Seismometer Position Optimization for Newtonian Noise Mitigation in the Einstein Telescope

Introduction

What is the Einstein Telescope and why do we want to place seismometers?

How to Measure Gravitational Waves

Strain
$$h = \frac{\Delta L}{L}$$

LIGO, Virgo and Kagra

Normalized Amplitude Hanford 256 128 Frequency [Hz] Livingston 256 128 64 32 1.0 Strain $[10^{-21}]$ 0.5-0.5Hanford Livingston -1.0Residual 0.5 0.50 0.62Time from Wed Jan 04 10:11:58 UTC 2017 [s]

12.07.2024 | Patrick Schillings

Virgo collaboration/CCO 1.0

The Einstein-Telescope

Marco Kraan, Nikhef

Einstein telescope's limiting noise curve

Hild et al., arXiv:1012.0908

Newtonian Noise

 Density fluctuations in the Earth couple gravitationally to the ET mirror

- Cannot be shielded: Must be predicted and subtracted
- Boreholes for seismometers are expensive
- →Optimize seismometer positions

Wiener Filter

Signal estimate

$$\tilde{s} = W \cdot a$$

$$\tilde{s} = W \cdot d$$
 with $W = \langle sd^{\dagger} \rangle \langle dd^{\dagger} \rangle^{-1}$

Residual
$$R(\omega) \equiv \frac{E[(s-\tilde{s})^2]}{E[s^2]} = 1 - \frac{\vec{c}_{ds}^{\dagger} \cdot \vec{c}_{dd}^{-1} \cdot \vec{c}_{ds}}{c_{ss}}(\omega)$$

Assumptions: homogeniety, isotropy, plain waves → analytical result

Minimize $\max(R(\omega))$ for the four mirrors

One Mirror: F. Badaracco & J. Harms, arXiv:1903.07936 <u>Joint Corner</u>: F. Badaracco et al., arXiv:2310.05709

Original Code: arXiv:2310.05709

Optimization Algorithm

→ Particle Swarm Optimization (general, fast and reliable for small N)

Parameter (benchmark value/range):

- Number of Seismometers N (15/1-100)
- Signal-to-Noise-Ratio of operating seismometers SNR (15/1-30)
- Optimization frequency f (1 Hz/1-20 Hz)
- Ratio of P- and S-waves p (0.2/0-1)

- seismometer
- mirror

Parameter Studies

What influence do the different parameters have?

Boundary Dependency

Seismometers need space to predict low frequency Newtonian Noise

Boundary Dependency

Seismometers need space to predict low frequency Newtonian Noise

Larger spread and higher residuals due to worse convergence of PSO in larger volume...

Boundary Dependency

Optimal Positions

Symmetry in Optimization (N = 6, f = 10, p = 0.2)

• There is a natural occuring symmetry in the optimized positions

<u>Dependence on Number of Seismometers</u>

Dependence on Number of Seismometers

40

60

Ν

80

100

0.1

20

<u>Dependence on Number of Seismometers</u>

← As before

← Mirror at angle bisecting plane ,

Exploiting the inherent symmetry can improve the optimization

p Dependency

12.07.2024 | Patrick Schillings

• The first x seismometers optimize the translation gain of certain features (1. Triangulation, 2. P- and S-differentiation, 3. Noise)

19

F. Badaracco et al., arXiv:2310.05709

SNR Dependency

 R decreases with N and SNR as expected

Well above <u>SNR-limit</u> (mitigation only limited by noise, not translation) when p!=1 or 0

$$R = \frac{1}{1 + N \cdot SNR^2}$$

Frequency Generalization

 Depends strongly on actual seismometer positions

Frequency Generalization

- Depends strongly on actual seismometer positions
- Works differently well for different optimization frequencies

In-Tunnel Optimization

How much improvement can we still archieve if we limit the optimization procedure to the tunnel surface?

Two-Cylinder-Model

N = 50

Tunnel radius = 5m

...for Different Frequencies

...for Different Tunnel Radii

Gain from in-Tunnel Optimization

end2 +

- 20 → 17 boreholes with additional in-tunnel seismometers
- Similar effects with already placed seismometers
- Combined in-tunnel and volume optimization with regard to actual cost (€) is in progress

Simulations

Towards a more realistic optimization

Seismic Simulation

 Real-time prediction of Newtonian Noise for wave packages, moving away from the analytic calculation

Simulation of density fluctuations generated by p waves from far away, time-limited sources

- Seismometer projection in z=0-plane
- Cavern
- Force on mirror (x-direction)

Example seismometer data

WF*seismometer data (WF from correlations of large number of previous simulations)

density flyctuations in (x, y, z=0)

density flyctuations in (x, y, z=0)

density flyctuations in (x, y, z=0)

and the second of the second of

<u>Summary</u>

- Many results by Francesca, Jan et al. reproduced for < 20 seismometers
- Optimization for > 20 seismometers now possible but probably needs other optimization methods → ongoing work with gradient-based methods
- Performed studies of adding seismometers in tunnels an reduce number of necessary boreholes
- Working towards a more realistic optimization based on simulations

Backup

Particle Swarm Optimization

For each particle:

$$\vec{v}_{n+1} = \omega \vec{v}_n + c_1 r_1 (\vec{r}_{pb} - \vec{r}_n) + c_2 r_2 (\vec{r}_{gb} - \vec{r}_n)$$

 $ec{v}_n$ - change in particle position in step n

 \vec{r}_n - particle position in step n

 $ec{r}_{pb}$ - position of the personal best value, this particle has seen

 $ec{r}_{gb}$ - position of the global best value, one of the particles has seen

 ω, c_1, c_2 - parameters "inertia weight", "cognitive coefficient" and "social coefficient"

 r_1, r_2 - random numbers $\in [0,1]$

<u>Idea</u>: J. Kennedy & R. Eberhart, *Particle swarm optimization* (1995)

LBFGS-Results

Confidence for Analytical Results

Performance of a simple grid

Residual from taking the positions as a 4x4x4 regular cubic grid with a total size of 2*gridsize centered at (0,0,0) – the corner of ET

For distances between seismometers close to a quarter of the wavelength, performance is best – even better than all optimization attempts. That's depressing. 🙁

Complicated optimization algorithms may not really find the global minimum. A regular grid isn't even the best one can imagine.

- → Is this good news, because in a 1d-minimization it is much, much simpler?
- → Is this bad news, because if a grid is not a good choice, will the optimizers be? Can we find good positions in all geometries?
- → Is this no big deal, because we do not need the global minimum, but are happy with a local one?