Algebra and Geometry (Cod. 30544)

General Exam – December 10, 2020

Time: 2 hours. Total: 150 points.

Multiple choice questions (total: 24 points)

Each question has a single correct answer: write the correct answer in the box on the right. If you want to change your response cancel it and write another answer next to the box. 6 points are assigned for a correct answer, 0 points for a missing answer, -2 point for an incorrect answer.

(A) $\{abx : a, b \in \mathcal{P}_0\}$ is isomorphic to \mathcal{P}_2 (B) \mathcal{P}_n has dimension n (C) \mathcal{P}_n has a base containing the zero polynomial (D) none of the others			
2. Let V be a finite dimensional vector space and fix a subspace $W \subseteq V$ with $ W = \infty$. Then (A) Every element of V/W is finite (B) $(x+W) \cap (y+W) = \emptyset$ for all distinct $x,y \in V$ (C) $\dim(V/W) < \dim(V)$ (D) none of the others			
3. Let p be a prime number. Then (A) $(\mathbf{Z}_{p^2}, +, \cdot)$ is a field (B) $(\mathbf{Z}_{p^2}, \cdot)$ is a group (C) $(\mathbf{Z}_{p^2}, +)$ is a group (D) none of the others			
4. Let σ be a permutation of $\{1, 2,, n\}$ and fix a multilinear alternate form $f \in \mathcal{A}(V)$. Then (A) σ be can be always decomposed as product of $\leq n-2$ transpositions (B) $\sigma f = f$ (C) $f(x, x, x,, x) = 1$			
True/False questions (total: 24 points) Each statement can be either true or false: write T for true or F for false in the box on the right. If you want to change your recancel it and write another answer next to the box. 4 points are assigned for a correct answer, 0 points for a missing answer, -1 point incorrect answer.	_		
incorrect answer.			
1. Let $V = \mathbf{R}$ be the real vector space over \mathbf{R} . Then $\{\sqrt{2}, \sqrt{3}\}$ is linearly dependent.			
1. Let $V = \mathbf{R}$ be the real vector space over \mathbf{R} . Then $\{\sqrt{2}, \sqrt{3}\}$ is linearly dependent.			
 Let V = R be the real vector space over R. Then {√2, √3} is linearly dependent. Fix T ∈ L(V₁, V₂) where V_i is a vector space over a field F_i for i = 1, 2. Then F₁ = F₂. 			
 Let V = R be the real vector space over R. Then {√2, √3} is linearly dependent. Fix T ∈ L(V₁, V₂) where V_i is a vector space over a field F_i for i = 1, 2. Then F₁ = F₂. Fix T ∈ L(V, W). Then T can be represented by a matrix. 			
 Let V = R be the real vector space over R. Then {√2, √3} is linearly dependent. Fix T ∈ L(V₁, V₂) where V_i is a vector space over a field F_i for i = 1, 2. Then F₁ = F₂. Fix T ∈ L(V, W). Then T can be represented by a matrix. Define A = [1² 2²]/3² 4²]. Then T: R² → R² defined by T(x) := Ax is linear. 			

Open answer questions (total: 102 points)

Answers must be written in the corresponding spaces. Each of the six questions will be assigned from 0 to 17 points. Answers must be adequately justified.

Question 1. Let $T: V \to V$ be a linear operator.

- (a) Show that $W := \{x + y : x \in \text{Ker}(T), y \in \text{Im}(T)\}$ is a vector space.
- (b) Provide an example of a linear operator T which is neither injective nor surjective and such that W = V.

Question 2. 1. Provide the definition of field \mathbb{F} .

2. Let V be a vector space over \mathbb{F} . Show that -(-x) = x for all $x \in V$.

Question 3. For each integer $n \geq 0$, let \mathcal{P}_n be the set of polynomials with real coefficients and degree $\leq n$. Moreover define

$$Q_n := \{ p(x)q(x) : p(x), q(x) \in \mathcal{P}_n \}$$

for each $n \geq 0$. Then prove that:

- (i) Q_0 is a real vector space;
- (ii) Q_1 is not a real vector space.

Question 4. Consider then vector space $V := \mathbf{R}^{\{1,2,\dots,2020\}}$ and consider the functions $f,g,h \in V$ defined by

$$f(i) = i \text{ for all } i = 1, \dots, 2020,$$

$$g(1) = 1^2, g(2) = 2^2, g(3) = 3^2, g(i) = 4^2$$
for all $i = 4, 5, \dots, 2020,$

$$h(1) = h(2) = 0, h(i) = 1$$
 for all $i = 3, 4, ..., 2020$.

