(2) Basis pursuit.

This is the following minimization problem:

minimize
$$||x||_1$$

subject to $Ax = b$,

where A is an $m \times n$ matrix of rank m < n, and $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$. The problem is to find a sparse solution to an underdetermined linear system, which means a solution x with many zero coordinates. This problem plays a central role in compressed sensing and statistical signal processing.

Basis pursuit can be expressed in ADMM form as the problem

minimize
$$I_C(x) + ||z||_1$$

subject to $x - z = 0$,

with $C = \{x \in \mathbb{R}^n \mid Ax = b\}$. It is easy to see that the ADMM procedure (in scaled form) is

$$x^{k+1} = \Pi_C(z^k - u^k)$$

$$z^{k+1} = S_{1/\rho}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1},$$

where Π_C is the orthogonal projection onto the subspace C. In fact, it is not hard to show that

$$x^{k+1} = (I - A^{\top} (AA^{\top})^{-1} A)(z^k - u^k) + A^{\top} (AA^{\top})^{-1} b.$$

In some sense, an ℓ^1 -minimization problem is reduced to a sequence of ℓ^2 -norm problems. There are ways of improving the efficiency of the method; see Boyd et al. [28] (Section 6.2)

(3) General ℓ^1 -regularized loss minimization.

This is the following minimization problem:

minimize
$$l(x) + \tau ||x||_1$$
,

where l is any proper closed and convex loss function, and $\tau > 0$. We convert the problem to the ADMM problem:

minimize
$$l(x) + \tau ||z||_1$$

subject to $x - z = 0$.