Check-In 01/16. (*True/False*) Given $\int_0^\pi e^{\sin x} \cos x \ dx$, the *u*-substitution $u = \sin x$ transforms this integral into $\int_0^\pi e^u \ du$.

Solution. The statement is *false*. If $u=\sin x$, then $du=\cos x\,dx$. So indeed, this u-substitution would transform the integral $\int e^{\sin x}\cos x\,dx$ into the integral $\int e^u\,du$. However with definite integrals, one needs to remember to transform the limits as well. If x=0, then $u=\sin(0)=0$. If $x=\pi$, then $u=\sin(\pi)=0$. Therefore, the correct substitution is $\int_0^\pi e^{\sin x}\cos x\,dx=\int_0^0 e^u\,du=0$.

Check-In 01/21. (True/False) To integrate $\int \operatorname{arccot} \theta \, d\theta$, one can use integration-by-parts by choosing $u = \operatorname{arccot} \theta$ and dv = 1.

Solution. The statement is *true*. Using LIATE, it is likely that the choice of $u = \operatorname{arccot} \theta$ will work. With 'nothing left' in the integrand, this means that dv = 1. We fill in our box as follows:

Then using the 'Rule of 7', we find that...

$$\int \operatorname{arccot} \theta \, d\theta = \theta \operatorname{arccot} \theta - \int \frac{-\theta}{1+\theta^2} \, d\theta = \theta \operatorname{arccot} \theta + \int \frac{\theta}{1+\theta^2} \, d\theta$$

Using the u-substitution $u=1+\theta^2$, we see that $\int \frac{\theta}{1+\theta^2} d\theta = \frac{1}{2} \ln|1+\theta^2| + C$. Therefore, we have... $\int \operatorname{arccot} \theta \, d\theta = \theta \operatorname{arccot} \theta + \frac{1}{2} \ln|1+\theta^2| + C$

Check-In 01/23. (*True/False*) The integral $\int e^{x/2} \sin(3x) dx$ is a 'looping' integral.

Solution. The statement is *true*. Recall that integrals whose integrand is the product of an exponential function with $\sin x$ or $\cos x$ 'loop.' We can see this directly: choose $u = \sin(3x)$. Using

the 'box method', we have...

Therefore, we have...

$$\int e^{x/2}\sin(3x)\ dx = 2e^{x/2}\sin(3x) - \int 6e^{x/2}\cos(3x)\ dx$$

But this integral on the right also requires integration-by-parts: we choose $u = \cos(3x)$ and then...

So then we have...

$$\int e^{x/2} \sin(3x) \, dx = 2e^{x/2} \sin(3x) - \int 6e^{x/2} \cos(3x) \, dx$$

$$= 2e^{x/2} \sin(3x) - \left(12e^{x/2} \cos(3x) - \int -36e^{x/2} \sin(3x) \, dx\right)$$

$$= 2e^{x/2} \sin(3x) - 12e^{x/2} \cos(3x) + \int -36e^{x/2} \sin(3x) \, dx$$

$$= 2e^{x/2} \sin(3x) - 12e^{x/2} \cos(3x) - 36 \int e^{x/2} \sin(3x) \, dx$$

Observe that we have 'looped'—obtaining a multiple of the original integral on the right. Adding $36 \int e^{x/2} \sin(3x) \ dx$ to both sides, we have. . .

$$37 \int e^{x/2} \sin(3x) \ dx = 2e^{x/2} \sin(3x) - 12e^{x/2} \cos(3x)$$

Therefore, we have...

$$\int e^{x/2}\sin(3x)\ dx = \frac{2e^{x/2}\sin(3x) - 12e^{x/2}\cos(3x)}{37} + C$$

We can shortcut this work by adjusting tabular integration:

$$\begin{array}{c|c}
u & dv \\
\hline
sin(3x) & + e^{x/2} \\
3\cos(3x) & + 2e^{x/2} \\
-9\sin(3x) & + 4e^{x/2}
\end{array}$$

Therefore, we have...

$$\int e^{x/2} \sin(3x) \, dx = 2e^{x/2} - 12e^{x/2} \cos(3x) - 36 \int e^{x/2} \sin(3x) \, dx$$
$$37 \int e^{x/2} \sin(3x) \, dx = 2e^{x/2} - 12e^{x/2} \cos(3x)$$
$$\int e^{x/2} \sin(3x) \, dx = \frac{2e^{x/2} \sin(3x) - 12e^{x/2} \cos(3x)}{37} + C$$

Check-In 01/28. (*True/False*) To integrate $\int \cos^8 \theta \sin^5 \theta \ d\theta$, one should choose $u = \cos \theta$.

