Software Outlook: FFT Benchmarks for Fortran Codes

H. Sue Thorne

November 30, 2018

1 Introduction

As part of the 2018/19 Software Outlook Work Plan, we will be benchmarking a number of different Fast Four Transform (FFT) libraries with bindings for Fortran. The attributes of the different libraries are given in Section 5.

2 1D Benchmark

Let A be a 2D array with dimensions $n_1 \times n_2$ and there be q 2D arrays B_i that are the same size as A and satisfy $\sum_i^q \left[B_i(j,k)\right]^2 = 1$ for each $j = 1, \ldots, n_1$ and $k = 1, \ldots, n_2$. The general benchmark will take the form of Algorithm 1, where $comp_mult(A, B_i)$ is defined to be component-wise multiplication of A with B_i ; $comp_div(H_i, B_i)$ is defined to be component-wise division of H_i by B_i ; FFT is the discrete Fast Fourier Transform and IFFT is the discrete inverse Fast Fourier Transform.

3 2D Benchmark

Let A be a 3D array with dimensions $n_1 \times n_2 \times n_3$ and there be q 3D arrays B_i that are the same size as A and satisfy $\sum_i^q \left[B_i(j,k,l)\right]^2 = 1$ for each $j=1,\ldots,n_1, k=1,\ldots,n_2$ and $l=1,\ldots,n_3$. The benchmark will take the form of Algorithm 3, where $comp_mult(A,B_i)$ is defined to be component-wise multiplication of A with B_i ; $comp_div(H_i,B_i)$ is defined to be component-wise division of H_i by B_i ; FFT is the discrete Fast Fourier Transform and IFFT is the discrete inverse Fast Fourier Transform. This benchmark is designed to imitate some of the workload done in CCP_PETMR's SIRF code.

4 3D Benchmark

Let A be a 3D array with dimensions $n_1 \times n_2 \times n_3$ and there be q 3D arrays B_i that are the same size as A and satisfy $\sum_{i=1}^{q} \left[B_i(j,k,l)\right]^2 = 1$ for each $j = 1, \ldots, n_1, k = 1$

Algorithm 1 1D Benchmark

```
for i=1,\ldots,q do C_i=comp\_mult(A,B_i) for k=1,\ldots,n_2 do D_k=C_i(:,k) F_k=\mathrm{FFT}(D_k) if do_inverse then G_k=\mathrm{IFFT}(F_k) H(:,k)=G_k end if end for if do_inverse then J_i=comp\_div(H_i,B_i) abs\_err=\|A-J_i\|_2 end if end for
```

Algorithm 2 2D Benchmark

```
for i=1,\ldots,q do C_i=comp\_mult(A,B_i) for l=1,\ldots,n_3 do D_l=C_i(:,:,l) F_l=\mathrm{FFT}(D_l) if do_inverse then G_l=\mathrm{IFFT}(F_l) H(:,l)=G_l end if end for if do_inverse then J_i=comp\_div(H_i,B_i) abs\_err=\|A-J_i\|_2 end if end for
```

 $1, \ldots, n_2$ and $l = 1, \ldots, n_3$. The benchmark will take the form of Algorithm 3, where $comp_mult(A, B_i)$ is defined to be component-wise multiplication of A with B_i ; $comp_div(H_i, B_i)$ is defined to be component-wise division of H_i by B_i ; FFT is the discrete Fast Fourier Transform and IFFT is the discrete inverse Fast Fourier Transform.

Algorithm 3 2D Benchmark

```
\begin{aligned} & \textbf{for } i = 1, \dots, q \textbf{ do} \\ & C_i = comp\_mult(A, B_i) \\ & F_i = \texttt{FFT}(C_i) \\ & \textbf{ if do\_inverse then} \\ & H_i = \texttt{IFFT}(F_i) \\ & J_i = comp\_div(H_i, B_i) \\ & abs\_err = \|A - J_i\|_2 \\ & \textbf{ end if} \\ & \textbf{ end for} \end{aligned}
```

5 FFT Libraries