Assignment 2 Sample Solutions

1. [8 marks] Recurrence relations.

Consider the following recurrence:

$$T(n) = \begin{cases} T(\lfloor n/2 \rfloor) + T(\lfloor n/5 \rfloor) + 50 & \text{if } n \ge 2\\ 1 & \text{if } n = 0, 1 \end{cases}$$

Use the guess-and-check method to prove the upper bound $T(n) \in O(n^{0.7})$.

Hint: use $T(n) \leq cn^{0.7}$ as your "guess", where c is a suitable positive constant. You can determine appropriate values for the constants c and n_0 within the induction proof.

Answer: We have

$$T(0) = 1$$

$$T(1) = 1$$

$$T(2) = T(1) + T(0) + 50 = 52$$

$$T(3) = T(1) + T(0) + 50 = 52$$

$$T(4) = T(2) + T(0) + 50 = 52 + 1 + 50 = 103$$

$$T(5) = T(2) + T(1) + 50 = 52 + 1 + 50 = 103$$

Since T(0) = 1 and $c \times 0^{0.7} = 0$ for any c, we cannot take $n_0 = 0$. Therefore we will take $n_0 = 1$. When $m \ge 5$, the evaluation of T(m) only involves terms T(n) with $n \ge 1$. This means that we will have to treat n = 1, 2, 3, 4 as base cases in the induction proof and start the induction from n = 5.

Suppose $T(n) \le cn^{0.7}$ for some c to be determined later, for $1 \le n < m$, where $m \ge 5$. Then we have

$$T(m) = T(\lfloor m/2 \rfloor) + T(\lfloor m/5 \rfloor) + 50$$

$$\leq c \left(\frac{m}{2}\right)^{0.7} + c \left(\frac{m}{5}\right)^{0.7} + 50 \quad \text{(by induction, since } m \ge 5\text{)}$$

$$= cm^{0.7} \left(\left(\frac{1}{2}\right)^{0.7} + \left(\frac{1}{5}\right)^{0.7}\right) + 50$$

$$= .940cm^{0.7} + 50.$$

Clearly

$$.940cm^{0.7} + 50 \le cm^{0.7} \Leftrightarrow .06cm^{0.7} \ge 50 \Leftrightarrow cm^{0.7} \ge 833.$$

Since $m \ge 5$, we have $m^{0.7} \ge 3$, so it is sufficient if $c \ge 278$.

Now we still have to ensure that $T(n) \le cn^{0.7}$ for $1 \le n \le 4$. Thus

$$\begin{array}{ll} c & \geq & \max\{T(n)/n^{0.7}: 1 \leq 4\} \\ & = & \max\{1/1^{0.7}, 52/2^{0.7}, 52/3^{0.7}, 103/4^{0.7}\} \\ & = & \max\{1, 32, 24, 39\} \\ & = & 39. \end{array}$$

But we already have the requirement $c \ge 278$, so c = 278 is a valid choice.

2. [4 marks] Master theorem.

Find an asymptotic Θ -bound for the solution to the following recurrence relation by applying the Master Theorem. Show your work.

$$T(n) = \begin{cases} 8T(n/5) + 12^{\log_7 n} & \text{if } n > 1\\ 1 & \text{if } n = 1. \end{cases}$$

Answer: Observe that $12^{\log_7 n} = n^{\log_7 12} = n^{1.28}$. Here a = 8, b = 5 and y = 1.28. We compute

$$x = \log_5 8 = 1.29.$$

Since x > y, we are in case 1 and $T(n) \in \Theta(n^{\log_5 8})$ by the Master Theorem.

3. [16 marks] Divide-and-conquer.

Define the following sequence of numbers: $F_0 = 0$, $F_1 = 1$, and

$$F_{2n} = (F_n + F_{n-1})^2 - F_{n-1}^2$$

 $F_{2n+1} = (F_n + F_{n-1})^2 + F_n^2$

(This is in fact the Fibonacci number sequence, but you are not required to prove it.)

(a) [4 marks] Give a pseudocode description of an efficient divide-and-conquer algorithm to compute F_n for a given integer $n \ge 0$, based on the above definition.

Answer:

Algorithm:
$$Fib(n)$$

if $n = 0$

then return (0)

else if $n = 1$

then return (1)

$$\begin{cases}
\text{if } n \mod 2 = 0 \\
\text{then } \begin{cases}
A \leftarrow Fib(n/2) \\
B \leftarrow Fib(n/2 - 1) \\
\text{return } ((A + B)^2 - B^2)
\end{cases}$$

else
$$\begin{cases}
A \leftarrow Fib((n - 1)/2) \\
B \leftarrow Fib((n - 3)/2) \\
\text{return } ((A + B)^2 + A^2)
\end{cases}$$

(b) [4 marks] Prove that $F_n \leq 2^n$ by induction, using the usual recurrence for F_n , namely, $F_n = F_{n-1} + F_{n-2}$.

