应用题: 养鸡专业户

周涛

@ 南京养鸡二厂

2019年3月4日

问题

题干

某养鸡专业户养鸡 1000 只,用大豆和谷物饲料混合喂养。每天每只鸡平均吃混合饲料 0.5 公斤,其中应至少含有 0.1 公斤蛋白质和 0.002 公斤钙. 已知每公斤大豆含有 50% 的蛋白质和 0.5%的钙,价格 1 元/公斤;每公斤谷物含有 10% 的蛋白质和 0.4%的钙,价格是 0.3 元/公斤。粮食部门每周只保证供应谷物饲料2500 公斤,大豆供应不限。问如何搭配这两种饲料,才能使喂养成本最低?

客观世界中最简单的数量关系是均匀变化的关系。(这种关系即可归结于线性关系。)

——丘维声《高等代数》

问题

题干

某养鸡专业户养鸡 1000 只,用大豆和谷物饲料混合喂养。每天每只鸡平均吃混合饲料 0.5 公斤,其中应至少含有0.1 公斤蛋白质,和0.002 公斤钙。已知每公斤大豆含有50% 的蛋白质和0.5% 的钙,价格 1 元/公斤;每公斤谷物含有10% 的蛋白质和0.4% 的钙,价格是 0.3 元/公斤。粮食部门每周只保证供应谷物饲料 2500 公斤,大豆供应不限。问如何搭配这两种饲料,才能使喂养成本最低?

建模

$$\label{eq:minimize} \begin{aligned} \textit{minimize} & x_1 + 0.3x_2; \\ x_1 + x_2 &= 1000 \times 0.5 \times 7^* \\ 0.5x_1 + 0.1x_2 &\geq 1000 \times 0.1 \times 7 \\ 0.005x_1 + 0.004x_2 &\geq 1000 \times 0.002 \times 7 \\ & x_2 \leq 2500 \\ & x_1, x_2 \geq 0 \end{aligned}$$

求解 -图解法

min
$$b = x_1 + 0.3x_2$$
 s.t.

$$x_1 + x_2 \ge 3500$$

$$5x_1 + x_2 \ge 7000$$

$$5x_1 + 4x_2 \ge 14000$$

$$x_2 \le 2500$$

$$x_1, x_2 \ge 0$$

可行域为

线性规划 as 高考考点

(a) 17 全国卷 I, 文 (b) 17 全国卷 I, 理 (c) 17 全国卷 , 文 (d) 17 全国卷 , 理

(e) 17 山东卷, 理

(f) 17 天津卷, 理

(g) 17 浙江卷

(h) 17 北京卷

延申: 非线性规划 (NLP)

● 约束为非线性,目标函数为线性

- ② 约束为线性,目标函数为非线性,其中目标函数为二次函数的规划问题,称为二次规划。
 - 实例: 投资组合 (portfolio) 问题 (收益率的稳定 → 最小化方差 → 二次)

求解 -MATLAB-linprog

linprog

R2018b

Solve linear programming problems

collapse all in page

Linear programming solver

Finds the minimum of a problem specified by

$$\min_{x} f^{T}x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

ii Note

11nprog applies only to the solver-based approach. For a discussion of the two optimization approaches, see <u>First Choose Problem-Based or Solver-Based Approach</u>.

求解 -MATLAB-linprog

linprog

R2018b

Solve linear programming problems

collapse all in page

Linear programming solver

Finds the minimum of a problem specified by

$$\min_{x} f^T x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

11nprog applies only to the solver-based approach. For a discussion of the two optimization approaches, see First Choose Problem-Based or Solver-Based Approach.

Syntax

```
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,options)
x = linprog(problem)
[x,fval] = linprog(___)
[x,fval,exitflag,output] = linprog(___)
[x,fval,exitflag.output.lambda] = linprog(___)
```

求解 -MATLAB-linprog

```
☑ 编辑器 - C:\Users\Luke\Desktop\ChickenFarm.m

   ChickenFarm.m × +
       f=[1, 0, 3];
      Aeq=[1, 1];
     beg=3500;
     A=[-5, -1:0, 1]:
     b=[-7000;2500];
      1b=zeros(2,1):
      [x, y]=linprog(f, A, b, Aeq, beq, lb);
      round(x)
       round(v)
命令行窗口
  >> format compact
  >> ChickenFarm
   Optimization terminated.
   ans =
           1000
           2500
   ans =
           1750
```

求解 -MATLAB-linprog-Algorithms

All Algorithms	
Algorithm	Choose the optimization algorithm: • 'dual-simplex' (default)
	• 'interior-point-legacy'
	• 'interior-point'
	For information on choosing the algorithm, see Linear Programming Algorithms.

求解 -MATLAB-linprog-Algorithms

All Algorithms	
Algorithm	Choose the optimization algorithm: • 'dual-simplex' (default)
	'interior-point'legacy''interior-point'
	For information on choosing the algorithm, see Linear Programming Algorithms.

e.g.

