

ALF

Analyseur (Parser)

Bibliographie pour aujourd'hui

Keith Cooper, Linda Torczon, *Engineering a Compiler*

- Chapitre 3
 - 3.3

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition)

- Chapitre 4
 - 4.4

Contenu

- Les analyseurs (parsers)
- LL

Alexander Aiken

- Américain
- Stanford
- LL(*)
- MOSS
- ANTLR

Slides

Partie de slides sont écrie par Bogdan Nitulescu

Notation BNF

RFC 2616 HTTP/1.1 June 1999

```
HTTP-date
            = rfc1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT
date1
             = 2DIGIT SP month SP 4DIGIT
               ; day month year (e.g., 02 Jun 1982)
             = 2DIGIT "-" month "-" 2DIGIT
date2
               ; day-month-year (e.g., 02-Jun-82)
date3
             = month SP ( 2DIGIT | ( SP 1DIGIT ))
               ; month day (e.g., Jun 2)
time
             = 2DIGIT ":" 2DIGIT ":" 2DIGIT
               ; 00:00:00 - 23:59:59
             = "Mon" | "Tue" | "Wed"
wkday
               "Thu" | "Fri" | "Sat"
                                       "Sun"
             = "Monday" | "Tuesday" | "Wednesday"
weekday
               "Thursday" | "Friday" | "Saturday" | "Sunday"
             = "Jan" | "Feb" | "Mar"
                                       "Apr"
month
               "May" | "Jun" | "Jul"
                                       "Aug"
               "Sep" | "Oct" | "Nov"
                                       "Dec"
```

Arbre de dérivation / syntactique SALF

Types d'analyse syntactique

- Descendent (top-down)
 - Avec backtracking
 - Prédictive
 - Descendent récursive, LL avec un tableau
- Ascendant (bottom-up)
 - Avec backtracking
 - Shift-reduce
 - LR(0),SLR,LALR, LR canonique

Dérivation gauche, top down

- LL: La chaîne de jetons est itérée à partir du côté gauche (L)
- Le non-terminal le plus à gauche est dérivé (L)

Dérivation gauche, top down


```
-Instr
-id = Expr;
-id = Expr + Expr;
-id = (id) + (id);
```

- Comment choisir la production utilisée pour la dérivation?
- Backtracking?

Parser LL, LR

- Nous devrions éviter backtracking
- Une grammaire qui permet le parser déterministe
 - LL(k) lit left-to-right, dérivation left
 - LR(k) lit left-to-right, dérivation right
 - K lookahead (combien de tokens sont lus)
- LL(k) < LR(k)
- L'algorithme est indépendant du langage, la grammaire dépend du langage

Analyse descendent récursive

- Non-terminal -> fonction
- Si le symbole apparaît dans la partie droite de production -> appel la fonction
- Si le symbole apparaît dans la partie gauche de production – la production est choisi en fonction des jetons (tokens) suivants (lookahead)

Analyse descendent récursive

rfc850-date = weekday "," SP date2 SP time SP "GMT"

Fonction pour parser le nonterminal rfc850-date

```
ParseRFC850Date() {
    ParseWeekDay();
    MatchToken(",");
    MatchToken(SP);
    ParseDate2();
    MatchToken(SP);
    ParseTime();
    MatchToken(SP);
    MatchToken(SP);
    MatchToken("GMT");
}
```

```
MatchToken (token) {
  if (lookahead != token) throw error();
  lookahead = lexer.getNextToken();
}
```

Récursivité gauche

Avec la grammaire

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Un analyseur descendant entre dans une boucle infinie lorsque vous essayez d'analyser cette grammaire

Récursivité gauche

Grammaire des expression

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Peut être écrive sans la récursivité gauche

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

Exemple de analyseur récursive


```
ParseE() {
    ParseT(); ParseE1();
}

ParseE1() {
    if (lookahead=="+")
    {
        MatchToken("+");
        ParseT();
        ParseE1();
    }
}
```

```
ParseT() {
    ParseF(); ParseT1();
}

ParseT1() {
    if (lookahead=="*")
    {
        MatchToken("*");
        ParseF();
        ParseT1();
    }
}
```

```
\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}
```

```
ParseF() {
  if (lookahead == "(") {
    MatchToken("("); ParseE(); MatchToken(")");
  }
else
  MatchToken(T_ID);
}
```

Analyse descendent récursive

Comment choisir entre deux productions?

