Dummit and Foote Exercises

April 10, 2016

Chapter 10

Introduction to Module Theory

10.1 Basic Definitions and Examples

In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.1.1. Prove that 0m = 0 and (-1)m = -m for all $m \in M$.

Solution: We have via straightforward application of the module axioms that

$$0m = (0-0)m = 0m - 0m = 0.$$

Likewise, we can compute that

$$(-1)m = -m + m + (-1)m = -m + (1)m + (-1)m = -m + (1-1)m = -m - 0m = -m.$$

Exercise 10.1.2. Prove that R^{\times} and M satisfy the two axioms in Section 1.7 for a *group action* of the multiplicative group R^{\times} on the set M.

Solution: We know that R^{\times} is a group, and by the module axioms we know $1 \cdot m = m$ for all $m \in M$ and hence the identity acts on M in accordance with a group action. We also have via the module axioms that $uv \cdot m = u \cdot (v \cdot m)$ for all $u, v \in R^{\times}$, and so the action of R^{\times} satisfies both axioms of a group action.

Exercise 10.1.3. Assume that rm = 0 for some $r \in R$ and some $m \in M$ with $m \neq 0$. Prove that r does not have a left inverse (i.e., there is no $s \in R$ such that sr = 1).

Solution: Suppose otherwise, so that there exists $s \in R$ so that sr = 1. Then we have that

$$m = (sr)m = s(rm) = s0 = 0$$

a contradiction. \Box

Exercise 10.1.4. Let M be the module R^n described in Example 3 and let I_1, I_2, \ldots, I_n be left ideals of R. Prove that the following are submodules of M:

(a)
$$\{(x_1, x_2, \dots, x_n) \mid x_i \in I_i\}$$

(b)
$$\{(x_1, x_2, \dots, x_n) \mid x_i \in R \text{ and } x_1 + x_2 + \dots + x_n = 0\}.$$

Solution: (a)

The set is clearly nonempty since $(0,0,\ldots,0)$ is in it. The second condition of the submodule criterion is also satisfied since

$$(x_1, x_2, \dots, x_n) + r(x'_1, x'_2, \dots, x'_n) = (x_1 + rx'_1, x_2 + rx'_2, \dots, x_n + rx'_n)$$

for any $r \in R$ and $x_i + rx_i' \in I$ by virtue of I being an ideal. Thus the set is a submodule.

(b)

As in (a) we notice that $(0,0,\ldots,0)$ is in the set, and so it is nonempty. Letting $x=(x_1,\ldots,x_n)$ and $y=(x'_1,\ldots,x'_n)$ be two elements of the set we have that x+ry is in the set since

$$(x_1 + rx'_1) + (x_2 + rx'_2) + \dots + (x_n + rx'_n) = (x_1 + x_2 + \dots + x_n) + r(x'_1 + x'_2 + \dots + x'_n)$$

$$= 0 + r0$$

$$= 0.$$

Thus the set satisfies the submodule criterion and is a submodule.

Exercise 10.1.5. For any left ideal I of R define

 $IM = \{ \sum_{\text{finite}} a_i m_i \mid a_i \in I, m_i \in M \}$

to be the collection of all finite sums of elements of the form am where $a \in I$ and $m \in M$. Prove that IM is a submodule of M.

Solution: Note that $0_M \in IM$ since $0_R \in I$ and $0_M \in M$ so $0_M = 0_R \cdot 0_M \in IM$. Now let $x = \sum a_i m_i$ and $y = \sum b_j m_j$ be two elements of IM. Then notice for any $r \in R$ that

$$x + ry = \sum a_i m_i + \sum rb_j m_j$$

which is again in IM since both sums are finite and $rb_j \in I$ by virtue of I being a left ideal. Thus IM satisfies the submodule criterion and is a submodule.

Exercise 10.1.6. Show that the intersection of any nonempty collection of submodules of an R-module is a submodule.

Solution: Let M be an R-module and let $\{N_{\alpha}\}$ be an arbitrary collection of submodules of M. Let $N = \bigcap_{\alpha} N_{\alpha}$. Notice that N is nonempty since each N_{α} must contain zero by virtue of being a subgroup over the overall module. Then let $x, y \in N$. Since each N_{α} is a submodule we have $x + ry \in N_{\alpha}$ for all $r \in R$ and all α . We conclude that $x + ry \in N$ and so N satisfies the submodule criterion. This proves the result.

Exercise 10.1.7. Let $N_1 \subseteq N_2 \subseteq \cdots$ be an ascending chain of submodules of M. Prove that $\bigcup_{i=1}^{\infty} N_i$ is a submodule of M.

Solution: Let $N = \bigcup_{i=1}^{\infty} N_i$. Note that $0 \in N$ so N is nonempty. Then let $x, y \in N$. There must exist N_i so that $x, y \in N_i$ and by virtue of N_i being a submodule we will have $x + ry \in N_i$ for all $r \in R$ and hence $x + ry \in N$. This proves that N is a submodule.

Exercise 10.1.8. An element m of the R-module M is called a torsion element if rm = 0 for some nonzero element $r \in R$. The set of torsion elements is denoted

$$\operatorname{Tor}(M) = \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \}.$$

- (a) Prove that if R is an integral domain then Tor(M) is a submodule of M (called the *torsion* submodule of M).
- (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule. [Consider the torsion elements in the R-module R.]
- (c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.

Solution: (a)

Let R be an integral domain and observe that Tor(M) is nonempty since it contains zero. Then let $x, y \in Tor(M)$ and let $r_1, r_2 \in R$ be nonzero so that $r_1x = 0$ and $r_2y = 0$. For an arbitrary $r \in R$ we can notice that

$$r_1r_2(x+ry) = r_1r_2x + r_1r_2ry = r_2r_1x + r_1rr_2y = r_2 \cdot 0 + r_1r \cdot 0 = 0 + 0 = 0$$

where above we have used the commutativity of R. Furthermore observe that r_1r_2 is nonzero since R is an integral domain, and so $x + ry \in \text{Tor}(M)$. This proves that Tor(M) is a submodule by the submodule criterion.

(b) Consider $\mathbb{Z}/6\mathbb{Z}$. The torsion elements of this ring as a module over itself are $\{0, 2, 3, 4\}$ which do not even form an additive subgroup, much less a submodule.

(c) Suppose R has zero divisors and let $x, y \in R$ be nonzero so that xy = 0. Then for some nonzero $m \in M$ consider ym. If ym = 0 then m is a nonzero torsion element. Otherwise ym is a nonzero torsion element since x(ym) = (xy)m = 0m = 0.

Exercise 10.1.9. If N is a submodule of M, the annihilator of N in R is defined to be $\{r \in R \mid rn = 0 \text{ for all } n \in N\}$. Prove that the annihilator of N in R is a 2-sided ideal of R.

Solution: Let N be a submodule and let I be its annihilator. Clearly I contains 0 and so is nonempty. Furthermore if $a, b \in I$ then $a - b \in I$ since for any $n \in N$ we have

$$(a-b)n = an + (-b)n = 0 - (bn) = 0 - 0 = 0$$

where above we have used the fact that (-b)n = -(bn) which can be proved analogously to property 2 in Problem 1. Thus I is an additive subgroup of R.

Finally let $r \in R$ be arbitrary and let $a \in I$. Clearly $ra \in I$ since

$$ran = r(an) = r0 = 0$$

for any $n \in N$. We also have $ar \in I$ since

$$arn = a(rn) = 0$$

for any $n \in N$, where above we have used that $an \in N$. This proves that I is a 2-sided ideal in R.

Exercise 10.1.10. If I is a right ideal of R, the annihilator of I in M is defined to be $\{m \in M \mid am = 0 \text{ for all } a \in I\}$. Prove that the annihilator of I in M is a submodule of M.

Solution: Let I be a right ideal of R and let N be its annihilator. Notice immediately that $0 \in N$ since an = 0 for all $a \in I$. Then let $n, n' \in N$ and $r \in R$. We have that

$$a(n+rn') = an + arn'$$

$$= 0 + (ar)n'$$

$$= 0 + 0$$

$$= 0$$

where above we have used that $ar \in I$ by virtue of I being a right ideal. This proves that N satisfies the submodule criterion, and so it is a submodule.

Exercise 10.1.11. Let M be the abelian group (i.e., \mathbb{Z} -module) $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$.

- (a) Find the annihilator of M in \mathbb{Z} (i.e. a generator for this principal ideal).
- (b) Let $I = 2\mathbb{Z}$. Describe the annihilator of I in M as a direct product of cyclic groups.

Solution: (a)

Notice that if $r \in \mathbb{Z}$ annihilates M it must annihilate each coordinate. In particular, it must be a multiple of 24, of 15, and of 50. This condition is both necessary and sufficient and so the annihilator of M is $600\mathbb{Z}$, the ideal generated by the least common multiple of 24, 15, and 50.

The ideal $2\mathbb{Z}$ annihilates 0 and 12 in the first coordinate, 0 in the second coordinate, and 0 and 25 in the third coordinate. Hence the annihilator of $2\mathbb{Z}$ is the set

$$\{(0,0,0),(12,0,0),(0,0,25),(12,0,25)\}$$

which as a direct product of cyclic groups is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercise 10.1.12. In the notation of the preceding exercises prove the following facts about annihilators.

- (a) Let N be a submodule of M and let I be its annihilator in R. Prove that the annihilator of I in M contains N. Give an example where the annihilator of I in M does not equal N.
- (b) Let I be a right ideal of R and let N be its annihilator in M. Prove that the annihilator of N in R contains I. Give an example where the annihilator of N in R does not equal I.

Solution: (a)

Let A be the annihilator of I in M and let $n \in N$. Then an = 0 for all $a \in I$ by definition. But this means that $n \in A$. This proves that $N \subseteq A$ as desired. As an example where containment is strict let $M = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ be a \mathbb{Z} -module and let N be the subgroup $\{(0,0),(1,0)\}$. Notice that $2\mathbb{Z}$ is the annihilator of N, but the annihilator of $2\mathbb{Z}$ is all of M.

(b) Let J be the annihilator of N in R and let $a \in I$. Then an = 0 for all $n \in N$. But then by definition

 $a \in J$, and so $I \subseteq J$ as desired. An example where containment is strict occurs when considering the annihilator of $6\mathbb{Z}$ in the \mathbb{Z} -module $M = N = \mathbb{Z}/2\mathbb{Z}$. This ideal annihilates all of M, but the annihilator of M is $2\mathbb{Z}$ which strictly contains $6\mathbb{Z}$.

Exercise 10.1.13. Let I be an ideal of R. Let M' be the subset of elements a of M that are annihilatored by some power, I^k of the ideal I, where the power may depend on a. Prove that M' is a submodule of M. [Use Excercise 7.]

Solution: Let N_k be the annihilator of I^k . Elements of I^k are of the form $\sum a_i^k$ where the sum is finite and each a_i is an element of I. We thus notice that $N_k \subseteq N_{k+1}$ since if n is annihilated by all finite sums $\sum a_i^k$ with $a_i \in I$ then

$$\left(\sum a_i^{k+1}\right)n = \sum (a_i^{k+1}n) = \sum (a_i a_i^k n) = \sum (a_i 0) = 0$$

and so it is also annihilated by elements of I^{k+1} . Thus the union of all N_k is a submodule by Exercise 7. This union is exactly M', proving the desired result.

Exercise 10.1.14. Let z be an element of the center of R, i.e. zr = rz for all $r \in R$. Prove that zM is a submodule of M, where $zM = \{zm \mid m \in M\}$. Show that if R is the ring of 2×2 matrices over a field and e is the matrix with a 1 in position 1, 1 and zeros elsewhere then eR is not a left R-submodule (where M = R is considered as a left R-module as in Example 1)—in this case the matrix e is not in the center of R.

Solution: Note that $0 = z0 \in zM$ and so zM is nonempty. Letting $zx, zy \in zM$ where $x, y \in M$ are abitrary and letting $r \in R$ we have that

$$zx + rzy = zx + zry = z(x + ry) \in zM$$

and so zM satisfies the submodule criterion.

Notice that

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}$$

and so in the example eM is the set of matrices with zero entries in the bottom row and arbitrary entries in the top row. This collection is not a submodule since as a set it is not invariant under the left action of R on it. In particular,

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

which is not a matrix with zero entries in the bottom row. We conclude that e is indeed not in the center of R.

Exercise 10.1.15. If M is a finite abelian group then M is naturally a \mathbb{Z} -module. Can this action be extended to make M into a \mathbb{Q} -module?

Solution: No, not always. Consider the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$. If this were naturally a \mathbb{Q} -module then it would have some element $\frac{1}{2} \cdot 1$. This element would satisfy

$$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \left(\frac{1}{2} + \frac{1}{2}\right) \cdot 1 = 1 \cdot 1 = 1$$

_

and in particular it would have order at least three as an element of the group $\mathbb{Z}/2\mathbb{Z}$. This is not possible. More generally, for any finite abelian group G one can consider the action of $\frac{1}{|G|}$ to derive a contradiction. Thus finite abelian group never has a \mathbb{Q} action compatible with the natural \mathbb{Z} action.

However, if an abelian group is divisible then we can extend its natural \mathbb{Z} action to a \mathbb{Q} action. Of course nonzero divisible abelian groups are necessarily infinite, so this falls outside the scope of the problem.

Exercise 10.1.16. Prove that the submodules U_k describe in the example of F[x]-modules are all of the F[x]-submodules for the shift operator.

Solution: Let $V = F^n$ be a F[x] module where x acts as the shift operator and F acts as normal. Let $U \subseteq V$ be a submodule of V. Let k be the largest index such that there exists a vector in U whose k-th coordinate is nonzero. Then we claim $U = U_k$. The inclusion $U \subseteq U_k$ is trivial since U_k is all vectors in V where coordinates following the k-th are zero. Hence we only have to show $U_k \subseteq U$.

