Linear Algebra formulation Zero-sum games The complexity of finding a NE An exact algorithm to compute NE Other algorithms

Computational aspects of finding Nash Equilibria for 2-player games

Fall 2020

- 1 Linear Algebra formulation
- 2 Zero-sum games
- 3 The complexity of finding a NE
- 4 An exact algorithm to compute NE
- Other algorithms

Nash equilibrium

```
Consider a 2-player game \Gamma = (A_1, A_2, u_1, u_2).

Let X = \Delta(A_1) and Y = \Delta(A_2).

(\Delta(A) is the set of probability distributions over A)
```

Consider a 2-player game $\Gamma = (A_1, A_2, u_1, u_2)$. Let $X = \Delta(A_1)$ and $Y = \Delta(A_2)$.

Other algorithms

 $(\Delta(A))$ is the set of probability distributions over A)

A Nash equilibrium is a mixed strategy profile $\sigma = (x, y) \in X \times Y$ such that, for every $x' \in X$, $y' \in Y$, it holds

$$U_1(x,y) \ge U_1(x',y)$$
 and $U_2(x,y) \ge U_2(x,y')$

Linear algebra notation

Consider a 2-player game $\Gamma = (A_1, A_2, u_1, u_2)$

Linear algebra notation

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $m = |A_1|$ and $n = |A_2|$.

Linear algebra notation

```
Consider a 2-player game \Gamma = (A_1, A_2, u_1, u_2)

Let m = |A_1| and n = |A_2|.

x \in X is a probability distribution:

x = (x_1, \dots, x_m), x_i \ge 0 and x_1 + \dots + x_m = 1
```

Linear algebra notation

```
Consider a 2-player game \Gamma = (A_1, A_2, u_1, u_2)

Let m = |A_1| and n = |A_2|.

x \in X is a probability distribution:

x = (x_1, \dots, x_m), x_i \ge 0 and x_1 + \dots + x_m = 1

y \in Y is a probability distribution:

y = (y_1, \dots, y_n), y_i \ge 0 and y_1 + \dots + y_n = 1
```

Linear algebra notation

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $m = |A_1|$ and $n = |A_2|$.
 $x \in X$ is a probability distribution:
 $x = (x_1, \dots, x_m), x_i \ge 0$ and $x_1 + \dots + x_m = 1$
 $y \in Y$ is a probability distribution:
 $y = (y_1, \dots, y_n), y_j \ge 0$ and $y_1 + \dots + y_n = 1$

Utilities can be described by a $m \times n$ matrix R, for the row player, and C, for the column player. Then,

Linear algebra notation

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $m = |A_1|$ and $n = |A_2|$.
 $x \in X$ is a probability distribution:
 $x = (x_1, \dots, x_m), x_i \ge 0$ and $x_1 + \dots + x_m = 1$
 $y \in Y$ is a probability distribution:
 $y = (y_1, \dots, y_n), y_j \ge 0$ and $y_1 + \dots + y_n = 1$

Utilities can be described by a $m \times n$ matrix R, for the row player, and C, for the column player. Then,

$$U_1(x,y) = x^T R y$$
 and $U_2(x,y) = x^T C y$

For a given $x \in X$, we have to solve:

For a given $x \in X$, we have to solve:

$$\max \quad x^T C y$$
 Subject to: $y_1 + \dots + y_n = 1, y_j \ge 0$.

For a given $x \in X$, we have to solve:

$$\max \quad x^T C \ y$$
 Subject to: $y_1 + \dots + y_n = 1, \ y_j \ge 0.$

For a given y, we have to solve:

Computing a best response

For a given $x \in X$, we have to solve:

$$\max \quad x^T C y$$
Subject to: $y_1 + \dots + y_n = 1, y_j \ge 0.$

For a given y, we have to solve:

$$\max \quad x^T R y$$
Subject to: $x_1 + \dots + x_m = 1, x_i \ge 0$

For a given $x \in X$, we have to solve:

$$\max \quad x^T C y$$
Subject to: $y_1 + \dots + y_n = 1, y_j \ge 0$.

