Projektowanie Efektywnych Algorytmów Projekt 20/12/2023

263916 Kamil Gondek

(3) Symulowane wyżarzanie

Spis treści	strona
	2
Sformułowanie zadania	2
Metoda	3
Algorytm	4
Dane testowe	9
Procedura badawcza	12
Wyniki	17
Analiza wyników i wnioski	53

1. Sformulowanie zadania

Zadane polega na opracowaniu, implementacji i zbadaniu efektywności algorytmu symulowanego wyżarzania rozwiązującego problem komiwojażera.

Problem komiwojażera polega na znalezieniu najkrótszej trasy, która przebiega przez wszystkie miasta dokładnie raz, a następnie wraca do pierwszego miasta. Jest to problem optymalizacji kombinatorycznej, który ma zastosowanie między innymi w logistyce i planowaniu tras w transporcie publicznym.

Hipoteza:

Algorytm symulowanego wyżarzania uzyskuje znacząco lepsze wyniki odnośnie złożoności czasowej jak i pamięciowej w porównaniu do algorytmu Brute-Force czy Helda-Karpa. Jednakże samo wyznaczenie złożoności czasowej jest trudne, ponieważ złożoność ta zależy od parametrów sterujących. Na jej wpływ mają takie czynniki jak sposób generowania ścieżki początkowej, wartość temperatury początkowej oraz metoda chłodzenia. Natomiast co do złożoności pamięciowej to dla tego algorytmu wynosi ona O(2n), gdyż przechowujemy dwie ścieżki: aktualną oraz tymczasową.

Problem badawczy:

- Jaki wpływ na jakość i czas rozwiązania problemu mają takie parametry jak: sposób wyboru temperatury początkowej, ścieżki początkowej, sposób chłodzenia, długość epoki, sposób wyboru sąsiedztwa?
- Czym są małe instancje dla tego algorytmu, a czym są duże instancje?
- Jaka jest liczba wierzchołków dla których ten algorytm przestaje być efektywny tj. czas wyznaczania rozwiązania przekracza 1 godzinę?
- Czy algorytm jest skuteczniejszy od algorytmu Brute-Force i Helda-Karpa?
- Czy wartość odległości ścieżki między wierzchołkami ma wpływ na złożoność czasową?

2. Metoda

Metoda symulowanego wyżarzania jest jedną z technik projektowania algorytmów heurystycznych. Algorytmy te cechują się występowaniem parametru sterującego. W przypadku metody symulowanego wyżarzania takim parametrem jest temperatura. Parametr ten w trakcie działania programu zmienia się co powoduje zawężanie wyniku algorytmu.

Metoda rozwiązuje problem wyznaczenia najkrótszej drogi poprzez podział utworzenie początkowej ścieżki a następnie szukaniu lepszych ścieżek w sąsiedztwie chwilowo najlepszego rozwiązania.

W celu uniknięcia sytuacji gdzie algorytm utknąłby w lokalnym minimum to jest przypadek w którym każda zmiana w sąsiedztwie nie powoduje poprawienia kosztu ścieżki. Metoda dopuszcza wybór gorszego rozwiązania o określonym procencie w celu chwilowego pogorszenia kosztu aby uzyskać możliwie lepszą ścieżkę. Poziom akceptacji jest realizowany za pomocą następującego wzoru:

```
Jeżeli (nowy koszt < aktualny koszt) to

przyjmij nowe rozwiązanie

W przeciwnym razie:

Jeżeli exp ( aktualny koszt-nowy koszt ) > zadane prawdo

to przyjmij nowe rozwiązanie.
```

Dzięki temu że temperatura z czasem spada program wraz z kolejnymi epokami zawęża wartości kosztu jakie akceptuje jako nowa droga. Przez co im wyższy parametr temperatury tym bardziej chaotyczne zmiany a wraz ze spadkiem temperatury program przeszukuje coraz węszy zakres rozwiązań.

3. Algorytm

Zaimplementowany algorytm zaczyna swoje działanie od inicjacji w pierwszym etapie przypisywane są niezbędne wartości takie jak:

Długość epoki w moim przypadku jest ona wyznaczana za pomocą następującego wzoru:

```
Długość epoki = wielkość instancji * wielkość instancji * współ-
czynnik
```

Gdzie wielkość instancji to liczba miast natomiast współczynnik jest parametrem sterującym.

W kolejnym etapie generowana jest ścieżka początkowa według 2 algorytmów:

- Pierwszy sposób zachłanny
- Drugi sposób losowo

Następnie generowana jest temperatura początkowa na 2 różne sposoby:

- Pierwszy sposób na podstawie próbkowania w tablicy sąsiedztwa i średniej z próbek
- Drugi sposób jako maksymalna różnica długości pojedynczego przejścia

Jako ostatni etap inicjalizacji wyznaczany jest koszt początkowy ścieżki.

W kolejnym kroku algorytm dzieli się na 2 sposoby chłodzenia Boltzmanna lub geometrycznie

• W przypadku chłodzenia geometrycznego temperatura w kolejnych epokach zmienia się w następujący sposób:

```
o Aktualna temperatura = aktualna temperatura * alfa
```

Gdzie *alfa* to współczynnik obniżania temperatury

• W przypadku chłodzenia Boltzmanna

```
o Aktualna temperatura = aktualna temperatura / ln(k+1)
```

Gdzie k to numer epoki zaczynając od 1

Dodatkowo algorytm dzieli się na 2 sposoby wyboru sąsiedztwa:

Losowe wybranie 2 wierzchołków i zamiana miejscami.

Losowe wybranie 1 wierzchołka i zamiana z wierzchołkiem poprzedzającym.

Skutkiem takiego podejścia jest złożoność pamięciowa na poziomie O(2n) wynikająca z przechowywania jedynie 2 ścieżek aktualnej i nowej oraz ich kosztów.

Natomiast złożoność czasowa wyznaczana jest za pomocą następującego wzoru:

```
O(liczba\ epok*\ długość\ epoki*n)
```

Gdzie długość epoki jest stała jako parametr początkowy, liczba epok jest zależna od sposobu chłodzenia natomiast parametr n to liczba miast i wynika z wyznaczenia kosztu przejścia przez wszystkie miasta w każdej iteracji pętli. Natomiast liczba epok jest zależna od sposobu

chłodzenia w przypadku Boltzmanna dla Temperatury początkowej nie przekraczającej 10 liczba epok nie przekroczy 7, dla Temperatury początkowej do 10 000 liczba ta nie przekroczy 15 natomiast dla Temperatury początkowej do 10 000 000 liczba ta nie przekroczy 21. W skutek czego wielkość odległości miast w instancji powinna mieć wpływ na złożoność czasową w przypadku chłodzenia Boltzmanna. Jak i w przypadku geometrycznego gdzie liczba epok jest silnie zależna od współczynnika alfa.

Natomiast parametry takie jak ścieżka początkowa czy sposób wyboru sąsiedztwa nie mają większego wpływu na złożoność zarówno czasową jak i pamięciową jednakże mają mogą mieć wpływ na jakość wyniku. Dzięki czemu możliwe będzie zmniejszenie długości epoki co wpłynie bezpośrednio na złożoność czasową.

Rysunek 1 - Schemat blokowy funkcji inicjalizującej algorytm wyżarzania

Rysunek 2 - Schemat blokowy funkcji rozpoczynającej algorytm wyżarzania z chłodzeniem geometrycznym

Rysunek 3 - Schemat blokowy funkcji rozpoczynającej algorytm wyżarzania z chłodzeniem Boltzmanna

Rysunek 4 - Schemat blokowy funkcji akceptującej nowe rozwiązanie

Legenda:

- **tabLocation**: Dwuwymiarowa tablica przechowująca informacje o lokalizacjach (miastach) tablica sąsiedztwa.
- tabLocationSize: Rozmiar tablicy tabLocation (ilość miast).
- ICorectionVal: Współczynnik korekcyjny długości epoki.
- iterationSize: Rozmiar długość epoki.
- initPath: Początkowa ścieżka.
- currentPath: Aktualna ścieżka.
- **curentCost:** Koszt aktualnej ścieżki.
- **currentTemperature:** Aktualna temperatura.
- **k:** Licznik iteracji(epok)
- alpha: Współczynnik chłodzenia geometrycznego.
- **selectVertexMode:** Tryb wyboru wierzchołka.
- probability: Prawdopodobieństwo akceptacji gorszego rozwiązania.
- avgTestVertxCorectionVal: Współczynnik korekcji ilości wierzchołków testowych dla temperatury początkowej

4. Dane testowe

Do sprawdzenia poprawności działania programu wykorzystano dane testowe dr Jarosława Mierzwy oraz dane ze strony http://comopt.ifi.uni-heidelberg.de. Na ich podstawie uzyskano następujące wyniki:

Plik wejściowy tsp 6 1.txt

Minimalny koszt cyklu komiwojażera : 132 Kolejność odwiedzanych miast: 1 2 3 4 5 6 1

Algorytm Wyżarzania: Ścieżka = 2,3,4,5,6,1,2

Koszt = 132

Czas pomiaru = 0.2191ms

Plik wejściowy tsp_6_2.txt

Minimalny koszt cyklu komiwojażera: 80 Kolejność odwiedzanych miast: 1 6 2 3 4 5 1

Algorytm Wyżarzania: Ścieżka = 2,3,4,5,1,6,2

Koszt = 80

Czas pomiaru = 0.14525ms

Plik wejściowy tsp 10.txt

Minimalny koszt cyklu komiwojażera: 212

Kolejność odwiedzanych miast: 1 4 5 3 9 8 7 10 2 6 1

Algorytm Wyżarzania:

Ścieżka = 10,2,4,1,6,8,7,9,5,3,10

Koszt = 257

Czas pomiaru = 0.49002ms

Plik wejściowy tsp 12.txt

Minimalny koszt cyklu komiwojażera: 264

Kolejność odwiedzanych miast: 1 2 9 5 7 3 12 10 8 6 4 11 1

Algorytm Wyżarzania:

Ścieżka = 8,10,12,3,7,5,9,2,1,11,4,6,8

Koszt = 264

Czas pomiaru = 0.63633ms

Plik wejściowy tsp 13.txt

Minimalny koszt cyklu komiwojażera: 269

Kolejność odwiedzanych miast: 1 11 4 6 8 10 12 3 7 5 9 2 13 1

Algorytm Wyżarzania:

