Virtualización

 \rightarrow

Combinación de hardware y software que permite a un recurso físico funcionar como múltiples recursos lógicos.

- Ocultar detalles técnicos a través de la encapsulación.
- Interfaz externo que esconde una implementación subyacente.

Tipos de virtualización

- De recursos
- De <u>plataforma</u>

De sistema:

VMWare Workstation, Virtualbox...

Maquina virtual de hardware:

Citrix XenServer, Microsoft Hyper-V, VMWarde ESX...

Ventajas

- Aislamiento
- Mejoras operacionales
- Alta disponibilidad
- Evaluación/prueba de SO y aplicaciones
- Ejecución de SW heredado/obsoleto

Desventajas

Complejidad

Virtualización en la nube

 \rightarrow

Proporciona capacidad informatica con un tamaño modificable en la nube, pagando por la capacidad utilizada.

- Elasticidad mediante la incorporación o retirada automática de recursos.
- Permite agregar recursos a los servidores que tenemos (Escalado vertical) o sumar servidores (Escalado horizontal).

Sistema informático

 \longrightarrow

Es un conjunto de partes interrelaionadas que tiene como objetivo capturar, almacenar y procesar información.

Esta formado por:

- Hardware
- Software
- RRHH

Definición de interfaz

 \rightarrow

Conexión o frontera común entre dos aparatos o sistemas independientes.

 \longrightarrow

Conexión, física o lógica, entre una computadora y el usuario, un dispositivo periférico o un enlace de comunicaciones.

Tipos de interfaz de usuario:

- CLI
- GUI
- NUI

Tipos de software

- Software de sistema
- Software de programación
- Software de aplicación
- Software libre
- Software propietario
 - Adware
 - Freeware
 - Shareware

Copyright → El creador de una obra por el hecho de serlo tiene:

- Derechos morales
- Derechos de explotación

El software no se compra sino que se adquieren una serie de **derechos sobre el uso que** se le puede dar.

La licencia es un contrato entre desarrollador y usuario.

Tipos de licencias

Software libre:

 GPL → El autor conserva los derechos de autor y permite su redistribución y modificación pero bajo esa misma licencia.

Software propietario:

- OEM → Se otorga al fabricante de hardware para que se distribuya con el en un único uso.
- <u>Retail</u> → Licencia que compramos al desarrollador y podemos instalar en cualquier hardware.
- <u>VLM</u> → Permite la instalacion en un n.º de ordenadores con una única licencia.

Arquitectura Von Neumann[1945]

- Estructura de los ordenadores que usamos en la actualidad.
- CPU, Memoria Principal, Sistemas de Entrada/Salida y Buses.
- Los Buses son lineas de comunicación:
 - Bus de datos
 - Bus de direcciones
 - Buus de control

CPU

- → Se encarga de la ejecución de las instrucciones de un programa.
 - Unidad de control (UC) → Decodifica y controla la ejecución.
 - Unidad aritmético-lógica (ALU) → Calcula
 - Registros → Genericos / Especificos

Sistema Operativo (SO)

→ Un sistema operativo es un programa o conjunto de programas, encargados de ofrecer una interfaz en el sistema y el hardware de éste.

Funciones

- Interfaz con el usuario
- Gestión de Procesos
- Gestión de Memoria
- Gestión de E/S
- · Gestión de Ficheros
- Gestión de la Red
- Protección y Seguridad

Tipos SO

Monousuario / Multiusuario
Monotarea / Multitarea
Monoproceso / Multiproceso
(N.º de usuarios)
(N.º de tareas)
(N.º de procesos)

- Sistemas distribuidos
 - Grid
 - Clusters

Evolución de los ordenadores de y SO's

- Primera generación [1945 1955]
 - Tubos de vacío, tarjetas perforadas.
- Segunda generación [1955 1965]
 - Transistores, sistemas batch.
- Tercera generación [1965 1980]
 - o Circuitos integrados y SO con multitarea, multiproceso, etc. Surge UNIX.
- Cuarta generación [1980 hoy]
 - Ordenadores personales y SO con GUI.

