		ulas co 7%		77.	marino go	//	/ //.	GD 7//.	
ANSWER									
1. (3) matho	2. (66) mo	3. (1) ///.	4. (1) mathongo		5. (3) mathongo	6. (1) mathongo	7. (1) mathor	8. (1)	
9. (16)	10. (1)	11. (2)	12. (2)		13. (2)	14. (98)	13. (9)	16. (2)	
17. (1) athor	18. (2)	19. (272)	20. (2)		21. (25)	22. (3)	23. (3)	24. (2)	
25. (25)	26. (13)	27. (2)	28. (2)		29. (9)	30. (1)			
1. (3)									
1									
then α^2		$^{2}-2lphaeta=rac{\lambda^{2}}{9}-$, ,						
	$egin{array}{l} imes rac{1}{lpha^2eta^2} = 15 = 0 \ 6 = 15 \Rightarrow \lambda = 0 \end{array}$		5 mathongo						
/// Now 6(a			$(eta+eta^2)\big)^2$ go						
$=6\times1$		= 24							
2. (66) We have $\frac{2}{x-1} - \frac{1}{x}$									
	$\frac{-x+1}{(x-2)} = \frac{2}{k}$ mo								
$/\!/\!/ \Rightarrow kx -$	$egin{array}{l} _{3k+2}k \ 3k = 2x^2 - 6x \ - \left(6 + k ight) x + 3k \end{array}$								
For no r	real roots $D < 0$ $k^2 - 8(3k + 4)$	ithongo ///.							
$egin{array}{ll} \Rightarrow k^2 + \ \Rightarrow (k - \) \ \Rightarrow k - 6 \end{array}$		z – 32 < 0 atthongo ///.							
$\Rightarrow \kappa - 0 $ $\Rightarrow 6 - \sqrt{}$	$\sqrt{32} < k < 6 + 1$	$\sqrt{32}$ ngo $/\!/$							
		2, 3, 4, 5, 6, 7, 8, withough							
	uct of roots =(1	-(1-2i+1+ -2i)(1+2i)=	·						
option (1	1)								

Answer Kevs and Solutions

Quadratic Equation JEE Main Crash Course

Let
$$x = 3 + \frac{1}{4 + \frac{1}{2 + \frac{1}{2$$

Let
$$x = 3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{3$$

So,
$$x = 3 + \frac{1}{4 + \frac{1}{x}} = 3 + \frac{1}{\frac{4x+1}{x}}$$

$$\Rightarrow (4x+1)(x-3)=x$$

$$\Rightarrow 4x^2 + 12x + x - 3 = x \text{ ongo}$$
 /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow 4x^2 - 12x - 3 = 0$$

$$x = \frac{12\pm\sqrt{(12)^2+12\times4}}{2\times4} = \frac{12\pm\sqrt{12(16)}}{8}$$
 /// mathongo /// mathongo /// mathongo /// mathongo ///

$$=\frac{12\pm4\times2\sqrt{3}}{8}=\frac{3\pm2\sqrt{3}}{2}$$

$$=\frac{127 \times 3 \times 6}{8} = \frac{622 \times 6}{2}$$

$$x = \frac{3}{2} \pm \sqrt{3} = 1.5 \pm \sqrt{3}.$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mat

But only positive value is accepted

So,
$$x=1.5+\sqrt{3}$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

In given equation
$$x^2+px+q=0,\ p,\ q\in Q$$
, longo w mathongo w mathongo w mathongo w mathongo w

And, we know that the irrational roots of a quadratic equation exist in conjugate pair, if the coefficients are rational.

Thus, if one root of the equation $x^2 + px + q = 0$ is $2 - \sqrt{3}$, then, the other root will be $2 + \sqrt{3}$.

Thus, if one root of the equation $x^2 + px + q = 0$ is $z - \sqrt{3}$, then, the other root will be $z + \sqrt{3}$. We know that the sum and product of the roots of a quadratic equation $ax^2 + bx + c = 0$ are respectively $-\frac{b}{a}$ and $\frac{c}{a}$. Therefore, the sum of roots $2+\sqrt{3}+2-\sqrt{3}=-p$ mathongo /// mathongo // mathongo

Therefore, the sum of roots
$$2 + \sqrt{3} + 2 - \sqrt{3} = -p$$

$$\Rightarrow p = -4$$

$$\Rightarrow p = -4$$
 And, the product of roots $\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right) = q$ mathongo m

$$\Rightarrow q=2^2-\left(\sqrt{3}
ight)^2=1$$

$$(-4)^2 - 4 \times 1 - 12$$

Thus, we have
$$p^2 - 4q - 12 = (-4)^2 - 4 \times 1 - 12$$
 mathongo math

Thus, the answer is, $p^2 - 4q - 12 = 0$. athongo /// mathongo // matho

Given,
$$x^4 + x^2 + 1 = 0$$

= 16 - 16 = 0.

