MT 2106: Numerical Analysis - Langrange

John Ngubiri

Makerere University
College of Computing and Information Sciences

2015/2016 Sem II

Consider the Lagrange polynomial:

$$f(x_j) = \sum_{k=0}^{n} L_k(x) f_k$$
, where $L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{(x - x_j)}{(x_k - x_j)}$

To obtain general derivative formulae for (n+1) distinct points, $\{x_0, x_1, ..., x_n\}$, the equation above is differentiated (ignoring the error term) to give :

$$f'(x_j) = \sum_{k=0}^n L_k'(x_j) f_k$$
, the $(n+1)$ -point formula for $f'(x_j)$

John (CoCIS) MT 2106 2015 2 / 12

The most common formulae are those involving

- three and
- five evaluation points

<u>Note:</u> Using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error are a disadvantage.

John (CoCIS) MT 2106 2015 3 / 12

To derive the three point formulae; consider Lagrange's quadratic interpolating polynomial, with n=2 for the points $\{x_0, x_1, x_2\}$

$$f(x_j) = \sum_{k=0}^{2} L_k(x) f_k$$
, where $L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{(x - x_j)}{(x_k - x_j)}$

$$= \left(\frac{(x-x_1)}{x_0-x_1}\right) \left(\frac{(x-x_2)}{x_0-x_2}\right) f_0 + \left(\frac{(x-x_0)}{x_1-x_0}\right) \left(\frac{(x-x_2)}{(x_1-x_2)}\right) f_1 + \left(\frac{(x-x_0)}{x_2-x_0}\right) \left(\frac{(x-x_1)}{(x_2-x_1)}\right) f_2$$

《□》《圖》《臺》《臺》《臺》

John (CoCIS) MT 2106 2015 4 / 12

Differentiating the respective kth Lagrange coefficient polynomials for each j=0,1,2 gives:

$$f'(x_j) = L'_0(x_j)f_0 + L'_1(x_j)f_1 + L'_2(x_j)f_2$$

Giving:

$$f'(x_j) = \frac{(2x_j - x_1 - x_2)}{(x_0 - x_1)(x_0 - x_2)} f_0 + \frac{(2x_j - x_0 - x_2)}{(x_1 - x_0)(x_1 - x_2)} f_1 + \frac{(2x_j - x_0 - x_1)}{(x_2 - x_0)(x_2 - x_1)} f_2$$

John (CoCIS) MT 2106 2015 5 / 12

Assume that the nodes are equally spaced with,

•
$$x_1 = x_0 + h$$

•
$$x_2 = x_0 + 2h$$
, for some $h \neq 0$

Substituting in $f'(x_j)$ above,

With $x_i = x_0$, and x_1, x_2 as above:

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right]$$

John (CoCIS) MT 2106 2015 6 / 12

For $x_j = x_1$,

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right]$$

And $x_j = x_2$ gives,

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right]$$

Since $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$, the formulae can be expressed as:

John (CoCIS)

2015

Three-point formulae

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right]$$
$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right]$$
$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right]$$

Giving three formulae for approximating $f'(x_0)$

8 / 12

2015

John (CoCIS) MT 2106

Three-point formulae

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)]...\mathbf{I}$$

$$f'(x_0) = \frac{1}{2h} [-f(x_0 - h) + f(x_0 + h)]...\mathbf{II}$$

$$f'(x_0) = \frac{1}{2h} [f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)]...\mathbf{III}$$

John (CoCIS) MT 2106 2015 9 / 12

Three-point formulae

These formulae give the (n + 1) three point derivative formulae for:

- I Forward difference with points x_0 , $x_0 + h$, $x_0 + 2h$,
- II Central difference with points x_0 , $x_0 h$, $x_0 + h$, and
- III Backward difference with $x_0 2h$, $x_0 h$, x_0

Considerations:

- The error in II is half the error in I and III, because equation II uses data on both sides of x_0 , and the other two use data on only one side
- Also, f needs to be evaluated only twice in II compared to thrice in I and III

John (CoCIS) MT 2106 2015 10 / 12

Example

Consider
$$f(x) = xe^x$$
 for $x = [1.8, 1.9, ..., 2.2]$

- ① Use the formulae derived above to find f'(2.0)
- 2 Compare the solutions obtained with the exact value <u>Hint:</u> A table may be handy, useful for solution representation

Five-point Formulae

These are evaluated at two more points than the three-point formulae and derived in the same manner

Assignment: Derive any one of the five-point formulae

Note: The five-point formulae are superior than the three-point formulae, ignoring the error terms

