TRIGONOMETRY Chapter 03

Resolución de triángulos rectángulos

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

Resolver un triángulo significa hallar la longitud de
sus lados y ángulos. Para
los casos siguientes, necesitamos como datos un lado
y un ángulo agudo.

Caso I.

One

En conc

Regla práctica

$$\frac{\text{[lado incógnita]}}{\text{[lado dato]}} = RT \begin{pmatrix} \Box \\ \text{dato} \end{pmatrix}$$

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

•
$$\frac{x}{m} = \tan\theta$$

$$\Rightarrow$$
 x = m tan θ

 \Rightarrow y = msec θ

•
$$\frac{y}{m} = \sec\theta$$

Caso III.

$$\Rightarrow x = m\cot\theta$$

• $\frac{x}{-} = \cot\theta$

•
$$\frac{y}{m} = \csc\theta$$

$$\Rightarrow$$
 y = mcsc θ

ÁREA DE UNA REGIÓN TRIANGULAR

Siendo S el área de la región Ejemplo: triangular sombreada.

Se cumple:
$$S = \frac{a.b}{2} sen \alpha$$

Calcule el área de la región triangular de lados 10u y 7u, además el ángulo entre ellos mide 53°.

Resolución:

$$S = \frac{7 \times 10}{2} \operatorname{sen} 53^{\circ}$$

$$S = \frac{7 \times 10}{2} \left(\frac{4}{3}\right)$$

$$S = \frac{7 \times 10}{2} \left(\frac{4}{3}\right)$$

$$10u$$

1. En un triángulo rectángulo, la hipotenusa mide m y un ángulo agudo es θ . Determine el área de dicho triángulo.

RESOLUCIÓN

$$\frac{x}{m} = \operatorname{sen}\theta \Rightarrow x = \operatorname{m.sen}\theta$$

$$\frac{y}{m} = \cos\theta \Rightarrow y = \text{m.cos}\theta$$

Luego: Área =
$$\frac{(m.\cos\theta)(m.\sin\theta)}{2}$$

∴ Área =
$$\frac{\text{m}^2 \text{sen}\theta.\cos\theta}{2}$$

2. Juan y Jorge compran un terreno rectangular para sembrar camote y papa, para ello dividen el terreno en dos partes iguales, trazando una diagonal. Si el largo del terreno es L metros y el ángulo formado por la diagonal y el lado anterior del terreno es β , calcule el área del terreno que le corresponde para sembrar cada tubérculo en términos de L y β .

RESOLUCIÓN

Del gráfico:
$$\frac{x}{L} = tan\beta$$

∴ Área =
$$L^2$$
. tanβ

3. De la figura, calcule el valor de "x" en función de a, b y θ.

4.A partir del gráfico, si AB = h, halle CD

RESOLUCIÓN

$$ABC: \frac{BC}{h} = sen\alpha$$

BDC:

$$\frac{CD}{h. sen \alpha} = sen \beta$$

∴ $CD = h.sen\alpha.sen\beta$

◎1

HELICO | PRACTICE

5. En un triángulo acutángulo ABC, se traza la altura \overline{CD} (D en \overline{AB}). Si m \not CAD = α , m \not CBD = β y AD = p; calcule BD en términos de α , β y p.

RESOLUCIÓN

ADC:
$$\frac{CD}{p} = \tan \alpha$$
 CD= p.tan α

$$CDB: \frac{x}{p.tan\alpha} = cot\beta$$

 $\therefore x = p.tan\alpha.cot\beta$

HELICO | PRACTICE

6. En el gráfico mostrado, halle AB en términos de r y θ.

RESOLUCIÓN

Se observa:

$$AB = AO + OB \Rightarrow x = r. csc\theta + r$$

$$\therefore x = r(\csc\theta + 1)$$

7. En el gráfico, calcule el área de la región sombreada.

RESOLUCIÓN

Sabemos:

$$S_1 = \left(\frac{5.4}{2}\right) \text{sen30}^\circ$$

$$S_1 = (10)\frac{1}{2} \implies S_1 = 5$$

Ahora:

$$S + S_1 = \left(\frac{8.10}{2}\right) \text{sen30}^\circ$$

$$S + 5 = (40)\frac{1}{2}$$

$$S + 5 = 20$$

$$\therefore S = 15u^2$$

8u

8. En un triángulo ABC se cumplen AB=2u, BC=3u, m<ABC=60°. Halle la longitud de la bisectriz del ángulo B.

RESOLUCIÓN

Se observa: $S_1 + S_2 = S_{ABC}$

$$\left(\frac{2.x}{2}\right) \operatorname{sen30^{\circ}} + \left(\frac{3.x}{2}\right) \operatorname{sen30^{\circ}} = \left(\frac{2.3}{2}\right) \operatorname{sen60^{\circ}}$$

$$\Rightarrow \left(\frac{2 \cdot x}{2}\right) \frac{1}{2} + \left(\frac{3 \cdot x}{2}\right) \frac{1}{2} = (3) \cdot \frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{5x}{2} = 3\sqrt{3}$$

$$\therefore x = \frac{6\sqrt{3}}{5}u$$