Clase 15. Proyecciones en Subespacios Vectoriales. Curso 'Linear Algebra' del MIT.

Resumen

Una forma de aplicar el concepto de **ortogonalidad** visto en la clase anterior, es en la **proyección** de un vector sobre otro o entre dos subespacios. No solo estudiaremos cómo hacerlo, sino también lo usaremos para **resolver sistemas** Ax = b **sin solución**, proyectando el mejor vector posible de soluciones. Un caso de aquello lo veremos en el cálculo de **mínimos cuadrados**, usado mucho en estadística (regresión lineal).

15.1 Proyección sobre un vector.

A continuación tenemos dos vectores \vec{a} y \vec{b} cuyas dimensiones están en \mathbb{R}^2 .

Busquemos un punto p en \vec{a} que sea lo más cercano a \vec{b} o, en otras palabras, **proyectemos** este último vector sobre el primero. Aquí es donde entra el concepto de **ortogonalidad**, porque el lugar más próximo es aquel donde la recta que podemos trazar entre p y \vec{b} es perpendicular a \vec{a} .

Entonces, como vemos en la figura de arriba, p es una aproximación en \vec{a} hacia \vec{b} y el error en aquella **proyección** lo calculamos como $e = \vec{b} - p$.

Si nos damos cuenta, tanto p como e podemos interpretarlos como vectores. En cuanto al primero, podemos entenderlo como el vector \vec{a} escalado ya que está sobre éste. Es decir, sea c un escalar tal que $c \in \mathbb{R}$, entonces:

$$\vec{p} = \vec{a}c$$

En otras palabras, la **proyección** de \vec{b} sobre \vec{a} o el lugar en \vec{a} que es más cercano a \vec{b} , **está determinado por un escalar** c. Por lo tanto, tener una forma de conocerlo es clave para nuestro propósito.

Al error e también podemos interpretarlo como \vec{e} y, debido a que $\vec{p} = \vec{a}c$, entonces:

$$\vec{e} = \vec{b} - \vec{a}c$$

Recordemos que estamos asumiendo que \vec{e} es ortogonal a \vec{a} . Es decir:

$$\vec{a}^T \cdot \vec{e} = 0$$
$$\vec{a}^T \cdot (\vec{b} - \vec{a}c) = 0$$

Por consiguiente, usemos esta igualdad para tener una fórmula que nos permita conocer el escalar c.

$$\vec{a}^T \cdot (\vec{b} - \vec{a}c) = 0$$
$$\vec{a}^T \vec{b} - \vec{a}^T \vec{a}c = 0$$
$$c = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}}$$

Implicando que:

$$\vec{p} = \vec{a} \cdot \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}}$$

En la fórmula de arriba es posible notar que, en particular, \vec{p} es determinado por el vector que estamos proyectando a partir de éste. Es decir, por \vec{b} . Por ejemplo, si $\vec{b} = 2\vec{b}$, entonces $\vec{p} = 2\vec{p}$. En cambio, si $\vec{a} = 2\vec{a}$, $\vec{p} = \vec{p}$ (i.e., la proyección se mantiene en el mismo lugar).

Por otra parte, si proyectamos \vec{a} sobre este mismo, entonces $\vec{p} = \vec{a}$, puesto que $\vec{a}^T \vec{a}$ corresponde al escalar¹ $||\vec{a}||^2$:

Si
$$\vec{b} = \vec{a}$$
 entonces $\vec{p} = \vec{a} \cdot \frac{\vec{a}^T \vec{a}}{\vec{a}^T \vec{a}} = \vec{a} \cdot 1 = \vec{a}$

Y si el \vec{b} es ortogonal a \vec{a} , entonces el vector proyección $\vec{p} = \vec{0}$, ya que $\vec{a}^T \vec{b} = 0$.

$$\vec{p} = \vec{a} \cdot \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} = \vec{a} \cdot 0 = \vec{0}$$

Es decir, cuando dos vectores son perpendiculares entre sí, la proyección de uno sobre el otro es el vector cero.