To show that $U_k \subseteq U$ we will show straightforwardly that e_i is in U for $1 \le i \le k$. The set of these e_i forms a basis for U_k and so it will follow that $U_k \subseteq U$. Notice that we really only need to construct e_k , since all e_i for i < k can be obtained by the action of x, which will still be in U since U is a submodule. To construct e_k , let $v = (v_1, v_2, \ldots, v_k, 0, 0, \ldots, 0)$ be a vector in U where $v_k \ne 0$. Then we can construct the basis vector e_k by repeatedly zeroing out smaller coordinates in v_k : first consider

$$v - \left(\frac{v_{k-1}}{v_k}x\right)v \in U.$$

The (k-1)-th coordinate of this vector will be $v_k - v_k = 0$. We can repeat this process, acting on our new vector by x^2 multiplied by an appropriate scalar, subtracting the result, and so on. This eventually leads to a vector $(0,0,\ldots,0,v_k,0,0,\ldots,0)$ which can be transformed to e_k via multiplication by the scalar $\frac{1}{v_k}$. This proves that $e_k \in U$, and as previously discussed this implies that $e_i \in U$ for all $1 \le i \le k$. Hence $U_k \subseteq U$ and we are done.

Exercise 10.1.17. Let T be the shift operator on the vector space V and let e_1, \ldots, e_n be the usual basis vector described in the example of F[x]-modules. If $m \ge n$ find $(a_m x^m + a_{m-1} x^{m-1} + \cdots + a_0)e_n$.

Solution: For convenience let $p(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_0$. We compute directly that

$$p(x) \cdot e_n = \left(\sum_{i=0}^m a_i x^i\right) \cdot e_n$$

$$= \sum_{i=0}^m a_i (x^i \cdot e_n) \qquad \text{Via module axioms}$$

$$= \sum_{i=0}^n a_i (x^i \cdot e_n) \qquad \text{Since } x^i \cdot e_n = 0 \text{ for } i > n$$

$$= \sum_{i=0}^n a_i (e_{n-i}) \qquad \text{Since } x \text{ acts as shift operator}$$

$$= (a_n, a_{n-1}, \dots, a_1, a_0).$$

Thus $p(x) \cdot e_n$ gives us the first n+1 coefficients in p(x) in a vector in reverse order.

Exercise 10.1.18. Let $F = \mathbb{R}$. Let $V = \mathbb{R}^2$ and let T be the linear transformation from V to V which is rotation clockwise about the origin by $\pi/2$ radians. Show that V and 0 are the only F[x]-submodules for this T.

Solution: It suffices to show that every nontrivial submodule is equal to V. Given a nontrivial submodule U, let v be a nonzero vector in U. Then notice that $x \cdot v \in U$ is linearly independent from v. Since U must also be a subspace of the vector space V, we see that U contains span $\{v, x \cdot v\} = V$. Hence U is all of V.

Exercise 10.1.19. Let $F = \mathbb{R}$, let $V = \mathbb{R}^2$ and let T be the linear transformation from V to V which is projection onto the y-axis. Show that V, 0, the x-axis and the y-axis are the only F[x]-submodules for this T.

Solution: We know that 0 and V are always submodules. It remains to characterize the nontrivial proper submodules. Notice that such submodules are necessarily 1-dimensional subspaces of $V = \mathbb{R}^2$ since submodules under the action of F[x] are always subspaces and 0- and 2-dimensional subspaces are trivial and non-proper submodules respectively.

Let $U = \operatorname{span}\{v\}$ be some nontrivial proper submodule. Since U is 1-dimensional we must have that $x \cdot v = ax$ for some scalar a. In particular v is an eigenvector of T and so U is an eigenspace of T. The only eigenspaces are clearly the x and y axes. One can verify quickly that these are submodules: they both are subspaces (in particular subgroups) of V and are invariant under the action of F[x] since the y-axis is only scaled and the x-axis is annihilated by any nonunits in F[x].

Exercise 10.1.20. Let $F = \mathbb{R}$, let $V = \mathbb{R}^2$ and let T be the linear transformation from V to V which is rotation clockwise about the origin by π radians. Show that *every* subspace of V is an F[x] submodule for this T.

Solution: Rotating by π radians is the same as additive negation. Hence we have $x \cdot v = -v$ for all vectors v. Being invariant under the action of F and x is enough to be a submodule, and subspaces are invariant under both by the definition of being a subspace (and hence an additive subgroup). Thus all subspaces are submodules.

Exercise 10.1.21. Let $n \in \mathbb{Z}^+$, n > 1 and let R be the ring of $n \times n$ matrices with entries from a field F. Let M be the set of $n \times n$ matrices with arbitrary elments of F in the first column and zeros elsewhere. Show that M is a submodule of R when R is considered as a left module over itself, but M is not a submodule of R when R is considered as a right R-module.

Solution: It is clear that M is an additive subgroup of the module R. When R acts on M from the left M is invariant since the i-th column of rm for $r \in R$ and $m \in M$ is just the product of r with the i-th column in m. For i > 1 this column is zero and so must be r's product with it. Hence $rm \in M$.

On the other hand when R acts from the right the columns in mr beyond the first may nonzero, as illustrated by the small example below.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \notin M.$$

Exercise 10.1.22. Suppose that A is a ring with identity 1_A that is a (unital) left R-module satisfying $r \cdot (ab) = (r \cdot a)b = a(r \cdot b)$ for all $r \in R$ and $a, b \in A$. Prove that the map $f : R \to A$ defined by $f(r) = r \cdot 1_A$ is a ring homomorphism mapping 1_R to 1_A and f(R) is contained in the center of A. Conclude that A is an R-algebra and that the R-module structure on A induced by its algebra structure is precisely the original R-module structure.

Solution: That f maps 1_R to 1_A follows from the fact that $f(1_R) = 1_R \cdot 1_A = 1_A$. Given $r, s \in R$ we have that

$$f(r+s) = (r+s) \cdot 1_S = r \cdot 1_S + s \cdot 1_S = f(r) + f(s)$$

and

$$f(rs) = rs \cdot 1_A = r \cdot (s \cdot 1_A) = r \cdot (s \cdot 1_A 1_A) = r \cdot (1_A(s \cdot 1_A)) = (r \cdot 1_A)(s \cdot 1_A) = f(r)f(s)$$

so f is a ring homomorphism. Let $r \cdot 1_A \in f(R)$ and $a \in A$. Then we have that

$$(r \cdot 1_A)a = r \cdot (1_A a) = r \cdot a = r \cdot (a1_A) = a(r \cdot 1_A)$$

and so f(R) is in the center of A. This proves that A is an R-algebra. The R-module structure on A as an algebra is the same as its original structure since $r \cdot a = r \cdot (1_A a) = (r \cdot 1_A)a$.

Exercise 10.1.23. Let A be the direct product ring $\mathbb{C} \times \mathbb{C}$ (cf Section 7.6). Let τ_1 denote the identity map on \mathbb{C} and let τ_2 denote complex conjugation. For any pair $p, q \in \{1, 2\}$ (not necessarily distinct) define

$$f_{p,q}: \mathbb{C} \to \mathbb{C} \times \mathbb{C}$$
 by $f_{p,q}(z) = (\tau_p(z), \tau_q(z)).$

So, for example $f_{2,1}: z \mapsto (\overline{z}, z)$ where \overline{z} is the complex conjugate of z, i.e. $\tau_2(z)$.

- (a) Prove that each $f_{p,q}$ is an injective ring homomorphism, and that they all agree on the subfield \mathbb{R} of \mathbb{C} . Deduce that A has four distinct \mathbb{C} -algebra structures. Explicitly give the action $z \cdot (u, v)$ of a complex number z on an ordered pair in A in each case.
- (b) Prove that if $f_{p,q} \neq f_{p',q'}$ then the identity map on A is not a \mathbb{C} -algebra homomorphism from A considered as a \mathbb{C} -algebra via $f_{p,q}$ to A considered a \mathbb{C} algebra via $f_{p',q'}$ (although the identity is an \mathbb{R} algebra isomorphism).
- (c) Prove that for any pair p, q there is some ring isomorphism from A to itself such that A is isomorphic as a \mathbb{C} algebra via $f_{p,q}$ to A considered as a \mathbb{C} algebra via $f_{1,1}$ (the "natural" \mathbb{C} -algebra structure on A).

Remark: In the preceding exercise $A = \mathbb{C} \times \mathbb{C}$ is not a \mathbb{C} -algebra over either of the direct factor component copies of \mathbb{C} (for example the subring $\mathbb{C} \times 0 \cong \mathbb{C}$) since it is not a unital module over these copies of \mathbb{C} (the 1 of these subrings is not the same as the 1 of A).

Solution: (a)

That each $f_{p,q}$ agrees on \mathbb{R} is trivial since complex conjugation fixes \mathbb{R} . Also recall that complex conjugation is an automorphism of \mathbb{C} and so each τ_p is an automorphism. Hence $f_{p,q}$ behaves as a ring homomorphism in each coordinate and overall will be a homomorphism. It is a proper ring homomorphism since it maps $1_{\mathbb{C}} = 1$ to $1_{\mathbb{C} \times \mathbb{C}} = (1,1)$. That each $f_{p,q}$ is injective follows from the injectivity of τ_p for p = 1, 2. In particular if z is nonzero then $f_{p,q}(z)$ is nonzero for all p, q and hence the kernel of $f_{p,q}$ is trivial.

The explicit action induced by $f_{p,q}$ is just

$$z \cdot (u, v) = (\tau_p(z)u, \tau_q(z)v).$$

In particular, $f_{1,1}$ acts via natural scalar multiplication.

(b) If $f_{p,q} \neq f_{p',q'}$ then we notice that

$$f_{p,q}(i) \neq f_{p',q'}(i)$$

since there must be a coordinate in which one map conjugates and the other does not. Hence the action of $i \in \mathbb{C}$ induced by $f_{p,q}$ differs from that induced by $f_{p',q'}$ and in particular there exists $(z_1, z_2) \in \mathbb{C} \times \mathbb{C}$ so that the action of i on (z_1, z_2) induced by each is a different element of $\mathbb{C} \times \mathbb{C}$. Denote by \cdot the action induced by $f_{p,q}$ and by \circ the action induced by $f_{p',q'}$. If the identity map Id on $\mathbb{C} \times \mathbb{C}$ were a \mathbb{C} -algebra homomorphism we would have that

$$i \cdot (z_1, z_2) = \operatorname{Id}(i \cdot (z_1, z_2)) = i \circ \operatorname{Id}((z_1, z_2)) = i \circ (z_1, z_2)$$

which is a contradiction. Hence the identity is not a C-algebra homomorphism.

(c) For $f_{p,q}$ the isomorphism of $\mathbb{C} \times \mathbb{C}$ which makes it isomorphic to the natural action is the isomorphism which acts as τ_p in the first coordinate and τ_q in the second. Let ϕ denote this map. The map ϕ is clearly a ring isomorphism since τ_p and τ_q are ring isomorphisms of each coordinate. To see that this gives $\mathbb{C} \times \mathbb{C}$ the natural \mathbb{C} -algebra structure, let \cdot denote the natural action and \circ denote the action induced by $f_{p,q}$. Then we have that ϕ is a \mathbb{C} -algebra isomorphism since

$$\phi(z \circ (z_{1}, z_{2})) = \phi((\tau_{p}(z)z_{1}, \tau_{q}(z)z_{2}))$$

$$= (\tau_{p}(\tau_{p}(z)z_{1}), \tau_{q}(\tau_{q}(z)z_{2}))$$

$$= (z\tau_{p}(z_{1}), z\tau_{q}(z_{2}))$$
Since $\tau_{p}(\tau_{p}(z)) = z$ for all $\tau_{p}(z) = z \cdot (\tau_{p}(z_{1}), \tau_{q}(z_{2}))$

$$= z \cdot \phi((z_{1}, z_{2})).$$

Hence $\mathbb{C} \times \mathbb{C}$ with the $f_{p,q}$ action is \mathbb{C} -algebra isomorphic to $\mathbb{C} \times \mathbb{C}$ with the natural action, as desired.

10.2 Quotient Modules and Module Homomorphisms

In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.2.1. Use the submodule criterion to show that kernels and images of R-module homomorphisms are submodules.

Solution: Kernels and images of R-module homomorphisms always contain zero by virtue of being kernels and images of the underlying group homomorphisms. Thus they are nonempty. Let $\phi: N \to M$ be an R-module homomorphism. We will check the second condition of the submodule criterion for ker ϕ and $\phi(N)$. Letting $x_1, x_2 \in \ker \phi$ and $r \in R$ we notice that

$$\phi(x_1 + rx_2) = \phi(x_1) + r\phi(x_2) = 0 + r0 = 0$$

and so $x_1 + rx_2 \in \ker \phi$. This proves that $\ker \phi$ is a submodule of N. Letting $\phi(n_1)$ and $\phi(n_2)$ be arbitrary elements of $\phi(N)$ and letting $r \in R$ we have

$$\phi(n_1) + r\phi(n_2) = \phi(n_1 + rn_2) \in \phi(N).$$

Hence $\phi(N)$ also satisfies the second condition of the submodule criterion and is a submodule.

Exercise 10.2.2. Show that the relation "is R-module isomorphic to" is an equivalence relation on any set of R-modules.

Solution: We verify each property of an equivalence relation directly.

- Reflexivity: Any R-module is isomorphic to itself via the identity map.
- Symmetry: Let $\phi: N \to M$ be an isomorphism of R-modules. We claim that the map ϕ^{-1} is also an R-module isomorphism. We know it is a group isomorphism since ϕ is a group isomorphism, and so all we have to verify is that it preserves the action of R. Let $m \in M$ and $r \in R$. We know $m = \phi(n)$ for some $n \in N$ and since ϕ is an R-module isomorphism we also have $\phi(rn) = r\phi(n) = rm$. Putting this together, we have

$$\phi^{-1}(rm) = \phi^{-1}(\phi(rn)) = rn = r\phi^{-1}(m)$$

and so ϕ^{-1} is a homomorphism of R-modules. This proves that M is R-module isomorphic to N.

• Transitivity: Let

$$N \xrightarrow{\phi} M \xrightarrow{\psi} L$$

be a sequence of R-module isomorphisms. We claim that $\psi \circ \phi$ is an R-module isomorphism from N to L. It is a group isomorphism by virtue of ϕ and ψ being group isomorphisms, so we need only verify that the action of R is preserved. Given $r \in R$ and $n \in N$ we have directly that

$$\psi(\phi(rn)) = \psi(r\phi(n)) = r\psi(\phi(n))$$

by virtue of ϕ and ψ being R-module isomorphisms. This proves that N is R-module isomorphic to L, as desired. We conclude that "is R-module isomorphic to" is an equivalence relation.

Exercise 10.2.3. Give an explicit example of a map from one *R*-module to another which is a group homomorphism but not an *R*-module homomorphism.