Set options to use the 'interior-point' algorithm.

```
options = optimoptions('linprog','Algorithm','interior-point');
```

Set options to use the 'dual-simplex' algorithm.

```
options = optimoptions('linprog','Algorithm','dual-simplex');
```

南京养鸡二厂									
	大豆	谷物							
单位价格	1	0.3		MINIMIZE	总开销	0			
			总量	0	=	3500			
蛋白质含量	0.5	0.1	蛋白质总量	0	>=	700			
钙含量	0.005	0.004	钙总量	0	>=	14			
购买量	0	0	<=	2500					

南京养鸡二厂									
	大豆	谷物							
单位价格	1	0.3		MINIMIZE	总开销	0			
			总量	0	=	3500			
蛋白质含量	0.5	0.1	蛋白质总量	0	>=	700			
钙含量	0.005	0.004	钙总量	0	>=	14			
购买量	0	0	<=	2500					

"规划求解"使用的求解方法

您可以在"规划求解参数"对话框中选择以下三种算法或求解方法中的任意一种:

- 广义简约梯度 (GRG) 非线性 用于平滑非线性问题。
- LP Simplex 用于线性问题。
- 进化 用于非平滑问题。

		#=	* 26 - F						
南京养鸡二厂									
	大豆	谷物							
单位价格	1	0.3		MINIMIZE	总开销	1400			
			总量	1400	=	3500			
蛋白质含量	0.5	0.1	蛋白质总量	700	>=	700			
钙含量	0.005	0.004	钙总量	7	>=	14			
购买量	1400	0	<=	2500					

南京养鸡二厂									
	大豆	谷物							
单位价格	1	0.3		MINIMIZE	总开销	2800			
			总量	2800	=	3500			
蛋白质含量	0.5	0.1	蛋白质总量	1400	>=	700			
钙含量	0.005	0.004	钙总量	14	>=	14			
购买量	2800	0	<=	2500					

南京养鸡二厂									
	大豆	谷物							
单位价格	1	0.3		MINIMIZE	总开销	1750			
			总量	3500	=	3500			
蛋白质含量	0.5	0.1	蛋白质总量	750	>=	700			
钙含量	0.005	0.004	钙总量	15	>=	14			
购买量	1000	2500	<=	2500					

约束条件的右端不妨看作"资源"。右端值和左端实际值的 差即为资源的"剩余量",一般称"资源"剩余为0的约束 为紧约束或有效约束。

- 约束条件的右端不妨看作"资源"。右端值和左端实际值的 差即为资源的"剩余量",一般称"资源"剩余为0的约束 为紧约束或有效约束。
- 目标函数可以看作"效益",成为紧约束的"资源"一旦增加,"效益"必然跟着增长。在保持解最优的情况下,某种"资源"增加 1 个单位时目标函数的增长(减少)量可以看作该"资源"的潜在价值,经济学上称为影子价格(Shadow Price)。 5

"影子价格是商品或生产要素可得性的任何变化所带来的福利增加" ——联合国工业发展组织有关文献

例:

南京养鸡二厂								
	大豆	谷物						
单位价格	1	0.3		MINIMIZE	总开销	1749.3		
			总量	3500	=	3500		
蛋白质含量	0.5	0.1	蛋白质总量	749.6	>=	700		
钙含量	0.005	0.004	钙总量	14.999	>=	14		
购买量	999	2501	<=	2501				

• 可见粮食部门供应的谷物的限量的影子价格为 0.7(元/公斤)

- 资源的影子价格实际上是一种机会成本。在纯市场经济条件下,当资源的市场价格低于影子价格时,可以买进这种资源,反之,可以卖出。随着资源的买进和卖出,它的影子价格也将随之发生改变,一直到影子价格与市场价格保持同等水平,才处于平衡状态。
- 当资源的影子价格为 0 时,表明该种资源未得到充分利用。当资源的影子价格不为 0 时,表明该种资源在生产中已耗费完毕。
- 可以利用影子价格计算产品的**隐含成本**(单位资源消耗量
 × 相应的影子价格后求和)。当产品产值大于隐含成本时,
 表明生产该产品有利,可计划安排生产;否则用这些资源生产别的产品更为有利。

- 目标函数的系数发生变化时(假定约束条件不变),最优解和最优值会如何改变?
- 对目标函数系数变化的影响的讨论,通常称为对目标函数系数的敏感性分析(Sensitivity analysis of the objective function)。

例:

● 影子价格的作用(即在最优解下"资源"增加 1 个单位时 "效益"的增量)是有限制的。对于影子价格在什么条件下 才有意义的讨论,通常称为对资源右端项的敏感性分析。

Microsoft Excel 16.0 敏感性报告 工作表: [工作簿1.xlsx]Sheet1 报告的建立: 2019/3/3 20:13:42

可变单元格

单元格	名称				允许的 增量	
\$C\$12	购买量 大豆	1000			1E+30	
\$D\$12	购买量 谷物	2500	-0.7	0.3	0.7	1E+30

约束

		终			允许的	
单元格	名称	值	价格	限制值	增量	减量_
\$F\$10	钙总量	15	0	14	1	1E+30
\$F\$7	总量	3500	1	3500	1E+30	100
\$F\$9	蛋白质总量	750	0	700	50	1E+30

推荐资源

- 《数学模型(第五版)》 姜启源等编高等教育出版社
- 《Linear and Nonlinear Programming》David G. Luenberger
 等著 Springer