$$s_p^2 = \frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

$$v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}$$

$$b_1 = \frac{n\sum_{i=1}^n x_i y_i - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 = \frac{\sum_{i=1}^n y_i - b_1 \sum_{i=1}^n x_i}{n} = \bar{y} - b_1 \bar{x}.$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
, $S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$, $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$.

$$s^{2} = \frac{SSE}{n-k-1}$$
, where $SSE = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \text{total sum of squares}$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \text{regression sum of squares.}$$

$$R^2 = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{SSE}{SST}.$$

$$R_{\mathrm{adj}}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2,$$
 $SSA = \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2,$

Formulas related to section 11.5 of the reference book