

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Exercícios - Parte. A - Respostas

Matrizes: Tipos Especiais, Operações

Professora: Isamara

Data: 03/03/2021

Questão.1

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ & & & \end{bmatrix}$$

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \end{bmatrix}$$

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

Questão.1

$$\mathbf{A_4} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

Questão.2

Questão.2

Questão.2

$$\mathbf{A_5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Questão.2

$$\mathbf{A_5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \end{bmatrix}$$

Questão.2

$$\mathbf{A_5} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \end{vmatrix}$$

Questão.2

$$\mathbf{A_5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

Questão.2

$$\mathbf{A_5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

Questão.2

$$\mathbf{A_5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}$$

Questão.3

Questão.3

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

Questão.3

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

$$V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{``conjunto dos V\'ertices''}, e;$$

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;}$ $A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"}$

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), \}
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), \}
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_3, V_6), (V_3, V_6), (V_4, V_6), (V_4, V_6), (V_6, V_
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_4, V_5), (V_5, V_6), (V_5, V_
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", e; $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_6, V_6), (V_$

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", e; $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_5, V_6), (V_5, V_6)\}$

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_6, V_1)\}
```

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_6, V_1)\}
```

Questão.3: (continuação)

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A Matriz de Adjacência é definida por;

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \end{array}
ight.$$

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2 L3

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2 L3 L4

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2 L3 L4 L5

Questão.3 - Problema - Respostas

Cidades	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2 L3 L4 L5

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0

L1 L2 L3 L4 L5 L6

C1

Questão.3 - Problema - Respostas

C	CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
	$A(V_1)$	0	0	0	0	0	0	L1
	$B(V_2)$	0	0	1	0	0	1	L2
	$C(V_3)$	1	0	0	0	0	0	L3
	$D(V_4)$	0	0	1	0	0	0	L4
	$E(V_5)$	0	1	0	0	0	1	L5
	$F(V_6)$	1	0	0	0	0	0	L6
		C1	C2					

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L:
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L!
$F(V_6)$	1	0	0	0	0	0	Le
	C1	C2	C3	-			

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L:
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L:
$F(V_6)$	1	0	0	0	0	0	Le
	C1	C2	C3	C4			

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	1
$C(V_3)$	1	0	0	0	0	0
$D(V_4)$	0	0	1	0	0	0
$E(V_5)$	0	1	0	0	0	1
$F(V_6)$	1	0	0	0	0	0
	C1	C2	C3	C4	C	5

L1 L2 L3 L4 L5 L6

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L5
$F(V_6)$	1	0	0	0	0	0	L6
	C1	C2	C3	C4	C.	5	C6

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L5
$F(V_6)$	1	0	0	0	0	0	L6
	C1	C2	C3	C4	C!	5	

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L5
$F(V_6)$	1	0	0	0	0	0	L6
	C1	C2	C3	C4	C.	5	C6

então, a Matriz de Adjacência associada ao G(V,A) do problema

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L5
$F(V_6)$	1	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	C6

então, a MATRIZ DE ADJACÊNCIA associada ao G(V,A) do problema

$$\mathbf{A_6} = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.3 - Problema - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	1	L2
$C(V_3)$	1	0	0	0	0	0	L3
$D(V_4)$	0	0	1	0	0	0	L4
$E(V_5)$	0	1	0	0	0	1	L5
$F(V_6)$	1	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	C6

então, a MATRIZ DE ADJACÊNCIA associada ao G(V,A) do problema

$$\mathbf{A_6} = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Matrizes Revisão Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

$$V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices"},$$

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices"},$ $A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"}$

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4 - Continuação

Problema.2: Rotas Direcionadas entre Cidades com Distâncias(pesos)

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{egin{array}{l} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \end{array}
ight.$$

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

 $(a_{ij}) = \begin{cases} d; & \text{se existir rota direta da cidade } V_i \text{ para } V_j \\ 0; & \text{caso contrário} \end{cases}$

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{ egin{array}{ll} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{ egin{array}{ll} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2 L3

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2 L3 L4

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2 L3 L4 L5

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2 L3 L4 L5

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0

L1 L2 L3 L4 L5 L6

C1

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0
	C1	C2				

L1 L2 L3 L4 L5 L6

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L:
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L:
$F(V_6)$	2	0	0	0	0	0	Le
	C1	C2	C3				•

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4			

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$
$A(V_1)$	0	0	0	0	0	0
$B(V_2)$	0	0	1	0	0	3
$C(V_3)$	5	0	0	0	0	0
$D(V_4)$	0	0	2	0	0	0
$E(V_5)$	0	1	0	0	0	3
$F(V_6)$	2	0	0	0	0	0
	C1	C2	C3	C4	C	5

L1 L2 L3 L4 L5 L6

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	C6

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4	C.	5	

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	C6

então, a Matriz de Adjacência associada ao problema;

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	

então, a MATRIZ DE ADJACÊNCIA associada ao problema;

$$\mathbf{A_6} = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 3 \\ 2 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Questão.4 - Respostas

