NASA TECHNICAL MEMORANDUM

N73-11002 NASA TM X-2645

CASE FILE COPY

PERFORMANCE OF
A SINGLE-STAGE TRANSONIC COMPRESSOR
WITH A BLADE-TIP SOLIDITY OF 1.3

by Donald C. Urasek, Royce D. Moore, and Walter M. Osborn

Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . NOVEMBER 1972

	Report No.	2. Government Access	sion No.	3. Recipient's Catalog	No.
	NASA TM X-2645 Title and Subtitle DEDUCANCE			5 Parat Para	
	PERFORMANCE			5. Report Date November 1	972
	TRANSONIC COMPRESSOR WI	TH A BLADE-TI	P	6. Performing Organia	
	SOLIDITY OF 1.3				•
7.	Author(s)			8. Performing Organiz	ation Report No.
	Donald C. Urasek, Royce D. M	loore, and Walte	r M. Osborn	E-6763	
				10. Work Unit No.	
	Performing Organization Name and Address			501-24	
	Lewis Research Center		ſ	11. Contract or Grant	No.
	National Aeronautics and Space	Administration			
	Cleveland, Ohio 44135			13. Type of Report ar	nd Period Covered
	Sponsoring Agency Name and Address			Technical Me	emorandum
	National Aeronautics and Space	Administration		14. Sponsoring Agency	Code
	Washington, D.C. 20546				
15.	Supplementary Notes				
					•
16	Abstract				
	The design and experimental petransonic compressor with a bl				
	of the flow conditions for both t		-		
		ne rotor and stat		ת מבורונום שבפת ח	ries for hoth
	rotor and stage were 0.87 and () 82 respective			
	rotor and stage were 0.87 and (ly, and occurred at	an equivalent we	eight flow of
	29.6 kilograms per second (202	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we eak efficiency, tl	eight flow of he total pres-
	29.6 kilograms per second (202 sure ratios for both rotor and s	$kg/sec/m^2$ of a	ly, and occurred at nnulus area). At pe	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-
17.	29. 6 kilograms per second (202 sure ratios for both rotor and s stage was 17 percent.	kg/sec/m ² of a	ly, and occurred at nnulus area). At pe and 1.73, respective	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-
17.	29. 6 kilograms per second (202 sure ratios for both rotor and s stage was 17 percent. Key Words (Suggested by Author(s))	kg/sec/m ² of a	ly, and occurred at nnulus area). At peand 1.73, respective	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-
17.	29. 6 kilograms per second (202 sure ratios for both rotor and s stage was 17 percent. Key Words (Suggested by Author(s))	kg/sec/m ² of a	ly, and occurred at nnulus area). At peand 1.73, respective	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-
17.	29. 6 kilograms per second (202 sure ratios for both rotor and s stage was 17 percent. Key Words (Suggested by Author(s))	kg/sec/m ² of a	ly, and occurred at nnulus area). At peand 1.73, respective	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-
17.	29. 6 kilograms per second (202 sure ratios for both rotor and s stage was 17 percent. Key Words (Suggested by Author(s))	kg/sec/m ² of a	ly, and occurred at nnulus area). At peand 1.73, respective and 1.73, respective and 1.73 are spective at the second at the seco	an equivalent we ak efficiency, the ely. Stall margi	eight flow of he total pres-

 $^{^{*}}$ For sale by the National Technical Information Service, Springfield, Virginia 22151

PERFORMANCE OF A SINGLE-STAGE TRANSONIC COMPRESSOR WITH A BLADE-TIP SOLIDITY OF 1.3

by Donald C. Urasek, Royce D. Moore, and Walter M. Osborn
Lewis Research Center

SUMMARY

A 50-centimeter-diameter single-stage axial-flow transonic compressor with a blade-tip solidity of 1.3 and a design rotor blade-tip speed of 423 meters per second was tested. Radial surveys of the flow conditions at the rotor inlet and outlet and stator outlet were made. The flow and performance parameters were calculated at the leading and trailing edges of both the rotor and stator blades for 11 radial positions. The radial surveys were made over the stable operating flow range of the stage at equivalent rotative speeds which varied from 50- to 100-percent design speed.

Peak efficiencies for both the rotor and stage occurred at an equivalent weight flow of 29.6 kilograms per second as compared to the design value of 29.5 kilograms per second (200.6 kg/sec/m² of annulus area). Peak efficiency values for both the rotor and stage were 0.87 and 0.82, respectively. The total pressure ratios for both rotor and stage, at the equivalent weight flow corresponding to peak efficiency, were 1.79 and 1.73, respectively, as compared to the design values of 1.80 and 1.75. Stall margin for the stage, at design speed, was 17 percent based on weight flows and total pressure ratios at peak efficiency and stall.

The experimental rotor losses showed good agreement with predicted design values across the complete span of the blade with the exception of the rotor damper region. However, the stator losses were greater than design values.

INTRODUCTION

The Lewis Research Center of the National Aeronautics and Space Administration is engaged in a research program on axial-flow fans and compressors for advanced airbreathing engines. The program is directed primarily toward providing the technology to permit reducing the size and weight of the fans and compressors while maintaining a high level of performance.

As a part of this program, a series of transonic compressor stages has been designed and tested to evaluate the effect of blade-row solidity on efficiency and stall margin. For these stages the aerodynamic chord length is held constant and the solidity is varied by changing the blade spacing.

This report presents the design and experimental performance of a single-stage axial-flow transonic compressor with a blade-tip solidity of 1.3. The stage is designated stage 14-10 with the rotor being rotor 14 and the stator being stator 10. Earlier, a compressor stage in this series with a blade-tip solidity of 1.7 was tested, and the results are presented in reference 1.

Overall performance for both the rotor and the stage along with blade element performance for both the rotor and stator are presented. The data are presented over the stage stable operating flow range at rotative speeds which varied from 50- to 100-percent design speed. Surveys of the flow conditions were taken at 11 radial positions. The tests were conducted in the single-stage compressor test facility at the Lewis Research Center.

AERODYNAMIC DESIGN

Three computer programs were used in the design of this compressor stage. These programs are the streamline analysis program, the blade geometry program, and the blade coordinate program. These three computer programs are presented in detail in references 2 and 3 and only a brief description of each is presented in this report.

The streamline analysis program was used to calculate the flow field parameters at several axial locations including planes approximating the blade leading and trailing edges for both the rotor and stator. The weight flow, rotative speed, flow path geometry, and radial distributions of total pressure and temperature are inputs in this program. The program accounts for both streamline curvature and entropy gradients; boundary layer blockage factors are also included.

The distributions of velocity vector, total pressure, and total temperature calculated in the streamline analysis program are used in the blade geometry program to compute blade geometry parameters. Total loss is calculated within the program. It is based on a calculated shock loss (as related to the selected blade shape) and a profile loss. The profile losses used for this stage are based on loss-diffusion factor correlations, which include the data presented in reference 3 for the rotor and in reference 4 for the stator.

The blade geometry parameters are used in the blade coordinate program (ref. 5) to compute blade elements on conical surfaces passing through the blade. In this program the blade elements are then stacked on a line passing through their centers of gravity, and Cartesian blade coordinates are computed and used directly in fabrication.

The overall design parameters for stage 14-10 are listed in table I and the flow path is shown in figure 1. This stage was designed for an overall pressure ratio of 1.75 at a weight flow of 29.5 kilograms per second (200.6 kg/sec/m² of annulus area). The design tip speed was 423 meters per second. The stage was designed for a tip solidity of 1.3 for both rotor and stator. This resulted in 43 rotor blades with an aspect ratio of 2.4 and 48 stator blades with an aspect ratio of 2.0. Both the rotor and stator used multiple-circular-arc blade shapes.

The blade element design parameters for rotor 14 are presented in table II. This rotor was designed for a radially constant total pressure ratio of 1.8. The stator blade element design parameters are given in table III. The blade geometry is presented in table IV for rotor 14 and in table V for stator 10. All symbols are defined in appendix A. The equations used for calculating the design parameters are presented in appendix B. All abbreviations along with the units presented in the tables are defined in appendix C.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the Lewis single-stage compressor facility which is described in detail in reference 2. A schematic diagram of the facility is shown in figure 2. Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere.

Test Stage

Photographs of the rotor and stator are shown in figures 3 and 4, respectively. Each rotor blade has a vibration damper located at about a 48-percent span from the outlet rotor tip. The maximum thickness of the damper was 0.214 centimeter. The nonrotating radial tip clearance of the rotor was a nominal 0.05 centimeter at ambient conditions. The axial spacing between the rotor hub trailing edge and the stator hub leading edge was 3.3 centimeters. The hubs of the stator blades were seated on a rubber O-ring which was circumferentially recessed in the inner casing. This arrangement was quite effective in dampening blade vibrations, thereby reducing blade stresses.

Instrumentation -

The compressor weight flow was determined from measurements on a calibrated thin-plate orifice that was 38.9 centimeters in diameter. The orifice temperature was determined from an average of two Chromel-Alumel thermocouples. Orifice pressures were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and stator, and downstream of the stator. Photographs of the survey probes are shown in figure 5. Total pressure, total temperature, and flow angle were measured with the combination probe (fig. 5(a)), and the static pressure was measured with an 8° C-shaped wedge probe (fig. 5(b)). Each probe was positioned with a null-balancing, stream-directional sensitive control system that automatically alined the probe to the direction of flow. The thermocouple material was iron constantan. The probes were calibrated in an air tunnel. Two combination probes and two wedge static probes were used at each of the three measuring stations.

Inner and outer wall static pressure taps were located at the same axial stations as the survey probes. The circumferential locations of both types of survey probes along with inner and outer wall static pressure taps are shown in figure 6. The combination probes downstream of the stator (station 3) were circumferentially traversed one stator blade passage (7.5°) counterclockwise from the nominal values shown.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec	
Rotative speed, rpm	
Flow angle, deg	±1
- '	
- · · · · · · · · · · · · · · · · · · ·	±0.01
Rotor outlet total pressure, N/cm^2	±0.10
	±0.10
Rotor inlet static pressure, N/cm ²	
	±0.07
Stator outlet static pressure, N/cm ²	

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions. At 70-, 90-, and 100-percent design speed, radial surveys

were taken at five weight flows. At 50-, 60-, and 80-percent design speed, radial surveys were taken for the near-stall weight flow only. Data were recorded at 11 radial positions for each speed and weight flow.

At each radial position the two combination probes behind the stator were circumferentially traversed to nine different locations across the stator gap. The wedge probes were set at midgap because preliminary studies showed that the static pressure across the stator gap was constant. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, values of pressure, temperature, and flow angle were also recorded at stations 1 and 2. All probes were then traversed to the next radial position and the circumferential traverse procedure repeated.

At each of the six rotative speeds the back pressure on the stage was increased by closing the sleeve valve in the collector until a stalled condition was detected by a sudden drop in stage outlet total pressure. This pressure was measured by a probe located at midpassage and was recorded on an X-Y plotter. Stall was corroborated by large increases in the measured blade stresses on both rotor and stator along with a sudden increase in noise level.

Calculation Procedure

Because of the physical construction of the C-shaped static pressure wedges, it was not possible to obtain static pressure measurements at 5-, 10-, and 95-percent span. The static pressure at 95-percent span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90-percent span. A similar variation was assumed between the static pressure measurements at the outer wall and the 30-percent span to obtain the static pressure at 5- and 10-percent span.

At each radial position, averaged values of the nine circumferential measurements of pressure, temperature, and flow angle downstream of the stator (station 3) were obtained. The nine values of total temperature were mass averaged to obtain the stator outlet total temperature presented. The nine values of total pressure were energy averaged. The measured values of pressure, temperature, and flow angle were used to calculate axial and tangential velocities at each circumferential position. The flow angles presented for each radial position are calculated based on these mass-averaged axial and tangential velocities. To obtain the overall performance, the radial values of total temperature were mass averaged and the values of total pressure were energy averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data.

The data, measured at the three measuring stations, have been translated to the blade leading and trailing edges by the method presented in reference 3.

An onsite digital computer was used to compute the orifice weight flow at stall with all survey probes removed from the flow passage. The weight flow at stall was obtained in the following manner. During operation of the near-stall condition, the collector valve was slowly closed in small increments. At each increment the weight flow was obtained. The weight flow obtained just before stall occurred is called the stall weight flow.

Orifice weight flow, total pressures, static pressures, and temperatures were all corrected to sea-level conditions based on the rotor inlet conditions.

RESULTS AND DISCUSSION

The results from this investigation are presented in three main sections. The overall performances for the rotor and the stage are presented first. Radial distributions of several performance parameters are then presented for the rotor and stator. Finally, the blade element data are presented for both the rotor and stator. The data presented are computer plotted and occasionally a data point is omitted because it falls outside the range of the parameters shown in the figure.

All of the plotted data together with some additional performance parameters are presented in tabular form. The overall performance data are presented in table VI. The blade element data are presented first for the rotor in table VII and then for the stator in table VIII. The definitions and units used for the tabular data are presented in appendix C.

Overall Performance

The overall performance for rotor 14 and for stage 14-10 is presented in figures 7 and 8, respectively. For both of these computer plotted figures, data are presented for speeds from 50- to 100-percent design speed. For 50-, 60-, and 80-percent design speeds, the overall performance is presented for the near-stall condition only. For 70-, 90-, and 100-percent design speeds, data are presented at several weight flows from choke to the near-stall conditions. Design point values are shown as solid symbols on both figures. The stall points for each speed line were established by extrapolating the overall performance curve to the stall weight flow value recorded with the onsite computer. The stall lines (dashed lines) shown in the figures were then established by fairing a curve through the stall points associated with each speed line.

Peak efficiency for both rotor and stage occurred at a measured equivalent weight flow of 29.6 kilograms per second (202 kg/sec/m^2 of annulus area) as compared to the design equivalent weight flow of 29.5 kilograms per second (200.6 kg/sec/m^2 of annulus area).

The experimental values of total pressure ratio and total temperature ratio for the rotor were 1.79 and 1.21, respectively, as compared to the design values of 1.80 and 1.21. Total pressure ratio for the stage was 1.73 as compared to the design value of 1.75. The peak efficiencies for the rotor and stage were 0.87 and 0.82, respectively. With the assumed losses, the corresponding design efficiencies for the rotor and stage are 0.89 and 0.84, respectively.

At design speed, the stall margin for the stage was 17 percent. The stall margin, defined in appendix B, is based on the equivalent weight flow and pressure ratio at which peak efficiency occurred as compared to the values just prior to stall.

Radial Distributions

The radial distributions of selected flow and performance parameters for both rotor and stator are shown in figures 9 and 10. The results are presented for three weight flows at design speed. The data shown represent the flow conditions at near stall, peak efficiency, and near choke. The design values are shown by solid symbols. In this section, flow and performance results at the near design equivalent weight flow corresponding to peak efficiency (29.6 kg/sec) are compared to the values at design weight flow (29.5 kg/sec).

Rotor. - The total pressure ratio and total temperature ratio were greater than design values in the region extending from the blade tip to 40-percent span and less than design values over the remainder of the blade except in the hub region where they were equal to design values.

The temperature rise efficiency was greater than design in the region from the blade tip to 30-percent blade span, less than design in the damper region, and equal to design over the remainder of the blade.

The experimental deviation angles were less than design values for the region extending from the blade tip to 40-percent blade span. The remainder of the blade span operated with deviation angles greater than design values.

The total loss parameter distribution shows that the losses across the blade span agree with design values with the exception of the damper region. The losses associated with the damper were not included in the aerodynamic design of the rotor. The blade loading levels, as indicated by the diffusion factor, closely agree with design values across the entire blade span. These results indicate that the losses were correctly estimated across the entire blade span with the exception of the damper region.

The level and distribution of the meridional velocity ratio agree closely with design values. The deviation angle had a measurable effect on the rotor energy addition which is reflected in the total temperature ratio. The deviation angles are lower than design values from the blade tip to 40-percent span and the total temperature ratio is greater than design. For the remainder of the blade span, the deviation angles are greater than design and the total temperature ratio is less.

Stator. - The total loss parameter distribution (fig. 10) shows the losses to be higher than design values with the exception of the region behind the rotor blade damper. The losses were particularly greater in the hub and tip regions. The blade loading level, indicated by the diffusion factor, was less than design across the entire blade passage. It is apparent that in the design process the losses were underestimated.

Variation of Blade Element Performance with Incidence Angle

The variations of selected rotor and stator blade element performance parameters with incidence angle are presented in figures 11 and 12. The data are presented for 70-, 90-, and 100-percent rotor design speed at blade elements located at 5-, 10-, 30-, 52.5-, 70-, 90-, and 95-percent blade span as measured from the rotor tip. Design values are shown by solid symbols. The variation in incidence angle curves is presented primarily for future correlation in comparing the performance of these blades with other blade designs. Only a few brief observations are made herein.

Rotor. - The rotor blades were designed for zero incidence angle on the blade suction surface. Minimum loss values, over the range of incidence angles tested, were defined across the entire rotor blade passage with exception of the hub region (90- and 95-percent blade span) (fig. 11). At design speed the rotor blade suction surface incidence angles corresponding to minimum losses were within 1.5° of the design values for all blade elements with exception of the hub region. The loss curves for the elements near the tip continue to decrease as the incidence angle is decreased. In the region of 50-percent blade span, the loss curves indicate a minimum loss value near design incidence with the losses increasing at both higher and lower values of incidence angle. Minimum losses could not be defined in the hub region. With the exception of the hub, peak element efficiencies occurred at incidence angles approximately 1.5° less than design. Peak efficiency for the rotor (fig. 8) occurred at a weight flow somewhat higher than design where these peak element efficiencies were obtained.

Stator. - Minimum loss values were defined across the entire stator blade span with exceptions at the 70- and 95-percent span locations (fig. 12). At all elements, except in the region behind the rotor damper, the measured losses were greater than the design values at design incidence. The loss curves indicate a minimum loss value at incidence

angles approximately 3° less than design. Deviation angles were greater than design values with exceptions in the regions behind the rotor damper and 70-percent span.

SUMMARY OF RESULTS

This report presents the aerodynamic design and both the overall and blade element performance of a 50-centimeter-diameter single-stage transonic compressor. This stage, which is one in a series designed to investigate the effect of blade solidity, has a blade-tip solidity of 1.3 for both rotor and stator. The stage had a design equivalent weight flow of 29.5 kilograms (200.6 kg/m² of annulus area) at a rotor blade tip speed of 423 meters per second. Radial surveys of the flow conditions at the rotor inlet, rotor outlet, and stator outlet were made over the stable operating flow range of the stage at equivalent rotative speeds from 50- to 100-percent design speed. Flow and performance parameters were calculated across a number of selected blade elements. The following principal results were obtained:

- 1. For the rotor, the peak efficiency was 0.87. With the assumed losses, the design efficiency was 0.89. Total pressure ratio and total temperature ratio at the equivalent weight flow corresponding to peak efficiency were 1.79 and 1.21, respectively, as compared to the design values of 1.80 and 1.21.
- 2. For the stage, the peak efficiency was 0.82. With the assumed losses, the design efficiency was 0.84. Total pressure ratio at the equivalent weight flow corresponding to peak efficiency was 1.73, as compared to the design value of 1.75.
- 3. For the stage at design speed, the stall margin was 17 percent based on weight flows and total pressure ratios at peak efficiency and stall.
- 4. The total loss distribution for the rotor agrees with design values except in the damper region.
- 5. The total loss distribution for the stator was higher than design values except in the region behind the rotor damper.
- 6. For the rotor at design speed, the suction surface incidence angle corresponding to minimum loss was within 1.5 $^{\circ}$ of the design incidence angle of 0 $^{\circ}$ for all blade elements except those in the hub region.
- 7. For the stator at design flow, the suction surface incidence angle corresponding to minimum loss was approximately 3° less than the design incidence angle of 0° for all elements except those at the 70- and 95-percent span.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, August 24, 1972, 501-24.

APPENDIX A

SYMBOLS

```
annulus area at rotor leading edge. 0.147 m<sup>2</sup>
A<sub>an</sub>
         frontal area at rotor leading edge, 0.198 m<sup>2</sup>
A_f
         specific heat at constant pressure, 1004 J/(kg)(K)
C_{n}
         aerodynamic chord, cm
c
D
         diffusion factor
         acceleration of gravity, 9.8 m/sec<sup>2</sup>
g
i_{mc}
         mean incidence angle, angle between inlet air direction and line tangent to blade
           mean camber line at leading edge, deg
         suction surface incidence angle, angle between inlet air direction and line tangent
i<sub>ss</sub>
           to blade suction surface at leading edge, deg
J
         mechanical equivalent of heat
         rotative speed, rpm
N
         total pressure, N/cm<sup>2</sup>
P
         static pressure, N/cm<sup>2</sup>
р
         radius, cm
r
SM
         stall margin
\mathbf{T}
         total temperature, K
         wheel speed, m/sec
U
         air velocity, m/sec
V
W
         weight flow, kg/sec
\mathbf{Z}
         axial distance references from rotor blade hub leading edge, cm
         cone angle, deg
\alpha_{\rm c}
         slope of streamline, deg
\alpha_{\rm s}
         air angle, angle between air velocity and axial direction, deg
β
         relative meridional air angle based on cone angle, \arctan(\tan \beta_m' \cos \alpha_c/\cos \alpha_s),
\beta_{\mathbf{c}}^{\prime}
         ratio of specific heats (1.40)
γ
```

- δ ratio of rotor inlet total pressure to standard pressure of 10.13 N/m²
- δ^{O} deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
- θ ratio of rotor inlet total temperature to standard temperature of 288. 2 K
- η efficiency
- κ_{mc} angle between the blade mean camber line and the meridional plane, deg
- $\kappa_{\rm SS}$ angle between the blade suction surface camber line at the leading edge and the meridional plane, deg
- σ solidity, ratio of chord to spacing
- $\overline{\omega}$ total loss coefficient
- $\overline{\omega}_{p}$ profile loss coefficient
- $\overline{\omega}_s$ shock loss coefficient

Subscripts:

- ad adiabatic (temperature rise)
- id ideal
- LE blade leading edge
- m meridional direction
- mom momentum rise
- p polytropic
- TE blade trailing edge
- z axial direction
- θ tangential direction
- 1 instrumentation plane upstream of rotor
- 2 instrumentation plane between rotor and stator
- 3 instrumentation plane downstream of stator

Superscript:

relative to blade

APPENDIX B

EQUATIONS

Performance parameters are defined as follows:

Suction surface incidence angle -

$$i_{SS} = \left(\beta_{C}^{\dagger}\right)_{L.E.} - \kappa_{SS} \tag{B1}$$

Mean incidence angle -

$$i_{mc} = (\beta_c^{\dagger})_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle -

$$\delta^{O} = \left(\beta_{C}^{\prime}\right)_{TE} - \left(\kappa_{mc}\right)_{TE} \tag{B3}$$

Diffusion factor -

$$D = 1 - \frac{V_{TE}^{\dagger}}{V_{LE}^{\dagger}} + \left| \frac{\left(rV_{\theta}\right)_{TE} - \left(rV_{\theta}\right)_{LE}}{\left(r_{TE} + r_{LE}\right)\sigma(V_{LE}^{\dagger})} \right|$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(P'_{id}\right)_{TE} - \left(P'\right)_{TE}}{\left(P'\right)_{LE} - \left(p\right)_{LE}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total loss parameter -

$$\frac{\overline{\omega} \cos \left(\beta_{\rm m}'\right)_{\rm TE}}{2\sigma} \tag{B7}$$

Profile loss parameter -

$$\frac{\overline{\omega}_{p} \cos(\beta_{m}^{\prime})_{TE}}{2\sigma}$$
 (B8)

Adiabatic (temperature-rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/1} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1} \tag{B9}$$

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/1} - 1}{\frac{\left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{TE}} - \left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}\mathbf{g}\mathbf{J}\mathbf{C}_{p}}} \tag{B10}$$

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area -

$$\left(\frac{\mathbf{W}\mathbf{V}\boldsymbol{\theta}}{\delta}\right)/\mathbf{A}_{\mathbf{an}}$$
 (B13)

Weight flow per unit frontal area -

$$\left(\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right) / \mathbf{A_f} \tag{B14}$$

Head-rise coefficient -

$$\frac{gJC_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B15)

Flow coefficient -

$$\left(\frac{V_{z}}{U_{tip}}\right)_{LE} \tag{B16}$$

Stall margin -

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}} \right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}} \right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right] 100$$
(B17)

Polytropic efficiency -

$$\eta_{p} = e^{\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} / \left(\frac{T_{TE}}{T_{LE}}\right)}$$
(B18)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is one)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge and the

meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge and the

meridional plane, deg

KTC angle between the blade mean camber line at the transition point and

the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to the blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, revolutions per minute

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines,

deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction surface camber ahead of assumed shock location

of a multiple circular arc blade section to that of a double

circular arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Moore, Royce D.; and Reid, Lonnie: Performance of a Single-Stage Axial-Flow Transonic Compressor Stage with a Blade Tip Solidity of 1.7. NASA TM X-2658, 1972.
- 2. Urasek, Donald C.; and Janetzke, David C.: Overall and Blade Element Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.
- 3. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380 Feet per Second Tip-Speed Axial-Flow Compressor Rotor Blade Tip Solidity of 1.50. NASA TM X-2379, 1972.
- 4. Keenan, M. J.; and Bartok, J. A.: Experimental Evaluation of Transonic Stators, Data and Performance Report, Multiple-Circular-Arc Stator B. Rep. PWA-3356, Pratt & Whitney Aircraft (NASA CR-54622), 1968.
- 5. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.

TABLE I. - DESIGN OVERALL

PARAMETERS FOR

STAGE 14-10

ROTOR TOTAL PRESSURE RATIO	1.800
STAGE TOTAL PRESSURE RATIO	1.750
ROTOR TOTAL TEMPERATURE RATIO	1.205
STAGE TOTAL TEMPERATURE RATIO	1.205
ROTOR ADIABATIC EFFICIENCY	0.890
STAGE ADIABATIC EFFICIENCY	0.843
ROTOR POLYTROPIC EFFICIENCY	0.898
STAGE POLYTROPIC EFFICIENCY	0.855
ROTOR HEAD RISE COEFFICIENT	0.296
STAGE HEAD RISE COEFFICIENT	0.281
FLOW COEFFICIENT	0.475
MT FLOW PER UNIT FRONTAL AREA	149.172
HT FLOW PER UNIT ANNULUS AREA	. 200.600
NT FLON	29.484
RPM	16100.000
TIP COFFD	422 000

TABLE II. - DESIGN BLADE ELEMENT PARAMETERS

FOR ROTOR 14

RP T I P 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD IN 25.082 2 24.562 2 24.016 2 21.752 2 20.289 1 19.692 1 19.692 1 19.088 16.900 1 14.191 1 13.464 1 12.700	0UT 24.701 24.193 23.685 21.653 20.129 19.875 19.621 19.621 19.557 17.589 15.557	ABS IN 0. -0. 0. 0. 0. 0. 0. 0.	BETAM OUT 50.1 47.9 46.3 45.7 45.8 46.0 46.5 48.4 52.3 53.2	REL IN 65.6 64.5 63.5 63.0 58.2 57.5 57.1 56.8 54.6 52.2 51.6	BETAM OUT 58.7 57.7 56.5 51.1 46.7 45.7 43.6 42.4 32.6 15.8 10.0 3.4	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RATIO 1.252 1.252 1.206 1.200 1.199 1.199 1.197 1.194 1.195 1.197	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS 1N 192.3 197.5 202.2 212.0 212.5 212.1 211.7 211.1 210.4 202.4 180.2 174.2	VEL OUT 228.4 226.5 225.8 230.5 235.7 237.0 238.3 239.7 241.2 252.9 278.9 286.7	RELL 1N 464.5 458.8 452.6 423.6 402.7 398.3 389.2 384.5 349.5 302.8 276.0	VEL OUT 282.3 284.1 283.1 259.3 240.4 236.5 232.6 228.7 224.8 199.1 173.0 167.7 164.0	MERI 1N 192.3 197.5 202.2 212.0 212.5 211.7 211.1 210.4 202.4 185.6 180.2	D VEL 0UT 146.6 152.0 156.1 162.8 164.8 165.1 165.4 165.7 166.0 167.7 166.5 165.2	TAN IN 0. -0. 0. 0. 0. 0. 0.	G VEL OUT 175.2 167.9 163.2 168.2 168.6 170.0 171.5 173.2 174.9 189.3 215.2 224.7 235.4	WHEEL IN 422.9 414.1 404.9 356.7 342.1 337.1 332.0 326.9 321.8 284.9 239.3 227.0 214.1	SPEED OUT 416.5 407.9 399.3 365.1 343.7 339.4 335.1 330.8 326.5 296.6 262.3 245.2
RT 1 23456789011H	ABS M/ IN 0.584 0.601 0.616 0.649 0.649 0.648 0.646 0.644 0.617 0.562 0.526	OUT 0.623 0.621 0.622 0.659 0.663 0.668 0.672 0.677 0.774 0.774 0.795 0.819	IN 1.411 1.396 1.296 1.293 1.219 1.205 1.191 1.176 0.918 0.877 0.834	OUT 0.770 0.770 0.779 0.782 0.672 0.662 0.652 0.641 0.631 0.562 0.478 0.478	MERID M/ 1N 0.584 0.601 0.649 0.650 0.649 0.648 0.646 0.646 0.526	OUT 0.400 0.417 0.430 0.453 0.461 0.462 0.463 0.465 0.466 0.474 0.474	IN -6.70 -5.93 -5.02 -0.48 2.75 3.44 4.13 4.84 5.57 11.23 19.94 22.86 26.18	NE SLOPE OUT -6.64 -5.60 -4.53 0.09 3.15 3.79 4.44 5.10 5.76 10.86 119.75 21.77	MERID F VEL R N 0.762 0.770 0.772 0.778 0.778 0.781 0.785 0.789 0.829 0.829 0.917 0.939	
RP TIP 1 23456789 1011HUB	PERCENT SPAN 0. 5:00 10.00 30.00 42.50 45.00 47.50 50.00 95.00 95.00 100.00	INCI MEAN 2.5 2.7 3.0 4.1 4.8 4.9 5.0 5.2 5.3 6.1 7.2 7.3	DENCE SS 0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	7.9 7.2 6.7 6.0 6.1 6.3 6.4 6.5 7.6 11.6	D-FACT 0.537 0.518 0.507 0.517 0.536 0.544 0.548 0.552 0.577 0.593 0.593	EFF 0.725 0.772 0.812 0.888 0.913 0.917 0.920 0.925 0.926 0.943 0.937 0.928 0.916	LOSS C TOT 0.255 0.206 0.168 0.102 0.063 0.078 0.074 0.065 0.090 0.111	OEFF PROF 0.154 0.112 0.078 0.025 0.026 0.026 0.027 0.028 0.038 0.038	LOSS P. TOT 0.051 0.042 0.034 0.022 0.017 0.017 0.017 0.015 0.019 0.023 0.028	ARAM PROF 0.031 0.023 0.016 0.005 0.006 0.006 0.006 0.006 0.009 0.019 0.023

TABLE III. - DESIGN BLADE ELEMENT PARAMETERS FOR STATOR 10

RP TIP 1 2 3 4 5 6 7 8 9 11 HUB	RAD IN 24.384 23.941 23.503 21.742 20.637 20.416 20.195 19.975 18.227 16.531 16.121 15.697	0UT 24.384 23.946 23.537 21.900 20.882 20.680 20.479 20.479 20.078 18.714 17.252 16.904	ABS 1N 45.1 42.9 41.3 40.0 40.5 40.7 40.8 41.0 42.3 44.8 45.8 46.9	BETAM OUT 0. -0. 0. 0. 0. 0. 0.	REL IN 45.1 42.9 41.3 40.0 40.4 40.7 40.8 41.0 42.3 445.8 46.9	BETAM OUT -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	TOTA IN 360.8 356.4 353.0 347.5 345.6 345.4 345.2 345.0 344.0 344.9	L TEMP RATIO 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL 1N 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24	PRESS RATIO 0.956 0.966 0.973 0.980 0.978 0.977 0.977 0.977 0.975 0.955 0.954 0.924
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 250.6 249.3 249.0 252.8 256.9 257.9 259.0 260.1 261.4 271.5 287.6 298.6	VEL 0UT 176.4 181.0 184.4 190.2 191.5 192.5 192.5 192.9 196.8 196.7 194.8 191.9	REL 1N 250.6 249.3 249.0 252.8 256.9 257.9 259.0 260.1 261.4 271.5 287.3 292.6 298.6	VEL 0UT 176.4 181.0 184.4 190.2 191.5 192.1 192.5 192.9 196.8 196.8 196.8	MER1 IN 176.7 182.6 187.0 193.6 195.6 196.4 196.8 197.3 200.9 203.9 204.0	D VEL OUT 176.4 181.0 184.4 190.2 191.5 192.5 192.5 192.9 196.8 196.8 196.8	TAN 1N 177.6 169.7 164.5 166.5 167.6 168.8 170.1 171.5 182.6 202.8 218.1	G VEL OUT 0. -0. 0. 0. 0. 0. 0.	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP P 25 % 5 6 7 8 9 0 1 1 HUB	ABS M 1N 0.689 0.689 0.710 0.724 0.735 0.735 0.740 0.773 0.828	ACH NO OUT 0.473 0.490 0.502 0.528 0.529 0.531 0.533 0.545 0.545 0.538	NELL MA (N. 0.689 0.689 0.724 0.728 0.735 0.740 0.773 0.840 0.858	ACH NO OUT 0.473 0.490 0.502 0.523 0.529 0.531 0.533 0.545 0.538 0.529	MERID M/ 1N 0.486 0.505 0.524 0.552 0.555 0.555 0.556 0.572 0.586	ACH NO 9 0.473 0.490 0.502 0.528 0.529 0.531 0.533 0.545 0.545 0.538 0.529	STREAML IN 10, 32 0.30 0.88 3.13 4.76 5.50 5.88 6.28 9.59 14.75 16.33 18.08	E SLOPE OUT -0.25 0.07 0.36 1.52 2.29 2.44 2.58 2.73 2.88 3.93 5.01 5.16 5.28		1.075 1.046 1.027
RP 1 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 0. 5.00 10.00 30.00 42.50 45.00 50.00 50.50 70.00	MEAN 6.2	DENCE SS -0.0 0.0 -0.0 0.0 0.0 0.0	DEV 14.4 12.8 11.7 10.2 9.8 9.8 9.7 9.7	D-FACT 0.569 0.532 0.505 0.469 0.466 0.466 0.466 0.468	0.	LOSS C TOT 0.169 0.124 0.098 0.070 0.073 0.074 0.075 0.076 0.076	PROF 0.169	LOSS P TOT 0.065 0.047 0.036 0.024 0.024 0.024 0.024 0.024 0.024	ARAM PROF 0.065 0.047 0.036 0.024 0.024 0.024 0.024 0.024

TABLE IV. - BLADE GEOMETRY FOR ROTOR 14 TABLE V. - BLADE GEOMETRY FOR STATOR 10

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RADII SPAN RI RO 0. 25.082 24.701 5. 24.562 24.193 10. 24.016 23.685 30. 21.752 21.653 45. 19.991 20.129 48. 19.692 19.875 50. 19.391 19.621 53. 19.088 19.367 70. 16.900 17.589 90. 14.191 15.557 95. 13.464 15.049	BLADE ANGLES KIC KTC KOC 62.89 61.15 50.70 61.63 60.18 50.30 60.36 59.00 49.68 55.88 53.60 45.06 53.42 50.38 40.63 52.94 49.75 39.58 52.47 49.11 38.44 52.01 48.47 37.24 51.55 47.82 35.98 48.44 43.56 24.97 45.34 40.14 5.19 44.72 39.86 -1.71 44.16 39.81 -9.35	DELTA CONE INC ANGLE 2.49 ~9.441 2.73 ~8.828 2.99 ~7.638 4.07 ~1.988 4.75 1.770 4.89 2.540 5.03 3.321 5.16 4.108 5.30 4.900 6.21 10.840 7.09 18.729 7.24 20.942 7.37 23.380	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0. 24.584 24 5. 25.941 23 10. 23.503 23 30. 21.742 21 43. 20.637 20 45. 20.416 20 48. 20.195 20 50. 19.975 20 50. 19.975 20 70. 18.227 18 90. 16.531 17 95. 16.121 16 100. 15.697 16	946 36.70 29.29 537 35.12 28.46 8900 33.81 28.04 882 34.23 28.57 680 34.37 28.71 479 34.52 28.86 278 34.69 29.02 078 34.88 29.20 714 36.32 28.72 252 39.28 29.09 904 40.43 29.26	KOC INC ANGL -14.36 6.17 0.05 -12.78 6.19 0.06 -11.69 6.21 0.49 -10.19 6.22 2.31 -9.85 6.21 3.59 -9.75 6.21 3.86 -9.75 6.21 4.14 -9.72 6.20 4.43 -9.68 6.20 4.73 -9.12 6.14 7.10 -8.89 6.03 10.47 -8.90 5.98 11.36
	BLADE THICKNESSES	AXIAL DIMENSION	S Z0C 3.291 3.329 3.371 3.556 3.673 3.698		BLADE THICKNESS	ES AKIAL D	IMENSIONS
RP	TI TM TO	ZIC ZMC ZTC	ZOC	RP	TI TM	O ZIC ZMC	ZTC ZOC
TIP	0.051 0.152 0.051	1.000 2.071 2.484	3.291	TIP	0.051 0.279 0	051 7.571 9.324	
1	0.051 0.162 0.051	0.955 2.071 2.451	3.329	1	0.051 0.279 0	051 7.543 9.331	
2	0.051 0.172 0.051		3.371	2	0.051 0.279 0	051 7.524 9.336	
3 4	0.051 0.216 0.051	0.715 2.054 2.209	3.556	3	0.051 0.279 0 0.051 0.279 0	051 7.507 9.340 051 7.510 9.339	
5	0.051 0.244 0.051 0.051 0.250 0.051		3.673 3.698	5	0.051 0.279 0	051 7.511 9.339	
ő	0.051 0.256 0.051	0.561 2.036 1.975	3.722	. 6	0.051 0.279 0	051 7.512 9.338	
7	0.051 0.262 0.051		3.74R	7	0.051 0.279 0	051 7.514 9.338	
8	0.051 0.267 0.051		3,773	8	0.051 0.279 0	051 7.515 9.337	
9	0.051 0.309 0.051		3.958	9	0.051 0.279 0	051 7.511 9.338	
10	0.051 0.359 0.051		3.773 3.958 4.171 4.217	10	0.051 0.279 0	051 7.519 9.336	
11	0.051 0.373 0.051			11	0.051 0.279 0		8.517 11.421
HUB	0.051 0.387 0.051	0.000 1.899 0.909	4.259	HU8	0.051 0.279 0	051 7.529 9.333	8.506 11.420
	AEDS CLITTED AND A	u	AREA		AERO SELLING II	II AL X	AREA
ЯÞ	AERO SETTING TOTAL CHORD ANGLE CAMBER	SOLIDITY FACTOR PHISS	RATIO	ЯÞ		BER SOLIDITY FACTOR	
TIP	4,713 60.12 12.20	1.296 0.529 5.16	1.037	TIP			13.73 1.178
	4,717 59.02 11.52	1.324 0.539 5.08	1.035	1		.48 1.320 0.600	12.40 1.159
2	4,714 57,78 10.68	1.353 0.566 5.21	1.034	2	4,139 17,45 46	.81 1,344 0,600	11.44 1.144
3	4,704 52,34 10.82	1.483 0.708 6.80	1.032	3		.00 1.450 0.600	10.12 1.114
4	4,704 48.72 12.78	1.583 0.748 7.80	1.029	4		.08 1.526 0.600	9.85 1.101
5	4,705 47,95 13.36	1.605 0.751 7.98	1.028	5		.17 1.542 0.600	9.82 1.098
6 7	4,706 47,15 14,03	1.628 0.755 8.18 1.652 0.757 8.38	1.027 1.026	6 7		.28 1.558 0.600 .41 1.575 0.600	9.79 1.095 9.77 1.092
8	4.708' 46.32 14.77 4.711 45.47 15.58	1.652 0.757 8.38 1.677 0.759 8.57	1.025	8		.56 1.592 0.600	9.75 1.089
9	4,754 38,76 23,47	1.887 0.744 9.63	1.018	9		1.724 0.706	11.33 1.085
10	4,900 28.66 40.14	2.254 0.639 9.42	1.013	10		.16 1.901 0.825	13,58 1,091
11	4,966 25.54 46.42	2.384 0.587 8.90	1.012	11		.33 1.950 0.862	14.46 1.097
HUB	5.060 22.11 53.51	2.542 0.526 8.17	1.012	HUB	4.214 17.51 5	.72 2.000 0.904	15,50 1.104

