ЛЕКЦІЯ №5.

Підпослідовності. Частинні границі. Теорема Больцано-Вейєрштраса. Теорема про частинні границі. Верхня і нижня границя послідовності.

1. Підпослідовності: основні поняття та означення.

Означення підпослідовності. Нехай задано числову послідовність $\{x_n\}$ та ряд натуральних чисел $k_1, k_2, k_3, \ldots, k_n, \ldots$, які утворюють зростаючу послідовність $k_1 < k_2 < \ldots < k_n < \ldots$ Тоді нова послідовність $\{y_n\}$, побудована з елементів основної послідовності $\{x_n\}$ за таким правилом $\{y_n\} = \{x_{k_n}\} = \{x_{k_1}, x_{k_2}, x_{k_3}, \ldots, x_{k_n}, \ldots\}$, називається підпослідовністю послідовності $\{x_n\}$. Якщо підпослідовність $\{x_{k_n}\}$ є збіжною, то її границя x_0 називається частинною границею основної послідовності $\{x_n\}$. До речі, сама послідовність $\{x_n\}$ може розглядатись як власна підпослідовність (в цьому випадку $k_n = n$). Але взагалі має місце така нерівність: $k_n \ge n$.

Зауваження. Існування частинних границь підпослідовностей $\{x_{k_n}\}$ основної послідовності $\{x_n\}$ не означає, що безумовно існує границя основної послідовності.

Отже, дамо два еквівалентних означення **частинної границі** послідовності $\{x_n\}$, які характеризують певні її **властивості**.

Перше Означення частинної границі. Tочка x_0 називається частинною границею послідовності $\{x_n\}$, якщо з цієї послідовності можна виділити збіжну до точки x_0 підпослідовність.

Друге Означення частинної границі. Точка x_0 називається частинною границею послідовності $\{x_n\}$, якщо у будь-якому ε – околі точки x_0 міститься нескінченне число членів цієї послідовності $\overset{*}{}$.

*Зауваження. Для довільного числа $\varepsilon > 0$ нерівність $|x_0 - x_n| < \varepsilon$ має виконуватись для нескінченного числа членів з різними номерами $n \in N$. Разом з тим число різних по величині членів x_n послідовності $\{x_n\}$, які належать ε – околу точки x_0 , може бути і скінченним.

Приклад. Послідовність $\{x_n\} = \{1, 2, \frac{1}{2}, 2, \frac{1}{3}, 2, \frac{1}{4}, ..., \frac{1}{n}, 2, ...\}$ має тільки дві частинні границі. Позначимо їх відповідно до змісту: $\underline{x} = 0$ і $\overline{x} = 2$. Суть позначень з'ясуємо нижче. В будь-якому околі частинної границі $\overline{x} = 2$ міститься нескінченне число рівних за величиною, але з різними номерами, членів послідовності $\{x_n\}$.

Розглянемо дві невеличкі Теореми про зв'язок між границею основної послідовності $\{x_n\}$ і частинними границями її підпослідовностей $\{x_{k_n}\}$.

Теорема 6¹⁾. Якщо послідовність $\{x_n\}$ є збіжною до числа x_0 , то кожна її підпослідовність $\{x_k\}$ також є **збіжною** і має ту ж саму границю x_0 , що і вихідна послідовність $\{x_n\}$.

Доведення цієї Теореми є очевидним. Нехай $\lim_{n\to\infty}x_n=x_0$; це означає, що

$$|x_0 - x_n| < \varepsilon$$
 при $n \ge N(\varepsilon)$.

Нехай $\left\{x_{k_n}\right\}$ — підпослідовність послідовності $\left\{x_n\right\}$, тоді $k_n \geq n$ і, відповідно,

$$\left|x_0 - x_{k_n}\right| < \varepsilon \text{ при } k_n \ge n > N(\varepsilon).$$

Це означає, що підпослідовність $\{x_{k_n}\}$ є збіжною і її границя дорівнює x_0 . **Теорему** доведено.

Справедливе і обернене твердження.

Теорема 6²⁾. Якщо всі підпослідовності вихідної послідовності $\{x_n\}$ є збіжними, то частинні границі всіх підпослідовностей дорівнюють одному і тому самому числу x_0 . При цьому вихідна послідовність $\{x_n\}$ також має границею число x_0 .

Доведення. Дійсно, через те, що сама послідовність $\{x_n\}$ є власною підпослідовністю, то вона є збіжною і її границя дорівнює певному числу x_0 . Але тоді і будь-яка інша підпослідовність (за **Теоремою 6**1) теж є збіжною і має границею також число x_0 .

Має місце важлива Теорема.

