# Chapitre 4 Fonctions exponentielles et logarithmiques CORRIGÉ DES NOTES DE COURS

## Pages 3-4 Exercices préalables

- 1.  $3^4$
- 2. a) 27 b) 49 c) 64 d) 1 e)  $\frac{1}{1000}$  f) 128 g) 100 h) 64
- 3.  $\sqrt[7]{279936^3} = 279936^{\frac{3}{7}} = 216$
- 4.  $\frac{2^{-17}a^3b^{-5}}{3^{12}b^8c^{-5}} = \frac{a^3c^5}{2^{17}3^{12}b^5b^8} = \frac{a^3c^5}{2^{17}3^{12}b^{13}}$
- 5. a)  $\frac{1}{4^2}$  ou  $\left(\frac{1}{4}\right)^2$  b)  $\left(\frac{5}{3}\right)^1$  c)  $\left(\frac{5}{2}\right)^1$  d)  $3^5 \cdot 4^2$  e)  $\frac{3x^2}{2}$ 
  - f)  $\frac{4^4}{2^9}$  ou  $\frac{1}{2^1}$  ou  $\left(\frac{1}{2}\right)^1$  g)  $\frac{3}{(x-4)^2}$  h)  $\left(\frac{5}{2}\right)^4$  i)  $2^4 \cdot 3^6$
- 6. a)  $\left(\frac{1}{4}\right)^5$  b)  $7^{\frac{3}{2}}$  c)  $5^{\frac{11}{6}}$  d)  $\left(\frac{1}{4}\right)^2$  e)  $\left(\frac{1}{5}\right)^{\frac{1}{3}}$
- 7. a)  $2^3 \cdot 5^4$  b)  $2^5 a^6$  c)  $\frac{8^{13}}{6^{\frac{1}{2}}}$  d)  $3^2 \cdot 7^{\frac{2}{3}}$
- 8. a) L'égalité est fausse :  $9 = 3^2$  b) L'égalité est vraie. c) L'égalité est vraie.
  - d) L'égalité est fausse :  $\left(\frac{27}{125}\right)^3 = \left(\frac{3}{5}\right)^9$  e) L'égalité est vraie.
- 9. a) p-20%(p) = 100%(p) 20%(p) = 80%(p) = 0.8p
  - b) p + 5%(p) = 100%(p) + 5%(p) = 105%(p) = 1,05p
  - c)  $p \frac{p}{2} = \frac{2p}{2} \frac{p}{2} = \frac{2p p}{2} = \frac{p}{2} = 0.5p$

## Page 5 Mise au point #1

- 1. a) 125 b)  $\frac{1}{8}$  c) 1 d) 3 e) -3 f) 7

- 1) 1

- 2. a) 486, 1458, 4374 b)  $4, \frac{4}{9}, \frac{4}{81}$
- c) 2,5; 25; 250 d) 12, 3,  $\frac{3}{4}$

- 3.
- a) 65, 325 b) 36, ..., 2916 c)  $\frac{5}{8}$ , ..., 160 d) 14, ..., 224

- 4. a)  $5^7$

- b)  $-2^4 \times 3^2$  c)  $2^{15} \times 3^2$  d)  $-2^5 \times 3^5$

## Pages 6-7 Exemples

#### 1. Réponse: 88 insectes

| Temps écoulé (semaines) | 0       | 1      | 2      | 3      | <br>t                                         |
|-------------------------|---------|--------|--------|--------|-----------------------------------------------|
| Nombre d'insectes       | 180 224 | 90 112 | 45 056 | 22 528 | <br>$180224 \cdot \left(\frac{1}{2}\right)^t$ |

#### 2. Réponse : 640 bactéries

| Temps écoulé<br>(heures) | 0 | 1  | 2  | 3   | ••• | t             |
|--------------------------|---|----|----|-----|-----|---------------|
| Population               | 5 | 20 | 80 | 320 |     | $5 \cdot 4^t$ |

#### 3. *Réponse*: environ 0,11 hectares (soit l'équivalent d'une région circulaire de seulement 38 m de diamètre!)

| Temps écoulé (semaines) | 0   | 1   | 2     | 3      |     | t                    |
|-------------------------|-----|-----|-------|--------|-----|----------------------|
| Superficie (hectares)   | 200 | 150 | 112,5 | 84,375 | ••• | $200 \cdot 0,75^{t}$ |

#### 4. *Réponse*: environ 0,000 000 002 m (disons qu'elle ne rebondit plus!)

| Nombre de bonds         | 0  | 1   | 2    | 3     |     | n                                     |
|-------------------------|----|-----|------|-------|-----|---------------------------------------|
| Hauteur de la balle (m) | 12 | 9,6 | 7,68 | 6,144 | ••• | $12 \cdot \left(\frac{4}{5}\right)^n$ |

5. *Réponse* : 3229.91 \$

| Temps écoulé (années)    | 0    | 1    | 2       | 3       |     | t                      |
|--------------------------|------|------|---------|---------|-----|------------------------|
| Valeur du placement (\$) | 1200 | 1224 | 1248,48 | 1273,45 | ••• | 1200·1,02 <sup>t</sup> |

## Page 11 Exercice

c) même intensité d) g e) g f) f g) f h) même intensité a) *f* b) g

#### Page 13 Mise au point #2

1. a) 
$$2 = \log (100)$$
 b)  $3 = \log_5 (125)$  c)  $3 = \log_{1/2} \left(\frac{1}{8}\right)$ 

d) 
$$2 = \log_a (25)$$
 e)  $m = \log_a (x)$  f)  $x = \log_b (a)$ 

3. a) 
$$\log_3(9) = 2$$
 b)  $\log_5(625) = 4$  c)  $\log_{2,5}(t) = s$  d)  $\log_{1/8}(y) = x$  e)  $\log_s(w) = v$  f)  $\log_c(y) = x$ 

