

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015

MATEMATYKAPOZIOM PODSTAWOWY

ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

GRUDZIEŃ 2014

Klucz odpowiedzi do zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Odpowiedź	D	Α	С	D	C	D	В	С	A	В	A	D	С	D	A	В	В	C	D	A	A	С	В	D

Wymagania ogólne	Wymagania szczegółowe

Zadanie 1. (0–1)

II. Wykorzystanie i interpretowanie reprezentacji.	1.7. Zdający oblicza błąd bezwzględny i błąd względny przybliżenia.
--	---

Poprawna odpowiedź: D

Zadanie 2. (0–1)

II. Wykorzystanie i interpretowanie reprezentacji.	8.7. Zdający znajduje obrazy niektórych figur geometrycznych (punktu, prostej, odcinka, okręgu, trójkąta itp.) w symetrii osiowej względem osi układu współrzędnych i symetrii środkowej względem początku układu.
--	--

Poprawna odpowiedź: A

Zadanie 3. (0–1)

II. Wykorzystanie	3.7., 3.6. Zdający korzysta z własności iloczynu przy rozwiązywaniu równań typu $x(x+1)(x-7)=0$; korzysta z definicji pierwiastka do rozwiązywania równań typu $x^3 - 8$
	$x^3 = -8$.

Poprawna odpowiedź: C

Zadanie 4. (0–1)

I. Wykorzystanie i tworzer informacji.	iie 1.9. Zdający wykonuje obliczenia procentowe, oblicza podatki, zysku z lokat (również złożonych na procent składany i na okres krótszy niż rok).

Poprawna odpowiedź: D

Zadanie 5. (0–1)

II. Wykorzystanie	4.5., 4.14. Zdający rysuje wykres funkcji liniowej,
i interpretowanie	korzystając z jej wzoru; szkicuje wykresy funkcji
reprezentacji.	wykładniczych dla różnych podstaw.

Poprawna odpowiedź: C

Zadanie 6. (0–1)

II. Wykorzystanie	2.1. Zdający używa wzorów skróconego mnożenia na
i interpretowanie	$(a \pm b)^2$ oraz $a^2 - b^2$.
reprezentacji.	$(a \pm b)$ oraz $a = b$.

Poprawna odpowiedź: D

Zadanie 7. (0–1)

II. Wykorzystanie	1.4. Zdający oblicza potęgi o wykładnikach wymiernych
i interpretowanie	i stosuje prawa działań na potęgach o wykładnikach
reprezentacji.	wymiernych.

Poprawna odpowiedź: B

Zadanie 8. (0–1)

I. Wykorzystanie i tworzenie	3.2. Zdający wykorzystuje interpretację geometryczną
informacji.	układu równań pierwszego stopnia z dwiema niewiadomymi.

Poprawna odpowiedź: C

Zadanie 9. (0–1)

	6.1, 6.3. Zdający wykorzystuje definicje i wyznacza wartości
II. Wykorzystanie	funkcji sinus, cosinus i tangens kątów o miarach od 0° do
i interpretowanie	180°; oblicza miarę kąta ostrego, dla której funkcja
reprezentacji.	trygonometryczna przyjmuje daną wartość (miarę dokładną
	albo – korzystając z tablic lub kalkulatora – przybliżoną).

Poprawna odpowiedź: A

Zadanie 10. (0–1)

I. Wykorzystanie i tworzenie	4.1. Zdający określa funkcje za pomocą wzoru, tabeli,
informacji.	wykresu, opisu słownego.

Poprawna odpowiedź: B

Zadanie 11. (0–1)

III. Modelowanie matematyczne.	4.13. Zdający szkicuje wykres funkcji $f(x) = \frac{a}{x}$ dla danego a , korzysta ze wzoru i wykresu tej funkcji do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi.
-----------------------------------	--

Poprawna odpowiedź: A

Zadanie 12. (0-1)

II. Wykorzystanie	G11.2. Zdający oblicza pole powierzchni i objętość
i interpretowanie	graniastosłupa prostego, ostrosłupa, walca, stożka, kuli
reprezentacji.	(także w zadaniach osadzonych w kontekście praktycznym).

Poprawna odpowiedź: D

Zadanie 13. (0–1)

I. Wykorzystanie i tworzenie informacji.	4.9. Zdający wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie.
--	--

Poprawna odpowiedź: C

Zadanie 14. (0–1)

I. Wykorzystanie i tworzenie informacji.	8.5. Zdający wyznacza współrzędne środka odcinka.
--	---

Poprawna odpowiedź: D

Zadanie 15. (0–1)

II. Wykorzystanie	6.1. Zdający wykorzystanie definicje i wyznacza wartości
i interpretowanie	funkcji sinus, cosinus i tangens kątów o miarach od 0° do
reprezentacji.	180° .

