CO 331 - Coding Theory

Cameron Roopnarine

Last updated: June 5, 2020

Contents

Co	ontents	1
Li	st of Algorithms	3
1	Introduction and Fundamentals 1.1 An Introduction to Coding Theory	4 4 5 6 8 8 8 8
2	Finite Fields 2.1 Introduction	12 12 15 18 21
3	3.2 Generator Matrices and the Dual Code 3.3 The Parity-Check Matrix	
4	Some Special Linear Codes 4.1 The Binary Golay Code C23 (1949) 4.2 The Extended Golay Code C24 4.2.1 Decoding Algorithm for C24 4.2.2 Reliability of C24	36
5	Cyclic Codes 5.1 Introduction	39 39 40 43 45

CONTENTS	2
----------	---

	5.6 Burst Error Correcting	49
	5.9 Interleaving	50
	5.10 Minimal Polynomials	
	5.11 Finite Fields and Factoring $x^n - 1$ over $GF(q)$	54
6	BCH Codes and Bounds for Cyclic Codes	58
	6.1 Introduction	58
	6.1 Introduction	
		58

List of Algorithms

	Decoding Algorithm for Single-Error Correcting Codes	
3	Decoding Algorithm for C_{24}	37
4	Error Trapping	50
5	Decoding Algorithm for C_{15}	63

Chapter 1

Introduction and Fundamentals

2020-01-06

1.1 An Introduction to Coding Theory

$$Source \rightarrow Source \ Encoder \rightarrow Channel \ Encoder \xrightarrow{Channel} Channel \ Decoder \rightarrow Source \ Decoder \rightarrow Data$$

$$\uparrow \qquad \qquad \\ Noise$$

$$\downarrow Noise$$

$$\downarrow Channel \ Decoder \rightarrow Source \ Decoder \rightarrow Data$$

EXAMPLE 1.1.1 (Repetition Code).
------------------------	-------------------

Message → Codeword	Errors/Codeword Detected	Errors/Codeword Corrected	Rate
$\begin{array}{c} 0 \rightarrow 0 \\ 1 \rightarrow 1 \end{array}$	0	0	1
$\begin{array}{c} 0 \rightarrow 00 \\ 1 \rightarrow 11 \end{array}$	1	0	1/2
$\begin{array}{c} 0 \rightarrow 000 \\ 1 \rightarrow 111 \end{array}$	2	1	1/3
$\begin{array}{c} 0 \rightarrow 00000 \\ 1 \rightarrow 11111 \end{array}$	4	2	1/5

Goal of Coding Theory

Design codes such that:

- High information rate
- High error-correcting capability
- Efficient encoding and decoding algorithms

 $\mathsf{Codes} \supset \mathsf{Block} \ \mathsf{codes} \supset \mathsf{Linear} \ \mathsf{codes} \supset \mathsf{Cyclic} \ \mathsf{codes} \supset \mathsf{BCH} \ \mathsf{Codes} \supset \mathsf{RS} \ \mathsf{Codes}$

Codes not covered in this course:

- · Flamming codes
- · Golay codes

- Raptor codes
- · LDPC codes
- Turbo codes

Requirements for this course:

- MATH 136
- Not required (but required to take the course): MATH 235
- Familiarity with: Groups, Fields, Ideals, Rings (these will be taught)
- Useful, if you have completed these you might be bored: PMATH 336, PMATH 334 [or the advanced equivalents]

The Big Picture

In its broadest sense, coding deals with the reliable, efficient, and secure transmissions of data over channels that are subject to inadvertent noise and malicious intrusion.

2020-01-08

1.2 Fundamental Concepts

DEFINITION 1.2.1. An **alphabet** A is a finite set of $|A| = q \ge 2$ symbols.

DEFINITION 1.2.2. A word is a finite sequence (tuples or vectors) of symbols from an alphabet A.

DEFINITION 1.2.3. The **length** of a word is the number of symbols in it.

DEFINITION 1.2.4. A **code** C over A is a finite set of words in A with $|C| \ge 2$.

DEFINITION 1.2.5. A **codeword** c is a word in code C.

DEFINITION 1.2.6. A **block code** is a code where all codewords have the same length. A block code C of length n containing M codewords over A is a subset $C \subseteq A^n$, with |C| = M. We refer to such a block code as an [n, M]-code over A.

EXAMPLE 1.2.7 (Block Code). Let $A = \{0, 1\}$ and $C = \{00000, 11100, 00111, 10101\}$. C is a [5, 4]-code over $\{0, 1\}$.

Messages	\rightarrow	Codewords
00	\rightarrow	00000
10	\rightarrow	11100
01	\rightarrow	00111
11	\rightarrow	10101

The encoding is a one-to-one map.

The channel encoder transmits only codewords, but what's received by the channel decoder might not be a codeword. For example, suppose the channel decoder receives r=11001. What should it do? In our above example, we can see that r is closest to 11100 and 10101 (only two bits are different), so it's possible that the codeword was one of those two. However, this may not be the case in practice.

1.3 Assumptions About the Communications Channel

- (1) The channels only transmit symbols from A.
- (2) No symbols are deleted, added, or transposed.
- (3) Errors are random

EXAMPLE 1.3.1 (Binary Symmetric Channel, BSC). Let $A = \{0, 1\}$, and p denote the symbol error probability. The encoding map is:

A similar encoding map can be drawn for $A = \{0, 1, 2\}$, with symbol error probability p/2.

Suppose that the symbols transmitted are $X_1, X_2, ...$, and the symbols received are $Y_1, Y_2, ...$ Then for all $i \ge 1, j \ge 1, k \le q$, the probability that Y_i is received, given that X_i is transmitted is:

$$P(Y_i = a_j \mid X_i = a_k) = \begin{cases} 1 - p, & \text{if } j = k \\ \frac{p}{q - 1}, & \text{if } j \neq k \end{cases}$$

1.4 Notes about BSC

- (i) If p = 0, the channel is perfect.
- (ii) If p = 1/2, the channel is useless.
- (iii) If 1/2 , then simply flip all bits that are received.

- (iv) WLOG, we can assume 0 .
- (v) Analogously, for a q-ary channel, we can assume that 0 .

DEFINITION 1.4.1. If $x, y \in A^n$, the **Hamming distance** d(x, y) is the number of coordinate positions in which x and y differ.

EXAMPLE 1.4.2 (Hamming Distance). Let x = 10111 and y = 01010. The Hamming distance of x and y is d(x, y) = 4 since x and y differ in the coordinate positions 1, 2, 3, and 5.

DEFINITION 1.4.3. Let C be an [n, M]-code. The **Hamming distance** d **of a code** C is

$$d(C) = \min\{d(\boldsymbol{x}, \boldsymbol{y}) : \boldsymbol{x}, \boldsymbol{y} \in C, \ \boldsymbol{x} \neq \boldsymbol{y}\}\$$

THEOREM 1.4.4. d is a metric. For all $x, y, z \in A^n$:

- (1) $d(x, y) \ge 0$
- (2) d(x, y) = 0 if and only if x = y
- (3) d(x, y) = d(y, x)
- (4) (Triangle inequality): $d(x, z) \leq d(x, y) + d(y, z)$

Proof. (1)-(3) are trivially true.

(4) Let $x, y, z \in A^n$. Suppose that x and z differ in exactly a positions; that is, d(x, z) = a. Out of the a positions in which x and z differ, there are b positions in which y is identical to x, but not z. Out of the a positions, there are a - b positions in which y is identical to z, but not x. Lastly, in the n - a positions where x is identical to z, there are c positions in which y does not match either x or z. We can see that d(x, y) = b + c and d(y, z) = a - b + c. We get

$$d(x, y) + d(y, z) = (b + c) + (a - b + c) = a + 2c \ge a$$

Therefore d is a metric.

DEFINITION 1.4.5. The rate (or information rate) of an [n, M]-code C over A, is

$$R = \frac{\log_q(M)}{n}$$

where q = |A|.

If the source messages are all k-tuples over A, then $M = q^k$, so we have

$$R = \frac{\log_q(q^k)}{n} = \frac{k}{n}$$

EXAMPLE 1.4.6 (Rate & Distance of Code). Let $A = \{0, 1\}$ and $C = \{00000, 11100, 00111, 10101\}$ which is a [2, 4]-code over $\{0, 1\}$.

- Rate of code: R = 2/5
- Distance of code: d(C) = 2, since the minimum distance are from the pair of codewords 00111 and 10101 which have Hamming distance of 2 as they differ in coordinate positions 1 and 4.

1.5 Decoding Strategy

Suppose we have an [n, M]-code C over A of distance d. We need to adopt a strategy for the channel decoder (henceforth called the decoder). When the decoder receives an n-tuple $r \in A^n$ it must make some decision. This decision may be one of

- (i) no errors have occurred; accept r as a codeword.
- (ii) errors have occurred; correct r to a codeword c; e.g. $0 \to 0000$, $1 \to 1111$, r = 0001 corrected to 0000.
- (iii) errors have occurred; no correction is possible.

1.6 Nearest Neighbour Decoding

1.6.1 Incomplete Maximum Likelihood Decoding (IMLD)

Correct r to the unique codeword c for which d(r, c) is smallest. If c is not unique, reject r.

1.6.2 Complete Maximum Likelihood Decoding (CMLD)

Same as IMLD, except ties are broken arbitrarily.

Question: Is IMLD a reasonable strategy?

THEOREM 1.6.1. IMLD selects the codeword c that maximizes $P(r \mid c)$; that is, it maximizes the probability r is received, given c was sent.

We actually want to maximize $P(c \mid r)$, but we will ignore that for now.

Proof. Suppose $c_1, c_2 \in C$ with $d(c_1, r) = d_1$ and $d(c_2, r) = d_2$. Suppose $d_1 > d_2$. Now,

$$P(r \mid c_1) = (1-p)^{n-d_1} \left(\frac{p}{q-1}\right)^{d_1}$$
 and $P(r \mid c_2) = (1-p)^{n-d_2} \left(\frac{p}{q-1}\right)^{d_2}$.

Hence,

$$\frac{P(r \mid c_1)}{P(r \mid c_2)} = (1 - p)^{d_2 - d_1} \left(\frac{p}{q - 1}\right)^{d_1 - d_2}$$
$$= \left[\frac{p}{(1 - p)(q - 1)}\right]^{d_1 - d_2}$$

Recall that, for a q-ary channel, we can assume that $p < \frac{q-1}{q}$. Thus,

$$\implies pq < q - 1$$

$$\implies 0 < q - 1 - pq$$

$$\implies p < q - 1 - pq + p$$

$$\implies p < (1 - p)(q - 1)$$

$$\implies \frac{p}{(1 - p)(q - 1)} < 1$$

Since $d_1 > d_2$, we get $\frac{P(r|c_1)}{P(r|c_2)} < 1$, and so $P(r \mid c_1) < P(r \mid c_2)$.

The ideal strategy is to correct r to $c \in C$ such that $P(c \mid r)$ is maximized. This is **Minimum Error Decoding** (MED).

EXAMPLE 1.6.2 (IMLD != MED). Let
$$C = \{\underbrace{000}_{c_1}, \underbrace{111}_{c_2}\}, P(c_1) = 0.1, P(c_2) = 0.9, p = \frac{1}{4}$$
, and $r = 100$.

IMLD r is decoded to to $c_1 = 000$. **MED**

$$P(\mathbf{c}_1 \mid \mathbf{r}) = \frac{P(\mathbf{r} \mid \mathbf{c}_1)P(\mathbf{c}_1)}{P(\mathbf{r})}$$
$$= \frac{p(1-p)^2(0.1)}{P(\mathbf{r})}$$
$$= \frac{0.0140625}{P(\mathbf{r})}$$

$$P(\mathbf{c}_2 \mid \mathbf{r}) = \frac{P(\mathbf{r} \mid \mathbf{c}_2)P(\mathbf{c}_2)}{P(\mathbf{r})}$$
$$= \frac{p^2(1-p)(0.9)}{P(\mathbf{r})}$$
$$= \frac{0.0421875}{P(\mathbf{r})}$$

Since $P(c_1 \mid r) < P(c_2 \mid r)$, r is decoded to $c_2 = 111$.

Notes:

- (i) IMLD selects \boldsymbol{c} such that $P(\boldsymbol{r} \mid \boldsymbol{c})$ is maximum.
- (ii) MED selects c such that $P(c \mid r)$ is maximum.
- (iii) MED has a drawback that it requires knowledge of $P(c_i)$ for each $i \in [1, M]$.
- (iv) Suppose source messages are equally likely, so $P(c_i) = \frac{1}{M}$ for each $i \in [1, M]$. Then,

$$P(\boldsymbol{r} \mid \boldsymbol{c}_i) = \frac{P(\boldsymbol{c}_i \mid \boldsymbol{r})P(\boldsymbol{r})}{P(\boldsymbol{c}_i)} = P(\boldsymbol{c}_i \mid \boldsymbol{r})\underbrace{MP(\boldsymbol{r})}_{\text{constant}}$$

So, maximizing $P(r \mid c_i)$ is the same as maximizing $P(c_i \mid r)$. Thus, IMLD is the same as MED in this case.

In the remainder of the course, we will use IMLD/CMLD.

1.7 Error Correcting & Detecting Capabilities of a Code

- If C is used for error correction, the strategy is IMLD/CMLD.
- If C is used for error detection only, the strategy is to reject r if $r \notin C$, otherwise accept r.

DEFINITION 1.7.1. A code C is called an e-error correcting code if the decoder always makes the correct decision if at most e errors per codeword are introduced per transmission. We define e-error detecting code similarly.

EXAMPLE 1.7.2 (Error Detecting and Correcting Codes).

- $C = \{0000, 1111\}$ is a 1-error correcting code, but not a 2-error correcting code.
- $C = \{\underbrace{0 \cdots 0}, \underbrace{1 \cdots 1}\}$ is a $\lfloor \frac{m-1}{2} \rfloor$ -error correcting code.
- $C = \{0000, 1111\}$ is a 3-error detecting code.

THEOREM 1.7.3. If d(C) = d, then C is a (d-1)-error detecting code.

Proof. Suppose $c \in C$ is transmitted r is received. If no errors occurred during transmission, then r = c, so the decoder correctly accepts r. If at least 1 and at most (d-1) errors occur, then $1 \le d(r,c) \le d-1$. Since d(C) = d, we have $r \notin C$. Thus the decoder correctly rejects r. Thus C is a (d-1)-error detecting code. \Box

THEOREM 1.7.4. If d(C) = d, then C is not a d-error detecting code.

Proof. Since d(C) = d, there exists codewords $c_1, c_2 \in C$ with $d(c_1, c_2) = d$. Hence it is possible that c_1 is sent, d errors are introduced, and c_2 is received. In this case, the decoder incorrectly accepts c_2 . Thus C is not a d-error detecting code.

THEOREM 1.7.5. If d(C) = d, then C is a $\lfloor \frac{d-1}{2} \rfloor$ -error correcting code.

Proof. Suppose $c \in C$ is transmitted, at most $\frac{d-1}{2}$ errors are introduced, and r is received. Let $z \in C$ with $z \neq c$. By the triangle inequality, we have

$$\begin{split} d(\boldsymbol{c}, \boldsymbol{z}) \leqslant d(\boldsymbol{c}, \boldsymbol{r}) + d(\boldsymbol{r}, \boldsymbol{z}) &\implies d(\boldsymbol{r}, \boldsymbol{z}) \geqslant d(\boldsymbol{c}, \boldsymbol{z}) - d(\boldsymbol{c}, \boldsymbol{r}) \\ \geqslant d - \frac{d - 1}{2} \\ &= \frac{d + 1}{2} \\ \geqslant \frac{d - 1}{2} \end{split}$$

So, c is the unique codeword closest to r. Hence, IMLD/CMLD will decode r to c. Thus, C is a $\lfloor \frac{d-1}{2} \rfloor$ -error correcting code.

THEOREM 1.7.6. If d(C) = d, then C is not a $(\lfloor \frac{d-1}{2} \rfloor + 1)$ - error correcting code.

Proof. Exercise. \Box

Given q, n, M, d, does there exist an [n, M]-code over A with |A| = q such that d(C) = d?

Let $C = \{c_1, \dots, c_M\}$ and $e = \lfloor \frac{d-1}{2} \rfloor$. For any codeword $c \in C$, let S_c be the sphere of radius e centred at c; that is,

$$S_{\boldsymbol{c}} = \{ \boldsymbol{r} \in A^n : d(\boldsymbol{r}, \boldsymbol{c}) \leqslant e \}$$

We proved that if $c_i, c_j \in C$ with $i \neq j$, then $S_{c_i} \cap S_{c_j} = \emptyset$ for each $i \neq j$. This question can be viewed as a **sphere packing problem**: Can we place M spheres of radius e in A^n such that no two spheres overlap? This is a purely combinatorial problem.

Does there exists a block code with parameters $q=2,\,n=128,\,M=2^{64},\,d\geqslant 22$? Yes, we will see this in Chapter 6.

Roadmap: We'll view $\{0,1\}^n$ as a vector space of dimension n over \mathbb{Z}_q where |A|=q. We will chose the code C to be an M-dimensional subspace of this vector space and we will choose special subspaces that satisfy the d(C)=d requirement.

Chapter 2

Finite Fields

2020-01-15

2.1 Introduction

DEFINITION 2.1.1. A **field** F is a set of elements under two binary operations, which we denote by + and \cdot such that $+: F \times F \to F$ and $\cdot: F \times F \to F$ where all the following axioms are satisfied:

```
V1 a + (b + c) = (a + b) + c
```

 $V2 \ a + b = b + a$

V3 $\exists 0 \in F$ such that a + 0 = a

V4 $\exists (-a) \in F$ such that a + (-a) = 0

V5 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

V6 $a \cdot \hat{b} = \hat{b} \cdot a$

V7 $\exists 1 \in F$ such that $a \cdot 1 = a$

V8 $\forall a \neq 0, \exists (a^{-1}) \in F \text{ such that } a \cdot (a^{-1}) = 1$

 $V9 \ a \cdot (b+c) = a \cdot b + a \cdot c$

DEFINITION 2.1.2. A field F is **infinite** if |F| is infinite.

DEFINITION 2.1.3. A field F is **finite** if |F| is finite.

DEFINITION 2.1.4. The **order** of a field F, denoted ord(F) is |F|.

EXAMPLE 2.1.5 (Infinite and Finite Fields).

- \mathbb{Q} , \mathbb{R} , \mathbb{C} are infinite fields.
- \mathbb{Z} is **not** a field since $3 \in \mathbb{Z}$, but $(\frac{1}{3}) \notin \mathbb{Z}$.