Show that $\{f, g, h\}$ is linearly independent.

Question 5. Fix $T \in \mathcal{L}(V, W)$.

- (i) Define the meaning of the transpose operator T'.
- (ii) Show that KerT' is the annihilator of T(V).

Question 6. Define the matrix

$$M := \begin{bmatrix} 1 & 4 & 9 \\ -1 & 0 & -2 \\ 2 & 0 & 0 \end{bmatrix}$$

Let a, b, c be its eigenvalues. Compute $a^2 + b^2 + c^2$.

0.1 Solutions Multiple choices / True-False

Multiple choices:

1	2	3	4
D	С	С	D

True/False:

1	2	3	4	5	6
Т	Т	F	Т	F	Т

0.2 Open question

1 (a) Let $A, B \subseteq V$ be vector subspaces. Then Q := A + B is contained in V, it is not empty since it contains 0 + 0, it is closed under sums (indeed, if $q_i = a_i + b_i \in Q$ and $a_i \in A$, $b_i \in B$ for i = 1, 2, then $q_1 + q_2 = (a_1 + a_2) + (b_1 + b_2) \in A + B$) and it is closed under products (indeed, if $q = a + b \in Q$ and $\alpha \in \mathbb{F}$ then $\alpha q = (\alpha a) + (\alpha b) \in A + B$). In our case, set $A := \operatorname{Ker}(T)$ and $B := \operatorname{Im}(T)$.

(b) Set $V = \mathbb{R}^2$, and define T(x, y) := (x, 0). Then $Ker(T) = \{(0, y) : y \in \mathbb{R}\}$, $Im(T) := \{(x, 0) : x \in \mathbb{R}\}$, and $W = \mathbb{R}^2$.

2 1 and 2. See lecture notes.

3 (i) Since Q_n is the set of product of polynomials with degree $\leq n$, then $Q_n \subseteq \mathcal{P}_{2n}$. In particular, $Q_0 \subseteq \mathcal{P}_0$. Conversely, each constant *polynomial* $p(x) \in \mathcal{P}_0$ belongs to Q_0 , indeed $p(x) = g(x) \cdot p(x)$, where g(x) is the constant polynomial 1. Therefore $Q_0 = \mathcal{P}_0$, which is a vector space.

(ii) It is sufficient to show that Q_1 is not closed under addition. Indeed $x \cdot x \in Q_1$ and $1 \cdot 1 \in Q_1$. On the other hand, $x^2 + 1 \notin Q_1$. Indeed, let us suppose by contradiction that there exist $a, b, c, d \in \mathbf{R}$ such that

$$x^2 + 1 = (ax + b)(cx + d).$$

Then ac = bd = 1 and bc + ad = 0. From the first equation we have that all a, b, c, d are different from 0, hence c = 1/a and d = 1/b. We conclude that

$$bc + ad = \frac{b}{a} + \frac{a}{b} = 0,$$

i.e., $x + \frac{1}{x} = 0$ with $x := b/a \neq 0$. This is impossible since x and 1/x have the same sign.

4 Suppose that $\alpha f + \beta g + \gamma h = \mathbf{0}$. In particular,

$$\alpha f(i) + \beta g(i) + \gamma h(i) = 0$$
 for all $i = 1, 2, 3$.

Setting $i \in \{1, 2\}$, we obtain that $\alpha = \beta = 0$. Setting, at this point, i = 3, we obtain that $\gamma = 0$.

5 1 and 2. See lecture notes.

6 Denoting by I the identity matrix, the eingevalues a, b, c are exactly the roots of the third degree polynomial

$$0 := \det(\lambda I - M) = \det \begin{bmatrix} \lambda - 1 & -4 & -9 \\ 1 & \lambda & 2 \\ -2 & 0 & \lambda \end{bmatrix}$$

Equivalently

$$q(\lambda) := \lambda^3 - \lambda^2 - 14\lambda + 16 = 0.$$

It follows that

$$abc = -16, ab + bc + ca = -14, a + b + c = 1.$$

Therefore

$$a^{2} + b^{2} + c^{2} = (a + b + c)^{2} - 2(ab + bc + ca) = 1 - 2 \cdot (-14) = 29.$$