(19) 日本国格許庁 (JP)

€ 辍 ধ 盂 华 噩 4 (12)

梅爾平9-284138 (11) 特許出職公開番号

(43)公開日 平成9年(1997)10月31日

佈表示循所

(51) Int.Cl.		中国国	广内整理器中	FI			按
H 0 3 M	1/30		9382-5K	H03M	1/30	2	
H 0 4 N	1/41			H04N	1/41	2	
	1/24				7/13	2	

(全18月) **審査階次 未舗次 踏次項の数5 OL**

000005498 第十十口ックス株式会社	東京都港区永坂二丁目17番22号 富田 治明	神奈川県足柄上部中井町製450 グリーン テクなかい 宮士ゼロックス株式会社内 (74)代理人 弁理士 脳部 観巌		
(71) 田間人 000005496	(72) 発明者	(74)代理人		
秋 間平8 — 807.29	平成8年(1996)4月9日			
(21)出版每号	(22)(出版日			

CODEC質層及びCODECシステム (54) [現明の名称]

(57) [取称]

入出力のピン数を配成したCODEC装置を 処供することを目的とする。

化データ入出力年段300は、符号データの入力、出力 7 ヘアクセスする。彼号化側内部レジスタアクセス年段 [解決年段] 符号化年段4は、ディジタルデータを符 ルデータの入力と復号データの出力の制御を行う。符号 の慰御を行う。 内部レジスタ年段1は、内部パス10を 5。 年中七回内田レジスタアクセス年段8は、ディジタ ル/彼身データ入出力年段200から内部レジスタ年段 9 は、符号化データ入出力手段300から内部レジスタ ディジタル/復号データ入出力手段200は、ディジタ 身化する。彼身化年段5は、符号ゲータを彼身化する。 通じて符号化年段4あるいは復号化年段5の制御を行

年段1~アクセスする。観停年段6は、アクセス観合時

1間停を行う。

ディジタルデータの情報圧縮及び伸張を 前記ディジタルデータを符号化して符号データに圧縮す 行うCODEC装置において 特許請求の範囲 (神水項1)

前配符号データを復号化して復号データに伸張する復号 る符号化手段と、 化手段と、

竹記ディジタルデータの入力あるいは前記復号データの 出力の制御を行うディジタル/復号データ入出力手段 前配符号データの入力あるいは出力の制御を行う符号デ ータ入出力手段と、

タ入出力手段とを接続する内部パスを通じて、前配符号 **竹記ディジタル/復号データ入出力手段と前配符号デー** 化手段または前配復号化手段の制御を行う内部レジスタ

ジスタ年段へアクセスする符号化側内部レジスタアクセ 前記ディジタル/復号データ入出力手段から前記内部レ

前配符号データ入出力手段から前配内部レジスタ手段へ アクセスする復号化側内部レジスタアクセス手段と、

前配符号化側内部レジスタアクセス手段と、前配復号化 段へのアクセス実行時に競合した場合は、調停を行う調 関内部レジスタアクセス手段とが、前配内部レジスタ手 (年報と)

【酵水項2】 前配CODEC装置は単一の集積回路上 に実装されることを特徴とする請求項1配載のCODE を有することを特徴とするCODEC装置。

「酵水項3】 ディジタルデータの情報圧縮及び伸張を **前記ディジタルデータを符号化して符号データに圧縮** し、入出力処理を行う符号化処理手段と 行うこのDECシステムにおいて、

竹記ディジタルデータを格納するディジタルデータメモ 前配符号化処理手段または前配復号化処理手段の制御を 竹配符号データを復号化して復号データに伸張し、入出 力処理を行う復号化処理手段と、 行う内部レジスタ制御手段と、

前配符号化処理手段または前配復号化処理手段と前配デ ィジタルデータメモリとでデータ転送を行う際に、前配 ディジタルデータメモリと前配内部レジスタ制御手段と の制御を行うダイレクトメモリアクセス制御手段と、

【静水項4】 前記ダイレクトメモリアクセス制御手段 は、前記ディジタルメモリである画像メモリ手段と前記 トメモリアクセス制御手段と、前配ディジタルメモリで あるメインメモリと前配内部レジスタ制御手段とを制御 内部レジスタ制御手段とを制御する第1の前配ダイレク する第2の前配ダイレクトメモリアクセス制御手段と、 を有することを特徴とするCODECシステム。

特関平9-284138

8

から構成されることを特徴とする請求項3配載のCOD ECシステム。

「酵水項5】 前配CODECシステムは単一の集積回 路上に実装されることを特徴とする請求項3記載のCO **DECシステム。**

[発明の詳細な説明]

CODECシステムにおいて、特にディジタルデータの [発明の属する技術分野] 本発明はCODEC装置及び 情報圧縮及び伸張を行うこのDEC装置及びこODEC システムに関する。 0001

赤、青、緑の3色で1色当たり8bitで変現すると約 させると多くの場所を占有してしまう。また、ある装置 から別の装置へ画像データの伝送を行うと、伝送に時間 ラー画像を3300×4650画架で按現し、各画繋を 一夕を半導体メモリや磁気ディスク等の配箇手段に配億 **粋にデータ量が膨大である。例えばA4用紙サイズのカ** 46MByteのデータ曲となる。このような膨大なデ [従来の技術] ディジタルデータとして画像データは、 [0002]

ことで画像データを再生する。このような符号化、復号 【0003】そこで一般には、画像データが特つ冗長性 を取り除きデータ量が少なくなるようなアルゴリズムを 化を実現するために、符号化装置、復号化装置(以下で その符号化された符号データを記憶、伝送、復号化する は符号化装置、復号化装置をまとめてCODEC装置と 用いて画像を符号化することが行われている。そして、 呼ぶことにする)が用いられている。 がかかるという問題点がある。

ートを用意することで、画像データと符号データが干埗 タ量が多い。このためCODEC装置は、画像データを 効率よく転送するために、画像データと符号データに対 して独立した入出力ポートを用意している。すなわち画 像データは、画像データパスを介してCODEC装置の タ用ポートに接続される。このように独立した入出力ポ することがなく、高スループットの符号化あるいは復号 【0004】一方、画像データは符号データよりもデー は、符号データバスを介してCODEC装置の符号デー 画像データ用ポートに接続される。また、符号データ ಜ

【0005】さらに、画像データの符号化あるいは復号 に保存される。また、符号化あるいは復号化の結果とし てCODEC装置はエラー発生の有無、データ量のカウ 化の際にはCODEC装置にいくつかのパラメータを与 える必要がある。パラメータには、回像データの幅と高 さ、カラー画像あるいはモノクログレースケール画像の れらパラメータはCODEC装置内にある内部レジスタ ント毎のステータスを生成する。このステータスも、C 区別、符号化・復号化アルゴリズムの区別等がある。 ODEC装置内の内部レジスタに保持される。 化処理が可能となる。 ŧ 8

