

Symmetrische matrices en Kwadratische vormen

H7.1 en 2

Introductie

Toepassingen symmetrische matrices:

- Statistiek (correlatie matrices)
- Landmeetkunde
- Moleculaire chemie (afstandsmatrices)
- Numerieke wiskunde (gediscretiseerde partiele differentiaalvergelijkingen)
- Signaalanalyse en teledetectie

Symmetrische matrices zijn

- ⇒altijd diagonaliseerbaar
- ⇒te noteren in spectrale decompositie vorm

Toepassing Image processing: Railroad Valley, Nevada

1 image van hetzelfde gebied: simultane meting doch verschillend frequentiegebied.

Elke image geeft andere informatie over hetzelfde gebied

Pixel correspondeert met een observatie vector in \mathbb{R}^3 = signaalintensiteit in de drie spectraalbanden Data van image => 3 x 4000.000 matrix

Multi dimensional karakter van de data refereert dan naar de drie spectrale dimensies

Lesdoelen 7.1

U kunt hierna

- de <u>orthogonale diagonalisatie</u> en
- de spectrale decompositievorm van een symmetrische matrix A bepalen

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

Begripsvorming:

- Wat wordt bedoeld met symmetrische matrices, en orthogonale matrices?
- Wat is het verschil tussen een diagonaliseerbare matrix A en een orthogonaal diagonaliseerbare A

Symmetrische matrices (1)

Definitie: Een matrix A heet symmetrisch als $A^T = A$ \Rightarrow Een symmetrische matrix is dus altijd <u>vierkant</u>

Voorbeeld van symmetrische matrices:

$$\begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix} \qquad \begin{bmatrix} -3 & 2 & 7 \\ 2 & 0 & -5 \\ 7 & -5 & 8 \end{bmatrix} \qquad \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Niet symmetrisch:

$$\begin{bmatrix} -3 & 2 & 7 \\ 8 & 0 & -5 \\ 7 & 3 & 8 \end{bmatrix} \begin{bmatrix} 2 & 3 & 3 \\ 3 & 7 & 5 \end{bmatrix}$$

Quick question

Welke matrix is symmetrisch?

$$a) \begin{bmatrix} -6 & 2 & 0 \\ 0 & -6 & 3 \\ 0 & 3 & -6 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & -8 \\ -8 & 1 \end{bmatrix}$$

$$b) \begin{bmatrix} 5 & -3 & 7 \\ -3 & 2 & 5 \\ 7 & 0 & 1 \\ 5 & 1 & 8 \end{bmatrix}$$

$$d) \begin{bmatrix} -2 & 8 & 4 & 5 \\ 8 & 0 & 2 & 0 \\ 4 & 2 & 4 & 1 \\ 5 & 0 & 1 & -9 \end{bmatrix}$$

Symmetrische matrices (2)

Belangrijkste eigenschap van een *symmetrische* matrix *A: A is altijd diagonaliseerbaar*

Theorema I: Matrix A symmetrisch => de <u>eigenvectoren</u> van A behorende bij **verschillende** λ_i zijn orthogonaal (Ga zelf na)

Symmetrische matrices (2)

Belangrijkste eigenschap van een symmetrische matrix A:

A is altijd diagonaliseerbaar

Theorema I: Matrix A symmetrisch => de <u>eigenvectoren</u> van A behorende bij **verschillende** λ_i zijn orthogonaal (Ga zelf na)

Zie vb 2, p395. A symmetrisch en conform Thm 1 is $A = PDP^{-1}$

De eigenwaarden van A in vb 2 zijn $\lambda_i = 8, 6, 3$ (let op zijn verschillend)

Eigenvectoren van A zijn orthogonaal
$$\overline{v_1} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
, $\overline{v_2} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$, $\overline{v_3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Symmetrische matrices (3)

Belangrijkste eigenschap van een *symmetrische* matrix *A:* A is altijd diagonaliseerbaar

Zie vb 2, p395. A symmetrisch en conform Thm 1 is A = PDP⁻¹

Dus P =
$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
 Maak kolommen van P Orthonormaal =>

$$P = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

Noemen P dan een Orthogonale matrix

Orthogonale matrix (1)