Poprawna odpowiedź: A

Zadanie 16. (0–1)

III. Modelowanie	5.3. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę
matematyczne.	<i>n</i> początkowych wyrazów ciągu arytmetycznego.

Poprawna odpowiedź: B

Zadanie 17. (0–1)

	7.4. Zdający korzysta z własności funkcji
III. Modelowanie	trygonometrycznych w łatwych obliczeniach
matematyczne.	geometrycznych, w tym ze wzoru na pole trójkąta
	ostrokątnego o danych dwóch bokach i kącie między nimi.

Poprawna odpowiedź: B

Zadanie 18. (0-1)

I. Wykorzystanie i tworzenie informacji.	7.3. Zdający rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów.
--	--

Poprawna odpowiedź: C

Zadanie 19. (0-1)

• • •	
II. Wykorzystanie i interpretowanie reprezentacji.	7.1. Zdający stosuje zależności między kątem środkowym i kątem wpisanym.

Poprawna odpowiedź: D

Zadanie 20. (0–1)

II. Wykorzystanie i interpretowanie reprezentacji.	G9.4. Zdający wyznacza średnią arytmetyczną i medianę zestawu danych.
--	---

Poprawna odpowiedź: A

Zadanie 21. (0–1)

II. Wykorzystanie	5.4. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę
T THIEIDIEIOWAILE	n początkowych wyrazów ciągu geometrycznego.
reprezentacji.	n poezątkowych wyrazow ciąga geometrycznego.

Poprawna odpowiedź: A

Zadanie 22. (0–1)

I. Wykorzystanie i tworzenie	5.1. Zdający wyznacza wyrazy ciągu określonego wzorem
informacji.	ogólnym.

Poprawna odpowiedź: C

Zadanie 23. (0–1)

III. Modelowanie matematyczne.	10.3. Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.
--------------------------------	--

Poprawna odpowiedź: B

Zadanie 24. (0-1)

II. Wykorzystanie	1.6. Zdający wykorzystuje definicję logarytmu i stosuje
i interpretowanie	w obliczeniach wzory na logarytm iloczynu, logarytm
reprezentacji.	ilorazu i logarytm potęgi o wykładniku naturalnym.

Poprawna odpowiedź: D

Zadanie 25. (0-2)

Rozwiąż nierówność: $-x^2 - 4x + 21 < 0$.

II. Wykorzystanie i interpretowanie reprezentacji.	3.5. Zdający rozwiązuje nierówności kwadratowe z jedną niewiadomą.
--	--

Rozwiązanie

Obliczamy miejsca zerowe funkcji kwadratowej $f(x) = -x^2 - 4x + 21$.

$$\Delta = (-4)^2 - 4 \cdot (-1) \cdot 21 = 16 + 84 = 100$$

$$\sqrt{\Delta} = 10$$

$$x_1 = \frac{4 - 10}{-2} = 3 \text{ oraz } x_2 = \frac{4 + 10}{-2} = -7$$

lub zapisujemy nierówność w postaci -(x-3)(x+7) < 0.

Szkicujemy fragment wykresu funkcji kwadratowej f i na jego podstawie odczytujemy rozwiązanie nierówności

Strona 6 z 23

Odpowiedź: $x \in (-\infty, -7) \cup (3, +\infty)$.

Schemat oceniania

Zdający otrzymuje 1 pkt

jeżeli:

• prawidłowo obliczy pierwiastki trójmianu kwadratowego $x_1 = 3$ oraz $x_2 = -7$ i na tym poprzestanie lub dalej popełni błędy

albo

• rozłoży trójmian kwadratowy $-x^2-4x+21$ na czynniki liniowe i zapisze nierówność -(x-3)(x+7)<0 i na tym poprzestanie lub dalej popełni błędy

albo

• popełni błąd rachunkowy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność

$$\begin{split} \text{np. } x_1 &= \frac{4 - 2\sqrt{17}}{-2} = -2 + \sqrt{17} \text{ oraz } x_2 = \frac{4 + 2\sqrt{17}}{-2} = -2 - \sqrt{17} \text{ , czyli} \\ x &\in \left(-\infty, -2 - \sqrt{17}\right) \cup \left(-2 + \sqrt{17}, +\infty\right). \end{split}$$

Zdający otrzymuje 2 pkt

jeżeli:

• poda zbiór rozwiązań nierówności w postaci: $(-\infty, -7) \cup (3, +\infty)$ lub $x \in (-\infty, -7) \cup (3, +\infty)$ lub $x < -7 \lor x > 3$

albo

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów:

Uwaga:

Akceptujemy zapis: x < -7, x > 3.

Zadanie 26. (0–2)

Uzasadnij, że żadna liczba całkowita nie jest rozwiązaniem równania $\frac{2x+4}{x-2} = 2x+1$.