€

[0006] そして、CPUは、パラメータの告き込み やステータスの観み出しを行うことで、画像データの符 **母化あるいは復母化処国を実行する。このためCPUか** ち内部レジスタにアクセスする年段が必要となる。

内部レジスタ7 a は、CPU120aと内部レジスタア aで接続され、符号化メモリ130aと符号データパス 【0007】図16は、従来のCODEC装置の内部レ ジスタとメモリとの抽除構成を示す図である。CODE C装置1aは画像メモリ110aと画像データパス20 30aとで披続される。また、CODEC装置1a内の クセス用パス100とで俊続される。

像データパス20mは画像データパスより入出力し、符 【0008】このような構成を持つものとして例えば川 **的製飲株式会社のデータシートフルカラー画像圧縮伸長** LSI KL5A71003がある。このLSIでは図 内部レジスタアクセス用パス 1 0 a に関しては制御用の **身データパス30mはホストデータパスより入出力し、** MPパスを通じて入出力する。

ロデバイス株式会社のMD36059Xがある。この Fパスを介して入出力し、符号データパス 30gはコー ドデータ1 / Fパスを介して入出力し、内部レジスタア クセス用パス10a~のアクセスはホスト [/Fパスを 【0.0 0 9】また、別の例としては、笛士フィルムャイ LSIは、画像データパス20g はピクセルデータ [/ かして行う。

国の萬選化を契現したCODECシステムでは、一般に の転送にDMAを使用する場合のCODECンステムの [0010] このようにCODEC装置には画像データ **パス、符号データパス、及び内部レジスタ用アクセスパ** また、上記のCODEC装置を用いて符号化/復号化処 DMAと呼ぶ。)が使用される。図17は、画像データ 画像ゲータの配送にダイレクトメモリアクセス(以下、 スといった3つのパスが接続される構成をとっている。 **和米座かむる**

aを読み出し、CODEC装置1aに送る。そして、画 像データ21aはCODEC装置1aで符号化され、符 は、受信したアドレス24gに放当する画像データ21 [0011] この語合、符号化の時はCPU120aか 5内部レジスタアクセス用バス10aを通じて、内部レ ジスタフョにアクセスする。そして、内部レジスタフョ の符号化要求によりダイレクトメモリアクセス制御手段 (以下、DMAC年段と呼ぶ。) 100aは、画像デー 画像メモリ110gに送る。また、画像メモリ110g タのフォーマットに合わせてアドレス24aを発生し、 **身データ31aとして出力される。**

タパスを介してCODEC装置に送る。そして符号デー 類に、DMAC年段は符号データのフォーマットに合わ [0012]また、図では示さないが復号化の場合も同 せてアドレスを発生し符号メモリに送る。 符号メモリは **な当するアドレスより符号データを飲み出し、符号デー**

タはCODEC装置で復号化され画像データとして出力

[0013] -方、DMAC年段100aはCPU12 0 aによってプログラムされる。そして、DMAC手段 100gによる画像データ21gの1回の転送は画像デ 後、CPU120aは、CODEC装置1aの内部レジ スタ1aをアクセスし、CODEC装置1aとDMAC 手段100aとを初期化(具体的にはステータスレジス -タ21ョの一部の転送である。よって、DMA転送 タの検査とパラメータの再設定とコマンドの再発行)

し、再度DMA転送を行う。DMA転送完了時にはDM AC年段100aからCPU120aに割り込みをかけ ることでCPU120aに通知をする。この操作を繰り 医すことで、画像データ全体の転送を違成する。

【発明が解決しようとする課題】しかし、図16で説明 tのデータパスの他に、読み出し、書き込み、WAIT 等の制御信号として内部レジスタアクセス用バスが設け われたいれ。 1の行むに 毎中本数が 都加し、CODEC 装置を集積回路を用いて実装した場合などは入出力ピン した従来のCODEC装置では、内部レジスタへのアク ヒスのための第3のポートとして、8bit~32bi 数が増えることになる。この結果、チップサイズの増

占、もるいはピン数の多いパッケージの採用を強いむ

れ、コストアップの原因となっていた。

め、DMA転送に伴うCPUの前処理と後処理を繰り返 34原因となり、画像データの符号化/復号化処理の性能 システムでは、CPUがDMAC年段の設定とCODE C装置の散定および検査を行い、DMA転送完了時はC 【0015】また、図17で説明した従来のCODEC PUに割り込み通知が行われていた。このような操作を す必要があった。よって、画像データの転送の性能低下 繰り返すことで画像データのDMA転送が行われるた

【0016】本発明はこのような点に鑑みてなされたも EC装置を提供することを目的とする。また、本発明の 他の目的は、集積回路のパッド数と集積回路用のパッケ のであり、入出力ピン数を削減することが可能なCOD で低下させていた。

することにある。また、本発明の他の目的は、集徴回路 [0017] さらに、本発明の他の目的は、符号化、復 ージのピン数を削減することが可能なCODEC装置を **身化の処理性能を向上させるCODECシステムを提供 ひパッド数と纸街回路用のパッケーツのアン数を削減す** 5ことが可能なCODECシステムを提供することにあ 提供することにある。

【課題を解決するための手段】本発明では上記課題を解 失するために、ディジタルデータの情報圧縮及び伸張を 行うCODEC装置において、前記ディジタルデータを

ය

导データ入出力手段から前配内部レジスタ手段ヘアクセ する復号化側内部レジスタアクセス手段と、前配符号化 **身データを復身化して復身データに伸張する復身化手段 入出力手段と前配符号データ入出力手段とを接続する内** 部パスを通じて、前記符号化手段または前記復号化手段 スする符号化側内部レジスタアクセス手段と、前配符号 データ入出力手段から前配内部レジスタ手段ヘアクセス タアクセス手段とが、前配内部レジスタ手段へのアクセ 符号化して符号データに圧縮する符号化手段と、前配符 タの出力の制御を行うディジタル/復号データ入出力年 則内部レジスタアクセス手段と前記復号化側内部レジス 段と、前記符号データの入力あるいは出力の制御を行う 符号データ入出力手段と、前記ディジタル/復号データ の制御を行う内部レジスタ手段と、前記ディジタル/復 [0019] ここで、符号化年段は、ディジタルデータ と、前記ディジタルデータの入力あるいは前配復号デー 有することを特徴とするCODEC装置が提供される。 ス実行時に頼合した場合は、鯛停を行う鯛停手段と、

