Corso di Sistemi Multivariabili

Esercizi: serie 4

1) Considera il sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + Bu(t)$$

metti le matrici A e B nella forma standard per i sistemi non completamente raggiungibili per i casi seguenti

a)

$$A = \begin{bmatrix} -3 & -2 & -3 & -2 \\ 2 & 1 & 5 & 3 \\ 2 & 2 & 2 & 2 \\ -2 & -2 & -4 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix},$$

b)

$$A = \begin{bmatrix} 3 & 1 & -2 & 1 \\ 6 & 1 & -6 & 8 \\ 6 & 1 & -5 & 5 \\ 5 & 0 & -5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}.$$

2)

a) Calcola $X_R(k)$, per ogni k > 0, per il seguente sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k) + Du(k)$$

dove

$$A = \begin{bmatrix} 3 & 1 & 3 & 2 \\ 2 & 1 & 4 & 2 \\ -3 & -1 & -2 & -1 \\ 3 & 1 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} -1 & 1 & 1 & -1 \end{bmatrix}.$$

b) Calcola la forma standard per i sistemi non completamente raggiungibili e la funzione di trasferimento del sistema.

3) Dato il sistema

$$\dot{x} = Ax + Bu$$

$$con A = \begin{bmatrix}
-3 & 4 & 3 & -3 \\
0 & 1 & 2 & -2 \\
-3 & 3 & 2 & -3 \\
-1 & 1 & 2 & -3
\end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, trova una funzione di controllo u che permetta di$$

1

portare il sistema dallo stato iniziale x(0) = 0 allo stato finale $x_f = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ al tempo 1.

Soluzioni

1) a) Costruiamo la matrice di raggiungibilità: $AB = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \notin \text{Im } B, A^2B = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$. Risulta $A^2B=2B-AB$ e non è necessario calcolare A^3B . Ābbiamo che Im $R={\rm Im}\; [\bar B \quad A\bar B]$ e prendiamo $T = [T_1, T_2]$ con $T_1 = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix}$ e $T_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. Questa particolare matrice Tcoincide con la sua inversa. Troviamo

$$\hat{A} = T^{-1}AT = \begin{bmatrix} 0 & 2 & 3 & 2 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & -2 \end{bmatrix}$$

$$\hat{B} = T^{-1}B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} .$$

Quindi $A_r = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$, $A_{NR} = \begin{bmatrix} -1 & 0 \\ -1 & -2 \end{bmatrix}$. $B_R = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Gli autovalori raggiungibili sono quindi $\sigma(A_R) = \{-2,1\}$, quelli non raggiungibili sono

b) Chiamiamo b_1 e b_2 le due colonne di B. Abbiamo che Im $Ab_2 = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 1 \end{bmatrix} \in \text{Im } B$, mentre

 $Ab_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, A^2b_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \end{bmatrix} \in \text{span}\{b_1, Ab_1\}. \text{ Quindi Im } R = \text{span}\{b_1, b_2, Ab_1\} = \text{Im } T_1, \text{ dove } T_1 = T_2, T_2 = T$

 $T_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Completiamo T_1 con $T_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ e definiamo $T = [T_1, T_2]$. Abbiamo che

 $T^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix}$ otteniamo

$$\hat{A} = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \ \hat{B} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Gli autovalori raggiungibili sono $\sigma(A_R) = \{1\}$, quelli non raggiungibili sono $\sigma(A_{NR}) = \{2\}$.

2) a)
$$X_R(1) = {\rm Im}\; B\;,$$

$$x_R(2) = {\rm Im}\; [B\quad AB] = \left[\begin{array}{cc} 0 & 1\\ 1 & 1\\ 0 & -1\\ 0 & 1 \end{array} \right]\;,$$

infatti A^2B è una combinazione lineare di B e AB.

b)Scegliamo
$$T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 1 & 0 \end{bmatrix}$$
 e $T_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. Da cui $T^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$, otteni-

 $x_R(3) = \operatorname{Im} [B \quad AB \quad A^2B] = \operatorname{Im} [B \quad AB]$

amo quindi

$$\hat{A} = T^{-1}AT = \begin{pmatrix} 2 & 1 & 3 & 2 \\ 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}, \ \hat{B} = T^{-1}B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ \hat{C} = CT = [-3 \ 1 \ 1 \ -1].$$

La funzione di trasferimento è data da

$$H(z) = C_R(zI - A_R)^{-1}B_R = \frac{z - 5}{(z - 2)(z - 1)}.$$

3) $X_R = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$ mettiamo il sistema nella forma di raggiungibilità con la matrice $T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$[T_1, T_2] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \text{ otteniamo } \hat{A} = \begin{bmatrix} 1 & 0 & 7 & -3 \\ 0 & -1 & 9 & -4 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & -6 & 1 \end{bmatrix}, \ \hat{B} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}. \text{ Lo stato finale }$$

 x_f appartiene all'insieme di raggiungibilità e ha coordinate $z_f = T^{-1}x_f = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Essendo il

dato iniziale nullo abbiamo che $\dot{z}_1 = A_R z_1 + B_R u$. La coordinata z_1 dello stato finale è data da $z_{f,1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Calcoliamo il controllo richiesto u con il metodo del gramiano di raggiungibilità costruito sulla parte raggiungibile del sistema, abbiamo

$$W_R(0,1) = \int_0^1 (e^{A_R(1-\tau)})^T B_R B_R^T e^{A_r(1-\tau)} d\tau = \begin{bmatrix} \frac{e^2 - 1}{2} & 1\\ 1 & \frac{1 - e^{-2}}{2} \end{bmatrix} ,$$

otteniamo

$$W_R(0,1)^{-1} = \frac{4}{(e^2 - 1)(1 - e^{-2}) - 4} \begin{bmatrix} \frac{1 - e^{-2}}{2} & -1 \\ -1 & \frac{e^2 - 1}{2} \end{bmatrix}$$
quindi $W_R(0,1)^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{2}{(e^2 - 1)(1 - e^{-2}) - 4} \begin{bmatrix} 1 - e^{-2} \\ -2 \end{bmatrix}$, essendo $e^{A_r(1-t)} = \begin{bmatrix} e^{(1-t)} & 0 \\ 0 & e^{-(1-t)} \end{bmatrix}$
si ottiene $u(t) = B_R^T (e^{A_R(1-t)})^T W_R(0,T)^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2 \frac{e^{(1-t)}(1 - e^{-2}) - 2e^{t-1}}{(e^2 - 1)(1 - e^{-2}) - 4}$.