TABLE VI. - OVERALL PERFORMANCE FOR STAGE 14-10

(a) Percent design speed, 100

	Reading number					
	350	341	342	337	343	
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO- ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOM COEFFICIENT MT FLOM PER UNIT FRONTAL AREA MT FLOM PER UNIT ANNULUS AREA	1.703 1.633 1.193 1.191 0.851 0.787 0.856 0.264 0.242 0.4429 151.20 203.34	1.791 1.727 1.209 1.207 0.866 0.815 0.891 0.293 0.273 0.425 149.83	1.846 1.767 1.223 1.219 0.860 0.895 0.311 0.287 0.409 145.48 195.65	1.877 1.776 1.233 1.232 0.847 0.769 0.878 0.320 0.289 0.385 138.61 186.40	1.880 1.776 1.235 1.235 0.839 0.758 0.877 0.320 0.288 0.376 136.90	
MT FLOW AT ORIFICE MT FLOW AT ROTOR INLET MT FLOW AT ROTOR OUTLET MT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	29.88 30.49 30.02 31.18 16145.3 100.3	29.61 30.24 30.26 30.81 16114.1	28.76 29.36 29.49 29.64 16080.8 99.9	27.40 28.09 28.14 28.18 16075.6 99.8	27.06 27.62 28.10 28.07 16105.0 100.0	

(b) Percent design speed, 90

		Reading number						
	355	356	357	358	359			
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR. TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENT ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.531 1.447 1.149 1.147 0.869 0.757 0.874 0.259 0.222 0.435 140.82 189.37 27.83 28.48 28.18 29.57 14492.3	1.566 1.504 1.156 1.153 0.879 0.806 0.889 0.273 0.247 0.429 139.35 187.40 27.54 28.16 27.87 28.46 14496.4	1.621 1.561 1.169 1.166 0.876 0.819 0.294 0.270 0.411 134.84 181.34 26.65 27.29 27.20 14521.6	1.657 1.593 1.179 1.176 0.868 0.809 0.283 0.387 128.88 173.32 25.47 26.07 25.78 25.90	1.675 1.599 1.187 1.185 0.847 0.775 0.872 0.315 0.285 0.363 122.49 164.73 24.21 24.77 24.53 24.56 14545.6			

TABLE VI. - Continued. OVERALL PERFORMANCE FOR STAGE 14-10

(c) Percent design speed, 80

	Reading number
	364
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENT ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT FRONTAL AREA HIT FLOW AT ORIFICE HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.476 1.428 1.143 1.140 0.823 0.765 0.841 0.298 0.271 0.335 103.51 139.21 20.46 20.84 20.61 12873.7 80.0

(d) Percent design speed, 70

	Reading number					
	366	367	368	369	370	
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT FRONTAL AREA HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.265 1.218 1.078 1.077 0.894 0.748 0.911 0.230 0.191 0.438 116.15 156.20 22.96 23.40 23.04 23.04 11260.9 69.9	1.294 1.255 1.085 1.084 0.898 0.801 0.924 0.254 0.223 0.419 111.35 149.74 22.01 22.47 22.29 22.11	1.321 1.284 1.094 1.092 0.883 0.807 0.913 0.276 0.247 0.387 103.93 139.77 20.54 20.95 20.82 20.40 11216.2 69.7	1.353 1.294 1.099 1.098 0.867 0.783 0.893 0.255 0.363 98.02 131.81 19.37 19.77 19.72 19.09	1.341 1.300 1.105 1.103 0.830 0.754 0.858 0.290 0.258 0.334 91.24 122.70 18.03 18.37 18.33 17.54 11236.2	

TABLE VI. - Concluded. OVERALL PERFORMANCE FOR STAGE 14-10

(e) Percent design speed, 60

(f) Percent design speed, 50

	Reading number
	373
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.245 1.210 1.079 1.077 0.816 0.840 0.292 0.253 0.313 74.29 99.91 14.68 14.99 14.77 13.91 9627.7 59.8

	Reading number
	375
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.165 1.140 1.054 1.053 0.829 0.719 0.858 0.288 0.245 0.317 63.51 85.41 12.55 12.81 12.61 11.42 8067.1

TABLE VII. - BLADE ELEMENT DATA AT BLADE EDGES FOR ROTOR 14

(a) Percent design speed, 100; reading number, 350

					•		•	•		
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.693 19.390 19.088 16.899 14.191 13.465	OUT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 43.4 39.5 39.6 45.2 45.4 45.5 44.9 44.0 48.3 51.6	1N 64.2 62.3 58.7 56.7 56.4 56.0 55.6 55.3 52.9 50.3	BETAM 0UT 56.5 54.5 48.6 47.5 47.9 47.9 47.0 46.1 37.5 18.7	TOTA IN 288.8 288.7 288.0 288.0 288.0 287.9 288.0 287.9 287.9	L TEMP RAT10 1.229 1.214 1.198 1.191 1.189 1.185 1.187 1.187 1.168 1.182	TOTAL IN 9.97 10.11 10.15 10.15 10.15 10.15 10.15 10.15	PRESS RAT10 1.740 1.750 1.639 1.609 1.597 1.599 1.604 1.634 1.743
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 1N 201.0 213.1 223.7 224.8 225.0 224.7 224.3 223.9 215.8 199.1	VEL 0UT 229.1 232.9 242.1 233.2 228.4 227.3 238.5 271.2 269.9	REL IN 461.0 458.3 430.5 409.9 406.1 401.7 397.0 392.9 357.8 312.0 298.8	VEL 0UT 301.2 309.6 282.2 243.1 239.3 236.0 255.1 235.6 216.2 190.6	MER1 IN 201.0 213.1 223.7 224.8 225.0 224.7 224.3 223.9 215.8 199.1	D YEL 0UT 166.4 179.8 186.5 164.4 160.3 158.3 160.4 163.5 171.6 180.3	IN	16 VEL 0UT 157.6 148.1 154.4 165.4 162.7 161.1 159.7 157.9 165.7 202.3	WHEEL IN 414.9 405.8 367.9 342.9 338.1 3337.7 322.9 285.4 240.2 227.9	SPEED OUT 408.7 4400.2 344.5 340.4 336.1 331.6 327.6 297.1 263.4 254.7
R + 2334567.89011	ABS M 1.612 0.652 0.688 0.692 0.691 0.690 0.689 0.662 0.607 0.588	OUT 0.630 0.646 0.679 0.654 0.634 0.634 0.634 0.636 0.678 0.776	REL M. 1.403 1.402 1.324 1.250 1.250 1.236 1.222 1.208 1.097 0.951 0.908	OUT 0.829 0.859 0.792 0.682 0.671 0.662 0.661 0.665 0.546 0.523	MERID M/ IN 0.612 0.652 0.698 0.692 0.691 0.690 0.689 0.662 0.607	OUT 0.458 0.499 0.523 0.461 0.450 0.444 0.451 0.461 0.488 0.517 0.517			MER:D F VEL R 0.828 0.844 0.833 0.731 0.705 0.715 0.730 0.795 0.933	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 30.00 42.50 45.00 47.50 52.50 70.00 90.00 95.00	INCI MEAN 2.8 1.8 3.3 3.4 3.5 3.6 4.5 5.2	DENCE SS -0.4 -1.2 -1.3 -1.4 -1.5 -1.5 -1.5 -1.6 -1.7 -1.9 -1.9	0EV 6.0 4.7 3.6 6.9 8.4 9.5 9.8 12.5 13.4	D-FACT 0.475 0.443 0.465 0.535 0.536 0.536 0.530 0.521 0.521 0.521	0.750 0.812 0.884 0.793 0.772 0.771 0.786 0.817 0.899 0.947 0.956	LOSS C TOT 0.218 0.159 0.100 0.181 0.198 0.199 0.160 0.097 0.069 0.064	0EFF PR0F 0.124 0.070 0.028 0.123 0.144 0.139 0.114 0.072 0.065 0.064	LOSS POTOT 0.046 0.034 0.022 0.039 0.041 0.033 0.020 0.014 0.013	PROF 0.026 0.015 0.006 0.026 0.030 0.030 0.029 0.024 0.015 0.014

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(b) Percent design speed, 100; reading number, 341

	(~) rerce		0 1	,	,	6	,		
	RAD		ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN	OUT	IN	OUT	IN	RATIO	IN	RATIO
1	24.562		-0.0	46.7	64.4	54.9	288.7	1.257	9.98	1.881
2	24.016	23.685	-0.0	42.8	62.6	53.4	288.4	1.238	10.12	1.877
3	21.753		-0.0	43.0	59.0	48.2	288.2	1.218	10.15	1.852
4	20.290		-0.0	46.6	57.1	45.7	288.2	1.208	10.15	1.761
5	19.992		-0.0	47.0	56.7	45.8	288.3	1.206	10.15	1.736
6	19.693		-0.0	47.4	56.3	46.1	287.4	1.201	10.15	1.714
7	19.390		-0.0	47.7	55.9	46.4	288.3	1.198	10.15	1.690
8	19.088		-0.0	47.2	55.6	45.4	288.1	1.193	10.15	1.690
9	16.899		-0.0	45.8	53.3	36.4	287.9	1,178	10.15	1.711
10	14.191		-0.0	49.5	50.7	19.4	287.9	1.186	10.15	1.763
11	13.465	15.049	-0.0	51.3	50.0	12.4	287.7	1.194	10.14	1.809
		VEL		VEL		D VEL		G VEL		SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	. IN	OUT
1	198.2	239.7	459.2	285.6	198.2	164.4	-0.0	174.5	414.3	408.0
2	210.0	239.9	456.6	294.9	210.0	175.9	-0.0	163.1	405.4	399.9
3 4	220.8 221.6	243.5 240.5	428.2 408.0	267.2 236.4	220.8	178.1	-0.0 -0.0	166.0	366.8	365.1 344.1
Š	222.2	237.2	404.3	232.1	221.6 222.2	165.2 161.7	-0.0	174.9 173.5	342.5 337.7	340.0
5	221.2	232.8	399.0	227.3	221.2	157.6	-0.0	171.3	332.0	335.1
7	221.8	229.1	395.5	223.6	221.8	154.2	-0.0	169.5	327.5	331.4
8	220.8	229.9	390.7	222.4	220.8	156.2	-0.0	168.7	322.3	327.0
9	212.4	241.0	355.6	208.9	212.4	168.1	-0.0	172.8	285.2	296.8
10	196.2	265.7	309.7	183.1	196.2	172.7	-0.0	201.9	239.6	262.7
11	190.2	276.2	296.1	176.9	190.2	172.7	-0.0	215.5	226.8	253.5
		ACH NO			MERID MA				MERIO F	PEAK SS
рp	IN	OUT	IN	OUT	MERID MA	OUT			VEL R 1	sach no
1	IN 0.603	0UT 0.654	IN 1.396	0UT 0.779	MERID MA IN 0.603	0UT 0.449			VEL R 1	440H NO 1.567
1	IN 0.603 0.642	0UT 0.654 0.660	IN 1.396 1.395	0UT 0.779 0.812	MERID MA IN 0.603 0.642	0.449 0.484			VEL R M 0.829 0.837	1.544 1.567 1.544
1	IN 0.603 0.642 0.678	0.654 0.660 0.678	IN 1.396 1.395 1.315	0.779 0.812 0.743	MERID MA IN 0.603 0.642 0.678	0.449 0.484 0.496			VEL R 9 0.829 0.837 0.807	1.567 1.567 1.544 1.516
1 2 3 4	IN 0.603 0.642 0.678 0.681	0.654 0.660 0.678 0.671	IN 1.396 1.395 1.315 1.253	0UT 0.779 0.812 0.743 0.660	MERID MA IN 0.603 0.642 0.678 0.681	0.449 0.484 0.496 0.461			VEL R 9 0.829 0.837 0.807 0.745	1.544 1.516 1.544 1.516
1 2 3 4	IN 0.603 0.642 0.678 0.681 0.683	0.654 0.660 0.678 0.671 0.662	IN 1.396 1.395 1.315 1.253 1.242	0.779 0.812 0.743 0.660 0.648	MERID M/ IN 0.603 0.642 0.678 0.681 0.683	0.449 0.484 0.496 0.461 0.451			VEL R 5 0.829 0.837 0.807 0.745 0.728	1.567 1.544 1.516 1.491 1.484
1 2 3 4	IN 0.603 0.642 0.678 0.681 0.683 0.680	0.654 0.660 0.678 0.671 0.662 0.651	IN 1.396 1.395 1.315 1.253 1.242 1.227	0.779 0.812 0.743 0.660 0.648 0.636	MERID MA IN 0.603 0.642 0.678 0.681 0.683 0.680	OUT 0.449 0.484 0.496 0.461 0.451			VEL R 5 0.829 0.837 0.807 0.745 0.728 0.712	1.567 1.544 1.516 1.491 1.484 1.479
1 2 5 4 5 6 7 8	IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681	0.654 0.660 0.678 0.671 0.662	IN 1.396 1.395 1.315 1.253 1.242	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.624	MERID MA IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681	0.449 0.484 0.496 0.461 0.451			VEL R 5 0.829 0.837 0.807 0.745 0.728 0.712 0.695	1.567 1.544 1.516 1.491 1.484 1.479
1 2 5 4 5 6 7 8	IN 0.603 0.642 0.678 0.681 0.683 0.680	OUT 0.654 0.660 0.678 0.671 0.662 0.651 0.640	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215	0.779 0.812 0.743 0.660 0.648 0.636	MERID MA IN 0.603 0.642 0.678 0.681 0.683 0.680	0.449 0.484 0.496 0.461 0.451 0.441			VEL R 5 0.829 0.837 0.807 0.745 0.728 0.712	1.567 1.544 1.516 1.491 1.484 1.479
1 23 4 5 67	IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681 0.678	0.654 0.660 0.678 0.671 0.662 0.651 0.640	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200	0.779 0.812 0.743 0.660 0.648 0.636 0.624 0.623	MERID M/ IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681 0.678	0.449 0.484 0.496 0.461 0.451 0.441 0.430 0.437			VEL R 5 0.829 0.837 0.807 0.745 0.728 0.712 0.695 0.707	1.567 1.544 1.516 1.491 1.484 1.479 1.471
125456789	IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681 0.678	0.654 0.660 0.678 0.671 0.662 0.651 0.640 0.644 0.683	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089	0UT 0.779 0.812 0.743 0.660 0.648 0.636 0.624 0.623	MERID M/ IN 0.603 0.642 0.678 0.681 0.683 0.680 0.681 0.678 0.650	0.449 0.484 0.496 0.461 0.451 0.441 0.430 0.437			9.829 0.837 0.837 0.745 0.728 0.712 0.695 0.737	1.544 1.544 1.516 1.491 1.484 1.479 1.466
1254567890	IN 0.603 0.642 0.678 0.681 0.683 0.680 0.678 0.650 0.597	0UT 0.654 0.660 0.678 0.671 0.662 0.651 0.640 0.644 0.683 0.757	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942	0UT 0.779 0.812 0.743 0.660 0.648 0.636 0.624 0.623 0.592 0.522	MERID M/ IN 0.603 0.642 0.678 0.681 0.683 0.681 0.678 0.650 0.597	0UT 0.449 0.484 0.496 0.461 0.451 0.441 0.430 0.437 0.476 0.492			7EL R 9 0.829 0.837 0.807 0.745 0.728 0.712 0.695 0.727 0.791 0.880	1.544 1.516 1.516 1.491 1.479 1.471 1.466 1.416
123456789011	IN 0.603 0.678 0.681 0.683 0.680 0.678 0.650 0.597 0.578	0UT 0.654 0.660 0.678 0.671 0.662 0.651 0.640 0.643 0.757 0.788	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899	0UT 0.779 0.812 0.743 0.660 0.648 0.636 0.624 0.623 0.592 0.522	MERID M/ IN 0.603 0.642 0.678 0.681 0.683 0.681 0.678 0.650 0.597	0UT 0.449 0.484 0.496 0.461 0.451 0.441 0.430 0.437 0.476 0.492 0.493	Loss c		VEL R 0.829 0.837 0.745 0.745 0.712 0.695 0.791 0.880 0.908	404 NO 1.561 1.544 1.516 1.491 1.479 1.471 1.466 1.283 1.207
1 23 4 5 6 7 8 9 10 1 T RP	IN 0.603 0.642 0.681 0.683 0.680 0.681 0.650 0.597 0.578 PERCENT SPAN	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.640 0.643 0.757 0.788	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.623 0.592 0.592 0.505	MERID M/ IN 0.603 0.642 0.681 0.683 0.680 0.681 0.650 0.557 0.578	0.449 0.449 0.496 0.461 0.451 0.451 0.437 0.476 0.476 0.493	TOT	PROF	VEL R 0.829 0.837 0.745 0.728 0.712 0.695 0.707 0.791 0.880 0.908	1.567 1.544 1.516 1.484 1.479 1.471 1.466 1.283 1.207 ARAM PROF
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.603 0.642 0.681 0.683 0.680 0.681 0.650 0.597 0.578 PERCENT SPAN 5.00	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.640 0.644 0.683 0.757 0.788	IN 1,396 1,395 1,315 1,253 1,242 1,227 1,215 1,200 1,089 0,942 0,899 DENCE SS -0,1	OUT 0.779 0.812 0.743 0.660 0.668 0.636 0.624 0.623 0.592 0.592 0.505	MERID MA IN 0.603 0.642 0.681 0.683 0.680 0.681 0.678 0.659 0.578	0UT 0.449 0.486 0.461 0.451 0.451 0.430 0.437 0.476 0.492 0.493	TOT 0.220	PROF 0.126	VEL R 9.829 0.829 0.745 0.728 0.712 0.695 0.737 0.791 0.880 0.908 LOSS P. TOT 0.048	1.567 1.544 1.554 1.549 1.484 1.479 1.476 1.466 1.283 1.207 ARAM PROF 0.027
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.603 0.642 0.678 0.681 0.683 0.680 0.678 0.650 0.597 0.578 PERCENT SPAN 5.00	OUT 0.654 0.6654 0.678 0.671 0.662 0.640 0.644 0.683 0.757 0.788 INCI MEAN 2.1	IN 1,396 1,395 1,315 1,253 1,242 1,227 1,215 1,200 1,089 0,942 0,899 DENCE SS -0,1 -0,9	OUT 0.779 0.812 0.743 0.660 0.668 0.636 0.624 0.623 0.522 0.505 DEV	MERID M/ IN 0.603 0.678 0.681 0.683 0.683 0.650 0.597 0.578 D-FACT 0.521 0.485	0UT 0.449 0.484 0.496 0.461 0.451 0.437 0.437 0.476 0.492 0.493 EFF	TOT 0.220 0.160	PROF 0.126 0.071	VEL R S. 829 0.829 0.837 0.745 0.728 0.717 0.791 0.880 0.908 LOSS TOT 0.048 0.035	1.567 1.544 1.516 1.491 1.479 1.471 1.466 1.283 1.207 ARAM PROF 0.027 0.016
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.603 0.678 0.681 0.683 0.680 0.650 0.597 0.578 PERCENT SPAN 5.00 30.00	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 INCI MEAN 2.7 2.1	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.623 0.592 0.592 0.505 DEV	MERID M/IN 0.603 0.642 0.678 0.681 0.683 0.689 0.678 0.679 0.578 D-FACT 0.521 0.485	0UT 0.449 0.484 0.496 0.461 0.451 0.437 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.884	TOT 0.220 0.160 0.109	PROF 0.126 0.071 0.038	VEL R S. 829 0.8827 0.745 0.745 0.728 0.757 0.791 0.880 0.908 LOSS P. TOT 0.048 0.035 0.024	1.564 1.554 1.554 1.49: 1.47: 1.47: 1.466 1.283 1.207 ARAM PROF 0.027 0.016 0.009
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.603 0.678 0.683 0.683 0.680 0.650 0.597 0.578 PERCENT SPAN 5.00 10.00 42.50	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 !NCI MEAN 2.7 2.1 3.1	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.623 0.592 0.592 0.592 0.505	MERID M/N 0.603 0.642 0.681 0.683 0.680 0.681 0.678 0.659 0.597 0.578 D-FACT 0.485 0.556	0UT 0.449 0.448 0.496 0.461 0.451 0.437 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.884 0.842	TOT 0.220 0.160 0.109 0.151	PROF 0.126 0.071 0.038 0.094	VEL R 0.829 0.837 0.745 0.728 0.7128 0.791 0.880 0.908 LOSS 0.035 0.035 0.033	1.567 1.544 1.556 1.49: 1.484 1.479 1.466 1.283 1.207 ARAM PROF 0.016 0.020 0.021
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.603 0.6478 0.688 0.688 0.688 0.650 0.597 0.578 PERCENT SPAN 5.00 10.00 42.50 45.00	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 INCI MEAN 2.7 2.1 3.17 3.7	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9 -1.0	OUT 0.779 0.812 0.743 0.660 0.664 0.636 0.624 0.592 0.592 0.505 DEV	MERID MIN 0.603 0.642 0.681 0.683 0.680 0.681 0.650 0.597 0.578 D-FACT 0.521 0.485 0.560 0.560	0UT 0.449 0.484 0.496 0.461 0.451 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.828	TOT 0.220 0.160 0.109 0.151 0.164	PROF 0.126 0.071 0.038 0.094 0.110	VEL R 0.829 0.837 0.745 0.728 0.712 0.695 0.791 0.880 0.908 LOSS P TOT 0.048 0.035 0.024 0.033 0.036	1.567 1.544 1.554 1.49: 1.484 1.479 1.47: 1.466 1.283 1.207 ARAM PROF 0.027 0.016 0.021 0.024
123345678901 P1234567	IN 0.603 0.6678 0.688 0.680 0.597 0.578 PERCENT SPAN 5.00 10.00 42.50 47.50	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.640 0.643 0.757 0.788 INCI MEAN 2.7 2.1 3.7 3.7	IN 1,396 1,395 1,315 1,242 1,227 1,215 1,200 1,089 0,942 0,899 DENCE SS -0.1 -0.9 -1.0 -1.1	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.624 0.623 0.592 0.505 DEV 4.4 3.6 3.1 5.1 6.3 7.7	MERID M IN 0.603 0.642 0.681 0.683 0.680 0.680 0.650 0.578 D-FACT 0.521 0.485 0.566 0.566	0UT 0.449 0.486 0.461 0.451 0.451 0.437 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.827 0.828 0.828	TOT 0.220 0.160 0.109 0.151 0.164 0.163	PROF 0.126 0.071 0.038 0.094 0.110 0.112	VEL R 9.829 0.829 0.837 0.745 0.728 0.728 0.791 0.880 0.908 LOST 0.035 0.024 0.035 0.035 0.035	1.564 1.554 1.554 1.49: 1.47: 1.466 1.416 1.283 1.207 0.027 0.016 0.027 0.024
123345678901 P1234567	IN 0.603 0.6478 0.688 0.688 0.688 0.650 0.597 0.578 PERCENT SPAN 5.00 10.00 42.50 45.00	OUT 0.654 0.664 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 INCI MEAN 2.7 2.1 3.17 3.7	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9 -1.0	OUT 0.779 0.812 0.743 0.660 0.664 0.636 0.624 0.592 0.592 0.505 DEV	MERID M/IN 0.603 0.642 0.678 0.681 0.683 0.680 0.650 0.597 0.578 D-FACT 0.521 0.485 0.506 0.566 0.566	0UT 0.449 0.464 0.496 0.461 0.451 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.828	TOT 0.220 0.160 0.109 0.151 0.164	PROF 0.126 0.071 0.038 0.094 0.110	VEL R 0.829 0.837 0.745 0.728 0.712 0.695 0.791 0.880 0.908 LOSS P TOT 0.048 0.035 0.024 0.033 0.036	1.567 1.544 1.554 1.49: 1.484 1.479 1.47: 1.466 1.283 1.207 ARAM PROF 0.027 0.016 0.021 0.024
1 23 4 5 6 7 8 9 1 1 1 RP 1	IN 0.633 0.6478 0.683 0.683 0.685 0.650 0.557 0.578 PERCENT SPAN 50.00 45.50 45.50 45.50	OUT 0.654 0.667 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 INCI MEAN 2.7 3.1 3.7 3.7 3.9	IN 1,396 1,395 1,315 1,253 1,242 1,227 1,215 1,200 1,089 0,942 0,899 DENCE SS -0,1 -0,9 -1,0 -1,1 -1,2 -1,1	OUT 0.779 0.812 0.660 0.648 0.624 0.623 0.592 0.522 0.505 DEV 4.4 3.6 3.1 5.1 6.3 7.7	MERID M IN 0.603 0.642 0.681 0.683 0.680 0.680 0.650 0.578 D-FACT 0.521 0.485 0.566 0.566	0UT 0.449 0.484 0.496 0.461 0.451 0.437 0.437 0.437 0.438 EFF 0.771 0.827 0.828 0.842 0.828 0.816	TOT 0.220 0.160 0.109 0.151 0.164 0.163 0.174	PROF 0.126 0.071 0.038 0.094 0.110 0.112	VEL R 9.829 0.829 0.837 0.745 0.728 0.7128 0.757 0.791 0.880 0.908 LOSS TOT 0.035 0.035 0.035 0.035 0.035	1.564 1.554 1.554 1.49: 1.47: 1.466 1.47: 1.466 1.283 1.207 ARAM PROF 0.0027 0.0020 0.0021 0.0024 0.024
123456789011 P1234567890	IN 0.6478 1 0.6878 1 0.6881 0.6881 0.650 0.557 0.57	OUT 0.654 0.667 0.678 0.671 0.662 0.651 0.644 0.757 0.788 INCI MEAN 2.7 2.1 3.17 3.9 3.9 4.1	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9 -1.1 -1.2 -1.1 -1.2	OUT 0.779 0.812 0.743 0.660 0.648 0.623 0.592 0.522 0.505 DEV 4.4 3.6 3.1 5.1 6.3 7.7 9.4	MERID M/IN 0.603 0.642 0.681 0.683 0.680 0.681 0.678 0.659 0.597 0.578 D-FACT 0.485 0.556 0.566 0.566 0.566 0.566	0.449 0.449 0.461 0.461 0.451 0.437 0.437 0.476 0.492 0.493 EFF 0.771 0.827 0.828 0.828 0.828 0.828 0.828 0.837	TOT 0.220 0.160 0.109 0.151 0.164 0.163 0.174 0.155 0.069 0.071	PROF 0.126 0.071 0.038 0.094 0.110 0.112 0.126 0.110 0.043 0.067	VELB29 0.8837 0.745 0.728 0.728 0.791 0.880 0.791 0.880 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035	1.564 1.554 1.554 1.484 1.475 1.466 1.416 1.283 1.207 0.016 0.027 0.021 0.024 0.023 0.023 0.029 0.014
12345678901 P123456789	IN 0.603 0.6478 0.6878 0.6881 0.6580 0.597 0.578 PERCENN 5.000 10.000 47.500 52.500 70.00	OUT 0.654 0.667 0.678 0.671 0.662 0.651 0.644 0.683 0.757 0.788 !NCI MEAN 2.7 2.1 3.7 3.9 4.1	IN 1.396 1.395 1.315 1.253 1.242 1.227 1.215 1.200 1.089 0.942 0.899 DENCE SS -0.1 -0.9 -1.1 -1.2 -1.1	OUT 0.779 0.812 0.743 0.660 0.648 0.636 0.623 0.592 0.592 0.505 0.522 0.505	MERID M. IN 0.603 0.642 0.681 0.683 0.680 0.650 0.597 0.578 D-FACT 0.521 0.485 0.566 0.566 0.566 0.566 0.566	0.449 0.449 0.496 0.461 0.451 0.437 0.476 0.476 0.492 0.493 EFF 0.771 0.828 0.828 0.828 0.828 0.828 0.837	TOT 0.220 0.160 0.109 0.151 0.164 0.163 0.174 0.155 0.069 0.071	PROF 0.126 0.071 0.038 0.094 0.110 0.112 0.126 0.110 0.043 0.067	VEL R 0.829 0.8377 0.745 0.745 0.7128 0.	ACH NO. 1.564 1.554 1.554 1.49: 1.484 1.479 1.466 1.283 1.207 ARAM PROF 0.027 0.0024 0.0024 0.0024 0.0025 0.003

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(c) Percent design speed, 100; reading number, 342

	(c,	Perce	ent desi	gn spee	;u, 100	, readi	ing mum	ber, 3	76	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.693 19.390 19.088 16.899 14.191 13.465	OUT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 49.5 46.8 45.9 48.1 49.8 50.5 50.2 48.4 51.5 52.8	RELL 1N 65.6 63.9 60.2 58.3 58.0 57.7 57.2 56.9 54.8 51.3	BETAM OUT 54.0 52.8 48.5 45.4 44.7 44.6 45.0 44.1 35.5 20.5	IN 288.4 288.3 288.3 288.2 287.9 288.2	L TEMP RATIO 1.278 1.258 1.229 1.220 1.218 1.216 1.213 1.208 1.199 1.199	TOTAL IN 9.98 10.11 10.15 10.15 10.15 10.15 10.15	PRESS RAT10 1.972 1.942 1.896 1.828 1.819 1.776 1.776 1.766 1.764
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 187.9 198.4 209.4 210.9 210.7 210.0 204.0 187.8 182.1	VEL 0UT 246.3 244.3 242.2 241.6 241.3 238.8 235.1 242.5 257.3 272.6	REL 1N 454.6 450.5 421.4 396.7 392.4 388.9 384.3 3503.5 291.0	VEL 0UT 272.5 276.8 254.5 228.1 222.3 216.7 211.5 219.7 198.0 171.0 168.8	MERI 187.9 198.4 209.4 210.9 210.2 209.9 210.7 210.0 204.0 182.1	D VEL 0UT 1607.2 168.6 160.2 158.0 154.2 149.4 150.5 161.1 160.1	TAN IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	0 VEL 0UT 187.2 178.2 180.8 180.8 182.4 182.3 181.1 180.5 181.2 201.4 217.1	WHEEL 13.9 404.4 366.2 341.6 336.5 331.5 321.8 284.6 238.4	SPEED 0UT 407.7 398.8 354.6 351.8 326.5 226.2 253.7
R - 254567 8901	ABS M IN 0.570 0.604 0.644 0.645 0.643 0.644 0.642 0.623 0.571	0.668 0.670 0.671 0.664 0.653 0.655 0.672 0.774	REL M. 1N 1.378 1.371 1.289 1.214 1.200 1.190 1.175 1.069 0.921 0.881	ACH NO 0UT 0.739 0.757 0.704 0.633 0.618 0.602 0.588 0.588 0.584 0.485 0.480	MERID M. 1N 0.570 0.604 0.645 0.643 0.642 0.644 0.642 0.623 0.551	OUT 0.434 0.457 0.466 0.445 0.440 0.429			MER: D F VEL R 2 0.852 0.843 0.805 0.762 0.735 0.709 0.717 0.709 0.853 0.905	EAK 55 4.00 NO 1.588 1.535 1.535 1.500 1.494 1.489 1.489 1.221
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 47.50 50.00 52.50 70.00 95.00	INC1 MEAN 3.8 3.4 4.9 5.1 5.2 5.3 6.6 6.9	DENCE SS 1.1 0.4 0.3 0.2 0.2 0.2 0.1 0.0 -0.3 -0.4 -0.3	DEV 3.5 3.0 3.4 4.8 5.2 6.2 7.8 8.2 10.6 15.2	D-FACT 0.555 0.531 0.535 0.574 0.583 0.591 0.598 0.575 0.575	EFF 0.770 0.808 0.877 0.853 0.855 0.842 0.834 0.849 0.917 0.928 0.950	LOSS C TOT 0.238 0.191 0.122 0.150 0.149 0.164 0.171 0.156 0.092 0.100 0.078	0EFF PR0F 0.141 0.102 0.051 0.092 0.112 0.112 0.110 0.066 0.097 0.078	LOSS P TOT 0.053 0.043 0.027 0.033 0.035 0.036 0.037 0.033 0.020 0.021	ARAM PROF 0.031 0.023 0.011 0.020 0.021 0.025 0.026 0.024 0.014 0.020

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(d) Percent design speed, 100; reading number, 337

	\	,		O1	- , -	,	U	,		
RP 1 2 3 4 5 6 7 8 9 1 0 1 1	RAD IN 24.562 24.016 21.753 20.290 19.992 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367	ABS 1N 0. -0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	53.0 52.7	1N 67.1 65.6 62.1 60.1 59.7 59.3 58.9 58.6 56.1 53.2	BETAM OUT 54.4 52.7 49.1 45.5 45.0 44.4 43.1 35.8 19.8 8.6	TOTA IN 288.6 288.6 288.0 288.0 288.0 288.0 287.9 287.9 287.9	L TEMP RATIO 1.300 1.278 1.227 1.225 1.225 1.225 1.225 1.219 1.197 1.194 1.208	TOTAL IN 10.00 10.15 10.15 10.15 10.15 10.15 10.15	1.845 1.834 1.815 1.811 1.780 1.799
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 174.6 183.1 194.0 196.6 196.7 196.8 196.8 196.4 191.5 178.0	VEL 0UT 250.0 248.6 241.2 241.9 241.1 241.0 239.3 239.4 240.7 258.0 278.1	REL IN 448.8 443.5 594.1 389.8 385.7 381.3 376.7 342.9 298.2 285.1	VEL 0UT 251.2 256.8 242.1 218.7 211.8 205.1 200.5 198.8 189.3 165.2 159.2	MERI 1N 174.6 183.1 196.6 196.7 196.8 196.8 196.4 191.5 178.4	D VEL 0UT 146.1 155.5 158.6 153.3 149.7 146.6 144.1 145.2 155.4 157.4	IN 0. -0.0 0. 0.	185.4	WHEEL IN 413.5 403.9 366.3 341.5 336.5 331.7 326.6 321.4 284.5 238.9 226.6	296.1 261.9
RP 1 233 4 55 677 8 9 10 11	ABS M 1.527 0.554 0.590 0.599 0.599 0.599 0.599 0.598 0.582 0.542	ACH NO 0.673 0.675 0.665 0.665 0.668 0.668 0.665 0.665 0.730 0.789	REL M 1.354 1.354 1.260 1.199 1.186 1.174 1.160 1.142 0.902 0.861	ACH NO OUT 0.676 0.697 0.667 0.606 0.587 0.569 0.556 0.552 0.531 0.468	MERID M IN 0.527 0.554 0.598 0.599 0.599 0.599 0.598 0.582 0.584 0.582	OUT 0.393 0.422 0.437 0.425 0.415 0.406 0.399 0.433 0.431 0.446				PEAK SS MACH NC 1.617 1.591 1.546 1.540 1.535 1.530 1.524 1.488 1.308
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	MEAN 5.3 5.1 6.2 6.7 6.8 6.9 7.0	DENCE SS 2.6 2.2 2.1 1.9 1.9 1.8 1.8 1.7 1.4	DEV 3.9 4.0 4.9 5.5 6.0 6.9 7.1 10.8 14.5	D-FACT 0.610 0.581 0.563 0.595 0.608 0.621 0.627 0.624 0.606 0.619	0.734 0.780 0.860 0.856 0.850 0.841 0.831 0.843	LOSS C TOT 0.292 0.235 0.146 0.154 0.162 0.174 0.186 0.173 0.104 0.086	PROF 0.193 0.143 0.072 0.094 0.105 0.119 0.135 0.125 0.075 0.083	LOSS F TOT 0.064 0.053 0.032 0.034 0.036 0.038 0.040 0.038 0.022 0.018 0.017	PROF 0.042 0.032 0.016 0.021 0.023 0.026 0.029 0.027 0.016 0.017

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(e) Percent design speed, 100; reading number, 343