4. a) 
$$6^2 = 36$$
 b)  $n^z = 100$  c)  $(0.75)^x = y$  d)  $t^r = s$ 

## Page 14 Exemples

1. 
$$f(x) = 5 \cdot 3^x$$
 2.  $g(x) = \frac{-1}{2} \left(\frac{2}{3}\right)^x$  3.  $h(x) = \frac{-1}{10} \cdot 5^x$ 

## Page 15 Mise au point #3

1. a) 
$$m = 3$$
,  $n = -2$  b)  $m = 6$ ,  $n = 1,5$  c)  $m = 100$ ,  $n = 0,4$   
2. a)  $f(x) = 5(3)^x$  b)  $f(x) = -4(5)^x$  c)  $f(x) = (0,75)^x$ 

2. a) 
$$f(x) = 3(3)^x$$
 b)  $f(x) = -4(5)^x$  c)  $f(x) = (0,75)^x$ 

3. a) 
$$f(x) = 8(3)^x$$
 b)  $f(x) = -4(5)^x$  c)  $f(x) = 0.75(0.5)^x$ 

## Page 18 Exemples

1. 
$$f(x) = 3(1,2)^x - 2$$
 2.  $g(x) = \frac{1}{8}(2)^x - 4$ 

## Pages 20-21 Exemples

- 1. a)  $N(t) = 250 \cdot 8^t$
- 2.  $H(x) = 150 \cdot 0.75^x$  3.  $H(x) = 200 \cdot 0.4^x$

- b) 3h20 ou 200 minutes
- c)  $N(t) = 230 \cdot 8^t + 20$

| Nombre de bonds          | 0   | $\frac{1}{1}$ | 2  | 3    | 4    | 5     | 6      |
|--------------------------|-----|---------------|----|------|------|-------|--------|
| Hauteur de la balle (cm) | 200 | 80            | 32 | 12,8 | 5,12 | 2,048 | 0,8192 |

- 4. a)  $V = 10000(0.8)^{0.5t}$  b) environ 2900\$
- 5. a)  $N(t) = 5 \cdot 3^{\frac{t}{120}}$  b)  $N(t) = 5 \cdot 3^{\frac{t}{2}}$  c)  $N(t) = 5 \cdot 3^{30t}$  d) 2846 gouttes d'eau

## Page 25 Mise au point #4

- 1. a = 12 b = 3 h = 1 k = -0.75 et c = 0.8

- 2. a) y = -3 b) y = 4 c)  $y = \frac{-2}{3}$  d) y = 0
- 3. a)  $f(x) = 3(4)^{x-10} + 2$  b)  $f(x) = -(81)^{x-2} 5$
- 4. a)  $f(x) = -50(125)^x 10$  b)  $f(x) = \frac{-3}{16}(256)^x + 1$

## Page 26 Exercice

- 1. a) Vrai b) Faux c) Faux d) Faux e) Vrai

## Page 28 Mise au point #5

- 1. a) x = 6 b) x = -1,5 c) x = -1 d)  $x = \frac{1}{2}$

- e) x = -4 f) x = 4 g) x = 2 h)  $x = \frac{1}{4}$

- 2. a) x = -4 b) x = -20 c)  $x = \frac{-1}{19}$  d)  $x = \frac{11}{2}$  e) x = -5 f)  $x = \frac{5}{2}$

#### Pages 29-30 Simulations financières

#### Simulation 1 : Placement de 2000\$ pour 5 ans à 6% (intérêt simple)

| Temps écoulé (années)                | 0    | 1    | 2    | 3    | 4    | 5    |
|--------------------------------------|------|------|------|------|------|------|
| Intérêt versé<br>durant l'année (\$) |      | 120  | 120  | 120  | 120  | 120  |
| Valeur du placement (\$)             | 2000 | 2120 | 2240 | 2360 | 2480 | 2600 |

La valeur du placement après t années est donnée par la règle V = 2000 + 120t.

#### Simulation 2 : Placement de 2000\$ pour 5 ans à 6% (intérêt composé annuellement)

| Temps écoulé (années)                | 0    | 1    | 2       | 3        | 4        | 5        |
|--------------------------------------|------|------|---------|----------|----------|----------|
| Intérêt versé<br>durant l'année (\$) |      | 120  | 127,20  | 134,83   | 142,92   | 151,50   |
| Valeur du placement (\$)             | 2000 | 2120 | 2247,20 | 2 382,03 | 2 524,95 | 2 676,45 |

► La valeur du placement après t années est donnée par la règle  $V = 2000 (1,06)^t$ .

#### Simulation 3: Placement de 2000\$ pour 5 ans à 6% (intérêt capitalisé 2 fois/année)

| Temps écoulé (années)    | 0    | 1/2  | 1       | 11/2    | 2       |     | 5       |
|--------------------------|------|------|---------|---------|---------|-----|---------|
| Valeur du placement (\$) | 2000 | 2060 | 2121,80 | 2185,45 | 2251,02 | ••• | 2687,83 |

► La valeur du placement après t années est donnée par la règle  $V = 2000 (1,03)^{2t}$ .

#### Simulation 4 : Placement de 2000\$ pour 5 ans à 6% (intérêt capitalisé mensuellement)

| Temps écoulé (années)    | 0    | 1/12 | 2/12    | 3/12    | 4/12    | ••• | 5       |
|--------------------------|------|------|---------|---------|---------|-----|---------|
| Valeur du placement (\$) | 2000 | 2010 | 2020,05 | 2030,15 | 2040,30 | ••• | 2697,70 |

La valeur du placement après t années est donnée par la règle  $V = 2000 (1,005)^{12t}$ .

## Pages 31-32 Exercices sur les taux d'intérêts composés

1. a) 
$$V = 2000(1,03)^t$$
 b)  $V = 5000(1,04)^{2t}$  c)  $V = 5000 \left(\frac{1801}{1800}\right)^{18t}$ 

où « V » représente la valeur (en \$) et « t » le nombre d'années écoulées

2. 1641,94\$

3. 2500\$

4. 9%

5. 20 ans (détails en classe...)

