Section 1.3

Problems: 9

Problem 9

- a). Proof. We will use a direct proof. Because $\sup A < \sup B$, we see $\sup B \sup A > 0$. We know that $\sup A$ and $\sup B \in \mathbb{R}$, thus there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \sup B \sup A$. And we also know that for all $\epsilon > 0$, there exists $b \in B$ such that $b > \sup B \epsilon$. Let $\epsilon = \frac{1}{n_0}$, we see $b > \sup B \frac{1}{n_0} > \sup A$ for some $b \in B$. Consequently, we have shown that there exists an element $b \in B$ that is an upper bound for A if $\sup B > \sup A$. \square
- b). A = (0, 1) B = (0, 1) $\sup A = \sup B$ *I might need more explaination here.

Section 1.4

Problems: 1, 4, 5, 8

Problem 1

a). Proof. If $a, b \in \mathbb{Q}$, by definition, $a = \frac{p}{q}$ and $b = \frac{s}{t}$ for $p, q, s, t \in \mathbb{Z}$ and $q, t \neq 0$. We will first show that $ab \in \mathbb{Q}$. We see

$$ab = (\frac{p}{q})(\frac{s}{t})$$

$$= \frac{ps}{qt}$$

It is clear that $ps, qt \in \mathbb{Z}$ and $qt \neq 0$. Consequently, we see that $ab \in \mathbb{Q}$ We will now show that $a+b \in \mathbb{Q}$. We see

$$a+b$$

$$=(\frac{p}{q})+(\frac{s}{t})$$

$$=\frac{pt+qs}{qt}$$

One can easily see that $pt+qs, qt \in \mathbb{Z}$ and $qt \neq 0$. Consequently, we see that $a+b \in \mathbb{Q}$

b). Proof. We will use contradiction to show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a + t \in \mathbb{I}$. Assume not, that is, $a \in \mathbb{Q}$, $t \in \mathbb{I}$, and $a + t \in \mathbb{Q}$. Because $a + t \in \mathbb{Q}$, $a + t = \frac{p}{q}$ for $p, q \in \mathbb{Z}$ and $q \neq 0$. In addition, because $a \in \mathbb{Q}$, $a = \frac{c}{d}$ for $c, d \in \mathbb{Z}$ and $d \neq 0$. We see

$$a + t = a + t$$

$$\frac{c}{d} + t = \frac{p}{q}$$

$$t = \frac{p}{q} + \frac{c}{d}$$

$$t = \frac{pd + qc}{qd}$$

Because $pd + cq, pd \in \mathbb{Z}$ and $pd \neq 0$, we know that $t \in \mathbb{Q}$. Thus we have arrived at our contradiction because we know that $t \in \mathbb{R}$.

Proof. We will use contradiction to show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $at \in \mathbb{I}$. Assume not, that is, $a \in \mathbb{Q}$, $t \in \mathbb{I}$, and $at \in \mathbb{Q}$. Because $at \in \mathbb{Q}$, $at = \frac{p}{q}$ for $p, q \in \mathbb{Z}$ and $q \neq 0$. In addition, because $a \in \mathbb{Q}$, $a = \frac{c}{d}$ for $c, d \in \mathbb{Z}$ and $d \neq 0$. We see

$$at = at$$

$$\frac{c}{d}t = \frac{p}{q}$$

$$t = \frac{pc}{ad}$$

Because $pc, pd \in \mathbb{Z}$ and $pd \neq 0$, we know that $t \in \mathbb{Q}$. Thus we have arrived at our contradiction because we know that $t \in \mathbb{R}$.

c). If is not closed under addition and multiplication e.g. we see $\sqrt{2} \times \sqrt{2} = 2$, and $2 \in \mathbb{Q}$. We do not know whether s + t or s + t will be a rational number or irrational number.

Problem 4

Proof. We will first show that b is an upper bound. We know that for all $x \in \mathbb{Q} \cap [a,b]$, $a \leq x \leq b$, consequently, b is an upper bound of $\mathbb{Q} \cap [a,b]$. Now we will use a proof by contradiction to show that for any upper bound c, $b \leq c$. Assume there exists upper bound c such that c < b. We know that there exists $r \in \mathbb{Q}$ such that c < r < b because of the rational density theorem. We have

However, we can see $x \in [a, b] \cap \mathbb{Q}$, and so c is not a upper bound. Consequently,

Problem 5

Problem 8

a).
$$A = \{\frac{1}{2n}, n \in \mathbb{N}\}$$

 $B = \{\frac{1}{2n+1}, n \in \mathbb{N}\}$ *I might need more explaination here.