	(6)	rercen	it desig	n spec	, 100,	I cauli	ig numi	, Jei, Ja	:0	
RP 123345678910	RAD IN 24.562 2 24.016 2 21.753 2 20.290 2 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 55.1 51.4 49.1 50.9 51.7 52.6 53.1 52.7 50.5 52.7	RELL IN 67.9 66.2 62.7 60.7 60.3 60.0 59.2 56.6 59.2 54.0 53.4	BETAM OUT 54.9 52.8 48.8 45.9 44.8 44.3 43.7 36.0 20.1	TOTA IN 288.7 288.7 287.9 288.1 287.8 287.6 288.3 287.8 287.8	TEMP RAT10 1.304 1.284 1.243 1.229 1.229 1.229 1.225 1.225 1.222 1.197 1.196 1.203	TOTAL IN 9.99 10.11 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 2.003 1.987 1.925 1.859 1.855 1.859 1.822 1.785 1.822 1.785
RP 1 2 3 4 5 6 7 8 9 10	ABS 1N 168.2 178.4 189.7 191.8 192.1 192.1 191.5 192.2 187.6 173.9 169.0	VEL 0UT 249.3 249.0 242.9 241.0 242.4 241.1 240.1 241.1 240.3 258.0 272.4	REL IN 446.8 442.3 392.4 388.3 383.7 378.8 375.0 341.1 295.9 283.2	VEL 0UT 248.5 257.1 241.4 218.6 212.0 204.9 200.0 198.7 188.9 166.4 162.2	1N 168.2 178.4 189.7 191.8 192.4	D VEL 0UT 142.8 155.5 158.9 152.1 150.3 146.6 144.1 146.0 152.8 156.3 158.8	TAN IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	0 VEL 0UT 204.3 194.5 185.6 190.2 192.1 192.0 191.9 185.5 205.2 221.3	WHEEL 14.0 404.7 367.0 342.3 337.3 3326.9 321.9 284.9 239.4 227.2	SPEED 0UT 407.7 399.2 365.4 343.9 339.6 335.2 330.8 326.7 296.5 262.4 254.0
QP : 23 4 5 6 7 8 9 10 11	ABS M. 0.506 0.539 0.576 0.584 0.582 0.584 0.569 0.525 0.510	ACH NO OUT 0.669 0.667 0.668 0.667 0.669 0.666 0.669 0.674 0.773	REL M 1N 1.345 1.356 1.254 1.192 1.180 1.166 1.152 1.139 1.035 0.894	ACH NO OUT 0.667 0.664 0.605 0.587 0.555 0.551 0.530 0.460	MERID MI IN 0.506 0.539 0.583 0.584 0.584 0.582 0.584 0.569 0.525	ACH NO OUT 0.383 0.421 0.421 0.416 0.406 0.405 0.405 0.425 0.425				PEAK 55 MACH NO 1.635 1.639 1.563 1.555 1.555 1.547 1.538 1.501 1.319
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 45.00 50.00 52.50 70.00 95.00	1NC I MEAN 6.1 5.7 6.8 7.3 7.4 7.5 7.7 7.6 8.9 9.0	DENCE 55 3.4 2.8 2.7 2.6 2.5 2.5 2.5 2.5 1.8	DEV 4.4 2.9 5.3 5.3 5.9 6.8 11.8 13.2	D-FACT 0.615 0.580 0.565 0.594 0.607 0.621 0.626 0.624 0.593 0.598 0.600	EFF 0.722 0.763 0.848 0.845 0.844 0.833 0.829 0.844 0.912 0.912	LOSS C TOT 0.308 0.257 0.161 0.168 0.171 0.186 0.191 0.180 0.083 0.075	0EFF PROF 0.207 0.163 0.085 0.106 0.112 0.130 0.130 0.073 0.080 0.074	LOSS P TOT 0.067 0.057 0.036 0.037 0.038 0.041 0.042 0.039 0.017	PROF 0.045 0.036 0.019 0.023 0.025 0.028 0.030 0.028 0.016

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES FOR ROTOR 14

(f) Percent design speed, 90; reading number, 355

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 24.562 24 24.016 23 21.753 21 20.290 20 19.992 20 19.693 19 19.390 19 19.088 19 16.899 17 14.191 15 13.465 15	.193 .685 .653 .383 .129 .875 .621 .567 .589	ABS BETAM N OUT 1.0 36.9 1.0 35.1 1.0 41.1 1.0 41.1 1.0 41.1 1.0 41.2 1.0 44.3 1.0 44.3	IN 64.2 64.2 58.9 56.9 56.6 4 56.2 8 55.8 1 55.4 2 53.0 50.2	DETAM 0UT 53.7 53.0 49.0 45.7 45.9 45.7 45.3 44.0 34.8 16.8 10.4	TOTAL IN 289.0 288.7 288.1 287.9 288.0 288.2 287.8 287.9 287.9	TEMP RATIO 1.171 1.161 1.149 1.147 1.145 1.143 1.143 1.138 1.136 1.146 1.153	TOTAL IN 9.99 10.10 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 1.583 1.561 1.538 1.490 1.472 1.461 1.454 1.460 1.505 1.573 1.621
RP 1 2 3 4 5 6 7 8 9	180.0 2 190.0 2 199.7 2 200.9 2 200.4 2 200.4 2 200.3 2 199.4 2 193.2 2 179.5 2	0UT 17.6 414 16.2 410 16.5 386 16.4 367 13.0 363	294.1 6.1 266.5 7.8 235.7 5.7 230.5 9.8 226.5 6.1 222.5 1.0 221.5 1.1 206.9 9.3 183.0	MERI IN 180.0 190.0 199.7 200.9 200.4 200.4 200.3 199.4 193.2 179.5	D VEL OUT 174.1 176.9 174.7 164.5 160.5 158.1 159.3 170.0 175.2	TAN(1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	G VEL OUT 130.5 124.3 127.8 140.7 140.1 139.5 139.9 149.0 183.2 196.3	WHEEL IN 372.9 364.2 330.5 303.6 298.9 294.5 288.9 256.5 215.3 204.3	SPEED 0UT 367.3 359.2 329.0 309.5 305.6 505.6 298.0 298.1 267.0 236.1 228.4
R 254567891011	0.544 0 0.576 0 0.608 0 0.612 0 0.611 0 0.610 0 0.608 0 0.587 0	H NO RE OUT IN .612 1.2 .611 1.2 .616 1.1 .616 1.1 .600 1.0 .597 1.0 .650 0.5 .733 0.8	150 0.826 145 0.831 176 0.758 21 0.671 09 0.656 197 0.645 185 0.633 170 0.633 170 0.594 1848 0.529	MERID M. 1N 0.544 0.576 0.608 0.612 0.611 0.611 0.610 0.608 0.587 0.527	ACH NO OUT 0.490 0.500 0.497 0.468 0.457 0.450 0.455 0.458 0.506			MERID 8 7EL R 9 0.967 0.931 0.875 0.881 0.789 0.781 0.799 0.880 0.976 1.002	
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	2.5 -0 2.0 -1 3.0 -1 3.5 -1 3.6 -1 3.7 -1 3.8 -1 4.6 -1 5.1 -2	DEV 3.3 3.2 3.0 3.2 1.1 3.9 1.3 5.1 1.2 6.3 1.3 7.3 1.4 8.1 1.4 8.1 1.6 9.8 2.0 11.5 2.1 12.0	D-FACT 0.408 0.395 0.421 0.480 0.487 0.490 0.495 0.488 0.481 0.499 0.500	0.820 0.844 0.878 0.821 0.803 0.799 0.794 0.828 0.912 0.944	LOSS CO TOT 0.142 0.119 0.094 0.145 0.159 0.162 0.168 0.140 0.081 0.089 0.042	DEFF PROF 0.097 0.079 0.063 0.121 0.137 0.142 0.149 0.123 0.073 0.069	LOSS P TOT 0.032 0.026 0.021 0.032 0.035 0.035 0.036 0.030 0.018 0.015	ARAM PROF 0.022 0.017 0.014 0.027 0.030 0.030 0.032 0.026 0.016 0.015

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(g) Percen	t design	speed,	90;	reading	number,	356
------------	----------	--------	-----	---------	---------	-----

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.562 24.016 21.753 20.290 19.992 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 39.4 37.4 38.1 41.5 42.2 42.8 43.3 42.9 42.9 48.1 50.9	RELLIN 64.6 62.8 59.2 57.3 57.0 56.5 55.8 50.1	BETAM OUT 53.7 52.9 48.8 45.8 45.1 44.5 35.2 16.3 7.5	TOTA 1N 288.9 288.9 288.0 287.9 287.9 288.1 287.7 287.9 287.9	L TEMP RATIO 1.181 1.168 1.155 1.151 1.153 1.153 1.153 1.146 1.139 1.153 1.161	TOTAL 1N 9.98 10.11 10.15 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 1.618 1.599 1.575 1.527 1.524 1.509 1.501 1.510 1.527 1.597
RP 1 2 3 4 5 6 7 8 9 10 1!	ABS 1N 176.1 186.8 196.3 197.0 197.5 197.9 197.5 196.5 176.2	VEL 0UT 216.8 215.9 216.2 215.3 215.4 211.7 214.7 223.3 2251.9 266.6	RELL 1N 411.2 408.2 383.5 364.9 362.4 358.8 354.9 350.8 319.8 278.6 266.9	VEL 0UT 283.1 284.4 258.6 251.5 227.0 221.5 216.1 200.3 175.3 169.7	MERI 1N 176.1 186.8 196.3 197.0 197.5 197.5 196.9 190.5 176.2	D VEL OUT 167.4 171.5 170.2 161.3 159.7 156.7 156.9 163.6 168.3	TAN IN 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0	137.7 131.2 135.4 142.6 144.6 144.6 145.1 146.0 152.0 187.5 206.7	WHEEL IN 371.6 363.1 329.6 307.2 303.8 299.3 295.0 290.3 250.3 215.9 204.8	SPEED OUT 366.0 358.1 328.1 308.6 305.9 302.1 298.5 294.6 267.5 236.7 228.9
R: 25456789011	ABS M 1N 0.531 0.565 0.597 0.601 0.602 0.601 0.600 0.579 0.532 0.517	ACH NO OUT 7.6077 0.6077 0.615 0.615 0.612 0.605 0.601 0.610 0.725 0.769		ACH NO 0.792 0.800 0.733 0.657 0.645 0.618 0.615 0.574 0.505 0.490	MERID M/ IN 0.531 0.565 0.597 0.601 0.601 0.602 0.501 0.579 0.532	ACH NO OUT 0.468 0.483 0.483 0.458 0.458 0.458 0.444 0.438 0.447 0.469 0.485			MER:D FYEL R ? 0.950 0.918 0.867 0.819 0.792 0.781 0.785 0.955 0.983	
RP 1 2 3 4 5 6 7 8 9	PERCENI SPAN 5.00 10.00 30.00 45.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 2.9 2.3 3.3 3.9 4.1 4.1 4.2 5.0 5.6 5.8	DENCE SS 0.1 -0.7 -0.7 -0.8 -1.0 -0.9 -1.0 -1.2 -1.4 -1.5	DEV 3.3 3.1 3.8 5.2 5.8 6.7 7.5 10.2 11.0 9.2	D-FACT 0.437 0.421 0.443 0.489 0.506 0.512 0.509 0.502 0.527 0.536	0.816 0.854 0.891 0.848 0.844 0.816 0.821 0.857 0.923 0.938	LOSS C TOT 0.153 0.116 0.088 0.127 0.132 0.158 0.154 0.123 0.074 0.081	OEFF PROF 0.109 0.077 0.057 0.104 0.109 0.137 0.134 0.104 0.066 0.081	LOSS P. TOT 0.034 0.026 0.019 0.028 0.029 0.034 0.033 0.027 0.016 0.017	ARAM PROF 0.024 0.017 0.023 0.024 0.030 0.029 0.022 0.014 0.017 0.011

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(h) Percent design speed, 90; reading number, 357

							5 manno			22500
₽P	RAD IN	OUT	IN	BETAM OUT	IN	BETAM OUT	101A N	L TEMP RATIO	IN	PRESS RATIO
1	24.562		0.0	44.8	65.7	53.7	289.0	1.205	10.01	1.694
. 2	24.016		0.0	42.4	64.0	53.1	288.9	1.190	10.11	1.666
3	21.753		0.0	42.1	60.5	49.0	288.0 287.9	1.171	10.15	1.640
5	20.290		0.0	44.2 45.0	58.6 58.2	45.3 44.4	287.8	1.164	10.15	1.602
5 6 7	19.693		0.0	46.0	57.8	43.4	288.0	1.166	10.15	1.593
7	19.390		0.0	46.6	57.4	43.8	288.0	1.165	10.15	1.571
8	19.088		0.0	46.4	57.1	42.4	288.0	1.160	10.15	1.577
9 10	16.899 14.191		0.0	46.0 50.2	54.7 52.0	35.6 16.5	287.9 287.8	1.146 1.156	10.15 10.15	1.557 1.616
11	13.465		0.0	52.6	51.3	7.6	288.0	1.165	10.14	1.670
	ABS	VEL	REL	VEL	MER!	D VEL	TAN	G VEL	WHEEL	SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	169.1	220.2	410.2	264.0	169.1	156.1	0.1	155.3	373.8	368.2
2	178.0 187.4	217.1 216.3	406.1 380.5	267.1 244.8	178.0 187.4	160.4 160.6	0.0	146.4	365.1 331.2	360.0 329.7
3	188.2	217.9	361.1	222.2	188.2	156.4	0.1	151.8	308.3	309.7
5	188.5	218.9	357.9	216.8	188.5	154.9	0.1	154.7	304.3	306.4
5 6 7	188.4 188.5	219.4 215.5	353.6 350.0	209.9 205.0	188.4 188.5	152.4 148.0	0.1	157.8 156.7	299.3 295.0	302.1 298.5
8	188.0	217.6	346.0	203.4	188.0	150.1	0.0	157.5	293.3	294.7
9	181.9	219.5	314.5	187.7	181.9	152.6	0.0	157.8	256.6	26
10	168.3	247.0	273.6	165.0	168.3	158.2	0.0	189.6	215.7	236.5
11	164.1	261.3	262.3	160.2	164.1	158.8	0.0	207.4	204.6	228.7
	ADC M	YCH NV	RF: M	ארו אס	MEDIN M	יכח איט			WED IT	DE 14 CC
ęρ	ABS M	ACH NO OUT	REL M	ACH NO 1	MERID M	ACH NO OUT			MERID !	PEAK SS MACH NO
1	IN 0.509	0.610	[N 1.2 3 5	0UT 0.732	IN 0.509	0UT 0.433			VEL R :	MACH NO. 1,458
1	IN 0.509 0.537	0.610 0.605	IN 1.235 1.226	OUT 0.732 0.745	IN 0.509 0.537	OUT 0.433 0.447			VEL R : 0.923 0.901	MACH NO 1,458 1,434
1	IN 0.509 0.537 0.568	0.610 0.605 0.609	IN 1.235 1.226 1.154	OUT 0.732 0.745 0.689	IN 0.509 0.537 0.568	OUT 0.433 0.447 0.452			VEL R : 0.923 0.901 0.857	MACH NO 1.458 1.434 1.428
1	IN 0.509 0.537	0.610 0.605	IN 1.235 1.226	OUT 0.732 0.745	IN 0.509 0.537	OUT 0.433 0.447			VEL R : 0.923 0.901	MACH NO 1,458 1,434
1	1N 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.610 0.605 0.609 0.616 0.619 0.620	IN 1.235 1.226 1.154 1.096 1.086 1.073	OUT 0.732 0.745 0.689 0.628 0.613 0.593	IN 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.433 0.447 0.452 0.442 0.438 0.431			VEL R : 0.923	MACH NO 1.458 1.434 1.428 1.418 1.417
1 2 5 4 5 6 7	N 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.610 0.605 0.609 0.616 0.619 0.620 0.608	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579	IN 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418			VEL R 0.923 0.901 0.857 0.831 0.822 0.809 0.785	MACH NO 1.458 1.434 1.428 1.418 1.417 1.413
1254567-8	N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.570	0.610 0.605 0.609 0.616 0.619 0.620 0.608 0.616	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579	IN 0.509 0.537 0.568 0.571 0.572 0.572 0.572	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425			VEL R 10.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798	MACH NO 1.458 1.434 1.428 1.418 1.417 1.413 1.412
1 2 5 4 5 6 7	N 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.610 0.605 0.609 0.616 0.619 0.620 0.608	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050 0.952 0.825	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579	IN 0.509 0.537 0.568 0.571 0.572 0.572	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418			7EL R 0.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839	MACH NO 1.458 1.434 1.428 1.418 1.417 1.413
1254561-89	IN 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.570 0.551	0UT 0.610 0.605 0.609 0.616 0.619 0.620 0.608 0.616 0.626	[N 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050 0.952	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579 0.576	IN 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.570 0.551	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435			7EL R 10.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839	MACH NO 1.458 1.434 1.428 1.418 1.417 1.413 1.412 1.411 1.356
1254567-890	N 0.509 0.537 0.568 0.572 0.572 0.572 0.576 0.551 0.508	0UT 0.610 0.605 0.609 0.616 0.619 0.620 0.608 0.616 0.626 0.709	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050 0.952 0.825	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579 0.576 0.535	N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.551 0.508	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435 0.454			7EL R 0.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839	MACH NO 1.458 1.434 1.428 1.418 1.417 1.413 1.412 1.411 1.356 1.162
1 23 4 5 6 7 8 9 10 11	N 0.5097 0.5568 0.572 0.572 0.572 0.572 0.5751 0.508 0.494 PERCENT	OUT 0.610 0.609 0.616 0.619 0.620 0.608 0.616 0.626 0.709 0.751	IN 1.235 1.226 1.154 1.086 1.073 1.062 1.050 0.952 0.825 0.790	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579 0.576 0.535	N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.551 0.508	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435 0.456	LOSS C		VEL R: 0.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839 0.940 0.968	MACH NS 1,458 1,434 1,428 1,418 1,413 1,413 1,411 1,413 1,412 1,411 1,356 1,162 1,094
1 2 5 4 5 6 7 8 9 1 1 1 RP	N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.575 0.551 0.508 0.494 PERCENT SPAN	OUT 0.610 0.605 0.609 0.616 0.619 0.620 0.616 0.626 0.709 0.751	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.052 0.952 0.952 0.790	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.576 0.576 0.535 0.474 0.460	IN 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.551 0.551 0.508 0.494	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435 0.456	TOT	OEFF PROF 0.142	7EL R 1.923 0.901 0.851 0.822 0.809 0.785 0.798 0.839 0.968	MACH NC 1,458 1,438 1,438 1,417 1,413 1,417 1,413 1,411 1,356 1,162 1,094 ARAM PROF
1 25 4 5 6 7 8 9 10 1 1 RP 1	N 0.5097 0.5568 0.572 0.572 0.572 0.572 0.5751 0.508 0.494 PERCENT	OUT 0.610 0.609 0.616 0.619 0.620 0.608 0.616 0.626 0.709 0.751	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050 0.925 0.825 0.790	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.579 0.576 0.474 0.460 DEV	1N 0.509 0.537 0.568 0.572 0.572 0.572 0.575 0.551 0.508 0.494 D-FACT	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435 0.456	TOT 0.190 0.152	PROF 0.142 0.109	VEL R: 3.923 0.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839 0.940 0.968 LOSS P TOT 0.043 0.034	MACH NC 1,458 1,438 1,428 1,418 1,417 1,417 1,411 1,356 1,162 1,094 ARAM PROF 0,032 0,024
1 25 4 5 6 7 8 9 10 1 1 RP 1	N 509- 0.557- 0.557- 0.577- 0.577- 0.557- 0.508- 0.494- PERCENT 5.000- 10.000- 10.000-	OUT 0.610 0.609 0.616 0.619 0.626 0.616 0.626 0.709 0.751 INCI MEAN 3.9 3.5 4.6	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.060 0.952 0.825 0.790	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.576 0.576 0.535 0.474 0.460 DEV	1N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.551 0.551 0.494 D-FACT	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.425 0.454 0.456 EFF 0.793 0.889	TOT 0.190 0.152 0.098	PROF 0.142 0.109 0.064	VEL R 3.923 3.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839 0.940 0.968 LOSS P TOT 0.043 0.034 0.022	MACH NC 1,458 1,458 1,428 1,418 1,417 1,417 1,413 1,411 1,356 1,162 1,094 ARAM PROF 0,032 0,014
1234567-891011 RP1234	N 5097 0.5568 0.5572 0.5772 0.5770 0.508 0.494 PERCENT SPAN 5.000 10.000 42.50	OUT 0.610 0.605 0.609 0.616 0.619 0.620 0.626 0.709 0.751 INCI MEAN 3.9 3.5 4.6 5.2	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 0.952 0.952 0.790 DENCE 55 1.2 0.5 0.5	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.576 0.535 0.474 0.460 DEV 3.3 3.3 3.9 4.7	1N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.570 0.551 0.508 0.494 D-FACT 0.498 0.474 0.485 0.518	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.435 0.454 0.456 EFF 0.793 0.827 0.889 0.876	TOT 0.190 0.152 0.098 0.114	PROF 0.142 0.109 0.064 0.088	VEL R 3.923 3.901 1.0827 0.8831 0.822 0.809 0.798 0.940 0.968 LOSS P TOT 0.043 0.022 0.025	MACH NC 1,458 1,434 1,428 1,417 1,413 1,417 1,413 1,417 1,156 1,162 1,094 ARAM PROF 0,032 0,014 0,019
12354567-89011 P12345	N 509- 0.557- 0.557- 0.577- 0.577- 0.557- 0.508- 0.494- PERCENT 5.000- 10.000- 10.000-	OUT 0.610 0.609 0.616 0.619 0.626 0.616 0.626 0.709 0.751 INCI MEAN 3.9 3.5 4.6	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 1.050 0.952 0.825 0.790 DENCE 55 1.2 0.5 0.4 0.3	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.576 0.576 0.535 0.474 0.460 DEV	1N 0.509 0.537 0.568 0.571 0.572 0.572 0.572 0.551 0.551 0.494 D-FACT	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.425 0.454 0.456 EFF 0.793 0.889	TOT 0.190 0.152 0.098	PROF 0.142 0.109 0.064	VEL R 3.923 3.901 0.857 0.831 0.822 0.809 0.785 0.798 0.839 0.940 0.968 LOSS P TOT 0.043 0.034 0.022	MACH NC 1,458 1,458 1,428 1,418 1,417 1,417 1,413 1,411 1,356 1,162 1,094 ARAM PROF 0,032 0,014
1233456789011 P1234567	N 5097 0.5578 0.5572 0.5772 0.5771 0.558 0.494 PERCENT 50.000 45.500 45.500 45.500	OUT 0.610 0.605 0.609 0.616 0.619 0.626 0.709 0.751 INCI MEAN 3.9 3.5 4.6 5.3 5.4	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.060 0.952 0.825 0.790 DENCE SS 1.2 0.5 0.4 0.4 0.4	OUT 0.732 0.745 0.689 0.628 0.613 0.579 0.576 0.576 0.535 0.474 0.460 DEV 3.3 3.3 3.9 4.7 4.9 6.6	0.509 0.557 0.568 0.571 0.572 0.572 0.570 0.551 0.508 0.494 D-FACT 0.485 0.518 0.524 0.551	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.425 0.425 0.435 0.456 EFF 0.793 0.827 0.827 0.876 0.876 0.856	TOT 0.190 0.152 0.098 0.114 0.115 0.137 0.156	PROF 0.142 0.109 0.064 0.088 0.090 0.113 0.134	VEL R 3.923 3.901 1.0827 0.831 0.822 0.899 0.785 0.839 0.940 0.968 LOSS P TOT 0.043 0.022 0.025 0.026 0.034	MACH NC 1,458 1,458 1,428 1,4:8 1,4:7 1,4:7 1,4:2 1,4:1 1,356 1,162 1,094 ARAM PROF 0,032 0,014 0,019 0,025 0,029
12345678901 P12345678	N 5037 0.5578 0.5572 0.55770 0.5584 0.5578 0.5588 0.5984 PERPAN 50.00 10.00 47.50 52.50 52.50	OUT 0.610 0.605 0.609 0.616 0.619 0.626 0.709 0.751 INCI MEAN 3.9 3.5.4 5.4 5.6	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.060 0.952 0.825 0.790 DENCE 55 1.2 0.5 0.4 0.4 0.3 0.3	OUT 0.732 0.7489 0.628 0.613 0.593 0.576 0.576 0.535 0.474 0.460 DEV 3.3 3.3 3.3 4.7 4.9 5.66 6.5	0.509 0.557 0.568 0.571 0.572 0.572 0.572 0.551 0.551 0.494 0.494 0.474 0.485 0.518 0.529 0.549	0UT 0.433 0.447 0.452 0.442 0.438 0.431 0.418 0.425 0.454 0.456 EFF 0.793 0.876 0.876 0.876 0.876 0.837	TOT 0.190 0.152 0.098 0.114 0.115 0.137 0.156 0.124	PROF 0.142 0.109 0.064 0.088 0.090 0.113 0.134 0.103	VEL R 3.923 3.901 1.0827 0.831 0.822 0.809 0.785 0.795 0.940 0.968 LOSS P TOT 0.043 0.022 0.025 0.026 0.034 0.027	MACH NC 1,458 1,428 1,428 1,417 1,413 1,417 1,413 1,417 1,1356 1,162 1,094 ARAM PROF 0,032 0,014 0,019 0,020 0,025 0,025
1233456789011 P1234567	N 5097 0.5568 0.5572 0.5570 0.5588 0.5770 0.5588 0.5984 PERSPAN 10.000 47.500 52.000 52.000 70.000	OUT 0.610 0.605 0.609 0.616 0.619 0.626 0.709 0.751 INCI MEAN 3.9 3.5 5.4 5.2 5.3 6.3	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.062 0.952 0.952 0.790 DENCE SS 1.2 0.5 0.4 0.3 0.3 0.3	OUT 0.732 0.745 0.689 0.628 0.613 0.593 0.576 0.535 0.474 0.460 DEV 3.3 3.3 3.9 4.7 4.9 5.0 6.65 10.6	0.509 0.557 0.568 0.571 0.572 0.572 0.570 0.551 0.508 0.494 D-FACT 0.485 0.518 0.524 0.551	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.425 0.425 0.435 0.456 EFF 0.793 0.827 0.827 0.876 0.876 0.856	TOT 0.190 0.152 0.098 0.114 0.115 0.137 0.156	PROF 0.142 0.109 0.064 0.088 0.090 0.113 0.134	VEL R 3.923 3.901 1.0827 0.831 0.822 0.899 0.785 0.839 0.940 0.968 LOSS P TOT 0.043 0.022 0.025 0.026 0.034	MACH NC 1,458 1,458 1,428 1,4:8 1,4:7 1,4:7 1,4:2 1,4:1 1,356 1,162 1,094 ARAM PROF 0,032 0,014 0,019 0,025 0,029
12545678901 P125456789	N 5037 0.5578 0.5572 0.55770 0.5584 0.5578 0.5588 0.5984 PERPAN 50.00 10.00 47.50 52.50 52.50	OUT 0.610 0.605 0.609 0.616 0.619 0.626 0.709 0.751 INCI MEAN 3.9 3.5.4 5.4 5.6	IN 1.235 1.226 1.154 1.096 1.086 1.073 1.060 0.952 0.825 0.790 DENCE 55 1.2 0.5 0.4 0.4 0.3 0.3	OUT 0.732 0.7489 0.628 0.613 0.593 0.576 0.576 0.535 0.474 0.460 DEV 3.3 3.3 3.3 4.7 4.9 5.66 6.5	0.509 0.539 0.558 0.571 0.572 0.572 0.572 0.551 0.558 0.494 D-FACT 0.498 0.474 0.485 0.518 0.529 0.544 0.553	OUT 0.433 0.447 0.452 0.442 0.438 0.431 0.425 0.435 0.454 0.456 EFF 0.793 0.856 0.876 0.876 0.876 0.876	TOT 0.190 0.152 0.098 0.114 0.115 0.137 0.156 0.124 0.080	PROF 0.142 0.109 0.064 0.088 0.090 0.113 0.134 0.103 0.072	VEL R 3.923 3.991 10.822 0.889 0.798 0.940 0.968 LOSS P TOT 0.043 0.022 0.025 0.026 0.030 0.031 0.027 0.017	MACH NC 1,458 1,438 1,418 1,417 1,413 1,417 1,413 1,162 1,094 ARAM PROF 0,032 0,024 0,019 0,020 0,025 0,025 0,0216

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES FOR ROTOR 14

(i) Percent design speed, 90; reading number, 358

	(i) Ferc	em ues	ign spe	eu, 50	, I caui	115 11um	DC1, 0	-	
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 24.562 24.016 21.753 20.290 19.992 19.693 19.390 19.088 16.899 14.191 13.465	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 50.2 47.2 45.8 46.8 47.8 49.0 49.4 49.1 48.6 52.0 54.2	IN	BETAM OUT 54.5 53.1 49.1 45.0 43.8 43.0 43.4 42.6 56.5 17.2	TOTA IN 289.2 289.1 289.0 287.7 287.9 287.7 288.2 287.7 287.9 287.7	TEMP RAT10 1.224 1.207 1.181 1.175 1.175 1.175 1.175 1.168 1.152 1.159 1.169	TOTAL IN 10.10 10.15 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 1.730 1.724 1.676 1.651 1.640 1.615 1.582 1.694
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 156.7 165.7 174.8 176.0 176.8 177.0 176.4 172.1 160.2	VEL 0UT 220.5 220.3 216.4 219.2 221.1 217.4 216.8 216.1 241.4 259.0	REL IN 404.7 401.6 374.2 354.8 351.8 347.2 344.3 339.6 309.5 2257.6	VEL 0UT 243.3 249.2 230.4 211.6 205.7 198.2 194.5 192.7 177.9 155.9	MERI IN 156.7 165.7 174.8 176.0 176.8 177.0 176.4 172.1 160.2	D VEL 0UT 141.2 149.7 150.8 149.7 148.4 145.1 141.4 141.8 143.0 148.7	TAN IN 0.1 0.0 0.0 0.1 0.1 0.0 0.3 0.1 0.0	0 VEL 00T 169.4 161.6 155.2 160.1 163.9 166.8 165.2 164.0 162.0 190.1	WHEEL 18 373.2 365.9 330.9 308.1 304.2 295.3 295.3 295.3 216.4 205.1	SPEED OUT 367.6 360.9 329.3 309.5 306.2 301.9 298.8 294.5 267.8 237.2 229.3
RP : 233 4 5 67: 8 9 10 11	ABS M IN 3.470 3.498 0.528 0.532 0.533 0.535 0.533 0.535 0.548 0.469	ACH NO OUT 0.606 0.610 0.607 0.617 0.622 0.611 0.612 0.614 0.690 0.742	REL M 1.213 1.207 1.130 1.073 1.063 1.050 1.040 1.027 0.934 0.810 0.774	OUT 0.669 0.646 0.596 0.579 0.558 0.547 0.544 0.505 0.448	MERID M. 1N 0.470 0.498 0.528 0.532 0.534 0.535 0.535 0.535 0.5469	ACH NO OUT 0.388 0.414 0.423 0.421 0.418 0.408 0.397 0.400 0.406 0.425 0.434			MER:D 975 0.903 0.903 0.863 0.85: 0.840 0.799 0.804 0.831 0.928	PE4K SS MACH NO 1,493 1,473 1,461 1,459 1,457 1,457 1,457 1,113
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INCI MEAN 5.5 5.2 6.9 7.0 7.1 7.2 8.3 8.4	DENCE SS 2.7 2.2 2.1 2.0 2.0 1.9 1.9 1.6 1.3	DEV 4.0 3.2 4.0 4.4 4.3 4.6 6.2 11.5 12.3 8.9	D-FACT 0.556 0.527 0.524 0.561 0.561 0.577 0.581 0.577 0.585 0.585	EFF 0.757 0.815 0.879 0.879 0.878 0.861 0.843 0.843 0.921 0.921	LOSS C TOT 0.242 0.177 0.115 0.120 0.122 0.143 0.162 0.130 0.086 0.085	0EFF PROF 0.190 0.129 0.078 0.094 0.117 0.137 0.106 0.077 0.085 0.059	LOSS P TOT 0.053 0.039 0.027 0.028 0.032 0.036 0.029 0.018 0.018	ARAM PROF 0.042 0.029 0.017 0.021 0.020 0.030 0.030 0.016 0.018

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(j) Percent design speed, 90; reading number, 359