データを符号化して符号データに圧縮し、入出力処理を 行う符号化処理手段と、前配符号データを復号化して復 タを格納するディジタルデータメモリと、前配符号化処 タメモリとでデータ転送を行う際に、前配ディジタルデ 【0020】また、ディジタルデータの情報圧縮及び伸 張を行うCODECシステムにおいて、前配ディジタル と、前記符号化処理手段または前記復号化処理手段の制 理手段または前記復号化処理手段と前記ディジタルデー ータメモリと前配内部レジスタ制御手段との制御を行う ダイレクトメモリアクセス制御手段と、を有することを **御を行う内部レジスタ制御手段と、前配ディジタルデー** 号データに伸張し、入出力処理を行う復号化処理手段 特徴とするCODECシステムが提供される。

ータを符号化して符号データに圧縮し、入出力処理を行 う。復号化処理手段は、符号データを復号化して復号デ 段は、符号化処理手段または前配復号化処理手段の制御 **答納する。ダイレクトメモリアクセス制御手段は、ディ** [0021] ここで、符号化処理手段は、ディジタルデ **一夕に伸張し、入出力処理を行う。内部レジスタ制御手** を行う。 ディジタルデータメモリはディジタルデータを

ジタルデータメモリと内部レジスタ制御手段との制御を

[0022]

[発明の実施の形態] 以下、本発明の実施の形態を図面 にもとむいれ説明する。図1は、CODEC装置の主要 部の原理図である。CODEC装置は、符号化を行う符 号化手段4と、復号化を行う復号化手段5と、ディジタ ルデータの入力、復号データの出力、アドレスの入力、

の入力、制御データの入出力の制御を行う符号データ入 出力手段300と、内部パス10を通じ符号化手段4と 復身化手段5との制御を行う内部レジスタ手段7と、符 中化側から内部レジスタ手段7~アクセスする符号化 内部レジスタアクセス手段8と、彼号化側から内部レジ スタ手段1~アクセスする復号化側内部レジスタアクセ ス手段9と、内部レジスタ手段7へのアクセス実行時に 競合した場合は、関係を行う関係手段6と、から構成さ タ入出力手段200と、符号データの入出力、アドレス 制御データの入出力の制御を行うディジタル/復号デー

実施の形態について説明する。図2は、CODEC装置 [0023] 次に、本発明のCODEC装置を画像デー タを符号化/復号化する場合に適用した場合の具体的な のブロック図である。まず、画像データバス側の接続に クント説明する。 ន

ルノ復号データ入出力手段は、ディジタルデータの入力

导データを復号化して復号データに伸張する。ディジタ と彼母データの出力の制御を行う。符号データ入出力手 段は、符号データの入力、出力の制御を行う。内部レジ 化手段の制御を行う。 符号化側内部レジスタアクセス手 段は、ディジタル/復号データ入出力手段から内部レジ ス年段は、符号データ入出力年段から内部レジスタ手段 ヘアクセスする。調停手段は、内部レジスタ手段へのア

を符号化して符号データに圧縮する。復号化手段は、符

スタ手段は、内部パスを通じて、符号化手段または復号

スタ手段ヘアクセスする。復号化側内部レジスタアクセ

クセスが競合した場合に関係を行う。

を通じて画像データ入出力手段2 1 0 に接続する。CO タをCODEC装置1に告き込むためにWT 信号23を [0024] 画像データは16bitのデータパス21 DEC装置 1 からデータパス21 上へデータを聞み出す ためにRD信号22を用いる。 データパス21上のデー

ODEC装置1が銃み出し、あるいは巻き込みに直ちに [0025] また、2bitのTドレス24は、データ パス21のデータのCODEC装置1内部の配み出し元 あるいは哲き込み先を指定する。WAIT信号25はC むじられない場合に画像データパス20側のパスマスタ (図2には示されていない) に対してWAITすべきこ

タ入出力手段210に対してアクセスしていることを示 [0026] DMAReq信号26は、画像データ入出 力手段210が符号化時には符号化すべき画像データを 入力できる状態にあることを示し、復号化時には復号化 DMAAck信号27は、DMAC手段 (図2には示さ された画像データを出力できる状態にあることを示す。 れていない)が画像データのDMA転送として画像デー とを通知する。 **\$**

き込み時には、データパス21から入力したデータを内 [0027] さらに、画像データ入出力手段210は曹 内部パス10上の値と復号化手段5の出力をデータパス 部パス10と符号化手段4~供給し、競み出し時には、

21に出力する。

S

T信号33を用いる。

じられない時に符号ゲータパス30回のパスマスタ (図 る状態にあることを示す。DMAAck信号37は、D [0029] また、2bitのアドレス34は、データ **パス31のゲータのCODEC被倒1内部の航み出し元** あるいは音き込み先を指定する。WAIT信号35はC ODEC装置1が航み出しあるいは巻き込みに直ちに応 2には示されていない) に対してWAITすべきにとを 通知する。DMAReq信号36は符号データ入出力年 段300が、符号化時には符号ゲータを出力できる状態 にあることを示し、復身化時には符号データを入力でき MAC年段がDMA転送として符号データ入出力手段3 00に対してアクセスしていることを示す。

雷き込み時には、ゲータパス31から入力したデータを は、内部パス10上の値と符号化手段4の出力をデータ 【0030】さらに、符号データ入出力手段300は、 内部パス10と復身化年段5に供給し、航み出し時に パス31に出力する。

ន

System (基本方式)の符号化方式に従った画像デ 【0031】また、CODEC装置1にはCLK1aが 外部からリセント信号Roset1bも供給される。次 oint Photographic Experts 一夕の符号化を行う。符号化年段4は、画像データが入 力可能な状態ならば画像データ入出力手段210にその 旨を通知し、符号データが出力可能な状態ならば符号デ に、各構成年段について説明する。符号化手段4は、カ **ラー参止固符争化の国際模型化方式としてJPEG(J** 外部から供給され、これに回期して動作する。さらに、 Group) にて極寒されているBaseline **一タ入出力年段300にその旨を通知する。**

れた画像ゲータが出力可能な状態ならば画像データ入出 [0032] 復号化年段5は、JPEG Baseli 復与化年段5は、符号データが入力可能な状態ならば符 **导ゲータ入出力手段300にその旨を通知し、彼号化さ** ne Systemに従った画像符号の復号化を行う。

殴 6 は3 しの状態かなしステートレッンが構成されてい [0033] 次に、関係年段について説明する。関係年 5。そして、画像データ入出力手段210と符号データ 入出力年段300とは、それぞれ関停年段6に対して要 カ年段210にその旨を通知する。 吹信号6m、6bを与える。

身によりステートマンンの状態が選移する。図3は、調 【0034】一方、関停手段6からは画像データ入出力 甲段210と符号データ入出力年段300とへ、それぞ れ許可信号 6 c、 6 dを与える。この要求信号と許可信 **停年段の状態団移を示す図である。**