Question: For what $n \in \mathbb{Z}_{\geqslant 2}$ do there exists finite fields of order n? If a field of order n exists, how do we "construct" it?

Recall: Let $n \ge 2$. The integers modulo n, \mathbb{Z}_n is the set of all equivalence classes $\mod n$.

$$\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

where [a] + [b] = [a+b] and [a][b] = [ab]. More simply, $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ with addition and multiplication performed $\mod n$.

EXAMPLE 2.1.6 (Modulo). Let $\mathbb{Z}_9 = \{0, 1, ..., 8\}$.

- 5+7=3 (i.e. $5+7\equiv 3 \mod 9$)
- $5 \cdot 7 = 8$ (i.e. $5 + 7 \equiv 8 \mod 9$)

DEFINITION 2.1.7. A **commutative ring** satisfies field axioms V1-V9 except V8.

THEOREM 2.1.8. \mathbb{Z}_n is a commutative ring.

THEOREM 2.1.9. \mathbb{Z}_n is a field if and only if n is prime.

Proof. (\iff) Suppose n is prime. Let $a \in \mathbb{Z}_n$, $a \neq 0$ (i.e. $1 \leqslant a \leqslant n-1$). Since n is prime, $\gcd(a,n)=1$ so $\exists \, s,t \in \mathbb{Z}$ such that

$$as + nt = 1$$

Reducing both sides $\mod n$ gives

$$as \equiv 1 \mod n$$

Define $a^{-1} = s$. Thus, V8 is satisfied and hence \mathbb{Z}_n is a field of order n.

 (\Longrightarrow) Suppose for a contradiction that n is composite, say n=ab where $2\leqslant a,b\leqslant n-1$. Suppose a^{-1} exists, and define $a^{-1}=s$. Then,

$$as \equiv 1 \mod n \implies abs \equiv b \mod n \implies ns \equiv b \mod n \implies 0 \equiv b \mod n$$

So, $n \mid b$ which is impossible. Therefore, a^{-1} does not exist, and hence \mathbb{Z}_n is not a field.

Question: Do there exist finite fields of orders 4 and 6?

DEFINITION 2.1.10. The **characteristic** of a field, denoted char(F), is the smallest possible integer m such that

$$\underbrace{1+\cdots+1}_{m}=0$$

If no such m exists, then we define char(F) = 0

EXAMPLE 2.1.11 (Characteristic of Fields).

- $\operatorname{char}(\mathbb{Q}) = 0$
- $\operatorname{char}(\mathbb{R}) = 0$
- $\operatorname{char}(\mathbb{C}) = 0$
- $\operatorname{char}(\mathbb{Z}_p) = p$ where p is prime.

THEOREM 2.1.12. *If* char(F) = 0, then F is infinite.

Proof. Consider $1, 1+1, \ldots, \underbrace{1+\cdots+1}_a \in F$. Suppose for a contradiction there exists distinct $a, b \in \mathbb{Z}$ such that

$$\underbrace{1+\cdots+1}_{a} = \underbrace{1+\cdots+1}_{b}$$

where a > b, then

$$\underbrace{1+\cdots+1}_{a}=\underbrace{1+\cdots+1}_{b}+\underbrace{1+\cdots+1}_{a-b}=\underbrace{1+\cdots+1}_{b}$$

Hence, $\underbrace{1+\cdots+1}_{a-b}=0 \implies \operatorname{char}(F)=(a-b)$ which contradicts $\operatorname{char}(F)=0$. Thus, F is infinite.

THEOREM 2.1.13. If F is a finite field, then char(F) is prime.

Proof. Suppose for a contradiction that char(F) = m is composite, say m = ab where $2 \le a, b \le m - 1$. Now

$$(\underbrace{1+\cdots+1}_{a})(\underbrace{1+\cdots+1}_{b}) = \underbrace{1+\cdots+1}_{m} = 0$$

since $\operatorname{char}(F) = m$. Let $\underbrace{1 + \dots + 1}_a = s$ and $\underbrace{1 + \dots + 1}_b = t$, so st = 0 where $s \neq 0$. Since $\operatorname{char}(F) = m > a$, there exists $c \in F$ such that $cs = 1 \implies c = s^{-1}$. Therefore $s^{-1}st = 0$. Thus, t = 0 which is a contradiction to

char(F) = m.

Roadmap: Let F be a finite field of order n. Then, char(F) = p where p is prime. Then, \mathbb{Z}_p is a subfield of F. F is a vector space over \mathbb{Z}_p of $\dim = k$. Then, order of F is p^k .

2020-01-17

DEFINITION 2.1.14. We say two fields F and S are **isomorphic** if they have the same binary operations and if there exists a bijection between them.

DEFINITION 2.1.15. Let F be a field. A subset $S \subseteq F$ is called a **subfield** of F if S is a field itself with respect to the same operations of F.

EXAMPLE 2.1.16 (Subfield). Let F be a finite field where char(F) = p. Consider $E = \{0, 1, 1 + 1\}$ $1, \dots, 1 + \dots + 1 \subseteq F$. We see that E is a field with the same field operations as F. Also, E has order

p. If we label the elements of E in a natural way such that $\underbrace{1+\cdots+1}_{p-1}\longleftrightarrow p-1$, then

$$E = \{0, 1, 1 + 1, \dots, \underbrace{1 + \dots + 1}_{p-1}\} = \mathbb{Z}_p = \{0, 1, 2, \dots, p - 1\} \subseteq F$$

So E is isomorphic to \mathbb{Z}_p .

THEOREM 2.1.17. If F is a finite field of characteristic p, then \mathbb{Z}_p is a subfield of F.

Proof. Exercise.

DEFINITION 2.1.18. Let *F* be a finite field, and consider $\mathbb{Z}_p \subseteq F$.

- Each $v \in F$ is vector.
- Each $c \in \mathbb{Z}_p$ is a scalar.
- Addition in *F* is defined by vector addition.
- Multiplication in F by elements in \mathbb{Z}_p is defined by scalar multiplication.

THEOREM 2.1.19. If F is a finite field of characteristic p, then F is a vector space over \mathbb{Z}_p .

Proof. Exercise. □

THEOREM 2.1.20. If F is a finite field of characteristic p, then

$$ord(F) = p^k$$

for some $k \in \mathbb{Z}_{\geqslant 1}$.

Proof. Let k be the dimension of the vector space F over \mathbb{Z}_p . Let $\{\alpha_1, \ldots, \alpha_k\}$ be a basis for F. Then, every element in F can be written as

$$c_1\alpha_1 + \cdots + c_k\alpha_k$$

where $c_i \in \mathbb{Z}_p$. For each α_i , there are p possible choices for c_i , hence $\operatorname{ord}(F) = p^k$.

EXAMPLE 2.1.21. There is no field of order 6.

Question: Is there a finite field of order 4, 8, 9?

2.2 Irreducible Polynomials

DEFINITION 2.2.1. Let F be a field. The **set of all polynomials in** x **over** F (polynomials with coefficients from F) is denoted F[x]. Addition and multiplication are both done in the usual way, with coefficient arithmetic in F.

EXAMPLE 2.2.2. In \mathbb{Z}_{11} , $(2+5x+6x^2)+(3+9x+5x^2)=5+3x$.

THEOREM 2.2.3. Let F be a field. F[x] is a commutative ring.

DEFINITION 2.2.4. Let F be a field and let $f \in F[x]$ with $\deg(f) \ge 1$. If $g, h \in F[x]$ with $f \mid (g - h)$, then we write

$$q \equiv h \mod f$$

or equivalently, we can write $g - h = \ell f$ for some $\ell \in F[x]$.

THEOREM 2.2.5. Congruence is an equivalence relation.

DEFINITION 2.2.6. For a given $f \in F[x]$, the equivalence class containing $g \in F[x]$ is

$$[g] = \{ h \in F[x] : h \equiv g \mod f \}$$

DEFINITION 2.2.7. For $g, h \in F[x]$, we define addition and multiplication as follows:

- Addition: [g] + [h] = [g + h]
- Multiplication: [g][h] = [gh]

THEOREM 2.2.8.

- 1. The set of all equivalence classes, denoted F[x]/(f) where $f \in F[x]$ and $\deg(f) \geqslant 1$ is a commutative ring.
- 2. The polynomials in F[x] of degree less than degree of f are a system of distinct representatives of equivalence classes in F[x]/(f).

Proof of 5:

Proof. Let $g \in F[x]$. By division algorithm for polynomials we can write $g = \ell f + r$ where $\deg(r) < \deg(f)$. So, $g - r = \ell f$. Hence, $g \equiv r \mod f$. Thus, [g] = [r] and we have $\deg(r) < \deg(f)$. Also, if $r_1, r_2 \in F[x]$ with $r_1 \neq r_2$, and $\deg(r_1), \deg(r_2) < \deg(f)$, then

$$f \nmid (r_1 - r_2) \iff r_1 \not\equiv r_2 \mod f$$

Thus, $[r_1] \neq [r_2]$.

2020-01-20

DEFINITION 2.2.9. Let F be a field, and $f \in F[x]$ of degree $n \ge 1$. f is **irreducible** over F if f cannot be written as f = gh, where $g, h \in F[x]$ and $\deg(g), \deg(n) \ge 1$.

EXAMPLE 2.2.10 (Irreducible).

- $x^2 + 1$ is irreducible over \mathbb{R}
- $x^2 + 1$ is reducible over \mathbb{C} since $(x+i)(x-i) = x^1 + 1$
- $x^2 + 1$ is reducible over \mathbb{Z}_2 since $(x+1)^2 = x^1 + 1$
- $x^2 + 1$ is irreducible over \mathbb{Z}_3

THEOREM 2.2.11. Let F be a field and $f \in F[x]$ of degree $n \ge 1$. F[x]/(f) is a field if and only if f is irreducible over F.

Proof. Note that F[x]/(f) is a commutative ring.

(\iff) Suppose $g \in F[x]/(f)$ where $g \neq 0$ and $\deg(g) < \deg(f)$. Then, $\gcd(g,f) = 1$ and so by EEA for polynomials, there exists $s,t \in F[x]$ such that

$$gs + ft = 1$$

Reducing both sides modulo f gives

$$gs \equiv 1 \mod f$$

So, $g^{-1} = s$. Hence F[x]/(f) is a field.

 (\Longrightarrow) Exercise.

We need an irreducible polynomial $f \in \mathbb{Z}_p[x]$ of degree n. Then, $\mathbb{Z}[x]/(f)$ is a finite field of order p^n .

THEOREM 2.2.12. For any prime p and $n \in \mathbb{Z}_{\geq 2}$, there exists an irreducible polynomial of degree n over

The proof is beyond the scope of this course.

THEOREM 2.2.13. There exists a finite field of order q if and only if q is a prime power.

EXAMPLE 2.2.14. Construct a finite field of order $2^2 = 4$.

Solution. Take $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ which is irreducible over $\mathbb{Z}_2[x]$. Thus, the field is

$$\mathbb{Z}_2[x]/(x^2+x+1) = \{0,1,x,x+1\}$$

Examples of operations:

- x + (x + 1) = 1
- $x(x+1) = x^2 + x = 1$
- $x^{-1} = x + 1$ $1^{-1} = 1$
- $x^{-1} = x + 1$
- $(x+1)^{-1} = x$

EXAMPLE 2.2.15. Construct a field of order $2^3 = 8$.

Solution. We need an irreducible polynomial of degree 3 over \mathbb{Z}_2 . Take $f_1(x) = x^3 + x + 1$ which is irreducible over \mathbb{Z}_2 . Then a field of order 8 is

$$F_1 = Z_2[x]/(x^3 + x + 1) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$$

Examples of operations:

- $x^2 + (x^2 + x + 1) = x + 1$ $x^2(x^2 + x + 1) = x^4 + x^3 + x^2 = 1$ $(x^2)^{-1} = x^2 + x + 1$ $x^{-1} = x^2 + 1$

EXAMPLE 2.2.16. Construct a field of order $2^3 = 8$.

Solution. Take $f_2(x) = x^3 + x^2 + 1$. Then a field of order 8 is

$$F_2 = \mathbb{Z}_2[x]/(x^3 + x^2 + 1) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$$

Examples of operations:

•
$$x^{-1} = x^2 + x$$

Note: F_1 and F_2 are two different fields of order $2^3 = 8$, but they are isomorphic. That is, there is a bijection $\alpha: F_1 \to F_2$ such that

$$\alpha(a+b) = \alpha(a) + \alpha(b)$$

$$\alpha(ab) = \alpha(a)\alpha(b)$$

for all $a, b \in F_1$.

THEOREM 2.2.17. Any two finite fields of order q are isomorphic.

Proof. Exercise.

DEFINITION 2.2.18. We will denote the **Galois field of order** q by GF(q).

We saw one representation of $GF(2^2)$ and two different representations of $GF(2^3)$.

2020-01-22

EXAMPLE 2.2.19. Construct $GF(2^4 = 16)$.

Solution. Take $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$.

- f has no roots in \mathbb{Z}_2 and hence no linear factors
- long division shows that $x^2 + x + 1 \nmid x^4 + x + 1$, so f has no irreducible quadratic factors
- f is irreducible over \mathbb{Z}_2 .

Thus, $GF(16) = \mathbb{Z}_2[x]/(x^4 + x + 1)$.

2.3 Properties of Finite Fields

PROPOSITION 2.3.1. † For all integers a, b and c, if $c \mid ab$ and gcd(a, c) = 1, then $c \mid b$.

LEMMA 2.3.2. † For each integer $k \in [1, p-1]$,

$$p \mid \binom{p}{k}$$

Proof. We know that $\binom{p}{k} \in \mathbb{Z}$ and

$$\binom{p}{k} = \frac{p!}{(p-k)k!}$$

Since $k \ge 1$, then

$$\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k!}$$

Therefore, $k! \binom{p}{k} = p(p-1) \cdots (p-k+1)$.

We note that $p \mid p(p-1)\cdots(p-k+1)$ and therefore $p \mid k!\binom{p}{k}$. Since p is prime and p > k, then $\gcd(p,k!) = 1$. Therefore, by 2.3.1

$$p \mid \binom{p}{k}$$

THEOREM 2.3.3 (Frosh's Dream). Let $\alpha, \beta \in GF(q)$ where char(GF(q)) = p.

$$(\alpha + \beta)^p = \alpha^p + \beta^p$$

Proof.

$$(\alpha + \beta)^p = \alpha^p + \sum_{k=1}^{p-1} \binom{p}{k} \alpha^k \beta^{p-k} + \beta^p$$

By 2.3.2,

$$p \mid \binom{p}{k} \implies p\lambda_k = \binom{p}{k}$$

where $\lambda_k \in \mathbb{Z}$ for each $k \in [1, p-1]$. Hence,

$$\sum_{k=1}^{p-1} \binom{p}{k} \alpha^k \beta^{p-k} = \sum_{k=1}^{p-1} (p\lambda_k) \alpha^k \beta^{p-k}$$
$$= \sum_{k=1}^{p-1} (\underbrace{1 + \dots + 1}_{p}) \lambda_k \alpha^k \beta^{p-k}$$
$$= 0$$

Thus, $(\alpha + \beta)^p = \alpha^p + \beta^p$.

COROLLARY 2.3.4. Let $\alpha, \beta \in GF(q)$ where char(GF(q)) = p.

$$(\alpha + \beta)^{p^m} = \alpha^{p^m} + \beta^{p^m}$$

for all $m \in \mathbb{Z}_{\geqslant 1}$.

Proof. † We prove this result by induction on m, where P(m) is the statement

$$(\alpha + \beta)^{p^m} = \alpha^{p^m} + \beta^{p^m}$$

Base Case: The statement P(1) is given by

$$(\alpha + \beta)^p = \alpha^p + \beta^p$$

which is clearly true by 2.3.3.

Inductive Hypothesis: Assume

$$(\alpha + \beta)^{p^k} = \alpha^{p^k} + \beta^{p^k}$$

for an arbitrary integer $k \geqslant 1$.

Inductive Conclusion: We wish to prove P(k+1) which is the statement

$$(\alpha + \beta)^{p^{k+1}} = \alpha^{p^{k+1}} + \beta^{p^{k+1}}$$

Starting with the expression on the left hand side of P(k + 1), we obtain

$$\begin{split} (\alpha+\beta)^{p^{k+1}} &= [(\alpha+\beta)^p]^{p^k} \\ &= (\alpha^p+\beta^p)^{p^k} \qquad \text{by 2.3.3} \\ &= (\alpha^p)^{p^k} + (\beta^p)^{p^k} \qquad \text{by IH} \\ &= \alpha^{p^{k+1}} + \beta^{p^{k+1}} \end{split}$$

The result is true for m=k+1, and hence holds for all $m\in\mathbb{Z}_{\geqslant 1}$ by the Principle of Mathematical Induction. $\ \ \, \Box$

THEOREM 2.3.5. Let $\alpha \in GF(q)$. Then

$$\alpha^q = \alpha$$

П

Proof. If $\alpha = 0$, then $\alpha^q = 0 = \alpha$.

If $\alpha \neq 0$, let

$$\{a_1, a_2, \dots, a_{q-1}\}$$

be the distinct non-zero elements in GF(q). Consider

$$\{\alpha a_1, \alpha a_2 \dots, \alpha a_{q-1}\}$$

These are all distinct because otherwise for some $i \neq j$, $\alpha a_i = \alpha a_j \implies a_i = a_j$ which is a contradiction. Hence,

$$\{\alpha a_1, \dots, \alpha a_{q-1}\} = \{a_1, \dots, a_{q-1}\}$$

This implies

$$(\alpha a_1) \cdots (\alpha a_{q-1}) = a_1 \cdots a_{q-1}$$

$$\implies \alpha^{q-1} (a_1 \cdots a_{q-1}) = a_1 \cdots a_{q-1}$$

$$\implies \alpha^{q-1} = 1$$

since a_i is non-zero for each $i \in [1, q-1]$. Thus, since $\alpha \neq 0$ we have $\alpha^q = \alpha$.

DEFINITION 2.3.6. Let $GF(q)^* = GF(q)/\{0\}$.

DEFINITION 2.3.7. The **order of** $\alpha \in GF(q)^*$, denoted $\operatorname{ord}(\alpha)$, is the smallest positive integer t such that $\alpha^t = 1$.

EXAMPLE 2.3.8. How many elements of order 1 are there in GF(q)? **Solution.** $\alpha = 1$

EXAMPLE 2.3.9. Find ord(x) in $GF(16) = \mathbb{Z}_2/(x^4 + x + 1)$. Solution.

