2024-03-11

Rappels

 $\mathfrak{sl}(3\mathbb{C}) = h \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ osti, je suis deja done

On a montré que les poids diffèrent par une combinaison de racines :

Si $v \in V_{\alpha}, C \in g_{\beta}$ β -racine, α -poids

alors $X \cdot v \in V_{\alpha+\beta}$

Le poids le plus haut est une poids maximal pour l'ordre induit l'évaluation sur $\begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} \in h$ t.q. $a_0 > b_0 > C_0$

Il existe un vecteur de plus haut poids v qui satisfait

- $v \in V_{\alpha}$ pour $\alpha \in h^*$
- $-E_{23}v = E_{13}v = E_{?}v = 0$

Proposition:

V est engendré par v (vecteurs de plus haut poids) et toutes ses images par tout les mots possible en $E_{2,1}, E_{3,2}, E_{3,1}$

Démonstration

W le sous-espace engendré par v et tout les motes possibles en $E_{2,1}, E_{32}, E_{31}$ appliqué à V

$$W = \langle v, E_{21}v, e_{32}v, E_{31}v, E_{21}E_{32}v, \cdots \rangle$$

On veur montrer que W est $\mathfrak{sl}(3,\mathbb{C})$ -invarient

Partie facile, W est invariant par h et par E_{21}, E_{31}, E_{32}

Reste à montrer que W est invarient par $E_{1,2}, E_{2,3}$

 $E_{1,3}=[E_{1,2},E_{2,3}],$ il suffit donc de vérifier $E_{1,2}W\subseteq W$ et $E_{23}W\subseteq W$

Posons W_n le sous-espace engendré par va et tout les mots en E_{21}, E_{32} de la longeure $\leq n$ appliqué à v

Par récurence, on montre $E_{12} \cdot W_n \subseteq W_{n-1}, E_{2,3} \cdot W_n \subset W_{n-1}$

Soit $w \in W_n$

$$\implies w = E_{21} \cdot w' \quad \text{pour} \quad w' \in W_n - 1$$

ou

$$w = E_{32} \cdot w'$$

1.

$$E_{1,2} \cdot w = E_{1,2} \cdot E_{2,1} \cdot w' = ([E_{12}, E_{21}] + E_{21} \cdot E_{12}) w'$$

$$E_{1,2} \in g_{L_1 - L_2}$$

$$E_{21} \in G_{L_2 - L_1}$$

$$\implies [E_{1,2}, E_{21}] \in h = g_e$$

$$= \in W_{n-1} + \in W_{n-1}$$

$$E_{2,3} \cdot w = E_{2,3} \cdot E_{1,2} \cdot w'$$

$$= \left(\underbrace{[E_{23}, E_{21}]}_{0} + E_{2,1} + E_{23}\right) \cdot w'$$

$$= E_{21} \cdot \underbrace{(E_{21} \cdot w')}_{W_{n-2}}$$

$$\underbrace{W_{n-2}}_{W_{n-1}}$$

2. même chose

Puisque $W = \bigcup_n W_n$, W est stable par $\mathfrak{sl}(3\mathbb{C}) \implies W = V \blacksquare$

De la preuve, on déduit :

Pour V une représentation (pas nécéssairement irréductible), si v est un vecteur de plus haut poidsm alors le sous espace engendré par v est ses images par E_{21} et $E_{3,2}$ est une sous représentation irréductible

Il existe un n pour lequel $\left(E_{2,1}\right)^n\cdot v=0$ mais $\left(E_{2,1}\right)^{n-1}\cdot v\neq 0$

Observation : $V_{\alpha+m(L_2-L_1)}$ est de dim 1 ou 0 (car il existe un seul *chemin* entre α et $\alpha+m(L_2-L_1)$

$$\begin{pmatrix} E_{21} & E_{12} & E_{11} - E_{22} \\ \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ Y & X & H$$

engendrent une sous-algèbre de Lie de $\mathfrak{sl}(3\mathbb{C})$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

En restreignant à cette sous-algèbre, on obtient une représentation de $\mathfrak{sl}(2,\mathbb{C})$ sur V (par nécéssairement irréductible)

Rappel Les valeurs propres pour H dans un représentation de $\mathfrak{sl}(2\mathbb{C})$ sont entière et symétriques par rapport à 0

