFNRVTS	NSAVFNRVTS	
EMVQFLQENN	EMVQFLQENN	
NWKQFNIDQN	NWKQFNIDQN	151
Hmw1com	Hmw2com	

DISNENTE ADNEMI EOM
FIGETTERNA TININGFIAS TEDISNENIK AKNFTLEQTK
IINTNGFTAS TLDISNENIK ARNFTLEQTK DKALAEIVNH
TLDISNENIK ARNFTLEQTK DKALAEIVNH
EGVISVNGGS ISLLAGQKIT
EGVISVNGGS ISLLAGQKIT
EGVISVNGGS ISLLAGOKIT

Hmw3com

FIG. 10C

VSKDKSGNIV VSKDKSGNIV VSKDKSGNIV RNKGKLSADS RNKGKLSADS RNKGKLSADS INLGDIFAKG GNINVRAATI GNINVRAATI GNINVRAATI VNLGDIFAKG VNLGDIFAKG YSIAAPENEA YSIAAPENEA YSIAAPENEA Hmw4com Hmw1com Hmw2com

59/68 350 IDLSGKEGGE DKVTLKTGAV IDLSGKEGGE IDLSGKEGGE IDLSGKEGGE DKVTLKTGAV DKVTLKTGAV DKVTLKTGAV GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG LSAKEGEAEI LSAKEGEAEI LSAKEGEAEI LSAKEGEAEI 301 Hmw3com Hmw4com Hmw2com Hmw1com

400 TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID IVWGDIALID IVWGDIALID IVWGDIALID TTLEKGSTIN VSGKEKGGRA GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA TTLEKGSTIN VSGKEKGGRA GKNGIQLAKK GKNGIQLAKK TYLGGDERGE TYLGGDERGE TYLGGDERGE 351 Hmw3com Hmw1com Hmw2com Hmw4com

450

FIG. 10D.

401

SGHYLSIDDN AIVKTKEWLL DPENVTIEAP DPDDVSIETL DPDNVTINAE DPDDVTIEAE SGHDLSIGDD VIVDAKEWLL AIVDAKEWLL AIVKTKEWLL SGHYLSIESN SGHDLFIKDN GNINAQGK.D IAKTGGFVET IAKTGGFVET IAKTGGFVET IAKTGGFVET GNINAQGS.D GNINAQGSGD GNINAQGSGD Hmw3com Hmw4com Hmw2com Hmw1com

/68 60 500 SASRVELGAD RNSHSAEVIK VTLKKNNTSL TTLTNTTISN LLKSAHVVNI ILRRGSYVNI ILKKGTFVNI YLKNAWTMNI PTLTNSTLEQ TTLTNTTISN TTLTNTTLES ESPKGNSISK SDPKKNSELK STPKRNKE. K QGYTTGDGTK DEYTGSGNSA DEFPTGTGEA DPLRNNTGIN TSGRNNTGEN TAGRSNTSED 451 Hmw3com Hmw4com Hmw1com Hmw2com

550 .GGNLT NE...NGNLT GDDTRGANLT ... SKGGNLT ы GVEINNDITT TLHTK...RD GVKINGDITS SISIERGSHL ILHSEGQGGQ GVQIDKDITS GVQIDGDIT. TLWSEGRSGG ILHSKGQRGG SINLSNGS.L SINL. SNGSL SINGSNGSHL TARRELTVNS TANNRIYVNS TANORIYVNS TASRKLTVNS 501 Hmw3com Hmw4com Hmw1com Hmw2com

FIG. 10E

009	JAQ	'AQ	٥ <u>5</u>	JAQ
	NNLTITAQ	TDAQIT	ITGQ	NNLTI
		NA,	. •	DAJ
	AFEDKSGR	AFEREGDKAR	AFEKGSNQV.	AFEGGNNKAR
	LNITTKEGDI	LNIVAGDS.V	INITAKQD.I	LNITA.AS.V
	IYSGGWVDVH KNITLGS.GF LNITTKEGDI AFEDKSGR	IKAGSWVDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ	IYSGGWVDVH KNISLGAQGN INITAKQD.I AFEKGSNQV.	IYSGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ
551	IYSGGWVDVH	IKAGSWVDVH	IYSGGWVDVH	IYSGGWVDVH
	Hmw3com	Hmw4com	Hmw1com	Hmw2com

