DRAFT

Treatability Study in Support of Remediation by Natural Attenuation (RNA) for the BX Shoppette (Site E11)

Eaker Air Force Base Blytheville, Arkansas

Prepared For

Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base
San Antonio, Texas

and

Air Force Base Conversion Agency/OL-J Eaker Air Force Base Blytheville, Arkansas

January 1997

20000830 027

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Walton, Norman

From: Hansen, Jerry E, Mr, HQAFCEE [Jerry.Hansen@HQAFCEE.brooks.af.mil]

Sent: Tuesday, August 08, 2000 10:16 AM

To: 'nwalton@dtic.mil'

Subject: Distribution statement for AFCEE/ERT reports

Norman, This is a followup to our phone call. The eight boxes of reports you received from us are all for unlimited distribution. If you have any questions, you can contact me at DSN 240-4353.

DRAFT

TREATABILITY STUDY IN SUPPORT OF REMEDIATION BY NATURAL ATTENUATION (RNA) FOR THE BX SHOPPETTE (SITE E11)

at

EAKER AIR FORCE BASE BLYTHEVILLE, ARKANSAS

January 1997

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE TECHNOLOGY TRANSFER DIVISION BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

AND

EAKER AIR FORCE BASE BLYTHEVILLE, ARKANSAS

Prepared by:

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado, 80290

EXECUTIVE SUMMARY

This report presents the results of a treatability study performed by Parsons Engineering Science, Inc. (Parsons ES) at the BX Shoppette (Site E11), Eaker Air Force Base, Arkansas to evaluate remediation by natural attenuation (RNA) of dissolved fuel hydrocarbons. Mobile and residual light, nonaqueous-phase liquid (LNAPL) present within the vadose zone and phreatic soils serves as a continuing source for the dissolved groundwater contamination. This study focused on the fate and transport of dissolved benzene, toluene, ethylbenzene, and xylene (BTEX) in unconfined and semi-confined groundwater at the site. Site history and the results of soil and groundwater investigations conducted previously are also summarized in this report.

BTEX data collected in March 1996 as part of this TS indicated that the upper two water bearing units (the shallow unconfined and the deep, semi-confined aquifers) at the site contain BTEX contamination. Geochemical data strongly suggest that biodegradation of fuel hydrocarbons is occurring in both aquifers via aerobic respiration and the anaerobic processes of iron reduction, manganese reduction, sulfate reduction, and methanogenesis. Patterns observed in the distribution of hydrocarbons, electron acceptors, and biodegradation byproducts further indicate that biodegradation is reducing dissolved BTEX concentrations in both groundwater aquifers.

An important component of this study was an assessment of the potential for contamination in groundwater to migrate from the source areas to potential receptors. The analytical model Bioscreen (version 1.2) was used to evaluate the fate and transport of dissolved BTEX in unconfined and semi-confined groundwater under the influence of advection, dispersion, sorption, and biodegradation. Input parameters for the Bioscreen model were obtained from previous site characterization data, supplemented with data collected by Parsons ES. Model parameters that were not measured at the site were estimated using reasonable literature values.

The results of this demonstration suggest that RNA of BTEX is occurring at the BX Shoppette; furthermore, the estimated rates of biodegradation, when coupled with the effects

of sorption, dispersion, and dilution, should be sufficient to reduce dissolved BTEX in the unconfined and semi-confined aquifers to concentrations below current regulatory guidelines long before potential downgradient receptors could be adversely affected. dissolved concentrations of BTEX are predicted to remain in shallow unconfined site groundwater for more than 100 years without engineered source reduction. When bioventing and source excavation are incorporated into the site groundwater model, the model predicts it will take less than 20 years to reduce dissolved benzene concentrations to below the federal MCL of 5 µg/L. The presence of a state-permitted land farm at Eaker AFB that is capable of accepting excavated hydrocarbon-contaminated soils from the BX Shoppette was influential in the selection of a final remedial alternative. A combination of rapid source removal [with a corresponding decrease in potential long-term monitoring (LTM) operations] and reduced excavation costs (resulting from the close proximity of the land farm to the BX Shoppette) make source excavation a very competitive remedial alternative. Therefore, source excavation coupled with RNA and LTM is the most viable remedial option for BTEXimpacted groundwater at the site.

To verify the results of the analytical modeling effort, and to ensure that RNA is occurring in the shallow unconfined and deep semi-confined aquifers at rates sufficient to protect potential downgradient receptors, groundwater from 6 LTM wells, 5 sentry wells, and 3 surface water sampling locations should be sampled and analyzed for BTEX compounds by US Environmental Protection Agency (USEPA) Method SW8020. These wells should be sampled annually for 15 years. At that time, sampling could cease, decrease in frequency, or continue annually as dictated by the analytical results. If during annual monitoring dissolved BTEX concentrations in groundwater collected from the sentry wells exceed federal MCLs, additional evaluation or corrective action may be necessary at this site.

TABLE OF CONTENTS

		<u>Page</u>
EXE	CUTIVE SUMMARY	ES-1
SECT	TION 1 - INTRODUCTION	1-1
1.1	Scope and Objectives	1-2
1.2	Report Organization	1-3
1.3	Installation Description and History	
1.4	Site Background	
SECT	TION 2 - SITE CHARACTERIZATION ACTIVITIES	2-1
2.1	Cone Penetrometry	2-2
	2.1.1 Determination of Stratigraphy	
	2.1.2 Investigation of Residual and Mobile Hydrocarbons	2-4
	2.1.3 Soil Sample Collection	2-4
	2.1.4 CPT Hole Abandonment	2-6
	2.1.5 Equipment Decontamination	2-8
2.2	Geoprobe Geoprobe	
	2.2.1 Equipment Decontamination Procedures	2-8
	2.2.2 Borehole Advancement and Soil Sampling	
2.3	Monitoring Point Installation	
	2.3.1 Materials	
	2.3.2 Installation	2-12
	2.3.3 Development	
	2.3.4 At-Grade Completion	
2.4	Groundwater Sampling	
	2.4.1 Preparation for Sampling	
	2.4.1.1 Equipment Decontamination	
	2.4.1.2 Equipment Calibration	2-14
	2.4.1.3 Preparation of Location	2-15
	2.4.1.4 Water Level and Total Depth Measurements	
	2.4.2 Purging and Sample Collection	
	2.4.3 Onsite Chemical Parameter Measurement	
2.5	Surface Water Sampling	
2.6	Sediment Sampling	2-17
2.7	Free Product Sampling	
2.8	Sample Handling	
	2.8.1 Sample Containers, Preservation, and Labels	2-18
2.9	Aquifer Testing	2-19

2.10	Surve	ying		<u>Page</u> 2-19
CECT	TON 3	- DHVSIC	AL CHARACTERISTICS OF THE STUDY AREA	3_1
SECI	1011 3	- 1111310	AL CHARACTERISTICS OF THE STODY MICH	
3.1	Topos	graphy and	Surface Water Hydrology	3-1
3.2	Clima	te		3-2
3.3			gy and Hydrogeology	
3.4			d Hydrogeology	
			y and Stratigraphic Relationships	
			vater Hydraulics	
			Flow Direction and Gradient	
		3.4.2.2		
		3.3.2.3	· · · · · · · · · · · · · · · · · · ·	
		3.3.2.4		
		3.4.2.5	Potential Exposure Pathways	
	3.4.3		vater Use	
SECT	ION 4		E AND EXTENT OF CONTAMINATION AND SOIL	
		AND G	ROUNDWATER GEOCHEMISTRY	4-1
4.1	Cours	a of Conta		<i>A</i> 1
4.1			mination	
4.2			ontamination	
4.3			Contamination	
	4.5.1		Soil Analytical Data	
		4.3.1.1		
	132		ganic Carbon	
4.4				
4.4			nd Sediment Chemistry	
4.5			t Quality Data	
4.5			Measurements of Dissolved Hydrocarbon	4-10
	4.5.1		nation	1 16
		4.5.1.1	March 1996 BTEX Concentrations	
		4.5.1.1	Total Volatile Petroleum Hydrocarbon	4-10
		4.3.1.2		4.20
	450	Inonesia	Concentrations	4-20
	4.5.2	U	c Chemistry and Geochemical Indicators of	4 22
			odegradation	
		4.5.2.1	Dissolved Oxygen	
		4.5.2.2	Nitrate/Nitrite	
		4.5.2.3	Soluble Manganese	
		4.5.2.4	Ferrous Iron	
		4.5.2.5	Sulfate	4-34

			<u>Page</u>
		4.5.2.6 Methane in Groundwater	
		4.5.2.7 Reduction/Oxidation Potential	
		4.5.2.8 Alkalinity and Carbon Dioxide Evolution	
		4.5.2.9 pH	
		4.5.2.10 Temperature	
	4.5.3		
	4.5.4	Expressed Assimilative Capacity	4-44
SECT	ION 5	- GROUNDWATER MODELING	5-1
<i>E</i> 1	C	1 Oi	F 1
5.1 5.2		ral Overview	
		eptual Model Design and Assumptions	
5.3		Model Setup	
	5.3.2	1	
		Coefficient of Retardation	
		BTEX Concentrations	
	5.3.5	•	
		5.3.5.1 Tracer Method	
		5.3.5.2 Method of Buscheck and Alcantar	
~ .		5.3.5.3 Selection of a Decay Rate Constant	
5.4	-	rtical Model Results	
	5.4.1	Model Calibration	
		5.4.1.1 Surficial Aquifer Calibration	
		5.4.1.2 Semi-Confined Aquifer Calibration	
	5.4.2		5-16
	5.4.3		
	~ .	Semi-Confined Aquifer	
5.5		ivity Analysis	
5.6	Concli	usions and Discussion	5-20
SECT	ION 6 -	- COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES	6_1
6.1		dial Alternative Evaluation Criteria	
	6.1.1	Long-Term Effectiveness and Permanence	
	6.1.2	Implementability	
		Cost	
6.2	Factor	rs Influencing Alternatives Development	
	6.2.1	8	
	6.2.2	Contaminant Properties	
	6.2.3	Site-Specific Conditions	6-5
		6.2.3.1 Physical Characteristics	6-6

			<u>Page</u>
		6.2.3.2 Geochemical Characteristics	
		6.2.3.3 Potential Exposure Pathways	6-8
	6.2.4		
		Deep Groundwater	
		Summary of Remedial Technology Screening	
6.3		ription of Remedial Alternatives	6-13
	6.3.1	Alternative 1 - RNA, Bioslurping, and	
		Institutional Controls with Long- Term	
		Groundwater Monitoring	6-18
	6.3.2	Alternative 2 - RNA, Bioslurping, Bioventing, and	
		Institutional Controls with Long-Term	
		Groundwater Monitoring	6-21
	6.3.3	Alternative 3 - RNA, Soil Excavation, Bioslurping, and Institutional	
		Controls with Long-Term	
		Groundwater Monitoring	
6.4		ation of Alternatives	6-23
	6.4.1	Alternative 1 - RNA, Bioslurping, and	
		Institutional Controls with Long- Term	
		Groundwater Monitoring	6-23
		6.4.1.1 Effectiveness	6-23
		6.4.1.2 Implementability	6-25
		6.4.1.3 Cost	6-25
	6.4.2	Alternative 2 - RNA, Bioslurping/Bioventing, and	
		Institutional Controls with Long-Term	
		Groundwater Monitoring	6-26
		6.4.2.1 Effectiveness	6-26
		6.4.2.2 Implementability	6-27
		6.4.2.3 Cost	6-27
	6.4.3	Alternative 3 - RNA, Soil Excavation, Bioslurping,	
		and Institutional Controls with Long-Term	
		Groundwater Monitoring	6-28
		6.4.3.1 Effectiveness	6-28
		6.4.3.2 Implementability	6-29
		6.4.3.3 Cost	
6.5	Recon	nmended Remedial Approach	
SECT	ΓΙΟΝ 7 -	- LONG-TERM MONITORING PLAN	7-1
7.1	Over	ion	7 1
7.1	Monite	iew	/-1
1.2		oring Networks	
		Long-Term Monitoring Wells	
72		Sentry Wells	
7.3	Surtac	e Water Sampling Locations	/-4

7.4	Groundwater/Surface Water Sampling	<u> </u>
	7.4.1 Analytical Protocol	
	7.4.2 Sampling Frequency	
SECT	TION 8 - CONCLUSIONS AND RECOMMENDATIONS	8-1
SECT	TION 9 - REFERENCES	9-1
APPE	ENDICES	
	Forehole Logs, Monitoring Well Construction Diagrams, Cpt Logs, Slug Test esults, And Survey Data	
	revious Analytical And Unpublished Data	
	oil, Sediment, Groundwater, And Surface Water Analytical Results	
	sioscreen Model Input Parameters, Model Output, Figures Of Model Output, alculations Related To Model Calibration	And
	ioscreen Model Input And Output For Use In A Microsoft Excel Spreadshee	t
F - Ca	alculations For Remedial Option Design And Costing	

LIST OF TABLES

<u>No</u> .	<u>Title</u>	Page
2.1	Analytical Protocol for Groundwater, Surface Water,	
	Soil, and Sediment Samples	2-7
2.2	Monitoring Point/Well Construction Details and	
	Surface Water and Sediments Sampling Locations	2-11
3.1	Groundwater Elevation Data	3-11
3.2	March 1996 Slug Test Results	3-14
4.1	Mobile LNAPL Analytical Results	
4.2	Fuel Hydrocarbon Compounds Detected in Soil and Sediment	4-8
4.3	Fuel Hydrocarbon Compounds Detected in Groundwater	
	and Surface Water	4-14
4.4	Coupled Oxidation Reactions for BTEX Compounds	4-23
4.5	Geochemical Data for Groundwater	4-26
4.6	Expressed Assimilative Capacity of Site Groundwater	4-45
6.1	Water Quality Standards	6-13
6.2	Initial Technical Implementability Screening of Technologies	
	and Process Options for Groundwater Remediation	6-14
6.3	Alternative 1 - Cost Estimate	6-26
6.4	Alternative 2 - Cost Estimate	6-29
6.5	Alternative 3 - Cost Estimate	6-31

LIST OF TABLES (CONTINUED)

No.	<u>Title</u>	Page
7.1	Groundwater Monitoring Analytical Protocol for Long-Term Monitoring Wells	7-6
7.2	Groundwater Monitoring Analytical Protocol for Sentry Wells	
7.3	Groundwater Monitoring Analytical Protocol for Surface Water Samples	
	LIST OF FIGURES	
No.	<u>Title</u>	<u>Page</u>
1.1	Base Location	1-5
1.2	BX Shoppette Location	1-6
1.3	Site Map	1-8
2.1	Sampling Locations	2-5
3.1	Hydrogeologic Cross-Section A-A'	3-4
3.2	Hydrogeologic Cross-Section B-B'	3-5
3.3	Hydrogeologic Cross-Section C-C'	
3.4	Shallow Groundwater Elevations March 1992	3-8
3.5	Shallow Groundwater Elevations March 1996	3-9
3.6	Potentiometric Surface of the Semi-Confined Sand Aquifer	
4.1	Extent of Soil Contamination Based on	
	Fluorescence Intensity and Observed Mobile LNAPL	4-3
4.2	Soil Sampling Locations	
4.3	Vertical Extent of Soil Contamination	
	(Hydrogeologic Cross-Section A-A')	4-11
4.4	Vertical Extent of Soil Contamination	
	(Hydrogeologic Cross-Section C-C')	4-12
4.5	Total BTEX Concentrations in Shallow Groundwater	
	and Surface Water	4-19
4.6	TVPH Concentrations in Shallow Groundwater	
4.7	Dissolved Oxygen Isopleth Map for Shallow Groundwater	
4.8	Maganese Isopleth Map for Shallow Groundwater	
4.9	Ferrous Iron Isopleth Map for Shallow Groundwater	
4.10	Sulfate Isopleth Map for Shallow Groundwater	
4.11	Methane Isopleth Map for Shallow Groundwater	
4.12	Redox Potentials in Shallow Groundwater	
4.13	Carbon Dioxide Isopleth Map for Shallow Groundwater	
4.4	Alkalinity (CaCO ₃) in Shallow Groundwater	
7.1	Proposed Sentry and Long-Term-Monitoring Well Placement	

SECTION 1

INTRODUCTION

This report was prepared by Parsons Engineering Science, Inc. (Parsons ES) and presents the results of a treatability study (TS) conducted to evaluate the remediation by natural attenuation (RNA) of groundwater contaminated by gasoline at the BX Shoppette (Site E11), Eaker Air Force Base (AFB, the Base), Blytheville, Arkansas. As used throughout this report, the term "RNA" refers to a management strategy that relies on natural biological, physical, and chemical attenuation mechanisms to control exposure of receptors to concentrations of contaminants in the subsurface that exceed regulatory levels intended to be protective of human health and the environment.

RNA is an innovative remedial approach that relies on natural attenuation to remediate fuel contaminants dissolved in groundwater. Patterns and rates of RNA can vary markedly from site to site depending on governing physical, chemical, and biological processes. Mechanisms for natural attenuation of fuel hydrocarbons include advection, dispersion, dilution from recharge, sorption, volatilization, and biodegradation. Of these processes, biodegradation is the only mechanism working to transform contaminants into innocuous byproducts. Natural biodegradation occurs when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without artificial intervention (e.g., the addition of nutrients). The main emphasis of the work described herein was to evaluate the potential for naturally occurring biodegradation mechanisms to reduce dissolved fuel hydrocarbon concentrations in groundwater to concentrations below regulatory standards that are intended to be protective of human health and the environment. This study is not intended to be a contamination assessment report or a remedial action plan for the BX Shoppette; rather, it is provided for the use of the Base and its prime environmental contractor(s) as information to be used for future decision making regarding this site.

1.1 SCOPE AND OBJECTIVES

Parsons ES was retained by the United States Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division to conduct site characterization and groundwater modeling to evaluate the scientific defensibility of RNA with long-term monitoring (LTM) as a remedial option for fuel-contaminated groundwater at the BX Shoppette. Site characterization activities conducted in March 1996 consisted of numerous tasks that were required to fulfill the project objective. These tasks included:

- Reviewing existing hydrogeologic and soil and groundwater quality data for the site:
- Conducting supplemental site characterization activities to determine the nature and extent of soil, sediment, surface water, and groundwater contamination and the groundwater flow conditions in the affected aquifer;
- Collecting geochemical data in support of RNA;
- Developing a conceptual hydrogeologic model for the shallow saturated zone, including the current distribution of contaminants;
- Evaluating site-specific data to determine whether naturally occurring processes of contaminant attenuation and destruction are occurring in groundwater at the site;
- Designing and executing a Bioscreen groundwater flow and solute transport model for site hydrogeologic conditions;
- Simulating the fate and transport of fuel hydrocarbons in groundwater under the influence of advection, dispersion, adsorption, and biodegradation using the Bioscreen model:
- Evaluating a range of model input parameters to determine the sensitivity of the model to those parameters and to consider several contaminant fate and transport scenarios;
- Determining if naturally occurring processes are limiting dissolved hydrocarbon plume expansion so that water quality standards can be met downgradient;
- Assessing potential exposure pathways for potential current and future receptors;
- Developing remedial action objectives (RAOs) and reviewing available remedial technologies;
- Using the results of modeling to recommend the most appropriate remedial option based on specific effectiveness, implementability, and cost criteria; and
- Providing a LTM plan that includes LTM and sentry wells.

Site characterization activities completed in March 1996 in support of RNA included exploration of the subsurface with a cone penetrometer (CPT) and laser probe tip [laser induced fluorescence (LIF)]; placement of monitoring points and collection of soil samples with the CPT apparatus; collection of soil samples with a Geoprobe®; aquifer testing; static groundwater level measurement; groundwater sample collection from site monitoring wells and points; surface water and sediment sample collection from site surface water bodies; analysis of groundwater, soil, surface water and sediment samples; and collection and analysis of free product from site monitoring wells. Field investigation methods are described in the TS Work Plan (Parsons ES, 1996).

Site-specific data were used to develop a solute fate and transport model for the site using Bioscreen and to conduct a preliminary exposure pathways analysis. The modeling effort was used to predict the future extent and concentration of the dissolved contaminant plume by modeling the combined effects of advection, dispersion, sorption, and biodegradation. Results of the model were used to assess the potential for completion of receptor exposure pathways involving groundwater, and to determine whether RNA with LTM is an appropriate and defensible remedial option for contaminated groundwater. The results of this TS will be used to provide technical support for the RNA with LTM remedial option during regulatory negotiations, as appropriate.

Alternate remedial options were considered to identify the major advantages and disadvantages associated with different groundwater remedial strategies. Hydrogeologic and groundwater chemical data necessary to evaluate these remedial options were either collected under this program, or were available from previous site investigations or the technical literature. Field work conducted under this program, however, was oriented toward the collection of supplementary hydrogeologic and geochemical data necessary to document and model the effectiveness of RNA with LTM for restoration of fuel-hydrocarbon-contaminated groundwater.

1.2 REPORT ORGANIZATION

This TS contains nine sections, including this introduction, and six appendices. Section 2 summarizes site characterization activities. Section 3 summarizes the physical characteristics of the study area. Section 4 describes the nature and extent of soil, groundwater, surface water, and sediment contamination, and the geochemistry of soil

and groundwater at the site. Section 5 describes the Bioscreen model and design of the conceptual hydrogeologic model for the site; lists model assumptions and input parameters; and describes sensitivity analyses, model output, and the results of the Bioscreen modeling. Section 6 presents a comparative analysis of remedial alternatives. Section 7 presents the LTM plan for the site. Section 8 presents the conclusions of this work and provides recommendations for further work at the site. Section 9 lists the references used to develop this document. Appendix A contains borehole logs, monitoring well construction diagrams, slug test results, and survey data. Appendix B presents previous analytical and unpublished data used in the preparation of this report. Appendix C presents soil, sediment, groundwater, and surface water analytical results collected as part of this TS. Appendix D contains Bioscreen model input parameters, model output, figures of model output, and calculations related to model calibration. Appendix E contains Bioscreen model input and output for use in a Microsoft® Excel spreadsheet environment. Appendix F contains calculations for remedial option design and costing.

1.3 INSTALLATION DESCRIPTION AND HISTORY

Eaker AFB is located in the northeastern corner of Arkansas, in Mississippi County, approximately 3 miles south of the Missouri state line and 11 miles west of the Tennessee state line. The Base occupies an area of approximately 3,300 acres 2 miles northwest of Blytheville, Arkansas and adjacent to the community of Gosnell (Figure 1.1). The Base is divided roughly in half by the main north/south runway (Figure 1.2). Aviation support, approximately 930 Base housing units, a hospital, and commercial facilities are located in the western portion of the Base. The eastern half of the Base is dedicated primarily to agricultural, recreational, and industrial activities. The predominant existing land use surrounding Eaker AFB is agricultural, with some residential parcels (Eaker AFB, 1992).

The Base was established in 1942 as the Blytheville Army Airfield and served as a training center until deactivation in 1945. From 1947 to 1955, the site was used for manufacturing, for private housing, and as an airport. The Base was reactivated as Blytheville AFB in 1955 under the direction of the Tactical Air Command, and then transferred to the Strategic Air Command (SAC) in 1958. The 97th Bombardment Wing assumed command of the Base until the disestablishment of SAC in 1992, when control was transferred to the Air Combat Command. In 1988, the Base was renamed Eaker

AFB. Base operations in 1990 employed approximately 3,600 civilian and military personnel (Eaker AFB, 1992). In July 1991, the recommendation for base closure was approved, and closure commenced in December, 1992.

1.4 SITE BACKGROUND

The BX Shoppette site is located in the west-central portion of the Base (Figure 1.2) and is bounded by undeveloped land to the north and west, and by Base operations facilities to the east and south. Two 10,000-gallon underground storage tanks (USTs) were installed at the site in 1969. The tanks (160-A and 160-B) were steel-constructed, tar-coated, and corrosion protected with sacrificial anodes (cathodic protection). Two additional USTs (160-C and 160-D) were installed in 1971. Tank 160-C, with a capacity of 6,000 gallons, also was steel-constructed, tar-coated, and cathodically protected. Tanks 160-A through 160-C originally contained regular leaded gasoline; however, the tanks were converted from leaded to unleaded gasoline in 1988 (Looney, 1996). Tanks 160-A, -B, and -C were buried in a pit located approximately 30 feet northwest of the BX Shoppette (Figure 1.3). Tank 160-D, a 550-gallon tank used to store waste oil, was located at the eastern corner of the shoppette building (Figure 1.3). This tank is constructed of steel but was not cathodically protected (Halliburton NUS, 1994).

In 1974, a leak in the pipeline from the fuel USTs to the fuel dispensers was repaired. An unknown amount fuel was released prior to repair of the 1974 pipeline leak, and no hydrocarbon-contaminated soils were removed during the repair (Halliburton NUS, 1992). In December 1989, a tank tightness test was performed on the BX Shoppette USTs. Tank 160-A failed the tightness test and was subsequently deactivated in March 1990. In August 1990, a tank and line tightness test was performed on the remaining USTs and fuel dispensing system. This test identified leaks in Tank 160-B, Tank 160-C, and Tank 160-D. The tops of the tanks were exposed and isolated from their associated piping for retesting. All three tanks passed the retesting, suggesting that leaks were present in the fuel transfer lines.

In February and June 1991, a total of 28 soil borings were installed by Professional Services, Inc. (PSI) (Halliburton NUS, 1992). The horizontal limits of soil benzene, toluene, ethylbenzene, and xylenes (BTEX) contamination were established around the gasoline tank pit and associated transfer lines; however, the vertical extent of soil BTEX

K:\AFCEE\722450\96DN1033, 12/27/96 at 11:26

was not fully defined. BTEX compounds were detected in soil samples from 22 feet below ground surface (bgs) between the fuel tank pit and the BX Shoppette (Figure 1.3).

Site investigations continued between 1992 and 1995 under the Installation Restoration Program (IRP) and involved soil sampling, monitoring well installation, and groundwater sampling (Halliburton NUS, 1992, 1994, and 1995). In May 1992, mobile LNAPL was measured at a thickness of over 4 feet at monitoring well TW-1105 which is located southwest of the gasoline tank pit. Groundwater contamination was discovered during these site characterization events and was predicted to be migrating with groundwater flow to the west/northwest or the east/northeast, depending on the season. Groundwater may be preferentially migrating laterally along thin layers of silt and sand between clay layers. The four site USTs were removed in September 1995 along with approximately 600 cubic yards of tank pit soils (R&R International, Inc., 1996). Information is unavailable regarding the depth of the tank pit excavations or if groundwater was encountered.

Cone penetrometer/laser induced fluorescence (CPT/LIF) activities were conducted twice at the site prior to March 1996 to further delineate soil contamination and to develop CPT/LIF technology. The initial CPT/LIF effort, conducted by the US Army Corps of Engineers (USACE, 1995a), occurred in March 1995 and consisted of subsurface scans for free and residual fuel hydrocarbons with a nitrogen LIF probe. The second CPT/LIF characterization event occurred in October 1995 and involved scanning for free and residual hydrocarbons with a tunable LIF probe (USACE, 1995b). Soil samples were collected and analyzed for petroleum hydrocarbons during the second CPT/LIF site characterization event in an attempt to correlate tunable LIF probe readings with site analytical data.

In February 1992, Eaker AFB personnel bailed a total of 10.75 gallons of free product from monitoring well TW-1105. In September 1996, an AFCEE-sponsored bioslurper demonstration project was initiated using existing wells in the source area at the BX Shoppette (Brannon, 1996). Approximately 250 gallons of free product were recovered from the site during September and October 1996.

The results of previous site investigations are presented in the following reports:

• Site Assessment Report for the BX Shoppette (PSI, Inc., 1991);

- IRP Draft Site Assessment Report for the BX Shoppette Underground Storage Tank Site, Eaker AFB, Arkansas (Halliburton NUS, 1992);
- Final Environmental Impact Statement, Disposal and Reuse of Eaker Air Force Base, Arkansas (Eaker AFB, 1992);
- Unpublished BX Shoppette Site Data, Eaker AFB, Arkansas (Halliburton NUS, 1994)
- Unpublished Site Characterization and Analysis Penetrometer System (SCAPS), March 1995 (USACE, 1995a)
- Unpublished SCAPS Data, October 1995 (USACE, 1995b)
- Unpublished BX Shoppette Site Data, Eaker AFB, Arkansas (Halliburton NUS, 1995)
- UST/OWS Report for Eaker AFB, Arkansas (R&R International, Inc., 1996); and
- IRP Final Site Assessment Report for the BX Shoppette (Halliburton NUS, 1996).

The site-specific data presented in Sections 3, 4, and 5 are based on a review of these documents and on data collected by Parsons ES under this program in March 1996.

SECTION 2

SITE CHARACTERIZATION ACTIVITIES

This section summarizes the methods used by Parsons ES to collect site-specific data at the Base. These methods are more fully described in the work plan (Parsons ES, 1996). To meet the requirements of the RNA demonstration, additional data were required to evaluate near-surface geology, aquifer properties, and the nature and extent of soil and groundwater contamination. Site characterization activities included subsurface exploration with CPT/LIF; sampling and analyzing soils from CPT pushes; soil coring with a Geoprobe® apparatus; sampling and analyzing soils from Geoprobe® pushes; installing permanent and temporary groundwater monitoring points; sampling and analyzing groundwater from monitoring points and monitoring wells; collecting and analyzing surface water and sediment samples; and measuring or estimating hydrogeologic parameters (static groundwater levels, groundwater gradient, groundwater flow direction, and hydraulic conductivity). These investigation activities were used to collect the following physical and chemical hydrogeologic data:

- Depth from measurement datum to the water table or potentiometric surface in monitoring wells and points;
- Rate of change of water elevation following rapid depression or elevation of water level in a monitoring well;
- Location of potential groundwater recharge and discharge areas;
- Stratigraphy of subsurface media;
- Extent of residual petroleum hydrocarbon contamination in soils;
- Concentrations of dissolved oxygen (DO), nitrate, nitrite, manganese, ferrous iron, sulfate, methane, chloride, carbon dioxide, ammonia, and total organic carbon (TOC) in groundwater;
- Temperature, specific conductance, reduction/oxidation (redox) potential, total alkalinity, and pH of groundwater;

- Concentrations of BTEX, chlorobenzene, trimethylbenzene (TMB), tetramethylbenzene (TEMB), and total volatile hydrocarbons in groundwater and soil samples;
- Concentrations of BTEX in surface water and sediment samples; and
- TOC in soil samples.

In addition to the work conducted under this program, complementary site characterization data were previously collected by PSI (1991) and Halliburton NUS (1992, 1994, and 1995) and USACE (1995a and 1995b). Activities included the installation and sampling of soil samples, installation and sampling of soil borings, installation and sampling of monitoring wells, static groundwater level measurement, site stratigraphy analysis, and delineation of the extent of contamination in the vadose zone. Previously collected data and data collected under this program were integrated to develop the conceptual site model and to aid with interpretation of the physical setting (Section 3) and contaminant distribution (Section 4).

The remainder of Section 2 describes the procedures followed during the field work phase of the RNA demonstration. Additional details regarding investigative activities are presented in the draft work plan (Parsons ES, 1996).

2.1 CONE PENETROMETRY

Subsurface conditions at the site were evaluated using CPT coupled with LIF from March 26 through 28, 1996. CPT pushes were performed at 22 locations for monitoring point installation to evaluate the extent of residual or mobile LNAPL in soils. Eleven of the 22 CPT push locations were performed to collect site stratigraphy data needed to optimize the placement of screened intervals for monitoring points (locations ESMP-2 through ESMP-9, ESMP-19, ESMP-20, and ESMP-23) and to monitor for potential soil contamination. Eleven CPT push locations were performed to evaluate site stratigraphy and to identify potential soil contamination (ESLF-10 through ESLF-18, ESLF-20 and ESLF-21). The CPT truck was used to collect five soil samples. All subsurface utility lines, man-made subsurface features, and proposed monitoring point locations were cleared or approved by the Base prior to any CPT/LIF activities.

2.1.1 Determination of Stratigraphy

Cone penetrometry is an expeditious and effective means of analyzing the stratigraphy of a site by measuring the resistance against the conical probe of the penetrometer as it is pushed into the subsurface. Stratigraphy is determined from a correlation of the point stress at the probe tip and frictional stress on the side of the cone. Stratigraphy as determined from the CPT is checked against previous soil data or to soil samples collected to correlate the CPT readings to the lithologies present at the site. Methodologies for the collection of soil samples are described in Section 2.1.3.

CPT was conducted using the USACE cone penetrometer truck. This equipment consists of an instrumented probe that is forced into the ground using a hydraulic load frame mounted on a heavy truck, with the weight of the truck providing the necessary reaction mass. The penetrometer equipment is housed in a stainless steel, dual-compartment body mounted on a 43,000-pound, triple-axle Kenworth[®] truck chassis powered by a turbo-charged diesel engine. The weight of the truck and equipment is used as ballast to achieve the overall push capability of 39,000 pounds. This push capacity may be limited in tight soils by the structural bending capacity of the 1.8-inch outside-diameter (OD) push rods, rather than by the weight of the truck. The current 39,000-pound limitation is intended to minimize the possibility of push-rod buckling. Penetration force is supplied by a pair of large hydraulic cylinders bolted to the truck frame. The penetrometer is usually advanced vertically into the soil at a constant rate of 2 centimeters per second (cm/s), although this rate must sometimes be reduced, such as when hard layers are encountered.

The penetrometer probe is of standard dimensions, having a 1.8-inch OD, 60-degree conical point with sacrificial tip, and an 8.0-inch-long by 1.8-inch-OD friction sleeve. Inside the probe, two load cells independently measure the vertical resistance against the conical tip and the side friction along the sleeve. Each load cell is a cylinder of uniform cross-section which is instrumented with four strain gauges in a full-bridge circuit. Forces are sensed by the load cells, and the data are transmitted from the probe assembly via a cable running through the push tubes. The analog data are digitized, recorded, and plotted by computer in the penetrometry truck. A grout tube also runs down the push cylinder to allow the introduction of cement grout into the hole as the probe is withdrawn in order to seal the CPT hole.

2.1.2 Investigation of Residual and Mobile Hydrocarbons

The known propensity of aromatic hydrocarbons to fluoresce under ultraviolet wavelengths has allowed the use of LIF technology, in conjunction with CPT technology, to evaluate soil characteristics and hydrocarbon contamination simultaneously. The LIF system has a 0.25-inch sapphire window in the side of the cone that allows a nitrogen laser to scan the soil for fluorescent compounds as the LIF penetrometer rod pushes through soil. Assuming that aromatic hydrocarbons are simultaneously solvenated with other fuel-hydrocarbon constituents, the magnitude of aromatic fluorescence is indicative of hydrocarbon contamination in a soil matrix. Fiber optic cables connected to the laser spectrometer and a 6-pair electrical conductor connected to the CPT data acquisition system, are routed through the interior of the push tubes to the CPT probe.

The basic components of the LIF instrument are a laser, a fiber optic probe, a monochromator for wavelength resolution of the return fluorescence, a photomultiplier tube to convert photons into an electrical signal, a digital oscilloscope for waveform capture, and a control computer. The fiber optic probe for the cone penetrometer consists of delivery and collection optical fibers, a protective sheath, a fiber optic mount within the cone, and a 0.25-inch sapphire window. The wavelength used in the USACE CPT/LIF system gives the strongest fluorescence signal (attributable to the presence of contamination) for naphthalene and heavier, long-chained hydrocarbons. Thus, while the LIF is not entirely appropriate for detecting the fluorescence of BTEX, it is useful for defining soil contamination because the heavy long-chained hydrocarbons that are most likely to sorb to the soil matrix than the more soluble BTEX compounds.

Graphical results of each CPT/LIF push were plotted by USACE staff at the conclusion of each penetration and were available minutes after the completion of each hole. The graphs showed cone resistance, sleeve friction, soil classification, fluorescence intensity, and maximum fluoresced wavelength. The real-time availability of the CPT information allowed the Parsons ES field scientist to make investigative decisions based on the most current information. Final CPT logs are presented in Appendix A.

2.1.3 Soil Sample Collection

The CPT was used to collect five soil samples for analysis of TOC, BTEX, TMBs, and TEMB on March 28, 1996 (Figure 2.1). The samples were collected at locations

ESSB-4, ESSB-13, ESSB-15, ESSB-18, and ESSB-22. The sample were collected just above the water table from silty clay and sandy intervals from 7.0 to 10.5 feet bgs.

The samples were collected using a Hoggen-Toggler® sampling device, which can be used to collect undisturbed soil samples at any desired depth within the range of the driving apparatus. The sampler is coupled to the penetrometer rod and pushed into the soil with the CPT truck. With the Hoggen-Toggler® cone in the closed position, soil is prevented from entering the sampling tube until the desired depth is achieved. When the sampler has been pushed to the depth at which the soil sample is to be taken, the sampling unit is raised a few inches and the Hoggen-Toggler® apparatus is opened. The open Hoggen-Toggler® is pushed to fill with soil, then pulled from the ground as quickly as possible. The Hoggen-Toggler® sampling apparatus allows collection of 8-inch-long by 1-inch inside-diameter (ID) continuous samples.

The soil samples collected using the Hoggen-Toggler[®] assembly were placed in clean, 4-ounce glass jars, packed with bubble wrap, and cooled to 4 degrees Celsius (°C) in an insulated cooler. For each sample, the Parsons ES field scientist recorded the following information:

- Sample interval (top and bottom depth);
- Presence or absence of contamination;
- Lithologic description, including major textural constituents, minor constituents porosity, color, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, and any other significant observations; and
- Any unusual conditions.

A summary of the chemical analyses performed for soil samples is presented in Table 2.1.

2.1.4 CPT Hole Abandonment

The CPT/LIF probe is equipped with a grout tube and sacrificial tip; therefore, the CPT/LIF holes not completed to monitoring points were abandoned with a Portland[®] cement grout as the CPT pushrod was withdrawn. Collection of samples with the Hoggen-Toggler[®] sampler did not allow for grouting during pushrod withdrawal;

TABLE 2.1 ANALYTICAL PROTOCOL FOR GROUNDWATER, SURFACE WATER, SOIL, AND SEDIMENT SAMPLES

BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

) common	ANALYTICAL
MATRIX	METHOD	LABORATORY
WATER		
Total Iron	Colorimetric, Hach Method 8008	Field
Ferrous Iron (Fe+2)	Colorimetric, Hach Method 8146	Field
Ferric Iron (Fe+3)	Difference between total and ferrous iron	Field
Manganese	Colorimetric, Hach Method 8034	Field
Sulfide	Colorimetric, Hach Method 8131	Field
Sulfate	E300 or SW9056	Evergreen ^{a/}
Nitrate	Titrimetric, Hach Method 8039 and 8192	Field
Nitrate	E300 or SW9056	Evergreen
Nitrite	Titrimetric, Hach Method 8040	Field
Nitrite	E300 or SW9056	Evergreen
Redox Potential	A2580B, direct reading meter	Field
Oxygen	Direct reading meter	Field
pH	Direct reading meter	Field
Conductivity	Direct reading meter	Field
Temperature	Direct reading meter	Field
_ Alkalinity (Carbonate [CO3-2]	Titrimetric, Hach Method 8221	Field
and Bicarbonate [HCO3-1])		
Carbon Dioxide	CHEMetrics Method 4500	Field
Chloride	Hach Model 8P	Field
Chloride	E300 or SW9056	Evergreen
AmmoniaDiss. Gas in Water	CHEMetrics Method 4500	Field
Alkalinity	310.1	Evergreen
Methane	RSKSOP175	Evergreen
Total Organic Carbon	EPA 415.1	Evergreen
Aromatic Hydrocarbons	SW8020	Evergreen
(Including Trimethylbenzenes		
and Tetramethylbenzene)		
Total Volatile Petroleum	SW8015, modified (Gasoline)	Evergreen
Hydrocarbons		
FREE PRODUCT		
Aromatic Hydrocarbons	SW8020	Evergreen
	15 5020	1 2,018,0011
SURFACE WATER	Lawrooco	
Aromatic Hydrocarbons	SW8020	Evergreen
SOIL		
Total Organic Carbon	SW9060	Evergreen b/
Moisture	EPA 160.3	Evergreen
Aromatic Hydrocarbons	SW8020	Evergreen
Total Volatile Hydrocarbons	SW8015, modified	Evergreen
SEDIMENT		
Aromatic Hydrocarbons	SW8020	Evergreen

a/ Evergreen Analytical, Inc. of Wheat Ridge, Colorado.

b/ Subcontracted by Evergreen to Huffman Laboratories of Golden, Colorado.

therefore, these holes were abandoned with Portland® cement from the ground surface after sample collection.

2.1.5 Equipment Decontamination

After sampling at each CPT location, CPT push rods were cleaned with the CPT steam-cleaning system (rod cleaner) as the rods were withdrawn from the ground. A vacuum system located beneath the CPT truck was used to recover cleaning water. Use of this system resulted in nearly 100-percent recovery of steam-cleaning rinseate from the rod cleaner. Rinseate was generated only as the rods moved past the cleaner, thereby minimizing liquid waste generation.

All soil sampling tools were cleaned onsite with a steam/hot-water spray prior to use and between each sampling event. Precautions were taken to minimize any impact to the surrounding area that might result from decontamination operations. Potable water used in CPT equipment cleaning, decontamination, or grouting was obtained from the base water supply.

2.2 GEOPROBE®

Geoprobe®-related field work occurred on March 28, 1996, and consisted of soil sampling at push locations ESSB-13, ESSB-24, ESSB-25, ESSB-26, ESSB-27, ESSB-28, and ESSB-29 (Figure 2.1). Geoprobe® activities were performed in addition to those activities described in the work plan (Parsons ES, 1996) to expedite soil sampling at the site and to improve the efficiency of soil sample collection.

The Geoprobe® system is a truck-mounted, hydraulically powered percussion/probing machine used to advance sampling tools through unconsolidated soils. This system provides for the rapid collection of soil, soil gas, and groundwater samples at shallow depths while minimizing the generation of investigation-derived waste materials. All necessary clearances for subsurface sampling with the Geoprobe® were completed as described in Section 2.1.

2.2.1 Equipment Decontamination Procedures

Prior to arriving at the site, all probe rods, tips, sleeves, pushrods, samplers, tools, and other downhole equipment were decontaminated using an Alconox® detergent and potable water solution followed by a high-pressure potable water wash. All equipment

also underwent an additional rinse with isopropyl alcohol followed by a final rinse with deionized water.

2.2.2 Borehole Advancement and Soil Sampling

The Geoprobe®-collected soil samples were obtained using a probe-drive sampler. The probe-drive sampler serves as both the driving point and the sample collection device and is attached to the leading end of the probe rods. To collect a soil sample, the sampler was pushed or driven to the desired sampling depth, and the stop pin was removed, allowing the piston and drive point to retract as the sample barrel was pushed into undisturbed soil. The soil cores were retained within a clear acetate liner inside the sampling barrel. The probe rods were then retracted, bringing the sampling device to the surface. The soil sample was then cut from the liners, composited over 1-foot intervals, and transferred to analyte-appropriate jars supplied by the analytical laboratory. A portion of the sample was retained for visual logging and photoionization detector (PID) headspace screening for volatile organic compounds (VOCs). Remaining soil was used for lithologic and stratigraphic logging.

Bags containing soil samples collected for the headspace screening procedure were quickly sealed and stored for 15 minutes at the ambient temperature. Semiquantitative measurements were made by puncturing the bag seal with the PID probe and reading the concentration of the headspace gases. The PID relates the concentration of total VOCs in the sample to an isobutylene calibration standard. The PID was also used to monitor for VOCs in the worker breathing zone.

The Parsons ES field hydrogeologist observed CPT and Geoprobe® soil sampling and monitoring point installation activities with the CPT and maintained a descriptive log of subsurface materials recovered. Final geologic borehole logs are presented in Appendix A. These logs contain:

- Sampled interval (top and bottom depths);
- Presence or absence of contamination based on odor, staining, and/or PID readings;
- Soil description, including color, major textural constituents, minor constituents, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, and any other significant observations; and,

• Lithologic contacts, with the depth of lithologic contacts and/or significant textural changes recorded to the nearest 0.1 foot.

The small volume of waste soils generated during monitoring point installation and sampling operations was spread on the ground surface in the vicinity of the site.

2.3 MONITORING POINT INSTALLATION

Using the CPT truck, USACE staff installed 13 0.5-inch-ID monitoring points at 11 locations in the vicinity of the BX Service Station (Figure 2.1). Ten shallow monitoring points (ESMP-2S, -3S, -4S, -5S, -6S, -7S, -8S, -9S, -19S, and -20S) were installed north and east of the BX Service Station in saturated silty-clay soils below and across the water table. At two of these locations, ESMP-2 (ESMP-2S and -2D) and ESMP-6 (ESMP-6S and -6D), a deep monitoring point was clustered with the shallow point. A third deep monitoring point (ESMP-23D) was installed in a cluster with source area monitoring well TW-1105. The deep monitoring points were screened at the top of the deep sandy layer approximately 15 feet below the water table. The deep monitoring point clustered with TW-1105 was abandoned by filling the pushhole with grout because an effective annular seal could not be placed to prevent potential downward migration of mobile LNAPL into deeper saturated sands. Monitoring point ESMP-20S produced insufficient volumes of groundwater and was abandoned after initial groundwater sampling.

All monitoring points were assigned a three-part identifier. The first part is "ESMP" which designates the object as a Parsons Engineering Science monitoring point. The second part of the name is a number which corresponds the CPT/LIF location number. The third part is a letter which identifies the relative location of the screened interval with the water table: the letter "S" is used for monitoring points screened in silty clays of the surficial aquifer; the letter "D" is used for monitoring points screened in sandy soils below the clay layer separating the surface aquifer from the sandy aquifer below. The locations of all installed monitoring points are shown on Figure 2.1. A summary of monitoring point construction details (including construction details of existing monitoring wells) is provided in Table 2.2. Monitoring point completion diagrams are provided in Appendix A.

2.3.1 Materials

Monitoring points were constructed of flush-threaded 0.5-inch-ID/0.75-inch-OD polyvinyl chloride (PVC) casing and screen. Installed screens were 3.3 feet in length and

TABLE 2.2 MONITORING POINT/WELL CONSTRUCTION DETAILS

AND SURFACE WATER AND SEDIMENT SAMPLING LOCATIONS

BX SHOPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

				Well	Datum	Ground	Screen	interval
Well	Installation	Northing	Easting	ID	Elevation	Elevation	Top	Bottom
Location	Date	(feet)	(feet)	(inches)	(ft msl)*	(ft msl)	(ft bgs) ^{b/}	(ft bgs)
ESMP-2S	3/27/96	599433.23	2605219.08	0.5	251.62	251.47	8.4	11.7
ESMP-2D	3/27/96	599432.28	2605219.72	0.5	251.65	251.47	29.1	32.4
ESMP-3S	3/27/96	599538.88	2605107.12	0.5	251.36	251.56	7.7	11.0
ESMP-4S	3/27/96	599543.34	2605194.96	0.5	252.04	252.08	8.4	11.7
ESMP-5S	3/27/96	599471.44	2605273.69	0.5	251.22	251.25	9.6	12.8
ESMP-6S	3/27/96	599204.77	2605252.01	0.5	249.41	249.55	10.6	13.9
ESMP-6D	3/27/96	599202.63	2605253.95	0.5	249.35	249.55	27.4	30.7
ESMP-7S	3/26/96	599123.74	2605141.50	0.5	249.27	249.26	8.6	11.9
ESMP-8S	3/26/96	599238.12	2605417.29	0.5	251.41	251.48	8.4	11.7
ESMP-9S	3/27/96	599418.91	2605339.00	0.5	248.83	248.94	6.3	9.6
ESMP-19S	3/28/96	599398.85	2605116.62	0.5	251.21	251.19	10.0	13.2
ESMP-20S	3/28/96	599298.62	2605162.27	0.5	NA℃	248.97	6.5	9.8
ESMP-23D ^{d/}	3/28/96	599337.51	2604974.83	0.5	NA	249.97	NA	NA
CPT-22	NA	599319.43	2604996.46	2	249.12	249.34	NA	16.0
TW-1101	12/11/91	599410.72	2604970.12	2	250.48	250.61	15.2	25.2
TW-1102	12/11/91	599301.35	2604930.41	2	248.47	248.67	12.4	22.6
MW-1104	12/11/91	599381.05	2605116.10	2	250.45	250.63	14.1	24.1
TW-1105	12/13/91	599340.65	2604984.33	2	250.12	250.31	13.4	23.4
TW-1106	12/13/91	599356.27	2604925.71	2	249.92	250.12	13.5	23.7
TW-1109	12/14/91	599269.94	2605047.82	2	249.84	250.03	8.2	18.2
TW-1110	12/14/91	599285.49	2605062.49	2	250.21	250.35	8.2	18.2
TW-1111	12/15/91	599446.02	2605047.07	2	250.31	250.43	8.1	18.1
MW-1114	12/16/91	599513.94	2604985.04	2	250.62	250.80	6.2	16.4
TW-1115	12/16/91	599355.32	2604845.79	2	249.35	249.53	6.2	16.3
MW-1116	12/16/91	599187.57	2604940.78	2	249.55	249.89	7.9	18.0
MW-1119	12/17/91	599198.74	2605113.41	2	248.64	248.86	5.0	15.0
MW-1120	1/7/92	599447.45	2604838.22	2	250.70	250.85	17.2	27.2
MW-1121	4/8/95	599307.39	2605212.01	2	252.24	249.86	4.2	14.2
MW-1122	4/7/95	599488.96	2605029.03	2	252.19	249.70	5.1	15.1
MW-1123	8/11/95	599426.89	2604884.87	2	252.72	250.33	7.0	17.0
MW-1124	8/12/95	599440.61	2604894.42	2	253.13	250.53	26.0	36.0
MW-1125	10/31/95	599527.42	2604778.67	2	252.64	249.57	26.0	36.0
MW-1126	11/1/95	599313.82	2605207.19	2	252.80	250.01	29.0	39.0
MW-1127	11/3/95	599182.29	2604946.92	2	249.72	249.90	24.5	34.5
MW-1128	11/5/95	599343.01	2605061.21	2	250.11	250.35	28.0	38.0
SED1 ^{e/}	3/29/96	599661.32	2604902.68	_f/	-	242.14	-	-
SED2	3/29/96	599419:43	2605155.65	•	•	242.06	-	•
SED3	3/29/96	599233.72	2605349.21	-	-	241.79	-	-
SUR1 ^{g/}	3/29/96	599661.32	2604902.68	•	•	242.92	-	-
SUR2	3/29/96	599419.43	2605155.65	-	-	242.82	-	-
SUR3	3/29/96	599233.72	2605349.21	-	-	242.79	-	-

at ft msl = feet above mean sea level.

Note: Temporary wells TW-1103, TW-1107, TW-1108, TW-1112, TW-1113, TW-1117, and TW-1118 were completely or partially abandoned or removed.

b/ ft bgs=feet below ground surface.

NA = Not available.

d ESMP-23D was abandoned before completion.

e SED1 = Sediment sampling location 1.

f/ "-"=Not applicable.

gy SUR1 = Surface water sampling location 1.

factory-slotted with 0.010-inch openings. A sacrificial stainless steel CPT tip was screwed into the PVC screen and served as the bottom cap of the monitoring point. Each monitoring point was fitted with a PVC top cap upon completion. Point construction materials were inspected for cleanliness prior to use. No glue or solvents were used with monitoring point materials.

2.3.2 Installation

Monitoring points were pressed into the ground through the inside of 1.8-inch-OD CPT pushrods. This method protects the monitoring point screen and casing until the monitoring point has been placed at the desired depth and the pushrods are removed. To accomplish this, the PVC screen was threaded through the bottom CPT pushrod. A sacrificial tip was screwed into the bottom of the screen and pressed into the bottom of the CPT pushrod. As the pushrod was pressed into the ground, CPT pushrods and new PVC casing were continuously attached until the desired depth was reached. Upon removal of the pushrods, a fully-cased monitoring point remained. Data collection devices such as CPT and LIF could not be used during monitoring point placement; however, CPT was performed prior to monitoring point installation in order to select screen depth intervals.

2.3.3 Development

Prior to sampling, newly installed monitoring points were developed. Typically, well development removes sediment from inside the well casing and flushes fines, cuttings, and drilling fluids from the sand pack and the portion of the formation adjacent to the well screen; however, use of the CPT apparatus to place monitoring points minimizes the amount of fine sediment that might accumulate in the casing.

Monitoring point development was accomplished using a peristaltic pump with new dedicated or decontaminated (Section 2.4.1.1) high-density polyethylene (HDPE) tubing. The pump tubing was regularly lowered to the bottom of the well so that fines were agitated and removed from the well in the development water. Where possible, development was continued until a minimum of 10 casing volumes of water was removed from the monitoring point. When a constant flow of groundwater could be obtained from a monitoring point, development was continued until the groundwater was relatively free of fine sediments and temperature, DO, and redox potential readings had stabilized.

Monitoring points ESMP-4S, ESMP-5S, ESMP-6S, ESMP-7S, and ESMP-20S were purged dry prior to removing 10 casing volumes of water. Purging of these points was continued over the next 24 hours until the full 10 volumes of water was extracted.

All groundwater derived from purging was collected in 3-gallon buckets and then transferred to 30-gallon barrels. After a barrel was filled, the headspace in the barrel was measured with a PID. As directed by base personnel, barrels with a headspace VOC reading below 5 parts per million volume (ppmv) were released on site, and all containerized groundwater with a headspace VOC reading above 5 ppmv was added to soils at an adjacent soil landfarm located southeast of the site (southeast side of Arkansas Avenue).

2.3.4 At-Grade Completion

Eleven monitoring points were completed with at-grade protective covers with the concrete sloped gently away from the protective casing to facilitate runoff during precipitation. Because the points were finished at grade, the monitoring point top caps were not vented. Monitoring points ESMP-20S and ESMP-23D were abandoned prior to completion with at-grade protective covers. The abandoned monitoring points were filled with bentonite grout to interrupt potential groundwater pathways.

2.4 GROUNDWATER SAMPLING

Groundwater samples were collected at 20 site monitoring wells and 13 newly installed monitoring points (Figure 2.1). Groundwater samples were analyzed by Parsons ES personnel in the field for alkalinity, DO, ferrous iron, free carbon dioxide, pH, phenols, redox potential, nitrate and nitrite, soluble manganese, sulfides, and temperature. Analyses for alkalinity, ammonia, chloride, methane, mobile LNAPL, nitrate and nitrite, sulfate, TOC, volatile chlorinated hydrocarbons were performed at EAL. Samples of mobile LNAPL hydrocarbons were collected from monitoring wells TW-1105 and TW-1108. The product samples were analyzed by EAL for the mass fraction of BTEX and TMBs and fuel density. Groundwater sampling forms were used to document the specific details of the sampling event for each well and monitoring point and are included in Appendix C.

This section describes the procedures used for collecting groundwater samples. In order to maintain a high degree of quality control (QC) during this sampling event, the

procedures described in the site work plan (Parsons ES, 1996) and summarized in the following sections were followed.

2.4.1 Preparation for Sampling

All equipment used for sampling was assembled and properly cleaned and calibrated (if required) prior to arriving in the field. Special care was taken to prevent contamination of the groundwater and extracted samples from improperly cleaned equipment; therefore, all reusable equipment was thoroughly cleaned before and after field use and between uses at different sampling locations.

2.4.1.1 Equipment Decontamination

All portions of sampling and test equipment that contacted the sample were thoroughly cleaned before use. The pump tubing, oil/water interface probe, and water level indicator were the only reusable pieces of equipment that came into contact with groundwater samples or were used downhole. The following protocol was used to clean the water level indicator and oil/water interface probe:

- Wiped/rinsed with isopropanol;
- Wiped/rinsed with deionized water; and
- Air dried prior to use.

Generally, cleaning of the HDPE tubing used with the peristaltic pump was not required because a new length of tubing was dedicated to the well or monitoring point; however, when the HDPE tubing was reused, it was cleaned inside and out with acetone and rinsed with deionized water. Decontaminated tubing was dedicated to a particular monitoring point for development, purging, and sampling so that by the time sampling occurred, a large volume of groundwater had passed through the tubing. Any deviations from these procedures were documented on the groundwater sampling form.

All cleaning fluids were contained and transferred to 30-gallon drums. The contents of these drums were disposed of by the method described in Section 2.3.3.

2.4.1.2 Equipment Calibration

Field analytical equipment was calibrated according to the manufacturers' specifications prior to field use, and as required. This requirement applied specifically to

the model 55 Yellow Springs Instrument (YSI) DO meter and the model 250A Orion pH, redox, and temperature meters, and the Exotech Oyster conductivity meter.

2.4.1.3 Preparation of Location

Prior to proceeding with sampling, the area around the well or monitoring point was cleared of foreign materials, such as brush, rocks, and debris to prevent sampling equipment from inadvertently contacting debris around the monitoring well. Location preparation also included an inspection of the integrity of the well or monitoring point. At this time irregularities with the protective cover, cap, lock, external surface seal, internal surface seal, well identification, well datum, or pad were noted.

2.4.1.4 Water Level and Total Depth Measurements

Prior to removing any water from the well/point, the static water level was measured. An electronic water level probe was used to measure the depth to groundwater below the well/monitoring point datum to the nearest 0.01 foot. If fuel was floating on the groundwater table, the fuel/air and fuel/water interfaces were measured with an oil/water meter. After measurement of the static water level, the water level probe or oil/water meter were lowered to the bottom of the well/point for measurement of total depth (recorded to the nearest 0.01 foot). Based on these measurements, the volume of water to be purged was calculated.

Static groundwater levels also were measured on March 30, 1996 at the conclusion of the field activities. Measurements were obtained at all permanent site wells and monitoring points.

2.4.2 Purging and Sample Collection

Well/monitoring point purging consisted of the removal of at least three casing volumes of water prior to sample collection. At all monitoring points the purge was completed using a peristaltic pump. At all monitoring well locations, disposable bailers were used for purging. Once three casing volumes of water was removed from the well or monitoring point, purging continued until the temperature and DO concentrations had stabilized, and if possible, until the purge water became clear.

A peristaltic pump with dedicated silicon and HDPE tubing was used to extract groundwater samples from each sampled well and monitoring point. Where possible,

purging and sampling constituted one continuous sampling event, and there was no cessation of pumping prior to sample collection. At three monitoring points (ESMP-2S, ESMP-6S, and ESMP-20S), groundwater volumes were purged dry before obtaining enough groundwater to perform all necessary analyses. These locations were sampled for a reduced suite of analyses within 24 hours of the original purge. For all monitoring points and wells, the dedicated HDPE tubing was lowered down the casing to approximately the middle of the screened interval. The samples were transferred directly into the appropriate sample containers. The water was carefully poured down the inner walls of each sample bottle to minimize aeration of the sample. Sample bottles for VOCs, TVH, and methane were filled so that there was no headspace or air bubbles within the container. Table 2.1 lists the analyses performed on collected groundwater samples.

All groundwater derived from purging and sampling was contained in 30-gallon covered containers. The content of these containers was disposed of by the method described in Section 2.3.3.

2.4.3 Onsite Chemical Parameter Measurement

DO measurements were taken using an Orion® model 840 or YSI-55 DO meter in a flow-through cell at the pump discharge tube. DO concentrations were recorded after the readings stabilized, and represent the lowest DO concentration observed.

Because the electrical conductivity, pH, redox potential, and temperature of the groundwater change significantly within a short time following sample acquisition, these parameters were measured in the field with an Orion® model 240A meter and an Exotech Oyster meter, in the same flow-through cell used for DO measurements. The measured values were recorded on the groundwater sampling record (Appendix C).

An onsite laboratory staffed by Parsons ES personnel was used to analyze for several indicator parameters in groundwater samples collected from pre-existing monitoring wells and newly installed monitoring points (Table 2.1). A Hach® DR/700 colorimeter was used to measure ferrous iron (Fe²⁺), total iron (Fe), manganese (Mn²⁺), and sulfide (S²⁻). Titrations using Hach® reagents were conducted to measure alkalinity [as milligrams per liter (mg/L) calcium carbonate (CaCO₃)] and chloride (Cl⁻); and CHEMetric® color tests were used to measure ammonia (NH₃) and carbon dioxide (CO₂).

These analyses were completed for each groundwater sample after all sample containers had been filled. The sample to be analyzed was poured into a clean glass container, capped, and transported to the Parsons ES on-Base laboratory for analysis. Special care was taken to avoid aerating the sample in the sample container, which could influence the concentration of reduced species. The field holding time for each sample did not exceed 1 hour. Care was taken to minimize sample temperature changes and exposure to sunlight. Concentrations of these indicator parameters were not measured in soil samples.

2.5 SURFACE WATER SAMPLING

Three surface water samples (SUR1 through SUR3) were collected from the northwest/southeast flowing drainage canal located northeast of the BX Shoppette (Figure 2.1). The samples were collected at locations upgradient from, within, and downgradient from the suspected area of groundwater contamination and potential groundwater seeps along the upgradient creek banks. The BTEX, TMB, TEMB, and chlorobenzene compounds were analyzed for in the surface water samples (Table 2.1).

Surface water samples were collected directly into the sample bottle by placing the sample bottle in the drainage canal with the opening facing up and allowing the water to slowly fill the bottle. Sample handling proceeded as described in Section 2.8.

2.6 SEDIMENT SAMPLING

Three sediment samples (SED1 through SED3) were collected from the bottom of the northwest/southeast flowing drainage canal at the same locations that surface water samples were collected (Figure 2.1). The samples were collected in order to assess the potential accumulation in drainage canal sediments of fuel contaminants that may have migrated from the BX Shoppette area. The BTEX, TMB, TEMB, and chlorobenzene compounds were analyzed for in the sediment samples (Table 2.1).

All sediment samples were collected from the uppermost 4 inches of the sediment column. The saturated sediments were immediately placed in analyte appropriate containers and handled according to procedures in Section 2.8.

2.7 FREE PRODUCT SAMPLING

Two mobile LNAPL (free product) samples were collected from monitoring wells TW-1105 and TW-1108. A peristaltic pump with dedicated HDPE tubing was used to extract the free product. The free product was carefully pumped into analyte-appropriate bottles. The product samples were carefully packaged, labeled, and cooled, and then sent to EAL for analysis. The BTEX, TMB, TEMB, and chlorobenzene compounds were analyzed for in the mobile LNAPL samples. Fuel density was also measured in the laboratory.

2.8 SAMPLE HANDLING

2.8.1 Sample Containers, Preservation, and Labels

The fixed-base analytical laboratory (EAL) provided pre-preserved sample containers where appropriate. The sample containers were filled as described in Sections 2.4.3, and the container lids were tightly closed. The sample label was firmly attached to the container side, and the following information was legibly and indelibly written on the label:

- Facility name;
- Sample identification;
- Requested analyses
- Sample type (e.g., groundwater, soil, sediment, or surface water);
- Sample Depth (soil samples only);
- Sampling date;
- Sampling time;
- · Preservatives added; and
- Sample collector's initials.

2.2.5.2 Sample Shipment

After the samples were sealed and labeled, they were packaged for transport to EAL in Wheat Ridge, Colorado. The following packaging and labeling procedures were followed:

- Samples were packaged to prevent leakage or vaporization from the containers;
- · Samples were cushioned to avoid breakage; and
- Ice was added to the cooler to keep the samples cool.

The packaged samples were delivered by overnight courier (Federal Express®) to the laboratory. Chain-of-custody procedures outlined in the project work plan (Parsons ES, 1996) were followed. Hach® laboratory samples were hand delivered to the on-Base Parsons ES laboratory.

2.9 AQUIFER TESTING

Slug tests were performed in wells MW-1104, MW-1116, MW-1119, MW-1121, MW-1123, MW-1124, MW-1125, MW-1126, and MW-1127 (Figure 2.1) to provide estimates for the hydraulic conductivity of the shallow and lower semi-confined aquifers in the vicinity of the BX Shoppette. Slug tests are single-well hydraulic tests used to estimate the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug testing can be performed using either a rising head or a falling head test. Both rising head and falling head tests were used at this site. Detailed slug testing procedures are presented in the Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater (Wiedemeier et al., 1995), hereafter referred to as the Technical Protocol document.

Data obtained during slug testing were analyzed using the computer program AQTESOLV® (Geraghty and Miller, Inc., 1994) and the methods of Bouwer and Rice (1976) and Bouwer (1989) for unconfined conditions. The results of slug testing are presented in Section 3.3.2.2 and Appendix A.

2.10 SURVEYING

After completion of field work, the locations and elevations of all new monitoring points and pre-existing monitoring wells were surveyed by White Land Surveying, a licensed land surveyor from Blytheville, Arkansas. The horizontal locations and elevations of the measurement datum (top of PVC well casing), the ground surface adjacent to the well casing, and other site features (e.g., roads, surface water elevations in adjacent drainage canals, and buildings) were measured relative to existing control points referenced to horizontal datum NAD27 and vertical datum NAVD88. Horizontal

locations were surveyed to the nearest 0.1 foot. Measurement datum and ground surface elevations were surveyed to the nearest 0.01 foot. Survey data are presented in Table 2.2 and Appendix A.

SECTION 3

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section incorporates data collected by Parson ES in March 1996 and data documented in previous reports on Eaker AFB. Investigative techniques used to determine the physical characteristics of the site are discussed in Section 2.

3.1 TOPOGRAPHY AND SURFACE WATER HYDROLOGY

Eaker AFB is located within the Mississippi Embayment of the Atlantic and Gulf Plains physiographic province (Eaker AFB, 1992) and the eastern lowland portion of the Central Mississippi River Valley. The topography in the region is generally level except in areas adjacent to the Mississippi River. Ground surface elevations on the Base range from 245 feet above mean sea level (msl) at the southeastern end of the Base (in the vicinity of Pemiscot Bayou) to 265 feet msl at the northwestern end of the Base. At the BX Shoppette, the topography is flat, and the ground surface elevation is approximately 250 feet msl.

Eaker AFB is located within the St. Francis River watershed of the Lower Mississippi River Basin. Surface water drainage is characteristic of the Mississippi River floodplain, and drainage ditches and bayous have been dredged in the flat terrain to accommodate surface water runoff. The majority of the Base lies above the elevation of the 100-year floodplain, and the potential for flooding is minimal. A combination of open drainage ditches and storm drains is used to capture and direct runoff from the Base (Eaker AFB, 1992). Stormwater runoff in the eastern portion of the Base drains to Pemiscot Bayou, while surface water flow on the western half of the Base drains to Ditch 25. Both of these drainage channels flow southwest to the Little River, which discharges into the St. Francis River. The St. Francis River discharges into the Mississippi River approximately 150 miles south of Eaker AFB. Surface water runoff at the BX Shoppette is collected in a stormwater collection system than channels the water northward to Ditch Number 25, (located approximately 4,000 feet north of the site), and eventually into the Little River to the southwest of the base.

3.2 CLIMATE

The Eaker AFB climate is subtropical, with mild winters and hot, humid summers. July is the warmest month with an average maximum daily temperature of 90 degrees Fahrenheit (°F). The coolest month is January with an average minimum daily temperature of 28°F. The average annual precipitation is 48.3 inches, which is evenly distributed throughout the year. The average annual relative humidity is 69 percent. Flooding occurs during periods of prolonged heavy rainfall, and during the summer months climatic conditions make tornado formation possible (Eaker AFB, 1992).

3.3 REGIONAL GEOLOGY AND HYDROGEOLOGY

The shallow subsurface geology of northeastern Arkansas consists of Quaternary alluvium, which is thickest near the Mississippi River and thins in a westerly direction. The alluvium is composed of interbedded clays, silts, sand, and minor gravel and has an average thickness of 125 feet (Eaker AFB, 1992). The shallow, unconsolidated, Quaternary sediments on Eaker AFB are interpreted to be flood plain and channel deposits associated with the past and present positions of the Mississippi River (Halliburton NUS, 1992). The overlying soils are weathering products of the alluvial deposits and are generally nontransmissive, fine-grained, clayey soils. These soils impede infiltration and allow for rapid runoff of surface water.

Beneath the Quaternary alluvium, sediments in the vicinity of the Base consist of over 2,000 feet of Tertiary and Cretaceous unconsolidated deposits overlying Lower Paleozoic carbonate bedrock (Eaker AFB, 1992). The Tertiary Wilcox Formation is present approximately 900 feet below the Base. The lower part of this formation is composed of sands that produce potable water used by Eaker AFB, the city of Blytheville, and the city of Gosnell (Eaker AFB, 1992). The aquifer is under confined conditions, and the water quality is excellent. Water treatment is required only to remove slightly elevated iron concentrations. The lower Wilcox Formation aquifer is protected from contamination by approximately 800 feet of interbedded unconsolidated sands and clays that form the Claiborne Group.

Shallow groundwater in the vicinity of the Base is present between 7 and 12 feet bgs in the Quaternary alluvium. The sands and gravels comprise the major water-bearing units in the Quaternary deposits. Water from the alluvial aquifer is characterized as moderately hard to very hard (hardness as calcium bicarbonate). Irrigation wells and

rural residences generally obtain water from these Quaternary sands (Eaker AFB, 1992). The upper part of the Quaternary deposits consists of sandy clay and clay, while the remainder of the deposits are sand and gravel. The water table is highest in the area northeast of the Base, indicating an area of surface recharge to the Quaternary sands and gravels (Eaker AFB, 1992). Flood control for the Mississippi River and local flooding are responsible for some groundwater elevation fluctuation. Groundwater in the vicinity of Eaker AFB flows southwest to south.

3.4 SITE GEOLOGY AND HYDROGEOLOGY

3.4.1 Lithology and Stratigraphic Relationships

In order to illustrate stratigraphic relationships in the BX Shoppette vicinity, hydrogeologic cross-sections have been developed from subsurface data derived from previous borehole logs and from March 1995 and 1996 CPT/LIF investigation data. Figures 3.1 and 3.2 present hydrogeologic sections A-A' and B-B' that run northwest/southeast, and Figure 3.3 presents hydrogeologic section C-C' which runs northeast/southwest.

Surface soils in the vicinity of the BX Shoppette can be characterized by three distinct zones: a shallow zone of heterogeneous sands, silty sand, silty clay, and clay; a clay zone separating the shallow heterogeneous soils from the aquifer below; and a sandy zone representing the lower sandy aquifer. The soils comprising the shallow aquifer are very heterogeneous, and the likelihood that continuous sandy or silty sand layers acting as preferential flow paths is minimal. Sandy zones in the shallow aquifer appear to be discontinuous lenses. The largest sand lens observed at the site was 4-feet-thick at monitoring well TW-1105 (Figure 3.1). This sand lens thins to the southeast and is not believed to extend more than 150 feet from monitoring well TW-1105.

At an average depth of 12 feet bgs at the site, the upper surface of a thick clay layer is encountered. The thickness of this clay layer was observed to vary between 3 and 25 feet on the basis of the hydrogeologic cross sections, and separates the shallow aquifer from the semi-confined aquifer below. The silt content of the clay seems to increase at depth before contact with the sandy aquifer (Halliburton NUS, 1996). Site stratigraphy suggests that vertical pathways may exist from the surface aquifer to the deeper sand aquifer through the thinner sections of the clay layer. The thickness of the fine- to

K:\AFCEE\722450\96DN0434, 12/27/96 at 13:41

K:\AFCEE\722450\96DN0435, 12/27/96 at 11:29

medium-grained sandy aquifer below the clay layer is unknown (no soil boreholes heave reached bedrock), but its thickness is suspected to be greater than 16 feet on the basis of soil data collected at soil borehole MW-1124.

Figures 3.1 through 3.3 suggest that areas of perched groundwater may exist where clay extends above the groundwater table of the shallow aquifer. Perched conditions may be the cause of unusually high groundwater elevations at monitoring well MW-1114 (screened in silty clay and clay) and ESMP-2S (screened in silty clay). Groundwater elevation are described in more detail in Section 3.4.2.

3.4.2 Groundwater Hydraulics

3.4.2.1 Flow Direction and Gradient

Shallow groundwater elevations measured in March 1992 suggest that groundwater flow at the site converges near the BX service station (Halliburton NUS, 1992). West of the BX Shoppette the groundwater flow was to the northeast; however, the forking of the two drainage channels northwest of the station appeared to create a recharge zone, resulting in a southerly groundwater flow from the confluence toward the site. As a result, groundwater flow directly beneath the BX Shoppette appeared to be deflected to the east by the convergent flows. Hydraulic gradients across the site ranged from 0.016 foot per foot (ft/ft) south of the fuel tank pit to 0.0017 ft/ft in the immediate tank pit and dispenser area (Halliburton NUS, 1992). Figure 3.4 depicts groundwater elevations of the shallow aquifer in March 1992.

Groundwater elevations of the shallow aquifer in March 1996 were different than those measured in March 1992. The March 1996 groundwater migration directions converge from three different flow directions (Figure 3.5). North of the BX Shoppette, the shallow groundwater flow was to the southwest; east of the BX Shoppette the groundwater flow was to the west; and south/southwest of the BX Shoppette the groundwater flow was to the north. As a result, groundwater flow beneath the Shoppette appeared to be channeled to the west/northwest, which is different than the east/southeast channeling that was observed in March 1992. Variations in groundwater flow direction likely result from seasonal precipitation, flood control along the Mississippi valley, and inhibited recharge as a result of surface paving. Differences in groundwater elevation of as much as 4 feet have been documented previously through multiple groundwater

sampling events (Halliburton NUS, 1996). A consistent trend in groundwater elevation is an apparent depression in the groundwater table in the vicinity of the former USTs. This depression is most likely caused by inhibited surface recharge and site geology, and potentially limits groundwater migration away from the site. Groundwater elevations from March 1996 are summarized in Table 3.1.

The overall groundwater flow direction in March 1996 was to the east/southeast (despite localized changes in flow direction), as indicated by groundwater BTEX migration to the east/southeast of the source area (Section 4). Similar detections of BTEX at low concentration were not observed in monitoring wells located between the source area and the northeast/southwest flowing canal. Both drainage canals bounding the site to the northeast and northwest were continuously flowing, as indicated by flow arrows in Figure 3.5. Surface water depth in the canals was approximately 9 inches. The average elevation of the bottoms of the drainage canals is 242 feet msl, which is above groundwater elevations in the source area.

Horizontal gradients at the site in March 1996 ranged from 0.00061 ft/ft to 0.0088 ft/ft in the vicinity of the former USTs to a range of approximately 0.021 to 0.067 ft/ft in the areas of convergent groundwater flow surrounding the Shoppette to the south, east, and north. Relatively high groundwater elevations to the north of the Shoppette (e.g., ESMP-3S and ESMP-5S), east of the Shoppette (e.g., ESMP-8S), and west of the Shoppette (e.g., TW-1115) suggest that groundwater may be perched atop clay plateaus within the shallow aquifer. Perched conditions and alternating groundwater flow may limit groundwater migration away from the source area. Three nested monitoring well locations and two nested monitoring point locations screened in the shallow and deep aquifers yielded vertical gradients at nested well/point locations ranging from 0.027 to 0.184 ft/ft downward.

Figure 3.6 illustrates the deeper groundwater table from the semi-confined sand formation below the clay layer. Groundwater elevations from the five deep monitoring wells/points located at the site have little variability and range from 239.44 to 239.66 feet msl. The approximate groundwater flow direction of the sandy aquifer is to the southwest with a gradient of 0.00026 ft/ft.

TABLE 3.1
GROUNDWATER ELEVATION DATA

BX SHOPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

		Well	Datum	Ground	Depth to	Total Depth	Corrected	Elevation of
Well		ID	Elevation	Elevation	Free Product	to Water	Depth to Water ^{e/}	Water Table
Location	Date	(inches)	(ft msl) ^{a/}	(ft msl)	(ft btoc)b/	(ft btoc)	(ft btoc)	(ft msl)
ESMP-2S	3/30/96	0.5	251.62	251.47	ND°′	8.14	8.14	243.48
ESMP-2D	3/30/96	0.5	251.65	251.47	ND	11.99	11.99	239.66
ESMP-3S	3/30/96	0.5	251.36	251.56	ND	3.98	3.98	247.38
ESMP-4S	3/30/96	0.5	252.04	252.08	ND	5.45	5.45	246.59
ESMP-5S	3/30/96	0.5	251.22	251.25	ND	8.34	8.34	242.88
ESMP-6S	3/30/96	0.5	249.41	249.55	ND	7.49	7.49	241.92
ESMP-6D	3/30/96	0.5	249.35	249.55	ND	9.84	9.84	239.51
ESMP-7S	3/30/96	0.5	249.27	249.26	ND	6.32	6.32	242.95
ESMP-8S	3/30/96	0.5	251.41	251.48	ND	5.32	5.32	246.09
ESMP-9S	3/30/96	0.5	248.83	248.94	ND	5.31	5.31	243.52
ESMP-19S	3/30/96	0.5	251.21	251.19	ND	7.89	7.89	243.32
ESMP-20S	3/30/96	0.5	NA^{d}	248.97	ND	7.77	7.77	NA
CPT-22	3/30/96	2	249.12	249.34	ND	13.38	13.38	235.74
TW-1102	3/30/96	2	248.47	248.67	ND	8.75	8.75	239.72
MW-1104	3/30/96	2	250.45	250.63	ND	10.73	10.73	239.72
TW-1105	3/30/96	2	250.12	250.31	9.52	14.26	10.63	239.49
TW-1106	3/30/96	2	249.92	250.12	ND	9.78	9.78	240.14
TW-1109	3/30/96	2	249.84	250.03	ND	10.28	10.28	239.56
TW-1110	3/30/96	2	250.21	250.35	ND	10.58	10.58	239.63
TW-1111	3/30/96	2	250.31	250.43	ND	10.59	10.59	239.72
MW-1114	3/30/96	2	250.62	250.80	ND	5.22	5.22	245.40
TW-1115	3/30/96	2	249.35	249.53	ND	3.48	3.48	245.87
MW-1116	3/30/96	2	249.55	249.89	ND	7.48	7.48	242.07
MW-1119	3/30/96	2	248.64	248.86	ND	7.80	7.80	240.84
MW-1120	3/30/96	2	250.70	250.85	ND	11.17	11.17	239.53
MW-1121	3/30/96	2	252.24	249.86	ND	9.01	9.01	243.23
MW-1122	3/30/96	2	252.19	249.70	ND	12.40	12.40	239.79
MW-1123	3/30/96	2	252.72	250.33	ND	13.11	13.11	239.61
MW-1124	3/30/96	2	253.13	250.53	ND	13.32	13.32	239.81
MW-1125	3/30/96	2	252.64	249.57	ND	13.34	13.34	239.30
MW-1126	3/30/96	2	252.80	250.01	ND	13.31	13.31	239.49
MW-1127	3/30/96	2	. 249.72	249.90	ND	10.28	10.28	239.44
MW-1128	3/30/96	2	250.11	250.35	ND	10.62	10.62	239.49

a/ ft msl = Feet above mean sea level.

b' ft btoc = Feet below top of casing.

^{c/} ND = Not decteced.

d NA = Not available.

^{e'} Calculated as: [(total depth to water - ((total depth to water) - (total depth to product))* 0.765], where 0.765 is the assumed specific gravity of JP-4 fuel.

3.4.2.2 Hydraulic Conductivity

Parsons ES estimated the hydraulic conductivity at five shallow monitoring wells (MW-1104, MW-1116, MW-1119, MW-1121, and MW-1123) and four deep monitoring wells (MW-1124, MW-1125, MW-1126, and MW-1127) using rising and falling head slug tests and the analysis method of Bouwer and Rice (1976), as described in Section 2.8. The results of these slug tests are summarized in Table 3.2. The average hydraulic conductivity for the shallow aquifer is 3.78 feet per day (ft/day). The average hydraulic conductivity for the deep aquifer is 3.77 ft/day.

3.3.2.3 Effective Porosity

2 50 days

K = 0.1410 Cale

2 Ft/day

1 Y = 49.5 Et/y Because of the difficulty involved in accurately determining effective porosity, especially is heterogeneous soils, accepted literature values for the type of soil comprising the shallow and deep aquifers were used. Walton (1988) gives ranges of effective porosity for fine to medium sand of 0.1 to 0.3, for silt of 0.01 to 0.3, and for preferred migration pathway, and silts and sands tend to increase the effective porosity, by especially in the saturated zone, an effective porosity of 0.25 in the shallow aguifer and for the sands of the lower semi-confined aguifer.

3.3.2.4 Advective Groundwater Velocity

The advective velocity of groundwater in the direction parallel to groundwater flow is given by:

$$\overline{v} = \frac{K}{n_e} \frac{dH}{dL}$$

Where: \bar{v} = Average advective groundwater velocity (seepage velocity) K = Hydraulic conductivity (3.78 ft/day shallow; 3.77 ft/day deep)dH/dL = Gradient (0.0088 ft/ft shallow; 0.00026 ft/ft deep) n_e = Effective porosity (0.25 shallow and deep).

Using this relationship in conjunction with site-specific data, the maximum estimated advective groundwater velocities at the site in March 1996 was 0.21 ft/day [77.4 feet per year (ft/yr)] for the shallow aquifer and 0.003 ft/day (1.2 ft/year) for the deep aquifer.

TABLE 3.2 MARCH 1996 SLUG TEST RESULTS BX SHOPPETTE DEMONSTRATION OF RNA

EAKER AFB, ARKANSAS

	WELL (Type of Test)	HYDRAULIC CONDUCTIVITY (ft/min)	HYDRAU CONDUCTI (ft/day)	VITY
	SHALLOW WELLS			
longent.	- MW1104 (rising) ⊀	⁷ 0.000030	15th - 0.04	SUSPECT POOR CUM
· · · · · · · · · · · · · · · · · · ·	MW1116 (rising) * d51-	0.004089	<i>-5:</i> 89 -	= Exect - Two clubu points
	MW1116 (falling) אָם אָל אָן	0.009678 ﴿ مُرْدُو	VEAU. 13.94	- No INOll 1095 100 121. D
4€ /SC →	MW1119 (rising) ه مادانه	0.000432	0.62	= Suxuat - Two dum points - No Iwall logs loo int. Di to see murbil - Mase is well, it when iso
0.02/	MW1119 (falling)	0.001850	VIN. 2.66	- Surpert as per felly forward.
1: 0.712 1: L- +.2-14.21	MW1121 (avg. rising)	0.000597	1) SE 086	- Suland # Test April
	MW1121 (avg. falling)	0.002842	Jav. 4.09	- Sespeci - woll well for
	MW1123 (avg. rising)\$		VDSE 2.12	- Suspent - howele St. In
	AVERAGE	0.002623	3.78 /	1.9(1.2) 211
	DEEP WELLS MW1124 (avg. falling)	10.002194	~>s€ 3.16-	- possible Mouble 5. line.
	MW1125 (avg. rising)	-0.001983	₩ 5.£ 2.86	- poss durle stilme
	MW1125 (avg. falling)	~ 0.003957	-5.70	
	MW1126 (avg. rising)	, 0.002389	3.44	
	MW1126 (avg. falling)	v 0.003385	D= 5 4.87	- DSZ
	MW1127 (avg. rising)	.0.002210	√3.18	
	MW1127 (avg. falling)	. 0.002185	ASE 3.15	- 054
	AVERAGE			

-06:253.16 DTW: 0.93

JE: 251.99

Because organic carbon is generally present in any aquifer matrix, a somewhat retarded velocity should be used for solute transport calculations. Section 4.3.2. presents TOC analysis results, and Section 5 discusses contaminant retardation in more detail.

3.4.2.5 Potential Exposure Pathways

No preferential groundwater flow paths to downgradient receptors appear to exist at the site on the basis of groundwater elevations and hydraulic and lithologic data. Highly conductive sand and silty sand lenses appear to be discontinuous and offer no direct route to potential downgradient receptors. Possible discharge of groundwater contamination from the surface aquifer to either drainage canal may be possible depending on flow conditions; however, groundwater elevations in March 1996 in the source area were below the elevation of the drainage canal beds.

Migration of mobile LNAPL appears to be limited to conductive sand and silt zones or lenses that become available as water levels vary. The heterogeneity of soils and presence of impermeable silty clay or clay layers has prevented any significant migration of LNAPL from the source area. Potential contamination of the semi-confined aquifer from the surface aquifer through breaks in the separating clay layer has occurred, as indicated by BTEX contamination in the sandy aquifer at MW-1124 (Section 4). It is unlikely that mobile LNAPL has contaminated the lower aquifer because this semi-confined aquifer is pressurized and the potentiometric surface of the semi-confined aquifer is above the bottom of the thick clay layer. Therefore, floating LNAPL would have no mechanism for downward transport. However, it is likely that fluctuating groundwater elevations permit hydraulic conditions that allow dissolved BTEX contamination to reach the deep aquifer.

3.4.3 Groundwater Use

The potential for exposure to contaminated water originating from the site through drinking water supplies is low because potable water supplies are not obtained from the surface or deeper sand aquifers. Eaker AFB previously (prior to Base closure) obtained its water from two wells located on the southeast side of Louisiana Avenue between Second and Third streets, approximately 4,200 feet southwest of the site. The wells were drilled to approximately 1,310 feet bgs and drew water from the Wilcox Formation. The city of Blytheville (south of the base) obtains its water from four deep wells located

approximately 2.3 miles southeast of the Base. The city of Gosnell (west of the Base) obtains its water from two deep wells drilled to 1,100 feet bgs. Therefore, the migration of contamination in Quaternary sands to domestic wells beyond the perimeter of the Base or into the Wilcox formation is extremely unlikely.

SECTION 4

NATURE AND EXTENT OF CONTAMINATION AND SOIL AND GROUNDWATER GEOCHEMISTRY

4.1 SOURCE OF CONTAMINATION

The source of contamination at the BX Shoppette appears to be centered around the former location of gasoline USTs and associated piping northwest/west of the Shoppette. The first reported leak occurred in 1974 from a transfer pipe connecting the USTs to the fuel dispensers. The leak was repaired, and no hydrocarbon-contaminated soils were removed during the repair (Halliburton NUS, 1992). The next recorded leak occurred in 1989 when UST No. 160A tested positive for leaks and was deactivated in March 1990. Tank tightness tests were performed on the remaining USTs in August 1990. The USTs were determined to be leak-free; however, the associated piping to each of the tanks was determined to be leaking (Halliburton NUS, 1992). An unknown volume of fuel has been released from UST or transfer piping leaks over the history of the site. In addition to gasoline, waste oil, waste hydraulic fluid, and contaminated fuels were generated at the site (Halliburton NUS, 1996).

Other than the recovery of approximately 10.75 gallons of LNAPL in February 1992 and the excavation of 600 cubic yards (cy) of contaminated soils during the UST removal, no other source reduction occurred prior to the March 1996 site characterization effort. In September 1996, a bioslurping system was installed at monitoring wells TW-1105 and TW-1108 to begin removing mobile LNAPL from the source area. Approximately 250 gallons of LNAPL had been removed by October 1996. Section 4.2 describes mobile LNAPL levels at the site with respect to March 1996 site conditions and does not account for the effects of recent bioslurping.

4.2 MOBILE LNAPL CONTAMINATION

Mobile LNAPL is defined as the LNAPL that is free to flow in the aquifer and that will flow from the aquifer matrix into a well under the influence of gravity. Mobile

LNAPL was observed in March 1996 west of the Shoppette and southwest of the former gasoline UST location. Monitoring wells TW-1105 and TW-1108 contained 4.74 and 2.97 feet of LNAPL, respectively. Monitoring well TW-1108 was previously abandoned and filled with concrete to within 11.5 feet of the groundsurface; however, sufficient screen was left exposed in the unsaturated zone to allow the flow of LNAPL into the well. High fluorescence intensities (>13,000 normalized counts) at CPT/LIF push locations 1EAK01, 3EAK01, 19EAK01, 22EAK01, 26EAK01, 13ESLF, and 23ESLF, combined with mobile LNAPL observations in monitoring wells TW-1105 and TW-1108 suggest that mobile LNAPL occupies an area approximately 70 feet long by 15 feet wide between CPT/LIF locations 26EAK01 and 19EAK01 (Figure 4.1). Mobile LNAPL may be migrating and accumulating within a southeast trending sand lens near the water table (Figure 3.1).

Mobile LNAPL has been observed in temporary monitoring well TW-1105 since February 1992 (4.77 ft) (Halliburton NUS, 1996); however, mobile LNAPL was not observed in temporary monitoring well TW-1108 until November 1995 (0.05 ft) (Halliburton NUS, 1996). The increase in LNAPL between November 1995 and March 1996 at temporary well TW-1108 suggests the possible migration of LNAPL to this location. Furthermore, the mobile LNAPL thickness measured in monitoring well TW-1105 in March 1996 (4.74 feet) is less than measured in May of 1995 (7.8 feet). The decreasing thickness at TW-1105 in conjunction with the increasing thickness at TW-1108 suggests that the mobile LNAPL may have flowed more evenly into the sand lens screened by both wells.

An LNAPL sheen was detected in monitoring well TW-1111 in March 1996. The product source is unknown because the well is located north of (upgradient from) the former UST locations. The potential area and volume of LNAPL at this location is expected to be small on the basis of CPT/LIF push locations near monitoring well TW-1111 (6EAK01 through 8EAK01 and 15ESLF through 17ESLF). Fluorescence intensities at these six locations did not indicate the presence of a significant LNAPL source. The source of contamination may have been a previous slug of contamination that migrated north through unsaturated soils from the source area or an unreported surface release.

The relationship between the measured LNAPL thickness in a monitoring well and the total amount of mobile LNAPL in the subsurface at a site is extremely difficult to quantify. It is well documented that LNAPL thickness measurements taken in groundwater monitoring wells are not indicative of actual mobile LNAPL thicknesses in the formation (de Pastrovich et al., 1979; Blake and Hall, 1984; Hall et al., 1984; Hughes et al., 1988; Abdul et al., 1989; Testa and Paczkowski, 1989; Kemblowski and Chiang, 1990; Lehnard and Parker, 1990; Mercer and Cohen, 1990; Ballestero et al., 1994). It has been noted by these authors that the thickness of LNAPL measured in a monitoring well is greater than the actual mobile LNAPL thickness present in the aquifer, and according to Mercer and Cohen (1990), measured LNAPL thickness in wells is typically 2 to 10 times greater than the actual mobile LNAPL thickness in the formation. Assuming an approximate LNAPL thickness of 0.5 foot in the aquifer matrix (a 0.5 foot mobile LNAPL thickness was measured by CPT/LIF at location 23ESLF), an areal extent of approximately 70 feet by 15 feet, and a soil porosity of 0.3 an approximated volume of mobile LNAPL at the site in March 1996 is 1,200 gallons.

BTEX compounds are considered good indicators of fuel weathering because BTEX compounds constitute by far the greatest mass of compounds that partition from fuels into groundwater (Smith et al., 1981; Cline et al., 1991). In 1:10 fuel:water mixtures, BTEX can comprise as much as 82 percent of the total dissolved contaminant concentrations in the water (Smith et al., 1981). Concentrations of BTEX constituents in mobile LNAPL collected from temporary monitoring wells TW-1105 and TW-1108 were quantitated using US Environmental Protection Agency (USEPA) Method SW8020. Concentrations of BTEX from these samples indicated that the petroleum product comprising the gasoline plume is weathered. Table 4.1 compares the BTEX concentrations in fresh unleaded gasoline to those observed in gasoline (presumably unleaded) samples collected from temporary monitoring wells TW-1105 and TW-1108.

Compared to fresh gasoline, the gasoline from both samples is moderately weathered with respect to the BTEX compounds and specifically to benzene and toluene. The gasoline at temporary monitoring well TW-1108 was slightly more weathered (approximately 8 percent less BTEX compounds) than the gasoline collected at temporary monitoring well TW-1105. This suggests that the gasoline originated near TW-1105 and possibly weathered during migration to TW-1108.

TABLE 4.1 MOBILE LNAPL ANALYTICAL RESULTS

BX SHOPPETTE (SITE E11)

DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

COMPOUND	CONCENTRATION	CONCENTRATION	CONCENTRATION
	IN FRESH	IN PRODUCT	IN PRODUCT
	GASOLINE ^{a/}	FROM TW-1105 ^{b'}	FROM TW-1108 ^{b/}
	(mg/L) ^{c/}	(mg/L)	(mg/L)
Benzene Toluene Ethylbenzene Total Xylenes	16,800	7,650	7,610
	80,400	49,725	43,815
	10,875	9,945	9,225
	45,300	50,490	45,355
Total BTEX	153,375	117,810	106,005

^{a/} Data from Bruce et al. (1991); average of 5 unleaded gasolines.

The liquid densities of gasoline from temporary wells TW-1105 and TW-1108 were 0.7650 and 0.7687 kilograms per liter (kg/L), respectively. The density of unweathered gasoline is 0.7321 kg/L. The elevated gasoline densities from the temporary monitoring wells suggests weathering by the partial loss of volatile hydrocarbons (such as the alkane fractions), thereby leaving heavier and less volatile compounds for an increase in density.

4.3 SOIL QUALITY

4.3.1 Residual Contamination

Residual LNAPL is defined as the LNAPL that is trapped in the aquifer by the processes of cohesion and capillarity, and therefore will not flow within the aquifer and will not flow from the aquifer matrix into a well under the influence of gravity. At this site, the residual LNAPL consists mostly of fuel hydrocarbons derived from automotive gasoline.

b/ USEPA Method SW8020.

c' mg/L = Milligrams per liter.

4.3.1.1 Soil Analytical Data

Soil sampling data are available for sampling events that took place in 1991 through In 1991, 56 soil samples were collected by Halliburton NUS (1994) from boreholes B-1 through B-27, and 12 soil samples were collected from boreholes for wells TW-1103, TW-1108, TW-1109, and TW-1110 (Figure 4.2). During the 1991 investigation, saturated and unsaturated zone soil samples were collected at depths ranging from 5 to 22 feet bgs. In 1995, Halliburton NUS collected 11 additional soil samples during the installation of monitoring wells MW-1121 through MW-1123 and soil boreholes SB1129 through SB1135 (Halliburton NUS, 1996). These 11 samples were collected from unsaturated soil at depths ranging from 2.0 to 9.7 feet bgs. All the soil samples collected during these sampling events were analyzed for BTEX and total petroleum hydrocarbons (TPH). Some soil samples were analyzed for additional contaminants (e.g., metals); however, results reported for these additional analytes are not of primary importance for completion of this RNA demonstration and are not summarized. Total BTEX concentrations were measured in all soil samples collected between February and June 1991 (B-1 through B-27) at concentrations ranging from 0.5 to 785 milligrams per kilogram (mg/kg). Total BTEX concentrations in soil were detected only at soil borehole location SB1135 at a maximum concentration of 122.1 mg/kg in April 1995. Appendix B summarizes BTEX and TPH results for all soil samples collected during these sampling efforts.

Thirteen soil samples were collected from 11 soil borehole locations in March 1996 as part of this study. The soil samples were collected by either the CPT or the Geoprobe® across 0.5- to 2-foot intervals in the vadose zone (from 7 to 12.5 feet bgs). BTEX, chlorobenzene, TMB, and TEMB compounds were analyzed at locations ESSB-13 (2 depths), ESSB-15, ESSB-22, ESSB-24, ESSB-26, ESSB-27, ESSB-28, and ESSB-29 (2 depths). TOC samples were collected from locations ESSB-4, ESSB-18, ESSB-25, and ESSB-26, and the results are summarized in Section 4.3.2. Figure 4.2 illustrates locations at which BTEX was detected, and Table 4.2 summarizes the March 1996 soil sampling results.

Figure 4.2 is a map showing the areal extent of detected BTEX contamination in soils in 1991, 1995, and 1996 to a maximum depth of 20 feet bgs. The unsaturated soil BTEX contamination appears to be confined within the site boundaries. The maximum total BTEX contamination measured in unsaturated soils (5,330 mg/kg) was detected in march

FUEL HYDROCARBON COMPOUNDS DETECTED IN SOIL AND SEDIMENT TABLE 4.2

BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

		Sample					Total	Total	Chloro-				1.2.3.4-
Sample	Sample	Depth	TVPH ^{8/}	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	benzene	1,3,5-TMB	1,2,4-TMB	1.2.3-TMB	TEMB
Location	Date	(feet)	(mg/kg) ^{b/}	(μg/kg) ^{σ/}	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
SOIL													ò
ESSB-13	3/28/96	7 - 8.5		6500	160000	38000	170000	374500	ND	49000	150000	26000	31000
ESSB-13	3/28/96	12 - 12.5		1200	17000	0096	39000	00899	QN.	13000	42000	15000	8300
ESSB-15	3/28/96	10 - 10.5		1.8	3.2	Ω Q	3.4	8.4	Ω	QN	2.3	QN	QN
ESSB-22	3/28/96	9.5 - 10	890	12000	46000	11000	57000	126000	QZ	9400	26000	0069	8500
ESSB-24	3/28/96	8 - 10		066	2800	1700	2000	12490	N	3100	0096	2300	1900
ESSB-26	3/28/96	8 - 10	•	130000	1800000	000009	2800000	5330000	24000	570000	1500000	410000	390000
ESSB-27	3/28/96	8.5 - 10		2800	14000	2000	26000	47800	N N	3600	15000	5800	2800
ESSB-28	3/28/96	8 - 10		6700	40000	14000	70000	130700	S	14000	41000	14000	9100
ESSB-29	3/28/96	7 - 8.5		QN	90029	35000	180000	282000	1200	53000	150000	58000	47000
ESSB-29	3/28/96	8.5 - 10.25		13000	250000	00086	470000	831000	3400	100000	300000	10000	00069
SEDIMENT	ı												
ES-SED-1	3/29/96	Sediment	NA	Ω	19	NO	S	19	QN	Q	Q.	QX	CZ
ES-SED-2	3/29/96	Sediment	ΝΑ	ΩN	5.9	N Q	1.4	7.3	R	N	QX	Q	S
ES-SED-3	3/29/96	Sediment	NA	QN	ND	ND	ND	QN	QN	N	N N	QN	2

²/TVPH = Total volatile petroleum hydrocarbons (quantified against a gasoline standard).

b' mg/kg=Milligrams per kilogram.

o' μg/kg=Micrograms per kilogram.

^{d'} ND = Not Dectected.

e' NA = Not analyzed.

Note: TVPH analyzed using USEPA Method SW8015M.

BTEX, Chlorobenzene, and TMB compounds analyzed using USEPA Method SW8020.

1996 in soil borehole ESSB-26, adjacent to the fueling canopy and abandoned temporary well TW-1108. This sample likely was saturated with mobile LNAPL and is not representative of residual LNAPL contamination. The second highest soil BTEX concentration recorded from all three soil sampling events was 831 mg/kg at soil borehole location ESSB-29. BTEX contamination in the vadose zone is concentrated mostly in the former location of the gasoline USTs, along the fuel transfer lines to the fueling canopy, and in the fueling canopy area. The remainder of the soil sampling indicated lower BTEX concentrations throughout the rest of the BX Shoppette site (Figure 4.2). A potential second contaminant source was located north of the UST pit near temporary well TW-1111. A sheen was detected at this location during field work as part of this demonstration (Section 4.2) and may be the result of an unreported surface release or slug of LNAPL that migrated northward from the UST location. Detectable concentrations of BTEX in unsaturated soils appear to be limited to an area of 32,000 square feet, extending as far as 120 feet from the former gasoline USTs.

The vertical extent of soil BTEX contamination in the shallow aquifer is believed to extend as much as 22 feet bgs on the basis of saturated soil samples collected in 1991 (Halliburton NUS, 1992). The downward smearing of LNAPL contamination through seasonal variations in groundwater elevations and preferential flow through conductive sand or silt layers has caused saturated soil contamination. The presence of BTEX contamination at soil borehole B-22 (Figure 4.2) suggests the previous downward migration of fuel contamination in conductive sand or silt lenses or stringers.

4.3.1.2 CPT/LIF Data

Three CPT/LIF site investigations were performed at the BX Shoppette to help characterize the horizontal and vertical extent of soil contamination. The first CPT/LIF characterization event occurred in March 1995 and consisted of 31 pushes (EAK01 to EAK31) to a maximum depth of 27 feet bgs. A nitrogen laser was used to scan for free and residual hydrocarbons. Figure 4.1 illustrates the locations of the CPT/LIF push locations. The second CPT/LIF characterization event occurred in October 1996 and consisted of 13 push locations with a tunable LIF probe. The focus of the field effort was to demonstrate the applicability of the tunable LIF probe by correlating the probe readings with adjacent soil cores. Four soil boreholes were completed adjacent to the tunable LIF push locations. However, the tunable LIF detects a different wavelength band than the nitrogen probe and cannot be directly correlated with nitrogen LIF results.

Therefore, the tunable LIF data are not used in this report. The third CPT/LIF site characterization event was conducted in March 1996 during the field work phase of this study and consisted of 23 push locations (1ESLF through 23ESLF) using the nitrogen LIF probe. The maximum push depth during the March 1996 CPT/LIF effort was 48 feet bgs. Monitoring points were installed at 13 of the 23 push locations.

All 54 nitrogen LIF push locations from March 1995 and 1996 were used to delineate residual soil contamination (Figure 4.1). Soil BTEX contamination detected by the nitrogen LIF is comparable in area to the area of BTEX contamination detected with soil analytical data (compare Figure 4.1 with Figure 4.2). The area delineated by the nitrogen LIF probe is smaller than the area delineated through analytical data because the fuel detection limit of the nitrogen LIF is less sensitive than the BTEX detection limit for laboratory analyses. Hydrocarbons were detected as deep as 19 feet bgs at 22EAK01 (former location of temporary monitoring point CPT-22). This suggests that mobile or residual LNAPL has not penetrated the clay layer separating the shallow aquifer from the aquifer below.

The relationship between LNAPL distribution is best illustrated using hydrogeologic profiles. Figures 4.3 and 4.4 present profiles of soil contamination using hydrogeologic cross-section A-A' and C-C'. Figure 4.3 suggests that most soil contamination in this portion of the shallow aquifer is accumulating within the silty sand/sand lens stretching between 28EAK01 and TW-1109. Likewise, Figure 4.4 shows that mobile LNAPL is confined to the sandy lens in the immediate vicinity of TW-1108. The presence of residual LNAPL contamination within 5 feet of the groundsurface suggests that most fuel likely was released through the transfer piping, located north of the canopy, that was used to connect the USTs to the filling apron.

4.3.2 Total Organic Carbon

TOC concentrations are used to estimate the amount of organic matter sorbed to soil particles or trapped in the interstitial passages of a soil matrix. The TOC concentration in the saturated zone is an important parameter used to estimate the amount of contaminant that could potentially be sorbed to the aquifer matrix. Sorption results in retardation of the contaminant plume relative to the average advective groundwater velocity. TOC measurements should be taken in the same soil formation where dissolved groundwater contamination is migrating.

The percent soil TOC was measured in three samples that were collected in the capillary fringe, peripheral to the mobile and residual LNAPL plume (ESSB-4, ESSB-18, ESSB-25). A fourth TOC sample was collected within the contaminated area at ESSB-26 (adjacent to TW-1108). The collection of TOC samples from the silt/sand formation was difficult due to the heterogeneity of the shallow aquifer soil matrix. As a result, TOC concentrations for samples ESSB-4 and ESSB-18 were excluded from retardation calculations because only clay soils were extracted (TOC contents of 0.16 and 0.15 percent, respectively). The TOC concentrations from ESSB-26 (TOC of 0.05 percent) also was not used because the sample was collected from a contaminated portion of the shallow aquifer. The TOC sample collected from ESSB-25 consisted of a sandy soil that was peripheral to known soil contamination. The TOC of soils from 4 to 6.5 feet bgs was 0.07 percent. This TOC value is indicative of relatively clean soils and was used in retardation calculations.

4.4 SURFACE WATER AND SEDIMENT CHEMISTRY

4.4.1 Surface Water Quality

Surface water samples were collected at three locations (SUR1 through SUR3) in the northwest/southeast running drainage canal located north of the Shoppette (Figure 2.1). The surface water samples were analyzed for VOCs by USEPA Method SW8020. Toluene was detected at low concentration (0.5 $\mu g/L$) in sample SUR1, which is located upgradient from the site. No other BTEX , TMB or TEMB compounds were detected in the surface water samples, which suggests that the drainage canal does not receive groundwater contamination from the BX Shoppette. Analytical results for surface water samples are presented in Table 4.3.

4.4.2 Sediment Quality Data

Three sediment samples were collected from the upper 4 inches of the northwest/southeast flowing drainage canal and analyzed for VOCs. The results of sediment sampling are summarized in Table 4.2. The three sampling locations (SED1 through SED3) are the same as those of the surface water samples. Sediment samples SED1 and SED2 contained 19.0 and 7.30 μ g/kg of toluene, respectively. In addition, sediment sample SED2 had a low detection of total xylenes (1.4 μ g/kg). No other BTEX, TMB, or TEMB compounds were detected in sediment samples at the site. The

TABLE 4.3
FUEL HYDROCARBON COMPOUNDS DETECTED IN
GROUNDWATER AND SURFACE WATER
BX SHOPPETTE (SITE E11)

DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Senzente (10) lucine (10) (10) (10) Ethyl benzente (10) (19(L)		TVPH-				Total	Total				
1.1 ND ND 1.1 ND ND 2.9 ND 1.1 ND 0.40 0.40 ND 2.9 ND 0.60 0.40 ND 0.40 ND 0.60 0.70 ND 0.70 ND ND 0.70 ND 0.70 ND ND 1.1 ND ND ND ND 1.2 ND ND ND ND 1.0 840 780 170 ND 1.0 840 17 <td< th=""><th>Gasoline^a' (mg/L)^{b'}</th><th></th><th>Benzene (μg/L)^{c/}</th><th>Toluene (µg/L)</th><th>Ethylbenzene (μg/L)</th><th>Xylenes (μg/L)</th><th>BTEX (µg/L)</th><th>1,3,5-TMB (μg/L)</th><th>1,2,4-TMB (μg/L)</th><th>1,2,3-TMB (μg/L)</th><th>1,2,3,4,-Tetra (μg/L)</th></td<>	Gasoline ^a ' (mg/L) ^{b'}		Benzene (μg/L) ^{c/}	Toluene (µg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	BTEX (µg/L)	1,3,5-TMB (μg/L)	1,2,4-TMB (μg/L)	1,2,3-TMB (μg/L)	1,2,3,4,-Tetra (μg/L)
2.9 ND ND 2.9 ND ND 0.60 0.40 ND ND 0.40 ND ND ND 0.70 ND ND 0.70 ND ND ND 0.70 ND ND 0.70 ND ND ND 1.1 ND ND 4.0 ND ND ND 1.2 ND ND ND ND ND ND 1.2 ND ND ND ND ND ND 1.2 ND ND ND ND ND ND 1.8 ND ND ND ND ND ND 1.8 ND ND ND ND ND ND ND 1.9 ND ND 1.2 ND	1.7		NΩ ^{q,}	1.1	ND	ND	1.1	QN	ΩX	QN QN	QN
0.40 ND NAD 0.40 ND ND 0.70 ND ND 0.70 ND ND 0.70 ND ND 0.70 ND ND 2.2 ND ND 4.0 ND ND ND 1.1 ND ND 1.1 ND ND ND 1.2 ND ND 1.2 ND ND ND 1.2 ND ND 1.2 ND ND ND 5.6 2.5 8.9 40 7.8 ND ND 5.6 2.5 8.9 40 7.8 ND ND 11000 840 7.8 7.8 1.2 0.60 1.1 0.60 11000 840 7.3 7.1 0.50 1.6 0.80 1.1 0.80 20 8.2 1.2 1.2 0.50 1.6 0.80 1.1 0.80 1.1 0.80 <td>2.0</td> <td></td> <td>QN</td> <td>2.9</td> <td>ΩN</td> <td>ND</td> <td>2.9</td> <td>QN</td> <td>ND</td> <td>09.0</td> <td>N</td>	2.0		QN	2.9	ΩN	ND	2.9	QN	ND	09.0	N
6.70 ND ND 0.70 ND ND 6.70 ND ND 0.70 ND ND 2.2 ND ND 4.0 ND ND ND 1.1 ND ND 1.1 ND ND ND ND 1.2 ND ND 1.2 ND ND ND ND 1.8 ND ND ND ND ND ND ND 1.8 ND ND ND ND ND ND ND 5.6 2.5 8.9 40 7.8 13 4.1 ND	N Q		N Q	0.40	ND	Ω	0.40	NON	N	Q	N
0.70 ND ND 0.70 ND ND ND 2.2 ND ND 4.0 ND ND ND 1.1 ND ND 1.1 ND ND ND 3.8 ND 1.2 ND ND ND ND 1.2 ND ND 1.2 ND ND ND 5.6 2.5 8.9 40 7.8 ND ND 5.6 2.5 8.9 40 7.8 ND ND 1.0 ND 1.2 ND ND ND ND 1.0 860 120 12150 ND ND ND ND 1.1000 840 120 12150 ND ND ND ND ND ND 1.0 860 1500 1500 84900 640 2300 11 44000 170 790 170 ND ND <td< td=""><td>ND</td><td></td><td>N Q</td><td>0.70</td><td>ΩN</td><td>ND</td><td>0.70</td><td>ND</td><td>ND</td><td>ND</td><td>0.70</td></td<>	ND		N Q	0.70	ΩN	ND	0.70	ND	ND	ND	0.70
2.2 ND ND 4.0 ND ND ND 1.1 ND ND 1.1 ND ND 3.8 ND ND ND ND 1.2 ND ND ND ND 1.8 ND ND ND ND 2.9 ND 1.2 ND ND 2.9 ND 2.3 5.2 0.60 1.2 0.60 1100 860 120 12150 ND ND ND ND 11000 840 780 30640 510 170 510 20 0.50 120 12150 ND ND ND 44000 840 7.1 0.50 1.6 0.80 ND ND ND ND ND ND 80 170 3622 ND ND ND 450 170 766 ND ND ND	0.20		QN Q	0.70	ND	ND	0.70	ND	N	N	ND
1.1 ND ND 1.1 ND ND 3.8 ND ND 3.8 ND ND 1.2 ND ND 1.2 ND ND 1.8 ND 1.2 ND ND 5.6 2.5 8.9 40 7.8 ND ND 2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 1.2 0.60 1.2 0.60 11000 840 780 30640 510 ND ND ND 20 840 780 7.1 0.50 1.6 0.80 11 44000 880 150 7.1 0.50 1.6 0.80 11 44000 1700 1500 84900 640 2300 740 ND ND ND ND ND ND ND 4500 620 510 760 <td< td=""><td>QN</td><td></td><td>8.1</td><td>2.2</td><td>ND</td><td>Q.</td><td>4.0</td><td>ND</td><td>N N</td><td>QN N</td><td>ND</td></td<>	QN		8.1	2.2	ND	Q.	4.0	ND	N N	QN N	ND
3.8 ND ND 3.8 ND ND ND 1.2 ND ND 1.2 ND ND ND 1.8 ND 1.2 ND ND ND ND 5.6 2.5 8.9 40 7.8 13 4.1 2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 12150 ND ND ND ND 11000 840 780 30640 510 170 510 0.60 11000 840 7.1 0.50 1.6 0.80 11 44000 290 1500 84900 640 2300 740 ND ND ND ND ND ND ND 62 170 790 3622 ND 70 ND 4500 1400 8800 1700 530 1700 ND <td< td=""><td>QN</td><td></td><td>Ω</td><td>1.1</td><td>QN</td><td>QN Q</td><td>1.1</td><td>QN</td><td>N</td><td>S</td><td>N</td></td<>	QN		Ω	1.1	QN	QN Q	1.1	QN	N	S	N
1.2 ND ND 1.2 ND ND 1.8 ND 1.8 ND ND ND 5.6 2.5 8.9 40 7.8 13 4.1 2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 12150 ND ND ND ND 11000 840 780 30640 510 ND ND ND ND 20 3.2 2.3 5.2 0.60 1.2 0.60 11 0.80 11 0.80 11 0.80 11 0.80 11 0.80 11 0.80 11 0.80 140 0.80 140 0.80 140 0.80 170 0.80 170 0.80 170 0.80 170 0.80 170 0.80 170 0.80 0.80 170 0.80 0.80 170 0.80 0.80 0.80 0.80	QN Q		N Q	3.8	ΩN	QN	3.8	QN	ND	ND	N
1.8 ND ND 1.8 ND ND 5.6 2.5 8.9 40 7.8 13 4.1 2.9 ND 7.8 13 4.1 4.1 2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 12150 ND ND ND ND 11000 840 7.1 0.50 1.6 0.80 510 6.80 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 740 44000 2900 1500 84900 640 2300 740 740 ND ND ND ND ND ND ND 840 640 2300 64 4500 1400 8800 17000 8300 1700 8300 ND ND ND ND <td>N Q</td> <td></td> <td>ND Q</td> <td>1.2</td> <td>ND</td> <td>ND</td> <td>1.2</td> <td>ΩN</td> <td>N</td> <td>S</td> <td>ND</td>	N Q		ND Q	1.2	ND	ND	1.2	ΩN	N	S	ND
5.6 2.5 8.9 40 7.8 13 4.1 2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 12150 ND ND ND ND 11000 840 780 30640 510 1700 510 ND ND 20 3.2 3.0 7.1 0.50 1.6 0.80 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 840 62 170 790 3622 ND 70 ND ND ND 4500 620 510 7660 ND 70 ND ND ND 4500 1400 8800 17000 530 1700 5300 ND ND ND ND ND ND ND ND ND	ND	-	Ω	1.8	ΩN	QN	1.8	NON	ND	N	QN
2.9 ND 2.3 5.2 0.60 1.2 0.60 170 860 120 12150 ND ND ND 11000 840 7800 30640 510 ND 510 3.2 0.50 3.0 7.1 0.50 1.6 0.80 20 38 97 205 15 0.80 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 62 170 790 3622 ND 70 ND 4500 620 510 7660 ND ND ND 4500 1400 8800 17000 530 ND ND ND ND ND ND ND ND ND	2.0		23	9.6	2.5	6.8	40	7.8	13	4.1	14
170 860 120 12150 ND ND ND 11000 840 7800 30640 510 1700 510 3.2 0.50 3.0 7.1 0.50 1.6 0.80 20 3.8 97 205 1.5 0.80 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 62 170 790 3622 ND 70 ND 4500 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 ND ND ND ND ND ND ND ND ND	0.30		Q	2.9	ND	2.3	5.2	09.0	1.2	09.0	ND
11000 840 7800 30640 510 1700 510 3.2 0.50 3.0 7.1 0.50 1.6 0.80 20 38 97 205 15 36 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 62 170 790 3622 ND 70 ND 4500 620 510 7660 ND ND ND 4500 1400 8800 17000 530 ND ND ND ND ND ND	32 1	_	1000	170	098	120	12150	ΩN	ND	ND	42
3.2 0.50 3.0 7.1 0.50 1.6 0.80 20 38 97 205 15 36 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND ND 62 170 790 3622 ND 64 64 230 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 ND ND ND ND ND ND ND ND ND	83 1	-	1000	11000	840	7800	30640	510	1700	510	160
20 38 97 205 15 36 11 44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND 62 170 790 3622 ND 64 230 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 ND ND ND ND ND ND ND ND ND	0.30		0.40	3.2	0.50	3.0	7.1	0.50	1.6	08.0	ND
44000 2900 15000 84900 640 2300 740 ND ND ND ND ND ND AD 62 170 790 3622 ND 64 AD AD AD 450 620 510 7660 ND 70 ND ND AD AD ND ND ND ND ND ND ND ND ND	2.0		20	20	38	26	205	15	36		14
ND ND ND ND ND ND 62 170 790 3622 ND 64 230 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 1700 5300 ND ND ND ND ND ND ND	200	•	23000	44000	2900	15000	84900	640	2300	740	260
62 170 790 3622 ND 200 64 230 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 1700 5300 ND ND ND ND ND ND	Q.		Q Q	N N	NO	ND	ND	N Q	Q.	ND	N
230 620 510 7660 ND 70 ND 4500 1400 8800 17000 530 1700 5300 ND ND ND ND ND ND ND	13		2600	62	170	790	3622	N QN	200	64	44
4500 1400 8800 17000 530 ND ND ND ND ND	27		6300	230	620	510	1660	ND	70	QN	63
ON ON ON ON ON ON	58		2300	4500	1400	8800	17000	530	1700	5300	160
	QN	J	ΩN	ND	ND	ND	ND	ND	ND	ND	ND

L:\45015\tables\BTEXALL.XLS

TABLE 4.3 (Concluded) FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER AND SURFACE WATER RY SHOPPETTE (SITE F11)

BX SHOPPETTE (SITE E11)

DEMONSTRATION OF RNA
EAKER AIR FORCE BASE, ARKANSAS

		TVPH-				Total	Total				
Sample Location	Sample Date	Gasoline ^{a/} (mg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	BTEX (μg/L)	1,3,5-TMB (μg/L)	1,2,4-TMB (μg/L)	1,2,3-TMB (μg/L)	1,2,3,4,-Tetra (μg/L)
MW-1119	3/27/96	1.1	ND	ND	ΩN	Ω	N ON	QN	QN QN	ΩN	QN
MW-1120	3/26/96	QN	Q	N Q	ND	Q.	QN QN	ΩN	N	N	ND
MW-1121	3/26/96	N Q	Q	N Q	ND	N Q	N	ΩN	Q.	N Q	ΩN
MW-1122	3/26/96	N Q	QN	R	ND	QN	N N	ΩZ	N N	R	NΩ
MW-1123	3/26/96	NO	Q	N	ND	QN	QN	ΩN	QN	N Q	ΩN
MW-1124	3/26/96	ΩN	Q	N N	ND	QN	Q	QN	QN	QX	QN
MW-1125	3/26/96	Q	1.0	R	ND	QN	1.0	N	Q.	QZ	ΩN
MW-1126	3/26/96	QN	ND	N N	ND	N Q	QN	N	QV	QN	N
MW-1127	3/26/96	0.10	35	R	ΩN	0.40	35.4	N	QN	0.50	QN
MW-1128	3/28/96	0.30	3.2	0.50	0.90	2.9	7.5	QN QN	06'0	ND	0.50
SURI	3/29/96	NA	QN	0.50	QN O	N Q	0.50	ND	ND	N	ΩN
SUR2	3/29/96	NA	QN	Q.	ND	N	QN	ND	ND	ND	ND
SUR3	3/29/96	NA	ND	ND	QN.	N	Q	ND	ND	N	QN
a mynt o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T-4-1 W-1-	I	1	:							

²⁷ TVPH-Gasoline = Total Volatile Petroleum Hydrocarbons, Gasoline Range.