CIDADES	$A(V_1)$	$B(V_2)$	$C(V_3)$	$D(V_4)$	$E(V_5)$	$F(V_6)$	
$A(V_1)$	0	0	0	0	0	0	L1
$B(V_2)$	0	0	1	0	0	3	L2
$C(V_3)$	5	0	0	0	0	0	L3
$D(V_4)$	0	0	2	0	0	0	L4
$E(V_5)$	0	1	0	0	0	3	L5
$F(V_6)$	2	0	0	0	0	0	L6
	C1	C2	C3	C4	C	5	

então, a MATRIZ DE ADJACÊNCIA associada ao problema;

$$\mathbf{A_6} = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 3 \\ 2 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{ se o arco j chega no vértice } V_i \end{array}
ight.$$

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

$$(a_{ij}) = \left\{ egin{array}{ll} 1; & ext{se o arco j chega no vértice } V_i \ -1; & ext{se o arco j sai do vértice } V_i \end{array}
ight.$$

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Questão.5

Problema: Rotas Direcionadas entre Cidades

A MATRIZ DE INCIDÊNCIA é definida por;

Escreva a MATRIZ DE INCIDÊNCIA relacionada ao Problema.

Questão.5

Problema: Rotas Direcionadas entre Cidades

A MATRIZ DE INCIDÊNCIA é definida por;

Escreva a MATRIZ DE INCIDÊNCIA relacionada ao Problema.

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

Cidades	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

L1 L2 L3

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

L1 L2 L3 L4

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1

L1 L2 L3 L4 L5

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6

C1

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	
(V_2)	0	0	-1	1	0	1	0	
(V_3)	-1	0	0	1	1	0	0	
(V_4)	0	0	0	0	-1	0	0	
(V_5)	0	0	0	0	0	-1	-1	
(V_6)	0	-1	1	0	0	0	1	
	C1	C2						

L1 L2 L3 L4 L5 L6

11 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3					

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	<u>C2</u>	<u>C3</u>	C4				

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5			

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)
(V_1)	1	1	0	0	0	0	0
(V_2)	0	0	-1	1	0	1	0
(V_3)	-1	0	0	1	1	0	0
(V_4)	0	0	0	0	-1	0	0
(V_5)	0	0	0	0	0	-1	-1
(V_6)	0	-1	1	0	0	0	1
	C1	C2	C3	C4	C5	C	5

L1 L2 L3 L4 L5 L6

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5	C	5 C	7

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5	Cé	5 C	7

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5	C	5 C	7

então, a MATRIZ DE INCIDÊNCIA associada ao G(V,A) do problema

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5	C	5 C	7

então, a MATRIZ DE INCIDÊNCIA associada ao G(V,A) do problema

$$\mathbf{A_{6\times7}} = \left[\begin{array}{ccccccc} 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & -1 & 0 \end{array} \right]$$

Questão.5 - Respostas

CIDADES	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)	(A_7)	
(V_1)	1	1	0	0	0	0	0	L1
(V_2)	0	0	-1	1	0	1	0	L2
(V_3)	-1	0	0	1	1	0	0	L3
(V_4)	0	0	0	0	-1	0	0	L4
(V_5)	0	0	0	0	0	-1	-1	L5
(V_6)	0	-1	1	0	0	0	1	L6
	C1	C2	C3	C4	C5	C	5 C	7

então, a MATRIZ DE INCIDÊNCIA associada ao G(V,A) do problema

$$\mathbf{A_{6\times7}} = \left[\begin{array}{ccccccc} 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 & -1 & 0 \end{array} \right]$$

Questão.6

Considerando as matrizes A, B e C definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

()
$$D = A.B.$$

Questão.6

Considerando as matrizes $A, B \in C$ definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.

Questão.6

Considerando as matrizes $A, B \in C$ definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.

Questão.6

Considerando as matrizes A, B e C definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.

Questão.6

Considerando as matrizes A, B e C definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.
- (X) D = B.C.A.

Questão.6

Considerando as matrizes A, B e C definidas a seguir, assinale nos itens abaixo a matriz D que seja quadrada de ordem 2.

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.
- (X) D = B.C.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

$$(X)$$
 $D = A.B.$

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (X) D = A.B.
- (X) D = A + B.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (X) D = A.B.
- (X) D = A + B.
- (X) D = B.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (X) D = A.B.
- (X) D = A + B.
- (X) D = B.A.
- (X) D = -3.B.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (X) D = A.B.
- (X) D = A + B.
- (X) D = B.A.
- (X) D = -3.B.A.

Questão.8

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

Questão.8

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

Questão.8

Classifique, se possivel, as matrizes abaixo em simetricas e anti-simetricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$
(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$

Questão.8

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$
(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$

Questão.8

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$ (e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$

14 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.8

Classifique, se possivel, as matrizes abaixo em simetricas e anti-simetricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$

(e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$ (f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$
(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$
(e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$ (f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$
Simétrica $(A = A^t)$: (a), (c), (e), (f);

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :

Classingue, se possiver, as matrizes abaix of em simetricas e anti-simetricas :

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

(b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$

(d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$

(e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$

(f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$

Simétrica $A = A^{t}$: (a) (b) (c) (c) (f):

Simétrica $(A = A^t)$: (a), (c), (e), (f);

Anti-Simétrica $(A = -A^t)$: (b). (d)

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :

Classingue, se possiver, as matrizes abaix of em simetricas e anti-simetricas :

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

(b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$

(d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$

(e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$

(f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$

Simétrica $A = A^{t}$: (a) (b) (c) (c) (f):

Simétrica $(A = A^t)$: (a), (c), (e), (f);

Anti-Simétrica $(A = -A^t)$: (b). (d)

Matrizes Revisão Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$.