	3.8. Zdający rozwiązuje proste równania wymierne, prowadzące
IV. Użycie i tworzenie strategii.	do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$,
suategn.	$\frac{x+1}{x} = 2x$.
	X

I sposób rozwiązania:

Zauważamy, że $x \neq 2$.

Mnożymy obie strony równania przez x-2 i przekształcamy równanie do postaci równania kwadratowego, np. $2x^2-5x-6=0$.

Obliczamy wyróżnik trójmianu kwadratowego, znajdującego się po lewej stronie równania.

$$\Delta = 25 + 48 = 73$$

Zauważamy, że $\sqrt{\Delta} = \sqrt{73}$ jest liczbą niewymierną.

Stwierdzamy, że jeżeli z jednej strony równania występuje trójmian kwadratowy o współczynnikach całkowitych, a z drugiej strony równania liczba zero i $\sqrt{\Delta}$ tego trójmianu kwadratowego jest liczbą niewymierną, to równanie nie ma rozwiązań w zbiorze liczb całkowitych.

II sposób rozwiązania:

Zauważamy, że $x \neq 2$.

Przenosimy wyrażenie z prawej strony równania na lewą i przekształcamy lewą stronę równania do postaci ilorazu.

Otrzymujemy
$$\frac{-2x^2 + 5x + 6}{x - 2} = 0$$

Mnożymy obie strony równania przez x-2 i otrzymujemy $-2x^2+5x+6=0$.

Obliczamy miejsca zerowe funkcji kwadratowej $f(x) = -2x^2 + 5x + 6$.

$$\Delta = 5^{2} - 4 \cdot (-2) \cdot 6 = 25 + 48 = 73$$

$$\sqrt{\Delta} = \sqrt{73}$$

$$x_{1} = \frac{-5 - \sqrt{73}}{-4} = \frac{5 + \sqrt{73}}{4} \text{ oraz } x_{2} = \frac{-5 + \sqrt{73}}{-4} = \frac{5 - \sqrt{73}}{4}$$

Zauważamy, że rozwiązania są liczbami niewymiernymi.

Stwierdzamy, że żadna liczba całkowita nie jest rozwiązaniem równania.

Schemat oceniania

Zdajacy otrzymuje 1 pkt

jeżeli doprowadzi równanie do postaci $ax^2 + bx + c = 0$, np. $2x^2 - 5x - 6 = 0$, i obliczy wyróżnik trójmianu kwadratowego $ax^2 + bx + c$, np. $\Delta = 73$

Zdający otrzymuje 2 pkt

jeżeli poprawnie uzasadni, że równanie $\frac{2x+4}{x-2} = 2x+1$ nie ma rozwiązań w zbiorze liczb całkowitych, np. przez wyznaczenie wszystkich rozwiązań równania i zauważenie, że żadne z rozwiązań nie jest liczbą całkowitą.

Zadanie 27. (0-2)

Czas połowicznego rozpadu pierwiastka to okres, jaki jest potrzebny, by ze 100% pierwiastka pozostało 50% tego pierwiastka. Oznacza to, że ilość pierwiastka pozostała z każdego grama

pierwiastka po x okresach rozpadu połowicznego wyraża się wzorem
$$y = \left(\frac{1}{2}\right)^x$$
.

W przypadku izotopu jodu ¹³¹I czas połowicznego rozpadu jest równy 8 dni. Wyznacz najmniejszą liczbę dni, po upływie których pozostanie z 1 g ¹³¹I nie więcej niż 0,125 g tego pierwiastka.

Uwaga:

W arkuszach A6, A7 polecenie do zadania ma inne brzmienie: Wyznacz najmniejszą liczbę dni, po upływie których pozostanie z 1 g ¹³¹I nie więcej niż 0,125 g tego pierwiastka.

V. Rozumowanie	4.15. Zdający posługuje się funkcjami wykładniczymi do opisu zjawisk fizycznych, chemicznych, a także w zagadnieniach
i argumentacja.	osadzonych w kontekście praktycznym.

I sposób rozwiązania:

Stwierdzamy, że po 8 dniach (czyli po pierwszym okresie połowicznego rozpadu) pozostanie:

$$y(1) = \left(\frac{1}{2}\right)^1 = \frac{1}{2} = 0,5$$
 (g) pierwiastka.

I dalej, po 16 dniach (czyli po drugim okresie połowicznego rozpadu) pozostanie

$$y(2) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} = 0,25$$
 (g) pierwiastka.

Z kolei po 24 dniach (czyli po trzecim okresie połowicznego rozpadu) pozostanie

$$y(3) = \left(\frac{1}{2}\right)^3 = \frac{1}{8} = 0,125$$
 (g) pierwiastka.