Ścieżka = 3,12,10,8,2,13,1,11,4,6,9,5,7,3

Koszt = 301

Czas pomiaru = 0.80662ms

Plik wejściowy tsp 14.txt

Minimalny koszt cyklu komiwojażera: 282

Kolejność odwiedzanych miast: 1 11 4 6 8 10 14 12 3 7 5 9 2 13 1

Algorytm Wyżarzania:

Ścieżka = 2,13,1,11,4,6,8,10,14,12,3,7,5,9,2

Koszt = 282

Czas pomiaru = 1.0165ms

Plik wejściowy tsp 15.txt

Minimalny koszt cyklu komiwojażera: 291

Kolejność odwiedzanych miast: 1 11 4 6 8 10 14 12 3 7 5 9 15 2 13 1

Algorytm Wyżarzania:

Ścieżka = 5,9,15,2,13,1,11,4,6,8,10,14,12,3,7,5

Koszt = 291

Czas pomiaru = 1.03874ms

Plik wejściowy tsp 17.txt

Minimalny koszt cyklu komiwojażera: 39

Kolejność odwiedzanych miast: 1 3 14 2 10 11 13 6 7 15 16 4 5 8 9 17 12 1

Algorytm Wyżarzania:

Ścieżka = 8,2,13,11,10,3,14,1,12,7,16,15,6,5,4,17,9,8

Koszt = 39

Czas pomiaru = 1.60059ms

Plik wejściowy berlin52.txt

Minimalny koszt cyklu komiwojażera: 7542

Kolejność odwiedzanych miast:

Koszt = 8724

Czas pomiaru = 42.806ms

Plik wejściowy br17.txt

Minimalny koszt cyklu komiwojażera: 39

Algorytm Wyżarzania:

Koszt = 39

Czas pomiaru = 1.49067ms

Plik wejściowy brg180.txt

Minimalny koszt cyklu komiwojażera: 1950

Algorytm Wyżarzania:

Koszt = 3050

Czas pomiaru = 1665.83ms

Plik wejściowy eil76.txt

Minimalny koszt cyklu komiwojażera: 538

Algorytm Wyżarzania:

Koszt = 583

Czas pomiaru = 68.6557ms

Plik wejściowy ftv44.txt

Minimalny koszt cyklu komiwojażera: 1613

Algorytm Wyżarzania:

Koszt = 1973

Czas pomiaru = 21.8517ms

Plik wejściowy ftv70.txt

Minimalny koszt cyklu komiwojażera: 1950

Algorytm Wyżarzania:

Koszt = 2279

Czas pomiaru = 76.9687ms

Plik wejściowy ftv170.txt

Minimalny koszt cyklu komiwojażera: 2755

Algorytm Wyżarzania:

Koszt = 3565

Czas pomiaru = 914.58ms

Plik wejściowy kroA100.txt

Minimalny koszt cyklu komiwojażera: 21282

Algorytm Wyżarzania:

Koszt = 23944

Czas pomiaru = 284.165ms

Plik wejściowy a280.txt

Minimalny koszt cyklu komiwojażera: 2579

Algorytm Wyżarzania:

Koszt = 3025

Czas pomiaru = 3724.78ms

Plik wejściowy rbg443.txt

Minimalny koszt cyklu komiwojażera: 2720

Algorytm Wyżarzania:

Koszt = 2760

Czas pomiaru = 9126.6ms

5. Procedura badawcza

Należało zbadać zależność czasu rozwiązania problemu od wielkości instancji. W przypadku algorytmu Wyżarzania, algorytm ten posiada parametry sterujące programu, które mogą mieć wpływ na czas i jakość uzyskanego wyniku. W związku z tym procedura badawcza polegała na uruchomieniu programu sterowanego plikiem inicjującym ustawienia.ini format pliku:

[SEKCJA1]

Tryb=1

PlikWyjsciowy=tsp out multi

PlikWejsciowy=tsp 6 1;tsp 6 2;tsp 10;tsp 12;tsp 13;tsp 14;tsp 15;tsp 17;br17;gr17;gr21;

- Tryb odpowiada za tryb pracy programu. Ustawione na θ program testuje dane parametry sterujące według predefiniowanego scenariusza. Ustawione na 1 paragram testuje pomiar czasu dla generowanych przedefilowaniach danych. Ustawiony na 2 program czyta pliki wejściowe i zapisuje do pliku wyjściowego
- PlikWyjsciowy Nazwa pliku wyjściowego. Podajemy tylko nazwę reszta danych takich jak format uzupełniana jest automatycznie przez program.
- PlikWejsciowy Nazwa plików wejściowych. Podajemy nazwy bez formaty zakończone średnikiem. Pliki wejściowe muszą być w formacie .txt.

Uwaga dane z sekcji 2 i 3 czytane tylko w przypadku ustawienia tryb 2 w sekcji 1.

[SEKCJA2]

TrybGenerowaniaSciezkiPoczatkowej=true

TrybGenerowaniaTemperaturyPoczatkowej=false

WspolczynikKorekcjiIlosciPrubekGeneracjiZeSredniej=0.9

TrybDlogosciEpoki=6

WspolczynnikKorekcjiDlogosciEpoki=0.3

LiczbaPowtorzenPomiaru=10

- TrybGenerowaniaSciezkiPoczatkowej Ustawiony na *true* generowanie w sposób zachłanny, *false* sposób losowy.
- TrybGenerowaniaTemperaturyPoczatkowej Ustawiony na *true* generowanie na podstawie próbkowania, *false* sposób losowy.
- WspolczynikKorekcjiIlosciPrubekGeneracjiZeSredniej W przypadku generowania temperatury na podstawie próbkowania koryguje ilość próbek według wzoru n*n*val gdzie n to wielkość instancji a val współczynnik.
- TrybDlogosciEpoki odpowiada za ustawienie sposobu wyznaczania długości epoki. Odpowiednio:
 - o 1 n*n*val gdzie *val* to współczynnik
 - \circ 2 n/2
 - \circ 3 n
 - \circ 4 n*ln(n)
 - \circ 5 n*n/2
 - \circ 6 n*n
 - Gdzie n to wielkość instancji

- WspolczynnikKorekcjiDlogosciEpoki współczynnik to trybu długości epoki ustawionego na 1
- LiczbaPowtorzenPomiaru Odpowiada z liczbę powtórzeń pomiaru i wyciągnięcie z niej najmniejszego kosztu.

[SEKCJA3]

Tryb=false

WspolczynikAlfa=0.8

TrybWyboruWierzcholkow=false

Prawdopodobienstwo=0.95

- Tryb odpowiada za sposób chłodzenia *true* chłodzenie Boltzmanna, *false* chłodzenie Geometryczne
- Wspołczynik Alfa współczynnik chłodzenia Geometrycznego
- TrybWyboruWierzcholkow tryb generowania sąsiedztwa *true* wymiana z poprzedzającym *false* losowa zamiana dwóch
- Prawdopodobienstwo prawdopodobieństwo akceptacji gorszego wyniku

W pierwszym etapie badano wpływ parametrów sterujących na rozwiązanie badane były następujące parametry:

- 1. Temperatura początkowa:
 - Na podstawie próbkowania:

Z tablicy sąsiedztwa losujemy *n* próbek odległości z przejścia z miasta A do miasta B a następnie wyznaczamy średnią.

• Jako maksymalna różnica:

W tym przypadku w pierwszym etapie przeglądamy tablicę sąsiedztwa szukając wartości minimalnej i maksymalnej a następnie temperatura początkowa to różnica tych 2 wartości.

W przypadku badania temperatury początkowej, badania prowadzone były w następujący sposób:

- Na 4 plikach testowych wykonano 200 pomiarów za każdym razem generując na nowo temperaturę początkową dla instancji TSP jak i ATSP.
- Ścieżka początkowa była stała przez cały okres pomiaru to jest 200 pomiarów.
- Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - Współczynnik chłodzenia geometrycznego = 0.3
 - o Prawdopodobieństwo akceptacji = 0.95
 - o Generowanie sąsiedztwa = losowanie 2 wierzchołków i zamiana
 - Ścieżka początkowa = losowa
 - Współczynnik korekcji długości epoki = 0.5
 - Sposób wyboru sąsiedztwa = losowo 2 wierzchołki
 - Współczynnik chłodzenia geometrycznego = 0.3

Temperatura początkowa na podstawie różnicy była stała dla 200 pomiarów.

Temperatura początkowa na podstawie średniej – generowano 200 razy dla różnych współczynników korekcji ilości próbek zaczynając od 10% wszystkich z (*liczba wierzchołków** *liczba wierzchołków*) kończąc na 100%.

2. Ścieżka początkowa

• Losowo:

Wygenerowano ścieżkę w postaci od 1 do n a następnie losowo przemieszano

Zachłannie:

Wylosowano wierzchołek startowy a następnie zachłannie wybierano wierzchołek z najmniejszym kosztem przejścia który nie został jeszcze odwiedzony.

W przypadku badania ścieżki początkowej, badania prowadzone były w następujący sposób:

- Na 4 plikach testowych wykonano 200 pomiarów za każdym razem generując na nowo ścieżkę początkową dla instancji TSP jak i ATSP.
- Temperatura początkowa była stała przez cały okres pomiaru to jest 200 pomiarów.
- Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - Współczynnik chłodzenia geometrycznego = 0.3(tylko w przypadku geometrycznego)
 - o Prawdopodobieństwo akceptacji = 0.95
 - o Generowanie sąsiedztwa = losowanie 2 wierzchołków i zamiana
 - Współczynnik korekcji długości epoki = 0.5
 - Współczynnik chłodzenia geometrycznego = 0.3
 - Sposób wyboru sąsiedztwa = losowo 2 wierzchołki
 - o Temperatura początkowa na podstawie różnicy

Ścieżki były za każdym razem generowane na nowo po 200 razy dla generowania losowego i zachłannego.

3. Sposób chłodzenia

• Geometryczny:

Temperatura obniżana za pomocą współczynnika alfa

• Boltzmanna:

Temperatura obniżana za pomocą numeru epoki.

