Network Security - Week 8

João Soares

DCC/FCUP

2023

Proactive vs Reactive

Previously...

- We want to keep bad guys out
 - Authentication prevents intrusions
 - Firewalls are a form of intrusion prevention
 - Virus defenses aimed at avoiding intrusions
 - Locking the door on your car

Proactive vs Reactive

Previously...

- We want to keep bad guys out
 - Authentication prevents intrusions
 - Firewalls are a form of intrusion prevention
 - Virus defenses aimed at avoiding intrusions
 - Locking the door on your car

Intrusion Detection Systems

- What to do if they get in?
- Detect attacks in progress
- Look for unusual or suspicious activity
- IDS evolved from log file analysis

Classes of Intruders - Cyber Criminals

- Individuals or members of an organized crime group, with the goal of financial reward
- Activities include, but are not limited to
 - Identity theft
 - Theft of financial credentials
 - Corporate espionage
 - Data theft
 - Data ransoming

- Information exchanged in underground forums to trade tips/data and coordinate attacks
- Anonymous networks (Tor et. al.) are very good for this

Classes of Intruders - State-Sponsored Organizations

- Groups of hackers sponsored by governments to conduct espionage or sabotage activities
- Also known as Advanced Persistent Threats
- Covert nature
- Persistence over extended periods

 Widespread nature and scope by a wide range of countries (China, Russia, USA, UK, and intelligence allies)

Classes of Intruders - Activists

- Individuals motivated by social or political causes
 - Working as insiders
 - Members of a larger group
- Also known as hacktivists
- Skill level often not high
- Goal is to promote and publicize their cause, typically through:
 - Website defacement
 - Denial-of-service attacks
 - Theft and distribution of data, resulting in negative publicity or compromise of their targets

Classes of Intruders - Others

- Hackers with motivations other than previously listed
- Include classic hackers/crackers
- Motivated by technical challenge or peer-group esteem and reputation
- Many responsible for discover new vulnerabilities

 Given the wide availability of attack toolkits, there is a pool of "hobby hackers" exploring system and network security challenges

Insider attacks

- Among most difficult to detect and prevent
- Employees have access & systems knowledge

Motivation is key

- Revenge or entitlement
- Employment terminated
- Stealing customer data for competitor

IDS may help, but also...

- Least privilege configuration
- Monitor logs
- Strong authentication
- Termination to block access

- Apprentice
- Journeyman
- Master

Apprentice

- Hackers with minimal technical skill, who primarily use existing attack toolkits
- They likely comprise the largest number of attackers, including many criminal/activist attackers
- Given their use of existing known tools, these attackers are the easiest to defend against
- Also known as "script-kiddies" from plug-and-play usage
- Journeyman
- Master

- Apprentice
- Journeyman
 - Hackers with sufficient technical skills to modify and extend attack toolkits to use newly discovered, or purchased, vulnerabilities
 - They may be able to locate new vulnerabilities to exploit that are similar to some already known
 - Adapt tools for use by others
 - These hackers are found in all intruder classes
- Master

- Apprentice
- Journeyman
- Master
 - Attackers with high-level technical skills capable of discovering brand new categories of vulnerabilities
 - Write new powerful attack toolkits
 - Some of the better known classical hackers are at this level
 - Some are employed by state-sponsored organizations
 - Defending against these attacks is of the highest difficulty

Intruder Behavior

- Target acquisition and information gathering
- Initial access
- Privilege escalation
- Information gathering or system exploit
- Maintaining access
- Covering tracks

Intruder Behavior

- Target acquisition and information gathering
- Initial access
- Privilege escalation
- Information gathering or system exploit
- Maintaining access
- Covering tracks

A time window for efficient countermeasures

- Only critical from step 3 onwards (most of the time)
- Monitoring system to react during this multi-stage process

Examples of Intrusion

- Remote root compromise
- Web server defacement
- Guessing/cracking passwords
- Copying databases containing credit card numbers
- Viewing sensitive data without authorization
- Running a packet sniffer
- Distributing a pirated software
- Using an unsecured AP to access internal network
- Impersonating an executive to get information
- Using an unattended workstation

- Availability
 - Run continuously
 - Provide graceful degradation of service

- Availability
 - Run continuously
 - Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion

- Availability
 - Run continuously
 - Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion
- Performance
 - Impose a minimal overhead on a system
 - Scale to monitor large number of systems

- Availability
 - Run continuously
 - Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion
- Performance
 - Impose a minimal overhead on a system
 - Scale to monitor large number of systems
- Adaptability
 - Configured according to system security policies
 - Adapt to changes in systems/users/attack patterns
 - Allow dynamic reconfiguration

