Package 'torustest'

January 24, 2023

, , , , , , , , , , , , , , , , , , ,			
Type Package			
Title Two-sample goodness-of-fit tests on the two-dimensional flat torus based on Wasserstein distance			
Version 0.1.0			
Author Javier González-Delgado			
Maintainer Javier González-Delgado <javier.gonzalez-delgado@math.univ-toulouse.fr></javier.gonzalez-delgado@math.univ-toulouse.fr>			
Description The goal of torustest is to provide some practical approaches to perform two-sample goodness-of-fit tests for measures supported on the two-dimensional flat torus based on Wasserstein distance. These techniques have been introduced in González-Delgado, J., González-Sanz, A., Cortés, J., & Neuvial, P. (2021). Two-sample goodness-of-fit tests on the flat torus based on Wasserstein distance and their relevance to structural biology. arXiv:2108.00165.			
Encoding UTF-8			
Imports BAMBI, circular, doParallel, FRACTION, ggplot2, pracma, proxy, transport, uniformly			
RoxygenNote 7.1.2			
NeedsCompilation no			
License MIT + file LICENSE			
R topics documented: dist.torus			
twosample.geodesic.torus.test			
twosample.test.s1 5 twosample.ubound.torus.test 8			
Index 10			

2 geodesic.projection

dist.torus

Distance on the two-dimensional torus

Description

Distance between two points on the two-dimensional torus (periodic $[0,1] \times [0,1]$.)

Usage

```
dist.torus(x, y)
```

Arguments

x A vector of two coordinates in the two-dimensional flat torus, parameterized as the periodic [0,1) x [0,1).

A vector of two coordinates in the two-dimensional flat torus, parameterized as the periodic [0,1) x [0,1).

Value

The distance on the torus between x and y.

Examples

```
set.seed(10)
# Uniform distribution on [0,1] x [0,1]
x <- uniformly::runif_in_cube(1, 2, c(0.5, 0.5), 0.5)
y <- uniformly::runif_in_cube(1, 2, c(0.5, 0.5), 0.5)
dist.torus(x, y)

# Bivariate von Mises distribution
x <- uniformly::runif_in_cube(1, 2, c(0.5, 0.5), 0.5)
y <- BAMBI::rvmcos(1, kappa1 = 1, kappa2 = 1, mu1 = 0, mu2 = 0)/(2*pi)
dist.torus(x, y)</pre>
```

geodesic.projection

Geodesic projection of a pair of samples on the torus

Description

Given a vector of integers u=(a,b), two samples on the torus are projected to the closed geodesic given by the canonical projection of the straight line with director vector u and containing the origin.

Usage

```
geodesic.projection(u, data_1, data_2, do_plots = FALSE, size_points = 1)
```

rgeodesic 3

Arguments

u	A vector of two integers (a,b), with b non-zero.
data_1	n x 2 matrix containing n observations in the two-dimensional flat torus, parameterized as the periodic $[0,1)$ x $[0,1)$.
data_2	m x 2 matrix containing m observations in the two-dimensional flat torus, parameterized as the periodic $[0,1)$ x $[0,1)$.
do_plots	Whether to produce plots illustrating the steps of the algorithm for the given geodesic and samples.
size_points	If do_plots is TRUE, the size of the points to plot (to choose according to n,m).

Value

- plot_list If do_plots is TRUE, a list with the corresponding plots.
- circle_one The projected sample data_1 parameterized on the circle (periodic [0,1)).
- circle_two The projected sample data_2 parameterized on the circle (periodic [0,1)).
- proj_data A data frame containing the coordinates on [0,1]x[0,1] of both samples and the corresponding projections.

Examples

```
data_1 <- BAMBI::rvmcos(30) / (2 * pi)
data_2 <- BAMBI::rvmcos(30) / (2 * pi)
pr <- geodesic.projection(u = c(-1, -2), data_1, data_2, do_plots = TRUE)
pr$plot_list[[1]]
pr$plot_list[[2]]
pr$plot_list[[3]]
pr$plot_list[[4]]
pr$plot_list[[5]]
pr$circle_one; pr$circle_two</pre>
```

rgeodesic

Closed geodesics sampling

Description

Samples a number of different closed geodesics on the torus. Each geodesic is represented by a vector of integers (B, A), where B follows a geometric distribution of parameter p and, for a given B=b, A is uniform in (0,1,...,b).

