What is claimed is:

1. A composition of matter comprising a compound having the following structural formula:

$$R_1$$
 R_2
 N
 R_3
 R_2

wherein,

R₁ and R₂ are selected from H, a hydrocarbyl having up to 20 carbon atoms, and a hydrocarbyl having up to 20 carbon atoms and substituted with a group selected from hydroxy, alkoxy, amino, substituted amino, thio, alkylthio, guanidino, ureido and heterocyclyl;

R₃ is selected from a hydrocarbyl having up to 20 carbon atoms, and a hydrocarbyl having up to 20 carbon atoms and substituted with a group selected from halo, haloalkyl, hydroxy, alkyl, alkoxy, alkylenedioxy, amino, substituted amino, aminoalkyl, thio, alkylthio, guanidino, ureido, heterocyclyl, heteroaryl, and heteroarylthio;

 R_4 is a substituted amino, $-NR_6R_7$, wherein R_6 and R_7 are selected from H and a hydrocarbyl having up to 20 carbon atoms; R_6 and R_7 , with inclusion of N, may combine to form a heterocyclic ring such as indolinyl having the formula

R₅ is selected from O, S, NH, N-alkyl, N-alkenyl, N-alkynyl, N-cycloalkyl, N-aryl and N-aralkyl, and

n is 1 to 3.

- 2. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a straight chain hydrocarbyl.
- 3. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a branched chain hydrocarbyl.
- 4. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a saturated hydrocarbyl.
- 5. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises an unsaturated hydrocarbyl.
- 6. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a cyclic hydrocarbyl.
- 7. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises an acyclic hydrocarbyl.
- 8. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a chiral hydrocarbyl.
- 9. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises an achiral hydrocarbyl.
- 10. A composition according to claim 1, wherein R1, R2, R3, R6 or R7 comprises a substituted hydrocarbyl.
- 11. A composition according to claim 1, wherein one or more methylene groups of a hydrocarbyl group of R3 is replaced by an oxygen atom.

12. A composition according to claim 1, wherein R₁ is selected from alkyl and aminoalkyl.

- 13. A composition according to claim 1, where R₁ is (S)-Methyl, (R)-Methyl or (S)-Propyl.
 - 14. A composition according to claim 1, where R₁ is (S)-Aminopropyl.
- 15. A composition according to claim 1, wherein R₂ is selected from (R)-Aminomethyl-(imino)-propyl, (S)-Aminomethyl-(imino)-propyl or (S)-Methylthiomethyl.
- 16. A composition according to claim 1, wherein R₃ is alkyl, aralkyl or substituted aralkyl.
 - 17. A composition according to claim 1, wherein R₃ is 3-bromophenethyl.
- 18. A composition according to claim 1, wherein R_3 is 3,5 bis-(trifluoromethyl)phenethyl.
 - 19. A composition according to claim 1, wherein R₄ is aralkylamino.
 - 20. A composition according to claim 1, wherein R4 is benzylamino
- 21. A composition according to claim 1, wherein r_6 and r_7 with inclusion of n, is heterocyclyl.
- 22. A composition according to claim 1, wherein –nr₆r₇ is isoindolinyl having the formula

- 23. A composition according to claim 1, wherein R₅ is S.
- 24. A composition according to claim 1, wherein R₅ is O.
- 25. The use of a composition according to any of claims 1-22 in the manufacture of preparation for administration to a human or animal subject to block or antagonize MCH receptors or to decrease food intake or to treat obesity, a metabolic disorder, an eating disorder, depression or urinary incontinence.
- 26. A method for a) blocking or antagonizing MCH receptors or b) decreasing food intake or c) treating obesity, a metabolic disorder, an eating disorder, depression or urinary incontinence, said method comprising the step of:

administering to the individual an effective amount of a composition that comprises a compound having the following structural formula:

$$R_1$$
 R_5
 N
 R_3
 N
 R_6

wherein,

R₁ and R₂ are selected from H, a hydrocarbyl having up to 20 carbon atoms, and a hydrocarbyl having up to 20 carbon atoms and substituted with a group selected from hydroxy, alkoxy, amino, substituted amino, thio, alkylthio, guanidino, ureido and heterocyclyl;

R₃ is selected from a hydrocarbyl having up to 20 carbon atoms, and a hydrocarbyl having up to 20 carbon atoms and substituted with a group selected from halo, haloalkyl, hydroxy, alkyl, alkoxy, alkylenedioxy, amino, substituted amino,

aminoalkyl, thio, alkylthio, guanidino, ureido, heterocyclyl, heteroaryl, and heteroarylthio;

 R_4 is a substituted amino, $-NR_6R_7$, wherein R_6 and R_7 are selected from H and a hydrocarbyl having up to 20 carbon atoms; R_6 and R_7 , with inclusion of N, may combine to form a heterocyclic ring such as indolinyl, having the formula

R₅ is selected from O, S, NH, N-alkyl, N-alkenyl, N-alkynyl, N-cycloalkyl, N-aryl and N-aralkyl, and

n is 1 to 3.

- 27. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a straight chain hydrocarbyl.
- 28. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a branched chain hydrocarbyl.
- 29. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a saturated hydrocarbyl.
- 30. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises an unsaturated hydrocarbyl.
- 31. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a cyclic hydrocarbyl.
- 32. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises an acyclic hydrocarbyl.

50

33. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a chiral hydrocarbyl.

- 34. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises an achiral hydrocarbyl.
- 35. A method according to claim 26, wherein R1, R2, R3, R6 or R7 comprises a substituted hydrocarbyl.
- 36. A method according to claim 26, wherein one or more methylene groups of a hydrocarbyl group of R3 is replaced by an oxygen atom.
- 37. A method according to claim 26, wherein R₁ is selected from alkyl and aminoalkyl.
- 38. A method according to claim 26, where R₁ is (S)-Methyl, (R)-Methyl or (S)-Propyl.
 - 39. A method according to claim 26, where R₁ is (S)-Aminopropyl.
- 40. A method according to claim 26, wherein R₂ is selected from (R)-Aminomethyl-(imino)-propyl, (S)-Aminomethyl-(imino)-propyl or (S)-Methylthiomethyl.
- 41. A method according to claim 26, wherein R₃ is alkyl, aralkyl or substituted aralkyl.
 - 42. A method according to claim 26, wherein R₃ is 3-bromophenethyl.
- 43. A method according to claim 26, wherein R_3 is 3,5 bis-(trifluoromethyl)phenethyl.
 - 44. A method according to claim 26, wherein R₄ is aralkylamino.
 - 45. A method according to claim 26, wherein R₄ is benzylamino

46. A method according to claim 26, wherein r_6 and r_7 with inclusion of n, is heterocyclyl.

- 47. A method according to claim 26, wherein -nr₆r₇ is isoindolinyl having the formula
 - 48. A method according to claim 26, wherein R₅ is S.
 - 49. A method according to claim 26, wherein R₅ is O.