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
 . Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$;

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
 . Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$;

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
 . Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

Verifique se as matrizes abaixo são AUTOREFLEXIVAS:

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

AUTOREFLEXIVAS:

 $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

Verifique se as matrizes abaixo são AUTOREFLEXIVAS:

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

AUTOREFLEXIVAS: (a), (c) e (d).

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

Verifique se as matrizes abaixo são AUTOREFLEXIVAS:

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

AUTOREFLEXIVAS: (a), (c) e (d).

Matrizes Revisão Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$.

Matrizes Revisão Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES:

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d),

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d),

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

(1) B é também uma matriz IDEMPOTENTE?

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

(1) B é também uma matriz IDEMPOTENTE? Sim, $B = B^2$.

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

- (1) B é também uma matriz IDEMPOTENTE? Sim, $B = B^2$.
- (2) B comuta com a matriz A?

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

- (1) B é também uma matriz IDEMPOTENTE? Sim, $B = B^2$.
- (2) B comuta com a matriz A? Sim, $B.A = A.B = O_n$.

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

(b)
$$A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

IDEMPOTENTES: (a), (b), (c) e (d).

- (1) B é também uma matriz IDEMPOTENTE? Sim, $B = B^2$.
- (2) B comuta com a matriz A? Sim, $B.A = A.B = O_n$.

Questão.11

Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas, Hermitianas, Anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix} = A^t \Rightarrow A \notin \text{SIMÉTRICA}$$

Questão.11

Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas, Hermitianas, Anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix} = A^t \Rightarrow A \in \text{SIMÉTRICA}$$

(b) $B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix} = -B^t \Rightarrow A \in \text{ANTI-SIMÉTRICA}$

Questão.11

Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas, Hermitianas, Anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix} = A^t \Rightarrow A \notin \text{SIMÉTRICA}$$

(b) $B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix} = -B^t \Rightarrow A \notin \text{ANTI-SIMÉTRICA}$
(c) $C = \begin{bmatrix} 0 & 2i & -3 \\ -2i & 5 & 1+i \\ 3 & -1-i & -7 \end{bmatrix} \neq C^t; C \neq -C^t, C \neq \overline{C^t} \in C \neq -\overline{C^t}$

Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas, Hermitianas, Anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix} = A^t \Rightarrow A \in \text{SIMÉTRICA}$$

(b) $B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix} = -B^t \Rightarrow A \in \text{ANTI-SIMÉTRICA}$

(c) $C = \begin{bmatrix} 0 & 2i & -3 \\ -2i & 5 & 1+i \\ 3 & -1-i & -7 \end{bmatrix} \neq C^t; C \neq -C^t, C \neq \overline{C^t} \in C \neq -\overline{C^t}$

$$\Rightarrow C \text{ não } \in \text{SIMÉTRICA, ANTI-SIMÉTRICA, HERMITIANA e nem ANTI-HERMITIANA}.$$

17 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Classifique, se possível, as matrizes abaixo em Simétricas, anti-Simétricas, Hermitianas, Anti-Hermitianas, Normal:

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix} = A^t \Rightarrow A \in \text{SIMÉTRICA}$$

(b) $B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix} = -B^t \Rightarrow A \in \text{ANTI-SIMÉTRICA}$

(c) $C = \begin{bmatrix} 0 & 2i & -3 \\ -2i & 5 & 1+i \\ 3 & -1-i & -7 \end{bmatrix} \neq C^t; C \neq -C^t, C \neq \overline{C^t} \in C \neq -\overline{C^t}$

$$\Rightarrow C \text{ não } \in \text{SIMÉTRICA, ANTI-SIMÉTRICA, HERMITIANA e nem ANTI-HERMITIANA}.$$

Matrizes Revisão Questão.12

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

(a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A - A^t$.

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

(a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A - A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

(a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A - A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão.15

Questão.12

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão.15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$.

Questão.12

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão.15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares?

Questão.12

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão.15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares? Como $tr(\overline{A}^t) =$

Questão.12

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão 15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares? Como $tr(\overline{A}^t) = tr(\overline{A}) =$

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão 15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares? Como $tr(\overline{A}^t) = tr(\overline{A}) = \overline{tr(A)}$

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão 15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares? Como $tr(\overline{A}^t) = tr(\overline{A}) = \overline{tr(A)}$:

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas. anti-simétricas, hermitianas e/ou anti-hermitianas? Ver Questão 15
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares? Como $tr(\overline{A}^t) = tr(\overline{A}) = \overline{tr(A)}$; e se A for real obtemos: $tr(\overline{A}^t) = tr(\overline{A}) = tr(A)$.

