Minimización de autómatas

Clase 10

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Lema de bombeo (clase pasada)

Minimización de autómatas

Colapsar estados

Outline

Lema de bombeo (clase pasada)

Minimización de autómatas

Colapsar estados

Contrapositivo del lema de bombeo

Sea $L \subseteq \Sigma^*$. Si L es regular entonces:

(LB) existe un
$$N > 0$$
 tal que
para toda palabra $x \cdot y \cdot z \in L$ con $|y| \ge N$
existen palabras $u \cdot v \cdot w = y$ con $v \ne \epsilon$ tal que
para todo $i \ge 0$, $x \cdot u \cdot v^i \cdot w \cdot z \in L$.

Sea $L \subseteq \Sigma^*$. Si:

(¬LB) para todo
$$N > 0$$

existe una palabra $x \cdot y \cdot z \in L$ con $|y| \ge N$ tal que
para todo $u \cdot v \cdot w = y$ con $v \ne \epsilon$
existe un $i \ge 0$, $x \cdot u \cdot v^i \cdot w \cdot z \notin L$

entonces L NO es regular.

Jugando contra un demonio

"L NO es regular"

"L es regular"

El escoge un N > 0

Uno escoge $x \cdot y \cdot z \in L$ con $|y| \ge N$

El escoge $u \cdot v \cdot w = y \text{ con } v \neq \epsilon$

Uno escoge $i \ge 0$

Uno gana si xuvⁱwz ∉ L

El gana si $xuv^iwz \in L$

Ejemplo 2: $L = \{ w \cdot w \mid w \in \{a, b\}^* \}$

"L NO es regular"

"L es regular"

Escojo N > 0

Yo escojo
$$\underbrace{a^N b}_{x} \cdot \underbrace{a^N}_{y} \cdot \underbrace{b}_{z} \in L$$

Entonces escojo
$$\underbrace{a^{j} \cdot a^{k} \cdot a^{l}}_{k} = \underbrace{a^{k}}_{k} \text{ con } k > 0$$

Yo escojo i = 0

¿quién ganó el juego?

¿qué pasa si el demonio tiene una estrategia ganadora?

Lema de bombeo (version juego)

"Dado un lenguaje $L \subseteq \Sigma^*$, si UNO tiene una estrategia ganadora en el juego ($\neg LB$) para toda estrategia posible del **demonio**, entonces L NO es regular."

Sea $L \subseteq \Sigma^*$. Si L es regular entonces:

(LB) existe un N > 0 tal que para toda palabra $x \cdot y \cdot z \in L$ con $|y| \ge N$ existen palabras $u \cdot v \cdot w = y$ con $v \ne \epsilon$ tal que para todo $i \ge 0$, $x \cdot u \cdot v^i \cdot w \cdot y \in L$.

(LB) es necesaria, pero NO suficiente

Otras versiones del lema de bombeo

Lema de bombeo 2 (versión de libros, internet, etc...)

Sea $L \subseteq \Sigma^*$. Si L es regular entonces:

(LB') existe un
$$N > 0$$
 tal que para toda palabra $w \in L$ con $|w| \ge N$ existen palabras $x \cdot y \cdot z = w$ con $y \ne \epsilon$ tal que para todo $i \ge 0$, $x \cdot y^i \cdot z \in L$.

¿cuál es la ventaja de la versión (LB)?

Outline

Lema de bombeo (clase pasada)

Minimización de autómatas

Colapsar estados

¿cómo minimizo un autómata finito?

- $1.\,$ Eliminar estados inaccesibles.
 - Fácil de realizar y no cambia el lenguaje del autómata finito.
- 2. Colapsar estados "equivalentes".
 - ¿cómo sabemos cuales estados colapsar y cuales no?

¿cómo minimizo un autómata finito?

- 1 . Eliminar estados inaccesibles.
 - Fácil de realizar y no cambia el lenguaje del autómata finito.
- 2. Colapsar estados "equivalentes".
 - ¿cómo sabemos cuales estados colapsar y cuales no?

¿cómo minimizo un autómata finito?

- 1. Eliminar estados inaccesibles.
 - Fácil de realizar y no cambia el lenguaje del autómata finito.
- 2. Colapsar estados "equivalentes".
 - ¿cómo sabemos cuales estados colapsar y cuales no?

¿podemos colapsar más estados?

¿podemos colapsar más estados?

¿podemos colapsar más estados?

¿qué estados podemos colapsar?

¿y ahora? ¿qué estados podemos colapsar?

Minimización de estados

Estrategia: "reducir" nuestro autómata colapsando estados.

Outline

Lema de bombeo (clase pasada)

Minimización de autómatas

Colapsar estados

Función de transición extendida

Definición

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA.

Se define la función de transición extendida

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

inductivamente como:

$$\begin{array}{ccc} \hat{\delta}(q,\epsilon) & \stackrel{\mathsf{def}}{\equiv} & q \\ \\ \hat{\delta}(q,w\cdot a) & \stackrel{\mathsf{def}}{\equiv} & \delta(\hat{\delta}(q,w),a) \\ \end{array}$$

¿cuándo podemos colapsar dos estados?

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA y $p, q \in Q$.

Definición

Decimos que p y q son indistinguibles $(p \approx_{\mathcal{A}} q)$ si:

$$p \approx_{\mathcal{A}} q$$
 ssi $(\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F)$, para todo $w \in \Sigma^*$.

