

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Кафедра «Электротехники, электроники и автоматики» Дисциплина «Электротехника»

Отчёт по лабораторной работе № 1 «Исследование свойств элементов электрических цепей»

Выполнил: студент группы АДБ-17-11	Антонов А.Б.
Проверил: преподаватель	Сорокин В.О.
Голи:	Пото

<u>Цель работы</u>: исследование свойств двухполюсных элементов электрических цепей.

Исследование резистивных двухполюсных элементов

Схема виртуального эксперимента для исследования резистивных двухполюсных элементов:

Вольтамперная характеристика резистора R1:

Элемент R1=100	i, A	-0.02	-0.01	0	0.01	0.02
Ом	u, B	-2	-1	0	1	2

Вольтамперная характеристика резисторов R2, R3

Элемент	i, mA	-6.802	0	7,803
R2=200 Ом	u, B	-1.360	0	1.561
Элемент	i, MA	-2.533	0	2.203
R3=300 Ом	u, B	-1.266	0	1.101

График BAX резисторов R1, R2, R3:

Вывод: резистивный элемент полностью определяется своей вольтамперной характеристикой. Для линейного резистивного элемента ВАХ линейна, описывается законом Ома. Чем выше значение сопротивления на резисторе, тем меньше тангенс угла наклона прямой.

Графики временной развертки R1:

Временные зависимости u(t) и i(t):

		0	max	min
Элемент	t, MC	5	2,4	7,5
R1=230 Ом	i, mA	-0,3	19,9	-20
	и, мВ	-29,7	2000	-2000

Вывод: форма тока i(t) для резистивного элемента совпадает с формой напряжения u(t) с точностью до масштабных коэффициентов R и G.

Графики ВАХ диода D1:

Вольтамперная характеристика полупроводникового диода:

Элемен	i, A	min	-81.3 нА	1.2 мкА	11.6	max
TDI	u ,B	-991.6 мВ	-341 мВ	477.4 мВ	897.2	1.002

Вывод: диод — 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью электрического тока: он хорошо пропускает через себя ток в одном направлении и очень плохо — в другом.

Графики временных зависимостей полупроводникового диода D1:

Временные зависимости u(t) и i(t):

Элемент D1		0	max	min
	t, MC	5	2,4	7,4
	i, A	-3.5 нВ	616.7	-238.3 нА
	u, B	-14,8 мВ	1000 мВ	-1000 мВ

Вывод: для нелинейного резистивного элемента форма тока и напряжения не совпадают.

Исследование основных свойств элементов L и C

Схема виртуального эксперимента для исследования индуктивного элемента L и емкостного элемента C :

Графики временных зависимостей i(t) и u(t) на индуктивном элементе L1 при гармоническом сигнале :

Временные развертки i(t) и u(t) на индуктивном элементе L1 при гармоническом сигнале

	t, MC	4,965	7,565	7.683	9,900	12.599
L1=2мГн	і, мА	-14,561	98,868	99,214	10,102	-99,981
	и,мВ	123,333	10,481	1,233	-123,591	-8,634

Вывод: для линейного индуктивного элемента при гармоническом сигнале наблюдается отставание тока от напряжения на $\Pi/2$.

График временных зависимостей L1:

Временная зависимость i(t) и u(t) на элементе L1:

	t, MC	5,078	7,706	10,096	10,633	12,664
L1=2мГн	і, мА	-94,040	243,749	94,256	81,997	1,429
	и, мВ	-28,534	80	19,213	-73,256	-80

Вывод: для линейного индуктивного элемента форма тока и напряжения не совпадают.

Графики временных зависимостей С1 при гармоническом сигнале:

Временная зависимость i(t) и u(t) на элементе C1 при гармоническом сигнале:

	t, MC	367.903	370.053	370.113	372.144	372.323	375.071
C1=2uФ	i, mA	-1.591	-12.416	-12.45	-4.260	-2.917	12.428
	и, мВ	984	90.776	53.636	-932.471	-964.66	-79.545

Вывод: для линейного емкостного элемента при гармоническом сигнале наблюдается отставание напряжения от тока на $\Pi/2$

Графики временных зависимостей i(t) и u(t) на элементе C1 :

Временная зависимость i(t) и u(t) на элементе C1:

	t, MC	5.078	7,766	10.096	10.812	19.952	22.939
C1=2uФ	i, mA	-2.853	8	-7.725	1.921	8	-8
	и, мВ	-940.402	26.332	752.277	942.555	900.884	-95,627

Вывод: для линейного емкостного элемента форма тока и напряжения не совпадает.

ИССЛЕДОВАНИЕ ОСНОВНЫХ СВОЙСТВ ИДЕАЛЬНЫХ ИСТОЧНИКОВ СИГНАЛОВ

Схема виртуального эксперимента для исследования идеальных источников сигналов:

Вольтамперная характеристика идеального источника напряжения V1=20B:

	R1 %	0%	20%	50%	100%	Беск.
Источник	i, A	199.958k	0.1	0.04	0.02	0
напряжения	u, B	19.996	20	20	20	U0=20

График ВАХ идеального источника напряжения V1:

Вывод: идеальный источник напряжения характеризуется напряжением u(t)=V(t) и не зависит от тока.

Вольтамперная характеристика идеального источника тока I1=1A:

	R1 %	0%	20%	50%	100%	Беск.
Источник	i, A	1	1	1	0.99	1
тока	u, B	0.1m	199.962	499.768	999.001	Беск.

График ВАХ идеального источника тока I1

Вывод: идеальный источник тока характеризуется током i(t)=I(t) вне зависимости от значения напряжения u(t).

Исследование основных свойств линейного источника напряжения

Схема виртуального эксперимента для исследования линейного источника напряжения:

Вольтамперная характеристика линейного источника постоянного напряжения $V1=20~\mathrm{B}$:

Линейный	R1 %	0%	20%	50%	100%	∞
источник	i, A	0.2m	0.095	0.039	0.02	0
напряжени	u, B	2	19.047	19.608	19.8	U0=20
Я						

График ВАХ линейного источника постоянного напряжения V1

Вывод: напряжение u(t) на выводах линейного источника напряжения зависит от тока i(t), протекающего через источник.