Data analysis for solar radiation and grid simulation

Team 13

Leo Naab Ying-Jieh Xia Sharvari Deshmukh Tsung-Hsiang Ma Arkid Bera

Solar Irradiance Concepts

DNI

Direct Normal Irradiance (W/m²)

DHI

Diffuse Horizontal Irradiance (W/m²)

Solar Zenith Angle (Z)

Angle between normal of the Earth and the Sun's rays (Degrees)

GHI
DHI + cos(Z) * DNI
(W/m²)

How GHI translates to power supply?

A GHI of 1000 is roughly equivalent to solar energy resources generating at 100%

Motivation

- Evaluating spatial and seasonal variations changes in solar supply and energy demands
- Evaluate relationship and gaps in solar supply and energy demand throughout the year
- Measuring efficiency of California grid assuming it is running on only on solar supply and storage

Data Sets

Solar Energy Supply Data

National Renewable Energy Laboratory -National Solar Radiation Database https://nsrdb.nrel.gov/

Energy Demand Data

California Independent System Operator https://github.com/grgmiller/CAISO_data

Data Overview

Solar Energy Supply Data

- Temporal resolution 30 min
- Spatial resolution 4 km
- California data for 1 year ~70GB!

Energy Demand Data

- Temporal resolution 60 min
- Spatial resolution Per State
- California data for 1 year ~13MB

Methodology

Data Pre-processing

- Data Reduction
 - Focused on 3 years
 - Matched supply and demand data
 - Segregated datasets for visualizations and analysis
- Dimensionality Reduction
 - Selected specific attributes
- Data Discretization
 - Temporal: Hourly data instead of every 30 min
 - Spatial: Sampled coordinates

Processed Data

Solar Energy Supply Data

Year	Month	Day	Hour	Minute	GHI	Supply (MW)
2019	1	3	16	30	160	16000

Energy Demand Data

Timestamp	Load (MW)	Zone
1/1/2018	2662.00	CA ISO
12:00:00 AM	 	
	2002.00	CA 150

Processed Data

Solar Energy Data Example for Visualization

	latitude	longitude	elevation	timezone	country	state	county	urban	population	landcover
70276	32.529999	-117.099998	55.062500	-8	b'United States'	b'California'	b'San Diego'	b'None'	32326	130
70588	32.570000	-117.099998	7.100000	-8	b'United States'	b'California'	b'San Diego'	b'Tijuana'	27971	190

```
DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 00:30:00', '2019-01-01 01:00:00', '2019-01-01 01:30:00', '2019-01-01 02:30:00', '2019-01-01 02:30:00', '2019-01-01 03:30:00', '2019-01-01 03:30:00', '2019-01-01 04:30:00', '2019-01-01 04:30:00', '2019-12-31 19:00:00', '2019-12-31 19:30:00', '2019-12-31 20:30:00', '2019-12-31 21:30:00', '2019-12-31 22:30:00', '2019-12-31 22:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 23:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-12-31 20:30:00', '2019-1
```

	longitude	latitude	ghi
0	-175.259995	-19.990000	5.0
1	-174.860001	-19.990000	3.0

Methodology

Data Analysis

- Solar supply analysis
 - Spatial
 - o Temporal
- Electricity demand analysis
 - Temporal
- Supply demand gap analysis
 - Temporal
 - Grid Simulation with energy storage resources.

Supply Data Analysis

Heatmap of GHI across complete dataset at a particular time

GHI variations in the corner states over a day in February

GHI variations in the corner states over a day in July

Total GHI across months for the year 2019

Variation in GHI in per month for the year 2019

Month vs Hour GHI Heatmap for the year 2019

Demand Data Analysis

Total power demand for all 3 years

Total power demand across 3 years

Total Demand across months for the year 2019

Variation in Demand per month for the year 2019

Month vs Hour Demand Heatmap for the year 2019

Hypothetical California grid:

- 1.5X Solar generation capacity,
- 24 hours of energy storage,

164 GW capacity 696 GW•h capacity

Solar Supply and demand rarely match.

Adding Energy
Storage resources
allows solar
energy to meet 24
hour demand

Excess solar energy is wasted

Significant curtailments during the summer months

Unused storage capacity in summer months

Solar + storage meets demand consistently except for winter months

Functionality and Coverage Testing

platform linux -- Python 3.9.5, pytest-7.4.2, pluggy-1.3.0 -- /opt/conda/bin/python3

cachedir: .pytest cache

rootdir: /home/arbera/private/ECE143

configfile: pytest.ini

plugins: cov-4.1.0, anyio-3.2.1

collected 8 items

test_1_supply.py::test_stateNameCheck PASSED	[12%]
test_1_supply.py::test_coordinateCheck PASSED	[25%]
test_1_supply.py::test_plotsCheck PASSED	[37%]
test_2_demand.py::test_zoneCheck PASSED	[50%]
test_2_demand.py::test_yearCheck PASSED	[62%]
test_2_demand.py::test_plotsCheck PASSED	[75%]
test_3_analysis.py::test_analysisYearCheck PASSED	[87%]
test_3_analysis.py::test_plotsCheck PASSED	[100%]

----- coverage: platform linux, python 3.9.5-final-0 ------Coverage HTML written to dir htmlcov

Coverage report: 100%

Module	statements	missing	excluded	coverage
<u>initpy</u>	0	0	0	100%
test_1_supply.py	17	0	0	100%
test_2_demand.py	10	0	0	100%
test_3_analysis.py	13	0	0	100%
Total	40	0	0	100%

References

- https://nsrdb.nrel.gov/data-sets/how-to-a ccess-data
- https://nsrdb.nrel.gov/data-viewer
- https://www.caiso.com/about/Pages/def ault.aspx
- https://www.ncbi.nlm.nih.gov/pmc/article s/PMC8545301/
- https://www.energy.gov/sites/prod/files/2
 015/05/f22/CA-Energy%20Sector%20Risk
 %20Profile.pdf
- https://www.nrel.gov/docs/fy06osti/38603.pdf

Theme & Icons

https://slidesgo.com/

Thank You!

