On The Complexity Of Computing Gröbner Bases For Quasi-Homogeneous Systems

Jean-Charles Faugère¹ Mohab Safey El Din^{1,2}

Thibaut Verron¹

¹Université Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt, Équipe POLSYS Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

²Institut Universitaire de France

22 mai 2014

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)

$$0 = \begin{bmatrix} 7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289 \end{bmatrix} e_{5}^{16} + \begin{bmatrix} 53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802 \end{bmatrix} \tilde{e}_{1}^{8} + \begin{bmatrix} 26257 \\ 128 \\ 3037 \\ 38424 \\ 41456 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{2} + \begin{bmatrix} 25203 \\ 23117 \\ 28918 \\ 56353 \end{bmatrix} \tilde{e}_{1}^{6} \tilde{e}_{2}^{2} + \begin{bmatrix} 19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{2}^{4} + \begin{bmatrix} 11204 \\ 25459 \\ 52208 \\ 36574 \\ 46683 \end{bmatrix} \tilde{e}_{1}^{4} \tilde{e}_{2}^{4} + \begin{bmatrix} 63811 \\ 57146 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{2}^{4} + \begin{bmatrix} 63811 \\ 57746 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{2}^{4} + \begin{bmatrix} 63811 \\ 57746 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} + \begin{bmatrix} 4522 \\ 18652 \\ 18652 \\ 18652 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{3} + \begin{bmatrix} 77518 \\ 31159 \\ 31171 \\ 42548 \end{bmatrix} \tilde{e}_{1}^{6} \tilde{e}_{2}^{6} \tilde{e}_{3}^{7} + \begin{bmatrix} 4522 \\ 1728 \\ 8811 \\ 8056 \\ 54831 \end{bmatrix} \tilde{e}_{1}^{7} \tilde{e}_{3} + \begin{bmatrix} 77518 \\ 18652 \\ 18652 \\ 54885 \end{bmatrix} \tilde{e}_{1}^{6} \tilde{e}_{2}^{7} \tilde{e}_{3} + \frac{1204 \\ 3676 \\ 31159 \\ 5276 \end{bmatrix} \tilde{e}_{1}^{6} \tilde{e}_{2}^{7} \tilde{e}_{3} + \frac{2067}{3} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} + \frac{1204}{3} \tilde{e}_{2}^{7} \tilde{e}_{3}^{7} + \frac{1204}{3} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} \tilde{e}_{3}^{7} + \frac{1204}{3} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} \tilde{e}_{3}^{7} + \frac{1204}{3} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} + \frac{1204}{3} \tilde{e}_{1}^{7} \tilde{e}_{2}^{7} \tilde{e}_{3}^{7} \tilde{e}_{3}^{7}$$

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)

$$0 = \begin{bmatrix} 7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289 \end{bmatrix} e_{1}^{16} + \begin{bmatrix} 53362 \\ 50900 \\ 36407 \\ 58813 \\ 20802 \end{bmatrix} e_{1}^{18} + \begin{bmatrix} 26257 \\ 128 \\ 3037 \\ 38424 \\ 41456 \end{bmatrix} e_{1}^{7} + \begin{bmatrix} 25203 \\ 23117 \\ 28918 \\ 56353 \end{bmatrix} e_{1}^{6} + \begin{bmatrix} 19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683 \end{bmatrix} e_{1}^{7} + \frac{2}{6} +$$

Description of the system

▶ Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$, rewritten with the invariants:

$$\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) & (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) & \end{cases}$$

- ▶ *n* equations of degree 2^{n-1} in $\mathbb{F}_q[\tilde{e}_1, \dots, \tilde{e}_{n-1}, e_n]$
- ▶ 1 DLP = thousands of such systems

Goal: solve the system

⇔ compute a Gröbner basis

- ► Total degree grading
 - → difficult (intractable with Magma)
 - → non regular
- ▶ Weighted degree grading Weight(\tilde{e}_i) = 2 · Weight(e_i)
 - → easiei
 - → regular

► Two questions:

