1 Lie Groups

Definition: A Lie Group X is a smooth manifold with a smooth group stucture.

Definition: Let G be a Lie group and X a manifold. A smooth action of G on X is a smooth map $A: G \times X \to X$ where we write $g \cdot x = A(g, x)$ such that $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$ and $1 \cdot x = x$. This is equivalent to a smooth map $G \to \text{Diffeo}(X)$.

Definition: The action of a Lie group G on X is proper if the map, $\pi: G \times X \to X \times X$ given by $(g, x) \mapsto (g \cdot x, x)$ is a proper map. In particular,

$$Stab(x) \times \{x\} = \pi^{-1}(\{(x, x)\})$$

is compact.

Lemma 1.1. If G is compact then any action of G on X is proper.

Proof. Let $D \subset X \times X$ be compact and thus closed because D is compact in a Hausdorff manifold. Thus, $\pi^{-1}(D) = \{(g, x) \mid (g \cdot x, x) \in D\}$ is closed in $G \times X$ and thus closed in $G \times \pi_2(D)$ which is compact. Therefore $\pi^{-1}(D)$ is compact.

Proposition 1.2. The left and right actions of any Lie group on itself are proper.

Proof. Let $D \subset G \times G$ be compact and consider,

$$\pi^{-1}(D) = \{(g,h) \mid (gh,h) \in D\} = \{(h'h^{-1},h) \mid (h',h) \in D\}$$

However, this set is diffeomorphic to D and is thus compact. The same argument works for a right action.

Proposition 1.3. Let G be a Lie group. The adjoint action of G on G given by $q \cdot x = qxq^{-1}$ is proper if and only if G is compact.

Proof. If the action is proper then Stab(1) = G must be compact but if G is compact then every action is proper.

Proposition 1.4. The orbits of a proper action of a Lie group G on a manifold X are submanifolds of X.

Proof. Take $x \in X$, consider $f: G \to X$ by $g \mapsto g \cdot x$. Furthermore the differential gives $\mathrm{d} f: T_q G \to T_{q \cdot x} X$ but $T_q G \cong T_1 G$ so we have a map $T_1 G \to T_{q \cdot x} X$.

Lemma 1.5. Let $R \subset X \times X$ be an equivalence relation on a topological space X then X/R is Hausdorff if and only if R is closed.

Proof. Consider the diagonal $\Delta \subset (X/R) \times (X/R)$ which is the set of equivalence classes $([x], [y]) \in \Delta \iff [x] = [y] \iff x \sim y \iff (x, y) \in R$. Consider the map $\pi : X \to X/R$ thus $R = \pi^{-1}(\Delta)$ so R is closed if and only if Δ is closed if and only if X/R is Hausdorff.

Theorem 1.6. Let a Lie group G act on a manifold X with an action that is,

- 1. proper, meaning that $G \times X \to X \times X$ is a proper map
- 2. free, meaning that $\forall x : G_x = \{ id_G \}$ i.e. if $g \cdot x = x$ then g = id then X/G is a manifold.

Corollary 1.7. If $H \subset G$ is a Lie subgroup then G/H is a manifold.

Proof. The action of G on H is free because if $g \cdot h = gh = h$ then $g = \mathrm{id}_G$. Furthermore, the action of G on H is proper by Proposition ??.

2 Lie Algebras

Definition: A Lie Algebra \mathfrak{g} over a field K is a algebra over K with multiplication written $[-,-]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying,

- 1. [x, y] = -[y, x]
- 2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Definition: Let G be a Lie group. There is a canonical Lie group structure on T_1G .

