- 1. Suppose A is a set with n elements.
 - (i) How many binary relations are there on A?
 - (ii)* How many of these relations are reflexive?
 - (iii) How many of these relations are symmetric?
 - (iv) How many of these relations are antisymmetric?
 - (v) How many of these relations are antisymmetric and symmetric?
 - (vi)* How many of these relations are not reflexive and not symmetric?

[Hint: Consider the graph representation of the relation.

You should use small values of n to check the validity of your formulas.

Solution:

|A| = n. In the following, consider the directed/undirected graph representing the relation.

- (i) binary relations: 2^{n^2} from Tutorial 9, Problem 9(i).
- (ii)* reflexive relations:

Consider all n loops and $\binom{n}{2}$ node pairs in the graph representation.

For reflexive, all loops must be included.

For each node pair, there are 4 choices $(\rightarrow, \leftarrow, \stackrel{\rightarrow}{\leftarrow}, \text{ no edge})$. Total: $1^n 4^{\binom{n}{2}}$.

(iii) symmetric relations:

In the graph representation, there is a maximum of n loops and $\binom{n}{2}$ node pairs.

From these, pick any subset of node pairs $\{x,y\}$ and add edges $x \to y$ and $x \leftarrow y$.

Total: $2^{n+\binom{n}{2}} = 2^{n(n+1)/2}$.

(iv) antisymmetric relations:

Like in (c), pick any subset of node pairs $\{x,y\}$, and add either $x \to y$ or $x \leftarrow y$, but not

both.

Total: $2^n 3^{\binom{n}{2}}$, where 2^n is for the loops, and 3 is for no edge, $x \to y$ or $x \leftarrow y$.

(v) antisymmetric and symmetric:

The only possibility is the graph has no $x \to y$ edges, only loops.

Each node may or may not have a loop, so the total is $2^n 1^{\binom{n}{2}}$.

(vi)* not reflexive and not symmetric:

$$\sim p \land \sim q \equiv \sim (p \lor q)$$
, so the total is

(number of relations – number of reflexive or symmetric relations).

Using Inclusion/Exclusion, number of reflexive or symmetric relations is

$$4^{\binom{n}{2}} + 2^{n(n+1)/2} - 2^{\binom{n}{2}}$$
.

so #(not reflexive and not symmetric) = $2^{n^2} - (2^{n^2-n} + 2^{n(n+1)/2} - 2^{n(n-1)/2})$.

Alternative:

#(not reflexive and not symmetric) = #(not reflexive) #(not symmetric)

$$= (2^{n} - 1)(4^{\binom{n}{2}} - 2^{\binom{n}{2}}) = (2^{n} - 1)(2^{n(n-1)} - 2^{n(n-1)/2}) = 2^{n^{2}} - 2^{n(n-1)} - 2^{n(n+1)/2} + 2^{n(n-1)/2}.$$

- 2. Let \mathcal{G}_3 be the set of all undirected graphs whose vertices are a, b, c. Suppose $G = (\{a, b, c\}, E) \in \mathcal{G}_3$. Determine the number of possible G's such that:
 - (i)* G has a loop;
- (ii)* G has a cycle;
- (iii) G is cyclic;
- $(iv)^* G$ is connected;
- (v) G is a tree;
- (vi) G has exactly two connected components.

Solution:

Consider (labelled) undirected graphs with 3 nodes.

Each node may or may not have a loop $(2^3 \text{ possibilities})$,

and each node pair may or may not have an edge $(2^{\binom{3}{2}})$ possibilities).

Total = $2^3(2^3) = 2^6 = 64$.

- (i)* #graphs with no loops = $1^3 2^{\binom{3}{2}} = 8$ \Rightarrow #graphs with loops = 64 - 8 = 56.
- (ii)* #graphs with a cycle (choice only in loops) = $2^3 = 8$.
- (iii) $\#(\sim loop \land \sim cycle) = 2^{\binom{3}{2}} 1 = 7.$ $\# cyclic = \#(loop \lor cycle) = 64 - 7 = 57.$
- (iv)* #connected $\Leftrightarrow \land, <, >$ or \triangle and any choice of loops: $4(2^3) = 32$ possibilites
- (v) tree $\Leftrightarrow \land, <$, or > and no loops: 3 possibilities
- (vi) G has exactly 2 components \Leftrightarrow 1 edge only and any choice of loops: $\binom{3}{1}2^3 = 24$ possibilities.

