jhTAlib

Joost Hoeks

2020-02-11

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
In Colab	3
Examples	4
Example 1	4
Example 2	4
Example 3	4
Example 4	4
Example 5	5
Example 6	5
Example 7	5
Example 8	5
Example 9	5
Example 10	6
Example 11	6
Test	6
Reference	6
Behavioral Techniques	6
Candlestick	9
Cycle Indicators	11
Data	12
Event Driven	13
Experimental	15
General	15
Information	17
Math Functions	17
Momentum Indicators	23
Overlap Studies	27
Pattern Recognition	31

Price Transform
jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
• Technical Analysis Software
• Charting Software
• Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on • The Python Standard Library
Docs
• .html
• .epub
• .json
• .odt

• .pdf

- \bullet .rst
- .rtf
- .xml

Install

```
From PyPI:
```

\$ [sudo] pip3 install jhtalib

From source - source mirror 1 - source mirror 2:

- \$ git clone https://github.com/joosthoeks/jhTAlib.git
- \$ cd jhTAlib
- $\$ [sudo] pip3 install -e .

Update

From PyPI:

\$ [sudo] pip3 install --upgrade jhtalib

From source - source mirror 1 - source mirror 2:

- \$ cd jhTAlib
- \$ git pull [upstream master]

In Colab

```
From PyPI:
```

!pip install --upgrade jhtalib
import jhtalib as jhta

From source - source mirror 1 - source mirror 2:

!git clone [-b branch-name] https://github.com/joosthoeks/jhTAlib.git
%cd '/content/jhTAlib'
import jhtalib as jhta

%cd '/content'

!rm -rf ./jhTAlib/

Examples
<pre>\$ cd example/</pre>
Example 1
<pre>\$ python3 example-1-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-1-plot.ipynb
Example 2
<pre>\$ python3 example-2-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb
Example 3
<pre>\$ python3 example-3-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb
Example 4
<pre>\$ python3 example-4-plot-quandl.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

<pre>\$ python3 example-5-plot-quandl.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb
Example 6
\$ python3 example-6-plot-quandl.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb
Example 7
\$ python3 example-7-quand1-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
\$ python3 example-8-alphavantage-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb
Example 9

Example 5

\$ python3 example-9-cryptocompare-2-df.py

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/ example/example-9-cryptocompare-2-df.ipynb Example 10 DF NumPy Pandas https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb Example 11 Basic Usage https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-11-basic-usage.ipynb Test \$ cd test/ \$ python3 test.py Reference import jhtalib as jhta Behavioral Techniques ATH | All Time High | DONE • dict of lists of floats = jhta.ATH(df, price='High')

LMC Last Major Correction DONE
• dict of lists of floats = jhta.LMC(df, price='Low', price_high='High'
PP Pivot Point DONE
 dict of lists of floats = jhta.PP(df, high='High', low='Low', close='Close')
• https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis)
FIBOPR Fibonacci Price Retracements DONE
• dict of lists of floats = jhta.FIBOPR(df, price='Close')
FIBTR Fibonacci Time Retracements •
GANNPR W. D. Gann Price Retracements DONE • dict of lists of floats = jhta.GANNPR(df, price='Close')
GANNTR W. D. Gann Time Retracements
JDN Julian Day Number DONE
 jdn = jhta.JDN(utc_year, utc_month, utc_day) https://en.wikipedia.org/wiki/Julian_day

JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute utc_second) 	€,
• https://en.wikipedia.org/wiki/Julian_day	
SUNC Sun Cycle	
•	
	
MERCURYC Mercury Cycle	
•	
VENUSC Venus Cycle	
•	
EARTHC Earth Cycle	
•	
MARSC Mars Cycle	
•	
JUPITERC Jupiter Cycle	
•	
SATURNC Saturn Cycle	
•	

URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •
PLUTOC Pluto Cycle
MOONC Moon Cycle
Candlestick
<pre>CDLBODYS Candle Body Size DONE</pre>
CDLWICKS Candle Wick Size DONE • list of floats = jhta.CDLWICKS(df, high='High', low='Low') • https://www.tradeciety.com/understand-candlesticks-patterns/
CDLUPPSHAS Candle Upper Shadow Size DONE
• list of floats = jhta.CDLUPPSHAS(df, open='Open', high='High', close='Close')
$\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list of floats = jhta.CDLLOWSHAS(df, open='Open', low='Low', close='Close')
- https://www.tradeciety.com/understand-candlesticks-patterns/

CDLBODYP | Candle Body Percent | DONE

• list of floats = jhta.CDLBODYP(df, open='Open', close='Close')

CDLBODYM | Candle Body Momentum | DONE

- list of floats = jhta.CDLBODYM(df, n, open='Open', close='Close')
- book: Trading Systems and Methods

GAP | Gap | DONE

• list of floats = jhta.GAP(df, high='High', low='Low', close='Close')

QSTICK | Qstick | DONE

- list of floats = jhta.QSTICK(df, n, open='Open', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=Qstick.htm

SHADOWT | Shadow Trends | DONE

- dict of lists of floats = jhta.SHADOWT(df, n, open='Open', high='High', low='Low', close='Close')
- book: The New Technical Trader

IMI Intraday Momentum Index DONE
• list of floats = jhta.IMI(df, open='Open', close='Close')
• https://www.fmlabs.com/reference/default.htm?url=IMI.htm
INSBAR Inside Bar DONE
• list of booleans = jhta.INSBAR(df, high='High', low='Low')
OUTSBAR Outside Bar DONE
• list of booleans = jhta.OUTSBAR(df, high='High', low='Low')
Cycle Indicators
HT_DCPERIOD Hilbert Transform - Dominant Cycle Period • ——————————————————————————————————
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase •
HT_PHASOR Hilbert Transform - Phasor Components
HT_SINE Hilbert Transform - SineWave •

HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE
• list of floats = jhta.TS(df, n, price='Close')
$ \bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm} \\ \underline{\hspace{1cm} }$
Data
CSV2DF CSV file 2 DataFeed DONE
• dict of tuples of floats = jhta.CSV2DF(csv_file_path, datetime='datetime' Open='Open', high='High', low='Low', close='Close', volume='Volume')
CSVURL2DF CSV file url 2 DataFeed DONE
 dict of tuples of floats = jhta.CSVURL2DF(csv_file_url, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')
DF2CSV DataFeed 2 CSV file DONE
• csv file = jhta.DF2CSV(df, csv_file_path, datetime='datetime', Open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFREV | DataFeed 2 DataFeed Reversed | DONE

 dict of tuples of floats = jhta.DF2DFREV(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2DFWIN | DataFeed 2 DataFeed Window | DONE

 dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF_HEAD | DataFeed HEAD | DONE

• dict of tuples of floats = jhta.DF_HEAD(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF_TAIL | DataFeed TAIL | DONE

• dict of tuples of floats = jhta.DF_TAIL(df, n=5, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE

• dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df, datetime='datetime', open='Open', high='High', low='Low', close='Close', volume='Volume')

Event Driven

ASI | Accumulation Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.ASI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

13

SI | Swing Index (J. Welles Wilder) | DONE

- list of floats = jhta.SI(df, L, open='Open', high='High', low='Low', close='Close')
- book: New Concepts in Technical Trading Systems

SAVGP | Swing Average Price - previous Average Price | DONE

• list of floats = jhta.SAVGP(df, open='Open', high='High', low='Low', close='Close')

SAVGPS | Swing Average Price - previous Average Price Summation | DONE

• list of floats = jhta.SAVGPS(df, open='Open', high='High', low='Low', close='Close')

SCO | Swing Close - Open | DONE

• list of floats = jhta.SCO(df, open='Open', close='Close')

SCOS | Swing Close - Open Summation | DONE

• list of floats = jhta.SCOS(df, open='Open', close='Close')

