Retour sur les spineurs

On peut montrer que $\psi^{\dagger} \vec{\sigma} X$ est un vecteur.

Pour se faire on va transformer que la quantité $\psi^{\dagger}\vec{\sigma}\cdot\vec{A}$, qui devrait être un scalaire, par une rotation.

$$\rightarrow \psi^{\dagger} R^{\dagger} \vec{\sigma} \vec{\sigma} R X \cdot \mathcal{R} \vec{A}$$

$$\psi_i^{\dagger} X A_i = \psi^{\dagger} R^{\dagger} \sigma_i R X \mathcal{R}_{ij} A_j = \psi^{\dagger} R^{\dagger} \sigma_j R X \mathcal{R}_{ji} A_i$$

$$\psi^{\dagger} \sigma_i X = \psi^{\dagger} R^{\dagger} \sigma_j R X \mathcal{R}_{ji}$$

$$R\sigma_i R^{\dagger} = \mathcal{R}_{ii}\sigma_i$$

$$R^{\dagger} \sigma_i R = \mathcal{R}_{ijj}$$

On représente un vecteur à trois composante par un matrice

$$\mathbf{r} = \begin{pmatrix} x & y & z \end{pmatrix}$$

$$X = \vec{r} \cdot \vec{\sigma} = \begin{bmatrix} z & x - iy \\ x + iy & -z \end{bmatrix}$$

$$\operatorname{tr} X = 0$$
 $\det X = -\mathbf{r}^2$

alors

$$X' = R\sigma_i R^{\dagger} x_i = RXR^{\dagger}$$

On fait maintenant la même chose pour des 4-vecteurs.

$$X(x) = \begin{bmatrix} x^0 - x^3 & -x^1 + ix^2 \\ -x^1 - ix^2 & x^0 + x^3 \end{bmatrix} = x^0 \mathbb{1} - x^3 \sigma_3 - x^1 \sigma_1 - x^3 \sigma_3 - x^4 \sigma_1 -$$

$$\det X = x_{\mu} x^{\mu}$$

$$\det X = \det X' \qquad X = N^{\dagger} X' N \qquad \det N = 1$$

$$\det X = \det X'$$

On a deux contraintes sur 8 degrés de liberté (4 degrés complex) et on impose deux contraintes sur les determinant. On a donc 6 degrés de liberté qui correspondent à ceux des trasformation de Lorentz.

$$x^{\prime\nu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

$$x^{\prime}_{\mu} = \Lambda^{\nu}_{\mu} x_{\nu} = (\Lambda^{-1})^{\nu}_{\mu} x_{\nu}$$

$$X^{\prime} = x^{\prime}_{\mu} \sigma^{\mu} = \Lambda^{\nu}_{\mu} x_{\nu} \sigma_{\mu}$$

$$\dots$$

$$\boxed{N^{\dagger} \sigma^{\mu} N = \Lambda^{\mu}_{\nu} \sigma^{\nu}}$$

C'est vrai pour un définiton de type 1, pour le type 2 (avec les +) on aurait

$$M^{\dagger} \tilde{\sigma}^{\mu} M = \Lambda^{\mu}_{\nu} \sigma^{\nu}$$

Théorie en ϕ^4

$$\mathscr{L} = \frac{1}{2}{}_{mu}\phi^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{g}{4!}\phi^4$$

Le premier ordre en énérgie ne s'annule pas, c'est donc plus simple

$$H_1 = \frac{g}{4!} \int d^3 v r \phi^4 \left(a + a^{\dagger} \right) \left(a + a^{\dagger} \right) \left(a + a^{\dagger} \right) \left(a + a^{\dagger} \right)$$

$$M_{fi} = \langle f|H|i\rangle = g$$