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

(a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

- (a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.
- (b) O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

- (a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.
- (b) O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Ver Questão.18

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

- (a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.
- (b) O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Ver Questão.18

Questão.14

Dê um exemplo de uma matriz real A₄ simétrica,

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica,

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana,

Questão.14

Dê um exemplo de uma matriz real A4 simétrica, uma matriz real B4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana.

Questão.14

Dê um exemplo de uma matriz real A4 simétrica, uma matriz real B4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana. Podemos dizer que as matrizes A_4 , B_4 , C_4 e D_4 são matrizes normais?

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana. Podemos dizer que as matrizes A_{\perp} . B_{\perp} . C_{\perp} e D_{\perp} são matrizes normais? (Dica: Verifique utilizando as definições das matrizes especiais)

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana. Podemos dizer que as matrizes A_{\perp} . B_{\perp} . C_{\perp} e D_{\perp} são matrizes normais? (Dica: Verifique utilizando as definições das matrizes especiais) Ver Questões.16 e 17

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana. Podemos dizer que as matrizes A_{\perp} . B_{\perp} . C_{\perp} e D_{\perp} são matrizes normais? (Dica: Verifique utilizando as definições das matrizes especiais) Ver Questões.16 e 17

Matrizes Revisão Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica. D]: Hipóteses:

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica. D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

Então,

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

$$B^t = (A + A^t)^t =$$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

$$B^{t} = (A + A^{t})^{t} = A^{t} + (A^{t})^{t}$$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

$$B^{t} = (A + A^{t})^{t} = A^{t} + (A^{t})^{t} = A^{t} + A =$$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

 $B^t = B \in C = -C^t$.

$$B^{t} = (A + A^{t})^{t} = A^{t} + (A^{t})^{t} = A^{t} + A = A + A^{t} = B.$$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

Então.

$$B^{t} = (A + A^{t})^{t} = A^{t} + (A^{t})^{t} = A^{t} + A = A + A^{t} = B.$$

 $-C^t$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$.

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

$$B^t = (A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t = B.$$

$$-C^t = -(A - A^t)^t =$$

Questão.15

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$

 $C = A - A^t$ é anti-simétrica.

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

$$B^{t} = (A + A^{t})^{t} = A^{t} + (A^{t})^{t} = A^{t} + A = A + A^{t} = B.$$

$$-C^{t} = -(A - A^{t})^{t} = -A^{t} + (A^{t})^{t}$$

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz

 $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

$$B^t = (A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t = B.$$

$$-C^{t} = -(A - A^{t})^{t} = -A^{t} + (A^{t})^{t} = -A^{t} + A^{t}$$

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

$$B^t = (A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t = B.$$

$$-C^{t} = -(A - A^{t})^{t} = -A^{t} + (A^{t})^{t} = -A^{t} + A = A - A^{t} = C.$$

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

D]: Hipóteses: $A, B, C \in \mathcal{M}_n(\mathbb{K})$ tal que $B = A + A^t$ e $C = A - A^t$;

Tese: $B = B^t$ e $C = -C^t$

Vamos demonstrar de forma direta:

$$B^t = B \in C = -C^t$$
.

$$B^t = (A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t = B.$$

$$-C^{t} = -(A - A^{t})^{t} = -A^{t} + (A^{t})^{t} = -A^{t} + A = A - A^{t} = C.$$

Matrizes Revisão Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

 $\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$ tais que $A=(a_{ii})$,

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C\in\mathcal{M}_n(\mathbb{K})}$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C}\in\mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C}\in\mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij};$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij}; \forall i=1,\cdots n \ \mathrm{e} \ \forall j=1,\cdots,n.$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij}; \forall i=1,\cdots n \ \mathrm{e} \ \forall j=1,\cdots ,n.$ Tese:

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A, B, C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A = (a_{ij}), C = A^t \Rightarrow c_{ij} = a_{ji}$ e $B = (b_{ij}) = a_{ij} + c_{ij}; \forall i = 1, \dots, n \in \forall j = 1, \dots, n.$ Tese: $B = B^t$, sse, $b_{ij} = b_{ji}$.

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A}, \overline{B}, \overline{C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A = (a_{ij}), \ C = A^t \Rightarrow c_{ij} = a_{ji}$ e $B = (b_{ij}) = a_{ij} + c_{ij}; \ \forall i = 1, \cdots n \text{ e } \forall j = 1, \cdots, n.$

$$\underline{\text{Tese:}} \ B = B^t, \text{ sse, } b_{ij} = b_{ji}.$$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t \Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij};\ \forall i=1,\cdots n\ \mathrm{e}\ \forall j=1,\cdots ,n.$ Tese: $B=B^t$, sse, $b_{ij}=b_{ji}$.

$$B=(b_{ij})=$$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij}; \forall i=1,\cdots n \ \mathrm{e}\ \forall j=1,\cdots,n.$

Tese: $B = B^t$, sse, $b_{ii} = b_{ii}$.

