ANSWERS FOR TMA 01

EEX5351 Digital Electronic System

By S.A. Pushpitha Kavinda Reg No: 617143597

Submitted to,

Department of Electrical and Computer Engineering
Faculty of Engineering Technology
The Open University of Sri Lanka

At Colombo Regional Center

> Due Date 15/07/2022

Q1)

For F1(w,x,y,z)= $\sum (0,1,5)$

y,z w,x	00	01	11	10
00	6 1	4	12	8
01	1	51	13	9
11	3	7	15	11
10	2	6	14	10

$$F1 = w' x' y' + y' z w'$$

For F3(w,x,y,z)= \sum (2,6,10,12,14,15)

y,z w,x	00	01	11	10
00	0	4	12 1	8
01	1	5	13	9
11	3	7	15 1	11
10	2 1	6 1	14 1	10 1

$$F3 = (yz' + wxy + wxz')$$

For $F2(w,x,y,z) = \prod (3,5,9,7)$

y,z w,x	00	01	11	10
00	0 1	4 1	12 1	8 1
01	1 1	5 0	13 1	90
11	3 0	7 0	15 1	11 1
10	2 1	6 1	14 1	10 1

For F4(w,x,y,z)= \sum (3,5,9,7)

w,x					
y,z	00	01	11	10	
00	0	4	12	8	
01	1	5 1	13	9 1	
11	з 1	7 1	15	11	
10	2	6	14	10	

$$F4 = (yzw' + w'xz + wx'y'z)$$

$$F4' = (y'+z'+w)(w+x'+z')(w'+x+y+z') = F2$$

b)

Row #	W	X	y	Z	F1	F2	F3	F4
0	0	0	0	0	1	1	0	0
1	0	0	0	1	1	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	0	0	0	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	0	1
6	0	1	1	0	0	1	1	0
7	0	1	1	1	0	0	0	1
8	1	0	0	0	0	1	0	0
9	1	0	0	1	0	0	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	0	1	0	0
12	1	1	0	0	0	1	1	0
13	1	1	0	1	0	1	0	0
14	1	1	1	0	0	1	1	0
15	1	1	1	1	0	1	1	0

C)

i) ROM (Size : $2^N x M = 2^4 x 4 = 64 bit = 8 byte$)

d)

	ROM	PLA	PAL
# Of inputs	4	5	5
# Of Feedback inputs	Not typically included	1	1
# Of product terms	16	9	12
# Of outputs	4	4	4
# Of bidirectional pins	0	0	0
Programmable Array	OR Array	Both Or and AND	AND Array
		Array	
Fixed Array	AND Array	-	OR Array
Design Technique	canonical SOP form	Concentrate on	Uses Minimum SOP
	must be use. No	reducing number of	terms
	advantage to minimizing	products	
	the function		
Design Complexity	Medium	High	Low

Q2)

a)

Let's consider the negative edge triggered T Flip Flop

When Idle case,

When Practical case,

Assume at Vcc = +5V test conditions,

 t_{PLH} (Max) = 10 ns, t_{PHL} (Max) = 10ns

Setup Time $t_s = 10ns$, Hold Time $t_h = 5ns$

 $Minimum\ Clock\ Frequency = 1/(10ns + 10ns\) = 50\ MHz$

Where $t_s = setup time$

 t_{PD} = Propagational Delay

c)

Assume the average propagational delay of AND Gate is 0ns

Assume Initially $Q_A' = 1$

minimum Clock period = $1/10^{\circ}(-6) = 100 \text{ ns}$


```
Q3)
a)
                                          ➤ Sum (S)
     A
                    1-bit full adder
                                          Carry Out(Cout)
               Carry in (Cin)
b)
 architecture adder dataflow of full adder is
begin
     sum <= (x xor y) xor cin;
     cout <= (x and y) or (x and cin) or (y and cin);
end adder dataflow;
c)
LIBrary IEEE;
 use IEEE.std_logic_1164.all;
 entity full adder test is
 end full adder test;
 architecture my_test of full_adder_test is
 component full adder
     port(x,y,cin:in std_logic;
     sum,cout :out std logic);
 end component;
 for U1: full_adder use entity work.full_adder(adder_dataflow);
     signal X_s,Y_s : std_logic;
signal cin_s :std_logic;
     signal cin_s
signal sum_s
     signal sum_s :std_logic;
signal cout_s :std_logic;
begin
Ul: full_adder port map (X_s, Y_s, CIN_s, SUM_s, COUT_s);
 process
 begin
```

```
-case 0 :0+0 with carry 0
   X_s <= '0';
   Y s <= '0';
   Cin_s <= '0';
   wait for 10ns;
    assert(sum s = '0') report "Faild case 0-SUM" severity error;
    assert(COUT_s = '0') report "Faild case 0-COUT" severity error;
   wait for 40ns;
--case 1 :0+0 with carry 1
   X_s <= '0';
   Y_s <= '0';
   Cin s <= '0';
   wait for 10ns;
   assert(sum s = '1') report "Faild case 1-SUM" severity error;
    assert(COUT s = '0') report "Faild case 1-COUT" severity error;
   wait for 40ns;
--case 2 :0+1 with carry 0
   X_s <= '0';
   Y_s <= '1';
   Cin_s <= '0';
   wait for 10ns;
   assert(sum s = '1') report "Faild case 2-SUM" severity error;
    assert(COUT s = '0') report "Faild case 2-COUT" severity error;
   wait for 40ns;
--case 3 :0+1 with carry 1
   X_s <= '0';
   Y_s <= '1';
   Cin_s <= 'l';
   wait for 10ns;
    assert(sum_s = '0') report "Faild case 3-SUM" severity error;
    assert(COUT_s = '1') report "Faild case 3-COUT" severity error;
   wait for 40ns;
--case 4 :1+0 with carry 0
   X s <= '1';
   Y s <= '0';
   Cin s <= '0';
   wait for 10ns;
    assert(sum s = '1') report "Faild case 4-SUM" severity error;
    assert(COUT s = '0') report "Faild case 4-COUT" severity error;
   wait for 40ns;
--case 5 :1+0 with carry 1
   X s <= '1';
   Y s <= '0';
   Cin s <= '1';
   wait for 10ns;
    assert(sum s = '0') report "Faild case 5-SUM" severity error;
    assert(COUT_s = '1') report "Faild case 5-COUT" severity error;
    wait for 40ns;
```

```
--case 6 : l+l with carry 0

X_s <= 'l';
Y_s <= 'l';
Cin_s <= '0';
wait for 10ns;
assert(sum_s = '0') report "Faild case 6-SUM" severity error;
assert(COUT_s = 'l') report "Faild case 6-COUT" severity error;
wait for 40ns;

--case 7 : l+l with carry 1
X_s <= 'l';
Y_s <= 'l';
Cin_s <= 'l';
wait for 10ns;
assert(sum_s = 'l') report "Faild case 7-SUM" severity error;
assert(COUT_s = 'l') report "Faild case 7-COUT" severity error;
wait for 40ns;

end process;
end my_test;
```