Decimos que p y q son **distinguibles** si NO son indistinguibles $(p \not *_{\mathcal{A}} q)$.

¿cuál par de estados son indistinguibles?

(Paréntesis): relaciones de equivalencia

(Paréntesis): relaciones de equivalencia

Definición

Una relación \approx sobre un conjunto X se dice de equivalencia si:

- reflexiva: $\forall p \in X. p \approx p$
- simétrica: $\forall p, q \in X$. si $p \approx q$ entonces $q \approx p$.
- **transitiva**: $\forall p, q, r \in X$. si $p \approx q$ y $q \approx r$, entonces $p \approx r$.

Para un elemento $p \in X$ se define su clase de equivalencia según \approx como:

$$[p]_{\approx} = \{q \mid q \approx p\}$$

Una función $f: X \to X$ se dice bien definida sobre \approx si:

$$p \approx q$$
 entonces $f(p) \approx f(q)$

La relación $\approx_{\mathcal{A}}$ es una relación de equivalencia

Definición

Decimos que p y q son indistinguibles $(p \approx_{\mathcal{A}} q)$ si:

$$p \approx_{\mathcal{A}} q$$
 ssi $(\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F)$, para todo $w \in \Sigma^*$

Propiedades

- $\blacksquare \approx_A$ es una relación de equivalencia entre estados.
 - reflexiva: $\forall p \in Q. p \approx_{\mathcal{A}} p$
 - simétrica: $\forall p, q \in Q$. si $p \approx_{\mathcal{A}} q$ entonces $q \approx_{\mathcal{A}} p$.
 - transitiva: $\forall p, q, r \in Q$. si $p \approx_{\mathcal{A}} q$ y $q \approx_{\mathcal{A}} r$, entonces $p \approx_{\mathcal{A}} r$.

La relación $\approx_{\mathcal{A}}$ es una relación de equivalencia

Definición

Decimos que p y q son indistinguibles $(p \approx_{\mathcal{A}} q)$ si:

$$p \approx_{\mathcal{A}} q$$
 ssi $(\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F)$, para todo $w \in \Sigma^*$

Propiedades

- $\blacksquare \approx_{\mathcal{A}}$ es una relación de equivalencia entre estados.
- Cada estado $p \in Q$ esta en exactamente una clase de equivalencia:

$$[p]_{\approx_{\mathcal{A}}} = \{q \mid q \approx_{\mathcal{A}} p\}$$

■ Para todo $a \in \Sigma$ la función $\delta(\cdot, a) : Q \to Q$ esta bien definida sobre \approx_A .

$$p \approx_{\mathcal{A}} q$$
 entonces $\delta(p, a) \approx_{\mathcal{A}} \delta(q, a)$

El autómata cuociente

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx_{\mathcal{A}}} \mid p \in F \}$

¿cuál es el autómata cuociente para \mathcal{A} ?

El autómata cuociente

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx,A} \mid p \in F \}$

¿está \mathcal{A}/\approx bien definido? ¿depende la definición de δ_{\approx} de p?

El autómata cuociente define el mismo lenguaje

Para un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ se define el DFA:

$$\mathcal{A}/\approx = (Q_{\approx}, \Sigma, \delta_{\approx}, q_{\approx}, F_{\approx})$$

- $\bullet \delta_{\approx}([p]_{\approx_{\mathcal{A}}},a) = [\delta(p,a)]_{\approx_{\mathcal{A}}}$
- $F_{\approx} = \{ [p]_{\approx_{\mathcal{A}}} \mid p \in F \}$

Teorema

Para todo autómata finito determinista ${\cal A}$ se cumple que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}/\approx)$$

El autómata cuociente define el mismo lenguaje

Demostración

Sea
$$w = a_1 a_2 \dots a_n \in \Sigma^*$$
.

PD:
$$w \in \mathcal{L}(A) \iff w \in \mathcal{L}(A/\approx)$$

Existe una ejecución ρ de \mathcal{A} sobre w:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$
- $\delta(p_i, a_{i+1}) = p_{i+1} \quad \forall i \in \{0, \ldots, n-1\}.$

Existe una ejecución ρ_{\approx} de \mathcal{A}/\approx sobre w:

$$\rho_{\approx}: X_0 \stackrel{a_1}{\to} X_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} X_n$$

- $X_0 = q_{\approx}$.
- $\delta_{\approx}(X_i,a_{i+1})=X_{i+1} \quad \forall i\in\{0,\ldots,n-1\}.$

¿qué relación hay entre p_i y X_i ?

El autómata cuociente define el mismo lenguaje

Demostración

PD:
$$[p_i]_{\approx_{\mathcal{A}}} = X_i \quad \forall i \in \{0,\ldots,n\}$$

Por inducción sobre i.

Por lo tanto, $w \in \mathcal{L}(A)$ si, y solo si, $w \in \mathcal{L}(A/\approx)$

PD: $p_n \in F$ si, y solo si, $[p_n]_{\approx A} \in F_{\approx}$

Cierre de clase

En esta clase vimos:

- 1. Introducción a minimización de autómatas.
- 2. Colapsar estados según relación $\approx_{\mathcal{A}}$ entre estados.
- 3. Definición de autómata cuociente.

Próxima clase: Algoritmo para construir autómata cuociente.