Analysis

Hasib Ali

February 27, 2024

Contents

5	Differentiation		
	5.1	Basic Definitions and Examples	2

Chapter 5

Differentiation

5.1 Basic Definitions and Examples

Definition 1 (A function being differentiable at x_0). Let I be a non-degenerate interval (i.e. containing more than one point) in \mathbb{R} , $x_0 \in I$ and let $f: I \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

exists and is finite. This limit $f'(x_0)$ is then called the derivative of f at x_0 . (In the case where x_0 is an endpoint of I this is a one-sided limit)

Definition 2. Let I be an interval in \mathbb{R} , $X_0 \in I$ and let $f: I \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 from the left if the limit

$$(left\ derivative) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

exists and is finite. Similarly, f is differentiable at x_0 from the right if the limit

$$(right\ derivative) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

exists and is finite.

Theorem 1 (Chain Rule). Let $I,J\subseteq\mathbb{R}$ be intervals and $f:I\to\mathbb{R},\,g:J\to\mathbb{R}$ functions such that $f(I)\subset J$. Assume that f is differentiable at $x_0\in I$ and g is differentiable at $f(x_0)$. Then $g\circ f$ is differentiable at x_0 and $(g\circ f)^{'}(x_0)=g^{'}(f(x_0))\,f^{'(x_0)}$.

Proof. Since f is differentiable at x_0 , there is a (chord function) $\hat{f}: I \to \mathbb{R}$

such that \hat{f} is continious at x_0 ,

$$f(x) - f(x_0) = (x - x_0)\hat{f}(x)$$
 (5.1)

for all x in I, and

$$\hat{f}\left(x_{0}\right) = f^{'}\left(x_{0}\right)$$

Since g is differentiable at $f(x_0)$, there is a (chord function) $\hat{g}: J \to \mathbb{R}$ such that \hat{g} is continuous at $f(x_0)$,

$$g(y) - g(f(x_0)) = (y - f(x_0)) \hat{g}(y)$$
 (5.2)

for all y in J and

$$\hat{g}(f(x_0)) = g'(f(x_0)).$$

Can we find a suitable chord function $g \circ f$?

Set $h(x) = g(f(x_0))$ $(x \in I)$ and so $h = g \circ f$. We are looking for a chord function $\hat{h}: I \to \mathbb{R}$ such that

- \hat{h} is continious at x_0
- $h(x) h(x_0) = (x x_0) \hat{h}(x) (x \in I)$

If we can do this, what we know about chord functions tells us h is differentiable at x_0 , and

We have
$$h(x) - (x_0) = g(f(x)) - g(f(c_0))$$

(Apply (2) with $y = f(x)$)
$$= (f(x) - f(x_0)) \hat{g}(f(x))$$

$$= (x - x_0) \hat{f}(x) \hat{g}(f(x))$$

$$= (x - x_0) \hat{f}(x) \hat{g}(f(x))$$

Claim $\hat{h}(x) = \hat{f}(x) \hat{g}(f(x))$ works.

 \hat{f} is continious at x_0 because f is differentiable at x_0 (see above). $\hat{f}(x_0) = f'(x_0)$. Since f is differentiable at x_0 , we also have f is continious at x_0 . Since \hat{g} is continious at $f(x_0)$ with $\hat{g}(f(x_0)) = g'(f(x_0))$ is continious at x_0 Conclusion: $h = g \circ f$ is differentiable at x_0 , and

$$h'(x_0) = \hat{h}(x_0)$$

$$= \hat{f}(x_0) \,\hat{g}(f(x_0))$$

$$= f dt'(x_0) \,g'(f(x_0)).$$