Реализация гальванической изоляции цифровых и аналоговых сигналов на базе решений

Texas Instruments

Черемисов Петр

Инженер по применению аналоговых компонентов

19 июля 2016

Содержание

• Принципы построения гальванической изоляции

• Термины и определения

• Изоляторы цифровых сигналов общего применения

• Изоляторы цифровых сигналов с усиленной изоляцией

• Гальваническая изоляция аналоговых сигналов

• Питание для применений с гальванической изоляцией сигналов

• Ответы на вопросы

Содержание

- Принципы построения гальванической изоляции
- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

Гальваническая развязка. Что это?

Гальваническая развязка:

Передача энергии или сигнала между электрическими цепями без электрического контакта между ними.

Цифровой изолятор:

Устройство или интегральная схема используемая для передачи цифрового сигнала через гальванический барьер

Гальваническая развязка. Зачем?

Электромагнитная совместимость

- •Уменьшение сопротивления проводников
- •Снижение влияния помех
- •Гальваническая развязка

Электробезопасность

- •Повышение класса безопасности
- •Усиленная гальваническая развязка

Технологи для изоляции цифровых сигналов

Конструкция емкостного и оптического барьеров

Емкостной барьер TI

Барьер реализован при помощи емкостей, реализованных на кристалле

Оптопара

Барьер реализован при помощи тонкой полоски прозрачного материала

Емкостной барьер TI

Преимущества:

- Простой производственный процесс
- Высокая повторяемость
- Высокая надежность
- Невысокая стоимость
- Помехозащищенность
- Энергоэффективность
- Малые габариты

Как работает емкостной барьер Ті

ISO73xx, ISO74xx, ISO71xx, ISO76xx, ISO75xx, ISO72xx

Как работает емкостной барьер Ті

Амплитудная манипуляция «On-Off Keying (OOK) »

ISO78xx

Особенности систем сертификации

Component level Standards:

- IEC 60747-5-5 (VDE 0884-5-5) for Opto Isolators.
- VDE 0884-10 / VDE 0884-11 for Capacitive/Magnetic isolators, reinforced
- IEC 60747-17
- UL 1577

_ ---

System Level / End Equipment Standards

- IEC 61800-5-1, safety requirements for adjustable speed drives
- IEC 60601-1, Medical equipment standard
- IEC 61010-1, safety standard for measurement, control and Lab equipment
- IEC 60950-1, Telecom equipment standard

_ __

EMC and Emissions

- IEC 61000-4-x , ESD, EFT, Surge, RF immunity
- CISPR22 or equivalent, EM emissions

Optical isolators	Digital Isolators		
Dielectric and/or Silicone insulation	Polyimide Insulation	Silicon Dioxide Insulation	
100 - 400 µm Thickness, Typical	20 - 32 µm Thickness, Typical	T - 15 pm Thickness, Typical	
Optical	Magnetic	Capacitive	
Standards: IEC 60747-5-5 and UL 1577	Standards: VDE 0884-10 and UL 1577		

Характеристики изоляционного барьера

Рейтинг изоляционного барьера: (временные нагрузки на барьер)

- •Viso: (Isolation Withstand Voltage) Синусоидальное напряжение, которое барьер должен выдерживать в течение 60 с. (определяется в RMS)
- •VIOTM: (Maximum Transient Isolation Voltage) Максимальное значение напряжение, которое должен выдерживать барьер в течение 60 с (амплитудное значение)

Рабочее напряжение: (постоянные нагрузки)

- •Viowm: (Maximum Working Isolation Voltage) Значение напряжения при котором изолятор может работать длительное время (определяется в RMS)
- •VIORM: (Maximum Repetitive Peak Isolation Voltage) Максимальное периодически повторяющееся значение напряжения, которое изолятор должен выдерживать в течение срока службы (импульсы по 10 с)

Максимально допустимый скачок напряжения:

•Vsurge: Максимальное значение напряжения (1.2мкс / 50 мкс) которое может выдержать барьер

Характеристики изоляционного барьера

Путь утечки (Creepage)

Кратчайшее расстояние по поверхности электроизоляционного материала между токоведущими частями разного потенциала или между токоведущей и заземленной частью электрооборудования.

Воздушный зазор (Clearance)

Кратчайшее расстояние по воздуху между неизолированными токоведущими частями разного потенциала или между неизолированной токоведущей и заземленными частями электрооборудования.

