

## **PROBABILIDADE**

**Questão 01:** Considerando o espaço amostral de um experimento constituído do lançamento de dois dados perfeitamente simétricos, pede-se:

- a) Qual a probabilidade de que o primeiro dado mostre a face 2 e o segundo a face 3?
- b) Qual a probabilidade de que ambos os dados mostrem a mesma face?
- c) Qual a probabilidade de que o segundo dado mostre um número par?

**Questão 02:** Uma moeda perfeita é lançada 3 vezes e observado o número de caras. Qual é a probabilidade de ocorrer?

- a) Pelo menos uma cara?
- b) Só cara ou só coroa?
- c) Exatamente uma cara?

**Questão 03:** Das 10 alunas de uma classe, 3 têm olhos azuis. Se duas delas são escolhidas aleatoriamente, qual é a probabilidade de:

- a) Ambas terem olhos azuis?
- b) Nenhuma ter olhos azuis?
- c) Pelo menos uma ter olhos azuis?

**Questão 04:** Em certo colégio, 25% dos estudantes foram reprovados em matemática, 15% em química e 10% em matemática e química ao mesmo tempo. Um estudante é selecionado aleatoriamente. Pede-se:

- a) Se ele foi reprovado em química, qual é a probabilidade de ter sido reprovado em matemática?
- b) Se ele foi reprovado em matemática, qual a probabilidade de ter sido reprovado em química?
- c) Qual é a probabilidade de ter sido reprovado em matemática ou química?

**Questão 05:** Um dado é viciado de tal forma que a probabilidade de sair um certo número é proporcional ao seu valor. Pede-se:

- a) Qual é a probabilidade de sair o 3, sabendo-se que o ponto que saiu é ímpar?
- b) Qual é a probabilidade de sair um número par, sabendo-se que saiu um número maior que 3?

Questão 06: Sejam A, B e C três eventos de um mesmo espaço amostral S. Sabendo-se que:

$$P(A) = P(B) = \frac{1}{3}; \quad P(C) = \frac{1}{4}; \quad P(A \cap B) = \frac{1}{8};$$

$$P(A \cap C) = P(B \cap C) = \frac{1}{9}$$
  $e$   $P(A \cap B \cap C) = \frac{1}{20}$ 

Calcular as probabilidades:

- a) De ocorrer pelo menos um dos eventos A, B ou C;
- b) De que não se realize nenhum dos eventos A, B ou C;
- c) De que o evento A se realize, sabendo-se que já ocorreu B ou C.

**Questão 07:** Seja  $S = \{1,2,3,4\}$  um Espaço Amostral Equiprovável e os eventos  $A = \{1,2\}$ ,  $B = \{1,3\}$  e  $C = \{1,4\}$ . Verifique se os eventos A, B e C são mutuamente independentes.



**Questão 08:** Dois homens  $h_1$  e  $h_2$  e três mulheres  $m_1$ ,  $m_2$  e  $m_3$  estão num torneio de xadrez. Os do mesmo sexo tem igual probabilidade de vencer, mas cada mulher tem duas vezes mais probabilidade de vencer o torneio do que qualquer um dos homens. Pede-se:

- a) Qual é a probabilidade de que uma mulher vença o torneio?
- b) Se h<sub>1</sub> e m<sub>1</sub> são casados, qual é a probabilidade de que um deles vença o torneio?

**Questão 09:** Um homem possui duas moedas, uma comum e a outra cunhada com duas caras. Ele apanhou uma moeda aleatoriamente e a lançou, se ocorreu a face cara, qual é a probabilidade de que a moeda lançada tenha sido a de duas caras?

**Questão 10:** Jogam-se dois dados. Se as duas faces mostram números diferentes, qual é a probabilidade de que uma das faces seja o 4?

**Questão 11:** Considere dois tipos de caixas de bombons, B e C. O tipo B contém 65% de bombons doces e 35% de bombons amargos, enquanto no tipo C essas percentagens de sabor são inversas. Além disso, 45% de todas as caixas de bombons são do tipo B, e as restantes do tipo C. Escolhe-se, aleatoriamente, uma caixa e um bombom dessa caixa; se for constatado que ele é do tipo doce, qual é a probabilidade de ter vindo de uma caixa do tipo C?

## Questão 12: Definir e dar exemplos de:

- a) Eventos Mutuamente Exclusivos
- b) Eventos Independentes

Questão 13: Quatro urnas A, B, C, e D contém bolas coloridas conforme abaixo:

|      | COR DA BOLA |        |      |
|------|-------------|--------|------|
| URNA | VERMELHA    | BRANCA | AZUL |
| Α    | 1           | 6      | 3    |
| В    | 6           | 2      | 2    |
| С    | 8           | 1      | 1    |
| D    | 0           | 6      | 4    |

## Pede-se:

- a) Se, aleatoriamente, extrai-se uma bola vermelha de uma das urnas, qual é a probabilidade de ter sido da urna B?
- b) Se forem extraídas duas bolas, sem reposição, da urna C, qual é a probabilidade de que ambas NÃO sejam vermelhas?