61/6	88			
61/6	GNISNKFDGT	.NFTHKFDGE	YAITNKFEGT	LTHNLSGT
	GFRFNNVSLN SLGGKLSFTD SREDRGRRTK GNISNKFDGT	QFRFNNVSIN GTGKGLKFIA NQNNFTHKFDGE	GFRFNNVSLN GTGSGLQFTT KRTNK YAITNKFEGT	DFRANNVSLN GTGKGLNIIS SVNNLTHNLSGT
ų.	SLGGKLSFTD	GTGKGLKFIA	GTGSGLQFTT	GTGKGLNIIS
	GFRFNNVSLN	QFRFNNVSIN	GFRFNNVSLN	DFRANNVSLN
707	GTITSG.NSN	GTITVNKDDK	GTIT. SGNQK	GTVTITGEGK
	Hmw3com	Hmw4com	Hmw1com	Hmw2com

700	KFNLSIDSTG	KFTF.IKFVD	EFNLTIDSRG
	LNISGTVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG	FIN QTTKKDVKYW NA.SKDSYWN VSSLTLNTVQ KFTF.IKFVD	IIS MVLPKNESGY DKFKGRTYWN LTSLNVSESG EFNLTIDSRG
	RD.KGRTYWN	NA.SKDSYWN	DKFKGRTYWN
	MKAPKVSWFY	QTTKKDVKYW	MVLPKNESGY
651	LNISGTVDIS	INISGIVTIN	LNISGKVNIS
	Hmw3com	Hmw4com	Hmw1com

FIG. 10F

Hmw7com

800 GGSVNFKLN ASSSNIQTPG VIIKSQNFNV SDSSVMFDIH A...NLTSRA AGINMDSINI GGSVDFTLL ASSSNVQTPG VVINSKYFNV ANHS...GRG AELKMSEINI .GGSVFFDIY FNANITATGN FNEDISVSG. FNGNISVSG. FLANITATG. FKSNANYAL. DPKKELPIT. NKYSSLNYAS NTSKPLPI.R 751 Hmw3com Hmw4com Hmw1com Hmw2com

850 T. DSRVNKG SFYNEYSKHA ENDLNLNATG GNITIRQVEG SNFSLKQTKD KKDLTINATG SGGSTLNLKA EGSTETAFSI TGGLDFSITS HNRNSNAFEI 801 Hmw3com Hmw4com

FIG. 10G.

EKDLTLNATG GNITLLQVEG T..DGMIGKG DFYDGYARNA SNFSLRQTKD NKDLTINATN SGSTKTGFSI HVRGDDAFKI STGSSLRFKT SNGANFTLNS Hmw1com Hmw2com 900 INKNTNATLR GANFAEN 851 Hmw3com

63/68 VAAKKNITFK GGNITFGSQK ATTEIKGNVT

ADTSNSNTGL GSDFDNHQ.. ITNKANVTLQ INNNANVTLI GGNITFGSRK AVTELEGNVT SSSSITGNIN GGNVTLGGEN INSSHNLTIL IVAKKNITFE Hmw4com Hmw1com

IEKAANVTLE ANNAPNQQNI SSSSITGNIT INSTYNISIL GGNVTLGGQN Hmw2com

950 901

SIINIAGNLT VSKGANLQAI TNYTFNVAGS ASDNLNITGT ANANIVGNLS IAEDSTFKGE SVEGNLSLTG INNGNLTTAG KSPLNIAGNV KKRTLTLGNI Hmw3com Hmw4com