Les valeurs propres de "H" = $E_{11} - E_{22}$ sont $\alpha(H), (\alpha + L_2 - L_1)(H), \dots, (\alpha + n(L_2 - L_1))(H)$

on réécrit $\alpha(H), \alpha(H) - 2, \alpha(H) - 4, \cdots, \alpha(H) - 2n$

$$\implies \alpha(H) - 2n = -\alpha(H)$$

$$\implies n = \alpha(H)$$

L'arrête entre α et $\alpha + n(L_2 - L_1)$ est symétrique par rapport à la droite $\beta(H_{12}) = 0$

Posons
$$\alpha + \alpha \left(J_{1,2}\right)\left(L_2 - L_1\right) = \alpha_2$$
 et $v_2 = E_{2,1}^{???} \cdot v \in V_{\alpha_2}$

On a
$$E_{21} \cdot v_2 = 0, \, E_{2,3} \cdot v_2 = 0 \, , \, E_{1,2} \cdot v_2 = 0$$

 v_2 est une vecteur de plus haut poids pour l'ordre définis par $\begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix}, \, b>a>c$

Les espaces de poids sont contenus dans l'hexagone des sommets α et ses réflexions dans les 3 droites Les espace de poids sur les arêtes sont de dimension 1

On déduit que $\alpha(H)_{i,j} \in \mathbb{Z} \forall H \in h$

$$\implies \alpha = aL_1 + bL_2 + cL_3 \quad a, b, c \in \mathbb{Z}$$

2eme heure

$$sym^{n}(\mathbb{C}^{3} = \left\langle e_{1}^{i}e_{2}^{j}e_{3}^{k}|i+j+k=n\right\rangle$$

les poids sonts $H\cdot \left(e_1^ie_2^je_3^k\right)=(iL_1+jL_2+kL_3)(H)e_1^ie_2^je_3^k$

Chaque espace de poids est de dimension 1. Les plus haut est nL

$$L_1 + L_2 + L_3 = 0$$

Figure 1 – triangle

 $\operatorname{Sym}^{\operatorname{n}}(\mathbb{C}^{3})$ par le même argument a pour plus haut poids nL_{3} est est irréductible

$$\operatorname{Sym}^n(\mathbb{C}^3) \otimes \mathbb{C}^{3*}$$

a un poids de $2L_1-L_3$

 $V=e_1^2\otimes e_3^*$ est un vecteur de plus haut poids.

Elle n'est pas irréductible car on peut définir un morphisme

$$\varphi: \mathrm{Sym}^2 \mathbb{C}^3 \otimes \mathbb{C}^3 \to \mathbb{C}^3$$
$$(uv) \otimes \alpha \mapsto \alpha(u)v + \alpha(v)u$$

$$\varphi(X \cdot ((uv) \otimes \alpha)) = \varphi(X \cdot (uv) \otimes \alpha + uv \otimes \varphi(X \cdot \alpha))$$

$$= \varphi((Xu + Xv) \otimes \alpha - (uv) \otimes \alpha(x))$$

$$\alpha(xu)v + \alpha(v)Xu + \alpha(u)Xv + \alpha(xv)u - \alpha(xu)v - \alpha(xv)u = X(\alpha(v)u + \alpha(u)v + X \cdot \varphi(uv \otimes \alpha)$$

 $\operatorname{Her}(\varphi)\subseteq\operatorname{Sym}^2(\mathbb{C}^3)\otimes\mathbb{C}^{3*}$ est une sous-représentation de dimension 15. Montrons qu'elle est irréductible

$$e_1^2 \otimes e_3^* \in \text{Ker}\varphi(\varphi(e_2 \otimes e_3^*) = e_3^*(e)1 + e_3^*(e_1)e_1$$