- $x^1 = x$
- $x^2 = x^2$
- $x^3 = x^3$
- $x^4 = x + 1$
- $\bullet \ \ x^5 = x^2 + x$
- $x^6 = x^3 + x^2$
- $x^7 = x^3 + x + 1$
- $x^8 = x^2 + 1$ $x^9 = x^3 + x$
- $x^{10} = x^2 + x + 1$
- $x^{11} = x^3 + x^2 + x$
- $x^{12} = x^3 + x^2 + x + 1$
- $x^{13} = x^3 + x^2 + 1$
- $x^{14} = x^3 + 1$
- $x^{15} \equiv 1 \mod x^4 + x + 1$

Since $\operatorname{ord}(x) \neq 1, 3, 5 \operatorname{ord}(x) \mid 15$, so we have $\operatorname{ord}(x) = 15$.

LEMMA 2.3.10. Let $\alpha \in GF(q)^*$, $\operatorname{ord}(\alpha) = t$ and $s \in \mathbb{Z}$.

$$\alpha^s = 1 \iff t \mid s$$

Proof. Let $s \in \mathbb{Z}$. By the division algorithm for integers,

$$s = \ell t + r$$

where $0 \le r \le t - 1$. Then

$$\alpha^s = \alpha^{\ell t + r} = (\alpha^t)^\ell \alpha^r = \alpha^r$$

So,

$$\begin{aligned} \alpha^s &= 1 \iff a^r = 1 \\ &\iff r = 0 \qquad \text{since } 0 \leqslant 1 \leqslant t-1 \\ &\iff t \mid s \end{aligned}$$

COROLLARY 2.3.11. *If* $\alpha \in GF(q)^*$, then $ord(\alpha) \mid (q-1)$.

Proof. We know $\alpha^{q-1} = 1$, so $\operatorname{ord}(\alpha) \mid (q-1)$ by the previous Lemma.

DEFINITION 2.3.12. An element $\alpha \in GF(q)$ is a **generator** of $GF(q)^*$ if

$$\{\alpha^i : i \geqslant 0\} = GF(q)^*$$

That is, α generates all the non-zero field elements. $\operatorname{ord}(\alpha) = q - 1$.

THEOREM 2.3.13. If α is a generator of $GF(q)^*$, then

$$\{\alpha^1, \dots, \alpha^{q-1}\} = GF(q)^*$$

2020-01-24

THEOREM 2.3.14. If $GF(q)^*$ has order t, then

$$\alpha^1, \dots, \alpha^{t-1}$$

are pairwise distinct.

Proof. Suppose for a contradiction that $\alpha^i = \alpha^j$ where $0 \le i, j \le t-1$. WLOG suppose j > i, then $\alpha^{j-i} = 1$ which contradicts $\operatorname{ord}(\alpha) = t$ since $1 \le j-i \le t-1$.

2.4 † Existence of Generators

LEMMA 2.4.1. Let $\alpha \in GF(q)^*$ with $\operatorname{ord}(\alpha) = t$. Then $\operatorname{ord}(\alpha^i) = t/\gcd(t,i)$.

Proof. Let $d = \gcd(t, i)$. The order of a^i is the smallest positive integer s such that $\alpha^{is} = 1$. Now,

$$\alpha^{is} = 1 \iff t \mid is \iff \frac{t}{d} \mid \frac{i}{d}s \iff \frac{t}{d} \mid s$$

Since the smallest positive integer s satisfying $\frac{t}{d} \mid s$ is $s = \frac{t}{d}$, we have $\operatorname{ord}(\alpha^i) = \frac{t}{d}$.

LEMMA 2.4.2. Let $\alpha, \beta \in GF(q)^*$, with $\operatorname{ord}(\alpha) = m$ and $\operatorname{ord}(\beta) = n$. If $\gcd(m, n) = 1$ then $\operatorname{ord}(\alpha\beta) = mn$.

Proof. Let $t = \operatorname{ord}(\alpha\beta)$. Now,

$$(\alpha\beta)^{mn} = \alpha^{mn}\beta^{mn} = 1,$$

so $t \mid mn$. Also,

$$1 = (\alpha \beta)^{tn} = \alpha^{tn} \beta^{tn} = \alpha^{tn},$$

so $m \mid tn$. And, since gcd(m, n) = 1, we have $m \mid t$. Similarly,

$$1 = (\alpha \beta)^{tm} = \alpha^{tm} \beta^{tm} = \beta^{tm},$$

so $n \mid tm$. And, since gcd(m,n) = 1, we have $n \mid t$. Hence, since gcd(m,n) = 1, we have $mn \mid t$. Thus t = mn.

THEOREM 2.4.3. Every finite field GF(q) has a generator.

Proof. Let α be an element of highest order in $GF(q)^*$; say $\operatorname{ord}(\alpha) = t$. Suppose that t < (q-1).

If the order of every element in $GF(q)^*$ were to divide t then the equation $y^t - 1 = 0$ would have q - 1 roots in GF(q), which is impossible since (q - 1) > t. Hence there exists an element $\beta \in GF(q)^*$ whose order b does not divide t.

Now, let ℓ be a prime such that the highest power of ℓ which divides b (say ℓ^e) is greater than the highest power of ℓ which divides t (say ℓ^f) — such a prime ℓ must exist since b does not divide t.

Consider the field elements $\alpha' = \alpha^{\ell^f}$ and $\beta' = \beta^{b/\ell^e}$. We have

$$\operatorname{ord}(\alpha') = \frac{t}{\gcd(t, \ell^f)} = \frac{t}{\ell^f}$$

and

$$\operatorname{ord}(\beta') = \frac{b}{\gcd(b, \ell^e)} = \frac{b}{b/\ell^e} = \ell^e$$

Since $\gcd(t/\ell^f,\ell^e)=1$, we have $\gcd(\alpha'\beta')=(t/\ell^f)(\ell^e)=t\ell^{e-f}>t$. This contradicts the hypothesis that the highest order of any element in $GF(q)^*$ is t. Hence the hypothesis that t<(q-1) is wrong, and so t=q-1. Thus α is a generator of $GF(q)^*$.

Chapter 3

Linear Codes

3.1 Introduction

Let F = GF(q). Let $V_n(F) = \underbrace{F \times \cdots \times F}_n = F^n$. Then, $V_n(F)$ is an n-dimensional vector space over F and we have $|V_n(F)| = q^n$.

DEFINITION 3.1.1. Let F = GF(q). A linear (n, k)-code over F is an n-dimensional subspace of $V_n(F)$.

DEFINITION 3.1.2. A subspace of a vector space V over F is a subset $S \subseteq V$ such that

V1 $\mathbf{0} \in S \implies S \neq \emptyset$

V2 $v_1 + v_2 \in S$, $\forall v_1, v_2 \in S$

V3 $\lambda v \in S$, $\forall \lambda \in F$ and $v \in S$

Note that $S \subseteq V$ is also a vector space over F.

Let C be an (n, k)-code over F. Let v_1, \ldots, v_k be an ordered basis for C.

(1) The codewords in C are precisely:

$$m_1 \boldsymbol{v}_1 + \cdots + m_k \boldsymbol{v}_k$$

where $m_i \in F$. So, $|C| = M = q^k$ since there are q choices for each m. The length of C is n and has dimension k.

(2) The rate of C is

$$R = \frac{\log_q(M)}{n} = \frac{k}{n}$$

DEFINITION 3.1.3. The **Hamming weight** of $v \in V_n(F)$, denoted w(v) is the number of non-zero coordinate positions in V.

DEFINITION 3.1.4. The Hamming weight of an (n, k)-code C is:

$$w(C) = \min \left\{ w(c) : c \in C, c \neq 0 \right\}$$

THEOREM 3.1.5. If C is a linear code, then d(C) = w(C).

Proof.

$$\begin{split} d(C) &= \min \left\{ d(\boldsymbol{x}, \boldsymbol{y}) : \boldsymbol{x}, \boldsymbol{y} \in C, \, \boldsymbol{x} \neq \boldsymbol{y} \right\} \\ &= \min \left\{ w(\boldsymbol{x} - \boldsymbol{y}) : \boldsymbol{x}, \boldsymbol{y} \in C, \, \boldsymbol{x} \neq \boldsymbol{y} \right\} \qquad \text{by (A2Q1a)} \\ &= \min \left\{ w(\boldsymbol{c}) : \boldsymbol{c} \in C, \, \boldsymbol{c} \neq \boldsymbol{0} \right\} \qquad \text{since } C \text{ is a vector space} \\ &= w(C) \end{split}$$

3.2 Generator Matrices and the Dual Code

Since $M=q^k$, there are q^k source messages. We'll assume that the source messages are elements of $V_k(F)$. Then, a natural encoding rule is, given $(m_1, \ldots, m_k) \in V_k(F)$ we'll encode the message as

$$c = m_1 \mathbf{v}_1 + \dots + m_k \mathbf{v}_k$$

The encoding rule depends on the basis chosen for C.

If $m = (m_1, \dots, m_k)$, then the encoding rule can be written as follows:

$$C = (m_1, \dots, m_k) \begin{bmatrix} -v_1 - \\ -v_2 - \\ \vdots \\ -v_k - \end{bmatrix}_{k \times n}$$
$$= mG$$

Note that v_i are row vectors in this course.

DEFINITION 3.2.1. Let C be an (n, k)-code. A **generator matrix** G for C is a $k \times n$ matrix whose rows form a basis for C.

Note: An encoding rule for C with respect to G is C = mG. Performing elementary row operations on G gives a different matrix for the same code C due to the order of the basis.

2020-01-27

EXAMPLE 3.2.2. Consider a binary
$$(5, 3)$$
-code C . Then $M = q^k = 2^3$ and $R = \frac{k}{n} = \frac{3}{5}$. $C = \langle \underbrace{10010}_{v_1}, \underbrace{01011}_{v_2}, \underbrace{00101}_{v_3} \rangle$.
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}_{3 \times 5}$$

rank(G) = 3, thus G is a generator matrix for C.

${\it Messages} \; (M)$	\rightarrow	Codewords (C)
000	\rightarrow	00000
001	\rightarrow	00101
010	\rightarrow	01011
011	\rightarrow	01110
100	\rightarrow	10010
101	\rightarrow	10111
110	\rightarrow	11001
111	\rightarrow	11100
d(C) = 2, e = 0.		

Note: Any matrix equivalent to *G* is also a generator matrix for *C*, but yields a different encoding rule.

DEFINITION 3.2.3. Let $[I_k \mid A]_{k \times n}$ be a generator matrix for an (n, k)-code C. If an (n, k)-code has a generator matrix of this form, then C is **systematic**, and the generator matrix is in **standard form**.

EXAMPLE 3.2.4. $C=\langle 100011, 101010, 100110 \rangle$ is a non-systematic (6,3)-code. Some generator matrices are:

$$G_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

 $R_2 + R_1$:

$$G_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

 $R_3 + R_1$:

$$G_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Clearly C is not systematic. However, if every codeword is permuted by moving the second bit to the fourth bit, we get C' that is linear and has the same length, dimension, and distance as C.

DEFINITION 3.2.5. Let C be an (n,k)-code. If π is a permutation on $\{1,\ldots,n\}$. Then $\pi(C)$ (that is, apply π to each codeword) is an (n,k)-code which is said to be an **equivalent code** for C.

THEOREM 3.2.6. (1) If C and C' are equivalent codes, then

$$d(C) = d(C')$$

(2) Every linear code is equivalent to a systematic code.

Proof. Let C be an (n,k) code. Let G be a generator matrix for C in RREF. Then, one can permute the columns of G to get a matrix $G' = [I_k \mid A]$ in standard form. Then, G' is a generator matrix for a code C' that is equivalent to C.

DEFINITION 3.2.7. Let $x, y \in V_n(F)$. The inner product of x and y is

$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i \in F$$

THEOREM 3.2.8. If $x, y, z \in V_n(F)$ and $\lambda \in F$, then

- $(1) \ x \cdot y = y \cdot x$
- (2) $x \cdot (y+z) = x \cdot y + x \cdot z$
- (3) $(\lambda x) \cdot \mathbf{y} = \lambda(\mathbf{x} \cdot \mathbf{y})$
- (4) $x \cdot x = 0$ does **not** imply x = 0

EXAMPLE 3.2.9. Consider $V_2(\mathbb{Z}_2)$. Then, $(1,1) \cdot (1,1) = 0$.

DEFINITION 3.2.10. Let C be an (n, k)-code over F. The **dual code** of C is

$$C^{\perp} = \{ \boldsymbol{x} \in V_n(F) : \boldsymbol{x} \cdot \boldsymbol{c} = \boldsymbol{0} \, \forall \boldsymbol{c} \in C \}$$

THEOREM 3.2.11. *Let* $x \in V_n(F)$.

$$\boldsymbol{x} \in C^{\perp} \iff \boldsymbol{v}_1 \cdot \boldsymbol{x} = \dots = \boldsymbol{v}_k \cdot \boldsymbol{x} = 0$$

Proof. (\Longrightarrow) If $x \in C^{\perp}$, then $x \cdot c = 0$ for all $c \in C$. In particular,

$$\boldsymbol{x} \cdot \boldsymbol{v}_1 = \cdots = \boldsymbol{x} \cdot \boldsymbol{v}_k = 0$$

 (\Leftarrow) Suppose $x \cdot v_1 = \cdots = x \cdot v_k = 0$. Let $c \in C$. We can write

$$c = \lambda_1 v_1 + \cdots + \lambda_k v_k$$

for all $\lambda_i \in F$. Then,

$$\boldsymbol{x} \cdot \boldsymbol{c} = \lambda_1(\boldsymbol{x} \cdot \boldsymbol{v}_1) + \dots + \lambda_k(\boldsymbol{x} \cdot \boldsymbol{v}_k) = 0$$

Hence, $x \in C^{\perp}$.

THEOREM 3.2.12. If C is an (n,k)-code over F, then C^{\perp} is an (n,n-k)-code over F.

Proof. Consider

$$G = \begin{bmatrix} v_1 \\ \vdots \\ v_k \end{bmatrix}_{k \times n}$$

Then, $x \in C^{\perp}$ if and only if $Gx^{\top} = \mathbf{0}$. So, C^{\perp} is the nullspace of G. Hence, C^{\perp} is an (n-k)-dimensional subspace of $V_n(F)$.

2020-01-29

DEFINITION 3.2.13. If $x, y \in V_n(F)$ and $x \cdot y = 0$, then x and y are **orthogonal**.

THEOREM 3.2.14. If C is a linear code, then $(C^{\perp})^{\perp} = C$.

Proof. Let C be an (n,k)-code. Then C^{\perp} is an (n,n-k)-code. So, $(C^{\perp})^{\perp}$ is an (n,k)-code. But $C\subseteq (C^{\perp})^{\perp}$ by definition of C^{\perp} . Suppose C is a code over F=GF(q). Then $|C|=q^k$ and $|(C^{\perp})^{\perp}|=q^k$. Thus, $C=(C^{\perp})^{\perp}$.

THEOREM 3.2.15. Let C be an (n,k)-code with standard form $k \times n$ generator matrix. Then, a generator matrix for C^{\perp} is

$$H = \left[-A^{\top} \mid I_{n-k} \right]_{(n-k) \times n}$$

Proof. rank(H) = n - k, so H is indeed a generator matrix for some (n, n - k)-code \overline{C} . Now,

$$GH^{\top} = [I_k \mid A] \begin{bmatrix} -A \\ I_{n-k} \end{bmatrix}$$
$$= -A + A$$
$$= 0$$

$$GH^{\top} = \begin{bmatrix} I_k \mid A \end{bmatrix} \begin{bmatrix} -A \\ I_{n-k} \end{bmatrix}$$
$$= -A + A$$
$$= 0$$

Since $GH^{\top}=0$, every row of H is orthogonal to every row of G, so every vector in the row space of H is orthogonal to every vector in the row space of G. Hence, $\overline{C}\subseteq C$. Since $\dim(\overline{C})=\dim(C^{\perp})$ we have $\overline{C}=C^{\perp}$.

3.3 The Parity-Check Matrix

DEFINITION 3.3.1. A generator matrix for C^{\perp} is called a **parity-check matrix** (PCM) for C.

EXAMPLE 3.3.2. Consider a (5,2)-code C over \mathbb{Z}_3 with generator matrix

$$G = \begin{bmatrix} 2 & 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \leftarrow c_1 \leftarrow c_2$$

Find the length, dimension, order, number of codewords, codewords, distance, weight and errors that can be corrected for ${\cal C}.$

Solution.

- Length: n = 5 ((n, k)-code)
- Dimension: k = 2 ((n, k)-code)
- Order: $q = 3 (\mathbb{Z}_3)$
- Number of codewords: $M = q^k = 3^2 = 9$
- Codewords: $C = \{00000, 20210, 10120, 11001, 22002, 01211, 12212, 21121, 02122\}$
- Distance: d(C) = w(C) = 3
- Error-correcting capability: e=1

Find a generator matrix for C^{\perp} .

Solution.

$$\begin{bmatrix} 2 & 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$

So,

$$H = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{bmatrix}$$

is a generator matrix for C^{\perp} which is a (5,3)-code over \mathbb{Z}_3 . $M=3^3=27$.

2020-01-31

THEOREM 3.3.3. Let C be an (n,k)-code over F, and let H be a PCM for C. Then $d(C) \ge s$ if and only if every (s-1) columns of H are linearly independent over F.

Proof. Let h_1, \ldots, h_n be the columns of H.

 (\Leftarrow) Suppose $d(C) \leq s-1$, so $w(C) \leq s-1$. Let $c \in C$, with $1 \leq w(c) \leq s-1$. WLOG, suppose $c_i = 0$ for all $s \leq j \leq n$. Since $c \in C$, we have $Hc^{\top} = 0$. Therefore, $c_1h_1 + \cdots + c_{s-1}h_{s-1} = 0$. Since $w(C) \geq 1$, this is a non-trivial linear combination of h_1, \ldots, h_{s-1} that equal 0. So, h_1, \ldots, h_{s-1} are linearly dependent over F.

 (\Longrightarrow) Suppose there are s-1 columns of H that are linearly dependent over F, say h_1,\ldots,h_{s-1} . So, we can write

$$c_1h_1 + \cdots + c_{s-1}h_{s-1}$$

where $c_j \in F$ not all zero. Let $c = (c_1, \dots, c_{s-1}, \underbrace{0 \cdots 0}_{n-s+1}) \in V_n(F)$. Then, $Hc^{\top} = 0$. So, $c_i C$ and $1 \leqslant w(c) \leqslant s-1$,

so $d(C) \leqslant s - 1$.

COROLLARY 3.3.4. Let C be an (n,k)-code over F with PCM H. Then, d(C) is the smallest number of columns of H that are linearly dependent over F.