	(1)		-	5 ~F~~						
	RAD	11	ABS IN 0.0	BETAM	REL	BETAM		L TEMP		PRESS
RP.	IN	OUT	IN	OUT	IN	OUT	IN	RATIO	IN	RATIO
1	24.562	24.193	0.0	56.9	68.9	55.5	289.4	1.249	10.02	1.759
2	24.016	23.685	0.0	51.5	67.3	53.7	289.4	1.223	10.10	1.737
3	21.753	21.653	0.0	48.0	63.7	49.2	288.0	1.191	10.15	1.697
4	20.290	20.383	0.0	48.8	61.9	45.0	287.8	1.182	10.15	1.676
5	19.992	20.129	0.0	49.8	61.5	44.1	288.0	1.182	10.15	1.671
5 6 7	19.693	19.875	0.0	51.0	61.1	43.2	287.9	1.184	10.15	1.662
	19.390	19.621	0.0	51.5	60.7	43.7	287.6	1.180	10.15	1.638
8 9	19.088	17:06/	0.0	51.1 50.6	60.4 57.9	42.9 36.8	287.9 287.7		10.15	1.634 1.597
10	16.899 14.191	15 557	0.0	53.3	55.2	17.6		1.162	10.15	1.646
11	13.465	15.000	0.0	55.2	54.4			1.171	10.15	
• • •	13.403	13.0-3	٧.٠	JJ.2	J		201.0			
		VEL	REL	VEL	MERI			G VEL		SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	[N	OUT
1	144.3	225.4	400.8	217.8	144.3	123.2	0.0	188.8	374.0	368.4
2	153.2	221.1	396.3	232.6	153.2	137.6	0.1	173.0	365.5	360.5
3	163.9	217.2	369.7	222.6	163.9	145.4	0.1	161.4	331.5	329.9
4	165.1	219.8	350.2	205.0	165.1	144.9	0.0	165.3	308.9	310.3
5 6 7	165.6 165.5	220.7	346.7 342.4	198.3	165.6	142.4	0.0		304.7	306.8
7	165.5	221.2 216.9	338.3	190.8 186.8	165.5 165.5	139.1 135.1	0.1	172.0 169.6	299.8 295.2	302.6 298.7
8	165.3	216.8	334.4	185.5	165.3	136.0	0.0		290.7	295.0
ğ	161.7	215.0	304.0	170.3	161.7	136.4	0.1		257.5	
10	150.4	239.4	263.5	150.1	150.4	143.1		191.9	216.4	
11	146.7	255.8	252.2	147.1	146.7	145.8	0.0	210.1	205.2	229.3
	ADC M	ac⊩ NΩ	RFI M	ארו אח	MEDIN M	ארו אה			WEDIE I	DE12 00
D D		ACH NO			MERID MA				MERID !	PEAK SS
RP 1	IN	OUT	IN	OUT	IN	OUT			YEL R !	MACH NO
1	IN 2.431	0.613	IN 1.197	0UT 0.593	IN 0.431	0UT 0.335			VEL R 1	1.536
1	IN 2.431 0.459	0.613 0.608	IN	0.593 0.639	IN 0.431 0.459	0UT 0.335 0.378			VEL R 1 0.854 0.898	1.536 1.511
1	IN 2.431	0.613	IN 1.197 1.186	0UT 0.593	IN 0.431	0UT 0.335			VEL R 1 0.854 0.898 0.887	1.536 1.511 1.507
1	IN 0.451 0.459 0.493	0.613 0.608 0.606	IN 1,197 1,186 1,113	0.593 0.639 0.621	IN 0.431 0.459 0.493	0.335 0.378 0.406			VEL R 1 0.854 0.898	MACH NO 1.536 1.511 1.507 1.506
1	IN 0.451 0.459 0.493 0.497	0.613 0.608 0.606 0.617	IN 1.197 1.186 1.113 1.055 1.044 1.031	0.593 0.639 0.621 0.575 0.556 0.535	IN 0.431 0.459 0.493 0.497 0.499 0.499	0.17 0.335 0.378 0.406 0.407 0.399 0.390			VEL R 1 0.854 0.898 0.887 0.878	1.536 1.511 1.507
1 23 4 5 67	IN 0.451 0.459 0.493 0.497 0.499	OUT 0.613 0.608 0.606 0.617 0.619 0.620 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020	0.593 0.639 0.621 0.575 0.556 0.535	IN 0.431 0.459 0.493 0.497 0.499 0.499	0.335 0.378 0.406 0.407 0.399 0.390 0.379			VEL R 9 0.854 0.898 0.887 0.878 0.860 0.840 0.817	MACH NO 1.536 1.511 1.507 1.506 1.505
1 23 4 5 67 8	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.499	0.613 0.608 0.606 0.617 0.619 0.620 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007	0.593 0.639 0.621 0.575 0.556 0.535 0.524	N 0.431 0.459 0.493 0.497 0.499 0.499 0.498	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379			VEL R 1 0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823	MACH NO 1.536 1.51: 1.507 1.506 1.505 1.506 1.508
1 23 4 5 6 7 8 9	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.498 0.487	0.01 0.613 0.608 0.606 0.617 0.619 0.620 0.609 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915	0.07 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386			0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823	1.536 1.51: 1.507 1.505 1.505 1.506 1.508 1.403
1 2 3 4 5 6 7 8 9 10	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0.01 0.613 0.608 0.606 0.617 0.619 0.620 0.609 0.609 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915 0.791	0UT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482 0.428	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386 0.408			0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823 0.844 0.951	1.536 1.51: 1.507 1.506 1.505 1.506 1.508 1.403 1.199
1 23 4 5 6 7 8 9	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.498 0.487	0.01 0.613 0.608 0.606 0.617 0.619 0.620 0.609 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915	0.07 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386			0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823	1.536 1.51: 1.507 1.505 1.505 1.506 1.508 1.403
1 2 3 4 5 6 7 8 9 10	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0.01 0.613 0.608 0.606 0.617 0.619 0.620 0.609 0.609 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915 0.791	0UT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482 0.428	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386 0.408			0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823 0.844 0.951	1.536 1.51: 1.507 1.506 1.505 1.506 1.508 1.403 1.199
1 2 3 4 5 6 7 8 9 10	IN 0.451 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0.013 0.613 0.608 0.617 0.619 0.620 0.609 0.609 0.609 0.609	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,020 1,007 0,915 0,756	0UT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482 0.428	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386 0.408	LOSS C	OEFF	0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823 0.844 0.951	1.536 1.511 1.507 1.506 1.505 1.506 1.508 1.403 1.199
1 2 3 4 5 6 7 8 9 10	IN 3.431 0.459 0.493 0.497 0.499 0.499 0.499 0.487 0.451 0.440	0.013 0.613 0.608 0.617 0.619 0.620 0.609 0.609 0.609 0.609	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915 0.791	0UT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482 0.428	IN 0.431 0.459 0.493 0.499 0.499 0.498 0.487 0.451 0.440	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386 0.408	TOT	0EFF PR0F	0.854 0.898 0.887 0.860 0.840 0.817 0.823 0.844 0.951	1.536 1.511 1.507 1.506 1.505 1.506 1.508 1.403 1.199
1 23 4 5 6 7 8 9 10 11	IN 0.431 0.459 0.497 0.499 0.499 0.499 0.487 0.451 0.440 PERCENT	OUT 0.613 0.608 0.606 0.617 0.619 0.620 0.609 0.609 0.609 0.683 0.731	IN 1.197 1.186 1.113 1.054 1.031 1.020 1.007 0.915 0.791 0.756	0UT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.482 0.428	IN 0.431 0.459 0.493 0.499 0.499 0.498 0.487 0.451 0.440	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.386 0.408		0EFF	0.854 0.858 0.878 0.860 0.840 0.817 0.823 0.951 0.994	MACH NO 1.536 1.51: 1.507 1.506 1.505 1.505 1.506 1.508 1.403 1.199 1.130
1 23 4 5 6 7 8 9 10 11 RP 1 2	IN 0.451 0.459 0.497 0.499 0.499 0.498 0.487 0.440 PERCENT SPAN 5.00 10.00	OUT 0.613 0.608 0.606 0.617 0.620 0.620 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915 0.756 DENCE SS 4.4 3.8	OUT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.422 0.428 0.421	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.485 0.440 D-FACT 0.633 0.573	0UT 0.335 0.378 0.407 0.407 0.399 0.390 0.379 0.382 0.408 0.417 EFF 0.704 0.767	TOT 0.321 0.238	0EFF PR0F 0.263 0.187	VEL R 1 0.854 0.898 0.887 0.878 0.860 0.840 0.817 0.823 0.844 0.951 0.994 LUSS P TOT 0.069 0.052	MACH NO 1.536 1.517 1.507 1.505 1.505 1.508 1.403 1.199 1.130 PARAM PROF 0.056 0.041
1 23 4 5 6 7 8 9 10 11 RP 1 2	1N 3.431 0.459 0.497 0.499 0.499 0.499 0.487 0.451 0.440 PERCENT SPAN 5.00 30.00	OUT 0.613 0.606 0.607 0.619 0.629 0.609 0.609 0.609 0.683 0.731 INCI MEAN 7.11 6.8	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,027 0,915 0,791 0,756 DENCE SS 4,4 3,8 3,7	OUT 0.593 0.631 0.575 0.556 0.535 0.524 0.428 0.421 DEV 5.1 3.9	IN 0.431 0.459 0.493 0.499 0.499 0.498 0.487 0.451 0.440 D-FACT 0.633 0.573 0.545	0UT 0.335 0.378 0.406 0.407 0.399 0.379 0.382 0.386 0.408 0.417 EFF 0.704 0.767 0.856	TOT 0.321 0.238 0.145	0EFF PR0F 0.263 0.187 0.103	VEL R 1 0.854 0.898 0.887 0.860 0.840 0.951 0.994 LUSS F TOT 0.052 0.052	MACH NO 1,536 1,517 1,507 1,505 1,505 1,505 1,506 1,508 1,403 1,199 1,130 PROF 0,056 0,041 0,023
1:234567:8991011 RP1234	IN 3.431 0.459 0.499 0.499 0.499 0.481 0.440 PERCENT SPAN 5.00 10.00 42.50	OUT 0.613 0.606 0.606 0.617 0.619 0.620 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 7.8 8.5	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,020 1,007 0,915 0,791 0,756 DENCE SS 4,4 3,8 3,7	OUT 0.593 0.631 0.575 0.556 0.535 0.524 0.428 0.428 0.421 DEV 5.1 3.9 4.1	IN 0.431 0.459 0.493 0.499 0.499 0.495 0.451 0.440 D-FACT 0.633 0.5545 0.564	0UT 0.335 0.376 0.407 0.399 0.390 0.379 0.386 0.408 0.417 EFF 0.704 0.767 0.856 0.875	TOT 0.321 0.238 0.145 0.130	0EFF PR0F 0.263 0.187 0.103 0.096	VEL R 1 0.854 0.887 0.878 0.860 0.840 0.841 0.951 0.994 LUSS P TOT 0.069 0.052 0.032 0.029	MACH NO 1.536 1.51:7 1.506 1.505 1.505 1.505 1.505 1.403 1.199 1.130 ARAM PROF 0.056 0.021
1:234567:8991011 RP1234	IN 311 0.459 0.499 0.499 0.499 0.498 0.451 0.440 PERCENT SPAN 5.00 10.00 42.50 45.00	OUT 0.613 0.606 0.606 0.617 0.619 0.620 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 7.8 8.5	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.791 0.756 DENCE SS 4.4 3.8 3.7 3.7	OUT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.428 0.421 DEV 5.1 3.9 4.1 4.4	IN 0.431 0.459 0.499 0.499 0.499 0.495 0.451 0.440 D-FACT 0.633 0.575 0.545 0.566 0.580	0UT 0.335 0.378 0.406 0.407 0.399 0.390 0.379 0.382 0.408 0.417 EFF 0.704 0.764 0.765 0.856 0.856	TOT 0.321 0.238 0.145 0.130 0.141	0EFF PR0F 0.263 0.187 0.103 0.096 0.108	VEL R 1 0.854 0.887 0.878 0.860 0.840 0.817 0.823 0.994 LUSS F TOT 0.069 0.052 0.031	MACH NO 1.536 1.511 1.505 1.505 1.505 1.505 1.508 1.403 1.130 PROF 0.056 0.041 0.024
1:234567:8991011 RP1234	IN 311 0.4593 0.499 0.499 0.499 0.498 0.451 0.440 PERCENT SPAN 5.00 10.00 42.50 47.50	OUT 0.613 0.606 0.606 0.617 0.619 0.620 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 7.8 8.5 8.5	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.020 1.007 0.915 0.756 DENCE SS 4.4 3.8 3.7 3.7 3.7	OUT 0.593 0.639 0.621 0.575 0.556 0.535 0.524 0.522 0.428 0.421 DEV 5.1 3.9 4.1 4.4 4.6 4.8	N 0.431 0.499 0.499 0.499 0.499 0.495 0.451 0.440 D-FACT 0.633 0.573 0.545 0.564 0.598	0UT 0.335 0.378 0.407 0.399 0.390 0.379 0.386 0.408 0.417 EFF 0.704 0.767 0.856 0.858 0.849	TOT 0.321 0.238 0.145 0.130 0.141 0.164	0EFF PR0F 0.263 0.187 0.103 0.096 0.108	VEL R 1 0.854	MACH NO 1.536 1.517 1.506 1.505 1.505 1.508 1.403 1.199 1.403 1.199 1.0056 0.041 0.023 0.024 0.030
1.2334567.89011 RP1234567	IN 3.431 0.459 0.499 0.499 0.499 0.499 0.481 0.440 PERCENT SPAN 50.00 45.50 45.50 45.50 50.00	OUT 0.613 0.606 0.607 0.619 0.629 0.609 0.609 0.683 0.731 INCI MEAN 7.18 8.5 8.6 8.7	IN 1.197 1.186 1.113 1.055 1.044 1.031 1.007 0.915 0.791 0.756 DENCE SS 4.4 3.7 3.7 3.7 3.6	OUT 0.593 0.621 0.575 0.556 0.535 0.524 0.428 0.421 DEV 5.1 3.9 4.1 4.6 4.6 6.5	IN 0.431 0.459 0.499 0.499 0.499 0.498 0.487 0.451 0.440 D-FACT 0.633 0.573 0.545 0.564 0.580 0.580 0.600	0UT 0.335 0.378 0.406 0.407 0.399 0.379 0.382 0.386 0.408 0.417 EFF 0.704 0.767 0.856 0.875 0.849 0.842	TOT 0.321 0.238 0.145 0.130 0.141 0.164 0.171	0EFF PR0F 0.263 0.187 0.103 0.096 0.103 0.140	VEL R 1 0.854 0.894 0.887 0.878 0.860 0.844 0.951 0.994 CUSS P TOT 0.062 0.032 0.029 0.031 0.037 0.037	MACH NO 1.536 1.517 1.506 1.505 1.505 1.508 1.403 1.199 1.130 PARAM PROF 0.056 0.023 0.021 0.023 0.031
1.2334567.89011 RP12345678	IN 311 0.451 0.499 0.499 0.499 0.481 0.440 PERCENT SPAN 5.000 10.00 45.50 45.50 52.50	OUT 0.613 0.606 0.606 0.617 0.619 0.629 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 8.5 8.6 8.7 8.9	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,027 0,915 0,791 0,756 DENCE SS 4,4 3,8 3,7 3,7 3,7 3,6 3,6	OUT 0.593 0.621 0.575 0.556 0.535 0.524 0.428 0.421 DEV 5.1 3.9 4.6 4.6 4.6 4.6 5.9	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451 0.440 D-FACT 0.633 0.573 0.564 0.580 0.598 0.597	0UT 0.335 0.378 0.406 0.407 0.399 0.379 0.382 0.386 0.408 0.417 EFF 0.704 0.856 0.875 0.868 0.842 0.860	TOT 0.321 0.238 0.145 0.130 0.141 0.164 0.171	0EFF PR0F 0.263 0.187 0.103 0.096 0.108 0.130 0.140	VEL R 1 0.854 0.854 0.854 0.860 0.840 0.844 0.951 0.994 0.052 0.032 0.032 0.037 0.037 0.033	MACH NO 1,536 1,517 1,507 1,505 1,505 1,505 1,505 1,506 1,403 1,199 1,130 PROF 0,056 0,021 0,021 0,021 0,031 0,027
1233456789011 R123456789	IN 311 0.4593 0.499 0.499 0.499 0.499 0.450 0.450 0.450 0.500 42.500 52.500 52.500	OUT 0.613 0.606 0.607 0.619 0.629 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 8.5 8.7 8.7	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,020 1,007 0,915 0,791 0,756 DENCE SS 4,4 3,8 3,7 3,7 3,6 3,6 3,6 3,6	OUT 0.593 0.639 0.621 0.575 0.556 0.535 0.522 0.428 0.421 DEV 5.1 3.9 4.1 4.6 4.8 6.5 911.8	IN 0.431 0.459 0.499 0.499 0.499 0.495 0.451 0.440 D-FACT 0.633 0.574 0.580 0.598 0.600 0.597 0.588	0UT 0.335 0.376 0.407 0.399 0.390 0.379 0.386 0.408 0.417 EFF 0.704 0.767 0.856 0.849 0.849 0.849 0.849	TOT 0.321 0.238 0.145 0.130 0.141 0.164 0.171 0.151	OEFF PROF 0.263 0.187 0.103 0.096 0.108 0.133 0.140 0.122	VEL R 1 0.854 0.897 0.878 0.860 0.840 0.951 0.994 LUSS F TOT 0.069 0.032 0.032 0.037 0.037 0.037 0.033	MACH NO 1.536 1.51:7 1.505 1.505 1.505 1.505 1.505 1.403 1.199 1.130 ARAM PROF 0.056 0.021 0.024 0.030 0.030 0.027 0.020
1.2334567.89011 RP12345678	IN 311 0.451 0.499 0.499 0.499 0.481 0.440 PERCENT SPAN 5.000 10.00 45.50 45.50 52.50	OUT 0.613 0.606 0.607 0.619 0.629 0.609 0.609 0.683 0.731 INCI MEAN 7.1 6.8 8.5 8.7 8.7	IN 1,197 1,186 1,113 1,055 1,044 1,031 1,027 0,915 0,791 0,756 DENCE SS 4,4 3,8 3,7 3,7 3,7 3,6 3,6	OUT 0.593 0.621 0.575 0.556 0.535 0.524 0.428 0.421 DEV 5.1 3.9 4.6 4.6 4.6 4.6 5.9	IN 0.431 0.459 0.493 0.497 0.499 0.499 0.498 0.487 0.451 0.440 D-FACT 0.633 0.573 0.564 0.580 0.598 0.597	0UT 0.335 0.378 0.407 0.407 0.399 0.390 0.379 0.382 0.408 0.417 EFF 0.704 0.767 0.856 0.849 0.842 0.842 0.945	TOT 0.321 0.238 0.145 0.130 0.141 0.164 0.171 0.151	0EFF PR0F 0.263 0.187 0.103 0.108 0.133 0.140 0.122 0.093	VEL R 1 0.854 0.897 0.878 0.860 0.840 0.951 0.994 LUSS F TOT 0.069 0.052 0.032 0.037 0.037 0.037 0.037	MACH NO 1.536 1.51:7 1.505 1.505 1.505 1.505 1.505 1.403 1.199 1.130 ARAM PROF 0.056 0.021 0.024 0.030 0.030 0.027 0.020

FOR ROTOR 14

(k) Percent design speed, 80; reading number, 364

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.562 24.193 24.016 23.685 21.753 21.653 20.290 20.383 19.992 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589 14.191 15.557 13.465 15.049	ABS BETAI IN OUT 0.0 55 0.0 49 0.0 48 0.0 50 0.0 51 0.0 53 0.0 53 0.0 53	IN 70.4 .8 68.9 .2 65.8 .8 64.1 .5 63.7 .5 63.4 .0 63.1 .1 62.7 .7 60.2 .7 57.3	ETAM TOTA OUT IN 55.2 290.5 53.9 289.5 51.2 287.8 47.0 287.7 46.7 287.2 46.8 287.8 46.0 287.7 44.9 287.5 35.5 287.6 17.3 287.6 8.6 287.6	RATIO 1.187 1.168 1.143 1.139 1.137 1.137 1.137 1.136 1.123 1.126	TOTAL IN 10.06 10.12 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.533 1.516 1.471 1.461 1.454 1.436 1.436 1.436 1.446 1.483
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN 0UT 118.0 199.2 125.0 193.9 131.6 185.5 132.7 188.6 132.9 187.6 133.1 185.3 132.8 186.3 132.9 186.7 130.4 193.7 122.8 214.7	REL VEL IN OUT 351.5 196. 347.1 212. 321.3 197. 303.4 173. 297.0 168. 293.5 161. 289.5 158. 262.4 153. 227.5 139. 217.3 136.	9 118.0 1 1 125.0 1 0 131.6 1 4 132.7 1 9 132.9 1 4 132.8 1 1 132.9 1 9 130.4 1 2 122.8 1	VEL TAI OUT IN 112.3 0.0 125.1 0.0 125.5 0.0 121.7 0.0 119.3 0.0 115.4 0.0 112.1 0.0 112.1 0.0 125.3 0.0 125.3 0.0 134.6 0.0	147.7 168.6	WHEELL IN 531.1 323.9 293.3 269.4 265.5 261.7 257.2 227.7 191.5	SPEED OUT 326.2 319.4 291.8 274.6 271.3 268.0 264.0 267.1 209.9 202.7
R 1 23 4 5 6 7 8 9 11 11	ABS MACH NO 1N 0UT 0.350 0.551 0.371 0.541 0.393 0.524 0.396 0.532 0.397 0.532 0.397 0.528 0.397 0.528 0.397 0.530 0.389 0.554 0.366 0.617 0.357 0.653	REL MACH NI 0UT 1.041 0.54 1.032 0.59 0.959 0.55 0.907 0.50 0.898 0.49 0.887 0.47 0.877 0.45 0.865 0.44 0.784 0.44 0.678 0.40	IN 5 0.350 0 2 0.371 0 5 0.393 0 6 0.396 0 3 0.397 0 8 0.397 0 8 0.397 0 0 0.389 0 0 0.386 0	H NO OUT 1.311 1.349 1.349 1.345 1.338 1.327 1.318 1.318 1.358 1.358		MER ID F VEL R 7 0.952 1.001 0.938 0.917 0.898 0.867 0.844 0.843 -0.961 1.083 1.124	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 8.4 30.00 9.9 42.50 10.7 45.00 10.8 47.50 10.9 50.00 11.2 70.00 11.8 90.00 12.2 95.00 12.2	5.9 4. 5.5 4. 5.9 6. 5.9 7. 5.9 8. 5.9 8. 5.9 9. 5.1 12.	7 0.615 0 0.545 0 1 0.532 0 4 0.563 0 1 0.572 0 4 0.583 0 0.604 0 0.609 0 5 0.566 0	EFF LOSS (107 0.311 0.259 0.314 0.177 0.822 0.180 0.203 0.803 0.203 0.204 0.902 0.114 0.902 0.114 0.905 0.079	COEFF PROF 0.282 0.213 0.158 0.170 0.173 0.196 0.204 0.209 0.114 0.085 0.079	LOSS POTOT 0.067 0.052 0.037 0.039 0.044 0.045 0.025 0.018 0.016	PROF 0.061 0.046 0.033 0.037 0.037 0.041 0.043 0.044 0.025 0.018

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(1) Percent design speed, 70; reading number, 366

RP 1 2 3 4 5 6 7 8 9 10 11	RAD11 IN OUT 24.562 24.193 24.016 23.685 21.753 21.653 20.290 20.383 19.992 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589	ABS BETAM IN OUT 0.0 27.5 0.0 26.8 0.0 27.7 0.0 30.8 0.0 31.9 0.0 33.5 0.0 34.7 0.0 34.6 0.0 35.6 0.0 42.0 0.0 44.3	REL BETAM 1N OUT 64.4 53.9 62.7 53.2 59.3 50.2 57.4 46.7 57.0 45.5 56.6 44.3 56.3 43.6 56.0 42.5 53.5 34.5 50.5 16.7 49.6 11.0	TOTAL TEMP IN RATIO 288.5 1.081 288.4 1.077 288.1 1.072 288.1 1.073 288.0 1.074 288.1 1.077 287.8 1.077 287.8 1.077 288.1 1.077 288.1 1.076 288.0 1.085 288.0 1.090	TOTAL PRESS IN RATIO 10.05 1.263 10.12 1.257 10.14 1.251 10.14 1.241 10.14 1.244 10.14 1.244 10.14 1.239 10.14 1.266 10.14 1.318 10.14 1.334
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N 0UT 138.9 169.7 146.3 169.9 152.7 167.8 153.1 170.5 152.7 171.5 152.5 171.1 151.9 172.5 147.7 182.0 138.1 205.9 135.0 211.6	REL VEL 1N OUT 320.9 255.8 318.8 253.2 299.3 232.0 283.9 211.4 281.1 206.4 277.7 199.7 274.9 194.4 271.3 192.7 248.1 179.7 217.1 159.7 208.1 154.3	MERID VEL IN OUT 138.9 150.6 146.3 150.6 152.7 148.6 153.1 144.8 153.1 144.7 152.7 145.0 152.5 140.7 151.9 142.0 147.7 148.1 138.1 153.0 151.5	TANG VEL IN OUT 0.0 78.3 0.0 76.0 0.0 78.0 0.0 86.3 0.0 90.2 0.0 94.7 0.0 97.9 0.0 105.8 0.0 137.8	WHEEL SPEED IN OUT 289.3 285.0 283.2 279.3 257.4 256.3 239.2 240.3 235.8 237.5 231.9 234.1 228.8 231.5 167.5 183.6 158.4 177.1
R 1-254567-89011	ABS MACH NO IN OUT 0.415 0.491 0.438 0.492 0.458 0.487 0.459 0.490 0.459 0.495 0.458 0.498 0.458 0.498 0.456 0.501 0.443 0.530 0.413 0.602 0.403 0.618	REL MACH NO IN OUT 0.959 0.740 0.954 0.734 0.898 0.674 0.852 0.614 0.844 0.600 0.833 0.579 0.825 0.564 0.814 0.560 0.743 0.523 0.649 0.467 0.622 0.451	MERID MACH NO IN OUT 0.415 0.435 0.436 0.439 0.458 0.459 0.421 0.459 0.458 0.415 0.458 0.408 0.456 0.412 0.443 0.431 0.413 0.443		MERIC PEAK SS VEL R MACH NO 1.084 1.202 1.037 1.178 0.973 1.167 0.946 1.134 0.945 1.128 0.937 1.118 0.935 1.103 1.003 1.027 1.108 0.879 1.122 0.824
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 2.6 10.00 2.2 30.00 3.4 42.50 4.0 45.00 4.1 47.50 4.2 50.00 4.3 52.50 4.4 70.00 5.1 90.00 5.2	SS -0.1 3.4 -0.8 5.1 -0.8 6.1 -0.8 6.9 -0.8 6.4 -0.9 6.6 -1.2 9.5 -1.7 11.4 -2.0 12.6	D-FACT EFF 0.294 0.849 0.294 0.872 0.312 0.917 0.352 0.873 0.366 0.835 0.401 0.811 0.398 0.835 0.401 0.915 0.411 0.963 0.416 0.954	LOSS COEFF TOT PROF 0.087 0.085 0.071 0.070 0.048 0.048 0.079 0.079 0.084 0.084 0.112 0.112 0.132 0.132 0.116 0.116 0.070 0.070 0.042 0.042 0.060 0.060	LOSS PARAM TOT PROF 0.019 0.019 0.016 0.016 0.010 0.010 0.017 0.017 0.018 0.018 0.025 0.025 0.029 0.029 0.025 0.025 0.015 0.015 0.010 0.010

FOR ROTOR 14

(m) Percent design speed, 70; reading number, 367

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.562 24.193 24.016 23.685 21.753 21.653 20.290 20.383 19.992 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589 14.191 15.557 13.465 15.049	ABS BETAM IN OUT 0.0 31.9 0.0 30.9 0.0 32.2 0.0 34.6 0.0 37.0 0.0 38.4 0.0 37.8 0.0 38.3 0.0 46.6	63.7 53.3 60.4 49.9 58.6 46.4 58.3 45.1 57.9 43.7 57.6 54.8 57.2 42.6 54.8 33.8 51.8 16.6	TOTAL TEMP IN RATIO 288.4 1.093 288.3 1.088 288.1 1.081 287.8 1.081 288.1 1.085 288.1 1.085 288.2 1.083 288.0 1.082 288.0 1.082 287.9 1.093	TOTAL PRESS IN RATIO 10.06 1.301 10.13 1.292 10.14 1.283 10.14 1.274 10.14 1.270 10.14 1.270 10.14 1.273 10.14 1.293 10.14 1.351
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 132.2 167.8 139.9 167.7 145.7 166.0 145.6 167.4 145.1 169.5 145.2 171.3 144.7 169.2 144.7 170.4 140.3 180.6 131.0 200.3 127.3 208.8	REL VEL IN OUT 317.7 242.2 315.6 240.7 294.8 217.9 279.6 199.8 276.3 194.9 273.4 189.2 269.8 182.3 267.3 182.9 243.3 170.5 212.0 149.6 203.1 145.6	MERID VEL IN OUT 132.2 142.4 139.9 143.9 145.7 140.4 145.6 137.8 145.1 137.7 145.2 136.8 144.7 132.5 144.7 134.7 140.3 141.7 131.0 143.4 127.3 143.4	TANG VEL IN OUT 0.0 88.7 0.0 86.2 0.0 88.5 0.0 95.1 0.0 98.8 0.0 103.1 0.0 105.2 0.0 104.3 0.0 112.0 0.0 139.9 0.0 151.8	WHEEL SPEED IN OUT 288.9 284.6 282.9 279.0 256.3 255.2 238.7 239.8 235.2 236.8 227.7 230.4 224.8 228.1 198.8 206.9 166.7 182.8 158.3 177.0
R - 254561-89011	ABS MACH NO IN OUT 0.394 0.482 0.418 0.483 0.436 0.484 0.435 0.491 0.435 0.495 0.433 0.495 0.433 0.493 0.420 0.524 0.391 0.583 0.380 0.609	REL MACH NO IN OUT 0.948 0.696 0.943 0.693 0.883 0.630 0.837 0.578 0.828 0.564 0.819 0.547 0.808 0.527 0.800 0.529 0.728 0.495 0.633 0.436 0.606 0.424	MERID MACH NO IN OUT 0.394 0.409 0.418 0.415 0.436 0.399 0.435 0.399 0.435 0.395 0.433 0.383 0.433 0.383 0.433 0.383 0.433 0.433 0.383 0.433 0.383 0.433 0.383 0.433 0.433 0.411 0.391 0.417 0.380 0.418		MERIC PEAK SS /EL R MACH NO 1.077 1.228 1.029 1.201 0.964 1.181 0.949 1.145 0.949 1.145 0.942 1.36 0.916 1.125 0.931 1.120 1.009 1.039 1.094 0.887 1.127 0.838
RP 1 23 4 5 6 7 8 9 0 1 1 1	PERCENT INCE SPAN MEAN 5.00 3.6 10.00 3.2 30.00 4.5 42.50 5.2 45.00 5.4 47.50 5.5 50.00 5.6 52.50 5.7 70.00 6.4 90.00 6.7 95.00 6.9	DENCE SS 0.9 3.5 0.2 3.4 0.4 4.8 0.5 5.8 0.5 5.5 0.5 6.2 0.4 6.6 0.2 8.9 -0.4 11.4 -0.4 11.6	D-FACT EFF 0.342 0.834 0.338 0.862 0.362 0.917 0.393 0.889 0.406 0.894 0.424 0.864 0.443 0.831 0.433 0.863 0.423 0.931 0.447 0.949 0.449 0.963	LOSS COEFF TOT PROF 0.109 0.108 0.088 0.087 0.054 0.054 0.078 0.078 0.077 0.077 0.104 0.104 0.131 0.131 0.106 0.106 0.063 0.063 0.063 0.063 0.052 0.052	LOSS PARAM TOT PROF 0.024 0.024 0.019 0.019 0.012 0.017 0.017 0.017 0.023 0.023 0.023 0.023 0.024 0.014 0.013 0.013 0.011 0.011

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(n) Percent design speed, 70; reading number, 368

	•			-		DETAM	-		TAT::	20555
RP	RAD IN	OUT	IN	BETAM OUT	IN	BETAM OUT	IN	L TEMP RATIO	IN	PRESS RATIO
1 2	24.562 . 24.016	24.193	0.0	38.7 36.7	67.0 65.6	54.4 53.1	288.4 288.4	1.108	10.06	1.334
3	21.753	21.653	0.0	37.8	62.4	50.1	288.1	1.092	10.13	1.316
4 5	20.290		0.0	40.0 40.7	60.7 60.3	46.2 45.0	288.1 287.9	1.090	10.25	1.310
6	19.693		0.0	41.8	60.0	43.8	288.2	1.092	10.13	1.311
7	19.390 19.088		0.0	43.4 42.8	59:7 59.4	44.0 43.5	287.9 288.1	1.092	10.13	1.297
8 9	16.899		0.0	42.6	57.0	34.5	288.0	1.087	10.13	1.310
10	14.191		0.0	47.4	54.1	16.7 9.4	288.0	1.091	10.13	1.339 1.362
,,	13.465	15,049	0.0	49.4	53.4	9.4	288.0	1.097	10.15	1.362
	ABS	VEL	REL	VEL	MER!	D VEL	TAN	G VEL	WHEEL	SPEED
RP 1	IN 122.6	໌0∪T 165.8	!N 313.5	0UT 222.2	IN 122.6	0UT 129.4	IN 0.0	0UT 103.7	IN 288.6	0UT 284.3
	128.3	167.3	310.2	223.3	128.3	134.1	0.0	100.0	282.4	278.5
2 3 4	133.9 134.0	163.3 166.2	288.6 273.4	201.2	133.9 134.0	129.0 127.3	0.0	100.2	255.7 238.4	254.5 239.5
5	133.4	167.2	269.4	179.2	133.4	126.8	0.0	109.0	234.1	235.7
6 7	133.7 133.1	168.8 165.7	267.0 263.6	174.5 167.3	133.7 133.1	125.9 120.3	0.0	112.4	231.1 227.5	233.3 230.2
8	132.6	165.3	260.6	167.3	132.6	121.3	0.0	112.4	224.3	227.6
9 10	128.8 120.5	174.7 194.4	236.7 205.6	156.1 137.4	128.8 120.5	128.6 131.6	0.0	118.2	198.5 166.6	206.7
11	117.8	204.2	197.4	134.6	117.8	132.8	0.0	155.1	158.4	177.1
	.DC W	NGU NO	חרי א	ACU NO	WED 15 14					
ЯÞ	!N	ACH NO OUT	REL M IN	ACH NO OUT	MERID MA	ACH NO			MERID :	22 >439 MACH NO
1	1N 0.365	0UT 0.473	IN 0.933	0UT 0.634	IN 0.365	0UT 0.369			VEL R	MACH NO 1.260
1	!N	OUT	IN	OUT	IN	TUO			VEL R 1.055 1.045	1.260 1.260
1	IN 0.365 0.382 0.400 0.400	OUT 0.473 0.479 0.469 0.478	IN 0.933 0.924 0.862 0.816	0.634 0.639 0.578 0.529	IN 0.365 0.382 0.400 0.400	0.369 0.384 0.371 0.366			VEL R 1.055 1.045 0.963 0.950	MACH NO 1.260 1.240 1.212 1.180
1	IN 0.365 0.382 0.400	OUT 0.473 0.479 0.469	IN 0.933 0.924 0.862	0.634 0.639 0.578	IN 0.365 0.382 0.400 0.400 0.398	0.369 0.384 0.371			VEL R 1.055 1.045 0.963	MACH NO 1.261 1.241 1.212 1.180 1.168
1 23 4 5 6 1	IN 0.365 0.382 0.400 0.400 0.398 0.399 0.398	OUT 0.473 0.479 0.469 0.478 0.481 0.486 0.477	IN 0.933 0.924 0.862 0.816 0.805 0.797 0.787	0.634 0.639 0.578 0.529 0.516 0.502 0.481	IN 0.365 0.382 0.400 0.400 0.398 0.399 0.398	0UT 0.369 0.384 0.371 0.366 0.365 0.362 0.346			VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903	MACH NS 1,265 1,245 1,212 1,168 1,161 1,153
1 23 4 5 61 8	IN 0.365 0.382 0.400 0.400 0.398 0.399	OUT 0.473 0.479 0.469 0.478 0.481 0.486	IN 0.933 0.924 0.862 0.816 0.805 0.797	0UT 0.634 0.639 0.578 0.529 0.516 0.502	IN 0.365 0.382 0.400 0.400 0.398 0.399	0.369 0.384 0.371 0.366 0.365 0.362			VEL R 1.055 1.045 0.963 0.950 0.950	MACH NO 1.261 1.240 1.212 1.180 1.168 1.161
1 2 5 4 5 6 7 8 9 10	1N 0.365 0.382 0.400 0.400 0.398 0.399 0.396 0.384 0.359	0UT 0.473 0.479 0.469 0.478 0.481 0.486 0.477 0.476 0.505 0.564	1N 0.933 0.924 0.862 0.816 0.805 0.797 0.787 0.778 0.706	0UT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451 0.399	IN 0.365 0.382 0.400 0.400 0.398 0.399 0.398 0.396 0.384	0UT 0.369 0.384 0.371 0.366 0.365 0.362 0.346 0.349 0.372 0.382			VEL R 1.355 1.345 0.963 0.950 0.950 0.942 0.903 0.915 0.998 1.092	MACH NO 1.260 1.240 1.212 1.168 1.161 1.153 1.147 1.062 0.906
1 25 4 5 61 8 9	N 0.365 0.382 0.400 0.400 0.398 0.399 0.398 0.396 0.384	0UT 0.473 0.479 0.469 0.478 0.481 0.486 0.477 0.476 0.505	IN 0.933 0.924 0.862 0.816 0.805 0.797 0.787 0.778	0UT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451	IN 0.365 0.382 0.400 0.400 0.398 0.399 0.398 0.396 0.384	0.369 0.384 0.371 0.366 0.365 0.365 0.362 0.346 0.349			VEL R 1.355 1.345 0.963 0.950 0.950 0.942 0.903 0.915	MACH NO 1.260 1.240 1.212 1.160 1.161 1.153 1.147 1.062
1 2 5 4 5 6 7 8 9 10	1N 0.365 0.382 0.400 0.400 0.398 0.399 0.396 0.384 0.359	0.473 0.479 0.469 0.478 0.476 0.477 0.476 0.505 0.564 0.593	1N 0.933 0.924 0.862 0.816 0.805 0.797 0.787 0.778 0.706	0UT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451 0.399	IN 0.365 0.382 0.400 0.400 0.398 0.399 0.398 0.396 0.384	0.369 0.384 0.376 0.365 0.365 0.362 0.346 0.349 0.372 0.382	LOSS C		VEL R: 1.055 1.045 0.950 0.950 0.950 0.952 0.915 1.092 1.12	MACH NO 1.260 1.240 1.212 1.180 1.168 1.168 1.167 1.062 0.856
1 2 3 4 5 6 7 8 9 10 11 RP	1N 0.365 0.382 0.400 0.398 0.399 0.398 0.396 0.359 0.351 PERCENT SPAN	OUT 0.473 0.479 0.469 0.478 0.481 0.486 0.477 0.505 0.505 0.504 0.593	1N 0.933 0.924 0.862 0.816 0.805 0.797 0.778 0.776 0.706 0.612 0.587	OUT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451 0.399 0.391	IN 0.365 0.382 0.400 0.398 0.399 0.396 0.396 0.356	0.369 0.389 0.371 0.366 0.365 0.362 0.346 0.349 0.372 0.382	TOT	PR0F	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 0.915 1.092 1.127	MACH NO 1,263 1,243 1,212 1,180 1,168 1,161 1,162 0,906 0,856
235 44 55 677 8 9 10 11 RP 1	N 0.365 0.382 0.400 0.398 0.399 0.398 0.359 0.351	OUT 0.473 0.479 0.469 0.478 0.481 0.486 0.477 0.476 0.564 0.593 INCI MEAN 5.2 5.1	1N 0.933 0.924 0.862 0.816 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5	0UT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451 0.399 0.391	1N 0.365 0.382 0.400 0.398 0.399 0.398 0.396 0.384 0.359	0.369 0.384 0.376 0.365 0.365 0.362 0.346 0.349 0.372 0.382			VEL R: 1.055 1.045 0.950 0.950 0.950 0.952 0.915 1.092 1.12	MACH NO 1.261 1.241 1.212 1.168 1.168 1.161 1.157 1.062 0.906 0.856
235 44 55 677 8 9 10 11 RP 1	N 365 0.382 0.400 0.398 0.398 0.398 0.399 0.359 0.3551 PERCENT SPAN 5.00 10.00	OUT 0.473 0.479 0.469 0.478 0.481 0.476 0.505 0.564 0.593 INCL MEAN 5.2 5.1 6.5	1N 0.933 0.924 0.862 0.816 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5 2.1	0UT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.491 0.399 0.391 0.502	IN 0.365 0.365 0.400 0.400 0.398 0.399 0.396 0.384 0.359 0.351 D-FACT	0UT 0.369 0.381 0.366 0.365 0.362 0.349 0.372 0.382 0.385 EFF 0.796 0.848 0.889	TOT 0.156 0.113 0.084	PROF 0.154 0.111 0.083	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 0.915 0.998 1.092 1.127 0.034 0.035 0.018	MACH NC 1,261 1,242 1,180 1,168 1,161 1,1547 1,062 0,906 0,856 PROF 0,034 0,034 0,018
1:2354567:890111 P1234	1N 0.365 0.382 0.400 0.398 0.399 0.398 0.359 0.351 PERCENT SPAN 5.00	OUT 0.473 0.479 0.469 0.478 0.481 0.486 0.476 0.505 0.564 0.593 UNCI MEAN 5.2 5.1 6.5 7.4	1N 0.933 0.924 0.866 0.816 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5 2.1 2.4 2.5	OUT 0.634 0.639 0.578 0.516 0.502 0.481 0.482 0.481 0.399 0.391 DEV	IN 0.365 0.382 0.400 0.398 0.399 0.396 0.396 0.351 D-FACT 0.415 0.420 0.452 0.461	0.369 0.384 0.371 0.365 0.365 0.362 0.346 0.349 0.372 0.382 0.385	TOT 0.156 0.113 0.084 0.092 0.094	PROF 0.154 0.111 0.083 0.092 0.094	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 0.918 1.092 1.127 LOSS F TOT 0.034 0.025 0.018 0.020	MACH NC 1,261 1,242 1,212 1,168 1,163 1,167 1,062 0,906 0,856 PARAM PROF 0,034 0,025
1:2354567:890111 P1234	N. 365 0.382 0.400 0.398 0.399 0.398 0.359 0.351 PERCENT SPAN 5.00 10.00 42.50 47.50	OUT 0.473 0.479 0.469 0.478 0.476 0.505 0.505 0.564 0.593 INCI MEAN 5.1 6.5 7.3 7.4	1N 0.933 0.924 0.866 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5 2.1 2.4 2.5 2.5	OUT 0.634 0.639 0.578 0.529 0.516 0.502 0.481 0.482 0.451 0.399 0.391 DEV 3.9 5.0 5.5 5.5	IN 0.365 0.382 0.400 0.398 0.399 0.398 0.359 0.351 D-FACT 0.415 0.398 0.420 0.456 0.466	0.369 0.384 0.371 0.366 0.365 0.362 0.346 0.349 0.382 0.385 EFF 0.796 0.848 0.889 0.887 0.873	TOT 0.156 0.113 0.084 0.092 0.094 0.109	PROF 0.154 0.111 0.083 0.092 0.094 0.109	VEL R 1.055 1.045 1.963 0.950 0.950 0.903 0.915 0.998 1.092 1.127 LOSS F TOT 0.034 0.025 0.018 0.020 0.021	MACH NC 1,261 1,212 1,212 1,168 1,163 1,167 1,062 0,906 0,856 PARAM PROF 0,034 0,025 0,018 0,021 0,024
23345678901 P12345678	N. 365 0.382 0.400 0.398 0.398 0.399 0.359 0.3551 PERCENT SPAN 5.00 10.00 45.00 47.50 47.50 52.50	OUT 0.473 0.479 0.469 0.478 0.476 0.505 0.505 0.564 0.593 INCL MEAN 5.2 5.1 7.4 7.5 7.7	1N 0.933 0.924 0.862 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5 2.5 2.5 2.5 2.5 2.5	0UT 0.634 0.637 0.578 0.529 0.516 0.502 0.481 0.451 0.399 0.391 0.50 5.6 5.5 5.6 6.8 7.6	IN 0.365 0.365 0.400 0.400 0.398 0.399 0.384 0.359 0.351 D-FACT 0.415 0.420 0.452 0.461 0.47 0.487	0.369 0.369 0.371 0.366 0.365 0.362 0.349 0.372 0.382 0.385 EFF 0.796 0.887 0.887 0.887 0.887	TOT 0.156 0.113 0.084 0.092 0.094 0.109 0.142 0.125	PROF 0.154 0.111 0.083 0.092 0.094 0.109 0.142 0.125	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 0.998 1.092 1.127 LOSS F TOT 0.034 0.025 0.018 0.020 0.021 0.024 0.021 0.024	MACH NC 1,261 1,242 1,242 1,168 1,161 1,153 1,1062 0,906 0,856 PARAM PROF 0,034 0,021 0,021 0,021 0,021 0,027
· 25456789011 P125456789	N. 365 0.382 0.400 0.398 0.399 0.399 0.359 0.3551 PERCENT 5.00 10.00 47.50 52.50 70.00	OUT 0.473 0.473 0.469 0.478 0.486 0.477 0.505 0.505 0.564 0.593 INCI MEAN 5.2 5.1 7.3 7.4 7.5 7.7 8.6	1N 0.933 0.924 0.862 0.805 0.797 0.778 0.776 0.612 0.587 DENCE SS 2.5 2.5 2.5 2.5 2.5 2.5	0.634 0.6378 0.529 0.516 0.502 0.481 0.4851 0.399 0.391 0.502 0.451 0.502 0.502 0.451 0.502 0.503 0.50	IN 0.365 0.382 0.400 0.398 0.399 0.398 0.359 0.351 0-FACT 0.415 0.420 0.452 0.461 0.476 0.476	0.369 0.369 0.371 0.366 0.365 0.362 0.349 0.372 0.382 0.385 EFF 0.796 0.887 0.887 0.887 0.887	TOT 0.156 0.113 0.084 0.092 0.094 0.109 0.142 0.125 0.075	PROF 0.154 0.111 0.083 0.092 0.094 0.109 0.142 0.125 0.075	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 1.092 1.127 LOSS F TOT 0.034 0.025 0.016 0.024 0.031 0.027 0.016	MACH NC 1.26: 1.24:2 1.180: 1.168: 1.16: 1.153: 1.062: 0.856: 0.026: 0.021: 0.024: 0.021: 0.027: 0.016:
23345678901 P12345678	N. 365 0.382 0.400 0.398 0.398 0.399 0.359 0.3551 PERCENT SPAN 5.00 10.00 45.00 47.50 47.50 52.50	OUT 0.473 0.479 0.469 0.478 0.476 0.505 0.505 0.564 0.593 INCL MEAN 5.2 5.1 7.4 7.5 7.7	1N 0.933 0.924 0.862 0.805 0.797 0.778 0.706 0.612 0.587 DENCE SS 2.5 2.5 2.5 2.5 2.5 2.5	0UT 0.634 0.637 0.578 0.529 0.516 0.502 0.481 0.451 0.399 0.391 0.50 5.6 5.5 5.6 6.8 7.6	IN 0.365 0.365 0.400 0.400 0.398 0.399 0.384 0.359 0.351 D-FACT 0.415 0.420 0.452 0.461 0.47 0.487	0.369 0.369 0.371 0.366 0.365 0.362 0.349 0.372 0.382 0.385 EFF 0.796 0.887 0.887 0.887 0.887	TOT 0.156 0.113 0.084 0.092 0.094 0.109 0.142 0.125	PROF 0.154 0.111 0.083 0.092 0.094 0.109 0.142 0.125 0.075 0.066	VEL R 1.055 1.045 0.963 0.950 0.950 0.942 0.903 0.998 1.092 1.127 LOSS F TOT 0.034 0.025 0.018 0.020 0.021 0.024 0.021 0.024	MACH NO 1,263 1,243 1,180 1,168 1,161 1,162 0,906 0,856 PROF 0,034 0,025 0,021 0,024 0,031 0,024 0,031 0,016 0,014

