

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 3° ANO EICO029 | INTELIGÊNCIA ARTIFICIAL | 2016-2017 - 2° SEMESTRE

Prova com consulta. Duração: 2h30m.

Exame da Época Normal

Nota: Responder a cada questão (1, 2, 3 e 4) em folhas de exame separadas.

1. [4 valores] Num tabuleiro de xadrez, um cavalo movimenta-se dando "saltos em L", de acordo com o exemplo da figura: o cavalo na posição <u>d4</u> pode deslocar-se, com um só salto, para as posições <u>b3</u>, <u>b5</u>, <u>c2</u>, <u>c6</u>, <u>e2</u>, <u>e6</u>, <u>f3</u> ou <u>f5</u>. Para simplificar, ao cavalo considerado serão permitidos apenas saltos "para cima": por exemplo, da posição <u>d4</u> só será possível ir para <u>b5</u>, <u>c6</u>, <u>e6</u> ou <u>f5</u>.

- a) Usando a estratégia de pesquisa primeiro em profundidade, apresente uma árvore de pesquisa e identifique a solução encontrada para que o cavalo se desloque da posição <u>a1</u> para a posição <u>f8</u>.
- b) <u>Neste cenário</u>, sendo o objectivo do cavalo ir de um ponto de partida até um ponto destino indicado, quais das estratégias de pesquisa sistemática são completas? Justifique.
- c) Considere as seguintes funções heurísticas possíveis que procuram estimar o número de saltos em falta para, a partir da posição atual $i = x_i y_i$, alcançar a posição final $f = x_f y_f$:

$$h_1 = \left| x_f - x_i \right| + \left| y_f - y_i \right| \qquad (dist ancia Manhattan)$$

$$h_2 = \max(\left| x_f - x_i \right|, \left| y_f - y_i \right|) \qquad (dist ancia Chebyshev)$$

$$h_3 = \max(\left| x_f - x_i \right|, \left| y_f - y_i \right|)/2$$

$$h_4 = \min(\left| x_f - x_i \right|, \left| y_f - y_i \right|)$$

$$h_5 = \min(\left| x_f - x_i \right|, \left| y_f - y_i \right|)/2$$

Quais destas heurísticas são admissíveis? Justifique. Das admissíveis, qual é a melhor? Porquê?

- d) Usando a função heurística identificada na resposta à alínea anterior, apresente uma <u>árvore de pesquisa</u> obtida pela aplicação da estratégia de pesquisa A*, de modo a deslocar o cavalo da posição <u>a1</u> para a posição <u>f8</u>. Junto a cada nó da árvore, <u>indique o valor dos componentes da função de custo</u> (f=g+h). Identifique a solução encontrada.
- 2. [4 valores] O problema de colorir um mapa consiste em atribuir cores diferentes a países que possuam fronteira entre si. A figura seguinte representa o mapa a colorir, constituído por 5 países (P1..P5).

Existem 3 cores disponíveis: azul (A), verde (V) e branco (B).

Pretende-se aplicar **Algoritmos Genéticos** na resolução deste problema. Suponha a existência de uma população inicial de 5 indivíduos com a seguinte informação: *corP1*, *corP2*, *corP3*, *corP4*, *corP5*

I1: B,V,B,A,V

12: A,V,V,A,B

13: B,V,A,V,V

14: B,B,B,B,V

15: B,B,V,B,V

- a) Proponha uma estrutura para a representação do indivíduo, explicando. Exemplifique com a representação do indivíduo I1 da população inicial.
- b) Proponha uma função de adaptação (descrição textual). Calcule os valores de adaptação dos indivíduos da população inicial.
- c) No processo de <u>seleção dos indivíduos a utilizar na formação da geração seguinte</u>, é usada uma política elitista (só para o melhor). Considere que foram gerados os seguintes números aleatórios (entre 0 e 1): 0.7 / 0.35 / 0.15 / 0.81. Apresente o resultado deste processo de seleção. Explique.
- d) Calcule a 2ª geração da população, explicando todas as suas opções. Sugira uma estratégia de cruzamento. A probabilidade de cruzamento é 75% e foram gerados os números aleatórios: 0.81 / 0.41 / 0.24 / 0.88. A probabilidade de mutação é 2% e só no 15º número aleatório surgiu um inferior a 0.02.

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 3° ANO EICO029 | INTELIGÊNCIA ARTIFICIAL | 2016-2017 - 2° SEMESTRE

Prova com consulta. Duração: 2h30m.

Exame da Época Normal

- 3. [4 valores] Numa loja de animais, um robô está encarregado da alimentação dos peixes, que é diferente para os peixes vermelhos e os peixes azuis. O robô irá aprender a diferenciar estas duas espécies de peixes através das partes do corpo, usando o conjunto de exemplos da tabela. (Nota: nas alíneas seguintes, atenda à ocorrência de um valor desconhecido.)
 - a) Calcule os valores da informação média para os exemplos considerados.
 - b) Que atributo escolheria para raiz da árvore de decisão a construir, usando o <u>critério da razão do ganho</u>? Sabe-se que entropia(Barbatana)=0.811, entropia(Cauda)=0.6 e entropia(Corpo)=0.95. Apresente todos os cálculos.

Barbatana	Cauda	Corpo	Peixe
larga	grande	gordo	vermelho
larga	pequena	esguio	vermelho
larga	grande	gordo	vermelho
fina	pequena	esquio	vermelho
fina	pequena	esguio	azul
fina		gordo	azul
larga	pequena	gordo	azul
fina	pequena	gordo	azul

- c) Construa a árvore de decisão, considerando que a razão do erro em qualquer folha deve ser menor ou igual a 0.4. Apresente todos os cálculos e/ou explique convenientemente a sua resposta.
- 4. [8 valores] Responda a seis (6) das seguintes sete (7) questões (cada uma em 5-10 linhas).
 - a) O algoritmo de pesquisa heurística IDA* usa uma pesquisa por aprofundamento iterativo na qual o limite de expansão é dado pelo custo e não pela profundidade. Como deve ser incrementado esse custo limite, de modo a que a solução ótima seja encontrada?
 - b) Um estudante preparou-se para um exame, o que é indicativo de que passará (Crença=0.6); a mesma conclusão é suportada (Crença=0.7) pelo facto de que gosta da unidade curricular respetiva. Por outro lado, passou mal a noite, o que por si só pode indicar que vai chumbar no exame (Crença=0.3). Segundo o modelo de <u>Dempster-Shafer</u>, qual é o intervalo de confiança da aprovação no exame?
 - c) No algoritmo de otimização por "arrefecimento simulado", relacione a probabilidade de escolha de um estado sucessor com a temperatura e com a diferença de valores entre o estado atual e esse estado.
 - d) Os cortes alfa-beta, quando utilizados no algoritmo de pesquisa adversarial minimax, podem permitir reduzir o número de nós examinados de $O(b^m)$ para $O(b^{m/2})$, sendo b o fator de ramificação e m a profundidade máxima da árvore de pesquisa. Explique em que circunstâncias é que isto acontece.
 - e) Explique qual é o compromisso subjacente à utilização da fórmula "Naïve Bayes".
 - f) "Duas laranjas mais quatro peras são seis frutos." Esboce uma DCG para interpretar frases deste tipo, em que se pretende validar operações sobre elementos cujo resultado é uma superclasse das parcelas. Indique que tipo de informação será necessário ter na base de conhecimento.
 - **g)** Explique o conceito de *função linearmente separável* e relacione-o com a fórmula de cálculo da saída de um perceptrão.