SECOND SEMESTER 2018-2019 Course Handout Part II

Date: 07/01/2019

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : CS F402

Course Title : Computational Geometry

Instructor-in-charge: Tathagata Ray

Scope and Objective

In theoretical computer science, the algorithms for geometric problems are a subject which needs special attention. This subject is called Computational Geometry. It has emerged as a research area in itself with dedicated conferences and journals. These geometric problems are coming from the requirements of real life problem in computer graphics, Geographical Information Systems, Cartography, Robotics, and many more entailing all the disciplines of engineering.

The objective of the course is to impart students with state of the art data structures and algorithms in computational geometry. The students at the end of the course will be able to

- To identify suitable algorithms or data structure to apply for a given geometric problem.
- Will be able to argue about the time complexity of geometric algorithms.
- Will be able to write the proof of correctness of geometric algorithms.
- Will be able to understand the intricacies involved in implementing such algorithms.
- Will get acquainted with state of the art computational geometric algorithm libraries.
- Will be able to implement computational geometric algorithms.

Pre-requisites:

CS F111 (Computer Programming), CS F211 (Data Structure and Algorithms)

Text Books:

• T1: Mark de Berg et al. Computational Geometry: Algorithms and Applications, Springer **Reference books:**

- R1: Joseph O'Rourke, Computational Geometry in C, Cambridge univ press
- R2: Preparata and Shamos "Computational Geometry: An Introduction" Springer
- R3: Research papers as discussed in the class

Course Plan:

Evaluation Scheme:

Lecture No.	Learning Objectives		Topic	References	
1-3	Understanding Computational Geomet and its applications	I	oduction to con netry.	T1 (Chapter 1)	
4-10	Understanding Convex Hull and Different algorithms to make it.	I	Convex Hull algorithms in 2D and 3D		R1, T1, R3 (Chapter 1)
11-14	Understanding Map overlay problem and ho it can be solved using Line Segment Intersection Algorithms	W	Line Segment Intersection		T1(Chapter 2)
15-20	Understanding classic Art Gallery Problem an how it is solved using Polygon Triangulation	Poly	Polygon Triangulation		T1(Chapter 3)
21-25	Understanding data structures to search all the points in a given space efficiently.	Orth	Orthogonal Range Search		T1 (Chapter 5)
26-30	Understanding data structures to give the regions containing give a query point.		Point Location		T1 (Chapter 6)
31-35	Understanding a specific kind of triangulation called Delaunay triangulation and its Dudata structure Voronoi diagram used in many applications.	Vor	Delaunay Triangulation and Voronoi Diagram		T1 (Chapter 7 and 9)
36-40	Understanding an arrangement of lines ca be nicely studied using their dual representation i.e points.	n	Arrangement and Duality		T1 (Chapter 8)
40-42	Understanding real life applications using these algorithms.		Applications of Computationa Geometry		R2, R3

S. No.	Evaluation	Duration	Date and	Weightage	Nature of
	Component		Time	(%)	Component
1.	Quiz-1 (2)	30 minutes	7/2, 9/4	10	Closed Book
2.	Midterm	90 minutes	15/3 9:00- 10:30 a.m.	25	Closed Book
3	Assignments/Practical			20	Open Book
4.	Project			10	Open Book
5.	Comprehensive	3 Hours	10/05 FN	35	Closed Book

Chamber Consultation Hour: 12-1:00 p.m. on every Saturday

Notices: All notices pertaining to this course will be displayed on the CS & IS Notice Board or CMS.

Make-Up Policy:

No makeups will be given for quizzes under any circumstance.

Makeup for tests can be given only for genuine cases and that too with prior approval from the instructor in charge on providing letter from Chief Warden certifying the reason of leave.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge Tathagata Ray