FOR ROTOR 14

(o) Percent design speed, 70; reading number, 369

				•	, ,			•		
	RAD			BETAM		BETAM		L TEMP		PRESS
RP	IN	TUO	IN	OUT	IN	OUT	IN.	RATIO	IN	RATIO
1	24.562		0.0	43.1	68.5	55.0	288.4	1.116	10.05	1.350
2	24.016		0.0	40.6	67.0	53.2	288.3	1.110	10.11	1.353
3 4	21.753 20.290		0.0	41.9 43.6	64.0 62.3	50.6 46.1	288.1 288.1	1.098	10.23	1.329
5	19.992		0.0	44.4	62.0	45.2	288.1	1.097	10.12	1.326
6	19.693		0.0	45.5	61.6	44.4	287.9	1.097	10.12	1.321
7	19.390		0.0	46.9	61.4	44.4	287.9	1.097	10.12	1.310
8	19.088		0.0	46.6	61.0	43.2	288.2	1.096	10.11	1.311
ğ	16.899		0.0	45.0	58.6	35.4	288.1	1.088	10.12	1.316
10	14.191	15.557	0.0	49.3	55.8	16.7	288.0	1.093	10.12	1.345
11	13.465	15.049	0.0	51.2	55.0	9.1	288.0	1.097	10.11	1.366
	ARS	VEL	RFI	VEL	MERI	D VEL	TAN	IG VEL	MHEET	SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	113.5	164.4	309.8	209.5	113.5	120.1	0.0	112.3	288.3	283.9
	120.0	166.9	306.4	211.6	120.0	126.7	0.0	108.6	282.0	278.1
2 3 4	124.8	161.7	284.4	189.6	124.8	120.4	0.0	108.0	255.6	254.5
4	125.2	166.4	269.6	173.8	125.2	120.5	0.0	114.8	238.9	240.0
5 6	124.9	166.8	266.3	169.2	124.9	119.2	0.0	116.7	235.2	236.8
6	124.7	166.7	262.6	163.4	124.7	116.8	0.0	118.9	231.1	233.2
7 8	124.1	164.6	259.2	157.3	124.1	112.5	0.0	120.3	227.6	230.3
9	124.0 121.1	165.5 171.0	255.9 232.8	156.2	124.0	113.8	0.0	120.2	223.9	227.2
10	113.4	191.7	201.7	148.3 130.5	121.1 113.4	120.9 125.0	0.0	121.0	198.8 166.8	206.9
11	110.9	201.1	193.2	127.6	110.9	126.0	0.0	156.7	158.2	176.8
						.20.0	0.0	. 50	.50.2	
	IDC W	ACH NO	DE: M	ACH NO	MEDIA M	ACH NO			W ED (0.	DE 14 60
₽₽		ACH NO			MERID M				MERID !	PEAK SS
RP	iN	OUT	IN	OUT	IN	OUT			VEL R	OV HOAM
1									VEL 9 1	1.292
1	IN 0.337	0UT 0.467	IN 0.920	0.595	IN 0.337	0UT 0.341			VEL 4 1 1.058 1.056	1.292 1.268
1	IN 0.357 0.357 0.372 0.373	0.467 0.476 0.463 0.477	IN 0.920 0.912 0.847 0.803	0UT 0.595 0.603 0.543 0.499	IN 0.337 0.357 0.372 0.373	0.341 0.361 0.345 0.346			YEL 9 1 1.058 1.056 0.965 0.963	1.292 1.268 1.240 1.207
1	IN 0.357 0.357 0.372 0.373 0.372	0.467 0.476 0.463 0.477 0.479	IN 0.920 0.912 0.847 0.803 0.793	0UT 0.595 0.603 0.543 0.499 0.486	IN 0.337 0.357 0.372 0.373 0.372	OUT 0.341 0.361 0.345 0.346 0.342			VEL 9 1 1.058 1.056 0.965 0.963 0.955	1.292 1.268 1.240 1.207 1.198
1	IN 0.357 0.357 0.372 0.373 0.372	0.467 0.476 0.463 0.477 0.479 0.478	IN 0.920 0.912 0.847 0.803 0.793 0.783	0UT 0.595 0.603 0.543 0.499 0.486 0.469	IN 0.337 0.357 0.372 0.373 0.372 0.372	0.341 0.361 0.345 0.346 0.342 0.335			VEL 9 1 1.058 1.056 0.965 0.963 0.955 0.937	1.292 1.268 1.240 1.207 1.198 1.186
254561	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370	0.467 0.476 0.463 0.477 0.479 0.478 0.472	IN 0.920 0.912 0.847 0.803 0.793 0.783 0.772	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451	IN 0.337 0.357 0.372 0.373 0.372 0.372	0UT 0.341 0.361 0.345 0.346 0.342 0.335			VEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906	1.292 1.268 1.243 1.207 1.198 1.186 1.177
254561-8	1N 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.369	0.467 0.476 0.463 0.477 0.479 0.478 0.472	IN 0.920 0.912 0.847 0.803 0.793 0.783 0.772	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451	1N 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369	0.341 0.341 0.361 0.345 0.346 0.342 0.335 0.323			VEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906 0.918	1.292 1.268 1.243 1.207 1.198 1.186 1.177
254567-89	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361	0UT 0.467 0.476 0.463 0.477 0.479 0.478 0.472 0.475 0.494	IN 0.920 0.912 0.847 0.803 0.793 0.783 0.772 0.762 0.693	0UT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.428	1N 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361	0.017 0.341 0.361 0.345 0.346 0.342 0.335 0.323 0.327 0.349			YEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906 0.918	1.292 1.268 1.243 1.207 1.198 1.186 1.177 1.165 1.080
254561-890	IN 0.337 0.357 0.372 0.372 0.372 0.372 0.370 0.369 0.361 0.337	0UT 0.467 0.476 0.463 0.477 0.479 0.478 0.472 0.475 0.494 0.556	IN 0.920 0.912 0.847 0.803 0.793 0.783 0.772 0.762 0.693 0.600	0UT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.428 0.378	1N 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361 0.337	OUT 0.341 0.361 0.345 0.346 0.342 0.335 0.323 0.327 0.349 0.362			YEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906 0.918 0.998	1.292 1.268 1.240 1.207 1.198 1.186 1.177 1.165 1.080 0.921
254567-89	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361	0UT 0.467 0.476 0.463 0.477 0.479 0.478 0.472 0.475 0.494	IN 0.920 0.912 0.847 0.803 0.793 0.783 0.772 0.762 0.693	0UT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.428	1N 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361	0.007 0.341 0.361 0.345 0.345 0.346 0.342 0.335 0.323 0.327 0.349			YEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906 0.918	1.292 1.268 1.243 1.207 1.198 1.186 1.177 1.165 1.080
254561-890	IN 0.357 0.357 0.372 0.372 0.372 0.370 0.369 0.361 0.337	0.476 0.463 0.463 0.477 0.479 0.478 0.472 0.475 0.494 0.556	IN 0.920 0.912 0.847 0.793 0.793 0.772 0.762 0.693 0.574	0UT 0.595 0.603 0.543 0.449 0.469 0.469 0.451 0.448 0.428 0.378	1N 0.337 0.357 0.372 0.372 0.372 0.370 0.369 0.361 0.337 0.329	0UT 0.341 0.361 0.345 0.346 0.342 0.335 0.327 0.327 0.349 0.362			YEL 9: 1.058 1.056 0.965 0.965 0.955 0.937 0.906 0.918 0.998 1.102	1.292 1.268 1.240 1.207 1.207 1.186 1.177 1.165 1.080 0.921 0.868
· 2354567-89011	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.369 0.361 0.337 0.329	0UT 0.467 0.466 0.463 0.477 0.479 0.478 0.472 0.475 0.494 0.556 0.583	1N 0.920 0.912 0.847 0.803 0.793 0.772 0.762 0.693 0.600 0.574	0UT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.428 0.378	1N 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361 0.337	0UT 0.341 0.361 0.345 0.346 0.342 0.335 0.327 0.327 0.349 0.365	LOSS C		VEL 9: 1.058 1.056 0.963 0.965 0.965 0.937 0.906 0.918 0.998 1.102 1.137	MACH NS 1.292 1.268 1.240 1.293 1.198 1.186 1.177 1.165 1.080 0.921 0.868
12334567:8910111 RP	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361 0.337 0.329 PERCENT SPAN	0.467 0.467 0.463 0.477 0.479 0.478 0.472 0.474 0.556 0.583	0.920 0.912 0.847 0.803 0.793 0.783 0.772 0.762 0.693 0.600 0.574	OUT 0.595 0.695 0.543 0.499 0.486 0.469 0.451 0.4428 0.378 0.370	IN 0.337 0.357 0.372 0.372 0.372 0.372 0.361 0.361 0.329	0.341 0.341 0.345 0.346 0.342 0.335 0.323 0.323 0.323 0.362	TOT	PROF	VEL 9: 1.058 1.058 0.965 0.965 0.963 0.955 0.937 0.906 0.918 0.918 1.102 1.137	MACH NG 1,292 1,269 1,207 1,207 1,198 1,186 1,177 1,165 0,921 0,868 ARAM PROF
2354567.89111 RP 1	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.369 0.361 0.337 0.329 PERCENT SPAN 5.00	0.467 0.467 0.463 0.477 0.479 0.478 0.472 0.478 0.494 0.556 0.583	0.920 0.912 0.847 0.803 0.793 0.783 0.772 0.762 0.693 0.574	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.4428 0.378 0.370	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.361 0.337 0.329	00T 0.341 0.345 0.346 0.342 0.335 0.323 0.323 0.323 0.362 0.365	TOT 0.189	PROF 0.186	VEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.906 0.918 0.998 1.102 1.137 LOSS P TOT 0.041	MACH NG 1,292 1,268 1,207 1,207 1,198 1,166 1,177 1,165 0,921 0,868 ARAM PROF 0,040
2354567.89111 RP 1	IN 0.337 0.357 0.372 0.373 0.372 0.370 0.369 0.361 0.337 0.329 PERCENT SPAN 5.00 10.00	0.467 0.467 0.463 0.477 0.479 0.478 0.472 0.475 0.556 0.583 INCL MEAN 6.7	0.920 0.912 0.843 0.793 0.783 0.772 0.762 0.693 0.574 DENCE SS 4.0 3.5	OUT 0.595 0.603 0.549 0.486 0.469 0.451 0.448 0.378 0.370 DEV	1N 0.357 0.357 0.372 0.372 0.372 0.372 0.370 0.361 0.337 0.329 D-FACT 0.460 0.439	0.341 0.341 0.345 0.346 0.342 0.335 0.323 0.323 0.362 0.365 EFF	TOT 0.189 0.143	PROF 0.186 0.141	VEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.918 0.998 1.102 1.137 LOSS P TOT 0.041 0.032	MACH NO 1.292 1.262 1.263 1.207 1.198 1.186 1.165 1.080 0.921 0.868 ARAM PROF 0.040 0.031
2354567.89111 RP 1	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.369 0.361 0.337 0.329 PERCENT SPAN 5.00 10.00	0UT 0.467 0.476 0.463 0.477 0.479 0.478 0.475 0.494 0.556 0.583 INCI MEAN 6.7 6.5 8.1	0.920 0.920 0.847 0.803 0.793 0.783 0.762 0.693 0.600 0.574 DENCE SS 4.0	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.378 0.370	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.361 0.361 0.329 D-FACT	0UT 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.349 0.362 0.365 EFF 0.771 0.822 0.860	TOT 0.189 0.143 0.115	PROF 0.186 0.141 0.114	VEL 9: 1.058 1.056 0.965 0.965 0.965 0.996 0.998 1.102 1.137 LOSS PTOT 0.041 0.042 0.025	MACH NO 1.292 1.262 1.240 1.207 1.198 1.186 1.177 1.165 1.080 0.921 0.868 ARAM PROF 0.040 0.031 0.024
: 254567.89111 RP1254	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361 0.337 0.329 PERCENT SPAN 5.00 10.00 42.50	0.467 0.467 0.463 0.477 0.479 0.478 0.475 0.494 0.556 0.583 INCL MEAN 6.7 6.5 8.1	0.920 0.920 0.847 0.803 0.793 0.783 0.772 0.762 0.693 0.600 0.574	OUT 0.595 0.695 0.543 0.499 0.486 0.469 0.454 0.378 0.370 DEV 4.5 3.55 5.5	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.361 0.361 0.337 0.529 D-FACT 0.460 0.439 0.461 0.490	00T 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.349 0.362 0.365 EFF 0.771 0.822 0.860 0.867	TOT 0.189 0.143 0.115 0.118	PROF 0.186 0.141 0.114 0.118	VEL 9: 1.058 1.056 0.965 0.965 0.967 0.976 0.918 0.998 1.102 1.137 LOSS P TOT 0.041 0.032 0.025	MACH NO 1,292 1,269 1,249 1,207 1,198 1,186 1,177 1,080 0,921 0,868 ARAM PROF 0,040 0,031 0,024 0,026
: 254567.89111 RP1254	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.361 0.337 0.329 PERCENT SPAN 5.00 10.00 42.50 45.00	0.467 0.467 0.463 0.477 0.479 0.478 0.472 0.494 0.556 0.583 INCL MEAN 6.7 6.5 8.1 8.9	0.920 0.920 0.847 0.803 0.793 0.783 0.772 0.762 0.693 0.600 0.574	OUT 0.595 0.695 0.543 0.499 0.486 0.469 0.451 0.4428 0.378 0.370 DEV 4.5 3.4 5.5 5.5	IN 0.337 0.357 0.372 0.372 0.372 0.372 0.361 0.361 0.337 0.329 D-FACT 0.460 0.461 0.490 0.501	00T 0.341 0.341 0.345 0.346 0.342 0.335 0.323 0.323 0.362 0.365 EFF 0.771 0.822 0.866 0.867 0.861	TOT 0.189 0.143 0.115 0.118 0.126	PROF 0.186 0.141 0.114 0.118 0.126	VEL 9: 1.058 1.056 0.965 0.965 0.957 0.906 0.918 1.102 1.137 LOSS P TOT 0.041 0.032 0.025 0.026	MACH NG 1,292 1,269 1,240 1,207 1,198 1,186 1,175 1,165 1,165 0,921 0,868 ARAM PROF 0,040 0,031 0,024 0,028
: 254567.89911 P1254567	IN 0.337 0.352 0.372 0.372 0.372 0.372 0.379 0.369 0.337 0.329 PERCENT SPAN 5.00 10.00 30.00 42.50 47.50	0.467 0.467 0.463 0.477 0.479 0.478 0.475 0.494 0.556 0.583 INCL MEAN 6.7 6.5 8.1	N 0.920 0.912 0.847 0.803 0.793 0.762 0.693 0.574 DENCE SS 4.0 4.2 4.2 4.2 4.2	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.378 0.370 0.57 0.57 0.57 0.57	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.361 0.361 0.337 0.529 D-FACT 0.460 0.439 0.461 0.490	00T 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.349 0.362 0.365 EFF 0.771 0.822 0.860 0.867	TOT 0.189 0.143 0.115 0.118	PROF 0.186 0.141 0.114 0.118	VEL 9: 1.058 1.056 0.965 0.965 0.967 0.976 0.918 0.998 1.102 1.137 LOSS P TOT 0.041 0.032 0.025	MACH NO 1,292 1,269 1,249 1,207 1,198 1,186 1,177 1,080 0,921 0,868 ARAM PROF 0,040 0,031 0,024 0,026
: 254567.89911 P1254567	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.370 0.361 0.337 0.329 PERCENT SPAN 5.00 10.00 42.50 45.00	OUT 0.467 0.463 0.477 0.479 0.478 0.475 0.475 0.494 0.556 0.583 INCI MEAN 6.7 6.7 8.1 8.9 9.1	N 0.920 0.912 0.847 0.803 0.793 0.762 0.693 0.574 DENCE SS 4.0 4.2 4.2 4.2 4.2	OUT 0.595 0.603 0.543 0.499 0.486 0.469 0.451 0.448 0.378 0.370 0.57 0.57 0.57 0.57	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.361 0.361 0.337 0.329 D-FACT 0.460 0.450 0.450 0.5517	00T 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.362 0.365 EFF 0.771 0.862 0.861 0.861 0.862 0.861	TOT 0.189 0.143 0.115 0.118 0.126 0.136	PROF 0.186 0.141 0.114 0.118 0.126 0.136	VEL 9: 1.058 1.056 0.965 0.963 0.955 0.937 0.918 0.998 1.102 1.137 LOSS P TOT 0.041 0.032 0.025 0.026 0.028 0.030	MACH NO 1.292 1.262 1.263 1.263 1.165 1.165 1.165 1.080 0.921 0.868 ARAM PROF 0.040 0.031 0.024 0.024 0.028
: 234567.89911 R125456789	IN 0.337 0.357 0.372 0.373 0.372 0.372 0.370 0.369 0.361 0.337 0.329 PERCENT SPAN 5.00 42.50 45.00 47.50 50.00	0.467 0.467 0.463 0.477 0.479 0.478 0.472 0.478 0.556 0.583 INCI MEAN 6.7 6.5 8.1 8.9 9.2	N 0.920 0.912 0.847 0.803 0.793 0.762 0.593 0.600 0.574 DENCE SS 4.0 3.5 4.2 4.2 4.2 4.2 4.2	OUT 0.595 0.695 0.543 0.499 0.486 0.469 0.448 0.378 0.370 0.57 0.57 6.55 5.57 6.02 7.3	IN 0.357 0.357 0.372 0.373 0.372 0.372 0.361 0.361 0.357 0.329 D-FACT 0.460 0.461 0.490 0.517 0.517	0UT 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.349 0.362 0.365 EFF 0.771 0.862 0.867 0.867 0.852	TOT 0.189 0.143 0.115 0.118 0.126 0.136 0.160 0.151	PROF 0.186 0.141 0.114 0.118 0.126 0.136 0.160 0.151 0.074	VEL 9: 1.058 1.056 0.965 0.965 0.977 0.908 1.102 1.137 LOSS P TOT 0.041 0.035 0.026 0.028 0.030 0.035 0.016	MACH NO 1.292 1.262 1.243 1.257 1.198 1.165 1.165 1.165 1.083 0.921 0.868 ARAM PROF 0.044 0.024 0.024 0.024 0.030 0.033 0.033
: 2345678991 RP12345678	IN 0.357: 0.357: 0.372: 0.372: 0.372: 0.372: 0.372: 0.369: 0.361: 0.337: 0.329: PERCENT SPAN 5.00: 42.50: 45.00: 47.50: 45.00: 52.50: 52.50	0UT 0.467 0.463 0.477 0.479 0.478 0.475 0.494 0.556 0.583 INCI MEAN 6.7 6.5 8.1 8.9 9.1 9.2 9.5	0.920 0.920 0.847 0.803 0.793 0.783 0.772 0.693 0.600 0.574 DENCE SS 4.0 3.5 4.2 4.2 4.2 4.2	OUT 0.595 0.695 0.543 0.499 0.486 0.469 0.448 0.378 0.370 0.57 0.57 6.55 5.57 6.02 7.3	1N 0.357 0.357 0.372 0.373 0.372 0.372 0.361 0.361 0.337 0.529 D-FACT 0.460 0.439 0.461 0.490 0.501 0.517	00T 0.341 0.341 0.345 0.346 0.342 0.335 0.327 0.362 0.365 EFF 0.771 0.862 0.861 0.861 0.862 0.861	TOT 0.189 0.143 0.115 0.118 0.126 0.136 0.160 0.151	PROF 0.186 0.141 0.114 0.118 0.126 0.136 0.160 0.151	VEL 9: 1.058 1.058 0.965 0.965 0.996 0.998 1.102 1.137 COSS PTOT 0.041 0.042 0.025 0.026 0.028 0.035 0.035 0.035 0.035	MACH NG 1.292 1.268 1.207 1.198 1.186 1.177 1.165 1.080 0.921 0.868 ARAM PROF 0.040 0.031 0.024 0.028 0.030 0.035 0.035 0.015

TABLE VII. - Continued. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(p) Percent design speed, 70; reading number, 370

RP 1. 2. 3. 4. 5. 6. 7. 8. 9. 1.0.	RADII IN 0 24.562 24. 24.016 23. 21.753 21. 20.290 20. 19.992 20. 19.693 19. 19.390 19. 19.088 19. 16.899 17. 14.191 15. 13.465 15.	DUT IN 193 0.0 0.685 0.0 0.553 0.0 0.129 0.0 875 0.0 621 0.0 557 0.0 559 0.0 0.557	BETAM OUT 51.6 47.4 45.2 47.0 47.9 48.7 50.1 50.0 50.9 52.7		BETAM OUT 56.2 54.9 46.2 45.9 45.4 44.8 43.6 36.2 17.5 9.2		L TEMP RATIO 1.133 1.105 1.103 1.102 1.101 1.102 1.102 1.092 1.094 1.099	TOTAL IN 10.07 10.13 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.364 1.356 1.339 1.333 1.327 1.323 1.323 1.323 1.322 1.324 1.370
RP 1 2 3 4 5 6 7 8 9 10	101.6 16 109.4 16 113.9 16 114.8 16 114.6 16 114.7 16 114.7 16 114.7 16 112.5 16	CL RELL IN 18 105 105 105 105 105 105 105 105 105 105	VEL 0UT 185.5 193.1 180.2 163.9 159.2 154.4 148.7 146.7 142.4 124.1	MERII 101.6 109.4 113.9 114.8 114.6 114.5 114.7 114.7 112.5 106.4 104.0	VEL OUT 103.3 111.8 113.7 113.5 110.9 108.3 105.6.2 114.9 118.4 120.3	TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	G VEL OUT 130.5 121.4 114.7 121.6 122.5 123.5 126.2 126.2 145.8 157.8	WHEEL IN 288.9 282.7 255.6 238.7 235.2 231.4 228.1 224.6 199.1 167.1 158.6	SPEED 0UT 284.6 278.8 254.5 239.8 235.5 230.9 227.9 207.2 183.2 177.3
RP 1 23 4 5 6 7 8 9 10 11	0.301 0. 0.325 0. 0.339 0. 0.341 0. 0.341 0. 0.341 0. 0.341 0. 0.341 0. 0.334 0.	NO REL M. 1N 469 0.907 467 0.900 461 0.832 476 0.787 473 0.778 470 0.768 471 0.759 473 0.750 485 0.679 543 0.588 575 0.563	ACH NO 1 0.523 0.547 0.514 0.469 0.456 0.425 0.425 0.420 0.410 0.353	MERID MA IN 0.301 0.325 0.339 0.341 0.341 0.340 0.341 0.334 0.336 0.309	CH NO OUT 0.291 0.317 0.325 0.325 0.317 0.310 0.304 0.331 0.342 0.348			MERID F VEL R 1.017 1.022 0.998 0.968 0.946 0.920 0.926 1.022 1.113	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 45.00 50.00 52.50 70.00 90.00	INCIDENCE MEAN SS 8.9 6.2 8.4 5.4 10.1 6.0 10.9 6.2 11.1 6.2 11.2 6.2 11.3 6.2 11.4 6.1 12.1 5.9 12.4 5.3 12.4 5.1	DEV 5.7 4.8 5.6 6.3 7.0 7.7 11.2 10.8	D-FACT 0.554 0.510 0.494 0.526 0.538 0.549 0.568 0.569 0.523 0.544 0.542	EFF 0.694 0.741 0.831 0.836 0.832 0.819 0.819 0.903 0.943	LOSS CO TOT 0.288 0.231 0.150 0.146 0.159 0.168 0.182 0.185 0.108 0.085	OEFF PROF 0.283 0.228 0.149 0.146 0.159 0.168 0.182 0.185 0.108	LOSS P TOT 0.060 0.049 0.032 0.035 0.035 0.036 0.039 0.040 0.023 0.018	PROF 0.059 0.049 0.032 0.035 0.036 0.039 0.040 0.023 0.018

FOR ROTOR 14

(q) Percent design speed, 60; reading number, 373

20	RADII			BETAM		BETAM		L TEMP		PRESS
RP 1 2	IN 24.562 24 24.016 23		IN 0.0 0.0	0UT 58.5 52.7	1N 72.0 70.4	0UT 57.1 56.1	IN 288.5 288.4	RATIO 1.107 1.097	IN 10.09 10.13	1.268 1.253
3 4	21.753 21 20.290 20	.653 .383	0.0	46.5 47.5	67.5 65.9	51.3 46.6	288.1 288.1	1.078	10.13 10.14	1.242
5 6 7	19.992 20	.875	0.0	48.4 49.4	65.5 65.2	46.0 45.8	288.1	1.076	10.14	1.240
8 9	19.390 19 19.088 19 16.899 17	.367	0.0 0.0 0.0	50.7 51.2 48.7	64.8 64.4 62.0	45.1 44.0 34.9	288.1 288.1 288.0	1.075 1.075 1.069	10.14 10.14 10.14	1.231
10	14.191 15	.557	0.0	50.9 52.4	59.0 58.3	17.1	288.0 288.0	1.070	10.14	1.253
							•			
RP 1		OUT 47.0	REL IN 260.9	VEL 0UT 141.7	MERII IN 80.8	0 VEL 0UT 76.9	I AN I N 0.0	G VEL OUT 125.3	WHEEL IN 248.1	SPEED OUT 244.3
2	86.5 1	40.7 37.9	257.2 237.4	153.0 151.6	86.5 90.9	85.3 94.9	0.0	111.9	242.3	238.9 218.3
4	91.6 1	41.9	224.5	139.4	91.6 91.8	95.8 94.0	0.0	104.6	205.0	205.9
6 7	91.9 1	40.2	218.7 215.8	131.0 125.7	91.9 91.9	91.3 88.7	0.0	106.4	198.5 195.3	200.3
8	90.6 1	40.5 46.2	192.8	122.4 117.6	90.6	88.1 96.4	0.0	109.4	191.6 170.2	194.4
10 11		61.9 70.0	167.1 159.7	106.9 105.0	86.1 84.0	102.2	0.0	125.6 134.8	143.2 135.9	157.0 151.9
	ABS MAC		REL MA		MERID MA				MERID F	erk ss
RP !	IN 0.239 0	OUT .	IN 0.770	0.402	IN 0.239	0UT 0.218			VEL R 1	MACH NO 1.173
1	IN 0.239 0 0.256 0 0.269 0	0UT .417 .401 .396	IN 0.770 0.761 0.703	0.402 0.436 0.436	IN 0.239 0.256 0.269	0.218 0.243 0.273			VEL R 1 0.952 0.986 1.044	MACH NO 1.173 1.146 1.112
1	IN 0.239 0 0.256 0 0.269 0 0.271 0 0.272 0	OUT .417 .401 .396 .409	IN 0.770 0.761 0.703 0.665 0.656	0.402 0.436 0.436 0.436 0.402 0.389	1N 0.239 0.256 0.269 0.271 0.272	OUT 0.218 0.243 0.273 0.276 0.271			VEL R 1 0.952 0.986 1.044 1.046 1.024	464 NS 1.173 1.146 1.112 1.279 1.368
1 215 4 5 6 7 8	IN 0.239 0 0.256 0 0.269 0 0.271 0 0.272 0 0.272 0	OUT .417 .401 .396 .409	1N 0.770 0.761 0.703 0.665 0.656 0.648 0.639	0UT 0.402 0.436 0.436 0.402 0.389 0.377 0.362	IN 0.239 0.256 0.269 0.271 0.272 0.272	OUT 0.218 0.243 0.273 0.276 0.271 0.263 0.255			VEL R N 0.952 0.986 1.044 1.046 1.024 0.994 0.965	1.173 1.146 1.112 1.079 1.068 1.058
1	IN 0.239 0 0.256 0 0.269 0 0.272 0 0.272 0 0.272 0 0.271 0 0.268 0	OUT .417 .401 .396 .409 .408 .404	IN 0.770 0.761 0.703 0.665 0.656 0.648	0.402 0.436 0.436 0.402 0.389 0.377	1N 0.239 0.256 0.269 0.271 0.272	0.218 0.243 0.273 0.276 0.271 0.263			VEL R N 0.952 0.986 1.044 1.046 1.024 0.994	1464 NS 1.173 1.146 1.112 1.079 1.068 1.058
1254561-89	IN 0.239 0 0.256 0 0.271 0 0.272 0 0.272 0 0.275 0 0.255 0	OUT .417 .401 .396 .409 .408 .404 .404 .405	IN 0.770 0.761 0.703 0.665 0.656 0.648 0.639 0.629 0.571	0.402 0.436 0.436 0.402 0.389 0.377 0.362 0.353	1N 0.239 0.256 0.269 0.271 0.272 0.272 0.272 0.271 0.268	0UT 0.218 0.243 0.273 0.276 0.271 0.263 0.255 0.254 0.279			75; R 1 0.952 0.986 1.044 1.046 1.024 0.994 0.965 0.962	1464 NS 1.146 1.112 1.079 1.068 1.058 1.048 1.034 0.954
2354567891011	IN 0.239 0 0.256 0 0.271 0 0.272 0 0.272 0 0.272 0 0.272 0 0.272 0 0.275 0 0.268 0 0.255 0 0.249 0	0UT .417 .401 .396 .409 .408 .404 .404 .405 .423 .470 .494	IN 0.770 0.761 0.763 0.656 0.656 0.648 0.639 0.629 0.571 0.494 0.472	0UT 0.402 0.436 0.436 0.402 0.389 0.377 0.362 0.353 0.340 0.310	1N 0.239 0.256 0.269 0.271 0.272 0.272 0.272 0.271 0.268 0.255	OUT 0.218 0.243 0.273 0.276 0.271 0.263 0.255 0.254 0.279 0.297	LOSS C	OEFF	7EL R 1 0.952 0.964 1.046 1.024 0.965 0.965 1.064 1.186 1.233	1464 NC 1.173 1.146 1.112 1.058 1.058 1.058 1.034 0.954 0.812 0.767
1: 235 4 55 67 8 9 1.0 1.1 RP 1	IN 0.239 0 0.269 0 0.271 0 0.272 0 0.272 0 0.272 0 0.272 0 0.272 0 0.273 0 0.268 0 0.255 0 0.249 0	0UT .417 .401 .396 .409 .408 .404 .404 .423 .423	IN 0.770 0.761 0.703 0.665 0.656 0.648 0.639 0.571 0.494 0.472	0.402 0.436 0.436 0.436 0.389 0.377 0.362 0.353 0.340 0.310	1N 0.239 0.256 0.269 0.271 0.272 0.272 0.272 0.271 0.268 0.255 0.249	OUT 0.218 0.243 0.273 0.276 0.271 0.263 0.255 0.254 0.279 0.297 0.301	LOSS C TOT 0.343 0.295		7E; R 1 0.952 0.986 1.046 1.024 0.994 0.965 0.962 1.064 1.186 1.233	4ACH NC 1.173 1.142 1.179 1.068 1.058 1.048 1.034 0.812 0.767 ARAM PROF 0.070
1:234567-89111 RP1254	IN 0.239 0 0.256 0 0.269 0 0.272 0 0.272 0 0.272 0 0.271 0 0.255 0 0.249 0 PERCENT SPAN 5.00	OUT .417 .407 .409 .408 .404 .405 .423 .470 .494 INCII MEAN 10.2 9.96 12.5	IN 0.770 0.761 0.703 0.665 0.656 0.656 0.639 0.571 0.494 0.472 DENCE SS 7.5 6.9 7.5	0.402 0.436 0.436 0.402 0.389 0.377 0.362 0.353 0.310 0.310	IN 0.239 0.256 0.269 0.271 0.272 0.272 0.272 0.274 0.268 0.255 0.249 D-FACT 0.637	OUT 0.218 0.248 0.273 0.276 0.271 0.263 0.255 0.255 0.279 0.279 0.301 EFF	TOT 0.343	OEFF PROF 0.343	VEL R 1 0.952 0.986 1.044 1.046 1.024 0.965 0.962 1.064 1.186 1.233	1.173 1.142 1.079 1.068 1.058 1.034 1.034 1.035 0.767 ARAM PROF 0.070 0.033 0.033
1234567-8901 P125456	IN 0.239 0 0.256 0 0.269 0 0.272 0 0.272 0 0.272 0 0.275 0 0.275 0 0.249 0 0 0.255 0 0.249 0 0 0.255 0 0.249 0 0 0.255 0 0.249 0 0 0.255 0 0.249 0 0 0.255 0 0.249 0 0 0.255 0 0.249 0 0 0.250 0.255 0	OUT .417 .401 .396 .409 .408 .404 .404 .405 .423 .470 .494 INCIL MEAN 10.2 9.9 11.6 12.6 12.7	IN 0.770 0.761 0.703 0.665 0.656 0.648 0.639 0.629 0.571 0.494 0.472 DENCE SS 7.5 6.9 7.5 7.7	0.402 0.436 0.436 0.402 0.389 0.377 0.362 0.353 0.310 0.305 DEV	1N 0.239 0.256 0.269 0.271 0.272 0.272 0.272 0.268 0.255 0.249 D-FACT 0.637 0.565 0.503 0.551	OUT 0.218 0.248 0.273 0.276 0.271 0.263 0.255 0.255 0.279 0.297 0.301 EFF 0.654 0.685 0.825 0.825	TOT 0.343 0.293 0.159 0.153 0.160 0.172	0EFF PROF 0.343 0.293 0.159 0.150 0.150	VEL R 1 0.952 0.986 1.044 1.046 1.024 0.965 0.962 1.064 1.186 1.233 LOSS P TOT 0.070 0.060 0.035 0.035 0.035	46CH NC 1.173 1.142 1.079 1.068 1.054 1.054 0.954 0.812 0.767 ARAM PROF 0.070 0.060 0.035 0.035 0.035
1233456789011 R12345678	IN 0.239 0 0.256 0 0.271 0 0.272 0 0.272 0 0.272 0 0.275 0 0.268 0 0.255 0 0.249 0 PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.50 52.50	OUT .417 .401 .396 .409 .408 .404 .405 .423 .470 .494 INCIL MEAN 10.2 916 12.5 12.6 12.7 12.8	IN 0.770 0.761 0.703 0.665 0.656 0.648 0.639 0.571 0.494 0.472 DENCE \$\$ 7.5 6.9 7.5 7.7 7.7 7.6	0.402 0.436 0.436 0.402 0.389 0.377 0.363 0.353 0.310 0.305 DEV 6.6 6.3 6.0 6.4 7.4 8.0	1N 0.239 0.256 0.269 0.271 0.272 0.272 0.271 0.268 0.255 0.249 D-FACT 0.637 0.503 0.503 0.526 0.540 0.570	OUT 0.218 0.243 0.273 0.276 0.271 0.265 0.254 0.279 0.297 0.301 EFF 0.654 0.820 0.835 0.825 0.814 0.813	TOT 0.345 0.293 0.159 0.153 0.160 0.172 0.188 0.192	0EFF PROF 0.343 0.293 0.159 0.153 0.160 0.172 0.188 0.192	VEL R 1 0.952 0.986 1.044 1.046 1.024 0.965 0.962 1.064 1.186 1.233 LOSS P TOT 0.070 0.060 0.033 0.033 0.035 0.037 0.041	4CH NC 1.173 1.142 1.079 1.068 1.058 1.034 0.954 0.812 0.767 ARAM PROF 0.070 0.060 0.033 0.035 0.035 0.035
12334567-89011 P1234567	IN 0.239 0 0.269 0 0.269 0 0.271 0 0.272 0 0.272 0 0.272 0 0.275 0 0.268 0 0.255 0 0.249 0 PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 45.00 45.00 50.00	OUT .417 .407 .396 .409 .408 .404 .405 .423 .470 .494 INCII MEAN 10.2 9 11.6 12.5 12.6 7 12.8	IN 0.770 0.761 0.703 0.665 0.656 0.639 0.571 0.494 0.472 DENCE \$\$ 7.5 7.7 7.7 7.7	0UT 0.402 0.436 0.436 0.402 0.389 0.377 0.362 0.353 0.340 0.310 0.305 DEV 6.6 6.6 6.2 6.0 6.4 7.9	IN 0.239 0.256 0.269 0.271 0.272 0.272 0.271 0.268 0.255 0.249 D-FACT 0.565 0.503 0.526 0.551 0.570	OUT 0.218 0.243 0.273 0.276 0.271 0.265 0.254 0.279 0.297 0.301 EFF 0.654 0.685 0.820 0.840 0.835 0.814	TOT 0.343 0.293 0.159 0.153 0.160 0.172 0.188	0EFF PR0F 0.343 0.293 0.159 0.153 0.160 0.172	VEL R 1 0.952 0.986 1.044 1.046 1.024 0.965 0.962 1.064 1.186 1.233 0.055 0.070 0.060 0.033 0.033 0.033	4CH NC 1.173 1.142 1.079 1.068 1.058 1.034 0.954 0.812 0.767 ARAM PROF 0.070 0.060 0.033 0.035 0.035 0.040

