APPENDIX

1. Indices

- a Index of links
- ω Index of O-D pairs
- k Index of paths
- i, j Indices of nodes in the transportation network or buses in the power network

2. Sets in the Transportation Network

- \bullet T_N Set of nodes in the transportation network
- T_A Set of links in the transportation network
- $\Lambda^{(|N| \times |A|)}$ Node-link incidence matrix
- Q Set of travel demand
- K Set of paths in the network
- ullet W Set of travel demand O-D pairs
- L Set of battery levels for EVs
- $I^{|W|}$ Binary matrix indicating the origins and destinations of O-D pairs
- Δ Set of vehicle routes

3. Variables in the Transportation Network

- ullet x_a Number of vehicles on link a
- f_k^w Number of vehicles assigned to path k for O-D pair w
- $F_i^{w_e l_0}$ Charging demand at node i for vehicles in O-D pair w_e with initial battery level l_0
- $L_i^{w_e l_0}$ Battery level at node i for vehicles in O-D pair w_e with initial battery level l_0
- v_a^w Binary variable indicating whether O-D pair w traverses link a

4. Parameters in the Transportation Network

- δ^w_{ak} Binary parameter indicating whether path k includes link a
- ullet c_a Maximum vehicle capacity of link a
- ullet q_w Travel demand for O-D pair w
- λ_i Electricity price at charging station i
- ullet c_i Time required to charge per unit battery level at station i
- d_a Length of link a
- ω Energy consumption rate of EVs
- M, N Sufficiently large constants

5. Sets in the Power Network

- P_N Set of buses
- P_L Set of transmission lines
- $\Gamma^{-1}(j)$ Set of predecessor buses of bus j
- $\Gamma(j)$ Set of successor buses of bus j
- G Set of generation buses

6. Variables in the Power Network

- p_i^g Power generation at bus j
- p_j^{dc} Power demand for EV charging at bus j
- p_{ij} Power flow on transmission line ij
- θ_i Phase angle at bus i

7. Parameters in the Power Network

- B_{ij} Susceptance of transmission line ij
- p_{ij}^{max} Maximum power capacity of transmission line ij
- p_j^{max} Maximum power generation at bus j
- p_i^{\min} Minimum power generation at bus j

TABLE I SIOUX-FALLS NETWORK DATA

ID	0	D	FFT	Capacity
1	1	2	6	25900.2
2	1	3	4	23403.47
3	2	1	6	25900.2
4	2	6	5	4958.181
5	3	1	4	23403.47
6 7	3	4 12	4 4	17110.52 23403.47
8	4	3	4	17110.52
9	4	5	2	17782.79
10	4	11	6	4908.827
11	5	4	2	17782.79
12 13	5 5	6 9	4 5	4947.995 10000
14	6	2	5	4958.181
15	6	5	4	4947.995
16	6	8	2	4898.588
17	7	8	3	7841.811
18 19	7 8	18 6	2 2	23403.47 4898.588
20	8	7	3	7841.811
21	8	9	10	5050.193
22	8	16	5	5045.823
23	9	5	5	10000
24 25	9 9	8 10	10 3	5050.193 13915.79
26	10	9	3	13915.79
27	10	11	5	10000
28	10	15	6	13512
29	10	16	4	4854.918
30 31	10 11	17 4	8 6	4993.511 4908.827
32	11	10	5	10000
33	11	12	6	4908.827
34	11	14	4	4876.508
35	12	3	4	23403.47
36 37	12 12	11 13	6	4908.827 25900.2
38	13	12	3	25900.2
39	13	24	4	5091.256
40	14	11	4	4876.508
41 42	14 14	15 23	5 4	5127.526 4924.791
42	15	10	6	13512
44	15	14	5	5127.526
45	15	19	3	14564.75
46	15	22	3 5	9599.181
47 48	16 16	8 10	5 4	5045.823 4854.918
49	16	17	2	5229.91
50	16	18	3	19679.9
51	17	10	8	4993.511
52	17	16	2	5229.91
53 54	17 18	19 7	2 2	4823.951 23403.47
55	18	16	3	19679.9
56	18	20	4	23403.47
57	19	15	3	14564.75
58	19	17	2	4823.951
59 60	19 20	20 18	4 4	5002.608 23403.47
61	20	19	4	5002.608
62	20	21	6	5059.912
63	20	22	5	5075.697
64	21	20	6	5059.912
65 66	21 21	22 24	2 3	5229.91 4885.358
67	22	15	3	9599.181
68	22	20	5	5075.697
69	22	21	2	5229.91
70	22	23	4	5000
71 72	23 23	14 22	4 4	4924.791 5000
73	23	24	2	5078.508
74	24	13	4	5091.256
75	24	21	3	4885.358
76	24	23	2	5078.508

TABLE II O-D TRAVEL DEMAND

О	D	Е	Demand		
1	20	9	500		
1	20	12	500		
20	1	9	500		
20	1	12	500		
2	13	9	500		
2	13	12	500		
2 13 13		9	500		
13	2 2	12	500		
3	15	9	500		
15	3	9	500		
4	18	9	500		
4	18	12	500		
18	4	9	500		
6	14	9	500		
14	6	9	500		
14 12 12	6	12 12	500		
12	7	12	500		
12	7	9	500		
1	20	15	500		
20	1	15	500		
2 13	13	15 15 15 15	500		
13	2	15	500		
3	15	15	500		
15	3	15	500		
4	18	15	500		
18	4	15	500		
10	13	9	500		
13	10	9	500		
10	13	15	500		
13	10	15	500		
10	20	9	500		
10	20	9	500		
20	10	15	500		
20	10	15	500		
8	14	9	500		
8	14	9	500		
14	8	15	500		

TABLE III GENERATOR DATA

Bus	Pg	Vg	mBase	Status	Pmax	Pmin
1	23.54	1	100	1	64	0
2	60.97	1	100	1	64	0
22	21.59	1	100	1	40	0
27	26.91	1	100	1	44	0
23	19.2	1	100	1	24	0
13	37	1	100	1	32	0

TABLE IV Cost Data for Generator

Model	Startup Cost	Shutdown Cost	n	C2	C1	C0
2	0	0	3	0.2	70	0
2	0	0	3	0.175	61.25	0
2	0	0	3	0.625	35	0
2	0	0	3	0.0834	113.75	0
2	0	0	3	0.25	105	0
2	0	0	3	0.25	105	0

* The 2 in the model column indicates that the polynomial cost model is used