SMEDP | Swing Median Price - previous Median Price | DONE

• list of floats = jhta.SMEDP(df, high='High', low='Low')

SMEDPS | Swing Median Price - previous Median Price Summation | DONE

• list of floats = jhta.SMEDPS(df, high='High', low='Low')

SPP | Swing Price - previous Price | DONE • list of floats = jhta.SPP(df, price='Close') SPPS | Swing Price - previous Price Summation | DONE • list of floats = jhta.SPPS(df, price='Close') STYPP | Swing Typical Price - previous Typical Price | DONE • list of floats = jhta.STYPP(df, high='High', low='Low', close='Close') STYPPS | Swing Typical Price - previous Typical Price Summation | DONE • list of floats = jhta.STYPPS(df, high='High', low='Low', close='Close') SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE • list of floats = jhta.SWCLP(df, high='High', low='Low', close='Close') SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE • list of floats = jhta.SWCLPS(df, high='High', low='Low', close='Close') Experimental General

NORMALIZE | Normalize | DONE

- list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \, \text{https://machinelearningmastery.com/normalize-standardize-time-series-data-python/} \\$

STANDARDIZE | Standardize | DONE

- list of floats = jhta.STANDARDIZE(df, price='Close')
- ${\rm https://machinelearning mastery.com/normalize-standardize-time-series-data-python/}$

REMAP | Remap | DONE

 float = jhta.REMAP(x, old_min=0, old_max=1000, new_min=0, new_max=100)

REMAPS | Remaps | DONE

• list of floats = jhta.REMAPS(df, old_min=0, old_max=1000, new_min=0, new_max=100, price='Close')

RATIO | Ratio | DONE

- list of floats = jhta.RATIO(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=Ratio.htm

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ \, https://www.fmlabs.com/reference/default.htm?url=RSIC.htm$

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE

• print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list)

Math Functions

EXP | Exponential | DONE

• list of floats = jhta.EXP(df, price='Close')

LOG | Logarithm | DONE • list of floats = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list of floats = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list of floats = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close') ATAN | Arc Tangent | DONE • list of floats = jhta.ATAN(df, price='Close') COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close') SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close')

TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list of floats = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list of floats = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list of floats = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list of floats = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI()

E Mathematical constant E DONE
• float = jhta.E()
TAU Mathematical constant TAU DONE
• float = jhta.TAU()
PHI Mathematical constant PHI DONE
• float = jhta.PHI()
FIB Fibonacci series up to n DONE
• list of ints = jhta.FIB(n)
CEIL Ceiling DONE
• list of floats = jhta.CEIL(df, price='Close')
ELOOP El DONE
FLOOR Floor DONE
• list of floats = jhta.FLOOR(df, price='Close')
DEGREES Radians to Degrees DONE
• list of floats = jhta.DEGREES(df, price='Close')
RADIANS Degrees to Radians DONE
• list of floats = jhta.RADIANS(df, price='Close')
J , r==== ,

• list of floats = jhta.ADD(df, high='High', low='Low') DIV | Division High / Low | DONE • list of floats = jhta.DIV(df, high='High', low='Low') MAX | Highest value over a specified period | DONE • list of floats = jhta.MAX(df, n, price='Close') MAXINDEX | Index of highest value over a specified period | DONE • list of ints = jhta.MAXINDEX(df, n, price='Close') MIN | Lowest value over a specified period | DONE • list of floats = jhta.MIN(df, n, price='Close') MININDEX | Index of lowest value over a specified period | DONE • list of ints = jhta.MININDEX(df, n, price='Close') MINMAX | Lowest and Highest values over a specified period | DONE • dict of lists of floats = jhta.MINMAX(df, n, price='Close')

ADD | Addition High + Low | DONE

 $\ensuremath{\mathsf{MINMAXINDEX}}\xspace \mid \ensuremath{\mathsf{Indexes}}\xspace$ of lowest and highest values over a specified period $\mid \ensuremath{\mathsf{DONE}}\xspace$

• dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close')

