8 Enhanced USB однокристальный CH552, CH551

Руководство
Версия: 1D
http://wch.cn

1. Обзор

Чип CH552 является основной микроконтроллер E8051 совместим MCS51 набор инструкций повышается, что 79% инструкций однобайтовые одиночные инструкции цикла, инструкция по средней скорости MCS51 от 8 до 15 раз быстрее, чем стандарт.

Система CH552 поддерживает до частоты 24 МГц, встроенный 16К байтов ПЗУ памяти программ и 256 байт внутренней IRAM 1К и внутренний лист XRAM, XRAM поддерживает DMA прямого доступа к памяти.

СН552 встроенный аналоговый АЦП цифровой преобразователь, сенсорный ключ обнаружения емкости, группы 3 и захвата сигнала ШИМ и таймеры, двойной асинхронный последовательный интерфейс, SPI, USB контроллер устройства полной скорости и функциональных модулей приемопередатчика.

СН551 до СН552 представляет собой упрощенный вариант, так как ПЗУ памяти программ 10К, лист XRAM 512 байт, только асинхронный последовательный интерфейс УАППО, только SOP16 пакета, только канала сенсорных кнопок 4, и удаляет аналог АЦП в цифровой модуль преобразования и

USB-типа-С модуль, другие же CH552 <u>непосредственно</u> женьшень <u>тест</u> CH552 руководство и <u>Информация.</u>

I	<u>модель</u> Пре	грамма ПЗУ <u>RAN</u>	DataFlasi	USB-устройство	С-типа таймера	последовател	ьного ШИМ (Н552 сен	орный кл	оч SPI АЦП	1	
		16KB	<u>1280</u>									
	CH551	10KB	<u>768</u>	128 Full / ни:	вкая <u>конфигури</u>	<u>руемый </u> Группа нет	2 Группа 3 Г	руппа 2 в	едущий / в Группа 1	едомый кан	эл 4 6 <u>нет</u> Ch	annel 4

Следующее внутреннее блок-схема СН552 только для справочных целей

2. Особенности

- L Core: Enhanced E8051 базового набор MCS51 совместимой инструкция, которая 79% инструкция однобайтной одиночные инструкции цикла, средняя инструкция Быстрее, чем стандартная MCS51 8 ~ 15 раз, XRAM конкретные данные быстро скопировать инструкции, двойной указатель DPTR.
- L ROM: ПЗУ перепрограммируемой энергонезависимой памяти 16KB емкость, все это может быть использовано для пространства памяти программ, или может быть разделено
 И программа кладовки для 2KB 14KB кода загрузки программной области BootLoader / ISP.
- L DataFlash: 128 байт данных могут быть многократно перезаписываемой энергонезависимой память, поддержка перезаписи данных в байтах.
- L Оперативная память: 256 байт внутреннего IRAM, могут использоваться для временного хранения и быстрого стека данных; 1КВ внутреннего листа XRAM, он может быть использова

По поцарапать и DMA Прямой доступ к памяти.

L USB: встроенный USB-трансивер и поддержка контроллер USB-режим устройства USB-устройства, USB-носители обнаружения типа С ведущий-ведомый,

Поддержка USB 2.0 на полной скорости 12Mbps или низкой скорости 1.5Mbps. Он поддерживает до 64-байтных пакетов, то FIFO встроенный, поддержка DMA.

L Таймер: 3 устанавливает таймер T0 / T1 / T2 стандарт MCS51 таймера.

L Захват: Таймер Т2 расширен для поддержки захвата сигнала 2-канального.

L ШИМ: ШИМ выходы 2, PWM1 / PWM2 2 8-битовый выход ШИМ.

L УАПП: 2 группы асинхронных последовательных портов, поддерживают более высокую скорость передачи данных, УАПП0 стандарт MCS51 последовательного порта.

L SPI: контроллер SPI, встроенный в FIFO, до половины тактовой частоты системной частоты Fsys с последовательным входом и выходом данных

Симплексный мультиплексирование, поддерживает режим ведущий / ведомый от ведущего устройства.

L АЦП: 4-канальный 8-битовый аналого-цифровой аналого-цифровой преобразователь, поддержка напряжения компаратора.

L Touch-Key: 6-канальный чувствительный емкостный, поддерживает до 15 сенсорных клавиш, поддержка независимого прерывания таймера.

L GPIO: GPIO штифты поддерживают до 17 (включительно XI / XO и RST сигнала булавок и USB).

L Прерывание: Поддержка источник сигнала прерывания группы 14, в том числе и стандартной группы 6 MCS51 совместимы прерывания (INT0, T0, INT1, T1,

УАППО, T2), а также расширенный набор из 8 прерываний (SPI0, TKEY, USB, AЦП, УАПП1, PWMX, GPIO, WDOG), в котором прерывание GPIO может быть выбрано из семи штырей.

- L Watch-Dog: 8-разрядный сторожевой таймер предустановки WDOG, поддерживают прерывание таймера.
- L Сброс: сброс сигнал поддерживает четыре источника, и внутренний сброс мощность, сброс и сторожевое программное обеспечение поддержки таймаута сброса, дополнительная на Сброс блока ввода.
- L Часы: встроенный источник тактовых импульсов 24 МГц, может поддерживаться мультиплексирование GPIO контактный внешний кристалл.
- L Мощность: низкий отсев регулятор напряжения 5В 3.3V, 3.3V, или даже поддерживать напряжение питания 2.8V 5V. Поддержка малой мощности

Потеря сна, поддержка USB, UART0, UART1, SPI0, а также некоторый внешний GPIO след.

L Чип построен уникальный идентификационный номер.

3, пакет

MSOP-10	3.0mm	118mil	0,50мм	<u>19.7mil</u> Миниат	орный 10-контактный SMD CH552	=
SOP-16	3,9 мм	<u>150mil</u>	<u>1,27</u>	50mil	Стандартный 16-контактный SM	D CH551G

3

4-контактный

	Свинец Пин		шпилька	Другие особенности Имя		
	9Р16 MSOP	<u>10</u>	имя	(Приоритет левой функции)	Другое Функциональное описание	
19	15	9	VCC V	DD	Потребляемая мощность, необходим внешний источник питания развязывающий	конденсатор 0,1 мкФ.
				•	USB-внутренний выходной регулятор мощности и внутренний входной мощности	
20	16	10	V33		USB, когда источник питания подключается входное напряжение VCC меньше,	
					чем 3.6V внешний источник питания, внешний источник питания развязывающий	онденсатор 0,1 мкФ, ко
18	14	8	GND B	cc	Общая земля.	
6	6	5	RST RS		дчеркнуты контактное отображение одного и то же имя не подчеркнутые штифты.	
7	-	-	<u>P1.0</u> T2	/ CAP1 / TIN0	RST контактный выпадающий резистор, другие нагрузочный резистор GPIO по	
			- · ·		умолчанию. RST: вход сброса.	
8	9	-	P1.1 12	EX / CAP2 / TIN1 / VBUS2 / AIN0	T2: таймер / счетчик внешнего входа счетчика / выход 2 часов. T2EX: таймер /	
17	-	-	<u>P1.2</u> XI	/RXD_	счетчик перезарядки вход 2 / захвата. САР1, САР2: таймер / счетчик 1 вход 2	
16	-	-	<u>P1.3</u> X0	/ TXD_	захвата. TIN0 ~ TIN5: 0 # ~ 5 # сенсорный обнаружение емкости ключа входного	
	_				канала. AIN0 ~ AIN3: 0 # ~ 3 # канал АЦП входного аналогового сигнала. UCC1,	
2	2	1	P1.4 T2	_ / CAP1_ / SCS <u>/ TIN2 / UCC1 / AIN1</u>	UCC2: USB типа С конфигурация канала двухсторонняя. VBUS1, VBUS2: USB тип	a
_	_				С вход чувство напряжения на шине. XI, XO: внешний вход терминал кварцевого	
3	3	2	P1.5 M0	DSI / PWM1 / TIN3 / UCC2 / AIN2	генератора, выходной терминал инвертирующих. RXD, TXD: УАПП0	
4	4	3	P1.6 MI	SO / RXD1 / TIN4	последовательный ввод данных и последовательный вывод данных. СКС, MOSI,	
5	5	4	P1.7 S0	K / TXD1 / TIN5	MISO, SCK: SPI0 интерфейсы, ГКС является выбора микросхемы ввода, вывода	
10	8	-	P3.0 PV	/M1_ / RXD	MOSI хост / ведомый вход, вход MISO-хост / выход ведомого, SCK является	
9	7	-	P3.1 PV	/M2_ / TXD	серийным часы. PWM1, PWM2: выход PWM1, выход PWM2. RXD1, TXD1: УАПП1	
					последовательный ввод данных и последовательный вывод данных. INT0, INT1:	
1	1	-	P3.2 T	XD1_ / INT0 / VBUS1 / AIN3	Внешнее прерывание 0, внешнее прерывание 1 вход. Т0, Т1: Таймер 0, Таймер 1	
11	10	-	P3.3 IN	IT1	внешний вход. УДМ, UDP: D-, D + терминал сигнал устройства USB. Примечание:	
12	11	-	P3.4 PV	/M2 / RXD1_ / T0_	Р3.6 и Р3.7 V33 в качестве внутреннего источника питания I / О, высокий уровень	
13	-	_	P3.5 T		только к входным и выходным напряжением V33 не поддерживает 5V	
14	12	6	P3.6 UI			
15	13	7	P3.7 U			
13	13	,	1 3.7 0	DIVI		

5, СФР

В этом руководстве Регистр описано Следующие сокращения могут быть использованы в дальнейшем, когда:

Сокращения	описание	
RO	Представляет тип доступа: только для чтения	
WO	Отражает доступ Тип: Write-только чтение значение является недействительн	ıМ
RW	Отражает Тип доступа: чтение и запись Н	
	Его конец представляет собой	
шестнадцатерич	н б вон коле цЭпредставляет собой двоичное число	

О 5,1 SFR и распределения адресов

CH552 с помощью элемента управления SFR, устройство управления, а также установить режим работы.

80h-FFh занимал SFR диапазон адресов внутренней памяти данных, доступный только через режим прямой инструкции адреса. Отличающееся тем, что адрес регистр x0h или x8h является немного адресацией, таким образом, чтобы доступ во избежание к определенной битовой величине бит иногда модифицировать другие; другие не кратно 8 адресных регистров могут быть доступно только байтами.

Данные могут быть записаны только SFR часть в безопасном режиме, в то время как в незащищенном режиме только для чтения статуса, например: GLOBAL_CFG, CLOCK_CFG, WAKE_CTRL.

СФР часть, имеющая один или несколько псевдонимов, например: SPI0_CK_SE / SPI0_S_PRE. Часть адреса, соответствующего множеству индивидуальных СФР, например: SAFE_MOD / CHIP_ID, ROM_CTRL / ROM_STATUS. CH552, содержащий стандартные регистры SFR 8051, в то время как увеличение других управляющих регистров. Удельная СФР в таблице ниже.

Таблица 5 0,1 Специальные функции может Регистрация Таблица

			Табл	ица 5 <u>0,1 Специалы</u>	<u>ые функции</u> может <u>.</u>	Регистрация Таблица	<u>a</u>	
<u>SFR</u>	0,8	1,9	2, A	3, B	4, C	5, Д	6, E	7, F
0xf8 SF	PIO_STAT	SPI0_DATA	SPI0_CTRL	SPI0_CK_SE SP SPI0_SETUP	I0_S_PRE		RESET_KEEP WD	OG_COUNT
<u>0xF0</u>	В							
<u>0xE8</u>	IE_EX	IP_EX	UEP4_1_MOD UI	EP2_3_MOD UEP0	DMA_L UEP0_DM	A_H UEP1_DMA_L	UEP1_DMA_H	
<u>0xE0</u>	ACC	USB_INT_EN	USB_CTRL	USB_DEV_AD U	P2_DMA_L UEP2_	DMA_H UEP3_DM	A_L UEP3_DMA_H	
0xD8 U	SB_INT_FG USB_II	NT_ST USB_MIS_S	T USB_RX_LEN		UEP0_CTRL	UEP0_T_LEN	UEP4_CTRL	UEP4_T_LEN
<u>0xD0</u>	PSW	UDEV_CTRL	UEP1_CTRL	UEP1_T_LEN	UEP2_CTRL	UEP2_T_LEN	UEP3_CTRL	UEP3_T_LEN
<u>0xC8</u>	T2CON	T2MOD	RCAP2L	RCAP2L	TL2	TH2	T2CAP1L	T2CAP1H
<u>0xC0</u>	SCON1	SBUF1	SBAUD1	TKEY_CTRL	TKEY_DATL	TKEY_DATH	PIN_FUNC	GPIO_IE
<u>0xb8</u>	IP	CLOCK_CFG						
<u>0xB0</u>	P3	GLOBAL_CFG						
<u>0xA8</u>	ΙE	WAKE_CTRL						
0xA0	P2	SAFE_MOD CHIP_ID	XBUS_AUX					
<u>0x98</u>	SCON	SBUF	ADC_CFG	PWM_DATA2	PWM_DATA1	PWM_CTRL	PWM_CK_SE	ADC_DATA
<u>0x90</u>	P1	USB_C_CTRL	P1_MOD_OC	P1_DIR_PU			P3_MOD_OC	P3_DIR_PU
<u>0x88</u>	TCON	TMOD	TL0	TL1	TH0	TH1	ROM_DATA_L RO	M_DATA_H
0x80 AE	C_CTRL	SP	DPL	DPH	ROM_ADDR_L RO	M_ADDR_H	ROM_CTRL ROM_STATUS	PCON

Замечания :(1), красный текст Представитель немного адресация; (2), ниже приводится описание, соответствующее поле цвета

ADC адрес регистра регистра, связанный,
что SPI0 соответствующих регистров
Сенсорные-Кеу USB регистры
соответствующего регистра, связанный
таймер / счетчик зарегистрировать 2
связанные регистры порта, связанные PWM1
и PWM2 связанные регистры
соответствующих регистров UART1
связанные регистры Flash-ROM

Таблица 5.2 SFR и сброса значений описано

Функциональная кла	ссифика им Я	адрес	лица 5.2 SFR и сброса значений описано описание	Сброс значения
	В	F0h	В регистре	0000 0000b
	ACC	<u>Е0h</u> акку	уляторный	0000 0000b
	PSW	<u>D0h</u> Прог	рамма Status Register	0000 0000b
			Регистр глобальной конфигурации (состояние начальной загрузки CH552)	1010 0000b
		B1h	Регистр глобальной конфигурации (состояние приложения СН552)	1000 0000b
	GLOBAL_CFG		Регистр глобальной конфигурации (СН551 руководствоваться статус програ	ам <mark>мал 10 0000b</mark>
Системные			Регистр глобальной конфигурации (состояние приложения СН551)	1100 0000b
настройки соответству			СН552 идентификация чипа идентификационный код (только для чтения)	0101 0010b
	CHIP_ID	A1h	СН551 идентификация чипа идентификационный код (только для чтения)	0101 0001b
	SAFE_MOD	<u>А1h</u> Режи	м защиты регистра управления (только для записи)	0000 0000b
	DPH	<u>83h</u> Данн	ые адреса Указатель высокого 8	0000 0000b
	DPL	<u>82h</u> Данн	ые Адрес Pointer Low 8	0000 0000b
	DPTR	<u>82h</u>	DPL и DPH, состоящие из 16 СФРОВ	0000h
	SP	<u>81h</u> Указа	тель стека	0000 0111b
	WDOG_COUNT_	<u>FFh</u> Стор	ожевой пес граф Регистрации	0000 0000b
Часы, сон и питание	RESET_KEEP	<u>FEh</u> Сбро	с удерживающие регистры (включения питания сброса состояния)	0000 0000b
управления,	CLOCK_CFG	<u>В9h</u> Реги	тр конфигурации системы синхронизации	1000 0011b
связанные регистры	WAKE_CTRL	<u> А9h</u> Реги	стр сна управления будильником	0000 0000b
	PCON	<u>87h</u> Регул	ятор мощности регистра (на нижнем состоянии сброса)	0001 0000b
	IP_EX	E9h Pacu	иренное Priority Регистр управления прерыванием	0000 0000b
Cogoouwu	IE_EX	E8h Pacu	иренная Interrupt Enable Register	0000 0000b
Связанные прерывания регистр у	GPIO_IE	<u>C7h</u>	GPIO регистр разрешения прерывания	0000 0000b
прерывания регистр у	IP	<u>В8h</u> Упра	вление приоритетом прерывания Регистрация	0000 0000b
	IE	<u> A8h</u> Реги	стр разрешения прерывания	0000 0000b
	ROM_DATA_H	8FH	Данные флэш-ROM зарегистрировать старший байт	xxxx xxxxb
	ROM_DATA_L	8Eh	флэш-ROM данных Младший байт регистра	xxxx xxxxb
	ROM_DATA	8Eh	ROM_DATA_L и ROM_DATA_H, состоящий из 16 СФРОВ	xxxxh
Флэш-ROM,	ROM_STATUS	<u>86h</u>	регистр состояния флэш-ПЗУ (только для чтения)	0000 0000b
связанные регистры	ROM_CTRL	<u>86h</u>	управление вспышкой-ROM, регистр (только для записи)	0000 0000b
	ROM_ADDR_H	<u>85h</u>	флэш-ROM адресный регистр старшего байта	xxxx xxxxb
	ROM_ADDR_L	<u>84h</u>	флэш-ROM адресный регистр Младший байт	xxxx xxxxb
	ROM_ADDR	<u>84h</u>	ROM_ADDR_L и ROM_ADDR_H, состоящий из 16 СФРОВ	xxxxh
	PIN_FUNC	<u>С6Н</u> Конт	акт Функция Регистр выбора	1000 0000b
	XBUS_AUX	<u>A2h</u> _Допо	лнительный внешний регистр настройки автобуса	0000 0000b
	P3_DIR_PU	<u>97H</u>	РЗ управления направлением порта и подтяжка включить регистр	1111 1111b
регистры портов,	P3_MOD_OC	<u>964</u>	Порт Р3 регистр Режим вывода	<u>1111 1111b</u>
связанных с	P1_DIR_PU	<u>93H</u>	Р1 и выдвижной Направленный порт управления позволяют зарегистриров	ат <u>ы 1111 1111b</u>
	P1_MOD_OC	<u>92H</u>	Порт выходной регистр режима Р1	<u>1111 1111b</u>
	P3	<u>B0h</u>	Регистрация входных и выходных портов Р3	<u>1111 1111b</u>
	P2	<u>A0h</u>	Р2 выходного порта регистр	<u>1111 1111b</u>
	P1	<u>90h</u>	Входные и выходные порты Р1 регистра	1111 1111b

	TH1	8DH	Таймер1 счетчик старший байт	xxxx xxxxb
	TH0	8Ch	Timer0 счетчик старший байт	xxxx xxxxb
Таймер / Счетчик	TL1	8Bh	Таймер1 счетчик младший байт	xxxx xxxxb
Связанные	TLO	8Ah	кол-младший байт Timer0	xxxx xxxxb
регистры 0 и 1	TMOD	89h	Timer0 / 1 Режим регистра	0000 0000b
	TCON	88h	Timer0 / 1 регистра управления	0000 0000b
UART0	SBUF	99h	регистр данных УАПП0	xxxx xxxxb
Связанный регистр	SCON	98h	Регистр управления UART0	0000 0000b
	T2CAP1H	CfH	Timer2 захвата высокого байта данных (только для чтения)	xxxx xxxxb
	T2CAP1L	CEh	Timer2 захватить низкие байты данных A (только для чтения)	xxxx xxxxb
	T2CAP1	CEh	Т2CAP1L и Т2CAP1H, состоящий из 16 СФРОВ	xxxxh
	TH2	CDh	Таймер2 счетчик старший байт	0000 0000b
	TL2	ЦX	Timer2 Счетчик Низкий	0000 0000b
Таймер / Счетчик	T2COUNT	ЦХ	TL2 и TH2, состоящий из 16 СФРОВ	0000h
связанных регистров 2	RCAP2H		чество Перезагрузки / данные захвата зарегистрировать-старший байт	0000 0000b
	RCAP2L	Саһ Коли	чество Перезагрузка / данных захвата зарегистрировать 2 младший байт	0000 0000b
	RCAP2	Cah	RCAP2L и RCAP2H, состоящий из 16 СФРОВ	0000h
	T2MOD	C9h	Таймер2 регистр режима	0000 0000b
	T2CON	C8h	Timer2 Control Register	0000 0000b
	PWM_CK_SE	9Eh	Регистр Настройка часов Делитель PWM	0000 0000b
PWM1 и PWM2	PWM_CTRL	9DH	PWM Control Register	0000 0010b
связанные регистры	PWM_DATA1	9CH	регистр данных PWM1	xxxx xxxxb
	PWM_DATA2	<u>9Bh</u>	регистр данных PWM2	xxxx xxxxb
	SPI0_SETUP	<u>FCh</u>	регистр настройки SPI0	0000 0000b
	SPI0_S_PRE	<u>FBh</u>	SPI0 в режиме ведомого регистр данных запрограммированных	0010 0000b
SPI0	SPI0_CK_SE	<u>FBh</u>	SPI0 часы регистр настройки делителя	0010 0000b
соответствующий реги	nc&PI0_CTRL	<u>FAH</u>	Регистр управления SPI0	0000 0010b
	SPI0_DATA	<u>F9h</u>	SPI0 в регистр данных приемопередатчика	xxxx xxxxb
	SPI0_STAT	<u>F8H</u>	Регистр состояния SPI0	0000 1000b
	SBAUD1	C2h	УАПП1 скорость передачи данных регистра настройки	xxxx xxxxb
UART1	SBUF1	<u>C1H</u>	регистр данных УАПП1	xxxx xxxxb
связанные регистры	SCON1	<u>C0h</u>	Регистр управления UART1	0100 0000b
	ADC_DATA	9Fh	регистр данных АЦП	xxxx xxxxb
АЦП	ADC_CFG	<u>9Ah</u>	Регистр конфигурации АЦП	0000 0000b
соответствующего рег	истра ADC_CTRL	<u>80h</u>	ADC Control Register	X000 0000b
	TKEY_DATH	<u>C5H</u>	высокоскоростной передачи данных байт Сенсорные-Кеу (только для чтени	я) <u>0000 0000b</u>
Сенсорные-Кеу	TKEY_DATL	<u>C4H</u>	Данные низкого байта Сенсорные-Кеу (только для чтения)	xxxx xxxxb
связанные регистры	TKEY_DAT	<u>C4H</u>	TKEY_DATL и TKEY_DATH, состоящий из 16 СФРОВ	00xxh
	TKEY_CTRL	C3h	Touch-Key Control Register	X000 0000b
	UEP1_DMA_H	<u>EFh</u> Коне	чная точка 1 начальный адрес буфера старший байт	0000 00xxb
связанных с	UEP1_DMA_L	<u>EEh</u> Коне	чная точка 1 буфера начальный адрес младший байт	xxxx xxxxb
USB-регистры	UEP1_DMA	<u>EEh</u>	UEP1_DMA_L и UEP1_DMA_H, состоящий из 16 СФРОВ	0xxxh
	UEP0_DMA_H	<u>EDh</u> Коне	чная точка 0 и 4 начальный адрес буфера старший байт	0000 00xxb

