

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
17 June 2004 (17.06.2004)

PCT

(10) International Publication Number
WO 2004/050838 A2

(51) International Patent Classification⁷:

C12N

(21) International Application Number:

PCT/US2003/037905

(22) International Filing Date:

28 November 2003 (28.11.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/429,385 27 November 2002 (27.11.2002) US

(71) Applicants (*for all designated States except US*): **THE DOW CHEMICAL COMPANY** [US/US]; 1790 Building, Washington Street, P.O. Box 1967, Midland, MI 48674 (US). **DOW AGROSCIENCES, LLC** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). **EPICYTE PHARMACEUTICAL, INC.** [US/US]; 5810 Nancy Ridge Road, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **BRIGGS, Kristen** [US/US]; 5810 Nancy Ridge Road, San Diego, CA 92121 (US). **GLANCY, Todd** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). **HEIN, Mich. B.** [US/US]; 5810 Nancy Ridge Road, San Diego, CA 92121 (US). **HIAITT, Andrew, C.** [US/US]; 5810 Nancy Ridge Road, San Diego, CA 92121 (US). **KARNOUP, Anton, L.** [US/US]; 1790 Building, Washington Street, P.O. Box 1967, Midland, MI 48674 (US). **ANDERSON, W., H., Kerr** [US/US]; 1790 Building, Washington Street, P.O. Box 1967, Midland, MI 48674 (US). **PAREDDY, Dayakar** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). **PETOLINO, Joseph** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). **RUBIN-WILSON, Beth** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). **TAYLOR, Doug** [US/US]; 1790 Building, Washington Street, P.O. Box 1967, Midland, MI 48674 (US). **ROBERTS, Jean, L.** [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US).

[Continued on next page]

(54) Title: PLANT PRODUCTION OF IMMUNOGLOBULINS WITH REDUCED FUCOSYLATION

C1-660 IgG

m/z theor.	m/z obs.	Glycan (glycopeptide)	Comment
1189.51	1189.47	no glycans	
1392.59	1392.54	N	As reported in Andrus et al. After PNGase-A treatment, this peak is lost. S/N = 1100
1595.67	1595.61	N2	major signal
1757.72	1757.83	N2H	minor
1889.76	ND	N2HX	ND
1903.78	1903.90	N2HXF	trace
1919.77	1919.90	N2HF	trace
2035.82	2035.95	N2HXP	*
2051.81	2051.95	N2H2X	*
2065.83	2065.96	N2H2F	*
2081.82	2081.95	N2H3	minor
2197.87	2197.99	N2H2XP	major signal
2213.86	2214.00	N2HDX	**
2227.88	2228.01	N2HDF	*
2243.87	2244.02	N2H4	*
2284.90	2285.03	N3H3	trace
2359.92	2360.06	N2H3XF	major signal
2375.91	2376.07	N2H4X	**
2389.93	ND	N2H4F	ND
2405.92	2406.07	N2H5	significant signal
2521.97	2522.16	N2H4XP	*
2537.96	2538.34	N2H5X	trace
2551.98	ND	N2H5P	ND
2563.00	2563.16	N3H3XP	significant signal
2567.97	2568.18	N2H6	**
2684.02	2684.22	N2H5XF	*
2700.01	ND	N2H6X	ND
2714.03	ND	N2H6F	ND
2725.05	2725.24	N3H4XF	**
2730.02	2730.22	N2H7	**
2766.08	2766.26	N4H3XF	significant signal
2852.07	2852.25	N2H8	***
2846.07	ND	N2H6XF	ND
2862.06	ND	N2H7X	ND
2876.08	ND	N2H7F	ND
2928.13	2928.32	N4H4P	trace
3008.12	ND	N2H7XP	ND
3054.12	3054.39	N2H9	trace

NOTE: all these glycans are removed from glycopeptides by PNGase-A treatment; for single N removal is incomplete

Signal intensity: * - S/N > 3.5, but < 10

** - S/N > 10

*** - intense signal, but less intense than "minor"

"significant signal" - intensity between "minor" and "major"

(57) Abstract: This invention provides for the plant production of immunoglobulins, wherein at least a portion of the glycans attached to the immunoglobulins lack fucose. The invention also provides the constructs; plasmids; vectors; transformed plant cells, transformed plant calli, transformed plant tissues (e.g., leaves, seeds, tubers, etc.) and transformed whole plants used to produce such immunoglobulins; methods of producing the immunoglobulins; the immunoglobulins produced by the disclosed methods; and the use of such immunoglobulins.

WO 2004/050838 A2

- (74) Agents: VEINTENHEIMER, Erich, E. et al.; Morgan, Lewis & Bockius, LLP, 1111 Pennsylvania Avenue, NW, Washington, DC 20004 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (*regional*): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

**PLANT PRODUCTION OF IMMUNOGLOBULINS
WITH REDUCED FUCOSYLATION**

Inventors: Kristen Briggs
5 Todd Glancy
Mich B. Hein
Andrew C. Hiatt
Anton S. Karnoup
W.H. Kerr Anderson
10 Dayakar Pareddy
Joseph Petolino
Jean L. Roberts
Beth Rubin-Wilson
Doug Taylor
15

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority of U.S. Provisional Patent Application 60/429,385, filed November 27, 2002, which is herein incorporated by reference in its entirety.

20 **FIELD OF THE INVENTION**

This invention relates generally to the production of immunoglobulin compositions in plants, wherein at least a portion of the glycans attached to the plant-produced immunoglobulins lack fucose. This invention also relates generally to the 25 production of monomeric antibody compositions in plants, wherein at least a portion of the glycans attached to the plant-produced monomeric antibodies lack fucose. An immunoglobulin produced by the methods of the present invention can be of any class (IgG, IgA, IgM, IgE, IgD, etc.) or isotype. In addition, this invention also relates to the production of monomeric immunoglobulin A (monomeric IgA) antibody 30 compositions in plants, wherein the monomeric IgA antibodies lack fucose by virtue of missing the antibody tailpiece which has the only glycosylation site typically fucosylated. This invention also relates to the production of anti-herpes simplex virus (HSV) monomeric immunoglobulin A (anti-HSV monomeric IgA) antibody compositions in plants, wherein at least a portion of the glycans attached to the anti- 35 HSV monomeric IgA antibodies lack fucose by virtue of missing the antibody

tailpiece which has the only glycosylation site typically fucosylated. In addition, this invention also relates to the production of monomeric immunoglobulin G (monomeric IgG) antibody compositions in plants. This invention also relates to the production of anti-alpha-v-beta3, alpha-v-beta5 (*i.e.*, $\alpha V\beta 3$ and $\alpha V\beta 5$) dual integrin IgG antibody compositions in plants, wherein at least a portion of the glycans attached to the plant-produced antibody compositions lack fucose. The invention also provides the constructs; plasmids; vectors; transformed plant cells, plant calli, plant tissues, plantlets, seeds and whole plants used to produce all such immunoglobulins and antibodies; the methods of producing such immunoglobulins and antibodies; the immunoglobulins and antibodies produced by the disclosed methods; and the use of such immunoglobulins and antibodies.

BACKGROUND OF THE INVENTION

All referenced publications and patent applications herein are incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed inventions, or that any publication specifically or implicitly referenced is prior art.

Increasingly, greater attention is being focused on the production and use of larger and more complex protein molecules as therapeutic agents. Examples of such therapeutic proteins include antigens used in vaccinations to induce immune responses and antibodies.

Plants have great potential as hosts for the production of mammalian therapeutic proteins including multimeric proteins such as antibodies. See, for example, Hiatt, A. *et al.*, *Nature* 342(6245):76-78 (1989); Hein *et al.*, *Biotechnol. Prog.* 7(5):455-461 (1991); Hiatt, A., and Ma, J.K., *FEBS Lett* 307(1):71-5 (1992); Ma *et al.*, *Eur. J. Immunol.* 24:131-138 (1994); Ma *et al.*, *TIBTECH* 13:522-527 (1995); Zeitlin *et al.*, *Nature Biotechnology* 16(1361-1364 (1998); Ma, H.K.-C *et al.* *Nature Medicine* 4(5):601-606 (1998); Miele, L., *Trends Biotechnol.* 15: 45-50

(1997); Khoudi *et al.*, Biotechnology and Bioengineering 64(2):135-143 (1999); and, Hood, E. E. & Jilkka, J. M., Curr. Opin. Biotechnol. 10: 382-386 (1999). The benefits of using plants for antibody production include large scale production, reduced costs for production, maintenance and delivery as well as eliminating the risk of the
5 resultant product containing possibly harmful contaminants such as viruses or prions that are pathogenic to humans and other mammals. Plants, like other heterologous expression systems including mammalian cells, bacteria, yeast, and insects, exhibit differences in glycosylation. See, for example, Ma *et al.*, Science 268:716-719 (1995); Jenkins *et al.*, Nat. Biotechnol. 14: 975-981 (1996); and Lerouge *et al.*, Plant
10 Mol. Biol. 38: 31-48 (1998).

In plants, as in other eukaryotes, most of the soluble and membrane bound proteins that are synthesized on polyribosomes associated with the endoplasmic reticulum (ER) are glycoproteins, including those proteins which will later be exported to the Golgi apparatus, lysosomes, plasma membrane or extracellular matrix.
15 The glycans attached to glycoproteins contain a variety of sugar residues linked in linear or branched structures that can assume many different conformations. These glycans can play a fundamental role in promoting correct protein folding and assembly and, as a consequence, enhance protein stability. They may also contain targeting information, or may be directly involved in protein recognition (Maia *et al.*,
20 Genetics and Molecular Biology 24: 231-234 (2001)). The three main posttranslational modifications of proteins that involve carbohydrates are *N*- and *O*-linked glycosylation and the insertion of glycosyl phosphatidyl inositol anchors.

The *N*-linked glycosylation mechanisms in mammalian and plant systems have been conserved during evolution. However, differences are observed in the final
25 steps of oligosaccharide trimming and glycan modification in the Golgi apparatus. In contrast to bacteria, having no *N*-linked glycans, and yeast, having polymannose glycans, plants produce glycoprotein multimers with complex *N*-linked glycans having a core substituted by two *N*-acetylglucosamine (GlcNAc) residues. These glycoprotein multimers are also observed in mammals. See, for example, Kornfeld
30 and Kornfeld, Ann. Rev. Biochem. 54: 631 (1985). Plant and animal glycopolypeptide multimers contain different terminal carbohydrates that are directly

linked to the outer branches of the oligosaccharides present. Animal glycopolypeptide multimers, including mammalian glycopolypeptide multimers, have sialic acid present as a terminal carbohydrate residue, while plant glycopolypeptide multimers do not. The terminal core is substituted by β 1,2-linked xylose (Xyl) and 5 α 1,3-linked core fucose (Fuc) instead of α 1,6-linked core fucose as occur in mammals. Furthermore, plant glycoprotein multimers lack the characteristic galactose (Gal)- and sialic acid-containing complex N-glycans (*N*-acetylneuramini- α 2-6/3Gal β 1-4) found in mammals. See, for example, Sturm *et al.*, J. Biol. Chem.: 262: 13392 (1987). A murine monoclonal antibody produced in transgenic plants 10 with plant-specific glycans was found not to be immunogenic in mice (Chargelegue *et al.*, Transgenic Research 9:187-194 (2000)).

Antibodies have conserved *N*-linked glycosylation of the Fc region of each of the two heavy chains. Human IgA antibodies have *O*-linked oligosaccharides in their hinge portion and two *N*-linked carbohydrate chains; one occurring on an asparagine 15 (Asn) residue in the CH2 region of the heavy chain and the other on an Asn residue in the tailpiece region. See, for example, Baenzinger, J. and Kornfield, S.J., Biol. Chem. 249:7260-7269 (1974); and Torano *et al.*, PNAS 74:2301-2305 (1997). Fucosylation of the IgA isolated from human serum occurs only on the Asn in the tailpiece region (Tanaka *et al.*, Glycoconj. J. 10: 995-1000 (1998)).

20 Hiatt *et al.* have produced transgenic plants expressing nucleotide sequences encoding individual or assembled immunoglobulin heavy- and light-chain immunoglobulin polypeptides. Each immunoglobulin product was expressed as a proprotein containing a leader sequence forming a sequence which directs the protein into the endosecretory pathway allowing correct assembly and glycosylation of the 25 antibody molecule. The leader sequence is cleaved from the mature protein. See, for example, U.S. Patent Nos. 5,202,422; 5,639,947 and 6,417,429. Methods for the coordinated expression and production of secretory immunoglobulins containing heavy chain, light chain, J chain and secretory component polypeptides which are assembled into functional antibodies have been disclosed. See, for example, U.S. 30 Patent Nos. 5,959,177; 6,046,037 and 6,303,341. Each of the U.S. patents cited herein is incorporated by reference in its entirety. A murine immunoglobulin

transmembrane sequence was used for plasma membrane targeting of recombinant immunoglobulin chains in plants (Vine *et al.*, Plant Molecular Biology 45:159-167 (2001)).

5 SUMMARY OF THE INVENTION

The importance of this invention centers around simplifying the immunoglobulin profile for the manufacturing of immunoglobulin compositions in plants. In one aspect, this invention provides the materials and methods to produce immunoglobulins in plants, wherein at least some of the glycans attached to the 10 immunoglobulins are not fucosylated (*i.e.*, at least one of the glycans lack fucose and/or the immunoglobulins are at least partly afucosylated). In another aspect, this invention provides the materials and methods to produce monomeric immunoglobulins in plants, wherein at least some of the immunoglobulins comprise glycans which are afucosylated. Thus, in one aspect, this invention provides the 15 materials and methods to produce IgA, IgD, IgE, IgG and IgM compositions in plants, wherein the compositions comprise at least one glycan structure that lacks fucose. In yet another aspect, this invention provides the materials and methods to produce immunoglobulins in plants, wherein the heavy chain of the immunoglobulins lack a tailpiece.

20 In one aspect, the mixture of immunoglobulins produced by the materials and methods of the present invention can be said to be pauci-fucosylated or deminimus fucosylated, indicating that some, most or all of the immunoglobulins so produced lack fucosylation. In another aspect, the mixture of immunoglobulins produced by the materials and methods of the instant invention can be used as such or, alternatively, 25 the afucosylated immunoglobulins can be separated from the mixture of immunoglobulins and used separately.

In another aspect, the invention also produces the materials and methods for 30 treating herpes simplex virus ("HSV") or tumor angiogenesis by administration of the immunoglobulins produced by the plants, wherein at least one of the glycan structures of the immunoglobulins lack fucose.

In another aspect of the invention, expression of the immunoglobulins is accomplished using a single vector comprising nucleic acids encoding both the light chain and heavy chain.

In one aspect, this invention provides plant-produced immunoglobulins,
5 wherein the immunoglobulins have glycopeptide profiles comprising a least one glycopeptide which lacks fucose. In another aspect, this invention provides such immunoglobulins wherein the at least one glycopeptide comprises an asparagine (Asn) residue.

In one aspect, this invention provides a plant-produced heavy chain (HC) or
10 light chain (LC) of an immunoglobulin, wherein the HC or LC has a glycopeptide profile comprising at least one glycopeptide which lacks fucose. In yet another aspect, the HC has at least one glycopeptide comprising an asparagine (Asn) residue in the CH₂ region.

In one aspect, this invention provides a plant-produced immunoglobulin,
15 wherein the immunoglobulin has a free glycan profile comprising a least one glycan which lacks fucose. In another aspect, this invention provides such immunoglobulins which comprise an asparagine (Asn) residue.

In yet another aspect, the glycan profile is the same as or substantially the same as that provided in Figure 12. In one aspect, the glycan is selected from the
20 group consisting of 3Man, 2GlcNAc, 1Xyl; 2 Man, 2GlcNAc, 1Xyl; 3Man, 3GlcNAc, 1Xyl; 3Man, 2GlcNAc; 3Man, 3GlcNAc; 4Man, 2GlcNAc; 5 Man, 2GlcNAc; and 6Man, 2GlcNAc, wherein Man = Mannose, GlcNAc = N-acetylglucosamine and Xyl = xylose. In still another aspect, the glycan selected is selected 3Man, 2GlcNAc, 1Xyl or 2 Man, 2GlcNAc, 1Xyl, wherein Man =
25 Mannose, GlcNAc = N-acetylglucosamine and Xyl = xylose.

In yet another aspect, the glycan profile is the same as or substantially the same as one of the glycan profiles provided in Figure 16. In still another aspect, the glycan is selected from the group consisting of H₂N2X; H3N2; and H3N2X, wherein H = hexose, N = HexNAc = N-acetylhexose and X = xylose. In yet another
30 aspect, the glycan is selected from the group consisting of N2H8; N2H3X; N2H3X; N2H4X; N2H5; N2H6; N2H7; N2H8; N3H3X; N2H4; and N2H5, wherein H =

hexose, N = HexNAc = N-acetylhexose and X = xylose. In one aspect of this invention, for each of these immunoglobulins the hexose is mannose and the N-acetylhexose is N-acetylglucosamine.

In one aspect of this invention, the immunoglobulins detailed herein can be
5 any immunoglobulin selected from the group consisting of IgG, IgA, IgM, IgE and IgD. In one aspect, the immunoglobulin of interest is IgA or IgG. For example, in one aspect of the invention, the immunoglobulin is an IgA antibody with a heavy chain and a light chain. A specific example of such an IgA is an anti-herpes simplex virus antibody. In another example, the immunoglobulin is an IgG antibody with a
10 heavy chain and a light chain. A specific example of such an IgG is an anti-dual integrin antibody, such as an anti- α V β 3, α V β 5 dual integrin antibody.

In one aspect, the glycan profile of the immunoglobulins of the present invention is the same as or substantially the same as the glycan profile provided in Figure 19, or Figure 21, or Figure 23.

15 In one aspect, this invention provides plant-produced immunoglobulins comprising at least one attached glycan without a terminal fucose. In yet another aspect, such immunoglobulins comprise an asparagine (Asn) residue in the CH2 region.

20 In one aspect, this invention provides a plant-produced immunoglobulin having a glycan profile which comprises at least one glycan lacking fucose, wherein the glycan profile is determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-Tof MS) analysis of free N-linked glycans enzymatically-released from the immunoglobulin. An example of such an immunoglobulin is IgA, such as an anti-herpes simplex virus antibody. In another
25 aspect, an example of such an immunoglobulin is IgG, such as an anti-dual integrin antibody. An example of such an anti-dual integrin antibody is an anti- α V β 3, α V β 5 dual integrin antibody.

30 In one aspect, this invention provides a plant cell, plant tissue, plant callus, plantlet, whole plant or seed comprising the immunoglobulins described and disclosed herein. In one aspect, the plant cell, plant tissue, plant callus, or seed are those of a monocotyledonous plant. In another aspect, this invention provides the plant cell,

plant tissue, plant callus, or seed wherein the monocotyledonous plant is a maize plant. In yet another aspect, this invention provides the plantlet or whole plant wherein the plantlet or whole plant are monocotyledonous. For example, the plant cell, plant tissue, plant callus, or seed of the present invention can be those of a maize
5 plant.

In one aspect, the immunoglobulins of the present invention can be located in the endosperm of the seed.

In one aspect, the immunoglobulins of the present invention can be human immunoglobulins.

10 In one aspect, the immunoglobulins of the present invention have a heavy chain lacking a tailpiece. In one aspect, such immunoglobulins are IgA antibodies, such as an anti-herpes simplex virus antibody.

In one aspect, the immunoglobulin provided by the present invention are isolated from the plant used to produce the immunoglobulin.

15 In one aspect, this invention provides a monomeric antibody composition comprising at least one glycan having structure number 1 (3Man, 2GlcNAc, 1Xyl) as provided in Figure 12, wherein Man = mannose, GlcNAc – acetylglucosamine and Xyl = xylose.

20 In another aspect, this invention provides a monomeric antibody composition comprising at least one glycan having structure number 2 (2Man, 2GlcNAc, 1Xyl) as provided in Figure 12, wherein Man = mannose, GlcNAc – acetylglucosamine and Xyl = xylose.

25 In one aspect, this invention provides a plant-produced immunoglobulin comprising an amino acid fragment lacking an attached glycan with fucose, wherein the immunoglobulin has an attached glycan with fucose on the same amino acid fragment or on substantially the same amino acid fragment when the immunoglobulin is mammalian-produced.

30 In one aspect, this invention provides a plant-produced immunoglobulin comprising a glycan profile for a specified amino acid fragment, wherein the immunoglobulin has the same or substantially the same glycan profile for the same

amino acid sequence or for substantially the same amino acid fragment when the immunoglobulin is mammalian-produced.

In one aspect, this invention provides a plant-produced immunoglobulin comprising an amino acid fragment having an attached glycan lacking fucose, 5 wherein the immunoglobulin also lacks an attached glycan with fucose on the same amino acid fragment or on substantially the same amino acid fragment when the immunoglobulin is mammalian-produced.

In one aspect, this invention provides a plant-produced immunoglobulin, 10 wherein the immunoglobulin has a free glycan profile comprising a glycan lacking fucose, wherein the immunoglobulin has a free glycan profile comprising the same glycan also lacking fucose when the immunoglobulin is mammalian-produced.

In one aspect, this invention provides such immunoglobulins wherein the mammalian-produced immunoglobulin is produced in a CHO cell.

In one aspect, the invention provides such immunoglobulins wherein the 15 plant-produced immunoglobulin is produced in a maize cell and the mammalian-produced immunoglobulin is produced in a CHO cell.

In one aspect, this invention provides a method of producing a transformed plant cell expressing an immunoglobulin having at least one attached glycan without fucose, said method comprising transforming a plant cell by introducing into the plant 20 cell a single vector comprising a nucleic acid sequence encoding a heavy chain and a light chain of the immunoglobulin, each nucleic acid being operably-linked to a promoter, and culturing the transformed plant cell to produce a plant cell expressing the immunoglobulin having at least one attached glycan without fucose. In yet another aspect, this invention further provides methods of isolating the 25 immunoglobulin from the transformed plant cell. In another aspect, this invention provides methods of regenerating transformed plant calli or a transformed whole plant from the transformed plant cell. In yet another aspect, this invention provides methods for isolating the immunoglobulin from the transformed plant calli or transformed whole plant. In still another aspect, this invention provides such methods 30 wherein the sequences for the heavy chain and the light chain are operably-linked to the same promoter. In still another aspect, this invention provides such methods

wherein the sequences for the heavy chain and the light chain are operably-linked to a different promoter. In one aspect, this invention provides such methods wherein the promoter is a constitutive promoter. For example, the 35S CaMV promoter or the maize ubiquitin-1 promoter can be used in the methods of the present invention. In 5 yet another aspect, the methods of the present invention utilize seed-specific promoters. In still another aspect, the invention utilizes endosperm-specific promoters.

In one aspect, this invention provides such methods wherein the vector is selected from the group consisting of pDAB8505; pDAB1472; pDAB1473; 10 pDAB1474; and pDAB1475.

In one aspect, this invention provides the vectors pDAB8505; pDAB1472; pDAB1473; pDAB1474; and pDAB1475.

In one aspect, this invention provides such methods wherein the plant cell is transformed using an agrobacterium-mediated transformation method or a 15 WHISKERS™ transformation method.

In one aspect, this invention provides a method of producing an isolated a monomeric anti-herpes simplex virus antibody comprising: (i) introducing into a plant cell nucleic acids having either SEQ ID NO: 1 or either SEQ ID NO: 5 and SEQ ID NO: 9 or SEQ ID NO: 13, each of which is operably-linked to a promoter, to produce 20 a transformed plant cell; (ii) culturing the transformed plant cell to express the introduced nucleic acids; and (iii) isolating the monomeric anti-herpes simplex virus antibody produced by the plant cell. In one aspect, this invention further provides such methods including regenerating a transformed plant from the transformed plant cell.

25 In one aspect, this invention provides a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 15 (pDAB635); SEQ ID NO: 16 (pDAB16); SEQ ID NO: 17 (pDAB637); SEQ ID NO: 84 (pDAB3014); and SEQ ID NO: 85 (pDAB8505).

In one aspect, this invention provides an isolated nucleic acid molecule 30 comprising a nucleic acid sequence encoding the amino acid encoded by SEQ ID NO: 10 or SEQ ID NO: 14.

In one aspect, this invention provides an isolated nucleic acid molecule comprising SEQ ID NO: 1 or SEQ ID NO: 5.

In one aspect, this invention provides an isolated nucleic acid molecule comprising SEQ ID NO: 9 or SEQ ID NO: 13.

5 In one aspect, this invention provides an isolated vector or plasmid comprising SEQ ID NO: 1 or SEQ ID NO: 5.

In one aspect, this invention provides an isolated nucleic acid molecule comprising a nucleic acid sequence encoding the amino acid encoded by SEQ ID NO: 2 or SEQ ID NO: 6.

10 In another aspect, the immunoglobulins of the present invention having heavy chain comprising the amino acid sequence of SEQ ID NO: 6. In yet another aspect, the immunoglobulins of the present invention have a light chain comprising the amino acid sequence of SEQ ID NO: 14.

15 In one aspect, this invention provides an isolated vector or plasmid comprising SEQ ID NO: 9 or SEQ ID NO: 13.

It will be appreciated from the above that the tools and methods of the present invention have application to all plants that produce gametes. Such plants include, but are not limited to, dicots and monocots including herbs, forage grasses, turf grasses, forage legumes (*e.g.*, alfalfa), vegetables, agronomic crop plants (*e.g.*, maize 20 and soybean), trees and ornamental flowers.

Other objects, advantages and features of the present invention become apparent to one skilled in the art upon reviewing the specification and the drawings provided herein.

25 **BRIEF DESCRIPTION OF THE DRAWINGS**

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiment(s) which are presently preferred. It should be understood, 30 however, that the invention is not limited to the precise arrangements and instrumentalities shown.

In the Drawings:**Figure 1.** Plasmid for pDAB635 (ubiH). (SEQ ID NO: 15).

SAR	nucleotides: 424-1589
5 Maize ubiquitin promoter/intron	nucleotides: 1717-3730
Anti-HSV heavy chain (w/ barley alpha amylase leader)	nucleotides: 3732-5240
Maize per5 3' UTR	nucleotides: 5248-5612
SAR	nucleotides: 5720 - 6885

10

Figure 2. Plasmid for pDAB636 (ubiL). (SEQ ID NO: 16)

SAR	nucleotides: 424-1589
Maize ubiquitin promoter/intron	nucleotides: 1717-3730
Anti-HSV light chain (w/barley alpha amylase leader)	nucleotides: 3732-4448
Maize per5 3' UTR	nucleotides: 4456-4820
SAR	nucleotides: 4928-6093

20

Figure 3. Plasmid for pDAB637 (ubiH + L). (SEQ ID NO: 17)

SAR	nucleotides: 424-1589
Maize ubiquitin promoter/intron	nucleotides: 1709-3722
Anti-HSV heavy chain (w/barley alpha amylase leader)	nucleotides: 724-5232
Maize per5 3' UTR	nucleotides: 5240-5604
25 Maize ubiquitin promoter/intron	nucleotides: 5745-7758
Anti-HSV light chain (w/barley alpha amylase leader)	nucleotides: 7760-8476
Maize per5 3' UTR	nucleotides: 8484-8848
SAR	nucleotides: 8956-10121

30

Figure 4. A native Western blot using the IgA kappa chain as the detection antibody to detect protein expression from ubiquitin HSV-IgA (HC/LC) antibody produced by transgenic maize calli. A total of 53 transgenic calli derived from the two-way transformation (pDAB637 (SEQ ID NO: 17) and pDAB3014 (SEQ ID NO: 84)) and 23 transgenic calli derived from the three-way transformation (pDAB635 (SEQ ID NO: 15) and pDAB3014 (SEQ ID NO: 84)) were analyzed by PCR to detect the presence of PTUs for the transgene. Callus events that were both PTU positive and negative underwent Western and ELISA analysis. Protein analysis data was generated using events from the ubiquitin/HC, LC transformations that are described above. The goal of the experiment was to compare the efficacy of expression of the HC and LC on a single plasmid versus HC and LC on two separate plasmids. Callus material was collected and frozen at -70°C before shipment for protein analysis. An initial screen of the events was performed with a capture ELISA assay using an IgA heavy chain capture antibody and an IgA kappa chain detection antibody. Only ELISA positive samples were evaluated with a Native Western Blot, also using the IgA kappa chain as the detection antibody. Of the 54 events screened by ELISA, 26 were positive (Table 1). Lane 1: Molecular weight standards; Lane 2: Heavy chain IgA; Lane 3: Callus material from transgenic plants; Lane 4: IgA detected from sample 3-006 (Table 1); Lane 5: IgA detected from sample 4-008 (Table 1); Lanes 6-10: IgA detected from samples 21, 24, 25, 28 and 29, respectively (Table 1). Western blot conditions were: 4-12% GEL nonreducing sample buffer 62 ng total protein each well; 1:5000 Goat anti-Human Kappa-HRP one hour RT; and a five minute exposure period.

Figure 5. Linear plasmid for pDAB8505 fragment (11398 bp). (SEQ ID NO: 85).

Figure 6. A representative C18-HPLC chromatogram of tryptic digest of reduced and alkylated IgA-HX8 (event 193 self). Peak assignment was based on analysis of HPLC fractions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry ("MALDI-Tof MS"). Peaks labeled with "L" correspond to peptides resulting from light chain of IgA-HX8. Peaks labeled with "H" correspond

to peptides resulting from heavy chain of IgA-HX8. Refer to Tables 1 and 2 and the accompanying text for more detail. Fractions containing glycopeptides were further treated with peptide-N-glycosidase-A (PNGase-A) and resulting deglycosylated peptides and released glycans were analyzed separately by MALDI-Tof MS. HPLC:
5 Magic C18, 2 x 150 mm. Off-line MALDI MS was performed on collected fractions.

Figure 7. A representative MALDI-Tof MS of glycoforms of H-T13 peptide of IgA-HX8 heavy chain generated by tryptic digestion of reduced and alkylated IgA-HX8 (event 193 self). Monoisotopic masses of the glycopeptides are indicated.
10 Large numbers above peaks correspond to glycan species summarized in Table 8. Short abbreviations for monosaccharide units are as follows: H, hexose; N, N-acetyl-glucosamine (GlcNAc); X, pentose (Xylose).

Figure 8. Heterogeneity of glycoforms of H-T13 peptide of IgA-HX8 heavy chain is removed by enzymatic release (PNGase-A) of glycans. After treatment with PNGase-A, signals corresponding to glycoforms of H-T13 peptide disappear and a strong signal corresponding to deglycosylated peptide H-T13 appears in the mass-spectrum. Note that PNGase-A converts Asn (N) to Asp (D) during deglycosylation reaction; correspondingly, the deglycosylated H-T13 peptide appears with a mass-shift of ~ +1 Da. Large numbers above peaks in mass-spectrum of glycopeptides (before PNGase-A treatment) correspond to glycan species listed in Table 8.
15
20

Figure 9. Two additional glycoforms of H-T13 peptide of maize-expressed IgA-HX8 heavy chain are observed: single and double GlcNAc residue attached to N269. Large numbers above peaks in mass-spectrum of glycopeptides (before PNGase-A treatment) correspond to glycan species in Table 8. Treatment with PNGase-A results in removal of (GlcNAc)₂ and partial removal of single GlcNAc residue. Peak corresponding to deglycosylated peptide H-T13 appears in the mass-spectrum after treatment of sample with PNGase-A (not shown).

Figure 10. A representative MALDI-ToF MS profile of free N-linked glycans enzymatically released from monomeric IgA-HX8 (event 193 self). Large numbers above peaks correspond to glycan species summarized in Table 8. Short abbreviation for monosaccharide units is as follows: H, hexose; N, N-acetyl-glucosamine

Figure 11. Neutralization of HSV-2 using endosperm-derived HX8.

Figure 12. Structures of IgA glycans isolated from plants. Single and double GlcNAc species (structures 11 and 12) were *not* detected as free glycans due to inaccessibility of MALDI MS to the molecular mass region below 500 Daltons (Da).

15

Figure 13. Pictorial representation of a monomeric, dimeric and secretory antibody.

Figure 14. Plasmid for pDAB3014. (SEQ ID NO: 84).

20

Rice actin promoter: nucleotides 1172-1724:

PAT (phosphinothricin)

acyltransferase gene):

nucleotides 1727-2281:

maize lipase 3' UTR:

nucleotides 2296-6652

25

Figure 15. Circular plasmid for pDAB8505. (SEO ID NO: 85).

SAR:

nucleotides 424-1589.

maize γ zein promoter: nucleotides 1673-3175:

anti-HSV heavy chain gene:

nucleotides 3178-4668.

maize per5 3'UTR:

nucleotides 4678-5045:

30

maize γ zein promoter:

nucleotides 5157-6659:

anti-HSV light chain:

maize per5 3'UTR: nucleotides 7370-7737;
rice actin promoter with intron: nucleotides 7889-9258;
PAT coding region: nucleotides 9260-9820;
maize lipase 3' UTR: nucleotides 9831-10162;
5 SAR: nucleotides 10229-11394.

Note: the anti-HSV heavy chain gene and the anti-HSV light chain both include a mouse leader sequence.

Figure 16A to 16G. Summary of glycan profiling of IgA-HX8 expressed in
10 transgenic maize (different events). Pictorial representations of suggested glycan structures are also included, wherein 'H' or a circle = hexose (Man, Gal, Glc); 'N' or a rectangle = HexNAc (GlcNAc or GalNAc); 'X' or a cross = xylose; 'F' or a triangle = fucose; and 'P' = phosphate (PO₃). Note: the percentage (%) of glycans based on peak heights in MALDI mass-spectra are provided only for reference and cannot be
15 used for accurate quantitation.

Figure 17A. Plasmid pDAB1472 (Figure 17A) and pDAB1473 (Figure 17B).

Figure 18A. Plasmid pDAB1474 (Figure 18A) and pDAB1475 (Figure 18B).

20 Figure 19. Glycoforms observed for event 660 for IgG. All glycans were removed from glycopeptides by PNGase-A treatment. For single N, removal is incomplete. Codes: 'H' = hexose (Man, Gal, Glc); 'N' = HexNAc (GlcNAc or GalNAc); 'X' = xylose; and 'F' = fucose.

25 Signal intensity:

* = S/N >3-5, but <10;

** = S/N >10;

*** = intense signal, but less than "minor"; and

"significant signal" = intensity between "minor" and "major".

Figure 20A. A representative MALDI-TOF of MS profile of glycoforms of H-T27 peptide (N299 site of heavy chain) for event 660.

5 **Figure 20B.** Zoom-in on m/z 2360.06 (major glycoform, N2H3XF) for event
660. Note isotopic resolution.

10 **Figure 21.** Glycoforms observed for event 661 for IgG. All glycans were removed from glycopeptides by PNGase-A treatment. For single N, removal is incomplete. Codes: 'H' or circle = hexose (Man, Gal, Glc); 'N' or rectangle = HexNAc (GlcNAc or GalNAc); 'X' or cross = xylose; and 'F' or triangle = fucose.

15 Signal intensity:

* = S/N >3-5, but <10;

** = S/N >10;

*** = intense signal, but less than "minor"; and

15 "significant signal" = intensity between "minor" and "major".

Figure 22A. A representative MALDI-TOF of MS profile of glycoforms of H-T27 peptide (N299 site of heavy chain) for event 661. HPLC fraction 16.

20 **Figure 22B.** Zoom-in on m/z 2360.06 (major glycoform, N2H3XF) for event 661. Note isotopic resolution.

25 **Figure 22C.** A representative MALDI-TOF of MS profile of glycoforms of H-T27 peptide (non-glycosylated at m/z 1189.65, and with single HexNAc at m/z 1392.76, plus some N-glycoforms on H-T26-27 peptide at higher m/z) for event 661. HPLC fraction 17.

30 **Figure 22D.** N-glycans released from H-T27 glycopeptide. MALDI MS of free glycans. Intensities in this MALDI mass-spectrum are roughly proportional to abundance of the neutral N-glycans. Note: single and double GlcNAc are not accounted for.

Figure 23. Glycoforms observed for event 663 for IgG. All glycans were removed from glycopeptides by PNGase-A treatment. For single N, removal is incomplete. Codes: 'H' = hexose (Man, Gal, Glc); 'N' = HexNAc (GlcNAc or GalNac); 'X' = xylose; and 'F' = fucose.

5 Signal intensity:
* = S/N >3-5, but <10;
** = S/N >10;
*** = intense signal, but less than "minor"; and
10 "significant signal" = intensity between "minor" and "major".

Figure 24A. A representative MALDI-TOF of MS profile of glycoforms of H-T27 peptide (N299 site of heavy chain) for event 663.

15 Figure 24B. Zoom-in on m/z 2360.07 (major glycoform, N2H3XF) for event 663. Note isotopic resolution.

20 Figure 25. Glycoforms observed for CHO-expressed IgG. All glycans were removed from glycopeptides by PNGase-A treatment. For single N, removal is incomplete. Codes: 'H' = hexose (Man, Gal, Glc); 'N' = HexNAc (GlcNAc or GalNac); 'X' = xylose; 'F' = fucose.

25 Signal intensity:
* = S/N >3-5, but <10;
** = S/N >10;
*** = intense signal, but less than "minor"; and
"significant signal" = intensity between "minor" and "major".

Figure 26A. A representative MALDI-TOF of MS profile of glycoforms of H-T27 peptide (N299 site of heavy chain) for CHO-expressed IgG.

Figure 26B. Zoom-in on m/z 2633.61 (major glycoform, N4H3F) for CHO-expressed IgG . Note isotopic resolution.

DETAILED DESCRIPTION

5 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.

10

I. Definitions

As used herein, the terms "afucosylated" and "afucosylation" refer to situations where fucose is absent from a particular glycan, glycan fraction, glycopeptide or glycopeptide fraction which is attached to an immunoglobulin, 15 portion of an immunoglobulin, an antibody or a portion of an antibody. The use of the terms "afucosylated" and "afucosylation" herein is not meant to imply any specific mechanism, molecular or otherwise, by which a fucose is either prevented from attaching or removed after attachment. Thus, the use of the terms herein is not meant to imply that the fucose has been eliminated by any particular one of the 20 following mechanisms: transcriptionally, translationally or post-translationally.

As used herein, the term "agronomic crop plant" refers to any crop plant grown on a production scale, most typically for the harvest of seed, silage or hay. Examples include, but are not limited to maize, soybeans, rye, wheat, oats, barley, lentils, dry peas, rape, sorghum, alfalfa, triticale, clover, and the like.

25 As used herein, the term "allele" refers to any of several alternative forms of a gene.

As used herein, the term "amino acid" refers to the aminocarboxylic acids that are components of proteins and peptides. The amino acid abbreviations used in Tables 6 and 7 and elsewhere herein are as follows:

30

A (Ala)	C (Cys)	D (Asp)	E (Glu)	F (Phe)	G (Gly)
H (His)	I (Iso)	K (Lys)	L (Leu)	M (Met)	N (Asn)
P (Pro)	Q (Gln)	R (Arg)	S (Ser)	T (Thr)	V (Val)
W (Trp)	Y (Tyr)				

As used herein, an "anti-alpha-v-beta3, alpha-v-beta5 dual integrin antibody," "anti-dual integrin antibody," "anti-dual integrin antibody portion," "anti- $\alpha V\beta 3$, anti- $\alpha V\beta 5$," "anti- $\alpha_v\beta_3$, anti- $\alpha_v\beta_5$," or "anti-dual integrin antibody fragment" and/or "anti-5 dual integrin antibody variant" and the like include any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule, such as but not limited to at least one complementarity determining region (CDR) of a heavy or light chain or a ligand binding portion thereof, a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework region, or any 10 portion thereof, or at least one portion of an dual integrin receptor or binding protein, which can be incorporated into an antibody of the present invention.

As used herein, the term "antibody" refers to a protein normally produced in the body (human or animal) in response to contact with a pathogen or other moiety not recognized as "self." Antibodies (such as, for example, IgG and sIgA) and 15 antibody fragments (such as, for example, Fab and ScFv) have the specific capacity of neutralizing, hence creating immunity to, the pathogen. An antibody molecule is composed of four polypeptide chains: two identical heavy chains (HC) and two identical light chains (LC). Each "arm" of the Y antibody configuration comprises one light chain and part of one heavy chain; the hinge region allows the arms to move; 20 and the "stem" is formed by the rest of the two heavy chains (See Figure 13). Each arm region of the Y serves as an antigen-binding site, with the binding sites associated with the variable regions of the polypeptide. The HC and LC are held together by disulfide bridges. Secretory antibodies are also comprised of a joining chain (JC) and a secretory component (SC).

25 As used herein, the term "antigen" refers to any substance capable of inducing a specific immune response and of reacting with the resulting antibodies produced by that response.

As used herein, the term "antiviral" refers to a substance that interferes with the replication of a virus.

As used herein, the terms "backbone plasmids" or "backbone vectors" refer to plasmids that contain all of the necessary elements for expression of the gene(s) of interest, including MAR sequences, promoter, 3' UTR, selectable marker gene cassette and unique restriction sites for the single-step addition of the antibody coding regions. Another characteristic of the backbone vectors is the presence of unique restriction sites for the efficient removal of the antibiotic resistance gene.

As used herein, the terms "beta-glucuronidase" or "GUS" refer to the screenable marker gene routinely used in plant transformation studies that comes from *Escherichia coli*. See, for example, Jefferson, R., *et al.*, Proc. Nat. Acad. Sci. USA 83: 8447-8451 (1986); Jefferson, R., *et al.*, EMBO J. 6: 3901-3907 (1987); Jefferson, R., Plant Mol. Biol. Rep. 5: 387-405 (1987); and Jefferson, R., Plant Mol. Biol. Rep. 5: 387-405 (1988).

As used herein, the term "crop plant" refers to any plant grown for any commercial purpose, including, but not limited to the following purposes: seed production, hay production, ornamental use, fruit production, berry production, vegetable production, oil production, protein production, forage production, animal grazing, golf courses, lawns, flower production, landscaping, erosion control, green manure, improving soil tilth/health, producing pharmaceutical products/drugs, producing food additives, smoking products, pulp production and wood production.

As used herein, the term "cross pollination" or "cross-breeding" when used in reference to plants means the process by which the pollen of one flower on one plant is applied (artificially or naturally) to the ovule (stigma) of a flower on another plant.

As used herein, the term "cultivar" when referring to plants means a variety, strain or race of plant that has been produced by horticultural or agronomic techniques and is not normally found in wild populations.

As used herein, the terms "dicotyledon" and "dicot" refer to a flowering plant having an embryo containing two seed halves or cotyledons. Examples include tobacco; tomato; the legumes, including peas, alfalfa, clover and soybeans; oaks; maples; roses; mints; squashes; daisies; walnuts; cacti; violets and buttercups.