Odpowiedź: Po 24 dniach pozostanie z 1 g 131 I nie więcej niż 0,125 g tego pierwiastka.

II sposób rozwiązania;

Ustalamy po ilu okresach rozpadu połowicznego pozostanie 0,125 g pierwiastka.

Rozwiązujemy nierówność $\left(\frac{1}{2}\right)^x \le 0,125 \text{ (lub } \left(\frac{1}{2}\right)^x < 0,125 \text{)}.$

$$\left(\frac{1}{2}\right)^x \le \left(\frac{1}{2}\right)^3 \text{ (lub } \left(\frac{1}{2}\right)^x < \left(\frac{1}{2}\right)^3 \text{)}.$$

 $x \ge 3$ (lub x > 3).

Potrzebne są 3 okresy połowicznego rozpadu, czyli 3.8 = 24 dni.

Odpowiedź: Po 24 dniach pozostanie z 1 g ¹³¹I nie więcej niż 0,125 g tego pierwiastka.

III sposób rozwiązania:

Szkicujemy wykres funkcji $y = \left(\frac{1}{2}\right)^x$.

Z wykresu odczytujemy, że
$$\left(\frac{1}{2}\right)^x \le 0.125$$
, gdy $x \ge 3$ (lub że $\left(\frac{1}{2}\right)^x < 0.125$, gdy $x > 3$).

Najmniejszą potrzebną liczbą okresów rozpadu połowicznego jest: 3, zatem najmniejszą szukaną liczbą dni jest: $3 \cdot 8 = 24$.

Odpowiedź: Po 24 dniach pozostanie z 1 g ¹³¹I nie więcej niż 0,125 g tego pierwiastka.

Schemat oceniania

Zdający otrzymuje 1 pkt

• jeżeli poprawnie ustali ilość pierwiastka, jaka pozostanie po upływie 16 dni i na tym poprzestanie lub dalej popełni błędy

albo

• gdy poprawnie ustali liczbę okresów rozpadu połowicznego, po których pozostanie 0,125 g pierwiastka i na tym poprzestanie lub dalej popełni błędy

albo

• gdy zapisze nierówność $\left(\frac{1}{2}\right)^x \le \left(\frac{1}{2}\right)^3$ (lub $\left(\frac{1}{2}\right)^x \le \frac{1}{2^3}$, lub $\left(\frac{1}{2}\right)^x \le \frac{1}{8}$, lub $\left(\frac{1}{2}\right)^x < \left(\frac{1}{2}\right)^x < \left(\frac{1}{2}\right)^x < \frac{1}{2^3}$, lub $\left(\frac{1}{2}\right)^x < \frac{1}{8}$) i na tym poprzestanie lub dalej popełni błędy

albo

• gdy odczyta z wykresu funkcji $y = \left(\frac{1}{2}\right)^x$ zbiór argumentów, dla których wartości funkcji są nie większe (mniejsze) od 3.

Zdający otrzymuje 2 pkt

jeżeli obliczy najmniejszą liczbę dni, po upływie których pozostanie z 1 g ¹³¹I nie więcej niż 0,125 g tego pierwiastka: 24.

Zadanie 28. (0-2)

Uzasadnij, że jeżeli liczba całkowita nie dzieli się przez 3, to jej kwadrat przy dzieleniu przez 3 daje resztę 1.

	G6.1., 2.1., G6.6. Zdający opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami,
V. Rozumowanie i argumentacja.	używa wzorów skróconego mnożenia na $(a\pm b)^2$ oraz
	$a^2 - b^2$, wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias.

Rozwiązanie:

Ustalamy, że liczba całkowita *k*, która nie dzieli się przez 3, daje się zapisać na jeden z dwóch sposobów:

- sposób I (gdy reszta z dzielenia przez 3 jest równa 1): k = 3n + 1, gdzie n jest liczbą całkowitą,
- sposób II (gdy reszta z dzielenia przez 3 jest równa 2): k = 3n + 2, gdzie n jest liczbą całkowitą.

Przy tych ustaleniach możemy zapisać kwadrat liczby k w zależności od n.

W pierwszym przypadku
$$k^2 = (3n+1)^2 = 9n^2 + 6n + 1 = 3(3n^2 + 2n) + 1$$
.

W drugim przypadku
$$k^2 = (3n+2)^2 = 9n^2 + 12n + 4 = 9n^2 + 12n + 3 + 1 = 3(3n^2 + 4n + 1) + 1$$

W obu przypadkach liczba k^2 jest sumą liczby podzielnej przez 3 i liczby 1, zatem reszta z dzielenia k^2 przez 3 jest równa 1.

