Sentiment analysis of IMDb movie reviews

By: - Group 28
Paritosh Gaiwak (pgaiwak)
Pragam Gandhi (pmgandh2)
Sanjana Kacholia (skachol)
Tushar Pahuja (tpahuja)

Contents

- Sentiment analysis
- Dataset
- Approach
- Algorithms
- Comparison
- Conclusion
- References

Sentiment analysis

- Understanding sentiment from language data
- Subfield of NLP
- Applications:
 - Recommender systems
 - Movie performance evaluation

Importance: Derive structure from unstructured data

Dataset

- 50000 samples: 25000 positive, 25000 negative (binary)
- Random sampling
- Preprocessing:
 - Tokenization
 - Stop word removal
 - Stemming
 - Lemmatization

Approach

PRE PROCESSING

- Tokenization
- Stop word removal
- Stemming
- Lemmatization

CLASSIFICATION MODELS

- Logistic regression
- Multinomial naïve bayes
- Decision tree
- Random forest
- SVM
- Ensemble learning
- Neural network

MODEL EVALUATION

- Accuracy
- Recall
- Precision
- F1 Score

Logistic regression

- Models probability of default class
- Go-to method for binary classification

Precision	0.879
Recall	0.9
Accuracy	0.89
F1	0.89

Decision tree

• Classification using tree; leaves: class labels; branches: features

Precision	0.72
Recall	0.71
Accuracy	0.71
F1	0.72

Random forest

• Ensemble learning classification (multiple decision trees)

Precision	0.85
Recall	0.84
Accuracy	0.84
F1	0.85

Multinomial naïve bayes

Classification with discrete features (e.g. word counts for text classification)

Precision	0.85
Recall	0.87
Accuracy	0.86
F1	0.86

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Support vector classifier

- Supervised machine learning algorithm
- Kernel trick transforms data; finds optimal boundary between outputs

Precision	0.88
Recall	0.89
Accuracy	0.89
F1	0.88

Ensemble learning (different weights)

Each classifier given different weight

Precision	0.87
Recall	0.9
Accuracy	0.89
F1	0.89

Neural network

Artificial neural network with multiple hidden layers

Precision	0.879
Recall	0.9
Accuracy	0.89
F1	0.89

Comparative analysis

Conclusion

- Models based on accuracy: Logistic > SVC > Ensemble
- Decision tree performs worst

References

- Describes both symbolic and machine learning techniques for understanding sentiments from the text [https://ieeexplore.ieee.org/document/6726818]
- Baselines and bigrams: Simple, good sentiment and topic classification [https://dl.acm.org/citation.cfm?id=2390688]