Chapter 2 Lecture 4

2.2 Bounded and Monotonic Sequences

Definition 2.3.

- 1. (a_n) is **bounded above** if $\exists M \in \mathbb{R}$ such that $a_n \leq M \ \forall n \in \mathbb{N}$.
- 2. (a_n) is **bounded below** if $\exists m \in \mathbb{R}$ such that $a_n \geq m \ \forall n \in \mathbb{N}$.
- 3. (a_n) is **bounded** if it is bounded above and bounded below.

Note. $(a_n)_{n=n_0}^{\infty}$ is bounded (above, below) if and only if the set $\{a_n : n \in \mathbb{Z}, n \geq n_0\}$ is bounded (above, below).

Definition 2.4. A sequence $(a_n)_{n=1}^{\infty}$ is called

- (1) **increasing** if $a_n \leq a_{n+1}$ for all indices n,
- (2) **strictly increasing** if $a_n < a_{n+1}$ for all indices n,
- (3) **decreasing** if $a_n \ge a_{n+1}$ for all indices n,
- (4) **increasing** if $a_n > a_{n+1}$ for all indices n,
- (5) monotonic if it is either increasing or decreasing,
- (6) **strictly monotonic** if it is either strictly increasing or strictly decreasing.

Theorem 2.7. Every convergent sequence is bounded. **Proof.**

Since (a_n) converges, $\exists L$ and k such that $|a_n - L| < 1 \, \forall n \ge k$. Hence $\{a_n : n < k\}$ and $\{a_n : n \ge k\} \subset (L-1,L+1)$ are bounded So (a_n) is bounded as the union of two bounded sets. \square

Every unbounded sequence diverges.

Definition 2.5.

- 1. $a_n \to \infty$ as $n \to \infty$ if $\forall A \in \mathbb{R} \exists K \in \mathbb{R}$ s.t. $a_n > A \ \forall n \ge K$.
- 2. $a_n \to -\infty$ as $n \to \infty$ if $\forall A \in \mathbb{R} \exists K \in \mathbb{R}$ s.t. $a_n < A \ \forall n \ge K$.

Example 2.2.1.

- 1. Let $a_n = (-1)^n$. Then (a_n) is bounded but not convergent.
- 2. Let $a_n = n$. Then (a_n) is unbounded (by the Archimedean principle) so diverges.

Example 2.2.2. Prove that $n^2 - n^3 + 10 \rightarrow -\infty$ as $n \rightarrow \infty$. **Solution.** Let A < 0 and put K = -A + 11. Then K > 11, and for $n \geq K$, we have

$$n^{2} - n^{3} + 10 = -n^{2}(n-1) + 10$$

$$\leq -10n^{2} + 10 \leq -10K^{2} + 10$$

$$= -10(K-1)(K+1) \leq -100(K+1)$$

$$\leq -K = A - 11 \leq A.$$

Theorem 2.8.

1. Let (a_n) be a sequence with $a_n > 0 \ \forall n$. Then

$$\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} \frac{1}{a_n} = 0.$$

2. Let (a_n) be a sequence with $a_n < 0 \ \forall n$. Then

$$\lim_{n\to\infty} a_n = -\infty \Leftrightarrow \lim_{n\to\infty} \frac{1}{a_n} = 0.$$

Proof. 1. Assume that $\lim_{n\to\infty} a_n = \infty$. Let $\epsilon > 0$.

Put $\frac{1}{\epsilon}$. Then $\exists K$ s.t. $0 < A < a_n \ \forall n \ge K$. Then

$$0 < \frac{1}{a_n} < \frac{1}{A} = \epsilon$$

for these n, which shows that $\lim_{n\to\infty} \frac{1}{a_n} = 0$.

Conversely, assume that
$$\lim_{n \to \infty} \frac{1}{a_n} = 0$$
 . Let $A \in \mathbb{R}$ and

put
$$A_0 = \max\{A, 1\}$$
. Then $A_0 > 0$ and put $\epsilon = \frac{1}{A_0} > 0$.

