Fundamentos del Hardware

UT 04 – La memoria RAM

Estructura física de un SI

- Los distintos componentes deben cumplir con una serie de configuraciones o estándares.
- Esquema de elementos internos y externos del ordenador

DI	DISPOSITIVOS INTERNOS		DISPOSITIVOS EXTERNOS			
(dentro del CHASIS)		PERIFÉRICOS DE ENTRADA	PERIFÉRICOS DE SALIDA	PERIFÉRICOS DE E/S	SOPORTES DE ALMACENAMIENTO SECUNDARIO	
PLACA BASE	CPU, memoria RAM, memoria caché, circuitos ROM (Chip BIOS y otros), chipset, puertos de comunicación, buses y ranuras (Interfaz PCI, PCI-Express, EIDE, USB, AGP.)	Ratón	Pantalla VideoProyector Impresora	Dispositivos de redes (módem, hub, switch, router, etc.)	Memorias USB Discos duros externos Tarjetas de memoria flash.	
UNIDADES DE ALMACENAMIENTO SECUNDARIO	Disco(s) Duro(s), unidad de disquete, lector/grabador de CD y/o DVD, lector de tarjetas, etc.		Plotter	Multifuncionales Pantallas táctiles	ATTACKES	
TARJETAS CONTROLADORAS	Tarjeta Gráfica, tarjeta de red, controlador SCSI, tarjeta de sonido, tarjeta capturadora de video, tarjeta sintonizadora de tv, etc.	Otros sistemas de reconocimiento óptico Sensores	Altavoces			
OTROS COMPONENTES AUXILIARES	Chásis, fuente de alimentación, sistem	25 002	ón, etc.	1		

Componentes físicos. Memoria

•	Jerarquía de memoria

- Registros: memoria muy cercana al procesador. Es la más rápida y cara.
- □ **Caché:** Es una memoria intermedia entre el procesador y la memoria principal, y se suele localizar dentro dentro del mismo chip que el procesador. Muy rápida, cara y en los procesadores modernos se divide en varios niveles L1, L2, ...
- RAM (Random Access Memory): es una memoria de acceso rápido, aunque no tanto como las anteriores. Se pierde si no hay alimentación de energía, al igual que en las anteriores. Permite lectura y escritura por parte del procesador. La memoria principal de un ordenador siempre es RAM.
- ROM (Read Only Memory): se utiliza para cargar datos básicos y de configuración del ordenador. Por ejemplo, la configuración de arranque. No precisa alimentación de energía. Hay variedades como EPROM (erasableprogrammable), Flash, etc...
- Memoria secundaria: todos aquellos dispositivos que se utilizan para almacenar datos y programas cuando éstos no se encuentran en la memoria principal: discos duros, disquetes, CD's, pendrives, etc... Tiene como ventajas, que no es volátil y también que su coste es bajo. El principal inconveniente radica en la velocidad.
- La memoria principal es una parte fundamental, ya que tanto los programas como los datos deben estar cargados en memoria para poder ser ejecutados y procesados respectivamente
- Se puede visualizar como una matriz, dónde cada posición almacena un byte (8bits).

Dispositivos internos.

MEMORIA RAM

- Random Access Memory
- Acceso aleatorio vs acceso secuencial
- Memoria Volátil: necesita estar alimentada
- Tiempo de acceso y ancho de banda mucho mayor que disco duro
- Va en módulos que se insertan en slots (bancos de memoria)
- Antes iba soldada a la placa
- Primitivamente: núcleo de ferrita (magnética)

Dispositivos internos. La placa base. Elementos

- Zócalos (también conocidos como slots o ranuras)
 - Para memoria: son los conectores para la memoria RAM. En los primeros ordenadores, se colocaban los chips uno a uno sobre la placa, pero en la actualidad están agrupados en módulos, los cuales llevan los chips soldados, facilitando su manejo.
 - Módulos SIMM:
 - 30 ó 72 contactos. Los de 30 contactos se agrupan de cuatro en cuatro, mientras que los de 72 van de dos en dos.
 - Velocidades entre 50 o 60 nanosegundos.
 - Módulos DIMM:
 - Se pueden instalar de manera individual.
 - Existen varios tipos:
 - **SDRAM** (SDR): 168 contactos y funcionan a 5.5 voltios
 - SDRAM **DDR**: 184 contactos y 2.6 voltios
 - SDRAM **DDR2**: 240 contactos y 1.8 voltios
 - SDRAM **DDR3**: **240** contactos y **1.5** voltios
 - SDRAM **DDR4**: **288 contactos y 1,2 voltios** (No doble ni triple canal)
 - Módulos RIMM:
 - 184 contactos. Para memoria de tipo RAMBUS (poco usado, por el pago de derechos).
 - Doble canal, tricanal, ...:
 - Tecnología que permite incrementar el rendimiento accediendo simultáneamente a varios módulos de memoria (doble canal 2x64 = 128 bits; tricanal 3x64 = 192 bits, ...).
 - Los módulos de memoria deben colocarse en bancos del mismo color