Применение конструктивных препятствий, позволяет увеличить путь утечки

Трекингостойкость

Один из показателей диэлектрика сопротивляться электрическому разрушению под действием напряжения.

Рейтинг гальванической изоляции

Рейтинг изоляции	Описание
Функциональная (Functional)	Уровень изоляции обеспечивает нормальную работу оборудования в штатном режиме. Нет защиты от разрядов.
Основная (Basic)	Изоляция опасных для жизни частей, обеспечивающая основную защиту от поражения электрическим током.
Дополнительная (Supplementary)	Независимая изоляция, дополняющая основную изоляцию и служащая для защиты от поражения электрическим током в случае пробоя основной изоляции.
Двойная (Double)	Изоляция, включающая в себя как основную, так и дополнительную изоляцию.
Усиленная (Reinforced)	Единая система изоляции опасных для жизни частей, обеспечивающая степень защиты от поражения электрическим током, эквивалентную степени защиты, обеспечиваемой двойной изоляцией

VDE0884-10

Расшифровка наименования изолятора TI

ISO7841 FDWWR

Содержание

- Принципы построения гальванической изоляции
- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

Цифровые изоляторы Texas Instruments

ISO73xx Изоляторы общего применения

Низкое энергопотребление, 3.0кBrms

Особенности

- Интегрированный диэлектрик SiO₂
 - Скорость передачи данных до 25 МБит /с
 - Максимальная задержка распространения: 58 нс (5В)
 - CMTI: 70 кВ/мкс (typ), 25 кВ/мкс (min) приt 5В
 - Низкое энергопотребление:
 - ISO7340: 0.9мА (5В), 0.7мА (3.3В) на 1 Мбит./с
 - ISO7341: 1.2мА (5V), 0.9мА (3.3V) на 1 Мбит./с
- Уровень изоляции и соответствие стандартам
 - 3000 B_{RMS} Viso (UL 1577)
 - 6000 B_{PEAK} Vsurge
 - 1000 B_{RMS} Рабочее напряжение в SOIC-16DW
 - 400 В_{RMS} Рабочее напряжение в SOIC-8N
- Стойкость и надежность
 - IEC 61000-4-2 Level 3 ESD до 6кВ
 - IEC 61000-4-4 Level 4 EFT до 4кВ
 - IEC 61000-4-5 Level 4 Тест на разрушение 6кВ (Воздух)
- Напряжение питания и корпус
 - 3B ... 5.5B
 - Широкий рабочий температурный диапазон-40...125°C
 - SOIC-8N (1, 2 канала), SOIC-16W (3,4 канала)

Применения

- Промышленная автоматика, измерительная техника
- Системы управления двигателем
- Источники питания / Медицинская техника

Преимущества

- Улучшенная производительность в сравнении с ISO72x
 - 20% увеличен рейтинг изоляции
 - 50% увеличено напряжение разрушения барьера
 - 3-5х снижено энергопотребление
- Расширенные функции
 - Встроенный Глитч фильтр
 - Высокие уровни IEC: ESD, EFT, Surge performance, Low EM emissions.
- Совместимость по выводам и функционально
 - ISO72x, ISO74xx, ISO75xx, ISO76xx
 - ADUM12xx, ADUM13xx, ADUM14xx

SOIC-8N

Q100 Automotive Qualified

ISO73xx – хорошая альтернатива

ADuM1201A/B/C

Таблица замен ADUM на ISO

Аналог	Texas instruments Наименование позиции	Напряжение изоляции (Viso,RMS)	Скорость передачи данных (бит/сек)	Конфигурация каналов по направлению	Корпус
ADUM1100ARZ	ISO7310CD	3000	25M	1/0	SOIC-8
ADUM1200ARZ	ISO7320CD	3000	25M	2/0	SOIC-8
ADUM1201ARZ	ISO7321CD	3000	25M	1/1	SOIC-8
ADUM1201BRZ	ISO7321CD	3000	25M	1/1	SOIC-8
ADUM1250ARZ	ISO1540D	2500	1M	2	SOIC-8
ADUM1301ARWZ	ISO7331CDW	3000	25M	2/1	SOIC-16
ADUM1400BRWZ	ISO7340CDW	3000	25M	4/0	SOIC-16
ADUM1401ARWZ	ISO7341CDW	3000	25M	3/1	SOIC-16
ADUM1401BRWZ	ISO7341CDW	3000	25M	3/1	SOIC-16
ADUM1401CRWZ	ISO7241MDW	2500	25M	3/1	SOIC-16
ADUM1402ARWZ	ISO7342CDW	3000	25M	2/2	SOIC-16
ADUM1402BRWZ	ISO7342CDW	3000	25M	2/2	SOIC-16
ADUM1402CRWZ	ISO7242MDW	2500	150M	2/2	SOIC-16

