The laws of physics can become extremely **counterintuitive**. A counterintuitive problem is one that appears simple and obvious, but in which the answer you feel turns out to be incorrect when examined more closely.

In this assignment, you will use Newton's Laws to analyze the motion of objects moving in a straight line (or nearly a straight line, in the case of an arrow.) The goal is to find a free-body diagram of each situation and try to build it. In this assignment, we are building only *qualitative* free-body diagrams.

The table below displays consequences of Newton's First and Second Laws. This is not how Newton's First and Second Laws are typically presented, but for *qualitatively* analyzing free-body diagrams, these representations can be very useful.

LAW	If	then
Newton's First Law	Net force on a moving object is zero.	The object will move at a constant velocity.
Newton's Second Law	Net force on a moving object is in the SAME direction as velocity.	The speed of the object will increase.
Newton's Second Law	Net force on a moving object is in the OPPOSITE direction as velocity.	The speed of the object will decrease.

Principle of contact forces: all contact forces exist *only* when two objects are in contact. After two objects loose contact, a contact force does not continue to exist.

Problem 1:

Someone fires a nerf gun across the room to the right. Our goal is to draw a free-body diagram of the nerf bullet as it flies, beginning from the moment after it leaves the gun and ending the moment before it strikes the wall.

In option A, the net horizontal force on the nert bullet is
In option B, the net horizontal force on the nerf bullet is
The direction of the horizontal velocity of the nerf bullet is
If A were correct, then according to Law, the nerf bullet would
horizontally because
If B were correct, then according to Law, the nerf bullet would
horizontally because
We can observe that, in real life, the nerf bullet
Therefore, the correct answer must be
The force(s) that do not exist in reality is (are)
because .

Problem 2:

Someone throws a ball directly into the air. Our goal is to draw a free-body diagram of the ball from the moment it leaves the person's hand until it reaches the top of its arc.

A	В	С	
			In option A, the net force on the
		1	ball is
		₩ ₩	In option B, the net force on the
	 □ ↑	throw force	ball is
	throw force	rce	
	orce		In option C, the net force on the
\bigcirc			ball is
gr	9	ي ا	
gravity	gravity	gravity	The direction of the velocity of
1	↓	↓	the ball is

If A were correct, then according to	Law, the ball would
because	
If B were correct, then according to	Law, the ball would
because	
If C were correct, then according to	Law, the ball would
because	
We can observe that, in real life, the ball	.
Therefore, the correct answer must be	<u>_</u> .
The force(s) that do not exist in reality is (are)	
because	

Problem 3:

Someone kicks a book on the floor across the room. Our goal is to draw a free-body diagram of the book from the moment it leaves the person's foot until it the moment is stops moving.

In option A, the net force on the book is _____.

In option B, the net force on the book is

In option C, the net force on the book is ______.

The direction of the velocity of the book is ______.

If A were correct, then according to ______ Law, the book would _______.

because _____.

If B were correct, then according to _____ Law, the book would _______.

because ______.

If C were correct, then according to _____ Law, the book would ______.

because ______.

We can observe that, in real life, the book ______.

Therefore, the correct answer must be ______.

The force(s) that do not exist in reality is (are) ______.

Problem 4:

Someone is lifting a box. Our goal is to draw a diagram of the box while it is in motion at a constant velocity (frequently, people lift heavy objects at a nearly constant velocity).

A	В	С
← pulling force	← Dulling force	← O pulling force
y gravity	> gravity	y gravity

In option A, the net force on the box is _____.

In option B, the net force on the box is _____.

In option C, the net force on the box is _____.

The direction of the velocity of the arrow is _____.

If A were correct, then according to	Law, the box would	
because		
If B were correct, then according to	Law, the box would	
because		
If C were correct, then according to	Law, the box would	
because		
We can observe that, in real life, the box		
Therefore, the correct answer must be	·	
The force(s) that do not exist in reality is (are) _		
because		

Answers

Problem 1:

Someone fires a nerf gun across the room to the right. Our goal is to draw a free-body diagram of the nerf bullet as it flies, beginning from the moment after it leaves the gun and ending the moment before it strikes the wall.

In option A, the net horizontal force on the nerf bullet isto the right
In option B, the net horizontal force on the nerf bullet is
The direction of the horizontal velocity of the nerf bullet isto the right
If A were correct, then according to Law, the nerf bullet wouldspeed up
net horizontal force is to the right.
If B were correct, then according to $\underline{\underline{\hspace{1cm}}}$ Law, the nerf bullet would $\underline{\underline{\hspace{1cm}}}$ move at a constant velocity
horizontally because <u>net horizontal force is zero.</u>
We can observe that, in real life, the nerf bullet moves at a constant velocity horizontally.
Therefore, the correct answer must be $\underline{}$.
The force(s) that do not exist in reality is (are) the bow force
the bow is no longer in contact with the arrow.

Problem 2: Answers

Someone throws a ball directly into the air. Our goal is to draw a free-body diagram of the ball from the moment it leaves the person's hand until it reaches the top of its arc.

Newton's Second f A were correct, then according to Law, the ball would <u>slow down</u>	
pecausenet force and velocity are opposite. Newton's First	
f B were correct, then according to Law, the ball would move at a constant veloc	eity
pecausenet force is zero.	
Newton's Second	
f C were correct, then according to Law, the ball wouldspeed up	
pecause net force and velocity are in the same direction.	
We can observe that, in real life, the ball move at a constant velocity	
Therefore, the correct answer must beA	
The force(s) that do not exist in reality is (are)	
pecause the hand throwing the ball is not in contact with it.	

Problem 3: Answers

Someone kicks a book on the floor across the room. Our goal is to draw a free-body diagram of the book from the moment it leaves the person's foot until it the moment is stops moving.

In option A, the net
force on the book is
to the left
In option B, the net
force on the book is
zero

In option C, the net force on the book is <u>to the right</u> .
The direction of the velocity of the book is <u>to the right</u> .
If A were correct, then according to Law, the book would _slow down
becausenet force and velocity are in opposite directions.
Newton's First Law, the book would move at a constant velocity
because net force is zero.
Newton's Second If C were correct, then according to Law, the book wouldspeed up
because net force and velocity are in the same direction.
We can observe that, in real life, the book <u>slows down</u> .
Therefore, the correct answer must be $_{ ext{A}}$
The force(s) that do not exist in reality is (are)the kick force
because the foot is no longer in contact with the book.

Problem 4: Answers

Someone is lifting a box. Our goal is to draw a diagram of the box while it is in motion at a constant velocity (frequently, people lift heavy objects at a nearly constant velocity).

In option A, the net force on the box is <u>upwards</u>.

In option B, the net force on the box is <u>zero</u>.

In option C, the net force on the box is <u>downwards</u>.

The direction of the velocity of the arrow is <u>upwards</u>

If A were correct, then according to Law, the box wouldspeed up
pecause <u>net force and velocity</u> are in the same direction Newton's First
If B were correct, then according to Law, the box would _move at a constant velocity
pecause net force is zero.
Newton's Second If C were correct, then according to Law, the box wouldslow down because net force and velocity are in opposite directions
We can observe that, in real life, the box moves at a constant velocity
Therefore, the correct answer must be $__B$
The force(s) that do not exist in reality is (are) <u>all of the forces shown exist,</u> B is correct because the relative magnitudes of
becauseforces is correctly shown in B.