

CLAIMS

1. An oxetane compound containing a (meth)acryloyl group, which is represented by formula (1) below

5 wherein R¹ represents a hydrogen atom or a methyl group, A represents -OR²- or a bond, R² represents a divalent hydrocarbon group which may contain an oxygen atom in the main chain, R³ represents a linear or branched alkylene group having 1 to 6 carbon atoms, and R⁴ represents a linear or branched alkyl group having 1 to 6 carbon atoms.

10

2. The oxetane compound containing a (meth)acryloyl group claimed in claim 1, which is a compound represented by formula (2) below.

15 3. The oxetane compound containing a (meth)acryloyl group as claimed in claim 1, which is a compound represented by formula (3) below.

4. The oxetane compound containing a (meth)acryloyl group as claimed in claim 1, which is a compound represented by formula (4) 5 below.

5. A production method of an oxetane compound containing a (meth)acryloyl group, wherein an isocyanate compound containing a 10 (meth)acryloyl group represented by formula (5) below is reacted with an oxetane compound containing a hydroxyl group represented by formula (6) below

wherein R^1 represents a hydrogen atom or a methyl group, A represents $-\text{OR}^2-$ or a bond, and R^2 represents a divalent hydrocarbon group which may contain an oxygen atom in the main chain

wherein R³ represents a linear or branched alkylene group having 1 to 6 carbon atoms, and R⁴ represents a linear or branched alkyl group having 5 1 to 6 carbon atoms.

6. The production method of an oxetane compound containing a (meth)acryloyl group as claimed in claim 5, wherein a tertiary amine or a tin compound is used as catalyst.