TELETEXT CHARACTER GENERATOR

The SAA5050 series of MOS N-channel integrated circuits provides the video drive signals to the television receiver necessary to produce the teletext/viewdata display. The variants are described in the Quick Reference Data and full details of the characters sets are given in Figs. 11 to 18.

QUICK REFERENCE DATA

Supply voltage			v_{DD}	nom.	5	٧
Supply current			IDD	typ.	85	mΑ
Operating ambi	ent tempe	rature range	T _{arnb}	-20	0 to +70	oC
Var	riant	Character set	Variant	Characte	r set	
50	50	English	5054	Belgi		
50	51	German	505 5	US AS	CII	
50	52	Swedish	5056	Hebr	ew	
50	53	Italian	5057	Cyril	lic	

Fig.1 Block diagram

PACKAGE OUTLINE

28-lead DIL; plastic (SOT--117)

Fig.2 Pinning diagram

DESCRIPTION

The SAA5050 is a 28 pin device which incorporates a fast access character generator ROM (4.3 k bits), the logic decoding for all the teletext control characters and decoding for some of the remote control functions. The circuit generates 96 alphanumeric and 64 graphic characters. In addition there are 32 control characters which determine the nature of the display.

The SAA5050 is suitable for direct connection to the SAA5010, SAA5012, SAA5020 and SAA5040 Series integrated circuits.

The basic input to the SAA5050 is the character data from the teletext page memory. This is a 7 bit code. Each character code defines a dot matrix pattern. The character period is 1 μ s and the character dot rate is 6 MHz. The timings are derived from the two external input clocks F1 (1 MHz) and TR6 (6 MHz) which are amplified and re-synchronised internally. Each character rectangle is 6 dots wide by 10 TV lines high. One dot space is left between adjacent characters, and there is one line space left between rows. Alphanumeric characters are generated on a 5 x 9 matrix, allowing space for descending characters. Each of the 64 graphic characters is decoded to form a 2 x 3 block arrangement which occupies the complete 6 x 10 dot matrix (Fig.9). Graphics characters may be either contiguous or separated (Fig. 10). The alphanumeric characters are character rounded, i.e. a half dot is inserted before or after a whole dot in the presence of a diagonal in a character matrix.

The character video output signals comprise a monochrome signal and RGB signals for a colour receiver. A blanking output signal is provided to blank out the television video signal under the control of the PO and DE inputs and the box control characters (see Table 3).

The monochrome data signal can be used to inlay characters into the television video. The use of the 32 control characters provides information on the nature of the display, e.g. colour. These are also used to provide other facilities such as 'concealed display' and flashing words etc. The full character set is given in Table 1.

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (See 'Handling MOS Devices').

RATINGS Limiting values in accordance with the Absolute Maximum System, (IEC134)

			min.	typ.	max.	
Voltages (with respect to pin 1)						
Supply voltage (pin 18)		v_{DD}	-0.3	_	7.5	V
Input voltages (all inputs + input/outp	ut)	VI	-0.3	_	7.5	V
Output voltage (pin 16)		V _{O16}	-0.3	_	7.5	V
(all other outputs)		v ₀	0.3	_	14.0	V
Temperature						
Storage temperature range		T_{stq}		-20 to	+125	$^{\rm o}$ C
Operating ambient temperature range		T _{amb}		-20	to +70	oC
CHARACTERISTICS			min.	typ.	max.	
Supply voltage (pin 18)		v_{DD}	4.5	_	5.5	V
The following parameters apply at Tan	_{nlo} = 25 °C and		unless ot	herwise sta	ted.	
Supply current		IDD		85	160	mΑ
Inputs						
Character data D1 to D7 (pins 4 to 10))					
Input voltage; HIGH		v_{iH}	2.65		v_{DD}	V
Input voltage; LOW		VIL	0	-	0.6	V
Clock inputs F1 (pin 20) TR6 (pin 19	9)					
Input voltage; HIGH		v_{IH}	2.65	_	v_{DD}	V
Input voltage; LOW		V_{IL}	0	_	0.6	٧
Logic inputs						
271771 (OSE (pin 26)					
	0 (pin 27) E (pin 28)					
	L (piii 20)	V	2.0		V_{DD}	V
Input voltage; HIGH		V _{IH}	2.0		0.8	V
Input voltage; LOW		VIL	U	_	0.0	V
All inputs					4.0	
Input leakage current $(V_1 = 5.5 V)$		۱IR		_	10	μA
Input capacitance		Cl		_	7	pF

