

一. 実验目的

- ""观察长劈夫和华顿环的干涉现象。
- (2) 练习利用劈尖干涉厚理测量玻璃丝的直径;用牛顿环测量球面曲率半径
- 二、 矣验仪器

测量显微镜, 钠灯光, 牛顿环, 光学平面玻璃

三. 实验原理

当两列振动方向相同,颜率相同,而且料位祖差保持恒定的单色先祖遇后,相遇的区域内有些地方由于两列波的叠加.振动总是加强的,两而另一些地方由于振动的叠加总是减弱,形成的这种稳定的强度不均匀的现象, 科为光的干涉.

圆在两块玻璃相接外, e=o, 两束光的光程差 b= 全, 应看到暗纹、设第k, 全暗纹处的劈头厚度为e, 、第k+ △k 暗纹处的厚度为e2, 这两条暗纹的水平距离为x, 两两暗纹处劈尖厚度差为△d: △d=e2-e1= △k. 全tand= △d= e2-e1= △k. 全

玻璃丝直径: D=1·tand=1入Ak/2X

	指导教师签字:
联系方式:	JE 4 DAY

电话: 81382088

实验报告

2. 辛顿 环

干涉原理同劈夫干涉,分析可得牛顿环第k级暗紋半径 rk与透镜曲面半径 R 到关系为: R= 公 (k=0,1,2)

注意: k可以分别取任意m.n值

- 四. 实验内容和步骤
- 1. 观粤劈尖干涉
- ") 将玻璃片放在显微镜工作台上,在两玻璃之间夹上一根玻璃丝

注意: ①让玻璃丝平行于接边

- 日远高劈尖
- ⑤劈失的移动方向与工作台移动方向垂直.
- 少 给显微镜调焦,直到看到清晰的干涉条纹
- 49. 使又丝的又点移动靠近劈尾的一边,记录某一暗纹的位置,然后数30条暗 绞记录位置,同时测量30条暗纹间的距离X、单重复5次
- 邻测量从劈失到玻璃丝的距离上
- 2. 观察牛顿环干涉

")把牛顿环放到工作台上,打开钠光钚灯.	转动半兔镜使从目镜中看到时
联系方式:	

北京理工大学良乡校区管理处监制

电话: 81382088

1111

班	级:	一类型名称:	实验日期:	年_	Я
	野最多	教学班级:	学 号:	姓	名:

- 四湖节目镜,使能看到清又丝,将镜筒降低靠近牛顿环,然后再向上调节 直到牛顿环清晰为止
- (3) 调节鼓轮,使又丝通过干涉园政王中心.
- (4)转动鼓轮,使义丝的交点对准牛顿环圆际外第一个环,然后再转动鼓轮,数到在边第11个环处,多移一些距离,再返回到第11个环处,记下此处的位置(xii),然后再向左移动数到第1个环,记下位置(xi).再继续向左移动到圆斑另外一侧第一环处(记为xi').继续向左,再到左边第11个环处记入为xii')。这样就测到34个位置,由(xii-xii')/2和(xi-xi')/2可得到下11及Yi.重复6次

联系方式:	指导教师签字:

实验报告

课程名称: 级: 实验名称: 实验日期:_ 教学班级: 学 号: 姓 名:_

次数 XII(man) XI(man) XI(man) DII=|XII-XII(man) DI=|XI-XII(man) DI=|XI-XII(man) 27.750 26.105 23.992 22.335 5.395 2.113 2 27.742 26.111 24.041 22.362 27.745 26.118 24.019 22.352 4 27.748 26.119 24.048 22.375 5 27.744 26.112 24.009 22.382

次数. X初(ma) X *(man) X = X初-X*(man) L初(man) L*(man) L1= L 磁本- L初 1 18.933 27.442 7.702 40.189 344x10-2 22.768 31.191 40.776 7.511 21: 127 35.200 21: 127 35.200 7.712 35.200 7.632 40.791 26.854 18.316 18.316 7.629 40.776 26.854 20.303 28.770. 7.639 40.789

D = 3.44x10-2

指导教师签字:

联系方式:

Separation .

