

SDS 384 11: Theoretical Statistics

Lecture 16: Uniform Law of Large Numbers- Dudley's chaining Introduction

Purnamrita Sarkar

Department of Statistics and Data Science
The University of Texas at Austin

A sub-gaussian process

Definition

A stochastic process $\theta \to X_\theta$ with indexing set $\mathcal T$ is sub-Gaussian w.r.t a metric d_X if $\forall \theta, \theta' \in \mathcal T$ and $\lambda \in \mathbb R$,

$$E \exp(\lambda(X_{\theta} - X_{\theta}')) \le \exp\left(\frac{\lambda^2 d_X(\theta, \theta')^2}{2}\right)$$

This immediately implies the following tail bound.

$$P(|X_{\theta} - X_{\theta'}| \ge t) \le 2 \exp\left(-\frac{t^2}{2d_X(\theta, \theta')^2}\right)$$

1

Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let $\{X_{\theta}, \theta \in \mathcal{T}\}$ be a zero-mean sub-Gaussian process with respect to the metric d_X . Then for any $\delta > 0$, we have

$$E\begin{bmatrix} \sup_{\theta,\theta'\in\mathcal{T}} (X_{\theta} - X_{\theta'}) \end{bmatrix} \leq 2E \begin{bmatrix} \sup_{\theta,\theta'\in\mathcal{T}} (X_{\theta} - X_{\theta'}) \end{bmatrix} + 2D\sqrt{\log N(\delta;\mathcal{T},d_X)},$$
where $D := \max_{\theta,\theta'\in\Theta} d_X(\theta,\theta').$

• The mean zero condition gives us:

$$E[\sup_{\theta \in \mathcal{T}} X_{\theta}] = E[\sup_{\theta \in \mathcal{T}} (X_{\theta} - X_{\theta_0})] \leq E[\sup_{\theta, \theta' \in \mathcal{T}} (X_{\theta} - X_{\theta'})]$$

Tradeoff

$$E\left[\sup_{\theta,\theta'\in\mathcal{T}}(X_{\theta}-X_{\theta'})\right] \leq 2E\left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_X(\theta,\theta')\leq\delta}}(X_{\theta}-X_{\theta'})\right] + 4\underbrace{\sqrt{D^2\log N(\delta;\mathcal{T},d_X)}}_{\text{Estimation error}}$$

- As $\delta \to 0$, the cover becomes more refined, and so the approximation error decays to zero.
- But the estimation error grows.
- In practice the δ can be chosen to achieve the optimal trade-off between two terms.

- Choose a δ cover T.
- For $\theta, \theta' \in \mathcal{T}$, let $\theta^1, \theta^2 \in \mathcal{T}$ such that $d_X(\theta, \theta^1) \leq \delta$ and $d_X(\theta', \theta^2) \leq \delta$.

$$\begin{split} X_{\theta} - X_{\theta'} &= (X_{\theta} - X_{\theta 1}) + (X_{\theta 1} - X_{\theta 2}) + (X_{\theta 2} - X_{\theta'}) \\ &\leq 2 \sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + \sup_{\substack{\theta^{i}, \theta^{j} \in \mathcal{T}}} (X_{\theta^{i}} - X_{\theta^{j}}) \end{split}$$

• But note that $X_{\theta^1} - X_{\theta^2} \sim Subgaussian(d_X(\theta^1, \theta^2))...$

Finite class lemma for subgaussian processes

Theorem

Consider X_{θ} sub-gaussian w.r.t d on \mathcal{T} and A is a set of pairs from \mathcal{T} .

$$E \max_{(\theta, \theta') \in A} (X_{\theta} - X_{\theta'}) \le D\sqrt{2 \log |A|},$$

where
$$D := \max_{(\theta, \theta') \in A} d_X(\theta, \theta')$$
.