$$2L_1 - L_3$$
 + $(L_2 - L_1)$ = $L_1 + L_2 - L_3$ = $-2L_3$

$$(2L_1 - L_3) + (L_3 - L_2) = 2L_1 - L_{-2} = 3L_1 + L_3$$

$$(2L_1 - L_3) + L_3 - L_1 = L_1$$

Dans $\operatorname{Sym}^2(\mathbb{C}^3) \otimes (\mathbb{C}^3)^*$

$$\dim(V_{L_1}=3)$$

engendré par $e_1^2 \otimes e_1^*, e_1 e_2 \otimes e_2^*, e_1 e_3 \otimes e_3^*$

Dans $\operatorname{Ker}(\varphi), \dim(V_{L_1}) = 2$

engendré par $e_1^2 \otimes e_1^* - 2e_1e_2 \otimes e_2^*$

$$e_1^2 \otimes e_1^* - 2e_1e_3 \otimes e_3^*$$

Montrons que V_{L_1} est engendré par $E_{3,2}E_{2,1}(e_1^2\otimes e_3^*)$ et $E_{2,1}E_{3,2}(e_1^2\otimes e_3^*)$

$$E_{32}E_{21}\left(e_1^2 \otimes e_3^*\right) = E_{32}\left((2e_1e_3) \otimes e_3^* + e_1^2 \otimes (-0)\right)$$
$$= E_{32}\left(2e_1e_2 \otimes e_3^*\right)$$

$$= 2(e_1e_3 \otimes e_3^* + e_1e_2 \otimes e_2^*)$$

$$E_{21}E_{32} (e_1^2 \otimes e_3^*)$$

$$= E_{21}le_0 - e_1^2 \otimes e_2^*$$

$$= -e_{21} (e_1^2 \otimes e_2^*)$$

$$= -2e_1e_2 \otimes e_2^* - e - 1^2 - e_1^2 \otimes e_1^*$$

Plus généralement

$$\operatorname{Sym}^a(\mathbb{C}^3) \otimes \operatorname{Sym}^b \mathbb{C}^{3*}$$

a une sous-représentation irréductible de plus haut poids $aL_1 - bL_3$ On peut décrire la décrire comme le noyaux du morphimse

$$\varphi: \operatorname{Sym}^a \mathbb{C}^3 \otimes \operatorname{Sym}^b \to \operatorname{Sym}^{a-1} \mathbb{C}^3 \otimes \operatorname{Sym}^{b-1}$$

2024-03-18

Rappels

Les représentation irréductibles de $\mathfrak{sl}(3\mathbb{C})$ sont en bijection avec $\{(a,b)>a,b\leq 0 \text{ entiers}\}$

$$\rightarrow \Gamma_{a}$$

dont le plus haut poids et $aL_1 - bL_3$

$$\Gamma_{a,b} \subseteq \operatorname{Sym}^a(\mathbb{C}^3) \otimes \operatorname{Sym}^b(\mathbb{C}^3)$$

$$\Gamma_{a,b} = \operatorname{Ker}(\varphi)$$

$$\varphi: \operatorname{Sym}^{a}(\mathbb{C}^{3}) \otimes \operatorname{Sym}\mathbb{C}^{3*} \to \operatorname{Sym}^{a-1} \otimes \operatorname{Sym}^{b-1}$$

Recette pour analyser les représentation d'une algèbre de Lie semi-simple

Rappel

Simple : ad_X est irréductible \iff pas d'idéal non-trivial

Semi-simple : Somme direct d'algèbre simple

Étape 1 : Identifier une sous algèbre $h \subseteq g$ abélienne diagonalisable maximale. On appelle h une sous-algèbre de Cartan

On a vu que si un algèbre est diagonalisable dans une représentation, elle l'est dans toutes les représentations. Une algèbre diagonalisable est une algèbre qu'on peut montrer diagonalisable dans au moins une représentation.

Attention

Ex :

$$\square(3,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

h n'est pas nécessairement diagonale

truc : choisir une base jacobienne Dans une base t.q. la forme bilinéaire est donnée par la matrice J

$$\begin{pmatrix} & 1 \\ 1 & \\ 1 & \end{pmatrix}$$
, $\square(3\mathbb{C})$ est donné par $X^tJ+JX=0$

. . .

$$\Box(3,\mathbb{C}) = \left\{ \begin{pmatrix} a & b & 0 \\ c & 0 & -b \\ 0 & -c & -a \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

ici, on peut prendre $h \in \left\{ \begin{pmatrix} a & & \\ & & \\ & & -a \end{pmatrix} \right\}$

