Organizando Pacotes

Por Ray Williams Robinson Valiente E Cuba

Timelimit: 3

Uma empresa de mineração extrai térbio, um metal raro usado para a construção de ímãs leves, a partir de areia de rio. Eles mineram um grande rio em N pontos de mineração, cada um deles identificado por sua distância a partir da origem do rio. Em cada ponto de mineração, uma pequena pilha ou amontoado de minério mineral altamente valorizado é extraido do rio.

Para recolher o minério mineral, a empresa reagrupa os N amontoados produzidos em um menor número de K pilhas ou montes maiores, cada um localizado num dos pontos de extração inicial. Os montes recémformados são então recolhidos por caminhões.

Para reagrupar os N montes eles usam uma barca, o que na prática pode levar qualquer quantidade de minério mineral por ser bem larga. A barcaça começa na origem do rio e somente pode viajar rio abaixo, de modo que o amontoado de mineral produzido em um ponto X de mineração pode ser levado para um ponto Y de mineração somente se Y > X. Cada monte é movimentado completamente para outro ponto de mineração, ou não se move. O custo de mover um monte com peso W a partir de um ponto X de mineração para um ponto Y de mineração é W (Y - X). O custo total do agrupamento é a soma dos custos de cada movimento de um monte. Nota-se que um monte que não é movido não tem influência sobre o custo total.

Dados os valores de N e K, os N pontos de mineração, e o peso da pilha ou amontoado produzido de cada ponto de mineração, escreva um programa que calcule o custo total mínimo para reagrupar estes N montinhos iniciais em K pilhas ou montes maiores.

Entrada

Cada caso de teste é descrito usando várias linhas. A primeira linha contém dois inteiros \mathbf{N} e \mathbf{K} os quais denotam espectivamente, o número de montes ou pilhas iniciais e o número desejado de montes após o reagrupamento ($1 \le \mathbf{K} < \mathbf{N} \le 1000$). Cada uma das seguintes \mathbf{N} linhas descrevem um dos montes iniciais com dois números inteiros \mathbf{X} e \mathbf{W} indicando que o ponto \mathbf{X} de mineração produziu um amontoado com peso de \mathbf{W} ($1 \le \mathbf{X}$, $\mathbf{W} \le 10^6$). Dentro de cada caso de teste, os montes ou pilhas são dados estritamente em ordem ascendente, considerando os seus pontos de mineração.

Saída

Para cada caso teste de saída terá uma linha com um inteiro representando o mínimo custo total, para reagrupar os **N** amontoados iniciais em **K** montes maiores.

Exemplo de Entrada	Exemplo de Saída
3 1	30
20 1	8
30 1	278
40 1	86
3 1	
11 3	
12 2	
13 1	
6 2	

10 15	Exemplo de Entrada	Exemplo de Saída
12 17		
16 18		
18 13		
30 10		
32 1		
6 3		
10 15		
12 17		
16 18		
18 13		
30 10		
32 1		

ACM/ICPC South America Contest 2012.