ACH 2147 — Desenvolvimento de Sistemas de Informação Distribuídos

Aula 02: Introdução

Prof. Renan Alves

Escola de Artes, Ciências e Humanidades — EACH — USP

Uma classificação simples de sistemas distribuídos

Computação paralela

Observação

A computação distribuída de alto desempenho começou com a computação paralela.

Multiprocessador e multicore versus multicomputador

Sistemas distribuídos de memória compartilhada

Observação

Os multiprocessadores são relativamente fáceis de programar em comparação com os multicomputadores, mas têm problemas ao aumentar o número de processadores (ou núcleos). Solução: Tentar implementar um modelo de memória compartilhada em cima de um multicomputador.

Exemplo através de técnicas de memória virtual

Mapeie todas as páginas de memória principal (de diferentes processadores) em um único espaço de endereço virtual. Se um processo no processador A acessa uma página P localizada no processador B, o SO em A captura e busca P de B, da mesma forma como faria se P estivesse localizada no disco local.

Problema

O desempenho da memória compartilhada distribuída nunca pôde competir com o dos multiprocessadores e não atendeu às expectativas dos programadores. Esta estratégia foi amplamente abandonada atualmente.

Computação em cluster

Basicamente um grupo de sistemas de alto nível conectados em LAN

- Homogêneo: mesmo SO, hardware quase idêntico
- Poucos nós de gerenciamento

Computação em grade (grid)

O próximo passo: muitos nós em vários lugares

- Heterogêneo
- Disperso entre várias organizações
- Pode abranger uma rede de longa distância

Nota

Para permitir colaborações, os grids geralmente usam organizações virtuais. Em essência, este é um agrupamento de usuários (ou melhor: seus IDs) que permite controlar o acesso (autorização) durante a alocação de recursos.

Arquitetura para computação em grade (grid)

As camadas

- Base: Fornece interfaces para recursos locais (para consulta de estado e capacidades, travas, etc.)
- Conectividade: Protocolos de comunicação/transação, por exemplo, para mover dados entre recursos.
 Também inclui protocolos de autenticação.
- Recurso: Gerencia um único recurso, como criar processos ou ler dados.
- Coletiva: Lida com acesso a vários recursos: descoberta, agendamento, replicação.
- Aplicação: Contém as aplicações em si de uma dada organização.

Sistemas de informação distribuídos: Integrando aplicações

Situação

Organizações confrontadas com muitas aplicações em rede, mas alcançar interoperabilidade era doloroso.

Abordagem básica

Uma aplicação em rede é aquela que roda em um servidor tornando seus serviços disponíveis para clientes remotos. Integração simples: clientes combinam requisições para (diferentes) aplicações; enviam essas requisições; coletam as respostas e apresentam um resultado coerente ao usuário.

Próximo passo

Permitir comunicação direta entre aplicações, levando à Integração de Aplicações Empresariais.

Exemplo Integração de Aplicações Empresariais: transações (aninhadas)

Transação

Primitiva	Descrição
INICIAR_TRANSACAO	Marca o início de uma transação
TERMINAR_TRANSACAO	Encerra a transação e tenta confirmar alterações
ABORTAR_TRANSACAO	Aborta a transação e restaura os valores antigos
LER	Lê dados (de um arquivo, uma tabela, etc)
ESCREVER	Escreve dados (em um arquivo, uma tabela, etc)

Questão: tudo-ou-nada

Two different (independent) databases

- ACID:
- Atômico: ocorre indivisivelmente (aparentemente)
- Consistente: não viola invariantes do sistema
- Isolado: sem interferência mútua
- Durável: confirmação significa que as mudanças são permanentes

TPM: Transaction Processing Monitor (Monitor de Processamento de Transações)

Observação

Muitas vezes, os dados envolvidos em uma transação estão distribuídos em vários servidores. Um Monitor de Processamento de Transações é responsável por coordenar a execução de uma transação.

Middleware e Integração de Aplicações Empresariais

Middleware oferece facilidades de comunicação para integração

Chamada de Procedimento Remoto (RPC): Requisições são enviadas através de uma chamada de procedimento local, encapsuladas como mensagem, processadas, respondidas através de mensagem e o resultado retornado como retorno da chamada.

Middleware Orientado a Mensagens (MOM): Mensagens são enviadas para um ponto de contato lógico e encaminhadas para aplicações interessadas (modelo produtor/consumidor).

Como integrar aplicações

Transferência de arquivos: Tecnicamente simples, mas não flexível:

- Formato e o layout do arquivo
- Gerenciamento de arquivos
- Propagação e notificação de atualizações.

Banco de dados compartilhado: Muito mais flexível, mas ainda requer um esquema de dados comum ao lado do risco de ser um gargalo.

Chamada de procedimento remoto (RPC): Efetivo quando a execução de uma série de ações é necessária.

Orientado a mensagens: As chamadas de procedimento remoto requerem que o chamador e o chamado estejam em funcionamento ao mesmo tempo. Usar mensagens permite o desacoplamento no tempo e no espaço.

Observação

Próxima geração emergente de sistemas distribuídos em que os nós são pequenos, móveis e muitas vezes incorporados em um sistema maior, caracterizado pelo fato de que o sistema se integra naturalmente ao ambiente do usuário.