Étape 2 : Décomposer g selon les poids (racines) de sa représentation adjointe

$$g = h \oplus \left(\bigoplus_{\alpha \in R} g_{\alpha}\right)$$

où $R \subseteq h^*$ est t.q. $g_{\alpha} \neq \{0\}$

$$g_{\alpha} = \{X \in g | \operatorname{ad}(H)X = \alpha(H)X \forall H \in h\} = \{X \in g | [H, X] = \alpha(H)X \forall H \in h\}$$

Faits:

- i) $\dim(g_{\alpha}) = 1 \forall \alpha \in R$
- ii) R engendre un réseau $\Lambda_R \subseteq h^*$ de rand égal à $\dim(h^*)$
- iii) $R = -R(\text{Si } \alpha \text{ est une racine } -\alpha \text{ l'est aussi})$ Une représentation V va se décompose en $V = \oplus V_{\alpha}, \alpha \in h^*$ Les vecteurs de racines, $X \in g_x$ agissent par translation sur les V_{β}

$$X: V_{\beta} \to V_{\alpha+\beta}$$

Si V est irréductible, tout les poids sont congrus modulo Λ_R

Étape 3: Pour chaque raine, on va identifier une sous-algèbre $\mathfrak{s}_{\alpha} \subseteq \mathfrak{g}$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

on sait que $[g_{\alpha}, g_{-\alpha}] \subseteq h$

en fait $\mathfrak{s}_{\alpha} = g_{\alpha} \oplus g_{-\alpha} \oplus [g_{\alpha}, g_{-\alpha}]$ est aussi un sous-algèbre de g isomorphe à sl $(2\mathbb{C})$

On trouve $X_{\alpha} \in g_{\alpha}$, $Y_{\alpha} \in g_{-\alpha}$ t.q. $H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$

on a
$$[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}$$
 on a $[H_{\alpha}, Y_{\alpha}] = 2Y_{\alpha}$

Toujours possible car

- i) $[g_{\alpha}, g_{-\alpha}] \neq 0$
- ii) $[[g_{\alpha}, g_{-\alpha}], g_{\alpha} \neq 0$

Étape 4 : Utiliser l'intégralité des valeurs propres de H_{α}

Pour tout poids β d'une représentation de g

$$\beta(H_{\alpha}) \in \mathbb{Z}$$

On définit une autre réseau, (le réseau des poids) $\Lambda_W = \{\beta \in h^* | \beta(H_\alpha) \in \mathbb{Z}, \forall \alpha \in R\}$

Si
$$\beta_1, \beta_2 \in \Lambda_W$$
 dans $(\beta_1 + \beta_2)(H_\alpha) = \beta(H_\alpha) + \beta_2(H_\alpha) \in \mathbb{Z} \implies \beta_1 + \beta_2 \in \Lambda_W$

et
$$-\beta_1(H_\alpha) \in \mathbb{Z} \to -? \in \Lambda_W$$

En fait, $\Lambda_R \subseteq \Lambda_W$

Étape 5 : Usilser la symétrie par rapport à 0 des v.p. de H_{α}

On introduit une <u>réflexion</u> pour chaque $\alpha \in R$, noté $W_{\alpha}, W_{\alpha}: h^* \to h^*$

$$W_{\alpha}(\beta) = \beta - \beta (H_{\alpha})_{\alpha}$$

$$\mathscr{W} = \langle W_{\alpha} \rangle$$

groupe engendré par les W_{α} qui s'appelle Groupe de Weyl

Pour une representation $V=\oplus V_{\beta}$ on peut regrouper les V_{β} en classes modulo α

$$V = \oplus V_{[\beta]}$$

où
$$V_{[\beta]} = \bigoplus_{n \in \mathbb{Z}} V_{\alpha + n\beta}$$

les poids dans $V_{[\beta]}$ sont $\beta, \beta + \alpha, \beta + 2\alpha, \dots, \beta + n\alpha$ où $n = -\beta(H_{\alpha})$

Conclusion

l'ensemble des poids V est \mathcal{W} -invarient

Étape 6 : Faire un dessin

Il existe un produit bilinéaire sur \mathfrak{g} appelé <u>forme de Killing</u> qui est définit positif sur le sous-espace réel engendré par les H_{α}

donne un produit scalaire sur le sous-espace réel engendré par R dans h^* . Pour ce produit , W_{α} est une <u>réflexion euclidienne</u>

