Introduction to Real Analysis

Derek Li

Contents

1	Real Numbers	2
	1.1 Preliminaries	2
	1.2 The Axiom of Completeness	3
	1.2 The Axiom of Completeness	3
	1.4 Cantor's Theorem	4
2	Metric Spaces and Topology of Metric Spaces	5
	2.1 Metric Spaces	5
	2.2 Topology of Metric Spaces	5
3	Sequences and Series	8
	3.1 Sequences	8
	3.2 Series	
4	Functional Limits and Continuity	14
	4.1 Functional Limits	14
	4.2 Continuous Functions	

1 Real Numbers

We define

$$\mathbb{N} = \{1, 2, \cdots\}.$$

If we take the closure of \mathbb{N} under subtraction, we obtain

$$\mathbb{Z} = \{\cdots, -1, 0, 1, \cdots\}.$$

If we take the closure of \mathbb{Z} under division by non-zero numbers, we obtain

$$\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}, (m, n) = 1 \},$$

where (m, n) = 1 means if $d \in \mathbb{N}$ divides both m, n, then d = 1.

Theorem 1.1. There is no $r \in \mathbb{Q}$ s.t. $r^2 = 2$.

Proof. Assume for a contradiction that there are $m \in \mathbb{Z}$, $n \in \mathbb{N}$ s.t. $\frac{m}{n} = \sqrt{2}$ and (m, n) = 1. Hence, $m^2 = 2n^2$, then m^2 is an even complete square. So $4|m^2$. But then $4|2n^2$ and thus $2|n^2$. So n has to be even. Hence both m, n are even, i.e., 2|m, 2|n. This contradicts the fact that (m, n) = 1.

1.1 Preliminaries

Definition 1.1. A *function* from A to B $(f : A \to B)$ is the set of pairs $(x, y) \in A \times B$ s.t. (1) if $(x, y_1) \in f$ and $(x, y_2) \in f$, then $y_1 = y_2$; (2) $\forall x \in A, \exists y \in B$ s.t. f(x) = y.

Note that A is said to be the domain of f, but the range of f does not have to be B, and it is a subset of B.

Definition 1.2. Assume $f: A \to B$ is a function, f is said to be *injective* if

$$\forall x_1, x_2 \in A, f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2.$$

Property 1.1. If $f: A \to B, g: B \to C$ are injective, then $g \circ f: A \to C$ is injective.

Definition 1.3. f is said to be *surjective* if

$$\forall y \in B, \exists x \in A \text{ s.t. } f(x) = y.$$

Property 1.2. If there is a surjective map $g: A \to B$, then there is a injective map $f: B \to A$.

Definition 1.4. f is said to be **bijective** if f is injective and surjective.

Definition 1.5. $\forall x$,

$$|x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}.$$

Theorem 1.2 (Triangle Inequality). $|x+y| \leq |x| + |y|$.

Proof. We have $(x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y| = (|x| + |y|)^2$. Thus,

$$|x+y| = \sqrt{(x+y)^2} \le \sqrt{(|x|+|y|)^2} = |x|+|y|.$$

Definition 1.6. Assume $X \subseteq \mathbb{R}$, the *maximum* (*minimum*) of X is an element $a \in X$ s.t. $\forall x \in X, x \leq a \ (x \geq a)$.

Definition 1.7. The *least upper bound* of X, denoted by $\sup(X)$, is $a \in \mathbb{R}$ s.t. (1) $\forall x \in X, x \leq a$ (a is an upper bound for X); (2) if b is an upper bound for X, then $a \leq b$.

Example 1.1. $\max((0,1))$ does not exist. $\sup((0,1)) = 1. \sup(\mathbb{R})$ and $\sup(\mathbb{N})$ do not exist.

1.2 The Axiom of Completeness

Definition 1.8. $X \subseteq \mathbb{Q}$ is said to be an *initial segment* if (1) $X \neq \emptyset$; (2) $\forall x, y \in \mathbb{Q}$, if x < y and $y \in X$, then $x \in X$; (3) $X \neq \mathbb{Q}$.

Definition 1.9. $\mathbb{R} = {\sup(X) : X \text{ is an initial segment of } \mathbb{Q}}.$

Property 1.3. \mathbb{R} is an ordered field.

Lemma 1. If $A \subseteq \mathbb{R}$ and $s \in \mathbb{R}$ is an upper bound for A, then $s = \sup(A)$ iff

$$\forall \varepsilon > 0, \exists a \in A \text{ s.t. } a + \varepsilon > s.$$

Proof. (\Leftarrow) Assume for a contradiction that $t \in \mathbb{R}$ is an upper bound for A and t < s. Let $\varepsilon = \frac{s-t}{2} > 0$, then

$$\forall a \in A, a + \varepsilon \leqslant t + \varepsilon = \frac{s+t}{2} < s,$$

which is a contradiction.

(\Rightarrow) Assume for a contradiction that $\varepsilon_0 > 0$ and $\forall a \in A, a + \varepsilon_0 \leq s$. Thus $\forall a \in A, a \leq s - \varepsilon_0$, and $s - \varepsilon_0 < s$ is an upper bound for A, which is a contradiction.

Theorem 1.3 (Axiom of Completeness). If $X \subseteq \mathbb{R}$ is bounded above, then X has a least upper bound.

