Cost-effective Processing of Hydrogen Storage Alloys from their Oxides

Serdar Tan and Tayfur Öztürk

Dept. of Metallurgical and Materials Engineering Middle East Technical University

MP1103 Nanostructured materials for solid-state hydrogen storage

85 master programs; 65 doctorate programs

15, 000 Undergraduates 5,000 MS 3000PhD 1,500 Foreign Students

Theoretical storage capacity of some hydrogen storage alloys

		Alloy	Capacity (wt %Hydrogen)	Capacity (mAh/g)
		TiNi	0.9	250
Con	nmercial	RE based AB ₅ Alloy*	1.4	372
Alloys		Ti based AB ₂ Alloy*	1.5	400
Current Work	\rightarrow	Ti ₂ Ni	1.6	432
		TiFe	1.9	515
		ZrV ₂	2.8	750
		Mg ₂ Ni	3.7	1002
		Mg95Cu5**	5.5	1490

^{*} Liu et al. J. Mater. Chem., 2011, 21, 4743

^{**} Akyıldız & Ozturk Journal of Alloys and Compounds 492 (2010) 745–750

Flowchart for synthesis of hydrogen storage compounds (Conventional Route)

Flowchart for synthesis of hydrogen storage compounds (Nanostructured HSA via Mechanical Milling)

Flowchart for synthesis of hydrogen storage compounds (Nanostructured HSA via Gas-Phase Synthesis)

Flowchart for synthesis of hydrogen storage compounds (Electro-reduction of Oxides to HSA)

SOLID STATE ELECTROREDUCTION

Chen et al. Nature 407 (2000) 361–364.

Reduction via O₂ evolution

Reduction via CO₂ evolution

Standard reduction voltage (Δ Eo) of selected oxides

Synthesis of FeTi: Sintered Pellets

Synthesis of FeTi: Electroreduction of pellets

70

60

50

2θ (Cu-Kα)/degree

Pre-electrolysis

Stainless wire -graphite 3.0 V; 6 hrs 900 oC) Ar flow = 100-150 ml / min

Electrodeoxidation

Sample –Graphite (3.2 V ; 24 hrs 900) Ar flow = 100-150 ml/min

FeTi, obtained from deoxidation of mixed oxide pellet sintered at 1100°C.

Intensity

20

30

40

Mg-Ni system

Conditions of electro-reduction

System	Target Phase	Electrolyte	V applied	T (oC)	t hr	Porosity (%)
NiO	Ni	CaCl2 +NaCl	3.2	900 725 600	24	57
MgO:NiO=1:2	MgNi2	CaCl2 +NaCl	3.2	900 600	24	42
MgO:NiO= 2:1	Mg2Ni	CaCl2 +NaCl	3.2 5.0	600	24	35
MgO	Mg	CaCl2 +NaCl	3.2 5.0	600	24	35

Mg-Ni Phase diagram

Synthesis Mg-Ni system: Ni synthesis

NiO pellet sintered at 1200 °C for 6 h

Current–time data collected during electroreduction

Electroreduced at 900 °C for 24 h (3.2 V).

Synthesis in Mg-Ni system: MgNi₂

MgO:NiO = 1:2 pellet sintered at 1200°C for 6 h

Time (hr)

Current–time data collected during electroreduction at 900 oC 3.2 V

Electroreduced at 900 °C for 24 h (3.2 V).

Synthesis in Mg-Ni system: Mg2Ni

MgO:NiO = 2:1 pellet sintered at 1200°C for 6 h

Electroreduced at 600 °C for 24 h (5 V).

Tan et al Journal of Alloys and Compounds 504 (2010) 134-140

Standard reduction potentials at 900°C, 725°C and 600°C.