## Page 33 Mise au point #6

- 1.  $f(x) = 8(0,3)^x + 5$
- 2. a) 1 200\$
- b) 85%
- c) 1) 867\$
  - $2) \approx 626,41$ \$
  - $3) \approx 236,25$ \$

- 3. a)  $\approx 1338,23$ \$
- b)  $\approx 2.025,00$ \$

## Page 35 Exemple

- a) i) 65 watts; ii)  $\approx$  19,25 watts
- b) décroissante
- c) dom P : [0, 1000] jours et codom  $P : [\approx 2,32;65]$  watts
- d) i) après  $\approx 207,94$  jours; ii) après  $\approx 628,48$  jours

#### Page 36 Mise au point #7

- 1. a) 6
- b) 3
- c) -1
- d) -3
- e) 1,5
- f) -0.5

- g) 2
- h) 1
- i) 0
- j) -2
- k) 0
- 1) 4

- 2. a) 1
- b) 2
- c) 4
- d) 128
- e) 2
- $f) \emptyset$

- g) 4
- h)  $\mathbb{R}^*_+\setminus\{1\}$
- i) 1/32

## Page 37 – Démonstrations des lois des logarithmes...

Il existe plusieurs façons de démontrer ces lois, mais en voici de bons exemples :

Soit a, b, m et  $n \in \mathbb{R}_+^*$  et  $a \neq 1, b \neq 1$ 

| Lois                                                                              | Démonstrations                                                                                                                        |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1. $\log_a(1) = 0$                                                                | $a^0 = 1 \iff \log_a(1) = 0$                                                                                                          |
| 2. $\log_a(a) = 1$                                                                | $a^1 = a \iff \log_a(a) = 1$                                                                                                          |
|                                                                                   | 1°) $a^{\log_a(m)} = n$                                                                                                               |
| $3. a^{\log_a(m)} = m$                                                            | $2^{\circ}) \log_a(n) = \log_a(m)$                                                                                                    |
| $3. u \circ \cdots = m$                                                           | $3^{\circ}$ ) $n=m$                                                                                                                   |
|                                                                                   | $4^{\circ}) \ a^{\log_a(m)} = m$                                                                                                      |
| $A \log (mn) = \log (m) + \log (n)$                                               | 1°) $mn = m \cdot n$                                                                                                                  |
| 4. $\log_a(mn) = \log_a(m) + \log_a(n)$                                           | $2^{\circ}) \ a^{\log_a(mn)} = a^{\log_a(n)} \cdot a^{\log_a(n)}$                                                                     |
| $\int \log (m) - \log (m) \log (n)$                                               | 3°) $a^{\log_a(mn)} = a^{\log_a(m) + \log_a(n)}$                                                                                      |
| 5. $\log_a\left(\frac{m}{n}\right) = \log_a\left(m\right) - \log_a\left(n\right)$ | $4^{\circ}) \log_a(mn) = \log_a(m) + \log_a(n)$                                                                                       |
|                                                                                   | $\log_a(m^n) = \log_a(\underbrace{m \cdot m \cdot m \cdots m}_{a \cdot b \cdot a})$                                                   |
|                                                                                   | n jois                                                                                                                                |
| $6. \log_a(m^n) = n \log_a(m)$                                                    | $= \underbrace{\log_a(m) + \log_a(m) + + \log_a(m)}_{n \text{ fois}}$                                                                 |
|                                                                                   | $= n \log_a(m)$                                                                                                                       |
|                                                                                   | 1°) $\log_a(m) = n$                                                                                                                   |
|                                                                                   | $2^{\circ}$ ) $a^n = m$                                                                                                               |
|                                                                                   | $3^{\circ}) \log_b(a^n) = \log_b(m)$                                                                                                  |
| $7 \log_b(m) = \log_b(m)$                                                         | $4^{\circ}) \ n\log_b(a) = \log_b(m)$                                                                                                 |
| 7. $\log_a(m) = \frac{\log_b(m)}{\log_b(a)}$                                      | $\log_b(m)$                                                                                                                           |
|                                                                                   | $5^{\circ}) \ n = \frac{\log_b(m)}{\log_b(a)}$                                                                                        |
|                                                                                   | 6°) $\log_a(m) = \frac{\log_b(m)}{\log_b(a)}$                                                                                         |
|                                                                                   | $\log_a(m) = \log_b(a)$                                                                                                               |
| $8. \log_a\left(\frac{1}{m}\right) = -\log_a\left(m\right)$                       | $\log_a\left(\frac{1}{m}\right) = \log_a\left(m^{-1}\right) = -\log_a\left(m\right)$                                                  |
| 9. $\log_a(b) = \frac{1}{\log_b(a)}$                                              | $\log_a(b) = \frac{\log(b)}{\log(a)} = \left(\frac{\log(a)}{\log(b)}\right)^{-1} = \left(\log_b(a)\right)^{-1} = \frac{1}{\log_b(a)}$ |
| 10. $\log_{1/a}(m) = -\log_a(m)$                                                  | $\log_{1/a}(m) = \frac{\log(m)}{\log(1/a)} = \frac{\log(m)}{\log(a^{-1})} = \frac{\log(m)}{-\log(a)} = -\log_a(m)$                    |

## Page 38 Exemples

$$Ex.1: \ln(5^x \cdot 6^{2x}) = \ln(5^x) + \ln(6^{2x}) = x \cdot \ln(5) + 2x \cdot \ln(6)$$

$$Ex.2: 5\log_2(x) + \log_2(x+4) = \log_2(x^5) + \log_2(x+4) = \log_2(x^5 \cdot (x+4)) = \log_2(x^6 + 4x^5)$$

$$Ex.3: \log_5(10) = \frac{\log(10)}{\log(5)} = \frac{1}{\log(5)} \approx 1,431$$

Ex.4: 
$$\log_4(8) = \log_4(2^3) = 3 \cdot \log_4(2) = 3 \cdot \frac{1}{2} = \frac{3}{2}$$

$$Ex.5: x = \log_5(25) = 2$$

$$Ex.6: x = \log_3\left(\frac{1}{81}\right) \Leftrightarrow 3^x = \frac{1}{81} \Leftrightarrow 3^x = \frac{1}{3^4} \Leftrightarrow 3^x = 3^{-4} \Leftrightarrow x = -4$$