EXAMPLE 3.3.5. Recall, we found a PCM

$$H = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{bmatrix}$$

for a (5,2)-code C over \mathbb{Z}_3 . Find d(C).

Solution.

- No 0 column in $H \implies d(C) \geqslant 2$
- No two linearly dependent columns in H (since no repeated columns, and no column is two times another column \implies $d(C) \geqslant 2$) $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

Therefore $d(C) \not \geq 4$, therefore d(C) = 3.

EXAMPLE 3.3.6. Let C be a binary code with PCM H.

- $d(C) = 1 \iff H \text{ has a } 0 \text{ column.}$
- $d(C) = 2 \iff$ the columns of H are non-zero and two are the same.
- $d(C) = 3 \iff$ the columns of H are non-zero, distinct, and one column is the sum of two other

(distinct) columns.

3.4 Hamming Codes and Perfect Codes

EXAMPLE 3.4.1. Construct a (7, 4, 3)-binary code C. **Solution.** Consider a PCM for C:

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

This is a **Hamming Code** of order 3 over GF(2).

DEFINITION 3.4.2. Let C be an [n, M]-code with distance d over an alphabet A of size q. Let $e = \left\lfloor \frac{d-1}{2} \right\rfloor$. The **sphere packing bound** or **Hamming bound** is:

$$M\sum_{i=0}^{e} \binom{n}{i} (q-1)^i \leqslant q^n$$

DEFINITION 3.4.3. Let C be an [n, M]-code over A of distance d. Then, C is perfect if

$$M\sum_{i=0}^{e} \binom{n}{i} (q-1)^i = q^n$$

Note: If C is perfect, then IMLD=CMLD.

2020-01-03

For fixed n, q, d, a perfect code maximizes

$$R = \frac{\log_q(M)}{n}$$

EXAMPLE 3.4.4. $GF(q)^n$ is a trivial perfect code with d=1. $C=\{\underbrace{0\cdots 0}_n,\underbrace{1\cdots 1}_n\}$ over \mathbb{Z}_2 is a perfect code if n is odd.

Proof.

$$2\left(\sum_{i=0}^{e} \binom{n}{i}\right) = 2\left(\binom{n}{0} + \binom{n}{e}\right)$$

$$= \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{e+1} + \dots + \binom{n}{n-1} + \binom{n}{n}$$

$$= (1+1)^{n}$$

$$= 2^{n}$$

Exercise: Prove that every perfect code must have odd distance (without using the theorem below)

THEOREM 3.4.5 (Tietäväinen, 1973). *The only perfect codes are:*

- (1) $V_n(GF(q))$.
- (2) The binary replication code of odd length.
- (3) The (23, 12, 7)-binary Golay code and all codes equivalent to it.
- (4) The (11, 6, 5)-ternary Golay code and all codes equivalent to it. A generator matrix for this code is:

$$G = \begin{bmatrix} I_6 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 \end{bmatrix}_{6 \times 11}$$

(5) The Hamming codes and all codes of the same [n, M, d] parameters as them with d = 3.

EXAMPLE 3.4.6. A Hamming code of order r = 3 over GF(3) is a (13, 10, 3)-code over GF(3) with PCM:

$$H = \begin{bmatrix} I_3 & 1 & 0 & 1 & 2 & 2 & 0 & 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 2 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 2 & 1 & 2 & 2 & 1 \end{bmatrix}_{3 \times 13}$$

Observations:

- (i) For every non-zero vector $v \in V_r(GF(q))$, exactly one scalar multiple of v must be a column of a PCM (for the Hamming code of order r over GF(q))
- (ii) The dimension of the code is indeed k since rank(PCM) = r = n k since $\lambda_i e_i$ are columns of the PCM.
- (iii) The Hamming codes have distance 3.

THEOREM 3.4.7. Hamming codes are perfect.

Proof. Recall that Hamming codes have e=1 and $n=\frac{q^r-1}{q-1}$ with r=n-k.

$$\begin{split} M \sum_{i=0}^{e} \binom{n}{i} (q-1)^i &= q^{n-r} (1 + n(q-1)) \\ &= q^{n-r} \left(1 + \frac{q^r - 1}{q-1} (q-1) \right) \\ &= q^n \end{split}$$

DEFINITION 3.4.8. Suppose $c \in C$ is transmitted. Suppose $r \in V_n(F)$ is received. Then, the **error vector** is e = r - c.

EXAMPLE 3.4.9 (Error Vector). Over \mathbb{Z}_3 , if c = (120212) is sent, and r = (122102) is received, then the error vector is e = (002220).

3.5 Decoding Single-Error Correcting Codes

Let H be a PCM for an (n, k)-code C over GF(q) with $d \ge 3$.

$$egin{aligned} H m{r}^{ op} &= H (m{c} + m{e})^{ op} \\ &= H m{c}^{ op} + H m{e}^{ op} \\ &= H m{e}^{ op} & ext{since } c^{ op} ext{ is in nullspace of } H \end{aligned}$$

DEFINITION 3.5.1. Let H be a parity-check matrix for an (n,k)-code. The **syndrome** s of r is defined to be $s = Hr^{\top}$.

Notes:

- (1) r and e have the same syndrome
- (2) If e = 0, then $He^{\top} = 0$.
- (3) If w(e) = 1, say $e = (0, \dots, 0, \alpha, 0, \dots, 0)$ where α is in the i^{th} position with $\alpha \neq 0$, then $He^{\top} = \alpha h_i$ where h_i is the i^{th} column of H.
- (4) The converse of (2) and (3) are false.

```
Algorithm 1: Decoding Algorithm for Single-Error Correcting Codes

Input: Parity-check matrix H = (h_1, \dots, h_n)^{\top} and received vector r

Output: Decoded vector

1: s \leftarrow Hr^{\top}
2: if w(s) = 0 then
3: v = v = v
3: v = v = v
4: for v = v = v
4: for v = v = v
6: v = v = v
7: return v = v
7: return v = v
7: return v = v
8: v = v = v
8: v = v = v
9: v = v
9:
```

Claim: If $w(e) \le 1$, then the decoding algorithm always makes the correct decision.

Note: If H is a Hamming code and $w(e) \ge 2$, then this decoding algorithm will always make the wrong decision.

EXAMPLE 3.5.2 (Single-Error Decoding). Consider the (7,4,3)-binary Hamming code with PCM

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

Decode r = (0111110). **Solution.**

- 1. Compute $s = Hr^{\top} = (011)^{\top}$.
- 2. *s* is the 6th column of *H*, so e = (0000010).
- 3. $r \rightarrow 0111100$. Verify that $Hc^{\top} = 0$.

General Decoding Problem for Binary Linear Codes

Instance: An $(n-k) \times n$ matrix H over GF(2) with rank(H) = n - k. $r \in V_n(GF(2))$.

Find: A vector $e \in V_n(GF(2))$ of minimum weight with $Hr^{\top} = He^{\top}$.

Fact: This problem is NP-hard.

- P = problems solvable in "polynomial time"; that is, efficiently.
- NP = a "certain" class of problems including problems of strong practical interest which we do not know how to solve efficiently
- NP-hard = If any single problem in this class of problems can be solved efficiently, then so can all problems in NP, in which case P=NP.

2020-02-07

3.6 Decoding Linear Codes

Let C be an (n, k)-code over F = GF(q) with PCM H.

DEFINITION 3.6.1. We write $x \equiv y \mod C$, where $x, y \in V_n(F)$ if $x - y \in C$.

Notes:

- (1) $\equiv \mod C$ is an equivalence relation.
- (2) The set of equivalence classes partitions $V_n(F)$.
- (3) The equivalence classes containing $x \in V_n(F)$ is called a **coset** of $V_n(F)$. This class is:

$$\{ \boldsymbol{y} \in V_n(F) : \boldsymbol{y} \equiv \boldsymbol{x} \mod C \} = \{ \boldsymbol{x} + \boldsymbol{c} : \boldsymbol{c} \in C \}$$

= $C + \boldsymbol{x}$

We call C + x the coset of C represented by x.

EXAMPLE 3.6.2 (Cosets). Consider a (5, 2)-binary code with generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}_{2 \times 5}$$

with d(C) = 3. Find all cosets of C.

Solution. The cosets of C are:

- (1) $C + 00000 = \{00000, 10111, 01110, 11001\} = \{\mathbf{0}, R_1, R_2, R_1 + R_2\} = C + 10111 = C + 01110 = C + 11001$
- (2) $C + 10000 = \{10000, 00111, 11110, 01001\}$
- (3) $C + 01000 = \{01000, 11111, 00000, 10001\}$
- (4) $C + 00100 = \{00100, 10011, 01010, 11101\}$
- (5) $C + 00010 = \{00010, 10101, 01100, 11011\}$
- (6) $C + 00001 = \{00001, 10110, 01111, 11000\}$
- (7) $C + 00011 = \{00011, 10100, 01101, 11010\}$
- (8) $C + 11100 = \{11100, 01011, 10010, 00101\}$

In total, there are 8 cosets.

Notes:

(1)
$$C + \mathbf{0} = C$$

- (2) If $y \in C + x$, then C + y = C + x by definition of equivalence.
- (3) The number of cosets is $q^n/q^k = q^{n-k}$.

Recall: If $x \in V_n(F)$, then it's syndrome is

$$s = Hr^{\top} \in V_{n-k}(F)$$

THEOREM 3.6.3. Let $x, y \in V_n(F)$. Then $x \equiv y \mod C$ if and only if $Hx^\top = Hy^\top$.

Proof.

$$egin{aligned} oldsymbol{x} \equiv oldsymbol{y} \mod C &\iff oldsymbol{x} - oldsymbol{y} \in C \ &\iff H(oldsymbol{x} - oldsymbol{y})^{ op} = oldsymbol{0} \ &\iff Holdsymbol{x}^{ op} = oldsymbol{y}^{ op} \end{aligned}$$

So, cosets are characterized by their syndromes.

Decoding

- $c \in C$ is sent.
- $r \in V_n(F)$ is received.
- $e = r c \in V_n(F)$
- $H\mathbf{r}^{\top} = H\mathbf{e}^{\top}$.

So, r and e belong to the same coset of C.

CMLD

Given r, find a vector e of smallest weight in C + r or equivalently, find a vector e of smallest weight with the same syndrome as r. Then, decode r to c = r - e.

IMLD

Find the unique vector e of smallest weight having the same syndrome as r. If no such e exists, then reject r. Otherwise, decode r to c = r - e.

3.7 Syndrome Decoding Algorithm

Given a PCM H for an (n, k)-code C over F = GF(q).

DEFINITION 3.7.1. A vector of smallest weight is a coset of C is distinguished and called a **coset leader** (of that coset).

Algorithm 2: Syndrome Decoding Algorithm

Input: Table of cosets, parity-check matrix H, and received vector r

Output: Decoded vector

- 1 $s \leftarrow Hr^{\top}$
- 2 Look up the coset leader corresponding to s, say ℓ .
- 3 return $r-\ell$

EXAMPLE 3.7.2 (Syndrome Decoding).

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}_{2 \times 5}$$

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}_{3 \times 5}$$

Table of Cosets

$$\begin{array}{ll} C+00000=\{00000,10111,01110,11001\} & C+00010=\{00010,10101,01100,11011\} \\ C+10000=\{10000,00111,11110,01001\} & C+00001=\{00001,10110,01111,11000\} \\ C+01000=\{01000,10111,01010,11101\} & C+00101=\{00011,10100,01101,11010\} \\ C+00100=\{00100,10011,01010,11101\} & C+11100=\{11100,01011,10010,00101\} \end{array}$$

There are $q^{n-k} = 2^{5-2} = 2^3 = 8$ cosets in total.

 $Coset\ Leaders \rightarrow Syndromes:$

- $00000 \to 000$
- $10000 \rightarrow 111$
- $01000 \to 110$
- $\bullet \ 00100 \rightarrow 100$
- $\bullet \quad 00010 \rightarrow 010$
- $00001 \rightarrow 001$
- $00011 \rightarrow 011$
- $10010 \to 101$

Suppose r = 10111 is received. Decode r.

Solution.

Compute $s = Hr^{\top} = (000)^{\top}$.

The closest leader corresponding to $s = (000)^{\top}$ is $\ell = 00000$.

Thus, we get the decoded vector $r - \ell = 10111$.

Chapter 4

Some Special Linear Codes

2020-02-07

DEFINITION 4.0.1. A linear code C is **self-orthogonal** if $C \subseteq C^{\perp}$.

DEFINITION 4.0.2. A linear code C is **self-dual** if $C = C^{\perp}$.

For a binary (n,k)-code C, the syndrome table has size $2^{n-k} \times n$ which is exponentially large.

Goal: Design decoding algorithm which require very little space.

EXAMPLE 4.0.3. Use only the PCM H which is $(n - k) \times n$ bits.

4.1 The Binary Golay Code C23 (1949)

Let

Then, $\hat{G} = \begin{bmatrix} I_{12} \mid \hat{B} \end{bmatrix}_{12 \times 23}$ is a generator matrix for a (23, 12)-binary code called C_{23} .

Note: In \hat{B} ,

- R_1 in only contains 1's.
- R_3 to R_{12} are left cyclic shifts of R_2 .

THEOREM 4.1.1. Facts:

- 1. $d(C_{23}) = 7$.
- 2. C_{23} is perfect.

Proof. We know that e = 3, so $2^{12} \left[\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3} \right] = 2^{23}$.

4.2 The Extended Golay Code C24

Let

$$B = \begin{bmatrix} 0 \\ \mathbb{1} & \hat{B} \end{bmatrix}_{12 \times 12}$$

where $\mathbb{1}$ is the column vector $(\underbrace{1,\ldots,1}_{11 \text{ times}})^{\top}$.

Then, $G = [I_{12} \mid B]_{12 \times 24}$ is a generator matrix for a (24, 12)-binary code called C_{24} .

Notes:

- (i) C_{24} is a (24, 12, 8)-binary code (e = 3)
- (ii) $GG^{\top} = \mathbf{0}$
- (iii) $C_{24} \subseteq C_{24}^{\perp}$, C_{24} is a self-orthogonal code.
- (iv) $\dim(C_{24}) = 12$ and $d(C^{\perp}) = 12$, so $C_{24} = C_{24}^{\perp}$ (C_{24} is a self-dual code)
- (v) B is symmetric
- (vi) PCM for C_{24} is $H = \left\lceil -B^\top \mid I_{12} \right\rceil = \left\lceil B \mid I_{12} \right\rceil$
- (vii) Since $C_{24} = C_{24}^{\perp}$, H is also a GM for C_{24} .
- (viii) G is also a PCM for C_{24}^{\perp} .

4.2.1 Decoding Algorithm for C24

Compute a syndrome of r. Find a vector e with $w(e) \le 3$, that has the same syndrome as r. If no such e exists, then reject r, otherwise decode r to c = r - e.

Let r = (x, y) and $e = (e_1, e_2)$. There are five (not mutually exclusive) cases to consider. In the event that $w(e) \leq 3$,

- (A) $w(e_1) = 0, w(e_2) = 0$
- (B) $1 \le w(e_1) \le 3, w(e_2) = 0$
- (C) $w(e_1) = 1$ or $2, w(e_2) = 1$
- (D) $w(e_1) = 0, 1 \le w(e_2) \le 3$
- (E) $w(e_1) = 1$, $w(e_2) = 1$ or 2

THEOREM 4.2.1. Let C be an (n, k, d)-code over GF(q). Let $\mathbf{x} = V_n(GF(q))$ with $w(\mathbf{x}) \leqslant \lfloor \frac{d-1}{2} \rfloor$. Then \mathbf{x} is the unique vector of minimum weight in the coset of C containing \mathbf{x} (so, it must be a coset leader).

Proof. Suppose for a contradiction that y is a vector in the same coset of C as x with $y \neq x$ and

$$w(\boldsymbol{y}) \leqslant w(\boldsymbol{x}) \leqslant \left| \frac{d-1}{2} \right|$$

Then, $y - x \neq 0$, $x \equiv y \mod C$, and so $x - y \in C$. Now,

$$w(\boldsymbol{x} - \boldsymbol{y}) = w(\boldsymbol{x} + (-\boldsymbol{y})) \leqslant w(\boldsymbol{x}) + w(\boldsymbol{y})$$

$$= w(\boldsymbol{x}) + w(\boldsymbol{y})$$

$$\leqslant \left\lfloor \frac{d-1}{2} \right\rfloor + \left\lfloor \frac{d-1}{2} \right\rfloor$$

$$\leqslant d-1$$

contradicting d(C) = d.

2020-02-12

```
Algorithm 3: Decoding Algorithm for C_{24}
    Input : G = [I_{12} | B] = (g_1, ..., g_{24})^{\top}, and \tilde{G} = [B | I_{12}] = (\tilde{g}_1, ..., \tilde{g}_{24})^{\top}, and received vector
                   r = (x, y)
    Output: Decoded vector
 s_1 \leftarrow Gr^{\perp}
 2 if s_1 = 0 then
      return r
 4 if w(s_1) \leqslant 3 then
          for i to 12 do
               x' \leftarrow \text{corrected } x \text{ in each position corresponding to 1's in } s_1
 6
            return (x', y)
 s for i \leftarrow 0 to 24 do
         if g_i differs in position j or positions j and k from s_1 then
               x' \leftarrow (x_1, \dots, x_{12}) where x_j \leftarrow \overline{x}_j or x_j \leftarrow \overline{x}_j and x_k \leftarrow \overline{x}_k
10
               \boldsymbol{y}' \leftarrow (y_1, \dots, y_{12}) \text{ where } y_i \leftarrow \overline{y}_i
11
               return (x', y')
13 \boldsymbol{s}_2 \leftarrow \tilde{G} \boldsymbol{r}^{	op}
14 if w(s_2) \leqslant 3 then
          y' \leftarrow corrected y in each position corresponding to 1's in s_2
        return (x, y')
17 for i \leftarrow 0 to 24 do
          if \tilde{g}_i differs in position j or positions j and k from s_2 then
               y' \leftarrow (y_1, \dots, y_{12}) where y_j \leftarrow \overline{y}_j or y_j \leftarrow \overline{y}_j and y_k \leftarrow \overline{y}_k
19
               \boldsymbol{x}' \leftarrow (x_1, \dots, x_{12}) \text{ where } x_i \leftarrow \overline{x}_i
20
               return (x', y')
22 return
```

```
EXAMPLE 4.2.2 (Decoding Algorithm for C24). (i) Decode r = (1000\ 1000\ 0000\ 1001\ 0001\ 1101). Solution. Compute s_1 = [\ I_{12}\ |\ B\ ]\ r^\top = (0100\ 1000\ 0000)^\top. Since w(s_1) \leqslant 3, we set e = (s_1^\top, 0) and decode r to c = r - e = (1100\ 0000\ 0000\ 1001\ 0001\ 1101) (ii) Decode r = (1000\ 0010\ 0000\ 1000\ 1101\ 0010). Solution. Compute s_1 = [\ I_{12}\ |\ B\ ]\ r^\top = (1011\ 1110\ 1011)^\top. Note that w(s_1) > 3. Comparing
```

 s_1 with the rows of B, we see that s_1 differs in positions 6 and 7 from row 4 of B. Hence we set $e = (0000\ 0110\ 0000\ 0001\ 0000\ 0000)$ and decode r to

$$c = r - e = (1000\ 0100\ 0000\ 1001\ 1101\ 0010)$$

NOTE: In both examples we should check out answers by verifying that $Hc^{\top} = 0$ (i.e., c is indeed a codeword).

