```
# Step 1 : import library import pandas as pd
```

Step 2 : import data
cancer = pd.read_csv('https://github.com/YBIFoundation/Dataset/raw/main/Cancer.csv')

cancer.head()

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
0	842302	М	17.99	10.38	122.80	1001.0	0.11840
1	842517	М	20.57	17.77	132.90	1326.0	0.08474
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960
3	84348301	М	11.42	20.38	77.58	386.1	0.14250
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030

cancer.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns): # Column Non-Null Count Dtype _ _ _ 0 569 non-null int64 id 569 non-null object 1 diagnosis 569 non-null float64 569 non-null float64 2 radius_mean 3 texture_mean 569 non-null float64 569 non-null float64 4 perimeter mean 5 area mean 6 smoothness_mean 569 non-null float64
7 compactness_mean 569 non-null float64
8 concavity_mean 569 non-null float64
9 concave points_mean 569 non-null float64
10 symmetry_mean 569 non-null float64 11 fractal_dimension_mean 569 non-null float64 12 radius_se 569 non-null float64
13 texture_se 569 non-null float64
14 perimeter_se 569 non-null float64
15 area_se 569 non-null float64 15 area_se 569 non-null float64
16 smoothness_se 569 non-null float64
17 compactness_se 569 non-null float64
18 concavity_se 569 non-null float64
19 concave points_se 569 non-null float64
20 symmetry_se 569 non-null float64
21 fractal_dimension_se 569 non-null float64
22 radius_worst 569 non-null float64
23 texture_worst 569 non-null float64
24 perimeter_worst 569 non-null float64
25 area_worst 569 non-null float64
26 smoothness_worst 569 non-null float64
27 compactness_worst 569 non-null float64
28 concavity_worst 569 non-null float64
29 concave points_worst 569 non-null float64 30 symmetry_worst 569 non-null float64
31 fractal_dimension_worst 569 non-null float64
32 Unnamed: 32 0 non-null float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB

cancer.describe()

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compact					
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000						
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360						
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064						
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630						
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370						
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870						
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300						
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400						
8 rows × 32 columns												

Step 3 : define target (y) and features (X)

X = cancer.drop(['id','diagnosis','Unnamed: 32'],axis=1)

```
y = cancer['diagnosis']
```

```
# Step 4 : train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7, random_state=2529)
```

```
# check shape of train and test sample
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((398, 30), (171, 30), (398,), (171,))
```

```
# Step 5 : select model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(max_iter=5000)
```

```
# Step 6 : train or fit model
model.fit(X_train,y_train)
   LogisticRegression
LogisticRegression(max iter=5000)
model.intercept_
array([-29.5754216])
model.coef_
array([[-0.90981805, -0.18594431, 0.24402858, -0.02468891, 0.14312991,
     0.1927918 , 0.41547202, 0.22439816, 0.1759701 , 0.03320957,
    0.0048194 , -1.19155032, -0.20208122, 0.12545286, 0.02428329,
    -0.05400143, 0.01489724, 0.02930236, 0.03092323, -0.01494273,
    -0.25755915, 0.44422964, 0.17881985, 0.01155521, 0.29404731,
    0.59263105, 1.05468156, 0.45535063, 0.53965235, 0.07607534]])
y_pred
'B', 'B'], dtype=object)
# Step 8 : model accuracy
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
confusion_matrix(y_test,y_pred)
array([[97, 5],
   [ 2, 67]])
accuracy_score(y_test,y_pred)
0.9590643274853801
print(classification_report(y_test,y_pred))
              recall f1-score
       precision
                         support
      В
          0.98
                0.95
                     0.97
                           102
          0.93
      M
                0.97
                     0.95
                            69
                     0.96
                           171
  accuracy
 macro avg
          0.96
                0.96
                     0.96
                           171
```

weighted avg 0.96 0.96 0.96 171