Galois Groups, Decomposable Branched Covers, and Applications to Sparse Polynomial Systems

Thomas Yahl thomasjyahl@math.tamu.edu

Texas A&M University

October 2019

Joint with Taylor Brysiewicz, Jose Rodriguez, and Frank Sottile

Decomposable Branched Covers

A <u>branched cover</u> is a dominant map of complex irreducible varieties of the same dimension $\pi: X \to Y$ that restricts to a covering space $\pi: \pi^{-1}(U) \to U$ for an open set $U \subseteq Y$.

Example: The map $\pi: \mathbb{C} \to \mathbb{C}$ defined by $\pi(z) = z^3$ is a branched cover. It restricts to a covering space $\pi: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$.

A branched cover $\pi: X \to Y$ is decomposable if the corresponding covering space $\pi: \pi^{-1}(U) \to U$ factors as a composition of two nontrivial covering spaces.

$$\pi:\pi^{-1}(U)\to Z\to U$$

Goal: Decompose branched covers as much as possible to compute fibres.

Galois Groups of Branched Covers

The Galois group of a branched cover $\pi: X \to Y$ is the monodromy group of (any of) its respective covering space(s).

The Galois group of a branched cover acts on the fibres of the covering space by the monodromy action.

Example: The Galois group of the previous example, $\pi: \mathbb{C} \to \mathbb{C}$ is $\mathbb{Z}/3\mathbb{Z}$.

Imprimitive Groups

A group G acting on a set S is <u>imprimitive</u> if there is a nontrivial partition of S that is preserved by the action of G.

Example: Let $G = D_4$ be the symmetry group of the square acting on the vertices. The diagonals are preserved, so the partition $\{1,4\},\{2,3\}$ is preserved.

<u>Proposition:</u> The Galois group of a branched cover acts imprimitively on fibres if and only if the branched cover is decomposable.

Applications to Sparse Polynomial Systems

A (Laurent) monomial is an expression of the form $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$.

A finite set $A\subseteq \mathbb{Z}^n$ determines a family of sparse polynomials $f=\sum_{\alpha\in A}c_\alpha x^\alpha$ which is denoted \mathbb{C}^A .

A tuple of finite sets $A_{\bullet} = (A_1, \dots, A_n)$ determines a family of sparse polynomial systems $F = (f_1, \dots, f_n) \in \mathbb{C}^{A_1} \times \dots \times \mathbb{C}^{A_n}$ denoted by $\mathbb{C}^{A_{\bullet}}$.

<u>Theorem:</u> (Bernstein-Kushnirenko) The number of solutions in $(\mathbb{C}^{\times})^n$ of a generic polynomial system in $\mathbb{C}^{A_{\bullet}}$ is given by the mixed volume $MV(conv(A_1), \ldots, conv(A_n))$.

Applications to Sparse Polynomial Systems

The incidence variety of the family of equations $\mathbb{C}^{A_{ullet}}$ is the variety

$$X_{A_{\bullet}} = \{(F, x) \in \mathbb{C}^{A_{\bullet}} \times (\mathbb{C}^{\times})^n : F(x) = 0\}.$$

The Bernstein-Kushnirenko theorem shows the projection $\pi: X_{A_{\bullet}} \to \mathbb{C}^{A_{\bullet}}$ is a branched cover and tells us the degree!

The solutions to a system $F \in \mathbb{C}^{A_{\bullet}}$ can be identified with the fibre $\pi^{-1}(F)$. Decompose to compute fibres!

There are two instances when this branched cover naturally decomposes:

- (1) The family of equations is Lacunary. Example: $f(x^2) = 0$.
- (2) The family of equations is Triangular. Example: f(x,y) = g(y) = 0.

 $\underline{\text{Theorem:}} \text{ (Esterov) The Galois group of the branched cover is imprimitive only if either (1) or (2) holds. Otherwise the Galois group is symmetric.}$

Recursive Algorithm for Solving

Given a polynomial system $F \in \mathbb{C}^{A_{\bullet}} \dots$

- (1) If the family of equations is lacunary:
 - a. Change coordinates so that the system has the form $\widetilde{F} \circ \Phi$.
 - b. Recursively compute solutions y_1, \ldots, y_m to \widetilde{F} .
 - c. Solve the binomial equations $\Phi(x) = y_i$.
- (2) If the family of equations is triangular:
 - a. Change coordinates so that the system contains a square subsystem \widetilde{F} in x_1, \ldots, x_k .
 - b. Recursively compute solutions y_1, \ldots, y_m to \widetilde{F} .
 - c. Compute solutions (x_{k+1}, \ldots, x_n) to $F(y_i, x_{k+1}, \ldots, x_n)$ and piece together solutions to F.
- (3) If the family of equations is neither lacunary nor triangular:
 - a. Just use your other favorite solver!