^{b/} mg/L=Milligrams per liter.

ο' μg/L=Micrograms per liter.

^d ND=Not Detected.

e' NA=Not Available.

highest measured BTEX compound at sampling location SED1 suggests that an unidentified contaminant source upstream of the site may exist. The low-level detection of BTEX compounds at sediment sampling location SED2 suggest that contamination emanating from the BX Shoppette may have once entered the drainage canal during a period of high groundwater level or from surface water runoff. Alternatively, the BTEX compounds detected at SED2 may have arisen from an unidentified upstream source or unidentified surface spill in the area.

4.5 GROUNDWATER CHEMISTRY

Three lines of evidence can be used to document the occurrence of natural attenuation:

1) geochemical evidence; 2) documented loss of contaminant mass at the field scale; and

3) microcosm studies. The first two lines of evidence (geochemical evidence and documented loss of contaminants) are used herein to support the occurrence of natural attenuation at the BX Shoppette, as described in the following sections. Because these two lines of evidence strongly suggest that natural attenuation is occurring at this site, a microcosm study was not deemed necessary.

4.5.1 Historic Measurements of Dissolved Hydrocarbon Contamination

Two groundwater sampling events conducted prior to March 1996 indicated the presence of fuel hydrocarbon contamination in the shallow groundwater beneath the BX Shoppette site. Groundwater samples were collected from 18 monitoring wells in January 1992 (TW-1101 through MW-1116, MW-1119, and MW-1120) (Halliburton NUS, 1992). The headspace associated with each of these groundwater samples was analyzed from BTEX concentration with an onsite portable GC. Headspace concentrations of a least 1 µg/L were detected for all 18 samples. On the basis of field screening results and optimal monitoring well placement, monitoring wells TW-1103, TW-1107, TW-1108, TW-1112, and TW-1113 were abandoned. Monitoring well TW-1108 was partially filled with concrete and has sufficient riser available to measure the presence of mobile LNAPL flowing into the well. The remaining monitoring wells were temporarily or permanently installed.

Monitoring wells TW-1101, TW-1102, TW-1105, TW-1106, and TW-1109 were originally intended for temporary groundwater level measurement or mobile LNAPL removal (TW-1105) before eventual abandonment. These five monitoring wells were still functional during the field work phase of this demonstration project in March 1996.

Monitoring wells MW-1104, TW-1110, TW-1111, MW-1114, TW-1115, MW-1116, MW-1119, and MW-1120 were intended for indefinite use and were provided with permanent completions. Samples from the eight permanent monitoring wells were submitted for laboratory analysis, and the results are summarized in tabular form in Appendix B. Six of the eight groundwater samples had nondetectable concentrations of BTEX compounds. Monitoring well TW-1110 and TW-1111 had high concentrations of BTEX at 59,700 μg/L and 13,920 μg/L, respectively. On the basis of groundwater analytical and soil-gas data, the extent of groundwater contamination appeared to center around the UST pit and cover approximately 360 feet in the northwest/southeast direction and 250 feet in the northwest/southwest direction.

Fifteen groundwater monitoring wells were sampled by Halliburton NUS (1996) from June through November 1995 to observe contaminant trends in the shallow aquifer and the sandy, semi-confined aquifer. Eight of the 15 sampled monitoring wells were installed between April and November 1995 (MW-1121 through MW-1128): three wells were completed in the shallow surficial aquifer (MW-1121 through MW-1123); five wells were completed in the semi-confined sandy aquifer (MW-1124 through MW-1128). BTEX compounds were detected in five of the shallow aguifer wells (TW-1101, MW-1104, TW-1109, TW-1110, and TW-1111), with the highest BTEX concentration of 36,900 µg/L detected at TW-1111 (June 1995). The areal extent of the 1995 BTEX plume was comparable to the areal extent of the 1992 BTEX plume. Groundwater BTEX concentrations increased between 1992 and 1995 at monitoring wells MW-1104 and TW-1111 (increases of 1,062 and 22,880 µg/L, respectively), suggesting the potential migration of mobile LNAPL and/or contaminated groundwater into areas north and east of the former tank pit. BTEX contamination was observed to decrease by approximately 45,220 μg/L at monitoring well TW-1110. BTEX contamination in the remaining shallow monitoring wells was below detectable limits.

BTEX compounds were detected at two locations in the semi-confined sand aquifer in 1995. Monitoring well MW-1124 contained 81.9 µg/L of BTEX. Benzene was the only compound detected at monitoring well MW-1125 at a concentration of 40 µg/L. These results suggest that contaminated groundwater from above the aquitard has vertically migrated through the clay layer.

Groundwater data collected in March 1996 by Parsons ES indicates that the groundwater plume is larger than previously suspected. Tables 4.3 summarizes groundwater BTEX, TMB, TEMB, and TVPH results from the March 1996 sampling event. TMB and TEMB results are presented because they are water-soluble fuel constituents with sorptive properties similar to BTEX, but which are considered relatively recalcitrant to biological degradation under anaerobic conditions; therefore, they can be used as tracer compounds in the calculation of anaerobic decay rates, as presented in Section 5. Analytical results for the current investigation are discussed in the following subsections.

4.5.1.1 March 1996 BTEX Concentrations

The areal distribution of groundwater BTEX concentrations for the shallow aquifer for March 1996 is presented on Figure 4.5. As indicated by the 1-µg/L isopleth, the BTEX plume is approximately 420 feet in the northwest/southeast direction and 330 feet in the southwest/northeast direction. The 5,000-µg/L contours identify two source areas at the site north and southwest of the former UST pit. These source areas coincide in location with previous detections of mobile LNAPL (Section 4.2). Benzene and/or toluene appear to have migrated east past Arkansas Avenue and northeast past the southeast-flowing drainage canal, thus enlarging previous estimates on the extent of the BTEX plume (Section 4.5.1). The BTEX plume does not extend west of the source areas, as indicated by nondetectable concentrations of BTEX compounds at monitoring wells TW-1106, MW-1120, and MW-1122.

BTEX concentrations were detected in the semi-confined aquifer at monitoring wells MW-1125, MW-1127, and MW-1128 (Table 4.3). Monitoring well MW-1125 is the only well that had detectable groundwater contamination in both 1995 and 1996 (40 and 1 µg/L of benzene, respectively). Between 1995 and 1996, BTEX compounds disappeared at monitoring well MW-1124 and appeared at monitoring wells MW-1127 and MW-1128. A BTEX concentration of 12,150 µg/L was detected at ESMP-23D; however, this elevated concentrations is a result of LNAPL that was pulled from the shallow aquifer to the semi-confined aquifer during CPT operations. Therefore, the artificially introduced BTEX concentration at ESMP-23D was not used in the delineation of BTEX contamination in the semi-confined aquifer. The vertical migration of BTEX compounds to the sandy aquifer may be strongly influenced by seasonal variations of groundwater

flow direction and elevation that present opportunities for shallow dissolved contamination to migrate through the clay layer to the aquifer below.

Where detected, total BTEX concentrations range from 0.4 to 84,900 µg/L in March 1996 (Table 4.3). The maximum concentration of 84,900 µg/L was detected in a groundwater sample collected below mobile LNAPL in monitoring well TW-1105. On the basis of the work of Cline *et al.* (1991), the maximum dissolved BTEX concentration that can result from the equilibrium partitioning of BTEX compounds from fresh gasoline into groundwater is approximately 132,200 µg/L. Using the mass fraction of BTEX compounds in the LNAPL sample from well TW-1105, the maximum expected equilibrium partitioning of BTEX compounds into the groundwater is approximately 76,130-µg/L. LNAPL variability or LNAPL emulsification may account for the small difference in the maximum observed dissolved BTEX concentration and the theoretical maximum dissolved BTEX concentration. Equilibrium partitioning calculations are presented in Appendix C.--

The maximum benzene, toluene, ethylbenzene, and total xylene concentrations of $23,000-\mu g/L$, $44,000-\mu g/L$, $2,900-\mu g/L$, and $15,000-\mu g/L$ were all detected in the groundwater sample collected from monitoring point TW-1105. Detected groundwater benzene concentrations exceeded the federal maximum contaminant level (MCL) of $5.0~\mu g/L$ (USEPA, 1994) at eight locations in the shallow aquifer and 1 location in the semi-confined aquifer. Toluene concentrations exceeded the federal MCL of $1,000~\mu g/L$ at three locations in the shallow aquifer. Ethylbenzene exceeded the federal MCL of $700~\mu g/L$ at two locations in the shallow aquifer. Total xylenes exceeded the federal MCL of $10,000~\mu g/L$ at one location in the shallow aquifer.

4.5.1.2 Total Volatile Petroleum Hydrocarbon Concentrations

The distribution of TVPH (normalized to a gasoline standard) in groundwater is similar to the distribution of BTEX compounds in the vicinity of the BX Shoppette (Figure 4.6). However, the downgradient extent of TVPH contamination (east of the Shoppette) is less than for observed BTEX contamination. Dissolved volatile fuel hydrocarbons were detected at all but seven locations where dissolved BTEX compounds were detected and where TVPH was sampled. Fuel hydrocarbons were detected at only one location (MW-1119) where dissolved BTEX was not detected. Total detected TVPH concentrations ranged from 0.1 to 200 mg/L (Table 4.3). The analysis of TVPH

concentrations provides a better estimate of the volatile aromatic, alicyclic, and aliphatic hydrocarbon mass present in gasoline than does analysis for BTEX.

4.5.2 Inorganic Chemistry and Geochemical Indicators of BTEX Biodegradation

Microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous redox reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors at the site are natural organic carbon and fuel hydrocarbon compounds. Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or compounds that occur in relatively oxidized states, and include oxygen, nitrate, ferric iron, sulfate, manganese, and carbon dioxide.

The driving force of BTEX degradation is electron transfer, which is quantified by the Gibbs free energy of the reaction (ΔG°_{r}) (Stumm and Morgan, 1981; Bouwer, 1994; Godsey, 1994). The value of ΔG°_{r} represents the quantity of free energy consumed or yielded to the system during the reaction. Table 4.4 lists stoichiometry of the redox equations involving BTEX and the resulting ΔG°_{r} . Although thermodynamically favorable, most of the reactions involved in BTEX oxidation cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those redox reactions that have a net yield of energy (i.e. $\Delta G^{\circ}_{r} < 0$). Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms use electron acceptors in the following order of preference: nitrate, manganese, ferric iron hydroxide, sulfate, and finally carbon dioxide.

Depending on the types and concentrations of electron acceptors present (e.g., nitrate, sulfate, carbon dioxide), pH conditions, and redox potential, anaerobic biodegradation can occur by denitrification, manganese reduction, ferric iron reduction, sulfate reduction, or methanogenesis. Other, less common anaerobic degradation mechanisms such as nitrate reduction may dominate if the physical and chemical conditions in the subsurface favor these pathways. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron, and

TABLE 4.4 COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Coupled Benzene Oxidation Reactions	ΔG° _r (kcal/mole Benzene)	ΔG° _r (kJ/mole Benzene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$7.5O_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 3H_2O$ Benzene oxidation /aerobic respiration	-765.34	-3202	3.07:1
$6 NO_3 + 6 H^+ + C_6 H_6 \Rightarrow 6 CO_{2,g} + 6 H_2 O + 3 N_{2,g}$ Benzene oxidation / denitrification	-775.75	-3245	4.77:1
$30H^+ + 15MnO_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 15Mn^{2+} + 18H_2O$ Benzene oxidation / manganese reduction	-765.45	-3202	10.56:1
$3.75 \text{ NO}_3^- + \text{C}_6\text{H}_6 + 7.5 \text{ H}^+ + 0.75 \text{ H}_2\text{O} \Longrightarrow 6 \text{ CO}_2 + 3.75 \text{ NH}_4^+$ Benzene oxidation / nitrate reduction	-524.1	-2193	2.98:1
$\frac{60 H^{+} + 30 Fe(OH)_{3,a} + C_{6} H_{6} \Rightarrow 6 CO_{2} + 30 Fe^{2+} + 78 H_{2}O}{Benzene \ oxidation \ / \ iron \ reduction}$	-560.10	-2343	21.5:1 ^{a/}
$75H^{+} + 3.75SO_{4}^{2-} + C_{6}H_{6} \Rightarrow 6CO_{2,g} + 3.75H_{2}S^{o} + 3H_{2}O$ Benzene oxidation / sulfate reduction	-122.93	-514.3	4.61:1
$4.5H_2O + C_6H_6 \Rightarrow 2.25CO_{2,g} + 3.75CH_4$ Benzene oxidation / methanogenesis	-32.40	-135.6	0.77:1 ^{b/}

Coupled Toluene Oxidation Reactions	ΔG° _r (kcal/mole Toluene)	ΔG° _r (kJ/mole Toluene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$9O_2 + C_6H_3CH_3 \Rightarrow 7CO_{2,g} + 4H_2O$ Toluene oxidation /aerobic respiration	-913.76	-3823	3.13:1
$7.2NO_3 + 7.2H^+ + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 7.6H_2O + 3.6N_{2,g}$ Toluene oxidation / denitrification	-926.31	-3875	4.85:1
$36 H^{+} + 18 \underline{MnO_{2}} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2,g} + 18Mn^{2+} + 22H_{2}O$ Toluene oxidation / manganese reduction	-913.89	-3824	10.74:1
$72H^{+} + 36Fe(OH)_{3,a} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2} + 36Fe^{2+} + 94H_{2}O$ Toluene oxidation / iron reduction	-667.21	-2792	21.86:1 ^{a/}
$9H^+ + 4.5SO_4^2 + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 4.5H_2S^\circ + 4H_2O$ Toluene oxidation / sulfate reduction	-142.86	-597.7	4.7:1
$5H_2O + C_6H_5CH_3 \Rightarrow 2.5CO_{2,z} + 4.5CH_4$ Toluene oxidation / methanogenesis	-34.08	-142.6	0.78:1 6/

TABLE 4.4 (CONCLUDED) COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS

BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Coupled Ethylbenzene Oxidation reactions	ΔG° _r (kcal/mole Ethyl- benzene)	ΔG° _r (kJ/mole Ethyl- benzene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$10.5O_2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 5H_2O$ Ethylbenzene oxidation /aerobic respiration	-1066.13	-4461	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ Ethylbenzene oxidation / denitrification	-1080.76	-4522	4.92:1
$46 H^{+} + 22 \underline{MnO_{2}} + C_{6} H_{5} C_{2} H_{5} \Rightarrow 8 CO_{2,g} + 22 \underline{Mn^{2+}} + 28 H_{2} O$ Ethylbenzene oxidation / manganese reduction	-1066.27	-4461	11.39:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ Ethylbenzene oxidation / iron reduction	-778.48	-3257	22:1 ^{a/}
$10.5 H^+ + 5.25 SO_4^{2-} + C_6 H_5 C_2 H_5 \implies 8 CO_{2,g} + 5.25 H_2 S^o + 5 H_2 O Eth$ $ylbenzene oxidation / sulfate reduction$	-166.75	-697.7	4.75:1
$5.5 H_2O + C_6 H_5 C_2 H_5 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ Ethylbenzene oxidation / methanogenesis	-39.83	-166.7	0.79:1 6/

Coupled m-Xylene Oxidation Reactions	ΔG° _r (kcal/mole <i>m</i> -xylene)	ΔG_{r}° (kJ/mole <i>m</i> -xylene)	Stoichiometric Mass Ratio of Electron Acceptor to Compound
$10.5O_2 + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,t} + 5H_2O$ m-Xylene oxidation /aerobic respiration	-1063.25	-4448	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ m-Xylene oxidation / denitrification	-1077.81	-4509	4.92:1
$46 H^{+} + 22MnO_{2} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 22 Mn^{2} + 28 H_{2}O$ m-Xylene oxidation / manganese reduction	-1063.39	-4449	11.39:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ $m-Xylene oxidation / iron reduction$	-775.61	-3245	22:1ª
$10.5 H^+ + 5.25 SO_4^{2-} + C_6 H_4 (CH_3)_2 \Rightarrow 8 CO_{2,g} + 5.25 H_2 S^o + 5 H_2 O$ m-Xylene oxidation / sulfate reduction	-163.87	-685.6	4.75:1
$5.5 H_2O + C_6 H_4 (CH_3)_2 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ m-Xylene oxidation / methanogenesis	-36.95	-154.6	0.79:1 6/

^a/ Mass of ferrous iron produced during microbial respiration.

 $^{^{\}mbox{\scriptsize b}\prime}$ Mass of methane produced during microbial respiration.

reduction of nitrate and sulfate (Cozzarelli et al., 1990; Wilson et al., 1990). Environmental conditions and microbial competition ultimately determine which processes will dominate. Vroblesky and Chapelle (1994) show that the dominant terminal electron accepting process can vary both temporally and spatially in an aquifer with fuel hydrocarbon contamination.

Site groundwater data for DO suggest that RNA of hydrocarbons in the shallow aquifer is occurring by aerobic biodegradation. In addition, data for soluble manganese (Mn²⁺), ferrous iron (Fe²⁺), sulfate, and methane suggest that anaerobic degradation via manganese reduction, ferric iron reduction, sulfate reduction, and methanogenesis is occurring. Because both site and background concentrations of nitrate are very low, denitrification is not believed to contribute significantly to the attenuation of BTEX in site groundwater. Geochemical parameters for site groundwater are discussed in the following sections.

4.5.2.1 Dissolved Oxygen

DO concentrations were measured at monitoring wells and points during the March 1996 sampling event. Table 4.5 summarizes measured DO concentrations. In the shallow aquifer, concentrations ranged from 0.4 to 8.2 mg/L with lowest DO concentrations (<1.0 mg/L) located in the vicinity of the mobile LNAPL and the highest DO concentrations beyond the extent of the 100-μg/L BTEX isopleth (Figure 4.5). This trend suggests that DO is a moderately important electron acceptor at the site. Figure 4.7 presents an isopleth map for DO concentrations in the shallow aquifer. DO concentrations in the semi-confined aquifer ranged from 0.3 to 2.4 mg/L. Although, locations with detected BTEX concentrations also had low (<1.0 mg/L) DO concentrations, some background locations had similarly low DO concentrations.

The stoichiometry of BTEX mineralization to carbon dioxide and water caused by aerobic microbial biodegradation is presented in Table 4.4. The average mass ratio of oxygen to total BTEX is approximately 3.14 to 1. This translates to the mineralization of approximately 0.32 mg of BTEX for every 1.0 mg of DO consumed. With an average shallow groundwater background DO concentration (defined by locations ESMP-7S, MW-1116, ESMP-3S, and MW-1114) of approximately 6.2 mg/L and DO concentrations in the source area of approximately 0.4 mg/L, the shallow groundwater at this site has the capacity to assimilate approximately (1.86 mg/L) (1,860 µg/L) of total BTEX through

1:\45015\report\text\sec-4.doc

E/45015/report/tables/GEOCHEM.XLS

TABLE 4.5
GEOCHEMICAL DATA FOR GROUNDWATER
BX SHOPETTE (SITE E11)
DEMONSTRATION OF RNA
EAKER AIR FORCE BASE, ARKANSAS

						Dissolved										
Sampling	Sample	Temp.	hH	Redox	Cond.	Oxygen	.I.	Fe ²⁺	Fe ²⁺ +Fe ³⁺	SO_4^{2}	S^{2} -	Mn^{2+}	NO3-N	CO_2	Alkalinity	CH4
Location	Date	(°C)*	(SU) ^b	(mV) ^{c/}	(μs/cm) ^{d/}	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
ESMP-2S	3/30/96	9.11	NA	156.2	NA	5.55	NA	Y Y	NA	NA	NA	NA	NA	NA	NA	NA
ESMP-2D	3/28/96	12.9	5.5	12.8	NA	NA	3.1	6.2	6.7	44.8	0.313	ND^{g}	0.064	20	140	0.095
ESMP-3S	3/28/96	11.2	ς.	71.2	NA	4.21	5.2	0.35	3.92	14.2	NA	ND	<0.056	NA	NA	QN
ESMP-4S	3/28/96	10.7	5.5	10.2	NA	2.76	4.5	9.0	1.24	23.1	NA	1.3	<0.056	20	180	N N
ESMP-5S	3/28/96	10.3	S	160.3	NA	7.22	7.4	ND	1.38	77.8	NA	ND	0.059	40	260	ND
ESMP-6S	3/29/96	NA	2	NA	NA	NA	6.5	0.35	1.75	14.9	NA	ND	0.11	NA	80	QN
ESMP-6D	3/27/96	15.5	5.5	-47	NA	2.4	10.3	4.9	7.45	80.4	0.089	1.5	0.12	30	140	0.007
ESMP-7S	3/30/96	13.3	5.5	10.2	NA	6.53	4.6	3.42	4.15	15.2	0.056	2.9	<0.056	N A	240	0.5
ESMP-8S	3/28/96	10.5	5.5	173.6	NA	3.35	5.8	90.0	0.26	30.6	0.11	ND	0.28	40	240	ND
ESMP-9S	3/28/96	10.9	5.5	116.3	NA	3.5	3.5	QN	1.02	15.3	Ν	0.1	0.12	Y V	120	N
ESMP-19S	3/29/96	12.9	9	165	NA	4.41	7.3	91.0	0.27	18.3	ž	2.8	0.085	70	240	0.003
ESMP-20S	3/30/96	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ν	ΝA	NA	ΝΑ	NA	NA
ESMP-22S	3/29/96	NA	9	NA	NA	NA	60.5	17.7	24.9	0.98	0.052	2.3	<0.056	210	400	1.5
ESMP-23D	3/29/96	17.2	9	-114	NA	0.33	61	21.85	38.7	1.8	0.03	3.3	0.75	220	520	٣
TW-1102	3/27/96	17.5	9	147.8	NA	2.26	œ œ.	0.13	0.55	38.4	$0.1511^{h/}$	9.0	0.074	100	300	ND
MW-1104	3/27/96	15.9	9	33.7	099	1.6	10.1	2.68	2.94	21.6	0.238I	1.3	0.058	240	340	0.036
TW-1105	3/28/96	16.5	9	6.0	NA	0.56	7	4.6	8.4	0.32	0.035	κ	<0.056	250	460	3.8
TW-1106	3/27/96	16.4	5.5	118.5	NA	3.63	4.6	0.22	0.51	14.6	0.172I	0.7	0.07	120	300	0.004
TW-1109	3/27/96	17.4	9	-109.9	890	0.41	40.2	19.9	29.4	15.4	0.102	ю	<0.056	210	400	
TW-1110	3/27/96	17.3	9	-113.5	141	0.39	206	33.8	<51.0	1.5	0.065	2.7	<0.056	350	480	2.6
TW-1111	3/27/96	16.3	5.5	-46	NA	2.22	9	0.82	0.94	1.5	0.163	8.0	0.065	200	200	0.091
MW-1114	3/26/96	10.3	2	222.1	150	8.21	NA	0.07	0.53	NA	.1611	ND	NA	50	09	NA
MW-1116	3/26/96	13.1	2	137	320	5.93	8	0.02	0.18	44.4	0.09	ND	0.46	20	100	QN
MW-1119	3/27/96	14	9	0.3	154	3.22	12.1	3.95	4.8	70.5	0.00	10.8	0.058	170	780	0.092
MW-1120	3/26/96	=	9	100.1	490	2.97	2.7	QN	90.0	19.7	0.056	0.7	0.073	20	260	N
MW-1121	3/27/96	12.7	5	134	210	6.18	4.7	0.07	0.18	15.9	0.099	ND	0.43	100	80	ND

TABLE 4.5 (Concluded)
GEOCHEMICAL DATA FOR GROUNDWATER
BX SHOPETTE (SITE E11)

DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

						Dissolved										
Sampling	Sample	Temp.	Hd	redox	Cond.	Oxygen	Cľ	Fe ²⁺	Fe ²⁺ +Fe ³⁺	SO_4^{2}		Mn^{2+}	NO3-N	CO ₂	Alkalinity	CH4
Location	Date	(°C)) ₍ (OS) .	(mV) ^{c/}	(ms/cm) _{q/}	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) ((mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1122		11.8	5.5	172.9	200	4.3	5.7	0.02	0.13	27.2		QN	0.12	<u>8</u>	08	Q
MW-1123	3/26/96	13.2	9	9.88		4.19	4	0.04	0.21	13.9		0.05	0.13	70	160	QN
MW-1124		14.1	9	-4.1	370	1.4	4.9	5.45	8.85	29.8		8.0	<0.056	110	160	0.026
MW-1125	3/26/96	14.7	9	9.9-	280	1.01	3.6	6.25	7.9	89.1		0.5	<0.056	80	220	0.003
MW-1126		14.9	5.5	12.7	400	0.5	7.3	2.3	2.45	26.2		1.7	<0.056	09	160	0.006
MW-1127	3/25/96	16.3	9	-235	270	0.54	4.2	7.65	12.55	10		1.4	<0.056	110	320	QX
MW-1128	3/28/96	17.5	5.5-6.0	-51	NA	0.43	12.8	8.2	13.6	29.8		1:1	<0.056	70	240	0.14
° C=Degrees Celsius.	Celsius.					Note:	CI'=Chloride	ide.			CO ₂ =Car	202=Carbon dioxide.	ide.			

_	C=Degrees Celsius.	Note:	CI'=Chloride.
	W SU=Standard Units.		Fe ²⁺ =Ferrous Iron.
	od mV=millivolts.		Fe ³⁺ =Ferric Iron.
	ψs/cm=Microsiemens per centimeter.		SO ₄ ²⁻ =Sulfate.
	e' mg/L=Milligrams per Liter.		S_2 =Sulfide.
	^g NA - Not analyzed for		Mn ²⁺ =Manganese.
	g/ ND - Not detected in sample		NO ₃ -N=Nitrate nitrogen.

 $^{\rm l\prime}\,$ I - Silt Interference, value is questionable

CH₄=Methane.

aerobic biodegradation. Because the background DO varies in the semi-confined aquifer, the capacity of the deeper groundwater to aerobically degrade BTEX is conservatively assumed to be 0 mg/L. The shallow groundwater assimilative capacity of DO is a conservative estimate because the recharge of oxygen through rainwater infiltration at the plume periphery (where surface paving is not present) has not been considered.

As a microbial population in the groundwater grows in response to the introduction of fuel hydrocarbons into the groundwater, new cell mass is generated. When cell mass production is accounted for, the mineralization of benzene to carbon dioxide and water is given by:

$$C_6H_6 + 2.5O_2 + HCO_3 + NH_4 \rightarrow C_5H_7O_2N + 2CO_2 + 2H_2O$$

This equation indicates that 5.0 fewer moles of DO are required to mineralize 1 mole of benzene when cell mass production is taken into account. On a mass basis, the ratio of DO to benzene is given by:

Benzene
$$6(12) + 1(6) = 78 \text{ gm}$$

Oxygen $2.5(32) = 80 \text{ gm}$

Mass Ratio of Oxygen to Benzene = 80/78 = 1.03:1

On the basis of these stoichiometric relationships, 1.03 mg of oxygen are required to mineralize 1 mg of benzene, if cell mass production is taken into account. Similar calculations can be made for toluene, ethylbenzene, and the xylenes. On the basis of these calculations, approximately 0.97 mg of BTEX is mineralized to carbon dioxide and water for every 1.0 mg of DO consumed.

Although this process results in more efficient utilization of electron receptors, it is only applicable as the net cell mass of the microbial population continues to grow. Because groundwater contamination has been present at the BX Shoppette site for several years, it is expected that biomass mass production is only a small percentage of the overall energy use because the assimilation of BTEX has reached steady-state. Therefore, the cell mass reaction equations would no longer apply, and the assimilative capacity estimate based on no biomass production is considered more accurate. The steady-state production of cell mass as applied to anaerobic mechanisms is also likely, and the following calculations of anaerobic assimilative capacity estimates assume

steady-state conditions (i.e., biomass production represents a very small fraction of energy use).

4.5.2.2 Nitrate/Nitrite

Concentrations of nitrate/nitrite [as nitrogen (N)] were measured in groundwater samples collected in March 1996. Table 4.5 summarizes measured nitrate (as N) concentrations. Nitrate concentrations ranged between 0.003 and 0.46 mg/L for the shallow groundwater, and 0.064 and 0.75 for the lower aquifer. Nitrite was not detected at any of the sampling locations.

In the absence of microbial cell production, the stoichiometry of BTEX mineralization to carbon dioxide, water, and nitrogen caused by denitrification is presented in Table 4.4. The average mass ratio of nitrate to total BTEX is approximately 4.9 to 1. This translates to the mineralization of approximately 0.20 mg of BTEX for every 1.0 mg of nitrate consumed. At all wells and monitoring points, nitrate/nitrite (as N) either was not detected above quantitation limits or was detected at trace concentrations. Based on the low nitrate/nitrite (as N) concentrations in groundwater and the absence of definitive trends in nitrate reduction, nitrate is not considered to be an important electron acceptor at this site in either the shallow surficial aquifer or the semi-confined aquifer.

4.5.2.3 Soluble Manganese

Soluble manganese (Mn²⁺) concentrations were measured in groundwater samples collected in March 1996. Table 4.5 summarizes soluble manganese concentrations, which ranged from below instrument detection limits to 10.8 mg/L in the groundwater samples collected from the surficial aquifer. Figure 4.8 is an isopleth map showing the areal extent of soluble manganese in shallow groundwater. Comparison of Figure 4.8 and 4.5 shows graphically that soluble manganese is elevated above 1 mg/L within and southeast from the areas with the highest BTEX concentrations. Shallow groundwater soluble manganese concentrations were most elevated in the downgradient southeast portion of the plume (near MW-1119). Background concentrations of soluble manganese in the aquifer are generally less than 0.2 mg/L. Soluble manganese concentrations ranged between 0.5 and 3.3 for the semi-confined aquifer with the highest concentration detected in the source area in the groundwater samples collected from ESMP-23D.

19:1

The stoichiometry of BTEX oxidation to carbon dioxide, soluble manganese, and water by manganese reduction through anaerobic microbial biodegradation is presented in Table 4.4. On average, 19 moles of manganese are required to metabolize one mole Conversely, an average of 19 moles of soluble manganese are of total BTEX. produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 11 mg of soluble manganese produced for each 1 mg of total BTEX metabolized. Given a background soluble manganese concentration of approximately 0.2 mg/L and a maximum detected soluble manganese concentration in the source area of 10.8 mg/L, the shallow groundwater has the capacity to assimilate approximately 0.96 mg/L (960 µg/L) of total BTEX through manganese reduction. In the semiconfined aquifer, a background soluble manganese concentration of 0.5 mg/L and a maximum detected soluble manganese concentration in the source area of 3.3 mg/L were used to estimate a semi-confined aguifer assimilative capacity of approximately 0.25 mg/L (250 µg/L) of total BTEX through manganese reduction. These assimilative capacities are conservative estimates because calculations are based on observed soluble manganese concentrations and not on the amount of manganese dioxide available in the aquifer. Therefore, BTEX assimilative capacity through this process could be much higher.

4.5.2.4 Ferrous Iron

Ferrous iron (Fe²⁺) concentrations were measured in groundwater samples collected in March 1996. Table 4.5 summarizes ferrous iron concentrations. Measured ferrous iron concentrations range from below instrument detection limits to 33.8 mg/L in shallow groundwater. Figure 4.9 is an isopleth map showing the areal extent of ferrous iron in shallow groundwater. Comparison of Figures 4.9, 4.5, and 4.1 shows graphically that the area of elevated ferrous iron concentration coincides with the area of mobile LNAPL and extends to the southeast like the dissolved BTEX plume. This suggests that ferric iron hydroxide (Fe³⁺) is being reduced to ferrous iron during biodegradation of fuel hydrocarbons. Background concentrations of ferrous iron appear to be 0.04 mg/L or less in the shallow groundwater. Despite the absence of BTEX, elevated ferrous iron concentrations were detected southwest of the BX Shoppette at monitoring well MW-1119, just downgradient from one of the suspected source areas. This trend suggests that a ferrous iron shadow" may be traveling ahead of the BTEX plume with unretarded advective groundwater flow. Ferrous iron concentrations were detected over a range of 2.3 to 21.9 mg/L in samples collected from the semi-confined aquifer. The highest

concentration was detected in ESMP-23D, the same location as the highest dissolved BTEX concentration observed in the semi-confined aquifer.

The stoichiometry of BTEX oxidation to carbon dioxide, ferrous iron, and water by iron reduction through anaerobic microbial biodegradation is presented in Table 4.4. On average, 37.5 moles of ferric iron hydroxide are required to metabolize one mole of total BTEX. Conversely, an average of 37.5 moles of ferrous iron are produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 21.8 mg ferrous iron produced for each 1 mg of total BTEX metabolized. Given a background ferrous iron concentration of approximately 0.02 mg/L and a maximum detected ferrous iron concentration of 33.8 mg/L, the shallow groundwater has the capacity to assimilate approximately 1.55 mg/L (1,550 μg/L) of total BTEX through iron reduction. Assuming a background ferrous iron concentration of approximately 2.3 mg/L and a maximum detected ferrous iron concentration of 21.9 mg/L, the deep groundwater has the capacity to assimilate approximately 0.90 mg/L (900 µg/L) of total BTEX through iron reduction. These are conservative estimates of the assimilative capacity of iron because calculations are based on observed ferrous iron concentrations and not on the amount of ferric hydroxide available in the aquifer and solid soil matrix. Therefore, iron assimilative capacity could be much higher for both the shallow surficial aquifer and the semiconfined aquifer.

Evidence suggests that the reduction of ferric iron to ferrous iron cannot proceed at all without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature, neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley et al., 1991). This means that the reduction of ferric iron requires microbial mediation by microorganisms with the appropriate enzymatic capabilities. Because the reduction of ferric iron cannot proceed without microbial intervention, the elevated concentrations of ferrous iron that were measured in the contaminated groundwater at the site are very strong indicators of microbial activity.

4.5.2.5 Sulfate

Sulfate concentrations were measured in groundwater samples collected in March 1996. Sulfate concentrations at the site ranged from 0.32 mg/L to 44.4 mg/L in the shallow aquifer, and from 1.8 mg/L to 89.1 mg/L in the semi-confined aquifer.

Table 4.5 summarizes measured sulfate concentrations. Figure 4.10 is an isopleth map showing the areal extent of sulfate in shallow groundwater. Comparison of Figures 4.10 and 4.5 shows graphically that the area of depleted sulfate concentrations, as defined by the 15 mg/L isopleth, substantially overlaps the BTEX plume. In addition, the lowest sulfate concentration in the shallow groundwater was detected at TW-1105 where mobile LNAPL also was measured. Likewise, the lowest sulfate concentration in the semiconfined aquifer was detected at ESMP-23D, the same sampling location where the highest concentration of dissolved BTEX was observed in the semi-confined aquifer. These relationships are a strong indication that anaerobic biodegradation of BTEX compounds is occurring in the shallow groundwater through the microbially mediated process of sulfate reduction.

The stoichiometry of BTEX mineralization to carbon dioxide, sulfur, and water by sulfate reduction through anaerobic microbial biodegradation is presented in Table 4.4. The average mass ratio of sulfate to total BTEX is approximately 4.7 to 1. This translates to the mineralization of approximately 0.21 mg of total BTEX for every 1.0 mg of sulfate consumed. Shallow sulfate concentrations at two locations upgradient from the dissolved BTEX plume ranged from 27.2 mg/L to 44.4 mg/L, with an average concentration of 35.8 mg/L. Assuming a background sulfate concentration of 35.8 mg/L and a minimum sulfate concentration in the source area of 0.32 mg/L, the shallow groundwater at this site has the capacity to assimilate 7.45 mg/L (7,450 μ g/L) of total BTEX through sulfate reduction. In addition, the groundwater from the semi-confined aquifer has the capacity to assimilate 13.7 mg/L (13,700 μ g/L) of total BTEX, assuming an average background sulfate concentration of 67.0 mg/L (using MW-1125 and ESMP-2D) and a minimum sulfate concentration in the source area of 1.8 mg/L.

4.5.2.6 Methane in Groundwater

Methane concentrations were measured in groundwater samples collected in March 1996. Table 4.5 summarizes methane concentrations, which ranged from below the method detection limit to 3.8 mg/L in shallow groundwater 3.0 mg/L in deeper semi-confined groundwater. Figure 4.11 is an isopleth map showing the distribution of methane in shallow groundwater. Comparison of Figures 4.11 and 4.5 shows graphically that elevated methane concentrations (1.0 mg/L or greater) coincide with the southern area of high dissolved BTEX concentrations (greater than 1,000 μ g/L). In addition, the highest methane concentration in the shallow groundwater was detected at TW-1105

where the highest dissolved BTEX concentration and mobile LNAPL also were detected. Likewise, the highest methane concentration in the semi-confined aquifer was detected at ESMP-23D where the highest BTEX concentration was observed in the semi-confined aquifer. These relationships are a strong indication that methanogenesis of BTEX is occurring at the site.

The stoichiometry of BTEX oxidation to carbon dioxide and methane by methanogenesis is presented in Table 4.4. On average, approximately 1 mg of total BTEX is degraded for every 0.78 mg of methane produced. Given maximum detected methane concentrations of 3.8 mg/L in the shallow surficial aquifer and 3.0 mg/L in the deeper aquifer, and the assumption of negligible methane concentrations in background groundwater from both aquifers, methanogenesis can account for the capacity to assimilate approximately 4.9 mg/L (4,900 µg/L) and 3.8 mg/L (3,800 µg/L) of total BTEX in the surficial and semi-confined aquifers, respectively. Both assimilative capacities are conservative estimates of the BTEX attenuation through methanogenesis because these calculations are based on observed methane concentrations and not on the amount of carbon dioxide (the electron acceptor in methanogenesis) available in the aquifer. As methanogenesis produces more carbon dioxide than it consumes (Table 4.4), an unlimited supply of carbon dioxide is theoretically available once the process of Carbon dioxide levels above background methanogenesis has been initiated. concentrations were observed at the site (Table 4.5) and lend support to the possibility of increased methanogenic potential (discussed in Section 4.5.2.8 in greater detail). Therefore, methanogenesis is limited by the rate of reaction rather than the source of electron acceptors. This estimate of assimilative capacity also conservatively assumes that all of the produced methane remains in solution; however, this assumption is not realistic as the solubility limit of methane in water is approached.

4.5.2.7 Reduction/Oxidation Potential

Redox potentials were measured at groundwater monitoring wells and points in March 1996. Redox potential is a measure of the relative tendency of a solution to accept or transfer electrons. The redox potential of a groundwater system depends on which electron acceptors are being reduced by microbes during BTEX oxidation. The redox potentials at the site range from 222 millivolts (mV) to -114 mV in the aquifer, and from 13 mV to -235 mV in the underlying aquifer. Table 4.5 summarizes available redox potential data. The areal extent of redox potentials is illustrated graphically on

Figure 4.12. As expected, the area of low redox potentials overlap the areas of elevated BTEX contamination, decreased oxygen, elevated soluble manganese, low sulfate concentrations, elevated ferrous iron, and methane concentrations (compare Figure 4.12 with Figures 4.5, 4.7, 4.8, 4.9, 4.10, and 4.11). In particular, the area with redox potential below 0 mV roughly coincides with the area of BTEX concentrations in excess of $100 \, \mu g/L$.

4.5.2.8 Alkalinity and Carbon Dioxide Evolution

Carbon dioxide is produced during the bioremediation of petroleum hydrocarbons. In aquifers that have carbonate minerals as part of the matrix, carbon dioxide forms carbonic acid, which dissolves these minerals, increasing the alkalinity of the groundwater. An increase in alkalinity (measured as CaCO₃) in an area with BTEX concentrations elevated above background conditions can be used to infer the amount of petroleum hydrocarbon destroyed through aerobic respiration, denitrification, manganese reduction, ferric iron reduction, and sulfate reduction. In addition, carbon dioxide produced in these aerobic and anaerobic reactions can be cycled in the methanogenic reactions to continue BTEX biodegradation through methanogenesis.

Free carbon dioxide was measured in groundwater samples collected in March 1996. These measurements are summarized in Table 4.5 and illustrated for the shallow groundwater on Figure 4.13. Carbon dioxide evolution above background concentrations is occurring as a result of combined aerobic and anaerobic biodegradation processes. A direct estimation of the aquifer assimilative capacity based on carbon dioxide evolution is not possible because of the complex carbonate/bicarbonate balance.

Total alkalinity (as CaCO₃) also was measured in groundwater samples collected in March 1996. These measurements are summarized in Table 4.5 and illustrated for shallow groundwater on Figure 4.14. Alkalinity is a measure of the ability of groundwater to buffer changes in pH caused by the addition of biologically generated acids. Total alkalinity at the site varied from 60 mg/L to 780 mg/L in the surface aquifer, and from 140 mg/L to 520 mg/L in the lower aquifer. This range of alkalinity is sufficient to buffer potential changes in pH caused by biologically mediated BTEX oxidation reactions. Additionally, comparison of alkalinity concentrations and elevated BTEX concentrations (Figures 4.14 and 4.5) suggest that increased carbonate

concentrations could be directly related to increased carbon dioxide concentrations from the mineralization of the BTEX compounds via natural attenuation processes.

4.5.2.9 pH

pH was measured for groundwater samples collected from groundwater monitoring points and monitoring wells in March 1996. These measurements are summarized in Table 4.5. The pH of a solution is the negative logarithm of the hydrogen ion concentration [H⁺]. Groundwater pH measured at the site ranges from 5.0 to 6.0 standard units in both the shallow surficial and semi-confined aquifers. The pH decreases resulting from biologically generated acids in the areas of most active biodegradation are buffered by site alkalinity. As groundwater pH becomes increasingly acidic, fungi may predominate over bacteria in successfully biodegrading hydrocarbons (Atlas, 1988; Brock et al., 1994).

4.5.2.10 Temperature

Groundwater temperature was measured at groundwater monitoring points and monitoring wells in March 1996. Table 4.5 summarizes groundwater temperature readings. Temperature affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures generally resulting in higher growth rates. Temperatures in the shallow surficial aquifer varied from 10.3°C to 17.5°C, with an average of 13.5°C. Temperatures in the lower aquifer varied from 12.9°C to 17.5°C, with an average of 15.4°C. These temperatures are within an optimal range for psychrophilic, hydrocarbon-degrading microorganisms to survive.

4.5.3 Discussion

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of jet fuel and gasoline, including the BTEX compounds (e.g., Jamison *et al.*, 1975; Atlas, 1981, 1984, and 1988; Gibson and Subramanian, 1984; Reinhard *et al.*, 1984; Young, 1984; Bartha, 1986; Wilson *et al.*, 1986, 1987, and 1990; Barker *et al.*, 1987; Baedecker *et al.*, 1988; Lee, 1988; Chiang *et al.*, 1989; Grbic-Galic, 1989 and 1990; Cozzarelli *et al.*, 1990; Leahy and Colewell, 1990; Altenschmidt and Fuchs, 1991; Alvarez and Vogel, 1991; Baedecker and Cozzarelli, 1991; Ball *et al.*, 1991; Bauman, 1991; Borden, 1991; Brown *et al.*, 1991; Edwards *et al.*, 1991 and 1992; Evans *et al.*, 1991a and 1991b; Haag

et al., 1991; Hutchins and Wilson, 1991; Hutchins et al., 1991a and 1991b; Beller et al., 1992; Bouwer, 1992; Edwards and Grbic-Galic, 1992; Thierrin et al., 1992; Malone et al., 1993; Davis et al., 1994). Biodegradation of fuel hydrocarbons can occur when an indigenous population of hydrocarbon-degrading microorganisms is present in the aquifer and sufficient concentrations of electron acceptors, nutrients, and electron donors such as fuel hydrocarbons, are available to these organisms.

Comparison of BTEX, electron acceptor, and biodegradation byproduct isopleth maps provides strong qualitative evidence for biodegradation of BTEX compounds. Isopleth maps suggest that five electron receptors are particularly active in the biodegradation of BTEX compounds at the BX Shoppette: oxygen, manganese (indicated by the presence of soluble manganese), ferric iron (indicated by the presence of ferrous iron), sulfate, and carbon dioxide (indicated by the presence of methane). Typically, zones of depleted oxygen, elevated soluble manganese, elevated methane concentration, depleted sulfate concentration, and elevated ferrous iron concentration coincide with elevated dissolved BTEX concentrations; however, the spatial distributions of electron acceptors and metabolic byproducts vary somewhat. This variation likely results from the preference of the fuel-degrading microbes for a specific range of groundwater conditions. Conditions present at any given location may either stimulate or inhibit the various microbes. As noted above, variations in both alkalinity and pH may affect the activity levels of indigenous microbes, although these parameters were shown to be at adequate levels at the site.

4.5.4 Expressed Assimilative Capacity

The data presented in the preceding sections suggest that mineralization of BTEX compounds is occurring through the microbially mediated processes of aerobic biodegradation, manganese reduction, iron reduction, sulfate reduction, and methanogenesis. On the basis of the stoichiometry presented in Table 4.4 and observed background electron acceptors, the expressed BTEX assimilative capacity of shallow groundwater and deep groundwater, respectively, at the BX Shoppette are at least 16,720 µg/L and 19,320 µg/L (Table 4.6).

A closed system with 2 liters of water can be used to help visualize the physical meaning of assimilative capacity. Assume that the first liter contains no fuel hydrocarbons, but it contains fuel degrading microorganisms and has an assimilative

TABLE 4.6 EXPRESSED ASSIMILATIVE CAPACITY OF SITE GROUNDWATER

BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Electron Acceptor or Process	Expressed BTEX Assimilative Capacity (µg/L)-Shallow	Expressed BTEX Assimilative Capacity (µg/L)-Deep
Dissolved Oxygen	1,860	670
Nitrate	0	0
Manganese Reduction	960	250
Iron Reduction	1,550	900
Sulfate	7,450	13,700
Methanogenesis	4,900	3,800
Expressed Assimilative Capacity	16,720	19,320

capacity of exactly "x"µg of fuel hydrocarbons. The second liter has no assimilative capacity; however, it contains fuel hydrocarbons. As long as these 2 liters of water are kept separate, biodegradation of the fuel hydrocarbons will not occur. If these 2 liters are combined in a closed system, biodegradation will commence and continue until the fuel hydrocarbons are depleted, the electron acceptors are depleted, or the environment becomes acutely toxic to the fuel degrading microorganisms. Assuming a nonlethal environment, if fewer than "x" µg of fuel hydrocarbons were in the second liter, all of the fuel hydrocarbons will eventually degrade given a sufficient time; likewise, if greater than "x" µg of fuel hydrocarbons were in the second liter of water, only "x" µg of fuel hydrocarbons would ultimately degrade.

The groundwater beneath the BX Shoppette is an open system, which continually receives additional electron receptors from upgradient and the percolation of precipitation. This means that the assimilative capacity is not a fixed entity as it is in a closed system, and therefore cannot be compared directly to contaminant concentrations in the groundwater. Rather, the expressed assimilative capacity of groundwater is intended to serve as a qualitative tool. Although the expressed assimilative capacities for the shallow groundwater is lower than the highest measured total BTEX concentration (84,900 μ g/L, TW-1105), and that of the lower aquifer is greater than the highest BTEX

concentration (12,150 μ g/L, ESMP-23D), the fate of BTEX in groundwater and the potential impact to receptors is dependent on the relationship between the kinetics of biodegradation and the solute transport velocity (Chappelle, 1994). These significant expressed assimilative capacities are a strong indicator that biodegradation is occurring; however, it is not an indication that biodegradation will proceed to completion before potential downgradient receptors are impacted.

Although geochemical indicators cannot be used to predict the rate of BTEX biodegradation, it is important to observe that BTEX concentrations decrease with increasing distance from the source area. Along the centerline of the BTEX plume (TW-1109) the fraction of benzene in total BTEX compared to the fraction of xylenes in BTEX (71 percent versus 21 percent, respectively) is relatively high, whereas the same fractions near the source areas (TW-1111 and TW-1105) were lower (27 percent for benzene vs. 17 percent for xylenes). This trend supports literature that suggests that benzene is the BTEX compound most recalcitrant to biodegradation in the presence of other biodegradable substrates (Edwards et al., 1992a and 1992b) and most free in groundwater, and should therefore comprise an increasingly higher percentage of the BTEX in groundwater samples collected increasingly downgradient of the source area. However, benzene concentrations rapidly decreases near the plume periphery (near ESMP-6S) and suggests that benzene biodegradation increases as other available hydrocarbons (i.e., toluene and xylenes) are decreased in concentration through biodegradation. The apparent susceptibility of benzene to rapid biodegradation near the periphery of the BTEX plume, combined with other natural attenuation mechanisms, is causing greater than 99.99 percent removal of benzene concentrations between TW-1105 and ESMP-6S.

At the BX Shoppette, natural attenuation mechanisms are removing significant concentrations of BTEX contamination before discharge to the drainage canal. Although BTEX may discharge to the drainage canal at low concentrations, no BTEX contamination was detected from surface water samples collected from the drainage canal at locations where the areal extent of the observed BTEX plume overlapped the drainage canal (Figure 4.5). Despite the presence of a continuing source of leachable BTEX contamination [up to 1,200 gallons of mobile LNAPL were detected in March 1996 (Section 4.2)], natural attenuation processes have effectively attenuated BT...X contamination at the site to within 300 feet of the source area. Furthermore, a bioslurper

installed at the site in September 1996 has begun removing mobile LNAPL, and at least 250 gallons of free-product have been recovered. Therefore, the ability of the aquifer to attenuate BTEX contamination within several hundred feet of the source area and the reduction of mobile LNAPL through bioslurping suggests that RNA should be given serious consideration as a remedial solution, other as a single remedy or in concert with other technologies, as necessary.

SECTION 5

GROUNDWATER MODELING

5.1 GENERAL OVERVIEW

In order to assist with remediation decision making at the BX Shoppette, Parsons ES modeled the fate and transport of the dissolved BTEX plume. The modeling effort has three primary objectives: 1) to predict the future extent and concentration of the dissolved contaminant plume by modeling the combined effects of advection, dispersion, sorption, and biodegradation; 2) to assess the potential for exposure of downgradient receptors to contaminant concentrations that exceed regulatory limits intended to be protective of human health and the environment; and 3) to provide technical support for RNA, as appropriate, at post-modeling regulatory negotiations. The model was developed using site-specific data and conservative assumptions about governing physical and chemical processes. Because of the conservative nature of model input, the reduction in contaminant mass caused by natural attenuation is expected to exceed model predictions. This analysis is not intended to represent a baseline assessment of potential risks posed by site contamination.

The Bioscreen model (v. 1.2), developed by AFCEE, was used to estimate the potential for dissolved BTEX migration and degradation by naturally occurring mechanisms operating at the BX Shoppette. Bioscreen incorporates advection, dispersion, sorption, and biodegradation to simulate a one-dimensional (with two-dimensional characteristics) contaminant plume migration and degradation. The Bioscreen 1.2 model is programmed in a Microsoft® Excel spreadsheet environment and based on the Domenico (1987) analytical solute transport model. Bioscreen can simulate instantaneous reactions (using available geochemical data) or first-order rate constants in order to simulate biodegradation. The selection of instantaneous reactions or first-order biodegradation rates is dependent on site conditions, including: availability of geochemical indicator data, groundwater velocity, residence time, and sorption potential. Bioscreen can simulate the effects of a decreasing source term (e.g., mobile or residual LNAPL) with a first-order decay process.

In recent years it has become apparent that anaerobic processes such as denitrification, iron reduction, sulfate reduction, and methanogenesis can be important BTEX degradation mechanisms (Grbic'-Galic', 1990; Beller et al., 1992; Edwards et al., 1992; Edwards and Grbic'-Galic', 1992; Grbic'-Galic' and Vogel, 1987; Lovley et al., 1989; Hutchins, 1991). Because geochemical evidence supports the occurrence of anaerobic biodegradation processes at the BX Shoppette (Section 4), the combined processes of aerobic and anaerobic biodegradation were considered in modeling BTEX fate and transport at the site. The following subsections discuss in detail the input parameters, the model assumptions, the model calibration, and the simulation results.

5.2 CONCEPTUAL MODEL DESIGN AND ASSUMPTIONS

Prior to developing a groundwater flow and/or contaminant transport model, it is important to determine if sufficient data are available to provide a reasonable estimate of aquifer conditions. In addition, it is important to ensure that any limiting assumptions can be justified. Data and information presented in Sections 3 and 4 suggest that manganese dioxide, ferric hydroxide, sulfate, and carbon dioxide are the principal electron acceptors for anaerobic biodegradation at the site. Moderate background concentrations of DO also suggest that aerobic biodegradation will significantly contribute to the biodegradation of BTEX compounds.

On the basis of the data presented in Section 3, the shallow saturated zone was conceptualized as an unconfined shallow aquifer composed of heterogeneous sands, silty sand, silty clay, and clay (Figure 3.1 to 3.3). The heterogeneous fine-grained nature of the surficial aquifer geology prevents groundwater contamination from quickly migrating toward potential downgradient receptors. Conductive intervals of sand and silty sand are present, but these intervals are present as discontinuous soil lenses that terminate in low-permeability clay or silty clay units. Groundwater elevation and flow direction in the surficial aquifer are influenced by this heterogeneous site geology, local drainage canals, flood control measures, surface paving, and seasonal precipitation.

A review of historic and current groundwater elevation measurements suggest that groundwater flow direction in the surficial aquifer can vary between east/southeast and west/northwest. Furthermore, a depression in the groundwater table beneath the BX shoppette consistently has been observed during all groundwater sampling events. Surface paving over the site, season, and adjacent drainage canals are suspected of

contributing to the observed depression in the groundwater table. The groundwater depression may also be the result of clay or silty clay intervals that rise above the groundwater table and cause localized barriers to groundwater flow or "perched" groundwater conditions, thereby creating a "bathtub" effect. Despite the complex site stratigraphy, the predominant groundwater flow direction appears to be to the east/southeast. This observation is supported by total BTEX concentrations in shallow groundwater extending to the east/southeast of the source areas (Figure 4.5). BTEX concentrations were not detected west of the source area, suggesting that alternating groundwater flow directions are not causing solute transport in this direction, although historic groundwater elevation measurements suggest that this may be possible. Two discrete source areas are contributing to groundwater contamination and are located near TW-1105 and TW-1111.

A semi-confined sandy aquifer is separated from the surficial aquifer by a clay layer of varying thickness. BTEX concentrations detected in the lower sandy aquifer indicate impact on this unit. However, the magnitude of impact to the lower aquifer may be low; the highest detected BTEX concentration in this unit was 81.9 µg/L at MW-1124 in August 1995. Furthermore, BTEX concentrations at this location were below analytical detection limits in March 1996. Potential BTEX contamination reaching the lower aquifer will migrate to the southwest at a very low seepage velocity that is governed by a relatively flat potentiometric surface gradient [approximately 0.00026 ft/ft (Section 3.3.2.1)].

The use of a simple one-dimensional analytical model to simulate the groundwater flow conditions at the site is more appropriate than using a more complex model. Typically, complex site conditions warrant the use of sophisticated models (two- to three-dimensional) to accurately predict contaminant transport characteristics; however, a two-dimensional numerical model, such as Bioplume II, requires a significant amount of hydrogeologic data and calibration time to accurately simulate contaminant migration characteristics for a single set of hydraulic conditions and cannot simulate contaminant migration in an aquifer that has potentially alternating groundwater flow directions without using multiple groundwater model calibrations to simulate each possible groundwater flow pattern. Although the current BTEX plume appears to migrate to the east/southeast, and suggests that the dominant groundwater flow direction is similar, the potential for fluctuating groundwater flow directions suggests that migration could occur to the west. Because of the uncertainty introduced by these complexities, a simpler semi-

analytical model used in conjunction with conservative assumptions about site conditions is as useful as a numerical model for making reasonable and conservative model predictions about groundwater flow in multiple directions. Conservatism in model predictions will ensure that a "worst-case" scenario is simulated to help offset any uncertainties about irregular site conditions that cannot be simulated with a simple one-dimensional model, such as Bioscreen.

As described in the following sections, several conservative assumptions were used to reduce the site conditions into a one-dimensional conceptual site model capable of predicting contaminant migration. The data used or the assumptions made in modeling are outlined in the following sections. The contaminated soils at the site are undergoing remediation through bioslurping. As a result, they are unlikely to serve as a long-term continuing source of dissolved BTEX contamination at the site.

5.3 INITIAL MODEL SETUP

Where possible, the initial setup for the models was based on site data. Where site data were ambiguous (e.g., for groundwater gradient), conservative assumptions were made so that model predictions reflect worst-case conditions (e.g., maximum groundwater gradient). Where site-specific data were not available (e.g., for effective porosity), reasonable assumptions were made on the basis of widely accepted literature values. The following sections describe the basic model setup for groundwater modeling of the surficial and semi-confined aquifers. The analytical model parameters that were varied during model calibration are discussed in Section 5.4.

5.3.1 Hydraulic Conductivity and Groundwater Gradient

The Bioscreen model assumes a uniform hydraulic conductivity in model calculations. Hydraulic conductivity describes the ability of an aquifer to transmit groundwater through a unit area of aquifer. Table 3.2 lists the measured hydraulic conductivities of five shallow and four deep monitoring well locations. Hydraulic conductivities based on rising-head slug tests of wells located in the surficial aquifer and around the source area ranged from 0.62 ft/day to 5.89 ft/day (monitoring wells MW-1116, MW-1119, and MW-1123). To be conservative, a hydraulic conductivity of 5.89 ft/day was selected for the surficial aquifer model. The higher hydraulic conductivity permits the fastest migration

potential for contamination away from the source area. The measured hydraulic conductivities based on rising-head slug tests for the deeper, sandy aquifer ranged from 2.86 to 3.44 ft/day (MW-1124 to MW-1127). To be conservative, the highest hydraulic conductivity of 3.44 ft/day also was selected for the sand aquifer to permit the fastest potential migration of contamination away from the source area.

The water table elevation map presented on Figure 3.5 was used to determine a hydraulic gradient for the surficial aquifer. Horizontal gradients based on Figure 3.5 (March 1996) ranged from approximately 0.0016 ft/ft (area of former USTs) to 0.067 ft/ft (south, east, and north of the source area). These hydraulic gradients were estimated from observed groundwater elevations, which may include locally perched conditions and do not necessarily reflect groundwater gradients in and immediately adjacent to the source area. Therefore, three possible flow paths were evaluated to estimate a representative gradient for the source area. All three flow paths correspond to observed groundwater flow directions over the recorded history of the site, and include: TW-1106, TW-1105, and TW-1110; MW-1120, TW-1105, and TW-1109; MW-1120, TW-1105, TW-1109, and MW-1119. Plots of groundwater elevations along these flowpaths are included in Appendix D. Along this generally northwest/southeast corridor, gradients ranged from 0.00061 ft/ft to the southeast to 0.0088 ft/ft to the northwest. To be conservative, the groundwater gradient at the high end of this range (0.0088 ft/ft) was assumed to represent groundwater flow conditions at the site. Although historic groundwater elevation data suggest steeper groundwater gradients at different locations and times at the site, the selected gradient of 0.0088 ft/ft is based on groundwater elevations in the vicinity of highest groundwater contamination. Furthermore, the March 1996 sampling event had more groundwater elevation measurement points of any recorded sampling event. Therefore, it was assumed for simplicity that the March 1996 water levels and gradient were most representative of site conditions. Assuming a groundwater gradient of 0.0088 ft/ft, a hydraulic conductivity of 5.89 ft/day (0.0021 cm/s), and a porosity of 0.25, the estimated groundwater velocity used in model calibration was 0.212 ft/day (77.4 ft/year).

Groundwater gradients in the deeper sand aquifer were estimated from March 1996 data. A southwesterly gradient of 0.00026 ft/ft (Section 3.4.2.1) was observed and was used in model calibration for the deeper aquifer. Assuming a groundwater gradient of 0.00026, a hydraulic conductivity of 3.44 ft/day (0.0012 cm/s), and a porosity of 0.25, the estimated groundwater velocity used in model calibration for the deep aquifer was 0.0036 ft/day (1.3 ft/year).

5.3.2 Dispersivity

Mechanical dispersion is a physical process that causes groundwater to travel faster or slower than the average linear groundwater velocity observed at a site. Mechanical dispersion results from heterogeneities in the aquifer that include differences in pore size. path length, and pore friction within the soil matrix, as well as differing flow paths resulting from geologic heterogeneity. Dispersivity is a coefficient used to describe the degree of mechanical dispersion occurring within an aquifer. The degree of mechanical dispersion is empirically expressed as the product of dispersivity and average linear groundwater velocity.

The selection of dispersivity values is usually very difficult because of the impracticality of performing dispersivity tests in situ. However, a commonly used relationship for dispersivity estimation is one-tenth of the groundwater plume length C./X (Pickens and Grisak, 1981). This relationship was used to estimate the longitudinal dispersivity of the site at approximately 33 feet for the shallow aquifer (assuming an observed plume length of 330 feet).

Using a ratio of estimated GW velocities, the dispersivity for the deep aquifer was assumed to be 0.6 feet [33 ft x (1.3 ft/year ÷17.4 ft/yr)]. Lower dispersivity value increase the conservatism of model estimates because the potential for contaminant dilution is decreased.

5.3.3 Coefficient of Retardation

Retardation of the BTEX compounds relative to the advective velocity of the groundwater occurs when BTEX molecules are sorbed to the aquifer matrix. coefficients of retardation for the BTEX compounds were estimated from measured TOC concentrations in the soils in and near the saturated zone at the site, an assumed bulk density of 1.65 grams per cubic centimeter (g/cc) (Freeze and Cherry, 1979), an assumed soil sorption coefficient (K_{oc}) for benzene of 79 L/kg (as listed by Wiedemeier et al. (1995), and a fraction of organic carbon (f_{oc}) of 0.07 percent (Section 4.3.2). The retardation coefficient of 1.36 for benzene was used to represent the sorptive potential for all the BTEX compounds because it was the least sorptive BTEX compound and adds conservatism to the model. Appendix D includes retardation coefficient calculations for the BTEX compounds. TOC data are not available for soils in the sand aquifer; therefore,

it was assumed that sorption in the deeper aquifer would be equivalent to that of the surficial aquifer.

5.3.4 BTEX Concentrations

The BTEX concentrations from March 1996 were used in the model to project future downgradient concentrations. Table 4.3 presents dissolved BTEX concentration data. Figure 4.5 shows the areal distribution of dissolved groundwater BTEX in March 1996 and depicts two potential source areas. The shape and distribution of the total BTEX plume are the result of advective-dispersive transport and biodegradation of dissolved BTEX contamination originating from both source areas at the BX Shoppette. The area nearest to the BX Shoppette (source near TW-1105) was identified as the primary site source because it has the highest BTEX concentrations (84,900 µg/L at TW-1105 in March 1996) and measurable mobile LNAPL; therefore, it has higher potential for impact to downgradient receptors. It is assumed that relative changes in the southern lobe of the BTEX plume will be representative of changes in the northern lobe of the BTEX plume.

The greatest BTEX concentration detected in the semi-confined aquifer was 81.9 μ g/L in August 1995 at monitoring well MW-1124. BTEX compounds also have been detected in monitoring wells MW-1125, MW-1127, and MW-1128 at concentrations ranging from 1 to 50 μ g/L. Low concentrations of BTEX compounds in monitoring wells MW-1124, MW-1127, and MW-1118 suggest that BTEX in the source area near TW-1105 may be contaminating the lower semi-confined aquifer. Therefore, higher concentrations of BTEX (>81.9 μ g/L) may exist below the source area in the semi-confined aquifer. A BTEX concentration of 1,000 μ g/L in the lower aquifer was assumed to exist as a conservative estimate in the model calibration.

5.3.5 Degradation Rates

Available data strongly suggest that aerobic and anaerobic degradation is occurring at the site. Combined anaerobic processes account for 89 percent of the assimilative capacity of shallow site groundwater (Table 4.6). As with a large number of biological processes, biodegradation can generally be described using a first-order rate constant and the equation:

$$\frac{C}{C_0} = e^{-kt}$$

Where:

C = Contaminant Concentration at Time t

 C_0 = Initial Contaminant Concentration

k = Coefficient of Anaerobic Decay (anaerobic rate constant)

t = time

Two methods of calculating rate constants are currently available to quantify rates of biodegradation at the field scale and area applicable for use with available site data. The first method involves the use of a biologically recalcitrant compound found in the dissolved BTEX plume that can be used as a conservative tracer. The second method, proposed by Buscheck and Alcantar (1995) involves interpretation of a steady-state contaminant plume configuration and is based on the one-dimensional steady-state analytical solution to the advection-dispersion equation presented by Bear (1979).

5.3.5.1 Tracer Method

A convenient way of estimating biodegradation rate constants is to use compounds present in the dissolved contaminant plume that that are biologically recalcitrant. One such compound that was detected at the site was trimethylbenzene (TMB). The three isomers of this compound (1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB) are generally present in sufficient quantities in fuel mixtures to be readily detectable when dissolved in groundwater. A similar tracer detected at the BX Shoppette was 1,2,3,4-tetramethylbenzene (1,2,3,4-TEMB), which is considered more recalcitrant to biodegradation than the TMBs. Overall, the TMB and TEMB compounds are fairly recalcitrant to biodegradation under anaerobic conditions; however, the compounds do not make good tracers under aerobic conditions (because they are readily biodegraded in aerobic environments). Therefore, the most appropriate use of TMB or TEMB tracers in estimating biodegradation rates is with groundwater plumes that have depleted DO concentrations at points along the groundwater flow path.

In addition to biological recalcitrance, an ideal tracer would have Henry's Law and soil sorption coefficients identical to the contaminant of interest; however, TMB and TEMB are more hydrophobic than BTEX, resulting in a higher soil sorption coefficients. This causes preferential sorption of the tracer compounds, and an increase in the

coefficients of retardation for dissolved TMB or TEMB in the aquifer. Therefore, the tracer can migrate at a velocity that is significantly slower than the compound of interest. Under this condition, it is more important to evaluate contaminant and tracer concentrations after equal travel times. The equal time assumption ensures that both the contaminant and tracer are more equally affected by dilution/dispersion and sorption, which are the two dominant non-destructive attenuation mechanisms in most systems. The ratio of tracer velocity to contaminant velocity can be used to switch from equal travel distances to equal travel times as follows:

$$\frac{V_t}{V_c} = \left(\frac{V_{gw}}{R_t}\right) / \left(\frac{V_{gw}}{R_c}\right) = \frac{R_c}{R_t}$$

Where: V_t=Velocity of tracer

V_c=Velocity of contaminant

V_{gw}=Velocity of groundwater

R_t=Coefficient of retardation for the tracer

R_c=Coefficient of retardation for the contaminant

The fraction of tracer lost over the time required for the contaminant to travel between points i-1 and i is represented by the expression $R_c/R_t(1-T_i/T_{i-1})$ which is the product of the fraction of tracer lost between travel points and the ratio of retardation factors. Therefore, the fraction of tracer remaining is $1-R_c/R_t(1-T_i/T_{i-1})$. The fraction of contaminant remaining after biodegradation is equivalent to the fraction of contaminant remaining as a result of all attenuation processes divided by the fraction of tracer remaining as a result of only non-destructive attenuation processes. Therefore, the corrected concentration at point i can be represented by the following equation:

$$C_{i,corr} = C_{i-1,corr} \left(\frac{C_i}{C_{i-1}} \right) \left(\frac{1}{\left(1 - \frac{R_c}{R_i} \left(1 - \frac{T_i}{T_{i-1}} \right) \right)} \right)$$

where: $C_{i,corr}$ = corrected contaminant concentration at point i $C_{i-1,corr}$ = corrected contaminant concentration at point i-1.

(If point i-1 is the first or most upgradient point,

 $C_{i-1,corr}$ is equivalent to the observed contaminant concentration.)

 C_i =observed contaminant concentration at point i C_{i-1} =observed contaminant concentration at point i-1 T_i =observed tracer concentration at point i T_{i-1} =observed tracer concentration at point i-1
Note: This assumes that $R_i/R_c + T_i/T_{i-1} > 1$.

If more than three points along the groundwater flow path are available, a log-linear plot of the corrected contaminant concentrations along a flow path versus the travel time from the origin can be used to determine whether the data set can be described using a first-order exponential equation (i.e. r^2 is greater than approximately 0.9). When this occurs, the exponential slope can be used as the rate constant. Once again, if aerobic conditions exist along the selected flow path, the rate constant calculation will be conservative because TEMB or TMB is not recalcitrant under aerobic conditions.

Of the detected TEMB and TMB compounds in the surficial aquifer, only 1,2,4-TMB and 1,2,3,4-TEMB were detected at three groundwater monitoring wells along the BTEX plume centerline (wells TW-1105, CPT-22, and TW-1110). As previously mentioned, at least three monitoring wells in the direction of groundwater flow are needed to construct a log-linear plot of the corrected contaminant concentrations versus time and estimate a meaningful correlation coefficient. 1,2,3,4-TEMB was selected as the tracer because of its greater recalcitrance to biodegradation.

An average rate constant for BTEX decay at the BX Shoppette was determined from March 1996 BTEX and 1,2,3,4-TEMB data. The selected flow path from TW-1105, CPT-22, and TW-1110 is anaerobic. Appendix D includes a table that presents the data for a first-order rate constant calculation for BTEX using 1,2,3,4-TEMB as a conservative tracer. The TEMB-corrected total BTEX concentration represents the theoretical BTEX concentration at a point if biodegradation were the only process affecting BTEX concentrations. The graph that accompanies the table illustrates that a rate constant of 0.0035 day⁻¹ is predicted. Downgradient of TW-1110, the biodegradation rate constant would be expected to increase because the aquifer becomes aerobic. Typically, aerobic degradation rates exceed anaerobic degradation rates (Borden and Bedient, 1986). 1,2,3,4-TEMB concentrations in the semi-confined aquifer were below detection limits, and a first-order biodegradation rate normalized to TEMB was not calculated.

5.3.5.2 Method of Buscheck and Alcantar

Buscheck and Alcantar (1995) derive a relationship that allows calculation of first-order decay rate constants for steady-state plumes. This method involves coupling the regression of contaminant concentration (plotted on a logarithmic scale) versus distance downgradient (plotted on a linear scale) to an analytical solution for one-dimensional, steady-state, contaminant transport that includes advection, dispersion, sorption, and biodegradation. For a steady-state plume, the first-order decay rate is given by (Buscheck and Alcantar, 1995):

$$\lambda = \frac{v_c}{4\alpha_x} \left[\left[1 + 2\alpha_x \left(\frac{k}{v_x} \right) \right]^2 - 1 \right]$$

Where: λ = first-order decay rate

 v_c = retarded contaminant velocity in the x-direction

 $\alpha_r = dispersivity$

 k/v_x = slope of line determined from a log-linear plot of contaminant concentration versus distance downgradient along flow path

The first-order decay rate includes biodegradation resulting from both aerobic and anaerobic processes; however, in the absence of oxygen, the first-order rate is equivalent to the anaerobic decay rate. Appendix D presents a table of the first-order rate constant calculation for BTEX using May 1995 data at the BX Shoppette and the method proposed by Buscheck and Alcantar (1995). An exponential fit to the data estimates a log-linear slope of 0.023 ft⁻¹. This value translates to a decay constant of 0.0062 day⁻¹. The absence of BTEX data along a potential flow path in the semi-confined aquifer prevented the estimation of a biodegradation rate by the Buscheck and Alcantar method.

5.3.5.3 Selection of a Decay Rate Constant

A review of recent literature indicates that higher rate constants generally have been calculated in anaerobic plumes at other sites. For example, Chapelle (1994) reported that at two different sites with anaerobic groundwater conditions the rate constants were both approximately 0.01 day⁻¹. Wilson *et al.* (1994), report first-order anaerobic biodegradation rates of 0.05 to 1.3 week⁻¹ (0.007 to 0.185 day⁻¹); Buscheck *et al.* (1993) reports first-order attenuation rates in a range of 0.001 to 0.01 day⁻¹; and Stauffer *et al.*

(1994) report rate constants of 0.01 and 0.018 day⁻¹ for benzene and *p*-xylene, respectively. A first-order rate constant of 0.0062 day⁻¹ was used for the calibrated analytical model. Although this rate constant is the higher of the two estimated rate constants, it provides the better calibration between simulated and observed BTEX concentrations along the plume centerline (Section 5.4.1) and falls within the low range of literature values. Further discussion of the selection of a calibrated biodegradation rate is presented in Section 5.4.

The biodegradation rate for the deeper sand aquifer was conservatively estimated at a rate of 0.0001 day-1, which also is low with respect to literature values. This rate was chosen as a "worst case" biodegradation scenario for the deeper aquifer, where the greatest potential exists for contamination to reach downgradient potable water wells. The anaerobic biodegradation potential of the semi-confined aquifer exceeds that of the surficial aquifer on the basis of assimilative capacity. Therefore, the biodegradation rate may in reality equal or exceed that of the shallow aquifer.

5.4 ANALYTICAL MODEL RESULTS

Bioscreen is based on the Domenico (1987) analytical model which is designed for one dimensional transport of a decaying contaminant species. The one dimensional ability of Bioscreen is defined as a two-dimensional model grid with a variable domain of 1 to 5 cells (x-dimension) and a constant range of 10 cells (y-dimension). The depth of these cells is maintained at a constant value over the model grid. The Bioscreen model has the ability to simulate advection, dispersion, adsorption, aerobic decay, and anaerobic decay. Bioscreen assumes a homogeneous, isotropic aquifer; a uniform, constant-velocity flow field in the x-direction only; a constant longitudinal hydrodynamic dispersion; a source that fully penetrates the aquifer; a first-order or instantaneous rate of decay for biodegradation; and a linear sorption rate. The model is capable of simulating a continuous contaminant source or a decaying source at a selected first-order biodegradation rate.

5.4.1 Model Calibration

Calibration of the semi-analytical fate and transport model is an important component in the development of a defensible groundwater model. It demonstrates that the model is capable of predicting actual observed hydraulic and chemical conditions either observed in the past or present. Two groundwater model calibrations were performed for the shallow surficial aquifer and one groundwater model calibration was performed for the deeper semi-confined aquifer. The simplifying assumptions used for each model calibration are described in the following sections.

5.4.1.1 Surficial Aquifer Calibration

Model calibration was simplified by choosing chemical and hydraulic characteristics from the southern lobe of the groundwater BTEX plume, which emanates from the mobile LNAPL source in the vicinity of TW-1105. The maximum BTEX concentrations in groundwater and measurable mobile LNAPL were detected from this lobe of the BTEX plume. For modeling purposes, it is assumed that the northern lobe of the plume acts similarly to the southern lobe. This assumption is conservative because the magnitude of contamination in the northern lobe is much lower than in the southern lobe. Furthermore, the microbial destruction of BTEX compounds in the northern half of the plume is indicated by geochemical indicator data in the form of reduced DO and sulfate, and increased concentrations of ferrous iron and manganese relative to background (Section 4.5.2).

The analytical flow model for the surficial aquifer was calibrated using March 1996 data. Previous groundwater BTEX data was not available for model calibration because historic data sets were generally incomplete as a result of well abandonment or the presence of LNAPL. In the case of the former, monitoring wells TW-1108 and CPT-22 were temporary monitoring wells (located in the source area of the groundwater BTEX plume near TW-1105) abandoned after initial sampling and analysis. In the case of the latter, monitoring well TW-1105 was historically not sampled during each sampling event because of the presence of mobile LNAPL.

Because historic groundwater BTEX data in the southern lobe of the BTEX plume is limited, whether the plume in the surficial aquifer is shrinking, expanding, or at steady-state remains unconfirmed. However, available data suggest that the BTEX plume is transitioning from a steady-state/expanding plume to a steady-state/shrinking plume for two reasons: 1) fueling operations at the BX Shoppette ceased in December 1992, and all site USTs were removed in September 1995, thereby eliminating the potential for a continuing spill source; and 2) BTEX concentrations at monitoring well TW-1110 (located approximately 90 feet east of and potentially downgradient from the source area)

have steadily decreased from 59,000 µg/L to 7,660 µg/L since January 1992. These conditions indicate that continued LNAPL buildup in soils is impossible and that the dissolution of BTEX compounds from existing LNAPL may be decreasing through weathering. As the LNAPL continues to weather and the bioslurper continues to operate, the potential increases for the plume to shrink. Because bioslurping began at the site six months after the collection of the March 1996 data, the effects of bioslurping were not evaluated in the initial groundwater model calibration. However, the effects of bioslurping on the persistence of the BTEX plume were evaluated in later model scenarios through modifications to the calibrated model.

Considering the groundwater hydraulics and source characteristics of the site, site conditions of the surficial aquifer were modeled with steady-state groundwater hydraulics and a steady-state source. A relatively high groundwater gradient and hydraulic conductivity were used in the Bioscreen model to account for contaminant migration in any possible direction under "worst-case" conditions. Furthermore, calibrating to a steady-state plume is conservative if the BTEX plume is shrinking. The conservative, steady-state assumption compensates for a loss of calibration accuracy caused by complex site conditions.

The surficial aquifer model (BX1SCAL) was successfully calibrated to reproduce the maximum BTEX concentrations observed at the source area (84,900 µg/L at well TW-1105) with an estimated biodegradation rate of 0.0062 day-1 (Section 5.3.5.3). Modeled concentrations along the plume centerline could not be precisely matched with the observed concentrations; as would be expected given the conservative model assumptions, the modeled concentrations were higher than actual observed concentrations. For instance, modeled BTEX concentrations exceeded observed BTEX concentrations downgradient from the plume source at monitoring well TW-1110 and monitoring point ESMP-6S by approximately 2,700 µg/L and 64 µg/L, respectively. Consequently, the total dissolved contaminant mass predicted by the model is higher than the mass estimated from the observed contaminant concentrations. The modeled BTEX plume extends approximately 480 feet downgradient from the plume source to the 1-µg/L concentration, resulting in a length for the modeled plume that is approximately 150 feet longer than the southern lobe of the BTEX plume observed in March 1996. Calibrated model input data are summarized in tabular form in Appendix D. Model input and output are also included in Appendix D.

To achieve a better match between observed and modeled BTEX concentrations along the plume centerline, a second calibration model, BX2SCAL, was performed. This calibration was identical to BX1SCAL except that the biodegradation rate was increased to 0.011 day-1. Model BX2SCAL very closely matches observed BTEX values along the plume centerline, while maintaining the source concentration of 84,900 µg/L measured at monitoring well TW-1105. The maximum downgradient distance for BTEX contamination in model BX2SCAL is 350 feet, which is within 20 feet of the estimated downgradient distance of BTEX contamination on the basis of the southern lobe of the BTEX plume observed in March 1996. Model input and output are included in Appendix C.

Models BX1SCAL and BX2SCAL both provide good model calibrations for groundwater contamination at the BX Shoppette. Model BX1SCAL has the advantage of providing a level of conservatism that offsets any site conditions that have not been accounted for during model calibration. The disadvantage of model calibration BX1SCAL is that the model may overestimate BTEX migration and persistence; BTEX contamination may, in fact, be more rapidly biodegraded. In contrast, model BX2SCAL may provide more realistic simulations of the BTEX plume migration and persistence, but may underestimate BTEX migration and persistence in the event that some unidentified factor results in more rapid transport. Both calibrated models were used to estimate future BTEX plume configurations under varying assumptions regarding engineered remediation technologies at the site. These results are proved in Section 5.4.2.

5.4.1.2 Semi-Confined Aquifer Calibration

Several simplifying assumptions were used in the model calibration for the deeper sand aquifer (Model BX1DCAL). These assumptions were used because an insufficient number of monitoring wells screened in the sand aquifer exist in the source area to characterize BTEX concentrations beneath the source area. Intermittent BTEX detections at monitoring wells in this aquifer peripheral to the source of contamination in the shallow aquifer suggest that this aquifer is impacted. For example, $81.9~\mu g/L$ and $40~\mu g/L$ of total BTEX were detected at monitoring wells MW-1124 (August 1995) and MW-1125 (November 1995), respectively. However, only monitoring well MW-1125 contained BTEX contamination (1 $\mu g/L$) in March 1996. BTEX contamination also was detected at concentrations of $35.4~\mu g/L$ and $7.5~\mu g/L$ at monitoring wells MW-1127 and

MW-1128, respectively, in March 1996. The variability of BTEX detections in deep monitoring points suggests that BTEX migrating to the deep aquifer may be affected by variations in the potentiometric surface that draw BTEX into the aquifer through seasonal fluctuations. In addition, previous detections of BTEX that were not confirmed in the same wells in March 1996 suggest that these BTEX concentrations may have biodegraded or been diluted below levels of concern.

The deeper semi-confined aquifer model was successfully calibrated using very conservative assumptions about the BTEX source strength and biodegradation rate. The starting BTEX concentrations in the source area of the calibrated model for the sand aquifer were set at 1,000 µg/L, which exceeds the highest observed BTEX concentration by an order of magnitude. Hydraulic conductivity, groundwater gradient, dispersivity, and retardation were determined as described in Sections 5.3.1 to 5.3.3. The biodegradation rate was set at 0.0001 day-1 as discussed in Section 5.3.5. Calibrated model input and output are included in Appendix D.

5.4.2 Modeled Source Reduction in the Surficial Aquifer

Bioscreen can simulate decreases in a BTEX source by assuming that the rate of BTEX dissolution into groundwater (a natural weathering process) can be approximated by a first-order process. To accomplish this, the Bioscreen model assumes the following: 1) there is a finite mass of BTEX in the source zone present as mobile or residual and mobile LNAPL; and 2) the finite LNAPL body in the source zone dissolves as fresh groundwater passes through the aquifer matrix. Therefore, the continuous dissolution of BTEX into groundwater causes a decrease in LNAPL BTEX concentrations in the source area, thereby, decreasing the amount of BTEX available for future dissolution into groundwater. The time required for the BTEX concentration in LNAPL to reach one-half of the original concentration (i.e., half-life) may be used by Bioscreen to estimate a firstorder source decay (or weathering) rate. Since groundwater velocity and discharge are constant in the Bioscreen model, the half-life of BTEX concentrations contained in LNAPL is dependent on the starting mass of BTEX. Therefore, different source-decay rates can be achieved by manipulating the starting mass of BTEX in the Bioscreen model. For instance, groundwater throughput in models BX1SCAL and BX2SCAL is sufficient to transport approximately 17.3 kg of dissolved BTEX per year away from the source area. Therefore, the LNAPL BTEX masses of 499, 104, and 35 kg were used to achieve

source decay rates of 5, 20, and 50 percent per year, respectively. The use of these different source decay rates in model simulations are discussed in the following paragraphs.

Calibrated models BX1SCAL and BX2SCAL were used to incorporate source decay rates of 5, 20, and 50 percent per year corresponding to first-order decay half-lives of 14.4, 3, and 1 year(s), respectively. A range of source decay rates was considered to reflect impacts of current bioslurping operations at the site. Bioslurping operations have the dual benefit of mobile LNAPL removal and soil venting around the extraction wells. The forced aeration (bioventing) caused by the action of the bioslurper has been demonstrated to enhance natural biodegradation within a 15- to 250-foot radius of the extraction well (Kittel *et al.*, 1995). In situations where soils are sufficiently aerated, as in the case of bioventing, source decay rates averaging over 90 percent per year have been observed in vadose zone soils at a group of 16 other Air Force sites (AFCEE, 1994).

Model scenarios BX1SMODA and BX2SMODA were based on calibrated models BX1SCAL and BX2SCAL, respectively, but each used a decaying source term of 5 percent per year. This source reduction rate represents limited source removal through bioslurping with secondary bioventing such that source contamination is reduced by 50 percent every 14.4 years. High source decay rates of residual LNAPL would be expected with conventional bioventing systems and only at capillary fringe soils where a falling or fluctuating water table may be present. Considering the potential bioslurping/bioventinginduced loss of contaminants combined with natural weathering of LNAPL, a reduction of 50 percent every 14.4 years is likely a low estimate. Model BX1SMODA suggest that BTEX contamination in the source area will persist for at least 200 years before achieving the federal MCL for benzene of 5 µg/L in the source area. The BTEX plume length measured from the source to the downgradient plume edge (1 µg/L) is not predicted to exceed 500 feet. The length of the BTEX plume is not expected to begin receding within the next 20 years (calendar year 2016), at which time it will be approximately 450 feet from the plume source. Model BX2SMODA uses the same source degradation rate; therefore, it also suggests that BTEX contamination in the source area will persist for at least 200 years before achieving the federal MCL of 5 µg/L for benzene in the source area. Based on the higher dissolved BTEX biodegradation rate in BX2SMODA, the BTEX plume is predicted to start receding within 10 years, or by calendar year 2006, at which time the downgradient edge of the plume will be approximately 350 feet from the plume source.

An increase in the source decay rate to 20 percent per year in the model scenarios presents a more reasonable scenario of site conditions due to the implementation of bioslurping, especially if the water table is stable or rising. Models BX1SMODB and BX2SMODB (based on calibrated models BX1SCAL and BX2SCAL) take advantage of this potential scenario and assume a source reduction rate of 50 percent every 3 years (20 percent per year biodegradation rate). Both models predict that BTEX contamination in the source area will require approximately 40 years before the federal MCL for benzene of 5 µg/L is achieved. Model BX1SMODB predicts that the length of the BTEX plume will begin receding in 10 years (calendar year 2006), at which time the downgradient edge will be approximately 450 feet from the plume source. Model BX2SMODB predicts a quicker BTEX plume length recession. The assumed BTEX plume length is predicted to begin receding by the year 2002, at which time the downgradient edge of the plume will be approximately 350 feet from the plume source.

The final source reduction rate used in model scenarios assumes a 50 percent source reduction every year to model the potential effects of efficient LNAPL recovery through bioslurping with effective secondary bioventing given a water table that is falling or fluctuating. Because groundwater levels have been documented to fluctuate by as much as 4 feet at the site, the average annual rate of 50 percent may be the most realistic scenario given the probability of remediation of the source area and capillary soils through bioslurping within the next few years. Models BX1SMODC and BX2SMODC incorporate a 50-percent-per-year biodegradation rate (half-life of 1 year) of contamination in the source zone. BTEX concentrations in the source area in both models are predicted to reach the federal MCL for benzene of 5 µg/L within approximately 14 years (calendar year 2010). Model BX1SMODC predicts that the recession of the plume length will occur in approximately 10 years (by calendar year 2006). In contrast, model BX2SMODC predicts a much more rapid recession of the plume source. The BTEX plume is predicted to begin receding in approximately 6 years (calendar year 2002), and for the leading edge to recede within approximately 350 feet from the plume source. After 14 years (calendar year 2010), the leading edge of the plume is predicted to have receded to approximately 100 feet from the source area. Input and output data for all shallow aquifer simulation are included in Appendix D.

5.4.3 Modeled Contaminant Reduction In the Semi-Confined Aquifer

For purposes of groundwater modeling in the deeper sand aquifer, it was assumed the projection of calibrated model BX1DCAL into the future adequately estimates potential fate and transport in the semi-confined aquifer. This "worst-case" model includes the same conservative assumptions for biodegradation rate and source strength, as discussed in Section 5.4.1.2. Model BX1DCAL predicts that groundwater BTEX contamination will not migrate further than 210 feet from the source area in the vicinity of TW-1105 within 200 years. This extremely low migration potential is largely due to very low hydraulic gradients at the site. Assuming that the groundwater gradient is an order of magnitude greater than observed at the site (0.0026 ft/ft as compared to the observed 0.00026 ft/ft gradient), BTEX contamination is not predicted to migrate farther than 1,000 feet downgradient within the next century (model BX1DCALA). Therefore, the migration potential for BTEX in the deep aquifer is predicted to be very low. Even if significant BTEX contamination were to breach the confining layer separating the surface aquifer from the deeper aquifer, the slow groundwater velocity in the sand aquifer would prevent significant downgradient migration of BTEX.

5.5 SENSITIVITY ANALYSIS

The purpose of a sensitivity analysis is to determine the effect of varying model input parameters on model output. The sensitivity analysis for the BX Shoppette model was conducted on individual runs of model BX1SCAL by varying hydraulic conductivity (both multiplied and divided by 5), the biodegradation rate (both multiplied and divided by 2), retardation (±25%), and dispersivity (both multiplied and divided by 2). To perform the sensitivity analyses, model BX1SCAL was run for a 10-year period with the same input as the calibrated model excluding the tested parameter. Model output data and figures from the sensitivity analysis are presented in Appendix D.

The results of the sensitivity analysis suggest that the calibrated model is most sensitive to hydraulic conductivity and biodegradation rate. Increasing hydraulic conductivity increases the distance of plume migration, while decreasing this variable decreases the distance of plume migration. Conversely, increasing the biodegradation rate reduces the distance of plume migration, while decreasing this variable increases the distance of plume migration, while decreasing this variable increases the distance of plume migration. The worst-case scenario in the sensitivity analysis is the increase in hydraulic conductivity by 5 times. However, even with this worst-case

situation, groundwater BTEX contamination at concentrations above 5 μ g/L is not predicted to migrate farther than 1,500 feet downgradient from the source area.

The Bioscreen model is least sensitive to dispersivity and retardation (contaminant sorption). Increases in either the dispersivity or TOC concentrations (affecting retardation) had only minor effects on the modeled BTEX plume.

5.6 CONCLUSIONS AND DISCUSSION

Model scenarios for the shallow aquifer were based on two calibrated models to provide a range of predictions for groundwater plume migration. The only difference between the calibrated models was the biodegradation rate. A biodegradation rate calculated using the method of Buscheck and Alcantar (1995) was used in model BX1SCAL, whereas a calibrated biodegradation rate corresponding to a best plume fit was used in model BX2SCAL. Calibrated model BX1SCAL used a lower biodegradation rate of 0.0062 day-1 and presents a worst-case scenario for contaminant migration. The model was calibrated under steady-state conditions and predicts that the plume front will maintain a distance that is less than 500 feet downgradient from the source area (150 feet beyond the current position of the downgradient edge of the BTEX plume).

The current operation of a bioslurping system at the BX Shoppette and its effects on plume reduction were evaluated with six model scenarios. Three model scenarios examined a range of source reduction rates from 5 to 50 percent per year [source half-lives of 14.44 to 1 year(s)] with a dissolved BTEX biodegradation rate set at a constant 0.0062 day-1 (based on calibrated model BX1SCAL). The remaining three model scenarios for the shallow aquifer examined the same range of source reduction rates, but with a dissolved BTEX biodegradation rate set at a constant 0.011 day-1 (based on calibrated model BX2SCAL).

Source reduction rates of between 5 and 50 percent will result in time frames of 200 to 14 years until BTEX concentrations of 5 μ g/L or less are achieved. A moderate source reduction rate of 20 percent per year will result in a period of 40 years to achieve 5 μ g/L or below. Plumes in the shallow aquifer are expected to begin receding within the next 6 to 20 years. Plumes are not predicted to expand further than 500 feet downgradient, even under the most conservative circumstances.

BTEX contamination in the deeper sandy aquifer is not predicted to have far-reaching impacts. Under current conditions, BTEX contamination is not predicted to migrate more than 200 feet further downgradient (southwest) within 200 years. An order-of-magnitude increase in the groundwater gradient of the semi-confined aquifer equates to only 1,500 feet of migration in a century. The biodegradation potential of the deep aquifer is suspected to be greater than predicted by the 0.0001 day⁻¹ biodegradation rate, thereby limiting BTEX migration potential predicted by the model.

The removal of BTEX compounds predicted by the simulations is largely a function of aerobic and anaerobic biodegradation. In all cases, model simulations are conservative for several reasons, including those listed below:

- 1) The shallow groundwater model assumes a homogeneous, isotropic sandy aquifer for groundwater flow. However, the site hydrogeology is heterogeneous and anisotropic with respect to the intermittent sand, silty sand, and clay zones present at the site. Lower groundwater velocities are likely where groundwater passes through zones of differing hydraulic conductivities, especially in the case of silty sands and clays.
- 2) The calibrated models conservatively assumed steady-state hydraulics and contaminant source loading. Groundwater flow is expected to fluctuate in direction (especially in the shallow aquifer), thereby reducing the potential for contaminant migration in any single direction. The groundwater models assume continuous flow in one direction, maximizing the greatest predicted migration distance.
- The solute decay constants (0.0062 and 0.011 day⁻¹) covering both aerobic and anaerobic processes are conservative with respect to literature values of 0.001 to 0.185 day⁻¹ for anaerobic decay alone(see Section 5.3.5.3). The assumed biodegradation rate of 0.0001 day⁻¹ used in model calibrations for the deeper aquifer is very low with respect to literature values. The use of a low solute decay constant increases the amount of time required for natural processes to completely attenuate the BTEX contamination. Consequently, the simulated dissolved BTEX contamination is capable of migrating greater distances downgradient before destruction.

- 4) A low coefficient of retardation for benzene (1.4) was used for all the BTEX compounds in both the shallow and semi-confined aquifer model simulations. Benzene is the least sorptive of the BTEX compounds and, therefore, is the most mobile. The use of a conservative retardation coefficient tends to increase the velocity of contaminant migration, but may provide a more accurate estimate of benzene transport. However, realistic retardation coefficients for toluene, ethylbenzene, and xylenes are higher than that for benzene, and the migration of these compounds will be slowed, thereby increasing their susceptibility to biodegradation for a given downgradient migration distance.
- 5) Aerobic biodegradation may potentially become more important in the shallow aquifer as mobile and residual LNAPL concentrations are removed, an as incidental bioventing during bioslurping operations introduces more oxygen into soils at the vadose zone. Furthermore, the eastern extent of the shallow aquifer BTEX plume may receive additional oxygen due to drainage waters entering the aquifer from the northwest/southeast flowing canal bordering the site.
- 6) The baseline calibrated model BX1SCAL for the shallow aquifer and model BX1DCAL for the semi-confined aquifer were calibrated such that whenever the calibrated concentrations did not match observed calibrations at a given location, the calibrated concentration was higher. This results in a greater modeled BTEX mass than estimated from observations. Consequently, the time required for natural attenuation processes to degrade simulated mass of the contamination is increased, and the potential downgradient migration distance is overpredicted.

The ranges in times and travel distances required for degradation and stabilization of the BTEX plumes observed in the six model simulations for the shallow aquifer are feasible (and likely conservative), given the observed BTEX concentrations, the conservative assumptions made in constructing the simulations, and the strong geochemical evidence of aerobic and anaerobic biodegradation.

Calibrated model BX1SCAL provides the "worst-case" scenario for the length of time required for RNA to completely remediate groundwater contamination because no source

reduction is assumed. However, with a pilot-scale bioslurping system in operation at the site, and given natural weathering, source reduction is occurring. variations of BX1SCAL which incorporate 5- to 50-percent rates of annual source reduction (models BX1SMODA through BX1SMODC) after September 1996 are plausible. Variations of model BX2SCAL, which incorporate 5- to 50-percent rates of annual source reduction (BX2SMODA through BX2SMODC) may be more realistic examples of future plume reduction because they best match current site conditions. On the basis of these models and given the active source remediation at the site, it is likely that source reduction might be necessary for between 10 and 20 years. However, the practical benefit from site remediation through bioslurping (or other active remedial technologies) is realized within 5 years, and the actual amount of time necessary for source reduction is suspected to be within this time frame. Even without engineered source removal, groundwater BTEX concentrations are not expected to migrate further than 500 feet downgradient from the source area near TW-1105. Furthermore, low groundwater gradients in the deeper sand aquifer are expected to limit groundwater BTEX plume travel in this water-bearing unit to within several hundred feet of the source area almost indefinitely.

SECTION 6

COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

This section presents the development and comparative analysis of three groundwater remedial alternatives for the former BX Shoppette at Eaker AFB. The intent of this evaluation is to determine if RNA is an appropriate and cost-effective remedial approach to consider when developing final remedial strategies for the site, especially when combined with other conventional remedial technologies.

Section 6.1 presents the evaluation criteria used to evaluate groundwater remedial alternatives. Section 6.2 discusses the factors influencing the development of remedial alternatives considered as part of this demonstration project. Section 6.3 provides a brief description of each of these remedial alternatives. Section 6.4 provides a more detailed analysis of the remedial alternatives using the defined remedial alternative evaluation criteria. The results of this evaluation process are summarized in Section 6.5.

6.1 REMEDIAL ALTERNATIVE EVALUATION CRITERIA

The evaluation criteria used to identify appropriate remedial alternatives were adapted from those recommended by the USEPA (1988) for selecting remedies for Superfund sites (Office of Solid Waste and Emergency Response [OSWER] Directive 9355.3-01). These criteria include (1) long-term effectiveness and permanence, (2) technical and administrative implementability, and (3) relative cost. The following sections briefly describe the scope and purpose of each evaluation criterion. This report focuses on the potential use of RNA and source reduction technologies to reduce BTEX within the shallow groundwater to concentrations that do not exceed regulatory action levels.

6.1.1 Long-Term Effectiveness and Permanence

Each remedial technology or remedial alternative (which can be a combination of remedial approaches such as RNA and institutional controls) was analyzed to determine the effectiveness of meeting remedial action goals. Technical effectiveness was evaluated based on case histories from other sites with similar conditions. The ability to minimize potential impacts on surrounding facilities and operations was considered. Also, the ability of each remedial alternative to protect current and potential future receptors from potential risks associated with potential exposure pathways was qualitatively assessed. These evaluation criteria also include permanence of the remedy,

and the ability to reduce contaminant mass, toxicity, and volume. The time required for implementation and for achieving remedial action objectives are discussed. Long-term reliability for providing continued protection, including an assessment of potential for failure of the technology and the potential threats resulting from such a failure, also was evaluated.

6.1.2 Implementability

Implementability of each remedial technology or remedial alternative includes an evaluation of technical as well as administrative feasibility. Potential shortcomings and difficulties in construction, operations, maintenance, and monitoring are presented and weighed against perceived benefits. Requirements for any post-implementation site controls, such as LTM and land use restrictions, are described. Details on administrative feasibility in terms of the likelihood of public acceptance and the ability to obtain necessary approvals are discussed.

6.1.3 Cost

The total cost (present worth) of each remedial alternative was estimated for relative comparison following USEPA (1988 and 1993a) guidance. An estimate of capital costs, and operations and maintenance costs for site monitoring and controls is included. An annual adjustment factor of 7 percent was assumed in present worth calculations (USEPA, 1993a). The annual adjustment factor is the difference between the rate of inflation and the cost of money (USEPA, 1988).

6.2 FACTORS INFLUENCING ALTERNATIVES DEVELOPMENT

Several factors were considered during the identification and screening of remedial technologies for addressing shallow groundwater contamination at the former BX Shoppette at Eaker AFB. Factors considered included the objectives of the natural attenuation demonstration program; contaminant, groundwater, and soil properties; current and future land uses; current remedial activities (i.e., bioslurping); and potential receptors and exposure pathways. The following sections briefly describe each of these factors and how they were used to narrow the list of potentially applicable remedial technologies to the final remedial alternatives considered for the site.

6.2.1 Program Objectives

The intent of the RNA demonstration program sponsored by AFCEE is to develop a systematic process for scientifically investigating and documenting naturally occurring

subsurface, chemical attenuation processes that can be factored into overall site remediation plans. The objectives of this program and the specific study at the BX Shoppette are to provide solid evidence for RNA of dissolved fuel hydrocarbons so that this information can be used to develop an effective groundwater remediation strategy. A secondary goal of this multi-site initiative is to provide a series of regional case studies that demonstrate that natural processes of contaminant degradation can often reduce contaminant concentrations in groundwater to below acceptable cleanup standards before completion of potential receptor exposure pathways.

Because the objective of this program is to study natural processes in the saturated zone rather than all contaminated media (e.g., soil, soil gas, etc.), technologies have been evaluated based on their potential impact on shallow groundwater and phreatic soils. Technologies that can reduce vadose zone contamination and subsequent partitioning of contaminants into groundwater also have been evaluated. Source removal technologies evaluated in this section will reduce soil and soil gas contamination, but it is important to emphasize that the remedial alternatives developed in this document are not intended to remediate all contaminated site media. Nevertheless, remediation of contamination in the vadose zone can reduce contaminant leaching, further increasing the effectiveness of natural attenuation mechanisms in groundwater.

Additional AFCEE program objectives include developing cost effective remediation strategies and minimization of remediation waste. Through evaluation of petroleum-contaminated sites nationwide, EPA and the US Air Force (USAF) have identified technologies that meet these criteria and include institutional controls, SVE, bioventing, biosparging, bioslurping, and RNA (USEPA and US Air Force, 1993b). Other remedial measures with potentially greater costs or associated liability include soil excavation, slurry walls, sheet piling, carbon adsorption, *ex situ* biological or chemical treatment, groundwater pump and treat, and onsite/offsite disposal, which are generally not considered attractive technologies under this program.

6.2.2 Contaminant Properties

The site-related contaminants considered as part of this demonstration at the former BX Shoppette are the BTEX compounds. The source of this contamination is gasoline present as mobile and residual LNAPL in the vadose zone, capillary fringe, and saturated soil on the site. The physiochemical characteristics of the fuels and the individual BTEX compounds will greatly influence the effectiveness and selection of a remedial technology.

Gasoline is classified as an LNAPL with a liquid density of approximately 0.73 g/cc at 20°C [Biomedical and Environmental Information Analysis (BEIA), 1989]. Because gasoline is less dense than water, the LNAPL may become concentrated in the capillary fringe. Some of the individual gasoline constituents preferentially adsorb onto the soil matrix, while others dissolve quickly into percolating groundwater, and yet others may volatilize into soil vapor. This "weathering" process results in a variable distribution of individual gasoline components in the soil, soil atmosphere, and groundwater with time and distance from the release (BEIA, 1989). Constituents in gasoline range from slightly to highly soluble in water. Overall solubility is approximately 300 mg/L. Gasoline also can act as a primary substrate for microbiological metabolism. Simultaneous biodegradation of aliphatic, aromatic, and alicyclic hydrocarbons has been observed. In fact, mineralization rates of hydrocarbons in mixtures, such as gasoline, may be faster than mineralization of isolated constituents as a result of cometabolic pathways (Jamison et al., 1975; Perry, 1984).

The BTEX compounds are generally volatile, highly soluble in water, and adsorb less strongly to soil than other hydrocarbons in the petroleum mixture. These characteristics result in leaching of the BTEX compounds from contaminated soil into groundwater and migration as dissolved contamination (Lyman *et al.*, 1992). All of the BTEX compounds are highly amenable to *in situ* degradation by both biotic and abiotic mechanisms.

Benzene is very volatile with a vapor pressure of 76 millimeters of mercury (mm Hg) at 20°C and a Henry's Law Constant of approximately 0.0054 atmosphere-cubic meters per mole (atm-m³/mol) at 25°C (Hine and Mookerjee, 1975; Jury *et al.*, 1984). The solubility of pure benzene in water at 20°C has been reported to be 1,780 mg/L (Verschueren, 1983). Benzene will biodegrade by naturally-occurring subsurface microorganisms to carbon dioxide, with catechol as a short-lived intermediate (Hopper, 1978; Ribbons and Eaton, 1992).

Toluene is also volatile, with a vapor pressure of 22 mm Hg at 20°C and a Henry's Law Constant of about 0.0067 atm-m³/mol at 25°C (Pankow and Rosen, 1988; Hine and Mookerjee, 1975). Toluene sorbs more readily to soil media relative to benzene, but still is very mobile. The solubility of pure toluene in water at 20°C is approximately 515 mg/L at 20°C (Verschueren, 1983). Toluene has been shown to degrade by naturally occurring subsurface microorganisms to pyruvate, caetaldehyde, and completely to carbon dioxide via the intermediate catechol (Hopper, 1978; Wilson *et al.*, 1986; Ribbons and Eaton, 1992).

Ethylbenzene has a vapor pressure of 7 mm Hg at 20°C and a Henry's Law Constant of 0.0066 atm-m³/mol (Pankow and Rosen, 1988; Valsaraj, 1988). Ethylbenzene sorbs more strongly to soils than benzene but less strongly than toluene (Abdul *et al.*, 1987). Pure ethylbenzene is also less soluble than benzene and toluene in water at 152 mg/L at 20°C (Verschueren, 1983; Miller *et al.*, 1985). Ethylbenzene is ultimately degraded by natural subsurface microorganisms to carbon dioxide via its intermediate 3-ethylcatechol (Hopper, 1978; Ribbons and Eaton, 1992).

The three isomers of xylene have vapor pressures ranging from 7 to 9 mm Hg at 20°C and Henry's Law Constants of between 0.005 and 0.007 atm-m³/mol at 25°C (Mackay and Wolkoff, 1973; Hine and Mookerjee, 1975; Pankow and Rosen, 1988). Of all of the BTEX compounds, xylenes sorb most strongly to soil, but still can leach from soil into the groundwater (Abdul *et al.*, 1987). Pure xylenes have water solubilities of 152 to 160 mg/L at 20°C (Bohon and Claussen, 1951; Mackay and Shiu, 1981; Isnard and Lambert, 1988). Xylenes can be degraded by natural subsurface microorganisms to carbon dioxide via pyruvate carbonyl intermediates (Hopper, 1978; Ribbons and Eaton, 1992).

Therefore, remediation technologies identified in the EPA and USAF remediation technologies screening matrix guide (USEPA and USAF, 1993b) for BTEX compounds in soil and groundwater area generally effective due to the volatile or biodegradable nature of these compounds. For example, SVE and groundwater extraction/air stripping involve physical volatilization of BTEX compound from soil and groundwater, respectively. Natural attenuation, bioventing, bioslurping and biosparging remedial systems are effective due to the biodegradability of BTEX compounds, while potentially optimizing the volatilization of these contaminants (i.e., bioventing and biosparging). Bioslurping is effective due to the removal of mobile LNAPL, as well as simultaneous enhancement of volatilization and biodegradation. Therefore, RNA, SVE, bioventing, bioslurping, biosparging, and groundwater extraction/air stripping technologies could all be effective at collecting, destroying, and/or treating BTEX contaminants at the BX Shoppette.

6.2.3 Site-Specific Conditions

Three general categories of site-specific characteristics were considered when identifying remedial technologies for comparative evaluation as part of this demonstration project. The first category was physical characteristics such as groundwater depth, gradient, flow direction, and soil type. The second category was site

geochemistry, such as the interaction of site contaminants with electron acceptors, microorganisms, and other site contaminants. Both of these categories influence the types of remedial technologies most appropriate for the site. The third category involved assumptions about future land use and potential receptors and exposure pathways. Each of these site-specific characteristics have influenced the selection of remedial alternatives included in the comparative evaluation.

6.2.3.1 Physical Characteristics

Site geology and hydrogeology will have a profound effect on the transport of contaminants at a given site, as well as the effectiveness and scope of required remedial technologies at a given site. Hydraulic conductivity is perhaps the most important aquifer parameter governing groundwater flow and contaminant transport in the subsurface. The velocity of the groundwater and dissolved contamination is directly related to the hydraulic conductivity of the saturated zone. Estimated hydraulic conductivity values at the BX Shoppette from five shallow site wells ranged from 0.04 to 13.94 ft/day and are characteristic of silt/silty sand to dirty sand (Freeze and Cherry, 1979). Low hydraulic conductivity values are representative of the silty/clayey sand intervals at the site. Estimated hydraulic conductivity values from four site wells screened in the deep, semi-confined sand aquifer ranged from 2.86 to 5.7 ft/day and are characteristic of clean to dirty sands (Freeze and Cherry, 1979).

The soils comprising the shallow aquifer are very heterogeneous, and the likelihood that continuous sandy or silty sand layers act as preferential flow paths is minimal. Sand lenses in the shallow aquifer appear to be discontinuous. Groundwater BTEX migration is contrary to the groundwater flow direction (Figure 4.4). Groundwater BTEX migration is to the east/southeast (Figure 4.5) and potentially contacts the northwest/southeast-flowing drainage canal at the periphery of the BTEX plume. The elevations of the beds of the canals that border the site vary between 242 to 243 feet msl, which is higher than shallow groundwater elevations in the source area. Therefore, the hydraulic potential for groundwater discharge to the drainage canals appears limited to incidents that cause groundwater elevation increases (seasonal precipitation or regional flood control measures). Surface water contamination was detected at a single location at 0.5 μ g/L of toluene upstream from the site (SUR1) and suggests that groundwater BTEX contamination is not impacting the canal. Furthermore, mobile LNAPL sheens have not been observed in either drainage canal adjacent to the site, suggesting that a pathway for the migration of mobile LNAPL in the vadose zone to the canals is not complete.

Perched groundwater is suspected to be present at the site, which may be causing the elevated groundwater conditions observed at monitoring wells MW-1114, TW-1115, ESMP-2S, ESMP-3S, and ESMP-8S. These conditions suggest a silty clay/clay layer that extends above the groundwater table with the potential to both collect precipitation recharge and cause a barrier to groundwater flow. Figures 3.1 through 3.3 illustrate such layers of clay and silty/clay extending above the shallow groundwater table. These geologic layers will act as barriers to groundwater flow and will channel downgradient migration of contaminants through permeable stringers of sand (mostly discontinuous) or layers of silty sand. In this case, the impact of dispersion on natural attenuation of BTEX will be limited.

The existence of an apparent groundwater depression at the site and geologic barriers to groundwater flow affect the fate and transport of the contaminant plume and the processes of natural attenuation. Residence times for dissolved hydrocarbon contamination in the shallow aquifer are expected to be extended, which increases the potential for natural biodegradation of contaminants before migration from the source area. Oxygen that may be utilized for biodegradation of BTEX compounds is likely to be supplied from recharge from the adjacent drainage canals that may migrate into the source area (from the northeast/southwest drainage canal) will add oxygen to the groundwater plume, which is migrating east toward the canal recharge areas.

Site geology and hydrogeology also impact the types of remedial technologies under consideration. For example, engineered solutions for plume containment are simplified because site geology provides partial plume containment. On the other hand, the radius of influence of a bioventing system may be limited because of surrounding intervals of low-permeability silty clays and clays. Subsurface air flow induced by a bioventing system likely will channelize along higher permeability sands and silts. This is a perceived benefit of bioventing, because the majority of mobile and residual LNAPL is expected to reside in the higher permeability sands and silts and would be treated through Similarly, during the removal of mobile LNAPL using the existing bioventing. bioslurper, the effects of bioventing would become more pronounced as the vacuum induced by the bioslurper draws oxygen from surrounding soils. This influx of air generated by the bioslurper will enhance mobile LNAPL migration rates and BTEX volatilization toward the extraction well as air flows past the LNAPL. Contaminant recovery also will be influenced by low TOC (<0.07 percent) content in the soil and a corresponding decrease in contaminant sorption to phreatic soil.

The effectiveness of biosparging or groundwater pump and treat would be expected to be severely limited by the geology of the shallow aquifer. Biosparging is most effective in aquifers that are homogenous and permeable and that allow maximum dispersion of air bubbles. Silty clay or clay intervals will short circuit air bubble dispersion, and biosparging would not be expected to achieve meaningful oxygen mass transfer within saturated sand or silty sand lenses. However, excellent BTEX removal rates in the immediate vicinity of the source area would be expected. Low-permeability soils at the site may cause severe drawdown of the groundwater table during pump-and-treat options, which could cause extraction wells to pump dry and result in entrapment of mobile LNAPL below the saturated interval. Low-flow-rate biosparging or pump-and-treat options could be effective remedial alternatives in the homogeneous sands of the lower semi-confined aquifer, if necessary.

6.2.3.2 Geochemical Characteristics

To satisfy the requirements for indigenous microbial activity, the aquifer must provide an adequate and available carbon or energy source, electron acceptors, essential nutrients, and proper ranges of pH, temperature, and redox potential. Data collected as part of the field work phase of this demonstration project and described in Sections 3 and 4 of this document indicate that the BX Shoppette is characterized by adequate and available carbon/energy sources (e.g., fuel contamination) and electron acceptors that support measurable biodegradation by indigenous microorganisms. DO, manganese, ferrous iron, sulfate, and carbon dioxide (which is utilized during methanogenesis) represent significant sources of electron acceptor capacity for the biodegradation of BTEX compounds at the site. Further, because fuel-hydrocarbon-degrading microorganisms have been known to thrive under a wide range of temperature and pH conditions (Freeze and Cherry, 1979), the physical and chemical conditions of the groundwater and phreatic soil at the site are not likely to inhibit microorganism growth.

Fuel-hydrocarbon-degrading microorganisms are ubiquitous, and as many as 28 hydrocarbon-degrading isolates (bacteria and fungi) have been identified in different soil environments (Davies and Westlake, 1979; Jones and Eddington, 1968). Indigenous microorganisms have a distinct advantage over microorganisms injected into the subsurface to enhance biodegradation because indigenous microorganisms are well adapted to the physical and chemical conditions of the subsurface in which they reside (Goldstein *et al.*, 1985). Microbe addition was not considered a viable remedial technology for the BX Shoppette.

6.2.3.3 Potential Exposure Pathways

A pathways analysis identifies the potential human and ecological receptors that could come into contact with site-related contamination, and the pathways through which these receptors might be exposed. To have a complete exposure pathway, there must be a source of contamination, a mechanism(s) of release, a pathway of transport to an exposure point, an exposure point, and a receptor. If any of these elements do not exist, the exposure pathway is considered incomplete, and receptors will not come into contact with site-related contamination. Evaluation of the potential long-term effectiveness of any remedial technology or remedial alternative as part of this demonstration project includes determining the potential for pathway completion. If a competed exposure pathway exists, potential long-term remedial options may still be sufficient to maintain exposure concentrations below regulatory levels.

Assumptions about current and future land use at a site form the basis for identifying potential receptors, potential exposure pathways, reasonable exposure scenarios, and appropriate remediation goals. USEPA (1991b) advises that the land use associated with the highest (most conservative) potential level of exposure and risk that can reasonably be expected to occur should be used to guide the identification of potential exposure pathways and to determine the level to which the site must be remediated. The source area consists of mobile and residual LNAPL in the subsurface beneath the former BX Shoppette. The groundwater contaminant plume originating from the site is migrating primarily to the southeast and has impacted shallow groundwater in an irregularly shaped area within 360 feet of the source area (Figure 4.5). Concrete and asphalt parking areas overlie the core of the plume, and grassy areas overlie the fringes of the contaminant plume. Roadways, maintenance buildings, and office buildings are located on adjacent properties.

A human health risk assessment was conducted for the BX Shoppette as part of the RFI (Halliburton NUS, 1996). The exposure assessment component identified the site as designated for Land Reuse Category C (i.e., commercial, industrial, or recreational property). Hypothetical exposure scenarios for soil and groundwater were evaluated as follows: 1) incidental ingestion, inhalation of contaminants, or dermal contact with subsurface soils by on-site construction workers; and 2) the use of groundwater as drinking water or dermal contact with groundwater by hypothetical on-property adult and child residents.

The qualitative risk assessment did not identify any chemicals that exceeded Region III risk-based concentrations (RBCs) for soil ingestion or dermal screening levels for soil (construction worker). However, BTEX exceeded screening thresholds based on their Region III site-specific levels for transfer from soil to air and/or to groundwater. The individual BTEX compounds were retained as chemicals of potential concern (COPC) in soil. Benzene was identified as a COPC because of its status as a human carcinogen and its exceedance of the site-specific level (SSL) for transfer from soil to air. Toluene, ethylbenzene, and xylene(s) were selected as COPCs solely for their exceedance of the SSLs for transfer from soil to air.

The quantitative risk assessment of COPCs in groundwater for onsite residents produced cumulative noncarcinogenic hazard indices for adult and child receptors ranging from 10² to 10³, which exceed the target threshold of unity. The adult cumulative incremental cancer risk was solely driven by benzene contamination. The incremental cancer risk was 2.8 x 10⁻², which exceeds the USEPA 10⁻⁴ to 10⁻⁶ target risk range. Most of the noncarcinogenic and carcinogenic risks from groundwater were from the inhalation exposure pathway (Halliburton NUS, 1996).

The final recommendation of the RFI report for soil contamination at the BX Shoppette with respect to the human health risk assessment was no further action. The final RFI recommendation for groundwater contamination was interim remedial action (IRA) and groundwater modeling as part of a corrective measures study (CMS). The BTEX compounds in groundwater were identified as COPCs for hypothetical residential receptors under residential conditions. However, a residential scenario for groundwater contamination is conservative, and may never be realized because the future land use will most probably be commercial, industrial, or recreational. The bioslurping system fulfills the substantive requirements for an IRA, although bioslurping operations were initiated for a different LNAPL recovery demonstration project.