MULT | Multiply High * Low | DONE

• list of floats = jhta.MULT(df, high='High', low='Low')

SUB | Subtraction High - Low | DONE

• list of floats = jhta.SUB(df, high='High', low='Low')

SUM | Summation | DONE

• list of floats = jhta.SUM(df, n, price='Close')

SLOPE | Slope | DONE

- float = jhta.SLOPE(x1, y1, x2, y2)
- book: An Introduction to Algorithmic Trading

SLOPES | Slopes | DONE

- list of floats = jhta.SLOPES(df, n, price='Close')
- book: An Introduction to Algorithmic Trading

ED | Euclidean Distance | DONE

- float = jhta.ED(x1, y1, x2, y2)
- book: An Introduction to Algorithmic Trading

EDS Euclidean Distances DONE
• list of floats = jhta.EDS(df, n, price='Close')
• book: An Introduction to Algorithmic Trading
Momentum Indicators
ADX Average Directional Movement Index
•
ADXR Average Directional Movement Index Rating
•
APO Absolute Price Oscillator DONE
• list of floats = jhta.APO(df, n_fast, n_slow, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm
AROON Aroon
•
ADCONOCCIA
AROONOSC Aroon Oscillator
•
BOP Balance Of Power
•

CCI Commodity •	Channel Index	
CMO Chande M	Iomentum Oscillator	
DX Directional I	Movement Index	
MACD Moving	Average Convergence/Divergence	I
MACDEXT MA	CD with controllable MA type	
MACDFIX Movi	ing Average Convergence/Diverge	nce Fix 12/26
MFI Money Flow	w Index DONE	
	ts = jhta.MFI(df, n, high='High', ', volume='Volume')	low='Low',
	mlabs.com/reference/default.htm?url=	-MoneyFlowIndex.

MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
MOM Momentum DONE • list of floats = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator •
RMI Relative Momentum Index DONE • list of floats = jhta.RMI(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RMI.htm

ROC | Rate of Change | DONE • list of floats = jhta.ROC(df, n, price='Close') ROCP | Rate of Change Percentage | DONE • list of floats = jhta.ROCP(df, n, price='Close') ROCR | Rate of Change Ratio | DONE • list of floats = jhta.ROCR(df, n, price='Close') ROCR100 | Rate of Change Ratio 100 scale | DONE • list of floats = jhta.ROCR100(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm RSI | Relative Strength Index | DONE • list of floats = jhta.RSI(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=rsi.htm$ STOCH | Stochastic | DONE • list of floats = jhta.STOCH(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm STOCHF | Stochastic Fast |

STOCHRSI | Stochastic Relative Strength Index | TRIX | 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA | ULTOSC | Ultimate Oscillator | VHF | Vertical Horizontal Filter | DONE • list of floats = jhta.VHF(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=VHF.htm WILLR | Williams' %R | DONE • list of floats = jhta.WILLR(df, n, high='High', low='Low', close='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm$ **Overlap Studies** BBANDS | Bollinger Bands | DONE • dict of lists of floats = jhta.BBANDS(df, n, f=2, high='High', low='Low', close='Close')

• https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm

• list of floats = jhta.BBANDW(df, n, f=2, high='High', low='Low' close='Close')
- https://www.fmlabs.com/reference/default.htm?url=BollingerWidth.htm
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average DONE
 list of floats = jhta.EMA(df, n, price='Close')
$ \bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm} \\ \underline{\hspace{1cm} }$
ENVP Envelope Percent DONE
• dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm

BBANDW | Bollinger Band Width | DONE

KAMA | Kaufman Adaptive Moving Average |

•

MA | Moving Average |

•

MAMA | MESA Adaptive Moving Average |

•

MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list of floats = jhta.MIDPRICE(df, n, high='High', low='Low') • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list of floats = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list of floats = jhta.SAR(df, af_step=.02, af_max=.2, high='High', low='Low') • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended |

SMA | Simple Moving Average | DONE • list of floats = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm T3 | Triple Exponential Moving Average (T3) | TEMA | Triple Exponential Moving Average | TRIMA | Triangular Moving Average | DONE • list of floats = jhta.TRIMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm VAMA | Volume Adjusted Moving Average | DONE • list of floats = jhta.VAMA(df, n, price='Close', volume='Volume') • https://www.fmlabs.com/reference/default.htm?url=VolAdjustedMA. htm WMA | Weighted Moving Average WWMA | Welles Wilder Moving Average | DONE

- list of floats = jhta.WWMA(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=WellesMA.htm

WWS | Welles Wilder Summation | DONE

- list of floats = jhta.WWS(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=WellesSum.htm

```
Pattern Recognition
```

CDL2CROWS | Two Crows |

CDL3BLACKCROWS | Three Black Crows |

CDL3INSIDE | Three Inside Up/Down |

CDL3LINESTRIKE | Three-Line Strike |

CDL3OUTSIDE | Three Outside Up/Down |

CDL3STARSINSOUTH | Three Stars In The South |

CDL3WHITESOLDIERS | Three Advancing White Soldiers |

CDLABANDONEDBABY | Abandoned Baby |

CDLADVANCEBLOCK | Advance Block |

CDLBELTHOLD | Belt-hold |

 ${\bf CDLBREAKAWAY} \mid {\bf Breakaway} \mid$

CDLCLOSINGMARUBOZU | Closing Marubozu |

CDLCONSEALBABYSWALL | Concealing Baby Swallow |

CDLCOUNTERATTACK | Counterattack |

```
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
```

```
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
{\bf CDLLADDERBOTTOM} \mid {\bf Ladder~Bottom} \mid
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
```

```
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
Price Transform
{\bf AVGPRICE} \mid {\bf Average} \ {\bf Price} \mid {\bf DONE}
  • list of floats = jhta.AVGPRICE(df, open='Open', high='High',
    low='Low', close='Close')
  \bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm
```

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df, high='High', low='Low')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df, high='High', low='Low', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df, high='High', low='Low', close='Close')

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list of floats = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list of floats = jhta.MEDIAN(df, n, price='Close')

• list of floats = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list of floats = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None)

MEDIAN_LOW | Low median of data | DONE

$\mathbf{COV} \mid \mathbf{Covariance} \mid \mathbf{DONE}$

- float = jhta.COV(x_list, y_list)
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COVARIANCE | Covariance | DONE

- list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')

COR | Correlation | DONE

• float = jhta.COR(x_list, y_list)

CORRELATION | Correlation | DONE

• list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(x_list, y_list)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

R2 | R-Squared | DONE

- float = jhta.R2(x_list, y_list)
- $\bullet \ \ https://www.wallstreetmojo.com/r-squared-formula/$

RSQUARED | R-Squared | DONE

- list of floats = jhta.RSQUARED(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://www.wallstreetmojo.com/r-squared-formula/$

-

REGRESSION | Regression | DONE

- dict of lists of floats = jhta.REGRESSION(x_list, y_list)
- $\bullet \ \ https://www.wallstreetmojo.com/regression-formula/$

SSE | Sum of the Squared Errors | DONE

- float = jhta.SSE(x_list, y_list)
- https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate

SEE | Standard Error of Estimate | DONE

- float = jhta.SEE(x_list, y_list)
- https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate

PSEE | Population Standard Error of Estimate | DONE

- float = jhta.PSEE(x_list, y_list)
- $\bullet \ \ https://www.wikihow.com/Calculate-the-Standard-Error-of-Estimate$

LSMA | Least Squares Moving Average | DONE

- list of floats = jhta.LSMA(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=LstSqrMA.htm$

BETA | Beta | DONE

- float = jhta.BETA(x_list, y_list)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \ https://en.wikipedia.org/wiki/Beta_(finance)$

LSR | Least Squares Regression | DONE

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- https://www.mathsisfun.com/data/least-squares-regression.html

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \, \text{https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/} \\$

