Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	Assume that your objective is to minimize the transformation of X as similar to Y as possible, what would you optimize to get $R?(XR pprox Y)$	1 / 1 point
	Minimize the distance between XR and Y	
	Maximize the distance between XR and Y Minimize the detanged with between XR and Y	
	Minimize the dot product between XR and Y Maximize the dot product between XR and Y	
	Correct This is correct.	
2.	When solving for $R,$ which of the following is true?	1/1 point
	Create a forloop, inside the forloop: (initialize R, compute the gradient, update the loss	
	Create a forloop, inside the forloop: (initialize R, update the loss, compute the gradient.	
	Initialize R, create a forloop, inside the forloop: (compute the gradient, update the loss)	
	Initialize R, compute the gradient, create a forloop, inside the forloop: (update the loss)	
	○ Correct This is correct.	
	()	
3.	The Frobenius norm of A = $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ is	1/1 point
	(Answer should be in 2 decimal places)	
	7.14	
	⊘ Correct 7.14	
	Assume $X\in R^{m imes n}, R\in R^{n imes n}, Y\in R^{m imes n}$ which of the following is the gradient of $\ XR-Y\ _F^2$?	1/1 point
	$\bigcirc \frac{2}{m}X(XR-Y)$	
	$\bigcirc \frac{2}{m}(XR - Y)X$	
	$\bigcirc \frac{2}{m}(XR-Y)X^T$	
	○ Correct This is correct.	
5.	Imagine that you are visiting a city in the US. If you search for friends that are living in the US, would you be able to determine the 2 closest of ALL your friends around the world?	1/1 point
	Yes, because I am already in the country and that implies that my closest friends are also going to be in the	
	same country.	
	● No	
6.	What is the purpose of using a function to hash vectors into values?	1/1 point
	To speed up the time it takes when comparing similar vectors.	
	To not have to spend time comparing vectors with other vectors that are completely different.	
	☐ To make the search for other similar vectors more accurate. ☐ It helps us create vectors.	
	Tricips as dead vectors.	
7	Given the following vectors, determine the true statements.	1/1
		1/1 point
	P : $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
	$V_1: \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
	V_{2} : $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	
	$V_3:\begin{bmatrix} -1\\-1\end{bmatrix}$	

 $\ \, \ \, \ \, \ \, PV_1^T$ and PV_2^T have the same sign. $\bigcirc \ PV_1^T$ and PV_2^T are equal in magnitude. $\bigcirc \ PV_1^T$ and PV_3^T have the same sign. Orrect Correct 8. We define H to be the number of planes and h_i to be 1 or 0 depending on the sign of the dot product with plane i. 1/1 point Which of the following is the equation used to calculate the hash for several planes. \bigcirc $\sum_{i}^{H} 2^{i}h_{i}$ $\bigcirc \sum_{i}^{H} 2^{i} h_{i}^{i}$ $\bigcirc \sum_{i}^{H} 2ih_{i}$ $\bigcirc \sum_{i}^{H} 2^{h_i} i$ Orrect Correct. 9. How can you speed up the look up for similar documents. 1/1 point ☐ PCA Approximate Nearest Neighbors K-Means Locality sensitive hashing **⊘** Correct 10. Hash tables are useful because 1/1 point allow us to divide vector space to regions. speed up look up Orrect
This is correct.

□ classify with higher accuracy☑ can always be reproduced

You will always hash the same vector to the same bucket with the same hash function. $\label{eq:control}$