Evidencia Final 2

Fernando Israel Rios Garcia

2023-04-30

Evidencia 2

¿Cuáles son los virus "similares" a SARS-CoV-2 en el mundo?

El SRAS-Cov-2 es un virus de la familia coronavirus, los sintomas que un humano presenta al cotagiarse son los de la gripe. Por lo tanto los virus similares al COVID-19 presentan sintomas parecidos en los huespedes que contagian, sus diferencias varian en la efectividad en la que se contagian y la tasa de moratlidad. En los humanos hay siete virus similares al SARS-Cov-2:

- 1. SARS-CoV-2
- 2. SARS-CoV
- 3. MERS-CoV
- 4. HCoV-229E
- 5. HCoV-NL63
- 6. HCoV-OC43
- 7. HCoV-HKU1

Especies que pueden ser cercanos al genoma de SARS-CoV-2? Incluye de qué especies son y menciona las referencias de los artículos consultados en PUBMED.

En el articulo Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases escrito por Sing Fung y Ding Xiang Liu mencionna los siguientes virus similares al genoma del SARS-Cov-2:

Host	Coronavirus
Humans	SARS-CoV
	MERS-CoV
	HCoV-229E
	HCoV-NL63
	HCoV-OC43
	HCoV-HKU1
Pig	TGEV
	PRCoV
	PHEV
	PEDV
	PDCoV
	SADS-CoV
Mouse	MHV
Rat	SDAV
	RCoV-P
	Horse
	ECoV
Cattle	BCoV

Host	Coronavirus
Cat	FIPV
	FECV
Dog	CCoV
	CRCoV
Chicken	IBV

En relación con la situación actual reflexiona, ¿qué propondrías que se deba hacer durante la contingencia del SARS-CoV-2 en comunidades de bajos recursos? Si tu vivieras en una situación de escasos recursos, ¿qué harías? Justifica tu respuesta.

Durante la contingencia del SARS-CoV-2 en comunidades de bajos recursos, es importante tomar medidas para proteger la salud de las personas y prevenir la propagación del virus. Algunas de las medidas que se pueden tomar incluyen:

- 1. Promover la educación sobre el virus: es importante difundir información precisa y confiable sobre el virus y cómo prevenir su propagación. Se pueden utilizar carteles, folletos o anuncios en los medios locales para educar a la comunidad.
- 2. Promover el distanciamiento físico: aunque puede ser difícil en comunidades de bajos recursos donde las personas viven en condiciones más cercanas, se debe alentar a la gente a mantener una distancia física de al menos 2 metros entre ellos.
- 3. Fomentar el uso de mascarillas: las mascarillas son una herramienta importante para prevenir la propagación del virus, y es importante educar a la comunidad sobre cómo usarlas correctamente y proporcionar mascarillas de forma gratuita para quienes no las tengan.
- 4. Promover el lavado de manos frecuente: el lavado de manos es una de las mejores maneras de prevenir la propagación del virus, y es importante proporcionar agua y jabón para que las personas puedan lavarse las manos con frecuencia.
- 5. Proporcionar acceso a suministros médicos: se debe asegurar que las personas tengan acceso a suministros médicos, como termómetros, oxígeno y medicamentos, en caso de que se enfermen.
- 6. Proporcionar ayuda financiera: las comunidades de bajos recursos pueden verse más afectadas por la crisis económica causada por la pandemia, y es importante proporcionar ayuda financiera a las personas que lo necesitan para ayudarles a hacer frente a la crisis.

Analizar las secuencias de SARS-CoV-2 reportadas en los 20 países con más casos reportados. Y puedes tratar de responder a la pregunta: ¿Son muy diferentes las variantes entre cada país? ¿Es diferente el SARS-CoV-2 entre las diferentes poblaciones: Asiática, Hispana, Europea o Africana?

"SARS-CoV-2USA", "SARS-CoV-2India", "SARS-CoV-2Francia", "SARS-CoV-2 Alemania", "SARS-CoV-2 Brasil", "SARS-CoV-2 Japon", "SARS-CoV-2 Corea del Sur", "SARS-CoV-2 Italia", "SARS-CoV-2 Rusia", "SARS-CoV-2 Turquia", "SARS-CoV-2 España", "SARS-CoV-2 Vietnam", "SARS-CoV-2 Australia", "SARS-CoV-2 Taiwan", "SARS-CoV-2 Holanda", "SARS-CoV-2 Iran", "SARS-CoV-2 Mexico", "SARS-CoV-2 Indonesia", "SARS-CoV-2 Polonia"

Referencias

Torun Ş, Kesim Ç, Süner A, Botan Yıldırım B, Özen Ö, Akçay Ş. Influenza viruses and SARS-CoV-2 in adult: 'Similarities and differences'. Tuberk Toraks. 2021 Dec;69(4):458-468. English. doi: 10.5578/tt.20219603. PMID: 34957739.