Groundwater modeling performed for the BX Shoppette and summarized in Section 5 may satisfy the modeling recommendation in the CMS. As discussed in Section 5, conservative groundwater models performed for the site suggest that groundwater contamination may migrate as far as 500 feet from the source area and persist for several decades (with engineered source removal). Therefore, contaminant discharge into the adjacent drainage canal or potential contact with onsite residential receptors via dermal contact or ingestion may be a possibility. However, it is very unlikely that detectable hydrocarbon concentrations will reach the canal, especially as detectable concentrations of BTEX have not been detected previously at locations where the groundwater plume

overlaps the drainage canal (Figure 4.5). Any potential BTEX concentrations reaching the drainage canal would likely be instantly diluted and/or volatilized below analytical detection limits.

The potential for groundwater contact by downgradient receptors or onsite receptors (i.e., well users) is minimal. Shallow groundwater is not currently used to meet any water supply demands at Eaker AFB. Prior to Base closure, Eaker AFB obtained its water from two wells located approximately 4,200 feet southwest of the site (Section 3.4.3). Main water supply wells for the cities of Gosnell and Blytheville and for Eaker AFB all are screened in the Wilcox Formation at depths greater than 1,000 feet bgs. Groundwater contamination in the shallow aquifer poses no significant threat to groundwater resources farther than 500 feet from the source area and is generally limited to the upper 20 feet of the aguifer. Contamination in the deeper sand aguifer is minimal, probably limited to the upper surface of the aquifer (at approximately 30 to 40 feet bgs), and not expected to migrate farther than 1,000 feet downgradient in the next century (under very conservative site conditions). Both plumes are being degraded via physical and biological natural attenuation mechanisms and will eventually be biodegraded. However, the use of RNA at this site will require that restrictions on shallow groundwater use be enforced in the area from the former BX Shoppette and along the northwest/southeast-flowing drainage canals until RNA, or combination of RNA with other technology, achieves site remediation.

6.2.4 Remediation Goals for Shallow and Deep Groundwater

Model results suggest that BTEX compounds are not likely to migrate more than 500 feet from the source area (in any downgradient direction) in the shallow aquifer assuming that present conditions remain steady-state. If active source area remediation is continued (i.e., bioslurping) or implemented (e.g., bioventing or excavation), and as residual LNAPL weathers, groundwater BTEX loading rates will decrease and the dissolved BTEX plume will eventually decrease in concentration and extent. Considering existing plume dimensions and the predicted potential for migration, locations to the east and west of the source area in the shallow aquifer and southwest of the source area in the deeper semi-confined aquifer have been identified as monitoring locations for groundwater remedial activities. In addition, surface water monitoring of the northwest/southeast-flowing creek would be required to assure that impact to surface waters is not occurring from potential groundwater discharge. These are suitable locations for monitoring and for demonstrating compliance with protective groundwater

(and surface water) quality standards (i.e., promulgated federal MCLs and surface water quality standards).

This remedial strategy assumes that compliance with promulgated, single-point remediation goals is not necessary if site-related contamination does not pose a threat to human health or the environment (i.e., if exposure pathways are incomplete). Thus, the magnitude of required remediation in areas that can and will be placed under institutional control is different from the remediation that is required in areas that may be available for unrestricted use. Results of the human health risk assessment suggest that the site poses little risk to potential site receptors under the foreseen industrial usage of the site. Therefore, the primary RAO for shallow or semi-confined groundwater within and downgradient from the former BX Shoppette site is limiting plume expansion to prevent exposure of downgradient receptors to concentrations of BTEX in groundwater at levels that could pose a risk. This means that viable remedial alternatives must be able to achieve concentrations that minimize plume migration and/or expansion. The RAO for shallow groundwater at the POC is attainment of the federal MCLs listed in Table 6.1. Although it is unlikely that surface water or surface water organisms would be ingested by humans, federal ambient water quality criteria could serve as surface water cleanup goals, and are provided in the table for reference.

In summary, available data suggest that there is currently no completed potential exposure pathway for groundwater contamination at the former BX Shoppette to downgradient receptors or onsite receptors. The site is not currently used as a residential area and is not expected to be in the near future. Impact on the northwest/southeast drainage canal is possible; however, BTEX concentrations have not been measured from surface water samples collected from potential groundwater BTEX discharge locations. Moreover, it is unlikely that potential exposure pathways involving shallow groundwater would be completed under future land use assumptions, provided use of groundwater as a potable or industrial source of water is prohibited by institutional controls within the source area and between the source area and the adjacent drainage canals. Thus, institutional controls are likely to be a necessary component of any groundwater remediation strategy for this site. The required duration of these institutional controls may vary depending on the effectiveness of the selected remedial technology at reducing contaminant mass and concentration in groundwater at the source area.

TABLE 6.1 WATER QUALITY STANDARDS BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Compound	Federal Drinking Water MCL (µg/L) ^{a/}	Federal Ambient Surface Water Quality Criterion, Ingestion of Organisms (µg/L) ^{b/}	Federal Ambient Surface Water Quality Criterion, Fresh Water Acute (µg/L) ^{b/}
Benzene	5	71	5,300
Toluene	1,000	29,000	32,000
Ethylbenzene	700	300,000	17,500
Total Xylenes	10,000	Not Available	Not Available

a/ USEPA (1991)

6.2.5 Summary of Remedial Technology Screening

Potential remediation technologies have been screened for technical implementability on the basis of the AFCEE program objectives, the contaminant properties, site-specific conditions, and remediation goals described in Section 6.2.4. Table 6.2 identifies the remedial technologies considered as part of this demonstration and those retained for development and analysis or remedial alternatives. All of the above mentioned factors will influence the implementability of the remedial technologies designed to remediate shallow groundwater underlying and migrating from the site. The remedial approaches retained for development of remedial alternatives and comparative analysis include RNA, bioslurping, bioventing, excavation, institutional controls, and LTM.

6.3 DESCRIPTION OF REMEDIAL ALTERNATIVES

Remedial approaches retained from the screening process were combined into three remedial alternatives for the BX Shoppette. Following a description of each alternative, a comparative analyses of effectiveness, implementability, and cost are presented in Section 6.4.

b/ USEPA (1993)

TABLE 6.2

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF

DEMONSTRATION OF RNA BX SHOPPETTE (SITE E11)

EAKER AIR FORCE BASE, ARKANSAS

		Retain	Yes	Yes	Yes			No)	No		Yes		o _N		No.)			No			νχ	o _N)			
		Implementability	Many existing wells are available to confirm the progress of remediation.	Sufficient distance exists between the plume and downgradient potable water wells to locate several sentry wells.	Plume area is currently within the Base boundary, and land use and	groundwater use are under Base jurisdiction.		No production wells are known to exist in the current or predicted plume	area.	No groundwater is extracted from the plume area for any use.		Base public relations and environmental management offices have many	information avenues through which to inform workers and residents.	No likely receptors downgradient of site. Installation disruptive to base	operations. Long-term maintenance required.	Surficial aquifer thickness is limited (5 to 10 ft). Pumping groundwater	would not be continuous due to dewatering of aquifer and would require	treated water disposal. Groundwater depression in the source area creates	\dashv		Contaminant would seek paths over, under, and around wall or curtain.	No likely receptors downgradient from site. Limited effectiveness.	Same as above.	Natural biodegradation of BTEX compounds can be stimulated by allowing	contaminated groundwater to flow through an aquifer zone which has	enhanced oxygen and nutrient conditions. Not practical for excessive	contaminant concentrations. Unproven technology. Long-term	
		Process Option	Long-Term Monitoring Wells	Sentry Wells	Land Use	Control/Regulate	Well Permits	Seal/Abandon	Existing Wells	Point-of-Use	Treatment	Meetings/	Newsletters	Passive Drain	Collection	Minimum	Pumping/Gradient	Control		Slurry Walls/Grout	Curtains		Sheet Piling	Biologically Active	Zones			
		Technology Type	Periodic Groundwater	Monitoring	Groundwater Use Control				_			Public Education		Hydraulic Controls			_	_		Physical Controls				Reactive/Semi-Permeable	Ватіегѕ			
-	General Kesponse	Action	Long-Term Monitoring		Institutional Controls									Containment of Plume														

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF **DEMONSTRATION OF RNA** TABLE 6.2 (Continued)

BX SHOPPETTE (SITE E11)

EAKER AIR FORCE BASE, ARKANSAS

Retain Yes ŝ ŝ ž ٥ ŝ å ĝ ŝ High flow rates require excessive retention times and large reactors. BTEX is High flow rates require excessive retention times and large, expensive Differs from biologically active zone in that oxygen and/or nutrients are A combination of natural biological, chemical, and physical removal Entire groundwater plume is pumped by installing numerous wells with submersible pumps. High cost and major disruption to area. Not effective mechanisms which occur to varying degrees on every site. Groundwater injected in source area and allowed to migrate downgradient. Although sampling at the site indicates that this is a significant, ongoing remediation Injection of air into contaminated aquifer creating a mass transfer of BTEX into air bubbles and into vadose zone. Most effective for plume containment. from groundwater at high flow rates. Permitting for air emissions may be Cost prohibitive for more concentrated BTEX. Creates a carbon disposal Cost-effective technology for removing varying concentrations of BTEX Limited radius of influence and short circuiting likely to be a problem. often volatilized in these systems. Long-term maintenance required. implementable, the technology may be no more effective RNA. **Implementability** reactors. Long-term maintenance required. See Passive Drain Collection (above). until residual LNAPL is remediated. required. problem. process. Pumping Nutrient Enhanced Horizontal Drains **Process Option** Activated Carbon Biodegradation (Volatilization) Oxygen and/or Downgradient (Biosparging) Air Stripping Air Sparging Attenuation Bioreactors UV/Ozone Reactors Vertical Natural Wells Groundwater Extraction Technology Type Chemical/ Physical Chemical/ Physical Biological Biological Aboveground Groundwater Treatment General Response In Situ Treatment Action

TABLE 6.2 (Continued)

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF

DEMONSTRATION OF RNA BX SHOPPETTE (SITE E11)

EAKER AIR FORCE BASE, ARKANSAS

Retain	N _O	S _o	No	No	No	N _o	No	oN V	οχ	Yes	N _o	Yes
Implementability	Viable option when an IWWTP is available and capable of handling BTEX and hydraulic loading. Groundwater extraction is not planned.	Viable option when access to industrial sewer exists and hydraulic loading is acceptable. Same as above.	Viable option when access to sanitary sewer exists and hydraulic loading is acceptable. Same as above.	Injection wells subject to clogging, high maintenance, and permitting. Same as above.	Less clogging than wells, but large trenches are required and can be subject to injection well permitting. Same as above.	Viable option but generally requires discharge permitting. Groundwater extraction is unlikely. Stringent permitting required.	Best suited for sites with >1 foot mobile LNAPL and where aboveground groundwater treatment already exists	Low efficiency in mobile LNAPL recovery.	Best suited for sites with thin saturated zones where excessive groundwater will not be pumped.	Combines vapor extraction and mobile LNAPL recovery. System is currently operating at this site.	The limited quantity of mobile LNAPL at the site makes this method cost-effective on a short-term basis. Low efficiency in mobile LNAPL recovery.	Excavation is feasible at this site. Base operates state-permitted landfarm.
Process Option	IWWTP	IWWTP	Sanitary Sewer	Vertical Injection Wells	Injection Trenches	Storm Drains	Dual-Pump Systems	Skimmer Pumps/Bailers/ Wicks	Total Fluids Pumping	Bioslurping	Hand Bailing	Biological Landfarming
Technology Type	Direct Discharge to Industrial Waste Water Treatment Plant (IWWTP)	Discharge to IWWTP or Sanitary Sewer		Treated Groundwater Reinjection		Discharge to Surface Waters	Mobile LNAPL Recovery		_			Excavation/ Treatment
General Response Action	Aboveground Treatment	Treated Groundwater Disposal					Source Removal/Soil Remediation					

T. . (

TABLE 6.2 (Concluded)

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF

DEMONSTRATION OF RNA

BX SHOPPETTE (SITE E11) EAKER AIR FORCE BASE, ARKANSAS

General Response Action	Technology Type	Process Option	Implementability	Retain
Source Removal/Soil	Excavation/	Thermal	Excavation is feasible at this site; however, this technology is no more No	No No
Remediation (cont'd)	Treatment (cont'd)	Desorption	effective but more expensive than use of the existing landfarm.	
	In Situ	Bioventing	Air injection to stimulate biodegradation of fuel residuals. Best if used after Yes	Yes
•			the removal of LNAPL. Included as a component of bioslurping.	
		Soil Vapor	Vapor extraction has been successfully implemented at other sites. Requires No	No No
		Extraction	expensive off-gas treatment. Included as a component of bioslurping.	

6.3.1 Alternative 1 - RNA, Bioslurping, and Institutional Controls with Long-Term Groundwater Monitoring

Alternative 1 includes four components: RNA, continued mobile LNAPL recovery through bioslurping, institutional controls, and long-term groundwater monitoring. RNA is proposed to remediate fuel hydrocarbon contaminants dissolved in the groundwater. Ongoing LNAPL recovery through bioslurping will continue to reduce source contaminants, thereby decreasing the expected time frame for remediation. Institutional controls are proposed to ensure that potential receptor exposure pathways are not completed during site remediation. Finally, long-term groundwater monitoring is proposed to demonstrate compliance with remediation objectives.

RNA is achieved when natural attenuation mechanisms bring about a reduction in the total mass of a contaminant in the soil or dissolved in groundwater. RNA results from the integration of several subsurface attenuation mechanisms that are classified as either destructive or nondestructive. Destructive attenuation mechanism include biodegradation, abiotic oxidation, and hydrolysis. Nondestructive attenuation mechanisms include sorption, dilution (caused by dispersion and infiltration), and volatilization. In some cases, RNA will reduce dissolved contaminant concentrations below numerical concentration goals intended to be protective of human health and the environment. As indicated by the evidence of RNA described in Section 4, these processes are occurring at the BX Shoppette and will continue to reduce contaminant mass in the plume area in the shallow and semi-confined aquifers.

In addition to RNA, continued mobile LNAPL recovery through bioslurping has been proposed under Alternative 1 in order to reduce the mass of fuel hydrocarbons available for future dissolution into site groundwater. This would result in a reduction in future dissolved contaminant concentrations, and allow the processes of natural attenuation to complete the remediation of dissolved contamination within a shorter period of time. Bioslurping is a bioremediation technique that is applicable for the remediation and removal of measurable layers of mobile LNAPL on groundwater. A bioslurping system consists of a "slurp" tube that extends through a groundwater monitoring well into the LNAPL layer. Product and highly contaminated groundwater are drawn into the tube as air is removed from the tube with a vacuum extraction pump. Recovery of product is enhanced because a vacuum draws product in the surrounding formation toward the extraction well, rather than relying on gravity flow, as is required with conventional product recovery systems. Furthermore, product flows along a horizontal path toward the bioslurping extraction well. This reduces the "smearing" associated with the groundwater

drawdown created by typical pumping extraction systems. In addition to the removal of LNAPL, as air is removed from the subsurface, oxygenated air is drawn into the pore spaces of the contaminated soils adjacent to the extraction well, promoting aerobic biodegradation (bioventing). Also, contaminated soil vapors are removed by the vacuum (soil vapor extraction). Minimal groundwater is extracted using bioslurping technology, resulting in a significant cost advantage over traditional pumping systems, which generate large quantities of wastewater requiring treatment and disposal.

The effectiveness of bioslurping may exceed a 50 percent/year reduction in mobile LNAPL at the site. Excellent removal rates of LNAPL have already occurred at the site, with an estimated 250 gallons of mobile LNAPL recovered during 2 months of bioslurper operation (Looney, 1996). However, once the majority of mobile LNAPL is extracted, the remaining residual LNAPL will not be effectively remediated with bioslurping. The volume of mobile LNAPL at the site is estimated at 1,200 gallons (Section 4.2). Therefore, recoverable mobile LNAPL may be depleted within the next 6 to 12 months. Eaker AFB anticipates operating the bioslurper at the BX Shoppette until February 1997, and will then reevaluate the usefulness of continued bioslurping operations (Looney, 1996). At this point, low-level residual or mobile source LNAPL will persist for an undetermined length at the site if no additional source reduction is undertaken. However, the groundwater plume is expected to continue shrinking and decreasing in concentration sooner than if RNA were the only remedial option.

Two Bioscreen models were calibrated to site conditions for the shallow aquifer as described in Section 5. The more conservative model calibration, BX1SCAL, assumes a calculated (versus calibrated) BTEX biodegradation rate of 0.0062 day-1 and assumes steady-state leaching of BTEX from mobile and residual LNAPL. This model predicts that current site conditions should produce a steady-state groundwater plume that extends a maximum distance of 500 feet downgradient. A steady-state groundwater plume is predicted to be achievable within 6 years from the time that a theoretical, non-depleting LNAPL source is released to the aquifer; therefore, since the first recorded UST leak occurred in 1989 it is likely that groundwater contamination had reached its maximum extent by March 1996. Low detections of BTEX observed in downgradient monitoring points (e.g., 4.0 μg/L BTEX at ESMP-6S and 1.2 μg/L BTEX at ESMP-8S) suggest that the true downgradient extent of the BTEX plume may be approximately 300 feet from the source area. Model BX2SCAL assumes a higher BTEX biodegradation rate of 0.011 day-1 (compared to model BX1SCAL) and provides a closer approximation to current site

conditions. Model BX2SCAL predicts that the maximum downgradient extent of BTEX should be approximately 350 feet (the currently observed BTEX plume extends 300 feet).

Six model scenarios for prediction of the contaminant fate and transport in the shallow aquifer where based on the two original shallow aquifer models: three models evaluated source reduction rates of 5 percent/year to 50 percent/year using model BX1SCAL as a base model, and three models used the same source reduction rates with model BX2SCAL as a base model. Modeling suggests that engineered source reduction must occur to complete the remediation of dissolved BTEX through natural attenuation within a reasonable time frame. Assuming an LNAPL removal rate of 5 percent/year (or a BTEX half-life of 14.4 years), the BTEX contamination in the source area will persist for several centuries under current site conditions (models BX1SMODA and BX2SMODA). An observable decrease in the length of the BTEX plume would not occur for at least 10 years. However, this model prediction is considered extremely conservative considering the potential for LNAPL removal through bioslurping.

Given continuing source reduction, actual plume dimensions likely will be smaller than those predicted by the conservative model simulations, with source concentrations falling below target RAOs sooner than predicted. Models BX1SMODC and BX2SMODC assume source reduction rates of 50 percent/year for 14 years and predict that federal MCLs may be achieved throughout the plume within 14 years (2010). This scenario is dependent on continuous reductions in the source area through engineered remediation and/or weathering. If annual source reductions of 50 percent/year are achieved, the length of the BTEX plume will begin to recede noticeably within 6 to 10 years (depending on actual dissolved BTEX biodegradation rates). It is also predicted that continued bioslurping can achieve LNAPL removal rates equaling or exceeding 50 percent/year. However, a 50 percent/year source reduction may be overly optimistic because the best removal rates are typically achieved in the first few years of operation, at which time bioslurping is usually discontinued. On the basis of even the most conservative model, it is unlikely that benzene concentrations exceeding federal MCLs will migrate further than 500 feet downgradient, regardless of source reduction rates. LTM would be used to demonstrate the effectiveness of this remedial alternative.

BTEX concentrations in the deep, semi-confined aquifer also are being reduced under natural attenuation processes. A very conservative model prediction for BTEX contamination in the deep aquifer (BX1DCAL) suggests that BTEX will not migrate farther than a few hundred feet south of the site in the next century. Any BTEX concentrations in the deeper aquifer will decrease as the LNAPL source in the shallow

aquifer is continually reduced. Sporadic detections of low level BTEX contamination in the deep aquifer suggest that potential contamination of this water-bearing unit is minimal. BTEX contamination in the semi-confined aquifer also will be monitored during LTM.

Implementation of Alternative 1 would require the use of institutional controls, such as land use restrictions, and LTM. Land use restrictions may include placing long-term restrictions on soil excavation within the source area and long-term restrictions on groundwater well installation within and downgradient from the source area. The intent of these restrictions would be to reduce potential receptor exposure to contaminants by legally restricting activities within areas affected by site-related contamination.

Public education on the selected alternative would be developed to inform Base personnel and local residents of the scientific principles underlying source reduction and RNA. This education could be accomplished through public meetings, presentations, press releases, and posting of signs where appropriate. Periodic site reviews could also be conducted every year using data collected from the long-term groundwater monitoring program. The purpose of these periodic reviews would be to evaluate the extent of contamination, assess contaminant migration and attenuation through time, document the effectiveness of source removal and institutional controls at the site, and reevaluate the need for additional remedial actions at the site.

6.3.2 Alternative 2 - RNA, Bioslurping, Bioventing, and Institutional Controls with Long-Term Groundwater Monitoring

This alternative is identical to Alternative 1 except that bioslurping operations would be augmented with a bioventing unit to continue reducing the remaining mass of residual LNAPL or lingering mobile LNAPL in soil. The installation of the bioventing unit would conceivably proceed after bioslurper operations had retrieved all reasonably available mobile LNAPL from soil. Bioventing wells would then be installed within and around the perimeter of the source area. By reducing the quantity of residual fuel hydrocarbons within the source area, bioventing would continue to reduce the predicted future dissolution of BTEX into the surficial aquifer, and therefore shorten the predicted length of time required for natural attenuation processes to reduce dissolved BTEX.

Bioventing is an *in situ* bioremediation technique that is applicable for the remediation of fuel hydrocarbon compounds in vadose zone soils. At this site, regenerative blower would be used to inject air at a low flow rate into vertical injection wells screened where contamination is present within vadose zone soils. Alternately, a vacuum extraction

pump can be used to withdraw air from the wells. This process promotes aerobic biodegradation of fuel constituents through the introduction of oxygenated air into contaminated soils.

As previously discussed in Section 6.3.1, models BX1SMODC and BX2SMODC predict that substantial rates of source reduction (i.e., on the order of 50 percent/year) as would be expected with a bioslurping/bioventing operations may reduce the groundwater plume to below federal MCLs within 14 years. An observable decrease in the length of the BTEX plume may be expected within 6 to 10 years. Achieving these source reduction rates would be more plausible than with bioslurping alone.

BTEX removal rates from other sites with similar contaminants and fully penetrating contaminant columns in the vadose zone have exceeded 90-percent BTEX removal per year (Miller et al., 1993). If source reduction rates exceeded 50 percent/year, then the BTEX plume would be remediated in less than 14 years. However, results from pilot studies may be necessary to design a full-scale bioventing system capable of remediating residual LNAPL. Pilot-scale bioventing systems are currently operating at other Eaker AFB sites under a separate AFCEE program. Preliminary results from these pilot tests at the Building 457 UST and Site 410 suggest that bioventing is effective in soil types similar to those found at the BX Shoppette. Therefore, a bioventing pilot test may not be necessary at the BX Shoppette to size a full-scale bioventing system considering the current bioventing operations at other Eaker AFB sites.

As with Alternative 1, institutional controls and LTM would be required. However, due to the shorter time frame, annual groundwater monitoring would not be required for 15 years, instead of 20 years for Alternative 1.

6.3.3 Alternative 3 - RNA, Soil Excavation, Bioslurping, and Institutional Controls with Long-Term Groundwater Monitoring

This alternative is similar to Alternative 2 except that soil excavation would be used to remove the majority of the residual or mobile LNAPL. Excavation would be implemented either prior to the completion of bioslurping operations or after bioslurping operations. A bioventing unit would not be installed under this alternative. Removal of LNAPL-contaminated soil could be accomplished rapidly by excavation to remove the remaining contaminant source. An estimated 1,700 cubic yards (cy) of contaminated soil (and 1,850 cy of backfill) would require removal. Excavated soil likely could be treated in the Base landfarming operation, which is permitted by the state.

As with Alternatives 1 and 2, institutional controls and LTM would be required. However, due to the shorter time frame, annual groundwater monitoring would not be required for as many years.

6.4 EVALUATION OF ALTERNATIVES

This section provides a comparative analysis based on the effectiveness, implementability and cost criteria for the three previously discussed remedial alternatives. A summary of this evaluation is presented in Section 6.5.

6.4.1 Alternative 1 - RNA, Bioslurping, and Institutional Controls with Long-Term Groundwater Monitoring

6.4.1.1 Effectiveness

Section 5 of this document presents the results of the Bioscreen models completed to evaluate the RNA alternative at the former BX Shoppette. Model results predicted that under the most conservative of site conditions, RNA will limit BTEX migration to within 500 feet of the source area and slowly reduce contaminant mass and toxicity. Potential exposure pathways (i.e., downgradient potable water wells) are not likely to be completed. Groundwater monitoring will allow for continued evaluation of BTEX migration and ensure the continued effectiveness of this alternative. The drainage canal located north/northeast overlaps the periphery of the groundwater BTEX plume; therefore, significant concentrations of BTEX contamination are not expected to discharge to the canal. This hypothesis is supported by the fact that BTEX concentrations have not been detected in the canal along suspected sections of site groundwater underflow. Furthermore, the federal ambient water quality criteria presented in Table 6.1 suggest any BTEX contamination reaching the canal would have to occur at extremely elevated concentrations to pose a hazard to human health or the environment. In the event that migration of BTEX compounds exceed predictions, this alternative does not cease to be protective; however, the alternative should be reevaluated.

Initial mobile LNAPL removal rates exceeding 125 gallons per month (Looney, 1996) suggest that bioslurper operations at the BX Shoppette are effectively removing mobile LNAPL. In addition, the bioslurping system is extracting a layer of the shallowest groundwater and soil vapor within the source area. Because of its close proximity to LNAPL, this groundwater would be expected to have very high concentrations of dissolved fuel hydrocarbons; therefore, it is the ideal groundwater to target for extraction from the aquifer system. The removal and treatment of soil vapor is analogous to soil

vapor extraction. Fortuitously, the same vapor extraction process promotes *in situ* contaminant biodegradation by drawing uncontaminated soil vapor through contaminated soils.

The effectiveness of this remedial alternative requires that excavations or drilling within the source area be conducted only by properly protected site workers. Reasonable land use assumptions for the plume area indicate that exposure is unlikely unless excavation or drilling activities bring contaminated soil to the surface. Existing health and safety plans should be enforced to reduce risks from any proposed remediation systems and during installation of additional sentry and LTM wells. Long-term land use restrictions would be required to ensure that shallow groundwater will not be pumped or removed for potable use within, and approximately 500 feet in all directions from, the existing BTEX plume.

Compliance with AFCEE program goals is one component of the long-term effectiveness evaluation criterion. Alternative 1 will satisfy program objectives designed to promote RNA as a component of site remediation and to scientifically document natural attenuation processes. Alternative 1 is based on the effectiveness of natural processes that minimize contaminant migration and reduce contaminant mass over time, and the effectiveness of institutional controls. Bioscreen model results suggest that BTEX plume migration will be naturally attenuated within 500 feet of the source area (BTEX below 1 μ g/L).

Apart from the administrative concerns associated with enforcement of long-term land use restrictions and long-term groundwater monitoring programs, this remedial alternative should provide reliable, cost-effective protection. For cost comparison purposes, it is assumed that bioslurping will be performed for a period of 1 year. At that time, most mobile LNAPL will likely be removed from all site monitoring wells. Limited aerobic biodegradation of the residual LNAPL biodegradation should also be increased during bioslurping operations as vadose soils are replenished with atmospheric oxygen through the vacuum effects of bioslurping. After bioslurping operations are terminated, residual LNAPL will act as a BTEX source to groundwater until completely degraded through weathering.

For costing purposes, Parsons ES assumed that LTM will continue for a 20-year period. Although the most favorable of model scenarios predict that LNAPL in the source area will remain for 14 years (50 percent per year loss of LNAPL), actual removal rates of mobile and residual LNAPL through bioslurping operations may exceed this

assumed removal rate within the first year of operation, but decrease to less than this rate is subsequent years. The 20-year time frame assumes that residual and mobile LNAPL removal will continue through 1 year of bioslurping and 19 years of continued source weathering and dissolved BTEX remediation. During these 20 years, dissolved benzene concentrations within the interior of the BTEX plume in the shallow aquifer should decrease below federal MCLs. BTEX concentrations in the deeper semi-confined aquifer at POC wells are predicted to be nondetectable.

6.4.1.2 Implementability

Alternative 1 is not technically difficult to implement. A bioslurper is currently being used to remove mobile LNAPL from monitoring wells TW-1105 and TW-1108 at the former BX Shoppette. These two monitoring wells contained the only measurable mobile LNAPL in March 1996. Initial LNAPL recovery rates are favorable (>250 gallons of mobile LNAPL recovered in the first 2 months of operation) and suggest that substantial remediation of the source area will be achieved. Bioslurper operations are predicted to continue for at least the next 6 to 12 months (Looney, 1996).

Installation of monitoring wells and annual groundwater monitoring are standard procedures. Long-term management efforts will be required to ensure that proper sampling procedures are followed. Periodic site reviews should be conducted to confirm the adequacy and completeness of LTM data and to verify the effectiveness of this remediation approach. There also may be administrative concerns associated with long-term enforcement of groundwater use restrictions. Future land use within the source area may be impacted by leaving contaminated soil and groundwater in place. Regulators, Base officials, Base employees, and the public would have to be informed of the benefits and limitations of the RNA option. Educational programs are not difficult to implement, and the initial regulatory reaction to this alternative has been positive.

6.4.1.3 Cost

The cost of Alternative 1 is summarized in Table 6.3. A more complete breakdown and present worth analysis of these costs is provided in Appendix F. Capital costs include the construction of five new LTM wells. The total present worth cost of mobile LNAPL recovery from continued bioslurping for a period of 1 year and implementation of the LTM plan for 20 years is approximately \$317,000. Bioslurping costs are accounted for under a separate AFCEE contract and are not reflected in the cost estimate

TABLE 6.3 ALTERNATIVE 1 - COST ESTIMATE BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Capital Costs	Cost
Design/Construct 5 LTM Wells	\$13,500
Annual Monitoring Costs (20 years)	Cost per Event
Conduct Annual Sampling at 11 LTM and 3 surface water locations	\$11,060
Maintain Institutional Controls/Public Education	\$5,000
Project Management and Reporting	\$10,700
Present Worth of Alternative 1 a/	\$317,000

^a/ Based on an annual adjustment factor of 7 percent (USEPA, 1993).

for Alternative 1. Also included are the costs of maintaining institutional controls and long-term groundwater monitoring for a total of 20 years.

6.4.2 Alternative 2 - RNA, Bioslurping/Bioventing, and Institutional Controls with Long-Term Groundwater Monitoring

6.4.2.1 Effectiveness

The effectiveness of the RNA, bioslurping, institutional controls, and LTM components of this alternative were described under Alternative 1. Bioslurping is an effective technology for removing mobile LNAPL while simultaneously enhancing biodegradation by subsurface aeration. Traditional bioventing involves the injection of air into a vent well (often a converted monitoring well) to achieve oxygenation of the subsurface. The goal of a bioventing system under Alternative 2 would be to biodegrade residual LNAPL from the source area that may not be remediated through bioslurping, and thereby promote RNA of dissolved contaminants in the groundwater through a further decreased infusion of additional contaminants.

The monitoring wells used in the extraction of mobile LNAPL (TW-1105 and TW-1108) with the bioslurper have screened intervals that extend a few feet above the water

table. Therefore, these wells could be converted for air injection following completion of bioslurping. However, additional bioventing wells would need to be installed in the source area to optimize the effective treatment zone. Model results suggest that increased reduction of contaminant mass in source area soils would enhance the effectiveness of RNA and expedite plume reduction.

Alternative 2 is not difficult to implement should provide reliable, continuous protection with little risk from temporary system failures. This alternative is based on the effectiveness of the current bioslurping and a future bioventing system in removing mobile and residual LNAPL from the site, preferably within 4 years. Once BTEX leaching rates are reduced, RNA will then minimize contaminant migration and reduce contaminant mass in groundwater. This alternative also complies with AFCEE program goals because RNA remains the predominant remediation method for fuel hydrocarbons dissolved in groundwater at the site. This remedial alternative, however, will result in the generation of drill cuttings, LNAPL, contaminated water, and soil gas, all which may require treatment and/or disposal.

6.4.2.2 Implementability

Alternative 2 is not difficult to implement. Residual LNAPL removal would be conducted through bioventing at the former BX Shoppette from wells that would be installed in source area soils that are oxygen deficient. The bioventing system would consist of a series of air injection wells connected to a small blower by underground piping. This equipment is fairly common within the environmental industry. Periodic maintenance would be required for the regenerative blower, and weekly system checks are recommended to record operating data such as injection pressures and flow rates. A bioventing pilot test is not included within the cost estimate for this alternative for a full-scale system design. Instead, Initial bioventing pilot test results at two other Eaker AFB locations (Building 457 UST and Site 410) would be used to obtain the necessary parameters for bioventing system design at the BX Shoppette. The technical and administrative implementability concerns associated with the RNA and LTM components of this remedial alternative are similar to those discussed in Alternative 1.

6.4.2.3 Cost

The estimated capital and operating costs of Alternative 2 are summarized in Table 6.4. A more complete breakdown and a present-worth analysis of these costs are provided in Appendix F. Capital costs are the same for construction of five new LTM

wells, as in Alternative 1. In addition, Alternative 2 includes costs for the 6 bioventing wells and a bioventing blower. It is assumed that the bioventing system would begin operation after 1 year of bioslurping operations (fall 1997) and would operate for a total of 3 years after installation. The increase in source removal rates over a bioslurping operation alone (as in Alternative 1) will decrease the time required for LTM to 15 years. The overall present worth cost for 1 year of continued bioslurping, installation of the bioventing system after bioslurping, operation of the bioventing system, and implementation of the LTM plan is estimated to be approximately \$399,000. Also included are the costs of maintaining institutional controls and long-term groundwater monitoring for a total of 15 years.

6.4.3 Alternative 3 - RNA, Soil Excavation, Bioslurping, and Institutional Controls with Long-Term Groundwater Monitoring

6.4.3.1 Effectiveness

The effectiveness of the RNA, bioslurping, institutional controls, and LTM components of this alternative were described under Alternatives 1 and 2. Soil excavation is an established technology for reducing source contamination and controlling plume migration. Soil excavation would instantaneously eliminate the majority of the continuing source for dissolved BTEX in the groundwater. Low levels of mobile and residual LNAPL contamination would be expected to remain below the water table, at the capillary fringe, and at the periphery of the excavation. Natural weathering is expected to continue reducing LNAPL levels after excavation. Predicting the effects on plume migration after source excavation and subsequent weathering is beyond the capabilities of the Bioscreen model. However, source reduction rates are suspected to equal or exceed those rates potentially achieved through bioslurping/bioventing (Alternative 2). Therefore, it is likely that excavation of the source area and subsequent weathering will lead to complete BTEX plume remediation within the next 10 to 15 years.

Alternative 3 should provide reliable, continuous protection. This alternative, however, does not fully attain AFCEE program goals because of the generation of soil waste. However, the excavated soil would be remediated in the Base landfarming operation, which relies extensively on biological processes to remediate fuel hydrocarbon contamination. Also, RNA remains the principal mechanism for remediating the dissolved fuel hydrocarbon concentrations in site groundwater.

TABLE 6.4 ALTERNATIVE 2 - COST ESTIMATE BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Capital Costs	Cost		
Design/Construct 5 LTM Wells	\$13,500		
Diagraphica System Installation	\$74,000		
Bioventing System Installation	\$74,000		
Annual Monitoring Costs (15 years)	Cost per Event		
Conduct Sampling at 11 LTM and 3 surface water locations	\$11,000		
Maintain Institutional Controls/Public Education	\$5,000		
Project Management and Reporting	\$10,700		
Bioventing Costs (years 2 through 4)			
System Maintenance	\$16,000		
Reporting Costs	\$4,300		
Present Worth of Alternative 2 a/	\$399,000		

^{a/} Based on an annual adjustment factor of 7 percent (USEPA, 1993).

6.4.3.2 Implementability

Alternative 3 would minimally disrupt Base activities because the Base is closed. Excavation would commence prior to discontinuing bioslurping operations within the next 6 to 12 months. Mobile and residual LNAPL would be physically removed by excavating soil to a depth of approximately 9 feet in the source areas surrounding TW-1105 and TW-1111. The areas would then be backfilled with clean native soil or treated soils from the adjacent soil landfarm. Because Eaker AFB operates a state-permitted landfarm on Base, it is assumed that contaminated soil would be treated at this facility. The technical and administrative implementability concerns associated with the bioslurping, RNA, LTM, and institutional control components of this remedial alternative are similar to those discussed for the previous two alternatives. However, two existing wells proposed for LTM (monitoring wells TW-1105 and TW-1111) in the source areas

would be destroyed during source excavation. These wells would be replaced after to excavation complete the LTM well plan described in Section 7.

6.4.3.3 Cost

The cost of Alternative 3 is summarized in Table 6.5. A more complete breakdown and present worth analysis of these costs are provided in Appendix F. The total present worth cost of Alternative 3 is approximately \$340,000. The cost of Alternative 3 varies from the cost of Alternative 1 by the addition of excavation, treatment, and replacement of approximately 1,700 cubic yards of contaminated soil. For cost-comparison purposes, it was assumed that the bioslurping system would continue to operate for 1 year before excavation. Also included are the costs of maintaining institutional controls and long-term groundwater monitoring for a total of 15 years.

6.5 RECOMMENDED REMEDIAL APPROACH

Three remedial alternatives were evaluated for remediation of the shallow groundwater at the former BX Shoppette. Components of the alternatives evaluated include mobile LNAPL recovery, bioslurping, bioventing, soil excavation, RNA, LTM, and institutional controls. Tables 6.2, 6.3, 6.4, and 6.5 summarize the results of the evaluation based upon effectiveness, implementability, and cost criteria. Based on this evaluation, the Air Force recommends Alternative 3 as achieving the best combination of risk reduction, implementability, and cost effectiveness.

All three alternatives rely on natural attenuation processes to reduce migration and toxicity of the dissolved BTEX plume. All three also help limit further BTEX plume migration by reducing the magnitude of continuing sources. Implementation of Alternative 1 is estimated to achieve BTEX remediation within 20 years. Implementation of Alternative 2 or 3 is estimated to achieve BTEX remediation within 15 years. The bioslurping/bioventing components of Alternatives 1 and 2 require periodic monitoring and maintenance, while the soil excavation component of Alternative 3 would generate a significant volume of waste soil that would require treatment.

The final evaluation criterion used to compare each of the three remedial alternatives was present worth cost. Because the Base is being closed, it is the opinion of the Air Force that the slight additional cost of Alternative 3 over Alternative 1 is justified by the reduction in the estimated cleanup time. Furthermore, Alternative 3 is expected to achieve cleanup at least as fast and at a lower cost than Alternative 2. Although Alternative 3 does not comply with the AFCEE goal for the minimization of generated

TABLE 6.5 ALTERNATIVE 3 - COST ESTIMATE BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

Capital Costs	Cost			
Design/Construct 7 LTM Wells	\$15,000			
Excavation (Excavation, Transport, Disposal, and Backfill)	\$29,900			
Annual Monitoring Costs (15 years)	Cost per Event			
Conduct Sampling at 11 LTM and 3 Surface Water Locations	\$11,000			
Maintain Institutional Controls/Public Education	\$5,000			
Project Management and Reporting	\$10,700			
Excavation Costs (3 years)				
Annual Tilling/Sampling	\$18,500			
Reporting Costs	\$6,500			
Clearance Sampling (Single Event at End of Annual Sampling)	\$5,800			
Present Worth of Alternative 3 a/	\$340,000			

^{a/} Based on an annual adjustment factor of 7 percent (USEPA, 1993).

waste, it is expected to achieve the most rapid remediation of dissolved BTEX concentrations and has the convenience of utilizing an on-Base landfarm to minimize cost, transportation, and disposal requirements. Implementation of Alternative 3 would require land use and groundwater use controls to be enforced for approximately 15 years (possibly less depending on the potential for RNA) beyond the startup date of bioslurping operations (September 1996), along with annual groundwater monitoring in the shallow and deep aquifers for up to 15 years.

SECTION 7

LONG-TERM MONITORING PLAN

7.1 OVERVIEW

In keeping with the requirements of the preferred remedial alternative for the former BX Shoppette (LNAPL recovery, soil excavation, and RNA with LTM), a long-term groundwater monitoring plan was developed. The purpose of this component of the preferred remedial alternative for the site is to assess conditions over time, confirm the effectiveness of LNAPL recovery/removal and natural processes at reducing dissolved contaminant mass and minimizing contaminant migration, assess compliance with regulatory cleanup goals, and evaluate the need for additional remediation.

To demonstrate attainment of site-specific remediation goals and to verify the predictions of the Bioscreen models developed for the former BX Shoppette, the LTM plan consists of identifying the location of two separate groundwater monitoring networks and developing a groundwater sampling and analysis strategy. The strategy described in this section is designed to monitor plume migration in the shallow and semiconfined aquifer over time, to verify that RNA (as augmented with source reduction technologies) is occurring at rates sufficient to protect potential receptors, and to meet federal regulatory requirements. In the event that data collected under this LTM program indicate that the selected remedial alternative is insufficient to protect human health and the environment, contingency controls to augment the beneficial effects of RNA/be necessary.

7.2 MONITORING NETWORKS

Two separate sets of wells will be used at the site as part of remedial Alternative 1. The first set will consist of LTM wells located within the observed BTEX plume to verify the results of the Bioscreen modeling effort and to ensure that natural attenuation is occurring at rates sufficient to minimize plume expansion (i.e., meet the first level of RAOs for the site). This network of wells will consist of four existing and two proposed monitoring wells screened within the shallow aquifer to provide confirmation and verification of the quantitative groundwater modeling results.

The second set of groundwater monitoring wells are sentry wells that will be located downgradient from the source area in the shallow and deep aquifers. The purpose of the

sentry wells is to verify that no BTEX compounds exceeding federal MCLs migrate to areas outside of institutional control where groundwater may affect potential receptors (i.e., meet the second level of RAOs for the site). This network will consist of three sentry monitoring wells screened across the shallow aquifer and two sentry monitoring wells screened in the deep aquifer.

7.2.1 Long-Term Monitoring Wells

Two proposed and four existing groundwater wells/points will be used to monitor the effectiveness of RNA in reducing total contaminant mass and minimizing contaminant migration at the former BX Shoppette. Proposed monitoring wells to be placed near the former locations of monitoring wells TW-1105 and TW-1111 [assumed to be removed during soil excavation activities to be implemented under Alternative 3 (Section 6)] will be used to monitor conditions in the plume source area. Monitoring wells TW-1110 and MW-1104 will be used to evaluate groundwater conditions along the apparent migration pathway to the southeast, and monitoring points ESMP-6S and ESMP-8S will be used to monitor groundwater conditions near the extent of the apparent southeasterly flow direction. Figure 7.1 identifies the locations of groundwater monitoring points proposed for LTM. This network will supplement the sentry and sentry wells to provide early confirmation of model predictions and to allow additional response time if necessary.

7.2.2 Sentry Wells

Three proposed sentry wells will be used for monitoring groundwater conditions in the shallow aquifer downgradient from the source area at the former BX Shoppette (Figure 7.1). One proposed sentry well will be located approximately 500 feet to the southeast of the southern source area located at TW-1105. Another proposed sentry well will be similarly placed approximately 500 feet to the southeast of the northern source area located at TW-1111. To ensure that BTEX concentrations are not migrating away from the site to the northwest during periods of fluctuating groundwater conditions, a third sentry well will be located northwest of the source areas (approximately 30 feet northwest of monitoring well MW-1120). Figure 7.1 shows the proposed locations of the sentry wells for the shallow aquifer.

Two proposed sentry wells will be used for the deeper, sand aquifer. One proposed sentry well will be located approximately 30 feet northwest of monitoring well MW-1120 (near the sentry well for the shallow aquifer). The proposed sentry well will be located southwest of monitoring well MW-1116 to ensure protection of downgradient receptors

along the direction of observed groundwater flow to the southwest. Figure 7.1 shows the proposed locations of the sentry wells for the deeper aquifer.

The purpose of the sentry wells is to provide information on the direction of plume migration from the source areas and to verify that no contaminated groundwater exceeding federal MCLs migrates beyond the area under institutional control. Although model results suggest that the BTEX plume will not migrate more than 500 feet in any direction of the source area in the shallow aquifer and 200 feet within the deep aquifer (within the next century), these sentry wells are the technical mechanisms used to demonstrate protection of human health and the environment and compliance with site-specific numerical remediation goals.

As with the LTM wells in the shallow aquifer, the sentry wells in the shallow aquifer will be screened in the same hydrogeologic unit as the contaminant plume. Data presented in this report concerning the nature and extent of contamination at the site suggest that a 10-foot screen with approximately 5 feet of screen below the groundwater surface of the shallow aquifer will be sufficient to intercept the contaminant plume at this site. Sentry wells in the deeper aquifer also will be screened with 10-foot screen intervals, with the top of the screen placed near the bottom surface of the clay layer separating the surface aquifer from the deeper aquifer.

7.3 SURFACE WATER SAMPLING LOCATIONS

In order to assess the potential future impact of groundwater discharge, surface water samples will be collected along the drainage canal north/northeast of the BX Shoppette. Trends in analytical results from these samples will be used to evaluate the impact of groundwater discharge on the quality of the surface water, and the effects of natural attenuation on contaminant concentrations (if any) in the drainage canal.

Surface water samples will be collected at three locations along the northwest/southeast flowing canal, as illustrated on Figure 7.1. These sampling locations have been selected to assess surface water quality upstream from, within, and immediately downstream from a potential plume discharge area.

7.4 GROUNDWATER/SURFACE WATER SAMPLING

To ensure that sufficient contaminant removal is occurring at the former BX Shoppette to meet site-specific remediation goals, this long-term groundwater monitoring plan includes a general sampling and analysis plan (SAP). LTM wells, sentry wells, and surface water will be sampled and analyzed annually to document plume migration and to

verify that natural processes are effectively reducing contaminant mass and mobility. Reduction in toxicity will be implied by mass reduction. The SAP also is aimed at assuring that the selected remedial alternative can achieve site-specific remediation concentration goals for BTEX compounds.

7.4.1 Analytical Protocol

All LTM and sentry wells in the LTM program will be sampled and analyzed to determine compliance with chemical-specific federal MCLs to verify the effectiveness of RNA at the site. Water level measurements will be made at all LTM and sentry wells during each sampling event. Groundwater samples collected for LTM wells will be analyzed for the parameters listed in Table 7.1. Groundwater samples collected for sentry wells will be analyzed for the parameters listed in Table 7.2. A more detailed site-specific groundwater SAP should be prepared prior to initiating the LTM program.

Surface water samples will be collected and analyzed to verify that RNA is reducing BTEX concentrations in groundwater before potential impact on the adjacent drainage canal. Surface water samples will be analyzed for the parameters listed in Table 7.3.

7.4.2 Sampling Frequency

Each LTM, sentry, and surface water location will be sampled once each year for 15 years. If the data collected during this time period support the anticipated effectiveness of RNA at this site, the sampling frequency can be reduced to once every 5 years for all wells in the LTM program, or eliminated. If the data collected at any time during the monitoring period indicate the need for additional remedial activities at the site, sampling frequency should be adjusted accordingly.

TABLE 7.1 GROUNDWATER MONITORING ANALYTICAL PROTOCOL FOR LONG-TERM MONITORING WELLS BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

		T			_			-				1				, _		
Field or Fixed-Base	Laboratory	Field		Field		Field		Field				Field		rield		Fixed-base	or field (for	Hach® method)
Sample Volume, Sample Container, Sample Preservation		Collect 100 mL of water in a glass container: acidify with	hydrochloric acid per method	Collect 100 mL of water in a	grass container	W.A.		Collect 300 mL of water in	bottles: analyze immediately:	alternately, measure dissolved	oxygen in situ	Collect 100–250 mL of water in a glass or plastic container; analyze	Collect 100, 250 mt of	glass or plastic container		Collect up to 40 mL of water in a	glass or plastic container; cool to	
Recommended Frequency of	Analysis	Annually for 15 Years		Annually for 15	Annually for 15	Years		Annually for 15 Years			A	Annually for 15 Years	Annually for 15	Years		Annually for 15	r ears	
Dode II	Data Use	concentrations may be	indicative of the anaerobic biodegradation process of iron reduction.	Same as above.	Metabolism rates for	microorganisms depend on	temperature.	I he oxygen concentration is a data input to the Bioplume II	model; concentrations less than	l mg/L generally indicate an	Aerohic and anserohic arconage	are pH-sensitive.	General water quality parameter	used as a marker to verify that site samples are obtained from	the same groundwater system.	Substrate for microbial	denleted	
Comments	Field only	i icid oliiy		Alternate method; field only	Field only		D. C	Method A4500	for a comparable	laboratory procedure	Protocols/Handbook	methods ^{a/}	Protocols/Handbook	methods	. OUCH FIRM	Handbook method	Hach® method is	photometric
Method/Reference	Colorimetric	A3500-Fe D		Colorimetric Hach® 25140-25	E170.1		Dissolved overgen	meter			E150.1/SW9040, direct	reading meter	E120.1/SW9050, direct	reading meter	IC method E300 or	Hach® Nitraver 5	method	
Analyte	Ferrous Iron	(Fe ²⁺)		Ferrous Iron (Fe ²⁺)	Temperature		Dissolved	Oxygen			Hd		Conductivity		Nitrate			

TABLE 7.1 (Concluded) GROUNDWATER MONITORING ANALYTICAL PROTOCOL FOR LONG-TERM MONITORING WELLS BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

				Recommended	Sample Volume, Sample	Field or
				Frequency of	Container, Sample Preservation	Fixed-Base
Analyte	Method/Reference	Comments	Data Use	Analysis		Laboratory
Sulfate (SO ₄ ²⁻)	IC method E300 or	Method E300 is a	Substrate for anaerobic	Annually for 15	Collect up to 40 mL of water in a	Fixed-base
	method SW9056 or	Handbook method;	microbial respiration.	Years	glass or plastic container; cool to	or field (for
	Hach [®] SulfaVer 4	method SW9056 is			4°C.	Hach®
	method	an equivalent				method)
		procedure. Hach®)
		method is				
		Photometric.				
Redox potential	A2580 B	Measurements	The redox potential of	Annually for 15	Collect 100-250 mL of water in a	Field
		are made with	groundwater influences and is	Years	glass container, filling container	
		electrodes; results	influenced by biologically		from bottom; analyze immediately	
		are displayed on a	mediated reactions; the redox		•	
		meter; samples	potential of groundwater may			
		should be protected	range from more than 200 mV to			
		from exposure to	less than -400 mV.			
		atmospheric oxygen				
Methane,	RSKSOP-114 modified	Method published	The presence of methane	Annually for 15	Collect water samples in 40 mL	Fixed-base
ethane, ethene	to analyze water	and used by the	suggests BTEX degradation via	Years	volatile organic analysis (VOA)	
	samples for methane by	USEPA National	an anaerobic pathway utilizing		vials with butyl gray/Teflon-lined	
	headspace sampling	Risk Management	carbon dioxide (carbonate) as		caps (zero headspace); cool to	
	with dual thermal	Research	the electron acceptor		4°C.	
	conductivity and flame	Laboratory.	(methanogenesis).			
	ionization detection.	-				
Aromatic	Purge and trap GC	Handbook method;	BTEX are the primary target	Annually for 15	Collect water samples in a 40 mL	Fixed-base
hydrocarbons	method SW8020 or	analysis may be	analytes for monitoring natural	Years	VOA vial with zero headspace;	
(BTEX)	GC/MS method	extended to higher	attenuation; BTEX		cool to 4°C; add hydrochloric acid	
	SW8260.	molecular weight	concentrations must also be		to pH ≤2	
		alkylbenzenes	measured for regulatory			
			compliance.			

a/ Protocol analytical methods are those presented by Wiedemeier et al. (1995). Handbook refers to "AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigation/Feasibility Study (RI/FS).

AFT

GROUNDWATER MONITORING ANALYTICAL PROTOCOL FOR SENTRY WELLS EAKER AIR FORCE BASE, ARKANSAS BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA TABLE 7.2

				Recommended	Sample Volume Sample	Field or
				Frequency of	Container Samule Preservation	Fived-Race
Analyte	Method/Reference	Comments	Data Use	Analysis		Laboratory
Temperature	E170.1	Field only	Metabolism rates for	Annually for 15	N/A	Field
			microorganisms depend on	Years		
			temperature.			
Dissolved	Dissolved oxygen	Refer to	The oxygen concentration is a	Annually for 15	Collect 300 mL of water in	Field
Oxygen	meter	Method A4500	data input to the Bioplume II	Years	biochemical oxygen demand	
		for a comparable	model; concentrations less than		bottles; analyze immediately;	
		laboratory procedure	1 mg/L generally indicate an		alternately, measure dissolved	
			anaerobic pathway.		oxygen in situ	
Hd	E150.1/SW9040, direct	Protocols/Handbook	Aerobic and anaerobic processes	Annually for 15	Collect 100-250 mL of water in a	Field
	reading meter	methods ²⁰	are pH-sensitive.	Years	glass or plastic container; analyze	
	200501	- 7.	T. 1 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -		minicularely .	
Kedox potential	A2580 B	Measurements	I he redox potential of	Annually for 15	Collect 100–250 mL of water in a	Field
		are made with	groundwater influences and is	Years	glass container, filling container	
		electrodes; results	influenced by biologically		from bottom; analyze immediately	
		are displayed on a	mediated reactions; the redox			
		meter; samples	potential of groundwater may			
		should be protected	range from more than 200 mV to			
		from exposure to	less than -400 mV.			
		atmospheric oxygen	:			
Aromatic	Purge and trap GC	Handbook method;	BTEX are the primary target	Annually for 15	Collect water samples in a 40 mL	Fixed-base
hydrocarbons	method SW8020 or	analysis may be	analytes for monitoring natural	Years	VOA vial with zero headspace;	
(BTEX)	GC/MS method	extended to higher	attenuation; BTEX		cool to 4°C; add hydrochloric acid	
	SW8260.	molecular weight	concentrations must also be		to pH ≤2	
		alkylbenzenes	measured for regulatory			
			compliance.			
Conductivity	E120.1/SW9050, direct	Protocols/Handbook	General water quality parameter	Annually for 15	Collect 100-250 mL of water in a	Field
	reading meter	methods	used as a marker to verify that	Years	glass or plastic container	
			site samples are obtained from			
			the same groundwater system.			

a/ Protocol analytical methods are those presented by Wiedemeier et al. (1995). Handbook refers to "AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigation/Feasibility Study (RI/FS).

TABLE 7.3 MONITORING ANALYTICAL PROTOCOL FOR SURFACE WATER SAMPLES **BX SHOPPETTE (SITE E11)**

DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

		-		Recommended	Sample Volume, Sample	Field or
				Frequency of	Container, Sample Preservation	Fixed-Base
Analyte	Method/Reference	Comments	Data Use	Analysis		Laboratory
Dissolved	Dissolved oxygen	Refer to Method A4500	The oxygen concentration is a	Annually for 15	Collect 300 mL of water in	Field
Oxygen	meter	for a comparable	data input to the Bioplume II	Years	biochemical oxygen demand	
		laboratory procedure	model; concentrations less than		bottles; analyze immediately;	
			1 mg/L generally indicate an		alternately, measure dissolved	
			anaerobic pathway.		oxygen in situ	
Hd	E150.1/SW9040,	Protocols/Handbook	Aerobic and anaerobic processes	Annually for 15	Collect 100-250 mL of water in a	Field
	direct reading meter	methods"	are pH-sensitive.	Years	glass or plastic container; analyze	
					immediately	
Conductivity	E120.1/SW9050,	Protocols/Handbook	General water quality parameter	Annually for 15	Collect 100-250 mL of water in a	Field
	direct reading meter	methods	used as a marker to verify that site	Years	glass or plastic container	
			samples are obtained from the			
			same groundwater system.			
TOC	0906MS	USEPA Test Method ^{b/}	TOC often used in regulatory	Annually for 15	Collect 500 mL of water in a glass	
			compliance to monitor the impacts	Years	or plastic container. Cool to 4°C;	
			of organics compounds on surface		add hydrochloric or sulfuric acid to	
			water quality		pH ≤2	
Aromatic	Purge and trap GC	Handbook method;	BTEX are the primary target	Annually for 15	Collect water samples in a 40 mL	Fixed-base
hydrocarbons	method SW8020 or	analysis may be	analytes for monitoring impacts of	Years	VOA vial with zero headspace;	
(BTEX)	GC/MS method	extended to higher	groundwater discharging into		cool to 4°C; add hydrochloric acid	
	SW8260	molecular weight	surface water; BTEX		to pH ≤2	
		alkylbenzenes	concentrations must also be			
			measured for regulatory			
			compliance.			
			· 11 ×× (4001) /			

a/ Protocol analytical methods are those presented by Wiedemeier et al. (1995). Handbook refers to "AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigation/Feasibility Study (RI/FS). Test Method refers to "Test Methods For Evaluating Solid Waste (EPA, 1995).

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

This report presents the results of a TS conducted to evaluate the use of RNA of fuel-hydrocarbon-contaminated groundwater at the former BX Shoppette, Eaker AFB, Arkansas. Specifically, the Domenico (1987) analytical solute transport model Bioscreen was used in conjunction with site-specific geologic, hydrologic, and laboratory analytical data to simulate the migration and biodegradation of fuel hydrocarbon compounds dissolved in groundwater. Groundwater contaminant and geochemical data strongly suggest that aerobic biodegradation of fuel hydrocarbons is occurring at the site. In addition, the data also suggest that anaerobic biodegradation is occurring via manganese reduction, sulfate reduction, methanogenesis, and iron reduction.

To collect the data necessary for the RNA demonstration, Parsons ES collected and analyzed soil, groundwater, surface water, and sediment samples from the site. Site-specific geologic, hydrologic, and laboratory analytical data were then used in the Bioscreen analytical groundwater model to simulate the effects of advection, dispersion, sorption, and biodegradation on the fate and transport of the dissolved BTEX plume. Extensive site-specific data were used for model implementation. Model parameters that could not be obtained from existing site data were estimated using widely accepted literature values for aquifer materials similar to those found at the site. Conservative aquifer parameters were used to construct the Bioscreen models for this study. Therefore, the model results presented herein represent conservative predictions of groundwater BTEX plume migration.

Two model calibrations were performed for the BX Shoppette to provide a range of model predictions given the variability of site conditions. For calibrated model BX1SCAL, it was assumed that source conditions observed in March 1996 remained at steady-state, and the dissolved BTEX biodegradation rate was maintained at 0.0062 day-1 [calculated by the method of Buscheck and Alcantar (1995)]. Calibrated model BX2SCAL was identical to model BX1SCAL with the exception that the dissolved BTEX biodegradation rate was increased to 0.011 day-1 through a trial-and-error process to provide a better match between modeled and observed BTEX plume concentrations and dimensions.

On the basis of the two models calibrated to site conditions, six different model scenarios were run to evaluate plume characteristics when influenced by different source removal rates. Models BX1SMODA through BX1SMODC were based on calibrated model BX1SCAL and simulated source removal rates of 5, 20, and 50 percent per year. Models BX2SMODA through BX2SMODC were based on calibrated model BX2SCAL and also simulated source removal rates of 5, 20, and 50 percent per year, respectively for the shallow aquifer. The time required for BTEX remediation in the six model scenarios was predicted to range between 14 and 200 years. Under any model scenario, the BTEX plume is not predicted to begin noticeable shrinkage for at least 6 years. However, calibrated model BX1SCAL predicts that the leading edge of the BTEX plume in the

shallow aquifer will not migrate farther than 500 feet downgradient of the source area. Model BX1SCAL was assumed to be the most conservative model scenario because it assumes a steady-state source term.

The results of this study suggest that natural attenuation of BTEX compounds is occurring at the BX Shoppette to the extent that the dissolved concentrations of these compounds in groundwater should be reduced to levels below current regulatory standards long before potential downgradient receptors could be adversely affected (i.e., the potential contaminant migration pathway will not be complete at potential receptor exposure points described in Section 6.2). Although the drainage canal may potentially receive groundwater contamination during groundwater table fluctuations, BTEX contamination has not previously been detected in the drainage canal at a point of discharge. Furthermore, the closest on-Base potable water well is located approximately 4,200 feet southwest of the BX Shoppette and is screened 1,300 feet bgs in the Wilcox Formation.

Based on the minimal potential for exposure to downgradient receptors, the rates of BTEX plume migration and degradation predicted by model BX1SCAL, and the cost effectiveness of Alternative 3 as compared to the other remedial alternatives (on a present-worth basis), the Air Force recommends continued operation of the bioslurper until soil excavation in the source area can be initiated. Source excavation will be coupled with RNA, institutional controls, and LTM as the remedial option for the former BX Shoppette site.

To accomplish the recommended alternative, construction activities and groundwater use in and downgradient from the source area should be restricted for a period of approximately 15 years or until groundwater contaminant concentrations decrease below federal MCLs for BTEX. Groundwater and surface water samples will be collected during LTM to monitor plume migration, allowing continual reevaluation of this time frame.

To verify the results of the Bioscreen modeling effort, and to ensure that natural attenuation is occurring at rates sufficient to meet regulatory compliance goals, groundwater samples from two proposed wells (to replace monitoring wells TW-1105 and TW-1111 that will be destroyed during the site excavation) and four existing monitoring wells/points (TW-1110, MW-1104, ESMP-6S, and ESMP-8S) have been designated for LTM. Analytical parameters are listed in Table 7.1. In addition, five new sentry wells should be sampled annually for the parameters listed in Table 7.2. If dissolved BTEX concentrations in the sentry wells are found to exceed federal MCLs of 5 μ g/L for benzene, 1,000 μ g/L for toluene, 700 μ g/L for ethylbenzene, or 10,000 μ g/L for total xylenes, additional evaluation or corrective action may be necessary at this site. Surface water samples will be collected from three locations in the drainage canal east of the site and analyzed for BTEX (Table 7.3). Surface water sampling is intended to monitor any interception of the BTEX groundwater plume by the canal.

SECTION 9

REFERENCES

- Abdul, S.A., Gibson, T.L., and Rai, D.N., 1987, Statistical correlations for predicting the partition coefficient for nonpolar organic contaminants between aquifer organic carbon and water: Hazardous Waste and Hazardous Materials, vol. 4, no. 3, p. 211-222.
- Abdul, A.S., Kia, S.F., and Gibson, T.L., 1989, Limitations of monitoring wells for the detection and quantification of petroleum products in soils and aquifers: Ground Water Monitoring Review, Spring, 1989, p. 90-99.
- Air Force Center for Environmental Excellence (AFCEE), 1994, Bioventing Performance and Cost Summary, Brooks Air Force Base, Texas, July.
- Altenschmidt, U. and Fuchs, G., 1991, Anaerobic degradation of toluene in denitrifying *Pseudomonas* sp.: Indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate: Arch. Microbial., vol. 156, p. 152-158.
- Alvarez, P.J.J., and Vogel, T.M., 1991, Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries: Applied Environmental Microbiology, vol. 57, p. 2981-2985.
- Atlas, R.M., 1981, Microbial degradation of petroleum hydrocarbons an environmental perspective: Microbiological Reviews, vol. 45, no. 1, p. 180-209.
- Atlas, R.M., 1984, Petroleum Microbiology: Macmillan Publishing Company, New York.
- Atlas, R.M., 1988, Microbiology Fundamentals and Applications: Macmillan Publishing Company, New York.
- Baedecker, M.J., Siegel, D.I., Bennett, P.C., Cozzarelli, I.M., 1988, The fate and effects of crude oil in a shallow aquifer: I. The distribution of chemical species and geochemical facies, In: G.E. Mallard, and S.E. Ragone, editors, U.S. Geological Survey Toxic Substances Hydrology Program, Proceedings of the Technical Meeting, Phoenix, Arizona, September 26-30, 1988: U.S. Geological Survey Water-Resources Investigations Report 88-42320, p. 29-22.
- Baedecker, M.J., and Cozzarelli, I.M., 1991, Geochemical modeling of organic degradation reactions in an Aquifer contaminated with Crude Oil: U.S. Geological Survey Water-Resources Investigations Report 91-4034. Reston, VA. p 627-632.

- Ball, H.A., Reinhard, M., and McCarty, P.L., 1991, Biotransformation of monoaromatic hydrocarbons under anoxic conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 458-463.
- Ballestero, T.P., Fiedler, F.R., and Kinner, N.E., 1994, An investigation of the relationship between actual and apparent gasoline thickness in a uniform sand aquifer: Ground Water, v. 32, no. 5, p. 708-718.
- Barker, J.F., Patrick, G.C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer: Ground Water Monitoring Review, Winter, 1987, p. 64-71.
- Bartha, R., 1986, Biotechnology of petroleum pollutant biodegradation: Microbial Ecology, vol. 12, p. 155-172.
- Bauman, B., 1991, Biodegradation research of the American Petroleum Institute. Presented at: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. San Diego, CA. March 19-21, 1991.
- Bear, J., 1979, Hydraulics of Groundwater. McGraw-Hill, Inc., New York, New York, 569p.
- Beller, H.R. Reinhard, M., and Grbic-Galic, D., 1992, Metabolic byproducts of anaerobic toluene degradation by sulfate-reducing enrichment cultures: Appl. Environ. Microbiol., vol. 58, p. 3192-3195.
- Biomedical and Environmental Information Analysis (BEIA), 1989, *The Installation Restoration Program Toxicology Guide*, Health and Safety Research Division, Oak Ridge National Laboratory.
- Blake, S.B., and Hall., R.A., 1984, Monitoring petroleum spills with wells some problems and solutions, *in* Proceedings of the Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring: May 23-25, 1984, p. 305-310.
- Bohon, R.L., and Claussen, W.F., 1951, The solubility of aromatic hydrocarbons in water: Journal of American Chemical Society, vol. 73, no. 4, p.1571-1578.
- Borden, R.C., 1991, Simulation of enhanced in situ biorestoration of petroleum hydrocarbons. In: In Situ bioreclamation: Application and Investigation for Hydrocarbons and contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 529-534.
- Borden, R.C.; and Bedient, P.B., 1986, Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation theoretical development: Water Resources Research, vol. 22, no. 13, p. 1973-1982.
- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, New York.

- Bouwer, E.J., 1994, Bioremediation of chlorinated solvents using alternate electron acceptors: In: Handbook of Bioremediation. Lewis Publishers. Boca Raton, FL. 1994.
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: *Ground Water*, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: *Water Resources Research*, 12(3), p. 423-428.
- Brannon, Jerry, 1996, Personal Communication, Air Force Base Conversion Agency, OL-J, Eaker Air Force Base, Arkansas.
- Brock, T.D., Madigan, M.T., Martinko, J.M., Parker, J., 1994, Biology of Microorganisms: Prentice Hall, New Jersey.
- Brown, R.A., Dey, J.C. and McFarland, W.E., 1991, Integrated site remediation combining groundwater treatment, soil vapor extraction, and bioremediation, In: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 444-449.
- Bruce, L., Miller, T., and Hockman, B., 1991, Solubility versus equilibrium saturation of gasoline compounds a method to estimate fuel/water partition coefficient using solubility or K_{OC...} In, A. Stanley (editor), NWWAI/API Conference on Petroleum Hydrocarbons in Ground Water: NWT/API, p. 571-582.
- Buscheck, T. E., and Alcantar, C. M., 1995, Regression Techniques and Analytical Solutions to Demonstrate Intrinsic Bioremediation. In: Proceedings of the 1995 Battelle International Symposium on In Situ and On-Site Bioreclamation, April 1995.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Chapelle, F.H., 1994, Assessing the Efficiency of Intrinsic Bioremediation, *in* Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 171.
- Chiang, C.Y., Salanitro, H.P., Chai, E.Y., Colthart, H.D., and Klein, C.L., 1989, Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer data analysis and computer modeling: Ground Water, vol. 27, no. 6, p. 823-834.
- Cline, P. V., Delfino, J. J., and Rao, P.S.C., 1991, Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures. Environmental Science and Technology, vol. 25, p. 914-920.
- Colguhoun, Dinald J., 1969, Geomorphology of the Lower Coastal Plain of South Carolina. S.C. Division of Geology Publication MS-15.

- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of monoaromatic hydrocarbons to organic acids in anoxic ground water environment: Environmental and Geological Water Science, vol. 16.
- Cozzarelli, I.M., Baedecker, M.J., Eganhouse, R.P., 1994, The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater: Geochimica et Cosmochimica Acta, vol. 58, no. 2, p. 863-877.
- Davies, J.S., and Westlake, D.W.S., 1979, Crude Oil Utilization by Fungi: Canadian Journal of Microbiology, v. 25, p. 146-156.
- Davis, J.W., Klier, N.J., and Carpenter, 1994, Natural biological attenuation of benzene in ground water beneath a manufacturing facility: Ground Water, vol. 32, no. 2, p. 215-226.
- de Pastrovich, T.L., Baradat, Y., Barthel, R., Chiarelli, A., and Fussell, D.R., 1979, Protection of groundwater from oil pollution: CONCAWE, The Hague, 61 p.
- Domenico, P. A., 1987, An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species. Journal of Hydrology, 91 (1987) 49-58.
- Domenico, P.A., and Schwartz, F.W., 1990, Physical and Chemical Hydrogeology. John Wiley and Sons, New York, New York, 824p.
- Dunlap, L.E., and Beckmann, D.D., 1988, Soluble Hydrocarbons Analysis from Kerosene/Diesel-Type Hydrocarbons, *in* Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals: Prevention, Detection, and Restoration: National Water Well Association.
- Eaker Air Force Base (AFB), 1992, Final Environmental Impact Statement, Disposal and Reuse of Eaker Air Force Base, Arkansas, US Air Force, November.
- Edwards, E., Wills, L.E., Grbic-Galic, D., and Reinhard, M., 1991, Anaerobic degradation of toluene and xylene--evidence for sulfate as the terminal electron acceptor, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 463-471.
- Edwards, E.A., and Grbic-Galic, D., 1992a, Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions: Appl. Environ. Microbiol., vol. 58, p. 2663-2666.
- Edwards, E.A., Wells, L.E., Reinhard, M., and Grbic-Galic, D., 1992b, Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions: Appl. Environ. Microbiol., vol. 58, p. 794-800.
- Evans, P.J., Mang, D.T., and Young, L.Y., 1991a, Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures: Appl. Environ. Microbiol., vol. 57, p.450-454.

- Evans, P.J., Mang. D.T., Kim, K.S., and Young, L.Y., 1991b, Anaerobic degradation of toluene by a dentrifying bacterium: Appl. Environ. Microbiol., vol. 57, p. 1139-1145.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Geraghty & Miller, Inc., 1985, Installation Restoration Program (IRP), POL Bulk Fuel Storage Area Problem Confirmation and Quantification Report, Former Myrtle Beach AFB, Myrtle Beach, South Carolina. January.
- Geraghty & Miller, Inc., 1994, AQTESOLV® Aquifer Test Solver, Version 2.0. Millersville, Maryland, October.
- Gibson, D.T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, In: Gibson, D.T., ed: Microbial Degradation of Organic Compounds, Marcel Dekker, Inc., p. 181-252.
- Godsey, E.M., 1994, Microbiological and geochemical degradation processes, In: Symposium on Intrinsic Bioremediation in Ground Water. Denver, CO. August 30 September 1, 1994, p.35-40.
- Goldstein, R.M., Mallory, L.M., and Alexander, M., 1985, Reasons for Possible Failure of Inoculation to Enhance Biodegradation: Applied Environmental Microbiology, vol. 50, no. 4, p. 977-983.
- Grbic'-Galic', D., 1989, Microbial degradation of homocyclic and heterocyclic aromatic hydrocarbons under conditions: Dev. Ind. Microbiol., vol. 30, p. 237-253.
- Grbic'-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Grbic'-Galic', D., and Vogel, T.M., 1987, Transformation of toluene and benzene by mixed methanogenic cultures: Applied and Environmental Microbiology, vol. 53, p. 254-260.
- Haag, F., Reinhard, M., and McCarty, P.L., 1991, Degradation of toluene and p-xylene in an anaerobic microcosms: Evidence for sulfate as a terminal electron acceptor: Environ. Toxicol. Chem., vol. 10, p. 1379-1389.
- Hall, R.A., Blake, S.B., and Champlin, S.C. Jr., 1984, Determination of hydrocarbon thicknesses in sediments using borehole data, *in* Proceedings of the Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring: May 23-25, 1984, p. 300-304.
- Hassett, J.J., Banwart, W.L., and Griffin, R.A., 1983, Correlation of compound properties with sorption characteristics of nonpolar compounds by soils and sediments; concepts and limitations, In, C.W. Francis and S.I. Auerbach, editors, Environment and Solid Wastes: Butterworths, Boston, p. 161-178.

- Halliburton NUS, 1992, Installation Restoration Program (IRP) Draft Site Assessment Report for the BX Shoppette Underground Storage Tank Site, Eaker AFB, Arkansas. June.
- Halliburton NUS, 1994, Unpublished BX Shoppette site data, Eaker AFB, Arkansas, June.
- Halliburton NUS, 1995, Unpublished BX Shoppette site data, Eaker AFB, Arkansas.
- Halliburton NUS, 1996, Installation Restoration Program (IRP) Final Site Assessment Report for the BX Shoppette Underground Storage Tank Site, Eaker AFB, Arkansas. May.
- Hine, J., and Mookerjee, P.K., 1975, The Intrinsic Hydrophilic Character of Organic Compounds. Correlations in Terms of Structural Contributions: Journal or Organic Chemistry, 40(3):292-298.
- Hopper, D.J., 1978, Microbial Degradation of Aromatic Hydrocarbons, In: R.J. Watkinson (editor), Developments in Biodegradation of Hydrocarbons, I: Applied Science Publishers, Ltd., London.
- Hughes, J.P., Sullivan, C.R., and Zinner, R.E., 1988, Two techniques for determining the true hydrocarbon thickness in an unconfined sandy aquifer, *in* Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground water: Prevention, Detection, and Restoration Conference: NWWA/API, p. 291-314.
- Hutchins, S.R., 1991, Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor: Appl. Environ. Microbiol., v. 57, p. 2403-2407.
- Hutchins, S.R., and Wilson, J.T., 1991, Laboratory and field studies on BTEX biodegradation in a fuel-contaminated aquifer under denitrifying conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 157-172.
- Hutchins, S.R., Sewell, G.W., Sewell, D.A., Kovacs, D.A., and Smith, G.A., 1991a, Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor: Environ. Sci. Technol., vol. 25, no. 1, p. 68-76.
- Hutchins, S.R., Downs, W.C., Smith, G.B., Smith, J.T., Wilson, D.J., Hendrix, D.J., Fine, D.D., Kovacs, D.A., Douglass, R.H., and Blaha, F.A., 1991b, Nitrate for Biorestoration of an Aquifer Contaminated with Jet Fuel. U.S. Environmental Protection Agency. Robert S. Kerr Environmental Research Laboratory. Ada, Oklahoma. epa/600/2-91/009. April, 1991.
- Isnard, S., and Lambert, S., 1988, Estimating Bioconcentration Factors from Octanol-Water Partition Coefficient and Aqueous Solubility: Chemosphere, vol. 17, no. 1, p. 21-34.

- Jamison, V.W., Raymond, R.L., and Hudson, J.O. Jr., 1975, Biodegredation of high-octane gasoline in ground water: Developments in Industrial Microbiology, vol. 16.
- Jerrard, Cathy, January 1996, Personal Communication, Griffiss AFB Contact, Griffiss AFB, Rome, New York.
- Jones, J.G., and Eddington, M.A., 1968, An Ecological Survey of Hydrocarbon-Oxidizing Microorganisms: Journal of General Microbiology, v. 52, p. 381-390.
- Jury, W.A., Spencer, W.F., and Farmer, W.J., 1984, Behavior Assessment Model for Trace Organics in Soil: III, Application of Screening Model: Journal of Environmental Quality, 13(4):573-579.
- Kemblowski, M.W., and Chiang, C.Y., 1990, Hydrocarbon thickness fluctuations in monitoring wells: Ground Water v. 28, no. 2, p. 244-252.
- Kenaga, E.E., and Goring, C.A.I., 1980, ASTM Special Technical Publication 707: American Society for Testing Materials, Washington, D.C.
- Kittel, J.A., and Andrea Leeson, 1995, Results of a Multi-Site Field Treatability Test for Bioslurping: A Comparison of LNAPL Recovery Rates Using Vacuum Enhanced Recovery Techniques. Published in the Proceedings of the 1995 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation, Houston, Texas.
- Leahy, J.G., and Colewell, R.R., 1990, Microbial degradation of hydrocarbons in the environment: Microbiolgical Reviews, vol. 53, no. 3, p. 305-315.
- Lee, M.D., 1988, Biorestoration of Aquifers Contaminated with Organic Compounds: CRC Critical Reviews in Environmental Control. vol. 18. p. 29-89.
- Lenhard, R.J., and Parker, J.C., 1990, Estimation of free hydrocarbon volume from fluid levels in monitoring wells: Ground Water, v. 28, no. 1, p. 57-67.
- Looney, Randall, 1996, brief memorandum sent regarding site history for BX Shoppette, Eaker AFB, Arkansas.
- Lovley, D.R., Baedecker, M.J., Lonergan, D.J., Cozzarelli, I.M., Phillips, E.J.P., and Siegel, D.I., 1989, Oxidation of aromatic contaminants coupled to microbial iron reduction: Nature, vol. 339, p. 297-299.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- Lyman, W.J., Reidy, P.J., and Levy, B., 1992, Mobility and Degradation of Organic Contaminants in Subsurface Environments. C.K. Smoley, Inc., Chelsea, MI.

- Mackay, D., and Wolkoff, A.W., 1973, Rate of Evaporation of Low-Solubility Contaminants from Water Bodies to Atmosphere: Environmental Science and Technology, vol. 7, no. 7, p. 611-614.
- Mackay, D., and Shiu, W.Y., 1981, A Critical Review of Henry's Law Constants for Chemicals of Environmental Interest: Journal of Physical Chemistry Reference Data, vol. 10, no. 4, p. 1175-1199.
- MacIntyre, W. G., Boggs, M., Antworth, C. P., and Stauffer, T.B., 1993, Degradation kinetics of aromatic organic solutes introduced into a heterogeneous aquifer. Water Resources Research, vol. 29, no. 12, p.4045-4051.
- Malone, D.R., Kao, C.M., and Borden, R.C., 1993, Dissolution and biorestoration of nonaqueous phase hydrocarbons models development and laboratory evaluation: Water Resources Research, vol. 29, no. 7, p. 2003-2213.
- Marley, M. C., Bruell, C. J., and H. H. Hopkins, 1995, Air Sparging Technology: A Practice Update. Published in the Proceedings of the *Third International In Situ and On-Site Bioreclamation Symposia*, Vol. 2, pp. 31-38.
- Martel, 1987, Military Jet Fuels 1944-1987: AF Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio.
- Means, J.C., Wood, S.G., Hassett, J.J., and Banwart, W.L., 1980, Sorption of polynuclear aromatic hydrocarbons by sediments and soils: Environmental Science and Technology, v. 14, no., 12, p. 1524-1528.
- Mercer, J.W., and Cohen, R.M., 1990, A review of immiscible fluids in the subsurface properties, models, characterization and remediation: Journal of Contaminant Hydrology, v.6, p. 107-163.
- Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., and Mackay, D., 1985, Relationships Between Octanol-Water Partition Coefficient and Aqueous Solubility: Environmental Science and Technology, v. 19, no. 6, p. 522-529.
- Miller, R.N., Downey, D., Carmen, V.A., Hinchee, R. E., and A. Leeson, 1993, A Summary of Bioventing Performance at Multiple Air Force Sites. Published in the Proceedings of the 1993 Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration, November 10-12, Houston, Texas.
- Meyer, J.L., 1985, A detention basin/artificial wetland treatment system to renovate stormwater runoff from urban, highway, and industrial areas: Wetlands 5(1), p. 135-146.
- Parsons Engineering Science, Inc. (Parsons ES), 1996, Work Plan for a Treatability Study in Support of the Intrinsic Remediation (Natural Attenuation) Option at the BX Shoppette (Site E11). Denver, CO.

- Pankow, J.F., and Rosen, M.E., 1988, Determination of Volatile Compounds in Water by Purging Directly to a Capillary Column with Whole Column Cryotrapping: Environmental Science and Technology, vol. 22, no. 4, p. 398-405.
- Perry, J.J., 1984, Microbial Metabolism of Cyclic Alkanes, In: Atlas, R.M. ed.: Petroleum Microbiology. Macmillan Publishing Co., New York, New York.
- Pickens, J.F., and G.E. Grisak, 1981, Scale-Dependent Dispersion in a Stratified Granular Aquifer. J. Water Resources Research, Vol. 17, No. 4, pp 1191-1211.
- Reinhard, M., Goodman, N.L., and Barker, J.F., 1984, Occurrence and distribution of organic chemicals in two landfill leachate plumes: Environ. Sci. Technol., vol. 18, no. 12, p. 953-961.
- Ribbons, D.W., and Eaton, R.W., 1992, Chemical Transformations of Aromatic Hydrocarbons that Support the Growth of Microorganisms, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, NY.
- R&R International, Inc., 1996, UST/OWS Report for Eaker AFB, Arkansas.
- Smith, J.H., Harper, J.C., and Jaber, H., 1981, Analysis and environmental fate of Air Force distillate and high density fuels: Report No. ESL-TR-81-54, Tyndall Air Force Base, Florida, Engineering and Services Laboratory.
- Stauffer, T.B., Antworth, T.B., Boggs, J.M., and MacIntyre, W.G., 1994, A Natural Gradient Tracer Experiment in a Heterogeneous Aquifer with Measured In Situ Biodegradation Rates: A Case for Natural Attenuation, *in* Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 73 84.
- Stumm, W. and Morgan, J.J., 1981, Aquatic Chemistry. John Wiley & Sons, New York, NY.
- Thierrin, J., Davis, G.B., Barber, C., Patterson, B.M., Pribac, F., Power, T.R., and Lambert, M., 1992, Natural degradation rates of BTEX compounds and naphthalene in a sulfate-reducing ground water environment, In: In-Situ Bioremediation Symposium "92". Niagara-on-the-Lake, Ontario, Canada. September 20-24, 1992: In Press.
- US Army Corps of Engineers (USACE), 1995a, Site Characterization and Analysis Penetrometer System (SCAPS), BX Gas Station, Eaker AFB, Arkansas, March.
- USACE, 1995b, Site Characterization and Analysis Penetrometer System (SCAPS), BX Gas Station, Eaker AFB, Arkansas, October.
- USEPA, 1988, Guidance for Conducting Remedial Investigations and Feasibility Studies (RI/FS) Under CERCLA. OSWER Directive 9355.3-01.
- USEPA, 1993a, Revisions to the OMB Circular A-94 on Guidelines and Discount Rates for Benefit Cost Analysis, OSWER Directive 9355.3-20, June.
- USEPA and US Air Force, 1993b, Remediation Technologies Screening Matrix Reference Guide, OSWER Contract Number 68-W2-0004, July.

- USEPA, 1994, Drinking Water Regulations and Health Advisories. Office of Water. Publication EPA 822/R-94-003, November.
- USEPA, 1995, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 (3rd Edition Update IIB).
- Valsaraj, K.T., 1988, On the Physio-Chemical Aspects of Partitioning of Non-Polar Hydrophobic Organics at the Air-Water Interface: Chemosphere, vol. 17, no. 5, p. 875-887.
- Verschueren, K., 1983, Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York, New York.
- Vroblesky, D.A., and Chapelle, F.H., 1994, Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation: Water Resources Research, v. 30, no. 5, p. 1561-1570.
- Walton, W.C., 1988, Practical Aspects of Ground Water Modeling. National Water Well Association, Worthington, Ohio, 587 p.
- Wiedemeier, T.H., Downey, D.C., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J.E., 1995, Technical Protocol for Implementing the Intrinsic Remediation with Long-Term Monitoring Option for Natural Attenuation of Dissolved-Phase Fuel Contamination in Ground Water. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.
- Wilson, B.H., Smith, G.B., and Rees, J.F., 1986, Biotransformations of Selected Alkylbenzenes and Halogenated Aliphatic Hydrocarbons in Methanogenic Aquifer Material: A Microcosm Study: Environmental Science and Technology, 20(10):997-1002.
- Wilson, B.H., Bledsoe, B., and Kampbell, D., 1987, Biological processes occurring at an aviation gasoline spill site, In: R.C. Averett and D.M. McKnight editors, Chemical Quality of Water and the Hydrologic Cycle. Lewis Publishers, Chelsea, Michigan, p.125-137.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site: Geomicrobiology Journal, 8:225-240.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., and Bledsoe, B.E., 1994, Traverse City: Geochemistry and Intrinsic Bioremediation of BTEX Compounds, In: Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water. August 30 September 1, 1994. US Environmental Protection Agency, p. 94 102.
- Young, L.Y., 1984, Anaerobic degradation of aromatic compounds, In: Gibson, D.R., ed.: Microbial Degradation of Aromatic Compounds. Marcel-Dekker, New York.

APPENDIX A

BOREHOLE LOGS, MONITORING WELL CONSTRUCTION DIAGRAMS, CPT LOGS, SLUG TEST RESULTS, AND SURVEY DATA

	ا											
		FIE		D		<u> G</u>	<u>OF</u>	- E		<u>KII</u>	<u>NG</u>	
		PLA	N	1	٠,	(,)71	اري	,				PROJECT 3K98 BORING NO.
								!	1			EAFER BA TWILDI
					1	۶×						JOB NO. 3K9 LOGGED BY: 153
						_	-					PROJ. MGR. GVG EDITED BY: BFN
			(TAM	κ',_		 -)	DRILLING COMPANY: A.W POOL
			`			P	1	·	 ·	/	مام	DRILL RIG TYPE: MOBILE 5-61
											C.F.D	DRILLING METHOD: HOLLOW STEM AUGER
, a '					÷							DRILLERS NAME: VINCE BALAIZA
		-					7 5					TOTAL DEPTH (FT.) 30'
		1		(بنه:	, ,	(9) 7.4	1 18110 12111				STARTED 0735 DATE 12/11/61
		ĽŚ	7	6.5			153	12/11/	1 (1			TIME COMPLETED 0827 DATE /2/11/9/
						≿						GROUND-WATER CONDITION AT COMPLETION OF DRILLING
						NER TO	ATORY BER					GROWNOWATER AT 19 ON LORE BALLIER
				۵		JMB	5		ပ္			BACKFILLED, SEE WELL COMPLETION FORM
	į	ER	_	ERED	E ON	A N	AN	HNU SCAN (PPM)	LITHOLOGIC CODE			WEATHER CONDITIONS
•		7	T/EN	FEET RECOVE		72	100	13C	헏삗	FI		CLEAR, COOL, 400
		SAMPLI	HE WE	HEEC HEEC	SAMPL	MAN	FIXED	Na	E 8	PEF		SURFACE
						<u></u>		1			= -	COMMENTS
	נו	2		.				D		Ħ	7,1	GRASS AT SURFACE
	メ	Sfeen 0-2	7	7	367	l	1		CL	H ′		SILTY CLAY DK BROWN MOIST
	いっていいい	öک	1		eros Serv	Ì		0		H	[[-]-	AGUNDAT DREANICS - TE SAND
	<u> </u>						 			12	. :	0-2'
			:					٥		H	- :	
		i				0.745)	\			H3	•	SAND: MED GRAINED WELL SOCIED, BROWN -
	12					S S				H	· .	RUST COLORED, IRON - STAINING VERLY
	SON					$ \ \ \ \ \ $		2	SW	H4		EVIDENT 2-6.5 MOIST
	<u>د</u>					_) M	Z	ļ.	2. 30. 11 0/31
	ب		-	1	.,	1				35		ALANG MINANG ALANGE CASE
_	SPLL	1	15	125	7216	10	5	0		7	٠.	CLAY; VERY MOIST PLASTIC, SOFT
	F	1 ~			15	0113	(3)			8		6-5 - 30.0'
	ر ج			_		W				<u> </u>	Ė	6.5 - 30.0
	Fre			1-	-		-		,	Ħ4		The are a confer S. F. D. 2006
	<u> </u>						-6	6		H	-	CLAY AS ABOVE; FUEL COOR
	à				1/~		11:11	-[He		
	100 L	7 /			EYC (C) C(C) 7	2	الله الله	1	CL	H	-	1
	, ,	-12	15	二二	ا کر	4	121 515 12			Hg	-	
	20°	식 다	1	11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E-101-2	5,2	10		H -	-	
-	ۍ×	1	1	l	1 ,71	للا ا	11'		ļ	\sqcup_{to}	1, -	1

FI	EL	.D	L(OG	0	F	BC	RI	N	G (CONT'D.) s	SHEET 7 OF 2
SAMPLER	FEET DRIVEN	FEET RECOVERED	SAMPLE		\Box	A	LITHOLOGIC	DEPTH (FEET)		PROJECT BOR	NG NO.
						50		 	, ,		
SPOCA	5	5	בארישרפתל	E1101-3	08025	4 2 5	다	13 14 15	1 1 1 1 1	CLAY AS ABOVE: MI PUST. LT GROY: MOTO MINOR DEBANICS (W SLIGHT FREE COOK	TLED, TRACE DOWN FRAGS) OR OXIDE NUMBER
SPOON	5	5	דעפטרפּאב	h -19113	2,80	0	유	18 19 20 21		CLAY AS ABOVE; Driller will put on Si	
575A1647 A46672, 22-30'				1		(23 14 15 26 27 28 19 30 1 2		DRILLER PEPOLTS DRILL 30' TO REPULED @ 08	LING CLAY TO 30'
NOT	ES:							5 6 7 3			

PROJECT EAKER BORING NO. 3 K9 8 BX TWILD2 JOB NO. 3 K9 8 DITED BY: JSB PROJECT EAKER JOB NO. 3 K9 8 DITED B		FIE		D	لك)G	01	- E	30	RI	NG	SHEET 1 OF 2
JOB NO. 3K9 & LOGGED BY: JSB PROJ. MGR. GN/C EDITED BY: AZ/N DRILLING COMPANY: AW POSIL DATE: LIVING DATE: LIVING DATE: LIVING DATE: LIVING WATHER COMPTIONS TWENTY OF THE COMPANY: AW POSIL DATE: LIVING D		PLA	NT	\$1	MTIO	7				•		LI HOUSE CITECH
DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING TYPE: MOBILE B-61 DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DRILLING METHOD: HOLDEN STOM, Payor DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DATE OF THE POOL DATE							•					
DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING TYPE: MOBILE B-61 DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DRILLING METHOD: HOLDEN STOM, Payor DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING COMPANY: AW POOL DRILLING METHOD: HOLDEN STOM, Payor DRILLING COMPANY: AW POOL DATE OF THE POOL DATE												PROJ. MGR. GVG EDITED BY: BEN
DRILLING METHOD: HOLLOW STEM AND DRILLERS NAME: V. RARAZZA TOTAL DEPTH (FT.) 30 TIME DATE 12/11/9/1 GROUND-WATER CONDITION AT COMPLETION OF BRILLING ROUND-WATER CONDITION AT COMPLETION OF BRILLING ROUND-WATER CONDITIONS CLEAR, 50°, SI. Indicate SURFACE SURFACE FIN. Clay dark like sessing FIN. Cl											·	
DRILLING METHOD: HOLLOW STEM AND DRILLERS NAME: V. RARAZZA TOTAL DEPTH (FT.) 30 TIME DATE 12/11/9/1 GROUND-WATER CONDITION AT COMPLETION OF BRILLING ROUND-WATER CONDITION AT COMPLETION OF BRILLING ROUND-WATER CONDITIONS CLEAR, 50°, SI. Indicate SURFACE SURFACE FIN. Clay dark like sessing FIN. Cl			(Thirt	<u> </u>				– . 1	WILD	2	DRILL RIG TYPE: MOBILE B-61
DRELETS NAME: V. 1340 ATT 12 11 91 TOTAL DEPTH (FT.) 30 TIME 0945 TIME 094			(CARE.) `							DRILLING METHOD: However Story Angels
TOWNS ON THE CONTINUE OF PRILLING WEST OF THE CONTINUE OF PRILLING OMMERTED 138 GROUND-WATER CONDITIONS COMPRETION OF PRILLING SACKFILLED. DATE SEE COMPLETION S WEST OF THE CONDITIONS CLEAR 50°, SL. DREGGE SUPPLIED FIN: Cley fort bleet session FIN: Cley fort some small scauel clustr Cley breva, main reduce stift cluster at time silt, stress of FIN: Cley fort months FIN: Cley fort months		1							.)	O /		DRILLERS NAME: V. BARAZZA
TOWNS ON THE CONTINUE OF PRILLING WEST OF THE CONTINUE OF PRILLING OMMERTED 138 GROUND-WATER CONDITIONS COMPRETION OF PRILLING SACKFILLED. DATE SEE COMPLETION S WEST OF THE CONDITIONS CLEAR 50°, SL. DREGGE SUPPLIED FIN: Cley fort bleet session FIN: Cley fort some small scauel clustr Cley breva, main reduce stift cluster at time silt, stress of FIN: Cley fort months FIN: Cley fort months		1/	/									TOTAL DEPTH (FT.) 30
TIME COMPLETED 1736 DATE 12/11/9/ GROUND-WATER CONDITION AT COMPLETION 5 GROUND-WATER CONDITION AT COMPLETION 5 GROUND-WATER CONDITION AT COMPLETION 5 GROUND-WATER CONDITIONS LEAN TO DATE - SEE COMPLETION 5 THE COMPLETION 5 TH		E					_		, -)	TIME 0945 DATE (2/11/9)
GROUND-WATER CONDITION AT COMPLETION 5 MATE SEE COMPLETION 5 MATE	Į		ī	w.10	(<u>ė</u>)						!	TIME
TIME WEATHER CONDITIONS CLEAR 50°, St. Isruesze SURFACE ELEVATION COMMENTS ASPHALT AS SURFACE CLOY, Joseph Joseph Steven Cley, brown, moist refers stiff Alestic all same sith, trace of Stand Steven Stand Steven CLAY; Brown moist SOFT mb. ST PLASTIC SOME SICT MOTILED N PLASTIC SOME SICT M PLASTIC SOME SICT MOTILED N PLASTIC SOME SICT MOTILED N PLAS			Ì			TORY	FORY					GROUND-WATER CONDITION AT
Fill: Clay done like testay Fill: Clay done small stayed clustr Clay brown, moist metus stiff Alostic all same soll, stayed clustr Samb Strewer & 7-7.5', SATHRATED TO THE STREET OF THE STREET O				۵)RA JMB)RA IMBI		ပ			
Fill: Clay done like testay Fill: Clay done small stayed clustr Clay brown, moist metus stiff Alostic all same soll, stayed clustr Samb Strewer & 7-7.5', SATHRATED TO THE STREET OF THE STREET O		<u>æ</u>		RE	NO.	ABC NI	ABC	AN	190			WEATHER CONDITIONS
Fill: Clay done like testay Fill: Clay done small stayed clustr Clay brown, moist metus stiff Alostic all same soll, stayed clustr Samb Strewer & 7-7.5', SATHRATED TO THE STREET OF THE STREET O		교교	EN	T OVE		PLE		SS €	_	EE		CLEAR, 50°, SL. BREEZE
Fill: Clay done like testay Fill: Clay done small stayed clustr Clay brown, moist metus stiff Alostic all same soll, stayed clustr Samb Strewer & 7-7.5', SATHRATED TO THE STREET OF THE STREET O		NAM LYP		HEC.	SAN	ÄE	NA.	NE PER PER PER PER PER PER PER PER PER PE		四回		SURFACE
Fill: clay done there to stay Fill: clay done there to stay Mostic all some sould stay of the stay Abotic all some solf, trace of SAND STRINGER by 7-7.5'; SATMATED TO STAY TO ST					0,0	رن ي					完	/ <u> </u>
Sand STRINGER & 7-7.5'; SATURATED WY PHIER TO STRINGER STRINGER & MOIST BOFF - MD. STR. PLASTIC. SOME SICT. MOTTLED WY PLASTIC. SOME SICT. WY PLASTIC. SOME SICT. MOTTLED WY PLASTIC. SOME SICT. WY PLASTIC. SOME	7+16	75					,	١,		Ħ	= -	
Clay brown, moist medius stiff shorting all stand soll, drawe of sand	S S	146 - 2	7	0	1	1	\	,		Η′	۔ ہ۔	Fill: Clay done block to stay
Clay brown, moist neckus stiff stand Sand Stringer & Total Stringer Sand Stringer & Total Stringer Sand Stringer Sand Stringer CLAY; Brown Moist SOFT - MD. STR PLASTIC SOME SICT MOTTLED W PLASTIC SOME SICT MOTTLED W	≥ 18	`0									م ا	11
CLAY; BROWN: MOIST SOFT-MD. STY PLASTIC SOME SILT: MOTTLED MY PRESULT - COLAY MOIST SOFT-MD. STY PLASTIC SOME SILT: MOTTLED MY PRESULT - COLAY MOIST SOFT-MD. STY PLASTIC SOME SILT: MOTTLED MY PRESULT - COLAY MOIST SOFT-MD. STY								p		1 2	-3-	
Sand Stringer Soft - Mottled W) PLASTIC SOME SICT MOTTLED W) PLASTIC SOME SICT MOTTLED W) PLASTIC SOME SICT MOTTLED W)	Ê	: . I					ł)			- 1	Clay brown, moist neckus stiff
SAND STEINGER & 7-7.5'; SATHRATED WY WHITEK CLAY; BROWN: MOIST BOFT - MD. STI PLASTIC SUME SILT: MOTTLED WY PREDISH - GRAY MOTTLED WY	ď				١,]		
SAND STRINGER & 7-7.5', SATURATED WY WATER CLAY; BROWN: MOIST SOFT-MD. STR PLASTIC SOME SILT: MOTTLED WY	\sim		1		ľř	3	N		CL	\prod_{A}		
SAND STRINGER BOFT - MD. STR. PLASTIC SOME SICT : MOTTLED W) PLASTIC SOME SICT : MOTTLED W) PLASTIC SOME SICT : MOTTLED W)	S	3			3		0) 1	6			1.5	
SAND STRINGER & 7-7.5'; SATURATED WY HATEK CLAY; BROWN. MOIST BOFF-MD. STR PLASTIC SOME SICT. MOTTLED W) PRESIDEN - GRAY MOITTLED W)	3	200	こ に	L	1	\ \ \ \.	19				1, -1	
SAND STRINGER & 7-7.5'; SATURATED WY WHICK CLAY; BROWN MOIST SOFT - MD. STY PLASTIC SOME SILT MOTTLED W) PLASTIC SOME SILT MOTTLED W)	5	١٩	C	ン	[i]	70	1		ļ		.,,	
SAND STRINGER & 7-7.5'; SATURATED WY WHICK CLAY; BROWN MOIST SOFT - MD. STY PLASTIC SOME SILT MOTTLED W) PLASTIC SOME SILT MOTTLED W)	5	14			X			·				
SAND STRINGER & 7-7.5', SATURATED WY PAIEK CLAY; BROWN MOIST SOFT - MD. STY PLASTIC SOME SICT MOTTLED W) PREDICT - CRAY MOTTLED W)	3				4	W		2			- 1-	
CLAY; BROWN: MOIST BOFT - MD. STI PLASTIC SOME SILT: MOTTLED W)			-									J<β , ε/u বি
CLAY; BROWN: MOIST SOFT - MD. STI PLASTIC SOME SICT: MOTTLED W)				-	1	·			#7			SAND STRINGER OF 7-7.5' SATURATED
CLAY; BROWN: MOIST BOFF - MD. ST PLASTIC SOME SICT: MOTTLED W/	· F				+=	2				B		W) WHIEK
PLASTIC SOME SICT MOTTLED W	9	2 2	_	_	1 3	こ	9			Ц	;-	
3 Proper - CRAY MOTTLES		10 ~	14	1	G	2-	11				- '-	CLAY; BROWN MOIST BOFT - MB. STI
	1	10/2			֝֟֞֓֓֓֓֓֟֝֟֟֟֟֟֟֟֟֟֟֟֟֟֟ ֓֓	20		7	岩		· -	PLASTIC SOME SICT MOTTLED W
	٢	7				-			[]	\coprod_{io}	<u> </u> .	RESDISH - GRAY MOTTLES.