Proof. For $\xi, \eta \in T_1G$ we will define a bracket $[\xi, \eta]$. Consider the map $f_g : G \to G$ given by $x \mapsto gxg^{-1}$ then $df_g : T_1G \to T_1G$. Suppose we have a path, $\gamma : I \to G$ such that the unit tangent vector is mapped to $d\gamma(e_1) = \xi$. Then we write,

$$[\xi, \eta] = \frac{\mathrm{d}}{\mathrm{d}t} \Big(\mathrm{d}f_{\gamma(t)}(\eta) \Big) \Big|_{t=0}$$

Proposition 2.1. Let $f: G \to H$ be a Lie group homomorphism. Then $df: \mathfrak{g} \to \mathfrak{h}$ is a morphism of Lie algebras i.e. $f([\xi, \eta]_G) = [f(\xi), f(\eta)]_H$.

Corollary 2.2. Let $H \subset G$ be a Lie subgroup then there is a natural embedding of the Lie algebras $\mathfrak{h} \subset \mathfrak{g}$.

Definition: A Lie Group representation of G on V is a Lie Group homomorphism $G \to \operatorname{Aut}(V)$.

Definition: Let $\rho_V: G \to \operatorname{Aut}(V)$ be a Lie Group representation. Then we can construct the *dual* representation $\rho_V^*: G \to \operatorname{Aut}(V)$ via,

$$\rho_V^*(g) = (\rho_V(g^{-1}))^*$$

which is a representation because,

$$\rho_V^*(gh) = \left(\rho_V(h^{-1}g^{-1})\right)^* = \left(\rho_V(h^{-1})\rho_V(g^{-1})\right)^* = \rho_V(g^{-1})^*\rho_V(h^{-1})^* = \rho_V^*(g)\rho_V^*(h)$$

¹All differentials in this section will be applied at the identity of the group unless explicitly stated otherwise.

Definition: The adjoint action $a: G \to \operatorname{Aut}(G)$ is given by $g \mapsto a_g: G \to G$ which acts via $x \mapsto gxg^{-1}$. Then, the differential gives, $\operatorname{Ad}(g) = \operatorname{d} a_g: \mathfrak{g} \to \mathfrak{g}$ and the map $\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g})$ is a G-representation. Then the differential gives a Lie algebra representation,

$$ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$$

where $ad_{\xi} = d(Ad)_{\xi}$.

Theorem 2.3. For any $\xi, \in \mathfrak{g}$ and $X \in \mathfrak{g}$ we have,

$$ad_{\xi}(X) = [\xi, X]$$

Proof. (DO THIS) We may check that ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is in fact a Lie algebra representation by using the Jacobi identity. Recall that,

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

which we may reagrange as,

$$[x, [y, z]] - [y, [x, z]] = [[x, y], z]$$

and then rewrite as,

$$(\mathrm{ad}_x \circ \mathrm{ad}_y - \mathrm{ad}_y \circ \mathrm{ad}_x)(z) = \mathrm{ad}_{[x,y]}(z)$$

where the left hand side is the bracket for $\mathfrak{gl}(\mathfrak{g})$ impling that,

$$[\mathrm{ad}_x,\mathrm{ad}_y]=\mathrm{ad}_{[x,y]}$$

so the map ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is a Lie algebra representation.

Theorem 2.4 (Lie). For any Lie algebra \mathfrak{g} over \mathbb{R} or \mathbb{C} there exists a unique simply-connected real or complex Lie group G with Lie $(G) = \mathfrak{g}$.

3 The Exponential Map

Definition: The multiplication map $m: G \times G \to G$ is smooth. Thus, m(-,g) and m(g,-) are smooth diffeomorphism $G \to G$. Thus, denote the action of $dm(g,-): T_eG \to T_gG$ on $\xi \in \mathfrak{g}$ by $g \cdot \xi = dm(g,-)(\xi) \in T_gG$ and, likewise, the action of $dm(-,g): T_eG \to T_gG$ on $\xi \in \mathfrak{g}$ by $\xi \cdot g = dm(-,g)(\xi) \in T_gG$.

Definition: The exponetial map $\exp : \mathfrak{g} \to G$ is defined as follows. For $\xi \in \mathfrak{g}$ we can define a smooth vector field $X^{\xi} \in \mathscr{X}(G)$ by $X_g^{\xi} = \xi \cdot g$. Let $\gamma : I \to G$ be an integral curve of X such that I(0) = e. Then the exponential map is defined as $\exp \xi = \gamma(1)$.

