

Sicherheitsaspekte im Zusammenhang mit Container-Virtualisierung

Oliver Dieke, 11.07.2022

Container heutzutage sehr verbreitet

Umfrage 2019: 87% befragter Personen,

2017: 55%

(501 IT-Mitarbeiter befragt)

ggü. anderer Techniken gewisse neue Sicherheitsrisiken

[2], [9]

Bild: Container, 15.06.2022, 01:00, https://www.mtcontainer.de/container/hardtop-container/

Bild: Security, 15.06.2022, 01:00, https://southpark.fandom.com/wiki/Security_Guard

Agenda

- 1 Basiswissen
- 2 Häufige Fehler und Beispiele
- 3 Sicherheitsrisiken und Schutzmöglichkeiten
- 3.1 Allgemein
- 3.2 Containerspezifisch
- 4 Was Unternehmen unternehmen
- 5 Zusammenfassung und Fazit

Agenda kurz durchgehen

Hinweis auf Verlinkung der Quellen und Aushändigung der Präsentation und Moderatornotizen

"Container sind eine Virtualisierungstechnik im Computerumfeld, die Anwendungen inklusive ihrer Laufzeitumgebungen voneinander trennt."[1]

Definition Container vorlesen, kurz drauf eingehen, Überleitung zur Grafik auf nächster Folie

- OS-Level-Virtualisierung (vs. Hardware-Level-Virtualisierung bei VM)
- Isolierung von Prozessen (vs. Isolierung von Maschinen bei VM)
- normalerweise teilen sich Prozesse Ressourcen, hier nicht
- Features die diese Illusion (Glauben getrennt zu sein) ermöglichen:
 - namespaces: zur Individualisierung: Host-OS muss logische Umgebungen schaffen und verwalten, in denen Prozesse, Dateien und Netzwerk voneinander getrennt sind -> große Verantwortung für Host-OS
 - cgroups: kontrollieren der Ressourcen -> Monitoring und Metering
- Vorteil 1: quasi unendlich Portability (kann überall deployed werden, da der Container Informationen über alles enthält, was er braucht wie Bibliotheken usw.)
- Vorteil 2: minimiert Configuration Drifts, da Container zerstört und reproduziert werden

(vs. Vorteil: quasi unendlich Hardware Flexibility bei VM)

Misskonfigurationen
Default-Passwort oder gar keins
Server Workloads
Zugriffsrechte falsch gesetzt

<u>Folgen</u>

Unauthorisierter Zugriff zu Anwendungen und Daten Malware Kryptomining Datenverlust

[2]

Datensicherheit
Schwachstellenmanagement
Runtime protection
Vertrauliche Daten geheim halten
Runtime monitoring
Netzwerksegmentierung

[9]

https://redlock.io > blog > cryptojacking-tesla :

Lessons from the Cryptojacking Attack at Tesla

20 Feb 2018 — The hackers had infiltrated Tesla's Kubernetes console which was not password protected. Within one Kubernetes pod, access credentials were ...

https://arstechnica.com > 2018/02 > tesla-cloud-resourc...

Tesla cloud resources are hacked to run cryptocurrency ...

20 Feb 2018 — "The hackers had infiltrated Tesla's Kubernetes console which was not password protected," RedLock researchers wrote. "Within one Kubernetes ...

https://www.wired.com > Security > Tesla :

Hackers Hijacked Tesla's Cloud to Mine Cryptocurrency

20 Feb 2018 — Hack Brief: Hackers Enlisted Tesla's Public Cloud to Mine Cryptocurrency. The recent rash of cryptojacking attacks has hit a Tesla database ...

https://blog.neuvector.com > article > cryptojacking-cry... :

Cryptojacking and Crypto Mining - Tesla, Kubernetes ... - Blog

Tesla and Jenkins have become the latest victims of data infiltration and cryptojacking. In the Tesla case, the exploits started when a Tesla Kubernetes cluster ...

https://techbeacon.com > security > tesla-drives-cryptoja... :

Tesla drives cryptojack gang's AWS cloud down Kubernetes ...

A Tesla-owned AWS account was hacked to mine Monero. · The hackers drove straight in using an "unsecured" Kubernetes admin console (i.e., it had no password).

Hacker hatten Zugriff auf Kubernetes Konsole (nicht passwortgeschützt)
Resultat: Zugriff auf vertrauliche Daten und Kryptomining über einen Kubernetes Pod

Angriffsmöglichkeiten

Container Escape Attack

Container Escape Attack

- durch Ausführen von Code mit Kernelfunktionen auf dem Container kann es passieren, dass dieser möglicherweise abstürzt oder die User-Rechte zu root-Rechten setzt und komplette Kontrolle über den Host übernimmt

Angriffsmöglichkeiten

- Container Escape Attack
- Dangling Volume

Dangling Volume

- Container speichern Daten in bestimmten Bereichen, welche mit dem Container zusammen zerstört werden
- durch bestimmte Befehle ist es möglich, dass Daten außerhalb dieses Bereiches dauerhaft gespeichert werden
- Angreifer kann diese Daten dann über den Kernel auslesen

Angriffsmöglichkeiten

- Container Escape Attack
- Dangling Volume
- Backdooring Images

Backdooring Images

- Container werden anhand von Images, welche in Image-Registries gespeichert werden, erstellt
- Angreifer könnten dieses Image modifizieren oder austauschen

3 Sicherheitsrisiken und Schutzmöglichkeiten Unterteilung

• Allgemein

Containerspezifisch

Bsp. lassen sich in zwei Bereiche unterteilen: allgemein und containerspezifisch

3.1 Allgemein

- SQL Injection
- DoS Attacke
- Social Engineering
- Passwörter
- ...