Gestión de procesos

- Un proceso es un programa en ejecución.
- Cuando se ejecutan varios procesos de forma concurrente es necesaria una gestión de procesos compleja que permita:
 - Asignar recursos a los procesos.
 - o Priorizar algunos procesos frente a otros.
 - Realizar funciones de **sincronización** entre procesos.
- Además la gestión de procesos debe minimizar tiempos de espera y aumenta el rendimiento
- El proceso se componde de:
 - Instrucciones
 - Datos
 - o Pila de proceso

Estados de un proceso

- Nuevo
- Ejecución
- Listo
- Espera
- Terminado

Identificador de procesos

- A cada proceso se le asigna un identificador que lo distingue de los demas procesos. PID (Process Identifier).
- El proceso pertenece a su creador.
- Existe una jerarquia:
 - Proceso que crea es proceso padre.
 - Proceso que es creado es proceso hijo.
 - Existe una dependencia del proceso hijo con los procesos padre.
 - Es posible especificar que en caso de muerte del padre, el proceso hijo sea adoptado por otro proceso.

Jerarquia de procesos

UNIX

- Init tiene el pid1, los demás procesos son hijos de este.
- Si el padre de un proceso muere es posible especificar que pase a ser el padre el **proceso init.**
- **UID** (User Identifier), **GID** (Group Identifier).

Windows

- Cuando un proceso crea otro, recibe un manipulador (handle) que puede utilizar para controlar al proceso hijo.
- Si muere el padre o el padre quiere transferir el proceso hijo debe pasar el manipulador necesario para el control del hijo. Por este mo*vo la idea de jerarquía es difusa en Windows.

Conmutación de procesos

- Cuando el procesador ejecuta un proceso, este proceso se almacena en memoria principal y los registros de la UC modifican sus valores para atender a este proceso:
 - El registro de instrucción almacena la instrucción a ejecutar.
 - El contador de programa (CP) la dirección de la siguiente instrucción.
- Si el procesador estaba ejecutando un proceso 1 y pasa a ejecutar un proceso 2 debe:
 - Almacenar toda la información necesaria para ejecutar el proceso 1.
 - Cargar toda la información que requiere el proceso 2.
- Esto se conoce como cambio de contexto. Debe minimizarse el tiempo y numero de esos cambios.
- Tradicionalmente, solo hay un hilo o línea de control que viene indicada por el CP.

Hilos o procesos ligeros

- Si existe más de un CP, se puede plantear la situación de que haya más de un hilo de control.
- En un sistema multihilo, el cambio de contexto es parcial.
- No se puede ejecutar con multihilo cualquier conjunto de procesos.

Planificador de procesos

- Tiempo de espera → Suma del tiempo que esta un proceso en espera sin ser ejecutado.
- Tiempo de retorno → Tiempo total que transcurre desde que un proceso inicia su ejecución hasta que la termina.
- Tiempo de espera medio → Media del tiempo de espera.
- Tiempo de retorno medio → Media del tiempo de retorno.

Algoritmos de planificación

- FIFO
- Round Robin
- SJF
- Round Robin con colas multinivel:
 - Se emplea en SO actuales.
 - Incluye una cola de procesos por cada nivel de prioridad.
 - o En cada cola, el quantum es diferente.
 - Se pueden emplear algoritmos distintos en cada cola.