Proposition 3.1. Let $f: G \to H$ be a Lie group homomorphism. Then the exponential diagram,

$$\mathfrak{g} \xrightarrow{f_*} \mathfrak{h}$$

$$\exp \downarrow \qquad \qquad \downarrow \exp$$

$$G \xrightarrow{f} H$$

commutes where $f_* = df_e$.

Proof. Let γ be the interval curve of X^{ξ} . That is,

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = X^{\xi}(\gamma(t)) = \xi \cdot \gamma(t)$$

Then consider the smooth path $f \circ \gamma : I \to H$ and its derivative,

$$\frac{\mathrm{d}(f \circ \gamma)}{\mathrm{d}t} = \mathrm{d}(f \circ \gamma)_t \left(\frac{\mathrm{d}}{\mathrm{d}t}\right) = \mathrm{d}f_{\gamma(t)} \circ \mathrm{d}\gamma_t \left(\frac{\mathrm{d}}{\mathrm{d}t}\right) = \mathrm{d}f_{\gamma(t)} \left(\frac{\mathrm{d}\gamma}{\mathrm{d}t}\right) = \mathrm{d}f_{\gamma(t)}(\xi \cdot \gamma(t))$$

We can require this result using $\xi \cdot g = dm(-,g)(\xi)$,

$$\frac{\mathrm{d}(f \circ \gamma)}{\mathrm{d}t} = \mathrm{d}f_{\gamma(t)}\mathrm{d}m(-,g)(\xi) = \mathrm{d}(f \circ m(-,g))(\xi)$$

However, $f \circ m(-,g)(x) = f(xg) = f(x)f(g) = m(-,f(g)) \circ f(x)$ and thus $f \circ m(-,g) = m(-,f(g)) \circ f$. Therefore,

$$df_g \circ dm(-,g) = d(f \circ m(-,g)) = d(m(-,f(g)) \circ f) = dm(-,f(g))_e \circ df_e$$

Let $g = \gamma(t)$ then,

$$\frac{\mathrm{d}(f \circ \gamma)}{\mathrm{d}t} = \mathrm{d}(f \circ m(-,\gamma))(\xi) = \mathrm{d}m(-,f(\gamma)) \circ f_*(\xi) = f_*(\xi) \cdot (f \circ \gamma)(t)$$

Thus, $f \circ \gamma$ is the integral curve starting at $f \circ \gamma(0) = f(e) = e$ of the vector field $X^{f_*(\xi)}$ given by $h \mapsto f_*(\xi) \cdot h$. Therefore,

$$\exp(f_*(\xi)) = (f \circ \gamma)(1) = f(\gamma(1)) = f(\exp(\xi))$$

Lemma 3.2. Let G be a Lie group and let $f_1: M \to G$ and $f_2: M \to G$ be smooth maps. Then, $F = f_1 \cdot f_2 = m \circ (f_1, f_2)$ is a smooth map with,

$$dF(\xi) = df_1(\xi) \cdot f_2 + f_1 \cdot df_2(\xi)$$

Proof. We have,

$$dF_p = dm_{f_1(p), f_2(p)} \circ d(f_1, f_2) = dm_{f_1(p), f_2(p)} \circ ((df_1)_p \oplus (df_2)_p)$$

Furthermore,

$$dm = d(m \circ \iota_1^{f_2(p)}) + d(m \circ \iota_1^{f_1(p)}) = dm(-, f_2(p)) + dm(f_1(p), -)$$

and thus,

$$dF_p = dm(-, f_2(p)) \circ (df_1)_p + dm(f_1(p), -) \circ (df_2)_p$$

Therefore, for $\xi \in T_pM$ we have,

$$dF_p(\xi) = dm(-, f_2(p)) \circ (df_1)_p(\xi) + dm(f_1(p), -) \circ (df_2)_p(\xi)$$