Note:

- (1) If $w(e) \leq 3$, then the algorithm makes the correct decision.
- (2) No storage is needed:

$$oldsymbol{s}_1 = \left[egin{array}{c|c} I_{12} & B \end{array}
ight] oldsymbol{r}^ op = \left[egin{array}{c|c} I_{12} & B \end{array}
ight] egin{array}{c|c} oldsymbol{x} \ oldsymbol{y} \end{array} = oldsymbol{x} + Boldsymbol{y}$$

where B is a left cyclic shift of the first row.

(3) The algorithm is very simple and efficient for hardware.

4.2.2 Reliability of C24

- p = symbol error probability
- $C = \{c_1, \dots, c_M\}$
- w_i = probability that the decoding algorithm makes an incorrect decision if c_i is sent.
- $P_C = \frac{1}{M} \sum_{i=1}^{M} w_i$ error probability of C.
- $1 P_C$ = reliability of C (correct decision)

p	$(1-p)^{12}$	$1 - P_{C_{24}}$	$1 - P_T$	$1-P_H$
0.1	0.28243	0.785738	0.71121	0.549043
0.01	0.886385	0.999909	0.99643	0.99037
0.001	0.988066	≈ 1	0.999964	0.999896
Rate	1	1/2 = 0.5	$1/3 = 0.3\overline{3}$	$11/15 = 0.7\overline{3}$

(1) If no source is used, then the reliability for 12-bit messages is

$$(1-p)^{12}$$

(2)
$$C_{24}$$

$$1 - P_{C_{24}} = \left[(1-p)^{24} + {24 \choose 1} p(1-p)^{23} + {24 \choose 2} p^2 (1-p)^{22} + {24 \choose 3} p^3 (1-p)^{21} \right]$$

(3) Triplication Code T

$$1 - P_T = \left[(1 - p)^3 + 3p(1 - p)^2 \right]^{12}$$

(4) (15,11)-binary Hamming Code

$$1 - P_H = (1 - p)^{15} + 15p(1 - p)^{14}$$

Chapter 5

Cyclic Codes

2020-02-14 ♡

5.1 Introduction

DEFINITION 5.1.1. A subspace S of $V_n(F)$ is a **cyclic subspace** if $(a_0, a_1, \ldots, a_{n-1}) \in S \implies (a_{n-1}, a_0, \ldots, a_{n-2}) \in S$.

DEFINITION 5.1.2. A **cyclic code** is a cyclic subspace of $V_n(F)$.

5.2 Rings and Ideals

Let $R = F[x]/(x^n - 1)$. We write

$$\underbrace{(a_0, a_1, \dots, a_{n-1})}_{\in V_n(F)} \longleftrightarrow \underbrace{a_0 + a_1 x + \dots + a_{n-1} x^{n-1}}_{\in R}$$

That is, there is an isomorphism between $V_n(F)$ and R.

- Addition is preserved: $a + b \longleftrightarrow a(x) + b(x)$
- Scalar multiplication is preserved: $\lambda a \longleftrightarrow \lambda a(x)$

Why choose $x^n - 1$?

Let $a = (a_0, \ldots, a_{n-1}) \in V_n(F)$. Let a(x) be its associative polynomial in R. Then,

$$xa(x) = a_0x + a_1x^2 + \dots + a_{n-2}x^{n-1} + a_{n-1}x^n$$

= $a_{n-1} + a_0x + \dots + a_{n-2}x^{n-1} \mod x^n - 1$
 $\longleftrightarrow (a_{n-1}, a_0, \dots, a_{n-2})$

So, multiplying a polynomial in R by x corresponds to a right cyclic shift of the associated vector.

We'll define $\cdot: V_n(F) \times V_n(F) \to V_n(F)$ by

$$a \cdot b \longleftrightarrow a(x)b(x) \mod x^n - 1$$

DEFINITION 5.2.1. Let R be a commutative finite ring. Then, the non-empty subset I of R is an **ideal** of R if

- (1) For all $a, b \in I$, $a + b \in I$
- (2) For all $a \in I$, $b \in R$, $ab \in I$
- $\{0\}$ and R are defined to be **trivial** ideals of R.

THEOREM 5.2.2. Let $S \subseteq V_n(F)$ be non-empty. Let I be the associated polynomials. Then S is a cyclic subspace of $V_n(F)$ if and only if I is an ideal of $R = F[x]/(x^n - 1)$.

Proof. (\Longrightarrow) Suppose S is a cyclic subspace of $V_n(F)$. Since S is closed under addition, so is I. Let $a(x) \in I$, $b(x) = b_0 + \cdots + b_{n-1}x^{n-1} \in R$. Then $xa(x) \in I$ since S is a cyclic subspace. So, $x^ia(x) \in I$ for each $i \in [0, n-1]$. Also, $b_ix^ia(x) \in I$ since S is closed under scalar multiplication. Finally, $a(x)b(x) = a(x)(b_0 + \cdots + b_{n-1}x^{n-1})$ which is in I since I is closed under addition. Thus, I is an ideal.

(\Leftarrow) Suppose I is an ideal of R. Since I is closed under addition, so is S. Since I is closed under multiplication by constant polynomials, S is closed under scalar multiplication. Since I is closed under multiplication by x, S is closed under (right) cyclic shifts. Thus, S is a cyclic subspace.

DEFINITION 5.2.3. Let $g(x) \in R$. Then $\langle g(x) \rangle = \{g(x)a(x) : a(x) \in R\}$ is an ideal of R called the **ideal generated by** g(x). If I is an ideal of R, then I is a **principal** ideal if there exists a $g(x) \in I$ such that $I = \langle g(x) \rangle$. R is called the **principal ideal ring** if every ideal ring of R is principal.

THEOREM 5.2.4. $R = F[x]/(x^n - 1)$ is a principal ideal ring.

Proof. Let I be an ideal of R.

Suppose $I = \{0\}$, then $I = \langle 0 \rangle$ is principal.

Suppose $I \neq 0$. Let g(x) be a polynomial of smallest degree in I. Let $a(x) \in I$. Long division gives

$$a(x) = \ell(x)g(x) + r(x)$$

where $\ell, r \in F[x]$ and $\deg(r) < \deg(g)$, but $\ell(x)g(x) \in I$ since I is closed under multiplication by R and $a(x) = \ell(x)g(x) \in I$. Therefore, $r(x) \in I$. Since $\deg(r) < \deg(g)$, we must have r(x) = 0 (since we define $\deg(0) = -\infty$). Hence, $a(x) = \ell(x)g(x)$. Therefore, $I = \langle g(x) \rangle$. Thus, R is a principal ideal ring. \square

2020-02-24

5.3 Ideals and Cyclic Subspaces

DEFINITION 5.3.1. A monic polynomial g(x) is a single-variable polynomial in which the non-zero coefficient of the highest degree of x is 1. That is,

$$g(x) = c_0 + \dots + c_{\ell-1}x^{\ell-1} + x^{\ell}$$

for some constants c_i where $i \in [\ell - 1, 1]$.

If $I \neq \{0\}$, then we took g(x) = a non-zero polynomial of smallest degree in I. Note, we can take g(x) to be monic. If g(x) is not monic, say

$$g(x) = c_0 + \dots + c_{\ell} x^{\ell}$$

where $c_{\ell} \neq 0, 1$, then

$$c_{\ell}^{-1}g(x) = c_{\ell}^{-1}g_0 + \cdots x^{\ell}$$

is monic and is also in I. We'll call this process making g(x) monic.

DEFINITION 5.3.2. Let *I* be an ideal in $R = F[x]/(x^n - 1)$.

The generator polynomial of I is:

- (1) $x^n 1$ since $x^n 1 \equiv 0 \mod x^n 1$ when $I = \{0\}$.
- (2) **the** monic polynomial of least degree in *I* when $I \neq \{0\}$.

THEOREM 5.3.3. Let I be a non-zero ideal in $R = F[x]/(x^n - 1)$.

- (1) There is a **unique** monic polynomial g(x) of smallest degree in I.
- (2) $g(x) \mid (x^n 1)$

Proof. (1) Suppose there exists two monic polynomials g(x) and h(x) of the same smallest degree in I. Then, $g(x) - h(x) \in I$ and $\deg(g - h) < \deg(g)$. Hence, we must have g - h = 0, so g = h.

(2) We can write

$$x^n - 1 = \ell(x)g(x) + r(x)$$

where $\ell, r \in F[x]$ and $\deg(r) < \deg(g)$. Then,

$$0 \equiv \ell(x)g(x) + r(x) \mod x^n - 1 \iff r(x) \equiv -\ell(x)g(x) \mod x^n - 1$$

Since $\langle g(x) \rangle = I$, we must have $r(x) \in I$. Hence, $\deg(r) < \deg(g)$ so we must have r(x) = 0. Thus,

$$g(x) \mid (x^n - 1)$$

THEOREM 5.3.4. Let h(x) be a monic divisor of $x^n - 1$ in F[x]. Then, **the** generator polynomial of $\langle h(x) \rangle$ is h(x).

Proof. If $h(x) = x^n - 1$, then $I = \{0\}$ and by definition, its generator polynomial is $x^n - 1$.

If deg(h) < n, then $I \neq \{0\}$. Let g(x) be **the** monic polynomial of smallest degree in I. Since g is a generator of I, we can write

$$g(x) \equiv a(x)h(x) \mod x^n - 1 \implies g(x) = a(x)h(x) + \ell(x)(x^n - 1)$$

for some $\ell \in F[x]$. Since $h \mid (x^n - 1)$, and $h \mid ah$, we have $h \mid g$. So, $\deg(h) \leqslant \deg(g)$ since g is a monic polynomial of smallest degree in I, we must have $\deg(g) \leqslant \deg(h)$, so $\deg(g) = \deg(h)$. Since g and h are both monic, we have g = h.

COROLLARY 5.3.5. There is a 1-1 correspondence between monic divisors of $x^n - 1$ in F[x] and ideals in R. There is a 1-1 correspondence between monic divisors of $x^n - 1$ in F[x] and cyclic subspaces of $V_n(F)$.

EXAMPLE 5.3.6. Find all cyclic subspaces of $V_3(\mathbb{Z}_2)$. **Solution.** The complete factorization of $x^3 - 1$ over \mathbb{Z}_2 is

$$x^3 - 1 = (1+x)(1+x+x^2)$$

Monic divisor of $x^3 - 1$	$\langle g_i(x) \rangle$	$\dim\langle g_i(x)\rangle$
$g_1(x) = 1$	$\{000,001,\ldots,111\}$	3
$g_2(x) = 1 + x$	{000, 110, 001, 101}	2
$g_3(x) = 1 + x + x^2$	{000,111}	1
$g_4(x) = 1 + x^3$	{0}	0

2020-02-26

Midterm review session.

2020-02-28

To find $h^*(x)$, we need $h(x) = (x^n - 1)/(g(x))$ where $\deg(h) = k$. Then, we find the reciprocal polynomial $h_R(x)$, and we make it monic to obtain $h^*(x)$.

Note: We do not know the distance of C, but we can use a BCH code and specifically select g(x) to give a lower bound on d(C).

LEMMA 5.3.7. Let g(x) be a monic divisor with deg(g) = n - k of $x^n - 1$ in F[x]. In fact,

$$\langle g(x) \rangle = \{ g(x)\overline{a}(x) : \deg(\overline{a}) < k \}$$

Proof. Let $h(x) = g(x)a(x) \mod x^n - 1$ where $\deg(a) < n$. So,

$$h(x) - g(x) = \ell(x)(x^n - 1)$$

for some $\ell \in F[x]$. Therefore, $q \mid h$. So, $h(x) = q(x)\overline{a}(x)$, for some $\overline{a} \in F[x]$ with $\deg(\overline{a}) \leq k-1$.

THEOREM 5.3.8. Let g(x) be a monic divisor of $x^n - 1$ with $\deg(g) = n - k$ of $x^n - 1$ in F[x]. Then, the cyclic code C generated by g(x) has dimension k.

Proof. We'll show that

$$B = \{g(x), xg(x), \dots, x^{k-1}g(x)\}\$$

is a basis of C.

We first show B is linearly independent. Suppose

$$\lambda_0 g(x) + \lambda_1 x g(x) + \dots + \lambda_{k-1} x^{k-1} g(x) = 0$$

where $\lambda_i \in F$ for each $i \in [0, k-1]$. The coefficient x^{n-1} in the LHS is λ_{k-1} . The coefficient of x^{n-1} in the RHS is 0. Hence, $\lambda_{k-1} = 0$. Similarly,

$$\lambda_0 = \lambda_1 = \dots = \lambda_{k-2} = 0$$

Thus, B is linearly independent.

We now show B spans C. Let $h(x) \in \langle g(x) \rangle$. By Lemma, we can write

$$h(x) = \underbrace{g(x)}_{\text{deg}=n-k} \underbrace{a(x)}_{\text{deg}=k-1}$$

for some $a \in F[x]$ where $deg(a) \leq k - 1$. Let

$$a(x) = \sum_{i=0}^{k-1} a_i$$

where $a_i \in F$ for each $i \in [0, k-1]$. Then,

$$h(x) = g(x)a(x) = \sum_{i=0}^{k-1} a_i(x^i g(x))$$

Thus, $\dim(C) = k$.

5.4 Generator Matrices and Parity-Check Matrices

Therefore, a generator matrix for C is:

$$G = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}_{k \times n} = \begin{bmatrix} g(x) & 0 & \cdots & 0 & 0 \\ 0 & xg(x) & 0 & \cdots & 0 \\ & & \vdots & & \\ 0 & \cdots & 0 & 0 & x^{k-1}g(x) \end{bmatrix}_{k \times n}$$

Note: G is a non-systematic generator matrix for C.

Encoding

$$c = mG$$

$$= (m_0, \dots, m_{k-1}) \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}$$

$$= m_0 g(x) + m_{k-1} x^{k-1} g(x)$$

$$= g(x)(m_0 + \dots + m_{k-1} x^{k-1})$$

$$\implies c(x) = m(x)g(x)$$

EXAMPLE 5.4.1. Construct a cyclic (7, 4)-code over \mathbb{Z}_2 . **Solution.** We need a monic divisor of degree 3 of $x^7 - 1$ in $\mathbb{Z}_2[x]$. Using Table 3 on page 157:

$$(x^7 - 1) = (1 + x)(1 + x + x^3)(1 + x^2 + x^3)$$

Let's take $g(x) = 1 + x + x^3$. Then, $\langle g(x) \rangle$ is a (7,4)-cyclic code over \mathbb{Z}_2 . A generator matrix for C is:

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}_{4 \times 7}$$

Encode m = (1011).

Solution.

$$c = mG = (1111111)$$

$$\implies c(x) = m(x)g(x) = (1 + x + x^3)(1 + x + x^3) = (1 + x + \dots + x^6) = c$$

2020-03-02

Let C be an (n, k)-cyclic cover over F with generator polynomial g(x). Let

$$g(x) = \underbrace{g_0}_{\neq 0} + g_1 x + \dots + \underbrace{g_{n-k} x^{n-k}}_{=1} \underbrace{g_{n-k+1} x^{n-k+1} + \dots + g_{n-1} x^{n-1}}_{=0}$$

Let

$$h(x) = (x^{n} - 1)/(g(x)) = h_0 + h_1 x + \dots + h_{k-1} x^{k-1} + h_k x^k + \dots + h_{n-1} x^{n+0}$$

Let $a(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. We know that

$$a(x) = g(x)h(x) \mod x^n - 1 \qquad (\star)$$

Note: a(x) = 0. Equating coefficients of x^i for each $i \in [0, n-1]$ of (\star) :

$$a_i = 0 = q_0 h_i + q_1 h_{i-1} + \dots + q_i h_0 + q_{i+1} h_{n-1} + q_{i+1} h_{n-2} + \dots + q_{n-1} h_{i-1}$$

Let $g=(g_0,\ldots,g_{n-1})$, $\overline{h}=(h_{n-1},\ldots,h_0)$. Then, g is orthogonal to \overline{h} and all the cyclic shifts of \overline{h} . Every cyclic shift of g is orthogonal to every click shift of \overline{h} .

Recall: A generator matrix for C is:

$$G = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\ 0 & g_0 & \cdots & g_{n-k-1} & g_{n-k} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & g_2 & \cdots & g_{n-k} \end{bmatrix}_{k \times n}$$

Consider

$$H = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & h_k & \cdots & h_1 & h_0 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_k & h_{k-1} & h_{k-2} & \cdots & h_1 & h_0 \end{bmatrix}_{(n-k) \times n}$$

We have observed $GH^{\top}=0$. Let C' be the code spanned by the rows of H. Then, $C'\subseteq C^{\perp}$. But, $\operatorname{rank}(H)=n-k$ (since $h_k=1$). So, $\dim(C')=n-k$, hence we have $C'=C^{\perp}$. Thus, H is a PCM for C.

DEFINITION 5.4.2. Let $h(x) = h(x) = h_0 + h_1 x + \cdots + h_k x^k$ be a degree k polynomial. The **reciprocal** of h is

$$h_R(x) = h_k x^0 + \dots + h_1 x^{k-1} + h_0 x^k$$

Note:

- $h_R(x) = x^k h\left(\frac{1}{x}\right)$
- If $h_0 \neq 0$, then $h^*(x) = h_0^{-1} h_R(x)$.

THEOREM 5.4.3. If C is an (n,k)-cyclic code, then C^{\perp} is an (n,n-k) cyclic code.