As used herein, the term "dimeric antibody" or "dIgA" refers to an antibody comprising two monomeric antibodies linked by a J chain. Thus, a "dimeric IgA" or "dIgA" comprises two monomeric IgA antibodies linked by a J chain (See Figure 13B); and, a "dimeric anti-HSV IgA" or "anti-HSV dIgA" comprises two monomeric IgA antibodies to a herpes simplex virus linked by a J chain.

As used herein, the term "endosperm" refers to a triploid structure resulting from the development of a fusion between two polar nuclei of the embryo sac and one of the sperm nucleus from the pollen found in many plant seeds. The endosperm frequently stores food materials, which are broken down during germination.

As used herein, the term "filial generation" refers to any of the generations of plant cells, tissues or organisms following a particular parental generation. The generation resulting from a mating of the parent plants is the first filial generation (designated as "F1" or "F₁"), while that resulting from crossing of F1 plants is the second filial generation (designated as "F2" or "F₂").

The term "gamete" refers to a reproductive cell whose nucleus (and often cytoplasm) fuses with that of another gamete of similar origin but of opposite sex to form a zygote, which has the potential to develop into a new individual plant. Gametes are typically haploid and are differentiated into male and female.

The term "gene" refers to any segment of DNA associated with a biological function. Thus, genes include, but are not limited to, coding sequences and/or the regulatory sequences required for their expression. Genes can also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

As used herein, the term "genotype" refers to the genetic makeup of a cell, cell culture, tissue, whole organism (*e.g.*, a whole plant or animal), or group of whole organisms (*e.g.*, a group of plants or animals).

As used herein, the term "glycan", which is synonymous with "polysaccharide", refers to any linear or branched polymer consisting of

monosaccharide (*i.e.*, glucose) residues joined to each other by glycosidic linkages. Examples of glycans include glycogen, starch, hyaluronic acid, and cellulose.

- As used herein, the term “glycoside” refers to any compound containing a carbohydrate molecule (sugar), particularly any such natural product in plants,
5 convertible by hydrolytic cleavage, into a sugar and a non-sugar component.

As used herein, the term “glycopeptide” refers to a compound or composition in which carbohydrate is covalently attached to a peptide or oligopeptide.

As used herein, the term “glycoprotein” refers to a compound or composition in which carbohydrate is covalently attached to a protein.

- 10 As used herein, the term “glycosylation” refers to the addition of oligosaccharides to particular residues on a protein. This modification can be both co-translational and post-translational, occurring in the endoplasmic reticulum and golgi. Three different forms of glycosylation can be distinguished: *N*-linked oligosaccharides, O-linked oligosaccharides and glycosyl-phosphatidylinositol (GPI)-
15 anchors.

As used herein, the term “hemizygous” refers to a cell, tissue or organism in which a gene is present only once in a genotype, as a gene in a haploid cell or organism, a sex-linked gene in the heterogametic sex, or a gene in a segment of chromosome in a diploid cell or organism where its partner segment has been deleted.

- 20 As used herein, the term “herpes” means an inflammatory skin disease caused by herpes simplex virus or varicella-zoster virus.

- As used herein, the term “herpes simplex” refers to a variety of infections caused by “Herpes Simplex Virus 1”, also referred to as “HSV1” and “herpes simplex virus type 1”, and “Herpes Simplex Virus 2”, also referred to as “HSV2” and
25 “herpes simplex virus type 2”, all refer to any of several acute, inflammatory virus diseases. The diseases are characterized by the eruption of small blisters, usually on the mouth, lips, face and genitals. The locations of the blisters caused by HSV1 and HSV2 are not location specific.

- As used herein, “herpes virus” refers to any virus belonging to the family
30 Herpesviridae.

As used herein, the terms "heteroglycan" or "heteropolysaccharide" refer to a glycan composed of two or more different kinds of monosaccharide residues.

A "heterologous polynucleotide" or a "heterologous nucleic acid" or an "exogenous DNA segment" refer to a polynucleotide, nucleic acid or DNA segment 5 that originates from a source foreign to the particular host cell, or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that is endogenous to the particular host cell, but has been modified. Thus, the terms refer to a DNA segment that is either (i) foreign or heterologous to the 10 cell, or (ii) homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments may be expressed to yield exogenous polypeptides.

A "heterologous trait" refers to a phenotype imparted to a transformed host cell or transgenic organism by an exogenous DNA segment, heterologous polynucleotide or heterologous nucleic acid.

15 As used herein, the term "heterozygote" refers to a diploid or polyploid individual plant cell or plant having different alleles (forms of a given gene) present at least at one locus.

As used herein, the term "heterozygous" refers to the presence of different alleles (forms of a given gene) at a particular gene locus.

20 As used herein, the term "HPLC" refers to High Performance Liquid Chromatography.

As used herein, the term "homozygote" refers to an individual plant cell or plant having the same alleles at one or more loci.

25 As used herein, the term "homozygous" refers to the presence of identical alleles at one or more loci in homologous chromosomal segments.

As used herein, the term "hybrid" refers to any cell, tissue or whole organisms (e.g., a whole plant or animal) resulting from a cross between parents that differ in one or more genes.

30 As used herein, the term "HX8" or "HX-8" refers to the identification code for an IgA antibody, wherein H = herpes, X = simplex and 8 = the sample number. HX8 is a human monoclonal antibody (sample number 8) which neutralizes both Herpes

simplex virus (HSV) Type 1 and Type 2, binds to an epitope present on glycoprotein D, has the binding specificity of an Fab fragment produced by ATCC 69522, and has heavy chains with a CDR3 of SEQ ID NO:1 as set forth in U.S. Patent No. 6,156,313, the entire patent of which is specifically incorporated herein. The entire nucleotide for 5 the heavy chain and light chain of the HX8 antibody is shown as SEQ ID Nos: 1 and 9, respectively.

As used herein, the terms "immunoglobulin" or "Ig" refer to a class of structurally related protein products or portion of the proteins found in plasma and other body fluids that are immunologically active and are capable of specifically 10 binding with antigen. Each Ig consists of two pairs of immunologically active portions of an immunoglobulin light chain (LC) (κ , λ), and an immunoglobulin heavy chain (HC) (γ , α , μ , δ and ϵ) (See Figure 13A). There are five major classes of antibody proteins, or immunoglobulins classified on the basis of their structure and biological activity: IgM, IgG, IgA, IgD, and IgE. While most antibody classes are 15 secreted as single molecules, IgA and IgM antibodies form associations into larger polymers, stabilized in part by other protein chains.

As used herein, the terms "immunoglobulin product" or "Ig product" refer to a polypeptide, protein or multimeric protein capable of specifically combining with an antigen. Exemplary immunoglobulin products are an immunoglobulin heavy chain, 20 immunoglobulin molecules, substantially intact immunoglobulin molecules, any portion of an immunoglobulin that contains the paratope, including those portions known in the art as Fab fragments.

As used herein, the terms "inbred" or "inbred line" refers to a relatively true-breeding strain.

25 As used herein, the terms "integrin" or "integrins" refer to any member of the large family of transmembrane proteins that act as receptors for cell-adhesion molecules. Integrins are heterodimeric molecules in which the α and β subunits are noncovalently bonded.

As used herein, the terms "joining chain", "J chain" or "JC" refer to a 30 polypeptide that is involved in the polymerization of immunoglobulins and transport of polymerized immunoglobulins through epithelial cells. See, for example, The

Immunoglobulin Helper: The J Chain in Immunoglobulin Genes, at pg. 345, Academic Press (1989). The JC is found in pentameric IgM and dimeric IgA (See Figure 13B) and typically attached via disulfide bonds.

As used herein, the term "locus" (plural: "loci") refers to any site that has been 5 defined genetically. A locus may be a gene, or part of a gene, or a DNA sequence that has some regulatory role, and may be occupied by different sequences.

As used herein, the term "MALDI" refers to Matrix-Assisted Laser Desorption Ionization.

As used herein, the terms "MALDI-Tof mass spectrum" or "MALDI-Tof MS" 10 refer to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. An example of equipment used to determine the MALDI-Tof mass-spectrum is the Applied Biosystems Voyager DE-STR MALDI time-of-flight (MALDI-Tof) mass-spectrometer.

As used herein, the term "matrix attachment regions" or "MAR", also called 15 "scaffold attachment regions" or "SAR", refer to specific DNA sequences at which attachment to the nuclear scaffold network occurs. Information on the MAR sequences used in this invention is available in U.S. Patent Nos. 5,773,689 and 6,239,328, each of which is herein incorporated in its entirety.

As used herein, the term "mass selection" when used to describe a plant 20 breeding process refers to a form of selection in which individual plants are selected and the next generation propagated from the aggregate of their seeds.

As used herein, the term "monoclonal antibody" or "MAb" refer to antibodies derived from a single antibody-producing cell that recognizes a specific antigen. MAb's are produced by hybridoma cells, which are a fusion of a cell that produces the 25 antibody and a multiple myeloma cell. The myeloma cell can continuously produce the antibody.

As used herein, the term "monocotyledon" or "monocot" refer to any of a subclass (Monocotyledoneae) of flowering plants having an embryo containing only one seed leaf and usually having parallel-veined leaves, flower parts in multiples of 30 three, and no secondary growth in stems and roots. Examples include lilies; orchids;

rice; corn, grasses, such as tall fescue, goat grass, and Kentucky bluegrass; grains, such as wheat, oats and barley; irises; onions and palms.

As used herein, the term "monomeric antibody" refers to an antibody comprising two light and two heavy chains linked to each other by disulfide bridges 5 (See Figure 13A). Thus, a "monomeric IgA" or "mIgA" comprises two light and two heavy chains of an IgA antibody; and, a "monomeric HSV IgA" or "HSV mIgA" comprises the two light and two heavy chains of an IgA antibody to a herpes simplex virus.

As used herein, the term "multimeric protein" refers to a globular protein 10 containing more than one separate polypeptide or protein chain associated with each other to form a single globular protein. Both heterodimeric and homodimeric proteins are multimeric proteins.

As used herein, the term "nucleic acid" or "polynucleotide" refer to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or 15 double-stranded form. Unless specifically limited, the terms encompass nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected 20 (or all) codons is substituted with mixed-base and/or deoxyinosine residues. See, for example, Batzer *et al.*, Nucleic Acid Res. 19:5081 (1991); Ohtsuka *et al.*, J. Biol. Chem. 260:2605-2608 (1985); Rossolini *et al.*, Mol. Cell. Probes 8:91-98 (1994). The term nucleic acid is used interchangeably with gene, cDNA, and mRNA encoded by a gene.

25 As used herein, the term "oligosaccharide" refers to any molecule that contains a small number (2 to about 20) of monosaccharide residues connected by glycosidic linkages.

As used herein, a DNA segment is referred to as "operably linked" when it is in a functional relationship with another DNA segment. For example, DNA encoding 30 a signal sequence is operably linked to DNA encoding a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or

enhancer is operably linked to a coding sequence if it stimulates the transcription of the sequence. Generally, DNA sequences that are operably linked are contiguous, and in the case of a signal sequence both contiguous and in reading phase. However, promoters and enhancers need not be contiguous with the coding sequences whose
5 transcription they control. Linking is accomplished by ligation at convenient restriction sites or at adapters or linkers inserted in lieu thereof.

As used herein, the term "open pollination" when used in reference to plants means a plant population that is freely exposed to some gene flow, as opposed to a closed one in which there is an effective barrier to gene flow.

10 As used herein, the terms "open-pollinated population" or "open-pollinated variety" when used in reference to plants refers to plants normally capable of at least some cross-fertilization, selected to a standard, that may show variation but that also have one or more genotypic or phenotypic characteristics by which the population or the variety can be differentiated from others. A hybrid, which has no barriers to
15 cross-pollination, is an open-pollinated population or an open-pollinated variety.

As used herein, the term "ovule" refers to the female gametophyte, whereas the term "pollen" means the male gametophyte.

20 As used herein, the term "ovule-specific promoter" refers broadly to a nucleic acid sequence that regulates the expression of nucleic acid sequences selectively in the cells or tissues of a plant essential to ovule formation and/or function and/or limits
the expression of a nucleic acid sequence to the period of ovule formation in a plant.

25 As used herein, the term "peptide" refers to a class of compounds of low molecular weight which yield two or more amino acids on hydrolysis and form the constituent parts of proteins. As used herein, an "oligopeptide" refers to any molecule that contains a small number (two to about 20) of amino-acid residues connected by peptide linkages.

As used herein, the term "peptide bond" refers to an amide bond linking amino acids between their COOH and NH₂ groups; this is essentially a planar bond having some double bond character, so free rotation is not possible.

30 As used herein, the term "phenotype" refers to the observable characters of a cell, cell culture, tissue, whole organism (*e.g.*, a whole plant or animal), or group of

whole organisms (*e.g.*, a group of whole plants or animals) which results from the interaction between the genetic makeup (*i.e.*, genotype) of the cell, cell culture, tissue or organism and the environment.

As used herein, the term "plant" refers to whole plants and progeny of the
5 whole plants, plant cells, plant tissue, plant calli, seeds and pollen. The class of plants
that can be used in the methods of the invention is generally as broad as the class of
higher plants amenable to transformation techniques, including both
monocotyledonous and dicotyledonous plants.

As used herein, the term "plant line" is used broadly to include, but is not
10 limited to, a group of plants vegetatively propagated from a single parent plant, via
tissue culture techniques or a group of inbred plants which are genetically very similar
due to descent from a common parent(s). A plant is said to "belong" to a particular
line if it (a) is a primary transformant (T0) plant regenerated from material of that
15 line; (b) has a pedigree comprised of a T0 plant of that line; or (c) is genetically very
similar due to common ancestry (*e.g.*, via inbreeding or selfing). In this context, the
term "pedigree" denotes the lineage of a plant, *e.g.* in terms of the sexual crosses
effected such that a gene or a combination of genes, in heterozygous (hemizygous) or
15 homozygous condition, imparts a desired trait to the plant.

As used herein, the term "plant organ" refers to any part of a plant. Examples
20 of plant organs include, but are not limited to the leaf, stem, root, tuber, seed, branch,
pubescence, nodule, leaf axil, flower, pollen, stamen, pistil, petal, peduncle, stalk,
stigma, style, bract, fruit, trunk, carpel, sepal, anther, ovule, pedicel, needle, cone,
rhizome, stolon, shoot, pericarp, endosperm, placenta, berry, stamen, and leaf sheath.

As used herein, "plantibodyTM" refers to an antibody including individual
25 antibody chains, monomeric, dimeric or secretory antibodies or antibody fragments
produced by a plant, plant organ or plant cell.

As used herein, the terms "plant transcription unit" or "PTU" refer to a nucleic
acid sequence encoding a promoter sequence, a coding sequence and a 3' termination
sequence.

As used herein, the term "polypeptide" refers to a linear polymer of amino acids linked via peptide bonds. A polypeptide may be as short as 2 amino acids to virtually any length.

/ As used herein, the term "promoter" refers to a recognition site on a DNA sequence or group of DNA sequences that provide an expression control element for a gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.

As used herein, the term "recombinant" refers to a cell, cell culture, tissue or organism that has undergone transformation with recombinant DNA. The original 10 recombinant is designated as "R₀" or "R₀." Selfing the R₀ produces a first transformed generation designated as "R₁" or "R₁"

As used herein, the terms "secretory component" or "SC" refer to a polypeptide that is present at the N-terminus of a chimeric immunoglobulin chain useful in aiding in the secretion of the chain to the outside of the host.

15 As used herein, the terms "secretory IgA antibodies" and ("sIg") refer to antibodies that are comprised of 10 protein chains encoded by four genes: the heavy chain ("HC") and the light ("LC") which combine to form monomeric IgA ("mIgA") (See Figure 13A); the joining chain ("JC") which joins two monomeric IgA monomers into a dimeric IgA ("dIgA") (See, Figure 13B); and the secretory 20 component ("SC") which wraps around the dIgA molecule (See Figure 13C).

As used herein, the term "self pollinated" or "self-pollination" when used in reference to plants means the pollen of one flower on one plant is applied (artificially or naturally) to the ovule (stigma) of the same or a different flower on the same plant.

25 As used herein, the terms "sexually transmitted infections" or "STIs" refer to a class of diseases and infections that are passed from one person to the next by sexual intercourse or contact; also known as STDs or sexually transmitted diseases.

As used herein, the term "signal sequence" refers to an amino acid sequence (the signal peptide) attached to the polypeptide which binds the polypeptide to the endoplasmic reticulum and is essential for protein secretion.

30 As used herein, the term "synthetic variety" when referring to plants means a set of progenies derived by intercrossing a specific set of clones or seed-propagated

lines. A synthetic may contain mixtures of seed resulting from cross-, self-, and sib-fertilization.

- As used herein, the term "tailpiece" refers to that portion of the heavy chain comprising an Asn residue which is normally fucosylated. For example, in the IgA 5 HX8 antibody, the tailpiece comprises amino acid residues 476-497 of SEQ ID NO:
1. The Asn residue is at position 484 in the HX8 antibody.

As used herein, the term "transcript" refers to a product of a transcription process.

- As used herein, the term "transformation" refers to the transfer of nucleic acid 10 (*i.e.*, a nucleotide polymer) into a cell. As used herein, the term "genetic transformation" refers to the transfer and incorporation of DNA, especially recombinant DNA, into a cell.

- As used herein, the term "transformant" refers to a cell, tissue or organism that has undergone transformation. The original transformant is designated as "T0" or 15 "T₀." Selfing the T0 produces a first transformed generation designated as "T1" or "T₁."

As used herein, the term "transgene" refers to a nucleic acid that is inserted into an organism, host cell or vector in a manner that ensures its function.

- As used herein, the term "transgenic" refers to cells, cell cultures, tissues, 20 organisms (*e.g.*, plants or animals), and their progeny which have received a foreign or modified gene by one of the various methods of transformation, wherein the foreign or modified gene is from the same or different species than the species of the cell, cell culture, tissue or organism, receiving the foreign or modified gene.

- As used herein, the terms "untranslated region" or "UTR" refer to any part of 25 a mRNA molecule not coding for a protein (*e.g.*, in eukaryotes the poly(A) tail).

- As used herein, the term "vector" refers broadly to any plasmid or virus encoding an exogenous nucleic acid. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into virions or cells, such as, for example, polylysine compounds and the like. The vector 30 may be a viral vector that is suitable as a delivery vehicle for delivery of the nucleic acid, or mutant thereof, to a cell, or the vector may be a non-viral vector which is

suitable for the same purpose. Examples of viral and non-viral vectors for delivery of DNA to cells and tissues are well known in the art and are described, for example, in Ma *et al.*, Proc. Natl. Acad. Sci. U.S.A. 94:12744-12746 (1997). Examples of viral vectors include, but are not limited to, a recombinant vaccinia virus, a recombinant 5 adenovirus, a recombinant retrovirus, a recombinant adeno-associated virus, a recombinant avian pox virus, and the like. See, for example, Cranage *et al.*, EMBO J. 5:3057-3063 (1986); International Patent Application No. WO94/17810, published August 18, 1994; and, International Patent Application No. WO94/23744, published October 27, 1994. Examples of non-viral vectors include, but are not limited to, 10 liposomes, polyamine derivatives of DNA, and the like.

The term "virus" refers to any of a group of ultramicroscopic or submicroscopic infective agents that cause various diseases in animals, such as measles, mumps, etc., or in plants, such as mosaic diseases; viruses are capable of multiplying only in connection with living cells and are regarded both as living 15 organisms and as packages of nucleic acids, sometimes involving complex proteins, enzymes, etc.

The present invention includes a plant cell, plant callus, plantlet, whole plant or seed comprising an afucosylated monomeric antibody. In one embodiment, the plant is a maize plant. In another embodiment, the antibody is located in the seed's 20 endosperm. In a different embodiment, the antibody is a human antibody. In a preferred embodiment, the antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 6. In another preferred embodiment, the antibody comprises a light chain comprising the amino acid sequence of SEQ ID NO: 14. In a highly preferred embodiment, the heavy chain lacks a tailpiece. In another preferred 25 embodiment, the antibody is an IgA antibody. In a highly preferred embodiment, the antibody is an anti-herpes simplex virus antibody.

Another aspect of the invention also includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding the amino acid encoded by SEQ ID NO: 2 or SEQ ID NO: 6; an isolated nucleic acid molecule comprising a nucleic acid 30 sequence encoding the amino acid encoded by SEQ ID NO: 10 or SEQ ID NO: 14; an

isolated nucleic acid molecule comprising SEQ ID NO: 1 or SEQ ID NO: 5; and, an isolated nucleic acid molecule comprising SEQ ID NO: 9 or SEQ ID NO: 13.

Another aspect of the invention includes an isolated vector or plasmid comprising SEQ ID NO: 1 or SEQ ID NO: 5; and, an isolated vector or plasmid
5 comprising SEQ ID NO: 9 or SEQ ID NO: 13.

The invention also includes an antibody composition comprising two or more different glycan structures selected from the group consisting of the structures in Figure 12, wherein at least one of the selected glycan structures from Figure 12 is afucosylated.

10 Also included in the invention is plant material comprising the antibody composition comprising two or more different glycan structures selected from the group consisting of the structures in Figure 12, wherein at least one of the selected glycan structures from Figure 12 is afucosylated. In one embodiment, the composition is isolated from plant material. In another embodiment, the plant
15 material is from maize.

The invention also comprises a monomeric antibody composition comprising at least one glycan having the structure of structure 1 as listed in Figure 12; a monomeric antibody composition comprising at least one glycan having the structure of structure 2 as listed in Figure 12; and, a monomeric antibody composition
20 comprising at least one glycan having the structure of structure 1 as listed in Figure 16 and at least one glycan having the structure of structure 2 as listed in Figure 16.

Further included in the invention is a plant callus, plantlet, whole plant or seed comprising a monomeric antibody composition wherein the monomeric antibody composition is a monomeric antibody composition comprising at least one glycan
25 having the structure of structure 1 as listed in Figure 12; a monomeric antibody composition comprising at least one glycan having the structure of structure 2 as listed in Figure 12; or a monomeric antibody composition comprising at least one glycan having the structure of structure 1 as listed in Figure 16 and at least one glycan having the structure of structure 2 as listed in Figure 16.

30 The invention also includes an isolated afucosylated monomeric anti-herpes simplex virus antibody produced by a method comprising: (i) introducing into a plant

cell nucleic acids having SEQ ID NO: 1 or SEQ ID NO: 5 and SEQ ID NO: 9 or SEQ ID NO: 13, each of which is operably-linked to a promoter; (ii) culturing the plant cell to express the introduced nucleic acids; and (iii) isolating the afucosylated monomeric anti-herpes simplex virus antibody produced by the plant cell. Also included in the 5 invention is a method of producing an isolated afucosylated monomeric anti-herpes simplex virus antibody comprising: (i) introducing into a plant cell nucleic acids having SEQ ID NO: 1 or SEQ ID NO: 5 and SEQ ID NO: 9 or SEQ ID NO: 13, each of which is operably-linked to a promoter; (ii) culturing the plant cell to express the introduced nucleic acids; and (iii) isolating the afucosylated monomeric anti-herpes 10 simplex virus antibody produced by the plant cell.

Preferred embodiments of the invention include a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 15 (pDAB635), SEQ ID NO: 16 (pDAB16), SEQ ID NO: 17 (pDAB637), SEQ ID NO: 84 (pDAB3014) and SEQ ID NO: 85 (pDAB8505).

15 The invention is also directed to a method of producing a transformed plant cell expressing an afucosylated antibody comprising introducing a single vector comprising a nucleic acid sequence encoding an immunoglobulin heavy chain and an immunoglobulin light chain into a plant cell and culturing the transformed plant cell to produce a plant expressing an afucosylated antibody. In one embodiment, a 20 transformed plant is regenerated from the transformed plant cell. In a preferred embodiment, the vector is pDAB8505.

II. Background for Production of IgA in Plants

A. Examples of Suitable IgAs to Utilize

25 Any IgA antibody can be used in the methods of the instant invention. IgA is an immunoglobulin found in human plasma. It is the major immunoglobulin of seromucous secretions and is involved in the defense of external body surfaces against attack by microorganisms.

Immunoglobulin A (IgA) proteins are well known and characterized, including 30 their nucleic acid and amino acid sequences. Examples of IgA immunoglobulins that can be used in the compositions and methods of the instant invention include but are

not limited to the following: *Entamoeba histolytica* antigens recognized by human secretory IgA antibodies (Carrero *et al.*, Parasitol Res. 86(4):330-4 (2000)); transforming growth factor-beta -inducible mouse germ line Ig alpha constant region gene (Zhang *et al.*, J Biol Chem. 275(22):16979-85 (2000)); immunoglobulin A (IgA) 5 and IgM antibodies against human cytomegalovirus in solid-organ transplant recipients (Eing *et al.*, Clin Diagn Lab Immunol. 6(4):621-3 (1999)); excretion of secretory IgA in the postischemic kidney (Rice *et al.*, Am J Physiol. 276(5 Pt 2):F666-73 (1999)); secretory immunoglobulin A release by Calu-3 airway epithelial cells (Loman *et al.*, Immunology. 96(4):537-43 (1999)); specific IgA in the sera of HBsAg 10 chronic carriers (Elsana *et al.*, J Hum Virol. 1(1):52-7 (1997)); anti-*Toxoplasma gondii* IgA antibodies (Ronday *et al.*, Am J Ophthalmol. 127(3):294-300 (1999)); secretory immunoglobulins A from human milk (Kit *et al.*, Biochemistry (Mosc). 64(1):40-6 (1999)); anti-Kp 90 IgA antibodies in the diagnosis of active tuberculosis (Arikan *et al.*, Chest. 114(5):1253-7 (1998)); cloning of IgA from the marsupial 15 Monodelphis domestica (Aveskogh *et al.*, Eur J Immunol. 28(9):2738-50 (1998)); germline and full-length IgA RNA transcripts among peritoneal B-1 cells (deWaard *et al.*, Dev Immunol. 6(1-2):81-7 (1998)); and the constant region of the immunoglobulin A heavy chain (C alpha) from a marsupial: *Trichosurus vulpecula* (common brushtail possum) (Belov *et al.*, Immunol Lett. 60(2-3):165-70 (1998)). 20 Erratum in: Immunol Lett 63(3):175-6 (1998)).

B. Herpes Simplex Virus (HSV)

Herpes simplex refers to a variety of infections caused by herpesvirus type 1 (HSV 1) and type 2 (HSV 2). Herpes simplex viruses subtypes 1 and 2 (HSV-1, HSV-2), are herpes viruses that are among the most common infectious agents encountered 25 by humans. Type 1 infections are marked most commonly by the eruption of one or more groups of vesicles on the vermillion border of the lips or at the external nares with lesions occurring also on the genitalia. Type 2 is characterized by such lesions on the genitalia with lesions often occurring on the vermillion border of the lips or at 30 the external nares. The viruses frequently become latent and may not be expressed for years.

- These viruses cause a broad spectrum of diseases which range from relatively insignificant and nuisance infections such as recurrent herpes simplex labialis, to severe and life-threatening diseases such as herpes simplex encephalitis (HSE) of older children and adults, or the disseminated infections of neonates. Clinical
5 outcome of herpes infections is dependent upon early diagnosis and prompt initiation of antiviral therapy. However, despite some successful therapy, dermal and epidermal lesions recur, and HSV infections of neonates and infections of the brain are associated with high morbidity and mortality. Improved treatments are desperately needed.
- 10 Exemplary strains of herpes simplex virus-1 include, but are not limited to HSV-1716, HSV-3410, HSV-3616, HSV-R3616, HSV-R47, HSV- G207, HSV-7020, HSV-NVR10, HSV-G92A, HSV-3616-IL-4, and HSV-hrR3. Exemplary strains of herpes simplex virus-2 include, but are not limited to strain 2701, strain 2616, and strain 2604. U.S. Patent No. 6,156,313 provides the amino acid residue sequence of
15 the heavy chain variable region sequence for an antibody which targets and neutralizes Herpes simplex virus Type-1 and Type-2 (SEQ ID NO: 2 of the '313 patent) as well as the nucleic acid sequence that encodes the heavy chain CDR3 amino acid sequence (SEQ ID NO: 1 of the '313 patent).

20 **C. Formulations for Anti-HSV Antibodies**

The anti-HSV antibodies of the present invention are produced in plants, at least partially purified, and can then be formulated into a topical application. The anti-HSV antibodies of the present invention can be used in the treatment of the skin of terrestrial mammals, including for example humans, domestic pets, and livestock
25 and other farm animals. A preferred use of the anti-HSV antibodies of the present invention is to prevent transmission of the HSV.

For such therapy, the compounds of the invention can be formulated for a variety of loads of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in
30 Remington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA, which is incorporated in its entirety herein. For systemic administration, injection is preferred,

including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the compounds of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution. (Hanks' Solution: Potassium Phosphate 0.44 mM, Potassium Chloride 5.37 mM, Sodium Phosphate, Dibasic 0.34 mM 136.89, Sodium Chloride mM, D-Glucose 5.55 mM.

5 The reagent is ready for use. The pH of the diluted Hanks' Salt Solution is 6.7 plus or minus 0.2. Sodium Bicarbonate can be added to the solution (0.35g/L). The pH of the solution can be adjusted with 1N HC1 or 1N NaOH). In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to

10 use. Lyophilized forms are also included.

In a preferred practice of this invention, the anti-HSV antibodies of the present invention can be administered as active ingredients in a formulation that is pharmaceutically acceptable for topical administration. Topical formulations, including those that are useful for transdermal drug release, are well-known to those 15 of skill in the art and are suitable in the context of the present invention for application to skin. Formulations suitable for topical or intranasal application include ointments, drops, creams, solutions, tinctures, lotions, pastes, gels, sprays, aerosols and oils containing the active ingredient and various supports and vehicles. These formulations may or may not contain a vehicle or carrier, although the use of a vehicle 20 or carrier is preferred. Suitable carriers for such formulations include petroleum jelly, lanolin, polyethyleneglycols, alcohols, and combinations thereof. Preferred vehicles are non-lipid vehicles, particularly a water-miscible liquid or mixture of liquids. Examples are methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, and butylene glycol, and mixtures of two or more of these compounds. The active 25 ingredient is typically present in such formulations at a concentration of from 0.1 to 15% w/w.

Formulations such as discussed herein can be prepared by any suitable method, typically by uniformly and intimately admixing the active compound with liquids or finely divided solid carriers or both, in the required proportions and then, if 30 necessary, shaping the resulting mixture into the desired shape.

For example a tablet may be prepared by compressing an intimate mixture comprising a powder or granules of the active ingredient and one or more optional ingredients, such as a binder, lubricant, inert diluent, or surface active dispersing agent, or by molding an intimate mixture of powdered active ingredient and inert liquid diluent.

A topical semi-solid ointment formulation typically contains a concentration of the active ingredient from about 1 to 20%, *e.g.*, 5 to 10% in a carrier such as a pharmaceutical cream base, although the concentration may vary outside this range. The optimum amounts in any given instance will be readily apparent to those skilled 10 in the art or are capable of determination by routine experimentation.

Topical formulations containing the anti-HSV antibodies of the present invention can be formulated as lotions, solutions, gels, creams, emollient creams, unguents, sprays, or any other form that will permit topical application. The formulation may also contain one or more agents that promote the spreading of the 15 formulation over the affected area, but are otherwise biologically inactive. Examples of these agents are surfactants, humectants, wetting agents, emulsifiers, or propellants.

The anti-HSV antibodies of the present invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted 20 molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534, 25 899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference in its entirety.

Optimal methods and frequency of administration will be readily apparent to 30 those skilled in the art or are capable of determination by routine experimentation. Effective results in most cases are achieved by topical application of a thin layer over

the affected area, or the area where one seeks to achieve the desired effect. Depending on the condition being addressed, its stage or degree, and whether application is done for therapeutic or preventive reasons, effective results are achieved with application rates of from one application every two or three days to four or more 5 applications per day.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

D. Summary List of SEQ ID NOs. for Anti-HSV Antibodies

SEQ ID NUMBER	DESCRIPTION
1	Heavy Chain Sequence (nucleic acid) (mouse leader sequence), 1494 nt
2	Heavy Chain Sequence (amino acid), 497 a.a.
3	Heavy Chain signal peptide (nucleic acid), 57 nt
4	Heavy Chain signal peptide (amino acid) (mouse leader sequence), 19 a.a.
5	Mature Heavy Chain (nucleic acid), 1368 nt
6	Mature Heavy Chain (amino acid), 456 a.a.
7	Heavy Chain Tailpiece (nucleic acid), 69 nt
8	Heavy Chain Tailpiece (amino acid), 22 a.a.
9	Light Chain Sequence (nucleic acid), 702 nt
10	Light Chain Sequence (amino acid) (mouse leader sequence), 233 a.a.
11	Light Chain signal peptide (nucleic acid), 57 nt
12	Light Chain signal peptide (amino acid) (mouse leader sequence), 19 a.a.
13	Mature Light Chain (nucleic acid), 642 nt
14	Mature Light Chain (amino acid), 214 a.a.
15	pDAB635 (ubiH) sequence (barley leader sequence), 9144 nt
16	pDAB636 (ubiL) sequence (barley leader sequence), 8352 nt
17	pDAB637 (ubi H+L) sequence (barley leader sequence), 12380 nt
18	CDR3 region of heavy chain FabHSV 8-CDR3, 16 a.a.
19	Heavy Chain V region FabSHV 8, 122 a.a.
20	Tryptic+ Asp-N peptide of N269, 18 a.a.
21-48	Peptide Tryptic fragments in Table 6
49-83	Peptide Tryptic fragments in Table 7
84	pDAB3014
85	pDAB8505 (mouse leader sequence for HC and LC)

E. Amino Acid Sequences of Anti-HSV Heavy Chain, Light Chain and Monomeric IgA Antibodies Isolated From Plants

The present invention provides the polypeptides for the heavy chain, light chain and monomeric IgA for anti-HSV antibodies, wherein such polypeptides are 5 isolated from plants.

As used herein, "protein" or "polypeptide" refers, in part, to an amino acid that has the amino acid sequence depicted in SEQ ID NOs: 2, 4, 6, 8, 10, 12, and 14. The terms also refer to naturally occurring allelic variants and proteins that have a slightly different amino acid sequence than that specifically provided in SEQ ID NOs: 2, 4, 6, 10, 8, 10, 12 and 14. Allelic variants, though possessing a slightly different amino acid sequence than those recited herein, will still have the same or similar biological functions associated with these proteins.

As used herein, the family of proteins related to the amino acid sequences having SEQ ID NOs: 2, 4, 6, 8, 10, 12 and 14 refers to proteins that have been 15 isolated from organisms in addition to humans.

The anti-HSV antibody polypeptides of the present invention are preferably in isolated form. As used herein, a polypeptide is said to be isolated when physical, mechanical or chemical methods are employed to remove the protein from cellular constituents that are normally associated with the protein. A skilled artisan can 20 readily employ standard purification methods to obtain an isolated protein.

The proteins of the present invention further include insertion, deletion or conservative amino acid substitution variants of SEQ ID NOs: 2, 4, 6, 8, 10, 12 and 14. As used herein, a conservative variant refers to alterations in the amino acid sequence that do not adversely affect the biological functions of the protein. A 25 substitution, insertion or deletion is said to adversely affect the protein when the altered sequence prevents or disrupts a biological function associated with the protein. For example, the overall charge, structure or hydrophobic/hydrophilic properties of the protein, in certain instances, may be altered without adversely affecting a 30 biological activity. Accordingly, the amino acid sequence can be altered, for example to render the peptide more hydrophobic or hydrophilic, without adversely affecting the biological activities of the protein.

Ordinarily, the allelic variants, the conservative substitution variants, and the members of the protein family, will have an amino acid sequence having at least about 50%, 60%, 70% or 75% amino acid sequence identity with the sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12 and 14; more preferably at least about 80%; 5 even more preferably at least about 90-95%; and most preferably at least about 99 or 99.5% sequence identity. Identity or homology with respect to such sequences is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with SEQ ID NOs: 2, 4, 6, 8, 10, 12 and 14, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and 10 not considering any conservative substitutions as part of the sequence identity. Fusion proteins, or N-terminal, C-terminal or internal extensions, deletions, or insertions into the peptide sequence shall not be construed as affecting homology.

Thus, the proteins of the present invention include molecules having the amino acid sequence disclosed in SEQ ID NOs: 2, 4, 6, 8, 10, 12 and 14; fragments thereof 15 having a consecutive sequence of at least about 3, 4, 5, 6, 10, 15, 20, 25, 30, 35 or more amino acid residues of these proteins; amino acid sequence variants wherein one or more amino acid residues has been inserted N- or C-terminal to, or within, the disclosed coding sequence; and amino acid sequence variants of the disclosed sequence, or their fragments as defined above, that have been substituted by at least 20 one residue. Such fragments, also referred to as peptides or polypeptides, may contain antigenic regions, functional regions of the protein identified as regions of the amino acid sequence which correspond to known protein domains, as well as regions of pronounced hydrophilicity. The regions are all easily identifiable by using commonly available protein sequence analysis software such as, for example, 25 MacVector (Oxford Molecular). Other protein analysis software, useful in the practice of the invention, is known in the art.

Contemplated variants further include those containing predetermined mutations by, *e.g.*, homologous recombination, site-directed or PCR mutagenesis, and the corresponding proteins of other animal species, including but not limited to rabbit, 30 mouse, rat, porcine, bovine, ovine, equine and non-human primate species, and the alleles or other naturally occurring variants of the family of HSV-related proteins; and

derivatives wherein the protein has been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example a detectable moiety such as an enzyme or radioisotope).

5 The present invention further provides compositions comprising a protein or polypeptide of the invention and a diluent. Suitable diluents can be aqueous or non-aqueous solvents or a combination thereof, and can comprise additional components, for example water-soluble salts or glycerol, that contribute to the stability, solubility, activity, and/or storage of the protein or polypeptide.

10

F. Nucleic Acid Sequences of Anti-HSV Heavy Chain, Light Chain and Monomeric IgA Antibodies

The present invention utilizes nucleic acid molecules that encode the heavy chain (SEQ ID NOs.: 1 and 5) and light chain (SEQ ID NOs.: 9 and 13) of anti-HSV 15 antibodies and the related polypeptides herein described, preferably in isolated form.

As used herein, "nucleic acid" is defined as RNA or DNA that encodes a protein or peptide as defined herein, is complementary to a nucleic acid sequence encoding such peptides, hybridizes to the nucleic acid of SEQ ID NOs: 1, 3, 5, 7, 9, 11 and 13 and remains stably hybridized to it under appropriate stringency conditions, 20 encodes a polypeptide sharing at least about 50%, 60%, 70% or 75%, preferably at least about 80%, more preferably at least about 85%, and most preferably at least about 90%, 95%, 98%, 99%, 99.5% or more identity with the peptide sequence of SEQ ID NOs: 1, 3, 5, 7, 9, 11 and 13, or exhibits at least 50%, 60%, 70% or 75%, preferably at least about 80%, more preferably at least about 85%, and even more 25 preferably at least about 90%, 95%, 98%, 99%, 99.5% or more nucleotide sequence identity over the open reading frames of SEQ ID NOs: 1, 3, 5, 7, 9, 11 and 13.

The present invention further includes isolated nucleic acid molecules that specifically hybridize to the complement of SEQ ID NOs: 1, 3, 5, 7, 9, 11 and 13, particularly molecules that specifically hybridize over the open reading frames. Such 30 molecules that specifically hybridize to the complement of SEQ ID NOs: 1, 3, 5, 7, 9,

11 and 13 typically do so under stringent hybridization conditions, such conditions being described below.

Specifically contemplated are genomic DNA, cDNA, mRNA and antisense molecules, as well as nucleic acids based on alternative backbones or including 5 alternative bases whether derived from natural sources or synthesized.

Homology or identity at the nucleotide or amino acid sequence level is determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx. See, for example, Altschul *et al.*, Nucleic Acids Res. 25: 3389-3402 (1997) and Karlin *et* 10 *al.*, Proc. Natl. Acad. Sci. USA 87: 2264-2268 (1990), both fully incorporated by reference, which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments, with and without gaps, between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those 15 matches which satisfy a preselected threshold of significance. For a discussion of basic issues in similarity searching of sequence databases, see, for example, Altschul *et al.*, Nat. Genet. 6: 119-129 (1994), which is fully incorporated by reference. The search parameters for histogram, descriptions, alignments, expect (*i.e.*, the statistical significance threshold for reporting matches against database sequences), cutoff, 20 matrix and filter (low complexity) are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (see, for example, Henikoff *et al.*, Proc. Natl. Acad. Sci. USA 89: 10915-10919 (1992), fully incorporated by reference), recommended for query sequences over 85 nucleotides or amino acids in length.

25 For blastn, the scoring matrix is set by the ratios of M (*i.e.*, the reward score for a pair of matching residues) to N (*i.e.*, the penalty score for mismatching residues), wherein the default values for M and N are 5 and -4, respectively. Four blastn parameters were adjusted as follows: Q=10 (gap creation penalty); R=10 (gap extension penalty); wink=1 (generates word hits at every $wink^{\text{th}}$ position along the 30 query); and gapw=16 (sets the window width within which gapped alignments are generated). The equivalent Blastp parameter settings were Q=9; R=2; wink=1; and

gapw=32. A Bestfit comparison between sequences, available in the GCG package version 10.0, uses DNA parameters GAP=50 (gap creation penalty) and LEN=3 (gap extension penalty) and the equivalent settings in protein comparisons are GAP=8 and LEN=2.

- 5 "Stringent conditions" are those that (1) employ low ionic strength and high temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS (sodium dodecyl sulfate) at 50° C, or (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42°C.
- 10 Another example is hybridization in 50% formamide, 5× SSC solution (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5× Denhardt's solution (50X Denhards's Reagent: 1% (w/v) Ficoll 400, 1% (w/V) polyvinylpyrrolidone, 1% (w/v) bovine serum albumin (Sigma, Fraction V)), sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C, with washes at 42° C in 0.2× SSC solution and 0.1% SDS. A skilled artisan can readily determine and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal. Preferred molecules are those that hybridize under the above conditions to the complement of SEQ ID NOs: 1, 3, 5, 7, 9,
- 15 20 and 13 and which encode a functional or full-length protein. Even more preferred hybridizing molecules are those that hybridize under the above conditions to the complement strand of the open reading frame of SEQ ID NOs: 1, 3, 5, 7, 9, 11 and 13.

As used herein, a nucleic acid molecule is said to be "isolated" when the nucleic acid molecule is substantially separated from contaminant nucleic acid molecules encoding other polypeptides.