= $(df_1)_p(\xi) \cdot f_2(p) + f_1(p) \cdot (df_2)_p(\xi)$

Corollary 3.3. For any $\xi \in \mathfrak{g}$ we have $\operatorname{Ad}(\exp \xi) = \exp \circ (\operatorname{ad}_{\xi})$. Therefore, on the lie algebra, for any $X \in \mathfrak{g}$ we have,

$$(\exp \xi) \cdot X \cdot (\exp \xi)^{-1} = \operatorname{Ad}(\exp \xi) \cdot X = (\exp (\operatorname{ad}_{\xi}))(X) = (\exp [\xi, -]) \cdot X$$

Proposition 3.4. The left and right-invariant vector fields, $X_L^{\xi}, X_R^{\xi} \in \mathcal{X}(G)$ associated with $\xi \in \mathfrak{g}$ i.e. $X_L^{\xi}(g) = g \cdot \xi$ and $X_R^{\xi}(g) = \xi \cdot g$ have the same integral curves at the identity. Thus, either can be used to define the exponential map.

Proof. Let $\gamma_1, \gamma_2 : I \to G$ be smooth curves satisfying,

$$\frac{\mathrm{d}\gamma_1}{\mathrm{d}t} = X_L^{\xi}(\gamma_1(t)) = \gamma_1(t) \cdot \xi$$
 and $\frac{\mathrm{d}\gamma_2}{\mathrm{d}t} = X_R^{\xi}(\gamma_2(t)) = \xi \cdot \gamma_2(t)$

First consider,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma \cdot \gamma^{-1} \right) = \frac{\mathrm{d}\gamma}{\mathrm{d}t} \cdot \gamma^{-1} + \gamma \cdot \frac{\mathrm{d}\gamma^{-1}}{\mathrm{d}t}$$

But $\gamma \cdot \gamma^{-1} = e$ so the differential is zero. Thus,

$$\frac{\mathrm{d}\gamma^{-1}}{\mathrm{d}t} = -\gamma^{-1} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}t} \cdot \gamma^{-1}$$

Therefore, consider,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma_1 \cdot \gamma_2^{-1} \right) = \frac{\mathrm{d}\gamma_1}{\mathrm{d}t} \cdot \gamma_2^{-1} + \gamma_1 \cdot \frac{\mathrm{d}\gamma_2^{-1}}{\mathrm{d}t} = \frac{\mathrm{d}\gamma_1}{\mathrm{d}t} \cdot \gamma_2^{-1} - \gamma_1 \gamma_2^{-1} \cdot \frac{\mathrm{d}\gamma_2}{\mathrm{d}t} \cdot \gamma_2^{-1}$$
$$= \gamma_1 \cdot \xi \cdot \gamma_2^{-1} - \gamma_1 \gamma_2^{-1} \cdot \xi \cdot \gamma_2^{-1} \gamma_2 = \gamma_1 \cdot \xi \cdot \gamma_2^{-1} - \gamma_1 \gamma_2^{-1} \cdot \xi$$

At t = 0 we have $\gamma_1(0) = \gamma_2(0) = e$ and thus,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma_1 \cdot \gamma_2^{-1} \right) \Big|_{t=0} = \xi - \xi = 0$$

Therefore, $\gamma_1 \cdot \gamma_2^{-1} = e$ is constant and thus $\gamma_1 = \gamma_2$.