Proof. For $x \in X$, let A_x be the initial segment of \mathbb{Q} corresponding to x. Since X is bounded above, pick $b \in \mathbb{R}$ s.t. $\forall x \in X, x < b$. Then $b \notin \bigcup_{x \in X} A_x$. Note that $\bigcup_{x \in X} A_x$ is an initial segment of \mathbb{Q} and thus $\sup(\bigcup_{x \in X} A_x)$ is $\sup(X)$.

1.3 Consequences of Completeness

Definition 1.10. Assume $\{A_n : n \in \mathbb{N}\}$ is a sequence of sets, $\{A_n : n \in \mathbb{N}\}$ is said to be **nested** if $A_n \supseteq A_{n+1}$.

Theorem 1.4 (Nested Interval Property). Assume $\{I_n : n \in \mathbb{N}\}$ is a nested sequence of closed intervals of \mathbb{R} , then $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$.

Proof. Let $[a_n, b_n] = I_n$. Since $\{I_n : n \in \mathbb{N}\}$ is nested,

$$a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n, \forall n \in \mathbb{N}.$$

Let $A = \{a_n : n \in \mathbb{N}\}.$

Note that b_1 is an upper bound for A so A has supremum in \mathbb{R} . We have $\forall n \in \mathbb{N}, \sup(A) \leq b_n$ and $\sup(A) \geq a_n$. Thus, $\forall n \in \mathbb{N}, \sup(A) \in [a_n, b_n]$, i.e., $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$.

Theorem 1.5 (Archimedean Property). (1) $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ s.t. } y \leq n;$ (2) $\forall y > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < y.$

Proof. (1) Assume for a contradiction that \mathbb{N} is bounded in \mathbb{R} . Let $\alpha = \sup(\mathbb{N})$, then by lemma, $\exists n \in \mathbb{N} \text{ s.t. } n+1 > \alpha$, which is a contradiction.

(2) From (1), we have
$$\forall y > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{y} < n \Rightarrow \frac{1}{n} < y.$$

Theorem 1.6. \mathbb{Q} is dense in \mathbb{R} , i.e., if $a < b, a, b \in \mathbb{R}$, then $\exists r \in \mathbb{Q}$ s.t. a < r < b.

Proof. Suppose $a < b, a, b \in \mathbb{R}$. By Archimedean Property, we can find $n \in \mathbb{N}$ s.t. $\frac{1}{n} < b - a$, i.e., 1 < nb - na. Hence we can find $m \in \mathbb{Z}$ s.t. na < m < nb. Therefore,

$$a < \frac{m}{n} < b,$$

and let $r = \frac{m}{n}$.

1.4 Cantor's Theorem

Definition 1.11. If there is a bijection $f: A \to B$, we say A, B are in **one-to-one correspondence**, denoted $A \sim B$.

Property 1.4. If $A \sim B, B \sim C$, then $A \sim C$.

Definition 1.12. Card(A) \leq Card(B) if there is a injective map $f: A \to B$.

Example 1.2. $\mathbb{N} \sim \mathbb{Z}, \mathbb{N} \sim \mathbb{N}^2, \mathbb{N} \sim \mathbb{Q}, \mathbb{N} \not\sim \mathbb{R} \ (\operatorname{Card}(\mathbb{N}) < \operatorname{Card}(\mathbb{R})), (-\frac{\pi}{2}, \frac{\pi}{2}) \sim \mathbb{R}.$

Theorem 1.7 (Schroeder-Bernstein Theorem). If there are injective functions $f: A \to B$ and $h: B \to A$, then there is a bijection $g: A \to B$.

Definition 1.13. A is said to be a **countable set** if there is a bijective $f: A \to \mathbb{N}$.

Example 1.3. \mathbb{N}^2 is countable since there is an injective $f: \mathbb{N}^2 \to \mathbb{N}$ given by $f(m,n) = 2^m 3^n$.

Property 1.5. Countable union of countable sets is countable, i.e., if $\{A_n : n \in \mathbb{N}\}$ is a collection of countable sets, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

Theorem 1.8 (Cantor's Theorem). If A is a set, then there is no map $g:A\to P(A)$ which is surjective.

Metric Spaces and Topology of Metric Spaces 2

2.1Metric Spaces

Definition 2.1. A *metric space* is a pair (X, d), where $d: X^2 \to [0, \infty)$ s.t. $\forall x, y, z \in X$:

- (1) d(x,y) = 0 iff x = y;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le d(z,y) + d(y,z)$.

Example 2.1. For $X = \mathbb{R}, d(x, y) = |x - y|$.

Example 2.2. For $X = \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ (Euclidean distance).

Example 2.3. For $X = \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|$.

Example 2.4. For $X = \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i|$.

Example 2.5. For $X = l_{\infty} = \{\text{The collection of all } (x_n) \subseteq \mathbb{R} \text{ that are bounded}\} \subseteq \mathbb{R}^{\mathbb{N}}, d(\mathbf{x}, \mathbf{y}) = l_{\infty} =$ $\sup_{n\in\mathbb{N}}|x_n-y_n|.$

Example 2.6. For $X = C[0,1] = \text{All continuous functions } f:[0,1] \to \mathbb{R}, d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$ h(x)

Example 2.7 (Discrete Metric).

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}.$$

2.2 Topology of Metric Spaces

Definition 2.2. Open ball with radius r and center x is

$$B_r(x) = \{ y \in X : d(x, y) < r \}.$$

Definition 2.3. A set $U \subseteq X$ is **open** iff

$$\forall x \in U, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subseteq U.$$

Example 2.8. $B_{\varepsilon}(x)$ is open.