Using the formula
$$a^4 + a^2 + 1 = (a^2 + a + 1)(a^2 - a + 1)$$
 mathons with mathons with mathons and mathons and mathons are mathons as $a^4 + a^2 + 1 = (a^2 + a + 1)(a^2 - a + 1)$

We get,
$$(x^2 + x + 1)(x^2 - x + 1) = 0$$

So $\alpha^{1011} + \alpha^{2022} - \alpha^{3033} = 1 + 1 - 1 = 1$

$$\Rightarrow x = \pm \omega$$
, $\pm \omega^2$ where $\omega = 1^{1/3}$ and imaginary. 30 /// mathongo /// mathongo /// mathongo ///

Quadratic Equation JEE Main Crash Course

Answer Kevs and Solutions

$$x=rac{-\sqrt{6}\pm\sqrt{6-12}}{2}=rac{-\sqrt{6}\pm\sqrt{6}i}{2}=rac{\sqrt{3}\sqrt{2}(-1\pm i)}{\sqrt{2}\sqrt{2}}$$
 mathongo /// mathongo /// mathongo ///

$$=\sqrt{3}\left(\frac{-1}{12}\pm\frac{i}{\sqrt{2}}\right)$$
 athongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$= \sqrt{3} \left(\cos \frac{3\pi}{4} \pm \left(\sin \frac{3\pi}{4} \right) i \right)$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mathongo //

$$\alpha = \sqrt{3}e^{i\left(\frac{3\pi}{4}\right)}$$
 and $\beta = \sqrt{3}e^{i\left(\frac{-3\pi}{4}\right)}$ /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\alpha = \sqrt{3}e^{-(4)^2} \text{ and } \beta = \sqrt{3}e^{-(4)^2}$$

$$\text{Now, } (\alpha)^{23} + (\beta)^{23} = (\sqrt{3})^{23} \left[e^{i\left(\frac{69\pi}{4}\right)} + e^{-i\left(\frac{69\pi}{4}\right)} \right]$$

$$= (\sqrt{3})^{23} \left[2\cos\left(\frac{69\pi}{4}\right) \right]$$
mathon
$$= (\sqrt{3})^{23} \left[2\cos\left(\frac{69\pi}{4}\right) \right]$$

Similarly
$$\rightarrow (\alpha)^{14} + (\beta)^{14} = (\sqrt{3})^{14} \left[2\cos\left(\frac{45\pi}{4}\right) \right]$$

$$\rightarrow (\alpha)^{15} + (\beta)^{15} = (\sqrt{3})^{15} \left[2\cos\left(\frac{45\pi}{4}\right) \right]$$
mathons (mathons)

mathons
$$o (lpha)^{10} + (eta)^{10} = (\sqrt{3})^{10} \left[2\cos\left(rac{30\pi}{4}
ight)
ight]$$
 mathons o mathons

Now,
$$\frac{\alpha^{23} + \beta^{23} + \alpha^{14} + \beta^{14}}{\alpha^{15} + \beta^{15} + \alpha^{10} + \beta^{10}}$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo

$$= \frac{(\sqrt{3})^{23} \left[2\cos\left(16\pi + \frac{5\pi}{4}\right) \right] + (\sqrt{3})^{14} \left[2\cos\left(10\pi + \frac{\pi}{2}\right) \right]}{(\sqrt{3})^{15} \left[2\cos\left(10\pi + \frac{5\pi}{4}\right) \right] + (\sqrt{3})^{10} \left[2\cos\left(16\pi + \frac{3\pi}{2}\right) \right]}$$
 mathongo we mathongo we mathongo we have

$$=\frac{(\sqrt{3})^{23}2\cos\left(\frac{5\pi}{4}\right)}{(\sqrt{3})^{15}2\cos\left(\frac{5\pi}{4}\right)}=(\sqrt{3})^8=81$$
 mathongo /// mathongo // mathongo //

For given quadratic $375x^2 - 25x - 2 = 0$, its roots are,

$$\alpha, \beta = \frac{25 \pm \sqrt{25^2 + 2 \times 4 \times 375}}{2 \times 375} \Rightarrow |\alpha| < 1, |\beta| < 1$$
 mathongo /// ma

Now
$$\lim_{n\to\infty}\sum_{r=1}^n \alpha^r + \lim_{n\to\infty}\sum_{r=1}^n \beta^r$$
 mathongo mathon

Also,
$$\alpha + \beta - \frac{1}{375}$$
, $\alpha \beta - \frac{1}{375}$

Now $\lim_{n \to \infty} \sum_{r=1}^{n} \alpha^r + \lim_{n \to \infty} \sum_{r=1}^{n} \beta^r$

$$= \frac{\alpha}{1-\alpha} + \frac{\beta}{1-\beta} \begin{bmatrix} a + ar + ar^2 + \dots & \text{infinite terms} \\ & = \frac{a}{1-r} & \text{if } |r| < 1 \end{bmatrix}$$

$$= \frac{(\alpha+\beta) - 2\alpha\beta}{1 - (\alpha+\beta) + \alpha\beta} = \frac{\frac{25}{375} + \frac{4}{375}}{1 - \frac{25}{375} - \frac{2}{375}} = \frac{29}{348} = \frac{1}{12}$$