Een **orthogonale** matrix is een <u>vierkante</u> matrix met <u>orthonormale</u> kolommen.

$$P = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

(zie ook vb 7 van ξ6.2 blz 344)

Oefening 1

Welke matrix is een orthogonale matrix?

a)
$$\begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} -5 & 2 \\ 2 & 5 \end{bmatrix}$$

Ga na:

- 1. Zijn ze vierkant?
- 2. Zijn de kolommen orthonormaal? => orthogonaal en norm = 1

Orthogonale matrix (2)

Een **orthogonale** matrix is een <u>vierkante</u> matrix met <u>orthonormale</u> kolommen.

- \Rightarrow Indien P een orthogonale matrix dan geldt P^TP = I
- \Rightarrow dwz P inverteerbaar met P⁻¹= P^T (Zie ook thm 6 van ξ 6.2 blz 343)

Vb2 blz 395. A symmetrisch en diagonaliseerbaar: A = PDP⁻¹ met in P orthonormale kolommen dan $P^{-1} = P^{T}$

Theorema

Eerder gezien:

Belangrijkste eigenschap van een symmetrische matrix A:

A is altijd diagonaliseerbaar

Theorema:

A is symmetrisch \Leftrightarrow A is vierkants en orthogonaal diagonaliseerbaar

Dus
$$A = PDP^{-1} = PDP^{T}$$

Oefening 2

Gegeven de matrix A en de daarbij horende eigenwaarden.

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{bmatrix} \text{ met } \lambda_i = 5, 2, -2$$

De matrix A is duidelijk orthogonaal diagonaliseerbaar. Explain.

Bepaal P⁻¹

Zie ook vb 3 blz 396 waarbij λ_i niet verschillend.

Spectraaldecompositie (1)

Spectrum = verloop van opeenvolgende kleuren of geluiden of andere verscheidenheden

Vb 1: Quantummechanica

Het spectrum van een gloeiend gas in termen van de (signaalintensiteit =) eigenwaarden λ_i zijn by de energieniveau's van het atoom

Spectraaldecompositie (2)

Symmetrische matrix A is orthogonaal diagonaliseerbaar:

- \Rightarrow Er is een **orthonormale** basis $\{u_1,u_2,\ldots,u_n\}$ van \mathbb{R}^n met u_i eigenvector van A => A u_i = $\lambda_i u_i$
- \Rightarrow Dus A =PDP^T met P = $(u_1, u_2,, u_n)$ en D = diag $(\lambda_i, ..., \lambda_n)$

Dan
$$A = PDP^T = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

Spectraaldecompositie (3)

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

=> Spectrale decompositie van A

Elke matrix is een projectiematrix, want $\mathbf{u_i u_i^T x} = (\mathbf{u_i^T x})\mathbf{u_i} = (\mathbf{x.u_i})\mathbf{u_i}$ is de (orthogonale) projectie van \mathbf{x} langs de vector $\mathbf{u_i}$

Bestudeer vb 4 op blz 398 en practice problems op blz 399

Oefening 3

Noteer gegeven symmetrische matrix A in de vorm

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$

Ook wel: Bepaal de spectraaldecompositie van matrix A

$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

Kwadratische vormen

Kwadratische vorm

Kwadratische vorm: homogene veelterm van graad 2 bv ax_1^2 -b x_1x_2 +c x_2^2

Definitie: Een kwadratische vorm op \mathbb{R}^n is een functie $Q: \mathbb{R}^n \to \mathbb{R}$ die voor elke $\bar{x} \in \mathbb{R}^n$ geschreven kan worden in de vorm $Q(\bar{x}) = \overline{x^T} A \bar{x}$ met A een symmetrische (nxn) matrix.