Proof. Fix $x \in X$ and $\varepsilon > 0$. We want to show: $\forall y \in B_{\varepsilon}(x), \exists \delta > 0 \text{ s.t. } B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Take $y \in B_{\varepsilon}(x)$, then $d(x,y) < \varepsilon$. Take $\delta = \varepsilon - d(x,y) > 0$. Take any $z \in B_{\delta}(y)$, we have

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \varepsilon - d(x,y) = \varepsilon.$$

Thus $z \in B_{\varepsilon}(x)$ and $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Definition 2.4. A topological space is a pair (X, τ) where X is a set and τ is the subset of the power set of X which we call open s.t.

- (1) $\emptyset, X \in \tau$;
- (2) $U_1, \dots, U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau;$ (3) $\{U_i : i \in I\} \subseteq \tau \Rightarrow \bigcup_{i \in I}^n U_i \in \tau.$

Example 2.9. $\{X, \{\emptyset, X\}\}, \{X, P(X)\}\$ are topological spaces and we call $\{X, P(X)\}\$ as a discrete topological space.

Example 2.10. Given (X, d) is a metric space, define $\tau_d : U \in \tau_d$ iff $\forall x \in U, \exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq U$. Then τ_d is a topology.

Proof. First, $\emptyset, X \in \tau_d$ since $\forall x \in \emptyset, B_1(x) \subseteq \emptyset$ and $\forall x \in X, B_1(x) \subseteq X$.

Then suppose $U_1, \dots, U_n \in \tau_d$, we want to show:

$$U = \bigcap_{i=1}^{n} U_i \in \tau_d \Leftrightarrow \forall x \in U, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subseteq U.$$

Since $U_1, \dots, U_n \in \tau_d$ and $x \in U$, then $x \in U_i, \forall i = 1, \dots, n, \exists \varepsilon_i > 0$ s.t. $B_{\varepsilon_i}(x) \subseteq U_i$. Take $\varepsilon = \min_{1 \leq i \leq n} \varepsilon_i$ and thus $B_{\varepsilon}(x) \subseteq U_i, \forall i = 1, \dots, n$. Hence, $B_{\varepsilon}(x) \subseteq U_i \subseteq U$.

Finally, let $\{U_i : i \in I\} \subseteq \tau_d$, we want to show:

$$U = \bigcup_{i \in I} \in \tau_d \Leftrightarrow \forall x \in U, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subseteq U.$$

Pick $i_0 \in I, x \in U_{i_0} \subseteq U$. Since $U_{i_0} \in \tau_d$ then $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq U_{i_0} \subseteq U$.

Wherefore, τ_d is a topology.

Definition 2.5. A subset F of a topological space (X, τ) is **closed** if $X \setminus F$ is open.

Property 2.1. Given a topological space (X, τ) , we have:

- $(1) \varnothing, X$ are closed;
- (2) F_1, \dots, F_n are closed then $\bigcup_{i=1}^n F_i$ is closed; (3) $\{F_i, i \in I\}$ is a collection of closed set, then $\bigcap_{i \in I} F_i$ is closed.

Definition 2.6. Given a topological space $(X, \tau), \tau \subseteq P(X)$ and $F \subseteq X$. Define the **topological closure** of F as the minimal closed superset of F, i.e.,

$$\overline{F} = \bigcap \{H : H \text{ is closed}, H \supseteq F\}.$$

Define the *interior* of F as the maximal open subset of F, i.e.,

$$F^{\circ} = \bigcup \{U : U \text{ is open}, U \subseteq F\}.$$

Example 2.11. Given (X, d) is a metric space, τ_d is the topology that $U \in \tau_d$ iff $\forall x \in U, \exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq U$. Suppose $F \subseteq X$, then

$$\overline{F} = \{ x \in X : \forall \varepsilon > 0, B_{\varepsilon}(x) \cap F \neq \emptyset \} = \left\{ \lim_{n \to \infty} x_n : (x_n) \subseteq F, \lim_{n \to \infty} x_n \text{ exists} \right\}$$

and

$$F^{\circ} = \{x \in X : \exists \varepsilon > 0, B_{\varepsilon}(x) \subseteq F\} = \bigcup \{B_{\varepsilon}(x) : \varepsilon > 0, x \in F, B_{\varepsilon}(x) \subseteq F\}.$$

Property 2.2. If $K_1 \supseteq K_2 \subseteq \cdots$ are compact and nonempty subsets of X, then $K = \bigcap_{n=1}^{\infty} K_n$ is compact and nonempty.

Definition 2.7. Let (X,d) be a metric space. $P \subseteq X$ is **perfect** if it is closed nonempty and for every open $U \subseteq X, U \cap P \neq \emptyset, U \cap P$ has at least two elements. Or $\forall x \in P, \forall \varepsilon > 0, B_{\varepsilon}(x) \cap P$ has at least one more element besides x.

Example 2.12. $S = [0,1] \cup \left\{\frac{3}{2}\right\} \cup [2,3]$ is not perfect.

Property 2.3. Perfect subsets P of complete metric space are not countable.

Proof. #Todo

Example 2.13 (Cantor Set). $C \subseteq [0,1], C = \bigcap_{n=0}^{\infty} C_n$, where $\emptyset \neq C_n \subseteq [0,1]$ and C_n is closed and compact. $C_0 = [0,1], C_1 = [0,1] \setminus \left(\frac{1}{3}, \frac{2}{3}\right) = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right], C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{1}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right], \cdots$.

