Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr inż. Marcin Kacprowicz

poniedziałek, 12:00

Data oddania: Ocena:	
----------------------	--

Radosław Grela 216769 Jakub Wachała 216914

Zadanie 1: ekstrakcja cech, miary podobieństwa, klasyfikacja*

1. Cel

Celem naszego zadania było stworzenie aplikacji do klasyfikacji tekstów za pomocą metody k-NN (k najbliższych sąsiadów) oraz różnych metryk i miar podobieństwa, a następnie porównać kategorie z tymi wygenerowanymi przez aplikację.

2. Wprowadzenie

Głównym zagadnieniem projektowym, z którym mieliśmy do czynienia w ramach zadania 1 była klasyfikacja statystyczna tekstów na podstawie wektora wyekstrahowanych cech. Do przeprowadzenie eksperymentu zaimplementowaliśmy algorytm k-najbliższych sąsiadów.

Algorytm k-najbliższych sąsiadów (k-NN - k-nearest neighbors) to jeden z algorytmów zaliczanych do grupy algorytmów leniwych. Jest to taka grupa algorytmów, która szuka rozwiązania dopiero, gdy pojawia się wzorzec testujący. Przechowuje wzorce uczące, a dopiero później wyznacza się odległość wzorca testowego względem wzorców treningowych. [1].

Algorytm ten działa w taki sposób, że dla każdego wzorca testowego obliczana jest odległość za pomocą wybranej wetryki względem wzorców treningowych, a następnie wybierana jest k najbliższych wzorców treningowych.

^{*} Github: https://github.com/Bonniu/KSR

Wynik wyznaczony jest jako najczęstszy element wśród nich. W naszym zadaniu odległość ta jest równa skali podobieństwa tekstów.

2.1. Ekstrakcja cech

Do ekstrakcji cech charaklterystycznych tekstu utworzyliśmy wektor cech, który opisuje tekst za pomocą 10 cech. Liczba słów zawsze jest liczona po zastosowaniu stop-listy oraz stemizacji, bez znaków przestankowych.

• C_1 - Stosunek słów kluczowych do wszystkich słów w pierwszych 10% tekstu. Obliczona jest za pomocą wzoru:

$$C_1 = s_{k10}/s_{10} \tag{1}$$

gdzie s_{k10} to liczba słów kluczowych, a s_{10} to liczba wszystkich słów w pierwszych 10% tekstu.

• C_2 - Stosunek słów kluczowych do wszystkich słów w ostatnich 10% tekstu. Obliczona jest za pomocą wzoru:

$$C_2 = s_{k90}/s_{90} \tag{2}$$

gdzie s_{k90} to liczba słów kluczowych, a s_{90} to liczba wszystkich słów w ostatnich 10% tekstu.

• C_3 - Stosunek słów kluczowych do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_3 = s_k/s \tag{3}$$

gdzie s_k to liczba słów kluczowych, a \boldsymbol{s} to liczba wszystkich słów w dokumencie.

• C_4 - Stosunek słów kluczowych, których ilość liter $\in (0,4]$ do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_4 = s_k/s \tag{4}$$

gdzie s_k to liczba słów kluczowych, których ilość liter $\in (0,4]$, a s to liczba wszystkich słów w dokumencie.

• C_5 - Stosunek słów kluczowych, których ilość liter jest ≥ 8 do wszystkich słów w dokumencie. Obliczona jest za pomocą wzoru:

$$C_5 = s_k/s \tag{5}$$

gdzie s_k to liczba słów kluczowych, a s to liczba wszystkich słów w dokumencie.

- Z jakiego zakresu/zbioru cecha przyjmuje wartosci przed normalizacją. - Czy "długość" oznacza liczbę liter, a może słów? Czy jest obliczana przed czy po stemizacji i/lub zastosowaniu stoplisty? jeśli znaków, to czy znaki przestankowe także są zliczane? - W przypadku cech mniej intuicyjnych (a najlepiej wszystkich) - mile widziany przykład jak liczyć (może być jeden tekst dla wszystkich cech pod ich opisem). - Jakie znaczenie ma ta cecha tekstu dla jego rozpoznania? Czy np. im tekst dłuższy, tym bardziej związany z etykietą USA lub CANADA? (istotne!)

3. Opis implementacji

Należy tu zamieścić krótki i zwięzły opis zaprojektowanych klas oraz powiązań między nimi. Powinien się tu również znaleźć diagram UML (diagram klas) prezentujący najistotniejsze elementy stworzonej aplikacji. Należy także podać, w jakim języku programowania została stworzona aplikacja.

4. Materialy i metody

W tym miejscu należy opisać, jak przeprowadzone zostały wszystkie badania, których wyniki i dyskusja zamieszczane są w dalszych sekcjach. Opis ten powinien być na tyle dokładny, aby osoba czytająca go potrafiła wszystkie przeprowadzone badania samodzielnie powtórzyć w celu zweryfikowania ich poprawności (a zatem m.in. należy zamieścić tu opis architektury sieci, wartości współczynników użytych w kolejnych eksperymentach, sposób inicjalizacji wag, metodę uczenia itp. oraz informacje o danych, na których prowadzone były badania). Przy opisie należy odwoływać się i stosować do opisanych w sekcji drugiej wzorów i oznaczeń, a także w jasny sposób opisać cel konkretnego testu. Najlepiej byłoby wyraźnie wyszczególnić (ponumerować) poszczególne eksperymenty tak, aby łatwo było się do nich odwoływać dalej.

5. Wyniki

W tej sekcji należy zaprezentować, dla każdego przeprowadzonego eksperymentu, kompletny zestaw wyników w postaci tabel, wykresów itp. Powinny być one tak ponazywane, aby było wiadomo, do czego się odnoszą. Wszystkie tabele i wykresy należy oczywiście opisać (opisać co jest na osiach, w kolumnach itd.) stosując się do przyjętych wcześniej oznaczeń. Nie należy tu komentować i interpretować wyników, gdyż miejsce na to jest w kolejnej sekcji. Tu również dobrze jest wprowadzić oznaczenia (tabel, wykresów) aby móc się do nich odwoływać poniżej.

6. Dyskusja

Sekcja ta powinna zawierać dokładną interpretację uzyskanych wyników eksperymentów wraz ze szczegółowymi wnioskami z nich płynącymi. Najcenniejsze są, rzecz jasna, wnioski o charakterze uniwersalnym, które mogą być istotne przy innych, podobnych zadaniach. Należy również omówić i wyjaśnić wszystkie napotakane problemy (jeśli takie były). Każdy wniosek powinien mieć poparcie we wcześniej przeprowadzonych eksperymentach (odwołania do konkretnych wyników). Jest to jedna z najważniejszych sekcji tego sprawozdania, gdyż prezentuje poziom zrozumienia badanego problemu.

7. Wnioski

W tej, przedostatniej, sekcji należy zamieścić podsumowanie najważniejszych wniosków z sekcji poprzedniej. Najlepiej jest je po prostu wypunktować. Znów, tak jak poprzednio, najistotniejsze są wnioski o charakterze uniwersalnym.

Literatura

[1] http://home.agh.edu.pl/ horzyk/lectures/miw/KNN.pdf [dostęp 17.03.2020]