Projet Cpp Maths

Julien Baudin, Corentin Leblond, Ruben Cohen

December 2019

Introduction

We work with the Black-Scholes Partial Differential Equation to which we apply the variable change x=log(S):

$$0 = -\frac{\partial f}{\partial t}(x,t) - \frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial x^2}(x,t) + (\frac{1}{2}\sigma^2 - r)\frac{\partial f}{\partial x}(x,t) + rf(x,t)$$
 (1)

With the final condition $f(x,T) = V(x) = V(e^S)$ where V is the payoff.

Starting from the option value at maturity, a common method to solve this PDE and retrieve the price of the option today is to use finite differences to approximate the derivatives on a discrete mesh. We are going to solve the Crank-Nicholson scheme which merges both implicit and explicit methods to combine their properties.

Working out the maths

Solving the problem

First, let us define:

$$L_i^n = -\frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial x^2}(x,t) + (\frac{1}{2}\sigma^2 - r)\frac{\partial f}{\partial x}(x,t) + rf(x,t)$$
 (2)

The Delta Greek equals:

$$\frac{\partial f}{\partial x}(x_i, t_n) = \frac{f_{i+1}^n - f_{i-1}^n}{2dx} \tag{3}$$

The Gamma Greek equals:

$$\frac{\partial^2 f}{\partial x^2}(x_i, t_n) = \frac{f_{i+1}^n + f_{i-1}^n - 2f_i^n}{dx^2}$$
 (4)

Then, the Theta Greek equals:

$$\frac{\partial f}{\partial t}(x_i, t_n) = \frac{f_i^{n+1} + f_i^n}{dt} \tag{5}$$

For each step on the discrete mesh, solving the Crank Nicholson scheme comes to solve the following equation:

$$\frac{f_i^{n+1} - f_i^n}{dt} = \theta L_i^n + (1 - \theta) L_i^{n+1}$$
 (6)

Where dt is the time step on the mesh, index n stands for the time step. Index i stands for the price step for the underlying asset, and dx is the price step on the mesh. θ is an input defining the contribution of both implicit and explicit schemes to the Crank-Nicholson one.

Substituting equations 2, 3 and 4 into 6, one can obtain:

$$f_{i}^{n+1} - f_{i}^{n} = dt\theta\left(-\frac{1}{2}\sigma^{2}\frac{f_{i+1}^{n} + f_{i-1}^{n} - 2f_{i}^{n}}{dx^{2}} + \left(\frac{1}{2}\sigma^{2} - r\right)\frac{f_{i+1}^{n} - f_{i-1}^{n}}{2dx} + rf_{i}^{n}\right) + dt(1 - \theta)\left(-\frac{1}{2}\sigma^{2}\frac{f_{i+1}^{n+1} + f_{i-1}^{n+1} - 2f_{i}^{n+1}}{dx^{2}} + \left(\frac{1}{2}\sigma^{2} - r\right)\frac{f_{i+1}^{n+1} - f_{i-1}^{n+1}}{2dx} + rf_{i}^{n+1}\right)$$

$$(7)$$

After reorganising the right side of equation 7, let us denote:

$$A_{i}^{n} = f_{i+1}^{n} \left(dt \theta \left(\frac{-\sigma^{2}}{2dx^{2}} + \frac{\sigma^{2}}{4dx} - \frac{r}{2dx} \right) + f_{i-1}^{n} \left(dt \theta \left(\frac{-\sigma^{2}}{2dx^{2}} + \frac{\sigma^{2}}{4dx} + \frac{r}{2dx} \right) + f_{i}^{n} \left(dt \theta \left(\frac{\sigma^{2}}{dx^{2}} + r \right) \right) \right)$$
(8)

$$A_i^{n+1} = f_{i+1}^n (dt(1-\theta)(\frac{-\sigma^2}{2dx^2} + \frac{\sigma^2}{4dx} - \frac{r}{2dx})) + f_{i-1}^n (dt(1-\theta)(\frac{-\sigma^2}{2dx^2} + \frac{\sigma^2}{4dx} + \frac{r}{2dx})) + f_i^n (dt(1-\theta)(\frac{\sigma^2}{dx^2} + r))$$
(9)