INSGNLTAGG NIVNIAGNLT VESNANFKAI TNFTFNVGGL KPLTIKKDVI Hmw1com

RDRVIKLGSL LVNGSLSLTG ENADIKGNLT ISESATFKGK TRDTLNITGN Hmw2com 1000

951

FIG. 10H

IIKGNISNKS IINGNITNEK IISGNITNKN IIGGDIINNK TTNSDTTYRT TTHAKRNQRS TTNASGTOKT TINSSSTYRT DINNISSINI DINNKGGLNI NVTNDGDLNI DIDNSKNLSI IARGGAKFK. IKQGVVKLQG IAKGGARFK. ITQGVVKLG. FDNNGASNIS FDNKGNSNIS FTNNGTANIN FTNNGTAEIN Hmw3com Hmw4com Hmw1com Hmw2com

64/68 1050 TIKAGVEGGR TIKAGVEGGR TIKAGVDGEN TIKKGIDGED SDKVNITNQI SDKINITKQI SDKVNITNQI SDKINITKQI SOKEGNLTIS SQKEGNLTIS SOKEGNLTIS SQKEGNLTIS GDLNIIDKKS DAEIQIGGNI DAEIQIGGNI DTEMQIGGDI DAEIQIGGNI GSLNITDSNN GDLNIKNIKA GDLNITNEGS 1001 Hmw3com Hmw4com Hmw1com Hmw2com

1100 SDSSEAENAN LTIQTKELKL AGDLNISGFN KAEITAKNGS DLTIGNASGG DLTIGNASGG DLTIGNTNSA DLTIGNSNDG KAEITAKDGR KAEITAKNGS KAEITAKDGS AGDLNISGFN TQDLNISGFN TEDLSISGFN LTIQTKELKL LTIKTKELKL LTIKTKELKL SSSDATSNAN SDSDATNNAN SDSSEAENAN Hmw3com Hmw4com Hmw1com Hmw2com

FIG. 10:

	1101				1150	
Hmw3com	NADAKKVT	N. ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT SNGS SNAGNDNSTG	TDGHNVTLNS	EVKTSNGS	SNAGNDNSTG	
Hmw4com	NADAKKVT	N ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT SNGS SNAGNDNSTG	TDGHNVTLNS	EVKTSNGS	SNAGNDNSTG	
Hmw1com	D.GTNAKKVT	D.GTNAKKVT FNQVKDSKIS ADGHKVTLHS KVETSGSNNN TEDSSDNNAG	ADGHKVTLHS	KVETSGSNNN	TEDSSDNNAG	
Hmw2com	NSGAEAKKVT	NSGAEAKKVT FNNVKDSKIS ADGHNVTLNS KVKTSSSNGG RESNSDNDTG	ADGHNVTLNS	KVKTSSSNGG	RESNSDNDTG	

LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEVTAQN	NNVTSHKTI	NISAAAGNVT	TKEGTTINAT	1200 TGSVEVTAQN
LTISAKDVTV NN	I'I'SHK'I'U	VIV NNNVISHKII NISAAAGNVI IKEGIIIINAI IGSVEVIAQN	TKEGT"TINAT	TGSVEVTAQN
AKNVEV NK	NATE I SHEAV	LILDARMVIV MMNILISHRAV SISAISGELI IRIGITIMAI IGMVELL IHTTAKNVEV NKDVTSLKTV NTTA SEKVT TTAGSTINAT NGKASIT	TAIGITIMAT	NGKASIT

FIG. 10J.