Ex.7: 
$$x = \log_5(6) = \frac{\log(6)}{\log(5)} \approx 1{,}113$$

#### Page 39 Mise au point #8

- 1. a)  $\log_c(2) + \log_c(m) + \log_c(n)$ 
  - c)  $\log_3(4) + 2\log_3(x)$
  - e)  $3\log_4(m) + 3\log_4(n) + 3$
  - g)  $\frac{1}{2}\log_4(x) + 2$

- b)  $\log_5(7) + 2\log_5(x+2)$
- d)  $\log_2(5) + \log_2(a) 2\log_2(b)$
- f)  $2\log_6(2) + 2\log_6(x+1)$
- h)  $\log (x+2) + \log (x-2)$

g)  $\approx -0.301$  h)  $\approx 0.383$ 

- 2. a) log<sub>2</sub> (40)
- b) log<sub>4</sub> (15)
- c) ln (14)

d) log (5)

- e)  $\log_2(54)$
- f) log (3)

- 3. a)  $\approx 0.954$
- b)  $\approx 1,146$  c)  $\approx 1,653$  d)  $\approx 1,954$

- e)  $\approx 1,699$  f)  $\approx 4,225$ i)  $\approx 0.812$ 

  - i)  $\approx 3.196$
- 4.  $\log(5)$

## Page 40 Exercices

- **1.**  $x \approx 13{,}158$  **2.**  $x \approx 2{,}71$  **3.**  $x \approx 3{,}576$  **4.**  $x \approx -0{,}486$

## Pages 41-42 Exemples

1. 
$$x = \log_{54}(6) \approx 0,449$$

2. 
$$x = \log_{4.9}(7) \approx 1,224$$

3. 
$$x = \log_{\frac{1024}{3}}(9) \approx 0.377$$

**4.** 
$$x = \frac{9}{7 \cdot \log_3(5) - 15} \approx -1,897$$

## Page 43 Mise en situation – La nappe d'huile (version ultime)



- b) Pendant environ 7,66 heures, soit environ 7h40min.
- c) La règle devient :  $S = -12\left(\frac{1}{4}\right)^{t/120} + 17$

## Page 44 Mise en situation – Crise financière

$$V(t) = \begin{cases} -20 \cdot (5,2)^{t} + 60 & 0 \le t \le 0,42 \\ 20 & 0,42 \le t \le 1,42 \\ 20 \cdot (0,95)^{3(t-1,42)} & t \ge 1,42 \end{cases}$$

On a V(0) = 40. On cherche la valeur de t qui engendre V(t) = 10.

Avec la troisième partie de la fonction, on obtient  $t \approx 5,9249$  (environ 5 ans et 11 mois). La réponse finale est donc : en août 2014.

## Pages 45-47 Exemples

1. 
$$x = 19$$

**2.** 
$$x = 4$$

**3.** 
$$x = \frac{1}{2}$$

5. 
$$x = 4$$

**1.** 
$$x = 19$$
 **2.**  $x = 4$  **3.**  $x = \frac{1}{2}$  **4.**  $x \in \emptyset$  **5.**  $x = 4$  **6.**  $x = \frac{48}{11}$ 

7. 
$$x = 8$$

**7.** 
$$x = 8$$
 **8.**  $x = \frac{3}{2}$ 

## Page 51 Exemple



## Page 52 Exemple

a) 
$$f(x) = 2 \log_3 (-(x-1)) - 4$$

- Dom  $f: -\infty$ , 1
- Codom  $f: \mathbb{R}$
- Zéro: -8
- Signes:  $f(x) \ge 0 \ \forall \ x \in ]-\infty$ , -8]et  $f(x) \le 0 \ \forall \ x \in [-8, 1[$  Signes:  $g(x) \le 0 \ \forall \ x \in ]-\infty$ ; -2]
- Variation : Décroissante sur tout son domaine
- Ordonnée à l'origine : -4

b) 
$$g(x) = 3 \log_{1/4} (-(x+1))$$

- Dom  $g: -\infty, -1$
- Codom  $g: \mathbb{R}$
- Zéro: -2
- Variation : Croissante sur tout son domaine
- Ordonnée à l'origine : aucune
- Équation de l'asymptote : x = 1 Équation de l'asymptote : x = -1

## Page 53 Situation-problème

Durée des observations :  $88,641 = 20 \cdot (1,015)^t \iff t \approx 100 \text{ ans}$ 

Taux moyen pour Ste-Asymptote :  $\frac{88641 - 20000}{100} \approx 686,41$  hab./année

Taux moyen pour Log City :  $\frac{P_2(100) - P_2(0)}{100} = \frac{99481 - 216000}{100} \approx -1165,19 \text{ hab./année}$ 

## Pages 55-56 Exemples

- **1.**  $h(x) = \log_{0.5}(x-2)$  **2.**  $g(x) = \log_6(x+3)$  **3.**  $f(x) = \log_3(0.5(x-2))$

## Corrigé du **CAHIER DE DEVOIRS**

**Page 59** – Exercices 4.1.1 (Notion d'exposant)

1. a) 
$$\frac{1}{a^{11}}$$

b) 
$$-5^3 x^5 y^7$$

c) 
$$\frac{a^8}{3^2 b^{10}}$$

1. a) 
$$\frac{1}{a^{11}}$$
 b)  $-5^3 x^5 y^7$  c)  $\frac{a^8}{3^2 h^{10}}$  d)  $\frac{3^4 \cdot 7a^8}{h^3}$  e)  $\frac{a^7}{h^6}$  f)  $\frac{2}{a^2 h^3}$ 