UEPO DMA L	ECh Koue	чная точка 0 и 4 буфера начальный адрес младший байт	xxxx xxxxb
UEP0_DMA	ECh	UEP0_DMA_L и UEP0_DMA_H, состоящий из 16 СФРОВ	0xxxh
UEP2_3_MOD		стр 3 управления конечной точки режима	0000 0000b
UEP4_1_MOD		point Control Register Mode 4	0000 0000b
		•	0000 0000b
UEP3_DMA_H		ная точка начальный адрес буфера старший байт 3	·
UEP3_DMA_L		нная точка начальный адрес буфера младший байт 3	xxxx xxxxb
UEP3_DMA	<u>E6h</u>	UEP3_DMA_L и UEP3_DMA_H, состоящий из 16 СФРОВ	0xxxh
UEP2_DMA_H	<u>E5h</u> Коне	нная точка буфера начальный адрес старший байт	0000 00xxb
UEP2_DMA_L	<u>E4h</u> Коне	ная точка 2 буфера начальный адрес младший байт	xxxx xxxxb
UEP2_DMA	E4h	UEP2_DMA_L и UEP2_DMA_H, состоящий из 16 СФРОВ	0xxxh
USB_DEV_AD	<u>E3h</u>	USB Device Address Регистрация	0000 0000b
USB_CTRL	E2H	Регистр управления USB	0000 0110b
USB_INT_EN	<u>E1h</u>	USB регистр разрешения прерывания	0000 0000b
UEP4_T_LEN_	DFH Kone	чная длина передачи регистр 4	<u> Оххй ххххь</u>
UEP4_CTRL	<u>DEH</u> End	point Control регистр 4	0000 0000b
UEP0_T_LEN_	<u>DDh</u> Коне	чная длина передачи регистра-	<u> Оххй ххххь</u>
UEP0_CTRL	DCH End	point Control Register 0	0000 0000b
USB_RX_LEN	<u>DBh</u>	Получение длины USB регистра (только для чтения)	<u> Оххй ххххь</u>
USB_MIS_ST_	Дах	Регистр Разное статус USB (только для чтения)	XX10 1000b
USB_INT_ST	<u>D9H</u>	USB прерывания регистр состояния (только для чтения)	00xx xxxxb
USB_INT_FG	<u>D8h</u>	USB регистр флаг прерывания	0010 0000b
UEP3_T_LEN	<u>D7H</u> Коне	чная длина передачи регистр 3	<u> Оххй ххххь</u>
UEP3_CTRL	D6h Endp	oint Control Register 3	0000 0000b
UEP2_T_LEN	<u>D5h</u> Коне	чная длина передачи регистра 2	0000 0000b
UEP2_CTRL	D4h Endp	oint Control Register 2	0000 0000b
UEP1_T_LEN_	<u>D3h</u> Коне	чная точка 1 передает Длина регистра	0ххй ххххь
UEP1_CTRL	D2h Endp	oint Регистр управления 1	0000 0000b
UDEV_CTRL	d1h	USB-порт регистр управления устройством	10xx 0000b
USB_C_CTRL	91h	регистры управления USB типа С каналом сконфигурированы	0000 0000b
USB_C_CIKL	9111	регистры управления USB типа С каналом сконфигурированы	0000 0000

5.3 Общие регистры 8051

Таблица Список 5.3.1 регистра общего назначения 8051

РМИ	адрес	описание	Сброс значения
В	<u>F0h</u> B p	егистре	00h
A, ACC	<u>E0h</u> акку	муляторный	00h
PSW	<u>D0h</u> Прог	рамма Status Register	00h
		Регистр глобальной конфигурации (состояние начальной загрузки CH552)	A0h
0.00	Date	Регистр глобальной конфигурации (состояние приложения СН552)	80h
GLOBAL_CFG	B1h	Регистр глобальной конфигурации (СН551 руководствоваться статус программы)	E0h
		Регистр глобальной конфигурации (состояние приложения СН551)	C0h
OLUB ID			52ч
CHIP_ID	A1h CH5	У идентификация чипа идентификационный код (только для чтения) СН551 идентификация чипа идентификационный код (только для чтения)	51ч
SAFE_MOD	<u>А1h</u> Реж	м защиты регистра управления (только для записи)	00h

PCON	<u>87h</u> Регул	лятор мощности регистра (на нижнем состоянии сброса)	10h
DPH	<u>83h</u> Данн	ые адреса Указатель высокого 8	00h
DPL	<u>82h</u> Дан	ые Адрес Pointer Low 8	00h
DPTR	82h DPL	и DPH, состоящие из 16 СФРОВ	0000h
SP	<u>81h</u> Указа	атель стека	07h

8

В Регистрация (В):

Бит Им	я доступ		описание	Сброс значен
[7: 0]	В	RW арис	рметические регистры, в основном для умножения и деления, могут быть битной адресацией	00h

аккумуляторный (А, АКК):

Бит Им	я доступ		описание	
[7: 0]	A / ACC	RW акку	мулятор арифметическая операция, бита адресация может быть	00h

программа форма Государственное хранение устройство (ЗУ) :

<u>Бит</u>	Имя Доступ	-	описание	Сброс значен	<u>ия</u>
7	CY	RW	Флаг переноса: при выполнении арифметических и логических операций инструкции для записи наиболее значимый бит переноса или занимать бит, когда 8-битовый сумматор, наиболее значимый бит, бит сброшен в противном случае; 8-битное вычитание, когда Если позаимствовать бит, бит сбрасывается в противном случае, логические команды могут привести к позиции или очищена	0	
6	переменн	ый т 6 ₩V,фла	аг вспомогательного переноса: добавление или запись вычитания, младшие 4 бита с высокими 4 есть перенос иг Положение, АС комплект, в противном случае очищается	и заем 6	
<u>5</u>	F0	RW фла	г назначения битную адресацию может быть 0: Пользователи могут определить свои собственные, может быть у	станов 0 ен или	сброшен программно
<u>4</u>	RS1	RW верх	хнего регистра выбора банка биты	0	
<u>3</u>	RS0	RW, ниж	ний регистр выбора банка биты	0	
2	O.B.	RW, фла	аг переполнения: когда добавление или вычитание, результат вычисления превышает 8-битовые двоичные числ: 1, то флаг переполнения, в противном случае очищается	а, множ е ство О	В.
1_	F1	GM фла	r 1 бит адресации может быть RW: Пользователи могут определить свои собственные, может быть установлен и	ли сбр о шен про	граммно
0	Р	РО Четн	ость Флаг: запись инструкции выполняется в аккумуляторе А соотношений, нечетный Р Установить, четное количество очистки Р	0	

Состояние регистра состояния процессора хранится в PSW, PSW битой адресации поддержки. Слово состояния содержит флаг переноса, вспомогательный флаг переноса обработки BCD код, флаг четности, флаг переполнения и rs0 и RS1 для выбранного банка регистров. Регион, где банк регистров можно получить, прямо или косвенно.

Таблица 5.3.2 RS1 и RS0 RS1 регистра банка таблица выбора

	RS0	Рабочая группа Регистрация
0	0	Группа 0 (00h-07h)
0	1	Группа 1 (08h-0Fh)
1	0	Группа 2 (10h-17h)
1	1	Группа 3 (18h-1Fh)

Таблица 5. <u>Знак 3.3 Воздействия</u> знак <u>Бит операционной</u> (X <u>Флаг представляет собой и Операционные результаты</u> Off)

операционна	, CY	O.B.	переменны	й ток операционная	CY	O.B.	переменны	і ток
ADD	Х	Х	Х	SETB C	1			
ADDC	Х	Х	Х	CLR C	0			

SUBB	Х	Х	Х	CPL C	Х	
MUL	0	Х		MOV С, бит	Х	
DIV	0	Х		ANL C, немного	Х	
Д.А.	Х			ANL C / бит	Х	
РНЦ	Х			ORL C, немного	Х	
RLC	Х			ORL C / бит	Х	
CJNE	Х					

данные адреса палец Игла (DPTR) :

место	имя достуг	<u>_</u>	описание	Сброс значен	ния
[7: 0]	DPL	Младши	й байт указателя данных RW	00h	
[7: 0]	DPH	Старшиі	я байт указателя данных RW	00h	

DPL и DPH состоят из 16-битового указателя данных DPTR, для доступа к памяти данных XRAM или памяти программ, 16-битные данные, соответствующие фактическому указатель DPTR на два физических DPTR1 DPTR0 и ДПС XBUS_AUX динамически выбраны.

<u>Указатель стека</u> (SP):

место	имя достуг	L	описание	Сброс значен	ия
[7: 0]	SP	RW <u>Ука</u> :	атель стека, в основном для звонков и прерывания вызовов и данных в и из стека	07h	

Стек конкретные функции: точки останова защиты и защиты сцены и управляется в соответствии с принципом первым вошел, последним из них. Когда указатель стека SP автоматически увеличивается на 1, или данные, сохраненные данные точки останова, SP указатели на данные взяты, когда блок стека, указатель SP уменьшается. ИП сбрасывается при начальном значении после 07h, соответствующие магазинам стека по умолчанию начального 08h.

5.4 Уникальный регистр

$\underline{\textbf{Global Configuration}} \ \textbf{Отправить} \underline{\textbf{Регистрация (GLOBAL}} \underline{\textbf{-CFG)}}, \ \textbf{Может быть написано только в безопасном режиме:}$

место	РМИ	доступ	описание	Сброс значени	<u> 181</u>
[7: 6]	удержание	PO ĸ Cŀ	552, фиксированное значение 10	10b	
<u>[7: 6]</u>	удержание	PO ĸ Ch	551, фиксированное значение 11	11b	
5	bBOOT_LOAD	RO	Загрузчик бит статуса для распознавания статуса начальной загрузки ISP или статуса приложения: установить мощность включена, сброс программного обеспечения очищается. Для чипа программы загрузки ISP, бит сбрасывается в программное обеспечение никогда не было описано, как правило, ISP загрузки программы после включения питания запуска состояния; 0 указывает бит сбрасывается с помощью программного обеспечения, как правило	1	іложения
4	bSW_RESET	RW, кон	троль программного сброса бит: 1 причина программного сброса установлен, аппаратное обесг	ечениЮавтомаг	ически очиц
3	bCODE_WE	RW	Флэш-диск и разрешение записи битов DataFlash: защиты от записи бит равен 0, как флэш-ПЗУ и перезаписываемых данных	0	
2	bDATA_WE	RW	DataFlash область флэш-диск разрешения записи бит: Этот бит равен 0, то защита от записи; DataFlash область является перезаписываемый	0	
1	bLDO3V3_OFF	RW	USB-питания LDO-регулятор отключить биты управления: Бит 0 позволяет LDO, может быть получено с помощью USB напряжения питания 5 В для 3.3V и внутреннего тактового генератора; Чтобы отключить LDO, V33 штифт должен быть введен электропитание 3.3V	0	
0	bWDOG_EN	RW сбр	оса сторожевого бит разрешения: Этот бит используется только для сторожевого таймера 0; это сброс сторожевого генерируется, когда переполнение таймера, чтобы позволить	т бит О	

Чип идентификационный ИД<u>Не код (CHIP_I</u> D<u>):</u>

место	имя доступ		описание	Сброс значе	ния
[7: 0]	CHIP_ID	РО к СН	552, это фиксированное значение 52h, для идентификации чип	52ч	
<u>[7: 0]</u>	CHIP_ID	РО к СН	551, это фиксированное значение 51h, для идентификации чип	51ч	

<u>Безопасный режим</u> контроль <u>Регистрация системы (S</u> A <u>FE MOD</u>

):	: Бит	имя доступ		описание	Сброс значен	ия
[7:	0]	SAFE_MOD	WO без	опасного режима для ввода или прекратить	00h	

Данные могут быть записаны только часть СФР в безопасном режиме, но в незащищенном режиме всегда только для чтения. Шаг в безопасный режим:

(1), запись в этот регистр 55h, (2), за которым следует AAh этот регистр;

- (3), после примерно 13-23 циклов частоты в системе в безопасном режиме, период может быть переписан в пределах одного или нескольких классов безопасности

 СФР СФР или нормальный;
- (4), за указанный период после режима безопасности автоматически прекращается, (5), или любое значение регистра записи снова в безопасном режиме могут быть прекращены досрочно.

6, структура памяти

Пространство памяти 6.1

СН552 адресное пространство разделено на пространство памяти программы, внутреннее пространство памяти данных, во внешнем пространстве памяти данных.

Рисунок 6.1 структура памяти на фиг.

0011	Верхний 128 байт внутренней памяти (косвенной или й เมื่อเรียนในดัง 'ຊຽрвеь аኒ Ω አንዮተፑብ')	адреса	СФР (прямая ция)	
80H 7FH	Младшие 128 байт внутреннего ОЗУ (прямой			
00H			пространства	
			Конфиденциальная зона	FFI C1
			Данные вспышки	C0
			DATA_FLASH_ADDR	C0
			Программная область адресного	BFI 400
			информация о конфигурации	3FF
Внешни	ne данные Адресное пространство FFFFH		ROM_CFG_ADDR	3FF
			Загрузчик код флэш	3FI
	Ограниченная площадь @xdata		BOOT_LOAD_ADDR Reserved	380
100H				371
BFFH	1KB на чипе расширен XRAM @xdata (косвенной адресации с помощью MOVX)		Применение Код вспышки	
000H	адресации с помощою иот			000

объем памяти 6.2 программы

64КВ пространство вообще программной памяти, как показано на рисунке 6.1, в котором 16КВ ПЗУ, включая код флэш информацию о конфигурации области и области информации конфигурации для хранения кодов команд.

Код флэш-приложение содержит программный код и загрузочного кода, область высокого адреса ниже адрес региона, эти две области могут быть объединены, чтобы держать единый код приложения.

Для области кода приложения CH551, только 10КВ код вспышки. ПЗУ IFLASH ™ Процесс готовой заготовки после официального пакета дисков, может быть примерно в 200 раз программируются 5V питания. Флэш данных диапазон адресов для C0FFH .the к C000h (только даже адрес является действительным, есть на самом деле байты любого другого блока хранения), поддерживает только один байты (8 бит) чтений и операция записи, данные оставаться неизменной после чипа выключен. Флэш-данных поддерживает около 1 миллиона Write, рекомендуются использовать сбалансированную, отключить один и то же ячейку памяти стирания больше, чем 10К раза, если больше выносливости рекомендуется CH558 или CH546 / 7.

Информация о конфигурации Информация о конфигурации включает в себя четыре набора 16-битовых данных, чтобы 3FFFH 3FF8H адрес, только для чтения три единицы, чтобы обеспечить чип ID. Расположенный 3FF8H адрес набор данных конфигурации по желанию программиста, со ссылкой на таблицу 6.2.

Таблица 6.2 Конфигурация флэш-ПЗУ описано

Бит адрес	Бит Имя	объяснение	<u>Рекомендуем</u>	ое значение
15	код режима флэш-F	OM и защита данных Code_Protect: 0- программист запрещено читать, программа секретность; 1- допустимо чтение	0/1	
14	No_Boot_Load	режим BootLoader код загрузки позволяет запуск: 0 из начального адреса 0000h приложения 1- загрузки программы из загрузочного адреса 3800h	1	

13	En_Long_Reset дополнител	ьная задержка может быть сброшен во время сброса по питанию: 0- стандарт короткого сброса; 1- широкий сброс, сброс времени дополнительные 44mS	0
12	En_RST_RESET_RST конт	актный включен в качестве ручного ввода сброса штифта: 0- отключено; 1 - позволяет RST	0
[11:10]	удержание	(В соответствии с требованиями программиста автоматически устанавливается на 00)	00
9	Must_1	(В соответствии с требованиями программиста автоматически устанавливается в 1)	1
8	Must_0	(В соответствии с требованиями программиста автоматически устанавливается в 0)	0
[7: 0]	All_1	(Автоматически устанавливается программистом, необходимого для FFh)	FFh

6.3 пространства для хранения данных

Пространство 256 внутренней памяти данных байтов показано на рисунке 6.1, и были использованы в СФР IRAM, в котором IRAM для временного стека данных и быстро, могут быть разделены, как рабочие регистры R0-R7, переменной длины в битах, байтах BDATA переменные данные, IDATA и так далее.
64КВ вообще внешняя память данных, как показан на рисунке 6.1, часть расширения для листа 1КВ XRAM, оставшаяся область зарезервирована. Для СН551, только 512 байт чип расширения XRAM.

Регистр 6.4 флэш-диск

Таблица 6.4 Регистрация Список операций флэш-ПЗУ

РМИ	адрес	описание	Сброс значения
ROM_DATA_H	8FH	Данные флэш-ROM зарегистрировать старший байт	XXH
ROM_DATA_L	8Eh	флэш-ROM данных Младший байт регистра	XXH
ROM_DATA	8Eh	ROM_DATA_L и ROM_DATA_H, состоящий из 16 СФРОВ	xxxxh
ROM_STATUS	86h	регистр состояния флэш-ПЗУ (только для чтения)	00h
ROM_CTRL	86h	управление вспышкой-ROM, регистр (только для записи)	00h
ROM_ADDR_H	85h	флэш-ROM адресный регистр старшего байта	XXH
ROM_ADDR_L	84h	флэш-ROM адресный регистр Младший байт	XXH
ROM_ADDR	84h	ROM_ADDR_L и ROM_ADDR_H, состоящий из 16 СФРОВ	xxxxh

флэш-RO М Адрес регистра (ПЗУ _ АДРЕСА) :

место	имя	доступ	описание	Сброс значения
<u>[7: 0]</u>	ROM_ADDR_H	RW	флэш-ПЗУ адрес старший байт	XXH
[7: 0]	ROM_ADDR_L	RW	флэш-ПЗУ адрес младшие байты, поддерживает только даже адрес для флэша данных, фактическое смещения должны быть левым адрес 00H-7FH становится даже адрес 00H / 02H / 04H ~ ФЭ, а затем помещают	ххн

флэш-RO М Регистр данных (ПЗУ _ DATA) :

место	РМИ	доступ	описание	Сброс значени
[7: 0]	ROM_DATA_H	RW	Данные флэш-ПЗУ, чтобы записать старший байт	XXH
[7: 0]	ROM DATA L	RW	флэш-ПЗУ младших байт данных, подлежащих записи,	ххн
[7.0]	TOM_B/T//_E	11,00	Для DataFlash, байты данных должны быть записаны или считаны байты данных	70(11

флэш-RO M Регистр управления (ROM _ CTRL) :

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	ROM_CTRL	WO	регистр управления флэш-ПЗУ	00h	

флэш-RO М Регистр состояния (ROM _ СТАТУС): Бит

	имя	доступ	описание	Сброс значения
7	удержание	RO защ	ищены.	0
6	bROM_ADDR_OK	RO	адрес флэш-диск запись действительна бит статуса: Этот бит указывает недействительный параметр 0; 1 указывает на эффективный адрес	0
[5: 2]	удержание	RO защ	ищены.	0000b
1	bROM_CMD_ERR	RO	флэш-ROM рабочей команды Статус ошибки Бит: Этот бит является 0 указывает на действительную команду; 1 указывает на то, команда неизвестна	0
0	удержание	RO защ	ищены.	0

13

6.5 флэш-ПЗУ Процедура

1, флэш-ПЗУ записи код региона, дважды байт данных записывается в целевой адрес: (1), в случае необходимости флэш-диск, чтобы написать код, необходимо выбрать напряжение питания 5 В; (2), режим безопасности включена, SAFE_MOD = 55h; SAFE_MOD = 0AAh;

(3), регистр конфигурации, чтобы установить глобальные разрешения записи GLOBAL_CFG отверстие (bCODE_WE bDATA_WE или соответствующий код или данные), (4), при условии, что регистры ROM_ADDR адреса, запись 16-битный адрес назначения (младший бит всегда равен 0); (5), регистр данные настроек ROM_DATA, 16-разрядные записи данные должны быть записана, на стадию (4), (5) последовательность может быть отменена, (6), предусмотренный для управления работой регистра ROM_CTRL 09Ah, операция записи, во время работы автоматически останавливается; (7), программа возобновляется после завершения операции, а затем проверить статус регистр ROM_STATUS может просматривать рабочее состояние, если

Множество данных записи, петля (4), (5), (6), (7) стадия; (8), повторно ввести безопасный режим, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (9), установлен глобальный конфигурационный регистр GLOBAL_CFG открытым защищен от записи $(bCODE_WE = 0, bDATA_WE = 0)$.

2, область данных записи флэш-данные, одиночные байты данные записываются в целевом адрес: (1), режим безопасности включен, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (2), установите глобальную конфигурацию зарегистрировать GLOBAL_CFG Open Write Enable (bDATA_WE соответствующее данный); (3), при условии, что ROM_ADDR адресных регистров, запись 16-битный целевой адрес, адрес 00H-7FH фактического смещения должны быть изменено на левый

Даже адрес 00H / 02H / 04H ... ~ ФЭ затем помещают, а затем конечный адрес C000h / C002H / C004 ...; (4), регистр данных настроек ROM_DATA_L, записи 8-битные данные должны быть записаны, стадия (3), (4) последовательности может быть обратный; (5), при условии, для управления работой регистра ROM_CTRL 09Ah, операция записи, во время работы программа автоматически останавливается; (6), программа возобновляется после завершения операции, а затем проверить статус регистр ROM_STATUS может просматривать рабочее состояние, если

Множество данных записи, петля (3), (4), (5), (6) стадия; (7), повторно ввести безопасный режим, SAFE_MOD = 55h; SAFE_MOD = 0AAh; (8), установить глобальный регистр конфигурации GLOBAL_CFG открытым защищен от записи (bCODE_WE = 0, bDATA_WE = 0).

- 3, считанный область данных флэш-данных, данные одного байта считываются из целевого адреса:
- (1), при условии, что ROM_ADDR адресных регистров, запись 16-битный целевой адрес, адрес 00H-7FH фактического смещения должны быть изменено на левый Даже адрес, с последующим конечным адресом C000h / C002H / C004 ...;
- (2), при условии, для управления работой регистра ROM_CTRL 08Eh, чтение операции выполняется автоматически во время работы пауз; (3), то программа продолжается операция завершена, регистра состояния случае ROM_STATUS запрос может просмотреть эту bROM_CMD_ERR

Вторичный рабочее состояние, если команда действительна, то 8-битные данные, сохраненные в считанных данных регистре ROM_DATA_L, и (4), если множество данных, которые должны быть считаны, цикл (1), (2), (3) этап.

4, читает флэш-диск:

инструкция MOVC непосредственно, или через указатель указывает на область памяти, или данные кода чтения адреса назначения.

6.6 Бортовое программирования и загрузки ISP

Когда информация о конфигурации Code_Protect = 1, данные в флэш-ПЗУ кода чипа CH552 и флэш-данных может быть внешним программистом посредством синхронного последовательного интерфейса для чтения; = 0, когда информация о конфигурации Code_Protect, флэш-ПЗУ код и данные в данном флэше защищены и не могут читать, но могут быть стерты и повторно питания после удаления защиты коды отменяются.

Когда CH552 чипа запрограммированных загрузки BootLoader программа, CH552 может поддерживать несколько ISP USB для загрузки асинхронного последовательного интерфейса или загрузки приложения, однако, ни в коем случае, когда программа загрузки, CH552 может быть написана внешней специальной программой загрузки программиста или приложение. Для того, чтобы поддержать программирование на борту, он должен быть временно 5В напряжение питания, которые должны быть зарезервированы и схема 4 соединен между выводами CH552 программиста, минимум, необходимый соединительный штифт 3: P1.4, P1.6, P

Таблица 6.6.1 и соединительные штырьки между программистом

шпилька	GPIO	Pin Описание
RST	RST сброс і	в запрограммированном состоянии управления штифтом, что позволяет доступ к высокому
запрограмм	ирова нновыберу д	a рххханий мун ടൂർ (обязательно), высокое значение по умолчанию, активный низкий уровень сигнала SCK
в запрограм	миро наеноёводс (7)	разр еты ён нуюй рамм иируется состояние (необходимо) MISO
	Выходные д	анные штифты (при необходимости) в запрограммированной государственной Р1.6

Примечание: Независимо от наличия или бортового программирования через последовательный порт или USB-загрузки, должны быть временно использованы 5V напряжение пит

6.7 чип уникальный идентификационный номер

Каждый микроконтроллер имеет уникальный идентификационный номер на заводе-изготовителе, то есть идентификационный номер чипа.

Идентификационные данные 5 байт, хранится в адресной информации, расположенной на 3FFAH 3FFFH информацию о конфигурации области. В котором 3FFBH адрес блок удерживания, и 8-битные данные 3FFCH 3FFEH два 16-битовые адреса и данные 40 битых адреса объединенных данных чипа ID 3FFAH.