Mathons

9. (16) Given, mathongo mathongo mathongo	
$P_n = lpha^{ m n} - eta^{ m n}$ and $lpha \ \& \ eta$ are roots of $x^2 - x - 4 = 0$	
Now replacing n with $n-1$ in $P_n=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}$ we get, $P_{n-1}=(\alpha^{n-1}-\beta^{n-1})$	
Now subtracting $P_{i} - P_{i-1}$ we get	
$\Rightarrow P_n - P_{n-1} = \alpha^{n-2} \left(\alpha^2 - \alpha \right) - \beta^{n-2} \left(\beta^2 - \beta \right)$ Now using the equation $\alpha^2 - \alpha - 4 = 0 \& \beta^2 - \beta - 4 = 0$ we get,	
$P_n-P_{n-1}=4\left(lpha^{n-2}-eta^{n-2} ight)$ $P_n-P_{n-1}=4P_{n-2}$ mathongo /// mathongo	
which implies that $P_{15}-P_{14}=4P_{13}$ and $P_{16}-P_{15}=4P_{14}$	
Now putting the value in given expression $P_{15}P_{16}-P_{14}P_{16}-P_{15}^2+P_{14}P_{15}$	
$=\frac{P_{13}P_{14}}{P_{16}\left(P_{15}-P_{14}\right)-P_{15}\left(P_{15}-P_{14}\right)}$ mathongo /// mathongo	
$ = \frac{\left(P_{15} - P_{14}\right)\left(P_{16} - P_{15}\right)}{P_{13}P_{14}} = \frac{\left(4P_{13}\right)\left(4P_{14}\right)}{P_{13}P_{14}} = 16 $	
10. (1)	
Given, $x^2 + 5\sqrt{2}x + 10 = 0$ 30 44 mathongo 44 mathongo	
and $D = a^n - Q^n$	
$\text{Now } \frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19} + 5\sqrt{2}P_{18}^2} = \frac{P_{17}\left(P_{20} + 5\sqrt{2}P_{19}\right)}{P_{18}\left(P_{19} + 5\sqrt{2}P_{18}\right)}$	
$=rac{P_{17}\left(lpha^{20}-eta^{20}+5\sqrt{2}\left(lpha^{19}-eta^{19} ight) ight)}{P_{18}\left(lpha^{19}-eta^{19}+5\sqrt{2}\left(lpha^{18}-eta^{18} ight)} ight)}$ ngo /// mathongo /// mathongo	
$=\frac{P_{17}\left(\alpha^{19}\left(\alpha+5\sqrt{2}\right)-\beta^{19}\left(\beta+5\sqrt{2}\right)\right)}{P_{18}\left(\alpha^{18}\left(\alpha+5\sqrt{2}\right)-\beta^{18}\left(\beta+5\sqrt{2}\right)\right)}$	
Since $\alpha + 5\sqrt{2} = -10/\alpha$ (1)	
$\& \beta + 5\sqrt{2} = -10/\beta$ at $\ensuremath{}(2)$ /// mathongo /// mathongo	
Now put these values in above expression $\frac{P_{17} \left(\alpha^{19} \left(\alpha + 5\sqrt{2}\right) - \beta^{19} \left(\beta + 5\sqrt{2}\right)\right)}{P_{18} \left(\alpha^{18} \left(\alpha + 5\sqrt{2}\right) - \beta^{18} \left(\beta + 5\sqrt{2}\right)\right)} = \frac{-10 P_{17} P_{18}}{-10 P_{18} P_{17}} = 1$	
11. (2) Given equation is- $ (x^2) - 8x + 15 - 2x + 7 = 0$ mathongo	
(x-5)(x-3) - 2x + 7 = 0	
For $\mathrm{x} \leq 3$ or $x \geq 5$	
$x^2-8x+15-2x+7=0$ ngo /// mathongo /// mathongo $x=5+\sqrt{3}$	
For $3 < x < 5$, mathongo $x^2 - 8x + 15 + 2x - 7 = 0$ mathongo $x^2 - 8x + 15 + 2x - 7 = 0$	
$x=4$ W Hence sum $=9+\sqrt{3}$ athongo /// mathongo /// mathongo	

Quadratic Equation JEE Main Crash Course

Answer Keys and Solutions

12. (2) athongo											
-----------------	--	--	--	--	--	--	--	--	--	--	--

Case-I

///
$$x \le 5$$
hongo /// mathongo ///

$$(x+1)^2-(x+1)-rac{3}{4}=0$$
 mathongo mathongo

$$x=rac{1}{2},-rac{3}{2}$$
A mathongo ///, mathongo ///,

$$x=rac{1}{2},-rac{3}{2}$$
/// Case-II mathongo /// mathongo // m

$$(x+1)+(x-5)=\frac{27}{4}$$
 athongo /// mathongo /// mathongo

$$x = \frac{-1 \pm \sqrt{52}}{2}$$
 (rejected as $x > 5$) /// mathongo /// mathong

So sum of roots will be
$$\alpha + \beta = \sqrt{2}$$
 and product of roots will be $\alpha\beta = \sqrt{6}$...