W przypadku badania sposobu chłodzenia, badania prowadzone były w następujący sposób:

- Na 4 plikach testowych wykonano 200 pomiarów dla instancji TSP jak i ATSP.
- Temperatura początkowa jak i ścieżka początkowa były stałe przez cały okres pomiaru to jest 200 pomiarów.
- Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - o Prawdopodobieństwo akceptacji = 0.95
 - o Generowanie sąsiedztwa = losowanie 2 wierzchołków i zamiana
 - Współczynnik korekcji długości epoki = 0.5
 - o Temperatura początkowa na podstawie różnicy
 - o Sposób wyboru sąsiedztwa = losowo 2 wierzchołki
 - Ścieżka początkowa = losowo

W przypadku chłodzenia geometrycznego wykonano po 200 pomiarów dla współczynnika od 0.1 do 0.9 co 0.1

W przypadku chłodzenia Boltzmanna wykonano 200 pomiarów.

4. Długość epoki

W przypadku badania długości epoki, badania prowadzone były w następujący sposób:

- Na 4 plikach testowych wykonano 200 pomiarów dla instancji TSP jak i ATSP.
- Temperatura początkowa jak i ścieżka początkowa były stałe przez cały okres pomiaru to jest 200 pomiarów.
- Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - o Prawdopodobieństwo akceptacji = 0.95
 - o Generowanie sąsiedztwa = losowanie 2 wierzchołków i zamiana
 - Współczynnik chłodzenia geometrycznego = 0.3
 - o Temperatura początkowa na podstawie różnicy
 - Sposób wyboru sąsiedztwa = losowo 2 wierzchołki
 - Ścieżka początkowa = losowo

W tym przypadku sposób wyznaczania długości epoki poprzez następujące wzory n/2; n; n*log(n); n*n/2; n*n gdzie n to wielkość instancji.

- 5. Sposobu wyboru sąsiedztwa
 - Losowo 2 wierzchołki:

Losowano 2 wierzchołki i zamieniano je ze sobą

• Zamiana z poprzedzającym:

Losowano wierzchołek w ścieżce i zamieniano go z poprzedzającym.

W przypadku badania sposobu wyboru sąsiedztwa badania prowadzone były w następujący sposób:

- Na 4 plikach testowych wykonano 200 pomiarów za każdym razem generując ścieżkę na nowo dla instancji TSP jak i ATSP.
- Temperatura początkowa była stała przez cały okres pomiaru to jest 200 pomiarów.
- Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - o Prawdopodobieństwo akceptacji = 0.95
 - Współczynnik korekcji długości epoki = 0.5
 - Współczynnik chłodzenia geometrycznego = 0.3
 - o Temperatura początkowa na podstawie różnicy
 - Ścieżka początkowa = losowo

W tym przypadku wygenerowano 200 ścieżek losowych i 200 ścieżek zachłannie dla każdego z plików a następnie wyznaczono trasy stosując zamianę 2 losowych i zamianę z poprzedzającym.

- 6. Dobór poziomu akceptacji gorszej drogi:
 - Na 4 plikach testowych wykonano 200 pomiarów dla instancji TSP jak i ATSP.
 - Temperatura początkowa i ścieżka były stałe przez cały okres pomiaru to jest 200 pomiarów.
 - Parametry konfiguracyjne dla obu schematów chłodzenia to:
 - o Prawdopodobieństwo akceptacji = 0.95
 - Współczynnik korekcji długości epoki = 0.5
 - O Współczynnik chłodzenia geometrycznego = 0.3
 - o Temperatura początkowa na podstawie różnicy
 - Ścieżka początkowa = losowo
 - Sposób wyboru sąsiedztwa = losowo 2 wierzchołki

W tym przypadku dla wygenerowanej ścieżki przeprowadzono po 200 pomiarów dla każdego z poziomów dokładności 90%, 95%, 99%, 99,9%.

Kolejnym etapem był pomiar złożoności czasowej algorytmu – dzięki uzyskanym wynikom z wcześniejszych pomiarów możliwe było wyznaczenie najlepszych parametrów. Co prawda można by dobierać dokładnie parametry dla poszczególnych instancji aby uzyskiwać możliwie najlepsze wyniki. Jednakże podjęto decyzję o zastosowaniu uniwersalnych kosztem złożoności czasowej.

Dlatego też do pomiarów poprawności i jakości wyniku jak i złożoności czasowej zastosowano poniższe parametry:

- o Prawdopodobieństwo akceptacji = 0.95
- Długość epoki generowana za pomocą wzoru n²
- Współczynnik chłodzenia geometrycznego = 0.5
- o Temperatura początkowa na podstawie różnicy
- Ścieżka początkowa = zachłanna
- Sposób wyboru sąsiedztwa = losowo 2 wierzchołki

Pomiary wykonano dla 4 plików TSP i ATSP po 10 pomiarów w celu wyznaczenia najlepszej możliwej trasy.

W ostatnim etapie badano już sam czas dla losowo generowanych instancji wielkości od 10 do 860 co 10. W tym przypadku nie mierzyliśmy już jakości a jedynie sam czas pomiarów. Badanie przeprowadzona na instancjach wielkości 1-10, 11-10 000, 10 001- 10 000 000 aby zbadać czy odległości między wierzchołkami w instancji mają wpływ na wynik. Dla małych instancji to jest od 10 do 100 stosowano metodę wygenerowania 5 różnych instancji i wykonania 100 powtórzeń pomiaru na podstawie których wyciągano średnią. Natomiast dla instancji od 110 do 370 stosowano metodę wygenerowania 5 różnych instancji i powtórzeniu pomiaru 10 razy. Dzięki czemu w sposób znaczący zaoszczędzono czas. Ze względu na tępo wzrostu czasu pomiarowego. Pomiary dla instancji 380 do 860 wykonane zostały poprzez wygenerowanie 1 instancji i powtórzenie pomiaru 5 razy. Dodatkowo na koniec zmierzono czas inicjalizacji w przypadku instancji maksymalnej badanej tj. 860 – ścieżka początkowa zachłanna t0 maksymalne. Ponieważ w całych pomiarach mierzyliśmy tylko czas samego algorytmu nie badając jaki jest stosunek czasu inicjalizacji do czasu algorytmu.

7. Wyniki 1. Pomiar parametru temperatury początkowej

Nazwa			G	ieo	Boltz	Wartość	
pliku	Tryb T0	Współczynnik	Średnia	Minimum	Średnia	Minimum	opty- malna
		0,1	44,00	44,00	41,01	41,00	39,00
		0,2	44,00	44,00	41,00	41,00	39,00
		0,3	44,00	44,00	41,00	41,00	39,00
		0,4	44,00	44,00	41,00	41,00	39,00
	AVG	0,5	45,13	44,00	41,38	41,00	39,00
br17.txt	AVG	0,6	47,00	47,00	42,00	42,00	39,00
		0,7	47,00	47,00	42,00	42,00	39,00
		0,8	47,00	47,00	42,00	42,00	39,00
		0,9	47,00	47,00	42,00	42,00	39,00
		1,0	47,00	47,00	42,00	42,00	39,00
	Ма	ksymalna różnica	41,00	41,00	41,00	41,00	39,00
		0,1	2414,62	2232,00	2343,22	2183,00	1613,00
		0,2	2399,27	2308,00	2358,54	2208,00	1613,00
		0,3	2573,08	2227,00	2502,31	2151,00	1613,00
		0,4	2207,31	2117,00	2166,56	2094,00	1613,00
	AVG —	0,5	2394,88	2117,00	2365,06	2094,00	1613,00
ftv44.txt		0,6	2303,83	2191,00	2218,23	2149,00	1613,00
		0,7	2270,70	2194,00	2163,13	2029,00	1613,00
		0,8	2207,67	2120,00	2191,71	2081,00	1613,00
		0,9	2375,66	2120,00	2298,48	2081,00	1613,00
		1,0	2433,73	2104,00	2364,94	2220,00	1613,00
	Ма	ksymalna różnica	2394,90	2226,00	2231,91	2068,00	1613,00
		0,1	3168,93	2964,00	3023,75	2823,00	1950,00
		0,2	3194,53	2868,00	3014,00	2800,00	1950,00
		0,3	3223,85	2963,00	3031,22	2848,00	1950,00
		0,4	3319,34	2926,00	3185,96	2796,00	1950,00
	A) (C	0,5	3319,83	2836,00	3174,01	2796,00	1950,00
ftv70.txt	AVG	0,6	3304,90	3032,00	3149,85	2836,00	1950,00
		0,7	3149,01	2622,00	3007,82	2737,00	1950,00
		0,8	3320,25	3075,00	3044,26	2893,00	1950,00
		0,9	3265,25	3070,00	3047,33	2871,00	1950,00
		1,0	3465,70	3265,00	3220,96	2998,00	1950,00
	Ма	ksymalna różnica	3122,49	2899,00	3027,94	2783,00	1950,00
		0,1	6412,41	5644,00	6051,01	5418,00	2755,00
ftv170.txt	AVG	0,2	6456,47	5789,00	6016,53	5333,00	2755,00
		0,3	6570,32	5950,00	6109,70	5335,00	2755,00

0,4	6497,52	5543,00	6067,70	5202,00	2755,00
0,5	6471,22	5801,00	6091,68	5364,00	2755,00
0,6	6562,30	5968,00	6074,66	5428,00	2755,00
0,7	6591,53	5952,00	6111,22	5434,00	2755,00
0,8	6483,54	5816,00	6077,61	5251,00	2755,00
0,9	6483,20	5796,00	6109,74	5426,00	2755,00
1,0	6500,65	5782,00	6042,77	5406,00	2755,00
Maksymalna różnica	6332,77	5766,00	5769,81	5026,00	2755,00

Tabela 1 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru temperatury początkowej instancji ATSP.