Comment pouvons-nous savoir quelles conditions de poser a if?

Lorsque nous émettons des erreurs?

```
F \rightarrow (E)
F \rightarrow id
T' \rightarrow *FT'
T' \rightarrow \epsilon
```

```
ParseT1() {
    if (lookahead=="*") {
        MatchToken("*");
        ParseF();
        ParseT1();
    }
    else if (lookahead == "+") { }
    else if (lookahead == ")") { }
    else if (lookahead == T_EOF) { }
    else throw error();
}
```

```
ParseF() {
    if (lookahead == "(") {
        MatchToken("(");
        ParseE();
        MatchToken(")");
    }
    else if (lookahead == T_ID)
    {
        MatchToken(T_ID);
    }
    else throw error();
}
```

Les conditions pour if

FIRST

Ensemble de terminaux-préfixées pour le non-terminal

FOLLOW

Ensemble de terminaux suivantes pour le non-terminal

NULLABLE

Ensemble de non-terminaux qui peut etre derive en ε

FIRST

GRAMMAIRE:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

ENSEBLES:

```
FIRST(id) = {id}

FIRST(*) = {*}

FIRST(+) = {+}

FIRST(() = {(}

FIRST(E') = {\epsilon} {+, \epsilon}

FIRST(E') = {\epsilon} {*, \epsilon}

FIRST(F) = {(, id}

FIRST(T) = FIRST(F) = {(, id}

FIRST(E) = FIRST(T) = {(, id}
```

FIRST (pseudocode):

```
1. If X is a terminal, FIRST(X) = {X}
2. If X \to \varepsilon, then \varepsilon \in FIRST(X)
3. If X \rightarrow Y_1 Y_2 \cdots Y_k
       and Y_1 \longrightarrow Y_{i-1} \Longrightarrow \varepsilon
       and a \in FIRST(Y<sub>i</sub>)
       then a \in FIRST(X)
4. If X \rightarrow Y_1 Y_2 \cdots Y_k
       and a \in FIRST(Y_1)
       then a \in FIRST(X)
```

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

GRAMMAIRE:

ENSEBLES:

```
FOLLOW(E) = {$} { ), $}
FOLLOW(E') = { ), $}
FOLLOW(T) = { ), $}
```

FOLLOW – pseudocode:

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B \beta,
   and a \in FIRST(\beta)
   and a \neq \epsilon
   then a ∈ FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A \rightarrow \alpha B\beta
   and \beta \stackrel{*}{\Rightarrow} \epsilon
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
```

```
    α et β - string de terminaux et nonterminaux
    A et B – non-terminaux,
    $ - fin du text
```

(Aho,Sethi,Ullman, pp. 189)

GRAMMAIRE:

ENSEBLES:

```
FOLLOW(E) = {), $}
FOLLOW(E') = { ), $}
FOLLOW(T) = { }, $} {+, }, $}
```

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B \beta,
   and a \in FIRST(\beta)
   and a \neq \epsilon
   then a \in FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A \rightarrow \alpha B\beta
   and \beta \stackrel{*}{\Rightarrow} \epsilon
   and a \in FOLLOW(A)
   then a \in FOLLOW(B)
```

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

GRAMMAIRE:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to + \mathsf{TE'} \mid \varepsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to * \mathsf{FT'} \mid \varepsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

ENSEBLES:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}
```

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B\beta,
   and a \in FIRST(\beta)
   and a \neq \epsilon
   then a ∈ FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A \rightarrow \alpha B\beta
   and \beta \stackrel{*}{\Rightarrow} \epsilon
   and a \in FOLLOW(A)
   then a \in FOLLOW(B)
```