15.1.1 Matriz de Proyección.

El vector \vec{p} también podemos escribirlo como:

$$\vec{p} = \frac{\vec{a}\vec{a}^T}{\vec{a}^T\vec{a}} \cdot \vec{b}$$

El producto $\vec{a}\vec{a}^T$ corresponde a una **matriz cuadrada**². Al multiplicar el escalar $1/(\vec{a}^T\vec{a})$ a esta matriz, obtenemos la **Matriz de Proyección** P.

$$P = \left(\frac{1}{\vec{a}^T \vec{a}}\right) \cdot \vec{a} \vec{a}^T$$

De modo que la provección \vec{p} también podemos escribirla como:

$$\vec{p} = P \cdot \vec{b}$$

Esto nos lleva más al mundo del Álgebra Lineal, porque ahora la proyección de un vector sobre otro no solo lo podemos saber a partir de una constante/escalar, sino que también por medio de una matriz.

En la Clase 11 señalamos que las **matrices de rango 1** se construyen como el producto entre un vector columna y su transpuesta. En ese sentido, rango $(\vec{a}\vec{a}^T) = 1$, implicando que:

¹Y es un producto punto, también.

²Si \vec{a} es de $n \times 1$, entonces \vec{a}^T es de $1 \times n$. En consecuencia, $\vec{a}\vec{a}^T$ es una matriz de $n \times n$.

$$rango(P) = 1$$

Por otra parte, el espacio columna³ C(P) lo podemos obtener calculando $P\vec{b}$, donde los vectores que lo generan siempre estarán adentro de \vec{a} .

Y como P es de rango 1, también signfica que $\dim(C(P)) = 1$. Es decir, su base (basis) corresponde a solo un vector: el vector columna \vec{a} .

Otra característica de la matriz de proyección, es que es **simétrica**. Es decir, $P^T = P$:

$$P^{T} = \left(\frac{1}{\vec{a}^{T}\vec{a}}\vec{a}\vec{a}^{T}\right)^{T} = \frac{1}{\vec{a}^{T}\vec{a}}(\vec{a}\vec{a}^{T})^{T} = \frac{1}{\vec{a}^{T}\vec{a}}(\vec{a}^{T})^{T}\vec{a}^{T} = \frac{1}{\vec{a}^{T}\vec{a}}\vec{a}\vec{a}^{T} = P$$

Además, si, por decir, proyectamos \vec{b} dos veces sobre \vec{a} que es lo mismo que $\vec{p} = P \cdot P \cdot \vec{b} = P^2 \cdot \vec{b}$, este último vector se mantendrá en el mismo lugar, implicando que $P^2 = P$ y, a su vez, que $P^2 \cdot \vec{b} = \vec{p}$. Lo mismo ocurrirá si lo hacemos más veces.

Entonces, resumiendo lo que hemos aprendido sobre la matriz de proyección P:

- $P = (1/(\vec{a}^T \vec{a})) \cdot \vec{a} \vec{a}^T.$
- C(P) = vectores a través de \vec{a} .
- rango(P) = 1 y, por consiguiente, $\dim(C(P)) = 1$, donde base(C(P)) = $\{\vec{a}\}$.
- P es simétrica, ya que $P^T = P$
- $P^2 = P$, ya que $P \cdot P \cdot \vec{b} = P^2 \cdot \vec{b} = \vec{p} = P \cdot \vec{b}$.

15.2 Resolviendo $Ax = \vec{b}$ sin solución: Proyección en un Subespacio Vectorial.

La clase anterior vimos preliminarmente cómo resolver un sistema $A\vec{x} = \vec{b}$ sin solución, donde señalamos que la idea es buscar **el mejor vector solución posible**.

