INTELLIGENT AND INTERACTIVE SYSTEMS TUTORIAL 1: OPENCY

Kalyan Ram

Dept. Information Technology

Uppsala University

March 17, 2017

Table of Contents

- BASIC OPENCV
- 2 Image processing results
- 3 Tracking methods
- 4 Object detection

TABLE OF CONTENTS

- BASIC OPENCV
- 2 Image processing results
- 3 Tracking methods
- 4 Object detection

Basic Image Handling

1. Import

import cv2

2. Load I/O

img = cv2.imread('some_image.jpg', 0)

3. Debug/Display

cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. Process

img = manipulateImage(img)

₹5. Save I/0

cv2.imwrite('another_image.png', img)

Basic Video Handling

1. Import

import cv2

2. Load I/0

cap = cv2.VideoCapture('asterix.mp4')
fourcc =
cv2.VideoWriter.fourcc('X','2','6','4')
width = 1024
height = 640
outVideo =
cv2.VideoWriter('asterix2x.mp4',fourcc,

🚀3. Process

while(1):
 ret ,frame = cap.read()
if ret == True:
 res = cv2.resize(frame,(width,height),
 interpolation = cv2.INTER_CUBIC)
 outVideo.write(res)
 else:
 break

5. Save I/O

20.0, (width, height))

cap.release()
outVideo.release()
cv2.destroyAllWindows()

4. Debug/Display

cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

Table of Contents

- BASIC OPENCY
- 2 Image processing results
- 3 Tracking methods
- 4 Object detection

BASIC IMAGE MANIPULATION

(a) Original

(b) Gray

(c) Resize

(d) Binary

Table of Contents

- BASIC OPENCY
- 2 Image processing results
- **③** Tracking methods
- 4 Object detection

MEAN SHIFT CLUSTERING

MEAN SHIFT CLUSTERING (CONT)

- Mean shift is unstable and leads to errors.
 - Window size too small (missing object).
 - Window size too large (background tracking).
 - Invariance to perspective of object in motion.
- Sol: Change the window size as per motion (Continuously Adaptive (Window size) Mean Shift)

CAM SHIFT - OUTLINE

- S_1 : Select a region of interest (ROI) to track.
- S_2 : Produce a Hue-histogram of the image.
- S_3 : Set a search area larger then the ROI set.
- *S*₄: Iterate Mean-Shift to convergence.
- S₅: Use the centroid from Mean-Shift to center the window in the next frame.
- S_6 : Use zero-moment to resize the ROI
- S_7 : Repeat $S_3 S_6$ until all frames are processed.

CAM SHIFT - DETAILS

• Why HSL space?

Compute zero moment:

$$M_{00} = \sum_{x} \sum_{y} I(x, y)$$

• Compute 1^{st} moment of (x, y):

$$M_{01} = \sum_{x} \sum_{y} x I(x, y), M_{10} = \sum_{x} \sum_{y} y I(x, y)$$

 Compute new center for next frame.

$$x_{new} = \frac{M_{01}}{M_{00}}, y_{new} = \frac{M_{10}}{M_{00}}$$

Compute new window size

$$w = r_1 \sqrt{M_{00}}$$

$$I=r_2\sqrt{M_{00}}$$

TABLE OF CONTENTS

- BASIC OPENCY
- 2 Image processing results
- 3 Tracking methods
- OBJECT DETECTION

VIOLA-JONES DETECTION FRAMEWORK

- S₁: Haar Feature Selection
- S_2 : Creating an Integral Image
- S₃: Adaboost Training
- S_4 : Cascading Classifiers