Walles formula

Statement: If *n* is a positive integer then

$$I = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$

$$= \frac{(n-1)(n-3)(n-5)\dots\dots 5.3.1}{n(n-2)(n-4)\dots 6.4.2} \times \frac{\pi}{2} \quad when \, n \, is \, even$$

$$= \frac{(n-1)(n-3)(n-5)\dots 6.4.2}{n(n-2)(n-4)\dots 5.3.1} \quad when \, n \, is \, odd$$

<u>Problem:</u> Find the value by using walles formula:

i)
$$\int_0^{\frac{\pi}{2}} \sin^7 x \, dx$$
 ii) $\int_0^{\pi} \sin^9 x \, dx$ iii) $\int_0^{\pi} \sin^8 x \, dx$ iv) $\int_0^{\frac{\pi}{2}} \cos^6 x \, dx$ v) $\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$.

Solved - (i): Let,

$$I = \int_0^{\frac{\pi}{2}} \sin^7 x \, dx \quad Here, n = 7 \text{ which is odd}$$

$$so, I = \frac{(7-1)(7-3)(7-5)}{7(7-2)(7-4)(7-6)}$$

$$= \frac{48}{105}$$

$$= \frac{16}{35}$$

Solved – (ii):Let,
$$I = \int_0^{\pi} \sin^9 x \ dx$$

$$=2\int_0^{\frac{\pi}{2}}\sin^9x\ dx$$

Here, n = 9 which is odd

$$so, I = 2 \frac{(9-1)(9-3)(9-5)(9-7)}{9(9-2)(9-4)(9-6)(9-8)}$$
$$= 2 \frac{348}{945} = \frac{256}{215}$$

Solved – (iii):Let,
$$I = \int_0^{\pi} \sin^8 x \ dx$$

$$=2\int_0^{\frac{\pi}{2}}\sin^8x\ dx$$

Here, n = 8 which is even number

$$so, I = 2 \times \frac{(8-1)(8-3)(8-5)(8-7)}{8(8-2)(8-4)(8-6)} \times \frac{\pi}{2}$$
$$= 2 \times \frac{7.5.3.1}{8.6.4.2} \times \frac{\pi}{2}$$
$$= \frac{35\pi}{128}$$

Solved – (iv):Let,
$$I = \int_0^{\frac{\pi}{2}} \cos^7 x \ dx$$

Here, n = 7 which is odd

$$so, I = \frac{(7-1)(7-3)(7-5)}{7(7-2)(7-4)(7-6)} = \frac{48}{105} = \frac{16}{35}.$$

Gamma and Beta function:

Beta Function: An integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$, where m > 0, n > 0 is called *beta function* and is denoted by $\beta(m, n)$.

Gamma Function: An integral $\int_0^\infty e^{-x} x^{n-1} dx$, where n > 0 is called *gamma function* and is denoted by Γn .

Problem-1: Show that,

i)
$$\int_0^\infty e^{-y^{\frac{1}{n}}} dy = \Gamma(n+1)$$
; ii) $\beta(m,n) = \beta(n,m)$

Solved - (i):

L.H.S,
$$I = \int_0^\infty e^{-y^{\frac{1}{n}}} dy$$
$$= \int_0^\infty e^{-x} nx^{n-1} dx$$
$$= n \int_0^\infty e^{-x} x^{n-1} dx$$
$$= n\Gamma n$$

$$\therefore \int_0^\infty e^{-y^{\frac{1}{n}}} dy = \Gamma(n+1) \qquad (Showed)$$

Let,
$$y^{\frac{1}{n}} = x$$

 $\Rightarrow y = x^n$
 $\Rightarrow dy = nx^{n-1}dx$
 $x = 0$
 $y = 0$

Solved - (ii):

We know.

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
$$= -\int_1^0 (1-y)^{m-1} y^{n-1} dy$$
$$= \int_0^1 y^{n-1} (1-y)^{m-1} dy$$

Let,
$$1 - x = y$$

 $\Rightarrow 0 - dx = dy$
 $\Rightarrow dx = -dy$
 $x = 0$
 $y = 1$
 $y = 0$

$$\therefore \beta(m,n) = \beta(n,m) \quad (Showed)$$

Problem -2: Show that,

$$\beta(m,n) = \frac{\Gamma m \, \Gamma n}{\Gamma(m+n)}$$

Solved: We know,

$$\Gamma m = \int_0^\infty e^{-x} x^{m-1} dx$$

$$= \int_1^\infty e^{-\lambda y} . (\lambda y)^{m-1} \lambda dy$$

$$= \int_1^\infty e^{-\lambda y} \lambda^{m-1} y^{m-1} \lambda dy$$

$$= \int_1^\infty e^{-\lambda y} y^{m-1} \lambda^m \lambda dy \qquad \dots \dots (i)$$