Nazwa pliku	Tryb T0	Współczynnik	Boltzmanna	Geo
		0,1	6,16	2,89
		0,2	6,10	2,94
		0,3	6,08	2,96
		0,4	6,03	3,00
	AVG	0,5	6,01	3,00
br17.txt	AVG	0,6	6,01	3,00
		0,7	6,01	3,00
		0,8	6,01	3,00
		0,9	6,00	3,00
		1,0	6,00	3,00
	Ma	ksymalna różnica	8,00	4,00
		0,1	9,00	5,00
		0,2	9,00	5,00
		0,3	9,00	5,00
		0,4	9,00	5,00
	AVG	0,5	9,00	5,00
ftv44.txt	AVG	0,6	9,00	5,00
		0,7	9,00	5,00
		0,8	9,00	5,00
		0,9	9,00	5,00
		1,0	9,00	5,00
	Ma	ksymalna różnica	10,00	5,00
		0,1	9,00	5,00
		0,2	9,00	5,00
		0,3	9,00	5,00
		0,4	9,00	5,00
ftv70.txt	AVG	0,5	9,00	5,00
		0,6	9,00	5,00
		0,7	9,00	5,00
		0,8	9,00	5,00
		0,9	9,00	5,00

		1,0	9,00	5,00
	М	aksymalna różnica	10,00	5,00
		0,1	9,00	5,00
		0,2	9,00	5,00
		0,3	9,00	5,00
	AVG	0,4	9,00	5,00
		0,5	9,00	5,00
ftv170.txt		0,6	9,00	5,00
		0,7	9,00	5,00
		0,8	9,00	5,00
		0,9	9,00	5,00
		1,0	9,00	5,00
	M	aksymalna różnica	10,00	5,00

Tabela 2 – Liczba epok w zależności od temperatury początkowej instancji ATSP.

Wykres 1 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji ATSP.

Wykres 2 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji ATSP.

Wykres 1 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji ATSP.

Wykres 4 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji ATSP.

	ما، س		Boltzr	nanna	G	eo	Wartość
Nazwa pliku	Tryb T0	Współczynnik	Średnia	Mini-	Średnia	Mini-	opty-
			Sreuma	mum	Sieuma	mum	malna
		0,1	10523,92	9960,00	10580,33	10100,00	7542,00
		0,2	10484,21	9105,00	10776,31	10221,00	7542,00
		0,3	10189,27	9442,00	10172,52	9314,00	7542,00
		0,4	10329,21	9296,00	10565,30	9892,00	7542,00
	AVG	0,5	10372,31	9296,00	10450,44	9976,00	7542,00
berlin52.tsp	7.00	0,6	10703,50	10010,00	10947,75	9921,00	7542,00
		0,7	9834,31	9506,00	10227,58	9363,00	7542,00
		0,8	10176,33	9632,00	10612,81	9803,00	7542,00
		0,9	9906,10	8782,00	10544,52	9189,00	7542,00
		1,0	10228,14	8749,00	10068,99	8590,00	7542,00
	Maksy	malna różnica	9509,57	8842,00	10267,03	9339,00	7542,00
		0,1	731,83	699,00	798,40	733,00	538,00
		0,2	762,00	715,00	813,89	743,00	538,00
		0,3	757,15	707,00	796,93	734,00	538,00
		0,4	787,25	707,00	847,12	734,00	538,00
	AVG	0,5	773,78	713,00	815,93	745,00	538,00
eil76.tsp		0,6	752,38	713,00	800,06	745,00	538,00
		0,7	752,36	696,00	801,00	748,00	538,00
		0,8	730,39	676,00	804,92	748,00	538,00
		0,9	743,95	688,00	780,05	700,00	538,00
		1,0	738,82	668,00	796,18	751,00	538,00
	Maksy	malna różnica	725,56	675,00	762,34	706,00	538,00
		0,1	38827,99	33801,00	40707,10	34324,00	21282,00
		0,2	39501,09	32826,00	41293,98	35467,00	21282,00
		0,3	38488,68	33644,00	40339,37	33730,00	21282,00
		0,4	38416,71	33665,00	40689,93	34060,00	21282,00
	AVG	0,5	39154,81	33665,00	41618,28	35190,00	21282,00
korA100.tsp	AVG	0,6	38196,31	33550,00	40631,32	35695,00	21282,00
		0,7	38016,58	33074,00	40145,92	35031,00	21282,00
		0,8	38625,74	33362,00	40213,26	33648,00	21282,00
		0,9	38553,40	33597,00	40338,93	34293,00	21282,00
		1,0	39133,93	32109,00	41440,59	35022,00	21282,00
	Maksy	malna różnica	34785,61	30069,00	38103,06	32971,00	21282,00
		0,1	3844,80	3520,00	4068,70	3580,00	1950,00
hra100 +a:-	A\/C	0,2	3871,40	3540,00	4053,55	3700,00	1950,00
brg180.tsp	AVG	0,3	3855,60	3530,00	4127,95	3730,00	1950,00
		0,4	3879,15	3530,00	4014,45	3670,00	1950,00

	0,5	3873,30	3520,00	4007,45	3660,00	1950,00
	0,6	3857,00	3580,00	4099,05	3730,00	1950,00
	0,7	3838,40	3490,00	4131,90	3680,00	1950,00
	0,8	3845,30	3570,00	4034,80	3710,00	1950,00
	0,9	3866,10	3540,00	4072,15	3620,00	1950,00
	1,0	3845,85	3590,00	4075,35	3690,00	1950,00
Maksy	malna różnica	3848,65	3590,00	4082,25	3580,00	1950,00

Tabela 3 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru temperatury początkowej instancji TSP.

Nazwa pliku	Tryb T0	Współczynnik	Boltzmanna	Geo
		0,1	11,00	6,00
1		0,2	11,00	6,00
		0,3	11,00	6,00
		0,4	11,00	6,00
	AVG	0,5	11,00	6,00
berlin52.tsp	AVG	0,6	11,00	6,00
		0,7	11,00	6,00
		0,8	11,00	6,00
		0,9	11,00	6,00
		1,0	11,00	6,00
	Maksy	malna różnica	12,00	7,00
		0,1	7,00	3,00
		0,2	7,00	3,00
	AVG	0,3	7,00	3,00
		0,4	7,00	3,00
		0,5	7,00	3,00
eil76.tsp		0,6	7,00	3,00
		0,7	7,00	3,00
		0,8	7,00	3,00
		0,9	7,00	3,00
		1,0	7,00	3,00
	Maksy	malna różnica	8,00	4,00
		0,1	12,00	7,00
		0,2	12,00	7,00
		0,3	12,00	7,00
		0,4	12,00	7,00
korA100.tsp	۸۷/۲	0,5	12,00	7,00
κοι Ατου.ιςρ	AVG	0,6	12,00	7,00
		0,7	12,00	7,00
		0,8	12,00	7,00
		0,9	12,00	7,00
		1,0	12,00	7,00

	Maksy	malna różnica	13,00	5,00
		0,1	13,00	8,00
		0,2	13,00	8,00
		0,3	13,00	8,00
		0,4	13,00	8,00
	AVG	0,5	13,00	8,00
brg180.tsp		0,6	13,00	8,00
		0,7	13,00	8,00
		0,8	13,00	8,00
		0,9	13,00	8,00
		1,0	13,00	8,00
	Maksy	malna różnica	14,00	8,00

Tabela 4 – Liczba epok w zależności od temperatury początkowej instancji TSP.

Wykres 5 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji TSP.

Wykres 6 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji TSP.

Wykres 7 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji TSP.

Wykres 8 – Średni i minimalny koszt w zależności od trybu generowania T0 i rodzaju instancji TSP.

2. Pomiar parametru generowania ścieżki początkowej:

Norwa aliluu	Truda Ćajajdi Dagasatkawai	Boltz	manna	(Geo	Wartość opty-	
Nazwa pliku	Tryb Ścieżki Początkowej	Średnia	Minimum	Średnia	Minimum	malna	
br17.txt	Losowo	41,45	39,00	44,90	39,00	39,00	
DI 17.txt	Zachłannie	41,87	39,00	39,96	39,00	39,00	
ftv44.txt	Losowo	2191,31	1915,00	2339,25	1931,00	1613,00	
11144.181	Zachłannie	1967,12	1924,00	1967,12	1924,00	1613,00	
ftv70.txt	Losowo	2941,06	2451,00	3222,01	2729,00	1950,00	
TLV/U.LXL	Zachłannie	2332,89	2273,00	2347,61	2293,00	1950,00	
ft. 470 t. 4	Losowo	5589,73	4877,00	6356,10	5702,00	2755,00	
ftv170.txt	Zachłannie	3710,80	3415,00	3761,39	3420,00	2755,00	

Tabela 5 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru temperatury początkowej instancji ATSP.

Namus alilus	Trub Ćajażki Dogratkowaj	Boltzr	manna	G	Wartość	
Nazwa pliku	Tryb Ścieżki Początkowej	Średnia	Minimum	Średnia	Minimum	optymalna
berlin52.tsp	Losowo	9567,19	8359,00	10279,68	8633,00	7542,00
beriiri32.tsp	Zachłannie	8816,55	8102,00	8786,04	8040,00	7542,00
oil76 ton	Losowo	699,02	636,00	771,40	693,00	538,00
eil76.tsp	Zachłannie	614,50	590,00	626,00	595,00	538,00
korA100.tsp	Losowo	34529,25	29242,00	39031,67	32102,00	21282,00
KOTATOU.LSP	Zachłannie	24380,42	22979,00	24455,21	23027,00	21282,00
brg180.tsp	Losowo	3827,50	3430,00	4124,65	3760,00	1950,00
	Zachłannie	3819,95	3510,00	3926,90	3620,00	1950,00

Tabela 6 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru temperatury początkowej instancji TSP.

Wykres 9 – Średni i minimalny koszt w zależności od trybu generowania ścieżki początkowej i rodzaju instancji ATSP.

Wykres 10 – Średni i minimalny koszt w zależności od trybu generowania ścieżki początkowej i rodzaju instancji TSP.