Dispositivos internos. Memoria RAM

Parámetros fundamentales:

Tiempo o velocidad de acceso (latencias), velocidad de reloj, voltaje, ancho de banda (teórico) y tecnologías soportadas.

Tipos de memorias: SDR SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM y RDRAM

Memoria de vídeo o gráfica

Dispositivos internos. Memoria. Características

- Tiempo de acceso:
 - Cuanto menor mejor
 - □ Vienen expresados en ciclos (8 8 8 24)
 - Dependen de la velocidad (MTs y MHz)
- Velocidad del reloj (MHz)
 - DDR3-1600 / 1333 / etc.
 - 1 ciclo = varias operaciones
 - DDR3-1600. 1600 MTs = 200 MHz
 - IMPORTANTE: limitada por la velocidad de bus (FSB) y por la del módulo más lento
- Voltaje
 - Mayor voltaje = más consumo y temperatura
 - DDR3 = 1,5V / DDR2 = 1,8V / DDR = 2,5 V

Dispositivos internos. Memoria. Clasificación

- Por formato del módulo:
 - DIP y SIP
 - Dual / Single inline package
 - SIMM.
 - Single Inline Memory Module
 - Contactos por un único lado
 - Obsoleto (finales de los 90)
 - DIMM.
 - Dual Inline Memory Module
 - Contactos por ambos lados
 - Usado en la actualidad
 - Permite 64 bits (SIMM no)
 - SO-DIMM
 - DIMM para portátiles

SIP y DIP

SIMM

Dispositivos internos. Memoria. Clasificación

SO-DIMM

Dispositivos internos. Memoria. DRAM

- Tecnologías DRAM
 - SDRAM
 - La más usada en la actualidad
 - RDRAM
 - Rambus DRAM
 - Desarrollada por la empresa Rambus
 - Nintendo 64, Playstation 2 y 3, etc
 - Empujón en Pentium 4, pero fracasó por ser cara
 - FPMRAM EDORAM
 - Tecnologías más antiguas y obsoletas
 - SGRAM y VRAM
 - Memorias de tarjetas de video
 - Mayor ancho de banda (MIMD)

Dispositivos internos. Memoria. DRAM. SDRAM

- Tipos de SDRAM
 - SDR
 - Single data rate
 - Módulos DIMM de 168 contactos
 - Pentium II/III y AMD K6/Athlon K7/Duron
 - PC100 y PC133 (100 y 133 MHz)
 - DDR
 - Double data rate
 - DIMM de 184 contactos
 - Dos transferencias por ciclo
 - Athlon y Pentium 4
 - DDR 266 533 (133 y 266 MHz)

Dispositivos internos. Memoria. DRAM. SDRAM

- Tipos de SDRAM
 - DDR 2
 - DIMM de 240 contactos
 - 4 transferencias por ciclo
 - DDR2 400-1200 (100 y 300 Mhz)
 - DDR 3
 - DIMM de 240 contactos
 - 8 transferencias por ciclo
 - DDR3 1066-2000 (133 Y 250 MHz)
 - DDR 4
 - DIMM de 288 contactos
 - 8 transferencias por ciclo
 - DDR4 2133-4000

Dispositivos internos. Memoria RAM

	DDR	DDR 2	DDR 3	DDR 4
Fecha de lanzamiento	1996	2003	2007	2014
Frecuencias habituales (MHz.)	100~200	200~533	400~1066	1066~2133
Voltaje habitual (V.)	2,6	1,8	1,5	1,1
Núm. pines	184	240	240	288
Memoria por módulo	64 MB ~ 1 GB	256 MB ~ 2 GB	1 GB ~ 8 GB	2 GB ~ ¿16 GB?

