Samsung Innovation Campus

Hotheads

Hale Afra Iris Ozge Ozkaya Gozde Gozutok Toyan Unal

Wildfire Forecasting

for Wildfire Preparedness

Outline

- Background
- Objectives
- SDG Relation
- Dataset
- Methodology
- Outputs
- Usability
- Next Steps

Background

- Wildfires effect lives in various aspects
- Wildfires' can be detected at early-stages to get prepared
- Early-stage prediction provides prevention from massive loss

Objectives

- Building a machine learning model that predicts the probability of wildfires for given areas
- Supporting and warning disaster risk reduction/management teams at early-stages

SDG Relation

Dataset

- +150k weather and wildfire data based on Turkey
 - Wildfire data source: NASA
 - Weather data source: National Centers for Environmental Information
- Time interval: 2010 2015
- Focusing on the temperature, precipitation, wind speed and so on

Outputs

- Comprehensive dataset on Turkey Weather and Wildfire for studies
- 80% accuracy to classify fire occurrence based on:
 - Daily Temperature (min, max, average)
 - Daily Precipitation
 - Daily Average Wind Speed
 - Daily Visibility in Miles
 - Daily Dew Point
 - Daily Maximum Sustained Wind Speed
 - Quarter of the year
- Power BI dashboard(visualization of 2015)

2015

Q3

Accurac

80%

Usability

- Adaptable for any area with required information
- Easy to implement to any kind of software environment
- Can focus on Turkey only
- Open source and open for improvement

Next Steps

- Strengthening the model with environmental data aspects such as population, usage intensity of the forests etc.
- Predict the brightness risk
- Building visualization systems for specific areas
- Building applications to warn authorities as well as the citizens about the wildfire risk

Thank you!