- Algorithms for this structure?
- Complexity estimates

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)

$$0 = \begin{bmatrix} 7871 \\ 18574 \\ 14294 \\ 32775 \\ 20289 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} 6}_{\mathbf{j}} + \begin{bmatrix} 63362 \\ 50900 \\ 36407 \\ 58813 \\ 20802 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} 8}_{\mathbf{j}} + \begin{bmatrix} 26257 \\ 128 \\ 3037 \\ 38424 \\ 41456 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} \tilde{e}_{\mathbf{j}}^{\mathbf{f}} 2}_{\mathbf{j}} + \begin{bmatrix} 19817 \\ 29737 \\ 52187 \\ 56363 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} \tilde{e}_{\mathbf{j}}^{\mathbf{f}} 2}_{\mathbf{j}} + \begin{bmatrix} 19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} \tilde{e}_{\mathbf{j}}^{\mathbf{f}} 2}_{\mathbf{j}} + \begin{bmatrix} 11204 \\ 25459 \\ 63059 \end{bmatrix} \underbrace{e_{\mathbf{j}}^{\mathbf{f}} \tilde{e}_{\mathbf{j}}^{\mathbf{f}} 2}_{\mathbf{j}} + \underbrace{e_{\mathbf{j}}^{\mathbf{f}} \tilde{e}_{\mathbf{j}}^{\mathbf{f}} 2}_{$$

Description of the system

▶ Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$, rewritten with the invariants:

$$\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) & (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) & \end{cases}$$

- ▶ *n* equations of degree 2^{n-1} in $\mathbb{F}_q[\tilde{e}_1, \dots, \tilde{e}_{n-1}, e_n]$
- ▶ 1 DLP = thousands of such systems

Goal: solve the system ⇔ compute a Gröbner basis

- ► Total degree grading
 - → difficult (intractable with Magma)
 - → non regular
- ▶ Weighted degree grading Weight($\tilde{e_i}$) = 2 · Weight(e_i) → easier
- ► Two questions:
 - Algorithms for this structure?
 - Complexity estimates

Discrete Logarithm Problem (Faugère, Gaudry, Huot, Renault 2013)

$$0 = \begin{bmatrix} 7871 \\ 18574 \\ 14294 \\ 2165 \\ 20289 \end{bmatrix} e_{0}^{1} = \begin{bmatrix} 53362 \\ 50900 \\ 36407 \\ 58813 \\ 208802 \end{bmatrix} e_{0}^{1} = \begin{bmatrix} 26257 \\ 128 \\ 3037 \\ 38424 \\ 41456 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 25203 \\ 23117 \\ 28918 \\ 29298 \\ 41456 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 19817 \\ 29737 \\ 52187 \\ 36574 \\ 46683 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 9843 \\ 3752 \\ 27006 \\ 64195 \\ 63059 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 63657 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 1238 \\ 18652 \\ 54885 \\ 18211 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 27006 \\ 64195 \\ 63059 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix} e_{0}^{2} = \begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 2776 \\ 31159 \\ 28424 \\ 5276 \end{bmatrix} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 64195 \\ 63059 \end{bmatrix}}_{1} e_{0}^{2} = \underbrace{\begin{bmatrix} 11204 \\ 25459 \\ 58263 \\ 17964 \\ 57146 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 5716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 5716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 5716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 5716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 5716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 6811 \\ 6716 \end{bmatrix}}_{17964} e_{0}^{2} = \underbrace{\begin{bmatrix} 1204 \\ 25459 \\ 6811 \\ 68$$

Description of the system

- ▶ Ideal invariant under the group $(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \mathfrak{S}_n$,
 - rewritten with the invariants:

$$\begin{cases} \tilde{e}_i := e_i(x_1^2, \dots, x_n^2) \ (1 \le i \le n-1) \\ e_n(x_1, \dots, x_n) \end{cases}$$

- ▶ *n* equations of degree 2^{n-1} in $\mathbb{F}_q[\tilde{e}_1, \dots, \tilde{e}_{n-1}, e_n]$
- ▶ 1 DLP = thousands of such systems

Goal: solve the system

- ► Total degree grading
 - → difficult (intractable with Magma)
 → non regular
- ► Weighted degree grading
- Weight($\tilde{e_i}$) = 2 · Weight(e_i) \rightarrow easier
 - ightarrow easier ightarrow regular
- → regulai
- Two questions:Algorithms for this structure?
 - ► Complexity estimates?

Gröbner bases and structured systems

Polynomial system $f: X^2 + 2XY + Y^2 + X = 0$ $g: X^2 - XY + Y^2 + Y - 1 = 0$

Gröbner basis

$$Y^{3} + Y^{2} - \frac{4}{9}X - \frac{2}{9}Y - \frac{4}{9}$$

$$X^{2} + Y^{2} + \frac{1}{3}X + \frac{2}{3}Y - \frac{2}{3}$$

$$XY + \frac{1}{3}X - \frac{1}{3}Y + \frac{1}{3}$$

Problematic

Structured systems

→ Can we exploit it?