And also given $\frac{1}{\alpha^2} + 1$ and $\frac{1}{\beta^2} + 1$ are roots of $x^2 + ax + b = 0$

So sum of roots will be
$$-a=\frac{1}{\alpha^2}+1+\frac{1}{\beta^2}+1$$
 mathong /// mathong ///

And similarly product of roots will be,
$$b = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + 1 + \frac{1}{\alpha^2 \beta^2} \dots (2)$$

Now adding equation (1) & (2) we get,
$$a+b=\frac{1}{(\alpha\beta)^2}-1=\frac{1}{6}-1=-\frac{5}{6} \ \{ \text{as } \alpha\beta=\sqrt{6} \}$$

Now putting the value of
$$a+b$$
 in $x^2-(a+b-2)x+(a+b+2)=0$
$$\Rightarrow x^2-\left(-\frac{5}{6}-2\right)x+\left(2-\frac{5}{6}\right)=0$$

$$\Rightarrow 6x^2 + 17x + 7 = 0$$
 mathong mathong mathons $\Rightarrow x = -\frac{7}{3}, x = -\frac{1}{2}$ are the roots, both roots are real and negative.

14. (98) Given
$$\alpha \& \beta$$
 are roots of $x^2 - 4\lambda x + 5 = 0$ mathongo mathongo

So,
$$\alpha+\beta=4\lambda$$
 and $\alpha\beta=5$
And $\alpha \ \& \ \gamma$ are roots of $x^2-(3\sqrt{2}+2\sqrt{3})x+(7+3\lambda\sqrt{3})=0$

And
$$\alpha & \gamma$$
 are roots of $x^2 - (5\sqrt{2} + 2\sqrt{3})x + (7 + 3\sqrt{3}) \equiv 0$
So, $\alpha + \gamma = 3\sqrt{2} + 2\sqrt{3}$ and $\alpha \gamma = 7 + 3\lambda\sqrt{3}$
Given, if $\beta + \gamma = 3\sqrt{2}$

So, from equation (i) and (ii) we get,
$$\alpha = 2\lambda + \sqrt{3}$$
 and // mathongo // mathongo // mathongo // mathongo //

So, from equation (1) and (11) we get,
$$\alpha=2\lambda+\sqrt{3}$$
 and $\beta=2\lambda-\sqrt{3}$, Now by product of roots we get, $4\lambda^2-3=5\Rightarrow\lambda=\sqrt{2}$

$$\therefore (\alpha + 2\beta + \gamma)^2 = (\alpha + \beta + \beta + \gamma)^2 = (4\lambda + 3\sqrt{2})^2$$

$$= (4\sqrt{2} + 3\sqrt{2})^2 = (7\sqrt{2})^2 = 98$$
mathongo we mathon which is a simple with the second contraction of t

$$= (4\sqrt{2} + 3\sqrt{2}) = (7\sqrt{2}) = 90$$

/// mgthongs // mgthongs

15. (9) athongo ///. mathongo							
$x^2 - 12x + [x] + 31 = 0$							
$\{x\} = x^2 - 11x + 31$ $0 \le x^2 - 11x + 31 < 1$							
$x^2 - 11x + 30 < 0$ $x \in (5, 6)$ mathongo							
so $[x] = 5$ $x^2 - 12x + 5 + 31 = 0$ $x^2 - 12x + 36 = 0$							
$x = 6$ but $x \in (5,6)$ so at $x \in \phi$ mathongo							
$egin{aligned} \mathbf{m} &= 0 \ \mathbf{Now} \ & x^2 - 5 x+2 - 4 = 0 \end{aligned}$							
$x \ge -2$ $x^2 - 5x - 14 = 0$ mathongo							
(x-7)(x+2) = 0 x = 7, -2 x < -2 mathons							
$x^2 + 5x + 6 = 0$							
$x = -3, -2 \ \mathrm{x} = \{7, -2, -3\}$							
$m^2 + mn + n^2 = n^2 = 9$							
16. (2) The Given equation is $x^2 + 9y^2 - $	4x +	3 = 0					
$\Rightarrow 9y^2 + 0y + (x^2 - 4x + 3) = 0$ Make quadratic of y , we have $D \ge 0$							
$\Rightarrow 0-4 imes 9 imes ig(x^2-4x+3ig) {\geq 0}$							
$\Rightarrow x^2 - 3x - x + 3 \le 0 \text{ thongo}$ $\Rightarrow (x - 3)(x - 1) \le 0$							
$x \in [1,3]_{\text{max}}$ mathons							
Now making quadratic in x equation	on is	$\begin{array}{c} \text{mathongo} \\ x^2 - 4x + 3 + \end{array}$	$9y^2$ =	mathongo = 0			
Now making quadratic in x equation $D \geq 0$ $16-4 imes (3+9y^2) \geq 0$	on is	$x^2 - 4x + 3 +$	$9y^2$ =	= 0			
	on is a	$x^2 - 4x + 3 +$ mathongo	9y2 =	= 0 mathongo			
$egin{aligned} D &\geq 0 \ 16 - 4 imes ig(3 + 9y^2ig) &\geq 0 \ \Rightarrow 4 - 3 - 9y^2 &\geq 0 \end{aligned}$	on is :	$x^2 - 4x + 3 +$ mathongo	9 <i>y</i> ² =	= 0 mathongo mathongo			
$egin{aligned} D &\geq 0 \ 16 - 4 imes (3 + 9y^2) &\geq 0 \ \Rightarrow 4 - 3 - 9y^2 &\geq 0 \ \Rightarrow 9y^2 &\leq 1 \ \Rightarrow y &\in \left[rac{-1}{3}, rac{1}{3} ight] \end{aligned}$	on is a	$x^2 - 4x + 3 +$ mathongo mathongo	9 <i>y</i> ² =	= 0 mathongo mathongo			
$D\geq 0$ $16-4 imes(3+9y^2)\geq 0$ $\Rightarrow 4-3-9y^2\geq 0$ $\Rightarrow 9y^2\leq 1$ $\Rightarrow y\in\left[rac{-1}{3},rac{1}{3} ight]$	on is : ///. ///.	$x^2 - 4x + 3 +$ mathongo mathongo mathongo	9y ² = ///.	mathongo mathongo mathongo			

