

CHIPAssignment Project Example USE

https://tutorcs.com

WeChat: cstutorcs

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Integrated Circuits

- All ICs (chips) are made up of logic gates
- ICs are squares interest Bilingon to Example by the logic gates have been deposited https://tutorcs.com
- Generally rows of piosienable to prove circuit

IC – Sizes

Name	nt Project Exam	He p Number of Gates
Small Scale Integrated	//tutores com	1-10
Medium Scale Integrated	MSI	10-100
Large Scale IntegratedeC	nat: cstustorcs	100-100,000
Very Large Scale Integrated	VLSI	>100,000

Example SSI Chips

7400 - Nand Gates

The 7400 TTL series

Example Circuit with SSI/MSI Chips

- A multiple-input, single-output switch
- Also called MUX for short ©

- sel selects which of I₀ or I₁ is mapped to the output
- For example, sel = 0 selects I₀ and sel = 1 selects I₁
- Example is called a 2-to-1 MUX
- With n selects/control lines, we can have 2ⁿ input lines

2-to-1 Multiplexer

Source: http://www.sparkfun.com/tutorials/371

Truth Table

A A	ssi g nm	entxPro	jest Ex	ar n H el	рү
0	0	0	0	0	0
0	attps	s://tutor	cs.gom	0	0
0	WeC	hat cs	tutores	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	0	1	1

- A single-input, multiple-output switch
 - Opposite of a MUX
- · Also called AFMehment Project Exam Help
- Usually used in conjunction with a MUX https://tutorcs.com

MSI Chips – Decoder

- A multiple-input, multiple-output logic circuit
 - · Converts coded ignutainte proded ententam Help
 - Binary Decoder hattpsnp/ttstend 2: courputs
 - Necessary in applications such as toats multiplexing and memory address decoding

MSI Chips – Decoder

MSI Chips – Decoder

Truth Table

Α	ВД	ssig	nPae	nR ₆ F	reje	CP4E	ix ² an	n 14 6	18	D ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1 h	ttps:	//tu	torc	S.QO	m_0	0	1	0
0	1	0	, 0	0	0	0	0	1	0	0
0	1	1	vec	nat:	csu	ugr	²⁸ 1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

MSI Chips – Calculations – Comparator

- To compare two numbers
- Example: 1-bit comparison
 - · Which gate Assignment Project Exam Help
 - Recall: https://tutorcs.com

A	We (Change	stutorcs
0	0	0	
0	1	1	
1	0	1	
1	1	0	

MSI Chips – Calculations – Comparator

MSI Chips – Calculations – Bit-shifter

- Faster calculations for powers of 2
- Shift left and right (multiply and divide)

- $c = 0 \rightarrow \text{shift left}$
- $c = 1 \rightarrow shift right$

The Arithmetic Logic Unit (ALU)

- Digital circuit that performs arithmetic and logical operations
- Fundamental building block of the central processing unit (CPU) of a computer Project Exam Help
 - Even the simplest microprocessors contain one for purposes such as maintaining timers tutorcs.com
 - Processors found inside modern CPUs and graphics processing units (GPUs) accommodate very powerful of Service complex ALUs
- Concept proposed in 1945 by Mathematician John von Neumann
- Research into ALUs remains an important part of computer science

ALU

Recall: Full Adder

The Arithmetic Logic Unit (ALU)

8-bit ALU

- Can link together 1-bit ALUs to form a multi-bit ALU
 - Sometimes known as bit-slice circuits

Assignment Project Exam Help

CPU Design – VLSI

Contains millions of gates – same structure as below

CPU Design – VLSI

Production

- Good video: https://www.youtube.com/watch?v=vK-geBYygXo
- Bad video: Assignment Project Exam Help https://www.youtube.com/watch?v=YlkMaQJSyP8 https://tutorcs.com

WeChat: cstutorcs