

# Mastering the game of Go with deep neural networks and tree search

Sesha Vadlamudi 10458123

svadlam1@stevens.edu

https://github.com/DeepikaVadlamudi



## Agenda

1870

- Game of Go
- Training
  - Supervised learning of Policy networks
  - Reinforcement learning of Policy networks
  - Reinforcement learning of Value networks
- Playing the game of GO using AlphaGo
  - Overview of Simulation
  - Monte Carlo Tree Search
  - Decision Making after MCTS
- AlphaGo Zero
- Improvements



# This paper provides an efficient method that combines the policy and value networks with Monte Carlo Tree Search (MCTS).

We shall see how in this short and concise presentation.

#### Game of GO





- The standard GO board has 19x19 grid of lines, containing 361 points.
- State: Arrangement of black, white, and space.
  - AlphaGo uses a 19x19x48 tensor to store other information
- Action: place a stone on a vacant point.
  - Action space : A ⊂ {1, 2, 3, ..., 361}
- Go is very complex.
  - Number of possible sequence of actions is 10<sup>170</sup>

That is the number of legal moves in the game of Go is way more than the number of atoms in the known universe which is  $10^{80}$ .

#### Idea - Consolidated:



- Training alone is done in three stages.
  - Supervised learning (SL) policy network  $P_{\sigma}$
  - Reinforcement learning (RL) policy network  $P_{\rho}$
  - Reinforcement learning of value network  $V_{\theta}$

- Execution :
  - Simulation MCTS + Value network
  - Decision Making



# **Training**

## Supervised learning of policy networks $P_{\sigma}$



- First stage of training pipeline
  - build on prior work
  - Classification
- Predicting expert moves
- Trained a 13 layer policy network SL policy network on 30M positions from over 160k games
- Input: s a representation of the board state
- Output: probability distribution over all legal moves a
- Given raw board position, SL policy predicted moves with an accuracy of ~56%

## **SL** policy network - continued



Stochastic gradient ascent is used to maximize the likelihood of the human move
a selected in state s

$$\Delta\sigma \propto \frac{\partial log P_{\sigma}(a|s)}{\partial \sigma}$$

A small improvement in accuracy led to large improvements in playing strength

## Reinforcement learning of policy network $P_{\rho}$



- Second stage of training pipeline
  - aims at improving policy network
  - By policy gradient reinforcement learning
- Why?
  - What if the current state  $s_t$  has appeared while training?
  - The policy imitates expert action  $a_t$  which is a good move
  - But what if  $s_t$  has not appeared while training?
  - Then action  $a_t$  can be bad.
  - Since number of possible states is too big, there is huge probability that the  $s_t$  has not appeared in training

## **RL Policy Networks - continued**



- RL policy  $P_{\rho}$  network is identical in structure to the SL policy network
- The weights  $\rho$  are initialized to the same values  $\rho = \sigma$
- Games are played between the current policy network and randomly selected previous iteration of policy network
  - Randomizing so as to avoid overfitting
- Weights are updated at each time step t by stochastic gradient ascent so as to maximize expected outcome

$$\Delta \rho \propto \frac{\partial log P_{\rho}(a_t|s_t)}{\partial \rho} z_t$$

## RL policy network - continued



- Reinforcement learning is guided by rewards
- Suppose a game ends at step T
- Rewards:

• 
$$r_1 = r_2 = r_3 = \cdots = r_{T-1} = 0$$

- $r_T = +1$  (winner)
- $r_T = -1$  (loser)
- Return is defined by  $z_t = \sum_{i=t}^T r_i$
- Winner's return:  $z_1 = z_2 = z_3 = \dots = z_T = +1$
- Loser's return:  $z_1 = z_2 = z_3 = \cdots = z_T = -1$

## **RL Policy Networks - continued**

- When played against SL policy network, RL policy network won more than 80% of the games
- Won 85% of games against Pachi, an open source Go program
- Only supervised learning program won 11% of games against Pachi

## Reinforcement learning of value network $V_{\theta}$



- Final stage of training pipeline
  - Position Evaluation
  - Regression
- Estimates a value function  $v^p(s)$
- Predicts the outcome from position s of games played by using policy P for both players
- $\Delta\theta \propto \frac{\partial V_{\theta}(s)}{\partial\theta}(z v_{\theta}(s))$



## **Execution**

#### **Overview of Simulation**



- How do humans play?
  - We try to look ahead, estimate, the next 2-3 moves
  - Suppose we are in state  $s_t$ , we select action  $a_t$
  - This leads to state  $s'_t$
  - What will my opponents action be? His action leads to  $s_{t+1}$
  - Upon observing  $s_{t+1}$  what will my action be?  $a_{t+1}$
  - This leads to  $s'_{t+1}$

•

If you can exhaustively foresee all the possible futures, you will win







- Quill: How many did you see?
- Strange: Fourteen million six hundred and five.