Let us denote:

$$\alpha^{n} = dt\theta \left(\frac{-\sigma^{2}}{2dx^{2}} + \frac{\sigma^{2}}{4dx} - \frac{r}{2dx}\right)$$
$$\beta^{n} = dt\theta \left(\frac{-\sigma^{2}}{2dx^{2}} + \frac{\sigma^{2}}{4dx} + \frac{r}{2dx}\right)$$
$$\gamma^{n} = dt\theta \left(\frac{\sigma^{2}}{dx^{2}} + r\right)$$

$$\alpha^{n+1} = dt(1-\theta)(\frac{-\sigma^2}{2dx^2} + \frac{\sigma^2}{4dx} - \frac{r}{2dx})$$
$$\beta^{n+1} = dt(1-\theta)(\frac{-\sigma^2}{2dx^2} + \frac{\sigma^2}{4dx} + \frac{r}{2dx})$$
$$\gamma^{n+1} = dt(1-\theta)(\frac{\sigma^2}{dx^2} + r)$$

One can rewrite equation 6:

$$A_i^n + f_i^n = f_i^{n+1} - A_i^{n+1} (10)$$

Substituting A^n and A^{n+1} yields:

$$f_{i+1}^n \alpha^n + f_{i-1}^n \beta^n + f_i^n \gamma^n + f_i^n = f_i^{n+1} - (f_{i+1}^{n+1} \alpha^{n+1} + f_{i-1}^{n+1} \beta^{n+1} + f_i^{n+1} \gamma^{n+1})$$
 (11)

Simplifying equation 11, one can obtain:

$$f_{i+1}^{n}\alpha^{n} + f_{i-1}^{n}\beta^{n} + f_{i}^{n}(\gamma^{n} + 1) = f_{i+1}^{n+1}(-\alpha^{n+1}) + f_{i-1}^{n+1}(-\beta^{n+1}) + f_{i}^{n+1}(1 - \gamma^{n+1})$$
(12)

Which implies we must solve the following matrix system to find f_i^n for all $i \in \{0, 1, ..., N\}$:

For the points on the mesh border, we need to set boundary conditions. One can either set values of f at the boundaries, or can impose values for the derivatives. The former approach is called Dirichlet conditions, the latter is the Neumann conditions.

Dirichlet Boundary Conditions

We impose values to f_0^n and $f_N^n \, \forall n \in \{0, 1, ..., T\}$. Let us say $f_0^n = l$ and $f_0^n = h$, substituting in equation 13 yields:

It remains to isolate the unknown vector X^n to solve this system of linear equations:

$$X^{n} = A^{-1} \left(B X^{n+1} + C^{n+1} - C^{n} \right)$$

$$(N-1) \times (N-1) \left((N-1) \times (N-1)(N-1) \times 1 + (N-1) \times 1 - (N-1) \times 1 \right)$$

$$(16)$$

Neumann Boundary Conditions

With Neumann conditions, we impose values for the first and second-order derivatives for all n in $\{0, 1, ..., T\}$.

$$\frac{\partial f}{\partial x}(x_0, t_n) = k_1$$

(17)

$$\frac{\partial f}{\partial x}(x_N, t_n) = k_3$$

(18)

$$\frac{\partial^2 f}{\partial x^2}(x_0, t_n) = k_2 \tag{19}$$

$$\frac{\partial^2 f}{\partial x^2}(x_N, t_n) = k_4$$

(20)