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

GRAMMAIRE:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

ENSEBLES:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, ), $}
```

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B \beta,
   and a \in FIRST(\beta)
   and a \neq \epsilon
   then a ∈ FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A \rightarrow \alpha B\beta
   and \beta \stackrel{*}{\Rightarrow} \epsilon
   and a \in FOLLOW(A)
   then a \in FOLLOW(B)
```

```
FIRST(E') = \{+, \epsilon\}

FIRST(T') = \{*, \epsilon\}

FIRST(F) = \{(. id)\}

FIRST(E) = \{(. id)\}
```


GRAMMAIRE:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{F'} \to \mathsf{+} \mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to \mathsf{*} \mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

ENSEBLES:

```
FOLLOW(E) = {), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, }, $} {+, *, ), $}
```

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B\beta,
   and a \in FIRST(\beta)
   and a \neq \epsilon
   then a \in FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A \rightarrow \alpha B\beta
   and \beta \stackrel{*}{\Rightarrow} \epsilon
   and a \in FOLLOW(A)
   then a \in FOLLOW(B)
```

L'algo générique récursive LL(1)

- Pour chaque non-terminal crée une fonction d'analyseur.
- Pour chaque règle A→a ajouter un test if (lookahead in FIRST(aFOLLOW(A)))
- Pour chaque non-terminal dans a appeler la fonction de parser.
- Pour chaque terminal dans a, vérifier le lookahead(match)

```
ParseA() {
   if (lookahead in FIRST(a B ... x FOLLOW(A)) {
      MatchToken(a); ParseB(); ... MatchToken(x);
   }
   else if (lookahead in FIRST(C D ... y FOLLOW(A))
   {
      ParseC(); ParseD(); ... MatchToken(y);
   }
   ...
   else throw error();
}
```

Récursivité gauche

Quand une grammaire a au moins une forme de production $A \rightarrow Aa$

nous disons qu'il est une grammaire récursive gauche.

Les analyseurs descendent ne fonctionnent pas (sans backtracking) sur les grammaires récursives gauche.

Récursivité peut ne pas être immédiat

$$A \rightarrow Ba$$

$$B \rightarrow A \beta$$

Elimination récursivité gauche

Cela se fait par la réécriture de la grammaire

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to + \mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to * \mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

Elimination récursivité gauche

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

Cas général (récursivité immédiat):

$$A \rightarrow A\beta_1 \ |A\beta_2 \ | \ ... \ |A\beta_m \ | \ \alpha_1 \ | \ \alpha_2 \ | \ ... \ | \ \alpha_n$$

$$A \rightarrow a_1A' \mid a_2A' \mid ... \mid a_nA'$$

 $A' \rightarrow \beta_1A' \mid \beta_2A' \mid ... \mid \beta_mA' \mid \epsilon$

Factorisation gauche

Pour une instruction if:

```
if_statement -> IF expression THEN statement ENDIF I

IF expression THEN statement ELSE statement ENDIF
```

Pour parser avec LL, elle doit être factorise:

```
if_statement -> IF expression THEN statement close_if
    close_if -> ENDIF I ELSE statement ENDIF
```

```
void ParseIfStatement()
{
   MatchToken(T_IF);
   ParseExpression();
   MatchToken(T_THEN);
   ParseStatement();
   ParseCloseIf();
}