Let,
$$x = \lambda y$$

 $\Rightarrow dx = \lambda dy$
 $x = 0$
 $y = 1$ ∞

again, $\Gamma n = \int_0^\infty e^{-\lambda} \lambda^{n-1} d\lambda$ (ii)

Multiplying (i) and (ii) we get,

$$\Gamma m\Gamma n = \int_0^\infty \int_0^\infty e^{-\lambda y} e^{-\lambda} y^{m-1} \lambda^{n-1} \lambda^m d\lambda dy$$

$$= \int_0^\infty \left[\int_0^\infty e^{-\lambda(1+y)} \lambda^{m+n-1} d\lambda \right] y^{m-1} dy$$

$$= \int_0^\infty \frac{\Gamma(m+n)}{(y+1)^{m+n}} y^{m-1} dy$$

$$= \Gamma(m+n) \int_0^\infty \frac{y^{m-1}}{(y+1)^{m+n}} dy$$

$$\Gamma m\Gamma n = \Gamma(m+n).\beta(m,n)$$

$$\therefore \beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)} \quad (Showed).$$

Problem-3: Show that,

$$\int_0^{\frac{\pi}{2}} sin^p\theta cos^q\theta d\theta = \frac{\Gamma^{\frac{p+1}{2}} \Gamma^{\frac{q+1}{2}} \Gamma^{\frac{q+1}{2}} {2\Gamma^{\frac{p+q+2}{2}}}.$$

Solved:

We know,

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

$$= \int_0^{\frac{\pi}{2}} (\sin^2 \theta)^{m-1} (1 - \sin^2 \theta)^{n-1} 2 \sin \theta \cos \theta d\theta =$$

$$2 \int_0^{\frac{\pi}{2}} \sin^{2m-2} \theta \cos^{2n-2} \theta \sin \theta \cos \theta d\theta$$

$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$
Again, $2m - 1 = p$ $2n - 1 = q$

$$m = \frac{p+1}{2}$$
 $n = \frac{q+1}{2}$

Let, $x = \sin^2 \theta$ $\Rightarrow dx = 2\sin\theta\cos\theta d\theta$			
х	0	1	
у	0	$\pi/2$	

Therefore,

$$\beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right) = 2\int_0^{\frac{\pi}{2}} \sin^p\theta \cos^q\theta d\theta$$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \!\! sin^p \theta cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right) = \frac{1}{2} \frac{\Gamma \left(\frac{p+1}{2} \right) \Gamma \left(\frac{q+1}{2} \right)}{\Gamma \left(\frac{p+1}{2} + \frac{q+1}{2} \right)}$$

$$\therefore \int_0^{\frac{\pi}{2}} sin^p \theta cos^q \theta d\theta = \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{\Gamma(\frac{p+q+2}{2})}.$$
 (Showed).

Problem-4: Show that, $\int_0^{\frac{\pi}{2}} \sin^p \theta d\theta = \int_0^{\frac{\pi}{2}} \cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{1}{2} \right)$

$$=\frac{1}{2}\beta\left(\frac{1}{2},\frac{p+1}{2}\right)=\frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{p+2}{2}\right)}, where \ p>-1.$$

Solve: We know,

$$\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right) \dots (1)$$

Putting q = 0, then we get

$$\int_0^{\frac{\pi}{2}} \sin^p \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{1}{2} \right) \dots (2)$$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \sin^p \left(\frac{\pi}{2} - \theta \right) d\theta = \frac{1}{2} \beta \left(\frac{1}{2}, \frac{p+1}{2} \right)$$

[Since, $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ and $\beta(m,n) = \beta(n,m)$]

$$\Rightarrow \int_0^{\frac{\pi}{2}} \cos^p \theta d\theta = \frac{1}{2} \beta \left(\frac{1}{2}, \frac{p+1}{2} \right) \dots (3)$$

Again,
$$\frac{1}{2}\beta\left(\frac{1}{2},\frac{p+1}{2}\right) = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{p+2}{2}\right)}$$
....(4)

From (2), (3) & (4) we get,

$$\int_{0}^{\frac{\pi}{2}} \sin^{p}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \cos^{q}\theta d\theta = \frac{1}{2}\beta\left(\frac{p+1}{2}, \frac{1}{2}\right)$$
$$= \frac{1}{2}\beta\left(\frac{1}{2}, \frac{p+1}{2}\right) = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{p+2}{2}\right)}, where p > -1. \text{ (showed)}$$

Problem-5: Show that, $\Gamma^{\frac{1}{2}} = \sqrt{\pi}$

Solved:

We know,
$$\beta(m, n) = \int_0^1 x^{m-1} (1 - x)^{n-1} dx$$

$$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \int_0^1 x^{\frac{1}{2} - 1} (1 - x)^{\frac{1}{2} - 1} dx$$

$$= \int_0^1 x^{-\frac{1}{2}} (1 - x)^{-\frac{1}{2}} dx$$

$$= \int_0^1 \frac{1}{\sqrt{x} \sqrt{1 - x}} dx$$

$$= \int_0^1 \frac{1}{\sqrt{x} \sqrt{1 - x}} dx$$

Let, $1 - x = y$ $\Rightarrow dx = -dy$		
х	0	1
у	1	0

Md. Belal Hossen Assistant Professor & Coordinator, Dept. of CSE, Uttara University Differential & Integral Calculus -(MATHM110)

$$= \int_0^1 \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2}} dx$$

$$= \left[sin^{-1} \left(\frac{x - \frac{1}{2}}{\frac{1}{2}} \right) \right]_0^1$$

$$= sin^{-1} \left(\frac{1 - \frac{1}{2}}{\frac{1}{2}} \right) - sin^{-1} \left(\frac{0 - \frac{1}{2}}{\frac{1}{2}} \right)$$

$$= sin^{-1} \left(\frac{\frac{1}{2}}{\frac{1}{2}} \right) - sin^{-1} \left(\frac{-\frac{1}{2}}{\frac{1}{2}} \right)$$

$$= sin^{-1} \left(\frac{1}{2} \right) - sin^{-1} \left(\frac{-\frac{1}{2}}{\frac{1}{2}} \right)$$

$$= sin^{-1} (1) - sin^{-1} (-1)$$

$$= sin^{-1} (1) + sin^{-1} (1)$$

$$= 2sin^{-1} (1)$$

$$= 2 \times \frac{\pi}{2}$$

$$\Rightarrow \beta \left(\frac{1}{2}, \frac{1}{2} \right) = \pi$$

$$\Rightarrow \frac{\Gamma_2^1 \Gamma_2^1}{\Gamma(\frac{1}{2} + \frac{1}{2})} = \pi$$

$$\Rightarrow \frac{\Gamma_2^1 \Gamma_2^1}{\Gamma(\frac{1}{2} + \frac{1}{2})} = \pi$$

$$\Rightarrow \left(\Gamma_2^1 \right)^2 = \pi \ [\because \Gamma 1 = 1]$$

$$\therefore \Gamma \left(\frac{1}{2} \right) = \sqrt{\pi} \ , \text{ (Hence proved)}.$$

 $=\int_0^1 \frac{1}{\sqrt{(x-x^2)}} dx$

Problem-6: Find the value,

$$(i)\Gamma\left(\frac{3}{2}\right)$$
 $(ii)\Gamma\left(\frac{5}{2}\right)$ $(iii)\Gamma\left(\frac{7}{2}\right)$ $(iv)\Gamma\left(-\frac{1}{2}\right)$ $(v)\Gamma\left(-\frac{3}{2}\right)$

Solution: We know, $\Gamma(n+1) = n\Gamma n$

$$(i)\Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2} + 1\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{\pi} \quad \left[\because \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}\right]$$

(ii)
$$\Gamma\left(\frac{5}{2}\right) = \Gamma\left(\frac{3}{2} + 1\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{3}{2} \cdot \frac{1}{2}\sqrt{\pi} = \frac{3\sqrt{\pi}}{4}$$
.

Md. Belal Hossen Assistant Professor & Coordinator, Dept. of CSE, Uttara University Differential & Integral Calculus -(MATHM110)

$$(ii)\Gamma\left(\frac{7}{2}\right) = \Gamma\left(\frac{5}{2} + 1\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\sqrt{\pi} = \frac{15\sqrt{\pi}}{8}.$$

Again,
$$\Gamma n = \frac{\Gamma(n+1)}{n}$$

$$(iv)\Gamma\left(-\frac{1}{2}\right) = \frac{\Gamma\left(-\frac{1}{2}+1\right)}{-\frac{1}{2}} = \left(-\frac{2}{1}\right)\sqrt{\pi} = -2\sqrt{\pi}.$$

$$(\mathbf{v})\Gamma\left(-\frac{3}{2}\right) = \frac{\Gamma\left(-\frac{3}{2}+1\right)}{-\frac{3}{2}} = \left(-\frac{2}{3}\right)\Gamma\left(-\frac{1}{2}\right) = \left(-\frac{2}{3}\right)\left(-2\sqrt{\pi}\right) = \frac{4\sqrt{\pi}}{3}.$$