Schemat oceniania

Zdający otrzymuje 1 pkt

• jeżeli w przypadku liczby całkowitej, dla której reszta z dzielenia przez 3 jest równa 1, uzasadni, że reszta z dzielenia kwadratu tej liczby przez 3 jest równa 1 i na tym poprzestanie lub popełni błędy w dalszej części rozumowania

albo

• jeżeli w przypadku liczby całkowitej, dla której reszta z dzielenia przez 3 jest równa 2, uzasadni, że reszta z dzielenia kwadratu tej liczby przez 3 jest równa 1 i na tym poprzestanie lub popełni błędy w dalszej części rozumowania,

albo

jeżeli przeprowadza uzasadnienie tezy w dwóch przypadkach: kiedy reszta z
dzielenia liczby całkowitej przez 3 jest równa 1 oraz kiedy reszta z dzielenia liczby
całkowitej przez 3 jest równa 2, ale popełnia błędy w przynajmniej jednym z tych
przypadków.

Zdający otrzymuje. 2 pkt

jeżeli przeprowadzi poprawne uzasadnienie faktu: reszta z dzielenia przez 3 kwadratu liczby całkowitej, niepodzielnej przez 3, jest równa 1.

Zadanie 29. (0-2)

Wartość prędkości średniej obliczamy jako iloraz drogi i czasu, w którym ta droga została przebyta. Samochód przejechał z miejscowości A do miejscowości C przez miejscowość B, która znajduje się w połowie drogi z A do C. Wartość prędkości średniej samochodu na trasie z A do B była równa 40 km/h, a na trasie z B do C – 60 km/h. Oblicz wartość prędkości średniej samochodu na całej trasie z A do C.

	G6.1., G6.7. Zdający opisuje za pomocą wyrażeń
V. Rozumowanie	algebraicznych związki między różnymi wielkościami,
i argumentacja.	wyznacza wskazaną wielkość z podanych wzorów, w tym
	geometrycznych i fizycznych.

I sposób rozwiązania:

Oznaczamy przez s drogę z A do C, przez t_1 czas przejazdu z A do B, a przez t_2 czas przejazdu z B do C.

Z warunków zadania otrzymujemy równania: $40 = \frac{\frac{s}{2}}{t_1}$ oraz $60 = \frac{\frac{s}{2}}{t_2}$.

Po przekształceniach wyznaczamy t_1 i t_2 : $t_1 = \frac{s}{80}$ oraz $t_2 = \frac{s}{120}$.

Możemy wyznaczyć średnią prędkość samochodu na drodze z A do C:

$$v = \frac{s}{t_1 + t_2} = \frac{s}{\frac{s}{80} + \frac{s}{120}} = \frac{s}{\frac{3s + 2s}{240}} = \frac{240s}{5s} = 48.$$

Odpowiedź: Wartość średniej prędkości na trasie z A do C jest równa 48 km/h.

II sposób rozwiązania:

Przy podanych średnich prędkościach na dwóch odcinkach drogi, składających się na całą drogę, prędkość średnia na całej drodze jest określona jednoznacznie. Bez straty ogólności możemy założyć, że trasa z *A* do *C* ma długość 120 km, wówczas przejazd z *A* do *B* trwałby 1,5 h, zaś przejazd z *B* do *C* trwałby 1 h.

Możemy wyznaczyć średnią prędkość samochodu na drodze z *A* do *C*:

$$v = \frac{120}{1.5 + 1} = \frac{120}{2.5} = \frac{1200}{25} = 48$$
.

Odpowiedź: Wartość średniej prędkości na trasie z A do C jest równa 48 km/h.

Schemat oceniania

Zdający otrzymuje 1 pkt

jeżeli:

• zapisze zależność między średnią prędkością na trasie z A do C a długością drogi między A i C, np. $v = \frac{s}{\frac{s}{80} + \frac{s}{120}}$.

albo

• przedstawi sposób wyznaczania wartości średniej prędkości na trasie z A do C przy poprawnie przyjętych konkretnych wartościach liczbowych dla drogi i czasu przejazdu na poszczególnych częściach trasy, np. $v = \frac{120}{1,5+1}$.

Zdający otrzymuje 2 pkt

jeżeli obliczy wartość średniej prędkości na trasie z A do C: 48 km/h.

Uwaga:

Zdający może posłużyć się znaną zależnością między prędkościami średnimi na odcinkach drogi a prędkością średnią na całej drodze i wyznaczyć wartość średniej prędkości przez podstawienie do odpowiedniego wzoru, np. może wykorzystać średnią harmoniczną.

Zadanie 30. (0–4)

Zakupiono 16 biletów do teatru, w tym 10 biletów na miejsca od 1. do 10. w pierwszym rzędzie i 6 biletów na miejsca od 11. do 16. w szesnastym rzędzie. Jakie jest prawdopodobieństwo zdarzenia, polegającego na tym, że 2 wylosowane bilety, spośród szesnastu, będą biletami na sąsiadujące miejsca?

maiemaivczne	10.3. Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.
•	prawdopodobienstwa.