e) 
$$\frac{a^{7}}{h^{6}}$$

$$f) \frac{2}{a^2b^3}$$

g) 
$$\frac{b^{\frac{15}{4}}}{a}$$

h) 
$$a^{1/4}b^{1/4}c^{1/2}$$

i) 
$$\frac{12d^{12}}{bc^{14}}$$

g) 
$$\frac{b^{\frac{15}{4}}}{a}$$
 h)  $a^{\frac{1}{4}}b^{\frac{1}{4}}c^{\frac{1}{2}}$  i)  $\frac{12d^{12}}{bc^{14}}$  j)  $\frac{3^29^281^2}{4^316^432^5}$  ou  $\frac{3^{14}}{2^{47}}$  k)  $-\frac{p^4q^{27}}{4^6}$ 

$$k) - \frac{p^4 q^{27}}{4^6}$$

1) 
$$\frac{4^6 8^8 y^{19}}{3^6 9^4 x^{35}}$$
 ou  $\frac{2^{36} y^{19}}{3^{14} x^{35}}$  m)  $\frac{(a+6)^{16}}{(a-6)^{16}}$  n)  $\frac{2^3 3^4}{4^5 a^7 b^6}$  ou  $\frac{3^4}{2^7 a^7 b^6}$  o)  $-3^3 x^6 y^6$ 

m) 
$$\frac{(a+6)^{16}}{(a-6)^{16}}$$

n) 
$$\frac{2^3 3^4}{4^5 a^7 b^6}$$
 ou  $\frac{3^4}{2^7 a^7 b}$ 

o) 
$$-3^3 x^6 y^6$$

2. a) 
$$x^{6a-1}$$
 b)  $\frac{1}{h^{n-5}}$  c)  $3^{m+2}$  d)  $\frac{1}{2^{2a+3}}$ 

$$b) \frac{1}{b^{n-5}}$$

c) 
$$3^{m+2}$$

d) 
$$\frac{1}{2^{2a+3}}$$

3. a) 
$$\approx 2,05795 \times 10^{10} \text{ km}^{-1}$$

b) 
$$\approx 5.10705 \times 10^8 \text{ km}^2$$

3. a) 
$$\approx 2,05795 \times 10^{10} \text{ km}^3$$
 b)  $\approx 5,10705 \times 10^8 \text{ km}^2$  c)  $(3,75 \times 9,4)^3 \approx 43\,800$  fois

Page 62 – Exercices 4.1.2 (Modèle exponentiel)

- 1. a) Décroissante
- b) Croissante
- c) Croissante
- d) Décroissante e) Décroissante
- 2.  $P(t) = 12 \cdot \left(\frac{2}{3}\right)^t$  où P est la population (en milliers) et t est le temps écoulé (années)
- 3. Exemple de situation possible: Un bloc de glace de 10 cm de hauteur est laissé à température ambiante. Il fond à un rythme tel que sa hauteur diminue de 25% à toutes les heures. On met donc en relation la hauteur du bloc (cm) et le temps écoulé (heures).

4. a) 
$$x = \frac{3}{2}$$
 b)  $a = \frac{-1}{2}$  c)  $x = -3$ 

- 5. a) courbe 1 fonction f courbe 2 fonction h courbe 3 fonction gb) (0, 1)
- 6. a)  $f(x) = 8 \cdot \left(\frac{1}{4}\right)^x$  b)  $f(x) = \left(\frac{1}{3}\right) \cdot 3^x$



b) environ 0,67 dm et 3,38 dm



**Page 64** – Exercices 4.1.3 (Fonction exponentielle de base)



- 2. a) Vrai b) Faux c) Faux
- 3.  $f^{-1}(x) = \log_5(x)$   $g^{-1}(x) = \log_{\frac{3}{2}}(x)$   $h^{-1}(x) = 64^x$   $n^{-1}(x) = 10^x$
- 4. Ils sont symétriques par rapport à l'axe des ordonnées.

Page 65 – Exercices 4.1.3 (Notation logarithmique)

1. a) 
$$3^4 = 81$$

b) 
$$\log_{25}(5) = 1/2$$

c) 
$$\log_{1/3}(3) = -1$$
 d)  $(1/2)^3 = 1/8$ 

d) 
$$(1/2)^3 = 1/8$$

e) 
$$\log_{1/5} \sqrt{5} = -1/2$$
 f)  $27^0 = 1$ 

f) 
$$27^0 = 1$$

g) 
$$10^{-2} = 0.01$$

h) 
$$\log_3(1/27) = -3$$

h) 0 (si 
$$a > 0$$
 et  $a \ne 1$ )

i) 
$$\sqrt{5}$$

3. a) 
$$(1/2)^x = 8$$
  $x = -3$  b)  $(\sqrt{3})^x = 9$   $x = 4$ 

b) 
$$(\sqrt{3})^x = 9$$
  $x = 4$ 

c) 
$$4^x = 8$$
  $x = 1.5$ 

c) 
$$4^x = 8$$
  $x = 1.5$  d)  $(3/4)^x = 16/9$   $x = -2$ 

b) 
$$-5/3$$
 c)  $5/2$ 

Page 67 – Exercices 4.1.4 (Fonctions exponentielles transformées)

1. a) 
$$V = 0.5t + 11$$

b) 
$$V = 15000 \cdot (0.8)^t$$

c) 
$$V = 11 \cdot (1.5)^{2t}$$

d) 
$$V = 11 \cdot (1.5)^{t/2}$$

e) 
$$V = 15000 \cdot (0.75)^{2t/3}$$

f) 
$$V = 10000 \cdot (1.15)^{5t/5}$$

g) 
$$V = 10000 \cdot (1,15)^{9t/4}$$

h) 
$$f(x) = 10 \cdot (1,1)^{3x}$$

d) 
$$V = 11 \cdot (1,5)^{\frac{t}{2}}$$
 e)  $V = 15000 \cdot (0,75)^{\frac{2t}{3}}$  f)  $V = 10000 \cdot (1,15)^{\frac{5t}{8}}$  g)  $V = 10000 \cdot (1,15)^{\frac{9t}{4}}$  h)  $f(x) = 10 \cdot (1,1)^{3x}$  i)  $f(x) = 146 \cdot (2)^{\frac{3x}{2}} + 4$ 

