Relatório Lista 12: Redes Neurais Convolucionais (CNN)

Douglas Nicolas Silva Gomes

8 de junho de 2025

Conteúdo

1	Introdução	1
2	Pré-processamento dos Dados 2.1 Organização dos Dados	2 2 2
3	Arquitetura da CNN 3.1 Configuração do Modelo	2 2
4	Compilação e Treinamento 4.1 Configurações	3
5	Melhor Modelo Obtido5.1 Desempenho5.2 Gráficos de Treinamento	
6	Avaliação no Conjunto de Teste 6.1 Métricas Quantitativas	4
7	Conclusão	6

1 Introdução

Este relatório documenta o desenvolvimento de um modelo de classificação binária para distinguir entre imagens de cachorros e gatos utilizando Redes Neurais Convolucionais (CNN). O trabalho foi implementado com TensorFlow/Keras e segue o pipeline completo: pré-processamento, construção do modelo, treinamento e avaliação.

2 Pré-processamento dos Dados

2.1 Organização dos Dados

O dataset foi organizado em três conjuntos:

- Treino (70%)
- Validação (15%)
- Teste (15%)

2.2 Técnicas Aplicadas

- Redimensionamento para 128x128 pixels
- Normalização (valores de pixel entre 0 e 1)
- Data augmentation (apenas para treino):
 - Rotação aleatória (20°)
 - Zoom aleatório (20%)
 - Flip horizontal

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
)
```

3 Arquitetura da CNN

3.1 Configuração do Modelo

- 3 camadas Conv2D + MaxPooling2D
- 1 camada Dense com Dropout (50%)
- Saída binária com ativação sigmoid

```
Dense(256, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
```

4 Compilação e Treinamento

4.1 Configurações

• Otimizador: Adam

• Função de perda: Binary Crossentropy

• Métrica: Acurácia

• Batch size: 32

• Épocas: 50 (com EarlyStopping)

```
early_stop = EarlyStopping(
   monitor='val_loss',
   patience=5,
   restore_best_weights=True
)
```

5 Melhor Modelo Obtido

5.1 Desempenho

 \bullet Acurácia de validação: 81.86%

• Loss de validação: 0.4396

• Épocas de treinamento: 23 (com early stopping)

5.2 Gráficos de Treinamento

Figura 1: Evolução da acurácia e loss durante o treinamento

6 Avaliação no Conjunto de Teste

6.1 Métricas Quantitativas

6.2 Métricas Quantitativas

Classe	Precisão	Recall	F1-Score	Suporte
Cats	0.82	0.80	0.81	1011
Dogs	0.81	0.83	0.82	1012
Acurácia Total	0.82 (2023 amostras)			
Macro Média	0.82	0.82	0.82	2023
Média Ponderada	0.82	0.82	0.82	2023

Tabela 1: Métricas de desempenho no conjunto de teste

Detalhes adicionais:

• Acurácia final no teste: 0.8151

• Loss final no teste: 0.4225

• Tempo por etapa: ~3s, 49ms/step

6.3 Predições Externas

Imagem	Predição	Confiança
gato1.jpg	Cachorro (Incorreta)	64.58%
gato2.jpg	Gato (Correta)	81.41%
gato3.jpg	Gato (Correta)	98.34%
cachorro1.jpg	Cachorro (Correta)	98.10%
cachorro2.jpg	Cachorro (Correta)	92.68%
cachorro3.jpg	Cachorro (Correta)	98.63%

Tabela 2: Resumo das predições externas com respectivas confianças

Figura 2: Imagem: gato
1.jpg - Predição incorreta como Cachorro (Confiança: 64.58%)

Figura 3: Imagem: gato
2.jpg - Predição correta como Gato (Confiança: 81.41%)

Figura 4: Imagem: gato3.jpg - Predição correta como Gato (Confiança: 98.34%)

Figura 5: Imagem: cachorro
1.jpg - Predição correta como Cachorro (Confiança: 98.10%)

Figura 6: Imagem: cachorro
2.jpg - Predição correta como Cachorro (Confiança: 92.68%)

Figura 7: Imagem: cachorro
3.jpg - Predição correta como Cachorro (Confiança: 98.63%)

7 Conclusão

O modelo desenvolvido alcançou:

- Boa capacidade de generalização (81.51% de acurácia)
- Balanceamento entre as classes (F1-score de 0.81-0.82)
- Alta confiança na maioria das predições corretas (¿90%)
- O tempo médio de predição foi de 75ms por imagem
- O modelo classificou incorretamente a imagem gato1.jpg como cachorro