

Paper presentations

- The papers for **images** and **time-series** have been assigned!
- We will post the selected papers in our website one week in advance <u>https://mds.inf.ethz.ch/teaching/261-5120-00l-spring-2022</u>
- You should have a look at them before the presentation!
- Active participation during paper presentations is highly encouraged!
 - Turn on the camera if you join via Zoom (requirement)
 - Say your name and surname when you ask a question (we will keep a list with students that actively participated into the discussions)
- Full paper list is now released (check Moodle).
- Remember: first come first serve.

Lecture Recap

Medical imaging methods

- Superpixel Simple Linear Iterative Clustering (SLIC)
- Markov Random Field
- Convolutional Neural Networks (CNN)

Lecture Recap

Medical imaging methods

- Superpixel Simple Linear Iterative Clustering (SLIC)
- Markov Random Field
- Convolutional Neural Networks (CNN)

Markov Random Field

- MRF is a graphical model over an undirected graph (G=(V,E)) with distribution P(V)
 over vertices
- Fulfills Markov property:
 - For $\{x_i \in V\}$ and $N(x_i) = \{x_i \mid j \in N_i\}$, $P(x_i \mid x_{V-\{i\}}) = P(x_i \mid x_{N_i})$
 - ⇒Random Variables only locally dependent

• Define MRF for image segmentation:

$$\begin{array}{rcl} P(\mathbf{x}) &=& \frac{1}{Z}exp(-E(\mathbf{x})) \\ E(\mathbf{x}) &=& \sum_{i \in V} \psi_i(x_i) + \sum_{i \in V, j \in N_i} \psi_{i,j}(x_i, x_j) \\ & \qquad \qquad \text{Data Term} & \text{Smoothness Term} \end{array}$$

Foreground / Background Estimation

$$E(\mathbf{x}) = \sum_{i \in V} \psi_i(x_i) + \sum_{i \in V, j \in N_i} \psi_{i,j}(x_i, x_j)$$

- $x_i = 0 \rightarrow i$ is in background
- $x_i = 1 \rightarrow i$ is in foreground
- Data term:

$$\psi_i(0) = -\log P(x_i \in BG)$$

$$\psi_i(1) = -\log P(x_i \in FG)$$

Smoothness term:

$$\psi_{ij}(x_i, x_i) = K_{ij}\delta(x_i \neq x_j)$$

$$K_{ij} = \lambda_1 + \lambda_2 \exp(-\beta(I_i - I_j)^2)$$

Pixel values

Intensity dependent smoothness

Foreground / Background Estimation

• We are looking for $x^* = \operatorname{argmax}_x P(x) = \operatorname{argmin}_x E(x)$

• This optimization problem can be solved by transforming the energy function into a

min-cut problem and solve it.

Graph Cuts for Optimal Boundary Detection

- Binary label: foreground vs. background
- User labels some pixels

Graph cut

- Each pixel = node
- Add two nodes F & B
- Labeling: link each pixel to either F or B

Configuring the edges

$$E(\mathbf{x}) = \sum_{i \in V} \psi_i(x_i) + \sum_{i \in V, j \in N_i} \psi_{i,j}(x_i, x_j)$$

 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \mathbf{E}(\mathbf{x})$

- 1. Add one edge between each pixel and both F & G
- 2. Set the weight of these edges to be: $-\psi_i(x_i)$
- 3. Add an edges between each neighbor pair
- 4. Set their weights to be: $\psi_{ij}(x_i, x_j)$

Configuring the edges

$$\begin{array}{ll} E(\mathbf{x}) &=& \sum_{i \in V} \psi_i(x_i) + \sum_{i \in V, j \in N_i} \psi_{i,j}(x_i, x_j) \\ \mathbf{x^*} = \operatorname{argmin}_{\mathbf{x}} \mathbf{E(x)} \end{array}$$