2. a) 
$$f(x) = -2^x + 1$$

2. a) 
$$f(x) = -2^x + 1$$
 b)  $f(x) = -\frac{1}{2} \left(\frac{1}{2}\right)^x - 1$ 

c) 
$$f(x) = \left(\frac{5}{2}\right)^x$$

$$a = -1$$

$$a=-\frac{1}{2}$$

$$a=1$$

$$c = 2$$

$$c=\frac{1}{2}$$

$$c=\frac{5}{2}$$

$$k = 1$$

$$k = -1$$

$$k = 0$$

d) 
$$f(x) = 2\left(\frac{25}{16}\right)^x$$
 e)  $f(x) = \frac{1}{5}(5)^x$ 

e) 
$$f(x) = \frac{1}{5}(5)$$

f) 
$$f(x) = -81(9)^x - 3$$

$$a = 2$$

$$a=\frac{1}{5}$$

$$a = -81$$

$$c = \frac{25}{16}$$

$$c = 9$$

$$k = 0$$

$$k = 0$$

$$k = -3$$

g) 
$$f(x) = \frac{8}{125} \left(\frac{2}{5}\right)^x + \frac{2}{5}$$
 h)  $f(x) = \frac{1}{12} (2)^x + 2$ 

$$f(x) = \frac{1}{12}(2)$$

i) 
$$f(x) = -\frac{1}{9}(9)^x - \sqrt[3]{81}$$

$$a = \frac{8}{125}$$

$$a = \frac{1}{12}$$

$$a = -\frac{1}{9}$$

$$c = \frac{2}{5}$$

$$k = \frac{2}{5}$$

$$k = 2$$

$$k = -\sqrt[3]{81}$$

- 3. a) 1 b) 1 c) 3 d) 2 e) 4 f) 1 g) 2 h) 3 i) 1 j) 2 k) 3 l) 4

4. a) 
$$f(x) = -8.1 \cdot (3)^x$$
 b)  $f(x) = \frac{9}{5}(9)^x$ 

b) 
$$f(x) = \frac{9}{5}(9)$$

- 5. a) Vrai
  - b) Faux, car la variation dépend aussi de la valeur de la base c.
  - c) Faux, la valeur de k ne sera jamais atteinte (puisqu'il s'agit d'une asymptote).
  - d) Vrai

6. 
$$f(x) = 4 \cdot \left(\frac{3}{2}\right)^x - 1$$
 et  $g(x) = 4 \cdot \left(\frac{2}{3}\right)^{x-4} - 1$  ou  $g(x) = \frac{81}{4} \cdot \left(\frac{2}{3}\right)^x - 1$ 

- 7. a)  $S = 54 \left(\frac{4}{3}\right)^t$  où S représente la superficie d'huile et t le temps écoulé
  - b)  $f(x) = 100 \left(\frac{1}{10}\right)^x$
  - c)  $N = 4096 \left(\frac{1}{4}\right)^g$  où N représente le nombre d'insectes et g le nombre de grenouilles
  - d)  $N = 2187 \left(\frac{5}{3}\right)^h$  où N représente le nombre d'insectes et h le niveau d'humidité
  - e)  $y = 400 \left(\frac{3}{10}\right)^x$
- 8. a)  $y = \frac{1}{10} \cdot 10^x 70$  b)  $y = -80 \left(\frac{4}{5}\right)^x + 12$  c)  $y = \frac{1}{100} \cdot 2^x + 1$  d)  $f(x) = -200 \left(\frac{2}{5}\right)^x$

Page 74 – Exercices 4.1.5 (Zéro, équations et inéquations)

- 1. a) 3/4
- b) 2
- c)-4

- d) 1
- e) -3/2
- f) 6

- g) 6/5
- h) -2 i) 5/2
- a) x = 2
- b) x = 3
- c) x = 3
- 3. a) x = 2 b) x = 4 c) x = 5

- a) x = 3
- b) x = 12
- c) x = -6
- Règle de la fonction sous forme canonique :  $f(x) = \frac{3}{4}(2)^x + 2$

Codom  $f: ] 2,+\infty$  Équation de l'asymptote : y = 2

Ordonnée à l'origine :  $\frac{11}{4}$  Zéro : aucun

Variation : croissante sur  $\mathbb{R}$  Signes :  $\forall x \in \mathbb{R}$ , on a  $f(x) \ge 0$ 

Réciproque :  $f^{-1}(x) = -2\log_{0.25}\left(\frac{x-2}{3}\right) + 2$  ou  $f^{-1}(x) = \log_2\left(\frac{4}{3}(x-2)\right)$ 

- 6. a) x = 2 b) x = 1 c)  $x = \frac{3}{2}$  d) x = -3 e)  $x = \frac{-71}{3}$  f) x = -1

- 7. Aucune solution
- 8. Dom  $f: \mathbb{R}$  Codom  $f: -\infty$ , 1[ Ordonnée à l'origine :  $-\frac{19}{9}$

Signes:  $f(x) \ge 0 \ \forall \ x \in [-\infty, -1]$  et  $f(x) \le 0 \ \forall \ x \in [-1, \infty[$ 

Variation : décroissante sur  $\mathbb{R}$ 

Équation de l'asymptote : y = 1

- 9.  $\forall x \in \left[ -\infty, -\frac{4}{5} \right]$ ; f(x) < g(x)
- 10. a)  $\frac{2}{3} < m < 1$ 
  - b)  $\sqrt[3]{2} \le c \le 2$
  - c)  $c \in \left[0, \frac{1}{2}\right] \cup \left[\sqrt{2}, +\infty\right]$

## Page 80 – EXERCICES RÉCAPITULATIFS A (section 4.1)

1. a) 
$$x = 8$$

b) 
$$x = 3$$

d) 
$$x = 5$$

2. a) 
$$x = 0$$

b) 
$$x > 0$$

c) 
$$x < 0$$

3. a) Trois ans après sa fondation

b) Quatre ans après leur fondation

4. a) Faux, c'est 1.

b) Faux, car *e* pourrait être considérée comme une constante!

