南京大学 电子科学与工程学院 全日制统招本科生

《数字信号处理》期末考试试卷 团 卷

任课教师姓名: 李 晨 庄建军

考试日期:_		2015. 6. 27		考试时长:2_		小时	_分钟	
考生年级		_考生专业	考生学号		考生	_考生姓名		
题号	_		Ξ	四	五.	六	总分	
得分								
以 1. 下列 A.Z	列哪个系统是 [[x(n)]=g(n)]	选择 [2 分,共计 是移不变系约 x(n) B. T [x 滤波器的系约	$\widehat{\mathbf{x}}(n)] = x(n-n_0)$				$\sum_{k=n_0}^n x(k)$	
A.	低通	B. 高通	C.	带通	D. 带阻			
3. δ(n-	-1)的 Z 变换	是					()	
A.	1	B. z ⁻¹	C. 2 π δ	(ω)	D. 2 π			
A.时 B.时 C.时	域为离散序 域为离散居 域为离散无	的傅里叶变换 5列,频域为 期序列,频 E限长序列, 「限长序列,	连续周期信域也为离散 频域为连续	号 周期序列 周期信号			()	
-		充一定是因果		13.13.14.14.14.1	/ 1		()	
6. 设 I 数至	H(z)是线性 少为 ()	B. y(n)= 相位 FIR 系约 由线性相位系统零 阶数与零极点个	充,已知 H(z :点的特性可知,z=	2)中的3个零	点分别为	1, 0.8, 1+j	,该系统阶	
A.	4	B. 5	C	C. 6	D.	7		
7. 若月	茅列 x(n)的卡	长度为30.则	用基2的FF	T 算法计算:	X(k)的复数	乘法次数为	()	

1

	A. 80 B. 96	C. 128 D. 2	56 N	/2log2N N	N 补成 32	?				
8.	若序列的长度为 N,	要能够由频域抽样	信号 X	(k)恢复原	原序列,同	而不发生时	寸域混	叠现		
	象,则频域抽样点数	M 需满足的条件是	己				()		
	A.N≥M B.N≤	M C.N≤2N	Л	D.N≥2	M					
9.	IIR 数字滤波器可以	单独调整其零极点	位置的	J结构是			()		
	A.直接 I 型	B. 典范型	C. 并	一联型 ?	?	D.级联				
10.	有关 IIR 数字滤波器	特点说法正确的是	5				()		
	A. h(n)有限长									
	B. 实现同样的性能阶次高的多									
	C. 可用模拟滤波器设计									
	D. 可用 FFT 计算									
<u> </u>	(30 分) 填空(每空	(2分)				本题得	分			
1.	序列 $x(n) = A\cos(\frac{3\pi}{7}r)$	n - ^{5π})的周期为		0						
2.	单位响应为 h(n)的 L	TI 系统,输入 x(n))时,输		输入为	$3x(n-2)+2\delta$	S(n-1),	,输		
	出为	_0								
3.	已知序列 x(n)的傅里		则序列	ग्रं ₁ (n) =	x(1-n)	+ x(-1 -	- n)	的傅		
	里叶变换为			. 1()						
4.	为了改善计算 DFT 时	†出现的栅栏效应,	可以到	采取的措施	施是			0		
5.	设计一个N点的FIR组	线性相位带通滤波	器的 <i>h</i> (1	n)应该满	足的条件	是: h(n)=_		o		
6.	时域N点的有限长序	列 $x(n)$ 有 $X(e^{j\omega})$,对 <i>X</i>	$X(e^{j\omega})$ 进	行 M 点5	匀匀抽样,	则时:	域中		
	对应的新序列 y(n)和	原序列 x(n)的关系;	是:					o		
7.	对 N 点 $x(n)$ 有 $X(k) = \Gamma$	DFT [x(n)],则 IDFT {	Re [<i>X(k</i>	<u>;</u>)]}=				c		
8.	某序列 DFT 的表达式	是 $X(k) = \sum_{n=0}^{5} x(n)$	W_8^{kn} ,	由此可和	雪出,该	序列的时均	或长度	: -		
	是,变换后	数字频域上相邻两	个频率	区样点之间	司隔是			o		
9.	冲激响应不变法作	· 为模拟滤波器通	逼近数	字滤波	器的常月	用方法,	其优	点是		
	1	<u> </u>		,缺点	〔是			_		
10.	用窗函数设计法设计 带宽则与				由	决	定,	过渡		
三.	(20分)简单计算	(每题5分)				本题得分				
1.	一个长度为8的序列。	$x(n)$ 在 $0 \le n \le 7$ 之	外为零	, 其 8 点	的 DFT	平巡177				