ISO7131/7140/7141/7142

Миниатюрные 4кВрк / 2.5кВrms, высокая скорость, 3 и 4-канальные изоляторы

Особенности

- Интегрированный диэлектрик SiO₂
 - До 50 Мбит/с
 - F- Suffix: Начальное состояние выводов Lo
 - Задержка распространения 17 нс (5 В)
 - ~ 1 мА/канал (3.3 В)
- Уровень изоляции и соответствие стандартам
 - 2.5kBrms Viso (UL 1577, VDE, CSA)
 - 4kVpk Transient (DIN EN 60747-5-2)
 - 560Vpk Рабочее напряжение
 - Соответствие IEC 60950-1 & 61010-1
 - CMTI > 25 кВ/мкс | ESD > 4 кВ (по всем выводам)
- Напряжение питания и корпус
 - 2.7B...5B
 - Миниатюрный корпус- 16QSOP (5мм x 6мм)

Преимущества

- Миниатюрный корпус 5мм х 6мм
- Быстрые фронты и низкий уровень искажения
- Хорошая стойкость в условиях ЭМ помех
- Высокая надежность в жестких условиях эксплуатации

ISO7142 Q100 - Automotive Qualified

(5MM x 6MM)

Он действительно такой маленький!!! 4 канала, а всего 5x6 мм!!!

Наименование	FS	СН	Темп.Диап. °С	Скорость передачи
ISO7131CC	Н	2/1	-40 125	50 MБ/c
ISO7141CC	Н	3/1	-40 125	50 MБ/c
ISO7140CC	Н	4/0	-40 125	50 MБ/c
ISO7140FCC	L	4/0	-40 125	50 MБ/c
ISO7142CC	Н	2/2	-40 125	50 MБ/c
ISO7141FCC	L	3/1	-40 125	50 МБ/с

Содержание

- Принципы построения гальванической изоляции
- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

Двойная изоляция. Зачем?

1-ое и 2-ое поколение изоляторов TI

1-ое поколение: Изоляторы общего применения

- Одиночный емкостной барьер
- Толщина диэлектрика 14 мкм
- Зазор между кристаллами 500 мкм

2-ое поколение: Усиленный барьер (Reinforced)

- Последовательное расположение барьеров
- Толщина диэлектрика 26 мкм
- Зазор между кристаллами 500 мкм

Типы разрушающих воздействий на барьер

Все изоляторы пробиваются накоротко

Типы разрушающих:

- •Импульс синфазного напряжения
- ulletИмпульс высокого напряжения относительно GNDx

Прочность барьера: 26 мкм*800 В/мкм = **20 кВ**

Цифровые изоляторы Texas Instruments

ISO78xx - Robust Reinforced ISO

5700 V_{RMS} Усиленный цифровой изолятор, до 100Мб/с

Особенности

- Интегрированный диэлектрик SiO₂
 - Скорость передачи данных до 100МБит /с
 - Максимальная задержка распространения: 11 нс (5В)
 - Низкое энергопотребление: 1.7мА / канал (3.3V)
- Уровень изоляции и соответствие стандартам
 - CMTI: 100кВ/мкс (min)
 - 5700 B_{RMS} (UL 1577)
 - 12800 B_{PEAK} Surge
 - 1500 V_{RMS} Рабочее напряжение (DIN V VDE V 0884-10)
- Корпус и напряжение питания
 - 2.25В ... 5.5В широкий диапазон питающих напряжений
 - SOIC -16W (8 мм creepage / clearance)
 - SOIC 16DWW (14mm creepage / clearance)

Применения

- Промышленная автоматика, измерительная техника
- Системы управления двигателем
- Источники питания / Медицинская техника