Definition 2.8. Let (X, d) be a metric space, $A \neq \emptyset, B \subseteq X$. A and B are **separated** if $\overline{A} \cap B = \overline{B} \cap A = \emptyset$.

Definition 2.9. A set $C \subseteq X$ is **connected** if for every decomposition $C = A \cup B, A, B \neq \emptyset, A$ and B are not separated, i.e., $\overline{A} \cap B \neq \emptyset$ or $\overline{B} \cap A \neq \emptyset$.

Property 2.4. $C \subseteq \mathbb{R}$ is connected iff for all a < b in C and every c, a < c < b belongs to C, i.e., $\forall a, b \in C, [a, b] \subseteq C$.

Proof. Let $C = A \cup B$, $a_0 \in A$, $b_0 \in B$, $a_0 < b_0$. We define $I_0 = [a_0, b_0]$, $c_0 = \frac{a_0 + b_0}{2}$. Define $I_1 = [a_0, c_0], \cdots$. We have $x \in \overline{A} \cap B$ or $\overline{B} \cap A$.

3 Sequences and Series

3.1 Sequences

Definition 3.1. Let (X,d) be a metric space. A sequence $(x_n)_{n\in\mathbb{N}}$ converges to $x\in X$ iff

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant N, d(x_n, x) < \varepsilon,$$

denoted $\lim_{n\to\infty} x_n = x$.

Property 3.1. If $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$, then x = y.

Proof. We want to show: $d(x,y) = 0 \Leftrightarrow \forall \varepsilon > 0, d(x,y) < \varepsilon$.

Since $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\exists N_1$ s.t. $\forall n \geqslant N_1, d(x_n, x) < \frac{\varepsilon}{2}$ and $\exists N_2$ s.t. $\forall n \geqslant N_2, d(x_n, y) < \frac{\varepsilon}{2}$. Take $n \geqslant \max(N_1, N_2)$, then we have

$$d(x,y) \le d(x_n,x) + d(x_n,y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Property 3.2. Let (X, d) be a metric space. Suppose $\lim_{n\to\infty} x_n = x, (x_n) \subseteq F$ and F is closed, then $x \in F$.

Proof. Suppose $x \notin F$, i.e., $x \in X \setminus F$. Since F is closed then $X \setminus F$ is open, so $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq X \setminus F$. Pick N s.t. $\forall n \ge N, d(x_n, x) < \varepsilon$, then $x_n \in B_{\varepsilon}(x) \Rightarrow (x_n) \subseteq X \setminus F$, which is a contradiction.

Property 3.3. Let (X, d) be a metric space. Suppose $F \subseteq X$, and if F is not closed, then $\exists (x_n) \subseteq F$ and $x \notin F$ s.t. $\lim_{n \to \infty} x_n = x$.

Proof. If F is not closed, then $U = X \setminus F$ is not open. So $\exists x \in U$ s.t. $\forall \varepsilon > 0, B_{\varepsilon}(x) \nsubseteq U$. Take $x_n \in B_{\frac{1}{n}}(x) \setminus U = B_{\frac{1}{n}}(x) \cap F, \forall n \in \mathbb{N}$. Then $(x_n) \subseteq F$.

Let $\varepsilon > 0, N = \left[\frac{1}{\varepsilon}\right] + 1$, and $n \ge N$. Since $x_n \in B_{\frac{1}{n}}(x)$, then $d(x_n, x) < \frac{1}{n} \le \varepsilon$, i.e., $\lim_{n \to \infty} x_n = x$.

Definition 3.2. A sequence (x_n) in a metric space (X, d) is **Cauchy** if

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall m, n \geqslant N, d(x_n, x_m) < \varepsilon.$$

Property 3.4. Convergent sequences are Cauchy.

Proof. Suppose $\lim_{n\to\infty} x_n = x$. Let $\varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant N, d(x, x_n) < \frac{\varepsilon}{2}$. Take $m, n \geqslant N$,

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Note that when $X = \mathbb{R}$ with the usual metric, the converse is true. But in general, the converse is not. For example, $X = \mathbb{R} \setminus \{0\}$ with d(x,y) = |x-y|. Let $x_n = \frac{1}{n}$.

Definition 3.3. A metric space (X, d) is **complete** iff every Cauchy sequence is convergent.

Example 3.1. Here are some examples of complete metric space:

- \mathbb{R} with d(x,y) = |x-y|.
- (X, d) with dubiscrete metric $d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$.
- C[0,1] with $d(f,g) = \sup_{x \in [0,1]} |f(x) g(x)| = ||f g||_{\infty}$.
- $(\mathbb{N}^{\mathbb{N}}, d)$ with $d((x_n), (y_n)) = \frac{1}{\min\{n: x_n \neq y_n\}}$.

Definition 3.4. A set $D \subseteq X$ is **dense** if $\overline{D} = X$, i.e., every point of X is a limit of a sequence of elements of D, or

$$\forall x \in X, \forall \varepsilon > 0, B_{\varepsilon}(x) \cap D \neq \emptyset \Leftrightarrow \forall U \subseteq X, U \neq \emptyset, U \cap D \neq \emptyset,$$

where U is open.

Example 3.2. \mathbb{Q} is dense in \mathbb{R} , i.e., \mathbb{Q} has a point in any open nonempty interval.

Theorem 3.1 (Baire Category Theorem). If (X, d) is complete, then intersection of dense open subsets $\bigcap_{n=1}^{\infty} D_n$ of X is dense in X.

