

Introduction to thermodynamic modeling

MatSE 501 Recitation

2017-11-27

Brandon Bocklund

The CALPHAD Method

- CALculation of PHase Diagrams
- Pioneered by Larry Kaufman in the early 1970s

Thermochemical data: heat capacity, enthalpy, entropy, activity

Phase equilibrium data: phase stability, phase boundary

Gibbs Energy of Individual Phases $G^{\phi}(T,P,N_i,\xi)$ Applications: Equilibrium, driving force, physical/chemical properties (1st, 2nd derivatives)

Read more: Spencer A brief history of CALPHAD. Calphad 32, 1–8 (2008)

http://www.tulane.edu/~sanelson/eens212/ternaryphdiag.htm

Figure 1

PHASES

• Each phase (α , ice, water, liquid, fcc) is assigned a Gibbs free energy

$$G^{\alpha} = \sum_{i} x_{i} {}^{\circ}G_{i}^{\alpha}$$

$$+ RT \sum_{i} x_{i} \ln x_{i}$$

$$+ {}^{E}G^{\alpha}$$

• Each phase (α , ice, water, liquid, fcc) is assigned a Gibbs free energy

Energy of phase
$$\alpha$$

$$= \sum_i x_i {}^{\circ}G_i^{\alpha}$$

$$+ RT \sum_i x_i \ln x_i$$

$$+ {}^EG^{\alpha}$$

• Each phase (α , ice, water, liquid, fcc) is assigned a Gibbs free energy

Energy of phase
$$\alpha$$

Energy of phase
$$\alpha$$
 $G^{\alpha} = \sum_{i} x_{i} {}^{\circ}G_{i}^{\alpha}$

Energy of pure component

$$+RT\sum_{i}x_{i}\ln x_{i}$$

$$+\,{}^E G^{lpha}$$

liquid, fcc) is assigned a Gibbs free energy

$$= \sum_{i} x_{i} {}^{\circ}G_{i}^{\alpha}$$

$$+ RT \sum_{i} x_{i} \ln x_{i}$$

$$+ {}^{E}G^{\alpha}$$

Energy of pure component

• Each phase (α , ice, water, liquid, fcc) is assigned a Gibbs free energy

Energy of phase
$$\alpha$$
 $G^{\alpha} = \sum_{i} x_{i} {}^{\circ}G_{i}^{\alpha}$ Energy of purposent

Energy of pure

$$+RT\sum x_i \ln x_i$$
 Ideal mixing

$$+\,{}^E G^{lpha}$$

liquid, fcc) is assigned a Gibbs free energy

$$=\sum_{i}x_{i}\circ G_{i}^{\alpha} \qquad \qquad \text{Energy of pure component} \\ +RT\sum_{i}x_{i}\ln x_{i} \qquad \qquad \text{Ideal mixing} \\ +^{E}G^{\alpha}$$

• Each phase (α , ice, water, liquid, fcc) is assigned a Gibbs free energy

Energy of phase
$$\alpha$$

Energy of phase
$$\alpha$$
 $G^{\alpha} = \sum_{i} x_{i} {}^{\circ}G_{i}^{\alpha}$ Energy of pure component

$$+RT\sum x_i \ln x_i$$
 Ideal mixing

$$+\,{}^E G^{lpha}$$

 $+ {}^E G^{\alpha}$ Excess mixing

Each phase (α ice water liquid fcc) is assigned a Gibbs free energy

Ene pha

- Excess mixing is somewhat nebulous
- Defined as any non-ideal mixing behavior
- We have seen it as: ${}^E G^{lpha} = x_a x_b \Omega = x_a x_b H_{
 m mix}$
- These are extended to multicomponent cases as interaction parameters

ure

mixing

• Fach phase (a ice water liquid, fcc) is assigned a Gibbs free energy

Lattice stability

- Pure W is stable in a bcc crystal, but often alloyed into fcc solutions
- CALPHAD descriptions must define the energy of fcc W, or the stability of W in the fcc lattice
- Determining lattice stabilities
 - Estimating with values that give correct phase diagrams
 - Extrapolate from experimental data
 - Calculate with first-principles

Building multicomponent databases

- Databases are available in literature and commercially
- For practical calculations, modeling details are not required
- Active research areas:
 - Model development
 - (Automated) Database development

$$C_n^2 = \frac{n(n-1)}{2}$$
 $C_n^3 = \frac{n(n-1)(n-2)}{6}$

Campbell (2014).

CALPHAD Software

- Most common CALPHAD software:
 - Commercial: Thermo-Calc, Pandat
 - Non-commercial: OpenCalphad, pycalphad
- pycalphad is a Python-based CALPHAD software developed by Dr. Liu's group at PSU
 - Initially released in April 2015
 - Developed in the open on GitHub: https://github.com/pycalphad/pycalphad/
 - Development lead by Richard Otis at NASA JPL

https://pycalphad.org

Installing pycalphad

- 1. Install Anaconda (already done on the PSU computers)
 - Download from https://anaconda.com/downloads
- 2. Start -> Anaconda -> Anaconda Prompt
- 3. Run the commands:
 - 1. conda config —add channels conda-forge
 - 2. conda config –add channels msys2
 - 3. conda config –add channels pycalphad
- 4. Run the command: conda install pycalphad

Running pycalphad

- Any way you can run Python code, you can run pycalphad
- Recommended to use Jupyter Notebooks, which run in the browser
- Start -> Anaconda -> Jupyter Notebook
- A browser window should open

 Download notebook files with examples from Canvas or https://github.com/bocklund/notebooks/tree/master/MatSE501