For a given y, we have to solve:

$$\max \quad x^T R y$$
Subject to: $x_1 + \dots + x_m = 1, x_i \ge 0$

Those are linear programming problems, so

For a given $x \in X$, we have to solve:

$$\max \quad x^T C y$$
Subject to: $y_1 + \dots + y_n = 1, y_j \ge 0$.

For a given y, we have to solve:

$$\max \quad x^T R y$$
Subject to: $x_1 + \dots + x_m = 1, x_i \ge 0$

Those are linear programming problems, so A best response can be computed in polynomial time for 2-player games with rational utilities.

- Linear Algebra formulation
- 2 Zero-sum games
- 3 The complexity of finding a NE
- 4 An exact algorithm to compute NE
- Other algorithms

• A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.
- Player 1 is interested in maximizing u and player 2 in minimizing u.

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.
- Player 1 is interested in maximizing u and player 2 in minimizing u.
- In terms of matrices we have C = -R.

• (x^*, y^*) is a NE

• (x^*, y^*) is a NE

$$(x^*)^T R y^* \ge x^T R y^*$$
, for all $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for all $y \in Y$.

• (x^*, y^*) is a NE

$$(x^*)^T R y^* \ge x^T R y^*$$
, for all $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for all $y \in Y$.

• As C = -R the second equation becomes

• (x^*, y^*) is a NE

$$(x^*)^T R y^* \ge x^T R y^*$$
, for all $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for all $y \in Y$.

• As C = -R the second equation becomes

$$(x^*)^T R y^* \le (x^*)^T R y, \forall y \in Y.$$

• (x*, y*) is a NE

$$(x^*)^T R y^* \ge x^T R y^*$$
, for all $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for all $y \in Y$.

• As C = -R the second equation becomes

$$(x^*)^T R y^* \le (x^*)^T R y, \forall y \in Y.$$

Combining both,

$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, $\forall x \in X$, $\forall y \in Y$.

• (x*, y*) is a NE

$$(x^*)^T R y^* \ge x^T R y^*$$
, for all $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for all $y \in Y$.

• As C = -R the second equation becomes

$$(x^*)^T R y^* \le (x^*)^T R y, \ \forall y \in Y.$$

Combining both,

$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, $\forall x \in X$, $\forall y \in Y$.
i.e., (x^*, y^*) is a saddle point
of the function $x^T R y$ defined over $X \times Y$.

Theorem

For any function $\Phi: X \times Y : \to \mathbb{R}$, we have

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Theorem

For any function $\Phi: X \times Y : \to \mathbb{R}$, we have

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Proof.

Theorem

For any function $\Phi: X \times Y : \to \mathbb{R}$, we have

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Proof.

$$\forall x' \in X$$
, $\Phi(x', y) \leq \sup_{x \in X} \Phi(x, y)$. Then,

Theorem

For any function $\Phi: X \times Y : \to \mathbb{R}$, we have

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Proof.

$$\forall x' \in X$$
, $\Phi(x', y) \le \sup_{x \in X} \Phi(x, y)$. Then,

$$\forall x' \in X, \inf_{y \in Y} \Phi(x', y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Theorem

For any function $\Phi: X \times Y : \to \mathbb{R}$, we have

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

Proof.

$$\forall x' \in X$$
, $\Phi(x', y) \leq \sup_{x \in X} \Phi(x, y)$. Then,

$$\forall x' \in X$$
, $\inf_{y \in Y} \Phi(x', y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y)$.

Taking the supremum over $x' \in X$ on the left hand-side,

$$\sup_{x \in X} \inf_{y \in Y} \Phi(x, y) \le \inf_{y \in Y} \sup_{x \in X} \Phi(x, y).$$

We have

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, $\forall x \in X$, $\forall y \in Y$.