Successfully studied structures

- Bihomogeneous (Dickenstein, Emiris, Faugère, Safey, Spaenlehauer...)
- Group symmetries (Colin, Faugère, Gatermann, Rahmany, Svartz...)
- Quasi-homogeneous? ([Traverso 1996]...)

Quasi-homogeneous systems: définitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, ..., w_n) \in \mathbb{N}^n$

Weighted degree (or W-degree): $\deg_W(X_1^{\alpha_1} \dots X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Quasi-homogeneous polynomial: poly. containing only monomials of same $\it W$ -degree

→ Example: physical systems: Volume = Area × Height

↑

Weight 3 Weight 2 Weight 1

Given a general (non-quasi-homogeneous) system and a system of weights

Computational strategy: quasi-homogenize it as in the homogeneous case Complexity estimates: consider the highest-W-degree components of the systematics.

► Enough to study quasi-homogeneous systems

Quasi-homogeneous systems: définitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: $W = (w_1, ..., w_n) \in \mathbb{N}^n$

Weighted degree (or *W*-degree): $\deg_W(X_1^{\alpha_1} \dots X_n^{\alpha_n}) = \sum_{i=1}^n w_i \alpha_i$

Quasi-homogeneous polynomial: poly. containing only monomials of same $\it W$ -degree

→ Example: physical systems: Volume = Area × Height

↑

Weight 3 Weight 2 Weight 1

Given a general (non-quasi-homogeneous) system and a system of weights

Computational strategy: quasi-homogenize it as in the homogeneous case Complexity estimates: consider the highest-*W*-degree components of the system

► Enough to study quasi-homogeneous systems

Complexity for generic homogeneous systems

Complexity for generic homogeneous systems

Homogeneous, generic, with total degree
$$(d_1,\ldots,d_n)$$
 (zero-dimensional)

Highest degree $d_{\text{reg}} \leq \sum_{i=1}^n (d_i-1)+1$
Size of the matrix at degree $d = \binom{n+d-1}{d}$

GREVLEX basis

 $O\left(\binom{n+d_{\text{reg}}-1}{d_{\text{reg}}}^3 + n\left(\prod_{i=1}^n d_i\right)^3\right)$

Main results: strategy and complexity results

Roadmap

Input

- $W = (w_1, \dots, w_n)$ system of weights
- ▶ $F = (f_1, ..., f_m)$ generic sequence of W-homogeneous polynomials with W-degree $(d_1, ..., d_m)$

General roadmap:

- 1. Find a generic property with good complexity estimates
 - ▶ Regular sequences (dimension 0, m = n)
 - Noether position (positive dimension, m < n)
 - ightharpoonup ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the quasi-homogeneous case
- 3. Conclusion: complexity results

Roadmap

Input

- $W = (w_1, \dots, w_n)$ system of weights
- ▶ $F = (f_1, ..., f_m)$ generic sequence of W-homogeneous polynomials with W-degree $(d_1, ..., d_m)$

General roadmap:

- 1. Find a generic property with good complexity estimates
 - ▶ Regular sequences (dimension 0, m = n)
 - ▶ Noether position (positive dimension, $m \le n$)
 - \blacktriangleright ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the quasi-homogeneous case
- 3. Conclusion: complexity results

Regular sequences

Definition

$$F = (f_1, \dots, f_m)$$
 homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ \forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

Regular sequences

Definition

$$F = (f_1, \dots, f_m)$$
 homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ orall i, f_i ext{ is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1}
angle \end{cases}$$

Regular sequences

Definition

$$F = (f_1, \dots, f_m)$$
 quasi-homo. $\in \mathbb{K}[\mathbf{X}]$ is regular iff
$$\begin{cases} \langle F \rangle \subsetneq \mathbb{K}[\mathbf{X}] \\ orall i, \ f_i \ ext{is no zero-divisor in } \mathbb{K}[\mathbf{X}]/\langle f_1, \dots, f_{i-1} \rangle \end{cases}$$

Result (Faugère, Safey, V.)