Proof. Claim. Suppose D_1, \dots, D_n is a finite list of dense open subsets of $(X, d), D = \bigcap_{i=1}^n D_i$ is also dense and open.

First note that D is open. Take $U \neq \emptyset$ be open. We need to show $U \cap D \neq \emptyset$. We have

$$U_1 = U \cap D_1 \neq \emptyset$$

$$U_2 = U_1 \cap D_2 \neq \emptyset$$

$$\vdots$$

$$U_n = U_{n-1} \cap D_n \neq \emptyset,$$

and thus $U_n = U \cap D \neq \emptyset$.

We may assume that $D_1 \supseteq D_2 \supseteq \cdots$. Take $x_1 \in D_1$, then $\exists 0 < \varepsilon_1 < 1$ s.t. $B_{\varepsilon_1}(x_1) \subseteq D_1$. Take $x_2 \in B_{\varepsilon_1}(x_1) \cap D_2 \neq \emptyset$, then $\exists 0 < \varepsilon_2 < \frac{1}{2}$ s.t. $\overline{B_{\varepsilon_2}(x_2)} \subseteq D_2, \cdots$. Suppose $n < m, x_m \in B_{\varepsilon_n}(x_n)$, i.e., $d(x_n, x_m) < \frac{1}{n}$. Thus $\{x_n\}$ is Cauchy. Thus, $x = \lim_{n \to \infty} x_n = \lim_{m \to \infty} x_m \subseteq \overline{B_{\varepsilon_n}(x_m)}$. Hence,

$$x \in \bigcap_{n=1}^{\infty} D_n$$
.

Definition 3.5. $N \subseteq X$ is **nowhere dense** if $\forall U \neq \emptyset, \exists V \subseteq U$ s.t. $V \neq \emptyset$ and $V \cap N = \emptyset$, where U is open.

Definition 3.6. A metric space (X, d) is **compact** if every sequence has a converge subsequence, i.e.,

$$\forall (x_n) \subseteq X, \exists (x_{n_k}) \subseteq (x_n), \exists x \in X \text{ s.t. } \lim_{k \to \infty} x_{n_k} = x \in X.$$

Example 3.3. $(\mathbb{R}, |x-y|)$ is not compact (e.g., $x_n = n$) and ([0,1], |x-y|) is compact.

Property 3.5. Suppose (x_{n_k}) is a subsequence of (x_n) and $\lim_{n\to\infty} x_n = x$, then $\lim_{k\to\infty} x_{n_k} = x$.

Proof. Since $\lim_{n\to\infty} x_n = x$, then

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant N, d(x, x_n) < \varepsilon.$$

Take K = N, let $k \ge N$, we have $n_k \ge k \ge N$, and thus $d(x, x_{n_k}) < \varepsilon$.

Property 3.6. If (X, d) is compact, then it is bounded, i.e., $\exists M \text{ s.t. } \forall x, y \in X, d(x, y) \leq M$.

Property 3.7. If $Y \subseteq X$, (X, d) is a metric space, and (Y, d) is compact, then Y is closed in X.

Theorem 3.2 (Bolzano-Weierstrass Theorem). A subset Y of \mathbb{R} is compact iff it is closed and bounded.

Note that the theorem is true for \mathbb{R}^n but is false for infinite dimension.

Theorem 3.3 (Heine-Borel Theorem). A subset Y of a metric space (X, d) is compact if every open cover $Y \subseteq \bigcup_{i=1}^{n} U_i$ has a finite subcover $Y \subseteq \bigcup_{i=1}^{n} U_{i_i}$.

Definition 3.7. $(x_n) \subseteq \mathbb{R}$ is **monotone** if either $x_n \leqslant x_m, n \leqslant m$ or $x_n \geqslant x_m, n \leqslant m$.

Theorem 3.4 (Monotone Subsequence Theorem). Every sequence $(x_n) \subseteq \mathbb{R}$ has a monotone subsequence.

Proof. We define a peak term: given a (x_n) , a particular term x_m is a peak term if $x_m \ge x_n, \forall n \ge m$. Now let (x_n) be any sequence, define set of peaks: $P = \{x_n : x_n \ge x_m, \forall m \ge n\}$. If P is infinite then $\exists (x_{n_k})$ s.t. $x_{n_k} \in P$ is a decreasing subsequence of (x_n) . If P is finite then let $x_m = \min P$. Let $n_1 = m + 1$ then $x_{n_1} \notin P$ so that exists element is greater than x_{n_1} . Define $n_{k+1} = \min\{m \in \mathbb{N} : n_1 \in \mathbb$ $x_m > x_{n_k}$. Hence we get $x_{n_{k+1}} > x_{n_k}$ so (x_{n_k}) is an increasing subsequence of (x_n) .

Theorem 3.5. Every bounded sequence contains a convergent subsequence.

Proof. If (x_n) is bounded sequence, then $\exists (x_{n_k})$ s.t. (x_{n_k}) is monotone and bounded sequence. Then by theorem, (x_{n_k}) must converge.

Property 3.8. If $a_n \leq b_n, \forall n, a = \lim_{n \to \infty} a_n, b = \lim_{n \to \infty} b_n$, then $a \leq b$.

Proof. Suppose a > b. Let $\varepsilon = \frac{a-b}{2}$. We know $\exists N_1 \text{ s.t. } a_n \in B_{\varepsilon}(a) \text{ for } n \geqslant N_1 \text{ and } \exists N_2 \text{ s.t. } b_n \in B_{\varepsilon}(b)$ for $n \ge N_2$. Take $n > \max(N_1, N_2)$, then we have

$$b_n < \frac{a+b}{2} < a_n,$$

which is a contradiction.

