TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Katedra elektrotechniky a mechatroniky

Projekt 1, zadanie C **Návrh stabilného riadenia SISO**

Bc. Andrej Klein 1.roč. 2022/2023

1. Zadanie typ C

Navrhnite stabilné riadenie SISO systému s blokovou schémou podľa nasledujúceho obrázka.

Obr. 1 Bloková schéma nelineárneho SISO systému.

Výstupná veličina y(t) nech sa chová ako systém 3. rádu s aperiodickou odozvou. Doba ustálenia výstupnej veličiny nech je Tust = T1 (prvá číslica zadania) + T2 (druhá číslica zadania) sekúnd.

Meno	Priezvisko	ZADANIE	
		TYP	Číslo zadania
Andrej	Klein	3	5

Parametre podl'a typu zadania:

Zadanie č.	al	b1	c1	d1	e1	V
5	-0.47	-3.32	-0.05	-0.13	2.5	0.12

2. Úprava blokovej schémy pomocou stavového popisu

Blokovú schému nášho modelu (obr. 1), vieme pomocou rovníc stavového popisu rozložiť na menšie častí (obr.2). Zostavíme matice Ax, Bu, ktoré získame z rovníc stavového popisu.

[1]

[2]

[3]

Po úprave nadobudnú rovnice nasledovný tvar:

[4]

[5]

[6]

Z rovníc zostavíme nasledujúce matice Ax, Bu:

[7]

Pomocou programu Simulink vytvoríme model, kde sú použité matice Ax, Bu.

Obr. 2 Model systému SISO v Simulinku.

Tento model prezentuje rovnaký systém, ako je na (obr. 1) len je rozložený pomocou matíc stavového popisu. Tieto matice môžeme zapísať aj do jedného bloku, ktorý sa v Simulinku nazýva "State-space".

Obr. 3 Blok stavového popisu systému SISO pomocou matíc Ax, Bu.

Z rovníc (4, 5 a 6) vytvoríme pomocou programu Simulink nasledovný model systému (obr. 4), ktorý je rozložený na menšie častí. Do jednotlivých sumátorov , a privedieme signál od kompenzátora "k", nateraz je k = 0, pretože ešte nemáme navrhnutý kompenzátor.

Obr. 4 Bloková schéma systému SISO.

Vidíme, že v schéme je aj signál počiatočnej hodnoty integrálov , ktorým vieme simulovať rôzne stavy vzhľadom na počiatočné hodnoty , a .

Obr. 5 Výsledná charakteristika stavov , a .

3. Referenčný model

Všeobecné požiadavky pre referenčný model sú:

- 1. Nulová regulačná odchýlka výstupnej veličiny v ustálenom stave.
- 2. Požadovaná doba ustálenia
- 3. Požadovaný priebeh ustálenia je aperiodicky.

V programe Simulink vytvoríme nasledovný referenčný model, ktorý splna tieto požiadavky. Ako zosilnenie integrálov som definoval hodnotu "Al" .

Obr. 6 Referenčný model

Priebeh takto navrhnutého referenčného modelu je zobrazený na nasledujúcom obrázku, kde si môžeme všimnúť, že naozaj doba ustálenia začína v čase 5 s.

Obr. 7 Výsledná charakteristika stavov, a referenčného modelu.

Pomocou tohto referenčného modelu a nášho systému vznikne odchýlka "e". A to tak, že od referenčného modelu odpočítame jednotlivé stavy nášho systému. Rovnica získa tvar . Na nasledujúcom obrázku je zobrazená charakteristika odchýlky e pre jednotlivé stavy.

Obr. 8 Výsledná charakteristika rozdielu referenčného modelu a systému bez vstupného signálu "k" z kompenzácie.

Aby sa systém stabilizoval potrebujeme navrhnúť vhodný kompenzátor v ktorom bude PI regulátor zložený z matíc a . Pomocou Ljapunovovej metódy navrhneme maticu P, ktorá je už definovaná ako:

[8]

Pre overenie maticovej Ljapunovovej rovnice potrebujeme maticu "A" referenčného modelu, ktorá je:

[10]

Vypočítame tieto rovnice v programe Simulink. Na nasledujúcom obrázku je zobrazený model simulácie výpočtu týchto rovníc.