F	IE	LD	L() G	0	F	BC	R	IN	G (CONT'D.) SHEET 20F 2
	TYPE	ا و	ī	LAB.	TAB.		OLOGIC	1		PROJECT EAKER BX BORING NO. JOB NO. 3K98 TWILOZ
						11				CLAY AS ABOVE
Corr Spur	(2-17	5	EKCELENT	J		7 7	Сн	12 13 14 15 16	1-1-1-1	PLAY AS ABOVE: MED. STIFF - STIFF PLASTIC. DIKER BROWN THAN AND VE BARLEZ WET AT 18'
5 10	62-77	5	स्रका का	E1102-3 (18)	72010	0 4 5 5	СH	18 19 20 31		CLAY AS ABOVE; SOFT-MED STIFF - STIFF AT BOTTOM; SOME SILT; MOTTLED BROWN-GREY RED BROWN DRILLER WILL INSURT CENTERS BIT TO
STRAIGHT AUCEX		1	•		1		-	3 4 5 6 7 8		FINISH HALE -
								30 1 2 3 4 5 6		TD:30
NO.	TES:		<u>.</u>	-				9		

)G	U	<u> </u>		<u> </u>	VG	SHEET 1 OF 2
PLAN	N =									PROJECT BORING NO.
							-		-	EAKER BX TW1103
		120A	ā							SHU: PELLE
						•				JOB NO. 3K98 LOGGED BY: JSB
										PROJ. MGR. GVG EDITED BY: BFN
	, —			\neg		-				DRILLING COMPANY: AW Pool
	1									DRILL RIG TYPE: MOBILE B-61
										DRILLING METHOD: HOLLOW STEM ALIGER
							<u> </u>	Tw.103		DRILLERS NAME: V. BARRAZA
	i			C	ano	የ ተ		<u>ඉ</u>	م	TOTAL DEPTH (FT.) 30
	١								POAD	TIME 1240 DATE 12/11/91
\ \ \	_									
	-									GROUND-WATER CONDITION AT
	ł	}		E E	E E					COMPLETION OF DRILLING
	-			AT	RATORY IBER					IDATE.
SAMPLER		品			S N	-	<u> </u>			TIME DATE 1/8/92
ER		E	ᇤ	E	LABO E NUI	HNU SCAN (PPM)	THOLOGIC JOE		,	WEATHER CONDITIONS
로벨	느핑	<u>-</u> ≥	토림	ದ್ದ	유트	ŠΞ	로	DEPTH (FEET)		WARM GOD, SUNNY, LT BEEELE
NA P			ROS	A E	FIXED	NA Mad		E E		SURFACE ELEVATION
									*	COMMENTS
1	ļ	.				Ì		H		ASPHALT AT SURFACE
इ इ	7	0	1	1	1			H′		
STRVICA	۵		1	Ţ				H		2
15	_	-						2-	'- _	CLAY GREY-BROWN, SOME SILT TR SI
! ;				2	, v	SSO		3		MOTTLED, MOIST STIFF; PERDUCT OF
. 1	.			30.2	~			3		0.5 - 4.5
i. i				- ق	4	50	CL			SD (± 51) MED-FINE GRAINED WELL.
10					0.3					WISOME GRAVEL GREY 4.5-7
2 ,				(3,)	1 5	ļ			<u></u>	·
25.7				_	3	50		$\sqrt{2}$		
33	10	8	6000	,	15	12		5	: '•	
15 1			90	03	N S	9	SW	H		
1271	- 1		`	פ	1 -	-		He	!:	
100			1		_w	8	-		<u> </u>	
100				+						
1500r		्ड ्र			19-	7.	7-	+ +		1
1500r			-	(iv 13ck)e	300	1	H]	CLAY AS ABOVE, GREY-BROW W/ OXID
120027		. E 7	-	3	<u> </u>		СН	-8		POSICES MOTTLED : STIFF MES
1.00.05			-	(0)	03-6	300 30 m		8		
7-12 (Secon	I.O.	-	-	(0)	W1103B	3	СН	8		POSICIES MOTTLED : STIFF MES
1.20007	5	٨.	G005	(0)	-TW1103B	3 r g 20	СН	9		POSITIES MOTTLED : STIFF MES

	FI	EL	<u>D</u>	L(O G	O	F	<u>BC</u>	R	IN	G (CONT'D.) SHEET 20F2
	SAMPLER TYPE	FEET DRIVEN	FEET RECOVERED	SAMPLE	FIELD LAB.	ᅥᆚᄔ	HNUSCAN (PPM)	LITHOLOGIC	DEPTH (FEET)		PROJECT BORING NO. EAKER BX JOB NO. 3K98 TW1103
							200	12/11/	П		
Court Spelt	C1-21	5	5	6000	E1103-3@1311	Herm 14"	10	15°	15	1 1 1 1 1	CLAY AS ABOVE; BELOMES STIFFER AND MOTTUNE IS MURE APPARENT
CONTHUORS	Speir Spood	5	り	encencest_	E1103-4@1918	(20.)	2 ,	CH	18 19 20 21		CLAY AS ABOVE; GREY BELOW 17' NO MOTTLING MOTTLED ZONE 19-20' CHAY IS SOFT AT BOTTOM 21-22'
CENTINUOLIS	Stur spood RR-27'	5	5	CHELENT	438 1€/11/41 E1108€	6 1322 E11-54-TW1103C	0 0 0 0	cl _a	23 24 25 26		WATER ON WHE PARREL & 72' CLAY; AS ASSUE . TR SILT BLUE - GREY WINDTTLING; DY GREY BELOW 26'
STRUGUE	27-30	1	1	-	1	1	1		28 29 30	-	TD = 30'
									3 4 5 6 7		
	TON	FS:			27 . N				0		

F	-1E			ما	G	OF	- E	30	RII	NG	SHEET 1 OF 2
F	PLAI	N									PROJECT BORING NO.
ĺ		. •		GRA	۷4				V'	7	EAKER BX TW1104
		. 02		ري اي	<u></u>	TN	14 C	1		j	JOB NO. 3K98 LOGGED BY: 15B
-	7W!	102			<u> </u>					7	PROJ. MGR. GV G EDITED BY: BFN
-											DRILLING COMPANY: AW POOL
		•								(7	DRILL RIG TYPE: MUSSILE 13-61
										1=	DRILLING METHOD: HOLLOW-STEM AUGER
							_	TW	ноч)	DRILLERS NAME: V. BARRAZA
1							1	, , ,	o '		TOTAL DEPTH (FT.) 30
				\$77	317	01)				1	TIME 12 11 91 158 (1439) V
							}				TIME DATE 12. 1/F/
<u> </u>					NORATORY NUMBER	ORY R					GROUND-WATER CONDITION AT COMPLETION OF DRILLING SATURATED ZWE 18.5 and 1 19
					RAT	RAT					BACKFILLED, DATE
	œ		REC	Z		ABO Se	Z	90			WEATHER CONDITIONS
	교	_Z	VE VE	SAMPLE	75	PLE	SCAN	THOLOGIC	ĦŢ.		CLEAR, WARM 60°
	AP		HOE	AO NZ	AEL	FIXED I	HNU S PPM S		DEPT (FEE		SURFACE ELEVATION
, 1		<u> </u>	L IE	60	டம	(L.0)	II.	<u> </u>		*	COMMENTS ASPITANT AT SURFACE
3	ار پ ^و	İ	<i>\</i>						H	٥	A 2L MAN W. 2 MANACE
STRAIGH	Aubek 0-2	2	- [-1			GC	H′	- 1	FILL TO 2' GRAVERLY CLAY
2	0			`		'		الم	Ħ	- ,	0-Z F.L.
									12		
رهه، آ	:						0		H_{\perp}		CLAY. DK BROWN - BROWN; VERY MOIST
۱ پر									3		MED. STIFF PLASTIC . TR SILT +
Sperr							5	0	Π.		SD
1				1				CH	H		2-8 CLAY
70	,	_	1	5	,		5	"	Π_{-}	- `	
2	1	り	り	Extenen					∏ ⁵		
CON TI NAOUS	7			3	}		'		Ħ.		
Ō.				12			_	1	He		
											
					 				15		
000			-		(8)	-					CLAY, BROWN , VERY MOIST; MED. STI
Con Truens	12			Excercent	~	Λ.	8	501	HB		PLASTIC: TR SILT + SD; MOTTLED
31	1 '2	IC	1	772	1	1459		5c/	H		GREENISH- GREY TO RUST LOWINGO;
56		/	レ	CE	- hou 3	8)	6		H9		
5	'			E	= 3				H-		501 ZONE 8-8.5'
9	1		1	1	1	I	1	Ţ	\sqcup_{io}	1 -	

<u>FI</u>	EL	<u>.U</u>	<u>L(</u>	<u> </u>	U	-	<u> </u>	ואו	11/1	3 (CONT	J. SHEET 2 OF 2
ER		RED	E ION	LAB.	LAB.	AN	OGIC		,	PROJECT EAKER BX JOB NO. 3K98	BORING NO. TWILO4
SAMPLI	FEET	FEET	BAMPL	FIELD	FIXED	HNUSC. PPM)	DE SO	SEPTH FEET)			
						8		//		8.5 - 12	
7 5000.3	-		FOR			4		13	- 1	CINY AS AGO	
1-21	ク	り	กอวนล	!		פ	다) 5 - 16 1 7	, , , ,	13 - 13.5'	
	4		UENT	(22) 2-1	605	2		18		18'; 454	OVE: LT BLOWN BELOW L SANDIETT ZUNE
50 C.	5	り	कटल	E 1104	<u>કુ</u> \	2	5¢	20		SATURATED AT	r 15'
		u ar	rë b	C4M	tran			23			
	22	10	304					2.5 2.6 2.7			
								28 29		TD = 30	
								30			
							-	3			
						·	<u> </u>	5 6 7			
	_							<u> -' </u>			
	SAMPLER	SPUT SPUT SOUN SAMPLER 12-17 TYPE () EET	SPUT SPUT SPUT SAMPLER TYPE (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	SPUT SPUT SOUND SAMPLER 12-17 TYPE 12-17 TYPE FEET DRIVEN FEET CTI CTI CTI EXCELENT SAMPLER FEET SAMPLER FEET COUDITION	SPLIT SPOUS SPLIT SPOUS SAMPLER 17-22 12-17 TYPE FEET FRET BAMPLER FRET CONDITION ELIO4-2 (20) - SAMPLE NO.	5 CT SPORTS SPURE SPORTS SAMPLER TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYPE	SPUT SPUT SPUT SAMPLER 17-22 12-17 TYPE FEET DRIVEN EXCOUCENT EXCELLENT CONDITION E 1104-2 (20) E 1509 RISED LAB. SAMPLE NO. E 1509 RISED LAB. SAMPLE NO. P 1509 RISED LAB. SAMPLE NO. P 1509 P 1509 RISED LAB. SAMPLE NO. P 1509 P 1509 RISED LAB. SAMPLE NO. P 1509 P 1	SPLIT SPOCKS SPLIT SPOCKS TYPE (7) (7) (7) (7) (7) (7) (7) (8) (8) (8) (8) (9) (9) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (8) (8) (8) (9) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	SPUT SPUT SPUT SPUT SPUT SPUT SPUT SPUT	SPLT SPOND SPLT SPOND SPLT SPOND SAMPLER TYPE TYPE TYPE TYPE FEET TYPE FEET TYPE FEET DRIVEN FEET CONDITION FEET CONDITION FEET FORDITION FEET FORDITION FORDITION FIRED LAB. SAMPLE NO. SAM	SAMPLE NO SKARP COLOGY AS AGE TO SAMPLE NO STAND TO

NOTES:

FIE	EL	D I	LC)G	OF	= =	30	RII	NG	SHEET 2 OF 2
PLA										PROJECT BORING NO.
		<u> </u>	CANOPY	`·-	1 05	715	SALES	,eL		JOB NO. 3K98 LOGGED BY: BFN PROJ. MGR. GYG EDITED BY: JSB DRILLING COMPANY: POOL DRILL RIG TYPE: mdile \$61 DRILLING METHOD: Hollwsten Avers DRILLERS NAME: V. Bairozza TOTAL DEPTH (FT.) 25 TIME STARTED 0725 DATE JOHN JOHN JOHN JOHN JOHN JOHN JOHN JOHN
SAMPLER	FEET	RECOVERED	SAMPLE	FIELD LABORATORY SAMPLE NUMBER	FIXED LABORATORY SAMPLE NUMBER	HNU SCAN (PPM)	LITHOLOGIC	C (FEET)	- i	TIME COMPLETED 0803 GROUND-WATER CONDITION AT COMPLETION OF DRILLING SAFER AT A STATE BACKFILLED, TIME WEATHER CONDITIONS Cloudy, Cocl & 48 of SURFACE ELEVATION COMMENTS Asphalt at Sorfice 0.0 to 0.2'
SI SAIIT BARREN	5.0	みっ	FAIR	1-58m2//3		7500		3 4 5		Fill Grovel clast mixed some times O. 7 to 1.0: Fill Sand medium to Course Serviced plans moist oro plantice strong the Inscensive redox in - 7.5 Foriginal Soil Sendy Clay I clavey Find: Strayist brown, sond in fine crainers.
-	-	-					23	F	Ŀ	51.4, slighty plastic.
313417 8,804	5.0	5.0	Fe oct	E117405-2	1	7500	SC	9	2 1	7.8 +a 13.0'

The second second

LOG OF BORING (CONT'D.) SHEET Z OF Z PROJECT BORING NO. FIXED LAB. SAMPLE NO HNUSCAN (PPM) EAKER SAMPLER TYPE FEET DRIVEN JOB NO. 3×98 Sc >540 SW FAIR Ġ >500 SC. 20 150 TD=25' NOTES:

- 11-		וע	$\Box \cup$	U	U	- E	J	1 /11	V	SHEET OF
LA										PROJECT BORING NO.
							1			EIITW 1106
							1			EAKEL AFR EHTWOOF JSG
****	1						TW O	(103		JOB NO. 3K9B LOGGED BY: BFA/
٠	-					}	9			PROJ. MGR. GV G EDITED BY:
-			1				!	۵		DRILLING COMPANY: POOL
					(D) Tu	80110	1	ROAD	- 1	DRILL RIG TYPE: MOLE, BEL
							1			DRILLING METHOD: Hellow ten faccos
			MEIS	100 C	_ /		EUT	mo@		DRILLERS NAME: y Autrosza
	, .			_		@	ارو	t (TOTAL DEPTH (FT.) 25
			r 000	(O)	Su Di					
			G.~	, , , , , , , , , , , , , , , , , , ,	Otto		ı			STARTED 0936 DATE 12/13/9/
										COMPLETED 1020 12:13:91
	1	-		اہے	TORY ER					GROUND-WATER CONDITION AT COMPLETION OF DRILLING Sutvented a f 16.5 undat 9.0
Ì		[ATO HE		•	<u> </u>			
ŀ	1			ORA	SE		ပ္			BACKFILLED. DATE SEE COMPLETION FORM
ב		ERED	… ଞା	ØZ	A Z	AN	0000			WEATHER CONDITIONS
ا . ۲	FEET DRIVEN	رچا	띪	22	25	ລ ລ	₹ō	EE	•	Partly chady, lite breeze, cool
ĘC.	EE	語 記	SAM	FIEL	FIXED	HNU S(MAA)	COD	PEF		SURFACE
<u> </u>	تما	正區	တပျ	正必	EG	<u> ==</u>	170	10=		ELEVATION
					'	1		Ц	***	COMMENTS
۲ م ک		•				١,		Ц,		Asphalt at Sunface and - a3'
0 4.	5	C		1				Ц	,'	Fill Crave laised altines
۱۰ ر		Ŭ	·					Π_{\perp}	FM	
-							ML	12	7-	Fill: 5:14 Chy done sony, moist
						i	ML	H	- 1	sitt wisome soull concreations
	} }			-		60		3	1.7.	
V							ļ	Н	 	0.3 to 3.5
4								Ha		
Ž					1	0		Ц	-	Silty Clay son thrown alsome
B					Ì	"		5	1 -	Send mist medicustiff
Ĺ							.,,		' -	alsone exide militer storbthe
•	3						FAL	\prod_{\bullet}	-1	in Hed.
1		0	ن ،	11		1		He	11	35 40 20
3/6	(,·	W	ı .	<u></u>	50				
76 15	(4		سست: ا		_				
36 15	(4)	<u> </u>	-	-						
3/6 /5	(ر د د	= -			77.2				Sand clay / Tlayer Sand brown
151 750	(, ,	-		Atami				8		For every bours, must a not
smer S' spe		-	=-	in the second		0	SC	8		4 - 4 - 4
7 6mrs/ 51 51	K		30	sta-1		0	SC	П		
WLIT GATES ST. SPL	0		posses	ALCO C		0	SC	8		in zones, Sunden fine commend

<u>FII</u>	<u>EL</u>	<u>.D</u>	<u>L(</u>	<u>)G</u>	0	F	BC	R	IN	<u>G (CONT'D.</u>	SHEET 2 OF 2
SAMPLER TYPE	FEET DRIVEN	FEET RECOVERED	SAMPLE	FIELD LAB. SAMPLE NO.	FIXED LAB.	HNUSCAN (PPM)	LITHOLOGIC	DEPTH (FEET)		PROJECT SAUGR AF B JOB NO. 3K-98	BORING NO.
								H /			
S. Jaking	5.0	ء,ح.	ريدند ويرد	/	/	0	CL	2 3 4 5		Meist, medium plusticity, sli 10 - 16-5	stiff, miderate
40		•				0	sw	6			conce stiffer and
5' 301,4 Barust	5:0	4.0	Breen	/	1	0 0 0	swi	20 21 21		Soul seam as	+10m 12-16'depth
	202	Games.	Pent y	'n			이글	23 24 25	11 11 11 11 11	must to cet	to brownish stay
								6 7		11.5 to 3	et chalay
								9 0		muist seft	Loyey sund Groupsing
								- 2 - 3 - 4 - 5			, stiff plaster
7.€		-				- ::		7		TD: 25'	
								9	n.'."		
NOT	ES:	- 1	· · -· · .					- 0	<u>U</u>		

	-11	ו ע		G	U	<u>ר</u>	<u> </u>	RII	NG	SHEET OF 2
PLA	N =									PROJECT BORING NO.
								_		EAREN AFO EIITWOT
						Thoe	የይናፕ	ا ے		JOB NO. 3K98 LOGGED BY: UNE
1.	\ E	1120	707		"	((161			PROJ. MGR. GVG EDITED BY: SFN
	1	0								DRILLING COMPANY: A. V. POOL
3	<u></u>		١.		\ <u></u>			ر		DRILL RIG TYPE: 2 50 8-61
12,0	13 R		<i>!</i> (TOU To		(DRILLING METHOD: House STEM AUGEN
3	APERONS			SCAL	E)	0				DRILLERS NAME: VINCE BARKAZZO
PANKIN	202)		Í	r 7				TOTAL DEPTH (FT.) 30'
4	13				I		/			TIME 1515 DATE 12/13/91
<u> </u>	<u></u>									COMPLETED 1600 DATE 12/13/91
i	Ī			≿_	R					GROUND-WATER CONDITION AT COMPLETION OF DRILLING
				ABORATORY NUMBER	ATO BER					parrel safe router at 1200
		e	-	S S	S.M.		ပ္			BACKFILLED, DATE
E	_	E .	교현	EN	EN	CAN	90			WEATHER CONDITIONS
축유	FEET DRIVEN		到	교	ED M	HNU SCAN (PPM)	LITHOLOGIC CODE	교		PARTY CLOUPY 5 MPU WAR 55°F
SAL	FE	EE	SO	SA	FIX	些	<u> </u>	DEPT		SURFACE ELEVATION
								Ц	8	COMMENTS
1,								Ц,	-	ASPHALT @ SUNFACE
Lan	2.0	-	-	-	-	-		Ц	<u>ت</u> -	0-3.5, Asphalt + Fril
4									FM	
						7500		Ц	· · -	•
	i							3	-	
J						ļ		25	- 1-	3.5-6.5' CLAYEY SAND + SANDY CLAY
3			ı	-			SW.	4	==	AUTENTINE, STATE
DARGEL			3	07.	;	K500	۲۶۵			GRAINED; CLAY - MODERATELY
İ	5.0	3.5	3	13	-			5	F	SUMT, DAME BROWN.
1-			Freeden	F117				M	::4:	Moist
SPL			يدا	Ū				6		
1			"			₹ 50¢	×			6.5-10.5. CLAYEN SAND YREY.
<u> </u>	-=	-				1			,	and dive grained; mais to
. :			١.		,	5000	250		:	wet.
T		1	1 2			F		8	1	
i	5		CENENT		_					
149	5.0	5.0	J.	-		7500	J	9		
50	5.0		Ĭ W			120		W -		
1 1	1	1	1	1		1		U .,	, ' · ·	

FI	EL	.D	L()G	0	F	BC	R	IN(G (CONT'D.) SHEET - OF -
SAMPLER TYPE	FEET DRIVEN	FEET RECOVERED	SAMPLE	FIELD LAB. SAMPLE NO.	 – W		LITHOLOGIC	DEPTH (FEET)		PROJECT EAKER AFR BORING NO. EITWITO7 JOB NO. 3K98 ENTWO7 JAK
03.2	SEE			A GE	_	boo		11		10.5-21.0-BROWN-GREY CLAY, hard, plastic, mottled
Srur Brickel	0,0	5.0	Exceution	_		500 2000		13 14 15		
SPUT BARREL	8.0	0.0	EXCELLENT	E11-TWD7-02	1	1500 7500		17 18 19 20 20	1 111 111	21.0-22.0; SANDY CLAY, SCF+, brown, saturated.
L	5.5		-	1	•			24		BETWEEN 22-30 - COANTE TAND
- 1 & 1-	3,0			١	-			27 28 29 -30		ALTERNATING W/ MOD. HARD, DAML GREY CLAY, MOSTLY CLAY HORIZONS.
						·		2 3 4 5 6		
NOT	ES:	- 8-14						9		

FIE	ELI	וכ		G	OF			<u>RII</u>	<u>NG</u>	SHEETOF
PLA	N —					7,5				PROJECT BORING NO.
					Short	ELLI	(ou.	~ ;	EAKER AFB ETITWOS PRE
	1									JOB NO. 31-98 LOGGED BY: LRE
	1		EI	m	80		_			PROJ. MGR. G-VG- EDITED BY: BFAI
	1				0			Pum	xe ;	DRILLING COMPANY: A.W. POOL
1.									İ	DRILL RIG TYPE: B- 81 61
1 2										DRILLING METHOD: HOLLOW STEM AUGERS
201	1							Pur	وم	DRILLERS NAME: VINCE BARRAZZO
1 }	1									TOTAL DEPTH (FT.) 29
	}									STARTED OF STARTED DATE 12/14/91
										TIME COMPLETED 0825 DATE 12/14/91
					ORY FR					GROUND-WATER CONDITION AT COMPLETION OF DRILLING SATURATED ZANCS & 1 10'and 2.1'
				뜨돌!	MB		ပ			BACKFILLED, a 14.00 DATE 12-18-51
EB		ERED	TION	S S	AB S	CAN	061	_		WEATHER CONDITIONS
1 1	E	-8 -8		PLE	25	SC W	LITHOLOGIC CODE	FF		PARTLY CLOUDY MID 403, LOMPH WIND
SAMPL	FEET DRIVEN		SAN	MAN	SAN	HNU S (PPM)		DEP FEE		SURFACE ELEVATION
			<u></u>					T	₩	
-								Π.		Aspitace @ Surface
L	9.0	١	١	1	1	•		Π'		
82										FILL 0-6.5, SAND, WELL SOLVED.
-									0,	MED TO COARSE GRAINED
],	2 0	
2				İ	Ì		sw		1: :	
13					4				1.1	
BARRE					SellogA				1:0	
å	0,0	l is			10	500		N _s		
17	N	25	ලිකා	1	1					·
SPL			9		35	ľ				
- "					=					•
-			1,27			i 50=				6.5 m ANDY CLAY - BROWN -7 -
-					- 	>500				Grent mottles moist, Hypro comosin
•			1 5	+			SC	8		COOK BECOMES SANOTER - DEPORT
٠ كر د	<u> </u>		Exce UR N							
L	S S S	S	1 4	,		7500	,	9	-	
- 3	۳ ا ۳	S	Exe		'					
50	1		}	1	(y)		1	M.]	

ernation en la revo

FI	EL	.D	L(OG	0	F	BC	R	IN	G (CONT'D.) SHEET 20F2
SAMPLER	FEET DRIVEN	FEET RECOVERED	SAMPLE	FIELD LAB. SAMPLE NO.	1	AN	L/THOLOGIC CODE	DEPTH (FEET)		PROJECT FAKEN JOB NO. 3K9 8 EH SEDE ENTW
						150	SW	1 1 1 2		10-11' SAND : MEDINA GARINED WET, APPEAR & TO CENTAIN FREE PRODUCT
Spill	5.0	0.2	FXCELLENC	i	F11-54-5B1108B	150 150	Cit Cit	13 4 5 6		11'-Di' CLAY, brown of grey mottler, hard, plastic
BIRAGE	5.0	5.0	Exce LI BANT	1,0	E11 - Sin - 581108 C	0 % 0	CL	18 19 20 21		21-TO CLAY grey hard, plastic WET @ 21.
トーゆ	5.0	1	_	ì	l	1		25 26 27	111.11.11	SOME SAND ZONES PROBABLE BASED ON DIMILLERS COMMENTS.
BIL	٠ ٢	1	•	1	1	-	٠	28 29 0	11111	
								2 3 4 5 6		
-	-	-						9		

NOTES:

盖· ·

FIE		וכ	0	G	OF	E	30	RII	NG	SHEET OF
LA				<u> </u>						PROJECT BORING NO.
	•		1		ર લી ટ	PET	75		•	EAKER AFB EITWILD9
			į			••	1		-	JOB NO. 3K98 LOGGED BY: URE
<u>.</u>							יר			PROJ. MGR. GUG EDITED BY: B FM
				Du			7			DRILLING COMPANY: A.W POOL
 	T. 11	108 C)	(0)	ومعوه	دردن	0	ENT	w1100	DRILL RIG TYPE: B-61 416
(-11	(1201	0 C					ı			DRILLING METHOD: Howen soon Angen
							!			DRILLERS NAME: V. BARRAZZO.
										TOTAL DEPTH (FT.) 25
										TIME 0925 DATE 12/14/91
										COMPLETED 0955 DATE 12/14/11
				ORY H	FR					GROUND-WATER CONDITION AT COMPLETION OF DRILLING
				ME	RATC					Saturated at 1 10 and 2 21.5
_		<u>E</u>	z	BORAI	S S S S S S S S S S S S S S S S S S S	Z	01907		1	TIME
LEF	FEET DRIVEN	VER	뜨읩	ابه	ŞΨ	SCAN	20	F.F		WEATHER CONDITIONS
YPE	₹E	CE	COND	FIEL D SAMP	FIXED	PPM)	LITHOL	DEPT FEE		SURFACE
<u> – îŭ</u>	<u>E</u>	正座	ပြင်လ	E Z	正改	E.	<u> </u>		22.5	ELEVATION
								H	***	
L		_	_	-	_	_		H/	ر ا	Asphaur @ Swiface
8	2.0							H	FM.	0-4,5 Fil, MOSTLY MEDIUM
								12		GARINED SAND, WELL JONED
							کن√	H		0.000
								3		
			ļ		4	2000		M	.,.	
					54-Tw1109A				<u></u>	4.5-6.0' CLAY DARK BROWNISH GREY,
	5.0	3.5	00	_	3		ch			MODERATELY SOFT SUCHEFUS PLASTIC
S.B.	3.5	J	6000	-	1-1	250	СН			TRANSITION INTO LOWER BROWN CIAN
			-		18-			N _e	==	SANDY
					EI-					6.0- 9.5' CLAY, REDONG BACON,
***	-	; .	-		-	١	1	<u> </u> 		GREY MOTTLES SOME BILT.
- -					B		36	Ц		
i j							-	8	-	
			Ω		-Tw1109	500	1		-	NEO To
i	اد م	4.0	Capa	-	7			,	· ·	9.5-10.5' SAND FINE GRAINED GREY;
S. F) 3.0									
S. 5	, 5.0		0		5-11-1	7500		M _	<u> </u>	WET FREE PRODUCT APPENDE TO

THE PERSON NAMED IN COMPANY

	SAMPLER TYPE	FEET DRIVEN	FEET RECOVERED	SAMPLE	FIELD LAB. SAMPLE NO	FIXED LAB.	HNUSCAN (PPM)	LITHOLOGIC	DEPTH (FEET)		PROJECT BORING NO. EAKER JOB NO. 3K98 EII TW1109
							50 C		1,		MODERATELY PLASTIC AGUNDANT FEL
	S.B.	5.0	5.0	ERCEUSING	-	-	i 6	CH	12 13 14 15 16 17	-	CONCRETIONS, MINOR SILT, MOIST. -TRANSITION INTO LOWER LINIT 15-19.5 CLAY, GREY MOOFRATELY PLASTIC. MINOR SILT; DAME. SUFFREY MOIST
	5.8	5.0	5.0	CREELENT	-	E11-SU-TWID9C	0		19 20 21		19.5-25.? SILTY CLAY, GREYNISOME LT. BLW LAMINAE, SCFT. WATER NOTED @~ 21.5'
Í	SIT	-	-	-	-	1	-		33 34 2-5		70 =25'
									67890123456		
	-								3		

THRII KE

:::

		•						
FIELD	LC	G	<u>OF</u>	E	<u> 30</u>	RII	<u>NG</u>	
PLAN	7							PROJECT BORING NO.
		S	itop	PETT	E			EAKER AFB ENTWOOD ISS SIZE/52
								JOB NO. 3 K9 & LOGGED BY: URE
			!					PROJ. MGR. GUC EDITED BY: BFN
	:	ويد	― ノ i	01	EIIT	WIC		DRILLING COMPANY: A.W POOL
	10.0	200	う					DRILL RIG TYPE: B-61
		SENZE		❷	Elito	N09		DRILLING METHOD: HOLLOW STEM AUGER
								DRILLERS NAME: V. BARRAZZA.
	VAC	was	一、					TOTAL DEPTH (FT.) 25
			·					TIME 1322 DATE 2/14/91
								TIME DATE 2/14/91
		₹	Α.					GROUND-WATER CONDITION AT COMPLETION OF DRILLING
		BEG	NE RO					SATURATED I 8.5
۽ ا		NORATORY NUMBER	OR OM		21			BACKFILLED, DATE
SAMPLER TYPE FEET DRIVEN FEET RECOVERED	E ION	ABEN	EN	CAN	LITHOLOGIC CODE			WEATHER CONDITIONS
로비트	흑	14 14	급	SE W	로빗	DEPTH (FEET		CLEAR, MID 405, 10 MPH WIND
TYPE FEET PEET PEET PEET	SO	FIE	FIXED	HNUS (PPM)	100	35		SURFACE ELEVATION
							1 01	COMMENTS
						$[]_{\star}$	10	ASPITALT & SURFACE
Bit 2.0 -	-	~	-	-		∐′	o FM	
	ļ					2	e' •	0-25 Fir (NOT RECOVERED)
			_				<u>. </u>	
			67	100	چٽ	3	- 5	2.5-4.5, SANOY CLAS DAPLE BROWN.
			*					ORBANIC PACIF
			1			4	7 . 5	
			120110	7500	-		<u>-</u>	- TRANSITURI W/ LOWER WAIT
S.B. 5.0 4.5	0	1	13			5	<u>-</u> -	4.5 - 8.5' SANDY CLAY TO CLAYET'SAND,
	0000		2 x -				-:-	Brown of Grey Motries, MOD. SCET,
	၂ ဗ		1			6	-	DAMP.
	\	<u> </u>	=	7500	<u> </u>			
		- Francis				NZ.		
			(3) P	49.0		1		*
			0 -			8	: .	
56.5.03.	5		13	300			T.	VC - 95
			1 7		<1	9		8.5-9.5 8.5950 CLAYEY SAND BROWN W/
			0111-24-1271110			—	- ·	GRAY MOTTURS MOD TO FINE GRAINED
1 1 1	i	1	ļ (u	120	1	F1 10	, ! =	Grakey procedures, 1001), 10 place organizations

FI	EL	_D	L(OG	O	F	BC	R	IN	G (CONT'D.) SHEET ZOF Z
SAMPLER		RED	T	LAB.	LAB.	SCAN (A)	HOLOGIC			PROJECT EAKER AFB JOB NO. 3K98 EII TWILLO
								- '/	-	85-95' (CONTINUED) WET IN SAND ROVE.
S.B	S.69	5.0	Excenent	1		0	CH	12 13 14 15 16	<u>-</u>	95'-13' CLAY HARD, PLASTIC, BROWN MGREY MOTTLES, MINOR SILT, FE STRINS and Addules. DAMP. -TRANSITION ZONE W GREY CLAY BELOW 13'-22' CLAY GREY, HARD PLASTIC, SOME RED STAINS, MINOR SILT
S:&	5.c	5.0	EXCELLENT		1	0 0 0		18 19 20 21)	22-25' BIT (NO MICOSTARY)
Bit	1	_	_	-	-	-		23 -4	- - -	
								75 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		TO -25' M
NOT	ES:	•	'	'		•	-	- 0'	u	

FIE				G	OF	- 5		RII	NG	SHEET OF
PLA	N_				N					PROJECT BORING NO.
				K						EIITWIII
								Į		JOB NO. 3K98 LOGGED BY: BFM
	i	_						}		PROJ. MGR. GVG EDITED BY: BFN AFN
.	ئع ا	.			7			- [DRILLING COMPANY: Pool
	78. P.	'	CAHOT	1				,	4	DRILL RIG TYPE: mobile , 861
		<u>_</u> _							8	DRILLING METHOD: 644 Hollow sten Awars
	اميهم	91 ~"-	راه ا		ก				<u> </u>	DRILLERS NAME: V. Barralza
115		مدبوات	راعرت	\$ Julio:	;U				42	TOTAL DEPTH (FT.) 221
a	pull								_	TIME STARTED 6753 DATE 12-15-91
										COMPLETED 08/8 DATE 12-15-5/
		Ì		ER	RY				-	GROUND-WATER CONDITION AT COMPLETION OF DRILLING Entrated at \$\pm\$ \$\frac{1}{2}\$ for and \$\pi \frac{1}{2}\$ 1"
				SE SE SE SE SE SE SE SE SE SE SE SE SE S	ATO BER					entuated at 4 110 and at
		٥		BORA			2			BACKFILLED, DATE
EB	FEET DRIVEN	ERE		AB E N	A S	10	70010			WEATHER CONDITIONS Clear, coid, lightbreeze & 3007
로	E-S	- <u>S</u>	축	ם	민류	Š(X	CODE	EPTH FEET)		
SAN	E E	REC	SA	FIE	FIXED	론				SURFACE ELEVATION
									000	COMMENTS
			j	١	1			\prod_{i}	530	Asmiell et surface 0.0-03
381.0	2	0		١	, '	'		[]′		
18.5	2					<u> </u>		□,	.,	Fill; crovel mixed al fines
									1.5	0.3.1.0'
								J	,,	
ĺу							SW	Ц		Fill: Sand board to stay boars
1 4						> 5000	4			mediante course cained longe
188							770	1		1.0 40 7.0
1							3		1	
13	.			1	,	25000	1 /2		1:1	
10%	12	7	7	3	'	/	7500	4		clay , brown, with silt and
15		,,	BOOR	3			}	Ц	1	trace of sand moist, soft
				2				掛 ,	شف	to medium stiff
V		1.						TÍ'	1	
- 6			1		+-	7422	CL			Suturated zone XIO
848				N .			Sc	∐"	12 -	Surly zine ul clay in very
14				1		750	20	∐.		incist to net seel
13	· -	1.	\ \	1 1	ı	1	1		15-	·
18	1 5	1	\$	1 1	1		ļ	LI_		10 40 11.0'

LOG OF BORING (CONT'D.) SHEET ZOF Z BORING NO. PROJECT FIELD LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
HNUSCAN
(PPM) SAMPLER
TYPE
FEET
DRIVEN
FEET
RECOVERED
SAMPLE
CONDITION EAKEL JOB NO. EllTuill 600 11.0 -600 80'00 600 600 0 0 NOTES:

SHEET OF _Z_
BORING NO.
EITWILZ
LOGGED BY: BFN
EDITED BY: VSB
: Pool
MOBILE, 861
6 4 Hollow Sten Augus
V. Barrazza
1 25
DATE 12-15-91
DATE 12-15-91
TION AT
ing to stress and tell
P DATE 12-16-9/
t breeze 230%
1 surface op-0.3
el clust mixed ulfines
0
w . cet I some 5'H
t tore pressies
possible fill
cachin adar.
x 8' 10 8.5', suterike
2 10 10 10.5' suturel
2 10 10 10.5' sutunts
2 10 10 10.5' sutunts

FIELD LOG OF BORING (CONT'D.) SHEET Z OF Z BORING NO. LITHOLOGIC CODE DEPTH (FEET) FIELD LAB. SAMPLE NO. SAMPLE EAKEL AFB SAMPLER TYPE FEET DRIVEN FIXED LAE SAMPLE N HNUSCAN (PPM) JOB NO. 31598 EIITUILIZ 7500 2000 *;* 0 5000 0 SOLL BARREST ٥ 0 S CL CH sutrated zone 140 ple of 12. 251 50% TD=25 NOTES:

ŀ	- IE				G	<u>Of</u>			RII	<u>NG</u>	SHEET_L OF 2
F	LAI	V —		J	BX OF PET	1					PROJECT BORING NO.
				7"	ior rei		เพอเพ				FAKER AFB EILTWILLS
- 1	7					l					JOB NO. 3K98 LOGGED BY: LAE
	<u>u</u>										PROJ. MGR. GUG EDITED BY: BFN
.	3	i				DIAN			-7		DRILLING COMPANY: AW POOL
	U I,	ı						 11 T W	てノ		DRILL RIG TYPE: 8-61
	١				₹06K	os P				'	DRILLING METHOD: How over Augen
	j				~ @	EIITV	31101	<u> </u>	• •		DRILLERS NAME: U. BAYLAZZA.
	(5rAs	· •	,	, v . \	~70′	4	¥	4		TOTAL DEPTH (FT.) 27
	ļ	4	-		٠.	\	EIIT	will	3	٧	STARTED 1350 DATE 12/15/91
		,	+		<u></u>			4			COMPLETED 1445 DATE 12/15/91
_					TORY	RY					GROUND-WATER CONDITION AT COMPLETION OF DRILLING Sakrated romes at 5 po land 52 2 l
						ATO BER					
			ED.	-	ORA	NON THE	_	Ö			BACKFILLED, 0739 DATE 12-18-91
j	ER	z	ÆRI	밀	EAE	ELE	CAL	907			WEATHER CONDITIONS
	로비	EET SE	ET	Z Z	OF OF	MPI	S (Wa	울	DEPTH (FEET)		CHEAR SMPH WIND, MIDYOS
	Z <u>&</u>	프	표	SA	FIELD LABOR SAMPLE NUM	SA	Ĭ.	<u> </u>		1 30 \$ 1-	SURFACE ELEVATION
'											COMMENTS
ı		0	·	,		ı	١	41	Ц,		GRASS C SURFACE
	-	0	1	•				ML	Ц	NP-	
+	B								2	•	
ļ	!			ľ			b	ś₩		٠.: :	0'-3' PLOW ZONE & POSSIBLY FILL
i	İ							i	3	-	2-3 MED TO COARGE GRAINED
	7								H		SAND DAMP, SOME BLACK CREANICS
	BARNEL							CL	4		AND RED TRON CONCRETIONS
	346	0	O	0	,	,	٥			Ξ.	3-4.5' SILTY CLAY, DARK BROWN
		Ŋ	N	8	'	'			5	-==	4.5-10' SILTY SANDY CLAY, LT BROWN
	Stur			16						<u>.</u>	W/ RED + GREY MOTILES,
	S								6	-	BELOMES LIGHTER IN COLOR WDEPTH,
	ļ.·				<u> </u>	<u> </u>	0			-	MORE GREY WI DEPTH.
						-	T	1	F	[=	ZONES HAVE WATER IN 8-10' DIRECTOR.
	7					 	0	 		:=	SANDY DUTENVALS ARE 126 THICK
1	BANNEL	0	0								
•	1	is		100		}				: <u>-</u>	
	SPUL			Boact							
	SP	i					3	Inc	111	<u> :</u>	

SAMPLER	Z	Ð		FIELD LAB. SAMPLE NO.		CAN	CODE	DEPTH (FEET)		G (CONT D.) SHEET 2 OF 2 PROJECT BORING NO. JOB NO. 3K98 EITWILLS
		<i>ن</i> ره	νs	PAC	Æ	0		11		10'- 21' CLAY, LT BROWN TO GREY. SILTY: RED IMM STAINS 12'-31'.
S.S.	S.o	5.0	GREENE	٠	ì	0	CH	14 15 16	- 1	- BECOMES GREYER & LESS SILTY IN 12-19.5 DUTTERWAL, PLASTIC, HARD - 19.5 - 21', BECOMES LT BROWNUN
S.B	5.0	5.0	EKCELLENT	E1113-01 @23'	ť	0 2 7	١ کج	17 18 19 20 2-1		RED, LESS PLASTIC, MODE SILTY THAN ASONE 21-27 SAND, COASSE GRAINED MOD. WELL SORTED, WET.
								24 25 26 27 8 9 0 1 2 3 4 5		22-27 is some (as per drillers conne
TOV					euri Ti			6 7 8 9	<i>-</i>	

. .

:

I	FIE)	_0	G	OF	. B	O	711	NG	SHEET 1 OF 3
1	PLAI										PROJECT BORING NO.
İ	<u>-</u>	-1						— Ţ - · ·		-	EAKER AFB EII TW1114
	1 1	C 12	5 <u>5</u> 1 1 <u>5</u>	10	PEI	ربي ۱۱۲	, ,	!	1 1		JOBNO. 3K96 LOGGED BY: URE
	<u></u>					Ð					PROJ. MGR. GVG EDITED BY: BFN
}			a Ei	i Tw	iii4		Euce	SF 1	A RICH Lei T	• •	DRILLING COMPANY: A.W POOL
	,		ישע	((• •	(1000	୍ଡ	EiITi	مرررا	.	DRILL RIG TYPE: 8-61
	(sph:	<i>د</i> د				`				DRILLING METHOD: HOLLOW STEM AUGEN
		The i				1	\				DRILLERS NAME: V. BARRAZA
						-					TOTAL DEPTH (FT.) 24'
							``\ •				STARTED 6955 DATE 12/16/91
											COMPLETED 1105 DATE 2116 91
					SRY ER	ABORATORY E NUMBER					GROUND-WATER CONDITION AT COMPLETION OF DRILLING Supervised Zone at 18 and 221
					FIELD LABORATOF SAMPLE NUMBER	MBE		()			BACKFILLED, DATE
	æ		FEET RECOVERED	NO.	82 82	ABS Segon	Z	LITHOLOGIC CODE			TIME WEATHER CONDITIONS
	E.	Z		A S	PLE	급	SC/	<u></u>	EE		CLEAR, MID 305, 5 MPH WIND
	SAMPLER TYPE	FEET DRIVEN	ECC	SAMPLE	IEL AMI	FIXED L SAMPLE	HNU SCAN (PPM)	FS	DEPTH (FEET)		SURFACE
,	S	FO	u.œ	လပ	T Q	IL O	<u> I</u>	70			COMMENTS
									Н		GRASS @ SURFACE
	Bit	۵.۵	_	-	•	_	_		H′		0-4' No receivery
									H		
									2		
			I						H_{\perp}		
									3		
									$\prod_{i=1}^{n}$		
							0	Siv			TZIOM, OBLINGO MED GLAINED, MOIST
	Ca		2.0	٥				3.0		÷	
	ع.و.	5.0	3.0	4000	1	1	C				5-6' Sivry CLAY DARK BROWN, MOD.
				0	'	'		CH			SOFT, SUGITING PLASTIC MOIST.
								CH			DUNZ NOUIM
	*		1 1000		Ę		U	-	11,	- -	6-13 SANDY SILTY CLAY BROWN MORE CLAYET ZONES
	1				3				N_		of Barry MOTTLES. SUGATING
								CI+	R	-	PLASTIC, HISH TRON'S TRONS
)				しっ	,					-	12'-13'.
		5.8	u c	KCE CLE NO					وا	-	WET ZONE 8'-10' IN MORE
	5.9	اح.	1.7	3			0			-	SANDY BYES DITERVALS
	1			🛈					10		

FIELD LOG OF BURING (CONT D.	SHEET 3 OF 2
SAMPLER TYPE FEET RECOVERED SAMPLE CONDITION FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. SAMPLE NO. FIELD LAB. FEET FEET FEET FEET FIELD LAB. SAMPLE NO. FIELD LAB. FEET FIELD LAB. FEET FIELD LAB. FI	BORING NO.
S.B SEE PREU PAGE 0 11 TRANSITION WILL	over grey until @ 13'
L 2 PCO TROW	HARDER + MONE PLASTIC
S.B. 5.0 S.B. 5	
BIT 2.0 WET @ ~ 21'	Source
5 6 7 8 9 0 1 2 3 4 5 5 6 7 8 8 9	
NOTES: * As per drillers comments	

10 N

=

F	-1E		ו כ	٥	_	OF	= E	301	RII	NG	SHEET OF
	PLAI										PROJECT BORING NO.
		•			,	G			PARKI		EAKER AFB ENTWINS
							•		LOT OF	-	JOB NO. 31498 LOGGED BY: FILL
									B×		PROJ. MGR. GUG EDITED BY: BFN
									ટાબ્યક	TTE	DRILLING COMPANY: A.W POOL
		בונידשוון ש									DRILL RIG TYPE: B-61
	, I										DRILLING METHOD: HOLLOW STEM AUGEN
	Gares										DRILLERS NAME: V. BARPAZA
					£(.			Í			TOTAL DEPTH (FT.) 22'
								`	b, ℓ	, ,	TIME 1370 DATE 2/16/91
Į				THA	772 C	PEFT					TIME COMPLETED 142 C DATE 12/16/91
			ĺ		ER	ATORY BER					GROUND-WATER CONDITION AT COMPLETION OF DRILLING Saturated Zones at + 7 and 17'
		1		• •	NUMB	BORA		ပ			BACKFILLED, DATE
	œ		R	. 공	ğZ	AB Z	AN	01907			WEATHER CONDITIONS
	<u> </u>	VEN	FEET RECOVERED		ם		J SCAN M)	0	E		CLEAR, MID to UPPER 4CJ, LIGHTWIND
	YAN T	HE S	HOLE	SAM	SEE.	FIXED	PPW		DEPT	İ	SURFACE ELEVATION
	0,,										COMMENTS
,									H		GRALL @ SURFACE
	BIT	2.0	_	-	-	-	-		Η'		0-2 NO RECEIVENLY
				İ					H		
•	-				,		0	Ci	2	1.	2-3' CLAY DAME BROWN ORGANIC
										-	RICH, ABUNDANT ROOT HAIRS. MOIST
	İ							ML]		3-9' CLAYEY SANDY SILT SILTY SANDY
								ML		-:_	CLAY; BROWN, SILTY ZONES - MONTY FAR
		_		<u>اح</u>			0			5	ARE MORE FUABLE THAN CLAYER ZONES.
	DB	5.0	5.0	EKCELLEN			1		5	-	REOT HAIRS + OROMACS @ 700. MOIST
				l iii		-				-	·
				, X					6	-	
"				W			0			_	
	1				-				悬	- ,	· · · · · · · · · · · · · · · · · · ·
			<u> </u>		┢▔	 	0	+	TZ.	: ::	- WET ZONE ~ 7' WHERE MORE SAND
	-			الخ	8		 	+	#	-	IN PRESENT
1				Į ų	G						
•	50	5. o	50	3	-				1		
	3.5			3	H(15-1		0	CL	, 9	E	9-19' CLAY, BROWNISH GREY WIRED
		İ		Ш	卤			"		-	MOTTIES, HARD PLASTIC. MINOR SD + SILF
	•	•	•	-			-		10	, -	and the same of th

FIELD LOG OF BORING (CONT'D.) SHEET 2 OF 2 PROJECT **BORING NO.** SAMPLER
TYPE
FEET
DRIVEN
FEET
CONDITION
FIELD LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
CONDITION
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
FIXED LAB.
FIXED LAB.
SAMPLE NO.
FIXED EAKER AFB EII TWIIIS JOB NO. 3198 MOIST 9-PAGE SEE PREU-- IRON STAIRS 12 Stealle 0 5.8, 5.0 500 0 19-22 CLAYEY SAND LAMINATED. SANDFINE GLAINE S.B. 5.0 5.0 SC SAMPLE PATURANEO @ 19.5'. VERY 0 EIIIS. MOIST TO WET UP TO 17 ! GREYISH BROWN み TO = 2-2-1 NOTES:

-1-

	FIE	ELI	D I	LO	G	OF	E	101	RIN	<u> 1G</u>	SHEET OF 2-
•	PLAI					1	i				PROJECT BORING NO.
	. (s Wat	PETE	<u>.</u>							EAKER AFB EIITWILL
١	1	3 100.	1								JOB NO. 3K98 LOGGED BY: JNG
		•		ざっぴょ				EII	TW11	رد	PROJ. MGR. GJG EDITED BY: BFN
			 			15		0			DRILLING COMPANY: A.W. POOL
			11111			2					DRILL RIG TYPE: 8-61
						36					DRILLING METHOD: How w STEM AUGEN
											DRILLERS NAME: V. BARRAZA
						\					TOTAL DEPTH (FT.) 29/
						\		\			STARTED 1530 DATE 12/16/91
							<u> </u>	<u> </u>			TIME COMPLETED HE S 1600 DATE 12 1691
					ORY	RY					GROUND-WATER CONDITION AT COMPLETION OF DRILLING
					ATOF BER	ABORATORY E NUMBER					COMPLETION OF DRILLING SATURATED ZONE 1 10 and 1-17 15
			ED	z	LABORAT	S N	7	310			BACKFILLED, DATE
	LER	z	/ER	밀	LA	MA	CAL	07	ΞC		WEATHER CONDITIONS
	SAMPL	FEET DRIVEN	FEET RECOVERED	MPI	FIELD LABO SAMPLE NI	FIXED	HNU SCAN (PPM)	LITHOLOGIC CODE	DEPTH (FEET)		CUEAR MID 505, UGHT WIND
)	SA	띪	38	80	FIS	ES	主。	20	95		SURFACE ELEVATION
									ΗΊ		COMMENTS
		മര				_	_		Η, Ι		GRASS C SURFACE
	815	α, U		_					Н		0-25' No RECEVERY
									2		
							0			-:-	25-6 SILTY CLAY BROWN WY RED MOTTLES
									3	==	2.5-6 31049 COAY, SHOWN IN ILED HOT ICED
										=	
								CL	4	-	- At a Ada
	CR	5.0	4.5	0		1			8	-	- Moist Holik '
	50.		"	0000	'		0		5		
				් ප්		'					6-10.5 CLAYEY SANDY SILT, BREWN W/
									6		REDOISH MATTLES, VERY MOIST.
		=					0	ML	-	13-3	- WET IN ZONES W LESS CLASS LAMINAE.
			-				_	<u> </u>	7		
	† -				000	1	0			ΔŢ	6
											SATURATED IN COME BARREL @ "B" IN 6"ZONETHAT
	S.g	5.0	4.0	ac					و		LESS CLAYEY.
			"	Goog	9 -		0			= 3	
					Ú	i l			N]:-:	·

FIELD LOG OF BORING (CONT'D.) SHEET ZOF Z PROJECT BORING NO. FIELD LAB.
SAMPLE NO.
FIXED LAB.
SAMPLE NO.
HNUSCAN
(PPM)
LTHOLOGIC
CODE SAMPLER
TYPE
FEET
DRIVEN
FEET
RECOVERED
SAMPLE
CONDITION FAKER AFB EIITW1116 JOB NO. 3K98 10.5-12.5, SILTY CLAY GREY W REDOKH MOTTLE! MODERATELY HAM PLANTIC CL NEWS WOIL 0 12.5-22 GREY 7210M , 7702.00M CL 6000 PLASTIC. SOME SILTY ZONES. S.B. S.O 5.0 0 - REDDISH HEMATITE/LIMONITE 16 @ 14-16' Ó 18 - 17-19' WET MORE SILTY, THAN 0 DRIEK ZONEL ABOVE + BELOW. SB S.0 5.0 0 - SMALL HEMATITE STAINS 18.5'-201 D TD = 23 NOTES:

* WATER ON COME BACKER (2 21'

FI	EL	<u>D</u>		G	O	FE	<u> 30</u>	RI	NG	SHEET 1 OF 12
PLA	N _					100	Sre As	7 5025	0 1	PROJECT BORING NO. EAKER AFB EUTWILLT JOB NO. 3198 LOGGED BY: LRE
			4	' \	PAI		EIITW	·	8.7	PROJ. MGR. GVG EDITED BY: BFN DRILLING COMPANY: AW POOL DRILL RIG TYPE: How JAMES BFN DRILLING METHOD: How Stem Augen DRILLERS NAME: V. BARMAZA TOTAL DEPTH (FT.) 12 TIME STARTED 0826 DATE 12/17/91 TIME COMPLETED 0826
SAMPLER	FEET DRIVEN	FEET RECOVERED	SAMPLE		FIXED LABORATORY SAMPLE NUMBER	HNU SCAN (PPM)	LITHOLOGIC CODE	DEPTH (FEET)		BACKFILLED, 1622 DATE 12-17-9/ WEATHER CONDITIONS CUEAR: NID 30s, 5 Mg w wind SURFACE ELEVATION
# T	۵,6	١.	ţ	·r	•		·	,	≫	ASPHALT @ SMEFACE 0-3.5' NO RECOVERY
SPUL BANGEL	5,0	Sig	· coal	E117-1	E11 - 84- TWILLTA @7'	५०० %	ΜL	3 4 5 6		3.5-5.0' CLAYEY SILT, DARK BROWN, ORBANIC HONDOW, DRY. 5.0'- 9.5' SILTY CLAY REDDISH BROWN WHORK MOTTLES BECOMES GREYER WHORK MOST TO WET. - WET IN MORE SILTY HONDOW! (SEE BELOW) OSTRON C'
Sper Brace	5,0	Sie	Cx CE Lange		1	170 30	CL	8 9	1 -1 -1 1 1 1 1 1	- 8.5 to 9.5 WET, FREE WATER- VISIBLE IN TWO 4"ZONES 9.5'-12' CLAY GREY WILT BAN MOTTLES, SILVY; SOME REDDISH-BLACK STAINS (FO?) PLASTIC, MOD. HARD MOIST

FIE	EL	D		C	0	Fi	30	RI	NG	SHEET OF
PLA	N		1.			أم				PROJECT BORING NO.
				İ	CANS	28-1				EARER AFB EITTWILLS (ABANDON BEFORE
				Į			0	<u> </u>	BBX	β
	0	いるも を	NSE	مرجه		EITW	109	اامماااد	10	PROJ. MGR. GVG EDITED BY: 6FN
		L		P		Ĩ		0 -1117		DRILLING COMPANY: A.W. POOL
	į	STILLE	()		~30	'		760 YE	10)	DRILL RIG TYPE: Homosity Kall Augen
		FS	\".,	, \				Ø		DRILLING METHOD: its low stem swear
		ć	: \:\:	\			EIIT	١١١٤مة	}	DRILLERS NAME: V. BARRAZA
		1 -	# \ \	1:1						TOTAL DEPTH (FT.) 12
		΄,	F	<u> 12:</u> /		Ŋ			(fe	TIME STARTED 0855 DATE 12/17/91
		į		__	'A KIK	ANSA		4veh	سد	TIME COMPLETED 092-0 DATE 12/17/9/
				<u></u>	<u></u>					COOLING WATER CONDITION AT
				TORY	TORY					COMPLETION OF DRILLING Saturated zone at I 8.5'
		ED		ORA	SE SE		ပ			BACKFILLED. 16:35 DATE 12-17-91
EB		~	NO NO	A BO	SE SE	CAN	21907	_		WEATHER CONDITIONS
SAMPLEF	VEN	٦ŏ	꺌	걸로			1=	II.		CLEAR, MID 405, LIGHT WIND
SAN	E E	RE	SAC	SAE	FIXED	PAN S				SURFACE
								IT	**	COMMENTS
								Ħ.		ASPITALT @ SMFMCE
BIT.	3 .0	0	-	-	_	-	-	Π′		
								\prod_{a}		2-5' SILTY CLAY, DARK BROWN
						0		2	-,-	TO GRESISH BROWN; SUGARY PLASTIC
										MODERATELY HARD,
							CL			- Improcanson open
									-,-	-
						3				
S.B.	50	5.0				3			1	
									<u> - </u>	5-9.5' SILTY CLAY GREYSH BROWN
		,				·				IN RED MOTTIES SUGHTUS MOIST TO
]	CL		-	WET.
			_		<u> </u>	2	Ctl			SENOS ETUZ SAMM NI TEM SERS SILVES
		•		7						Two -3"-4" zones Here of Free water
	-	-		9	 	30-		8	₹ -	
				B					-	
			1	1; 6118						9.5-12 CLAY, GREY WILT REDDISH BEN
SB	5.0	5.3		-1;				9		METTLES, PLASTIC, MOD. HARD, MOIST
i				88		90		M -	-	
• •	1	•	•	٠ =	•	1	[#10		

	FI	EL	.D	L	OG	0	F	BC	R	N	G (CONT'D.) SHEET OF 2
)	SAMPLER	ET IVEN	OVERED	.1	-0	XED LAB.	HNUSCAN (PPM)	LITHOLOGIC	DEPTH (FEET)		PROJECT BORING NO. EAKER AFB JOB NO. 3K.98 TWILLS
	St	i k	PRE	٠,	PAG	E	0		-1/	- 1	17 12-35 CLAY GREY: HAND, PLASTIC, ABUNDANT
ř	S.B	5.0	S.O	Exchenen	l	`[0	CH	(2 3 4 5 6		FE STAINS AND "NODWES FOLLWANG OUT ROOT HOLES; MINCR SILT; DAMP 20' SILTY 17'-DOS' CLAY, BIZOWNIJH GREY W ABWOAM PED FE STAINS + "NOOMES", SILTY JAK
	S.B.	5.0	40	FRCELLENT	E1119-02	1	0 0	دد	8 9 90 91 92	171717	PED FE STAINS + "NCOMES" , STERY STRE -WET C 18' 30' - 21' 30.5/2 34 Str. CLAY, GREY, HARD, PLASTIC, ABUNDANT FE STAINS AND "NODULES" CEAME AS 12' -17'
									3 4 5 6 7 8 9 0 1 2 3 4		TD = 22
	NOT	ES:					-		5 6 7 8 9		

	FIE		D	LC)G	OF	= E	30	RII	NG	SHEETOF
,	PLA								٨.	1	PROJECT BORING NO.
	(_	D 17	14		_				EAKER AGB BX Sweete TW1120
	1		_ (D Tu);, 2,	о 0	` ^		7		JOB NO. 3K9 8 LOGGED BY: 15B
				1					}		PROJ. MGR. CVG EDITED BY: BFN
	- [٠ ۾					\$		DRILLING COMPANY: A.W (86)
)				, O	τωιι	13		,		DRILL RIG TYPE: Mobile 13-61
	0	ত _ক	1115					O ₂	لا ۱۱ سر ک		DRILLING METHOD: Hollow stem muger
	800 C	•						•	·		DRILLERS NAME: V. Barazza
)		TOTAL DEPTH (FT.) 30
ı											STARTED CIT
ļ	,								_		COMPLETED 11/2 1-7-92
i					Æ.₩	R					GROUND-WATER CONDITION AT COMPLETION OF DRILLING SATURATED ZONE A 9' und 11' and 21'
					ATC	ATC					
			ED	Z	ABOR NUM	BOR	7	LITHOLOGIC CODE			BACKFILLED. TIME DATE 1/9/12 SEE WELL WAPLET. FORM
	ER	Z	/ERED	40		A H	CAN	وّا	EC		WEATHER CONDITIONS UP 1, 45% ptly cloudy, light breeze
	M M M	ET IVE	FEET RECOVE	AN	FIELD SAMPL	FIXED I	SE SE	是当	DEPT (FEE		
	SA	ER PR	FE	SAM	SA	ES	翌	<u> </u>			SURFACE ELEVATION
1									Ц	1	COMMENTS
ş	87			1	,	}	,		Ц,		GRASS AT SWAFFICE
3	Aucer 0.2	2	1	Ì		,			Ц		
-8-									12		DK BROWN - BROWN SILTY SAND W/
1									Н		SOME CLAY, DREADICS ABUNDANT
, o o .	i							Siy	1 3	: :-	SAND IS MED - CORREC CRAINED
ŧ										1:5-	WAL SOCTED ATT + ROCK FRAGE.
Sour							D		<u>√</u> 4	•	FRIASLE, MOIST
⋄	_				·				7	, ,	0-6,
2012 TI WE LS	Ļ	15	N	(100	1	,	ote	155	5		DEBROWN - BROWN SILTY CLAY
3	2		M	Ö	'	'			7	- :	
2				١٦			°		1/16		(0 / 12)
3		ļ.,		<u> </u>			0] .	. 7	= -	TR SAND 6-12
***	<u> </u>	-		-					-		SILTY CLAY TO MISOUS TO 9'
			<u> </u>	- <u>-</u>			2	CL		-	(LT ISIBOUS TO ISIBOUS)
ر د	0,0		}	1-					8	-:	(= 13.5.5.5.70 (3.5.5.5.5)
S	3650			3				_		· -	SATURATED ZONE AT 9': (9-1.5
(- 3	Seu T	5	N	CO CO CO			4	A	9		34,0000,000 0000 000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 3	1		لخ		.			11-		SOY CLAY AS ABOVE, SATURATED
•	1	1	i	ı	ı	ı	ı	ı	F10		11 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

	F	EL	D	L()G	0	F	BO	RI	N	G (CONT'D.) SHEET 2 OF 2
	SAMPLER	FEET DRIVEN	ET	SAMPLE	LD LAB. MPLE NO.	FIXED LAB. SAMPLE NO.	NUSCAN PM)	LITHOLOGIC	DEPTH (FEET)		JOB NO. 3K98 FWIIZO
							4 0	SC.), ₂	· 元 元 元 元	A SANDY CLAY CLAYETSD SATURATED ZONES HAVE CONSIDERABLE MOLE SANDIL
. a [*]	5000)	2	8	(נפרנפטיל))	3		15	111111	GREY-BROWN MUTTLED (LAY W/TR SILT, SE
	L 17	<u> </u> 		307 EX			0	CL	- 17 - 18	16	STIFF , PLASTIC - MED. PLASTIC 12.5-27 (SD STRINGER AT 13
•	50001 50001	5	5	Excercen?	1)	1	*	20		DECREASES BELOW 18,5' CLAY BELOW MUCH GRAYER IN COLOR
Chur	20-27	1	5	marcan	-	1	0 0 0	ИL	23 - 74 - 75 - 76		PLASTIC, THACE OXIDE NODULES AND I
o a porting	30,	S .	\	_	١	l	0 . —		28 29		TD=30' houlles reports
-									2 3 4 5 6 7 8		clanto
	NO	TES:	-			-			9		

MWIIZO

	FI		D		G	OF	- - -	30	RII	NG	SHEET OF 2
	PLA										TPROJECT BORING NO.
		44		דו כל	-				N.	4	EAKER AGB BX Sweethe TW1120
	-	~~		~~ & =.	• •		• ~	_	7		JOE NO. 3K9 8 LOGGED 81: 138
			•	1	J:12.	0			i		PROJ. MGR. GIG EDITED ET " BEN
				8-					, ,		DRILLING COMPANY: A.W (ool
	'			•	, O	TWII	٠3		ζ		DRILL RIG TYPE: Mobile 13-61
	1.	~							}	;	DRRLING METHOD: Hollow sien meet
	SAD (<u>س</u> و	1115					Θ,) راه در حر		DRILLERS NAME: V. Barazza
	4)		TOTAL DEPTH (FT.) 30
											STARTED 1019 DATE 1-7-92
	1										COMPLETED 11/2 DATE 1-7-92
					٨,	SPA SPA					GROUND-WATER CONDITION AT
					ER S	DE.					Sommed zone at 29' und 11' and 11'
•			ED		23	83		Q		·	TIME DATE SEE WELL WASCETTON
	EB		RE	5	AZ.	罗艺	A	0100			AVEAN
	2	T/EN	FEET RECOVER	긂	ᇗ	25	83	축피	E		col, 45% ptly clouds, light breeze
	SP	FEE	HU	88	SE	SAN	至至				SURFACE ELEVATION
	63.1	40	Lie	60	L.O	LO	-	<u> </u>			COMMENTS
٧,									H^{\perp}		10011 - 10011
3	はら	7		- 1	,	1	1		Η,	.· •.	GRASS AT SURFOCK
ş	Aucto O		,						H	٠.,	
~									-		DK BROWN - BROWN JILTI SAND W)
1	!								Н	•	SOME CONT BRUDDICS 154 DODAY
٥	ا ي							SM	3	٠.	SAND IS MED - COLORE PAINED
٠,					i					::.	LOW SORTED ATT + 12)CA FRAGE.
3							D			• •	FRIASIE MOIST
									N	•	0-6'
ر !.	て・5	_	.0	2			١,	155	N _s		1 1
3	2	フ	m	5000	1	1.	40			••	DEBROWN - BROWN SILIT CLAY
ì				S			0	i	3		MOIST MOTTED PLASTIC
7.29.20.20.20.20.20.20.20.20.20.20.20.20.20.					·				W	==	TR SAND 6-12'
							0			- 4	SANDY
-						!	2		n	= =	SILTH CLAT AS ABOUT TO 9'
_	ن							CL			(LT Blows to Blows)
i	20005			1 2						-	
		149	10	המנפורפא	,			4			SATURATED ZONE AT 9': (9-1.5'
,	11.0	"	41	133	'		4				
•	3 =			5		'	į			- : .	SOY CLAY AS ABOVE; SE LEATED
						•			JI 🕶	_	20-NE 11-11.5'

MWIIZO

GOF BORING (CONT'D.) SHEET 2. OF 2. BORING NO. EAKED AGB TW1120 JOB NO. 3K98 6-12514 PREDOMINANTY Free conf נטטי זורון 3 (CHAYEN SAND) थाय 0 GREY-BROWD MUTTIED (WY WITH SILT, SO 0 STIFE , PLASTIC - MED. PLASTIL (SD STRINGER AT 13') CL Kenen 500013 17-22 5 5 BEDOW 18.5' CLAY BELONG X MUCH GRAVER IN COLLE-0 arenov. 17-0 HL Q PLASTIC 10, Soulles reports NOTES:

:1	2-	21	-95	;	4	:	22PM
----	----	----	-----	---	---	---	------

Halliburton NUS FIELD LOG OF BORING

WELL NO. MW 1121 SHEET _ ! _ OF _2___

747-	OJECT: EAKER AFB RFI JOB NO.										_		441/1101
ROJEC	LOGGED												114 RORING/WELL NO.: MW1121 BDH TOTAL DEPTH OF BOREHOLE: 16.7
										GEE	9 8	Y :	
DRJLLJA	NG CC	NTRA	CT	OR:					ng		_		
DRILLE	R'S N	AME:		ga		18	940	<u> </u>			_	,	
DRILL F	RIG T	PE:		· <u>C</u>	ME		23						
BORING	9 ME	HOD:		<u>H5.</u>	4 —		-11				_		WATER DEPTH:
HOLE D	NAME	TER:		<u>74</u>	بــُــب	10 7	1						DATE:
SAMPL	ING R	ETHO	D:		Mete	<u> </u>	T	•		/ n			TIME:
HAMMI				<u> </u>	4			P HG	<u>r: /</u>	14	_		BACKFILLED, TIME: DATE:
SURFA	CE CC	TIDIK	ION	S:		nos	2	_		T	ş		WEATHER: Fain, lo 603F very strong wind, gusty
SAMPLE INTERVAL	SAMPLE TYPE	BLOWS 6-NOTES	INCHES UMVEN	NCHES RECOVERED	OVA READING (ppm)	MORSTURE	DENBITY	MUNSEL COLOR	LAB SAMPLE NUMBER	DEPTH IN FEET	***************************************	ГІТНОСОВУ	SKETCH OF BORING LOCATION
			7. N		100		166			10.15	7.5	d: 17	MATERIAL DESCRIPTION
						,		104	R				
					O	3).	1 30	4/3] ,.		1.50	0.5-1.1 Silt . Clayen . san.
										۴	Ŧ		souther st monet low
			İ		0		alle	10 31		١.	Г		
			7					6/3		2			1.1-2.9 Sand, well worted, lie
2.7		12	7	2.7		Mar	ľ	WYF	2.7			2.9'	and nover me la loom
	\dashv	\dashv	7		-			7/3	3.2	"	1		2.7-32' Ell -54 - MUII2 IA @ 0332
1		6	′		D	25		3/2			H		2.9-4.0 (Par. silve man ad.)
		Ť				-				4	Ħ	7.0	
			1	3				101/	ł		H		New mont to wet the sage wet to
-	+	-	+		0			712		5	Ħ		He d stell fine as a
							المد				H		110'- 12 8' 10 il. Pa
	\dashv	+	\dashv				1788	_		6.	H		market was as I do a series when
					_						h		mover, vonge un , ou 2 gray
1	+	\dashv	\dashv		٥		-	├		7.	H		
						200	pin	-	İ		H		
1.1	+	+	-		0				-	1	H		
		15		2.8				ŀ			H		
}	- -	 -	4			_		<u> </u>	 	1	H		
		ł	ļ	İ							H		
							L			<u> </u>	L		

EDITED BY/DATE:____

NOTES:_

Halliburton NUS FIELD LOG OF BORING

WELL NO. M 4/121 SHEET 2 OF 2

		COF	RPOR	ATIC	<u> </u>					_			M1442 !
PRO.	ECT:									JOE	3 N	0.:	0114 BORING NO.: M 4/12
INTERVAL	GAMPLE TYPE	BLOWS / 6-NCHES	INCHES DRIVEN	RECOVERY	dVA (ppm)	MOISTURE	DENSITY	COLOR	BAMPLE NUMBER	DEPTH IN FEET	THE PROPERTY OF THE PROPERTY OF	LITH.	
								ρΥχ		/1-	H		11.7' Clay, law silk condent, is fin
12.7					0	ولام	gin	7Ya (1r)- - (H		
1			2.6	2.6	0	non	gi.,	јоYA 4/1		14 - 15 -	H	13-8	13.8'- 16.3' Clay, al silver, fin, mont, the gray, morted mange in, reddisk but stong old frontmer.
163										16 -			
·										ירי			
												1	
			-									,	
				_							1		
									•			}	
-	-				-			+	_			}	
						1				ļ		F	

EDITED BY/DATE:__

; 1	2-	21	-95	;	4	:	22P	M
-----	----	----	-----	---	---	---	-----	---

FIELD LOG OF BORING

WELL NO. MW1122

	J		2
SHEET	- /	OF	1

Halliburton NUS

CORPORATION BORINGWELL NO .: MW1122 0114 JOB NO.: EAKER AFB RFI ROJECT: TOTAL DEPTH OF BOREHOLE: 17.9 BDH LOGGED BY: DA" UM: SURFACE ELEV.: DRILLING CONTRACTOR: Tri-State Testing DA'E: 4/7/95 1236 START TIME: DRILLER'S NAME: DATE: 4/7/95 1430 CME-FINISH TIME: DRILL RIG TYPE: H5A WATER DEPTH: BORING METHOD: DATE: HOLE DIAMETER: TIME: SAMPLING METHOD: DATE: DROP HGT: BACKFILLED, TIME: HAMMER WGT.: unner 70°5F, easter WEATHER: Jan SURFACE CONDITIONS: LAB SAMPLE NUMBER OVA READING (ppm) INCHES RECOVERED BLOWS / 6-INCHES MUNSELL COLOR SAMPLE TYPE SKETCH OF BORING LOCATION 0.5 23 D D D 5 5.0 0 γY 78 10 17

MOTES:______EDITED BY/DATE:____

NOTES:_

13038318208;# 7/21

Halliburton NUS FIELD LOG OF BORING

WELL NO. MW1122 SHEET 2 OF 2

70		CO	DRPORATION EAKER AFB RFI							-				
PRO	ÆCT	·	EAKER AFB RFI								B	10.:	0114 BORING NO.:)	וועוץ
INTERVAL	BAMPLE TYPE	BLOWS / 6-INCHES	INCHES DRIVER	RECOVERY	OVA (ppm)	MOISTURE	DENSITY	COLOR	SAMPLE NUMBER	DEPTH IN FEET	CANALAN CHARLES AND AND AND AND AND AND AND AND AND AND	стн.		
,										, ,,-	H			•
1			5.0	5.0	0	دسي سور	fin	2.5Y 5/2		n -	H	11-7		. , ,
5.8					-					ט - א-			nould range by to lodge dog frotters.	ish born, In
										15- 16-				
										17-				
				-cac						#	and the state of t			
		·												
 												-		
 				1	1									
1						-	- -					F		

EDITED BY/DATE:_

SENT BY:BROWN AND ROOT, ENV ;12-21-95 ; 4:23PM ;

Halliburton NUS FIELD LOG OF BORING

WELL NO. MW1123

		COR	POR	ATIC	2N											
PKO.	ÆCT:			EAK	CER /	AFB	RFI	-	JOB	NO.	4	C	714	BORING/WELL N	o.: MW 11	23
									LOG	(42)	BY	. 6	= Millar	TOTAL DEPTH O	F BOREHOLE:	
n.	LING	CONT	RACT	OR:		Tri-	State	Test	ing				SURFACE ELEV.:		DATUM;	
DRIL	LER'S	NAM	le:	Jal	hY)	િ	xa	w	300	<u></u>			START TIME: 15	35	DATE: 8)	195
DRIL	L RIG	TYPE	<u>.</u> (, 41	F	74	5						FINISH TIME: 173	30	DATE: SI	1195
BOR	NG M	ETHO	D: 7	14 4	151	DV	erc	dril	ied	w	0.1	<u> </u>	WATER DEPTH:			
HOLE	E DIAJ	WETE	R: \	ال									DATE:			
	PLING				~ .	~\`	C.1.15	. 4	va-	n o	\;`^	79	TIME:			
										•		-	BACKFILLED, TIME:		DATE	
													WEATHER: I-tot:	Humid:	95° F, 5	Sunnu
CAMPLE INTERVAL	SAKPLE TYPE	BLOWS / G-NCHES	INCHES DRIVEN	INCHES RECOVERED	OVA READING (ppm)	MOSTURE	DENSITY	MUNSEL COLOR	LAB GAMPLE NUMBER	DEPTH IN FEET	THE THE PROPERTY OF THE PROPERTY OF THE PART	ГЛНОГОВУ	diter MWHZ4	- MWIL	23	The pitch
														MATERIAL DESCR		
45	37.4	NA 1	357	3FT	17	1514 Mois	51+ 000	37	*				0.5- 3.01	- 5ano	45ILT	some
					10		Ш],	6		Clary	de yellow:	ish brn	coler
				П	0/	\prod	П			Ì		34	Chance	at 1.51	to JOYRE	4/4
	ï		1 /	11	6		11	14	1				yellowith	brn the	en back	·to
7		7		 	0/		312	132	4	~				के उस		
]					1/0	}	1	17			1			uar: Wel		
3		+	5 0	25	6/	 - - - - - - - - - 	H	101	4	ß		_		e; mult		
11			[]		10	}		614			F			ess you		
+-	H	+	-	╟┼╴	17	╀	H	+	1	4	1		(13)	(55 Y00	<u> 13, 10 </u>	<u> </u>
					1				EN SKI	١						
+				4	70	₽	+	₩	11.5	þζ	R		3.0' - 8.6			-
											H			ingular.	_	
\sqcup		1_			<u> </u>	ļ		_	<u> </u>	ь	Ц			yeunwish	,	
11										1	Ľ		root (osts T	casts;	mothled
								<u> </u>		J ,	Ц		MIOH	R416 d	K : ellou	uis 4
abla														appear		
4										Ļ		¥.;	,			
			SFF	3.5	0/	391	14.7	194]	Same and a		8.0' - 9	5' - 51	1 - tr	ace
					6			11					Sand 'v	Ifa; b	- w/ 10	JURS/E
				1	0/	1	\sqcap	11		ľ		ļ	Vellout	ish brn	1 20 Hliv	na.
1					12	Je	34	۱)		I			7			
		, ,			7	1		1 '	<u> </u>	<u> </u>	Щ.					

EDITED BY/DATE:

SENT BY: BROWN AND ROOT, ENV ;12-21-95 ; 4:24PM ;

Halliburton NUS

FIELD LOG OF BORING

WELL NO. _ MW 1123

SHEET DOF 2

CORPORATION 0114 BORING NO.: MWI 23 ..OM BOL PROJECT: EAKER AFB RFI INCHES DRIVEN DEPTH IN FEET INTERVAL COLOR 9.5' - 13.01 - Clayer SILT trace VFa sand: brn 10 roots; roct lasts + Worm 0 burrows mothed willowes/4 vellowish bro :3 からまたられ SFI CLAY . 13.0' - 15.0' -14 Silt; grayish bro root casta , worm 15 burrows throughout; Filed W/ 2.5 years dk red silty /0 sand material. Some root Structures Still in lact. Some Chliche: 511. plastic B D 15.0'- 19,5 - CLAN + trace silt. dark gray, some worm burrows I root cast but not as many a S 13.0-15.01 Worm burrows filled W D. SUR 416 dk red material: not plastic until ~ 19.0' when more silt is noted. No worm burrows troot casts below 18.0' but some chliche hoted. TD 19.5'

EDITED BY/DATE: NOTES:

CORPORATION

Halliburton NUS FIELD LOG OF BORING

WELL NO. MW 1124

SHEET _____ OF ____

PROJECT: EAKER AFB RFI	ع :.Job no	2114	BORINGWELL NO.:	MW1124
		a millar	TOTAL DEPTH OF B	OREHOLE:
RILLING CONTRACTOR: Tri-State Testin	ng	SURFACE ELEV.:	DA	ATUM:
DRILLER'S NAME: John Craw	ford	START TIME:	C930 0	ATE: 8/12/95 .
DRILL RIG TYPE: CNE - 75		FINISH TIME:	1.915 DA	ATE: 8/12/95
BORING METHOD: 714 HSA GVEY drille	ed with HSP	WATER DEPTH:		
HOLE DIAMETER: I O"		DATE:		·
SAMPLING METHOD: CON +1 NUCLES 5	amplina	TIME:		
HAMMER WGT.: NA DROP HGT	, ,	BACKFILLED, TIME:	D.A	ATE:
SURFACE CONDITIONS: Grassy			H. m.d.	95°F: Sinni
SAMPLE INTERVAL SAMPLE TYPE BLOWS / 6-INCHES INCHES DRIVEN INCHES RECOVERED OVA READING (ppm) MOISTURE DENSITY MUNSELL COLOR	LAB SAMPLE NUMBER DEPTH IN FEET AVAILABLE CONTROLLE CONT	DITO MWIIZH .	BY SEPPEL	
3 CO LUN GPT 4-5 (AST 1511) 0-18		<u> </u>	MATERIAL DESCRIPT	10N
0/ moks 2003_3/4 0/ 12128_1643 0/ 2013_3	NO SAMPLES COLLECT	50me C 1.51 - 2.3' Some C vydk g 2.3'- 2.5' Well socion. 19minations color. 3.51 - 4.5' Some m	and, fg, odk yellows - Sand lay, 3/1. rayish br - SAND tod; angue ed wy yellows Clayer uscovite brown wy re brown wy re	Ly SILT; Cohesive n. O; VEg; Var; brn.
Notes: drived to determine exists in the lower	aguirer.	n tamination EDI	TED BY/DATE:	

Halliburton NUS FIELD LOG OF BORING

WELL NO. NW1(24

SHEET _____ OF _____

	CT: EAKER AFB RFI								_		
PROJECT	:	EAK	ER A	FB RF	-1		,		JO	8 NO.:	DI)4 BORING NO.: LW 1124
INTERVAL BAMPLE TYPE	BLOWS / 6-INCHES	INCHES DRIVEN	RECOVERY	OVA (ppm)	MOISTURE	DENSITY	COLOR	SAMPLE NUMBER	DEPTH IN FEET	anastakatakananan LITH.	
11				<i>U </i>	الحاسم	*** ***	a,				trace sand ufg: trace clay, more
┞╂╾╂╌				0	-	1	-	-	ļ.	ist	mother throughout wide yellowith
				16					12	CL CL	brn; from 9.0-9.0' more clay.
		\prod	\Box	2/							
13		5F1	50	,	الوعام	21.05	1		13	7	9.0' - 14.0' - SILTY CLAY
			$oldsymbol{\perp}$	ادر		- 1 - 1	}				root casts; worm burrows;
				2	11	77	101E	U)			roots, Some intact carbonized
1-11-	+	+	╁		╫	+	+	3	15		root structures, grey w/ 254R 4/8 dk redi plastic
				6		Ш		フ			
		Π	П	6/	П	\prod		AARL			
 	-	[+		┽┽	╂┼	┦┦	흿	17		14.0' - 18.0' - Clay; Frace Sitt
10				10	$ \cdot $	II		1			filled wil love 518 vertical seams
1	7 1	71	DET !	2	100	1	Π	Ø	15	網	material. Some not casts +
 	++	4	1-1		Ky.	11	44	ہو	9	CH	Worm burrows. One Verticle
$\{\ \ \}\}$	11			%				4	:	ŀ	Seano N Zinches in length begins
1 	11	H	11	0/	11	††	#	4	26	1	2 × 16.6
	1-1/			0	11	Ц	4	U,	u i		18'- 23.0' - Clay as above wy
111	1 1)	1		%	11	/	11	5	ì		more werm burrows; roof casts
$\{-1, +1\}$	+-#	\dashv	11	7 5	-	╁	++	씨	~		vorticle seams filled w 10 yps/s
3	1 11			6			Ш	١	3		ex Knds from 21.5' - 22.5'.
	1 =	044	15		П	П	\prod	श			Horizonfal vfg sandy/5/14 Soan
{ 	++-	╁┼	H	70	}-	++	++	<u>v </u>	~	دب	From 23.01 - 23.51.
1111				6	}			ΨĮ	_ [23.0' - 26.0' Sand (Silty CLAV)
	TT	\prod	1	8	T	П	\prod	آ ہے	, e		sand is med grained angular;
╿╸ ┋	╁╌╂┪	4	┝╌╠╴	-1-	<u></u>	165 6	200	SAMP	. L	-	Well serked; dk grey w/ some
11/1) [{		2	6		1	347	ارتي		 	Small root costs or worm
	111		10	7	\prod	\sqcap	11	9	7	E	burrows.
1 1442	+1.3	FIR	<u>. //</u>	-	-	}- -	#	긔	s.∭	sw	
		111							H	F	Obj. 38.0' - SAND; men grained
			C	-		\square		72	٩		yellowish bon.
	1 1 1			0		111	- 1	ا	۷,	Γ	

NOTES: * Soven ft. of blowin at 28'. Off. EDITED BYDATE:

Halliburton NUS FIELD LOG OF BORING

WELL NO. MW1124

EKEET ____ OF ____

7										·			
RO	JECT	(4)								JOI	NO.:	DII4	BORING NO .: MW1124
INTERVAL	SAMPLE TYPE	BLOWS / 6-NCHES	MCHES DRIVEN	RECOVERY	OVA (ppm)	MOISTURE	DENOTTY	COLOR	RAMPLE NUMBER	DEPTH IN FEET	ити,		
	2				0/0 0/0 0/0 0/0 0/0 0/0	59%			ANALYSIS	刊 22 55 24 35 26 37 38	SW	Continued di to TD of 3' 28'-38'- TD - 38'	rilling W/ 7 M/HSA 8' - Ne Sampling from logged by cultings
										此	<u>_</u>		

EDITED BY DATE:_

SENT BY: BROWN AND ROOT, ENV ;12-21-95 ; 4:25PM ;

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW1125

SHEET ____ OF ____

		COR	POR	ATIO	N							
PROJ	ECT:			EAK	ER A	VEB E	RFI		30	NO.:		BORINGWELL NO.: MWII25
									LOG	BD I	BY: (5. Millar TOTAL DEPTH OF BOREHOLE: 28
DRIL	LING (CONT	RACT	OR:		Tri-S	tate	Testir	10			SURFACE ELEV.: DATUM:
		NAM			מנ	Cro	س	for	4			START TIME: 0528 DATE: 10/31/95
DRIL	L RIG	TYPE		M								FINISH TIME: 0925 DATE: ///0/195
BORI	NG M	ETHO	D: 7%	411)	ISA	OVE	<u>vdv</u>	illec	w	10"	H5A	WATER DEPTH:
			t: 16									DATE:
			HOO:		מודר	ناص	s S	<u> </u>	n pl	ing		TIME:
		WGT.		JA				HGT				BACKFILLED, TIME: DATE:
SURF	ACE	COND	ITION	8 : <i>(</i>	, 70	(53	u_					WEATHER: Overcost: 50's-70's: slt. breeze
CAMPLE INTERVAL	SAMPLE TYPE	BLOWB / 6-INCHES	INCHES DRIVEN	INCHES RECOVERED	OVA READING (ppm)	MOISTURE	DENSITY	MUNBELL COLOR	LAB SAMPLE NUMBER	DEPTH IN FEET	LTHOLOGY	NUMIZE ROLLEN BY SHOPETTE N EKETCH OF BORING LOCATION
				ire;						BEST		MATERIAL DESCRIPTION
												See boring log for MW1124,
	7									2		drilled 3/12/95 for descrip-
	V	7			·							tion of lithology from
	\											surface to 18.0'.
		10	> 1							ľ		Summary of lithology from
		0	Z									Surface to 18.01:
			7	6								0.0'-1.5' - Clayey SILT
	•		X	10	.					<u>[</u>		1.5'-2.3' - Sandy SILT
	<u> </u>		-	次)					ř		2.3'-2.5' - SAND
				7							1	2.5'-4.5'- Clayey SILT
					*	9				٥		4.5'- 9.0' - SILT
						\ <				li	1	9.0'- 14.0' - Silty CLAY
	 				 	1			-	15	1	14.0'- 18.0' - CLAY
							Ŝ				1	
						-	1	ro i		14	1	
								10			H	
								-		۱-	H	
											H	
18	65	MA	SFT	उन		¥4.	354	2) s	-	18	-	
	E 2 4				%			3/3			خد	

NOTES: Drilled to determine extent of Contamin- EDITED BYDATE:

ation in groundwater.

NOTES:

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW1125
SHEET 2 OF 2

		COR	POR.	ATIC	N							
BRO.	ECT:		EAK	ER AI	FB RF	1				JOB	NO.:	O114 BORING NO.: MW1125
MTERVAL	BAMPLE TYPE	BLOWS / B-INCHES	INCHES DRIVEN	RECOVERY	OVA (ppm)	MOISTURE	DENSITY	COLOR	SAMPLE NUMBER	DEPTH IN FEET	LITH.	
1	(°) (444) (444)	4	5FT	उन	%	Sitting Miles	511 je	4	•		CL	18.01 - 20.01 - 51 Hy CLAY, Clayey SILT, brn. WIOUR 516
23 23 23			\$	2.5		37	Leos	18 18 18 18 18 18 18 18 18 18 18 18 18 1		22	CL	yellowish brn. mothing; some root structures and worm burrows. 20.0' - 21.0' - CLAY: trace Silt; dk gray; some tim 10485/3 mothes; Sit plastic. 21.0' - 24.5' - Sandy CLAY dk gray; Sand is prorly sorted, some med and some fa sand; angular; & 24.0' is a zinch verticle sand seam sand is fa to med anal
23		$\sim 10^{-1}$		13 July 1	ر امر	Work of the				25 29 31 32 33 34 37 37		54R 518 yellowish red and angular. 24.5'-25.0'- SAND; Well sorted fg sand; angular; gray. 25.0'-25.5'- SANT; prorty sorted mag-fg; angular Atz; some coarse grains; mueli colored a cains, averall color loy R 516 yellowish brn. 25.5'-28.0'- AS above TD = 38

EDITED BY/DATE:__

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW 1126

SHEET 1 OF 2

	9	CORF	ORA	TIO	N									A414/147	6
PROJ	ECT:		•	EAK	ER A	FB R	FI				_0		BORING/WELL NO.		77 (12)
									LOGO	ED	Y: G	- Millar	TOTAL DEPTH OF		33,6
DRELL								<u> Testir</u>		•		SURFACE ELEV.:		DATUM:	
DRILL	ER'8	NAME	: 3	Tor	m ((<u>)-</u> 0	w	for	-d			START TIME: /C	27	DATE: 11/01	growted
DRILL			C	ME	_ `	75						FINISH TIME: 1 4	700	DATE: 11 6	195 growled
BORN	NG ME	ETHO					ville	edu	V iD	" H:	<u>sa</u>	WATER DEPTH:			
HOLE												· DATE:	· -		
SAMI	N NIG	MEZI	400.	M	2421	200	SUS	.50	S)	pli	na	TIME:			
HAM				NA			DROJ	НОТ	: 1	JA	1	BACKFILLED, TIME:		DATE:	
_	_											WEATHER: OVER C	ast 50's-	605	
BAMPLE INTERVAL C	SAMPLE TYPE	BLOWS / 6-INCHES	INCHES DRIVEN	INCHES RECOVERED	NG (ppm)	MOISTURE	DENBITY	Munsell Color	LAB SAMPLE NUMBER	DEPTH IN FEET	-LITHOLOGY	MW 423	SHOODETTE SHOODETTE SHOODETTE SHOODETTE	LOCATION	O smitel
	5577				i in the						* > 10		MATERIAL DESCRI		
	08.7.	2	5 - ST	33-	07000000000000000000000000000000000000	2 25		477		2 4 6 8 10 12 14 16 19	Ů.	Abr litho Summar 0.0'-18.0' 1.1'-2.9' 2.9'-4.0' 4.0'-13.8'-16	- Sandy - Sandy - Sandy - Silty '- Silty	MOO VIIZI F IOW: CLAY CLAY	rom
NOT	ES:]	oril Dril	led	to	Of Of	ter	بين	ne	pr	<u>ر</u> م ر	ب م د	e ove	EDITED BY/DATE:	Ju Elli	- 11/20(70-

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW1126

CORPORATION

SHEET 2 OF 2

_			10.	(PQI	1A	IŲŊ								
PR	OJEC			EAI	KER .	AFB	RFI					20	8 NO.:	0114 BORING NO.: MWIIZE
INTERVAL	BAMPIE TYPE		ELOWS / G-INCHES	NCHES DRIVEN	RECOVERY	OVA (ppm)	- Contraction	MUIS I UKE	DENSITY	COLOR	BAMPLE NUMBER	DEPTH IN FEET	Шиминиминимин ЦТН.	·
\prod	5	ر م	人	551	11	%		0.5		53				18.0'-20.3' - CLAY; 31t. Plastic
	\prod			П		10	7		1			2)	HCH	
-	+-!	+	-	+-	┼	K	+	+				22	Н.,	
23													H	20.3'-21.3' - As above wy
早	1	T		SPI	35	10/	177	5	अम	127,14		23		CBIOT CHAPTER 18 EVIT.
1	1-1	+	-	4	1	14	<u>기</u> 니	_	$\downarrow \downarrow$	44		24		23.0'-25,0' - CLAY; 30nce
					Н	1%								sand; poorly sorted angular
	11	+	П	1	H	0/	1	\dagger	††	\dashv		25	4	dk arou Sit plastic.
\perp	\coprod	1	Ц	1	Щ	1/2		Ц	$\bot \bot$	Ш		76	CL	Some root casts worm
			11			0%								burrows, veins filled wi
1	\vdash	╁	H	+-	-	0	1	+	╁┼	+		27) dr-1	yellowish red silt; some
28					1	10						25	7 ()	iour 5/3 (brn), mottles.
28	1 {		ľ	55-1	S F	0/	17		П			73		25.0'-28.0'- Sandy CLAU;
	╁┼	╁┪	\vdash	+		Υ-,	134	72	400	++		29		ak gray; angular; fg-
				11		%	П			11			-	Coarse mained, voins filled Wi 1048513 uellowish red
П	П			\sqcap	T	0/	17	1		\top		36	50	Silt.
1-	- -	\sqcup	dash	+	+	/0	igoplus	4	4	#	4	3(5~	
1 1					B	T	11			11		ŀ	1	28.6-29.21- Sandy CLAY
1	\vdash	+	H	† †	3		$\dag \uparrow$	+	\vdash	#	-	32	1	as above sand is med anaixed to fine anaixed
33					<u>₹</u>	72								THE CHAIR CHAIR CONTRACTOR
				Ì							\neg	7.		29.2 - 33.0' - SEND; med
	~	╀╌	+				-	╀	+	\dashv		ŀ	1	gained to fg, will
		X		_ h	ا م						- 1	ł		mutti colored grains.
		Γ	X		٥ _٢									
			4	\swarrow	۲,	5		+-		+		-		To = 41
				4	\sim	POO	٠٠					}	1 1	+10'), the work of
			1	<u> </u> ,	, ड	7	<u> </u>	1	8	+	ヿ	t		
		_	1		3	1/2	_	L	1	\perp	_			- THOUGHT TO BE SAVO BASES
						`	هر	5	J		-	Ц		ON DRULL CATTINGS 400 ADTACENT
		-	╁	\dashv				*	4	+	\dashv	H	} }	Boal ifour Onta.
										1		úΗ		
												,		10 G11 1100ha

NOTES: DUE TO PROMINITY OF ACTACENT HOLES & TIME LIMITATIONS, EDITED BY/DATE: JR GOLD 11/28/95

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW1127

SHEET / OF 2

		COR	POR	ATIC	<u>N</u>						,						_
PRO	JECT:			EAK	ER /	AFB I	RFI		JOB	NO.	:		>114		BORING/WELL N		
									ကြေ	Œ	BY	: G	. Millar		TOTAL DEPTH C	F BOREHOLE:	\$8.0°
DRIL	LING	CONT	RACT	OR:		Tri-S	tate	Testi	no				SURFACE ELEV.:			DATUM:	
	_				212	Cr	au	Ho	~d				STARY TIME:	16	34	DA'. 6: 11/C	
1		TYPE		Cn	NE		75						FINISH TIME:	140	0 0	DATE: 11 0	8 195
								ille	dw	10	" H.	s/4	WATER DEPTH:				
			R: 1		•								DATE:				
						าบธ	ЦS	<u>5</u> a	~1	اذاد	70	٦	TME:				
		WGT.		776				P HG1	r: /	7	4		BACKFILLED, TIME:			DATE:	
			ATION			as	su						WEATHER: OVEY	cc	ist bree	24:40.5-	505.
BAMPLE INTERVAL	SAMPLE TYPE	BLOWS / 6-NCHES	INCHES DRIVEN	INCHES RECOVERED	OVA READING (ppm)	MOISTURE	DENSITY	MUNSELL COLDR	LAB SAMPLE NUMBER	DEPTH IN FEET	Ħ	птногоау .	12	SKE	MWIIZ7 C	o stract	Sand Sang
		22135	315555		2020 H	35 4 5	85 85 6		30-23	题		335		1	MATERIAL DESC	RIPTION	
			-										See bor	صن	a 10a -	or MWI	16
											Π		drilled				au
	17									2	П		from 18"				
	V	b _ك								١,	П						
		1								1	Ħ						
		1	5							ŀ	Ħ	i					
		-	7	5			-			6	H						
			0%	کر						٠	H						
				3/3	<u> </u>		-		-	8	Н						
				1	[~						H						
					$\frac{1}{2}$	2	_	_	 	10	Н				•		
					3	2				١.	H						
						1/	<u></u>		<u> </u>	2	Н		•				
						`	30	·			H						
							7	<u></u>		14	Ц						
							\	18			Ц						
								X		16							
									\setminus				•				
										18							
18	55.5	٨١٨	SFT	55	Sppn	-35	£2+	183		1.0	1	F.F.	18.0'-19.	٥,	-Siltu	CLAY/	layey
	1		}	.		25	217	isha		_	1	4	SILT ~			so sall re	

NOTES: Drilled to determine the absence or presence EDITED BYDATE: #4 Plle u/28/95

FIELD LOG OF BORING

WELL NO. MW1127

SHEET & OF 2

STRUCTURES / WORM DIFFORM STATE OF THE STRUCTURES / WORM DIFFORMS	SEDI	CORP	ORAT	ON							
Structures / worm burrows Filled wy Syr 3/3 yellowish red material / overall color burrows 19.0'- 24.5' - CLAY, some SILT root Structures / worm burrows to 21.0' than 1855 root Structures but Some (24.813 bro. mottles, Some 19.0'- 24.0' - SAND, yfg-fg well sorted angular, dk gray, Peat-like material from 25.0'-25.2' dk black 26.0'-25.0' - Vfg - mg, SAND wettym goorly sorted, bro, angular grains, gtz. The 23.0' 36.5' The 23.0' 36.5' The 23.0' 36.5'					FI				JOL	B NO.:	0114 BORING NO.: MW1127
Filled Wy Syr SIS yellowish red material (olor bro) 23	HYTERVAL GAMPLE TYPE	BLOWS / 6-INCHES	INCHES DRIVEN RECOVERY	OVA Ippm)	MOISTURE		- cotor	SAMPLE NUMBER	DEPTH IN FEET	UTH.	structures Iworm burrows
	23 23 9		FT 3.8	No.	3	COSS II		3 3 3 3 3 3	27 23 24 25 24 27 28 29 20 11 12 13 14 15 16 7 8 19	5W	filled wy syr syr yellowish red material I overall Color brn. 19.0'- 24.5'- CLAY, some SILT root structures I worm burrows to 21.0' there less root structures but some ICYR SIR brn. mottles. Some 1CYR SIR brn. mottles. Some Ag-mag, poorly sorted sand. Overall color dk gray. 24.5'- 26.0' - SAND, Vfg-fg, Well sorted; angular, dk gray; Peat-like material from 25.0'-25.2' dk black. 26.0'-25.0' - Vfg - mig, SAND Weltrim. poorly soried, brn, angular grains, 9+z.

NOTES: DUE TO PROXIMITY OF HOLES & TIME LIMITATIONS A COMPLETE SOIL DESCRIPTION POT PERFORMED FOR HOLEMAN C This Location.

EDITED BY/DATE: LLGlled

13038318208;#19/21

Halliburton NUS

FIELD LOG OF BORING

WELL NO. MW1128

SHEET ____ OF _3

		LUI	17U	MIL	<u>UN</u>														
PRO	JECT:	:		EAI	KER .	AFB	RFI			NO	_		0114		BORINGMI				
									LOC	GE	D B	Y: (5. Milla	<u>r</u>	TOTAL DEP	TH OF	BORE	OLE:	40.01
DRIL	LING	CONT	TRAC	ron:		Tri-	State	Test	ing				SURFACE ELEV.				DATUM	:	
DRIL	LER'S	NAN	AE:	اول	<u> </u>	Cro	نىيد	%	rd			·	START TIME:		<u> </u>		DATE:	44	03/95
						- 7							FINISH TIME:		800		DATE:	-11/	05/95
BOR	NG M	ETHO)D:	744	HSP	+ d.	حااد	d f	hro	ug	<u>_</u>		WATER DEP	rH:	·				
HOLI	E DIA	METE	R: 12	5.44 1.44	0 3. 1 ta	t de	7%	1" 4	<u> 8</u>	10	-0	•	DATE:						
						<u>م ب د</u>							TIME:						<u> </u>
	MER			N				P HG					BACKFILLED, YIM	ΛE:			DATE:		
SURI	ACE	CON	omo	vs: /	956	oha	1+						WEATHER: CL	ear	; sunn	4:	bra	بع	42°F
BAMPLE INTERVAL	SAMPLE TYPE	BLOWS / 6-INCHES	INCHES DRIVEN	INCHES RECOVERED	OVA READING (ppm)	Moisture	DENSITY	MUNSELL COLOR	LAB SAMPLE NUMBER	DEPTH IN FEET	_ 1:4		3rd street		TCH OF BOR	RING L		\	GUWII26
	,			(-55)		313				盔		Act L			MATERIAL D				
	17/10	06.								2 3			for Lit	hole	eription	\$ 6 \ in	the	5811	sampled 35 tervel.
			, ,	No.						4	H								·
					K				-	2	H								
				ر	96	0					H								
					7					-	H	l							
					[]	ど為	,	•	:		H								
						1	1			7	H								
	- 1						1				H								
							 }	4		8	H								
	- 1							V	7		H	}							
								}	<u>\</u>	9	Н	ŀ							
1																			

NOTES: Dilled to determine presence or absence of contamination in the Sand aquifer. EDITED BY/DATE: Heile 11/25/95

WELL NO. MW1128

SHEET 7 of 3

741		CO	RPO	TAF	NO						,			
PRO	JECT	:	EAI	KER	AFB	RFI					10	B NO.:	0114	BORING NO .: MW1128
INTERVAL	BAMPLE TYPE	BLOWS / B-INCHES	INCHES DRIVEN	RECOVERY	OVA (spm)	lunda's Can	MOISTURE	DENSITY	COLOR	BAMPLE NUMBER	DEPTH IN FEET	LITH.		• · · · · · · · · · · · · · · · · · · ·
10	25	NA	3 36	131	7,0	7	AL TO	50(+	100			ML	10,0'-11.0' - C	
	T		††	††	P	97	11	+	+		"		104R5/3 br	n. meties.
Ш	Ц	11	11	Ш	1/2	ø.	11				ız	ب		
									,cua					ray w some solt;
13	-	╁╌┼╌	5=1	56		_	+1	377	53		13		brownish g	vish brin, mottles
Ī						5		Ш	Ш		14		some root	casts worm
		\sqcap	11		20	7			\prod					some mocks still
		- -		++			\sqcup	44	4-1		ڪا	CH	intact; sit	·plastc
					20	5							12.5'-17.0' - CLA	y trace silt;
1	-		++		- ₩-	-	11	11	+1		16			rn. mottled w/
				Ц	2%	2	Ц	44			12		104R 5/6	yellowish bro;
					15	1			4/1					/ Warm burrows
18	-	-	SFT	12.5	1/4	 	10	===	+		18		Some day	ler mettles, some
	i,			1	100	H	1 /	5017					//) TELE / 100/	
		1		H	104	-1-		11	+		19		17.0' - 25.0' -	CLAY , Some Silt 1
					1210	M	Ц	Ш	$\perp \! \! \! \! \! \! \! \! \perp$		20		dk gray; c	umbly texture
					30%		101		$\parallel \parallel$	i			verticle roct	casts wiroots
$H \rightarrow H$	4-4			╌		1	\vdash	╁┼	┽┼		ય		incles in ter	(Some are 4-5
	}				30	P		Ш					roct casts	is velowish red
		+		十	29	_	1	11	11	7	22			ining; Some 104R
23					7			Ш	Ш		ચ] [5/3 brn. m	nottles; Product
23			25	15	19	11		H		Į	Ĭ		sheren obs	served in veins
	+	-			K.	\mathcal{H}		╁┼	$+\!\!+$		24	4 F		+0 31.2' Sheeh
								11	$\ \cdot\ $	l	ŀ	1 1	Strong ode	along barrell;
25	+	+	3F1	30	0/	柑	+	\Box	$\forall t$	\exists	ಶ		1510105 000	
					1/0	Ш	<u>· </u>		\coprod		2 <u>/</u>		25,0'- 28.0 -	CLAL: Q5
	Π			T	0/	11				ì		[above.	
1-1-1	+-			4	10	H		╁┼	++		⋧	!	29.0' - TD	SPAID: Go - mad
					1%		يان	2	اعبب	1				orly : Hed W/
19	No.	27	S.c		 	15	***	42		7	28	111	angular a	tz: nieti Colored
			200	4	بم	_					7	54	arains with	ar coral overall
	T					1	4	4			-	s~	delar brown	ish gray
										<u>بات</u>	30	11		ATE FRECLO 11/28/15
NOTE	s:												EDITED BY/O	ATE: TELLINE " LOCK

NOTES:

13038318208;#21/21

WELLNO. MW1128

SHEET 3 OF 3

(A)		COF	RPOR	ATIC	<u>NC</u>									44111120
PRO.	ECT:		EAK	ER A	FB RI	7		,		JOE	R N	0.:	0114	BORING NO .: MW1129
INTERVAL	SAMPLE TYPE	BLOWS / B-INCHES	INCHES DRIVEN	RECOVERY	OVA (ppm)	MOISTURE	DENSITY	COLOR	BAMPLE NUMBER	DEPTH IN FEET	2014-11/12/2020/18/22/2020/18/24/	EW.		
	10									31	H		TD= 40.01	
:	1	N	2						_	32	H	,		
		3	No.		-					33 34	H			
_				%	1				-	35	H			
					100	2/2	, <u>}</u>			36 37				
							(%	ST.		33				
										39 40		İ		
_	_			_	-									
			-								1			
											-	ł	·	
-		<u>. </u>										F		
							_		·			ŀ		
-				\dashv	-		_	-						
1			1							ļ				

EDITED BY/DATE:_

DRILL	ING LO	_	VISION MRD	INSTALL	ATION 	<u>-</u>	SHEET) OF 2 SHEE	T 5
PROJECT		<u></u>			AND TYPE	OF BIT	101/4 hit SHOWN (TBM or MSL)	
LOCATION	(Coordina	tes er Stå						
DRILLING	AGENCY		1F 62		E 750		HATION OF DRILL	
USAC	E-CE1.	11º K - 1	EP-66-		AL NO. OF			0
HOLE NO.	ر الم	EVO	R6 AP-62		AL NUMBE		<u> </u>	_
HAME OF	RILLER R H	INTER			VATION GR		TER NOT ENCOUNTEFLE	نا
DIRECTIO	H OF HOL	E		IE. DATI	E HOLE		OCT 95 18 OCT 95	
VERT				17. ELE	VATION TO	P OF HO	LE	
DEPTH DE					AL CORE F		Y FOR BORING	
TOTAL DE	PTH OF	IOLE	10.7		درالحه	<u> ۱۲۰۰ کا ۱۲۰۰</u>	ريرا لخير	
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	LS '	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water lose, depth of weathering, etc., if eignificant)	r
							61/4" ID AUGETE	
	三						Auger thru	
	=					<u> </u>	Aspliali +	
	」,目		•				Fill - No sample	
	'∃		ويحام بيسيم					
			EAMBY, CLAYE,	•				
	\exists		1711 11/ 21=12				SET UP ALJALIT	1
	,∃		dr. gray to bl	.cl			+0 2311F From	ì
•	4		petroleum ada				3-75-95	
	\exists		PE (10 % 0/11 0/20)	•			·	
	_ =			1 -			,	
	3-	-		3.0_			3.	:Ω
ĺ	=		SILTY LEAN CL	۵٧				
	\dashv		•	-/			inserted inner	
	=		damp - morst				bbl sampler	
	4_		mollind arry +				Ran 2,8	
	Ε	-	ərənge V. svirir			4.Z 6801=CH	Roc 2.6	
ĺ	\exists	_	h			FIELD T	RAH D.Z fell out of	
į	\exists		medium to stiff petroleum odor			4.5	5/11/2	
	5_		pervoicom baor					
	╡	_						
	\exists		becomes sandy					
ļ	\exists		and moist to we	t			5.8	
	<i>₁</i> , ∃		pelinleum ador (heavy)	-			
				6.2			Push probe 7.0" Anger 5'	
	╡		SILTY CLAY to clay.	veilt			Zixyer J	
	\exists				V. 1		1 Rec 4.9	
	_		V.STIFF TO STIF Cohesive	- (bk.	1 /W C	1753010		
	/ 크		moist	.			made measurements	
	\exists		gray & orange	brow	n	7.4	from ougered depth of 108'; one fen) 11.
	\exists		(JK brown accid	when		Sample		12)
	_ =		(cut wil Knift- almost a sheen	7.9	-11.18		rholeum product)	
	7-	1	SILT			7.8	olf of measuremen	nb
	=		DAKK GPAY; wet	ю			made from tip of	_
	=		SATURATED, medic				prote;	
	\vdash		CLAYEY, COHESIVE	•		8:1	, ,	
	9=		/	\		sayle	100 on augor =	
		-	SILTY CLAY	7	_9.2	9.0	10.1 on probe	
	日		STIFF MUIST			9.5	,	
	=		GPAY 4: orange bro	(1)(1)		sample		
	10 =		i			9.4		

See Section 1

							Hole No. AP-62	_
Della	ING LOG	DIV	ISION .	INSTALL	MPK		SHEET Z OF Z SHEETS	
L PROJECT			MRD	10. SIZE	AND TYPE	OF BIT		1
Arms	trong	Stu	dy EAKER AFB	11. DAT	UM FOR EL	EVATION	SHOWN (TBM & MSL)	
EAKER	RFB	100 01 314	ilen)	12. MAN	UFACTURE	R'S DESIG	GHATION OF DRILL	1
1 DRILLING	-CF14	ЬК-Е	P-GG	CM	E 751 AL NO. OF DEN SAMPI	OVER-	DISTURBED UNDISTURBED	1
USACE 4. HOLE NO.	(As shown	on drawb	AP-62					-
S. NAME OF	DRILLER		: //\ \	1	AL NUMBE			•
ROSE	R HUL	TEK		┼		LETA	ETED COMPLETED	1
VERT	CAL	ICLINED	DEG. FROM VERT.		E HOLE		BOCT 95 180CT 95	-
7. THICKNES	S OF OVE	RBURDEN	l		AL CORE		Y FOR BORING	
B. DEPTH DE				19. SIGN	ATURE OF]
9. TOTAL DE	PTH OF H	OLE	CI AMERICATION OF MATERI		1 CORE	BOX OR		1
ELEVATION	DEPTH I	LEGEND	CLASSIFICATION OF MATERI. (Description)		RECOV-	BOX OR SAMPLE NO.	(Drilling time, water less, depth of weathering, etc., if eignificant)	
			SILTY CLAY					F
i			(continued)			10.5		E
İ			(FIELD	TRPH	E
	,, 					10.7		E
	"극						B. O. H @ 10.7	E
	‡						11.28 3°	È
						 		E
	=	1						E
	12							F : 11 - 14
	12							E
					1			F
	\exists							E
	13.							F
						_	13,33	E
	1	1					13.43	E
1								E
	14-				1			E
	E	ļ			ł		Taped hole to	F
į		1					10.3' after augers	E
	l 3						00+	=
1	15-						NOTE:	E
]	İ	. *				MAY HAVE TO adjust all depths	=
	E						UP 0.1'	E
	=					1		E
	 						Samples	E
							Samples 4.2-4.5 FIELD TEPH	E
	1 ヨ						7.4-7.8 (TPH, TRPH, 8.7-9.0 PAH, FIELD	
					1		9,5-9,9 TEPHTE PAH	Ε
	173				1		10.6-10.8 FIELD TRPH	' =
	''=							E
1							No water in hole	F
1	ΙĒΙ						on 20 oct; hole	E
	₁₈ _ =						backfilled with	Ē
1	18					1	Concrete	E
1	_=				1			E
1	F							E
1	19 =							E
1	' ' ' '							F
1	=							E
1	l ∃							F
	20 =							E
ביור בטפוי					PROJECT		HOLE NO.	

DRILL	ING LOC	3 DIV	VISION AARD	INSTALL	ATION I F K		SHEET / OF / SHEETS
PROJECT				10. SIZE	AND TYPE	OF BIT	D'4 aber bit 6" Inner
HEM 5172	(Coordine	VALID	STUCY (ION)			•	sanple
EAKER	AFB				750	SCA	
CEMPK	-EP-	<u>- G G</u>	- attic	13. TOTA	L NO. OF	OVER-	N UNDISTURBED
and num	O1E	ERCOR	E AP-67		L NUMBE		
ROGEE		NTER	-		ATION GR	OUND WA	TER NOT ENCOUNTERSO
DIRECTION	OF HOL	Ε		16. DATE	HOLE	19	OCT 95 19 OCT 95
VERTIC				17. ELEV	ATION TO	P OF HOL	E
. THICKHES					L CORE A		Y FOR BORING
. TOTAL DE			8,6	P	17/11/	0 - اسلار	ر ١٨٨٠ /
ELEVATION		LEGEND	CLASSIFICATION OF MATERIA (Description)	LS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water lose, depth of weathering, etc., if eignificant) o
	-	<u> </u>			•		
	3						64" ID Hollow)
							STELL RUGERS
	\exists		, , ,1				
	1-=		No sample thru fill material				
	ㅋ		fill material				'
	日						NS
	_ =						
	$z = \frac{1}{2}$						
	⇉						
	\exists						
	_ =			λ.			
	3-			ے. <u>ہ</u>			
	╡		SALIDY FILL				
İ	크		fine sand domp to	•			3,8
	= =		fine sand damp to moist, loose ton to black	ι.	1,	3.8	3,8
	4-=		Thet some blk form	2 2 Cat	base	3.9 SALIRE	
j	╡		} wet; some blk fragm		ļ. 	201184	4.Z // _
İ	_ =		moist green gray		 	45	/ -
	=	_	med-stf	4.8		'-	A
	5-		SILTY CLAY				AUGER 5.0
	∃		gray & orange bro	מוט		5.3	REC 5.0
	크		stf to v, stf some f. sand			SAINFIE	
	\exists		moist			5.5	5.8
	6二		Some iron noctules			SALIFIL	6.0
			become more or	a va c	b		
			Ų	*** P	/07		
	\exists		becomes grayer	· ,	}	6.4	made .
	7 그		1	٥. ت]	SAVAIU	measurements
	\exists		Silty clay			7.0	from bottom
			V.STIFF.				υρ
			gray i wange bu	יוניים:		_, _	,
	8_3		with fine sand damp to moist		1	7.9 S# 1910	1
	=			8.3		الماءاء تفرد	
			clayey silt		-	8.3	1
:	=	:	🗮 mediam	fF	 		Japan 108.6.
	9_		moust to wet	//			B.O.H @ 8,6
	'=			<u></u>			on 20 OCT HOLE TAPE
] =	1					To 7.9', no fluid encountered. Hole
	-	1				-	backfilled w/
	. –	1			1		Concrete

AP-63 Hole No. SHEET / MSTALL ATION 11151 DRILLING LOG MILD 101/4" auger bit 10. SIZE AND TYPE OF BIT 10 4 " QUITE 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) ARIASTROLLG- VALIDATION - LAKEY (FB LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL
CIME - 750 / SCAPE & 6 Inner bbl DRILLING AGENCY CEITRK-ET-6G HOLE NO. (As shown on drawing title NAME OF DRILLER AP-63 14. TOTAL NUMBER CORE BOXES IS ELEVATION GROUND WATER NOT EDECLUTERED ROGER Hunter STARTED DIRECTION OF HOLE 18 NOT 95 16. DATE HOLE 18 OCT 95 __VERTICAL __INCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 19. SIGNATURE OF INSPECTOR B. DEPTH DRILLED INTO ROCK 8.7 . TOTAL DEPTH OF HOLE S CORE BOX OR SAMPLE NO. REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS ELEVATION Auger to 3.8' SANDY FILL petroleum odor 3.8 STAFT W/TIP OF PROCE AT 3,77 (3.8')SILTY CLAY PUSH PROBE, AUGER 5.0 dk green gray to Rec 4,Z 5.0 MOIST - wet Petroleum odor 5.3 high angle sand layer blk material: only appearance at top a bottom -SILTY CLAY (petroleum odor throughout sample) gray + orange brown STIFF - VSTIFF MOIST SANL 0.07 looks like 0,21 blk at battorn blk may be flet pa 6.7 3.6 hole niezsured to TI SAND SILTY CLAY to Iron ho dules Grange brown & gray Moist, STIFF - VISTIFF 8.7; made 7.Z _.7,5 measure ments from bottom up 7.4 SAND 0.07 looks like 0.2'-black at bottom contact/ Clayey silt 8.71 dk greenish gray Cohesive EDH wet medium -soft Probe D.10 below some fine sand sample No Liquid III HOLE OF END OF DAY, SECONT 10 backfilled w concrete

Hule No. AD-63

							Huls Ho.	AD-10-2
DRILLI	NG LO		VISION MID	INSTALL	ATION			SHEET OF Z SHEETS
OBO LECT				10. SIZE	AND TYPE	OF BIT	101/4" BIT 9	blirwir Lil
ARIMSTI LOCATION	20116	VALI	D STUDY - EARER	II. DATE	JM FOR EL	EVATION	SHOWN (TBM or MSL)	
LAKEĽ	Al- P.	ΔP_{-}	м 1000)	4		R'S DESI	GNATION OF DRILL	
DRILLING A	E P- 6		•	CME		01150	DISTURBED	UNDISTURBED
, HOLE NO. (As show	on drawl	AD-63	auri	AL NO. OF DEN SAMPI	ES TAKE	н	<u> </u>
. HANE OF D	RILLER	F F 3 E	1 10-65		AL NUMBE			
KOGE)	110	NTER	· <u>·</u>	IS. ELE	VATION GE		, ,,,,	COJIT ILL
VERTIC			DEG. FROM VERT.	16. DAT	E HOLE		UCT 15 7	20 OCT 95
. THICKNESS					VATION TO			
. DEPTH DRI				18. TOT	AL CORE F	INSPECT	Y FOR BORING	
, TOTAL DE	TH OF	HOLE	13,6	1	ATURE OF			
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	ALS	1 CORE RECOV-	BOX OR SAMPLE NO.	REMAI (Drilling time, water weathering, etc.,	er lose, depth of
•	١.	c			•	1		
1	=						1	
	Ξ							
	, =							
	/					•		
	Ξ		(F.11)					
	᠆=		(+111)					
	=						i	
	$Z \rightarrow$						NS	
1								
				;				
	=						1	
İ	3_							
1	7						j	
1	╡							
ĺ	\exists							
	, \exists					Н. о	1	4.0
	4 =		block clay	11.Z			y.)	
	\exists	•	SALID			4.4	Pion 1	
			wet w/product fine sand	1		,	6" epolit 1	اطط عيديد
	Ⅎ		black, cohesive				Sample	MITY DOI
-	5-7	5,0			5.2		2	
	\exists		SAND		5.2	5.2		
	\exists		yellow stained w/b	iar K		5.3	REC 4.1	, /
	╡	5.7_	<u> </u>	5.7		ļ		
1	<u>,_</u> =		50.50	A1 15		İ		
	7 ∃		SILTY CLAY AID S					
	⇉		high angle to vert	1601		ک.ما		
1			clay is gray & oras	nqe		D110175	CAL	
1	_ ∃		V. STIFE TO HOED	•		SIMPLE 7.0		
	7-	7.1	has some root he	irs or		<u> </u>	E	
	=		CLLY becomes SOFTER			ļ	FIELDTRPH OFF	JULE
	크	7.5-	Y,,			7.5		
	\exists							
	8-3							
	. 1					4.4		
	=						← FIELD TP.PH	У д _
	\exists		CLY SILT & sand			8.6	one sawal	73 8.6
	΄ Ξ		GREEN GRAY			"	100 Diff	1 .
	9-		GREET GRAY COHESTVE, Some f MOIST TO well	sand			ine blaze.	116/
	=		adjacent to fine			9.4	Run	7
			sand, tan, 1005e		,	SILT	กงท	-
ŀ			SAT SILT Wadje	nd San	d	ا امد		
		· '	1 - 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	9.7	1	

tole No. AD-63

			,		··		Hole No	. AD-63	
DRILL	ING LOG		VISION MR[)	INSTALL M	ATION P.K			SHEET Z	TS
. PROJECT			DATION STULY	10. SIZE	AND TYPE	E OF BIT	SHOWN (TBM or MI		\exists
LOCATION				12. MAM	UFACTURE	ER'S DESI	GNATION OF DRILL		\dashv
1. DRILLING	AGENCY	- F D		CM	E 750)		UNDISTURBE	\dashv
A HOLE NO.		on draw	ing title AD /2	13. TOTA	AL NO. OF DEN SAMPI	OVER- LES TAKE	DISTURBED	UNDISTURBL	
	NAME OF DRILLER				AL NUMBE				_
ROGE	IR HUN			-	VATION G			COMPLETED	-
S. DIRECTIO	N OF HOLE		DEG. FROM VERT.	16. DAT	E HOLE		OCT 95	200ct95	4
7. THICKNES	S OF OVER	BURDE	N		VATION TO				\dashv
. DEPTH DE	ILLED INT	o ROCK		18. TOT	ATURE OF	INSPECT	PR Jul		Ť
. TOTAL DE	PTH OF H	DLE					REM	IARKS	\dashv
ELEVATION 9	DEPTH L	EGEND.		LS	RECOV- ERY	BOX OR SAMPLE NO.	(Drilling time, w weathering, etc	ster loss, depth of c., if significant) 8	
			STIFF CLAY		10.1		Run 2		F
	‡:	2	sicty, iron nad (s sat > wet, Harry green o	mall)			RAN S	-	E
		ā 7-			10.6		REC 5		E
	// <u>]</u>	NTERVAL	SAND + SILTY CLA	Y			REC J		F
		7 E	≤and < Cloy are side	by sid					E
	=	۶	sand is star ned w/ blace	ck]			F
		₹ 1	Predominanty green gray	4 ~~~	OYAn	e bro	מנו		E
,		104	STIFF - VISTE, WET	-	11.9	120			E
·	12-7	ROUGHOUT	FAT CLAY/ FIN	SAUD		120			E
	∃°	T+18	WET STEE			12 4			E
	│ │	ξ, .	STICKY Some silt	,					F
		CAL T	gray w/orange petroleum ador						E
	13-13	27.6	black hair like		or int	motte	~		F
	={	VERTI	tron nodules (s						E
	1		FINE SAID - SA	, .	<u></u>			13.6	<u> </u>
	7	,	petrokum odol turns green wh					B .O. t	ΨE
	\exists		dry; loose	. //					F
	=		adjacent to c	-lay		1			E
İ	日		clay becomes more orange	h					F
	=		vi/ depth				NOTE: SAN		E
Ì					}		GREENISH	UPOLI	F
	=			<u>_</u>			drying ;	tan see ting	E
	=						staining .	y high	F
	⇉						angle pa	thunis	F
							1.0	7 2	E
	=								E
	=	1					Free proceed h	luct	F
	=						en-tried h	:ole –	E
							approxi	wrick	E
	7						3.0' at	end of	F
	耳						day. H	ole	E
	\exists						backfill	ed with	F
	4						concrete		E
	∃						CONCINIC	. In coat	F
	ヸ						Fuelsam	ple -en:	E
	\exists						10 lab 1	nr tuel	E
	耳	i					ID.		F
	#						-		E
	Ξ								E
	⇉								þ
	₹								F
'		'		,					-

1. 0

. . .

							Hole No.	AD-68	
DRILL	ING LO	G BIV	MI':[INSTALL	11FK			OF SHEET	rs
ACHS17	07)6-	YAL! DA	MOI) EAKET AFE	10. SIZE	AND TYPE	OF BIT	10 4 "auger & shown (TBM & MSL	31+	\dashv
EAKET AFE AT - GRE CTAILOL)				12. MANL	FACTURE	R'S DESIG	NATION OF DRILL		ᅱ
DOU LINE	AGENCY				11- 75		614 ".TD HO	(100) SteWis	5
HOLE NO.	7.1		a state	BURI	EN SAMPL	ES TARE	<u> </u>	<u>!</u>	\dashv
. NAME OF I	DRILLER				ATION GR		TER NOT EN	-OUNTED2EY	5
ROGER.	H OF HOL	E P		IS. DATI		STA	RTED C	OMPLETED	\neg
- VERTIC	AL	NCLINED	DEG. PROM VERT.	17. ELE	ATION TO			0 ()(/ /2.	
THICKNES			·	18. TOT	AL CORE R	ECOVERY	FOR BORING		긕
. TOTAL DE			8.6	13. 3.07			ORO LINI		_
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	LS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling time, wai weathering, etc.	ar loas, depth of	
•_		c	<u> </u>		•				1
ł	╡								
									ŀ
	_ =								
	그∃								
	=		(Fill)						
	\exists		(' ' ' ')				NS		
	=								
	Z-∃								
					ļ				
									-
	3-			!					
			/ SONDY CLAY / Crumbly texture / petroleum odos	- '				- 1	
		. 7		1			7	3.1	9
		3.7	V ** TIFF TO \$ T FF	, moist	3.7	3.4	bu tun	ev bbl	
	4		w/wet surfaces			AHALYT	KAN		
			<u></u>				REC	5.0	
	=		brown & account ()	orang	اف دما	4.5	nd.		
			brown + grayer ();	quicr	IN COL	AILLYI	ICEL		
	5_	_	1	5.0					
			SILTY CLAY TO CLY	SILT					
			medium moist w/wet surt			•	(5,10,1)	PRATICITE SOLA	TE.
		_	white root hairs		5.4	5.8	Į		
	16 <u> </u>		crumbly structure .W/ Ane sand	· /		GEOTECH	6.0-6.5 (?)	
			SILT W/CLA			6.1			1
		6.5 %	some fine sa	nd, dk	gray	6.5:			
•	=		some fine sa medium we- some iron sta	inind L to 29	['	AHELYT	CEL		
	¬ _=		-> mottled w/increase in clay	٠.		7.0			
	=	<u> </u>	 	7.2		GEOTE CI	1		
	=	Ì	green gray, sdy, med, ,	moist,]	والماء دهك		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. ا
	=	1	SILT CLEVEY - W/ the white'r]	7.6	1.5 - EIU AI 1	PICEL SOM	٣٠
	8=	7.9.	t STIFF, become	och hall ec	75				
	"=	1	Thecomes sandy						
	=	1	- Statima wiringy				1.	. 1 0/	
	Ξ							₩ 8.6	-=
] =	1					£.0.1	·!	
	9-	3							
	=	}					No WATER	11) HOLE	
	=	1					@ end of	day,	.
	10 =]			1		backfilled	w/ Longre	اد
	1,0								

Hole No. AP-67

							Hole No. AP-GA
DPII I	ING LO		VISION MP[INSTALL	A HOITA	1 P.K	SHEET / OF / SHEETS
ArmsTe	0116 .	STUCY	EAKER RIE, AF.	10. SIZE	AND TYPE	OF BIT	10 14 auger bit / 10" inner bb!
LOCATION	(Ceerdin	atoo or Sta	ellon)	12. MANI	FACTURE	R'S DESIG	GNATION OF DRILL
DRILLING USA	AGENCY CE-CE	TMP K-1	EP-6is		1E 75		
A HOLE NO. (As shown on drawing title and tile number) OVER CORE AP. 68					DEN SAMP	LES TAKE	н
	E NAME OF DRILLER KOSER HUNTED.					R CORE B	5-7
€ DIRECTIO	N OF HOL	HUNNI D	· r ·	+		ISTA	RTED COMPLETED
			DEG. FROM VERT.	16. DAT			OCT 95 19 07 95
7. THICKNES	S OF OVE	RBURDE	N —		VATION TO		Y FOR BORING %
8. DEPTH DR					ATURE OF		
S. TOTAL DE	PTH OF	HOLE	CLASSIFICATION OF MATERI	<u>-</u>			REMARKS
ELEVATION .	DEPTH 5	LEGEND	(Description)		RECOV-	BOX OR SAMPLE NO.	(Drilling time, water lose, depth of weathering, etc., if significant)
							No fluid in hole on
							20 oct: bottom taped at 8.1
	_				1		hole kackfilled
-	1 =						w/concrete
					1		
	=				1		NOTE; USED TAPE
	_		Mn Sample.				SHECK OF 9.8 AND Water measure-
	, =		│				monte from
	-						· · ·
	Ξ						bottom up; window was 0.3'
							below shoe where
	_ =		1	2.9			removed from
	3		DAMP, FINE, GRAY to b	 /	l		hole.
	=		FILL FILL	3.4	İ		
	_		SILTY CLAY		1		REC 1.9
			STIFF, DAMP	o mois	+		
	4_		DAFF GPLY				
	Ξ			4,3			
	_		CLAYEY SILT		ļ		
	=		medium, cale	SILE			tape to 4.8
	5=		DARY GOLEN GE	2 A/			5.0
			SOFT FRATSTATIST	•			
			J we-1	5,5			
	=		SILTY CLAY			5.8	inserted mode, tip in at 5.5, pushed
	l , _=		SOME SAILLY VISTIFF			FILL TO	
	, <u> </u>		MOIST			6.17	6.1, Lip finishes
	_=		LEGARY + orange Some IRON STR	brown]	6.5	71 11.9 about 0.3'
			4 iron nodules				below shoe
•	7 =			7.0			REC. 4.9
	' =		CLYSILT				·
	=		w/ f. skind . collective	.e.			
			Greensh gray 1/ 30%	- 7 <i>U</i>		-1.8	FIELD TV +! I
	, =		MOIST STIFF - VSTI			/ <u>"</u> ~	TREE PAU TEN (SPOK-ELD)
	8		STIFF , 1101ST				
	_		gray w/ orange b	מניים היים		11.1	8,2
			1	0.2	1	4.5	(probe may have
	_ =		CLAYEY SILT cohesive, greenish	arav		8.8	rentred from hole)
	9 =		wet, stiff	1 7			replaced from hale)
	=		> becomes saturated, i	riedi uri			
	_					9.5	lape to 9.8
	l =	1			[护品	Prof Car
	10 =		B. O. H		PROJECT	9,9	, HOLE NO.
NC EUDII	1001				PROJECT		HOLE NO.

WELL INSTALLATION LOGS

BX SHOPPETTE

Source: Halliburton NUS 1992 and 1995.