Regular sequences of quasi-homo. polynomials

Generic if $\neq \emptyset$

Good properties F₅-criterion Hilbert series

Properties of regular sequences

Hilbert series

$$HS_{A/I}(T) = \sum_{d=0}^{\infty} (\text{rank defect of the F}_5 \text{ matrix at degree } d) \cdot T^d$$

Properties

For regular sequences of homogeneous polynomials of degree d_i :

$$\mathsf{HS}_{A/I}(T) = \frac{(1-T^{d_1})\cdots(1-T^{d_m})}{(1-T)^n}$$

In zero dimension (m = n):

- ▶ Bézout bound on the degree: $D = \prod_{i=1}^{n} d_i$
 - Macaulay bound on the degree of regularity: $d_{reg} \leq \sum_{i=1}^{\infty} (d_i 1) + 1$

Properties of regular sequences

Hilbert series

$$HS_{A/I}(T) = \sum_{d=0}^{\infty} (\text{rank defect of the F}_5 \text{ matrix at } W\text{-degree } d) \cdot T^d$$

Properties

For regular sequences of W-homogeneous polynomials of W-degree d_i :

$$\mathsf{HS}_{A/I}(T) = \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_n})}$$

In zero dimension (m = n):

- ▶ Bézout bound on the degree: $D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$
- ▶ Macaulay bound on the degree of regularity: $d_{reg} \leq \sum_{i=1}^{n} (d_i w_i) + \max\{w_j\}$

Limitations

Limitations of the regularity

- ightharpoonup m < n (positive dimension): no real information
- ▶ m = n (zero dimension, complete intersection)
 - ► exact formula for *d*_{reg}?
 - d_{reg} depends on the order of the variables
 Hilbert series: independent from that order
- ightharpoonup m > n (cryptography): no regular sequence

⇒ Additional properties

- ► *m* < *n*: Noether position
- ightharpoonup m = n: simultaneous Noether position
- ► *m* > *n*: semi-regular sequences

Noether position

Noether position

$$F=(f_1,\ldots,f_m)\in\mathbb{K}[X_1,\ldots,X_n],\,m\leq n$$

- Noether position: (F, X_{m+1}, \dots, X_n) regular
- ▶ simultaneous Noether position: $(f_1, ..., f_i)$ in NP for all j's

Properties

- Generic if not empty
- Valid under generic change of coordinates for "nice" systems of weights
- Relevant property for fine-grained complexity (structure lemma [Bardet 2004])
- ► For a zero-dim. *W*-homogeneous sequence in simultaneous Noether position:

$$d_{\text{reg}} = \sum_{i=1}^{n} (d_i - w_i) + w_n$$

Semi-regular sequences

Semi-regular sequences

- ▶ If *m* > *n*, reductions to zero cannot be eliminated.
- ▶ Semi-regular sequence: all reductions to zero are at high degrees
- Hilbert series of a semi-regular homogeneous sequence:

$$\mathsf{HS}_{A/I}(T) = \left| \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T)^n} \right|$$
 (series truncated to the first coefficient ≤ 0)

- For W-homogeneous systems, only true for "nice" systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Semi-regular sequences

Semi-regular sequences

- ▶ If m > n, reductions to zero cannot be eliminated.
- Semi-regular sequence: all reductions to zero are at high degrees
- ► Hilbert series of a semi-regular W-homogeneous sequence:

$$\mathsf{HS}_{A/I}(T) = \left| \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_m})} \right| \text{ (series truncated to the first coefficient } \leq 0)$$

- ► For W-homogeneous systems, only true for "nice" systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg's conjecture

Semi-regular sequences are generic.

Roadmap

Input

- $W = (w_1, \dots, w_n)$ system of weights
- ▶ $F = (f_1, ..., f_m)$ generic sequence of W-homogeneous polynomials with W-degree $(d_1, ..., d_m)$

General roadmap:

- 1. Find a generic property with good complexity estimates
 - Regular sequences (dimension 0, m = n)
 - Noether position (positive dimension, $m \le n$)
 - ightharpoonup Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the quasi-homogeneous case
- 3. Conclusion: complexity results

Algorithms: from quasi-homogeneous to homogeneous

Transformation morphism

$$\begin{array}{cccc} \mathsf{hom}_W : & (\mathbb{K}[\mathbf{X}], W\text{-deg}) & \to & (\mathbb{K}[\mathbf{X}], \mathsf{deg}) \\ & f & \mapsto & f(X_1^{w_1}, \dots, X_n^{w_n}) \end{array}$$

- Graded injective morphism
- Sends regular sequences on regular sequences
- $\blacktriangleright \text{ S-Pol}(\text{hom}_{W}(f), \text{hom}_{W}(g)) = \text{hom}_{W}(\text{S-Pol}(f, g))$
 - --- Good behavior w.r.t Gröbner bases