2. Теорема Больцано-Вейєрштраса (Про існування у обмеженої послідовності збіжної підпослідовності).

Теорема 7. Із будь-якої **обмеженої** послідовності $\{x_n\}$ завжди можна вибрати **збіжну підпослідовність**.

Доведення. 1). Оскільки послідовність $\{x_n\}$ обмежена, то існує таке число M>0, що $|x_n|\leq M$ при $n=1,2,3,\ldots$, тобто усі члени послідовності лежать на відрізку [-M,M], який для зручності позначимо $[a_1,b_1]$. Розділимо відрізок $[a_1,b_1]$ навпіл. Якнайменше один з отриманих відрізків містить нескінченне число членів послідовності $\{x_n\}^*$ (див. Зауваження після Теореми). Далі обираємо ту його половину, яка містить нескінченне число членів послідовності $\{x_n\}$. Якщо обидві частини відрізка містять нескінченне число членів послідовності $\{x_n\}$, то обираємо будь-яку з цих половин. Позначимо її $[a_2,b_2]$. Відрізок $[a_2,b_2]$ знову ділимо навпіл і обираємо ту його половину, яка містить нескінченне число членів послідовності $\{x_n\}$, і позначимо її $[a_3,b_3]$ і так далі. В результаті отримаємо послідовність вкладених відрізків $\{[a_n,b_n]\}$, причому довжина n-го відрізка $[a_n,b_n]$ дорівнює

$$b_n - a_n = \frac{b_1 - a_1}{2^{n-1}}, \quad n = 1, 2, 3, \dots$$

В силу **Леми про вкладені відрізки (Лекція №4)** існує одна-єдина точка c, яка належить всім відрізкам одночасно:

$$a_n \le c \le b_n, \ n = 1, 2, 3, \dots$$
 (1)

2). Побудуємо підпослідовність $\{x_{k_n}\}$, яка є збіжною до точки c, у такий спосіб. Як перший член x_{k_1} підпослідовності $\{x_{k_n}\}$ оберемо довільний член послідовності $\{x_n\}$. За другий член x_{k_2} підпослідовності $\{x_{k_n}\}$ оберемо елемент послідовності $\{x_n\}$, який лежить на відрізку $[a_2,b_2]$ і у якого номер $k_2 > k_1$. Оскільки на відрізку $[a_2,b_2]$ лежить нескінченне число членів послідовності $\{x_n\}$, то такий вибір завжди можливий. Продовжуємо цей процес далі аналогічно і на n-му кроці за член x_{k_n} обираємо елемент послідовності $\{x_n\}$, який лежить на відрізку $[a_n,b_n]$ і у якого

 $k_n > k_{n-1}$. Отже, в результаті такої побудови підпослідовності отримали наступні нерівності:

$$a_n \le x_k \le b_n. \tag{2}$$

Покажемо, що отримана у такий спосіб підпослідовність $\left\{x_{k_n}\right\}$ є збіжною до числа c , тобто: $x_{k_n} \to c$. Дійсно, з нерівностей (1) і (2) випливає, що

$$0 \le |c - x_{k_n}| \le b_n - a_n = \frac{b_1 - a_1}{2^{n-1}} \to 0, n \to \infty.$$

Після здійснення граничного переходу в останній нерівності дістанемо $\lim_{n\to\infty} x_{k_n} = c$. **Тh доведено**.

Приклад. Нехай задано **обмежену** послідовність $\{x_n\} = 1 + (-1)^n \frac{n}{n+1}$, $0 < x_n < 2$. Одразу скажемо, що вона розбіжна, але у неї є збіжні підпослідовності. Покажемо, як з неї можна їх **виділити**. Запишемо декілька членів послідовності $\{x_n\}$:

$${x_n} = {\frac{1}{2}, \frac{5}{3}, \frac{1}{4}, \frac{9}{5}, \frac{1}{6}, \frac{13}{7}, \frac{1}{8}, \frac{17}{9}, \dots}.$$

3 цієї послідовності можна вибрати дві збіжні підпослідовності: одну з номерами $k_n=2n-1$, тобто $\{y_n\}=\{x_{2n-1}\}=\left\{\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\ldots\right\}$, і другу з номерами $p_n=2n$, тобто $\{z_n\}=\{x_{2n}\}=\left\{\frac{5}{3},\frac{9}{5},\frac{13}{7},\frac{17}{9},\ldots\right\}$.

Кожна з них ϵ збіжною до відповідних **частинних границь** $y_0=0$ і $z_0=2$. Якщо розглядати послідовність $\{x_n\}$ як власну підпослідовність (тобто $k_n=n$), то вона ϵ **розбіжною**, хоча і обмеженою.