FIELD WELL COMPLETION FORM TWILD!	CHRISTY BOX
MAME: EAKER AFB BX SHOPETTE	LOCKING STEEL COVER
NUMBER: 31498 PROJECT GV (-	STEEL CONDUCTOR CASING
LOGGED JSB EDITED BFIL	
WELL TWILDS 12/4/51	BOREHOLE
COMPANY: A.W. POOL	D to 30 feet
EQUIPMENT: 2 1/4 INCH HOLLOW STEM AUGER V. BARAZZA	BENTONITE CEMENT
INCH ROTARY WASH	B-SACK CEMENT-SAND
USED DURING DRILLING: NONE GALLONS	toleet
METHOD OF DECONTAMINATION PRESSURE STEAM	TOP OF CASING AT
PEVELOPMENT SEE WELL DEVELOPMENT PORM,	O. 2 FEET ABOVE AT BELOW GROUND LEVEL
DEVELOPMENT:	64 INCH DIAMETER
DEVELOPMENT BEGAN DATE: TIME:	BOREHOLE O :0 30 teet
YIELDI GRM FROM TO DATE:	& 2 INCH DIAMETER
TIME: GPM FROM TO	BLANK CASING
YIELDI TIME: DATE:	0.2 to 15.21eer
GPM FROM TO	SEAL OR SEAL OR SEAL OR SEAL OR
DURING DEVELOPMENT: GALLONS	SEAL 11 700.5 1881
DESCRIPTION OF TURBIDITY AT END OF DEVELOPMENT:	BENTONITE PELLET
MOD. TURBID VERY MUDDY	SEAL 12.5:0 11 'get
WATER: WATER DISCHARGED GROUND SURFACE TANK TRUCK	LULGRAND SLICE 20/10
TO: STORM SEWERS STORAGE TANK	SAND PACK 30 to 12.5 feet
DEPTH TO WATER	2 INCH DIAMETER
MATERIALS USED	SLOTTED 1 0.00 (c)
	15.2 :0 ZS.Z tout
3 100# SACKS OF LOLDRADO SILICA 20/40 SAND	2 INCH DIAMETER SCHEDULE 40 PVC
~ 2c CALLONGOS OSCUPLINA CO	BLANK SILT TRAP 25.2 to 27.2 feet
~ 20 GALLONS OF GROUT USED (PULTLAND TYPEI W/BENTONITE) SACKS OF POWDERED BENTONITE	BOTTOM WELL CAP
50 POUNDS OF BENTONITE PELLETS	27.2 _{feet}
FEET OF 2 INCH PVC BLANK CASING	HOLE CLEANED OUT TO
FEET OF FINCH PVC SLOTTED SCREEN	SOTTOM OF ROBEHOLE
YARD CEMENT-SAND (REDI-MIX) USED	
CONCRETE PUMPER USED? NO YES	ADDITIONAL INFORMATION:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AME	NOTE: MATERIALS WERE
MELL COVER USED: DLOCKING STEEL COVER	HOT MEASURED BOTONG GOING IN WELL JS

	COMPLETIO	M LOUM				/ \	HRISTY BOX
				· [n			OCKING STEEL COV
HAME: ENKE	R AAS	BX		. UL		_ ╅ ┼╴ _╛	- INCH DIAMETE
HUMBER: 3K	<98	PROJECT MANAGER	61c-	. 7			TEEL CONDUCTOR
LOGGED ISB		EDITED BY:	BFN			- -	
WELL NAME: T:4//			DATE: /2-//-9/			─ •	INCH DIAMETE
7,77	WPOOL		170 1/			- [] -	
			DRILLER:	.			BENTONITE-CEMENT
<i>P</i> √	=	TARY WASH	HOURS DRILLED: 66	.			SACK CEMENT-SAN SEAL
GALLONS OF WAT	TER	ONE	GALLONS				toteet
METHOD OF DECO		PRESUR	e steam			 ,	OP OF CASING AT
DEVELOPMENT				'		0	FEET ABOVE
NETHOD OF	see wece	Deve Carria	ENT 10-40('			INCH DIAMET
DEVELOPMENT:				.		, .	BONEHOLE
BEGAN DATE:	Teime	TIME:	DATE:			_	<u>C:0 3C 1001</u>
GPM GPM		то					INCH DIAMET
GPM GPM	FROM	то	OATE:			8	ILANK CASING
YIELD:	TIME: FROM	то /	DATE:			1	ENTONITE-CEMENT
YIELD:	FROM	TO.	DATE:			3	EAL OR SACK CEMENT-SAN
TOTAL WATER RE	MOVED		GALLONS	·		j s	EAL 11 10 0.5 feet
DESCRIPTION OF TURBIDITY AT END OF DEVELOPMENT:	CLEAR		SLIGHTLY CLOUDY				IENTONITE PELLET
Jaracurmen:	🦯 🗌 мор. т	URBID	VERY MUDDY		SI S		
2005.27				· **	24 2	™ -	9 :0 // feet
ODOR OF WATER:					֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		-AME) (NUMB
WATER: WATER DISCHARGED	□GROUND SU		ANK TRUCK				AND PACK
WATER:	GROUND SU STORM SEW	ERS DS	ANK TRUCK TORAGE TANK THER			S .	AND PACK
WATER: WATER DISCHARGED	□STORM SEW □DRUMS	ERS DS	TORAGE TANK	<u>~</u>		S	AND PACK // 10 3/27 feet 2 INCH DIAMET
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE	STORM SEW	ERS DS	TORAGE TANK			S	AND PACK // 10 3/7 feet 2 INCH DIAMET LOTTED 1 0.06
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPM MATERIALS US	STORM SEW DRUMS MENT:	ERS OS	TORAGE TANK THER FEET	<u>×</u>		S	AND PACK 1/ 10 3/2 7 1001 2 INCH DIAMET LOTTED 1 0.06 170.5 SCREEN 2.4 :0 326 1001
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE MATERIALS US	STORM SEW DRUMS MENT: ED SS OF SIMICA	ERS S	FEET SAND	<u>**</u>		S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AND PACK 1/ 10 3/17 feet 2 INCH DIAMET LOTTED 1 0.06 170.5 SCREEN 2.4 :0 326 feet
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE MATERIALS US: 3.5 SACK	STORM SEW DRUMS MENT: ED SS OF SILICA SS OF	ERS □ 5 □ 0	FEET SAND			S	AND PACK II 10 727 feet 2 INCH DIAMET LOTTED I 0.06 120 SCREEN 24 to 226 feet 2 INCH DIAMET CHEDULE 40 PVC
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE MATERIALS US: 3.5 SACK	STORM SEW DRUMS MENT: ED SS OF SILICA SS OF	ERS □ 5 □ 0	FEET SAND	10.J.T€)		S S S S S S S S S S S S S S S S S S S	AND PACK II 10 JZ 7 1eet 2 INCH DIAMET LOTTED 1 0.06 ION SCREEN 2 INCH DIAMET CHEDULE 40 PVC LANK SILT TRAP 2 10 JZ 7 1eet OTTOM WELL CAP
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.7 SACK SACK SACK SACK SACK SACK SACK	STORM SEW DRUMS MENT: ED CS OF SIMICA CS OF GROUT CS OF POWDERE	C.CODE	FEET SAND			S	AND PACK II 10 JY 7 feet 2 INCH DIAMET LOTTED I 0.06 INCH DIAMET CHEDULE 40 PVC LANK SILT TRAP 280 to 347 feet OTTOM WELL CAP
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE MATERIALS US: 3.5 SACK SACK SACK SACK SACK POUN	STORM SEW DRUMS MENT: ED CS OF SIMICA CS OF LONS OF GROUT CS OF POWDERE NDS OF BENTON	C.COOL- USED (POZTE D BENTONITE	FEET FEET SAND CEMENT AND TYPE II W/ BEN	70 ω · T€)		Si Si Si Si Si Si Si Si Si Si Si Si Si S	AND PACK // 10 3/7 feet 2 INCH DIAMET LOTTED I 0.06 FOR SCREEN 24:0 20 feet 2 INCH DIAMET CHEDULE 40 PVC LANK SILT TRAP 280 to 26.7 feet OTTOM WELL CAP 27 feet OLE CLEANED OUT
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK SACK SACK POUN 12,4 FEET	STORM SEW DRUMS MENT: ED CS OF SILICA CS OF GROUT CS OF POWDERE NDS OF BENTON: TOF Z INCH	USED (POZTU D BENTONITE ITE PELLETS PVC BLANK CA	FEET FEET SAND CEMENT AND TYPE II W/ BEN	70.2.76)		S	AND PACK II 10 JZ 7 feet 2 INCH DIAMET LOTTED 1 0.06 ITH SCREEN 2.4 10 J2 feet CHEDULE 40 PVC LANK SILT TRAP 2.5 10 JZ feet OTTOM WELL CAP 2.7 feet OLE CLEANED OUT
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOPE MATERIALS US: 3.5 SACK SACK SACK SACK SACK POUN	STORM SEW DRUMS MENT: ED CS OF SILICA CS OF GROUT CS OF POWDERE NDS OF BENTON: TOF Z INCH	USED (POZTU D BENTONITE ITE PELLETS PVC BLANK CA	FEET FEET SAND CEMENT AND TYPE II W/ BEN	70 TE)		S	AND PACK II 10 JX 7 feet 2 INCH DIAMET LOTTED 1 0.06 ITH SCREEN 2.4 :0 J26 feet CHEDULE 40 PVC LANK SILT TRAP 2.5 10 3% 7 feet OTTOM WELL CAP 2.7 feet OLE CLEANED OUT
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK 76 POUN 12.4 FEET 16.2 FEET	STORM SEW DRUMS MENT: ED AS OF SILICIA AS OF POWDERE NOS OF BENTON OF SILICIA INCH	USED (POZTED BENTONITE	FEET SAND CEMENT AND TYPE II W/ BEN			S6 8 8 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AND PACK II 10 JX 7 feet 2 INCH DIAMET LOTTED 1 0.06 ITH SCREEN 2.4 :0 J26 feet CHEDULE 40 PVC LANK SILT TRAP 2.5 10 3% 7 feet OTTOM WELL CAP 2.7 feet OLE CLEANED OUT
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK SACK AZO GALL SACK 10.9 FEET 16.0 FEET YARE	STORM SEW DRUMS MENT: ED CS OF SILICA CS OF LONS OF GROUT CS OF POWDERE NDS OF BENTONI OF Z INCH	USED (PO ATO D BENTONITE ITE PELLETS PVC BLANK CA	FEET SAND CEMENT AND TYPE II W/ BEN SING RDEHED		or to so	S6 8 8 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AND PACK II 10 JZ 7 feet 2 INCH DIAMET LOTTED 1 0.06 ITH SCREEN 2.4 10 JZ 6 feet CHEDULE 40 PVC LANK SILT TRAP 2.5 10 JZ 7 feet OTTOM WELL CAP 2.7 feet OLE CLEANED OUT
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK 76 POUN 12.4 FEET 16.2 FEET VARE	STORM SEW DRUMS MENT: ED AS OF SILICIA AS OF POWDERE NOS OF BENTON OF INCH OF INCH OF CHENT-SAN	CREDIMIX) U	FEET SAND CEMENT AND TYPE II W/ BEN SING RDEHED	NO AC	MOITIC	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AND PACK // 10 3/7 feet 2 INCH DIAMET LOTTED 1 0.06 FOR SCREEN 2.4 :0 20 feet 2 INCH DIAMET CHEDULE 40 PVC LANK SILT TRAP 280 10 24.7 feet OTTOM WELL CAP 27 feet OLE CLEANED OUT 30 feet OTTOM OF BOREHO MATION:
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK SACK 76 POUN 1/2,4 FEET VARE VARE CONCRETE PUMPE	STORM SEW DRUMS MENT: ED SS OF SILICIA SS OF POWDERE NOS OF BENTON OF Z INCH OF Z I	ERS S O O CANOC USED (POZTU D BENTONITE ITE PELLETS PVC BLANK CA PVC SLANK CA PVC SLANK CA O (REDI-MIX) U NO SYES	FEET SAND CEMENT AND TYPE II W/ DEN SING BEREED SED	NO AC	DITION	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AND PACK II 10 JY 7 feet 2 INCH DIAMET LOTTED 1 0.06 ICH SCREEN 24 :0 J2 feet CHEDULE 40 PVC LANK SILT TRAP 25 to 27 feet OUTOM WELL CAP 27 feet OUTOM OF BOREHO MATION:
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK 76 POUN 1/24 FEET 16.2 SEET VARE CONCRETE PUMPE NAME	STORM SEW DRUMS MENT: ED US OF SILICIA US OF POWDERE US OF POWDERE US OF BENTON OF INCH OF INCH OF CHENT-SAN ER USED?	ERS S	FEET SAND CEMENT AND TYPE II W/ DEN SING REFERE	NO AC	DITION	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AND PACK // 10 3/7 feet 2 INCH DIAMET LOTTED 1 0.06 INCH DIAMET CHEDULE 40 PVC LANK SILT TRAP DES 10 28.7 feet OTTOM WELL CAP DE CLEANED OUT CHEDULE 40 PVC LANK SILT TRAP DES 10 28.7 feet OTTOM WELL CAP DE CLEANED OUT CONTRACTOR OF BOREHO MATION:
WATER: WATER DISCHARGED TO: DEPTH TO WATER AFTER DEVELOP MATERIALS US 3.5 SACK SACK SACK SACK 76 POUN 1/2,4 FEET VARE VARE CONCRETE PUMPE	STORM SEW DRUMS MENT: ED US OF SILICIA US OF POWDERE US OF POWDERE US OF BENTON OF INCH OF INCH OF CHENT-SAN ER USED?	USED (POZZE D BENTONITE ITE PELLETS PVC BLANK CA MINERIAMINE D (REDI-MIX) U NO TYES	FEET SAND CEMENT AND TYPE II W/ DEN SING REFERE	NO AC	DITION	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AND PACK II to JX 7 feet 2 INCH DIAMET LOTTED I 0.06 ICH SCREEN 2.4 :0 J2 feet CHEDULE 40 PVC LANK SILT TRAP 2.5 to JX 7 feet OUTOM WELL CAP TOTTOM WELL CAP TOTTOM OF BOREHO MATION:

FIEL	D WELL COMPLETION	N FORM				CHRISTY BOX
	50452 272	~		· [n-	n	LOCKING STEEL COVER
HAME:		PROJECT	5V6-	╴╶┤┼	┍═┩╌╏	STEEL CONDUCTOR
LOGGE		EDITED		•		CASINGfeet
SY:	12B	BY: B	FN DATE:	•		INCH DIAMETER
DRILL			12/11/91	.		BOREHOLE
EQUIP	HY: AW POOL		DRILLER:			■ BENTONITE CEMENT
EGUIP	MENT: A. PAT INCH HO	LLOW STEM AUGE	N BARAZZA	.		SEAL OR
		TARY WASH	DRILLED:	. 11 1		SEAL .
USED		DONE	GALLONS	·		toleet
PRIOR	DO OF DECONTAMINATION TO DRILLING:	rissure ste	MAM			TOP OF CASING AT
DEVE	LOPMENT SEE WELL	DEVELOPME	NT PORM			FEET ABOVE AT
METHO	DD OF OPMENT:				-	BOREHOLE
	OPMENT DATE:	TIME:				0 :0 30 1een
TIELD	GPM FROM	το	DATE:		-	- Z INCH DIAMETER
TIELD	GRM FROM	то /	DATE:			BLANK CASING
YIELD	TIME:	то	OATE:	•		0./ to 15./ feet
TIELD	GPM FROM	то	DATE:	•		SEAL OR
	WATER REMOVED	·./	GALLONS	•		8-SACK CEMENT-SAND SEAL
DESCR	IPTION CLEAR	<u>^</u>	LIGHTLY CLOUDY	-	1222	10 1eer
AT EN	OPMENT: MOD. T		/ERY MUDDY			BENTONITE PELLET
ODOR	<u>-,</u>				200	<u>i/ :0 /.3 </u> *eet
WATE		RFACE TANI	K TRUCK	•		SAND PACK
TO:	STORM SEW		RAGE TANK			13 10 30 1001
	DRUMS	Оотн		•		SLOTTED 1 0-010
-	RIALS USED		FEET	•		inn SCREEN 15./ :0 35./ feet
			•	•		- 2 INCH DIAMETER
<u> </u>	5 SACKS OF	ca Grade	SAND			SCHEDULE 40 PVC BLANK SILT TRAP
	SACKS OF		CEM ENT	•		25/ 10 27/ feet
	GALLONS OF GROUT		•			- BOTTOM WELL CAP
	SACKS OF POWDERE			1		321 teet
	POUNDS OF BENTON FEET OF LINCH					HOLE CLEANED OUT TO
	2 FEET OF 2 INCH					- BOTTOM OF BOREHOLE
	Calculation of the second	TAX AND THE OWNER OF THE OWNER OWNER OF THE OWNER O			1855-5 - 711 - 514	
	YANG CEMENT-SAN	D HEDIMIXI DAD	ERED TO			
	YARD ³ CEMENT-SAN			IOA	DITIONAL IN	FORMATION:
		NO TES				00.0ED 1/8/72
NAME		_		<u></u>		
WELL	COVER USED: LOCKIN					
	☐ CHRIST	T BOX				

FIELD WELL COMPLETIC	ON FORM			CHRISTY BOX
108				LOCKING STEEL COV
HAME: EAKER A.FB				7 - INCH DIAMET
HUMBER: 3KGB	PROJECT MANAGER: C	1 Y G		STEEL CONDUCTOR
LOGGED BFN	EDITED	PN		
WELL HAME: TW1104		DATE: 12-//-9/		BOREHOLE
COMPANY: A.W. POOL				
EQUIPMENT:	OLLOW STEM AUGER	DRILLERI		BENTONITE CEMENT
	OTARY WASH	HOURS		SEAL OR
GALLONS OF WATER	none	CALLED:	18 1	SEAL
METHOD OF DECONTAMINATION		GALLONS		
	Pressure ste			TOP OF CASING AT
DEVELOPMENT SEE DEVE	WALLENT FORA	^		FEET ABOVE AT
DEVELOPMENT:				EN INCH DIAMETER
DEVELOPMENT BEGAN DATE:	TIME:			BOREHOLE O :0 30 teet
GPM FROM	το /	OATE:		2 INCH DIAMETER
TIELDI CIME:	то	DATE:		SCHEDULE 40 PVC BLANK CASING
YIELD: TIME!	то	DATE		0.1 to 14.1 test
YIELD: TIME:	/	DATE:		EENTONITE-CEMENT
GPM FROM X	то			SEAL OR
DESCRIPTION		GALLONS		SEAL 10 10.5 1ml
OF TURBIDITY CLEAR AT END OF DEVELOPMENT:	\- '	GHTLY CLOUDY		BENTONITE PELLET
ODOR OF	URBID VEF	RY MUDDY		SEAL 10 :0 12 'est
WATER:				COLERADE SILICA ZL/40
DISCHARGED GROUND SU		_		SAND PACK
DRUMS	ERS STORAC	JE TANK		2 10 30 1001
DEPTH TO WATER AFTER DEVELOPMENT:		EET		2 INCH DIAMETER
MATERIALS USED				men SCREEN
2 =	- /	•		74./ :034./ iest
2.5 SACKS OF Silica				SCHEDULE 40 PVC
SACKS OF		CEMENT		BLANK SILT TRAP
GALLONS OF GROUT	USED (PORTLAND IY	PEI WIBENTENIT	6)	BOTTOM WELL CAP
SACKS OF POWDERED	BENTONITE			26. teer
POUNDS OF BENTONIT				HOLE CLEANED OUT TO
FEET OF TINCH P				30 1701
10 FEET OF Z INCH P	VC SLOTTED SCREEN	<u> </u>		BOTTOM OF BOREHOLE
To the second se				
YARD CEMENT-SAND		D	NOTTO	
	,		ADDITIONA	L INFORMATION:
NAME	O TES			
WELL COVER USED: COCKING S	TTT: co.			
CHRISTY B				

ELECT METT COWSTELL	UN FURM			LI CHRISTY BOX
6.		•		LOCKING STEEL COVER
MAME: EAKER AFR	PROJECT		4	INCH DIAMETER STEEL CONDUCTOR
NUMBER: 3K98		16		CASING
LOGGED BY: BFN	EDITED B	FN/15B		tofeet
WELL NAME: <i>E//TW05</i>		DATE: 12/13/91		BOREHOLE
DRILLING COMPANY:	Drilling			tofeet
	HOLLOW STEM AUGER	WOULES /		BENTONITE-CEMENT SEAL OR B-SACK CEMENT-SAND
GALLONS OF WATER	ROTARY WASH	ORILLED: 34/6		SEAL - leet
USED DURING DRILLING: A		GALLONS		
METHOD OF DECONTAMINATION TO DRILLING:	n cleaned			TOP OF CASING AT
DEVELOPMENT SEE LO	دعمد : سعن ده	NTAINS PREE		ELOW GROUND LEVEL
DEAFFORMENT:	ct; was not D	eveno!ED		BOREHOLE
DEVELOPMENT BEGAN DATE	TIME:			0 :0 25 teet
TIME: GPM FROM	то	DATE:		Z INCH DIAMETER
YIELD: THE:	то	DATE:		BLANK CASING
YIELD: TIME: GPM FROM	·TO	DATE:		6.3 to 13.4 feet
YIELD: TIME:	то	DATE:		SEAL OR
TAL WATER REMOVED		GALLONS		6-SACK CEMENT-SAND
ESCRIPTION				9 10 0.5 feet
OF TURBIDITY CLEAT END OF DEVELOPMENT:		GHTLY CLOUDY		BENTONITE PELLET SEAL
ODOR OF	D. TURBIO Q VE	RY MUDDY		CULOSCADE SILICA
WATER:	eupsace	- Chiar	•	SAND PACK
DISCHARGED DEHOUND	SURFACE TANK	TRUCK GE TANK	=;	SAND PACK 1/ 10 ZEF leet
□ ORUMS	OTHER			Z INCH DIAMETER
DEPTH TO WATER	DOINET.	``		SLOTTED : 0-0/0
AFTER DEVELOPMENT:		FEET		nen · SCREEN
MATERIALS USED	·	· · · · · · · · · · · · · · · · · · ·		13. 1/ · n 23.4/ inet
2.5 SACKS OF _5/4	-ICA 61-Jo 20	140 SAND		SCHEDULE 40 PVC
SACKS OF		-		BLANK SILT TRAP
		CEMENT	_,	23.4/ to 25.5 leet
GALLONS OF GRO	DUT USED (PORTLAN	ENTRAITE)	′′	BOTTOM WELL CAP
SACKS OF POWDS	EHED BENTONITE	,		25. Sleet
	IONITE PELLETS I CH PVG-BLANK-C ASINO	•		HOLE CLEANED OUT TO
760 ====================================				
± z,/======				
YARD3 CEMENT.	AND (REDI-MIX) ORDE	RED	NOT TO SCA	\
	SAND (REDI-MIX) USED			L INFORMATION:
NCRETE PUMPER USED?			AUDITIONA	IL INFURMATION.
NAME	□NO □YES			
WELL COVER USED: NLOCK	ING STEEL COVER			
✓ □CHRI	STY BOX			
Потня	R	•		

FIELD WELL COMPLET	TION FORM	CHRISTY BOX
108 =	•	LOCKING STEEL COVER
PAREN API		STEEL CONDUCTOR
UMBER: SK48	MANAGER: George (TR	CASING
VE LRE	I OV: BFN	
MELL EILTWOG	DATE:	BOREHOLE
ORILLING	l Drilling	to feet
DILLEGATION TO YELL	H HOLLOW STEM AUGER V. For	BENTONITE CEMENT
	H ROTARY WASH DRILLED	1 ASACK CEMENT-SAND
ALLONS OF WATER		
ISED DURING DRILLING:	NONE GALLONS	
METHOD OF DECONTAMINAT	HIGHPHESSURE STEA	TOP OF CASING AT
DEVELOPMENT SEE	WELL DEVELOPMENT FOR	2ng BELOW GROUND LEVEL
METHOD OF DEVELOPMENT:		80BEHOLE
DEVELOPMENT BEGAN DATE:	TIME:	#O.G :0 29 teet
TIME: GPM FROM	TO DATE:	a INCH DIAMETER
TIELD: TYME:	DATE:	SCHEDULE 40 PVC BLANK CASING
GPM FROM	TO DATE:	-0.3 to 13,50 feet
GPM FROM	TO DATE:	BENTONITE-CEMENT
GPM FROM	то	8-SACK CEMENT-SAND
TOTAL WATER REMOVED DURING DEVELOPMENT:	GALLONS	SEAL IL 10~0. Steet
DESCRIPTION DESCRIPTION	EAR SLIGHTLY C	LOUDY BENTONITE PELLET
AT END OF DEVELOPMENT: M	DO. TURBID VERY MUDD	Y SEAL
ODOR OF		COLORADE SILICE ZO
WATER DGROUM	D SURFACE TANK TRUCK	SAND PACK
TO: STORM	SEWERS STORAGETANK	* 1 · 1 -
DRUMS	S OTHER	SLOTTED: , CC G
DEPTH TO WATER AFTER DEVELOPMENT:	FEET	ingn · SCREEN
MATERIALS USED	gradient of the second of the	-13.50 To 23.70 feet
3.5 SACKS OF	20/40	SAND SCHEDULE 40 PVC
		BLANK SILT TRAP CEMENT 23.70 25.70 cer
SACKS OF	ROUTUSED (CEMENT/BENT	
	•	BOTTOM WELL CAP
SACKS OF POW		HOLE CLEANED OUT TO
13.20 FEET OF 2	NTONITE PELLETS	feet
HOURS FEET DE	INCH PVC BLASK CASING	
2.00		- Zillew
		NOT TO SCALE
	r-SAND (REDI-MIX) USED	
	- 1	ADDITIONAL INFORMATION:
CONCRETE PUMPER USED?	NO TYES	
NAME		
WELL COVER USED: CO	CKING STEEL COVER RISTY BOX	
□ o⊤		

FIELD WELL COMPLETION FORM	☐ CHRISTY BOX
	■ DOCKING STEEL COVER
AME: EAKER AFB OB NUMBER: 3K99 MANAGER: GVG	TINCH DIAMETER STEEL CONDUCTOR CASING
LOGGED JAC EDITED DELL	
DATE	INCH DIAMETER
NAME: ELL IUD 1 12/13/9	BOREHOLE
COMPANY: A.W. POOL	_
EQUIPMENT: DINCH HOLLOW STEM AUGER V. BATTERA	BENTONITE CEMENT
INCH ROTARY WASH ORILLEDIO, 7	S B SACK CEMENT SAND SEAL
GALLONS OF WATER USED DURING DRILLING: NONE GALLONS	tofeet
METHOD OF DECONTAMINATION PRESSURE STEAM	TOP OF CASING AT
DEVELOPMENT SEE DEVELOPMENT FORM	-0.15 FEET ABOVE AT BELOW GROUND LEVEL
METHOD OF	2 1/4 INCH DIAMETER
DEVELOPMENT:	
SEGAN DATE: TIME:	
TIME: GPM FROM TO	SCHEDULE 40 PVC
YIELDI TIME: GPM FROM TO	8LANK CASING
YIELD: TIME: DATE:	-0.15 to 15.07 feet
VIELD: TIME: DATE:	BENTONITE-CEMENT SEAL OR
GPM FROM TO	B-SACK CEMENT-SAND
DURING DEVELOPMENT: GALLONS	
TURBIDITY DCLEAR SLIGHTLY CLOUD	1000 000 000 000 000 000 000 000 000 00
BEVELOPMENT: MOD. TURBID VERY MUDDY	SEAL 11 :0 13 'est
ODOR OF WATER:	Quo 1100 20/40
WATER GROUND SURFACE TANK TRUCK	SAND PACK
OSTORM SEWERS STORAGE TANK	13 to 27 feet
DEPTH TO WATER	- INCH DIAMETER
AFTER DEVELOPMENT: FEET	SLOTTED 10-00 C
MATERIALS USED	-15.07 to 25.15 reet
21/2 SACKS OF COLO. SILVER 20/40 SANG	SCHEDULE 40 PVC
JANK JANKS OF	BLANK SILT TRAP
SACKS OFCEME	NT 35.15 1037.15 1eet
GALLONS OF GROUT USED	BOTTOM WELL CAP
SACKS OF POWDERED BENTONITE	
50 POUNDS OF BENTONITE PELLETS	HOLE CLEANED OUT TO
14.92 FEET OF 2 INCH PVC BLANK CASING	
FEET OF INCH PVC SLOTTED SCREEN	BOTTOM OF BOREHOLE
2.00	
YARO3 CEMENT-SAND (REDITAIX) ORDERED	NOT-TO SCALE
YARD ³ CEMENT-SAND (REDI-MIX) USED	ADDITIONAL INFORMATION:
	11CE (2)
CONCRETE PUMPER USED? TO THE	NEW
CONCRETE PUMPER USED? TO THE THE	WELL ABANDONED : /8/92
WELL COVER USED: LOCKING STEEL COVER	WELL ABANOCHED 1/8/92
AME	WELL AGANDONED : /8/12

FIELD WELL COMPLETION FORM			CHRISTY BOX			
108 C.			☐ LOCKING STEEL COVER			
NAME: EAKER AFB	PROJECT GV	G.	INCH DIAMETER STEEL CONDUCTOR CASING			
LOGGED LRE	EDITED BF	٨/	tofeet			
WELL EUTWILDS		PATE: 14/91	BOREHOLE			
DRILLING A . O		i z jidjili				
EQUIPMENT: M. 71 GTG (6)	4	DRILLER:	BENTONITE-CEMENT			
		V. BARRAZZE	SEAL OR 8 SACK CEMENT SAND			
GALLONS OF WATER	1	DRILLED: 0,75				
USED DURING DRILLING: NO		ALLONS				
PRIOR TO DRILLING:	Steam (High	PRESSURE)	TOP OF CASING AT			
	DEVELOPMENT	- tokm	SELOWGROUND LEVEL			
METHOD OF DEVELOPMENT:			BOREHOLE			
DEVELOPMENT BEGAN DATE:	TIME:		0 :0 29 iset			
TIME!	то	DATE:	2 INCH DIAMETER			
TIME:	то	DATE:	SCHEDULE 40 PVC BLANK CASING			
YIELD: TIME	то /	DATE:	0,2 to 8.20 feet			
TIME: GPM FROM	10	DATE:	SEAL OR			
TOTAL WATER REMOVED DURING DEVELOPMENT:		ALLONS	SEAL SEAL			
DESCRIPTION DCLEAR		HTLY CLOUDY				
AT END OF	_	Y MUDDY	BENTONITE PELLET SEAL			
ODOR OF WATER:			- I:0 6 'een Cove. Sinen 20140			
WATER DEROUND SUR	FACE TANK TE	RUCK	SANO PACK			
TO: OSTORM SEWE		ETANK	6 10 25 leet			
DRUMS	OTHER_		SLOTTED (.OOC			
AFTER DEVELOPMENT:	. F	EET	inch) SCREEN			
MATERIALS USED			8.30 to 23.20 feet			
2.5 SACKS OF Silica	Grade.	SAND	SCHEDULE 40 PVC			
SACKS OF		CEMENT	BLANK SILT TRAP			
GALLONS OF GROUT L	SED		BOTTOM WELL CAP			
SACKS OF POWDERED			2 <u>5.20</u> feet			
50 POUNDS OF BENTONIT			HOLE CLEANED OUT TO			
8.00 FEET OF 2 INCH P			1			
FEET OFINCHES	C-SLOTTED SCREEN		BOTTOM OF BOREHOLE			
- Wasi						
YARO CEMENTS			NOT TO SCALE			
			ADDITIONAL INFORMATION: Well			
CONCRETE PUMPER USED? SAN	O TYES		MATERIAL PURE ON 1240 "			
WELL COVER USED: DECOCKING	TEEL COVER		materials pulled on 12-18-9/ Full recovery on well Erecn & Riser. Borchale Buckfilled wiel 250 cal			
☐CHRISTY B	IOX		Serven & RISER. Borchile			
□OTHER			Buckfilled with 250 cal			

FIELD WELL COMPLETION FORM		☐ CHRISTY BOX
MAME: EAKER AFB		LOCKING STEEL COVER
NUMBER: 3K98 PROJECT		STEEL CONDUCTOR CASING
LOGGED LRE EDITED		tofeet
WELL ELITWIO9	12/14/91	INCH DIAMETER
COMPANY: A.W. POOL		BOREHOLE
EQUIPMENT: 04 INCH HOLLOW STEN	AUGER V. BARCARZO	BENTONITE CEMENT
INCH ROTARY WAS	HOURS .50	SEAL OR 8-SACK CEMENT-SAND SEAL
GALLONS OF WATER	GALLONS	toteet
METHOD OF DECONTAMINATION (PETURE STEAM	TOP OF CASING AT
DEVELOPMENT SEE WELL DEVE		-0.2 FEET ABOVE AT
METHOD OF DEVELOPMENT:	POIGN	GELOW GROUND LEVEL GYTINCH DIAMETER BOREHOLE
DEVELOPMENT BEGAN DATE: TIME:	•	
VIELD: TIME:	DATE:	<u>0:0.25</u> torr
YIELD: TIME:	DATE:	SCHEDULE 40 PVC BLANK CASING
YIELD: TIME:	OATE:	-0.2 to 8.20 feet
VIELD: TIME:	DATE:	SENTONITE-CEMENT
GPM FROM TO TOTAL WATER REMOVED DURING DEVELOPMENT:		SEAL OR B-SACK CEMENT-SAND SEAL
ESCRIPTION	GALLONS	
T TURBIDITY CLEAR AT END OF DEVELOPMENT:	SLIGHTLY CLOUDY	BENTONITE PELLET SEAL
ODOR OF	VERY MUDDY	4:06
WASSE	TANK TRUCK	SAND PACK
TO: DSTORM SEWERS	STORAGE TANK	<u>6 10 22 1001</u>
DEPTH TO WATER	OTHER	2 INCH DIAMETER
MATERIALS USED	FEET	SLOTTED 1.006
		8.20 to 18.20 eet
2.5 SACKS OF COLONADOSI	JCA 30/40 SAND	SCHEDULE 40 PVC
SACKS OF	CEMENT	BLANK SILT TRAP
GALLONS OF GROUT USED		SOTTOM WELL CAP
SACKS OF POWDERED BENTON!		20.20lest
POUNDS OF BENTONITE PELLETS 8.00 FEET OF INCH PVC BLANK		HOLE CLEANED OUT TO
10.00 FEET OF 2 INCH PVC SLOTTE	CASING	BOTTOM OF BOREHOLE
200 Feer and	UACREM	25
YARO CEMENT-SAND (REDI-MIX	ORDERED	NOT-30 SCALE
YARDI CEMENT-SAND (REDI-MIX	USED	ADDITIONAL INFORMATION:
ONCRETE PUMPER USED? NO DYE		Borg. Hule cured in 3'
WELL COVER USED: ALOCKING STEEL COV	ER	

FIELD WELL COMPLETION	NFORM	CHRISTY BOX
J08 FAVE		LOCKING STEEL COV
NAME: FAICEN	PROJECT GVG	STEEL CONDUCTOR
. 0.5.570		CASING
WELL SIT III	BFN BFN	
HAME: EILIWILLO	PATE 2/14 191	• 11 11
COMPANY: AW TOOL		BENTONITE CEMENT
<u>-</u>	TARY WASH OBILLED: 55	SEAL OR SEAL OR SEAL SEAL
GALLONS OF WATER	NONE GALLONS	
METHOD OF DECONTAMINATION PRIOR TO DRILLING:	HIGH PRESSURE STEAM	TOP OF CASING AT
DEVELOPMENT SEE WEL	L DEVELOPMENT FORM	O.2- FEET ABOVE AT
METHOD OF DEVELOPMENT:		614 INCH DIAMETER
DEVELOPMENT BEGAN DATE:	71M2.	BOREHOLE O to 25
VIELD: TIME:	TIME: DATE:	2 INCH DIAMETER
GPM FROM	TO DATE:	SCHEDULE 40 PVC
GPM FROM	TO	BLANK CASING -0.20 -5.20
GPM FROM	то /	S SENTONITE CEMENT
GPM FROM	TO DATE:	SEAL OR B-SACK CEMENT-SAND
TOTAL WATER REMOVED DURING DEVELOPMENT:	GALLONS	SEAL 4 10 20 5 1 test
DESCRIPTION CLEAR	DSLIGHTLY CLOUDY	BENTONITE PELLE
AT END OF DEVELOPMENT: MOD. TO	URBID VERY MUDDY	SEAL
ODOR OF WATER:		County Suich 50/40
WATER GED GROUND SU	RFACE TANK TRUCK	SAND PACK
STORM SEW		6 10 22 1eer
DRUMS	OTHER	2 INCH DIAMETER
AFTER DEVELOPMENT:	FEET	SLOTTED 1,006
MATERIALS USED		-8.3c :0-18.30 iden
3.5 SACKS OF Silic	a Grade SAND	SCHEDULE 40 PVC
SACKS OF		BLANK SILT TRAP
	USED (LEMENT/BENTON PE	
SACKS OF POWDERE		BOTTOM WELL CAP
50 POUNDS OF BENTON		HOLE CLEANED OUT T
8.00 FEET OF 2 INCH	PVC BLANK CASING	22 1991
10.00 FEET OF 2 INCH!	PVC SLOTTED SCREEN	BOTTOM OF BOREHOLE
AREA FEET OF THE		2.5 lost
YARO CEMENT SAM	S-Regional Control	NOT TO SCALE
YARD CEMENT SAN		ADDITIONAL INFORMATION:
CONCRETE PUMPER USED?		
NAME		
WELL COVER USED: STOCKING		
☐CHRISTY ☐OTHER_		

					į.
FIELD WELL COMPLETION	FORM			.—	CHRISTY BOX
			n	-	LOCKING STEEL COVER
NAME: EAKER AFB	PROJECT		41-		STEEL CONDUCTOR
NUMBER: 3K58	MANAGER: G				
LOGGED BFKI	EDITED 15	3			INCH DIAMETER
WELL EIITWIII		DATE: 12-15-9/			BOREHOLE
DRILLING					
	LOW STEM AUGER	V. Burrazza			BENTONITE-CEMENT SEAL OR
	ARY WASH	HOURS			8-SACK CEMENT-SAND
GALLONS OF WATER		GALLONS			
	ت من د				TOP OF CASING AT
PRIOR TO DRILLIAGE HTG-TT	pressure "		•		O-/ FEET ABOVE AT
DEVELOPMENT SEE WE	n deverbo	MENT FORM	\	'	BELOW GROUND LEVEL
METHOD OF DEVELOPMENT:					BOREHOLE
DEVELOPMENT BEGAN DATE:	TIME:		(/		0 :0 2 2 ion
VIELDI TIMEI	TO:	DATE:			INCH DIAMETER
GPM FROM		DATE:			BLANK CASING
GPM FROM Time:	<u>ro</u>	DATE:	•		0./ 10 8./ feet
GPM FROM	то /	DATE:			SEAL OR
TIME: GPM FROM	то /				B-SACK CEMENT-SAND
TOTAL WATER REMOVED DURING DEVELOPMENT:	\times	GALLONS			SEAL 5.5 .0~0.5 1001
DESCRIPTION CLEAR	``` □SL	IGHTLY CLOUDY		-	- BENTONITE PELLET
AT END OF DEVELOPMENT: MOD. TL	JRBID 🔲 VI	ERY MUDDY			SEAL 5.5 10 6.5 1881
000800		•			COLORADE SILICA ZO/V.
WATER GROUND SU	REACE TANK	TRUCK	-		SAND PACK
DISCHARGED STORM SEW	_	AGE TANK	.1		6.5 10 7.2 1ees
DRUMS	OTHE	R	-		- Z INCH DIAMETER
DEPTH TO WATER AFTER DEVELOPMENT:		FEET	_ i	=:	SLOTTED 1 0.006
MATERIALS USED					8/ :0/8./ ieet
	i	•	·	-	- Z INCH DIAMETER
3.5 SACKS OF Silic	A Grade	SAND			BLANK SILT TRAP
SACKS OF		CEMENT	i		18.1 to 20.1 feet
GALLONS OF GROUT	_	T/BENTONITE	E MIX)	d	BOTTOM WELL CAP
SACKS OF POWDERE	D BENTONITE				- HOLE CLEANED OUT TO!
POUNDS OF BENTON	•				1 par 1 per
8 FEET OF 2 INCH	PVC BLANK CASIN	IG			- BOTTOM OF BOREHOLE
10 FEET OF Z INCH	PVC SLOTTED SCRI	EEN	<u>-</u>		332
YARO, CAME	CRO (XIMIOS	ERED .	N	OT TO SCALE	-
	O INCOLUNIAL USES	·	A	DDITIONAL INF	ORMATION:
CONCRETE PUMPER USED?	NO TYES		_		<u> </u>
NAME	-				
WELL COVER USED: LOCKIN					
☐CHRIST			-		
UDINEN.			-		

=

FIELD WELL COMPLETIC	N FORM			CHRISTY BOX
FIELD WELL COMM ELT.			[n-n &	LOCKING STEEL COVE
HAME: EAKEL AFB				STEEL CONDUCTOR
108 NUMBER: 3K98	PROJECT MANAGER: G	16		CASING
LOGGED	EDITED 45	B		tofeet
		DATE: 12-15-91		BOREHOLE
DRILLING				to feet
COMPANY: POOL DINING		DRILLER:		BENTONITE-CEMENT
-	OLLOW STEM AUGER	HOURS		B SACK CEMENT SAND
CALLOWS OF WATER	OTARY WASH	DRILLED: 1.23		tofeet
USED DURING DRILLING: A		GALLONS	(200)4	TOP OF CASING AT
PRIOR TO DRILLING: 5	team cleaned			PL FEET ABOVE AT
DEVELOPMENT SEE WE	L DEVELOPME	UT FORM		BELOW GROUND LEVEL
DEVELOPMENT:				BOREHOLE
DEVELOPMENT BEGAN BATE:	TIME:			<u>0</u> :0 <u>25</u> 1 eer
TIME! SPM FROM	то	DATE		- A INCH DIAMETER SCHEDULE 40 PVC
YIELDI TIME:	то	DATE:		BLANK CASING
YIELD: TIME:	то	DATE		BENTONITE-CEMENT
YIELD: TIME:	то	DATE:	1 1 1 1	SEAL OR B-SACK CEMENT-SAND
GPM FROM	· · ·	GALLONS		SEAL
OURING DEVELOPMENT:		GHTLY CLOUDY	333	
OF TURBIDITY CLEAF AT END OF DEVELOPMENT: MOD.		RY MUDDY		SEAL
ODOR OF	· · · · · · · · · · · · · · · · · · ·	AT MODE!	<u> </u>	5 :0 6:5 1em
WATER:	URFACE TANK	- PINCK		SAND PACK
DISCHARGED STORM SE				<u>\$5,0∂5./</u> 1001
DRUMS	OTHER			- 2 INCH DIAMETER
DEPTH TO WATER AFTER DEVELOPMENT:		FEET		nen · SCREEN
MATERIALS USED				8./ :0 23./ ides
3:5 SACKS OF _514	CA GRADE			SCHEDULE 40 PVC
SACKS OF		CEMENT		BLANK SILT TRAP
GALLONS OF GROO				- BOTTOM WELL CAP
SACKS OF POWDER	RED BENTONITE			<u>35./</u> feet
75 POUNDS OF BENTO	NITE PELLETS			- HOLE CLEANED OUT TO
	H PVC BLANK CASING	i		- BOTTOM OF BOREHOLE
15 FEET OF 2 INC	H PYC SLOTTED SCREE	<u> </u>		Soliton of Burehole
	NO (REDI-MIX) ORDER	RED	NOTTOSSALE	
	ND (REDI-MIXTOSED		material u	/ .
CONCRETE PUMPER USED?	ØhO □YES			′ –
NAME			Growted to	Surface , on 1
WELL COVER USED: TO LOCK!			Jul recov	ery of well screen
			FRISCA	
		•	•	

FIELD WELL COMPLETION FORM CHRISTY BOX LOCKING STEEL COVER . M E: EAKER AFB LINCH DIAMETER STEEL CONDUCTOR PROJECT MANAGER: 108 NUMBER: 3K98 GVG CASING LOGGED EDITED _ to _ BEN LRE ___ INCH DIAMETER DATE: WELL MAME: ENTWINS 12/15/91 BOREHOLE DRILLING AWPOOL V.BARAAZA BENTONITE-CEMENT EQUIPMENT: 1 6 14 INCH HOLLOW STEM AUGER SEAL OR 38-SACK CEMENT-SAND HOURS ORILLED: INCH ROTARY WASH SEAL □. GALLONS OF WATER USED DURING DRILLING: _ to _ _leet 30 **GALLONS** METHOD OF DECONTAMINATION PRIOR TO DRILLING: HIGH PRESSURE STEAM TOP OF CASING AT O.15 FEET ABOVE AT DEVELOPMENT SEE WELL DEVELOPMENT FORM BELOW GROUND LEVEL 614 INCH DIAMETER METHOD OF DEVELOPMENT: BOREHOLE DEVELOPMENT C :0 27 TIME: DATE: YIELD: TIME Z INCH DIAMETER FROM TO SCHEDULE 40 PVC DATE: YIELD: TIME: **BLANK CASING GPM** FROM TO 0.15 to 8.35 feet DATE YIELD: TIME: FROM TO SENTONITE-CEMENT DATE: TIELD: TIME SEAL OR **GPM** FROM ■ 8-SACK CEMENT-SAND TOTAL WATER REMOVED BURING DEVELOPMENT: SEAL GALLONS _ ^o ___ __ feer SCRIPTION TURBIDITY END OF CLEÀR. SLIGHTLY CLOUDY BENTONITE PELLET SEAL DEVELOPMENT: MOD. TURBIO VERY MUDDY <u>6:04</u> ODOR OF نصبيكا عددد عدالاد WATER DISCHARGED SAND PACK GROUND SURFACE ☐ TANK TRUCK ☐STORM SEWERS STORAGE TANK ☐ DRUMS OTHER. 2 INCH DIAMETER SLOTTED 1 O. COG DEPTH TO WATER AFTER DEVELOPMENT: FEET men SCREEN 8.35 10 23.25 MATERIALS USED 2 INCH DIAMETER COLORADO 20/40 _ SACKS OF SCHEDULE 40 PVC SAND BLANK SILT TRAP _ SACKS OF . CEMENT 23. 25 10 LS-25/1001 _ GALLONS OF GROUT USED BOTTOM WELL CAP 25.25 lear - SACKS OF POWDERED BENTONITE 50 POUNDS OF BENTONITE PELLETS HOLE CLEANED OUT TO 25-25 1999 FEET OF ____ INCH PVC BLANK CASING 14.9 BOTTOM OF BOREHOLE FEET-OF INCHPYC SLOTTED SCREEN ere erent de YARO CEMENT SAND INCOMENIXI ORDERED NOT TO SCALE YARD CEMENT-SAND (REDI-MIX) USED ADDITIONAL INFORMATION: _ Materials pulled, well NCRETE PUMPER USED? DNO **□YES** greated to the surface WELL COVER USED: DLOCKING STEEL COVER (NO NE USED JSB 3/31/42) 12/18/41 153 CHRISTY BOX OTHER

FIELD WELL COMPLETIO	N FORM		CHRISTY BOX	ļ
JOB BAKER AFB			LOCKING STEEL COVE	
NUMBER: 3K98	PROJECT	જે પ હેં	STEEL CONDUCTOR	3
LOGGED INC	EDITED		CASING	
	B/1	FN DATE:	INCH DIAMETER	R
NAME: ETTWITT		12/16/91	BOREHOLE	
OMPANY: A. W POUC				
EQUIPMENT: (4 INCH HO	LLOW STEM AUGE	A DRILLER BANNAZA	BENTONITE-CEMENT	
INCH RO	TARY WASH	HOURS ORILLED:	B SACK CEMENT SAND	۱ ۲
SALLONS OF WATER) こ ん ご	GALLONS	10 feet	
METHOD OF DECONTAMINATION PRIOR TO DRILLING:	EAM CIEANE	·	TOP OF CASING AT	
DEVELOPMENT SEE WELL			GELOW GROUND LEV	<u>T</u>
METHOD OF DEGELOPMENT:			GV4 INCH DIAMETER	
DEVELOPMENT			BONEHUCE	
TELDI TIMEI	TIME:	DATE:	0 :0 24 leet	
GPM FROM	то	DATE:	SCHEDULE 40 PVC	R
GPM FROM	то		BLANK CASING	
GPM FROM	то /	DATE	SENTONITE-CEMENT	- 1
GPM FROM	то	DATE:	SEAL OR	
OTAL WATER REMOVED URING DEVELOPMENT:		GALLONS	8-SACK CEMENT-SAND	, , -
ESCRIPTION CLEAR	X	IGHTLY CLOUDY	to to feet	
TEND OF MOD TO		ERY MUDDY	BENTONITE PELLET	7
DOROF	,	ENT MUDDY	2:04'eer	
ATER GROUND SU	25.455 (7	·	(alorado 20/40	<u> </u>
O: JSTORM SEW		THUCK AGÈTANK	SAND PACK	
DRUMS	ОТНЕ		2 INCH DIAMETE	_
EPTH TO/WATER FTER/DEVELOPMENT:	<u>-</u>	FEET	SLOTTED 1 0.006	_
ATERIALS USED			inch SCREEN	
2 SACKS OF Colors	1- (11. 20		2 INCH DIAMETE	, I
	-CO VINCE	SAND	SCHEDULE 40 PVC	
~ 7 SACKS OF		CEMENT	19.4 16.4 18.4	- 1
~ Z GALLONS OF GROUT		BENTONITE BENTONIT		- 1
SACKS OF POWDERED		SEA	AL 18.4 leet	ŀ
			HOLE CLEANED OUT	го
· cc. oiitch i			CAJE-IN 22 1-H	
10.2 FEET OF 2 INCH P	VC SLOTTED SCRE	EN	BOTTOM OF BOREHOL	.E
YARO ¹ CEMENT-SAND			MOTEO STATE X ALCO ,	
YARD ^I CEMENT-SAND		4.1%	ADDITIONAL INFORMATION:	
TRICECTE SI MACO MOCOS MI	NO TYES		SEAL From 18-22'	
/\	, H. 153			_
AME	\			
/\	STEEL COVER	·		-

FIELD WELL COMPLETI	ON FORM	CHRISTY BOX
HAME: EAKER AFO		E LOCKING STEEL COVE
NUMBER: 31C98	PROJECT GUG	INCH DIAMETER STEEL CONDUCTOR CASING
LOGGED URE	EDITED BFN	
WELL EUTWILLS	DATE: 12/16/91	INCH DIAMETER
COMPANY: A.W. POOL		BOREHOLE
EQUIPMENT: G //Y INCH	HOLLOW STEM AUGER V. BALTA	BENTONITE CEMENT SEAL OR SEAL OR B-SACK CEMENT-SAND
GALLONS OF WATER USED DURING DRILLING:		O II I II SEAL .
METHOD OF DECONTAMINATIO	UALLON3	
	HON BUELLINGE JEW	TOP OF CASING AT -0.1 FEET ABOVE AT
DEVELOPMENT SEE DEN	ELDPRIENT FORM	- BELOWIGHOUND LEVE
DEVELOPMENT:		BOREHOLE
EBANDATE:	TIME:	BOREHOLE 56
GPM FROM	TO DATE:	a INCH DIAMETER
GPM FROM	TO DATE:	SCHEDULE 40 PVC BLANK CASING
GPM FROM	TO DATE:	-6.1 to 6.2 feet
GPM FROM	TO DATE:	SEAL OR
OTAL WATER REMOVED DURING DEVELOPMENT:		8 SACK CEMENT SAND
ESCRIPTION	GALLONS	- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
TURBIDITY DELEAS	Pacionic i cropp	BENTONITE PELLET
DOR OF	TURBID VERY MUDDY	_ SEAL *
ATER:	<u> </u>	COLOMNO SILIEM DOLY
GROUND S		SAND PACK
DRUMS	WERS STORAGE TANK	4 10 18 1001
EPTH TO WATER FTER DEVELOPMENT:	FEET	SLOTTED 1 0.00 6
ATERIALS USED		- inch SCREEN
C		6.2 to 16 3 ives
	LADO SILICA BO/40 SAND	SCHEDULE 40 PVC
SACKS OF	CEM EN	BLANK SILT TRAP
	TUSED (LEMENT/BENTON. 7	BOTTOM WELL CAP
SACKS OF POWDER		18.3 teet
POUNDS OF BENTO		HOLE CLEANED OUT TO
	PVC BLANK CASING	21 1-41
10.1 FEET OF 2 INCH	PVG SLOTTED SCREEN	BOTTOM OF BOREHOLE
YARO CEMENT-SAN	IO (REDI-MIX) ORDERED	
YARD CEMENT-SAI		ADDITIONAL INFORMATION:
ONCRETE PUMPER USED?	SNO DAEZ	PELLETS 18-21 TO SEAL
AME		eff Lower water zone
ELL COVER USED: 反LOCKIN	G STEEL COVER	
□ CHRIST	OUA	
-		

						CHRISTY BOX
				- <u>_</u>		LOCKING STEEL COVE
NAME: 1 EAK	ER AFB			- UL		INCH DIAMETER
HUMBER: 31	८ 98	PROJECT MANAGER: (-)	NG	7.	7 [STEEL CONDUCTOR CASING
LOGGED 10			_ເ N	- !]		
	720	Wille	DATE:	-		INCH DIAMETER
ORILLING			1 1 3 1 3 1	-		
			ORILLER:	-		BENTONITE CEMENT
図っ	INCH HOLL	OW STEM AUGER	V.Barazze	- •		SEAL OR 8-SACK CEMENT-SAND
	INCH ROTA	HZAW YR	DRILLED: 0.5		1 1	II SEAL
ALLONS OF WAT ISED DURING DRI	ER ILLING: —		GALLONS	-		toleet
METHOD OF DECO	NTAMINATION HEGH	PRESSURE	STEAM	_ 1		TOP OF CASING AT
DEVELOPMENT		·				BELOW GROUND LEVEL
METHOD OF DEVELOPMENT:						CH INCH DIAMETER
DEVELOPMENT				-		BOREHOLE D:0 22 set
DEGAN DATE:	TIME:	TIME:	DATE:	-]		
GPM	FROM 1	ro	DATE:	-		INCH DIAMETER
GPM GPM	FROM 1	го		_		BLANK CASING
rield: GPM	TIME: FROM T	ro	DATE			
IELD:	TIME	о	DATE:			SEAL OR B-SACK CEMENT-SAND
TOTAL WATER RE	MOVED MENT:		GALLONS			SEAL -0.5
SESCRIPTION OF TURBIDITY	CLEAR	Пе	IGHTLY CLOUDY	- <u>[</u>	SS SS	
T END OF SEVELOPMENT:	☐ MOD. TUR		RY MUDDY	Š		SEAL SEAL
DOR OF	<u></u>		ERT MODO!	- P		7 :0 5.5 eet
VATER:				-	<u> </u> •	COLUZADO SILICA
NATER DISCHARGED FO:	☐GROUND SURF				=:	SAND PACK
	DRUMS	STORA	GE TANK	1		TINCH DIAMETER
SEPTH TO WATER		20		•		SLOTTED : 0.000
AFTER DEVELOP			FEET	-	!=	7.9 .0 18 C test
MATERIALS US				-	\equiv	3
3 SACK	S OF 20/40 (comous	ILICA SAND	1	<u> </u>	SCHEDULE 40 PVC
	s of			-		BLANK SILT TRAP
	ONS OF GROUT U					
	S OF POWDERED I		7 .52% 70% 7 .	(^,^)		BOTTOM WELL CAP
	IDS OF BENTONITI			L		HOLE CLEANED OUT TO
	OFINCH PV		-			22 1991
10-1		C SEARK CASING	2.3'	٠, ٢	and the second second	SOTTOM OF BOREHOUS
	CEMENT SANOI	PEDLIEVI CODE		- ŧ	OT TO SCA	LE
	CEMENT-SAND			K		
					, -	was originally
	ER USED?	P		=		7
NAME	D: ELOCKING S	7881 600-5		-		om 9.4-19.5 feet
MEET COASH 025	CHRISTY B			<u>.</u>	vell w	is pulled up 1.5'
	OTHER				. 0	

FIELD WELL COMPLET	ION FORM			CHRISTY BOX
HAME: EAKER A.	F.B			ELOCKING STEEL COVE
108 3K98	PROJECT MANAGER:	SVG-	4	STEEL CONDUCTOR
LRE		SFN		CASING
MELL EII- TWI	119	12/17/9	.	INCH DIAMETER
OMPANY: AW PO	00L			to
QUIPMENT: DELLE INCH	HOLLOW STEM AUGE	R V. BARRAZA		BENTONITE-CEMENT
· _	ROTARY WASH	HOURS DRILLED:		8-SACK CEMENT-SAND
ALLONS OF WATER	NONE	GALLONS		
HETHOD OF DECONTAMINATION TO DRILLING:	PRESSURE S	TEAM	. =	TOP OF CASING AT
DEVELOPMENT SEE WE	ou deverier			0.2 FEET ABOVE AT
ETHOD OF		\(\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex		BELOWEROUND LEVE
EVELOPMENT EGAN QATE:	TIME:			BOREHOLE 0 to 22
SPM FROM	то	DATE:		SCHEDIU E 40 BVC
GPM FROM	то	DATE:		SCHEDULE 40 PVC BLANK CASING
TIME:	10	DATE:		0.2 to 5 feet
GPM FROM	TO	DATE:		SEAL OR
STAL WATER REMOVED. URING DEVELOPMENT:		GALLONS		8-SACK CEMENT-SAND
ESCRIPTION CLEAR	R DS	LIGHTLY CLOUDY	838	2 00.5 feer
TEND OF MENT: MOD.		ERY MUDDY		BENTONITE PELLET SEAL
DOR OF ATER:			1888	COLORADO SILICA ZO/L
SECHARGED GROUNDS		TRUCK		SAND PACK
O: STORM SE	WERS STOR	AGE TANK		3 10 17 1001
EPTH TO WATER FTER DEVELOPMENT:		FEET		2 INCH DIAMETER
ATERIALS USED				15 to 5 feet
3 secret Course	MDO SILICA	2. /4.		2 INCH DIAMETER
SACKS OF				BLANK SILT TRAP
GALLONS OF GROU		GENTEN (TE MIX)		15 to 17 lest
SACKS OF POWDER		BENZON	- S	BOTTOM WELL CAP
25 POUNDS OF BENTO		SEAL I	1-18' [HOLE CLEANED OUT TO
4.8 FEET OF Z INC	H PVC BLANK CASIN	G		Zo 1981
ID. O FEET OF C INC.	PVC SI OTTED SCRE	EN	, .	BOTTOM OF BOREHOLE
				SILVE
YARD" CEMENT SAI	NO (REDIMIX) ORDE	RED	NOT TO S	CALE
311000000	NO (REDI-MIX) USED		ADDITIO	NAL INFORMATION:
AME	ZNO TAEZ			
ELL COVER USED: XLOCKIN	G STEEL COVER			
□ CHRIST	Y BOX		-	

FIELD WELL COMPLETION FORM	☐ CHRISTY BOX
190 FOUCO OCO BY (5) - (1)	LOCKING STEEL CO
NAME: EAKER AFB BY Shope He JOB MANAGER: GVC MANAGER: GVC	INCH DIAMETER STEEL CONDUCTOR CASING
LOGGED JSB EDITED BFIN	10
WELL TW1120 DATE: 1-7-92	BOREHOLE
DRULLING A D	0 to 30 feet
	BENTONITE CEMENT
INCH ROTARY WASH	SEAL OR SEAL SEAL
CALLONS OF WATER NONE GALLONS	leet
PRIOR TO DRILLING	Note: STICE DOWN ~ C.Z
DEVELOPMENT SEE WELL DEVELOPMENT PORM	BELOW GROUND LEVE
METHOD OF DEVELOPMENT:	6/4 INCH DIAMETER
DEVELOPMENT TIME:	BOREHOLE O :n 30 set
VIELDI TIMEI DATE:	2 INCH DIAMETER
YIELD: TIME: DATE:	SCHEDULE 40 PVC BLANK CASING
YIELDI TIMEI DAYEI	2.8 10 17.2 feer
GPM FROM TO	SENTONITE-CEMENT
GPM FRIGH TO	SEAL OR B-SACK CEMENT-SAND
DURING DEVELOPMENT: GALLONS	SEAL 0.5 .0 15 1ear
DESCRIPTION DELEAR DELIGHTLY CLOUDY	GENTONITE PELLET
DEVELOPMENT: MOD. TURBID VERY MUDDY	SEAL 15 :0 16 'est
DOOR OF VATER:	CALORADO SILICA
NATER GROUND SURFACE GTANK TRUCK	SAND PACK, ZOLY
OSTORM SEWERS STORAGE TANK	30.10 16 10et
DEPTH TO WATER	SLOTTED 1 0.006
AFTER DEVELOPMENT: FEET	men SCREEN
MATERIALS USED	17.2:027.7 teet
Z 100# SACKS OF WIGHARDE SINCA 20/40 SAND	2 INCH DIAMETER
SACKS OF PORTLAND TUPE TE CEMENT	BLANK SILT TRAP
GALLONS OF GROUT USED	SOTTOM WELL CAP
SACKS OF POWDERED BENTONITE	29.21eer
SO POUNDS OF BENTONITE PELLETS	HOLE CLEANED OUT TO
20 FEET OF 2 INCH PVC BLANK CASING	<u> 30 /m</u>
O DESCRIPTION PRODUCTION SCREEN	THE PROPERTY OF STREET, SECONDENIAL
2 PEET OF 2 INCH PUC SUMP	leet
YARD CEMENT-SAND (REDI-MIX) ORDERED	NOT TO SCALE
YARD ³ CEMENT-SAND (REDI-MIX) USED	ADDITIONAL INFORMATION:
CONCRETE PUMPER USED? DAO DYES	WELL BAD WAS CHOSTRUCTED
NAME	1/9/92 - cut or ~35' of
MELL COVER USED: LOCKING STEEL COVER	RSCK PIPE, UMPLETED WILL
OCHRISTY BOX	AT DISK
	M. 1-141 X M a.a 1

FIELD WELL COMPLETION FORM	
	LOCKING STEEL COVER
The baker AFB	INCH DIAMETER
NUMBER: DILY MANAGER: A JENICIA.	
LOGGED RDH EDITED H. Ellis	
WELL MW1121 PATE 4/8/9	BOREHOLE
COMPANY: Tri-State Testing	10feet
EQUIPMENT: DITTO INCH HOLLOW STEM AUGER	BENTONITE-CEMENT
INCH ROTARY WASH DRILLED:	B-SACK CEMENT SAND
USED DURING DRILLING: NA GALLONS	tofeet
METHOD OF DECONTAMINATION Stram Clane	TOP OF CASING AT
DEVELOPMENT SEE WELL DEVELOPMENT TO	FEET ABOUR AT
METHOD OF DEVOLOPMENT:	NCH DIAMETER
DEVELOPMENT BEGAN DATE: TIME:	0 to 16.7 teet
GPM FROM TO	2 NCH DIAMETER
YIELD: TIME: DATE:	BLANK CASING
YIELD: TIME: DATE:	+ 2.4 10 4.2 feet
YIELD: TIME: DATE.	SEAL OR
TOTAL WATER REMOVED DURING DEVELOPMENT: GALLONS	8-SACK CEMENT-SAND
CRIPTION CLEAR DELIGHTLY CL	OUDY SOLICALIZE BELLEY
VELOPMENT: MOD. TURBID VERY MUDDY	SEA1
ODOR OF WATER:	20/40 MORA E 514CA
WATER DISCHARGED GROUND SURFACE TANK TRUCK	SANO PACK
TO: STORM SEWERS STORM GE TANK DRUMS SOTHER	3.0 o/bi/teer
DEPTH TO WATER AFTER DEVELOPMENT: FEET	SLOT ED (D.O)
MATERIALS USED	111ch: 3CR 2EN 4.2 to 14.2 feet
SACKS OF 50/b 20/40 more s	I I I BLANK SILT TRAP !
SACKS OFC	
GALLONS OF GROUT USED	BOTTOM WELL CAP
75 POUNDS OF BENTONITE PELLETS	HOLE CLEANED OUT TO
18/4) 9.95 SEET OF 2 INCH BUC BLANK CASING	16.71 set
10.0 FEET OF 2 INCH PYC SLOTTED SCREEN 2.0 FEET OF 2 3.5. ALL SUP	BOTTOM OF BOREHOLE
	P. T. feet
YARD CEMENT-SAND (REDI-MIX) ORDERED	NOT TO SCALE
YARO CEMENT-SAND (REDI-MIX) USED	ADDITIONAL INFORMATION:
CONCRETE PUMPER USED? NO YES	
CLL COVER USED: LOCKING STEEL COVER CHRISTY BOX OTHER	

FIELD WELL COMPLETION	N FORM	•			CHRISTY SOX
					D LOCKING STEEL COVER
HAME: bah AFB	PEOJECT /\		41-4	-	STEEL CONDUCTOR
NUMBER: DINY	MANAGER:	Tenkulus	1,		CASING to leet
LOGGED BDH	EDITED TR	Pllis			INCH DIAMETER
WELL MW1122		4/7/95			BOREHOLE
COMPANY: Jim - June 3					10 1001
עיטו		DRILLET leager			BENTONITE CEMENT SEAL OR
	DTARY WASH	HOURS OU			B-SACK CEMENT-SAND
GALLONS OF WATER		GALLONS			10 1991
METHOD OF DECONTAMINATION	<u> </u>				TOP OF CASING AT
DEVELOPMENT SES	WELL DENEW	orment four			2.3 7.5 FEET ABOVE AT
METHOD OF DEVELOPMENT:					10 1 INCH DIAMETER
DEVELOPMENT				-	BOREHOLE 0 17-9 test
SEGAR DATE:	TIME:	DAYE			2 INCH DIAMETER
GPM FROM	TO	DATE:			SCHEDULE 40 PVC BLANK CASING
GPAL FROM	TO	DATE:			+ 2.5 to 5.1 lees
GPM FROM	TO	DAYE			SENTONITE-CEMENT
GPM FROM	TO				SEAL OR B-SACK CEMENT-SAND
TOTAL WATER REMOVED DURING DEVELOPMENT:		GALLONS	Ì		SEAL 0 10 2.0 fear
DESCRIPTION OF TURBUSTY AT END OF DEVELOPMENT; DMOD. 1		GHTLY ÇLOUDY		1	BENTONITE PELLET SEAL 2.0 :0 4.0
ODOR OF			2.0	[20/40 MORE SILL
WATER GEO GROUND SI	URFACE DYANK	TRUCK			SAND PACK
TO: STORM SEV		GE TANK			4.0 to 17.9 feet
DRUMS DEPTH TO WATER	□ отн ѐя	9			SLOTTED (0.0/
AFTER DEVELOPMENT:		FEED			Sich SCHEEN
MATERIALS USED				冐	2 INCH DIAMETER
11.5 SACKS OF 75	5011 hay 20/41	MOTIE SAND			SCHERNES 48 TO STI
SACKS OF	·	CEMENT			1 <u>5.1</u> 10[7.3] leet
GALLONS OF GROU	T USED				BOT OM WELL CAP
SACKS OF POWDER					<u>17.3</u> leet
75 POUNDS OF BENTON	vite Pellets				HOLE CLEANED OUT TO
8.3 FEET OF 2 INCh	PVC BLANK CASING	3			BOT : OM OF BOREHOLI
10.0 FEET OF 1 INCH	hereslotted scre h s.s. sitt tra	en P			17. 9 toet
YARD ² CEMENT-SAN		RED	NO	T TO 50	CALE
YARD ³ CEMENT-SAI	ND (REDI-MIX) USED		AD	DITIO	NAL INFORMATION:
CONCRETE PUMPER USEO?	NO TES				
NAME	•				
WELL COVER USED: LOCKIN CHRIST				,	
— • • • • • • • • • • • • • • • • • • •					

FIELD WELL COMPLETION FO	RM .	CHRISTY BOX
HAME Eaker AFB		LOCKING STEEL COVER
PUMBER: OILL	OJECT : Allan Jenkins	STEEL CONDUCTOR CASING
6. WI HOT 100	ITED JA GIA	loleet
HAME: MW1123	8 11 195	BOREHOLE
COMPANYI TY State Test		tolost
SE_LO_ INCH HOLLOW	, <u> </u>	BENTONITE CEMENT
GALLONS OF WATER	OHIGED!	SEAL CEMENTSAND
USED DURING DRILLING	7 GALLONS for drass or	toleet
SHOW TO BRILLING! SHOW	m cleaning	TOP OF CASING AT
DEVELOPMENT SEE WELL DE	welopment Form	PELOW GROUND LEVEL
OEVELOPMENT		10" INCH DIAMETER
VIELO: TIME:	DATE	Q :019:51eet
GPM FROM TO	DATE	SCHEDULE 40 PVC
VICLO: TIME:	DATE	BLANK CASING O to 19-Giret
TIELD: TIME	DATE	THE STINCTINE
TOTAL WATER REMOVED DURING DEVELOPMENT:		SEAL OR 8-SACK CEMENT-SAND SEAL
DESCRIPTION OCI FAR	GALLONS SLIGHTLY CLOUDY	0 .0 310 feet
EVELOPMENT:	O VERY MUDDY	BENTONITE PELLET
O' R:		3.0 10. 5.0 reet
DISCHARGED DIGROUND SURFACE	DYANK TRUCK	Morie 20140
TO: □STORM SEWERS □DRUMS	OSTORAGE TANK	5.0 10 19.5 leer
DEPTH TO WATER AFTER DEVELOPMENT:	FEET	SLOTTED (O/D)
MATERIALS USED	the	Hich: SCREEN 7.50 feet
12.0 0624 95 000 H15 17 SACKS OF Morie 20140	GACOUWELL .	A ANCH DIAMETER
SACKS OF		SCHEDULE 40 PTC S.STEEL BLANK SILT TRAP
✓ 10 GALLONS OF GROUT USED	· · · · · · · · · · · · · · · · · · ·	17.50 17.01 cer
SACKS OF POWDERED BENTON	RITE \$	BOTTOM WELL CAP 19. 19 ft of sand
75 125 KPOUNDS OF BENTONITE PELLE	is 11/2 buckets	HOLE CLEANED OUT TO
FEET OF A INCH PVC BLAN	IK CASING	19.5 141
2 FT of 2 Inch 55 5	ilt trap.	BOTTOM OF BOREHOLE
YARD ³ CEMENT-SAND (REDI-MI	XI ORDERED	NOT TO SCALE
YARDI CEMENT-SAND (REDI-MI		ADDITIONAL INFORMATION:
NAME Grow mixed in 5	'E\$	calcusated sand = 11.31 sacks
L COVER USED: PLOCKING STEEL CO	VER AVUIN	Calculated grout = 11.76 gal
CHRISTY BOX		
		1

FIELD WELL COMPLETION FORM	•	CHRISTY BOX	***************************************
100 NAME: FOLOK AGR		LOCKING STEEL COV	/E)
108 PROJECT		INCH DIAMETE	i l
LOGGED	Allan Tenkins	CASING	
WELL	DATE:		
DRILLING	18/12/95	BOREHOLE BOREHOLE	,R
COMPANY Tri State Testing Ser		tofeet	
INCH HOLLOW STEM AUGE	MOURS	BENTONITE CEMENT SEAL OR BSACK CEMENT SAN	
GALLONS OF WATER USED DURING DRILLING:	GALLONS	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
METHOD OF DECONTAMINATION			
DEVELOPMENT /	opment form	TOP OF CASING AT	• ·
METHOD OF DEVELOPMENT:	Spraid town	BELOW CHOUND LEV	EL
DEVELOPMENT BEGAN DATE:		BOREHOLE	3
YIELD: TIME:	DATE:	0 :0 38 feet	- [
GPM FROM TO	DATE:	SCHEDULE 40 PVC	3
VIELD: TIME:	DATE:	BLANK CASING O to 26 feet	
GPM FROM TO	DATE:	SENTONITE-CEMENT	-
GPM FROM TO		SEAL OR SEAL OR SEAL CEMENT-SAND	
DURING DEVELOPMENT:	GALLONS	SEAL	,
DEVELOPMENT:	IGHTLY CLOUDY	BENTONITE PELLET	
GDOR OF	RY MUDDY	SEAL 22:0,24 'est	7
WATER		Morie 20140	_
DISCHARGED GROUND SURFACE TANK TO: STORM SEWERS STORM		SAND PACK	-
□ DRUMS □ OTHER		24:038 leer	ı
DEPTH TO WATCH AFTER DEVELOPMENT;	FEET	SLOTTED (O.O.O.	
MATERIALS USED		inch: SCREEN	7
12 1/2 - 04 24 95 GAOON	TWELL .	26 to 36 feet	1
12 1/2 SACKS OF Morie 20/40 Fittration	ONAZINO	2 INCH DIAMETER	
SACKS OF	CEMENT	BLANK SILT TRAP 36 to 38 feet	1
N 65 GALLONS OF GROUT USED		BOTTOM WELL CAP	
SACKS OF POWDERED BENTONITE	MA	38 leet	
50 POUNDS OF BENTONITE PELLETS 1	2 buckets	HOLE CLEANED OUT TO	,
30 FEET OF 2 INCH PVC BLANK CASING	2 Feet of Cul	38 1901	ı
2 FT of 2 inch 35 Silt tre	مه	BOTTOM OF BOREHOLE	
YARD CEMENT-SANO (REDI-MIX) ORDERE	ED .	NOT TO SCALE	
YARD CEMENT-SAND (REDI-MIX) USED		ADDITIONAL INFORMATION:	
CONCRETE PUMPER USED? MO DYES	•	Calculated Sand 10.93 Sacks	
NAME growt mixed in 55 gal	drum.		
WELL COVER USED: ALOCKING STEEL COVER		Calculated grout 36.24 gal.	
Christy Box Oother			
	•		f

FIELD WELL COMPLETION FORM	CHRISTY BOX
Eaker AFB	LOCKING STEEL COVER
PROJECT	INCH DIAMETER
LOGGED CONTENT OF THE PROPERTY	CASING
WELL AMINAT EDITEOUS ELLEY	toleet
ORILLING MW1125 10/3/99	BOREHOLE
company. Tri State Testing Services	toteet
INCH HOLLOW STEM AUGER J. Craws	ard BENTONITE CEMENT
INCH ROTARY WASH DRILLED:	BSACK CEMENTSAND
USED DURING DRILLING: 70 GALLONS	to feet
METHOD OF DECONTAMINATION Steam Cleaning	TOP OF CASING AT
DEVELOPMENT See Well Development Form	2.9 27 FEET ABOVE AT
METHOD OF DEVELOPMENT:	מבנטאי טאסטאים לבעבר
DEVELOPMENT	BOREHOLE
VIELO: TIME! DATE:	
GPM FROM TO	2 INCH DIAMETER
TIME: DATE:	8LANK CASING + 2.5 10 26 1001
GPM FROM TO	
GPM FROM TO	SEAL OR B-SACK CEMENT-SAND
TOTAL WATER REMOVED GALLONS	SEAL
SCRIPTION CLEAR DSLIGHTLY CLOUDY	<u>○ 10 22 (ect</u>
PPMENT: DMOD, TURBID DVERY MUDDY	BENTONITE PELLET SEAL
ODER OF WATER:	<u> </u>
DISCHARGED GROUND SURFACE GTANK TRUCK	SAND PACK
OSTORM SEWERS DSTORAGE TANK	24 10 38 teet
DEPTH TO WATER	INCH DIAMETER
MATERIAL CHES	SLOTTED (O. DIO)
O 090895 GA CON WELL .	26 to 36 feet
9 SACKS OF Morie 2040 Altrationmed & SAND	2 INCH DIAMETER
SACKS OFCEMENT	BLANK SILT TRAP
GALLONS OF GROUT USED	3 , 30 lest
SACKS OF POWDERED BENTONITE	BOTTOM WELL CAP
POUNDS OF BENTONITE PELLETS 174 buckets	40. F
30 FEET OF 2 INCH PVC BLANK CASING 1.5ft. CL	HOLE ILEANED OUT TO
FEET OF INCH PUC SLOTTED SCREEN	BOTTOM OF BOREHOLE
== Frof Dinch ss. silt trap	38 teet
YARD CEMENT-SAND (REDI-MIX) ORDERED	NOT TO SCALE
YAROJ CEMENT-SANO (REDI-MIX) USEO	ADDITIONAL INFORMATION:
CONCRETE PUMPER USED? ON DEVES	Calculated Sand=10.9250ck
WE USED: MLOCKING STEEL COVER	calculated grouts 80.36 calc
DOTHER	

FIELD WELL COMPLETION FORM	
	CHRISTY BOX
NAME: Fakur AFB	C LOCKING STEEL COV
NUMBER: 6114 PROJECT HAID TENKINS	STEEL CONDUCTOR CASING
ev: G. Millar Iv:	10[eet
MAME: MVV1126 PATE:	INCH DIAMETER
company Tri-state Testing Services	
EQUIPMENT: 8 714 INCH HOLLOW STEM AUGER J. Crawford	BENTONITE-CEMENT SEAL OR
INCH ROTARY WASH DRILLED:	BSACK CEMENTSAND
USED DURING DRILLING: 52 GALLONS TO POSSUL	·
PRIOR TO DRILLING: Steam Cleaning	TOP OF CASING AT
DEVELOPMENT See Well Development Form	2.5 FEET GROVE AT
METHOD OF OCVELOPMENT:	BELOW GROUND LEVEL
DEVELOPMENT BEGAN DATE:	BOREHOLE
TIME: DATE:	0 :0 41 teet
GPM FROM TO	SCHEDULE 40 PVC
VIELD: TIME: DATE:	BLANK CASING
GPM FROM TO	+ 2.5 to 29 feet
GPM FROM TO	SEAL OR
DURING DEVELOPMENT: GALLONS	6-SACK CEMENT-SAND
OF TURBIDITY DCLEAR DSLIGHTLY CLOUDY	O 10 22 feet
DEVELOPMENT: DMOD. TURBID DVERY MUDDY	BENTONITE PELLET SEAL
ODON OF WATER:	22:0:24 'eet
DISCHARGED GROUND SURFACE TANK TRUCK	SAND PACK
ODRUMS OTHER	271041 1201
DEPTH TO WATER	2 INCH DIAMETER
MATERIALS USED	SLOTTED (O.O/O)
0708956ACONWELL .	29 to 39 teat
91/2 SACKS OF MONE 20/10 A: Hration media	SCHEOULE 40 PVE- STAIN
SACKS OFCEMENT	BLANK SILT TRAP STEE
GALLONS OF GROUT USED	
SACKS OF POWDERED BENTONITE	BOTTOM WELL CAP
35 POUNDS OF BENTONITE PELLETS bucket	HOLE CLEANED OUT TO
35 FEET OF 2 INCH PVC BLANK CASING 3.5 FT CULL OFF	<u>41</u> (sec
Inch sisisi Htrap	BOTTOM OF BOREHOLE
YARD CEMENT SAND (REDIMIX) ORDERED	NOT TO SCALE
YARD CEMENT-SAND (REDIMIX) USED	1
ONCRETE PUMPER USED? ONO MYES	Calculated sond=10.92 toop
AME	<u> </u>
ELL COVER USED: LOCKING STEEL COVER CHRISTY BOX OTHER	Calculated grout = 98 gals

;12-28-95 ; 4:57PM ;

٠,

		AND ROOI, ENV
111	Hallihm	rton NUS
	Trampu	I MITTACO
77	COKPO	RATION

FIELD WEL	L COMPLETION	FORM	•				CHRISTY BOX
JOO F	aker AFB			= [D LOCKING STEEL COVE
S UMBER:	0114	PROJECT	Allow Tankin	_ 4	-5	7	STEEL CONDUCTOR
LOGGED G	millar	EDITED	fllan:Jenkir	<u> </u>		- 1	CASING lees
WELL	MW1127		DATE:	-			INCH DIAMETER
DRILLING	ci State Te	stine S	111/03/95	- 1	\mathbf{I}		BOREHOLE
EQUIPMENT	TO ZHINCH HOLL		PRILLER	- 1			BENTONITE CEMENT
	INCH ROTA	•	HOURS	tora	11		SEAL OR
GALLONS OF WI	ATER		CONTINUE FOX	<u>.</u>	2 1	ı	SEAL -
		<u> </u>	GALLONS ESTA	dization	\ & 		
	T See Well'D	Steam	cleaning	,	īΓ	T	TOP OF CASING AT
METHOD OF DEVELOPMENT:	·	weloom	entform	•		1	GELOW GROUND LEVEL
DEVELOPMENT BEGAN DATE:							## 10 INCH DIAMETER
YIELD:	TIME	TIME:	DATE:				0 :0 36- Teet
YIELD:	TIME:		DATE:			-	SCHEDULE 40 PVC
YIELD:	TIME:)	OATE:			1	BLANK CASING
YIELDI	TIME)	DATE:			-	BENTONITE-CEMENT
GPM TOYAL WATER RE	SHOVED 10			1	1	1-	SEAL OR GSACK CEMENT-SAND
ESCRIPTION	PMENT:		GALLONS	ļ	1	11	SEAL DIOS
LOPMENT:	CLEAR		GHTLY CLOUDY		\times		GENTONITE PELLET
ODDA OF	MOO. TURBI	O [] VE	AY MUDOY				SEAL 2015 10 2215
WATER:	□ GROUND SURFAL					П	morie 2440 (00N)
DISCHARGED TO:	OSTORM SEWERS	E TANK T					SAND PACK
DEPTH TO WATER	DRUMS	OTHER		l			2 INCH DIAMETER
AFTER DEVELOPM		1	FEET	İ	三		SLOTTED (0.0/0)
MATERIALS USE							24,5 634,2
10 SACKS	090845 OF <u>Morie 201</u> 7	64 CONWE	in media			4	- 2 INCH DIAMETER
	OF		CEMENT	- 1			BLANK SILT TRAP
GALLO	ONS OF GROUT USED)		j			34,5 1036.5 leet
SACKS	OF POWDERED BEN	TONITE					BOTTOM WELL CAP
30 POUND	S OF BENTONITE PE	LLETS 11/2	buckets		-		HOLE CLEANED OUT TO
10 FEET C	OF 2 INCH PVC B	LANK CASING	ತ್ರುತ್ತ ಆಗ್ ಅಡ	t.		-	36.5 Incl
2 FT	f 2 inch s	Otteo screen 5.5.5il++	rab	<u> </u>			36.5 Icet
YARD	CEMENT-SAND IRED	i-MIX) ORDERS	ם	NO	T TO SC	ALE	
YARD	CEMENT-SAND (RED	I-MIXI USED	_				
CONCRETE PUMPER		YES					Sond - 10.92 Sacks
VER USER							d growt = 80.36 gals
AFH OZED:	CHRISTY BOX					_===	33
	MOTHER FILL	shmoun	<u>+</u>				

FIELD WELL	COMPLETION	FORM	•	سنيب		CHRISTY BOX	
NAME: Eal	eer AFB					LOCKING STEEL COVE	
10.7	14	PROJECT MANAGER: A	ilan Jenkins	41	7	STEEL CONDUCTOR	
LOGGED	Millar	EDITED	HOTEL STATE OF THE		- 1	toleet	
W711	W1128		11/05/95			INCH DIAMETER	
COMPANY! TY	State Tes	tion So	V		1	tofeet	
EQUIPMENT:		OW STEM AUGE	10011100			BENTONITE-CEMENT	
	INCH ROTA	•	MOURS DRILLED:			SEAL OR B-SACK CEMENT-SAND SEAL	
GALLONS OF WAT USED DURING DR	ER ILLING:	70	GALLONS			to feet	
METHOD OF DECO	INTAMINATION	eam Cl	80 10 in A		_	TOP OF CASING AT	
DEVELOPMENT			lopment Form		-	- FEET ABOVE AT	
METHOD OF DEVELOPMENT:		PER DEVE	topridio Form			BELOW GROUND LEVEL	
DEVELOPMENT				1	1.	NOH DIAMETER BOREHOLE 76 inch	
HEGAN DATE:	TIME	TIME:	DAYE:			0 :0 25 feet 25	
GPM .	FROM TO	<u> </u>		- 1	1	SCHEDULE 40 PVC	
GPM	FROM TO) <u> </u>	DATE:		1	BLANK CASING	
	TIME: FROM TO)	OATE:	- 1	1	<u>O</u> 10 <u>≥8</u> feet	
GPM	TIME: FROM TO		DATE		1	SEAL OR	
TOTAL WATER REI	MOVED MENT:	·	GALLONS		1	8-SACK CEMENT-SAND	
PESCRIPTION OF TURBUDITY	CLEAR	Ost	GHTLY CLOUDY			O 10 23' 5	
AT END OF DEVELOPMENT:	MOD, TURE		RY MUDDY			BENTONITE PELLET	
DON OF			NT MUDUT		ŝ	23.5 " 35 2"	
YATER	GROUND SURFA	CE TANK	PICY	ł	<u> </u>	[WAME] (MOMBEO)	
MACHARGED	DSTORM SEWERS	STORA		- }		SANDPACK 40 2515 to 28 leet	
EPTH TO WATER	DRUMS	OTHER				2 INCH DIAMETER	
FTER DEVELOPME	NT:		FEET			SLOTTED (OID)	
MATERIALS USE					=	inch SCREEN 28 to 38 feet	
21/2 SACKS	080995 6 0F Morie 261	OONWE	media.			2 INCH DIAMETER	
	OF					SCHEDULE 40 AVC 55. BLANK SILT TRAP	
	NS OF GROUT USE		CEM ENT		1	38 10 40 ices	
	OF POWDERED BE		•	'		BOTTOM WELL CAP	
25 POUND	S OF BENTONITE P	ELLETC II	h., c. k. a. d.	L		40 teet	
30 FEET O	F. 2 INCH PVC	HANK CASING	wysth. cut off			HOLE JLEANED OUT TO	
10 FEET OF	F 2 INCH PUÉS	i otten scare	w/sir. aug ar-	٠ ـــــ		BOTTCH OF BOREHOLE	
3 PT 0	fainch!	5.5.5iH	trap			40 Ist	
YARO3	CEMENT-SAND (RE	DI-MIX) ORDERI	: 0	NOT	TO 5	CALE	
YARD ³ CEMENT-SAND (REDI-MIXI USED				ADI	ADDITIONAL INFORMATION		
ONCRETE PUMPER USED? ONO OYES					lated sand = 6.86 Sacks		
		, -				lated growt=137-ga	
ELL COVER USED:	LOCKING STEE	L COVER	— -				
OCHRISTY BOX					(Calculations based on		
borehole to dao'				12 inch borholew 13 inch casine + 810 morehole w/ 2 inch casin -			
CONTRACT TO	1 50,0				- "	ior engine	

SURVDATA.XLS

SAMPLE LOCATION/ELEVATION EAKER AIR FORCE BASE, ARKANSAS

Sample	Ecvation	Ground	Coor	Coordinates				
Point	TOC	Elevation	Northing	Easting	Site			
TW1102	249.52		599301.20	2604930.49	BX			
TW1103	249.99	1	599245.87	2605004.10	BX			
MW1104	251.48	1	599380.79	2605116.02	BX			
TW1105	251.14		599340.38	2604984_22	BX			
TW1106	250.98		599356.10	2604925.65	BX			
TW1107	251.31		599377.34	2605044.84	BX			
TW1108	250.75	1	599297.47	2605018.95	BX			
TW1 109	250.89		599269.70	2605047.84	BX			
MW1110	251.23		599285.35	2605052.46	BX			
MW1111	251.32		599445.92	2605047.22	BX			
TW1112	250.86		599348.57	2605017.22	BX			
TW1113	252.01		599449.00	2604918.04	BX			
MW1114	251.64		599513.89	2604985.04	BX			
MW1115	250.37		599355.32	2604845,78	BX			
MW1116	250.62		599187.31	2604940.79	BX			
TW1117	250.83		599261.14	2605070.50	BX			
TWIII8	250.42		599233.00	2605100.52	BX			
MW1119	249.75		599198.81	2605113.49	BX			
MW1120	251.73	•	599447.41	2604838.18	BX			
MW1121	253.16	250.97	599307.09	2605212.18	BX			
MW1122	253.02	250.68	599428.98	2605029.14	BX			
MW1123	253.56	251.13	599426.94	2604884.90	вх			
MW1124	253.58	251.93	599440.75	2604894.57	BX			
MW1 125	253.48	210.58	599527. 42	2604778,84	BX			
MW1126	253.70	250.71	599313.88	2605207.14	BX			
MW1127	250.56	250.76	599181-58	2604946.87	BX			
MW1128	STIL	- Rema	112 F BT	よんべとりをか	BX			
CP03		251.12	599361.54	2604978.20	BX			
CP19					BX			
CP22		-			BX			
CP26		251.12	599356.27	2604925.70	BX			
Bi		252,18	599316.58	2605029.03	BX			
B2		251.96	599388.57	2605019.62	BX			
B3		251.85	599388.65	2605008.02	BX			
B4		251.75	599381.05	2604999.58	BX			
B5		251.64	599373.17	2604995.29	BX			
B 6		251.77	599350.54	2604998.47	BX			
B 7		250.97	599348.42	2605017.32	BX			
88		250.98	599340. 55	2605031.63	BX			
Bŷ		251.12	599347.35	2605041.38	BX			
B10		251.23	599354.04	2605048.24	BX			
BII		251.26	599361.16	2605055,91	BX			
B12		251.56	599376.42	2605049.23	BX			
B13		252.50	599393.30	2605039.89	BX			

CPT/LIF OUTPUT

BX SHOPPETTE

Source: USACE 1995, 1996

<NEW> 26.50 AFB Probe Depth; Eaker Project;

U.S.Army Engineer District Ransas City Geotechnical Branch

Probing date: 03-24-1995

Laser induced fluorescence of POL via fiber optics

01EAK01 Site Characterization and Analysis Penetrometer System

fluorescence of POL via fiber optics

U.S.Army Engineer District Answas City Geotechnical Branch

Probing date: 03-24-1995

26.45 Probe Depth;

Site Characterization and Analysis Penetrometer System CPT:

2EAK01

26.59 Eaker AFB Probe Depth; Project;

, 03-24-1995

Prob

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via

Characterization and Analysis Penetrometer System CPT, 4E

Eaker AFB 26.61 Probe Depth; Project;

Characterization CPT; 5EAK01

U.S.Army Engineer District Kansas City Geotechnical Branch

Probling date; 03-24-1995

Laser induced
fluorescence
of POL via

;

26.50 Eaker AFB Probe Depth; Project;

Site Characterization and Analysis Penetrometer System CPT; 6E

U.S.Army Engineer District Annsas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

26.55 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Ransas City Geotechnical Branch

Probing date; 03-24-1995

Laser induced fluorescence of POL via fiber optics

Characterization CPT; 7EAK01

Eaker AFB 26.60 Probe Depth; Project;

e: 03-24-1995

U.S.Army Engineer District Ransas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

Site Characterization CPT; 8EAK01 penetrometer System CPT; 8EAK01

U.S.Army Engineer District Ransas City Geotechnical Branch

Probing date: 03-24-1995

Laser induced
fluorescence
of POL via
fluor optics

26.52 Eaker AFB Probe Depth; Project;

Characterization and Analysis and Analysis System CPT; 9EAK01

Eaker AFB 26.55 Probe Depth; Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fluor optics

e; 03-25-1995

Characterization CPT; 10EAK01 penetrometer System CPT; 10EAK01

26.62 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Annsas City Geotechnical Branch

Probing date: 03-25-1995

Laser induced fluorescence of POL via fiber optics

Characterization CPT; 11EAK01 penetrometer System CPT; 11EAK01

26.49 Project; Eaker AFB Probe Depth;

U.S.Army Engineer District Annsas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

Ç.;

Characterization and Analysis and Analysis Penetrometer System CPT; 125 KO1

Eaker AFB 17.04 Probe Depth; Project;

Characterization CPT; 14EAKO1

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

e; 03-25-1995

20.12 Eaker AFB Probe Depth; Project;

Characterization and Analysis Penetrometer System CPT; 15EAK01

Probing date; 03-25-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

20.05 Project; Eaker AFB Probe Depth;

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced fluorescence of POL via floer optics

Characterization CPT; 16-4 KO1

e; 03-25-1995

Project; Eaker AFB 20.03 Probe Depth;

Characterization CPT; 17EAK01 penetrometer System CPT; 17EAK01

Probing date; 03-25-1995

Laser induced
fluorescence
of POL via

U.S.Army Engineer District Kansas City Geotechnical Branch

20.09 Eaker AFB Probe Depth; Project;

9; 03-25-1995

Prob

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

Characterization CPT; 18EAK01

20.12 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Sansas City Geotechnical Branch

Probling date: 03-25-1995

Laser induced fluorescence of POL via fiber optics

Site Characterization and Analysis Penetrometer System

19EAK01

AFB 19.97 Eaker Probe Depth; Project;

Prob

e; 03-25-1995

U.S.Army Engineer District Kansas City Geotechnical Branch Laser induced
fluorescence
of POL via
fiber optics

Site Characterization CPT; 20EAK01 Penetrometer System CPT; 20EAK01

Project; Eaker AFB 19.93 Probe Depth;

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date: 03-25-1995

Laser induced fluorescence of POL via fiber optics

Characterization CPT; 21EAK01 penetrometer System CPT; 21EAK01

26.46 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

Characterization CPT; 22EAK01

e; 03-25-1995

Prob

23.07 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 03-25-1995

Laser induced
fluorescence
of POL via
fiber optics

<u>.</u>

Characterization CPT; 23EAK01 Penetrometer System

Project; Eaker AFB 19.69 Probe Depth;

U.S.Army Engineer District Ransas City Geotechnical Branch

e; 03-25-1995

Prob

Laser induced
fluorescence
of POL via
fiber optics

Site Characterization and Analysis Penetrometer System

24 401

16.65 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Ransas City Geotechnical Branch

Probing date; 03-25-1995

Laser induced
fluorescence
of POL via
fiber optics

Site Characterization and Analysis PT; 25EAK01

23.40 Project; Eaker AFB Probe Depth;

Characterization Characterization and Analysis Penetrometer System CPT; 26

: 03-25-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced fluorescence of POL via fiber optics

23.18 Eaker AFB Probe Depth; Project;

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date; 03-25-1995

Laser induced
fluorescence
of POL via
fluor optics

Site Characterization and Analysis and Analysis Penetrometer System CPT; 27EAK01

20.05 Project; Eaker AFB Probe Depth;

U.S.Army Engineer Diskrict Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

Characterization CPT; 285 KO1

e; 03-25-1995

Eaker AFB 19.91 Probe Depth; Project;

U.S.Army Engineer District Ransas City Geotechnical Branch

Probing date: 03-25-1995

Laser induced fluorescence of POL via fiber optics

Characterization CPT; 29EAK01

19.76 Project; Eaker AFB Probe Depth;

Site Characterization and Analysis Penetrometer System CPT; 305/K01

(e; 03-25-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

20.12 Eaker AFB Probe Depth; Project;

Site Characterization CPT; 31EAK01 Penetrometer System CPT; 31EAK01

Probing date; 03-25-1995

U.S.Army Engineer District Kansas City Geotechnical Branch

Laser induced
fluorescence
of POL via
fiber optics

Laser induced
fluorescence
of POL via
fiber optics

øject;

AFB visit Eaker

Probe Depth; 27 Pre-Push Depth; Characterization and Analysis Penetrometer System CP1

ate; 03-26-1996 Probj

U.S.Army Engineer District Kansas City Geotechnical Branch

27.70 th: 0

<NEW>

7195,0

Site
Characterization
and Analysis
Penetrometer System
CPT.

visit AFB Eaker Project;

Probe Depth; 32.33 Pre-Push Depth; 0 8E51

Ite: 03-26-1996 Probi

U.S.Army Engineer District Kansas City Geotechnical Branch

Eaker AFB visit Probe Depth; 29 Pre-Push Depth; Project;

Site
Characterization
and Analysis
Penetrometer System

29.44 th: 0

Probe Depth; 32 Pre-Push Depth; Site Characterization and Analysis Penetrometer System

0

e; 03-27-1996

Prob

U.S.Army Engineer District Kansas City Geotechnical Branch

165

Probe Depth; 29.80 Pre-Push Depth; 0 visit AFB Eaker Project;

Site
Characterization
and Analysis
Penetrometer System

Probing date; 03-27-1996

Laser induced fluorescence of POL via fiber optics

U.S.Army Engineer District Ransas City Geotechnical Branch

U.S.Army Engineer District Kansas City Geotechnical Branch

7: 03-27-1996

Probi

Laser induced
fluorescence
of POL via
fiber optics

AFB visit Probe Depth; 29 Pre-Push Depth; Eaker Project;

Site
Characterization
and Analysis
Penetrometer System
CPT:

29.80 th; 0

13.49 h; 0 Eaker AFB visit Probe Depth; 13 Pre-Push Depth; Project;

Site Characterization and Analysis Penetrometer System CPT;

Probing date; 03-27-1996

U.S.Army Engineer District Kansas City Geotechnical Branch

Probe Depth; 13.49 Pre-Push Depth; 0 Eaker AFB visit Site
Characterization
and Analysis
Penetrometer System
CPT: Project;

r+e; 03-27-1996

U.S.Army Engineer District Kansas City Geotechnical Branch

Probe Depth; 29.89 Pre-Push Depth; 0 visit AFB Eaker Project;

Site Characterization and Analysis Penetrometer System CPT

19ESLF

U.S.Army Engineer District Kansas City Geotechnical Branch

Probing date: 03-27-1996

Laser induced
fluorescence
of POL via
fluor optics

Laser induced fluorescence of POL via fiber optics

Project;

Probe Depth; 29.40 Pre-Push Depth; 0 Eaker AFB visit

4

Site
Characterization
and Analysis
Penetrometer System

Probi

U.S.Army Engineer District Ransas City Geotechnical Branch

U.S.Army Engineer District Sansas City Geotechnical Branch

Probing date; 03-28-1996

Laser induced fluorescence of POL via fiber optics

Eaker Project;

Probe Depth; 29 Pre-Push Depth; Site Characterization and Analysis Penetrometer System

29.70 .h. 0

visit

AFB

21ESLF

WHITE LAND SURVEYING

Tim White, RLS AR-MO 3790 North Co. Road #667 Blytheville, AR 72315 (501) 762-5645 1-800-474-0105

TODD HERRINGTON
PARSONS ENGINEERING SCIENCE, INC.
1700 BROADWAY, SUITE 900
DENVER, CO 80290

Dear Todd:

I have enclosed, along with your map, a diskette which can be used with your company's AutoCAD system. The DXF and ASCII files consist of coordinates and elevations of all surveyed points, and the DWG file is the plan view, which is also enclosed.

Thanks for the opportunity of working with you and your company. If you should have any questions, please feel free to call.

Sincerely, Sim (white 4/3/96

Tim White, RLS1241

SURVEY LOCATIONS (MONITORING WELLS, ETC.) AT THE BX SERVICE STATION, EAKER AIR FORCE BASE, BLYTHEVILLE, ARKANSAS.

Surveyed & prepared by: White Land Surveying

Blytheville, AR (501) 762-5645 1-800-474-0105

For: Parsons Engineering Science, Inc.

Denver, CO

HORIZONTAL DATUM = NAD27

VERTICAL DATUM = NAVD88

TATE OF

PT.#	NORTHING	EASTING	ELEV.	DESCRIPTION
1-	599296.31	2604671.34	248.74	MON. "FOURTH MSL"
2-	598983.47	2605707.85	0.00	MON. "COMBAT"
3-	599527.42	2604778.67	252.64	TW1125, TOC
4-	599526.41	2604780.50	249.57	TW1125, GROUND
- 5-	599416.63	2604766.40	242.89	BANK, NE/SW DITCH
6-	599417.72	2604764.94	242.96	TOP OF WATER, SAME
7-	599418.00	2604762.27	241.66	BOTTOM OF DITCH, SAME
, 8-	599531.66	2604702.27	242.86	BANK, NE/SW DITCH
9-	599533.45	2604836.59	242.92	TOP OF WATER, SAME
10-	599534.39	2604835.26	241.59	BOTTOM OF DITCH, SAME
11-	599659.64	2604910.06	242.71	CCC, TOP OF BANK
12-	599661.89	2604908.19	242.92	CCC, TOP OF WATER
13-	599661.32	2604902.68	242.14	CCC, BOTTOM OF DITCH
14-	599522.92	2604911.06	250.70	ESSB-25, GROUND
15-	•	2604838.22	250.70	TW1120, TOC
16-	599447.21	2604838.92	250.70	TW1120, TOC TW1120, GROUND
10-	599335.66	2604815.53	249.51	ESS18, GROUND
	599334.85	2604814.31	249.58	18ESLF, GROUND
19-	599355.32	2604845.79	249.35	TW1115, TOC
20-	599355.22	2604846.14	249.53	TW1115, TOC TW1115, GROUND
21-	599335.22	2604884.87	252.72	TW1123, TOC
22-	599425.34	2604886.19	250.33	TW1123, TOC TW1123, GROUND
23-	599440.61	2604894.42	253.13	TW1123, GROUND TW1124, TOC
23- 24-	599438.98	2604895.62	250.53	TW1124, TOC TW1124, GROUND
25-	599513.94	2604995.04	250.62	TW1124, GROUND TW1114, TOC
26-	599513.41	2604985.35	250.80	TW1114, TOC TW1114, GROUND
20- 27-	599488.96	2605029.03	252.19	TW1114, GROUND TW1122, TOC
28-	599487.43	2605029.03	249.70	•
	599457.43	2605056.64	250.25	TW1122, GROUND 16ESLF, GROUND
	599446.02	2605036.64	250.25	
	599446.51	2605047.07		TW1111, TOC
	599432.75			TW1111, GROUND
	599436.22			17ESLF, GROUND
	599430.72		250.48	15ESLF, GROUND
	599410.72		250.46	TW1101, TOC
		2604969.66		TW1101, GROUND
36- 37-	599388.01	2604999.77	250.63	ESSB-24, GROUND
37- 38-	599382.70	2604982.96	250.41	14ESLF, GROUND
30- 39-	599377.99	2604957.36	250.42	J SAMPLE, GROUND
39- 40-	599356.27	2604925.71	249.92	TW1106, TOC
	599355.80	2604925.84	250.12	TW1106, GROUND
41-	599348.97	2604940.56	249.74	12ESLF, GROUND
	599301.35	2604930.41	248.47	TW1102, TOC
	599301.67	2604930.42	248.67	TW1102, GROUND
1 4-	599337.51	2604974.83	249.97	ESMP-23, GROUND
45-	599340.74	2604974.68	249.85	23ESLF, GROUND
46-	599344.85	2604981,22	250.13	ESSB-29, GROUND
47-	599343.28	2604981.44	250.15	13ESLF, GROUND

48-	599340.65	2604984.33	250.12	TW1105, TOC
				•
49-	599341.07	2604984.19	250.31	TW1105, GROUND
50-	599318.25	2605021.07	249.67	10ESLF, GROUND
51-	599319.43	2604996.46	249.12	CPT-22, TOC
52-	599319.72	2604996.18	249.34	CPT-22, GROUND
53-	599293.75	2605004.39	249.18	TW1108, TOC
54-	599294.23	2605004.31	249.53	TW1108, GROUND
55-	599301.66	2605020.00	249.65	ESSB-27, GROUND
56-	599350.84	2605059.69	250.06	ESSB-28, GROUND
57-	599343.01	2605061.21	250.11	MW1128, TOC
5 <i>8</i> -	599343.68	2605060.99	250.35	MW1128, GROUND
				22ESFL/ESSB22, GND
59-	599395.89	2605069.31	250.70	•
60-	599381.05	2605116.10	250.45	MW1104, TOC
61-	599381.60	2605115.99	250.63	MW1104, GROUND
62-	599398.85	2605116.62	251.21	ESMP-19S, TOC
63-	599399.75		251.19	ESMP-19S, GROUND
		2604978.97	248.81	11ESLF, GROUND
64-	599298.78			•
65-	599284.05	2605003.11	249.43	ESSB-26, GROUND
66-	599269.94	2605047.82	249.84	TW1109, TOC
67-	599270.28	2605047.60	250.03	TW1109, GROUND
68-	599285.49	2605062.49	250.21	TW1110, TOC
69-	599285.11	2605062.44	250.35	TW1110, GROUND
70-	599361.75	2605095.14	250.32	BX BLDG. CORNER
71-	599319.60	2605054.39	251.02	BX BLDG. CORNER
72-	599302.75	2605071.80	251.03	BX BLDG. CORNER
		2605123.63	250.21	BX BLDG. CORNER
73-	599257.68			
74-	599301.37	2605069.68	250.98	COR. OF CANOPY
75-	599319.12	2605051.35	250.95	COR. OF CANOPY
76-	599262.99	2604997.12	249.53	COR. OF CANOPY
77-	599245.16	2605015.72	249.53	COR. OF CANOPY
78-	599114.23	2605089.37	248.95	C/L 3RD, C/L AR AVE.
			248.30	C/L 3RD, P.C.
79-	599208.21	2604990.65		
80-	599263.26	2604912.89	247.86	C/L 3RD, P.O.C.
81-	599273.71	2604860.25	247.81	C/L 3RD, P.T.
82-	599272.77	2604708.60	248.49	C/L 3RD @ DITCH
83-	599182.29	2604946.92	249.72	MW1127, TOC
	599182.92	2604947.40	249.90	MW1127, GROUND
84-				
85-	599187.57	2604940.78	249.55	MW1116, TOC
86-	599188.13	2604941.16	249.89	MW1116, GROUND
87-	599177.18	2605359.51	248.72	TURNING POINT
88-	599198.74	2605113.41	248.64	MW1119, TOC
89-	599198.43	2605113.32	248.86	MW1119, GROUND
90-	599123.74	2605141.50	249.27	ESMP-7S, TOC
91-	599124.54	2605141.16	249.26	ESMP-7S, GROUND
92-	599202.63	2605253.95	249.35	ESMP-6D, TOC
93-	599203.68	2605253.10	249.55	ESMP-6D/6S, GROUND
94-	599204.77	2605252.01	249.41	ESMP-6S, TOC
95-	599231.25	2605347.22	242.94	DDD, BANK
96-	599232.26	2605348.06	242.79	DDD, TOP OF WATER
97-	599233.72	2605349.21	241.79	DDD, BOTTOM OF DITCH
98-	599313.82	2605207.19	252.80	MW1126, TOC
99-	599315.66	2605208.02	250.01	MW1126, GROUND
100-	599307.39	2605212.01	252.24	MW1121, TOC
101-	599309.53	2605213.40	249.86	MW1121, GROUND
102-	599298.62	2605162.27	248.97	ESMP-20S, GROUND
103-	599303.75	2605161.74	249.02	20ESLF, GROUND
104-	599320.02	2605155.91	249.43	21ESLF, GROUND
105-	599416.04	2605153.91	243.01	BBB, BANK
106-	599418.31	2605154.06	242.82	BBB, TOP OF WATER
107-	599419.43	2605155.65	242.06	BBB, BOTTOM OF DITCH
108-	599317.42	2605140.95	250.09	BX BLDG. CORNER
109-	599299.99	2605124.31	250.96	BX BLDG. CORNER
110-	599279.69	2605144.83	251.01	BX BLDG. CORNER
•	2222.3.03		, _ · · · _	

111-	599433.23	2605219.08	251.62	ESMP-2S, TOC
112-	599432.28	2605219.72	251.65	ESMP-2D, TOC
113-	599431.45	2605220.95	251.47	ESMP-2S/2D, GROUND
114-	599543.34	2605194.96	252.04	ESMP-4S, TOC
115-	599542.74	2605194.32	252.08	ESMP-4S, GROUND
116-	599538.88	2605107.12	251.36	ESMP-3S, TOC
117-	599538.36	2605106.40	251.56	ESMP-3S, GROUND
8-	599471.44	2605273.69	251.22	ESMP-5S, TOC
-	599471.77	2605274.63	251.25	ESMP-5S, GROUND
0-	599418.91	2605339.00	248.83	ESMP-9S, TOC
121-	599419.29	2605339.90	248.94	ESMP-9S, GROUND
122-	599238.12	2605417.29	251.41	ESMP-8S, TOC
123-	599239.08	2605416.65	251.48	ESMP-8S GROUND

.

.

APPENDIX B PREVIOUS ANALYTICAL AND UNPUBLISHED DATA

APPENDIX B SUMMARY OF PREVIOUS SOIL ANALYTICAL DATA BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

						Total	Total	
		Depth	Benzene	Toluene	Ethylbenzne	Xylenes	BTEX	TPH
Borehole ID	Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-1	2/91	5-10°	6.2	47	14	80	147.2	322
		15	2.4	8.2	4.5	17	32.1	176
B-2	2/91	5-10	2.3	24	7.7	40	74	248
		15	3.1	8.6	0.3	2.1	14.1	478
B-3	2/91	5-10	14	250	62	300	626	338
	•	15	3.6	16	1.8	9.8	31.2	176
B-4	2/91	5-10	ND_{P}	22	3.7	14	39.7	484
		15	ND.	ND	ND	ND	ND	477
B-5	2/91	5-10	15	130	22	90	257	559
		15	2.4	15	3.9	16	37.3	351
B-6	2/91	5-10	1.5	18	2.5	14	36	218
		15	1.6	6.2	1	4.6	13.4	147
B-7	2/91	5-10	3.8	44	7.3	44	99.1	212
		15	1.1	0.9	0.2	0.1	2.3	247
B-8	2/91	5-10	5	27	7	39	78	157
		15	ND	ND	ND	ND	ND	163
B-9	2/91	5-10	7.6	43	16	88	154.6	136
•		15	1.6	1.4	0.2	0.5	3.7	179
B-10	2/91	5-10	11	72	20	110	213	152
		15	ND	ND	ND	ND	ND	203
B-11	2/91	5-10	3.2	15	2.8	14	35	234
		15	1.9	5.2	0.6	2.2	9.9	240
B-12	2/91	5-10	6.3	35	8.2	44	93.5	207
		15	1.6	5.2	0.5	2.4	9.7	210
B-13	6/91	5-10	5.3	24	6.8	33	69.1	<30
		15	0.7	1.1	ND	0.4	2.2	<30
		20	0.8	1.2	0.2	0.8	3	<30
B-15	6/91	5-10	5.1	4.2	9.4	73	91.7	46
		15	7.9	30	6.1	27	71	<30
		20	3.7	16	4.5	24	48.2	35
B-16	6/91	5-10	9	37	11	46	103	<30
		15	ND	ND	ND	ND	ND	<30
		20	ND	ND	ND	0.5	0.5	<30
B-17	6/91	5-10	2.3	13	4.3	26	45.6	<30
B-18	6/91	5-10	7.2	20	3.7	22	52.9	<30
		15	6.2	19	5.2	24	54.4	<30
B-19	6/91	5-10	0.5	3	5.4	19	27.9	<30
		15	0.6	1.8	ND	0.7	3.1	<30
•		20	0.7	1.9	0.3	0.8	3.7	<30

APPENDIX B SUMMARY OF PREVIOUS SOIL ANALYTICAL DATA (CONCLUDED) BX SHOPPETTE (SITE E11)

DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

						Total	Total	
		Depth	Benzene	Toluene	Ethylbenzne	Xylenes	BTEX	TPH
Borehole ID	Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-20	6/91	5-10	3.3	26	ND	26	55.3	<30
2 2		15	37	280	68	400	785	<30
		20	14	130	31	160	335	<30
B-21	6/91	5-10	18	84	15	100	217	30
~	2	15	13	54	18	83	168	64
		20	8.4	22	4.7	27	62.1	<30
B-22	6/91	5-10	5.3	32	7.5	44	88.8	<30
	5.7 -	15	15	65	10	51	141	<30
B-23	6/91	5-10	1	17	7.1	28	53.1	<30
2 20	0.7.2	15	0.6	2	1.9	7.8	12.3	<30
B-24	6/91	5-10	1.3	17	11	29	58.3	<30
D. Z.	0,71	15	0.2	2.3	1.6	7.1	11.2	<30
		20	0.2	0.6	0.2	0.9	1.9	<30
B-25	6/91	5-10	4.4	28	7.9	44	84.3	<30
D-2J	0/71	15	0.2	0.8	0.1	0.8	1.9	<30
B-27	6/91	5-10	2.4	23	9.2	36	70.6	<30
D-27	0/21	15	1.1	10	1.6	15	27.7	<30
TW1103	12/11/95	3	< 1	< 1	< 1	3	3	<20
1 ₩ 1103	12/11/75	10	<1	< 1	< 1	< 1	< 1	<20
		22	ND	< 1	< 1	< 1	< 1	<20
TW1108	12/14/95	5	< 1	< 1	< 1	3	3	<20
1100		17	< 1	< 1	1	4	5 .	<20
		21	< 1	< 1	< 1	< 1	< 1	<20
TW1109	12/14/95	6	5	17	. 17	78	123	172
		10	< 1	< 1	< 1	< 1	< 1	<20
		18	< 1	< 1	< 1	< 1	< 1	<20
TW1110	12/14/95	6-7	2	58	19	93	172	23
		8.5	1	19	< 1	51	7 1	<20
		16.5	< 1	3	< 1	3	6	<20
MW1121A	4/8/95	NA°	ND	ND	ND	ND	ND	ND
MW1122A	4/7/95	NA	< 1	< 1	ND	ND	< 1	ND
MW1123A	8/11/95	NA	ND	ND	ND	ND	ND	ND
SB1129A	4/6/95	NA	ND	ND	ND	ND	ND	ND
SB1130A	4/6/95	NA	ND	ND	ND	ND	ND	ND
SB1131A	4/7/95	NA	< 1	<1	ND	ND	< 1	ND
SB1132A	4/9/95	NA	ND	ND	ND	ND	ND	ND
SB1133A	4/7/95	NA	· ND	ND	ND	ND	ND	ND
SB1134A	4/8/95	NA	ND	ND	ND	ND	ND	ND
SB1135A	4/7/95	NA	0.9	2.7	1.1	5.4	10.1	38
SB1135B	4/7/95	NA	6.1	27	15	74	122.1	57 0

^{a'} 5-10 foot samples were composited at 5 and 10 feet.

Sources: Halliburton NUS, 1992 and 1995.

b/ ND = not detected.

c/ NA = data not available.

DATE: 12/04/95

PAGE: 1

Brown & Root Environmental 800 Oak Ridge Turnpike Suite A-600

Oak Ridge, TN 37830

PACE Project Number: 607292 Client Project ID: Eaker AFB - 0114 SDG Number: BR7292

Attn: Mr. Mike Albert Phone: 615-483-9900

PACE Sample No: 6054	4772		Date Colle	cted: 1	1/08/95			
Client Sample ID: E11-	GW-MW1125		Date Rece	ived: 1	1/09/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnot

Wet Chemistry								
Nitrogen, Nitrite				,				
Nitrogen, Nitrite	0.02	mg/L	0.01	11/10/95	EPA 354.1	WOC		
Nitrogen, Nitrate	ND	mg/L	0.01	11/10/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO3,	Water ND	mg/L	0.01		EPA 354.1	WOC		
Chloride(AutoFerricyanide	•)			*				
Chloride	3	mg/L	1	11/21/95	EPA 325.2	MOC		
Total Dissolved Solids								
Total Dissolved Solids	244	mg/L	5	11/14/95	EPA 160.1	MJW		
Total Suspended Solids		U.	_					
Total Suspended Solids	ND	mg/L	5	11/14/95	EPA 160.2	MJW		
Fluoride					2			
Fluoride	0.4	mg/L	0.1	11/30/95	EPA 340.2	GMF	16984-48-8	
fate, Total				,,	2		10704 40 0	
ulfate, Total	. 20	mg/L	1	11/22/95	EPA 375.3	WOC		
-nosphorus, Total			•	**, ==, **		200		
Phosphorus	ND	mg/L	0.05	11/28/95	EPA 365.2	MJW	7723-14-0	
Alkalinity, Total				,,			1165 14 0	
Alkalinity, Total	190	mg/L	1	11/20/95	EPA 310.1	WOC		
Bromide			•	,,	2.7. 2.001	400		
Bromide	ND	mg/L	0.5	11/30/95	EPA 300	WOC		
GC Volatiles				,,	2771 200	400		
TPH, Water, Purge by Mod.	8015							
Total Petroleum Hydroca		mg/L	0.5	11/13/05	EPA Mod 8015 pur	BDT		
a,a,a-Trifluorotoluene		x	•••	11/13/95		BDT	2164-17-2	
Aromatic Volatile Organic		•		11, 13, 73	erk hod do is par	BUI	2104-17-2	
Benzene	40	ug/L	2	11/13/95	EPA 8020	BDT	71-43-2	
Ethyl Benzene	ND	ug/L	2 -	11/13/95		BDT	100-41-4	
Toluene	ND	ug/L	2	11/13/95	EPA 8020	BDT		
Xylene (Total)	ND	ug/L	5	11/13/95	EPA 8020		108-88-3	
a,a,a-Trifluorotoluene		₩ %	,			8DT	1330-20-7	
a,a,a-ii ii tuoi ototuene	(3) 70	^		11/13/95	EPA 8020	BDT	2164-17-2	

DATE: 12/04/95 PAGE: 2

PACE Project Number: 607292 Client Project ID: Eaker AFB - 0114

PACE Sample No: 60544780 Client Sample ID: E11-GW-MW1	126		Date Collect Date Recei		/08/95 /09/95			.
Parameters	Results	Units	PRL	Analyzed	Method	Analyst	CAS#	Foo
- Wet Chemistry								
Nitrogen, Nitrite				44 440 105	FD4 75/ 1	WOC		
Nitrogen, Nitrite	0.03	mg/L	0.01	11/10/95	EPA 354.1	WOC		
Nitrogen, Mitrote	0.05	mg/L	0.01	11/10/95	EPA 354.1	WOC		
Nitrogen, Nitrate Nitrogen, NO2 plus NO3, Water		mg/L	0.01	11/10/95	EPA 354.1	MOC		
Nitrogen, NOZ plus NOS, Mate.	••••					WOC		
Chloride(AutoFerricyanide)	5	mg/L	1	11/21/95	EPA 325.2	MOC		
Chloride	,							
Total Dissolved Solids	212	mg/L	5	11/16/95	EPA 160.1	MTM		
Total Dissolved Solids	212	mg/ c	· ·					
Total Suspended Solids			5	11/14/95	EPA 160.2	WLM		
Total Suspended Solids	16	mg/L	,	(1) (4) /2	3.1.			
Fluoride				11/30/05	EPA 340.2	GMF	16984-48-8	
Fluoride	0.2	mg/L	0.1	11/30/73	EFN 34012			
Sulfate, Total			•	* 44 (32 (DE	EPA 375.3	WOC		
Sulfate, Total	29	mg/L	1	11/22/95	EPA 313.3	W		
Phosphorus, Total			_	44 .00 405	ED4 7/5 3	MJW	7723-14-0	
	ND	mg/L	0.05	11/28/95	EPA 365.2	nom	,,,,,	
Phosphorus Total		<u>.</u>				MOC		
Alkalinity, Total	96	mg/L	1	11/20/95	EPA 310.1	WOL		
Alkalinity, Total	,0					1100		
Bromide	ND	mg/L	0.5	11/30/95	EPA 300	WOC		
Bromide	RU							
GC Volatiles								
TPH, Water, Purge by Mod. 8015	MD	mg/L	0.5	11/13/95	EPA Mod 8015 pur	BDT		
Total Petroleum Hydrocarbons	ND	1119/ L %	•••	11/13/95	EPA Mod 8015 pur	BDT	2164-17	
a,a,a-Trifluorotoluene (S)	76	^		***				
Aromatic Volatile Organics			2	11/13/95	EPA 8020	BDT	71-43-2	
Benzene	ND	ug/L	2	11/13/95		BDT	100-41-4	
Ethyl Benzene	ND	ug/L	2	11/13/95		BDT	108-88-3	
Toluene	ND	ug/L	2			BDT	1330-20-7	
Xylene (Total)	ND	ug/L	5	11/13/95		BDT	2164-17-2	
a,a,a-Trifluorotoluene (S)	94	X		11/13/95	EPA 8020	<i>50</i> 1		

DATE: 12/04/95 PAGE: 4

PACE Project Number: 607292 Client Project ID: Eaker AFB - 0114

PACE Sample No: 60546298 Client Sample ID: E11-GW-MW1	127				1/09/95 1/10/95		
Parameters	Results	Units	PRL	Analyzed	Method	Analyst CAS#	Footnot
•					**************	• •••••	•••
Wet Chemistry					•		
Nitrogen, Nitrite							
Nitrogen, Nitrite	0.03	mg/L	0.01	11/10/95	EPA 354.1	WOC	
Nitrogen, Nitrate	ND	mg/L	0.01	11/10/95	EPA 354.1	WOC	
Nitrogen, NO2 plus NO3, Water	ND	mg/L	0.01	11/10/95	EPA 354.1	WOC	
Chloride(AutoFerricyanide)		-					
Chloride	4	mg/L	1	11/21/95	EPA 325.2	MOC	
Total Dissolved Solids			•	,,			
Total Dissolved Solids	272	mg/L	5	11/14/95	EPA 160.1	MJW	
Total Suspended Solids		3/ =	-	11/14/75	C/A 100.1	now.	
Total Suspended Solids	97	mg/L	5	1/11/14/95	EPA 160.2	MJW	
Fluoride	••	g/ L	•	111/ 14/73	LFA 100.2	MAM	
Fluoride	0.3	mg/L	0.1	11/30/95	EPA 340.2	GMF 16984-48	2_0
Sulfate, Total	•••	3/ -	•••	11/30/73	LFR 340.2	UMF 10904-40	0-0
Sulfate, Total	11	mg/L	1	► 11/22/05	EPA 375.3	WOC .	
Phosphorus, Total	• •		•	7 11/22/73	EFR 313.3	WOC .	
Phosphorus	0.76	mg/L	0.05	11/28/05	EPA 365.2	MJW 7723-14-	^
Alkalinity, Total	••••	mg/ E	0.05	11/20/93	EPA 303.2	MUW //23-14-	·U
Alkalinity, Total	210	mg/L	1	11 /20 /05	EPA 310.1	LICC	
Bromide	210	"'d/ L	•	11/20/93	EPA 310.1	MOC	
Bromide	ND	mg/L	0.5	11/30/95	FD4 700		
C Volatiles	NO	11/g/ L	0.5	11/30/93	EPA 300	WOC	
H, Water, Purge by Mod. 8015							
otal Petroleum Hydrocarbons	ND	ma/l	0.5	11/1//05	504 Mad 8045		
a,a,a-Trifluorotoluene (S)	77	mg/L %	0.5		EPA Mod 8015 pur	BDT	_
Aromatic Volatile Organics	**	^		11/16/95	EPA Mod 8015 pur	BDT 2164-17-	2
Benzene	ND	110/1	•	44 /4/ /05	FD4 8030		
Ethyl Benzene	ND	ug/L	2	11/16/95		BDT 71-43-2	
Toluene	ND	ug/L	2	11/16/95		BDT 100-41-4	
Xylene (Total)	ND CK	ug/L	2 5	11/16/95		BDT 108-88-3	
a,a,a-Trifluorotoluene (S)	99	ug/L	2	11/16/95		BDT 1330-20-	•
a,a,a-iiiiituuiututuene (5)	77	*		11/16/95	EPA 8020	BDT 2164-17-	2

a,a,a-Trifluorotoluene (S)

103

DATE: 12/04/95

PAGE: 5

PACE Project Number: 607292 Client Project ID: Eaker AFB - 0114

11/17/95

EPA 8020

BDT

2164-17-2

Rick McComb AFBCA/OL-J Eaker AFB Gosnell, AR 72319-0400

Saskia Hoffer
Parsons Engineering Science
1700 Broadway Ste. #900
Denver, CO 80290

Dear Saskia:

The enclosed information is the UST excavation and sampling information you requested regarding the four UST's removed at the BX Shoppette. If there is anything else you need please contact Jerry Branum, Randall Looney or myself here on base.

