An agent-based iterated learning model for understanding language evolution

George Sains

george.sains@bristol.ac.uk

28th October 2022

▶ Language evolution model with a focus on the **Critical Period Hypothesis**.

- ▶ Language evolution model with a focus on the **Critical Period Hypothesis**.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.

- ► Language evolution model with a focus on the **Critical Period Hypothesis**.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.
 - Language exists as **utterances** of pairs of meanings and signals.

- Language evolution model with a focus on the Critical Period Hypothesis.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.
 - Language exists as **utterances** of pairs of meanings and signals.
 - Signals are understood using a neural network (taught with back-propagation) and meanings are encoded using the **Obverter procedure** [Oliphant and Batali, 1997].

- Language evolution model with a focus on the Critical Period Hypothesis.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.
 - Language exists as **utterances** of pairs of meanings and signals.
 - Signals are understood using a neural network (taught with back-propagation) and meanings are encoded using the **Obverter procedure** [Oliphant and Batali, 1997].
- Main measurements are:

- Language evolution model with a focus on the Critical Period Hypothesis.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.
 - Language exists as **utterances** of pairs of meanings and signals.
 - Signals are understood using a neural network (taught with back-propagation) and meanings are encoded using the **Obverter procedure** [Oliphant and Batali, 1997].
- Main measurements are:
 - **Expressibility**: The portion of the meaning space that can be represented by an individuals language.

- Language evolution model with a focus on the Critical Period Hypothesis.
- Consists of a Meaning & Signal space, which are an abstract idea of language represented with binary strings.
 - Language exists as **utterances** of pairs of meanings and signals.
 - Signals are understood using a neural network (taught with back-propagation) and meanings are encoded using the **Obverter procedure** [Oliphant and Batali, 1997].
- Main measurements are:
 - **Expressibility**: The portion of the meaning space that can be represented by an individuals language.
 - **Stability**: How similar two agents languages are.

Obverter Procedure

	β							β		
	0.25					а	0.0	0.0	0.0	1.0
	0.25				\Rightarrow	b	0.0	0.0	0.0	1.0
0.4	0.25	0.1	0.3	С		С	1.0	0.0	0.0	0.0
0.2	0.25	0.7	0.0	d		d	0.0	0.0	1.0	0.0

ILM Behaviour

▶ **Goal**: A model for language evolution which simulates known ideas in linguistics.

- ▶ Goal: A model for language evolution which simulates known ideas in linguistics.
- Place agents on a (*fully-connected*) Erdős–Rényi graph who periodically communicate with neighbours.

- ▶ Goal: A model for language evolution which simulates known ideas in linguistics.
- ▶ Place agents on a (*fully-connected*) Erdős–Rényi graph who periodically communicate with neighbours.
- Agents have two states, child and adult. At end of childhood perform Obvert procedure and allow agent to communicate.

- ▶ Goal: A model for language evolution which simulates known ideas in linguistics.
- Place agents on a (fully-connected) Erdős–Rényi graph who periodically communicate with neighbours.
- Agents have two states, child and adult. At end of childhood perform Obvert procedure and allow agent to communicate.
- Agents have an increasing chance to die with age and be replaced with a new child agent.

- ▶ Goal: A model for language evolution which simulates known ideas in linguistics.
- Place agents on a (fully-connected) Erdős–Rényi graph who periodically communicate with neighbours.
- Agents have two states, child and adult. At end of childhood perform Obvert procedure and allow agent to communicate.
- Agents have an increasing chance to die with age and be replaced with a new child agent.
- Child agents learn in the same way as the ILM, adults still use back-propagation but will only partial-obvert.

Expansion to Agent-Based Model (Partial Obvert)

	β					S	α	β	γ	δ
	0.25					а	0.0	0.0	0.0	1.0
0.2	0.25	0.1	0.4	b	\Rightarrow	b	0.0	0.0	0.0	1.0
0.4	0.25	0.1	0.3	С		С	1.0	0.0	0.0	0.0
0.2	0.25	0.7	0.0	d		d	0.0	0.0	1.0	0.0

Receive (δ,c)

	β							β		
0.2	0.25	0.1	0.2	а	•	а	0.0	0.0	0.0	1.0
0.2	0.25	0.1	0.2	b	\Rightarrow	b	0.0	0.0	0.0	1.0
0.4	0.25	0.1	0.6	С		С	0.0	0.0	0.0	1.0
0.2	0.25	0.7	0.0	d		d	0.0	0.0	1.0	0.0

Results

Small-World Theory [Telesford et al., 2011]

Future Work

▶ Alternative to the Obvert procedure as it's **computationally costly**.

Future Work

- ▶ Alternative to the Obvert procedure as it's **computationally costly**.
- Investigate **Creolization** as this behaviour isn't present in this model [Hymes, 1971].

Future Work

- ▶ Alternative to the Obvert procedure as it's **computationally costly**.
- Investigate **Creolization** as this behaviour isn't present in this model [Hymes, 1971].

Thank you! Any questions?

Bibliography

```
[Hymes, 1971] Hymes, D. H. (1971). 
Pidginization and creolization of languages. 
CUP Archive.
```

[Kirby and Hurford, 2002] Kirby, S. and Hurford, J. R. (2002).
The Emergence of Linguistic Structure: An Overview of the Iterated Learning Model, pages 121–147.
Springer London, London.

[Oliphant and Batali, 1997] Oliphant, M. and Batali, J. (1997). Learning and the emergence of coordinated communication. Center for Research on Language Newsletter, 11.

[Telesford et al., 2011] Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., and Laurienti, P. J. (2011).

The ubiquity of small-world networks. *Brain connectivity*, 1(5):367–375.