5. a) 
$$\approx 8,47M$$
\$

6. a) 
$$x = \frac{7}{2}$$
 b)  $x = \frac{-4}{3}$  c)  $x = \frac{-19}{6}$  d)  $x = \frac{1}{6}$  e)  $x = \frac{-11}{4}$  f)  $x = \frac{5}{6}$ 

b) 
$$x = \frac{-4}{3}$$

c) 
$$x = \frac{-19}{6}$$

d) 
$$x = \frac{1}{6}$$

e) 
$$x = \frac{-11}{4}$$

f) 
$$x = \frac{5}{6}$$

7. a) 
$$x = \frac{1}{8}$$
 b)  $x = \frac{-2}{3}$  c)  $x = \frac{-3}{2}$  d)  $x = 0$  e)  $x = -1$  f)  $x = \frac{5}{2}$ 

b) 
$$x = \frac{-2}{3}$$

c) 
$$x = \frac{-3}{2}$$

$$d) x = 0$$

e) 
$$x = -1$$

f) 
$$x = \frac{5}{2}$$

8. a) 
$$x = 8$$
 b)  $x = 1$  c)  $x = -2$ 

b) 
$$x =$$

c) 
$$x = -2$$

9. a) 
$$x = \frac{-3}{2}$$
 b)  $x = -6$  c)  $x = \frac{-1}{10}$  d)  $x = -2$  e)  $x = \frac{-3}{4}$  f)  $x = \frac{1}{2}$ 

b) 
$$x = -6$$

c) 
$$x = \frac{-1}{10}$$

d) 
$$x = -2$$

e) 
$$x = \frac{-3}{4}$$

f) 
$$x = \frac{1}{2}$$

10. a) 
$$x = \frac{-2}{5}$$
 b)  $x = -24$  c)  $x = 2$ 

b) 
$$x = -24$$

c) 
$$x = 2$$

11. a) 
$$x = 3$$
 b)  $x = \frac{3}{2}$  c)  $x = 3$  d)  $x = 6$  e)  $x = \frac{-5}{2}$  f)  $x = -5$ 

b) 
$$x = \frac{3}{2}$$

c) 
$$x = 3$$

$$d) x = 6$$

e) 
$$x = \frac{-5}{2}$$

f) 
$$x = -5$$

12. a) 
$$x = \frac{-6}{5}$$
 b)  $x = \frac{1}{4}$  c)  $x = \frac{8}{7}$ 

b) 
$$x = \frac{1}{4}$$

c) 
$$x = \frac{8}{7}$$

13. a) Dom 
$$f = \mathbb{R}$$

13. a) Dom 
$$f = \mathbb{R}$$
 b) Codom  $f = \left] -\infty, \frac{1}{9} \right[$  c)  $x = -2$ 

c) 
$$x = -2$$

d) 
$$f \ge 0 \ \forall \ x \in ]-\infty$$
,  $-2]$  et  $f \le 0 \ \forall \ x \in [-2, \infty[$  e) Décroissante sur  $\mathbb R$ 

f) 
$$f(0) = \frac{-8}{9}$$

g) 
$$y = \frac{1}{9}$$

f) 
$$f(0) = \frac{-8}{9}$$
 g)  $y = \frac{1}{9}$  h)  $f(x) = -(3)^x + \frac{1}{9}$ 

i) 
$$f^{-1}(x) = \log_3 - \left(x - \frac{1}{9}\right)$$

14. a) 
$$f(x) = 8000(0.85)^x$$
 où  $0 \le x \le 6$  b)  $\approx 3017.20$ \$

b) 
$$\approx 3017,209$$

15. a) 
$$x > 3$$
 b)  $x > -4$  c)  $x > \frac{-1}{2}$ 

b) 
$$x > -4$$

c) 
$$x > \frac{-1}{2}$$

16. a) La fonction est négative sur 
$$-\infty$$
,  $-3$ ] b)  $f(t) = -\frac{3}{4} \left(\frac{1}{2}\right)^{t} + 6$ 

b) 
$$f(t) = -\frac{3}{4} \left(\frac{1}{2}\right)^t + \frac{3}{4} \left(\frac{1}{2}$$

17. a) 
$$f(x) = \frac{1}{2}(3)^x - 2$$
 b)  $g(x) = -3 \cdot 6^x$ 

b) 
$$g(x) = -3 \cdot 6^{-3}$$

**Page 88** – Exercices 4.2.1 (Propriétés des logarithmes)

- a) c > 0 et  $c \ne 1$  b) M > 0
- 2. Base 10

- 3. a) 1 b) 0 c)  $\log_a(M) + \log_a(N)$  d)  $\log_a(M) \log_a(N)$  e)  $3\log_a(M)$

- 4.  $-\log_2(M)$
- 5.  $\log_a(M) = \frac{\log_b(M)}{\log_b(a)}$  où b > 0 et  $b \ne 1$
- 6.  $\log_3(2) + 2\log_3(x) + \log_3(y) 4\log_3(z)$
- 7.  $\log_3\left(\frac{a^2b^2c}{6}\right)$
- 8. 3
- 9. environ 2,36
- 10.  $\frac{3}{2}N 3M$
- 11. 3e
- 12. a)  $\log_2(x) = a$  b)  $\log_5(y-3) = x-1$
- 13. x = 15
- $14. \quad x = \log_{RS^2} \left( RS^3 \right)$
- 15. a)  $3\log_2(5) + \log_2(7)$  b)  $2\log_3(8) 2\log_3(11)$  c)  $\frac{1}{2}\log(6) + \frac{1}{2}\log(5)$

- d)  $\log_{\frac{1}{4}}(5) + \frac{1}{2}\log_{\frac{1}{4}}(7) \log_{\frac{1}{4}}(3)$

- 16. a)  $\log_3(175)$  b)  $\log_a\left(\frac{\sqrt{15}}{2}\right)$  c)  $\log_2\left(\frac{3}{7^3}\right)$  d)  $\log_6\left(\frac{x^2y}{b\sqrt{a}}\right)$
- 17. a)  $-\frac{3}{4}$  b) -6 c)  $\frac{c+d}{2}$  d) 3 e) 4 f) -5