17. (1) athongo /// mathongo /// mathongo /// matho				
Let α, β be the roots of the equation				
$x^2 + (3-a)x + 1 - 2a = 0$ mathong /// mathon				
Then, sum of roots $\alpha + \beta = a - 3$				
And product of roots $\alpha\beta=1-2a$ We know that $\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta$				
$\therefore \alpha^2 + \beta^2 = (a-3)^2 - 2(1-2a)$ $= a^2 - 2a + 7$ mathons				
$= (a-1)^2 + 6$ $\therefore \text{ Minimum value of } \alpha^2 + \beta^2 = 6 \text{ at } a = 1.$				
18. (2)				
We have, ngo /// mathongo /// mathongo /// matho				
$x^{2} + 2(a + 4)x - 5a + 64 > 0$				
If $A>0$ and $D=B^2-4AC<0$, then $Ax^2+Bx+C>0\ orall x\in R$	ngo ///. mat			
Hence,				
$D < 0 \ \Rightarrow \ 4{\left({a + 4} \right)^2} - 4{\left({ - 5a + 64} \right)} < 0$				
$\Rightarrow a^2 + 16 + 8a + 5a - 64 < 0$ $\Rightarrow a^2 + 13a - 48 < 0$ mathons with mathons and mathons				
$\Rightarrow (a+16)(a-3) < 0$				
⇒ $a \in (-16,3)$ mathongo mathongo mathongo Possible values for a are $\{-15, -14, \ldots, 2\}$ containing 18 s				
But given range of a is $[-5, 30]$, hence a would take values $\{-5, -5, -5\}$		1 0 1 23 co	ntaining & integers	
And, $[-5, 30]$ has 36 numbers.	rigo 9,7/2 Anat	1, 0, 1, 2,, 00	ntanning o integers	matho
∴ Required probability				
$= \frac{1}{36}$				
$= \frac{2}{9}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo				
Given, $(p^2 + q^2)x^2 - 2q(p+r)x + q^2 + r^2 = 0$				
On simplifying we get, $(px-q)^2 + (qx-r)^2 = 0$				
$\Rightarrow px - q = 0 \& qx - r = 0$				
$x \Rightarrow x \pm rac{q}{p} \equiv rac{r}{q}$ /// mathongo /// mathongo /// mathongo				
$\Rightarrow x = \frac{q}{p} = \frac{r}{q} = 4$ [because roots of equation $x^2 - 2x - 8 = 0$ as				
As p, q, r are positive, so x must be 4.				
Now, $q=4p$ and $r=4q=16p$				
So, $\frac{q^2+r^2}{p^2}=\frac{\left(4p\right)^2+\left(4 imes4p\right)^2}{p^2}=16+256=272.$				

Quadratic Equation JEE Main Crash Course

Answer Kevs and Solutions

20. (2) athongo						
Given $ar^2 - 2hr$	+15 = 0 (i)					

Given
$$ax^2 - 2bx + 15 = 0$$
 ...(i)

Has repeated roots So
$$D \equiv 0$$
 ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$4b^2-4 imes15 imes a=0$$

$$\Rightarrow b^2 = 15a$$
 ...(ii) mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$x^2 = 2bx + 21 = 0$$
 Mathongo Root nathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Now
$$\alpha$$
 will satisfy both quadratic mathematic mathematic mathematic mathematics.

$$ax^2-2bx+15=0\ \&\ x^2-2bx+21=0$$

W Putting the value we get though w mathong w

$$alpha^2-2blpha+15=0$$

$$(a-1)\alpha^2=6$$
 mathongo mathong

Now in equation (1) product of Root
$$\alpha^2 = \frac{15}{a}$$

So $\frac{15}{a} = \frac{6}{a-1} \Rightarrow 2a = 5a - 5 \Rightarrow a = \frac{5}{3}$