• Stark: How many did we win?

• Strange: ... One.





- Main idea
  - Randomly select an action a
  - Look ahead and see whether a leads to win or lose.
  - Repeat this procedure many times.
  - Choose the action a that has the highest score.



## **Monte Carlo Tree Search (MCTS)**



- Every simulation of MCTS has 4 steps:
  - 1. Selection: The player makes an action a. (Imaginary, Not actual move)
  - 2. Expansion: The opponent makes an action; the state updates. (Also imaginary; made by the policy network)
  - 3. Evaluation: Evaluate the state-value and get score v. Play the game to the end to receive the reward r. Assign score  $\frac{v+r}{2}$  to action a.
  - 4. Backup: Use the score  $\frac{v+r}{2}$  to update action-values.



## **MCTS - Details**

## **Step 1: Selection**

1870

- Observing s<sub>t</sub>, which action shall we explore?
- First, for all the valid actions a, calculate the score:

$$a_t = \operatorname*{argmax}_{a} Q(s_t, a) + \eta \frac{P(s_t, a)}{1 + N(s_t, a)}$$

- $Q(s_t, a)$  Action-value computed by MCTS and value network.
- $P(s_t, a)$  The learned policy network.
- $N(s_t, a)$  Given  $s_t$ , how many times we have selected a so far.
- Second, the action with the largest  $a_t$  is selected.







## **Step 2: Expansion**

- What will be the opponent's action?
- Given  $a_t$ , the opponents action will be  $a_t'$  will lead to new state  $s_{t+1}$ .
- The opponent's action is randomly sampled from

$$a'_t \sim P(\cdot | s'_t; \theta).$$

• Here,  $s'_t$  is the state observed by the opponent.





## **Step 3: Evaluation**

- Run a rollout to the end of the game (step T).
- Player's action:  $a_k \sim P(\cdot | s_k; \theta)$ .
- Opponent's action:  $a'_k \sim P(\cdot | s'_k; \theta)$ .
- Receive reward  $r_T$  at the end.
  - Win :  $r_T = +1$
  - Lose:  $r_T = -1$
- Evaluate the state  $s_{t+1}$ .
- $v(s_{t+1}; w)$ : output of the value network.







## Step 4: Backup

1870

- MCTS repeats such simulation many times.
- Each child of  $a_t$  has multiple recorded  $V(s_{t+1})$ .
- Update action-value:
  - $Q(s,a) = mean(the\ recorded\ V's)$
- These Q values will be used in Step 1 (selection).









First, for all valid actions a, calculate the score:

• 
$$a_t = \underset{a}{\operatorname{argmax}} Q(s_t, a) + \eta \frac{P(s_t, a)}{1 + N(s_t, a)}$$

• Second, the action with the largest  $a_t$  is selected.







- N(s,a): How many times a has been selected so far.
- After MCTS, the player makes the actual decision:

$$a_t = \operatorname*{argmax}_{a} Q(s_t, a) + \eta \frac{P(s_t, a)}{1 + N(s_t, a)}$$

- To perform the next action, AlphaGo does MCTS all over again.
- Initialize  $Q(s_t, a)$  and  $N(s_t, a)$  to zeros.





- AlphaGo Zero is stronger than AlphaGo. (100-0)
- It was released in 2017
- Differences:
  - AlphaGo Zero does not use expert human experience.
    - For the Go game human experience is harmful.
  - MCTS is used to train the policy network.

## Improvements:



- Make the value network adaptive.
  - As of now Value Network is being trained by regression
  - This may be modified so as to reduce the training time plus to increase accuracy
    - Initially train by regression
    - Afterwards update the weights of the value network
      - Whenever a game is played
      - Use Gradient ascent to maximize the likelihood of the outcome of the game
- Increase the previous history by augmenting more number of planes to the state
  - This may improve the accuracy though the computation cost may go up



## Acknowledgements

Followed Shusen Wang's work on GitHub and a good amount of content is borrowed from his lecture notes.





#### References

- AlphaGO Silver and others Mastering the game of GO with deep neural networks and tree search, Nature 2016
- https://github.com/wangshusen/DeepLearning/blob/master/SI ides/13\_RL\_5.pdf
- https://nikcheerla.github.io/deeplearningschool/2018/01/01/Al phaZero-Explained/





## **Questions?**



## stevens.edu

Sesha Phani Deepika Vadlamudi svadlam1@stevens.edu