Computational Methods

Tutorial II

December 31, 2024

- 1. State the Intermediate Value Theorem
- 2. Consider the bisection method
 - a) State the two conditions required to apply the bisection root finding algorithm.
 - b) Write down the pseudo-code of the bisection root finding algorithm.
 - c) Use the bisection method to find the root of $f(x) = 2x^3 2x 5$
- 3. State the Newton's root finding formula.
- 4. Use the Newton's root finding method to approximate $f(x) = x^7 1000$ correct to eight decimal places.
- 5. The figure below shows the curve of a function $f(x) = 2x + x \sin(x+3) 5$. Use the Newton's root finding formula to find x_3 . **Hint:** Take $x_0 = 3$.

- 6. Suppose x_0, x_1, \dots, x_n are n+1 equispaced points.
 - b) State the, forward difference operator, backward difference operator, and central difference operator.
 - a) Show that $\Delta^2 y_3 = y_5 2y_4 + y_3$.
- 7. a) State the Newton's forward difference interpolation formula.
 - b) Using the result in (a), show that the Newton's interpolation polynomial for the points $\{(0,7),(10,18),(20,32),(30,51),(40,87)\}$ is given by

$$P_n(x) = 0.0000416x^4 - 0.0022x^3 + 0.05x^2 + 1.26x + 7$$

- 8. a) Explain the principle of Numerical differentiation.
 - b) State the formulas for $\frac{df}{dx}$ and $\frac{d^2f}{dx^2}$ based on the Newton's forward interpolation.
 - c) Find the value of $\frac{df}{dx}$ and $\frac{d^2f}{dx^2}$ at x = 1.5 using the data given in the table.

X	1.5	2.0	2.5	3.0	3.5	4.0
У	3.375	7.000	13.625	24.000	38.875	59.000

- 9. Suppose the function $y_i = f(x_i)$ is known at (n+1) points $x_0, x_1, x_2, \dots, x_n$, $i = 0, 1, 2, \dots, n$ are known. Let $x_i = x_0 + ih$, $i = 0, 1, 2, \dots, n$ and $p = \frac{x x_n}{h}$
 - a) State the Newton's backward difference formula.
 - b) Using (a), write down the formulas for approximating the firs, second and third derivative at any point $x = x_n + ph$.
 - c) A particle is moving along a straight line. The displacement x at some time increases t are given below:

t	0	1	2	3	4
X	5	8	12	17	26

Using the information in the table, find the velocity and acceleration of the particle t=4. **Hint:** first compute backward difference table.

- 10. Consider the interval [a,b]. Say we wish to do seven function evaluations, $f_k f(x_k)$ for $k = 0, 1, \dots, 4, 5, 6$. This implies six sub-intervals. $[x_0, x_1], [x_1, x_2], [x_2, x_3], [x_3, x_4], [x_4, x_5]$ and $[x_5, x_6]$.
 - a) State the composite Trapezoidal rule and the composite Simpson's rule for the six sub-intervals.
 - b) Consider the integration of $f(x) = 1 + e^{-x} \sin(4x)$ over [0, 2]. Use exactly seven function evaluations and compare the result from the composite trapezoidal rule, composite Simpson's rule.
- 11. Find the least-squares line y = f(x) = mx + b for the data and calculate $E_2(f)$; (-4, -3), (-1, -1), (0, 0), (2, 1), (3, 2)
- 12. Define the following as used in linear algebra
 - a) A matrix.
 - b) A system of linear equations.
 - c) A linear combination.

- 13. Let A be a matrix. What do the following notations stand for
 - a) a_{ij} .
 - b) |A|
- 14. Let $A = [a_{ij}]_{m \times n}$ for $1 \le i \le 5$ and $1 \le j \le 5$.
 - a) Write A in expanded form.
 - b) Define the minor of a_{ij}
 - c) Using (a) write an expression for |A| for i=3. Hint: apply cofactor.
- 15. Solve the following linear system using Gaussian elimination with partial pivoting.

$$x_1 + 20x_2 - x_3 + 0.001x_4 = 0$$

$$2x_1 - 5x_2 + 30x_3 - 0.1x_4 = 1$$

$$5x_1 + x_2 - 100x_3 - 10x_4 = 0$$

$$2x_1 - 100x_2 - x_3 + x_4 = 0$$