Таблица 6.7.1 чип ID адресной таблицы

Программа Ѕрасе Адрес	Описание данных ID	
3FFAh, 3FFBh	Последнее слово ID данных, 40 является Наивысший порядок байт идентификационный номер, зарезерв	рованный байт
3FFCh, 3FFDh	ID первое слово данных, с последующим наименьшим числом байтов значительного ID, второй младший	5айт
3FFEh, 3FFFh	Идентификационные данные суб-слово, а затем старшие байты, высокий байт идентификационного номе)

Данные ID могут быть получены путем считывания кода флэш способом. идентификационные номера могут быть загружены с помощью программы для шифрования цели, общее применение, непосредственно перед использованием 32-битного идентификационного номера, то есть, 8-битные данные могут быть проигнорированы 3FFAH а

7, управление питанием, сон и сброс

Внешний вход питания 7,1

CH552-чип регулятор напряжения с малым падением напряжения 5V до 3,3, 3,3, или даже поддерживать внешний 2.8V 5V входного напряжения питания

Входное напряжение питания два Режим в следующей таблице.

Внешнее напряжение питани	я VCC контактное напряжение: 3V ~ 5V внешнее напряжен	e V33 контактное напряжение: 3.3V внутреннего напряжения
Состоит из менее чем	Внешний вход 3.3V напряжение регулятора напряжения, не	Внешний вход 3.3V в качестве внутреннего источника
3.6V 3.3V или 3V	должен быть подключен к не меньше, чем 0.1uF расцеплен	ия слыкасныя , должен быть подключен к развязывающему емкости не менее 0.1uF
Больше чем 5V	Входное напряжение 5В регулятора напряжения, не	Внутренний регулятор напряжения 3,3 В и 3,3 В
3.6V, включающий	должно быть подключено к не меньше, чем 0.1uF расцепле	выходе входной внутренние рабочая силы должны ния емкости быть соединены с не меньшим, чем 0.1uF расцепления емкости

После питания или перезагрузки системы, CH552 по умолчанию работает. Под предпосылкой для удовлетворения требований производительности, из-за более низкую частоту системы может снизить энергопотребление во время работы. Когда CH552 полностью не работает, может быть предоставлены в PD PCON войти в состоянии сна, состояние сна может быть выбрано с помощью внешнего USB бодрствования, UART0, UART1, SPI0 и некоторых GPIO.

7.2 Питание и Sleep Control Register

Таблица 7.2.1 Питание и список Регистрация Контроль сна

РМИ	адрес	описание	Сброс значения
WDOG_COUNT	FFH WATO	HDOG регистр счетчика	00h
RESET_KEEP	FEh сброс	в регистров временного хранения	00h
WAKE_CTRL	A9h регис	р сна управления пробуждения	00h
PCON	Регулятор	мощности регистра 87h	10h

метр Watchdog номер Регистрация (WDOG _COUNT) :

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	WDOG_COUNT	RW стор	ожевых таймеров текущего значения счетчика, истечение переполнения 0FFh рулевого управл Автоматически устанавливает флаг прерывания bWDOG_IF_TO 1	ение 000 (п , пере	полнение от

Сброс Удержание Отправить Регистрация (RESET К EEP):

место	РМИ	доступ	описание	Сброс значен	ия_
[7: 0]	RESET_KEEP	RW сбро	с проведения значение регистров может быть искусственно модифицированным, в дополнени Чем он очищается, любой другой сброс не влияет на величину	ı к сб рбіў мощі	юсти может быть

<u>спальный</u> вызов <u>Просыпайтесь регистра управления (WA</u> К <u>E_CTRL</u>), Может быть записана только в безопасном режиме:

место		доступ	описание	Сброс значения
<u>7</u>	bWAK_BY_USB	RW	Enable USB Wake событие, этот бит запрещает будить 0	0
6	bWAK_RXD1_LO	RW	УАПП1 приема пробуждения включить входной низкий, побудка запрет бит равен 0. BUART1_PIN_X = 0/1, чтобы выбрать или RXD1_ контактный RXD1	0
<u>5</u>	bWAK_P1_5_LO	RW	Р1.5 режима малого включения, 0 для отключения после	0
<u>4</u>	bWAK_P1_4_LO	RW	Р1.4 режима малого включения, 0 для отключения после	0
<u>3</u>	bWAK_P1_3_LO	RW	Р1.3 режима малого включения, 0 для отключения после	0
<u>2</u>	bWAK_RST_HI	RW	RST высокого выхода из энергосберегающего режима включения, 0 для отключения после	0
<u>1</u>	bWAK_P3_2E_3L	RW	P3.2 и P3.3 низкого край переход позволяют услугу, пробуждение запрещено-	0
0	bWAK_RXD0_LO	RW	УАПП0 принимающее пробуждение включить входные низкие, 0 для отключения вслед. Выбрать контактный RXD0 или RXD0_ bUART0_PIN_X = 0/1	0

источник питания контроль Система регистра (РСОN) :

место		доступ	описание	Сброс значен	ия
7	SMOD	Когда R'	W генерируется, когда УАПП0 бод таймер скорости передачи 1, выбор режима УАПП0, Скорость передачи данных 2,3: 0 медленный режим; 1- Быстрый режим	0	
6	удержание	RO защі	ищены.	0	
<u>5</u>	bRST_FLAG1	R0 чип	высокого флаг последнего сброса	0	
<u>4</u>	bRST_FLAG0	R0 чип	с низким флаг последнего сброса	1	
<u>3</u>	GF1	RW назн	ачение флаг 1: Пользователи могут определить свои собственные, может быть установлен или	сброшен прог	рами
<u>2</u>	gf0	RW обш	ий флаг 0: Пользователи могут определить свои собственные, может быть установлен или сбрю	ошен п р ограмм	40
<u>1</u>	PD	RW спя	ций режим включен, устанавливается после сна, оборудование автоматически очищаются посл	е след	
0	удержание	RO защі	ищены.	0	

bRST_FLAG1 bRST_FLAG0		Сброс Описание флага
0 0		сброс программного обеспечения, Источник: bSW_RESET = 1 и (bBOOT_LOAD = 0 или bWDOG_EN = 1)
0	1	Сброс питания на источниках питания: VCC контактного напряжения находится ниже уровня обнаружения
1	0	сброс сторожевого, Источник: bWDOG_EN = 1 и тайм-аут сторожевой
1	1	Внешний сброс контактный вручную Источник: En_RST_RESET = 1 и высокий входной RST

16

7.3 Сброс управления

СН552 имеет четыре источника сброса: сброс мощности, внешний сброс, программный сброс, сброс сторожевого, три, принадлежащий к сбросу теплого.

7.3.1 сброса по питанию

ПОР сброса мощности генерируется на чипе напряжения схемы обнаружения. РОР цепь непрерывно контролирует напряжение питания VCC штифт, при включении питания сброса VPOT ниже уровня обнаружения, автоматическая задержки Трог с помощью аппаратных средств для поддержания состояния сброса, после CH552 задерж Только сброс по включению питания только CH552 перезагружать информацию о конфигурации и четкий RESET_KEEP, теплый сброс не влияет на другой.

7.3.2 Внешний сброс

Это применяется к высокому уровню с помощью внешнего сброса штифта генерируется RST. Когда информация о конфигурации En_RST_RESET 1, и длительность высокого уровня по сбросу процедуры срабатывают, когда RST контактного больше, чем Trst. Когда сигнал высокого уровня подается вывести, автоматическая задержка Trdl аппаратных средств для поддержания состояния сброса, CH552 Когда задержка времени начала от 0 адреса.

7.3.3 Перезапуск программного обеспечения

СН552 поддерживает внутренний сброс программного обеспечения, так что никакой инициативы внешнего вмешательства не для сброса состояния процессора и повтора. GLOBAL_CFG установлен глобальный регистр конфигурации bSW_RESET 1, программное обеспечение может быть сброшен, и автоматическая задержка Trdl для поддержания состояния сброса, CH552 Когда время задержки начала с адреса 0, bSW_RESET бит автоматически сбрасывается аппаратно.

Korga bSW_RESET установлен в 1, если bBOOT_LOAD = 0 или bWDOG_EN = 1, то сброс bRST_FLAG1 / 0 с указанием программного сброса; если 1, если bBOOT_LOAD = 1 и bWDOG_EN = 0, то bRST_FLAG1 / 0 не будет генерировать новый bSW_RESET установить флаг сброса, после сброса флага прежде, но остается неизменным.

В последнем случае с сбросом по включению питания чипа программы загрузки ISP, питание для запуска программы загрузки, программа программного обеспечения, необходимая для сброса чипа для переключения состояния приложения, сброса программного обеспечения только причина bBOOT_LOAD очищенного состояние не влияет на bRST_FLAG1 / 0 до сих пор обознач

7.3.4 Сброс сторожевого

Сброса сторожевого происходит от тайм-аут таймера. Таймер представляет собой 8-битовый счетчик, который подсчитывает частоту тактовой частоты системы Fsys / 65536, переполнение сигнала, когда счетчик полон 0FFh руль 00h.

Переполнение сторожевого таймера сигнал таймера запускает прерывания флаг bWDOG_IF_TO 1, то флаг прерывания при перезагрузке WDOG_COUNT или введите соответствующий автоматически сбрасывается, когда прерывание процедуры обслуживания.

При написании начального значения для различного подсчета WDOG_COUNT, для достижения различных периодов синхронизации Twdc. В частотном 6MHz, сторожевая синхронизация время цикла записи 00h Twdc около 2,8 секунды, около 1,4 секунды, пишущей 80h. В то время как половинная скорость 12MHz часы.

Если переполнение сторожевого таймера bWDOG_EN = 1, то сброс сторожевой генерируется, и автоматическая задержка Trdl для поддержания состояния сброса, CH552 Когда задержка времени начала от 0 адреса.

При bWDG_EN = 1 Для того чтобы избежать сброса сторожевого сброса должен быть своевременно WDGG_COUNT, переполнение избежать.

8, системные часы

8.1 представлена блок-схема часов

Внутренние или внешние часы в качестве второго после выборов Fosc оригинальные часы, создавая высокую тактовую частоту, а затем после частоты Fpll 4xPLL, и, наконец, через два делитель тактовой частоты соответственно Fsys Fusb4x система синхронизации и модуль USB. Системного тактового сигнала, подается непосредственно к каждому модулю Fsys из CH552.

8.2 Описание регистров

Контроль часов Регистрация Список Таблица 8.2.1

РМИ	адрес	описание	Сброс значения	
CLOCK_CFG	Регистр кон	фигурации В9h системные часы	83h	

<u>Системные часы</u> матч <u>регистры конфигурации (CLOCK_CFG)</u>, Может быть написано только в безопасном режиме:

место ИМЯ доступ описание <u>Сбро</u> г	значения
---	----------

7	bOSC_EN_INT	RW	Внутренний тактовый генератор включен, этот бит включает внутренний тактовый генератор 1 и внутренний выбор часов; выбор внешнего кварцевого генератора обеспечивает тактовый бит выключен и внутренний генератор тактовых сигналов 0	1
6	bOSC_EN_XT	RW	Внешний кварцевый генератор включен, то бит равен 1 P1.2 / P1.3, как контактный XI / XO и включить генератор, внешний кварцевый кристалл или керамический резонатор между XO и XI; бит равен 0 Закрыть внешний генератор	0
5	bWDOG_IF_TO	RO	сторожевой таймер флаг прерывания бит, который является 1 означает прерывание, запущенные по сигналу таймера переполнения; бит равен 0 при отсутствии прерываний. Когда счетчик бит регистра WDOG_COUNT сторожевой перегружаются в соответствующий автоматически очищаются или процедуру обслужи	0
4	bROM_CLK_FAST	RW	флэш-диск выбора опорной частоты синхронизации: 0 нормальное (если Fosc> = 16МГц); 1- ускорить (если Fosc <16МГц)	0
3	BRST	R0	RST битовый входной контактный состояние	0
[2: 0] MAS	K_SYS_CK_SEL_	RW выб	рать частоту системного тактового сигнала, ссылку на таблицу 8.2.2	<u>011b</u>

Таблица 8.2.2 Система таблица выбора частоты

MASK SYS CK SEL Fsys част	оты в системе, когда кристалл	частоты Fosc Fsys 24MHz Fxt отношен	ия, когда =
000	Fpll / 512	Fxt / 128	187.5KHz
001	Fpll / 128	Fxt / 32	750KHz
010	Fpll / 32	Fxt / 8	3MHz
011	Fpll / 16	Fxt / 4	6MHz
100	Fpll / 8	Fxt / 2	12MHz
101	Fpll / 6	Fxt / 1.5	16МГц
110	FpII / 4	Fxt / 1	24MHz
111	Fpll / 3	Fxt / 0,75	Бронирование, инвалиды

8.3 Часы конфигурации

После включения питания CH552 по умолчанию с помощью внутренних часов, внутренняя тактовая частота 24MHz. Могут быть выбраны внутренние часы или внешних часы на CLOCK_CFG кварцевого генератора, если вы отключите внешний кварцевый генератор, старпом и XI Pins P1.2 и P1.3 можно использовать как обычный порт ввода / вывод. Если внешние часы кварцевого генератора, он должен перемычка кристалла, и X и XI соответственно GND выводы емкости, подключенной между выводами XO и XI; если входной тактовый сигнал непосредственно с внешней стороны, это должно привести от XI контактный вход, контактные X плавающий.

Оригинал тактовая частота Fosc = bOSC_EN_INT 24MHz :? Fxt ФАПЧ частоты Fpll

= Fosc * 4 = 96МГц USB тактовая частота Fusb4x = FpII / 2 = Система 48МHz

частоты справочная таблица 8.2.2 Fsys от частотно-деления Fpll

состояние по умолчанию после того, как сброс, FOSC = 24MHz, FpII = 96M Γ ц, Fusb4x = 48MHz, Fsys = 6MHz.

Для переключения на внешний кристалл тактового генератора следующим образом:

(1), в безопасный режим, шаг SAFE_MOD = 55h; Шаг два SAFE_MOD = AAh;

(2), используя «бит или» операции набора bOSC_EN_XT CLOCK_CFG 1, остальные биты остаются неизменными, кварцевый генератор включен; (3), количество миллисекунд задержать, как правило, 5 мс ~ 10 мс, ожидая стабильной кварцевого генератора; (4), повторно ввести безопасный режим, шаг SAFE_MOD = 55h; второй этап SAFE_MOD = AAh; (5), с «битами и» операция в bOSC_EN_INT CLOCK_CFG очищается, остальные биты не изменяются от внешнего тактового сигнала;

(6), безопасность от режима, произвольное значение записывается в безопасном режиме SAFE_MOD досрочного прекращения.

Шаг изменения частоты системы заключается в следующем:

- (1), в безопасный режим, шаг SAFE_MOD = 55h; Шаг два SAFE_MOD = AAh; (2), чтобы записать новое значение CLOCK_CFG;
- (3), безопасность от режима, произвольное значение записывается в безопасном режиме SAFE_MOD досрочного прекращения.

Примечания:

- (1), если модуль USB, он должен быть Fusb4x 48MHz, а также при полной скорости USB, не ниже, чем частота системной Fsys 6MHz; при низкой скорости USB, система частоты Fsys не менее 1.5MHz.
- (2), более низкий приоритет для системной тактовой частоты Fsys, уменьшая тем самым динамическую систему питания, а диапазон рабочих температур расширяется. (3), внутренний генератор тактовых сигналов от V33 источника питания, то V33 напряжения, так что изменения низкого напряжения будет влиять на определенную внутренности.

9, прерванный

СН552 чип поддерживает 14 набора источников прерываний сигнала, включая стандартные MCS51 совместим 6 набора прерываний: INT0, T0, INT1, T1, УАПП0, T2 и 8 групп прерываются расширение: SPI0, TKEY, USB, ADC, UART1, PWMX, GPIO, WDOG, в котором прерывание GPIO может быть выбрано из семи штырей ввода / вывода.

9.1 Описание регистров

Таблица 9.1.1 вектор прерывания таблицы

Источник прерывани	я <u>Ввод номер прер</u>	ывания адрес	описание	порядок приоритета по умол чанию
INT_NO_INT0	0x0003	0	Внешнее прерывание 0	высокий приоритет
INT_NO_TMR0	0x000B	1	Таймер 0 прерывания	высокий приоритет
INT_NO_INT1	0x0013	2	Внешнее прерывание 1	, T
INT_NO_TMR1	0x001B	3	Таймер 1 прерывание	,
INT_NO_UART0	0x0023	4	прерывание UART0	↓
INT_NO_TMR2	0x002B	5	Таймер 2 прерываний	↓
INT_NO_SPI0	0x0033	6	прерывание SPI0	↓
INT_NO_TKEY	0x003B	7	прерывание по таймеру Сенсорный ключ	↓
INT_NO_USB	0x0043	8	прерывание USB	↓
INT_NO_ADC	0x004B	9	прерывание АЦП	↓
INT_NO_UART1	0x0053	10	прерывание UART1	↓
INT_NO_PWMX	0x005B	11	PWM1 / PWM2 прерывание	↓
INT_NO_GPIO	0x0063	12	прерывание GPIO	↓
INT_NO_WDOG	0x006B	13 стор	ожевой таймер	низкий приоритет

Таблица 9.1.2 Прерывание список связанных с регистром

РМИ	адрес	описание	Сброс значения
IP_EX	E9h	Расширенное Priority Регистр управления прерыванием	00h
IE_EX	E8h	Расширенная Interrupt Enable Register	00h
GPIO_IE	C7h	GPIO регистр разрешения прерывания	00h
IP	B8h	Управление приоритетом прерывания Регистрация	00h
IE	A8h	Регистр разрешения прерывания	00h

Прерывание Сделать Регистрация (ІЕ):

<u>Bit</u> им	я доступ		описание	Сброс значени
7	E.A.	RW разр	ешения глобальных прерываний управляющий бит, бит равен 1, и 0, чтобы разрешить прерывание E_DIS, а Бит 0 маскировать все запросы прерываний	0
6	E_DIS	RW	Global прерывание отключить битое управление, бит является маскировать все запросы на прерывание, бит Е 0 и 1 позволяют прервать. Это, как правило, используется для временного отключения прерываний во время работы бит флэш-ПЗУ	0
<u>5</u>	ET2	RW, тай	мер 2 бит разрешения прерывания, что позволяет прерывание Т2 равно 1; 0 щит	0
<u>4</u>	ES	0 RW ac	инхронный последовательный порт разрешение прерывания бит, то этот бит в 1, чтобы разрешить УАПП0 г	рерывания; 0 ци
<u>3</u>	ET1	RW, тай	мер 1 бит разрешения прерывания, этот бит в 1, чтобы разрешить Т1 прерывания; 0 щит	0
<u>2</u>	EX1	Внешне	е прерывание бит разрешения RW 1, этот бит в 1, чтобы разрешить прерывание INT1; 0 щит	0
<u>1</u>	ET0	RW, тай	мер 0 прерывания битого разрешения, то этот бит в 1, чтобы разрешить Т0 прерывания; 0 щита	0
<u>0</u>	EX0	Внешне	е прерывание 0 RW бит разрешения, то этот бит в 1, чтобы разрешить прерывание INT0; 0 щит	0

<u>распространение</u> в <u>Включить Проводы</u> депозит <u>Является ли (IE _Ex):</u>

место	имя доступ		описание	Сброс значен	ия
<u>7</u>	IE_WDOG	RW, сто	рожевой таймер битого разрешения прерывания, этот бит в 1, чтобы разрешить WDOG прерывание; 0 щита	0	
6	IE_GPIO	RW	GPIO прерывание битого разрешения, этот бит позволяет прерывания включены в GPIO_IE 1; 0 маскирующих все прерывания GPIO_IE	0	
5	IE_PWMX	RW	PWM1 / PWM2 разрешения прерывания бит, то этот бит в 1, чтобы разрешить прерывание PWM1 / 2; 0 щи	т 0	
<u>4 IE</u>	_UART1_	RW 1 ac	инхронный последовательный порт прерывания бит разрешения, то этот бит в 1, чтобы разрешить УАПП1 п	рерывания; 0 ц	цит
<u>3</u>	IE_ADC	RW	АЦП аналогового цифрового преобразования разрешения прерывания бит, этот бит в 1, чтобы разрешить	прерь @ ание А	ДП; 0 щі
<u>2</u>	IE_USB	RW	USB бит разрешения прерываний этот бит в 1, чтобы разрешить прерывание USB; 0 щита	0	
<u>1</u>	IE_TKEY	RW сен	орных кнопок таймера разрешение прерывания бит, этот бит позволяет прерывание таймера; 0 щита	0	
0	IE_SPI0	RW	SPI0 прерывания битого разрешения, то этот бит в 1, чтобы разрешить прерывания SPI0; 0 щита	0	

<u>GPIO Регистр разрешения прерывания (GPIO I</u> E):

место	РММ	доступ	описание	Сброс значения
7	bIE_IO_EDGE	RW	Режим прерывания краев GPIO позволяет: Режим Уровень выбора бита 0 прерывания, GPIO контактный bIO_INT_ACT к активному уровню 1 и имеет запрос на прерывание, GPIO bIO_INT_ACT недействительным входной уровень равен 0, и отменяет запрос на прерывание; 1 бит выбран режим края прерывания, запрос на прерывание и прерывания флаг bIO_INT_ACT GPIO контактный край действует, программное обеспечение прерывания флаг не очищен, или сброс только тогда, когда уровень прерывания режиме или в соответствующую процедуру обслуживания прерывания когда он автоматически очищается	0
6	bIE_RXD1_LO	RW	Этот бит 1 позволяет получить УАПП1 прерывания штифта (активный режим низкого уровня, спадающий фронт активного режим); бит 0 запрещен. BUART1_PIN_X = 0/1, чтобы выбрать или RXD1_ контактный RXD1	0
5	bIE_P1_5_LO	RW Это	т бит устанавливается в 1, чтобы разрешить прерывания Р1.5 активный низкий уровень (шаблон, ша Падение края активный); бит равен 0 запрета	блоны О рая
4	blE_P1_4_LO	RW Это	· бит устанавливается в 1, чтобы разрешить прерывания Р1.4 активный низкий уровень (шаблон, ша Падение края активный); бит равен 0 запрета	 блоны © рая

3	bIE_P1_3_LO	RW Это	· бит устанавливается в 1, чтобы разрешить прерывания Р1.3 активный низкий уровень (шаблон, ша Падение края активный); бит равен 0 запрета	блоны Фрая
2	blE_RST_HI	RW Это	· бит равен 1 на RST разрешения прерывания (активный режим высокого уровня, краевой узор Нарастающий фронт активного); бит равен 0 запрета	0
1	bIE_P3_1_LO	RW Это	бит устанавливается в 1, чтобы разрешить прерывания Р3.1 активный низкий уровень (шаблон, ша Падение края активный); бит равен 0 запрета	блоны О рая
0	bIE_RXD0_LO	RW	Этот бит 1 включает прерывание приема УАППО штифта (активный режим низкого уровня, по заднему фронту активного режима); бит 0 запрещен. Выбрать контактный RXD0 или RXD0_bUART0_PIN_X = 0/1	0

Прерывание отлично Приоритетное регистр управления устройство (ИС) :

место	имя	доступ	описание	Сброс значения
<u>7</u>	PH_FLAG	RO высо	кий приоритет прерывания исполняющего флаг	0
<u>6</u>	PL_FLAG	РО выпо	лняет флаг низкого приоритета прерываний	0
<u>5</u>	PT2	RW Тай	иер 2 прерываний биты управления приоритетом	0
<u>4</u>	PS	RW	УАППО биты управления приоритетом прерывания	0
<u>3</u>	PT1	RW Тай	иер 1 прерываний биты управления приоритетом	0
2	PX1	RW Вне	шнее прерывание 1 Управление приоритетом	0
<u>1</u>	PT0	RW Тай	иер 0 прерываний биты управления приоритетом	0
<u>0</u>	PX0	RW вне	инего прерывания 0. Биты управления приоритетом	0

 $\underline{\text{распространение}} \ \underline{\text{в}} \ \underline{\text{Прерывание управления приоритетом}} \ \underline{\text{Отправить}} \underline{\underline{\text{Регистрация}}} \ \underline{\text{(}} \ \underline{\text{IP}}\underline{\underline{\text{EX}}});$

место	РМИ	доступ	описание	Сброс значен
7	bIP_LEVEL	РО уров	ень вложенности текущего прерывания бит флага, который равен 0 для без прерывания или вложен Уровень 2 прерывания, бит равен 1, это указывает на прерывания текущего уровня вложенности 1	ности О
6	bIP_GPIO	RW	GPIO биты управления приоритетом прерывания	0
<u>5</u>	bIP_PWMX	RW	PWM1 / PWM2 биты управления приоритетом прерывания	0
<u>4</u>	bIP_UART1	RW	UART1 биты управления приоритетом прерывания	0
<u>3</u>	bIP_ADC	RW	ADC прерываний управления приоритетом бит	0
2	bIP_USB	RW	USB прерывания приоритета биты управления	0
<u>1</u>	bIP_TKEY	RW сен	орная кнопка таймера прерывания управления приоритетом бит	0
<u>0</u>	bIP_SPI0	RW	SPI0 биты управления приоритетом прерывания	0

IP_EX и IP-регистры для установки прерываний уровня приоритета, если бит установлен, соответствующий источник прерывания установлен высоким приоритет, если бит очищен, то соответствующий источник прерывания установлен на низкий приоритет , Для источников прерываний же уровня, система имеет порядок приоритета по умолчанию, по умолчанию порядок приоритета электрода, как показано в таблице 9.1.1. Какие PH_FLAG и сочетание PL_FLAG указывает на приоритет текущего приоритета по умолчанию порядок приоритета электрода, как показано в таблице 9.1.1.