Now
$$b^2=15a\Rightarrow b^2=15\times \frac{5}{3}\Rightarrow b^2=25$$

So $b=\pm 5$ when mathong with mathon with mathon mathon mathon with mathon mathon

$$^{\prime\prime\prime}$$
 $_{
m So}$ $_b$ $^{\perp}$ $^{\perp}$ $^{\perp}$ $^{\perp}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$

Now in quadratic
$$x^2 - 2bx + 21 = 0$$

Putting the value of b we get 100 /// mothongo // m

Putting the value of
$$b$$
 we get
$$x^2 - 10x + 21 = 0 \Rightarrow (x - 7)(x - 3) = 0$$

$$^{\prime\prime\prime}$$
 So $x=3$ or 7. $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$

$$x^2+10x+21=0\Rightarrow x=-3 \ or \ x=-7$$

So $lpha=\pm 3 \ \& \ eta=\pm 7$

So
$$\alpha^2+\beta^2=3^2+7^2=9+49=58$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Quadratic Equation JEE Main Crash Course

Answer Keys and Solutions

21. (25) thongo /// mathongo ///							
Let $f(x) = (x - \alpha)(x - \beta)$							
It is given that $f(0) = p \Rightarrow \alpha\beta = p$ and $f(1) = \frac{1}{3} \Rightarrow (1 - \alpha)(1 - \beta) = \frac{1}{3}$							
Now let us assume that α is the common factor $f(x) = 0$	on root of $f(x)$ =	= 0 an	d fofofof(x)	= 0			
$fofofof\left(x ight) =0$	mathorigo		rnatriongo'				
$\rightarrow f_0 f_0 f_0 f(\alpha) - 0$							
$\Rightarrow fofof(0) = 0$							
$\Rightarrow fof(p) = 0$							
So, $f(p)$ is either α or β .							
Now assuming $(p-\alpha)(p-\beta)=\alpha$							
$\Rightarrow (\alpha\beta - \alpha)(\alpha\beta - \beta) = \alpha \Rightarrow (\beta - 1)(\alpha\beta - \beta) = \frac{\beta}{3} = 1 \left(as (1 - \alpha)(1 - \beta) = \frac{1}{3} \right)$	$(a-1)\beta = 1$						
/// So, $\beta = 3$ go /// mathongo ///							
Now finding α by putting the value of							
$\Rightarrow (1-\alpha)(1-3) = \frac{1}{3}$ $\Rightarrow \alpha = \frac{7}{6}$			0				
So, $f(x) = \left(x - \frac{7}{6}\right)(x - 3)$							
So, $f(-3) = \left(-3 - \frac{7}{6}\right)(-3 - 3) = 25$							
	n O and 1						
22. (3) As there is exactly one root betwee $f(0) \cdot f(1) \le 0$	ii v and 1, 1190						
$\Rightarrow 2(\lambda^2 + 1 - 4\lambda + 2) \le 0 \Rightarrow 2(\lambda^2 - 1)$	$4\lambda + 3$ < 0						
$\Rightarrow (\lambda - 1)(\lambda - 3) \le 0 \Rightarrow 2(\lambda + 1)(\lambda - 3) \le 0$	Third Higo						
$\Rightarrow \lambda \in [1, 3]$							
But at $\lambda = 1$, both roots are 1.							
So, $\lambda eq 1$, $\lambda \in (1,3]$							
23. (3) mathongo /// mathongo ///							
$x^3 - 2x^2 + 2x - 1 = 0$							
x = 1 satisfying the equation							
$\therefore x - 1 \text{ is factor of } x^3 - 2x^2 + 2x - $							
$x = (x-1)(x^2 - x + 1) = 0$ $x = 1, \frac{1+i\sqrt{3}}{2}, \frac{1-i\sqrt{3}}{2}$							
$x=1,-\omega^2,-\omega$							
$= (1)^{162} + (-\omega^2)^{162} + (-\omega)^{162}$ $= 1 + (\omega)^{324} + (\omega)^{162}$							
= 1 + 1 + 1 = 3 /// mathongo /// mathongo ///							

Answer Keys and Solutions

Quadratic Equation JEE Main Crash Course

Answer Keys and Solutions			JEE Main Crash Course
24. (2) athongo /// math Given:			
	$+\left(\sqrt{3}-\sqrt{2}\right)^{x^2-4}=10$		
Now, $\sqrt{3}-\sqrt{2}=rac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}$	$(\sqrt{2}) = \frac{\sqrt{2}}{\sqrt{3} + \sqrt{2}}$ mathongo		
$\Rightarrow \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} + \left(\frac{1}{\sqrt{3}}\right)^{x^2 - 4}$	$\left(\frac{1}{1+\sqrt{2}}\right)^{x^2-4} = 10$ athongo		
$\Rightarrow u^2-10u+1=0 \ \Rightarrow u=rac{10\pm\sqrt{100-4}}{2}$			
$\Rightarrow u = \left(\sqrt{3} \pm \sqrt{2} ight)^2 \ \Rightarrow \left(\sqrt{3} + \sqrt{2} ight)^{x^2-4} = \left(\sqrt{3} + \sqrt{3} +$	ongo (mathongo) $3 \pm \sqrt{2}$		
Therefore, $x^2-4=2\ \&\ x^2-4=-2$ $\Rightarrow x=\pm\sqrt{6}\ \&\ x=\pm\sqrt{2}$			
	$\left(-\sqrt{2}\right)$ mathonag		
Hence, $n(S) = 4$			