TABLE VII. - Concluded. BLADE ELEMENT DATA AT BLADE EDGES

FOR ROTOR 14

(r) Percent design speed, 50; reading number, 375

RP 1 2 3 4 5 6 6 7 8 9 10 11	RADII IN OUT 24.562 24.193 24.016 23.685 21.753 21.653 20.290 20.383 19.992 20.129 19.693 19.875 19.390 19.621 19.088 19.367 16.899 17.589 14.191 15.557 13.465 15.049	ABS BETAM IN OUT 0.0 53.4 0.0 47.6 0.0 44.6 0.0 45.8 0.0 46.7 0.0 49.1 0.0 49.3 0.0 50.7 0.0 51.8	65.7 46.6 65.3 46.3 65.1 45.9 64.7 45.3 64.3 44.2 61.8 34.9 58.9 17.9	TOTAL TEMP IN RATIO 288.7 1.068 288.4 1.063 288.1 1.054 288.3 1.052 288.0 1.052 288.0 1.052 288.0 1.052 288.0 1.052 288.0 1.048 287.9 1.050	TOTAL PRESS IN RATIO 10.11 1.173 10.13 1.165 10.14 1.165 10.13 1.166 10.13 1.160 10.13 1.157 10.13 1.160 10.13 1.160 10.13 1.160 10.13 1.160
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL 1N OUT 69.7 118.1 73.6 117.1 77.1 115.8 77.3 118.3 77.7 117.7 77.7 117.5 77.4 116.8 77.5 117.5 76.3 122.7 72.2 134.4 70.6 139.5	REL VEL IN OUT 218.3 129.7 215.6 138.1 199.1 130.7 188.0 120.1 186.0 116.8 184.2 113.5 181.0 108.7 178.9 107.0 161.8 99.4 140.0 89.5 134.0 88.1	MERID VEL IN OUT 69.7 70.4 73.6 78.9 77.1 82.4 77.3 82.5 77.7 78.9 77.4 76.4 77.5 76.7 76.3 81.5 72.2 85.2 70.6 86.3	TANG VEL IN OUT 0.0 94.8 0.0 86.5 0.0 81.3 0.0 84.9 0.0 85.7 0.0 87.1 0.0 88.4 0.0 89.0 0.0 91.7 0.0 104.0 0.0 109.6	WHEEL SPEED 1N OUT 206.9 203.8 202.7 199.9 183.5 182.7 171.4 172.1 169.0 170.2 167.1 168.6 163.7 165.6 161.3 163.7 142.6 148.5 119.9 131.5 113.9 127.3
RP 1 2 3 4 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.205 0.339 0.217 0.337 0.228 0.345 0.229 0.341 0.229 0.341 0.229 0.341 0.226 0.357 0.213 0.392 0.208 0.407	REL MACH NO IN OUT 0.644 0.373 0.636 0.398 0.588 0.378 0.549 0.338 0.544 0.529 0.535 0.315 0.529 0.310 0.478 0.289 0.413 0.261 0.396 0.257	MERID MACH NO IN OUT 0.205 0.202 0.217 0.227 0.228 0.239 0.229 0.234 0.229 0.229 0.229 0.222 0.229 0.222 0.229 0.222 0.226 0.237 0.213 0.248 0.208 0.252		MERIC PEAK SS VEL R MACH NO 1.010 0.967 1.073 0.952 1.069 0.925 1.067 0.898 1.038 0.890 1.017 0.888 0.987 0.875 0.990 0.868 1.068 0.797 1.179 0.679 1.223 0.642
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 9.6 10.00 9.6 30.00 11.3 42.50 12.3 45.00 12.4 47.50 12.6 50.00 12.7 52.50 12.8 70.00 13.4 90.00 13.8	DENCE DEV SS 6.9 6.7 6.6 5.3 7.2 5.8 7.6 6.0 7.5 6.8 7.6 7.5 7.5 8.1 7.5 8.3 7.2 9.9 6.7 12.6 6.6 13.3	D-FACT EFF 0.568 0.687 0.507 0.730 0.481 0.831 0.504 0.852 0.516 0.837 0.530 0.839 0.548 0.824 0.539 0.901 0.533 0.946 0.523 0.942	LOSS COEFF TOT PROF 0.278 0.278 0.230 0.230 0.143 0.143 0.135 0.135 0.152 0.152 0.151 0.151 0.173 0.173 0.173 0.173 0.110 0.110 0.080 0.080 0.096 0.096	LOSS PARAM TOT PRCF 0.057 0.057 0.049 0.049 0.030 0.030 0.029 0.029 0.033 0.033 0.032 0.032 0.037 0.037 0.037 0.037 0.024 0.024 0.017 0.017 0.020 0.020

TABLE VIII. - BLADE ELEMENT DATA AT BLADE EDGES

FOR STATOR 10

(a) Percent design speed, 100; reading number, 350

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.942 2 23.503 2 21.742 2 20.637 2 20.417 2 20.196 2 19.975 2 19.754 2 18.227 16.530 16.121	0UT 23.945 23.538 21.900 20.881 20.681 20.480 20.279 20.079 18.715 17.252	ABS 1N 38.2 34.1 34.1 39.9 40.2 40.3 39.5 38.6 37.7 40.1	BETAM OUT 4.8 2.5 1.0 -0.5 -1.1 -1.6 -1.4 -1.5 -2.4 2.0 1.2	REL IN 38.2 34.1 39.9 40.2 40.3 39.5 38.6 37.7 43.1	BETAM OUT 4.8 2.5 1.0 -0.5 -1.1 -1.6 -1.4 -1.5 -2.4 2.0	TOTA 1N 354.8 350.4 345.1 343.0 342.3 341.4 340.5 339.0 336.2 344.5	L TEMP RATIO 0.995 0.996 0.998 0.994 0.995 0.999 1.003 1.000	TOTAL IN 17.35 17.70 17.86 16.63 16.35 16.21 16.23 16.28 16.59 17.69	PRESS RATIO 0.936 0.964 0.961 0.984 0.993 1.001 0.982 0.910 0.875
RP 1 23 4 5 6 7 8 9 1 0 1 1	ABS IN 257.3 266.0 274.4 2548.5 248.5 245.3 246.4 248.4 261.6 295.5 310.4	VEL OUT 202.8 224.1 232.4 220.9 219.4 219.4 222.8 224.1 225.6 241.7 254.0	RELL 1N 257.3 266.0 274.4 254.5 248.5 245.3 246.4 248.4 261.6 310.4	VEL 0UT 202.8 224.1 232.4 220.9 219.4 219.4 222.8 224.1 235.6 241.7 254.0	MERI 18 202.1 220.2 227.3 195.2 189.7 187.1 190.0 194.2 207.1 226.7	D VEL OUT 202.1 223.9 232.4 220.9 219.3 219.3 222.7 224.1 235.4 241.5 253.9	TAN IN 159.2 149.3 153.8 163.3 160.4 156.9 154.8 159.9 190.4 211.9	G VEL OUT 17.1 9.6 3.9 -1.7 -4.3 -6.0 -5.5 -6.0 -9.9 8.3	WHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R - 254567-89011	ABS MA IN 0.715 0.748 0.781 0.720 0.702 0.693 0.698 0.706 0.751 0.856 0.899	ACH NO 0.555 0.621 0.651 0.619 0.615 0.616 0.626 0.636 0.669 0.680 0.716	REL M. 1N 0.715 0.748 0.781 0.720 0.702 0.693 0.698 0.751 0.856 0.899	0.655 0.621 0.655 0.619 0.615 0.616 0.626 0.630 0.669 0.680 0.716	MERID M. 1N 0.562 0.619 0.647 0.552 0.536 0.529 0.538 0.552 0.594 0.654	OUT 0.553 0.621 0.650 0.619 0.615 0.616 0.626 0.630 0.680 0.716			MER:0 1 VEL R 1 1.007 1.017 1.022 1.156 1.172 1.154 1.154 1.137 1.069 1.120	PEAK SS MACH NO 0.970 0.956 1.018 0.996 0.981 0.965 0.946 0.991 1.343
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 1.5 ~1.0 5.7 5.9 5.8 4.9 1.3 1.3	DENCE SS -4.7 -7.2 -5.9 -0.5 -0.4 -1.3 -2.5 -4.6 -4.7 -2.7	DEV 17.6 14.1 11.2 9.4 8.7 8.2 8.3 8.2 6.7	D-FACT 0.421 0.353 0.341 0.343 0.351 0.304 0.299 0.285 0.341 0.348	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.220 0.116 0.118 0.053 0.026 0.004 -0.003 0.014 0.058 0.236 0.307	PROF 0.220 0.116 0.118 0.053 0.026 0.004	LOSS P TOT 0.083 0.043 0.041 0.018 0.008 0.001 -0.001 0.004 0.017 0.062 0.079	PROF 0.083 0.043 0.041 0.018 0.008 0.001

FOR STATOR 10

(b) Percent design speed, 100; reading number, 341

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM 1N OUT 41.5 6.0 37.5 4.2 37.6 2.3 41.4 0.8 41.8 0.1 42.2 -0.1 42.5 -0.2 41.9 -0.2 39.5 -1.3 41.6 43.0 3.0		TOTAL TEMP IN RATIO 362.8 0.992 357.1 0.996 351.0 0.997 348.3 0.995 347.8 0.996 345.2 0.997 345.4 0.998 343.8 1.001 339.1 0.999 341.3 1.008	TOTAL PRESS IN RATIO 18.77 0.947 18.99 0.965 18.80 0.968 17.87 0.985 17.40 0.993 17.15 1.005 17.16 0.999 17.37 0.972 17.89 0.933 18.36 0.885
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 266.1 200.7 270.1 213.6 271.0 216.6 261.3 207.2 256.7 204.3 251.1 202.8 246.3 202.8 247.7 201.6 261.8 204.1 286.0 215.2 295.0 204.6	REL VEL 1N OUT 266.1 200.7 270.1 213.6 271.0 216.6 261.3 207.2 256.7 204.3 251.1 202.8 247.7 201.6 261.8 204.1 286.0 215.2 295.0 204.6	MERID VEL IN OUT 199.2 199.6 214.3 213.1 214.7 216.4 196.0 207.1 191.4 204.3 186.0 202.8 181.6 202.8 184.3 201.6 201.9 204.1 213.8 215.1 215.8 204.3	TANG VEL IN OUT 176.4 21.0 164.4 15.7 165.3 8.7 172.7 2.8 171.1 0.3 168.6 -0.7 165.4 -0.8 166.7 -4.5 190.0 6.1 201.2 10.7	WHEEL SPEED IN OUT 0.
RP 123345678911	ABS MACH NO IN OUT 0.733 0.543 0.752 0.584 0.762 0.573 0.722 0.565 0.707 0.562 0.692 0.562 0.698 0.559 0.748 0.571 0.823 0.599 0.850 0.566	REL MACH NO 1N OUT 0.733 0.543 0.752 0.584 0.762 0.598 0.735 0.573 0.722 0.565 0.707 0.562 0.692 0.562 0.698 0.559 0.748 0.571 0.823 0.599 0.850 0.566	MERID MACH NO 1N OUT 0.549 0.540 0.597 0.583 0.604 0.597 0.552 0.552 0.524 0.562 0.524 0.562 0.520 0.559 0.577 0.571 0.615 0.569 0.621 0.565		MERID PEAK SS VEL R MACH NO 1.002 1.078 0.994 1.017 1.008 1.033 1.057 1.076 1.068 1.062 1.090 1.046 1.117 1.028 1.093 1.017 1.011 1.037 1.006 1.191 0.947 1.267
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 4.8 10.00 2.4 30.00 7.2 45.00 7.5 47.50 7.7 50.00 7.9 52.50 7.1 70.00 3.4 90.00 2.8 95.00 3.2	DENCE SS -1.4 18.8 -3.8 15.9 -2.4 12.5 1.0 10.6 1.3 9.9 1.7 9.5 0.9 9.5 -2.7 7.9 -3.2 10.5 -2.8 11.8	D-FACT EFF 0.467 0. 0.414 0. 0.399 0. 0.419 0. 0.418 0. 0.407 0. 0.391 0. 0.395 0. 0.408 0. 0.413 0. 0.468 0.	LOSS COEFF TOT PROF 0.175 0.175 0.112 0.112 0.101 0.101 0.063 0.063 0.050 0.050 0.023 0.025 -0.018 -0.018 0.003 0.003 0.091 0.091 0.187 0.187 0.306 0.306	LOSS PARAM TOT PROF 0.066 0.066 0.042 0.042 0.035 0.035 0.021 0.021 0.016 0.016 0.007 0.007 -0.006 -0.006 0.001 0.001 0.026 0.026 0.049 0.049 0.078 0.078

(c) Percent design speed, 100; reading number, 342

	(C) Ferce	int desi	gn spe	cu, 100	, reau	ing mun	1001, 0	112	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.942 23.503 21.742 20.637 20.417 20.196 19.975 19.754 18.227 16.530 16.121	0UT 23.945 23.538 21.900 20.881 20.681 20.480 20.279 20.079 18.715 17.252	ABS IN 44.4 41.7 40.7 43.3 44.0 44.7 45.4 45.4 42.3 44.1	BETAM OUT 5.9 4.8 2.4 1.1 0.6 0.4 0.6 0.7 -0.7 1.8 3.2	REL IN 44.4 41.7 40.7 43.3 44.0 44.7 45.4 45.0 42.3 44.1	BETAM OUT 5.9 4.8 2.4 1.1 0.6 0.4 0.6 0.7 -0.7 1.8 3.2	TOTA IN 368.6 362.8 354.3 351.7 350.7 350.5 349.3 348.0 343.2 342.6 345.3	TEMP RATIO 0.995 0.997 0.998 0.994 0.994 0.991 0.992 0.994 1.007	TOTAL IN 19.68 19.63 19.25 18.55 18.46 18.22 17.99 17.94 17.90 17.93	PRESS RATIO 0.940 0.964 0.962 0.964 0.960 0.964 0.972 0.960 0.965 0.945
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 1N 270.5 270.2 265.5 260.2 255.2 249.8 250.2 259.7 272.2 287.4	VEL 0UT 196.3 207.3 201.8 191.0 187.5 184.4 182.5 182.2 184.5 194.0 184.8	REL IN 270.2 270.2 265.5 260.2 259.0 255.2 249.8 250.2 259.7 272.2 287.4	VEL 0UT 196.3 207.3 201.8 191.0 187.5 184.4 182.5 182.5 184.8	1N 193.3 201.9 201.2 189.3 186.4 181.4 175.3 176.8 192.0 195.4	0 VEL 0UT 195.2 206.6 201.6 191.0 187.5 184.4 182.5 182.5 184.5	TAN 189.1 179.6 173.1 178.6 179.8 179.5 177.9 177.0 174.9 189.5 202.6	G VEL OUT 20.2 17.5 8.5 2.1 1.3 1.9 2.2 -2.2 5.9 10.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R: 234567-891011	ABS M IN 0.740 0.741 0.725 0.724 0.699 0.701 0.736 0.777 0.822	ACH NO 0.525 0.561 0.5524 0.514 0.506 0.501 0.501 0.501 0.502 0.501	REL M. 1N 0.740 0.741 0.728 0.725 0.714 0.699 0.701 0.736 0.777 0.822	OUT 0.525 0.525 0.561 0.552 0.524 0.514 0.506 0.501 0.501 0.512 0.536 0.507	MERID M/ IN 0.529 0.557 0.562 0.529 0.522 0.507 0.496 0.544 0.558	OUT 0.523 0.559 0.551 0.523 0.514 0.506 0.501 0.501 0.512 0.535 0.516			MER: 5 1 VEL R 1 1.013 1.023 1.002 1.006 1.017 1.04: 1.030 0.905 0.905	PEAK SS 4624 VC 1.165 1.156 1.284 1.121 1.127 1.1096 1.096 1.091 1.191 1.277
RP 1 23 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 50.00 50.00 90.00 95.00	INCI MEAN 7.7 6.5 9.2 9.6 10.2 10.8 6.3 5.0	DENCE SS 1.5 0.7 2.9 3.4 4.0 4.6 4.0 0.0	DEV 18.7 16.5 12.6 10.9 10.4 10.1 10.3 10.4 8.4 10.6 12.1	D-FACT 0.511 0.456 0.453 0.485 0.497 0.500 0.491 0.485 0.461 0.524	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.196 0.116 0.125 0.122 0.137 0.124 0.099 0.134 0.167 0.302	OEFF PROF 0.196 0.1125 0.122 0.137 0.124 0.099 0.134 0.167 0.302	LOSS P TOT 0.074 0.043 0.045 0.040 0.031 0.031 0.039 0.044 0.077	ARAM PROF 0.074 0.043 0.044 0.044 0.031 0.031 0.039 0.044 0.077

FOR STATOR 10

(d) Percent design speed, 100 reading number, 337

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 23.942 23.945 23.503 23.558 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 49.6 7.5 46.4 6.6 43.9 3.0 45.7 1.3 46.7 1.1 47.7 1.2 48.1 1.3 47.7 1.5 44.5 -0.3 45.8 1.4 48.1 4.6	REL BETAM 1N OUT 49.6 7.5 46.4 6.6 43.9 3.0 45.7 1.1 47.7 1.2 48.1 1.3 47.7 1.5 44.5 -0.3 45.8 1.4	TOTAL TEMP IN RAT10 375.1 0.999 368.9 1.001 356.6 0.999 353.3 0.994 352.8 0.992 352.3 0.991 351.1 0.992 344.6 0.993 343.8 1.007 347.9 0.999	TOTAL PRESS IN RATIO 20.07 0.935 20.10 0.948 19.44 0.951 18.73 0.949 18.62 0.949 18.42 0.956 18.37 0.957 18.07 0.957 18.27 0.937 19.11 0.887
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN 0UT 269.4 193.2 269.9 201.2 260.8 189.4 258.2 176.1 256.0 173.5 254.8 171.1 252.1 170.1 252.4 169.7 255.0 166.7 270.5 180.3 287.8 175.8	REL VEL IN OUT 269,4 193.2 269.9 201.2 260.8 189.4 258.2 176.1 256.0 173.5 254.8 171.1 252.1 170.1 252.4 169.7 270.5 180.3 287.8 175.8	MERID VEL IN OUT 174.7 191.6 186.1 199.9 187.8 189.2 180.2 176.0 175.6 173.4 171.6 171.1 168.4 170.1 169.9 169.7 181.8 166.7 188.7 180.3 192.4 175.2	TANG VEL IN OUT 205.0 25.2 195.5 23.0 181.0 9.8 184.8 4.0 186.4 3.5 188.3 3.6 187.6 3.8 186.7 4.4 178.9 -0.7 193.8 4.5 214.1 14.0	HHEEL SPEED IN- OUT 0.
RP.	ABS MACH NO	REL MACH NO IN OUT	MERID MACH NO		MERIO PEAK SS
5 4 5 6 7 8 9 10 11	1N OUT 0.730 0.511 0.738 0.537 0.724 0.514 0.720 0.479 0.714 0.472 0.710 0.466 0.702 0.464 0.705 0.463 0.720 0.459 0.770 0.495 0.820 0.481	0.730 0.511 0.738 0.537 0.724 0.514 0.720 0.479 0.714 0.472 0.710 0.466 0.702 0.464 0.705 0.463 0.720 0.495 0.770 0.495 0.820 0.481	IN OUT 0.473 0.506 0.509 0.534 0.522 0.513 0.503 0.479 0.489 0.472 0.478 0.466 0.469 0.464 0.474 0.465 0.513 0.459 0.537 0.495 0.548 0.479		VEL R MACH NG 1.996 1.272 1.074 1.223 1.007 1.139 0.977 1.159 0.988 1.170 0.997 1.182 1.010 1.175 0.999 1.165 0.917 1.121 0.955 1.222 0.911 1.363

(e) Percent design speed, 100; reading number, 343

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530.17.252 16.121 16.904	ABS BETAM IN OUT 50.5 7.0 46.5 6.0 44.2 2.8 45.9 1.1 46.8 1.2 47.8 1.4 48.2 1.7 47.8 1.9 44.7 -0.4 45.5 2.1 46.7 2.9	REL BETAM 1N OUT 50.5 7.0 46.5 6.0 44.2 2.8 45.9 1.1 46.8 1.2 47.8 1.4 48.2 1.7 47.8 1.9 44.7 -0.4 45.5 2.1 46.7 2.9	TOTAL TEMP IN RATIO 376.5 1.000 370.7 1.001 358.0 0.998 354.0 0.995 354.0 0.993 353.5 0.992 352.4 0.991 344.7 0.994 344.1 1.008 346.4 1.006	TOTAL PRESS IN RATIO 20.02 0.937 20.09 0.944 19.54 0.947 18.87 0.949 18.83 0.949 18.66 0.953 18.48 0.960 18.49 0.958 18.12 0.956 18.37 0.921 18.89 0.883
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 267.7 194.1 270.2 200.1 262.4 189.8 257.4 176.1 255.4 174.1 252.9 173.5 254.1 173.2 254.4 169.5 270.9 171.4 284.0 165.2	REL VEL IN OUT 267.7 194.1 270.2 200.1 262.4 189.8 257.0 176.8 257.4 176.1 252.9 173.5 254.1 173.2 254.4 169.5 270.9 171.4 284.0 165.2	MERID VEL IN OUT 170.4 192.6 186.0 199.0 188.2 189.6 178.7 176.8 176.3 176.0 171.6 174.1 168.4 173.4 170.8 173.1 180.8 169.5 189.9 171.3 194.9 165.0	TANG VEL IN OUT 206.5 23.7 196.0 20.8 182.9 9.4 184.6 3.5 187.5 3.8 189.1 4.1 188.6 5.0 188.1 5.6 179.0 -1.2 193.2 6.2 206.6 8.5	WHEEL SPEED IN OUT 0.
RP 1 254 5 67 8 9 10 11	ABS MACH NO IN OUT 0.723 0.512 0.737 0.533 0.728 0.514 0.715 0.481 0.717 0.479 0.711 0.474 0.705 0.473 0.708 0.472 0.718 0.467 0.771 0.469 0.810 0.450	REL MACH NO IN OUT 0.723 0.512 0.737 0.533 0.728 0.514 0.715 0.481 0.717 0.479 0.711 0.474 0.705 0.473 0.708 0.473 0.708 0.472 0.718 0.467 0.771 0.469 0.810 0.450	MERID MACH NO IN OUT 0.460 0.508 0.530 0.522 0.513 0.498 0.481 0.479 0.478 0.474 0.469 0.473 0.476 0.472 0.510 0.469 0.555 0.450		MERIC PEAK SS VEL R MACH NG 1.130 1.283 1.070 1.223 1.007 1.150 0.989 1.175 1.014 1.186 1.030 1.183 1.014 1.173 0.937 1.122 0.902 1.217 0.847 1.309
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 13.8 10.00 11.4 30.00 10.4 42.50 11.7 45.00 12.4 47.50 13.3 50.00 13.6 52.50 13.0 70.00 8.6 90.00 6.7 95.00 6.9	DENCE DEV SS 7.6 19.8 5.2 17.6 4.2 13.0 5.5 11.0 7.1 11.1 7.4 11.4 6.8 11.5 2.4 8.7 0.7 10.9 0.9 11.8	D-FACT EFF 0.534 0. 0.501 0. 0.504 0. 0.542 0. 0.549 0. 0.542 0. 0.542 0. 0.542 0. 0.542 0. 0.542 0. 0.543 0. 0.553 0.	LOSS COEFF TOT PROF 0.215 0.215 0.183 0.183 0.179 0.176 0.176 0.175 0.165 0.165 0.142 0.142 0.149 0.142 0.152 0.152 0.242 0.242 0.333 0.332	LOSS PARAM TOT PROF 0.081 0.081 0.068 0.068 0.062 0.062 0.053 0.057 0.053 0.053 0.045 0.045 0.047 0.047 0.044 0.044 0.064 0.064

(f) Percent design speed, 90; reading number, 355

					-					
			.00	DETIN	000	057114	TATA	TEMO	TAT	DDECC
	RAD	11	ARS	BETAM	KLL	BETAM	IUIA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN.	OUT	IN	OUT	iN	RATIO	IN	RATIO
						3.8	338.4	0.996	15.81	
1	23.942		31.7	3.8	31.7					0.903
2	23.503	23.538	30.0	1.2	30.0	1.2	335.2	0.997	15.77	0.958
7			31.1	-1.2	31,1	-1.2	331.0	0.999		0.956
3	21.742			-1.2						
4	20.637	20.881	35.3	-2.2	35.3	-2.2	330.5	0.996	15.13	0.976
5	20,417		35.9	-2.7	35.9	-2.7	329.7	0.997	14.94	0.982
9										
ě	20.196	20.480	36.2	-3.0	36. 2	-3.0	329.2	0.997	14.84	0.985
7	19.975	20 279	36.6	-3.1	36.6	-3.1	329.2	0.995	14.77	0.991
8	19.754	20.079	35.8	-3.5	35.8	-3.5	327.5	0.998	14.82	0.987
9	18.227	1R 715	35.0	-3.5	35.0	-3.5	326.9	0.997	15.28	0.973
							330.0			
10	16.530	17.252	38.2	3.9		3.9		1.008	15.96	0.874
11	16.121	16.904	39.6	5.6	39.6	5.6	331.7	1.008	16.45	0.784
	ARC	VEL	RFI	VEL	MERI	D VEL	TAN	G VEL	WHEEL	SPEED
RP	IN	OUT	JN	OUT	IN	OUT	IN	OUT	IN	DUT
1	251.2	216.1	251.2	216.1	213.8	215.6	131.9	14.3	٥.	0.
2	250.3	237.1	250.3	237.1	216.7	237.1	125.3	5.1	٥.	٥.
3	246.3	240.3	246.3	240.3	210.8	240.3	127.3	-5.2	0.	0.
4		243.5	240.2	243.5	195.9	243.3	138.9	-9.2	Ŏ.	õ.
4	240.2									
5	235.3	242.9	235.3	242.9	190.5	242.6	138.1	-11.3	0.	٥.
6	232.3	242.6	232.3	242.6	187.4	242.3	137.3	-12.6	0.	Ó.
0										
7	230.6	244.6	230.6	244.6	185.2	244.3	137.4	-13.3	٥.	0.
8	233.3	246.4	233.3	246.4	189.2	245.9	136.5	-15.1	٥.	٥.
9	250.9	272.6	250.9	272.6	205.6	272.0	143.8	-16.8	٥.	٥.
10	279.0	273.5	279.0	273.5	219.3	272.8	172.4	18.8	0.	٥.
11	287.4	243.3	287.4	243.3	221.4	242.2	183.2	23.7	0.	٥.
	IDC M	NCU NO	מבו א	ACH NO	MEDIN M	LCU NO			MED (A.	
		ACH NO		ACH NO	MERID MA					PEAK SS
RP	ABS M	ACH NO OUT	REL M	ACH NO OUT	MERID MA	ACH NO OUT				
-	IN	OUT	IN	OUT	IN	OUT			VEL R	MACH NO
1	IN 0.715	0UT 0.609	IN 0.715	0UT 0.609	IN 0.609	0UT 0.607			VEL R 1	MACH NO
1 2	IN	OUT	IN	OUT	IN	OUT			VEL R	MACH NO
1 2	IN 0.715 0.716	0.609 0.676	IN 0.715 0.716	0UT 0.609 0.676	IN 0.609 0.620	0.607 0.676			VEL R 1 1.008 1.094	MACH NG 0.781 0.732
1 2	IN 0.715 0.716 0.708	0.609 0.676 0.690	IN 0.715 0.716 0.708	0UT 0.609 0.676 0.690	IN 0.609 0.620 0.606	0.607 0.676 0.690			VEL R 1 1.008 1.094 1.139	MACH NG 0.78: 0.732 0.775
1 2 3 4	IN 0.715 0.716	0.609 0.676 0.690 0.702	IN 0.715 0.716 0.708 0.690	0UT 0.609 0.676 0.690 0.702	IN 0.609 0.620 0.606 0.563	0.01 0.607 0.676 0.690 0.701			VEL R 1 1.008 1.094 1.139 1.242	MACH NG 0.781 0.732
1 2 3 4	IN 0.715 0.716 0.708 0.690	0.609 0.676 0.690 0.702	IN 0.715 0.716 0.708 0.690	0UT 0.609 0.676 0.690 0.702	IN 0.609 0.620 0.606 0.563	0.01 0.607 0.676 0.690 0.701			VEL R 1 1.008 1.094 1.139 1.242	MACH NG 0.78: 0.732 0.775 0.861
1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675	OUT 0.609 0.676 0.690 0.702 0.700	IN 0.715 0.716 0.708 0.690 0.675	0.609 0.676 0.690 0.702 0.700	IN 0.609 0.620 0.606 0.563 0.547	0.07 0.607 0.676 0.690 0.701 0.699			VEL R 1 1.008 1.094 1.139 1.242 1.274	MACH NG 0.78: 0.732 0.775 0.86: 0.854
1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667	OUT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.715 0.716 0.708 0.690 0.675 0.667	0.609 0.676 0.690 0.702 0.700 0.700	1N 0.609 0.620 0.606 0.563 0.547 0.538	0UT 0.607 0.676 0.690 0.701 0.699 0.699			VEL R 1 1.008 1.094 1.139 1.242 1.274 1.293	MACH NG 0.78! 0.732 0.775 0.86! 0.854 0.846
1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667	OUT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.715 0.716 0.708 0.690 0.675 0.667	0.609 0.676 0.690 0.702 0.700	IN 0.609 0.620 0.606 0.563 0.547	0.07 0.607 0.676 0.690 0.701 0.699			VEL R 1 1.008 1.094 1.139 1.242 1.274 1.293	MACH NG 0.78! 0.732 0.775 0.86! 0.854 0.846
1 2 3 4 5 6 7	IN 0.715 0.716 0.708 0.690 0.675 0.667	OUT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.715 0.716 0.708 0.690 0.675 0.667	0UT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531	0UT 0.607 0.676 0.690 0.701 0.699 0.699			VEL R 1 1.008 1.094 1.139 1.242 1.274 1.293 1.319	MACH NG 0.781 0.732 0.775 0.861 0.844 0.844
1 2 3 4 5 6 7 8	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531	0UT 0.607 0.676 0.690 0.701 0.699 0.699 0.706 0.712			VEL R: 1.094 1.139 1.242 1.274 1.295 1.319 1.300	MACH NG 0.78: 0.732 0.775 0.86: 0.854 0.846 0.844
1 2 3 4 5 6 7	IN 0.715 0.716 0.708 0.690 0.675 0.667	OUT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.715 0.716 0.708 0.690 0.675 0.667	0UT 0.609 0.676 0.690 0.702 0.700 0.700	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531	0UT 0.607 0.676 0.690 0.701 0.699 0.699			VEL R 1 1.008 1.094 1.139 1.242 1.274 1.293 1.319	MACH NG 0.781 0.732 0.775 0.861 0.844 0.844
125456789	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728	0UT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798			VEL R: 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.844 0.832
1 2 3 4 5 6 7 8 9	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	0UT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792			VEL R: 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.846 0.887 1.082
125456789	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728	0UT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798			VEL R: 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.844 0.832
1 2 3 4 5 6 7 8 9	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	0UT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792			VEL R: 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.846 0.887 1.082
1 2 3 4 5 6 7 8 9	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	0UT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792			VEL R: 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.846 0.887 1.082
1 2 3 4 5 6 7 8 9	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816	0UT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.722 0.728 0.816	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792 0.692			YEL R 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323 1.244 1.094	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.844 0.832 1.082
1 2 3 4 5 6 7 8 9	IN 0.715 0.716 0.708 0.690 0.675 0.661 0.672 0.728 0.816 0.841	0UT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.722 0.728 0.816	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792 0.692	LOSS C	OEFF	YEL R 1.008 1.094 1.139 1.242 1.274 1.293 1.319 1.300 1.323 1.244 1.094	MACH NS 0.781 0.732 0.775 0.861 0.854 0.846 0.844 0.832 1.082
1 2 3 4 5 6 7 8 9 10	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.715 0.716 0.708 0.697 0.667 0.667 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.700 0.707 0.714 0.800 0.794	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792 0.692	LOSS C		VEL R 1 1.008 1.008 1.134 1.134 1.242 1.274 1.293 1.319 1.323 1.324 1.094	MACH NS 0.78: 0.78: 0.775 0.86: 0.854 0.846 0.846 0.832 1.082 1.156
1 2 3 4 5 6 7 8 9 10 11 RP	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.672 0.728 0.816 0.841 PERCENT SPAN	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695	N 0.715 0.716 0.708 0.690 0.675 0.661 0.672 0.728 0.841 DENCE SS	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.641 0.648	0UT 0.607 0.697 0.699 0.701 0.699 0.702 0.712 0.798 0.792 0.692	TOT	PR0F	VEL R 1.098 1.098 1.139 1.242 1.274 1.295 1.319 1.323 1.244 1.094	MACH NS 0.78: 0.78: 0.775 0.86: 0.854 0.846 0.846 0.832 1.082 1.156
1 2 3 4 5 6 7 8 9 10 11 RP	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695	IN 0.715 0.716 0.708 0.697 0.667 0.667 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.609 0.620 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641	0UT 0.607 0.676 0.690 0.701 0.699 0.706 0.712 0.798 0.792 0.692			VEL R 1 1.008 1.008 1.134 1.134 1.242 1.274 1.293 1.319 1.323 1.324 1.094	MACH NS 0.78: 0.78: 0.775 0.86: 0.854 0.846 0.846 0.832 1.082 1.156
1 2 3 4 5 6 7 8 9 10 11 RP 1	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.841 PERCENT SPAN 5.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.805 INCI MEAN -5.0	IN 0.715 0.716 0.706 0.690 0.675 0.667 0.661 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648	0UT 0.607 0.676 0.696 0.701 0.699 0.706 0.712 0.792 0.792 0.692	TOT 0.337	PROF 0.337	VEL R: 1.098 1.094 1.139 1.242 1.274 1.295 1.319 1.303 1.323 1.244 1.094 LOSS PTOT 0.128	MACH NS 0.78: 0.778: 0.775 0.854 0.854 0.846 0.846 0.832 1.156 ARAM PROF 0.128
1 2 3 4 5 6 7 8 9 10 11 RP 1	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.841 PERCENT SPAN 5.00 10.00	OUT 0.609 0.676 0.696 0.702 0.700 0.707 0.714 0.809 0.794 0.695	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.816 0.841 DENCE SS -11.2 -11.3	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648	0UT 0.607 0.676 0.696 0.701 0.699 0.706 0.712 0.792 0.692 EFF	TOT 0.337 0.144	PROF 0.337 0.144	VEL R 1.008 1.008 1.008 1.039 1.242 1.274 1.293 1.319 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053	MACH NS 0.78: 0.775: 0.86: 0.854: 0.844: 0.832: 0.887: 1.086: PROF PROF 0.128: 0.053
1 2 3 4 5 6 7 8 9 10 11 RP 1	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.841 PERCENT SPAN 5.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.805 INCI MEAN -5.0	IN 0.715 0.716 0.706 0.690 0.675 0.667 0.661 0.672 0.728 0.816 0.841	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648 D-FACT	0UT 0.607 0.676 0.696 0.701 0.699 0.706 0.712 0.792 0.792 0.692	TOT 0.337 0.144 0.154	PROF 0.337 0.144 0.154	VEL R 1.038 1.038 1.038 1.359 1.242 1.274 1.235 1.319 1.325 1.244 1.094 LOSS P TOT 0.128 0.053 0.053	MACH NS 0.78: 0.78: 0.775 0.86: 0.854 0.844 0.844 0.844 1.082 1.156 PROF 0.128 0.053
1 23 4 5 6 7 8 9 10 11 RP 1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1	N 0.715 0.716 0.708 0.690 0.675 0.667 0.672 0.728 0.816 0.841 DENCE SS -11.3 -8.9	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648 D-FACT	0UT 0.607 0.676 0.690 0.701 0.699 0.705 0.712 0.798 0.792 0.692 EFF 0. 0. 0.	TOT 0.337 0.144 0.154	PROF 0.337 0.144 0.154	VEL R 1.038 1.038 1.038 1.359 1.242 1.274 1.235 1.319 1.325 1.244 1.094 LOSS P TOT 0.128 0.053 0.053	MACH NS 0.78: 0.78: 0.775 0.86: 0.854 0.844 0.844 0.844 1.082 1.156 PROF 0.128 0.053
1 23 4 5 6 7 8 9 10 11 RP 1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.672 0.816 0.841 PERCENT SPAN 5.00 10.00 42.50	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 -2.7	N 0.715 0.716 0.708 0.699 0.675 0.667 0.667 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.626 0.563 0.547 0.538 0.531 0.641 0.648 D-FACT 0.317 0.231 0.209 0.187	OUT 0.607 0.676 0.690 0.701 0.699 0.702 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088	PROF 0.337 0.144 0.154 0.088	VEL R 1.098 1.098 1.139 1.242 1.274 1.295 1.319 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029	MACH NS 0.78: 0.78: 0.775: 0.854 0.854 0.846 0.832 1.156 PROF 0.128 0.053 0.029
1 23 4 5 6 7 8 9 10 11 RP 1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -5.1 -4.6	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.794 0.695 DEV 16.6 12.9 8.9 7.7	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.641 0.648 D-FACT 0.317 0.209 0.187 0.173	OUT 0.607 0.676 0.697 0.699 0.701 0.699 0.702 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068	PROF 0.337 0.144 0.154 0.088 0.068	VEL R 1.098 1.098 1.139 1.242 1.274 1.295 1.319 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029 0.022	MACH NS 0.78: 0.78: 0.775: 0.854 0.854 0.846 0.832 1.156 PROF 0.128 0.053 0.053 0.022
1 23 4 5 6 7 8 9 10 11 RP 1 2 3 4	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.811 SPAN 5.00 10.00 42.50 45.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.717 0.718 0.695 INCI MEAN -5.0 -5.1 -2.7	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -5.1 -4.6	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.794 0.695 DEV 16.6 12.9 8.9 7.7	IN 0.609 0.606 0.563 0.547 0.538 0.531 0.545 0.641 0.648 D-FACT 0.317 0.209 0.187 0.173	OUT 0.607 0.676 0.697 0.699 0.701 0.699 0.702 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068	PROF 0.337 0.144 0.154 0.088 0.068	VEL R 1.098 1.098 1.139 1.242 1.274 1.295 1.319 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029 0.022	MACH NS 0.78: 0.78: 0.775: 0.854 0.854 0.846 0.832 1.156 PROF 0.128 0.053 0.053 0.022
123456789011 R123456	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.661 0.672 0.728 0.841 PERCENT SPAN 5.00 10.00 30.00 42.50 45.50	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 -2.7	N 0.715 0.716 0.706 0.690 0.675 0.667 0.661 0.672 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -5.16 -4.4	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.626 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648 D-FACT 0.231 0.209 0.187 0.162	0UT 0.607 0.676 0.696 0.701 0.699 0.706 0.712 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057	PROF 0.337 0.144 0.154 0.088 0.068 0.057	VEL R 1 1.008 1.008 1.008 1.039 1.242 1.274 1.203 1.319 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029 0.022 0.018	MACH NS 0.78: 0.78: 0.7755 0.86: 0.854 0.844 0.832 0.887 1.086 1.055 0.053 0.053 0.053 0.022 0.018
123456789011 R1234567	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00 42.50 45.00 45.50 45.00 50.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 -2.7 1.6 1.6	N 0.715 0.716 0.708 0.690 0.675 0.667 0.672 0.728 0.816 0.841 DENCE SS -11.3 -8.9 -5.1 -4.6 -4.3	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.606 0.563 0.547 0.531 0.558 0.597 0.641 0.648 D-FACT 0.231 0.209 0.187 0.173, 0.162 0.145	OUT 0.607 0.676 0.699 0.701 0.699 0.702 0.712 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057 0.035	PROF 0.337 0.144 0.154 0.088 0.068 0.057 0.035	VEL R 1.038 1.038 1.038 1.359 1.242 1.274 1.239 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.029 0.022 0.018 0.011	MACH NS 0.78: 0.78: 0.735 0.86: 0.854 0.8844 0.883 1.086 0.887 1.082 0.053 0.053 0.022 0.028 0.011
123456789011 R1234567	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00 42.50 45.00 45.50 45.00 50.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 -2.7 1.6 1.6	N 0.715 0.716 0.706 0.690 0.675 0.667 0.661 0.672 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -5.16 -4.4	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV	IN 0.609 0.626 0.563 0.547 0.538 0.531 0.545 0.597 0.641 0.648 D-FACT 0.231 0.209 0.187 0.162	0UT 0.607 0.676 0.696 0.701 0.699 0.706 0.712 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057	PROF 0.337 0.144 0.154 0.088 0.068 0.057	VEL R 1 1.008 1.008 1.008 1.039 1.242 1.274 1.203 1.319 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029 0.022 0.018	MACH NS 0.78: 0.78: 0.7755 0.86: 0.854 0.844 0.832 0.887 1.086 1.055 0.053 0.053 0.053 0.022 0.018
1233456789011 R12345678	IN 5.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00 47.50 45.00 47.50 50.50 50.50	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 1.8 1.8 1.9	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -5.1 -4.6 -4.4 -4.3	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV 16.6 12.9 7.7 7.1 6.8 6.2	IN 0.609 0.606 0.563 0.547 0.538 0.597 0.641 0.648 D-FACT 0.317 0.231 0.231 0.239 0.187 0.173, 0.164 0.145	OUT 0.607 0.676 0.699 0.701 0.699 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057 0.035	PROF 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049	VEL R 1.038 1.038 1.038 1.242 1.274 1.293 1.319 1.300 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.029 0.022 0.018 0.011 0.015	MACH NS 0.78: 0.78: 0.785: 0.854 0.854 0.846 0.832 1.156 PROF 0.053 0.022 0.011 0.015
125456789011 P125456789	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.816 0.841 SPAN 5.00 10.00 42.50 47.50 50.00 50.00 50.00 70.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695 INCI MEAN -5.0 -5.1 1.8 1.8 1.9	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.841 DENCE SS -11.2 -11.3 -8.9 -4.4 -4.3 -7.3	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695 DEV 16.6 12.9 7.7 7.1 6.8 6.6 6.2 5.6	IN 0.609 0.626 0.563 0.547 0.558 0.531 0.545 0.597 0.641 0.648 D-FACT 0.317 0.209 0.187 0.162 0.145 0.147 0.098	OUT 0.607 0.676 0.697 0.676 0.699 0.701 0.699 0.702 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049	PROF 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049 0.091	VEL R 1.098 1.094 1.139 1.242 1.274 1.295 1.310 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.029 0.022 0.018 0.011 0.015 0.026	MACH NS 0.78: 0.78: 0.78: 0.864 0.854 0.854 0.832 1.156 PROF 0.123 0.053 0.022 0.018 0.015 0.015
1233456789011 R12345678	IN 5.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 PERCENT SPAN 5.00 47.50 45.00 47.50 50.50 50.50	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 INCI MEAN -5.0 -5.1 1.8 1.8 1.9	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.841 DENCE SS -11.2 -11.3 -8.9 -4.4 -4.3 -7.3	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.800 0.794 0.695 DEV 16.6 12.9 7.7 7.1 6.8 6.2	IN 0.609 0.606 0.563 0.547 0.538 0.597 0.641 0.648 D-FACT 0.317 0.231 0.231 0.239 0.187 0.173, 0.164 0.145	OUT 0.607 0.676 0.699 0.701 0.699 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049 0.091	PROF 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049 0.091 0.357	VEL R 1.098 1.094 1.139 1.242 1.274 1.295 1.319 1.303 1.244 1.094 LOSS P TOT 0.128 0.053 0.053 0.029 0.022 0.018 0.011 0.015 0.094	MACH NS 0.78: 0.78: 0.854 0.854 0.854 0.846 0.8387 1.085 0.055 0.053 0.022 0.011 0.015 0.094
125456789011 P125456789	IN 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.672 0.816 0.841 SPAN 5.00 10.00 42.50 47.50 50.00 50.00 50.00 70.00	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695 INCI MEAN -5.0 -5.1 1.8 1.8 1.9	N 0.715 0.716 0.708 0.690 0.675 0.667 0.667 0.728 0.816 0.841 DENCE SS -11.2 -11.3 -8.9 -4.4 -4.3 -7.3 -6.7	OUT 0.609 0.676 0.690 0.702 0.700 0.707 0.714 0.695 DEV 16.6 12.9 7.7 7.1 6.8 6.6 6.2 5.6	IN 0.609 0.626 0.563 0.547 0.558 0.531 0.545 0.597 0.641 0.648 D-FACT 0.317 0.209 0.187 0.162 0.145 0.147 0.098	OUT 0.607 0.676 0.697 0.676 0.699 0.701 0.699 0.702 0.798 0.792 0.692 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TOT 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049	PROF 0.337 0.144 0.154 0.088 0.068 0.057 0.035 0.049 0.091	VEL R 1.098 1.094 1.139 1.242 1.274 1.295 1.310 1.323 1.244 1.094 LOSS P TOT 0.128 0.053 0.029 0.022 0.018 0.011 0.015 0.026	MACH NS 0.78: 0.78: 0.78: 0.864 0.854 0.854 0.832 1.156 PROF 0.123 0.053 0.022 0.018 0.015 0.015