いに回避して動作し、Reset 1 b でリセットした妙 [Step1] 観停手段6のステートマシンはCLK1

官号6aが1ならばステートマンンの状態はS1に選移 [Step 2] 画像データ入出力手段 2 1 0 からの要求

[Step3] 1クロックサイクルの聞S1状態を維持 した後、ステートマシンの状態はS0に戻る。

[Step4] 画像データ入出力手段210からの要求 信号6aが0、かつ符号データ入出力手段300からの 要求信号6bが1ならば、ステートマシンはS2状態に 亜移する。 [Step5] 1クロックサイクルの聞S2状髄を維持 した後、ステートマシンの状態はSOに戻る。

[Step6] SO状態の場合に画像データ入出力手段 1、66がいずれものならば、ステートマシンはS0状 210と符号データ入出力手段300との要求信号6

[0035] また、2つの許可信号6c、6dはステー タ入出力手段210に与えられる許可信号6cは、S1 トレシンの状態によって値が決まる。例えば、画像デー

6 dは、S 2状態のときのみ1となり他の状態のときは 5。 図4は、内部レジスタの構成を示す図である。内部 2と、ステータスレジスタ73と、から構成される。コ た、符号データ入出力手段300に与えられる許可信号 イブフ4、75とから構成される。また、内部レジスタ 状態のときのみ1となり他の状態のときは0となる。ま レジスタ年段1は、内部レジスタ10と、レジスタドラ 70はコマンドレジスタ71と、パラメータレジスタ7 マンドレジスタ11、パラメータレジスタ12、ステー [0036] 次に、内部レジスタ年段について説明す 9スレジスタ73はいずれも内部パス10に接続され

[0037] また、3つの内部レジスタ71、72、7 3は、それぞれ2入力0Rゲート748~74cからな 5レジスタドライブ14と、2入力ORゲート75a~ 75 cからなるレジスタドライブ75と、によってドラ イブされる。0日2A1やLD2A1などの入力信号に ついては後で説明する。

き画葉数を格納する画璪数格納手段72bと、量子化テ 込まれることで符号化手段4の動作/停止、復号化手段 5の動作/停止を指示することができる。パラメータレ **系数を増減させるためのスケーリングファクタ値を指定** するスケーリングファクタ指定手段72aと、処理すべ ーブルとハフマン符号化の際に用いるテーブルの踏択番 e mの量子化/逆量子化の際に用いる量子化テーブルの 【0038】コマンドレジスタ71は、所定の値が巻き 73972H, JPEG Baseline Syst 号を設定するテーブル設定手段72cとから構成され

ケーリングファクタ指定部72aの3bitを2の補数 数示と解釈した値)倍し、量子化(符号化時)と逆量子 化(復号時)の処理に使用する。さらに画衆数格納手段 3bitで、曲子化テーブルの標準の値を2N (Nはス 【0039】スケーリングファクタ指定手段72aは、 7.2.6 は処理すべき画衆数を格納する。

分(YCrCb色空間のY成分)用の量子化テーブルと のCr成分またはCb成分)用の量子化テーブルとハフ と復号化手段5との内部に含まれるカラー画像の輝度成 ハフマン符号テーブルと、色蓋成分(YCrCb色空間 【0040】テーブル設定手段12cは、符号化手段4 マン符号テーブルとで、どちらを使うかを指定する。

または復号化手段5の処理終了を示すフラグと、符号化 手段4または役号化手段5で検出されたエラーの有無と 【0041】ステータスレジスタ13は、符号化手段4 エラーの詳細を示すフラグとを有する。

【0042】次に、各レジスタの内部構成について説明 図5は、コマンドレジスタの任意の1bitの回路図を 71aと、DFF (D型フリップフロップ) 手段71b と、トライステートパッファ手段71cとから構成され する。ただし、パラメータレジスタの内部構成は、コマ 示す囚である。コマンドレジスタ11は、セレクタ年段 ンドレジスタの内部構成と同じなので説明は省略する。

Ω CODEC装置1の内部でも使用される。セレクタ手段 ステートパッファ手段71cの入力に接続され、さらに FF手段716のD入力に接続される。DFF手段71 bのQ出力はセレクタ手段7.1 aの一方の入力とトライ 7 1 aのもう一方の入力は、内部パス 1 0 に接続され [0043] 2入力のセレクタ手段71aの出力は、

[0044] LDは、セレクタ年段71aの入力避択と クタ手段71aの出力となり、DFF手段71bのD入 力に供給される。従って、DFF手段71bのCLK1 a の立ち上がりエッジの際にLD=1とすることで内部 パス10の値をDFF手段71bに告き込むことができ LD=0のときにはDFF手段71bのQ出力値がセレ して使われ、LD=1のときには内部パス10の値が、

cのアウトプットイネーブル入力に接続されている。従 ット入力に接続されている。これにより、リセット時に [0045] OEは、トライステートパッファ手段71 って0E=1とするとDFF手段716にラッチされて いる値を内部パス10に出力することができる。 OE= (我インピーダンス状態) となり、内部パス10に影響 を与えない。Reset1bがDFF手段71bのりセ 0 ならばトライステートパッファ手段71cはOFF は、コマンドレジスタはリセットされる。

ය 【0046】次に、ステータスレジスタの内部構成につ

特開平9-284138

9

3aと13b、DFF手段13c、トライステートパッ ファ手段13d、ORゲート73eとから構成されてい る。図6を図5と比較すると、セレクタ手段13aとO Rゲート73eとが追加されていることがわかる。これ らは、CODEC装置1で発生したステータス情報をレ b i tの回路図を示す図である。2つのセレクタ年段7 いて説明する。図6は、ステータスレジスタの任意の1 ジスタにロードするために設置されている。

【0047】 内部パス100データをステータスレジス で、ステータス情報はセレクタ手段13aの一方の入力 よりセレクタ手段13gの出力に現れ、セレクタ手段1 タ73にロードしないときはLD=0となっているの 3 bの入力に供給される。

上がりエッジの時にステータスロード信号を1にし、ス 【0048】ステータスをロードする時にはCODEC 36の出力はセレクタ手段73bの入力選択に接続され て、DFF手段73cのクロック入力CLK1aの立ち テータス情報を供給することでCODEC装置1内部の ステータス情報をステータスレジスタ73にロードする 装置1内部でステータスロード信号が1となり、これに より0Rゲート730の出力も1となる。0Rゲート7 ている。そして、ここが1となることで、セレクタ手段 73gの出力、すなわちCODEC装置1内部のステー タス情報がDFF手段73cのD入力に現れる。従っ ことができる。 ន