Property 3.9 (Algebraic Limit Theorem). Suppose $a = \lim_{n \to \infty} a_n, b = \lim_{n \to \infty} b_n$, then:

- (1) $a + b = \lim_{n \to \infty} (a_n + b_n);$ (2) $ab = \lim_{n \to \infty} a_n b_n;$ (3) $\frac{a}{b} = \lim_{n \to \infty} \frac{a_n}{b_n}, \text{ and } b \neq 0.$

Property 3.10. Monotone bounded sequence (x_n) converges to its supremum or infimum.

Proof. We only prove one situation: Fix $\varepsilon > 0$. Let $s = \sup\{x_n : n \in \mathbb{N}\}$. We have $s - \varepsilon < s$ and thus $s-\varepsilon$ is not an upper bound of (x_n) . Therefore, there is N s.t. $x_N > s-\varepsilon$. Take $n \ge N$, we have $x_n \ge x_N > s - \varepsilon$. Therefore, we have $|x_n - s| < \varepsilon$.

Definition 3.8. We define

$$\limsup_{n\to\infty} x_n = \inf\{y_m : m \in \mathbb{N}\},\$$

where $y_m = \sup\{x_n : n \geqslant m\}$.

$$\liminf_{n \to \infty} x_n = \sup\{z_m : m \in \mathbb{N}\},$$

where $z_m = \inf\{x_n : n \ge m\}$.

3.2 Series

Definition 3.9. We define

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n, S_n = \sum_{k=1}^n a_k.$$

We call $\sum_{k=1}^{\infty} a_k$ is a summable series if the limit exists, i.e.,

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant N, |S_n - A| < \varepsilon.$$

Property 3.11 (Cauchy Criterion for Series). $\sum_{k=1}^{\infty} a_k$ is summable iff

$$\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant m \geqslant N, |S_n - S_m| = \left| \sum_{k=m+1}^n a_k \right| < \varepsilon.$$

Corollary 3.1. If $\sum_{k=1}^{\infty} a_k$ is summable, then $|a_k| \to 0$.

Proof. We have $|a_k| = |s_k - s_{k-1}| < \varepsilon$ for k > N.

Example 3.4. $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is summable.

Proof. Since $S_m \leq S_n, \forall m \leq n$, then it suffices to find $0 < M < \infty$ s.t. $S_m < M, \forall m$. We have

$$S_m = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{m^2} < 1 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \dots + \frac{1}{m(m-1)}$$
$$= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right) = 1 + 1 - \frac{1}{m} < 2.$$

Example 3.5. $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$.

Proof. We have

$$\sum_{n=1}^{2^k} \frac{1}{n} \ge 1 + \frac{k}{2} \to \infty \text{ as } k \to \infty.$$

Theorem 3.6 (Algebraic Limit Theorem for Series). Suppose $\sum_{k=1}^{\infty} a_k = A$, $\sum_{k=1}^{\infty} b_k = B$, $c \in \mathbb{R}$, then

$$(1) \sum_{k=1}^{\infty} ca_k = cA;$$

$$(2) \sum_{k=1}^{\infty} (a_k + b_k) = A + B.$$

Proof. (1) We want to show $\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant N, \left| \sum_{k=1}^{\infty} ca_k - cA \right| < \varepsilon. \text{ We know } \forall \varepsilon_0 > 0, \exists N_{\varepsilon_0} \text{ s.t.} \right|$

 $\forall n \geq N_{\varepsilon_0}, \left|\sum_{k=1}^{\infty} a_k - A\right| < \varepsilon_0.$ Take $\varepsilon_0 = \frac{\varepsilon}{|c|}$, then we have

$$\left| \sum_{k=1}^{\infty} ca_k - cA \right| = |c| \left| \sum_{k=1}^{\infty} a_k - A \right| < |c| \cdot \frac{\varepsilon}{|c|} = \varepsilon.$$

Property 3.12 (Order Comparison Test). Suppose $b_k \ge a_k \ge 0, \forall k$. If $\sum_{k=1}^{\infty} b_k$ converges so does $\sum_{k=1}^{\infty} a_k$. If $\sum_{k=1}^{\infty} a_k$ diverges so does $\sum_{k=1}^{\infty} b_k$.

Definition 3.10. We call a geometric series if it is

$$\sum_{k=1}^{\infty} ar^k.$$

Note that the geometric series converges to $\frac{a}{1-r}$ whenever $r^m \to 0$ iff |r| < 1/r

Definition 3.11. $\sum_{k=1}^{\infty} a_k$ is **absolutely convergent** if $\sum_{k=1}^{\infty} |a_k|$ is convergent. $\sum_{k=1}^{\infty} a_k$ is **conditionally convergent** if $\sum_{k=1}^{\infty} a_k < \infty$ but $\sum_{k=1}^{\infty} |a_k| = \infty$.

Example 3.6 (Alternating Series). $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} < \infty \text{ but } \sum_{k=1}^{\infty} \left| \frac{(-1)^{k+1}}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$

Property 3.13 (Absolute Convergence Test). If $\sum_{k=1}^{\infty} |a_k|$ converges so does $\sum_{k=1}^{\infty} a_k$.