- 1. Add one edge between each pixel and both F & G
- 2. Set the weight of these edges to be: $-\psi_i(x_i)$
- 3. Add an edges between each neighbor pair
- 4. Set their weights to be: $\psi_{ij}(x_i, x_j)$

- Minimum of E(x) corresponds to sum of weights of removed edges in graph min-cut
- Vertices on one side of cut are FG, other side BG

Lecture Recap

Medical imaging methods

- Superpixel Simple Linear Iterative Clustering (SLIC)
- Markov Random Field
- Convolutional Neural Networks (CNN)

Segmentation with Deep Learning

- MRFs assumed prior knowledge about data distribution of foreground/background distributions of individual and neighboring pixels
- Deep Learning makes only limited assumptions about distribution but assumes set of samples, i.e. training data, of the distribution is available at our disposal
- Learn segmentation of specific sample distributions in data driven way
- Prominent segmentation models: Convolutional Neural Networks (CNNs)

How do convolutions work?

Convolutional layers

- consist of a set of small-size filters
- extract local features from the input layer, or outputs from the previous layer

Petar Veličković, Cambridge Spark

Examples - Identity

Examples - Smoothing (Box Filter)

Examples - Smoothing (Gaussian Filter)

1 16	1	2	1
	2	4	2
	1	2	1

Examples - (Vertical) Edge detection

$$\frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Examples - Smoothing & Edge Detection (LoG - Laplacian of Gaussians)

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Standard Convolutional Layers

Modern ConvNets Horizontal and Vertical Stacking of Convolutional layers

ConvNets - De facto standard for many imaging tasks

- Classification
- Object localization
- Synthetic image generation
- Anomaly Detection
- Segmentation

. . .

U-Net, CNN architecture for image segmentation

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Learn highly semantic data by introducing data bottleneck

ETH zürich

Learn highly semantic data by introducing data bottleneck

ETH zürich

Learn highly semantic data by introducing data bottleneck

High resolution segmentation maps by passing high spatial resolution features decoding path

Symmetric architecture

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Common Problem in Medical Applications - Overfitting

- Acquiring Medical Data is hard
- Need domain experts to collect data and label data => Expensive and time consuming
- Patients possibly don't want to share their medical records
- Some diseases are quite rare => Not many samples in datasets
- Often need big models to capture complex feature relations within medical data

⇒Big Models and few data lead to danger of overfitting

Regularization techniques need to be employed

- Data Augmentation
- L1/L2 regularization
- Early stopping
- Dropout
- Batchnormalization

Data Augmentation - Transform samples before forward pass

- Rotation
- Translation
- Scaling
- Gaussian Noise
- Salt & Pepper Noise
- Brightness adjustments
- Smoothing
- Sharpening
- Color Jittering
- ...

- Data Augmentation
- L1/L2 regularization
- Early stopping
- Dropout
- Batchnormalization

- Data Augmentation
- L1/L2 regularization
- Early stopping
- Dropout
- Batchnormalization

- Data Augmentation
- L1/L2 regularization
- Early stopping
- **Dropout**
- Batchnormalization

(a) Standard Neural Net

(b) After applying dropout.

- Data Augmentation
- L1/L2 regularization
- Early stopping
- Dropout
- Batchnormalization


```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
              Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                                                         // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                        // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                      // normalize
                                                                             // scale and shift
```


Find visually homogeneous superpixels with k-means clustering

Find visually homogeneous superpixels with k-means clustering

Associate each pixel to the feature vector:

$$\Psi(x,y) = [\lambda x, \lambda y, I(x,y)]$$

where I(x,y) corresponds to the pixel intensity (e.g. RGB) of the image at location (x,y). The λ coefficient serves as a regularizer to balance spatial and intensity based similarities within clusters.

 To initialize k-means, define grid size S based on k and initialize cluster centers at grid center

• Run *k-means* on this initialization, resulting clusters correspond to superpixels that can later be used in various algorithms, e.g. Markov Random Fields

Source: L. Zhang et. al. An improved method for pancreas segmentation using SLIC and interactive region merging