クセスは、符号化側/復号化側内部レジスタアクセス年 段8、9で行われる。ここで、符号化側内部レジスタア クセス手段8と、復号化側内部レジスタアクセス手段9 とは、構成は同じなので符号化倒内部レジスタアクセス [0049] 次に、画像データから内部レジスタ手段へ のアクセスについて説明する。内部レジスタ手段へのア 手段8についてのみ説明する。 ೫

【0050】図1は、符号化側内部レジスタアクセス手 段の一部を示すプロック図である。 符号化圏内部レジス タアクセス手段 8 からは3 つの内部レジスタ手段 7 の為 のLD信号 (LD2A1, LD2A2, LD2A3) と OE(18 (OE2A1, OE2A2, OE2A3) とが 生成される。これら6つの信号は6個の4入力ANDグ ート212a~212fで作られる。また、4入力AN Dゲート212m~212fの入力は、レジスタセレク ト信号A1、A2、A3と、WT信号23と、許可信号 6cと、DMAAck偕号27のnotと、RD信号2

[0051] また、アドレス24はアドレスデコーダ2 11に与えられ、レジスタセレクト偕号A1、A2、A 3と制御僧号A123とが生成される。図8は、アドレ スデコーダの入出力の関係を示す真理値変である。 真理 **値表8aは、アドレスと、レジスタ割り当てと、レジス** タセレクト倡号A1、A2、A3と制御倡号A123と から構成される。アドレスデコーダ211は、入力され 2とからなる。

アドレスが2の場合は、レジスタセレクト信号A1、A 2、A3がそれぞれ0、1、0、及び制御信号A123 が1となるようなデコード信号がパラメータレジスタに たアドレスに対してデコード個号を作成する。例えば、

関停手段からの許可信号6cと、DMAAck信号27 ANDゲート212gの出力先は、ORゲート75bの **冷理構成部8 bの表は、ANDゲート2 1 2 a ~ 2 1 2** f の贄理と接続先とを示している。 輪理と接続先として 別えば、LD2A2は、A1とWT (WT信号23) と 【0052】図9にANDゲートの韓国権成割を示す。 On o t との論理徴であることを示している。そして、 -方に入力される。

【0053】また、図1では内部パス10は2つのトラ イステートパッファ213、214を介してデータバス 2 1に接続される。トライステートパファ 2 1 3 はデー タパス 2 1 を入力とし、内部パス 1 0 を出力とするトラ イステートパッファで、(A 1 2 3 * W T 信号2 3 * 調 **停回路からの許可信号6c)=1のときに内部パス10** をドライブし、0のときにはドライブしない。

内部パス10を入力とし、データパス21を出力とする トライステートパッファで、(A123*RD信号22 *調停回路からの許可信号6c)=1のときにデータパ ス21をドライブし、 (A123*RD信号22*観停 回路からの許可信号 6 c)=0のときにはドライブしな [0054] また、トライステートパッファ214は、 こ、十なむも拖インアーダンスとなる。

像データパスから内部レジスタ手段に替き込む時の動作 |0055||次に、画像データパスから内部レジスタ平 段に告き込む時の動作について説明する。 図10は、画 7.1に杳き込むものとし、さらに符号データバス30か タイミングを示す図である。ここではコマンドレジスタ ちの筋み出しまたは巻き込み助作はないものとする。

[0056] 画像データパス20のパスマスタは、デー タパス21に替き込みデータを出力し、RD倌号22= め、画像データ入出力手段210への許可信号6cは0 0、WT信号23=1、アドレス24=01 (2滷数) を出力する。このとき関停手段6はS0状態にあるた となり、WAIT個号25は1となる。

ス24に同じ値を出力する。また、LD2A1=0かつ [0051] したがって、パスマスタは次のサイクルも 18号も0となり、レジスタへの告き込みはまだ発生しな データパス21、RD信号22、WT信号23、アドレ LD3A1=0のため、コマンドレジスタ11へのLD い。トライステートパッファ213もOFFのままであ 【0058】次のサイクルでは関停手段6はS1状態と なるので、画像データ入出力手段210への許可信号6 cは1となる。これにより、トライステートパップァ2

75a出力は1となり、コマンドレジスタのLDは1と なり、サイクルの最後のCLK1aの立ち上がり時に内 部パス10の値すなわちコマンドレジスタへの告き込み **値がコマンドレジスタ71に巻き込まれる。さらにWA** I 丁信号=Oとなり、パスマスタはWAIT状態から脱 出する。コマンドレジスタ71からの甑み出しも、回楼 に行われるが、LD2A1の代わりにOE2A1が1と なり、トライステートパッファ213の代わりにトライ [0059] また、LD2A1=1となり、ORゲート ステートバッファ214がドライブ状態となる。

【0060】 次に、画像データパスと符号データパスの アクセスが競合した場合の動作タイミングを示す図であ セスを試みた時に既に符号データパス30からのアクセ スがあり、調停手段6の状態がS2にあるときは、WA 1 T倌号25は1を出力するので、画像データパス20 る。画像データバス20から内部レジスタ手段7にアク アクセスが競合した場合の動作を説明する。図11は、 例のパスマスタはWAITする。

状態となる。よって、画像データパス20側の内部レジ 25=0となることでパスマスタのWAITが解除され 【0061】そして、次のサイクルにて調停手段6はS スタ手段7へのアクセスが行われ、さらにWAIT信号 O状態となり、その次のサイクルにて調停手段6はS 1

許され、かつWAIT信号25=0が出力される。そし 2つのパスから同時に内部レジスタ年段7へのアクセス / 超きることが禁じられているため、内部パス10上で へのアクセスを試みた場合は、関停手段6の状態は50 からS1へ移行し、画像データパス20側にアクセスが た、次のサイクルにおいてSO状態となり、ここや画像 その次のサイクルで52状態となり、符号データバス3 0のアクセスが行われる。このように調停手段6により [0062] 画像データパス20のパスマスタと符号デ ータパス30のパスマスタが同時に内部レジスタ年段7 データパス20のさらなるアクセス要求がないならば、 データがぶつかり合うことはない。

ただし、**個号LD2A1、LD2A2、LD2A3、及** の信号LD3A1、LD3A2、LD3A3、及びOE |0063||一方、年号データパス30側から内部レジ スタ手段7をアクセスする場合は、符号データ入出力手 げOE2A1、OE2A2、OE2A3の代わりに同様 3A1、0E3A2、0E3A3を生成し、これらの接 硫先は、それぞれORゲート14ョ~14c、15ョ~ 段300を用い、上配で説明したのと全く同様に行う。

出力手段をなくした構成とした。これにより、CODE 【0064】以上説明したように本発明のCODEC装 置は、内部レジスタ手段へのアクセスのための専用の入 C装置を実装する集積回路のパッド数と集積回路用パッ 75 cのもう一方の入力となる。

