OPTIMISATION DANS UN HILBERT

Référence : : P.G. Ciarlet, *Introduction à l'analyse numérique matricielle et à l'optimisation* – https://www.math.univ-toulouse.fr/~ckilque/agregation.html

Leçons: 203, 205, 208, 213, 219, 229, 253.

Définition 1

Soit H un espace de Hilbert et $(x_n)_n$ une suite de H. On dit que $(x_n)_n$ converge faiblement vers $x \in H$ si :

$$\forall y \in H, \langle x_n, y \rangle \to \langle x, y \rangle.$$

On note alors : $x_n \rightharpoonup x$.

On commence par démontrer le résultat de compacité faible suivant.

Théorème 2 (Théorème de Banach-Alaoglu)

Soit H un espace de Hilbert séparable et $(x_n)_n$ une suite bornée de H. Alors il existe une extraction $(n_k)_k$ et $x \in H$ tels que : $x_{n_k} \rightharpoonup x$.

Démonstration : On considère une suite dense qu'on note $(h_n)_n$ et on note $M = \sup_n ||x_n||$. Pour tout k, la suite $(\langle x_n, h_k \rangle)_n$ est bornée. On peut donc en extraire une sous-suite convergeant vers un réel noté $\phi(h_k)$. Par extraction diagonale, on dispose d'une extraction $(n_j)_j$ telle que :

$$\forall k \in \mathbb{N}, \langle x_{n_j}, h_k \rangle \underset{j \to +\infty}{\longrightarrow} \phi(h_k) \quad (*).$$

Montrons maintenant que si $y \in H$, alors la suite $(\langle x_{n_j}, y \rangle)_j$ converge. Par complétude, il suffit de vérifier le critère de Cauchy. Soit $\epsilon > 0$. Par densité, on dispose de $k \in \mathbb{N}$ tel que : $||y - h_k|| \le \epsilon$. De plus, d'après la convergence (*), on a $N \in \mathbb{N}$ tel que :

$$\forall p, q \ge N, |\langle x_{n_p}, h_k \rangle - \langle x_{n_q}, h_k \rangle| \le \epsilon.$$

Ainsi on a pour tout $p, q \geq N$:

$$\begin{aligned} |\langle x_{n_p}, y \rangle - \langle x_{n_q}, y \rangle| &\leq |\langle x_{n_p}, y \rangle - \langle x_{n_p}, h_k \rangle| + |\langle x_{n_p}, h_k \rangle - \langle x_{n_q}, h_k \rangle| + |\langle x_{n_q}, h_k \rangle - \langle x_{n_q}, y \rangle| \\ &= |\langle x_{n_p}, y - h_k \rangle| + |\langle x_{n_p}, h_k \rangle - \langle x_{n_q}, h_k \rangle| + |\langle x_{n_q}, h_k - y \rangle \\ &\leq \epsilon + 2M\epsilon, \end{aligned}$$

d'après l'inégalité de Cauchy-Schwarz. Cela montre la convergence annoncée. On a donc une application $\phi: H \to \mathbb{R}$ telle que :

$$\forall y \in H, \langle x_{n_j}, y \rangle \underset{j \to +\infty}{\to} \phi(y) \quad (**).$$

 ϕ est linéaire comme limite simple de formes linéaires. Elle est également continue. En effet, pour tout $y \in H$, on a d'après l'inégalité de Cauchy-Schwarz :

$$|\phi(y)| = |\lim_{j \to +\infty} \langle x_{n_j}, y \rangle| \le M ||y||.$$

Le théorème de Riesz assure qu'il existe $x \in H$ tel que :

$$\forall y \in H, \ \phi(y) = \langle x, y \rangle.$$

La convergence (**) assure la convergence faible de l'extraction vers x.