为
$$X(k) = 1 + 2\sin(\frac{2\pi k}{8}) + 3\cos(\frac{4\pi k}{8}) + 4\sin(\frac{6\pi k}{8})$$
, 计算 $x(n) = \text{IDFT}[X(k)]$

2. 研究一个输入为x(n)和输出为y(n)的时域线性离散移不变系统,已知它满足 $y(n-1)-\frac{10}{3}y(n)+y(n+1)=x(n)$ 并已知系统是稳定的,试求其单位抽样响应。

- 3. 仔细观察下图。
- (1) 这是什么类型具有什么特性的数字滤波器?
- (2) 写出其差分方程和系统函数。

- 4. 若 $x(n) = R_5(n)$,
- (1) 求此序列的傅里叶变换 $X(e^{j\omega})$,并大致画出其幅度谱。
- (2) 计算 x(n) 8 点的 DFT, 并在 $X(e^{j\omega})$ 的幅度谱上标出 X(k)所在的点。

四. (10 分) 已知一个有限长序列 $x(n) = 2\delta(n) - \delta(n-4)$

本题得分

- (1) 求它的 8 点离散傅里叶变换 X(k)
- (2) 已知序列 y(n) 的 8 点离散傅立叶变换为 $Y(k) = W_8^{-3k} X(k)$, 求序列 y(n)
- (3) 已知序列m(n)的8点离散傅立叶变换为M(k) = X(k)Y(k), 求序列m(n)

五. (10 分) 已知 x(n)是 4 点的实序列,并且已知 X(k) = DFT[x(n)] 的前 3 个值为: 6, -1+j, 4。

本题得分

- (1) 求 X(3)的值;
- (2) 写出利用 FFT 程序来实现 IFFT 的步骤。
- (3) 按照(2)中的方法,计算出 4 点序列 x(n)=IDFT[X(k)],要求画出按频率抽选(DIF) 输入自然序输出倒位序的基-2 FFT 蝶形运算流图来完成具体计算过程。

六. $(10\, \rm f)$ 用双线性变换法设计一个 Butterworth 数字低通滤波器,要求在频率低于 0.2π rad 的通带内幅度特性下降小于 1dB,在频率 0.3π 到 π 之间的阻带内,衰减大于 15dB。

本题得分

N	<i>a</i> ₁	a ₂	a_3	a_4	a ₅	a ₆	a7	- a ₈	a_9
1	1							1 1	
2	1.4142136							4	
3	2.0000000	2.0000000							
4	2.6131259	3.4142136	2.6131259						
5	3. 2360680	5. 2360680	5. 2360680	3. 2360680				S. Carrie	
6	3.8637033	7.4641016	9.1416202	7.4641016	3.8637033	Physical Street		1 7 1	
7	4. 4939592	10.0978347	14.5917939	14.5917939	10.0978347	4. 4939592		21, 0, Tabrill	14.6
8	5. 1258309	13. 1370712	21, 8461510	25. 6883559	21.8461510	13. 1370712	5.1258309	Fri In-	
9	5.7587705	16. 5817187	31.1634375	41.9863857	41.9863857	31, 1634375	16.5817187	5.7587705	
10	6.3924532	20.4317291	42.8020611	64.8823963	74. 2334292	64.8823963	42,8020611	20. 4317291	6. 3924532