Dispositivos internos. Memoria. DRAM. SDRAM.

Nombre estándar	Reloj de Bus	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR-200	100 MHz	200 Millones	PC-1600	1600 MB/s (1,6 GB/s)
DDR-266	133 MHz	266 Millones	PC-2100	2128 MB/s (2,1 GB/s)
DDR-333	166 MHz	333 Millones	PC-2700	2656 MB/s (2,6 GB/s)
DDR-400	200 MHz	400 Millones	PC-3200	3200 MB/s (3,2 GB/s)

Nombre estándar	Velocidad del reloj	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR3-1066	133 MHz	1066 Millones	PC3-8500	8530 MB/s
DDR3-1200	150 MHz	1200 Millones	PC3-9600	9600 MB/s
DDR3-1333	166 MHz	1333 Millones	PC3-10600	10 664 MB/s
DDR3-1375	170 MHz	1375 Millones	PC3-11000	11 000 MB/s
DDR3-1466	183 MHz	1466 Millones	PC3-11700	11 700 MB/s
DDR3-1600	200 MHz	1600 Millones	PC3-12800	12 800 MB/s
DDR3-1866	233 MHz	1866 Millones	PC3-14900	14 930 MB/s
DDR3-2000	250 MHz	2000 Millones	PC3-16000	16 000 MB/s
DDR3-2200	350 MHz	2200 Millones	PC3-18000	18 000 MB/s

Dispositivos internos. Memoria. DRAM. DDR2 – DDR4.

Nombre estándar	Velocidad del reloj	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR2-400	100 MHz	400 millones	PC2-3200	3200 MB/s
DDR2-533	133 MHz	533 millones	PC2-4200	4264 MB/s
DDR2-600	150 MHz	600 millones	PC2-4800	4800 MB/s
DDR2-667	166 MHz	667 Millones	PC2-5300	5336 MB/s
DDR2-800	200 MHz	800 Millones	PC2-6400	6400 MB/s
DDR2-1000	250 MHz	1000 Millones	PC2-8000	8000 MB/s
DDR2-1066	266 MHz	1066 Millones	PC2-8500	8530 MB/s
DDR2-1150	286 MHz	1150 Millones	PC2-9200	9200 MB/s
DDR2-1200	300 MHz	1200 Millones	PC2-9600	9600 MB/s

Nombre estándar	Velocidad del reloj	Operaciones por segundo	Nombre del módulo	Tasa de bits
DDR4-2133 ²¹ 22 23 24 25	266 MHz ²⁴	2133 millones ^{21 26 25}	PC4-17000 ^{21 22 23 24}	17 066 MB/s ^{23 24}
Nombre estándar	Velocidad del reloj	Operaciones por segundo	Nombre del módulo	Tasa de bits
DDR4-2400 ²¹ 22 23 24 25	300 MHz ²⁴	2400 millones ^{21 27 25}	PC4-192000 ^{21 22 23 2}	17 066 MB/s ^{23 24}
Nombre estándar	Velocidad del reloj	Operaciones por segundo	Nombre del módulo	Tasa de bits
DDR4-2666 ^{21 22 23 24 25}	333 MHz ²⁴	2666 millones ^{21 28 25}	PC4-21300 ^{21 22 23 24}	17 066 MB/s ^{23 24}

Dispositivos internos. Memoria. Tiempo entre señales.

