第15回 総復習と期末試験

期末試験では電卓のみ持ち込み可 (教科書, プリント, PCなどは持ち込み不可)

第7回のスライト プロセスの状態遷移 プロセスは、事象の発生により、状態が変わる。 状能 CPU割当て^{(注5} 新規 レディ 実行中 停止 I/O要求 1/0完了 (事象完了) (事象待ち) 待機 状態と事象の意味 れ窓に手繋い返い 新規(new): 生成処理中 停止(terminated): 終了処理中 レディ(ready): 実行の準備ができている. (実行可能状態, 実行待ち状態とも言う) 実行中(running) ^(注1): 命令を実行している. ・ リコステリンといる。 プロスの定義: 実行中のプログラムの「実行中(in execution)」とは意味が違う 待機(waiting): l/O処理などで命令が実行できない、(待ち状態、待機中状態とも言う) 生成: プロセスの生成処理の完了 終了: 実行の終了(最後の命令を実行) CPU割当て: OSがレディ状態のプロセスを選び、CPUを割り当てる I/O要求: 実行中状態のプロセスが、I/O処理を要求するシステムコールを発行 I/O完了:プロセスが要求したI/O処理(ハードウェアの処理)が完了 プリエンプション: OSが実行中状態のプロセスからCPUを取りあげ、実行を中断させる

磁気ディスクの記録量

以下の磁気ディスク装置に、長さ200バイトのレコード 10万件を順編成で格納したい。

シリンダあたりのトラック数19, トラックあたりのセクタ数42, 1セクタ256B

パターン(1)

10レコードを 1ブロックとして記録するときに必要シリンダ数は幾つか.

パターン②

ブロック長2048Bでブロッキングするときに必要なシリンダ数はいくつか.

(3) CPUスケジューリンク アルコ リス ム

- 到着順サービス: FCFS (First Come First Served)
 - プロセスの到着順に処理する
- 最短ショプ優先:SJF(Shortest Job First)
 - CPUパースト時間が短い順に処理する
- 優先式: (Priority Scheduling)
 - プロセスに予め優先度を与え、優先度順に処理
- ラウント・コピン: RR (Round Robin)
- プロセスを順番に一定時間ずつ処理する
- 多重レヘ・ル待ち列: (Multilevel Queue)
 - プロセスの特性に応じた複数の待ち列。待ち列間に優先度。
- 多重レヘ・ルフィート・ハ・ック列: (Multilevel Feedback Queue)
 - 時間内に終わらなければレベルを落とす
- FCFSは、ノンプリエンプティブのみ。RR、多重レヘルフィート、バック列は、プロエンプティブのみ。他は、プリエンプティブ、ノンプリエンプティブの2種類が可能。

CPUスケジューリング (FCFS)

 右表のプロセスが実行待ち列に並 んでいる。時刻0でCPUが空きと なった。FCFSでスケジューリングす る場合、時刻0からの平均待ち時間 は?

プロセス	パースト時間	到着順	
P1	13	1	
P2	4	2	
P3	8	3	
DΛ	5	1	

CPUスケシューリング(FCFS) プロセス バースト時間 到着順 処理順 右表のプロセスが実行待ち列に並 んでいる。時刻OでCPUが空きと P1 13 1 なった。FCFSでスケジューリングす P2 4 2 2 る場合、時刻Oからの平均待ち時間 P3 3 8 3 140 PΔ 5 4 4 13 4 8 5 P2の待ち時間 P3の待ち時間 P4の待ち時間 平均待ち時間 =(0+13+17+25)/4=13.75 P1 P2 P3 P4 プロス数 P1 P2 P3 P4

CPUスケシューリング (SJF)

右表のプロセスが実行待ち列に並んでいる。時刻のでCPUが空きとなった。SJFでスケジューリングする場合、時刻のからの平均待ち時間は2

プロセス	バースト時間	到着順	
P1	13	1	
P2	4	2	
P3	8	3	
P4	5	4	

CPUスケシューリング(ラウンドロビン)

右表のプロセスが実行待ち列に並んでいる。時刻0でCPUが空きとなった。量子時間5のラウンドロビンなったジューリングする場合、時刻0からの平均待ち時間は?

プロセス	パースト時間	到着順	
P1	13	1	
P2	4	2	
P3	8	3	
P4	5	4	
	P1 P2 P3	P1 13 P2 4 P3 8	P2 4 2 P3 8 3

キャッシュを用いたアクセス時間

 ページングにおいて、キャッシュヒット時のアクセス時間を10ナ/秒、 ヒットしない時のアクセス時間を22ナ/秒とする。ヒット率を80% とした場合の平均アクセス時間は、何ナノ秒か。

キャッシュを用いたアクセス時間

 ページングにおいて、キャッシュヒット時のアクセス時間を10ナノ秒、 ヒットしない時のアクセス時間を22ナノ秒とする。ヒット率を80% とした場合の平均アクセス時間は、何ナノ秒か。

> EAT=Ap+B(1-p) p:キャッシュヒット率 A:ヒット時のアクセス時間 B:ヒットしない時のアクセス時間 EAT=10*0.8+22*(1-0.8)=8+4.4=12.4