Таблица Индикация состояния приоритета 9.1.3 Текущее прерывание

PH_FLAG	PL_FLAG	Текущее состояние прерывания приоритета
0	0	Там на данный момент нет прерывания
0	1	В настоящее время выполнения с низким приоритетом прерывания
1	0	В настоящее время выполнения высокого приоритета прерывания
1	1	Неожиданное состояние, неизвестная ошибка

10, порты ввода / вывода

O 10.1 GPIO

СН552 обеспечивает до 17 портов ввода / вывода, некоторые контакты, имеющие уплотненные функции. Отличающееся тем, что входные и выходные порты Р1 и Р3 являются немного адресацией. Порт Р2 представляет собой внутренний порт, только с R0 или R1, когда р выбран доступом XRAM MOVX.

Если вывод не сконфигурирован для мультиплексной функции, по умолчанию является контактным состоянием общего назначения ввода / вывода. Как Использование общего назначения цифрового ввода / вывода, все порты ввода / вывода имеют истинное «чтение - модификация - запись» функции, поддержка SETB или CLR бит инструкции по эксплуатации и т.п., независимо изменяя направление некоторых из ниппеля или порта электрически равной.

10.2 GPIO регистр

本节所有的寄存器和位以通用格式表示:小写的"n"表示端口的序号(n=1 或 3),而小写的"x" 代表位的序号(x=0、1、2、3、4、5、6、7)。

名称 地址 描述 复位值 P1 端口输入输出寄存器 FFh P1 90h P1_MOD_OC 92h P1 端口输出模式寄存器 FFh P1 端口方向控制和上拉使能寄存器 P1_DIR_PU 93h FFh P2 端口输出寄存器 P2 A0h FFh P3 P3 端口输入输出寄存器 B0h FFh P3 端口输出模式寄存器 96h FFh P3_MOD_OC P3 端口方向控制和上拉使能寄存器 P3_DIR_PU 97h FFh 引脚功能选择寄存器 PIN_FUNC C6h 80h

表 10.2.1 GPIO 寄存器列表

Pn 端口输<u>入输出寄存器(Pn</u>): 位

XBUS_AUX

	名称	<u>访问</u>	描述	复位值
[7:0]	Pn.0 ~ Pn.7	RW	Pn.x 引脚状态输入和数据输出位,可以按位寻址	FFh

总线辅助设置寄存器

00h

Pn 端口输 <u>出模式寄存器(Pn _ MOD_OC</u>): 位

	名称	<u>访问</u>	描述	复位值_
[7:0]	Pn_MOD_OC	RW	Pn.x 引脚输出模式设置:0-推挽输出;1-开漏输出	FFh

Pn 端口方 <u>向控制和上拉使</u> 能 寄存器 (Pn_DIR_PU):

位	名称	<u>访问</u>	描述	复位值_
[7:0]	Pn_DIR_PU	RW 在	推挽输出模式下是 Pn.x 引脚方向控制:	FFh
			0-输入;1-输出;	
			在开漏输出模式下是 Pn.x 引脚上拉电阻使能控制: 0-禁止上拉电阻;	
			1-使能上拉电阻	

由 Pn_MOD_OC[x]和 Pn_DIR_PU[x]组合实现 Pn 端口的相关配置,具体如下。

A2h

表 10.2.2 端口配置寄存器组合

		X . 0.2.2 40 A B B B B B B B B B B B B B B B B B B
Pn_MOD_OC	Pn_DIR_PU	工作模式描述
0	0	高阻输入模式,引脚没有上拉电阻
0	1	推挽输出模式,具有对称驱动能力,可以输出或者吸收较大电流

10, порты ввода / вывода

O 10.1 GPIO

CH552 обеспечивает до 17 портов ввода / вывода, некоторые контакты, имеющие уплотненные функции. Отличающееся тем, что входные и выходные порты P1 и P3 являются немного адресацией. Порт P2 представляет собой внутренний порт, только с R0 или R1, когда р выбран доступом XRAM MOVX.

Если вывод не сконфигурирован для мультиплексной функции, по умолчанию является контактным состоянием общего назначения ввода / вывода. Как Использование общего назначения цифрового ввода / вывода, все порты ввода / вывода имеют истинное «чтение - модификация - запись» функции, поддержка SETB или CLR бит инструкции по эксплуатации и т.п., независимо изменяя направление некоторых из ниппеля или порта электрически равной.

10.2 GPIO регистр

В этом разделе, и все биты регистров в общем виде: в нижнем регистре «п» представляет номер порта (п = 1 или 3), в то время как количество строчной «х» обозначает номер бита (х = 0,1,2,3, 4,5,6,7).

Список регистров Таблица 10.2.1 GPIO

Chinock periodipos Tadviniqui To.2.1 Of To				
РМИ	адрес	описание	Сброс значения	
P1	90h	Входные и выходные порты Р1 регистра	FFh	
P1_MOD_OC	92H	Порт выходной регистр режима Р1	FFh	
P1_DIR_PU	93H	Р1 и выдвижной Направленный порт управления позволяют зарегистрировать	FFh	
P2	A0h	Р2 выходного порта регистр	FFh	
P3	B0h	Регистрация входных и выходных портов РЗ	FFh	
P3_MOD_OC	964	Порт РЗ регистр Режим вывода	FFh	
P3_DIR_PU	97H	РЗ управления направлением порта и подтяжка включить регистр	FFh	
PIN_FUNC	C6H	Контакт Функция Регистр выбора	80h	
XBUS_AUX	A2h	Дополнительный автобус регистр настройки	00h	

выходной порт Pn Выходной регистр (Pп): Бит

	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	Pn.0 ~ Pn.7	RW	Pn.х входных и выходных выводы данных состояния бит, бита адресация	FFh	

выходной порт Pn Perистр режима (Pn _MOD_OC): Бит

	имя	доступ	описание	Сброс значен	ия
[7: 0]	Pn_MOD_OC	RW	Pn.х настройка режима выходного контакта: 0 тянуть выход; выход с открытым стоком 1-	FFh	

сторона Pn порт<u>Так что контроль и тянуть</u> может<u>Регистрация</u> (Pn_DIR_PU):

место	РМЯ	доступ	описание	Сброс значени
[7: 0]	Pn_DIR_PU	RW явл:	нется Pn.х направление контактного управляются в режиме двухтактного:	FFh
			0- ввода; 1- выходы;	
			В режиме вывода с открытым стоком является Рп.х тянуть контактный резистор	
			включить: 0- подтяжки отключена; 1 - обеспечивает нагрузочный резистор	

Pn_MOD_OC [x] и Pn_DIR_PU [x] Связанные Рп сочетание портов их, как показано ниже.

Таблица 10.2.2 композиции Регистр конфигурации порта

	таолица то.с. с композиции г егистр конфигурации порта					
Pn_MOD_OC	Pn_DIR_PU	Режимы работы описаны				
0	0	Высокое сопротивление режима ввода, штифты не тянет				
0	1	Двухтактный режим с возможностью симметричного привода, выходом, или может поглотить большой ток				

1	0	Открытый дренаж, высокий импеданс входа опорный штифт не тянет	
1	1	Квази-двунаправленный режим (стандарт 8051), выход с открытым стоком, входной опорного штифт нагрузочного	
·		резистор, высокий уровень, когда выходной сигнал от низкого вращения автоматически ведомого высокими в течен	ие двух тактовых цикло

P1 и P3 входные порты поддерживают чистый или квази-двухтактный выход и двунаправленные режимы. Нагрузочный резистор внутри каждого пальца имеет свободно контролировать, а защитный диод подключены к VCC и GND.

Фигура 10.2.1 P1.х эквивалентна схема контакты P1 порт, после удаления AIN может быть адаптирована к P3 порта. Фигура V33 к VCC после соответствующего P3.6 и P3.7, P3.6 и P3.7 т.е. тянуть или только на вход или V33 выход высокого напряжения.

P3.6 и P3.7 необязательно стандартный нагрузочный резистор (c V33), 15 кОм понижающим резистором, в котором контактный, или обеспечение сильного нагрузочный резистор 1.5К Ω (до V33). Стандартный нагрузочный резистор, который только bUSB_IO_EN = 0 режим GPIO активен, управляется битами 7 6 P3_DIR_PU; выпадающее резистор, когда bUD_PD_DIS bUC_RESET_SIE = 0 управления, независимо от bUSB_IO_EN; нагрузочный резистор к понижающим резистором 1.5К Ω преимущество сильным, в bUC_DEV_PU_EN bUC_RESET_SIE = 0, когда элемент управления, независимо от bUSB_IO_EN.

VCC | bPn_MOD_OC[x] Pn_DIR_PU[x] 70K 10K VCC Delay 2 Clock Pn[x] 0UT Pn[x]VCC bPn_MOD_OC[x] GND ► AIN[x] 0, Pn[x] 1°─ VCC IN ADC_CHAN[x]

Фигура 10.2.1 I / O Pin Эквивалент Схема

10.4 GPIO мультиплексирование и отображение

СН552 часть ввод / вывод, имеющая уплотненные функции после включения питания по умолчанию общего назначение ввод / вывод общих, после включения различных функциональных модулей, соответствующие контакты выполнены в виде соответствующих функции, соответствующей модуль штифтов.

шпилька гонг Можно выбрать регистр (PIN_FU NC):

место	РМИ	доступ	описание	Сброс значения
7	bUSB_IO_EN	RW	USB-UDP / УДМ контактный бит разрешения, то этот бит равен 0 P3.6 / P3.7 к GPIO, нагрузочный резистор управления поддержка P3_DIR_PU, поддержка P3_MOD_OC; этот бит равен 1, P3.6 / P3.7 для UDP / UDM, управляется модулем USB, P3_DIR_PU и P3_MOD_OC его недействительным	1
6	bIO_INT_ACT	R0	GPIO запрос на прерывание активный: При bIE_IO_EDGE = 0, то бит равен 1, вход GPIO активный уровень, запрос на прерывание как уровень 0 указывает, что вход является недействительным, когда bIE_IO_EDGE = 1, то прерывание бит флага как край, показывающий предмет 1 Измеряется действительный край, бит не может быть сброшен программно, только тогда, когда ур	0

			режим Off, или введите соответствующий автоматически очищается, когда программа обработки п	рерывания обс
5 b	UART1_PIN_X	RW	Штифт Картирование УАПП1 бит разрешения, то этот бит равен 0 RXD1 / TXD1 использование P1.6 / P1.7; бит является RXD1 / TXD1 использование P3.4 / P3.2	0
4 b	UARTO_PIN_X	RW	УАППО Штифт Картирование бит разрешения, используя этот бит P3.0 / P3.1 = 0 RXD0 / TXD0; бит является RXD0 / TXD0 использование P1.2 / P1.3	0
3	bPWM2_PIN_X	RW	Штифт Картирование PWM2 бит разрешения, то этот бит равен 0 PWM2 используется на P3.4; бит равен 1 P3.1 с помощью PWM2	0
2	bPWM1_PIN_X	RW	Штифт Картирование PWM1 бит разрешения, то этот бит равен 0 PWM1 использование P1.5; PWM1 этот бит 1, использование P3.0	0
1	bT2EX_PIN_X	RW	T2EX / CAP2 Штифт Картирование Включить бит, который используется P1.1 0 T2EX / CAP2, с использованием RST бит из T2EX / CAP2	0
0	bT2_PIN_X	RW	T2 / CAP1 Штифт Картирование битого разрешение, которое используется P1.0 0 T2 / CAP1; этот бит равен 1, T2 / CAP1 использование P1.4	0

Таблица 10.4.1 GPIO контактный список функций мультиплексирования

GPIO	Другие особенности: приоритетный порядок слева направо
RST	RST, bT2EX_, bCAP2_, BRST
P1 [0]	T2 / bT2, CAP1 / bCAP1, TIN0, P1.0
P1 [1]	T2EX / bT2EX, CAP2 / bCAP2, TIN1, VBUS2, AIN0, P1.1
P1 [2]	XI, RXD_/ bRXD_, P1.2
P1 [3]	XO, TXD_ / bTXD_, P1.3
P1 [4]	T2_ / bT2_, CAP1_ / bCAP1_, SCS / K6C, TIN2, UCC1, AIN1, P1.4
P1 [5]	MOSI / bMOSI, PWM1 / bPWM1, TIN3, UCC2, AIN2, P1.5
P1 [6]	MISO / bMISO, RXD1 / bRXD1, TIN4, P1.6
P1 [7]	SCK / bSCK, TXD1 / bTXD1, TIN5, P1.7
P3 [0]	PWM1_/bPWM1_, RXD / bRXD, P3.0
P3 [1]	PWM2_/ bPWM2_, TXD / bTXD, P3.1
P3 [2]	TXD1_ / bTXD1_, INT0 / bINT0, VBUS1, AIN3, P3.2
P3 [3]	INT1 / bINT1, P3.3
P3 [4]	PWM2 / bPWM2, RXD1_ / bRXD1_, T0 / BT0, P3.4
P3 [5]	T1 / bt1, P3.5
P3 [6]	UDP / bUDP, P3.6
P3 [7]	UDM / bUDM, P3.7

На столе слева направо в порядке очередности, это относится к порядку приоритета, когда множество функциональных модулей конкурируют за GPIO.

Например, когда серийное время передачи TXD для P3.1, P3.0-прежнему будет использоваться для более высокого приоритета вывода PWM1.

11, внешняя шина

CH552 чипа шина не доступна для внешнего сигнала, внешняя шина не поддерживается, но может быть доступна XRAM нормального чипа.

<u>внешний</u> в целом <u>Вспомогательная линия регистр настройки</u> устройство <u>(XBUS_</u>AUX):

мест	имя	доступ	описание	Сброс значе	ния
<u>7</u>	bUART0_TX	Индикац	ия состояния передачи R0 УАПП0 и 1 представляет собой процесс его передачи	0	
<u>6</u>	bUART0_RX	R0 УАПІ	 индикации состояния приема 1 указывает процесс принимается 	0	

<u>5</u>	bSAFE_MOD_ACT	R0 обоз	начает режим государственной безопасности, 1 указывает на текущий режим является безопас	ным О
<u>4</u>	удержание	RO защі	ищены.	0
<u>3</u>	GF2	RW GM	флаг 2: Пользователи могут определить свои собственные, может быть установлен или сброше	н прог р аммно
2	bDPTR_AUTO_INC	Включен	ие RW в MOVX_ @ DPTR DPTR автоматически увеличивается после того, как инструкция завеј	ошена О
<u>1</u>	удержание	RO защі	ищены.	0
0	DPS	RW двоі	и́ного указателя данных DPTR Бит выбора: Этот бит выбран 0 DPTR0, выбранный бит равен 1 DPTR1	0

12, Таймер Таймер

12.1 Timer0 / 1

Timer0 / 1 представляет собой два 16-разрядный таймер / счетчик, и конфигурируется TCON TMOD Timer0 и Timer1, TCON для таймера / счетчика Т0 и Т1 управления пуском и внешнего прерывания от переполнения контроль прерываний. Каждый таймер блока 16 состоит из двух 8-битовых регистров их синхронизация. Таймер 0 старшие байты счетчика TH0, tl0 это младшие байты; старшие байты счетчика таймера 1, TH1, младший байт является TL1. Таймер 1 может также быть использован в качестве генератора УАППО скорости передачи данных.

Таблица 12.1.1 Timer0 / 1 листинг соответствующего регистра

РМИ	адрес	описание	Сброс значения
TH1	8DH	Таймер1 счетчик старший байт	XXH
TH0	8Ch	Timer0 счетчик старший байт	XXH
TL1	8Bh	Таймер1 счетчик младший байт	XXH
TL0	8Ah	кол-младший байт Timer0	XXH
TMOD	89h	Timer0 / 1 Режим регистра	00h
TCON	88h	Timer0 / 1 регистра управления	00h

тайминг / Контроль счетчика 0/1 <u>система хранения</u> Unit (TCON):						
место	имя доступ		описание	Сброс значе		
7	TF1	RW	флаг прерывания TIMER1 переполнения автоматически сбрасывается после ввода таймера прерывани	я1 0		
<u>6</u>	TR1	RW	Таймер1 старт / стоп бит, набор для запуска, набор или сбрасывается с помощью программного обеспе	чения 0		
<u>5</u>	TF0	RW	Автоматически очищается после TIMER0 прерывание переполнения флага, таймер 0 прерывания	0		
<u>4</u>	TR0	RW	Timer0 старт / стоп бит, набор для запуска, набор или сбрасывается с помощью программного обеспече	ения О		
<u>3</u>	IE1	RW	INT1 Внешнее прерывание 1 флаг запроса автоматически сбрасывается после ввода прерывания	0		
2	IT1	RW	Внешнее прерывание INT1 триггер управления бит 1, бит 0 внешних прерываний уровня срабатывает; бит равен 1 Внешнее прерывание заднему фронту срабатывает	0		
1_	IE0	RW	0 INT0 внешний бит прерывания флаг запроса автоматически сбрасывается после ввода прерывания	0		
0	IT0	RW	Внешнее прерывание 0 INT0 битого управления режимом пуска, бит равен 0 уровня срабатывает внешние прерывания; бит равен 1 Внешнего прерыванием заднего фронт срабатывает	0		

<u>тайминг</u> / Счетчик 0/1 квадрат Тип хранения Устройство (ТМОD):

место	имя доступ		описание	Сброс значения
7	bT1_GATE	RW	Ворота битого разрешения, контролировать Таймер1 начало, если влияние внешнего сигнала прерывания INT1 является. Этот бит 0 таймер / счетчик 1 запускается, и независимо от INT1; этот бит равен 1 только INT1 контактный высок и TR1, чтобы начать 1:00	0
6	bT1_CT	RW, вре	мени или в режиме подсчета битов выбора, который работает в режиме синхронизации 0; бит равен 1 Падение край режиме счета, используются в качестве часов контактного Т1	0

<u>5</u>	bT1_M1	RW, таймер / счетчик	1 выбирает режим высокого	0	
<u>4</u>	bT1_M0	RW Таймер / счетчи	RW Таймер / счетчик 1 Выбор режим Low		
3	bT0_GATE	RW будет. Этот	очить бит, начать контроль TIMER0 ли влияет на внешнее прерывание сигнала INT0 бит равен 0 Таймер / счетчик 0 независимо от того, чтобы инициировать INT0; этот бит ько INT0 контактный высок и TR0 устанавливается в 1, чтобы начать	0	
2	bT0_CT		жиме подсчета битов выбора, который работает в режиме синхронизации 0; бит равен 1 ая режиме счета, с помощью штифта в качестве тактового Т0	0	
1_	bT0_M1	RW, таймер / счетчик	0 выбрать режим высокого	0	
<u>0</u>	bT0_M0	RW Таймер / счетчи	к 0 Выбор режима Low	0	

26

Таблица 12.1.2 bTn_M1 bTn_M0 и эксплуатации Выбор режима Timern (п = 0,1)

		таолица т2.1.2 btti_wii btti_wio и эксплуатации выобр режима типент (ii = 0,1)	_
bTn_M1 bTn_M0		Режим Timern работы (п = 0,1)	
0	0	0:13 битный режим таймера / счетчиком н, нижние 5 бит блока подсчета и TLn Thn состава три высоких TLN недействительных. Становится 0, когда счетчик переполнен, флаг переполнения TFN установлен, и должен быть сброшен от исходного значения 13 в	pex 1
0	1	Режим 1:16 разрядный таймер / счетчик н, блок подсчета и состав TLn Thn. Становится 0, когда счетчик переполнен, флаг переполнения TFN установлен, и должны быть сброшены из начальных значений всех 16-бит 1	
1	0	Режим 2: 8-разрядный перезарядка таймер / счетчик н, с использованием счетной единицы TLN, Thn счетной единицы в качестве нагрузки тяжелой. Граф изменяется от 1 до 8 полных полный 0, то флаг переполнения TFN установлен, и автоматически загружае	начальное значен
1	1	Режим 3: Если таймер / счетчик 0, таймер / счетчик 0 делится на две части TL0 и TH0, TL0 как 8-разрядный таймер / счетчик, занимает все контрольные биты Timer0; TH0 и сделать еще один 8-разрядный таймер использование, рода занятия Таймер1 из TR1, TF1 и прерываний ресурсов, и на этот раз Таймер1 все еще доступен, но не может использовать контроль битого TR1 и флаг переполнения TF1. Если таймер / счетчик 1, а затем войти в режим 3 будет остановить таймер / счетчик 1.	

Timem метр <u>Младшие байты (TL N_) (N = 0</u> 1):

место	имя доступ		описание	Сброс значен	ия
[7: 0]	TLn	RW	Младший байт счетчика Timern	XXH	

Timem метр <u>Большое количество байт (TH</u> N<u>) (N = 0</u> 1):

место	имя доступ		описание	Сброс значен	ия
[7: 0]	Thn	RW	Старший байт счетчика Timern	XXH	İ

12,2 Timer2

Таймер2 16-битный автоперезагрузки таймер / счетчик, и сконфигурирован через T2CON T2MOD регистр, счетчик таймера старший байт 2 TH2, младший байт является TL2. Таймер2 в качестве генератора скорости передачи данных UART0 дополнительно включает в себя захват уровня сигнала двусторонний, счетчик захвата хранится в регистре RCAP2 и T2CAP1.