3. Pomiar parametru sposobu chłodzenia:

Nazwa pliku	Tryb Chłodzenia	Współczynnik alfa	Średnia	Minimum	Wartość opty- malna
		0,1	47,00	47,00	39,00
		0,2	57,26	47,00	39,00
		0,3	59,00	59,00	39,00
		0,4	59,00	59,00	39,00
	Geo	0,5	59,00	59,00	39,00
br17.txt		0,6	39,00	39,00	39,00
		0,7	39,00	39,00	39,00
		0,8	44,00	44,00	39,00
		0,9	39,00	39,00	39,00
	Bol	tzmann	44,00	44,00	39,00
		0,1	2161,00	2161,00	1613,00
		0,2	2261,80	2161,00	1613,00
		0,3	2372,00	2372,00	1613,00
		0,4	2501,34	2242,00	1613,00
C. 44.	Geo	0,5	2440,52	2382,00	1613,00
ftv44.txt		0,6	2012,02	1906,00	1613,00
		0,7	2202,37	1906,00	1613,00
		0,8	2187,66	2125,00	1613,00
		0,9	2175,15	1995,00	1613,00
	Bol	tzmann	2218,74	2159,00	1613,00
		0,1	3356,15	3272,00	1950,00
		0,2	3148,88	3108,00	1950,00
		0,3	3175,32	3096,00	1950,00
		0,4	3288,18	3058,00	1950,00
ftv70.txt	Geo	0,5	3068,24	3015,00	1950,00
ILV/U.LXL		0,6	3092,35	2619,00	1950,00
		0,7	3053,47	2794,00	1950,00
		0,8	3011,33	2721,00	1950,00
		0,9	2800,23	2482,00	1950,00
	Bol	tzmann	3077,98	2856,00	1950,00
		0,1	6871,13	6401,00	2755,00
		0,2	6622,08	5902,00	2755,00
		0,3	6375,57	5903,00	2755,00
		0,4	6191,65	5380,00	2755,00
ftv170.txt	Geo	0,5	6016,22	5420,00	2755,00
1171/0.171		0,6	5880,07	5208,00	2755,00
		0,7	5641,76	5130,00	2755,00
		0,8	5531,37	4975,00	2755,00
		0,9	5249,16	4608,00	2755,00
	Bol	tzmann	5871,35	5188,00	2755,00

Tabela 7 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru sposobu chłodzenia instancji ATSP.

Nazwa pliku	Tryb Chłodzenia	Współczynnik alfa	Średnia liczba stopni
		0,1	2,00
		0,2	3,00
		0,3	4,00
		0,4	5,00
br17.txt	Geo	0,5	7,00
DI 17.txt		0,6	9,00
		0,7	13,00
		0,8	20,00
		0,9	41,00
	Bolt	tzmann	8,00
		0,1	3,00
		0,2	4,00
		0,3	5,00
		0,4	7,00
£44.4 44	Geo	0,5	9,00
ftv44.txt		0,6	12,00
		0,7	17,00
		0,8	26,00
		0,9	55,00
	Bolt	10,00	
		0,1	3,00
		0,2	4,00
		0,3	5,00
		0,4	7,00
ft. 70 t. t	Geo	0,5	9,00
ftv70.txt		0,6	12,00
		0,7	17,00
		0,8	27,00
		0,9	56,00
	Bolt	tzmann	10,00
		0,1	3,00
		0,2	4,00
	Geo	0,3	5,00
fty/170 ±		0,4	7,00
ftv170.txt		0,5	9,00
		0,6	12,00
		0,7	17,00
		0,8	27,00

Boltzmann	10.00
0,9	56,00

Tabela 8 – Wartości średnia liczny stopni dla testów wyboru sposobu chłodzenia instancji ATSP.

Wykres 11 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji ATSP.

Wykres 12 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji ATSP.

Wykres 13 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji ATSP.

Wykres 14 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji ATSP.

Nazwa pliku	Tryb Chłodzenia	Współczynnik alfa	Średnia	Mini- mum	Wartość optymalna
berlin52.tsp	Geo	0,1	11231,64	11165,00	7542,00
		0,2	10870,54	10012,00	7542,00
		0,3	9815,40	9788,00	7542,00
		0,4	9952,50	9819,00	7542,00
		0,5	9803,65	9666,00	7542,00
		0,6	9958,10	9453,00	7542,00
		0,7	10190,23	9809,00	7542,00
		0,8	9511,41	8820,00	7542,00

		0,9	9395,40	8755,00	7542,00
	В	oltzmann	9950,74	9571,00	7542,00
1176		0,1	886,39	884,00	538,00
		0,2	805,42	774,00	538,00
		0,3	779,78	758,00	538,00
		0,4	748,53	717,00	538,00
	Geo	0,5	737,25	705,00	538,00
eil76.tsp		0,6	722,20	673,00	538,00
		0,7	739,65	706,00	538,00
		0,8	695,65	642,00	538,00
		0,9	682,86	640,00	538,00
	В	oltzmann	739,39	687,00	538,00
	Geo	0,1	39457,52	36612,00	21282,00
		0,2	40081,56	38060,00	21282,00
		0,3	38340,09	36191,00	21282,00
		0,4	38194,53	35720,00	21282,00
korA100.tsp		0,5	37406,43	34519,00	21282,00
korA100.tsp		0,6	36649,92	32850,00	21282,00
		0,7	36371,56	31197,00	21282,00
		0,8	34338,28	29531,00	21282,00
		0,9	32190,68	26986,00	21282,00
	В	oltzmann	35297,50	30568,00	21282,00
		0,1	5162,75	4150,00	1950,00
		0,2	4869,70	4060,00	1950,00
		0,3	4158,85	3840,00	1950,00
		0,4	4022,95	3660,00	1950,00
hra190 tan	Geo	0,5	3749,15	3510,00	1950,00
brg180.tsp		0,6	3621,80	3360,00	1950,00
		0,7	3480,15	3240,00	1950,00
		0,8	3337,90	3060,00	1950,00
		0,9	3227,00	2900,00	1950,00
		oltzmann	3860,20	3630,00	1950,00

Tabela 9 – Wartości średnie i minimalne kosztów przejścia dla testów wyboru sposobu chłodzenia instancji TSP.

Nazwa pliku	Tryb Chłodzenia	Współczynnik alfa	Średnia liczba stopni
berlin52.tsp	Geo	0,1	4,00
		0,2	5,00
		0,3	7,00
		0,4	9,00
		0,5	11,00
		0,6	15,00

		0,7	21,00
		0,8	34,00
		0,9	71,00
	В	oltzmann	12,00
		0,1	2,00
		0,2	3,00
		0,3	4,00
		0,4	5,00
a:176 tan	Geo	0,5	7,00
eil76.tsp		0,6	9,00
		0,7	13,00
		0,8	20,00
		0,9	42,00
	В	oltzmann	8,00
	Geo	0,1	4,00
		0,2	6,00
		0,3	7,00
		0,4	10,00
korA100.tsp		0,5	13,00
KOTATOO.tsp		0,6	17,00
		0,7	24,00
		0,8	38,00
	0,9		80,00
	В	oltzmann	13,00
		0,1	5,00
		0,2	6,00
		0,3	8,00
		0,4	11,00
brg180.tsp	Geo	0,5	14,00
nigiou.tsh		0,6	19,00
		0,7	26,00
		0,8	42,00
		0,9	88,00
	B	oltzmann	14,00

Tabela 10 – Wartości średnia liczny stopni dla testów wyboru sposobu chłodzenia instancji TSP.

Wykres 15 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji TSP.

Wykres 16 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji TSP.

Wykres 17 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji TSP.

Wykres 18 – Średni i minimalny koszt w zależności od sposobu chłodzenia i rodzaju instancji TSP.

4. Pomiar parametru długości epoki:

Norwa nliku	Tryb dłu- Boltzmann		manna	G	eo	Wartość op-	Przybliżona dłu-
Nazwa pliku	gości epoki	Średnia	Minimum	Średnia	Minimum	tymalna	gość epoki
	n/2	54,00	54,00	118,00	118,00	39,00	9
	n	51,00	51,00	54,00	54,00	39,00	17
br17.txt	n*In(n)	40,00	40,00	47,00	47,00	39,00	48
	n*n/2	39,00	39,00	40,00	40,00	39,00	145
	n*n	39,00	39,00	39,00	39,00	39,00	289
	n/2	4038,00	4038,00	4575,00	4575,00	1613,00	22
	n	3490,27	3278,00	3944,40	3570,00	1613,00	44
ftv44.txt	n*In(n)	2785,00	2785,00	2925,00	2925,00	1613,00	167
	n*n/2	2192,83	2121,00	2257,57	2163,00	1613,00	968
	n*n	2113,83	2018,00	2216,70	2149,00	1613,00	1936
	n/2	5918,00	5918,00	6456,00	6456,00	1950,00	35
	n	5517,00	5517,00	5642,00	5642,00	1950,00	70
ftv70.txt	n*In(n)	4038,36	4035,00	4165,44	4143,00	1950,00	297
	n*n/2	3042,52	2846,00	3099,68	2740,00	1950,00	2450
	n*n	2871,83	2591,00	3038,40	2647,00	1950,00	4900
ftv170.txt	n/2	14660,60	14256,00	16639,08	16490,00	2755,00	85
	n	12868,92	12733,00	15036,81	14842,00	2755,00	170
	n*ln(n)	9305,96	9117,00	10880,29	10831,00	2755,00	873
	n*n/2	5810,25	5261,00	6364,06	5608,00	2755,00	14450
	n*n	5400,83	4587,00	5830,67	4938,00	2755,00	28900

Tabela 11 – Wartości średnie i minimalne kosztów przejścia oraz długość epoki dla testów długości epoki instancji ATSP.

Wykres 19 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji ATSP.

Wykres 20 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji ATSP.

Wykres 22 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji ATSP.

Nia	To be allowed as a solid	Boltzmanna		Geo		Wartość op-	Przybliżona dłu-
Nazwa pliku	Tryb długości epoki	Średnia	Minimum	Średnia	Minimum	tymalna	gość epoki
	n/2	16393,00	16393,00	18865,00	18865,00	7542,00	26
	n	14914,00	14914,00	17219,00	17219,00	7542,00	52
berlin52.tsp	n*ln(n)	12045,35	11945,00	13159,81	11831,00	7542,00	205
	n*n/2	9736,16	9054,00	10171,72	9684,00	7542,00	1352
	n*n	9497,60	8934,00	9601,94	9045,00	7542,00	2704
	n/2	1471,67	1466,00	1779,54	1761,00	538,00	38
	n	1252,00	1252,00	1452,00	1452,00	538,00	76
eil76.tsp	n*ln(n)	966,98	953,00	1110,13	1100,00	538,00	329
	n*n/2	733,94	674,00	776,35	712,00	538,00	2888
	n*n	706,97	628,00	734,09	671,00	538,00	5776
	n/2	83005,20	82176,00	99807,40	97093,00	21282,00	50
	n	73043,00	73043,00	82963,00	82963,00	21282,00	100
korA100.tsp	n*ln(n)	50226,64	47993,00	56307,04	52866,00	21282,00	461
	n*n/2	36598,56	32729,00	38903,61	32603,00	21282,00	5000
	n*n	33604,50	28902,00	37124,51	28563,00	21282,00	10000
brg180.tsp	n/2	229384,40	226100,00	306423,60	281820,00	1950,00	90
	n	173518,15	157980,00	219793,10	197960,00	1950,00	180
	n*In(n)	54725,50	46670,00	85981,95	64000,00	1950,00	935
	n*n/2	3838,50	3490,00	4108,45	3750,00	1950,00	16200
	n*n	3531,70	3190,00	3733,60	3400,00	1950,00	32400

Tabela 12 – Wartości średnie i minimalne kosztów przejścia oraz długość epoki dla testów długości epoki instancji TSP.

