Oblig3

Magnus Isaksen

21. september 2015

0.3

 \mathbf{a}

For å finne antall ledige tilstander bruker vi

$$\Omega(n) = \frac{N!}{n!(N-n)!}$$

b)

Entropi er gitt ved

 $S = k \ln \Omega$

Hvor Ω er fra forrige deloppgave. Dette gir

$$S = k \ln(\frac{N!}{n!(N-n)!})$$

Sterlings tilnærming gir oss

$$S = k(\ln(N!) - \ln(n!) - \ln(N - n)!)$$

 $\mathbf{c})$

Hvis da N»n

Kan vi tilnærme

$$S = k((N \ln(N) - N) - (n \ln(n) - n) - ((N - n) \ln(N - n) - (N - n)))$$

d)

Temperaturen finner vi ved

$$\frac{1}{T} = \frac{dS}{dU}$$

Hvor U er den totale energien.

$$U = \Delta \epsilon n$$

Noe som gir oss ledige plasser n.

$$n = \frac{U}{\Delta \epsilon}$$

Vi bruke

$$\frac{dS}{dU} = \frac{dS}{dn} \frac{dn}{dU}$$

Da får vi

$$\frac{dS}{dn} = k((-\ln n + n\frac{1}{n}) - (-\ln(N-n) + (N-n)\frac{1}{N-n}(-1))$$

$$\frac{dS}{dn} = k(-\ln n - 1 + \ln(N - n) + 1)$$

$$\frac{dS}{dn} = k(\ln(N - n) - \ln n)$$

$$\frac{dS}{dn} = k(\ln N(1 - \frac{n}{N}) - \ln n) = k(\ln N - \ln n) = k \ln \frac{N}{n}$$

Så ser vi på $\frac{dn}{dU}$

$$\frac{dn}{dU} = \frac{d(\frac{U}{\Delta\epsilon})}{dU} = \frac{1}{\Delta\epsilon}$$

Da får vi at

$$\frac{1}{T} = \frac{k \ln(\frac{N}{n})}{\Delta \epsilon}$$

og tilslutt har vi temperaturen

$$T = \frac{\Delta \epsilon}{k \ln(\frac{N}{n})}$$

e)

Skal nå se på hvor mange ledige plasser det er som funksjon av T.

$$T = \frac{\Delta \epsilon}{k \ln(\frac{N}{n})}$$

$$k(\ln N - \ln n) = \frac{\Delta \epsilon}{T}$$

$$\ln n = \ln N - \frac{\Delta \epsilon}{kT}$$

$$n = e^{\ln N - \frac{\Delta \epsilon}{kT}}$$

$$n = Ne^{-\frac{\Delta \epsilon}{kT}}$$

Her ser vi at n er avhengig av hvordan T oppfører seg så n er en fluctuating value".

f)

Når temperaturen går mot null går også uttrykket mot null, så da er det ingen ledige plasser.

\mathbf{g}

Plotter antall ledige plassr i python og får Figur1

```
from pylab import *
from numpy import *
import matplotlib.pyplot as mp
N = 10**23
deps = 1.0 #ev
kb = 8.617e-5 #eV/K Boltzmann
T = linspace(40,1000,100000)
rt = len(T)
n = zeros(rt)

for i in range(rt):
    n[i] = N*exp(-deps/(kb*T[i]))
```

```
#plotting vacancies
mp.plot(T,n)
mp.xlabel('Temperature')
mp.ylabel('Vacancies')

#finding heat capasity
c = (deps**2*N/(kb*T**2))*exp(-deps/(kb*T))

mp.figure()
mp.plot(T,c)
mp.xlabel('Temperature ')
mp.ylabel('Heat capacity')
mp.show()
```


Figur 1: Ledige plasser som funksjon av temperatur

h)

Varmekapasitet finner vi ved

$$c = \frac{dU}{dT}$$

hvor
$$U = \Delta \epsilon n = \Delta \epsilon N e^{-\frac{\Delta \epsilon}{kT}}$$

Deriverer vi får vi

$$c = \Delta \epsilon N \frac{\Delta \epsilon}{kT^2} e^{-\frac{\Delta \epsilon}{kT}} = \frac{\Delta \epsilon^2 N}{kT^2} e^{-\frac{\Delta \epsilon}{kT}}$$

Plotter vi denne får vi Figur 2 og vi ser at den øker med temperaturen på samme måte som antall ledige plasser gjør. Så med høyere temperatur er varmekapasiteten høyere.