The present invention further utilizes fragments of the disclosed nucleic acid molecules. As used herein, a fragment of a nucleic acid molecule refers to a small portion of the coding or non-coding sequence. The size of the fragment will be determined by the intended use. If the fragment is to be used as a nucleic acid probe or PCR primer, then the fragment length is chosen so as to obtain a relatively small number of false positives during probing/priming. If the fragment is chosen so as to

encode an active portion of the protein, the fragment will need to be large enough to encode the functional region(s) of the protein. For instance, fragments which encode peptides corresponding to predicted antigenic regions may be prepared. For example, the present invention utilizes fragments that encode the amino acid sequence for the 5 CDR3 region of the heavy chain of clone FabHSV8 as provided by SEQ ID NO: 1 of U.S. Patent No. 6,156,313 (set forth herein as SEQ ID NO: 18). Furthermore, the present invention utilizes a human monoclonal antibody which neutralizes both HSV Type-1 and Type-2, binds to an epitope present on glycoprotein D, has the binding specificity of an Fab fragment produced by ATCC 69522, and has heavy chains with 10 a CDR3 of SEQ ID NO:2 as provided by U.S. Patent No. 6,156,313 (set forth herein as SEQ ID NO: 19).

Fragments of the nucleic acid molecules of the present invention (*i.e.*, synthetic oligonucleotides) that are used as probes or specific primers for the polymerase chain reaction (PCR), or to synthesize gene sequences encoding proteins 15 of the invention, can easily be synthesized by chemical techniques, for example, the phosphoramidite method of Matteucci *et al.* (J. Am. Chem. Soc. 103: 3185-3191 (1981) or using automated synthesis methods. In addition, larger DNA segments can readily be prepared by well known methods, such as synthesis of a group of oligonucleotides that define various modular segments of the gene, followed by 20 ligation of oligonucleotides to build the complete modified gene.

The nucleic acid molecules of the present invention may further be modified so as to contain a detectable label for diagnostic and probe purposes. A variety of such labels are known in the art and can readily be employed with the encoding molecules herein described. Suitable labels include, but are not limited to, biotin, 25 radiolabeled or fluorescently labeled nucleotides and the like. A skilled artisan can readily employ any such label to obtain labeled variants of the nucleic acid molecules of the invention.

II. Background for Production of IgG in Plants

A. Examples of Suitable IgGs to Utilize

Any IgG antibody can be used in the methods of the instant invention. IgG is the principal immunoglobulin of human plasma and other internal body fluids. It is 5 also the most commonly seen myeloma protein. A myeloma protein designated Eu from a human protein was the first immunoglobulin to be completely sequenced (Edelman *et al.*, Proc. Natl. Acad. Sci. USA 63:78 (1969)).

Immunoglobulin G (IgG) proteins are well known and characterized, including their nucleic acid and amino acid sequences. Examples of IgG immunoglobulins that 10 can be used in the compositions and methods of the instant invention include but are not limited to the following: human antibodies reacting with different epitopes on integrin beta 3 of platelets and endothelial cells (Jallu *et al.*, Eur J Biochem. 222(3):743-51 (1994)); high affinity recombinant human IgG1 anti-RhD antibody (Miescher *et al.*, Br J Haematol. 111(1):157-66 (2000)); synovial IgG against the EF- 15 Tu of *M. tuberculosis* (Adachi *et al.*, J Dent Res. 79(10):1752-7(2000)); binding to endogenous retroviral antigens in HIV-1 infected persons (Lawoko *et al.*, J Med Virol. 62(4):435-44 (2000)); immunoglobulin G antibody to human immunodeficiency virus type 1 (Hashinaka *et al.*, Clin Diagn Lab Immunol. 6(6):967- 76 (2000)); a recombinant human CCR5-specific antibody (Steinberger *et al.*, J Biol 20 Chem. 275(46):36073-8 (2000)); a cDNA sequence encoding the immunoglobulin heavy chain of the Antarctic teleost *Trematomus bernacchii* (Coscia *et al.*, Fish Shellfish Immunol. 10(4):343-57 (2000)); expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells (Neuberger, EMBO J. 2(8):1373-8 (1983)); a murine monoclonal IgG that participates in the 25 neutralization of *Androctonus australis* hector scorpion venom (Devaux *et al.*, Eur J Biochem. 268(3):694-702 (2001)); truncated forms of humanized L243 IgG1 (Lund *et al.*, Eur J Biochem. 267(24):7246-57.(2000)); single-chain Fv-Fc fusions in *Pichia pastoris* (Powers *et al.*, J Immunol Methods. 1;251(1-2):123-35 (2001)); immunoglobulin G (IgG) autoantibody specific for CRMP-5 (Yu *et al.*, Ann Neurol. 30 49(2):146-54 (2001)); IgG antibodies specific for Wolbachia surface protein in rhesus monkeys infected with *Brugia malayi* (Punkosdy *et al.*, J Infect Dis. 184(3):385-9.

Epub 2001 Jul 03 (2001)); human IgG monoclonal anti-alpha(IIb)beta(3)-binding fragments (Jacobin *et al.*, J. Immunol. 168 (4), 2035-2045 (2002)); systemic sclerosis immunoglobulin G autoantibodies (Lunardi *et al.*, Nat Med. 6(10):1183-6 (2000)); human monoclonal antibody specific for the leucine-33 (P1A1, HPA-1a) (Griffin *et al.*, Blood. 15;86(12):4430-6 (1995)); humanized anti-CD18 murine immunoglobulin G (Ipp *et al.*, Arch Biochem Biophys. 308(2):387-99 (1994); and antibodies to GPIIb alpha (300-312) (Taylor *et al.*, Proc Soc Exp Biol Med. 205(1):35-43 (1994)).

B. Integrins

10 Integrin receptors (also called integrins) are a class of molecules mediating cell adhesion to the extracellular matrix, and cell recognition and transmembrane responses in a wide array of physiological contexts (Clarke *et al.*, Science 285:1028-1032 (1995)). Integrins α V β 3 and α V β 5 have been shown to have strong involvement in new blood vessel growth. Each of these integrins binds specific 15 molecules in the extracellular matrix: α V β 3 binds vitronectin plus other extracellular matrix proteins including fibrinogen; α V β 5 is a vitronectin receptor. The primary medical target of the anti-integrin α V β 3/ α V β 5 antibody is vascular recruitment by tumors ("tumor angiogenesis"). During angiogenesis, blood vessel endothelial cells leave pre-existing vessels and form new tubules, which will develop into capillaries. 20 When this process is proceeding normally, vitronectin binding to α V β 5 expressed in the vascular endothelial cells induces expression of α V β 3 and promotes angiogenesis by a cascade of signals and interactions. Vitronectin binding to endothelial α V β 3 also suppresses protein kinase A. When anti- α V β 3 antibody blocks that binding to 25 vitronectin, protein kinase A perturbs the cells so that vessel development, tumor cell migration and metastasis are inhibited. Cell death will occur in such antibody-blocked cells of angiogenic systems.

An antibody generated against α V β 3 blocked basic fibroblast growth factor (bFGF) induced angiogenesis, whereas an antibody specific to α V β 5 inhibited vascular endothelial growth factor (VEGF) induced angiogenesis (Eliceiri, *et al.*, J. Clin. Invest. 103: 1227-1230 (1999); Friedlander *et al.*, Science 270: 1500-1502

(1995)). In addition to those discussed above, other examples of integrin-related immunoglobulins that can be used in the compositions and methods of the instant invention include but are not limited to the following: monoclonal antibodies to ligand-occupied conformers of integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) 5 (Frelinger *et al.*, J Biol Chem. 266(26):17106-11 (1991)); human autoantibody 2E7 specific for the platelet integrin IIb heavy chain (Kunicki *et al.*, J Autoimmun. (3):433-46 (1991)); a murine monoclonal antibody directed against the CD18 component of leukocyte integrins (Daugherty *et al.*, Nucleic Acids Res. 19(9):2471-6 10 (1991)); anti-integrin (alpha 5 beta 1) antibodies (Fogerty *et al.*, J Cell Biol. 111(2):699-708 (1990)); a monoclonal antibody against platelet GPIIb (Golino *et al.*, J Biol Chem. 265(16):9575-81 (1990)); human monoclonal autoantibody specific for human platelet glycoprotein IIb (integrin alpha IIb) heavy chain (Kunicki *et al.*, Hum Antibodies Hybridomas 1(2):83-95 (1990)); humanized antibody specific for the platelet integrin gpIIb/IIIa (Co *et al.*, J Immunol. 15;152(6):2968-76 (1994)); 15 bioactive Arg-Gly-Asp conformations in anti-integrin GPIIb-IIIa antibodies (Prammer *et al.*, Receptor. 4(2):93-108 (1994)); humanized anti-beta 1 integrin chain mAb (Poul *et al.*, Mol Immunol. 32(2):101-16 (1995)); leukocyte integrin lymphocyte function-associated antigen 1 (Holness *et al.*, J Biol Chem. 270(2):877-84 (1995)); synthetic antibodies as adhesive ligands for integrins (Smith *et al.*, J Biol Chem. 269(52):32788-95 (1994)); monoclonal antibodies to platelet integrin alpha IIb beta 3 20 (Yano *et al.*, J Biochem (Tokyo). 116(4):778-86 (1994)); recombinant murine Fab fragment specific for the integrin alpha IIb beta 3 (Kunicki *et al.*, J Biol Chem. 270(28):16660-5 (1995)); IgG anti-phospholipid antibody with platelet glycoprotein IIIa (Tokita *et al.*, Thromb Haemost. 75(1):168-74 (1996)); and human monoclonal 25 Fab fragments that bind specifically to the platelet HPA-1a alloantigen on glycoprotein IIb-IIIa (Proulx *et al.*, Vox Sang. 72(1):52-60 (1997)).

Examples of anti-dual integrin antibodies that can be used in the compositions and methods of the instant invention include but are not limited to those disclosed in U.S. Patent Application No. 2003/0040044 and International Published Patent Application No. WO 02/12501. See also ATCC Deposit Numbers AX472604, AX472605, AX472606, AX472607, AX472608, and AX47209.

III. General Background for Production for either IgA and IgG in Plants

A. Recombinant DNA (rDNA) Molecules Comprising a Nucleic Acid Molecule

The present invention further provides recombinant DNA molecules (rDNAs) 5 that contain a coding sequence. As used herein, a rDNA molecule is a DNA molecule that has been subjected to molecular manipulation. Methods for generating rDNA molecules are well known in the art, for example, see Sambrook *et al.*, Molecular Cloning- A Laboratory Manual, Third Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. In the preferred rDNA molecules, a coding DNA 10 sequence is operably linked to expression control sequences and/or vector sequences.

The choice of vector and/or expression control sequences to which one of the protein family encoding sequences of the present invention is operably linked depends directly, as is well known in the art, on the functional properties desired, e.g., protein expression, and the host cell to be transformed. A vector contemplated by the present 15 invention is at least capable of directing the replication or insertion into the host chromosome, and preferably also expression, of the structural gene included in the rDNA molecule.

Expression control elements that are used for regulating the expression of an operably linked protein encoding sequence are known in the art and include, but are 20 not limited to, inducible promoters, constitutive promoters, secretion signals, and other regulatory elements. Preferably, the inducible promoter is readily controlled, such as being responsive to a nutrient in the host cell's medium.

B. Production of Recombinant Proteins using a rDNA Molecule

25 The present invention further provides methods for producing a protein of the invention using nucleic acid molecules herein described. In general terms, the production of a recombinant form of a protein typically involves the following steps:

First, a nucleic acid molecule is obtained that encodes a protein of the invention, such as a nucleic acid molecule comprising, consisting essentially of or 30 consisting of SEQ ID NO: 1 or SEQ ID NO: 9.

If the encoding sequence is uninterrupted by introns, as are these open-reading-frames, it is directly suitable for expression in any host.

The nucleic acid molecule is then preferably placed in operable linkage with suitable control sequences, as described above, to form an expression unit containing
5 the protein open reading frame. The expression unit is used to transform a suitable host and the transformed host is cultured under conditions that allow the production of the recombinant protein. Optionally the recombinant protein is isolated from the medium or from the cells; recovery and purification of the protein may not be necessary in some instances where some impurities may be tolerated.

10 Each of the foregoing steps can be done in a variety of ways. For example, the desired coding sequences may be obtained from genomic fragments and used directly in appropriate hosts. The construction of expression vectors that are operable in a variety of hosts is accomplished using appropriate replicons and control sequences, as set forth above. The control sequences, expression vectors, and transformation
15 methods are dependent on the type of host cell used to express the gene and were discussed in detail earlier. Suitable restriction sites can, if not normally available, be added to the ends of the coding sequence so as to provide an excisable gene to insert into these vectors. A skilled artisan can readily adapt any host/expression system known in the art for use with the nucleic acid molecules of the invention to produce
20 recombinant protein.

C. Promoters

An inducible promoter is a promoter where the rate of RNA polymerase binding and initiation is modulated by external stimuli. Such stimuli include light,
25 heat, anaerobic stress, alteration in nutrient conditions, presence or absence of a metabolite, presence of a ligand, microbial attack, wounding and the like.

A viral promoter is a promoter with a DNA sequence substantially similar to the promoter found at the 5' end of a viral gene. For example, a typical viral promoter is found at the 5' end of the gene coding for the p2I protein of MMTV described by
30 Huang *et al.*, Cell 27:245 (1981).

A synthetic promoter is a promoter that was chemically synthesized rather than biologically derived. Usually synthetic promoters incorporate sequence changes that optimize the efficiency of RNA polymerase initiation.

A constitutive promoter is a promoter that promotes the expression of a gene product throughout an organism, such as a plant. Examples of constitutive promoters include the cauliflower mosaic virus 35S and 19S promoters (for example, Poszkowski *et al.*, EMBO J. 3: 2719 (1989); Odell *et al.*, Nature 313:810 (1985)); and the maize ubiquitin-1 promoter (for example, U.S. Patent Nos. 5,510,474; 5,614,399; 6,020,190 and 6,054,574).

10 A temporally regulated promoter is a promoter where the rate of RNA polymerase binding and initiation is modulated at a specific time during development. Examples of temporally regulated promoters are given in, for example, Chua *et al.*, Science, 244:174-181 (1989).

15 A spatially regulated promoter is a promoter where the rate of RNA polymerase binding and initiation is modulated in a specific structure of the organism such as the leaf, stem, seed or root. Examples of spatially regulated promoters are given in Chua *et al.*, Science 244:174-181 (1989). Such tissue-specific or organ-specific promoters are well known in the art and include but are not limited to seed-specific promoters, organ-primordia specific promoters, stem- specific promoters, leaf 20 specific promoters, mesophyl-specific promoters (such as the light- inducible Rubisco promoters), root-specific promoters, tuber-specific promoters, vascular tissue specific promoters, stamen-selective promoters, dehiscence zone specific promoters and the like. The most preferred promoters for use in the instant invention will be most active in seed, fruit and tuber.

25 A spatiotemporally regulated promoter is a promoter where the rate of RNA polymerase binding and initiation is modulated in a specific structure of the organism at a specific time during development. An example of a typical spatio-temporally regulated promoter is the EPSP synthase-35S promoter described by Chua *et al.*, Science 244:174-181 (1989).

30 For this invention, maize endosperm was determined to be the target tissue for gene expression, although the present invention is applicable to expression of the

selected sIgA throughout the whole plant or in any specific tissue(s) of the plant. Gene expression in the maize endosperm ensures accumulation of high levels of the target protein and simplifies protein storage, shipment, extraction and purification. In one embodiment of the invention, an endosperm-specific promoter is used to drive expression of the HC and LC of anti-HSV antibodies.

5 Expression of seed-specific genes has been studied in great detail (see reviews, for example, by Goldberg *et al.*, Cell 56:149-160 (1989) and Higgins *et al.*, Ann. Rev. Plant Physiol. 35:191-221 (1984)). Promoter analysis of seed-specific genes is reviewed in Goldberg *et al.*, Cell 56: 149-160 (1989) and Thomas, Plant Cell 5: 1401-10 1410 (1993). Research indicates that no plant gene is more tightly regulated in terms of spatial expression than those encoding seed storage proteins.

Many seed storage protein genes have been cloned from diverse plant species, and their promoters have been analyzed in detail (Thomas, Plant Cell 5: 1401-1410 15 (1993)). There are currently numerous examples of seed-specific expression of seed storage protein genes in transgenic plants. See, for example, b-phaseolin (Sengupta-Gopalan *et al.*, Proc. Natl. Acad. Sci. USA 82:3320-3324 (1985); Hoffman *et al.*, Plant Mol. Biol. 11, 717-729 (1988)); bean lectin (Voelker *et al.*, EMBO J. 6: 3571-3577 (1987)); soybean lectin (Okamuro *et al.*, Proc. Natl. Acad. Sci. USA 83:8240-20 8244 (1986)); soybean Kunitz trypsin inhibitor (Perez-Grau *et al.*, Plant Cell 1:095-1109 (1989)); soybean b-conglycinin (Beachy *et al.*, EMBO J. 4:3047-3053 (1985); pea vicilin (Higgins *et al.*, Plant Mol. Biol. 11:683-695 (1988)); pea convicilin (Newbiggin *et al.*, Planta 180:461-470 (1990)); pea legumin (Shirsat *et al.*, Mol. Gen. Genetics 215:326-331 (1989)); rapeseed napin (Radke *et al.*, Theor. Appl. Genet. 75:685-694(1988)); maize 18 kD oleosin (Lee *et al.*, Proc Natl. Acad. Sci. USA 25 888:6181-6185 (1991)); barley b-hordein (Marris *et al.*, Plant Mol. Biol. 10:359-366 (1988); wheat glutenin (Colot *et al.*, EMBO J. 6:3559-3564 (1987)). For additional sources of seed-specific promoters, see, for example, U.S. Patent Nos. 5,623,067; 6,100,450; 6,177,613; 6,225,529; 6,342,657 and 6,403,371; Knutzon *et al.*, Proc. Natl. Acad. Sci. USA 89:2624 (1992); Bustos *et al.*, EMBO J. 10:1469 (1991), Lam and 30 Chua, Science 248:471(1991); Stayton *et al.*, Aust. J. Plant. Physiol. 18:507 (1991), each of which is incorporated by reference in its entirety. Moreover, seed-specific

promoter genes operably linked to heterologous coding sequences in chimeric gene constructs also maintain their temporal and spatial expression pattern in transgenic plants. Such examples include use of *Arabidopsis thaliana* 2S seed storage protein gene promoter to express enkephalin peptides in *Arabidopsis* and *B. napus* seeds (see, 5 for example, Vandekerckhove *et al.*, *Bio/Technology* 7:929-932 (1989)); bean lectin and bean b-phaseolin promoters to express luciferase (see, for example, Riggs *et al.*, *Plant Sci.* 63:47-57 (1989)); and wheat glutenin promoters to express chloramphenicol acetyl transferase (see, for example, Colot *et al.*, *EMBO J.* 6:3559-3564 (1987)).

10

D. Vectors

As provided elsewhere herein, several embodiments of the present invention employ expression units (or expression vectors or systems) to express an exogenously supplied nucleic acid sequence in a plant. Methods for generating expression 15 units/systems/vectors for use in plants are well known in the art and can readily be adapted for use in the instant invention. A skilled artisan can readily use any appropriate plant/vector/expression system in the present methods following the outline provided herein.

A gamete-specific promoter, a constitutive promoter (such as the CaMV or 20 Nos promoter), an organ-specific promoter (such as the E8 promoter from tomato) or an inducible promoter is typically ligated to the protein or antisense encoding region using standard techniques known in the art. The expression unit may be further optimized by employing supplemental elements such as transcription terminators and/or enhancer elements.

The expression control elements used to regulate the expression of the protein 25 can either be the expression control element that is normally found associated with the coding sequence (homologous expression element) or can be a heterologous expression control element. A variety of homologous and heterologous expression control elements are known in the art and can readily be used to make expression 30 units for use in the present invention.

Transcription initiation regions, for example, can include any of the various opine initiation regions, such as octopine, mannopine, nopaline and the like that are found in the Ti plasmids of *Agrobacterium tumefaciens*.

Plant viral promoters can also be used, such as, for example, the cauliflower mosaic virus 35S (CaMV 35S) promoter, to control gene expression in a plant.

Plant promoters such as *prolifera* promoter, fruit-specific promoters, *Ap3* promoter, heat shock promoters, seed-specific promoters, etc. can also be used. The most preferred promoters for use in the instant invention will be most active in seed, fruit and tuber.

Thus, for expression in plants, the expression units will typically contain, in addition to the protein sequence, a plant promoter region, a transcription initiation site and a transcription termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the expression unit are typically included to allow for easy insertion into a preexisting vector.

In the construction of heterologous promoter/structural gene or antisense combinations, the promoter is preferably positioned about the same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.

In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes. If the mRNA encoded by the structural gene is to be efficiently processed, DNA sequences which direct polyadenylation of the RNA are also commonly added to the vector construct. Polyadenylation sequences include, but are not limited to the *Agrobacterium* octopine synthase signal (Gielen *et al.*, EMBO J 3:835-846 (1984)) or the nopaline synthase signal (Depicker *et al.*, Mol. and Appl. Genet. 1:561-573 (1982)).

The resulting expression unit is ligated into or otherwise constructed to be included in a vector that is appropriate for higher plant transformation. The vector will also typically contain a selectable marker gene by which transformed plant cells

can be identified in culture. Antibiotic resistance markers could be used. These markers include, but are not limited to, resistance to G418, hygromycin, bleomycin, kanamycin, and gentamicin. More preferably, herbicide resistance markers are utilized. See, for example, U.S. Patent Nos. 5,879,903; 5,637,489 and 5,276,268 for 5 phosphinothricin (PTC)-resistance to phosphinothricyl-alanyl-alanine (PTT). Also see, for example, U.S. Patent Nos. 5,767,361; 5,928,937 and 6,444,875 for acetohydroxy acid synthase (AHAS) resistant to imidazolinone herbicides. After transforming the plant cells, those cells having the vector will be identified by their ability to grow on a medium containing the particular antibiotic. Replication 10 sequences, of bacterial or viral origin, are generally also included, but are not limited to, to allow the vector to be cloned in a bacterial or phage host, preferably a broad host range prokaryotic origin of replication is included. A selectable marker for bacteria should also be included, to allow selection of bacterial cells bearing the desired construct. Suitable prokaryotic selectable markers also include, but are not 15 limited to, resistance to antibiotics such as ampicillin, kanamycin or tetracycline.

Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art. For instance, in the case of *Agrobacterium* transformations, T-DNA sequences will also be included for subsequent transfer to plant chromosomes.

20 The sequences of the present invention can also be fused to various other nucleic acid molecules such as Expressed Sequence Tags (ESTs), epitopes or fluorescent protein markers.

ESTs are gene fragments, typically 300 to 400 nucleotides in length, sequenced from the 3' or 5' end of complementary-DNA (cDNA) clones. Nearly 25 30,000 *Arabidopsis thaliana* ESTs have been produced by a French and an American consortium (Delseny *et al.*, FEBS Lett. 405(2):129-132 (1997); *Arabidopsis* Database, <http://genome-www.stanford.edu/Arabidopsis>). For a discussion of the analysis of gene-expression patterns derived from large EST databases, see, e.g., M. R. Fannon, TIBTECH 14:294-298 (1996).

30 Biologically compatible fluorescent protein probes, particularly the self-assembling green fluorescent protein (GFP) from the jellyfish *Aequorea victoria*, have

revolutionized research in cell, molecular and developmental biology because they allow visualization of biochemical events in living cells (see, for example, Murphy *et al.*, Curr. Biol. 7(11):870-876 (1997); Grebenok *et al.*, Plant J. 11(3):573-586 (1997); Chiu *et al.*, Curr. Biol. 6(3):325-330 (1996); and, Plautz *et al.*, Gene 173(1):83-87 5 (1996); and, Sheen *et al.*, Plant J. 8(5):777-784 (1995)).

Site-directed mutagenesis has been used to develop a more soluble version of the codon-modified GFP called soluble-modified GFP (smGFP). When introduced into *Arabidopsis*, greater fluorescence was observed when compared to the codon-modified GFP, implying that smGFP is 'brighter' because more of it is present in a 10 soluble and functional form (Davis *et al.*, Plant Mol. Biol. 36(4):521-528 (1998)). By fusing genes encoding GFP and beta-glucuronidase (GUS), researchers were able to create a set of bifunctional reporter constructs which are optimized for use in transient and stable expression systems in plants, including *Arabidopsis*. See, for example, Quaedvlieg *et al.*, Plant Mol. Biol. 37(4):715-727 (1998).

15 Berger *et al.* (Dev. Biol. 194(2):226-234 (1998)) report the isolation of a GFP marker line for *Arabidopsis* hypocotyl epidermal cells. GFP-fusion proteins have been used to localize and characterize a number of *Arabidopsis* genes, including geranylgeranyl pyrophosphate (GGPP) (Zhu *et al.*, Plant Mol. Biol. 35(3):331-341 (1997)).

20

E. Disabling Genes

It may be desirable to disable certain plant genes to gain the expression of the transgene and/or to obtain the desired protein produced as a result of the expression of the transgene. For example, in the instant invention, it may be desirable to disable 25 certain enzymes that are native to the transgenic plant, for example one or more specific plant transferases. Methods of disabling genes are well known to those of ordinary skill in the art.

For example, an effective disabling modification is the introduction of a single nucleotide deletion occurring at the beginning of a gene that would produce a 30 translational reading frameshift. Such a frameshift would disable the gene, resulting in non-expressible gene product and thereby disrupting functional protein production

by that gene. If the unmodified gene encodes a protease, for example, protease production by the gene could be disrupted if the regulatory regions or the coding regions of the protease gene are disrupted.

In addition to disabling genes by deleting nucleotides, causing a transitional reading frameshift, disabling modifications would also be possible by other techniques well known to those of ordinary skill, including insertions, substitutions, inversions or transversions of nucleotides within the gene's DNA that would effectively prevent the formation of the protein encoded by the DNA.

It is also within the capabilities of one skilled in the art to disable genes by the use of less specific methods. Examples of less specific methods would be the use of chemical mutagens such as hydroxylamine or nitrosoguanidine or the use of radiation mutagens such as gamma radiation or ultraviolet radiation to randomly mutate genes. Such mutated strains could, by chance, contain disabled genes such that the genes were no longer capable of producing functional proteins for any one or more of the domains. The presence of the desired disabled genes could be detected by routine screening techniques. For further guidance, see, for example, U.S. Patent No. 5,759,538.

F. Antisense Encoding Vectors

As discussed above, it may be desirable to inhibit the expression of certain native plant genes, such as specific plant transferases, in order to obtain expression of the transgene and/or to obtain the desired protein coded by the transgene. Methods for inhibiting expression in plants using antisense constructs, including generation of antisense sequences *in situ* are well known to those of ordinary skill in the art and are described, for example, in U.S. Patents 5,107,065; 5,254,800; 5,356,799; 5,728,926; and 6,184,439.

Other methods that can be used to inhibit expression of an endogenous gene in a plant may also be used in the present methods. For example, formation of a triple helix at an essential region of a duplex gene serves this purpose. The triplex code, permitting design of the proper single stranded participant is also known in the art. (See, for example, H. E. Moser *et al.*, Science 238:645-650 (1987) and M. Cooney *et*

al., Science 241:456-459 (1988)). Regions in the control sequences containing stretches of purine bases are particularly attractive targets. Triple helix formation along with photocrosslinking is described, *e.g.*, in D. Praseuth *et al.*, Proc. Nat'l Acad. Sci. USA 85:1349-1353 (1988).

5

G. Transformation

To introduce a desired gene or set of genes by conventional methods requires a sexual cross between two lines, and then repeated back-crossing between hybrid offspring and one of the parents until a plant with the desired characteristics is 10 obtained. This process, however, is restricted to plants that can sexually hybridize, and genes in addition to the desired gene will be transferred.

Recombinant DNA techniques allow plant researchers to circumvent these limitations by enabling plant geneticists to identify and clone specific genes for desirable traits, such as resistance to an insect pest, and to introduce these genes into 15 already useful varieties of plants. Once the foreign genes have been introduced into a plant, that plant can then be used in conventional plant breeding schemes (*e.g.*, pedigree breeding, single-seed-descent breeding schemes, reciprocal recurrent selection) to produce progeny which also contain the gene of interest.

Genes can be introduced in a site directed fashion using homologous 20 recombination. Homologous recombination permits site-specific modifications in endogenous genes and thus inherited or acquired mutations may be corrected, and/or novel alterations may be engineered into the genome. Homologous recombination and site-directed integration in plants are discussed in, for example, U.S. Patent Nos. 5,451,513; 5,501,967 and 5,527,695.

Methods of producing transgenic plants are well known to those of ordinary 25 skill in the art. Transgenic plants can now be produced by a variety of different transformation methods including, but not limited to, electroporation; microinjection; microprojectile bombardment, also known as particle acceleration or biolistic bombardment; viral-mediated transformation; and Agrobacterium-mediated 30 transformation. See, for example, U.S. Patent Nos. 5,405,765; 5,472,869; 5,538,877; 5,538,880; 5,550,318; 5,641,664; 5,736,369 and 5,736,369; Watson *et al.*,

Recombinant DNA, Scientific American Books (1992); Hinchee *et al.*, Bio/Tech. 6:915-922 (1988); McCabe *et al.*, Bio/Tech. 6:923-926 (1988); Toriyama *et al.*, Bio/Tech. 6:1072-1074 (1988); Fromm *et al.*, Bio/Tech. 8:833-839 (1990); Mullins *et al.*, Bio/Tech. 8:833-839 (1990); Hiei *et al.*, Plant Molecular Biology 35:205-218 (1997); Ishida *et al.*, Nature Biotechnology 14:745-750 (1996); Zhang *et al.*, Molecular Biotechnology 8:223-231 (1997); Ku *et al.*, Nature Biotechnology 17:76-80 (1999); and, Raineri *et al.*, Bio/Tech. 8:33-38 (1990)), each of which is expressly incorporated herein by reference in their entirety.

10 *Agrobacterium tumefaciens* is a naturally occurring bacterium that is capable of inserting its DNA (genetic information) into plants, resulting in a type of injury to the plant known as crown gall. Most species of plants can now be transformed using this method, including alfalfa. See, for example, Wang *et al.*, Australian Journal of Plant Physiology 23(3): 265-270 (1996); Hoffman *et al.*, Molecular Plant-Microbe Interactions 10(3): 307-315 (1997); and, Trieu *et al.*, Plant Cell Reports 16:6-11 (1996).

15 Microprojectile bombardment is also known as particle acceleration, biolistic bombardment, and the gene gun (Biolistic® Gene Gun). The gene gun is used to shoot pellets that are coated with genes (*e.g.*, for desired traits) into plant seeds or plant tissues in order to get the plant cells to then express the new genes. The gene gun uses an actual explosive (.22 caliber blank) to propel the material. Compressed air or steam may also be used as the propellant. The Biolistic® Gene Gun was invented in 1983-1984 at Cornell University by John Sanford, Edward Wolf, and Nelson Allen. It and its registered trademark are now owned by E. I. du Pont de Nemours and Company. Most species of plants have been transformed using this 20 method, including alfalfa (U.S. Patent No. 5,324,646) and clover (Voisey *et al.*, Biocontrol Science and Technology 4(4): 475-481 (1994); Quesbenberry *et al.*, Crop Science 36(4): 1045-1048 (1996); Khan *et al.*, Plant Physiology 105(1): 81-88 (1994); and, Voisey *et al.*, Plant Cell Reports 13(6): 309-314 (1994)).

25 Developed by ICI Seeds Inc. (Garst Seed Company) in 1993, WHISKERS™ is an alternative to other methods of inserting DNA into plant cells (*e.g.*, the Biolistic® Gene Gun, *Agrobacterium tumefaciens*, the "Shotgun" Method, etc.); and it

consists of needle-like crystals ("whiskers") of silicon carbide. The fibers are placed into a container along with the plant cells, then mixed at high speed, which causes the crystals to pierce the plant cell walls with microscopic "holes" (passages). Then the new DNA (gene) is added, which causes the DNA to flow into the plant cells. The 5 plant cells then incorporate the new gene(s); and thus they have been genetically engineered.

The essence of the WHISKERS™ technology is the small needle-like silicon carbide "whisker" (0.6 microns in diameter and 5-80 microns in length) which is used in the following manner. A container holding a "transformation cocktail" 10 composed of DNA (e.g., agronomic gene plus a selectable marker gene), embryogenic corn tissue, and silicon carbide "whiskers" is mixed or shaken in a robust fashion on either a dental amalgam mixer or a paint shaker. The subsequent collisions between embryogenic corn cells and the sharp silicon carbide "whiskers" result in the creation of small holes in the plant cell wall through which DNA (the agronomic gene) is 15 presumed to enter the cell. Those cells receiving and incorporating a new gene are then induced to grow and ultimately develop into fertile transgenic plants.

Silicon carbide "whisker" transformation has now produced stable transformed calli and/or plants in a variety of plants species such as *Zea mays*. See, for example, U.S. Patent Nos. 5,302,523 and 5,464,765, each of which is incorporated herein by 20 reference in their entirety; Frame *et al.*, The Plant Journal 6: 941-948 (1994); Kaeppeler *et al.*, Plant Cell Reports 9:415-418 (1990); Kaeppeler *et al.*, Theoretical and Applied Genetics 84:560-566 (1992); Petolino *et al.*, Plant Cell Reports 19(8):781-786 (2000); Thompson *et al.*, Euphytica 85:75-80 (1995); Wang *et al.*, In Vitro Cellular and Developmental Biology 31:101-104 (1995); Song *et al.*, Plant Cell 25 Reporter 20:948-954 (2002); Petolino *et al.*, Molecular Methods of Plant Analysis, In Genetic Transformation of Plants, Vol. 23, pp. 147-158, Springer-Verlag, Berlin (2003). Other examples include *Lolium multiflorum*, *Lolium perenne*, *Festuca arundinacea*, *Agrostis stolonifera* (Dalton *et al.*, Plant Science 132:31-43 (1997)), *Oryza sativa* (Nagatani *et al.*, Biotechnology Techniques 11:471-473 (1997)), and 30 *Triticum aestivum* and *Nicotiana tobacum* (Kaeppeler *et al.*, Theoretical and Applied Genetics 84:560-566 (1992)). Even Chlamydomonas (see, for example, Dunahay,

T.G., Biotechniques 15:452-460 (1993)) can be transformed with a "whiskers" approach. As it is currently practiced on higher plants, the "whisker" system is one of the least complex ways to transform some plant cells.

Genes successfully introduced into plants using recombinant DNA

5 methodologies include, but are not limited to, those coding for the following traits: seed storage proteins, including modified 7S legume seed storage proteins (see, for example, U.S. Patent Nos. 5,508,468, 5,559,223 and 5,576,203); herbicide tolerance or resistance (see, for example, De Greef *et al.*, Bio/Technology 7:61 (1989); U.S. Pat. No. 4,940,835; U.S. Pat. No. 4,769,061; U.S. Pat. No. 4,975,374; Marshall *et al.*(1992) Theor. Appl. Genet. 83, 435; U.S. Pat. No. 5,489,520; U.S. Patent No. 10 5,498,544; U.S. Patent No. 5,554,798; Powell *et al.*, Science 232:738-743 (1986); Kaniewski *et al.*, Bio/Tech. 8:750-754 (1990)); Day *et al.*, Proc. Natl. Acad. Sci. USA 88:6721-6725 (1991)); phytase (see, for example, U.S. Patent No. 5,593,963); resistance to bacterial, fungal, nematode and insect pests, including resistance to the 15 lepidoptera insects conferred by the Bt gene (see, for example, U.S. Patent Nos. 5,597,945 and 5,597,946; Johnson *et al.*, Proc. Natl. Acad. Sci. USA, 86:9871-9875 (1989); Perlak *et al.*, Bio/Tech. 8:939-943 (1990)); lectins (U.S. Patent No. 5,276,269); flower color (Meyer *et al.*, Nature 330:677-678 (1987); Napoli *et al.*, Plant Cell 2:279-289 (1990); van der Krol *et al.*, Plant Cell 2:291-299 (1990)); Bt 20 genes (Voisey *et al.*, *supra*); neomycin phosphotransferase II (Quesbenberry *et al.*, *supra*); the pea lectin gene (Diaz *et al.*, Plant Physiology 109(4):1167-1177 (1995); Eijsden *et al.*, Plant Molecular Biology 29(3):431-439 (1995)); the auxin-responsive promoter GH3 (Larkin *et al.*, Transgenic Research 5(5):325-335 (1996)); seed albumin gene from sunflowers (Khan *et al.*, Transgenic Research 5(3):179-185 25 (1996)); and genes encoding the enzymes phosphinothrin acetyl transferase, beta-glucuronidase (GUS) coding for resistance to the Basta® herbicide, neomycin phosphotransferase, and an alpha-amylase inhibitor (Khan *et al.*, *supra*), each of which is expressly incorporated herein by reference in their entirety.

For certain purposes, different antibiotic or herbicide selection markers may 30 be preferred. Selection markers used routinely in transformation include the nptII gene which confers resistance to kanamycin and related antibiotics (see, for example,

Messing & Vierra, Gene 19: 259-268 (1982); Bevan *et al.*, Nature 304:184-187 (1983)), the bar gene which confers resistance to the herbicide phosphinothricin (White *et al.*, Nucl Acids Res 18: 1062 (1990), Spencer *et al.*, Theor Appl Genet 79: 625-631(1990)), and the dhfr gene, which confers resistance to methotrexate 5 (Bourouis *et al.*, EMBO J. 2(7): 1099-1104 (1983)).

Transgenic alfalfa plants have been produced using a number of different genes isolated from both alfalfa and non-alfalfa species including, but not limited to, the following: the promoter of an early nodulin gene fused to the reporter gene gusA (Bauer *et al.*, The Plant Journal 10(1):91-105 (1996)); the early nodulin gene (Charon 10 *et al.*, Proc. Natl. Acad. of Sci. USA 94(16):8901-8906 (1997); Bauer *et al.*, Molecular Plant-Microbe Interactions 10(1):39-49 (1997)); NADH-dependent glutamate synthase (Gantt, The Plant Journal 8(3):345-358 (1995)); promoter-gusA fusions for each of three lectin genes (Bauchowitz *et al.*, The Plant Journal 9(1):31- 15 43 (1996)); the luciferase enzyme of the marine soft coral *Renilla reniformis* fused to the CaMV promoter (Mayerhofer *et al.*, The Plant Journal 7(6):1031-1038 (1995)); Mn-superoxide dismutase cDNA (McKersie *et al.*, Plant Physiology 111(4):1177- 20 1181 (1996)); synthetic cryIC genes encoding a *Bacillus thuringiensis* delta-endotoxin (Strizhov *et al.*, Proc. Natl. Acad. Sci. USA 93(26):15012-15017 (1996)); glucanase (Dixon *et al.*, Gene 179(1):61-71 (1996); and leaf senescence gene (U.S. Patent No. 5,689,042).

Genetic transformation has also been reported in numerous forage and turfgrass species (Conger B.V., Genetic Transformation of Forage Grasses in Molecular and Cellular Technologies for Forage Improvement, CSSA Special Publication No. 26, Crop Science Society of America, Inc. E.C. Brummer *et al.* Eds. 25 1998, pages 49-58). These include, but are not limited to, orchardgrass (*Dactylis glomerata* L.), tall fescue (*Festuca arundinacea* Schreb.) red fescue (*Festuca rubra* L.), meadow fescue (*Festuca pratensis* Huds.) perennial ryegrass (*Lolium perenne* L.) creeping bentgrass (*Agrostis palustris* Huds.) and redtop (*Agrostis alba* L.).

Transgenic plants have been utilized for the molecular farming ("pharming") 30 of industrial proteins. For example, recombinant egg white avidin and bacterial B-glucuronidase (GUS) from transgenic maize have been commercially produced, with

high levels of expression being obtained in seed by employing the ubiquitin promoter from maize (Hood *et al.*, *Adv Exp Med Biol* 464:127-147 (1999)).

H. Hemizygosity

5 A transgenic plant formed using Agrobacterium transformation methods typically contains a single gene on one chromosome, although multiple copies are possible. Such transgenic plants can be referred to as being hemizygous for the added gene. A more accurate name for such a plant is an independent segregant, because each transformed plant represents a unique T-DNA integration event (see, for
10 example, U.S. Patent No. 6,156,953). A transgene locus is generally characterized by the presence and/or absence of the transgene. A heterozygous genotype in which one allele corresponds to the absence of the transgene is also designated hemizygous (see, for example, U.S. Patent No. 6,008,437).

Assuming normal hemizygosity, selfing will result in maximum genotypic
15 segregation in the first selfed recombinant generation, also known as the R₁ or R₁ generation. The R₁ generation is produced by selfing the original recombinant line, also known as the R₀ or R₀ generation. Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts,
20 63:1, etc. Therefore, relatively few R₁ plants need to be grown to find at least one resistance phenotype (see, for example, U.S. Patent Nos. 5,436,175 and 5,776,760).

As mentioned above, self-pollination of a hemizygous transgenic regenerated plant should produce progeny equivalent to an F₂ in which approximately 25% should be homozygous transgenic plants. Self-pollination and testcrossing of the F₂ progeny
25 to non-transformed control plants can be used to identify homozygous transgenic plants and to maintain the line. If the progeny initially obtained for a regenerated plant were from cross pollination, then identification of homozygous transgenic plants will require an additional generation of self-pollination (see, for example, U.S. Patent 5,545,545).

I. Breeding Methods

Open-Pollinated Populations. The improvement of open-pollinated populations of such crops as rye, many maizes and sugar beets, herbage grasses, legumes such as alfalfa and clover, and tropical tree crops such as cacao, coconuts, oil palm and some rubber, depends essentially upon changing gene-frequencies towards fixation of favorable alleles while maintaining a high (but far from maximal) degree of heterozygosity. Uniformity in such populations is impossible and trueness-to-type in an open-pollinated variety is a statistical feature of the population as a whole, not a characteristic of individual plants. Thus, the heterogeneity of open-pollinated populations contrasts with the homogeneity (or virtually so) of inbred lines, clones and hybrids.

Population improvement methods fall naturally into two groups, those based on purely phenotypic selection, normally called mass selection, and those based on selection with progeny testing. Interpopulation improvement utilizes the concept of open breeding populations; allowing genes for flow from one population to another. Plants in one population (cultivar, strain, ecotype, or any germplasm source) are crossed either naturally (*e.g.*, by wind) or by hand or by bees (commonly *Apis mellifera* L. or *Megachile rotundata* F.) with plants from other populations. Selection is applied to improve one (or sometimes both) population(s) by isolating plants with desirable traits from both sources.

There are basically two primary methods of open-pollinated population improvement. First, there is the situation in which a population is changed *en masse* by a chosen selection procedure. The outcome is an improved population that is indefinitely propagable by random-mating within itself in isolation. Second, the synthetic variety attains the same end result as population improvement but is not itself propagable as such; it has to be reconstructed from parental lines or clones. These plant breeding procedures for improving open-pollinated populations are well known to those skilled in the art and comprehensive reviews of breeding procedures routinely used for improving cross-pollinated plants are provided in numerous texts and articles, including but not limited to: Allard, *Principles of Plant Breeding*, John Wiley & Sons, Inc. (1960); Simmonds, *Principles of Crop Improvement*, Longman

Group Limited (1979); Hallauer and Miranda, *Quantitative Genetics in Maize Breeding*, Iowa State University Press (1981); and, Jensen, *Plant Breeding Methodology*, John Wiley & Sons, Inc. (1988).