Reaction	E° (V)		
	600 °C	725 °C	900 °C
$NiO_{(s)} + 0.5C_{(s)} = Ni_{(s)} + 0.5CO_{2(g)}$	+0.20	+0.25	+0.33
$MgO_{(s)} + 2NiO_{(s)} + 3C_{(s)} = MgNi_{2(s)} + 3CO_{(g)}$	-0.36	-0.24	-0.09
$2MgO_{(s)} + 4NiO_{(s)} + 3C_{(s)} = 2MgNi_{2(s)} + 3CO_{2(g)}$	-0.32	-0.26	-0.18
$2MgO_{(s)} + NiO_{(s)} + 3C_{(s)} = Mg_2Ni_{(s,l)} + 3CO_{(g)}$	-0.98	-0.86	(-0.70)
$4MgO_{(s)} + 2NiO_{(s)} + 3C_{(s)} = 2Mg_2Ni_{(s,l)} + 3CO_{2(g)}$	-0.94	-0.87	(-0.78)
$MgO_{(z)} + C_{(z)} = Mg_{(z,l)} + CO_{(g)}$	-1.64	(-1.52)	(-1.34)
$MgO_{(s)} + 0.5C_{(s)} = Mg_{(s,l)} + 0.5CO_{2(g)}$	-1.60	(-1.53)	(-1.43)
$CaO_{(s)} + C_{(s)} = Ca_{(s,l)} + CO_{(g)}$	-1.83	-1.71	(-1.52)
$CaO_{(s)} + 0.5C_{(s)} = Ca_{(s,l)} + 0.5CO_{2(g)}$	-1.79	-1.72	(-1.63)
$NaCl_{(I)} = Na_{(I)} + 0.5Cl_{2(g)}$	(-3.37)	(-3.28)	(-3.16)
$CaCl_{2(l)} = Ca_{(\varepsilon,l)} + Cl_{2(g)}$	-3.40	-3.32	(-3.21)

Electrical conductivities of MgO, MgO:NiO = 2:1, MgO:NiO = 1:2 and NiO at room temperature

Conductivity values as a function of temperature up to 600 °C for MgO and MgO:NiO = 2:1.

Volume change upon reduction

Material	Molecular weight g/mol)	Density g/cm3	Normalized Molar volume cm3/mol	Change in volume %
MgO	40.30	3.58	11.26	+34.9
Mg	24.31	1.60	15.19	-
NiO	74.69	6.67	11.20	-36.33
Ni	58.69	8.23	7.13	
Fe2O3	159.69	5.24	15.24	-50.18
Fe	55.85	7.36	7.59	-
TiO2	79.87	4.25	18.79	-40.72
Ti	47.87	4.29	11.14	-

Conclusions

Conventional processing of hydrogen storage alloys involve an excessive number of steps which contributes to their high cost;

- Electroreduction is one–step process that converts the oxide(s) directly into the product in particulate form (1-3 μ m).
- For successful conversion, It is necessary to sinter the oxides fully while keeping an acceptable level of prorosity.
- FeTi was successfully synthesized when sintered at >1100 oC and reduced in CaCl2 at 3.2 V at 900 oC.
- The method could be used for many compounds. This is except for Mg and Mg rich compounds which have a peculiar property of volume expansion upon reduction.
- Electroreduction would give only equilibrum structures due to the high temperature involved. For non-eqilibrium structure post-processing might be necessary via mechanical milling or gas-phase synthesis,

Current

- Fatih Pişkin
- Burak Aktekin
- Ezgi Onur
- Seda Oturak
- Cavit Eyövge

Support

DPT-ÖYP
DPT-YUUP: "Hidrojen Gazı
Üretimi, Depolanması ve Yakıt
Hücrelerinde Elektrik Elde
Edilmesi"

Collaborators

Dr. Eren Kalay Prof. Kadri Aydınol Prof. İshak Karakaya Prof. Macit Özenbaş

Previous

Cost-effective Processing of Hydrogen Storage Alloys from their Oxides

Serdar Tan and Tayfur Öztürk

Dept. of Metallurgical and Materials Engineering Middle East Technical University

MP1103 Nanostructured materials for solid-state hydrogen storage