Três subtipos (sobrepostos)

Sistemas Pervasivos 13 / 20

Observação

Próxima geração emergente de sistemas distribuídos em que os nós são pequenos, móveis e muitas vezes incorporados em um sistema maior, caracterizado pelo fato de que o sistema se integra naturalmente ao ambiente do usuário.

Três subtipos (sobrepostos)

 Sistemas de computação ubíqua: pervasivos e continuamente presentes, ou seja, há uma interação contínua entre o sistema e o usuário.

Sistemas Pervasivos 13/20

Observação

Próxima geração emergente de sistemas distribuídos em que os nós são pequenos, móveis e muitas vezes incorporados em um sistema maior, caracterizado pelo fato de que o sistema se integra naturalmente ao ambiente do usuário.

Três subtipos (sobrepostos)

- Sistemas de computação ubíqua: pervasivos e continuamente presentes, ou seja, há uma interação contínua entre o sistema e o usuário.
- Sistemas de computação móvel: pervasivos, mas ênfase no fato de que os dispositivos são inerentemente móveis.

Sistemas Pervasivos 13 / 20

Observação

Próxima geração emergente de sistemas distribuídos em que os nós são pequenos, móveis e muitas vezes incorporados em um sistema maior, caracterizado pelo fato de que o sistema se integra naturalmente ao ambiente do usuário.

Três subtipos (sobrepostos)

- Sistemas de computação ubíqua: pervasivos e continuamente presentes, ou seja, há uma interação contínua entre o sistema e o usuário.
- Sistemas de computação móvel: pervasivos, mas ênfase no fato de que os dispositivos são inerentemente móveis.
- Redes de sensores (e atuadores): pervasivas, com ênfase no sensoreamento e atuação colaborativas no ambiente.

Sistemas Pervasivos 13 / 20

Sistemas ubíquos

Elementos principais

- (Distribuição) Dispositivos são conectados em rede, distribuídos e acessíveis de forma transparente
- 2. (Interação) A interação entre usuários e dispositivos é altamente discreta
- 3. (Consciência de contexto) O sistema está ciente do contexto do usuário para otimizar a interação (where, who, when, what)
- (Autonomia) Dispositivos operam autonomamente sem intervenção humana e, portanto, são altamente autogerenciados
- 5. (Inteligência) O sistema como um todo pode lidar com uma ampla variedade de acões e interacões dinâmicas

Sistemas Pervasivos 14 / 20

Computação móvel

Características distintivas

- Uma infinidade de diferentes dispositivos móveis (smartphones, tablets, dispositivos GPS, controles remotos).
- Móvel implica que a localização de um dispositivo é esperada mudar ao longo do tempo ⇒ mudança de serviços locais, acessibilidade, etc.
 Palavra-chave: descoberta.
- Manter a comunicação estável pode introduzir desafios.
- Por muito tempo, a pesquisa se concentrou no compartilhamento direto de recursos entre dispositivos móveis. Nunca se tornou popular e agora é considerado um caminho de pesquisa infrutífero.

Sistemas Pervasivos 15 / 20

Computação móvel

Características distintivas

- Uma infinidade de diferentes dispositivos móveis (smartphones, tablets, dispositivos GPS, controles remotos).
- Móvel implica que a localização de um dispositivo é esperada mudar ao longo do tempo ⇒ mudança de serviços locais, acessibilidade, etc.
 Palavra-chave: descoberta.
- Manter a comunicação estável pode introduzir desafios.
- Por muito tempo, a pesquisa se concentrou no compartilhamento direto de recursos entre dispositivos móveis. Nunca se tornou popular e agora é considerado um caminho de pesquisa infrutífero.

Resumindo

Dispositivos móveis estabelecem conexões com servidores estacionários, essencialmente transformando os usuários de computação móvel em clientes de servicos baseados em nuvem.

Sistemas Pervasivos 15 / 2

Computação móvel

Sistemas Pervasivos 16 /

Redes de sensores

Características

Os nós aos quais sensores estão conectados são:

- Muitos (10s-1000s)
- Simples (pequena capacidade de memória/computação/comunicação)
- Muitas vezes alimentados por bateria (ou até mesmo sem bateria)

Sistemas Pervasivos 17/20

Redes de sensores como bancos de dados distribuídos

Dois extremos

O continuum nuvem-borda

Sistemas Pervasivos 19 / 3

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

Suposições falsas (e frequentemente ocultas)

A rede é confiável

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- · A rede é segura

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- A rede é segura
- A rede é homogênea

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- · A rede é segura
- A rede é homogênea
- A topologia da rede n\u00e3o muda

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- A rede é segura
- A rede é homogênea
- A topologia da rede n\u00e3o muda
- A latência é zero

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- A rede é segura
- A rede é homogênea
- A topologia da rede n\u00e3o muda
- A latência é zero
- A largura de banda é infinita

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- A rede é segura
- A rede é homogênea
- A topologia da rede n\u00e3o muda
- A latência é zero
- A largura de banda é infinita
- O custo de transporte é zero

Observação

Muitos sistemas distribuídos acabam sendo desnecessariamente complexos, devido a erros que exigiram correções posteriormente. Muitas falsas suposições são frequentemente feitas.

- A rede é confiável
- A rede é segura
- A rede é homogênea
- A topologia da rede n\u00e3o muda
- A latência é zero
- A largura de banda é infinita
- O custo de transporte é zero
- Há um único administrador