Colles - Semaine 7

Planche 1

On considère E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On considère f un endomorphisme de $\mathcal{L}(E)$.

- \boldsymbol{A}) Suite des noyaux itérés
 - 1. Démontrer : $\forall i \in \mathbb{N}$, Ker $(f^i) \subset \text{Ker } (f^{i+1})$.
 - 2. Dans cette question, on suppose qu'il existe $r \in \mathbb{N}$ tel que :

$$\operatorname{Ker}\left(f^{r}\right) = \operatorname{Ker}\left(f^{r+1}\right)$$

Démontrer : $\forall i \in \llbracket r, +\infty \llbracket, \text{ Ker } \left(f^i\right) = \text{Ker } \left(f^{i+1}\right).$

- 3. Pour tout $i \in \mathbb{N}$, on note : $d_i = \dim (\operatorname{Ker} (f^i))$.
 - a) Démontrer que la suite $(d_i)_{i\in\mathbb{N}}$ est monotone.
 - b) En procédant par l'absurde, démontrer qu'il existe $r \in [0, n]$ tel que : $d_r = d_{r+1}$.
 - c) En déduire que la suite $(d_i)_{i\in\mathbb{N}}$ est stationnaire.
- B) Suite des images itérées
 - 1. Démontrer : $\forall j \in \mathbb{N}$, $\operatorname{Im}\left(f^{j+1}\right) \subset \operatorname{Im}\left(f^{j}\right)$.
 - 2. Dans cette question, on suppose qu'il existe $s \in \mathbb{N}$ tel que :

$$\operatorname{Im}\left(f^{s+1}\right) = \operatorname{Im}\left(f^{s}\right)$$

Démontrer : $\forall j \in [s, +\infty[, \text{Im}(f^{j+1})] = \text{Im}(f^j).$

- 3. Pour tout $j \in \mathbb{N}$, on note : $m_j = \dim (\operatorname{Im} (f^j))$.
 - a) Démontrer que la suite $(m_j)_{j\in\mathbb{N}}$ est monotone.
 - b) Démontrer : $m_{r+1} = m_r$ (où r est l'entier défini en question A.3.d)).
 - c) En déduire que la suite $(m_j)_{j\in\mathbb{N}}$ est stationnaire.

Planche 2

Exercice 1

Soit E un espace vectoriel. Une *involution* de $\mathscr{L}(E)$ est un endomorphisme $u \in \mathscr{L}(E)$ tel que $u \circ u = \mathrm{id}_E$, où id_E désigne l'endomorphisme identité.

1. Soient a et b deux endomorphismes bijectifs de $\mathscr{L}(E)$ vérifiant :

$$a \circ b \circ a = b$$
 et $b \circ a \circ b = a$

Montrer que $a^2 = b^2$ et que a^2 est une involution.

- 2. Soient a et b deux involutions de $\mathcal{L}(E)$.
 - a) Montrer que $\operatorname{Im}(a \circ b b \circ a) \subset \operatorname{Im}(a b) \cap \operatorname{Im}(a + b)$.
 - **b)** Montrer que $\operatorname{Im}(a-b) \cap \operatorname{Im}(a+b) \subset \operatorname{Im}(a \circ b b \circ a)$.

Exercice 2

Soient $E,\,F,\,G$ trois espaces vectoriels, $f:E\to F$ et $g:F\to G$ deux applications linéaires. Montrer :

- 1. $\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f) \iff \operatorname{Ker}(g) \cap \operatorname{Im}(f) = \{0\}$
- 2. $\operatorname{Im}(g \circ f) = \operatorname{Im}(g) \iff \operatorname{Ker}(g) + \operatorname{Im}(f) = F$

Planche 3

Soit E un \mathbb{R} espace vectoriel et u un endomorphisme de E. Si F est un sous-espace vectoriel de E, on dit qu F est stable par u si : $\forall x \in F$, $u(x) \in F$. Pour tout entier $k \geq 1$, on note u^k l'application $u \circ u \circ \cdots \circ u$ où u apparaît k fois.

Soient $n \ge 1$ un entier et p un projecteur. On suppose que u^n est l'application linéaire identité et que Im(p) est stable par u. On pose :

$$q = \frac{1}{n} \sum_{k=1}^{n} u^k \circ p \circ u^{n-k}$$

- 1. Montrer que $\operatorname{Im}(q) \subset \operatorname{Im}(p)$ et que $p \circ q = q$.
- **2.** Montrer : $q \circ u = u \circ q$.
- 3. Montrer: $q \circ p = p$.
- 4. Montrer que q est un projecteur.
- 5. Montrer que Ker(q) est un supplémentaire de Im(p) stable par u.