Solution. The statement is *true*. Observe that if we choose $u=\cos\theta$, then $\cos^8\theta$ becomes u^8 . We know du will then produce a $\sin\theta$ —specifically $-\sin\theta$. This 'uses' one of the $\sin\theta$'s in the integrand. This leaves $\sin^4\theta$ remaining in the integrand. But we can replace even powers of $\sin\theta$ in terms of $\cos\theta$. So we can carry out this substitution. Observe that if $u=\cos\theta$, then $du=-\sin\theta\ d\theta$. But then using the fact that $\sin^2\theta=1-\cos^2\theta$ (so that $\sin^4\theta=(\sin^2\theta)^2=(1-\cos^2\theta)^2$), we have...

$$\int \cos^8 \theta \sin^5 \theta \, d\theta = \int \cos^8 \theta \sin^4 \theta \cdot \sin \theta \, d\theta$$

$$= -\int \cos^8 \theta \sin^4 \theta \cdot -\sin \theta \, d\theta$$

$$= -\int \cos^8 \theta (1 - \cos^2 \theta)^2 \cdot -\sin \theta \, d\theta$$

$$= -\int u^8 (1 - u^2)^2 \, du$$

$$= -\int u^8 (1 - 2u^2 + u^4) \, du$$

$$= \int -u^8 + 2u^{10} - u^{12} \, du$$

$$= -\frac{u^9}{9} + \frac{2u^{11}}{11} - \frac{u^{13}}{13} + C$$

$$= -\frac{\cos^9 \theta}{9} + \frac{2\cos^{11} \theta}{11} - \frac{\cos^{13} \theta}{13} + C$$

Alternatively, observe that if we had chosen $u = \sin \theta$, then $\sin^5 \theta$ becomes u^5 . We know that du produces a $\cos \theta$. This 'uses' one of the $\cos \theta$'s in the integrand. This leaves $\cos^7 \theta$ remaining

in the integrand. However, we can only replace even powers of $\cos \theta$ in terms of $\sin \theta$ using $\cos^2 \theta = 1 - \sin^2 \theta$. So without using other identities or using other techniques, we cannot 'simply' choose $u = \sin \theta$ for this integral.

Check-In 01/30. (*True/False*) To compute $\int \frac{x^3}{\sqrt{x^2-4}} dx$, one can make the substitution $x=2\sec\theta$.

Solution. The statement is *true*. Observe we have the term $x^2 - 4$, which resembles a term from the Pythagorean Theorem. For a right triangle, we know that $a^2 + b^2 = c^2$. This implies that $a^2 = c^2 - b^2$, which is $x^2 - 4$ if $c^2 = x^2$ and $b^2 = 4$, i.e. c = x and b = 2. We construct a triangle with c = x and b = 2. This only gives two possibilities:

In the first, we would have $\cos\theta=\frac{2}{x}$, which implies that $x=\frac{2}{\cos\theta}=2\sec\theta$. This is the given substitution. In the second, we would have $\sin\theta=\frac{2}{x}$, which implies that $x=\frac{2}{\sin\theta}=2\csc\theta$. Choosing the former substitution, we would have $x=2\sec\theta$, so that $dx=2\sec\theta\tan\theta$. Calling the vertical side s and using the Pythagorean Theorem, we see that $2^2+s^2=x^2$, i.e. $4+s^2=x^2$. But then $s=\sqrt{x^2-4}$. This gives us the following triangle:

We need to find x^3 and $\sqrt{x^2-4}$. Because $x=2\sec\theta$, we know that $x^3=(2\sec\theta)^3=2^3\sec^3\theta$. To find $\sqrt{x^2-4}$, observe that $\tan\theta=\frac{\sqrt{x^2-4}}{2}$, which implies that $\sqrt{x^2-4}=2\tan\theta$. Therefore, we have...

$$\int \frac{x^3}{\sqrt{x^2 - 4}} dx = \int \frac{2^3 \sec^3 \theta}{2 \tan \theta} \cdot 2 \sec \theta \tan \theta d\theta = \int 8 \sec^4 \theta d\theta$$

Now using the fact that $\tan^2 \theta + 1 = \sec^2 \theta$, we know that

$$\sec^4 \theta = (\sec^2 \theta)^2 = (\tan^2 \theta + 1)^2 = \tan^4 \theta + 2 \tan^2 \theta + 1$$

But then...