$$B=(b_{ij})=(a_{ij}+c_{ij});$$
 e

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A = (a_{ij}), \ C = A^t \Rightarrow c_{ij} = a_{ji}$ e $B = (b_{ij}) = a_{ij} + c_{ij}; \ \forall i = 1, \cdots, n \ e \ \forall j = 1, \cdots, n.$ Tese: $B = B^t$, sse, $b_{ij} = b_{ji}$. Então, $B = (b_{ii}) = (a_{ii} + c_{ii});$ e

$$B = (b_{ij}) = (a_{ij} + c_{ij});$$

 $B^t = (b_{ji}) =$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t\Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij}; \forall i=1,\cdots n \ e \ \forall j=1,\cdots ,n.$ Tese: $B=B^t$, sse, $b_{ij}=b_{ji}$. Então.

$$B = (b_{ij}) = (a_{ij} + c_{ij});$$
 e
 $B^t = (b_{ji}) = (a_{ji} + c_{ji}) =$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A, B, C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A = (a_{ij}), C = A^t \Rightarrow c_{ij} = a_{ji}$ e $B = (b_{ij}) = a_{ij} + c_{ij}; \forall i = 1, \dots, n \in \forall j = 1, \dots, n.$
 $\underline{\text{Tese}}: B = B^t, \text{ sse, } b_{ij} = b_{ji}.$

Então,

$$B = (b_{ij}) = (a_{ij} + c_{ij});$$
 e
 $B^t = (b_{ji}) = (a_{ji} + c_{ji}) = (c_{ij} + a_{ij})$

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A,B,C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A=(a_{ij}),\ C=A^t \Rightarrow c_{ij}=a_{ji}$ e $B=(b_{ij})=a_{ij}+c_{ij};\ \forall i=1,\cdots n\ \mathrm{e}\ \forall j=1,\cdots ,n.$ Tese: $B=B^t$, sse, $b_{ij}=b_{ji}$.

Então,

$$B = (b_{ij}) = (a_{ij} + c_{ij});$$
 e
 $B^t = (b_{ji}) = (a_{ji} + c_{ji}) = (c_{ij} + a_{ij}) = (a_{ij} + c_{ij})$

Questão.15

Observação: Note que para provar de formar genérica, NÃO poderíamos provar o resultado com exemplos porque ficaríamos limitados aos exemplos.

Todavia, podíamos mostrar utilizando outras notações para a matriz:

Hipóteses:

$$\overline{A, B, C} \in \mathcal{M}_n(\mathbb{K})$$
 tais que $A = (a_{ij}), C = A^t \Rightarrow c_{ij} = a_{ji}$ e $B = (b_{ij}) = a_{ij} + c_{ij}; \forall i = 1, \dots, n \in \forall j = 1, \dots, n.$
 $\underline{\mathsf{Tese}}: B = B^t, \text{ sse, } b_{ij} = b_{ji}.$

Então,

$$B = (b_{ij}) = (a_{ij} + c_{ij});$$
 e
 $B^t = (b_{ji}) = (a_{ji} + c_{ji}) = (c_{ij} + a_{ij}) = (a_{ij} + c_{ij}) = B.$

Questão.15

Ou ainda, podíamos escrever a matriz: $B = A + A^t =$

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} +
```

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}
```

Ou ainda, podíamos escrever a matriz:
$$B = A + A^t = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} =$$

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
```

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} =
 = \begin{bmatrix} a_{11} + a_{11} & a_{12} + a_{21} & \cdots & a_{1n} + a_{n1} \\ a_{21} + a_{12} & a_{22} + a_{22} & \cdots & a_{2n} + a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + a_{1n} & a_{n2} + a_{2n} & \cdots & a_{nn} + a_{nn} \end{bmatrix} =
       a_{11} + a_{11} a_{21} + a_{12} \cdots a_{n1} + a_{1n}

a_{12} + a_{21} a_{22} + a_{22} \cdots a_{n2} + a_{2n}
       \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ a_{1n} + a_{n1} \quad a_{2n} + a_{n2} \quad \cdots \quad a_{nn} + a_{nn}
```

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} =
          a_{n1}+a_{1n} a_{n2}+a_{2n} \cdots a_{nn}+a_{nn}
      a_{11} + a_{11} a_{21} + a_{12} \cdots a_{n1} + a_{1n}
a_{12} + a_{21} a_{22} + a_{22} \cdots a_{n2} + a_{2n}
    \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ a_{1n} + a_{n1} \quad a_{2n} + a_{n2} \quad \cdots \quad a_{nn} + a_{nn}
```

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} =
              a_{n1} + a_{1n} \quad a_{n2} + a_{2n} \quad \cdots \quad a_{nn} + a_{nn}
     \begin{bmatrix} a_{11} + a_{11} & a_{21} + a_{12} & \cdots & a_{n1} + a_{1n} \\ a_{12} + a_{21} & a_{22} + a_{22} & \cdots & a_{n2} + a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} + a_{n1} & a_{2n} + a_{n2} & \cdots & a_{nn} + a_{nn} \end{bmatrix} = B^{t}.
```

```
Ou ainda, podíamos escrever a matriz: B = A + A^t =
= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} =
              a_{n1} + a_{1n} \quad a_{n2} + a_{2n} \quad \cdots \quad a_{nn} + a_{nn}
     \begin{bmatrix} a_{11} + a_{11} & a_{21} + a_{12} & \cdots & a_{n1} + a_{1n} \\ a_{12} + a_{21} & a_{22} + a_{22} & \cdots & a_{n2} + a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} + a_{n1} & a_{2n} + a_{n2} & \cdots & a_{nn} + a_{nn} \end{bmatrix} = B^{t}.
```

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal.