Finite class lemma

$$\begin{split} \exp\left(\lambda E \max_{(\theta,\theta')\in A} (X_{\theta} - X_{\theta'})\right) &\leq E \exp\left(\lambda \max_{(\theta,\theta')\in A} (X_{\theta} - X_{\theta'})\right) \\ &= \max_{(\theta,\theta')\in A} E \exp(\lambda (X_{\theta} - X_{\theta'})) \\ &\leq \sum_{(\theta,\theta')\in A} \exp\left(\frac{\lambda^2 d\chi(\theta,\theta')^2}{2}\right) \\ &\leq |A| \exp\left(\frac{\lambda^2 D^2}{2}\right) \end{split}$$

Now optimize over λ.

Finishing the proof

$$\begin{split} X_{\theta} - X_{\theta'} &\leq 2 \sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + \sup_{\substack{\theta^{i}, \theta^{j} \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta^{1}} - X_{\theta^{2}}) \\ E \left[\sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) \right] + E \left[\sup_{\substack{\theta^{i}, \theta^{j} \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta^{1}} - X_{\theta^{2}}) \right] \\ &\leq 2E \left[\sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{X}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) \right] + D\sqrt{2 \log N(\delta; \mathcal{T}, d_{X})^{2}} \end{split}$$

Examples: smoothly parametrized class

Example

Suppose \mathcal{F} is a class parametric functions $\mathcal{F} := \{f(\theta, .) : \theta \in B_2\}$, where B_2 is the unit L_2 ball in \mathbb{R}^d . Assume that \mathcal{F} is closed under negation. f is L Lipschitz w.r.t. the Euclidean distance on Θ , i.e.

$$|f(\theta,.) - f(\theta',.)| \le L||\theta - \theta'||_2.$$

$$\mathcal{R}_n(\mathcal{F}) = O\left(L\sqrt{\frac{d\log(Ln)}{n}}\right)$$

- Denote $f(\theta, X_1^n)$ as the vector $(f(\theta, X_1), \dots, f(\theta, X_n))$.
- Recall that $n\mathcal{R}_n(\mathcal{F}) = E\left[\sup_{f \in \mathcal{F}} \langle \epsilon, f(\theta, X_1^n) \rangle\right] = E\left[\sup_{\theta \in \Theta} \langle \epsilon, f(\theta, X_1^n) \rangle\right]$
- The process $f(\theta, X_1^n) \to \langle \epsilon, f(\theta, X_1^n) \rangle =: Y_{\theta}$ is mean zero subgaussian.
- Note that $Y_{\theta} Y'_{\theta} \sim \textit{Subgaussian}(\textit{d}_{X}(\theta, \theta'))$
- We have:

$$d_X(\theta, \theta') = \|f(\theta, X_1^n) - f(\theta', X_1^n)\|^2 \le nL^2 \|\theta - \theta'\|_2^2$$

• So it is $L\sqrt{n}$ Lipschitz.

• Also,

$$n\mathcal{R}_n(\mathcal{F}) = E[\sup_{\theta \in \Theta} (Y_{\theta} - Y_{\theta'})] \le E[\sup_{\theta, \theta' \in \Theta} (Y_{\theta} - Y_{\theta'})]$$

•

$$n\mathcal{R}_{n}(\mathcal{F}) \leq E \sup_{\substack{\|\theta - \theta'\|_{2} \leq \delta \\ \theta, \theta' \in \Theta}} (Y_{\theta} - Y'_{\theta}) + 2D\sqrt{\log N(\delta; \mathcal{F}, d_{X})}$$

•
$$A \le \delta E \left[\sup_{\|\mathbf{v}\|_2 = 1} \langle \epsilon, \mathbf{v} \rangle \right] \le \delta \sqrt{n}$$

•
$$D = \sup_{\theta, \theta'} d_X(\theta, \theta) = 2L\sqrt{n}$$

•
$$N(\delta; \mathcal{F}, d_X) \le N(\delta/L\sqrt{n}, \Theta, \|.\|_2) \le \left(1 + \frac{L\sqrt{n}}{\delta}\right)^d$$

• Finally,

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{2\delta}{\sqrt{n}} + 4L\sqrt{\frac{d\log(1+L\sqrt{n}/\delta)}{n}}$$

• Setting $\delta = 1/\sqrt{n}$ gives:

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{2L}{\sqrt{n}} + 4L\sqrt{\frac{d\log(1+Ln)}{n}}$$