Étape 7 : Choisir une direction dans h^* . C'est-à-dire une forme linéaire l sur h^*

$$l: h^* \to \mathbb{R}t.q.L(\alpha) \neq 0si\alpha \in R$$

On décompose $R = R^+ \cup R^-$ en racine positives et négatives

On dit que $v \in V$ est un vecteur de plus haut poids pour g si $Xv = 0 \forall X \in g_{\alpha}, \alpha \in R^+$

Proposition:

- (i) Toute représentation de g possède un vecteur de plus haut poids
- (ii) V et toutes ses images obtenus en itérants des applications de X_{α} , $\alpha \in \mathbb{R}^-$ engendre une sous-représentation $W \subseteq V$ irréductible
- (iii) Tout représentation irréductible admet un unique vecteur de plus haut poids (à scalaire près)

Manque de Batterie!

2024-03-21

Rappels

 $h \subseteq g$: sous algèbre de Cartan

$$g = h \bigoplus_{\alpha \in R} g_{\alpha} \quad R \subseteq h^*$$

$$\mathfrak{s}_{\alpha} = \left\langle \underbrace{X_{\alpha}}_{\in q_{\alpha}}, \underbrace{Y_{\alpha}}_{\in q_{-\alpha}}, \underbrace{H_{\alpha}}_{\in h} \right\rangle \cong \mathfrak{sl}(3, \mathbb{C})$$

V-représentation de $\mathfrak g$

$$V = \bigoplus V_{\alpha}$$

$$\Lambda_W = \{ \beta \in h^* | \beta(H_\alpha) \in \mathbb{Z} \forall \alpha \in R \}$$

$$\Lambda_R = \mathbb{Z}R \subseteq \Lambda_W$$

Réflexion dans une racine α

$$W_{\alpha}(\beta) = \beta - \beta(H_{\alpha})\alpha$$

$$\mathcal{W} = \langle W_{\alpha} \rangle_{\alpha \in R}$$
 groupe de Weyl

les poids de V sont stalbes par \mathscr{W}

On fixe $\ell: h^* \to \mathbb{R}$

. . .

Proposition:

- (i) Toute représentation a un vecteur de plus haut poids
- (ii) Les sous-espace $W\subseteq V$ engendré par V et applications successive de $\{X_\alpha\}_{\alpha\in R^-}$ et une sous représentation irréductible
- (iii) Toute représentation irréductible admet une unique vecteur de plus haut poids

Démonstration:

(i) Soit α maximal parmis les $V_{\alpha} \neq \{0\}$ pour l'ordre partiel

$$\alpha > \beta$$

ssi $\ell(\alpha) > \ell(\alpha)$ et soit $v \in V_{\alpha}$

S'il existe $X \in \mathfrak{g}_{\beta}$ avec $\beta \in R^+$ et $X \cdot v \neq 0$ alors $X \cdot \in V_{\alpha+\beta}$ et $\ell(\alpha+\beta) = \ell(\alpha) + \ell(\beta) > \ell(\alpha)$ considérant la maximalité

Parmis les racines de R^+ on dit que $\alpha \in R^+$ est une racine simple s'il n'existe pas de $\beta_1, \beta_2 \in R^+$ t.q. $\alpha = \beta_1 + \beta_2$

<u>Lemme</u>: Si α, β sont simples alors $\alpha - \beta$ et $\beta - \alpha$ ne sont pas des racines

Figure 1 – Resaux

 $\underline{\mathrm{D\acute{e}m}}$:

.

(ii) W est aussi engendré par V et ses images successives par $\{X_{-\alpha}\}_{\alpha \in S}, S \subseteq R^+$: racins simples - W est stable par $\{X_{\alpha}\}_{\alpha \in R^-}$ - W est stable par $H \in \mathcal{H}$

Reste à montrer que W est stable par $\{X_{\alpha}\}_{{\alpha}\in S}$

 $W_n \subseteq W$ sous-espace où on applique des monts de longeure $\leq n$

Par récurence on montre que $X_{\alpha}W_{n}\subseteq W_{n}$ $\alpha\in S$

Soit $u \in W_n$ un générateur

$$\implies u = X_{\beta}u' \quad \text{où} \quad u' \in W_{n-1}$$
$$-\beta \in S$$