IDS Architecture

Three components:

- Sensors collect data
- Analyser assess intrusions
- User interface view output for the control system behavior

IDS Architecture

Three components:

- Sensors collect data
- Analyser assess intrusions
- User interface view output for the control system behavior

Configurations

- Host-based IDS
 - Dedicated to a specific machine or service
 - Monitors the characteristics of a single host for suspicious activity
- Network-based IDS
 - Monitors network traffic
 - Analyses transport/application data to identify suspicious activity
- Distributed or Hybrid IDS
 - Combines information from multiple sensors
 - Host and network based, combined in a central analyser

Host-Based IDS

- Monitor activities on hosts for
 - Known attacks; Suspicious behavior
- Designed to detect attacks such as
 - Buffer overflow; Escalation of privilege
- Can detect both external and internal intrusions
- Little or no view of network activities

Examples of Host-Based IDS

- OSSec
- OSSEC
- Log analysis and file integrity checking
- Policy monitoring and rootkit detection
- Real-time alerting and active response

Examples of Host-Based IDS

OSSec

- Log analysis and file integrity checking
- Policy monitoring and rootkit detection
- Real-time alerting and active response

Tripwire

- Data integrity tool
- Useful for monitoring and alerting specific file changes
- Some commercial versions

Examples of Host-Based IDS

OSSec

- Log analysis and file integrity checking
- Policy monitoring and rootkit detection
- Real-time alerting and active response

Tripwire

- Data integrity tool
- Useful for monitoring and alerting specific file changes
- Some commercial versions

AIDE

- Advanced Intrusion Detection Environment
- File and directory integrity checker

Network-Based IDS

- Monitor activity at selected points of the network for known attacks
- Examines network transport and application level protocols
- Designed to detect attacks such as:
 - Denial-of-service; network probes; malformed packets
- Some overlap with firewall
- Little to no view of host-based attacks

Examples of Network-Based IDS

- Network intrusion prevention and detection system
- Combines signature, protocol and anomaly-based inspection

Examples of Network-Based IDS

Snort

- Network intrusion prevention and detection system
- Combines signature, protocol and anomaly-based inspection

Bro/Zeek

- Focused on network security monitoring
- A comprehensive platform for general network traffic analysis

Examples of Network-Based IDS

Snort

- Network intrusion prevention and detection system
- Combines signature, protocol and anomaly-based inspection

Bro/Zeek

- Focused on network security monitoring
- A comprehensive platform for general network traffic analysis

- Suricata-IDS
 - Real-time intrusion detection (IDS)
 - In-line intrusion prevention (IPS)
 - Network security monitoring (NSM)

IDS Methodologies

Signature Detection

- Set of known malicious data patterns or attack rules
- Also known as misuse detection
- Can only identify known attacks for which it has patterns or rules

IDS Methodologies

Signature Detection

- Set of known malicious data patterns or attack rules
- Also known as misuse detection
- Can only identify known attacks for which it has patterns or rules

Anomaly Detection

- Involves the collection of data relating to the behavior of legitimate users over a period of time
- Observed behavior is analysed to determine whether it matches a legitimate user or an intruder
- Pattern recognition and machine learning approaches

Example

- Failed login attempts may suggest a password cracking attack
- IDS sets rule N failed login attempts in M seconds as an attack signature. Listens for messages and looks for signatures
- A pattern identified as a signature triggers a warning
- A lot of specificity involved:
 - Administrator knows what attack triggered the system
 - Allows for timely responses...
 - ... Or a verification for false alarms

Minutia

- Suppose IDS warns whenever N or more failed logins occur in M seconds
 - Define N and M to reduce false alarms
 - Do this based on "normal" behavior
 - But normal behavior can be neither easy to define
 - Nor static on the system lifecycle

Minutia

- Suppose IDS warns whenever N or more failed logins occur in M seconds
 - Define N and M to reduce false alarms
 - Do this based on "normal" behavior
 - But normal behavior can be neither easy to define
 - Nor static on the system lifecycle

Adversary - An arms race

- An oblivious Carlos can get caught
- But, knowing the signature, he can try N 1 logins every M seconds
- Signature detection slows Carlos, but doesn't stop it

A more robust approach

- Goal is to detect "almost" signatures
- Look for ∼ N login attempts in ∼ M seconds

A more robust approach

- Goal is to detect "almost" signatures
- Look for ∼ N login attempts in ∼ M seconds
- Considerations
 - Warn of possible password cracking attempts
 - What are reasonable values for \sim ?
 - Establish a degree of confidence based on N and M
 - Can use statistical analysis, heuristics, etc.
 - Must not increase false alarm rate too much