						66	/68	3				,		
T	1300	ISATTGN		IKG. TESVTT			1350	ADSGKITSTV	ADSGKI, TSTV	ATEST, THOON	ATVDLTTKSG	1400	NSAKVEAKNG	NSAKVEAKNG
TKTK		GQDVTVTADA GALTTTAGST	GALTTTAGST					NISGNTVTIT	NISGNTVTT	TISGGTVEVK	TISGNTVSVS		TASTGDLTIG	TASTGDLTIG
	·			GNTVTVTANS			. -	VATGATLAVG	VATGATLAVG	O	9·····		GTISGNTVNV	GTISGNTVNV
•		GNTLKVSNIT	GNTLKVSNIT	EGALAVSNIS	•			VESSSGSVTL	VESSSGSVTL	•	•		TTSSQSGDIE	TTSSQSGDIE
	1251	TSGNVNITAS	TSGNVNITAS	SSGSVTLTAT	:		1301	TTKTGDINGK	TTKTGDINGK	SSQSGDIG	GDIS	1351	GSTINGTNSV	GSTINGTNSV
Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com

Ĉ

FIG. 10K.

SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG NGAEINATEG TANAGDLTVG SKIEAKSGEA NVTSATGTIG GTISGNTVNV Hmw1com Hmw2com 1450 STKGQVDLLA QNSSIAGNIN AANVTLNTTG SSNGQTTLTA KDSSIAGNIN AANVTLNTTG SAKGQVNLSA QDSSVAGSIN AANVTLNTTG AANVTLNTTG SSNGQTTLTA KDSSIAGNIN AATLTAESGK LTTQTGSSIT AATLTATGNT LTTEAGSSIT AATLITSSGK LITEASSHIT AATLTAESGK LTTQTGSSIT 1401 Hmw3com Hmw1com Hmw2com Hmw4com

1500 SGDSTEVNAV NASGSGSVTA TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA NASGSGNVTA NANGSGSVIA SGDRTVVNAT NATSGTLTIN AKDAELNGAA LGNHTVVNAT TLTTTGDSKI NATSGTLTIN AKDAKLDGAA KATSGTLTIN AKDAKLNGDA TLTTVKGSNI TLTTVAGSDI 1451 Hmw3com Hmw4com Hmw1com Hmw2com

1550

FIG. 10L.

ITG DLNTINGLNI ISENGRNTVR LRGKEIDVKY IQPGVASVEE	ITG DLNTINGLNI ISENGRNTVR LRGKEIDVKY TOPGVACVFF	ITG DLITINGLNI ISKNGINTVI, I,RGVKINVKV 100011 GT	ATSSSVNITG DLNTVNGLNI ISKDGRNTVR LRGKEIEVKY TOPGVASVJE
LRGKEIDVKY	LRGKEIDVKY	I,KGVKTDVKV	LRGKETEVKY
ISENGRNTVR	ISENGRNTVR	ISKNGINTVI	ISKDGRNTVR
DLNTINGLNI	DLNTINGLNI	DLITINGLNI	DLNTVNGLNI
KTSSSVNITG	KTSSSVNITG	TTSSRVNITG	ATSSSVNITG
Hmw3com	Hmw4com	Hmw1com	Hmw2com

	_	68 /68					
7		A.T.T. AIN T. M.A.Y.	VNTQNEFTTK	VDTQNEFATR	VNTQNEFTTR		
	REVERDANA TE		KFVEPNNAIT	VIENVENTER INTERESTED ALAKLGVSAV RFIEPNNTIT VDTQNEFATR	VILLARAVLER VKDLSDEERE TLAKLGVSAV RFVEPNNTIT VNTQNEFTTR		
	TLAKLGVSAV	TAN TAN TH	THURSE VSAV	ALAKLGVSAV	TLAKLGVSAV		
	VKDLSDEERE	VKDI,SDEERE	TRUE SPERE	VICTORIENE	VKULSUEERE		
1551	n VIEAKRVLEK VKDLSDEERE TLAKLGVSAV REVFONNATM MINGMINIER	VIEAKRVLEK	VIEAKRILEK	VITTAVDVIT EW	V TEANAVLER		
	Hmw3com	Hmw4com	Hmw1com	Hmw2.com			