Solution: Natural examples occur whenever a module M has two distinct R-module structures on it. In this case the identity map from M to M is a group homomorphism, but not an R-module homomorphism. Some examples of modules M which can have distinct structures are described below.

- The algebra $A = \mathbb{C} \times \mathbb{C}$ described in 10.1.23 as a module over \mathbb{C} .
- A vector space as an F[x] module, where the action of x can be various linear transformations.

• Example 2 on page 346 also works: the map $x \mapsto x^2$ in M = F[x] is never an F[x]-module homomorphism. Indeed, one can generalize this by sending $\phi : x \mapsto f(x)$ for any $f(x) \neq x$. This is a group homomorphism but not an F[x] module homomorphism since we would have $f(x) = \phi(x) = \phi(x \cdot 1) = x\phi(1) = x$. Perhaps most generally one can consider a ring with unity and a nontrivial endomorphism. This endomorphism serves as a group homomorphism that is not an R-module homomorphism.

Exercise 10.2.4. Let A be any \mathbb{Z} -module, let a be any element of A and let n be a positive integer. Prove that the map $\phi_a : \mathbb{Z}/n\mathbb{Z} \to A$ given by $\phi_a(\overline{k}) = ka$ is a well defined \mathbb{Z} -module homomorphism if and only if na = 0. Prove that $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$ where $A_n = \{a \in A \mid na = 0\}$ (so A_n is the annihilator in A of the ideal (n) of \mathbb{Z} — cf. Exercise 10, Section 1).

Solution: We begin by proving that ϕ_a is a well defined \mathbb{Z} -module homomorphism if and only if na = 0

- (\Rightarrow) Suppose ϕ_a is a well defined \mathbb{Z} -module homomorphism. Then we have that $na = \phi_a(\overline{n}) = \phi_a(0)$ which must be zero since ϕ_a is a homomorphism of groups.
- (\Leftarrow) Suppose na=0. To show ϕ_a is well defined we need to show that $\phi_a(\overline{k})$ does not depend on our choice of representative for \overline{k} . Letting k+bn be an arbitrary representative of \overline{k} we have that

$$\phi_a(\overline{k+bn}) = (k+bn)a = ka + bna = ka + b(na) = ka + b0 = ka$$

and so the map is well defined. To prove it is a group homomorphism let $\overline{k_1}, \overline{k_2} \in \mathbb{Z}/n\mathbb{Z}$. Then we have

$$\phi_a(\overline{k_1} + \overline{k_2}) = (\overline{k_1} + \overline{k_2})a = \overline{k_1}a + \overline{k_2}a = \phi(\overline{k_1}) + \phi(\overline{k_2}).$$

To see it is a \mathbb{Z} -module homomorphism, let $z \in \mathbb{Z}$ and observe that

$$\phi_a(z\overline{k}) = \phi_a(\overline{zk}) = \overline{zk}a = z\overline{k}a = z\phi_a(\overline{k})$$

where the second to last equality follows from the fact that z acts the same on multiples of a as any z' congruent to $z \mod n$. This shows that ϕ_a is a homomorphism of \mathbb{Z} -modules.

To prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A) \cong A_n$ we show that each homomorphism ϕ from $\mathbb{Z}/n\mathbb{Z}$ to A is uniquely determined by $\phi(1)$ and $\phi(1) \in A_n$. In fact, we show that all $\phi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A)$ are of the form ϕ_a for some $a \in A_n$. Given an homomorphism $\phi : \mathbb{Z}/n\mathbb{Z} \to A$ consider $\phi(1) = a$. We know that $\phi(1) \in A_n$ since

$$na = n\phi(1) = \phi(n) = \phi(0) = 0.$$

Extending ϕ to the rest of $\mathbb{Z}/n\mathbb{Z}$ we see that necessarily $\phi = \phi_a$. By the result proven earlier in the problem, we conclude that every homomorphism in $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A)$ is of the form ϕ_a for $a \in A_n$. To prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A)$ is isomorphic to A_n as a module, notice that by the properties of homomorphisms we have $\phi_a + \phi_b = \phi_{a+b}$ and $z\phi_a = \phi_z a$ and also $\phi_a = \phi_b$ if and only if a = b. Hence the map $\phi_a \mapsto a$ is an isomorphism of \mathbb{Z} -modules and we conclude the desired result. \square

Exercise 10.2.5. Exhibit all \mathbb{Z} -module homomorphisms from $\mathbb{Z}/30\mathbb{Z}$ to $\mathbb{Z}/21\mathbb{Z}$.

Solution: By the previous exercise we know that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/30\mathbb{Z}, \mathbb{Z}/21\mathbb{Z})$ consists of maps ϕ_a where $a \in \mathbb{Z}/21\mathbb{Z}$ is annihilated by 30 \mathbb{Z} . The elements in $\mathbb{Z}/21\mathbb{Z}$ annihilated by 30 are exactly those which are multiples of 7. Hence the only maps are the zero map, $a \mapsto 7a$ and $a \mapsto 14a$.

Exercise 10.2.6. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$.

Solution: By 10.2.4 we have that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ is isomorphic to the annihilator of $n\mathbb{Z}$ in $\mathbb{Z}/m\mathbb{Z}$. This annihilator will consist of exactly the $a \in \mathbb{Z}/m\mathbb{Z}$ for which na is a multiple of m. Let d be the greatest common divisor of n and m. Then this annihilator can be easily described as the cyclic module generated by m/d in $\mathbb{Z}/m\mathbb{Z}$. Indeed, na is a multiple of m if and only if a is a multiple of m/d. The cyclic module generated by m/d has d elements, and hence is isomorphic to $\mathbb{Z}/d\mathbb{Z}$. This proves the result.

Exercise 10.2.7. Let z be a fixed element of the center of R. Prove that the map $m \mapsto zm$ is an R-module homomorphism from M to itself. Show that for a commutative ring R the map from R to $\operatorname{End}_R(M)$ given by $r \mapsto rI$ is a ring homomorphism (where I is the identity endomorphism).

Solution: This is a group homomorphism since $z(m_1 + m_2) = zm_1 + zm_2$ by the module axioms. Since z is in the center of r we also have r(zm) = z(rm) for all $r \in R$ and so this map also respects the R-module structure.

Let ϕ denote the map $r \mapsto rI$. Then the ring homomorphism conditions are easily verified: $\phi(r_1 + r_2) = (r_1 + r_2)I = r_1I + r_2I = \phi(r_1) + \phi(r_2)$, and $\phi(r_1r_2) = r_1r_2I = r_1Ir_2I = \phi(r_1)\phi(r_2)$. This proves the result.

Exercise 10.2.8. Let $\phi: M \to N$ be an R-module homomorphism. Prove that $\phi(\text{Tor}(M)) \subseteq \text{Tor}(N)$ (cf. Exercise 8 in Section 1).

Solution: Let $m \in \text{Tor}(M)$ and $r \in R$ be nonzero so that rm = 0. Then $r\phi(m) = \phi(rm) = \phi(0) = 0$ and so $\phi(m) \in \text{Tor}(N)$. This proves the result.

Exercise 10.2.9. Let R be a commutative ring. Prove that $\operatorname{Hom}_R(R, M)$ and M are isomorphic as left R-modules. [Show that each element of $\operatorname{Hom}_R(R, M)$ is determined by its value on the identity of R.]

Solution: Let $\phi \in \text{Hom}_R(R, M)$ and let $r \in R$. We will show that $\phi(r)$ can be expressed in terms of $\phi(1)$. Notice that

$$\phi(r) = \phi(r \cdot 1) = r\phi(1)$$

by definition of being an R-module homomorphism. Hence each ϕ can be expressed as ϕ_m for $m \in M$ where $\phi_m(r) = rm$. We claim that the map $m \mapsto \phi_m$ is a homomorphism of the R-modules M and $\operatorname{Hom}_R(R,M)$.

First, note that this map is injective since $\phi_{m_1} = \phi_{m_2}$ means that $m_1 = \phi_{m_1}(1) = \phi_{m_2}(1) = m_2$. Furthermore it is surjective since every homomorphism is uniquely determined by its value on 1 and can be written as ϕ_m . This map is also a group homomorphism since

$$\phi_{m_1+m_2}(s) = s(m_1+m_2) = sm_1 + sm_2 = \phi_{m_1}(s) + \phi_{m_2}(s)$$

for all $s \in R$ and hence $\phi_{m_1+m_2} = \phi_{m_1} + \phi_{m_2}$. To show this map respects the R-module structure, let $r \in R$ and observe that

$$r\phi_m(s) = rsm = s(rm) = \phi_{rm}(s)$$

for all $s \in R$, and so $r\phi_m = \phi_{rm}$. We conclude that $m \mapsto \phi_m$ is an R-module isomorphism as desired.

Exercise 10.2.10. Let R be a commutative ring. Prove that $\operatorname{Hom}_R(R,R)$ and R are isomorphic as rings.

Solution: Consider the map $r \mapsto rI$ where I is the identity map on R. By 10.2.7 this is a homomorphism from R to $\operatorname{End}_R(R) = \operatorname{Hom}_R(R,R)$. But this is also the exact map described in the proof of 10.2.9. In particular, this is an isomorphism of the R-module $\operatorname{Hom}_R(R,R)$ with the R-module R. We conclude that this map is bijective, and by virtue of being a ring homomorphism it must be a ring isomorphism. This proves the result.

Exercise 10.2.11. Let A_1, A_2, \ldots, A_n be R-modules and let B_i be a submodule of A_i for each $i = 1, 2, \ldots, n$. Prove that

$$(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) \cong (A_1/B_1) \times \cdots \times (A_n/B_n).$$

[Recall Exercise 14 in Section 5.1.]

Solution: Consider the map $\phi: A_1 \times \cdots \times A_n \to (A_1/B_1) \times \cdots \times (A_n/B_n)$ defined by

$$\phi(a_1, a_2, \dots, a_n) = (a_1 + B_1, a_2 + B_2, \dots, a_n + B_n).$$

Note that this is a homomorphism of R-modules since it is R-linear in each coordinate. Indeed,

$$a_i + ra'_i + B_i = (a_i + B_i) + r(a'_i + B_i)$$

by definition of the quotient module A_i/B_i . Then consider the kernel of this map. If $(a_1, \ldots, a_n) \in \ker \phi$ we must have $a_i + B_i = 0 + B_i$ for all i. That is, we must have $a_i \in B_i$ and in particular $(a_1, \ldots, a_n) \in B_1 \times \cdots \times B_n$. This condition is obviously necessary and sufficient to be in the kernel, and so the kernel is $B_1 \times \cdots \times B_n$. Also note that the map is surjective, with a preimage of $(a_1 + B_1, \ldots, a_n + B_n)$ being simply (a_1, \ldots, a_n) . By the first isomorphism theorem we conclude that

$$(A_1 \times \dots \times A_n)/(B_1 \times \dots \times B_n) = (A_1 \times \dots \times A_n)/\ker \phi$$

$$\cong \phi(A_1 \times \dots \times A_n)$$

$$= (A_1/B_1) \times \dots \times (A_n/B_n)$$

which proves the result.

Exercise 10.2.12. Let I be a left ideal of R and let n be a positive integer. Prove

$$R^n/IR^n \cong R/IR \times \dots \times R/IR \quad (n \text{ times})$$

where IR^n is defined as in Exercise 5 of Section 1. [Use the preceding exercise.]

Solution: By definition $R^n = R \times \cdots \times R$ where the product is taken n times. Thus we only need to show that $IR^n = (IR)^n$, and the result will follow immediately from the previous problem. To prove this we show containment in both directions. Elements of IR^n are of the form $a(r_1, \ldots, r_n) = (ar_1, \ldots, ar_n)$ where $a \in I$. Such elements are clearly in $(IR)^n$ since elements in $(IR)^n$ have the form (a_1r_1, \ldots, a_nr_n) for $a_i \in I$. Thus we have $IR^n \subseteq (IR)^n$ immediately.

To show that $(IR)^n \subseteq IR^n$ consider an arbitrary element $(a_1r_1, \ldots, a_nr_n) \in (IR)^n$. Notice that the tuple $v_i = (0, \ldots, a_ir_i, \ldots, 0)$ which is zero in all coordinates but the *i*-th is in IR^n since it is just $a_i(0, \ldots, a_i, \ldots, 0)$. But IR^n is closed under finite sums, and so we can write

$$(a_1r_1,\ldots,a_nr_n)=\sum_{i=1}^n v_i\in IR^n.$$

This proves that $(IR)^n \subseteq IR^n$, and so we conclude the desired result. As an interesting aside, I believe this also holds when the product is infinite since we only allow finitely many nonzero coordinates.

Exercise 10.2.13. Let I be a nilpotent ideal in a commutative ring R (cf. Exercise 37, 7.3), let M and N be R-modules and let $\phi: M \to N$ be an R-module homomorphism. Show that if the induced map $\overline{\phi}: M/IM \to N/IN$ is surjective, then ϕ is surjective.

Solution: Note: I referred to https://crazyproject.wordpress.com/aadf/\#df-10 for the solution to this problem. Wrote my own version of the solution however.

We will first prove that $N = \phi(M) + I^k N$ for all k, independent of the fact that I is nilpotent. Consider the following diagram:

$$M \xrightarrow{\phi} N$$

$$\pi_{M} \downarrow \qquad \qquad \downarrow \pi_{N}$$

$$M/IM \xrightarrow{\overline{\phi}} N/IN$$

Above we have π_M and π_N as projection mod IM and IN respectively. This diagram commutes by virtue of $\overline{\phi}$ being the induced map. We begin by showing that $N = \phi(M) + IN$. Notice that N is clearly the preimage of N/IN under π_N . Also $N/IN = \overline{\phi}(M/IM)$ and so any $n + IN \in N/IN$ can be written as $\phi(m) + IN$ for some $m \in M$. This implies that the preimage of N/IN under π_N will be $\phi(M) + IN$. Indeed, $\pi_N(n) = \phi(m) + IN$ implies that n is the sum of something in $\phi(M)$ and the kernel of π_N which is IN. So far we have shown that $N = \phi(M) + IN$.

To prove that $N = \phi(M) + I^k N$ we use induction on k, where we have just proven the base case. For the inductive step, we have

$$N = \phi(M) + I^{k}N = \phi(M) + I^{k}(\phi(M) + IN) = \phi(M) + I^{k}\phi(M) + I^{k+1}N = \phi(M) + I^{k+1}N$$

where the last equality follows from the fact that $I^k\phi(M)\subseteq\phi(M)$. By induction we conclude that $N=\phi(M)+I^kN$ for all k. Taking k large enough we have $I^k=0$ and so $\phi(M)=N$ as desired.

