

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
ИЛФЕПDЛ "Г	Грограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 2 по курсу «Анализ алгоритмов» на тему: «Трудоёмкость сортировок»

Студент	ИУ7-54Б (Группа)	(Подпись, дата)	Булдаков М. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Волкова Л. Л (И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВЕД	ЕНИЕ	3			
1 Аналитический раздел						
	1.1	Алгоритм гномьей сортировки	4			
	1.2	Алгоритм пирамидальной сортировки	4			
	1.3	Алгоритм Шелла	5			
2	Кон	Конструкторский раздел				
	2.1	Требования к программному обеспечению	6			
	2.2	Описание используемых типов данных	6			
	2.3	Разработка алгоритмов	7			
\mathbf{C}	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	12			

ВВЕДЕНИЕ

Сортировка данных является фундаментальной задачей в области информатики и алгоритмов. Независимо от конкретной области применения, эффективные алгоритмы сортировки существенно влияют на производительность программных систем. От правильного выбора алгоритма зависит как время выполнения программы, так и затраты ресурсов компьютера [1].

Алгоритмы сортировки находят применение в следующих сферах:

- базы данных;
- анализ данных и статистика;
- алгоритмы машинного обучения;
- криптография;

Целью данной лабораторной работы является описание и исследование трудоемкости алгоритмов сортировки. Для достижения поставленной цели необходимо выполнить следующие задачи.

- 1) Описать следующие алгоритмы сортировки:
 - гномья;
 - пирамидальная;
 - Шелла.
- 2) Разработать программное обеспечение, реализующее алгоритмы сортировки.
- 3) Выбрать инструменты для реализации и замера процессорного времени выполнения реализаций алгоритмов.
- 4) Проанализировать затраты реализаций алгоритмов по времени и по памяти.

1 Аналитический раздел

Сортировкой называют перестановку объектов, при которой они располагаются в порядке возрастания или убывания [1].

В данном разделе будут описаны три алгоритма сортировок: гномья, пирамидальная и Шелла.

1.1 Алгоритм гномьей сортировки

Данный алгоритм можно разделить на следующие шаги [2]:

- 1) сравнить текущий и предыдущий элементы;
- 2) если они в правильном порядке, сделать шаг на один элемент вперед, иначе поменять их местами и сделать шаг на один элемент назад;
- 3) если нет предыдущего элемента, сделать шаг вперед;
- 4) если нет следующего элемента, то закончить.

1.2 Алгоритм пирамидальной сортировки

В основе данного алгоритма лежит принцип работы структуры данных куча [3]. Данный алгоритм можно разделить на следующие шаги.

- 1) Создать кучу на основе входного массива.
- 2) Повторять следующие шаги до тех пор, пока куча не будет содержать только один элемент:
 - поменять местами корневой элемент кучи (который является самым большим элементом) с последним элементом кучи;
 - удалить последний элемент кучи (который теперь находится в правильном положении);
 - сгруппировать оставшиеся элементы в кучу.
- 3) Отсортированный массив получается путем изменения порядка элементов во входном массиве.

1.3 Алгоритм Шелла

Алгоритм Шелла может рассматриваться и как обобщение пузырьковой сортировки, так и сортировки вставками [4].

Данный алгоритм можно разделить на следующие шаги.

- 1) Выбрать некоторый интервал (шаг). Обычно начальный шаг выбирают равным половине длины массива.
- 2) Сортировка вставками элементов, расположенных на расстоянии заданного шага друг от друга.
- 3) Уменьшение шага вдвое и повтор шага 2. Процесс повторяется до тех пор, пока шаг не станет равным 1.
- 4) Сортировка завершается с использованием обычной сортировки вставками (шаг равен 1).

Вывод

В данном разделе были описаны три алгоритма сортировок: гномья, пирамидальная и Шелла.

2 Конструкторский раздел

В этом разделе будет представлено описание используемых типов данных, а также схематические изображения алгоритмов сортировок: гномьей, пирамидальной и Шелла.

2.1 Требования к программному обеспечению

Программа должна поддерживать два режима работы: режим массового замера времени и режим сортировки введенного массива.

Режим массового замера времени должен обладать следующей функциональностью:

- генерировать массивы различного размер для проведения замеров;
- осуществлять массовый замер, используя сгенерированные данные;
- результаты массового замера должны быть представлены в виде таблицы и графика.

К режиму сортировки выдвигается ряд требований:

- возможность работать с массивами разного размера, которые вводит пользователь;
- наличие интерфейса для выбора действий;
- на выходе программы, массив отсортированный тремя алгоритмами по возрастанию.

2.2 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие структуры и типы данных:

- целое число представляет количество элементов в массиве;
- массив вещественных чисел;
- куча представляется с помощью массива вещественных чисел.

2.3 Разработка алгоритмов

На рисунке 2.1 представлена схема алгоритма гномьей сортировки. На рисунке 2.2 представлена схема алгоритма гномьей сортировки. На рисунке 2.3 представлена схема алгоритма пирамидальной сортировки. На рисунке 2.4 представлена схема алгоритма вспомогательной подпрограммы, строящей кучу.

Рисунок 2.1 – Схема алгоритма гномьей сортировки

Рисунок 2.2 – Схема алгоритма сортировки Шелла

Рисунок 2.3 – Схема алгоритма пирамидальной сортировки

Рисунок 2.4 – Схема алгоритма пирамидальной сортировки

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Э. К. Д.* Искусство программирования, том 3. Сортировка и поиск, 2-е изд. //. Т. 832. Пер. с англ. М.: ООО 'И. Д. Вильямс', 2007.
- 2. Гномья сортировка: [Электронный ресурс]. Режим доступа: https://kvodo.ru/gnome-sorting.html (дата обращения: 30.10.2023).
- 3. Heap Sort Data Structures and Algorithms Tutorials: [Электронный ресурс]. Режим доступа: https://www.geeksforgeeks.org/heap-sort/(дата обращения: 30.10.2023).
- 4. Сортировка Шелла: [Электронный ресурс]. Режим доступа: https://kvodo.ru/sortirovka-shella.html (дата обращения: 31.10.2023).