Преимущества

- Усиленный уровень изоляции
 - Надежный барьер со сроком жизни >40 лет
- Лучшие показатели в отрасли
 - 2х раза выше стойкость к СМТІ
 - Высокий уровень EMI (IEC61000-4-х ESD, EFT)
 - Не требует использования глитч фильтра
- Высокая скорость и высокая точность по времени передачи сигнала

«Reinforced» изоляторы TI в сравнении с другими

- Два последовательных барьера
- Изоляционный барьер ~27мкм (SiO2)
- Невероятные показатели стойкости и эмиссии электромагнитных помех
- Высокая повторяемость и точность

Сравнение с конкурирующими решениями

	TI «Reinforced»	Конкурент А*	Конкурент В*	Конкурент С*
Технология	Емкостная	Индуктивная	Оптическая	Емкостная
«Reinforced»	v +	✓	✓	✓
Рейтинг (1 ьмин)	5.7 кВrms	5.7 кBrms	5.7 кBrms	5-5.7 кBrms
Максимальные импульсы напряжения	12.8+ кВрk	16 kVpk	10+ kVpk	10kVpk
Рабочее напряжение	1.5+ кВrms	600 Brms	1 кВрk	1 кВpk
Электромагнитные излучения	минимальные	высокий уровень		Lowest
Стойкость к помехам	Level 3	Level 3		Level 3
CMTI (Minimum)	100кВ/мкс	75кВ/мкс		60кВ/мкс
Время восстановления	1 * «Prop. Delay»	1* «Prop Delay»		1 * «Prop. Delay»
Ток потребления @1Mbps (/ch)	1.7мА	0.16 мА		1.9 мА
Ток потребления @ 10Mbps (/ch)				
Задержка распространения(Typical)	10 нс	7.5 нс		8нс
Задержка от микросхемы к микросхеме	<4 HC			
Джитер (Typical)	1 нс	<0.5нс		1нс

Содержание

- Принципы построения гальванической изоляции
- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

Развязка аналогового тракта

Изолированные усилители Texas Instruments

AMC1301 Vin ±250MB

AMC1301EVM

AMC1301

200 кГц Изолированный усилитель с усиленной изоляцией

Особенности

Усиленный барьер (UL1577 & VDE 0884-10)

Рабочее напряжение: **1.0кВ**_{RMS} Уровень изоляции: **7кВ**_{PEAK} / **10кВ**_{SURGE}

■ CMTI: 15 κB/мкс (min)

■ Входной диапазон: ±250 мВ_{IN} (R_{IN}=20 кΩ, G=8.2)

■ Напряжение смещения: ±200 мкВ (max)

Дрейф напряжения смещения: ±3 мкВ/°С (max)

Погрешность усиления: 8.2 ± 0.5% (max)

■ Дрейф погрешности усиления: ±50 ppm/°C (max)

■ Нелинейность: ±0.03% (max)

SNR: 60 dB (min)

Ток потребления(IDD1 / IDD2): 8.3 мА / 7 мА (max)

■ Корпус: SO-8 (DWV)

Применения

- о Приборы и системы промышленной автоматики
- о Измерение качества электропитания
- о Источники питания
- о Системы управления двигателем

Изолированные Сигма-Дельта модуляторы

AMC1304

LVDS/CMOS ΔΣ модулятор с встроенным LDO

Особенности

Усиленный барьер (UL1577 & VDE 0884-10)

Рабочее напряжение: **1.0кВ** $_{RMS}$, **1.5кВ** $_{DC}$ Уровень изоляции: **7кВ** $_{PEAK}$ / **10кВ** $_{SURGE}$

CMTI: 15 кВ/мкс (min)

Частота: 5-20 МГц (external)

■ Входной диапазон:

50мВ_{IN} | 250мВ_{IN}

Метрологические характеристики:

Смещение/Дрейф: ±50мкВ / 1.3мкВ/°С

Усиление / Дрейф усиления: ±0.3% / 40ppm/°C

Интерфейс: CMOS | LVDS

■ Входной диапазон питающих напряжений(LDO): **4B** ... **18B**

■ Температурный диапазон: -40°С ... 125°С

■ Корпус: SO-16 (DW)

Применения

- о Приборы и системы промышленной автоматики
- Измерение качества электропитания
- о Источники питания
- о Системы управления двигателем

Преимущества

- Позволяет уменьшить кол-во компонентов
- Использование барьера серьезно улучшает электромагнитную совместимость и повышает надежность устройства/системы
- Встроенный LDO стабилизатор позволяет упростить схему питания
- Возможность выбора частоты