Таблица 12.2.1 Timer2 соответствующий список регистров

РМИ	адрес	описание	Сброс значения
TH2	CDh	Таймер2 счетчик старший байт	00h
TL2	цх	Timer2 Счетчик Низкий	00h
T2COUNT	цх	TL2 и TH2, состоящий из 16 СФРОВ	0000h
T2CAP1H	CfH	Timer2 захвата высокого байта данных (только для чтения)	XXH
T2CAP1L	CEh	Timer2 захватить низкие байты данных A (только для чтения)	XXH
T2CAP1	CEh	T2CAP1L и T2CAP1H, состоящий из 16 СФРОВ	xxxxh

RCAP2H	Данные CI	3H перезарядка отсчет / захвата зарегистрировать 2 старший байт	00h
RCAP2L	САН перез	арядка подсчет / захват регистр данных 2 младшего байта	00h
RCAP2	Cah	RCAP2L и RCAP2H, состоящий из 16 СФРОВ	0000h
T2MOD	C9h	Таймер2 регистр режима	00h
T2CON	C8h	Timer2 Control Register	00h

<u>тайминг</u> / Контроль регистра счетчика 2 <u>Регистрация (</u> T2CON):

мест	еми	доступ	описание	Сброс значен
7	TF2	RW	При bT2_CAP1_EN = 0, флаг Timer2 перелива прерывания, когда счетчик становится Timer2 от 16 до 1:00 полного, флаг переполнения устанавливаются в 1, потребности программного обеспечения должны быть очищены полно; когда RCLK = 1 или TCLK = 1, когда этот бит не будет установлен	0
7	CAP1F	RW При	bT2_CAP1_EN = 1, флаг прерывания Таймер2 захвата, с помощью эффективного T2 триггер края, программа должна быть очищена	0
6	EXF2	RW	Timer2 флаг внешнего триггера, когда действительный край EXEN2 = 1 T2EX вызвано множеством, потребности программного обеспечения должны быть очищены	0
5	RCLK	RW	УАПП0 получают выбор часов, выбранный бит равен 0 Таймер1 импульса переполнения скорости генерации в боды, это 1 для Timer2 импульсов, генерируемых переливного бод	0
4	TCLK	RW	Выбор УАПП0 тактовой частота передачи, выбранный бит равен 0 Таймер1 переполнение скорости передачи генерации импульсов, оно равно 1 для Timer2 импульсов, генерируемых переливного бод	0
3	EXEN2	RW	T2EX триггера позволяют бит, то этот бит игнорируется T2EX 0; бит 1 включает триггер активный фронт перегруженный или при захвате T2EX	0
<u>2</u>	TR2	RW	Timer2 старт / стоп бит, набор для запуска, набор или сбрасывается с помощью программного обеспе	ечения0
1	C_T2	RW	Таймер2 источник тактового сигнала Бит выбора, бит равен 0, используя внутренние часы, бит 1 на основе спадающий фронт счета контактный Т2	0
0	CP_RL2	RW	Функция Timer2 Бит выбора, если RCLK или TCLK равен 1, то бит должен быть принужден к нулю. Этот бит равен 0 Таймер2 счетчик / таймер событий, и автоматически перезагрузить начальное значение счетчика, когда счетчик переполнения или изменение уровня T2EX; этот бит 1 включает захват Таймер2 2 функций, чтобы захватить действительный край T2EX	0

тайминг Режим / 2 Отправить Счетчик Регистрация (T2MOD):

1 (2)	имин Режим / 2 Оправить Счетчик <u>Регистрацият</u> тамор).							
мест	еми <u>с</u>	доступ	описание	Сброс значени				
7	bTMR_CLK	RW	Выбранная быстрая синхронизацией Т0 Режим / Т1 / Т2 таймер позволяет быстрые часы, бит является системой, использующим разделение частот Fsys не в качестве счетчика часов; бит равен 0, частота использования разделенных часов. Этот бит не оказывает никакого влияния на таймер кры	0				
6	bT2_CLK	RW	Таймер2 внутренних часы Битого выбора, бит 0 выбран из часов, таймер / режима Fsys / 12 стандартного счетчика, режим синхронизации УАПП0 Fsys / 4; бит = 1, выбирает из часы, таймер / режим быстрого счетчика Fsys / 4 (bTMR_CLK = 0) или Fsys (bTMR_CLK = 1), режим синхронизации УАПП0 Fsys / 2 (bTMR_CLK = 0) или Fsys (bTMR_CLK = 1)	0				
5	bT1_CLK	RW	Таймер1 внутренние часы выбора частоты бит, который выбран из 0 стандартных часов Fsys / 12; 1 выбирают из быстрых часов Fsys / 4 (bTMR_CLK = 0) или Fsys (bTMR_CLK = 1)	0				
4	bT0_CLK	RW	Timer0 внутренние часы выбора частоты бит, который выбран из 0 стандартных часов Fsys / 12; 1 выбирают из быстрых часов Fsys / 4 (bTMR_CLK = 0) или Fsys (bTMR_CLK = 1)	0				

3	bT2_CAP_M1	RW	Высокая Timer2 Выбор режима съемі	и Режим съемки: X0: 01 от падения края до края падения: с любого	0
2	bT2_CAP_M0	RW	Timer2 Режим съемки Низкий	направления в произвольном направлении, то есть изменение уровня 11: от нарастающего фронта к переднему	0 фронту
1	T2OE	RW		ения, которое отключает выходной сигнал равен 0; бит 1	0
0 b	T2_CAP1_EN	RW	, , , _	I, C_T2 = 0, T2OE = 0 при захвате режим включен, то бит ет активный фронт Т2; бит выключен 0 1 Захват	0

граф перегрузка / Сбор данных 2 депозит Устройство (RCAP2):

Бит Имя доступ			описание	Сброс значения
[7: 0]	RCAP2H	RW, это	старший байт значения перегрузочной в режиме таймер / счетчик; находится в режиме захвата CAP2 захватил старший байт таймера	00h
[7: 0]	RCAP2L	RW, это	младшие байты значения перегрузочного в режиме таймера / счетчике; находится в режиме захвата CAP2 захватил младший байт таймера	00h

Количество Timer2 Количество устройств (T2CO U NT):

Бит Имя доступ			описание	Сброс значе	ния
[7: 0]	TH2	RW теку	щего счетчика старший байт	00h	
<u>[7: 0]</u>	TL2	RW теку	щего счетчика младший байт	00h	

1 Данные захвата Timer2 (T_2CAP1): Бит

Имя доступ		описание	Сброс значен	ия
[7: 0] T2CAP1H	RO	САР1 захватил старший байт таймера	ххн	
[7: 0] T2CAP1L	RO	САР1 захватил младший байт таймера	XXH	

Функция 12,3 PWM

СН552 обеспечивает два 8-битный ШИМ, ШИМ может выбрать выход по умолчанию является низкой или высокой полярности, может быть динамически изменен ШИМ цикла выходного долг, за счет интеграции простой RC нижних частот фильтрации резистор конденсатор может получение различных выходных напряжений, соответствующее низкой скорости, цифроаналоговый преобразователь ЦАП.

Выходной долг = PWM1 PWM_DATA1 / 256, поддерживает диапазон от 0% до 99,6%. Выходной рабочий PWM2 = PWM_DATA2 /

256, поддерживает диапазон от 0% до 99,6%. На практике рекомендуется, чтобы позволить ШИМ выход контактный выходной ШИМ контактный и режим, расположенный двухтактный.

12.3.1 PWM1 и PWM2

Таблица 12.3.1 PWM1 и PWM2 списки соответствующих регистров

РММ	адрес	описание	Сброс значения			
PWM_CK_SE	9Eh	Регистр Настройка часов Делитель PWM	00h			
PWM_CTRL	9DH	PWM Control Register	02h			
PWM_DATA1	9CH	регистр данных PWM1	XXH			
PWM_DATA2	9Bh	регистр данных PWM2	XXH			

данные PWM2 Регистрация (PWM_DAT_A2):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	PWM_DATA2	хранени	я текущих данных RW PWM2, Выход PWM2 скважность активного уровня = PWM_DATA2 / 256	ХХН	

данные PWM1 Peгистрация (PWM DAT A1):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	PWM_DATA1	хранени	я текущих данных RW PWM1, Выход PWM1 скважность активного уровня = PWM_DATA1 / 256	XXH	

PWM контроль Система регистра (PWM_CTR L):

Бит	РМИ	доступ	описание	Сброс значен			
<u>7</u>	bPWM_IE_END	RW Это	г бит равен 1, так что конец цикла ШИМ или буфер пустой прерывания MFM	0			
6	bPWM2_POLAR	Полярно	ости выхода управления RW PWM2, бит равен 0, низкое значение по умолчанию, существует вы Эффект, бит является высоким по умолчанию, активный низкий	сокий Фовень			
5	bPWM1_POLAR	Полярно	сти выхода управления RW PWM1, бит равен 0, низкое значение по умолчанию, существует вь Эффект, бит является высоким по умолчанию, активный низкий	ісокий Фовень			
4	bPWM_IF_END	RW	Очистить конец цикла ШИМ прерывания бит флага, который прерывает 1 означает, записи 1, чтобы очистить или перезагрузить PWM_DATA1 данных	0			
3	bPWM2_OUT_EN	RW	включен выход PWM2, этот бит 1 включает выход PWM2	0			
2	bPWM1_OUT_EN	RW	включен выход PWM1, этот бит 1 включает выход PWM1	0			
<u>1</u>	bPWM_CLR_ALL	RW Это	г бит сбрасывается в отсчету PWM1 и PWM2 и FIFO, потребности программного обеспечения д	олжны б ыть оч			
0	удержание	RO защі	ищены.	0			

PWM часы разделены <u>Регистр установки частоты</u> (<u>PWM_C</u> K_SE):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	PWM_CK_SE	Набор Р	W делитель тактовой частоты ШИМ делитель	00h	

12.4 Функция таймера

12.4.1 Timer0 / 1

(1) Установка таймера T2MOD выбран внутренняя тактовая частота, если bTn_CLK (п = 0/1) часы, соответствующие 0, то Timer0 / 1

Является ли Fsys / 12, если bTn_CLK является 1 или bTMR_CLK = 0 1 Выберите Fsys / 4 или Fsys как часы. (2), рабочий режим настройки ТМОD таймера.

разрядный таймер режима 0:13 / счетчик

На фигуре 12.4.1.1 Timer0 / 1 Режим 0

разрядный таймер режима 1:16 / счетчик

На фигуре 12.4.1.2 Timer0 / 1 Режим 1

Режим 2: 8 автоперезагрузки таймер / счетчик

На фигуре 12.4.1.3 Timer0 / 1 Режим 2

Режим 3: Timer0 на два отдельных 8-разрядный таймер / счетчик, и управляющие биты Таймер1 заема TR1; TR1 Таймер1 заменен биты управления заимствованы ли активировать режим 3, режим 3 входит Таймер1 Таймер1 останавливается.

Режим фиг 12.4.1.4 Timer0 3

- (3), установить таймер / счетчик и начальное значение TLn Thn (п = 0/1).
- (4) предусмотрен в TCON битой TRn (n = 0/1) с или остановить таймер / счетчик может быть (п = 0/1), или запрос бита через TFN

Через прерывание обнаруживается.

12.4.2 Timer2

Таймер2 16-битный режим перезагрузки таймер / счетчик:

(1), установить бит в RCLK и TCLK T2CON равен 0, то режим генератора без выбранной скорости передачи данных. (2), при условии, в T2CON C_T2 битого 0 выбирается с помощью внутренних часов, перейти на стадию (3); 1 также может быть установлено, чтобы выбрать задний фронт контактного T2

В качестве счетчика часов, пропустить стадию (3).

(3), при условии, T2MOD выбор таймера внутренней тактовой частоты, если bT2_CLK равен 0, то часы Таймер2 Fsys / 12, такие, как

Ecли bT2_CLK равен 1, то 1 или bTMR_CLK = 0 Выбор Fsys / 4 или Fsys как часы. (4), при условии, T2CON CP_RL2 бит в 0, чтобы выбрать 16-битный таймер перезагрузки Таймер2 / счетчик функций. (5), и RCAP2H RCAP2L установить, чтобы перезагрузить значение переполнения таймера устанавливается как значение таймера TL2 и TH2 (как правило, с

RCAP2L и RCAP2H же), к набору TR2, открытый Таймер2. (6), или путем запроса прерывания TF2 таймера 2 можно получить текущее состояние таймера / счетчика.

На фигуре 12.4.2.1 Таймер2 16-битный перезарядка таймер / счетчик

Режим вывода часы Timer2:

Ссылка 16-битный режим перезагрузки таймер / счетчик, а затем установить бит в T2OE T2MOD равен 1, так что из выходного контактного T2 TF2 тактовой частотой, разделенной на два.

Режим генератора последовательной скорости передачи Таймер2 0:

(1), предоставляются в T2CON C_T2 0, чтобы выбрать внутренние часы может быть установлено в 1, чтобы выбрать спадающий фронт тактового сигнала контактного Т2, корень
Он должен быть установлен в T2CON TCLK и RCLK один бит или 1: 1, в котором выбор режима генератора скорости передачи в бодах. (2), при
условии, T2MOD выбор таймера внутренней тактовой частоты, если bT2_CLK равен 0, то часы Таймер2 Fsys / 4; а

Ecли bT2_CLK равен 1, то 1 или bTMR_CLK = 0 Выберите Fsys / 2 или Fsys часов. (3), и RCAP2H RCAP2L установленное значение для перетоков таймера перезагрузки, 1 установлен TR2, открытый Таймер2.

Фигура 12.4.2.2 Timer2 UART0 генератор частоты бод

Timer2 режим захвата двухканальный:

(1), установить бит в RCLK и TCLK T2CON равен 0, то режим генератора без выбранной скорости передачи данных.

- (2), при условии, в T2CON C_T2 битого 0 выбирается с помощью внутренних часов, перейти на стадию (3), также может быть установлено, чтобы выбрать контактное падение T2 Край в качестве счетчика часов, пропустить стадию (3).
- (3), при условии, T2MOD выбор таймера внутренней тактовой частоты, если bT2_CLK равен 0, то часы Таймер2 Fsys / 12, такие, как Если bT2_CLK равен 1, то 1 или bTMR_CLK = 0 Выбор Fsys / 4 или Fsys как часы. (4), и режим захвата соответствующей кромки при условии, T2MOD bT2_CAP_M1 bT2_CAP_M0 выбран бит. (5), набор, выбор функции захвата T2EX контактный Timer2 является CP_RL2 T2CON бит. (6), TL2 и TH2 устанавливаются для значения таймера, установленного на 1 TR2, открытый Timer2.
- (7), когда захват завершается CAP2, RCAP2L RCAP2H сэкономить время и значение счетчика TL2 и Th2, и EXF2 набора, в результате чего

 Прерывание, разница между следующим захватом и RCAP2H RCAP2L с последним захвачена RCAP2L и RCAP2H, сигналом шириной между двумя действительными краями.
- (8), если бит C_T2 T2CON равен 0, а бит bT2_CAP1_EN T2MOD равен 1, то команда включает Таймер2

 Захват штифтового Т2, когда CAP1 захват завершен, T2CAP1L T2CAP1H сохраняется, а затем значение счетчика TL2 и TH2, и множество CAP1F, генерируется прерывание.

Режим захвата фиг 12.4.2.3 Timer2

13, UART Универсальный асинхронный приемопередатчик

13,1 УАПП Профиль

чип CH552 обеспечивает два последовательных асинхронных полнодуплексный: UART0 и uart1. CH551 обеспечивают только от УАППО. MCS51 УАППО стандартный последовательный порт, который передается и принимается SBUF доступа к данным, физически отделены друг от приема / передачи зарегистрировать достижения. SBUF загружает регистр данных передачи записывается для чтения SBUF операции, соответствующей приемные буферного регистр. MCS51 серийный УАПП1 упрощается, которые получают и доступ посылать данные SBUF1 физически отделены друг от приема / передачи регистра

достижения. SBUF1 регистр записи данных передачи загружается, чтобы SBUF1 операции чтения, соответствующей приемной буферный регистр. По сравнению УАППО УАПП1 многопроцессорной удаляли и фиксировали режим связи скорость передачи данных, независимый генератор скорости передачи УАПП1.

13.2 UART Регистры

Таблица 13.2.1 UART связанного список регистров

		·	
РМИ	адрес	описание	Сброс значения
SCON	98h	Регистр управления UART0	00h
SBUF	99h	регистр данных УАПП0	XXH

SCON1	C0h	Регистр управления UART1	40h
SBUF1	C1H	регистр данных УАПП1	XXH
SBAUD1	C2h	УАПП1 скорость передачи данных регистра настройки	XXH

33

13.2.1 UART0 Описание регистров

УАПП 0 управляющий регистр депозит Устройство (SC ON):

<u>YAHH</u> (управляющий	<u>регистр</u> депо	зит <u>Устройство (SC</u> ON):		
Бит	Имя Достуг		описание	Сброс значен	ия
7	SM0	RW	УАПП0 рабочий режим выбора бита 0, этот бит выбирает 8-битовых данных равно 0 асинхронной передачи; 9-битовые данные бит асинхронную связь 1	0	
6	SM1	RW	Выбор режима работы УАППО бит 1, бит 0 установлен в фиксированной скорости передачи данных; 1-разрядная переменная скорость передачи данных устанавливается, генерируется с помощью таймера Т1 ил	0 и Т2	
5	SM2	RW	UART0 многопроцессорных биты управления связью: Когда режимы 2 и 3 получают данные, когда 1 CM2 =, если RB8 равен 0, то RI не установлен, принятый в силе, если RB8 равен 1, то RI установлен, прием действителен; SM2 = 0, независимо от RB8 является 0 или 1, настроены на прием бит данных RI, получая активным; когда режим 1, если SM2 = 1, то только получает действительную стоп-бит, прием действителен; Когда режим 0, SM2 бит должен быть установлен в 0	0	
<u>4</u>	REN	RW	УАППО позволило получить контрольный бит, который является 0 получить отключено; 1 в этот бит позволяет	приемн Q ку	
3	TB8	RW	9-ый бит данных передачи в режиме 2 и 3, ТВ8 для записи данных для передачи бита 9-й, бит четности может быть, в мульти-машинного интерфейса с, используется для представления адрес хоста или посланный байт байты данных, ТВ8 = 0 данные, ТВ8 = 1 адрес	0	
2	RB8	RW	Девятый бит принятых данных, и режим 2. 3, 9-й бит RB8 для хранения принятых данных; когда режим 1, если SM2 = 0, то RB8 для сохранения принятого стоп-бит; в режиме 0 не использовать RB8	0	
1	TI	RW, пер	едает флаг прерывания, байт данных посылается после набора с помощью аппаратных средств, программного с ноль	беспе Фения по	гребности очистить
0	Род-Айле	нд RW полу	учить прерывания битовый флаг, байт данных, полученных с помощью действительный набор аппаратных средс ЯСНО	тв, нео б кодимо	е программное обеспє

Выбор режима Таблица 13.2.1.1 УАППО

<u>SM0</u>	SM1	описание
0	0 0 Реж	им, режим регистр сдвига, скорость передачи фиксируется Fsys / 12 0
	1, 8-бит	ный режим асинхронной передачи, с переменной скоростью передачи данных, генерируемый таймером Т1 или
T2 1	2,9 0-бі	т асинхронного режима связи, скорость передачи равна Fsys / 128 (SMOD = 0) или Fsys / 32 (SMOD = 1) 1
	Режим	асинхронной передачи 3,9 1 бит, с переменной скоростью передачи данных, генерируемый таймером Т1 или Т2

В режиме 1 и 3, когда RCLK = 0, и когда TCLK = 0, скорость передачи данных УАПП0 генерируется Т1 таймера. Т1 должен быть установлен в режим 2 8 с режимом таймера автоматической перезагрузки, bT1_CT bT1_GATE и оба должны быть 0, следующий случай категории часы.

таблица 13.2.1.2 Производящие рассчитывается путем T1 UART0 бода

_									
bTMR_CLK	bT1_CLK	SMOD	описание						
1	1	0	TH1 = 256 - Fsys / 32 / бод						
1	1	1	TH1 = 256 - Fsys / 16 / бод						
0	1	0	TH1 = 256 - Fsys / 4/32 / бод						
0	1	1	TH1 = 256 - Fsys / 4/16 / бод						

Х	0	0	TH1 = 256 - Fsys / 12/32 / бод
X	0	1	TH1 = 256 - Fsys / 12/16 / бод

В режиме 1 и 3, когда RCLK = 1 или TCLK = 1, скорость передачи данных УАППО генерируется с помощью таймера Т2. Т2 должен быть установлен в 16-битного генератор скорости передачи данных режима автоперезагрузки, C_T2 CP_RL2 и оба должен быть 0, следующий случаем категории часы.

Скорость передачи данных Таблица 13.2.1.3 УАППО генерируется по формуле Т2

bTMR_CLK	bT2_CLK	описание
1	1	RCAP2 = 65536 - Fsys / 16 / бод
0	1	RCAP2 = 65536 - Fsys / 2/16 / бод
Х	0	RCAP2 = 65536 - Fsys / 4/16 / бод

данные UART0 Регистрация (SBU F): Бит

	имя доступ		описание	Сброс значени
[7: 0]	SBUF	RW	Данные УАПП0 регистр, включая отправку и прием на два физически отдельном регистре. Передающие данные, соответствующие данным записи в регистр SBUF; SBUF,	ххн
			соответствующий считывать данные из регистра приемника данных,	

13.2.2 UART1 Описание регистров

<u>УАПП</u> 1 <u>управляющий регистр</u> депозит <u>Устройство (SC</u> ON1):

	· · · · · · · · · · · · · · · · · · ·	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>		_
Бит	Имя Доступ		описание	Сброс значен	<u> Ри</u>
7	U1SM0	RW	УАПП1 выбор режима бит, который выбирает 8-бит асинхронную передачу данных равно 0; бит выбирает 9-битовые данные асинхронной связи 1	0	
<u>6 Re</u>	served RO зац	цищены.		1	
<u>5 U</u>	1SMOD	RW Выб	ерите UART1 Скорость передачи данных: 0 медленный режим; 1 Быстрый режим	0	
<u>4</u>	<u>U1REN</u>	RW	Разрешить UART1 получить контрольный бит, бит 0 получить отключено; 1 этого бита позволяет приемнику	0	
3	U1TB8	RW, дев	ятый бит данных передачи, когда данные модели 9-битовые, ТВ8 для записи первой передачи данных 9, она может быть бит четности, в 8-битном режиме, игнорируя ТВ8	0	
2	U1RB8	RW, 9-ы	й бит принятых данных, в режиме 9-битового, RB8 для хранения первых данных, полученных 9; когда 8-битный режим, RB8 для сохранения принятого стоп-бит	0	
1	U1TI	RW, пер	едает флаг прерывания, байт данных посылается после набора с помощью аппаратных средств, программного о ноль	обеспе Фния по	гребности очистить
0	U1RI	RW полу	чить прерывания битовый флаг, байт данных, полученных с помощью действительный набор аппаратных средс ЯСНО	тв, нео б ходимо	е программное обеспо

Скорость передачи данных УАПП1 устанавливается SBAUD1 генерируется, разделены на два типа в зависимости от выбора U1SMOD: Когда U1SMOD = 0, когда, SBAUD1 = 256 - Fsys / 32 / бод; при U1SMOD = 1, SBAUD1 = 256 -

Fsys / 16 / скорость передачи данных.

данные UART1 Регистрация (SBU F 1):

место	имя доступ		описание	Сброс значения
			Данные UART1 регистр, включая отправку и прием на два физически отдельном регистре.	
[7: 0]	SBUF1	RW	SBUF1, соответствующие записи данных в данные передачах регистр; SBUF1	XXH
			соответствующие для чтения данных из регистра приемника данных,	

13.3 приложения UART

UART0 Применение:

(1) генератор скорости передачи данных Выбора УАППО может быть выбран из Т1 или Т2 таймера и настройки счетчика. (2), запускает таймер

Т1 или Т2.

(3), при условии, что SCON SM0, SM1, SM2 выбрать режим работы последовательного порта 0. REN установлен на 1, позволяет принимать UART0. (4), вы можете установить прерывание последовательного порта или посетить RI и TI прерывание статуса.

(5), чтение SBUF достичь последовательной передачи и приема данных, что позволяет получить серийные боды сигнала ошибки скорости менее чем на 2%.

UART1 Применение:

- (1) Скорость передачи данных и установить выбранный U1SMOD SBAUD1.
- (2), при условии, что порт 1 Выбор режима U1SM0 SCON1. U1REN набор 1, позволяет принимать uart1. (3), вы можете установить последовательный порт 1 прерывание или посетить U1RI и U1TI прерывание статуса.
- (4), читатель SBUF1 достичь последовательной передачи и приема данных, что позволяет получить серийные боды сигнала ошибки скорости менее чем на 2%.

14, синхронный последовательный интерфейс SPI

14,1 SPI Введение

Чип СН552 обеспечивает интерфейс SPI для высокоскоростных синхронных передачи данных между периферийными устройствами. (1), поддерживает режим мастер и режим ведущий-ведомый ведомый, (2), а 0 Режим поддержки режима синхронизации 3; (3), дополнительный провод 3 провода полнодуплексный или полудуплексный режим 2; (4), в качестве альтернативы передается MSB первой или LSB, нижняя часть верхнего первой передачи; (5), тактовая частота регулируется до почти половины частоты системы; и (6), построенный 1 байт 1 байт FIFO, получают и передают FIFO;

(7), от первого байта поддержки режима машины поджатия данных для хоста, чтобы получить первые байты данных немедленно возвращаются.

