

## **Description**

### **Image**







#### Image caption

(1) Bending machine © Metaveld BV at Wikimedia Commons (CC BY 3.0) (2) Bystronic bending © Bystronic at Wikimedia Commons (CC BY 2.5) (3) Body cans made by deep drawing © Byrev at Pixabay [Public domain]

#### The process

STAMPING is a generic term for a range of sheet-forming processes involving dies and press. They include blanking, shearing, drawing, bending, forming and coining, performed singly or consecutively to form complex shapes with a uniform cross-sectional thickness. Progressive dies allow a number of operations at the same station giving high production rates. Tools are dedicated, so tooling costs are high. Stamping is limited to materials available in sheet form.

### **Process schematic**



## Figure caption

Sheet stamping operations.



# Sheet stamping, drawing and blanking

| Material | comp | atibility           |
|----------|------|---------------------|
| mator ia |      | , a ci so i i i c y |

| Metals - ferrous     | ✓ |
|----------------------|---|
| Metals - non-ferrous | ✓ |

# **Shape**

| Flat sheet   | ✓ |
|--------------|---|
| Dished sheet | ✓ |

# **Economic compatibility**

| Relative tooling cost       | medium    |
|-----------------------------|-----------|
| Relative equipment cost     | medium    |
| Labor intensity             | low       |
| Economic batch size (units) | 1e3 - 1e8 |

# Physical and quality attributes

| Mass range                     | 0.001 | - | 5    | kg |
|--------------------------------|-------|---|------|----|
| Range of section thickness     | 0.2   | - | 5    | mm |
| Tolerance                      | 0.1   | - | 0.8  | mm |
| Roughness                      | 0.5   | - | 12.5 | μm |
| Surface roughness (A=v. smooth | Α     |   |      |    |

# **Process characteristics**

| Primary shaping processes | ✓ |  |
|---------------------------|---|--|
| Machining processes       | ✓ |  |
| Cutting processes         | ✓ |  |
| Discrete                  | ✓ |  |

## Cost model and defaults

| Relative cost index (per unit)                                                                                       | 11.2       | -     | 28.4                                       |
|----------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------|
| Parameters: Material Cost = 8USD/kg, Component Mass = 1kg, Batch Size = 1e: Write-off Time = 5yrs, Load Factor = 0.5 | 3, Overhea | d Rat | e = 150USD/hr, Discount Rate = 5%, Capital |





### **Batch Size**

| Capital cost                  | 8.2e3 | - | 8.2e4  | USD |
|-------------------------------|-------|---|--------|-----|
| Material utilization fraction | 0.7   | - | 0.8    |     |
| Production rate (units)       | 200   | - | 5e3    | /hr |
| Tooling cost                  | 164   | - | 1.64e4 | USD |
| Tool life (units)             | 1e4   | - | 1e6    |     |

## **Supporting information**

### Design guidelines

Shapes are formed from sheet stock and so have near-constant cross-sectional thickness (allowing for thinning caused by drawing operations). Intricate shapes possible using sequential drawing/bending/forming steps. Shapes with holes, tabs, recesses, cavities and raised sections are common.

### **Technical notes**

Sheet stamping is most commonly used with metals, particularly steels. but AI, Cu, Ni, Zn, Mg and Ti alloys can all be processed. Polymeric and composite sheet can be shaped by blanking and shearing but drawing operations are less common.

#### Typical uses

Brackets, various mechanical parts, pans, cups, key blanks, hinges, washers, small watch parts.

#### The economics

Dies for forging have to be made from exceptionally hard materials and are expensive, meaning that shape rolling and closed die forging are suitable only for large batches.

#### The environment

The processes carry no particular environmental

#### Links

MaterialUniverse

Reference

