1.

(a)

$$z = \bar{n} \int_{0}^{x} \frac{\mathrm{d}x}{\sqrt{n^{2} - \bar{n}^{2}}}$$

$$= \bar{n} \int_{0}^{x} \frac{\mathrm{d}x}{\sqrt{n_{0}^{2} \mathrm{sech}^{2}(\alpha x) - \bar{n}^{2}}}$$

$$= \frac{\cos \theta_{0}}{\alpha} \int_{0}^{\alpha x} \frac{\cosh(\alpha x) \mathrm{d}\alpha x}{\sqrt{1 - \cos^{2}\theta_{0} \cosh^{2}(\alpha x)}}$$

$$= \frac{\cos \theta_{0}}{\alpha} \int_{0}^{\sinh(\alpha x)} \frac{\mathrm{d}\sinh(\alpha x)}{\sqrt{\sin^{2}\theta_{0} - \cos^{2}\theta_{0} \sinh^{2}(\alpha x)}}$$

$$= \frac{1}{\alpha} \int_{0}^{\cot \theta_{0} \sinh(\alpha x)} \frac{\mathrm{d}y}{\sqrt{1 - y^{2}}}$$

$$= \frac{1}{\alpha} \arcsin(\cot \theta_{0} \sinh(\alpha x))$$

$$\sin(\alpha z) = \cot \theta_{0} \sinh(\alpha x)$$

Since $\max(\sin(\alpha z)) = 1$

$$\sin(\alpha z) = \frac{\sinh(\alpha x)}{\sinh(\alpha x_{max})}$$

$$\alpha x = \operatorname{arcsinh}(\sinh(\alpha x_{max})\sin(\alpha z))$$

Rays for $\theta_0 = \frac{\pi}{6}, \ \frac{\pi}{4}, \ \frac{\pi}{3}$

(b)

$$Z = \frac{\pi}{\alpha}$$

Independent from \bar{n}

(c)

$$L_{opt} = \int_{z=0}^{Z} n ds$$

$$= 2 \int_{0}^{x_{max}} n \sqrt{1 + \left(\frac{dz}{dx}\right)^{2}} dx$$

$$= 2 \int_{0}^{x_{max}} n \sqrt{1 + \left(\frac{\bar{n}}{\sqrt{n^{2} - \bar{n}^{2}}}\right)^{2}} dx$$

$$= 2 \int_{0}^{x_{max}} \frac{n^{2}}{\sqrt{n^{2} - \bar{n}^{2}}} dx$$

$$= 2n_{0} \int_{0}^{x_{max}} \frac{\operatorname{sech}^{2}(\alpha x)}{\sqrt{\operatorname{sech}^{2}(\alpha x) - \cos^{2}\theta_{0}}} dx$$

$$= \frac{2n_{0}}{\alpha} \int_{0}^{\sinh(\alpha x_{max})} \frac{\sinh(\alpha x)}{\cosh^{2}(\alpha x) \sqrt{1 - \cos^{2}\theta_{0} \cosh^{2}(\alpha x)}}$$

$$= \frac{2n_{0}}{\alpha} \int_{0}^{\sinh(\alpha x_{max})} \frac{dy}{(1 + y^{2}) \sqrt{\sin^{2}\theta_{0} - \cos^{2}\theta_{0} y^{2}}}$$

$$= \frac{2n_{0}}{\alpha} \cos \theta_{0} \frac{\pi}{2\sqrt{1 + \tan^{2}\theta_{0}}}$$

$$= \frac{\pi n_{0}}{\alpha}$$

$$= n_{0} Z$$

2.

(a)

For r < R, $B_l = 0$, for r > R, $A_l = 0$. Since the charge distribution only have $P_1(\cos \theta)$ component, the only non-zero term in the series is when l = 1. Therefore, for r < R

$$\phi_- = A_1 r \cos \theta$$

And for r > R

$$\phi_+ = \frac{B_1}{r^2} \cos \theta$$

From the boundary condition

$$A_1 R = \frac{B_1}{R^2}$$

$$\frac{\sigma}{\varepsilon_0} = A_1 + \frac{2B_1}{R^3}$$

$$A_1 = \frac{\sigma}{3\varepsilon_0}$$

$$B_1 = \frac{\sigma R^3}{3\varepsilon_0}$$

For r < R, $B_l = 0$, for r > R, $A_l = 0$. Therefore, for r < R $\phi_- = \sum_l A_l r^l P_l(\cos \theta)$ $B_{r-} = \frac{\partial \phi_-}{\partial r}$ $= \sum_l l A_l r^{l-1} P_l(\cos \theta)$ $B_{\theta-} = \frac{1}{r} \frac{\partial \phi_-}{\partial \theta}$ $= \sum_l A_l r^{l-1} \frac{\partial P_l(\cos \theta)}{\partial \theta}$

And for r > R

$$\phi_{+} = \sum_{l} \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta)$$

$$B_{r+} = \frac{\partial \phi_{+}}{\partial r}$$

$$= -\sum_{l} \frac{(l+1)B_{l}}{r^{l+2}} P_{l}(\cos \theta)$$

$$B_{\theta+} = \frac{1}{r} \frac{\partial \phi_{-}}{\partial \theta}$$

$$= \sum_{l} \frac{B_{l}}{r^{l+2}} \frac{\partial P_{l}(\cos \theta)}{\partial \theta}$$

From the boundary condition (integrate the relation for B_{θ} ignoring a integral/potential constant that doesn't matter)

$$\begin{split} A_l &= -\frac{l+1}{l} \frac{B_l}{R^{2l+1}} \\ \mu_0 \kappa_0 \sin \theta &= \sum_l \frac{B_l}{R^{l+2}} \frac{\partial P_l(\cos \theta)}{\partial \theta} - \sum_l A_l R^{l-1} \frac{\partial P_l(\cos \theta)}{\partial \theta} \\ \mu_0 \kappa_0 \cos \theta &= \sum_l \left(\frac{B_l}{R^{l+2}} - A_l R^{l-1} \right) P_l(\cos \theta) \end{split}$$

Therefore only l = 1 is not vanishing

$$\mu_0 \kappa_0 = \frac{B_1}{R^3} - A_l$$

$$A_1 = -2\frac{B_l}{R^3}$$

$$B_1 = \frac{\mu_0 \kappa_0 R^3}{3}$$

$$A_1 = -\frac{2\mu_0 \kappa_0}{3}$$

3.