I sposób rozwiązania:

Opisujemy zbiór zdarzeń elementarnych.

Obliczamy liczbę zdarzeń elementarnych: $|\Omega| = 16.15 = 240$.

Podajemy zdarzenia elementarne sprzyjające zajściu zdarzenia *A*, które polega na tym, że 2 wylosowane bilety, spośród szesnastu, są biletami na sąsiadujące miejsca:

$$A = \{(1,2), (2,1), (2,3), (3,2), (3,4), (4,3), (4,5), (5,4), (5,6), (6,5), (6,7), (7,6), (7,8), (8,7), (8,9), (9,8), (9,10), (10,9), (11,12), (12,11), (12,13), (13,12), (13,14), (14,13), (14,15), (15,14), (15,16), (16,15)\}$$

$$|A| = 28$$

Obliczamy prawdopodobieństwo zajścia zdarzenia A: $P(A) = \frac{|A|}{|\Omega|} = \frac{28}{240} = \frac{7}{60}$.

II sposób rozwiązania

Rysujemy kwadraty w 16 wierszach i 16 kolumnach i wykreślamy te kwadraty, dla których numer wiersza jest równy numerowi kolumny. Pozostałe kwadraty odpowiadają jednakowo prawdopodobnym zdarzeniom elementarnym.

$$|\Omega| = 16 \cdot 15 = 240$$

Zaznaczmy kwadraty, odpowiadające zdarzeniom sprzyjającym zdarzeniu *A*, które polega na tym, że 2 wylosowane bilety, spośród szesnastu, są biletami na sąsiadujące miejsca.

$$|A| = 28$$

Obliczamy prawdopodobieństwo zajścia zdarzenia A:
$$P(A) = \frac{|A|}{|\Omega|} = \frac{28}{240} = \frac{7}{60}$$
.

Schemat oceniania:

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania – 1 pkt Zdający

Zuający

- zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega|$ = 16·15 lub $|\Omega|$ = 240 albo
 - wypisze zdarzenia elementarne sprzyjające zdarzeniu *A*, które polega na tym, że 2 wylosowane bilety, spośród szesnastu, są biletami na sąsiadujące miejsca (np. w postaci tabeli) lub w inny sposób opisze te zdarzenia i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie, w którym jest istotny postęp – 2 pkt

Zdający zapisze liczbę wszystkich zdarzeń elementarnych oraz wypisze zdarzenia elementarne sprzyjające zdarzeniu *A* (np. w postaci tabeli) lub w inny sposób opisze te zdarzenia.

Pokonanie zasadniczych trudności zadania – 3 pkt

Zdający zapisze liczbę wszystkich zdarzeń elementarnych oraz liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu *A*:

$$|\Omega| = 16.15$$
 (lub $|\Omega| = 240$), $|A| = 9 + 9 + 5 + 5$ (lub $|A| = 28$).

Rozwiązanie pełne – 4 pkt

Zdający obliczy prawdopodobieństwo zdarzenia A: $P(A) = \frac{7}{60}$.

Uwaga:

Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1, to otrzymuje za całe rozwiązanie 0 punktów.

Zadanie 31. (0-4)

W trapezie ABCD ($AB \parallel CD$) przekątne AC i BD przecinają się w punkcie O takim, że |AO|:|OC|=5:1. Pole trójkąta AOD jest równe 10. Uzasadnij, że pole trapezu ABCD jest równe 72.

V. Rozumowanie i argumentacja.

7.3., SP11.2. Zdający rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów, oblicza pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych.

I sposób rozwiązania:

Trójkąty *ABO* i *CDO* są podobne (na podstawie cechy *kk*).

Jeżeli |CO| = x, to |AO| = 5x, ponadto |AB| = 5|CD|.

Jeżeli wysokość w trójkącie *CDO* opuszczona na bok *CD* jest równa *h*, to wysokość w trójkącie *AB*O opuszczona na bok *AB* jest równa 5*h*.

Możemy zapisać dwa wzory opisujące pole trójkąta ACD.

•
$$P_{\Delta ACD} = P_{\Delta AOD} + P_{\Delta CDO} = 10 + P_{\Delta CDO}$$

•
$$P_{\Delta ACD} = \frac{1}{2} \cdot |CD| \cdot (h+5h) = 3 \cdot |CD| \cdot h = 6 \cdot \frac{1}{2} \cdot |CD| \cdot h = 6P_{\Delta CDO}$$

Możemy zatem zapisać równość:

$$6P_{\Delta CDO} = 10 + P_{\Delta CDO}$$

Wobec tego: $5P_{\Delta CDO} = 10$.

$$P_{\Lambda CDO} = 2$$

Możemy wyznaczyć pole trójkąta ACD: $P_{\Delta ACD} = 10 + P_{\Delta CDO} = 10 + 2 = 12$.