D]: Hipóteses:

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$;

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$: Tese: $A\overline{A^t} = \overline{A^t}A$ e

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$; Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A e$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} =$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} = \overline{A^t}A$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$:

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} = \overline{A^t}A$: e

 $R\overline{R^t} =$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se. $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se, e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} = \overline{A^t}A$: e

 $B\overline{B^t} = (-\overline{B^t})(-B)$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} = \overline{A^t}A$: e

 $B\overline{B^t} = (-\overline{B^t})(-B) = \overline{B^t}B$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

$$A\overline{A^t} = \overline{A^t}A$$
; e

$$B\overline{B^t} = (-\overline{B^t})(-B) = \overline{B^t}B \ .$$

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$; e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$

Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma Matriz Normal

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{C})$ tal que $A = \overline{A^t}$ e $B = -\overline{B^t}$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Então.

 $A\overline{A^t} = \overline{A^t}A$: e

 $B\overline{B^t} = (-\overline{B^t})(-B) = \overline{B^t}B$.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$ isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses:

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A$ e

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} =$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} = AA^t =$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA =$$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$$
; e

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$

 $R\overline{R^t} =$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$

 $R\overline{R^t} = RR^t =$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$$
; e

$$B\overline{B^t} = BB^t = (-B^t)(-B) =$$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$

 $B\overline{B^t} = BB^t = (-B^t)(-B) = B^tB =$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

Então.

 $A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$

 $B\overline{B^t} = BB^t = (-B^t)(-B) = B^tB = \overline{B^t}B$

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$$
; e

$$B\overline{B^t} = BB^t = (-B^t)(-B) = B^tB = \overline{B^t}B$$
.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se,

 \overline{A}^t , A = A, \overline{A}^t , isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{R})$ tal que $A = A^t$ e $B = -B^t$;

Tese: $A\overline{A^t} = \overline{A^t}A \in B\overline{B^t} = \overline{B^t}B$.

Vamos demonstrar de forma direta:

 $A\overline{A^t} = \overline{A^t}A$: e $B\overline{B^t} = \overline{B^t}B$.

$$A\overline{A^t} = AA^t = A^tA = \overline{A^t}A$$
; e

$$B\overline{B^t} = BB^t = (-B^t)(-B) = B^tB = \overline{B^t}B$$
.

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses:

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$: Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

Então.

 $\overline{C^t} =$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} =$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} =$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\mathsf{Tese}} \colon \ C = \overline{C^t} \ \mathsf{e} \ D = \overline{D^t}.$

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} =$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{\mathit{C}^t} = \overline{(\mathit{A} + \overline{\mathit{A}}^t)^t} = \overline{(\mathit{A}^t + (\overline{\mathit{A}}^t)^t)} = \overline{(\mathit{A}^t + \overline{\mathit{A}})} = \overline{(\mathit{A}^t)} + \overline{(\overline{\mathit{A}})} =$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = \overline{(A^t)^t} =$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} + \overline{A^t} = \overline{A^t} + \overline{$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

 $\overline{C^t} = C \ e \ \overline{D^t} = D.$

$$\overline{C^t} = \overline{(A^t + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

Então,

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

 $\overline{D^t} =$

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

Então<u>,</u>

$$\overline{C^t} = \underline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = \overline{(A\overline{A}^t)^t} = \overline{(A^t + \overline{A}^t)^t} = \overline{(A^t + \overline{A}^t)^t$$

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$, são matrizes hermitianas.

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

Então<u>,</u>

$$\overline{C^t} = (\overline{A + \overline{A}^t})^t = (\overline{A^t + (\overline{A}^t)^t}) = (\overline{A^t + (\overline{A}^t)^t}) = (\overline{A^t + \overline{A}}) = (\overline{A^t}) + (\overline{\overline{A}}) = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = (A\overline{A^t})^t = ((\overline{A^t})^t A^t) = (\overline{A^t})^t A^t = \overline{A^t} + A = A + \overline{A^t} = C; e$$

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$:

Tese: $C = \overline{C^t}$ e $D = \overline{D^t}$.

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

$$\overline{C^t} = \underline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = \overline{(A\overline{A}^t)^t} = \overline{((\overline{A}^t)^t A^t)} = \overline{(\overline{A}A^t)} = \overline{(\overline{A}A^t)} = \overline{(\overline{A}A^t)^t} = \overline{(\overline{A}A^t$$

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

$$\overline{C^t} = (\overline{A + \overline{A}^t})^t = (\overline{A^t + (\overline{A}^t})^t) = (\overline{A^t + (\overline{A}^t})^t) = (\overline{A^t + \overline{A}}) = (\overline{A^t}) + (\overline{\overline{A}}) = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = (A\overline{A^t})^t = ((\overline{A^t})^t A^t) = (\overline{\overline{A}}A^t) = (\overline{\overline{A}})(A^t) = (\overline{\overline{A}})(A^t)$$