It is illustrative to see the equality $N = \phi(M) + I^k N$ for some non-nilpotent ideal. For an example, we take $R = M = N = \mathbb{Z}$. Let $\phi : \mathbb{Z} \to \mathbb{Z}$ be the doubling map (i.e. $\phi(z) = 2z$), which is indeed a homomorphism of \mathbb{Z} modules since it is a homomorphism of abelian groups. Notice that it is not surjective. For our ideal I we choose $3\mathbb{Z}$. Then our diagram of modules becomes

Now, the induced map is surjective since we have $0 \mapsto 0$, $1 \mapsto 2$ and $2 \mapsto 1$. Our result states that $\mathbb{Z} = \phi(\mathbb{Z}) + 3^k \mathbb{Z}$ for all k. Since $\phi(\mathbb{Z}) = 2\mathbb{Z}$ and $2\mathbb{Z}$ and $3^k \mathbb{Z}$ are always comaximal ideals, we see that the result holds.

Exercise 10.2.14. Let $R = \mathbb{Z}[x]$ be the ring of polynomials in x and let $A = \mathbb{Z}[t_1, t_2, \ldots]$ be the ring of polynomials in the independent indeterminates r_1, r_2, \ldots . Define an action of R on A as follows: 1) let $1 \in R$ act on A as the identity, 2) for $n \ge 1$ let $x^n \circ 1 = t_n$, let $x^n \circ t_i = t_{n+i}$ for $i = 1, 2, \ldots$, and let x^n act as 0 on monomials in A of (total) degree at least two, and 3) extend \mathbb{Z} -linearly, i.e., so that the module axioms 2(a) and 2(c) are satisfied.

(a) Show that $x^{p+q} \circ t_i = x^p \circ (x^q \circ t_i) = t_{p+q+i}$ and use this show that under this action the ring A is a (unital) R-module.

(b) Show that the map $\phi: R \to A$ defined by $\phi(r) = r \circ 1_A$ is an R-module homomorphism of the ring R into the ring A mapping 1_R to 1_A , but not a ring homomorphism from R to A.

Solution: (a)

We can compute directly that

$$x^{p+q} \circ t_i = t_{p+q+i} = x^p \circ t_{q+i} = x^p \circ (x^q \circ t_i)$$

as desired. We can use this to show that A is an R-module by considering arbitrary polynomials $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$ in $\mathbb{Z}[x]$. To prove that $fg \circ T = f \circ g \circ T$ for all $T \in A$ it suffices to consider $T = t_k$ since the action is by definition extended linearly and acts as zero on monomials of higher degree. We have that

$$fg \circ t_k = \left(\sum_{i=0}^n a_i x^i\right) \left(\sum_{j=0}^m b_j x^j\right) \circ t_k$$

$$= \left(\sum_{i=0}^{n+m} \left(\sum_{j=0}^i a_j b_{i-j}\right) x^i\right) \circ t_k$$

$$= \sum_{i=0}^{n+m} \left(\sum_{j=0}^i a_j b_{i-j}\right) (x^i \circ t_k)$$
By R-linearity
$$= \sum_{i=0}^{n+m} \left(\sum_{j=0}^i a_j b_{i-j}\right) t_{k+i}$$
By definition of the action

Now, we can change the indices in this sum as follows. The various coefficients a_jb_{j-i} are all of the form $a_{i'}b_{j'}$ where $0 \le i' \le n$ and $0 \le j' \le m$ (there are some additional pairs but for these we have $a_j = 0$ or $b_{j-i} = 0$). The coefficient $a_{i'}b_{j'}$ appears as the coefficient of $t_{k+i'+j'}$. Hence this all simplifies as

$$fg \circ t_k = \sum_{i=0}^n \sum_{j=0}^m a_i b_j t_{k+i+j}$$

$$= \sum_{i=0}^n \sum_{j=0}^m a_i b_j x^i \circ (x^j \circ t_k)$$

$$= \sum_{i=0}^n \sum_{j=0}^m a_i x_i \circ b_j (x^j \circ t_k)$$

$$= \sum_{i=0}^n a_i x^i \circ \left(\sum_{j=0}^m b_j (x^j \circ t_k)\right)$$

$$= \sum_{i=0}^n a_i x^i \circ (g \circ t_k)$$

$$= f \circ (g \circ t_k).$$

This shows that the action obeys axiom 2(b) for modules. We already know it satisfies the other axioms so A is indeed an R-module. That the action is unital follows directly from the definition

since $1 \in R$ acts as identity. Thus A is a unital R-module as desired.

(b)

This map is naturally a homomorphism of the abelian groups since

$$\phi(r_1 + r_2) = (r_1 + r_2) \circ 1_A = r_1 \circ 1_A + r_2 \circ 1_A = \phi(r_1) + \phi(r_2).$$

Indeed this is an example of the maps ϕ_a described in the solution to Problem 10.2.9. It maps 1_R to 1_A since the module action is unital.

To see that this is not a ring homomorphism, consider the image of x^2 . We have that $\phi(x^2) = t_2$. But $\phi(x)\phi(x) = t_1^2 \neq t_2$ so the map is not a ring homomorphism.

10.3 Generation of Modules, Direct Sums, and Free Modules

In these exercises R is a ring with 1 and M is a left R-module.

Exercise 10.3.1. Prove that if A and B are sets of the same cardinality, then the free modules F(A) and F(B) are isomorphic.

Solution: Let $\phi: A \to B$ be a bijection and ϕ^{-1} be its inverse. Then Theorem 6 tells us that there exist unique R-module homomorphisms $\Phi: F(A) \to F(B)$ and $\Phi^{-1}: F(B) \to F(A)$ so that Φ agrees with ϕ on A and Φ^{-1} agrees with ϕ^{-1} on B. We claim that Φ is an R-module isomorphism. It is clear that $\Phi^{-1} \circ \Phi$ is identity on F(A) and so Φ must be injective. On the other hand $\Phi \circ \Phi^{-1}$ is identity on F(B) which means that Φ must be surjective. Hence Φ is an isomorphism, proving the result.

Exercise 10.3.2. Assume R is commutative. Prove that $R^n \cong R^m$ if and only if n = m, i.e., two free R-modules of finite rank are isomorphic if and only if they have the same rank. [Apply Exercise 12 of Section 2 with I a maximal ideal of R. You may assume that if F is a field, then $F^n \cong F^m$ if and only if n = m, i.e. two finite dimensional vector spaces over F are isomorphic if and only if they have the same dimension — this will be proved later in Section 11.1]

Solution: (\Leftarrow) If the modules have the same rank then they are isomorphic by the previous problem together with the result that any free module of rank n is free over its basis.

(\Rightarrow) We begin by proving the following general fact. If $M \cong N$ as R-modules and I is an ideal of R, then $M/IM \cong N/IN$. To prove this let $\phi: M \to N$ be an R-module isomorphism and consider its induced map $\overline{\phi}: M/IM \to N/IN$ which maps $m+IM \mapsto \phi(m)+IN$. This map is well defined since we are taking a quotient of each module by the action of the same ideal. This map is surjective since if $n+IN \in N/IN$ it has as a preimage $\overline{\phi}^{-1}(n)+IM \in M/IM$. On the other hand it is well defined to talk about the induced inverse $\overline{\phi}^{-1}: N/IN \to M/IM$. One can observe that $\overline{\phi}^{-1} \circ \overline{\phi}$ acts as identity on M/IM since

$$\overline{\phi^{-1}}(\overline{\phi}(m+IM)) = \overline{\phi^{-1}}(\phi(m)+IN) = \phi^{-1}(\phi(m)) + IM = m+IM.$$

Hence $\overline{\phi}$ must be injective. We conclude that $\overline{\phi}$ is an isomorphism.

Now suppose that $R^n \cong R^m$. Letting I be a maximal ideal, we have from 10.2.12 that

$$(R/IR)^n \cong R^n/IR^n \cong R^m/IR^m \cong (R/IR)^m$$

where the middle isomorphism is the one induced from $R^n \cong R^m$ when modding out by the action of I. But this says that two vectors spaces of dimension m and n respectively are isomorphic, and hence m = n. This proves the result.

Exercise 10.3.3. Show that the F[x]-modules in Exercises 18 and 19 of Section 1 are both cyclic.

Solution: Exercise 18: This module is $V = \mathbb{R}^2$ with the action of x being given by the linear transformation that rotates by $\pi/2$. We notice that V is generated by (1,0) since we have $x \cdot (1,0) = (0,1)$ and $\{(1,0),(0,1)\}$ spans \mathbb{R}^2 over \mathbb{R} , which is a subring of $\mathbb{R}[x]$. In fact we could choose any nonzero vector and V would be cyclicly generated by it.

Exercise 19: Again the module if $V = \mathbb{R}^2$, but now the action of x is given by projection onto the y-axis. In this case we see that V is not cyclicly generated by (1,0) since the projection of this is just the zero vector. However, V is generated by (1,1) since $x \cdot (1,1) = (0,1)$ which is linearly independent from (1,1). Hence together (1,1) and $x \cdot (1,1)$ span V over \mathbb{R} and since $\mathbb{R} \subseteq \mathbb{R}[x]$ we see that (1,1) generated V.

Exercise 10.3.4. An R-module M is called a torsion module if for each $m \in M$ there is a nonzero element of $r \in R$ such that rm = 0, where r may depend on m (i.e., M = Tor(M) in the notation of Exercise 8 of Section 1). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Solution: Let G be an abelian group. Then the nonzero element $|G| \in \mathbb{Z}$ annihilates G and we conclude that G is a torsion module.

For an example of an infinite abelian group one can consider \mathbb{Q}/\mathbb{Z} . Every element has finite order and hence is annihilated by some integer. A less interesting example is any infinite product of finite abelian groups.

Exercise 10.3.5. Let R be an integral domain. Prove that every finitely generated torsion R-module has a nonzero annihilator i.e., there is a nonzero element $r \in R$ such that rm = 0 for all $m \in M$ —here r does not depend on m (the annihilator of a module was defined in Exercise 9 of Section 1). Give an example of a torsion R-module whose annihilator is the zero ideal.

Solution: Let M = RA for a finite set $\{a_1, \ldots, a_n\}$. For each a_i let $r_i \neq 0$ be such that $r_i a_i = 0$. We claim that $r = r_1 r_2 \cdots r_n$ is a nonzero element of the annihilator of M in R. That $r \neq 0$ follows from the fact that R is an integral domain. To see that r is in the annihilator of M notice that r annihilates each a_i by the commutativity of R. Since r annihilates a generating set for M it must annihilate M, proving the result.

For an example where the annihilator is zero and the module is still torsion, consider the group G which is the product of $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 2$, considered as a \mathbb{Z} -module. Every element is annihilated by the least common multiple of its nonzero components, but no nonzero integer can annihilate every element of G simultaneously.

Exercise 10.3.6. Prove that if M is a finitely generated R-module that is generated by n elements then every quotient of M may be generated by n (or fewer) elements. Deduce that quotients of cyclic modules are cyclic.

Solution: Let $\{a_1, \ldots, a_n\}$ be a generating set for an R-module M. Then we claim that $\{a_1 + N, \ldots, a_n + N\}$ generates M/N as an R-module. Indeed, notice that any $m + N \in M/N$ can be written as

$$m + N = \left(\sum r_i a_i\right) + N = \sum r_i (a_i + N)$$

proving the result. Hence the quotient of a cyclic module can be generated by 1 or 0 elements and is again cyclic.

Exercise 10.3.7. Let N be a submodule of M. Prove that if both M/N and N are finitely generated then so is M.

Solution: Let $\{a_1, \ldots, a_n\}$ be a finite generating set for N and let $\{b_1 + N, \ldots, b_m + N\}$ be a finite generating set for M/N. We claim that the set

$$A = \{a_1, \dots, a_n, b_1 \dots, b_m\}$$

generates M as an R-module. Let $\pi: M \to M/N$ be the natural projection map. For an arbitrary $m \in M$, let r_1, \ldots, r_m be such that

$$m + N = \sum r_i(b_i + N) = \left(\sum r_i b_i\right) + N$$

Now notice that $m - \sum r_i b_i$ must be in the kernel of π , i.e. in N. Then there must exist s_1, \ldots, s_n so that

$$m - \sum r_i b_i = \sum s_j a_j$$

which implies

$$m = \sum r_i b_i + \sum s_j a_j \in RA.$$

Hence RA = M and A is a finite generating set for M. This proves the result.

Exercise 10.3.8. Let S be the collection of sequences (a_1, a_2, a_3, \ldots) of integers a_1, a_2, a_3, \ldots where all but finitely many of the a_i are 0 (called the *direct sum* of infinitely many copies of \mathbb{Z}). Recall taht S is a ring under componentwise addition and multiplication and S does not have a multiplicative identity — cf. Exercise 20, Section 7.1. Prove that S is not finitely generated as a module over itself.

Solution: Given any finite set $A = \{a_1, \ldots, a_n\}$ let n_i be an integer such that $N > n_i$ implies that the N-th component of a_i is zero. Taking the maximum M of all n_i we see that every a_i is zero past index M. Hence the set A does not generate any list which is nonzero after M and A does not generate S as amodule.

Exercise 10.3.9. An R-module M is called *irreducible* if $M \neq 0$ and if 0 and M are the only submodules of M. Show that M is irreducible if and only if $M \neq 0$ and M is a cyclic module with any nonzero element as a generator. Determine all the irreducible \mathbb{Z} -modules.

Solution: (\Rightarrow) Suppose that M is irreducible. We know by definition $M \neq 0$. Taking some nonzero $m \in M$, we see that Rm is a nonzero submodule of M, and so Rm = M. This proves that M is generated by any nonzero element.

(\Leftarrow) Suppose $M \neq 0$ and M is cyclic with any nonzero element as a generator. Then let $N \subseteq M$ be any nonzero submodule of M. Let $n \in N$ be nonzero and notice then that $M = Rn \subseteq N$ and so N = M. This proves that the only nonzero submodule of M is M itself and so M is irreducible.

To classify all irreducible \mathbb{Z} -modules, we need only consider cyclic modules. If a cyclic module is not a torsion module it is isomorphic to \mathbb{Z} . But this is not irreducible since it contains a submodule isomorphic to $2\mathbb{Z}$. This leaves cyclic torsion modules of \mathbb{Z} . These are simply finite cyclic groups. Among these we see that the only irreducible ones are $\mathbb{Z}/p\mathbb{Z}$ for some prime p.