Nombre estándar	Velocidad del reloj	Tiempo entre señales	Velocidad del reloj de E/S	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR-200	100 MHz	10 ns	100 MHz	200 millones	PC1600	1.600 Millones de Byte/s
DDR-266	133 MHz	7,5 ns	133 MHz	266 millones	PC2100	2.133 MiB/s
DDR-300	150 MHz	6,7 ns	150 MHz	300 millones	PC2400	2.400 MiB/s
DDR-333	166 MHz	6 ns	166 MHz	333 millones	PC2700	2.667 MiB/s
DDR-366	183 MHz	5,5 ns	200 MHz	366 millones	PC3000	2.933 MiB/s
DDR-400	200 MHz	5 ns	200 MHz	400 millones	PC3200	3.200 MiB/s
DDR-433	216 MHz	4,6 ns	210 MHz	433 Millones	PC3500	3.500 MiB/s
DDR-466	233 MHz	4,2 ns	233 MHz	466 millones	PC3700	3.700 MiB/s
DDR-500	250 MHz	4 ns	250 MHz	500 millones	PC4000	4.000 MiB/s
DDR-533	266 MHz	3,7 ns	266 MHz	533 millones	PC4300	4.264 MiB/s
DDR2-400	100 MHz	10 ns	200 MHz	400 millones	PC2-3200	3.200 MiB/s
DDR2-533	133 MHz	7,5 ns	266 MHz	533 millones	PC2-4300	4.264 MiB/s
DDR2-600	150 MHz	6,7 ns	300 MHz	600 millones	PC2-4800	4.800 MiB/s
DDR2-667	166 MHz	6 ns	333 MHz	667 Millones	PC2-5300	5.336 MiB/s
DDR2-800	200 MHz	5 ns	400 MHz	800 Millones	PC2-6400	6.400 MiB/s
DDR2-1.000	250 MHz	3,75 ns	500 MHz	1.000 Millones	PC2-8000	8.000 MiB/s
DDR2-1.066	266 MHz	3,75 ns	533 MHz	1.066 Millones	PC2-8500	8.530 MiB/s
DDR2-1.150	286 MHz	3,5 ns	575 MHz	1.150 Millones	PC2-9200	9.200 MiB/s
DDR2-1.200	300 MHz	3,3 ns	600 MHz	1.200 Millones	PC2-9600	9.600 MiB/s
DDR3-1,066	133 MHz	7,5 ns	533 MHz	1.066 Millones	PC3-8500	8.530 MiB/s
DDR3-1.200	150 MHz	6,7 ns	600 MHz	1.200 Millones	PC3-9600	9.600 MiB/s
DDR3-1.333	166 MHz	6 ns	667 MHz	1.333 Millones	PC3-10667	10.664 MiB/s
DDR3-1.375	170 MHz	5,9 ns	688 MHz	1.375 Millones	PC3-11000	11.000 MiB/s
DDR3-1.466	183 MHz	5,5 ns	733 MHz	1.466 Millones	PC3-11700	11.700 MiB/s
DDR3-1.600	200 MHz	5 ns	800 MHz	1.600 Millones	PC3-12800	12.800 MiB/s
DDR3-1.866	233 MHz	4,3 ns	933 MHz	1.866 Millones	PC3-14900	14.930 MiB/s
DDR3-2.000	250 MHz	4 ns	1.000 MHz	2.000 Millones	PC3-16000	16.000 MiB/s

Dispositivos internos. Memoria. Comparación ancho de banda.

Bandwidth Comparison							
	Bus Clock	Internal Rate	Prefetch	Transfer Rate	Channel Bandwidth		
DDR	100-200 MHz	100-200 MHz	2n	0.20-0.40 GT/s	1.60-3.20 GBps		
DDR2	200-533 MHz	100-266 MHz	4n	0.40-1.06 GT/s	3.20-8.50 GBps		
DDR3	400-1066 MHz	100-266 MHz	8n	0.80-2.13 GT/s	6.40-17.0 GBps		
DDR4	1066-2133 MHz	100-266 MHz	8n	2.13-4.26 GT/s	12.80-25.60 GBps		

Dispositivos internos. Memoria. DRAM. SDRAM.

Dispositivos internos. Memoria. DRAM. SDRAM.

Dispositivos internos. Memoria. DRAM. SDRAM.

Comparison

DDR3 So dimm:

DDR4 So dimm:

Width: 67.6 mm

Height: 30 mm

Width: **69.6** mm

Height: 30 mm

Memoria principal (interna o RAM)

- Registro de dirección de memoria (RDM). Contiene en cada momento la dirección de la posición de memoria que se va a utilizar (leer o escribir).
- Registro de intercambio de memoria (RIM). En una lectura, almacena el contenido de la celda seleccionada. En una escritura, contiene los datos que se introducirán en la celda seleccionada. El tamaño de este registro, se conoce como "ancho de palabra", y normalmente es múltiplo de 8.
- Selector de memoria (SM).
 Conecta la celda de memoria cuya dirección está en el RDM, con el RIM, para realizar la transferencia de datos en cada lectura y escritura