Figur 2: Varmekapasitet dom funksjon av temperatur

0.4

a)

Multiplisiteten finner vi med

$$\Omega(N_R) = \frac{N!}{N_R!(N-N_R)!}$$

Hvor N er det totale antall polymer og N_R er de som peker mot høyre.

b)

Lengden til kjeden er antall som peker mot høyre minus de som peker mot venstre.

$$L = \Delta l(N_R - (N - N_R)) = \Delta l(2N_R - N)$$

c)

Finner først at $N_R = \frac{L}{2\Delta l}$

Setter dette inn i formelen for entropi

$$S = k \ln \Omega$$

$$S = k \ln(\frac{N!}{N_R!(N-N_R)!})$$

$$S = k \ln(\frac{N!}{(\frac{L}{2\Delta l} + \frac{N}{2})!(\frac{N}{2} - \frac{L}{2\Delta l})})$$

d)

Vi vet at dE = TdS - PdV

Og her er F=-P og dV lik dL da vi ser på en dimensjon.

Slik at med omrokkering.

$$TdS = dE - FdL$$

 $\mathbf{e})$

$$FdL = dE - TdS$$

$$F = \frac{dE}{dL} - T\frac{dS}{dL}$$

Vi vet at den totale energien er bevart så $\frac{dE}{dL}=0$

Dermed får vi

$$F = -T \frac{dS}{dL}$$

Tar så å ser på

$$\frac{dS}{dL} = \frac{dS}{dN_R} \frac{dN_R}{dL}$$

$$\frac{dS}{dN_R} = \frac{d}{dN_R} k(\frac{N!}{N_R!(N-N_R)!})$$

$$\frac{dS}{dN_R} = \frac{d}{dN_R} k(N \ln N + N - N_R \ln N_R - N_R - (N - N_R) \ln(N - N_R) - (N - N_R))$$

$$\frac{dS}{dN_R} = k(\ln(N - N_R) + (N + N_R)(\frac{1}{(N + N_R)} - \ln N_R - 1)$$

$$\frac{dS}{dN_R} = k(\ln(N - N_R) - \ln N_R)$$

Deretter finner vi $\frac{dN_R}{dL}$

$$N_R = \frac{L}{2\Delta l} + \frac{N}{2}$$

$$\frac{dN_R}{dL} = \frac{1}{2\Delta l}$$

dette gir

$$\frac{dS}{dL} = \frac{k(\ln(N - N_R) - \ln N_R)}{2\Delta l}$$

Setter vi inn dette får vi

$$F = -\frac{Tk}{2N}(\ln(N - N_R) - \ln N_R)$$

$$F = -\frac{Tk}{2\Delta l} \left(\ln \left(\frac{N}{2} - \frac{L}{2\Delta l} \right) - \ln \left(\frac{L}{2\Delta l} + \frac{N}{2} \right) \right)$$

$$F = -\frac{Tk}{2\Delta l}(\ln(N\Delta l + L) - \ln(N\Delta l - L))$$

f)

Hooks lov gir oss F = -kx hvor x er lengden.

$$F = -\frac{Tk}{2\Delta l}(\ln(N\Delta l + L) - \ln(N\Delta l - L))$$

Når $L << N\Delta l$

$$F = -\frac{Tk}{2\Delta l} \left(\ln(N\Delta l(1 + L\frac{L}{N\Delta L}) - \ln(N\Delta l(1 - \frac{L}{N\Delta L})) \right) = -\frac{Tk}{2\Delta l} 2\frac{L}{N\Delta L} = -\frac{Tk}{2\Delta l^2} L$$

Som da oppfyller Hooks lov ved at vi har en konstant foran lengden L dersom temperaturen holder seg konstant.

$\mathbf{g})$

Dersom temperaturen øker vil krafta trekkes inn og dersom T er mindre vil den strekkes letter. Nei det gir ikke helt mening for meg, jeg ville tro at det burde være motsatt.

h)

Jeg vil forvente at temperaturen vil øke da vil tilfører et arbeid, og det vil være friksjon til å varme den opp.