Remarque 3. On peut se passer de <u>l'hypothèse de séparabilité dans le cadre hilbertien quitte</u> à travailler dans le Hilbert séparable $\tilde{H} := \overline{\text{Vect}\{x_n, n \in \mathbb{N}\}}$. On effet soit G le supplémentaire orthogonal de ce sous-espace vectoriel fermé. D'après ce qui précède, il existe $x \in \tilde{H}$ et une extraction $(n_j)_j$ tels que :

$$\forall y \in \tilde{H}, \langle x_{n_j}, y \rangle \underset{j \to +\infty}{\longrightarrow} \langle x, y \rangle.$$

Soit maintenant $y = \tilde{y} + g$ la décomposition fournie par : $H = \tilde{H} \oplus G$. On a alors par orthogonalité :

$$\langle x_{n_j}, y \rangle = \langle x_{n_j}, \tilde{y} + g \rangle$$

$$= \langle x_{n_j}, \tilde{y} \rangle$$

$$\to \langle x, \tilde{y} \rangle = \langle x, \tilde{y} + g \rangle = \langle x, y \rangle.$$

D'où le résultat.

Théorème 4

Soit H un espace de Hilbert et $J:H\to\mathbb{R}$ une fonction convexe continue et coercive, i.e telle que :

$$J(x) \underset{\|x\| \to +\infty}{\to} +\infty.$$

Alors J atteint son minimum en un point x^* .

Démonstration : On considère une suite minimisante $(x_n)_n$, i.e $J(x_n) \to \inf_H J$. Cette suite est bornée. En effet dans le cas contraire, on a une extraction $(n_k)_k$ telle que :

$$||x_{n_k}|| \to +\infty.$$

Par coercivité, on aurait : inf $J=+\infty$, ce qui est absurde. D'après le théorème de Banach-Alaoglu, on dispose de $x_*\in H$ et d'une extraction $(n_k)_k$ tels que :

$$x_{n_k} \rightharpoonup x_*$$
.

Montrons maintenant que:

$$J(x_*) = \inf_H J.$$

Soit $\alpha > \inf_{H} J$. On pose :

$$C_{\alpha} = J^{-1}(]-\infty,\alpha]),$$

qui est non vide par choix de α . La continuité de J assure que C_{α} est fermé et la convexité de J assure que C_{α} est convexe. On peut donc bien définir P_{α} la projection sur C_{α} . Puisque $J(x_{n_k}) \to \inf_{H} J$, on dispose de N > 0 tel que : $\forall k \geq N, \ x_{n_k} \in C_{\alpha}$. La propriété des angles obtus assure que :

$$\forall k \ge N, \langle x_* - P_\alpha(x_*), x_{n_k} - P_\alpha(x_*) \rangle \le 0.$$

En laissant tendre k vers $+\infty$, on déduit que :

$$||x_* - P_\alpha(x_*)||^2 \le 0,$$

ce qui montre que :

$$x_* \in C_\alpha, \quad \forall \alpha > \inf_H J.$$

D'où $J(x_*) \leq \inf_H J$ et l'égalité est démontrée.

Annexe

L'application suivante permet de résoudre un problème aux limites non linéaire au sens faible grâce à la formulation variationnelle associée, dans un cas où le théorème de Lax-Milgram ne s'applique pas. Je n'ai pas trouvé de référence pour cette partie, l'énoncé est issu du cours de Karine Beauchard.

Proposition 5

Soit $f \in L^2(0,1)$ et p > 0, alors il existe une unique $u \in H^1_0(0,1)$ tel que :

$$-u" + u|u|^{p-1} = f,$$

au sens des distributions.