- 3.* The diagram here illustrates an undirected graph K, called a **3-sided wheel**:
 - (i) Let $K = (V_K, E_K)$. List the elements of E_K .
 - (ii) How many different 3-sided wheels are there with $V_K = \{u, x, y, z\}$?
 - (iii) Determine the number of different 3-sided wheels with $V_K \subseteq \{1, 2, 3, 4, 5, 6\}$ (e.g. u = 4, x = 6, y = 2, z = 3)?

3-sided wheel K with vertices u, x, y, z

The diagram here shows two 4-sided wheels H and H':

(iv) Explain why $H \neq H'$.

4-sided wheel H

4-sided wheel H'

- (v) Determine the number of different 4-sided wheels H with vertex set $V_H = \{1, 2, 3, 4, 5\}$.
- (vi) Determine the number of different 4-sided wheels H with vertex set $V_H \subseteq \{1, 2, 3, 4, 5, 6, 7\}$.

Solution:

- (i) $E_K = \{\{u, x\}, \{u, y\}, \{u, z\}, \{x, y\}, \{y, z\}, \{x, z\}\}$
- (ii) Just 1, since E_K already has all possible edges
- (iii) There are $\binom{6}{4} = 15$ choices for V_K ; each choice gives one 3-sided wheel. Therefore, there are 15 possibilities.
- (iv) $H \neq H'$ since u in H has 4 edges, but u in H' has 3 edges.
- (v) With u at the center, there are just 3 possible wheels, determined by who is not connected to x by one edge. There are 5 possible choices for the center, so there are $5 \times 3 = 15$ possible 4-sided wheels (Multiplication Rule)
- (vi) There are $\binom{7}{5} = 21$ choices for V_H ; each choice gives 15 4-sided wheels. Therefore there are $21 \times 15 = 315$ possible 4-sided wheels for $V_H \subseteq \{1, 2, 3, 4, 5, 6, 7\}$.
- 4. Our definition for undirected graphs *labels* the vertices. Thus (a) and (b) below are considered different:

(a)

(b)

(c)

(d)

(e)

However, they are the same if we ignore the labels, as in (c). We now define what "same" means: Two finite loopless undirected graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ are **isomorphic** (denoted $G \simeq H$) iff there is a permutation $\pi : V_G \to V_H$ such that $\{u, v\} \in E_G \leftrightarrow \{\pi(u), \pi(v)\} \in E_H$. (An undirected graph is **loopless** if and only if all its vertices do not have loops.) Thus (a) and (b) are isomorphic — consider $\pi(1) = 3, \pi(2) = 1, \pi(3) = 4, \pi(4) = 2$.

- (i) Which of the graphs in (d), (e), (f) and (g) are isomorphic?
- (ii)* Let \mathcal{G} be the set of all loopless undirected graphs whose nodes are $\{1, 2, \dots, n\}$. Prove that \simeq is an equivalence relation on \mathcal{G} . What are in each equivalence class?
- (iii) Determine the number of nonisomorphic loopless undirected graphs with n nodes, for n = 2, 3, 4.

[The computational complexity for determining whether two given graphs are isomorphic is a 30-year-old open problem that lies at the heart of the $P \neq NP$ question.]

Note: "Total" here is actually the number of equivalence classes.

5.* Prove that if a loopless undirected graph has n vertices, where $n \geq 2$, and more than $\binom{n-1}{2}$ edges, then it is connected. Is the converse true?