14.2 SPI регистр

Таблица 14.2.1 SPI связанный список регистров

РМИ	адрес_	описание	Сброс значения
SPI0_SETUP	FCh	регистр настройки SPI0	00h
SPI0_S_PRE	FBh	SPI0 в режиме ведомого регистр данных запрограммированных	20h
SPI0_CK_SE	FBh	SPI0 часы регистр настройки делителя	20h
SPI0_CTRL	FAH	Регистр управления SPI0	02h
SPI0_DATA	F9h	SPI0 в регистр данных приемопередатчика	XXH
SPI0_STAT	F8H	Регистр состояния SPI0	08h

$\underline{\mathsf{SPI0}}$ Настройка регистра ($\underline{\mathsf{SPI0}}\underline{\mathsf{S}}$ $\underline{\mathsf{E}}\underline{\mathsf{TUP}}$):

место	РМИ	доступ	описание	Сброс значения
7	bS0_MODE_SLV	RW	SPI0 ведущий-ведомый бит выбора режима, который является мастер-режим 0 SPI0; SPI0 этот бит представляет собой режим из режима машины / устройства из	0
6	bS0_IE_FIFO_OV	Режим Г	RW, ведомого буфер FIFO переполнения разрешения прерывания бит, то этот бит 1 включает F Переполнение прерывания; бит равен 0, то прерывание переполнения FIFO не генерируется	FO 0
5	bS0_IE_FIRST	RW	Получив первые байты ведомого режима полного прерывания битого разрешения, то прерывание срабатывают, когда первые байты данных, принятые от ведомого режима на 1 биты, не генерирует прерывание, когда этот бит 0 первых байты принимаемых	0

4	bS0_IE_BYTE	RW, пер	едача байта данных полное прерывание битого разрешения, то этот бит обеспечивает полную Для прерывания; бит прерывания завершения передачи 0 байт не генерируется	переда9у 1 бай
3	bS0_BIT_ORDER	RW бить	ых данных байта управлени синхронизации бит, бит старшая бит равен 0, то предыдущий макси LSB наименьший значащий бит первого к	мум; б 0 т
2	удержание	RO защі	ицены.	0
1	bS0_SLV_SELT	R 0 выб	ран из режима ведомого листья активного состояния бита, который равен 0 указывает, что не в ; Этот бит равен 1, то выбирается текущее состояние	ыбран 0
0 bs	SO_SLV_PRELOAD	R0 Пред	варительная загрузка данных из бита состояния ведомого режима, который является 1 указыва После того, как не было передано предварительно загруженным состояние до выбранных деі	

SPI0 часы регистр установки с частотным разделением каналов устройство (SPI0 _CK_SE):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	SPI0_CK_SE	Установ	ка коэффициента деления тактовой режиме хоста SPI0 RW	20h	

SPI0 раб_Данные предустановленных режима Отправить_Регистрация (SPI0_S_PRE):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	SPI0_S_PRE	RW, пре	дварительно загружены данные, переданные из первого режима ведомого	20h	i i

SPI0 Регистр управления (SPI0_C T_RL): Бит

	имя	доступ	описание	Сброс значени
7	bS0_MISO_OE	RW	SPI0 выход MISO включить бит управления, который позволяет выход 1; 0 отключает вывод бита	0
6	bS0_MOSI_OE	RW	SPI0 выход MOSI включить бит управления, который позволяет выход 1; 0 отключает вывод бита	0
5	bS0_SCK_OE	RW	Выход SPI0 SCK включить бит управления, который позволяет выход 1; 0 отключает выходной сигнал бита	0
4	bS0_DATA_DIR	RW	SPI0 управления направлением бит данных, бит выходных данных равен 0, так как только записи FIFO, в силу операции, начиная с передачи SPI; битовый входные данные для записи или чтения FIFO являются активными, начать передачу SPI	0
3	bS0_MST_CLK	RW	SPI0 бит тактовое управление режимом, бит 0 в режиме 0, по умолчанию в режиме ожидания SCK низкий уровень;. Этот бит 3 представляет собой режим, высокая SCK по умол	0
2	bS0_2_WIRE	RW	SPI0 2-проводный режим полудуплексной бит разрешения, то этот бит равен 0 3 провода полнодуплексный режим, в том числе SCK, MOSI, MISO; бит является полудуплексным режимом 2-проводным, в том числе SCK, MISO	0
<u>1</u>	bS0_CLR_ALL	RW Это	г бит сбрасывается модуль SPI0 1 флаг прерывания и FIFO, должны быть очищен с помощью п	рограминого обе
0	bS0_AUTO_IF	RW	Разрешить байты битого разрешения автоматически сбрасываются завершения приема прерывания флага по FIFO эффективной работы, этот бит автоматически очищается один байт получен, когда буфер FIFO действительна запись Полного Флаг прерывания S0_IF_BYT	0

данные SPI0 Регистр приемопередатчика (ИП Я 0 DAT A): Бит

	РМИ	доступ	описание	Сброс значен	<u>ия</u>
[7: 0]	SPI0_DATA	FIFO-RV	V, включает в себя два физически отдельной передачи и приема, считанную операцию, соответ Буфер FIFO приема данных; данные передачи, соответствующие записи FIFO, эффективные		

	SPI может инициировать передачу	

<u>SPI0 Регистр состояния (SPI0_S</u> Т<u>AT): Бит</u>

	имя	доступ	описание	Сброс значен	<u>ия</u>
7	S0_FST_ACT	R 0 пред	ставляет собой текущее состояние бит равен 1, то первый байт принимается от ведомого режи	ма для О заверш	ения
6	S0_IF_OV	RW	Режим ведомого FIFO флаг переполнения бит, который указывает на то, что 1 переполнение FIFO, прерывание, бит равен 0, нет прерывания. бит Прямой доступ очищаются или запись 1, чтобы очистить. Когда bS0_DATA_DIR = 0, когда передающий буфер FIFO опорожнить прерывания триггера bS0_DATA_DIR = 1, когда приемный буфер FIF	0 О заполнен при	срабатывании прерыва
5	S0_IF_FIRST	RW, пер	вый байт, полученный от ведомого режима для завершения прерывания бит флага, который пр Получение первого байта. бит Прямой доступ очищается или написать 1, чтобы очистить	едстав0ен	
4	S0_IF_BYTE	RW	Передача данных байт полный флаг прерывания бит, который представлен передачи одного байта. Прямой битовый доступ очищается путем записи 1 или сброшен, или путем сброса в буфер FIFO bS0_AUTO_IF = 1 эффективную работу	0	
3	S0_FREE	R0	SPI0 Холостой бит флага, который указывает на то, что 1 нет SPI сдвига, как правило, в период между нейтральным байтов данных	1	
2	S0_T_FIFO	R0	SPI0 передачи FIFO-счетчика Допустимые значения 0 или 1	0	
1_	удержание	R0 3ape	зервировано	0	
<u>0</u>	S0_R_FIFO	R0	SPI0 получать буфер FIFO рассчитывать Допустимые значения 0 или 1	0	

Формат 14.3 SPI-транспортный

SPI Мастер Режим 0 и режим 3 поддерживает два формата передачи могут быть обеспечены посредством управления SPI регистром бита выбора bSn_MST_CLK в SPIn_CTRL, CH552 MISO всегда пробы по нарастающему фронту сигнала CLK. Формат передачи данных показано на фиг.

Mode 0: bSn_MST_CLK = 0

Фигура 14.3.1 SPI Временная диаграмма режима 0

Режим 3: bSn_MST_CLK = 1

Фигура 14.3.2 SPI Временная диаграмма Режим 3

14.4 Конфигурация SPI

Конфигурация мастер-режима 14.4.1 SPI

Ведущий режим SPI, SCK и выходные контактной последовательные часы, выбор микросхема выходных контакты могут быть заданы как любой контактный ввод / выводом.

шаги конфигурации, что SPI0:

(1), при условии, SPI, часы регистра настройки делителя SPI0_CK_SE, расположенных тактовой частоты SPI. (2), при условии установки регистра bS0_MODE_SLV SPI бит 0 SPI0_SETUP настроен на режим хоста. (3), при условии, что регистр управления SPI бит bS0_MST_CLK SPI0_CTRL, в соответствии с режимом спроса установлен на 0 или 3. (4), при условии, что биты регистра управления SPI bS0_SCK_OE SPI0_CTRL и bS0_MOSI_OE 1, bS0_MISO_OE бит равен 0,

Установите порт Р1 направления bSCK, выход bMOSI, вход bMISO, выход и выбор микросхемы булавку.

Процесс передачи данных:

(1), SPI0_DATA записи регистра, запись данных, подлежащих передаче в FIFO, автоматически начинает передачу SPI. (2) ждет S0_FREE 1, передача завершена, может продолжать посылать следующие байты.

процесс приема данных:

(1), зарегистрировать записи SPI0_DATA, произвольные данные записываются в FIFO, например, 0FFh, чтобы инициировать передачу SPI. (2) ожидает в течение S0_FREE 1, в завершении приема, могут быть получены SPI0_DATA чтения полученных данных. (3), если ранее bS0_DATA_DIR было установлено, то операция чтения будет начать следующую передачу SPI, или иным образом отключить.

14.4.2 ведомого SPI конфигурации режима

Только SPI0 поддерживает режим ведомого, ведомый режим, SCK контактный последовательный тактовый для SPI-мастер приемной связи. (1), при условии, SPI0 bS0_MODE_SLV бит регистра установлен в 1 SPI0_SETUP, сконфигурирован как ведомый режим. (2), при условии, SPI0 bS0_SCK_OE биты в регистре управления и bS0_MOSI_OE SPI0_CTRL 0, чтобы установить bS0_MISO_OE

1, P1 порт направление bSCK, bMOSI и bMISO булавки и выбора микросхемы ввода. Когда чип SCS выбора активен (низкий), выход MISO автоматически включается. Кроме того, рекомендуется установить MISO-контактный входной режим высокого импеданса (P1_MOD_OC [6] = 0, P1_DIR_PU [6] = 0), что выходной сигнал MISO-во не чип выбора является недопустимым, чтобы облегчить общий SPI шину. (3), возможно, SPI данные настройки режима ведомого предустановленные регистре SPI0_S_PRE, в первый раз автоматически загружается в буфер выбора микросхемы

Для внешнего вывода. После восемь последовательных тактового сигнала, то есть, первые байты обмен данных передачи был закончен, CH552 внешний SPI, посланным хостом для получения первого байта данных (код команды может быть), внешней данные предустановленной полученным SPI мастер обмен SPI0_S_PRE (возможно, состояние значение). SPI0_S_PRE 7-битовый регистр автоматически будет загружен во время низкого уровня после чипа SCK SPI выбрать для штифта MISO для режима SPI 0, если предварительно SPI0_S_PRE CH552 бита 7, то хост будет выбран во внешнем чипе SPI SPI но тем не менее эффективная передача данных, можно получить заданное значение бита 7 SPI0_S_PRE, запрашивая штифт MISO, так что значение может быть получено бит 7 SPI0_S_PRE действителен только чип SPI выберите биты.

Процесс передачи данных:

S0_IF_BYTE запрос или ожидание прерывания, данные SPI после передачи каждого байта, регистр SPI0_DATA записи, запись данных, подлежащая передаче в FIFO. Или ждать S0_FREE от 0 до 1, может продолжать посылать следующие байты.

процесс приема данных:

S0_IF_BYTE запрос или ожидание прерывания, данные SPI после передачи каждого байта, SPI0_DATA чтения регистра, принятых данных, полученных из FIFO. Запросы S0_R_FIFO может знать. существуют ли оставшиеся байт FIFO.

15, аналого-цифрового преобразователя АЦП и компаратора напряжения (сн551 н.А.)

О 15,1 АЦП

Чип CH552 обеспечивает 8-битовый аналого-цифровой преобразователь, содержащий компаратор напряжения и модули АЦП. Преобразователь имеет четыре аналоговых входных каналов, в режиме разделения времени может собирать, поддержка VCC от 0 до диапазона аналогового входного напряжения.

15,2 ADC Регистрация

Таблица 15.2.1 АЦП список соответствующих регистров

РМИ	адрес	описание	Сброс значения
ADC_CTRL	80h	ADC Control Register	x0h
ADC_CFG	9AH	Регистр конфигурации АЦП	00h
ADC_DATA	9Fh	регистр данных АЦП	XXH

Регистр управления АЦП<u>Регистрация (ADC_CTRL):</u>

гегистр управл	тения АЦП <u>Регистрация (ADC_CTRL</u>	<u></u>	7		•
место	РМИ	доступ	описание	Сброс значен	ия
	 		Напряжение результат компаратора выходной бит, который указывает на то, что		ĺ
7	КМФО	RO	0 напряжение ниже, чем напряжение на инвертирующем входе на	х	·
			инвертирующий вход; бит равен единице, положительное входное напряжение выш	іе, чем напряжі	ние на инвертирующий
6	CMP_IF	RW нап	ряжения флаг изменения результата компаратора, который немного Сравнение показ Результатом является изменение, прямой бит доступа очищается	ывает Ф апряже	ние
5	ADC_IF	RW	преобразования АЦП полный флаг прерывания бит равен 1 указывает на	0	
	_	'	преобразование АЦП завершено, прямой бит доступа очищается		İ
4	ADC_START	RW	управления АЦП стартовый бит, который установлен для запуска преобразования	0	
	7.50_0.7.11.1	''''	АЦП, бит АЦП автоматически сбрасывается после завершения преобразования		ĺ
3	CMP_CHAN	RW нап	ряжения компаратора инвертирующий входной терминал выбор: 0-AIN1; 1-AIN3	0	
2	удержание	R0 3ape	вервировано	0	
1	ADC_CHAN1	высокий	канал терминал и АЦП входного напряжения компаратора RW, инвертирующий вход	0	
0	ADC_CHAN0	RW нап	ряжения компаратора инвертирующий вход и АЦП входной канал низкого	0	

таблица <u>15.2.1 Напряжение</u> Компаратор СМР положительный вход АЦП и входной канал

таблицы ADC_CHAN	1 ADC_CHAN0	Выбор напряжения компаратора инвертирующий вход и АЦП входной канал					
0	0	AIN0 (P1.1)					
0	1	AIN1 (P1.4)					
1	0	AIN2 (P1.5)					
1	1	AIN3 (P3.2)					

Регистр конфигурации АЦП <u>Регистрация (ADC_CFG):</u>

место	РМИ	доступ	описание	Сброс значени
<u>[7: 4]</u>	удержание	R0 3ape	зервировано	<u>0000b</u>
3	ADC_EN	RW	Регулятор мощности модуля разрядный АЦП, который указывает источник питания выключен модуль АЦП 0, спи; 1 указывает бит включен	0
2	CMP_EN	биты упן	равления мощностью RW, компаратор напряжения, что указывает на напряжение бли Мощность компаратор переходит в спящий режим, 1 указывает бит включен	зко к 00
1	удержание	R0 3ape	зервировано	0
0	ADC_CLK	RW	опорного АЦП тактовой частоты бит выбора, который является медленным часы выберите 0, каждый из АЦП 384 циклов потребность Fosc; выбор бита быстрой синхронизации равно 1, каждый из АЦП необходим 96 циклов Fosc	0

АЦП регистр данных (ADC_DATA):

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	ADC_DATA	RO	Результаты выборки данных ADC	XXH	

Функция 15,3 АЦП

ADC отбора проб шаги настройки режима:

- (1), при условии, ADC_EN ADC_CFG регистр бит равен 1, открытие модуля АЦП при условии, bADC_CLK выбранной частоты. (2), при условии, ADC CTRL регистр ADC CHAN1 / 0, для выбора входного канала.
- (3), по желанию, ясно, флаг ADC_IF. С другой стороны, если вы используете режим прерывания, необходимо также, чтобы это разрешить прерывания. (4), при условии, ADC_CTRL регистр adc_start, начать преобразование АЦП.
- (5), ожидание ADC_START становится равным 0, или ADC_IF это множество (очищается, если раньше), представляет собой преобразование АЦП, по ADC_DATA чтения данных. 255 аликвоты значения данных входного напряжения по отношению к VCC напряжения источника питания, например, данные результата 47, входное напряжение подходы, описанные 47/255 VCC напряжения. Если напряжение питания VCC не определяется, а другой может быть измеренная величина определяется опорным напряжением, то расчетное отношение измеренного значения входного напряжения и напряжения питания VCC. (6), если вы установите еще раз в ADC_START АЦП преобразование может начаться.

Напряжение шаги настройки режима компаратора:

- (1), при условии, CMP_EN ADC_CFG регистр бит равен 1, то напряжение включения модуля компаратора. (2), при условии ADC_CTRL регистра ADC_CHAN1 / 0 и CMP_CHAN, выбирая положительную фазу и инвертирующий вход. (3), по желанию, снимите флаг CMP_IF.
- (4), в любое время вы можете запросить статус КМФО бит, чтобы получить результаты для текущего компаратора. (5), если СМР_IF становится 1, результат изменений компаратора.

Указанная выбранный аналоговый входной канал, он должен быть установлен в контактах GPIO в режим высокого импеданса, или открытого сток режим выхода и состоянии выхода 1 (что соответствует высокому входному импедансу), Pn_DIR_PU [x] = 0, и рекомендации подтягивания и тянуть вниз резисторы прочь.

16, контроллер USB

16.1 USB контроллеры

CH552 встроенный контроллер USB и USB-приемопередатчик, следующие характеристики:

- (1), поддерживает функции USB-устройств устройств, поддерживает USB 2.0 полная скорость или низкой скорости 12Mbps 1.5Mbps;
- (2) поддерживает передачу управления USB, основная часть передачи, прерывание передачи, передачи синхронной / в реальном масштабе времени, (3), поддерживает максимум 64 байта пакет, встроенный в FIFO, поддержка прерываний и DMA.

CH552 регистры USB связанных разделить на две части: USB USB регистры конечных точек и глобальные регистры.

16.2 Глобальный регистр

Таблица 16.2.1 USB глобальный список регистров (серый контроль масштаба по bUC_RESET_SIE сброса)

Название	адрес	описание	Сброс значения
USB_C_CTRL	91h	регистры управления USB типа С каналом сконфигурированы	0000 0000b
USB_INT_FG	D8h	USB регистр флаг прерывания	0010 0000b
USB_INT_ST	D9H	USB прерывания регистр состояния (только для чтения)	00xx xxxxb
USB_MIS_ST	Дах	Регистр Разное статус USB (только для чтения)	XX10 1000b
USB_RX_LEN	DBh	Получение длины USB регистра (только для чтения)	0ххй ххххb
USB_INT_EN	E1h	USB регистр разрешения прерывания	0000 0000b

USB_CTR	L E	E2H	Регистр управления USB	0000 0110b
USB_DEV_A	AD E	E3h	USB Device Address Регистрация	0000 0000b

<u>USB</u> Канал управления конфигурацией типа С<u>депозит</u> Устройство (USB_C_CTRL) :(CH551 NA)

			_ , , , , , , ,	
место	имя	доступ	описание	Сброс значе
<u>7</u>	bVBUS2_PD_EN	RW Это	г бит является 10K выпадающего резистором, чтобы включить внутренний VBUS2 штифт; 0 0 за	прета
<u>6</u>	bUCC2_PD_EN	RW Это	г бит является выпадающее резистор 5.1K может сделать UCC2 внутренний штифт; 0 запрет	0
<u>5</u>	bUCC2_PU1_EN	Нагрузо	ный резистор RW Этот бит управляет выбор высокого внутреннего штифта UCC2	0
<u>4</u>	bUCC2_PU0_EN	RW Это	г бит является нагрузочным резистором внутреннего контроля выбора контактных низкий UCC2	0
<u>3</u>	bVBUS1_PD_EN	RW Это	г бит является 10K выпадающего резистором, чтобы включить внутренний VBUS1 штифт; 0 0 за	прета
<u>2</u>	bUCC1_PD_EN	RW Это	г бит является выпадающее резистор 5.1K может сделать UCC1 внутренний штифт; 0 запрет	0
<u>1</u>	bUCC1_PU1_EN	RW Это	г бит является нагрузочный резистор внутреннего контроля выбора контактный высокой UCC1	0
0	bUCC1_PU0_EN	RW Это	г бит является нагрузочным резистором внутреннего контроля выбора контактных низкий UCC1	0

UCCn выберите внутренний штифт и на bUCCn_PU1_EN bUCCn_PU0_EN нагрузочный резистор.

bUCCn_PU1_EN bU0	Cn_PU0_EN_	Выберите внутренний подтягивающий резистор булавку UCCn	
0	0	Отключить внутренний подтягивающий резистор	
0	1	56ΚΩ внутренние подтягивающие резисторы, текущее представление обеспечивает по умолча	анию USB
1	0	Включает внутренний подтягивающий резистор 22 кОм, представление может быть предоставл	лено 1.5А
1	1	10 кОм включает внутренний нагрузочный резистор, может быть предоставлена ЗА представля	яет

Нагрузочный резистор и сказал выпадающий резистор не зависят от типа С Pn_DIR_PU управления направлением порта USB и регистра подтяжки включить подтяжку управления портом, когда штырь используется для USB Туре-С, оно должно быть запрещено, соответствующий штифт нагрузочный резистор порт, режим ввода высокого импеданса рекомендуется для того, чтобы штифт (или выходной контакт с низким, чтобы избежать высокого уровня).

Подробности, касающиеся управления и обнаружения входного сигнала USB типа С относятся к конфигурации канала USB типа С Описание и подпрограмм.

<u>USB</u> в Регистр прерываний флага (U S B_INT_ FG):

<u> </u>	егистр прерывании флага (О	3 <u>Б INI</u> FG	<i>)</i> -		
место	Р В В В В В В В В В В В В В В В В В В В	доступ	описание	Сброс значен	ия
7	U_IS_NAK	РО указ	ывает, что текущий бит является передача USB-NAK в течение занятого ответ получен, а Бит 0 указывает на неполученных NAK ответ	0	
6	U_TOG_OK	РО теку	щей передачи USB-DATA0 / 1 соответствует синхронизации битого статуса флага равен 1, Данные синхронизации действительно; 0 указует на то бит не синхронизирован, то данные мож	0 эт быть недейс	вите
5	U_SIE_FREE	RO	USB процессор протокола простаивает бит, который указывает на то, занят бит 0, передача USB в процессе, этот бит равен 1 указывает на то, что USB находится в режиме ожидания	1	
4	UIF_FIFO_OV	RW	FIFO переполнения флаг USB прерывание, бит 1 указывает на буфер FIFO переполнения прерывание, бит равен 0 без перерыва. бит Прямой доступ очищается или написать 1, чтобы оч	0 истить	
3	удержание	RO защ	ищены.	0	
2	UIF_SUSPEND	RW	USB шины приостановить или побудка событие прерывания бит флага, который является 1 означает прерывание, прерывание от USB приостановить или событие триггера события пробуждения; бит равен 0 для каких-либо перерывов. бит Прямой доступ очищается или написа	О ть 1, чтобы очи	стить
1	UIF_TRANSFER	RW	Передача USB-полное прерывание битового флага, который прерывает 1 означает, прерывание вызвано завершением передачи USB; бит равен 0 при отсутствии прерываний. бит Прямой доступ очищается или написать 1, чтобы очистить	0	
0	UIF_BUS_RST	RW	USB-шина события сброса флаг прерывания бит, который прерывает 1 означает, прерывание вызвано USB случае сброс шины, этот бит равен 0 при отсутствии прерываний. бит Прямой доступ очищается или написать 1, чтобы очистить	0	

форма прерывания USB Регистр состояния (USB_I N_T_ST) :

место	имя	доступ	описание	Сброс значения
7	bUIS_IS_NAK	РО указ	ывает, что текущий бит является USB-передача NAK в течение занятого ответ получен. С U_IS_NAK	0
6	bUIS_TOG_OK	РО теку	щая передача USB-DATA0 / 1 соответствует состоянию флажка синхронизации, бит равен Это указывает на то синхронизации; 0 указывает бит не синхронизированы. С U_TOG_O	
5	bUIS_TOKEN1	тока US	В-идентификатор транзакции передачи RO маркера PID максимума	х
4	bUIS_TOKEN0	R0 теку	ций маркер PID определяет низкий уровень USB дел	х
[3: 0]	MASK_UIS_ENDP	RO теку	щей конечной точки число дел USB, 0000, указывающими, что конечная точка 0;; 1111 представляет собой конечную точку 15	xxxxb

bUIS_TOKEN1 и bUIS_TOKEN0 состав MASK_UIS_TOKEN, идентифицирует текущую транзакцию из USB маркера PID: 00 представляет собой пакет OUT, представляет СФБ пакет 01; 10 представляет собой B пакете; 11 представляет собой пакет SETUP.