Démonstration:

- Existence: Commençons par trouver la formulation variationnelle. Pour cela, on pose:

$$J: \left\{ \begin{array}{ccc} H_0^1(0,1) & \to \mathbb{R} \\ u & \mapsto \int_0^1 \frac{|u'|^2}{2} + \frac{|u|^{p+1}}{p+1} - fu \ dx \end{array} \right.$$

(a) J est différentiable et on a :

$$\forall u, v \in H, dJ_u.v = \int_0^1 u'v' + |u|^{p-1}uv - fv \ dx.$$

Le membre de droite est une forme linéaire continue sur $H_0^1(0,1)$ en utilisant l'inégalité de Cauchy-Schwarz et le fait que :

$$H_0^1(0,1) \subset \mathcal{C}([0,1]).$$

Montrons qu'il s'agit bien de la différentielle de J. Un simple calcul montre que :

$$J(u+v) = J(u) + \int_0^1 u'v' + \frac{|u+v|^{p+1}}{p+1} - \frac{|u|^{p+1}}{p+1} - fv \ dx + \frac{1}{2} ||v'||_{L^2}^2.$$

Il suffit donc de montrer que :

$$\int_0^1 \frac{|u+v|^{p+1}}{p+1} - \frac{|u|^{p+1}}{p+1} - |u|^{p-1} uv \ dx = o(\|v\|_{H_0^1}).$$

Fixons $u,v\in\mathbb{R}$ et posons $\phi:t\in[0,1]\mapsto\frac{|u+tv|^{p+1}}{p+1}-\frac{|u|^{p+1}}{p+1}-t|u|^{p-1}uv$. L'objectif est de contrôler $|\phi(1)|=|\phi(1)-\phi(0)|$. Remarquons qu'on a :

$$\frac{d}{dt}|u+tv|^{p+1} = v(p+1)\operatorname{sgn}(u+tv)|u+tv|^p,$$

en notant sgn la fonction signe et en convenant que sgn(0) = 0. ϕ est donc dérivable et on a :

$$\forall t \in [0,1], \ \phi'(t) = v(p+1)\operatorname{sgn}(u+tv)|u+tv|^p - u|u|^{p-1}v.$$

4

L'inégalité des accroissements finis assure alors que :

$$\left| \frac{|u+v|^{p+1}}{p+1} - \frac{|u|^{p+1}}{p+1} - |u|^{p-1}uv \right| \le |v| \sup_{|t| \le |v|} \left\{ |\operatorname{sgn}(u+t)|u+t|^p - \operatorname{sgn}(u)|u|^p \right\}.$$

On a alors d'après ce qui précède et l'inégalité de Cauchy-Schwarz :

$$\begin{split} & \left| \int_{0}^{1} \frac{|u+v|^{p+1}}{p+1} - \frac{|u|^{p+1}}{p+1} - |u|^{p-1}uv \ dx \right| \\ & \leq \int_{0}^{1} |v| \sup_{|t| \leq ||v||_{\infty}} \left\{ |\operatorname{sgn}(u+t)|u+t|^{p} - \operatorname{sgn}(u)|u|^{p}| \right\} \ dx \\ & \leq ||v||_{L^{2}} \left(\int_{0}^{1} \left(\sup_{|t| \leq ||v||_{\infty}} \left\{ |\operatorname{sgn}(u+t)|u+t|^{p} - \operatorname{sgn}(u)|u|^{p}| \right\} \right)^{2} \ dx \right)^{1/2} \\ & \leq ||v||_{H^{1}_{0}} \left(\int_{0}^{1} \left(\sup_{|t| \leq ||v||_{\infty}} \left\{ |\operatorname{sgn}(u+t)|u+t|^{p} - \operatorname{sgn}(u)|u|^{p}| \right\} \right)^{2} \ dx \right)^{1/2} \end{split}$$

Pour montrer le résultat, il suffit de voir que :

$$\int_0^1 \left(\sup_{|t| \le ||v||_{\infty}} \left\{ |\operatorname{sgn}(u+t)|u+t|^p - \operatorname{sgn}(u)|u|^p \right\} \right)^2 dx \xrightarrow{\|v\|_{H_0^1 \to 0}} 0.$$

