Bayes' Theorem: Basics

Total probability Theorem:

$$p(B) = \sum_{i} p(B|A_i)p(A_i)$$
P test data $\angle_{B?}^{A?i}$

Bayes' Theorem:

$$p(H|\mathbf{X}) = \frac{p(\mathbf{X}|H)P(H)}{p(\mathbf{X})} \propto p(\mathbf{X}|H)P(H)$$

posteriori probability

likelihood

prior probability

What we should choose

What we just see

What we knew previously

X: a data sample ("evidence")

Prediction can be done based on Bayes' Theorem:

H: X belongs to class C

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- Practical difficulty of Naïve Bayes inference: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve Special Case
 - Make an additional assumption to simplify the model, but achieve comparable performance.

attributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

Only need to count the class distribution w.r.t. features

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 $\hfill \square$ If feature x_k is continuous-valued, $p(x_k=v_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30, Income = medium,

Student = yes, Credit_rating = Fair)

classified mauresnomenous าเกือดอนนาเกองเรื่องไม่

Pop	7			4			
	p	=	CH	15	k	= (?
			1	6			
	P	=	(H	1)	()	> '	(
		<u>.</u> .		,	٠.		
	\	tre	ir ing	Y	7	Y_ (2
•	P	= Cy	dĤ	Y P	(H)	/-	Te
				35	lou	ر لم	L S

		×		— y—	•
age	income	student	credit_rating	buys_computer	Yes = 01 No = 5
<=30	high	no	fair	no	No = 5
<=30	high	no	excellent	no	
3140	high	no	fair	yes	
>40	medium	no	fair	yes	
>40	low	yes	fair	yes	(
>40	low	yes	excellent	no	Training
3140	low	yes	excellent	yes	Training data
<=30	medium	no	fair	no	dato
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium	no	excellent	no)

no o those Titana Sucus Ku

Naïve Bayes Classifier: An Example

```
P(C<sub>i</sub>): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14 = 0.357
```

 \square Compute $P(X|C_i)$ for each class

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

P(income = "medium" | buys_computer = "yes") =
$$4/9 = 0.444$$

P(student = "yes" | buys_computer = "yes) =
$$6/9 = 0.667$$

P(student = "yes" | buys computer = "no") =
$$1/5 = 0.2$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair !	yes
>40	medium	no	fair !	yes
>40	low	yes!	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair!	no
<=30	low	yes	fair	yes
>40	medium!	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$

$$P(X|buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$$

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

Therefore, X belongs to class ("buys_computer = yes")

$$\hat{x}$$
 = oge = a2, student = yes?
 $P = (\hat{\mu}_1 \hat{x}) = ?$ 42 Yes 2

$$\frac{x^{2}-4}{6} \cdot \frac{3y}{2x+4} = \frac{(x+2)(x-2)}{6} \cdot \frac{3y}{2(x+2)}$$

$$= \frac{(x+2)(x-2)}{6} \cdot \frac{3y}{2(x+2)}$$

$$= \frac{(x+2)(x-2)}{6} \cdot \frac{3y}{2(x+2)}$$

$$= \frac{(x-2)y}{3y \cdot 3x} = \frac{x^{2}}{3y} \cdot \frac{2y}{3x} = \frac{2x}{9}$$

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- \square The nearest neighbor are defined in terms of Euclidean distance, dist(X_1, X_2)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