Proof. We use Cauchy test for $\sum_{k=1}^{\infty} a_k$, i.e., we want to show $\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geqslant m \geqslant N, |a_{m+1} + a_{m+2} + \cdots + a_n| < \varepsilon$. We know $|a_{m+1} + \cdots + a_n| \leqslant |a_{m+1}| + \cdots + |a_n| = t_n - t_m$, where $t_n = \sum_{k=1}^n |a_k|$. Given $\varepsilon > 0$ and N s.t. $|t_n - t_m| < \varepsilon$, then this N works for $|S_n - S_m| < \varepsilon$, where $S_n = \sum_{k=1}^n a_k$. \square

Property 3.14 (Alternating Series Test). Suppose $a_1 \ge a_2 \ge \cdots \ge 0$, $\lim_{k \to \infty} a_k = 0$, then $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ is convergent.

Proof. We want to show $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n (-1)^{k+1} a_k$ is Cauchy.

Suppose n > m, then $|s_n - s_m| = |a_{m+1} - a_{m+2} + \cdots + (-1)^{n-m+1}a_n|$. Since (a_n) is a non-negative decreasing sequence, then

$$a_{m+1} - a_{m+2} + \dots + (-1)^{n-m-1} a_n = a_{m+1} - (a_{m+2} - a_{m+3}) - (a_{m+4} - a_{m+5}) - \dots \le a_{m+1}.$$

Thus, $0 \le |s_n - s_m| \le a_{m+1}$. Since $a_{m+1} \to 0$ then $\forall \varepsilon > 0, \exists N \text{ s.t. } \forall m \ge N, |a_{m+1}| = a_{m+1} < \varepsilon$. Take such N and thus $\forall n > m \ge N, |s_n - s_m| < \varepsilon$.

Property 3.15 (Ratio Test). Given $\sum_{k=1}^{\infty} a_k, a_k \neq 0, \forall k$. If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = r < 1$, then $\sum_{k=1}^{\infty} |a_k|$ is convergent.

Proof. Define $S = \left\{ n \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \geqslant r' \right\}$, then S contains finitely many elements of \mathbb{N} . If S were to be infinite set, if we take $\varepsilon = r' - r$, then $\left| \frac{a_{n+1}}{a_n} \right| - r \geqslant r' - r$ for infinitely many terms which contradicts that r point of convergence. Therefore, $S' = \left\{ n \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| < r' \right\}$ contains all but

finitely many elements of \mathbb{N} . Let $N=1+\max S$, then $\forall n\geqslant N, \left|\frac{a_{n+1}}{a_n}\right|< r'\Rightarrow |a_{n+1}|< r'|a_n|$. Since $0< r'<1, \sum\limits_{n=1}^{\infty}(r')^n$ converges which implies $|a_N|\sum\limits_{n=1}^{\infty}(r')^n$ converges. We have $\sum\limits_{n=1}^{\infty}|a_n|=\sum\limits_{n=1}^{N}|a_n|+\sum\limits_{n=N+1}^{\infty}|a_n|< C+|a_N|\sum\limits_{n=N+1}^{\infty}(r')^{n-N}$ converges by comparison test. Hence $\sum\limits_{n=1}^{\infty}|a_n|$ converges. \square

Definition 3.12. Let $\sum_{k=1}^{\infty} a_k$ be a series. A series $\sum_{k=1}^{\infty} b_k$ is called a **rearrangement** of $\sum_{k=1}^{\infty} a_k$ is for all n, there is unique k s.t. $b_k = a_n$.

Example 3.7. $a_k = \frac{1}{k}, b_{2k} = \frac{1}{2k+1}, b_{2k+1} = \frac{1}{2k}.$

4 Functional Limits and Continuity

4.1 Functional Limits

Definition 4.1. Let $A \subseteq \mathbb{R}$, $a \in \overline{A \setminus \{a\}}$, i.e., a is an accumulation point of A. Let $f: A \to \mathbb{R}$, define $\lim_{x \to a} f(x) = L$ iff

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Example 4.1. f(x) = cx on $A = \mathbb{R}, a \in \overline{A \setminus \{a\}}, \lim_{x \to a} f(x) = ca$.

Proof. Let $\varepsilon > 0, \delta = \frac{\varepsilon}{|c|}$, then we have $|cx - ca| = |c||x - a| < \varepsilon$.

Example 4.2. $f(x) = x^2$ on $A = \mathbb{R}$, $\lim_{x \to \sqrt{2}} = f(x) = 2$.

Proof. Let
$$\varepsilon > 0$$
. Let $\delta = \min\left(\frac{\varepsilon}{2+\sqrt{2}}, 2-\sqrt{2}\right)$. Let $0 < |x-\sqrt{2}| < \delta$, we have $|x^2-2| = |x-\sqrt{2}||x+\sqrt{2}| < (2+\sqrt{2})|x-\sqrt{2}| = \varepsilon$.

Property 4.1 (Sequential Criterion for Functional Limits). Suppose $a \in \overline{A \setminus \{a\}}, f : A \to \mathbb{R}$. The following are equivalent:

- $(1) \lim f(x) = L;$
- $(2) \ \forall (x_n) \subseteq A \setminus \{a\}, x_n \to a \Rightarrow f(x_n) \to L.$

Proof. We prove $(1) \Rightarrow (2)$: Take arbitrary $(x_n) \subseteq A \setminus \{a\}, x_n \to a$. Let $\varepsilon > 0, \exists \delta > 0$ s.t. $0 < |x-a| < \delta \Rightarrow |f(x)-L| < \varepsilon$. Also, $\exists N$ s.t. $n \ge N \Rightarrow |x_n-a| < \delta$. Let $n \ge N$, then $|x_n-a| < \delta$ and thus $|f(x_n)-L| < \varepsilon$.