Answer: We start with n=0 and n=1 as base cases. We have $F_0=0\leq 2^0=1$ and

 $F_1 = 1 \le 2^1 = 2$. As an induction hypothesis, assume that $F_n \le 2^n$ for $0 \le n < m$, where $m \ge 2$. Then we compute

$$F_m = F_{m-2} + F_{m-1} \le 2^{m-2} + 2^{m-1} < 2^{m-1} + 2^{m-1} = 2^m$$

By induction, $F_n \leq 2^n$ for all $n \geq 0$.

(c) [8 marks] Determine a O-bound on the complexity of your algorithm from part (a) by writing down a recurrence and solving it using the Master Theorem. Here, we are interested in the bit complexity. Assume that the multiplication of two k-bit numbers requires $O(k^{1.59})$ time by Karatsuba and Ofman's algorithm. You can use the fact that $F_n \leq 2^n$ (which you proved in part (b)), which implies that the number of bits in F_n is at most n.

Answer: We approximate n/2 - 1, (n-1)/2 and (n-3)/2 by n/2 for the purposes of writing down the recurrence, so we can solve it using the Master Theorem. (This could be justified by a monotonicity argument, but it is not required for the purposes of the assignment.) Then, the recurrence for both even and odd n has the form

$$T(n) = 2T(n/2) + f(n).$$

The function f(n) accounts for the following:

- two multiplications (squarings) of n/2-bit integers, which takes time $O((n/2)^{1.59}) = O(n^{1.59})$
- one addition of n/2-bit integers, which takes time O((n/2)) = O(n), and
- one addition or subtraction of *n*-bit integers, which takes time O(n).

Therefore $f(n) \in O(n^{1.59})$ and our recurrence is

$$T(n) = 2T(n/2) + O(n^{1.59}).$$

We have y = 1.59 and $x = \log_2 2 = 1$. Then x < y, we are in case 3, and $T(n) \in O(n^{1.59})$ by the Master Theorem.

4. [12 marks] Divide-and-conquer.

The matrices H_0, H_1, \ldots are defined as follows:

$$H_0 = (1)$$
,

and

$$H_k = \left(\begin{array}{cc} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{array}\right)$$

for $k \geq 1$. Thus,

etc.

Given a integer vector \mathbf{v} of length 2^k , we want to compute the vector-matrix product $\mathbf{v}H_k$. For example, if k = 2, then $(2, 3, 4, -1)H_2 = (8, 4, 2, -6)$.

(a) [8 marks] Design a divide-and-conquer algorithm to compute a matrix-vector product $\mathbf{v}H_k$. You can assume that all arithmetic operations take $\Theta(1)$ time.

Note that you should not explicitly construct the matrix H_k . Your algorithm will take two inputs, namely \mathbf{v} and k, where \mathbf{v} has length 2^k .

Answer

Derivation of algorithm (and correctness): Suppose we write $\mathbf{v} = (\mathbf{w}, \mathbf{x})$, where \mathbf{w}, \mathbf{x} each have length 2^{k-1} . Then

$$\mathbf{v}H_k = (\mathbf{w}, \mathbf{x}) \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{pmatrix} = (\mathbf{w}H_{k-1} + \mathbf{x}H_{k-1}, \mathbf{w}H_{k-1} - \mathbf{x}H_{k-1}).$$

Thus, we need to solve two subproblems, namely $\mathbf{w}H_{k-1}$ and $\mathbf{x}H_{k-1}$. If $\mathbf{a} = \mathbf{w}H_{k-1}$ and $\mathbf{b} = \mathbf{x}H_{k-1}$, then $\mathbf{v}H_k = (\mathbf{a} + \mathbf{b}, \mathbf{a} - \mathbf{b})$.