void ParseCloseIf()
{
   if (lookahead == T_ENDIF)
        lookahead = yylex();
   else {
        MatchToken(T_ELSE);
        ParseStatement();
        ParseStatement();
        MatchToken(T_ENDIF);
   }
}
```

Factorisation gauche

Cas général:

$$A \rightarrow a\beta_1 \mid a\beta_2 \mid ... \mid a\beta_n \mid \delta$$

Factorise:

$$A \rightarrow aA' \mid \delta$$

 $A' \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$

Elimination des ambiguïtés

Ambigu: E → E + E | E * E | a | (E)

1.
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow a \mid (E)$

2.
$$E \rightarrow T + E \mid T$$

 $T \rightarrow F * T \mid F$
 $F \rightarrow a \mid (E)$

- La précédence des operateurs
- La associativité gauche ou droite

Elimination des ambiguïtés

- Productions qui peuvent produire l'ambiguïté:
 X → aAbAc
- Cas général:
 A → A B A | a₁ | a₂ | ... | a_n
- Désambiguïsât:
 A → A' B A | A'
 A' → a₁ | a₂ | ... | a_n

Analyseur automatique

Automate push-down

 Le analyseur est fait avec un automate est un tableau

 Langage LL(1) si il n'a pas de conflits dans le tableau

Exemple d'analyseur LL

Grammaire:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

Tableau de Parsing:

NO4	INPUTSMBOL					
TERMINAL	id	+	*	(\$
E	E—JE			E—JE		
E		$E \rightarrow HE$			Ľ—æ	E—æ
Т	T— #T			T— #T		
T		T—xe	T'→*FT'		T '→ε	T —æ
F	F— id			F—XE)		

Exemple d'analyseur LL

Exemple d'analyseur LL

Quand l'action c'est $Top(Pile) = input \neq \$$: 'Pop' de la pile, avance la bande de input.

TABLEAU DE PARSING:

NOV		INPUTSYMBOL					
TERMINAL	id	id + * () \$					
Е	E→TE			E→TĽ			
É		$E \rightarrow +TE'$			Ľ→ε	E'→ε	
T	T→FT′			T→FT′			
T		T′→ε	T'→*FI'		Τ'→ε	T ′→ε	
F	F→id			F→(E)			
		·	·	·			

(Aho,Sethi, Ullman, pp. 188)

(Aho,Sethi,

Ullman,

pp. 188)

NO/		INPUTSMMBOL					
TERMINAL	id	+	*	()	\$	
E	E→TE			E→TE			
Ę		$E \rightarrow +TE'$			Ĕ→ε	E →ε	
Т	T→FT′			T—FT			
T		T'→ε	T'→*FI'		T ′→ε	T ′→ε	
F	F→id			F→(E)			

Et ainsi, il construit l'arbre de dérivation:

$$E' \rightarrow +TE'$$
 $T \rightarrow FT'$
 $F \rightarrow id$
 $T' \rightarrow *FT'$
 $F \rightarrow id$
 $T' \rightarrow \epsilon$

 $E' \rightarrow \epsilon$

Quand Top(Pile) = input = \$
Le parser arrêt et accepte l'input

(Aho,Sethi, Ullman, pp. 188)

Remplir de tableau

FIRST

Ensemble de terminaux-préfixées pour le non-terminal

FOLLOW

Ensemble de terminaux suivantes pour le non-terminal

NULLABLE

Ensemble de non-terminaux qui peut etre derive en ε

T′→ε

F—**id**

T' →*FT'

Règles de construction de la table d'analyse

T

F

(Aho,Sethi,Ullman, pp. 190)

 $T \rightarrow \epsilon T \rightarrow \epsilon$

 $E \rightarrow TE'$ $E' \rightarrow +TE' \epsilon$ $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) | id$

FIRST SETS:

 $FIRST(E') = \{+, \epsilon\}$ $FIRST(T') = \{*, \epsilon\}$ $FIRST(F) = \{(, id)\}$ $FIRST(T) = \{(, id)\}$ $FIRST(E) = \{(, id)\}$

FOLLOW SETS:

 $FOLLOW(E) = \{), \$\}$ $FOLLOW(E') = \{), \$ \}$ $FOLLOW(T) = \{+, \}, \}$ $FOLLOW(T') = \{+, \}, \$$ FOLLOW(F) = {+, *,), \$}

1. If
$$A \rightarrow \alpha$$
:

if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

NO/-			INPUTSM	/BOL		
TERMINAL	id	+	*	(\$
E	E→TĽ			E→TĽ		
Ę		$E \rightarrow +TE'$			Ľ→ε	E →ε
Т	T→FT′			T→FT′		
T'		T′→ε	T' →*FT'		T ′→ε	<u>T'→ε</u>
F	F→id			F→(E)		

FIRST SETS:

FOLLOW SETS:

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