CHARACTERISTICS (continued)						
		min.	typ.	max.		
Outputs						
Character video outputs + Blanking output (open dra						
B – (pin 22), G – (pin 23), R – (pin 24), Y – (pin 2 Blanking (pin 25)	1),					
Output voltage; LOW (IOL = 2 mA)	v_{OL}		-	0.5	V	
Output voltage; LOW (IOL = 4 mA)	VOL		_	1.0	V	
Output voltage; LOW (I _{OL} = 6 mA)	v_{OL}		-	2.0	V	
Output voltage; HIGH	v_{OH}	v_{DD}	_	13.2	٧ -	piers.
Output load capacitance	c_L		_	15	pF	
Output fall time note 1	t _f			30	ns	
Variation of fall time between any outputs	$\triangle t_{f}$	0		20	ns	
TLC (pin 16)						
Output voltage; LOW ($I_{OL} = 100 \mu A$)	v_{OL}	0	-	0.5	V	
Output voltage; HIGH (-IOH = 100 μA)	v_{OH}	2.4		V_{DD}	V	
Output load capacitance	C_L			30	Pα	
Output rise time Measured between 0.8 V	tr		_	1.0	μs	
Output fall time and 2.0 V levels	t _f			1.0	μs	
	•					
Input/output						
SI (pin 2) (open drain)						
Input voltage; HIGH	v_{IH}	2.0	_	6,5	V	
Input voltage; LOW	VIL	0	_	8.0	V	
input leakage current (V) = 5.5 V)	IIR			10	μΑ	
Input capacitance	Ci		_	7	pΕ	
Output voltage; LOW (IOL = 0.4 mA)	VOL	0	-	0.5	V	
Output voltage; LOW (IOL = 1.3 mA)	v_{OL}	0		1.0	V	
Output load capacitance	C_L			45	pF	
Output voltage; HIGH state (note 2)	v_{OH}		-	6.5	V	

