Sorting

IT5003: Data Structures and Algorithms (AY2019/20 Semester 1)

Lecture Outline

- Iterative sorting algorithms (comparison based)
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
- Recursive sorting algorithms (comparison based)
 - Merge Sort
 - Quick Sort
- Radix sort (non-comparison based)
- Properties of Sorting
 - In-place sort, stable sort
 - Comparison of sorting algorithms
- Note: we only consider sorting data in ascending order

Why Study Sorting?

- When an input is sorted, many problems become easy (e.g. searching, min, max, k-th smallest)
- Sorting has a variety of interesting algorithmic solutions that embody many ideas
 - Comparison vs non-comparison based
 - Iterative
 - Recursive
 - Divide-and-Conquer
 - Best / Worst / Average-case bounds
 - Randomized algorithms

Applications of Sorting

- Uniqueness testing
- Deleting duplicates
- Prioritizing events
- Frequency counting
- Reconstructing the original order
- Set intersection/union
- Finding a target pair x, y such that x+y = z
- Efficient searching

Congrats! You have been selected......

SELECTION SORT

Selection Sort: Idea

Observations:

- It is simple to find the *largest item* in a list of unsorted numbers
- We know the correct position of the largest item once it is found
- Once the largest item is in the correct position, it can be "ignored"
- Try applying the idea:

										10
8	3	-5	4	2	-10	13	2	-7	9	0

Selection Sort: Attempt One

Use a temporary array to store the result?

- Difficulty and drawbacks:
 - Need to "remove" the max number from the original array every round
 - Need to keep track of the current position in the result[] array
 - Wasteful: Need an additional size N array for result

Selection Sort: Attempt Two

37 is the largest, swap it with the last element, i.e. **13**

Sorted!

Selection Sort: Implementation

Step 1: Search for maximum element

```
#useful helper function
def swapElement(array, x, y):
   temp = array[x]
   array[x] = array[y]
   array[y] = temp
```

Step 2: Swap maximum element with the last item

Selection Sort : Analysis

```
def selectionSort(array):
    n = len(array)
    for i in range(n-1,0, -1):
        maxIdx = i

    for j in range(0, i):
        if array[j] > array[maxIdx]:
        maxIdx = j

    swapElement(array, maxIdx, i)
```

Number of times executed

N-1

$$(N-1)+(N-2)+...+1$$

= $N(N-1)/2$

N-1

Total

$$c_1 (N-1) + c_2*N*(N-1)/2$$

= $O(N^2)$

Just _____ (insert your answer)

INSERTION SORT

Insertion Sort: Idea

- Similar to how most people arrange a hand of poker cards
 - Start with one card in your hand
 - Pick the next card and insert it into its proper sorted order
 - Repeat previous step for all cards

Insertion Sort: Illustration

Insertion Sort: Implementation

```
def insertionSort(array):
   n = len(array)
   for i in range (1, n):
                                                        next is the
                                                         item to be
       next = array[i]
                                                         inserted
       j = i-1
       while j >= 0 and array[j] > next:
                                                        Shift sorted
           swapElement(array, j+1, j)
                                                       items to make
           j = j-1
                                                       place for next
                                                       Insert next to
       array[j+1] = next;
                                                        the correct
                                                          location
```

next

10 10 29 14 37 13

Insertion Sort: Analysis

```
def insertionSort(array):
    n = len(array)

for i in range (1, n):
    next = array[i]
    j = i-1

while j >= 0 and array[j] > next:
    swapElement(array, j+1, j)
    j = j-1

array[j+1] = next;
```

- The inner loop is input sensitive:
 - Best case: Input is already sorted
 - Worst case: Input is in reverse order

Number of times executed

N-1

Best Case:

N-1

Worst Case:

$$(N-1)+(N-2)+...+1$$

= $N(N-1)/2$

N-1

Best Case

O(N)

Worst Case

 $O(N^2)$

Bubble to the top!

