MTH 532 Homework 9

Roy Howie

March 30, 2017

3.3 Oriented Intersection Number

Exercise 2

- (a) From class, we have that the degree of the antipodal map $S^k \to S^k$ is $(-1)^{k+1}$, as it consists of k+1 maps each sending x to -x. Therefore, orientation is preserved for k odd and reversed for k even.
- (b) Homotopic maps of connected spaces have the same degree. The identity map has a degree of 1. Thus, the antipodal map is homotopic to the identity iff k is odd.
- (c) From exercises 1.8.7 and 1.8.8, we have that S^k has a nonvanishing vector field when its antipodal map is homotopic to the identity map. From (b), this occurs iff k is odd.
- (d) No, as $-1 \equiv 1 \pmod{2}$, so whether orientation is preserved is lost.

Exercise 7

Per the hint, note that $z \mapsto \bar{z}$ is orientation reversing, i.e. the map which sends a complex number to its complex conjugate has degree -1. Then, use exercise **3.3.10**: for $X \xrightarrow{f} Y \xrightarrow{g} Z$, $\deg(g \circ f) = \deg f * \deg f$.

As $z \mapsto \bar{z}^m$ is the composition of $z \mapsto \bar{z}$ and $z \mapsto z^m$, which have degrees of -1 and m, respectively, we have that $z \mapsto \bar{z}^m$ has degree -m.

Exercise 10

Consider $X \xrightarrow{f} Y \xrightarrow{g} Z$ and let $c \in Z$ be a regular value of $g \circ f$. Note that c is also a regular value of g and that $g^{-1}(c)$ are regular values of f. Furthermore, recall that, for a regular value g and g and g and g are the degree of g is defined as g and g are g and g are the degree of g is defined as g and g are the degree of g are the degree of g and g are the degree of g are the degree of g are the degree of g and g are the degree of g are the degree of g and g are the degree of g are the degree of g and g are the degree of g are the degree o

Let
$$g^{-1}(c) = \{ y_1, \dots, y_m \}$$
 and let $f^{-1}(y_i) = \{ x_{i1}, \dots, x_{in} \}$.

$$\deg(g \circ f) = \sum_{i=1}^{mn} \varepsilon_i(g \circ f)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \varepsilon_i(g) \varepsilon_{ij}(f)$$

$$= \sum_{i=1}^{m} \varepsilon_i(g) \sum_{j=1}^{n} \varepsilon_{ij}(f)$$

$$= \deg(g) * \deg(f)$$