МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 6304	 Виноградов К.А.
Преподаватель	Кирьянчиков В.А

Санкт-Петербург 2020

Цель работы.

Исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времени обнаружения отказов и различного числа используемых для анализа данных.

Формулировка задания.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i = [1,30], также смотри примечание в π .3), в соответствии c:
 - равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}} = 10$, CKO $s_{\text{равн}} = 20$ / (2 * sqrt(3)) = 5.8.
 - экспоненциальным законом распределения $W(y) = b * \exp(-b * y)$, y >= 0, с параметром b=0.1 и соответственно $m_{\rm эксп} = s_{\rm эксп} = 1 / b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) / b$
 - релеевским законом распределения $W(y) = (y / c^2) * \exp(-y^2 / (2 * c^2)), y >= 0$, с параметром c = 8.0 и соответственно $m_{pen} = c * \operatorname{sqrt}(\pi / 2)$, $s_{pen} = c * \operatorname{sqrt}(2 \pi / 2)$. Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины f, равномерно

распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2 * ln(t)).

- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов {Xi} оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах {Xi} использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

Если B > n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.

Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая — оценки полных времен проведения тестирования - для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

Равномерный закон, N=18. Сгенерированные числа представлены в табл. 1.

Таблица 1 – Исходные данные, равномерное распределение, N = 18

i	1	2	3	4	5	6	7	8	9
X	2.037	2.897	4.903	6.597	6.816	7.070	7.194	7.344	10.849
i	10	11	12	13	14	15	16	17	18
X	10.858	14.52	14.525	15.032	15.889	16.763	16.821	17.441	18.146

Проверка существования максимума:

$$A > (n + 1) / 2 => A = 11.9383 > (n + 1) / 2 = 9.5 =>$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 2.

Таблица 2 – Данные для поиска M, равномерное распределение, N = 18

M	19	20	21	22	23	24
f	3.49511	2.54774	2.09774	1.81203	1.60748	1.45096
g	2.54896	2.23278	1.98638	11.78896	1.62723	1.49233
f-g	0.946151	0.314963	0.11136	0.023065	0.019754	0.041367

Минимум наблюдается при M = 23. Тогда B = 22, K = 0.00831486. Оценка среднего времени. Данные представлены в табл. 3.

Таблица 3 – Данные для оценки времени, равномерное распределения, N = 18

I	19	20	21	22
X_{i}	30.0667	40.0889	60.1333	120.267

Таким образом, время до полного завершения тестирования -250.555, а полное время -446.257.

Равномерный закон, N=24. Сгенерированные числа представлены в табл. 4.

Таблица 4 – Исходные данные, равномерное распределение, N = 24

i	1	2	3	4	5	6	7	8	9
X	0.157	1.713	1.940	2.579	3.336	4.021	5.555	6.337	6.353
i	10	11	12	13	14	15	16	17	18
X	6.727	8.991	9.202	9.713	10.307	11.955	12.224	13.561	14.701
i	19	20	21	22	23	24			
X	16.559	16.831	17.339	18.28	18.572	19.584			

Проверка существования максимума:

$$A > (n+1)/2 => A = 16.6536 > (n+1)/2 = 12.5 =>$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 5.

Таблица 5 – Данные для поиска M, равномерное распределение, N = 24

M	25	26	27	28
f	3.77596	2.81596	2.35442	2.05812
g	2.8755	2.56784	2.31966	2.11521
f-g	0.900455	0.248115	0.0347643	0.0570916

Минимум наблюдается при M=27. Тогда B=26, K=0.00980673. Оценка среднего времени. Данные представлены в табл. 6.

Таблица 6 – Данные для оценки времени, равномерное распределения, N = 24

I	25	26
X _i	50.9854	101.971

Таким образом, время до полного завершения тестирования — 152.956, а полное время — 389.493.

Равномерный закон, N=30. Сгенерированные числа представлены в табл. 7.

Таблица 7 – Исходные данные, равномерное распределение, N = 30

i	1	2	3	4	5	6	7	8	9
X	1.333	2.484	2.735	2.808	2.863	3.261	4.165	6.001	6.100
i	10	11	12	13	14	15	16	17	18
X	6.123	6.672	6.721	6.793	6.809	7.012	7.996	8.470	9.085
i	19	20	21	22	23	24	25	26	27
X	9.286	10.573	11.352	11.439	14.048	15.100	15.219	15.577	15.809
i	28	29	30						
X	16.214	17.687	19.445						

Проверка существования максимума:

$$A > (n+1)/2 => A = 20.2736 > (n+1)/2 = 15.5 => максимум существует.$$

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 8.

Таблица 8 – Данные для поиска М, равномерное распределение, N = 30

M	31	32	33	34	35	36
f	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345
g	2.79685	2.55834	2.35731	2.18558	2.03716	1.90763
f-g	1.19814	0.468905	0.201182	0.069888	0.002287	0.044177

Минимум наблюдается при M = 35. Тогда B = 34, K = 0.00756804. Оценка среднего времени. Данные представлены в табл. 9.

Таблица 9 – Данные для оценки времени, равномерное распределения, N = 30

I	31	32	33	34
Xi	33.0337	44.0449	66.0673	132.135

Таким образом, время до полного завершения тестирования — 275.281, а полное время — 544.461.

Экспоненциальный закон, N=18. Сгенерированные числа представлены в табл. 10.

Таблица 10 – Исходные данные, экспоненциальное распределение, N = 18

i	1	2	3	4	5	6	7	8	9
X	0.24	0.787	0.885	1.847	2.649	2.687	3.021	3.321	4.285
i	10	11	12	13	14	15	16	17	18
X	5.383	9.265	10.129	10.601	14.944	15.087	26.118	31.363	60.388

Проверка существования максимума:

$$A > (n + 1) / 2 \Rightarrow A = 14.858 > (n + 1) / 2 = 9.5 \Rightarrow$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 11.

Таблица 11 – Данные для поиска M, экспоненциальное распределение, N = 18

M	19	20
f	3.49511	2.54774
g	4.34573	3.50058
f-g	0.850619	0.952844

Минимум наблюдается при M = 19. Тогда B = 18, K = 0.0214075.

Таким образом, время до полного завершения тестирования -0, а полное время -203.

Экспоненциальный закон, N = 24. Сгенерированные числа представлены в табл. 12.

Таблица 12 – Исходные данные, экспоненциальное распределение, N = 24

i	1	2	3	4	5	6	7	8	9
X	0.252	0.415	0.8	1.798	2.587	2.660	2.669	3.474	3.677
i	10	11	12	13	14	15	16	17	18

X	3.934	3.983	4.202	4.541	5.984	6.939	7.746	7.827	7.937
i	19	20	21	22	23	24			
X	9.663	12.484	15.145	15.68	17.141	39.245			

Проверка существования максимума:

A > (n+1)/2 => A = 18.4302 > (n+1)/2 = 12.5 => максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 13.

Таблица 13 – Данные для поиска M, экспоненциальное распределение, N = 24

M	25	26
f	3.77596	2.81596
g	3.6531	3.17051
f-g	0.122857	0.354552

Минимум наблюдается при M=25. Тогда B=24, K=0.0202071.

Таким образом, время до полного завершения тестирования -0, а полное время -180.783.

Экспоненциальный закон, N = 30. Сгенерированные числа представлены в табл. 14.

Таблица 14 – Исходные данные, экспоненциальное распределение, N = 30

i	1	2	3	4	5	6	7	8	9
X	0.027	0.107	0.181	0.184	1.168	1.190	2.190	2.335	2.376
i	10	11	12	13	14	15	16	17	18
X	2.637	3.081	3.675	3.876	4.193	6.039	6.200	6.209	6.334
i	19	20	21	22	23	24	25	26	27
X	6.657	7.023	7.726	7.920	9.984	10.288	10.714	11.280	11.481
i	28	29	30						

Проверка существования максимума:

$$A > (n + 1) / 2 => A = 21.5499 > (n + 1) / 2 = 15.5 =>$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 15.

Таблица 15 – Данные для поиска М, экспоненциальное распределение, N = 30

M	31	32	33	34
f	3.99499	3.02725	2.5585	2.25546
g	3.17457	2.87079	2.62007	2.40962
f-g	0.820416	0.156458	0.0615702	0.154155

Минимум наблюдается при M=33. Тогда $B=32,\,K=0.0153357.$ Оценка среднего времени. Данные представлены в табл. 16.

Таблица 16 — Данные для оценки времени, экспоненциальное распределения, N = 30 $\,$

I	31	32
Xi	32.6038	65.2075

Таким образом, время до полного завершения тестирования — 97.8113, а полное время — 268.659.