Proof.

$$g(x)h(x) = x^{n} - 1$$

$$\implies g\left(\frac{1}{x}\right)h\left(\frac{1}{x}\right) = \left(\frac{1}{x^{n}} - 1\right)$$

$$\implies x^{n-k}g\left(\frac{1}{x}\right)\left(x^{k}h\left(\frac{1}{x}\right)\right) = (1 - x^{n})$$

$$\implies g_{R}(x)h_{R}(x) = -(x^{n} - 1)$$

$$\implies h_{R}(x) \mid (x^{n} - 1)$$

So, $h_R(x)$ is a degree k divisor of x^n-1 . Hence, the matrix H is a generator matrix for the cyclic code generated by $h^*(x)$. Thus, C^{\perp} is cyclic with generator polynomial $h^*(x)$.

5.5 Syndromes and Simple Decoding Procedures

 $s = H \mathbf{r}^{\top}$. Let's find a more convenient PCM for C.

(i) Find a generator matrix for C of the form $[R \mid I_k]_{k \times n}$ is (essentially systematic). For each $i \in [0, k-1]$, long division gives:

$$x^{n-k+i} = \underbrace{\ell_i(x)g(x)}_{\text{deg}=n-k} + \underbrace{r_i(x)}_{\text{deg}\leqslant n-k-1}$$

Then, $-r_i(x) + x^{n-k+i} = \ell_i(x)g(x) \in C$. Let

$$G = \begin{bmatrix} -r_0(x) + x^{n-k} \\ -r_1(x) + x^{n-k+1} \\ \vdots \\ -r_{k-1}(x) + x^{n-1} \end{bmatrix} = [R \mid I_k]_{k \times n}$$

G has rank = k, so G is a GM for C.

(ii) Construct a PCM for C.

This is
$$H = \begin{bmatrix} I_{n-k} \mid -R^\top \end{bmatrix}_{(n-k)\times n}$$
. Then, $H\mathbf{r}^\top = r(x) \mod g(x)$.

2020-03-04

Recall: Let C be an (n,k)-cyclic code over GF(q) with generator polynomial g(x). One generator matrix for C is:

$$\begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}_{k \times n}$$

One PCM for C is:

$$H = \begin{bmatrix} h^*(x) \\ xh^*(x) \\ \vdots \\ x^{n-k-1}h^*(x) \end{bmatrix}_{(n-k)\times n}$$

Another generator matrix for *C* is:

$$G = [R \mid I_k] = \begin{bmatrix} -r_0(x) \\ -r_1(x) \\ \vdots \\ -r_{k-2}(x) \\ -r_{k-1}(x) \end{bmatrix} I_k$$

where $x^{n-k+i} = \ell_i(x)g(x) + r_i(x) \Longrightarrow -r_i(x) + x^{n-k+i} = \ell_i(x)g(x)$ for each $i \in [0,k-1]$. Then, another PCM for C is: $H = \begin{bmatrix} I_{n-k} \mid -R^\top \end{bmatrix}_{(n-k)\times n}$. So,

$$H^{\top} = \begin{bmatrix} I_{n-k} \\ -R \end{bmatrix}_{n \times (n-k)} = \begin{bmatrix} x^0 \mod g(x) \\ x \mod g(x) \\ \vdots \\ x^{n-k-1} \mod g(x) \\ x^{n-k} \mod g(x) \\ x^{n-k+1} \mod g(x) \\ x^{n-k+1} \mod g(x) \end{bmatrix}$$

Hence, if $r = (r_0, r_1, \dots, r_{n-1}) \in V_{n-1}(F)$, then

$$\begin{aligned} s &= H \mathbf{r}^{\top} \\ &= (r_0 x^0 \mod g(x)) + \dots + (r_{n-1} x^{n-1} \mod g(x)) \\ &= (r_0 x^0 + r_1 x + \dots + r_{n-1} x^{n-1}) \mod g(x) \\ &= r(x) \mod g(x) \end{aligned}$$

THEOREM 5.5.1. Let C be a cyclic code with generator polynomial g(x), and $r \in V_n(F)$. Then, the syndrome of r with respect to the previous PCM is:

$$s(x) = r(x) \mod g(x)$$

EXAMPLE 5.5.2. $g(x)=1+x+x^2+x^3+x^6$ is the generator polynomial for a (15,9)-binary cyclic code. Check $g(x)\mid (x^{15}-1)$ over GF(2). Compute the syndrome of ${\boldsymbol r}=(1110\ 1110\ 1100\ 000)$. **Solution.** Long division of $(x^9+x^8+x^6+x^5+x^4+x^2+x+1)/(x^6+x^3+x^2+x+1)$ gives x^5+x^4+x+1 as the remainder. Thus,

$$s(x) = 1 + x + x^4 + x^5 \implies \mathbf{s} = (110011)$$

REMARK 5.5.3. Given the syndrome s of r, the syndromes of cyclic shifts of r can be easily computed.

THEOREM 5.5.4. Let $r \in V_n(F)$, and $s(x) \equiv r(x) \mod g(x)$ where $s(x) = s_0 + xs_1 + \cdots + s_{n-k-1}x^{n-k-1}$. Then the syndrome of xr(x) is:

- (i) xs(x), if $s_{n-k-1} = 0$
- (ii) $xs(x) s_{n-k-1}g(x)$, if $s_{n-k-1} \neq 0$

 \Box

Proof. We have

$$r(x) = \ell(x)g(x) + s(x)$$

Multiply by x,

$$xr(x) = x\ell(x)g(x) + xs(x)$$

<u>Case 1</u> If $s_{n-k-1} = 0$, then $\deg(s) \le n - k - 2$, so $\deg(xs(x)) \le n - k - 1$. So, xs(x) is **the** remainder upon dividing xr(x) by g(x). So, xs(x) is **the** syndrome of r(x).

Case 2 If $s_{n-k-1} \neq 0$, then $\deg(s) = n - k - 1$. Then

$$xr(x) = x\ell(x)g(x) + xs(x) + s_{n-k-1}g(x) - s_{n-k-1}g(x)$$

$$\implies xr(x) = (x\ell(x) + s_{n-k-1})g(x) + (xs(x) - s_{n-k-1}g(x))$$

Now,

$$xs(x) - s_{n-k-1} = (s_0 + \dots + s_{n-k-1}x^{n-k}) - (\dots + s_{n-k-1}x^{n-k}) = xr(x)$$

So, $xs(x) - s_{n-k-1}g(x)$ is **the** syndrome of xr(x).

2020-03-06

5.6 Burst Error Correcting

"Cyclic codes are good for (cyclic) burst error correcting."

Suppose we have a C:(n,k,d) code, with $e=\lfloor \frac{d-1}{2}\rfloor=5$. In practice, errors typically happen in bursts (not spread out). We expect typically one burst per codeword, or bursts to carry through two codewords.

DEFINITION 5.6.1. Let $e \in V_n(F)$. The **cyclic burst length of** e is the length of the smallest cyclic block that contain all the non-zero entries of e.

EXAMPLE 5.6.2. e = 0.11000001 has cyclic burst length 4.

DEFINITION 5.6.3. We say e is a **cyclic burst error of length** t if its cyclic burst length is t.

DEFINITION 5.6.4. A linear code C is a t-cyclic burst error correcting code if every cyclic burst error of length at most t lies in a unique coset of C. The largest such t is called the cyclic burst error capability of C.

EXAMPLE 5.6.5. $g(x) = 1 + x + x^2 + x^3 + x^6$ generates a (15, 9)-binary cyclic code C that is a 3-cyclic burst error correcting code.

 $d(C) \leq 5$, so $e \leq 2$. We verify this by checking that each cyclic burst of length ≤ 3 has a unique syndrome.

Cyclic burst errors	Syndromes	Notes
0	000000	
x^0	100000	
x^1	010000	
x^2	001000	
x^3	000100	
x^4	000010	
x^5	000001	
x^6	111100	$x^6 + g(x) \iff$
		(0000001) + (1111001)
x^7	011110	
x^8	001111	
x^9	111011	$x^9 + g(x) \iff$
		(0001111) + (1111001)
x^{10}	100001	$x^{10} + g(x) \iff$
		(0111011) + (1111001)
x^{11}	101100	$x^{11} + g(x) \iff$
40		(0100001) + (1111001)
x^{12}	010110	
x^{13}	001011	14
x^{14}	111001	$x^{14} + g(x) \iff$
		(0001011) + (1111001)
1+x	110000	
x(1+x)	011000	
:	:	
$x^{14}(1+x)$	011001	
$1 + x + x^2$	111000	
$x(1+x+x^2)$	011100	
<u>:</u>	<u>:</u>	
$x^{14}(1+x+x^2)$	001001	
$\frac{1+x^2}{}$	101000	
$x(1+x^2)$	010100	
•	:	
:14(1 + 2)	101001	
$x^{14}(1+x^2)$	101001	

The number of cyclic bursts of length ≤ 3 is 61. The number of syndromes is 64.

EXAMPLE 5.6.6. $g(x) = 1 + x^4 + x^6 + x^7 + x^8$ generates a (15,7)-binary cyclic code that is 4-cyclic burst error correcting. Distance ≤ 5 so $e \leq 2$.

Question: How to construct codes with high cyclic burst error correcting capability?

- (1) Use a computer search
- (2) RS Codes
- (3) Interleaving

THEOREM 5.6.7. Let C be an (n, k, d)-code over GF(q). Let t be its cyclic burst error correcting capability.

$$\left| \frac{d-1}{2} \right| \leqslant t \leqslant n-k$$

Proof. Every cyclic burst of length $\leqslant t$ has weight $\leqslant t$. Since every vector of weight $\leqslant \lfloor \frac{d-1}{2} \rfloor$ has a unique syndrome, we have $\lfloor \frac{d-1}{2} \rfloor \leqslant t$.

The number of cyclic burst errors where all the non-zero entries lie in the first t coordinate positions is q^t . Each of them has a unique coset and the total number of cosets is q^{n-k} . Thus,

$$q^t \leqslant q^{n-k} \implies t \leqslant n-k$$

Exercise: Prove that $t \leqslant \frac{n-k}{2}$.

5.7 Decoding Cyclic Burst Errors

Let C be a t-cyclic burst error correcting code generated by g(x) which is a degree-k monic divisor of $x^n - 1$ over GF(q).

Recall: A PCM for C is:

$$H = \left[I_{n-k} \mid -R^{\top} \right]$$

whose columns are $x^0 \mod g(x), \dots, x^{n-1} \mod g(x)$.

The syndrome of r(x) is $s(x) \equiv r(x) \mod g(x)$.

Idea: Suppose e is a cyclic burst of length $\leq t$.

Compute $s = Hr^{\top} \equiv r(x) \mod g(x)$.

Suppose $e = [x \circ \cdots \circ x \times x]$. We multiply x^3 by e, so we get $[x \times x \times x \circ \cdots \circ]$.

$$s = Hr^{\top} = He^{\top}$$
.

$$s_1 = H(x\mathbf{r})^{\top} = H(x\mathbf{e})^{\top}$$

$$\boldsymbol{s}_2 = H(x^2 \boldsymbol{r})^\top = H(x^2 \boldsymbol{e})^\top$$

$$\boldsymbol{s}_3 = H(x^3 \boldsymbol{r})^\top = H(x^3 \boldsymbol{e})^\top$$

2020-03-09

Recall: Let C be an (n,k) code with generator polynomial g(x). Suppose C is a t-c.b.e.c.c. So, $t \le n-k$.

$$H = \left[I_{n-k} \mid -R^{\top} \right]$$

is a PCM for C; $s(x) = r(x) \mod g(x)$.

Idea: Suppose e is a cyclic burst of length at most t. Compute shifts of e, say $e_i = x^i e$ has all its non-zero entries in the first (n-k) positions. Then,

$$s_i(x) = e_i(x) \mod q_i(x)$$

and we can recognize such an $s_i(x)$ since it is a non-cyclic burst of length at most t. Them, $e=x^{n-i}e_i$. How do we compute $s_i(x)$? Recall, r=c+e. So, $x^ir=x^ic+x^ie$, so x^ir and x^ie have the same syndrome.

5.8 Error Trapping Decoding (For Cyclic Burst Errors)

Let r(x) = received polynomial. Let $s_i(x)$ = syndrome of $x^i r(x)$ for each $i \in [1, n-1]$ where $s_0 = r(x)$ mod g(x).

```
Algorithm 4: Error Trapping

1 for i = 0 to n - 1 do

2 | Compute s_i(x) with 5.5.4.

3 | if s_i(x) is a non-cyclic burst of length at most t then

4 | e_i(x) \leftarrow (s_i(x), 0)

5 | e(x) \leftarrow x^{n-i}e_i(x)

7 return
```

EXAMPLE 5.8.1. $g(x) = 1 + x + x^2 + x^3 + x^6$ is the generator polynomial for (15, 9)-binary cyclic code with c.b.e.c.c 3. Decode $r = (1110\ 1110\ 1100\ 000)$. **Solution.** Compute $s_0(x) = r(x) \mod g(x) = x^5 + x^4 + x + 1$.

Iteration (i)	Syndrome $[s_i(x)]$
0	110011
1	100101
2	101110
3	010111
4	110111
5	100111
6	101111
7	101011
8	101001
9	101000

$$\implies e_9 = (101000\ 000000000)$$

$$\implies e = x^6 e_9 = (000000\ 101000\ 000)$$

$$\implies c = r - e = (1110\ 1100\ 0100\ 000)$$

Check: $Hc^{\top} = \mathbf{0}$ (bad) OR $g(x) \mid c(x)$ via long division.

5.9 Interleaving

Goal: Improve the c.b.e.c.c of a code.

Suppose C is an (n, k)-code with c.b.e.c.c t.

Suppose the following codewords are transmitted:

$$v_1 = (v_{11}, v_{12}, \dots, v_{1n}) \in C$$

$$v_2 = (v_{21}, v_{22}, \dots, v_{2n}) \in C$$

$$\vdots$$

$$v_s = (v_{s1}, v_{s2}, \dots, v_{sn}) \in C$$

Suppose v_1, \ldots, v_s are transmitted in that order. If a cyclic burst error of length at most t occurs in any codeword, that error can be corrected.

Instead, we transmit: the columns in order:

$$[v_{11}, v_{21}, \ldots, v_{s1}, \ldots, v_{1n}, v_{2n}, \ldots, v_{sn}]$$

Now, if a cyclic burst error of length at most st occurs in this (fat) codeword, this means that each original codeword suffered a cyclic error burst of length at most t.

THEOREM 5.9.1. Suppose C is an (n,k)-cyclic code with generator polynomial g(x) and cyclic burst error correcting capability t. C^* , the code obtained by interleaving C to a depth s is an (ns,ks)-cyclic code with generator polynomial $g^*(x) = g(x^s)$.

2020-03-11

5.10 Minimal Polynomials

Recall that if $F = GF(p^m)$ is a finite field of characteristic p, then \mathbb{Z}_p is a subfield of F, and we can view F as an m-dimensional vector space over \mathbb{Z}_p . More generally, for any prime power q, GF(q) is a subfield of $GF(q^m)$, and we can view $GF(q^m)$ as an m-dimensional vector space over GF(q).

EXAMPLE 5.10.1. $GF(2^{16})$ is:

- a 16-dimensional vector space over GF(2),
- an 8-dimensional vector space over $GF(2^2)$,
- a 4-dimensional vector space over $GF(2^4)$,
- a 2-dimensional vector space over $GF(2^8)$, and
- a 1-dimensional vector space over $GF(2^{16})$.

We call $GF(q^m)$ the **extension field**, and GF(q) the **subfield**. Informally, $GF(q^m)$ is the "big field", and GF(q) is the "small field".

Here is the main definition in this section:

DEFINITION 5.10.2. Let $\alpha \in GF(q^m)$. The minimal polynomial of α over GF(q), denoted $m_{\alpha}(x)$, is the monic polynomial of smallest degree in GF(q)[x] that has α as a root; that is, $m_{\alpha}(\alpha) = 0$.

REMARK 5.10.3.

- (1) If $m_{\alpha}(x) \in GF(q)[x]$ is a non-zero polynomial with $m_{\alpha}(\alpha)$ and c is the leading coefficient of $m_{\alpha}(x)$, then $m'_{\alpha}(x) = c^{-1}m_{\alpha}(x)$ is a monic polynomial in GF(q)[x] with $m'_{\alpha}(\alpha) = 0$.
- (2) More generally, multiplying a polynomial by a non-zero constant does not change the roots of the polynomial.
- (3) We have $m_0(x) = x$.
- (4) If $\alpha \neq 0$, let t be the order of α (recall that $t \mid (q^m 1)$). Then, α is a root of $x^t 1 \in GF(q)[x]$. It follows that there does indeed exist a monic polynomial of smallest degree in GF(q)[x] having α as a root.

EXAMPLE 5.10.4. We found the minimal polynomial of elements in $GF(2^2) = \mathbb{Z}_2[x]/(x^2 + x + 1)$ over GF(2) by trial and error:

- $m_0(y) = y$.
- $m_1(y) = y + 1$.

- $m_x(y) = y^2 + y + 1$.
- $m_{x+1}(y) = y^2 + y + 1$.

THEOREM 5.10.5. Let $\alpha \in GF(q^m)$.

- (i) The minimal polynomial, $m_{\alpha}(x)$ of α over GF(q) is unique.
- (ii) $m_{\alpha}(x)$ is irreducible over GF(q).
- (iii) $\deg(m_{\alpha}) \leqslant m$.
- (iv) If $f(x) \in GF(q)[x]$, then, $f(\alpha) = 0$ if and only if $m_{\alpha}(x) \mid f(x)$.

Proof.

(i) Suppose there are two monic polynomials, $m_1(x)$ and $m_2(x)$, of (the same) smallest degree in GF(q)[x] that have α as a root. Consider $r(x) = m_1(x) - m_2(x)$. Then,

$$r(\alpha) = m_1(\alpha) - m_2(\alpha) = 0 - 0 = 0$$

But, $deg(r) < deg(m_1)$, and so we conclude that r(x) = 0. Hence, $m_1(x) = m_2(x)$.

(ii) Suppose that m_{α} is reducible over GF(q). Then, we can write

$$m_{\alpha}(x) = s(x)t(x)$$

for some $s, t \in GF(q)[x]$ with $\deg(s), \deg(t) < \deg(m_{\alpha})$. Then,

$$m_{\alpha}(\alpha) = 0 = s(\alpha)t(\alpha),$$

and hence either of $s(\alpha) = 0$ or $t(\alpha) = 0$. In either case, we have a contradiction of the minimality of $deg(m_{\alpha})$. We conclude that m_{α} is irreducible over GF(q).