Uncategorised

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \, \rm https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- https://en.wikipedia.org/wiki/Expected_value

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

BPPS | Basis Points per Second | DONE

- float = jhta.BPPS(trade_start_price, trade_end_price, trade_start_timestamp, trade_end_timestamp)
- book: An Introduction to Algorithmic Trading

RET | Return | DONE

- list of floats = jhta.RET(df, price='Close')
- book: An Introduction to Algorithmic Trading

RETS | Returns | DONE

- list of floats = jhta.RETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRET | %Return | DONE

- list of floats = jhta.PRET(df, price='Close')
- book: An Introduction to Algorithmic Trading

PRETS | %Returns | DONE

- list of floats = jhta.PRETS(df, price='Close')
- book: An Introduction to Algorithmic Trading

Volatility Indicators

AEM | Arms Ease of Movement | DONE

- list of floats = jhta.AEM(df, high='High', low='Low', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ArmsEMV.htm$

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n, high='High', low='Low', close='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ATR.htm$

NATR | Normalized Average True Range |

.

RVI | Relative Volatility Index | DONE

- list of floats = jhta.RVI(df, n, high='High', low='Low')
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

RVIOC | Relative Volatility Index Original Calculation | DONE

- list of floats = jhta.RVIOC(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RVIoriginal.htm$

INERTIA | Inertia | DONE

- list of floats = jhta.INERTIA(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=Inertia.htm$

PRANGE | %Range | DONE

- list of floats = jhta.PRANGE(df, n, max_price='High', min_price='Low')
- book: An Introduction to Algorithmic Trading

TRANGE | True Range | DONE

- list of floats = jhta.TRANGE(df, high='High', low='Low', close='Close')
- https://www.fmlabs.com/reference/default.htm?url=TR.htm

DVOLA | Daily Volatility | DONE

- list of floats = jhta.DVOLA(df, n=30, price='Close')
- https://www.wallstreetmojo.com/volatility-formula/

AVOLA | Annual Volatility | DONE

- list of floats = jhta.AVOLA(df, n=30, na=252, price='Close')
- $\bullet \ \ https://www.wallstreetmojo.com/volatility-formula/$

Volume Indicators

AD | Chaikin A/D Line | DONE

- list of floats = jhta.AD(df, high='High', low='Low', close='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$

ADOSC | Chaikin A/D Oscillator |

•

MFAI | Market Facilitation Index | DONE

- list of floats = jhta.MFAI(df, high='High', low='Low', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MFI.htm$

NVI | Negative Volume Index | DONE

- list of floats = jhta.NVI(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=NVI.htm

OBV | On Balance Volume | DONE

- list of floats = jhta.OBV(df, close='Close', volume='Volume')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=OBV.htm$

PVR | Price Volume Rank | DONE

- list of ints = jhta.PVR(df, price='Close', volume='Volume')
- https://www.fmlabs.com/reference/default.htm?url=PVrank.htm

PVT | Price Volume Trend | DONE

- list of floats = jhta.PVT(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVT.htm$

PVI | Positive Volume Index | DONE

- list of floats = jhta.PVI(df, price='Close', volume='Volume')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=PVI.htm$

VWAP | Volume Weighted Average Price | DONE

- list of floats = jhta.VWAP(df, open='Open', high='High', low='Low', close='Close', volume='Volume')
- book: An Introduction to Algorithmic Trading

Notebooks

• https://github.com/joosthoeks/jhTAlib/tree/master/notebook

A Sane and Simple bitcoin Savings plan SSS

• https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebook/a_sane_and_simple_bitcoin_savings_plan_(sss) .ipynb

Dollar Cost Averaging Discount DCAD

 $\bullet \ https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebook/dollar_cost_averaging_discount_dcad.ipynb \\$

44

Recession Probability

 $\bullet \ https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/notebook/recession_probability.ipynb \\$

Donation and Funding

- BTC: 3KCoXMyUDgVABoFSuV8GQT3k8qkUhEDG9X