1632	DDG 00	~~ DDG 00	ONG R.	DG QP
	RVCTNVA	RVCTNVA	TVCVNIA	RVCTNVA
	PSSQVTISEG KACFSSGNGA RVCTNVADDG 00	PSSQVTISEG KACFSSGNGA RVCTNVADDG 00	RACFSNSDGA	KACFSSGNGA
1601	PSSQVTISEG	PSSQVTISEG	PLSRIVISEG RACFSNSDGA TVCVNIADNG R.	PSSQVIISEG KACFSSGNGA RVCTNVADDG QP
	Hmw3com	Hmw4com	Hmw1com	Hmw2com

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/02166

A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :C07K 13/00, 15/04, 17/02; C07H 21/04; C12N 15/09, 15/31; A61K 39/02 US CL :530/350, 825; 536/27; 424/88, 92; 435/69.3							
	According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIEL							
	ocumentation searched (classification system followe	d by classification symbols)					
U.S. :	530/350, 825; 536/27; 424/88, 92; 435/69.3	•					
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic d	lata base consulted during the international search (no	ame of data have and where amorticable	search terms used)				
MEDLIN	E, APS, IG SUITE ms: high molecular weight protein, haemophilus	and or dam daso and, where practicable	, statell terms used)				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
Y,P	The Journal of Infectious Diseases, August 1992, S.J.Barenkamp., "Ou Lipopolysaccharides of Nontypeable His S181-S184, see entire document.	iter Membrane Protein and	1-19				
Y,P	1-19						
Tyl Frank							
	ner documents are listed in the continuation of Box C		,				
'A' do	ecial categories of cited documents: cument defining the general state of the art which is not considered be part of particular relevance	"T" later document published after the inte date and not in conflict with the applica principle or theory underlying the inve	ation but cited to understand the				
"E. cer	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.					
citu	cument which may throw doubts on priority claim(s) or which is not to establish the publication date of another citation or other social reason (as specified)	"Y" document of particular relevance; th	claimed invention cannot be				
me	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination				
	cument published prior to the international filing date but later than priority date claimed	*& document member of the same patent	family				
Date of the actual completion of the international search 14 May 1993 Date of mailing of the international search report 21 MAY 1993							
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer MICHAEL TUSCAN Authorized officer MICHAEL TUSCAN							
	Facsimile No. NOT APPLICABLE Telephone No. (703) 308-0196						
Form PCT/ISA/210 (second sheet)(July 1992)*							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/02166

0.45		
C (Continua	uion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Infection and Immunity, Volume 56(1), issued January 1988, E.J.Hansen, "Immune Enhancement of Pulmonary Clearance on Nontypable <i>Haemophilus influenzae</i> , pages 182-190, see entire document, especially Figures 3 and 4.	1-19
Y	Infection and Immunity, Volume 52(2), issued May 1986, S.J.Barenkamp, "Protection by Serum Antibodies in Experimental Nontypable <i>Haemophilus influenzae</i> Otitis Media", pages 572-578, see Figures 1 and 2.	1-19
Y	Proceedings of the National Academy of Sciences USA, Volume 80, issued March 1983, R.A. Young et al, "Efficient Isolation of Genes by Using Antibody Probes", pages 1194-1198, see entire document.	1-19
	Infection and Immunity, Volume 45(3), issued September 1984, R. Schneerson et al, "Serum Antibody Responses of Juvenile and Infant Rhesus Monkeys Injected with <i>Haemophilus influenzae</i> Type b and Pneumococcus Type 6A Capsular Polysaccharide-Protein Conjugates", pages 582-591, see entire document.	16-17
	Journal of Molecular Biology, Volume 157, issued 1982, J.Kyte et al, "A Simple Method for Displaying the Hydropathic Character of a Protein", pages 105-132, see entire document.	18-19
	Proceedings of the National Academy of Sciences, Volume 78(6), issued June 1981, T.P.Hopp et al, "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", pages 3824-3828, see entire document.	18-19

Form PCT/ISA/210 (continuation of second sheet)(July 1992)±