ය

13が内部パス10をデータパス21の値にドライブす

ケージのピン数を減つすことが回能である。よって、集 間回路のコストを下げることができ、またより少ないど ノのパッケージに収めることができる。

500の制御を行う内部レジスタ制御手段100と、デ 脚手段700との制御を行うDMAC手段100と、か データを復号化して、入出力処理を行う復号化処理手段 0と、ディジタルデータメモリ110と内部レジスタ制 て説明する。図12はCODECシステムの原理図であ る。CODECシステムは、ディジタルデータを符号化 して、入出力処理を行う符号化処理手段400と、符号 500と、符号化処理手段400または復号化処理手段 ィジタルデータを格納するディジタルデータメモリ11 【0065】次に、本発明のCODECシステムについ ら権权される。

身化処理手段400と、復身化処理手段500と、内部 ムを構築した場合のCODECツステムについて説明す C装置の内部構成を一般化したものである。よった、以 Fの実施の形態では、CODEC装置1を用いてシステ 【0066】ここで、本発明のCODECシステムの符 レジスタ制御手段100とは、上記で説明したCODE

の実施の形態について説明する。図13は、CODEC 20とメインメモリ130と1/0年段140とは、シ /F1422, Ethernet I/F1432mb 【0067】次に、本発明のCODECシステムを画像 システムのプロック図である。CODECシステムはC ODEC装置1と、DMAC手段100と、画像メモリ ステムパス150に接続している。また、1/0年段1 40H, RS232C I/F141L, Disk I **年段と110aと、CPU120と、メインメモリ13** 0と、I/O手段140と、から構成される。CPU1 データを符号化/復号化する場合に適用した場合の第1

ンソールとの接続の為にあり、コンソールを用いて本シ 2は、Disk装置に接続され、符号データを記録する [0068] LLT. RS232C 1/F141H= は、Ethernetと接続され、画像データあるいは る。また、システムパス150はアドレスパスと、デー ステムをオペレータが操作する。Disk 【/F14 符号データを、受信あるいは送信するために用いられ ために用いられる。Ethernet 1/F143 タパスと、制御パスとから構成される。

て、第1のポートは画像データバス20に接続し、第2 容を読み出したり書き込んだりすることができる。DM のポートはシステムパス150に接続する。CPU12 0 It第2のポートを用いて画像メモリ手段110 aの内 る。画像メモリ手段110gは2ポートメモリであっ 【0069】次に、各構成手段の接続について説明す AC手段100は画像データパス20に接続する。

20 [0070] CODEC装置1の画像データ入出力手段

梅開平9-284138

⊛

210側は、画像データパス20に接続される。COD る。CODEC装置1の画像データの転送はDMAC年 段100で行い、符号データの転送はCPU120の命 令によって行われる。CPU120の命令による転送レ ートはDMAC年段100の転送レートと比較してはる EC装置1の符号データ入出力手段300側は、符号デ ータパスであるが、これはシステムパス150に接続す タ量が十分に小さくなるため、CPU120の命令によ かに低いが、JPEGの画像データ符号化によってデー る転送でも実施例の用途には十分である。

タパス部とアドレスパス部に接続する。CPU120か [0071] RD信号22、WT信号23、WAIT信 号25、DMAReq信号26、それにDMAAck信 号27はDMAC手段100に直接接続する。データパ らDMAC年段100~はDMAスタート信号120a が送られ、DMAC手段100からCPU120~は割 ス21とアドレスパス24は画像データパス20のデー り込み要求信号100aが送られる。

段110aにアクセスするためのアドレスを生成し、画 像データバス20を通じて画像メモリ手段110aに送 る。また、DMAC手段100はCODEC装置1の内 【0072】また、DMAC年段100は画像メモリ年 **部レジスタのアドレス(2bit)を生成し、画像デー** タパス20を通じてCODEC装置1に送る。 ន

【0073】また、DMAC手段100により画像メモ リ手段110aから読み出された画像データは、画像デ 1~送られる。CODEC装置1から出力された画像デ ータはDMAC手段100の制御のもとでデータパス2 1を通じて画像メモリ手段110aに送られ書き込まれ る。DMAC年段100は画像メモリ手段110aから 従い動作し、さらにDMAC手段100のステータスを **ータバス20のデータバス21を通じてCODEC装置** DMAC手段100に対する命令語を競み出し、それに 画像メモリ手段110gに書き込めるようになってい

から符号データを観み出し、CPU120はシステムパ ス150を通じて、CODEC装置1に符号データを告 [0074] 次に、CODEC装置1の符号データの供 給について説明する。CODEC装置1の符号データバ ス側のDMAR e q 信号 3 6 をC P U 1 2 0 に対する割 り込み要求信号として使う。DMAC手段100がCO DEC装置1のコマンドレジスタ71に復号化手段5の スタートを指示すると復号化手段5が動きはじめ、符号 データを符号データ入出力手段300に要求し、符号デ れ、CPU120は割り込みを起こす。そして、割り込 **み処理ルーチンにてCPU120はメインメモリ130** る。これがCPU120に割り込み要求として通知さ 4

[0075] これによりDMAReq信号36=0とな

2

りCPU120~の割り込み取水は取り下げられる。そ の後CPU120は、割り込み処理ルーチンからリター ンし、割り込まれた時点の処理を統行する。符号データ の供給に関するCPU120の処題は、割り込みルーチ し、CODEC被倒1にストアし、割り込みグーチンが ちリターンするというたいへん単純で短い処理となり、 ンだた、メインメモリ130かの符中ゲータをロード CPU120にとって負担とはならない。

るアドレスを示すリンク1111を利用して次の命令語 る。まずCPU120が画像メモリ年段110a中の所 今暦の集合を告さ込む。その後、DMAC手段100は て、それが終わったの次に実行すべき命令賠が入ったい [0016] 図14は、画像メモリ内のDMACのため **戻のアドレス (0倍地) からDMAC年段100への命** 命令間111を試み出し、画像メモリ手段110mとC の命令闘と、画像ゲータエリアとの関係を示す図でも ODEC装置1との関でDMA転送処理を行う。そし 112を睨み出し、DMA転送処理を行う。

ゲータ転送 (画像メモリ年吸110mかちCODEC装 置1~、あるいは、CODEC装置1から画像メモリ年 パイト数111c、4番目の節はCODEC装置1のパ [0077] 命令簡の最初にはDMACコマンド111 ル、リターンが定義されている。DMACコマンド11 1gが「ゲータ転送」のとき、2番目の節は画像メモリ 中の気法先アドレス11116、3毎目の節は気法すべき ラメータレジスタ 7.2に告き込むべき値であるパラメー 吸110aへ)、DMAC軽作停止、サンパーチンコ~ aがある。これはDMAC年段100の動作を規定し、 9111dである。

[0078] さらに、5番目の簡はCODEC装置1の コマンドレジスタフ 1 に替き込むべき値であるコマンド 哲き込むべき画像メモリ手段110gのアドレスである 111 eである。6番目の語はマスクした値を示す11 1 f、7番目の語はDMAC手段100のステータスを ステータス哲き込み先111g、8番目の語はリンク1 11h T. 55.