3

1.
$$D_m = \sum_{i=1}^{3} \frac{D_i}{5} = 5.3806 (mm)$$

$$D_n = \sum_{i=1}^{3} \frac{D_i}{5} = 2.0912 (mm)$$

$$UA(Q_0) = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D_i})^2}{n(n-1)}} = 0.006185 (mm)$$

$$U_{A}(D_{n}) = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D_{n}})^{2}}{n(n-1)}} = 0.003915 (mm)$$

$$R = \frac{r_m^2 - r_n^2}{(m-n)\lambda} = \frac{D_m^2 - D_n^2}{4(m-n)\lambda} = 1042.667 mm$$

$$\frac{R(t)}{V(R)} = \sqrt{\frac{D_m^2 U^2(D_m) + D_n^2 u^2(D_n)}{2(m-n)\lambda}} = 3.234 \text{ mm}$$

联系方式: _____

指导教师签字:

实验报告

A Pres	400			
课	E	14	40	
	E	×	TO THE	

班级:

实验名称:

实验日期:____

学 号:_

年_____月____

姓 名:

2.

$$\bar{x} = \sum_{i=1}^{3} \frac{x_i}{5} = 8.509 \text{ (mm)}$$

$$U_{A}(x) = \sqrt{\frac{\sum_{i=1}^{k} (x_{i} - \overline{x})^{2}}{n(n-1)}} = 0.084514 \text{ (mm)}$$

$$U_{13} = \frac{\Delta}{\sqrt{3}} = 0.00289 \ (mm)$$

$$L = \sum_{i=1}^{3} \frac{\omega L_i}{5} = 33.1616 \text{ (mm)}$$

$$U_A(L) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (2i - T)^2 = 0.028819 (mm)$$

$$D = \frac{L\lambda}{2x} \cdot \Delta K = 0.034888 \, (mm)$$

指导教师签字:

实验七 光的干涉

实验数据与结果

1. 利用劈形膜的干涉特性测量玻璃丝直径 D(u)

次数	X初 (mm)	X*	$X_i = X_{\pm} - X_{\overline{\eta}}$	L _M	L _*	$L_i = L_{ + L_{ ij}}$ (mm)	X(Ku) (mm)	I(Lu) (mm)
1	18.933		0 4.4	7.702	40.789	33.087	8.402	33.1616(0.02896
2	22.768	31.191	0100 441 453	7.511	40.776	33.265	(0.085)	
3	27.124	25 200	0.1082418.03	7.632	40.791	33.159		
4		28.854	e. e + 8.538		40.776	33.147		
5	20,303		8.467		40.789	33.150		

$$D = \frac{l\lambda}{2x} = \Delta K = 0.03489 (0.00034) mm$$

注: X_i 为 $\Delta K = 30$ 条暗纹的横向距离; L_i 为劈尖到玻璃丝的距离。

2. 利用牛顿环测量曲率半径 R(u)

次数 1 2	27.142	26.103	23.992 24.041	22.362	¥.380	$D_{1} = X_{1} - X'_{1}$ (mm) 2.113 2.010 2.099	D ₁₁ (W) (MM) 5.3806 (0.0068)	D1(2) (mm) 2.0912 (0.004
3	27.745	26.118	24.019	22.352	5.393	2.099		
4	27.748	26.119	24.048	22.375	5.313	2.011		
5	27.74	26.112	24.00	7 22.382	5.362 D ² D ²		24) 00	

$$R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda} = 1042.667(3.234) mm$$

3. 测量头发丝的直径 D(u)

3. MI E XX						1 - 1 Lm	X _u	L _u
被测量	X _{AU}	X _*	$X_i = X_{\bar{\pi}} - X_{\bar{\eta}}$	L_{i0}	L _x	$L_i = L_{\overline{x}} - L_{\overline{y}}$		-
次数	750							
1			15					

$$D = \frac{l\lambda}{2x} = \Delta K$$

TO SECURE OF THE PARTY OF THE P

思考题:

- ① 两者干涉条纹的明暗程度相反
- 图 因为存在半波程失,一个在光疏价质面上反射,另一个则在光密介质面上反射

指导教师签字: