Solving Recurrences

Substitution Method

- comprises of 2 steps:
 - 1. guess the form of the solution
 - 2. use mathematical induction to find the constants and show that the solution works
- we substitute the guessed solution for the function when applying the inductive hypothesis to smaller values

Example

$$T(n) = 2T(\lfloor rac{n}{2}
floor) + n$$
 $T(1) = 1$

- guess that the solution is $T(n) = O(n \lg n)^1$
- induction requires us to show that $T(n) \leq cn \lg n$ for an appropriate choice of the constant c>0
- ullet assume that this bound holds for all positive m < n, in particular for $m = \lfloor n/2
 floor$
- this yields $T(|n/2|) \le c|n/2| \lg (|n/2|)^2$
- substitute the above ² back into the original

$$egin{aligned} T(n) &\leq 2(c \lfloor n/2
floor \lg (\lfloor n/2
floor)) + n \ &\leq cn \lg (n/2) + n \ &= cn \lg n - cn \lg 2 + n \ &= cn \lg n - cn + n \ &\leq cn \lg n \end{aligned}$$

- induction also requires us to show the solution holds for the boundary conditions
 - \circ recall <u>asymptotic notation</u> requires us to prove for "sufficiently large n" or $n \geq n_0$ where we get to choose what n_0 is
 - \circ the base case $T(1)=1 \not \leq c(1) \lg (1)=0$ goes against out hypothesis
 - \circ notice that for any n>3, our relation does not depend on T(1)
 - \circ this leaves us with n=2 and n=3 that we must prove works with our hypothesis

$$T(2) = 2T(1) + 2 = 4$$

 $\leq c(2) \lg (2) = 2c$
 $T(3) = 2T(1) + 3 = 5$
 $\leq c(3) \lg (3) \approx 4.75c$

 \circ lastly, we complete the proof $T(n) \leq cn \lg n$ by choosing $c \geq 2$

Subtracting lower-order from the guess

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- guess that the solution is T(n) = O(n)
- we must show $T(n) \le cn^{-1}$ for some choice of c

- ullet assuming the boundary holds for all m < n, in particular $m = \lfloor n/2
 floor$ and $m = \lceil n/2
 clion$
- this yields $T(\lfloor n/2 \rfloor) \leq c \lfloor n/2 \rfloor$ and $T(\lceil n/2 \rceil) \leq c \lceil n/2 \rceil^{-2}$
- substituting the above ² back into the original

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

= $cn + 1$

- ullet however, this doesn't imply $T(n) \leq cn$ for any c
- we can solve this by *strengthening* our hypothesis to $T(n) \leq cn d^3$
- ullet again, assuming the boundary holds for all m < n, in particular $m = \lfloor n/2
 floor$ and $m = \lceil n/2
 ceil$
- ullet this yields $T(\lfloor n/2
 floor) \leq c \lfloor n/2
 floor d$ and $T(\lceil n/2
 ceil) \leq c \lceil n/2
 ceil d$ 4
- substituting the above ⁴ back into the original

$$egin{aligned} T(n) & \leq (c \lfloor n/2
floor - d) + (c \lceil n/2
ceil - d) + 1 \ & = cn - 2d + 1 \ & \leq cn - d \end{aligned}$$
 if $d \geq 1$

Recursion Tree

Example 1

Solve the upper bound of $T(n) = 3T(\frac{n}{4}) + cn^2$.

- how far from the root do we reach 1?
 - \circ the subproblem for a node at depth i is $rac{n}{4^i}$
 - $\circ \;\;$ the subproblem size is 1 when $n(rac{1}{4})^i=1$ or when $i=\log_4 n$
 - \circ thus, the tree has $\log_4 n + 1$ levels (at depths $0, 1, 2, \ldots, \log_4 n$)
- what is the cost at each level of the tree excluding the final level?

- \circ each level has 3 times more nodes than the one before so the number of nodes at depth i is 3^i
- o the subproblem size reduces by a factor of 4 for each level we go down, each node at depth i for $i=0,1,2,\ldots,\log_4 n-1$ (i.e. all the levels but the last) has a cost of $c(\frac{n}{4^i})^2$ such that the total cost at depth i is $3^i c(\frac{n}{4^i})^2=(\frac{3}{16})^i cn^2$
- what is the cost at the final level of the tree?
 - o the final level at depth $\log_4 n$ has $3^{\log_4 n} = n^{\log_4 3}$ nodes
 - \circ each node has a cost T(1) which we can assume is a constant
 - \circ thus, the final level of the tree has a cost of $\Theta(n^{\log_4 3})$
- what is the sum of all the costs?

$$egin{align} T(n) &= cn^2 + rac{3}{16}cn^2 + (rac{3}{16})^2cn^2 + \ldots + (rac{3}{16})^{\log_4 n - 1}cn^2 + \Theta(n^{\log_4 3}) \ &= k*cn^2 + \Theta(n^{\log_4 3}) \ &= O(n^2) \ \end{cases}$$

Example 2

Solve the upper bound for $T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + cn$.