Obr. 9 Výpočet maticovej Ljapunovovej rovnice v Simulinku

Overenie Ljapunovovej funkcie je zobrazené na nasledujúcom obrázku (obr.10), kde sú použité ďalšie dve rovnice:

- Ljapunovová funkcia [11]
- Derivácia Ljapunovovej funkcie [12]

Obr. 10 Overenie Ljapunovovej funkcie

Ak je Ljapunovová funkcia kladne definitná a jej derivácia záporne definitná, tak systém je asymptoticky stabilný.

Obr. 11 Výsledná charakteristika Ljapunovovej funkcie a jej derivácie.

4. Kompenzácia systému pomocou PI regulátora

Pomocou nasledujúcich rovníc zostavíme model kompenzácie systému.

[13]

[14]

Do kompenzácie vstupuje regulačná odchýlka e. V kompenzácii je PI regulátor zložený z matíc a , ktoré sú voliteľné a ohraničené fyzikálnymi zákonmi.

Obr. 12 Kompenzácia systému

Privedením výstupného signálu "k" z kompenzácie do nášho systému SISO sa nelineárny stav ustáli a stabilizuje v čase . Nasledujúci obrázok zobrazuje výslednú stabilizovanú charakteristiku nášho systému.

Obr. 13 Ustálený stabilný stav systému SISO

5. Overenie Ljapunovovej funkcie pomocou MATLABu

Pomocou programu MATLAB si ukážeme ako overiť Ljapunovovu funkciu nášho SISO systému.

Matice stavového popisu nášho systému sú:

[15]

[16]

Matice referenčného modelu podľa stavového popisu, kde sú:

[17]

[18]

Navrhnutá Ljapunovova matica P:

[19]

Vypočítame maticovú Ljapunovovu rovnicu podľa rovnice (10) príkazom:

$$\Rightarrow$$
 Q = ((Am'*P)+(P*Am))

Deriváciu Ljapunovovej funkcie získame nasledujúcim príkazom:

$$\Rightarrow$$
 P2 = lyap(Am',Q')

[20]

[21]

Zobrazením matíc vidíme, že matica P (rovnica 20) je kladne definitná a jej derivácia (rovnica 21) je záporne definitná čím sme overili, že náš systém je asymptoticky stabilný.

6. Prílohy

Príloha 1. Kód programu napísaný v programe MATLAB:

```
Projekt 1
    Zadanie typ C - Navrh SISO systemu s blokovou schemou.
    Sucastou je model navrhnuty v Simulinku "P1S AndrejKlein".
    Autor: Bc. Andrej Klein
           10.11.2022
    Date:
%********************
%Parametre systemu:
a1 = -0.47; b1 = -3.32; c1 = -0.05; d1 = -0.13; e1 = 2.5; v = 0.12;
disp("Blokova schema SISO systemu podla stavoveho popisu:");
A = [0 e1 -e1; -b1 -a1 0; -c1 0 -d1]
B = [0 \ 0; -b1 \ 0; 0 \ c1]
C = [1 0 0];
D = [0 \ 0];
disp("Navrh referenceho modelu podla stavoveho popisu:");
% Pozadovany aperiodicky priebeh a cas ustalenia: Tust = 5 [s].
% Navrhnute zosilnenie: alfa = 6.
A1 = 6;
Am = [0 \ 1 \ 0; 0 \ 0 \ 1; -Al^3/2 \ -3*Al^2/2 \ -3*Al/2]
Bm = [0;0;A1^3/2]
Cm = [1 0 0; 0 1 0; 0 0 1];
Dm = [0;0;0];
% Navrhnuta ljapunovova matica:
disp("Ljapunovova matica P:");
P = [A1^5/2 A1^4 A1^3/2; A1^4 5*A1^3/2 3*A1^2/2; A1^3/2 3*A1^2/2]
3*A1/2]
% Matica "-Q":
Q = ((Am'*P)+(P*Am))
P2 = lyap(Am',Q')
```

Príloha 2 Návrh stabilného systému v Simulinku, referenčný model:

Obr. 14 Overenie systému a referenčného modelu.

Obr. 15 Schéma stavového popisu systému.

Obr. 16 Schéma stavového popisu ref. modelu.

Príloha 3 Overenie Ljapunovovej funkcie, referenčný model:

Obr. 17 Overenie Ljapunovovej funkcie

Obr. 18 Referenčný model

Príloha 4 Kompenzácia systemu:

Obr. 18 Návrh stabilného systému v Simulinku, kompenzácia

Obr. 19 Kompenzácia systému, PI regulátor.