Usage

```
rgeodesic(ng, p = 0.1)
```

4 sim.null.stat

Arguments

ng The size of the geodesics sample.

p The parameter p of the geometric distribution of B.

Details

For big sample sizes, the value of p must be reduced in order to get a sample of different geodesics. This yields to less simple geodesics, with more revolutions over the torus.

Value

A ng x 2 matrix containing the vectors corresponding to the sampled closed geodesics.

References

[1] Petroni, N. C.(2019). Taking rational numbers at random. arXiv:1908.06944v1.

Examples

```
rgeodesic(5, p = 0.1)
# For bigger sample sizes, p must be reduced.
rgeodesic(100, p = 0.01)
```

sim.null.stat

Wasserstein statistic null distribution

Description

Simulates Wasserstein statistic null distribution.

Usage

```
sim.null.stat(NR, NC = 1, n = 30)
```

Arguments

NR Number of replicas to simulate.

NC Number of cores for parallel computation.

n Sample size for the simulated samples.

Value

A sample of size NR simulating the null distribution of the statistic.

stat.s1 5

References

[1] Delon, J., Salomon, J., Sobolevskii, A.: Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70(7), 2239–2258 (2010).

[2] RAMDAS, A., GARCIA, N. and CUTURI, M. (2015). On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests. Entropy 19.

Examples

```
sim.null.stat(100)
```

stat.s1

Wasserstein distribution-free statistic on S^1

Description

Computes Wasserstein statistic between two samples on S^1, parameterized as a periodic [0,1).

Usage

```
stat.s1(x, y)
```

Arguments

```
x numerical vector of sample in [0,1).
y numerical vector of sample in [0,1).
```

Value

The statistic realization of samples x, y.

References

- [1] Delon, J., Salomon, J., Sobolevskii, A.: Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70(7), 2239–2258 (2010).
- [2] RAMDAS, A., GARCIA, N. and CUTURI, M. (2015). On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests. Entropy 19.

Examples

```
set.seed(10)
stat.s1(runif(50), runif(50))
stat.s1(runif(50), as.numeric(circular::rvonmises(50, pi, 1)/(2*pi)))
```

```
twosample.geodesic.torus.test
```

Geodesic two-sample goodness-of-fit on the torus

Description

Performs a two-sample goodness-of-fit test for measures supported on the torus, by testing the equality of their projected distributions on ng closed geodesics and combining the results into a global p-value.

Usage

```
twosample.geodesic.torus.test(
  sample_1,
  sample_2,
  n_geodesics = 1,
  NC_geodesic = 1,
  geodesic_list = NULL,
  sim_null = NULL,
  NR = 500,
  NC = 1,
  n = 30
)
```

Arguments

sample_1	n x 2 matrix containing n observations in the two-dimensional flat torus, parameterized as the periodic $[0,1)$ x $[0,1)$.
sample_2	n x 2 matrix containing n observations in the two-dimensional flat torus, parameterized as the periodic $[0,1)$ x $[0,1)$.
n_geodesics	The number of closed geodesics where samples must be projected.
NC_geodesic	The number of cores for computing parallelly the circular tests.
geodesic_list	If NULL, geodesics are chosen randomly with the function rgeodesic. Else, a list of vectors containing the director vectors of the chosen geodesics.
sim_null	The simulated null distribution of the circle test statistic. It NULL, the null distribution is simulated with the given parameters (very time consuming).
NR	The number of replicas if simulation is required.
NC	The number of cores if parallel simulation for sim_null is required.
n	The sample sizes of the simulated samples is simulation is required.