BUBBLE SORT

Bubble Sort: Idea

- Given an array of *n* items
 - 1. Compare pair of adjacent items
 - 2. Swap if the items are out of order
 - 3. Repeat until the end of array
 - The largest item will be at the last position
 - 4. Reduce *n* by 1 and go to Step 1
- Analogy
 - Large item is like "bubble" that floats to the end of the array

Bubble Sort: Illustration

At the end of Pass 1, the largest item 37 is at the last position.

(b) Pass 2

At the end of Pass 2, the second largest item 29 is at the second last position.

Bubble Sort: Implementation

Step 1:

Compare adjacent pairs of numbers

Step 2:

Swap if the items are out of order

Try it

Bubble Sort : Analysis

```
def bubbleSort(array):
    n = len(array)

for i in range(n-1, 0, -1):
    for j in range (1, i+1):
        if array[j-1] > array[j]:
            swapElement(array, j, j-1)
```

Number of times executed

N

$$(N-1) + (N-2) + ... + 0$$

= $N(N-1)/2$

Total

c *N* (N-1)/2

 $= O(N^2)$

Bubble Sort: Early Termination

- Bubble Sort is inefficient with a $O(n^2)$ time complexity
- However, it has an interesting property
 - Given the following array, how many times will the inner loop swap a pair of item?

3 6	11	25	39
-----	----	----	----

- Idea
 - If we go through the inner loop with no swapping
 - the array is sorted
 - can stop early!

Bubble Sort v2.0: Implementation

```
def bubbleSortEarly(array):
    n = len(array)
    for i in range(n-1, 0, -1):
        isSorted = True

    for j in range (1, i+1):
        if array[j-1] > array[j]:
            swapElement(array, j, j-1)
            isSorted = False

    if isSorted:
        return
```

Assume the array is sorted before the inner loop

Any swapping will invalidate the assumption

If the flag remains **true** after the inner loop → sorted!

Bubble Sort Ver 2.0: Analysis

Worst-case

- Input is in descending order
- Running-time remains the same: O (n²)

Best-case

- Input is already in ascending order
- Algorithm returns after a single outer-loop
- Running time: O(n)

left, right, left, left, right === merged!

MERGE SORT

Merge Sort : Idea

 Suppose we only know how to merge two sorted sets of elements into one

- Question:
 - Where do we get the two sorted sets?
- Idea (use merge to sort *n* items):
 - Merge each pair of elements into sets of 2
 - Merge each pair of sets of 2 into sets of 4
 - Repeat previous step for sets of 4 ...
 - Final step: Merges 2 sets of n/2 elements to obtain a sorted set

Divide and Conquer Method

- A powerful problem solving technique
- Divide-and-conquer method solves problem in the following steps:
 - Divide Step:
 - divide the large problem into smaller problems
 - Recursively solve the smaller problems
 - Conquer Step:
 - combine the results of the smaller problems to produce the result of the larger problem

Merge Sort : Divide and Conquer

Merge Sort is a divide-and-conquer sorting algorithm

Divide Step:

- Divide the array into two (equal) halves
- Recursively sort the two halves

Conquer Step:

Merge the two halves to form a sorted array

Merge Sort : Illustartion

7 2 6 3 8 4 5

Divide into two halves

7 2 6 3

8 4 5

Recursively sort the halves

2 3 6 7

4 5 8

Merge them

2 3 4 5 6 7 8

- Question:
 - How should we sort the halves in the 2nd step?

Merge Sort: Implementation

```
def mergeSort( array, low, high ):
                                                Merge sort on
   if low < high:</pre>
                                                 a[low...high]
       mid = (low+high) // 2
                                                Divide a[] into
       mergeSort(array, low, mid)
                                                two halves and
       mergeSort(array, mid+1, high)
                                                recursively sort
                                                    them
       merge(array, low, mid, high)
                                                Conquer: merge
                   Function to merge
                                                 the two sorted
                   a[low...mid] and
                                                    halves
                  a[mid+1...high] into
                     a[low...high]
```

Merge Sort: An example

Merge Sort: Merging Two Sorted Halves

Merge Sort: Merge() code

```
def merge( array, low, mid, high ):
   n = high-low+1
                                                    result is a
   result = [] _____
                                                    temporary
                                                   array to store
   left = low
                                                      result
   right = mid+1
   while left <= mid and right <= high:</pre>
       if array[left] <= array[right]:</pre>
           result.append(array[left])
                                                 Normal Merging
                                                   Where both
           left = left + 1
                                                   halves have
       else:
                                                 unmerged items
           result.append(array[right])
           right = right + 1
   #continue on next slide
```

Merge Sort: Merge() code (cont)

```
while left <= mid:
    result.append(array[left])
    left = left + 1

while right <= high:
    result.append(array[right])
    right = right + 1

for k in range(0, n):
    array[low+k] = result[k];</pre>
Merged result
are copied back
into array[]
```

- Questions to ponder:
 - Why don't we use array slicing in mergeSort?
 - Why do we need a separate result[] array during merge?

Merge Sort: MergeSortHelper() code

```
def mergeSortHelper(array):
    mergeSort(array, 0, len(array)-1)
```

- To make mergeSort() consistent with other sorting algorithm (which take in only an array as parameter):
 - We need a helper function as above
 - Only to kick start the first recursive mergeSort() function with the right parameter
- A common "trick" to keep function interface similar

Merge Sort : Analysis

- In mergeSort()
 - the bulk of work is done in the merge step
- For merge(a, low, mid, high)

```
Total items = k = (high-low+1)
```

■ Number of comparisons ≤ k-1

- Number of moves from original array to temporary array = k
- Number of moves from temporary array back to original array = k
- In total, no. of operations ≤ 3k-1 = 0 (k)
- The important question is:
 - How many times merge() is called?

Merge Sort: Analysis (2)

Level 0:

mergeSort n items

Level 1:

mergeSort n/2 items

Level 2:

mergeSort n/22 items

Level 0:

1 call to mergeSort

Level 1:

2 calls to mergeSort

Level 2:

2² calls to mergeSort

Level (log n): mergeSort 1 item

Level (log n):

2^{lg n}(= n) calls to mergeSort

$$n/(2^k) = 1 \rightarrow n = 2^k \rightarrow k = lg n$$

Merge Sort: Analysis (3)

Level	#Calls of merge()	Size of each merge()	Total Cost per level	
0				
1	1	2 x n/2 items	O(n)	
2	2	$2 \times n/2^2$ items	O(n)	
k	2 ^{k-1}	2 x n/2 ^k items	O(n)	
lg n	2 ^{lg n-1}	2 x n/2 ^{lg n} items	O(n)	

Grand total:

□ Number of levels $x O(n) \rightarrow O(n \lg n)$

[IT5003 - L2- AY1920S1]

Merge Sort: Pros and Cons

Pros:

- Optimal comparison based sorting
- The performance is guaranteed
 - Unaffected by original ordering of the input
- Suitable for extremely large number of inputs
 - Can operate on the input portion by portion

Cons:

- Not easy to implement
- Requires additional storage during merging operation
 - O(n) extra memory storage needed

Quickly do a quick sort!

QUICK SORT

Quick Sort : Idea

- Quick Sort is a divide-and-conquer algorithm
- Divide Step:
 - Choose an item p (known as pivot) and partition the items of a [i..j] into two parts:
 - Items that are smaller than p
 - Items that are greater than or equal to p
 - Recursively sort the two parts
- Conquer Step: Do nothing!
- Comparison:
 - Merge Sort spends most of the time in conquer step but very little time in divide step

[IT5003 - L2- AY1920S1]

Quick Sort : Divide Step Example

Quick Sort : Code

```
def quickSort ( array, low, high ):
    if low < high :
        pivotIdx = partition( array, low, high )
        quickSort( array, low, pivotIdx-1)
        quickSort( array, pivotIdx + 1, high )</pre>
Recursively sort the two portions
```

- partition() splits a[low...high] into two portions
 - a[low ... pivot 1] and a[pivot + 1 ...
 high]
- Pivot item does not participate in any further sorting

[IT5003 - L2- AY1920S1]

Partition

Quick Sort: Partition Algorithm

- To partition a[i..j], we choose a[i] as the pivot p
- The remaining items (a[i+1..j]) are divided into three regions:
 - \square S1 = a[i+1...m] : items < p
 - □ S2 = a[m+1...k-1] : items $\ge p$
 - unknown = a[k...j] : items to be assigned to S1 or S2

Quick Sort: Partition Algorithm (2)

- Initially, regions S1 and S2 are empty
 - All items excluding p are in the unknown region
- For each item a [k] in the unknown region
 - Compare a [k] with p:
 - If a [k] >= p, put it into S2
 - Otherwise, put a [k] into S1

```
S1 = a[i+1...m] : items < p

S2 = a[m+1...k-1] : items \geq p

Unknown = a[k...j]
```

```
p ?

i k

Unknown
```

Quick Sort: Partition Algorithm (3)

■ Case 1: item y at a[k] >= p $S2 = a[m+1...k-1] : items \ge p$

```
S1 = a[i+1...m] : items < p

S2 = a[m+1...k-1] : items \geq p

Unknown = a[k...j]
```

if $y \ge p$

Increment k p ?

S1 S2 Unknown

Quick Sort: Partition S2 = a[m+1...k-1] : items > p

```
S1 = a[i+1...m]
                    : items < p
Unknown = a[k...j]
```

Case 2: item y at a [k] < p</p>

Quick Sort: Partition Algorithm Code

```
def partition( array, i, j ):
   pivot = array[i];
  middle = i;
                                          S1 and S2 empty
                                              initially
                                           Go through each
  for k in range (i+1,j+1):
                                          element in unknown
      if array[k] < pivot:</pre>
                                              region
         middle = middle + 1
         swapElement(array, k, middle)
     #else
               Case 1: Do nothing!
   return middle .....
                                     return the index of pivot
                                           element
```

Quick Sort : Partition Example

Pivot	S ₁		S ₂		<u>Unkn</u> own
27	12	38	39	27	16
	<u> </u>				
Pivot S ₁ S ₂					
27	12	16	39	27	38
S ₁ Pivot S ₂					
	٥ ₁			- Z	

Quick Sort: Partition() Analysis

- There is only a single for-loop
 - Number of iterations = number of items, N, in the unknown region
 - ightharpoonup N = high low
 - Complexity is O(N)

 Similar to Merge Sort, the complexity is then dependent on the number of times partition() is called

Quick Sort: Worst Case Analysis

When the array is already in ascending order:

- What is the pivot index returned by partition()?
 - What is the effect of swap (a, i, m)?
- S1 is empty, while S2 contains every item except the pivot...

Quick Sort: Worst Case Analysis (2)

What is the main cause of this "disaster" ?

Quick Sort : Best/Average Case Analysis

- Best case occurs when partition always splits the array into two equal halves.
 - Depth of recursion is lg n
 - Recall the number of levels in merge sort?
 - Time complexity is O (n lg n)
- In practice, worst case is rare, and on the average we get some good splits and some bad ones.
 - Average time is O(n lg n)

Lower Bound: Comparison Based Sorting

- It is established that:
 - All Comparison Based sorting algorithms have a complexity lower bound of n lg n
- Any comparison based sorting algorithm with a worst case complexity O (n lg n)
 - → It is optimal

Sort without comparing number?!?!

RADIX SORT

Radix Sort: Idea

- Treats each data to be sorted as a character string
 - i.e. not using the numerical value directly
- It is not using comparison, i.e., no comparison between the data is needed
- In each iteration:
 - Organize the data into "bins" according to the next character in each data
 - The groups are then "concatenated" for next iteration

[IT5003 - L2- AY1920S1]

Radix Sort : Example

Start

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150

```
(1560,2150) (1061) (0222) (0123,0283) (2154,0004)
1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004
```

```
(0004) (0222,0123) (2150,2154) (1560,1061) (0283)
0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283
```

```
(0004,1061) (0123,2150,2154) (0222,0283) (1560)
0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560
```

```
(0004,0123,0222,0283) (1061,1560) (2150,2154)
```