$$\int 8\sec^4\theta \ d\theta = \int 8\sec^2\theta \sec^2\theta \ d\theta = \int 8\sec^2\theta (\tan^2\theta + 1) \ d\theta = \int 8(\tan^2\theta + 1) \cdot \sec^2\theta \ d\theta$$

Now letting $u = \tan \theta$, we have $du = \sec^2 \theta \ d\theta$. But then...

$$\int 8(\tan^2\theta + 1) \cdot \sec^2\theta \ d\theta = \int 8(u^2 + 1) \ du = 8\int (u^2 + 1) \ du = 8\left(\frac{u^3}{3} + u\right) + C$$

Replacing u, we have...

$$8\left(\frac{u^3}{3} + u\right) + C = 8\left(\frac{\tan^3\theta}{3} + \tan\theta\right) + C$$

But from the triangle, we know that $\tan \theta = \frac{\sqrt{x^2-4}}{2}$. Therefore, we have...

$$8\left(\frac{\tan^3 \theta}{3} + \tan \theta\right) + C = .8\left(\frac{1}{3} \cdot \left(\frac{\sqrt{x^2 - 4}}{2}\right)^3 + \frac{\sqrt{x^2 - 4}}{2}\right) + C$$

If we simplify this, we have...

$$8\left(\frac{1}{3} \cdot \left(\frac{\sqrt{x^2 - 4}}{2}\right)^3 + \frac{\sqrt{x^2 - 4}}{2}\right) + C$$

$$8 \cdot \frac{\sqrt{x^2 - 4}}{2} \left(\frac{1}{3} \cdot \left(\frac{\sqrt{x^2 - 4}}{2}\right)^2 + 1\right) + C$$

$$4\sqrt{x^2 - 4} \left(\frac{1}{3} \cdot \frac{x^2 - 4}{4} + 1\right) + C$$

$$4\sqrt{x^2 - 4} \left(\frac{x^2 - 4}{12} + 1\right) + C$$

$$4\sqrt{x^2 - 4} \left(\frac{x^2 - 4}{12} + \frac{12}{12}\right) + C$$

$$4\sqrt{x^2 - 4} \left(\frac{x^2 + 8}{12}\right) + C$$

$$\frac{1}{3} \sqrt{x^2 - 4} \left(x^2 + 8\right) + C$$

Therefore, we have...

$$\int \frac{x^3}{\sqrt{x^2 - 4}} \, dx = \frac{1}{3} \sqrt{x^2 - 4} \, (x^2 + 8) + C$$

Check-In 02/04. (True/False) The rational function $\frac{x^6-4x}{(x-1)(x+2)(x^2+4)}$ can be decomposed as $\frac{A}{x-1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$.

Solution. The statement is *false*. We know that given a rational function has a partial fraction decomposition given in the 'traditional' way so long as the degree of the numerator is *less* than the degree of the denominator. Observe that the degree of the numerator in the original function is 6 while the degree of the denominator is 1+1+2=4. So, this cannot be broken down in the 'traditional' way. Alternatively, find the common denominator of $(x-1)(x+2)(x^2+4)$ for the given decomposition, observe that the numerator will have at most degree 4, which could not possibly yield the numerator of x^6-4x with degree 6. One would first need to long divide x^6-4x by

 $(x-1)(x+2)(x^2+4)$ to find the quotient and remainder before trying to give a partial fraction decomposition. Observe...

$$(x-1)(x+2)(x^2+4) = (x^2+x-2)(x^2+4) = x^4+x^3+2x^2+4x-8$$

But then...

$$\begin{array}{r} x^2 - x - 1 \\
x^4 + x^3 + 2x^2 + 4x - 8) \overline{)x^6 - x^5 - 2x^4 - 4x^3 + 8x^2} \\
\underline{-x^6 - x^5 - 2x^4 - 4x^3 + 8x^2} \\
-x^5 - 2x^4 - 4x^3 + 8x^2 - 4x \\
\underline{-x^5 + x^4 + 2x^3 + 4x^2 - 8x} \\
\underline{-x^4 - 2x^3 + 12x^2 - 12x} \\
\underline{x^4 + x^3 + 2x^2 + 4x - 8} \\
\underline{-x^3 + 14x^2 - 8x - 8}
\end{array}$$

Therefore, we have...

$$\frac{x^6-4x}{(x-1)(x+2)(x^2+4)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{x^4+x^3+2x^2+4x-8} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x^2+4)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x+2)(x+2)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x+2)(x+2)(x+2)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x+2)(x+2)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x+2)} = x^2-x-1 + \frac{-x^3+14x^2-8x-8}{(x-1)(x+2)(x+2)$$