(iii) Recall that $GF(q^m)$ can be viewed as an m-dimensional vector space over GF(q). Thus, the m+1 field elements $1, \alpha, \alpha^2, \ldots, \alpha^m$ are linearly dependent over GF(q). Thus, we can write

$$a_0 + a_1 \alpha + \dots + a_m \alpha^m = 0,$$

where $a_0, a_1, \ldots, a_m \in GF(q)$, and not all are 0. Hence, α is a root of the non-zero polynomial

$$a_0 + a_1 x + \dots + a_m x^m \in GF(q)[x]$$

having degree $\leq m$. It follows that $\deg(m_{\alpha}) \leq m$.

2020-03-13

We proved (i) - (iii) last class. We now prove (iv).

Proof. Let $f \in GF(q)[x]$. Using the division algorithm for polynomials, we can write

$$f(x) = \ell(x)m_{\alpha}(x) + r(x)$$

where $\ell, r \in GF(q)[x]$ and $\deg(r) < \deg(m_{\alpha})$. Now,

$$f(\alpha) = \ell(\alpha)m_{\alpha}(\alpha) + r(\alpha) = r(\alpha)$$

Hence,

$$f(\alpha) = 0 \iff r(\alpha) = 0 \iff r(x) = 0 \text{ since } \deg(r) < \deg(m_{\alpha}) \iff m_{\alpha}(x) \mid f(x).$$

THEOREM 5.10.6. Let $\alpha \in GF(q^m)$. Then, $\alpha \in GF(q)$ if and only if $\alpha^q = \alpha$.

Proof. Since $\alpha^q = \alpha$ for all $\alpha \in GF(q)$, the elements of GF(q) are roots of the polynomial $X^q - X$. Since this polynomial has degree q, it can't have any other roots in $GF(q^m)$. Thus, $\alpha \in GF(q)$ if and only if $\alpha^q = \alpha$. \square

DEFINITION 5.10.7. Let $\alpha \in GF(q^m)$. Let t be the smallest positive integer such that $\alpha^{q^t} = \alpha$ (note that $t \leq m$). Then, the set of conjugates of α with respect to GF(q) is

$$C(\alpha) = \{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{t-1}}\}\$$

Note that the elements of $C(\alpha)$ are distinct.

THEOREM 5.10.8. Let $\alpha \in GF(q^m)$. Then the minimal polynomial of α over GF(q) is

$$m_{\alpha}(x) = \prod_{\beta \in C(\alpha)} (x - \beta)$$
$$= (x - \alpha)(x - \alpha^{q})(x - \alpha^{q^{2}}) \cdots (x - \alpha^{q^{t-1}}).$$

Proof.

- (i) Clearly, $m_{\alpha}(x)$ is monic.
- (ii) Clearly, $m_{\alpha}(\alpha) = 0$.
- (iii) † Let $m_{\alpha}(x) = \sum_{i=0}^{t} m_i x^i$. The coefficients m_i are in $GF(q^m)$. We need to prove that $m_{\alpha}(x) \in GF(q)$. Now,

$$m_{\alpha}(x)^{q} = \prod_{\beta \in C(\alpha)} (x - \beta)^{q}$$

$$= \prod_{\beta \in C(\alpha)} (x^{q} - \beta^{q})$$

$$= \prod_{\beta \in C(\alpha)} (x^{q} - \beta), \quad \text{since } C(\alpha) = \{B^{q} : \beta \in C(\alpha)\}$$

$$= m_{\alpha}(x^{q})$$

$$= \sum_{i=0}^{t} m_{i} x^{iq}.$$
(1)

Also,

$$m_{\alpha}(x)^{q} = \left(\sum_{i=0}^{t} m_{i} x^{i}\right)^{q}$$

$$= \sum_{i=0}^{t} m_{i}^{q} x^{iq}$$
(2)

Comparing coefficients of x^{iq} in (1) and (2) gives $m_i = m_i^q$ for all $i \in [0, t]$. Hence, $m_i \in GF(q)$. Thus, $m_{\alpha}(x) \in GF(q)[x]$.

(iv) † Let $f \in GF(q)[x]$ with $f(x) \neq 0$, and assume $f(\alpha) = 0$. Let $f(x) = \sum_{i=0}^{d} f_i x^i$. Then,

$$f(\alpha^q) = \sum_{i=0}^d f_i \alpha^{iq} = \left(\sum_{i=0}^d f_i \alpha_i\right)^q = f(\alpha)^q = 0.$$

Hence, the elements of $C(\alpha)$ are the roots of f(x). Since the roots of $m_{\alpha}(x)$ are precisely the elements of $C(\alpha)$, we conclude that $m_{\alpha}(x)$ is the monic polynomial of smallest degree in GF(q)[x] that has α as a root.

EXAMPLE 5.10.9 (Finding the Minimal Polynomial). Consider $GF(2^4) = \mathbb{Z}_2[x]/(x^4+x+1)$. Find the minimal polynomial of $\beta = x^2 + x^3$ over \mathbb{Z}_2 . (In this example, we have q=2 and m=4) **Solution.** When doing computations by hand, it will help to have a generator α of $GF(2^4)^*$, and a table

Solution. When doing computations by hand, it will help to have a generator α of $GF(2^4)^*$, and a table of powers of α . It turns out that $\alpha = x$ is a generator as the following table shows.

$$\begin{array}{lllll} \alpha^0 = 1 & \alpha^4 = 1 + \alpha & \alpha^8 = 1 + \alpha^2 & \alpha^{12} = 1 + \alpha + \alpha^2 + \alpha^3 \\ \alpha^1 = \alpha & \alpha^5 = \alpha + \alpha^2 & \alpha^9 = \alpha + \alpha^3 & \alpha^{13} = 1 + \alpha^2 + \alpha^3 \\ \alpha^2 = \alpha^2 & \alpha^6 = \alpha^2 + \alpha^3 & \alpha^{10} = 1 + \alpha + \alpha^2 & \alpha^{14} = 1 + \alpha^3 \\ \alpha^3 = \alpha^3 & \alpha^7 = 1 + \alpha + \alpha^3 & \alpha^{11} = \alpha + \alpha^2 + \alpha^3 & \alpha^{15} = 1 \end{array}$$

Now, $\beta=\alpha^6$. Hence, $C(\beta)=C(\alpha^6)=\{\alpha^6,\alpha^{12},\alpha^9=\alpha^{24},\alpha^3=\alpha^{18}\}$. Therefore,

$$m_{\beta}(y) = (y - \alpha^{6})(y - \alpha^{12})(y - \alpha^{9})(y - \alpha^{3})$$

$$= [(y - \alpha^{6})(y - \alpha^{12})][(y - \alpha^{9})(y - \alpha^{3})]$$

$$= [y^{2} + (\alpha^{6} + \alpha^{12})y + \alpha^{3}][y^{2} + (\alpha^{9} + \alpha^{3})y + \alpha^{12}]$$

$$= [y^{2} + \alpha^{4}y + \alpha^{3}][y^{2} + \alpha y + \alpha^{12}]$$

$$= y^{4} + (\alpha + \alpha^{4})y^{3} + (\alpha^{12} + \alpha^{3} + \alpha^{5})y^{2} + (\alpha^{16} + \alpha^{4})y + 1$$

$$= y^{4} + y^{3} + y^{2} + y + 1 \in \mathbb{Z}_{2}$$

Note that the coefficients of $m_{\beta}(y)$ are indeed in GF(2).

Note also that we simplified terms such as $\alpha^3 + \alpha^6$ to α^2 by using the table powers of α .

2020-03-23

5.11 Finite Fields and Factoring $x^n - 1$ over GF(q)

<u>Goal</u>: Describe the factorization of $x^n - 1$ over GF(q). Using this, we will see how generator polynomials g(x) can be selected so that we have a lower bound on the distance of the cyclic code generated by g(x); these codes are called **BCH codes**.

Let $p = \operatorname{char}(GF(q))$. If $\gcd(n,q) \neq 1$, then write $n = \overline{n}p^{\ell}$, where $\ell \geqslant 1$ and $\gcd(\overline{n},p) = 1$. Then, $x^n - 1 = (x^{\overline{n}-1})^{p^{\ell}}$. Without loss of generality, we shall assume that $\gcd(n,q) = 1$.

Now, let m be the smallest positive integer such that $q^m \equiv 1 \mod n$; that is, $n \mid (q^m - 1)$. Fact: m exists (beyond the scope of this course). Let α be a generator of $GF(q^m)^*$. Let $\beta = \alpha^{(q^m-1)/n} \in GF(q^m)$. Then, $\operatorname{ord}(\beta) = n$, and the elements

$$1, \beta, \beta^2, \dots, \beta^{n-1}$$

are distinct. Furthermore,

$$(\beta^i)^n = (\beta^n)^i = 1^i = 1$$

for each $i \in [0, n-1]$. Hence,

$$1, \beta, \beta^2, \ldots, \beta^{n-1}$$

are roots of $x^n - 1$; and there aren't any other roots. So,

$$x^{n} - 1 = (x - 1)(x - \beta)(x - \beta^{2}) \cdots (x - \beta^{n-1})$$

is the complete factorization of $x^n - 1$ over $GF(q^m)$. However, we wanted the factorization of $x^n - 1$ over GF(q).

Consider β^i for a fixed integer $i \in [0, n-1]$. Since β^i is a root of $x^n - 1$, we have $m_{\beta^i}(x) \mid (x^n - 1)$. Also, the roots of $m_{\beta^i}(x)$ are

$$C(\beta^i) = \left\{\beta^i, \beta^{iq}, \beta^{iq^2}, \dots, \beta^{iq^{t-1}}\right\}$$

where t is the smallest positive integer such that $iq^t \equiv i \mod n$.

This motivates the following definition.

DEFINITION 5.11.1. Let gcd(n, q) = 1 and a fixed integer $i \in [0, n-1]$. The *cyclotomic* coset of q mod n containing i is

$$C_i = \{i, iq \mod n, iq^2 \mod n, \dots, iq^{t-1} \mod n\}$$

where t is the smallest positive integer such that $iq^t \equiv i \mod n$. Also,

$$C = \{C_i : 0 \leqslant i \leqslant n - 1\}$$

is the set of cyclotomic cosets of $q \mod n$.

EXAMPLE 5.11.2. The cyclotomic cosets of 2 modulo 15 (q = 2, n = 15) are:

$$\begin{split} C_0 &= \{0\} \\ C_1 &= \{1, 2, 4, 8\} = C_2 = C_4 = C_8 \\ C_3 &= \{3, 6, 12, 9\} = C_6 = C_{12} = C_9 \\ C_5 &= \{5, 10\} = C_{10} \\ C_7 &= \{7, 14, 13, 11\} = C_{14} = C_{13} = C_{11} \end{split}$$

As the example suggests, if $j \in C_i$, then $C_j = C_i$.

Note:

$$m_{\beta^{i}}(x) = (x - \beta^{i})(x - \beta^{iq})(x - \beta^{iq^{2}}) \cdots (x - \beta^{iq^{t-1}})$$

= $\prod_{j \in C_{i}} (x - \beta^{i})$

is an irreducible factor of $x^n - 1$ over GF(q) of degree $|C_i|$.

THEOREM 5.11.3. *Suppose* gcd(n, q) = 1.

- (i) The number of irreducible factors of $x^n 1$ over GF(q) is equal to the number of (distinct) cyclotomic cosets of $q \mod n$.
- (ii) The number of irreducible factors of degree d is equal to the number of (distinct) cyclotomic cosets of $q \mod n$ of size d.

Alternatively,

THEOREM 5.11.4. Suppose gcd(n,q) = 1. Let $\beta \in GF(q^m)$ have order n, where m is the smallest positive integer such that $q^m \equiv 1 \mod n$. Then, the irreducible factors of $x^n - 1$ over GF(q) are

$$\{m_{\beta^i}(x): 0 \leqslant i \leqslant n-1\}$$

where

$$m_{\beta^i}(x) = \prod_{j \in C_i} (x - \beta^i)$$

Note: If $j \in C_i$, then $m_{\beta^i}(x) = m_{\beta^j}(x)$.

EXAMPLE 5.11.5. Factor $x^{15} - 1$ over GF(2) (q = 2, n = 15).

Solution. We know from the cyclotomic cosets of $2 \mod 15$ that $x^{15} - 1$ has 5 irreducible factors over GF(2).

- 1 of degree 1
- 1 of degree 2
- 3 of degree 4

Let's find them. The smallest m such that $2^m \equiv 1 \mod 15$ is m=4. We need an element β of order 15 in $GF(2^4)$; we can take $\beta=\alpha$ where $\alpha=x$ is a generator of $GF(2^4)^*$, where $GF(2^4)=\mathbb{Z}_2[x]/(x^4+x+1)$. In Example 5.10.9, we listed the powers of $\alpha=x$, and we computed

$$m_{\alpha^6}(x) = 1 + x + x^2 + x^3 + x^4$$

In a similar manner (left as an exercise), we can compute:

$$\begin{split} m_{\alpha^0}(x) &= 1+x\\ m_{\alpha^1}(x) &= 1+x+x^4\\ m_{\alpha^3}(x) &= 1+x+x^2+x^3+x^4\\ m_{\alpha^5}(x) &= (x-\alpha^5)(x-\alpha^{10}) = 1+x+x^2\\ m_{\alpha^7}(x) &= 1+x^3+x^4 \end{split}$$

Thus,

$$x^{15} - 1 = (1+x)(1+x+x^4)(1+x+x^2+x^3+x^4)(1+x+x^2)(1+x^3+x^4)$$

EXAMPLE 5.11.6. Determine the number of cyclic subspaces of $V_{90}(\mathbb{Z}_3)$.

Solution. First, observe that $x^{90} - 1 = (x^{10} - 1)^9$. To determine the factorization pattern of $x^{10} - 1$ over \mathbb{Z}_3 , we need to find the cyclotomic cosets of $q = 3 \mod 10 = n$:

$$C_0 = \{0\}$$

$$C_1 = \{1, 3, 9, 7\}$$

$$C_2 = \{2, 6, 8, 4\}$$

$$C_5 = \{5\}$$

Therefore, $x^{90} - 1 = (f_0 f_1 f_2 f_5)^9$ where $\deg(f_0) = 1$, $\deg(f_1) = 4$, $\deg(f_2) = 4$, and $\deg(f_5 = 1)$ and f_0, f_1, f_2, f_5 are irreducible over $\mathbb{Z}_3[x]$. Thus, the number of cyclic subspaces of $V_{90}(\mathbb{Z}_3)$ is

$$10\times10\times10\times10\times10=10000$$

Note:

$$f_0(x) = m_{\beta^0}(x)$$

$$f_1(x) = m_{\beta^1}(x)$$

$$f_2(x) = m_{\beta^2}(x)$$

$$f_5(x) = m_{\beta^5}(x)$$

where β is an element of order 10 in $GF(3^4)$ since $3^4\equiv 1 \mod 10$.

Chapter 6

BCH Codes and Bounds for Cyclic Codes

2020-03-25

6.1 Introduction

BCH codes are cyclic codes which are constructed in such a way that a lower bound on their distance is known.

6.2 BCH Codes and the BCH Bound

Setup

- Assume gcd(n, q) = 1
- Let m be the smallest positive integer such that $q^m \equiv 1 \mod n$
- Let α be a generator of $GF(q^m)^*$, and let $\beta = \alpha^{(q^m-1)/n}$, so $\operatorname{ord}(\beta) = n$
- Let $m_{\beta^i}(x)$ denote the minimal polynomial of β^i over GF(q) for a fixed integer $i \in [0, n-1]$.
- We will let $m_{\beta^i}(x) = m_{\beta^i \mod n}(x)$ for $i \geqslant n$ since $\beta^i = \beta^{i \mod n}$

DEFINITION 6.2.1. A *BCH code* C over GF(q) of block length n and *designed distance* δ is a cyclic code generated by

$$g(x) = \operatorname{lcm}\{m_{\beta^i}(x) : a \leqslant i \leqslant a + \delta - 2\}$$

for some $a \in \mathbb{Z}$.

Notes:

- (i) $lcm(3, 3, 5, 7, 7, 7, 11, 11) = 3 \times 5 \times 7 \times 11$.
- (ii) $m_{\beta^i}(x) \mid (x^n 1)$ for each $i, a \le i \le a + \delta 2$, it follows that $g(x) \mid (x^n 1)$. Also, g(x) is monic. Hence, g(x) is indeed the generator polynomial for a cyclic code of length n over GF(q).
- (iii) The $\delta-1$ consecutive powers of β : $\beta^a, \beta^{a+1}, \dots, \beta^{a+\delta-2}$ are roots of g(x).
- (iv) **BCH bound**: $d(C) \ge \delta$

EXAMPLE 6.2.2 (Constructing a BCH Code). Let q=3, n=13. Then, m=3 since $3^3\equiv 1 \mod 13$. Consider $GF(3^3)=\mathbb{Z}_3[x]/(x^3+2x^2+1)$. Then, $\alpha=x$ is a generator of $GF(3^3)^*$ as the following table shows.

Also, $\beta = \alpha^2$ is an element of order 13. Compute the cyclotomic cosets of $q = 3 \mod 13 = n$:

$$C_0 = \{0\}$$

$$C_1 = \{1, 3, 9\}$$

$$C_2 = \{2, 6, 5\}$$

$$C_4 = \{4, 12, 10\}$$

$$C_7 = \{7, 8, 11\}$$

The corresponding minimal polynomials are:

$$m_{\beta^0}(x) = x + 2$$

$$m_{\beta^1}(x) = x^3 + 2x^2 + 2x + 2$$

$$m_{\beta^2}(x) = x^3 + 2x + 2$$

$$m_{\beta^4}(x) = x^3 + x^2 + x + 2$$

$$m_{\beta^7}(x) = x^3 + 2x + 1$$

Arithmetic of $m_{\beta^2}(x)$

$$m_{\beta^{2}}(x) = (x - \beta^{2})(x - \beta^{6})(x - \beta^{5})$$

$$= (x - \alpha^{4})(x - \alpha^{12})(x - \alpha^{10})$$

$$= [x^{2} - (\alpha^{4} + \alpha^{12})x + \alpha^{16}](x - \alpha^{10})$$

$$= (x^{2} + \alpha^{10}x + \alpha^{16})(x + \alpha^{23})$$

$$= x^{3} + (\alpha^{10} + \alpha^{23})x^{2} + (\alpha^{16} + \alpha^{33})x + \alpha^{39}$$

$$= x^{3} + 2x + 2$$

Let

$$g(x) = m_{\beta^0}(x)m_{\beta^1}(x)m_{\beta^2}(x) = 2 + 2x + x^4 + 2x^5 + x^6 + x^7$$

The roots of g(x) are: $\beta^0, \beta^1, \beta^3, \beta^9, \beta^2, \beta^6, \beta^5$.