Theorem 4.1 (Algebraic Limit Theorem for Functional Limits). Suppose $f, g : A \to \mathbb{R}, a \in \overline{A \setminus \{a\}}$. Suppose $\lim_{x \to a} f(x) = L, \lim_{x \to a} g(x) = M, c \in \mathbb{R}$. We have

- $(1) \lim_{x \to a} cf(x) = cL;$
- (2) $\lim_{x \to a} (f(x) + g(x)) = L + M;$
- (3) $\lim_{x \to a} (f(x)g(x)) = LM;$
- (4) $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}$ when $M \neq 0$.

Property 4.2 (Divergence Criterion). Suppose $f: A \to \mathbb{R}, a \in \overline{A \setminus \{a\}}$. $\lim_{x \to a} f(x)$ does not exist if there are two sequences $(x_n).(y_n) \subseteq A \setminus \{a\}$ s.t. $x_n \to a, y_n \to a, \lim_{n \to \infty} f(x_n) = L, \lim_{n \to \infty} f(y_n) = M$ exist but $L \neq M$.

Example 4.3. Let $A = \mathbb{R}^+$, a = 0, $f(x) = \sin\left(\frac{1}{x}\right)$. Let $a_n = \frac{1}{2n\pi}$, $b_n = \frac{1}{2n\pi + \frac{\pi}{2}}$. We have $a_n, b_n \to a$. Besides, $\lim_{n \to \infty} f(a_n) = 0$, $\lim_{n \to \infty} f(b_n) = 1$. Hence $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right)$ does not exist.

Definition 4.2. Suppose $f: A \to \mathbb{R}, a \in A \setminus \{a\}$. We define $\lim_{x \to a} f(x) = \infty$ iff

$$\forall M > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow f(x) > M.$$

Definition 4.3. we define $\lim_{x\to\infty} f(x) = L$ iff

$$\forall \varepsilon > 0, \exists M > 0 \text{ s.t. } x > M \Rightarrow |f(x) - L| < \varepsilon.$$

4.2 Continuous Functions

Definition 4.4. Suppose $(X, d_X), (Y, d_Y)$ are metric spaces. $f: X \to Y$ is **continuous** at $a \in X$ if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } x \in B_{\delta}^{X}(a) \Rightarrow f(x) \in B_{\varepsilon}^{Y}(f(a)).$$

Note that for $X = Y = \mathbb{R}$, d(x,y) = |x-y|, we can write $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $|x-a| < \delta \Rightarrow |f(x) - f(a)| > \varepsilon$, i.e., $\lim_{x \to a} f(x) = f(a)$.

Definition 4.5. $f: X \to Y$ is **continuous** if it is continuous at every point $a \in X$.

Property 4.3. The following are equivalent:

- (1) f is continuous at a;
- $(2) \lim f(x) = f(a);$
- (3) $\forall (x_n) \subseteq A, x_n \to a \Rightarrow f(x_n) \to f(a).$

Corollary 4.1. f is discontinuous at a if there is sequence $(x_n) \to a$ s.t. $\lim_{n \to \infty} f(x_n) \neq f(a)$.

Note that we may have $\lim_{x\to a} f(x)$ exists but f is discontinuous at a.

Theorem 4.2 (Algebraic Continuous Theorem). Suppose $f, g : A \to \mathbb{R}$ are continuous at $a \in A, c \in \mathbb{R}$. We have

- (1) cf(x) is continuous at a;
- (2) $f(x) \pm g(x)$ is continuous at a;
- (3) f(x)g(x) is continuous at a;
- (4) $\frac{f(x)}{g(x)}$ is continuous at a if $g(a) \neq 0$.

Property 4.4. Suppose $f: A \to B \subseteq \mathbb{R}, g: B \to \mathbb{R}$. $(g \circ f)(x) = g(f(x))$ is continuous at $a \in A$ whenever f is continuous at a and g is continuous at f(a).

Property 4.5. Suppose $(X, d_X), (Y, d_Y)$ are metric spaces, $f: X \to Y$ is continuous. If $K \subseteq X$ is compact, so is its image $f[K] = \{f(x) : x \in K\}$.

Property 4.6. Suppose $(X, d_X), (Y, d_Y)$ are metric spaces. $f^{-1}(F)$ is closed in X whenever $F \subseteq Y$ is closed in Y.

Theorem 4.3 (Extreme Value Theorem). If $f: K \to \mathbb{R}$ is continuous, K is compact, then $\exists x_1, x_2 \in K$ s.t. $\forall x \in K, f(x_1) \leq f(x) \leq f(x_2)$.

Proof. Let $H = f[K] = \{f(x) : x \in K\} \subseteq \mathbb{R}$, which is compact. Since compact subsets of \mathbb{R} are bounded, then let $y_2 = \sup(H)$. We have $y \leqslant y_2, \forall y \in H$ and $\forall \varepsilon > 0, \exists y \in H$ s.t. $y_2 - \varepsilon < y \leqslant y_2$. Take $\varepsilon = \frac{1}{n}, z_n \in H$, then $y_2 - \frac{1}{n} < z_n \leqslant y_2$. Now we find $a_n \in K$ s.t. $f(a_n) = z_n, n = 1, 2, \cdots$. By theorem, we have $a_{n_k} \to x_2$, then $f(x_2) = \lim_{k \to \infty} f(a_{n_k}) = y_2$.