FOR STATOR 10

(g) Percent design speed, 90; reading number, 356

	ν.	B, - 0- 0		-6г-	,,		0	,		
RP 1 2 3 4 5 6 7 8 9 10 11	23.503 21.742 20.637 20.417 20.196 19.975 19.754 18.227 16.530	0UT 23.945 23.538 21.900 20.881 20.681	1N 34.3 32.4 33.0 36.3 37.0 37.6 38.0	BETAM OUT 5.0 3.1 -0.3 0.0 -0.4 -0.8 -1.4 -2.5 2.3	IN 34.3 32.4 33.0 36.3 37.0 37.6 38.0	BETAM OUT 5.0 3.1 -0.3 0.0 -0.4 -0.8 -1.4 -2.5 2.3 3.4	[N 341,1 337,5 332,8 331,5 331,5 332,1 330,9 329,7 328,1 331,8	L TEMP RATIO 0.995 0.997 0.999 0.997 0.995 0.995 0.997 1.004	16.16 0.16.17 0.15.98 0.15.50 0.15.33	AT10 .938 .965 .973 .984 .980 .987 .989 .989
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 246.9 247.0 243.7 237.8 237.8 233.8 231.3 234.5 245.3 273.0 285.2	VEL 0UT 197.7 211.2 214.6 212.6 210.7 210.7 210.8 211.0 224.7 234.4 221.8	REL 1N 246.9 247.0 243.7 237.8 237.8 233.8 231.3 234.5 245.3 273.0 285.2	VEL 0UT 197.7 211.2 214.6 212.6 210.7 210.8 211.0 224.7 234.4 221.8	IN 204.0 208.6 204.3 191.6 189.3 185.3 182.2 185.8 196.6	0 VEL 0UT 197.0 210.9 214.6 212.6 210.7 210.6 210.8 210.9 224.5 234.2 221.4	[N	G VEL 0UT 17.1 11.3 -1.3 -1.3 -1.4 -1.3 -1.4 -1.3 -1.4 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	WHEEL SF IN (0)	TUC
R 1 25 4 5 67 8 9 11	IN 0.699 0.703 0.698 0.681 0.679 0.668 0.661 0.673 0.709 0.793	0.601/ 0.645/ 0.669/		0UT 0.551 0.594 0.608 0.604 0.598 0.598 0.599 0.645	MERID MI (N 0.577 0.594 0.585 0.549 0.530 0.531 0.533 0.568 0.606	0.549 0.549 0.593 0.694 0.598 0.598 0.599 0.601 0.644	. 3		MERID PEA VEL R MAG 0.966 0. 1.011 0. 1.110 0. 1.113 0. 1.157 0. 1.157 0. 1.142 0. 1.124 1.	K SS
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	1NC MEAN -2.4 -2.8 -0.8 -2.1	7. SS // -8.6 -9.0 -7.0 -4.1 -3.6 -3.1 -2.8 -3.4	17.7 14.8 9.9 9.4 9.0 8.9 8.3 6.6	D-FACT 0.387 0.327 0.308 0.299 0.307 0.297 0.287 0.267 0.267 0.298 0.380	0. 0. 0. 0. 0.	LOSS C TOT 0.224 0.123 0.098 0.060 0.074 0.051 0.042 0.068 0.084 0.226 0.398	PROF 0.224 0.123 0.098 0.060 0.074 0.051 0.042 0.068	0.085 0.046 0.034 0.020 0.024 0.015 0.013 0.021 0.024 0.059 0.059	ROF .085 .046 .034 .020 .024 .016 .013

FOR STATOR 10

(h) Percent design speed, 90; reading number, 357

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 39.8 6.3 37.4 4.4 37.1 1.4 39.1 1.2 39.8 0.5 40.9 0.5 41.5 0.2 41.1 -0.2 40.0 -1.7 42.7 1.9		348.2 0.993 343.7 0.996 337.1 1.000 335.2 0.998 335.1 0.997 335.9 0.994 335.4 0.992 334.0 0.994 330.0 0.997 332.6 1.004	16.96 0.945 16.83 0.970 16.64 0.973 16.26 0.976 16.24 0.972 16.17 0.972 15.94 0.982 16.01 0.978 15.80 0.978 16.40 0.938
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 245.1 185.8 242.9 194.6 239.3 194.9 238.0 191.2 238.1 190.1 237.5 188.0 232.3 188.1 234.8 186.5 236.9 192.4 263.3 206.1 275.5 197.8	REL VEL IN OUT 245.1 185.8 242.9 194.6 259.3 194.9 238.0 191.2 258.1 190.1 237.5 188.0 232.3 188.1 254.8 186.5 236.9 192.4 263.3 206.1 275.5 197.8	188.2 184.7 192.9 194.0 191.0 194.9 184.8 191.2 182.9 190.1 179.6 188.0 173.9 188.1 176.8 186.5 181.5 192.3 193.6 206.0	TANG VEL IN OUT 156.9 20.5 147.5 15.1 144.3 4.7 149.9 3.9 152.5 1.8 155.3 1.6 153.9 0.6 154.4 -0.6 152.3 -5.6 178.5 6.9 193.6 11.6	3.
RP 1 2334 5 67 8 9 1 1 1	ABS MACH NO IN OUT 0.685 0.512 0.683 0.540 0.545 0.678 0.536 0.678 0.533 0.675 0.528 0.660 0.528 0.669 0.525 0.680 0.545 0.761 0.581 0.797 0.555	REL MACH NO IN OUT 0.685 0.512 0.683 0.540 0.545 0.678 0.533 0.675 0.528 0.660 0.528 0.660 0.525 0.680 0.545 0.761 0.581 0.797 0.555	MERID MACH NO IN OUT 0.526 0.508 0.543 0.538 0.545 0.526 0.536 0.521 0.533 0.511 0.528 0.494 0.528 0.504 0.525 0.521 0.564 0.560 0.581 0.567 0.554		MERIO PEAK SS VEL R MACH NO 0.981 0.967 1.006 0.921 1.020 0.937 1.039 0.952 1.047 0.968 1.081 0.957 1.055 0.957 1.064 1.128 1.008 1.233
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 3.1 10.00 2.3 30.00 3.3 42.50 4.9 45.00 5.5 47.50 6.4 50.00 6.9 52.50 6.3	-3.1 19.1 -3.9 16.1 -2.9 11.6 -1.3 11.0 -0.7 10.3 0.2 10.2 0.7 9.9	0.596 0. 0.406 0. 0.414 0.	LOSS COEFF TOT PROF 0.202 0.202 0.111 0.111 0.100 0.100 0.090 0.090 0.106 0.106 0.105 0.105 0.072 0.072 0.106 0.106 0.081 0.081 0.196 0.196 0.330 0.330	LOSS PARAM TOT PROF 0.076 0.076 0.041 0.041 0.035 0.035 0.030 0.030 0.034 0.034 0.023 0.023 0.033 0.023

(i) Percent design speed, 90; reading number, 358

	•	•		•	, ,		-	•		
RP 1 2 3 4 5 6 7	RAD IN 23.942 23.503 21.742 20.637 20.417 20.196 19.975	0UT 23.945 23.538 21.900 20.881 20.681 20.480	1N 45.5 42.4 41.0 41.9 42.8 44.0 44.5	BETAM OUT 6.6 5.2 1.9 1.6 1.2	REL IN 45.5 42.4 41.0 41.9 42.8 44.0	BETAM OUT -6.6 5.2 1.9 1.6 1.2 1.1	TOTA IN 353.9 348.9 340.1 338.0 338.4 338.5 338.7	L TEMP RAT10 0.994 0.996 1.000 0.997 0.995 0.992 0.989	IN 17.33	PRESS RATIO 0.951 0.965 0.973 0.968 0.962 0.961 0.970
8 9	19.754 18.227		44.1 42.8	0.3 -1.2	44.1 42.8	0.3	336.1 331.6	0.994 0.997	16.39 16.06	0.968
10 11	16.530 16.121		44.8 46.6	2.0 3.7	44.8 46.6		333.6 336.2	1.003	16.53 17.18	0.938
R₽	ABS IN	VEL OUT	REL IN	VEL OUT	MERI IN	D VEL	TAN IN	G VEL	WHEEL IN	SPEED OUT
1	240.2	177.0	240.2	177.0	168.5	175.8	171.2	20.2	0.	0.
2	241.7 235.8	186.7 182.5	241.7 235.8	186.7 182.5	178.6 178.0	185.9 182.4	162.9 154.6	17.0 6.0	0. Q.	0. 0.
4 5 6	236.6 237.7	176.9 175.3	236.6 237.7	176.9 175.3	176.1 174.4	176.9 175.3	158.1 161.6	4.9 3.7	0. 0.	0. 0.
7	236.4. 231.7	172.8 171.4	236.4 231.7	172.8 171.4	170.0 165.4	172.8 171.4	164.2 162.3	3.3 1.9	0. 0.	0. 0.
8 9	231.2 230.1	169.6 170.2	231.2	169.6 170.2	166.1 168.9	169.6 170.2	160.8 156.3	1.0 -3.5	0. 0.	0.
10 11	254.0 269.8	181.3 175.6	254.0 269.8	181.3 175.6	180.3 185.3	181.2 175.3	179.0 196.1	6.4	0. 0.	0.
										• • •
ŖР	ABS M	ACH NO OUT	REL M	ACH. NO	MERID MA	ACH NO			MERID F	
1	IN 0.664	0UT 0.482	IN 0.664	0UT 0.482	IN 0.466	0UT 0.478			VEL R :	SACH NO 1.066
1	IN 0.664 0.674 0.665	0.482 0.513 0.506	IN 0.664 0.674 0.665	0.482 0.513 0.506	IN 0.466 0.498 0.502	0.478 0.510 0.506			VEL R 1 1.044 1.041 1.024	1.066 1.024 1.979
1 2 3 4	IN 0.664 0.674 0.665 0.670 0.673	0.482 0.513 0.506 0.492 0.488	IN 0.664 0.674 0.665 0.670 0.673	0.482 0.513 0.506 0.492 0.488	IN 0.466 0.498 0.502 0.499 0.494	0.478 0.510 0.506 0.492 0.488			VEL R 1 1.044 1.041 1.024 1.005	1.066 1.066 1.024 0.979 0.993
1 2 3 4 5 6 7	IN 0.664 0.674 0.665 0.670	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654	OUT 0.482 0.513 0.506 0.492 0.488 0.481 0.478	1N 0.466 0.498 0.502 0.499 0.494 0.481 0.467	OUT 0.478 0.510 0.506 0.492 0.488 0.481 0.478			VEL R 1 1.044 1.041 1.024 1.005	1.066 1.024 1.979 0.979
1 2 3 4 5 6 7 8	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654 0.656	0.482 0.513 0.506 0.492 0.488 0.481 0.478	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654	0.482 0.513 0.506 0.492 0.488 0.481 0.478	1N 0.466 0.498 0.502 0.499 0.494 0.481 0.467	0.478 0.510 0.506 0.492 0.488 0.481			VEL R 1.044 1.044 1.024 1.005 1.005 1.016 1.036 1.021	7ACH NO 1.066 1.024 0.979 0.993 1.014 1.031 1.015
1 2 3 4 5 6 7 8 9 10	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.656 0.657	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473 0.478	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654 0.656 0.657	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473 0.478	1N 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471 0.482 0.518	0UT 0.478 0.510 0.506 0.492 0.488 0.481 0.478 0.473 0.478			VEL R 1.044 1.041 1.024 1.005 1.005 1.016 1.036 1.021 1.008	1.066 1.066 1.024 0.979 0.993 1.014 1.031 1.015 1.004 0.984 1.135
125456789	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654 0.656	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473	IN 0.664 0.674 0.665 0.670 0.673 0.669 0.654 0.656	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473	1N 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471	OUT 0.478 0.510 0.506 0.492 0.488 0.481 0.478 0.473			VEL R 1.044 1.041 1.024 1.005 1.005 1.016 1.036 1.021	7ACH NO 1.066 1.024 0.979 0.993 1.014 1.015 1.004 0.984
1 2 3 4 5 6 7 8 9 10 11	IN 0.664 0.674 0.675 0.670 0.673 0.669 0.656 0.657 0.730 0.777	0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473 0.478 0.507 0.489	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.656 0.657 0.730 0.777	0UT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473 0.478	1N 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471 0.482 0.518	0UT 0.478 0.510 0.506 0.492 0.488 0.478 0.478 0.478 0.507 0.488	LOSS C		VEL R 1.044 1.044 1.025 1.005 1.016 1.036 1.008 1.005 0.946	1.066 1.024 1.979 0.993 1.014 1.031 1.015 1.004 0.984 1.135 1.255
23345567891011	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.656 0.657 0.730 0.777 PERCENT SPAN 5.00	OUT 0.482 0.513 0.506 0.492 0.488 0.478 0.478 0.507 0.489 INCI MEAN 8.8	IN 0.664 0.665 0.675 0.673 0.669 0.654 0.656 0.777 DENCE SS 2.6	OUT 0.482 0.513 0.506 0.492 0.488 0.478 0.478 0.478 0.507 0.489	IN 0.466 0.496 0.502 0.499 0.494 0.481 0.467 0.471 0.518 0.534 D-FACT 0.501	OUT 0.478 0.516 0.506 0.492 0.488 0.478 0.478 0.478 0.507 0.488	TOT 0.192	PROF 0.192	VEL R 1,044 1,044 1,025 1,005 1,005 1,016 1,036 1,021 1,008 1,005 0,946	1.066 1.024 0.979 0.993 1.014 1.031 1.015 1.094 1.135 1.255 ARAM PROF 0.072
23345567891011	IN 0.664 0.674 0.665 0.670 0.673 0.654 0.656 0.777 PERCENT SPAN 5.00 30.00	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.473 0.478 0.507 0.489 INC! MEAN 8.8 7.2	IN 0.664 0.674 0.665 0.673 0.669 0.655 0.777 DENCE SS 2.6 1.0	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.473 0.478 0.507 0.489 DEV	IN 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471 0.482 0.518 0.534 D-FACT 0.501 0.452 0.443	OUT 0.478 0.516 0.506 0.492 0.488 0.473 0.478 0.473 0.478 0.507 0.488	TOT 0.192 0.133 0.107	PROF 0.192 0.133 0.107	VEL R 1,944 1,944 1,044 1,005 1,005 1,016 1,016 1,008 1,005 0,946 LOSS P TOT 0,072 0,049 0,037	ACH NO 1.066 1.029 1.079 0.993 1.014 1.031 1.015 0.984 1.135 1.255 ARAM PROF 0.072 0.049 0.037
123456789101 RP12345	IN 0.664 0.674 0.665 0.673 0.654 0.656 0.657 0.777 PERCENT SPAN 5.00 10.00	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.478 0.507 0.489 INCI MEAN 8.8 7.2 7.2	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.656 0.657 0.777 DENCE SS 2.6 1.0	OUT 0.482 0.513 0.506 0.492 0.488 0.481 0.478 0.473 0.473 0.507 0.489 DEV	IN 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471 0.482 0.534 D-FACT 0.501 0.452	OUT 0.478 0.516 0.506 0.492 0.488 0.473 0.478 0.507 0.488 EFF	TOT 0.192 0.133	PROF 0.192 0.133	VEL R 1,044 1,044 1,024 1,005 1,005 1,005 1,006 1,005 0,946 LOSS P TOT 0,072 0,049	ACH NO 1.066 1.027 1.027 0.979 0.993 1.015 1.015 1.015 1.054 0.984 1.135 1.255 ARAM PROF 0.072 0.049
234567-89011 P125456	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.656 0.730 0.777 PERCENT SPAN 5.00 10.00 30.00 42.50 47.50	OUT 0.482 0.513 0.506 0.492 0.488 0.478 0.473 0.507 0.489 INCI MEAN 8.8 7.2 7.7 9.5	IN 0.664 0.665 0.670 0.673 0.669 0.654 0.656 0.777 DENCE SS 2.6 1.0 1.5 2.3 3.3	OUT 0.482 0.513 0.506 0.492 0.488 0.478 0.478 0.507 0.489 DEV 19.3 16.9 12.1 11.4 11.0	IN 0.466 0.496 0.502 0.494 0.481 0.467 0.471 0.518 0.534 D-FACT 0.501 0.452 0.463 0.463 0.466 0.486	OUT 0.478 0.516 0.506 0.492 0.488 0.478 0.478 0.507 0.488 EFF 0. 0. 0.	TOT 0.192 0.133 0.107 0.125 0.146 0.150	PROF 0.192 0.133 0.107 0.125 0.146 0.150	VEL R 1,044 1,044 1,005 1,005 1,005 1,006 1,006 1,006 1,007 0,049 0,037 0,041 0,047	ACH NO 1.066 1.029 1.029 1.015 1.015 1.015 1.015 1.055 ARAM PROF 0.047 0.047 0.048
123456789011 RP12345678	IN 0.664 0.674 0.665 0.670 0.656 0.656 0.657 0.777 PERCENT SPAN 5.00 10.00 42.50 45.00 52.50	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.478 0.507 0.489 INCI MEAN 8.8 7.2 7.7 8.5 9.5 9.8	IN 0.664 0.667 0.667 0.667 0.667 0.654 0.656 0.657 0.730 0.777 DENCE SS 2.6 1.0 1.5 2.3 3.3 3.6 3.1	OUT 0.482 0.516 0.492 0.488 0.473 0.478 0.507 0.489 DEV 19.3 16.9 12.1 11.4 11.0 10.0	IN 0.466 0.498 0.502 0.499 0.494 0.481 0.467 0.471 0.482 0.518 0.534 D-FACT 0.501 0.463 0.463 0.463 0.463 0.478 0.482	OUT 0.478 0.516 0.506 0.492 0.488 0.473 0.478 0.507 0.488 EFF 0. 0. 0. 0.	TQT 0.192 0.133 0.107 0.125 0.146 0.150 0.120	PROF 0.192 0.133 0.107 0.125 0.146 0.150 0.120 0.127	VEL R 1,944 1,944 1,041 1,021 1,005 1,016 1,036 1,005 0,946 LOSS P TOT 0,072 0,041 0,047 0,047 0,048 0,038	ACH NO 1.066 1.029 1.079 0.993 1.014 1.015 1.015 0.984 1.135 1.255 ARAM PROF 0.072 0.047 0.047 0.047
1234567 890111 RP1234567	IN 0.664 0.667 0.673 0.669 0.654 0.657 0.777 PERCENT SPAN 50.00 42.50 45.00 45	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.478 0.507 0.489 INCI MEAN 8.8 7.2 7.7 8.5 9.8	IN 0.664 0.674 0.665 0.673 0.669 0.654 0.556 0.657 0.730 0.777 DENCE SS 2.6 1.0 1.5 2.3 3.6	OUT 0.482 0.513 0.506 0.492 0.488 0.473 0.473 0.478 0.507 0.489 DEV 19.3 16.9 12.1 11.4 11.0 10.9	IN 0.466 0.496 0.502 0.494 0.481 0.467 0.471 0.518 0.534 D-FACT 0.501 0.452 0.463 0.478 0.486 0.478 0.486 0.478 0.485 0.461	OUT 0.478 0.516 0.506 0.492 0.488 0.473 0.478 0.507 0.488 EFF 0. 0. 0.	TOT 0.192 0.133 0.107 0.125 0.146 0.150 0.120	PROF 0.192 0.133 0.107 0.125 0.146 0.150 0.120	VEL R 1,044 1,044 1,005 1,005 1,005 1,006 1,036 1,005 0,946 LOSS P TOT 0,072 0,049 0,037 0,041 0,047 0,048 0,038	ACH NO 1.066 1.079 1.093 1.014 1.031 1.004 0.984 1.135 1.255 ARAM PROF 0.072 0.049 0.037 0.047 0.048

(j) Percent design speed, 90; reading number, 359

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM IN OUT 52.6 7.5 46.9 5.8 43.2 2.1 43.9 2.1 45.0 1.8 46.2 1.3 46.2 1.1 45.0 -1.0 46.3 2.1 47.8 3.6	46.9 5.8 43.2 2.1 43.9 2.1 45.0 1.8 46.2 1.5 46.6 1.3 46.2 1.1 45.0 -1.0 46.3 2.1	TOTAL TEMP IN RATIO 361.4 0.991 353.8 0.998 342.9 0.998 340.1 0.997 340.4 0.994 340.9 0.990 339.3 0.992 338.3 0.993 332.9 0.996 334.1 1.003 336.9 1.000	TOTAL PRESS IN RATIO 17.61 0.941 17.54 0.959 17.23 0.965 17.01 0.959 16.96 0.957 16.87 0.956 16.62 0.964 16.58 0.963 16.20 0.966 16.71 0.928 17.24 0.889
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 240.0 170.6 238.7 178.1 234.7 173.7 235.4 167.4 235.4 165.3 234.6 163.3 229.3 160.6 229.3 159.2 226.8 155.8 250.0 163.6 264.6 158.8	REL VEL IN OUT 240.0 170.6 238.7 178.1 234.7 173.7 235.6 167.4 235.4 165.3 229.3 160.6 229.3 159.2 226.8 155.8 250.0 163.6 264.6 158.8	MERID VEL IN OUT 145.7 169.1 163.0 177.2 171.0 173.6 169.9 167.2 162.4 163.2 157.5 160.6 158.7 159.2 160.4 155.8 172.8 163.5 177.7 158.5	TANG VEL IN OUT 190.8 22.1 174.3 17.9 160.7 6.4 163.2 6.0 166.3 5.3 169.3 4.3 166.6 3.7 165.5 3.0 160.3 -2.7 180.6 6.1 196.1 10.0	WHEEL SPEED IN OUT 0.
RP 1 234567-89111	ABS MACH NO IN OUT 0.657 0.459 0.660 0.484 0.659 0.479 0.665 0.463 0.664 0.458 0.661 0.452 0.647 0.445 0.648 0.442 0.645 0.435 0.716 0.455 0.760 0.440	REL MACH NO IN OUT 0.657 0.459 0.660 0.484 0.659 0.479 0.665 0.463 0.664 0.458 0.661 0.452 0.647 0.445 0.648 0.442 0.645 0.435 0.716 0.455 0.760 0.440	MERID MACH NO IN OUT 0.398 0.455 0.451 0.481 0.480 0.479 0.479 0.463 0.470 0.457 0.458 0.452 0.444 0.445 0.448 0.441 0.456 0.435 0.495 0.455 0.510 0.439		MERIO PEAK SS VEL R MACH NO 1.161 1.214 1.087 1.105 1.015 1.020 0.985 1.029 0.992 1.049 1.005 1.067 1.019 1.050 1.013 1.038 0.971 1.015 0.947 1.150 0.892 1.257
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 15.9 10.00 11.8 30.00 9.4 42.50 9.7 45.00 10.6 47.50 11.7 50.00 12.0 52.50 11.4 70.00 8.9 90.00 7.5 95.00 8.0	DENCE SS 9.7 20.2 5.6 17.4 3.2 12.3 3.5 11.9 4.4 11.6 5.5 11.0 5.2 10.8 2.7 8.1 1.4 11.0 2.0 12.4	D-FACT EFF 0.556 0. 0.498 0. 0.485 0. 0.507 0. 0.518 0. 0.528 0. 0.523 0. 0.527 0. 0.519 0. 0.525 0. 0.576 0.	LOSS COEFF TOT PROF 0.234 0.234 0.162 0.162 0.139 0.139 0.161 0.161 0.170 0.170 0.173 0.173 0.148 0.148 0.150 0.150 0.137 0.137 0.249 0.249 0.349 0.349	LOSS PARAM TOT PROF 0.088 0.088 0.060 0.060 0.048 0.048 0.053 0.053 0.055 0.055 0.056 0.056 0.047 0.047 0.047 0.047 0.040 0.040 0.066 0.066 0.089 0.089

(k) Percent design speed, 80; reading number, 364

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.942 23.503 21.742 20.637 20.417 20.196 19.975 19.754 18.227 16.530 16.121	OUT 23.945 23.538 21.900 20.881 20.681 20.480 20.279 20.079 18.715 17.252		BETAM OUT 8.3 6.2 2.0 1.3 1.0 1.1 1.2 0.0 2.1		BETAM OUT 8.3 6.2 2.0 1.3 1.0 1.1 1.2 0.0 2.1 4.1	TOTAL IN 344.7 338.1 329.0 327.7 326.7 327.3 327.1 326.6 323.1 323.9 325.4	TEMP RATIO 0.998 0.998 0.995 0.994 0.995 0.994 0.995 1.000	TOTAL IN 15.43 14.91 14.81 14.74 14.61 14.56 14.56 14.57	0.979 0.981 0.984 0.982 0.946
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 1N 212.4 209.8 199.2 200.6 198.7 195.5 195.4 195.5 204.6 225.6	VEL OUT 151.5 157.1 145.7 140.3 140.2 140.3 152.4 157.1 151.7	REL 1N 212.4 209.8 199.2 200.6 198.7 195.5 195.5 204.6 225.6 236.3	VEL 0UT 151.5 157.1 145.7 140.3 140.2 140.8 142.0 145.3 152.4 157.1	MERI 1N 132.3 147.4 143.9 141.3 138.3 133.6 129.6 146.9 160.3	D VEL 0UT 149.9 156.2 145.6 140.2 140.1 140.8 142.0 157.0 151.3	TAN 1N 166.2 149.3 137.8 142.3 142.7 146.1 146.5 142.5 158.7 170.3	G VEL OUT 21.8 17.0 5.1 3.1 2.4 2.7 3.1 0.1 5.8 10.7	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS M 0.590 0.589 0.565 0.570 0.566 0.555 0.555 0.555 0.587 0.683	ACH NO OUT 0.417 0.435 0.408 0.393 0.394 0.395 0.399 0.403 0.431 0.427	REL M IN 0.590 0.589 0.565 0.570 0.566 0.555 0.555 0.556 0.587 0.683	ACH NO OUT 0.417 0.435 0.408 0.393 0.394 0.395 0.399 0.403 0.403 0.427	MERID M/ IN 0.368 0.413 0.408 0.402 0.394 0.369 0.369 0.421 0.463 0.474	ACH NO OUT 0.412 0.433 0.407 0.393 0.394 0.395 0.403 0.403 0.443 0.426				0.935
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INCI MEAN 14.8 10.3 10.0 11.0 11.6 12.4 13.7 8.0 5.9 6.3	DENCE SS 8.6 4.0 3.7 4.8 5.4 6.2 7.6 7.5 1.9 -0.1 0.3	DEV 21.0 17.9 12.2 11.1 10.8 10.7 10.8 10.9 9.1 11.0 12.9	D-FACT 0.544 0.485 0.498 0.527 0.522 0.508 0.504 0.495 0.478 0.527	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.223 0.152 0.139 0.169 0.151 0.110 0.099 0.085 0.218 0.314	0EFF PROF 0.223 0.152 0.159 0.151 0.110 0.099 0.082 0.085 0.218 0.314	LOSS P TOT 0.084 0.056 0.048 0.056 0.049 0.035 0.035 0.025 0.025	PROF 0.084 0.056 0.048 0.056 0.049 0.035 0.031 0.026 0.025

(1) Percent design speed, 70; reading number, 366

RP 1 2 3 4 5 6 7 8 9 10 11	D.D	ABS BETAM IN OUT 23.6 4.7 23.0 2.1 25.8 -1.8 26.5 -2.3 27.5 -2.0 29.0 -2.2 30.0 -2.1 29.8 -2.4 30.0 -2.8 34.5 3.4 36.1 6.3	REL BETAM 1N OUT 23.6 4.7 23.0 2.1 23.8 -1.8 26.5 -2.3 27.5 -2.0 29.0 -2.2 30.0 -2.1 29.8 -2.4 30.0 -2.8 34.5 3.4	TOTAL TEMP IN RATIO 312.0 1.000 310.8 0.999 308.9 0.999 309.1 1.000 309.4 0.999 310.2 0.997 310.3 0.997 310.0 0.997 310.1 0.999 312.5 1.005	TOTAL PRESS IN PRESS IN PRESS IN PRESS PRESS IN PRESS
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 197.8 167.6 197.5 189.1 192.3 198.5 190.8 201.3 192.5 203.4 191.1 205.3 192.9 205.7 204.3 222.4 229.2 231.3 233.9 216.6	REL VEL 1N 0UT 197.8 167.6 197.5 189.1 192.3 198.3 190.8 201.3 192.5 203.4 192.5 203.4 191.1 205.3 192.9 205.7 204.3 222.4 229.2 231.3 233.9 216.6	MERID VEL IN OUT 181.3 167.0 181.8 189.0 175.9 198.2 170.5 202.3 168.4 203.3 165.5 205.2 167.3 205.5 176.9 222.1 188.9 230.9 189.0 215.3	TANG VEL IN OUT 79.1 13.6 77.2 6.9 77.7 -6.4 85.3 -7.2 93.2 -7.7 95.6 -7.4 95.9 -8.6 102.1 -11.0 129.7 13.9 137.9 23.8	WHEEL SPEED IN OUT 0.
RP 234567891011	ABS MACH NO IN OUT 0.577 0.484 0.577 0.551 0.563 0.591 0.563 0.594 0.562 0.597 0.558 0.603 0.564 0.664 0.657 0.657 0.657 0.657 0.658 0.632	REL MACH NO IN OUT 0.577 0.484 0.577 0.551 0.563 0.592 0.558 0.594 0.562 0.598 0.603 0.564 0.603 0.564 0.604 0.599 0.657 0.676 0.681 0.689 0.632	MERID MACH NO IN OUT 0.529 0.483 0.551 0.551 0.551 0.592 0.499 0.594 0.492 0.597 0.483 0.603 0.489 0.603 0.557 0.679 0.557 0.628		MERIC PEAK SS VEL R MACH NO 0.921 0.577 1.039 0.577 1.127 0.563 1.178 0.563 1.207 0.562 1.240 0.558 1.228 0.564 1.228 0.564 1.256 0.599 1.222 0.800 1.139 0.859
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -13.1 10.00 -12.1 30.00 -10.0 42.50 -7.7 45.00 -6.8 47.50 -5.5 50.00 -4.6 52.50 -5.0 70.00 -6.2 90.00 -4.4 95.00 -3.7	DENCE SS -19.3 17.4 -18.3 13.8 -16.2 8.3 -13.9 7.6 -13.0 7.8 -11.7 7.6 -10.8 7.7 -11.2 7.3 -12.3 6.3 -10.4 12.3 -9.7 15.1	D-FACT EFF 0.278 0. 0.175 0. 0.119 0. 0.104 0. 0.109 0. 0.110 0. 0.096 0. 0.103 0. 0.070 0. 0.120 0. 0.195 0.	LOSS COEFF TOT PROF 0.391 0.391 0.194 0.194 0.118 0.118 0.090 0.090 0.100 0.100 0.093 0.093 0.069 0.069 0.088 0.088 0.077 0.077 0.277 0.277 0.451 0.451	LOSS PARAM TOT PROF 0.148 0.148 0.072 0.072 0.041 0.041 0.030 0.030 0.032 0.032 0.030 0.030 0.022 0.022 0.027 0.027 0.022 0.022 0.073 0.073 0.115 0.115