Wykres 23 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji TSP.

Wykres 24 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji TSP.

Wykres 25 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji TSP.

Wykres 26 – Średni i minimalny koszt w zależności od długości epoki i rodzaju instancji TSP.

Wykres 27 – Porównanie krótkich długości epok.

Wykres 28 – Porównanie wszystkich długości epok.

5. Pomiar parametru wyboru sąsiedztwa:

Nazwa	Tryb Generowa-		Boltzmanna		Ge	90	Wartość
pliku	nia ścieżki	Tryb wyboru sąsiedztwa	Średnia	Mini- mum	Średnia	Mini- mum	opty- malna
	1	Losowo 2 wierzchołki	41,19	39,00	44,98	39,00	39,00
br17 +v+	Losowa	Zamiana z poprzedzającym	109,14	52,00	110,55	52,00	39,00
br17.txt	7a ah ka maa	Losowo 2 wierzchołki	39,00	39,00	39,00	39,00	39,00
	Zachłanna	Zamiana z poprzedzającym	99,00	99,00	99,00	99,00	39,00
	Losowa	Losowo 2 wierzchołki	2195,65	1849,00	2338,29	2054,00	1613,00
f+, (1.1 +).+	LOSOWa	Zamiana z poprzedzającym	4586,66	4028,00	4586,82	4028,00	1613,00
ftv44.txt	Zachłanna	Losowo 2 wierzchołki	1915,31	1892,00	1919,32	1892,00	1613,00
	Zachłanna	Zamiana z poprzedzającym	1943,29	1873,00	1943,29	1873,00	1613,00
ftv70.txt	Losowa	Losowo 2 wierzchołki	2941,10	2525,00	3203,19	2614,00	1950,00

		Zamiana z poprzedzającym	7287,04	6481,00	7289,45	6481,00	1950,00
	Zachłanna	Losowo 2 wierzchołki	2381,08	2300,00	2404,98	2307,00	1950,00
	Zachłanna	Zamiana z poprzedzającym	2395,35	2327,00	2395,35	2327,00	1950,00
	Losowa	Losowo 2 wierzchołki	5603,70	4887,00	6415,61	5569,00	2755,00
£170 ±t		Zamiana z poprzedzającym	19428,23	17887,00	19429,85	17887,00	2755,00
ftv170.txt		Losowo 2 wierzchołki	3689,74	3428,00	3733,76	3382,00	2755,00
	Zachłanna	Zamiana z poprzedzającym	3980,26	3538,00	3974,76	3538,00	2755,00

Tabela 13 – Wartości średnie i minimalne kosztów przejścia dla testów długości epoki instancji ATSP.

Wykres 29 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji ATSP

Wykres 30 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji ATSP

Wykres 31 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji ATSP

Wykres 32 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji ATSP

	Tryb Gene-		Boltz	manna	Ge	0	
Nazwa pliku	rowania ścieżki	Tryb wyboru sąsiedztwa	Średnia	Minimum	Średnia	Minimum	Wartość optymalna
	Losowa	Losowo 2 wierzchołki	9482,07	8458,00	10146,76	8749,00	7542,00
horlinE2 ton	LUSUWa	Zamiana z poprzedzającym	22292,96	17782,00	22350,96	17782,00	7542,00
berlin52.tsp	Zachłanna	Losowo 2 wierzchołki	8610,11	8294,00	9017,55	8447,00	7542,00
	Zachłanna	Zamiana z poprzedzającym	9247,75	8702,00	9369,31	8740,00	7542,00
	Losowa	Losowo 2 wierzchołki	698,14	600,00	768,86	675,00	538,00
oil76 ton	LUSUWa	Zamiana z poprzedzającym	1867,83	1513,00	1868,68	1513,00	538,00
eil76.tsp	Zachłanna	Losowo 2 wierzchołki	610,09	585,00	632,08	597,00	538,00
	Zachłanna	Zamiana z poprzedzającym	662,88	605,00	664,86	605,00	538,00
	Lacaura	Losowo 2 wierzchołki	34384,82	28122,00	39000,71	31744,00	21282,00
leanA100 ton	Losowa	Zamiana z poprzedzającym	120483,34	101846,00	120517,77	101846,00	21282,00
korA100.tsp	Zachłanca	Losowo 2 wierzchołki	24140,24	22565,00	24415,00	22648,00	21282,00
	Zachłanna	Zamiana z poprzedzającym	25074,52	23897,00	25591,07	24380,00	21282,00

Losowa		Losowo 2 wierzchołki	3828,75	3530,00	4213,05	3720,00	1950,00
h == 1 00 to ==	LUSUWa	Zamiana z poprzedzającym	450283,60	345930,00	450283,65	345930,00	1950,00
brg180.tsp	7	Losowo 2 wierzchołki	3813,30	3520,00	3927,95	3610,00	1950,00
Zachł	Zachłanna	Zamiana z poprzedzającym	14212,85	8910,00	14223,35	8950,00	1950,00

Tabela 14 – Wartości średnie i minimalne kosztów przejścia dla testów długości epoki instancji TSP.

Wykres 33 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji TSP

Wykres 34 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji TSP

Wykres 35 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji TSP

Wykres 36 – Średni i minimalny koszt w zależności od wyboru sąsiedztwa i rodzaju instancji TSP

6. Pomiar parametru akceptacji pogorszenia wyniku:

Nazwa	Poziom	Boltz	manna	C	Geo	Wartość
pliku	akceptacji	Średnia	Minimum	Średnia	Minimum	optymalna
	90,0%	39,00	39,00	42,00	42,00	39,00
br17.txt	95,0%	43,15	41,00	58,00	58,00	39,00
DI 17.txt	99,0%	56,00	56,00	56,00	56,00	39,00
	99,9%	56,00	56,00	56,00	56,00	39,00
	90,0%	2210,58	2196,00	2535,15	2442,00	1613,00
ftv44.txt	95,0%	2019,96	1989,00	2119,22	2071,00	1613,00
11144.111	99,0%	2186,08	2158,00	2235,11	2210,00	1613,00
	99,9%	2100,78	2065,00	2266,83	2157,00	1613,00
ftv70.txt	90,0%	2835,47	2681,00	3067,18	2973,00	1950,00
TLV/U.LXL	95,0%	3027,18	2904,00	3204,06	3010,00	1950,00

	99,0%	3157,31	3073,00	3313,26	3113,00	1950,00
	99,9%	3077,80	2748,00	3241,50	2809,00	1950,00
	90,0%	5428,37	4904,00	6124,34	5507,00	2755,00
ftv170.txt	95,0%	5814,95	5166,00	6412,60	5281,00	2755,00
110170.1X1	99,0%	6074,86	5290,00	6620,20	5500,00	2755,00
	99,9%	6189,90	5192,00	6656,20	5735,00	2755,00

Tabela 15 – Wartości średnie i minimalne kosztów przejścia dla poziomów akceptacji instancji ATSP.

Wykres 37 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji ATSP

Wykres 38 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji ATSP

Wykres 39 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji ATSP

Wykres 40 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji ATSP

Norwa aliku	Daniam aksantasii	Boltz	manna	G	Wartość	
Nazwa pliku	Poziom akceptacji	ceptacji z z	optymalna			
	90,0%	9327,49	9121,00	10060,92	9720,00	7542,00
harlinE2 tan	95,0%	10185,34	9759,00	10627,26	10463,00	7542,00
berlin52.tsp	99,0%	10286,00	10035,00	10425,26	10066,00	7542,00
	99,9%	10372,84	9561,00	10357,47	10072,00	7542,00
	90,0%	679,83	650,00	742,18	708,00	538,00
eil76.tsp	95,0%	755,35	678,00	786,07	723,00	538,00
eii/o.tsp	99,0%	743,58	706,00	771,08	718,00	538,00
	99,9%	736,51	677,00	755,81	712,00	538,00
	90,0%	32879,57	28214,00	36205,89	31214,00	21282,00
karA100 tan	95,0%	36144,78	31164,00	39814,85	34031,00	21282,00
korA100.tsp	99,0%	39421,40	31338,00	41681,18	37973,00	21282,00
	99,9%	41995,25	35681,00	42204,36	35078,00	21282,00

	90,0%	3934,40	3690,00	4241,15	3770,00	1950,00
h == 100 += =	95,0%	3854,80	3580,00	4127,50	3740,00	1950,00
brg180.tsp	99,0%	3737,30	3400,00	4087,30	3660,00	1950,00
	99,9%	3601,25	3290,00	4027,50	3580,00	1950,00

Tabela 16 – Wartości średnie i minimalne kosztów przejścia dla poziomów akceptacji instancji TSP.

Wykres 41 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji TSP

Wykres 42 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji TSP

Wykres 43 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji TSP

Wykres 44 – Średni i minimalny koszt w zależności od wyboru poziomu akceptacji pogorszenia wyniku i rodzaju instancji TSP

7. Porównanie jakości wyników i poziomów błędu

	ATSP								
Nazwa Pliku	Koszt uzyskany	Koszt oczekiwany	Poziom Błędu						
tsp_6_1.txt	132	132	0%						
tsp_6_2.txt	80	80	0%						
br17.txt	39	39	0%						
ftv44.txt	1973	1613	22%						
ftv70.txt	2279	1950	17%						
ftv170.txt	3565	2755	29%						
rbg443.txt	2760	2720	1%						

Tabela 17 – Wartości kosztów uzyskanych i oczekiwanych oraz poziom błędu dla instancji ATSP.