Exercise 10.3.10. Assume R is commutative. Show that an R-module M is irreducible if and only if M is isomorphic (as an R-module) to R/I where I is a maximal ideal of R. [By the previous exercise, if M is irreducible then there is a natural map $R \to M$ defined by $r \mapsto rm$ where m is any fixed nonzero element of M.]

Solution: (\Rightarrow) Suppose that M is an irreducible R-module and fix some nonzero $m \in M$. We know that Rm = M. Let $\phi : R \to M$ be the map $r \mapsto rm$. This is certainly a homomorphism of R-modules and furthermore it is surjective. Thus we have $M \cong R/\ker \phi$. If we can show $\ker \phi$ (as a submodule of R) is a maximal ideal of R then we are done. First by virtue of being a submodule of the commutative ring R we know that $\ker \phi$ is an ideal.

Next notice that $\ker \phi$ is exactly the annihilator of m (and hence M) in R. Thus any ideal J strictly containing $\ker \phi$ must contain some r so that $rm \neq 0$. But then we have that $JM \neq 0$ and so JM = M. This means that J contains some element s so that sm = m, or equivalently (s-1)m = 0. We conclude that $s-1 \in \ker \phi$. But $\ker \phi \subseteq J$ and so we have $s, s-1 \in J$ which means $1 \in J$. We conclude that J = R and so J is maximal. This proves the result.

(⇐) Suppose $M \cong R/I$ for a maximal ideal I. We aim to show that Rm = M for all nonzero $m \in M$. We can write any nonzero $m \in M$ as a+I via the isomorphism between M and R/I where $a \notin I$. But then R(a+I) = Ra + RI = Ra + I. Notice that Ra + I is an ideal strictly containing I since it contains a, and so Ra + I = R since I is maximal. We conclude that R(a+I) = R/I in the module R/I, proving the result. □

Exercise 10.3.11. Show that if M_1 and M_2 are irreducible R-modules, then any nonzero R-module homomorphism from M_1 to M_2 is an isomorphism. Deduce that if M is irreducible then $\operatorname{End}_R(M)$ is a division ring (this result is called Schur 's Lemma). [Consider the kernel and the image.]

Solution: Let $\phi: M_1 \to M_2$ be a nonzero R-module homomorphism. We know that $\ker \phi$ is not all of M_1 , and hence $\ker \phi = \{0\}$. On the other hand we know $\phi(M_1) \neq \{0\}$ and so it is all of M_2 . This tells us that ϕ is injective and surjective, and so we conclude that ϕ is an isomorphism. \square

Exercise 10.3.12. Let R be a commutative ring and let A, B and M be R-modules. Prove the following isomorphisms of R-modules:

- (a) $\operatorname{Hom}_R(A \times B, M) \cong \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$
- (b) $\operatorname{Hom}_R(M, A \times B) \cong \operatorname{Hom}_R(M, A) \times \operatorname{Hom}_R(M, B)$.

Solution: (a)

Let $(\phi, \psi) \in \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$. We claim that the map sending $(\phi, \psi) \mapsto \Phi$ where Φ acts as ϕ in the first coordinate and ψ in the second is an isomorphism of R-modules. More specifically, we define $\Phi(a, b) = \phi(a) + \psi(b)$. First we show that it is even a well defined map between the hom-sets of concern, namely that $\Phi \in \operatorname{Hom}_R(A \times B, M)$. This is straightforward since if $(a, b), (a', b') \in A \times B$ and $r \in R$ then we have

$$\Phi((a,b) + r(a',b')) = \Phi(a + ra', b + rb')$$

$$= \phi(a + ra') + \psi(b + rb')$$

$$= \phi(a) + \psi(b) + r\phi(a') + r\psi(b')$$

$$= \Phi(a+b) + r\Phi(a'+b').$$

Now we need to show that $(\phi, \psi) \mapsto \Phi$ is a homomorphism of R-modules. Suppose we have $(\phi, \psi) \mapsto \Phi$ and $(\phi', \psi') \mapsto \Phi'$. It is clear that $(\phi + r\phi', \psi + r\psi')$ maps to $\Phi + r\Phi'$ and so we see that the map is an R-module homomorphism.

Injectivity is straightforward since the only map Φ that can act as zero in both coordinates comes from $\phi = \psi = 0$. For surjectivity, notice that any Φ acts as an R-module homomorphism in each coordinate. In particular, if we define $\Phi_A : A \to M$ by $\Phi_A(a) = \Phi(a,0)$ and Φ_B symmetrically then we see that $(\Phi_A, \Phi_B) \mapsto \Phi$. Hence the map is surjective and we conclude the desired

isomorphism.

(b)

The proof here is essentially the same as (a): the isomorphism is given by decomposing any homomorphism in $\operatorname{Hom}_R(M, A \times B)$ into its coordinate pieces on A and B. In particular, we associate $\Phi \in \operatorname{Hom}_R(M, A \times B)$ with the pair (ϕ, ψ) where $\phi(a)$ is the first coordinate of $\Phi(a)$ and $\psi(b)$ is the second coordinate of $\Phi(b)$.

Exercise 10.3.13. Let R be a commutative ring and let F be a free R-module of finite rank. Prove the following isomorphism of R-modules: $\operatorname{Hom}_R(F,R) \cong F$.

Solution: Write $F \cong \mathbb{R}^n$. Applying the result of the previous exercise we have that

$$\operatorname{Hom}_R(F,R) \cong \operatorname{Hom}_R(R^n,R)$$

 $\cong \operatorname{Hom}_R(R,R)^n$
 $\cong R^n$
 $\cong F.$

Note that above we have used the fact that $\operatorname{Hom}_R(R,R) \cong R$, which was proven in another exercise.

Exercise 10.3.14. Let R be a commutative ring and let F be the free R-module of rank n. Prove that $\operatorname{Hom}_R(F,M) \cong M \times \cdots \times M$ (n times). [Use Exercise 9 in Section 2 and Exercise 12.]

Solution: Recall from 10.2.9 that $\operatorname{Hom}_R(R, M) \cong M$ since every homomorphism is determined by its value on $1 \in R$. Hence we have (similar to the previous exercise) that

$$\operatorname{Hom}_R(F, M) \cong \operatorname{Hom}_R(R^n, M)$$

 $\cong \operatorname{Hom}_R(R, M)^n$
 $\cong M^n$

This is exactly what we hoped to show. Note that the previous exercise is in fact a special case of this.

Exercise 10.3.15. An element $e \in R$ is called a *central idempotent* if $e^2 = e$ and er = re for all $r \in R$. If e is a central idempotent in R, prove that $M = eM \oplus (1 - e)M$. [Recall Exercise 14 in Section 1.]

Solution: We must show two things. First, that M is generated by eM together with (1-e)M. Second, that $eM \cap (1-e)M = \{0\}$.

For the first statement, notice that since e is in the center of R the subsets $eM = \{em \mid m \in M\}$ and $(1 - e)M = \{(1 - e)m \mid m \in M\}$ are indeed submodules of M. Then let $m \in M$ be arbitrary and notice that

$$m = 1 \cdot m = (e + (1 - e)) \cdot m = e \cdot m + (1 - e) \cdot m$$

and so eM together with (1 - e)M generates M. Note this is independent of e being central idempotent.

To prove that the sum of eM and (1-e)M is direct, suppose that $m \in eM \cap (1-e)M$. Then there exist $m_1, m_2 \in M$ so that

$$em_1 = m = (1 - e)m_2.$$

L

But acting on the left and right quantities above by e yields

$$e^2 m_1 = (e - e^2) m_2$$

which simplifies to $em_1 = 0$ since $e - e^2 = 0$. But this tells us immediately that m = 0, so the sum of eM and (1 - e)M is direct.

The next two exercises establish the Chinese Remainder Theorem for modules (cf. Section 7.6).

Exercise 10.3.16. For any ideal I of R let IM be the submodule defined in Exercise 5 of Section 1. Let A_1, \ldots, A_k be any ideals in the ring R. Prove that the map

$$M \to M/A_1M \times \cdots \times M/A_kM$$
 defined by $m \mapsto (m + A_1M, \dots, m + A_kM)$

is an R-module homomorphism with kernel $A_1M \cap A_2M \cap \cdots \cap A_kM$.

Solution: Suppose that m is in the kernel of this map. Then $m + A_i M$ is zero for all A_i in the quotient. In particular $m \in A_i M$ for all i. Since this condition is necessary and sufficient we conclude that the kernel is indeed $A_1 M \cap A_2 M \cap \cdots \cap A_k M$.

Exercise 10.3.17. In the notation of the preceding exercise, assume further that the ideals $A_1, \ldots A_k$ are pairwise comaximal (i.e. $A_i + A_j = R$ for all $i \neq j$). Prove that

$$M/(A_1 \cdots A_k)M \cong M/A_1M \times \cdots \times MA_kM.$$

[See the proof of the Chinese Remainder Theorem for rings in Section 7.6.]

Solution: We will show that $A_1M \cap \cdots \cap A_kM = (A_1 \cdots A_k)M$. First note that $A_1 \cdots A_k \subseteq A_i$ for all i since each A_i is an ideal and hence absorbs multiplication by other ideals on both the left and right. This tells us that inclusion in the \supseteq direction holds.

For inclusion in the other direction, we will proceed by induction on k. For k=1 we have only one ideal and the inclusion is obvious. For the inductive step we assume that $A_2M \cap \cdots \cap A_kM = (A_2 \cdots A_k)M$. From this we have that $A_1M \cap A_2M \cap \cdots \cap A_kM = A_1M \cap (A_2 \cdots A_k)M$. Now notice that A_1 and $A_2 \cdots A_k$ are comaximal. Indeed, for each $2 \le i \le k$ we are guaranteed that there is some $a_i \in A_1$ and $a_i' \in A_i$ so that $1 = a_i + a_i'$. We then have that $1 = (a_1 + a_1')(a_2 + a_2') \cdots (a_k + a_k')$ is an element of $A_1 + (A_2 \cdots A_k)$ since every term in the expanded product is a product of something in A_1 with something in $A_2 \cdots A_k$. This tells us that A_1 and $A_2 \cdots A_k$ are comaximal and so we can write 1 = a + a' with $a \in A_1$ and $a' \in A_2 \cdots A_k$. But this means that $A_1 \cap A_2 \cap \cdots \cap A_k \subseteq A_1 A_2 \cdots A_k$ since for any b in the intersection we have b = 1b = (a + a')b = ab + a'b = ab + ba' which is in $A_1(A_2 \cdots A_k)$ since $a \in A_1$, $a' \in A_2 \cdots A_k$ and b is in both. (Here we have assumed a is commutative to write a'b = ba', which seems necessary.)

Putting all of this together, we may write

$$A_1M \cap A_2M \cap \cdots \cap A_kM = A_1M \cap (A_2 \cdots A_k)M$$

$$\subseteq A_1M \cap (A_2 \cap A_3 \cap \cdots \cap A_k)M \quad \text{We are intersecting with the}$$

$$larger \text{ submodule } (A_2 \cdots A_k)M.$$

$$\subseteq A_1M \cap A_2M \cap \cdots \cap A_kM \qquad (A \cap B)M \subseteq AM \cap BM \text{ in general.}$$

This concludes the proof that $A_1M \cap \cdots \cap A_kM = (A_1 \cdots A_k)M$.

Now we show that the map defined in the previous problem is surjective. Call this map ϕ for convenience. We will proceed by induction on k. When k=2 we have by the comaximality of A_1 and A_2 that there are some $a_1 \in A_1$ and $a_2 \in A_2$ so that $1 = a_1 + a_2$. To show the map is surjective it suffices to demonstrate a preimage for $(m + A_1, 0)$ and $(0, m + A_2)$ for all $m \in M$. For this, notice that

$$\phi(a_1m) = (0, a_1m + A_2) = (0, (1 - a_2)m + A_2) = (0, m - a_2m + A_2) = (0, m + A_2)$$

and similarly

$$\phi(a_2m) = (a_2m + A_1, 0) = ((1 - a_1)m + A_1, 0) = (m - a_1m + A_1, 0) = (m + A_1, 0).$$

Hence the map is surjective in this base case. For the inductive step, the inductive hypothesis tells us that the map is surjective onto all elements of the form $(m_1 + A_1, m_2 + A_2M, \dots, a_k + A_kM)$ where all values of m_2, \dots, m_k are achieved but possibly not all values of m_1 . To show that the map is surjective it thus suffices to find preimages for $(m_1 + A_1, 0, \dots, 0)$ for all possible m_1 . Recall we showed in earlier in our solution that A_1 and $A_2 \cdots A_k$ are comaximal. Hence we can write 1 = a + a' for $a \in A_1$ and $a' \in A_2 \cdots A_k$. Then notice that

$$\phi(a'm_1) = (a'm_1 + A_1M, a'm_1 + A_2M, \dots, a'm_1 + A_kM)$$

$$= (m_1 - am_1 + A_1M, 0, \dots, 0)$$
Since $a' \in A_i$ for all $2 \le i \le k$

$$= (m_1 + A_1M, 0, \dots, 0).$$

Hence the image of M under ϕ is all of $M/A_1M \times \cdots \times M/A_kM$. Now, by the first isomorphism theorem for modules we have that

$$M \ker \phi \cong M/A_1M \times \cdots \times M/A_kM$$

But $\ker \phi = A_1 M \cap \cdots \cap A_k M$, and earlier in the solution we proved that $A_1 M \cap \cdots \cap A_k M = (A_1 \cdots A_k) M$. We conclude that

$$M/(A_1 \cdots A_k) \cong M/A_1 M \times \cdots \times M/A_k M$$

as desired. \Box

Exercise 10.3.18. Let R be a Principal Ideal Domain and let M be an R-module that is annihilated by the nonzero, proper ideal (a). Let $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the unique factorization of a into distinct prime powers in R. Let M_i be the annihilator of $p_i^{\alpha_i}$ in M, i.e. M_i is the set $\{m \in M \mid p_i^{\alpha_i} m = 0\}$ —called the p_i -primary component of M. Prove that

$$M = M_1 \oplus M_2 \oplus \cdots \oplus M_k$$
.