Mass Selection. In mass selection, desirable individual plants are chosen, 5 harvested, and the seed composited without progeny testing to produce the following generation. Since selection is based on the maternal parent only, and there is no control over pollination, mass selection amounts to a form of random mating with selection. As stated above, the purpose of mass selection is to increase the proportion of superior genotypes in the population.

10 **Synthetics.** A synthetic variety is produced by crossing *inter se* a number of genotypes selected for good combining ability in all possible hybrid combinations, with subsequent maintenance of the variety by open pollination. Whether parents are (more or less inbred) seed-propagated lines, as in some sugar beet and beans (*Vicia*) or clones, as in herbage grasses, clovers and alfalfa, makes no difference in principle.

15 Parents are selected on general combining ability, sometimes by test crosses or topcrosses, more generally by polycrosses. Parental seed lines may be deliberately inbred (e.g. by selfing or sib crossing). However, even if the parents are not deliberately inbred, selection within lines during line maintenance will ensure that some inbreeding occurs. Clonal parents will, of course, remain unchanged and highly 20 heterozygous.

Whether a synthetic can go straight from the parental seed production plot to the farmer or must first undergo one or two cycles of multiplication depends on seed production and the scale of demand for seed. In practice, grasses and clovers are generally multiplied once or twice and are thus considerably removed from the 25 original synthetic.

While mass selection is sometimes used, progeny testing is generally preferred for polycrosses, because of their operational simplicity and obvious relevance to the objective, namely exploitation of general combining ability in a synthetic.

The number of parental lines or clones that enter a synthetic vary widely. In 30 practice, numbers of parental lines range from 10 to several hundred, with 100-200

being the average. Broad based synthetics formed from 100 or more clones would be expected to be more stable during seed multiplication than narrow based synthetics.

Hybrids. A hybrid is an individual plant resulting from a cross between parents of differing genotypes. Commercial hybrids are now used extensively in 5 many crops, including corn (maize), sorghum, sugarbeet, sunflower and broccoli. Hybrids can be formed in a number of different ways, including by crossing two parents directly (single cross hybrids), by crossing a single cross hybrid with another parent (three-way or triple cross hybrids), or by crossing two different hybrids (four-way or double cross hybrids).

10 Strictly speaking, most individual plants in an out breeding (*i.e.*, open-pollinated) population are hybrids, but the term is usually reserved for cases in which the parents are individuals whose genomes are sufficiently distinct for them to be recognized as different species or subspecies. Hybrids may be fertile or sterile depending on qualitative and/or quantitative differences in the genomes of the two 15 parents. Heterosis, or hybrid vigor, is usually associated with increased heterozygosity that results in increased vigor of growth, survival, and fertility of hybrids as compared with the parental lines that were used to form the hybrid. Maximum heterosis is usually achieved by crossing two genetically different, highly inbred lines.

20 The production of hybrids is a well-developed industry, involving the isolated production of both the parental lines and the hybrids which result from crossing those lines. For a detailed discussion of the hybrid production process, see, for example, Wright, H., Commercial Hybrid Seed Production, volume 8, pages 161-176, *In Hybridization of Crop Plants*, supra.

25

EXAMPLES

I. Examples for the Production of IgA in Plants

Two basic strategies were employed to produce anti-HSV monomeric IgA in 30 maize:
constitutive expression of IgA; and

endosperm-specific expression of IgA.

Experiments also compared the efficacy of expression of the heavy chain ("HC") and light chain ("LC") on a single plasmid versus HC and LC on two separate plasmids.

5

Example 1. Construction of ubiquitin/HC, LC Plasmids

Constitutive expression of anti-HSV antibody genes was chosen so as to enable the rapid analysis of protein production on callus tissue. More specifically, maize ubiquitin-1 promoter-driven HSV heavy chain HC and LC plasmid 10 constructions and transgenic events were made to demonstrate correct assembly and accumulation of heavy chain and light chain genes from certain plasmid configurations.

Maize ubiquitin-1 ('ubi') is described, for example, in U.S. Patent Nos: 5,510,474; 5,614,399; 6,020,190; and 6,054,574, each of which is herein incorporated 15 in its entirety. MAR (matrix association region) is described in U.S. Patent Nos: 5,773,689 and 6,239,328, each of which is herein incorporated in its entirety. Maize per5 UTR is described in U.S. Patent No. 6,384,207, which is herein incorporated in its entirety. The genes used in this experiment were not rebuilt for plant codon-bias, and they contain the barley alpha-amylase leader sequence for targeting protein to the 20 endoplasmic reticulum.

The following vectors were assembled:
pDAB635 (MAR::ubi/HC/per5::MAR) (Figure 1; SEQ ID NO: 15);
pDAB636 (MAR::ubi/LC/per5::MAR) (Figure 2; SEQ ID NO: 16); and
pDAB637 (MAR::ubi/HC/per5::ubi/LC/per5::MAR) (Figure 3; SEQ ID NO: 25 17).

The antibody genes were liberated from source vectors on NcoI-HpaI fragments and cloned into NcoI-PmeI sites of vector pDAB4005, between the maize ubiquitin promoter and the maize per5 3' UTR, replacing the GUS coding region. The entire ubi promoter/antibody gene/per5 cassette was then liberated on a NotI 30 fragment and inserted into the NotI site of the inverse MAR vector 252-4. Plasmid pDAB637 was constructed by liberating the ubi/HC/per5 cassette on a NotI fragment

from an intermediate vector, and blunt ending the fragment with T4 polymerase for insertion into a unique Srf I site in pDAB636. All three plasmids were bulked up in preparation for maize transformation with pDAB3014, which contains the selectable marker cassette rice actin/pat/lipase.

5

Example 2. Alternative Methods of Delivering Multiple Plasmids

Because of the extreme differences in the size between the PAT plasmid (pDAB3014) and the antibody plasmids, there was concern that the use of equal mass amounts of DNA for co-transformation would result in inefficient delivery of each of 10 the plasmids into the maize cells. In an effort to evaluate certain parameters for the delivery of multiple plasmids into maize cells, the use of molar equivalent amounts of DNA was compared to the use of mass equivalent amounts of DNA to determine if there is any effect on the efficiency at which the cells receive all of the necessary plasmids.

15 A total of 106 events were available for PCR and 10 events that were analyzed to be positive were regenerated.

Analysis of the transgenic callus events transformed with the ubiquitin/HC, LC plasmids was performed in two stages: 1) PCR identification of those events that contained intact genes of interest; and 2) Western and ELISA analysis of PCR 20 positive events for protein expression and IgA assembly. Figure 4 shows a native Western blot using the IgA kappa chain as the detection antibody to detect protein expression from ubiquitin HSV-IgA (HC/LC) monomeric antibody produced by transgenic maize calli.

PCR identification of intact PTUs (plant transcription units:promoter/coding 25 region/3' UTR) was particularly challenging because of the repeated regulatory elements contained within the three plasmids and the resultant difficulty of designing primers that would specifically and accurately amplify the desired PTU. Several amplification strategies, PCR systems and amplification conditions were tested including eight different primers sets. It was determined that both the HC PTU 30 (ubi/HC/per5) and the LC PTU (ubi/LC/per5) could be amplified with a single set of primers in a single PCR reaction. By taking advantage of several base pairs that were

different in the regions flanking HC and LC, a second and third set of primers was also found that could recognize and specifically amplify the HC or LC PTU separately.

A total of 53 transgenic calli derived from the two-way transformation
5 (pDAB637 (SEQ ID NO: 17) and pDAB3014 (SEQ ID NO: 84)) and 23 transgenic calli derived from the three-way transformation (pDAB635 (SEQ ID NO: 15) and pDAB3014 (SEQ ID NO: 84)) were PCR analyzed to detect the presence of PTUs for the transgene. The strategy to amplify both HC and LC in a single PCR reaction was employed. Among the callus lines derived from 2-way, 79% were PCR positive,
10 while 78% of callus lines derived from 3-way were PCR positive. To verify the results from the first amplification strategy, a subset of 16 samples were analyzed using the alternative strategy, which could amplify the PTU of HC and LC separately. The results were consistent with the first PCR analysis in which HC and LC PTU were detected in the same PCR reaction. These 16 subset samples were further
15 analyzed with primers to amplify only the coding region of HC and LC. Although the amplification was successful, the result was not an exact match with the PTU analysis. This difference can be a result of fragmented PTUs, which would be detected by the coding-region-specific primers but not the PTU-specific primers.
Callus events that were both PTU positive and negative underwent Western and
20 ELISA analysis.

Protein analysis data was generated using events from the ubiquitin/HC, LC transformations that are described above. The goal of the experiment was to compare the efficacy of expression of the HC and LC on a single plasmid versus HC and LC on two separate plasmids. Callus material was collected and frozen at -70°C before
25 shipment for protein analysis. An initial screen of the events was performed with a capture ELISA assay using an IgA heavy chain capture antibody and an IgA kappa chain detection antibody. Only ELISA positive samples were evaluated with a Native Western Blot, also using the IgA kappa chain as the detection antibody.

Of the 54 events screened by ELISA, 26 were positive (Table 1). All of these
30 26 positive samples produced assembled IgA monomers with an approximate mole weight of 160,000 kd. Eighteen of the events also include some non-assembled IgA.

Both of the transformation methods, two-plasmid and three-plasmid, produced assembled IgA with the 3-way strategy producing 60% positives and the two-way strategy producing 38% positives. The difference in the frequency of expressing lines is not believed to be a function of the plasmid configuration, but rather a result of the
5 small data set submitted for analysis.

Table 1. Protein and PCR Results for the Ubi/HC, LC Events.

Sample	Transformation Strategy	Protein Analysis Results		PCR Results	
		ELISA O.D. Western	PCR: H	PCR: L	
180/300(3)-006	H+L same plasmid	0.527	A/N	+	+
180/300(4)-008	H+L same plasmid	0.41	A/N	-	+
21	H,L two plasmids	1.4	A/N	+	+
24	H,L two plasmids	1.5	A/N	N.T.	N.T.
25	H,L two plasmids	0.322	A	N.T.	N.T.
28	H,L two plasmids	0.333	A	N.T.	N.T.
29	H,L two plasmids	0.825	A/N	+	+
37	H,L two plasmids	0.303	A	+	-
38	H,L two plasmids	0.3	A/N	+	-
39	H,L two plasmids	0.418	A/N	+	+
41	H,L two plasmids	1.18	A/N	+	+
42	H,L two plasmids	0.309	A/N	N.T.	N.T.
43	H,L two plasmids	1.5	A/N	N.T.	N.T.
44	H,L two plasmids	0.332	A	N.T.	N.T.
TS2	H+L same plasmid	0.562	A	-	+
TS6	H+L same plasmid	0.436	A/N	+	+
TS9	H+L same plasmid	0.345	A	+	+
TS11	H+L same plasmid	2.221	A/N	+	+
TS12	H+L same plasmid	4	A/N	+	+

		Protein Analysis Results		PCR Results	
Sample	Transformation Strategy	ELISA O.D. Western		PCR: H	PCR: L
TS19	H+L same plasmid	4	A/N	+	+
TS22	H+L same plasmid	0.348	A/N	+	+
TS25	H+L same plasmid	0.393	A	+	+
TS27	H+L same plasmid	0.351	A/N	+	+
TS30	H+L same plasmid	0.695	A	+	+
TS32	H+L same plasmid	1.087	A/N	+	+
TS34	H+L same plasmid	4	A/N	+	+
151	non-transformed				
630-307	GUS transformed				

H = HC
 L = LC
 N.T. = not tested
 N= non-assembled IgA
 A= assembled IgA

These experiments demonstrate that there is no significant difference in protein expression and assembly when HC and LC reside on a single plasmid or on two separate plasmids. On average the same number of events were generated for each strategy regardless of adding the DNA in mass equivalent amounts or molar equivalent amounts. Additionally, both DNA delivery strategies resulted in the same number of events containing all genes of interest. Based on these results, DNA was added in mass equivalent amounts for subsequent work.

Example 3. Vector Construction for Endosperm-Specific Anti-HSV Antibody Expression in Plants

The following examples involve a monomeric IgA antibody for control of the Herpes simplex Virus (HSV). The two genes coding for HC and LC were introduced
5 into plants in one vector for seed-specific expression of monomeric antibodies with functionality against HSV.

The two antibody genes (HC and LC) were redesigned for optimal expression in plants using a method analogous to that taught in U.S. Patent No. 5,380,831, which is herein incorporated in its entirety. Thus, the two human HSV antibody genes HC
10 (SEQ ID NO: 1) and LC (SEQ ID NO: 9), as well as nucleotide sequences SEQ ID NOs: 3, 5, 7, 9, 11 and 13, have a codon-bias that most closely resembles plant codons than human codons for enhanced gene expression in maize.

Plasmid construction for the anti-HSV project required the assembly of four complex plasmids, each of which contain MAR sequences flanking two antibody
15 plant transcription units (PTU). The antibody genes are under control of the maize gamma-zein ('gz' or 'γ-zein') promoter for endosperm-specific expression (Ueda, T. *et al.*, Mol. Cell. Biol. 14(7): 4350-9 (1994)) and terminate with the maize peroxidase 3' UTR (per5).

Backbone Vector Construction. The first phase of plasmid construction
20 involved the preparation of backbone vectors. Backbone plasmids contain all the necessary elements for expression of the gene(s) of interest including MAR sequences, promoter, 3' UTR, selectable marker gene cassette and unique restriction sites for the single-step addition of the antibody coding regions. Another characteristic of the backbone vectors is the presence of unique restriction sites for the
25 efficient removal of the antibiotic resistance gene. Another characteristic of the antibody-specific backbone vectors is the absence of sites that may interfere with cloning of antibody gene segments for future product concept vectors.

Antibody vector construction was performed in two phases: step 1 = insertion of the antibody genes between the γ-zein promoter and the per5 3' UTR; and step 2 =
30 insertion of the γ-zein: antibody gene:per5 cassette into the inverse MAR vector. Several modifications were made to the two backbone vectors to facilitate sub-cloning

variable region motifs, to enable ampicillin-free fragment purification, and to support Southern analysis and PTU identification. An AvrII site was removed from the "step 1" vector by nucleotide removal with T4 polymerases. Additionally, a PmeI site was removed from the "step 1" vector by the replacement of the existing per5 fragment 5 with a similar fragment cured of the PmeI site. An FspI site was added to the "step 2" MAR vector by the addition of a synthetic adapter into a unique SapI site. And finally, the γ -zein promoter was inserted into the "step 1" vector by removing the ubiquitin promoter from pDAB4005 and replacing it with the γ -zein promoter which was PCR amplified from W22 genomic DNA. The modified backbone vectors were 10 sequenced to verify the changes. Additionally, thorough sequencing of the γ -zein promoter was completed to ensure there were no PCR induced errors.

Table 2 lists the backbone vectors that have been constructed and the modifications that have been performed to accommodate the antibody genes.

15 **Table 2. Backbone Vectors.**

New Plasmid #	Modification	Original Plasmid #	Plasmid Parts
pDAB8506	Cured AvrII	pDAB4005	ubi/GUS/per5
pDAB634	Replace ubi with gamma zein	pDAB8506	gz/GUS/per5
pDAB1416	Remove PmeI	pDAB634	gz/GUS/per5
pDAB8504	add FspI site	254-3	MAR::ra/PAT/lip::MAR
pDAB1414	Remove ra/PAT/lip	pDAB8504	MAR::MAR

A more detailed description of the backbone vectors and the strategy used to construct them follows.

pDAB8506 is a modified pDAB4005 vector which was designed to be a 20 standard testing vector. It contains the maize ubi/GUS/per5 cassette and was the basis for subsequent backbone vectors. An AvrII site was removed from pDAB4005 using T4 DNA polymerase.

pDAB634 contains a maize gamma zein-promoter /GUS/per5 ('gz/GUS/per5') cassette. This plasmid was created by replacing the ubiquitin promoter of DAB8506 with the gamma zein promoter on a HindIII-NcoI fragment. The gamma zein promoter was PCR amplified from W22 genomic DNA with primers designed based upon GenBank Accession #MZEZEIN27.

5 pDAB1416 is a modification of pDAB634 where the PmeI site was deleted by removing the existing per5 3'UTR from the SacI-FseI fragment. The PmeI site was removed from the per5 3'UTR by PCR amplification using primers designed to cure 10 the site. PmeI was outside of the per5 functional sequence, therefore removal of this site will not interfere with the functionality of the element.

10 pDAB8504 is a modification of MAR vector p254-3 which contains the Rb7 MARs in an inverse orientation relative to each other and flanking the rice actin/PAT/lipase 3' UTR cassette, and a multiple cloning region for the insertion of 15 genes of interest. Plasmid pDAB8504 is essentially p254-3 except for the addition of an FspI site in the plasmid backbone. A 9-bp adapter containing FspI site was inserted into SapI site in the MAR vector and resulted in the addition of three FspI sites in the backbone region of the MAR vector. These FspI sites will be used to remove the ampicillin resistance gene from the bulked-up plasmid prep before 20 transformation.

20 pDAB1414 is a modified version of pDAB8504 where the rice actin/PAT/lipase cassette has been removed by digestion with PmeI to delete the PTU.

25 Antibody Vector Construction. Three cloning steps and the preparation of two intermediate vectors were required to complete the assembly of the final antibody plasmids. The three cloning steps are as follows:

1. Subclone the antibody gene between the gamma zein promoter and the per5 3' UTR to create a "gamma zein/antibody cassette" (Step 1 vector).
2. Subclone the "gamma-zein/antibody cassette" containing antibody 30 gene #1 into the vector containing the MAR sequences (Step 2 vector).

3. Subclone the "gamma-zein cassette" containing antibody gene #2 into the MAR vector created in step #2. (Step 3 vector = Final vector)

Vector assembly began with producing the codon-optimized genes for HC and LC, as discussed previously. All of the vectors were bulked-up and independently 5 cloned into the backbone plasmid pDAB1416. New plasmid numbers were assigned to each of these intermediate vectors (Table 3).

Table 3. Intermediate and final antibody constructs.

Step #	Plasmid #	Plasmid Components
1	pDAB1415	gz/LC/per5
1	pDAB1417	gz/LC/nosA
1	pDAB8501	gz/HC/per5
1	pDAB8502	gz/HC/nosA
2	pDAB8503	MAR::gz/LC/per5::ra/PAT/lip::MAR
2	pDAB2100	MAR::gz/LC/per5::MAR
3 Final	pDAB8505	MAR::gz/HC/per5::gz/LC/per5::ra/PAT/lip::MAR

10 Plasmid pDAB8505 (Figure 15) contains gz/HC/per5::gz/LC/per5 expression cassette flanked with reverse orientated MAR sequences (Rb7) and plasmid pDAB2101 contains MAR::gz/LC/per5::gz/HC/per5::MAR. Plasmid pDAB8505 was used in both the co-transformation and the crossing strategies. The details of vector construction are described below:

15 pDAB1415 has a cassette containing gz/LC/per5. To build this construct, the GUS gene in pDAB1416 was cut out with NcoI and SacI and replaced with the LC gene, which was also cut out from its donor vector with NcoI and SacI.

pDAB1417 has a cassette containing gz/LC/nosA. To build this construct, the GUS gene in pDAB1416 was cut out with NcoI and SacI and replaced with the LC gene, which was also cut out from its donor vector with NcoI and SacI.

20 pDAB8501 has a cassette containing gz/HC/per5. To build this construct, the GUS gene in pDAB1416 was cut out with NcoI and SacI and replaced with the HC gene, which was also cut out from its donor vector with NcoI and SacI.

pDAB8502 has a cassette containing gz/HC/nosA. To build this construct, the LC gene in pDAB1417 was cut out with NcoI and SacI and replaced with the HC gene, which was also cut out from its donor vector with NcoI and SacI.

5 pDAB8503 has a cassette containing MAR/gz/LC/per5::rice actin/PAT/lipase::MAR. To build this construct, the gz/LC/per5 cassette from pDAB1415 was cut out with NotI and inserted into NotI site of pDAB8504.

10 pDAB8505 (Figure 5) is one of the two final vectors. It has a cassette containing MAR::gz/HC/per5::gz/LC/per5::rice actin/PAT/lipase::MAR. To build this construct, the gz/HC/per5 cassette was cut out of pDAB8501 with NotI followed by treatment with T4 DNA polymerase to create blunt ends and finally ligation into the SrfI site of pDAB8503.

The final plasmids underwent a large-scale DNA purification and fragment purification to remove the ampicillin gene. Approximately 15 mg of each final plasmid (without the amp fragment) was available for transformation.

15 The tail-less heavy chain antibody could also be obtained by making vectors which do not include the coding region for the tail.

Example 4. Large-Scale DNA Fragment Purification of Plant Transformation Vectors for Removal of Ampicillin Resistance Gene

20 As described previously, the removal of plasmid backbone sequences from plant transformation vectors is necessary to ensure that transformed plant material is free of any contaminating antibiotic resistance genes. A gel-based strategy for the large-scale removal of DNA fragments has been an effective method for producing transformation-quality fragment, however the process is labor intensive and time consuming.

25 The first step in separation is to use restriction enzymes to cut out the gene construct fragment from the vector and bring down unwanted DNA fragments to the smallest unit possible. Fsp was used to remove the Amp fragment. With this strategy, the ampicillin resistance gene-containing region could be broken down into two fragments with sizes of 1023 and 1236 bp, respectively.

In total, over 34.8 mg of amp-free pDAB8505 was produced. Quality control was performed using restriction digestion for each batch of DNA fragment produced to ensure there was no parent plasmid or partially digested fragment remaining in the prep. PCR amplification was used to determine the purity of processed DNA 5 fragment before delivery. The overall purity ranged from about 98% to about 99.5%. In most cases, about 99% or higher purity was achieved. FPLC-based technique is more cost efficient than the gel purification protocol.

Large-scale DNA fragment separation process using a FPLC-packed Sephadryl S-1000 column. A 2.6/100 cm column was packed with Sephadryl S-1000 10 using FPLC system at a constant rate. TE buffer supplemented with 150 mM NaCl was used for filtration media pre-washing and column packing as well as DNA elution. Two milligrams (1 mg/mL) of FspI-digested pDAB3016 DNA was loaded to the column. A total of 500 mL elution were collected with 8 mL per collection tube. The elution process was monitored at 260, 280 and 320 nm. To examine the result of 15 the separation, 20 µL of aliquot from each collection was loaded onto agarose gel followed by electrophoresis.

A 1 kb plus DNA ladder, which contained DNA fragments with sizes ranging from 100 bp to 12 kb was tested. Results suggested that DNA fragments with a size of 7 kb or above could be separated from the 1.0 and 1.2 kb ampicillin resistance 20 fragments with the current procedure.

To improve reproducibility and further enhance separation efficiency, several factors were studied, including DNA preheat temperatures and duration, amount of DNA per load and stability of column performance after continued use. A pretreatment of 55°C for 15-20 minutes was found to be most desirable for the best 25 resolution (*i.e.*, best separation efficiency). Additionally, it was determined that the column should be reconditioned after being used consecutively used for 3-4 times. Although as high as 25 ml (25 mg) could be loaded onto the column, the fragment recovery efficiency decreased with increased DNA loads. Greater than about 95% of DNA fragment could be recovered with 2 mg DNA loading. However, this recovery 30 rate dropped to about 70% when the amount of DNA loaded increased to 5 mg (Table 4). The 3-mg load level is the typical scale used, which has an average recovery rate

of about 85% in the first round of column purification. Results show that FPLC column chromatography is an effective technique for the removal of ampicillin gene fragments from plasmids prior to maize transformation.

5 **Table 4. Average DNA fragment recovery rate using FPLC-based column purification.**

Amount of DNA loaded	Recovery rate after 1 round of column purification	Recovery rate after 2 round of column purification
2 mg	95%	N/A
3 mg	85%	>90%
5 mg	70%	90%

Example 5. Estimating Transgene Copy Number by Quantitative Real Time PCR (qRT-PCR)

10 The majority of transgenic events generated by direct-DNA delivery methods display complex insertion patterns. These multiple copy insertions make breeding increasingly difficult and also lead to an increase in the frequency of silenced events. Thus, these should be eliminated in early stages of the transformation process. Transgene insertion patterns are usually determined by Southern blot analysis.

15 However, this method is rather labor-intensive, lengthy and unfeasible to be adapted into a high-throughout analysis process. To circumvent these problems, techniques that provide quick estimation of copy number were used to discern events to discard early in the process. Quantitative Real Time PCR (qRT-PCR) has been developed and implemented to predict transgene copy number for the HSV constructs.

20 Quantitative Real Time PCR (qRT-PCR). Quantitative real time PCR (qRT-PCR) has been proven to be an efficient method to estimate the transgene copy number of transgenic maize calli.

25 Validation of this technology with the AO and IMT genes showed that the copy number estimated by qRT-PCR and the insertion bands determined by southern blot analysis was very close and highly correlated.

Validations of qRT-PCR analysis with pDAB8505 (HC + LC + PAT) were performed. Two pairs of primers for each of the two genes, *i.e.*, HC and LC, were

designed and tested with both regular PCR and qRT-PCR. To estimate transgene copy number in HSV transgenic maize calli, only LC was analyzed for pDAB8505 events.

The reproducibility of qRt-PCR was also studied. This method was found to 5 be highly reproducible. The estimated copy numbers obtained by different researchers or several times by a single researcher were very close and highly correlated. Therefore, no replication of analysis was found to be necessary unless unusual data was observed. In addition, uneven distribution of events with low copy 10 number and high copy number was observed. Blocks of simple events and complex events were found in some orders. This suggest that clones of events might exist as multiple isolates.

Example 6. Transformations for Monomeric IgA Production in Maize

Seed

15 Plant cells of corn inbred line 'HiII' were treated via direct-DNA delivery with pDAB8505 using the WHISKERS™ transformation method (Song *et al.*, Plant Cell Reporter 20:948-954 (2002)). The "small-scale" WHISKERS™ method utilized was able to treat about 2 ml of packed plant cells at one time. Of 541 callus events analyzed, about 67% (360/541) had more than 5 copies of the transcript; about 5% 20 (29/541) had 5 copies; about 5% (27/541) had 4 copies; about 6% (33/541) had 3 copies; about 8% (45/541) had 2 copies; about 7% (36/541) had 1 copy; and about 2% (11/541) had 0 copies. A total of 871 plants representing 126 events were regenerated, transferred to the greenhouse and grown to maturity.

25 Seed production. The anti-HSV transformed plants were planted in 5-gallon pots and pollinated by inbred corn line 'OQ414' to produce the progeny seed that was analyzed for antibody production.

Herbicide resistance, as well as being a selectable marker *in vitro*, is an important tool in field studies and trait introgression activities *in planta*. Leaf paint tests for herbicide tolerance are performed on every plant after they are established in 30 5-gallon pots, along with a positive control (4XH753) and a negative control (Hi II F1). The protocol involved applying 10 µL of 2.0% Finale® solution (1" square) per

plant, 20 cm up from the tip of the leaf. The results demonstrated that the 4XH753 plants were clearly sensitive and that the Hi II F1 plants appeared tolerant to the herbicide. All of the anti-HSV transformed plants except one were resistant.

In summary, the plants believed to be transformed were painted with the 2% Finale® and plants resistant to the herbicide were selected for further reproduction and characterization. Leaf samples of every anti-HSV plant were also collected for use in Southern analysis.

Example 7. Protein Analysis in Maize Endosperm

10 HC/LC transformants. T₁ seeds were analyzed for the γ -zein/HC/LC construct (pDAB8505) by ELISA and SDS non-reduced Western blot. This method also required determining sample weight and total extractable protein in the extracts. An event was selected for analysis if at least 25 seeds were produced for the event – 10 and 20 kernels were tested for low and high seed count events, respectively. Kernels 15 were selected from one or two ear families for testing. An ear family is the progeny of a single pollinated ear.

Samples were chipped from the seed nondestructively, preserving the option of germinating positive seeds. The ELISA was designed to capture the heavy chain and detect the light chain of the IgA monomer. The standard used for all of these 20 events was a sIgA antibody (I1890-10 from U.S. Biological).

Western analysis showed that all of the expressing events produced assembled IgA monomer along with unassembled or degraded heavy and light chains. Seeds were considered positive if both the ELISA and Western analyses produced a positive result. Events were recommended to proceed to the field based on the protein 25 expression and the segregation ratio observed within the tested kernels.

A total of 930 individual seeds were analyzed for the pDAB8505 construct, representing 66 events with a high enough seed count to test. In summary, 33 events (50%) were advanced based on favorable expression and segregation data; expression was found for another 8 events (12%) that had problems, such as poor segregation 30 data; and 25 events (38%) were found not to be expressing IgA.

Example 8. Oligosaccharide profile of Asn-269 (CH2 region of alpha heavy chain) of Monomeric IgA-HX8 expressed in maize by MALDI-TOF MS.

Typical procedures used in glycan analysis of monomeric IgA-HX8 are described below.

5 Tryptic digest of reduced/alkylated IgA-HX8. 100 µg of affinity-purified IgA-HX8 was dried in a centrifugal evaporator in a microcentrifuge tube (0.6 mL, low protein binding). The pellet was resuspended in 100 µL of protein dissolution buffer containing 6M Guanidine hydrochloride and 0.4M ammonium bicarbonate. The sample was reduced by addition of 10 µL of 0.1M DTT and incubation at 65°C for 1
10 hour. After reduction, the protein sample was alkylated by addition of 20 µL of 0.2M iodoacetamide and incubation at room temperature for 2 hours in the dark. Alkylation reaction was quenched by addition of 40 µL of 0.1M DTT and incubation at room temperature for 30 minutes. The protein was then desalted using a reversed phase cartridge (Protein Macro Trap, Michrom Bioresources) according to the
15 manufacturer's procedure and eluted with 150 µL of 80% acetonitrile/0.2% TFA, then 100% acetonitrile/0.2% TFA and the eluted protein was dried in a centrifugal evaporator. The desalted reduced/alkylated protein was resuspended in 50 µL of digestion buffer (100 mM Tris-HCl, pH 8.5) and solution of trypsin (sequencing grade, Roche) was added at trypsin:protein ratio of 1:100. The sample was incubated
20 for 16 hours at 37°C. The tryptic digest was then stored at -20 °C before further steps were performed.

(Alternatively) In-gel tryptic digest of IgA-HX8 heavy chain isolated by SDS-PAGE. 70-100 µg of IgA-HX8 was dried in centrifugal evaporator, the pellet was resuspended in 120 µL of Laemmli sample buffer (Bio-Rad) containing 1:19 v/v µ-
25 mercaptoethanol and the resulting solution was heated for 10 min at 95°C. The resulting reduced and denatured IgA-HX8 sample was loaded onto 4-20% SDS-PAGE gel (Bio-Rad) (6 lanes, 20 µL per lane) and the gel was run at 60 mA constant current for approximately 1 hour. The gel was stained with Coomassie Blue stain. Bands corresponding to IgA-HX8 heavy chain at ~50 kDa were excised from gel and
30 destained with destain buffer (50% acetonitrile, 50% ammonium bicarbonate buffer,

pH 8.5). The destained gel pieces were dried in a centrifugal evaporator and rehydrated with solution of trypsin (31.25 µg/mL in 25 mM ammonium bicarbonate, pH 8.5). The samples were incubated at 37 °C for 16 hours. Tryptic peptides were extracted from gel with 400 µL of 50% acetonitrile/1% TFA, then 400 µL of 70% acetonitrile/ 25% 25 mM ammonium bicarbonate buffer/ 5% formic acid. The extracts were combined, filtered and dried in a centrifugal evaporator. The resulting isolated tryptic peptides were desalted with a C18 cartridge (Peptide Macro Trap, Michrom Bioresources) and dried in a centrifugal evaporator before digestion with peptide-N-glycanase A (PNGase A).

10 (Alternatively) Digestion of IgA-HX8 with pepsin. 25 µg of affinity-purified IgA-HX8 was resuspended in 200 µL of 20mM ammonium acetate buffer, pH 3.5. 10 µL of pepsin (Roche) solution (2 mg/mL in 10 mM HCl) was added to the protein sample and the sample was incubated at 37 °C for 16 hours. Reaction was quenched by addition of 5 µL of 1M NaOH and sample was heated at 95 °C for 30 min to 15 completely inactivate pepsin. The sample was dried in a centrifugal evaporator and re-dissolved in 50 µL of 20 mM ammonium acetate buffer, pH 5.0, before addition of PNGase A.

20 Enzymatic release of N-linked oligosaccharides. Proteolytic peptides (whole digests after digestion with trypsin or pepsin, or tryptic glycopeptides isolated by RP-HPLC) were dissolved in 5-50 µL of 20 mM ammonium acetate buffer, pH 5.0, and 5-10 µL of peptide-N-glycosidase A solution (PNGase A, Roche) was added. The samples were incubated at 37 °C for 16 hours.

25 Isolation of released oligosaccharides from proteolytic peptides. The proteolytic/PNGase-A digest was passed through C18 cartridge (Peptide Macro Trap, Michrom Bioresources; pre-conditioned according to manufacturer's procedure) and the flow-through fraction was collected. The cartridge was washed with 0.5 mL of 0.1% aqueous TFA and the wash was combined with the first flow-through fraction. These fractions, containing released oligosaccharides, were further purified using a porous graphitic carbon cartridge (PGC) (GlycoClean-H, Glyko) according to the 30 manufacturer's procedure. Oligosaccharides were eluted from PGC cartridge with

50% acetonitrile/0.1% TFA and dried to completeness in a centrifugal evaporator. The glycan samples were re-dissolved in 2.5 μ L of high-purity water and passed through C18 ZipTips (Millipore). C18 ZipTips were pre-conditioned according to the manufacturer's procedure. Purified glycan samples were then ready for analysis by
5 MALDI-Tof MS.

Liquid chromatography separation of tryptic peptides. Tryptic peptides resulting from approximately 100 μ g of affinity-purified IgA-HX8 were separated by reversed-phase C18 chromatography. A Magic C18, 2 mm ID x 150 mm length (Michrom Bioresources) and a Perkin Elmer 200 LC system was used for the
10 separation. Constant flow rate of 0.5 mL/min was used for the separation. 100-120 μ L of the tryptic digest mixture was injected. The separation of peptides was accomplished using the following gradient: 100% solvent A (3% acetonitrile/ 0.06% TFA) isocratic for 10 min, 0 to 50% solvent B (80% acetonitrile/ 0.05% TFA) in 165 min, 50 to 100% solvent B in 10 min. The column was then washed with 100%
15 solvent B for 2 min, and then re-equilibrated in 100% solvent A and washed with 100% solvent A for 5 min. The separation was performed at room temperature. Elution of peptides was monitored by UV absorption at 205 nm. 2-mL fractions were collected in siliconized microcentrifuge tubes and the fractions were dried in a centrifugal evaporator following the separation. Before analysis by MALDI-Tof MS,
20 first four fractions were desalted using C18 ZipTips (Millipore) according to the manufacturer's procedure. The rest of the fractions were re-dissolved in 2 μ L of 50% acetonitrile/0.1% TFA and 1 μ L of the material in each fraction was examined by MALDI-Tof MS.

MALDI-Tof MS of released N-linked oligosaccharides. Voyager DE-STR
25 (Applied BioSystems) MALDI-Tof mass spectrometer operated in reflectron mode was used. The acceleration voltage was set to 20 kV. The grid voltage was set to 69% of the acceleration voltage. The delay time was set to 215 nsec. The laser setting was approximately 3000. 500 acquisitions were averaged in each spectrum. The mass scale was calibrated with the following standard oligosaccharides: (GlcNAc)₂(Man)₅,
30 m/z (MNa⁺) = 1257.46; (GlcNAc)₄(Man)₃(Fuc), m/z (MNa⁺) = 1485.56; (Gal)(GlcNAc)₄(Man)₃(Fuc), m/z (MNa⁺) = 1647.62; (Gal)₂(GlcNAc)₄(Man)₃(Fuc),

m/z (MNa⁺) = 1809.68. 1 µL of sample of purified glycans was deposited onto a MALDI sample plate, overlaid with 1 µL of sDHB matrix (9:1 v/v mixture of 18 mg/mL 2,5-dihydroxybenzoic acid in 66% acetonitrile and 15 mg/mL 2-hydroxy-5-methoxybenzoic acid in 66% acetonitrile) and air-dried.

5 MALDI-Tof MS of peptides. Voyager DE-STR (Applied BioSystems) MALDI-Tof mass spectrometer operated in reflectron mode was used. The acceleration voltage was set to 20 kV. The grid voltage was set to 66% of the acceleration voltage. The delay time varied between 215 and 350 nsec. The laser setting varied between 2200 and 2500. 500 acquisitions were averaged in each
10 spectrum. The mass scale was calibrated with the following standard peptides (Applied BioSystems): des-Arg¹-Bradykinin, m/z 904.4; Angiotensin I, m/z 1,296.6; Glu¹-Fibrinopeptide B, m/z 1570.6; Neurotensin, m/z 1672.9; ACTH (clip 1-17), m/z 2093.0; ACTH (clip 18-39), m/z 2465.1; ACTH (clip 7-38), m/z 5730.6. 1 µL of sample of purified peptides was deposited onto a MALDI sample plate, overlaid with
15 1 µL of CHCA matrix (α -cyano-hydroxycinnamic acid) and air-dried.

Analysis of MALDI-Tof MS data. MS data were analyzed using Data Explorer v4.0 software (Applied BioSystems). Peptides and glycopeptides: molecular weights and amino acid sequences were attributed to the sequence of IgA-HX8 using MassLynx v3.4 software (Micromass). Oligosaccharides: home-written software
20 (The Dow Chemical Company) was used to interpret mass-spectra of oligosaccharides.

Example 9. Glycan Profile of N269 (CH2 region of IgA alpha Heavy Chain) Maize HX8 Event 81 (self) by ESI-MS

25 Purification of Maize HX8.

- | | |
|------------|----------------------------------|
| Process 1. | Obtain powder of maize endosperm |
| Product 1. | Powder of maize endosperm |
| Process 2. | 1 XPBS, 1 hr stirring RM |
| Product 2. | Extraction Slurry |
| Process 3. | Centrifugation, 5000Xg, 15 min. |
| Product 3. | Crude maize extract |

- Process 4. 0.22 µm CA microfiltration
Product 4. Filtered maize extract
Process 5. Affinity purification (check overflow; if no, then
discard)
5 Product 5. Purified HX8-IgA antibody

Affinity column preparation – antibody immobilization on POROS matrix.

The column was prepared mixing in a 15 ml conical tube 2 ml of POROS 20 resin (Applied Biosystems). The resin was rinsed with buffer (10 mM phosphate 0.15 M NaCl, pH 7.2) and 8 mg of each polyclonal IgG goat anti-human IgA and polyclonal IgG goat anti-human kappa (both from Southern Biotech) were added and allowed to react for 30 min at room temperature. The Ab-resin mixture was then rinsed with 15 ml 1X PBS (phosphate buffered saline: 137 mM NaCl; 2.7 mM KCl; 10 mM Na₂HPO₄; 2 mM KH₂PO₄; pH7.4)). The anti-IgA antibodies were then crosslinked to the resin by the addition of 15 ml cross-linking solution (10 ml of 100 mM triethanolamine, pH 8.5 and 117 mg of dimethyl pimelimidate) and incubated for 1 hour while slowly shaking. The cross-linking solution was removed by centrifugation. The reaction was quenched by the addition of 5 ml of monoethanolamine (100 mM, pH 9.0) followed by incubation for 30 minutes at room temperature while gently shaking. The slurry was then washed repeatedly with 15 ml 1X PBS. The affinity resin was then gravity packed into columns (2.1 x 75 mM).

Extraction of transgenic maize. Five grams maize grain degерmed and milled to an average particle size of 150 µm was added to 50 ml 1X PBS. The extraction slurry was slowly stirred for 1 at room temperature. The slurry was then centrifuged (5000 xg for 15 min.) and the supernatant recovered. The supernatant was filtered (0.22 µm) prior to affinity purification.

Affinity column purification conditions. The anti-α/anti-β affinity column was pre-equilibrated at 1 ml/min with 1X PBS (pH 7.4) until a stable baseline as monitored at UV 280 nm was observed. The supernatant containing antibody (45 ml) was applied to the column at a flow rate of 0.5 ml/min. The column was then washed with 10 column volumes of 1X PBS where a stable baseline was again observed. The

IgA was eluted from the column with 12 column volumes of glycine (100 mM, pH 2.5) while collecting 5 ml fractions. Prior to the elution step, each fraction tube contained 500 µl neutralizing buffer (1 M TRIS-HCL, pH 9.0). The column was then re-equilibrated with 10 column volumes of 1X PBS. IgA containing fractions were 5 quantified by UV absorbance at 280 nm.

Sequential tryptic and aspartic acid-N digest of HX8. 50 µg in 250 µl of affinity purified IgA was centrifugal vacuum dried in a microcentrifuge tube (1.7 ml low protein binding buffer). The pellet was resuspended in 35 µl protein dissolution buffer (7.5 ml 8 M Guanidine HCL, 316 mg ammonium bicarbonate adjusted to pH 10 7.8, dilute to 10 ml final volume with water). The resuspended sample was reduced by the addition of 1.75 µl DTT (1M) and incubation at 75°C for 40 min. After reduction the tube was allowed to cool to room temperature. The sample was alkylated by the addition of 4.2 µl iodoacetic acid (1M, prepared in 1N NaOH). The alkylation reaction was performed in the dark at room temperature for 40 mins. The 15 alkylation reaction was quenched by the addition of 1 µl of DDT (1M). The sample was desalted on C18 cartridge (Michrom Protein Macro Trap, Michrom Bioresources, Inc.) and eluted with 250 µl elution buffer (Acetonitrile, 0.1% TFA). The eluted reduced-alkylated sample was dried by centrifugal vacuum. The resulting pellet was resuspended in 20 µl trypsin digestion buffer (100 mM TRIS-HCL, pH8.1, 10 mM 20 CaCl₂). Trypsin (sequencing grade, Progmega) was added at a ratio of 1:100 (trypsin:sample) and incubated for 16 hours at 37°C. Heating the mixture at 95°C for 3 mins halted the reaction. Ten microliters of the tryptic digest was removed for sequential digestion with aspartic acid-N protease (1:100 ratio enzyme:substrate, Roche). The Asp-N reaction mixture was incubated at 30°C for 20 hours.