(m) Percent design speed, 70; reading number, 367

	•			, ,		U	,		
RP 12345678910	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS 1N 27.7 26.9 28.1 30.2 31.1 32.3 33.7 32.9 32.7 36.9	BETAM OUT 4.2 2.4 -1.8 -1.5 -1.0 -1.1 -1.6 -2.2 3.0 5.1	27.7 26.9 28.1 30.2 31.1 32.3 33.7 32.9 32.7 36.9		315.4 313.7 311.3 311.3 311.2 312.4 312.5 312.0 311.6 313.6	TEMP RATIO 0.996 0.998 0.999 1.000 1.000 0.996 0.996 0.997 0.998 1.003	TOTAL IN 13.08 13.01 12.92 12.96 12.98 12.87 12.91 13.11 13.70	0.975 0.981 0.983 0.981 0.981 0.988 0.984 0.977
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 192.5 156.1 192.2 171.9 187.3 175.0 186.9 176.3 188.6 177.5 189.8 178.9 188.2 179.1 200.0 190.6 219.3 201.9 227.0 194.4	IN 192.5 192.2 187.3 186.9 188.6 189.8 186.3 186.3 1200.0 219.3		MERI 170.4 171.5 165.3 161.6 161.5 160.4 155.0 168.3 175.3	OUT 155.6 171.7 174.9 176.2 177.4 178.5 178.9 179.0 190.4	IN 89.6 86.8 88.1 94.0 97.4 101.5 103.3 102.3	G- VEL OUT 11.5 -5.6 -5.5 -4.5 -3.1 -3.5 -5.0 -7.3 10.6	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 233 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.557 0.448 0.558 0.496 0.545 0.508 0.544 0.511 0.549 0.515 0.541 0.541 0.541 0.541 0.547 0.520 0.584 0.556 0.643 0.587 0.666 0.563	REL MA IN 0.557 0.558 0.545 0.544 0.549 0.552 0.541 0.547 0.584 0.666	OUT 0.448 0.496 0.508 0.511 0.515 0.518 0.519 0.520 0.556 0.587	MERID M/ IN 0.493 0.498 0.481 0.470 0.470 0.450 0.459 0.459 0.452	0.5.5			MERIC : VEL RI : 1.002 1.058 1.091 1.113 1.154 1.133 1.150 1.092	0.611
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 -9.0 10.00 -8.3 30.00 -5.7 42.50 -4.0 45.00 -3.2 47.50 -2.5 50.00 -0.9 52.50 -1.9 90.00 -1.9	-15.2 -14.5 -11.9 -10.2 -9.4 -8.3 -7.1 -8.1 -9.6 -7.9	DEV 17.0 14.1 8.4 8.1 8.3 8.8 8.6 9.1	D-FACT 0.343 0.259 0.238 0.230 0.235 0.220 0.226 0.213 0.221 0.280	0. 0. 0. 0.	LOSS C TOT 0.284 0.132 0.106 0.091 0.100 0.102 0.065 0.111 0.213 0.354	PROF 0.284 0.132 0.106 0.091 0.100	LOSS F TOT 0.107 0.049 0.036 0.030 0.033 0.021 0.027 0.032 0.032	PRCF 0.107 0.049 0.036 0.030 0.033 0.033 0.021 0.027

FOR STATOR 10

(n) Percent design speed, 70; reading number, 368

RP 1 23 4 5 6 7 8 9 10 11	RADII IN 00 23.942 23.9 23.503 23.5 21.742 21.9 20.637 20.6 20.417 20.6 20.196 20.4 19.975 20.1 19.754 20.0 18.227 18.7 16.530 17.2	JT IN 945 34.3 538 32.4 900 33.5 381 35.4	BETAM OUT 4.8 3.2 -0.5 0.4 -0.0 -0.1 -0.1 -0.9 2.4	34.3 32.4 33.5 35.4	BETAM OUT 4.8 3.2 -0.5 0.4 -0.0 -0.1 -0.9 2.4	319.5 317.6 314.5 314.0 314.7 314.5 313.9 313.0	0.995 0.996 0.997 0.998 1.003	IN 13.42 13.50 13.33 13.43 13.27 13.28 13.14 13.12 13.26 13.56	PRESS RAT10 0.962 0.976 0.980 0.971 0.979 0.977 0.985 0.985 0.988 0.925
RP 1 2 3 4 5 6 7 8 9 10 11	185.9 144 188.1 156 180.8 154 182.1 155 182.7 154 183.7 155 179.1 154 179.1 154 189.6 163 208.7 179	IT (N 4.6 185.9 5.5 188.1 4.1 180.8 5.4 182.1 4.8 182.7 4.8 183.7 4.3 179.1	VEL OUT 144.6 156.5 154.1 155.4 154.8 154.8 154.3 154.3 163.7 175.0 168.5	MERID IN 153.5 158.8 150.8 144.4 147.8 146.7 139.9 141.2 151.5 159.4 162.6	0UT 144.1 156.3 154.1 155.4 154.8 154.8 154.3 154.3 163.7 174.8 168.0	IN 104.7 100.8 99.8 105.6 107.5 110.6 111.9 114.1 134.7 144.8	12.1	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 234567.891011	0.533 0.4 0.542 0.4 0.522 0.4 0.527 0.4 0.529 0.4 0.531 0.4 0.517 0.4 0.551 0.4 0.551 0.4	UT IN 411 0.533 447 0.542 442 0.522	ACH NO OUT 0.411 0.447 0.442 0.445 0.445 0.445 0.443 0.472 0.504 0.483	MERID MA IN 0.440 0.457 0.436 0.429 0.427 0.424 0.404 0.408 0.465 0.474	CH NO OUT 0.409 0.447 0.442 0.445 0.445 0.443 0.444 0.472 0.504 0.482			MERID: VEL R 0.938 0.984 1.021 1.048 1.053 1.093 1.080 1.097 1.034	0.713
RP 1 2 3 4 5 6 7 8 9	SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50	INCIDENCE MEAN SS -2.4 -8.6 -2.7 -8.9 -0.3 -6.5 1.2 -5.0 1.7 -4.5 2.6 -3.7 4.0 -2.2 3.2 -3.0 0.8 -5.3	DEV 17.5 14.9 9.7 10.2 10.3 10.2 9.7 9.6 8.2	D-FACT 0.411 0.350 0.340 0.333 0.340 0.347 0.336 0.330 0.313	0. 0. 0. 0. 0.	LOSS C TOT 0.218 0.133 0.119 0.168 0.124 0.133 0.090 0.090 0.105 0.191	PROF 0.218 0.133 0.119 0.168 0.124 0.133 0.090 0.090	LOSS F TOT 0.082 0.049 0.041 0.055 0.040 0.043 0.029 0.028 0.030	PROF 0.082 0.049 0.041 0.055 0.040 0.043

(o) Percent design speed, 70; reading number, 369

	(0	, 1 0100	mi ucb	ign spe	.cu, 10,	_ 0	-6	001, 00		
	RAD	11	ABS	BETAM	REL	BETAM	TOTAL	L TEMP	TOTAL	PRESS
RP	IN	out	IN	OUT	IN	OUT	IN	RATIO	IN	RATIO
1	23.942	23.945	38.7	6.2	38.7	6.2	321.9	1.000	13.57	0.968
2	23.503	23.538	36.2	4.2	36.2	4.2	319.9	1.000	13.67	0.974
3	21.742	21.900	37.5	0.2	37.5	0.2	316.4	1.001	13.60	0.970
4	20.637	20.881	39.0	0.7		0.7	316.2	0.996	13.44	0.973
5	20.417	20.681	39.7	0.3	39.7	0.3	316.2	0.994	13.41	0.973
6	20.196	20.480	40.8	0.2	40.8	0.2	315.9	0.995	13.37	0.975
7	19.975	20.279	42.2	0.1	42.2	0.1	315.7	0.994	13.26	0.980
8	19.754	20.079	41.8	0.1	41.8	0.1	315.8	0.995	13.26	0.980
9	18.227		39.5	-0.5		-0.5	313.4	1.000	13.32	0.982
10	16.530	17.252	42.2	2.5			314.7	1.003	13.61	0.959
11	16.121	16.904	42.2 43.6	4.1	43.6	4.1	316.0	1.002	13.82	0.931
			251				•			****
RP		VEL	IN	VEL		D VEL		G VEL		SPEED
1	in	001	IN	OUT	IN.	OUT	in	OUT	in	TUO
2	181.6	137.7	181.6	137.7	141.8	136.8	113.5	14.9	0.	0.
3	185.3 176.7	146.5 142.2	185.3	146.5	149.4	146.1	109.5	10.8	0.	0.
4	180.1	142.2	176.7 180.1	141.1	140.2	142.2	107.6	0.5 1.7	0. 0.	0. 0.
5	180.0	140.1	180.0	140.1	138.5	140.1		0.7	0.	0.
5	179.0	140.0	179.0	140.0	135.5	140.0	115.1 117.0	0.5	0.	0.
6	175.9	139.1	175.9	139.1	130.3	139.1	118.1	0.3	0.	0.
B	177.0	139.7	177.0	139.7	132.0	139.7	117.9	0.2	ð.	0.
9	183.7	148.9	183.7	1.48.9	141.8	148.9	116.8	-1.3	o.	0.
10	203.5	158.8	203.5	158.8	150.7	158.7	136.8		õ.	0.
11	212.0	153.1	212.0	153.1	153.5	152.7	146.3	10.9	ů.	ā.
									•••	• • •
			DC: 14							
		ACH NO		ACH NO	MERID M				MERID !	Etk 22
RP	IN	OUT	IN	OUT	IN	OUT			YEL R	MACH NO
:	IN 0.518	0UT 0.389	IN 0.518	0UT 0.389	IN 0.405	0.386			7EL R 1	MACH NO
:	IN 0.518 0.531	0.389 0.416	IN 0.518 0.531	0UT 0.389 0.416	IN 0.405 0.428	0.386 0.415			VEL R 1 0.965 0.978	MACH NG 3.711 0.694
:	IN 0.518 0.531 0.508	0UT 0.389 0.416 0.405	IN 0.518 0.531 0.508	0UT 0.389 0.416 0.405	1N 0.405 0.428 0.403	0.386 0.415 0.405			VEL R 1 0.965 0.978 1.014	MACH NG 3.711 0.694 0.687
! 2 3 4	IN 0.518 0.531 0.508 0.519	0.17 0.389 0.416 0.405 0.403	IN 0.518 0.531 0.508 0.519	0.389 0.416 0.405 0.403	IN 0.405 0.428 0.403 0.403	0.386 0.415 0.405 0.403			VEL R 1 0.965 0.978 1.014 1.008	MACH NG 0.711 0.694 0.687 0.716
1 2 3 4 5	IN 0.518 0.531 0.508 0.519 0.518	OUT 0.389 0.416 0.405 0.403 0.400	IN 0.518 0.531 0.508 0.519 0.518	OUT 0.389 0.416 0.405 0.403 0.400	IN 0.405 0.428 0.403 0.403 0.399	OUT 0.386 0.415 0.405 0.403 0.400			VEL R 1 0.965 0.978 1.014 1.008 1.011	MACH NG 0.71: 0.694 0.687 0.716 0.726
1 2 3 4 5	IN 0.518 0.531 0.508 0.519 0.518	OUT 0.389 0.416 0.405 0.403 0.400	IN 0.518 0.531 0.508 0.519 0.518 0.516	0.389 0.416 0.405 0.403 0.400 0.400	IN 0.405 0.428 0.403 0.403 0.399 0.390	OUT 0.386 0.415 0.405 0.403 0.400			VEL R 1 0.965 0.978 1.014 1.008 1.011 1.033	MACH NG 0.71: 0.694 0.687 0.716 0.726 0.739
1 23 4 5 6 7	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506	0.16 0.389 0.416 0.405 0.403 0.400 0.400 0.398	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375	OUT 0.386 0.415 0.405 0.403 0.400 0.400 0.398			7EL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067	MACH NG 0.71: 0.694 0.716 0.726 0.739 0.746
1 23 4 5 6 7 8	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506 0.510	0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399	IN 0.518 0.531 0.508 0.519 0.516 0.506 0.510	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.380	OUT 0.386 0.415 0.405 0.403 0.400 0.400 0.398 0.399			7EL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058	MACH NG 0.71: 0.694 0.716 0.716 0.726 0.739 0.746
- 25456789	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506 0.510	0.17 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.510 0.532	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.380 0.411	OUT 0.386 0.415 0.405 0.403 0.400 0.400 0.398 0.399 0.427			7EL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058	MACH NG 0.71: 0.694 0.716 0.716 0.726 0.739 0.740 0.736
: 2334567-890	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.510 0.532 0.592	0.416 0.405 0.405 0.400 0.400 0.400 0.398 0.399 0.427 0.455	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506 0.510 0.532 0.592	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427 0.455	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.380 0.411	OUT 0.386 0.415 0.405 0.403 0.400 0.400 0.398 0.399 0.427 0.455			7EL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058 1.050 1.053	9.694 0.694 0.687 0.716 0.726 0.739 0.746 0.736 0.869
- 25456789	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506 0.510	0.17 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.510 0.532	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.380 0.411	OUT 0.386 0.415 0.405 0.403 0.400 0.400 0.398 0.399 0.427			7EL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058	MACH NG 0.71: 0.694 0.716 0.716 0.726 0.739 0.740 0.736
: 2334567-890	IN 0.518 0.531 0.508 0.519 0.516 0.506 0.510 0.532 0.592 0.617	0.389 0.416 0.405 0.405 0.400 0.398 0.399 0.427 0.455 0.437	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.556 0.552 0.552 0.592	0UT 0.389 0.416 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437	IN 0.405 0.428 0.403 0.399 0.390 0.375 0.380 0.411 0.438 0.447	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.436			VEL R 10.965 0.978 1.014 1.033 1.067 1.058 1.050 1.053 0.995	MACH NG 0.711 0.694 0.687 0.716 0.726 0.739 0.746 0.746 0.736 0.869 0.934
: 234567-891011	IN 0.518 0.531 0.508 0.519 0.518 0.516 0.506 0.510 0.532 0.592 0.617	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.506 0.510 0.532 0.617	OUT 0.389 0.416 0.405 0.403 0.400 0.400 0.398 0.399 0.427 0.455	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.380 0.411	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.436	LOSS C		VEL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058 1.053 0.995	MACH NG 0.71: 0.694 0.687 0.726 0.736 0.736 0.740 0.736 0.869 0.934
: 25 4 5 6 7 8 9 10 11	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.506 0.532 0.592 0.617 PERCENT SPAN	OUT 0.389 0.416 0.403 0.403 0.400 0.398 0.398 0.327 0.455 0.437	IN 0.518 0.518 0.508 0.519 0.516 0.516 0.516 0.532 0.532 0.617	0UT 0.389 0.416 0.405 0.403 0.400 0.398 0.398 0.427 0.455 0.437	IN 0.405 0.428 0.403 0.405 0.399 0.375 0.380 0.411 0.438 0.447	0.415 0.405 0.405 0.403 0.400 0.400 0.398 0.398 0.427 0.455 0.436	TOT	PROF	VEL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.058 1.059 1.053 0.995	MACH NG 0.71: 0.694 0.687 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF
: 254567891011 RP1	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.516 0.532 0.532 0.617 PERCENT SPAN 5.00	OUT 0.389 0.416 0.403 0.403 0.400 0.400 0.398 0.399 0.455 0.455 0.437	IN 0.518 0.538 0.559 0.519 0.516 0.516 0.506 0.510 0.532 0.617 DENCE SS -4.2	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437	IN 0.405 0.428 0.405 0.403 0.403 0.399 0.375 0.380 0.417 D-FACT 0.448	0UT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.436	TOT 0.193	PROF 0.193	VEL R 1 0.965 0.978 1.014 1.008 1.011 1.033 1.067 1.053 1.053 0.995 LOSS P TOT 0.073	MACH NG 0.71: 0.694 0.687 0.716 0.726 0.739 0.746 0.746 0.869 0.934 ARAM PROF 0.073
: 234567 8 9 10 11 RP 1 2	IN 0.518 0.531 0.508 0.519 0.516 0.506 0.510 0.532 0.617 PERCENT SPAN 5.00 10.00	OUT 0.389 0.416 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437 INC! MEAN 2.0	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.516 0.532 0.592 0.617 DENCE SS -4.2 -5.1	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.403 0.399 0.375 0.380 0.417 D-FACT 0.448 0.407	OUT 0.386 0.415 0.405 0.400 0.400 0.398 0.399 0.427 0.455 0.436	TOT 0.193 0.146	PROF 0.193 0.146	VEL R: 0.965 0.978 1.014 1.008 1.011 1.058 1.050 1.053 0.995 LOSS P TOT 0.073 0.054	MACH NG 0.71: 0.687 0.716 0.726 0.736 0.736 0.736 0.869 0.934 ARAM PROF 0.073
: 234567 8 9 10 11 RP 1 2	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.510 0.532 0.592 0.617 PERCENT SPAN 5.00	OUT 0.389 0.416 0.405 0.403 0.400 0.399 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7	IN 0.518 0.531 0.519 0.516 0.516 0.516 0.516 0.517 DENCE SS -4.2 -5.1	0UT 0.389 0.416 0.405 0.403 0.400 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.403 0.399 0.390 0.375 0.411 0.438 0.447 D-FACT 0.448 0.407 0.403	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.436	TOT 0.193 0.146 0.187	PROF 0.193 0.146 0.187	VEL R: 0.965 0.978 1.014 1.008 1.011 1.050 1.055 0.995 LOSS P TOT 0.073 0.054 0.065	MACH NG 0.71: 0.687 0.716 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF 0.073 0.054 0.055
: 23456789011 R1234	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.510 0.532 0.592 0.617 PERCENT SPAN 5.00 10.00 42.50	OUT 0.389 0.405 0.405 0.400 0.400 0.399 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7 4.8	IN 0.518 0.558 0.519 0.516 0.516 0.516 0.516 0.516 0.517 DENCE SS -4.2 -5.1 -2.5	0UT 0.389 0.416 0.405 0.403 0.400 0.398 0.327 0.427 0.455 0.437	IN 0.405 0.428 0.403 0.403 0.399 0.375 0.381 0.447 D-FACT 0.448 0.407 0.403 0.418	OUT 0.386 0.415 0.405 0.403 0.400 0.399 0.427 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158	PROF 0.193 0.146 0.187 0.158	VEL R: 0.965 0.978 1.011 1.038 1.067 1.050 1.053 0.995 LOSS P TOT 0.073 0.055 0.052	MACH NG 0.71: 0.684 0.716 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF 0.073 0.055
:2345678901 P12345	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.516 0.532 0.532 0.617 PERCENT SPAN 5.00 10.00 42.50 45.00	OUT 0.389 0.416 0.403 0.400 0.400 0.398 0.398 0.397 0.455 0.437	IN 0.518 0.558 0.519 0.516 0.516 0.516 0.532 0.592 0.617 DENCE SS -4.2 -5.1 -2.5	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.398 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.403 0.399 0.375 0.380 0.411 0.438 0.447 D-FACT 0.448 0.407 0.403 0.403 0.403 0.403 0.403	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158 0.161	PROF 0.193 0.146 0.187 0.158 0.161	VEL R 1 0.965 0.978 1.011 1.038 1.011 1.053 1.055 1.053 0.995 LOSS P TOT 0.073 0.054 0.065 0.052 0.052	MACH NG 0.71: 0.687 0.716 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF 0.073 0.054 0.055 0.052
: 23456789011 R123456	IN 0.518 0.531 0.508 0.519 0.516 0.516 0.516 0.516 0.516 0.517 PERCENT SPAN 5.00 10.00 30.00 42.50 45.50	OUT 0.389 0.405 0.403 0.400 0.400 0.398 0.399 0.455 0.455 0.437	IN 0.518 0.538 0.559 0.519 0.516 0.506 0.506 0.532 0.617 DENCE SS -4.2 -5.1 -2.5 -1.4 -0.8	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.403 0.399 0.375 0.380 0.411 0.438 0.447 D-FACT 0.448 0.407 0.403 0.412 0.426	OUT 0.386 0.405 0.405 0.403 0.400 0.399 0.427 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158 0.161 0.151	PROF 0.193 0.146 0.187 0.158 0.161 0.151	VEL R: 0.965 0.978 1.014 1.008 1.011 1.058 1.050 1.053 0.995	MACH NG 0.687 0.687 0.716 0.726 0.736 0.736 0.736 0.869 0.934 ARAM PROF 0.073 0.054 0.052 0.052
: 234567 89011 P1254567	IN 0.518 0.538 0.519 0.518 0.516 0.506 0.510 0.532 0.592 0.617 SPAN 5.00 42.50 45.00 47.50 50.00	OUT 0.389 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7 4.8 5.4 6.7,6	IN 0.518 0.5519 0.518 0.516 0.516 0.516 0.516 0.517 DENCE SS -4.2 -5.1 -2.5 -1.4 -0.8 0.1	OUT 0.389 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.399 0.3975 0.380 0.411 0.438 0.447 D-FACT 0.448 0.427 0.426 0.420	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158 0.161 0.151 0.122	PROF 0.193 0.146 0.187 0.158 0.161 0.151 0.122	VEL R: 0.965 0.978 1.014 1.008 1.011 1.058 1.050 1.053 0.995 1.055 0.052 0.052 0.052 0.048 0.039	MACH NG 0.71: 0.687 0.716 0.726 0.736 0.736 0.736 0.934 ARAM PROF 0.073 0.055 0.052 0.052 0.052
:23456789101 R12345678	IN 0.518 0.558 0.519 0.518 0.516 0.506 0.510 0.532 0.617 SPAN 5.00 10.00 42.50 45.00 52.50	OUT 0.389 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7 4.8 6.3 7.6.9	IN 0.518 0.558 0.519 0.518 0.516 0.516 0.516 0.516 0.512 0.592 0.617 DENCE SS -4.2 -5.1 -2.5 -1.4 -0.8 0.1	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.399 0.390 0.375 0.380 0.411 0.438 0.447 D-FACT 0.448 0.407 0.403 0.418 0.427 0.426 0.420 0.418	OUT 0.386 0.405 0.405 0.403 0.400 0.398 0.399 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158 0.161 0.151	PROF 0.193 0.146 0.187 0.158 0.161 0.151 0.122 0.123	VEL R: 0.965 0.978 1.018 1.011 1.038 1.067 1.058 1.050 0.995 LOSS P TOT 0.073 0.065 0.052 0.052 0.048 0.039	MACH NG 0.71: 0.687 0.716 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF 0.073 0.052 0.052 0.052 0.052
:23456789011 RP123456789	IN 0.518 0.5519 0.518 0.516 0.506 0.516 0.502 0.592 0.617 SPAN 5.00 10.00 42.50 47.50 50.00 52.50 70.00	OUT 0.389 0.405 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7 6.6 6.3 7.6 6.9 3.3	IN 0.518 0.5519 0.518 0.516 0.516 0.516 0.516 0.516 0.512 0.52 0.617 DENCE SS -4.2 -5.1 -2.5 1 -2.5 1 -2.5 1 -2.5 1 -2.5 1 -2.5 2 -5.1 1 -4.7 -2.8	0UT 0.389 0.4165 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 DEV 19.0 10.4 10.5 10.1 10.0 9.8 8.6	IN 0.405 0.428 0.405 0.405 0.399 0.375 0.381 0.447 D-FACT 0.448 0.447 0.403 0.418 0.427 0.426 0.420 0.418 0.374	OUT 0.386 0.415 0.405 0.403 0.400 0.398 0.399 0.455 0.436 EFF 0. 0. 0.	TOT 0.193 0.146 0.187 0.158 0.161 0.151 0.122 0.123	PROF 0.193 0.146 0.187 0.158 0.161 0.151 0.122 0.123 0.100	VEL R: 0.965 0.978 1.018 1.011 1.033 1.067 1.053 0.995 LOSS P TOT 0.073 0.054 0.065 0.052 0.048 0.039 0.029	MACH NG 0.71: 0.684 0.716 0.726 0.739 0.745 0.736 0.869 0.934 ARAM PROF 0.052 0.052 0.052 0.052 0.039 0.039
:23456789101 R12345678	IN 0.518 0.558 0.519 0.518 0.516 0.506 0.510 0.532 0.617 SPAN 5.00 10.00 42.50 45.00 52.50	OUT 0.389 0.405 0.403 0.400 0.398 0.399 0.427 0.455 0.437 INCI MEAN 2.0 1.1 3.7 4.8 6.3 7.6.9	IN 0.518 0.558 0.519 0.518 0.516 0.516 0.516 0.516 0.512 0.592 0.617 DENCE SS -4.2 -5.1 -2.5 -1.4 -0.8 0.1	0UT 0.389 0.416 0.403 0.400 0.400 0.398 0.399 0.427 0.455 0.437 DEV	IN 0.405 0.428 0.403 0.399 0.390 0.375 0.380 0.411 0.438 0.447 D-FACT 0.448 0.407 0.403 0.418 0.427 0.426 0.420 0.418	OUT 0.386 0.405 0.405 0.403 0.400 0.398 0.399 0.455 0.436 EFF	TOT 0.193 0.146 0.187 0.158 0.161 0.151 0.122 0.123	PROF 0.193 0.146 0.187 0.158 0.161 0.151 0.122 0.123	VEL R: 0.965 0.978 1.018 1.011 1.038 1.067 1.058 1.050 0.995 LOSS P TOT 0.073 0.065 0.052 0.052 0.048 0.039	MACH NG 0.71: 0.687 0.716 0.726 0.739 0.740 0.736 0.869 0.934 ARAM PROF 0.073 0.052 0.052 0.052 0.052

(p) Percent design speed, 70; reading number, 370

RP 1 2 3 4 5 6 7 8 9 10	RADI IN 23.942 2: 23.503 2: 21.742 2: 20.637 2: 20.417 2: 20.196 2: 19.975 2: 19.754 2: 18.227 11 16.530 11 16.121 16	OUT 3.945 3.538 1.900 0.881 0.681 0.480 0.279 0.079 8.715 7.252	ABS !N 47.4 43.1 40.9 42.4 43.3 44.1 45.5 45.3 44.3	BETAM OUT 7.2 5.7 1.1 0.9 0.5 0.3 0.4 0.6 0.2 2.5 4.2	REL 1N 47.4 43.1 40.9 42.4 43.3 44.1 45.5 45.3	BETAM OUT 7.2 5.7 1.1 0.9 0.5 0.3 0.4 0.6 2.5 4.2	TOTAL IN 327.0 323.7 318.2 317.7 317.6 317.1 317.4 314.5 315.2 316.5	TEMP RATIO 0.996 0.998 0.995 0.994 0.995 0.994 0.999 1.003	TOTAL IN 13.73 13.57 13.57 13.57 13.45 13.41 13.40 13.66 13.88	PRESS RAT10 0.962 0.970 0.975 0.966 0.968 0.971 0.975 0.982 0.956 0.935
RP 1 2 3 4 5 6 7 8 9 10	179.2 174.6 178.0 176.2 174.6 173.9 174.7 179.5	VEL 0UT 125.6 132.4 130.0 125.6 125.0 124.7 125.0 126.3 135.9 141.3	REL 1N 179.0 179.2 174.6 178.0 176.2 174.6 173.9 174.7 179.5 197.6 207.4	VEL 0UT 125.6 132.4 130.0 125.6 125.0 124.7 125.3 135.9 141.3	MERI 121.1 130.9 132.1 131.5 128.3 122.0 122.8 134.5 142.1 146.0	D VEL OUT 124.6 131.7 130.0 125.6 125.0 124.7 125.3 135.9 141.2 139.6	TAN 1N 131.8 122.5 114.5 120.1 120.8 121.6 123.9 124.5 118.9 137.2 147.4	O VEL OUT 15.7 13.1 2.5 2.0 1.2 0.6 0.8 1.3 0.4 6.1	WHEELL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 123345678910	0.509 0.500 0.511 0.506 0.501 0.499 0.501 0.518 0.573	CH NO OUT 0.352 0.372 0.359 0.355 0.355 0.356 0.359 0.358	REL M IN 0.506 0.509 0.500 0.511 0.506 0.501 0.501 0.518 0.573 0.602	ACH NO OUT 0.352 0.372 0.369 0.357 0.355 0.355 0.356 0.359 0.388 0.403 0.398	MERID M/ IN 0.343 0.372 0.378 0.377 0.368 0.350 0.350 0.352 0.388 0.412	ACH NO OUT 0.349 0.371 0.369 0.357 0.355 0.355 0.356 0.359 0.388 0.403 0.397			MERID F VEL R 1 1.029 1.006 0.956 0.974 0.995 1.025 1.025 1.029 1.011 0.993 0.956	PEAK SS MACH NO 0.846 0.786 0.735 0.770 0.775 0.779 0.789 0.789 0.753 0.945
RP 1 2 3 4 5	PERCENT SPAN 5.00 10.00 30.00 42.50	INC! MEAN 10.7 7.9 7.1 8.2 8.9	DENCE SS 4.5 1.7 0.9 2.0 2.7	DEV 19.9 17.4 11.3 10.8 10.8	D-FACT 0.544 0.488 0.475 0.510 0.509	EFF 0. 0. 0. 0.	LOSS C TOT 0.239 0.184 0.157 0.211 0.202	0EFF PR0F 0.239 0.184 0.157 0.211	LOSS P TOT 0.090 0.068 0.054 0.069 0.065	ARAM PROF 0.090 0.068 0.054 0.069

(q) Percent design speed, 60; reading number, 373

	(q)	Percent des	sign spe	eu, ou,	reaui	ng num	ber, 5	10	
RP 1 23 4 5 6 7 8 9 10 11	RADII IN C 23.942 23. 23.503 23. 21.742 21. 20.637 20. 20.417 20. 20.196 20. 19.975 20. 19.754 20. 18.227 18. 16.530 17.	DUT 1N 1945 54.7 538 48.7 1980 42.3 1981 43.1 1981 44.0 1981 44.0 1981 44.9 1981 46.2 1981	BETAM OUT 8.0 6.2 1.4 1.3 1.2 1.0 1.1 2.6 4.6	REL IN 54.7 48.7 42.3 43.1 44.0 44.9 46.2 46.6 43.4 44.1	BETAM OUT 8.0 6.2 1.4 1.3 1.2 1.0 1.1 2.3 2.6	TOTAL IN 319.5 316.3 310.5 310.0 310.0 309.7 309.8 309.6 507.9 308.0	TEMP RATIO 0.992 0.996 0.996 0.996 0.996 0.996 0.996 0.996	TOTAL IN 12.80 12.59 12.59 12.57 12.51 12.48 12.46 12.52 12.70 12.83	PRESS RATIO 0.962 0.974 0.979 0.971 0.974 0.977 0.978 0.979 0.959 0.943
RP 1 2 3 4 5 6 7 8 9 10 11	155.1 10 150.1 10 148.1 10 151.2 10 150.5 10 148.4 11 147.6 10 154.3 11 170.0 11	CL REL DUT IN 104.4 155.1 107.9 150.1 106.7 148.1 102.2 151.2 101.4 148.4 101.6 147.6 102.3 147.6 10.6 154.3 14.4 170.0 10.6 177.5	VEL OUT 104.4 107.9 106.7 102.2 101.4 101.6 102.3 110.6 114.4 109.6	MERIC IN 89.6 99.1 109.5 110.4 108.3 105.1 102.1 101.4 112.2 122.2 125.2	VEL 0UT 103.4 107.3 106.6 102.2 101.3 101.6 102.3 114.3 109.3	TANI 1N 126.6 112.7 99.6 103.3 104.5 104.7 106.6 107.3 106.0 118.2 125.8	VEL OUT 14.6 11.7 2.5 2.2 1.8 2.0 2.2 0.7 5.2	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R - 234567-8910	0.441 0.429 0.427 0.437 0.434 0.428 0.428 0.426 0.447 0.447 0.4495 0.4495 0.4495 0.4495	H NO REL MODUT IN 1295 0.441 1.306 0.429 0.427 1.293 0.434 1.290 0.438 1.290 0.426 1.293 0.426 1.328 0.495 1.318 0.417 1.328 0.495 1.314 0.517	0.295 0.306 0.305 0.293 0.293 0.290 0.291 0.293 0.318 0.328	MERID MA IN 0.255 0.283 0.316 0.319 0.313 0.303 0.294 0.293 0.325 0.356 0.365	OCH NO OUT 0.292 0.304 0.305 0.293 0.290 0.290 0.291 0.293 0.318 0.318			MERID 5 VEL R 1.154 1.154 1.983 0.974 0.926 0.936 0.996 1.008 0.986 0.936 0.936	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	INCIDENCE MEAN SS 18.0 11.8 13.6 7.4 8.5 2.3 8.9 2.7 9.7 3.5 10.4 4.2 11.6 5.4 11.8 5.6 7.3 1.1 5.2 -0.8 5.3 -0.7	DEV 20.8 17.9 11.6 11.1 11.0 10.8 10.9 9.5 11.5	D-FACT 0.600 0.531 0.505 0.542 0.545 0.538 0.535 0.529 0.479 0.497 0.547	0. 0. 0. 0. 0.	LOSS CO TOT 0.304 0.218 0.182 0.244 0.242 0.217 0.200 0.187 0.162 0.266 0.344	DEFF PROF 0.304 0.218 0.182 0.244 0.242 0.217 0.200 0.187 0.162 0.266 0.344	LOSS P TOT 0.114 0.080 0.063 0.080 0.079 0.070 0.064 0.059 0.047 0.070 0.088	ARAM PROF 0.114 0.080 0.063 0.080 0.079 0.070 0.064 0.059 0.047 0.070

TABLE VIII. - Concluded. BLADE ELEMENT DATA AT BLADE EDGES

FOR STATOR 10

(r) Percent design speed, 50; reading number, 375

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.942 23.945 23.503 23.538 21.742 21.900 20.637 20.881 20.417 20.681 20.196 20.480 19.975 20.279 19.754 20.079 18.227 18.715 16.530 17.252 16.121 16.904	ABS BETAM 1N OUT 49.5 7.5 43.6 5.7 40.5 1.2 41.5 1.3 42.4 1.0 43.4 0.9 44.7 0.8 44.7 1.0 43.1 0.4 44.0 3.0	REL BETAM IN OUT 49.5 7.5 43.6 5.7 40.5 1.2 41.5 1.3 42.4 0.9 44.7 0.8 44.7 1.0 43.1 0.4 44.0 3.0	TOTAL TEMP IN RATIO 308.3 0.997 306.7 0.998 303.6 0.999 303.1 0.997 302.9 0.998 302.9 0.998 302.8 0.997 301.8 0.999 301.8 1.002	TOTAL PRESS IN RATIO 11.86 0.975 11.87 0.978 11.80 0.977 11.78 0.979 11.72 0.982 11.72 0.982 11.75 0.982 11.85 0.979 11.89 0.959
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL 1N OUT 125.9 85.9 126.4 90.0 124.7 89.9 126.5 87.2 125.4 86.4 124.8 86.0 123.4 86.1 124.0 86.4 129.5 93.2 141.0 97.3 145.8 89.7	REL VEL IN OUT 125.9 85.9 126.4 90.0 124.7 89.9 126.5 87.2 125.4 86.4 124.8 86.0 123.4 86.1 124.0 86.4 129.5 93.2 141.0 97.3 145.8 89.7	MERID VEL IN OUT 81.8 85.2 91.5 89.5 94.9 89.9 94.7 87.2 92.6 86.4 90.7 86.1 88.1 86.4 94.6 93.2 101.5 97.2 104.0 89.4	TANG VEL IN OUT 95.8 11.1 87.2 8.9 81.0 1.8 83.8 2.0 84.5 1.3 86.8 1.3 87.3 1.5 88.5 0.6 97.9 5.0	WHEEL SPEED IN OUT 0.
RP 1 25 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.363 0.246 0.365 0.258 0.362 0.259 0.364 0.249 0.362 0.248 0.358 0.249 0.360 0.250 0.377 0.270 0.412 0.281 0.426 0.259	REL MACH NO 1N OUT 0.363 0.246 0.365 0.258 0.362 0.259 0.367 0.252 0.364 0.249 0.362 0.248 0.358 0.249 0.360 0.250 0.377 0.270 0.412 0.281 0.426 0.259	MERID MACH NO 1N OUT 0.235 0.244 0.264 0.257 0.275 0.259 0.275 0.259 0.263 0.249 0.263 0.248 0.255 0.249 0.256 0.250 0.275 0.270 0.296 0.281 0.304 0.258		MERID PEAK SS VEL R MACH NO 1.042 0.631 0.978 0.570 0.948 0.526 0.920 0.539 0.932 0.545 0.949 0.551 0.981 0.558 0.981 0.559 0.986 0.569 0.958 0.629 0.860 0.658
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 12.8 10.00 8.5 30.00 6.7 42.50 7.3 45.00 8.0 47.50 8.9 50.00 10.1 52.50 9.9 70.00 7.0	DENCE DEV SS 6.6 20.2 2.3 17.4 0.5 11.4 1.1 11.2 1.8 10.8 2.7 10.6 3.9 10.6 3.7 10.6 0.8 9.5	D-FACT EFF 0.573 0. 0.518 0. 0.497 0. 0.521 0. 0.524 0. 0.526 0. 0.521 0. 0.519 0. 0.474 0.	LOSS COEFF TOT PROF 0.292 0.292 0.248 0.218 0.218 0.218 0.258 0.258 0.253 0.253 0.242 0.242 0.217 0.215 0.188 0.188	LOSS PARAM TOT PROF 0.110 0.110 0.092 0.092 0.075 0.075 0.085 0.085 0.082 0.082 0.078 0.078 0.069 0.069 0.068 0.068

Figure 1. - Flow path for stage 14-10 showing axial location of instrumentation.

Figure 2. - Test facility schematic.

Figure 3. - Test rotor (rotor 14).

Figure 4. - Test stator (stator 10).

(a) Combination total pressure, total temperature, and flow angle probe (double barrel).

(b). Static pressure probe.

Figure 5. - Survey probes.

Figure 6. - Circumferential location of instrumentation at measuring stations (facing downstream).

FIGURE 7. - OVERALL PERFORMANCE FOR ROTOR 14.

FIGURE 8. - OVERALL PERFORMANCE FOR STAGE 14 - 10.

FIGURE 9. -RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 14. 100 PERCENT DESIGN SPEED.

FIGURE 9. -CONTINUED.

FIGURE 9. -CONCLUDED.

FIGURE 10. -RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR 10. 100 PERCENT DESIGN SPEED.

FIGURE 10. -CONCLUDED.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

74

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

87

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE II. - BLADE ELEMENT PERFORMANCE FOR ROTOR 14.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 10.

OFFICIAL BUSINESS SHOOT SPECIAL FOURTH-CLASS RATE

POSTAGE AND THE PAID NATIONAL AERONAUTICS AND SPACE ACHINISTRATION

POSTMASTER:

if Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate disternination of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing throwledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS
Information receiving limited distribution
because of preliminary data, security classification, or other reasons. Also includes conference,
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merir NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications: Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys:

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546