We have

- $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, $\forall x \in X$, $\forall y \in Y$.
- Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

We have

- $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, $\forall x \in X$, $\forall y \in Y$.
- Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \leq \sup_{x \in X} x^T R y^* \leq (x^*)^T R y^* \leq \inf_{y \in Y} (x^*)^T R y \leq \sup_{x \in X} \inf_{y \in Y} x^T R y$$

We have

- $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, $\forall x \in X$, $\forall y \in Y$.
- Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \leq \sup_{x \in X} x^T R y^* \leq (x^*)^T R y^* \leq \inf_{y \in Y} (x^*)^T R y \leq \sup_{x \in X} \inf_{y \in Y} x^T R y$$

• Using the minimax inequality, we get

We have

- $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, $\forall x \in X$, $\forall y \in Y$.
- Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

• Using the minimax inequality, we get

$$\inf_{y \in Y} \sup_{x \in X} x^T R y = (x^*)^T R y^* = \sup_{x \in X} \inf_{y \in Y} x^T R y$$

We have

- $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, $\forall x \in X$, $\forall y \in Y$.
- Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

Using the minimax inequality, we get

$$\inf_{y \in Y} \sup_{x \in X} x^T R y = (x^*)^T R y^* = \sup_{x \in X} \inf_{y \in Y} x^T R y$$

We refer to $\inf_{y \in Y} \sup_{x \in X} x^T R y$ as the value of the game.

Best response condition and Bimatrix Games

For a fixed $y \in Y$, let u_r the value of the best response of player 1 to y:

$$u_r = \max_{x \in X} x^T R y = \max_{x \in X} \sum_{i=1}^m \sum_{j=1}^n x_i r_{ij} y_j$$

Let
$$[Ry]_i = \sum_{j=1}^n r_{ij} y_j$$

Theorem (Nash)

For a fixed $y \in Y$,

$$u_r = \max_{k=1,\ldots,m} \{ [Ry]_k \},\,$$

and if x is a BR to y, then for all $x_i > 0$, $[Ry]_i = u_r$

Proof.

Let x be a BR to y.

$$u_r = x^T R y = \sum_{i=1}^m x_i [R y]_i \le \sum_{i=1}^m x_i (\max_{k=1,\dots,m} \{ [R y]_k \})$$

Proof.

Let x be a BR to y.

$$u_r = x^T R y = \sum_{i=1}^m x_i [R y]_i \le \sum_{i=1}^m x_i (\max_{k=1,...,m} \{ [R y]_k \})$$

Hence,

$$u_r \leq \max_{k=1,\ldots,m} \{ [Ry]_k \}$$

Proof.

Let x be a BR to y.

$$u_r = x^T R y = \sum_{i=1}^m x_i [R y]_i \le \sum_{i=1}^m x_i (\max_{k=1,...,m} \{ [R y]_k \})$$

Hence,

$$u_r \leq \max_{k=1,\ldots,m} \{ [Ry]_k \}$$

If $[Ry]_i = \max_{k=1,...,m} \{ [Ry]_k \}$, $x'_i = 1$ and $x'_j = 0$ for all $j \neq i$, then $u_r \ge u_1(x', y) = \max_{k=1,...,m} \{ [Ry]_k \}$.

$$(x')$$
 is a support of x and a BR to y

Moreover, if x is a BR to y,

$$x_i > 0 \Rightarrow [Ry]_i = \max_{k=1,\dots,m} \{ [Ry]_k \}$$

Assume that $\exists j, x_j > 0$ and

$$[Ry]_j < \max_{k=1,...,m} \{ [Ry]_k \}.$$
 Then,

$$u_r = \sum_{x_i > 0} x_i [Ry]_i < \sum_{x_i > 0} x_i (\max_{k=1,\dots,m} \{ [Ry]_k \}) = \max_{k=1,\dots,m} \{ [Ry]_k \} \sum_{x_i > 0} x_i = u_r$$

Contradiction!