(5)ページングと仮想記憶

- 文章中の穴埋め:選択式(基本的な用語の理解)
 - 論理記憶=ページ(中身) 論理アドレス=ページ番号・変位
 - 物理記憶=枠(入れ物) 物理アドレス=枠番号・変位
 - ページング方式、仮想記憶の構成と動作
 - ページフォールト, 割込みの種類
 - ・ ページアウト、ページイン
 - プロセスの状態遷移、切り替え
 - 外部断片化, 動的再配置
- アドレス計算
 - 論理アドレス5個の物理アドレス
 - 内, 枠が割り当てられていない論理アドレスを識別
 - 2進数/10進数

重要:ページングにおけるアドレス変換 論理アドレスAを物理アドレスBに変換(ページサイズP=2ºとする) ①論理アドレスAのページ番号pと変位d(ページの先頭から何語目か)を求める p=A div P (AをPで割った商) d= A mod P (AをPで割った余り) p=A div P (AをPで割った商)、d= A mod P (AをPで割った余り) (2進数で表すとpはn+1ピット目から上位、dは下位nピットになる) ②論理アドレスA=pP+dの「p」をページ表のp語目の値「f」(枠番号)で置き換える ③物理アドレスB=fP+d(2進数で表すと、pのビットをfのビットに置き換えただけになる) 物理記憶 d p d 枠0 論理記憶 ページ0 nt yh nt y ページ 0 枠2 p語目 置換え 0 ページ2 枠3 ページp · 枠f ページ表のn語日に松番号 (ページpは枠fに割り当てられている)

仮想記憶の実効アクセス時間

主記憶のアクセス時間を2マイクロ秒、ページイン・ページア外時間の平均を10ミリ砂とする。ページフォールトの確率が5×10⁻⁶の場合の実効アクセス時間を求めよ。

仮想記憶の実効アクセス時間

主記憶のアクセス時間を2マイクロ秒、ページ・イン・ページ・アクト時間の平均を10ミリ秒とする。ページ・フォールトの確率が5×10-6の場合の実効アクセス時間を求めよ

EAT= $10 \times 10^3 \times 5 \times 10^{-6} + 2 \times (1 - 5 \times 10^{-6})$ =0.05+2-0.00001=2.04999 [マイクロ秒]

実効アクセス時間 EAT=Ap+B(1-p)
A:ペーシ'フォールト時の処理時間(主にペーシ'アウト, ペーシ'イン時間)
B:ペーシ'フォールトしない時の処理時間(主記憶アクセス時間)

アドレス変換(10進数)

1ページ16語の仮想記憶システムがあり、ページ表は表のようになっている。 論理アドレス50番地に対応する物理アドレスの番地を求めよ

アドレス変換(10進数)

1ページ16語の仮想記憶システムがあり、ページ表は表(図内ファイル表1)のようになっ ている。論理アドレス50番地に対応する物理アドレスの番地を求めよ、(8月00分を半角

アドレス変換とページフォールト

1ページ16語の仮想記憶システムがあり、ページ表は下のようになっている。表1の論 理アドレスに対応する物理アドレスを求めよ。(対応する物理アドレスが存在しない場合は「一」を記入).

~ 有効/無効ビット 41 0

アドレス変換とページフォールト

1ページ16語の仮想記憶システムがあり、ページ表は下のようになっている。表1の論 理アドレスに対応する物理アドレスを求めよ。(対応する物理アドレスが存在しない場合は「一」を記入).

ページ表 - 有効/無効ビット 41 1 0

表1	ページ番号	枠番号	物理アドレス計算		
論理アドレス	↓	↓	B=f×P+d	物理アドレス	
6	6÷16=0···6	7…6	7×16+ 6=	118	
15	15÷16=0···15	7…15	7×16+15=	127	
30	30÷16=1···14	4114	41×16+14=	670	
40	40÷16=2···8	存在しない	ページフォールト	_	
50	50÷16=3···2	14…2	14×16+ 2=	226	
ページ番号→枠番号					

アドレス変換(2進数)

1ページ16語の仮想記憶システムがあり、ページ表は下のようになっている。 論理アドレス110010番地に対応する物理アドレスの番地を求めよ、尚、アドレ スとページ表の値は2進数である

1 - 有効/無効ビット 101001 0 1110

武験までに準備すべき事項 先ず、本日配布したプリントの問題の解法を理解すること 以下の小テストを必ず復習すること(試験との関連が大きい)、 (設問のみを見て、自分の手で答えが書けるようにしておくこと) 文章問題 プリントには無い)は、解説もきちんと読んでおくこと。 ファイルシステム(シリンダ数の計算) 基礎OS2015(利問1~5、⑤問1~4 プロセスの状態遷移、CPUスケジューリング 基礎OS2015(利問1~10 基礎OS2015(利問1~7) 仮想記憶 基礎OS2015(利問1~7) を想じる 基礎OS2015(利問1~7) 基礎OS2015(利問1~7) 基礎OS2015(利問1~7)