Answer Kevs and Solutions

A1101101	,5	unu	Colutions

swer Keys and Solution	ns					JEE Main	Crash	1 Cours
. (25) thongo ///								
Given,								
$\log_2\bigl(9^{2\alpha-4}+13\bigr)-$	$\log_2 \left(3^{2\alpha-4} \cdot \frac{5}{2}\right)$	+1)=2 thongo						
Now let $3^{2\alpha-4} = t$,								
$\log_2ig(t^2+13ig)-\log_2ig(t^2+13ig)$	$2(\frac{5t}{2}+1)=2$							
(2)	,							
$\Rightarrow \log_2 \frac{(t^2+13)}{\left(\frac{5t}{2}+1\right)} = 2$	mathongo							
$\Rightarrow rac{(t^2+13)}{\left(rac{5t}{2}+1 ight)}=2^2$								
$(rac{1}{2}^{+1}) \ \Rightarrow t^2+13=10t+1$	∡mathongo							
$\Rightarrow t^2 - 10t + 9 = 0$								
$\Rightarrow t = 1 \text{ or } 9$								
So,								
$3^{2lpha-4}=1 ext{ or } 9$								
$\Rightarrow 3^{2lpha-4}=3^0 ext{ or } 3^2$	i							
$\Rightarrow 2\alpha - 4 = 0 \text{ or } 2$ $\Rightarrow \alpha = 2, 3$	<u>mathongo</u>							
•								
Now, $\mathrm{x}^2 - 2 \left(\sum_{\alpha \in s} \alpha\right)^2 \mathrm{x}$	$\sum_{i=1}^{n} (a_i + 1)^{i}$	$)^2 \beta = 0$ othonogo						
$x = 2(\sum_{lpha \in s} lpha) x$ $\Rightarrow x^2 - 2((2+3)^2)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
$\Rightarrow x^2 - 50x + 25\beta$	$x_j + (3 + 4) $	/// mathongo						
$\Rightarrow x - 50x + 25\beta$ Now for real roots								
$D \ge 0$ ongo ///.								
$\Rightarrow 50^2 - 4 imes 25eta \geq$								
$\Rightarrow 50-2eta \geq 0$								
$\Rightarrow eta \leq 25$								
So, maximum value	of β is 25.	///. mathongo						
. (13) We have, $a + b$	o+c=1, ab+	bc + ca = 2 and ab	c=3	}				
Now, $a^2 + b^2 + c^2 =$ $\Rightarrow (ab + bc + ca)^2$	$= (a+b+c)^2$	$-2\Sigma ab = -3$						
$\Rightarrow (ab+bc+ca)^2 \ \Rightarrow \varSigma(ab)^2 = -2$	$= \Sigma(ab)^2 + 2a$	$bc\Sigma$ a						
$\Rightarrow \mathcal{Z}(ab) = -2$ So, $a^4 + b^4 + c^4 =$	$(a^2 + b^2 + a^2)^2$	$^{2}/\sqrt{2} \nabla (ab)^{2}$						
=9-2(-2)	(a + b + c)	-22(ab)						
= 13.hongo ///.								

Answer Kevs and Solutions

Quadratic Equation JEE Main Crash Course

27. (2) Let
$$e^{2x} = t$$
 /// mathongo // mat

$$\Rightarrow t^2 - t^2 - 3t^2 - t + 1 = 0$$

$$\implies t^2 + \frac{1}{t^2} - \left(t + \frac{1}{t}\right) + 3 = 0 \quad \text{mathongo} \quad \text{mat$$

$$\Rightarrow \left(t + \frac{1}{t}\right)^2 - \left(t + \frac{1}{t}\right) - 5 = 0$$
mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Putting
$$(t + (1/t)) = a$$
, the equation becomes-

$$a^2-a-5=0$$
 mathongo mathongo

So,
$$a=(t+(1/t))=rac{1+\sqrt{21}}{2}$$
 mathong /// mathong // mathong /// mathong // mathong /

$$e^{(2x)} + \left(\frac{1}{e^{(2x)}}\right) \equiv \frac{1+\sqrt{21}}{2}$$
 mathongo /// mathongo // mat

So, two real solutions and this, graph of the function given cuts
$$x$$
-axis 2 times

$$e^{4x}+8e^{3x}+13e^{2x}-8e^x+1=0,\ x\in R$$
Now let $e^x=t$ we get,

$$t^4+8t^3+13t^2-8t+1=0$$
Now divide complete equation by t^2 mathongo /// mathong

$$\Rightarrow t^2 + \frac{1}{t^2} + 8\left(t - \frac{1}{t}\right) + 13 = 0$$

$$\Rightarrow \left(t - \frac{1}{t}\right)^2 + 8\left(t - \frac{1}{t}\right) + 15 = 0$$
/// mathongo // mathon

$$\Rightarrow \left(t - \frac{1}{t}\right)^2 + 8\left(t - \frac{1}{t}\right) + 15 = 0$$