Wykres 45 – Poziomy błędów wyników uzyskanych od optymalnych dla poszczególnych instancji ATSP

		TSP	
Nazwa Pliku	Koszt uzyskany	Koszt oczekiwany	Poziom Błędu
tsp_10.txt	257	212	21%
tsp_12.txt	264	264	0%
tsp_13.txt	301	269	12%
tsp_14.txt	282	282	0%
tsp_15.txt	291	291	0%
tsp_17.txt	39	39	0%
berlin52.txt	8724	7542	16%
brg180.txt	2970	1950	52%
eil76.txt	583	538	8%
korA100.txt	23944	21282	13%
a280.txt	3025	2579	17%

Tabela 18 – Wartości kosztów uzyskanych i oczekiwanych oraz poziom błędu dla instancji TSP.

Wykres 46 – Poziomy błędów wyników uzyskanych od optymalnych dla poszczególnych instancji TSP

Geo Boltzmann Czas inicjalizacji

Wielkość instancji	1-10	11-10 000	10 001 - 10 000 000	1-10	11-10 000	10 001 - 10 000 000	1-10	11-10 000	10 001-10 000 000
10	0,095	0,308	0,549	0,106	0,286	0,447	0,046	0,044	0,043
20	0,423	1,554	2,786	0,529	1,551	2,290	0,152	0,156	0,195
30	1,203	4,394	7,706	1,489	4,327	6,356	0,394	0,333	0,360
40	2,486	9,042	15,901	3,095	9,038	13,166	0,605	0,704	0,731
50	4,495	16,229	28,258	5,617	16,081	23,518	1,157	1,167	1,070
60	7,292	26,318	45,934	9,141	26,115	37,972	1,394	1,381	1,490
70	11,091	40,590	69,675	13,890	39,674	58,077	1,667	1,707	1,700
80	16,015	57,747	99,916	19,963	57,381	82,589	2,317	2,375	2,295
90	22,244	79,630	138,760	27,784	79,337	114,664	2,847	2,749	2,878
100	29,905	106,755	185,319	37,166	106,186	153,496	3,551	3,511	3,737
110	39,159	138,548	240,678	48,366	137,285	199,188	4,360	4,243	4,331
120	49,705	177,105	306,214	62,184	176,042	253,472	5,092	5,287	5,042
130	62,478	222,554	386,670	77,960	222,090	318,619	5,985	5,992	6,096
140	77,417	274,961	475,008	96,106	272,628	396,231	7,193	7,142	7,121
150	93,297	332,428	578,179	116,228	335,779	479,231	9,808	9,593	8,442
160	112,515	401,861	693,127	141,390	399,535	574,891	12,116	9,970	9,894
170	134,152	476,183	830,081	167,291	476,182	683,644	11,843	11,633	10,936
180	157,678	565,529	973,697	197,892	564,628	804,808	11,959	11,967	12,232
190	185,383	660,826	1140,273	231,964	655,874	945,647	14,118	14,528	14,001
200	216,627	767,079	1333,045	269,802	763,425	1103,328	15,359	14,963	15,231
210	246,042	881,432	1518,783	308,888	878,117	1261,131	17,053	17,681	17,001
220	284,421	1010,675	1744,585	356,946	1005,344	1444,411	18,766	18,500	18,514
230	336,313	1196,538	2109,208	422,025	1241,460	1713,269	21,126	20,920	20,534
240	375,364	1333,849	2459,564	469,637	1323,428	1893,576	22,550	22,160	22,637
250	414,638	1470,459	2533,390	520,155	1457,422	2121,934	24,741	24,482	24,258
260	463,660	1655,999	2840,504	581,496	1640,339	2347,848	25,995	27,023	26,480
270	519,103	1839,993	3173,949	646,274	1832,464	2628,464	28,780	28,367	28,947
280	595,802	2128,157	3656,605	768,019	2114,237	3075,674	32,222	31,660	31,372
290	659,125	2346,759	4132,213	836,949	2316,621	3366,184	35,600	34,271	33,484
300	737,115	2603,448	4525,936	909,015	2588,503	3722,143	37,580	36,647	37,442
310	820,173	2924,651	4948,824	1021,415	2930,946	4104,369	38,561	39,438	38,044
320	890,533	3098,545	5500,706	1094,593	3100,043	4415,125	41,398	41,153	41,922
330	937,727	3346,028	5754,829	1171,769	3329,481	4769,586	43,453	43,958	43,754
340	1055,040	3701,989	6378,930	1300,222	3661,676	5370,615	45,911	47,047	47,549
350	1291,608	4196,790	7169,071	1520,861	4132,134	5936,149	50,088	50,627	50,305
360	1297,868	4541,233	7809,057	1645,442	4486,743	6386,836	52,631	53,374	54,361
370	1377,056	4846,161	8264,329	1687,573	4837,287	6895,187	57,716	57,392	57,068
380	1427,972	5067,118	8750,947	1779,835	5144,723	7379,389	59,396	60,401	60,597
390	1550,809	5477,402	9472,710	1927,708	5467,549	7836,282	63,191	63,747	63,455
400	1656,403	5924,613	10155,695	2071,210	5877,626	8409,406	66,316	66,319	66,698
410	1805,628	6399,328	10960,628	2233,008	6349,656	9104,016	70,112	70,767	71,716
420	1933,188	6940,360	11904,512	2410,898	6869,824	9866,285	74,321	75,127	72,237

430	2136,548	7324,604	12663,155	2592,739	7292,811	10500,547	77,225	78,248	77,115
440	2211,054	7893,907	13601,868	2836,595	7886,845	11305,039	82,114	82,296	80,339
450	2368,489	8422,973	14523,012	2960,889	8429,005	12054,910	85,939	85,043	86,972
460	2539,695	8969,972	16051,538	3165,825	8924,497	13266,211	90,288	91,541	89,501
470	2851,194	9956,530	17142,327	3497,659	9954,979	14551,495	94,030	93,729	95,757
480	3016,324	10646,403	17784,221	3698,468	11088,433	14650,183	98,908	98,454	98,340
490	3084,526	10881,809	18768,743	3846,206	10828,059		103,620	104,425	106,224
500	3275,618	11611,191	20015,525	4076,903	11549,844	16645,264	106,929	108,716	107,564
510	3483,148	12340,336	21178,589	4322,768	12251,781	17588,851	112,286	113,161	114,466
520	3692,724	13005,446	22527,801	4585,434	12947,329	18688,739	117,154	117,094	118,175
530	3901,211	13792,619	24336,486	4848,214	13742,283	20440,762	123,896	124,417	124,337
540	4294,387	15144,755	26192,247	5303,951	15201,038	21731,413	127,035	126,998	127,018
550	4509,297	16135,382	27638,278	5596,474	16551,310	22854,894	132,626	134,769	133,787
560	4816,431	16893,884	29335,153	5943,378	16910,146	24373,966	141,937	140,737	140,911
570	5196,567	18733,802	30758,484	6276,936	17903,089	25467,580	143,103	146,438	145,481
580	5580,335	18972,913	32901,951	6675,277	18909,930	27788,547	149,999	149,819	154,332
590	5627,511	19887,711	34121,502	7086,617	19841,171	28276,078	158,390	159,197	163,467
600	6583,721	21121,935	35797,360	7597,941	21236,973	29692,974	163,125	163,746	162,257
610	6294,775	22120,765	37890,557	7843,764	21724,558	31987,732	169,160	168,984	168,892
620	6643,745	23028,561	39621,695	8104,502	22874,160	33117,640	173,138	171,330	175,255
630	6885,782	24973,895	41729,134	8545,678	24207,528	34591,377	180,330	180,002	178,023
640	7250,132	25336,857	44924,499	8941,204	25231,622	36173,418	189,743	190,279	189,413
650	7601,404	26756,948	46772,851	9434,011	27201,233	38491,484	190,820	192,596	193,206
660	8080,083	28076,105	47874,651	9898,743	27499,892	40361,224	203,446	203,979	203,649
670	8354,204	29421,176	50574,315	10245,748	29097,324	41882,898	206,754	206,502	208,518
680	8705,162	30739,085	52633,753	10856,172	30448,936	44112,979	213,417	214,483	215,856
690	9001,525	31863,273	55185,415	11177,609	31717,926	45493,120	225,272	225,294	228,423
700	9470,919	33397,752	57244,001	11754,584	33252,406	48096,044	227,131	230,017	228,828
710	9848,756	34684,907	59618,383	12187,619	34520,654	50958,191	236,357	237,108	238,096
720	10446,626	36667,740	63106,556	12955,541	35911,711	51442,450	240,045	243,276	243,179
730	10867,343	38188,963	65726,869	13472,561	37542,673	54166,297	248,700	252,840	250,025
740	11180,918	39286,180	67747,482	13915,456	39921,301	56251,854	259,038	259,046	259,393
750	11771,155	40914,152	70258,698	15245,256	40927,632	58808,985	265,277	266,813	267,302
760	12185,541	43334,560	85970,992	15072,097	43093,623	82786,297	274,088	278,454	276,809
770	17386,015	60049,012	76500,914	21896,419	50060,457	63331,775	282,093	286,026	284,441
780	13200,329	46037,195	79235,588	16369,854	46454,624	65696,567	288,853	295,214	290,307
790	13705,231	48584,589	82676,696	16972,658	47799,975	91670,962	298,692	302,228	304,268
800	20657,635	49338,921	85245,257	18047,100	49845,315	71305,718	308,680	315,344	317,031
810	14618,465	51754,111	89186,858	18341,177	51404,052	73205,354	321,796	323,674	319,636
820	15227,617	53786,525	92328,419	19111,043	53295,570	76021,182	326,655	328,798	328,627
830	15848,617	55643,514	95543,884	19674,924	55553,224	79900,587	342,512	344,050	343,568
840	16453,275	57760,683	98722,169	20370,052	58170,357	82679,162	345,981	348,592	345,111
850	17059,229	59260,298	103182,391	21127,185	59385,795	84895,407	357,366	362,689	361,201
860	18142,116	61814,966	106962,511	22117,002	61650,889	88373,399	374,161	380,356	372,356

Tabela 19 – Czas działania algorytmu oraz czasu inicjalizacji w zależności od wielkości instancji w milisekundach

Wykres 47 – Zestawienie czasu algorytmu i inicjalizacji w zależności od wielkości instancji.