Содержание

• Принципы построения гальванической изоляции

- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

SN6501/5

Драйвер трансформатора для обеспечения гальванически развязанного питания

Особенности

- Push-Pull Топология для миниатюрных трансформаторов
- Входной диапазон: 2.25 В ... 5.5 В
- Ток первичной стороны: 350 мA(SN6501), 1 A (SN6505)
- Низкое сопротивление ключей(RON): 0.25 Ω (SN6505)
- Низкое потребление в режиме Shutdown: < 1 мкА
- Поддержка внешнего тактирования (SN6505)
- Точный внутренний генератор
- Функция «Spread-spectrum» (SN6505)
- Контроль нарастания фронтов (SN6505)
- Ограничение тока
- UVLO, Защита от перегрева (SN6505)
- Плавный пуск (SN6505)
- Рабочий температурный диапазон: -40°С ...125°С
- SOT23(6) (2.8mm x 2.9mm)

Преимущества

- Миниатюрный корпус
- Удобный и простой драйвер для быстрой разработки
- Хорошее решение для применений, чувствительных к помехам
- Дополнительные функции

	SN6505A	SN6505B	
Рабочая частота	150 кГц	400 кГц	
	SOT23-6 2.8mm × 2.9mm	SN6505BEVM	
	HC1602	5mm	~9mm

Содержание

- Принципы построения гальванической изоляции
- Термины и определения
- Изоляторы цифровых сигналов общего применения
- Изоляторы цифровых сигналов с усиленной изоляцией
- Гальваническая изоляция аналоговых сигналов
- Питание для применений с гальванической изоляцией сигналов
- Ответы на вопросы

Спасибо за участие!

Изоляторы сигналов Texas Instruments:

http://www.compel.ru/2016/06/22/izolyatoryi-signalov-texas-instruments

Digital Isolator Design Guide:

http://www.ti.com/lit/an/slla284a/slla284a.pdf

Understanding isolation terminology and relevance:

http://www.ti.com/lit/sg/slyt676/slyt676.pdf

Isolation Glossary:

http://www.ti.com/lit/an/slla353/slla353.pdf

Understanding electromagnetic compliance tests in digital isolators:

http://www.ti.com/lit/wp/slyy064/slyy064.pdf

Understanding failure modes in isolators:

http://www.ti.com/lit/wp/slyy081/slyy081.pdf

- •изоляторы цифровых сигналов (2,5-3кВ),
- •изоляторы цифровых сигналов с усиленной изоляцией (>5кВ),
- •изолированные драйверы RS-485,
- •изолированные драйверы САN,
- •изоляторы для І2С,
- •изолированные драйверы IGBT,
- •изолированные операционные усилители,
- •<u>изолированные АЦП</u>.
- •организации питания узла изоляции сигналов

EN55024 REPORT NO.8289EEU1Rev1 EQUIPMENT: 7221C, 1201CRZ

EN55022 Class B

Abstract: Immunities: TI Isolator

EUI A/22IC			
Name of Test	Basic Standard	Test Specification	Results
Radiated Electro- magnetic Field	IEC61000-4-3: 1995	80MHz to 1000 MHz 80% AM @ 1 kHz Level X 100 V/M	Complies
Radiated Electro- magnetic Field RS103	MIL-STD 461E RS103	2MHz to 30 MHz 50% AM @ 1 kHz 200 V/M	Complies
Radiated Electro- magnetic Field RS103	MIL-STD 461E RS103	30MHz to 1000 MHz 50% AM @ 1 kHz 100 √/M	Complies

Abstract: Immunities: Индуктивный изолятор

EUI IZUICKZ		•		
Name of Test	Basic Standard	Test Specification	Results	1
Radiated Electro-	IEC61000-4-3: 1995	80MHz to 1000 MHz	Fails	
magnetic Field		80% AM @ 1 kHz		
-		Level X 100 V/M		
Radiated Electro-	MIL-STD 461E	2MHz to 30 MHz	Complies	
magnetic Field	RS103	50% AM @ 1 kHz		
RS103		200 V/M		
Radiated Electro-	MIL-STD 461E	30MHz to 1000 MHz	Fails	1
magnetic Field	RS103	50% AM @ 1 kHz		
RS103		100 √/M		

