

2025

Bharat Mata Ki Jaio

ESSENTIAL CHEMISTRY BASICS for Class 10

MASTER BASICS OF CHEMISTRY - III

CHEMISTRY

Lecture - 03

BY: SUNIL BHAIYA

Topics

to be covered

- 1 lons and Their Types
- 2 Sunil Bhaiya's FON Trick
- 3 Writing Chemical Formula

RIDDLE WALLAH

FILL IN THE BLANK!

Hasmukhlal: Hey!

Simaila: Hi By 0 !

Hasmukhlal: <Blocked Simaila>

(1) A.No.(z): 35

(1) Only non-metal found in liquid state at

Hint: Blank contains <u>a word</u> formed by the <u>chemical symbols of two</u> no<u>n-metals</u>. First non-metal of the word has <u>atomic number 35</u> and it is the only non-metal found in liquid state at room temperature while second non-metal has atomic number 8.

Hg -> Mercury

Oxygn

Only metal found in liquid state at room temp.

Sundar Balaks Be Like:

QUESTION

B

Elements with valency 1 are:

((तल) संगी ज	phrt)	
		KIM	No. of e-
	always metals	281	1 ← 11 ←
)	always metalloid	2 8 (3)	17 ←

()=F-8

Element	Metal/Non- metal	Valency
Hydrogen (H	Non-metal 8181	[H] (1)
Sodium (h)	Metal (ETTy)	1
Chlorine (C)	Non-metal (318	TG) (1

- either metals or non-metals
- always non-metals

lons and Their Types

electrons

lons and Their Types

Atom (92710) -> electrically neutral (no overall charge)

no. of protons = no. of electrons

electrons

Is the class lagging?

Please watch the recorded lecture!

Example of lons

Sodium (Na)

$$+11 - 10 = (+1)$$
 Na^{1+}

Sodium cation (Na¹⁺)

		*
K	L	m
2	8	1
)

U	
Atomic Number	11
Number of Protons	11
Number of	11
Electrons	

electron lose

oftain >	configuration	similar to
marest	noble gas ->	Neon (Ne)

Atomic Number	11
Number of Protons	11
Number of	10
Electrons	

In case of (CI), is the number of electrons 7 number of protons

A. yes B. No

Element	A.No.(z)	no of electron(s)	K	L	M
Cl	17	17	2	8	7

It tells that no. of electrons is 1 more than no. of protons.

7 electrons

lose

Ions – On Basis of Number of Overall Charge

Ions – On Basis of Number of Atoms in an Ion

Polyatomic ions	Symbol
Ammonium → Hydroxide → Nitrate → Hydrogen	NH4 OH- NO3
carbonate	HCO ₃
Carbonate Sulphate	CO ₃ 2- SO ₄ 2-
Phosphate	PO ₄ 3-

KYA BOLTI PUBLIC

QUESTION

A cation is formed <u>when</u> _______. (धनायन)

- A number of electrons = number of protons
- number of electrons > number of protons
- number of electrons < number of protons
- number of neutrons = number of electrons

QUESTION

How many electrons are there in Mg²⁺ cation?

A 9 electrons

10 electrons

c 11 electrons

12 electrons

	A.No.(z)	no. of electrons	K L	$\bigvee_{1}^{\mathbb{N}}$
Mg	12	12	28	2
).			\forall

- 1 Optional Trick
- (+) Works only on mentioned polyatomic ion

Sunil Bhaiya's FON Trick

Trick to Calculate Overall Charge

Polyatomic ions	Symbol
Ammonium	NH ⁺
Hydroxide	OH-
Nitrate	NO,-
Hydrogen carbonate	HCO;
153 334 324	
Carbonate	CO ₃ ²⁻ SO ₄ ²⁻
Sulphate	SO ₄ ²⁻
Phosphate	PO ₄ 3-

Do you find remembering their overall charges difficult?

Now, calculate them using Sunil Bhaiya's FON trick.

Sunil Bhaiya's FON Trick

Give F, Q and N as -1, -2 and -3 charge and other atoms' positive charge equivalent to the valence electrons they have.

Sunil Bhaiya's FON Trick

$$N = \begin{cases} k \\ 5 \end{cases}$$

$$\begin{array}{cccc}
K & L & M \\
P & 2 & 8 & 5
\end{array}$$

KYA BOLTI PUBLIC

(ompound C

00000

Writing Chemical Formulae

> Compound (राधिक) -> it is made from different elements, i.e. different types of atoms.

Element B

0000 + 0000 - 0000

0000

Element A

(i) Water

Chemical Name - Dihydrogen monoxide

$$H$$
 $\begin{pmatrix} K \\ 1 \end{pmatrix}$

$$0 \ 2 \ (6) \rightarrow 8-6=2$$

N 2
$$(5) \rightarrow 8-5=3$$

(ii) Ammonia - Common name

Chemical name: -> Nitrogen trihydride

H X O Chemical Symbol: Valency:

H2O1 or 1-120

Chemical symbol: Valincy:

Na2504)

(vi) Potassium nitrate

N03'
Charge: 1Volumy: 1

Chemical symbol: K NO3 KNO3 KNO3

OH'-

Charge: 1-Voliny: 1

Chemical Symbol: Ca (OH)2 Valency:

(viii) Ammonium hydroxide

NH4" (harge: 1+

NH4 OH Chemical Symbol: Valney:

NHAOH

KYA BOLTI PUBLIC

aye bhaiya

QUESTION

An element M forms the oxide MO. What will be the formula of its phosphate?

EFFICIENCY HACKS BY SUNIL BHAIYA

Importance of Revision Through Forgetting