TR6 frequency TR6 mark/space ratio F1 frequency F1 frequency F1 mark/space ratio F1 mark/space ratio Data set up time Delay time — character in/ Graphics CDB B0 — CDB	Timing characteristics					
TR6 rising edge to F1 falling edge tD 6 - 60 r TR6 frequency fTR6 - 6 - 60 r TR6 mark/space ratio 40:60 - 60:40 F1 frequency fF1 - 1 - 60:40 F1 frequency fF1 - 1 - 60:40 Data set-up time icDs 80 - 60:40 Data set-up time tcDH 100 60:40 Display time - character in/ Graphics tcDG - 2.6 - 60:40 Display period timing (Fig.5) F1 falling edge to LOSE falling edge tLDH 0 - 250 r E1 falling edge to LOSE falling edge tLDL 0 - 250 r LOSE rising edge to 'Display on' tDON - 2.6 - 60 LOSE falling edge to 'Display off' tDOFF - 2.6 - 60 Ciner rate timing (Fig.6) F1 rising edge to GLR falling edge tDGH 0 - 200 r GLR LOW time tGLP - 1 - 60 Line start* to GLR falling edge tGLS - 60 LOSE falling edge to GLR falling edge tLSL - 14.5 - 60 Line start* to LOSE rising edge tLSL - 14.5 - 60 LOSE falling edge to Line start* tLLS - 9.5 - 60 LOSE falling edge to Line start* tLLS - 9.5 - 60 LOSE falling edge to Line start* tLLS - 9.5 - 60 LOSE HIGH time tLNP - 64 - 60 Remote data input timing (Fig.8) Assuming F1 period = 1 µs and GLR period = 64 µs DLIM clock HIGH time tCL 3.5 8 60 E1 fine conditions the following to the following time to the following time to the following to the following time	For typical display of 40 characters per line.	Line rate = 64	l μs.	Field rate =	20 ms.	
TR6 rising edge to F1 falling edge TR6 frequency TR6 mark/space ratio TR6 mark/space ratio F1 frequency F1 frequency F1 frequency F1 mark/space ratio Data set-up time Delay time — character in/ Graphics CDG — 2.6 — 4.6 Character data at outputs Alphanumerics CDG — 2.767 — 4.6 Display period timing (Fig.5) F1 falling edge to LOSE rising edge LOSE rising edge to 'Display on' LOSE falling edge to 'Display off' TOPP — 40 — 200 CLOSE falling edge to GLR falling edge TDGL — 40 CLINE rate timing (Fig.6) F1 rising edge to GLR falling edge TDGL — 200 CLINE rate timing (Fig.6) F1 rising edge to GLR falling edge TDGL — 200 CLOSE falling edge to GLR falling edge TDGL — 200 CLINE rate timing (Fig.6) F1 rising edge to GLR falling edge TDGL — 200 CLINE start* to GLR falling edge TDGL — 200 CLINE start* to LOSE rising edge TLSL — 14.5 — 4.6 CLOSE falling edge to LOSE rising edge TLSL — 14.5 — 4.6 CLOSE falling edge to LOSE rising edge TLSL — 14.5 — 4.6 CLOSE falling edge to Line start* TLLS — 9.5 — 4.6 CLOSE falling edge to Line start* TLLS — 9.5 — 4.6 CLOSE falling edge to Line start* TLLS — 9.5 — 4.6 CLOSE HIGH time TLNP — 64 — 4.6 CLOSE HIGH time T	Character data timing (Fig.4)					
TR6 frequency						
TR6 mark/space ratio F1 frequency F1 mark/space ratio F1 frequency F1 mark/space ratio Data set-up time Data hold time Delay time – character in/ Graphics tCDG	5 5 5	_	6			ns
F1 frequency	, , , , , , , , , , , , , , , , , , ,	†TR6				MH
F1 mark/space ratio Data set-up time Data hold time Delay time — character in/	· •	_				
Data set-up time iCDS 80 —		f _{F1}		1		MHz
Data hold time $\frac{100}{100} = \frac{100}{100} = \frac{1}{100} = \frac{1}{100}$	F1 mark/space ratio			-		
Delay time — character in: Graphics tCDG — 2.6 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs Alphanumerics tCDA — 2.767 — 4 character data at outputs tLDH 0 — 250 mode of the character data at outputs tLDH 0 — 250 mode of tLOSE rising edge to 'Display on' tDON — 2.6 — 4 character data data input timing tDOPF — 2.6 — 4 character data input timing tDOPF — 40	Data set-up time	CDS		_	_	ns
character data at outputs Alphanumerics $t_{CDA} - 2.767 - 9.000$ Display period timing (Fig.5) F1 falling edge to LOSE rising edge t_LDH 0 - 250 rising edge t_LDL 0 - 250 rising edge to 'Display on' t_DON - 2.6 - 9.000 rising edge to 'Display on' t_DOFF - 2.6 - 9.000 rising edge to 'Display off' t_DOFF - 2.6 - 9.000 rising edge to 'Display off' t_DOFF - 2.6 - 9.000 rising edge to 'Display off' t_DOFF - 2.6 - 9.000 rising edge to GLR falling edge t_DGL 0 - 200 rising edge to GLR falling edge t_DGH 0 - 200 rising edge to GLR falling edge t_DGH 0 - 200 rising edge to GLR falling edge t_GLR - 5 - 9.000 rising edge t_LSL - 14.5 - 9.000 rising edge t_LNP - 64 - 9.000 rising edge	Data hold time	tCDH	100	_		ns
