

Polar™

IXTK180N15P

Power MOSFET

N-Channel Enhancement Mode Avalanche Rated

= 150V $I_{D25} = 180A$ $11 \text{m}\Omega$

Symbol	Test Conditions	Maximum F	Maximum Ratings		
V _{DSS}	T ₁ = 25°C to 175°C	150	V		
V _{DGR}	$T_J^\circ = 25^\circ \text{C} \text{ to } 175^\circ \text{C}, R_{\text{GS}} = 1 \text{M}\Omega$	150	V		
V _{GSS}	Continuous	± 20	V		
V _{GSM}	Transient	± 30	V		
I _{D25}	T _c = 25°C	180	A		
I _{L(RMS)}	External Lead Current Limit	75	Α		
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	380	Α		
I _A	T _c = 25°C	60	A		
É _{AS}	$T_{c}^{\circ} = 25^{\circ}C$	4	J		
$\overline{\mathbf{P}_{D}}$	T _C = 25°C	800	W		
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 175^{\circ}C$	10	V/ns		
T,		-55 +175	°C		
T _{JM}		175	°C		
T _{stg}		-55 +175	°C		
T,	1.6mm (0.062 in.) from Case for 10s	300	°C		
T _{SOLD}	Plastic Body for 10s	260	°C		
M _d	Mounting Torque	1.13/10	Nm/lb.in.		
Weight		10	g		

Symbol (T _J = 25°C U	Test Conditions Inless Otherwise Specified)		Characteristic Values Min. Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$		150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 500\mu A$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T _J = 150°C			25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, No$	te 1			11	mΩ

TO-264

$$G = Gate$$
 $D = Drain$ $S = Source$ $Tab = Drain$

Features

- International Standard Package
- Avalanche Rated
- Low Package Inductance
- Fast intrinsic Diode
- Dynamic dv/dt Rated
- Low R_{DS(on)} and Q_G

Advantages

- Easy to mount
- Space savings
- High power density

Symbol			naracteristic Values		
$(T_J = 25^{\circ}C L)$	Inless Otherwise Specified)	Min.	Тур.	Max.	
\mathbf{g}_{fs}	$V_{DS} = 10V$, $I_{D} = 0.5 \cdot I_{DSS}$, Note 1	55	86	S	
C _{iss}			7000	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2250	pF	
C _{rss}	J		515	pF	
t _{d(on)}	Resistive Switching Times		30	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 60A$		32	ns	
t _{d(off)}	$R_{\rm g} = 3.3\Omega$ (External)		150	ns	
t _f	Tig = 0.032 (External)		36	ns	
$Q_{g(on)}$			240	nC	
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{DSS}$		55	nC	
Q_{gd}			140	nC	
R _{thJC}				0.18 °C/W	
R _{thCS}			0.15	°C/W	

TO-264 (IXTK) Outline Terminals: 1 - Gate 2 - Drain 3 - Source 4 - Drain Dim. Millimeter Min. Max Min. Max 4.82 .190 .202 5.13 Α1 2.54 .100 A2 2.00 2.10 .079 .083 b 1.12 1.42 044 .056 b1 b2 .094 2.39 2.69 .106 2.90 3.09 .114 .122 0.53 0.83 .021 .033 D 26.16 1.020 1.030 25.91 Е 19.81 19.96 .780 .786 5.46 BSC .215 BSC е J 0.00 0.25 .000 .010 K 0.00 0.25 .010 .000 L L1 20.32 20.83 .800 .820 .090 .102 2.29 2.59 Р 3.17 3.66 .144 .125 Q .247 6.07 6.27 .239 Q1 8.38 .330 .342 8.69 R R1 3.81 4.32 .150 .170 1.78 2.29 .070 .090 6.04 6.30 .238 .248

1.57

1.83

.062

.072

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$ Min.		cteristic Typ.	c Values Max.		
I _s	$V_{GS} = 0V$			180	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			380	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr} Q _{RM}	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		150 2.3		ns μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics
@ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 90A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics
@ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 90A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