Rick McComb

Riche Mc Coul

TABLE 4: UST CONFIRMATORY SAMPLE ANALYTICAL RESULTS

TANK	SAMPLE	DATE		18	SUMMARY OF LABORATORY DATA	ORATORY DAT	V	
<u> </u>	NO.	SAMPLED	VOCs	ТРН	ТРН	RCRA	PESTICIDES	CERMI
				щ	EXTRACTABLE	METALS	PCBs	VOCs
			(ug/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(110/60)
106	OWS-106-1	11/19/95	QN	QN	QN	Selenium - 29	(Syrian)	(Sy/Sp)
160A	NOT SAMPLES	• .	•	•	•		•	
1608	NOT SAMPLED	•	•		•	,	•	
160C	NOT SAMPLED	•		•	•	٠		1
160D	US-160D-1	9/27/95	Methyl Chloride - 6.1	QN	QN	Selenium - 28.9	ON	ND
203	UST-203-1	11/6/95	QN	ND	QN	Silver - 3.77	QN	QN
204	US-204-1	11/14/95	Benzene - 1900 Ethyl Benzene - 540 Xylenes - 540	TPH - 600	Jet Fuel - 800	Selenium - 20.6	PCB - (1254) - 93	Napthalene 4800 2-Methylnapthalene -
	204-B1	11/13/95	QN	QN	QN	NA	NA	1300 NA
	204-B2	11/13/95	Ethyl Benzene - 1000 Toluene - 890 Xylenes - 650	TPH-180	Jet Fuel - 240	NA	NA	NA
	204-B3	11/13/95	QN	QN	QN	NA	NA	NA
	204-B4	11/13/95	Ethyl Benzene - 1100 Toluene - 960 Xylenes - 1000	TPH - 440	Jet Fuel - 1500	NA	NA	NA
	204-B5	11/14/95	Ethyl Benzene - 700 Xylenes - 420	TPH - 150	Jet Fuel - 270	NA	NA	NA
	204-B7	11/14/95	Q	QN	Jet Fuel - 22	NA	NA	NA
214A	US-214A-1	11/6/95	ON	QN	QN	88	QN	QN
2148	US-214B-1	11/10/95	QN	TPH - 6.2	Diesel Fuel - 35	88	QN	Napthalene - 170
Osto Usi	Ust/Ows Removal, Eaker AFB, Blytheville, Arkansas	9. Blytheville, Arkans	sas					Z-Methylnapthalene -

UsI/Ows Kemoval, Eaker AFB, Blytheville, Arkansas

TABLE 6: QUANTITY AND ORIGIN OF UST/OWS PCS PLACED INTO BIOCELLS

Eaker AFB UST & OWS Removal Project - Soil Quantity and Origin Contract No. F41624-94-D-8094 Delivery Order No. 0002

	UST		OWS Existing Biocells			Existing Biocells		
Vessel No.	Quanity Excavated	Biocell	Vessel No.	Quantity Excavated	Biocell	Cell Location	Quantity Transfered	Biocell
160 A	150 CY	вх	106	50 CY	BX	WSA 2	500 CY	вх
160 B	150 CY	вх	214	I5 CY	вх	WSA 5	100 CY	BX
160 C	150 CY	вх	237	IS CY	вх	WSA 7	100 CY	BX
160 D	150 CY	BX	410	15 CY	вх	WSA 8	50 CY	BX
204	400 CY	вх	412	45 CY	вх	WSA 9	150 CY	вх
	10 CY	вх	452	· 40 CY	вх	WSA 11	50 CY	вх
	15 CY	вх	453	40 CY	вх	WSA 12E	50 CY	BX
410 A	550 CY	RV	455 B	250 CY	вх	WSA 12W	50 CY	вх
410 B	550 CY	RV	467	250 CY	. BX	CM 14	200 CY	ВX
410 C	550 CY	RV	468 A	75 CY	вх	FR 15	50 CY	BX
410 D	550 CY	RV	1236	250 CY	вх	FR 16	150 CY	вх
410 E	550 CY	RV	1305	10 CY	вх	RV 19	50 CY	RV
410 F	550 CY	RV	1344	130 CY	вх	RV 20	150 CY	RV
410 G	550 CY	RV						
41011	550 CY	RV						
455	550 CY	RV						
1288	20 CY	вх						
1344 A	175 CY	вх						
1344 B	175 CY	вх						
TOTAL	6345 CY			1185 CY			1650 CY	,

TOTAL SOIL IN NEW CELLS 9180 CY

UNDERGROUND STORAGE TANK CONTENTS SAMPLING CHART

R&R International, Inc. Eaker AFB - 206179.0002

Tank	Date Sampled	Duplicate	Analysis	Date Shipped	Data Recieved
410A	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410B	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410C	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410D	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410E	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410F	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410G	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
410H	7-26-95		a,b,c,d,e,f,g	7-26-95	YES
160A	7-27-95		a,b,c,d,e,f,g	7-27-95	YES
160B	7-27-95		a,b,c,d,e,f,g	7-27-95	YES
160C	7-28-95		a,b,c,d,e,f,g	7-28-95	YES
160D	7-27-95		a,b,c,d,e,f,g	7-27-95	YES
468	7-27-95		a,b,c,d,e,f,g	7-27-95	YES
214	7-27-95		a,b,c,d,e,f,g	7-27-95	YES
1344A	7-30-95	1344B	a,b,c,d,e,f,g	8-1-95	YES
1344C	7-30-95		a,b,c,d,e,f,g	8-1-95	YES
204A	7-30-95	204B	a,b,c,d,e,f,g	8-1-95	YES
455	7-30-95 (-71)		a,b,c,d,e,f,g	8-1-95	YES
203	8-3-95 &		a,b,c,d,e,f,g	8-3-95 &	YES
	8-6-95			8-7- 95	
214B	8-3-95		a,b,c,d,e,f,g	8-3-95	YES
106	not sampled				
412	not sampled				
250	see note				

Notes:

- a = TCLP 8040 VOCs
- b = TCLP 8270 S.VOCs
- c = TCLP 8080 PEST
- d = TCLP 6010/7470 Metals/Mercury
- e = 8080 PCBs
- f = 9045 pH
- g = 1010 Ignitability
- A second tank at Bldg. 214 was located and sampled
- UST 250 does not exist .
- Resampled UST 203 for PCBs (short 1 jar 8-3-95)
- Sample 1344C is UST 1344B as identified on the removal list.
- 21 total underground storage tanks sampled
- USTs 106 and 412 were not sampled because they were located inside of OWSs 106 and 412 which were sampled

					Contract No. F. Table 1.0 - Rest	Eaker AFB 41624-94-D-86 ilts of UST Co	Eaker AFB Contract No. F41624-94-D-8094 D.O. #0002 Table 1.0 - Results of UST Content Sampling			
Taile	Sample No.	Date	Capacity	Estiminied			Summa	Summary of Lahoratory Dald		
		113111111111111111111111111111111111111	E SG	X OIR DE	RGRA Netals (ug/l)	Wet Chemistry	Pesticides (mg/l)	(//Ån) - \$20A	Semila Voces (ug/)	PCB) (ug/l)
1601	160A-TP-1	56/12/1	10,000	<1/8		FP 15°C pl17.75	(1)			
16013	160B-TP-1	26/12/1	000'01	8/I>		FP 18°C pH 6.57	(2)			
160C	160C-TP-1		6,000	almost empty	Ba-522 Se-179	FP >94°C p11 5.86	QN	2-Butanone - 7500 Benzene - 2100	2-Methyphenol - 1300 3-Methyphenol - 660 4-Methyphenol ⁽³⁾	GN.
Clos	1-d.1-(1091		200	WI>	Ba-188 Cd-29.6 Pb-61.7	FP >94°C p116.52	GN	Benzene - 2800	3-Methyphenol - 300 4-Methyphenol ⁽³⁾	GN
20:4	204A-TP-1	7/30/95	25,000	Full	Нg 0.00341 mg/l Вв-177	FP >94°C p117.64	ON ON	CIN	CIN	Arochlor 1254 - 41
204	204B-TP-1 Duplicate	7/30/95	VW	N/A	Ba-193	FP >94°C pH 7.8	ND	GN	QN	Arochlor 1254 - 43
214	214-TP-1	2 <i>0121</i> 7	550	3/4	Ba-813 Cd-115 Cr-7.7 Pb-210	FP 46.1 p116.73	<u>C</u> Z	Benzene - 80	l lexachloroethane-230	CZ
220 220			3,000		Note: This was	removed under	Note: This was removed under a previous contract.	;		
,										

160 4 - USTs (A,B,C &D)

Appendix V - Site Specific Information

- Site Summary
- ADPC&E 30 Day Notification Letter
- Excavation Permit
- Closure Report
 - Site Maps
 - Analytical Reports
- Certificate of Tank Disposal
- ADPC&E Closure Letter

SITE SUMMARY

Site Number

Date UST(s) Pumped

Date UST(s) Removed

Construction of UST(s)

Actual UST Size

Type of Contents

Amount of Contents Removed

Concrete Anchor Slab Removed (Yes/No)

Amount of Contaminated Soil Removed

Confirmatory Soil Sample Number(s)

Sample Date(s)

Analytical Results (ppm):

TEPH

Total BTEX

Date Backfilled

Type of Restoration (Seed/Concrete/Asphalt)

Date UST(s) Pumped

Location of UST Disposal

ADPC&E Closure Letter (Date)

160

A,B, & C - 9/21/95

D - 9/25/95

9/21/95 to 9/25/95

A,B&C - Steel

D-RFP

A&B - 10,000 gallon

C - 6,000 gallon

D - 550 gallon

A,B,C - Gasoline

D - Waste Motor Oil

A,B,&C - 90 gallons

D - 250 gallons

Yes (all)

A,B,&C - 600 Cubic

Yards

D-No

A,B,& C - Not Sampled

D - US-160D-1

9/27/95

ND

ND

10/12/95

A,B,&C - None

D - Concrete

A,B,& C - 9/21/95

D - 9/25/95

A,B,&C - Goolsby

Scrap Facility

D - Mississippi County

Landfill

Under Review

FOR STATE USE ONLY:	
ARK. UST ID#	
DATE RECEIVED	
REFERRAL	

STATE OF ARKANSAS 30-DAY NOTICE FOR UST PERMANENT CLOSURE (40 CFR PART 280.71)

RETURN TO:

ARKANSAS DEPARTMENT OF POLLUTION CONTROL AND ECOLOGY REGULATED STORAGE TANK DIVISION P. O. BOX 8913, LITTLE ROCK, AR 72219-8913 TELEPHONE NO. (501)562-6533

YOU MUST COMPLETE AND RETURN THIS FORM 30 DAYS PRIOR TO CLOSURE

1. OWNERSHIP OF UST SYSTEM	2. LOCATION OF TANK(S) IF SAME AS SECTION 1, CHECK HERE
OWNER'S NAME	FACILITY NAME
U.S. Air Force, Eaker Air Force Base	Eaker Air Force Base
STREET ADDRESS	STREET ADDRESS
AFBCA/OL-J P.O. Box 9400	Building 160
GOSNEll, Arkansas 72319-0400	CITY. STATE, ZIP Eaker AFB, Arkansas, 72317-5000
CONTACT PERSON, TITLE	CONTACT PERSON, TITLE
Thomas Zachary, Environmental Engineer	Thomas Zachary, Environmental Engineer

-(160A, 160B, 160C (1 pit), 160D (1 pit)) NUMBER OF TANKS AT LOCATION: 4

UMBER OF TANKS TO BE REMOVED: 4

- 5. NUMBER OF TANKS TO BE CLOSED IN PLACE: a. INERT SOLID TO BE USED:
 - N/A
- 6. NUMBER OF TANKS INCLUDED IN A CHANGE-OF-SERVICE:
 - a. INDICATE TYPE OF NON-REGULATED SUBSTANCE TO BE STORED IN TANK:

N/A

7. SCHEDULED DATE OF CLOSURE: Mid August 1995

8. CONTRACTOR INFORMATION:	9. LABORATORY INFORMATION:
CONTRACTOR NAME: R&R International, Inc.	LABORATORY NAME Pace, Inc.
street Address: 4920 East Fifth Ave.	STREET ADDRESS: 9608 Loivet Blvd.
CITY. STATE, ZIP: Columbus, OH 43219	CITY, STATE, ZIP: Lenexa, KS 66219
⁴ REA CODE, PHONE NUMBER (412) 237-5700	AREA CODE, PHONE NUMBER: (913) 599-5665
CONTACT PERSON, TITLE Project Manager	CONTACT PERSON, TITLE: Chris Scharf, Project Manager

UST CONTRACTOR'S LICENSE NO: 851 5-8704

\prod	BASE CIVIL	ENGINEERING WOR	K CLEARANCE REQU	JEST	DATE PREPARED 7-31-94
1. 0	learance is requested to proceed v		160		
,	on Work Order/Job No. \(\sum_{\cdot\)	Contract	No. T41624-94-0-869 not been staked or clearly marke		rutility disturbance per
	attached sketch. The area involved				
2.		TYPE	OF FACILITY/WORK INVO	D. FIRE DETECTION	IN E. UTILITY
	A. PAVEMENTS B	B. DRAINAGE SYSTEMS	C. RAILROAD TRACKS	AND PROTEC- TION SYSTEMS	☐ OVERHEAD
	F. COMM. G. OVERHEAD UNDERGROUND	I. AIRCRAFT OR VEHICULAR TRAFFIC FLOW	H. SECURITY		of 4 UST's
	base utility services, protection	n provided by fire and intrus se activities and keep custo event accidents. The work	sion alarm system, or routine omer inconvenience to a mini clearance request is process nanged) this work clearance in	activities of the installate mum. It is also used to a ed just prior to the start of request must be reproce	
4. D.	ATE CLEARANCE REQUIRE	D AUGUST 15,	1995 5. DATE C	CLEARANCE TERMINA SCP1	ten ber 30,1925
6. F	REQUESTING OFFICIAL (Sign		7. PHONE NO. 50/ 532-6230	8. ORGANIZATION R&R International,	Inc.
			CLEARANCE REVIEW REMARKS		EVIEWER'S NAME AND INITIALS
9.	ORGANIZATION A. ELECTRICAL DISTRIBUTIO	ON S	DA AND	ok V	Lowlin
	B. STEAM DISTRIBUTION				
	C. WATER DISTRIBUTION	In	Area	V.	-, 7 Bin
SING	D. POL DISTRIBUTION				
ENGINEERING	E. SEWER LINES	In	Arca	7.	- flat
ENG	F. DRAINAGE SYSTEMS	Try	Aven	7.	1. 2. B
	G. PAVEMENTS, GROUNDS, RAILROADS				,
CIVIL	H. FIRE DEPARTMENT				
	I. ENGINEERING & ENVIRON- MENTAL PLANNING	-			
BASE	J. CATHODIC PROTECTION		o K		24
	KOTHER La	5 In	Arca	T.	- 1. Bar
10. S	SECURITY POLICE				
11. 9	SAFETY				
12. C	COMMUNICATIONS		9 K		
13. E	BASE OPERATIONS				·
	COMMERCIAL UTILITY COM Telephone, Gas, Electrical, etc.)	IPANY			
	OTHER (Specify)	L In	Aven	<u></u>	Ske
AF F	ORM 103, JUĽ 82 <i>(EF)</i>	<i>)</i>	PREVIOUS EDITION WILL BE U	SED.	/

FOR OFFICE USE ONL	Y
FACILITY ID#	
OWNER ACCOUNT #	

ARKANSAS DEPARTMENT OF POLLUTION CONTROL AND ECOLOGY 8001 NATIONAL DRIVE, P.O. BOX 8913, LITTLE ROCK, AR 72219-8913

TELEPHONE: 501-562-6533 FAX: 501-562-2541	
CONTRACTOR'S UST PERMANENT CLOSURE REPORT	
1. ARKANSAS UST I.D. #: COUNTY: MISSISSIPPI	
2. DATE OF CLOSURE: 9-19-95 THRU 9-22-95	
3. CONTRACTOR:	
NAME AND TITLE: PETER G. WEILERSBACHER	
COMPANY NAME: R&R INTERNATIONAL. INC.	
COMPANY PHONE: (412) 257-9120 COMPANY FAX: (412) 257-9139	
4. OWNERSHIP OF UST SYSTEM:	
OWNERS NAME: U.S. AIR FORCE, EAKER AIR FORCE BASE, AFBCA/OL-J	
STREET ADDRESS: SECOND STREET. BUILDING 233. P.O. BOX 9400	
CITY: GOSNELL STATE: AR ZIP: 72319-0400	
AREA CODE/PHONE NO.: (501) 532-6550	_
5. LOCATION OF TANK(S): IF SAME AS SECTION 4, CHECK HERE:	
FACILITY NAME: BUILDING 160	_
STREET ADDRESS: THIRD STREET	
CITY: EAKER AFB STATE: AR ZIP: 72317	
AREA CODE/PHONE NO.: (501) 532-6230	
6. NUMBER OF TANKS AT LOCATION: 4	
7. NUMBER OF TANKS REMOVED: 4	=
8. SIZE (GALLONS) & SUBSTANCE (I.E. GAS, DIESEL, ETC.) STORED IN TANK(S) REMOVED:	
2 -10.000 GALLON GASOLINE (A,B) 1-6,000 GALLON GASOLINE(C)	
I-500 GALLON WASTE MOTOR OIL (D)	=
9. NUMBER OF TANKS CLOSED IN PLACE: 0	
WHAT TYPE OF INERT SOLID WAS USED: N/A	
10. WAS A 30-DAY NOTIFICATION OF PERMANENT CLOSURE SENT?	
YES X IF SO, DATE 7-21-95 NO	
11. DID THE CONTRACTOR EMPTY AND CLEAN ALL THE TANKS, REMOVING ALL	
ACCUMULATED LIQUIDS AND/OR SLUDGE? YES X IF SO, DATE 9-26-95/9-27-95 NO	
DISPOSITION OF LIQUIDS AND/OR SLUDGE: LWD. INC., CALVERT CITY KENTYCY 42029	

DATE: 10/13/95

PAGE: 7

PACE Project Number: 606698

Client Project ID: Eaker AFB Remedial Actions

PACE Sample No: 6049088			Date Col		9/27/95			
Client Sample ID: US-160D	-1		Date Re	ceived: 0	9/30/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals	•••							
Mercury, CVAAS								
Mercury	ND	mg/kg	0.123	10/06/95	EPA 7471	SYW	7439-97-6	
Metals, ICP								
Arsenic	ND	mg/kg	10.4	10/04/95	EPA 6010	KVU	7440-38-2	
Barium	176	mg/kg	0.49	10/04/95	EPA 6010	KVU	7440-39-3	
Cadmium	ND	mg/kg	0.613	10/04/95	EPA 6010	KVU	7440-43-9	
Chromium	14.6	mg/kg	0.858	10/04/95	EPA 6010	KVU	7 44 0-47-3	
Lead	14.1	mg/kg	6.13	10/04/95	EPA 6010	KVU	7439-92-1	
Selenium	28.9	mg/kg	12.3	10/04/95	EPA 6010	KVU	7782-49-2	
Silver	ND	mg/kg	0.858	10/04/95	EPA 6010	KVU	7440-22-4	
Date Digested				10/04/95				
Organics								
Percent Moisture								
Percent Moisture	18.4	x		10/04/95		KIMIN		
C Volatiles								
TPH, Soil. Purge by Mod. 8015								_
Total Petroleum Hydrocarbon	s ND	n g/kg	6.1	10/04/95	EPA Mod 8015 pur	BDT		
a,a,a-Trifluorotoluene (S)	99	X		10/04/95	EPA Mod 8015 pur	BDT	2164-17-2	
SC C								
Organochlorine Pesticides/PCB	s							
alpha-BHC	ND	ug/kg	1.2	10/11/95	EPA 8080	AFT	319-84-6	
beta-BHC	ND	ug/kg	2.4		EPA 8080	AFT	319-85-7	
delta-BHC	ND	ug/kg	3.6	10/11/95	EPA 8080	AFT	319-86-8	
gamma-BHC (Lindane)	ND	u g/kg	1.6	10/11/95	EPA 8080	AFT	58-89-9	
Heptachlor	ND	ug/kg	1.2	10/11/95	EPA 8080	AFT	76-44-8	
Aldrin	ND	ug/kg	1.6	10/11/95	EPA 8080	AFT	309-00-2	
Heptachlor Epoxide	ND	ug/kg	33	10/11/95	EPA 8080	AFT	1024-57-3	
Endosulfan I	ND	ug/kg	5.6	10/11/95	EPA 8080	AFT	959-98-8	
Dieldrin	ND	ug/kg	0.81	10/11/95	EPA 8080	AFT	60-57-1	
4,4°-DDE	ND	ug/kg	1.6	10/11/95	EPA 8080	AFT	72-55-9	
Endrin	ND	ug/kg	2.4	10/11/95	EPA 8080	AFT	72-20-8	
Endosulfan II	ND	ug/kg	1.6	10/11/95	EPA 8080	AFT	33213-65-9	
4,4°-DDD	ND	ug/kg	4.1	10/11/95	EPA 8080	AFT	72-54-8	
Endosulfan sulfate	ND	ug/kg	27	10/11/95	EPA 8080	AFT	1031-07-8	
4.4'-DDT	ND	ug/kg	4.8	10/11/95	EPA 8080	AFT	50-29-3	
Methoxychlor	ND	ug/kg	71	10/11/95	EPA 8080	AFT	72-43-5	
Chlordane	ND	ug/kg	5.6	10/11/95	EPA 8080	AFT	57-74-9	
Toxaphene	ND	ug/kg	97	10/11/95	EPA 8080	AFT	8001-35-2	
PCB-1016 (Arochlor 1016)	ND	ug/kg	40	10/11/95	EPA 8080	AFT	12674-11-2	•

DATE: 10/13/95 PAGE: 9

PACE Project Number: 606698

Client Project ID: Eaker AFB Remedial Actions

•	60490885			Date Colle	cted: 0	9/27/95			
Client Sample ID:	US-160D-1			Date Rece	ived: 0	9/30/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analy	/st CAS#	Footnotes
Bromodichloromethan	 e	ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	75-27-4	
1.2-Dichloropropane	-	ND	ug/kg	6.1	10/06/95		CHL	78-87-5	
trans-1,3-Dichlorop	ropene	ND	ug/kg	6.1	10/06/95		CHL	10061-02-6	
Trichloroethene	-	ND	ug/kg	6.1	10/06/95		CHL	79-01-6	
Dibromochloromethane	e	ND	ug/kg	6.1	10/06/95		CHL	124-48-1	
1.1.2-Trichloroethan	ne	ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	79-00-5	
Benzene		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	71-43-2	
cis-1.3-Dichloroprop	oene	ND	ug/kg	6.1	10/06/95		CHL	10061-01-5	
8romoform		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	75-25-2	
4-Methyl-2-Pentanone	•	ND	ug/kg	61	10/06/95		CHL	108-10-1	
2-Hexanone		ND	ug/kg	61	10/06/95	EPA 8240	CHL	591-78-6	
Tetrachloroethene		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	127-18-4	
1.1.2.2-Tetrachloroe	thane	ND	ug/kg	6.1	10/06/95	EPA 8240	CHIL	79-34-5	
Toluene		ND	ug/kg	6.1	10/06/95		CHL	108-88-3	
Chlorobenzene		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	108-90-7	
Ethyl Benzene		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	100-30-7	
Styrene		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	100-42-5	
ylene (Total)		ND	ug/kg	6.1	10/06/95	EPA 8240	CHL	1330-20-7	
-Chloroethyl Vinyl	Ether	ND	ug/kg	12	10/06/95	EPA 8240	CHL	110-75-8	
1.2-Dichloroethane-d		102	1		10/06/95	EPA 8240	CHL	17060-07-0	
Toluene-d8 (S)	(=/	101	*		10/06/95	EPA 8240	CHL	2037-26-5	
4-Bromofluorobenzene	(S)	107	1		10/06/95	- ·	CHL	460-00-4	
GC/MS Semi-VOA	(0)		~		20, 00, 35	LIN OCTO	CIL	400-00-4	
Semivolatile Organics									
Pheno1		ND	ug/kg	400	10/11/95	EPA 8270	MSR	108-95-2	
bis(2-Chloroethyl)et	her	ND	ug/kg	400		EPA 8270	MSR	111-44-4	
2-Chlorophenol		ND	ug/kg	400		EPA 8270	MSR	95-57-8	
1.3-Dichlorobenzene		ND	ug/kg	400	10/11/95		MSR	541-73-1	
1.4-Dichlorobenzene		ND	ug/kg	400	10/11/95		MSR	106-46-7	
Benzyl Alcohol		ND	ug/kg	800	10/11/95		MSR	100-51-6	
1.2-Dichlorobenzene		ND	ug/kg	400		EPA 8270	MSR	95-50-1	
2-Methylphenol		ND	ug/kg	400		EPA 8270	MSR	95-48-7	
bis(2-Chloroisopropy	1)ether	ND	ug/kg	400			MSR	39638-32-9	
4-Methylphenol		ND	ug/kg	400		EPA 8270	MSR	106-44-5	
N-Nitroso-di-n-propy		ND	ug/kg	400		EPA 8270	MSR	621-64-7	
Hexachloroethane		ND	ug/kg	400	10/11/95		MSR	67-72-1	
Nitrobenzene		ND	ug/kg	400	10/11/95		MSR	98-95-3	
Isophorone		ND	ug/kg	400	10/11/95		MSR	78-59-1	
2-Nitrophenol		ND	ug/kg	400	10/11/95		MSR	88-75-5	
2.4-Dimethylphenol		ND	ug/kg	400	10/11/95		HSR	105-67-9	

DATE: 10/13/95

PAGE: 11

PACE Project Number: 606698

Client Project ID: Eaker AFB Remedial Actions

PACE Sample No:	60490885			Date Colle	cted: 0	9/27/95			
Client Sample ID:	US-160D-1			Date Rece	ived: 0	9/30/95			
Parameters		Results	Units	PRL	Analyzed	Hethod	Analys	t CAS#	Footnotes
Chrysene		ND	ug/kg	400	10/11/95	EPA 8270	MSR	218-01-9	
bis(2-Ethylhexyl)ohthalate	ND	ug/kg ug/kg	400	10/11/95	EPA 8270	MSR	117-81-7	
Di-n-octylphthal	•	ND	ug/kg	400	10/11/95	EPA 8270	MSR	117-84-0	
Benzo(b) fluorant		ND		400	10/11/95	EPA 8270	MSR	205-99-2	
Benzo(k) fluoranti		ND D	ug/kg	400	10/11/95	EPA 8270		_	
, ,	Refle	ND	ug/kg				MSR	207-08-9	
Benzo(a)pyrene			ug/kg	400	10/11/95	EPA 8270	MSR	50-32-8	
Indeno(1.2.3-cd)	-	ND	ug/kg	400	10/11/95	EPA 8270	MSR	193-39-5	
Dibenz(a.h)anthra		ND	ug/kg	400	10/11/95	EPA 8270	MSR	53-70-3	
Benzo(g.h.i)pery	lene	ND	ug/kg	400	10/11/95	EPA 8270	MSR	191-24-2	
Nitrobenzene-d5 ((S)	77	*		10/11/95	EPA 8270	MSR	4165-60-0	
2-Fluorobiphenyl	(S)	75	x		10/11/95	EPA 8270	MSR	321-60-8	
Terphenyl-d14 (S)	ı	96	*		10/11/95	EPA 8270	MSR	1718-51-0	
Phenol-d5 (S)		82	*		10/11/95	EPA 8270	MSR	13127-88-3	
2-Fluorophenol (S	5)	85	*		10/11/95	EPA 8270	MSR	367-12-4	
2.4,6-Tribromophe	nol (S)	95	*		10/11/95	EPA 8270	MSR	118-79-6	
Date Extracted					10/04/95				

DATE: 07/05/95

PAGE: 54

PACE Project Number: 604906 Client Project ID: Eaker AFB - 0114

Client Sample ID: E11-GW-TW			Date Re	ceived: 0	6/03/95			
Damamatana					•			
Parameters	Results	Units	PRL	Analyzed	Method	Anaty	yst CAS#	Footnotes
Metals		•						
Lead, AAS Furnace								
Lead	ND	ug/L	5		EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.06	mg/L	0.01		EPA 354.1	WOC		•
Nitrogen, Nitrate	0.06	mg/L	0.01	06/03/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO3, Wate	r 0.12	mg/L	0.01	06/03/95	EPA 354.1	WOC		
Total Dissolved Solids								
Total Dissolved Solids	917	mg/L	5	06/05/95	EPA 160.1	RST		
Alkalinity, Total								
Alkalinity, Total	350	mg/L	1	06/06/95	EPA 310.1	MJW		
Phosphorus, Total								
Phosphorus	1.23	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total								
Sulfate, Total	3	mg/L	1	06/26/95	EPA 375.3	GMF		
~ oride								
luoride	0.3	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
Suspended Solids								
Suspended Solids	43	mg/L	5	06/06/95	EPA 160.2	RST		
Clean e(AutoFerricyanide)								
untoride	200	mg/L	2	06/12/95	EPA 325.2	MOC		
Bromide								
Bromide	1.21	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles								
TPH, Water, Purge by Mod. 8015								
Total Petroleum Hydrocarbons		mg/L	25		EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S)	118	*		06/14/95	EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organics								
Benzene	10000	ug/L	100		EPA 8020	HMF	71-43-2	
Ethyl Benzene	1000	ug/L	100		EPA 8020	HMF	100-41-4	
Toluene .	280	ug/L	100	06/14/95	EPA 8020	HMF	108-88-3	
Xylene (Total)	3200	ug/L	250	06/14/95	EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotoluene (\$)	120	×		06/14/95	EPA 8020	HMF	2164-17-2	

DATE: 07/12/95 PAGE: 8

PACE Project Number: 605096 Client Project ID: Eaker AFB - 0114

PACE Sample No: 603543 Client Sample ID: E11-GW	39 -MW1122		Date Collect Date Recei		5/08/95 5/09/95			
Citetic Sample ID.						••	010#	Factorias
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals								
Lead, AAS Furnace			_	04 104 105	TO. 7/34	TSP	7439-92-1	
Lead	ND	ug/L	5		EPA 7421	135	1437-72-1	
Date Digested		•		06/21/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.02	mg/L	0.01		EPA 354.1	MOC		
Nitrogen, Nitrate	ND	mg/L	0.01	06/09/95		MOC		
Nitrogen, NO2 plus NO3, Wa	ater ND	mg/L	0.01	06/09/95	EPA 354.1	MOC		
Phosphorus, Total								
Phosphorus	0.55	mg/L	0.05	07/06/95	EPA 365.2	GMF	7723-14-0	
Total Dissolved Solids		<u>.</u>						
Total Dissolved Solids	168	mg/L	5	06/12/95	EPA 160.1	RST		
Total Suspended Solids								
Total Suspended Solids	13	mg/L	5	06/12/95	EPA 160.2	RST		
Sulfate, Total								
Sulfate, Total	46	mg/L	1	07/11/95	EPA 375.3	MJW		5
Fluoride								
Fluoride	ND	mg/L	0.1	06/26/95	EPA 340.2	GMF	16984-48-8	
Chloride(AutoFerricyanide)								_
Chloride	ND	mg/L	1	06/30/95	EPA 325.2	WOC		
Alkalinity, Total								
Alkalinity, Total	110	mg/L	1	06/14/95	EPA 310.1	MUM		
Bromide								
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles								
TPH, Water, Purge by Mod. 80	015							
Total Petroleum Hydrocarbo		mg/L	0.5		EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S)) 68	×		06/16/95	EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organics								
Benzene	ND	ug/L	2	06/16/95		TAT	71-43-2	
Ethyl Benzene	ND	ug/L	2	06/16/95		TAT	100-41-4	
Toluene	ND	ug/L	2	06/16/95		TAT	108-88-3	
Xylene (Total)	ND	ug/L	5	06/16/95		TAT	1330-20-7	
a,a,a-Trifluorotoluene (S)) 120	*		06/16/95	EPA 8020	TAT	2164-17-2	

DATE: 09/19/95 PAGE: 26

PACE Project Number: 606117 Client Project ID: Eaker AFB - 0114

PACE Sample No: 6044362					08/24/95 08/25/05			
Client Sample ID: E11-GW-	MW1123		pate K	eceived:	08/25/95			
Parameters	Results	Units	PRL	Analyze	d Method	Anal	yst CAS#	Footnotes
Metals								
Lead, AAS Furnace								
Lead	ND	ug/L	5		5 EPA 7421	JAH	7439-92-1	
Date Digested				09/01/9	5			
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	ND	mg/L	0.01	08/25/9	5 EPA 354.1	MOC		• .
Nitrogen, Nitrate	ND	ang/L	0.01	08/25/9	5 EPA 354.1	MOC		
Nitrogen, NO2 plus NO3, Wat	ter ND	mg/L	0.01	08/25/9	5 EPA 354.1	MOC		
Total Dissolved Solids		-						
Total Dissolved Solids	205	mg/L	5	08/31/9	5 EPA 160.1	EAH		
Alkalinity, Total		•						
Alkalinity, Total	140	mg/L	1	09/05/9	5 EPA 310.1	MJW		
Phosphorus, Total								
Phosphorus	0.26	mg/L	0.05	09/11/9	5 EPA 365.2	GMF	7723-14-0	
Sulfate, Total		-						
Sulfate, Total	14	mg/L	1	08/31/99	5 EPA 375.3	EAH		
Fluoride		- -						
uoride	0.2	mg/L	0.1	09/08/95	5 EPA 340.2	EAH	16984-48-8	
Suspended Solids		-						
Suspended Solids	61	mg/L	5	08/31/95	EPA 160.2	EAH		
Charles (AutoFerricyanide)		-						
Chide	ND	mg/L	1	09/11/99	EPA 325.2	WOC		
Bromide		-						
Bromide	ND	mg/L	0.5	09/08/95	EPA 300	MOC		
GC Volatiles		-						
TPH, Water, Purge by Mod. 801	5							
Total Petroleum Hydrocarbon	is ND	mg/L	0.5	09/07/95	EPA Mod 8015 pur	DJM		
a,a,a-Trifluorotoluene (S)	96	*			EPA Mod 8015 pur	DJM	2164-17-2	
Aromatic Volatile Organics					•			
Benzene	ND	ug/L	2	09/07/95	EPA 8020	DJM	71-43-2	
Ethyl Benzene	ND	ug/L	2	09/07/95	-	DJM	100-41-4	
Toluene	ND	ug/L	2	09/07/95		DJM	108-88-3	
Xylene (Total)	ND	ug/L	5	09/07/95		DJM	1330-20-7	
a,a,a-Trifluorotoluene (S)	178	x -	-	09/07/95		DJM	2164-17-2	3
2,2,2 ii ii tuoi ototuelle (3)	1,0	~		07/01/73	LFA GUEU	DJM	£104-17-Z	J

DATE: 09/19/95 PAGE: 53

PACE Project Number: 606117 Client Project ID: Eaker AFB - 0114

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	445897		Date Colle		3/25/95			
Client Sample ID: E1	1-GW-MW1124		Date Rece	ived: O	3/26/95			
Parameters	Resu	lts Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals			:	•				
Lead, AAS Furnace								
Lead	ND	ug/L	5	09/12/95	EPA 7421	JAH	7439-92-1	
Date Digested				09/01/95		•		
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	ND	mg/L	0.01	08/27/95	EPA 354.1	MOC		
Nitrogen, Nitrate	ND	mg/L	0.01	08/27/95	EPA 354.1	MOC		
Nitrogen, NO2 plus NO3		mg/L	0.01	08/27/95	EPA 354.1	WOC		
Total Dissolved Solids	,							
Total Dissolved Solids	255	mg/L	5	08/31/95	EPA 160.1	EAH		
Alkalinity, Total			•					
Alkalinity, Total	170	mg/L	1	09/05/95	EPA 310.1	MJW		
Phosphorus, Total			•					
Phosphorus	0.55	mg/L	0.05	09/11/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total	0.55		***************************************	,,				
Sulfate, Total	28	mg/L	1	08/31/95	EPA 375.3	EAH		
Fluoride		3/ =	•	.,.,,,,	2 5.565			
Fluoride	0.2	mg/L	0.1	09/08/95	EPA 340.2	EAH	16984-48-8	
Total Suspended Solids	0.2	g/ L	•••	0,,00,,,	2.7. 540.2		10704 40 0	_
Total Suspended Solids	15	mg/L	5	08/31/95	EPA 160.2	EAH		
Chloride(AutoFerricyanic		11/g/ L	•	00,5.,,,	LIA 100.L	67111		
Chloride	1	mg/L	1	09/11/95	EPA 325.2	WOC		
Bromide	•	mg/ L	•	077 11775	LFA JEJ.E	WOL		_
Bromide	ND	mg/L	0.5	09/08/95	EPA 300	MOC		
GC Volatiles	ND	ıııg/ c	0.5	07,00,75	E1 A 300			
TPH, Water, Purge by Mod	8015							
Total Petroleum Hydrod		mg/L	0.5	09/08/95	EPA Mod 8015 pur	DJM		
a,a,a-Trifluorotoluene		% %	0.5	09/08/95	EPA Mod 8015 pur	DJM	2164-17-2	
Aromatic Volatile Organi		~		07,00,73	EFA HOU DO 15 POI	UUM	2104-17-2	
Benzene	62	ug/L	2	09/08/95	EPA 8020	DJM	71-43-2	
Ethyl Benzene	5.4	ug/L	2	09/08/95	EPA 8020	DJM	100-41-4	
Toluene	4.5	ug/L	2	09/08/95	EPA 8020	DJM	108-88-3	
Xylene (Total)	10	ug/L ug/L	5	09/08/95	EPA 8020	DJM	1330-20-7	
		1g/L %	3		EPA 8020			
a,a,a-Trifluorotoluene Comments : Confirmation an					EFA OUZU	MLD	2164-17-2	

Nitrogen, Nitrite

Nitrogen, Nitrite

Nitrogen, Nitrate

Nitrogen, NO2 plus NO3, Water 0.06

REPORT OF LABORATORY ANALYSIS

DATE: 07/05/95

Footnotes

PAGE: 53

WOC

WOC

WOC

PACE Project Number: 604906

06/03/95 EPA 354.1

06/03/95 EPA 354.1

06/03/95 EPA 354.1

Client Project ID: Eaker AFB - 0114

PACE Sample No: Client Sample ID:	60348034 E11-GW-TW11	.09		Date Collect Date Recei		6/02/95 6/03/95		
Parameters		Results	Units	PRL	Analyzed	Method	Analyst	CAS#
Wet Chemistry	,							

0.01

0.01

0.01

mg/L

mg/L

mg/L

0.1

ND

DATE: 07/05/95 PAGE: 47

PACE Project Number: 604906

Client Project ID: Eaker AFB - 0114

PACE Sample No: 60344 Client Sample ID: E11-	5657 GW-TW1101		Date Colle Date Rece		5/01/95 5/02/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals								
Lead, AAS Furnace								
Lead	ND	ug/L	5	06/23/95	EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.04	mg/L	0.01	06/02/95	EPA 354.1	MOC		
Nitrogen, Nitrate	ND	mg/L	0.01	06/02/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO3,	Water ND	mg/L	0.01	06/02/95	EPA 354.1	WOC		
Phosphorus, Total		-						
Phosphorus	0.22	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Fluoride		•						
Fluoride	0.3	mg/L	0.1	06/12/95	EPA 340.2	GMF	16984-48-8	
Sulfate, Total		-						
Sulfate, Total	13	mg/L	1	06/26/95	EPA 375.3	GMF		
Chloride(AutoFerricyanide)								
Chloride	5	mg/L	1	06/12/95	EPA 325.2	WOC		
Total Dissolved Solids								
Total Dissolved Solids	361	mg/L	5	06/05/95	EPA 160.1	RST		
Total Suspended Solids								
Total Suspended Solids	39	mg/L	5	06/06/95	EPA 160.2	RST		
Alkalinity, Total								
Alkalinity, Total	280	mg/L	1	06/06/95	EPA 310.1	MJW		
Bromide								
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles								
TPH, Water, Purge by Mod.	B015							
Total Petroleum Hydrocari		mg/L	2.5	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (s) 185	*		06/14/95	EPA Mod 8015 pur	TAT	2164-17-2	9
Aromatic Volatile Organics					• •			
Benzene	610	ug/L	10	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene	310	ug/L	10	06/14/95	EPA 8020	HMF	100-41-4	
Toluene	440	ug/L	10	06/14/95	EPA 8020	HMF	108-88-3	
Xylene (Total)	880	ug/L	25	06/14/95		HMF	1330-20-7	
a,a,a-Trifluorotoluene (5) 126	×		06/14/95		HMF	2164-17-2	

27-10

DATE: 07/05/95

PAGE: 48

PACE Project Number: 604906

Client Project ID: Eaker AFB - 0114

PACE Sample No: 603466 Client Sample ID: E11-GW	65 -TW1102	1102		Date Collected: 06/01/95 Date Received: 06/02/95				
Parameters	Results	Units	PRL	Analyzed	i Method	Anal	yst CAS#	Footnotes
Metals								
Lead, AAS Furnace								
Lead	ND	ug/L	5		EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95	i			
Wet Chemistry								
Nitrogen, Nitrite								•
Nitrogen, Nitrite	0.01	mg/L	0.01	06/02/95	EPA 354.1	MOC		•
Nitrogen, Nitrate	ND	mg/L	0.01	06/02/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO3, W	ater ND	mg/L	0.01	06/02/95	EPA 354.1	MOC		
Total Suspended Solids								
Total Suspended Solids	ND	mg/L	5	06/06/95	EPA 160.2	RST		
Fluoride								
Fluoride	0.2	mg/L	0.1	06/12/95	EPA 340.2	GMF	16984-48-8	
Sulfate, Total								
Sulfate, Total	382	mg/L	1	06/26/95	EPA 375.3	GMF		
Total Dissolved Solids								
Total Dissolved Solids	340	ing/L	5	06/05/95	EPA 160.1	RST		
Phosphorus, Total								
[¬] hosphorus	0.25	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723 <i>-</i> 14-0	
<u>al</u> inity, Total								
inity, Total	270	mg/L	1	06/06/95	EPA 310.1	WLM		
Carricyanide)								
ide	5	mg/L	1	06/12/95	EPA 325.2	MOC		
Bromide								
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	MOC		
GC Volatiles	_							
TPH, Water, Purge by Mod. 80								
Total Petroleum Hydrocarbo		mg/L	0.5		EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S)	80	×		06/14/95	EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organics			_					
Benzene	ND	ug/L	2		EPA 8020	HMF	71-43-2	
Ethyl Benzene	ND .	ug/L	2		EPA 8020	HMF	100-41-4	
Toluene	ND	ug/L	2		EPA 8020	HMF	108-88-3	
Xylene (Total)	ND	ug/L	5		EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotoluene (S)	124	X		06/14/95	EPA 8020	HMF	2164-17-2	

DATE: 07/05/95 PAGE: 50

PACE Project Number: 604906

Client Project ID: Eaker AFB - 0114

PACE Sample No: 6034809 Client Sample ID: E11-GW	00 - TW1104		Date Colle Date Rece		6/02/95 6/03/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals					•			
Lead, AAS Furnace								
Lead	ND	ug/L	5	06/23/95	EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.01	mg/L	0.01	06/03/95		WOC		
Nitrogen, Nitrate	ND	mg/L	0.01	06/03/95	EPA 354.1	MOC		
Nitrogen, NO2 plus NO3, Wa	iter ND	mg/L	0.01	06/03/95	EPA 354.1	MOC		
Total Dissolved Solids		-						
Total Dissolved Solids	342	mg/L	5	06/05/95	EPA 160.1	RST		
Alkalinity, Total		-						
Alkalinity, Total	260	mg/L	1	06/06/95	EPA 310.1	WLM		
Phosphorus, Total		•						
Phosphorus	0.25	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	*
Sulfate, Total		•						
Sulfate, Total	38	mg/L	1	06/26/95	EPA 375.3	GMF		
Fluoride		-						
Fluoride	0.2	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
Total Suspended Solids								
Total Suspended Solids	ND	mg/L	5	06/06/95	EPA 160.2	RST		
Chloride(AutoFerricyanide)		-						
Chloride	7	mg/L	1	06/12/95	EPA 325.2	WOC		
Bromide								
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles								
TPH, Water, Purge by Mod. 80	15							
Total Petroleum Hydrocarbo	ns 16	mg/L	2.5	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S)	183	×		06/14/95	EPA Mod 8015 pur	TAT	2164-17-2	10
Aromatic Volatile Organics					•			
Benzene	130	ug/L	2	06/14/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	210	ug/L	2	06/14/95	EPA 8020	TAT	100-41-4	
Toluene	170	ug/L	2	06/14/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	560	ug/L	25	06/14/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluene (S)	108	*		06/14/95	EPA 8020	TAT	2164-17-2	

DATE: 07/05/95 PAGE: 51

PACE Project Number: 604906 Client Project ID: Eaker AFB - 0114

PACE Sample No: 60348018 Client Sample ID: E11-GW-TW1				Date Collected: 06/02/95 Date Received: 06/03/95				
Parameters	Results	Units	PRL	Analyzed	Method	Anat	yst CAS#	Footnotes
Metals								
Lead, AAS Furnace								
Lead	ND	ug/L	5		EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.013	mg/L	0.01	06/03/95	EPA 354.1	WOC		
Nitrogen, Nitrate	ND	mg/L	0.01	06/03/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO3, Water	0.013	mg/L	0.01	06/03/95	EPA 354.1	WOC		
Total Dissolved Solids		<u>.</u>						
Total Dissolved Solids	435	mg/L	5	06/05/95	EPA 160.1	RST		
Alkalinity, Total		•						
Alkalinity, Total	430	mg/L	1	06/06/95	EPA 310.1	WLM		
Phosphorus, Total								
Phosphorus	0.24	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total								
Sulfate, Total	7	mg/L	1	06/26/95	EPA 375.3	GMF		
Fluoride								
luoride	0.3	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
AL Suspended Solids								
Suspended Solids	9	mg/L	5	06/06/95	EPA 160.2	RST		
C (AutoFerricyanide)								
ide	4	mg/L	1	06/12/95	EPA 325.2	WOC	•	
Bromide			·	,,				
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles								
TPH, Water, Purge by Mod. 8015								
Total Petroleum Hydrocarbons	ND	mg/L	0.5	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S)	126	*			EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organics	. = -	, , ,		, , , ,			_,_, ,, _	
Benzene	ND	ug/L	2	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene	ND .	ug/L	2		EPA 8020	HMF	100-41-4	
Toluene	ND	ug/L	2	06/14/95	-	HMF	108-88-3	
Xylene (Total)	ND	ug/L	5	06/14/95		HMF	1330-20-7	
a,a,a-Trifluorotoluene (\$)	120	% %	•	06/14/95		HMF	2164-17-2	

DATE: 07/05/95 PAGE: 59

PACE Project Number: 604906

Client Project ID: Eaker AFB - 0114

PACE Sample No:	60350618			Date Colle		5/05/95			
Client Sample ID:	E11-GW-TW11	109		Date Rece	ived: 00	5/06/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals			•••••						
Lead, AAS Furnace									
Lead		ND	ug/L	5	06/23/95	EPA 7421	KVU	7439-92-1	
Date Digested					06/12/95				
Wet Chemistry									
Nitrogen, Nitrite									
Nitrogen, Nitrite		0.1	mg/L	0.01	06/06/95	EPA 354.1	MOC		
Nitrogen, Nitrate		ND	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Nitrogen, NO2 plus	NO3 Water	0.1	mg/L	0.01		EPA 354.1	MOC		
Total Dissolved Soli		•••	3/ -		,,	2 22			
Total Dissolved So		363	mg/L	5	06/12/95	EPA 160.1	RST		
Alkalinity, Total		505	3/ -	-	00, 12, 77	2			
Alkalinity, Total		330	mg/L	1	06/13/95	EPA 310.1	MJW		
Phosphorus, Total		330	mg/ C	•	00, .0, ,,	2.7. 2.0			
Phosphorus		3.1	mg/L	0.25	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total		J.,	g, E	V.123	00, 2.,		-		
Sulfate, Total		22	mg/L	1	06/26/95	EPA 375.3	GMF		
Fluoride			3,	•	,	J. 1. J. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			
Fluoride		0.2	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
Total Suspended Soli	ds	***	3, -						_
Total Suspended So		21	mg/L	5	06/06/95	EPA 160.2	RST		
Chloride(AutoFerricy				-					(
Chloride		36	mg/L	1	06/12/95	EPA 325.2	WOC		
Bromide			J. –						
Bromide		0.57	mg/L	0.5	06/13/95	EPA 320.1	WOC		
C Volatiles			U						
TPH, Water, Purge by	Mod. 8015								
Total Petroleum Hy		15.5	mg/L	2.5	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoli		217	*			EPA Mod 8015 pur	TAT	2164-17-2	12
Aromatic Volatile Or		(•			
Benzene		2200	ug/L	100	06/14/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene		170	ug/L	10	06/14/95		TAT	100-41-4	
Toluene		160	ug/L	10	06/14/95		TAT	108-88-3	
Xylene (Total)		1100	ug/L	25	06/14/95		TAT	1330-20-7	
a,a,a-Trifluorotol	uene (S)	116	%		06/14/95		TAT	2164-17-2	

DATE: 07/05/95 PAGE: 54

PACE Project Number: 604906 Client Project ID: Eaker AFB - 0114

PACE Sample No:	60348042			Date Col	lected:	06/02/95			
Client Sample ID:	E11-GW-TW1	110		Date Re	ceived:	06/03/95			
Parameters		Results	Units	PRL	Analyze	d Method .	Anal	yst CAS#	Footnotes
Metals	••••					-			
Lead, AAS Furnace									
Lead		ND	ug/L	5		5 EPA 7421	KVU	7439-92-1	
Date Digested					06/12/9	5			
Wet Chemistry									
Nitrogen, Nitrite									
Nitrogen, Nitrite		0.06	mg/L	0.01	06/03/9	5 EPA 354.1	WOC		•
Nitrogen, Nitrate		0.06	mg/L	0.01	06/03/9	5 EPA 354.1	WOC		
Nitrogen, NO2 plus	NO3, Water	0.12	mg/L	0.01	06/03/9	5 EPA 354.1	WOC		
Total Dissolved Solid	ds								
Total Dissolved So	lids	917	mg/L	5	06/05/95	5 EPA 160.1	RST		
Alkalinity, Total			<u>.</u> .						
Alkalinity, Total		350	mg/L	1	06/06/95	EPA 310.1	WLM		
Phosphorus, Total			•						
Phosphorus		1.23	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total			<u>.</u>		•				
Sulfate, Total		3	mg/L	1	06/26/99	EPA 375.3	GMF		
Fluoride			O .			2.00			
-luoride		0.3	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
al Suspended Solid	is				,,	2.00	-	.0,0, 40 0	
Suspended Sol		43	mg/L	5	06/06/95	EPA 160.2	RST		
Character (AutoFerricya	nide)		•						
de		200	mg/L	2	06/12/95	EPA 325.2	MOC		
8rom1de					,				
Bromide		1.21	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles			-						
TPH, Water, Purge by	Mod. 8015								
Total Petroleum Hyd	rocarbons	52.5	mg/L	25	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotolu	ene (S)	118	x			EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Org	anics				•		,	• · · · · •	
Benzene		10000	ug/L	100	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene		1000	ug/L	100		EPA 8020	HMF	100-41-4	
Toluene		280	ug/L	100		EPA 8020	HME	108-88-3	
Xylene (Total)		3200	ug/L	250		EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotolu	ene (S)	120	x .			EPA 8020	HMF	2164-17-2	
	· - •	·			55, , , , 5	0020	m	£104-11-5	

DATE: 07/12/95

PAGE: 1

Brown & Root Environmental 800 Oak Ridge Turnpike

Suite A-600

Oak Ridge, TN 37830

PACE Project Number: 605096

Client Project ID: Eaker AFB - 0114

SDG Number: BR5096

Attn: Mr. Allan Jenkins Phone: 615-483-9900

PACE Sample No:	60354297			Date Collect	cted: 06	5/08/95			•
Client Sample ID:	E11-GW-MW112	21		Date Rece	ived: 06	5/09/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
		• • • • • • • • • • • • • • • • • • • •		•••••	•••••			• • • • • • • • • •	•••••
Metals									1
Mercury, CVAAS									
Mercury		ND	ug/L	0.2	06/21/95	EPA 7470	TSP	7439-97-6	
Antimony, AAS Furnace									
Antimony		ND	ug/L	10	06/27/95	EPA 7041	JAH	7440-36-0	
Date Digested					06/21/95				
Lead, AAS Furnace									
Lead		ND	ug/L	5	06/26/95	EPA 7421	TSP	7439-92-1	
Date Digested					06/21/95				
Arsenic, AAS Furnace									
Arsenic		ND	ug/L	5	06/26/95	EPA 7060	TSP	7440-38-2	
Date Digested					06/21/95				
Metals, ICP									
Aluminum	;	378	ug/L	75	07/06/95	EPA 6010	KVU	7429-90-5	
Barium	•	61.4	ug/L	4	07/06/95	EPA 6010	KVU	7440-39-3	
Beryllium		ND	ug/L	1	07/06/95	EPA 6010	KVU	7440-41-7	
Cadmium	1	ND	ug/L	5	07/06/95	EPA 6010	KVU	7440-43-9	
Calcium		12500	ug/L	100	07/06/95	EPA 6010	KVU	7440-70-2	
Chromium	I	ND	ug/L	7	07/06/95	EPA 6010	KVU	7440-47-3	
Cobalt	ı	ND	ug/L	7	07/06/95	EPA 6010	KVU	7440-48-4	
Copper	l	ND	ug/L	10	07/06/95	EPA 6010	KVU	7440-50-8	
Iron		517	ug/L	40	07/06/95	EPA 6010	KVU	7439-89-6	
Magnesium	3	3980	ug/L	50	07/06/95	EPA 6010	KVU	7439-95-4	
Manganese		51.5	ug/Ĺ	7	07/06/95	EPA 6010	KVU	7439-96-5	
Molybdenum	,	D	ug/L	20	07/06/95	EPA 6010 ·	KVU	7439-98-7	
Nickel	1	ND	ug/L	30	07/06/95	EPA 6010	KVU	7440-02-0	
Potassium	1	1520	ug/L	1000	07/06/95	EPA 6010	KVU	7440-09-7	
Silver	P	ND C	ug/L	7	07/06/95	EPA 6010	KVU	7440-22-4	
Sodium	6	5990	ug/L	150	07/06/95	EPA 6010	KVU	7440-23-5	
Vanadium	, i	ND O	ug/L	12	07/06/95	EPA 6010		7440-62-2	
Zinc	ε	30.4	ug/L	20	07/06/95	EPA 6010	KVU	7440-66-6	

DATE: 07/12/95 PAGE: 2

PACE Project Number: 605096

Client Project ID: Eaker AFB - 0114

	60354297 E11-GW-MW1121			Date Collected: 06/08/95 Date Received: 06/09/95					
ctient Sample ID:	: I ~ GW~MW I	21		Date Rese		, , , , , ,			
Parameters		Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
A.A. Binakal					06/21/95				
Date Digested					00, 21, 73				
Thailium, AAS Furnace	•	ND	ug/L	5	06/27/95	EPA 7841	KVU	7440-28-0	
Thallium		RU	ug/ L	,	06/21/95	LIN 1041		***********	
Date Digested					00, 21, 73				
Selenium, AAS Furnace		7.2	ug/L	5	06/26/95	EPA 7740	KVU	7782-49-2	
Selenium		1.2	ug/ L	•	06/21/95	2.7.			
Date Digested					00, 21, 73				
Wet Chemistry									
Nitrogen, Nitrite Nitrogen, Nitrite		0.02	mg/L	0.01	06/09/95	EPA 354.1	MOC		
Nitrogen, Nitrate		0.11	mg/L	0.01	06/09/95		WOC		
Nitrogen, NO2 plus N	NT Water	0.13	mg/L	0.01	06/09/95		WOC		
Total Dissolved Solids		0.15			00,00,00	2 25			
Total Dissolved Soli		101	tng/L	5	06/12/95	EPA 160.1	RST		
Alkalinity, Total	us	101	#137 E	•	00, 12, 77	-,			
Alkalinity, Total		62	mg/L	1	06/14/95	EPA 310.1	MJW		
Phosphorus, Total		-		•	, ,				
Phosphorus		1.09	mg/L	0.05	07/06/95	EPA 365.2	GMF	7723-14-0	
fate, Total		,		••••	.,,				
lfate, Total		15	mg/L	1	07/11/95	EPA 375.3	MJW		1
			g/ =	•	.,,,,,,				·
' de		ND	mg/L	0.1	06/26/95	EPA 340.2	GMF	16984-48-8	
To spended Solids		110			32, 23, 73				
Total Suspended Soli		20	mg/L	5	06/12/95	EPA 160.2	RST		
Chloride(AutoFerricyan			3/ =		,,		.,		
Chloride	iuc,	ND	mg/L	1	06/30/95	EPA 325.2	MOC		
Bromide				•	33,23,73	2 522.12			
Bromide		ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles		ND	#G/ E	0.5	00, 10, 75				
TPH, Water, Purge by M	od. 8015								
Total Petroleum Hydr		ND	mg/L	0.5	06/16/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotolue		108	*			EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Orga			~		,,		••••	2.0 2	
Benzene		ND	ug/L	2	06/16/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene		ND	ug/L	2	06/16/95		TAT	100-41-4	
Toluene		ND	ug/L	2	06/16/95		TAT	108-88-3	
Xylene (Total)		ND	ug/L	5	06/16/95		TAT	1330-20-7	
a,a,a-Trifluorotolue	ne (S)	112	X .	-	06/16/95		TAT	2164-17-2	
GC	,				,, , -		••••		
TPH, Water, Ext. by Mo	d. 8015								•
Mineral Spirits		ND	mg/L	0.4	06/16/95	EPA Mod 8015 ext	EMA		
Gasoline		ND	mg/L	0.4		EPA Mod 8015 ext	EMA		

DATE: 07/12/95

PAGE: 3

PACE Project Number: 605096

Client Project ID: Eaker AFB - 0114

PACE Sample No:	60354297			Date Co	llected: 0	6/08/95			
Client Sample ID: E11-GW-		1121		Date R	eceived: 0	6/09/95			
Parameters		Results	Units	PRL	Analyzed	Method	Anal	yst CAS#	Footnotes
Jet Fuel		ND ND	mg/L	0.4	06/16/95	EPA Mod 8015 ext	EMA		• •••••
Kerosene		ND	mg/L	0.4	06/16/95		EMA		
Diesel Fuel		ND	mg/L	0.4	06/16/95	EPA Mod 8015 ext	EMA		
Fuel Oil		ND	mg/L	0.4	06/16/95		EMA		
Motor 0il		ND	mg/L	0.4	06/16/95		EMA		
Total Petroleum Hy	drocarbons	ND	mg/L	0.4	06/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalat		83	*	• • • • • • • • • • • • • • • • • • • •	06/16/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	, (0)	80	*		06/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted		•	-		06/12/95			_	
GC/MS Semi-VOA									
Semivolatile Organic	•<								
Pheno1	.•	ND	ug/L	10	06/19/95	EPA 8270	MSR	108-95-2	
bis(2-Chloroethyl)	ether	ND	ug/L	10	06/19/95	EPA 8270	MSR	111-44-4	
2-Chlorophenol		ND	ug/L	10	06/19/95	EPA 8270	MSR	95-57-8	
1.3-Dichlorobenzen	e	ND	ug/L	10	06/19/95	EPA 8270	MSR	541-73-1	
1.4-Dichlorobenzen		ND	ug/L	10	06/19/95	EPA 8270	MSR	106-46-7	
Benzyl Alcohol	_	ND	ug/L	20	06/19/95	EPA 8270	MSR	100-51-6	
1.2-Dichlorobenzen	e	ND	ug/L	10	06/19/95	EPA 8270	MSR	95-50-1	
2-Methylphenol		ND	ug/L	10	06/19/95	EPA 8270	MSR	95-48-7	
bis(2-Chloroisopro	pv])ether	ND	ug/L	10	06/19/95	EPA 8270	MSR	108-60-1	
4-Methylphenol	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND	ug/L	10	06/19/95	EPA 8270	MSR	106-44-5	
N-Nitroso-di-n-pro	pylamine	ND	ug/L	10	06/19/95	EPA 8270	MSR	621-64-7	
Hexachloroethane	, ,	ND	ug/L	10	06/19/95	EPA 8270	MSR	67-72-1	
Nitrobenzene		ND	ug/L	10	06/19/95	EPA 8270	MSR	98-95-3	
Isophorone		ND	ug/L	10	06/19/95	EPA 8270	MSR	78-59-1	
2-Nitrophenol		ND	ug/L	10	06/19/95	EPA 8270	MSR	88-75-5	
2.4-Dimethylphenol		ND	ug/L	10	06/19/95	EPA 8270	MSR	105-67-9	
Benzoic Acid		ND	ug/L	50	06/19/95	EPA 8270	MSR	65-85-0	
bis(2-Chloroethoxy)methane	ND	ug/L	10	06/19/95	EPA 8270	MSR	111-91-1	
2,4-Dichlorophenol		ND	ug/L	10	06/19/95	EPA 8270	MSR	120-83-2	
1,2,4-Trichloroben	zene	ND	ug/L	10	06/19/95	EPA 8270	MSR	120-82-1	•
Naphthalene		ND	ug/L	10	06/19/95	EPA 8270	MSR	91-20-3	
4-Chloroaniline		ND	ug/L	20	06/19/95	EPA 8270	MSR	106-47-8	
Hexachlorobutadiene	e	ND	ug/L	10	06/19/95	EPA 8270 ·	MSR	87-68-3	
4-Chloro-3-methylpi	nenol	ND	ug/L	20	06/19/95	EPA 8270	MSR	59-50-7	
2-Methylnaphthalene		ND	ug/L	10	06/19/95	EPA 8270	MSR	91-57-6	
Hexachlorocyclopent	tadiene	ND	ug/L	10	06/19/95	EPA 8270	MSR	77-47-4	
2.4.6-Trichloropher		ND	ug/L	10		EPA 8270	MSR	88-06-2	
2.4.5-Trichloropher		ND	ug/L	50	06/19/95	EPA 8270	MSR	95-95-4	
2.Chloronaphthalene	•	ND	ug/L	10	06/19/95	EPA 8270	MSR	91-58-7	

DATE: 07/12/95

PAGE: 4

PACE Project Number: 605096

Client Project ID: Eaker AFB - 0114

PACE Sample No: Client Sample ID: 60354297

Date Collected:

06/08/95

E11-GW-MW1121

Date Received: 06/09/95

Parameters	Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
2-Nitroaniline	ND	ug/L	50	06/19/95	EPA 8270	MSR	88-74-4	
Dimethylphthalate	ND	ug/L	10	06/19/95	EPA 8270	MSR	131-11-3	
Acenaphthylene	ND	ug/L	10	06/19/95	EPA 8270	MSR	208-96-8	
2,6-Dinitrotoluene	ND	ug/L	10	06/19/95	EPA 8270	MSR	606-20-2	
3-Nitroaniline	ND	ug/L	50	06/19/95	EPA 8270	MSR	99-09-2	
Acenaphthene	ND	ug/L	10	06/19/95	EPA 8270	MSR	83-32-9	
2.4-Dinitrophenol	ND	ug/L	50	06/19/95	EPA 8270	MSR	51-28-5	
4-Nitrophenol	ND	ug/L	50	06/19/95	EPA 8270	MSR	100-02-7	
Dibenzofuran	ND	ug/L	10	06/19/95	EPA 8270	MSR	132-64-9	
2.4-Dinitrotoluene	ND	ug/L	10	06/19/95	EPA 8270	MSR	121-14-2	
Diethylphthalate	ND	ug/L	10	06/19/95	EPA 8270	MSR	84-66-2	
4-Chlorophenyl-phenylether	ND	ug/L	10	06/19/95	EPA 8270	MSR	7005-72-3	
Fluorene	ND	ug/L	10	06/19/95	EPA 8270	MSR	86-73-7	
4-Nitroaniline	ND	ug/L	50	06/19/95	EPA 8270	MSR	100-01-6	
<pre>6-Dinitro-2-methylphenol</pre>	ND	ug/L	50	06/19/95	EPA 8270	MSR	534-52-1	
<u>Mitrosodiphenylamine</u>	ND	ug/L	10	06/19/95	EPA 8270	MSR	86-30-6	
ophenyl-phenylether	ND	ug/L	10	06/19/95	EPA 8270	MSR	101-55-3	
lorobenzene	ND	ug/L	10	06/19/95	EPA 8270	MSR	118-74-1	
Pentachlorophenol	ND	ug/L	50	06/19/95	EPA 8270	MSR	87-86-5	
Phenanthrene	ND	ug/L	10	06/19/95	EPA 8270	MSR	85-01-8	
Anthracene	ND	ug/L	10	06/19/95	EPA 8270	MSR	120-12-7	
Di-n-butylphthalate	ND	ug/L	10	06/19/95	EPA 8270	MSR	84-74-2	
Fluoranthene	ND	ug/L	10	06/19/95	EPA 8270	MSR	206-44-0	
Pyrene	ND	ug/L	10	06/19/95	EPA 8270	MSR	129-00-0	
Butylbenzylphthalate	ND .	ug/L	10	06/19/95	EPA 8270	MSR	85-68-7	
3,3'-Dichlorobenzidine	ND	ug/L	20	06/19/95	EPA 8270	MSR	91-94-1	
Benzo(a)anthracene	ND	ug/L	10	06/19/95	EPA 8270	MSR	56-55-3	
Chrysene	ND	ug/L	10	06/19/95	EPA 8270	MSR	218-01-9	
bis(2-Ethylhexyl)phthalate	ND	ug/L	10	06/19/95	EPA 8270	MSR	117-81-7	
Di-n-octylphthalate	ND	ug/L	10	06/19/95	EPA 8270	MSR	117-84-0	
Benzo(b)fluoranthene	ND	ug/L	10	06/19/95	EPA 8270	MSR	205-99-2	
Benzo(k)fluoranthene	ND	ug/L	10	06/19/95	EPA 8270	MSR	207-08-9	
Benzo(a)pyrene	ND	ug/L	10	06/19/95		MSR	50-32-8	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10	06/19/95	EPA 8270 ·	MSR	193-39-5	
Dibenz(a,h)anthracene	ND	ug/L	10	06/19/95	EPA 8270	MSR	53-70-3	
Benzo(g.h,i)perylene	ND	ug/L	10	06/19/95		MSR	191-24-2	
Nitrobenzene-d5 (S)	70	X		06/19/95			4165-60-0	
2-Fluorobiphenyl (S)	53	*		06/19/95	EPA 8270	MSR	321-60-8	
Terphenyl-d14 (S)	65	x		06/19/95	EPA 8270	MSR	1718-51-0	
Pheno1-d5 (S)	27	*		06/19/95	EPA 8270	MSR	13127-88-3	

DATE: 07/12/95

PAGE: 5

PACE Project Number: 605096

PACE Sample No: Client Sample ID:	60354297 E11-GW-M	11121		Date Collector Date Rece		5/08/95 5/09/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
2-Fluorophenol (S)		39	*		06/19/95	EPA 8270	MSR	367-12-4	•••••
2.4.6-Tribromophen	o1 (S)	59	*		06/19/95	EPA 8270	MSR	118-79-6	
Date Extracted					06/12/95				

DATE: 09/12/95 PAGE: 86

PACE Project Number: 605941

PACE Sample No: 60433109			Date Colle		3/15/95			
Client Sample ID: E11-GW-MW	<i>i</i> 111		Date Rece	ived: 0	3/16/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
Metals							•	
Lead, AAS Furnace								
Lead	ND	ug/L	5	08/31/95	EPA 7421	SMS	7439-92-1	
Date Digested		-		08/17/95				
Wet Chemistry								
Chloride(AutoFerricyanide)								
Chloride	1	mg/L	1	08/17/95	EPA 325.2	MOC		
Total Dissolved Solids								
Total Dissolved Solids	206	mg/L	5	08/18/95	EPA 160.1	MJW		
Alkalinity, Total								
Alkalinity, Total	170	mg/L	1	08/23/95	EPA 310.1	MJW		
Phosphorus, Total								
Phosphorus	0.97	mg/L	0.05	08/30/95	EPA 365.2	EAH	7723-14-0	
Sulfate, Total								
Sulfate, Total	1	mg/L	1	08/31/95	EPA 375.3	EAH		
Fluoride								
Fluoride	0.2	mg/L	0.1	09/01/95	EPA 340.2	EAH	16984-48-8	
Total Suspended Solids								
htal Suspended Solids ogen, Nitrite	6	mg/L	5	08/18/95	EPA 160.2	MJW		
gen, Nitrite	0.1	mg/L	0.01	08/17/95	EPA 354.1	WOC		
gen, Nitrate	ND.	mg/L	0.01		EPA 354.1	MOC		
gen, NO2 plus NO3, Wate	***	mg/L	0.01		EPA 354.1	MOC		
GC Volatiles								
TPH, Water, Purge by Mod. 8015								
Total Petroleum Hydrocarbons		mg/L	2.5	08/24/95	EPA Mod 8015 pur	DJM		
a,a,a-Trifluorotoluene (S)	112	*		08/24/95		DJM	2164-17-2	
Aromatic Volatile Organics							· ·· ·	
Benzene	4100	ug/L	100	08/23/95	EPA 8020	DJM	71-43-2	
Ethyl Benzene	2000	ug/L	100	08/23/95		DJM	100-41-4	
Toluene	11000	ug/L	100	08/23/95		DJM	108-88-3	
Xylene (Total)	14000	ug/L	250	08/23/95		DJM	1330-20-7	
a,a,a-Trifluorotoluene (S)	119	*		08/23/95		DJM	2164-17-2	
.,.,				,,		_ 		

DATE: 07/12/95

PAGE: 6

PACE Project Number: 605096

PACE Sample No: 60354			Date Colle		5/08/95 5/09/95			
Client Sample ID: E11-G	W-MW1111		Date Rece	ivea: u	כעועט			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals								
Lead, AAS Furnace			_	04 404 405	504 7/04	TSP	7439-92-1	
Lead	ND	ug/L	5		EPA 7421	134	/439-92-1	
Date Digested				06/21/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.02	mg/L	0.01	06/09/95		WOC		
Nitrogen, Nitrate	0.01	mg/L	0.01	06/09/95		MOC		
Nitrogen, NO2 plus NO3, N	Water 0.03	mg/L	0.01	06/09/95	EPA 354.1	MOC		
Alkalinity, Total	•							
Alkalinity, Total	220	mg/L	1	06/14/95	EPA 310.1	MJW		
Phosphorus, Total								
Phosphorus	1.16	mg/L	0.05	07/06/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total								
Sulfate, Total	ND	mg/L	1	07/11/95	EPA 375.3	MJW		2
Fluoride								
Fluoride	0.2	mg/L	0.1	06/26/95	EPA 340.2	GMF	16984-48-8	
Total Suspended Solids								
Total Suspended Solids	17	mg/L	5	06/12/95	EPA 160.2	RST		
Chloride(AutoFerricyanide)								
Chloride	ND	mg/L	1	06/30/95	EPA 325.2	WOC		
Total Dissolved Solids								
Total Dissolved Solids	214	mg/L	5	06/12/95	EPA 160.1	RST		
Bromide								_
Bromide	ND	mg/L	0.5	06/13/95	EPA 320.1	MOC		
GC Volatiles								
TPH, Water, Purge by Mod. 8	3015							
Total Petroleum Hydrocarb	ons 21.2	mg/L	0.5	06/16/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluene (S	3) 413	×		06/16/95	EPA Mod 8015 pur	TAT	2164-17-2	3
Aromatic Volatile Organics								
Benzene	5000	ug/L	100	06/16/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	2800	ug/L	100	06/16/95	EPA 8020	TAT	100-41-4	
Toluene	14000	ug/L	100	06/16/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	15000	ug/L	250	06/16/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluene (S	126	x		06/16/95	EPA 8020	TAT	2164-17-2	

DATE: 07/05/95 PAGE: 56

PACE Project Number: 604906

	0350584 11-gw-mw11	114		Date Co Date Re		6/05/95 6/06/95			
Parameters		Results	Units	PRL	Analyzed	Method	Anal	yst CAS#	Footnotes
Metals									
Lead, AAS Furnace									
Lead		11.7	ug/L	5		EPA 7421	KVU	7439-92-1	
Date Digested					06/12/95				
Wet Chemistry									
Nitrogen, Nitrite									
Nitrogen, Nitrite		0.2	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Nitrogen, Nitrate		ND	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Nitrogen, NO2 plus NO	3, Water	ND	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Total Dissolved Solids	-	• `							
Total Dissolved Solid	is	225	mg/L	5	06/12/95	EPA 160.1	RST		
Alkalinity, Total									
Alkalinity, Total		83	mg/L	1	06/13/95	EPA 310.1	MJW		
Phosphorus, Total			_						
Phosphorus		0.19	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total			0.						
Sulfate, Total		102	mg/L	1	06/26/95	EPA 375.3	GMF		
= uoride									
luoride		0.2	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
Suspended Solids									
Suspended Solid	is	827	mg/L	5	06/06/95	EPA 160.2	RST		
c e(AutoFerricyani					,,				
emoride		24	mg/L	1	06/12/95	EPA 325.2	WOC		
Bromide			3, -	•	,,				
Bromide		5.09	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles					00, 10, 10	2 2201.			
TPH, Water, Purge by Mo	d. 8015								
Total Petroleum Hydro		ND	mg/L	0.5	06/14/95	EPA Mod 8015 pur	TAT		
a,a,a-Trifluorotoluen		129	%			EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organ						noo oo is pui	171	=107 II E	
Benzene	· · - •	ND	ug/L	2	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene		ND	ug/L	2		EPA 8020	HMF	100-41-4	
Toluene		ND	ug/L	2	06/14/95	_ · · · · -	HMF	108-88-3	
Xylene (Total)		ND	ug/L ug/L	5	. 06/14/95		HMF	1330-20-7	
a,a,a-Trifluorotoluen	(2)	115	ug/L %	,		EPA 8020			
a,a,a ii ii tuoi ototuen	E (3)	כוו	^		00/14/93	EPA OUZU	HMF	2164-17-2	

DATE: 07/05/95 PAGE: 57

PACE Project Number: 604906 Client Project ID: Eaker AFB - 0114

			Date Collected: 06/05/95 Date Received: 06/06/95					
E11-GW-MW11	15		Date Recei	vea: U	כע /סט /כ			
	Results	Units	PRL	Analyzed	Method	Analys	st CAS#	Footnotes
			•		•			
			_				7/70 00 4	
	ND	ug/L	5		EPA 7421	KVU	7439-92-1	
				06/12/95				
	0.18	mg/L	0.01					
	ND	mg/L	0.01					
i03. Water	0.16	mg/L	0.01	06/06/95	EPA 354.1	MOC		
	200	mq/L	5	06/12/95	EPA 160.1	RST		
	81	ma/L	1	06/13/95	EPA 310.1	MJW		
	•							
	n 10	ma/l	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
	0.17	119/ -	0000	,,				
	57	ma/i	1	06/26/95	EPA 375.3	GMF		
	<i>J.</i>	mg/ L	•	00, 20, 72				
	n 2	ma/i	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
	0.2	mg/ c	•••	00, 10, 11				_
	9 1	ma/i	5	06/06/95	EPA 160.2	RST		
	0.	iig/ L	•	00,00,75	LIA IOOIL			(600)
ide	0	ma /i	1	06/12/95	FPA 325.2	HOC		
	,	113/ L	•	00, 12, 73	2.7. 22.2			
	0.82	ma/l	0.5	06/13/95	FPA 320.1	MOC		
	V.UL	mg/ L	0.5	00, 10, 75	C. N. D.C. 1			
od 8015								
	ND	ma/l	0.5	06/14/95	EPA Mod 8015 pur	TAT		
							2164-17-2	11
				,,				
	MD	ua/L	2	06/14/95	EPA 8020	TAT	71-43-2	
		•						
		~ .						
		•	•					
	dod. 8015 locarbons locarbons locarbons	Results O.18 ND O.18 ND O.16 S Ids Ids Ids Ids Ids Ids Ids Ids Ids Ids	Results Units	Results Units PRL ND	Results Units PRL Analyzed ND ug/L 5 06/23/95 06/12/95 0.18 mg/L 0.01 06/06/95 ND mg/L 0.01 06/06/95 103, Water 0.16 mg/L 0.01 06/06/95 104 200 mg/L 5 06/12/95 81 mg/L 1 06/13/95 0.19 mg/L 1 06/26/95 57 mg/L 1 06/26/95 0.2 mg/L 0.1 06/06/95 105 81 mg/L 1 06/26/95 106 81 mg/L 5 06/06/95 107 mg/L 1 06/13/95 108 81 mg/L 5 06/06/95 109 mg/L 1 06/16/95 100 0.82 mg/L 0.5 06/13/95 100 0.82 mg/L 0.5 06/13/95 100 0.82 mg/L 0.5 06/14/95 100 0.82 mg/L 0.5 06/14/95 100 0.82 06/14/95	Results Units PRL Analyzed Method ND ug/L 5 06/23/95 EPA 7421 0.18 mg/L 0.01 06/06/95 EPA 354.1 ND mg/L 0.01 06/06/95 EPA 354.1 ND mg/L 0.01 06/06/95 EPA 354.1 O.16 mg/L 0.01 06/06/95 EPA 354.1 Sids 200 mg/L 5 06/12/95 EPA 160.1 81 mg/L 1 06/13/95 EPA 310.1 0.19 mg/L 0.05 06/21/95 EPA 365.2 57 mg/L 1 06/26/95 EPA 365.2 57 mg/L 1 06/26/95 EPA 375.3 0.2 mg/L 0.1 06/16/95 EPA 340.2 Sids 81 mg/L 5 06/06/95 EPA 340.2 Sids 81 mg/L 5 06/06/95 EPA 365.2 O.82 mg/L 0.5 06/13/95 EPA 325.2 0.82 mg/L 0.5 06/13/95 EPA 320.1 Odd. 8015 ocarbons ND mg/L 0.5 06/14/95 EPA Mod 8015 pur me (S) 149 % 06/14/95 EPA Mod 8015 pur me (S) 149 % 06/14/95 EPA Mod 8015 pur me (S) 149 % 06/14/95 EPA Mod 8015 pur me (S) ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND ug/L 2 06/14/95 EPA 8020 ND Ug/L 2 ND Ug/L 2	ND	ND

DATE: 07/05/95

PAGE: 58

PACE Project Number: 604906

PACE Sample No: 60350600			Date Col		6/05/95			
Client Sample ID: E11-GW-M	W1116		Date Ke	eceived: 0	6/06/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals								
Lead, AAS Furnace								
Lead	ND	ug/L	5		EPA 7421	KVU	7439-92-1	
Date Digested				06/12/95				
Wet Chemistry								
Nitrogen, Nitrite								
Nitrogen, Nitrite	0.02	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Nitrogen, Nitrate	ND	ing/L	0.01	06/06/95	EPA 354.1	MOC		
Nitrogen, NO2 plus NO3, Wat	er 0.02	mg/L	0.01	06/06/95	EPA 354.1	WOC		
Total Dissolved Solids		-						
Total Dissolved Solids	189	mg/L	5	06/12/95	EPA 160.1	RST		
Alkalinity, Total								
Alkalinity, Total	120	mg/L	1	06/13/95	EPA 310.1	MJW		
Phosphorus, Total			•	•				
Phosphorus	0.19	mg/L	0.05	06/21/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total	••••							
Sulfate, Total	52	mg/L	1	06/26/95	EPA 375.3	GMF		
riuoride				70, 20, 70	2			
'uoride	0.3	mg/L	0.1	06/16/95	EPA 340.2	GMF	16984-48-8	
Suspended Solids	0.5	mg/ c	•••	00, 10, 73	E, N 540.E	U	10704 40 0	
Suspended Solids	ND	mg/L	5	06/06/05	EPA 160.2	RST		
e(AutoFerricyanide)	NU	Hg/L	•	00,00,73	EFA 100.2	K21		
oride	3	mg/L	1	06/12/05	EPA 325.2	WOC		
Bromide	3	ilig/ L	'	00/12/93	EFR JEJ.E	WOL		
Bromide	ND	mg/L	0.5	06/13/05	EPA 320.1	WOC		
GC Volatiles	RU	mg/ c	0.5	00/13/93	EPA 320.1	WOC		
TPH, Water, Purge by Mod. 8015		(1	0.5	04/11/05	FDA Mad 901E	***		
Total Petroleum Hydrocarbons	s ND 129	mg/L %	0.5		EPA Mod 8015 pur	TAT	24// 47 2	
a,a,a-Trifluorotoluene (S)	127	*		UO/ 14/93	EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organics	MD		2	06 141 105	FD4 8030		74 /7 3	
Benzene	ND	ug/L	2	06/14/95		HMF	71-43-2	
Ethyl Benzene	ND	ug/L	2		EPA 8020	HMF	100-41-4	
Toluene	ND	ug/L	2	, .	EPA 8020	HMF	108-88-3	
Xylene (Total)	ND	ug/L	5		EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotoluene (S)	119	X		06/14/95	EPA 8020	HMF	2164-17-2	

DATE: 07/05/95

PAGE: 60

PACE Project Number: 604906

· · · · · · · · · · · · · · · · · · ·	350626			Date Colle		5/05/95			
Client Sample ID: E1	1-GW-MW1119		•	Date Rece	ived: 0	5/06/95			
Parameters	R	esults	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
Metals									
Lead, AAS Furnace									
Lead	N:	D	ug/L	5	06/23/95	EPA 7421	KVU	7439-92-1	
Date Digested					06/12/95				
Wet Chemistry					,,				
Chloride(AutoFerricyanic	de)								
Chloride	9		mg/L	1	06/12/95	EPA 325.2	WOC		•
Phosphorus, Total	,		₩ 9 / L	•	00, 12, 73	C. A. SESTE			
Phosphorus	•	.48	mg/L	0.05	04/21/05	EPA 365.2	GMF	7723-14-0	
Total Dissolved Solids	U	.40	Hg/L	0.05	00/21/93	EPA 303.2	Omr	1123-14-0	
	. 7·	17	()	5	04/13/05	EPA 160.1	RST		
Total Dissolved Solids	,	17	mg/L	,	00/12/95	EPA 100.1	KSI		
Alkalinity, Total	63	•	//		04 117 105	rn4 740 4	M 11 I		
Alkalinity, Total	0.	5 U	mg/L	1	00/13/93	EPA 310.1	MJW		
Fluoride Fluoride	•	7	//	0.1	04/14/05	FD4 7/0 2	CHE	4400/ /0 0	
	0.	.3	mg/L	0.1	00/10/93	EPA 340.2	GMF	16984-48-8	
Total Suspended Solids	. 20	,	mm /1	5	04 104 105	EPA 160.2	007		
Total Suspended Solids	. 21	,	mg/L	2	06/06/95	EPA 100.2	RST		
Sulfate, Total	86		()	1	04 /24 /05	ED4 775 7	GMF		
Sulfate, Total	60	•	mg/L	•	06/26/93	EPA 375.3	GMF		
Nitrogen, Nitrite	•	02	4	0.01	06/06/95	FDA 75/ 4	WOC		
Nitrogen, Nitrite			mg/L	0.01		EPA 354.1			
Nitrogen, Nitrate	ND ND		mg/L			EPA 354.1	MOC		
Nitrogen, NO2 plus NO3 Bromide	, water u.	01	mg/L	0.01	00/00/95	EPA 354.1	MOC		
	NO		"	۸.	0/ /47 /05	504 700 4			
Bromide	ND		mg/L	0.5	06/13/93	EPA 320.1	WOC		
GC Volatiles	0045								
TPH, Water, Purge by Mod									
Total Petroleum Hydroc			mg/L	0.5	06/14/95		TAT	****	
a,a,a-Trifluorotoluene		6	X		06/14/95	EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organi				_					
Benzene	ND		ug/L	2	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene	ND		ug/L	2	06/14/95	EPA 8020	HMF	100-41-4	
Toluene .	ND		ug/L	2	06/14/95	EPA 8020	HMF	108-88-3	
Xylene (Total)	ND		ug/L	5	06/14/95	EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotoluene	(S) 12	7	X		06/14/95	EPA 8020	HMF	2164-17-2	

DATE: 07/12/95 PAGE: 7

PACE Project Number: 605096

PACE Sample No: 60	354313			Date Collec	ted: 06	5/08/95			
	11-GW-MW11	20		Date Recei		5/09/95			
at rent dampte 191									
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
Metals			•••••						
Lead, AAS Furnace									
Lead		ND	ug/L	5	06/26/95	EPA 7421	TSP	7439-92-1	
Date Digested					06/21/95				
Wet Chemistry									
Nitrogen, Nitrite									
Nitrogen, Nitrite		ND	mg/L	0.01	06/09/95	EPA 354.1	MOC		
Nitrogen, Nitrate		ND	mg/L	0.01		EPA 354.1	WOC		
Nitrogen, NO2 plus NO	3. Water	ND	mg/L	0.01	06/09/95	EPA 354.1	WOC		
Alkalinity, Total	,								
Alkalinity, Total		240	mg/L	1	06/14/95	EPA 310.1	MJW		
Phosphorus, Total									
Phosphorus		0.74	mg/L	0.05	07/06/95	EPA 365.2	GMF	7723-14-0	
Sulfate, Total					•				
Sulfate, Total		2.5	mg/L	1	07/11/95	EPA 375.3	MJW		4
Fluoride									
Fluoride		0.2	mg/L	0.1	06/26/95	EPA 340.2	GMF	16984-48-8	
Total Suspended Solids			-						
Total Suspended Solid	is	8	mg/L	5	06/12/95	EPA 160.2	RST		
ride(AutoFerricyani									
ide		ND	mg/L	1	06/30/95	EPA 325.2	MOC		
Trimes ssolved Solids			•						
Dissolved Solid	is	246	mg/L	5	06/12/95	EPA 160.1	RST		
Brommue			•					•	
Bromide		ND	mg/L	0.5	06/13/95	EPA 320.1	WOC		
GC Volatiles									
TPH, Water, Purge by Mo	d. 8015								
Total Petroleum Hydro		ND	mg/L	0.5	06/16/95	EPA Mod 8015 pur	TAT		
a.a.a-Trifluorotoluen		121	% -			EPA Mod 8015 pur	TAT	2164-17-2	
Aromatic Volatile Organ					,,				
Benzene		ND	ug/L	2	06/16/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene		ND .	ug/L	2	06/16/95		TAT	100-41-4	
Toluene		ND	ug/L	2	06/16/95		TAT	108-88-3	
Xylene (Total)		ND	ug/L	5	06/16/95		TAT	1330-20-7	
a,a,a-Trifluorotoluen	e (S)	100	%	•	06/16/95		TAT	2164-17-2	
a,a,a ii ii tuoi ototuei	(0)	,	~		,, , ,	C. 7. 5020			

DATE: 05/09/95

PAGE: 39

PACE Project Number: 604183

PACE Sample No:	60286259		Date Col		4/08/95 4/11/05			
Client Sample ID:	E11-SU-MW1121A		Date Re	ceived: 04	4/11/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	∕st CAS#	Footnotes
Metals								
Mercury, CVAAS								
Mercury	0.123	mg/kg	0.12	04/28/95	EPA 7471	MHT	7439-97-6	
Arsenic, AAS Furnace	!							
Arsenic	9.23	mg/kg	1.2	04/25/95	EPA 7060	JAH	7440-38-2	
Date Digested				04/21/95				
Lead, AAS Furnace	•							
Lead	11.4	mg/kg	1.2	04/26/95	EPA 7421	Jah	7439-92-1	
Date Digested				04/21/95				
Antimony, AAS Furnac	e							
Antimony	ND	mg/kg	1.2	04/28/95	EPA 7041	JAH	7440-36-0	
Date Digested				04/21/95		-		
Thallium, AAS Furnac	e							
Thallium	ND	mg/kg	0.598	04/28/95	EPA 7841	MHT	7440-28-0	
Date Digested				04/21/95				
Metals, ICP								
Aluminum	3010	mg/kg	8.97	04/25/95	EPA 6010	Jah	7429-90-5	
Barium	43.2	mg/kg	0.478	04/25/95	EPA 6010	JAH	7440-39-3	
Beryllium	0.307	mg/kg	0.12	04/25/95	EPA 6010	JAH	7440-41-7	
Cadmium	ND	mg/kg	0.598	04/25/95	EPA 6010	JAH	7440-43-9	
Calcium	1820	mg/kg	12	04/25/95	EPA 6010	JAH	7440-70-2	
Chromium	8.74	mg/kg	0.837	04/25/95	EPA 6010	JAH	7440-47-3	
Cobalt	9.03	mg/kg	0.837	04/25/95	EPA 6010	JAH	7440-48-4	
Copper	31.6	mg/kg	1.2	04/25/95	EPA 6010	JAH	7440-50-8	
Iron	6130	mg/kg	4.78	04/25/95	EPA 6010	JAH	7439-89-6	
Magnesium	983	mg/kg	5.98	04/25/95	EPA 6010	JAH	7439-95-4	
Manganese	88.7	mg/kg	0.837	04/25/95	EPA 6010	Jah	7439-96-5	
Molybdenum	ND	mg/kg	2.39	04/25/95	EPA 6010	JAH	7439-98-7	
Nickel	36.5	mg/kg	3.59	04/25/95	EPA 6010	Jah	7440-02-0	
Potassium	379	mg/kg	120	04/25/95	EPA 6010	JAH	7440-09-7	
Silver	ND	mg/kg	0.837	04/25/95	EPA 6010	JAH	7440-22-4	
Sodium	62.1	mg/kg	17.9	04/25/95	EPA 6010	JAH	7440-23-5	
Vanadium	31.1	mg/kg	1.43	04/25/95	EPA 6010	JAH	7440-62-2	
Zinc	44.7	mg/kg	2.39	04/25/95	EPA 6010	Jah	7440-66-6	
Date Digested				04/21/95				
Selenium, AAS Furnace	:							
Selenium	0.658	mg/kg	0.598	05/02/95	EPA 7740	JAH	7782-49-2	
Date Digested				04/21/95				
let Chemistry								
Nitrogen, Nitrate plu	ıs Nitrite							

60286259

PACE Sample No:

REPORT OF LABORATORY ANALYSIS

DATE: 05/09/95

PAGE: 40

PACE Project Number: 604183

04/08/95

Client Project ID: Eaker AFB - 0114

Client Sample ID: E1	1-SU-MW11	121A		Date Rece	ived: 04	1/11/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
Nitrogen, NO2 plus NO Total Organic Carbon in		2.39	mg/kg	1.2	04/26/95	EPA 353.2	WOC		
Total Organic Carbon Microbiological Test So		ND	mg/kg	20	04/24/95	ASA 90-3	KEZ	7440-44-0	3
Standard Plate Count Date Prepared		280	col/g	1	04/19/95 04/19/95	Standard Methods 10	WOC		
Phosphorus, Total, Soil Phosphorus		973	mg/kg	119	05/05/95	EPA 365.2 Modified	GMF	7723-14-0	
Organics		313	iid, vâ		00,00,00				
Moisture									
Percent Moisture		16.4	X		04/12/95		GCZ		
GC Volatiles									
TPH, Soil, Purge by Mod			41	•	04/10/05	ED4 M-1 001E	LME		
Total Petroleum Hydro		ND	mg/kg	6		EPA Mod 8015 ext	HMF	2164-17-2	
,a-Trifluorotoluen		90	x		04/13/32	EPA Mod 8015 ext	HMF	2164-17-2	
A Volatile Organ	105	ND	ua/ka	2.3	04/20/05	EPA 8020	TAT	71-43-2	
Euro Benzene		ND ND	ug/kg ug/kg	2.3	04/20/95		TAT	100-41-4	
Toluene		ND	ug/kg	2.3	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)		ND	ug/kg	5.8	04/20/95		TAT	1330-20-7	
a.a.a-Trifluorotoluen	a (S)	119	ug/kg ∦	3.0		EPA 8020	TAT	2164-17-2	
GC	C (3)	117	•		01,20,30	LI // 0020	••••		
TPH, Soil, Ext. by Mod.	8015								
Mineral Spirits		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Gasoline		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Jet Fuel		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Diesel Fuel		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Fuel Oil		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Motor Oil		ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		•
Total Petroleum Hydro	carbons	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Di·n·octylphthalate (S)	100	x		04/16/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)		92	x .		04/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted			•		04/14/95	•			
GC/MS Semi-VOA									
Semivolatile Organics									
Pheno1		ND	ug/kg	330	04/21/95	EPA 8270	MSR	108-95-2	
bis(2-Chloroethyl)eth	er	ND	ug/kg	330	04/21/95	EPA 8270	MSR	111-44-4	
2-Chlorophenol		ND	ug/kg	330		EPA 8270	MSR	95-57-8	
3-Dichlorobenzene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	541-73-1	

Date Collected:

DATE: 05/09/95

PAGE: 41

PACE Project Number: 604183

PACE Sample No:	60286259			Date Coll		04/08/95			
Client Sample ID:	E11-SU-MW	1121A		Date Rec	eived:	04/11/95			
Parameters		Results	Units	PRL	Analyze	d Method	Analy	/st CAS#	Footnotes
1.4-Dichlorobenz	ene	ND ND	ug/kg	330	04/21/9	5 EPA 8270	MSR	106-46-7	
Benzyl Alcohol		ND	ug/kg	650	04/21/9	EPA 8270	MSR	100-51-6	
1,2-Dichlorobenz	ene	ND	ug/kg	330	04/21/95	5 EPA 8270	MSR	95-50-1	
2-Methylphenol		ND	ug/kg	330	04/21/95	EPA 8270	MSR	9 5-48-7	
bis(2-Chloroisop	ropyl)ether	ND	ug/kg	330	04/21/95	EPA 8270	MSR	- 39638-32-9	
4-Methylphenol	1.	ND	ug/kg	330	04/21/95	EPA 8270	MSR	106-44-5	
N-Nitroso-di-n-pi	opvlamine	ND	ug/kg	330	04/21/95		MSR	621-64-7	
Hexachloroethane		ND	ug/kg	330	04/21/95		MSR	67-72-1	
Nitrobenzene		ND	ug/kg	330	04/21/95		MSR	98-95-3	
Isophorone		ND	ug/kg	330	04/21/95		MSR	78-59-1	
2-Nitrophenol		ND	ug/kg	330	04/21/95		MSR	88-75-5	
2,4-Dimethylpheno	1	ND	ug/kg	330	04/21/95		MSR	105-67-9	
Benzoic Acid	•	ND	ug/kg	1600	04/21/95		MSR	65-85-0	
bis(2-Chloroethox	v)methane	ND	ug/kg	330	04/21/95		MSR	111-91-1	
2,4-Dichloropheno	=	ND	ug/kg	330	04/21/95		MSR	120-83-2	
1,2,4-Trichlorobe		ND	ug/kg	330	04/21/95		MSR	120-82-1	
Naphthalene		ND	ug/kg	330	04/21/95		MSR	91-20-3	
4-Chloroaniline		ND	ug/kg	650	04/21/95		MSR	106-47-8	
Hexachlorobutadie	ne	ND	ug/kg	330	04/21/95		MSR	87-68-3	
4-Chloro-3-methyl	phenol	ND	ug/kg	650		EPA 8270	MSR	59-50-7	
2-Methylnaphthale	•	ND	ug/kg	330	04/21/95		MSR	91-57-6	
Hexachlorocyclope		ND	ug/kg	330	04/21/95		MSR	77-47-4	
2.4.6-Trichloroph		ND	ug/kg	330	04/21/95	EPA 8270	MSR	88-06-2	
2,4,5-Trichloroph		ND	ug/kg	330		EPA 8270	MSR	95-95-4	
2-Chloronaphthale		ND	ug/kg	330	04/21/95	EPA 8270	MSR	91-58-7	
2-Nitroaniline		ND	ug/kg	1600	04/21/95		MSR	88-74-4	
Dimethylphthalate		ND	ug/kg	330	04/21/95		MSR	131-11-3	
Acenaphthylene		ND	ug/kg	330	04/21/95		MSR	208-96-8	
2,6-Dinitrotoluen	e	ND	ug/kg	330	04/21/95		MSR	606-20-2	
3-Nitroaniline		ND	ug/kg	1600	04/21/95		MSR	99-09-2	
Acenaphthene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	83-32-9	
2,4-Dinitrophenol		ND	ug/kg	1600	04/21/95	EPA 8270	MSR	51-28-5	
4-Nitrophenol		ND	ug/kg	1600		EPA 8270	MSR	100-02-7	
Dibenzofuran		ND	ug/kg	330		EPA 8270	MSR	132-64-9	
2,4-Dinitrotoluen	2	ND	ug/kg	330		EPA 8270	MSR	121-14-2	
Diethylphthalate		ND	ug/kg	330		EPA 8270	MSR	84-66-2	
4-Chlorophenyl-ph	enylether	ND	ug/kg	330		EPA 8270	MSR	7005-72-3	
Fluorene	*	ND	ug/kg	330		EPA 8270	MSR	86-73-7	
4-Nitroaniline		ND	ug/kg	1600	04/21/95		MSR	100-01-6	
4.6-Dinitro-2-met	hvlphenol	ND	ug/kg	1600		EPA 8270	MSR	534-52-1	

C

REPORT OF LABORATORY ANALYSIS

DATE: 05/09/95 PAGE: 42

PACE Project Number: 604183

PACE Sample No:	60286259			Date Collec	ted: 04	/08/95			
Client Sample ID:	E11-SU-MW1	121A		Date Recei	ved: 04	3/11/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
		ND.	/ba	220	04/21/95	EPA 8270	MSR	86-30-6	••••••
N-Nitrosodipheny		ND	ug/kg	330	04/21/95	EPA 8270	MSR	101-55-3	
4-Bromophenyl-ph	-	ND	ug/kg	330	04/21/95	EPA 8270	MSR	118-74-1	
Hexachlorobenzen	_	ND	ug/kg	330	04/21/95	EPA 8270	MSR	87-86-5	
Pentachloropheno	1	ND	ug/kg	1600			nsk MSR		
Phenanthrene		ND	ug/kg	330	04/21/95			85-01-8	
Anthracene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	120-12-7	
Di-n-butylphthal	ate	ND	ug/kg	330	04/21/95	EPA 8270	MSR	84-74-2	
Fluoranthene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	206-44-0	
Pyrene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	129-00-0	
Butylbenzylphtha		ND	ug/kg	330	04/21/95	EPA 8270	MSR	85-68-7	
3,3°-Dichloroben	zidine	ND	ug/kg	650	04/21/95	EPA 8270	MSR	91-94-1	
Benzo(a)anthrace	ne	ND	ug/kg	330	04/21/95	EPA 8270	MSR	56-55-3	
Chrysene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	218-01-9	
bis(2-Ethylhexyl)phthalate	360	ug/kg	330	04/21/95	EPA 8270	MSR	117-81-7	
'-n-octylphthal	ate	ND	ug/kg	330	04/21/95	EPA 8270	MSR	117-84-0	
(b) fluorant	hene	ND	ug/kg	330	04/21/95	EPA 8270	MSR	205-99-2	
k)fluorant	hene	ND	ug/kg	330	04/21/95	EPA 8270	MSR	207-08-9	
a)pyrene		ND	ug/kg	330	04/21/95	EPA 8270	MSR	50-32-8	
Indeno(1.2,3-cd)	pyrene	ND	ug/kg	330	04/21/95	EPA 8270	MSR	193-39-5	
Dibenz(a,h)anthr	acene	ND	ug/kg	330	04/21/95	EPA 8270	MSR	53-70-3	
Benzo(g,h,i)pery	lene	ND	ug/kg	330	04/21/95	EPA 8270	MSR	191-24-2	
Nitrobenzene-d5		61	x		04/21/95	EPA 8270	MSR	4165-60-0	
2-Fluorobiphenyl	(S)	68	*		04/21/95	EPA 8270	MSR	321-60-8	
Terphenyl-d14 (S		78	*		04/21/95	EPA 8270	MSR	1718-51-0	
Pheno1-d5 (S)		62	*		04/21/95	EPA 8270	MSR	13127-88-3	
2-Fluorophenol (5)	84	*		04/21/95	EPA 8270	MSR	367-12-4	
2.4.6-Tribromoph		106	*		04/21/95	EPA 8270	MSR	118-79-6	
Date Extracted					04/14/95				
					=				

April 24, 1995
Report No.: 0004022
Section A Page 1

LABORATORY ANALYSIS REPORT

CLIENT NAME: PACE INCORPORATED-KANSAS

ADDRESS: 9608 LOIRET BOULEVARD

LENEXA, KS 66219-

ATTENTION: CHRISTINA SCHARFF

SAMPLE ID: 60286259

SAMPLE NO: H296300

LIMS CLIENT: 0719 0613

PACE PROJECT: 604183

PACE CLIENT: 000560

. P.O. NO: VERBAL

DATE SAMPLED: 08-APR-95 0832

DATE RECEIVED: 14-APR-95

PROJECT MANAGER: Debbie Proctor

TEST

LN CODE

DETERMINATION

RESULT UNITS

1 I107S Carbon, Total Organic (C)

0.33 %

COMMENTS: Results are reported on an "as received" basis without correction for percent

moisture unless previously specified.

DATE: 09/18/95 PAGE: 27

PACE Project Number: 605945

	60430584			Date Colle		8/11/95			
Client Sample ID:	E11-SU-MW11	L23A		Date Rece	erved: O	8/15/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analy	yst CAS#	Footnotes
Metals		********			• • • • • • • • • • • • • • • • • • • •				
Lead, AAS Furnace								•	
Lead		6.41	mg/kg	0.61	08/30/95	EPA 7421	JAH	7439-92-1	
Date Digested					08/23/95				
Organics									
Moisture									•
Percent Moisture		18.1	*		08/21/95		KMN		
GC Volatiles									
Aromatic Volatile Orga	ınics				•				
Benzene		ND	ug/kg	61	08/24/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene		ND	ug/kg	61	08/24/95	EPA 8020	HMF	100-41-4	
Toluene		ND	ug/kg	61	08/24/95	EPA 8020	HMF	108-88-3	
Xylene (Total)		ND	ug/kg	150	08/24/95	EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotolue	ne (S)	70	x		08/24/95	EPA 8020	HMF	2164-17-2	
Soil, Purge by Mo									
Petroleum Hydr	ocarbons	ND	mg∕kg	6.1	08/23/95	EPA Mod 8015 pur	MAG		
Trifluorotolue	ne (S)	116	x		08/23/95	EPA Mod 8015 pur	MAG	2164-17-2	
TPH, Soil, Ext. by Mod	. 8015								
Mineral Spirits		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Gasoline		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Jet Fuel		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Kerosene		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Diesel Fuel		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Fuel Oil		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Motor Oil		ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydr	ocarbons	ND	mg/kg	4	08/26/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate	(S)	53	*		08/26/95	EPA Mod 8015 ext	EMA	117-84-0	4
n-Tetracosane (S)		71	*		08/26/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted					08/23/95				

DATE: 05/09/95

PAGE: 5

PACE Project Number: 604183

PACE Sample No: 602	283470		Date Co		4/07/95			
Client Sample ID: E11	L-SU-MW1122A		Date Re	eceived: 04	1/08/95			
Parameters	Results	Units	PRL	Analyzed	Method	Anal	yst CAS#	Footnotes
Metals			•• •••••	•••			•	
Lead. AAS Furnace								
Lead	17.9	mg/kg	1.26	04/26/95	EPA 7421	JAH	7439-92-1	
Date Digested	<u> </u>			04/21/95				
Organics								
Moisture								
Percent Moisture	20.5	*		04/11/95		KMN		
GC Volatiles				-				
Aromatic Volatile Organi	cs							
Benzene	3.3	ug/kg	2.5	04/20/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	ND	ug/kg	2.5	04/20/95	EPA 8020	TAT	100-41-4	
Toluene	4	ug/kg	2.5	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	ND	ug/kg	6.2	04/20/95	EPA 8020	TAT	1330-20-7	
a, a, a-Trifluorotoluene	(S) 132	*		04/20/95	EPA 8020	TAT	2164-17-2	
TPH, Soil, Purge by Mod.								
Total Petroleum Hydroc		mg/kg	6.2	04/19/95	EPA Mod 8015 ext	HMF		
a,a,a-Trifluorotoluene		*		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
GC								
TPH, Soil, Ext. by Mod.	8015							
Mineral Spirits	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Fuel Oil	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydroca	arbons ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S)	88	x		04/15/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	83	*		04/15/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 05/05/95 PAGE: 80

PACE Project Number: 604134

Client Project ID: Eaker AFB - 0114

•	282811		Date Col		1/06/95			
Client Sample ID: E1	1-SU-SB1129A		Date Re	ceivea: 04	1/07/95			
Parameters	Results	Units	PRL	Analyzed	Hethod	Anal	yst CAS#	Footnotes
Metals		•• •••••					-	
Lead, AAS Furnace								
Lead	7.9	mg/kg	0.613	04/20/95	EPA 7421	Jah	7439-92-1	
Date Digested				04/10/95				
Organics								
Moisture								
Percent Moisture	17.6	*		04/11/95		KMN		
GC Volatiles								
Aromatic Volatile Organ	ics							
Benzene	ND	ug/kg	2.4	04/18/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	ND	ug/kg	2.4	04/18/95	EPA 8020	TAT	100-41-4	
Toluene	ND	ug/kg	2.4	04/18/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	ND	ug/kg	6	04/18/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluend	e (S) 126	X		04/18/95	EPA 8020	TAT	2164-17-2	
Soil, Purge by Mod	. 8015							
Petroleum Hydro		mg/kg	6.1	-	EPA Mod 8015 ext	HMF		
rifluorotoluene	e (S) 93	x	•	04/18/95	EPA Mod 8015 ext	HMF	2164-17-2	
TPH, Soil, Ext. by Mod.	8015							
Mineral Spirits	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Fuel Oil	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydrod	carbons ND	mg/kg	4	04/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S	5) 94	*		04/16/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	87	*		04/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 05/05/95 PAGE: 81

PACE Project Number: 604134

PACE Sample No: 602828					1/06/95			
Client Sample ID: E11-SU	-SB1130A		Date Re	eceived: 04	1/07/95			
Parameters	Results	Units	PRL	Analyzed	Method	Ana 1	yst CAS#	Footnotes
Metals	••••	•		••• ••••••	•••••••		• ••••••	********
Lead, AAS Furnace								
Lead	13.2	mg/kg	1.9	04/20/95	EPA 7421	JAH	7439-92-1	
Date Digested				04/10/95				
Organics								
Moisture								
Percent Moisture	21.9	*		04/11/95		KMN		
GC Volatiles								
Aromatic Volatile Organics								
Benzene	ND	ug/kg	2.5	04/18/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	ND	ug/kg	2.5	04/18/95	EPA 8020	TAT	100-41-4	
Toluene	ND	ug/kg	2.5	04/18/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	ND	ug/kg	6.2	04/18/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluene (S)	124	*		04/18/95	EPA 8020	TAT	2164-17-2	
TPH, Soil, Purge by Mod. 801	.5							
Total Petroleum Hydrocarbo	ons ND	mg/kg	6.3	04/18/95	EPA Mod 8015 ext	HMF		
a.a.a-Trifluorotoluene (S)	73	*		04/18/95	EPA Mod 8015 ext	HMF	2164-17-2	
GC								
TPH, Soil, Ext. by Mod. 8015	i						•	
Mineral Spirits	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Fuel Oil	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydrocarbo	ns ND	mg/kg	4.2	04/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S)	96	x		04/16/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	90	*		04/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

REPORT OF LABORATORY ANALYSIS

DATE: 05/09/95 PAGE: 4

PACE Project Number: 604183

Client Project ID: Eaker AFB - 0114

PACE Sample No: 60	283462		<u> </u>	Date Colle	cted: 04	1/07/95			
*	1-SU-SB11	131A		Date Rece	ived: 04	1/08/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
i etals					•••••				
Lead, AAS Furnace									
Lead		12.2	mg/kg	1.26		EPA 7421	JAH	7439-92-1	
Date Digested					04/21/95				
Organics									
Moisture									
Percent Moisture		20.8	x		04/11/95		KMN		
🛈 Volatiles									
Aromatic Volatile Organ	ics							_	
Benzene		5.8	ug/kg	2.5		EPA 8020	TAT	71-43-2	
Ethyl Benzene		ND	ug/kg	2.5		EPA 8020	TAT	100-41-4	
Toluene		7.6	ug/kg	2.5		EPA 8020	TAT	108-88-3	
Xylene (Total)		ND	ug/kg	6.2		EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluen	e (S)	121	*		04/20/95	EPA 8020	TAT	2164-17-2	•
7 Soil, Purge by Mod	. 8015								
Petroleum Hydro		ND	mg/kg	6.3		EPA Mod 8015 ext	HMF		
rifluorotoluen	e (S)	80	x		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
TPH, Soil, Ext. by Mod.	8015								
Mineral Spirits		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Gasoline		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Jet Fuel		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Kerosene		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Diesel Fuel		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Fuel Oil		ND .	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Motor Oil		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydro	carbons	ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (102	*		04/15/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)		94	x		04/15/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted					04/14/95				

DATE: 05/09/95 PAGE: 59

PACE Project Number: 604183

PACE Sample No: 602	86333		Date Collec	cted: 04	1/09/95			
Client Sample ID: E11	-SU-SB1132A		Date Rece	ived: 04	4/11/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	st CAS#	Footnotes
				•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	
Metals								
Lead. AAS Furnace								
Lead	10.6	mg/kg	0.617	04/26/95	EPA 7421	JAH	7439-92-1	
Date Digested				04/21/95				
Organics								
Moisture								•
Percent Moisture	19.0	x		04/12/95		GCZ		
GC Volatiles								
Aromatic Volatile Organic	cs							
Benzene	ND	ug/kg	2.5	04/20/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	ND	ug/kg	2.5	04/20/95	EPA 8020	TAT	100-41-4	
Toluene	ND	ug/kg	2.5	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	ND	ug/kg	6.2	04/20/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluene	(S) 127	X		04/20/95	EPA 8020	TAT	2164-17-2	
TPH, Soil, Purge by Mod.	8015							
Total Petroleum Hydroca		mg/kg	6.2	04/19/95	EPA Mod 8015 ext	HMF		
a,a.a-Trifluorotoluene	(S) 77	X .		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
GC								
TPH, Soil, Ext. by Mod. 8								
Mineral Spirits	ND	mg/kg	4.1		EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4.1		EPA Mod 8015 ext	EMA		
Fuel Oil	ND -	mg/kg 	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydroca		mg/kg	4.1	04/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S)		x			EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	92	x			EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 05/09/95

PAGE: 3

PACE Project Number: 604183

Client Project ID: Eaker AFB - 0114

•	283454		Date Co		1/07/95			
Client Sample ID: E1	1-SU-SB1133A		Date Re	eceived: 04	1/08/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analy	yst CAS#	Footnotes
Metals	••••••	•• ••••••		•••		• • • • • •	• ••••••	*******
Lead, AAS Furnace								
Lead	12.1	mg/kg	1.84	04/26/95	EPA 7421	Jah	7439-92-1	
Date Digested				04/21/95				
Organics					*			
Moisture								
Percent Moisture	18.4	x		04/11/95		KMN		
GC Volatiles								
Aromatic Volatile Organ	ics							
Benzene	ND	ug/kg	2.4	04/20/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	ND	ug/kg	2.4	04/20/95	EPA 8020	TAT	100-41-4	
Toluene	ND	ug/kg	2.4	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	ND	ug/kg	6.1	04/20/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluend		*		04/20/95	EPA 8020	TAT	2164-17-2	
Soil, Purge by Mod	. 8015							
Petroleum Hydrod		mg/kg	6.1	04/19/95	EPA Mod 8015 ext	HMF		
[rifluorotoluene	e (S) 77	*		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
TPH, Soil, Ext. by Mod.	8015							
Mineral Spirits	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Fuel Oil	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		,
Motor Oil	ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydrod	arbons ND	mg/kg	4.1	04/15/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S	5) 103	x		04/15/95	EPA Mod 8015 ext	EMA	117-84-0	
n·Tetracosane (S)	95	*		04/15/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 05/09/95

PAGE: 43

PACE Project Number: 604183

PACE Sample No: 60	286267		Date Collec		1/08/95			
Client Sample ID: E1	1-SU-SB1134A	Date Recei	1/11/95					
Parameters	Results	Units	PRL	Analyzed	Method	Analyst	t CAS#	Footnotes
				•••••			•••••	
Metals								
Lead. AAS Furnace								
Lead	21.2	mg/kg	1.77	04/26/95	EPA 7421	JAH	7439-92-1	
Date Digested				04/21/95				
Organics								
Moisture								
Percent Moisture	15.1	x		04/12/95		GCZ		
GC Volatiles								
TPH, Soil, Purge by Mod	. 8015							
Total Petroleum Hydro	carbons ND	mg/kg	5.9		EPA Mod 8015 ext	HMF		
a,a,a-Trifluorotoluend	e (S) 87	x		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
Aromatic Volatile Organi	ics							
Benzene	ND	ug/kg	2.3	04/20/95	EPA 8020		71-43-2	
Ethyl Benzene	ND	ug/kg	2.3	04/20/95	EPA 8020		100-41-4	
Toluene	ND	ug/kg	2.3	04/20/95	EPA 8020		108-88-3	
Xylene (Total)	ND	ug/kg	5.8	04/20/95	EPA 8020		1330-20-7	
a,a,a-Trifluorotoluene	e (S) 130	x		04/20/95	EPA 8020	TAT	2164-17-2	
GC								
TPH, Soil, Ext. by Mod.	8015							
Mineral Spirits	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Gasoline	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Fuel Oil	ND .	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Total Petroleum Hydrod	arbons ND	mg/kg	3.9	04/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (S	5) 107	*		04/16/95	EPA Mod 8015 ext	_	117-84-0	
n-Tetracosane (S)	99	x		04/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 05/09/95 PAGE: 1

Brown & Root Environmental 800 Oak Ridge Turnpike

Suite A-600

Oak Ridge, TN 37830

PACE Project Number: 604183

Client Project ID: Eaker AFB - 0114

SDG Number: BR4183

Attn: Mr. Allan Jenkins Phone: 615-483-9900

Solid results are reported on a dry weight basis

PACE Sample No: 60283421				Date Col	Date Collected: 04/07/95				
Client Sample ID:	E11-SU-SB1	135A		Date Re	ceived: 04	1/08/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analy:	st CAS#	Footnotes
Metals			• •••••				• •••••	*********	••••••
Lead, AAS Furnace									
Lead		22.3	mg/kg	5.07	04/26/95	EPA 7421	JAH	7439-92-1	
Date Digested					04/21/95				
0 rics									
<u> ji</u> sture									
nt Moisture		21.1	x		04/11/95		KMN		
GC atiles									
Aromatic Volatile O	rganics								
Benzene		850	ug/kg	2.5	04/20/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene		1100	ug/kg	2.5	04/20/95	EPA 8020	TAT	100-41-4	
Toluene		2700	ug/kg	2.5	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)		5400	ug/kg	6.3	04/20/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluoroto	luene (S)	97	X		04/20/95	EPA 8020	TAT	2164-17-2	
TPH, Soil, Purge by	Mod. 8015								
Total Petroleum H	ydrocarbons	38	mg/kg	6.3	04/19/95	EPA Mod 8015 ext	HHF		
a,a,a-Trifluoroto	luene (S)	97	Z .		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	
GC									
TPH, Soil, Ext. by	Mod. 8015								
Mineral Spirits		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Gasoline		120	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Jet Fuel		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Kerosene		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Diesel Fuel		ND	mg/kg	4.2		EPA Mod 8015 ext	EMA		
Fuel Oil		ND	mg/kg	4.2	04/15/95	EPA Mod 8015 ext	EMA		
Motor Oil		ND	mg/kg	4.2		EPA Mod 8015 ext	EMA		
Di-n-octylphthala		101	X .		04/15/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)		96	x		04/15/95	EPA Mod 8015 ext	EMA	646-31-1	

04/14/95

Date Extracted

DATE: 05/09/95 PAGE: 2

PACE Project Number: 604183

PACE Sample No: 6	0283447		Date Collec	cted: 04	1/07/95			
•	11-SU-SB1135B		Date Rece	ived: 04	1/08/95			
Parameters	Results	Units	PRL	Analyzed	Method	Analys	st CAS#	Footnotes
Metals		•• ••••••	•••••				•••••	••••••
Lead. AAS Furnace								
Lead	21.4	mg/kg	2.73	04/26/95	EPA 7421	JAH	7439-92-1	
Date Digested				04/21/95				
Organics								
Moisture								
Percent Moisture	26.7	*		04/11/95		KMN		
GC Volatiles								
Aromatic Volatile Organ	nics							
Benzene	6100	ug/kg	2.7	04/20/95	EPA 8020	TAT	71-43-2	
Ethyl Benzene	15000	ug/kg	2.7	04/20/95	EPA 8020	TAT	100-41-4	
Toluene	27000	ug/kg	2.7	04/20/95	EPA 8020	TAT	108-88-3	
Xylene (Total)	74000	ug/kg	6.8	04/20/95	EPA 8020	TAT	1330-20-7	
a,a,a-Trifluorotoluen	e (S) 140	x		04/20/95	EPA 8020	TAT	2164-17-2	
TPH, Soil, Purge by Mod	l. 8015							
Total Petroleum Hydro		mg/kg	68	04/19/95	EPA Mod 8015 ext	HMF		
a,a,a-Trifluorotoluen	e (S) 170	x		04/19/95	EPA Mod 8015 ext	HMF	2164-17-2	1
GC								
TPH, Soil, Ext. by Mod.								
Mineral Spirits	ND	mg/kg	4.5		EPA Mod 8015 ext	EMA		
Gasoline	850	mg/kg	4.5		EPA Mod 8015 ext	EMA		
Jet Fuel	ND	mg/kg	4.5	04/16/95	EPA Mod 8015 ext	EMA		
Kerosene	ND	mg/kg	4.5		EPA Mod 8015 ext	EMA		
Diesel Fuel	ND	mg/kg	4.5	-	EPA Mod 8015 ext	EMA		
Fuel Oil	ND .	mg/kg	4.5		EPA Mod 8015 ext	EMA		
Motor Oil	ND	mg/kg	4.5	04/16/95	EPA Mod 8015 ext	EMA		
Di-n-octylphthalate (x		04/16/95	EPA Mod 8015 ext	EMA	117-84-0	
n-Tetracosane (S)	94	x		04/16/95	EPA Mod 8015 ext	EMA	646-31-1	
Date Extracted				04/14/95				

DATE: 07/05/95 PAGE: 55

PACE Project Number: 604906

PACE Sample No: Client Sample ID:	60348075 E11-AW-TB11			Date Collect Date Recei		5/02/95 5/03/95			
Parameters		Results	Units	PRL	Analyzed	Method	Analys	t CAS#	Footnotes
GC Volatiles Aromatic Volatile Org	ganics								
Benzene	_	ND	ug/L	2	06/14/95	EPA 8020	HMF	71-43-2	
Ethyl Benzene		ND	ug/L	2	06/14/95	EPA 8020	HMF	100-41-4	
Toluene		ND	ug/L	2	06/14/95	EPA 8020	HMF	108-88-3	
Xylene (Total)		ND	ug/L	5	06/14/95	EPA 8020	HMF	1330-20-7	
a,a,a-Trifluorotoli	uene (S)	107	*		06/14/95	EPA 8020	HMF	2164-17-2	

						•		•						• •
Shipper's No. Carrier's No. Life Life Comment of the control of	nignes –	Address* MG MI () () () Address on governing lawfully filed tailly provide for delivery thereat.)	No.	Subject to Section 7 of conditions of appli- cable bill of lading. If this shipment is to be	general of one consignee without recourse on the consignor, the consignor, the consignor shall sign the following statement: The carrier shall more make delivery of this shipment without parment of freight and all other lawful charges.	(Signature of Consproy) If charges are to be prepeld write or stamp here, 'To be Prepeld'.	Received 6 presument of the charges on the transmitted that the charges on the	Agent or Casher	Per (The Signature here acknowledges only the emount prepaid.)	Charges Advanced:	Where the supplicable lend formation specific a hadronism of the corner is backer (MA). The A count of the co	in the second se	monitored in all times the hazarodus material is in transportation including storage incidental to transportation (172.604).	
Shipper's No. Carrier's No. (1) Dad In Dad I	oddren 2	1 governing		Check Column								ONSE	604).	Agent, Per
S C C C C C C C C C C C C C C C C C C C		Address* XV & T when this per desires and governin Ada A		Class or Rate						Shipper Consignee	hipper's weight erty.	ENCY RESPONE NUMBER	sportation (172.	A
iable vc. From Children in the control of the con		Addre	Car or Vehicle Initials	*Weight (Sub. to Carrection)						C.O.D. Charge to be paid by	hether it is carrier's or s clared value of the prop	HM EMERGENCY RESPONSE TELEPHONE NUMBER	incidental to tran	
STRAIGHT BILL OF LADING — SHORT FORM — Original — Not Negotiable Shipper's No. (Name of Carrier) (And Language of the company of the Company	Consigned to Chow Milas AR Marinary Destination State County Zip Zip	Show 242 Mutomational - Cui		F ARTICLES, SPECIAL MARKS, AND EXCEPTIONS	3 8' oliametes tauks	UST'S 160A, B, +C			r	Collect On Delivery and remit to .	"If the shipment moves between two ports by a carrier by water, the law requires that the bill of lading shall state whether it is carrier's or shipper's weight. NOTE — Where the rate is dependent or value, shippers are required to state specifically in writing the agreed or declared value of the property is hereby specifically stated by the shipper to be not excerting ————————————————————————————————————	"This is to certify that the above named materials arn properly classifier, described, packaged, marked and laheled and are in proper condition for transportation according to the applicable regulations of the Deportment of Transportation." Per		Shipper, Per Permanent post-office address of shipper, Per Shipper, Per Neamon of Shipper, Per Neamon, Wisconsis 54937.0368 (100) 327-4868 FORM NO. 1 BLP-A (Rev. 10/91) Regulatory & Compliance - Publication, Products & Services

GROUNDWATER ELEVATIONS SWMU NO. 21, BASE EXCHANGE SHOPPETTE

Well No.	TOC	Ground			Groundwat	Groundwater Elevations in Feet Above Mean Sea Level	t Above Mean S	ea Level		
	EIGAGIIGI		Dec. 11-19, 1991	Jan 9-13, 1992	Jan 14, 1992	Mar 27-28, 1992	May 29, 1992	May 7, 1995	Sept 13, 1995	Nov 19, 1995
Wells Scree	ned in the Ci	Wells Screened in the Clay and Silt Aquitard	ultard							
TW1101	251.3	251.6	241.41	240.75	240.64	240.35	239.32	241.19	236.92	
TW1102	249.5	Not	240.74		241.92	242.14	239.38	241.67	73.752	238.82
MW1104	251.5	Not Surveyed	241.40	241.50	241.00	240.58	239.55	241.55	235.97	237.92
TW1105	251.1	Not Surveyed		240.12				241.59		
TW1106	251.0	Not Surveyed	242.42	243.38	242.36	241.09	239.60	242.01	238.22	239.58
TW1108	250.7	Not								240.45
TW1109	250.9	Not	241.39	240.91		240.51	239.09	241.25	237.23	238.84
MW1110	251.2	Not	241.38	241.49	240.88	240.48	239.09	241.01	237.25	237.49
MW1111	251.3	Not Surveyed	241.42	241.54	240.62	240.20	238.75	241.02	237.10	238.72
MW1114	251.6	Not Surveyed	245.40	244.78	241.54	245.13	241.37	244.09	240.21	239.30
MW1115	250.4	Not Surveyed	237.44	246.58	240.36	242.54	239.24	245.60	237.65	240.53
MW1116	250.6	Not Surveyed	240.13	243.37	243.50	242.84		241.77	237.53	238.95
MW1119	249.7	Not Surveyed	241.08	241.96	241.33	241.37	239.24	241.48	238.03	239.35
MW1120	251.7	Not Surveyed		241.48	241.51	241.11	239.33	240.80	237.01	238.64
MW1121	253.2	251.0							239.65	241.63
MW1122	253.0	250.7	٠						236.92	238.51
MW1123	253.6	251.1							236.57	238.17
CP22	249.6	249.8						238.34	237,99	
CP26	250.8	251.1						244.93	238.97	
Wells Scree	Wells Screened in the Sand Aquifer	and Aquifer								
MW1124	253.6	251.9							236.41	238.47
MW1125	253.5	250.6								238.34
MW1126	253.7	250.6							•	238.63
MW1127	250.6	250.8								238.49
MW1128	250.6	251.4								238.16

TOC - top of casing

TABLE 4.14-2

CHEMICALS DETECTED IN SUBSURFACE SOIL SWMU NO. 21, BASE EXCHANGE SHOPPETTE

Sample ID	E11.SILTW/1103A	E11-SU-TW1103B	E11-SU-TW1103C†	E11-SU-TW1108A	E11-SU-TW1108B
	P0183244	P0183245	P0183246	P0183379	P0183378
Lab ID	3'	10'	22'	5'	17'
Depth		10			
Sample Data Group			014/94/104	SWMU21	SWMU21
Site Name	SWMU21	SWMU21	SWMU21	·	
Date Sampled	12/11/91	12/11/91	12/11/91 .	12/14/91	12/14/91
Date Analyzed	12/13/91	12/13/91	12/13/91	12/16/91	12/16/91
VOCs	BTEX Only	- BTEX Only	BTEX Only	BTEX Only	BTEX Only
Benzene		0.077 mg/kg			
Ethylbenzene		0.127 mg/kg	0.008 mg/kg		1.000 mg/kg
Toluene		0.005 mg/kg	0.004 mg/kg		·
Xylene (total).					
m-Xylene			0.017 mg/kg		
o-Xylene		0.013 mg/kg	0.004 mg/kg	3.000 mg/kg	
p-Xviene		0.084 mg/kg	0.004 mg/kg		
m + p Xylene	3.000 mg/kg				4.000 mg/kg
SVOCs	NA	NA	NA	NA	NA
Herbicides	NA	NA	NA	NA	NA
Pesticides	NA	NA	NA	NA	NA
PCBs	NA	NA	NA	NA	NA
Inorganics	NA	NA	NA	NA	NA
Nickel					
Miscellaneous					
TPH 418.1					
TPH Purgeables					
TPH Ext. Gasoline					

APPENDIX C

SOIL, SEDIMENT, GROUNDWATER, AND SURFACE WATER ANALYTICAL RESULTS

CASE NARRATIVE

Evergreen Analytical Laboratory (EAL) Projects: 96-0904, 96-0928, 96-0955, 96-0979, 96-0995, 96-0998, 96-1082

Parsons Engineering Science, Inc. (PES) Project: Eaker AFB 722450.15020

Sample Receipt

Between March 26 and April 8, 1996, soil, groundwater and free products samples were received at EAL for analysis under Subcontract 722450.SC02. Refer to the EAL Check-in Record for specific information regarding the condition of samples upon receipt. Refer to the EAL Sample Log Sheet for specific log-in information and cross-reference of EAL and PES sample identifications.