25 Liquid chromatography and nano-electrospray ionization ion trap mass spectrometry of tryptic and tryptic+Asp-N peptides. Approximately 16 pmol (1 µl) of either tryptic or tryptic + Asp-N peptide fragment were separated by reverse phase C18 chromatography (Magic C18, 0.02 ID x 150 mm length, Michrom Bioresources). A Capillary HPLC (Agilent) plumbed with 50 µm ID tubing throughout and running 30 at a flow rate 0.3 µl/min was used for separation. The separation of peptides was accomplished using a gradient of 0% solvent A (0.05% TFA) isocratic for 10 min

followed by a gradient to 40% solvent B (Acetonitrile + 0.04% TFA) in 165 min. The gradient was then increased to 50% solvent B in 15 mins and held at 50% for 20 mins for column cleaning. The column temperature was maintained at 35° C and peptides were monitored by absorbance at 215 nm and by electrospray ionization mass spectrometer.

Nano-electrospray ionization mass spectrometry (NESI) was performed on a Finnigan LCQ™ Deca ion trap mass spectrometer (San Jose, CA) fitted with a nanospray ion source (New Objective, Inc., Woburn, MA). The electrospray ion source was operated at a potential difference of between 1.3 – 1.8 kV for a flow rate of 3 µl/min. The NSI source was operated with a capillary temperature of 135°C with the capillary voltage at 42 Volts and the tube lens offset at 10 volts. The automatic gain control was set with full MS target 8×10^7 , Msn target 6×10^7 and zoom target 3×10^7 . LC NESI-MS and LC NESI-MS/MS were run in an automated LC/MS-LC/MS/MS mode that monitored for a signal threshold and performed MS/MS on the base peak when the threshold criterion was exceeded. The ion trap parameters were employed as follows. The trap was run with automatic gain controls for all experiments. In this mode, the system automatically selects the trapping parameters to keep the ions present in the trap to a constant preset value. The number of “microscans” collected were three and two for full MS and MS/MS, respectively. For MS/MS signal the normalized collision energy was set to 35% with an activation Q of 0.250.

Peptide and glycopeptide assignments. Molecular weights and amino acid sequences were attributed to the sequence of HX8 IgA using GPMAW (Light House Data, Version 5.01), and BioWorks Software (as supplied with LCQ Deca).

25

Sequence of tryptic + Asp-N peptide of N269 (monoisotopic).

MH+	1948.01
M2H+	974.51
M3H+	650.01

30 Sequence DLLLGSEANLTCTLTGLR (SEQ ID NO: 20)

Table 5. Monoisotopic masses of glycopeptides vs. theoretical masses.

Structure	Theoretical Glycopeptide Mass	Actual Glycopeptide Mass	Difference (m/z)
N2M2X	2811.4	2811.8	0.38
N2M3	2841.4	2842.0	0.58
N2M2FX	2957.5	2975.4	-0.07
N2M3X	2973.5	2974.0	0.53
N2M3FX	3120.8	3119.5	1.27
N2M5	3165.5	3165.6	0.07

Example 10. Glycan Structures of IgA Anti-HSV Antibodies Produced in Plants

5 Figure 6 provides a representative C18-HPLC chromatogram of the tryptic digest of reduced and alkylated IgA-HX8. Figure 7 provides a representative MALDI-Tof mass-spectrum of glycoforms of HC-T13 peptide of IgA-HX8 HC generated by tryptic digestion of reduced and alkylated IgA-HX8. The heterogeneity of glycoforms of HC-T13 peptide of IgA-HX8 HC is removed by enzymatic release
10 (PNGase-A) of glycans (Figure 8). As shown in Figure 9, two additional glycoforms of HC-T13 peptide of maize-expressed IgA-HX8 HC are observed. Figure 10 provides a representative MALDI-Tof MS profile of free N-linked glycans enzymatically released from IgA-HX8.

15 Table 6 provides the peptide tryptic fragments observed for the light chain of IgA-HX8 expressed in maize (event 193 self) by MALDI-Tof MS. Total peptide mass coverage is 100%. "L" = LC.

**Table 6. Observed peptide tryptic fragments of IgA-HX8 Light Chain
(a representative peptide map for IgA-HX8LC, event 193)**

Fragment	Amino acid Residues	Sequence	[M+H] (theor.)	[M+H] (observed)	SEQ ID NO.
L-T1	1-18	EIVLTQSPGTLSLSPGER	1884.01	1884.20	21
L-T2	19-24	ATLSCR	708.34	708.00	22
L-T3	25-46	ASQSVSSAYLAWYQQKP GQAPR	2423.21	2423.50	23
L-T4	47-55	LLIYGASSR	979.56	979.24	24
L-T5	56-62	ATGIPDR	729.39	729.56	25
L-T6	63-78	FSGSGSGTDFTLTISR	1632.79	1633.00	26
L-T7	79-94	LEPEDFAVYYCQQYGR	2038.89	2038.60	27
L-T8	95-103	SPTFGQGTK	922.46	922.70	28
L-T11	109-126	TVAAPSVFIFPPSDEQLK	1946.03	1946.30	29
L-T12	127-142	SGTASVVCLLNFYPR	1798.88	1799.10	30
L-T14	146-149	VQWK	560.32	560.40	31
L-T15	150-169	VDNALQSGNSQESVTEQ DSK	2135.97	2136.27	32
L-T16	170-183	DSTYSLSNTLTSK	1529.77	1530.20	33
L-T17	184-188	ADYEK	625.28	625.24	34
L-T19	191-202	VYACEVTHHQGLR	1433.68	1433.10	35
L-T20	203-207	SPVTK	531.31	531.24	36
L-T21	208-211	SFNR	523.26	523.40	37
L-T5-6	56-78	ATGIPDRFSGSGSGTDFL TISR	2343.16	2343.90	38
L-T6-7	63-94	FSGSGSGTDFLTISRLEP EDFAVYYCQQYGR	3652.65	3652.85	39
L-T8-9	95-107	SPTFGQGTKVEIK	1391.75	1391.80	40
L-T10-11	108-126	RTVAAPSVFIFPPSDEQLK	2102.13	2102.40	41
L-T12-13	127-145	SGTASVVCLNNFYPREA K	2127.05	2127.40	42
L-T13-14	143-149	EAKVQWK	888.49	888.45	43
L-T14-15	146-169	VQWKVDNALQSGNSQES VTEQDSK	2677.77	2676.90	44
L-T17-18	184-190	ADYEKHK	890.44	890.50	45
L-T18-19	189-202	HKVYACEVTHHQGLR	1698.84	1698.40	46
L-T20-21	203-211	SPVTKSFNR	1035.56	1035.61	47
L-T21-22	208-214	SFNRGEC	870/34	870.48	48

Table 7 provides the peptide tryptic fragments observed for the heavy chain of IgA-HX8 expressed in maize (event 193 self) by MALDI-Tof mass-spectrum. Total peptide mass coverage is 93.8%. Observed glycopeptides are included. "ND" = not detected and "H" = HC.

5

Table 7. Observed peptide tryptic fragments of IgA-HX8 Heavy Chain (a representative peptide map for IgA-HX8 HC, event 193)

SEQ ID No.	Fragment	Amino acid residues	Sequence	[M+H] (theor.)	[M+H] (observed)	Notes	Glycan entry in Table 3
49	H-T1	1-12	EVQLVQSGAE VK	1268.68	1268.80	Pyro-Glu on N-terminus	
50	H-T2	13-19	KPGSSVK	702.42	702.33		
51	H-T4	24-38	ASGGFSSYAIN WVR	1601.77	1601.30		
52	H-T5	39-63	QAPGQGLEW MGGLMPIFGT TNYAQK	2695.30	2695.50		
53	H-T6	64-67	FQDRLTITADV STSTAYMQLS GLTYEDTAMY Y	565.27	565.33		
54	H-T7	68-98	LTTITADVSTST AYMQLSGLY EDTAMYYCA R	3497.58	3497.60		
55	H-T8	99-132	VAYMLEPTVT AGGLDVWGQ GTLTVSSASP TSPK	3419.74	3420.30		
56	H-T9	133-176	VFPQLSLCSTQP DGNVVIACLV QGFFPQEPLSV TWSESGQQGVT AR	4780.33	4780.30		
57	H-T10	177-206	NFPPSQDASG DLYTTSSQLTL PATQCLAGK	3169.50	3169.40		
58	H-T11	207-213	SVTCHVK	831.40	ND		
59	H-T12	214-251	HYTNPSQDVT VPCPVPSTPPT PSPSTPPTPSPS CCHPR	4139.84	4138.55	Non-glycosylated N217	
60	H-T13	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	2964.58	2964.43	Non-glycosylated N265	
60	H-T-13-a	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3168.08	3168.30	+GlcNAc	11

SEQ ID No.	Fragment	Amino acid residues	Sequence	[M+H] (theor.)	[M+H] (observed)	Notes	Glycan entry in Table 3
60	H-T-13-b	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3371.50	3370.50	+(GlcNAc)2	12
60	H-T-13-c	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3827.05	3826.93	+(GlcNAc)2(Hex)2(Xyl)	2
60	H-T-13-d	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3857.07	3856.92	+(GlcNAc)2(Hex)3	6
60	H-T-13-e	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3972.96	3971.90	+(GlcNAc)2(Hex)2(Xyl)(F uc)	4
60	H-T-13-f	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	3989.08	3989.07	+(GlcNAc)2(Hex)3(Xyl)	1
60	H-T-13-g	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4018.98	4018.99	+(GlcNAc)2(Hex)4	8
60	H-T-13-h	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4060.02	4060.06	+(GlcNAc)3(Hex)3	7
60	H-T-13-i	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4134.79	4135.17	+(GlcNAc)2(Hex)3(Xyl)(F uc)	3
60	H-T-13-j	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4180.78	4181.15	+(GlcNAc)2(Hex)5	9
60	H-T-13-k	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4192.07	4192.18	+(GlcNAc)3(Hex)3(Xyl)	5
60	H-T-13-l	252-278	LSLHRPALEDL LLGSEANLTC TLTGLR	4342.83	4343.20	+(GlcNac)2(Hex)6	10
61	H-T-14	279-293	DASGVTFWT PSSGK	1540.73	1541.00		
62	H-T-15	294-302	SAVQGP PER	940.49	940.70		
63	H-T-16	203-325	DLCGCYSVSS VLPGCAEPWN HGK	2596.08	2596.20		
64	H-T-17	326-337	TFTCTAAYPES K	1376.60	1376.04		
65	H-T-18	338-346	TPLTATLSK	931.55	931.80		
66	H-T-19	347-378	SGNTFRPEVH LLPPPSEELAL NELVLTCLA R	3574.86	3575.20		
67	H-T-20	379-383	GFSPK	535.29	535.25		
68	H-T-21	384-388	DVLVR	601.37	601.50		
69	H-T-22	389-398	WLQGSQELPR	1213.63	1213.79		
70	H-T-24	401-407	YLTWASR	896.46	896.57		
71	H-T-25	408-424	QEPSQGTTFA VTSILR	1835.95	1835.50		
72	H-T-26	425-431	VAAEDWK	818.40	818.45		

SEQ ID No.	Fragment	Amino acid residues	Sequence	[M+H] (theor.)	[M+H] (observed)	Notes	Glycan entry in Table 3
73	H-T-28	433-452	GDTFSCMVGH EALPLAFTQK	2210.03	2209.80		
74	H-T-29	453-456	TIDR	504.28	504.27		
75	H-T-30	457-478	LAGKP <small>THVNV</small> SVVMAEV <small>DGT</small> CY	2348.13	ND	C-terminal peptide	
76	H-T1-2	1-19	EVQLVQSGAE VKKPGSSVK	1952.08	1951.60	Pyro-Glu on N-terminus	
77	H-T2-3	13-23	KPGSSVKVSC K	1177.63	1177.71		
78	H-T3-4	20-28	VSCKASGGSF SSYAINWVR	2076.98	2076.50		
79	H-T17-18	326-346	TFTCTAAYPES KTPLTATLSK	2289.13	2289.90		
80	H-T20-21	379-388	GFSPKDVLVR	1117.64	1117.90		
81	H-T21-22	384-398	DVLVRWLQGS QELPR	1795.98	1796.20		
82	H-T22-23	389-400	WLQGSQELPR EK	1470.77	1471.07		
83	H-T27-28	432-452	KGDTFSCMVG HEALPLAFTQ K	2338.12	2338.50		

ND = not detected.

Figure 12 provides the suggested putative glycan structures identified on IgA-HX8 expressed in transgenic maize based on results of MALDI-Tof mass-spectrum.

5 Abundances of glycan species were estimated using intensities of the corresponding ions in MALDI-Tof mass-spectra of free glycans enzymatically reduced from IgA-HX8. Figure 16 provides a summary of glycan profiling of IgA-HX8 expressed in transgenic maize (different events).

10 Example 11. Neutralization of HSV-2 by Endosperm-derived HX8

Transgenic corn seed was milled to isolate the endosperm. The endosperm was milled to a fine powder and the antibody was dissolved in 0.15 M PBS. The Crude HX8 containing endosperm extracts were clarified by low speed centrifugation and affinity purified using a goat anti-human IgA affinity column. The endosperm extract was tested for their ability to neutralize HSV-2.

15 190 plaque forming units per well of a HSV-2 viral stock was incubated with serial dilutions of endosperm derived human monoclonal antibody HX8 for 1 hr at

37° C, 5% CO₂ in a 96 well format. Neutralization activity of the HX8 antibody was measured using a pre-CPE assay using *ELVIS HSV* cells commercially available from Diagnostic Hybrids, Inc., Athens, Ohio. This cell line was derived from baby hamster kidney cells (BHK) co-transfected with a plasmid which contains the G418 antibiotic resistance marker and a plasmid which contains the *E. coli lacZ* gene placed behind an inducible *HSV* promoter from the *HSV-1 UL39* gene which encodes ICP6, the large subunit of *HSV* ribo-nucleotide reductase (E. C. Stabell and P. D. Olivo, "Isolation of a Cell Line for Rapid and Sensitive Histochemical Assay for the Detection of Herpes Simplex Virus," *J. Virological Methods* 38: 195-204 (1992)).

5 *ELVIS HSV* cell monolayers were plated in a 96 well format and infected with the antibody-viral inoculum for 24 hours at 37° C, 5% CO₂. The supernatant was removed and the cells were lysed with ELVIRA lysis buffer purchased from Diagnostic Hybrids, Inc., Athens, Ohio. β-galactosidase activity was detected by adding the ELVIRA Detection Buffer purchased from Diagnostic Hybrids, Inc.,

10 15 Athens, Ohio. The concentration of β-galactosidase was detected by a spectrophotometer OD 570 which corresponds to the level of *HSV* infection. The percent of virus neutralized by HX8 was calculated as a percentage of antibody minus negative control. Results obtained using this assay, which are also included in Figure 11, indicate that at the given viral concentration, the antibody completely neutralizes

15 20 the virus at 1 μg/ml.

II. Examples for Plant Production of Anti-Dual Integrin Antibody

Except as described herein, antibodies to IgG were produced in plant cells, plant calli and whole plants using all of the basic experimental protocols detailed above, including those related to plasmid construction (Examples 1 and 2), vector construction (Examples 3 and 4), and transformation and regeneration (Example 6). Molecular and biochemical analysis of the IgG antibodies produced using such methods were determined according to the basic protocols provided in Examples 5 and 7-11.

Example 12. Plasmids and Vectors Utilized to Produce IgG

The specific IgG utilized in these experiments is one that is directed against the integrin receptors $\alpha V\beta 3$ and $\alpha V\beta 5$, also known as an anti- $\alpha V\beta 3$, $\alpha V\beta 5$ dual integrin antibody.

- 5 The following plasmids were utilized ("HC" = heavy chain; "LC" = light chain):

Plasmid	Promoter-Gene-Terminator	Event No. or Sample No.	Figure
pDAB1472	GluB1-HC-gluB1 GluB1-LC-gluB1	660	Figure 17A
pDAB1473	Gzein-HC-gzein Gzein-LC-gzein	661	Figure 17B
pDAB1474	Gzein-HC-gzein Gzein-LC-gzein	662	Figure 18A
pDAB1475	Gzein-HC-gzein GluB1-LC-gluB1	663	Figure 18B

Example 13. Plant Cell Transformation and Regeneration of IgG

- Plant cells of corn inbred line 'HiII' were treated via direct-DNA delivery with
- 10 pDAB1472, pDAB1473, pDAB1474 or pDAB1475 using the WHISKERS™ transformation method. These plasmids differed in the regulatory elements that were used to drive expression of the genes encoding the antibodies as a "test" to see which of the element combinations would result in the highest expression levels and accumulation of antibodies.
- 15 The "large-scale" WHISKERS™ method utilized treats about 18 ml of packed plant cells at one time (Petolino *et al.*, Molecular Methods of Plant Analysis, In Genetic Transformation of Plants, Vol. 23, pp. 147-158, Springer-Verlag, Berlin (2003)). The anti-dual integrin transformed plants were planted and pollinated by inbred corn line '5XH751' so as to produce the progeny seed that was analyzed for
- 20 antibody production.

Example 14. Estimating Transgene Copy Number of IgG

The Invader® assay platform from Third Wave Molecular Diagnostics was used to predict transgene copy number for the anti-dual integrin constructs. This method, unlike the one used for the IgA protocol discussed above, is based on a hybridization assay rather than a polymerase. Plant cells with 1-2 copies of the transcript were regenerated for further testing.

Example 15. Reduction and carboxymethylation of purified IgG, followed by proteolysis

10 A 25 µL sample was aliquoted for measurements of mass of "intact" protein by MALDI MS. The rest of the protein solution was dried in a siliconized microcentrifuge tube to completeness using a centrifugal evaporator. 180 µL of protein dissolution buffer (6M guanidine hydrochloride/ 0.4M ammonium bicarbonate, pH 7.8) was added to dry protein and sample was mixed by pipette action
15 to achieve complete dissolution. 20 µL of 100 mM DTT (reducing reagent) solution was added to the tube.

The tube was sealed, vortexed, and incubated at 65° C for 1 hour. It was then cooled to room temperature, centrifuged for 30 sec, and 40 µL of 200 mM IAA (alkylating reagent) solution was added to the tube. The tube was incubated in the
20 dark at room temperature for 1 hour. 60 µL of DTT solution was added to consume unreacted IAA, and the tube was allowed to stand for 30 min at room temperature.

Desalting of the reduced/alkylated protein sample was performed as follows. A Protein Trap cartridge (Michrom BioResources, cat. no. 004-25108-53) was washed with 2 x 500 µL 100% acetonitrile ("ACN")/ 0.1% TFA and equilibrated with
25 500 µL of 2% ACN/ 0.1% TFA. 4 µL of ACN and 0.25 µL TFA was added to the reduced/alkylated protein solution (to a final concentration 2% of ACN and 0.2% TFA) and the solution was loaded onto the Protein Trap cartridge. The tube that contained the reduced/alkylated protein was rinsed with 100 µL of 2% ACN/ 0.1% TFA and the rinse was loaded onto the cartridge. The Protein Trap cartridge with
30 bound protein was washed with 500 µL of 2% ACN/ 0.1% TFA. Desalted protein

was eluted with 400 µL of 80% ACN/ 0.1% TFA into a 0.6-mL siliconized microcentrifuge tube.

The desalted protein sample was digested with trypsin as follows. The sample was dried in a centrifugal evaporator to completeness, and re-dissolved in 100 µL of 100 mM Tris buffer, pH 8-8.5. 50 µL of trypsin solution (Roche, cat. no. 1-418-025; 5 25 µg dissolved in 0.5 mL of 25 mM ammonium bicarbonate buffer immediately prior to digestion procedure) was added to the tube, and the sample was incubated for 16 hours at 37° C. After digestion, the sample was stored at –20° C before HPLC separation and/or MALDI MS analysis.

10

Example 16. HPLC fractionation of IgG tryptic digest

System settings.

HPLC system: Hitachi LC (L-7100 pump, L-7200 autosampler, L-7420

UV/Vis detector).

15 Column: Magic C18, 2.0 mm (ID) x 150 mm (Michrom BioResources, cat. no. 901-61221-00).

UV detection: at 205 nm.

Automatic injection: using 200 µL sample loop; injection volume 100 µL.

Flow rate: 0.5 mL/min, constant.

20 Back pressure: reading should be approximately 2050-2100 psi (at 100% A).

Mobile phases

A: 3% ACN, 97% Milli-Q water, 0.06% TFA.

B: 80% ACN, 20% Milli-Q water, 0.05% TFA.

25

30

Method

Step	Time (min.)	%B	Comments
1	5	0	elution salts
2	165	0 to 50 (linear)	main separation
3	10	50 to 100 (linear)	ACN wash
4	2	100	ACN wash
5	1	100 to 0 (linear)	re-equilibration
6	5	0	equilibration

1-mL fractions were collected in siliconized microcentrifuge tubes and the fractions were dried in a centrifugal evaporator following the separation. A Gilson 5 FC-203 fraction collector was used to collect fractions.

Example 17. Enzymatic deglycosylation (PNGase-A procedure)

In the separated tryptic digest, fractions containing glycopeptides were identified by MALDI MS. The remaining material in these fractions (~50%) was 10 combined, dried in a centrifugal evaporator, and re-dissolved in 10 µL of 20 mM ammonium acetate buffer, pH 5.0. 10 µL of peptide-N-glycosidase A (PNGase-A) solution (Roche, cat. no. 1-642-995) was added, and the tubes were incubated at 37° C for 16 hours.

Example 18. Purification of released N-glycans

The proteolytic/PNGase-A digest was passed through C18 cartridge (Peptide Macro Trap, Michrom Bioresources (cat no. 004-25108-52), pre-conditioned according to manufacturer's procedure) and the flow-through fraction was collected. The cartridge was washed with 0.5 mL of 0.1% aqueous TFA and the wash was 20 combined with the first flow-through fraction. These fractions, containing released oligosaccharides, were further purified using an E-cartridge (QA-Bio, cat. no. C-E001, lot no. A2AA-01) according to the manufacturer's procedure. Oligosaccharides were eluted from E-cartridge with 50% acetonitrile/0.1% TFA and dried to completeness in a centrifugal evaporator. The glycan samples were re-

dissolved in 2.5 μ L of high-purity Milli-Q water and passed through C18 ZipTips (Millipore), according to the manufacturer's procedure. Purified glycan samples were ready for analysis by MALDI MS.

The deglycosylated peptides captured on the C18 cartridge were eluted with
5 100% ACN/ 0.1% TFA, concentrated in centrifugal evaporator, and examined by
MALDI MS.

Example 19. MALDI MS and PSD

Voyager DE-STR (Applied BioSystems, serial no. 4260) MALDI-Tof mass
10 spectrometer operated in positive reflectron mode was used to obtain data for peptides
and oligosaccharides (glycans). The instrument was operated in positive linear mode
to obtain data for intact proteins.

The first 4 HPLC fractions (those that eluted in the front of the chromatogram
and contained salts) of the separated tryptic digests were dissolved in 10 μ L of 0.1%
15 TFA and combined; peptides were desalted using C18 zip tips according to standard
protocol. The remaining HPLC fractions were dissolved in 3 μ L of 50% ACN/ 0.1%
TFA, and some fractions were combined. 50% of each fraction (after combining) was
deposited onto a MALDI plate (in 1.5 μ L), overlaid with 1 μ L of CHCA matrix
solution and air-dried. The remaining 50% of the fractions that were found to contain
20 glycopeptides were further treated with PNGase-A as described above.

Settings used to obtain MALDI spectra of peptides. The acceleration voltage
was set to 20 kV. The grid voltage was set to 66% of the acceleration voltage. The
delay time varied between 215 and 350 nsec. The laser setting varied between 2200
and 3000. 500 acquisitions were averaged in each spectrum. The mass scale was
25 calibrated with the following standard peptides (Applied BioSystems): des-Arg¹-
Bradykinin, m/z 904.4; Angiotensin I, m/z 1,296.6; Glu¹-Fibrinopeptide B, m/z
1570.6; Neurotensin, m/z 1672.9; ACTH (clip 1-17), m/z 2093.0; ACTH (clip 18-39),
m/z 2465.1; ACTH (clip 7-38), m/z 5730.6.

MALDI-PSD spectra were recorded using mirror voltage ratio 1.12; the
30 following mirror ratios were used: 1, 0.85, 0.75, 0.65, 0.55, 0.4, 0.3, 0.2, 0.1, 0.05.

Settings used to obtain MALDI spectra of oligosaccharides (glycans). The acceleration voltage was set to 20 kV. The grid voltage was set to 69% of the acceleration voltage. The delay time was set to 215 nsec. The laser setting was approximately 3000. 500 acquisitions were averaged in each spectrum.

- 5 The mass scale was calibrated with the following standard oligosaccharides: $(\text{GlcNAc})_2(\text{Man})_5$, m/z (MNa^+) = 1257.46; $(\text{GlcNAc})_4(\text{Man})_3(\text{Fuc})$, m/z (MNa^+) = 1485.56; $(\text{Gal})(\text{GlcNAc})_4(\text{Man})_3(\text{Fuc})$, m/z (MNa^+) = 1647.62; $(\text{Gal})_2(\text{GlcNAc})_4(\text{Man})_3(\text{Fuc})$, m/z (MNa^+) = 1809.68. 1 μL of sample of purified glycans was deposited onto a MALDI sample plate, overlaid with 1 μL of sDHB matrix (9:1 v/v mixture of 18 mg/mL 2,5-dihydroxybenzoic acid in 66% acetonitrile and 15 mg/mL 2-hydroxy-5-methoxybenzoic acid in 66% acetonitrile) and air-dried.
- 10 matrix (9:1 v/v mixture of 18 mg/mL 2,5-dihydroxybenzoic acid in 66% acetonitrile and 15 mg/mL 2-hydroxy-5-methoxybenzoic acid in 66% acetonitrile) and air-dried.

Conditions used to obtain MALDI spectra of intact proteins. The instrument was operated in positive linear mode. The acceleration voltage was set to 25 kV. The grid voltage was set to 89% of the acceleration voltage. The extraction delay time 15 was varied between 750 and 1500 nsec. The laser setting was approximately 3300. The low mass gate was set to 5000 Da. Two sets of 500 acquisitions each were averaged in each spectrum.

The mass scale was calibrated with the following standard (Sequazyme IgG1, Applied BioSystems, cat no. GEN602151): doubly charged Sequazyme IgG1 monomer at m/z 74249, singly charged Sequazyme IgG1 monomer at m/z 148500.

20 The following procedure was used to desalt protein sample before mass-spectrometry. A C4 zip-tip (Millipore) was primed with 50% ACN, then equilibrated with 0.1% TFA; an aliquot of the protein sample was passed through zip-tip 10 times, then the spent solution was returned to the original vial; the zip-tip with bound protein 25 was washed with 0.1% TFA and protein was eluted with 3 μL of 80% ACN/ 0.1% TFA directly onto the MALDI plate (dropwise). Desalted protein sample was overlaid with 1 μL of matrix (sinapinic acid, from Sequazyme kit, Applied BioSystems, cat no. P2-3143-00) and air-dried.

Analysis of MALDI MS data. MALDI MS and MALDI-PSD data were 30 analyzed using Data Explorer v4.0 software (Applied BioSystems). Molecular

weights and amino acid sequences of peptides and glycopeptides were attributed to the sequence of the IgG samples using MassLynx v3.4 software (Micromass).

Example 20. MALDI MS of Intact IgG

5 MALDI MS experiments were conducted with samples of "intact" affinity-purified IgG protein from maize-expressed IgG for three separate transformation events (*i.e.*, events 660, 661 and 663) and for CHO-expressed IgG (data not shown).

Measured mass for the antibody light chain (LC) was within ~1.0% of theoretical average mass ($M = 23486$ Da). Measured mass for intact assembled 10 antibody was about 1.7 to 2.0% higher than expected theoretical average mass ($M = 145612$ Da for non-glycosylated protein). This discrepancy is probably explained by glycosylation of the heavy chain.

Overall, the MALDI mass-spectrum for all four samples of "intact" antibody (three maize-expressed and the CHO-expressed) were typical of an assembled IgG.

15

Example 21. Peptide mapping results

Peptide mapping results were obtained for all three maize-expressed IgG samples and for the CHO-expressed IgG sample (data not shown). Sequence mass coverages (combined tryptic and Asp-N peptide maps) and tryptic peptide maps were 20 also obtained for all samples (data not shown). Briefly, overall sequence mass coverage was about 90% to about 100% for heavy and light chains in all of the antibody samples. N-terminal fragments were detected in all heavy and light chains. In all samples, the N-terminal fragment of heavy chain contained pyro-Glu as the N-terminal residue, which is a typical post-translational modification in antibodies.

25 Weak signals consistent with a trace content of non-processed N-terminal heavy chain fragments (containing Gln as N-terminal residue) were also detected. C-terminal fragments of light chains were detected in all samples. In maize-expressed antibody samples for events 660 and 663, C-terminal fragments of heavy chains were represented by a mixture of a full-size C-terminal fragment (with Lys449 as C-terminal residue) and a C-terminal fragment with Lys449 deleted ("no K"). Only the truncated ("no K", *i.e.* without Lys449) version of the C-terminal heavy chain

30

fragment was detected in the C1-661 sample. Only the truncated ("no K", i.e. without Lys449) version of the C-terminal heavy chain fragment was detected in CHO-expressed antibody. Sequences of all N-terminal tryptic fragments and heavy chain C-terminal fragments were confirmed by MALDI-PSD experiments.

5

Example 22. Glycosylation Profiling

Primary structure and glycosylation of the three maize-expressed and one CHO-expressed IgG antibodies were examined and compared to each other. Full profiles of the N-linked glycans observed (as glycopeptides) in the antibody samples 10 are provided in Figure 19 (event 660), Figure 21 (event 661), Figure 23 (event 663) and Figure 25 (CHO-expression). As discussed above, fucosylation is α 1,6 for mammalian-produced glycoproteins and α 1,3 for plant-produced glycoproteins.

Representative MALDI-TOF of MS profiles are provided for event 660 in Figures 20A-B; event 661 in Figures 22A-C; event 663 in Figures 24A-B; and for the 15 CHO expression in Figures 26A-B. Figure 22D provides the mass-spectrum results of the N-glycans released from H-T27 glycopeptide. Intensities in this MALDI mass-spectrum are roughly proportional to abundance of the neutral N-glycans. The MALDI mass-spectra for all samples of intact antibodies were typical of an assembled IgG.

20 The two most abundant glycans observed on Asn299 of the maize-expressed heavy chain samples have the composition HexNAc₂-Hex₂-Xyl-Fuc (or N2H2XF) and HexNAc₂-Hex₃-Xyl-Fuc (or N2H3XF), whereas the most abundant glycans in CHO-expressed have the composition HexNAc₄-Hex₃-Fuc (or N4H3F) and HexNAc₄-Hex₄-Fuc (or N4H4F). The level of heavy chain modified with a single 25 HexNAc monosaccharide appears to be higher in maize-expressed antibody samples than in the CHO-expressed antibody samples. N-glycosylation in the CHO-expressed samples appear more heterogeneous (diverse) than that in maize-expressed antibody samples.

Sequences of H-T27 heavy chain tryptic fragment (*i.e.*, the fragment 30 containing Asn299 glycosylation site) and its variant modified with a single HexNAc monosaccharide were confirmed by MALDI-PSD experiments for all antibody

samples examined in this work. However, the signal intensities of glycoforms observed as free N-glycans were somewhat different from those observed as glycopeptides. In the MALDI mass-spectrum of H-T27 peptide glycoforms, glycopeptides with the glycans HexNAc₂-Hex₂-Xyl-Fuc (or N2H2XF) and HexNAc₂-
5 Hex₃-Xyl-Fuc (or N2H3XF) produced the most intense signals. In contrast, in the MALDI mass-spectrum of enzymatically released free oligosaccharides, glycans HexNAc₂-Hex₃-Xyl (or N2H3X), HexNAc₂-Hex₃-Xyl-Fuc (or N2H3XF), and HexNAc₂-Hex₅ (or N2H5) appeared as major species. According to literature reports (D. Harvey, Mass Spectrometry Reviews 18:349-451 (1999)) and our own findings,
10 MALDI MS of free glycans should give a generally more accurate estimate of relative quantities of N-glycans. In any case, by both approaches (*i.e.*, glycopeptides and free glycans), the N-glycan HexNAc₂-Hex₃-Xyl-Fuc (or N2H3XF) was observed as the most abundant species.

No evidence of O-linked glycosylation was found in the antibody samples
15 examined in this work.

The foregoing detailed description has been given for clearness of understanding only and no unnecessary limitations should be understood therefrom as modifications will be obvious to those skilled in the art.

- 5 While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice
10 within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.

What is claimed is:

1. A plant-produced immunoglobulin, wherein the immunoglobulin has a glycopeptide profile comprising at least one glycopeptide which lacks fucose.

5

2. The immunoglobulin of claim 1, wherein the at least one glycopeptide comprises an asparagine (Asn) residue.

3. A plant-produced heavy chain (HC) or light chain (LC) of an
10 immunoglobulin, wherein the HC or LC has a glycopeptide profile comprising at least one glycopeptide which lacks fucose.

4. The HC of claim 3, wherein the at least one glycopeptide comprises an asparagine (Asn) residue in the CH₂ region.

15

5. A plant-produced immunoglobulin, wherein the immunoglobulin has a free glycan profile comprising at least one glycan which lacks fucose.

6. The immunoglobulin of claim 5, wherein the immunoglobulin
20 comprises an asparagine (Asn) residue.

7. The immunoglobulin of claim 5, wherein the glycan profile is the same as or substantially the same as that provided in Figure 12.

25 8. The immunoglobulin of claim 5, wherein the glycan is selected from the group consisting of 3Man, 2GlcNAc, 1Xyl; 2 Man, 2GlcNAc, 1Xyl; 3Man, 3GlcNAc, 1Xyl; 3Man, 2GlcNAc; 3Man, 3GlcNAc; 4Man, 2GlcNAc; 5 Man, 2GlcNAc; and 6Man, 2GlcNAc, wherein Man = Mannose, GlcNAc = N-acetylglucosamine and Xyl = xylose.

30

9. The immunoglobulin of claim 5, wherein the glycan is 3Man, 2GlcNAc, 1Xyl or 2 Man, 2GlcNAc, 1Xyl, wherein Man = Mannose, GlcNAc = N-acetylglucosamine and Xyl = xylose.

5 10. The immunoglobulin of claim 5, wherein the glycan profile is the same as or substantially the same as one of the glycan profiles provided in Figure 16.

10 11. The immunoglobulin of claim 5, wherein the glycan is selected from the group consisting of H2N2X; H3N2; and H3N2X, wherein H = hexose, N = HexNAc = N-acetylhexose and X = xylose.

12. The immunoglobulin of claim 5, wherein the glycan is selected from the group consisting of N2H8; N2H3X; N2H3X; N2H4X; N2H5; N2H6; N2H7; N2H8; N3H3X; N2H4; and N2H5, wherein H = hexose, N = HexNAc = N-acetylhexose and X = xylose.

13. The immunoglobulin of claim 11 or claim 12, wherein the hexose is mannose and the N-acetylhexose is N-acetylglucosamine.

20 14. The immunoglobulin of claim 1 or claim 5, wherein the immunoglobulin is selected from the group consisting of IgG, IgA, IgM, IgE and IgD.

15. The immunoglobulin of claim 14, wherein the immunoglobulin is IgA or IgG.

25 16. The immunoglobulin of claim 14, wherein the immunoglobulin is an IgA antibody with a heavy chain and a light chain.

17. The immunoglobulin of claim 16, wherein the immunoglobulin is an 30 anti-herpes simplex virus antibody.

18. The immunoglobulin of claim 14, wherein the immunoglobulin is an IgG antibody with a heavy chain and a light chain.

19. The immunoglobulin of claim 18, wherein the immunoglobulin is an 5 anti-dual integrin antibody.

20. The immunoglobulin of claim 19, wherein the immunoglobulin is an anti- $\alpha V\beta 3$, $\alpha V\beta 5$ dual integrin antibody.

10 21. The immunoglobulin of claim 5, wherein the glycan profile is the same as or substantially the same as the glycan profile provided in Figure 19.

22. The immunoglobulin of claim 5, wherein the glycan profile is the same as or substantially the same as the glycan profile provided in Figure 21.

15 23. The immunoglobulin of claim 5, wherein the glycan profile is the same as or substantially the same as the glycan profile provided in Figure 23.

24. A plant-produced immunoglobulin comprising at least one attached 20 glycan without a terminal fucose.

25. The immunoglobulin of claim 24, wherein the immunoglobulin comprises an asparagine (Asn) residue in the CH2 region.

26. A plant-produced immunoglobulin having a glycan profile which comprises at least one glycan lacking fucose, wherein the glycan profile is determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-Tof MS) analysis of free N-linked glycans enzymatically-released from the immunoglobulin.

30 27. The immunoglobulin of claim 26, wherein the immunoglobulin is IgA.

28. The immunoglobulin of claim 27, wherein the immunoglobulin is an anti-herpes simplex virus antibody.

5 29. The immunoglobulin of claim 26, wherein the immunoglobulin is IgG.

30. The immunoglobulin of claim 29, wherein the immunoglobulin is an anti-dual integrin antibody.

10 31. The immunoglobulin of claim 30, wherein the immunoglobulin is an anti- α V β 3, α V β 5 dual integrin antibody.

32. A plant cell, plant tissue, plant callus, plantlet, whole plant or seed comprising the immunoglobulin of claim 1 or claim 5.

15 33. The plant cell, plant tissue, plant callus, or seed of claim 32, wherein the cell, tissue, callus or seed are of a monocotyledonous plant.

34. The plant cell, plant tissue, plant callus, or seed of claim 33, wherein 20 the monocotyledonous plant is a maize plant.

35. The plantlet or whole plant of claim 32, wherein the plantlet or whole plant are monocotyledonous.

25 36. The plant cell, plant tissue, plant callus, or seed of claim 35, wherein the monocotyledonous plant is a maize plant.

37. The seed of claim 32, wherein the immunoglobulin is located in the endosperm of the seed.

38. The immunoglobulin of claim 1 or claim 5, wherein the immunoglobulin is a human immunoglobulin.

39. The immunoglobulin of claim 1 or claim 5, wherein the 5 immunoglobulin comprises a heavy chain lacking a tailpiece.

40. The immunoglobulin of claim 39, wherein the immunoglobulin is an IgA antibody.

10 41. The immunoglobulin of claim 39, wherein the immunoglobulin is an anti-herpes simplex virus antibody.

42. The immunoglobulin of claim 3, wherein the heavy chain of the immunoglobulin lacks a tailpiece.

15 43. The immunoglobulin of claim 42, wherein the immunoglobulin is an IgA antibody.

20 44. The immunoglobulin of claim 43, wherein the immunoglobulin is an anti-herpes simplex virus antibody.

45. The immunoglobulin of claim 1 or claim 5, wherein the immunoglobulin is isolated from the plant used to produce the immunoglobulin.

25 46. A monomeric antibody composition comprising at least one glycan having structure number 1 (3Man, 2GlcNAc, 1Xyl) as provided in Figure 12, wherein Man = mannose, GlcNAc – acetylglucosamine and Xyl = xylose.

30 47. A monomeric antibody composition comprising at least one glycan having structure number 2 (2Man, 2GlcNAc, 1Xyl) as provided in Figure 12, wherein Man = mannose, GlcNAc – acetylglucosamine and Xyl = xylose.

48. A plant-produced immunoglobulin comprising an amino acid fragment lacking an attached glycan with fucose, wherein the immunoglobulin has an attached glycan with fucose on the same amino acid fragment or on substantially the same 5 amino acid fragment when the immunoglobulin is mammalian-produced.

49. A plant-produced immunoglobulin comprising a glycan profile for a specified amino acid fragment, wherein the immunoglobulin has the same or substantially the same glycan profile for the same amino acid sequence or for 10 substantially the same amino acid fragment when the immunoglobulin is mammalian-produced.

50. A plant-produced immunoglobulin comprising an amino acid fragment having an attached glycan lacking fucose, wherein the immunoglobulin also lacks an 15 attached glycan with fucose on the same amino acid fragment or on substantially the same amino acid fragment when the immunoglobulin is mammalian-produced.

51. A plant-produced immunoglobulin, wherein the immunoglobulin has a free glycan profile comprising a glycan lacking fucose, wherein the immunoglobulin 20 has a free glycan profile comprising the same glycan also lacking fucose when the immunoglobulin is mammalian-produced.

52. The immunoglobulin of claim 48, claim 49, claim 50, or claim 51, wherein the mammalian-produced immunoglobulin is produced in a CHO cell.

25

53. The immunoglobulin of claim 48, claim 49, claim 50, or claim 51, wherein the plant-produced immunoglobulin is produced in a maize cell and the mammalian-produced immunoglobulin is produced in a CHO cell.

30 54. A method of producing a transformed plant cell expressing an immunoglobulin having at least one attached glycan without fucose, said method

comprising transforming a plant cell by introducing into the plant cell a single vector comprising a nucleic acid sequence encoding a heavy chain and a light chain of the immunoglobulin, each nucleic acid being operably-linked to a promoter, and culturing the transformed plant cell to produce a plant cell expressing the immunoglobulin
5 having at least one attached glycan without fucose.

55. The method of claim 54, further comprising isolating the immunoglobulin from the transformed plant cell.

10 56. The method of claim 54, further comprising regenerating transformed plant calli or a transformed whole plant from the transformed plant cell.

57. The method of claim 56, further comprising isolating the immunoglobulin from the transformed plant calli or transformed whole plant.

15 58. The method of claim 54, wherein the sequences for the heavy chain and the light chain are operably-linked to the same promoter.

20 59. The method of claim 54, wherein the sequences for the heavy chain and the light chain are operably-linked to a different promoter.

60. The method of claim 54, wherein the promoter is a constitutive promoter.

25 61. The method of claim 60, wherein the constitutive promoter is a 35S CaMV promoter or a maize ubiquitin-1 promoter.

62. The method of claim 54, wherein the promoter is a seed-specific promoter.

63. The method of claim 54, wherein the promoter is an endosperm-specific promoter.

64. The method of claim 54, wherein the vector is selected from the group consisting of pDAB8505; pDAB1472; pDAB1473; pDAB1474; and pDAB1475.

65. A vector selected from the group consisting of pDAB8505; pDAB1472; pDAB1473; pDAB1474; and pDAB1475.

10 66. The method of claim 54, wherein the plant cell is transformed using an agrobacterium-mediated transformation method or a WHISKERS™ transformation method.

15 67. A method of producing an isolated a monomeric anti-herpes simplex virus antibody comprising: (i) introducing into a plant cell nucleic acids having either SEQ ID NO: 1 or either SEQ ID NO: 5 and SEQ ID NO: 9 or SEQ ID NO: 13, each of which is operably-linked to a promoter, to produce a transformed plant cell; (ii) culturing the transformed plant cell to express the introduced nucleic acids; and (iii) isolating the monomeric anti-herpes simplex virus antibody produced by the plant
20 cell.

68. The method of claim 67 further comprising regenerating a transformed plant from the transformed plant cell.

25 69. A nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 15 (pDAB635); SEQ ID NO: 16 (pDAB16); SEQ ID NO: 17 (pDAB637); SEQ ID NO: 84 (pDAB3014); and SEQ ID NO: 85 (pDAB8505).