4 Lie Algebras

Definition: A Lie Algebra \mathfrak{g} over a commutative ring R is an R-module with a bilinear bracket $[-,-]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ which satisfies,

- 1. $\forall x \in \mathfrak{g} : [x, x] = 0$
- 2. $\forall x, y, z \in \mathfrak{g} : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$

Definition: The universal enveloping algebra of a Lie algebra \mathfrak{g} over a ring R is the unital associative R-algebra,

$$U\mathfrak{g} = T_R(\mathfrak{g})/I$$

where I is the ideal generated by $\{x \otimes y - y \otimes x - [x,y] \mid x,y \in \mathfrak{g}\}$. Note that,

$$x \otimes y - y \otimes x - [x, y] \in \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \subset T(\mathfrak{g})$$

The universal enveloping algebra defines a functor $U: \mathbf{LieAlg}_R \to \mathbf{Mod}_R$

Definition: A representation of a Lie Algebra \mathfrak{g} over R is an R-module M and a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(M)$. That is a linear map $\rho : \mathfrak{g} \to \operatorname{End}(V)$ which preserves the bracket i.e.

$$\rho([X,Y]) = \rho(X)\rho(Y) - \rho(Y)\rho(X)$$

Proposition 4.1. The category of representations of a Lie algebra \mathfrak{g} is equivalent to the category of $U\mathfrak{g}$ -modules.

Proof. Any Lie algebra representation $\rho : \mathfrak{g} \to \mathfrak{gl}(M)$ may be extended to a ring map $U\mathfrak{g} \to \operatorname{End}(M)$ by sending $\rho(m) = m \cdot \operatorname{id}$ and $\rho(x \otimes y) = \rho(x)\rho(y)$. Then we have,

$$\rho(x \otimes y - y \otimes x) = \rho(x)\rho(y) - \rho(y)\rho(x) = \rho([x, y])$$

so this extension is well-defined on the quotient. Likewise any map $U\mathfrak{g} \to \operatorname{End}(M)$ restricts to $\mathfrak{g} \to \operatorname{End}(M)$ and sends the bracket to the commutator thus giving a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(M)$.

Lemma 4.2. Let R be a ring and M, N be simple R-modules. Then any R-module morphism $f: M \to N$ is zero or an isomorphism.

Proof. Let $f: V \to W$ be A-linear (i.e. a morphism of A-representations). Then $\ker f \subset V$ is a submodule so $\ker f = 0$ or $\ker f = V$ by simplicity. Thus either f = 0 or injective. Furthermore, $\operatorname{Im}(f) \subset W$ is a submodule so either $\operatorname{Im}(f) = 0$ or $\operatorname{Im}(f) = W$ thus either f = 0 or surjective. Therefore, either f = 0 or f is an isomorphism.

Lemma 4.3 (Schur). Let A be a unital associative K-algebra over an algebraically closed field K and V and W simple A-modules. Then,

$$\operatorname{Hom}_{A}(V, W) = \begin{cases} K & V \cong W \\ 0 & V \not\cong W \end{cases}$$

Proof. By above, any nonzero map is an isomorphism. In the case, $V \cong W$, fix an isomorphism $f: V \to W$. Consider any $g: V \to W$ then $f^{-1} \circ g: V \to V$ is an endomorphism over vectorspaces over an algebraically closed field so $f^{-1} \circ g$ has an eigenvector $v \in V$ with eigenvalue λ . Thus $f^{-1} \circ g - \lambda \cdot \mathrm{id}_V$ is not injective but is a morphism of representations so, by above, $f^{-1} \circ g - \lambda \cdot \mathrm{id}_V = 0$. Thus, $g = \lambda \cdot f$. \square

Remark 1. For the case $A = \mathbb{C}[G]$ for some group G a simple $\mathbb{C}[G]$ -module is the same as irreducible complex G-representation giving the standard form of the lemma.

Corollary 4.4. Let A be a unital associative K-algebra over an algebraically closed field and V a semisimple A-modules. Then there is a canoical isomorphism, s

$$\bigoplus_{X} \operatorname{Hom}_{A}(X, V) \otimes_{\mathbb{C}} X \xrightarrow{\sim} V$$

where X runs over the simple A-modules.