Therefore the D&C algorithm is as follows.

$$\begin{aligned} \textbf{Algorithm:} \ & MVProd(\mathbf{v},k) \\ \textbf{if} \ & k = 0 \quad \textbf{then return } (\mathbf{v}) \\ & \begin{cases} \textbf{for} \ & i \leftarrow 1 \ \textbf{to} \ 2^{k-1} \\ \textbf{do} \ & \begin{cases} \mathbf{w}[i] \leftarrow \mathbf{v}[i] \\ \mathbf{x}[i] \leftarrow \mathbf{v}[i+2^{k-1}] \end{cases} \\ \textbf{a} \leftarrow & MVProd(\mathbf{w},k-1) \\ \textbf{b} \leftarrow & MVProd(\mathbf{x},k-1) \\ \textbf{for} \ & i \leftarrow 1 \ \textbf{to} \ 2^{k-1} \\ \textbf{do} \ & \begin{cases} \mathbf{c}[i] \leftarrow \mathbf{a}[i] + \mathbf{b}[i] \\ \mathbf{c}[i+2^{k-1}] \leftarrow \mathbf{a}[i] - \mathbf{b}[i] \end{cases} \\ \textbf{return } (\mathbf{c}) \end{aligned}$$

(b) [4 marks]. Write down a recurrence relation for the complexity of your algorithm and solve it using the Master Theorem. You should aim for a complexity of $\Theta(n \log n)$, where $n = 2^k$.

Answer: The recurrence relation has the form T(n) = 2T(n/2) + f(n), where f(n) accounts for the work done in the two for loops. Clearly,

$$f(n) \in O(2^{k-1}) = O(n/2) = O(n).$$

Thus the recurrence is T(n) = 2T(n/2) + O(n) and its solution is $T(n) \in O(n \log n)$, as we have seen numerous times before.

5. [18 marks] Greedy.

Suppose Alice wants to see n different movies at a certain movie theatre complex. Each movie is showing on specified dates. For $1 \le j \le n$, suppose that movie M_j is showing from day a_j until day b_j inclusive (you can assume that a_j and b_j are positive integers such that $a_j \le b_j$). The objective is to determine the minimum number of trips to the theatre that will be required in order to view all n movies. For simplicity, assume that it is possible to view any number of movies in a given day.

(a) [12 marks] Design a greedy algorithm to solve this problem, and prove your algorithm is correct.

Answer:

- (1) Sort the movies $M_j = [a_j, b_j]$ in increasing order of b_j . Suppose the movies are renamed so $b_1 \leq b_2 \leq \cdots \leq b_n$.
- (2) Initialize $T = \emptyset$ and $U = \{1, ..., n\}$. (*U* keeps track of the unseen movies and *T* records the days that visits to the theatre will be made.)
- (3) While $U \neq \emptyset$ do the following:
 - (i) Let j^* be the smallest element in U and define $b^* = b_{j^*}$.
 - (ii) Set $T = T \cup \{b^*\}.$
 - (ii) Delete all elements j from U such that $b^* \in [a_j, b_j]$.

Here is more detailed pseudocode (not the most efficient solution, but it is acceptable), where we use arrays to store the sets T and U:

```
Algorithm: Movies([a_1,b_1],\ldots,[a_n,b_n])

Sort the movies M_j = [a_j,b_j] in increasing order of b_j T \leftarrow [0,\ldots,0] \ell \leftarrow 0

comment: \ell denotes the number of elements in the set T U \leftarrow [1,\ldots,1]

comment: U[j] = 1 if the jth movie has not been seen j^* \leftarrow 1

comment: j^* is the smallest j such that U[j] = 1

while j^* \leq n

\begin{cases} b^* \leftarrow b_{j^*} \\ \ell \leftarrow \ell + 1 \\ T[\ell] \leftarrow b^* \\ \text{for } j \leftarrow j^* \text{ to } n \\ \text{do if } b^* \geq a_j \\ \text{then } U[j] \leftarrow 0 \end{cases}
j \leftarrow j^*
j^* \leftarrow n + 1
while j \leq n
\begin{cases} \text{if } U[j] = 1 \\ \text{then } \begin{cases} j^* \leftarrow j \\ j \leftarrow n + 1 \\ \text{else } j \leftarrow j + 1 \end{cases}
return (T, \ell)
```

Remark: Since we did not *specifically* ask for the algorithm to record the list of days during which the theatre will be visited, we will accept for full marks a solution that does not incorporate the array T. Such an algorithm would only return the value ℓ as its output.

Remark: It is also possible to devise a correct greedy algorithm that sorts the movies in *decreasing* order of a_j and starts from the last movie, proceeding backwards to the first movie.

Complexity Analysis: The complexity of the above implementation is clearly $O(n \log n + n^2) = O(n^2)$.

Induction proof: We can prove correctness of this algorithm by the "greedy stays ahead" strategy. Denote the greedy solution by $\mathcal{G} = \{d_1, \ldots, d_\ell\}$. Let $\mathcal{O} = \{e_1, \ldots, e_m\}$ be any optimal solution. (We use set notation for \mathcal{G} and \mathcal{O} in this proof.) We can assume that $d_1 < \cdots < d_\ell$ and $e_1 < \cdots < e_m$.