Chen Z, Boon SS, Wang MH, Chan RWY, Chan PKS. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J Virol Methods. 2021 Mar;289:114032. doi: 10.1016/j.jviromet.2020.114032. Epub 2020 Dec 5. PMID: 33290786; PMCID: PMC7718587.

Keshta AS, Mallah SI, Al Zubaidi K, Ghorab OK, Keshta MS, Alarabi D, Abousaleh MA, Salman MT, Taha OE, Zeidan AA, Elsaid MF, Tang P. COVID-19 versus SARS: A comparative review. J Infect Public Health. 2021 Jul;14(7):967-977. doi: 10.1016/j.jiph.2021.04.007. Epub 2021 Apr 24. PMID: 34130121; PMCID: PMC8064890.

Sing, T. & Liu, D. (2021). Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, Vol. 75, 19-47. https://doi.org/10.1146/annurev-micro-110520-023212 https://rdrr.io/bioc/QSutils/man/DNA.dist.html

Code

```
# Call packages
library(ade4)
library(ape)
library(adegenet) # Packages to read DNA seg
##
##
      /// adegenet 2.1.10 is loaded /////////
##
      > overview: '?adegenet'
##
      > tutorials/doc/questions: 'adegenetWeb()'
##
      > bug reports/feature requests: adegenetIssues()
library(gridExtra)
library(ggplot2)
library(stringr)
library(seqinr)
##
## Attaching package: 'seqinr'
## The following objects are masked from 'package:ape':
##
##
       as.alignment, consensus
# Bring files, functions files
source("./lengthSeq.r")
source("./percentageBases.r")
source("./phylogeneticTreeGraph.r")
seq1 <- readLines("./secuenciasEvidencia2/Mexico.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqMexico <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/Argentina.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqArgentina <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/Polonia.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqPoland <- strsplit(var1, "")[[1]]</pre>
```

```
seq1 <- readLines("./secuenciasEvidencia2/Vietnam.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqVietnam <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/CoreaDelSur.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqSouthKorea <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/Alemania.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqGermany <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/Australia.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqAustralia <- strsplit(var1, "")[[1]]</pre>
seq1 <- readLines("./secuenciasEvidencia2/PaisesBajos.fasta", n = -1)[-1]</pre>
var1 <- paste(seq1, collapse = " ")</pre>
seqNetherlands <- strsplit(var1, "")[[1]]</pre>
dnaSeq_array <- array(c(seqMexico, seqArgentina, seqPoland, seqVietnam, seqSouthKorea, seqGermany, seqA
# Call and store returns values of functions
# Call length function
lengthSEQMexico <-lengthSeq(seqMexico)</pre>
lengthSEQArgentina <-lengthSeq(seqArgentina)</pre>
lengthSEQPoland <-lengthSeq(seqPoland)</pre>
lengthSEQVietnam <-lengthSeq(seqVietnam)</pre>
lengthSEQSouthKorea <-lengthSeq(seqSouthKorea)</pre>
lengthSEQGermany <-lengthSeq(seqGermany)</pre>
lengthSEQAustralia <-lengthSeq(seqAustralia)</pre>
lengthSEQNetherlands <-lengthSeq(seqNetherlands)</pre>
# Call percentageBases function
basesSEQMexico <- percentageBases(seqMexico)</pre>
basesSEQArgentina <- percentageBases(seqArgentina)</pre>
basesSEQPoland <- percentageBases(seqPoland)</pre>
basesSEQVietnam <- percentageBases(seqVietnam)</pre>
basesSEQSouthKorea <- percentageBases(seqSouthKorea)</pre>
basesSEQGermany <- percentageBases(seqGermany)</pre>
basesSEQAustralia <- percentageBases(seqAustralia)</pre>
basesSEQNetherlands <- percentageBases(seqNetherlands)</pre>
    gwuhan = data.frame(
    bases = c("A", "C", "G", "T"),
    g1 = percentageBases(seqMexico)
  )
  q \leftarrow ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
    geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqMexico"), stat = "identity", position = "
    labs(title = "Comparación de las bases de ADN de las variantes del virus", x = "Bases", y = "Frecuen
    scale_fill_manual(values = c("SeqMexico" = "pink")) +
    theme_minimal()
    gwuhan = data.frame(
```

```
bases = c("A", "C", "G", "T"),
g1 = percentageBases(seqArgentina)

w <- ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqArgentina"), stat = "identity", position = labs(x = "Bases", y = "Frecuencia", fill = "") +
scale_fill_manual(values = c("SeqArgentina" = "purple")) +
theme_minimal()

grid.arrange(q,w, ncol=2)</pre>
```



```
gwuhan = data.frame(
bases = c("A", "C", "G", "T"),
g1 = percentageBases(seqPoland)
)

q <- ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqPoland"), stat = "identity", position = "labs(title = "Comparación de las bases de ADN de las variantes del virus", x = "Bases", y = "Frecuen scale_fill_manual(values = c("SeqPoland" = "pink")) +
theme_minimal()

gwuhan = data.frame(
bases = c("A", "C", "G", "T"),
g1 = percentageBases(seqVietnam)</pre>
```

```
w <- ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
  geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqVietnam"), stat = "identity", position =
  labs(x = "Bases", y = "Frecuencia", fill = "") +
  scale_fill_manual(values = c("SeqVietnam" = "purple")) +
  theme_minimal()

grid.arrange(q,w, ncol=2)</pre>
```



```
gwuhan = data.frame(
bases = c("A", "C", "G", "T"),
g1 = percentageBases(seqSouthKorea)
)

q <- ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
    geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqSouthKorea"), stat = "identity", position
    labs(title = "Comparación de las bases de ADN de las variantes del virus", x = "Bases", y = "Frecuen
    scale_fill_manual(values = c("SeqSouthKorea" = "pink")) +
    theme_minimal()

gwuhan = data.frame(
    bases = c("A", "C", "G", "T"),
    g1 = percentageBases(seqGermany)
)</pre>
```

```
w \leftarrow ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
  geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqGermany"), stat = "identity", position =
  labs(x = "Bases", y = "Frecuencia", fill = "") +
  scale_fill_manual(values = c("SeqGermany" = "purple")) +
  theme_minimal()
grid.arrange(q,w, ncol=2)
```



```
gwuhan = data.frame(
 bases = c("A", "C", "G", "T"),
  g1 = percentageBases(seqAustralia)
q \leftarrow ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
 geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqAustralia"), stat = "identity", position =
 labs(title = "Comparación de las bases de ADN de las variantes del virus", x = "Bases", y = "Frecuen
  scale_fill_manual(values = c("SeqAustralia" = "pink")) +
 theme_minimal()
 gwuhan = data.frame(
 bases = c("A", "C", "G", "T"),
 g1 = percentageBases(seqNetherlands)
w \leftarrow ggplot(gwuhan, aes(x = bases, y = g1, fill = bases)) +
 geom_bar(data = gwuhan, aes(x = bases, y = g1, fill = "SeqNetherlands"), stat = "identity", position
```

```
labs(x = "Bases", y = "Frecuencia", fill = "") +
scale_fill_manual(values = c("SeqNetherlands" = "purple")) +
theme_minimal()
grid.arrange(q,w, ncol=2)
```


