Математический анализ 1. Лекции 9 – 10. Многочлены Тейлора, правило Лопиталя, второе достаточное условие экстремума

Э.Л. Хабина

ВШЭ, ФЭН, Москва

2025

Производные и дифференциалы высших порядков

Определение

$$f^{(0)} = f$$
, $f^{(n+1)} = (f^{(n)})'$.

Первые три производных обозначаются также штрихами, далее латинскими цифрами: $f', f'', f''', f^{\mathrm{IV}}, \dots$

Основные свойства

- 1. $(\alpha f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$.
- 2. $(fg)^{(n)} = \sum_{k=0}^{n} C_n^k \cdot f^{(n-k)} \cdot g^{(k)}$ (формула Лейбница).
- 3. $(f(ax+b))^{(n)} = a^n \cdot f^{(n)} \cdot (ax+b)$.

$$(x^3 + \sin(x))'' = (x^3)'' + (\sin(x))'' = (3x^2)' + (\cos(x))' = 6x - \sin(x).$$

- $(x^3 + \sin(x))'' = (x^3)'' + (\sin(x))'' = (3x^2)' + (\cos(x))' = 6x \sin(x).$
- $\ln((2x+3))''=2^2\ln''(2x+3). \ \text{Поскольку } \ln'(x)=\frac{1}{x}, \text{ имеем:} \\ \ln''(x)=-\frac{1}{x^2}. \ \text{Значит, } (\ln(2x+3))''=-\frac{4}{(2x+3)^2}.$

- $(x^3 + \sin(x))'' = (x^3)'' + (\sin(x))'' = (3x^2)' + (\cos(x))' = 6x \sin(x).$
- $\ln(2x+3))''=2^2\ln''(2x+3). \ \text{Поскольку } \ln'(x)=\frac{1}{x}, \text{ имеем:} \\ \ln''(x)=-\frac{1}{x^2}. \ \text{Значит, } (\ln(2x+3))''=-\frac{4}{(2x+3)^2}.$
- $(x^3e^{2x})''' = (x^3)'''e^{2x} + 3(x^3)''(e^{2x})' + 3(x^3)'(e^{2x})'' + x^3(e^{2x})''' = 6e^{2x} + 36xe^{2x} + 36x^2e^{2x} + 8x^3e^{2x} = (8x^3 + 36x^2 + 36x + 6)e^{2x}.$

- $(x^3 + \sin(x))'' = (x^3)'' + (\sin(x))'' = (3x^2)' + (\cos(x))' = 6x \sin(x).$
- $(x^3e^{2x})''' = (x^3)'''e^{2x} + 3(x^3)''(e^{2x})' + 3(x^3)'(e^{2x})'' + x^3(e^{2x})''' = 6e^{2x} + 36xe^{2x} + 36x^2e^{2x} + 8x^3e^{2x} = (8x^3 + 36x^2 + 36x + 6)e^{2x}.$

Замечание. На практике формулу Лейбница использовать затруднительно. Вычисляя производные высоких степеней от произведения функций, желательно стараться заменить произведение суммой (если это возможно).

Высшие производные некоторых функций

- 2. $(x^\alpha)^{(n)}=\alpha\cdot(\alpha-1)\cdot\ldots\cdot(\alpha-n+1)\cdot x^{\alpha-n}.$ (α любое действительное число).
- $\mathbf{3.} \ (\sin x)^{(n)} = \begin{cases} \cos x, \ \text{если} \ n = 4k+1, \ k \in \mathbb{N} \cup \{0\}, \\ -\sin x, \ \text{если} \ n = 4k+2, \ k \in \mathbb{N} \cup \{0\}, \\ -\cos x, \ \text{если} \ n = 4k+3, \ k \in \mathbb{N} \cup \{0\}, \\ \sin x, \ \text{если} \ n = 4k, \ k \in \mathbb{N} \cup \{0\}. \end{cases}$
- $\textbf{4.} \ (\cos x)^{(n)} = \begin{cases} -\sin x, \ \text{если} \ n = 4k+1, \ k \in \mathbb{N} \cup \{0\}, \\ -\cos x, \ \text{если} \ n = 4k+2, \ k \in \mathbb{N} \cup \{0\}, \\ \sin x, \ \text{если} \ n = 4k+3, \ k \in \mathbb{N} \cup \{0\}, \\ \cos x, \ \text{если} \ n = 4k, \ k \in \mathbb{N} \cup \{0\}. \end{cases}$
- 5. $(a^x)^{(n)} = a^x \ln^n a$.
- 6. $(\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}, n \ge 1.$

Практическая рекомендация по вычислению старших производных: представьте дифференцируемую функцию в виде суммы (если это возможно).

Пример

Найдите третью производную функции $f(x) = \frac{3x+1}{x^2+4x-12}$.

Решение.

