Generative Functions:

Defin:- A Found Power Sovies (FPS) R([x]) consists of formal sums of the form $\underset{n=0}{\overset{\sim}{\sim}} \alpha_n x^n$ where $\alpha_n \in \mathbb{R}$ $\forall n$

Remarks: We donot worky about the convergence since x is a formal indeterminate.

Example: - 1, 20 n/2 mokes some.

. R. We can replace IR by any field as even a commutative

[xample: $a_n = 1 \forall n \Rightarrow A(x) = \sum_{i=1}^{n} a_i x^i = \frac{1}{1-x}$

Defin:- Given a sequence $(a_0)_{n>0}$ the FPS, $A(n) = \underset{\sim}{\overset{\sim}{\sum}} a_n x^n$ is called the exclinary generating function (oqt) of (a_n) (oqt) of (a_n) (oqt) of (a_n) (oqt) of (oqt) or (oqt)

Want on explicit formula for an.

$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

= 50x° + $\sum_{n=1}^{\infty} (\mu_0 a_{n-1} - 100) x^n$

= 50 + Ly 2 0 - 100 = 2 x = 50 + 42 A(x)

$$A(x) = \frac{\leq 0}{1-4x} - \frac{100x}{(1-4x)(1-x)}$$

$$= \frac{3(1-1)}{100} + \frac{3(1-1)}{20}$$

$$Q_n : \frac{100}{3} + L_n \left(\frac{50}{3} \right)$$

Proporty: - Let A(x) and B(x) be egt's for (an) and (bn) respectively. Then the sequence for which egt

Us A(M). L(M) Us given by Cn = 20kb, [Discrete Convolution].

 $E \times \underline{ample} := e^n = \underbrace{\sum_{n \geq 0} \frac{1}{n!} x^n}$; $e^{n+1} + e^n \cdot e \cdot [At the level of FPS]$

enti = = = in (x+) ~ Any co-eff is an infinite sum.

Recall: - Postitions P(r) = # of postitions of n.
Thim (Eules): - The off of (Pn) no is E P 2" = TT 1 1-91

Proof: Expand the RHS (1+2+2¹+...)(1+2¹+2¹+...).... Look at all the texts that contribute to the co-efficient of Q^n CHECK that this is a bijection blu set of texts that this is a bijection by

Exercise: $Tf(a_n)$ has ogt A(x), then $(a_0 + a_1 + + a_n)$ is A(x). Two modifications of Euler's thm.

.1, Restrict the set of posts to $S \subseteq N$ Then $RHS = TT \frac{1}{(eS)^{1}}$

.2. Restrict the no. of times each past appears. If each past is allowed to appear attent their entire, then $RHS = TT(1+q^1+q^2+q^3)$

Recall Euler's odd distinct theorem.

n to mostitud to # = atong blo atmi n to anostitud to # atmi

$$P_{\underline{sopt}} : - \underset{N \geqslant 0}{\leqslant} P_{\underline{odd}}(N) Q^{n} = \frac{17}{1 - q^{2i-1}} \cdot \frac{1 - q^{2i}}{1 - q^{2i}} = \frac{17}{1 - q^{2i}} (1 + q^{i})$$

$$= \frac{17}{1 - q^{i}} \cdot \frac{1 - q^{2i}}{1 - q^{i}} = \frac{17}{1 - q^{i}} (1 + q^{i})$$

$$= \underset{i \geqslant 0}{\leqslant} P_{\underline{distinct}}(N) \cdot Q^{n} \square$$

Example: Let Cn be the no. of valid woods in n pairs of parenthesis

Let c(x) = & cnx

Claim: - Every valid word is can be expressed in the form $\omega = (\omega_1)(\omega_2)$

First time a volid subword is formed. where ω_1 , ω_2 one volid words with k, n-1-k points of posonthesis, respectively,

then $c_n = \sum_{k=0}^{n-1} C_k c_{n-1} - k$ few n > 1 and $c_0 = 1$

By product formula $C(x)-1=C(x)\cdot xC(x)$ $c(x)=\frac{1-\sqrt{1-xx}}{2x}$

Expand $C_n = \frac{1}{N+1} {n \choose n}$ [Catalan numbers]