Now let
$$t-\frac{1}{t}=z$$
 we get, mathongo /// mathongo // mathong

$$\Rightarrow t = \frac{-3\pm\sqrt{13}}{2}, \frac{-5\pm\sqrt{29}}{2} \text{ mono} \qquad \text{mathongo} \qquad \text{mathon$$

So,
$$e^x = \frac{-3+\sqrt{13}}{2}$$
, $\frac{-5+\sqrt{29}}{2} = \alpha$, β (rejecting negative values as exponential is positive function)

And both
$$\frac{-3+\sqrt{13}}{2}$$
 and $\frac{-5+\sqrt{29}}{2} \in (0,1)$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

So,
$$x = \ln(\alpha)$$
, $\ln(\beta)$ are both negative,

Answer Keys and Solutions

Quadratic Equation JEE Main Crash Course

. (9) athongo ///. m						
Given:						
$x^7 + 3x^5 - 13x^3 - 15x$ $\Rightarrow x(x^6 + 3x^4 - 13x^2)$						
So, $x = 0$ is one of the Now,	root					
$(x^6+3x^4-13x^2-15)$ Put $x^2=t$, then we have	male e e e e e e					
$t^3 + 3t^2 - 13t - 15 = 0$						
$\Rightarrow (t-3)(t^2+6t+5)$						
$\Rightarrow (t-3)(t+1)(t+5)$						
So, $t = 3, t = -1, t = -1$						
Now we are getting						
$x^2=3, x^2=-1, x^2= \ \Rightarrow x=\pm\sqrt{3}, \ \pm i, \pm \sqrt{3}$						
From the given condition	on $ \alpha_1 \ge \alpha_2 \ge .$	$\ldots \ge lpha_7 $				
We can clearly say that	$ lpha_7 =0$ and					
and $ lpha_6 =\sqrt{5}= lpha_5 $						
and $ lpha_4 =\sqrt{3}= lpha_3 $ an	ndthongo ///.					
$ \alpha_2 {=1}{=} \alpha_1 $						
So we can have,						
$lpha_1=\sqrt{5}i, \; lpha_2=-\sqrt{5}i$						
$lpha_4=-\sqrt{3},\ lpha_5=i,\ lpha_6$	$_{3}=-i$					
$lpha_7=0$						
Hence, $lpha_1lpha_2-lpha_3lpha_4+lpha_5lpha_6$						
=5-(-3)+1=9						

0. (1) athongo ///. mathongo ///.				
Consider the equation $x^2 + ax + b = 0$				
It has two roots (not necessarily real α : Either $\alpha = \beta$ or $\alpha \neq \beta$	and β) hongo			
, , ,	ot Given than α^2	2 is also root		
Case (1) If $\alpha = \beta$, then it is repeated ro So, $\alpha = \alpha^2 - 2$				
$\Rightarrow (\alpha+1)(\alpha-2)=0$ $\Rightarrow \alpha=-1 \text{ or } \alpha=2$				
When $\alpha = -1$ then (a,b) = $(2,1)$				
$\alpha=2$ then $(a,b)=(-4,4)$				
Case (2) If $\alpha \neq \beta$, then four possibilities	es are there			
(I) $\alpha = \alpha^2 - 2$ and $\beta = \beta^2 - 2$				
Here $(\alpha, \beta) = (2, -1)$ or $(-1, 2)$				
Hence (a,b) = $(-(\alpha+\beta),\alpha\beta)$ = $(-1,-2)$				
(II) $lpha=eta^2-2$ and $eta=lpha^2-2$				
Then $\alpha = \beta^2 - 2$ and $\beta = \alpha^2 - 2$ Then $\alpha - \beta = \beta^2 - \alpha^2 = (\beta - \alpha)(\beta + \beta)$	$\alpha)$ athongo			
Since $\alpha \neq \beta$ we get $\alpha + \beta = \beta^2 + \alpha^2$				
$lpha + eta = \left(lpha + eta ight)^2 - 2lphaeta - 4$				
Thus $-1=1-2lphaeta-4$ which implies	S			
$\alpha\beta=-1$. Therefore $(a,b)=(-(\alpha+\beta)$, lphaeta) thomas $/$			
=(1,-1)				
(III) $\alpha=\alpha^2-2=\beta^2-2$ and $\alpha \neq \beta$ $\Rightarrow \alpha=-\beta$				
Thus $\alpha=2,\beta=-2$ $\alpha=-1,\beta=1$				
Therefore $(a, b) = (0, -4)$ and $(0, -1)$				
(IV) $\beta = \alpha^2 - 2 = \beta^2 - 2$ and $\alpha \neq \beta$ i	s same as (III)			
Therefore we get 6 pairs of (a, b)				
Which are $(2, 1), (-4, 4), (-1, -2), (1, -2)$	-1), (0, -4), (0, -1)	l) mathongo		