

CTMTAIDS SI P1: Mathematical and Computational Foundation for Artificial Intelligence

Teaching Scheme					Evaluation Scheme									
L	Т	P	С	тсн	Theory							Practical		
					Internal Exams					University Exams		University Exams (LPW)		Total
					TA-1		MSE		TA-2 *	Marks	Hrs	Marks	Hrs	
					Marks	Hrs	Marks	Hrs	Marks	Marks	nrs	IVIAFKS	nrs	
03	00	00	03	03	25	00:45	50	01:30	25	100	03:00	1	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives

- 1. To understand the concepts of Vector space and inner-product spaces.
- 2. To apply the linear algebra concepts in approximations and matrix. decompositions.
- 3. To understand functions of several variables, gradients relevant for machine learning.
- 4. To acquire sound mathematical aspects of machine learning and artificial intelligence.

UNIT-I

Vector spaces, linear independence, basis, dimensions, matrix representation of data, inner products and norms on a vector space, lengths, angles.

UNIT-II

Orthogonal matrices and Gram-Schmidt, projections, least square approximations, Matrix decompositions, Cholesky decomposition, eigen decomposition and diagonalization, singular value decomposition.

UNIT-III

Brief overview of simple linear regression, multiple linear regression, and logistic regression. Linear Regression and parameter estimation; Dimensionality reduction - Principal Component Analysis, linear discriminant analysis; Density estimation with Gaussian mixture models.

UNIT-IV

Classification with support vector machines – separating hyperplanes, primal and dual support vector machines, kernels.

UNIT-V

Brief overview of random variables, known special probability distributions; Functions of one random variable, mean, variance, moment. Covariance and correlation.

Reference Book: -

- 1. Mathematics for Machine Learning, Mark Peter Deisenroth, A. Aldo Faisal and Cheng Soon Ong, Cambridge University Press, 2020
- 2. Linear Algebra and Learning from Data, Gilbert Strang, Wellesley-Cambridge Press, 2019
- 3. Linear Algebra, Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence, Pearson
- 4. Probability, Random Variables, and Stochastic Processes, Athanasios Papoulis and S. Unnikrishnan Pillai, Mc-Graw Hill, 2002, Fourth Edition
- 5. Applied Statistics and Probability for Engineers, Douglas C. Montgomery and George C. Runger, John Wiley and Sons, 2018, Seventh Edition.