Data Package

All data are reported in one comprehensive package that is segregated based upon EAL project number. Each EAL project represents a group of samples received on a given day. The EAL Sample Log Sheet summarizes the samples represented in each EAL project.

A separate invoice for each EAL project number will be generated.

Quality assurance data may overlap from one EAL project to another. All required matrix spike/matrix spike duplicate (MS/MSD) and laboratory control samples (LCS) were analyzed when required and also are included in the data package.

BTEX, Trimethylbenzenes, Tetramethylbenzene, Chlorobenzene, Method SW8020

All samples were analyzed for BTEX within holding time.

Several samples were analyzed at dilutions ranging from a dilution factor (DF) of 5 to 500,000 due to elevated levels of contaminants of interest. The reporting limits have been adjusted accordingly.

Samples ES-SED-1, -2 and -3 were analyzed with low surrogate recovery. The samples were reprepared and reanalyzed with similar results. Several of the samples associated with EAL project 96-0904 are footnoted to indicate that hydrocarbon interference made surrogate separation difficult.

Case Narrative Parsons Engineering Science, Inc. Page Two

The MS/MSD samples associated with EAL project 96-0904 also exhibited hydrocarbon interference. The reports are footnoted. The LCS sample recoveries associated with these projects are within the EAL control limits, therefore the data are considered to be acceptable.

Total Volatile Petroleum Hydrocarbons, TVPH Method 8015M There are no quality control anomalies to report.

Total Extractable Petroleum Hydrocarbons, TEPH Method 8015M All samples submitted for TEPH analysis were analyzed within holding time.

Samples 457-MPA-5-6.5, 457-MPB-5-6, and 702-MPB-5.5-6 were analyzed at a dilution factor of ten due to elevated levels of contamination in the samples.

457-MPB-5-6 MS/MSD recoveries are not meaningful due to contaminant interference. The LCS recoveries were within EAL control limits.

Surrogates were either diluted out of or were inseparable from analytes for all soils submitted for TEPH.

Methane, Method RSKSOP175M Samples TW-1105, ESMP23-D, ESMP-22 and ESMP-7S were analyzed at dilutions ranging from DF of 50 to 100. The reporting limits were adjusted accordingly.

There are no other quality control anomalies to report.

Anions, Method E300.0 The nitrate/nitrite analysis for samples in EAL projects 96-0979 and 96-0995 were reanalyzed outside of holding time due to instrument problems. In the initial and re-analysis, no nitrite was detected. This would indicate that no conversion between NO_2 and NO_3 occurred prior to re-analysis.

There are no other quality control anomalies to report.

General Chemistry
There are no quality control anomalies to report for the following analyses: alkalinity by Method 310.1, total organic carbon in water by Method E415.1, density by Method ASTMD287, pH by Method E150.1 or percent moisture by Method SW846.

Case Narrative
Parsons Engineering Science, Inc.
Page Three

Total Organic Carbon in Soil

Total Organic Carbon (TOC) in soil was analyzed by Huffman Laboratories of Golden, Colorado. TOC was determined by analyzing for total carbon (TC) and inorganic (carbonate) carbon (CC), then calculating the difference as TOC. The reports from Huffman are included.

Soil Classification (Sieve Analysis)

Soil classification (sieve analysis) was analyzed by Hazen Research, Inc. of Golden, Colorado. The report from Hazen is included. Soil classification analyses are not included with the disk deliverables.

<u>Disk Deliverables</u>

The disk deliverables are included with the hard copy data package. MS/MSD and laboratory duplicate samples are not included on the disk. Please note that blank spaces in the laboratory detection limit and/or practical quantitation limit (PQL) column indicate that there is no detection limit or PQL for that analyte.

Reporting limits have been adjusted to reflect percent moisture in all soil samples or increases due to dilutions.

A hard copy of each spreadsheet included on the diskette is included. The name for each spreadsheet is located in the top left corner on the first page of each printout.

Patricia A. McClellan, Program Manager 4/26/96

Evergreen Analytical Sample Log Sheet Project # <u>96-0928</u> Date(s) Sampled: 03/26/96 COC Date Due: <u>04/03/96-*BTEX/TVH</u> 04/10/96-OTHERS te Received: 03/27/96 0928 Holding Time(s): NO2/NO3-3/28 nt Project I.D. 722450.15020 EAKER AFB Rush STANDARD Client: PARSONS ENGINEERING SCIENCE Cooler Return N/A Address: 1700 BROADWAY SUITE 900 E.A. Cooler # 713 DENVER, CO 80290 Airbill # FEDEX 7221153763 Contact: TODD HERRINGTON Client P.O. Phone #831-8100 Fax #831-8208 Special Invoicing/Billing Special Instructions *INCLUDES TMBS, TeMB, AND CHLOROBENZENE. Lab Client ID# ID# Analysis Mtx Btl Loc X21242A-D MW-1127 *BTEX/TVH W 40V X21243A-D MW-1116 *BTEX/TVH W 40V 2 1244A-D TW-1125 *BTEX/TVH W 40V *BTEX/TVH W 40V 46A-D MW-1123 *BTEX/TVH W 40V 2 X21247A-D MW-1120 *BTEX/TVH W 40V X21248A TRIP BLANK *BTEX/TVH W 40V X21242E-G MW-1127 METHANE W 40V X21243E-G MW-1116 METHANE W 40V X21244E-G TW-1125 METHANE W 40V 2 X21245E-G MW-1124 METHANE W 40V X21246E-G MW-1123 METHANE W 40V 2 X21247E-G MW-1120 METHANE W 40V X21242H MW-1127 Cl, NO2, NO3, SO4 W 125P X21243H MW-1116 Cl, NO2, NO3, SO4 W 125P **E**5 X21244H TW-1125 Cl, NO2, NO3, SO4 W 125P **E**5 X21245H MW-1124 Cl. NO2, NO3, SO4 W 125P **E**5 X21246H MW-1123 Cl, NO2, NO3, SO4 W 125P **E**5 X21247H MW-1120 Cl, NO2, NO3, SO4 W 125P `=Sample to be returned GC/MS ___ GC X Metals _ Wet Chem X HPLC SxPrep SxRec C QA/QC <u>C</u> Acctg C File Orig Page 1 of 1 Page(s) Custodian/Date:

Lab	Client				
ID '#	ID#	Analysis	Mtx_	Btl	Loc
X21242I	MW-1127	ALKALINITY	W	125P	E5
(21244I	TW-1125	ALKALINITY	W	125P	E5
(21245I	MW-1124	ALKALINITY	W	125P	E5
(21242J	MW-1127	TOC	W	125P	E5
K21244J	TW-1125	TOC	W	125P	E5
X21245J	MW-1124	TOC	W	125P	E5

Page 2 of 2 Pages
Project # 96-0928

R=Sample to be returned

☐ STD UST (3 day) 7 in shaded area EAL Sample No. *MACHON H-1 F 5 EAL use only Fage_of Do not write せんしたった Custodian MM 5020 Other (Specify) TURNAROUND REQUIRED* 🛒 STD (2 wks) *expedited turnaround subject to additional fee # 0.4 EAL CLIENT CONTACT (print) Todal VALYTICAL SERVICES REQUEST PROJECT I.D. EAL. QUOTE # **ANALYSIS REQUESTED** Dissolved Metals - DW / SW846 (circle & list metals below) Total Metals-DW / NPDES (circle & list metals below) Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 TEPH 8015mod. FAX RESULTS (Y / N (Ganilosa2) (Gasoline) Analytical Inc. (Circle)/MTBE (Circle) 4036 Younglield St. PCB Screen Herbicides 8150/515 (circle) Pest/PCBs 8080/608/508 (circle) CHAIN OF CUSTODY RECORD. Fax# 203-831-6208 Pesticides 808\608 (circle) Evergr BNA 8270/625 (circle) 8260/624/524.2 (circle) zisteM\dreH\tzeq\AN8\AOV MATRIX egbuf2 \ liO bilo2 / lio2 Water-Drinking/Discharge/&round OLZOS diz 0 No. of Containers 6 15.54 ZX XX 72 196 115-00 1/16/96 15:30 3/26/96/15:15 TIME 3/26/96 12, Fil 3/197/6 SAMPLED Brechisco DATE Please PRIN all information: STATE ۲, Evergreen Analytical Cooler No. IDENTIFICATION (print) Shin (20 Ki TRIP BLANK 8 MW-1123 SAMPLE 1160 - 112 Mw-1124 Sampler Name: 1711-W- 1125 CLIENT 3111 - 111V PHONE# 303 CITY Deville Cooler Received COMPANY ADDRESS (signature) `≥ ₹ 3/37/6

Ber P.TEX 5 A at 2.5 7,19-76

Instructions:

8 Έ

Date/Time | Relinquished by: (Signature)

Om.

Mark Vessely

2

多

Date/Time

Location 2, ES Container Size

> Date/Time Received by: (Signature) Relinquished by: (Signature)

Evergreen Analytical Sample Receipt/	Check-in K		- 1-
Date & Time Rec'd: 3/2627 96 0928 Shipped	Via: Fed X 7 (Airbill ≠ i	221153	763 ble)
client: Parsons ES	<u> </u>		
Client Project ID(s): 722450.15020		\sim	
EAL Project #(s):96-0928 EAL	Ccoler(s):	(7)	N
Cocler# <u> </u>			
Ice packs D N Y N Y N	Ā ¼	Ā 7	
Temperature °C			-
	¥ .	И	N/F
 Custody seal(s) present: Seals on cooler intact Seals on bottle intact 		<u>X</u>	<u>X</u>
2. Chain of Custody present:	X		•
3. Samples Radioactive: (Comment on COC if > 0.5mm/h)		$\frac{\times}{\times}$	1.h~
4. Containers broken or leaking: Comment on COCIY	4	A10	
5. Containers labeled:			
6. COC agrees w/ bottles received: (Comment on COC if N)	<u>×</u>		
7. COC agrees w/ labels: (Comment on COC IF N	<u>X</u>		
3. Headspace in vials-waters only: .Comment on COCKY? In two BTEX Sample ID MW-112. 9. VOA samples preserved:	7. X		
10. pH measured on metals, cyanide or phenolics List discrepancies *Non-EAL provided containers only, water sample			_X_
*Non-EAL provided containers only, water sample	es chily.	X	
11. Metal samples present:			
Total, Dissolved, TCLP D or PD to be filtered:			
T,TR,D,PD to be Preserved:			
12. Short holding times: Specify parameters ND2 NO3			
13. Multi-phase sample(s) present:		X	
14. COC signed w/ date/time:	1		
Comments:			
·			
(Additional comments on back)	_ /~ -	196	
Custodian Signature/Date:	3()=	176	<u></u>

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB032796B

Client Project Number

722450.15020

Date Prepared

: 3/27/96

Lab Project Number

96-0928

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVBX0326044

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline	****	3/27/96	U	0.1	mg/L
Benzene	71-43-2	3/27/96	U	0.4	ug/L
Toluene	108-88-3	3/27/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/27/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/27/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/27/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/27/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/27/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/27/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/27/96	U	0.5	ug/L
FID Surrogate Recovery:		97%	<u> </u>	70%-130%	(Limits)
'ID Surrogate Recovery:		93%		70%-128%	(Limits)

Comments:

es: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : MW-1127 Client Project Number : 722450.15020 Lab Sample Number : X21242 Lab Project Number : 96-0928

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326077
Date Prepared : 3/28/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/28/96	0.1	0.1	mg/L
Benzene	71-43-2	3/28/96	35	0.4	ug/L
Toluene	108-88-3	3/28/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/28/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/28/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/28/96	0.4	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/28/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/28/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/28/96	0.5	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/28/96	U	0.5	ug/L
ID Surrogate Recovery:		92%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		86%		70%-128%	(Limits)

wotes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : MW-1116 Client Project Number : 722450.15020

Lab Sample Number : X21243 Lab Project Number : 96-0928
Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326050
Date Prepared : 3/27/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/27/96	U	0.1	mg/L
Benzene	71-43-2	3/27/96	U	0.4	ug/L
Toluene	108-88-3	3/27/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/27/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/27/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/27/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/27/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/27/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/27/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/27/96	U	0.5	ug/L
FID Surrogate Recovery:		97%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		94%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Hallman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : TW-1125 Client Project Number : 722450.15020 ab Sample Number : X21244 Lab Project Number : 96-0928

Lab Sample Number : X21244 Lab Project Number : 96-0928

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326051
Date Prepared : 3/27/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/27/96	U	0.1	mg/L
Benzene	71-43-2	3/27/96	1.0	0.4	ug/L
Toluene	108-88-3	3/27/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/27/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/27/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/27/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/27/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/27/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/27/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/27/96	U	0.5	ug/L
					(Limits)
Surrogate Recovery:	2	92%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- **FID** = Flame ionization detector.
- **TVH** = Total Volatile Hydrocarbons.

K. Hollman Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : MW-1124 Client Project Number : 722450.15020

Lab Sample Number : X21245 Lab Project Number : 96-0928

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326052
Date Prepared : 3/27/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/27/96	U	0.1	mg/L
Benzene	71-43-2	3/27/96	U	0.4	ug/L
Toluene	108-88-3	3/27/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/27/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/27/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/27/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/27/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/27/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/27/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/27/96	U	0.5	ug/L
ID Surrogate Recovery:		96%	L	70%-130%	(Limits)
Surrogate Recovery:		92%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Helman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : MW-1123 Client Project Number : 722450.15020

Lab Sample Number : X21246 Lab Project Number : 96-0928

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326056
Date Prepared : 3/27/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/28/96	U	0.1	mg/L
Benzene	71-43-2	3/28/96	U	0.4	ug/L
Toluene	108-88-3	3/28/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/28/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/28/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/28/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/28/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/28/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/28/96	υ	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/28/96	U	0.5	ug/L
FID Surrogate Recovery:		95%		70%-130%	(Limits)
Surrogate Recovery:		91%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : MW-1120 Client Project Number : 722450.15020

Lab Sample Number : X21247 Lab Project Number : 96-0928
Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/27/96 Lab File Number(s) : TVBX0326057
Date Prepared : 3/27/96 Method Blank : MB032796B

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/28/96	U	0.1	mg/L
Benzene	71-43-2	3/28/96	U	0.4	ug/L
Toluene	108-88-3	3/28/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/28/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/28/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/28/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/28/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/28/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/28/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/28/96	U	0.5	ug/L
FID Surrogate Recovery:		94%	L	70%-130%	(Limits)
Surrogate Recovery:		92%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hillman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ht Sample Number

: TRIP BLANK

Client Project Number

722450.15020

Lab Sample Number

: X21248

Lab Project Number

96-0928

Date Sampled

: NA

Matrix

WATER

Date Received

: 3/27/96

Lab File Number(s)

TVBX0326045

Date Prepared

: 3/27/96

Method Blank

FID Dilution Factor

: 1.0

MB032796B

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/27/96	U	0.1	mg/L
Benzene	71-43-2	3/27/96	U	0.4	ug/L
Toluene	108-88-3	3/27/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/27/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/27/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/27/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/27/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/27/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/27/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/27/96	U	0.5	ug/L
ID Surrogate Recovery:		95%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		92%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: MW-1125	Client Project No.	:	722450.15020
Lab Sample No.	: X21244	Lab Project No.	:	96-0928
Date Sampled	: 3/26/96	EPA Method No.	:	5030/8015 Modified
Date Received	: 3/27/96	Matrix	:	WATER
Date Prepared	: 3/27/96	Lab File Number(s)	:	TVBX0326059,60
Date Analyzed	: 3/28/96	Method Blank	:	MB032796B
,		Dilution Factor	:	1.0

Compound	Spike Added	Sample Concentration	MS Concentration	MS	QC*** Limits
 	(mg/L)	(mg/L)	(mg/L)	%REC	%REC
Gasoline	2.00	0.00	1.83	91.5%	57-126
Surrogate **				93%	70-128

Compound	Spike Added	MSD Concentration	MSD		QC*** Limits	
	(mg/L)	(mg/L)	%REC	RPD	RPD	%REC
Gasoline	2.00	1.92	96.0%	4.8	28.2	57-126
Surrogate **			96%	NA	NA	70-128

RPD:	0	out of	(1) outside limits
Spike Recovery:	0	out of	(2) outside limits

Notes:

NA = Not analyzed/not applicable.

- * = Value outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- *** = Limits established 3/8/96. KSH

Comments:			
	 <u> </u>	 	

K Hallman Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: MW-1116	Client Project No.	: 722450.15020
Lab Sample No.	: X21243	Lab Project No.	: 96-0928
Date Sampled	: 3/26/96	EPA Method No.	: 602/8020
Date Received	: 3/27/96	Matrix	: Water
Date Prepared	: 3/27/96	Lab File Number(s)	: TVBX0326061,62
Date Analyzed	: 3/28/96	Method Blank	: MB032796B
		Dilution Factor	: 1.0

Compound	Spike Added	Sample Concentration		Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	17.3	17.5	
Toluene	20.0	0.0	17.6	18.0	
Chlorobenzene	20.0	0.0	17.5	18.0	
Ethylbenzene	20.0	0.0	17.7	18.0	
m,p-Xylene	20.0	0.0	17.8	18.1	
o-Xylene	20.0	0.0	17.5	18.1	
1,3,5-TMB	20.0	0.0	17.4	17.7	
1,2,4-TMB	20.0	0.0	17.7	17.8	
1,2,3-TMB	20.0	0.0	17.2	17.7	
1,2,3,4-TeMB	20.0	0.0	17.7	18.0	
Surrogate	100.0	94%	93%	91%	% RECOVERY

	MS	MSD			QC#			
Compound	%	%			Limits			
·	RECOVERY	RECOVERY	RPD	RPD	%REC			
Benzene	86.5	87.5	1.1	25	50 - 150			
Toluene	88.0	90.0	2.2	25	50 - 148			
Chlorobenzene	87.5	90.0	-2.8	25	55 - 135			
Ethylbenzene	88.5	90.0	1.7	25	50 - 150			
m,p-Xylene	89.0	90.5	1.7	25	50 - 150			
o-Xylene	87.5	90.5	3.4	25	50 - 150			
1,3,5-TMB	87.0	88.5	1.7	25	50 - 150			
1,2,4-TMB	88.5	89.0	0.6	25	50 - 150			
1,2,3-TMB	86.0	88.5	2.9	25	50 - 150			
1,2,3,4-TeMB	88.5	90.0	1.7	25	50 - 150			
Surrogate	93.0	91.0	NA	NA	70 - 128			

#=	Values	taken	from	FΡΔ	methods	602/	8020

* = Values outside of QC limits.

RPD:	0	out of	(10)	outside limits.
Snike Recovery:	0	out of	(20)	outside limits

•	•	<u> </u>	V.	
Comments:				

K. Hollman

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number

LCS032596-BW

1.00

Date Extracted/Prepared

3/25/96

Dilution Factor

Date Analyzed

Method

602/8020

: 3/26/96

Matrix

Water

Spike Amount (ug/L)

: 20.0

Lab File No.

TVBX0323056

		LCS	LCS	
	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	18.6	93.0	73 - 122
Toluene	108-88-3	18.5	92.5	77 - 125
Chlorobenzene	108-90-7	17.3	86.5	82 - 122
Ethyl Benzene	100-41-4	18.4	92.0	78 - 126
m,p-Xylene	108-38-3	36.3	90.8	78 - 127
Yylene	106-42-3 95-47-6	18.0	90.0	77 - 125
	1634-04-4	20.0	100.0	50 - 150
1,3,5-Trimethylbenzene	108-67-8	18.6	93.0	66 - 135
1,2,4-Trimethylbenzene	95-63-6	18.5	92.5	72 - 121
1,2,3-Trimethylbenzene	526-73-8	21.1	105.5	71 - 121
1,2,3,4-Tetramethylbenzene	488-23-3	19.2	96.0	58 - 147
Surrogate Recovery:		93%		70 - 128

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

= Limits established 3/11/96 for TVHBTEX2. KSH

LCSB0325.XLS: 3/26/96

Clella

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed	: LCS032696-GW : 3/26/96 : 3/27/96	Matrix Method Numbers	: WATER : EPA 5030/80	015 Modified
Lab File Number(s)	: TVBX0326028			
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit** % Recovery
Gasoline	2.00	2.22	111.0	78 - 137
Surrogate Recovery:		94%		70 - 130

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 3/11/96 for TVHBTEX2. KSH

K. MMMan Ahalyst

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared : GB040196

Client Project No.

: 722450.15020

: 4/1/96

Lab Project No.

: 96-0928

Date Analyzed

: 4/1/96

Dilution Factor

: 1.00

Method

: RSKSOP-175

Matrix

: Water

Lab File No.

: GAS0401002

Sample Concentration RL Compound Name Cas Number mg/L mg/L U 0.002 Methane 74-82-8

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF0928.XLS

Methane Report Form

Sample Number	: MW-1127	Client Project No.	: 722450.15020
Lab Sample Number	: X21242	Lab Project No.	: 96-0928
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/27/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401006

Sample			
Concentration	RL		
mg/L	mg/L		
·			
U	0.002		
	Concentration		

mperature	:	78.6 F	Saturation	Meth	0
ount Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0
head space created	:	· 4 ml	in Head Space		
Methane Area	:	<u>0</u> ug			

Atomic weight(Methane) : _____ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Muchaner Analyst

Approved

AF0928.XLS

Methane Report Form

Sample Number	: MW-1116	Client Project No.	: 722450.15020
Lab Sample Number	: X21243	Lab Project No.	: 96-0928
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/27/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401007

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

mperature	:	77.1 F	Saturation	Meth	0
unt Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0
Heed space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

- Na Mehanar Analyst

Methane Report Form

Sample Number	: TW-1125	Client Project No. Lab Project No.	: 722450.15020 : 96-0928
Date Sample Number	: X21244 : 3/26/96	Dilution Factor	: 1.00
Date Sampled Date Received	: 3/27/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401010

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.002	0.002

:	76.4 F	Saturation	Meth	0.000549528
:	0.5 ml	Concentration		
:	43 ml	Concentration	Meth	0.001717223
:	4 ml	in Head Space		
:	12.779 ug			
	:	: 0.5 ml : 43 ml : 4 ml	: 0.5 ml Concentration : 43 ml Concentration : 4 ml in Head Space	: 0.5 ml Concentration : 43 ml Concentration Meth : 4 ml in Head Space

Atomic weight(Methane) : ______ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Approved

AF0928.XLS

Methane Report Form

Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: TW-1125 : X21244Dup : 3/26/96 : 3/27/96 : 4/1/96 : 4/1/96	Client Project No. Lab Project No. Dilution Factor Method Matrix Lab File No.	: 722450.15020 : 96-0928 : 1.00 : RSKSOP-175 : Water : GAS0401011
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.003	0.002
eount Injected	:	•	Meth 0.000705885

Atomic weight(Methane)

space created

Methane Area

/olume of Sample

<u>16</u> g

16.415 ug

43 ml

4 ml

Concentration

in Head Space

Meth

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Approved

AF0928.XLS

0.002205

Methane Report Form

0.026

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
	,,,,,,,	200 1 110 1101	. 6/160/07072
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401012
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Received	: 3/27/96	Method	: RSKSOP-175
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Lab Sample Number	: X21245	Lab Project No.	: 96-0928
Sample Number	: MW-1124	Client Project No.	: 722450.15020

74-82-8

nperature	:	76.9 F	Saturation	Meth	0.006368616
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0.019882767
Head space created	:	4 ml	in Head Space		
Methane Area	:	148.099 ug			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

Methane

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Approved

0.002

Methane Report Form

Sample Number	: MW-1123	Client Project No.	: 722450.15020
Lap Sample Number	: X21246	Lab Project No.	: 96-0928
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/27/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401013

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	υ	0.002

mperature	:	76.4 F	Saturation	Meth	0
nount Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0
space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analysis

Methane Report Form

		•			
Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: MW-1122 : X21247 : 3/26/96 : 3/27/96 : 4/1/96 : 4/1/96	Client Project No Lab Project No. Dilution Factor Method Matrix Lab File No.		: 722450.15020 : 96-0928 : 1.00 : RSKSOP-175 : Water : GAS0401014	
Compound Name	Cas Number	Sample Concentration mg/L		RL mg/L	
Methane	74-82-8	U		0.002	
mperature	÷ <u>-</u>	76.5 F Saturation 0.5 ml Concentration	Meth		0
Volume of Sample	:	43 ml Concentration 4 ml in Head Space	Meth		0
Methane Area	:	0 ug			

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF0928.XLS

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane, Ethane, Ethene Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No. : MW-1116 Lab Sample No. : X21243

Client Project No. Lab Project No.

: 722450.15020

Date Sampled

: 3/26/96

EPA Method No.

: 96-0928 : RSKSOP-175

Date Received **Date Prepared**

: 3/27/96 : 4/1/96

Matrix Method Blank : Water

Lab File No's.

: GB040196 : GAS0401008,009

Date Analyzed

: 4/1/96

E.A. MS/MSD Spike Source No. : 1723

	Spike	Sample	MS		QC
Compound	Added	Concentration	Concentration	MS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	387	77	40-89

	Spike	MSD			QC	
Compound	Added	Concentration	MSD	RPD	Lir	nits
	(ug)	(ug)	%REC		RPD	%REC
Methane Gas	500	391	78	1.0	0-24.4	40-89

RPD:	0	out of (1)	outside limits.
Spike Recovery:	0	out of (2)	outside limits.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS0928.XLS; 4/2/96

Multiplier : 1 ISTD Amount : Sample Info : 96-0928; MW-1116; Displaced 4ml with 1% methane gas (#1723), shook for 5 min. and injected 50ul to equal a theoretical spike of 500ug. The sample is injected at a DF=10

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane LCS Report Form

LCS No.

: LCS040196

EPA Method No.

: RSKSOP-175

Date Prepared

: 4/1/96

Matrix

: Water

Date Analyzed

: 4/1/96

Method Blank

: GB040196

E.A. LCS Source No.

: 1723

Lab File No.

: GAS0401005

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%RcC
Methane Gas	500	0	399	80	67-85

Spike Recovery:

0

out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst

Approved

LCS0401.XLS; 4/2/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/26/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/27/96
 Lab Project Number
 : 96-0928

 Date Prepared
 : 3/28/96
 Method
 : EPA 300.0

 Date Analyzed
 : 3/28/96
 Detection Limit
 : 0.25 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
X21242	MW-1127	Water	4.2	1
X21242	MW-1127 Duplicate	Water	3.3	1
X21243	MW-1116	Water	5.0	1
X21244	TW-1125	Water	3.6	1
X21245	MW-1124	Water	4.9	1
X21246	MW-1123	Water	4.0	1
X21247	MW-1120	Water	2.7	1
Method Blank	(3/28/96)		<0.25	

Quality Assurance

	<u>Sr</u>	oike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242	MW-1127 Matrix Spike	10.0	4.2	12.2	80 .
X21242	MW-1127 Matrix Spike Dup	10.0	4.2	12.4	82
MS/MSD	RPD				3.0

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/26/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/27/96
 Lab Project Number
 : 96-0928

 Date Prepared
 : 3/28/96
 Method
 : EPA 300.0

 Date Analyzed
 : 3/28/96
 Detection Limit
 : 0.076 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
X21242	MW-1127	Water	<0.076	1
X21242	MW-1127 Duplicate	Water	<0.076	1
X21243	MW-1116	Water	<0.076	1
X21244	TW-1125	Water	<0.076	1
X21245	MW-1124	Water	<0.076	1
X21246	MW-1123	Water	<0.076	1
X21247	MW-1120	Water	<0.076	1
Method Blank	(3/28/96)		<0.076	1

Quality Assurance *

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242	MW-1127 Matrix Spike	10.0	<0.25	9.2	92
X21242	MW-1127 Matrix Spike Dup	10.0	<0.25	9.1	91
MS/MSD F	RPD				0.8

* = Quality assurance results reported as Nitrite (NO₂).

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 3/26/96	Client Project ID.	:	722450.15020
Date Received	: 3/27/96	Lab Project Number	:	96-0928
Date Prepared	: 3/28/96	Method	:	EPA 300.0
Date Analyzed	: 3/28/96	Detection Limit	:	0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrate-N mg/L	Dilution <u>Factor</u>
X21242	MW-1127	Water	<0.056	1
X21242	MW-1127 Duplicate	Water	<0.056	1
X21243	MW-1116	Water	0.46	1
X21244	TW-1125	Water	<0.056	1
X21245	MW-1124	Water	<0.056	1
X21246	MW-1123	Water	0.13	1
X21247	MW-1120	Water	0.073	1
Method Blank	(3/28/96)		<0.056	

Quality Assurance *

	<u>S</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242	MW-1127 Matrix Spike	10.0	<0.25	9.0	90
X21242	MW-1127 Matrix Spike Dup	10.0	<0.25	8.9	89
MS/MSD	RPD				0.6

* = Quality assurance results reported as Nitrate (NO₃).

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled : 3/26/96 : 3/27/96 Client Project ID.

: 722450.15020

Date Received

Lab Project Number: 96-0928

Date Prepared

: 3/28/96

Method

: EPA 300.0

Date Analyzed

: 3/28/96

Detection Limit : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
X21242	MW-1127	Water	10.0	1
X21242	MW-1127 Duplicate	Water	9.9	1
X21243	MW-1116	Water	44.4	10
X21244	TW-1125	Water	89.1	10
X21245	MW-1124	Water	29.8	1
X21246	MW-1123	Water	13.9	1
X21247	MW-1120	Water	19.7	1
Method Blank	(3/28/96)		<0.25	

Quality Assurance

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242	MW-1127 Matrix Spike	10.0	10.0	18.8	88
X21242	MW-1127 Matrix Spike Dup	10.0	10.0	18.6	86
MC/MCD F					

MS/MSD RPD

2.2

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled : 3/26/96
Date Received : 3/27/96
Date Prepared : 4/1/96
Date Analyzed : 4/1/96

Client Project ID. : 722450.15020 Lab Project Number : 96-0928 Method : EPA 310.1

Detection Limit

: 5.0 mg CaCO₃/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
X21242	MW-1127	Water	241	1
X21244	TW-1125	Water	161 -	1
X21244	TW-1125	Water	162	1
Dup X21245	Dup MW-1124	Water	117	1

Method Blank

(4/1/96)

<5.0

Quality Assurance

Reference	True Value (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Alkalinity Lot # 0814-95-02	120	125	104

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

 Date Sampled
 : 3/26/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/27/96
 Lab Project Number
 : 96-0928

 Date Prepared
 : 3/28/96
 Method
 : EPA 415.1

 Date Analyzed
 : 3/28/96
 Detection Limit
 : 1.0 mg C/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	TOC mg C	Dilution /L <u>Factor</u>
X21242	MW-1127	Water	10.6	10
X21244	TW-1125	Water	1.3	1
X21244 Dup	TW-1125 Dup	Water	1.7	1
X21245	MW-1124	Water	4.2	1

Method Blank

(3/28/96)

<1.0

Quality Assurance

		Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
X21244	TW-1125 Matrix Spike	10.0	1.3	12.4	108
X21244	TW-1125 Matrix Spike Du	10.0 Ip	1.3	12.9	112
MS/MSD F	RPD	•			4.4

Analyst

Project # <u>96-0955</u>

Date(s) Sampled: 03/26,27/96 COC Date Due: <u>04/04/96-UST</u> 04/11/96-OTHERS

Holding Time(s): $3/28,29-NO_2,NO_3$

Cooler Return N/A

Date Received: 03/28/96 1000 4/09,10-BTEX,TVH,METHANE,ALKALINITY

ent Project I.D. 722450.15020 EAKER AFB Rush STANDARD

Client: PARSONS ENGINEERING SCIENCE, INC.

Address: 1700 BROADWAY SUITE 900 **E.A.** Cooler # 604

DENVER, CO 80290

Airbill # FEDEX 7221153741

Contact: TODD HERRINGTON

Client P.O.

Phone #831-8100 Fax #831-8208

Special Invoicing/Billing___

Special Instructions +CHLOROBENZENE, TMB's & TeMB; *TWO BOTTLES LABELED "TW-

1110", S	AMPLED AT 08:40.				
	Client				
<u>ID #</u>	ID#	Analysis	Mtx	Btl	Loc
X21362A-D	MW1122	BTEX+, TVH	W	40V	2
X21363A-D	MW1121	BTEX+, TVH	W	40V	2
X21364A-D	MW1126	BTEX+,TVH	W	40V	2
X21365A-D	TW-1110D	BTEX+,TVH	W	40V	2
`` <u>366A-D</u>	MW1119	BTEX+,TVH	W	40V	2
λ ₂ 7A-D	MW1109	BTEX+, TVH	W	40V	2
X2. 3A-D	*MW1110	BTEX+, TVH	W	40V	2
X21369A-D	MW-1104	BTEX+, TVH	W	40V	2
X21371A-D	TW-1106	BTEX+, TVH	W	40V	2
X21372A-D	TW1102	BTEX+, TVH	W	40V	2
X21373A-D	TW1111	BTEX+,TVH	W	40V	2
X21376A	TRIP BLANK	BTEX+,TVH	W	40V	2
X21377A-D	ESMP-6D	BTEX+,TVH	W	40V	2
X21362E-G	MW1122	METHANE	W	40V	2
X21363E-G	MW1121	METHANE	W	40V	2
X21364E-G	MW1126	METHANE	W	40V	2
X21365E-G	TW-1110D	METHANE	W	40V	2
X21366E-G	MW1119	METHANE	W	40V	2
X21367E-G	MW1109	METHANE	W	40V	2
X21368E-G	*MW1110	METHANE	W	40V	2
X21369E-G P-Sample to	MW-1104 o be returned	METHANE	W	40V	2

Metals $\underline{\hspace{1cm}}$ Wet Chem $\underline{\hspace{1cm}}$ GC/MS ___ GC X HPLC ___ SxPrep _

> File SxRec C QA/QC C Acctg C Oriq

Page 1 of 2 Page(s)

Custodian/Date

Lab	Client				
ID #	ID#	Analysis	Mtx	Btl	Loc
X21371E-G	TW-1106	METHANE	w	40V	2
		METHANE	w	40V	2
X21372E-G	TW-1102				
X21373E-G	TW-1111	METHANE	W	40V	2
X21377E-G	ESMP-6D	METHANE	<u> </u>	40V	2
X21362H	MW-1122	NO ₂ , NO ₃ , SO ₄ , Cl	W	125P	E6
X21363H	MW-1121	NO ₂ , NO ₃ , SO ₄ , C1	W	125P	E6
X21364H	MW-1126	NO2, NO3, SO4, C1	W	125P	E6
X21365H	TW-1110D	NO2, NO3, SO4, C1	W	125P	E6
Х21366Н	MW-1119	NO ₂ , NO ₃ , SO ₄ , Cl ⁻	W	125P	E6
Х21367Н	MW-1109	NO ₂ , NO ₃ , SO ₄ , Cl ⁻	<u> </u>	125P	E6
X21368H	*MW-1110	NO ₂ , NO ₃ , SO ₄ , Cl ⁻	W	125P	E 6
Х21369Н	MW-1104	NO ₂ , NO ₃ , SO ₄ , Cl ⁻	W	125P	E6
X21371H	TW-1106	NO ₂ , NO ₃ , SO ₄ , Cl	W	125P	E6
X21372H	TW-1102	NO ₂ , NO ₃ , SO ₄ , Cl ⁻	W	125P	E6
X21373H	TW-1111	NO ₂ , NO ₃ , SO ₄ , Cl	W	125P	E6
X21377H	ESMP-6D	NO ₂ , NO ₃ , SO ₄ , Cl	W	125P	E6
X21368I	MW-1110	ALKALINITY	W	125P	E6
X21368J	MW-1110	TOC	W	125A	E6
X21370A	MW-1105	BTEX	PRODUCT	40V	10
X21370B	MW-1105	DENSITY	PRODUCT	40V	10
X21374A	ESS4-9'-10'	TOC (% MOISTURE)	S	4WM	OUT
X21375A	ESS18-9.0'-9.5'	TOC (% MOISTURE)	<u> </u>	4WM	OUT

Page 2 of 2 Pages Project #<u>96-0955</u>

R=Sample to be returned

CHAIN OF CUSTODY RECORD / NALYTICAL SERVICES REQUEST

(,

10.14 Junitins. Bon	ELKY DFB 7275015030	P.O.#	:D⁺)¥ STD (2 wks) 🗓 STD UST (3 day	<u>~</u>	ject to additional fee	EAL use only Do not write	in shaded area		EAL OF AGE	≩و		EAL Sample No.	x21362	C3	きを経験するのと				27	67	TANK TO	1	Location 2, EG	Container Size	
CLIENT CONTACT (print)_	PROJECT I.D. F.	EAL. QUOTE #	TURNAROUND REQUIRED*		*expedited turnaround subject to additional fee	SUESTED	948	0 /20 908M MS /	MO: NO: NO: NO: NO: NO: NO: NO: NO: NO: N	SIEISI	A) Asi (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	Oissi Oissi	×.	×	メ	×	×	X	× ×	×	*	×	H I J	1 128 57 PW	
4036 Younglield St.	Wheat Ridge, Colorado 80033 (303) 425-6021	FAX (303) 425-6854 (800) 845-7400	FAX RESULTS Y / N			ANALYSIS REQUESTED	(cle)	(circle (e) 3E (cir 3.1 (cir.	508/508 515 (circl rcle)/MTE 10856 413	8080/8 8150/5 502 (cil	280-1016 B Sebioid B Sebio	Heh BOQ TB GAT GVT	×	×	ン	X ×	× ×	×	× × ×	×	×	XXX	A/B c/D E-G	Not had hed	
8347	~	<	FAX # 323-851-8308			MATRIX		(9)	,08 (circ.)	/BNA/I 524/52 525 (ci 5080/6	AOV 91/05/6/16/16/16/16/16/16/16/16/16/16/16/16/1	Oil / Coirci VO/ BNA							(बर्क्ट विस्तु कर		×.				
ering Science	Sept 200	OFFERS PIZ O	FAX # 32	- · · · · · · · · · · · · · · · · · · ·	Þ		(C)	nojsy	•	enenis i(U\pm)	DATE of Cont let-Dinch (circle) / Solid	D TIME 20	3-26-96 45gm 8 K	3. 10.16 Kgy5 3 V	3-3/2-36 1720 3 V	3-27-% 9:00 8 ×	8.08	3.27.96 9:30 8 X	8:40		3-27.36 9:40 2	3.7.76 11:00 B X			
COMPANY ALEAS EAGIS	ADDRESS 1900 Bradwing, Krite 100	CITY DEAYER STATE CO	PHONE# 305 -831-810	Sampler Name:	(signature) Shin Ozaki, Mak	S (print) Jy > C DINITED S	Evergreen Analytical Cooler No.	Cooler Received	Please PRINT	all information:	CLIENT SAMPLE DA	NOI	MW1134 3-	mw11.01 3.1	14a: 1136 3-						2	W-inch	Ë	DD:	Instructions:

Relinquished by: (Signature) Date/Time Received by: (Signature)

Date/Time Relinquished by: (Signature)

Date/Time | Physiked by/Asignatule)

128/96 (0000)

IAIVTICAI CEDVICEC CHAIN OF CHETONY DECODE

CITAIN OF COST	ODI DECOM	CITAIN OF COSTODI DECOME. VALITICAL SERVICES REQUEST	ICES REGUESI
	Evergr	Evergr Analytical Inc.	•
COMPANY [(15 215 Parimenny Scioner	*	4036 Younglield St.	CLIENT CONTACT (print)
ADDRESS / Tue Presponsy First for	\\	Wriear Higge, Colorado 80033 (303) 425-6021	PROJECT I.D. Facker
CITY DEMUNEY STATE (C) ZIP 702/0		FAX (303) 425-6854 (800) 845-7400	EAL. QUOTE #
PHONE 2:3-34-3100 FAX# 303-35/- 7003		FAX RESULTS Y / N	TURNAROUND REQUIRED* 1

Sampler Name:

1FB, 722/5015000 A STD (2 wks) C STD UST (3 day) Page Z of 2 P.O.#

Other (Specify)_

ect to additional fee	EAL use only Do not write	in shaded area		5560-76 TH3 / /	Project * MM		EAL Sample No.	ンナスナン	25	7 72	アンナ	775				Location 2 FC		
*expedited turnaround subject to additional fee	STED	*05	948M	V (77) R pelow) R pelow)	Signal Figure 1	Isil & N Dev	Circle	×	~	*	× ×		×			13.	77.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ANALYSIS REQUESTED	(9)	3.1 (cir.	ircle)MT: (Gasolin (Diesel)	ON & CO	8020 81811/ 8015 8015 8015 8015	HANT HOST HOST HOST HOST HOST HOST HOST HOS	XXX	メソン			×	×			1/8 CIDE-4	15 Jan 167	
			(ə ₎ :	PesVHei 24.2 (circ) ircle) 608(circ) 608/808 515 (circ)	9080\ ⁰ 8080\0	SS70/6s side	B ANB Pestic Resylvant											
	MATRIX			ischarge	<u>ი</u> /ნსი	nind- Glorid Solid egbul	No. of Water Soily Soily S	8 ×	X X	× -	メー		। Y					
いととうからい	A. V.S. LLL	40. 6C4 V		NIXT	nation:		DATE SAMPLED TIME	3-27-16 14:0	3.27.96 19:20	13-27-96 13:30	3-1296 14:45	3-37-96 -	A 27-92 15:15					
(signature) 2 / 1/2	لمحا	Evergreen Analytical Cooler No	Cooler Received	Please PRINT	all information:	CLIENT	SAMPLE IDENTIFICATION	TW 1102	MW (W'(11)	ESS4-9-101	ESSIB - 9.0.9.5	Trip Blak	85/11P-6D			HT:	DD:	Instructions:

Relinquished by: (Signature) Date/Time Received by: (Signature)

Date/Time Relinquished by: (Signature) $3/27/if_{\rm f}$

Date/Time Received by: (Signature) Date/Time

Evergreen Analytical Sample Receipt/Check-in Record
Date & Time Rec'd: 3 28 96 1000 Shipped Via: Kd - X 722-1153741
Client: Parsons ES (Airbill # if applicable)
Client Project ID(s): Egker AFB 727450. 15020
EAL Project $\#(s):96-0955$ EAL Cooler(s): (Y) N
Cooler# (004
Ice packs (Y) N Y N Y N Y N
Temperature °C 8-12
Y N N/A
1. Custody seal(s) present: Seals on cooler intact Seals on bottle intact ——————————————————————————————————
2. Chain of Custody present:
3. Samples Radioactive: (Comment on COC if >0.5mr/h)
4. Containers broken or leaking: (Comment on COC if Y)
5. Containers labeled:
6. COC agrees w/ bottles received: (Comment on COC if N)
7. COC agrees W/ labels: (Comment on COC if N)
8. Headspace in vials-waters only: (Comment on COC FY)
9. VOA samples preserved:
10. pH measured on metals, cyanide or phenolics*:
List discrepancies *Non-EAL provided containers only, water samples only.
11. Metal samples present:
Total , Dissolved , TCLP
D or PD to be filtered:
T,TR,D,PD to be Preserved:
12. Short holding times: Specify parameters No 2/No3
13. Multi-phase sample(s) present:
14. COC signed w/ date/time:
comments: #6. Sample bottles were received for Methane analysis,
(Additional comments on back)
Custodian Signature (Date: NM - 3/28/9-6

CHAIN OF CUSTODY RECORD / NALYTICAL SERVICES REQUEST

c do l of 2	المهاجران المدالمي	8 72×15015030	P.O.#	STD (2 wks) 🚨 STD UST (3 day	Other (Specify)	expedited turnaround subject to additional fee	EAL use only Do not write	in shaded area		・ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EAL	Custodian		EAL Sample No.											Location	Container Size	
`	Jan	Ecker AFB		X	0	To add							_														
	, ,	ck ₂		TURNAROUND REQUIRED*		noleci																			1987 1987 1987		
	CLIENT CONTACT (print)	Ш		Egul	-	S DUD		_			_	十	LISI	NCI.	_						<u> </u>						
	TAC		**	NO R		maro		_			-	_	-	2	_	_							×	_		- A 1	
	Ş	PROJECT I.D.	EAL. QUOTE	ROU	7			4	4			Lin	JIW.	VIK	-						X		_				
	IENT	3OE	Ĭ. O	JRNA	4	Ded Ded	Ω	1	<i>-</i>	<u></u>	ON	TON	717	_	 _	_	-)		×	1	<u> </u>				
	ರ	ď	Ü	₽	•	5 	REQUESTED		948N	MOJO AS/N	eq sji AQ - s	netals meta	_			×	メ	×	X	X	스	X	_	$\dot{\times}$:\$2\$6 \$253	
							J.	948	MS/	230	₫N/	Mn-s	JIDI O	(Circle	├								_			Park Services	
		83					В	_		-		7000	21001														
٢	;	Wheat Ridge, Colorado 80033 (303) 425-6021		z _				(an	(200)	,,00	366))	DOW					``.	K	٠,	X	,	メ		X	evision evision	30 m	
Analitical Inc	Si	olorad	824	>			ANALYSIS	(ala	-	-	-00%) B IIO.	/1:01.		->	1	`>		×)	Х	^			* 194 * 194 * 254		
į.	4036 Youngfield St	96, C 22, C 22, C	FAX (303) 425-6854 (800) 845-7400	FAX RESULTS			NAL	17,0	(c)	BTM(circle)	,eos (c	80208)T8		`%\	7.	×	×	×	×	×	X	×			
	, S	Wheat Ridge, C (303) 425-6021	FAX (303) 425-((800) 845-7400	RES			A	_				u	20100		1	(342.5 1200		ŀ
An	960	Vhea 303)	AX (3	FAX		1		-	CICCLE	(circle	215	mera		_	\vdash												
		ت ح	ше			ł					009/	0808	SRA	^^-											iliga (
	'n		,								809	,0808	sebio	pesti												2.48. 1.54. 2.44.	
Fyora	«	//		22					(6	(circle	S.PS	959 (5	/0Z8	ANB													
Ĺ	1	•		3068-				Sis	IeM/	CHON W		5/459	8250	AOV													
						L			_	, - 1/1	/ 3⊕d/	AN8/	AOV (TCLF (circl													
				323-851			¥X					•	egbula	6/1!0									X				
				323			MATRIX							/ lios													
		1	al			F	Σ	PU	noje	argev	ichi	J/Gui>	r-Drinl circle)	elsW)	×	<u>ک</u>	ン	×	×	×	×	X		X			
			OPEOS AIS	FAX#		1					s	nenis	noO ì	0 .0M	∞	ر.ك	3)	80	8	8	.6	w	17	(∕c:			
	3	200	30		-	<u>고</u>	3	$\dot{\gamma}_{\parallel}$	ŀ					TIME	1.3°2m	K=45	1720	9,00	8,08	9,30	8:40	₩ P	9;6	સ		·	
	الأرا	St.	ZIP		1	7	1												20		8			//			
	ξ	8				Mys Vimb	Dillian.	E.		ŀ				DATE SAMPLED	3-36-96	3. 10.46	3-3, 36	3%	36	3-27-96	36	3.27.26	91. Fz. E	3-27-96			
	Jack	, }	,3			7	NA.	9			Z	:uo	1	DATE AMPLE	3c-3)0	7	3-27-36	3-27-8	-27	3-27-36	.7	-7-	, ,			
	الخ	23	STATE	800			Nh	No N		Č	T	matį		Ŝ		3	is	ړې	<u>.</u> ∴	3	3	3	٤				
	Grans Engineering Science	00 Bra	S	35 -831-	۔ .	(signature) ブルハロスド		Evergreen Analytical Cooler No		Č	Please PKIN	all information:	<u>_</u> I	SAMPLE IDENTIFICATION								2	7				
	3	1700		33	Sampler Name:	d d	\$	alytica	,ed		Pleas		CLIENT	SAMPLE	20	둙	<u>;</u>	4	9	2	9	MW-1104	5011-10721	457			. <u>s</u> :
	È	SS	CITY DEAY :		ă la	رة ك	7	₃n An	Cooler Received		-		ರ :	S E	MW ii 32	C 11 m W	Me. 11 36	TW-1110D	MW-1119	12W-1109	MW-1110	1-1	133	7211-1154			Instructions:
	COMPANY	ADDRESS.	ď	PHONE#_	ılduı	Inatui	(print)	ergree	oler F					<u> </u>	Ma	\ 2	3	3	A K	32	2	Mi	17.	77	빌	90:	ıstru
	8	AD	5	Ŧ	Sa	Sign	. <u>ē</u>	Ĕ	Ő						لـــا			<u>'</u>							工	٥	=

Relinquished by: (Signature) Date/Time Received by: (Signature)

Date/Time Relinquished by: (Signature)

Date/Time | Perpend by (Signatule) | Date/Time | Date/Time | Date/Time

Page 7 of 7 NALYTICAL SERVICES REQUEST 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N Analytical Inc. CHAIN OF CUSTODY RECORD Everg FAX # OLTOR Science 21.517 Sampler Name: CITY DELINIOR COMPANY ADDRESS_ PHONE#

CLIENT CONTACT (print) Toda IPPRINTING 12	EAL. QUOTE #	TURNAROUND REQUIRED* DY STD (2 wks)	☐ Other (Specify)
---	--------------	-------------------------------------	-------------------

EAL use only expedited turnaround subject to additional fee

ANALYSIS REQUESTED

in shaded area

Do not write

EAL Sample No.

	l .	1			-	
		<u> </u>	(6	5 (circle	15/	0S I
		L.		805/8	09/0	080
			(S (circle	200	<u> </u>
		<u> </u>		(8)	oiro) S
		<u> </u>		S (circl	254	i/ta
		Sla	19W/c	рендзе		<u> </u>
					-	341
	X					
	ATF					
	W	Şυ	Grou	Lystgev	SIC	/ 6∟
					S	eu
١						
Signature Contraction of the Con	(print) The Cite 1 1 1/2 1/2 (print)	Evergreen Analytical Cooler No. (C4)	Cooler Received	TNIAG		all information:

Please PRINT

in shader EAL Project # Custodian EAL Sampl											ocation	Container Size
								S.Ga			၂ ္	8
2 2		_		_	+						\vdash	
Alkanty As sow			×	X								7
17 PM 75												12.
(circle & list metals - DW / SW846	×	<u> </u>		-	-	×						3/1 3/13 (\$/3)
(circle & list									\exists			
TEPH 8015mod (Gasoline)												
TOUR GIBBEOTH	X	X			×	×	-					
(BTEX 8020 (circle)/MTBE (circle)	×	<u>بر</u>			×	×			-	\dashv		
OCIGON	Ĥ	,						\dashv		\dashv		l-ail 122
Pest/PCBs 8080/608/508 (circle) Herbicides 8150/515 (circle)												2 d avo
Pesticides 8080/608 (circle)									\Box	\Box		
(circle)							_	_	_	_	· · · · · ·	
24.5 (Sicolary 524.2 (Sicolary								\dashv	\dashv	\dashv		
TCLP VOA/BNA/Pest/Herb/Metals (circle)												
egbul2 \ liO												
Water-Drinking/Discharge/Ground (circle)		<u> </u>	X	X			_	_	_	_		- 1,
No. of Containers Water-Drinking/Discharge/Ground	8 X	<u>X</u>				X	\dashv	\dashv	+	\dashv		
		3		15		3	_	\dashv	\dashv			
> MIT	;5]	3/	13:3	7 · 5	1	3.7						
LC4 V INT ation: DATE SAMPLED TIME	3-27-16 14:4	3.27-96 14:20	3-27-36 13:30	3-1296 14:45	7-46	13.27-92 15.15						
PINT ation: DATE SAMPLE	3-2.	3.2	5-0.	3-9	3-99-4C	13.27						
Be PRIN all information:			- 0	4,5								
열 이 연 코리카	7,5	MW IVY III	ESS4-9-101	ESSIB - 90-9,5	rio Blak	4						
eceived	TW 1102	14.	554.	S 18	ر با د با							
Evergreen Analys Cooler Received Ple CLIEI SAMP	13	MW	1	53	Ï	85/11P-6D					빞	00:
ώŏ, l	1	1	1			****				1		لــــــــــــــــــــــــــــــــــــــ

Date/Time Received by: (Signature) Relinquished by: (Signature

Instructions:

Date/Time | Relinquished by: (Signature) $3/27/\mathring{\alpha}L$

Date/Time | Received by: (Signature)|

(AM! Date/Time

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB1040196B

Client Project Number

722450.15020

Date Prepared

: 4/1/96

Lab Project Number

96-0955

Dilution Factor

: 50

Matrix

MEOH

Lab File Number

TVBX0401023

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	mg/kg
Benzene	71-43-2	4/2/96	U	20	ug/kg
Toluene	108-88-3	4/2/96	U	20	ug/kg
Chlorobenzene	108-90-7	4/2/96	Ū	20	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	20	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	20	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	20	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	20	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	Ü	20	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	25	ug/kg
FID Surrogate Recovery:					
ID Surrogate Recovery:		IA		50%-132%	(Limits)
ib Surrogate necovery:		103%		72%-118%	(Limits)

s: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB032896

Client Project Number

722450.15020

Date Prepared

: 3/28/96

Lab Project Number

96-0955

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVBX0328016

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/28/96	U	0.1	mg/L
Benzene	71-43-2	3/28/96	U	0.4	ug/L
Toluene	108-88-3	3/28/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/28/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/28/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/28/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/28/96	Ŭ	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/28/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/28/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/28/96	U	0.5	ug/L
FID Surrogate Recovery:		96%		70%-130%	(Limits)
) Surrogate Recovery:		94%		70%-128%	(Limits)

Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB040196

Client Project Number

722450.15020

Date Prepared

: 4/1/96

Lab Project Number

96-0955

Dilution Factor

: 1.0

Matrix

WATER

trix : WATER

Lab File Number

TVBX0330061

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	0.1	mg/L
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
FID Surrogate Recovery:		98%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		96%		70%-128%	(Limits)

tes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Ment Sample Number : MW 1122 Client Project Number : 722450.15020

Lab Sample Number : X21362 Lab Project Number : 96-0955
Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328023
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
ID Surrogate Recovery:		96%		70%-130%	(Limits)
Surrogate Recovery:		93%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	•

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nent Sample Number : MW 1121 Client Project Number : 722450.15020

Lab Sample Number : X21363 Lab Project Number : 96-0955

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328024

Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
ID Surrogate Recovery:		94%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		94%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- **TVH** = Total Volatile Hydrocarbons.

K HALIMAN Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : MW 1126 Client Project Number : 722450.15020 Lab Sample Number : X21364 Lab Project Number : 96-0955

Date Sampled : 3/26/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328025
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
FID Surrogate Recovery:		92%	L	70%-130%	(Limits)
Surrogate Recovery:		89%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
		-

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hillman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : MW-1119 Client Project Number : 722450.15020

Lab Sample Number : X21366 Lab Project Number : 96-0955
Date Sampled : 3/27/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328028
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	1.1	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
iD Surrogate Recovery:		93%		70%-130%	(Limits)
Surrogate Recovery:		88%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number

: MW-1109

Client Project Number

722450.15020

Lab Sample Number

: X21367

Lab Project Number

Method Blank

96-0955

Date Sampled

: 3/27/96

Matrix

WATER

Date Received

: 3/28/96

Lab File Number(s)

TVBX0330065

Date Prepared

: 3/31/96

MB040196

FID Dilution Factor

: 50

: 50 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	13	5.0	mg/L
Benzene	71-43-2	4/1/96	2600	20	ug/L
Toluene	108-88-3	4/1/96	62	20	ug/L
Chlorobenzene	108-90-7	4/1/96	U	20	ug/L
Ethyl Benzene	100-41-4	4/1/96	170	20	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	790	20	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	20	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	200	20	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	64	20	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	44	25	ug/L
TID Surrogate Recovery:		101%		70%-130%	(Limits)
Surrogate Recovery:		100%		70%-128%	(Limits)

votes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number

: TW-1110D

Client Project Number

722450.15020

Lab Sample Number

: X21365

Lab Project Number

96-0955

Date Sampled

: 3/27/96

Matrix

WATER

Date Received

Lab File Number(s)

TVBX0330062

Date Prepared

: 3/28/96

Method Blank

: 3/31/96

MB040196

FID Dilution Factor

: 100

PID Dilution Factor

: 100

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	22	10	mg/L
Benzene	71-43-2	4/1/96	6300	40	ug/L
Toluene	108-88-3	4/1/96	140	40	ug/L
Chlorobenzene	108-90-7	4/1/96	U	40	ug/L
Ethyl Benzene	100-41-4	4/1/96	620	40	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	440	40	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	40	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	61	40	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	40	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	63	50	ug/L
FID Surrogate Recovery:		101%	L	70%-130%	(Limits)
Surrogate Recovery:		100%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	· · · · · · · · · · · · · · · · · · ·		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number

: MW-1110

Client Project Number

722450.15020

Lab Sample Number

: X21368

Lab Project Number

96-0955

Date Sampled

: 3/27/96

Matrix

WATER

Date Received

: 3/28/96

Lab File Number(s)

TVBX0330063

Date Prepared

: 3/31/96

Method Blank : MB040196

FID Dilution Factor

: 100

PID Dilution Factor

: 100

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	27	10	mg/L
Benzene	71-43-2	4/1/96	5900	40	ug/L
Toluene	108-88-3	4/1/96	230	40	ug/L
Chlorobenzene	108-90-7	4/1/96	U	40	ug/L
Ethyl Benzene	100-41-4	4/1/96	520	40	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	510	40	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	40	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	70	40	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	40	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	50	ug/L
ID Surrogate Recovery:		101%		70%-130%	(Limits)
Surrogate Recovery:		100%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : MW-1104 Client Project Number 722450.15020 96-0955

Lab Project Number Lab Sample Number : X21369 Date Sampled : 3/27/96 Matrix WATER

Lab File Number(s) TVBX0328036 Date Received : 3/28/96 : 3/28/96 Method Blank MB032896 Date Prepared

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	2.0	0.1	mg/L
Benzene	71-43-2	3/29/96	50	0.4	ug/L
Toluene	108-88-3	3/29/96	20	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	38	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	97	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	15	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	36	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	11	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	14	0.5	ug/L
ID Surrogate Recovery:	1	96%		70%-130%	(Limits)
Surrogate Recovery:		91%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number

: MW-1105

Client Project Number

722450.15020

Lab Sample Number

: X21370

Lab Project Number

96-0955

Date Sampled

Matrix

OIL

: 3/27/96

Lab File Number(s)

TVBX0401024,38

Date Received Date Prepared

: 3/28/96

Method Blank

MEB1040196B

FID Dilution Factor

: 4/1,2/96

: 1,000,000

PID Dilution Factor : 50,000 & 1,000,000

		Analysis	Sample			
Compound Name	Cas Number	Date	Concentrati	ion	RL	Units
TVH-Gasoline		NA		NA	NA	NA
Benzene	71-43-2	4/2/96	10,000,000		400,000	ug/kg
Toluene	108-88-3	4/2/96	65,000,000		400,000	ug/kg
Chlorobenzene	108-90-7	4/2/96		U	20,000	ug/kg
Ethyl Benzene	100-41-4	4/2/96	13,000,000		400,000	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	66,000,000		400,000	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	8,400,000		400,000	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	26,000,000		400,000	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	7,500,000		400,000	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	3,600,000		20,000	ug/kg
ID Surrogate Recovery:	N	IA			50%-132%	(Limits)
Surrogate Recovery:		105%,100%			72%-118%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	-		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

ment Sample Number : TW-1106 Client Project Number : 722450.15020

Lab Sample Number : X21371 Lab Project Number : 96-0955
Date Sampled : 3/27/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328029
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
Surrogate Recovery:	1	90%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		88%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
		 · · · · · · · · · · · · · · · · · · ·

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

HUMÊM Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

ent Sample Number : TW 1102 Client Project Number : 722450.15020

Lab Sample Number : X21372 Lab Project Number : 96-0955
Date Sampled : 3/27/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328030
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	0.3	0.1	mg/L
Benzene	71-43-2	3/29/96	0.4	0.4	ug/L
Toluene	108-88-3	3/29/96	3.2	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	0.5	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	3.0	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	0.5	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	1.6	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	0.8	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
ID Surrogate Recovery:		95%		70%-130%	(Limits)
Surrogate Recovery:		91%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	, a. 1. p	 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Jollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : TW 1111 Client Project Number : 722450.15020

Lab Sample Number : X21373 Lab Project Number : 96-0955

Date Sampled : 3/27/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0330064
Date Prepared : 3/31/96 Method Blank : MB040196

FID Dilution Factor : 100
PID Dilution Factor : 100

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	58	10	mg/L
Benzene	71-43-2	4/1/96	2300	40	ug/L
Toluene	108-88-3	4/1/96	4500	40	ug/L
Chlorobenzene	108-90-7	4/1/96	U	40	ug/L
Ethyl Benzene	100-41-4	4/1/96	1400	40	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	8800	40	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	530	40	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	1700	40	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	5300	40	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	160	50	ug/L
ID Surrogate Recovery:		102%		70%-130%	(Limits)
Surrogate Recovery:		100%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

J. H. U.M. Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number

: TRIP BLANK

Client Project Number

722450.15020

Lab Sample Number

: X21376

Lab Project Number

96-0955

Date Sampled

: NA

Matrix

WATER

Date Received

: 3/28/96

Lab File Number(s)

TVBX0328022

Date Prepared

: 3/28/96

Method Blank

MB032896

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	U	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
ID Surrogate Recovery:		93%		70%-130%	(Limits)
Surrogate Recovery:	· · · · · · · · · · · · · · · · · · ·	92%	· · · · · · · · · · · · · · · · · · ·	70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

- **E** = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : ESMP-6D Client Project Number : 722450.15020

Lab Sample Number : X21377 Lab Project Number : 96-0955
Date Sampled : 3/27/96 Matrix : WATER

Date Received : 3/28/96 Lab File Number(s) : TVBX0328031
Date Prepared : 3/28/96 Method Blank : MB032896

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		3/29/96	U	0.1	mg/L
Benzene	71-43-2	3/29/96	U	0.4	ug/L
Toluene	108-88-3	3/29/96	1.1	0.4	ug/L
Chlorobenzene	108-90-7	3/29/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	3/29/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	3/29/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	3/29/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	3/29/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	3/29/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	3/29/96	U	0.5	ug/L
ID Surrogate Recovery:		93%		70%-130%	(Limits)
Surrogate Recovery:		90%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	·

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Hollman Analyst

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

lient Sample No.	: TW 1106	Client Project No.	:	722450,15020
ab Sample No.	: X21371	Lab Project No.	:	96-0955
Date Sampled	: 3/27/96	EPA Method No.	:	602/8020
Date Received	: 3/28/96	Matrix	:	Water
Pate Prepared	: 3/31/96	Lab File Number(s)	:	TVBX0330057,58
ate Analyzed	: 4/1/96	Method Blank	:	MB033196
·		Dilution Factor	:	1.0

Compound	Spike Added	Sample Concentration	l l	entration ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	20.9	20.4	
Toluene	20.0	0.0	19.3	18.7	
Chlorobenzene	20.0	0.0	19.0	19.1	
Ethylbenzene	20.0	0.0	19.4	19.3	
m,p-Xylene	20.0	0.0	20.1	19.9	
o-Xylene	20.0	0.0	19.0	19.2	
1,3,5-TMB	20.0	0.0	19.0	18.7	
1,2,4-TMB	20.0	0.0	19.0	18.1	
1,2,3-TMB	20.0	0.0	18.9	18.9	
1,2,3,4-TeMB	20.0	0.0	19.4	19.4	
Surrogate	100.0	87%	103%	101%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	104.5	102.0	2.4	25	50 - 150
Toluene	96.5	93.5	3.2	25	50 - 148
Chlorobenzene	95.0	95.5	0.5	25	55 - 135
Ethylbenzene	97.0	96.5	0.5	25	50 - 150
m,p-Xylene	100.5	99.5	1.0	25	50 - 150
o-Xylene	95.0	96.0	1.0	25	50 - 150
1,3,5-TMB	95.0	93.5	1.6	25	50 - 150
1,2,4-TMB	95.0	90.5	4.9	25	50 - 150
1,2,3-TMB	94.5	94.5	0.0	25	50 - 150
1,2,3,4-TeMB	97.0	97.0	0.0	25	50 - 150
Surrogate	103.0	101.0	NA	NA	70 - 128

#=	Values	taken	from	FΡΔ	methods	602/8020	
77	vaiues	laken	HUHL	EFA	memous	UUZIOUZU	٠.

* = Values outside of QC limits.

	•			
RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

	-	
Comments:		
		

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: MW 1126	Client Project No.	:	722450,15020
Lab Sample No.	: X21364	Lab Project No.	:	96-0955
Date Sampled	: 3/26/96	EPA Method No.	:	5030/8015 Modified
Date Received	: 3/28/96	Matrix	:	WATER
Date Prepared	: 3/31/96	Lab File Number(s)	:	TVBX0330055,56
Date Analyzed	: 4/1/96	Method Blank	:	MB033196
	***************************************	Dilution Factor	:	1.0

	Spike	Sample	MS		QC***
Compound	Added	Concentration	Concentration	MS	Limits
	(mg/L)	(mg/L)	(mg/L)	%REC	%REC
Gasoline	2.00	0.00	2.15	107.5%	57-126
Surrogate **				103%	70-128

Compound	Spike Added	MSD Concentration	MSD		QC*** Limits	
·	(mg/L)	(mg/L)	%REC	RPD	RPD	%REC
Gasoline	2.00	2.08	104.0%	3.3	28.2	57-126
Surrogate **			102%	NA	NA	70-128

out of (1) outside limits.

Spike Recovery:	out o	f (2) outside limits.		
Notes:				
NA = Not analyzed	l/not applicable.			
* = Value outside	of QC limits.			
** = 1,2,4-Trichlo	robenzene			
*** = Limits estab	lished 3/8/96. KSH			
Comments:				

K. Hollman
Analyst

RPD:

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)

: LCS040196-GW

Matrix

Method Numbers

: WATER

: 4/1/96

: 4/2/96

: TVBX0401014

: EPA 5030/8015 Modified

Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit** % Recovery
Gasoline	2.00	2.35	-117.5	78 - 137
Surrogate Recovery:		103%		70 - 130

4

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 3/11/96 for TVHBTEX2. KSH

LCST0401.XLS; 4/2/96

Methane Report Form Method Blank Report

Method Blank Number

: GB040496

Client Project No.

: 722450.15020

Date Extracted/Prepared

: 4/4/96

Lab Project No.

: 96-0955

Date Analyzed

: 4/4/96

Dilution Factor

: 1.00

Method

Matrix

: Water

Lab File No.

: GAS0404002

: RSKSOP-175

Sample

Compound Name

Cas Number

Concentration mg/L

RL mg/L

Methane

74-82-8

U

0.002

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF0955.XLS

Methane Report Form

Sample Number	: MW1122	Client Project No.	: 722450.15020
Lab Sample Number	: X21362	Lab Project No.	: 96-0955
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404007

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

mperature	:	70.5 F	Saturation	Meth	0
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0
Head space created	•	4 ml	in Head Space		
Methane Area	•	0 ug			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Manage

Methane Report Form

	•••		, p =			
Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: MW1121 : X21363 : 3/26/96 : 3/28/96 : 4/4/96 : 4/4/96		Client Project No. Lab Project No. Dilution Factor Method Matrix Lab File No.		: 722450.15020 : 96-0955 : 1.00 : RSKSOP-175 : Water : GAS0404008	
Compound Name	Cas Number		Sample Concentration mg/L		RL mg/L	
Methane	74-82-8		U		0.002	
mperature	:	69 F	Saturation	Meth		0
nt Injected	:	0.5 ml	Concentration			_
Tolume of Sample	•	43 ml	Concentration	Meth		0
Head space created Methane Area	: 	4 ml 0 ug	in Head Space		* HB 4800 H	······································
Methane Area	•	ug				

Atomic weight(Methane)

<u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Manager

Methane Report Form

Sample Number	: MW1126	Client Project No.	: 722450.15020
Lau Sample Number	: X21364	Lab Project No.	: 96-0955
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404009

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.006	0.002

mperature	:	69.1 F	Saturation	Meth	0.001387172
pount Injected	:	0.5 ml	Concentration	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
olume of Sample	:	43 ml	Concentration	Meth	0.004394657
As space created	:	4 ml	in Head Space		
Methane Area	:	32.258 ug			

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Methane Report Form

Sample Number	: MW1126	Client Project No.	: 722450.15020
Lab Sample Number	: X21364Dup	Lab Project No.	: 96-0955
Date Sampled	: 3/26/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404010

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.005	0.002

mperature	:	69.2 F	Saturation	Meth	0.001188329
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0.003763995
Heau space created	:	4 ml	in Head Space		
Methane Area	:	27.634 ug			

Atomic weight(Methane) : 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst LLE

Methane Report Form

Cample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: MW-1119 : X21366 : 3/27/96 : 3/28/96 : 4/4/96 : 4/4/96	Client Project No. Lab Project No. Dilution Factor Method Matrix Lab File No.	: : :	722450.15020 96-0955 1.00 RSKSOP-175 Water GAS0404012
Compound Name	Cas Number	Sample Concentration mg/L		RL mg/L
Methane	74-82-8	0.092	٠.	0.002
Tomperature		5 F Saturation 5 ml Concentration	Meth	0.022030828
T solume of Sample Head space created	: 4	3 ml Concentration 4 ml in Head Space	Meth	0.069610779

Atomic		

<u>16</u> g

512.316 ug

QUALIFIERS:

Methane Area

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Mulane,
Analyst

Approved

AF0955.XLS

Methane Report Form

Sample Number	: MW-1109	Client Project No.	: 722450.15020
Lab Sample Number	: X21367	Lab Project No.	: 96-0955
Date Sampled	: 3/27/96	Dilution Factor	: 10.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404013

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.00	0.02

mperature	:	72.2 F	Saturation	Meth	0.240513832
nt Injected	: _	0.05 ml	Concentration		
olume of Sample	: _	43 ml	Concentration	Meth	0.757520993
Head space created	:	4 ml	in Head Space		
Methane Area	:]	559.303 ug			

Atomic weight(Methane) : ____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Muller

Methane Report Form

Sample Number	: MW-1110	Client Project No.	: 722450.15020
Lab Sample Number	: X21368	Lab Project No.	: 96-0955
Date Sampled	: 3/27/96	Dilution Factor	: 50.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404014

Compound Name	Cas Number	Concentration	RL
•		mg/L	mg/L
Methane	74-82-8	2.6	0.1

mperature	:	73.9 F	Saturation	Meth	0.638633259
nt Injected	:	0.01 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	2.005023814
Head space created	:	4 ml	in Head Space		
Methane Area	:	297.022 ug			
		•			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Methane Report Form

_	iviet	nane Report Form	
Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: TW-1110D : X21365 : 3/27/96 : 3/28/96 : 4/4/96 : 4/4/96	Client Project No. Lab Project No. Dilution Factor Method Matrix Lab File No.	: 722450.15020 : 96-0955 : 1.00 : RSKSOP-175 : Water : GAS0404011
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.045	0.002
mperature		3.8 F Saturation 0.5 ml Concentration	Meth 0.010776966
Tolume of Sample Head space created Methane Area	:	43 ml Concentration 4 ml in Head Space 13 ug	Meth 0.03416156
		<u> </u>	

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Methane Report Form

Sample Number Lap Sample Number	: MW-1104 : X21369	Client Project No. Lab Project No.	: 722450.15020 : 96-0955
Date Sampled	: 3/27/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404016

Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	0.036	0.002

Temperature	:	74.6 F	Saturation	Meth	0.008787373
eount Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0.02755227
had space created	:	4 ml	in Head Space		
Methane Area	:	204.346 ug			

Atomic weight(Methane) : _____ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

M Whomen

Methane Report Form

	MECHON	e neport roini	
Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: TW-1106 : X21371 : 3/27/96 : 3/28/96 : 4/4/96 : 4/4/96	Client Project No. Lab Project No. Dilution Factor Method Matrix Lab File No.	: 722450.15020 : 96-0955 : 1.00 : RSKSOP-175 : Water : GAS0404017
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.004	0.002
mperature	: 73.7 : 0.5		Meth 0.000960932
Total olume of Sample He space created Methane Area	: 43 : 4 : 22.346	ml <u>in Head Space</u>	Meth 0.00301803

Atomic weight(Methane)

<u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Approved

AF0955.XLS

Methane Report Form

Sample Number	: TW1102	Client Project No.	: 722450.15020
Lab Sample Number	: X21372	Lab Project No.	: 96-0955
Date Sampled	: 3/27/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404018

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

:	71.8 F	Saturation	Meth	1.89211E-05
•	0.5 ml	Concentration		
:	43 ml	Concentration	Meth	5.96386E-05
:	4 ml	in Head Space		
•	0.44 ug			
		: 0.5 ml : 43 ml : 4 ml	: 0.5 ml Concentration : 43 ml Concentration : 4 ml in Head Space	: 0.5 ml Concentration : 43 ml Concentration Meth : 4 ml in Head Space

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst MILE

Methane Report Form

Sample Number	: TW1111	Client Project No. Lab Project No.	: 722450.15020 : 96-0955
La. Sample Number	: X21373	Lab Project No.	. 30-0333
Date Sampled	: 3/27/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404019

Compound Name	Cas Number	RL	
		mg/L	mg/L
Methane	74-82-8	0.091	0.002

Temperature	:	71.7 F	Saturation	Meth	0.021908186
nount Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0.069066857
A space created	:	4 ml	in Head Space		
Methane Area	•	509 464 ug			

16 g Atomic weight(Methane)

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

AF0955.XLS

Methane Report Form

Sample Number Lab Sample Number	: ESMP-6D : X21377	Client Project No. Lab Project No.	: 722450.15020 : 96-0955
Date Sampled	: 3/27/96	Dilution Factor	: 1.00
Date Received	: 3/28/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/4/96	Matrix	: Water
Date Analyzed	: 4/4/96	Lab File No.	: GAS0404020

Compound Name	Sample Cas Number Concentration RL mg/L mg/L				
Methane	74-82-8	0.007	0.002		

mperature	:	71.5 F	Saturation	Meth	0.001602872
unt Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0.005055054
Here space created	:	4 mi	in Head Space		
Methane Area	:	37.274 ug			

16 g

QUALIFIERS:

6

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175 Gas Method Methane, Ethane, Ethene Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No.

: MW-1119

Client Project No.

: 722450.15020

Lab Sample No.

: X21366

Lab Project No.

: 96-0955

Date Sampled

: 3/27/96

EPA Method No.

: RSKSOP-175

Date Received Date Prepared

: 3/28/96

Matrix

: Water

Date Analyza

: 4/4/96

Method Blank

: GB040496

Date Analyzed

: 4/4/96

Lab File No's.

: GAS0404021,022

E.A. MS/MSD Spike Source No.

: 1723

	Spike	Sample	MS		QC
Compound	Added	Concentration	Concentration	MS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	51	336	57	40-89

	Spike	MSD			C	C
Compound	Added	Concentration	MSD	RPD	Lin	nits
	(ug)	(ug)	%REC		RPD	%REC
Methane Gas	500	340	58	1.0	0-24.4	40-89

RPD:

0 out of (1) outside limits.

Spike Recovery:

•

out of (2) outside limits.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Analyst

Approved //

MS0955.XLS; 4/4/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane LCS Report Form

LCS No.

: LCS040496

EPA Method No.

: RSKSOP-175

Date Prepared

: 4/4/96

Matrix

: Water

Date Analyzed

: 4/4/96

Method Blank

: GB040496

E.A. LCS Source No.

: 1723

Lab File No.

: GAS0404006

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
•	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	405	81	67-85

Spike Recovery:

0	out of	(1)	outside	limits

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available.

send les Mr send

Approved

LCS0404.XLS; 4/4/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/26-27/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/28/96
 Lab Project Number
 : 96-0955

 Date Prepared
 : 3/28/96
 Method
 : EPA 300.0

 Date Analyzed
 : 3/28/96
 Detection Limit
 : 0.25 mg/L

Evergreen	Client	B. B. a. a. dan	Chlorida mad	Dilution <u>Factor</u>
Sample #	Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Factor
X21362	MW-1122	Water	5.7	1
X21363	MW-1121	Water	4.7	1
X21364	MW-1126	Water	7.3	1
X21365	TW-1110D	Water	206	10
X21366	MW-1119	Water	12.1	1
X21367	MW-1109	Water	40.2	10
X21368	MW-1110	Water	201	10
X21369	MW-1104	Water	10.1	1
X21371	TW-1106	Water	4.6	1
X21372	TW-1102	Water	8.8	1
X21373	TW-1111	Water	6.0	1
X21377	ESMP-6D	Water	10.3	1
Method Blank	(3/28/96)		<0.25	

Quality Assurance

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242 (96-0928)	Matrix Spike	10.0	4.2	12.2	80
X21242 (96-0928)	Matrix Spike Du	р 10.0	4.2	12.4	82
MS/MSD RE		•			3.0

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Received: 3/28/96Lab Project Number: 96-0955Date Prepared: 3/28/96Method: EPA 300.0Date Analyzed: 3/28/96Detection Limit: 0.076 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
X21362	MW-1122	Water	<0.076	1
X21363	MW-1121	Water	<0.076	1
X21364	MW-1126	Water	< 0.076	1
X21365	TW-1110D	Water	<0.76**	10
X21366	MW-1119	Water	< 0.076	1
X21367	MW-1109	Water	<0.076	1
X21368	MW-1110	Water	<0.76**	10
X21369	MW-1104	Water	<0.076	1
X21371	TW-1106	Water	<0.076	1
X21372	TW-1102	Water	<0.076	1
X21373	TW-1111	Water	<0.076	1
X21377	ESMP-6D	Water	< 0.076	1
Method Blank	(3/28/96)		<0.076	

Quality Assurance *

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242 (96-0928)	Matrix Spike	10.0	<0.25	9.2	92
X21242 (96-0928)	Matrix Spike Dup	10.0	<0.25	9.1	91
MS/MSD RF	םי סי				0.8

 ⁼ Quality assurance results reported as Nitrite (NO₂).

^{** =} Increased detection limit due to matrix interference.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/26-27/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/28/96
 Lab Project Number
 : 96-0955

 Date Prepared
 : 3/28/96
 Method
 : EPA 300.0

 Date Analyzed
 : 3/28/96
 Detection Limit
 : 0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrate-N mg/L	Dilution <u>Factor</u>
X21362	MW-1122	Water	0.12	1
X21363	MW-1121	Water	0.43	1.
X21364	MW-1126	Water	< 0.056	1
X21365	TW-1110D	Water	< 0.056	1
X21366	MW-1119	Water	0.058	1
X21367	MW-1109	Water	< 0.056	1
X21368	MW-1110	Water	< 0.056	1
X21369	MW-1104	Water	0.058	1
X21371	TW-1106	Water	0.070	1
X21372	TW-1102	Water	0.074	1
X21373	TW-1111	Water	0.065	1
X21377	ESMP-6D	Water	0.12	1
Method Blank	(3/28/96)		< 0.056	

Quality Assurance *

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242 (96-0928)	Matrix Spike	10.0	<0.25	9.0	90
X21242 (96-0928)	Matrix Spike Dup	10.0	<0.25	8.9	89
MS/MSD RF					0.6

^{• =} Quality assurance results reported as Nitrate (NO₃).

Hy Haliman

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Received : 3/28/96 Lab Project Number : 96-0955
Date Prepared : 3/28/96 Method : EPA 300.0
Date Analyzed : 3/28/96 Detection Limit : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
¥24000			07.0	
X21362	MW-1122	Water	27.2	1
X21363	MW-1121	Water	15.9	1
X21364	MW-1126	Water	26.2	1
X21365	TW-1110D	Water	1.5	1
X21366	MW-1119	Water	70.5	10
X21367	MW-1109	Water	15.4	1
X21368	MW-1110	Water	1.5	1
X21369	MW-1104	Water	21.6	1
X21371	TW-1106	Water	14.6	1
X21372	TW-1102	Water	38.4	1
X21373	TW-1111	Water	1.5	1
X21377	ESMP-6D	Water	80.4	10
Method Blank	(3/28/96)		<0.25	

Quality Assurance

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21242 (96-0928)	Matrix Spike	10.0	10.0	18.8	88
X21242 (96-0928)	Matrix Spike Dup	10.0	10.0	18.6	86
MS/MSD RF	PD	•			2.2

Analyst Hole

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled

: 3/27/96

Client Project ID.

: 72245015020

Date Received

: 3/28/96

Lab Project Number: 96-0955

: EPA 310.1

Date Prepared

: 4/1/96

Method

Date Analyzed

: 4/1/96

Detection Limit

: 5.0 mg CaCO₃/L

Evergreen Sample #

Client Sample ID.

Matrix

Total Alkalinity (mg CaCO₃/L) Dilution **Factor**

X21368

MW-1110

Water

436

1

Method Blank

(4/1/96)

< 5.0

Quality Assurance

Reference	True Value (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Alkalinity Lot # 0814-95-02	120	125	104

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled

: 3/27/96

Client Project ID.

: 72245015020

Date Received : 3/28/96

Lab Project Number : 96-0955

Date Prepared

: 4/2/96

Matrix

: Product

Date Analyzed : 4/2/96

Method

: ASTM D287

Evergreen

Client

Sample #

Sample ID.

Density (g/cc) @ 60 °F

X21370

MW-1105

0.7650

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled	: 3/27/96	Client Project ID.	:	72245015020
Date Received	: 3/28/96	Lab Project Number	:	96-0955
Date Prepared	: 4/1/96	Method	:	EPA 415.1
Date Analyzed	: 4/1/96	Detection Limit	:	1.0 mg C/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>TOC</u> m	Dilution g C/L <u>Factor</u>
X21368	MW-1110	Water	236	10
X21368 Dup	MW-1110 Dup	Water	232	10

Method Blank (4/1/96)

<1.0

Quality Assurance

	<u>Sp</u>	ike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
<u>96-0979</u> X21457	Matrix Spike	10.0	2.5	12.8	103
X21457	Matrix Spike Dup	10.0	2.5	12.9	104
MS/MSD RF	סי				0.78

Analyst

Quality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

NON-CLP ANALYSIS RESULTS

Lab Name:

04/09/96

Huffman Labs

Contact:

Sue Zeller

Client: Evergreen Analytical

Contact: Patty McClellan

Sample Matrix:

solid

Huffman Lab #: 136896

	Client	Lab	Element/	Dilution	Results	Units	Prep	Analysis	Sample	Method	Instrument
	Smp#	ID#	Compound	Factor			Date	Date	Size (g)	#	ID
	ESS4-(9'-10')	13689601	TC	NA	0.12	%	NA	04/03/96	0.421	Leco CR12	#7
	ESS4-(9'-10')	13689601	TC	NA	0.10	%	NA	04/03/96	0.898	Leco CR12	#7
	ESS18-9'-9.5'	13689602	TC	NA	0.11	%	NA	04/03/96	0.836	Leco CR12	#7
	ESS25-4-6.5	13689603	TC	NA	0.06	%	NA	04/03/96	0.946	Leco CR12	#7
	ESS26-8-10	13689604	TC	NA	1.18	%	NA	04/03/96	0.981	Leco CR12	#7
	ESS4-(9'-10')	13689601	СС	NA	< 0.02	%	NA	04/05/96	0.125	COU-02	#2
	ESS4-(9'-10')	13689601	CC	NA	< 0.02	%	NA	04/05/96	0.437	COU-02	#2
	ESS18-9'-9.5'	13689602	CC	NA	< 0.02	%	NA	04/05/96	0.338	COU-02	#2
	ESS25-4-6.5	13689603	CC	NA	< 0.02	%	NA	04/05/96	0.356	COU-02	#2
	ESS26-8-10	13689604	cç	. NA	< 0.02	%	NA	04/05/96	0.523	COU-02	#2
			'/· m	<u> 101sture</u>		adjusted ve	·suit				
a1374	ESS4-(9'-10')	13689601	тос 2	3.37 NA	0.12	% 0.16	NA	NA	NA	by calc	NA
11374 D	ESS4-(9'-10')	13689601		3. 37 NA	0.10	% 0.13	NA	NA	NΑ	by calc	NA
11375	ESS18-9'-9.5'	13689602	TOC	5.43 _{NA}	0.11	% 0.15	NA	NA	NA	by calc	NA
	ESS25-4-6.5	13689603	TOC	NA	0.06	%	NA	NA	NA	by calc	NA
	ESS26-8-10	13689604	тос	NA	1.18	%	NA	NA	NA	by calc	NA

Samples analyzed and results reported on as as received basis. Soil samples are not homogeneous.

Values reported below Detection Limits are for reference only.

TC detection limit = 0.05%

CC detection limit = 0.02%

TOC detection limit = 0.05%

Quality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

NON-CLP ANALYSIS RESULTS LABORATORY CONTROL STANDARD

Date:

04/09/96

Client: Evergreen Analytical

Lab Name:

Huffman Labs

Contact: Patty McClellan

Contact:

Sue Zeller

Huffman Lab #: 136896

LABORATORY CONTROL STANDARD

Lab	Source	Element/	True	Found	% R	Units		Method	instrument
ID#		Compound	Value	Value			Date	#	<u>ID</u>
 LCS	BN 4851	TC	3.35	3.32	99	%	04/03/96	Leco CR12	#7
LCS	BN 4056	CC	11.33	11.3	100	%	04/05/96	COU-02	#2

SPIKE RECOVERY

Lab	Source	Element/	True	Found	% R	Units		Method	Instrument
ID#		Compound	Value	Value			Date	#	ID
SPIKE	BN 4712	TC	12120	11875	98	ug C	04/03/96	Leco CR12	#7
SPIKE DUP	BN 4712	TC	12240	12315	101	ug C	04/03/96	Leco CR12	#7
SPIKE	BN 4712	CC	817	902	110	ug C	04/05/96	COU-02	#2
SPIKE DUP	BN 4712	CC	830	917	110	ug C	04/05/96	COU-02	#2

Quality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

YON-CLP QA/QC ANALYSIS RESULTS TIAL AND CONTINUING CALIBRATION VERIFICATION

Date:

04/09/96

Client: Evergreen Analytical

Lab Name:

Huffman Labs

Contact: Patty McClellan

Contact:

Sue Zeller

Huffman Lab #: 136896

INITIAL CALIBRATION

Lab	Source	Element/	True	Found	% R	Units		Method	Instrument
ID#		Compound	Value	Value			Date	#	ID
 ICS	BN 4712	TC	12.00	11.87	99	%	04/03/96	Leco CR12	#7
 ICS	BN 4712	CC	12.00	11.90	99	%	04/03/96	COU-02	#2

Slope =

NA

Intercept =

NA

Single point calibrations for this test.

95% Correlation Coefficient =

NA

CONTINUING CALIBRATION VERIFICATION

1	Lab	Source	Element/	True	Found	% R	Units		Method	Instrument
ll ll) #		Compound	Value	Value			Date	#	ID
C	CS E	3N 4712	TC	12.00	11.88	99	%	04/03/96	Leco CR12	#7
C	CS E	3N 4712	TC	12.00	11.90	99	%	04/03/96	Leco CR12	#7
C	CS E	3N 4712	CC	12.00	11.90	99	%	04/05/96	COU-02	#2

Quality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

ANALYSIS: TOTAL CARBON	METHOD: HIGH TEMP
ATTACE OF THE OF	COMB INFRARED DET.
INSTRUMENT: LECO CR12	ANALYZER # 7
BALANCE# 19	

	CIUM CARBONA I std # 133) theory)	TE BN <i>23</i>	40	HU!). N.I.S.T. B FFMAN std # 8 %C (theor	# N2704)	R SEDIMENT 2704 BN 485/		
SAMPLE #	SAMPLE WT G				% CARBON PRE- CALIB	% CARBON POST- CALIB		ФС	% REC.
					11.50	1/700		4-0	
133	0.0990				11.87	12.21		Ics	101.6
	, ,								
	-1010					75.52		()	
								(C)	101.0
						12.20			
133	0.1000					11.88		((3	97.0
B/	1.0000					0.001		IB	
N2709	6.3190			-		3.323	1		99.3
MB	1,0000					0.001		MB	
200		·				-,00/			
							V -/		
<u> </u>						v.c-2			
								•	
YST "	CL DATI	E 2-96	REVIEWED) } _\	DATE	4/3/96	PA	<i></i>	OF .3 .7/3.95

Quality Analytical Services Since 1936 4630 Indiana Street - Colden, CO 80403

ANALYSIS: TOTAL CARBON	METHOD: HIGH TEMP COMB INFRARED DET.
INSTRUMENT: LECO CR12	ANALYZER# 7
BALANCE# 19	

CALC (HUFFMAN 12.00 %C (t		ATE BN_ <i>2</i>	340	(HL	D. N.I.S.T. B JFFMAN std i 48 %C (theor			MENT 27 785)	
SAMPLE #	SAMPLE WT G				% CARBON PRE- CALIB	% CARBON POST- CALIB		QC	% REC.
									LOX of
	100/0								00-7
				.::					
			:						7277
						11 00		(CS	Gara
133	0.1010		3			0.116			99.2
126801	0.4210		A A			0.103		DUP	£ 5.97
136801	6.8470	Z.	(Estered)						
133	0.10[0	<u> </u>	Spita			1.512			
136801	0.8740	ξ	Spike)		1.519			
133	0./020	ν	Spike	[0.107			
13680Z 136803	0.8360					0.663			
	0.9810					1.184			
12704	0.2600					3. 455		(15	<i>/03.</i> ≥
								*	
					·			·	·
					LDATE		IPAC	~	OF

45

50

LABORATORIES, INC.

Ouality Analytical Services Since 1936
4630 Indiana Street · Golden, CO 80403

ANALYSIS	CARBONATE CARBON	METHOD	SOP COU-02
ANALYZER#	6	COULOMETER#	2
BALANCE#	15		

CALCIUM CA		BOTTLE#	% C THEO		DDIUM CARBO		BOTTLE# 1730 + 4713	%C THEOR	Y = 11.33 %
MPLE NO.	TARE WT.	TARE + SAMPLE WT.	SAMPLE WT. GRAMS	NOTES	(COUNTS) µ GRAMS CARBON	LESS BLANK	% CARBONATE CARBON AS CARBON	QC	% RECOVERY
blank					6.4			ヹ ゟ	
blank					7.8			MB	
blank					4.2			M13	
	1.43546	1.442210	,008300		815.0	809,0	11,90	tes	99,1
			202-0						
			, 0,0,7		115	721 111 0			
1368-01	1.30/420	1.4266	<u>,124840</u>		7,7	1.7	.00136		
1368-01	1.416080	1.85/640	. 436960	*57. Ke 1.72/37	6,8	.8	,000183		
1368-01			. 3114.00	. 006805	907.8	901,8			
		1.721785	364685	,00 6915	922,6	916,6			
	1.3 33 940	1.35 1970	,338030	bud gusoline	8,4	2,4	< 0.002		
1708-07	1.397610	1.7539%	,356300	5mell	9.3	3,3	<0.002		
1368-03	1,34 1645	1.864275	522630	smell	9,2	3, 2_	.006	1	<i>ac</i> 7
NaCH	1.45 865	1,46979s	D17930		2 ه 3/، 9	2025.9	11.30	لارح	99.7
						·			
					!				
ST	In decen	DAT	= 4-5-94	REVIEWED	<u>-</u>	DAT	E4/8/94	PAGE /	OF
Jun /	In Oliver	- - - - - 		· .	25		110110		D 7/15/95

6 min runs & S7:ke Ca C63

Evergreen Analytical Sample Log Sheet Project # 96-0979 Date(s) Sampled: 03/27,28/96 COC Date Due: 04/05/96-UST 04/12/96-OTHERS te Received: 03/29/96 0920 Holding Time(s): 03/29,30-NO2, NO2, 4/10,11-BTEX,TVH,ALKALINITY nt Project I.D. 722450.15 EAKER AFB Rush STANDARD Client: PARSONS ENGINEERING SCIENCE, INC. Cooler Return N/A Address: 1700 BROADWAY SUITE 900 **E.A.** Cooler # 394 DENVER, CO 80290 **Airbill #** <u>FEDEX 7221153752</u> Contact: TODD HERRINGTON Client P.O. Phone #831-8100 Fax #831-8208 Special Invoicing/Billing____ Special Instructions +CHLOROBENZENE, TMB & TeMB's. Lab Client ID# ID# Analysis Mtx Btl Loc X21453A-D ESMP-8S BTEX+, TVH W 40V X21454A-D ESMP-9S BTEX+, TVH W 40V X21456A-D MW-1138 BTEX+, TVH W 40V **≤**57A-D MW-1128 BTEX+, TVH W 40V 9A-D ESMP-4S BTEX+, TVH W 40V 2 X21465A-D ESMP-2D BTEX+, TVH 40V X21466A-D ESMP-5S BTEX+, TVH W 40V 2 X21467A-D ESMP-3S BTEX+,TVH W 40V X21455A ESLF-22 BTEX+, TVH (%MOISTURE) S 4WM 2 ESLF-13(7-8.5) BTEX+, TVH (%MOISTURE) X21458A S 4WM X21460A ESSB-15(10-10.5)BTEX+,TVH (%MOISTURE) S 4WM X21461A ESSB-13(12-12.5)BTEX+,TVH (%MOISTURE) S 4WM 2 X21462A ESS2-24-8-10 BTEX+, TVH (%MOISTURE) S 4WM X21464A ESS26-8-10 BTEX+, TVH (%MOISTURE) S 4WM 2 X21453F-H ESMP-8S METHANE W 40V 2 X21454F-H ESMP-9S METHANE W 40V 2 X21456F-H MW-1138 METHANE W 40V 2 X21457F-H MW-1128 **METHANE** W 40V 2 X21459F-H ESMP-4S METHANE W 40V 2 R=Sample to be returned GC/MS ___ GC X Metals Wet Chem X HPLC ___ SxPrep SxRec C QA/QC C Acctg <u>C</u> File Orig Page 1 of 2 Page(s) Custodian/Date:

P.O.# 722150. CLIENT CONTACT (print)_ IALYTICAL SERVICES REQUEST PROJECT I.D. EAL. QUOTE # 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N Analytical Inc. CHAIN OF CUSTODY RECORD/ Evergr FAX# 303 -431-8208 980 062 88 dIZ 2 m.1.1 L CITY DE MAR Q. STATE C.O PHONE# 303-831-8100 1700 ADDRESS_ COMPANY_

Chother (Specify).

*expedited turnaround subject to additional fee

Sampler Name: (signature)

Do not write	EAL Sample No.	X21453 4-H	7-H 4-H	たら ケンソ		76 A.H	57.4-1	28 4 (4 mm)	59 4·H		109	Location 2, 42	Container Size	
STED	(Circle & list metals below)	× ×	XX		2	×××	XXXX		× ×				12/4/02/29	<i>U</i> 1 A 1
ANALYSIS HEQUESTED	TRPH 418.1/Oil & Grease 413.1 (circle) TRPH 8015mod. (Gasoline) TORAI Metals-DW / NPDES / SW846 Total Metals-DW / NPDES / SW846 (circle & list metals below)	× × ×	X	X Monroe		X	Х	X	スメ		X		Nath Not	
	TCLP VOA/BNA/Pest/Herb/Metals VOA 8260/624/524.2 (circle) BNA 8270/625 (circle) Pesticides 8080/608/508 (circle) Herbicides 8150/515 (circle)													
MAIRIX	Water-Drinking/Discharge/Ground	×	X	×		×	Z Z	X	8 X					
MACK VICES IRY	DATE TIME	3/20/96 7.50 8	3/28/56 8:30 8	3/28/949:50		3/27/96 17:00 83	17:00	3/38/ph 10:30	3/33/96 10:40 (5) 3/28/q 11:30			
(print) Air () 22(4 // Nork WSS 1/2)	Evergreen Analytical Cooler No. 35 Cooler Received Please PRINT all information: CLIENT SAMPLE IDENTIFICATION SAMPLE	v 25MP-85	~ ESMP-95	551F-22	E-SMD=3	~ MW-1138	V MW-1128	VESLF-13/7-8.5)	L Esma-45	Exercise To:	1825B-15(10-10.B)	H	.00:	Instructions:

13/28 Terms Received by: (Signature)

Date/Time Relinquished by: (Signature)

	Pag	EUT ASTU (2 wks) USTD UST (3 day) (1) Other (Specify)	EAL use only	EAL 96 - 07 79	EAL Sample No.	X21461A dwn		4	64 4/B(+	4	H-+ £9	Location 2, 42	Container Size	1 De 1 29 96 0 930
NALYTICAL SERVICES REQUEST	Analytical Inc. 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESHITS V / N THANARCHARD BEQUING FAX	2	ANALYSIS REQUESTED	Screen Screen Screen (8028/602) (gircle)/MTBE (circle) (1817/0il & Grease 413.1 (gircle) (18015/mod. (Gasoline) Metals-DW / WPDES / SW846 Metals-DW / WPDES / SW846 Se list metals below) Se list metals below here.	HART TOPP TEPP TOTAL SIGNED	X	* * *	X		·	X X X		br 1921 Adh Agh	S/29,
CHAIN OF CUSTODY RECORD	Evergi 4036 4036 Whea (303) FAX (800) (800)		3IX	Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge Sludge	TOT (GICO) AOV BANA BANA BANA BANA BANA BANA BANA BANA BANA BANA BANA BANA									
CHAIN OF CUS	COMPANY ADDRESS CITY STATE ZIP PHONE#	Sampler Name:	(print) Shin Ozaki M. Vesty MATRIX	Evergreen Analytical Cooler No. 358 Cooler Received Please PRINT Please all information: CLIENT SAMPLE SAMPLE	ION SAMPLED TIME 2 F 6	9-12-12	X 8 51×1 96/20/6	155525-4-6,613/18/66 14:50 1	\$5526-8-10 3/28/fb 15cx 2	85MP-45 3/8/46 5:30 871X	X B 2006/86/8 SE-dWS3/		DD: Instructions:	Rounquished by: (Signature) 3/28 ,, , , , , , , , , , , , , , , , , ,

Evergreen Analytical Sample Receipt/Ch	eck-in Record
Date & Time Rec'd: 32946 096 Shipped Vi	ia: Fel-X 7221153752
client: Parsons ts	irbill # if applicable)
Client Project ID(s): 722450.15	
EAL Project #(s):96-0979 EAL Co	poler(s): ⑦ N
Cooler# 394	
Ice packs (Y) N Y N Y N Y	и у и
Temperature °C	
	y N N/A
<pre>1. Custody seal(s) present: Seals on cooler intact Seals on bottle intact</pre>	
2. Chain of Custody present:	<u>×</u>
3. Samples Radioactive: (Comment on COC if > 0.5mrh)	
4. Containers broken or leaking: (Comment on COC If Y)	<u>×</u>
5. Containers labeled:	<u>×</u>
6. COC agrees w/ bottles received: (Comment on COC if N)	<u>×</u> —
7. COC agrees w/ labels: (Comment on CCC if M) 755 labelled ESMP-45 labelled as ESMP-4; ESMT55 labelled 8. Headspace in vials-waters only: (Comment on COC if M)	= X = X = X
9. VOA samples preserved:	
10. pH measured on metals, cyanide or phenolics*	
List discrepancies *Non-EAL provided containers only, water samples	only.
11. Metal samples present:	
Total, Dissolved, TCLP	•
D or PD to be filtered:	
T,TR,D,PD to be Preserved:	
12. Short holding times: Specify parameters NO3/NO2	
13. Multi-phase sample(s) present:	X
14. COC signed w/ date/time:	<u>×</u>
Comments:	
(Additional comments on back)	
Custodian Signature/Date: 14m 3 29 96	

JALYTICAL SERVICES REQUEST CHAIN OF CUSTODY RECORD /

Evergr	Analytical Inc.	
COMPANY TEXESTS 25	4036 Youngfield St.	CLIENT C
ADDRESS / The Brailway Suite 900	Wriear Hidge, Colorado 80033 (303) 425-6021	PROJECT
CITY DE NUE STATE CO ZIP 80 290	FAX (303) 425-6854 (800) 845-7400	EAL. QUO
PHONE# 303-831-8100 FAX# 303-831-8208	FAX RESULTS Y / N	TURNARC
Sampler Name:		•

☐ STD UST (3 day) 🖒 Other (Specify), OUND REQUIRED* (S STD (2 wks) P.O.# 7 727.1500 ONTACT (print)_ 0 TE#

EAL use only
Do not write
in shaded area *expedited turnaround subject to additional fee

ANALYSIS REQUESTED Total Metals-DW / WPDES (circle & list metals below) TEPH 8015mod. (Diesel) 78PH 418.1/Oil & Grease 413.1 (Circle) OTEX 2020/602 (circle) MTBE (circle) (elorio) 215/0218 sebi CBs 8080/608/508 (circle) des 8080/608 (circle) 260/624/524.2 (circle) zisteM\dreH\tzeq\AN8\AOV MATRIX Ounking/Discharge(Ground Evergreen Analytical Cooler No. 39 (print) Shi 10 Ozeki (signature) Cooler Received.

Please PRINT

D) 910/	200.0						
)212 (c	0218	zebi:	jiqu	θН			
-/609/	0808	CBS	1/1S	a .			
(2) 809/							
circle)							
5.45.6							
. 24.2 (c							
Npest/	NB/A	01	न्यः d7:) (ci			
	6	6pn _l					
		bilos					$\overline{}$
nschai		<u>eloric</u>	ررد	_	×	X	
					<u> </u>		
S	tainer	noO	to .	οN	B	$\mathcal{C}^{\!$	
				۱E	0	8:30	S
				TIME	7.5	×	5
						6	16/
\vdash			ш		196	1/5	188/
Z	Ë		DATE	SAMPLED	38	3/281	/28
	atio			SA	3)	3/	3
PRINT	all information:						
	info			DENTIFICATION	$ \nabla$		
Please	a	CLIENT	Щ	ATI	∞	2,	77
<u>Pe</u>		圓	<u>M</u>	윤	p-) ~ (()
_		ರ	SA	트	M	d IV	11
					5	5 5	15
				_	٠.	12.	- 55LF-7
					د	١	>

EAL Sample No.

Custodian

Dissolved Metals - DW / SI (circle & list metals below)

PCB Screen

Project #

>	56-DIWS 7	3/28/56	8:30	8	X		_	
)	22-7122	3/28/9/9:50	9:93			X		
	5-5mb-3							
د	MW-1138	3/27/96	$8 \alpha u $	8	×		_	
)	V MW - 1128	3/17/66	17:00	16	X			

女

•			11100	
	ESLF-13/7-8.5)	14/3 8 /5	10.30	1
۔	Esma-45	36/88/18	16:40	8
	HEREN TO THE			

182513-15(10-10.15) 3/28Kd11.30 ö

Instructions:

13/28 Received by: (Signature)

328

Date/Time Rep

Container Size

Location

STD UST (3 day) rage_2 of in shaded area EAL Sample No. EAL use only Do not write Container Size O Other (Specify). Custodian STD (2 wks) Project # *expedited turnaround subject to additional fee P.O.# -ocation TURNAROUND REQUIRED. CHAIN OF CUSTODY RECORD ' NALYTICAL SERVICES REQUEST CLIENT CONTACT (print) EAL. QUOTE # PROJECT I.D. 火 火 ANALYSIS REQUESTED Total Metals-DW / NPDES (circle & list metals below) 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 TEPH 8015mod. (Diesel) Z Analytical Inc. X ETEX 8020/GICIE)/MTBE (Circle) FAX RESULTS W. PCB Screen Herbicides 8150/515 (circle) Pest/PCBs 8080/608/508 (circle) Pesticides 808/608 (circle) Everg BNA 8270/625 (circle) 8260/624/524.2 (circle) zisteM\dreH\tzeq\AN8\AOV MATRIX egbul2 \ liO PIPS AIDS Water-Drinking/Discharge/Groupdy (circle) FAX * 3/28/96/15:30/87 3/28/96 15:10 B No. of Containers 3/28/4 14:00 113 The state of the s 10/6 3/18/1/ 1/K 55.55 - 9 - 6,517128/9/ 14:50 3/28/Fic 15cc SAMPLED TIME (A.1.) 128/96 398 DATE Please PRIN all information: Evergreen Analytical Cooler No. STATE 82513-13(12.11 -5526- 9-10 25524-8-1C IDENTIFICATION (print) Shin Oza 35 ESIMP-2D 85MD-55 SAMPLE Sampler Name: CLIENT (signature) ESWP-Cooler Received_ Instructions: COMPANY ADDRESS PHONE* CITY 8

3/29/96

Date/Time Rece

Shate/Time Relinquished by: (Signature)

By Constant Received by: (Signature)

Rolinquished by:

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB1040196B

Client Project Number

722450.15

Date Prepared

: 4/1/96

Lab Project Number

96-0979

Dilution Factor

: 125

Matrix

MEOH

Lab File Number

TVB10331039

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	12.5	mg/kg
Benzene	71-43-2	4/1/96	U	50	ug/kg
Toluene	108-88-3	4/1/96	U	50	ug/kg
Chlorobenzene	108-90-7	4/1/96	U	50	ug/kg
Ethyl Benzene	100-41-4	4/1/96	U	50	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	50	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	50	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	63	ug/kg
ID Surrogate Recovery:		<u> </u> 105%	<u> </u>	<u> </u> 50%-132%	(Limits)
Surrogate Recovery:		101%		72%-118%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- **E** = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

K. Hollman
Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1040296

Client Project Number

722450.15

Date Prepared

: 4/2/96

Lab Project Number

96-0979

Matrix

WATER

Dilution Factor

: 1.0

Lab File Number

TVB10331068

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	U	0.1	mg/L
Benzene	71-43-2	4/2/96	U	0.4	ug/L
Toluene	108-88-3	4/2/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/2/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/2/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.5	ug/L
FID Surrogate Recovery:		102%		70%-121%	(Lir
PID Surrogate Recovery:	***************************************	94%		82%-115%	(Lir

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB040396

Client Project Number

722450.15

Date Prepared

: 4/2/96

Lab Project Number

96-0979

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVBX0401067

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
ID Surrogate Recovery:		106%		70%-130%	(Limits)
Surrogate Recovery:		108%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hollman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1040396

Client Project Number

722450.15

Date Prepared

: 4/3/96

Lab Project Number

96-0979

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB10402033

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
FID Surrogate Recovery:	<u> </u>	106%		70%-121%	(Lir '
PID Surrogate Recovery:	***************************************	96%		82%-115%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
171111111111111111111111111111111111111		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Analyst

K Hollman Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESMP-8S Client Project Number : 722450.15
Lab Sample Number : X21453 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : WATER

Date Received : 3/29/96 Lab File Number(s) : TVBX0401068
Date Prepared : 4/2/96 Method Blank : MB040396

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	1.2	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
Surrogate Recovery:		105%		70%-130%	(Limits
Surrogate Recovery:		106%		70%-128%	(Limits

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

VH = Total Volatile Hydrocarbons.