Solution: We first claim that the various M_i intersect trivially. This is not too hard to show: if some $m \in M$ is annihilated by $p_i^{\alpha_i}$ then any other element annihilating it must have p_i as a factor (the principal ideal annihilating m is generated by a divisor of $p_i^{\alpha_i}$). So m is not annihilated by p_j or any power thereof when $j \neq i$. Hence $m \notin M_j$ for $j \neq i$. This proves that the internal sum of the various M_i is direct.

It remains to show that the sum of the various M_i is in fact all of M. We have from the previous problem that

$$M \cong M/(a)M \cong M/(p_1^{\alpha_1})M \times M/(p_2^{\alpha_2})M \times \cdots \times M/(p_k^{\alpha_k})M$$

since (a)M = 0 and the various ideals $(p_i^{\alpha_i})$ are comaximal by virtue of the various p_i being distinct prime factors. In the previous problem we saw that the isomorphism is given by the natural map

$$\phi(m) = (m + p_1^{\alpha_1} M, m + p_2^{\alpha_2} M, \dots, m + p_k^{\alpha_k} M).$$

We want to show that this map, when restricted to the direct sum $M_1 \oplus \cdots \oplus M_k \subseteq M$ is still surjective. In fact it suffices to show that the inverse of ϕ maps into this direct sum. To prove this we need only show that the tuple with $m + (p_i^{\alpha_i})M$ in the *i*-th component and zeroes elsewhere maps into the direct sum of the M_i , since the set of all vectors of this form generate the direct product. The image of such a tuple will be some $m' \in M$ which is zero modulo $p_j^{\alpha_j}M$ for all $j \neq i$. In particular, we have that $m' = q_i m''$ for some $m'' \in M$, where $q_i = a/p_i^{\alpha_i}$. But then clearly $m' \in M_i$ since

$$p_i^{\alpha_i} m = p_i^{\alpha_i} q_i m'' = am'' = 0.$$

This proves that ϕ^{-1} maps to values in the direct sum of the various M_i and so the direct sum is itself M. This concludes the proof.

Exercise 10.3.19. Show that if M is a finite abelian group of order $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ then, considered as a \mathbb{Z} -module, M is annihilated by (a), the p_i -primary component of M is the unique Sylow p_i -subgroup of M and M is isomorphic to the direct product of its Sylow subgroups.

Solution: That M is annihilated by a follows immediately from Lagrange's theorem. We know that Sylow p_i -subgroups are unique since M is an abelian group and all Sylow subgroups are conjugates of one another. This leaves that the p_i -primary component is indeed a Sylow p_i -subgroup. Let H_i be the Sylow p_i -subgroup guaranteed by the Sylow theorems. Each element in this group has order dividing $p_i^{\alpha_i}$, since this is the order of H_i and so we see right away that $H_i \subseteq M_i$ where M_i is the annihilator of $p_i^{\alpha_i}$ as described in the previous problem statement. To prove containment in the other direction, suppose $m \in M$ is annihilated by $p_i^{\alpha_i}$. Then its order is a power of p_i and so it must be in H_i . Hence the Sylow p_i -subgroups are exactly the p_i -primary components of M. By the previous problem we conclude that M is the direct sum of its Sylow p_i -subgroups.

Exercise 10.3.20. Let I be a nonempty index set and for each $i \in I$ let M_i be an R-module. The direct product of the modules M_i is defined to be their direct product as abelian groups (cf. Exercise 15 in Section 5.1) with the action of R componentwise multiplication. The direct sum of the modules M_i is defined to be the restricted direct product of the abelian groups M_i (cf. Exercise 17 in Section 5.1) with the action of R componentwise multiplication. In other words, the direct sum of the M_i 's is the subset of the direct product $\prod_{i \in I} M_i$, which consists of all elements $\prod_{i \in I} m_i$ such that only finitely many of the components m_i are nonzero; the action of R on the direct product or direct sum is given by $r \prod_{i \in I} m_i = \prod_{i \in I} rm_i$ (cf. Appendix I for the definition of the Cartesian products of infinitely many sets). The direct sum will be denoted by $\bigoplus_{i \in I} M_i$.

- (a) Prove that the direct product of the M_i 's is an R-module and the direct sum of the M_i 's is a submodule of their direct product.
- (b) Show that if $R = \mathbb{Z}$, $I = \mathbb{Z}^+$ and M_i is the cyclic group of order i for each i, then the direct sum of the M_i 's is not isomorphic to their direct product. [Look at torsion.]

Solution: (a)

We know already that the direct product of the M_i will be an abelian group. Thus we only have to

verify that the action of r satisfies the module axioms. If $\prod_{i \in I} m_i$ and $\prod_{i \in I} m'_i$ are two elements in $\bigoplus_{i \in I} M_i$ then we observe that

$$r\left(\prod_{i\in I} m_i + \prod_{i\in I} m_i'\right) = r \prod_{i\in I} (m_i + m_i')$$

$$= \prod_{i\in I} r(m_i + m_i')$$

$$= \prod_{i\in I} (rm_i + rm_i')$$

$$= \prod_{i\in I} rm_i + \prod_{i\in I} rm_i'$$

$$= r \prod_{i\in I} m_i + r \prod_{i\in I} m_i'.$$

If $s \in R$ then we can also verify that

$$(sr)\prod_{i\in I} m_i = \prod_{i\in I} (sr)m_i = \prod_{i\in I} s(rm_i) = s\prod_{i\in I} rm_i = s\left(r\prod_{i\in I} m_i\right)$$

and furthermore

$$(s+r)\prod_{i\in I} m_i = \prod_{i\in I} (s+r)m_i$$

$$= \prod_{i\in I} (sm_i + rm_i)$$

$$= \prod_{i\in I} sm_i + \prod_{i\in I} rm_i$$

$$= s\prod_{i\in I} m_i + r\prod_{i\in I} m_i.$$

Finally, if R has unity then we see the direct product is unital since $1 \prod_{i \in I} m_i = \prod_{i \in I} 1 m_i = \prod_{i \in I} m_i$.

Next we show that the direct sum is a submodule. We know it is a subgroup, and so we only need to check it is invariant under the action of R. This is immediate because $r \prod_{i \in I} m_i = \prod_{i \in I} r m_i$ will have no more nonzero terms than $\prod_{i \in I} m_i$, since r0 = 0.

(b) We claim that the direct sum is a torsion module but the direct product is not. For any element $\prod_{i \in I} m_i$ we see that it is annihilated by the product of the i for which $m_i \neq 0$. Hence the direct sum is torsion. Of course we cannot do this when there are infinitely many nonzero m_i . In particular the element $\prod_{i \in I} 1$ in the direct product is not annihilated by any nonzero integer since no nonzero integer is congruent to zero mod every other integer.

Exercise 10.3.21. let I be a nonempty index set and for each $i \in I$ let N_i be a submodule of M. Prove that the following are equivalent:

- (i) the submodule of M generated by all the N_i 's i isomorphic to the direct sum of the N_i 's
- (ii) if $\{i_1, i_2, \dots, i_k\}$ is any finite subset of I then $N_{i_1} \cap (N_{i_2} + \dots + N_{i_k}) = 0$

- (iii) if $\{i_1, i_2, \dots, i_k\}$ is any finite subset of I then $N_1 + \dots + N_k = N_1 \oplus \dots \oplus N_k$
- (iv) for every element x of the submodule of M generated by the N_i 's there are unique elements $a_i \in N_i$ for all $i \in I$ such that all but a finite number of the a_i are zero and x is the (finite) sum of the a_i .

Solution: TODO

Exercise 10.3.22. Let R be a Principal Ideal Domain, let M be a torsion R-module (cf. Exercise 4) and let p be a prime in R (do not assume M is finitely generated, hence it need not have a nonzero annihilator — cf. Exercise 5). The p-primary component of M is the set of all elements of M that are annihilated by some positive power of p.

- (a) Prove that the p-primary component is a submodule. [See Exercise 13 in Section 1.]
- (b) Prove that this definition of p-primary component agrees with the one given in Exercise 18 when M has a nonzero annihilator.
- (c) Prove that M is the (possible infinite) direct sum of its p-primary components, as p runs over all primes of R.

Solution: TODO

Exercise 10.3.23. Show that any direct sum of free R-modules is free.

Solution: TODO

Exercise 10.3.24. (An arbitrary direct product of free modules need not be free) For each positive integer i let M_i be the free \mathbb{Z} -module \mathbb{Z} , and let M be the direct product $\prod_{i \in \mathbb{Z}^+} M_i$ (cf. Exercise 20). Each element of M can be written uniquely in the form (a_1, a_2, a_3, \ldots) with $a_i \in \mathbb{Z}$ for all i. Let N be the submodule of M consisting of all such tuples with only finitely many nonzero a_i . Assume M is a free \mathbb{Z} module with basis \mathcal{B} .

- (a) Show that N is countable.
- (b) Show that there is some countable subset \mathcal{B}_1 of \mathcal{B} such that N is contained in the submodule, N_1 , generated by \mathcal{B}_1 . Show also that N_1 is countable.
- (c) Let $\overline{M} = M/N_1$. Show that \overline{M} is a free \mathbb{Z} -module. Deduce that if \overline{x} is any nonzero element of \overline{M} then there are only finitely many distinct positive integers k such that $\overline{x} = k\overline{m}$ for some $m \in M$ (depending on k).
- (d) Let $S = \{(b_1, b_2, b_3, \ldots) \mid b_i = \pm i! \text{ for all } i\}$. Prove that S is uncountable. Deduce that there is some $s \in S$ with $s \notin N_1$.
- (e) Show that the assumption M is free leads to a contradiction: By (d) we may choose $s \in \mathcal{S}$ with $s \notin N_1$. Show that for each positive integer k there is some $m \in M$ with $\overline{s} = k\overline{m}$, contrary to (c). [Use the fact that $N \subseteq N_1$.]

Solution: TODO

Exercise 10.3.25. In the construction of direct limits, Exercise 8 of Section 7.6, show that if all A_i are R-modules and the maps ρ_{ij} are R-module homomorphisms, then the direct limit $A = \varinjlim_i A_i$ may be given the structure of an R-module in a natural way such that the maps $\rho_i : A_i \to A$ are all R-module homomorphisms. Verify the corresponding universal property (part (e)) for R-module homomorphism $\phi_i : A_i \to C$ commuting with the ρ_{ij} .

Solution: TODO

Exercise 10.3.26. Carry out the analysis of the preceding exercise corresponding to the inverse limits to show that the invese limit of R-modules is an R-module satisfying the appropriate universal property (cf. Exercise 10 of Section 7.6).

Solution: TODO

Exercise 10.3.27. (Free modules over noncommutative rings need not have a unique rank) Let M be the \mathbb{Z} -module $\mathbb{Z} \times \mathbb{Z} \times \cdots$ of Exercise 24 and let R be its endomorphism ring, $R = \operatorname{End}_{\mathbb{Z}}(M)$ (cf. Exercises 29 and 30 in Section 7.1). Define $\phi_1, \phi_2 \in R$ by

$$\phi_1(a_1, a_2, a_3, \ldots) = (a_1, a_3, a_5, \ldots)$$

$$\phi_2(a_1, a_2, a_3, \ldots) = (a_2, a_4, a_6, \ldots)$$

(a) Prove that $\{\phi_1, \phi_2\}$ is a free basis of the left R-module R. [Define the maps ψ_1 and ψ_2 by $\psi_1(a_1, a_2, \ldots) = (a_1, 0, a_2, 0, \ldots)$ and $\psi_2(a_1, a_2, \ldots) = (0a_1, 0, a_2, \ldots)$. Verify that $\phi_i \psi_i = 1$, $\phi_1 \psi_2 = 0 = \phi_2 \psi_1$ and $\psi_1 \phi + \psi_2 \phi_2 = 1$. use these relations to prove that ψ_2, ϕ_2 are independent and gereate R as a left R-module.]

(b) Use (a) to prove that $R \cong R^2$ and deduce that $R \cong R^n$ for all $n \in \mathbb{Z}^+$.

Solution: TODO

10.4 Tensor Products of Modules

Let R be a ring with 1.

Exercise 10.4.1. Let $f: R \to S$ be a ring homomorphism from the ring R to the ring S with $f(1_R) = 1_S$. Verify the details that sr = sf(r) deefines a right R-action on S under which S is an (S, R)-bimodule.

Solution: TODO

Exercise 10.4.2. Show that the element " $2 \otimes 1$ " is 0 in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ but is nonzero in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$.

Solution: TODO

Exercise 10.4.3. Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $C \otimes_{\mathbb{C}} \mathbb{C}$ are both left \mathbb{R} -modules but are not isomorphic as \mathbb{R} -modules.

Exercise 10.4.4. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $Q \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic left \mathbb{Q} -modules. [Show they are both 1-dimensional vector spaces over \mathbb{Q} .]

Solution: TODO

Exercise 10.4.5. Let A be a finite abelian group of order n and let p^k be the largest power of the prime p dividing n. Prove that $\mathbb{Z}/p^k\mathbb{Z}\otimes\mathbb{Z}A$ i sisomorphic to the Sylow p-subgroup of A.

Solution: TODO

Exercise 10.4.6. If R is any integral domain with a quotient field Q, prove that $(Q/R) \otimes_R (Q/R) = 0$.

Solution: TODO

Exercise 10.4.7. If R is any integral domain with quotient field Q and N is a left R-module, prove that every element of the tensor product $Q \otimes_R N$ can be written as a simple tensor of the form $(1/d) \otimes n$ for some nonzero $d \in R$ and some $n \in N$.

Solution: TODO

Exercise 10.4.8. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let $U = R^{\times}$ be the set of nonzero elements in R and define $U^{-1}N$ to be the set of equivalence classes of ordered pairs of elements (u, n) with $u \in U$ and $n \in N$ under the equivalence relation $(u, n) \sim (u', n)$ if and only if u'n = un' in N.