*) Зауваження. Вираз «відрізок [a,b] містить нескінченне число членів послідовності» означає, що нерівність $a \le x_n \le b$ виконується для нескінченного числа номерів n. Так, наприклад, якщо $\{x_n\}$ —стала послідовність: $x_n = c$, $c \in [a,b]$, то відрізок [a,b] містить нескінченне число однакових за величиною, але різних за номерами, членів послідовності $\{x_n\}$.

Наприклад, для послідовності $\{x_n\} = \{1, 2, \frac{1}{2}, 2, \frac{1}{3}, 2, \frac{1}{4}, ..., \frac{1}{n}, 2, \cdots \}$, у якої є дві частинні границі $\underline{x} = 0$ і $\overline{x} = 2$, можна виділити дві підпослідовності

$$\{y_n\} = \{x_{2n-1}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} \ i \ \{z_n\} = \{z_{2n}\} = \{z_{2n}, \dots, z_{2n}, \dots\},$$

які є збіжними до зазначених частинних границь.

3. Теорема про частинні границі $\bar{x} = \sup A$ і $\underline{x} = \inf A$.

Нехай $\{x_n\}$ задано **обмежену** послідовність: $|x_n| \leq M$ при $n=1,2,3,\ldots$ Позначимо через A **множину частинних границь послідовності** $\{x_n\}$. В силу попередньої **Теореми 7** множина A ϵ **непорожньою**. Крім того очевидно, що множина A ϵ **обмеженою** через те, що якщо підпослідовність $x_{k_n} \to a$ $(a \in A)$, то із нерівності $|x_{k_n}| \leq M$ виплива ϵ , що $|a| \leq M$ (за **Теоремою порівняння**).

Оскільки множина A обмежена, то існують **точна верхня і точна нижня грані** цієї множини: $\overline{x} = \sup A, x = \inf A$.

Теорема 8. Числа $\overline{x}=\sup A, \underline{x}=\inf A$ одночасно ε частинними границями обмеженої послідовності $\{x_n\}$, тобто $\overline{x}\in A, \underline{x}\in A$.

Доведення. Доведення проведемо для першої половини твердження Теореми 8, тобто покажемо, що одночасно з тим, що $\overline{x} = \sup A$, точна верхня межа \overline{x} множини A ϵ частинною границею послідовності $\{x_n\}$, тобто $\overline{x} \in A$. Нагадаємо, що A — це множина частинних границь послідовності $\{x_n\}$.

1). Спочатку доведемо, що при будь-якому $\varepsilon > 0$ в інтервалі $(\overline{x} - \varepsilon, \overline{x} + \varepsilon)$ міститься нескінченне число членів послідовності $\{x_n\}$. Дійсно, оскільки $\overline{x} = \sup A$, то за означенням точної верхньої межі існує таке число $x' \in A$ (а це одна з частинних границь послідовності $\{x_n\}$), що $\overline{x} - \varepsilon < x' \le \overline{x}$, звідки випливає, що $x' \in (\overline{x} - \varepsilon, \overline{x} + \varepsilon)$. Оберемо $\varepsilon_1 - \text{окіл} \ (x' - \varepsilon_1, x' + \varepsilon_1)$ точки x' так, щоб цей окіл належав попередньому ε – околу: $(x' - \varepsilon_1, x' + \varepsilon_1) \subset (\overline{x} - \varepsilon, \overline{x} + \varepsilon)$ (див. Рис.1). Це можна зробити за рахунок довільного вибору ε_1 – околу точки x'. За означенням множини A існує збіжна до частинної границі x' підпослідовність: $x_{m_n} \to x'$.

Починаючи з певного номера всі члени підпослідовності $\{x_{m_n}\}$ лежатимуть в інтервалі $(x'-\varepsilon_1,x'+\varepsilon_1)$, і, відповідно, в інтервалі $(\overline{x}-\varepsilon,\overline{x}+\varepsilon)$. Отже, ми довели, що в інтервалі $(\overline{x}-\varepsilon,\overline{x}+\varepsilon)$ міститься нескінченне число членів послідовності $\{x_n\}$.

$$\begin{array}{ccccc} x' - \varepsilon_1 & x' + \varepsilon_1 \\ \hline (& &) & \bullet \\ \hline \overline{x} - \varepsilon & x' & \overline{x} & \overline{x} + \varepsilon \end{array}$$
 Рис. 1

2). Тепер **побудуємо підпослідовність** $\left\{x_{k_n}\right\}$, яка є збіжною до \overline{x} . Виберемо число ε рівним $\varepsilon = \frac{1}{n}$ ($n = 1, 2, 3, \ldots$). За рахунок цього ми забезпечуємо зазначену вище умову про те, що кожен з інтервалів $\left(\overline{x} - \frac{1}{n}, \overline{x} + \frac{1}{n}\right)$ для будь-якого числа n буде містити нескінченне число членів послідовності $\left\{x_n\right\}$.