Display period timing (Fig.5) F1 falling edge to LOSE rising edge F1 falling edge to LOSE falling edge LOSE rising edge to 'Display on' LOSE falling edge to 'Display off' TDON LOSE falling edge to 'Display off' TDOFF LOSE falling edge to 'Display off' TDOFF Line rate timing (Fig.6) F1 rising edge to GLR falling edge F1 rising edge to GLR rising edge F1 rising edge to GLR falling edge TGLP Line start* to GLR falling edge Line start* to LOSE rising edge LOSE falling edge LOSE HIGH time Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time LOLIM clock LOW time LOSE HIGH time LOLIM clock LOW time LOLIM clock LOW time LOSE HIGH time LOLIM clock LOW time LOLIM clock LOW time LOSE HIGH time LOLIM clock LOW time LOSE HIGH time LOLIM clock LOW time LOLIM clock LOW time LOSE HIGH time LOS			_			μs
F1 falling edge to LOSE rising edge t_{LDL} 0 - 250 m F1 falling edge to LOSE falling edge t_{LDL} 0 - 250 m LOSE rising edge to 'Display on' t_{DON} - 2.6 - μ LOSE falling edge to 'Display off' t_{DOFF} - 2.6 - μ Cost falling edge to 'Display off' t_{DOFF} - 2.6 - μ Cost falling edge to 'Display off' t_{DP} - 40 - μ Line rate timing (Fig.6) F1 rising edge to GLR falling edge t_{DGL} 0 - 200 m F1 rising edge to GLR rising edge t_{DGH} 0 - 200 m Cost falling edge t_{DGH} 0 - 200 m Cost falling edge t_{DGH} - 1 - μ Line start* to GLR falling edge t_{DGH} - 1 - μ Line start* to LOSE rising edge t_{DGH} - 14.5 - μ LOSE falling edge to Line start* t_{DGH} - 40 - μ Cost falling edge to Line start* t_{DGH} - 40 - μ Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time t_{DGH} - 6.5 - 8 (note 4) m DLIM clock LOW time	character data at outputs Alphanume	erics t _{CDA}		2.767	-	μs
F1 falling edge to LOSE falling edge $t_{LDL} = 0$ — 250 m LOSE rising edge to 'Display on' $t_{DON} = 2.6$ — μ LOSE falling edge to 'Display off' $t_{DOFF} = 2.6$ — μ 'Display period' $t_{DP} = 40$ — μ Line rate timing (Fig.6) F1 rising edge to GLR falling edge $t_{DGL} = 0$ — 200 m F1 rising edge to GLR rising edge $t_{DGL} = 0$ — 200 m GLR LOW time $t_{CLP} = 0$ — $t_{$	Display period timing (Fig.5)					
LOSE rising edge to 'Display on' $t_{DON} - 2.6 - 4$ LOSE falling edge to 'Display off' $t_{DOFF} - 2.6 - 4$ 'Display period' $t_{DP} - 40 - 4$ Line rate timing (Fig.6) F1 rising edge to GLR falling edge $t_{DGL} - 200 - 200 - 4$ F1 rising edge to GLR rising edge $t_{DGL} - 200 - 200 - 200 - 4$ GLR LOW time $t_{GLP} - 1 - 4 - 4$ Line start* to GLR falling edge $t_{GLR} - 5 - 4$ Line start* to LOSE rising edge $t_{LSL} - 14.5 - 4$ LOSE falling edge to Line start* $t_{LSL} - 9.5 - 4$ Line period $t_{LNP} - 64 - 4$ LOSE HIGH time $t_{LHP} - 40 - 4$ Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time $t_{CL} - 3.5 - 8 - 60$	F1 falling edge to LOSE rising edge	^t LDH	0	_	250	ns
LOSE falling edge to 'Display off' $t_{DOFF} - 2.6 - 40$ — 'Display period' $t_{DP} - 40 - 200 + 40$ — 'Display period' $t_{DP} - 40 - 200 + 40$ — 'Display period' $t_{DP} - 40 - 40 - 40 - 40$ — 'Display period' $t_{DP} - 40 - 40 - 40 - 40 - 40$ — 'Display period' $t_{DP} - 40 - 40 - 40 - 40 -$	F1 falling edge to LOSE falling edge	t _{LDL}	0		250	ns
'Display period' $t_{DP} - 40 - \mu$ Line rate timing (Fig.6) F1 rising edge to GLR falling edge $t_{DGL} = 0 - 200 \text{ f}$ F1 rising edge to GLR rising edge $t_{DGH} = 0 - 200 \text{ f}$ GLR LOW time $t_{GLP} = -1 - \mu$ Line start* to GLR falling edge $t_{GLR} = -5 - \mu$ Line start* to LOSE rising edge $t_{LSL} = -14.5 - \mu$ Line start* to LOSE rising edge $t_{LSL} = -14.5 - \mu$ Line period $t_{LNP} = -64 - \mu$ LOSE falling edge to Line start* $t_{LHP} = -40 - \mu$ Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time $t_{CH} = -6.5 - 8 \pmod{4}$ DLIM clock LOW time $t_{CL} = -3.5 - 8 \pmod{4}$	LOSE rising edge to 'Display on'	†DON	_	2.6	-	μs