Total: $O(n \lg n)$

- how far from the root do we reach 1?
 - $\circ \;\;$ notice that the tree can't be balanced as some branch paths will reach further to get to 1
 - \circ the longer branch path will be that of $T(\frac{2n}{3})$
 - \circ using this longer branch path, the subproblem size is 1 when $(rac{2}{3})^i n = 1$ or when $i = \log_{rac{3}{2}} n$

$$egin{aligned} i &= \log_{rac{3}{2}} n \ &= rac{\lg n}{\lg rac{3}{2}} \ &= c \lg n \ &= O(\lg n) \end{aligned}$$

• what is the cost at each level of the tree?

- notice at every level, it is *cn*
- what is the sum of all costs?
 - if we pretend the tree is balanced (which is fine for our upper bound since we'll be overestimating)
 - \circ there are $O(\lg n)$ levels
 - \circ each level is cn
 - thus, $T(n) \leq O(\lg n) * cn = O(n \lg n)$

Master Theorem

Applicable for recurrence relations in the form of:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Note that master theorem only solves some case.

Cases

Case 1

- if $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$,
- then $T(n) = \Theta(n^{\log_b a})$.

Case 2

- if $f(n) = \Theta(n^{\log_b a})$,
- then $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3

- ullet if $f(n)=\Omega(n^{\log_b a+\epsilon})$ for some constant $\epsilon>0$ and
- ullet if $af(rac{n}{b}) \leq cf(n)$ for some constant c>1 and sufficiently large n,
- then $T(n) = \Theta(f(n))$

Example 1

- solve the asymptotic bound of $T(n) = T(\frac{2n}{3}) + 1$
- $a=1, b=\frac{3}{2}, f(n)=1$
- $\bullet \ \log_b a = \log_{\frac{3}{2}} 1 = 0$
- ullet we can easily show the tight bound by $f(n)=1=\Theta(1)=\Theta(n^0)=\Theta(n^{\log_b a})$
- ullet this is <u>case 2</u> such that $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$

Example 2

- solve the asymptotic bound of $T(n) = 3T(\frac{n}{4}) + n \lg n$
- $a = 3, b = 4, f(n) = n \lg n$
- $\log_b a = \log_4 3 = 0.8$
- ullet we can show the lower bound by $f(n)=n \lg n = \Omega(n^{0.8+0.2})=\Omega(n^{\log_b a + \epsilon})$

- \circ where $\epsilon=0.2$
- this is case 3 such that $T(n) = \Theta(f(n)) = \Theta(n \lg n)$

Example 3

- solve the asymptotic bound of $T(n) = 2T(\frac{n}{2}) + n^2$
- $a = 2, b = 2, f(n) = n^2$
- $\bullet \ \log_b a = \log_2 2 = 1$
- ullet we can show the lower bound by $f(n)=n^2=\Omega(n^{1+1})=\Omega(n^{\log_b a+\epsilon})$
 - $\circ \;\; {
 m where} \, \epsilon = 1$
- this is case 3 such that $T(n) = \Theta(f(n)) = \Theta(n^2)$

Extended Form of Master Theorem

$$T(n) = aT(rac{n}{b}) + f(n)$$

Extended Form Cases

Case 1

- ullet if $af(rac{n}{b})=cf(n)$ is true for some constant c<1,
- then $T(n) = \Theta(f(n))$

Case 2

- ullet if $af(rac{n}{b})=cf(n)$ is true for some constant c>1,
- ullet then $T(n) = \Theta(n^{\log_b a})$

Case 3

- ullet if $af(rac{n}{b})=f(n)$ is true,
- $\bullet \ \ \operatorname{then} T(n) = \Theta(f(n) \log_b n)$

Methodology

- 1. list values of a, b, f(n)
- 2. plug a,b in to evaluate $af(\frac{n}{b})$
- 3. set $af(\frac{n}{b})=cf(n)$ and solve for c
- 4. match the value of c to the above <u>cases</u>

Example

- solve the asymptotic bound of $T(n)=3T(\frac{n}{2})+n$
- a = 3, b = 2, f(n) = n

$$af(rac{n}{b}) = cf(n)$$
 $rac{3}{2}n = cn$ $c = rac{3}{2}$ $c > 1$

ullet this is <u>case 2</u> such that $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\lg 3})$