Signature Detection

Advantages

- Simple
- Detects common, known threats
- Accurate identification of attacks upon detection
- Efficient (if we have a reasonable number of signatures)

Signature Detection

Advantages

- Simple
- Detects common, known threats
- Accurate identification of attacks upon detection
- Efficient (if we have a reasonable number of signatures)

Disadvantages

- Signature files must be kept up to date
- Number of signatures may become very large
- Can only detect known attacks
- Unexpected variations on known attacks may avoid detection

Goal: Detect new attacks automatically

Goal: Detect new attacks automatically

- Statistical anomaly detection uses statistical techniques to detect attacks. In simple terms:
 - Establish baseline (normal) behavior
 - Define the threshold from normal to abnormal behavior
 - Gather new statistical data
 - Measure deviation from baseline
 - If the threshold is exceeded, issue an alarm
- A.k.a. behavior-based detection

Classification approaches

Statistical

 Analysis of the observed behavior using univariate, multivariate, or time-series models of observed metrics

Knowledge-based

 Approaches use an expert system that classifies observed behavior according to a set of rules that model legitimate behavior

Machine Learning

 Approaches automatically determine a suitable classification model from the training data using data mining techniques

Classification approaches

Statistical

- The good
 - Simple
 - Lightweight
 - No big assumptions on known behavior
- The bad
 - Selecting variables for analysis
 - Tough to balance false positives v false negatives

Knowledge-based

Machine Learning

Classification approaches

Statistical

Knowledge-based

- The good
 - Robust
 - Flexible
- The bad
 - Time consuming
 - Requires in-depth knowledge of application patterns

Machine Learning

Classification approaches

Statistical

Knowledge-based

Machine Learning

- The good
 - Automatic classification
 - After training, fairly efficient
- The bad
 - Computational and time consuming
 - Overfitting is an issue

Detection of "Anomalies"

How can we measure the normal behavior of a system?

- Must measure during representative behavior
- Cannot be measured during an attack
- Normal is the statistical mean
- Must also allow for variance to know what is abnormal

Detection of "Anomalies"

How can we measure the normal behavior of a system?

- Must measure during representative behavior
- Cannot be measured during an attack
- Normal is the statistical mean
- Must also allow for variance to know what is abnormal
- On top of fancy modelling techniques:
 - Bayesian statistics
 - Linear discriminant analysis
 - Quadratic discriminant analysis

- Suppose we monitor use of three commands
 - open, read, close

- Suppose we monitor use of three commands
 - open, read, close
- Under normal use we observe Alice do:
 - open, read, close, open, open, read, close, ...

- Suppose we monitor use of three commands
 - open, read, close
- Under normal use we observe Alice do:
 - open, read, close, open, open, read, close, ...
- Four pairs are normal for Alice:
 - (open, read); (read, close); (close, open); (open, open)
- Can we use this to identify unusual activity?

Tactic: If the ratio of abnormal to normal pairs is established to be "too high", warn of possible attack

Tactic: If the ratio of abnormal to normal pairs is established to be "too high", warn of possible attack

- Very inexpressive approach
- Can be improved by:
 - Use frequency of each pair
 - Use more than two consecutive commands
 - Include more commands/behavior in the model
 - More sophisticated statistical discrimination

Define the threshold to be .1

Over time, Alice has accessed file F_n at rate H_n :

H_0	H_1	H_2	H_3
.10	.40	.40	.10

A_0	<i>A</i> ₁	A_2	A_3
.10	.40	.30	.20

Define the threshold to be .1

Over time, Alice has accessed file F_n at rate H_n :

H_0	H_1	H_2	H_3
.10	.40	.40	.10

A_0	<i>A</i> ₁	A_2	A_3
.10	.40	.30	.20

- Is this normal usage for Alice?
- We can compute $S = \sum_{i=0}^{3} (H_i A_i)^2 = .02$
 - ullet S < .1 considered to be normal, so all ok

Define the threshold to be .1

Over time, Alice has accessed file F_n at rate H_n :

H_0	H_1	H_2	H_3
.10	.40	.40	.10

A_0	<i>A</i> ₁	A_2	A_3
.10	.40	.30	.20

- Is this normal usage for Alice?
- We can compute $S = \sum_{i=0}^{3} (H_i A_i)^2 = .02$
 - S < .1 considered to be normal, so all ok
- Question: How do we account for variations during standard system usage?