Size of the Macaulay matrices

Counting the monomials

- ▶ $hom_W(F)$ lies in an algebra with a lot of useless monomials
- Count them: combinatorial object named Sylvester denumerants
- ▶ Result¹: asymptotically $N_d \sim \frac{\# \text{Monomials of total degree } d}{\prod_{i=1}^n w_i}$

¹Geir Agnarsson (2002). 'On the Sylvester denumerants for general restricted partitions'

Adapting the algorithms

Detailed strategy

- F₅ algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- F₅ algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Adapting the algorithms

Detailed strategy

- ▶ F₅ algorithm on the homogenized system
- FGLM algorithm on the quasi-homogeneous system

Roadmap

Input

- $W = (w_1, \dots, w_n)$ system of weights
- ▶ $F = (f_1, ..., f_m)$ generic sequence of W-homogeneous polynomials with W-degree $(d_1, ..., d_m)$

General roadmap:

- 1. Find a generic property with good complexity estimates
 - Regular sequences (dimension 0, m = n)
 - Noether position (positive dimension, m < n)
 - ightharpoonup ... Semi-regular sequences (dimension 0, m > n)
- 2. Design new algorithms to take advantage of this structure
 - Adapt algorithms for the homogeneous case to the quasi-homogeneous case
- 3. Conclusion: complexity results

Complexity

Input

- $V = (w_1, \ldots, w_n)$
- ▶ $F = (f_1, ..., f_n) \in \mathbb{K}[X_1, ..., X_n]$ generic W-homogeneous

Complexity of F₅

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 \begin{pmatrix} n + d_{\text{reg}} - 1 \\ d_{\text{reg}} \end{pmatrix}^3$$

- Asymptotic gain from the size of the matrices
- Practical gain from the weighted Macaulay bound (dreg)

Complexity of FGLM

$$\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 n \left(\prod_{i=1}^{n} d_i\right)^3$$

 Asymptotic gain from the weighted Bézout bound (number of solutions)

Benchmarking

F : affine system with a quasi-homogeneous structure

$$f_i = \sum_{\alpha} c_{\alpha} m_{\alpha}$$
 with $\deg_W(m_{\alpha}) \leq d_i$

Assumption: the highest W-degree components are regular (e.g. if F is generic)

Benchmarks for generic systems

- ► Number of solutions: 2ⁿ⁺²
- ▶ Benchmarks obtained with FGb : $\begin{cases} F_5 \text{ [Faugère 2002]} \\ \text{SPARSEFGLM [Faugère and Mou 2013]} \end{cases}$

A run of F₅ on the DLP example

- ▶ 5 equations of W-degree (16,...,16) in 5 variables with W = (2,...,2,1)
- ▶ 65 536 solutions

A run of F₄ on an inversion example

Ideal of relations between 50 monomials of degree 2 in 25 variables

- ▶ 50 equations of (W-)degree 2 in 75 variables
- GREVLEX ordering (e.g. for a 2-step strategy)
- ▶ Without weights: 3.9 h (34 steps reaching degree 22)
- ▶ With weights: 0.1 s (5 steps reaching *W*-degree 6)

Conclusion

What we have done

- ▶ Theoretical results for quasi-homogeneous systems under generic assumptions
- Computational strategy for quasi-homogeneous systems
- Complexity results for F₅ and FGLM for this strategy
 - Bound on the maximal degree reached by the F₅ algorithm
 - ► Complexity overall divided by $(\prod w_i)^3$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications

Perspectives

- Affine systems: find the most appropriate system of weights (e.g for the DLP, how to choose the weights of the e_i's?)
- ▶ Additional structure: quasi-homo. for several systems of weights, weights ≤ 0...

Conclusion

What we have done

- ▶ Theoretical results for quasi-homogeneous systems under generic assumptions
- Computational strategy for quasi-homogeneous systems
- Complexity results for F₅ and FGLM for this strategy
 - Bound on the maximal degree reached by the F₅ algorithm
 - ► Complexity overall divided by $(\prod w_i)^3$

Consequences

- Successfully applied to a cryptographical problem
- Wide range of potential applications

Perspectives

- ► Affine systems: find the most appropriate system of weights (e.g for the DLP, how to choose the weights of the *e_i*'s?)
- lacktriangle Additional structure: quasi-homo. for several systems of weights, weights $\leq 0...$

One last word

Thank you for your attention!