Homework 9

** Problem 1. For a Hilbert space V, show that the norm defined by $||v|| = (v|v)^{1/2}$ is an actual norm.

Proof. We already know $(v|v) \ge 0$ and (v|v) = 0 if and only if v = 0. Thus, $||v|| = (v|v)^{1/2} \ge 0$ and ||v|| = 0 means (v|v) = 0 and so v = 0. Now consider $\alpha \in \mathbb{C}$. We have

$$||\alpha v|| = (\alpha v |\alpha v)^{\frac{1}{2}} = (\alpha (v |\alpha v))^{\frac{1}{2}} = (\alpha \overline{\alpha} (v |v))^{\frac{1}{2}} = |\alpha|(v |v)^{\frac{1}{2}} = |\alpha|||v||.$$

Finally, for $w \in V$, we have

$$||v + w||^2 = (v + w|v + w) = ||v||^2 + ||w||^2 + (v|w) + (w|v) = ||v||^2 + ||w||^2 + 2\operatorname{Re}(v|w).$$

The triangle inequality follows using Cauchy-Schwartz.

** Problem 2. Show $\widehat{(\mathbb{R},+)} = \{\chi_t \mid t \in \mathbb{R}, \chi_t(x) = e^{itx}\}.$

Proof. Given $\chi \in \widehat{(\mathbb{R},+)}$ we want to show there exists $t \in \mathbb{R}$ such that $\chi = \chi_t$. Let H be the kernel of χ and note that H is a closed subgroup of \mathbb{R} under addition. Either $H = \mathbb{R}$, $H = \{0\}$ or there exists $b \in \mathbb{R}^+$ such that $H = \{nb \mid n \in \mathbb{Z}\}$. In the case $H = \mathbb{R}$ we know $\chi = 1$ and t = 0 suffices. The case $H = \{0\}$ is impossible since $\chi(0) = \chi(2n\pi)$. Consider the third case. Note $\chi(b/2)^2 = \chi(b) = 1$ and since b/2 < b, $\chi(b/2) = -1$. Now note $\chi(b/4)^2 = \chi(b/2) = -1$ and so $\chi(b/4) = \pm i$ and without loss of generality we can choose $\chi(b/4) = i$. We show by induction on n that for $n \geq 2$, $\chi(b/2^n) = e^{i\pi/2^{n-1}}$. We have shown this for the base case, n = 2, so now assume that for some $n \geq 2$ the result holds. Consider $\chi(b/2^{n+1})$. Note that $\chi(b/2^{n+1})^2 = \chi(b/2^n) = e^{i\pi/2^{n-1}}$. Then we have $\chi(b/2^{n+1}) = \pm e^{i\pi/2^n}$. Note that $\chi((-b/4,b/4))$ must map to $\{e^{i\theta} \mid -\pi/2 < \theta < \pi/2\}$ from continuity. Therefore $\chi(b/2^{n+1}) = e^{i\pi/2^n}$. Now consider $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$ and since $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^{n-1}}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^n}$ and since $\chi(b/2^n) = e^{i\pi/2^n}$. Therefore $\chi(b/2^n) = e^{i\pi/2^n}$.

** Problem 3. Show $\widehat{\mathbb{T}} = \{ \chi_n \mid n \in \mathbb{Z}, \chi_n(e^{i\theta} = e^{in\theta}) \}.$

Proof. Note that \mathbb{T} is the quotient of $(\mathbb{R}, +)$ by the subgroup $[0, 2\pi)$. We can thus use the proof in ** Problem 2 where $b = 2\pi$.