30 70. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding the amino acid encoded by SEQ ID NO: 10 or SEQ ID NO: 14.

71. An isolated nucleic acid molecule comprising SEQ ID NO: 1 or SEQ ID NO: 5.

5 72. An isolated nucleic acid molecule comprising SEQ ID NO: 9 or SEQ ID NO: 13.

73. An isolated vector or plasmid comprising SEQ ID NO: 1 or SEQ ID NO: 5.

10 74. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding the amino acid encoded by SEQ ID NO: 2 or SEQ ID NO: 6.

15 75. The immunoglobulin of claim 1, wherein the immunoglobulin comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 6.

76. The immunoglobulin of claim 1, wherein the immunoglobulin comprises a light chain comprising the amino acid sequence of SEQ ID NO: 14.

20 77. An isolated vector or plasmid comprising SEQ ID NO: 9 or SEQ ID NO: 13.

2/38

Figure 2

3/38

4/38

Figure 4

Native Western Blot (A)

Western blot condition: 4-12% GEL nonreducing sample buffer
62 ng total protein each well
1:5000 Goat anti-Human Kappa-HRP one hour RT
5 minute expose

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

11/38

Figure 11

Neutralization of HSV-2 Using Endosperm Derived HX8

Figure 12

1. 3Man, 2GlcNAc, 1Xyl ~ 38.0 ± 1.8%	
2. 2Man, 2GlcNAc, 1Xyl ~ 42.7 ± 1.3%	
3. 3Man, 2GlcNAc, 1Xyl, 1Fuc ~ 0.9 ± 0.2%	
4. 2Man, 2GlcNAc, 1Xyl, 1Fuc ~ 1.3 ± 0.4%	
5. 3Man, 3GlcNAc, 1Xyl ~ 1.7 ± 0.1%	
6. 3Man, 2GlcNAc ~ 6.2 ± 0.3%	
7. 3Man, 3GlcNAc ~ 1.0 ± 0.1%	
8. 4Man, 2GlcNAc ~ 1.4 ± 0.37%	
9. 5Man, 2GlcNAc ~ 4.5 ± 0.2%	
10. 6Man, 2GlcNAc trace	
11. 1GlcNAc	GlcNAc —
12. 2GlcNAc	GlcNAc GlcNAc —

13/38

Figure 13A**Monomeric IgA****Figure 13B****Dimeric IgA****Figure 13C****Secretory IgA**

14/38

Figure 14

15/38

Figure 15

16/38

Figure 16A

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
81 (5XH751/ 280-081.005.006)	903.28	903.32	40.6	H2N2X	whole affinity purified IgA-HX8 was digested with pepsin, then PNGase A
	1013.27	1013.29	12.9	H3N2P	
	1065.31	1065.38	25.7	H3N2X	
	1157.29	?	3.3	?	
	1175.29	1179.34	6.5	H4N2P	
	1211.31	1211.44	3.0	H3N2XF	
	ND	1257.46	ND	H5N2	
	1268.37	1268.46	2.1	H3N3X	
	1337.34	1337.40	3.7	H5N2P	
	1499.33	1499.45	1.0	H6N2P	
81 (5XH751/ 280-081.005.006)	1661.36	1661.50	1.1	H7N2P	affinity purified IgA-HX8 was separated by SDS-PAGE, band at ~50 kDa was digested in-gel with trypsin, peptides were extracted, purified (C18), then digested with PNGase A
	903.5	903.32	20.7	H2N2X	
	933.52	933.34	15.3	H3N2	
	1013.52	1013.29	9.9	H3N2P	
	1065.59	1065.38	35.6	H3N2X	
	1157.61	?	12.0	?	
	ND	1211.44	ND	H3N2XF	
	1257.65	1257.46	2.9	H5N2	
	1268.69	1268.46	3.5	H3N3X	

17/38

Figure 16B

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
81 (6RC172/ 280-081.005.006)	903.2	903.32	36.9	H2N2X	whole affinity purified IgA-HX8 was digested with pepsin, then PNGase A
	1013.19	1013.29	10.4	H3N2P	
	1065.23	1065.38	28.3	H3N2X	
	1175.24	1175.34	7.3	H4N2P	
	1211.38	1211.44	2.8	H3N2XF	
	1257.27	1257.46	2.8	H5N2	
	ND	1268.46	ND	H3N3X	
	1337.26	1337.40	4.6	H5N2P	
	1499.27	1499.45	3.4	H6N2P	
	1661.36	1661.50	2.0	H7N2P	
81 (6RC172/ 280-081.005.006)	1823.42	1823.55	1.7	H8N2P	affinity purified IgA-HX8 was separated by SDS-PAGE, band at ~50 kDa was digested in-gel with trypsin, peptides were extracted, purified (C18), then digested with PNGase A
	903.51	903.32	21.9	H2N2X	
	933.51	933.34	17.5	H3N2	
	1013.54	1013.29	11.8	H3N2P	
	1065.6	1065.38	32.0	H3N2X	
	1157.61	?	11.1	?	
	1211.66	1211.44	2.5	H3N2XF	
	1257.69	1257.46	3.4	H5N2	
	ND	1268.46	ND	H3N3X	

18/38

Figure 16C

Event	Glycans				Method of glycan release	
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure		
21 self	903.26	903.32	57.4	H2N2X	whole affinity purified IgA-HX8 was digested with pepsin, then PNGase A	
	1013.24	1013.29	10.6	H3N2P		
	1065.3	1065.38	16.2	H3N2X		
	1175.3		4.0	H4N2P		
	1211.36	1211.44	3.8	H3N2XF		
	1257.34	1257.46	1.3	H5N2		
	ND	1268.46	ND	H3N3X		
	1337.37	1337.40	2.7	H5N2P		
	1499.43	1499.45	1.5	H6N2P		
	1661.49	1661.50	1.3	H7N2P		
	1823.54	1823.55	1.0	H8N2P		
21 (5HX751/ 280-021.002.007)	903.17	903.32	36.2	H2N2X	whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, then digested with PNGase A and released glycans were analyzed by MALDI	
	933.16	933.34	5.3	H3N2		
	1049.2	1049.38	2.7	H2N2XF		
	1065.2	1065.38	42.8	H3N2X		
	1095.18	1095.40	1.8	H4N2		
	ND	1136.42	ND	H3N3		
	1211.25	1211.44	3.5	H3N2XF		
	1257.25	1257.46	3.2	H5N2		
	1268.26	1268.46	3.6	H3N3X		
	1419.29	1419.52	1.0	H6N2		
	detected on H-T13 glycopeptide		N (single GlcNAc)			
	trace detected on H-T13 glycopeptide		N2 (double GlcNAc)			

19/38

Figure 16D

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
21 (6RC172/ 280-021.002.007)	903.12	903.32	42.8	H2N2X	whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, then digested with PNGase A and released glycans were analyzed by MALDI
	933.12	933.34	9.3	H3N2	
	1049.14	1049.38	2.8	H2N2XF	
	1065.13	1065.38	35.2	H3N2X	
	1095.13	1095.40	2.2	H4N2	
	1136.16	1136.42	trace	H3N3	
	1211.16	1211.44	2.7	H3N2XF	
	1257.16	1257.46	3.6	H5N2	
	1268.16	1268.46	1.4	H3N3X	
	1419.17	1419.52	trace	H6N2	
detected on H-T13 glycopeptide				N (single GlcNAc)	
trace detected on H-T13 glycopeptide				N2 (double GlcNAc)	

20/38

Figure 16E

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
193 self	903.35	903.32	42.7	H2N2X	<p>whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, peptides separated by C18-HPLC, HPLC fractions analyzed by MALDI, then fractions containing glycopeptides were digested with PNGase A and released glycans were analyzed by MALDI</p>
	933.35	933.34	6.2	H3N2	
	1049.39	1049.38	1.3	H2N2XF	
	1065.41	1065.38	38.0	H3N2X	
	1095.4	1095.40	1.4	H4N2	
	1136.44	1136.42	1.0	H3N3	
	1211.45	1211.44	0.9	H3N2XF	
	1257.47	1257.46	4.5	H5N2	
	1268.49	1268.46	1.7	H3N3X	
	1419.55	1419.52	trace	H6N2	
detected on H-T13 glycopeptide				N (single GlcNAc)	
detected on H-T13 glycopeptide				N2 (double GlcNAc)	

21/38

Figure 16F

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
223 self	903.51	903.32	34.6	H2N2X	whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, then digested with PNGase A and released glycans were analyzed by MALDI
	ND	933.34	ND	H3N2	
	1065.61	1065.38	55.8	H3N2X	
	1211.68	1211.44	3.9	H3N2XF	
	1257.71	1257.46	5.7	H5N2	
	ND	1268.46	ND	H3N3X	
223 self	903.18	903.32	42.6	H2N2X	whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, peptides separated by C18-HPLC, HPLC fractions analyzed by MALDI, then fractions containing glycopeptides were digested with PNGase A and released glycans were analyzed by MALDI
	ND	933.34	ND	H3N2	
	ND	1049.38	ND	H2N2XF	
	1065.21	1065.38	49.9	H3N2X	
	1095.23	1095.40	trace	H4N2	
	ND	1136.42	ND	H3N3	
	1211.24	1211.44	trace	H3N2XF	
	1257.26	1257.46	7.5	H5N2	
	ND	1268.46	ND	H3N3X	
	ND	1419.52	ND	H6N2	
detected on H-T13 glycopeptide				N (single GlcNAc)	
detected on H-T13 glycopeptide				N2 (double GlcNAc)	

22/38

Figure 16G

Event	Glycans				Method of glycan release
	observed m/z, [M+Na]	Theor. m/z, [M+Na]	% by MALDI (based on peak heights)	Proposed structure	
223 (5HX751/ 280- 223.005.006)	903.28	903.32	40.8	H2N2X	whole affinity purified IgA-HX8 was reduced/ alkylated, digested with trypsin, then digested with PNGase A and released glycans were analyzed by MALDI
	933.29	933.34	6.1	H3N2	
	1049.33	1049.38	2.0	H2N2XF	
	1065.33	1065.38	40.6	H3N2X	
	1095.33	1095.40	1.3	H4N2	
	1136.4	1136.42	1.2	H3N3	
	1211.37	1211.44	2.8	H3N2XF	
	1257.39	1257.46	2.7	H5N2	
	1268.39	1268.46	2.5	H3N3X	
	1419.12	1419.52	trace	H6N2	
detected on H-T13 glycopeptide				N (single GlcNAc)	
detected on H-T13 glycopeptide				N2 (double GlcNAc)	

23/38

Figure 17A**Figure 17B**

24/38

Figure 18A**Figure 18B**

25/38

Figure 19

C1-660 IgG

m/z theor.	m/z /obs.	Glycan (glycopeptide)	Comment
1189.51	1189.47	no glycans	Ara converts to Ara with mass-shift of +1 Da after PNGase-A treatment; obs. M+ = 1190.63
1392.59	1392.54	N	major signal
1595.67	1595.61	N2	**
1757.72	1757.83	N2H	minor
1889.76	ND	N2HX	ND
1903.78	1903.90	N2HXF	trace
1919.77	1919.90	N2H2	trace
2035.82	2035.95	N2HXF	*
2051.81	2051.95	N2H2X	*
2065.83	2065.96	N2H2F	*
2081.82	2081.95	N2H3	minor
2197.87	2197.99	N2H2XF	major signal
2213.86	2214.00	N2H3X	**
2227.88	2228.01	N2H3F	*
2243.87	2244.02	N2H4	*
2284.90	2285.03	N3H3	trace
2359.92	2360.06	N2H3XF	major signal
2375.91	2376.07	N2H4X	**
2389.93	ND	N2H4F	ND
2405.92	2406.07	N2H5	significant signal
2521.97	2522.16	N2H4XF	*
2537.96	2538.34	N2H5X	trace
2551.98	ND	N2H5F	ND
2563.00	2563.16	N3H3XF	significant signal
2567.97	2568.18	N2H6	**
2684.02	2684.22	N2H5XF	*
2700.01	ND	N2H6X	ND
2714.03	ND	N2H6F	ND
2725.05	2725.24	N3H4XF	**
2730.02	2730.22	N2H7	**
2766.08	2766.26	N4H3XF	significant signal
2892.07	2892.25	N2H8	***
2846.07	ND	N2H6XF	ND
2862.06	ND	N2H7X	ND
2876.08	ND	N2H7F	ND
2928.13	2928.32	N4H4F	trace
3008.12	ND	N2H7XF	ND
3054.12	3054.39	N2H9	trace

NOTE: all these glycans are removed from glycopeptides by PNGase-A treatment; for single N removal is incomplete

Signal intensity: * -- S/N > 3.5, but <10
 ** -- S/N >10
 *** -- intense signal, but less intense than "minor"
 "significant signal" -- intensity between "minor" and "major"

26/38

Figure 20A

Profile of glycoforms of H-T27 peptide (N299 site of heavy chain)
Voyager Spec #1 => BC => SMS [BP = 560.3, 34501]

27/38

Figure 20B

Zoom-in on m/z 2360.06 (major glycoform, N2H3XF). Note isotopic resolution
Voyager Spec #1 => BC => SM5 [BP = 560.3, 37865]

Figure 21

C1-661 IgG

m/z theor.	m/z /obs.	Glycan (tryptic glycopeptide)	Comment	Corresponding observed free glycan after enzymatic release (see Fig 4)	% of total intensity in MALDI of free glycans
1189.51	1189.61	no glycans	strong signal	n/a	
1392.59	1392.59	N	major signal	n/a	
1595.67	1595.77	N2	*	n/a	
1757.72	1757.89	N2H	trace	ND	
1889.76	ND	N2HX	ND	ND	
1903.78	1903.93	N2HXF	trace	ND	
1919.77	1919.96	N2H2	*	ND	
2035.82	2036.01	N2HXF	*	ND	
2051.81	2052.01	N2H2X	*	ND	
2065.83	2066.03	N2H2F	**	ND	
2081.82	2082.02	N2H3	*	ND	
2197.87	2198.07	N2H2XF	major signal	1049.32 (trace) (1049.38 theor) trace	
2213.86	2214.07	N2H3X	**	1065.34 (1065.38 theor)	24.3
2227.88	2228.09	N2H3F	*	ND	
2243.87	2244.08	N2H4	*	1095.35 (1095.40 theor)	10.5
2284.90	2285.13	N3H3	trace	ND	
2359.92	2360.14	N2H3XF	major signal	1211.40 (1211.44 theor)	31.0
2375.91	2376.14	N2H4X	*	ND	
2389.93	ND	N2H4F	ND	ND	
2405.92	2406.15	N2H5	significant signal	1257.40 (1257.46 theor)	24.6
2521.97	2522.23	N2H4XF	*	ND	
2537.96	ND	N2H5X	ND	ND	
2551.98	ND	N2H5F	ND	ND	
2563.00	2563.25	N3H3XF	significant signal	1414.46 (1414.52 theor)	9.6
2567.97	2568.26	N2H6	**	ND	
2684.02	ND	N2H5XF	ND	ND	
2700.01	ND	N2H6X	ND	ND	
2714.03	ND	N2H6F	ND	ND	
2725.05	2725.32	N3H4XF	*	ND	
2730.02	2730.30	N2H7	**	ND	
2766.08	2766.34	N4H3XF	significant signal	ND	
2892.07	2892.37	N2H8	**	ND	
2846.07	ND	N2H6XF	ND	ND	
2862.06	ND	N2H7X	ND	ND	
2876.08	ND	N2H7F	ND	ND	
2928.13	2928.40	N4H4XF	trace	ND	
3008.12	ND	N2H7XF	ND	ND	
3054.12	ND	N2H9	ND	ND	

Signal intensity: * -- S/N > 3-5, but <10

** -- S/N >10

*** -- intense signal, but less intense than "minor"

"significant signal" -- intensity between "minor" and "major"

29/38

Figure 22A

Profile of glycoforms of H-T27 peptide (N299 site of heavy chain) [HPLC fraction 16]
Voyager Spec #1 => BC => SMS [BP = 2361.1, 8408]

30/38

Figure 22B

Zoom-in on m/z 2360.06 (major glycoform, N2H3XF). Note isotopic resolution.
Voyager Spec #1 => BC => SMS [BP = 2361.1, 8408]

31/38

Figure 22C

H-T27 peptide (non-glycosylated at m/z 1189.65, and with single HexNAc at m/z 1392.76;
plus some N-glycoforms on H-T26-27 peptide at higher m/z) [HPLC fraction 17]
Voyager Spec #1 => BC => SM5 [BP = 1189.6, 22278]

32/38

Figure 22D

N-glycans released from H-T27 glycopeptide, MALDI MS of free glycans.
 Intensities in this MALDI mass-spectrum should be roughly proportional to abundance
 of the neutral N-glycans (NOTE: single and double GlcNAc are not accounted for.)
 Voyager Spec #1 => BC => SM5 [BP = 1211.4, 1514]

33/38

Figure 23

C1-663 IgG

m/z theor.	m/z /obs.	Glycan (glycopeptide)	Comment
1189.51	1189.38	no glycans	Aza converts to Asp with mass-shift of +1 Da after PNGase-A treatment; obs. M/z = 1190.59 strong signal
1392.59	1392.45	N	major signal
1595.67	1594.72	N2	*
1757.72	1757.84	N2H	trace
1889.76	ND	N2HX	ND
1903.78	ND	N2HXF	ND
1919.77	1919.90	N2H2	trace
2035.82	2035.95	N2HXF	*
2051.81	2051.95	N2H2X	*
2065.83	2065.97	N2H2F	*
2081.82	2081.97	N2H3	*
2197.87	2198.01	N2H2XF	major signal
2213.86	2214.01	N2H3X	**
2227.88	2228.02	N2H3F	*
2243.87	2244.02	N2H4	*
2284.90	ND	N3H3	ND
2359.92	2360.07	N2H3XF	major signal
2375.91	2376.09	N2H4X	*
2389.93	ND	N2H4F	ND
2405.92	2406.08	N2H5	***
2521.97	2522.16	N2H4XF	*
2537.96	ND	N2H5X	ND
2551.98	ND	N2H5F	ND
2563.00	2563.18	N3H3XF	significant signal
2567.97	2568.18	N2H6	**
2684.02	ND	N2HSXF	ND
2700.01	ND	N2H6X	ND
2714.03	ND	N2H6F	ND
2725.05	2725.28	N3H4XF	*
2730.02	2730.24	N2H7	*
2766.08	2766.27	N4H3XF	significant signal
2846.07	ND	N2H6XF	ND
2862.06	ND	N2H7X	ND
2876.08	ND	N2H7F	ND
2892.07	2892.29	N2H8	***
2928.13	ND	N4H4XF	ND
3008.12	ND	N2H7XF	ND
3054.12	ND	N2H9	ND

NOTE: all these glycans are removed from glycopeptides by PNGase-A treatment; for single N removal is incomplete

Signal intensity: * -- S/N > 3.5, but <10

** -- S/N > 10

*** -- intense signal, but less intense than "minor"

"significant signal" -- intensity between "minor" and "major"

34/38

Figure 24A

Profile of glycoforms of H-T27 peptide (N299 site of heavy chain)
 Voyager Spec #1 => BC => SMS [BP = 2361.1, 13642]

35/38

Figure 24B

Zoom-in on m/z 2360.7 (major glycoform, N2H3XF). Note isotopic resolution.
Voyager Spec #1 => BC => SM5 [BP = 2361.1, 13642]

Figure 25

(CHO-expressed)

m/z theor.	m/z /obs.	Glycan (glycopeptide)	Comment
1189.51	1189.63	no glycans	Asn converts to Asp with mass-shift of +1 Da after PNGase-A treatment; obs. M/z = 1190.48
1392.59	1392.74	N	**
1595.67	1595.38	N2	*
1757.72	1757.41	N2H	*
1919.77	1919.44	N2H2	*
2065.83	2065.48	N2H2F	*
2081.82	2081.48	N2H3	*
2227.88	2227.51	N2H3F	*
2243.87	2243.51	N2H4	*
2268.91	2268.52	N3H2F	significant signal
2284.90	2284.52	N3H3	**
2389.93	2389.54	N2H4F	*
2405.92	2405.52	N2H5	significant signal
2430.96	2430.55	N3H3F	significant signal
2446.95	2446.55	N3H4	*
2487.98	2487.56	N4H3	significant signal
2551.98	2552.57	N2H5F	trace
2567.97	2567.57	N2H6	*
2593.01	2592.60	N3H4F	minor
2609.00	2608.60	N3H5	**
2634.04	2633.61	N4H3F	major signal free glycan also observed after release (MNa+ = 1485.87)
2650.03	2649.58	N4H4	minor
2714.03	ND	N2H6F	ND
2730.02	2730.61	N2H7	trace
2755.06	2754.64	N3H5F	**
2771.05	2770.64	N3H6	**
2796.09	2795.64	N4H4F	major signal free glycan also observed after release (MNa+ = 1647.96)
2812.08	2811.63	N4H5	trace
2876.08	ND	N2H7F	ND
2892.07	ND	N2H8	ND
2933.10	2932.67	N3H7	*
2958.14	2957.68	N4H5F	significant signal
3054.12	ND	N2H9	ND
3120.19	3119.73	N4H6F	minor
3282.24	3281.76	N4H7F	***

NOTE: glycans are removed from glycopeptides by PNGase-A treatment; for single N removal is incomplete

Signal intensity: * -- S/N > 3.5, but <10

** -- S/N >10

*** -- intense signal, but less intense than "minor"

"significant signal" -- intensity between "minor" and "major"

37/38

Figure 26A

Profile of glycoforms of H-T27 peptide (N299 site of heavy chain)
 Voyager Spec #1 => BC => SM5 [BP = 2634.6, 30912]

38/38

Figure 26B

Zoom-in on m/z 2633.61 (major glycoform, N4H3F). Note isotopic resolution.
Voyager Spec #1 => BC => SM5 [BP = 2634.6, 30912].

SEQUENCE LISTING

<110> BRIGGS, Kristen
 GLANCY, Todd
 HEIN, Mitch B.
 HIATT, Andrew C.
 KARNOUP, Anton S.
 ANDERSON, W.H. Kerr
 PAREDDY, Dayakar
 PETOLINO, Joseph
 RUBIN-WILSON, Elizabeth
 TAYLOR, Doug
 Roberts, Jean L.
 The Dow Chemical Company
 Dow Agrosciences, LLC
 Epicyte Pharmaceutical, Inc.

<120> Plant production of immunoglobulins with reduced fucosylation

<130> 38136-5001-WO

<150> US 60/429,385

<151> 2002-11-27

<160> 85

<170> PatentIn version 3.1

<210> 1

<211> 1494

<212> DNA

<213> Herpes simplex virus

<220>

<221> CDS

<222> (1)..(1494)

<223>

<220>

<221> misc_feature

<223> HSV Heavy Chain sequence

<400> 1

atg gga tgg agc tgg atc ttt ctc ttc ctc ctg tca gga gct gca ggt	48
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly	
1 5 10 15	

gtc cat tgc cag gtt cag ctc gtg cag tca ggt gct gag gtg aag aag	96
Val His Cys Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys	
20 25 30	

cct ggc tcc tcg gtg aag gtc tcc tgc aag gct tct gga ggt tcc ttc	144
Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Ser Phe	
35 40 45	

agc tcc tat gct atc aac tgg gtg agg caa gct cct gga caa ggg ctt	192
Ser Ser Tyr Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu	
50 55 60	

gag tgg atg gga ggg ctc atg cct atc ttt ggg aca aca aac tac gcg	240
Glu Trp Met Gly Gly Leu Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala	

65	70	75	80	
cag aag ttc cag gac agg ctc acg att acc gcg gac gta tcc acg agt Gln Lys Phe Gln Asp Arg Leu Thr Ile Thr Ala Asp Val Ser Thr Ser 85 90 95				288
aca gcc tac atg caa ctg agc ggc ctg aca tat gaa gac acg gcc atg Thr Ala Tyr Met Gln Leu Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met 100 105 110				336
tat tac tgt gcg aga gtt gcc tac atg ctt gaa cct acc gtc act gca Tyr Tyr Cys Ala Arg Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala 115 120 125				384
ggg ggt ttg gac gtc tgg ggc caa ggg acc ttg gtc acc gtc tcc tcc Gly Gly Leu Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 130 135 140				432
gca tcc ccg acc agc ccg aag gtc ttc ccg ctg agc ctc tgt agc acc Ala Ser Pro Thr Ser Pro Lys Val Phe Pro Leu Ser Leu Cys Ser Thr 145 150 155 160				480
cag cca gat ggg aac gtg gtc atc gcc tgc ctg gtc cag ggc ttc ttc Gln Pro Asp Gly Asn Val Val Ile Ala Cys Leu Val Gln Gly Phe Phe 165 170 175				528
cct cag gag cca ctc agt gtg acc tgg agc gaa agc gga cag ggc gtg Pro Gln Glu Pro Leu Ser Val Thr Trp Ser Glu Ser Gly Gln Gly Val 180 185 190				576
acc gcc agg aac ttc cca ccc agc cag gat gcc tcc gga gac ctg tac Thr Ala Arg Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr 195 200 205				624
acc acg tcc agc cag ctg acc ctt ccg gcc aca cag tgc cta gcg ggc Thr Thr Ser Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly 210 215 220				672
aag tcc gtg aca tgc cac gtg aag cac tac acg aat ccc agc cag gat Lys Ser Val Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp 225 230 235 240				720
gtg act gtg ccc tgc cca gtt ccc tca act cca cct acc cca tct ccc Val Thr Val Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro 245 250 255				768
tcg act cca cct acc cca tct ccc tca tgc tgc cac ccc agg ctg tca Ser Thr Pro Pro Thr Pro Ser Pro Cys Cys His Pro Arg Leu Ser 260 265 270				816
ctg cac agg cct gcc ctc gag gac ctg ctc tta ggt tcg gaa gcg aac Leu His Arg Pro Ala Leu Glu Asp Leu Leu Gly Ser Glu Ala Asn 275 280 285				864
ctc acg tgc aca ctc acc ggc ctg aga gat gcg tca ggt gtc acc ttc Leu Thr Cys Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe 290 295 300				912
acc tgg acg ccc tca agt ggt aag agc gct gtt caa ggc cca cct gag Thr Trp Thr Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu 305 310 315 320				960

cgt gac ctc tgt ggc tgc tac agc gtg tcc agt gtc ctt ccg ggc tgt 1008
 Arg Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys
 325 330 335

 gcc gag cct tgg aat cat ggg aag acc ttc act tgc act gct gcc tac 1056
 Ala Glu Pro Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr
 340 345 350

 ccc gag agc aag acc ccg cta acc gcc acc ctc tcg aaa tcc ggc aac 1104
 Pro Glu Ser Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn
 355 360 365

 aca ttc cgg ccc gag gtc cac ctg ctg ccg ccg tcg gag gag ctg 1152
 Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu
 370 375 380

 gcc ctg aac gag ctg gtg acg ctg acg tgc ctg gcg cgc ggc ttc agc 1200
 Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser
 385 390 395 400

 ccc aag gac gtg ctg gtt cgc tgg ctg cag ggc tca cag gag ctg cct 1248
 Pro Lys Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro
 405 410 415

 agg gag aag tac ctg act tgg gca tcc cgg cag gag ccc agc caa ggc 1296
 Arg Glu Lys Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly
 420 425 430

 acc acc acc ttc gct gtg acc tgc ata ctg cgc gtg gca gcc gag gac 1344
 Thr Thr Thr Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp
 435 440 445

 tgg aag aag ggt gac acc ttc tcc tgc atg gtg ggc cac gag gcc ctt 1392
 Trp Lys Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu
 450 455 460

 ccg ctg gcc ttc aca cag aag acc atc gac cgc ttg gcg ggt aaa ccc 1440
 Pro Leu Ala Phe Thr Gln Lys Thr Ile Asp Arg Leu Ala Gly Lys Pro
 465 470 475 480

 acc cat gtc aat gtg tct gtt gtc atg gcg gag gtg gac ggc acc tgc 1488
 Thr His Val Asn Val Ser Val Val Met Ala Glu Val Asp Gly Thr Cys
 485 490 495

 tac tga 1494
 Tyr

 <210> 2
 <211> 497
 <212> PRT
 <213> Herpes simplex virus

 <400> 2
 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
 1 5 10 15

 Val His Cys Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
 20 25 30

Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Ser Phe
 35 40 45
 Ser Ser Tyr Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
 50 55 60
 Glu Trp Met Gly Gly Leu Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala
 65 70 75 80
 Gln Lys Phe Gln Asp Arg Leu Thr Ile Thr Ala Asp Val Ser Thr Ser
 85 90 95
 Thr Ala Tyr Met Gln Leu Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met
 100 105 110
 Tyr Tyr Cys Ala Arg Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala
 115 120 125
 Gly Gly Leu Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 130 135 140
 Ala Ser Pro Thr Ser Pro Lys Val Phe Pro Leu Ser Leu Cys Ser Thr
 145 150 155 160
 Gln Pro Asp Gly Asn Val Val Ile Ala Cys Leu Val Gln Gly Phe Phe
 165 170 175
 Pro Gln Glu Pro Leu Ser Val Thr Trp Ser Glu Ser Gly Gln Gly Val
 180 185 190
 Thr Ala Arg Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr
 195 200 205
 Thr Thr Ser Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly
 210 215 220
 Lys Ser Val Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp
 225 230 235 240
 Val Thr Val Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro
 245 250 255
 Ser Thr Pro Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser
 260 265 270
 Leu His Arg Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu Ala Asn
 275 280 285
 Leu Thr Cys Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe
 290 295 300
 Thr Trp Thr Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu
 305 310 315 320
 Arg Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys
 325 330 335
 Ala Glu Pro Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr
 340 345 350
 Pro Glu Ser Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn

355	360	365
Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu		
370	375	380
Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser		
385	390	395
Pro Lys Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro		
405	410	415
Arg Glu Lys Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly		
420	425	430
Thr Thr Thr Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp		
435	440	445
Trp Lys Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu		
450	455	460
Pro Leu Ala Phe Thr Gln Lys Thr Ile Asp Arg Leu Ala Gly Lys Pro		
465	470	475
Thr His Val Asn Val Ser Val Val Met Ala Glu Val Asp Gly Thr Cys		
485	490	495

Tyr

<210> 3
<211> 57
<212> DNA
<213> Artificial sequence

<220>
<223> Heavy chain signal peptide

<220>
<221> CDS
<222> (1)..(57)
<223>

<400> 3
atg gga tgg agc tgg atc ttt ctc ttc ctc ctg tca gga gct gca ggt 48
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
1 5 10 15

gtc cat tgc 57
Val His Cys

<210> 4
<211> 19
<212> PRT
<213> Artificial sequence

<220>
<223> Heavy chain signal peptide

<400> 4

Met Gly Trp Ser Trp Ile Phe Leu Leu Ser Gly Ala Ala Gly
 1 5 10 15

Val His Cys

<210> 5

<211> 1368

<212> DNA

<213> Artificial sequence

<220>

<223> Mature heavy chain sequence

<220>

<221> CDS

<222> (1)..(1368)

<223>

<400> 5

cag gtt cag ctc gtg cag tca ggt gct gag gtg aag aag cct ggc tcc	48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser	
1 5 10 15	

tcg gtg aag gtc tcc tgc aag gct tct gga ggt tcc ttc agc tcc tat	96
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr	
20 25 30	

gct atc aac tgg gtg agg caa gct cct gga caa ggg ctt gag tgg atg	144
Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met	
35 40 45	

gga ggg ctc atg cct atc ttt ggg aca aca aac tac gcg cag aag ttc	192
Gly Gly Leu Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe	
50 55 60	

cag gac agg ctc acg att acc gcg gac gta tcc acg agt aca gcc tac	240
Gln Asp Arg Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr	
65 70 75 80	

atg caa ctg agc ggc ctg aca tat gaa gac acg gcc atg tat tac tgt	288
Met Gln Leu Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys	
85 90 95	

gcg aga gtt gcc tac atg ctt gaa cct acc gtc act gca ggt ggt ttg	336
Ala Arg Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu	
100 105 110	

gac gtc tgg ggc caa ggg acc ttg gtc acc gtc tcc tcc gca tcc ccg	384
Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Pro	
115 120 125	

acc agc ccg aag gtc ttc ccg ctg agc ctc tgt agc acc cag cca gat	432
Thr Ser Pro Lys Val Phe Pro Leu Ser Ieu Cys Ser Thr Gln Pro Asp	
130 135 140	

ggg aac gtg gtc atc gcc tgc ctg gtc cag ggc ttc ttc cct cag gag	480
Gly Asn Val Val Ile Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu	
145 150 155 160	

cca ctc agt gtg acc tgg agc gaa agc gga cag ggc gtg acc gcc agg	528
---	-----

Pro Leu Ser Val Thr Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg			
165	170	175	
aac ttc cca ccc agc cag gat gcc tcc gga gac ctg tac acc acg tcc			576
Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser			
180	185	190	
agc cag ctg acc ctt ccg gcc aca cag tgc cta gcg ggc aag tcc gtg			624
Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys Ser Val			
195	200	205	
aca tgc cac gtg aag cac tac acg aat ccc agc cag gat gtg act gtg			672
Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val			
210	215	220	
ccc tgc cca gtt ccc tca act cca cct acc cca tct ccc tcg act cca			720
Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro			
225	230	235	240
cct acc cca tct ccc tca tgc tgc cac ccc agg ctg tca ctg cac agg			768
Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg			
245	250	255	
cct gcc ctc gag gac ctg ctc tta ggt tcg gaa gcg aac ctc acg tgc			816
Pro Ala Leu Glu Asp Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys			
260	265	270	
aca ctc acc ggc ctg aga gat gcg tca ggt gtc acc ttc acc tgg acg			864
Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr			
275	280	285	
ccc tca agt ggt aag agc gct gtt caa ggc cca cct gag cgt gac ctc			912
Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu Arg Asp Leu			
290	295	300	
tgt ggc tgc tac agc gtg tcc agt gtc ctt ccg ggc tgt gcc gag cct			960
Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala Glu Pro			
305	310	315	320
tgg aat cat ggg aag acc ttc act tgc act gct gcc tac ccc gag agc			1008
Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser			
325	330	335	
aag acc ccg cta acc gcc acc ctc tcg aaa tcc ggc aac aca ttc cgg			1056
Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg			
340	345	350	
ccc gag gtc cac ctg ctg ccg ccg tcg gag gag ctg gcc ctg aac			1104
Pro Glu Val His Leu Leu Pro Pro Ser Glu Glu Leu Ala Leu Asn			
355	360	365	
gag ctg gtg acg ctg acg tgc ctg gcg cgc ggc ttc agc ccc aag gac			1152
Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp			
370	375	380	
gtg ctg gtt cgc tgg ctg cag ggc tca cag gag ctg cct agg gag aag			1200
Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys			
385	390	395	400
tac ctg act tgg gca tcc cgg cag gag ccc agc caa ggc acc acc acc			1248
Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr			

405	410	415	
			1296
ttc gct gtg acc tcg ata ctg cgc gtg gca gcc gag gac tgg aag aag Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys 420 425 430			
			1344
ggt gac acc ttc tcc tgc atg gtg ggc cac gag gcc ctt ccg ctg gcc Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala 435 440 445			
			1368
ttc aca cag aag acc atc gac cgc Phe Thr Gln Lys Thr Ile Asp Arg 450 455			
 <210> 6 <211> 456 <212> PRT <213> Artificial sequence			
 <220>			
<223> Mature heavy chain sequence			
 <400> 6 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15			
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr 20 25 30			
Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45			
Gly Gly Leu Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe 50 55 60			
Gln Asp Arg Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr 65 70 75 80			
Met Gln Leu Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95			
Ala Arg Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu 100 105 110			
Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Pro 115 120 125			
Thr Ser Pro Lys Val Phe Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp 130 135 140			
Gly Asn Val Val Ile Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu 145 150 155 160			
Pro Leu Ser Val Thr Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg 165 170 175			
Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser 180 185 190			
Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys Ser Val			

195	200	205
Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val		
210	215	220
Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro		
225	230	235
240		
Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg		
245	250	255
Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys		
260	265	270
Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr		
275	280	285
Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu Arg Asp Leu		
290	295	300
Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala Glu Pro		
305	310	315
320		
Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser		
325	330	335
Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg		
340	345	350
Pro Glu Val His Leu Leu Pro Pro Ser Glu Glu Leu Ala Leu Asn		
355	360	365
Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp		
370	375	380
Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys		
385	390	395
400		
Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr		
405	410	415
Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys		
420	425	430
Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala		
435	440	445
Phe Thr Gln Lys Thr Ile Asp Arg		
450	455	

<210> 7
 <211> 69
 <212> DNA
 <213> Artificial sequence

 <220>
 <223> heavy chain tailpiece

 <220>
 <221> CDS

<222> (1)...(69)
<223>

<400> 7
ttg gcg ggt aaa ccc acc cat gtc aat gtg tct gtt gtc atg gcg gag 48
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
1 5 10 15

gtg gac ggc acc tgc tac tga 69
Val Asp Gly Thr Cys Tyr
20

<210> 8
<211> 22
<212> PRT
<213> Artificial sequence

<220>
<223> heavy chain tailpiece

<400> 8
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
1 5 10 15
Val Asp Gly Thr Cys Tyr
20

<210> 9
<211> 702
<212> DNA
<213> Herpes simplex virus

<220>
<221> CDS
<222> (1)...(702)
<223>

<220>
<221> misc_feature
<223> HSV light chain sequence

<400> 9
atg gga tgg tcc tgg atc ttt ctc ttc ctt ctg tca gga gct gca ggt 48
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
1 5 10 15

gtc cac tgc gag atc gtg ctc acg cag tct cca ggc acc ctg tct ttg 96
Val His Cys Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Ieu Ser Leu
20 25 30

tcg cca ggg gaa cgt gcc acc ctc tcc tgc cgg gcc agt cag tcc gtt 144
Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val
35 40 45

tcc agc gcg tac ctt gcc tgg tac cag cag aag cct ggc caa gct ccc 192
Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60

agg ctc ctc atc tat ggt gcg tcc agc agg gct act ggc att cca gac 240

Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp			
65	70	75	80
cgc ttc tca ggc agt ggg tct ggg aca gac ttc acg ctc acc att agc			288
Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser			
85	90	95	
agg ctg gaa cct gag gat ttt gca gtg tac tac tgt cag cag tat ggt			336
Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly			
100	105	110	
cgc tca ccc acg ttc ggc cag ggg acc aag gtg gag atc aag cgc act			384
Arg Ser Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr			
115	120	125	
gtg gct gca ccg tcg gtc ttc ata ttc ccg cca tcc gat gag cag ctg			432
Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu			
130	135	140	
aag tct ggc act gcc tct gtt gtg tgc ctg ctg aat aac ttc tat ccg			480
Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro			
145	150	155	160
aga gag gcg aag gta cag tgg aag gtg gat aac gcc ctc caa tcg ggt			528
Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly			
165	170	175	
aac tcc caa gag tcc gtt aca gag cag gac agc aag gac agc acc tac			576
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr			
180	185	190	
agc ctc agc aac acc ttg acg ctg agc aaa gcg gac tac gag aaa cac			624
Ser Leu Ser Asn Thr Ile Thr Leu Ser Lys Ala Asp Tyr Glu Lys His			
195	200	205	
aag gtc tac gcc tgc gaa gtc acc cat caa ggc ctg cgc tcg ccc gtc			672
Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val			
210	215	220	
aca aag agc ttc aac cgg gga gag tgt tga			702
Thr Lys Ser Phe Asn Arg Gly Glu Cys			
225	230		
<210> 10			
<211> 233			
<212> PRT			
<213> Herpes simplex virus			
<400> 10			
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly			
1	5	10	15
Val His Cys Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu			
20	25	30	
Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val			
35	40	45	
Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro			
50	55	60	

Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp
 65 70 75 80
 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
 85 90 95
 Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly
 100 105 110
 Arg Ser Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr
 115 120 125
 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu
 130 135 140
 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro
 145 150 155 160
 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
 165 170 175
 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
 180 185 190
 Ser Leu Ser Asn Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His
 195 200 205
 Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val
 210 215 220
 Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230

<210> 11
 <211> 57
 <212> DNA
 <213> Artificial sequence

 <220>
 <223> Light chain signal peptide

<220>
 <221> CDS
 <222> (1) .. (57)
 <223>

 <400> 11
 atg gga tgg tcc tgg atc ttt ctc ttc ctt ctg tca gga gct gca ggt 48
 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
 1 5 10 15

 gtc cac tgc 57
 Val His Cys

<210> 12
 <211> 19
 <212> PRT
 <213> Artificial sequence

<220>

<223> Light chain signal peptide

<400> 12

Met	Gly	Trp	Ser	Trp	Ile	Phe	Leu	Phe	Leu	Leu	Ser	Gly	Ala	Ala	Gly
1				5				10				15			

Val His Cys

<210> 13

<211> 642

<212> DNA

<213> Artificial sequence

<220>

<223> Mature light chain sequence

<220>

<221> CDS

<222> (1)...(642)

<223>

<400> 13

gag	atc	gtg	ctc	acg	cag	tct	cca	ggc	acc	ctg	tct	ttg	tcg	cca	ggg
Glu	Ile	Val	Leu	Thr	Gln	Ser	Pro	Gly	Thr	Leu	Ser	Leu	Ser	Pro	Gly
1			5						10				15		

48

gaa	cgt	gcc	acc	ctc	tcc	tgc	cg	gcc	agt	cag	tcc	gtt	tcc	agc	g
Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	Val	Ser	Ser	Ala
20			25						30						

96

tac	ctt	gcc	tgg	tac	cag	cag	aag	cct	ggc	caa	gct	ccc	agg	ctc	ctc
Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu
35			40						45						

144

atc	tat	gg	tcc	agc	agg	gct	act	ggc	att	cca	gac	cgc	ttc	tca	
Ile	Tyr	Gly	Ala	Ser	Ser	Arg	Ala	Thr	Gly	Ile	Pro	Asp	Arg	Phe	Ser
50			55			60									

192

ggc	agt	ggg	tct	ggg	aca	gac	ttc	acg	ctc	acc	att	agc	agg	ctg	gaa
Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Arg	Leu	Glu
65			70			75			80						

240

cct	gag	gat	ttt	gca	gtg	tac	tac	tgt	cag	cag	tat	gg	cgc	tca	ccc
Pro	Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr	Gly	Arg	Ser	Pro
85			90			95									

288

acg	tcc	ggc	cag	ggg	acc	aag	gtg	gag	atc	aag	cgc	act	gtg	gct	gca
Thr	Phe	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr	Val	Ala	Ala		
100			105			110									

336

ccg	tcc	gtc	tcc	ata	ttc	ccg	cca	tcc	gat	gag	cag	ctg	aag	tct	ggc
Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly
115			120			125									

384

act	gcc	tct	gtt	gtg	tgc	ctg	ctg	aat	aac	ttc	tat	ccg	aga	gag	g
Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala
130			135			140									

