

WE
Certificat
d'université en
Intelligence
Artificielle
UMONS

26 – 27 mars 4^{ème} édition du Workshop Résidentiel Système *Edge IA* pour Maisons et villes intelligentes

BOUGAHAM Arnaud
GARCIA Camillo
GROS Alexander
HANSET Arnauld
BENKEDADRA Mohamed

Deep learning pour la classification d'images et villes intelligentes

- Au travers d'un interface, accès à différents déploiements pour la détection
 - De visages (+ notification si autorisation),
 - De feu de forêt et
 - D'objets suspects
- Développement des modèles utilisant les techniques et modèles de Deep learning
- Portabilité des modèles sur une carte JetSon Xavier

Modèles

- Face detection
- Fire forest detection
- Object suspect detection

JetSon et interface

- Portage des solutions sur la ressource Edge IA
- Carte préconfigurée avec les différentes librairies
 - Python
 - Tensorflow
 - Keras
 - OpenCV...

JetSon et interface

- Nécessité de changer l'environnement de JetSon
- Amélioration de l'interface
- Déploiement des modèles sur la carte
- Vérification de la fluidité du système
- Préload des modèles pour la rapidité
- Difficulté rencontrées :
 - Changement de l'alimentation
 - scikit-Learn 0.22 => 1.02

HacklA UMONS

Entrainement des modèles

- Choix du modèle
 - En fonction des performances
 - Accuracy
 - Loss
 - Speed
 - Size
 - Portabilité (version des composants)
- Entrainement proprement dit
 - Choix des couches
 - Choix du nombre d'époques
- Amélioration de la portabilité du modèle
 - Optimisation : Prunning,
 - Size ↓, speed ↓, accuracy correct

Modèle Face Detection

- Augmentation de données
 - Smote (KNN)
 - 8 profs et 5 vidéos de nous
 - 1800 images dans chaque catégorie
 - Threshold : catégorie inconnu
 - Préprocessing MinMaxScaller
- Facenet
 - Réseau Inception resnet V1
 - Embedding
 - Classification SVM
- Difficultés rencontrées
 - Gestion des différents packages à utiliser
 - Nécessité de changer l'environnement de JetSon
 - Trouver un seuil pour la catégorie inconnu

Modèle Face Detection

- Notification d'authentification
 - API Telegram
 - Message envoyé si une personne est authentifiée

Hackla Modèle Fire Forest Detection

- Data set : Big
- Mobile Net V3

Modèle Fire Forest Detection

- Data set : Big
- Mobile Net V3

https://wandb.ai/fennecinspace/fireClassification?workspace=user-arnauldh

Modèle Fire Forest Detection

• Pruning

https://wandb.ai/fennecinspace/fir eClassificationPruning?workspace=u ser-arnauldh

Modèle object suspect

- Données
 - Jeux de données existant
 - Trop petit (500)
 - Mal équilibrée
 - Simulation/Superposition d'image connue sur background

- Augmentation des données (+1000)
 - Roboflow (YOLO v3 -> tensorflow -> YOLO v5)
 - Roboflow: dataset public d'image (gun)
 - Script google pour télécharger de nouvelles images dans chaque classe
 - Flip, rotation, brightness, noise, bounding box (flip et rotation)
 - Labeliser/positionner l'objet dans le label
 - Merge des différentes sources

Modèle object suspect

- Modèle
 - PyTorch

Pretrained Checkpoints

Model	size	AP ^{val}	AP ^{test}	AP ₅₀	Speed _{V100}	FPS _{V100}	params	GFLOPS
YOLOv5s	640	36.8	36.8	55.6	2.2ms	455	7.3M	17.0
YOLOv5m	640	44.5	44.5	63.1	2.9ms	345	21.4M	51.3
YOLOv5l	640	48.1	48.1	66.4	3.8ms	264	47.0M	115.4
YOLOv5x	640	50.1	50.1	68.7	6.0ms	167	87.7M	218.8
YOLOv5x + TTA	832	51.9	51.9	69.6	24.9ms	40	87.7M	1005.3

Modèle object suspect

 Matrice de confusion

Précision	Taille (MB)	
99,9 %	6,2	
99,17 %	16,48	
99,88 %	16,48	
83 %	13,7	
	99,9 % 99,17 % 99,88 %	

HacklA Conclusion

- Développement de 3 modèles différents
 - Technologies, librairies
 - Optimisation efficacité, taille, vitesse
- Portabilité sur une carte embarquée
 - Optimisation taille
- Travail de groupe enrichissant

Entrainement des modèles (I)

- Collecte et préparation des données
 - Collecte d'images
 - Base de données existantes
 - Augmentation via script
 - Vérification visuel et suppression des non-pertinents
 - Annotation des labels
 - Conversion des formats d'annotation (position)
 - Roboflow
 - Augmentation des datasets mal représentés
 - New image, rotation, flip, bruit