Line rate timing (Fig.6) F1 rising edge to GLR falling edge F1 rising edge to GLR rising edge F1 rising edge to GLR rising edge GLR LOW time Line start* to GLR falling edge Line start* to LOSE rising edge LOSE falling edge LOSE falling edge LOSE falling edge LOSE falling edge LOSE HIGH time Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time CONTROL C	LOSE falling edge to 'Display off'	^t DOFF	_	2.6		μs
F1 rising edge to GLR falling edge $tDGL = 0 - 200 \text{ f}$ F1 rising edge to GLR rising edge $tDGH = 0 - 200 \text{ f}$ GLR LOW time $tGLP = -1 - 1 - 100 \text{ f}$ Line start* to GLR falling edge $tGLR = -10 \text{ f}$ Line start* to LOSE rising edge $tLSL = -10 \text{ f}$ LOSE falling edge to Line start* $tLLS = -10 \text{ f}$ Line period $tLNP = -10 \text{ f}$ LOSE HIGH time $tLNP = -10 \text{ f}$ Remote data input timing (Fig.8) Assuming F1 period = $10 \mu \text{s}$ and GLR period = $10 \mu \text{s}$ DLIM clock HIGH time $tCL = 0.5 \text{ f}$ B (note 4)	'Display period'	t _{DP}	_	40	-	μs
F1 rising edge to GLR rising edge F1 rising edge to GLR rising edge GLR LOW time Line start* to GLR falling edge Line start* to LOSE rising edge LOSE falling edge LOSE falling edge to Line start* LOSE falling edge to Line start* LOSE HIGH time Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time DLIM clock LOW time TGLP 1 1 1 200 1 1 1	Line rate timing (Fig.6)					
GLR LOW time $ t_{GLP} - 1 - \mu_{CH} $ Line start* to GLR falling edge $ t_{GLR} - 5 - \mu_{CH} $ Line start* to LOSE rising edge $ t_{LSL} - 14.5 - \mu_{CH} $ LoSE falling edge to Line start* $ t_{LSL} - 9.5 - \mu_{CH} $ Line period $ t_{LNP} - 64 - \mu_{CH} $ LOSE HIGH time $ t_{LHP} - 40 - \mu_{CH} $ Remote data input timing (Fig.8) $ t_{LSR} - 9.5 - \mu_{CH} $ Assuming F1 period = 1 μ_{SR} and GLR period = 64 $\mu_{SR} $ DLIM clock HIGH time $ t_{CH} - 6.5 - 8 - \mu_{CH} $ (note 4) EDLIM clock LOW time	F1 rising edge to GLR falling edge	^t DGL	0	_	200	ns
Line start* to GLR falling edge t_{GLR} - 5 - 14.5 - 14.5 - 15.5 Eline start* to LOSE rising edge t_{LSL} - 14.5 - 15.5 Eline period t_{LNP} - 64 - 16.5 Eline period t_{LNP} - 40 - 16.5 Eline data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time t_{CH} 6.5 8 (note 4) Elim clock LOW time t_{CL} 3.5 8 60	F1 rising edge to GLR rising edge	^t DGH	0	_	200	ns
Line start * to CDSE rising edge	GLR LOW time	^t GLP	-	1	_	μs
LOSE falling edge to Line start* t_{LLS} - 9.5 - Line period t_{LNP} - 64 - LOSE HIGH time t_{LHP} - 40 - Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time t_{CH} 6.5 8 (note 4) DLIM clock LOW time t_{CL} 3.5 8 60	Line start* to GLR falling edge	^t GLR		5		μs
LOSE falling edge to Line start* $t_{LNP} - 9.5 - \mu_{LNP}$ Line period $t_{LNP} - 64 - \mu_{LNP}$ LOSE HIGH time $t_{LHP} - 40 - \mu_{LNP}$ Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time $t_{CH} - 6.5 - 8 - \mu_{LNP}$ DLIM clock LOW time $t_{CL} - 3.5 - 8 - \mu_{LNP}$	Line start* to LOSE rising edge	tLSL	_	14.5	_	μš
LOSE HIGH time $t_{LHP} - 40 - 40$ Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time $t_{CH} = 6.5 - 8 = 60$	LOSE falling edge to Line start*		_	9.5	_	μ s
Remote data input timing (Fig.8) Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time to the clock LOW time to the control of the co	Line period	tLNP	-	64	_	μ s
Assuming F1 period = 1 μ s and GLR period = 64 μ s DLIM clock HIGH time	LOSE HIGH time	tLHP	_	40	_	μs
DLIM clock HIGH time t _{CH} 6.5 8 (note 4) DLIM clock LOW time t _{CL} 3.5 8 60	Remote data input timing (Fig.8)					
DLIM clock LOW time t _{CL} 3.5 8 60	Assuming F1 period = 1 μ s and GLR period = 6	64 μs				
BEIM COOK EOW time	DLIM clock HIGH time	^t CH	6.5	8	(note 4) μs
DATA to DI IM out up time	DLIM clock LOW time	^t CL	3.5	8	60	μs
DATA to DETWi set-up time	DATA to DLIM set-up time	t _{DS}	0	14		μs
DLIM to DATA hold time tDH 8 14 -	DLIM to DATA hold time	^t DH	8	14	_	μs