Como recordaremos de la Clase 8, un sistema $A\vec{x} = \vec{b}$ tiene al menos una solución sí y solo sí $\vec{b} \in C(A)$. Es decir, \vec{b} debe ser uno de los vectores que se generan en las combinaciones lineales entre los vectores columna de A y \vec{x} .

Un caso donde suele ser que $\vec{b} \notin C(A)$, es cuando en A de $n \times m$, n > m. Es decir, no solo cuando A es rectangular, sino que también cuando la cantidad de ecuaciones es mayor a la

³El conjunto de todas las combinaciones lineales posibles entre sus vectores columnas

de incógnitas y, por consiguiente, \vec{b} tendrá más componentes de lo necesario.

Para resolver un sistema de este tipo, vamos a **proyectar a** \vec{b} **a partir de un vector** $\vec{p} \in C(A)$, lo que también significa que existe $\vec{e} = \vec{b} - \vec{p}$ ortogonal al subespacio⁴ C(A).

La idea es usar a \vec{p} en reemplazo de \vec{b} para resolver el sistema:

$$A\hat{x} = \vec{p}$$

donde \hat{x} es el mejor vector solución posible del sistema $A\vec{x} = \vec{b}$.

Algo a tener en cuenta, es que $\hat{x} \neq \vec{x}$, pero como $\vec{p} \in C(A)$, tenemos garantía que \hat{x} existe.

Lo primero que debemos hacer, es tener una forma de encontrar a \vec{p} . Anteriormente señalamos que $\vec{p} = \vec{a}c$, con c = constante. En ese momento trabajamos con un solo \vec{a} , ahora lo haremos con m de ellos.

Establezcamos que base $(C(A)) = \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m\}$ y están en \mathbb{R}^n . Es decir, son m vectores columna de n dimensiones que pertenecen al C(A) y son **linealmente independientes** los que, en conjunto, conforman la matriz A.

Sabemos que existe un vector \vec{e} , donde $\vec{e} \perp C(A)$. Esto significa que el producto punto entre cada vector transpuesto del C(A) y \vec{e} , es igual a cero. Como indicamos que los vectores base de dicho subespacio están contenidos en la matriz A, podemos establecer que:

$$A^T \cdot \vec{e} = \vec{0}$$

La igualdad de arriba nos confirma que $\vec{e} \perp C(A)$, porque acá el \vec{e} es el $N(A^T)$ y vimos en la clase pasada en la clase pasada que el C(A) es un complemento ortogonal⁵ del $N(A^T)$.

Recordemos que $\vec{e} = \vec{b} - \vec{p}$:

$$A^T \cdot (\vec{b} - \vec{p}) = \vec{0}$$

Y establecimos que $A\hat{x} = \vec{p}$:

$$A^T \cdot (\vec{b} - A\hat{x}) = \vec{0}$$

Aplicando cuidadosamente un poco de álgebra:

$$A^T \vec{b} - A^T A \hat{x} = \vec{0}$$
$$A^T A \hat{x} = A^T \vec{b}$$

⁴Es decir, \vec{p} es perpendicular a todos los vectores que componen el C(A).

⁵Todos los vectores que componen el $N(A^T)$ son perpendiculares a todos los del C(A) y viceversa.

Nuestro propósito es encontrar a \hat{x} , pero no podemos hacerlo de la misma manera a cómo lo hicimos con c en la sección anterior, porque A^TA es una matriz, no un escalar. No obstante, si bien A es rectangular, nos encontramos ante dos hechos útiles:

- 1. $A^T A$ siempre es simétrica, lo que significa que también es cuadrada.
- 2. Los vectores columna de A son linealmente independientes. Por lo tanto, también lo son en A^TA .

En consecuencia, A^TA es simétrica e invertible.

Con este hecho, multipliquemos a la ecuación de arriba por $(A^TA)^{-1}$ (la inversa de A^TA).

$$(A^T A)^{-1} A^T A \hat{x} = (A^T A)^{-1} A^T \vec{b}$$
$$I \hat{x} = (A^T A)^{-1} A^T \vec{b}$$
$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

Entonces, con la fórmula de arriba podemos encontrar a \hat{x} , el mejor vector solución posible.