- (a) Prove that $U^{-1}N$ is an abelian group under the addition defined by $\overline{(u_1, n_1)} + \overline{(u_2, n_2)} = \overline{(u_1 u_2, u_2 n_1 + u_1 n_2)}$. Prove that $\overline{r(u, n)} = \overline{(u, rn)}$ defines an action of R on $U^{-1}N$ making it into an R-module. [This is an example of localization considered in general in Section 4 of Chapter 15, cf. also Section 6 in Chapter 7.]
- (b) Show that the map from $Q \times N$ to $U^{-1}N$ defined by sending (a/b,n) to $\overline{(b,an)}$ for $a \in R, b \in U, n \in N$, is an R-balanced map, so induces a homomorphism f from $Q \otimes_R N$ to $U^{-1}N$. Show that the map g from $U^{-1}N$ to $Q \otimes_R N$ defined by $g(\overline{(u,n)}) = (1/u) \otimes n$ is well defined and is an inverse homomorphism to f. Conclude that $Q \otimes_R N \cong U^{-1}N$ as R-modules.
- (c) Conclude from (b) that $(1/d) \otimes n$ is 0 in $Q \otimes_R N$ if and only if rn = 0 for some nonzero $r \in R$.
- (d) If A is an abelian group show that $\mathbb{Q} \otimes_Z A = 0$ if and only if A is a torsion abelian group (i.e., every element of A has finite order).

Solution: TODO

Exercise 10.4.9. Suppose R is an integral domain with the quotient field Q and let N be any R-module. Let $Q \otimes_R N$ be the module obtained from N by extension of scalars from R to Q. Prove that the kernel of the R-module homomorphism $\iota: N \to Q \otimes_R N$ is the torsion submodule of N (cf. Exercise 8 in Section 1). [Use the previous exercise.]

Exercise 10.4.10. Suppose R is commutative and $N \cong R^n$ is a free R-module of rank n with R-module basis e_1, \ldots, e_n .

- (a) For any nonzero R-module M show that every element of $M \otimes N$ can be written uniquely in the form $\sum_{i=1}^{n} m_i \otimes e_1$ where $m_i \in M$. Deduce that if $\sum_{i=1}^{n} m_i \otimes e_i = 0$ in $M \otimes N$ then $m_i = 0$ for $i = 1, \ldots, n$.
- (b) Show that if $\sum m_i \otimes n_i = 0$ in $M \otimes N$ where n_i are merely assumed to be R-linearly independent then it is not necessarily true that all m_i are 0. [Consider $R = \mathbb{Z}, n = 1, M = \mathbb{Z}/2\mathbb{Z}$ and the element $1 \otimes 2$.]

Solution: TODO

Exercise 10.4.11. Let $\{e_1, e_2\}$ be a basis of $V = \mathbb{R}^2$. Show that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbb{R}^2$.

Solution: TODO

Exercise 10.4.12. Let V be a vector space over the field F and let v, v' be nonzero elements of V. Prove that $v \otimes v' = v' \otimes v$ in $V \otimes_F V$ if and only if v = av' for some $a \in F$.

Solution: TODO

Exercise 10.4.13. Prove that the usual dot product of vectors defined by letting $(a_1, \ldots, a_n) \cdots (b_1, \ldots, b_n)$ be $a_1b_1 + \cdots + a_nb_n$ is a bilinear map from $\mathbb{R}^n \times \mathbb{R}^n$ to \mathbb{R} .

Solution: TODO

Exercise 10.4.14. Let I be an arbitrary nonempty index set and for each $i \in I$ let N_i be a left R-modules. Let M be a right R-module. Prove the group isomorphism: $M \otimes (\bigoplus_{i \in I} N_i) \cong \bigoplus_{i \in I} (M \otimes N_i)$, where the direct sum of an arbitrary collection of modules is defined in Exercise 20, Section 3. [Use the same argument as for the direct sum of two modules, taking care to note where the direct sum hypothesis is needed — cf. the next exercise.]

Solution: TODO

Exercise 10.4.15. Show that tensor products do not commute with direct products in general. [Consider the extension of scalars from \mathbb{Z} to \mathbb{Q} of the direct product of the modules $M_i = \mathbb{Z}/2^i\mathbb{Z}$, $i = 1, 2, \ldots$].

Solution: TODO

Exercise 10.4.16. Suppose R is commutative and let I and J be ideals of R, so R/I and R/J are naturally R-modules.

- (a) Prove that every element of $R/I \otimes_R R/J$ can be written as a simple tensor of the form $(1 \mod I) \otimes (r \mod J)$.
- (b) Prove that there is an R-module isomorphism $R/I \otimes_R R/J \cong R/(I+J)$ mapping $(r \mod I) \otimes (r' \mod J)$ to $rr' \mod (I+J)$.

Exercise 10.4.17. Let I = (2, x) be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$. The ring $\mathbb{Z}/2\mathbb{Z} = R/I$ is naturally an R-module annihilated by both 2 and x.

(a) Show that the map $\phi: I \times I \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\phi(a_0 + a_1x + \dots + a_nx^n, b_0 + b_1x + \dots + b_mx^m) = \frac{a_0}{2}b_1 \mod 2$$

is R-bilinear.

- (b) Show that there is an R-module homomorphism from $I \otimes_R I \to \mathbb{Z}/2\mathbb{Z}$ mapping $p(x) \otimes q(x)$ to $\frac{p(0)}{2}q'(0)$ where q' denotes the usual polynomial derivative of q.
- (c) Show that $2 \otimes x \neq x \otimes 2$ in $I \otimes_R I$.

Solution: TODO

Exercise 10.4.18. Suppose I is a principal ideal in the integral domain R. Prove that the R-modules $I \otimes_R I$ has no nonzero torsion elements (i.e. rm = 0 with $0 \neq r \in R$ and $m \in I \otimes_R I$ implies m = 0).

Solution: TODO

Exercise 10.4.19. Let I=(2,x) be the ideal generated by 2 and x in the ring $R-\mathbb{Z}[x]$ as in Exercise 17. Show that the nonzero element $2\otimes x-x\otimes 2$ in $I\otimes_R I$ is a torsion element. Show in fact that $2\otimes x-x\otimes 2$ is annihilated by both 2 and x and that the submodule of $I\otimes_R I$ generated by $2\otimes x-x\otimes 2$ is isomorphic to R/I.

Solution: TODO

Exercise 10.4.20. Let I=(2,x) be the ideal generated by 2 and x in the ring $R=\mathbb{Z}[x]$. Show that the element $2\otimes 2+x\otimes x$ in $I\otimes_R I$ is not a simple tensor, i.e. cannot be written as $a\otimes b$ for some $a,b\in I$.

Solution: TODO

Exercise 10.4.21. Suppose R is commutative and let I and J be ideals of R.

- (a) Show that there is a surjective R-module homomorphism from $I \otimes_R J$ to the product ideal IJ mapping $I \otimes J$ to the element ij.
- (b) Give an example to show that the map in (a) need not be injective (cf. Exercise 17).

Exercise 10.4.22. Suppose that m is a left and a right R-module such that rm = mr for all $r \in R$ and $m \in M$. Show that the elements ${}_{1}r_{2}$ and ${}_{2}r_{1}$ act the same on M for every ${}_{1}, r_{2} \in R$. (This explains why the assumption that R is commutative in the definition of an R-algebra is a fairly natural one.)

Solution: TODO

Exercise 10.4.23. Verify the details that the multiplication in Proposition 19 makes $A \otimes_R B$ into an R-algebra.

Solution: TODO

Exercise 10.4.24. Prove that the extension of scalars from \mathbb{Z} to the Gaussian integers $\mathbb{Z}[i]$ of the ring \mathbb{R} is isomorphic to \mathbb{C} as a ring: $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$ as rings.

Solution: TODO

Exercise 10.4.25. Let R be a subring of the commutative ring S and let x be an indeterminate over S. Prove that S[x] and $S \otimes_R R[x]$ are isomorphic as S-algebras.

Solution: TODO

Exercise 10.4.26. Let S be a commutative ring containing R (with $1_s = 1_R$) and let x_1, \ldots, x_n be independent indeterminates over the ring S. Show that for every ideal I in the polynomial ring $R[x_1, \ldots, x_n]$ that $S \otimes_R (R[x_1, \ldots, x_n]/I) \cong S[x_1, \ldots, x_n]/IS[x_1, \ldots, x_n]$.

Solution: TODO

Exercise 10.4.27. The next exercise shows the ring $C \otimes_R \mathbb{C}$ introduced at the end of this section is isomorphic to $\mathbb{C} \times \mathbb{C}$. One may also prove this via Exercise 26 and Proposition 16 in Section 9.5, since $\mathbb{C} \cong \mathbb{R}[x]/(x^2+1)$. The ring $C \times \mathbb{C}$ is also discussed in Exercise 23 of Section 1.

- (a) Write down a formula for the multiplication of two elements $a \cdot 1 + b \cdot e_2 + c \cdot e_3 + d \cdot e_4$ and $a' \cdot 1 + b' \cdot e_2 + c' \cdot e_3 + d \cdot e_4$ in the example $A = \mathbb{C} \otimes \mathbb{RC}$ following Proposition 21 (where $1 = 1 \otimes 1$ is the identity of A).
- (b) Let $\epsilon_1 = \frac{1}{2}(1 \otimes 1 + i \otimes i)$ and let $\epsilon_2 = \frac{1}{2}(1 \otimes 1 i \otimes i)$. Show that $\epsilon_1 \epsilon_2 = 0$, $\epsilon_1 + \epsilon_2 = 1$ and $\epsilon_j^2 = \epsilon_j$ for j = 1, 2 (ϵ_1 and ϵ_2 are called *orthogonal idempotents* in A). Deduce that A is isomorphic as a ring to the direct product of two principal ideals: $A \cong A\epsilon_1 \times A\epsilon_2$ (cf. Exercise 1, Section 7.6).
- (c) Prove that the map $\phi : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ by $\phi(z_1, z_2) = (z_1 z_2, z_1 \overline{z_2})$, where $\overline{z_2}$ denotes the complex conjugate of z_2 , is an \mathbb{R} -bilinear map.

(d) Let Φ be the \mathbb{R} -module homomorphism from A to $\mathbb{C} \times \mathbb{C}$ obtained from ϕ in (c). Show that $\Phi(\epsilon_1) = (0,1)$ and $\Phi(\epsilon_2) = (1,0)$. Show also that Φ is \mathbb{C} -linear, where the action of \mathbb{C} is on the left tensor factor in A and on both factors in $\mathbb{C} \times \mathbb{C}$. Deduce that Φ is surjective. Show that Φ is a \mathbb{C} -algebra isomorphism.

Solution: TODO

10.5 Exact Sequences—Projective, Injective, and Flat Modules

Exercise 10.5.1. Suppose that

$$\begin{array}{cccc}
A & \xrightarrow{\psi} & B & \xrightarrow{\phi} & C \\
\alpha \downarrow & & \beta \downarrow & & \gamma \downarrow \\
A' & \xrightarrow{\psi'} & B' & \xrightarrow{\phi'} & C'
\end{array}$$

is a commutative diagram of groups and that the rows are exact. Prove that

- (a) If ϕ and α are surjective, and β is injective then γ is injective. [If $c \in \ker \gamma$, show there is a $b \in B$ with $\phi(b) = c$. Show that $\phi'(\beta(b)) = 0$ and deduce that $\beta(b) = \phi'(a')$ for some $a' \in A'$. Show that there is an $a \in A$ with $\alpha(a) = a'$ and that $\beta(\psi(a)) = \beta(b)$. Conclude that $b = \psi(a)$ and hence $c = \phi(b) = 0$.]
- (b) If ϕ' , α and γ are injective, then β is injective.
- (c) If ϕ , α and γ are surjective, then β is surjective.
- (d) If β is injective, α and ϕ are surjective, then γ is injective.
- (e) If β is surjective, γ and ψ' are injective, then α is surjective.

Solution: TODO

Exercise 10.5.2. Suppose that

is a commutative diagram of groups and that the rows are exact. Prove that

- (a) If α is surjective and β , δ are injective, then γ is injective.
- (b) If δ is injective, and α, γ are surjective, then β is surjective.

Solution: TODO

Exercise 10.5.3. Let P_1 and P_2 be R-modules. Prove that $P_1 \oplus P_2$ is a projective R-module if and only if both P_1 and P_2 are projective.

Exercise 10.5.4. Let Q_1 and Q_2 be R-modules. Prove that $Q_1 \oplus Q_2$ is an injective R-modules if and only if both Q_1 and Q_2 are injective.

Solution: TODO

Exercise 10.5.5. Let A_1 and A_2 be R-modules. Prove that $A_1 \oplus A_2$ is a flat R-modules if and only if both A_1 and A_2 are flat. More generally, prove that an arbitrary direct sum $\sum A_i$ of R-modules is flat if and only if each A_i is flat. [Use the fact that tensor product sommutes with arbitrary direct sums.]

Solution: TODO

Exercise 10.5.6. Prove that the following are equivalent for a ring R:

- (i) Every R-module is projective.
- (ii) Every R-module is injective.

Solution: TODO

Exercise 10.5.7. Let A be a nonzero finite abelian group.

- (a) Prove that A is not a projective \mathbb{Z} -module.
- (b) Prove that A is not an injective \mathbb{Z} -module.

Solution: TODO

Exercise 10.5.8. Let Q be a nonzero divisible \mathbb{Z} -module. Prove that Q is not a projective \mathbb{Z} -module. Deduce that the rational numbers \mathbb{Q} is not a projective \mathbb{Z} -module. [Show first that if F is any free module then $\bigcap_{n=1}^{\infty} nF = 0$ (use a basis of F to prove this). Now suppose to the contrary that Q is projective and derive a contradiction from Proposition 30(4).]

Solution: TODO

Exercise 10.5.9. Assume R is commutative with 1.

- (a) Prove that the tensor product of two free R-modules is free. [Use the fact that tensor products commute with arbitrary direct sums.]
- (b) Use (a) to prove that the tensor product of two projective R-modules is projective.

Solution: TODO

Exercise 10.5.10. Let R and W be rings with 1 and let M and N be left R-modules. Assume also that M is an (R, S)-bimodule.

- (a) For $s \in S$ and for $\phi \in \operatorname{Hom}_R(M, N)$ define $(s\phi) : M \to N$ by $(s\phi)(m) = \phi(ms)$. Prove that $s\phi$ is a homomorphism of left R-modules, and that this action of S on $\operatorname{Hom}_R(M, N)$ makes it into a *left* S-module.
- (b) Let S = R and let M = R (considered as an (R, R)-bimodule by left and right ring multiplication on itself). For each $n \in N$ define $\phi_n : R \to N$ by $\phi_n(r) = rn$, i.e. ϕ_n is the unique R-module homomorphism mapping 1_R to n. Show that $\phi_n \in \text{Hom}_R(R, N)$. Use part (a) to show that the map $n \mapsto \phi_n$ is an isomorphism of left R-modules: $N \cong \text{Hom}_R(R, N)$.
- (c) Deduce that if N is a free (respective, projective, injective, flat) left R-module, then $\operatorname{Hom}_R(R, N)$ is also a free (respective, projective, injective, flat) left R-module.

