Contents

Introduction

Project Overview and Goal"

Data **Exploration**

Exploring the Dataset

Feature Engineering

Root Cause Analysis

Models

Evaluating Algorithm Performance

Future

Data-Driven Insights for Business Decisions

Situation

IBM is facing significant losses due to <u>high employee turnover</u>.

As consultants, our mission is to develop a <u>machine learning model</u> that predicts whether or not an employee will leave the company based on various factors.

Action

We approached the problem as a <u>binary classification</u> task, with the model outputting either <u>0 (employee stays) or</u> <u>1 (employee leaves)</u>

Result

Help IBM take proactive steps to reduce employee departures.

Understanding The Data

- No missing values
- No duplicate values

Corporate Workforce Profile

- Average Age: **36 years**
- Gender Ratio: **1.7** Male vs. Female
- Job Satisfaction: **2.8** out of a range of 1 to 4
- Distribution of Employees by Departments:
 - Sales: 28%
 - Human Resources: 2 %
 - Research & Development: 70 %

Understanding The Data

FUTURE

Handling Outliers

DATA EXPLORATION

INTRODUCTION

F.ENGINEERING

MODELS

Feature Selection

Correlation Matrix

Final Features

- EmployeeCount
- Over18
- StandardHours

Feature Creation

Converting the Age into a Linear Feature

Feature Creation

ONE-HOT-ENCODING (OHE) AND STANDARD SCALING

- Data may be represented as words, letters, or symbols
- Scaling is a common preprocessing step as most Machine Learning algorithms only process numerical data and require **standardized** Numerical Variables.
- We did OHE on Categorical Variables and Standard Scaling on Numerical Variables

Models Trained

Logistic Regression

Baseline Model

Gaussian Naive Bayes

Simple - Efficient

Random Forest

Flexible - Powerful - For High Number of Features

Why did We Choose the Model?

Informative by offering the possibility to extract information on variable importance

Exceptional speed due to its ability to perform parallel computation

How Many Employees will Leave Next Year?

311 is the Number of workers leaving the company

Final Conclusions

Profile of **predicted leavers**:

- Average Age: **32 years**
- Gender Ratio: **1.9** Male vs. Female
- Job Satisfaction: **2.6** out of a range of 1 to 4
- Distribution of Employees by Departments
 - o Sales: 27 %
 - Human Resources: 4 %
 - Research & Development: 70 %

Proposed Actions:

- 1. Implement **employee benefits** especially **targeting young professional in R&D**, such as company phones for private usage, a company gym, or free meals
- 2. Invest in employee development by creating a **career plan** for young professionals
- 3. Foster a **positive work environment** by defining strong company values

