JAVA SPRING DATA

Prof. Júlio Machado

julio.machado@pucrs.br

MAPEAMENTO OBJETO RELACIONAL

Padrão Data Mapper

Descrição:

 Organiza um conjunto de mapeadores que movem dados entre objetos e tabelas de um banco de dados relacional de modo a mantê-los independentes um do outro

Padrão Data Mapper

Funcionamento:

- Modelo orientado a objetos e modelo relacional apresentam mecanismos diferentes para estruturar dados
- Um mapeador lida com as diferenças de representação de dados entre os dois modelos e implementa uma camada de isolamento entre os dois
- Um mapeador possui a responsabilidade de mover dados entre objetos em memória e linhas em tabelas
- Implementa diferentes mecanismos de mapeamento

Padrão Data Mapper

Vantagens:

Isolamento entre a camada de negócio e a base de dados

Desvantagens:

Implementação complexa

- Questões do modelo OO
 - Trabalha-se em um modelo que agrega dados e operações
 - Como representar as associações entre objetos?
 - Como mapear hierarquias de herança?
 - Qual o ciclo de vida de um objeto persistente?

Exemplo: diagrama de classes

- Questões do modelo Relacional
 - Trabalha-se no modelo dos dados
 - Forte acoplamento com os elementos do modelo ER: tabelas, chaves (primária e estrangeira)
 - Como tratar a questão das chaves primárias?
 - Como tratar a questão das chaves estrangeiras?

Exemplo: modelo relacional

Mapeamento Objeto-Relacional

- Mapeamento Objeto Relacional (ORM)
 - Técnica que mapeia os conceitos de Objetos para Relacional e vice-versa
 - Vantagens:
 - Produtividade
 - Trabalha-se sempre no mesmo paradigma (OO)
 - Manutenção
 - Baixo acoplamento com o modelo de dados

Mapeamento Objeto-Relacional

Idéia geral:

Classes
Objetos
Estado
Comportamento

Tabelas e Relacionamentos Registros Colunas DDL e DML

Mapeamento Objeto-Relacional

- Observações importantes!
 - Não é necessária uma correspondência direta entre as tabelas de dados e as classes de objetos
 - Várias técnicas de mapeamento estão disponíveis

Mapeamento - Básico

- Atributos → zero ou mais colunas em uma tabela
 - Nem todos atributos são persistentes!
 - Cálculos temporários
 - Cuidado com atributos que são relacionamentos entre objetos
 - Elementos conhecidos como "shadow information"
 - Chaves primárias, controles de concorrência, etc
- Classes → tabela
 - Pode ser utilizado como um mapeamento inicial

Mapeamento - Identidade

- Bancos de dados relacionais diferenciam uma linha da outra de uma tabela através de chaves
- Objetos em memória não utilizam chaves, pois se diferenciam pela própria identidade do objeto
- Necessidade de utilizar o mapeamento de chaves primárias como atributos dos objetos em memória

Mapeamento - Identidade

- Quesitos envolvidos no mapeamento:
- Significado
 - Chave com significado no modelo, ex.: CPF
 - Chaves sem significado no modelo, ex.: um valor qualquer autogerado pelo banco ou aplicação

Mapeamento - Identidade

Quesitos envolvidos no mapeamento:

- Estrutura
 - Chave simples

powered by astah*

- Chaves composta
 - No modelo OO o identificador deve ser um único atributo

- Quesitos envolvidos no mapeamento de relacionamentos entre objetos:
- Associação, agregação ou composição
 - Implicam em sutilezas na implementação das restrições de integridade referencial
- Cardinalidade
 - Um-para-um, um-para-muitos, muitos-para-muitos
- Direção
 - Unidirecional, bidirecional

- Um-para-um
 - Chave estrangeira implementada em uma das tabelas envolvidas no relacionamento

- Um-para-muitos
 - Chave estrangeira implementada na tabela referente à cardinalidade múltipla do relacionamento

- Um-para-muitos
 - Chave estrangeira implementada na tabela referente à cardinalidade múltipla do relacionamento

- Muitos-para-muitos
 - Introdução de uma tabela associativa, contendo chaves estrangeiras para as tabelas envolvidas no relacionamento

powered by astah*

- Conceito n\u00e3o suportado diretamente no modelo relacional
- Diferentes técnicas:
 - Herança → hierarquia em tabela única
 - Herança → uma tabela por classe concreta
 - Herança → uma tabela por classe
 - etc

Person

PersonPOID << PK>>

PersonType

Name

Preferences

Salary

Copyright 2002-2006 Scott W. Ambler

PersonPOID << PK>>

PersonType

Name

Preferences

Salary

Bonus

Person

PersonPOID <<PK>>>

IsCustomer

IsEmployee

Name

Preferences

Salary

Person

PersonPOID <<PK>>>

IsCustomer

IsEmployee

IsExecutive

Name

Preferences

Salary

Bonus

Customer

CustomerPOID <<PK>>>
Name

Preferences

Employee

EmployeePOID <<PK>>

Name

Salary

Customer

CustomerPOID <<PK>>>

Name

Preferences

Employee

EmployeePOID <<PK>>>

Name

Salary

Executive

ExecutivePOID <<PK>>

Name

Salary

Bonus

Copyright 2002-2006 Scott W. Ambler

Exemplo

FRAMEWORKS PARA MAPEAMENTO OBJETO RELACIONAL

Frameworks ORM

- https://en.wikipedia.org/wiki/List_of_objectrelational_mapping_software
- https://en.wikipedia.org/wiki/Comparison_of_objectrelational_mapping_software