Hence
$$\exists K \in \mathbb{R} \text{ s.t. } \frac{1}{a_n} = \left| \frac{1}{a_n} \right| < \epsilon \quad \forall n \geq K \ .$$

This gives
$$a_n > \frac{1}{\epsilon} = A_0 \ge A \quad \forall n \ge K$$
 .

2. The proof is similar.

Theorem 2.9.

Refer to your study guide for more rules for infinite limits.

Definition 2.6. Let $A \subseteq \mathbb{R}$ be nonempty.

If A is not bounded above, we write $\sup A = \infty$, and if A is not bounded below, we write $\inf A = -\infty$.

Theorem 2.10.

1. Let (a_n) be an increasing sequence.

If (a_n) is bounded, then (a_n) converges, and

$$\lim_{n\to\infty}a_n=\sup\{a_n\,:\,n\in\mathbb{N}\}.$$

If (a_n) is not bounded, then (a_n) diverges to ∞ .

2. Let (a_n) be a decreasing sequence. If (a_n) is bounded, then (a_n) converges, and $\lim_{n\to\infty} a_n = \inf\{a_n : n\in\mathbb{N}\}.$ If (a_n) is not bounded, then (a_n) diverges to $-\infty$.

Proof.

1. Let (a_n) be bounded. Put $L=\sup\{a_n:n\in\mathbb{N}\}$ and let $\epsilon>0$. Let's show that $\exists K\in\mathbb{N}$ s.t. $n\geq K$ gives $L-\epsilon< a_n< L+\epsilon$. By definition of the supremum, $a_n\leq L\leq L+\epsilon$ for all n and by Theorem 1.6(b), there is K such that $L-\epsilon< a_K$. Then for all $n\geq K$, $L-\epsilon< a_K\leq a_n$. Hence $L-\epsilon< a_n< L+\epsilon$ for all $n\geq K$, which proves $a_n\to L$ as $n\to\infty$.

Now assume that (a_n) is not bounded. Since $a_0 \le a_n$ for all n, (a_n) is bounded below. Hence (a_n) is not bounded above. Let $A \in \mathbb{R}$. Then there is an index K such that $a_K > A$, and thus $a_n \ge a_K > A$ for all $n \ge K$.

2. The proof is similar.

Example 2.2.3. Let
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 and $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$.

Then $a_n < b_n \ \forall \ n \in \mathbb{N}$, (a_n) is an increasing sequence, (b_n) is a decreasing sequence, both sequences converge to the same number, and the limit is denoted e, Euler's number.

Proof.
$$a_n < b_n$$
 since $b_n = a_n \left(1 + \frac{1}{n}\right)$.

Using Bernoulli's inequality, see Example 1.3.2, we have

$$\frac{a_{n+1}}{a_n} = \frac{\left(\frac{n+2}{n+1}\right)^{n+1}}{\left(\frac{n+1}{n}\right)^n} = \left(\frac{n(n+2)}{(n+1)^2}\right)^{n+1} \frac{n+1}{n} = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \frac{n+1}{n}$$

$$\geq \left(1 - \frac{n+1}{(n+1)^2}\right) \frac{n+1}{n} = \frac{n}{n+1} \frac{n+1}{n} = 1 \text{ and}$$

$$\frac{b_n}{b_{n+1}} = \frac{\left(\frac{n+1}{n}\right)^{n+1}}{\left(\frac{n+2}{n+1}\right)^{n+2}} = \left(\frac{(n+1)^2}{n(n+2)^2}\right)^{n+2} \frac{n}{n+1} = \left(1 + \frac{1}{n(n+2)}\right)^{n+2} \frac{n}{n+1}$$

$$\geq \left(1 + \frac{n+2}{n(n+2)}\right)\frac{n}{n+1} = \frac{n+1}{n}\frac{n}{n+1} = 1$$

Hence (a_n) is increasing and bounded (above by b_1).

By Theorem 2.10, (a_n) has a limit α . Similarly, (b_n) has a limit β . Finally

$$\beta = \lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n} \right) a_n \right) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \lim_{n \to \infty} a_n = \alpha. \square$$