Релеевский закон, N=18. Сгенерированные числа представлены в табл. 17.

Таблица 17 – Исходные данные, релеевское распределение, N = 18

i	1	2	3	4	5	6	7	8	9
X	1.155	2.443	3.946	4.335	5.059	5.374	6.428	6.725	7.405
i	10	11	12	13	14	15	16	17	18
X	8.161	8.450	8.474	8.808	9.503	14.268	14.864	16.31	21.089

Проверка существования максимума:

$$A > (n + 1) / 2 => A = 12.374 > (n + 1) / 2 = 9.5 =>$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 118.

Таблица 18 – Данные для поиска M, релеевское распределение, N = 18

M	19	20	21	22
f	3.49511	2.54774	2.09774	1.81203
g	2.71657	2.36034	2.08671	1.86993
f -	0.77854	0.187396	0.0110268	0.0579088

Минимум наблюдается при M=21. Тогда B=20, K=0.0136568. Оценка среднего времени. Данные представлены в табл. 19.

Таблица 19 – Данные для оценки времени, релеевское распределения, N = 18

I	19	20
Xi	36.6119	73.2238

Таким образом, время до полного завершения тестирования — 109.836, а полное время — 262.633.

Релеевский закон, N=24. Сгенерированные числа представлены в табл. 20.

Таблица 20 – Исходные данные, релеевское распределение, N = 24

i	1	2	3	4	5	6	7	8	9
X	3.979	4.128	5.649	5.717	5.890	6.353	7.041	7.272	7.756
i	10	11	12	13	14	15	16	17	18
X	8.013	8.401	9.774	9.878	10.217	10.625	10.897	11.594	11.667
i	19	20	21	22	23	24			
X	13.081	13.828	15.404	15.626	16.005	20.659			

Проверка существования максимума:

$$A > (n+1)/2 => A = 15.2651 > (n+1)/2 = 12.5 => максимум существует.$$

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 21.

Таблица 21 – Данные для поиска M, релеевское распределение, N = 24

M	25	26	27	28	29	30	31	32	33
f	3.7759	2.8159	2.3544	2.058	1.843	1.678	1.544	1.434	1.340
g	2.4653	2.2356	2.0451	1.884	1.747	1.628	1.525	1.434	1.353
f	1.3106	0.5802	0.3092	0.173	0.096	0.049	0.019	0.000	0.012

Минимум наблюдается при M=32. Тогда B=31, K=0.00598915. Оценка среднего времени. Данные представлены в табл. 22.

Таблица 22 – Данные для оценки времени, релеевское распределения, N = 24

Ι	25	26	27	28	29	30	31
X_i	23.8526	27.8281	33.3937	41.7421	55.6562	83.4843	166.969

Таким образом, время до полного завершения тестирования — 432.926, а полное время — 672.38.

Релеевский закон, N=30. Сгенерированные числа представлены в табл. 23.

Таблица 23 – Исходные данные, релеевское распределение, N = 30

i	1	2	3	4	5	6	7	8	9
X	1.045	3.361	4.015	4.024	4.517	4.933	5.676	6.606	8.280
i	10	11	12	13	14	15	16	17	18
X	8.936	9.001	9.528	9.844	10.613	11.419	11.530	11.760	11.882
i	19	20	21	22	23	24	25	26	27
X	12.232	12.413	12.688	12.753	13.277	13.844	14.573	17.14	18.251
i	28	29	30						
X	M	11.919	12.205						

Проверка существования максимума:

$$A > (n+1)/2 => A = 19.6299 > (n+1)/2 = 15.5 =>$$
 максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 24.

Таблица 24 – Данные для поиска M, релеевское распределение, N=30

M	31	32	33	34	35	36	37	38
f	3.9949	3.0272	2.5585	2.2554	2.0348	1.8634	1.7245	1.6087
g	2.6384	2.4252	2.2438	2.0876	1.9518	1.8326	1.7271	1.6330
f -	1.3564	0.6020	0.3146	0.1677	0.0830	0.0308	0.0025	0.0243

Минимум наблюдается при M=37. Тогда B=36, K=0.00525448. Оценка среднего времени. Данные представлены в табл. 25.

Таблица 25 – Данные для оценки времени, релеевское распределения, N = 30

I	31	32	33	34	35	36
Xi	31.719	38.0628	47.5785	63.438	95.157	190.314

Таким образом, время до полного завершения тестирования – 466.269, а полное время – 794.961.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.