```
FOLLOW(E) = \{), \$\}
FOLLOW(E') = \{ ), \$ \}
FOLLOW(T) = \{+, \}, \}
FOLLOW(T') = \{+, \}, \$
FOLLOW(F) = \{+, *, ), \}
```

```
1. If A \rightarrow \alpha:
   if a \in FIRST(\alpha), add A \rightarrow \alpha to M[A, a]
```

NO/-			INPUTSM	/BOL		
TERMINAL	id	+	*	()	\$
E	E→TĽ			E→TE′		
Ę		$E \rightarrow +TE'$			Ľ→ε	E'→ε
T	T→FT′			T→FT′		
T'		T′→ε	T' →*FT'		T'→ε	T ′→ε
F	F→id			F→(E)		
•				-		

E
$$\rightarrow$$
 TE'
E' \rightarrow +TE' | ϵ
T \rightarrow FT'
T' \rightarrow *FT') ϵ
F \rightarrow (E) | id

FIRST SETS:

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

FOLLOW SETS:

```
FOLLOW(E) = \{), \$\}
FOLLOW(E') = \{ ), \$ \}
FOLLOW(T) = \{+, \}, \}
FOLLOW(T') = \{+, \}, \$
FOLLOW(F) = \{+, *, ), \}
```

1. If
$$A \to \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \to \alpha$ to M[A, a]

NOV			INPUTSM	/BOL		
TERMINAL	id	+	*	()	\$
E	E→TE			E→TE		
Ę		$E \rightarrow +TE'$			E'→ε	E'→ε
T	T→FT′			T→FT′		
T		T′→ε	T'→*FT'		T'→ε	T'→ε
F	F→id			F→(E)		

 $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \varepsilon$ \rightarrow (E) | id

FIRST SETS:

 $FIRST(E') = \{+, \epsilon\}$ $FIRST(T') = \{*, \epsilon\}$ $FIRST(F) = \{(, id)\}$ $FIRST(T) = \{(, id)\}$ $FIRST(E) = \{(, id)\}$

FOLLOW SETS:

 $FOLLOW(E) = \{), \$\}$ $FOLLOW(E') = \{), \$ \}$ $FOLLOW(T) = \{+, \}, \}$ $FOLLOW(T') = \{+, \}, \$$ FOLLOW(F) = {+, *,), \$}

1. If
$$A \to \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \to \alpha$ to M[A, a]

<u>NO</u> N+			INPUTSM	1BOL		
TERMINAL	id	+	*	()	\$
Е	E→TĽ			E→TE		
Ę		$E \rightarrow +TE'$			E'→ε	E →ε
Т	T→FT′			T→FT′		
T		T′→ε	T'→*FT'		T'→ε	T'→ε
F	F→id			F— (E)		

GRAMMAIRE:

FIRST SETS:

FOLLOW SETS:

 $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \varepsilon$ $T \rightarrow FT$ $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) | id$

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

 $FOLLOW(E) = \{), \$\}$ FOLLOW(E') = {), \$} $FOLLOW(T) = \{+, \}, \}$ $FOLLOW(T') = \{+, \}, \$$ $FOLLOW(F) = \{+, *,), \}$

```
1. If A \rightarrow \alpha:
   if a \in FIRST(\alpha), add A \rightarrow \alpha to M[A, a]
2. If A \rightarrow \alpha:
    if \varepsilon \in \mathsf{FIRST}(\alpha), add \mathsf{A} \to \alpha to M[A, b]
    for each terminal b ∈ FOLLOW(A),
```

NO/-			INPUTSM	/BOL		
TERMINAL	id	+	*	()	\$
E	E→TE			E→TE		
Ę		$E \rightarrow +TE'$			E'→ε	Ε ′→ε
Т	T→FT′			T→FT′		
T'		T′→ε	T' →*FT'		T ′→ε	T ′→ε
F	F→id			F→(E)		

GRAMMAIRE:

FIRST SETS:

$$\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

```
FIRST(E') = \{+, \epsilon\}
FIRST(T') = \{*, \epsilon\}
FIRST(F) = \{(, id)\}
FIRST(T) = \{(. id)\}
FIRST(E) = \{(, id)\}
```

 $FOLLOW(E) = \{), \$\}$ $FOLLOW(E') = \{), \}$ $FOLLOW(T) = \{+, \}, \}$ $FOLLOW(T') = \{+, \}, \}$ $FOLLOVV(F) = \{+, *, \}, \$$

```
1. If A \rightarrow \alpha:
   if a \in FIRST(\alpha), add A \rightarrow \alpha to M[A, a]
2. If A \rightarrow \alpha:
    if \varepsilon \in \mathsf{FIRST}(\alpha), add \mathsf{A} \to \alpha to M[A, b]
    for each terminal b ∈ FOLLOW(A),
```

NON			INPUTSM	/BOL		
TERMINAL	id	+	*	()	\$
E	E→TE			E→TE		
Ę		$E \rightarrow +TE'$			E'→ε	E'→ε
Т	T→FT′			T→FT′		
T'		T′→ε	T' →*FT'		T ′→ε	T ′→ε
F	F→id			F→(E)		
						·

FIRST SETS:

FOLLOW SETS:


```
FIRST(E') = \{+, \epsilon\}
FIRST(T') = \{*, \epsilon\}
FIRST(F) = \{(, id)\}
FIRST(T) = \{(, id)\}
FIRST(E) = \{(, id)\}
```

 $FOLLOW(E) = \{), \$\}$ FOLLOW(E') = {), \$} $FOLLOW(T) = \{+, \}, \}$ FOLLOW(T') = {**+**, **)**, **\$**} $FOLLOW(F) = \{+, *, \}, \}$

```
1. If A \rightarrow \alpha:
    if a \in FIRST(\alpha), add A \rightarrow \alpha to M[A, a]
2. If A \rightarrow \alpha:
    if \varepsilon \in \mathsf{FIRST}(\alpha), add \mathsf{A} \to \alpha to M[A, b]
    for each terminal b ∈ FOLLOW(A),
3. If A \rightarrow \alpha:
    if \varepsilon \in \mathsf{FIRST}(\alpha), and \$ \in \mathsf{FOLLOW}(\mathsf{A}),
   add A \rightarrow \alpha to M[A, $]
```

NO/-			INPUTSM	/BOL				
TERMINAL	id	+	*	(\$		
E	E→TĽ			E→TE				
Ę		$E \rightarrow +TE'$			É⊸ε	$E \rightarrow \epsilon$		
T	T→FT′			T→FT′				
T		T′→ε	T'→*FT'		T ′→ε	T ′→ε		
F	F→id			F→(E)				
	•		•		•			

Utilisation d'analyseur LL(1)

- Grammaires
 - Non ambigu
 - Factorise
 - Non récursive a gauche
- On peut montrer que la grammaire G est LL (1) si et seulement si pour deux productions de la forme

 $A \rightarrow \alpha$, $A \rightarrow \beta$, avec $\alpha \neq \beta$ les conditions suivantes sont satisfaites:

- $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
- Si $\beta \Rightarrow^* \epsilon$ alors FIRST(α) \cap FOLLOW(A) = \emptyset et si $\alpha \Rightarrow^* \epsilon$ alors FIRST(β) \cap FOLLOW(A) = \emptyset .

Avantage/désavantage LL(1)

- Facile de écrive 'aux main'
- Vite, facile de comprendre
- La grammaire doit être transforme
- L'arbre de dérivation et diffèrent de l'arbre sémantique

Parser LL

- ANTLR
 - Java
 - LL (*)
 - Factorisation

Règles EBNF

Something?

SomethingQ -> ε | Something

Something*

SomethingStar -> ε | SomethingStar

Something+

SomethingPlus -> Something Something Star

Sujets

- Les analyseurs (parses)
- LL
 - Eviter l'ambiguïté
 - Factorisation
 - Eviter la récursivité gauche
- Algorithme général récursive LL

Questions