We can then find the 'traditional' partial fraction decomposition of the resulting rational function above because the degree of the numerator, which is 3, is *less* than the degree of the denominator, which is 4. We would have...

$$\frac{-x^3 + 14x^2 - 8x - 8}{(x-1)(x+2)(x^2+4)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$$

Using Heaviside's Method/Cover-Up Method, we can find A and B 'instantly':

$$A = \frac{-1^3 + 14(1^2) - 8(1) - 8}{(1+2)(1^2+4)} = -\frac{3}{15} = -\frac{1}{5}$$

$$B = \frac{-(-2^3) + 14(-2)^2 - 8(-2) - 8}{(-2-1)((-2)^2+4)} = \frac{72}{-24} = -3$$

To find C, D, we can get a common denominator:

$$\frac{A}{x-1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4} = \frac{A(x+2)(x^2+4) + B(x-1)(x^2+4) + (Cx+D)(x-1)(x+2)}{(x-1)(x+2)(x^2+4)}$$

Using the fact that the rational functions now have equal denominators, we can equate their numerators:

$$-x^{3} + 14x^{2} - 8x - 8 = A(x+2)(x^{2}+4) + B(x-1)(x^{2}+4) + (Cx+D)(x-1)(x+2)$$
$$-x^{3} + 14x^{2} - 8x - 8 = -\frac{1}{5}(x+2)(x^{2}+4) - 3(x-1)(x^{2}+4) + (Cx+D)(x-1)(x+2)$$

We multiply the last equation by 5 to clear fractions:

$$5(-x^3 + 14x^2 - 8x - 8) = -(x+2)(x^2+4) - 15(x-1)(x^2+4) + 5(Cx+D)(x-1)(x+2)$$

Rather than expand this and relate coefficients to obtain a system of equations, we will simply substitute two x-values (ones not used in Heaviside's Method): using x = 0, we have...

$$5(-x^{3} + 14x^{2} - 8x - 8) = -(x + 2)(x^{2} + 4) - 15(x - 1)(x^{2} + 4) + 5(Cx + D)(x - 1)(x + 2)$$
$$-40 = 52 - 10D$$
$$-92 = -10D$$
$$\frac{46}{5} = D$$

and using x = -1 and the value for D above, we have...

$$5(-x^{3} + 14x^{2} - 8x - 8) = -(x + 2)(x^{2} + 4) + 15(x - 1)(x^{2} + 4) + 5(Cx + D)(x - 1)(x + 2)$$

$$75 = 145 - 10(-C + D)$$

$$-70 = 10C - 10D$$

$$-70 = 10C - 10 \cdot \frac{46}{5}$$

$$-70 = 10C - 92$$

$$22 = 10C$$

$$\frac{11}{5} = C$$

Therefore, we have...

$$\frac{x^6 - 4x}{(x - 1)(x + 2)(x^2 + 4)} = x^2 - x - 1 + \frac{-1/5}{x - 1} + \frac{-3}{x + 2} + \frac{\frac{11}{5}x + \frac{46}{5}}{x^2 + 4} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x^2 - x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x^2 + 4)} = x - 1 - \frac{1}{5(x - 1)} - \frac{3}{x + 2} + \frac{11x + 46}{5(x - 1)} = x - 1 - \frac{1}{5(x - 1)} - \frac{1}{5(x - 1)} = x - 1 - \frac{1}{5(x - 1)} - \frac{1}{5(x - 1)} = x - 1 - \frac{1}$$

Check-In 02/06. (True/False)
$$\int \frac{5}{x+1} - \frac{1}{(x+1)^2} - \frac{x+1}{x^2+1} dx = 5\ln(x+1) - \frac{1}{x+1} - \frac{1}{2}\ln|x^2+1| + \arctan x + K$$

Solution. The statement is *false*. First, we know that...

$$\int \frac{5}{x+1} \, dx = 5 \ln|x+1| + K$$

The integral of the second term is also incorrect:

$$\int -\frac{1}{(x+1)^2} dx = \int -(x+1)^{-2} dx = \frac{-(x+1)^{-1}}{-1} + K = \frac{1}{x+1} + K$$

Moreover, the third term is also incorrect as the negative has been improperly distributed:

$$-\int \frac{x+1}{x^2+1} dx = -\int \frac{x}{x^2+1} + \frac{1}{x^2+1} dx = -\left(\frac{1}{2}\ln|x^2+1| + \arctan x\right) + K = -\frac{1}{2}\ln|x^2+1| - \arctan x + K$$