Then, for f_0^n , substituting constants k_1 and k_2 into equation 6, one obtains:

$$f_0^{n+1} - f_0^n = dt\theta(-\frac{1}{2}\sigma^2 k_1 + (\frac{1}{2}\sigma^2 - r)k_2 + rf_0^n + dt(1-\theta)(-\frac{1}{2}\sigma^2 k_1 + (\frac{1}{2}\sigma^2 - r)k_2 + rf_0^{n+1})$$
(21)

with equation 21, one obtains:

$$f_0^n = \frac{f_0^{n+1} - dt\theta(-\frac{1}{2}\sigma^2k_1 + (\frac{1}{2}\sigma^2 - r)k_2) - dt(1-\theta)(-\frac{1}{2}\sigma^2k_1 + (\frac{1}{2}\sigma^2 - r)k_2 + rf_0^{n+1})}{(1+dt\theta r)}$$
(22)

$$f_0^n = \frac{f_0^{n+1} - dt(-\frac{1}{2}\sigma^2 k_1 + (\frac{1}{2}\sigma^2 - r)k_2 + (1-\theta)rf_0^{n+1})}{(1 + dt\theta r)}$$
(23)

Same idea with f_N^n , replacing derivatives by constants k_3 and k_4 , it yields:

$$f_N^{n+1} - f_N^n = dt\theta(-\frac{1}{2}\sigma^2 k_3 + (\frac{1}{2}\sigma^2 - r)k_4 + rf_N^n + dt(1-\theta)(-\frac{1}{2}\sigma^2 k_3 + (\frac{1}{2}\sigma^2 - r)k_4 + rf_N^{n+1})$$
(24)

Which leads to the same type of result:

$$f_N^n = \frac{f_N^{n+1} - dt(-\frac{1}{2}\sigma^2 k_3 + (\frac{1}{2}\sigma^2 - r)k_4 + (1-\theta)rf_0^{n+1})}{(1+dt\theta r)}$$
(25)

We can now substitute equations 23 and 25 into equation 13 and solve this matrix system just like we did in equation 16.

Determination of the greeks

Now that we have computed the option value at each point of the grid (in particular at time t=0 and t=1), we can compute an approximation of the option greeks at time t=0 using the following formulas:

• Delta of the option (central difference approximation):

The use of the central difference approximation is more accurate than either the forward or backward difference. In particular, its error is $\mathcal{O}(dx^2)$.

$$\forall i \in \{1, ..., N-1\}, \delta_i^0 = \frac{f_{i+1}^0 - f_{i-1}^0}{2dx}$$

• Gamma of the option (central difference approximation):

The error in this approximation is also $\mathcal{O}(dx^2)$.

$$\forall i \in \{1, ..., N-1\}, \gamma_i^0 = \frac{f_{i+1}^0 - 2f_i^0 + f_{i-1}^0}{dx^2}$$

• Theta of the option (forward difference approximation):

The forward difference approximation is the usual approximation of theta in the Crank-Nicolson scheme.

$$\forall i \in \{1, ..., N-1\}, \theta_i^0 = \frac{f_i^1 - f_i^0}{dt}$$

• Management of the boundary conditions:

- In the case of Dirichlet boundary conditions, the user inputs constant boundary values. Thus we consider a null value for the derivative of the option price on each point of these boundaries. We then assume a null Delta, Gamma and Theta on these boundaries.
- In the case of Neumann boundary conditions, the user inputs K1, K2, K3, K4 which represent the first and second derivative of the option price with respect to x on each point of the boundaries. We then simply consider these values as Delta and Gamma on the boundaries. On the other hand, we compute theta on the boundaries with a forward difference approximation formula, as if it was a regular point of the grid.

• Approach for computing the Vega of the option:

Let's consider the value of the option at time 0 for a given value i of the underlying: f_i^0 . A simple approach to compute the Vega of the option would then be to compare its value obtained with a volatility σ and its value obtained with a volatility $\sigma + \epsilon$. ϵ represents the level of precision of our computation. Then we could obtain the Vega of the option using the following formula:

$$\forall \epsilon > 0, \forall i \in \{0, ..., N\}, \vartheta_i^0 = \frac{f_{i+1}^0(\sigma + \epsilon) - f_i^0(\sigma)}{\epsilon}$$