Value

The p-value for the two-sample test on the torus.

twosample.test.s1 7

Examples

```
n <- 100 # Sample size

# Simulate the null distribution of the circle test statistic

sim_free_null <- sim.null.stat(500, NC = 2)

# Bivariate von Mises distributions
samp_1 <- BAMBI::rvmcos(n) / (2 * pi)
samp_2 <- BAMBI::rvmcos(n) / (2 * pi)

#4 geodesics are chosen randomly
twosample.geodesic.torus.test(samp_1, samp_2, n_geodesics = 3, NC_geodesic = 2, sim_null = sim_free_null)

#4 geodesics are chosen a priori
glist <- list(c(1, 0), c(0, 1), c(1, 1), c(2, 3))
twosample.geodesic.torus.test(samp_1, samp_2, geodesic_list = glist, NC_geodesic = 2, sim_null = sim_free_null)</pre>
```

twosample.test.s1

Two-sample goodness-of-fit on the circle

Description

Performs a two-sample goodness-of-fit test for measures supported on the circle, based on a distribution-free Wasserstein statistic.

Usage

```
twosample.test.s1(x, y, sim_null = NULL, NR = 500, NC = 1, n = 30)
```

Arguments

x	numerical vector of sample in [0,1).
у	numerical vector of sample in [0,1).
sim_null	The simulated null distribution of the statistic. If NULL, the distribution is simulated with the given parameters (very time consuming).
NR	The number of replicas if simulation is required.
NC	The number of cores if parallel simulation is required.
n	The sample sizes of the simulated samples is simulation is required.

Value

- stat The test statistic.
- pvalue The test p-value.

References

- [1] Delon, J., Salomon, J., Sobolevskii, A.: Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70(7), 2239–2258 (2010).
- [2] RAMDAS, A., GARCIA, N. and CUTURI, M. (2015). On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests. Entropy 19.

Examples

```
n <- 50 # Sample size

# Simulate the statistic null distribution
NR <- 100
sim_free_null <- sim.null.stat(500, NC = 2)

x <- runif(n, 0, 1)
y <- runif(n, 0, 1)
twosample.test.s1(x, y, sim_free_null)

x <- as.numeric(circular::rvonmises(n, pi, 1)/(2*pi))
y <- as.numeric(circular::rvonmises(n, pi, 0)/(2*pi))
twosample.test.s1(x, y, sim_free_null)</pre>
```

twosample.ubound.torus.test

Asymptotic two-sample goodness-of-fit on the torus

Description

Performs a two-sample goodness-of-fit test for measures supported on the torus, using a p-value upper bound. The test is asymptotically consistent at level alpha.

Usage

```
twosample.ubound.torus.test(sample_1, sample_2)
```

Arguments

sample_1 n x 2 matrix containing n observations in the two-dimensional flat torus, parametrized as the periodic [0,1) x [0,1). sample_2 n x 2 matrix containing n observations in the two-dimensional flat torus, parametrized as the periodic [0,1) x [0,1).

Value

The p-value for the two-sample test on the torus.

Examples

```
n <- 2000 # Sample size

set.seed(10)
    # Bivariate von Mises distribution
samp_1 <- BAMBI::rvmcos(n, kappa1 = 1, kappa2 = 1, mu1 = 0, mu2 = 0)/(2*pi)
samp_2 <- BAMBI::rvmcos(n, kappa1 = 1, kappa2 = 1, mu1 = 0, mu2 = 0)/(2*pi)
twosample.ubound.torus.test(samp_1, samp_2)

samp_1 <- BAMBI::rvmcos(n, kappa1 = 0, kappa2 = 0, mu1 = 0.5, mu2 = 0.5)/(2*pi)
samp_2 <- BAMBI::rvmcos(n, kappa1 = 1, kappa2 = 1, mu1 = 0.5, mu2 = 0.5)/(2*pi)
twosample.ubound.torus.test(samp_1, samp_2)</pre>
```

Index

```
dist.torus, 2
geodesic.projection, 2
rgeodesic, 3
sim.null.stat, 4
stat.s1, 5

twosample.geodesic.torus.test, 6
twosample.test.s1, 7
twosample.ubound.torus.test, 8
```