浙江大学实验报告

专业:	_数字媒体技术
姓名:	杨锐
学号:	_3180101941
日期:	4.23
地点:	

课程名称:	计算机图形学	指导老师:	唐敏	成绩:	
实验名称:	OpenGL 显示列表	实验类型:	基础实验	同组学生姓名:	

一、实验目的和要求

在三维观察实验的基础上,通过实现下述实验内容,掌握 OpenGL 中显示列表的作用和使用方法。

二、实验内容和原理

使用 Visual Studio C++编译已有项目工程,

装订

订 线 修改代码,通过**键盘按键**,控制兔子的数量($1 \le 16 \land$)以及整个场景的渲染模式,生成以下图形:

用按键 I、K 添加兔子数量增减(所有兔子均摆放着在桌面上,兔子间不要有交叉,桌面不够大可自行调整),按键 L 来切换显示列表和非显示列表绘制方式。WASDZC 控制上下左右前后移动, 空格键控制整体旋转。

通过动画以及对 FPS 的理解和分析显示列表对程序绘制性能的影响。

三、主要仪器设备

Visual Studio C++ glut.zip Ex4-vs2010 工程

四、操作方法和实验步骤

1.控制兔子的增多减少

使用全局变量count控制当前兔子数量,count的范围限制在[0, 16]。使用for循环控制兔子的绘制,每绘制一只兔子后使用gltranslatef(0, 0, 0.5) 平移到下一个位置。每绘制完四只兔子。使用gltranslatef(-0.6, 0, -1.5) 平移到第二行。

对于非显示列表的模式,直接调用绘制函数;对于显示列表模式,程序开始时先使用 GLint lid = glGenLists(2) 创建两个空列表并返回第一个列表的索引,然后使用 glNewList (GLuint list, GLenum mode),将兔子的节点和像素数据放入列表的内存中,最后在绘制的时候调用 glCallList (GLuint list)(参数为对应列表索引)将内存中的数据显示出来,而不再需要每一帧都重新执行、传输数据。

2.fps的计算

fps是**f**rames **p**er **s**econd的缩写,是一种衡量动画(泛指一切motion video)信息储存、显示量大小的指标。每一帧都是静态图像,将每一帧快速、连续的显示出来,就产生了运动的错觉。这也是Opengl的执行流程。fps直观的反应了动画的流畅程度,对于人眼而言,30-60fps最为适宜,超过60,直观上流畅度没有太多影响,但动画的信息量增加,成本增加。低于30,会有明显jerky motion的感觉。

因此,要计算fps需要计算单位时间内调用 redraw() 函数的次数,使用一个frame变量记录帧数,使用glutGet(GLUT_ELAPSED_TIME) 返回两次调用之间的时间间隔(ms),当时间达到单位时间(1s)时,更新fps的值,并通过 glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, *c) 显示在窗口中

五、实验数据和处理

1.数据

兔子数量/绘制模式/状态	显示列表 (静态/动态)	非显示列表 (静态/动态)
1	930/896	1180/1100
2	545/500	750/670
3	390/370	550/500
4	300/285	430/400
5	250/230	350/330
6	210/197	310/280
7	187/171	275/250
8	175/150	241/220
9	147/142	217/198
10	135/125	200/ 189
11	120/115	181/170
12	110/107	167/157
13	105/99	155/150
14	94/91	143/135
15	87/85	135/130
16	83/80	125/123

注:

1.fps数值取稳定后平均值

2.动态包括:缩放、旋转、键盘、鼠标控制移动 (相当于模拟一个FPS相机)

3.曲线图绘制fps取静态

2.分析

从实验数据结果可以看到,相同模式下,兔子数量越多,动态操作越多,fps越低,不同模式下,显示 列表明显高于非现实列表。

.而显示列表的原理是提前将顶点和像素数据计算、编译并储存在内存中,之后可以直接调用而不需要再次计算、传输,并减少cpu的执行时间,并且可以将数据上传到服务器端实现多客户端共享。因此显示列表非常适合绘制静态数据的图像,特别是时间开销的大的操作如:光照、纹理等。但缺点也是非常明显的,就是一旦编译后,数据就不能再修改,如果需要频繁改变数据,可以使用Vertex Buffer Object.

六 实验结果和心得

这次实验练习了显示列表的使用,并对fps的计算有了一定理解,同时改进了上次实验的鼠标操作。