2020-2021 学年第 1 学期

考试答题册

题号	 	=	四	五	六	七	总分
成绩							
阅卷人签字							
校对人签字							

考试	课程_	矩阵理论		
学	号_			
姓	名_		,绩	
任课	教师			

2021年1月11日

试卷说明: 以下 A\B 试卷任选一套

Α	卷	学号	姓名
	.判断与选择(30分)		
(1)	若B是列满秩(高阵), C是行满	佚,则 $B^+ = (B^H B)^{-1} B^H$ 且 C	$^{+} = C^{H}(CC^{H})^{-1} ()$
(2)	若矩阵 $A = (a_{ij})$ 的秩 $rank(A) = 1$,则 $A^+ = (\sum a_{ij} ^2)^{-1}A^H$	()
(3)	已知正奇值分解: $A = P\Delta Q^H$,	$P^H P = I = Q^H Q , \text{if } A^+ = Q$	$Q\Delta^+P^H$ ()
(4)	列向量 X 的模长 X 满足公式 2	$X^H X = X ^2 , \coprod X^H A^H A X$	$= AX ^2$. ()
(5)	若 $A^H AX = 0$,则有可能 $AX \neq 0$) ()	
(6) ⁻	设 $A = (a_{ij})_{m \times n}$ 则有迹公式: $tr(a_{ij})_{m \times n}$	$A^{H}A) = tr(AA^{H}) = \sum a_{ij} ^{2}$	()
(7)	若 $A\mathbf{x}=\mathbf{b}$ 无解 (不相容), 则 A^H	$A\mathbf{x} = A^H \mathbf{b}$ 也无解 (不相容)	()
(8)	方阵 A 的特征根 λ , 谱半径 $ ho$ (A	A)满足 $ \lambda \le \rho(A) \le A _1$,且	$\mathbb{E}[\rho(A)]^3 = \rho(A^3) ($
(9) ⁻	设 $A=A_{n\times p}$, $B=B_{p\times n}$,则 AB , B	BA 有相同的非 $oldsymbol{0}$ 特征根,且 $oldsymbol{t}$	tr(BA) = tr(AB)
(10)) $\ ullet \ $ 是相容的矩阵范数, I 是单	单位阵,则可能有 $ I $ <1	()
(11) 正确的张量积公式为(a) $(A\otimes B)^{\mathrm{H}}=A^{\mathrm{H}}\otimes B^{\mathrm{H}}$; (b	$(A \otimes B)^{H} = B^{H} \otimes A^{H}$
(12) 正确的公式为 (a)	$(A \otimes B)^+ = B^+ \otimes A^+;$ (b)	$(A \otimes B)^+ = A^+ \otimes B^+$
(13	为若 $\mathbf{x}_0 = A^{\dagger} \mathbf{b}$,则 $A^H A \mathbf{x}_0 = A^{\dagger}$	l ^H b,(a) 不成立;	(b) 一定成立
(14	$A_n = A_{m,n}$ 是列满秩(高阵), ,	则, (a) $A^{+}A=$	$I:$ (b) $AA^+=I$
	·) <mark>齐次方程 <i>AX</i> = 0 通解公式为:</mark> · 填空(10 分)	(a) $X = (I - A^{-}A)Y$; (b) $X = (I - AA^-)Y$
(1)	B 是列满秩(高阵), C 是行满秩,	则 $B^+B-I=$	C ⁺ =
(2)	若 A = BC 是满秩分解(高低分解),则 $A^+ = C^+ B^+$,也即 (<i>BC</i>	$(C)^+ - C^+ B^+ = \underline{\hspace{1cm}}$
(3)	若 2 阶方阵 A 的特征多项式 = x^2	+x+1,	
(4)	A 是 n 阶方阵,则行列式 $\det(e)$	$A = e^{tr(A)}$, $A = e^{-A}e^{A} = 0$	

A卷

三. 化简与计算(10分)

1. 设
$$A$$
 为方阵,且 $\|A\|_1 < 1$. 化简 $(I - A)^2 \left(\sum_{k=0}^{\infty} A^k\right)^2 = ?$

2.设A的 QR 分解是 A = QR, 其中 $Q^HQ = I$, 求 $R - Q^HA$

3.设
$$A = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}_{4\times4}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$, 求 A^+

4.
$$abla A = \begin{pmatrix} D & -iD \\ D & -iD \end{pmatrix}, (i^2 = -1), \quad D = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

(1) 用张量积公式求 A^{+} ; (2)求全体**特征根** $\lambda(A)$.

四.计算(15分)

1. 设
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 求 $Ax = \beta$ 的最佳极小二乘解.

2.
$$A = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$$
, $\Re (A+I)^2$; $\Re e^{t(A+I)} = e^{tA}$

3. 设正规阵
$$A = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
, 求 $f(A) = \sqrt{A}$

五. 计算(10分)

1.
$$A = \begin{pmatrix} 6i & 0 & -1 \\ 1 & 6 & 0 \\ i & 1 & 10 \end{pmatrix}$$
, $(i^2 = -1)$. (1)画出 A 的盖尔圆盘; (2)估计谱半径 $\rho(A)$ 的范围.

2.求解微分方程
$$\frac{\mathrm{d}X}{\mathrm{d}t} = AX$$
 , $X = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$ 且 $t = 0$ 时, $X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $A = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}$.