1) Раскладываем функцию f в сумму простейших дробей:

$$f(x) = \frac{17}{8} \cdot \frac{1}{x+6} + \frac{7}{8} \cdot \frac{1}{x-2}.$$

2) Вычисляем третью производную функции $g(x) = \frac{1}{x} = x^{-1}$:

$$(x^{-1})^{\prime\prime\prime} = (-1) \cdot (-1-1) \cdot (-1-2) \cdot x^{-1-3} = -\frac{6}{x^4}.$$

3) Окончательно имеем:

$$f'''(x) = -\frac{17}{8} \cdot \frac{6}{(x+6)^4} - \frac{7}{8} \cdot \frac{6}{(x-2)^4} = -\frac{51}{4} \cdot \frac{1}{(x+6)^4} - \frac{21}{4} \cdot \frac{1}{(x-2)^4}.$$

Еще примеры

▶ Найдите третью производную функции
$$f(x) = \sin(2x)\cos(4x)$$
.

$$f(x) = \frac{1}{2}(\sin(6x) - \sin(2x)).$$

$$f'''(x) = \frac{1}{2}(-6^3\cos(6x) + 2^3\cos(2x)) = 4\cos(2x) - 108\cos(6x).$$

▶ Найдите пятую производную функции
$$f(x) = \ln(6x^2 + x - 2)$$
.

При
$$x > \frac{1}{2}$$
:

$$f(x) = \ln((2x - 1)(3x + 2))) = \ln(2x - 1) + \ln(3x + 2).$$

$$f^{(5)}(x) = \frac{4! \cdot 2^5}{(2x-1)^5} + \frac{4! \cdot 3^5}{(3x+2)^5} = \frac{768}{(2x-1)^5} + \frac{5832}{(3x+2)^5}.$$

При
$$x < -\frac{2}{3}$$
:

$$f(x) = \ln((-2x+1)(-3x-2))) = \ln(-2x+1) + \ln(-3x-2).$$

$$f^{(5)}(x) = \frac{4! \cdot (-2)^5}{(-2x+1)^5} + \frac{4! \cdot (-3)^5}{(-3x-2)^5} = \frac{768}{(2x-1)^5} + \frac{5832}{(3x+2)^5}.$$

Дифференциалы высших порядков

Если функция f имеет в точке x n-ую производную, то ее дифференциал n-ого порядка в точке x это функция

$$d^n f = f^{(n)} dx^n$$

(от новой переменной dx).

Одно из альтернативных обозначений n-ой производной: $\dfrac{d^n f}{dx^n}$ или $\dfrac{d^n}{dx^n}f$.

Многочлены Тейлора. Наводящие соображения 1

- Если функция f непрерывна в точке x_0 , то в некоторой окрестности точки x_0 она "неплохо представляется" константой: $f(x_0+h)\approx f(x_0)$.
- Если функция f дифференцируема в точке x_0 , то в некоторой окрестности точки x_0 она "более точно представляется" некоторой линейной функцией: $f(x_0+h)\approx f(x_0)+f'(x_0)h$.
- Если функция f имеет n производных в точке x_0 , то логично предположить, что в некоторой окрестности точки x_0 она "еще более точно представляется" некоторым многочленом:

$$f(x_0 + h) \approx f(x_0) + f'(x_0)h + a_2h^2 + \ldots + a_nh^n$$
.

При этом можно надеяться, что это приближенное равенство можно сделать точным как в духе определения производной, т.е.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + a_2h^2 + \ldots + a_nh^n + o(h^n),$$

так и в духе теоремы Лагранжа о конечных приращениях, т.е.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + a_2h^2 + \ldots + a_{n-1}h^{n-1} + Ch^n,$$

где C зависит от $f^{(n)}(\xi)$ для некоторой точки ξ , лежащей между x_0 и x_0+h .

Многочлены Тейлора. Наводящие соображения 2

Пусть дан многочлен

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n.$$

Легко подсчитать, что

$$p^{(k)}(0) = k! \cdot a_k$$

для всех $k \in \{0,1,\ldots,n\}$.

Отсюда

$$p(x) = p(0) + \frac{p'(0)}{1!}x + \frac{p''(0)}{2!}x^2 + \ldots + \frac{p^{(n)}(0)}{n!}x^n = \sum_{k=0}^n \frac{p^{(k)}(0)}{k!}x^k.$$

Аналогично,

$$p(x) = p(x_0) + \frac{p'(x_0)}{1!}(x - x_0) + \frac{p''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{p^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{p^{(k)}(x_0)}{k!}(x - x_0)^k$$

для любого числа x_0 .

Многочлены Тейлора

Определение

Пусть функция f имеет n производных в точке x_0 .

Многочленом Тейлора степени n функции f в точке x_0 называется многочлен

$$T_n^f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k.$$

Многочлен Тейлора в нуле называется также многочленом Маклорена.