432

aag gta cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc caa Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160	480
gag tcc gtt aca gag cag gac agc aag gac acc tac agc ctc agc Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175	528
aac acc ttg acg ctg agc aaa gcg gac tac gag aaa cac aag gtc tac Asn Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190	576
gcc tgc gaa gtc acc cat caa ggc ctg cgc tcg ccc gtc aca aag agc Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val Thr Lys Ser 195 200 205	624
ttc aac cgg gga gag tgt Phe Asn Arg Gly Glu Cys 210	642
<210> 14	
<211> 214	
<212> PRT	
<213> Artificial sequence	
<220>	
<223> Mature light chain sequence	
<400> 14	
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15	
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ala 20 25 30	
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45	
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60	
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80	
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Pro 85 90 95	
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110	
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125	
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140	
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160	
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser	

165

170

175

Asn Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val Thr Lys Ser
 195 200 205

Phe Asn Arg Gly Glu Cys
 210

<210> 15

<211> 9144

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB635 (ubiH) sequence

<400> 15

tcgcgcgtt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccc	tcagggcgcg	tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgt	ctgagagtgc	180
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	240
attcgccatt	caggctgcgc	aactgttggg	aaggcgatc	ggtgcgggccc	tcttcgctat	300
tacgccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360
tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	acaccggtgt	gatcatggc	420
cgcgattaaa	aatcccaatt	atatttggtc	taatttagtt	tggtatttgag	taaaacaaat	480
tcgaaccaaa	ccaaaatata	aatatatagt	ttttatataat	atgcctttaa	gacttttat	540
agaattttct	ttaaaaaata	tctagaaata	tttgcgactc	ttctggcatg	taatatttcg	600
ttaaatatga	agtgcgtccat	ttttattaac	tttaaataat	tggttgtacg	atcactttct	660
tatcaagtgt	tactaaaatg	cgtcaatctc	tttggcttc	catattcata	tgtcaaaatc	720
tatcaaaatt	cttatatatc	ttttcgaat	ttgaagtgaa	atttcgataa	tttaaaatta	780
aatagaacat	atcattattt	aggtatcata	ttgattttta	tacttaatta	ctaaatttgg	840
ttaacttga	aagtgtacat	caacgaaaaaa	ttagtcaaac	gactaaaata	aataaatatc	900
atgtgttatt	aagaaaattc	tcctataaga	atatttaat	agatcatatg	tttgaaaaaa	960
aaattaattt	ttactaacac	atatatttac	ttatcaaaaaa	tttgacaaag	taagattaaa	1020
ataatattca	tctaacaaaa	aaaaaaccag	aaaatgctga	aaaccggca	aaaccgaacc	1080
aatccaaacc	gatatagttg	gtttggtttg	atttgatat	aaaccgaacc	aactcggtcc	1140
atttgcaccc	ctaattcataa	tagtttaat	atttcaagat	attattaagt	taacgtgtc	1200

aatatcctgg aaattttgca aatgaatca agcctatatg gctgtatat gaatttaaaa 1260
 gcagctcgat gtgggtgtaa tatgttatcc acttgattct aaaaaaatat cccaaagtatt 1320
 aataatttct gcttaggaaga aggttagcta cgatttacag caaagccaga atacaagaa 1380
 ccataaagtg attgaagctc gaaatatacg aaggaacaaa tattttaaa aaaatacgca 1440
 atgacttggaa acaaaagaaa gtgatatatatt ttttgttctt aaacaagcat cccctctaaa 1500
 gaatggcagt ttcccttgc atgtactat tatgtccct tcgttacaaa aattttggac 1560
 tactattggg aacttcttct gaaaatagtgc gccaccgctt aattaacacc ggtggcccgg 1620
 gcaagcggcc gcattccggg gaagctaggc cacggggcc cgcctgcagg ggaagcttgc 1680
 atgcctgcag atccccgggg atcctctaga gtgcacctgc agtgcagcgt gaccggctcg 1740
 tgccctctc tagagataat gagcattgca tgtctaagtt ataaaaaattt accacatatt 1800
 tttttgtca cacttgggg aagtgcagtt tatctatctt tatacatata tttaaacttt 1860
 aatctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 1920
 aatgaacag tttagacatgg tctaaaggac aattgagttt tttgacaaca ggactctaca 1980
 gtttatctt ttttagtgc atgtgttctc cttttttttt gcaaatagtc tcacctatat 2040
 aatacttcat ccattttattt agtacatcca tttagggttt agggtaatg gttttatag 2100
 actaattttt ttagtacatc tattttattc tatttttagcc tctaaattaa gaaaactaaa 2160
 actctattttt agttttttta ttaataatt tagatataaa atagaataaa ataaagtgc 2220
 taaaaattaa acaaataccccc tttaagaat taaaaaaact aaggaaacat ttttcttgc 2280
 tcgagtagat aatgccagcc tttttaaacgc cgtcgacgag tctaacggac accaaccagc 2340
 gaaccagcag cgtcgctcg ggccaagcga agcagacggc acggcatctc tgcgtgcc 2400
 tctggacccc tctcgagagt tccgctccac cggtggactt gtcggctgt cggcatccag 2460
 aaattgcgtg gggggcgcc agacgtgagc cggcacggca ggccgcctcc tcctcccttc 2520
 acggcacggc agctacgggg gattccttcc ccacccgtcc ttgcgtttcc ctccctcgcc 2580
 cggcgtaata aatagacacc ccctccacac cctctttccc caacctcggtt ttgttcggag 2640
 cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gttcaaggt 2700
 acggcgctcg tctccccccc ccccccctct ctaccttctc tagatcgccg ttccggcaca 2760
 tgcatggta gggcccggtt gttctacttc ttttcatgtt ttttttagat ccgtgtttgt 2820
 gtttagatccg tgctgtacac ggatgcgacc tgtacgtcag acacgttctg 2880
 attgctaact tgccagtggtt tttttttggg gaatcctggg atggctctag ccgttccgca 2940
 gacgggatcg atttcatgtat tttttttgtt tcgttgcata gggtttgggtt tgcccttttc 3000
 ctttatttca atatatgccc tgcaacttgc ttgtcgggtca ttttttcatg cttttttttg 3060

tcttggttgt	gatgatgtgg	tctgggtggg	cggtcgttct	agatcggagt	agaattctgt	3120
ttcaaaactac	ctggtggatt	tattaatttt	ggatctgtat	gtgtgtgcc	tacatattca	3180
tagttacgaa	ttgaagatga	tggatggaaa	tatcgatcta	ggataggtat	acatgttgat	3240
gcgggtttta	ctgatgcata	tacagagatg	cttttgc	gcttggttgt	gatgatgtgg	3300
tgtggttggg	cggtcgttca	ttcggttctag	atcggagtag	aatactgttt	caaactacct	3360
ggtgtattta	ttaattttgg	aactgtatgt	gtgtgtcata	catcttcata	gttacgagtt	3420
taagatggat	ggaaatatcg	atctaggata	ggtatacatg	ttgatgtggg	ttttactgat	3480
gcatatacat	gatggcatat	gcagcatcta	ttcatatgct	ctaacc	ttga gtacctatct	3540
attataataa	acaagtatgt	tttataatta	ttttgatctt	gataacttg	gatgatggca	3600
tatgcagcag	ctatatgtgg	attttttag	ccctgccttc	atacgctatt	tatttgcttgc	3660
gtactgttcc	ttttgtcgat	gctcaccc	ttgtttgggt	ttacttctgc	agggtacccc	3720
cggggtcgac	catggccaac	aagcacctga	gcctctccct	cttcctcg	tcctcg	3780
tctccgc	cctcgcc	agcc	agggttc	agtc	agggtggct	3840
acgc	ctcggt	gaag	gttc	cctg	agg	3900
ctatcaactg	ggtgcgac	gccc	ttgg	gtggatggg	gggc	3960
ctatcttgg	gacaacaaac	tacgcac	aga	ttcc	agg	4020
acgtatccac	gagtacagcc	tacatgc	tgag	ggc	ctac	4080
tgtattactg	tgcgagagtt	gcctat	tgg	aa	ctac	4140
acgtctgggg	caaagg	acc	acgt	cc	ttgg	4200
tctccgc	gagc	cc	atcc	cc	gg	4260
tccagg	cttcccc	gag	cc	atc	gg	4320
tgacc	aaact	ccc	ac	cc	gg	4380
gccag	cct	cc	ac	cc	gg	4440
agcact	aaat	cc	ca	cc	gg	4500
ctacccatc	tcc	cc	at	cc	gg	4560
cactgcac	acc	gg	cc	ct	gg	4620
cactgac	cct	gg	cc	at	gg	4680
agagcg	tgt	gg	cc	tg	gg	4740
tcctgc	cc	gg	cc	ac	gg	4800
accccgag	ca	ag	cc	cc	gg	4860
tc	aa	ac	cc	cc	gg	
ac	cc	cc	cc	cc	gg	

ccgaggtcca cctgctgccg ccgcgcgtcg aggagctggc cctgaacgag ctggtgacgc 4920
 tgacgtgcct ggcacgtggc ttcagccccca aggacgtgct ggttcgctgg ctgcagggggt 4980
 cacaggagct gccccgcgag aagtacctga cttggcgtatc cccgcaggag cccagccagg 5040
 gcaccaccac cttcgctgtg accagcatac tgccgcgtggc agccgaggac tggaagaagg 5100
 gggacacctt ctccctgcatt gtggccacg aggccctgcc gctggcccttc acacagaaga 5160
 ccatcgaccg cttggcggtt aaacccaccc atgtcaatgt gtctgttgc atggcgagg 5220
 tggacggcac ctgctactga gttaaactga gggcactgaa gtcgcttgcgt gtgtgaatt 5280
 gtttgtatg ttgggtggcgt attttgtta aataagtaag catggctgtg attttatcat 5340
 atgatcgatc ttgggggttt tatttaaacac attgtaaaat gtgtatctat taataactca 5400
 atgtataaga tgtgttcatt ctgcgttgc catagatctg cttatgtac ctgtgtatgtt 5460
 ttgactccaa aaacccaaaat cacaactcaa taaaactcatg gaatatgtcc acctgtttct 5520
 tgaagagttc atctaccatt ccagttggca tttatcgttgc ttgcagcggc gctgtgtttt 5580
 gtaacataac aattgttacg gcatatatcc aacggccggc cttaggcacg gtggccagat 5640
 ccactagttc tagagcggcc gcttaattaa atttaaatgt ttaaacttagg ctcctgcag 5700
 ggtttaact tgccgtggcc tattttcaga agaagttccc aatagtagtc caaaattttt 5760
 gtaacgaagg gacataataa gttacatgca aaggaaaaact gccattctt agagggatg 5820
 cttgtttaag aacaaaaaat atatcacttt cttttgttcc aagtcatgtc gtatttttt 5880
 aaaaatattt gttccttcgt atatttcgag cttcaatcac tttatggtc tttgtattct 5940
 ggctttgctg taaatcgtag ctaaccccttct tcctagcaga aattattaat acttggata 6000
 tttttttaga atcaagtaaa ttacatatta ccaccacatc gagctgctt taaattcata 6060
 ttacagccat ataggcttgc ttcattttgc aaaatttcca ggatattgac aacgttaact 6120
 taataatatc ttgaaatattt aaagcttata tgattaggg tgcaaattgga ccgagttgg 6180
 tcggtttata tcaaaatcaa accaaaccaa ctatatcggt ttggattggc tcggtttgc 6240
 cgggtttca gcattttctg gttttttttt tgtagatga atattatattt aatcttactt 6300
 tgtcaaattt ttgataagta aatataatgtt ttagtaaaaa ttaattttt ttacaaacat 6360
 atgatctatt aaaaatattct tataggagaa ttttcttaat aacacatgtat atttatttt 6420
 ttttagtcgtt tgactaattt ttcgttgcgt tacactttca aagttaacca aatttagtaa 6480
 ttaagtataa aaatcaatat gatacctaaa taatgatatg ttctatttaa ttttaaatta 6540
 tcgaaatttc acttcaaattt cgaaaaagat atataagaat tttgatagat tttgacat 6600
 gaatatggaa gaacaaagag attgacgcatttttagtaaca cttgataaga aagtgtatcgt 6660
 acaaccaattt atttaaagtt aataaaaaatg gacacttca tatttaacga aatattacat 6720

gccagaagag tcgcaaataat ttcttagatat tttttaaaga aaattctata aaaagtctta	6780
aaggcatata tataaaaact atatatttat attttggttt ggttcgaatt tgtttactc	6840
aataccaaac taaatttagac caaatataat tggattttt aatcgccgc cactagtcac	6900
cggtgtgctt ggcgtaatca tggtcatalogt gtttcctgt gtgaaattgt tatccgctca	6960
caattccaca caacatacga gccggaagca taaagtgtaa agcctgggt gcctaattgag	7020
ttagactaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt	7080
cgtgcagct gcattaatga atcggccaac gcgcggggag aggccgtttg cgtattggc	7140
gctctccgc ttcctcgctc actgactcgc tgcgctcggt cggtcggtcg cggcgagcgg	7200
tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa	7260
agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg	7320
cgttttcca taggctccgc cccccctgacg agcatcacaa aaatcgacgc tcaagtcaga	7380
ggtggcgaaa cccgacagga ctataaagat accaggcggtt tccccctgga agctccctcg	7440
tgcgctctcc tttccgacc ctgcccctta ccgataacct gtccgcctt ctcccttcgg	7500
gaagcgtggc gctttctcat agtcacgct gtaggtatct cagttcggtg taggtcggtc	7560
gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg	7620
gtaactatcg tcttgagtcc aacccgtaa gacacgactt atcgccactg gcagcagcca	7680
ctggtaacag gattagcaga gcgaggtatg taggcgggtc tacagagttc ttgaagtgg	7740
ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag	7800
ttacccctcg aaaaagagtt ggtagctttt gatccggcaa acaaaccacc gctggtagcg	7860
gtgggtttttt tgtttgcaag cagcagatta cgccgcagaaa aaaaggatct caagaagatc	7920
ctttgatctt ttctacgggg tctgacgctc agtggAACGA aaactcacgt taagggattt	7980
tggtcatgag attatcaaaa aggatctca cctagatcct tttaaattaa aaatgaagtt	8040
ttaaatcaat cttaaagtata tätgagtaaa cttggctctga cagttaccaa tgcttaatca	8100
gtgagggcacc tatctcagcg atctgtctat ttgcgttcatc catagttgcc tgactccccg	8160
tcgtgttagat aactacgata cgggaggggct taccatctgg ccccaagtgc gcaatgatac	8220
cgcgcagaccc acgctcaccc gctccagatt tatcagcaat aaaccagcca gccggaagg	8280
ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc	8340
gggaagctag agtaagtagt tcgcccgtta atagttgcg caacgttggtt gccattgcta	8400
caggcatcggt ggtgtcacgc tcgtcggtt gtaggtcggttcc attcagtcgc ggttccaaac	8460
gatcaaggcg agttacatga tccccatgt tggcaaaaaa agcggttagc tccttcggc	8520

ctccgatcg tgtcagaagt aagttggccg cagtgttac actcatggt atggcagcac	8580
tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact	8640
caaccaagtc attctgagaa tagtgtatgc ggccaccgag ttgctcttgc ccggcgtcaa	8700
tacgggataa taccgcgcc a catagcagaa cttaaaaagt gctcatcatt ggaaaacgtt	8760
cttcggggcg aaaactctca aggatcttac cgctgtttag atccagttcg atgtaaccca	8820
ctcgtgcacc caactgatct tcagcatctt ttacttcac cagcgttct gggtgagcaa	8880
aaacaggaag gcaaaatgcc gcaaaaaagg gaataaggc gacacggaaa tggtgaatac	8940
tcatactctt ccttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg	9000
gatacatatt tgaatgttatt tagaaaaata aacaaatagg gggtccgcgc acattcccc	9060
gaaaagtgcc acctgacgto taagaaacca ttattatcat gacattaacc tataaaaata	9120
ggcgtatcac gaggcccttt cgtc	9144

<210> 16
<211> 8352
<212> DNA
<213> Artificial sequence

<220>
<223> pDAB636 (ubil) sequence

<400> 16	
tcgcgcgtt cgggtatgac ggtaaaaacc tctgacacat gcagctcccg gagacggta	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcaggcgcc	240
attcgccatt caggctgcgc aactgttggg aaggcgatc ggtgcgggcc tcttcgttat	300
tacgccagct ggcgaaagggg ggatgtgctg caaggcgatt aagttggta acgccagggt	360
tttcccgatc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatggc	420
cgcgattaaa aatcccaatt atatggtc taatttatgg tggatttgag taaaacaaat	480
tcgaaccaaa cccaaatata aatataatgt ttttatataat atgcctttaa gacttttat	540
agaattttct taaaaataa tctagaaata tttgcactc ttctggcatg taatatttcg	600
ttaaatatga agtgcctcat ttttattaac tttaaataat tggttgtacg atcactttct	660
tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaaatc	720
tatcaaaatt ctatataatc ttttcgaat ttgaagtgaa atttcgataa tttaaaaatta	780
aatagaacat atcattatgtt aggtatcata ttgattttta tacttaatta ctaaatttgg	840
ttaacttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaaatatc	900

atgtgttatt aagaaaattc tcctataaga atatttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaacctggca aaaccgaacc	1080
aatccaaacc gatatagttg gtttggttt attttgatat aaaccgaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagcttaat attcaagat attattaagt taacgttgtc	1200
aatatcctgg aaattttgc aaatgaatca agcctatatg gctgtaatat gaatttaaaa	1260
gcagctcgat gtgggtgtaa tatgtaattt acttgattct aaaaaaatat cccaaagtatt	1320
aataattctct gcttaggaaga aggttagcta cgatttacag caaagccaga atacaagaa	1380
ccataaaagtg attgaagctc gaaatatacg aaggaacaaa tattttaaa aaaatacgca	1440
atgacttgg acaaaaagaaa gtgatatatatt ttttgttctt aaacaagcat cccctctaaa	1500
gaatggcagt tttcctttgc atgtaactat tatgctccct tcgttacaaa aattttggac	1560
tactattggg aacttcttct gaaaatagtg gccaccgctt aattaacacc ggtggcccg	1620
gcaaggccc gcattcccg gaagcttaggc caccgtggcc cgccgcagg ggaagcttgc	1680
atgcctgcag atccccgggg atcctctaga gtcgacctgc agtgcagcgt gaccggcgt	1740
tgcctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt	1800
tttttgtca cacttggttt aagtgcagtt tatctatctt tatacatata tttaaacttt	1860
aatctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat	1920
aaatgaacag ttagacatgg tctaaaggac aattgagttat tttgacaaca ggactctaca	1980
gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagtc tcacctatat	2040
aataacttcat ccattttatt agtacatcca tttagggttt agggtaatg gttttatag	2100
actaattttt ttagtacatc tattttattc tatttttagcc tctaaattaa gaaaactaaa	2160
actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac	2220
taaaaattaa acaaataccc tttaagaat taaaaaaact aaggaaacat ttttcttgtt	2280
tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac accaaccagc	2340
gaaccaggcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc	2400
tctggacccc tctcgagagt tccgctccac cgttggactt gtcggctgt cggcatccag	2460
aaattgcgtg goggagcggc agacgtgagc cggcacggca ggcggcctcc tcctcctctc	2520
acggcacggc agctacgggg gattccttcc ccaccgctcc ttgcctttcc ctccctcgcc	2580
cggcgtaata aatagacacc ccctccacac cctcttccc caacctcggt ttgttcggag	2640
cgcacacaca cacaaccaga tctccccaa atccacccgt cgccacctcc gcttcaaggt	2700

acggccgctcg	tcctcccccc	ccccccctct	ctaccttctc	tagatcgcg	ttccggtcca	2760	
tgcatggtta	gggccccgta	gttctacttc	tgttcatgtt	tgtgttagat	ccgtgtttgt	2820	
gttagatccg	tgctgctagc	gttcgtacac	ggatgcgacc	tgtacgtcag	acacgttctg	2880	
attgctaact)	tgccagtgtt	tctcttggg	gaatcctggg	atggctctag	ccgttccgca	2940
gacgggatcg	atttcatgtat	ttttttgtt	tcgttgcata	gggtttgtt	tgccctttc	3000	
ctttatttca	atatatgccg	tgcacttgtt	tgtcgggtca	tctttcatg	ctttttttg	3060	
tcttggtgt	gatgatgtgg	tctgggtggg	cggtcgttct	agatcggagt	agaattctgt	3120	
ttcaaactac	ctgggtggatt	tattaatttt	ggatctgtat	gtgtgtgcc	tacatattca	3180	
tagttacgaa	ttgaagatga	tggatggaaa	tatcgatcta	ggataggtat	acatgttgat	3240	
gcggggttta	ctgatgcata	tacagagatg	ctttttgttc	gcttggttgt	gatgatgtgg	3300	
tgtgggtggg	cggtcgttca	ttcggttctag	atcggagtag	aatactgtt	caaactacct	3360	
ggtgtattta	ttaattttgg	aactgtatgt	gtgtgtcata	catcttcata	gttacgagtt	3420	
taagatggat	ggaaatatcg	atctaggata	ggtatacatg	ttgatgtggg	tttactgtat	3480	
gcataatacat	gatggcatat	gcagcatcta	ttcatatgct	ctaaccctga	gtacctatct	3540	
attataataa	acaagtatgt	tttataatta	tttgatctt	gataacttg	gatgatggca	3600	
tatgcagcag	ctatatgtgg	attttttag	ccctgccttc	atacgctatt	tattgttttg	3660	
gtactgtttc	ttttgtcgat	gctcacccctg	ttgtttggtg	ttacttctgc	agggtacccc	3720	
cggggtcgac	catggccaac	aagcacctga	gcctctccct	cttcctcg	ctcctcgccc	3780	
tctccgcctc	cctcgccagc	ggcgaaattg	tgctcacgca	gtctccaggc	accctgttct	3840	
tgtctccagg	ggaaaaagcc	accctctct	gcagggccag	tcagagtgtt	agtacgcct	3900	
acttagcctg	gtaccagcag	aaacctggcc	aggctcccag	gctcctcatc	tatggtgc	3960	
ccagcagggc	cactggcattc	ccagacaggt	tcagtggcag	tgggtctggg	acagacttca	4020	
ctctcaccat	cagcagactg	gaacctgaag	atttgcagt	gtattactgt	cagcagttatg	4080	
gtaggtcacc	cactttcggc	ggagggacca	aggtggagat	caaacgaact	gtggctgcac	4140	
catctgttct	catcttccc	ccatctgtat	agcagttgaa	atctggaact	gcctctgttg	4200	
tgtgcctgct	gaataacttc	tatcccagag	aggccaaagt	acagtggaaag	gtggataacg	4260	
ccctccaatc	gggtaactcc	caggagagt	tcacagagca	ggacagcaag	gacagcacct	4320	
acagcctcag	caacaccctg	acgctgagca	aagcagacta	cgagaaacac	aaagtctacg	4380	
cctgcgaagt	cacccatcag	ggcctgagat	cggccgtcac	aaagagcttc	aacaggggag	4440	
agtgttgagt	taaaactgagg	gcactgaagt	cgcttgcgtgt	gctgaattgt	ttgtgtgtt	4500	
ggtggcgtat	tttggttaaa	taagtaagca	tggctgtgtat	tttatcatat	gatcgatctt	4560	

tggggtttta tttaacacat tgtaaaatgt gtatctatta ataactcaat gtataagatg	4620
tgttcattct tcggttgccca tagatctgct tatttgacct gtgatgttt gactccaaaa	4680
accaaaaatca caactcaata aactcatgga atatgtccac ctgtttcttgc aagagttcat	4740
ctaccattcc agttggcatt tacagtgtt gcagcggcgc tgtgcttgtt aacataacaa	4800
ttgttacggc atatatccaa cggccggcct aggccacggt ggccagatcc actagttcta	4860
gagcggccgc ttaattaaat ttaaatgttt aaactaggcc tcctgcaggg tttaaacttg	4920
ccgtggccta tttcagaag aagttcccaa tagtagtcca aaatttttgtt aacgaaggaa	4980
gcataatagt tacatgcaaa gaaaaactgc cattctttag agggatgct tgtttaagaa	5040
caaaaaatat atcactttct tttgttccaa gtcaattgcgtt attttttaa aaatatttgtt	5100
tccttcgtat atttcgagct tcaatcactt tatggttctt tgtattctgg ctttgcgtta	5160
aatcgtagct aaccttcttc ctagcagaaa ttattataac ttgggatatt ttttttagaat	5220
caagtaaatt acatattacc accacatcga gctgctttta aattcatatt acagccatat	5280
aggcttgatt catttgcaa aatttccagg atattgacaa cgtaactta ataatatctt	5340
gaaatattaa agctattatg attaggggtg caaatggacc gagttggttc ggtttatatc	5400
aaaatcaaac caaaccaact atatcggtt ggattggttc ggtttgccg ggttttagc	5460
attttctggt ttttttttg ttagatgaat attattttaa tcttacttttgc tcaaattttt	5520
gataagtaaa tatatgtgtt agtaaaaattt aattttttt acaaacatata gatctattaa	5580
aatattctta taggagaatt ttcttaataa cacatgatata ttattttttt tagtcgtttg	5640
actaattttt cgttgatgta cacttcaaa gttaaccaaa ttttagtaatt aagtataaaa	5700
atcaaatatga tacctaaata atgatatgtt ctatttaattt ttaaatttatac gaaatttcac	5760
ttcaaattcg aaaaagatata ataagaattt tgatagattt tgacatataatgatgaaaga	5820
acaaagagat tgacgcattt tagtaacact tgataagaaa gtgatcgac aaccaattat	5880
ttaaagttaa taaaaatgga gcacttcata tttaacgaaa tattacatgc cagaagagtc	5940
gcaaataattt ctagatattt tttaaagaaaa attctataaa aagtcttaaa ggcataatata	6000
taaaaactat atatttatattt tttgggttgg ttcaatttttgc ttttactcaa taccaaacta	6060
aatttagacca aatataatttgg ggatttttaa tcggcccca ctagtcaccg gtgtgcttgg	6120
cgtaatcatg gtcatacgctg tttcctgtgt gaaattgtta tccgctcaca attccacaca	6180
acatacggc cggaaacgata aagtgtaaag cctggggcgc ctaatgagtg agctaactca	6240
cattaattgc gttgcgtca ctgcggcgctt tccagtcggg aaacctgtcg tgccagctgc	6300
attaatgaat cggccaaacgc gggggagag gcggtttgcg tattgggcgc tcttccgctt	6360

cctcgctcac tgactcgctg cgctcggtcg ttccggctgctg gcgagcggta tcagctca 6420
 caaaggcggt aatacggtta tccacagaat caggggataa cgccaggaaag aacatgtgag 6480
 caaaaaggcca gcaaaaaggcc aggaaccgta aaaaggccgc gttgctggcg ttttccata 6540
 ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagttagagg tggcgaaacc 6600
 cgacaggact ataaaagatac caggcggttc cccttggaaag ctccctcggt cgctctcctg 6660
 ttccgaccct gccgcttacc ggataacctgt ccgcctttct cccttgcggg agcgtggcgc 6720
 tttctcatag ctcacgctgt aggtatctca gttcgggtgtaa ggtcggtcg tccaaagctgg 6780
 gctgtgtgca cgaaccccccc gttcagcccg accgctgcgc cttatccggg aactatcg 6840
 ttgagtc当地 cccggtaaga cacgacttat cgccactggc agcagccact ggttaacagga 6900
 ttagcagagc gaggtatgtaa ggccgggtgcta cagagttctt gaagtgggtgg ccttaactacg 6960
 gctacactag aaggacagta tttggtatct gcgtctgct gaagccagtt accttcggaa 7020
 aaagagttgg tagctcttga tccggcaaacc aaaccaccgc tggtagcggt ggttttttg 7080
 tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatctt ttgatcttt 7140
 ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcgtgagat 7200
 tatcaaaaag gatcttcacc tagatcctt taaattaaaa atgaagttt aaatcaatct 7260
 aaagtatata tgagtaaact tggctgaca gttaccaatg cttaatcagt gaggcaccta 7320
 tctcagcgat ctgtctattt cggtcatcca tagttgcctg actccccgtc gtgttagataa 7380
 ctacgatacg ggagggctta ccatctggcc ccagtgcgc aatgataccg cgagaccac 7440
 gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc gagcgcagaa 7500
 gtggcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg gaagctagag 7560
 taagtagttc gccagttaat agtttgcgca acgttggcgc cattgtaca ggcgtcg 7620
 tgcacgctc gtcgtttggat atggcttcat tcagctccgg ttcccaacga tcaaggcgag 7680
 ttacatgatc ccccatgttg tgcaaaaaag cggttagctc ctccggctt ccgatcg 7740
 tcagaagtaa gttggccgca gtgttatcac tcattgttat ggcagcactg cataattctc 7800
 ttactgtcat gccatccgta agatgcttt ctgtgactgg tgagttactca accaagtcat 7860
 tctgagaata gtgttatgcgg cgaccgagtt gctttgcgg ggcgtcaata cgggataata 7920
 cccgcacaca tagcagaact taaaagtgc tcattgttg aaaacgttct tcggggcgaa 7980
 aactctcaag gatcttaccg ctgttggat ccagttcgat gtaacccact cgtgcaccc 8040
 actgatcttc agcatctttt actttcacca gcgttctgg gtgagcaaaa acaggaaggc 8100
 aaaatgccgc aaaaaaggaa ataagggcga cacggaaatg ttgaataactc atactcttcc 8160
 ttttcaata ttattgaagc atttacagg gttattgtct catgagcgaa tacatattt 8220

aatgtattta gaaaaataaaa caaatagggg ttccgcgcac atttccccga aaagtgccac	8280
ctgacgtctta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga	8340
ggccctttcg tc	8352

<210> 17

<211> 12380

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB637 (ubi H+L) sequence

<400> 17

tcgcgcgttt cggtgtatgac ggtgaaaacc tctgacacat gcagctccc gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccc tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	240
attcgcatt caggctgcgc aactgttggg aaggcgatc ggtgcgggcc tcttcgttat	300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttggta acgccagggt	360
tttccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatggc	420
cgcgattaaa aatcccaatt atatttgtc taattttagtt tggtatttag taaaacaaat	480
tcgaaccaaa caaaaatata aatatatagt ttttatataat atgcctttaa gacttttat	540
agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatattcg	600
ttaaatatga agtgcgtccat ttttattaac tttaaataat tggttgtacg atcactttct	660
tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc	720
tatcaaattt cttatataatc ttttcaat ttgaagtgaa atttcgataa tttaaaattta	780
aatagaacat atcatttattt aggtatcata ttgattttta tacttaatta ctaaatttgg	840
ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc	900
atgtgttatt aagaaaaattc tcctataaga atattttat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaaccggca aaaccgaacc	1080
aatccaaacc gatatagttt gtttggttt atttgtat ataccgaaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagcttaat atttcaagat attattaagt taacgttgc	1200
aatatcctgg aaattttgca aaatgaatca agcctatatg gctgtaatat gaattaaaa	1260
gcagctcgat gtgggtgtaa tatgtaattt acttgattct aaaaaatata cccaagtatt	1320

aataatttct gctaggaaga aggttagcta cgatttacag caaagccaga atacaaagaa	1380
ccataaaagtg attgaagctc gaaaatatacg aaggaacaaa tatttttaaa aaaatacgca	1440
atgacttgga acaaaaagaaa gtgatatatt ttttgttctt aaacaaggcat cccctctaaa	1500
gaatggcagt ttcctttgc atgtaactat tatgtccct tcgttacaaa aattttggac	1560
tactattggg aacttcttct gaaaatagtg gccaccgctt aattaacacc ggtggccccgg	1620
ccgcattccc gggaaagctag gccaccgtgg cccgcctgca gggaaagctt gcatgcctgc	1680
agatccccgg ggatcctcta gagtcgacct gcagtgcagc gtgaccgggt cgtccccctc	1740
tctagagata atgagcattg catgtctaag ttataaaaaaa ttaccacata ttttttttgt	1800
cacacttgtt tgaagtgcag tttatctatc tttatacata tatttaaact ttaatctacg	1860
aataatataa tctatagtagc tacaataata tcagtgtttt agagaatcat ataaatgaac	1920
agtttagacat ggtctaaagg acaatttgagt attttgacaa caggactcta cagttttatc	1980
tttttagtgt gcatgtgttc tcctttttt ttgcaaatacg ctgcacccat ataatacttc	2040
atccatTTTA ttagtacatc catttagggt ttagggttaa tggttttat agactaattt	2100
tttttagtaca tctatTTTt tctatTTTt cctctaaatt aagaaaacta aaactctatt	2160
ttagTTTTTt tatttaataa tttagatata aaatagaata aaataaaagtg actaaaaattt	2220
aaacaaatac cctttaagaa attaaaaaaaaa ctaaggaaac attttcttg tttcgagtag	2280
ataatgccag cctgttaaac gccgtcgacg agtctaacgg acaccaacca gcgaaccagc	2340
agcgtcgctg cgggccaagc gaagcagacg gcacggcatc tctgtcgctg cctctggacc	2400
cctctcgaga gttccgctcc accgttggac ttgtccgct gtcggcatcc agaaattgcg	2460
tggcggagcg gcagacgtga gccggcacgg caggcggctt cctcttcctc tcacggcacg	2520
gcagctacgg gggattccctt tcccaccgct cttcgcttt cccttcctcg cccggcgtaa	2580
taaatagaca cccccctccac accctcttcc cccaacctcg tgggttcgg agcgcacaca	2640
cacacaacca gatctccccca aaatccaccc gtcggcacct ccgttcaag gtacgccgt	2700
cgtcctcccc cccccccctt ctctacccctt tctagatcggt cggtccggtc catgcattgt	2760
tagggccccgg tagttctact tctgttcatg tttgtgttag atccgtgttt gtgttagatc	2820
cgtgctgcta gcgttcgtac acggatgcga cctgtacgtc agacacgttc tgattgctaa	2880
cttgccagtg tttctcttttgg gggaaatccgt ggtggctct agccgttccg cagacggat	2940
cgatttcatg attttttttgg tttcggttgc taggggttgg tttggccctt tcctttatTT	3000
caatatatgc cgtgcacttg tttgtcggtt catctttca tgctttttt tgtcttggtt	3060
gtgatgatgt ggtctgggttgg ggcggtcgtt ctagatcgga gttagaattct gtttcaaact	3120
acctgggtgga ttatttaatt ttggatctgt atgtgtgtgc catacatatt catagttacg	3180

aattgaagat gatggatgga aatatcgatc taggataggt atacatgttgcgggttt	3240
tactgatgca tatacagaga tgcttttgt tcgcttggtt gtgatgtatgttgggtttg	3300
ggcggtcggtt cattcggttct agatcgaggta agaataactgt ttcaaactac ctgggtgtatt	3360
tattaattttt ggaactgttat gtgtgtgtca tacatcttca tagttacgag tttaagatgg	3420
atggaaatat cgatcttagga taggtataca tggtatgtg gggtttactg atgcatacatac	3480
atgatggcat atgcagcatac tattcatatg ctctaaccctt gagtacccat ctattataat	3540
aaacaagtat gttttataat tattttgate tcatacgcta ttatgggttgc ttgtactgtt	3600
agctatatgt ggatttttttt agccctgcct tcatacgcta ttatgggttgc ttgtactgtt	3660
tcttttgcgt atgctcaccc tggtgtttgg tggttacttct gcagggtacc cccgggggtcg	3720
accatggcca acaaggcacct gagecctctcc ctcttcctcg tgctcctcgg cctctccggcc	3780
tccctcgcca gcggccaggt tcagctcgta cagtcagggg ctgaggtgaa gaagcctggg	3840
tcctcggtga aggtctcctg caaggcttct ggaggttccct tcagcagcta tgctatcaac	3900
tgggtgcgac aggccccctgg acaagggcctt gagtggatgg gagggctcat gcctatcttt	3960
gggacaacaa actacgcaca gaagttccag gacagactca cgattaccgc ggacgtatccc	4020
acgagttacag cctacatgca gctgagcggc ctgacatatg aagacacggc catgtattac	4080
tgtgcgagag ttgcctatat gttggAACCTT accgtcactg caggggggtt ggacgtctgg	4140
ggcaaaggga ccacggtcac cgtctccccca gcatccccga ccagcccaa ggtctcccg	4200
ctgagcctct gcagcaccca gccagatggg aacgtggta tcgcctgcct ggtccaggc	4260
ttcttcccccc aggagccact cagtgtgacc tggagcgaaa gcggacaggg cgtgaccggc	4320
agaaaacttcc cacccagcca ggatgcctcc ggggacctgt acaccacgag cagccagctg	4380
accctggccgg ccacacagtg cctagccggc aagtccgtga catgccacgt gaagcactac	4440
acgaatccca gccaggatgt gactgtgccc tgcccagtcc cctcaactcc acctacccca	4500
tctccctcaa ctccacctac cccatctccc tcatgtgtcc accccccact gtcactgcac	4560
cgaccggcccc tcgaggaccc gctcttaggt tcagaagcga acctcacgtg cacactgacc	4620
ggcctgagag atgcctcagg tgtcaccttc acctggacgc cctcaagtgg gaagagcgt	4680
gttcaaggac cacctgagcg tgacctctgt ggctgctaca gctgtccag tgtcctgccc	4740
ggctgtgccg agccttggaa tcatggaaac accttcaactt gcaactgtgc ctaccccgag	4800
tccaagaccc cgctaaccgc caccctctca aaatccggaa acacattccg gcccgggtc	4860
cacctgctgc cgccggccgtc ggaggagctg gccctgaacg agctggtgac gctgacgtgc	4920
ctggcacgtg gttcagccc caaggacgtg ctgggttagct ggctgcaggg gtcacaggag	4980

ctgccccgcg agaagtacct gacttggca tcccgccagg agcccagcca gggcaccacc 5040
 accttcgctg tgaccagcat actgcgcgtg gcagccgagg actggaagaa gggggacacc 5100
 ttctcctgca tggggccca cgaggccctg ccgctggcct tcacacagaa gaccatcgac 5160
 cgcttggcgg gtaaaacccac ccatgtcaat gtgtctgttg tcatggcgg a ggtggacggc 5220
 acctgctact gagttaaact gagggcactg aagtgcctt atgtgctgaa ttgtttgtga 5280
 tgttggtggc gtattttgtt taaataagta agcatggctg tgattttatc atatgatcga 5340
 tctttgggtt tttatataac acattgtaaa atgtgtatct attaataact caatgtataa 5400
 gatgtgttca ttcttcgggtt gccatagatc tgcttatttg acctgtgatg ttttactcc 5460
 aaaaacccaaa atcacaactc aataaaactca tggaaatatgt ccacctgtttt cttgaagagt 5520
 tcatctacca ttccagttgg catttatcag tggtgcagcg gcgcgtgtgc ttgttaacata 5580
 acaattgtta cggcatatat ccaacggccg gcctaggcca cggtgccag atccactagt 5640
 tctagagcgg ccgcgggcaa attcccgaa agctaggcca ccgtggcccg cctgcagggg 5700
 aagcttgcattt gcctgcagat ccccgggat cctcttagt cgcacgcgtga 5760
 cccggtcgtg cccctctcta gagataatga gcattgcatttgc tctaagttt aaaaaattac 5820
 cacatatttt ttttgtcaca cttgttgaa gtgcagttt tctatcttta tacatatattt 5880
 taaactttaa tctacgaata atataatcta tagtactaca ataatatcag tgtttttagag 5940
 aatcatataa atgaacagttt agacatggtc taaaggacaa ttgagtattt tgacaacagg 6000
 actctacagt tttatcttt tagtgcattt gtgttctcct tttttttgc aaatagcttc 6060
 acctatataa tacttcatttcc attttatttag tacatccatt tagggtttag ggttaatgg 6120
 tttttagac taattttttt agtacatcta ttttattcta ttttagcctc taaattaaga 6180
 aaactaaaac tctatttttag tttttttattt taataattta gatataaaaat agaataaaaat 6240
 aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa ggaaacattt 6300
 ttcttgcgttcc gagtagataa tgccagcctg taaaacgcggc tcgacgagtc taacggacac 6360
 caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac ggcattctcg 6420
 tcgcgtcctc tggacccttc tcgagagttc cgctccaccg ttggacttgc tccgctgtcg 6480
 gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg cggcctcctc 6540
 ctccctctcac ggcacggcag ctacggggaa ttcccttccc accgctcctt cgcttccct 6600
 tcctcgcccg ccgtaataaa tagacacccc ctccacaccc tctttccca acctcgtgtt 6660
 gttcggagcgc cacacacaca caaccagatc tcccccaat ccacccgtcg gcaccccg 6720
 ttcaaggtac gccgctcgtc ctccccccccc cccctctctt accttctcta gatccggcgtt 6780
 ccggtccatg catggtttagg gcccggtagt tctacttctg ttcatgtttg tgtagatcc 6840

gtgtttgtgt tagatccgtg ctgctacgcgt tcgtacacgg atgcgacctg tacgtcagac 6900
 acgttctgat tgctaacttg ccagtgttc tctttggga atcctggat ggctctagcc 6960
 gttccgcaga cgggatcgat ttcatgattt ttttggatc gttgcataagg gtttggatc 7020
 ccctttcct ttatccaat atatgccgtg cacttggatc tcgggtcatc ttttcatgct 7080
 ttttttgc tgggttgtga tcatgtggtc tgggtggcg gtcgttctag atcggagtag 7140
 aattctgttt caaactaccc ggtggatata ttaattttgg atctgtatgt gtgtgccata 7200
 catattcata gttacgaatt gaagatgatg gatggaaata tcgatctagg ataggatac 7260
 atgttcatgc gggtttact gatgcataata cagagatgct ttttggatc tgggttgtga 7320
 tcatgtggcg tgggtggcg gtcgttctt cgttctagat cggagtagaa tactgtttca 7380
 aactacctgg tgtatattt aatttggaa ctgtatgtgt gtgtcataca tcttcatagt 7440
 tacgagtttta agatggatgg aaatatcgat ctaggatagg tatacatgtt gatgtgggtt 7500
 ttactgatgc atatacatga tggcatatgc agcatctatt catatgctct aaccctttagt 7560
 acctatctat tataataaaac aagtatgtt tataattatt ttcatgttga tatacttgg 7620
 tcatggatgc tgcagcagct atatgtggat ttttttagcc ctgccttcat acgctattta 7680
 tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt gtttggatc acttctgcag 7740
 ggtacccccc gggtcgacca tggccaacaa gcacctgagc ctatccctct tcctcgtgt 7800
 cctcgccctc tccgcctccc tgcgcgg cgaaattgtg ctcacgcagt ctccaggcac 7860
 cctgtcttgc tcccgaggaa aaaaagccac cctctcctgc agggccagtc agagtgttag 7920
 tagcgcttac ttacgcgtt accagcagaa acctggccag gctcccaggc tcctcatcta 7980
 tggtcatcc agcagggcca ctggcatccc agacaggttc agtggcagtg ggtctggac 8040
 agacttcaact ctcaccatca gcagactgga acctgaagat tttgcagtgtt attactgtca 8100
 gcagttatggt aggtcacccca ctteggcg aggaccaag gtggagatca aacgaactgt 8160
 ggctgcacca tctgtcttca tcttcccgcc atctgtatgg cagttgaat ctggaaactgc 8220
 ctctgttgc tgcctgctga ataacttcta tcccgagag gccaaagtac agtggaaagg 8280
 ggataacgcc ctccaatcggt gtaactccca ggagagtgatc acagagcagg acagcaagga 8340
 cagcacctac agcctcagca acaccctgac gctgagcaaa gcagactacg agaaacacaa 8400
 agtctacgcc tgcgaagtca cccatcgagg cctgagatcg cccgtcacaat agagcttcaa 8460
 caggggagag tggatgttgc aactgagggc actgaagtgc cttgtatgtgc tgaattgttt 8520
 gtgtatgttgc tggatgttgc tggatgttgc tggatgttgc tgaattgttt 8580
 tcatgttttgc ggggtttttaat taacacatttgc taaaatgtgtt atcttattat aactcaatgtt 8640