USB Разное как Регистр состояния (USB MIS _ST):

место	РМИ	доступ	описание	Сброс значени
[7: 6]	удержание	RO защі	ицены.	XXB
5	bUMS_SIE_FREE	RO	USB процессор протокола простаивает бит, который указывает на оживленную бит равен 0, то передача USB продолжается, этот бит равен 1 указывает на то, что USB находится в режиме ожидания. С U_SIE_FREE	1
4	bUMS_R_FIFO_RDY	RO	USB приемник FIFO данные готовы бит состояния, бит 0 указывает на то, что приемник FIFO пуст, а бит 1 Receive FIFO Not Empty	0
3	bUMS_BUS_RESET	RO	USB-шину сброса состояния бит, который равен 0, указывает, что сброс шины USB; бит равен 1, находятся в сбросе шины USB	1
2	bUMS_SUSPEND	RO	USB Приостановка бит состояния, бит 0 указывает на текущий активный USB; 1 указы не уже некоторое время USB мероприятия, ожидающие запросы 0	вает бит
[1: 0]	удержание	RO защі	ищены.	00b

приемник USB длиной Из регистра (USB_R X_LEN) :

место	РМИ	доступ	описание	Сброс значен	ия
[7: 0]	bUSB_RX_LEN	RO тока	USB конечной точки число байтов полученных данных	XXH	

USB в Регистр разрешения прерывания (USB _ INT_E N):

OOD R.	<u>чегистр разрешения прерывания</u>	(USB_INI_	⊆ N):	
место	имя	доступ	описание	Сброс значени
<u>7</u>	bUIE_DEV_SOF	RW Это	бит представляет собой пакет SOF получить разрешение прерывания; 0 запрета	0
<u>6</u>	bUIE_DEV_NAK	RW Это	бит ОПДТ принимается разрешения прерывания; 0 запрет	0
<u>5</u>	удержание	RO защі	ищены.	0
<u>4</u>	bUIE_FIFO_OV	RW Это	о бит переполнения FIFO разрешение прерывания;-близко к битому разрешению	0
3	удержание	RO защі	ищены.	0
2	bUIE_SUSPEND	RW Это	т бит 1 включает USB шины приостановки или прерывания пробуждения события; 0 для отключ	ения О
<u>1</u>	bUIE_TRANSFER	RW Это	г бит может завершить прерывание 1 передачи USB так, бит равен 0 запрета	0
0	bUIE_BUS_RST	RW Это	бит 1 Включить USB сброс шины прерывания события; бит равен 0 бан	0

место	РМИ	доступ	описание	Сброс значен	ия
<u>7</u>	удержание	RO защі	ищены.	0	
6	bUC_LOW_SPEED	RW	USB-сигнал шины скорость передачи битов выбора, который равен 0 для полных 12Mbps; бизыбирает низкая скорость 1.5Mbps 1	0	
5	bUC_DEV_PU_EN	RW	USB-устройство, включить и внутренний бит контроля тяги, который является USB-совместимым устройство и включить передачу внутренней подтяжки	0	
<u>5</u>	bUC_SYS_CTRL1	RW	высокая система управления USB	0	
<u>4</u>	bUC_SYS_CTRL0	RW	USB система управления с низким	0	
3	bUC_INT_BUSY	RW	Передача USB полное прерывание бит разрешения автоматически приостанавливается до флага не ясно, как этот бит флаг прерывания автоматически приостанавливается до того UIF_TRANSFER не растаможен, он автоматически ответит занят NAK, бит равен 0 и не пауза	0	
2	bUC_RESET_SIE	RW	Протокол USB процессор программного обеспечение битого сброса управление, который является вынужденным сброс и большинство регистров управления процессором протокола	1 USB USB долж	ны быть очищены с пом
1_	bUC_CLR_ALL	RW Это	г бит 1 Clear USB прерывания флага и FIFO, должен быть очищен с помощью программного об	еспечения	
<u>0</u>	bUC_DMA_EN	RW Это	г бит является 1, чтобы разрешить прерывание USB и DMA DMA; 0 Закрывать	0	

BUC_SYS_CTRL1 система USB и контроль сборки bUC_SYS_CTRL0 состав:

bUC_SYS_CTRL1	bUC_SYS_CTRL0	Описание системы управления USB	
0	0	Отключить функцию USB устройства, чтобы закрыть внутреннюю подтяжку	
0	1	USB включена функция устройства, внутренний отрыв, необходимость добавления внеш	іей подтяжки
1	×	USB включена функция устройства включена внутренний подтягивающий	
·	^	резистор 1.5K Ω . Подтягивающий резистор к понижающим резистором старшинства, режи	м GPIO также может быть испо

USB устройств <u>Адрес регистра (USB_D</u> E V_AD) :

место	РМИ	доступ	описание	Сброс значен	ия
7	bUDA_GP_BIT	RW	USB универсальный флаг: Пользователи могут настроить программное обеспечение мо	кет бы 6 . устан	рвлен или сброшен
[6: 0]	MASK_USB_ADDR	RW адр	ес по USB устройства	00h	

16.3 конечных точек регистра

СН552 обеспечивает двунаправленные терминалы конечных точек 0,1,2,3,4 пять групп, то максимальная длиной пакета 64 байта являются всеми конечными точками. Конечная точка Конечная точка 0 по умолчанию, передача поддержки управления, коробка передач и прием общего буфера данных 64 байт. Конечная точка 1 и конечного пункт 2, каждый терминал 3 содержит отправку конечной точки, и принимающую конечную точку IN OUT, имеет отдельную передачу и прием 64 байта или данных двойных байтового буфер 64, чтобы поддерживать передачу управления, объемную передачу, прерывание передачи, и В режиме 4 содержит передающие конечные точку в конечных точке байт данных буфера 64 и конечная точка OUT принимающей, каждые имеют отдельную

передающие и принимающую передачу управления поддержки, объемную передачу, прерывание передачи, и в режиме реального времени / синхронную передачу.

Каждая конечная точка, имеющий отклик и передача данных сделок и в сделках, и зарегистрировать элемент управления UEPn_CTRL длина передачи
UEPn T LEN регистра (п = 0/1/2/3/4), используется для установки триггера битых конечной точки синхронизации, длина и тому подобное.

Нагрузочный резистор может быть обеспечен в любое время с помощью программного обеспечения в качестве USB-устройств на шине USB требуется включен, регистр управления USB устанавливается, когда bUC_DEV_PU_EN USB_CTRL в 1, CH552 был ДП по bUD_LOW_SPEED тянуть штифт или контактный разъем шины USB внутри DM сопротивление, и включить функцию USB-устройства.

Когда сброс шины USB обнаружен, или приостановить пробуждения событие шины USB, или когда USB-После успешной обработки принятой передачи данных или данных, USB-обработчик протокола будет установлен соответствующий флаг прерывания запроса и генерирует прерывание. Приложение может непосредственно запрос или USB процедуры обслуживания прерывания запросов и анализа прерываний флага регистр USB_INT_FG, соответствующее лечение в соответствии с UIF_BUS_RST и UIF_SUSPEND, и, если UIF_TRANSFER эффективный, вы должны продолжать анализировать USB прерывания регистре состояния USB_INT_ST, на основе текущего номера конечной точки MASK_UIS_ENDP текущая транзакция маркер и соответствующий идентификационный ПИД MASK_UIS_TOKEN. Если

Синхронизация бит установлен на спусковой крючок в каждой точке транзакции bUEP_R_TOG OUT, то бит синхронного запуска на основании принятого в настоящее время пакет данных соответствует триггер биты синхронизации конечной точки или от U_TOG_OK bUIS_TOG_OK, если синхронизацию данных, данные действительны; Если данные не синхронизированы, то эти данные должны быть отброшены. После каждой обработки USB передающих или получать прерывание должно вызвать за собой право изменять бит синхронизации соответствующей конечной точки для переданного пакета данных синхронизации следующих и обнаруживают пакетный ли принятые данные следующая синхронизация; Кроме того, посредством предоставления банки bUEP_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки bUEP_AUTO_TOG автоматические биты, соответствующих и обнаруживают пакетный ли принятые данные следующая синхронизация; Кроме того, посредством предоставления банки bUEP_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки bUEP_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки bUEP_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки bUEP_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки buter_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки buter_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления банки buter_AUTO_TOG автоматические биты, соответствующей конечной точки для передоставления в пер

Длина данных каждый из конечного готова к передаче в соответствующем буфере, готовая к отправке устанавливаются независимо UEPn_T_LEN, и каждая конечная точка каждых полученных данных в буфере, но полученные данные длина длина приемника USB USB_RX_LEN регистр можно выделить на основе тока, когда число USB-конечная точка получила прерывание.

Таблица 16.3.1 USB-устройство список конечных точек, связанные регистры (серая шкала управление по bUC_RESET_SIE

сброса) Название	адрес	описание	Сброс значения
UDEV_CTRL	d1h	Физический USB регистр управления порта устройства	10xx 0000b
UEP1_CTRL	Endpoint P	егистр управления 1 D2h	0000 0000b
UEP1_T_LEN	Конечная	гочка 1 D3h передачи Длина регистра	0ххй ххххb
UEP2_CTRL	Endpoint C	ontrol 2 регистрации D4H	0000 0000b
UEP2_T_LEN	Длина рег	истр конечной точке 2 передает D5h	0000 0000ь
UEP3_CTRL	Endpoint	Control Register 3 D6h	0000 0000ь
UEP3_T_LEN	Конечная	гочка передачи Длина регистра 3 D7H	0ххй ххххb
UEP0_CTRL	Endpoint	Control Register 0 DCH	0000 0000b
UEP0_T_LEN	DDh длина	передачи зарегистрировать конечную точку 0	0ххй ххххb
UEP4_CTRL	Endpoint	Control регистр 4 DEH	0000 0000b
UEP4_T_LEN	4 передач	и Длина регистра конечная точка DFH	0ххй ххххb
UEP4_1_MOD	EAh управ	ления режимом конечных точек регистр 4	0000 0000b
UEP2_3_MOD	EBh управ	ления режимом конечных точек регистр 3	0000 0000b
UEP0_DMA_H	EDh конеч	ных точек 0 и 4 буфера начальный адрес старший байт	0000 00xxb
UEP0_DMA_L	Конечная	roчка 0 4 ECH и начальный адрес буфера младшего байта	xxxx xxxxb
UEP0_DMA	ECh	UEP0_DMA_L и UEP0_DMA_H, состоящий из 16 СФРОВ	0xxxh
UEP1_DMA_H	EFh Конеч	ная точка 1 начальный адрес буфера старший байт	0000 00xxb
UEP1_DMA_L	EEh Конеч	ная точка 1 начальный адрес буфера младший байт	xxxx xxxxb
UEP1_DMA	EEh	UEP1_DMA_L и UEP1_DMA_H, состоящий из 16 СФРОВ	0xxxh
UEP2_DMA_H	E5h Конеч	ная точка буфера начальный адрес старший байт	0000 00xxb
UEP2_DMA_L	Конечная	гочка 2 E4h начальный адрес буфера младший байт	xxxx xxxxb
UEP2_DMA	E4h	UEP2_DMA_L и UEP2_DMA_H, состоящий из 16 СФРОВ	0xxxh
UEP3_DMA_H	Конечная	roчка E7h буфера начальный адрес старший байт 3	0000 00xxb
UEP3_DMA_L	Конечная	roчка E6h буфера начальный адрес младший байт 3	xxxx xxxxb
UEP3_DMA	E6h	UEP3_DMA_L и UEP3_DMA_H, состоящий из 16 СФРОВ	0xxxh

<u>USB</u> устанавливать <u>Получение физического контроля порта</u> Отправить <u>Регистрация (</u> UDEV_CTRL), с помощью сброса управления bUC_RESET_SIE:

<u> 222</u> ,*						
место	РМИ	доступ	описание	Сброс значен	ия_	
7	bUD PD DIS	RW	порт USB-устройство UDP / пулдаун резистор внутренних контактное УОЙ отключить бит, который является 1, чтобы отключить внутренний ниспадающий резистор; бит 0 внутреннего	1		
,	טטבר טוט	NW	ниспадающего резистор. Этот бит не режим управления bUSB_IO_EN может также использоват	г ься, чтобы обес	печить ниспадающий р	
<u>6</u>	удержание	RO защ	ицены.	0		
<u>5</u>	bUD_DP_PIN	PO UDP	текущее состояние вывода является низким представляет собой 0; 1 указывает на высокий урове	нь Х		
4	bUD_DM_PIN	РО ОДД	текущее состояние вывода является низким представляет собой 0; 1 указывает на высокий уровс	нь Х		

3	удержание	RO защ	ищены.	0	
2	bUD_LOW_SPEED	RW	USB-устройство, режим физической скорости порта бит разрешения, 1 бит режима низкой скорости, выбранной в 1.5Mbps; этот бит равен 0 12Mbps полный выбор режима	0	
1_	bUD_GP_BIT	RW <u>Об</u> ц	ие флаг оборудования: Пользователи могут определить свои собственные, может быть установл	ен или Өброше	программно
0	bUD_PORT_EN	RW	порт физического устройства USB битого разрешение, которое может сделать 1 физический порт, немного отключает физический порт 0	0	

Конечная точка N Регистр управления (УЭП N_CTRL) :

10110 1110	I CINCIP YIIDABIICHIII	173011 N_O1	· · · · · · · · · · · · · · · · · · ·		
место	имя	доступ	описание	Сброс значен	ия
7	bUEP_R_TOG	RW	N USB конечной точки приемника (обработка SETUP / транзакции OUT) желаемого синхронного триггера бит, который равен 0 для желаемого DATA0; представляет собой желаем	0 ый data1 1	
6	bUEP_T_TOG	RW	N USB конечной точки передатчика (в обработке транзакций) готов триггер синхронизации бит, который указывает, 0 посыла data0; 1 обозначает передачу data1	0	
<u>5</u>	удержание	RO защі	ищены.	0	
4	bUEP_AUTO_TOG	RW	Синхронизация бита запускается автоматически флип включить бит управления, который представлен соответствующей синхронизации триггера автоматически перевернутом положении после успешной передачи или приема является успешным; 0 указывает на отсутстви	0 не листать авто	матически, но может бь
<u>3</u>	bUEP_R_RES1	Конечна	я точка п RW отклика приемника на высокий контроль транзакций SETUP / OUT	0	
<u>2</u>	bUEP_R_RES0	Конечна	я точка п RW отклика приемника к SETUP / OUT управления транзакций низкого уровня	0	
<u>1</u>	bUEP_T_RES1	передат	чик конечной точки N RW, в ответ на операции управления с высоким содержанием	0	
<u>0</u>	bUEP_T_RES0	передат	чик конечной точки N RW, в ответ на управляющий низко в транзакции	0	

Приемник и bUEP_R_RES1 bUEP_R_RES0 MASK_UEP_R_RES состоит из п для управления конечной точки реагирует на операции SETUP / OUT: 00 указывает на то подтверждения АСК или готов; 01 не представляет собой тайм-аут / нет ответа, конечную точку для реализации не в реальном масштабе времени / 0 синхронной передачи; 10 показан ответ NAK или занят; 11 представляет собой STALL ответ или ошибку.

MASK_UEP_T_RES bUEP_T_RES1 и композиция для контроля конечных точек bUEP_T_RES0 п передатчик реагирует на операцию IN: 00 ответа DATA0 / DATA1 или требуемые данные, готовых и ACK; 01 ответ, указывающий DATA0 / data1 и отсутствие ожидаемого ответа, для достижения не- в реальном масштабе времени конечная точка / 0 синхронная передача, занят или NAK ответ, указывающий, 10, 11 или ответ БЛОКИР.ДВИГ, указывающий на ошибку.

Конечная точка п передачи <u>Длина регистра (UEPn_T_L</u> EN):

место	РМИ	доступ	описание	Сброс значен	ия
F7 01	bUEPn_T_LEN_			XXH	
[7: 0]	bUEP2_T_LEN_	RW коли	чество байтов данных, обеспечивается готов к отправке USB конечной точки п (п = 0/1/3/4) номер USB конечного набора готов к передаче данных байт-	00h	

4 USB-регистр управления режимом конечных точек Unit (УЭП 4_1MOD):

<u> </u>					
место	РМИ	доступ	описание	Сброс значен	
7	bUEP1_RX_EN	RW Это	бит 0 запрещает получать конечный пункт 1; 1 позволяет терминал 1 принимает (OUT)	0	
6	bUEP1_TX_EN	RW Это	бит 0 Отключение конечной точки 1 передает; 1 позволяют конечной точке 1 передает (В	0) 0	
5	удержание	RO защі	ищены.	0	
4	bUEP1_BUF_MOD	Конечна	я точка RW буфера данных управления режимом бит 1	0	
3	bUEP4_RX_EN	R0 4 при	нимает этот бит запрещает конечной точки равно 0; 1, с тем чтобы приемный терминал 4	(OUT) 0	
2	bUEP4_TX_EN	RW Это	бит 0 запрещает передачу конечной точки 4; 1 для включения передачи 4 конечных точен	(BO) 0	
[1: 0]	удержание	RO защі	ищены.	00b	

Под управлением USB конечной точки, и данные о составе bUEP4_TX_EN bUEP4_RX_EN режим 0 и 4 буфера, со ссылкой на следующую таблицу.

bUEP4_RX_EN bUE	P4_TX_EN	Структура Описание: UEP0_DMA к начальному адресу расположено от низкого до высокого	
0	0	Конечная точка-64 однобайтовых прием и передачи буфера (вход и выход)	
1	0	Конечная точка 0 64 однобайтовые приема и передачи; буферы конечной точки 4 в один 64-байтовых буфера приема ((OUT)
0	1	Конечная точка-64 однобайтовых прием и передача буфера; конечная точка 4 одного 64-байтовый буфер передачи (ВС	BO)
1	1	Конечная точка 0 64 однобайтная приема и передачи буферов; конечная точка 4 одного 64-байтный приемный буфер (OUT); конечная точка 4 одного 64-байтовый буфер передачи (BO). Все 192 байта расположены следующим обр UEP0_DMA + 0 Адрес: Конечная точка 0 дуплексер; UEP0_DMA + 64 Адрес: 4 принимает конечную точку; UEP0_DMA + 128 Адрес: передачи конечной точки 4	і́разом:

<u>USB</u> 2,3 Режим управления конечной точки <u>Регистрация</u> (UEP2_3_MOD):

место	_ имя	доступ	описание	Сброс значени
<u>7</u>	bUEP3_RX_EN	RW Это	г бит 0 запрещает приемный конец 3; 3 1 Включение приема конечной точки (OUT)	0
<u>6</u>	bUEP3_TX_EN	RW Это	г бит 0 запрещает передачу терминала 3; 3: 1 обеспечивает передачу конечной точки (ВО)	0
<u>5</u>	удержание	RO защі	ицены.	0
<u>4</u>	bUEP3_BUF_MOD	Конечна	я точка RW управления режимом бит данных буфера 3	0
<u>3</u>	bUEP2_RX_EN	R0 этот	бит отключает приемный терминал 2 равен 0; 1, с тем чтобы приемный терминал 2 (OUT)	0
<u>2</u>	bUEP2_TX_EN	RW Это	г бит 0 запрещает отправку конечных точек 2; 2 позволяют передачу конечной точке 1 (В)	0
<u>1</u>	удержание	RO защі	ицены.	0
<u>0</u>	bUEP2_BUF_MOD	Конечна	я точка RW буфера данных управления режимом бит 2	0

Контроль режима буфера данных USB конечной точки и 1,2,3 bUEPn_RX_EN bUEPn_TX_EN и (n = 1/2/3) комбинаций bUEPn_BUF_MOD, обратитесь к следующей таблице. Отличающееся тем, что двухрежимные байты буфера 64, передача данных по USB bUEP _ * _ TOG = 0 до выбранного буфера 64 байт, согласно bUEP _ * _ TOG = 64 байт 1 выбор буфера, автоматическое переключению.

Таблица 16.3.3 режим буфера конечных точек п (п = 1/2/3)

bUEPn RX EN bUEPr	TX EN bUEPn BUF I	<u>ИОD</u> Структура Описание:	UEPn_DMA к начальному адресу расположено от низкого до высокого
0	0	x	Endpoint отключен, неиспользованный буфер UEPn_DMA
1	0	0	Одно 64-байтный приемный буфер (OUT)
1	0	1	Двойной 64-байтный приемный буфер, выбрав bUEP_R_TOG
0	1	0	Одно 64-байтовый буфер передачи (ВО)
0	1	1	Двойной 64-байтовый буфер передачи, выбрав bUEP_T_TOG
1	1	0	Однобайтовые приемный буфер 64; 64 однобайтная буфер передачи
			Двойной 64-байтный приемный буфер, выбрав bUEP_R_TOG; 64 двухбайтовой буфер передачи, выбрав bUEP_T_TOG. Все 256 байт расположены следующим образом:
1	1	1	UEPn_DMA + 0 Aдрес: bUEP_R_TOG = 0 конечная точка получает; UEPn_DMA + 64 Aдрес: bUEP_R_TOG = конечная точка получает 1; UEPn_DMA + 128 Aдрес: bUEP_T_TOG = конечная точка посылает 0:00; UEPn_DMA + 192 Aдрес: bUEP_T_TOG = Конечная точка 1 передает

USB конечной точки п <u>Буфер происхождения</u> сайт (UEPn_DMA) (п = 0/1/2/3):

COS NOTICE MOST TO MOS						
место	РМИ	доступ	описание	Сброс значен		
[7: 0]	UEPn_DMA_H	Конечна	я точка п RW, старшие байты начало адрес буфера, только понизить 2 бита эффективный, 6 Фиксированный 0	0xh		
<u>[7: 0]</u>	UEPn_DMA_L	RW коне	чных точек п буфер начального адреса младший байт	XXH		

Примечание: длина полученных данных буфера> = мин (максимальная длина пакета может получить 2 байта + 64 байта)

17, сенсорные кнопки Touch-Key

17,1 Touch-Key Профиль

СН552 чип конденсатор обеспечивает модуль обнаружения и связанные с ними таймеры, имеющие шесть входных каналов, в диапазоне мощности

Поддержка 5PF ~ 150pF. Поскольку емкостные могут поддерживать до шести сенсорных клавиш, взаимная емкость прикосновение может поддерживать до 15 ключей.