Gestión de memoria

- Desde el punto de vista lógico, la memoria de un computador puede verse como una tabla en la que cada celda almacena una palabra y se identifica unívocamente por su dirección.
- Una **palabra** es el conjunto de bits que la arquitectura de un ordenador puede escribir/leer como un todo.
- Los tamaños de palabra más comunes son de 32 ó 64 bits. El número entero, el bus de datos o el tamaño de la instrucción son de la longitud de una palabra.
- Cada proceso en ejecución requiere de un área de memoria que se divide en:
 - Zona de código
 - Zona de datos
 - La pila del proceso (almacena información del proceso)
- El SO asigna y libera bloques de memoria para uso de los procesos y busca una asignación **rápida** y el **mayor aprovechamiento posible de memoria.**
 - Los **bloques** de memoria
 - Pueden ser contiguos o no
 - Pueden ser de tamaño fiio o variable.
 - Cuando se produce desaprovechamiento de memoria, decimos que hay fragmentación.

Fragmentación

- Fragmentación **interna**: desaprovechamiento de memoria dentro del bloque de tamaño fijo.
- Fragmentación **externa**: desaprovechamiento de memoria entre bloques de tamaño variable.

Memoria virtual

- Se inventó para ampliar el numero de direcciones disponibles en memoria principal.
- Ponemos la **parte en uso del proceso en memoria principal** y el resto en el disco, haciendo pensar al procesador que todo esta en memoria principal.
- Para ello:
 - 1. Memoria principal tiene marcos de pagina.
 - 2. Dividimos las palabras en **páginas**, del mismo tamaño que los marcos de pagina.
 - 3. El SO busca los marcos libres para ubicar las paginas en memoria pero:
 - Si se precisa un dato que no esta cargado en RAM se produce un fallo de página.
 - Si la página de memoria a sustituir fue modificada, será necesario reescribirla en su marco de pagina en el disco duro.

Memoria virtualización

- ¿Qué página elimino?
 - FIFO
 - LRU (Less Recent Used)
- Carga anticipada → Intenta predecir que paginas serán solicitadas.

Gestión de Ficheros

El Sistema de archivos se encarga de organizar el modo en el que se guardan los datos dentro de los disposi5vos de almacenamiento secundario.

- **Archivo** → Serie de bytes almacenados en un dispositivo de almacenamiento externo que forman una unidad lógica.
- Directorio → Modo de agrupar archivos para facilitar su organización.

Entre las funciones del gestor de ficheros tenemos:

- Asignar/Liberar bloques de datos a los ficheros a almacenar o eliminar.
- Permitir un rápido acceso a la información almacenada.
- Controlar que los ficheros **no ocupen zonas de disco comunes** o que sean ocupadas sin el **acceso autorizado.**

Sistemas de ficheros

- Windows
 - o FAT32
 - NTFS
- Linux
 - Ext4
 - XFS
 - Btrfs
- OS X
 - ∘ HFS+
 - APFS
- Unidades externas
 - vFat o exFAT

FAT32

- La región FAT
 - Dirección del bloque en la region de datos
 - El nombre del archivo asociado.
- La region de datos

EXT

- Emplean una estructura llamada inode que consiste en una pequeña tabla con atributos y una lista de bloques.
- EXT3 y EXT4 guarda una estructura de árbol binario que almacena en cada entrada:
 - Identificador del archivo
 - Dirección en disco de su inodo
 - o Información para encontrar las entradas del árbol

Particiones de discos

- Una partición es una división lógica del disico que funciona como si fuese un disco duro independiente.
- Existen tres tipos:
 - Física → Solo podemos tener 4 por disco duro.
 - ∘ Extendida → No almacena datos sino que contiene particiones lógicas.
 - Lógica → Podemos tener tantas como queramos pero dentro de una partición extendida.

Windows

• Requiere de una particion primaria para instalar la unidad principal C:\.

Linux

 Requiere de 2 particiones que pueden ser lógicas o primarias, para el directorio raíz y para la memoria SWAP.

Gestión de Entrada / Salida

- En un sistema informático podemos encontrar muchos dispositivos de entrada/salida diferentes.
 - o Dispositivos orientados a bloque.
 - o Dispositivos orientados a cáracter.
- En el proceso de comunicación entre la CPU y un periférico, intervienen:
 - El gestor de entrada/salida
 - Drivers
 - Controladores
 - Periferico