ataagatgt ttcattttc gggtgcata gatctgctta tttgacctgt gatgtttga 8700
 ctccaaaaac caaaaatcaca actcaataaa ctcatggaat atgtccacct gtttcttcaa 8760
 gagttcatct accattccag ttggcattta tcagtgttgc agcggcgctg tgcttgtaa 8820
 cataacaatt gttacggcat atatccaacg gccggcctag gccacggtgg ccagatccac 8880
 tagttctaga gcggccgctt aattaaattt aaatgtttaa actaggcctc ctgcagggtt 8940
 taaacttgcc gtggcctatt ttcagaagaa gttcccaata gtatcccataa atttttgtaa 9000
 cgaaggggagc ataatagttt catgcaaagg aaaactgccat ttcttttagag gggatgctt 9060
 tttaagaaca aaaaatataat cactttttt tggttccaaatg cattgcgtat ttttttaaaa 9120
 atatttgttc cttcgtatat ttcgagcttc aatcacttta tggttctttt tattctggct 9180
 ttgctgtaaa tcgttagctaa ccttcttcctt agcagaaattt attaatactt gggatatttt 9240
 tttagaatca agtaaatttac atattaccac cacatcgagc tgcttttaaa ttcatatttac 9300
 agccatatacg gcttgattca ttttgcaaaa tttccaggat attgacaacg ttaacttaat 9360
 aatatcttga aatattaaag ctattatgtt taggggtgca aatggaccga gttggttcgg 9420
 ttttatcaaa aatcaaaccat aaccaactat atcggtttgg attgggtcgg ttttgcggg 9480
 ttttcagcat tttctggttt ttttttggttt agatgaatat tattttaaatc ttactttgtc 9540
 aaatttttga taagtaaata tatgtgttag taaaaattaa ttttttttac aaacatatga 9600
 tctattaaaaa tatttttataa ggagaattttt cttaataaca catgatattt atttattttt 9660
 gtcgtttgac taatttttgc ttgatgtaca ctttcaaagt taaccaaatt tagtaattaa 9720
 gtataaaaaat caatatgata cctaaataat gatatgttctt atttaattttt aaattatcga 9780
 aatttcactt caaattcgaa aaagatataat aagaattttt atagattttt acatatgaat 9840
 atggaagaac aaagagattt acgcattttt gtaacacttgcg ataaaggat gatcgacaa 9900
 ccaattttt aaagttaataaaaatggagc acttcattttt taacgaaata ttacatgccat 9960
 gaagagtcgc aaatatttttctt agatattttt taaagaaaaat tctataaaaaa gtcttaaagg 10020
 catatataaaaactatataatttattt tgggttggttt cgaattttgtt ttactcaata 10080
 ccaaactaaa tttagacccaa tataattttggg atttttaatc gccccactt agtcaccgg 10140
 gtgcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatac cgctcacaat 10200
 tccacacaac atacgagccg gaagcataaa gtgtaaagcc tgggggtgcctt aatgagttag 10260
 ctaactcaca ttaatttgcgt tgcgttactt gcccgtttt cagtcgggaa acctgtcggt 10320
 ccagctgcattt taatgaatcg gccaacgcgc ggggagaggc ggtttgcgtt ttggcgctc 10380
 ttccgcttcc tgcgttacttgcg actcgctgctt ctcggcggtt cggctgcggc gagggttac 10440
 agctcactca aaggcggtaa tacggttatac cacagaatca ggggataacg cagggaaagaa 10500

catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg 10560
tttccatagg ctccggcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 10620
gcgaaacccg acaggactat aaagatacca ggctttccc cctggaagct ccctcg 10680
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc cttcgaaag 10740
cgtggcgctt tctcatagct cacgctgttag gtatctcagt tcggtgttagg tcgttcg 10800
caagctggc tggcgtgcacg aaccccccgt tcagccgcac cgctgcgcct tatccgtaa 10860
ctatcgctt gagtccaacc cggtaaagaca cgacttatcg ccactggcag cagccactgg 10920
taacaggatt agcagagcga ggtatgttagg cggtgctaca gagttcttga agtggtg 10980
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 11040
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtacgggtgg 11100
ttttttgtt tgcaagcgc agattacgcg cagaaaaaaa ggatctcaag aagatcc 11160
gatctttct acggggtctg acgctcagtgc gaaacgaaac tcacgttaag ggatttgg 11220
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 11280
atcaatctaa agtataatatg agtaaacttg gtctgacagt taccaatgtc taatcgtga 11340
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtc 11400
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgc 11460
agaccacgc tcaccggctc cagatttac agaataaaac cagccagccg gaagggccga 11520
gcbcagaagt ggtcctgcaa ctatccgc ctccatccag tctattaatt gttgccgg 11580
agctagagta agtagttcgc cagttatag tttgcacac gttgttgc 11640
catcggtgt tcacgctcgt cgtttggtat ggcttcattc agctccgg 11700
aaggcgagtt acatgatccc ccatgttgcg caaaaaagcg gttagctc 11760
gatcggtgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagca 11820
taattctttt actgtcatgc catccgtaaat atgetttct gtgactgg 11880
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgc 11940
ggataatacc gcccacata gcagaacttt aaaagtgc 12000
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacc 12060
tgcacccaaac tgatcttcag catctttac tttcaccagc gtttctgg 12120
aggaaggcaa aatgcgc 12180
actcttc 12240
catatggaa tgtat 12300

agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata aaaataggcg 12360
tatcacgagg ccctttcgtc 12380

<210> 18
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> CDR3 region of heavy chain FabHSV 8-CDR3

<400> 18
Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val
1 5 10 15

<210> 19
<211> 122
<212> PRT
<213> Artificial sequence

<220>
<223> Heavy chain V region FabSHV 8

<400> 19
Leu Glu Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys
1 5 10 15

Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn
20 25 30

Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu
35 40 45

Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe Gln Asp Arg
50 55 60

Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu
65 70 75 80

Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Val
85 90 95

Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ala Ser
115 120

<210> 20
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> tryptic+ Asp-N peptide of N269

<400> 20

Asp Leu Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly
1 5 10 15

Leu Arg

<210> 21
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T1

<400> 21
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg

<210> 22
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T2

<400> 22
Ala Thr Leu Ser Cys Arg
1 5

<210> 23
<211> 22
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T3

<400> 23
Ala Ser Gln Ser Val Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys
1 5 10 15

Pro Gly Gln Ala Pro Arg
20

<210> 24
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T4

<400> 24
Leu Leu Ile Tyr Gly Ala Ser Ser Arg
1 5

<210> 25
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T5

<400> 25
Ala Thr Gly Ile Pro Asp Arg
1 5

<210> 26
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T6

<400> 26
Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
1 5 10 15

<210> 27
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T7

<400> 27
Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
1 5 10 15

<210> 28
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T8

<400> 28
Ser Pro Thr Phe Gly Gln Gly Thr Lys
1 5

<210> 29
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T11

<400> 29
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
1 5 10 15

Leu Lys

<210> 30
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T12

<400> 30
Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
1 5 10 15

<210> 31
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T14

<400> 31
Val Gln Trp Lys
1

<210> 32
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T15

<400> 32
Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
1 5 10 15

Gln Asp Ser Lys
20

<210> 33
<211> 14
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T16

<400> 33
Asp Ser Thr Tyr Ser Leu Ser Asn Thr Leu Thr Leu Ser Lys
1 5 10

<210> 34
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T17

<400> 34
Ala Asp Tyr Glu Lys
1 5

<210> 35
<211> 12
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T19

<400> 35
Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
1 5 10

<210> 36
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T20

<400> 36
Ser Pro Val Thr Lys
1 5

<210> 37
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T21

<400> 37
Ser Phe Asn Arg
1

<210> 38
<211> 23
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T5-6

<400> 38
Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
1 5 10 15

Phe Thr Leu Thr Ile Ser Arg
20

<210> 39
<211> 32
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T6-7

<400> 39
Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
1 5 10 15

Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
20 25 30

<210> 40
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T8-9

<400> 40
Ser Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
1 5 10

<210> 41
<211> 19
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T10-11

<400> 41
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
1 5 10 15

Gln Leu Lys

<210> 42
<211> 19
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T12-13

<400> 42
Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
1 5 10 15

Glu Ala Lys

<210> 43
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T13-14

<400> 43
Glu Ala Lys Val Gln Trp Lys
1 5

<210> 44
<211> 24
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T14-15

<400> 44
Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
1 5 10 15

Ser Val Thr Glu Gln Asp Ser Lys
20

<210> 45
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T17-18

<400> 45
Ala Asp Tyr Glu Lys His Lys
1 5

<210> 46
<211> 14
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T18-19

<400> 46
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
1 5 10

<210> 47
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T20-21

<400> 47
Ser Pro Val Thr Lys Ser Phe Asn Arg
1 5

<210> 48
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment L-T21-22

<400> 48
Ser Phe Asn Arg Gly Glu Cys
1 5

<210> 49
<211> 12
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T1

<400> 49
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
1 5 10

<210> 50
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T2

<400> 50
Lys Pro Gly Ser Ser Val Lys
1 5

<210> 51
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T4

<400> 51
Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn Trp Val Arg
1 5 10 15

<210> 52
<211> 25
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T5

<400> 52
Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu Met Pro Ile
1 5 10 15

Phe Gly Thr Thr Asn Tyr Ala Gln Lys
20 25

<210> 53
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T6

<400> 53
Phe Gln Asp Arg
1

<210> 54
<211> 31
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T7

<400> 54
Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu
1 5 10 15

Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg
20 25 30

<210> 55
<211> 34
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T8

<400> 55
Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val
1 5 10 15

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Pro Thr Ser
20 25 30

Pro Lys

<210> 56
<211> 44
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T9

<400> 56
Val Phe Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val
1 5 10 15

Ile Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val
20 25 30

Thr Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg
35 40

<210> 57
<211> 30
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T10

<400> 57
Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser
1 5 10 15

Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys
20 25 30

<210> 58
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T11

<400> 58
Ser Val Thr Cys His Val Lys
1 5

<210> 59
<211> 38
<212> PRT
<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T12

<400> 59

His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro
1 5 10 15

Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro
20 25 30

Ser Cys Cys His Pro Arg
35

<210> 60

<211> 27

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T13

<400> 60

Leu Ser Leu His Arg Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu
1 5 10 15

Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu Arg
20 25

<210> 61

<211> 15

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T14

<400> 61

Asp Ala Ser Gly Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys
1 5 10 15

<210> 62

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T15

<400> 62

Ser Ala Val Gln Gly Pro Pro Glu Arg
1 5

<210> 63

<211> 23

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T16

<400> 63

Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala
1 5 10 15

Glu Pro Trp Asn His Gly Lys
20

<210> 64

<211> 12

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T17

<400> 64

Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys
1 5 10

<210> 65

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T18

<400> 65

Thr Pro Leu Thr Ala Thr Leu Ser Lys
1 5

<210> 66

<211> 32

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T19

<400> 66

Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser
1 5 10 15

Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg
20 25 30

<210> 67

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T20

<400> 67

Gly Phe Ser Pro Lys
1 5

<210> 68
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T21

<400> 68
Asp Val Leu Val Arg
1 5

<210> 69
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T22

<400> 69
Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
1 5 10

<210> 70
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T24

<400> 70
Tyr Leu Thr Trp Ala Ser Arg
1 5

<210> 71
<211> 17
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T25

<400> 71
Gln Glu Pro Ser Gln Gly Thr Thr Phe Ala Val Thr Ser Ile Leu
1 5 10 15

Arg

<210> 72
<211> 7
<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T26

<400> 72

Val Ala Ala Glu Asp Trp Lys

1 5

<210> 73

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T28

<400> 73

Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala

1 5 10 15

Phe Thr Gln Lys

20

<210> 74

<211> 4

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T29

<400> 74

Thr Ile Asp Arg

1

<210> 75

<211> 22

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T30

<400> 75

Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu

1 5 10 15

Val Asp Gly Thr Cys Tyr

20

<210> 76

<211> 19

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T1-2

<400> 76

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys

<210> 77

<211> 11

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T2-3

<400> 77

Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys
1 5 10

<210> 78

<211> 19

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T3-4

<400> 78

Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn
1 5 10 15

Trp Val Arg

<210> 79

<211> 21

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T17-18

<400> 79

Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr
1 5 10 15

Ala Thr Leu Ser Lys

20

<210> 80

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> peptide tryptic fragment H-T20-21

<400> 80
Gly Phe Ser Pro Lys Asp Val Leu Val Arg
1 5 10

<210> 81
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T21-22

<400> 81
Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
1 5 10 15

<210> 82
<211> 12
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T22-23

<400> 82
Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys
1 5 10

<210> 83
<211> 21
<212> PRT
<213> Artificial sequence

<220>
<223> peptide tryptic fragment H-T27-28

<400> 83
Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu
1 5 10 15

Ala Phe Thr Gln Lys
20

<210> 84
<211> 5118
<212> DNA
<213> Artificial sequence

<220>
<223> pDAB3014 sequence

<400> 84
ctggcacgac aggtttcccg actggaaagc gggcagttag cgcaacgcaa ttaatgttag 60
ttagctcaact cattaggcac cccaggcttt acactttatg cttccggctc gtatgttg 120

tggaaattgtg agcggataac aatttacac aggaaacagc tatgaccatg attacgccaa	180
gcttcccccggg aatgcggccg ctagctagcg gccgcattcc cgggaaagcta gcggccgcat	240
tccccgggaag ctagcggccg cttccccggg agcttggct gcaggtcaat cccattgctt	300
ttgaaggcgc tcaacattga tctctttctc gaggtcattc atatgcttga gaagagagtc	360
gggatagtcc aaaataaaaac aaaggttaaga ttacctggtc aaaagtgaaa acatcagttt	420
aaagggtggta taaagtaaaa tatcggtaat aaaagggtggc ccaaagtgaa atttactctt	480
ttctactatt ataaaaattt aggatgtttt tgtcggtaact ttgatacgctt atttttgtat	540
gaattggttt ttaagtttat tcgcgtttgg aaatgcataat ctgtatttga gtcgggtttt	600
aagttcggtt gctttgtaa atacagaggg atttgtataa gaaatatctt taaaaaaaaacc	660
catatgctaa ttgacataa ttttgagaa aaatatataat tcaggcgaat tctcacaatg	720
aacaataata agattaaaat agctttcccc cgttgcagcg catgggtatt ttttctagta	780
aaaataaaaag ataaaacttag actcaaaaaca tttacaaaaa caacccctaa agttcctaaa	840
gcccaaagtg ctatccacga tccatagcaa gcccagccca acccaaccca acccaaccca	900
ccccagtcga gccaactgga caatagtctc cacacccccc cactatcacc gtgagttgtc	960
cgcacgcacc gcacgtctcg cagccaaaaa aaaaaaaaaaaga aaaaaaaaaaagaa	1020
aaaacagcag gtgggtccgg gtcgtggggg ccggaaacgc gaggaggatc gcgagccagc	1080
gacgaggccg gccctccctc cgcttccaaa gaaacgcccc ccatgcac tatatacata	1140
ccccccctc tcctcccatc cccccaaccc taccaccacc accaccacca cctccacctc	1200
ctccccctc gctgccggac gacgcctccc ccctccccct ccgcccgcgc cgcgccggta	1260
accaccccccgc ccctctcctc tttcttctc cgttttttt ttccgtctcg gtctcgatct	1320
ttggccttgg tagttgggt gggcgagagg cggcttcgtg cgcccccaga tcggtgccgc	1380
ggagggccgg gatctcgccg ctggggctct cgccggcgtg gatccggccc ggatctcgcg	1440
ggaaatgggg ctctcgatg tagatctgcg atccgcgtt gttggggag atgatggggg	1500
gtttaaaatt tccgccatgc taaacaagat caggaagagg ggaaaaggc actatggttt	1560
atatttttat atatttctgc tgcttcgtca ggcttagatg tgctcgatct ttctttcttc	1620
tttttgtggg tagaatttga atccctcagc attgttcatc ggtagttttt ctttcatga	1680
tttgtgacaa atgcagcctc gtgcggagct ttttgttagg tagaccatgg cttctccggaa	1740
gaggagacca gttgagatta ggccagctac agcagctgat atggccgcgg tttgtgatat	1800
cgttaaccat tacattgaga cgtctacagt gaactttagg acagagccac aaacaccaca	1860
agagttggatt gatgtatctag agaggttgca agatagatac ctttggttgg ttgctgaggt	1920
tgaggggtgtt gtggctggta ttgcttacgc tggccctgg aaggcttagga acgcttacga	1980

ttggacagtt gagagtactg tttacgtgtc acataggcat caaagggttgg gccttaggatc	2040
cacattgtac acacatttgc ttaagtctat ggaggcgcaa ggttttaagt ctgtgggtgc	2100
tgttataggc cttccaaacg atccatctgt taggttgcatt gaggcttgg gatacacagc	2160
ccggggtaca ttgcgcgcag ctggatacaa gcatggtgga tggcatgatg ttggttttg	2220
gcaaaggat tttgagttgc cagctccccc aaggccagtt aggccagttt cccagatctg	2280
aggtaccctg agctcggtcg cagcgtgtgc gtgtccgtcg tacgttctgg ccggccggc	2340
cttgggcgcg cgatcagaag cggtgcgttgc gcttctgggt tgcttaatt	2400
ttaccaagtt tgttcaagg tggatcgctg ggtcaaggcc cgtgtgcctt aaagacccac	2460
cggcactggc agtgagtgtt gctgcttgc taggcttgg tacgtatggg ctttatttgc	2520
ttctggatgt tggatgtactac ttgggttgt tgaattatta tgagcagttt cgtattgtaa	2580
ttcagctggg ctacctggac attgttatgtt attaataat gctttgcctt cttctaaaga	2640
tcttaagtgc tgaatttcac tggccgtcg tttacaacgt cgtactggg aaaacccctgg	2700
cgttacccaa cttaatcgcc ttgcagcaca tcccccttgc gccagctggc gtaatagcga	2760
agaggcccgc accgatcgcc ctccccaaaca gttgcgcagc ctgaatggcg aatggcgcc	2820
gatgcgttat tttctcctta cgcattgtcg cggatttca caccgcataat ggtgcactct	2880
cagtacaatc tgctctgatc cgcattatgtt aagccagccc cgacacccgc caacacccgc	2940
tgacgcgccc tgacgggctt gtctgccttgc ggcatccgct tacagacaag ctgtgaccgt	3000
ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa	3060
gggcctcgat atacgcctat ttttataaggta taatgtcatg ataataatgg ttttttagac	3120
gtcaggtggc acttttcggg gaaatgtgcg cggaaacccctt atttgtttat ttttctaaat	3180
acattcaaat atgtatccgc tcatgagaca ataacccctga taaatgcctt aataatattg	3240
aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc	3300
attttgcctt cctgttttttgc ctcacccaga aacgctggta aaagtaaaag atgctgaaga	3360
tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga	3420
gagtttgcgc cccgaagaac gttttccaat gatgagact tttaaagtttgc tggatgtgg	3480
cgcggttata tccccgtatttgc acgccgggca agagcaactc ggtcgccgca tacactattc	3540
tcagaatgac ttgggttgcgtt actcaccagt cacagaaaag catcttacgg atggcatgac	3600
agtaagagaa ttatgcagtttgc ctgccataac catgagtttgc aacactgcgg ccaacttact	3660
tctgacaaacg atcggaggac cgaaggagct aaccgcctttt ttgcacaaca tgggggatca	3720
tgtaactcgcc tttgtatcggtt gggaaacccgaa gctgaatgaa gccataccaa acgacgagcg	3780

tgacaccacg atgcctgttag caatggcaac aacgttgcgc aaactattaa ctggcgaact	3840
acttactcta gttcccggc aacaattaat agactggatg gaggcggata aagttgcagg	3900
accacttctg cgctcgccc ttccggctgg ctggtttatt gctgataaat ctggagccgg	3960
tgagcgtggg tctcgcgta tcattgcagc actggggcca gatggtaagc cctccgtat	4020
cgtagttatc tacacgacgg ggagtcaaggc aactatggat gaacgaaata gacagatcgc	4080
tgagataggt gcctcaactga ttaagcattt gtaactgtca gaccaagttt actcatatat	4140
acttttagatt gattttaaac ttcattttta attttaaaagg atcttaggtga agatcccc	4200
tgataatctc atgaccaaaa tcccttaacg tgagtttcg ttccactgag cgtcagaccc	4260
cgtagaaaaag atcaaaggat cttcttgaga tcctttttt ctgcgcgtaa tctgctgctt	4320
gcaaacaaaa aaaccaccgc taccagcggt gttttgtttt ccggatcaag agctaccaac	4380
tcttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt	4440
gtagccgtag ttaggccacc acttcaagaa ctctgttagca ccgcctacat acctcgctct	4500
gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta cgggggttgg	4560
ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac	4620
acagccccagc ttggagcga cgcacccac cgaactgaga tacctacagc gtgagctatg	4680
agaaagcgcc acgcttcccg aaggggagaaa ggcggacagg tatccggtaa gcggcagggt	4740
cggAACAGGA gagcgcacga gggagcttcc agggggaaac gcctggatcc tttatagtcc	4800
tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt cagggggcg	4860
gagcctatgg aaaaacgcca gcaacgcggc cttttacgg ttccctggct tttgtggcc	4920
ttttgctcac atgttcttcc ctgcgttatac ccctgattct gtggataacc gtattaccgc	4980
ctttgagtga gctgataccg ctgcgcgcag cgcacgcacc gagcgcagcg agtcagttag	5040
cgaggaagcg tgcgcagcgg aagagcgcacc aatacgcaaa ccgcctctcc ccgcgcgttg	5100
gccgattcat taatgcag	5118

<210> 85
<211> 13680
<212> DNA
<213> Artificial sequence

<220>
<223> pDAB8505 sequence

<220>
<221> misc_feature
<222> (1)..(13680)
<223> n = a or c or g or t :

<400> 85

tcgcgcgttt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	240
attcgccatt caggctgcgc aactgtggg aagggcgatc ggtgcgggcc tcttcgctat	300
tacgcccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttggta acgcagggt	360
tttccagtc acgacgttgt aaaacgacgg ccagtgaatt acacccgtgt gatcatgggc	420
cgcgattaaa aatcccaatt atatttggtc taattttagtt tggtattttag taaaacaaat	480
tcgaaccaaa cccaaatata aatatatagt ttttatataat atgcctttaa gacttttat	540
agaattttct ttaaaaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg	600
ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtagc atcactttct	660
tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc	720
tatcaaattt cttatataatc ttttcaaat ttgaagtgaa atttcgataa tttaaaattta	780
aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg	840
ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc	900
atgtgttatt aagaaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaacccggca aaaccgaacc	1080
aatccaaacc gatatacgat gtttggtttgc attttgatataa acccgaaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagcttaat atttcaagat attattaatg taacgttgc	1200
aatatcctgg aaattttgca aatgaatca agcctatataat gctgtaatataat gaattttaaa	1260
gcagctcgat gtgggtgtaa tatgtaattt acttgattct aaaaaatataat cccaaatgtt	1320
aataatttct gcttaggaaga aggttagcta cgatttacag caaagccaga atacaagaa	1380
ccataaaatgtt attgaagctc gaaatatacg aaggaacaaa tattttttaaa aaaatacgca	1440
atgacttggaa acaaaagaaaa gtgatataattt ttttgcctt aaacaagcat cccctctaaa	1500
gaatggcagt tttcctttgc atgtaactat tatgctccct tcgatccaaa aattttggac	1560
tactattttggaa aacttcttct gaaaatagtg gccaccgctt aattaaggcg cgccatgccc	1620
ggccgcattc ccggaaagct aggccaccgt ggccccctg cagggaaagc ttagctgaaa	1680
caacccggcc ctaaagcact atcgatcac ctatctgaaa taagtcacgg gtttcgaacg	1740
tccacttgcg tcgcacggaa ttgcattttt ctgttggaa gcatattcac gcaatctcca	1800
cacataaaagg tttatgtata aacttacatt tagctcagtt taattacagt cttatattggaa	1860

ccagatggga acgtggtcat cgcctgcctg gtcaggcgt tttccctca ggaggccactc	3720
agtgtgacct ggagcgaaag cggacaggcgt gtaaccgcga gaaacttccc acccagccag	3780
gatgcctccg gagacctgtc caccacgtcc agccagctga cccttcggc cacacagtgc	3840
ctagcggca agtccgtgac atgccacgtg aagactaca cgaatcccag ccaggatgtg	3900
actgtgcct gcccagttcc ctcaactcca cctacccat ctccctcgac tccacctacc	3960
ccatctccct catgctgcca cccaggctg tcactgcaca ggcctgcct cgaggacctg	4020
ctcttaggtt cggaaagcgaa cctcacgtgc acactcacccg gcctgagaga tgcgtcaggt	4080
gtcaccttca cctggacgccc ctcaagtgg aagagcgctg ttcaaggccc acctgagcgt	4140
gacctctgtg gctgctacag cgtgtccagt gtccttcgg gctgtgcga gccttggaaat	4200
catggaaaga ctttcaacttg cactgctgcc taccccgaga gcaagacccc gctaaccgccc	4260
accctctcgaa aatccggcaa cacattccgg cccgaggctcc acctgctgcc gcccggcgtcg	4320
gaggagctgg ccctgaacga gctggtgcacg ctgacgtgcc tggcgccgg cttcagcccc	4380
aaggacgtgc tggttcgctg gctgcaggcgt tcacaggagc tgccttaggaa gaagtacctg	4440
acttggccat cccggcagga gcccagccaa ggcaccacca cttcgctgt gacctcgata	4500
ctgcgcgtgg cagccgagga ctggaaagaag ggtgacacact ttcctgcata ggtggccac	4560
gaggcccttc cgctggcctt cacacagaag accatcgacc gcttggccgg taaacccacc	4620
catgtcaatg tgtctgttgtt catggccggag gtggacggca cctgctactg agagctcgct	4680
gagggcactg aagtcgcttg atgtgctgaa ttgtttgtga tggtggccgg gtatttgtt	4740
taaataagta agcatggctg tgatttatc atatgatcga tctttgggtt tttatthaac	4800
acattgtaaa atgtgtatct attaataact caatgtataa gatgtgttca ttcttcgggtt	4860
gccatagatc tgcttatatttgc acctgtgatg ttttgactcc aaaaacccaaa atcacaactc	4920
aataaactca tggaaatatgt ccacctgttt cttaagagt tcataccatca ttccagttgg	4980
catttatcag tggtgcagcg ggcgtgtgt ttgtaacata acaattgtta cggcatatat	5040
ccaaacggcccg gcctagctag gcccacggcgtt ccagatccac tagttctaga gcccggccggc	5100
aagcggccgc attcccccggaa agcttaggccaa ccgtggcccg cctgcagggg aagcttagct	5160
gaaacaaccc ggccctaaag cactatcgta tcacccatct gaaataagtc acgggtttcg	5220
aacgtccact tgcgtcgac ggaattgcata gtttcttgcata ggaagcatat tcacgcaatc	5280
tccacacata aaggtttatg tataaactta catttagctc agtttaatta cagtcttatt	5340
tggatgcata tgtatggttc tcaatccata taagtttagag taaaaataa gtttaattt	5400
tatcttaatt cactccaaca tatatggatt gagtacaata ctcatgtgca tccaaacaaa	5460
ctacttatat tgaggtgaat ttggatagaa attaaactaa cttacacact aagccaatct	5520

ttactatatt aaagcaccag tttcaacgat cgtcccggt caatattatt aaaaaactcc	5580
tacatttctt tataatcaac ccgcactctt ataatctctt ctctactact átaataagag	5640
agtttatgta caaaataagg tgaaattatg tataagtgtt ctggatattg gttgtggct	5700
ccatattcac acaacctaataat caatagaaaa catacatgtttt attaaaacaa aatttatcat	5760
atatcatata tatatatata catatatata tatatatata taaaccgttag caatgcacgg	5820
gcatataact agtgcaactt aatacatgtg tgtattaaga tgaataagag ggtatccaaa	5880
taaaaaactt gttcgcttac gtctggatcg aaaggggttg gaaacgatta aatctttcc	5940
tagtcaaaat tgaatagaag gagattaat ctctccaaat ccccttcgat catccaggtg	6000
caaccgtata agtcctaaag tggtgaggaa cacgaaacaa ccatgcattt gcatgtaaag	6060
ctccaagaat ttgttgtatc cttaacaact cacagaacat caaccaaaat tgcacgtcaa	6120
gggtattggg taagaaacaa tcaaacaat cctctctgtg tgcaaagaaa cacggtgagt	6180
catgcccaga tcataactcat ctgatataca tgcttacagc tcacaagaca ttacaaacaa	6240
ctcatattgc attacaaaga tcgtttcatg aaaaataaaa taggccccac aggacaaaaa	6300
tccttgacgt gtaaagtaaa tttacaacaa aaaaaaagcc atatgtcaag ctaaatctaa	6360
ttcggtttac gtagatcaac aacctgtaga aggcaacaaa actgagccac gcagaagtac	6420
agaatgattc cagatgaacc atcgacgtgc tacgtaaaga gagtgacgag tcatatacat	6480
ttggcaagaa accatgaagc tgcctacagc cgtctcggtg gcatagaaca caagaaattt	6540
tgttaattaa tcaaagctat aaataacgct cgcatgcctg tgcacttctc catcaccacc	6600
actgggtctt cagaccatta gctttatcta ctccagagcg cagaagaacc cgatcgacac	6660
catgggatgg tcctggatct ttctcttcct tctgtcagga gctgcaggtg tccactgcga	6720
gatcggtc acgcagtctc caggcacccgt gttttgtcg ccagggaaac gtgccaccct	6780
ctcctgcccgg gccagtcagt ccgtttccag cgctgtacctt gcctggtacc agcagaagcc	6840
tggccaagct cccaggctcc tcatctatgg tgcgtccagc agggctactg gcattccaga	6900
ccgcttctca ggcagtgggt ctgggacaga cttcacgctc accattagca ggctggaaacc	6960
tgaggatttt gcagtgtact actgtcagca gtatggtcgc tcacccacgt tcggccaggg	7020
gaccaaggtg gagatcaagc gcactgtggc tgcaccgtcg gtcttcatat tcccgccatc	7080
cgatgagcag ctgaagtctg gcactgcctc tgggtgtgc ctgctgaata acttctatcc	7140
gagagaggcg aaggtacagt ggaaggtgga taacgcccctc caatcggtt actcccaaga	7200
gtccggttaca gaggcaggaca gcaaggacag cacctacagc ctcagcaaca ccttgacgct	7260
gagcaaagcg gactacgaga aacacaaggt ctacgcctgc gaagtcaccc atcaaggcct	7320

gcgctcgccc gtcacaaaaga gcttcaaccg gggagagtgt tgagagctcg ctgagggcac	7380
tgaagtgcgt tcatatgtatc gatctttggg gttttattta acacattgtatc	7440
aaatgtgtat ctattaataa ctcataatgtat aagatgtgtt cattcttcgg ttgccataga	7500
tctgcttatt tgacctgtga tgttttgact caaaaaacca aaatcacaac tcaataaaact	7560
catggaatat gtccacctgt ttcttgaaga gttcatctac cattccagtt ggcatttac	7620
agtgtgcag cggcgcgtgtg ctttgtaaca taacaattgt tacggcataat atccaacggc	7680
cggcctagct aggccacggc ggccagatcc actagttcta gagcggccgc ttaattaaat	7740
ttaaatgttt aaacttaggaa atccaagctt gggctgcagg tcaatccat tgctttgaa	7800
gcagctcaac attgatctct ttctcgaggt cattcatatg cttgagaaga gagtcgggat	7860
agtccaaaat aaaacaaagg taagattacc tggtaaaaag tgaaaacatc agtaaaaagg	7920
tggtaataagt aaaatatcgg taataaaaagg tggcccaaag tgaaatttac tctttctac	8040
tattataaaa attgaggatg ttttgcgtt actttgatac gtcatttttgc tatgaatttgg	8100
tttttaagtt tattcgcgat tttggaaatg catactgtt tttgagtcgg gtttttaagtt	8160
cgtttgcgtt tgtaaataca gagggatttg tataagaaat atctttaaaa aaaccatatg	8220
ctaatttgac ataatttttgc agaaaaatatacattcaggc gaattctcac aatgaacaat	8280
aataagatta aaatagcttgc cccccgttgc agcgatgggt atttttctta gtaaaaataaa	8340
agataaaactt agactcaaaa catttacaaa aacaacccct aaagtctaa agcccaaagt	8400
gctatgcacg atccatagca agcccagccc aacccaaccc aacccaaccc accccagtgc	8460
agccaaactgg caaatagtct ccacaccccg gcactatcac cgtaggtgtt ccgcaccacc	8520
gcacgtctcg cagccaaaaaa aaaaaaaaaaaga aaaaaaaaaaagaa aaaaacagcag	8580
gtgggtccgg gtcgtggggg ccggaaaaagc gaggaggatc gcgagcagcg acgaggccgg	8640
ccctccctcc gtttccaaag aaacgcccccatc atatacatac cccccccctct	8700
cctcccatcc ccccaacccct accaccacca ccaccacccatc ctcgtccgg	8760
gacgacgcct ccccccctccc cctccgcccgc cgccggtaac caccggccgc ctctcccttt	8820
tctttctccg tttttttttt cgtctcggtc tcgatctttg gccttggtag tttgggtggg	8880
cgagagcggc ttctcgcccc agatcggtgc gggggagggg cgggatctcg cggctggcgt	8940
ctccggcgt gagtcggccc ggatcctcgc gggaaatggg gctctcgat gtagatctgc	9000
gatccggcgt tgttggggg gatgtatgggg ggtttaaaat ttccgccatg ctaaacaaga	9060
tcaggaagag gggaaaaggg cactatggtt tatattttta tatatttctg ctgcttcgtc	9120
aggcttagat gtgctagatc ttctttctttt cttcttttttgc tgggtagaat ttgaatccct	9180

cagcattgtt catcggtagt ttttctttc atgatttg acaaatgcag cctcgtgcgg 9240
 agctttttg taggttagacc atggcttctc cgagaggag accagtttag attaggccag 9300
 ctacagcagc tgatatggcc gcggttgtg atatcgtaa ccattacatt gagacgtcta 9360
 cagtgaacct taggacagag ccacaaacac cacaagagt gattgatgt ctagagaggt 9420
 tgcaagatag atacccttgg ttgggtgctg aggttgggg tgggtggct ggtattgctt 9480
 acgctggcc ctggaaggct aggaacgctt acgattggac agttgagagt actgtttacg 9540
 tgtcacatag gcatcaaagg ttgggcctag gatccacatt gtacacacat ttgcttaagt 9600
 ctatggaggc gcaagggttt aagtctgtgg ttgctgttat aggccctcca aacgatccat 9660
 ctgttaggtt gcatgaggct ttgggataca cagccccggg tacattgcgc gcagctggat 9720
 acaagcatgg tggatggcat gatgttgggtt tttggcaaag ggattttgag ttgccagctc 9780
 ctccaaaggcc agttaggcca gttaccaga tctgaggtac caatgagtc ggtcgacgcg 9840
 tgtgcgtgtc cgctgtacgt tctggccggc cgggccttgg ggcgcgcata agaancgttg 9900
 cgttggcgtg tgtgtgttc tgggttgcctt taattttacc aagttttttt caaggtggat 9960
 cgcgtggtca aggcccgtgt gctttaaana cccaccggca ctggcagtga gtgttgctgc 10020
 ttgtgttaggc ttgggtacgt atgggcctta ttgttgcctg gatgttgcgt actacttggg 10080
 tttgttgaat tattatganc agttgcgtat tgtaattcag ctggcctacc tggacattgt 10140
 tatgtattaa taaaatgcttt gctttcttctt aaagatctt aagtgcgtaa ttcatatttc 10200
 ctcctgcagg gttttaactt gccgtggcctt attttcagaa gaagttccca atagtagtcc 10260
 aaaatttttttaa taacgaaggg agcataatag ttacatgcaa aggaaaaactg ccattttta 10320
 gaggggatgc ttgtttaaga aaaaaaaaaata tatcactttc ttttggccca agtcatggcg 10380
 tatttttttaaaaatatttgc ttcccttcgtat tatttcgagc ttcaatcaact ttatgggtct 10440
 ttgtattctg gctttgcgtt aaatcgtagc taaccccttctt cctagcagaa attattaata 10500
 cttgggatataat ttttttagaa tcaagtaaat tacatattac caccacatcg agctgtttt 10560
 aaattccatat tacagccata taggcttgat tcattttgca aaatttccag gatattgaca 10620
 acgttaactt aataatatct tgaaatatta aagctattat gattagggtt gcaaatggac 10680
 cgagttgggtt cggtttatataat caaaatcaaa ccaaaccac tatatcggtt tggattgggtt 10740
 cggttttgcc gggttttcag cattttctgg tttttttttt gtttagatgaa tattatttta 10800
 atcttactttt gtcaaatttt tgataagtaa atatatgtgt tagaaaaat taatttttt 10860
 tacaaacata tgatctttaa aaatattctt ataggagaat ttcttaata acacatgata 10920
 ttatattttttagtgcgttt gactaatttt tcgttgcgtt acactttcaa agttaaccaa 10980

attttagataat taagtataaaa aatcaaatatg atacctaaat aatgatatgt tctatttaat 11040
tttaaatttat cgaaatttca cttcaaattc gaaaaagata tataagaatt ttgatagatt 11100
ttgacatatg aatatggaaag aacaaagaga ttgacgcatt ttagtaaacac ttgataagaa 11160
agtatcgta caaccaatta tttaaagtta ataaaaatgg agcacttcattt atttaacgaa 11220
atattacatg ccagaagagt cgccaaatatt tctagatatt tttaaagaa aattctataa 11280
aaagtcttaa aggcatatat ataaaaacta tatatttata ttgggtttt gttcgaaattt 11340
gttttactca ataccaaact aaatttagacc aaatataatt gggatttttta atcgccggccc 11400
actagtcacc ggtgtgcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaaatgtt 11460
atccgctcac aattccacac aacatacggag ccggaaagcat aaagtgtaaa gcctgggggt 11520
ccttaatgagt gagctaactc acattaatttgcg cttgcgttc actgcccgtt ttccagtcgg 11580
gaaacctgtc gtgccagctg catataatgaa tcggccaacg cgccggggaga ggccggtttgc 11640
gtattggcg ctctccgct gcgcacgctg cgacgctgc gcacgcttcc tcgctcaactg 11700
actcgctgcg ctccgtcggtt cggctgcggc gagcggtatac agtcactca aaggcgtt 11760
tacggttatc cacagaatca gggataacg cagggaaagaa catgtgagca aaaggccagc 11820
aaaaggccag gaaccgtaaa aaggccgcgt tgctggcggtt ttccatagg ctccgcggcc 11880
ctgacgagca tcacaaaaat cgacgctcaa gtcagagggtg gcgaaaccccg acaggactat 11940
aaagataacca ggccgtttccc cctggaaagct ccctcgctgc ctctccgtt ccgaccctgc 12000
cgcttaccgg atacctgtcc gcctttctcc cttegggaag cgtggcgctt tctcatagct 12060
caacgctgttag gtatctcagt tcgggtgttgcg ccgttcgttc caagctggc tgggtgcacg 12120
aacccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgctt gagtccaacc 12180
cggttaagaca cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga 12240
ggtatgttagg cggtgctaca gagtttttga agtgggtggcc taactacggc tacactagaa 12300
ggacagtatt tggatctgc gctctgctga agccagttac ctteggaaaaa agagttggta 12360
gtcttgcgtc cgccaaacaa accaccgctg gtagccgtgg ttttttggtt tgcaagcagc 12420
agattacgcg cagaaaaaaaaa ggatctcaag aagatctttt gatctttctt acggggctcg 12480
acgctcagtg gaacgaaaac tcacgttaag ggattttgggt catgagatta tcaaaaaagga 12540
tcttcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa agtataatatg 12600
agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct 12660
gtcttgcgtc ttcatccata gttgcgttgc tccccgtgtt gtagataact acgataacggg 12720
agggtttacc atctggccccc agtgctgcaat tgataccgcg agacccacgc tcaccggctc 12780
cagattttatc agcaataaaac cagccagccg gaagggccga ggcgcagaatg gttccgtcaa 12840

ctttatccgc ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc 12900
cagttaatag tttgcgcaac gttgttgcct ttgtacagg catcggttg tcacgctcg 12960
cgtttggat ggcttcattc agctccgggtt cccaacgatc aaggcgagtt acatgatccc 13020
ccatgttgtg caaaaaagcg gttagctcct tcggcctcc gatcggttgc agaagtaagt 13080
tggccgcagt gttatcactc atggttatgg cagcactgca taattctt actgtcatgc 13140
catccgtaag atgctttct gtgactggtg agtactcaac caagtcattc tgagaatagt 13200
gtatgcggcg accgaggttgc tcttgcggcg cgtcaatacg ggataatacc ggcgcacata 13260
gcagaacttt aaaagtgctc atcattggaa aacgtttttc ggggcgaaaa ctctcaagga 13320
tcttaccgct gttgagatcc agttcgatgt aaccactcg tgcacccaaac tgatcttcag 13380
catctttac tttcaccagc gtttctgggt gagcaaaaac aggaaggcaa aatgcgcaca 13440
aaaagggaaat aagggcgaca cgaaaaatgtt gaatactcat actcttcctt tttcaatatt 13500
attgaagcat ttatcagggt tattgtctca tgagcggata catattgaa tgtattnaga 13560
aaaataaaaca aataggggtt ccgcgcacat ttccccgaaa agtgccacct gacgtctaag 13620
aaaccattat tatcatgaca ttaacctata aaaataggcg tatcacgagg cccttcgtc 13680