17,2 Touch-Key Регистрация

Таблица 17.2.1 Touch-Key связанный список регистров

47

РМИ	адрес	описание	Сброс значения
TKEY_CTRL	C3h	Touch-Key Control Register	x0h
TKEY_DATH	C5H	высокоскоростной передачи данных байт Сенсорные-Кеу (только для чтения)	00h
TKEY_DATL	C4H	Данные низкого байта Сенсорные-Кеу (только для чтения)	XXH
TKEY_DAT	C4H	TKEY_DATL и TKEY_DATH, состоящий из 16 СФРОВ	00xxh

<u>Touch-Ke</u> Y <u>Регистр управления (TKEY_C</u> T<u>RL):</u>

место	РМИ	доступ	описание	Сброс значен	ия
7	bTKC_IF	RO	Таймер флаг прерывания. Если bTKD_CHG = 0 автоматически устанавливается в конце текущего цикла синхронизации запроса на прерывание, когда в конце подготовительного этапа автоматически очищается или очищается путем записи TKEY_CTRL. Если bTKD_CHG = 1 автоматически сбрасывается, прерывание не	х	
			требуется, текущий цикл будет пропущен, а следующий цикл обнаружен и повторно подготовлен и автоматически устанавливается в конце следующего цикла	запроса на пр	ерывание 1
[6: 5]	удержание	RO защ	іщены.	00b	
4	bTKC_2MS	RW	Период обнаружения емкости выбора таймера: 0-1mS; 1-2mS. Период недели до стадии подготовки 87uS, оставшейся фазы обнаружения времени. Эти времена основаны на время, когда Fosc = 24MHz	0	
3	удержание	RO защ	ищены.	0	
2	bTKC_CHAN2	вход RV	сенсорных кнопок выбора максимума емкости обнаружения	0	
1	bTKC_CHAN1	RW, обн	аружение емкости сенсорных кнопки выбор входного сигнала бит	0	
0	bTKC_CHAN0	RW клю	ч емкости сенсорного обнаружения низкого выбора входа	0	

По bTKC_CHAN2 ~ <u>BTKC_CHAN0</u> выбранный <u>Опциональный сенсорный электрическая кнопка</u> Емкостной детектор входного канала.

bTKC_CHAN2	bTKC_CHAN1	bTKC_CHAN0	Выбор входных каналов емкости обнаружения прикосновения кл	очевых
0	0	0	Закрыть модуль обнаружения питания емкости, или просто как период	
	O O	O O	1mS независимого таймера прерывания 2мс	
0	0	1	TIN0 (P1.0)	
0	1	0	TIN1 (P1.1)	
0	1	1	TIN2 (P1.4)	
1	0	0	TIN3 (P1.5)	
1	0	1	TIN4 (P1.6)	
1	1	0	TIN5 (P1.7)	
1	1	1	При включении питания модуля обнаружения, но конденсатор не подключе	н к любому ка

Touch-Ke Y Регистр данных (ТК E Y DAT):

место	РМИ	доступ	описание	Сброс значен
7	bTKD_CHG	RO	флаг изменения управления Touch-Key. Этот бит один, емкость переписывается стадии обнаружения TKEY_CTRL, может привести данные TKEY_DAT является	0
	TKEY_DATH [7]		недействительным, и не говоря уже о bTKC_IF конце текущего цикла. Этот бит устанавлива Цикл фазы Подготовка автоматически сбрасывается, когда конец, маска бит данных, котор	
6	удержание	RO защі	іщены.	0
[5: 0]	TKEY_DATH	RO	Touch-Key старших байт данных. Автоматически очищается в конце каждого цикла синхронизации фазы подготовки; автоматическое обнаружение подсчета стадии емкости; фаза подготовки данных остается неизменной, так что таймер прерываний чтения	00h
[7: 0]	TKEY_DATL	RO	Данные низкого байта Сенсорные-Кеу. Автоматически очищается в конце каждого цикла синхронизации фазы подготовки; автоматическое обнаружение подсчета стадии емкости; фаза подготовки данных остается неизменной, так что таймер прерываний чтения	XXH

Функция +17,3 Touch-Key

Емкость шаг обнаружения:

(1), при условии TKEY_CTRL регистра bTKC_2MS и bTKC_CHAN2 ~ bTKC_CHAN0, входной период выбора канала. есть

Отдельные входные каналы, он должен быть установлен в контакты GPIO в режим высокого импеданса, так и в режиме вывода с открытым стоком и состояния выхода 1 (что соответствует высоким входным импедансом), Pn_DIR_PU [x] = 0.

- (2) очищается bTKC_IF и разрешить прерывания прерывания IE_TKEY таймера ожидания, или по инициативе запрос в bTKC_IF прерывания подпрограммы. (3),
- обнаружение емкости текущего канала автоматически устанавливается этап подготовки bTKC_IF запроса на прерывание, в то время как после того, как следующий цикл будет завершен, TKEY_DAT без изменений и сохраняют данные о 87uS.
- (4), входя в процедуру прерывания, сначала считывает данные из емкости ТКЕY_DAT текущего канала, и самую высокую битовую маску, тем bTKD_CHG

Данные относительные величины, и обратно пропорциональна емкости, когда данные, сенсорный меньше, чем ключевые данные депрессии не нажата. (5), при условии TKEY_CTRL регистра bTKC_2MS и bTKC_CHAN2 ~ bTKC_CHAN0, выбрать следующий входной канал. что

- (6), данные ТКЕУ_DAT данных (4), и этап считывания ранее сохраненный без ключа канала, и определяет, является ли изменение емкости
 - А если клавиша нажата.
- (7)、中断返回,当下一个通道的电容检测完毕后将转向步骤(3)。

Запись автоматически очищается bTKC_IF, конец запроса прерывания.

18、参数

18.1 绝 对 最大值(临界或者超过绝对最大值将可能导致芯片工作 不 正常甚至损 坏)

名称	参数说明	最小值 最大	直 <u>单位</u>	
TA	工作时的环境温度	- 40	85	°C
TS	储存时的环境温度	- 55	125	°C
VCC	电源电压(VCC 接电源,GND 接地)	- 0.4	5.8	V
VIO	除 P3.6/P3.7 之外其它输入或者输出引脚上的电压	- 0.4	<u>VCC+0.4</u>	V
VIOU	P3.6/P3.7 输入或者输出引脚上的电压	- 0.4	<u>V33+0.4</u>	V

18.2 电 气参数 5V(测试条件: TA=25℃, VCC=5V, Fsys=6MHz)

名称	参数说明	最小值 典型	直 最大值 <u>单位</u>			
VCC5	VCC 引脚电源电压	V33 仅外接电容	3.7	5	5.5	V
V33	内部 USB 电源调整器:	输出电压	3.14	3.27	3.4	V

CH552 手册 49

ICC24M5	Fsys=24MHz 工作时的总电源电流	8	11		mA
ICC6M5	Fsys=6MHz 工作时的总电源电流	4	6		mA
ICC750K5	Fsys=750KHz 工作时的总电源电流	2	3		mA
ISLP5	睡眠后的总电源电流		0.1	0.2 mA	
	VCC=V33=5V,且选用外部晶体时钟,				
ISLP5L	且 bLDO3V3_OFF=1 关闭 LDO, 完全睡		0.008	0.02	mA
	眠后的总电源电流				
IADC5	ADC 模数转换模块工作电流		200	800	uA
ICMP5	电压比较器模块工作电流		100	500	uA
ITKEY5	触摸按键电容检测模块工作电流		150	250	uA
VIL5	低电平输入电压	- 0.4		1.2	V
VIH5	高电平输入电压	2.4		VCC+0.4	V
VOL5	低电平输出电压(12mA 吸入电流)			0.4	V
VOH5	高电平输出电压(8mA 输出电流)	VCC-0.4			V
VOH5U	P3.6/P3.7 高电平输出电压(8mA 输出电流) <u>V33-0.4</u>				V
IIN	无上拉输入端的输入电流	- 5	0	5	uA
IDN5	带下拉电阻输入端的输入电流	- 35	- 70	- 140	uA
IUP5	带上拉电阻输入端的输入电流	35	70	140	uA
IUP5X 带」	拉输入端由低向高翻转时的输入电流	250	400	600	uA
Vpot	电源上电复位的门限电压	2.1	2.3	2.5	V

18.3 电 气参数 3.3V(测试条件: TA=25℃, VCC=V33=3.3V, Fsys= 6MHz)

10.0 - 19	双 5.5 () () () () () ()	: TA=25°C , VCC=V33=3 <u>.3V , Fsys</u>	= 01VII 12/			
名称		参数说明 	最小值 典型	值 最大值 <u>单位</u>		1
\/O00	VCC 引脚	V33 短接到 VCC,开启 USB	3.0	3.3	3.6	V
VCC3	电源电压_	V33 短接到 VCC,关闭 USB	2.7	3.3	3.6	V
ICC16M3	Fsys=16M	 IHz 工作时的总电源电流	4	6		mA
ICC6M3	Fsys=6M	Hz 工作时的总电源电流	2	4		mA
ICC750K3	Fsys=750k	KHz 工作时的总电源电流	1	2		mA
ISLP3	睡	眠后的总电源电流		0.07	0.15	mA
ISLP3L	bLDO	3V3_OFF=1 关闭 LDO, 完全睡		0.004	0.01	mA
IOLFOL	眠后的	的总电源电流		0.004	0.01	MA
IADC3	ADC ₹	莫数转换模块工作电流		150	500	uA
ICMP3	电压	比较器模块工作电流		70	300	uA
ITKEY3	触摸按键	电容检测模块工作电流		130	200	uA
VIL3		低电平输入电压	- 0.4		0.8	V
VIH3		高电平输入电压	1.9		VCC+0.4	V
VOL3	低电平输	出电压(8mA 吸入电流)			0.4	V
VOH3	高电平输	出电压(5mA 输出电流)	<u>VCC-0.4</u>			V
VOH3U	P3.6/P3.7 高电 ^平	平输出电压(8mA 输出电流) <u>V33-0.4</u>				V
IIN	无上	拉输入端的输入电流	- 5	0	5	uA
IDN3	带下拉电	B阻输入端的输入电流	- 15	- 30	- 60	uA
IUP3	带上拉电	B阻输入端的输入电流	15	30	60	uA
IUP3X <u>带</u> _	拉输入端由低向高	高翻转时的输入电流 <u></u>	100	170	250	uA
Vpot	电源.	上电复位的门限电压	2.1	2.3	2.5	V

CH552 手册 50

名称	参数说明	最小值 典型	直 最大值 <u>单位</u>		
Fxt	外部晶体频率或者 XI 输入时钟频率	6	24	25	MHz
Fosc	V33=3V~3.6V 时经校准后的内部时钟频率 23.64		24	24.36	MHz
Fosc28	V33=2.8V~3V 时经校准后的内部时钟频率 23.28		24	24.72	MHz
Fosc27	V33=2.7V 时经校准后的内部时钟频率	21	24	25	MHz
Fpll	内部倍频后的 PLL 频率	24	96	100	MHz
Fusb4x 使用	USB 设备功能时,USB 采样时钟频率	47.04	48	48.96	MHz
	系统主频时钟频率(VCC>=4.4V)	0.1	6	24	MHz
Fsys	系统主频时钟频率(4.4V>VCC>=3.3V)	0.1	6	16	MHz
	系统主频时钟频率(VCC<3.3V)	0.1	6	12	MHz
Tpor	电源上电复位延时	9	11	15	mS
Trst	从 RST 外部输入有效复位信号的宽度	70			nS
Trdl	热复位延时	30	45	60	uS
Twdc	看门狗溢出周期/定时周期的计算公式 <u>65536 *(0x100</u>	- WD O G_COL	JNT) / Fsys		
Tusp	检测 USB 自动挂起时间	4	5	6	mS
Twak	芯片睡眠后唤醒完成时间	1	2	10	uS

19、修改记录

版本	日期	说明
V1.0	2016.12.20	初版发行
V1.1	2017.09.12	最高系统主频调整为 24MHz,更新 8.2,18.4
V1.2	2017.12.16	概述中增加 CH552/CH551 区别表,修改一些表头形式
V1.3	2018.03.20	1 概述中 CH552/1 区别表形式修改,修改表 18.4,
V 1.3	2016.03.20	5.3 堆栈指针(SP)修正错别字,6.2 增加 Data Flash 建议
V1.4	2018.08.28	更新 18.4 中 Fosc27

Примечание: длина полученных данных буфера> = мин (максимальная длина пакета может получить 2 байта + 64 байта)

17, сенсорные кнопки Touch-Key

17,1 Touch-Key Профиль

СН552 чип конденсатор обеспечивает модуль обнаружения и связанные с ними таймеры, имеющие шесть входных каналов, в диапазоне мощности

Поддержка 5PF ~ 150pF. Поскольку емкостные могут поддерживать до шести сенсорных клавиш, взаимная емкость прикосновение может поддерживать до 15 ключей.

17,2 Touch-Key Регистрация

Таблица 17.2.1 Touch-Key связанный список регистров

47

РМИ	адрес	описание	Сброс значения
TKEY_CTRL	C3h	Touch-Key Control Register	x0h
TKEY_DATH	C5H	высокоскоростной передачи данных байт Сенсорные-Кеу (только для чтения)	00h
TKEY_DATL	C4H	Данные низкого байта Сенсорные-Кеу (только для чтения)	XXH
TKEY_DAT	C4H	TKEY_DATL и TKEY_DATH, состоящий из 16 СФРОВ	00xxh

<u>Touch-Ke</u> Y <u>Регистр управления (TKEY_C</u> T<u>RL):</u>

место	РМИ	доступ	описание	Сброс значен	ия
7	bTKC_IF	RO	Таймер флаг прерывания. Если bTKD_CHG = 0 автоматически устанавливается в конце текущего цикла синхронизации запроса на прерывание, когда в конце подготовительного этапа автоматически очищается или очищается путем записи TKEY_CTRL. Если bTKD_CHG = 1 автоматически сбрасывается, прерывание не	х	
			требуется, текущий цикл будет пропущен, а следующий цикл обнаружен и повторно подготовлен и автоматически устанавливается в конце следующего цикла	запроса на пр	ерывание 1
[6: 5]	удержание	RO защ	іщены.	00b	
4	bTKC_2MS	RW	Период обнаружения емкости выбора таймера: 0-1mS; 1-2mS. Период недели до стадии подготовки 87uS, оставшейся фазы обнаружения времени. Эти времена основаны на время, когда Fosc = 24MHz	0	
3	удержание	RO защ	ищены.	0	
2	bTKC_CHAN2	вход RV	сенсорных кнопок выбора максимума емкости обнаружения	0	
1	bTKC_CHAN1	RW, обн	аружение емкости сенсорных кнопки выбор входного сигнала бит	0	
0	bTKC_CHAN0	RW клю	ч емкости сенсорного обнаружения низкого выбора входа	0	

По bTKC_CHAN2 ~ <u>BTKC_CHAN0</u> выбранный <u>Опциональный сенсорный электрическая кнопка</u> Емкостной детектор входного канала.

bTKC_CHAN2	bTKC_CHAN1	bTKC_CHAN0	Выбор входных каналов емкости обнаружения прикосновения кл	очевых
0	0	0	Закрыть модуль обнаружения питания емкости, или просто как период	
	O O	O O	1mS независимого таймера прерывания 2мс	
0	0	1	TIN0 (P1.0)	
0	1	0	TIN1 (P1.1)	
0	1	1	TIN2 (P1.4)	
1	0	0	TIN3 (P1.5)	
1	0	1	TIN4 (P1.6)	
1	1	0	TIN5 (P1.7)	
1	1	1	При включении питания модуля обнаружения, но конденсатор не подключе	н к любому ка

Touch-Ke Y Регистр данных (ТК E Y_DAT):

<u></u> . <u>.</u>	<u> </u>	<u></u> -		
место	РМИ	доступ	описание	Сброс значени
7	bTKD_CHG	RO	флаг изменения управления Touch-Key. Этот бит один, емкость переписывается стадии обнаружения TKEY_CTRL, может привести данные TKEY_DAT является	0
	TKEY_DATH [7]		недействительным, и не говоря уже о bTKC_IF конце текущего цикла. Этот бит устанавлива Цикл фазы Подготовка автоматически сбрасывается, когда конец, маска бит данных, котор	
6	удержание	RO защі	іщены.	0
[5: 0]	TKEY_DATH	RO	Touch-Key старших байт данных. Автоматически очищается в конце каждого цикла синхронизации фазы подготовки; автоматическое обнаружение подсчета стадии емкости; фаза подготовки данных остается неизменной, так что таймер прерываний чтения	00h
[7: 0]	TKEY_DATL	RO	Данные низкого байта Сенсорные-Кеу. Автоматически очищается в конце каждого цикла синхронизации фазы подготовки; автоматическое обнаружение подсчета стадии емкости; фаза подготовки данных остается неизменной, так что таймер прерываний чтения	ХХН

Функция +17,3 Touch-Key

Емкость шаг обнаружения:

(1), при условии TKEY_CTRL регистра bTKC_2MS и bTKC_CHAN2 ~ bTKC_CHAN0, входной период выбора канала. есть

Отдельные входные каналы, он должен быть установлен в контакты GPIO в режим высокого импеданса, так и в режиме вывода с открытым стоком и состояния выхода 1 (что соответствует высоким входным импедансом), Pn_DIR_PU [x] = 0.

(2) очищается bTKC_IF и разрешить прерывания прерывания IE_TKEY таймера ожидания, или по инициативе запрос в bTKC_IF прерывания подпрограммы. (3),

обнаружение емкости текущего канала автоматически устанавливается этап подготовки bTKC_IF запроса на прерывание, в то время как после того, как следующий цикл будет завершен, TKEY_DAT без изменений и сохраняют данные о 87uS.

(4), входя в процедуру прерывания, сначала считывает данные из емкости TKEY_DAT текущего канала, и самую высокую битовую маску, тем bTKD_CHG

Данные относительные величины, и обратно пропорциональна емкости, когда данные, сенсорный меньше, чем ключевые данные депрессии не нажата. (5), при условии TKEY_CTRL регистра bTKC_2MS и bTKC_CHAN2 ~ bTKC_CHAN0, выбрать следующий входной канал. что

Запись автоматически очищается bTKC_IF, конец запроса прерывания.

(6), данные ТКЕҮ_DAТ данных (4), и этап считывания ранее сохраненный без ключа канала, и определяет, является ли изменение емкости

А если клавиша нажата.

(7), возврат из прерывания сразу после завершения емкости обнаружения прохода к стадиям (3).

18, параметры

18,1 абсолютно к Максимальное значение (равной или превышает абсолютное максимальное значение, скорее всего, причиной чипа к работе не Нормальный или даже потеря Плохо)

РМИ	Параметр Описание	Минимум Максимум <u>блок</u>		
T.A.	Температура окружающей среды при работе	- 40	85	°C
TS	Температура окружающей среды при хранении	- 55	125	°C
VCC	Напряжение питания (VCC подключен источник питания, GND заземлени	e) - 0,4	5,8	В
VIO	В дополнение к другой вход Р3.6 / Р3.7 или напряжения на выходном контакте	- 0,4	<u>VCC + 0,4</u>	В
VIOU	Напряжение на Р3.6 / Р3.7 входного или выходного штифта	- 0,4	<u>V33 + 0,4</u>	В

18,2 Electric Параметры газа 5V (условия испытаний: TA = 25 °C, VCC = 5V, Fsys = 6 МГц)

	РМИ	Параметр Описание	Min Typ Max	к <u>блок</u>		
I	VCC5	Напряжение питания VCC контакт ный V33 только внешний конденс	атор 3,7	5	5,5	В
I	V33	Внутренний выход USB напряжение регулятора мощности	3,14	3,27	3,4	В

ICC24M5	Общий ток питания работа Fsys = 24MHz	8	11		мА
ICC6M5	Полная работа ток питания Fsys = 6MHz	4	6		мА
ICC750K5	Полная работа ток питания Fsys = 750KHz	2	3		мА
ISLP5	Общий ток питания после сна		0,1	0,2 мА	
	VCC = V33 = 5B, и дополнительный внешний кристалл часы,				
ISLP5L	BLDO3V3_OFF = 1 и от LDO, общий ток		0,008	0.02	мА
	питания общий сон				
IADC5	аналоговый АЦП цифровой преобразователь модуль рабо	чего тока	200	800	мкА
ICMP5	Рабочий ток модуля компаратора		100	500	мкА
ITKEY5	Текущая операция касания ключа обнаружения емкости		150	250	мкА
VIL5	входное напряжение низкого уровня	- 0,4		1.2	В
VIH5	высокое входное напряжение	2,4		VCC + 0,4	В
VOL5	Низкое выходное напряжение (12мА энегропотребление)			0,4	В
VOH5	Выходное напряжение высокого уровня (выходной ток 8 мА)	VCC-0,4			В
VOH5U	Р3.6 / Р3.7 выход высокого уровня напряжения (выходной ток 8 мА) <u>V3</u>	3-0.4 <u></u>			В
ИИН	Нет выдвижной вход входного тока	5	0	5	мкА
IDN5	Входной ток с входным понижающим резистором	- 35	70	- 140	мкА
IUP5	Нагрузочный резистор вход входного тока	35	70	140	мкА
IUP5X Прице	ные на входной конец является низким при высоком токе переключения	250	400	600	мкА
Vpot	При включении питания сброса порогового напряжения	2,1	2,3	2.5	В

<u>18,3 Electric</u> Газовые параметры 3.3V (условия испытаний: TA = 25 °C, VCC = V33 = 3<u>.3V, Fsys =</u> 6MHz)

имя		Параметр Описание	Min Typ Max	к <u>блок</u>		
V/000	VCC контактный	V33 замкнута на VCC, открытый USB	3.0	3,3	3,6	В
VCC3	напряжение питан	ия V33 замкнута на VCC, отключить USB	2,7	3,3	3,6	В
ICC16M3	Общий ток г	питания работа Fsys = 16МГц	4	6		мА
ICC6M3	Полная раб	ота ток питания Fsys = 6MHz	2	4		мА
ICC750K3	Полная рабо	та ток питания Fsys = 750KHz	1	2		мА
ISLP3	Of	щий ток питания после сна		0,07	0,15	мА
ISLP3L		V3_OFF = 1 замкнутый LDO, і́ ток питания всего сна		0,004	0,01	мА
IADC3	аналого	вый АЦП цифровой преобразователь модуль рабо	чего тока	150	500	мкА
ICMP3	Рабоч	ий ток модуля компаратора		70	300	мкА
ITKEY3	Текущая операция касания ключа обнаружения емкости			130	200	мкА
VIL3	входное напряжение низкого уровня		- 0,4		0.8	В
VIH3		высокое входное напряжение	1,9		<u>VCC + 0,4</u>	В
vol3	Выход низкого уровня напряжения (тока тонуть 8mA)				0,4	В
VOH3	Выходное напряжение высокого уровня (выходной ток 5 мА)		<u>VCC-0,4</u>			В
VOH3U	Р3.6 / Р3.7 выход вы	сокого уровня напряжения (выходной ток 8 мА) <u>V3</u>	3-0.4			В
ИИН	Нет вь	ідвижной вход входного тока	5	0	5	мкА
IDN3	Входной ток с входным понижающим резистором		15	30	- 60	мкА
IUP3	Нагрузочн	ый резистор вход входного тока	15	30	60	мкА
IUP3X Прице	IUP3X Прицепные на входной конец является низким при высоком токе переключения			170	250	мкА
Vpot	При вк	лючении питания сброса порогового напряжения	2,1	2,3	2.5	В

<u>18,4 Когда</u> Параметр порядка (Условия испытаний: TП = 25 °C, VCC = 5V или Vcc = V <u>33 = 3,3, P s <u>YS = 6 МГц)</u></u>

РМИ	Параметр Описание	Min Typ Max	<u>блок</u>			
Fxt	Частота внешнего кристалла или тактовый входной частоты XI	6	24	25	<u>МГц</u>	
Fosc	V33 = 3V ~ 23.64 по внутренней тактовой частоте после калибровки пр	и 3.6V	24	24,36	МГц	
Fosc28	V33 = 2.8V ~ 23.28 внутренним тактовой частотой калиброванного по 3	V	24	24,72	МГц	
Fosc27	Частота внутренних часов после того, как V33 = 2.7V калиброванны	ый 21	24	25	МГц	
Fpll	После умножителя частоты внутреннего PLL	24	96	100	МГц	
<u>Fusb4х</u> При ис	пользовании функции USB-устройства, тактовая частота дискретизации I	JSB 47,04	48	48,96	МГц	
	тактовая частота системной частоты (ВКК> = 4.4V)	0,1	6	24	<u>МГц</u>	
Fsys	тактовая частота системной частоты (4.4V> VCC> = 3,3)	0,1	6	16	<u>МГц</u>	
	тактовая частота системной частоты (VCC <3.3V)	0,1	6	12	МГц	
Tpor	Включение сброса задержки	9	11	15	мС	
Trst	Активный сигнал сброса RST вход от внешней ширины	70			нСм	
Trdl	Теплое Reset Delay	30	45	60	мкС	
Twdc	dc Период тайм-аута сторожевого Рассчитано период / времени 65\$36 * (0x100 - WD O G_COUNT) / Fsys					
Tusp	Автоматическое обнаружение USB приостановить врек	ıя 4	5	6	мС	
Твак	После сна чипа время завершения бодрствования	1	2	10	мкС	

19, изменить запись

издание	дата	объяснение
V1.0	2016.12.20	размещение ценных бумаг, первичное
V1.1	2017.09.12	Самая высокая частота системы доводили до 24MHz, обновить 8.2,18.4
V1.2	2017.12.16	Обзор увеличить разницу таблицы CH552 / CH551, изменить некоторые формы заголовка
V1.3	V1.3 2018.03.20 1. Обзор CH552 / 1 различие модификации табличной, моди 5.3 Указатель стека (SP) исправлены опечатки, увеличение 6.2 ф	
V1.4	2018.08.28	Обновление 18,4 Fosc27