Остаточным членом формулы Тейлора (функции f в точке x_0) называется выражение

$$r_n(x) = f(x) - T_n^f(x).$$

Формула Тейлора имеет вид:

$$f(x) = T_n^f(x) + r_n(x).$$

Теорема об остаточном члене формулы Тейлора в форме Лагранжа

Теорема

Пусть функция f определена и (n+1) раз дифференцируема в каждой точке x из некоторой окрестности $\mathcal O$ точки x_0 . Тогда для каждого $x\in \mathcal O\setminus \{x_0\}$ существует такая точка c, что c лежит строго между x_0 и x и

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1},$$

иначе говоря, остаточный член $r_n(x)$ формулы Тейлора $T_n^f(x)$ функции f в точке x_0 может быть представлен в форме

$$r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

(форме Лагранжа).

Теорема об остаточном члене формулы Тейлора в форме Пеано

Теорема

Пусть функция f определена в некоторой окрестности $\mathcal O$ точки x_0 и имеет все производные до n-го порядка включительно в точке x_0 . Тогда при $x \to x_0$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n),$$

иначе говоря, остаточный член $r_n(x)$ формулы Тейлора $T_n^f(x)$ функции f в точке x_0 может быть представлен в форме

$$r_n(x) = o((x - x_0)^n)$$

(форме Пеано).

Формулы Маклорена некоторых элементарных функций

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + r_n.$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + \frac{(-1)^{n+1}}{n}x^n + r_n = \sum_{k=1}^n \frac{(-1)^{k+1}x^k}{k} + r_n.$$

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + r_n = \sum_{k=0}^n \frac{x^k}{k!} + r_n.$$

$$\sin x = \frac{1}{1!}x - \frac{1}{3!}x^3 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + r_{2n+1} = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!}x^{2k+1} + r_{2n+1}.$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + r_{2n} = \sum_{k=0}^n \frac{(-1)^k}{(2k)!}x^{2k} + r_{2n}.$$

Замечание

В виду того, что коэффициенты при четных степенях в многочлене Маклорена функции $\sin x$ и коэффициенты при нечетных степенях в многочлене Маклорена функции $\cos x$ равны нулю, имеем: $T_{2n+2}^f = T_{2n+1}^f$ при $f = \sin(x)$ и $T_{2n+1}^f = T_{2n}^f$ при $f = \cos(x)$. Поэтому последние две формулы остаются верными, если их переписать так

$$\sin x = \frac{1}{1!}x - \frac{1}{3!}x^3 + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + r_{2n+2} = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!}x^{2k+1} + r_{2n+2},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + r_{2n+1} = \sum_{k=0}^n \frac{(-1)^k}{(2k)!}x^{2k} + r_{2n+1}$$

и использовать соответствующие оценки остаточного члена.

Теорема о единственности

Теорема

Пусть функция f имеет все производные до n-го порядка включительно в точке x_0 . Тогда если

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + o((x - x_0)^n),$$

то многочлен $a_0+a_1(x-x_0)+\ldots+a_n(x-x_0)^n$ есть многочлен Тейлора функции f в точке x_0 , т.е. $a_k=\frac{f^{(k)}(x_0)}{k!}$ (где $0\leqslant k\leqslant n$).

Доказательство. По теореме об остаточном члене в форме Пеано, имеем

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n)$$

$$= f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

Переходим к пределу при $x \to x_0$. Получаем $a_0 = f(x_0)$. Переносим $f(x_0)$ в левую часть. Делим на $x-x_0$, переходим к пределу, и т.д.

Многочлен

$$x - \frac{1}{2}x^2 + \ldots + \frac{(-1)^{n+1}}{n}x^n$$

есть многочлен Маклорена степени n функции $f(x) = \ln(1+x)$. Поэтому

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots + \frac{(-1)^{n+1}}{n}x^n + o(x^n).$$

Значит,

$$\ln(1+x^2) = x^2 - \frac{1}{2}x^4 + \dots + \frac{(-1)^{n+1}}{n}x^{2n} + o(x^{2n}).$$

Следовательно, многочлен

$$x^{2} - \frac{1}{2}x^{4} + \ldots + \frac{(-1)^{n+1}}{n}x^{2n}$$

есть многочлен Маклорена степени 2n функции $g(x) = \ln(1+x^2)$.

Отсюда, в частности, следует, что

$$g^{(n)}(0) = egin{cases} 0, \ \text{если} \ n = 2k+1, \ k \in \mathbb{N} \ \dfrac{(-1)^{k+1}(2k)!}{k}, \ \text{если} \ n = 2k, \ k \in \mathbb{N} \end{cases}$$

где $q(x) = \ln(1 + x^2)$.

