Detecting discrimination through Suppes-Bayes Causal Network

A bachelor's thesis by Blai Ras in collaboration with Eurecat

Project

- Based on "Exposing the probabilistic causal structure of discrimination" by Francesco Bonchi, Sara Hajian, Bud Mishra & Daniele Ramazzotti.
- Started 21th October.
- Working part-time since 17th November.
- Delivery date: 19th January.

Goals \nearrow

Porting the algorithm to Python.

Extending & upgrading the algorithm once in Python.

Design & deploy a user-friendly website able to run the algorithm and show its results.

Discrimination Types

Group

Individual

Favoritism

Conditional Explainable

Data input

1. Dataset.

Admit_Admitted	Admit_Rejected	Gender_Female	Gender_Male	Dept_A	Dept_B	Dept_C	Dept_D	Dept_E
1	0	0	1	1	0	0	0	0
0	1	1	0	0	٦	0	0	0
1	0	0	1	0	0	1	0	0
0	1	0	1	0	0	0	1	0
1	0	1	0	0	0	0	0	1

2. Temporal Order Table

Attribute	Order
Admit_Admitted	3
Admit_Rejected	3
Gender_Female	1
Gender_Male	1
Dept_A	2
Dept_B	2
Dept_C	2
Dept_D	2
Dept_E	2

Suppes-Bayes Causal Network

Consists of:

1. Ensuring Suppes' conditions.

2. Training by Likelihood Fit.

Suppes' Conditions

a. Temporal Priority

b. Probability Rising

$$P(v \mid u) > P(v \mid \neg u)$$

Training

- · Hill Climbing algorithm.
- · Bayesian Information Criteria.
- · Logarithmic Likelihood function.

$$BIC = -2L_{log}(x) + k \log(n)$$

Final Network

$$P(u \mid v) - P(u \mid \neg v)$$

Weighted Random Walk

walks leading to positive or negative decisions

total walks

But what if walker ends on a leaf node...?

Weighted Random Walk

Total Inconclusive Score

· Number of inconclusive walks > 0,55.

Partial Inconclusive Score

- Apparent positive or negative discrimination.
- Difference between positive or negative scores and inconclusive score < 0,25.

Veredicts

- Personalized Page Rank
 - Once on a leaf node, the probability of jumping to another node is given by the individual attributes.

Personalized Page Rank

- Every node has a score, but we are only interested in the positive/negative decision nodes.

Website

- Developed in Python with Django framework
- Backend
 - Multipart/Form Data with the datasets saved in a SQLite Database.
 - Algorithm.
- Frontend
 - CSS + Bootstrap.
 - JavaScript.
- Deploy
 - AWS Cloud server running Ubuntu 18.04.

Experiments

http://ec2-34-225-210-97.compute-1.amazonaws.com:8000/

Conclusions

- Algorithm successfully ported to Python.
- Algorithm upgraded and extended with inconclusive score.
- Website up & running, able to run the algorithm and show its results in a visual and easy to understand way.

Future Work

- Use the *bnlearn* Python library.
- Remove the Temporal Order table.
- Find the best discrimination thresholds depending on the data.

Thank you!

Blai Ras