Sorted

0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

Radix Sort: Main Driver

```
def radixSort( array):
    numDigit = int(math.log10(max(array))) + 1

for power in [10**i for i in range(numDigit)]:
    digitBin = [[] for d in range(10)]
    distribute(array, digitBin, power)

collect(digitBin, array)
```

- distribute(): Organize all items in array into "bins" based on specific digit, as indicated by the power
 - collect(): Place items from the "bins" back into array, i.e. "concatenate" the groups

[IT5003 - L2- AY1920S1]

Radix Sort : Distribute

```
def distribute(array, digitBin, power):
    for item in array:
        digit = (item // power ) % 10

        digitBin[digit].append( item )
```

The item is placed in the bin as determined by the specific digit

Use 1234 as example:

```
    power = 1 (1234 // 1) % 10 → 1234 % 10 → 4
    power = 10 (1234 // 10) % 10 → 123 % 10 → 3
    power = 100 (1234 // 100) % 10 → 12 % 10 → 2
    power = 1000 (1234 // 1000) % 10 → 1 % 10 → 1
```

Radix Sort: Collect

```
def collect(digitBin, array):
    startIdx = 0

for eachBin in digitBin:
    array[startIdx:] = eachBin
    startIdx += len(eachBin)
```

Basic Idea:

- Start with digitBin[0]
 - Replace all items in array[0.....]
- digitBin[1] replace all items in array[len(digitBin[0]......]
- Repeat for each bin

Radix Sort : Analysis

- For each iteration
 - We go through each item once to place them into group
 - Then go through them again to concatenate the groups
 - Complexity is O (n)
- Number of iterations is d, the maximum number of digits (or maximum number of characters)
 - Complexity is thus O(d n)

The Good, The Bad and The Ugly: Sorting Algorithm Version

PROPERTIES OF SORTING

Property: In-Place Sorting

- A sort algorithm is said to be an in-place sort
 - if it has a space complexity of O(1) excluding the original list of numbers
 - i.e. it can only use constant amount of extra space during the sorting process

Question:

- Merge Sort is not in-place, why?
- Is Radix Sort in-place?

Property: Stable Sorting

- A sorting algorithm is stable if the relative order of elements with the same key value is preserved by the algorithm
- Example application of stable sort
 - Assume that names have been sorted in alphabetical order
 - Now, if this list is sorted again by tutorial group number, a stable sort algorithm would ensure that all students in the same tutorial groups still appear in alphabetical order of their names

Counter-Example: Non-Stable Sort

Selection Sort

Originally sorted by suit

/ < **/**

3♥ < 3♠

Counter-Example: Non-Stable Sort

Quick Sort:

During partition phase (1285 is the pivot)

1285	5a	150	4746	602	5b	8356
1285	5a	150	602	5b	4746	8356
5b	5a	150	602	1285	4746	8356

 Observe that the last swapping operation (to put pivot in the right location) can break the ordering of similar items

Sorting Algorithms: Summary

	Worst Case	Best Case	In-place?	Stable?
Selection Sort	O(n²)	O(n²)	Yes	No
Insertion Sort	$O(n^2)$	O(n)	Yes	Yes
Bubble Sort	O(n²)	O(n²)	Yes	Yes
Bubble Sort 2	O(n²)	O(n)	Yes	Yes
Merge Sort	O(n lg n)	O(n lg n)	No	Yes
Quick Sort	O(n²)	O(n lg n)	Yes	No
Radix sort	O(dn)	O(dn)	No	yes

Note: as implemented in this lecture

[IT5003 - L2- AY1920S1]

Summary

- Comparison-Based Sorting Algorithms
 - Iterative Sorting
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Recursive Sorting
 - Merge Sort
 - Quick Sort
- Non-Comparison-Based Sorting Algorithms
 - Radix Sort
- Properties of Sorting Algorithms
 - In-Place
 - Stable