Since $\beta^0, \beta^1, \beta^2, \beta^3$ are among these roots, $\delta = 5 \implies d \geqslant 5$.

Thus, g(x) generates a (13,6)-BCH code over GF(3) of distance at least 5.

Exercise: Show that

$$g(x) = m_{\beta^0}(x) m_{\beta^4}(x) m_{\beta^7}(x)$$

generates a (13,6)-BCH code over GF(3) of distance at least 5.

EXAMPLE 6.2.3. Does there exist a block code with parameters q=2, n=128, $M=2^{64}$, and $d \ge 22$? The corresponding *sphere-packing problem* is:

Can we place 2^{64} spheres of radius ≥ 10 in $V_{128}(\mathbb{Z}_2)$ so that no two spheres intersect?

Solution. Yes! We will describe an extended BCH code with these parameters.

Let q = 2 and n = 127. The cyclotomic cosets of $2 \mod 127$ are:

$$C_0 = \{0\} \\ C_1 = \{1, 2, 4, 8, 16, 32, 64\} \\ C_3 = \{3, 6, 12, 24, 48, 96, 65\} \\ C_5 = \{5, 10, 20, 40, 80, 33, 66\} \\ C_7 = \{7, 14, 28, 56, 112, 97, 67\} \\ C_9 = \{9, 18, 36, 72, 17, 34, 68\}$$

$$C_{11} = \{11, 22, 44, 88, 49, 98, 69\} \\ C_{13} = \{13, 26, 52, 104, 81, 35, 70\} \\ C_{15} = \{15, 30, 60, 120, 113, 99, 71\} \\ C_{19} = \{19, 38, 76, 25, 50, 100, 73\} \\ \vdots$$

We have m=7. Let β be an element of order 127 in $GF(2^7)^*$. Then,

$$g(x) = m_{\beta^1}(x) m_{\beta^3}(x) m_{\beta^5}(x) m_{\beta^7}(x) m_{\beta^9}(x) m_{\beta^{11}}(x) m_{\beta^{13}}(x) m_{\beta^{15}}(x) m_{\beta^{19}}(x)$$

is a degree-63 divisor of $x^{127} - 1$ over GF(2).

Moreover, the roots of g(x) include the follow 20 consecutive powers of β : 1, 2, ..., 20.

Thus, g(x) generates a binary (127, 64)-BCH code C with distance ≥ 21 .

Finally, the extended code of C (i.e. the code obtained by adding a parity bit to each codeword in C–see A2O5) is a binary (128, 64)-code with distance ≥ 22 .

Note: The rate of the code is 1/2.

DEFINITION 6.2.4. A *Vandermonde matrix* over a field F is an $n \times n$ matrix of the form

$$A(x_1, x_2, x_3, \dots, x_n) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$$

where $x_i \in F$.

THEOREM 6.2.5. $det(A) \neq 0$ if and only if x_i are pairwise distinct.

THEOREM 6.2.6 (BCH Bound). Let C be a BCH code over GF(q) with designed distance δ . Then, $d(C) \geqslant \delta$.

Proof. Let the block code of C be n. Let g(x) be the generator polynomial for C. Suppose

$$\beta, \beta^2, \dots, \beta^{\delta-1}$$

are the roots of g(x) where $\beta \in GF(q^m)$ is an element of order n. For simplicity we have taken a=1.

Hence,
$$g(x) = \text{lcm}\{m_{\beta^i}(x) : 1 \le i \le \delta - 1\}.$$

Now, let $r \in V_n(GF(q))$. Then,

$$r \in C \iff g(x) \mid r(x)$$

$$\iff m_{\beta^i}(x) \mid r(x) \qquad \forall i \in [1, \delta - 1]$$

$$\iff r(\beta^i) = 0 \qquad \forall i \in [1, \delta - 1]$$

Let

$$H_{1} = \begin{bmatrix} 1 & \beta & \beta^{2} & \cdots & \beta^{n-1} \\ 1 & \beta^{2} & (\beta^{2})^{2} & \cdots & (\beta^{2})^{n-1} \\ \vdots & & & & \\ 1 & \beta^{\delta-1} & (\beta^{\delta-1})^{2} & \cdots & (\beta^{\delta-1})^{n-1} \end{bmatrix}_{(\delta-1) \times n}$$

Now, $r \in C \iff H_1 r^{\top} = \mathbf{0}$. Furthermore, no $t = \delta - 1$ columns of H_1 are linearly dependent over $GF(q^m)$. because

$$\det \begin{bmatrix} \beta^{i1} & \beta^{i2} & \cdots & \beta^{it} \\ (\beta^2)^{i1} & (\beta^2)^{i2} & \cdots & (\beta^2)^{it} \\ \vdots & & & & \\ (\beta^{\delta-1})^{i1} & (\beta^{\delta-1})^{i2} & \cdots & (\beta^{\delta-1})^{it} \end{bmatrix}_{t \times t} = \prod_{j=1}^t \beta^{ij} \det(A(\beta^{i1}, \dots, \beta^{it})) \neq 0$$

since $\beta^{i1}, \ldots, \beta^{it}$ are distinct.

Since $GF(q) \subseteq GF(q^m)$, we also have that no $\delta - 1$ columns of H_1 are linearly dependent over GF(q).

Now, if $c \in C$, $c \neq 0$, with $w(c) < \delta$, then $H_1c^{\top} = 0$ gives 0 as a non-trivial linear combination of $\delta - 1$ (or fewer) columns of H_1 , contradicting the fact what we just proved. Hence every non-zero codeword in C has weight $\geq \delta$. Thus, $d(C) \geq \delta$.

2020-03-30

6.3 Decoding BCH Codes

Over the years, many efficient algorithms have been designed for decoding BCH codes. One such algorithm is described in pages 215-219 of the course textbook. This algorithm is rather complicated. Instead of studying this algorithm, I will present a decoding algorithm for one specific BCH code, called C_{15} . The decoding algorithm for C_{15} captures the essential idea of a more general decoding algorithm for all BCH codes.

DEFINITION 6.3.1. Let q=2, n=15, m=4. Let $GF(2^4)=\mathbb{Z}_2[x]/(x^4+x+1)$. Then, $\alpha=x$ is a generator of $GF(2^4)^*$ and $\beta=\alpha$ is an element of order 15. Let

$$g(x) = m_{\beta}(x)m_{\beta^3}(x) = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)$$
$$= 1 + x^4 + x^6 + x^7 + x^8$$

The roots of g(x) include $\beta, \beta^2, \beta^3, \beta^4$. So, g(x) generates a (15,7)-BCH code over GF(2) with $\delta = 5$, so $d \ge 5$. In fact, d = 5 since g(x) has weight 5.

This BCH code is called C_{15} : (15, 7, 5)-binary code.

Note: C_{15} is a 2-error correcting code.

Computing Syndromes

Let's first find a PCM for C_{15} . Let $r \in V_{15}(\mathbb{Z}_2)$. Then

$$r \in C_{15} \iff g(x) \mid r(x)$$

 $\iff m_{\beta}(x) \mid r(x) \text{ and } m_{\beta^3}(x) \mid r(x)$
 $\iff r(\beta) = 0 \text{ and } r(\beta^3) = 0.$

So, a PCM for C_{15} is

$$H = \begin{bmatrix} \beta^0 & \beta^1 & \beta^2 & \beta^3 & \cdots & \beta^{14} \\ (\beta^3)^0 & (\beta^3)^1 & (\beta^3)^2 & (\beta^3)^3 & \cdots & (\beta^3)^{15} \end{bmatrix}_{8 \times 15}$$

Note: H is a 2×15 matrix over $GF(2^4)$, and an 8×15 matrix over GF(2).

Syndromes

The syndrome of r is

$$Holdsymbol{r}^ op = egin{bmatrix} r(eta) \ r(eta^3) \end{bmatrix} = egin{bmatrix} s_1 \ s_3 \end{bmatrix}$$

(So, we don't need H to compute syndromes)

<u>Recall</u>: C_{15} is a (15,7,5)-BCH code over GF(2). The <u>syndrome</u> of \mathbf{r} is comprised of $s_1 = r(\beta)$ and $s_3 = r(\beta^3)$. We have $s_1, s_3 \in GF(2^4)$.

Decoding strategy: If there is an error vector e of weight at most 2, that has syndrome (s_1, s_3) , then we decode r to r - e. Otherwise, we reject r.

Decoding Algorithm for C15 [With Justification]

- Received word is $r \in V_{15}(GF(2))$.
- Compute $s_1 = r(\beta)$ and $s_3 = r(\beta^3)$.
- If $s_1 = 0$ and $s_3 = 0$, then accept r; STOP.
- Suppose $e(x) = x^i$; i.e. exactly one error has occurred in the i^{th} position $i \in [0,14]$. Then, $s_1 = r(\beta) = c(\beta) + e(\beta) = e(\beta) = \beta^i$, and $s_3 = r(\beta^3) = e(\beta^3) = \beta^{3i}$. Hence $s_3 = s_1^3$. If $s_1^3 = s_3$, then correct r in position i where $s_1 = \beta^i$; STOP.
- If $s_1 = 0$ (and $s_3 \neq 0$), then reject r; STOP. Since $r(\beta^3) = e(\beta^3) \neq 0$, we have $e(x) \neq 0$. If $s_1 = r(\beta) = 0$, then $e(\beta) = 0$, so $m_{\beta}(x) \mid e(x)$, so $w(e) \geqslant 3$ since the BCH code generated by $m_{\beta}(x)$ has $\delta \geqslant 3$.
- If exactly two errors have occurred, say in positions i and j with $i \neq j$ and $i, j \in [0, 14]$, then $e(x) = x^i + x^j$. Thus, $s_1 = r(\beta) = e(\beta) = \beta^i + \beta^j$ and

$$s_{3} = r(\beta^{3}) = e(\beta^{3})$$

$$= \beta^{3i} + \beta^{3j}$$

$$= (\beta^{i} + \beta^{j})(\beta^{2i} + \beta^{i+j} + \beta^{2j})$$

$$= (\beta^{i} + \beta^{j})((\beta^{i} + \beta^{j})^{2} + \beta^{i+j})$$

$$= s_{1}(s_{1}^{2} + \beta^{i+j})$$

therefore, $s_3/s_1+s_1^2=\beta^{i+j}$. Hence, β^i and β^j are the roots of the polynomial $z^2+(\beta^i+\beta^j)z+\beta^{i+j}=z^2+s_1z+\left(\frac{s_3}{s_1}+s_1^2\right)=0$. Form the error locator polynomial $\sigma(z)=z^2+s_1z+\left(\frac{s_3}{s_1}+s_1^2\right)$, and find its roots, if any, in $GF(2^4)$. If there are two roots, β^i and β^j , correct r in positions i and j; STOP.

• Reject r.

Algorithm 5: Decoding Algorithm for C_{15}

- 11 Form the error locator polynomial $\sigma(z)=z^2+s_1z+\left(\frac{s_3}{s_1}+s_1^2\right)$ and find its roots, if any, in $GF(2^4)$
- 12 **if** there are two (distinct) roots β^i and β^j **then**
- return corrected r in positions i and j
- 14 return

REMARK 6.3.2. We start position count from 0.

EXAMPLE 6.3.3 (Decoding C_{15}). Decode $r = (10001\ 00110\ 00000) \iff 1 + x^4 + x^7 + x^8$.

$$s_1 = r(\beta) = 1 + \beta^4 + \beta^7 + \beta^8 = \beta + \beta^{11} = \beta^6$$

$$s_3 = r(\beta^3) = 1 + \beta^{12} + \beta^6 + \beta^9 = \beta^3$$

$$s_1^3 = (\beta^6)^3 = \beta^{18} = \beta^3 = s_3,$$

so one error has occurred in position 6. So, correct r to

$$c = (10001\ 01110\ 00000)$$

We can verify that $c \in C_{15}$ by checking $g(x) \mid c(x)$ or check $c(\beta) = 0$ and $c(\beta^3) = 0$.

EXAMPLE 6.3.4 (Decoding C_{15}). Decode $r = (00111\ 01110\ 00000) \iff x^2 + x^3 + x^4 + x^6 + x^7 + x^8$.

$$s_1 = r(\beta) = \beta^2 + \beta^3 + \beta^4 + \beta^6 + \beta^7 + \beta^8 = \beta^{13}$$

$$s_3 = r(\beta^3) = \beta^6 + \beta^9 + \beta^{12} + \beta^3 + \beta^6 + \beta^9 = \beta^{10}$$

$$s_1^3 = \beta^{39} = \beta^9 \neq s_3$$

Error locator polynomial:

$$\sigma(z) = z^2 + s_1 z + \left(\frac{s_3}{s_1} + s_1^2\right) = z^2 + \beta^{13} z + (\beta^{12} + \beta^{11}) = z^2 + \beta^{13} z + 1$$

Let its roots be β^i and β^j . Then, $\beta^i \cdot \beta^j = 1 = \beta^0$. So, $i + j \equiv 0 \mod 15$. Hence, check if $\beta^i + \beta^j = \beta^{13}$ for

$$(i,j) \in \{(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8)\}$$

Discover that $\beta^4 + \beta^{11} = \beta^{13}$. So, correct r in positions 4 and 11:

$$c = (00110\ 01110\ 01000)$$

More Generally

Suppose C is a binary (n, k)-BCH code with designed distance δ .

Suppose the generator polynomial of C is

$$g(x) = \text{lcm}\{m_{\beta^i}(x) : i \in [1, \delta - 1]\}$$

where β is an element of order n in $GF(2^m)$. Then, $d(C) \geqslant \delta$. Let $t = \lfloor \frac{\delta - 1}{2} \rfloor$.

Suppose $c \in C$ is transmitted, $w(e) \leqslant t$, and r is received.

Compute $s_i = r(\beta^i)$ for each $i \in [1, \delta - 1]$, and form the *syndrome polynomial*:

$$s(z) = s_1 + s_2 z + s_3 z^3 + \dots + s_{\delta-1} z^{\delta-2}$$

<u>Fact</u>: From s(z), the error locator polynomial can be efficiently computed. The roots of $\sigma(z)$ are β^{-j} , where j are the error positions.

Chapter 7

Error Correction Techniques and Digital Audio Recording

2020-04-01

7.1 Reed-Solomon Codes

Invented by Irving Reed and Gustave Solomon in 1960.

DEFINITION 7.1.1. A *Reed-Solomon (RS) code* is a BCH code of length n over GF(q) where $n \mid (q-1)$. Note: m = 1 since $q^1 \equiv 1 \mod n$

EXAMPLE 7.1.2. Let $q=2^4$ and $GF(2^4)=\mathbb{Z}_2/(\alpha^4+\alpha+1)$. Recall that α is a generator of $GF(2^4)^*$. Let $\beta=\alpha^3$, then $\operatorname{ord}(\beta)=5$, so q=16 and n=5. Let

$$g(x) = \text{lcm} \left\{ m_{\beta}(x), m_{\beta^{2}}(x), m_{\beta^{3}}(x) \right\}$$
$$= (x - \beta)(x - \beta^{2})(x - \beta^{3})$$
$$= x^{3} + \alpha^{11}x^{2} + \alpha^{2}x + \alpha^{3}$$

Then, g(x) generates a (5,2)-RS code C over $GF(2^4)$ with $\delta=4$. In fact, d(C)=4 since g(x) is a codeword of weight 4. A generator matrix for C is

$$G = \begin{bmatrix} \alpha^3 & \alpha^2 & \alpha^{11} & 1 & 0 \\ 0 & \alpha^3 & \alpha^2 & \alpha^{11} & 1 \end{bmatrix}_{2 \times 5}$$

Consider the code C' obtained from C by replacing each symbol in codewords of C by their binary vector representation. For example,

$$(\alpha^3,\alpha^2,\alpha^{11},1,0)\longleftrightarrow (0001\ 0010\ 0111\ 1000\ 0000)$$

It is not hard to see that C' is closed under vector addition and scalar multiplication over GF(2). Thus, C' is a (20,8)-binary code.

DEFINITION 7.1.3. Suppose $n \mid (q-1)$, and let $\beta \in GF(q)$ be an element of order n. Then, $m_{\beta^i}(x) = x - \beta^i$ for all i. A **RS code** C **of length** n **over** GF(q) **with designed distance** δ is a cyclic code over GF(q) with generator polynomial

$$g(x) = (x - \beta^a)(x - \beta^{a+1})(x - \beta^{a+2}) \cdots (x - \beta^{a+\delta-2})$$

for some a. Since $\deg(g) = \delta - 1$, we have $w(g) \leqslant \delta$, so $d(C) \leqslant \delta$. By the BCH bound, $d(C) \geqslant \delta$, hence $d(C) = \delta$.

Since $\dim(C) = k = n - \deg(g) = n - \delta + 1$, we have k = n - d + 1, so d = n - k + 1. Recall that $d \le n - k + 1$ for any (n, k, d)-code. Thus, RS are optimal in the sense that, for any fixed n, k, q, they achieve maximum distance among all (n, k, d)-codes over GF(q).

RS codes have good (cyclic) burst error correcting capability

Let C be a RS code of length n over $GF(2^r)$ and designed distance δ . Consider $\mathbf{c} = (c_1, c_2, \dots, c_n) \in C$, and let $e = \lfloor \frac{d-1}{2} \rfloor = \lfloor \frac{n-k}{2} \rfloor$. Note that $\mathbf{c}_i \in GF(2^r)$.

By writing each c_i as a binary vector of length r, we can view c as a binary vector of length nr bits.

Now, if c is transmitted and if a cyclic burst error of length $\leq 1 + (e-1)r$ bits is introduced, then at most e symbols of c are received incorrectly. Thus, the received word can be decoded correctly.

THEOREM 7.1.4. Let C be an (n,k)-RS code over $GF(2^r)$. Then C', the code obtained by replacing each symbol in the codewords of C by the r-bit binary representations, is a binary (nr,kr)-code with c.b.e.c.c 1+(e-1)r where $e=\lfloor \frac{n-k}{2} \rfloor$.

EXAMPLE 7.1.5. Consider $GF(2^8) = \mathbb{Z}_2[\alpha]/(\alpha^8 + \alpha^4 + \alpha^3 + \alpha^2 + 1)$. Then $\beta = \alpha$ has order n = 255 (so q = 256, n = 255). Let

$$g(x) = \prod_{i=1}^{24} (x - \beta^i)$$

Then g(x) is the generator polynomial for a (255, 231, 25)-RS code C with e.c.c e=12. The related code C' is a (2040, 1848)-binary code with c.b.e.c.c 89.

The code C, and others derived from it, have widely been used in practice, including in CDs, DVDs, and QR codes.