ック1列すなわち8 赴査様とすると便利である。そこで 1 走査線当たりW国報、40 走査線からなる画像を復号 化するときは、5個のデータ転送用命令語と吸後に1個 モリ年段110 a 中に子め書き込んでおく。CPU12 0は,DMAC年段100へのスタート信号120aを 1にし、DMAC年段100にスタートを指示する。D 1 単位として扱い、このブロックを徴方向に走査し符号 MAC年段100は画像メモリ年段110aの0番地よ 【0079】JPEGの協合、8×8画株のプロックを 化する。そこで1回のDMAの単位を8×8画数のプロ **のDMAC停止用命令簡をCPU120によって固像メ** り最初の命令語111を説み出す。

හ DMACコマンド111aはCODEC装置1からのデ [0080] まず、DMACコマンド111aを聞む。

G送バイト数111cとを読み出し、DMAC年段10 **ータ標泡となっているので、積渇先アドレス111bと** の女部のフジスタにセットする。

[0081] 次に、CODEC装置1のパラメータレジ スタ72に告き込むべき値を飲み出しその値をデータバ 1、アドレス偕号24を10 (2道数) とし、CODE C装置1のパラメータレジスタ72にパラメータ111 ス21に出力し、RD信号22を0、WT信号23を

【0082】次にコマンド111mを読み出し、4番目 の節と同様にCODEC装置1のコマンドレジスタ?1 | 1 aにセットされている値は、CODEC装置1の復 に替き込む。ここで告き込まれる値すなわちコマンド1 **身手段5をスタートさせるコマンドである。**

して、復号した画像データをCODEC装置1からデー か、DMAC年段100はDMAReq信号26が1に DMAC手段100は画像データパスのアドレスパスに **CODEC装置1に対してはRD信号22=1、WT信** る。また、DMAC手段100はCODEC装置1のW AIT個号25を監視し、これが0のときに画像メモリ **年段110aにデータパス21上のデータすなわち復号 身23=0、DMAAck信号27=1を出力する。そ** なるのを待つ。DMAR e q信号26が1になったら、 画像メモリ手段110aの香き込み先アドレスを出し、 【0083】これによりCODEC装置1が復号を始 タパス21に出力させ、画像メモリ手段110gに送 した画像データを替き込ませる。

出しす。次いで、CODEC装置1に対して、RD信号 11cを遊成するまで繰り返す。繰り返し終えたら、D MAC年段100は、まず、マスク111fの値を競み 22=1、WT信号23=0、アドレス24=11 (2 **歯数)を出力し、CODEC年段1のステータスレジス** NDをとり、その結果、復身がエラーなく終了したこと タ73を航み出す。ここで航み出した値とマスク値のA 【0084】このゲータ酷治を命令節の転送パイト数1 を示していれば正常、そうでないならば異常とする。

[0085] DMAC手段100はリンク111hを統 既み、同様な処理を行う。命令語112~115の処理 む。この命令後のDMACコマンド(図示せず)は「D MAC停止」なので、DMAC手段100は割り込みリ む。次に、DMAC年段は命令語のリンク111hを轄 み出し、リンク1111を使い2番目の命令語112を かけ、DMACの動作が終わったことを通知し、動作を クエスト信号を1にし、CPU120に対し割り込みを み出し、正常/異常に関する情報をアドレスに替き込 を株えたち、DMAC手段100は命令語116を説 事止する。

彩版についた説明する。図15は、第20実施の形態を [0086] 次に、CODECシステムの第2の映橋の 示すCODECシステムのプロック図である。第1の実

引のDMAC手段101が備えられている。ここで、画 像データパス側のDMAの動作は第1の実施の形態で説 右の形態では、画像データパス上のデータ転送をDMA で行ったが、第2の実施の形態では、画像データパス2 0 側のデータ転送をつかさどるDMAC手段100のほ かに、符号データパス30側のデータ転送をつかさどる 明したのと全く同様であるので説明を省略し、符号デー タバス回のDMAについて説明する。

の符号データパス側のRD信号32と、WT信号33と 1と接続している。DMAC手段101は、CODEC C装置1からDMAC手段101~DMAのリクエスト 18号であるDMAReq信号36が接続され、DMAC アドレス34とを生成供給する。CODEC装置1の符 导データパス30のデータパス31はDMAC手段10 装置1のWAIT作号35を入力する。さらにCODE 手段101からCODEC装置1~はDMA許可信号で [0087] DMAC手段101は、CODEC装置1 あるDMAAck信号37が接続されている。

省略する。

[0088] さらに、DMAC手段101は、システム パス150とも接続している。これによりCPU120 からDMAC手段101の内部レジスタにアクセスする ことが可能となり、かつDMAC手段101がシステム パス150を介してメインメモリ130にアクセスする ことも可能となる。CPU120からDMAC年段10 1~ItDMAを起動させるためのDMACスタート信号 |20bが接続されている。DMAC手段101からC PU120~は、CPU120に対する割り込み要求信 **号101aが接続されている。**

ズムを用いている。

データをCODEC装置1で復号し、画像メモリ手段に 【0089】 次に、メインメモリに格徴されている符号 は、メインメモリ130に格納されている符号データの ート偕号120bを1として、DMAC手段101をス 50を経由してメインメモリ130のアドレスより符号 開始アドレスとデータサイズとをそれぞれDMAC手段 101の内部レジスタに格納する。その後DMACスタ タートさせる。DMAC手段101は、システムパス1 データを順次航みだしていく。 航みだされた符号データ 格納する場合について説明する。まず、CPU120 は一旦DMAC年段101内部に格納される。

[0090] 一方、上記处理と並行して、CPU120 は画像メモリ手段110aにDMAC手段100のため の命令語の集合を告き込む。そして、DMACスタート ペたように命令語に従ってCODEC装置 1の内部レジ る。DMAC年段100はすでに第1の実施の形態で述 スタをセットする。これによりCODEC装置1のDM **18号120aを1としてDMAC年段100を起動す** AReq信号36が1となる。