Solution:

Let G = (V, E) be a loopless undirected graph with n nodes and more than $\binom{n-1}{2}$ edges. Suppose G is not connected, so it can be divided into a subgraph H with k nodes,

and a subgraph H' with n-k nodes, $1 \le k \le n-1$,

such that there is no edge $\{x, x'\}$ in E for any x in H and x' in H'.

such that there is no edge
$$\{x, x'\}$$
 in E for any x in H and x' in Now, H has at most $\binom{k}{2}$ edges and H' has at most $\binom{n-k}{2}$ edges.
$$\binom{k}{2} + \binom{n-k}{2} = \frac{1}{2}(k^2 - k) + \frac{1}{2}((n-k)^2 - (n-k))$$
$$= \frac{1}{2}(n^2 - n - 2nk + 2k^2)$$
$$= \frac{1}{2}((n-1)(n-2) - 2(k-1)(n-(k+1)))$$
$$\leq \binom{n-1}{2} \text{ since } (k-1)((n-k)-1) \geq 0$$
contradicting the fact that G has more than $\binom{n-1}{2}$ edges. Therefore G must be connected.

$$=\frac{1}{2}(n^2-n-2nk+2k^2)$$

$$= \frac{1}{2}((n-1)(n-2) - 2(k-1)(n-(k+1)))$$

$$\leq {n-1 \choose 2}$$
 since $(k-1)((n-k)-1) \geq 0$

Therefore G must be connected.

(Counting argument: The maximum number of edges for an unconnected graph

is when there is one isolated node, i.e. $\binom{n-1}{2}$ edges.) The converse is false: E.g. a-b-c-d-e is connected, but has $4<\binom{5-1}{2}$ edges.

6. Let G = (V, E) be a loopless undirected graph. The **complement** of G is the loopless graph $\overline{G} = (V, F)$, where $\{u, v\} \in F$ if and only if $\{u, v\} \notin E$. Draw the complement of the following graph:

Prove that (for any G) G and \overline{G} cannot both be unconnected.

Solution:

Consider any G = (V, E).

Either G is connected, or G is not connected.

If G is not connected, consider any $x, y \in V$, $x \neq y$.

Either $\{x,y\} \in F$ or $\{x,y\} \notin F$.

If $\{x,y\} \notin F$, then $\{x,y\} \in E$,

so x and y are in the same connected component of G;

call this component H.

Since G is unconnected, there is some node z in G such that z is not in H.

The $\{x,z\} \notin E$ and $\{y,z\} \notin E$,

so $\{x, z\} \in F$ and $\{y, z\} \in F$.

Thus, if G is not connected,

then any $x, y \in V$, $x \neq y$, will have a path in F between them (either $\{x, y\}$, or $\{x, z\}$ and $\{z, y\}$).

In other words, if G is not connected, then \overline{G} is connected.

7.* Let R be a binary relation on a set. Prove that R is transitive if and only if $R_{+} \subseteq R$.

```
Solution:
```

Recall Exercise 6.2.10: R is transitive if and only if $R \circ R \subseteq R$.

Therefore, it suffices to prove that $R \circ R \subseteq R$ if and only if $R_+ \subseteq R$.

$$(\Leftarrow)$$
 $R \circ R = R_2 \subseteq \bigcup_{n=1}^{\infty} R_n = R_+$, so $R_+ \subseteq R$ implies $R \circ R \subseteq R$.

 (\Rightarrow) Suppose $R \circ R \subseteq R$.

We prove by induction on n that $R_n \subseteq R$ for $n \ge 2$.

Basis n = 2: $R_2 = R \circ R \subseteq R$.

Induction Hpothesis Suppose $R_k \subseteq R$ for some $k \ge 2$.

Induction Step Consider any $(x, z) \in R_{k+1} = R \circ R_k$.

Then there is $y \in A$ such that $(x, y) \in R_k$ and $(y, z) \in R$.

But $R_k \subseteq R$ (Ind. Hyp.), so $(x, y) \in R$ and $(y, z) \in R$.

Thus $(x, z) \in R \circ R \subseteq R$, i.e. $(x, z) \in R$.

We conclude that $R_{k+1} \subseteq R$.

By induction $R_n \subseteq R$ for all $n \ge 2$.