Приложения: приближенные вычисления (используем остаточный член в форме Лагранжа)

Приближенное значение $e^{0,1}$ есть

$$1 + 0, 1 + \frac{0, 1^2}{2!} = 1,105$$

(вместо $e^{0,1}$ вычисляем значение многочлена Маклорена для функции e^x при x=0,1).

Погрешность вычисления не более

$$|r_2| = \frac{e^c}{3!}0, 1^3,$$

где 0 < c < 0, 1.

Грубо оцениваем $|r_2|$:

$$|r_2| < \frac{e}{3!}0, 1^3 < \frac{3}{6}0, 1^3 = 0,0005$$

Следовательно, погрешность составляет менее 0,0005.

Приложения: нахождение пределов (используем остаточный член в форме Пеано)

$$\lim_{x \to 0} \frac{\sin 3x - \sin 2x - \sin x}{\sin 4x - 4\sin x} =$$

$$= \lim_{x \to 0} \frac{3x - \frac{(3x)^3}{3!} + o(x^3) - (2x - \frac{(2x)^3}{3!} + o(x^3)) - (x - \frac{x^3}{3!} + o(x^3))}{(4x - \frac{(4x)^3}{3!} + o(x^3)) - 4(x - \frac{x^3}{3!} + o(x^3))} = \frac{3}{10}.$$

Правило Лопиталя

Теорема

Пусть $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$, и числовые функции f и g определены в окрестности x_0 . Тогда если:

- 1) $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ или $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$,
- 2) f и g дифференцируемы в некоторой окрестности x_0 ,
- 3) $g'(x) \neq 0$ для всех x из некоторой окрестности x_0 ,
- 4) существует $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$,

то существует $\lim_{x \to x_0} \frac{f(x)}{g(x)}$, и, при этом,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Замечание

- 1. Правило Лопиталя можно применять многократно.
- 2. Правило Лопиталя верно и для односторонних пределов.
- 3. Правило Лопиталя не всегда удобно, т.к. в общем случае дифференцирование усложняет функцию.
- 4. Правило Лопиталя коварно: если не проверить условие 1), то может быть получен неверный ответ, не вызывающий подозрения по своей форме.

Пример.
$$\lim_{x \to 2} \frac{x^3 - 3x^2 + x + 2}{x^4 - 2x^2 - 8} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{3x^2 - 6x + 1}{x^4 - 2x^2 - 8} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{3x^2 - 6x + 1}{x^4 - 2x^2 - 8} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^3 - 3x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{(x^4 - 2x^2 - 8)'} = \lim_{x \to 2} \frac{(x^4 - 2x^2 + x + 2)'}{$$

$$= \lim_{x \to 2} \frac{3x^2 - 6x + 1}{4x^3 - 4x} = \left[\neq \frac{0}{0} \right] = \frac{1}{24}.$$

Приложение правила Лопиталя

Теорема

Пусть функция f(x) дифференцируема в проколотой окрестности точки x_0 , а в самой этой точке она непрерывна и имеет предел производной $\lim_{x\to x_0}f'(x)=A$. Тогда функция f(x) дифференцируема и в самой точке x_0 , и $f'(x_0)=A$ (то есть, производная f'(x) непрерывна в точке x_0).

Доказательство. Применить правило Лопиталя для вычисления предела $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$

Пример. Пусть
$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{если } x \neq 0, \\ 1, & \text{если } x = 0. \end{cases}$$
 Тогда $f'(0) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2} = 0.$

Замечание. f'(0) можно вычислить и с помощью формулы Маклорена и определения производной в точке:

$$\frac{\sin x}{x} = \frac{x - \frac{x^3}{6} + o(x^3)}{x} = 1 - \frac{x^2}{6} + o(x^2) \Rightarrow f'(0) = 0.$$

Второе достаточное условие экстремума

Теорема

Пусть функция f имеет все производные до n-го порядка включительно в точке x_0 , где $n\geqslant 2$. Пусть, кроме того,

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \quad f^{(n)}(x_0) \neq 0.$$

Тогда:

- 1) если n нечетное, то x_0 не точка экстремума;
- 2) если n четное и $f^{(n)}(x_0) < 0$, то x_0 точка максимума;
- 3) если n четное и $f^{(n)}(x_0) > 0$, то x_0 точка минимума.

Пример. Исследуйте на локальные экстремумы функцию

$$f(x) = x^4 - 6x^2 + 8x + 1.$$

На прошлой лекции мы уже нашли критические точки этой функции: 1 и -2. В точке -2 вторая производная $f''(x)=12x^2-12$ положительна. Следовательно, -2 есть точка минимума. В точке 1 вторая производная функции f равна нулю. Придется исследовать производные дальнейших порядков. Третья производная f'''(x)=24x в точке 1 не равна нулю. Значит, 1 — не точка экстремума.

СПАСИБО ЗА ВНИМАНИЕ!