Obliczmy pole trójkąta ABC.

$$P_{\Delta ABC} = \frac{1}{2} \cdot \left| AB \right| \cdot \left(h + 5h \right) = 3 \cdot \left| AB \right| \cdot h = 3 \cdot 5 \cdot \left| CD \right| \cdot h = 30 \cdot \frac{1}{2} \cdot \left| CD \right| \cdot h = 30 P_{\Delta CDO} = 60$$

Obliczamy pole trapezu ABCD.

$$P_{ABCD} = P_{\Delta ACD} + P_{\Delta ABC} = 12 + 60 = 72$$

Zatem wykazaliśmy, że pole trapezu ABCD jest równe 72.

II sposób rozwiązania:

Trójkąty *ABO* i *CDO* są podobne (na podstawie cechy *kk*).

Jeżeli
$$|CO| = x$$
, to $|AO| = 5x$, ponadto $|AB| = 5|CD|$.

Jeżeli wysokość w trójkącie CDO opuszczona na bok CD jest równa h, to wysokość w trójkącie ABO opuszczona na bok AB jest równa 5h.

Możemy zapisać dwa wzory opisujące pole trójkąta ACD.

•
$$P_{\Delta ABD} = P_{\Delta AOD} + P_{\Delta ABO} = 10 + P_{\Delta ABO} = 10 + \frac{5}{2} \cdot |AB| \cdot h$$

•
$$P_{\triangle ABD} = \frac{1}{2} \cdot |AB| \cdot (h + 5h) = 3 \cdot |AB| \cdot h$$

Możemy zatem zapisać równość:

$$3 \cdot |AB| \cdot h = 10 + \frac{5}{2} \cdot |AB| \cdot h$$

Wobec tego: $0.5 \cdot |AB| \cdot h = 10$.

$$|AB| \cdot h = 20$$

Możemy wyznaczyć pole trójkąta ABCD: $P_{\Delta ABD} = 3 \cdot |AB| \cdot h = 3 \cdot 20 = 60$.

Obliczmy pole trójkata BCD.

$$P_{\Delta BCD} = \frac{1}{2} \cdot |CD| \cdot (h + 5h) = \frac{1}{2} \cdot \frac{6}{5} \cdot |AB| \cdot h = 0, 6 \cdot |AB| \cdot h = 0, 6 \cdot 20 = 12$$

Obliczamy pole trapezu ABCD.

$$P_{ABCD} = P_{\Delta ABD} + P_{\Delta BCD} = 60 + 12 = 72$$

Zatem wykazaliśmy, że pole trapezu ABCD jest równe 72.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania – 1 pkt

 Zapisanie pola trójkąta ACD w zależności od pola trójkąta CDO oraz w zależności od boku CD

albo

 Zapisanie pola trójkąta ABD w zależności od pola trójkąta ADO oraz w zależności od boku AB.

Rozwiązanie, w którym jest istotny postęp – 2 pkt

• Obliczenie pola trójkąta *CDO*

albo

• Obliczenie pola trójkąta *ABD*.

Pokonanie zasadniczych trudności zadania – 3 pkt

 Zapisanie zależności między polem trójkąta ABC a jedną z podstaw trapezu i wysokością trapezu

albo

 Zapisanie zależności między polem trójkąta BCD a jedną z podstaw trapezu i wysokością trapezu,

albo

• Zapisanie zależności między polami trójkątów *ABO* i *CDO* oraz uzasadnienie, że pole trójkąta *BCO* jest równe 10.

Rozwiązanie pełne – 4 pkt

Przedstawienie poprawnego uzasadnienia, że pole trapezu ABCD jest równe 72.

Zadanie 32. (0-4)

Punkty A = (3,3) i B = (9,1) są wierzchołkami trójkąta ABC, a punkt M = (1,6) jest środkiem boku AC. Oblicz współrzędne punktu przecięcia prostej AB z wysokością tego trójkąta, poprowadzoną z wierzchołka C.

IV. Użycie i tworzenie
strategii.

8.1., 8.5., 8.3., 8.4. Zdający wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej), wyznacza współrzędne środka odcinka, wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt, oblicza współrzędne punktu przecięcia dwóch prostych.

Rozwiązanie:

Wyznaczymy współrzędne punktu C = (k, l).

Współrzędne punktu M muszą być średnimi arytmetycznymi współrzędnych punktów A i C.

Zatem odpowiednio:
$$1 = \frac{3+k}{2}i$$
 $6 = \frac{3+l}{2}$

Obliczamy k i l.

$$k = -1$$
 $l = 9$

Wyznaczymy równanie prostej AB.