Puisqu'on a : $||v||_{\infty} \le ||v||_{H_0^1}$, on a pour tout $x \in [0,1]$:

$$\sup_{|t| \le ||v||_{\infty}} \left\{ |\mathrm{sgn}(u(x) + t)|u(x) + t|^p - \mathrm{sgn}(u(x))|u(x)|^p | \right\} \xrightarrow{\|v\|_{H_0^1} \to 0} 0,$$

par continuité de la fonction $x \mapsto \operatorname{sgn}(x)|x|^p$. On ne perd pas de généralité à supposer $||v||_{H^1_0} \leq 1$, on peut ainsi dominer l'intégrande par :

$$((|u|+1)^p + |u|^p)^2 \in L^1(0,1)$$

puisque u est continue. Le théorème de convergence dominée assure que :

$$\int_0^1 \left(\sup_{|t| \le ||v||_{\infty}} \{ |\operatorname{sgn}(u+t)|u+t|^p - \operatorname{sgn}(u)|u|^p | \} \right)^2 dx \underset{||v||_{H_0^1 \to 0}}{\to} 0,$$

ce qui est le résultat voulu.

(b) J est strictement convexe. La convexité est claire compte tenu de la convexité de l'intégrande. Soit $\lambda \in]0,1[$ et $u,v \in H^1_0(0,1)$. Supposons que :

$$J(\lambda u + (1 - \lambda)v) = \lambda J(u) + (1 - \lambda)J(v).$$

Alors on a:

$$\int_0^1 |\lambda u + (1 - \lambda)v|^{p+1} dx = \int_0^1 \lambda |u|^{p+1} + (1 - \lambda)|v|^{p+1} dx.$$

D'où l'on déduit que :

$$|\lambda u + (1 - \lambda)v|^{p+1} = \lambda |u|^{p+1} + (1 - \lambda)|v|^{p+1},$$

presque-partout (et même partout car $H^1_0 \subset C^0$) par convexité de $t \mapsto |t|^{p+1}$ et positivité de l'intégrale. La stricte convexité de $t \mapsto |t|^{p+1}$ montre que u = v.

(c) J est coercive. En effet, l'inégalité de Poincaré assure qu'il existe C > 0 telle que :

$$\forall u \in H_0^1(0,1), \ 2C||u||_{H_0^1}^2 \le ||u'||_{L^2}^2.$$

Ainsi on a:

$$J(u) \ge \int_0^1 \frac{1}{2} |u'|^2 dx - ||u||_{L^2} ||f||_{L^2}$$

$$\ge C ||u||_{H_0^1}^2 - ||u||_{L^2} ||f||_{L^2} \underset{||u||_{H_0^1 \to +\infty}}{\to} +\infty.$$

D'après le théorème d'optimisation, il existe $u \in H_0^1(0,1)$ qui minimise J. On a donc la condition nécessaire d'optimalité suivante :

$$\forall v \in H_0^1(0,1), \int_0^1 u'v' + |u|^{p-1}uv - fv \ dx = 0,$$

donc on a bien : $-u'' + u|u|^{p-1} = f$ au sens des distributions.

- Unicité : Soit \tilde{u} une autre solution au sens dans distributions dans $H^1_0(0,1)$. Alors, on a par définition :

$$\forall v \in \mathcal{D}(0,1), dJ_{\tilde{u}}.v = 0.$$

Par densité de $\mathcal{D}(0,1)$ dans $H^1_0(0,1)$ pour la norme $\|.\|_{H^1_0}$ et par continuité de la forme linéaire $dJ_{\tilde{u}}$ sur $H^1_0(0,1)$, on déduit que \tilde{u} est un point critique de J qui est unique par stricte convexité de J. D'où $u=\tilde{u}$.

Remarque 6. - L'inégalité de Poincaré sur $H^1_0(0,1)$ résulte simplement de l'identité :

$$u(x) = \int_0^x u'(t) dt,$$

ce qui implique que : $||u||_{L^2} \le ||u'||_{L^2}$, par Cauchy-Schwarz. On peut en trouver une constante optimale grâce aux séries de Fourier.

- La solution à cette EDO aux conditions de bords nulles est l'unique solution d'un problème de minimisation de l'énergie (la fonctionnelle J).
- Si f est continue, alors la solution u est en fait une solution au sens classique de classe C^2 .