Frühjahr 15 Themennummer 1 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

In dieser Aufgabe bezeichne $B_r(a) := \{z \in \mathbb{C} \mid |z - a| < r\}$ für $a \in \mathbb{C}$ und r > 0. Ferner sei $f : \mathbb{C} \to \mathbb{C}$ durch $f(z) := 6z^6 - 2z^2 + 1$ gegeben.

- (a) Formulieren Sie den Satz von Rouché für ganze Funktionen.
- (b) Zeigen Sie, dass $B_4(1) \subset f(B_1(0)) \subset B_8(1)$ gilt. *Hinweis:* Für den Nachweis der ersten Inklusion könnte der in (a) formulierte Satz hilfreich sein.
- (c) Entscheiden Sie mit Beweis, ob $f(B_1(0)) \cap \mathbb{R} = f(B_1(0)) \cap \mathbb{R}$ gilt.

Lösungsvorschlag:

(a) Sei $D \subset \mathbb{C}$ offen und beschränkt und g, h meromorph auf einer Umgebung der kompakten Menge \overline{D} . Sei Γ in D zusammenziehbar und vermeide Pole und Nullstellen von g. Unter der Annahme

$$|h(z)| < |g(z)|$$
 für alle $z \in \text{Spur}(\Gamma)$

gilt:

$$\sum_{z \in D} \operatorname{Ind}_z(\Gamma) \operatorname{Ord}_{g+h}(z) = \sum_{z \in D} \operatorname{Ind}_z(\Gamma) \operatorname{Ord}_g(z).$$

(b) Sei $z_0 \in B_4(1)$, d. h. $z_0 \in \mathbb{C}$ mit $|z_0 - 1| < 4$. Die Menge $D = B_1(0)$ ist offen und beschränkt, die ganzen Funktionen mit $g(z) = 6z^6 - 2z^2$ und $h \equiv 1 - z_0$ und die Kurve $\gamma : [0, 2\pi] \to \mathbb{C}, t \mapsto e^{it}$ erfüllen die Voraussetzungen des Satzes, denn als offene Umgebung von \overline{D} können wir \mathbb{C} wählen und Polstellen existieren nicht. Die Nullstellen von g liegen nicht auf der Spur von γ , denn $g(z) = 0 \iff 2z^2(3z^4 - 1) = 0$, also sind die Nullstellen von g die Zahlen $0, \pm \frac{i}{\sqrt[4]{3}}, \pm \frac{1}{\sqrt[4]{3}}$, deren Betrag kleiner als 1 ist. Die Kurve ist in D zusammenziehbar und für $z \in \text{Spur}(\gamma)$, also $z \in \mathbb{C}$ mit |z| = 1, gilt $|g(z)| \ge ||6z^6| - |2z^2|| = 4 > |h(z)|$. Nach dem Satz von Rouché besitzt die Funktion g + h also 6 Nullstellen mit Vielfachheit in der Menge D, für jede Nullstelle z von g + h gilt aber $f(z) = z_0$, womit $z_0 \in f(B_1(0))$ ist. Also folgt $B_4(1) \subset f(B_1(0))$. Wegen $|f(z) - 1| \le |6z^6| + |2z^2| = 6|z|^6 + 2|z|^2 < 6 + 2 = 8$ für $z \in B_1(0)$ folgt

Wegen $|f(z) - 1| \le |6z^6| + |2z^2| = 6|z|^6 + 2|z|^2 < 6 + 2 = 8$ für $z \in B_1(0)$ folgt $f(B_1(0)) \subset B_8(1)$.

(c) Dies gilt nicht. Würde die Gleichheit gelten, so müsste $-2 \in B_4(1) \cap \mathbb{R} \subset f(B_1(0)) \cap \mathbb{R}$ auch in $f(B_1(0) \cap \mathbb{R}) = f((-1,1))$ liegen, es gäbe also ein $x \in (-1,1)$ mit f(x) = -2 also $-3 = 6x^6 - 2x^2 = 2x^2(3x^4 - 1)$. Damit der letzte Term negativ wird, muss $|x| < \frac{1}{\sqrt[4]{3}}$ sein, dann ist aber $3x^4 - 1 \in (-1,0)$ und $|2x^2| \le \frac{2}{\sqrt{3}} < 2$. Also ist dann $|6x^6 - 2x^2| < 2$ und die Gleichung $-3 = 6x^6 - 2x^2$ kann wegen |-3| = 3 > 2 nicht erfüllt sein. Also sind die Mengen nicht gleich.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$