Page 92 – Exercices 4.2.2 (Équations exponentielles)

- a)  $x \approx -0.738$  b)  $x \approx 0.449$  c)  $x \approx -9.062$  e)  $x \approx 31.101$  f)  $x \approx -1.089$  g)  $x \approx -1.388$  i)  $x \approx -0.325$  j)  $x \approx 0.116$  k) x = 0
  - b)  $x \approx 0,449$
- d)  $x \approx -5,366$

- h)  $x \in \emptyset$

- 1)  $x_1 \approx -0.235$

et  $x_2 \approx 2,334$ 

**Page 96** – Exercices 4.2.3 (Équations logarithmiques)

1. a) 
$$x = \frac{9}{4}$$
 b)  $x = \frac{49}{8}$  c)  $x = 9$  d)  $x = 4$  e)  $x = 69$  f)  $x = 36$ 

b) 
$$x = \frac{49}{8}$$

c) 
$$x = 9$$

d) 
$$x = 4$$

e) 
$$x = 69$$

f) 
$$x = 36$$

g) 
$$x = \frac{e^2}{6} \approx 1,2315$$
 h)  $x = \frac{4}{3}$  i)  $x = 1000$ 

h) 
$$x = \frac{4}{3}$$

i) 
$$x = 1000$$

2. a) 
$$x = 6$$
 b)  $x \in \emptyset$  c)  $x = 5$  d)  $x = 125$ 

b) 
$$x \in \emptyset$$

c) 
$$x = 5$$

d) 
$$x = 125$$

3. a) 
$$x = \frac{4}{5}$$
 b)  $x \approx 2,0714$  c)  $x = \frac{3}{5}$  d)  $x \in \emptyset$  e)  $x = \frac{1}{3}$  f)  $x = \frac{2}{3}$ 

b) 
$$x \approx 2,0714$$

c) 
$$x = \frac{3}{5}$$

d) 
$$x \in \mathcal{Q}$$

e) 
$$x = \frac{1}{2}$$

f) 
$$x = \frac{2}{3}$$

## Page 98 – EXERCICES RÉCAPITULATIFS B (section 4.2)

- 1. a) 1500\$ b) 2321,12\$
- 2.  $\frac{x}{y} = 9$  et on rejette  $\frac{x}{y} = 1$  à cause d'une des restrictions (x > 3y).
- 3. Le couple est  $(4, \log(2))$
- 4. Environ 31,5 années
- 5. Environ 15,5 années
- 6. 10,4%
- 7. Dans environ 19,8 années
- 8. a) Dans 4 mois
- b) 2013,63\$

9. a) 
$$N = N_0 \cdot (3)^{t/2}$$
 b)  $t = 2\log_3 \left(\frac{N}{N_0}\right)$ 

b) 
$$t = 2\log_3\left(\frac{N}{N_0}\right)$$

## Page 100 – EXERCICES DE RÉVISION A

- **1.** a) 0 < n < 1 b)  $\frac{1}{8} < n < \frac{1}{4}$  **2.** a) -1,42 (cf. loi #8) b)  $\frac{3}{2}$  (cf. loi #9) c) -p (cf. loi #10)

- **3.**  $x \in [0,16[$  **4.**  $x \in -\infty,3[$  **5.** a) (4, 10) b) (2, 4) c) (1, 2)
- **6.** 33 heures (après 32 heures, il n'y aura « que » 4 743 480 bactéries!)
- **7.** Après 24 ans, soit en 2019
- **8.** Dans 75 heures (environ) **9.** Après 17 bonds

- **10.** 24 jours
- **11.** 160 ans **12.** Dans  $1.998 \approx 2$  ans

#### Page 104 – EXERCICES DE RÉVISION B

- 1. 4,40
- 2. a)  $-\frac{7}{2}$  b) x = -1 c)  $-\frac{9}{2}$  d) x = 2
- 3. 0
- 4. x = -5 ou x = 2
- 5. f est décroissante
- 6. a > b < c > d <
- 7. f est décroissante
- 8. a) Vrai b) Vrai c) Vrai d) Vrai e) Vrai f) Faux
- 9.  $\frac{5x-y}{2} 4z$
- 10. asymptote :  $x = \frac{1}{2}$  ; zéro :  $x = \frac{2}{3}$
- 11. x = 4
- 12. x = 4
- 13.  $x = \pm \sqrt{5}$
- 14. a)  $f^{-1}(x) = \log_{\frac{2}{3}} \left( \frac{1}{2}(x+4) \right) + 2$  b)  $g^{-1}(x) = -\frac{1}{2} \log_2 \left( \frac{1}{3}(x+2) \right) + \frac{3}{2}$
- 15.  $j(0) = -\frac{3}{2}$
- 16.  $x \in \left[ \frac{3}{4}, \frac{5}{4} \right]$
- 17. B
- 18. a) x = 4 b)  $x = -\frac{1}{6}$  c)  $x \le -\frac{1}{3}$
- 19.  $x \ge -1$
- 20.  $x \approx -0.2367$
- 21.  $f(x) = \log_{1/2} \left( \frac{-1}{16} (x+2) \right)$  ou  $f(x) = -\log_2 \left( -(x+2) \right) + 4$
- 22. environ 8,5 années
- 23. 7,3 jours
- 24. ( $\approx$ 2,0605;  $\approx$ 8,6998)
- 25. x = 3 (une situation qui met en évidence vos aptitudes mathématiques...)

## Page 111 – DÉFIS ULTIMES

- 1. La valeur est 2
- 2. x = 5
- 3. x = 12 et y = 18
- 4.  $\log_8(18) = \log_8(3) + \log_8(3) + \log_8(2) = 2k + \frac{1}{3}$
- 5.  $r = \frac{1}{2}$
- 6.  $\log_{c^n}(b) = \frac{\log_c(b)}{\log_c(c^n)} = \frac{\log_c(b)}{n \cdot \log_c(c)} = \frac{\log_c(b)}{n \cdot 1} = \frac{1}{n} \log_c(b)$