Since \mathcal{O} is optimal, we have $m \leq \ell$ because the problem is a minimization problem. We want to prove that $m = \ell$. This will be a proof by contradiction, so we assume that $m < \ell$.

We prove by induction that $d_j \geq e_j$ for j = 1, 2, ..., m. In the base case, the greedy algorithm always chooses $d_1 = b_1$. \mathcal{O} must have $e_1 \leq b_1$, otherwise it misses the first movie $M_1 = [a_1, b_1]$. Hence $d_1 \geq e_1$.

Now, as an inductive hypothesis, assume that $d_{j-1} \ge e_{j-1}$ for some $j \ge 2$. Suppose that $d_j < e_j$. There is a movie $M_i = [a_i, b_i]$ with $b_i = d_j$. This movie has $a_i > d_{j-1}$ since it is not shown on day d_{j-1} . But $d_{j-1} \ge e_{j-1}$, so this movie is not shown on day e_{j-1} . So we have $e_{j-1} < a_i \le b_i = d_j < e_j$, so it follows that the movie $M_i = [a_i, b_i]$ is not shown on any day in \mathcal{O} . This is a contradiction.

By induction, it follows that $d_j \geq e_j$ for j = 1, 2, ..., m. Now \mathcal{G} contains a day $d_{m+1} > d_m \geq e_m$. There must be a movie that is not shown on any of the days $d_1, ..., d_m$, otherwise \mathcal{G} would not contain an (m+1)st day. So there is a movie $M_i = [a_i, b_i]$ with $b_i = d_{m+1}$ and $a_i > d_m$. Since $d_m \geq e_m$, this movie is not shown on any of the days in \mathcal{O} , which contradicts the fact that \mathcal{O} is a feasible solution. This contradiction shows that $m = \ell$ and hence \mathcal{G} is optimal.

Slick Proof: Consider the greedy solution $\mathcal{G} = \{d_1, \ldots, d_\ell\}$. Each d_j is the last day that a certain movie $M_i = [a_i, b_i]$ is shown (i.e., $d_j = b_i$). The intervals associated with these ℓ movies must be disjoint, because whenever a point d_j is added to \mathcal{G} , the corresponding movie starts later than d_{j-1} , which is the last day that the previous movie in \mathcal{G} is shown. Therefore it requires at least ℓ days to see the ℓ movies in \mathcal{G} , so there cannot exist any feasible solution consisting of fewer than ℓ visits to the theatre.

(b) [6 marks] Illustrate the execution of your algorithm step-by-step on the problem instance consisting of the following movies $M_j = [a_j, b_j]$:

$$[7,9],$$
 $[14,23],$ $[18,32],$ $[32,36],$ $[2,6],$ $[10,19],$ $[15,34],$ $[8,15],$ $[22,31],$ $[33,37],$ $[4,7],$ $[7,24],$ $[24,38],$ $[3,10],$ $[8,18],$ $[30,40].$

Answer: We sort and rename the movies as follows:

i	$[a_i,b_i]$	i	$[a_i,b_i]$	i	$[a_i,b_i]$	i	$[a_1,b_i]$
1	[2, 6]	2	[4, 7]	3	[7, 9]	4	[3, 10]
5	[8, 15]	6	[8, 18]	7	[10, 19]	8	[14, 23]
9	[7, 24]	10	[22, 31]	11	[18, 32]	12	[15, 34]
13	[32, 36]	14	[33, 37]	15	[24, 38]	16	[30, 40]

Then we construct the optimal solution as follows (we use set notation for T and U):

- $T = \emptyset, U = \{1, 2, \dots, 16\}.$
- We set $j^* = 1$, $b^* = 6$, $T = \{6\}$ and $U = \{3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$.
- We set $j^* = 3$, $b^* = 9$, $T = \{6, 9\}$ and $U = \{7, 8, 10, 11, 12, 13, 14, 15, 16\}$.
- We set $j^* = 7$, $b^* = 19$, $T = \{6, 9, 19\}$ and $U = \{10, 13, 14, 15, 16\}$.
- We set $j^* = 10$, $b^* = 31$, $T = \{6, 9, 19, 31\}$ and $U = \{13, 14\}$.
- We set $j^* = 13$, $b^* = 36$, $T = \{6, 9, 19, 31, 36\}$ and $U = \emptyset$.
- The optimal solution (found by the greedy algorithm) is $\ell = 5$ and $T = \{6, 9, 19, 31, 36\}$.