• For a fixed y, we have

• For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,m} \{ [Ry]_i \},$$

• For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,m} \{ [Ry]_i \},$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{ [Ry]_1, \dots [Ry]_m \}$$

For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,m} \{ [Ry]_i \},$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{ [Ry]_1, \dots [Ry]_m \}$$

 So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,m} \{ [Ry]_i \},$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{ [Ry]_1, \dots [Ry]_m \}$$

 So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

$$\min v$$
$$v\mathbf{1}_n \ge Ry, y \in Y.$$

• Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

 So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

 So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

$$\max w$$
$$w\mathbf{1}_m \le R^T x, x \in X.$$

Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

 So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

$$\max w$$
$$w\mathbf{1}_m \le R^T x, x \in X.$$

 LP can be solved efficiently, thus there is a polynomial time algorithm for computing NE for zero-sum games.

- Linear Algebra formulation
- 2 Zero-sum games
- 3 The complexity of finding a NE
- 4 An exact algorithm to compute NE
- Other algorithms

Linear Algebra formulation Zero-sum games The complexity of finding a NE An exact algorithm to compute NE Other algorithms

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

 The class of all problems with guaranteed solution by use of the following graph-theoretic lemma

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

 The class of all problems with guaranteed solution by use of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 - A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 - A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G and the objective is finding another unbalanced node.

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 - A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G and the objective is finding another unbalanced node.
- Usually *G* is huge but implicitly defined as the graphs defining solutions in local search algorithms.

 The class PPAD contains interesting computational problems not known to be in P

 The class PPAD contains interesting computational problems not known to be in P has complete problems.

- The class PPAD contains interesting computational problems not known to be in P has complete problems.
- But not a clear complexity cut.

End-of-Line

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

 Since every node has degree 2, it is a collection of paths and cycles.

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

- Since every node has degree 2, it is a collection of paths and cycles.
- We know that Every directed graph with in/outdegree 1 and a source, has a sink.

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

- Since every node has degree 2, it is a collection of paths and cycles.
- We know that Every directed graph with in/outdegree 1 and a source, has a sink.
- Which guarantees that the End-of-Line problem has always a solution.

End-of-Line: graph representation

- G is given implicitly by a circuit C
- C provides a predecessor and successor pair for each given vertex in G, i.e. C(u) = (v, w).
- A special label indicates that a node has no predecessor/successor.

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)

Finding a Nash equilibrium is PPAD-complete

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)

Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)

Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

- C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259 (2009) first version STOC 2006
- X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS 2006

- Linear Algebra formulation
- 2 Zero-sum games
- 3 The complexity of finding a NE
- 4 An exact algorithm to compute NE
- **5** Other algorithms

NE characterization

Theorem

In a strategic game in which each player has finitely many actions a mixed strategy profile σ^* is a NE iff, for each player i,

- the expected payoff, given σ_{-i} , to every action in the support of σ_i^* is the same
- the expected payoff, given σ_{-i} , to every action not in the support of σ_i^* is at most the expected payoff on an action in the support of σ_i^* .

NE conditions given support

Let $A \subseteq \{1, \dots n\}$ and $B \subseteq \{1, \dots m\}$.

The conditions for having a NE on this particular support can be written as follows:

$$\max \lambda_1 + \lambda_2$$

Subject to:

$$[Ry]_i = \lambda_1$$
, for $i \in A$
 $[Ry]_i \le \lambda_1$, for $i \notin A$
 $j[Cx] = \lambda_2$, for $j \in B$
 $j[Cx] \le \lambda_2$, for $j \notin B$

Iterating over all supports

programming.

• For every possible combination of supports $A\subseteq\{1,\ldots n\}$ and $B\subseteq\{1,\ldots m\}$. Solve the set of simultaneous equations using linear

Iterating over all supports

- For every possible combination of supports A ⊆ {1,...n} and B ⊆ {1,...m}.
 Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.

Iterating over all supports

- For every possible combination of supports A ⊆ {1,...n} and B ⊆ {1,...m}.
 Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.
- The same algorithm can be applied to a multiplayer game.
 We would be able to compute a NE on rationals if such a NE exists.

- Linear Algebra formulation
- Zero-sum games
- 3 The complexity of finding a NE
- 4 An exact algorithm to compute NE
- **5** Other algorithms

Other algorithms

- Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule. (See slides by Ethan Kim)
- Lemke-Howson requires exponential time [R. Savani, B. von Stengel, 2004]).