Solution: TODO

Exercise 10.5.11. Let R and W be rings with 1 and let M and N be left R-modules. Assume also that M is an (R, S)-bimodule.

- (a) For $s \in S$ and for $\phi \in \operatorname{Hom}_R(M,N)$ define $(\phi s): M \to N$ by $(\phi s)(m) = \phi(m)s$. Prove that $s\phi$ is a homomorphism of left R-modules, and that this action of S on $\operatorname{Hom}_R(M,N)$ makes it into a right S-module. Deduce that $\operatorname{Hom}_R(M,R)$ is a right R-module, for any R-module M—called the $dual \ module$ to M.
- (b) Let N=R be considered as an (R,R) bimodule as usual. Under the action defined in part (a) show that the map $r\mapsto \phi_r$ is an isomorphism of right R-modules: $\operatorname{Hom}_R(R,R)\cong R$, where ϕ_r is the homomorphism that maps 1_R to r. Deduce that if M is a finitely generated free left R-module, then $\operatorname{Hom}_R(M,R)$ is a free right R-module of the same rank. (cf. also Exercise 13).
- (c) Show that if M is a finitely generated projective R-module then its dual module $\operatorname{Hom}_R(M,R)$ is also projective.

Solution: TODO

Exercise 10.5.12. Let A be an R-module, let I be any nonempty index set and for each $i \in I$ let B_i be an R-module. Prove the following isomorphisms of abelian groups; when R is commutative prove also that these are R-module isomorphisms. (Arbitrary direct sums and direct products of modules are introduced in Exercise 20 of Section 3.)

- (a) $\operatorname{Hom}_R(\bigoplus_{i\in I} B_i, A) \cong \prod_{i\in I} \operatorname{Hom}_R(B_i, A)$
- (b) $\operatorname{Hom}_R(A, \prod_{i \in I} B_i) \cong \prod_{i \in I} \operatorname{Hom}_R(A, B_i)$.

Solution: TODO

Exercise 10.5.13. (a) Show that the dual of the free \mathbb{Z} -module with countable basis is not free. [Use the preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 11.3.)

(b) Show that the dual of the free Z-module with countable basis is not projective. [You may use the fact that any submodule of a free Z-module is free.]

Exercise 10.5.14. Let $0 \longrightarrow L \stackrel{\psi}{\longrightarrow} M \stackrel{\phi}{\longrightarrow} N \longrightarrow 0$ be a sequence of R-modules.

(a) Prove that the associated sequence

$$0 \longrightarrow \operatorname{Hom}_R(D,L) \xrightarrow{\psi'} \operatorname{Hom}_R(D,M) \xrightarrow{\phi'} \operatorname{Hom}_R(D,N) \longrightarrow 0$$

is a short exact sequence of abelian groups for all R-modules D if and only if the original sequence is a split short exact sequence. [To show the sequence splits, take D=N and show the lift of the identity map in $\operatorname{Hom}_R(N,N)$ to $\operatorname{Hom}_R(N,M)$ is a splitting homomorphism for ϕ .]

(b) Prove that the associated sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N,D) \xrightarrow{\phi'} \operatorname{Hom}_{R}(M,D) \xrightarrow{\psi'} \operatorname{Hom}_{R}(L,D) \longrightarrow 0$$

is a short exact sequence of abelian groups for all R-modules D if and only if the original sequence is a split short exact sequence.

Solution: TODO

Exercise 10.5.15. Let M be a left \mathbb{Z} -module and let R be a ring with 1.

- (a) Show that $\operatorname{Hom}_{\mathbb{Z}}(R, M)$ is a left R-module under the action $(r\phi)(r') = \phi(r'r)$ (see Exercise 10).
- (b) Suppose that $0 \longrightarrow A \xrightarrow{\psi} B$ is an exact sequence of R-modules. Prove that if every \mathbb{Z} -module homomorphism f from A to M lifts to a \mathbb{Z} -module homomorphism F from B to M with $f = F \circ \psi$, then every R-module homomorphism f' from A to $\operatorname{Hom}_Z(R,M)$ lifts to an R-module homomorphism F' from B to $\operatorname{Hom}_Z(R,M)$ with $f' = F' \circ \psi$. [Given f', show that $f(a) = f'(a)(1_R)$ defines a \mathbb{Z} -module homomorphism of A to M. If F is the associated lift of f to B, show that F'(b)(r) = F(rb) defines an R-modules homomorphism from B to $\operatorname{Hom}_Z(R,M)$ that lifts f'.]
- (c) Prove that if Q is an injective \mathbb{Z} -module then $\operatorname{Hom}_{\mathbb{Z}}(R,Q)$ is an injective R-module.

Solution: TODO

Exercise 10.5.16. This exercise proves Theorem 38 that every left R-module M is contained in an injective left R-module.

- (a) Show that M is contained in an injective \mathbb{Z} -module Q. [M is a \mathbb{Z} -module—use Corollary 37.]
- (b) Show that $\operatorname{Hom}_R(R, M) \subseteq \operatorname{Hom}_{\mathbb{Z}}(R, M) \subseteq \operatorname{Hom}_{\mathbb{Z}}(R, Q)$.
- (c) Use the R-module isomorphism $M \cong \operatorname{Hom}_R(R, M)$ (Exercise 10) and the previous exercise to conclude that M is contained in an injective R-module.

Solution: TODO

Exercise 10.5.17. This exercise completes the proof of Proposition 34. Suppose that Q is an R-module with the property that every short exact sequence $0 \longrightarrow Q \longrightarrow M_1 \longrightarrow N \longrightarrow 0$ splits and suppose that the sequence $0 @>>> L @>\psi>> M$ is exact. Prove that every R-module homomorphism f from L to Q can be lifted to an R-module homomorphism F from M to Q with $f = F \circ \psi$. [By the previous exercise, Q is contained in an injective R-module. Use the splitting property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in Proposition 34 as the definition of an injective module).]

Solution: TODO

Exercise 10.5.18. Prove that the injective hull of the \mathbb{Z} -module \mathbb{Z} is \mathbb{Q} [Let H be the injective hull of \mathbb{Z} and argue that \mathbb{Q} contains an isomorphic copy of H. Use the divisibility of H to show that $1/n \in H$ for all nonzero integers n, and deduce that $H = \mathbb{Q}$.]

Solution: TODO

Exercise 10.5.19. If F is a field, prove that the injective hull of F is F.

Solution: TODO

Exercise 10.5.20. Prove that the polynomial ring R[x] with indeterminate x over the commutative ring R is a flat R-module.

Solution: TODO

Exercise 10.5.21. Let R and S be rings with 1 and suppose M is a right R-module, and N is an (R, S)-bimodule. If M is flat over R and N is flat as an S-module prove that $M \otimes_R N$ is flat as a right S-module.

Solution: TODO

Exercise 10.5.22. Suppose that R is a commutative ring and that M and N are flat R-modules. Prove that $M \otimes_R N$ is a flat R-module. [Use the previous exercise.]

Solution: TODO

Exercise 10.5.23. Prove that the (right) module $M \otimes_R S$ obtained by changing the base from the ring R to the ring S (by some homomorphism $f: R \to S$ with $f(1_R) = 1_S$ cf. Example 6 following Corollary 12 in Section 4) of the flat (right) R-module M is a flat S-module.

Solution: TODO

Exercise 10.5.24. Prove that A is a flat R-module if and only if for any left R-modules L and M where L is finitely egenerated, then $\psi: L \to M$ is injective implies that laso $1 \otimes \psi: A \otimes_R L \to A \otimes_R M$ is injective. [Use the techniques if the proof of corollary 42.]

Exercise 10.5.25. (A Flatness Criterion) Parts (a)-(c) of this exercise prove that A is a flat R-module if and only if for every finitely generated ideal I of R, the map from $A \otimes_R I \to A \otimes_R R \cong A$ induced by the inclusion $I \subseteq R$ is again injective (or equivalently, $A \otimes_R I \cong AI \subseteq A$).

(a) Prove that if A is flat then $A \otimes_R I \to A \otimes_R R$ is injective.

- (b) If $A \otimes_R I \to A \otimes_R R$ is injective for every finitely generated ideal I, prove that $A \otimes_R I \to A \otimes_R R$ is injective for every ideal I. Show that if K is any submodule of a finitely generated free module F then $A \otimes_R K \to A \otimes_R F$ is injective. Show that the same is true for any free module F. [Cf. the proof of Corollary 42.]
- (c) Under the assumption in (b), suppose L and M are R-modules and $L \xrightarrow{\psi} M$ is injective. Prove that $A \otimes_R L \xrightarrow{1 \otimes \psi} A \otimes_R M$ is injective and conclude that A is flat. [Write M as a quotient of the free module F, giving a short exact sequence

$$0 \longrightarrow K \longrightarrow F \stackrel{f}{\longrightarrow} M \longrightarrow 0.$$

Show that if $J = f^{-1}(\psi(L))$ and $\iota: J \to F$ is the natural injection, then the diagram

$$0 \longrightarrow K \longrightarrow J \longrightarrow L \longrightarrow 0$$

$$\downarrow id \qquad \downarrow \qquad \psi \downarrow$$

$$0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$$

is commutative with exact rows. Show that the induced diagram

$$A \otimes_R K \longrightarrow A \otimes_R J \longrightarrow A \otimes_R L \longrightarrow 0$$

$$\downarrow id \downarrow \qquad \qquad \downarrow 1 \otimes \psi \downarrow$$

$$A \otimes_R K \longrightarrow A \otimes_R F \longrightarrow A \otimes_R M \longrightarrow 0$$

is commutative with exact rows. Use (b) to show that $1 \otimes \iota$ is injective, then use Exercise 1 to conclude that $1 \otimes \psi$ is injective.]

(d) (A Flatness Criterion for quotients) Suppose A = F/K where F is flat (e.g., if F is free) and K is an R-submodule of F. Prove that A is flat if and only if $FI \cap K = KI$ for every finitely generated ideal I of R. [Use (a) to prove $F \otimes_R I \cong FI$ and observe the image of $K \otimes_R I$ is KI; tensor the exact sequence $0 \to K \to F \to A \to 0$ with I to prove that $A \otimes_R I \cong FI/KI$, and apply the flatness criterion.]

Solution: TODO

Exercise 10.5.26. Suppose R is a PID. This exercise proves that A is a flat R-module if and only if A is a torsion free R-module (i.e., if $a \in A$ is nonzero and $r \in R$, then ra = 0 implies r = 0).

(a) Suppose that A is flat and for fixed $r \in R$ consider the map $\psi_r : R \to R$ defined by multiplication by $r: \psi_r(x) = rx$. If r is nonzero show that ψ_r is an injection. Conclude from the flatness of A that the map from A to A defined by mapping a to ra is injective and that A is torsion free.

(b) Suppose that A is torsion free. If I is a nonzero ideal of R, then I=rR for some nonzero $r \in R$. Show that the map ψ_r in (a) induces an isomorphism $R \cong I$ of R-modules and that the composite $R \xrightarrow{\psi} I \xrightarrow{\iota} R$ of ψ_r with the inclusion $\iota : I \subseteq R$ is multiplication by r. Prove that the composite $A \otimes_R R \xrightarrow{1 \otimes \psi_r} A \otimes_R I \xrightarrow{1 \otimes \iota} A \otimes_R R$ corresponds to the map $a \mapsto ra$ under the identification $A \otimes_R R = A$ and that this composite is injective since A is torsion free. Show that $1 \otimes \psi_r$ is an isomorphism and deduce that $1 \otimes i$ is injective. Use the previous exercise to conclude that A is flat.

Solution: TODO

Exercise 10.5.27. Let M, A and B be R-modules.

(a) Suppose $f: A \to M$ and $g: B \to M$ are R-module homomorphisms. Prove that $X = \{(a,b) \mid a \in A, b \in B \text{ with } f(a) = g(b)\}$ is an R-submodule of the direct sum $A \oplus B$ (called the pullback or fiber product of f and g) and that there is a commutative diagram

$$X \xrightarrow{\pi_2} B$$

$$\pi_1 \downarrow \qquad \qquad g \downarrow$$

$$A \xrightarrow{f} M$$

where π_1 and π_2 are the natural projections onto the first and second components.

(b) Suppose $f': M \to A$ and $g': M \to B$ are R-module homomorphisms. Prove that the quotient Y of $A \oplus B$ by $\{(f'(m), -g'(m)) \mid m \in M\}$ is an R-module (called the *pushout* or *fiber sum* of f' and g') and that there is a commutative diagram

$$M \xrightarrow{g'} B$$

$$f' \downarrow \qquad \qquad \pi'_2 \downarrow$$

$$A \xrightarrow{\pi'_1} X$$

where ϕ'_1 and ϕ'_2 are the natural maps to the quotient induced by the maps into the first and second components.

Solution: TODO

Exercise 10.5.28. (a) (Schanuel's Lemma) If $0 \longrightarrow K \longrightarrow P \xrightarrow{\phi} M \longrightarrow 0$ and $0 \longrightarrow K' \longrightarrow P' \xrightarrow{\phi'} M \longrightarrow 0$ are exact sequences of R-modules where P and p' are projective, prove that $P \oplus K' \cong P' \oplus K$ as R-modules. [Show that there is an exact sequence $0 \longrightarrow \ker \phi \longrightarrow X \xrightarrow{\pi} P \longrightarrow 0$ with $\ker \pi \cong K'$, where X is the fiber product of ϕ and ϕ' as in the previous exercise. Deduce that $X \cong P \oplus K'$. Show similarly that $X \cong P' \oplus K$.]

(b) If $0 \longrightarrow M \longrightarrow Q \stackrel{\psi}{\longrightarrow} L \longrightarrow 0$ and $0 \longrightarrow M \longrightarrow Q' \stackrel{\psi'}{\longrightarrow} L' \longrightarrow 0$ are exact sequences of R-modules where Q and Q' are injective, prove that $Q \oplus L' \cong Q' \oplus L$ as R-modules.

The R modules M and N are said to be *projectively equivalent* if $M \oplus P \cong N \oplus P'$ for some projective modules P, P'. Similarly, M and N are injective equivalent if $M \oplus Q \cong N \oplus Q'$ for some injective modules Q, Q'. The previous exercise shows K and K' are projectively equivalent and L and L' are injectively equivalent.