## Scientific Computing HW 8

## Ryan Chen

## October 23, 2024

1. To show that the algorithms are equivalent, we rewrite  $\alpha_k, r_{k+1}, \beta_{k+1}$ . Rewrite  $\alpha_k$  as

$$\begin{split} \alpha_k &= -\frac{r_k^T p_k}{p_k^T A p_k} \\ &= -\frac{r_k^T (-r_k + \beta_k p_{k-1})}{p_k^T A p_k} \\ &= \frac{r_k^T r_k}{p_k^T A p_k} \\ \end{split} \qquad p_k = -r_k + \beta_k p_{k-1} \\ = \frac{r_k^T r_k}{p_k^T A p_k} \\ \end{split} \qquad r_k^T p_{k-1} = 0 \text{ by Theorem 5.2 in [NW]}$$

Rewrite  $r_{k+1}$  as

$$r_{k+1} = Ax_{k+1} - b$$

$$= A(x_k + \alpha_k p_k) - b$$

$$= Ax_k - b + \alpha_k Ap_k$$

$$= r_k + \alpha_k Ap_k$$

The expressions for  $\alpha_k, r_{k+1}$  give

$$Ap_k = \frac{r_{k+1} - r_k}{\alpha_k} = \frac{p_k^T A p_k (r_{k+1} - r_k)}{r_k^T r_k}$$

Use this to rewrite  $\beta_{k+1}$  as

$$\begin{split} \beta_{k+1} &= \frac{r_{k+1}^T A p_k}{p_k^T A p_k} \\ &= \frac{r_{k+1}^T (r_{k+1} - r_k)}{r_k^T r_k} \\ &= \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \qquad \qquad r_{k+1}^T r_k = 0 \text{ by Theorem 5.3 in [NW]} \end{split}$$

2. As a preliminary, define the Krylov subspaces (the first definition is a natural extension to k=0)

$$\mathcal{K}_0 := \{0\}, \quad \mathcal{K}_k = \mathcal{K}(A, r, k) := \text{span} \{A^i r : 0 \le i \le k - 1\}, \ k \ge 1$$

We will divide the proof into the following claims:

- Claim 1: We can define the greatest integer k' such that  $\dim \mathcal{K}_{k'} = k'$ . Observe that  $\dim \mathcal{K}_0 = \dim \{0\} = 0$ . Also observe that A has n rows, so that for all k' we have that  $\mathcal{K}_{k'}$  is a subspace of  $\mathbb{R}^n$  hence  $\dim \mathcal{K}_{k'} \leq n$ . Thus there is a nonzero finite number of integers k' satisfying  $\dim \mathcal{K}_{k'} = k'$ , so that we can pick k' to be the greatest such integer.
- Claim 2:  $\mathcal{K}_p = \mathcal{K}_{k'}$  for all  $p \geq k' + 1$ . We will prove this by induction. Base case p = k' + 1: We have  $\dim \mathcal{K}_{k'+1} \leq k' + 1$ , and by Claim 1 we have  $\dim \mathcal{K}_{k'+1} \neq k' + 1$ , hence

$$\dim \mathcal{K}_{k'+1} < k'+1 \implies \dim \mathcal{K}_{k'+1} \le k' \implies \dim \mathcal{K}_{k'+1} \le \dim \mathcal{K}_{k'}$$

Since  $\mathcal{K}_{k'}$  is a subspace of  $\mathcal{K}_{k'+1}$ , we have  $\dim \mathcal{K}_{k'} \leq \dim \mathcal{K}_{k'+1}$ . Thus  $\dim \mathcal{K}_{k'} = \dim \mathcal{K}_{k'+1}$ , and using again the fact  $\mathcal{K}_{k'}$  is a subspace of  $\mathcal{K}_{k'+1}$ , we have  $\mathcal{K}_{k'} = \mathcal{K}_{k'+1}$ .