Wykres 48 – Zestawienie czasu algorytmu w zależności od wielkości instancji dla chłodzenia geometrycznego.

Wykres 49 – Zestawienie czasu algorytmu w zależności od wielkości instancji dla chłodzenia Boltzmanna.

Wykres 50 – Stosunek prętowy czasu inicjalizacji do czasu algorytmu.

Wykres 51 – Porównanie złożoności czasowej algorytmów

8. Analiza wyników i wnioski

Analizując powyższe dane możemy wyciągnąć wiele ciekawych wniosków.

Zacznijmy od wpływu parametrów sterujących na jakość wyniku i złożoność czasową:

1. Temperatura początkowa:

Analizując tabele od 1 do 4 i wykresy od 1 do 8 możemy zaobserwować że sposób wyznaczania temperatury początkowej nie ma dużego wpływu na jakość wyniku. Wyniki uzyskane na podstawie temperatury początkowej jako maksymalnej różnicy jak i jako średniej z *n* próbek są bardzo zbliżone. Nieznacznie lepsze wyniki uzyskujemy w przypadku temperatury początkowej jako maksymalnej różnicy. Przyczyną i skutkiem takiego stanu jest cykl pomiarowy najczęściej dłuższy o jedną epokę.

2. Ścieżka początkowa:

Analizując tabelę od 5 do 6 i wykresy od 9 do 10 obserwujemy że wybór ścieżki początkowej ma znaczący wpływ na jakość wyniku dzięki czemu może mieć wpływ na czas pracy algorytmu. Wynika to z tego, że początkowa trasa sama w sobie jest już w jakimś stopniu optymalną ścieżką. W skutek czego algorytm tylko poprawia ścieżkę. Z tego powodu możemy zmniejszyć długość trwania epoki, a uzyskiwane wyniki powinny być wciąż bliskie wartości optymalnej. Dlatego też pomimo trochę większego czasu inicjalizacji stosowanie takiego podejścia może mieć ogromny wpływ na całkowity czas. Obserwujemy to na wykresie 50, który pokazuje, że czas samej inicjalizacji w stosunku do czasu trwania algorytmu dla dużych instancji jest bardzo niewielki.

3. Sposób chłodzenia:

Analizując tabelę od 7 do 10 i wykresy od 11 do 18 obserwujemy, że wybór sposobu chłodzenia na jakość wyniku ma niewielki wpływ, jednakże już na złożoność czasową bardzo duży. Analizując tabele i wykresy możemy zauważyć że aby algorytm wykorzystujący chłodzenie geometryczne uzyskiwał lepsze wyniki od chłodzenia Boltzmanna należy ustawić współczynnik alfa na poziomie 0,7. Co skutkuje niemiał 2 krotnie większą liczbą stopni w skutek czego również złożoność czasowa rośnie 2 krotnie. Natomiast przy współczynniku alfa na poziomie 0,9 złożoność czasowa dla chodzenia geometrycznego jest już 5 krotnie większa od złożoności czasowej Boltzmanna. Lecz ciekawą opcją jest ustawienie współczynnika chłodzenia alfa na poziomie 0,1 w skutek czego algorytm będzie 3 krotnie szybszy niż w przypadku chłodzenia Boltzmanna, a wyniki będą gorsze o zaledwie od kilka do kilkunastu procent..

4. Długość epoki

Długość epoki ma ogromny wpływ na jakość wyników jak i złożoność czasowo. Jest to dość logiczne, im więcej próbek przetestujemy tym większa szansa, że trafimy na optymalną. Dlatego też mimo iż dla małych instancji tj. do około 50 wierzchołków nie widzieliśmy zbyt dużej różnicy przemawiającej za stosowaniem długości epoki na podstawie wzoru n*n. Tak już przy poziomie 100-200 wierzchołków widzimy, że długość epoki ma ogromny wpływ na jakość naszego wyniku. Warto więc uznać ten wzór jako bazowy i co najwyżej modyfikować go w zakresie od 1% tej wartości w górę ponieważ jak możemy zauważyć stosując wzór n*n/2 uzyskiwane wyniki były zbliżone do wyników uzyskiwanych ze wzoru n*n, mimo iż czas potrzebny do wykonania algorytmu był znacząco krótszy.

5. Sposób wyboru sąsiedztwa

Co do sposobu wyboru sąsiedztwa tu sprawa jest nieco bardziej skomplikowana. To co od razu widać to łączenie generowania sąsiedztwa w sposób losowy wraz z wyborem sąsiedztwa poprzez zamianę z poprzedzającym jest złym pomysłem. Uzyskiwane w ten sposób wyniki są dużo gorsze od pozostałych. Natomiast w przypadku połączenia tego sposobu z ścieżką początkową wygenerowaną w sposób zachłanny już daje lepsze wyniki. Jednakże nie ma pewności że przyczyną takiego stanu rzeczy jest to połączenie czy sam sposób generowania ścieżki powoduje znalezienie jednego z lepszych rozwiązań. Najlepiej więc zastosować generowanie ścieżki początkowej w sposób zachłanny i wybór sąsiedztwa poprzez wylosowanie dwóch wierzchołków i zamianę miejscami.

6. Poziom akceptacji gorszego wyniku.

Ostatnim parametrem jaki był testowany jest poziom akceptacji gorszego wyniku. Parametr ten wpływa na to o ile gorsze wyniki będą akceptowane przez algorytm jako lesza ścieżka. W przypadku tego parametru trudno jest ustalić ogólnie najlepszą wartość w przypadku niektórych instancji wraz ze wzrostem parametru jakość wyników spadała a w przypadku innych rosła. Tak więc aby znaleźć najlepszą wartość dla danej instancji należy podejść do tego eksperymentalnie testując ten współczynnik. Ponieważ nie jesteśmy w stanie powiedzieć, że tak ustawiony ten parametr będzie dobry dla wszystkich instancji. W odróżnieniu od pozostałych gdzie można było stwierdzić że w większości przypadków tak ustawione parametry daję najlepsze wyniki tak tu jest to niemożliwe.

Wnioski odnośnie jakości wyników:

Po przeanalizowaniu wszystkich parametrów badałem jakość uzyskiwanych wyników stosując możliwie najlepsze parametry. Czyli zachłanny sposób generowania ścieżki początkowej, temperaturę początkową na podstawie maksymalnej różnicy, wybór sąsiadów za pomocą zamiany 2 losowych wierzchołków oraz długość epoki na poziomie n*n.

W wyniku czego maksymalny błąd dla instancji typu TSP jaki uzyskałem to 56% dla pliku brg180 jednakże należy zaznaczyć, że plik ten zawiera ścieżki skrajnie różne i przykładowo jedna zamiana kolejności wierzchołków może spowodować nawet 100 krotny wzrost kosztu, tak więc wciąż jest to niewielki błąd. Podjąłem próby niwelacji tego błędu, ale udało mi się zejść jedynie do poziomu 48% czyli wyznaczyć drogę, której koszt to 2880. W przypadku pozostałych instancji maksymalny błąd dla instancji typu TSP to 21%, ATSP to 29%.

Wnioski odnośnie złożoności czasowej:

Jeśli chodzi o złożoność czasową jest ona silnie zależna od długości epoki oraz temperatury początkowej, która to bezpośrednio wpływa na liczbę epok, a także sposobu chłodzenia który to również znacząco wpływa na liczbę epok.

W związku z tym wartości odległości między wierzchołkami mają duży wpływ złożoność czasową co obserwujemy na wykresie 48 i 49.

Porównując jednak czas algorytmu wyżarzania do algorytmów dokładnych takich jak Brute-Force czy Held-Karp, algorytm ten jest dużo szybszy co pozwala mu na wyznaczaniu drogi dla dużo większych instancji i pomimo że nie zawsze droga ta jest najlepsza to jak wynika z wykresów 45 i 46 jest bliska najlepszemu możliwemu rozwiazaniu.

Natomiast czas samej inicjalizacji dla dużych instancji jest bardzo niewielki co wynika z wykresu 50. Dzięki temu możemy go pominąć w wyznaczaniu złożoności czasowej która dla tego algorytmu wygląda następująco O(długość epoki*liczba epok*n) gdzie długość epoki i liczba epok wynikają z podwójnej pętli natomiast n to wielkość instancji wynika z wyznaczenia nowego kosztu, który tworzony jest poprzez przejście przez wszystkie wierzchołki przy wyznaczaniu koszt przejścia.

Podsumowanie:

Parametry sterujące w różnym stopniu wpływają na złożoność czasową i jakość wyniku. Najistotniejszymi z nich pod kątem złożoności czasowej jak i jakości wyniku jest długość epoki. Lecz również niezwykle ważne są takie parametry ja sposób wyboru sąsiedztwa czy też ścieżka i temperatura początkowa oraz sposób chłodzenia. Natomiast poziom akceptacji wyników pogarszających wpływa na wynik jednakże w sposób bardzo szczególny i silnie zależny od instancji problemu.

Małe instancje dla tego problemu są zależne od odległości między wierzchołkami jednakże można przyjąć że są to instancje o liczbie wierzchołków do 300 elementów, ponieważ czas dla instancji o wierzchołkach w odległości 1-10 utrzymuje się poniżej 1s natomiast dla instancji o wierzchołkach w odległości 10 001 – 10 000 000 utrzymuje się na poziomie około 5s.

Natomiast dużą instancją możemy nazwać instancję o liczbie wierzchołków ponad 3000 której czas obliczeniowy jest na poziomie około 20 min dla odległości wierzchołków od 1 do 10 i jednej godziny na odległości wierzchołków 11-10 000. Natomiast dla odległości 10 001 – 10 000 000 przekroczył 1h(pomiar nie został zakończony).

Jednakże należy pamiętać, że aby uzyskiwać najlepsze wyniki pomiar najlepiej wykonać kilkukrotnie. W takim przypadku pomiar instancji o czasie 1 minuty czyli około 800 elementów również można uznać za dużą instancję, ponieważ taki pomiar wykonujemy kilka razy.