- Es frecuente caracterizar la memoria, además de por la velocidad en MHz, por la latencia. Se suelen dar cuatro valores (tCAS, tRCD, tRP y tRAS), agrupados así: CL7-7-7-20. El valor más representativo para cuantificar la latencia es el primero (CL). Generalmente, se puede pensar que un módulo con menor CL será mejor que otro, aunque eso únicamente es cierto en parte, y siempre para módulos de una misma velocidad.
- **Ejercicio**: Ordenar de mayor a menor velocidad los siguientes memorias, teniendo en cuenta la velocidad de entrega del primer dato:
 - **DDR 250 CL2**
 - DDR 350 CL2,5
 - **DDR 400 CL4**
 - **DDR 600 CL5**

- Latencias: tiempo de espera en accesos
 - El procesador está desocupado mientras espera
- Latencias CAS
 - Column Address Strobe (CAS)
 - Se especifica en ciclos de reloj
 - MT/s: millones de transferencias por segundo
 - MHz: millones de ciclos por segundo
 - MT/s != MHz si en un ciclo se realiza más de una operación

```
T° de latencia = [t° de 1 ciclo (ns)] x [latencia (ciclo)]
T° de latencia = [1 / MHz] x [latencia (ciclo)]
T° de latencia = [latencia (ciclo)] / [MHz]
```

- CAS = Column Address Strobe
- RAS = Row Access Strobe
- Latencias
 - tCAS (CAS Latency = CL): Es el número de ciclos de reloj que transcurre entre la activación de una fila y la lectura de datos – desde que la memoria recibe la orden de lectura hasta que empieza a responder con los datos
 - tRCD (Row to Column Delay). Es el número de ciclos de reloj correspondiente al tiempo de activación de la fila de memoria en la que están los datos a leer (si no está activa)
 - El tiempo que transcurre desde que se ordena la lectura hasta que se empieza a leer es tRCD + CL

Dispositivos internos. Memoria. Latencias

Latencias

- tRP (Row Precharge). Es el número de ciclos de reloj transcurridos entre dos instrucciones de lectura en filas distintas (por tanto, hay que desactivar la fila actual y activar la siguiente)
 - El tiempo que transcurre desde que se ordena la lectura hasta que se empieza a leer si la fila activa no es la actual es tRP + tRCD + CL
- tRAS (Row Active Time). Es el número de ciclos de reloj correspondiente al tiempo entre la activación y la desactivación de una fila de memoria. Es la suma de CL + tRCD + x
- CMDR (Command Rate). Retardo entre que se activa el chip de memoria y la ejecución del comando (suele ser 1 ó 2 ciclos)

Cambiar de fila	Activar la fila de mem	Leer el dato		
tRP	tRCD	tCL		
	tRAS			

- Formatos de especificación
 - 2.5-3-3-8-1
 - CL=2.5, RCD=3, RP=3, RAS=8, CMR=1
 - 2.5-3-3-8 indica CL, RCD, RP, RAS
 - 2.5-3-3 indica CL, RCD, RP
 - □ CL=2.5

DDR Clock	Real Cloc	kClock Period
200 MHz	100 MHz	10 ns
266 MHz	133 MHz	7.5 ns
333 MHz	166 MHz	6 ns
400 MHz	200 MHz	5 ns
533 MHz	266 MHz	3.75 ns
666 MHz	333 MHz	3 ns
800 MHz	400 MHz	2.5 ns
1,066 MHz	533 MHz	1.875 ns
1,333 MHz	666 MHz	1.5 ns
1,600 MHz		1.25 ns

Dispositivos internos. Memoria. GDDR.

GDDR Bandwidth / Memory Bus

- Memory bus can be thought of as traffic lanes
 - More lanes dedicated for traffic, the greater the flow

Memory Technology	Memory Speed	Memory bus	Memory Bandwidth
GDDR6	14 Gbps	384-bit	672 GB/s
GDDR5X	11 Gbps	384-bit	528 GB/s
GDDR5	7 Gbps	384-bit	336 GB/s
GDDR6	14 Gbps	256-bit	448 GB/s
GDDR5X	11 Gbps	256-bit	352 GB/s
GDDR5	7 Gbps	256-bit	224 GB/s
GDDR6	14 Gbps	192-bit	336 GB/s
GDDR5X	11 Gbps	192-bit	264 GB/s
GDDR5	7 Gbps	192-bit	168 GB/s