Proof. The canonical map sends $f \otimes x \mapsto f(x)$. We need to show that this map is an isomorphism. Decompose,

$$V = \bigoplus_X X^{n_X}$$

Then, by Schur,

$$\operatorname{Hom}_X(V,\cong)\mathbb{C}^{n_X}$$

which gives,

$$\bigoplus_{X} \operatorname{Hom}_{A}(X, V) \otimes_{\mathbb{C}} X = \bigoplus_{X} \mathbb{C}^{n_{X}} \otimes_{\mathbb{C}} X = \bigoplus_{X} X^{n_{X}} = V$$

by the evauluation map.

Definition: A Casimir element of a Lie algebra \mathfrak{g} is an element of $Z(U\mathfrak{g})$ i.e. an element of $U\mathfrak{g}$ commuting with everything in \mathfrak{g} and thus all of $U\mathfrak{g}$.

Proposition 4.5. Let \mathfrak{g} be a Lie algebra over an algebraically closed field K and $\omega \in U\mathfrak{g}$ a Casimir. Suppose that $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ is an irreducible \mathfrak{g} -representation then $\rho(\omega) = \lambda \cdot \mathrm{id}_V$ for some $\lambda \in K$ where $\rho : U\mathfrak{g} \to \mathrm{End}(V)$ is the induced map.

Proof. Let ω be a Casimir. I claim that $\rho(\omega)$ is a \mathfrak{g} -morphism $V \to V$. This is because $\forall x \in U\mathfrak{g} : x \otimes \omega = \omega \otimes x$ in $U\mathfrak{g}$ meaning that $\rho(x) \circ \rho(\omega) = \rho(\omega) \circ \rho(x)$. Thus the map $\rho(\omega)$ is $U\mathfrak{g}$ -linear. Since V is irreducible and K is algebraically closed, by Schur's lemma, $\rho(\omega) = \lambda \cdot \mathrm{id}_V$.

Remark 2. In the previous case, we call λ the Casimir invariant of the irreducible representation V associated to the Casimir element ω .

5 Misc

Theorem 5.1 (Poincare-Hopf). Let M be a compact smooth manifold and X a smooth vector field on M with isolated zeros. Then,

$$\sum_{x \in X} index_x(X) = \chi(M)$$

Theorem 5.2. A vector bundle of rank r is trivial iff it admits r pointwise linearly independent sections.

Proof.

Theorem 5.3. Let G be a Lie group, then $TG \cong G \times \mathfrak{g}$ i.e. the tangent bundle is trivial.

Proof.

Theorem 5.4. Let G be a compact Lie group (of positive dimension) then $\chi(G) = 0$.

Proof. Since $\pi: TG \to G$ is a trivial bundle it admits $n = \dim G$ pointwise linearly independent sections (i.e. vector fields) which thus must be nonvanising everywhere (since n > 0). Thus, by Poincare-Hopf, $\chi(G) = 0$.

Theorem 5.5. For n even, S^n admits no nonvanishing vector fields.

Proof. Such a vector field would give a homotopy id \simeq -id and thus the degrees of these maps must be equal i.e. $(-1)^{n+1} = 1$ so n must be odd. Alternativly, $\chi(S^n) = 1 + (-1)^n$ and therefore, in the case n is even $\chi(S^n) = 2$. In that case, a nonvanishing vector field would contradict the Poincare-Hopf theorem.

Theorem 5.6. Let G be a compact Lie group then $\pi_2(G) = 0$. If G is nonabelian then $\pi_3(G) \neq 0$.

Corollary 5.7. S^n admits a Lie group structure exactly when n = 0, 1, 3.

Proof. The case S^0 is a zero-dimensional Lie group is clear. Assume $n \geq 1$ so S^n is connected. If G is an abelian Lie group then its Lie algebra is trivial. By the Lie group Lie algebra correspondence, its universal cover must be \mathbb{R}^n . However, S^n is simply connected for n > 1 so S^1 is the only abelian sphere group. If G is nonabelian then $\pi_3(G) \neq 0$ but $\pi_3(S^n) = 0$ for n > 3. Thus we have shown that $n \leq 3$. The case n = 2 is excluded by noting that even dimensional spheres have nontrivial tangent bundles and thus cannot be Lie groups.