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

$$\overline{C^t} = (\overline{A + \overline{A}^t})^t = (\overline{A^t + (\overline{A}^t})^t) = (\overline{A^t + \overline{A}}) = (\overline{A^t}) + (\overline{\overline{A}}) = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = (A\overline{A^t})^t = ((\overline{A^t})^t A^t) = (\overline{\overline{A}}A^t) = (\overline{\overline{A}})(A^t) = A\overline{A^t} = A^t =$$

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

$$\overline{C^t} = \overline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = \overline{(A\overline{A}^t)^t} = \overline{((\overline{A}^t)^t A^t)} = \overline{(\overline{A}A^t)} = \overline{(\overline{A})} \overline{(A^t)} = A\overline{A^t} = D.$$

D]: Hipóteses: $A, C, D \in \mathcal{M}_n(\mathbb{C})$ tal que $C = A + \overline{A}^t$ e $D = A\overline{A}^t$;

 $\underline{\text{Tese: } C = \overline{C^t} \text{ e } D = \overline{D^t}.$

Vamos demonstrar de forma direta:

$$\overline{C^t} = C \ e \ \overline{D^t} = D.$$

$$\overline{C^t} = \underline{(A + \overline{A}^t)^t} = \overline{(A^t + (\overline{A}^t)^t)} = \overline{(A^t + \overline{A})} = \overline{(A^t)} + \overline{(\overline{A})} = \overline{A^t} + A = A + \overline{A^t} = C; e$$

$$\overline{D^t} = \overline{(A\overline{A}^t)^t} = \overline{((\overline{A}^t)^t A^t)} = \overline{(\overline{A}A^t)} = \overline{(\overline{A})} \overline{(A^t)} = A\overline{A^t} = D.$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A \cdot A$ e $A^{k+1} = A \cdot A^k$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A \cdot A$ e $A^{k+1} = A \cdot A^k$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$. Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz IDEMPOTENTE:

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$. Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$. D]: Hipóteses:

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte

forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. $A \in A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte

forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. $A \in A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

Questão.19

```
Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte
forma: A^0 = I_n: A^1 = A: A^2 = A. A \in A^{k+1} = A. A^k.
Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. A^2 = A.
Mostre que: se A é uma matriz IDEMPOTENTE então B = I_n - A é uma matriz
IDEMPOTENTE; e, além disso, temos que AB = BA = 0_n.
D]: Hipóteses: A, B \in \mathcal{M}_n(\mathbb{K}) tal que A^2 = A e B = I_n - A
Tese: B^2 = B e AB = BA = 0n.
Vamos demonstrar de forma direta:
B^2 = B \ e \ AB = BA = 0_n
Então.
```

Questão.19

```
Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte
forma: A^0 = I_n: A^1 = A: A^2 = A. A \in A^{k+1} = A. A^k.
Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. A^2 = A.
Mostre que: se A é uma matriz IDEMPOTENTE então B = I_n - A é uma matriz
IDEMPOTENTE; e, além disso, temos que AB = BA = 0_n.
D]: Hipóteses: A, B \in \mathcal{M}_n(\mathbb{K}) tal que A^2 = A e B = I_n - A
Tese: B^2 = B e AB = BA = 0n.
Vamos demonstrar de forma direta:
B^2 = B \ e \ AB = BA = 0_n
Então.
R^2 =
```

Questão.19

```
Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte
forma: A^0 = I_n: A^1 = A: A^2 = A. A \in A^{k+1} = A. A^k.
Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. A^2 = A.
Mostre que: se A é uma matriz IDEMPOTENTE então B = I_n - A é uma matriz
IDEMPOTENTE; e, além disso, temos que AB = BA = 0_n.
D]: Hipóteses: A, B \in \mathcal{M}_n(\mathbb{K}) tal que A^2 = A e B = I_n - A
Tese: B^2 = B e AB = BA = 0n.
Vamos demonstrar de forma direta:
B^2 = B \ e \ AB = BA = 0_n
Então.
B^2 = (I_n - A)^2 =
```

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

$$B^{2} = (I_{n} - A)^{2} = (I_{n} - A)(I_{n} - A) = (I_{n}^{2} - I_{n}A - AI_{n} + A^{2}) =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$ Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

$$B^{2} = (I_{n} - A)^{2} = (I_{n} - A)(I_{n} - A) = (I_{n}^{2} - I_{n}A - AI_{n} + A^{2}) = I_{n} - A - A + A^{2} =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte

forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

$$B^{2} = (I_{n} - A)^{2} = (I_{n} - A)(I_{n} - A) = (I_{n}^{2} - I_{n}A - AI_{n} + A^{2}) = I_{n} - A - A + A^{2} = I_{n} - 2A + A = I_{n} - A - A + A^{2} = I_{n} - A - A +$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

 $B^2 = B \ e \ AB = BA = 0_n$

Então.

$$B^{2} = (I_{n} - A)^{2} = (I_{n} - A)(I_{n} - A) = (I_{n}^{2} - I_{n}A - AI_{n} + A^{2}) = I_{n} - A - A + A^{2} = I_{n} - 2A + A = I_{n} - A = I_{n$$

27 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte

forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

Então.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

27 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

$$B^2 = B$$
 e $AB = BA = 0_n$.