Deze <u>symmetrische</u> matrix A heet <u>de matrix van de kwadratische vorm Q</u> Voorbeeld 1:

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \text{ en } Q(\bar{x}) = \overline{x^T} A \bar{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2$$

Voorbeeld 2:

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \text{ en } Q(\bar{x}) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3x_1 - 2x_2 \\ -2x_1 + 7x_2 \end{bmatrix} = 3x_1^2 - 4x_1x_2 + 7x_2^2$$

Welke relatie herkent u in de matrix elementen en de coefficienten van Q?

Vb Toepassing in Operation research

Optimalisatie problematiek: Toewijzen van resources op een efficiente manier (= kosten besparend)

Vb: toewijzen resources voor het repareren van x mijl wegen en bruggen vs investering in y recreatie oorden.

$$4x^2 + 9y^2 \le 36$$

FIGURE 3 Public works schedules.

Lesdoelen 7.2

U leert:

- De kwadratische vorm Q van een symmetrische matrix bepalen.
- Omgekeerd, uit Q, de symmetrische matrix A bepalen
- Kwadratische vorm Q bepalen zonder kruisproducten (door variabele substitutie / vinden van P en D van A)
- Kwadratische vormen Q klassificeren: pos (semi)definiet, neg (semi)definiet, indefiniet

Voorbeeld symm matrix A en Q(x)

$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$

kruisproducten

- a. Noteer Q(**x**) in de vorm $\overline{x^T}A\overline{x}$
- b. Bereken Q(x) voor $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$

Merk ook hier op:

De coefficienten van de kwadraten komen op de hoofdiagonaal en de coefficienten van de zgn kruisproducten worden conform ij posities verdeeld in de matrix

Oplossing a: Q(**x**) =
$$\overline{x^T} A \overline{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 5 & -0.5 & 0 \\ -0.5 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Oplossing b:
$$Q(1,2,-2)=5(1)+3(4)+2(4)-1(2)+8(-4)=-9$$
 Hw opg 1

Q(x) zonder kruisproducten

Q(x) zonder kruisproducten => symm matrix van de kwadratische vorm, D, is dan een diagonaalmatrix

(figuur gebasseerd op vb 4 blz 402)

FIGURE 1 Change of variable in $x^T A x$.

Theorema: Zij A een nxn symmetrische matrix. Dan is een orthogonale variabele substitutie (eng: change of variable)

 $\bar{x}=P\bar{y}$, die de kwadratische vorm $\overline{x^T}A\bar{x}$ transformeert naar een nieuwe kwadratische vorm $\overline{y^T}D\bar{y}$ zonder kruisproducten

P een inverteerbare matrix (met genormaliseerde eigenvectoren van A)

D = Diagonaal matrix van A

 \overline{y} een nieuwe variabele in \mathbb{R}^n

Geometrische kijk op de hoofdassen

De genormaliseerde eigenvectoren in matrix P worden de hoofdassen (eng = principal axes) van de kwadratische vorm $\overline{x^T}A\bar{x}$ genoemd

Grafiek in standaard positie: matrix A is geen diagonaal matrix

A geen diagonal matrix

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$
, $a > b > 0$

Nieuw coordinaat system relatief aan staandaard systeem vinden van hoofdassen (genorm. eigenvectoren van A)

(zie ook vb 5 blz 404)

Classificatie Kwadratische vormen

Definitie:

Een kwadratische vorm Q heet:

- 1. Positief definiet of definiet positief als Q(x) > 0 voor alle $x \neq 0$
- 2. Negatief definiet of definiet negatief als Q(x) < 0 voor alle $x \neq 0$
- 3. Indefiniet als Q(x) zowel pos als neg waarden aanneemt

Classificatie Kwadratische vormen

Negatief semidefiniet indien $Q(\mathbf{x}) \le 0$ voor alle \mathbf{x} en $Q(\mathbf{x}) = 0$ voor zekere $\mathbf{x} \ne 0$. Analoog voor positief definiet

Theorema:

A een nxn symmetrische matrix. Een kwadratische vorm Q is

- a. Pos def ⇔ alle eigenwaarden van A zijn positief
- b. Neg def ⇔ alle eigenwaarden van A zijn negatief
- c. Indefiniet ⇔ A heeft zowel positieve als negatieve eigenwaarden