Clase práctica 2

April 1, 2025

- 1. Demuestre que todo árbol con vértices de grado k tiene al menos k vértices de grado 1.
- 2. Demuestre que la secuencia de enteros positivos no creciente $d_1,d_2,...,d_n$ es un árbol si y solo si $\sum_{i=1}^n d_i=2(n-1)$
- 3. En todo árbol existe al menos un centroide: un vértice tal que al quitarlo la cantidad de vértices de los árboles resultantes es a lo sumo n/2 siendo n el tamaño del árbol inicial.
- 4. Una secuencia no creciente de enteros no negativos $d_1, d_2, ..., d_n$ con $(n \ge 2)$ es gráfica si y solo si la secuencia $d_2-1, d_3-1, ..., d_{d_1+1}-1, d_{d_1+2}, d_{d_1+3}..., d_n$ es gráfica.
- 5. Sea un árbol T de orden n que solo contiene vértices de degree 1 o 3. Pruebe que T contiene $\frac{n-2}{2}$ vértices de degree 3.
- 6. Demuestre que si la secuencia no creciente $\{d_1,d_2,...,d_n\}$ de números positivos es gráfica entonces $\forall k$ se tiene que : $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(k,d_i)$
- 7. Si T es un árbol con k aristas y G es un grafo tal que $\delta(G) \geq k$, entonces T es un subgrafo de G, asumiendo que podemos renombrar las etiquetas de los vértices.