データパス31に出力し、DMAAck信号=1として [0091] また、DMAC手段101はDMARe q 11号36=1となったら、内部に格納した符号データを

を0とする。このようにCODEC装置1とDMAC年 DEC装置1に当らせる。そした、CODEC装置1は 有効な符号データがデータパス31上にあることをCO これによりDMAC手段101はDMAAck信号37 段101はDMAReq個号36とDMAAck個号3 7 とを用いて、ハンドシェーク制御を行うことで、符号 符号データを観み、DMAReq信号36を0とする。 特開平9-284138 データを転送する。

受け取った後にそれを復号し、画像データを作る。この 【0092】さらに、CODEC装置1はDMAC手段 101より1ワードあるいは複数ワードの符号データを 画像データはDMAC手段100により画像データパス 画像データの転送は第1の実施の形態にて説明したので 20を経て、画像メモリ手段110mに書き込まれる。 2

リ130に格納された符号データをCODEC装置1に い、白黒2値画像についてはランレングス圧縮アルゴリ [0093] また、DMAC手段101は、メインメモ 転送するほかに、符号データに負荷されている各種ヘッ ダの処理を行う。ヘッダにはCODEC装置1における 本実施例では多路間の画像成分についてはJPEGを使 圧縮・伸張アルゴリズムの選択を指定するものがある。 ន

【0094】ヘッダは J P E G 符号とランレングス圧縮 とを区別する。DMAC手段101はメインメモリ13 符号データパス 3 0 のWT 信号 3 3 とアドレス 3 4 とデ ータバス31とを用いてCODEC装置1のパラメータ 0から読みだした符号データ中にヘッダを発見すると レジスタを告き換えて復号手段を切り替える。

散定した量の符号データのCODEC装置1への転送が U120は両者からの割り込みが発生したことで処理の [0095] そして、DMAC年段101のレジスタに 01aを1としてCPU120に完了を通知する。CP 終了すると、DMAC手段101は割り込み要求信号1 ಜ

[0096] 以上では符号データを復号化すなわち伸張 するケースについて説明したが、画像データを符号化す なわち圧縮するケースはデータが流れる方向が逆である だけなので、説明は省略する。 充了を知る。

システムは、複数の圧縮・伸張アルゴリズムを切り替え て圧縮・伸張を行う場合においてもDMAC手段が内部 [0097] 以上説明したように、本発明のCODEC レジスタを操作できる構成とした。これにより、CPU による処理を極力減らすことができ、処理速度の向上を はかることができる。 6

上記で説明したCODEC装置と同様に単一の集積回路 り、集徴回路のパッド数と集徴回路のパッケージのピン [0098] さらに、本発明のCODECシステムは、 上に実装する構成にすることが可能である。これによ

数を削減することが可能となる。

න

【図1】本発明のCODEC装置の原理図である。

[図2] CODEC装置のプロック図である。

特開平9-284138

(1₂)

してJPEGを採用したが、他の符号化/復号化方式を 採用してもよい。また、CODEC被間のなかに、複数 の方式の符号化年段と復号化手段を実装し、コマンドレ ジスタにてどの符号化年段あるいは復号化手段を動作さ 【0099】上記の説明では、符号化/復号化の方式と せるかを選択できるようにさせてもよい。

は、関停年段は画像データパス側を優先したが、符号デ **一タパス回の優先度を抱くしてもよい。また、双方のパ** タとして画像データとしたが、それ以外のディジタル化 スの優先度をラウンドロビン方式で入れかえるようにし てもよい。関停手段の優先順位づけ方法は、CODEC 装置を含む処理装置の用途に応じて、それぞれ好ましい [0100] さちに、上記の説明では、ディジタルデー されたデーター般に適用できる。また、上配の説明で

装置は、内部レジスタ手段へのアクセスのための専用入 出力ポート手段をなくす構成とした。これによりCOD 【発明の効果】以上説明したように本発明のCODEC EC装置の入出力のピン数を削減することが可能とな [0101]

類様があるからである。

徴回路上に実装する構成とした。これにより、集積回路 [0102] また、本発明のCODEC装置を単一の模 のスッド数と供徴回路のスッケージのアン数を削減する ことが可能となる。

する国像データのDMA転送の性能を向上させ、符号化 DMAC年段がCODEC装置の内部レジスタを制御か きる構成とした。これにより、CODEC装置に入出力 [0104] また、本発明のCODECシステムは、画 像メモリと内部レジスタとを制御するDMAC手段と、 [0103] さらに、本発明のCODECシステムは、 / 復身化処理の性能を向上させることが可能となる。

メインメモリと内部レジスタとを制御するDMAC手段 と、を設ける構成とした。これにより、符号化/復号化 **棋箱回路のペッド数と棋街回路のペッケージのピン数を** [0105] さらに、本発明のCODECシステムは、 **単一の集積回路上に実装する構成とした。これにより、** 心理の性能をさらに向上させることが可能となる。 別域することが可能となる。

【図3】関体手段のステートマシンの状態遷移図であ [図4] 内部レジスタ手段の構成図である。

【図5】コマンドレジスタの任意の1bitの回路図を

示す図である。

【図6】ステータスレジスタの任意の1bitの回路図

【図1】符号化側内部レジスタアクセス手段の一部を示 を示す図である。

【図8】アドレスデコーダの入出力の関係を示す真理値 一権成図である。

せである。

[図10] 画像データパスから内部レジスタ手段に書き 【図9】ANDゲートの精理と接続先を示す。

Aむ時の動作タイミングを示す図である。

リバス側からの内部レジスタ手段をアクセスする様子を [図11] 符号データパスと競合するときに、画像デー

【図12】本発明のCODECシステムの原理図であ **ボナタイミング図である。**

ន

【図13】 CODECシステムのブロック図である。

【図14】 画像メモリ手段内のDMACのための命令語

[図15] CODECシステムの第2の実施の形態を示 と画像データエリアとの関係を示す図である。

アプロック図である。

[図16] 従来技術によるCODEC装置を示す図であ

[図17] 従来技術によるCODECシステムを示す図 なある。

[符号の説明] ജ

1 符号化手段

復号化手段

關停手段

内部フジスタ半段

符号化側内部レジスタアクセス手段 復号化側内部レジスタアクセス手段

10 内部パス

200 ディジタル/復号データ入出力手段 300 符号データ入出力手段

[図12]

(8 | |

[図画の簡単な説明]

信号化包指手段 **你奉完的商序段** 8 DMAC#R Ę サイジタルチータメモリ パラメータレジスタ アジスタ信り着た ステータスレジスタ コマンドレジスタ

[6]

₹ }\&— ±		20 厘樓
区図 中部 G R W T T C R M M A M A M A M A M A M A M A M A M A M	日本 日	18 25 BMARed: 25 WAIT信 25 WAIT信 25 WAIT信 24 アドレス

1 e n 1 e d 1 B