Inductive step: Fix  $p \ge k' + 1$  and assume  $\mathcal{K}_p = \mathcal{K}_{k'}$ . This gives

$$A^i r \in \mathcal{K}_{k'}, \ 0 \le i \le p-1 \quad (2.1)$$

It remains to show  $A^p r \in \mathcal{K}_{k'}$  so that we can conclude  $\mathcal{K}_{p+1} = \mathcal{K}_{k'}$ . Setting i = p-1 in (2.1) gives  $A^{p-1}r \in \mathcal{K}_{k'}$ , so  $A^{p-1}r = \sum_{i=0}^{k'-1} c_i A^i r$  for some scalars  $c_i$ . Then

$$A^{p}r = \sum_{i=0}^{k'-1} c_{i}A^{i+1}r = \sum_{i=1}^{k'} c_{i-1}A^{i}r = \sum_{i=1}^{k'-1} c_{i-1}A^{i}r + c_{k'-1}A^{k'}r$$

The RHS sum over i is in  $\mathcal{K}_{k'}$  by definition of  $\mathcal{K}_{k'}$ , and the last RHS term is in  $\mathcal{K}_{k'}$  by setting i = k' in (2.1), thus  $A^p r \in \mathcal{K}_{k'}$ .

• Claim 3: If r = By for some  $y \in \mathbb{R}^k$  then k = k'. We conclude that  $\mathcal{K}_p = \mathcal{K}_k$  for all  $p \ge k + 1$ . We aim to show that  $k' \le k$  and  $k' \ge k$ . To show that  $k' \le k$ , consider that for all  $i \ge 0$ ,

$$A^i r = A^i B y = B C^i y \in \operatorname{col} B$$

Thus  $\mathcal{K}_{k'}$  is a subspace of col B. This along with rank B = k and Claim 1 gives  $k' \leq k$ .

To show that  $k' \geq k$ , suppose for the sake of contradiction that k' < k. This along with Claim 2 gives  $\mathcal{K}_k = \mathcal{K}_{k'}$ , hence dim  $\mathcal{K}_k = k'$ . This means that  $A^i r$ ,  $0 \leq i \leq k-1$  are linearly dependent, so there exist scalars  $\alpha_i$ , not all zero, such that  $\sum_{i=0}^{k-1} \alpha_i A^i r = 0$ . Let B have columns  $b_j$ ,  $1 \leq j \leq k$  and rewrite the LHS,

$$\sum_{i=0}^{k-1} \alpha_i A^i r = \sum_{i=0}^{k-1} B \underbrace{\alpha_i C^i y}_{=:z_i} = \sum_{i=0}^{k-1} B z_i = \sum_{i=0}^{k-1} \sum_{j=1}^k z_{ij} b_j = \sum_{j=1}^k \left[ \sum_{i=0}^{k-1} z_{ij} \right] b_j$$

Since the  $b_j$ 's are linearly independent,

$$\sum_{i=0}^{k-1} z_{ij} = 0, \ 1 \le j \le k \quad (2.2)$$

The LHS of (2.2) is a multivariate polynomial in terms of the entries of C that is nonzero (the  $\alpha_i$ 's are not all zero) and has degree at most k-1. But (2.2) implies that it has at least k distinct roots, so its degree is at least k, a contradiction. We conclude that  $k' \geq k$ .

3. (a) Define  $Q \in \mathcal{P}_{k+1}$  by

$$Q(\lambda) := C \left[ \frac{1}{2} (\lambda_1 + \lambda_{n-k}) - \lambda \right] \prod_{i=n-k+1}^{n} (\lambda_i - \lambda)$$

To find C we impose Q(0) = 1.

$$1 = Q(0) = \frac{C}{2}(\lambda_1 + \lambda_{n-k}) \prod_{i=n-k+1}^{n} \lambda_i \implies C = \frac{1}{\frac{1}{2}(\lambda_1 + \lambda_{n-k})} \prod_{i=n-k+1}^{n} \frac{1}{\lambda_i}$$

Hence

$$Q(\lambda) = \frac{\frac{1}{2}(\lambda_1 + \lambda_{n-k}) - \lambda}{\frac{1}{2}(\lambda_1 + \lambda_{n-k})} \prod_{i=n-k+1}^{n} \left(1 - \frac{\lambda}{\lambda_i}\right)$$