• To allow for "normal" behavior to evolve organically, we update averages during usage: $H_n = 0.2A_n + 0.8H_n$

- To allow for "normal" behavior to evolve organically, we update averages during usage: $H_n = 0.2A_n + 0.8H_n$
- As such, we update as:
 - $H_2 = .2 * .3 + .8 * .4$
 - $H_3 = .2 * .2 + .8 * .1$

And thus:

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Detecting Anomalies - rinse and repeat

Over time, Alice has accessed file F_n at rate H_n :

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Recently, Alice has accessed file F_n at rate A_n :

A_0	A_1	A_2	A_3
.70	.10	.10	.10

Is this normal usage for Alice?

Detecting Anomalies - rinse and repeat

Over time, Alice has accessed file F_n at rate H_n :

H_0	H_1	H_2	H_3
.10	.40	.38	.12

A	l ₀	A_1	A_2	A_3
. 7	70	.10	.10	.10

- Is this normal usage for Alice?
- We can compute $S = \sum_{i=0}^{3} (H_i A_i)^2 \approx .53$
 - S > .1 considered to be abnormal
 - Raise a red flag
 - ... or outright abort execution!

Anomaly Detection Issues

Constant evolution

- A static intrusion system places a huge burden on the admin
- But evolving IDS makes it possible to the attacker to manipulate the behavior and slowly convince IDS of an abnormal pattern
- Slow and steady can win the race

Anomaly Detection Issues

Constant evolution

- A static intrusion system places a huge burden on the admin
- But evolving IDS makes it possible to the attacker to manipulate the behavior and slowly convince IDS of an abnormal pattern
- Slow and steady can win the race

Types of IDS feedback

- Example: monitor failed login attempts
 - Burst of failures can occur an attack?
 - ... or an admin that forgot his password?
- False positives (FP) attack flagged when none is occurring
- False negatives (FN) attack flagged as adequate behavior

Possible Outcomes

Base-Rate Fallacy

- Number of actual intrusions small when compared to the amount of data analysed
- Base-rate fallacy probability of some conditional event is assessed without considering the "base rate" of that event

Base-Rate Fallacy

 Base-rate fallacy probability of some conditional event is assessed without considering the "base rate" of that event

- Suppose an IDS is 99% accurate, 1% of FP/FN
- IDS generates 1,000,100 log entries
- Only 100 correspond to actual malicious events
- Because of the success rate, of the 100 malicious events, 99 will be detected as malicious = 1 FN
- Nevertheless, of the 1,000,000 benign events, 10,000 will be mistakenly identified as malicious = 10,000 FP
- Out of all 10,099 expected alarms, 10,000 are false alarms, roughly 99% of all flagged attacks

- A major part of the IDS has to do with how to detect intrusions
- How do we respond?

- A major part of the IDS has to do with how to detect intrusions
- How do we respond?

Approaches

- Preemptive blocking
- Infiltration
- Intrusion deterrence
- Intrusion deflection

Preemptive blocking

- Banishment vigilance
- Prevents intrusions before they occur
- Notes any sign of impending threats and blocks user of IP

Preemptive blocking

- Banishment vigilance
- Prevents intrusions before they occur
- Notes any sign of impending threats and blocks user of IP

Cons

- Risk of blocking legitimate users
- Attacker moves to a different machine

Infiltration

- Not a software methodology
- The process of infiltrating hacker/cracker online groups by security administrator
- Unusual, can backfire
- Admins depend on security bulletins
- More common with large-scale organizations (e.g. police)

Intrusion Deterrance

- Make the system a less palatable target
- Make the system seem less attractive
 - Hide the valuable assets
- Make the system seem more secure than it is
 - Have monitoring/security warnings
- Make any potential reward seem more difficult to attain than it actually is/might be

Intrusion Deflection

- Set up an attractive, but fake, system
- Subsystem with purpose to monitor/understand the attacker
- A.k.a. honeypots
- Lure the attacker into the system and monitor attacker activity and intrusion patterns

Honeypots

Decoy systems designed to

- Lure a potential attacker away from critical systems
- Gather data about the attacker's activity
- Encourage the attacker to stay on the system long enough for administrators to respond

- Systems are filled with fabricated information that a legitimate user of the system would not access
- Resources that have no production value
 - Incoming communication is, most likely, a probe, scan or attack
 - Initiated outbound communication suggests that the system has probably been compromised

Wrap up

Understanding system intrusion

- A wide range of threats
 - From expert cyber criminals
 - ... to script-kiddies

Wrap up

Understanding system intrusion

- A wide range of threats
 - From expert cyber criminals
 - ... to script-kiddies

Intrusion Detection Systems

- Intrusion countermeasure based on (potentially complex) patterns
- Mainly host-/network- based, depending on monitoring capabilities
- Different methodologies for detection
 - Signature Detection
 - Anomaly Detection
- Configuration requires nuanced understanding of system
- Responses to intrusion can also vary widely

Network Security - Week 8

João Soares

DCC/FCUP

2023