betreffen auch VMs und viele andere IT-Komponenten Beispiele:

- SQL Injection -> prepared statements
- DoS Attacke -> DoS protection
- Social Engineering -> Prävention- und Aufklärungsarbeit
- Passwörter -> Standardpasswörter ändern, sichere Passwörter (siehe Tesla)

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

- -> kurz erklären was was ist
- 1. Container Images
- 2. Image Registries (Speicher der Container Images)
- 3. Runtime
- 4. Orchestrierungsplattformen (wie Kubernetes)
- 5. Host-OS (OS der Hardware auf dem Container laufen)

[5], [6], [11], [13], [14]

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

- up to date halten, Sicherheitspatches und -updates installieren
- Images regelmäßig scannen um Sicherheitsrisikos und Veränderungen zu erkennen
- Signing ("Fingerabdruck") um kryptografisch die Unverfälschtheit sicherzustellen

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

- privat halten und absolute Kontrolle über Typ, Anzahl, Nutzerzugriffe
- Monitoring
- sicherer Registry Host Server zur Vermeidung von Kompromittierungen

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

etwas schwierig, weil Container Security Tools eher die Kommunikation anstatt das Geschehen im Container überwachen

- App-Sicherheit up to par halten ("at an expected or usual quality")
- Netzwerkverkehr und Daten monitoren

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

haben bereits viel access control capabilities

- Limits setzen wie Anzahl privilegierter User und deren Rechte
- Monitoring der Plattform und der pod Kommunikation innerhalb

3.2 Containerspezifisch

- 1. Container Images
- 2. Image Registries
- 3. Runtime
- 4. Orchestrierungsplattformen
- 5. Host-OS

Größtes Risiko und großer Schaden möglich, weil wenn Host-OS kompromittiert = alle Container darauf kompromittiert und möglicherweise hat ein Angreifer Zugriff auf die gesamte Umgebung

- Zugriffsrechte und Kontrolle im OS
- Monitoring
- schmales OS, ohne viel Schnickschnack -> Übergang zu Unikernels

Host-OS - Lösung der Sicherheitsprobleme: Unikernels

- Kompilieren Source-Code in ein individualisiertes OS, welches nur die Funktionen besitzt, die von der Anwendung benötigt werden
- Vorteile: klein, schnell und sicher

[5], [6], [11], [13], [14]

Viele der eben erwähnten möglichen Maßnahmen sichtbar:

Datenverschlüsselung

Monitoring Scanning

Runtime protection

Image Signing

[9]

Automatisierung von Sicherheitsmaßnahmen:

Malware und sonstige Anomalien erkennen und entfernen vor Deployment Logging

Erkennung von Accounts mit Rechteüberschreitungen

5 Zusammenfassung und Fazit

Container-basierte Virtualisierung hat viele Vorteile wie

- gute Performance,
- sehr flexibel und portabel kann fast überall deployed werden (mögliche Einschränkung z.B. durch ARM vs. x86),
- ermöglichen gute Elastizität und Skalierbarkeit von Anwendungen

Sicherheit

- Neue Sicherheitsrisiken, aber oft einfache, bewährte Lösungen -> akzeptabler Aufwand
- Viel Automatisierung notwenig -> möglicherweise fundamentale Änderungen in Betriebsabläufen
- Herausforderung: Portability der Sicherheit (plattformunabhängig)

Fazit

- Container ermöglichen es Unternehmen von manuellen und teuren Sicherheitsmodellen auf besser skalierbare und effizientere zu wechseln
- Insgesamt gute Balance zwischen Sicherheit, Performance und User Experience möglich

Quellen

[1]	Was sind Container?	DiplIng.(FH) Stefan Huber, Dr. Jürgen Ehneß	13.06.2022, 21:25	Link
[2]	The Maturation of Cloud-native Security: Securing Modern Applications and Infrastructure	Enterprise Strategy Group	18.05.2022, 23:00	Link
[3]	Container vs. VM security: Which is better?	Ed Moyle	18.05.2022, 23:10	Link
[4]	From virtualization security issues to cloud protection opportunities: An in-depth analysis of system virtualization models	Maxime Compastié, Rémi Badonnel, Olivier Festor, Ruan Heb	18.05.2022, 23:20	Link
[5]	Container Security: Issues, Challenges, and the Road Ahead	Sari Sultan, Imtiaz Ahmad, Thasos Dimitriou	18.05.2022, 23:25	Link
[6]	A Survey on Security Isolation of Virtualization, Containers, and Unikernels	Michael J De Lucia	18.05.2022, 23:30	Link
[7]	Study of Container-Based Virtualisation and Threats in Fog Computing	Poornima Mahadevappa, R.K. Murugesan	10.06.2022, 21:20	Link
[8]	Lessons from the Cryptojacking Attack at Tesla	RedLock CSI Team	11.06.2022, 23:20	Link
[9]	2019 Container Adoption Survey	Portworx and Aqua Security	11.06.2022, 23:25	Link
[10]	Containers vs VMs: What's the difference?	IBM Technology	10.06.2022, 22:00	Link
[11]	Container Security Explained	IBM Technology	11.06.2022, 22:45	Link
[12]	Container Security 101	The Linux Foundation	11.06.2022, 23:00	Link
[13]	Unikernel Systems is now part of Docker	Docker	12.06.2022, 12:00	Link
[14]	Unikernel Technologies	Docker	12.06.2022, 12:10	Link
[15]	NIST Application Container Security Guide	Murugiah Souppaya, John Morello, Karen Scarfone	16.06.2022, 23:50	Link