- (b) Factor theorem: Given  $R \in \mathcal{P}_k$ , we have  $R(\lambda) = (\lambda \lambda_0)P(\lambda)$  for some  $P \in \mathcal{P}_{k-1}$  iff  $R(\lambda_0) = 0$ . From Q(0) - 1 = 0 and the theorem,  $Q(\lambda) - 1 = \lambda P(\lambda)$  for some  $P \in \mathcal{P}_k$ , hence  $P(\lambda) = \frac{Q(\lambda) - 1}{\lambda}$ .
- (c) Using  $P \in \mathcal{P}_k$  from part (b),

$$\min_{P_k \in \mathcal{P}_k} \max_{1 < i < n} [1 + \lambda_i P_k(\lambda_i)]^2 \le \max_{1 < i < n} [1 + \lambda_i P(\lambda_i)]^2 = \max_{1 < i < n} Q^2(\lambda_i)$$

Plug this into the ansatz to get

$$||x_{k+1} - x^*||_A^2 \le \max_{1 \le i \le n} Q^2(\lambda_i) ||x_0 - x^*||_A^2$$

(d) From part (a),

$$Q^{2}(\lambda) = \left(\frac{\lambda - \frac{1}{2}(\lambda_{1} + \lambda_{n-k})}{\frac{1}{2}(\lambda_{1} + \lambda_{n-k})}\right)^{2} \prod_{i=n-k+1}^{n} \left(1 - \frac{\lambda}{\lambda_{i}}\right)^{2}$$

We have  $Q^2(\lambda_i) = 0$  for  $n - k + 1 \le i \le n$ , and the assumption  $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$  gives

$$Q^{2}(\lambda_{i}) \leq \left(\frac{\lambda - \frac{1}{2}(\lambda_{1} + \lambda_{n-k})}{\frac{1}{2}(\lambda_{1} + \lambda_{n-k})}\right)^{2}, \ 1 \leq i \leq n - k$$

Together, these computations give

$$\max_{1 \le i \le n} Q^2(\lambda_i) \le \max_{1 \le i \le n-k} \left( \frac{\lambda_i - \frac{1}{2}(\lambda_1 + \lambda_{n-k})}{\frac{1}{2}(\lambda_1 + \lambda_{n-k})} \right)^2 \le \max_{\lambda \in [\lambda_1, \lambda_{n-k}]} \left( \frac{\lambda - \frac{1}{2}(\lambda_1 + \lambda_{n-k})}{\frac{1}{2}(\lambda_1 + \lambda_{n-k})} \right)^2$$

This along with the result of part (c) gives

$$\|x_{k+1} - x^*\|_A^2 \le \max_{\lambda \in [\lambda_1, \lambda_{n-k}]} \left(\frac{\lambda - \frac{1}{2}(\lambda_1 + \lambda_{n-k})}{\frac{1}{2}(\lambda_1 + \lambda_{n-k})}\right)^2 \|x_0 - x^*\|_A^2$$

(e) The function

$$f(\lambda) := \left(\frac{\lambda - a}{a}\right)^2, \quad a := \frac{1}{2}(\lambda_1 + \lambda_{n-k})$$

is a concave up parabola which is even wrt  $\lambda = a$ . With a being the midpoint between  $\lambda_1$  and  $\lambda_{n-k}$ , we see that f attains its maximum on the interval  $[\lambda_1, \lambda_{n-k}]$  at the endpoints  $\lambda_1$  and  $\lambda_{n-k}$ .

$$\max_{\lambda \in [\lambda_1, \lambda_{n-k}]} f(\lambda) = f(\lambda_1) = \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2$$

(f) From parts (d) and (e),

$$||x_{k+1} - x^*||_A^2 \le \left(\max_{\lambda \in [\lambda_1, \lambda_{n-k}]} f(\lambda)\right) ||x_0 - x^*||_A^2 = \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 ||x_0 - x^*||_A^2$$

 $4. \ \, {\rm Code:} \ \, https://github.com/RokettoJanpu/scientific-computing-1-redux/blob/main/hw8/hw8.ipynb \\$ 



CG with conditioning only took one iteration, resulting in only two plotted points.