Un ai 1 Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESMP-9S Client Project Number : 722450.15
Lab Sample Number : X21454 Lab Project Number : 96-0979
Date Sampled : 3,28/96 Matrix : WATER

Date Received : 3/29/96 Lab File Number(s) : TVBX0401069
Date Prepared : 4/2/96 Method Blank : MB040396

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

	i	Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	1.8	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
FID Surrogate Recovery:		102%	<u> </u>	70%-130%	(Lin
PID Surrogate Recovery:		105%		70%-128%	(Lin

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

HUMÛN Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: MW-1138

Client Project Number

722450.15

Lab Sample Number

: X21456

Lab Project Number

96-0979

Date Sampled Date Received : 3/27/96 : 3/29/96 Matrix

WATER

Date Prepared

: 4/2/96

Lab File Number(s) Method Blank

TVBX0401070

FID Dilution Factor

: 1.0

MB040396

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	0.3	0.1	mg/L
Benzene	71-43-2	4/3/96	3.2	0.4	ug/L
Toluene	108-88-3	4/3/96	0.7	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	0.9	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	2.7	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	1.0	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
Surrogate Recovery:		105%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		107%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
•			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

 ∇H = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: MW-1128 : X21457

Client Project Number Lab Project Number

722450.15 96-0979

Lab Sample Number Date Sampled

: 3/27/96

Matrix

WATER

Date Received Date Prepared

: 3/29/96

Lab File Number(s)

Method Blank

TVBX0401076 MB040396

FID Dilution Factor

: 4/3/96 : 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	0.3	0.1	mg/L
Benzene	71-43-2	4/3/96	3.2	0.4	ug/L
Toluene	108-88-3	4/3/96	0.5	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	0.9	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	2.9	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	0.9	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	0.5	0.5	ug/L
FID Surrogate Recovery:		 102%		70%-130%	(Li
PID Surrogate Recovery:		106%		70%-128%	(Lit

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESLF-22 Client Project Number : 722450.15
Lab Sample Number : X21455 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/29/96 Lab File Number(s) : TVB10331041
Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 500 Soil Extracted? : YES
PID Dilution Factor : 500 Soil Moisture : 22.57%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	890	65	mg/kg
Benzene	71-43-2	4/1/96	12000	258	ug/kg
Toluene	108-88-3	4/1/96	46000	258	ug/kg
Chlorobenzene	108-90-7	4/1/96	U	258	ug/kg
Ethyl Benzene	100-41-4	4/1/96	11000	258	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/1/96	57000	258	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/1/96	9400	258	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/1/96	26000	258	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/1/96	6900	258	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	8500	323	ug/kg
Surrogate Recovery:		106%	<u> </u>	65%-129%	(Limits)
urrogate Recovery:		93%		65%-129%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

	•		
Comments:			
		 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

VH = Total Volatile Hydrocarbons.

Hollman_ Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESLF-13(7-8.5) Client Project Number : 722450.15
Lab Sample Number : X21458 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/29/96 Lab File Number(s) : TVB10402022
Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 1250 Soil Extracted? : YES
PID Dilution Factor : 1250 Soil Moisture : 19.18%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	3600	155	mg/kg
Benzene	71-43-2	4/3/96	6500	619	ug/kg
Toluene	108-88-3	4/3/96	160000	619	ug/kg
Chlorobenzene	108-90-7	4/3/96	U	619	ug/kg
Ethyl Benzene	100-41-4	4/3/96	38000	619	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/3/96	170000	619	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/3/96	49000	619	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/3/96	150000	619	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/3/96	56000	619	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	31000	773	ug/kg
FID Surrogate Recovery:		106%	<u> </u>	65%-129%	(Li
PID Surrogate Recovery:		93%		65%-129%	(L

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	 <u> </u>		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESSB-15(10-10.5) Client Project Number 722450.15 Lab Project Number 96-0979 : X21460 : Lab Sample Number Matrix SOIL Date Sampled : 3/28/96 : 3/29/96 Date Received Lab File Number(s) TVB10402013 Method Blank MB1040296 Date Prepared : 4/2/96

FID Dilution Factor : 1.0 Soil Extracted? : NO
PID Dilution Factor : 1.0 Soil Moisture : 25.97%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	0.3	0.1	mg/kg
Benzene	71-43-2	4/2/96	1.8	0.5	ug/kg
Toluene	108-88-3	4/2/96	3.2	0.5	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	0.5	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	0.5	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	3.4	0.5	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.5	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	2.3	0.5	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.5	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.7	ug/kg
Surrogate Recovery:		90%	<u> </u>	50%-132%	(Limits)
Surrogate Recovery:		91%		72%-118%	(Limits)

Comments:

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

QUALIFIERS and DEFINITIONS:

- **E** = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- **FID** = Flame ionization detector.
- ∠H = Total Volatile Hydrocarbons.

Hollman_ Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESSB-13(12-12.5) Client Project Number : 722450.15
Lab Sample Number : X21461 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/29/96 Lab File Number(s) : TVB10331048
Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 500 Soil Extracted? : YES
PID Dilution Factor : 500 Soil Moisture : 25.97%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	1000	68	mg/kg
Benzene	71-43-2	4/1/96	1200	270	ug/kg
Toluene	108-88-3	4/1/96	17000	270	ug/kg
Chlorobenzene	108-90-7	4/1/96	U	270	ug/kg
Ethyl Benzene	100-41-4	4/1/96	9600	270	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/1/96	39000	270	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/1/96	13000	270	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/1/96	42000	270	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/1/96	15000	270	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	8300	338	ug/k^
FID Surrogate Recovery:		105%	<u> </u>	65%-129%	(Lip
PID Surrogate Recovery:		93%		65%-129%	(Lik

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Milman Analyst Pm Clelle_

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESS24-8-10 Client Project Number : 722450.15
Lab Sample Number : X21462 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/29/96 Lab File Number(s) : TVB10402024
Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 125 Soil Extracted? : YES PID Dilution Factor : 125 Soil Moisture : 25.68%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	200	17	mg/kg
Benzene	71-43-2	4/3/96	990	67	ug/kg
Toluene	108-88-3	4/3/96	2800	67	ug/kg
Chlorobenzene	108-90-7	4/3/96	U	67	ug/kg
Ethyl Benzene	100-41-4	4/3/96	1700	67	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/3/96	7000	67	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/3/96	3100	67	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/3/96	9600	67	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/3/96	2300	67	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	1900	84	ug/kg
Surrogate Recovery:		l 107%	I	65%-129%	(Limits)
Surrogate Recovery:		92%		65%-129%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- **E** = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- FID = Flame ionization detector.
- YH = Total Volatile Hydrocarbons.

K. Hollman

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESS26-8-10 Client Project Number : 722450.15
Lab Sample Number : X21464 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : SOIL

Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 12500 Soil Extracted? : YES
PID Dilution Factor : 1250,12500,50000 Soil Moisture : 8.07%

		Analysis	Sample		
Compound Name		Date	Concentration	RL	Units
TVH-Gasoline		4/4/96	47000	1360	mg/kg
Benzene	71-43-2	4/3/96	130000	544	ug/kg
Toluene	108-88-3	4/4/96	1800000	21700	ug/kg
Chlorobenzene	108-90-7	4/3/96	24000	544	ug/kg
Ethyl Benzene	100-41-4	4/4/96	600000	5440	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/4/96	2800000	21700	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/4/96	570000	5440	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/4/96	1500000	21700	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/4/96	410000	5400	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/4/96	390000	5400	ug/kg
FID Surrogate Recovery:	<u> </u>	101%		65%-129%	(Lip
PID Surrogate Recovery:		98,92,& 91%		65%-129%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	 · · · · · · · · · · · · · · · · · · ·	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

nalyst

Am Club Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESMP-4S Client Project Number : 722450.15
Lab Sample Number : X21459 Lab Project Number : 96-0979
Date Sampled : 3/28/96 Matrix : WATER

Date Received : 3/29/96 Lab File Number(s) : TVBX0403005
Date Prepared : 4/3/96 Method Blank : MB040396

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	0.7	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	0.7	0.5	ug/L
Surrogate Recovery:		97%		70%-130%	(Limits)
Surrogate Recovery:		101%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- "VH = Total Volatile Hydrocarbons.

K. Hollman

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ESMP-2D

Client Project Number

722450.15

Lab Sample Number

: X21465

Lab Project Number

96-0979

Date Sampled

: 3/28/96

Matrix

WATER TVBX0403006

Date Received Date Prepared : 3/29/96 : 4/3/96

Method Blank

Lab File Number(s)

MB040396

FID	Dilution Factor	:	1.0
PID	Dilution Factor	:	1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	2.0	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	2.9	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	0.6	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
FID Surrogate Recovery:		99%	l	70%-130%	(Lim
PID Surrogate Recovery:		104%		70%-128%	(Lin

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ESMP-5S

Client Project Number

722450.15

Lab Sample Number

: X21466

Lab Project Number

96-0979

Date Sampled

: 3/28/96

Matrix

WATER

Date Received

: 3/29/96

Lab File Number(s)

TVBX0403007

Date Prepared

: 4/3/96

Method Blank : MB040396

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	0.2	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	0.7	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
Surrogate Recovery:		101%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		106%	70%-128%	(Limits)	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:				
			· · · · · · · · · · · · · · · · · · ·	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

<u>TVH</u> = Total Volatile Hydrocarbons.

Analyst

Annroyed

Methods 602/8020 and 5030/8015 Modified Data Report

Client Project Number Client Sample Number : ESMP-3S Lab Project Number Lab Sample Number : X21467 Date Sampled

: 3/28/96 Matrix

Lab File Number(s) TVBX0403008 Date Received : 3/29/96 MB040396 Method Blank Date Prepared : 4/3/96

FID Dilution Factor : 1.0 : 1.0 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	0.4	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
FID Surrogate Recovery:		101%	<u> </u>	70%-130%	(Lin
PID Surrogate Recovery:		107%		70%-128%	(Lii

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

722450.15

96-0979

WATER

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: ESMP-8S	Client Project No.	:	722450.15
Lab Sample No.	: X21453	Lab Project No.	:	96-0979
Date Sampled	: 3/28/96	EPA Method No.	:	602/8020
Date Received	: 3/29/96	Matrix	:	Water
Date Prepared	: 4/2/96	Lab File Number(s)	:	TVBX0401071,72
Date Analyzed	: 4/3/96	Method Blank	•	MB040396
•		Dilution Factor	:	1.0

Compound	Spike Added	Sample Concentration	1	Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	19.6	19.8	
Toluene	20.0	1.2	21.4	21.2	
Chlorobenzene	20.0	0.0	19.9	20.0	
Ethylbenzene	20.0	0.0	20.0	20.2	
m,p-Xylene	20.0	0.0	20.4	20.5	
o-Xylene	20.0	0.0	19.8	19.9	
1,3,5-TMB	20.0	0.0	19.3	19.5	
1,2,4-TMB	20.0	0.0	19.4	19.6	
1,2,3-TMB	20.0	0.0	20.0	20.1	
1,2,3,4-TeMB	20.0	0.0	19.8	20.9	
Surrogate	100.0	106%	106%	106%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	98.0	99.0	1.0	25	50 - 150
Toluene	101.0	100.0	1.0	25	50 - 148
Chlorobenzene	99.5	100.0	0.5	25	55 - 135
Ethylbenzene	100.0	101.0	1.0	25	50 - 150
m,p-Xylene	102.0	102.5	0.5	25	50 - 150
o-Xylene	99.0	99.5	0.5	25	50 - 150
1,3,5-TMB	96.5	97.5	1.0	25	50 - 150
1,2,4-TMB	97.0	98.0	1.0	25	50 - 150
1,2,3-TMB	100.0	100.5	0.5	25	50 - 150
1,2,3,4-TeMB	99.0	104.5	5.4	25	50 - 150
Surrogate	106.0	106.0	NA	NA	70 - 128

#=	Values	taken	trom	EPA	methods	602/8	020

RPD:	0	out of (10) outside limits.
Spike Recovery:	0	out of (20) outside limits.
		_
Comments:		

K. Hollman

* = Values outside of QC limits.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Compound .	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC*** Limits %REC
Gasoline	2.00	0.00	2.40	120.0%	57-126
Surrogate **				100%	70-128

	Spike	MSD			QC	***
Compound	Added	Concentration	MSD		Liı	mits
·	(mg/L)	(mg/L)	%REC	RPD	RPD	%REC
Gasoline	2.00	2.18	109.0%	9.6	28.2	57-126
Surrogate **			101%	NA	NA	70-128

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	out of	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Value outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- *** = Limits established 3/8/96. KSH

Comments:	 	 	

K. H. Clman Analyst

Approved /

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number	: LCS040196-GW	Matrix	: WATER	
Date Prepared	: 4/1/96	Method Numbers	: EPA 5030/8	015 Modified
Date Analyzed	: 4/2/96			
Lab File Number(s)	: TVBX0401014			
	Theoretical	LCS	LCS	
Compound	Concentration	Concentration	%	QC Limit * *
Name	(mg/L)	(mg/L)	Recovery	% Recovery
Gasoline	2.00	2.35	117.5	78 - 137
Surrogate Recovery:		103%		70 - 130

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 3/11/96 for TVHBTEX2. KSH

K Hollman Analyst

Approved

1 CCTO 101 VI C. 1 10 10 C

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number : LCS1040296GAS Date Prepared : 4/2/96 Date Analyzed : 4/2/96 Lab File Number(s) : TVB10402001		Matrix Method Numbers	: WATER : EPA 5030/8015 Modified		
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit % Recovery	
Gasoline	1.00	1.24	124	70 - 130	
Surrogate Recovery:		104%		70 - 121	

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 12/20/95 for TVHBTEX2. KSH

M. Blochan

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number Date Extracted/Prepared : LCS1032996

Dilution Factor

1.00

Date Analyzed

: 3/29/96

Method Matrix

602/8020 Water

Spike Amount (ug/L)

: 3/29/96 : 20.0

Lab File No.

TVB10328014

		LCS	LCS	
Commonwed Name	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	16.2	81.0	73 - 113
Toluene	108-88-3	16.9	84.5	78 - 114
Chlorobenzene	108-90-7	15.9	79.5	50 - 150
Ethyl Benzene	100-41-4	16.1	80.5	80 - 118
m,p-Xylene	108-38-3	31.7	79.3	78 - 116
	106-42-3			
ylene	95-47-6	17.6	0.88	79 - 122
N. Company of the com	1634-04-4	14.1	70.5	50 - 150
1,3,5-Trimethylbenzene	108-67-8	16.5	82.5	50 - 150
1,2,4-Trimethylbenzene	95-63-6	17.2	86.0	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.5	107.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	24.9	124.5	50 - 150
Surrogate Recovery:		98%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

= Limits updated 2/9/96 for TVHBTEX1. KSH

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

 LCS Number
 : LCS033196-BW

 Date Extracted/Prepared
 : 3/31/96

 Date Analyzed
 : 3/31/96

 Spike Amount (ug/L)
 : 20.0

Dilution Factor : 1.00
Method : 602/8020

Matrix : Water

Lab File No. : TVBX0330033

		LCS	LCS	
	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	19.2	96.0	73 - 122
Toluene	108-88-3	19.1	95.5	77 - 125
Chlorobenzene	108-90-7	18.2	91.0	82 - 122
Ethyl Benzene	100-41-4	19.6	98.0	78 - 126
m,p-Xylene	108-38-3	38.9	97.3	78 - 127
	106-42-3			
o-Xylene	95-47-6	19.2	96.0	77 - 1
MTBE	1634-04-4	NA	NA	50 - 150
1,3,5-Trimethylbenzene	108-67-8	19.4	97.0	66 - 135
1,2,4-Trimethylbenzene	95-63-6	19.6	98.0	72 - 121
1,2,3-Trimethylbenzene	526-73-8	22.3	111.5	71 - 121
1,2,3,4-Tetramethylbenzene	488-23-3	19.6	98.0	58 - 147
Surrogate Recovery:		104%		70 - 128

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

** = Limits established 3/11/96 for TVHBTEX2..KSH

Analyst Hollman

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared : GB040896

Client Project No.

: 722450.15 : 96-0979

Date Analyzed

: 4/8/96

Lab Project No.

: 4/8/96

Dilution Factor Method

: 1.00

Matrix

: RSKSOP-175

: Water

Lab File No.

: GAS0408002

Sample

Compound Name Cas Number Concentration RL mg/L mg/L Methane 74-82-8 U 0.002

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF0979.XLS

Methane Report Form

Sample Number	: ESMP-8S	Client Project No.	: 722450.15
Lab Sample Number	: X21453	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408006

Compound Name	Cas Number	Sample Concentration	RL
		mg/L	mg/L
Methane	74-82-8	U	0.002

mperature	:	73.2 F	Saturation	Meth	2.40814E-05
unt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	7.57041E-05
Head space created	:	4 ml	in Head Space		
Methane Area	:	0.56 ug			

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Marsh

Approved

AF0979.XLS

Methane Report Form

Sample Number	: ESMP-9S	Client Project No.	: 722450.15
Lab Sample Number	: X21454	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408007

Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	U	0.002

nperature	:	72.8 F	Saturation	Meth	1.02776E-05
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	3.23337E-05
Head space created	:	4 ml	in Head Space		
Methane Area	:	0.239 ug			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Methane Report Form

Sample Number	: MW-1138	Client Project No.	: 722450.15
Lab Sample Number	: X21456	Lab Project No.	: 96-0979
Date Sampled	: 3/27/96	Dilution Factor	: 10.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408008

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.14	0.02

mperature	:	73.3 F	Saturation	Meth	0.032590245
nt Injected	:	0.05 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0.10243409
Head space created	:	4 ml	in Head Space	******	
Methane Area	:	75.787 ug			

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analysi

pproved

AF0979.XLS

Methane Report Form

: MW1128	Client Project No.	: 722450.15
: X21457	Lab Project No.	: 96-0979
: 3/27/96	Dilution Factor	: 1.00
: 3/29/96	Method	: RSKSOP-175
: 4/8/96	Matrix	: Water
: 4/8/96	Lab File No.	: GAS0408009
	: X21457 : 3/27/96 : 3/29/96 : 4/8/96	: X21457 Lab Project No. : 3/27/96 Dilution Factor : 3/29/96 Method : 4/8/96 Matrix

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.121	0.002

nperature	:	73.9 F	Saturation	Meth	0.029275876
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0.091913205
Head space created	:	4 ml	in Head Space		
Methane Area	:	680.796 ug			

Atomic weight(Methane) : ______ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Approved

AF0979.XLS

Methane Report Form

Sample Number	: MW-1128	Client Project No.	: 722450.15
Lab Sample Number	: X21457Dup	Lab Project No.	: 96-0979
Date Sampled	: 3/27/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408010

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.131	0.002

nperature	:	74.4 F	Saturation	Meth	0.03171936
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0.099491375
Head space created	: <u> </u>	4 ml	in Head Space		
Methane Area	:	737.618 ug			

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Methane Report Form

Sample Number	: ESMP-4S	Client Project No.	: 722450.15
Lab Sample Number	: X21459	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408011

Compound Name	Cas Number	Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

mperature	•	75.5 F	Saturation	Meth	0.000144101
nt Injected	:	0.5 ml	Concentration		
Volume of Sample		43 ml	Concentration	Meth	0.00045106
Head space created	•	4 ml	in Head Space		
Methane Area	•	3.351 ug			

Atomic weight(Methane)	;	16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Methane Report Form

Sample Number	: ESMP-2D	Client Project No.	: 722450.15
Lab Sample Number	: X21465	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408012

	Sample			
Compound Name	Cas Number	Concentration	RL	
		mg/L	mg/L	
Methane	74-82-8	0.095	0.002	

mperature	:	74.7 F	Saturation	Meth	0.023049814
Int Injected	:	0.5 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	0.072257749
Head space created	:	4 ml	in Head Space		
Methane Area	:	536.012 ug			

Atomic weight(Methane) : _____ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst lie

Ápproved

AF0979.XLS

Methane Report Form

Sample Number	: ESMP-5S	Client Project No.	: 722450.15
Lab Sample Number	: X21466	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408013

Compound Name	Cas Number	Concentration	RL ma/l
		mg/L	mg/L
Methane	74-82-8	U	0.002

nperature	:	76.2 F	Saturation	Meth	3.98202E-05
r. nt Injected	:	0.5 ml	Concentration	•	
Tolume of Sample	:	43 ml	Concentration	Meth	0.000124481
Head space created	:	4 ml	in Head Space	•	
Methane Area	:	0.926 ug			

Atomic weight(Methane) : 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Methane Report Form

Sample Number	: ESMP-3S	Client Project No.	: 722450.15
Lab Sample Number	: X21467	Lab Project No.	: 96-0979
Date Sampled	: 3/28/96	Dilution Factor	: 1.00
Date Received	: 3/29/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/8/96	Matrix	: Water
Date Analyzed	: 4/8/96	Lab File No.	: GAS0408014

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L	
Methane	74-82-8	U	0.002	

mperature	:	75.1 F	:	Saturation	Meth	0
nt Injected	:	0.5 m	nl	Concentration		
olume of Sample	:	43 m	ni	Concentration	Meth	0
Head space created	:	4 m	nl	in Head Space		
Methane Area	:	<u>0</u> u	g -			

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Market

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane, Ethane, Ethene Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No.

: ESMP-8S

Client Project No.

: 722450.15

Lab Sample No.

: X21453

Lab Project No.

: 96-0979

Date Sampled

: 3/28/96

EPA Method No.

: RSKSOP-175

Date Received

: 3/29/96

Matrix

: Water

Date Prepared

: 4/8/96

Method Blank

: GB040896

Date Analyzed

: 4/8/96

Lab File No's.

: GAS0408016,017

E.A. MS/MSD Spike Source No.

: 1723

	Spike	Sample	MS		ac
Compound	Added	Concentration	Concentration	MS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	291	[′] 58	40-89

	Spike	MSD			C	C
Compound	Added	Concentration	MSD	RPD	Limits	
	(ug)	(ug)	%REC		RPD	%REC
Methane Gas	500	290	58	0.3	0-24.4	40-89

RPD:

Spike Recovery:

out of (1) outside limits.

out of (2) outside limits.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS0979.XLS; 4/8/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane LCS Report Form

LCS No.

: LCS040896

EPA Method No.

: RSKSOP-175

Date Prepared

: 4/8/96

Matrix

: Water

Date Analyzed

: 4/8/96

Method Blank

: GB040896

E.A. LCS Source No.

: 1723

Lab File No.

: GAS0408005

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
·	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	340	68	67-85

Spike Recovery: 0

0 out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst

Approved

LCS0408.XLS; 4/8/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Received : 3/29/96 Lab Project Number : 96-0979
Date Prepared : 4/2/96 Method : EPA 300.0
Date Analyzed : 4/2/96 Detection Limit : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
X21453	ESMP-8S	Water	5.8	1
X21454	ESMP-9S	Water	3.5	1
X21456	MW-1138	Water	12.8	1
X21457	MW-1128	Water	12.6	1
X21459	ESMP-4S	Water	4.5	1
X21465	ESMP-2D	Water	3.1	1
X21466	ESMP-5S	Water	7.4	1
X21467 Method Blank	ESMP-3S (4/2/96)	Water	5.2 <0.25	1

Quality Assurance

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535 (96-0995)	Matrix Spike	10.0	6.6	18.0	114
X21535 (96-0995)	Matrix Spike Dup	10.0	6.6	17.9	111
MS/MSD RF	PD	·			2.7

S/MSD RPD 2

/// Holl

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/27-28/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 3/29/96
 Lab Project Number
 : 96-0979

 Date Prepared
 : 4/2/96
 Method
 : EPA 300.0

Date Prepared : 4/2/96 Method : EFA 300.0 Date Analyzed : 4/2/96 Detection Limit : 0.25 mg/L

Evergreen Sample #	Client Sample ID.		Matrix	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
X21453	ESMP-8S		Water	30.6	1
X21454	ESMP-9S		Water	15.3	1
X21456	MW-1138	f į	Water	29.5	1
X21457	MW-1128	•	Water	29.8	1
X21459	ESMP-4S		Water	23.1	1
X21465	ESMP-2D		Water	44.8	5
X21466	ESMP-5S		Water	77.8	10
X21467 Method Blank	ESMP-3S (4/2/96)		Water	14.2 <0.25	1

Quality Assurance

	<u>Sr</u>	oike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535 (96-0995)	Matrix Spike	10.0	0.33	10.3	100
X21535 (96-0995)	Matrix Spike Dup	10.0	0.33	10.1	97
MS/MSD RF	סי				2.5

Analyst Holy

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled : 3/27-28/96 Client Project ID. : 722450.15020 **Date Received** : 3/29/96 Lab Project Number : 96-0979 **Date Prepared** Method : EPA 300.0 : 4/2/96 : 0.056 mg/L Date Analyzed : 4/2/96 **Detection Limit**

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrate-N ⁽¹⁾ mg/L	Dilution <u>Factor</u>
X21453	ESMP-8S	Water	0.28	1
X21454	ESMP-9S	Water	0.12	1
X21456	MW-1138	Water	<0.056	1
X21457	MW-1128	Water	<0.056	1
X21459	ESMP-4S	Water	<0.056	1
X21465	ESMP-2D	Water	0.064	1
X21466	ESMP-5S	Water	0.059	1
X21467 Method Blank	ESMP-3S (4/2/96)	Water	<0.056 <0.056	1

Quality Assurance *

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535 (96-0995)	Matrix Spike	10.0	<0.25	9.8	98
X21535 (96-0995)	Matrix Spike Du	p 10.0	<0.25	9.9	99
MS/MSD RF	סי				1.3

^{* =} Quality assurance results reported as Nitrate (NO₃).

Analyst

^{(1) =} Samples re-analyzed outside of holding time due to instrument problems.

In the initial and re-analysis, no nitrite was detected. This would indicate that no conversion between NO₂ and NO₃ occured prior to re-analysis.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled : 3/27-28/96 Client Project ID. : 722450.15020 : 96-0979 **Date Received** : 3/29/96 Lab Project Number **Date Prepared** : 4/2/96 Method : EPA 300.0 **Detection Limit** : 0.076 mg/L Date Analyzed : 4/2/96

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrite-N ⁽¹⁾ mg/L	Dilution <u>Factor</u>
X21453	ESMP-8S	Water	<0.076	1
X21454	ESMP-9S	Water	<0.076	1
X21456	MW-1138	Water	<0.076	1
X21457	MW-1128	Water	<0.076	1
X21459	ESMP-4S	Water	<0.076	1
X21465	ESMP-2D	Water	<0.076	1
X21466	ESMP-5S	Water	<0.076	1
X21467 Method Blank	ESMP-3S (4/2/96)	Water	<0.076 <0.076	1

Quality Assurance *

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535 (96-0995)	Matrix Spike	10.0	<0.25	10.0	100
X21535 (96-0995)	Matrix Spike Dup	o 10.0	<0.25	9.6	96
MS/MSD RE	PD				3.7

^{* =} Quality assurance results reported as Nitrite (NO₂).

Analyst

^{(1) =} Samples re-analyzed outside of holding time due to instrument problems.

In the initial and re-analysis, no nitrite was detected.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled

: 3/27/96

Client Project ID.

: 722450.15020

Date Received

: 3/29/96

Lab Project Number: 96-0979

Date Prepared

: 4/1/96

Method

: EPA 310.1

Date Analyzed

: 4/1/96

Detection Limit

: 5.0 mg CaCO₃/L

Evergreen Sample #

Client Sample ID.

<u>Matrix</u>

Total Alkalinity (mg CaCO₃/L) Dilution <u>Factor</u>

X21457

MW-1128

Water

187

1

lethod Blank

(4/1/96)

< 5.0

Quality Assurance

Reference	True Value (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Alkalinity Lot # 0814-95-02	120	125	104

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

: 3/27/96 Date Sampled **Date Received** : 3/29/96

: 722450.15020 Client Project ID.

Lab Project Number: 96-0979 : EPA 415.1 Method

Date Prepared : 4/1/96 : 4/1/96 Date Analyzed

Detection Limit

: 1.0 mg C/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	TOC mg C/	Dilution L <u>Factor</u>
X21457	MW-1128	Water	2.5	1
X21457 Dup	MW-1128 Dup	Water	2.8	1

Method Blank

(4/1/96)

<1.0

Quality Assurance

	:	Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
X21457	MW-1128 Matrix Spike	10.0	2.5	12.8	103
X21457	MW-1128 Matrix Spike Du	10.0 p	2.5	12.9	104
MS/MSD F	RPD	•			0.78

Analyst

LABORATORIES, INC.

Ouality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

NON-CLP ANALYSIS RESULTS

te:

04/09/96

Lab Name:

Huffman Labs

Sue Zeller

Client: Evergreen Analytical

Contact: Sample Matrix:

solid

Contact: Patty McClellan

Huffman Lab #: 136896

	Client	Lab	Element/ [Dilution	Results	Units	Prep	Analysis	Sample	Method	Instrument
	Smp#	ID#	Compound	Factor			Date	Date	Size (g)	#	ID
	ESS4-(9'-10')	13689601	TC	NA	0.12	%	NA	04/03/96	0.421	Le∞ CR12	#7
	ESS4-(9'-10') 1	13689601	TC	NA	0.10	%	NA	04/03/96	0.898	Le∞ CR12	#7
	ESS18-9'-9.5' 1	3689602	TC	NA	0.11	%	NA	04/03/96	0.836	Leco CR12	#7
	ESS25-4-6.5 1	13689603	TC	NA	0.06	%	NA	04/03/96	0.946	Leco CR12	#7
	ESS26-8-10 1	13689604	TC	NA	1.18	%	NA	04/03/96	0.981	Leco CR12	#7
	ESS4-(9'-10') 1	3689601	СС	NA	<0.02	%	NA	04/05/96	0.125	COU-02	#2
	ESS4-(9'-10') 1	3689601	CC	NA	< 0.02	%	NA	04/05/96	0.437	COU-02	#2
	ESS18-9'-9.5' 1	3689602	CC	NA	< 0.02	%	NA.	04/05/96	0.338	COU-02	#2
	ESS25-4-6.5 1	3689603	CC	NA	< 0.02	%	NA	04/05/96	0.356	COU-02	#2
	ESS26-8-10 1	3689604	,cc .	NA	< 0.02	%	NĄ	04/05/96	0.523	COU-02	#2
			·/· mois	ure		<u>cdiusted</u> r	esult				-
	ESS4-(9'-10') 1	3689601	TOC	NA	0.12	%	NA	NA	NA	by calc	NA
	ESS4-(9'-10') 1	3689601	TOC	NA	0.10	%	NA	NA	NA	by calc	NA
	ESS18-9'-9.5' 1	3689602	TOC	NA	0.11	%	NA	NA	NA	by calc	NA
463	ESS25-4-6.5 1	3689603	TOC 11.7		0.06	% 0.07	NA	NA	NA	by calc	NA
4	ESS26-8-10 1	3689604	TOC 8.0	7 NA	1.18	%1.29	NA	NA	NA	by calc	NA

Samples analyzed and results reported on as as received basis.

Soil samples are not homogeneous.

Values reported below Detection Limits are for reference only.

TC detection limit = 0.05%

CC detection limit = 0.02%

TOC detection limit = 0.05%

LABORATORIES, INC.

*Quality Analytical Services Since 1936*4630 Indiana Street • Golden, CO 80403

NON-CLP ANALYSIS RESULTS LABORATORY CONTROL STANDARD

Date:

04/09/96

Client: Evergreen Analytical

Lab Name:

Huffman Labs

Contact: Patty McClellan

Contact:

Sue Zeller

Huffman Lab #: 136896

LABORATORY CONTROL STANDARD

Instrument	Method		Units	% R	Found	True	Element/	Source	Lab
ID	#	Date_			Value	Value	Compound		ID #
#7	Leco CR12	04/03/96	%	99	3.32	3.35	TC	BN 4851	LCS
#2	COU-02	04/05/96	%	100	11.3	11.33	CC	BN 4056	LCS

SPIKE RECOVERY

Lab	Source	Element/	True	Found	% R	Units		Method	Instrument
ID#		Compound	Value	Value			Date	#	ID
 SPIKE	BN 4712	TC	12120	11875	98	ug C	04/03/96	Leco CR12	#7
SPIKE DUP	BN 4712	TC	12240	12315	101	'ug C	04/03/96	Leco CR12	#7
SPIKE	BN 4712	CC	817	902	110	ug C	04/05/96	COU-02	#2
SPIKE DUP	BN 4712	CC	830	917	110	ug C	04/05/96	COU-02	#2

LABORATORIES, INC.

Quality Analytical Services Since 1936 4630 Indiana Street • Golden, CO 80403

NON-CLP QA/QC ANALYSIS RESULTS TIAL AND CONTINUING CALIBRATION VERIFICATION

Date:

04/09/96

Client: Evergreen Analytical

Lab Name:

Huffman Labs

Contact: Patty McClellan

Contact:

Sue Zeller

Huffman Lab #: 136896

INITIAL CALIBRATION

La	b Source	Element/	True	Found	% R	Units		Method	Instrument
ID	#	Compound	Value	Value			Date	#	iD
IC	S BN 4712	TC	12.00	11.87	99	%	04/03/96	Leco CR12	#7
IC	S BN 4712	CC	12.00	11.90	99	%	04/03/96	COU-02	#2

Slope =

NA

Intercept =

NA

Single point calibrations for this test.

95% Correlation Coefficient =

NA

CONTINUING CALIBRATION VERIFICATION

Lab	Source	Element/	True	Found	% R	Units		Method	instrument
ID#		Compound	Value	Value			Date	#	ID
CCS	BN 4712	TC	12.00	11.88	99	%	04/03/96	Leco CR12	#7
CCS	BN 4712	TC	12.00	11.90	99	%	04/03/96	Leco CR12	#7
ccs	BN 4712	CC	12.00	11.90	99	%	04/05/96	COU-02	#2

Evergreen Analytical Sample Log Sheet Project # <u>96-0995</u> Date(s) Sampled: 03/28,29/96 COC Date Due: 04/08/96-UST 04/15/96-OTHERS e Received: 03/30/96 0900 Holding Time(s): $3/30,31-N0_2,N0_3$ 4/11,12-BTEX,TVH,METHANE,ALK. t Project I.D. EAKER 722450.15020 Rush STANDARD Client: PARSONS ENGINEERING SCIENCE, INC. Cooler Return 5.00 Address: 1700 BROADWAY SUITE 900 E.A. Cooler # N/A DENVER, CO 80290 **Airbill # FEDEX 7221153730** Contact: TODD HERRINGTON Client P.O. Phone #831-8100 Fax #831-8208 Special Invoicing/Billing_____ Special Instructions + CHLOROBENZENE, TMB's & TemB. Lab Client ID # ID# Analysis Mtx Btl Loc X21535A-D TW-1105 W 40V 2 BTEX+, TVH X21540A-D ESMP23-D W 40V 2 BTEX+, TVH X21541A-D ESMP6-S W BTEX+, TVH 40V X^1542A-D ESMP-19 W 40V BTEX+, TVH 543A-D ESMP-22 W 2 BTEX+, TVH 40V DΑ TRIP BLANK W 40V BTEX+, TVH X21536A ESSB28-8-10 S BTEX+, TVH (% MOISTURE) 4WM 2 X21537A S ESSB27-8.5-10 BTEX+, TVH (% MOISTURE) 4WM 2 X21538A ESSB29-7-8.5 BTEX+, TVH (% MOISTURE) S 4WM 2 X21539A ESSB29-8.5-10.25 BTEX+, TVH (% MOISTURE) S 4WM X21545A/B ES-SW-1 BTEX+ W 40V X21547A/B ES-SW-2 BTEX+ W 40V 2 X21549A/B ES-SW-3 BTEX+ W 40V X21544A ES-SED-1 BTEX+ (% MOISTURE) S 2 4WM X21546A BTEX+ (% MOISTURE) ES-SED-2 S 4WM X21548A ES-SED-3 BTEX+ (% MOISTURE) S 4WM X21534A/B TW-1108 BTEX+, DENSITY OIL 40V 10 X21535F-H TW-1105 W 2 METHANE 40V X21540F-H ESMP23-D W 2 METHANE 40V X21541F-H ESMP6-S METHANE 40V R=Sample to be returned

GC/MS Metals GCXWet Chem X HPLC

> SxRec C QA/QC C Acctg File

Page 1 of 2 Page(s)

Custodian/Date:

Lab .	Client		·			
ID #	ID#	Analysis	Mtx	Btl	Loc	
X21542F-H	ESMP-19	METHANE	W	40V	2	
X21543F-H	ESMP-22	METHANE	W	40V	2	
X21535E	TW-1105	Cl ⁻ ,NO ₂ ,NO ₃ ,SO ₄	W	125P	A3	
X21540E	ESMP23-D	Cl ⁻ ,NO ₂ ,NO ₃ ,SO ₄	- W	125P	A3	
X21541E	ESMP6-S	C1 ⁻ , NO ₂ , NO ₃ , SO ₄	W	125P	A3	·
X21542E	ESMP-19	C1 ⁻ ,NO ₂ ,NO ₃ ,SO ₄	W	125P	А3	
X21543E	ESMP-22	C1, NO, NO, SO,	W	125P	А3	
X21535I	TW-1105	ALKALINITY	W	125P	<u>A3</u>	

Page 2 of 2 Pages
Project # 96-0995

R=Sample to be returned

CHAIN OF CUSTODY RECORD / 'ALYTICAL SERVICES REQUEST

Fage of	EAL use only Do not write	in shaded area EAL Project # 96-099 Custodian 96-8 EAL Sample No.	X21534A/	35.4-I	36.4	37.4	384		40.4-14	27/17	4 >	Location 2, 43	Container Size 40V/4WM	
CLIENT CONTACT (print) [CC C Here PROJECT 1.D. & VECT 722450. j EAL. QUOTE # P.O.# TURNAROUND REQUIRED* (\$\forall \text{Stock}) \text{Stock} Other (\$\forall \text{Speci}) \text{Speci}	REQUESTED	Total Metals-DW/NPDES/SW846 (circle & list metals below) Dissolved Metals-DW/SW846 (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below) (circle & list metals below)	×	XXX	•				X X X	\ \ \ \ \	XX			
Analytical Inc. 4036 Youngfield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS () N	ANALYSIS REC	Herbicides 8150/515 (circle) PCB Screen BLEX 802 (circle) (Circle) TYPH 8015mod. (Gasoline) TEPH 8015mod. (Gasoline)	*	X	X	×	X		×	< X	X			
Everg.	MATRIX	Soil / Solid Oild Sludge TCLP VOA/BNA/Pest/Herb/Metals VOA 8260/624/524.2 (circle) BNA 8270/625 (circle) Pesticides 8080/608 (circle)	У		X	X	X							
25 20 21P 802510 8100 FAX#	W	DATE No. of Containers No. of Containers (circle)	3/28/96 16:30 2	3/24/96 1700 Cl X	28/76	12/2 15:30 1	3/28/96 15:30	10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72.50	× 1. 8. 1. 19.18.	3/21/96 1345 8 X			
NODRESS TO BACKLESTIVE STATE (COMPANY 303-831-8)	print) Skin Oziki	Scoler Received Please PRIN Please PRIN Please All information: CLIENT SAMPLE DA IDENTIFICATION SAM	TW-IIO8	TW-1105		55327-8.5-16 3			ò	/	4	HT	00:	Instructions:

3/29 K:00 74 DS X Relinquished by: (Signature)

Bate/Time Relinquished by: (Signature)

Date/Time | Received by; (Signature)

Date/Time

ALYTICAL SERVICES REQUEST CHAIN OF CUSTODY RECORD //

nalytical Inc.

Evergre

COMPANY		~	4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021	PROJECT I.D.	SHA
		<	FAX (303) 425-6854	EAL. QUOTE #	P.O.#
STATEZIP		1	(800) 845-7400 FAX RESULTS Y / N	TURNAROUND REQUIRED*	STD (2 wks) STD UST (3 day)
Provider Name					Other (Specify)
Sample Ivanie				expedited furnaround subject to auditorial residence of page 1	EAL use only
print) This C. 5 Hotherd IN U. 55/24 1	MATRIX		ANALYSIS REQUESTED	UESTED	Do not write
Analytical Cooler No.		SIE	(cle)	\$ 9\$8/	ווו אומתפת מופמ
		(e	(circle) 3E (cir	01°	:
hur coller to Persons	arge((VHert (circl) (e	(circl) (Circ) (Circl) (Circl) (Circ) (C	(C) OM \ S OBIOM) BDE3 BBB()	EAL
			0/515 0/515 0/515 0/6 0/6 0/6		Project # /0 0//2
all information:	θ	1,625	808 s 808 s 808 s 808 s	ist met ist met	Custodian ZOA
	bilos	8270	icide: Scre 4 418. H 80	1 8 6 00 10 10 10 10 10 10 10 10 10 10 10 10	
DATE 5	S / 1!O	AN8	Herb TYPI TYPI TYPI TYPI TYPI TYPI TYPI TYPI	lorio) seiG lorio)	EAL Sample No.
A 12 DE MINE E				X	X21543A-H
72-186	> V				アケケー
75,11	< >		>		45 A/18
7/2/2/2	>		>		Y 9h
7/1/2/1/10	< >		××		8/A FV
12 5 W - 2 2611	>		× ×		<i>787</i>
- 550-5 46166	>		×		0/4 ph
25/1/2	4 >		×		50 4
III DIGAK	4				
1				Joh 152	Location \mathcal{Z} , $\mathcal{A}\mathcal{Z}$,
Д:					Container Size 40V/4W/
00:					
Instructions:					

Date/Time Relinquished by: (Signature)

Relinquished by: (Signature) Date/Time Received by: (Signature)

Date/Time Received by: Signature

| 3-30 - 96

Evergreen Ana						
Date & Time Rec'd: 3-3	10-96 09	00 Sh	ipped	Via: FEE	Ex 722	115370
client: PARSONS	ES			(Airbill #	ir appiica	pie)
Client Project ID(s): 1	EAKER	72245	50.15	620		
EAL roject #(s):96- 0				Cooler(s)	: Y	N
Cool=r# CUENT						-
Ice packs 🕢 N	y N	Y	N	у И	Y N	
Temperature °C						_
•				Y	N	N/A
1. Custody seal(s) pres Seals on cooler in					_i_	i_
Seals on bottle in						V
2. Chain of Custody pre	esent:					
3. Samples Radioactive:	(Comment on COC if	> 0.5mr/h)				
4. Containers broken or	leaking: (c	omment on CO	C if Y)		_/	_
5. Containers labeled:						
6. COC agrees w/ bottle	es received:	(Comment of	n COC if N)	V	-	
7. COC agrees w/ labels	: (Comment on COC	C if N)				
8. Headspace in vials-w			on COC if Y)			
9. VOA samples preserve				V	,	
10. pH measured on meta		or nh	enolic			
List discrepancies_ *Non-EAL provided conta						
*Non-EAL provided conta	iners only,	water	sample	es only.		
11. Metal samples prese Total, Disso		ጥር፣ D		······································		
D or PD to be filte		, ichr		<u></u>		
T,TR,D,PD to be Pre	served:					
12. Short holding times Specify parameters	ANIONS					
13. Multi-phase sample(s) present:					-
14. COC signed w/ date/	time:				· · · · · · · · · · · · · · · · · · ·	
Comments:						
		-			1,	
(Additional comments on back	() On	1-1	121		. 0	
Custodian Signature/Dat	e: <u>/ </u>	/hoper	1 To	5-3	0-96	

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB1040196B

Client Project Number

722450.15020

Date Prepared

: 4/1/96

Lab Project Number

96-0995

Dilution Factor

: 50.0

Matrix

MEOH

Lab File Number

TVBX0401023

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	mg/kg
Benzene	71-43-2	4/2/96	U	20	ug/kg
Toluene	108-88-3	4/2/96	U	20	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	20	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	20	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	20	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	20	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	20	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	20	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	25	ug/kg
FID Surrogate Recovery:		NA		50%-132%	(Lit
PID Surrogate Recovery:		103%		72%-118%	(Lin

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB1040196B

Client Project Number

722450.15020

Date Prepared

: 4/1/96

Lab Project Number

96-0995

Dilution Factor

: 125

Matrix

MEOH

Lab File Number

TVB10331039

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	12.5	mg/kg
Benzene	71-43-2	4/1/96	U	50	ug/kg
Toluene	108-88-3	4/1/96	U	50	ug/kg
Chlorobenzene	108-90-7	4/1/96	U	50	ug/kg
Ethyl Benzene	100-41-4	4/1/96	U	50	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	50	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	50	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	50	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	50	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	63	ug/kg
FID Surrogate Recovery:		105%	<u> </u>	50%-132%	(Limits)
PID Surrogate Recovery:	***************************************	101%	***************************************	72%-118%	(Limits)

Res: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

M. Blecha Analyst

K Hollman Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB040196

Client Project Number

722450.15020

Date Prepared

: 3/30/96

Lab Project Number

96-0995

Date Frepared

: 1.0

Matrix

WATER

Dilution Factor

Lab File Number

TVBX0330061

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	0.1	mg/L
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
FID Surrogate Recovery:		98%		70%-130%	(Lim
PID Surrogate Recovery:		96%		70%-128%	(Lim

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
<u> </u>	 		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

TVBP0995.XLS; 4/4/96; 1

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB040296B

Client Project Number

722450.15020

Date Prepared

: 4/2/96

Lab Project Number

96-0995

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVBX0401031

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/2/96	U	0.4	ug/L
Toluene	108-88-3	4/2/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/2/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/2/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	J	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.5	ug/L
) Surrogate Recovery:		NA		70%-130%	(Limits)
Surrogate Recovery:		101%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
	. * *	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K- Hallman Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1040296

Client Project Number

722450.15020

Date Prepared

: 4/2/96

Lab Project Number

96-0995

Dilution Factor

. 4/2/5

Matrix

WATER

Dilution Factor

: 1.0

Lab File Number

TVB10331068

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	U	0.1	mg/L
Benzene	71-43-2	4/2/96	U	0.4	ug/L
Toluene	108-88-3	4/2/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/2/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/2/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.5	ug/L
FID Surrogate Recovery:	<u> </u>	102%		70%-121%	(Lim'' -1
PID Surrogate Recovery:		94%	***************************************	82%-115%	(Lir

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Analyst

K Hollman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1040396

Client Project Number

722450.15020

Date Prepared

: 4/3/96

Lab Project Number

96-0995

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB10402033

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	U	0.1	mg/L
Benzene	71-43-2	4/3/96	U	0.4	ug/L
Toluene	108-88-3	4/3/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/3/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/3/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/3/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/3/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/3/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/3/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	U	0.5	ug/L
"D Surrogate Recovery:		106%		70%-121%	(Limits)
D Surrogate Recovery:		96%		82%-115%	(Limits)

es: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Malyst Analyst

K. Hollman Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TW-1108 : X21534

Client Project Number

722450.15020

Lab Sample Number Date Sampled

: 3/28/96

Lab Project Number Matrix

96-0995 OIL

Date Received Date Prepared

: 3/30/96 : 4/2/96

Lab File Number(s)

Method Blank

TVBX0401037 MEB1040196B

FID Dilution Factor PID Dilution Factor

: 500,000 : 500,000

		Analysis	Sample			
Compound Name	Cas Number	Date	Concentration	on	RL	Units
TVH-Gasoline		NA		NA	NA	NA
Benzene	71-43-2	4/2/96	9,900,000	Ī	200,000	ug/kg
Toluene	108-88-3	4/2/96	57,000,000		200,000	ug/kg
Chlorobenzene	108-90-7	4/2/96		U	200,000	ug/kg
Ethyl Benzene	100-41-4	4/2/96	12,000,000		200,000	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	59,000,000		200,000	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	7,000,000		200,000	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	23,000,000		200,000	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	6,600,000		200,000	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	3,600,000		250,000	ug/kn
FID Surrogate Recovery:	N	_L A	<u> </u>		50%-132%	(Lim
PID Surrogate Recovery:		102%			72%-118%	(Lif

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:				
	 	 	* - * - * - * - * - * - * - * - * - * -	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TW-1105

Client Project Number

722450.15020

Lab Sample Number

: X21535

Lab Project Number

96-0995

Date Sampled

: 3/28/96

Matrix

WATER

Date Received

: 3/30/96

Lab File Number(s)

TVBX0401019,34

Date Prepared

: 4/1,2/96

Method Blank

MB040196

FID Dilution Factor

MB040296B

PID Dilution Factor

: 100 : 100 & 1000

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	200	10	mg/L
Benzene	71-43-2	4/2/96	23000	400	ug/L
Toluene	108-88-3	4/2/96	44000	400	ug/L
Chlorobenzene	108-90-7	4/2/96	U	40	ug/L
Ethyl Benzene	100-41-4	4/2/96	2900	40	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	15000	40	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	640	40	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	2300	40	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	740	40	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	260	50	ug/L
Surrogate Recovery:		99%	<u> </u>	70%-130%	(Limits)
Surrogate Recovery:		101%, 97%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- VH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESSB28-8-10 Client Project Number : 722450.15020

Lab Sample Number : X21536 Lab Project Number : 96-0995 Date Sampled : 3/28/96 Matrix : SOIL

 Date Received
 : 3/30/96
 Lab File Number(s)
 : TVB10331052

 Date Prepared
 : 4/1/96
 Method Blank
 : MEB1040196B

FID Dilution Factor : 500 Soil Extracted? : YES PID Dilution Factor : 500 Soil Moisture : 24.79%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	1100	66	mg/kg
Benzene	71-43-2	4/2/96	6700	266	ug/kg
Toluene	108-88-3	4/2/96	40000	266	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	266	ug/kg
Ethyl Benzene	100-41-4	4/2/96	14000	266	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	70000	266	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	14000	266	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	41000	266	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	14000	266	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	9100	332	ug/kg
FID Surrogate Recovery:		102%		65%-129%	(Lin
PID Surrogate Recovery:	***************************************	91%		65%-129%	(L

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K. Hellman Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Lab Sample Number : ESSB27-8.5-10 Client Project Number : 722450.15020 Lab Sample Number : X21537 Lab Project Number : 96-0995

Lab Sample Number : X21537 Lab Project Number : 96-09
Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/30/96 Lab File Number(s) : TVB10331053
Date Prepared : 4/1/96 Method Blank : MEB1040196B

FID Dilution Factor : 500 Soil Extracted? : YES PID Dilution Factor : 500 Soil Moisture : 22.48%

		Analysis	Sample		-
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	380	64	mg/kg
Benzene	71-43-2	4/2/96	2800	258	ug/kg
Toluene	108-88-3	4/2/96	14000	258	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	258	ug/kg
Ethyl Benzene	100-41-4	4/2/96	5000	258	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	26000	258	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	3600	258	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	15000	258	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	5800	258	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	2800	322	ug/kg
FID Surrogate Recovery:		103%		65%-129%	(Limits)
Surrogate Recovery:	***************************************	92%		65%-129%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
	<u></u>	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

M. Blocker Analyst K. Hollman Approved

Methods 602/8020 and 5030/8015 Modified Data Report

722450.15020 Client Project Number Client Sample Number : ESSB29-7-8.5 Lab Project Number 96-0995 Lab Sample Number : X21538

Matrix

Method Blank

Date Sampled : 3/28/96 : 3/30/96 Lab File Number(s) TVB10402047 Date Received

FID Dilution Factor : 1250 Soil Extracted? YES 12.71% Soil Moisture PID Dilution Factor : 1250

: 4/3/96

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	3200	143	mg/kg
Benzene	71-43-2	4/3/96	U	573	ug/kg
Toluene	108-88-3	4/3/96	67000	573	ug/kg
Chlorobenzene	108-90-7	4/3/96	1200	573	ug/kg
Ethyl Benzene	100-41-4	4/3/96	35000	573	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/3/96	180000	573	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/3/96	53000	573	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/3/96	150000	573	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/3/96	58000	573	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	47000	716	ug/kg
FID Surrogate Recovery:		104%	1	65%-129%	(Lir. ,
PID Surrogate Recovery:		92%		65%-129%	(1

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

Date Prepared

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

SOIL

MEB1040196B

Methods 602/8020 and 5030/8015 Modified Data Report

Lab Sample Number : ESSB29-8.5-10.25 Client Project Number : 722450.15020 Lab Sample Number : X21539 Lab Project Number : 96-0995

Date Sampled : 3/28/96 Matrix : SOIL

Date Received : 3/30/96 Lab File Number(s) : TVB10402048
Date Prepared : 4/3/96 Method Blank : MEB1040196B

FID Dilution Factor : 2500 Soil Extracted? : YES
PID Dilution Factor : 2500 Soil Moisture : 17.95%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/3/96	7600	305	mg/kg
Benzene	71-43-2	4/3/96	13000	1219	ug/kg
Toluene	108-88-3	4/3/96	250000	1219	ug/kg
Chlorobenzene	108-90-7	4/3/96	3400	1219	ug/kg
Ethyl Benzene	100-41-4	4/3/96	98000	1219	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/3/96	470000	1219	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/3/96	100000	1219	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/3/96	300000	1219	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/3/96	100000	1219	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/3/96	69000	1523	ug/kg
,-ID Surrogate Recovery:				65%-129%	(Limits)
Surrogate Recovery:		93%		65%-129%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

X Hollman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESMP23-D Client Project Number : 722450.15020 Lab Sample Number : X21540 Lab Project Number : 96-0995

Date Received : 3/30/96 Lab File Number(s) : TVBX0401020,35

Date Prepared : 4/1,2/96 Method Blank : MB040196 FID Dilution Factor : 50.0 MB040296B

PID Dilution Factor : 50 & 100

		Analysis	Sample			
Compound Name	Cas Number	Date	Concentrati	on	RL	Units
TVH-Gasoline		4/2/96	32		5.0	mg/L
Benzene	71-43-2	4/2/96	11000		40	ug/L
Toluene	108-88-3	4/2/96	170		40	ug/L
Chlorobenzene	108-90-7	4/2/96		U	20	ug/L
Ethyl Benzene	100-41-4	4/2/96	860		20	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	120		20	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96		U	20	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96		U	20	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96		U	20	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	42		25	ug/L
FID Surrogate Recovery:		101%			70%-130%	(Lipana)
PID Surrogate Recovery:		102%, 100%			70%-128%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:				
	····			
	•	***************************************	 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ESMP6-S

Client Project Number

722450.15020

Lab Sample Number

: X21541

Lab Project Number

96-0995

Date Sampled

: 3/29/96

Matrix

WATER

Date Received Date Prepared : 3/30/96 : 4/1/96

Lab File Number(s)

TVBX0401007

FID Dilution Factor

Method Blank

MB040196

: 1.0

PID Dilution Factor	: 1.0
Compound Name	Ca

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	0.1	mg/L
Benzene	71-43-2	4/1/96	1.8	0.4	ug/L
Toluene	108-88-3	4/1/96	2.2	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	· ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
urrogate Recovery:		100%		70%-130%	(Limits)
urrogate Recovery:		102%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	•		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- FID = Flame ionization detector.
- VH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ESMP-19

Client Project Number

722450.15020

Lab Sample Number

: X21542

Lab Project Number

Lab File Number(s)

96-0995

Date Sampled

: 3/29/96

Matrix

WATER TVBX0401008

Date Received Date Prepared

: 3/30/96 : 4/1/96

Method Blank

MB040196

FID Dilution Factor PID Dilution Factor

: 1.0 : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	2.0	0.1	mg/L
Benzene	71-43-2	4/1/96	23	0.4	ug/L
Toluene	108-88-3	4/1/96	5.6	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	1.7	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	2.5	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	8.9	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	7.8	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	13	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	4.1	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	14	0.5	ug/L
		102%	L	70%-130%	/l in

FID Surrogate Recovery:	102%	70%-130%	
PID Surrogate Recovery:	103%	70%-128%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ESMP-22 Client Project Number
Lab Sample Number : X21543 Lab Project Number

Lab Sample Number : X21543 Lab Project Number : 96-0995
Date Sampled : 3/29/96 Matrix : WATER

Date Received : 3/30/96 Lab File Number(s) : TVBX0401021,36

Date Prepared : 4/1,2/96 Method Blank : MB040196 FID Dilution Factor : 50 MB040296B

PID Dilution Factor : 50 & 200

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/2/96	83	5.0	mg/L
Benzene	71-43-2	4/2/96	11000	80	ug/L
Toluene	108-88-3	4/2/96	11000	80	ug/L
Chlorobenzene	108-90-7	4/2/96	U	20	ug/L
Ethyl Benzene	100-41-4	4/2/96	840	20	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	7800	20	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	510	20	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	1700	20	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	510	20	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	160	25	ug/L
Surrogate Recovery:		102%	1	70%-130%	(Limits)
Surrogate Recovery:		104%,101%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Jollman Analyst

Approved

722450.15020

Methods 602/8020 and 5030/8015 Modified Data Report

722450.15020 Client Project Number Client Sample Number : ES-SED-1 Lab Project Number 96-0995 Lab Sample Number : X21544 SOIL Matrix Date Sampled : 3/29/96 Lab File Number(s) TVB10402012 Date Received : 3/30/96 MB1040296 Method Blank : 4/2/96 Date Prepared

FID Dilution Factor : 1.0 Soil Extracted? : NO
PID Dilution Factor : 1.0 Soil Moisture : 35.13%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/2/96	U	0.6	ug/kg
Toluene	108-88-3	4/2/96	19	0.6	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	0.6	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	0.6	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.6	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.6	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.6	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.6	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.8	ug/kg
FID Surrogate Recovery:	N	 A		50%-132%	(Lir_
PID Surrogate Recovery:		57%	#	72%-118%	(L

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = The sample was re-analyzed confirming a low surrogate recovery.	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K. Hallman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ES-SW-1

Client Project Number

722450.15020

Lab Sample Number

: X21545

Lab Project Number

96-0995

Date Sampled

: 3/29/96

Matrix

WATER

Date Received Date Prepared

: 3/30/96

Lab File Number(s)

TVBX0401032

FID Dilution Factor
PID Dilution Factor

: 4/2/96 : 1.0 : 1.0

Method Blank : MB040296B

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/2/96	U	0.4	ug/L
Toluene	108-88-3	4/2/96	0.5	0.4	ug/L
Chlorobenzene	108-90-7	4/2/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/2/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.5	ug/L
Surrogate Recovery:		<u> </u> JA	<u> </u>	70%-130%	(Limits)
urrogate Recovery:		99%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	 	 *	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

Annroyed

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ES-SED-2 Client Project Number : 722450.15020
Lab Sample Number : X21546 Lab Project Number : 96-0995
Date Sampled : 3/29/96 Matrix : SOIL

 Date Received
 : 3/30/96
 Lab File Number(s)
 : TVB10402006

 Date Prepared
 : 4/2/96
 Method Blank
 : MB1040296

FID Dilution Factor : 1.0 Soil Extracted? : NO
PID Dilution Factor : 1.0 Soil Moisture : 43.90%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/2/96	U	0.7	ug/kg
Toluene	108-88-3	4/2/96	5.9	0.7	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	0.7	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	0.7	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	1.4	0.7	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.7	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.7	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.7	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.9	ug/kg
FID Surrogate Recovery:		I A		50%-132%	(Lim_
PID Surrogate Recovery:	•••••••••••••••••••••••	38%	#	72%-118%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = Surrogate recovery was low. The sample was	re-analyzed with similar surrogate results.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Mecha K.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ES-SW-2 Client Project Number
Lab Sample Number : X21547 Lab Project Number

X21547 Lab Project Number : 96-0995 3/29/96 Matrix : WATER

Date Sampled : 3/29/96 Matrix : WATER

Date Received : 3/30/96 Lab File Number(s) : TVBX0401009

Date Prepared : 4/1/96 Method Blank : MB040196

Date Prepared : 4/1/96 Method Blank

FID Dilution Factor : 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	Ū	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
Surrogate Recovery:		IA		70%-130%	(Limits)
Surrogate Recovery:		102%		70%-128%	(Limits)

Comments:

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Hollman Analyst

Approved

TVBP0995.XLS; 4/17/96; 9

722450.15020

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ES-SED-3 Client Project Number : 722450.15020
Lab Sample Number : X21548 Lab Project Number : 96-0995
Date Sampled : 3/29/96 Matrix : SOIL

Date Received : 3/30/96 Lab File Number(s) : TVB100402004

Date Prepared : 4/2/96 Method Blank : MB1040296

FID Dilution Factor : 1.0 Soil Extracted? : NO
PID Dilution Factor : 1.0 Soil Moisture : 38.17%

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/2/96	U	0.6	ug/kg
Toluene	108-88-3	4/2/96	U	0.6	ug/kg
Chlorobenzene	108-90-7	4/2/96	U	0.6	ug/kg
Ethyl Benzene	100-41-4	4/2/96	U	0.6	ug/kg
Total Xylenes (m,p,o)	1330-20-7	4/2/96	U	0.6	ug/kg
1,3,5-Trimethylbenzene	108-67-8	4/2/96	U	0.6	ug/kg
1,2,4-Trimethylbenzene	95-63-6	4/2/96	U	0.6	ug/kg
1,2,3-Trimethylbenzene	526-73-8	4/2/96	U	0.6	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	4/2/96	U	0.8	ug/kg
FID Surrogate Recovery:	NA		<u> </u>	50%-132%	(Lir
PID Surrogate Recovery:		53%	*	72%-118%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: *= The s	ample was re-analyzed	confirming a low surro	gate recovery		
				· · · · · · · · · · · · · · · · · · ·	
				·	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ES-SW-3

Client Project Number

722450.15020

Lab Sample Number

: X21549

Lab Project Number

96-0995

Date Sampled

: 3/29/96

Matrix

WATER

Date Received

: 3/30/96

Lab File Number(s)

TVBX0401010

Date Prepared

: 4/1/96

Method Blank

MB040196

: 1.0

FID Dilution Factor PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	υ	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
Surrogate Recovery:	V	IA		70%-130%	(Limits)
Surrogate Recovery:		102%		70%-128%	(Limits)

Comments:

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TRIP BLANK

Client Project Number

722450.15020

Lab Sample Number

: X21550

Lab Project Number

96-0995

Date Sampled

: NA

Matrix

WATER

Date Received

: 3/30/96

Lab File Number(s)

TVBX0401003

Date Prepared

: 4/1/96

Method Blank

MB040196

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	0.1	mg/L
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
FID Surrogate Recovery:		102%		70%-130%	(Lip
PID Surrogate Recovery:		103%		70%-128%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
		· · · · · · · · · · · · · · · · · · ·	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Project No. Client Sample No. : ESMP6-S : 722450.15020 : 96-0995 : X21541 Lab Project No. Lab Sample No. : 5030/8015 Modified Date Sampled 3/29/96 EPA Method No. : WATER 3/30/96 Date Received Matrix TVBX0401017,18 Date Prepared 4/1/96 Lab File Number(s) : MB040196 Date Analyzed 4/2/96 Method Blank : 1.0 **Dilution Factor**

	Spike	Sample	MS		QC***
Compound	Added	Concentration	Concentration	MS	Limits
·	(mg/L)	(mg/L)	(mg/L)	%REC	%REC
Gasoline	2.00	0.00	2.18	109.0%	57-126
Surrogate **				101%	70-128

Compound	Spike Added	MSD Concentration MSD		QC*** Limits		
(mg/L)		(mg/L)	%REC	RPD	RPD	%REC
Gasoline	2.00	1.94	97.0%	11.7	28.2	57-126
Surrogate **			99%	NA	NA	70-128

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	out of	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Value outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- *** = Limits established 3/8/96. KSH

Comments:				
	•			

K Hollman Analyst

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

: 722450.15020 Client Project No. : ESMP-19 Client Sample No. : 96-0995 X21542 Lab Project No. Lab Sample No. : 602/8020 : 3/29/96 EPA Method No. **Date Sampled** : Water : 3/30/96 Matrix **Date Received** : TVBX0401001,39 : 4/1,2/96 Lab File Number(s) **Date Prepared** : MB040196,MB040296B : 4/1,2/96 Method Blank Date Analyzed

Dilution Factor : 1.0

Compound	Spike Added	Sample Concentration		Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	23.1	39.0	36.2	
Toluene	20.0	5.6	21.3	20.1	
Chlorobenzene	20.0	1.7	18.8	15.9	
Ethylbenzene	20.0	2.5	19.8	17.1	
m,p-Xylene	20.0	5.6	23.0	19.7	
o-Xylene	20.0	3.3	20.3	16.7	
1,3,5-TMB	20.0	7.8	24.0	19.3	
1,2,4-TMB	20.0	13.1	29.2	23.1	
1,2,3-TMB	20.0	4.1	20.4	16.6	
1,2,3,4-TeMB	20.0	13.7	31.5	25.0	
Surrogate	100.0	103%	101%	102%	% RECOVERY

	MS	MSD				QC#	
Compound	%	%				Limit	s
	RECOVERY	RECOVERY	RPD		RPD	%	REC
Benzene	79.5	65.5	19.3		25	50	- 150
Toluene	78.5	72.5	7.9		25	50	- 148
Chlorobenzene	85.5	71.0	18.5		25	55	- 135
Ethylbenzene	86.5	73.0	16.9		25	50	- 150
m,p-Xylene	87.0	70.5	21.0		25	50	- 150
o-Xylene	85.0	67.0	23.7		25	50	- 150
1,3,5-TMB	81.0	57.5	33.9	*	25	50	- 150
1,2,4-TMB	80.5	50.0	46.7	*	25	50	- 150
1,2,3-TMB	81.5	62.5	26.4	*	25	50	- 150
1,2,3,4-TeMB	89.0	56.5	44.7	*	25	50	- 150
Surrogate	101.0	102.0	NA	П	NA	70	- 128

#= Values taken from EPA	methods 602/8020.
--------------------------	-------------------

* = Values outside of QC limits.

RPD: out of (10) outside limits. Spike Recovery: out of (20) outside limits.

The MSD was reanalyzed using a different VOA vial, resulting in better, but still low Comments:

results. No other VOA vial is available to re-analyze or re-spike for this sample.

See X21631-MS/MSD.

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number
Date Extracted/Prepared

Spike Amount (ug/L)

Date Extracted/Prepared

Date Analyzed

ed

LCS1032996

: 3/29/96 : 3/29/96 : 20.0 Dilution Factor

Method

1.00

Matrix

602/8020 Water

Lab File No.

TVB10328014

	_	LCS	LCS	
	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	16.2	81.0	73 - 113
Toluene	108-88-3	16.9	84.5	78 - 114
Chlorobenzene	108-90-7	15.9	79.5	50 - 150
Ethyl Benzene	100-41-4	16.1	80.5	80 - 118
m,p-Xylene	108-38-3	31.7	79.3	78 - 116
ylene	106-42-3 95-47-6	17.6	88.0	79 - 122
M	1634-04-4	14.1	70.5	50 - 150
1,3,5-Trimethylbenzene	108-67-8	16.5	82.5	50 - 150
1,2,4-Trimethylbenzene	95-63-6	17.2	86.0	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.5	107.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	24.9	124.5	50 - 150
Surrogate Recovery:		98%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

= Limits updated 2/9/96 for TVHBTEX1. KSH

M. Black

Approved

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1040296GAS : 4/2/96 : 4/2/96 : TVB10402001	Matrix Method Numbers	: WATER : EPA 5030/80	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit % Recovery
Gasoline	1.00	1.24	124	70 - 13 0
Surrogate Recovery:		104%		70 - 121

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 12/20/95 for TVHBTEX2. KSH

M. W. Wollows Analyst K Hollman

Methane Report Form Method Blank Report

Method Blank Number

: GB040196

Client Project No.

: 722450.15020

Date Extracted/Prepared

: 4/1/96

Lab Project No.

: 96-0995

Dilution Factor

Date Analyzed

: 4/1/96

: 1.00

Method

: RSKSOP-175

Matrix

: Water

Lab File No.

: GAS0401002

Sample

Compound Name

Cas Number

Concentration mg/L

RL

mg/L

Methane

74-82-8

U

0.002

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

Methane Report Form

Sample Number	: TW-1105	Client Project No.	: 722450.15020
Lab Sample Number	: X21535	Lab Project No.	: 96-0995
Date Sampled	: 3/28/96	Dilution Factor	: 50.00
Date Received	: 3/30/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401016

		Sample	
Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	3.8	0.1

mperature	:	73.8 F	Saturation	Meth	0.927454722
aunt Injected	:	0.01 ml	Concentration		
Volume of Sample	:	43 ml	Concentration	Meth	2.912340585
had space created	:	4 ml	in Head Space		
Methane Area	:	431.35 ug			

Atomic weight(Methane) : ____

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Approved

Methane Report Form

Sample Number	: ESMP23-D	Client Project No.	: 722450.15020
Lab Sample Number	: X21540	Lab Project No.	: 96-0995
Date Sampled	: 3/29/96	Dilution Factor	: 100.00
Date Received	: 3/30/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401017

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	3.0	0.2

mperature	:	75.7 F	Saturation	Meth	0.715156068
nt Injected	:	0.005 ml	Concentration		
olume of Sample	•	43 ml	Concentration	Meth	2.237718557
Head space created	:	4 mi	in Head Space		
Methane Area	:	166.306 ug			

Atomic weight(Methane) : _____ 16 g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

reneral Miles

Approved

Methane Report Form

Sample Number	: ESMP6-S	Client Project No.	: 722450.15020
Lab Sample Number	: X21541	Lab Project No.	: 96-0995
Date Sampled	: 3/29/96	Dilution Factor	: 1.00
Date Received	: 3/30/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401018

Compound Name	Cas Number	Sample Concentration	RL	
	Water water	mg/L	mg/L	
Methane	74-82-8	U	0.002	

mperature	:	76.8 F	Saturation	Meth	0
nt Injected	:	0.5 ml	Concentration		
olume of Sample	:	43 ml	Concentration	Meth	0
Head space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			
					

16 g

QUALIFIERS:

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

Approved

Methane Report Form

Sample Number	: ESMP6-S	Client Project No.	: 722450.15020
Lao Sample Number	: X21541Dup	Lab Project No.	: 96-0995
Date Sampled	: 3/29/96	Dilution Factor	: 1.00
Date Received	: 3/30/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401019

		Sample	•
Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	U	0.002

:	76.8 F	Saturation	Meth	0
:	0.5 ml	Concentration		
:	43 ml	Concentration	Meth	0
:	4 ml	in Head Space		
:	0 ug			
	: : : :	: 0.5 ml : 43 ml : 4 ml	: 0.5 ml Concentration : 43 ml Concentration : 4 ml in Head Space	: 0.5 ml Concentration : 43 ml Concentration Meth : 4 ml in Head Space

Atomic weight(Methane) : _____ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Malana Records

Approved

Methane Report Form

Sample Number Law Sample Number Date Sampled Date Received Date Extracted/Prepared	: ESMP-19 : X21542 : 3/29/96 : 3/30/96 : 4/1/96	Client Project No. Lab Project No. Dilution Factor Method Matrix	: 722450.15020 : 96-0995 : 1.00 : RSKSOP-175 : Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401020
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.003	0.002

mperature	:	74.7 F	Saturation	Meth	0.00064981
μουnt Injected	:	0.5 ml	Concentration		
Yolume of Sample	:	43 ml	Concentration	Meth	0.002037057
H space created	:	4 ml	in Head Space		
Methane Area	:	15.111 ug			

Atomic weight(Methane) : _____ <u>16</u> g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

Approved

Methane Report Form

Sample Number	: ESMP-22	Client Project No.	: 722450.15020
Lau Sample Number	: X21543	Lab Project No.	: 96-0995
Date Sampled	: 3/29/96	Dilution Factor	: 50.00
Date Received	: 3/30/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401021

		Sample			
Compound Name	Cas Number	Concentration	RL		
		mg/L	mg/L	_	
Methane	74-82-8	1.5	0.1		

mperature	:	77.6 F	Saturation	Meth	0.354004533
. <u>"pou</u> nt Injected	:	0.01 ml	Concentration	-	
To olume of Sample	:	43 ml	Concentration	Meth	1.103758659
He space created	:	4 ml	in Head Space	-	
Methane Area	:	164.644 ug			

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

nangtu las

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSK-175 Gas Method Methane LCS Report Form

LCS No.

: LCS040196

EPA Method No.

: RSKSOP-175

Date Prepared

: 4/1/96

Matrix

: Water

Date Analyzed

: 4/1/96

Method Blank

: GB040196

E.A. LCS Source No.

: 1723

Lab File No.

: GAS0401005

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	399	80	67-85

Spike Recovery: 0 out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

NOTES:

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst St. If

Annroyed /

LCS0401.XLS; 4/2/96

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

: 3/28-29/96 Date Sampled **Date Received** : 3/30/96

Client Project ID. Lab Project Number : 722450.15020

Date Prepared

: 4/2/96

Method

: 96-0995 : EPA 300.0

Date Analyzed

: 4/2/96

Detection Limit

: 0.076 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	Nitrite-N ⁽¹⁾ mg/L	Dilution <u>Factor</u>
X21535	TW-1105	Water	<0.076	1
X21535 Dup	TW-1105 Duplicate	Water	<0.076	1
X21540	ESMP23-D	Water	<0.076	1
X21541	ESMP6-S	Water	<0.076	1
X21542	ESMP-19	Water	<0.076	1
X21543	ESMP-22	Water	<0.076	1

Method Blank

(4/2/96)

< 0.076

Quality Assurance *

•	<u>S</u>	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535	TW-1105 Matrix Spike	10.0	<0.25	10.0	100
X21535	TW-1105 Matrix Spike Dup	10.0	<0.25	9.6	96
MS/MSD RI	PD	•			3.7

^{* =} Quality assurance results reported as Nitrite (NO₂).

 $^{^{\{1\}}}$ = Samples re-analyzed outside of holding time due to instrument problems. In the initial and re-analysis, no nitrite was detected.

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled

: 3/28-29/96

Client Project ID.

: 722450.15020

Date Received

: 3/30/96

Lab Project Number: 96-0995

: EPA 300.0

Date Prepared

: 4/2/96

Method

Date Analyzed

: 4/2/96

Detection Limit

: 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
X21535	TW-1105	Water	0.32	1
X21535 Dup	TW-1105 Duplicate	Water	0.46	1
X21540	ESMP23-D	Water	1.8	1
X21541	ESMP6-S	Water	14.9	1
X21542	ESMP-19	Water	18.3	1
X21543	ESMP-22	Water	0.98	1

Method Blank

(4/2/96)

< 0.25

Quality Assurance

	<u>\$</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21535	TW-1105 Matrix Spike	10.0	0.33	10.3	100
X21535	TW-1105 Matrix Spike Du	p 10.0	0.33	10.1	97
MS/MSD RI	PD				2.5

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled : 3/28/96

Date Received : 3/30/96
Date Prepared : 4/2/96

Date Analyzed : 4/296

Client Project ID. : 7:

: 722450.15020

Lab Project Number : 96-0995 Matrix : Product

Method : ASTM D287

Evergreen Sample #

Client

Sample ID. Density @ 60 ° F

X21534

TW-1108

0.7687

Analyst

Approved

Evergreen Analytical Sample Log Sheet			Project # <u>96-0998</u>			
Date(s) Sample	ed: <u>03/29,30</u>	Da	te Due:	04/08/96-UST 04/15/96-OTHERS		
	: 04/01/96 0	920 R AFB 722450.15			BTEX,	-NO ₂ ,NO ₃ TVH,METHANE STANDARD
Client: PARSON	NS ENGINEERI	NG SCIENCE, INC.	Coole	r Retur	n N/A	MARIE TO THE THE STATE OF THE S
Address: 1700	BROADWAY S	UITE 900	E.A.	Cooler #	N/A	
DENVI	ER, CO 8029	0	Airbi	.11 # FEI	DEX 81	88097234
Contact: TODD	HERRINGTON		Clien	t P.O		
Phone #831-810	OO Fax	<u>#831-8208</u>				
Special Invoice	cing/Billing					
Special Instru	actions_+CHL	DROBENZENE, TMB	s & Temb			
Lab Clie	ant					
ID # ID#		Analysis		Mtx	Btl	Loc
X21631A-D ESM	MP7S	BTEX+,TV	Н	W	40V	2
X21632A-D ESM	MP2S	BTEX+, TV	Н	W	40V	2
X21633A-C ESM	1P20	BTEX+,TV	<u> </u>	W	40V	2
. SIE-G ESM	MP7S	METHANE		W	40V	2
X2 IH ESM	MP7S	Cl ⁻ ,NO ₂ ,NO ₃	, SO ₄	W	125P	A3
D-Comple 4- 1-					,	
R=Sample to be						
te GC/MS		Metals				SxPrep
Page 1 of 1 a		QA/QC <u>C</u> Acc			Orig	Willalgi.
Page 1 of 1 Pa	ige (s)			Custodia	n/Date	e: XVIBIOI 10

Chain of worldy

Please Perfurn Cooles to Parsons ES

Take Simble #1/465 3/21-3/20/96 X216314-4 @ 3/30/46 X216324-C 1 X216334-C 3 3/30/16 Grondlegeter Sringles ESMR75 85MP-25 ESMP. 20

2005/ 7/P# 5020 BIEK+1MB

C1-102, SQ1

Methcine

Pacpet: Eaker AFB, 722450. 15020

Contact; Teck Howington.

Startand Turn aucenol.

livilises

8660-96

Loc: 2, A3

- 1 of 4 vials broken @ EAL, sample ESMP.35 > m/n. - ESMP-20 (alelled as ESMP-205 on vials.

12,120 3/20/2, FSDSX 17:00 3/20/96 Rect & EAL by MMMLLA 4/1/96 0920 Tungled By Mer Worly + Swale. All Sedien Al

Evergreen Analytical Sample Receipt/Ci	,		
Date & Time Rec'd: 4/1/96 0920 Shipped V	ia: <u>FedX</u>	\$188097. if applicab	<u>134</u>
Client: (19850 5 £)			
Client Project ID(s): Eaker AFB, 722450.	./5020		<i>a</i>)
	ooler(s):	. Y	(N)
cooler# Client			
Ice packs N Y N Y N Y	N	Y N	
Temperature °C			
	Y	N .	N/A
<pre>1. Custody seal(s) present: Seals on cooler intact Seals on bottle intact</pre>		<u>×</u>	<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>
2. Chain of Custody present:	<u>×</u>		
3. Samples Radioactive: (Comment on COC if > 0.5mr/h)			
4. Containers broken or leaking: (Comment on COC if Y)			
1 of 4 bro # BTEX Viuls broken in @ EAL, SC	imple Esi	1P. 25	
5. Containers labeled:			
6. COC agrees w/ bottles received: (Comment on COC if N)	<u></u>		
7. COC agrees w/ labels: (Comment on COC if N)			
8. Headspace in vials-waters only: (Comment on COC: Y)			
9. VOA samples preserved:			
10. pH measured on metals, cyanide or phenolics* List discrepancies *Non-EAL provided containers only, water samples			<u> </u>
11. Metal samples present:		\times	
Total , Dissolved , TCLP			
D or PD to be filtered:			
T,TR,D,PD to be Preserved:			
12. Short holding times: Specify parameters $NO2/NO3$			
13. Multi-phase sample(s) present:		<u>×</u>	
14. COC signed w/ date/time:	1		
Comments:			
	···		
(Additional comments on back)	10000	1/101	
Custodian Signature/Date:	ועץעעען	4/1/96	-

Chain / Dustady

Project: Ealter AFB, 722450. 15020 Stantard Turn aural. Contact; Todd Howington Unalises Please Return Cooles to Parsons ES

Grondista	Fingle Simple	# PHES	BTEX+TMB	8015 TVP#	Methsine	CI / M22
85/MP.75	3/24-3/20/96	Ð	×	×	×	×
85MP-25	3/35/he	Ą	×	×		
ESMP. 20	3/30/16	3	×	×		

- 1st y viels bioten @ EAL, Simple ESMP-25 > mym 4/1/96.

Sudia, All ESIRO 3/20/92, FSDEX 17:00 3/20/96 Recib & EAL by Warrled 4/1/96 0920 Tumpled By Mark Westly + Sadie All

EVERGREEN ANALYTICAL, INC. 4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB040196

Client Project Number

722450.15020

Date Prepared

: 4/1/96

Lab Project Number

96-0998

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVBX0330061

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	U	0.1	mg/L
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	U	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	U	0.5	ug/L
FID Surrogate Recovery:		98%	1	70%-130%	(Limits)
PID Surrogate Recovery:		96%		70%-128%	(Limits)

es: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

K. Holeman Analyst

EVERGREEN ANALYTICAL, INC. 4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Methods 602/8020 and 5030/8015 Modified Data Report

nt Sample Number : ESMP-2S Client Project Number : 722450.15020 Lab Sample Number : X21632 Lab Project Number : 96-0998

Date Sampled : 3/30/96 Matrix : WATER

Date Received : 4/1/96 Lab File Number(s) : TVBX0401005

Date Prepared : 4/1/96 Method Blank : MB040196

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		4/1/96	1.7	0.1	mg/L
Benzene	71-43-2	4/1/96	U	0.4	ug/L
Toluene	108-88-3	4/1/96	1.1	0.4	ug/L
Chlorobenzene	108-90-7	4/1/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	4/1/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	4/1/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	4/1/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	4/1/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	4/1/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	4/1/96	υ	0.5	ug/L
FID Surrogate Recovery:		100%	<u>L</u>	70%-130%	(Limits)
Surrogate Recovery:		101%		70%-128%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Hollman Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: ESI	MP-7S	Client Project No.	:	722450.15020
Lab Sample No.	: X2	1631	Lab Project No.	:	96-0998
Date Sampled	: 3/2	9/96	EPA Method No.	:	602/8020
Date Received	: 4/1	/96	Matrix	:	Water
Date Prepared	: 4/2	/96	Lab File Number(s)	:	TVBX0401046,47
Date Analyzed	: 4/2	/96	Method Blank	:	MB040296B
•			Dilution Factor	:	1.0

	Spike	Sample	Conc	entration	
Compound	Added	Concentration	(1	ıg/L)	_]
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	15.8	17.6	
Toluene	20.0	3.8	19.5	21.2	
Chlorobenzene	20.0	0.0	15.8	17.7	
Ethylbenzene	20.0	0.0	15.9	17.8	
m,p-Xylene	20.0	0.0	16.1	18.0	
o-Xylene	20.0	0.0	15.5	17.4	
1,3,5-TMB	20.0	0.0	15.5	17.5	
1,2,4-TMB	20.0	0.0	15.0	17.5	
1,2,3-TMB	20.0	0.0	15.6	17.9	
1,2,3,4-TeMB	20.0	0.0	16.1	18.3	·
Surrogate	100.0	99%	106%	105%	% RECOVERY

Compound	MS %	MSD %		Ĭ	QC# Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	79.0	88.0	10.8	25	50 - 150
Toluene	78.5	87.0	10.3	25	50 - 148
Chlorobenzene	79.0	88.5	11.3	25	55 - 135
Ethylbenzene	79.5	89.0	11.3	25	50 - 150
m,p-Xylene	80.5	90.0	11.1	25	50 - 150
o-Xylene	77.5	87.0	11.6	25	50 - 150
1,3,5-TMB	77.5	87.5	12.1	25	50 - 150
1,2,4-TMB	75.0	87.5	15.4	25	50 - 150
1,2,3-TMB	78.0	89.5	13.7	25	50 - 150
1,2,3,4-TeMB	80.5	91.5	12.8	25	50 - 150
Surrogate	106.0	105.0	NA	NA	70 - 128

# = Va	alues t	aken fi	rom EP.	A met	hods 6	302 /	8020.
--------	---------	---------	---------	-------	--------	--------------	-------

* = Values outside	of QC li	mits.		
RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

Comments:			

K. Hollman Analyst

EVERGREEN ANALYTICAL, INC. 4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Methane Report Form

Sample Number	: ESMP-7S	Client Project No.	: 722450.15020
Lab Sample Number	: X21631	Lab Project No.	: 96-0998
Date Sampled	: 3/29,30/96	Dilution Factor	: 50.00
Date Received	: 4/1/96	Method	: RSKSOP-175
Date Extracted/Prepared	: 4/1/96	Matrix	: Water
Date Analyzed	: 4/1/96	Lab File No.	: GAS0401022
·			

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.5	0.1

•	72.2 F	Saturation	Meth	0.113573695
	0.01 ml	Concentration		
:	43 ml	Concentration	Meth	0.357711061
	4 ml	in Head Space		
	52.822 ug			
		: 0.01 ml : 43 ml : 4 ml	: 0.01 ml Concentration : 43 ml Concentration : 4 ml in Head Space	: 0.01 ml Concentration : 43 ml Concentration Meth : 4 ml in Head Space

Atomic weight(Methane) : _____ g

QUALIFIERS:

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Mulanar

Approved

AF0998.XLS

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 3/30/96
 Client Project ID.
 : 722450.15020

 Date Received
 : 4/01/96
 Lab Project Number
 : 96-0998

 Date Prepared
 : 4/01/96
 Method
 : EPA 300.0

 Date Analyzed
 : 4/01/96
 Detection Limit
 : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
X21631	ESMP-7S	Water	4.6	1
21631 Dup	ESMP-7S Duplicate	Water	4.4	1

Method Blank

(4/01/96)

< 0.25

Quality Assurance

	5	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21631	ESMP-7S Matrix Spike	10.0	4.6	13.4	88
X21631	ESMP-7S Matrix Spike Du	p 10.0	4.6	13.5	90
MS/MSD I	RPD				2.0

/// fall
Analyst

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received	: 3/30/96 : 4/01/96	Client Project ID. Lab Project Number		722450.15020 96-0998
Date Prepared Date Analyzed	: 4/01/96 : 4/01/96	Method Detection Limit	•	EPA 300.0 0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrate-N mg/L	Dilution <u>Factor</u>
X21631	ESMP-7S	Water	<0.056	1
21631 Dup	ESMP-7S Duplicate	Water	<0.056	1

Method Blank

(4/01/96)

< 0.056

Quality Assurance *

	<u>Sr</u>	nike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
X21631	ESMP-7S Matrix Spike	10.0	<0.25	9.6	96
X21631	ESMP-7S Matrix Spike Dup	10.0	<0.25	9.7	97
MS/MSD F	RPD				1.4

^{* =} Quality assurance results reported as Nitrate (NO₃).

Analyst

APPENDIX D

BIOSCREEN MODEL INPUT PARAMETERS, MODEL OUTPUT, FIGURES OF MODEL OUTPUT, AND CALCULATIONS RELATED TO MODEL CALIBRATION

BIOSCREEN MODEL INPUT PARAMETERS BX SHOPETTE (SITE E11) DEMONSTRATION OF RNA EAKER AIR FORCE BASE, ARKANSAS

Name	Section	Parameter	Description					Model				
Vs Scepage Volocity (thycean) 77.4 7				BXISCAL	BXISMODA	BXISMODB	BXISMODC	BX2SCAL	BX2SMODA	BX2SMODB	BX2SMODC	BX1DCAL
K Hydraulic Conductivity (cm/sec) 2.10E-03 2.10	Hydrogeology	Vs	Seepage Velocity (ft/year)	77.4	77.4	77.4	77.4	77.4	77.4	77.4	77.4	1.3
Hydraulic Gradient (ft/ft)		¥	Hydraulic Conductivity (cm/sec)	2.10E-03	2.10E-03	2.10E-03	2.10E-03	2.10E-03	2.10E-03	2.10E-03	2.10E-03	1.20E-03
n Porosity 0.25 <t< td=""><td></td><td></td><td>Hydraulic Gradient (ft/ft)</td><td>0.009</td><td>600.0</td><td>0.009</td><td>600.0</td><td>0.009</td><td>0.009</td><td>0.009</td><td>0.009</td><td>0.00026</td></t<>			Hydraulic Gradient (ft/ft)	0.009	600.0	0.009	600.0	0.009	0.009	0.009	0.009	0.00026
alpha x Longitudinal Dispersivity (ft) 33		z	Porosity	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
total or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the standard or solution of the solution of the standard or solution of the s	Dispersion	alpha x	Longitudinal Dispersivity (ft)	33	33	33	33	33	33	33	33	1.5
appla z Vertical Dispersivity (#) 0 <		alpha y	Transverse Dispersivity (ft)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	0.2
Retardation Factor 1.4 1.65 1.69 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99<		alpha z	Vertical Dispersivity (ft)	0	0	0	0	0	0	0	0	0
tho Soil Bulk Density (kg/L) 1.65 1.99 1	Adsorption	~	Retardation Factor	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
font Kax Partition Coefficient (L/kg) 79		rho	Soil Bulk Density (kg/L)	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65
ton fox Fraction of Organic Carbon 0.0007		K_{∞}	Partition Coefficient (L/kg)	79	79	79	79	79	79	79	79	79
tion del Lambda 1st-Order Decay Coefficient (yr¹) 2.3 2.3 2.3 3.9 </th <th></th> <th>\int_{∞}</th> <th>Fraction of Organic Carbon</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th> <th>0.0007</th>		\int_{∞}	Fraction of Organic Carbon	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
del Lambda 1st-Order Decay Coefficient (yr¹¹) 2.3 2.3 2.3 3.9 3.9 3.9 3.9 3.9 fel Nobserved Methane (mg/L) 5.8	Biodegradation											
T-Half Solute Half-Life (yr) 0.31 0.31 0.31 0.31 0.18 0.18 0.18 0.18 y DO Delta Oxygen (mg/L) 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	Ist-Order Model	Lambda	1st-Order Decay Coefficient (yr-1)	2.3	2.3	2.3	2.3	3.9	3.9	3.9	3.9	3.70E-02
s DO Delta Oxygen (mg/L) 5.8		T-Half	Solute Half-Life (yr)	0.31	0.31	0.31	0.31	0.18	0.18	0.18	0.18	18.98
tel NO ₃ Delta Nitrate (mg/L) 0 33.48 33.48 33.48	Instantaneous	DO	Delta Oxygen (mg/L)	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	2.1
FE ²⁺ Observed Ferrous Iron (mg/L) 33.78 33.48 35.48	Reaction Model	NO3	Delta Nitrate (mg/L)	0	0	0	0	0	0	0	0	0
SO ₄ Delta Sulfate (mg/L) 35.48 </td <td></td> <td>FE^{2+}</td> <td>Observed Ferrous Iron (mg/L)</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>33.78</td> <td>19.6</td>		FE^{2+}	Observed Ferrous Iron (mg/L)	33.78	33.78	33.78	33.78	33.78	33.78	33.78	33.78	19.6
CH4 Observed Methane (mg/L) 3.8 3.1 3.1 3.2 3.1		SO ₄	Delta Sulfate (mg/L)	35.48	35.48	35.48	35.48	35.48	35.48	35.48	35.48	65.2
NA Modeled Area Length (ft) 300 50 50		CH4	Observed Methane (mg/L)	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	Э
NA Modeled Area Width (ft) 150 150 150 150 150 150 150 150 150 150	General	NA	Modeled Area Length (ft)	300	200	200	200	300	200	200	200	200
NA Simulation Time (yr) 10 20 <td></td> <td>NA</td> <td>Modeled Area Width (ft)</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>150</td> <td>09</td>		NA	Modeled Area Width (ft)	150	150	150	150	150	150	150	150	09
NA Source Thickness in Sat. Zone (feet) 5 10 2-3 <1-1 Soluble Mass in LNAPL (kg) Infinite 499 104 35 Infinite 499 104 35		NA	Simulation Time (yr)	10	70	20	20	10	20	20	20	20
NA Source Thickness in Sat. Zone (feet) 5 7 10 2-3 5 1-1 10 2-3 <1-1 10 2-3 <1-1 10 2-3 <1-1 10 Soluble Mass in LNAPL (kg) Infinite 499 104 35 Infinite 499 104 35												
Infinite 10 2-3 <1-1 Infinite 10 2-3 <1-1 APL (kg) Infinite 499 104 35 Infinite 499 104 35	Source Data		Source Thickness in Sat. Zone (feet)	5	\$	ς,	\$	5	S	S	5	91
Infinite 499 104 35 Infinite 499 104 35			Source Half-Life (yr)	Infinite	10	2-3	<u>-:</u>	Infinite	10	2-3	<1-1	Infinite
			Soluble Mass in LNAPL (kg)	Infinite	499	104	35	Infinite	499	104	35	Infinite

FIRST-ORDER RATE CONSTANT CALCULATION USING TETRAMETHYLBENZENE AS A CONSERVATIVE TRACER BX SHOPPETTE (SITE E1) DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

Distance	Between Upgradient and	Measured Total	(1996)	Trimethylbenzene-
Distance	Upgradient and	Total	1001	
Distance			1,2,3,4	Corrected
Distance	Downgradient	BTEX	Tetramethylbenzene	Total BTEX
owngradient	Point	Concentration	Concentration	Concentration
(ft)	(days)	(μg/L)	(μg/L)	(μg/L)*
0.00	0	84900 C:-	260 Ti-1	84900
24.44	157	30640 C:	160.0	31208
98.68	633	7660	63.0	8033
	0,00 24.44	owngradient (ft) Point (days) 0.00 0 24.44 157	owngradient Point (days) Concentration (μg/L) 0.00 0 84900 % - 24.44 157 30640 % - 30	owngradient Point Concentration Concentration (ft) (days) (μ g/L) (μ g/L) 0.00 0 84900 $C \in \mathcal{C}$ 260 \mathcal{C} 24.44 157 30640 $\mathcal{C} \in \mathcal{C}$ 160.0 $\mathcal{C} \in \mathcal{C}$

 $v_w = 0.21205 \text{ ft/day (Velocity of Groundwater)}$

 $v_c = 0.15592 \text{ ft/day (Velocity of Contaminant)}$

R_c 1.36 Coefficient of Retardation for Contaminant (Assume benzene

 $R_t = 28.72$ Coefficient of Retardation for Tracer

PLOT OF 1,2,3,4 TEMB-CORRECTED TOTAL BTEX CONCENTRATION VERSUS TIME

^{*}Equation used for total BTEX concentration correction shown in Section 5.3.5.1.

Page 1

Groundwater Elevations Along Flowpath TW1106, TW1105, & TW1110

Page 1

(ASSUMES EQUILIBRIUM CONDITIONS WITH A STEADY-STATE SOURCE) **BTEX CONCENTRATIONS ALONG PLUME CENTERLINE** FOR MODEL CALIBRATION BX1SCAL BX SHOPPETTE (SITE EII) DEMONSTRATION OF RNA

EAKER AIR FORCE BASE, ARKANSAS

BTEX CONCENTRATION ALONG PLUME CENTERLINE VERSUS TIME (SOURCE HALF-LIFE = 14 years) MODEL BX1SMODA

BX SHOPPETTE (SITE E11)
DEMONSTRATION OF RNA
EAKER AIR FORCE BASE, ARKANSAS

BTEX Concentration (mg/L)

MODEL BX1SMODB
BTEX CONCENTRATION ALONG PLUME CENTERLINE
(20 PERCENT/YEAR SOURCE REDUCTION)
BX SHOPPETTE (SITE E11)

MODEL BX1SMODC
BTEX CONCENTRATION ALONG PLUME CENTERLINE
(50 PERCENT/YEAR SOURCE REDUCTION)

BX SHOPPETTE (SITE E11)
DEMONSTRATION OF RNA
EAKER AIR FORCE BASE, ARKANSAS

Concentration (mgL) 84.9 30.5	R 1.4 (-) Source Becay (see Help). Source Hellific. Infinite (ry) fro 186 (kg/l) In NAPL. Soil Infinite (kg/l) fro 0.0007 (-) 7. FIELD DATA FOR COMPARISON	Source Thic. Source Zone (ft) (ft) (ft) (ft) 25 (ft) (ft) 25 (ft) 25 25	(RAy) (RAy) (RAY) (RAY) (RAY)	Centerline Concentrations at Monitoring Wells We be a served of second of second of the second of second	Hun Name The War American The War American The War American Social Colors See: N ARRAY N ARRAY Pew Output	6. GENERAL Modeled Area Length* Modeled Area Width* Simulation Time* 6. SOURCE DATA Source Zones Source Zones Source Zones Thickness in S Source Zones Width* (ft) Conc. (Img/L)* 50 100 84.9 50 25 5 5 100 84.9 50 Concentration (mg/L) Dist from Source (ft) 8. CHOOSE TYPE OF OUT 8. CHOOSE TYPE OF OUT View Output			, to make
-----------------------------------	--	---	-------------------------------	---	---	---	--	--	-----------

BTEX CONCENTRATION ALONG PLUME CENTERLINE VERSUS TIME (5 PERCENT/YEAR SOURCE REDUCTION) MODEL BX2SMODA

BX SHOPPETTE (SITE E11)
DEMONSTRATION OF RNA
EAKER AIR FORCE BASE, ARKANSAS

2016 EAKER AIR FORCE BASE, ARKANSAS (DEFINED BY 1 ug/L BTEX) 2006 BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA **BTEX PLUME LENGTH** MODEL BX2SMODB 2000 1998 1996 350 50 300 250 200 150 100 (feet)

Length of Plume Extending From Source Area

2036

Year

MODEL BX2SMODC
BTEX CONCENTRATION ALONG PLUME CENTERLINE
(50 PERCENT/YEAR SOURCE REDUCTION)
BX SHOPPETTE (SITE E11)

MODEL SENSITIVITY TO VARIATIONS IN HYDRAULIC CONDUCTIVITY BX SHOPPETTE (SITE E11) DEMONSTRATION OF RNA

MODEL SENSITIVITY TO VARIATIONS IN RETARDATION
BX SERVICE STATION (SITE E11)
DEMONSTRATION OF RNA

APPENDIX E

BIOSCREEN MODEL INPUT AND OUTPUT FOR USE IN A MICROSOFT® EXCEL SPREADSHEET ENVIRONMENT

APPENDIX F CALCULATIONS FOR REMEDIAL OPTION DESIGN AND COSTING.

I Adjustment Factor = 7%	
Anna	
nt Worth Analysis	

Present Worth Analysis			Annual Adjustment Factor	tment Factor	= 7%					
Alternative 3: Continued Bijoslurping, Source										
Excavation, Remediation by Natural Attenuation, Institutional Controls & Long-Term Monitoring		Present								
		Worth		U	Cost (\$) at Year Indicated	ar Indicated				
	years	(\$)	Year: 1	2	3	4	5	10	15	20
Maintain Institutional Controls	15	\$48,727	000'\$\$	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$0
Long-term Monitoring										· · · · · ·
Install New Wells Groundwater Sampling	1 15	\$14,021	\$15,002	\$0 \$11,060	\$0 \$11,060	\$0 \$11,060	\$0 \$11,060	\$0 \$11,060	\$0 \$11,060	0\$ 0\$
Reporting/Project Mgmt	15	\$97,409	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	0\$
Subtotal Present Worth (\$)		\$248,003								
Bioslurping (Assume Cont. Op. For 1 year)	,	•	Ş							<u> </u>
Bioslurping System Installation System Maintenance		2 S	Q Q	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Reporting Costs	-	0\$	\$0	\$0	\$0	\$0	\$0	\$ 0	\$0	%
		\$0								
Excavation			•		•	•	•	ě	•	Ę
Excavation		\$26,125	0\$	\$29,910	0\$	0\$	05	0,0	2	2 8
Annual Tilling/Sampling	4	\$48,392	0 \$	\$18,440	\$18,440	\$18,440	20	20	20 20	<u></u>
Reporting Costs	4	\$17,153	0\$	\$6,536	\$6,536	\$6,536	\$0	\$0	\$0	\$
Clearance Sampling	_	\$4,694	O\$	\$	S S	\$5,750	Ş Ş	& &	\$0	\$0
		\$91,670								

Total Present Worth Cost (\$):

\$339,673

Alternatives 1 to 2: Long-Term Monitoring and Institutional Controls

Standard Rate Schedule

Standard Rate Schedule		r	,				
Billing	Billing		Install New				
Category		Task 1	LTM/POC	l I	Sampling		Reporting
Cost Code/(Billing Category)	Rate	(hrs)	Wells (\$)	(hrs)		(hrs)	& PM (\$)
Word Processor 88/(15)	\$30	0	\$0	0	\$0	30	\$900
CADD Operator 58/(25)	\$47	6	\$282	0	\$0	30	\$1,410
Technician 42/(50)	\$40	24	\$960	40	\$1,600	30	\$1,200
Staff Level 16/(65)	\$57	40	\$2,280	40	\$2,280	60	\$3,420
Project Level 12/(70)	\$65	8	\$520	4	\$260	40	\$2,600
Senior Level 10/(80)	\$85	1	\$85	0	\$0	3	\$255
Principal 02/(85)	\$97	0	\$0	0	\$0	0	\$0
Total Labor (hrs \$)		79	\$4,127	84	\$4,140	193	\$9,785
ODCs							
Phone			\$200		\$0		\$100
Photocopy			\$200		\$0		\$200
Mail	:		\$100		\$400		\$60
Computer			\$150		\$0		\$250
CAD			\$50		\$0		\$200
WP			\$25		\$0		\$100
Travel			\$1,000		\$2,000	•	\$0
Per Diem			\$700		\$360		\$0
Eqpt. & Supplies			\$500		\$200		\$0
Total ODCs			\$2,925		\$2,960		\$910
Outside Services							
LTM/POC Well Installation Cost	s ^{a/}		\$5,850		\$0		\$0
Laboratory Fees b/		Soils		6 LTM, 5 POC,	\$3,960		
Other: Maintain Institutional Co	ntrols		\$0	3 SW, 5 qa/qc			\$5,000
Total Outside Services			\$6,450		\$3,960		\$5,000

Proposal Estimate	Task 1	Task 2	Task 3
Labor	\$4,127	\$4,140	\$9,785
ODC's	\$2,925	\$2,960	\$ 910
Outside Services	\$6,450	\$3,960	\$5,000
Total by Task	\$13,502	\$11,060	\$15,695
Total Labor	\$18,052		
Total ODCs	\$6,795		
Total Outside Services	\$15,410		
Total Project	\$40,257		

Task 1: Install New LTM/POC Wells

Task 2: Sampling per Event

Task 3: Reporting and PM per Sampling Event

LTM/POC wells.

^{a/} 5 Wells, 75ft @ \$50/ft, \$2000mob, \$100 soil handling

 $^{^{\}rm h/}$ (BTEX @ \$120ea (SW8020) and electron acceptors at @ \$150ea at

\$0 \$11,060 \$5,000 \$10,695 **8** 8 \$5,000 \$11,060 \$10,695 ಜ 22 22 \$5,000 \$11,060 \$10,695 8 200 Cost (\$) at Year Indicated \$11,060 \$10,695 \$5,000 ŝ 2 2 \$5,000 \$11,060 \$10,695 Ş 22 22 Annual Adjustment Factor = 7% \$5,000 \$10,695 Ş \$11,060 **8 8** \$13,502 \$11,060 \$10,695 \$5,000 Year: 8 8 Present \$13,502 \$48,727 Worth **2 2** \$104,228 S S \$274,242 9 years 15 1 15 15 Alternative 2: Continued Bioslurping, Bioventing, Remediation by Natural Attenuation, Institutional Controls, and Long-Term Monitoring Maintain Institutional Controls Reporting/Project Mgmt Groundwater Sampling Subtotal Present Worth (\$) System Maintenance Reporting Costs Long-term Monitoring Install New Wells Biosturping

20

15

Present Worth Analysis

\$

222

8 8

2 2 2

222

R R R

\$0 \$12,180 \$4,346

\$12,180

\$12,180 \$4,346

\$12,180 \$74,071

2 2 2

\$14,721

\$125,203

\$69,226 \$41,256

Bioventing System Installation

Bioventing

System Maintenance

Reporting Costs

\$4,346

Total Present Worth Cost (\$):

\$399,445

Present Worth Analysis		0.07	0.07 Annual Adjustment Factor = 7%	tment Factor	= 7%					
Alternative 1: Continued Bioslurping, Remediation			\$ 2	-						
by Natural Attenuation, Institutional Controls,										
and Long-Term Monitoring		Present								
		Worth		0	ost (\$) at Ye	Cost (\$) at Year Indicated				
	years	(\$)	Year: 1	2	3	4	5	10	15	20
Maintain Institutional Controls	20	\$56,678	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
Long-term Monitoring										
Install New Wells	1	\$13,502	\$13,502	%	\$0	0\$	\$0	\$	0 \$	\$0
Groundwater Sampling	20	\$125,372	\$11,060	\$11,060	\$11,060	\$11,060	\$11,060	\$11,060	\$11,060	\$11,060
Reporting/Project Mgmt	70	\$121,234	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695	\$10,695
Subtotal Present Worth (\$)		\$316,786								
Bioslurping System Maintenance	-	\$	\$0	\$	%	\$	\$		\$ 0	\$
Annual Report	_	0\$	\$	80	\$0	\$0	\$0	\$0	\$0	\$
		\$0								

Total Present Worth Cost (\$):

\$316,786

Alternative 3: Long-Term Monitoring and Institutional Controls

Standard Rate Scho	edule			Install New		T T		
Billing		Billing		LTM/POC	Task 2	Sampling	Task 3	Reporting
Category		i	Task 1	Wells (\$)		(\$)	(hrs)	& PM (\$)
Cost Code/(Billing	Category)	Rate	(hrs)	\$0	0	\$0	30	\$900
Word Processor	88/(15)	\$30	0	\$282	o	1	30	\$1,410
CADD Operator	58/(25)	\$47	6	\$960	40	1	30	\$1,200
Technician	42/(50)	\$40	24	\$2,280	40		60	\$3,420
Staff Level	16/(65)	\$57	40	\$2,280	4	1	40	\$2,600
Project Level	12/(70)	\$65	8	\$85	1) \$ 0	3	\$255
Senior Level	10/(80)	\$85	1	-	1	\$0	0	\$0
Principal	02/(85)	\$97	0	30				£0.795
	-		79	\$4,127	84	\$4,140	193	\$9,785
Total Labor (hrs	\$)		 			·		l l
\			ł			•	. 1	\$100
ODCs			1	\$200	<u> </u>	\$0	1)	\$200
Phone			1	\$200		\$0	11	\$60
Photocopy			l l	\$100	.	\$400	11	\$250
Mail			1	\$150	\	\$(13	\$200
Computer			N .	\$50		\$(U	\$100
CAD			İ	\$25	; 	\$(- 11	\$0
WP				\$1,000)	\$2,000	N N	\$0
Travel				\$700)	\$36	11	\$0
Per Diem				\$500)	\$20	<u> </u>	
Eqpt. & Supplie	S		1	\$2,92	5	\$2,96	0	\$910
Total ODCs			_	92,72.	4			
	<u></u>		1		il .		N .	
Outside Services	s			\$7,35	٨	\$	so	\$0
LTM/POC Wel	l Installation C	osts *	L	\$60 \$60		\$3,96	50	
Laboratory Fees	s ^{b/}		Soils		0 3 SW, 5 qa/qc	·		\$5,000
Other: Maintai	n Institutional	Controls				#C 0		\$5,000
				\$7,95	io	\$3,90	DU	\$5,500
Total Outside S	EL AICE2							

			Task 3
	Task 1	Task 2	\$9,785
Proposal Estimate	\$4,127	\$4,140	
Labor	\$2,925	\$2,960	\$910
ODC's	\$7,950	\$3,960	\$5,000
Outside Services	\$7,750	211.060	\$15,695
	\$15,002	\$11,060	Ψ15,070
Total by Task			
	\$18,052		
Total Labor	\$6,795		
Total ODCs	\$16,910		
Total Outside Services			
L 15 :	\$41,757		
Total Project	450/6 \$2000-	ab \$100 soil handling	

Task 1: Install New LTM/POC Wells

² 5 Wells, 75ft @ \$50/ft, \$2000mob, \$100 soil handling

Task 2: Sampling per Event

b/ (BTEX @ \$120ea (SW8020) and electron acceptors at @ \$150ea at

Task 3: Reporting and PM per Sampling Event

LTM/POC wells.

Alternative 2: Bioventing

Standard Rate Schedule

Billing	Billing		Design & Install		tem Monitoring/		End of Year
Category		Task 1	Biovent. System	Task 2	Maintenance	Task 3	Report
Cost Code/(Billing Category)	Rate	(hrs)	(\$)	(hrs)	(2x per yr)(\$)	(hrs)	(\$)
Word Processor 88/(15)	\$30	40	\$1,200	0	\$0	8	\$240
CADD Operator 58/(25)	\$47	100	\$4,700	0	\$0	8	\$376
Technician 42/(50)	\$40	160	\$6,400	60	\$2,400	8	\$320
Staff Level 16/(65)	\$57	200	\$11,400	60	\$3,420	40	\$2,280
Project Level 12/(70)	\$65	100	\$6,500	10	\$650	8	\$520
Senior Level 10/(80)	\$85	8	\$680	0	\$0	2	\$170
Principal 02/(85)	\$97	1	\$97	0	\$0	0	\$0
Total Labor (hrs \$)		609	\$30,977	130	\$6,470	74	\$3,906
ODCs			,				
Phone			\$100		\$50		\$20
Photocopy			\$500		\$10		\$100
Mail			\$200		\$50		\$40
Computer			\$500		\$0		\$200
CAD			\$500		\$0		\$40
WP			\$200		\$0		\$40
Travel			\$2,000		\$2,000		\$0
Per Diem			\$4,578		\$1,000		\$0
Eqpt. & Supplies	- 1		\$2,000		\$400		\$0
Total ODCs			\$10,578		\$3,510		\$440
Outside Services							
Well Installation			\$9,206		\$0		\$0
System Installation			\$18,810		\$0		\$0
Equipment Costs	i i		\$2,500		\$0		\$0
Product Hauling/Disposal (Soil)			\$500		\$0		\$0
Electrical Costs			\$0		\$200		\$0
Laboratory Fees			\$1,500		\$2,000		\$0
Other			\$0		\$0		\$0
Total Outside Services			\$32,516		\$2,200		\$0
Estimate			Task 1		Task .		Task 3
Labor			\$30,977		\$6,470		\$3,906
ODC's	İ		\$10,578		\$3,510		\$440
Outside Services			\$32,516		\$2,200		\$0
Total by Task			\$74,071		\$12,180		\$4,346
Total Labor			\$41,353				
Total ODCs			\$14,528				
Total Outside Services			\$34,716				
Total Project			\$90,597	i			

Task 1: Bioventing System Design and Construction

Task 2: Monthly Site Time and Travel Costs (per year)

Task 3: Report Preparation

Eaker Air Force Base, BX Shoppette, Backup Calculations

Alternatives 1: Long-term Monitoring and Continued Bioslurping (Bioslurper Already Installed)	Continue	1 Bioslurping (Bioslurper Alread	y Install	(pa					
D		Cost calculations							
Misc calculations		Description	Unit	Qty.	Qty. Unit Price	Subtotal	tal	Total	Total Source (If applicable)
Number of LTM wells:		Well Installation					€⁄3	5,850	
Number of wells: 5		Mobilization	ea	-	\$ 2,000 \$	\$ 2,000	8		
Denth each: 15	ш	Well Installation	ln ft	75	\$ 50		20		
		Soil Disposal	cy	_	\$ 100	∽	100		*assumes disposal at nearby
									land treatment farm
		Product Hauling/	gal	009	\$0.25		150 \$	150	
		Disposal (Fuel(ann)) Wastewater Disposal	gal	50,000	\$0.05		2,500 \$	2,500	
			-						land treatment farm

		Cost colonibations								The state of the s
		Cost carculations								
Mise calculations		Description	Unit	Qty.	Unit Price	o o	Subtotal		Total So	Source (If applicable)
VI - W - II		Vont Well Installation						٤	7000	
ACIII WOIIS		V CHIL W CH HIStalianium						9	2,400	
Number of wells:	9	Mobilization	ea	_	7	2,000 \$	2,000			
Depth each:	10 H	Well Installation	ll fl	99	S	\$ 09	3,600			
(assume 20' radius of influence)	(e)	Point Installation	n ft	120	₩	\$30 \$	3,600			
Volume	l cy	Soil Disposal	'n	_	€\$	€9 ∞	9			
Soil Gas Points	•	Equipment Costs	,	•				∽	2,500	
Number of Points	24	Blower	ea	-		2,000 \$	2,000		<u>&</u>	Recovery Equipment Supply
Average Point Depth	5	Blower House	ea	-	<u>چ</u>	\$ 000	200			
Trench Volume/Area	-	System Installation	·					∽	18,810	
Width:	12 in	Mob/Demob	ęs	_	\$ 1,0	\$ 000	1,000			
Depth:	u I	Trenching	ģ	200	\$ 5.	.05	2,525		ğ	Means 022 254 0050
Length:	500 A	Pipe laying	ln ft		\$ 2	2.50 \$	3		<u>X</u>	Means 151 701 0550/026 686 2800
Volume:	500 cf	Backfill	'n	200	\$ 17	20 \$	8,600		<u>×</u>	Means 022 204 0600
	19 cy	Compaction	cò	200	\$ 5	.10	2,550		Ĭ	Means 022 204 0600
Surface Area:	s 005	Pavement Base	s	99	\$ 5	5.25	294		<u>Ž</u>	Means 022 308 0100
	56 sy	Reseeding	ss			1.91	•		ž	Means 029 304 0310
		Piping	<u>.</u>	200	\$	1.00	700		ž	Means 151 551 1880
		Mechanical	man hr	32		38.83	1,243		ğ	Means Q-1 crew
		Electrical	sı		3,1	_	1,000		Ad	Adjacent to Powered Building
		Slab	ঠ	•	\$	\$ 00.76	•		ğ	Means 033 130 4700
		Contingency	%	2%	\$ 17,9	7,915 \$	968			
-	*	Droduct Hauling		•	ý	- 005	008		00	
		rioduct Hautilig	<u> </u>	- ,			200	9 (200	Soli Transport and Disposal May
		/Disposal (Soil)	s's	_	ν, _ν ,	200	200	<u>~</u>	500 Be	Be Performed at Adjacent Land-
									Fa	Farm, assume reduced costs

Alternative 3: Excavation								
	Cost calculations							
Misc calculations	Description	Unit	Qty.	Unit Price	Subtotal	Total	Total Source (If applicable)	Ī
						12,447		Π
Excavation Volume/Area	Soil Excavation/	ý	1,676	\$3.62	\$3.62 \$ 6,067		*Costs of Exetraction, Trans., and	
Radius* 40 ft	Transportation/						Backfill estimated by R & R	
Depth: 9 ft	Backfill						International, Inc., Akron, Ohio.	
Volume: 45,239 cf	-							
1,676 cy	Replace Asphalt &	sy	559	\$6.40	\$ 3,578		Assume one soil sample per 100	
Surface Area: 5,027 sf	Subbase						yards.	
s 655	Sampling (8015)	each	17	\$130.00	\$ 2,210			
*This radius was estimated to	Contingency	%	2%	\$11854.72	\$ 593			
include an area equivalent for both the north and south source area						•		

Note! Assume backfill purchase price is reduced because of adjacent landfarm that may contain treated soils that can be used to fill excavation pit.

Alternatives 3 (Continued): Long-term Monitoring After Excavation (LTM	fter Excavation (LTM plan differ	rs from A	plan differs from Alternative 1)				
	Cost calculations						
Misc calculations	Description	Unit	Qty.	Unit Price	Subtotal	Total	Total Source (If applicable)
							:
Number of LTM wells:	Well Installation				i um vasi ustr	\$ 7,350	
Anumber of wells:	Mobilization	ea	_	\$ 2,000 \$	\$ 2,000		
Denti ceta	Well Installation	n n	105	\$ 50	5,250		
	Soir Disposal	্ট		\$ 100	001		*assumes disposal at nearby
						:	land treatment farm
	Product Hauling/	gal	009	\$0.25	150	\$ 150	
	Disposal (Fuel(ann))	****		4			
Tw.	Wastewater Disposal	gal	20,000	\$0.0\$	\$ 2,500	\$ 2,500	
	2.77. 2.77. 2.70.		- # . 1	-			land treatment farm

The state of the s

· was A J