Отже, за елемент x_{k_1} підпослідовності $\{x_{k_n}\}$ обираємо елемент послідовності $\{x_n\}$, який міститься в інтервалі $(\overline{x}-1,\overline{x}+1)$ при n=1. За елемент x_{k_2} обираємо елемент послідовності $\{x_n\}$, який міститься в інтервалі $(\overline{x}-\frac{1}{2},\overline{x}+\frac{1}{2})$ при n=2, у якого номер $k_2>k_1$. Далі наступні елементи підпослідовності $\{x_{k_n}\}$ обираємо аналогічно попереднім. В результаті цього вибору дістанемо підпослідовність $\{x_{k_n}\}$, для якої мають силу такі нерівності:

$$\overline{x} - \frac{1}{n} \le x_{k_n} \le \overline{x} + \frac{1}{n}$$
, and $|\overline{x} - x_{k_n}| \le \frac{1}{n}$.

Далі після виконання граничного переходу у цих нерівностях отримаємо:

$$x_{k_n} \to \overline{x}$$
 при $n \to \infty$, або $\lim_{n \to \infty} x_{k_n} = \overline{x}$.

Тим самим ми довели, що $\overline{x} \in A$. Аналогічно можна довести, що $\underline{x} \in A$. **Теорему доведено**.

Означення. а). Найменша частинна границя (число $\underline{x} = \inf A$) послідовності $\{x_n\}$ називається нижньою границею послідовності $\{x_n\}$ і позначається так: $\underline{x} = \lim_{n \to \infty} x_n$.

б). Найбільша частинна границя (число $\underline{x} = \sup A$) послідовності $\{x_n\}$ називається верхньою границею послідовності $\{x_n\}$ і позначається так: $\overline{x} = \overline{\lim}_{n \to \infty} x_n$.

Приклад. Нехай задано послідовність $\{x_n\} = \left\{2,1,\frac{3}{2},\frac{1}{2},\frac{4}{3},\frac{1}{3},...,\frac{k+1}{k},\frac{1}{k},...\right\}.$ Пропонуємо читачу встановити, що $\overline{\lim_{n\to\infty}}x_n=1,\underline{\lim_{n\to\infty}}x_n=0$.

Принцип Больцано-Вейєрштраса. У кожної обмеженої послідовності $\{x_n\}$ існує хоча би одна частинна границя. Якщо ця частинна границя одна-єдина, то вона і є границею даної послідовності.

Відмітимо два основних наслідки цього принципу.

Наслідок 1. Якщо (a,b) — інтервал, поза межами якого лежить **лише скінченне число членів** обмеженої послідовності $\{x_n\}$, а \underline{x} і \overline{x} — нижня і верхня границі цієї послідовності, то інтервал $(\underline{x},\overline{x})$ міститься в інтервалі (a,b) і тому $\overline{x}-\underline{x} \leq b-a$.

Наслідок 2. Для довільного додатного числа $\varepsilon > 0$ інтервал $(\underline{x} - \varepsilon, \overline{x} + \varepsilon)$ містить всі члени послідовності $\{x_n\}$, починаючи з деякого номера $N(\varepsilon)$, залежного від числа ε .

Має місце наступне твердження.

Твердження. У будь-якої обмеженої послідовності $\{x_n\}$ існують верхня і нижня її границі.

Зауваження 1. Зазначимо, що рівність $\underline{x} = \overline{x}$ і умова обмеженості елементів послідовності $\{x_n\}$ є **необхідними і достатніми умовами її збіжності**.

Зауваження 2. З'ясуємо питання про те, скільки частинних границь може мати **обмежена** послідовність $\{x_n\}$. Позначимо через \underline{x} і \overline{x} відповідно нижню і верхню границі цієї послідовності. Очевидно, що всі частинні границі послідовності $\{x_n\}$ (скільки б їх не було), лежатимуть на відрізку $[\underline{x}, \overline{x}]$.

Якщо $\underline{x} = \overline{x}$, то послідовність має тільки одну-єдину частинну границю. Якщо ж $\underline{x} < \overline{x}$, то послідовність має якнайменше дві частинні границі \underline{x} і \overline{x} . Зазначимо, що обмежена послідовність може мати будь-яке **скінченне і навіть нескінченне число частинних границь**.