^{*}Taken as falling edge of 'line sync' pulse.

July 1982

Notes

- 1. Fall time, t_f and Δ t_f , are defined as shown and are measured using the circuit shown below: t_f is measured between the 9 V and 1 V levels.
 - $\Delta\,t_{\mbox{\scriptsize f}}$ is the maximum time difference between outputs.

- 2. Recommended pull-up resistor for \overline{SI} is 18 k Ω .
- 3. The R, G, B, Y and blanking outputs are protected against short circuit to supply rails.
- There is no maximum DLIM cycle time, provided the DLIM duty cycle is such that the t_{CL max} requirement is not exceeded.

SPECIAL FEATURES

Flash oscillator

The circuit generates a 0.75 Hz signal with a 3:1 ON/OFF ratio to provide the flashing character facility.

Power-on-reset

When the supply voltage is switched on, the character generator will reset to tv, conceal, and not superimpose modes.

Character rounding

The character rounding function is different for the small and double height characters. In both cases the ROM is accessed twice during the character period of 1 μ s. The dot information of two rows is then compared to detect the presence of any diagonal in the character matrix and to determine the positioning of the character rounding half dots.

For small characters rounding is always referenced in the same direction (i.e. row before in even fields and row after in odd fields as determined by the CRS signal).

For double height characters rounding is always referenced alternately up and down changing every line using an internally generated signal. (The CRS signal is '0' for the odd field and '1' for the even field of an interlaced ty picture).

Graphics decoder

The 64 graphics characters are decoded directly from the character data inputs and they appear on a 2 x 3 matrix. Figure 9 gives details of the graphics decoding.

APPLICATION DATA

The function is quoted against the corresponding pin numbers

Pin No.

- 1. VSS Ground 0 V
- SI Superimpose

This is a dual purpose input/output pin. The output is an open drain transistor (capable of sinking current to V_{SS}), which is in the conducting state when superimpose mode is selected. This allows contrast reduction of the tv picture in superimpose mode if required. If the pin is held LOW, the internal 'tv mode' flip-flop is held in the 'text' state. This is for VDU applications when the remote control is not used.

3. DATA Remote control data

This input accepts a 7-bit serial data stream from the remote control decoder. This data contains the teletext and viewdata remote control functions. The nominal data rate is $32 \mu s/bit$. The command codes used in the SAA5050 are shown in Table 2.

- 4,5,6 D1 to D7 Character data
- 7.8,9,
 These inputs accept a 7-bit parallel data code from the page memory. This data selects the alphanumeric characters, the graphics characters and the control characters. The alphanumeric addresses are ROM column addresses, the graphics and control data are decoded internally.
- 11 DLIM

This input receives a clock signal from the remote control decoder and this signal is used to clock remote control data into the SAA5050. The positive-going edge of every second clock pulse is nominally in the centre of each remote control data bit (Fig.8).

12 GLR General line reset

This input signal from the SAA5020 Timing Chain is required for internal synchronisation of remote control data signals.

13. DEW Data entry window

This input signal from the SAA5020 Timing Chain is required to reset the internal ROM row address counter prior to the display period. It is also used internally to derive the 'flash' period.

APPLICATION DATA (continued)

14. CRS Character rounding select

This input signal from the SAA5020 Timing Chain is required for correct character rounding of displayed characters. (Normal height characters only).

BCS Big character select

This input from the SAA5040 Teletext Acquisition and Control device allows selection of large characters by remote control.