Print phylogeneticTreeGraph

 $\verb|phylogeneticGraph| <- \verb|phylogeneticTreeGraph|()| \textit{\# Call Function that create graph}|$

```
##
##
    Converting FASTA alignment into a DNAbin object...
##
##
    Finding the size of a single genome...
##
##
##
    genome size is: 29,869 nucleotides
##
   ( 375 lines per genome )
##
##
##
    Importing sequences...
## Warning in split.default(txt, rep(1:nb.ind, each = LINES.PER.IND)): data length
## is not a multiple of split variable
##
```

```
## Forming final object...
## Warning in matrix(res, nrow = length(IND.LAB), byrow = TRUE): data length
## [237407] is not a sub-multiple or multiple of the number of rows [8]
##
## ...done.
```

Árbol de tipo NJ

```
hCoV-19/Mexico/CMX-INMEGEN-101-282/2023|EPI ISL 17591290|2023-04-04

hCoV-19/Netherlands/UT-AUMC-001216/2023|EPI ISL 17590089|2023-04-24

hCoV-19/Argentina/94370-16/2023|EPI ISL 17517812|2023-03-04

-hCoV-19/Poland/WSSEGorzow-S0281/2023|EPI ISL 17574083|2023-04-06

-hCoV-19/Vietnam/BMH-508024/2023|EPI ISL 17481626|2023-04-12

-hCoV-19/South Korea/KDCA232205/2023|EPI ISL 17604710|2023-04-13

-hCoV-19/Germany/un-ChVir984 V107 AGN/2020|EPI ISL 17601457|2020

-hCoV-19/Australia/NSW-ICPMR-43971/2021|EPI ISL 17590030|2021-09-16
```

phylogeneticGraph

NULL