**Questão 14:** Numa placa de petri 20%, 40%, 25% e 15% do total das colônias bacterianas são dos tipos A, B, C e D, respectivamente. Sabe-se que 3%, 5%. 6% e 20% de cada colônia, respectivamente, são patogênicas.

- a) Se for retirada uma amostra aleatória de uma única colônia bacteriana, qual é a probabilidade de que esta amostra contenha somente bactérias patogênicas?
- b) Se for constatado que a amostra do item (a) possui somente bactérias patogênicas, qual é a probabilidade de que as bactérias sejam do tipo D?

**Questão 15:** Quatro equipes A, B, C e D participam de um torneio que premiará uma única equipe campeã. Quanto às probabilidades de cada equipe vencer o torneio, as equipes C e D são equiprováveis, a equipe A é duas vezes mais provável do que B, e B duas vezes mais do que as equipes C e D. Pede-se: Qual é a probabilidade de que as equipes C ou D sejam campeãs?



**Questão 16:** Considere o seguinte Experimento Aleatório: Lançamento de um dado até que a face com o número 5 ocorra pela primeira vez. Pede-se:

- a) O Espaço Amostral desse experimento.
- b) Uma fórmula geral para o cálculo das probabilidades.
- c) Mostre que a soma das probabilidades associadas aos pontos amostrais é um. Obs:  $S_n = \frac{a_1}{1-q}$ , numa P.G. infinita ou ilimitada, quando 0 < q < 1.
- d) Qual é a probabilidade de ocorrer a face 5 no terceiro lançamento?

**Questão 17:** Uma urna contém 5 bolas pretas, três vermelhas e duas brancas. Foram extraídas 3 bolas com reposição. Qual a probabilidade de terem sido duas bolas pretas e uma vermelha?

**Questão 18:** Uma caixa A contém 8 peças, das quais 3 são defeituosas e uma caixa B contém 5 peças, das quais 2 são defeituosas. Uma peça é retirada aleatoriamente de cada caixa:

- a) Qual a probabilidade p de que ambas as peças não sejam defeituosas?
- b) Qual a probabilidade p de que uma peça seja defeituosa e a outra não?
- c) Se uma peça é defeituosa e a outra não, qual é a probabilidade p de que a peça defeituosa venha da caixa A?

**Questão 19:** Suponhamos que a probabilidade de que um vigia noturno num navio com luzes apagadas descubra um periscópio em certas condições de tempo é 0,7. Qual é a probabilidade de que uma combinação de dois vigias similares A e B, fizesse a descoberta?

**Questão 20:** A e B são eventos mutuamente exclusivos. Determine quais das relações abaixo são verdadeiras e quais são falsas. JUSTIFIQUE.

- a) P(A/B) = P(A)
- b)  $P[(A \cup B)/C] = P(A/C) + P(B/C)$
- c) P(A) = 0, P(B) = 0 ou ambas
- d)  $\frac{P(A/B)}{P(B)} = \frac{P(B/A)}{P(A)}$
- e)  $P(A \cap B) = P(A) \cdot P(B)$

Repita o problema supondo A e Bindependentes.



## **RESPOSTAS:**

1. a) 1/36

b) 1/6

c) 1/2

2. a) 7/8

b) 1/4

c) 3/8

3. a) 1/15

b) 7/15

c) 8/15

4. a) 2/3

b) 2/5

c) 0,30

5. a) 1/3

b) 2/3

6. a) 223/360

b) 137/360

c) 67/170

7. Não são independentes porque a igualdade 3 a 3 não se verifica, isto é:

$$P(A \cap B \cap C) \neq P(A) \cdot P(B) \cdot P(C)$$

8. a) 3/4

b) 3/8

9. 2/3

10. 1/3

11.  $\approx 0,3969$ 

12. ---

13. a) 6/15

b) 1/45

14. a) 0,071

b)  $\cong 0,4225$ 

15. 0.25

16. a)  $S = \{5, F5, FF5, ...\}$  F = qualquer face exceto 5

b) A probabilidade de ocorrer a face 5 no *n*-ésimo lançamento do dado é:

$$P(n) = \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right)$$

c)  $a_1 = \frac{1}{6}$ ,  $q = \frac{5}{6}$  e  $S_n = 1$ 

d)  $\approx 0.116$ 

17. 9/40

18. a) 3/8

b) 19/40

c) 9/19

19. 0,91

20.

A e B mutuamente exclusivos

A e B independentes

a) F

a) V

b) V

b) F

c) F

c) F

d) V

d) F

e) F

e) V