16. TLC Transmitted large characters

This output to the SAA5020 Timing Chain enables double height characters to be displayed as a result of control characters stored in the page memory.

18. V_{DD} + 5 V supply

This is the power supply input to the circuit.

19. TR6

This input is a 6 MHz signal from the SAA5020 Timing Chain used as a character dot rate clock.

20. F1

This input is a 1 MHz equal mark/space ratio signal from the SAA5020 Timing Chain. It is used to latch the 7-bit parallel character data into the input latches. It is also used to synchronise an internal divide-by 6 counter. The F1 signal is internally synchronised with TR6.

21. Y Qutput

This is a video output signal which is active in the HIGH state containing character dot information for ty display.

The output is an open drain transistor capable of sinking current to VSS

22,23, B,G,R outputs

These are the Blue, Green and Red Character video outputs to the tv display circuits. They are active HIGH and contain both character and background colour information.

The outputs are open drain transistors capable of sinking current to VSS.

25. BLAN Blanking

This active HIGH output signal provides to picture video blanking. It is active for the duration of a box when Picture On and Display Enable are HIGH. It is also activated permanently for normal teletext display when no to picture is required (PO LOW). The output is an open drain transistor capable of sinking current to VSS. Full details given in Table 3.

LOSE Load output shift register enable

This input signal from the SAA5020 Timing Chain resets the internal control character flip-flops prior to the start of each display line. This signal also defines the character display period.

PO Picture On

This input signal from the SAA5040 Teletext Acquisition and Control device is used to control the character video and blanking outputs. When PO is HIGH, only text in boxes is displayed unless in superimpose mode. The input is HIGH for tv picture video on, LOW for picture off. See Table 3.

28. DE Display enable

This input signal from the SAA5040 Teletext Acquisition and Control device is used to enable the teletext display. The input is HIGH for teletext display enabled. LOW for display cancelled. See Table 3.

D8699a (1) = 1.5V (2) = 0.8V (3) = 2.0VPOOFF t_{DP} DISPLAY PERIOD E.

Fig.5 Display period timing (for typical 40 character display)

Fig.4 Character data timing (for typical 40 character display)

Fig.8 Remote control input timing

Each cell is illuminated if particular 'bit' (b_1 , b_2 , b_3 , b_4 , b_5 , or b_7) is a '1'. For graphics characters b_6 is always a '1' — See Table 1.

Fig.9 Graphics Character

Fig.10 Character format

TABLE 1
Character data input decoding

		_															8068a
Bits	6 ₆₅	_	_			000	001	0	0	0	1	¹ 0 ₀	101	1	0	1	1
,	b ₂	ъ, Н	b ₂	Þ,	Col Row	0	1	2	2 a	3	3а	4	5	6	6а	7	7a ⁻
	0	0	0	0	0	NUL*	DLE*			0		(a)	P			P	
	0	0	0	1	1	Alpha ⁿ Red	Graphics Red			1		A	Q	a		P	
	0	0	1	0	2	Alpha ⁿ Green	Graphics Green			2		[E]	R	Ь		r	
	0	0	1	1	3	Alpha ⁿ Yellow	Graphics Yellow	£		3		[C:]	S	С		5	
	0	1	0	0	4	Alpha ⁿ Blue	Graphics Ellu e	\$		[4]		D	T	d		t	
	0	1	0	1	5	Alpha ⁿ Mag e nta	Graphics Magenta	%		[5]		(E.)	U	e		u	
	0	1	1	0	6	Alpha ⁿ Cyan **	Graphics Cyan	&		6		E	\overline{V}	f		V	
	0	1	1	1	7	Alpha ⁿ White	Graphics White			[7]		[6]	W	[و]		w	
	1	0	0	0	8	Flash	Conc e al D splay			8		H	X	h		×	
	1	0	0	1	9	* * Steady	** Contiguous Graphics			9			Y	1		y	5
	,	0	1	0	10	## End Box	Separated Graphics	*					Z			z	
	1	0	1	1	11	Start Box	ESC *	+				K	•	k		14	
	1	1	0	0	12	** Normal Height	## Elack Background	[.]					12	1			
	1	1	0	1	13	Double Height	New Background					M		m		34	
	1	1	1	0	14	<u>\$0</u>	Hold Graphics	l.				N	•	n			
	1	1	,	1	15	<u>\$1</u>	Release Graphics	7		?		0	#	0	•		

Control characters shown in columns 0 and 1 are normally displayed as spaces.