Współrzędne punktów A i B muszą spełniać równanie tej prostej: y = ax + b.

$$\begin{cases} 3 = 3a + b \\ 1 = 9a + b \end{cases}$$

Obliczamy a i b.

$$a = -\frac{1}{3}$$
 $b = 4$

Prosta AB ma równanie $y = -\frac{1}{3}x + 4$.

Wyznaczymy równanie prostej prostopadłej do prostej AB, przechodzącej przez punkt C. Prosta ta musi mieć równanie postaci y = 3x + d.

Punkt C należy do tej prostej, zatem: 9 = -3 + d.

$$d = 12$$

Szukane równanie prostej ma postać: y = 3x + 12.

Wyznaczymy współrzędne punkt wspólnego dla tej prostej i prostej AB, gdyż jest to punkt przecięcia prostej AB i wysokości trójkąta poprowadzonej z wierzchołka C.

Wystarczy rozwiązać układ równań
$$\begin{cases} y = 3x + 12 \\ y = -\frac{1}{3}x + 4 \end{cases}$$

Szukane współrzędne mają wartości x = -2,4 i y = 4,8.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania – 1 pkt

• Wyznaczenie współrzędnych punktu C: C = (-1,9)

albo

• Wyznaczenie równania prostej *AB*: $y = -\frac{1}{3}x + 4$

Rozwiązanie, w którym jest istotny postęp – 2 pkt

Wyznaczenie:

współrzędnych punktu C: C = (-1,9)

oraz równania prostej AB: $y = -\frac{1}{3}x + 4$.

Pokonanie zasadniczych trudności zadania – 3 pkt

Wyznaczenie równania prostej prostopadłej do prostej AB, przechodzącej przez punkt C: y = 3x + 12.

Rozwiązanie pełne – 4 pkt

Obliczenie współrzędnych punktu przecięcia prostej *AB* z wysokością trójkąta *ABC* poprowadzoną z wierzchołka *C*.

Zadanie 33. (0–4)

Tworząca stożka ma długość 17, a wysokość stożka jest krótsza od średnicy jego podstawy o 22. Oblicz pole powierzchni całkowitej i objętość tego stożka.

	3.4., G11.2. Zdający rozwiązuje równania kwadratowe
V. Rozumowanie	z jedną niewiadomą, oblicza pole powierzchni i objętość
i argumentacja	graniastosłupa prostego, ostrosłupa, walca, stożka, kuli
	(także w zadaniach osadzonych w kontekście praktycznym).

Rozwiązanie:

Narysujmy przekrój osiowy stożka i oznaczmy promień podstawy stożka przez r.

Zauważamy, że 2r-22 musi być liczbą dodatnią, jako długość odcinka. Zatem r jest większe niż 11.

Z twierdzenia Pitagorasa otrzymujemy następującą zależność:

$$(2r - 22)^2 + r^2 = 289$$

$$4r^2 - 88r + 484 + r^2 = 289$$

$$5r^2 - 88r + 195 = 0$$

$$\Delta = 7744 - 3900 = 3844$$

$$\sqrt{\Delta} = 62$$

$$r_1 = \frac{88 - 62}{10} = 2,6$$
 $r_2 = \frac{88 + 62}{10} = 15$

$$r_2 = \frac{88 + 62}{10} = 15$$

 r_1 odrzucamy, bo jest liczbą mniejszą od 11.

Dalsze obliczenia prowadzimy dla przypadku r = 15.

Obliczamy wysokość stożka: $2 \cdot 15 - 22 = 8$.

Obliczamy objętość stożka: $V = \frac{1}{3} \cdot \pi \cdot 15^2 \cdot 8 = 600\pi$

Obliczamy powierzchnię całkowitą stożka: $P = \pi \cdot 15(15+17) = 480\pi$

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania – 1 pkt

Zapisanie równania z jedną niewiadomą, pozwalającego na wyliczenie długości promienia podstawy stożka lub wysokości stożka, np. $(2r-22)^2 + r^2 = 289$

Rozwiązanie, w którym jest istotny postęp – 2 pkt

Rozwiązanie równania kwadratowego w zbiorze liczb rzeczywistych.

Pokonanie zasadniczych trudności zadania – 3 pkt

Wyznaczenie jedynej możliwej długości promienia podstawy stożka i odrzucenie wartości sprzecznej z warunkami zadania oraz wyznaczenie wysokości stożka: r = 15 i h = 8

Rozwiązanie pełne – 4 pkt

Poprawne obliczenie objętości i pola powierzchni całkowitej bryły.

$$V = \frac{1}{3} \cdot \pi \cdot 15^2 \cdot 8 = 600\pi$$

$$P = \pi \cdot 15(15 + 17) = 480\pi$$