Então.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

AB =

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se. e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) =$$

Questão.19

Seia A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se. $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

D]: Hipóteses: $A, B \in \mathcal{M}_n(\mathbb{K})$ tal que $A^2 = A$ e $B = I_n - A$

Tese: $B^2 = B$ e AB = BA = 0n.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2=A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA =$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2=A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A =$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A = (I_n A) - (A^2) =$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A = (I_n A) - (A^2) = (A) - (A) =$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B$$
 e $AB = BA = 0_n$.

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A = (I_n A) - (A^2) = (A) - (A) = 0_n;$$

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

Então,

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A = (I_n A) - (A^2) = (A) - (A) = 0_n;$$

assim, $AB = BA = 0_n$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Mostre que: se A é uma matriz IDEMPOTENTE então $B=I_n-A$ é uma matriz

IDEMPOTENTE; e, além disso, temos que $AB=BA=\mathbf{0}_n$.

D]: Hipóteses:
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
 tal que $A^2 = A$ e $B = I_n - A$

Tese:
$$B^2 = B$$
 e $AB = BA = 0_n$.

Vamos demonstrar de forma direta:

$$B^2 = B e AB = BA = 0_n$$
.

Então,

$$B^2 = (I_n - A)^2 = (I_n - A)(I_n - A) = (I_n^2 - I_n A - AI_n + A^2) = I_n - A - A + A^2 = I_n - 2A + A = I_n - A = B$$
; e

$$AB = A(I_n - A) = (AI_n) - (A^2) = (A) - (A) = 0_n$$
; e

$$BA = (I_n - A)A = (I_n A) - (A^2) = (A) - (A) = 0_n;$$

assim,
$$AB = BA = 0_n$$
.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Questão.20

Considerando as matrizes A e B definidas a seguir, podemos afirmar que

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

() A e B são idempotentes.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- (X) A e B são autoreflexivas.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- (X) A e B são autoreflexivas.
- (X) B é diagonal e hermitiana.

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- (X) A e B são autoreflexivas.
- (X) B é diagonal e hermitiana.
- (X) O produto $(\mathcal{I}_3 A).(\mathcal{I}_3 + A)$ é igual a uma matriz nula de mesma ordem.

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- (X) A e B são autoreflexivas.
- (X) B é diagonal e hermitiana.
- (X) O produto $(\mathcal{I}_3 A).(\mathcal{I}_3 + A)$ é igual a uma matriz nula de mesma ordem.

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
A	Х		X		X

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α	X		X		X
В	X		X		X

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α	Х		X		X
В	Х		X		X
A + B	Х		X		X

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α	Х		X		Х
В	Х		X		Χ
A + B	Х		X		Χ
A - B	Х		Х		X

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α	Χ		X		X
В	Х		X		Х
A + B	Χ		X		Х
A - B	X		Х		Х
A.B	X		Х		X

Questão.21

Considerando as matrizes $A \in B$;

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α	Χ		X		X
В	Х		X		X
A + B	Χ		X		X
A - B	X		X		X
A.B	Х		X		Х

Questão.22

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

Questão.22

Considerando as matrizes A e B definidas a seguir, podemos afirmar que

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

(X) A é uma matriz hermitiana e normal.

Questão.22

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- (X) A é uma matriz hermitiana e normal.
- (X) B é uma matriz anti-hermitiana e normal.

Questão.22

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- (X) A é uma matriz hermitiana e normal.
- (X) B é uma matriz anti-hermitiana e normal.
- (X) C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- (X) A é uma matriz hermitiana e normal.
- (X) B é uma matriz anti-hermitiana e normal.
- (X) C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- (X) A^2 e B^2 são matrizes hermitianas.

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- (X) A é uma matriz hermitiana e normal.
- (X) B é uma matriz anti-hermitiana e normal.
- (X) C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- (X) A^2 e B^2 são matrizes hermitianas.
- (X) tr(AB) = tr(BA).

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- (X) A é uma matriz hermitiana e normal.
- (X) B é uma matriz anti-hermitiana e normal.
- (X) C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- (X) A^2 e B^2 são matrizes hermitianas.
- (X) tr(AB) = tr(BA).

Questão.23

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

Questão.23

Considerando as matrizes A e B definidas a seguir, assinale as alternativas corretas.

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

(X) A é uma matriz simétrica, hermitiana e idempotente.

Questão.23

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

- (X) A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.

Questão.23

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

- (X) A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- (X) As matrizes A e B são comutativas.

Questão.23

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

- (X) A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- (X) As matrizes A e B são comutativas.
- (X) A matriz C = A + B é uma matriz idempotente e autoreflexiva.

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

- (X) A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- (X) As matrizes A e B são comutativas.
- (X) A matriz C = A + B é uma matriz idempotente e autoreflexiva.
- (X) tr(3A + B) = 3tr(A) + tr(B).

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}; B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

- (X) A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- (X) As matrizes A e B são comutativas.
- (X) A matriz C = A + B é uma matriz idempotente e autoreflexiva.
- (X) tr(3A + B) = 3tr(A) + tr(B).