The SAA5050 character set is shown as example. Details of character sets are given in Figs. 11 to 18.

* These control characters

* These control characters are reserved for compatability with other data codes.

** These control characters are presumed before each row begins. Codes may be refered to by their column and row e.g. 2/5 refers to % Character rectangle

Black represents display colour.

White represents background.

TABLE 2
Remote control command codes used in the SAA5050

b7	b6		COD b ₄	b3	b2	b ₁	COMMAND	FUNCTION
0	Х	X	X	X	Х	Х	'tv' mode	Allows text on top row of display only
1	Х	Х	Х	Х	Х	Х	'Text' mode	Allows text throughout display period.
1	0	1	1	1	1	0	Superimpose	Sets Superimpose mode.
1	0	1	1	1	1	1	teletext	Resets Superimpose mode.
0	Х	Х	Х	Х	Х	Х	'tv' mode	Resets Superimpose mode.
1	1	Х	Х	Х	Х	Х	viewdata mode	Resets Superimpose mode;
1	Х	0	0	1	1	0	Reveal	Reveals for time-out (notes 3, 4).
1	х	0	1	0	1	1	Reveal set	Sets Reveal mode (note 3).
ny c	omn	nand	apar	rt fro	om re	eveal se	et.	Resets Reveal mode (note 3)

X = Don't care.

Notes

- When the power is applied the SAA5050 is set into the 'tv' mode and reset out of Superimpose and Reveal modes.
- 2. 'Text' made is selected when SI (pin 2) is held LOW
- 3. Reveal mode allows display of text previously concealed by 'conceal display' control characters.
- 4. This code is sent from the SAA5010 or the SAA5012 Series as a repeated command. Thus Reveal mode is set for as long as the Reveal key is depressed. The SAA5050 reverts to normal 'not Reveal' mode 160 ms after the last Reveal command.
- The Superimpose output is LOW only if Superimpose mode is set and the DE (display enable) input is HIGH.
- 6. The above table shows code required for functions specified. The SAA5010 or the SAA5012 Series transmits and the SAA5050 requires the inverse of these codes i.e. b₇ to b₁. The code is transmitted serially in the following order: b₇ b₁ b₂ b₃ b₄ b₅ b₆. For full details of remote control data coding see the SAA5010 or the SAA5012 data sheets.

TABLE 3
Conditions affecting display (see note 3)

	Inp	outs	Control da	ta	Outputs			
	Picture On (PO)	Display Enable (DE)	Superimpose Mode	Вох	Text Display Enabled (i.e. R,G,B,Y outputs)	Blanking		
(a)	1	0	1 or 0	1 or 0	0	0		
(b)	0	1	1 or 0	1 or 0	1	1		
(c)	0	0	1 or 0	1 or 0	0 (note 2)	1		
(d)	1	1	0	0	0	0		
(e)	1	1	1	0	1	0		
(f)	1	1	1	1	1	1		
(g)	1	1	0	1	1	1		

Notes

- 1. For tv mode (Picture On = '1', Superimpose mode not allowed) rows (a), (d) and (g) of Table 3 refer to display row 0 only. For all other rows text display is disabled and Blanking = '0'.
- 2. The R, G, B outputs may contain character and background colour information. The only exception is that background colours are inhibited when Blanking = '0'.
- 3. Valid during display period only (see Fig.5) otherwise no character or background information is displayed as blanking is determined by the Picture On. (No blanking if PO = '1').

Fig. 11 SAA5050 character set (English).

Fig.12 SAA5051 character set (German).

Fig.13 SAA5052 character set (Swedish).

Fig.14 SAA5053 character set (Italian).

Fig.15 SAA5054 character set (Belgian)

Fig.16 SAA5055 character set (US ASCII).

Fig.17 SAA5056 character set (Hebrew).

Fig.18 SAA5057 character set (Cyrillic).

28-LEAD DUAL IN-LINE; PLASTIC (SOT- 117)

- side view 0,32 max 15,24 17,15 15,30 7273669.1
- Dimensions in mm

- Maximum Material Condition.
- Centre-lines of all leads are (1) within ±0,127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,254 mm.
- (2) Lead spacing tolerances apply from seating plane to the line indicated.
- (3) Index may be horizontal as shown, or vertical.