Now,
$$(x, y) \in R_+ = \bigcup_{i=1}^{\infty} R_i \Rightarrow (x, y) \in R_n$$
 for some $n \Rightarrow (x, y) \in R$ since $R_n \subseteq R$,

so $R_+ \subseteq R$.

8. Recall from Tutorial 9 (Problem 8) the definition of a complete graph. Let R be an equivalence relation on a nonempty set A, and let G be the undirected graph representing R. Prove that every connected component of G is a complete graph.

Solution: Let R be an equivalence relation on a set $A(\neq \varnothing)$,

and let the undirected graph G = (A, E) represent R.

Consider any $x, y \in A$, $x \neq y$, and x and y in the same connected component.

Corollary 4.5 says x and y are in the same equivalence class, so $[x]_R = [y]_R$.

By Tutorial 5, Problem 7, we get xRy, so $\{x,y\} \in E$.

Thus, every 2 nodes in a connected component have an edge between them.

Since R is reflexive, G also has a loop at every node.

Therefore, every connected component of G is a complete graph.

Consider an undirected graph G, whose connected components are H_1, \ldots, H_k , where $k \geq 2$. Suppose G=(V,E) and $H_1=(V_1,E_1),\ldots,H_k=(V_k,E_k)$. Prove that $\{V_1,\ldots,V_k\}$ is a partition of V. Is

 $\{E_1,\ldots,E_k\}$ a partition of E? **Solution:** G = (V, E) is an undirected graph, and $H_1 = (V_1, E_1), \dots, H_k = (V_k, E_k)$ are connected components, $k \geq 2$. Claim: $\{V_1, \ldots, V_k\}$ is a partition of V. Proof: $V_1 \cup V_2 \cup \cdots \cup V_k = V$: Since $V_i \subseteq V$ for all i, we have $V_1 \cup \cdots \cup V_k \subseteq V$. For any $u \in V$, u must belong to H_i for some i, so $V \subseteq V_1 \cup \cdots \cup V_k$. Thus $V = V_1 \cup \cdots \cup V_k$. V_1, \dots, V_k are disjoint: Consider $i \neq j$. Since $V_i \neq V_j$, we have $\sim (V_i \subseteq V_j \land V_j \subseteq V_i)$, i.e. $V_i \not\subseteq V_j$ or $V_j \not\subseteq V_i$, so either $V_i \setminus V_i \neq \emptyset$ or $V_i \setminus V_i \neq \emptyset$. Without loss of generality, assume $V_i \setminus V_j \neq \emptyset$, so there is some $y \in V_i \setminus V_j$. Suppose $V_i \cap V_j \neq \emptyset$, so there is some $b \in V_i \cap V_j$. Since $b \in V_i$ and $y \notin V_i$, we have $y \neq b$. Since $y, b \in V_i$, there is a path $P = (V_P, E_P)$ in H_i between b and y, say $V_P = \{x_1, \dots, x_n\}$ and $E_P = \{\{x_1, x_2\}, \dots, \{x_{n-1}, x_n\}\}$, where $b = x_1$ and $y = x_n$. Let $H'_j = (V_j \cup V_P, E_j \cup E_P)$. Then H'_j is connected (any two nodes in V_j are connected via edges in E_j , any two nodes in V_P are connected via edges in E_P , and a node in V_i and a node in V_P are both connected to b). Moreover, y is in H'_i but not in H_j , so H_i is a connected and proper subgraph of H_i' . This contradicts the fact that H_i is a connected component. We conclude that $V_i \cap V_j = \emptyset$ if $i \neq j$. Thus $\{V_1, \ldots, V_k\}$ is a partition of V. $\{E_1,\ldots,E_k\}$ may not be a partition since it is possible that $E_i=\varnothing$ for some i.

Suppose $E_i \neq \emptyset$ for all i.

Then, similarly, $E = E_1 \cup \cdots \cup E_k$.

Also, if $i \neq j$, then $E_i \cap E_j = \emptyset$: if $\{b, c\} \in E_i \cap E_j$, then $b, c \in V_i \cap V_j$, contradicting $V_i \cap V_j = \emptyset$