Soit

$$X_{\alpha}$$
 pour $\alpha \in S$

Alors
$$X_{\alpha}u = X_{\alpha}X_{\beta}u' = (X_{\beta}X_{\alpha} + [X_{\alpha}, X_{\beta}])u'$$

$$= X_{\beta}X_{\alpha}u' + [X_{\alpha}, X_{\beta}]u'$$

Étape 8:

Classifier les représentations irréductibles

Dans le sous-espace réal de h^* engendré par R, on note $\mathcal{C} = \{\beta | \beta(H_{\alpha}) \geq 0 \forall \alpha \in R\}$

On appelle cela une chambre de Weyl

$\underline{\text{Th\'eor\`eme}}$:

Pour tout poids $\alpha in \mathcal{C} \cap \Lambda_W$ il existe une unique représentation irréductible de \mathfrak{g} ayant α comme plus haut poids.

On obtiens une bijections entre les représentations irréductible de \mathfrak{g} et $\mathcal{C} \cap \Lambda_W$

Démonstration : ON démontre l'unicité seulement

Soient U, V deux représentation irréductible ayant α comme plus haut poids. Soient $u \in U_{\alpha}$, $v \in V_{\alpha}$ comme plus haut poids. Alors $(u, v) \in U \oplus V$ est une vecteur de plus haut poids α dans $U \oplus V$

 $\implies (u, v)$ engendre une sous-espace

$$W \subseteq U \otimes W$$

irréductible

$$\pi_u:W\to u$$

$$\pi_v:W\to v$$

sont des isomorphismes de représentation (par le lemme de Shur)

$$\implies U \cong V$$

La forme de Killing

On définit $B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$

Par la formule $B(x,y) = \operatorname{tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$

Observation:

$$X \in \mathfrak{g}_{\alpha}, Y \in g_{\beta}$$

avec
$$\beta \neq \pm \alpha$$

Alors, pour tout $Z \in g_{\gamma}$

on a $(adX \circ adY)(Z)$

$$= [X, [Y, Z] \in g_{\gamma + \alpha + \beta} \neq g_{\gamma}]$$

En particuleier $\left[X,\left[Y,Z\right]\right]$ n'as pas de composante en Z

$$\implies B(X,Y) = 0$$

Autrement dit $g_{\alpha} \perp g_{\beta}$ si $\beta \neq -\alpha$

La décomposition $g = h \oplus \left(\bigoplus_{\alpha \in R^+} (g_\alpha \oplus g_{-\alpha})\right)$

est orthogonale pour B

Si $X, Y \in h$ alors $Z \in \mathfrak{g}_{\alpha}$

$$(\operatorname{ad} X \circ \operatorname{ad} Y)(Z) = [X, [Y, Z]] = \alpha(Y)[X, Z] = \alpha(X)\alpha(Y)Z$$

$$\implies \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y) = \sum_{\alpha \in R} \alpha(X)\alpha(Y)$$

sur le sous-esapce réel engendré par les H_α

B est définie positive

$$B(H_{\alpha}, H_{\beta}) = \underbrace{\sum_{\gamma \in R} \gamma(H_{\alpha}) \gamma(H_{\beta})}_{\in \mathbb{Z}}$$

si
$$H \in \mathbb{R} \langle H_{\alpha} \rangle_{\alpha \in R}$$

alors
$$B(H, H) = \sum_{\alpha \in R} \alpha(H)^2 \ge 0$$

$$\operatorname{si} B(H,H) = 0$$

$$\alpha(H) = 0 \forall \alpha \in R$$

$$H = 0$$

car R engendre h^*

Porp : B([X, Y], Z) = B(X, [Y, Z])

 $\underline{\text{D\'emonstration}}$:

. .

Proposition : si g est simple alors B est non dégénéré

(rappel : B est dégénérée si $Ker(B) \neq \{0\}$ $\operatorname{Ker}(B) = \{X \in g | B(x,y) = 0 \forall y \in g\}$

<u>Démonstration</u> : Supposons qu'il existe $X \in \mathcal{B}, X \neq 0$

Alorsm pour tout Y et tout $Z \in g$

$$B([X,Y],Z) = B(X,[Y,Z]) = 0$$

$$\implies [X,Y] \in \ker B$$

$$\implies B \subseteq g$$

est un ideal