A卷

六. 计算(**10** 分) $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}$, 求**正奇值分解**(正 SVD) $A = P\Delta Q^H$, 或**奇异值分解**.

七.证明与计算(15分)

1.
$$\mbox{iff } A = (a_{ij})_{3\times 3} = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix} \quad (a > 0, b > 0, c > 0)$$

求 $|\lambda I - A|$ 与特根的模长 $|\lambda_1|$ $|\lambda_2|$ $|\lambda_3|$; 化简许尔估计: $\sum_i |\lambda_j|^2 \le \sum_{i,j=1}^3 |a_{ij}|^2$

- 2. 设 A 为 n 阶 Hermite 阵,证明 A 的特征根 $\lambda_1, \cdots, \lambda_n$ 全为实数
- 3. 设B为 n 阶斜 Hermite 阵 $(B^{\mathrm{H}}=-B)$,证明 $\frac{B}{i}$ 为 Hermite 阵,且有 $|\det(B+I)|\geq 1$

B卷

姓名:

学号:

一. (10分)判断与选择

1. 若矩阵
$$A = (a_{ij})$$
 的秩 $r(A) = 1$,则 $A^+ = (\sum_{i,j} |a_{ij}|^2)^{-1} A^H$. ()

2. | ●| 是矩阵范数, I 是单位矩阵, 则有可能 | I | < 1. ()

3. 设A
$$\in$$
 C^{n×n} 满足A²=A,则 $tr(A) = r(A)$.

4. 若齐次线性方程组 Ax=0(其中 $A \in C^{m \times n}, x \in C^n$) 有唯一解,则 A^HA 是正定矩阵.

()

5. 设
$$A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, 张量积 $A \otimes B$ 的全部特征值是 $2a, 3b$. ()

6. 设 A 是 Hermite 幂等矩阵,则 A+=A. ()

7. 若
$$A^H AX = 0$$
,则有可能 $AX \neq 0$

8. 若B是列满秩(高阵), C是行满秩,则 $B^+ = (B^H B)^{-1}B^H$ 且 $C^+ = C^H(CC^H)^{-1}$ ()

9. 正确的张量积公式为_____ (a)
$$(A \otimes B)^{\mathrm{H}} = A^{\mathrm{H}} \otimes B^{\mathrm{H}}$$
; (b) $(A \otimes B)^{\mathrm{H}} = B^{\mathrm{H}} \otimes A^{\mathrm{H}}$

10. 齐次方程 AX = 0 通解公式为:____ (a) $X = (I - A^{-}A)Y$; (b) $X = (I - AA^{-})Y$

二. (39分)填空

1.若 A = BC 是满秩分解(高低分解),则 $A^+ = C^+B^+$,也即 $(BC)^+ - C^+B^+ = _____$

2. 若 2 阶方阵 A 的特征多项式= $x^2 + x + 1$,则 $A^2 + A + I =$ ______.

空填"收敛"或者"发散")

4. A是 n 阶方阵,则行列式 $\det(e^A) = e^{tr(A)}$,且 $e^{-A}e^A =$ ______.

5. 已知
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $e^{tA} = e^{\begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix}} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$, 则 $e^{2tA} = \underline{\qquad}$

B卷

- 6. 设 A 为方阵,且 $\|A\|_1 < 1$. 则 $(I A)^2 \left(\sum_{k=0}^{\infty} A^k\right)^2 = \underline{\qquad}$.
- 7. 设 A 是 n 阶可逆矩阵, O 是 n 阶零矩阵,则 $\begin{pmatrix} O & A \\ O & O \end{pmatrix}$ 的**伪逆**是______.
- 8. $\exists \exists (A+I)^2 = 0$, $\exists (A+I)^2 = I + t(A+I) + \frac{(t(A+I))^2}{2} + \frac{(t(A+I))^3}{3!} + \dots = \underline{\qquad}$

9.设
$$A = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{5} & \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{6} & \frac{1}{6} & \frac{3}{6} & \frac{1}{6} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{4}{7} \end{pmatrix}, x = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, 则 ||A||_{\infty} = ___, ||Ax||_{1} = ____, \rho(A) = ____.$$

- 三. (10 分) 设 $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}$, 求 A 的奇异值分解或者简化奇异值分解.
- 四. (10 分)设 $A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 4 & -1 \\ 4 & 4 & -1 \\ -4 & -4 & 1 \end{pmatrix}$, (1)求 B 的特征值, (2)说明 A

相似于对角阵, 且求 A 的谱分解.

五. (10 分) 已知
$$A = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$
, $b = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$. (1) 求 A 的满秩分解,并用满秩

分解求 A^+ . (2) 判断 Ax = b 是否有解. (3) 求 Ax = b 的极小范数解或极小最小二乘解.

六.
$$(11 分)$$
设 $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix}$, (1) 求 A 的不变因子与初等因子, (2) 求 A 的 Jordan

标准形, (3)求 sin A.

B卷

七. (10分)证明

- **1.** 设 A 为 n 阶 Hermite 阵,证明 A 的特征根 $\lambda_1, \dots, \lambda_n$ 全为实数.
- 2. 若A列满秩,则A^(1,3)=A⁺(唯一).