Por otra parte, también podemos conocer al vector de proyección \vec{p} puesto que, como $\hat{x} = (A^T A)^{-1} A^T \vec{b}$, entonces:

$$A\hat{x} = \vec{p}$$
$$A(A^T A)^{-1} A^T \vec{b} = \vec{p}$$

Esta expresión podemos reducirla un poco más, porque $A(A^TA)^{-1}A^T$ es la **Matriz de Proyección** P:

$$P = A(A^T A)^{-1} A^T$$

Por lo tanto:

$$P\vec{b}=\vec{p}$$

De este modo, también podemos decir que para resolver un sistema $A\vec{x} = \vec{b}$ sin solución, buscamos la matriz de proyección P, la que nos permite obtener el vector \hat{x} de las mejores soluciones posibles.

Esta matriz P también se caracteriza por ser simétrica $(P^T = P)$ y por $P^2 = P$. En cuanto a lo primero:

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

$$= (A^{T})^{T}((A^{T}A)^{-1})^{T}A^{T}$$

$$= A((A^{T}A)^{T})^{-1}A^{T}$$

$$= A(A^{T}(A^{T})^{T})^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T}$$

$$P^{T} = P$$

Y con respecto a $P \cdot P = P^2 = P$:

$$P^{2} = A(A^{T}A)^{-1}A^{T} \cdot A(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1} \cdot (A^{T}A(A^{T}A)^{-1})A^{T}$$

$$= A(A^{T}A)^{-1} \cdot I \cdot A^{T}$$

$$= A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = P$$

15.3 Método de Mínimos Cuadrados.

Una aplicación de la proyección en un subespacio vectorial, es en la búsqueda de una ecuación lineal que se **ajuste** de la mejor manera posible a un conjunto de datos que no siempre tiene una relación lineal.

Por ejemplo, digamos que tenemos dos variables k y w y queremos predecir los valores que puede tomar la segunda a partir de la primera. Es decir, asumamos que w es dependiente de k. Modelaremos esta relación a partir de una ecuación lineal:

$$w = c + dk$$
 (c y d constantes)

Supongamos que las variables toman los valores $k = \{1, 2, 3\}$ y $w = \{1, 2, 2\}$. El problema es que no siguen una relación estrictamente lineal, como lo vemos a continuación.

Por lo tanto, no podemos predecir los valores que puede tener w con una sola ecuación. En este caso, vamos a necesitar tres. Es decir, una para cada punto:

$$\begin{cases} 1 = c + 1d \\ 2 = c + 2d \\ 2 = c + 3d \end{cases}$$

En otras palabras, vamos a resolver este sistema de ecuaciones lineales para conocer los valores que puede ir tomando w. Sin embargo, nos enfretamos a un segundo problema: tenemos más ecuaciones (3) que incógnitas (2).

En efecto, si pasamos estas ecuaciones matrices:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \quad \vec{x} = \begin{bmatrix} c \\ d \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

ocurre que $A\vec{x} = \vec{b}$ no tiene solución.

Como, en realidad, nuestro propósito inicial es usar una sola ecuación para predecir los valores de w, lo que haremos es **proyectar una ecuación lineal que se ajuste mejor a los datos**.

La ecuación lineal que tenga el mejor ajuste, será aquella que pase más cerca de todos los puntos. Es decir, aquella donde el error e de cada punto sea el más pequeño. Todo esto se conoce como el **Método de Mínimos Cuadrados** y lo aplicaremos multiplicando el sistema $A\vec{x} = \vec{b}$ por A^T :

$$A^T A \hat{x} = A^T \vec{b}$$

Ya sabemos que, al resolverlo, conoceremos \hat{x} , \vec{p} y P. Todo esto lo veremos la siguiente clase.