

Variant classification

Developing a knowledge-based approach using IMPACT data

November 8, 2018

Papaemmanuil Lab

Pierre Guilmin | Elsa Bernard In collaboration with A. Zehir, R. Ptashkin and C. Debyani

Table of ≈ 1000 coding mutations to check one by one

Clinical report

IGV snapshot

The goal

Create a tool that classifies variant automatically

- real vs artefact OR driver vs passenger
- all cancers, all mutation types
- using Supervised Machine Learning Classification
- on the IMPACT dataset

IMPACT, the dataset

Two steps classification

coding + splicing (194,211 mutations = 36%) impact curation

real 96%

artefact 4% driver 33%

passenger 63%

OncoKB

artefact 4%

Two steps classification

coding + splicing (194,211 mutations = 36%)

Two steps classification

coding + splicing (194,211 mutations = 36%)

driver 2 class: driver | passenger OncoKB

The features used in our model

• Sequencing features (n = 11)
Tumor VAF, tumor depth

• Cancer populations (n = 4)
COSMIC, OncoKB

- Genomic coordinates (n = 3)
 Chromosome, Hugo Symbol
- Normal control (n = 1)

 Frequency in normal control

- Control populations (n = 12)
 Population based
 GnomAD allele frequency
- Mutation consequence (n = 6)

 Protein effect, SIFT & PolyPhen class

Algorithm comparison

Algorithm comparison

Best algorithm probability output

The variant classifier performances

The variant classifier performances

predicted probability

The variant classifier performances

8x less work

144/1000 mutations to check one
by one instead of 1000/1000

Main challenges

Imbalanced dataset

real 96%

artefact 4%

Main challenges

Imbalanced dataset

real 96% (187,012) artefact 4% (7,199)

Main challenges

Imbalanced dataset

real 96% (187,012) artefact 4% (7,199) Evolution over time

Next steps

Method comparison

nature TECHNICAL REPORT https://doi.org/10.1038/s41588-018-0257-y

A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data

Benjamin J. Ainscough (1,2,12), Erica K. Barnell (1,12), Peter Ronning¹, Katie M. Campbell (1,12), Alex H. Wagner (1,12), Todd A. Fehniger (1,2,3), Gavin P. Dunn⁴, Ravindra Uppaluri⁵, Ramaswamy Govindan^{2,3}, Thomas E. Rohan⁶, Malachi Griffith (1,2,3,7), Elaine R. Mardis^{8,9}, S. Joshua Swamidass^{10,11*} and Obi L. Griffith (1,2,3,7*)

Fig. 1 | Deep learning and random forest models achieved very high manual review classification performance during tenfold cross-validation.

Uniform IMPACT processing?

- → Uniform variant callers across time & panels
- → Enable detailed feature extraction | Technical & Flags

Final goal: a two-steps web-based classifier

Final goal: a two-steps web-based classifier

MSKCC Comp Onc Variant Classification Tool®

