PRAKTIKUM 8

Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Jordan

1. Tujuan:

Mempelajari metode Eliminasi Gauss Jordan untuk penyelesaian persamaan linier simultan

2. Dasar Teori:

Metode ini merupakan pengembangan metode eliminasi Gauss, hanya saja augmented matrik, pada sebelah kiri diubah menjadi matrik diagonal sebagai berikut:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} & b_n \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & d_1 \\ 0 & 1 & 0 & \dots & 0 & d_2 \\ 0 & 0 & 1 & \dots & 0 & d_3 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & d_n \end{bmatrix}$$

Penyelesaian dari persamaan linier simultan diatas adalah nilai $d_1, d_2, d_3, ..., d_n$ dan atau:

$$x_1 = d_1, x_2 = d_2, x_3 = d_3, \dots, x_n = d_n$$

Teknik yang digunakan dalam metode eliminasi Gauss-Jordan ini sama seperti metode eliminasi Gauss yaitu menggunakan OBE (Operasi Baris Elementer). Hanya perhitungan penyelesaian secara langsung diperoleh dari nilai pada kolom terakhir dari setiap baris.

3. Algoritma Metode Eliminasi Gauss-Jordan adalah sebagai berikut:

- (1) Masukkan matrik A, dan vektor B beserta ukurannya n
- (2) Buat augmented matrik [A|B] namakan dengan A
- (3) Untuk baris ke i dimana i=1 s/d n

(a) Perhatikan apakah nilai $a_{i,i}$ sama dengan nol:

Bila ya:

pertukarkan baris ke i dan baris ke i+k \le n, dimana $a_{i+k,i}$ tidak sama dengan nol, bila tidak ada berarti perhitungan tidak bisa dilanjutkan dan proses dihentikan dengan tanpa penyelesaian.

Bila tidak : lanjutkan

- (b) Jadikan nilai diagonalnya menjadi satu, dengan cara untuk setiap kolom k dimana k=1 s/d n+1, hitung $a_{i,k}=\frac{a_{i,k}}{a_{i,i}}$
- (1) Untuk baris ke j, dimana j = i+1 s/d n Lakukan operasi baris elementer: untuk kolom k dimana k=1 s/d n Hitung $c = a_{j,i}$ Hitung $a_{j,k} = a_{j,k} - c.a_{i,k}$
- (2) Penyelesaian, untuk i = n s/d 1 (bergerak dari baris ke n sampai baris pertama) $x_i = a_{i,n+1}$

4. Prosedur Percobaan

1. Selesaikan sistem persamaan linier berikut:

$$x_1 + x_2 + x_3 = 6$$

$$x_1 + 2x_2 - x_3 = 2$$

$$2x_1 + x_2 + 2x_3 = 10$$

- 2. Implementasikan algoritma dan flowchart yang sudah diberikan dan dikerjakan pada laporan pendahuluan, lalu isi lembaran laporan akhir seperti form laporan akhir yang ditentukan
- 3. Jalankan program, kemudian tampilkan, tuliskan augmented matrik dan hasil akhir penyelesaian persamaan linier simultan prosedur no 1.
- 4. Lakukan penukaran baris matrik persamaan linier simultan : baris II dengan baris III pada matrik awal yang diketahui. Jalankan program kemudian tampilkan, tuliskan augmented matrik dan hasil akhir penyelesaian persamaan linier simultan dari matrik yang telah ditukar barisnya.
- 5. Apa pengaruh dari penukaran baris pada matrik prosedur 4.

Tugas Pendahuluan

Tuliskan dasar-dasar komputasi dari metode Eliminasi Gauss Jordan untuk menyelesaikan persamaan linier simultan, sebagai berikut :

- 1. Judul: METODE ELIMINASI GAUSS JORDAN
- 2. Dasar teori dari metode Eliminasi Gauss Jordan
- 3. Algoritma dan Flowchart

FORM LAPORAN AKHIR
Judul Percobaan : METODE ELIMINASI GAUSS JORDAN
Algoritma:
Listing program yang sudah benar :
Hasil percobaan:
1. Augmented matrik asal :
2. Augmented matrik akhir (matrik diagonal):
3. Penyelesaian persamaan linier simultan :
$\bullet \mathbf{x} 1 = \dots$
$\bullet \mathbf{x} 2 = \dots$
• x3 =
4. Augmented matrik asal yang ditukar baris kedua dengan baris ketiga:
5. Penyelesaian persamaan linier simultan :x1 =
$\begin{array}{ccc} & x_1 - \dots \\ & x_2 = \dots \end{array}$
$ x3 = \dots $
Apa pengaruh dari pertukaran baris matrik persamaan linier simultan
1 1 0 r.