

Lecture 04:

Linear and Non-Linear Regression

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units

Lecture 1: Course Overview and Introduction to Machine Learning

Lecture 2: Bayesian Methods in Machine Learning

classic ML tools & algorithms

Lecture 3: Dimensionality Reduction: Principal Component Analysis

Lecture 4: Linear and Non-linear Regression and Classification

Lecture 5: Unsupervised Learning: Clustering and Gaussian Mixture Models

Lecture 6: Adaptive Learning and Gradient Descent Optimization Algorithms

Lecture 7: Introduction to Artificial Neural Networks - The Perceptron

ANNs/AI/Deep Learning

Lecture 8: Introduction to Artificial Neural Networks - Building Multiple Dense Layers

Lecture 9: Convolutional Neural Networks (CNNs) - Part I

Lecture 10: CNNs - Part II

Lecture 11: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)

Lecture 12: Combining LSTMs and CNNs

Lecture 13: Running Models on GPUs and Parallel Processing

Lecture 14: Project Presentations

Lecture 15: Transformer

Lecture 16: GNN

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

Berkeley Linear and Non-Linear Regression

Regression vs **Classification**

regression

curve fit: finding model parameters by **minimizing** χ^2

$$\chi^2 = \sum_k \frac{(\widehat{y}_k - y_k)^2}{\sigma_k^2}$$

turning an image the right way:

- maximizing autocorrelation function
- training an Al

Berkeley Linear and Non-Linear Regression

Regression vs Classification

regression

classification

cat

dog

note: we can use (non-linear) regression for classification!

idea: data point y_k in N dimensional space

$$\rightarrow y_k = f(x_1, \dots x_n, \dots x_N) + \epsilon$$

for each data point k

ansatz:

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

linear combination

y: response

X: regressors (assumed to be independent)

β: factors (how a regressor contributes to the response)

 β_0 : intercept

ε: error (stochasticity of the data, assumed to be

normally dist.)

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

response

factors

error

regressors

intercept

linear ≠ not curved

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n^n + \epsilon$$
 ...is still linear

just define: $\bar{x}_n \coloneqq x_n^n$

$$y_k = \beta_1 x_n^{\beta_2}$$

...is still linear

just use log:
$$\bar{y}_k = \log(y_k) = \log(\beta_1) + \beta_2 \log(x_n) = \bar{\beta}_1 + \beta_2 \bar{x}_n$$

As long as we can recover the linear structure by any transformation → it is linear

in part. log scaling is quite common <u>examples:</u>

- log fold change (DESeq/RNASeq)
- log odds ratio (comparing models, HMM)

y:

β:

ε:

 β_0 :

- sound → dB is a log unit
- log incidence rates (medical studies)
- percentiles (medical studies)

-....

...what is **not** linear?

$$y_k = \beta_0 + \beta_1 x_n^{\beta_2}$$
 log trick does not work here

general: linear refers to the **factors**

$$y_k = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

2D plane in 3D space

$$y_k = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^2$$

2D parabolic

$$y_k = \beta_0 + \beta_1 x_1^2 - \beta_2 x_2^2$$

2D hyperbolic

...and many more...

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

for K data points in N dimensional space

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

 γ : response γ : regressors β : β : factors β_0 : intercept error

$$Y = X\beta + \varepsilon$$

fitting: finding the best β in terms of minimizing the errors

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{K} \|Y - X\beta\|^{2} \right\} \qquad (Y - X\beta)^{T} (Y - X\beta) = \sum_{k} \varepsilon_{k}^{2}$$

$$Y = X\beta + \varepsilon$$

fitting: finding the best β in by minimizing the errors

y: response x: regressors
$$\beta$$
: factors β_0 : intercept ϵ : error

$$(Y - X\beta)^T (Y - X\beta) = \sum_{k} \varepsilon_k^2$$

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0 \quad \longrightarrow \quad \beta_{best} = \hat{\beta} = (X^{T}X)^{-1}X^{T}Y \quad \longrightarrow \quad \widehat{Y} = X\widehat{\beta} = X(X^{T}X)^{-1}X^{T}Y$$

the model

$$\widehat{Y} = X\widehat{\beta} = X(X^TX)^{-1}X^TY$$

hat matrix **H**

some properties of the hat matrix:

-
$$H = H^T$$
 (symmetry)

-
$$HH = H \rightarrow H^n = H$$
 (idempotency)

$$\widehat{Y} = X\widehat{\beta} = X(X^TX)^{-1}X^TY$$

all observables!

evaluating the fit:

$$\hat{\varepsilon} = Y - X\hat{\beta} = Y - \hat{Y} = (I - H)Y$$

$$\hat{\varepsilon}^T \hat{\varepsilon} = [(I - H)Y]^T (I - H)Y = Y^T (I - H)^T (I - H)Y = Y^T (I - H)Y$$

sum of squared errors (SSE)

<u>summary:</u>

the model:

$$Y = X\beta + \varepsilon$$

the fit:

$$\hat{Y} = X\hat{\beta} = X(X^TX)^{-1}X^TY$$

sum of squared errors (SSE):

$$\hat{\varepsilon}^T \hat{\varepsilon} = Y^T (I - H) Y$$

(after the fit)

mean of squared errors (MSE):

$$\frac{\hat{\varepsilon}^T \hat{\varepsilon}}{K - N}$$

(after the fit)

often fit quality is judged by

$$R^2 := 1 - \frac{\sum_k (\hat{y}_k - y_k)^2}{\sum_k (y_k - \langle y \rangle)^2}$$

or adjusted R^2

$$\bar{R}^2 := R^2 - (1 - R^2) \frac{K}{N - K - 1}$$

and it is said that the fit is good if \mathbb{R}^2 is close to one....

...but that is not true...

y: response

x: regressors β: factors

 β_0 : intercept error

K: number of data pointsN: number of model param

$$\chi^2_{red} = \frac{1}{df} \sum\nolimits_{i=1}^K \left(\frac{y_i - \widehat{\mathbf{y}_i}}{\sigma_i}\right)^2 \qquad df = K - N - 1 \qquad \begin{cases} y_i : & \text{measured value of data point} \\ \sigma_i : & \text{statistical error of } y_i \text{ (often aka } ey_i) \\ \widehat{\mathbf{y}_i} : & \text{prediction by the model } after the fit} \\ K : & \text{number of data points} \\ N : & \text{number of fit parameter} \end{cases}$$

<u>def:</u>

 \overline{y} : mean of the data point values

$$R^2 = 1 - \frac{\sum_{i=1}^K (y_i - \widehat{y}_i)^2}{\sum_{i=1}^K (y_i - \overline{y})^2}$$
 variance data vs model (aka residual sum of squares) variance of the data (aka total sum of squares)

Note: do not confuse R^2 with Pearsons coefficient: $\rho = \frac{cov(x,y)}{\sqrt{var(x)var(y)}}$

$$\chi_{red}^2 = \frac{1}{df} \sum_{i=1}^K \left(\frac{y_i - \hat{y}_i}{\sigma_i} \right)^2$$
$$df = K - N - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value via the Students distribution

$$R^{2} = 1 - \frac{\sum_{i=1}^{K} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{K} (y_{i} - \bar{y})^{2}}$$

variance data vs model
(aka residual sum of squares)

variance of the data
(aka total sum of squares)

 \bar{y} : mean of the data point values

data variance can be huge (i. e. exponential functions) $\rightarrow R^2$ could be around 1.0 even if fit is completely off!

$$\chi_{red}^{2} = \frac{1}{df} \sum_{i=1}^{K} \left(\frac{y_{i} - \hat{y}_{i}}{\sigma_{i}} \right)^{2}$$
$$df = K - N - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^{2} = 1 - \frac{\sum_{i=1}^{K} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{K} (y_{i} - \bar{y})^{2}}$$

variance data vs model (aka residual sum of squares)

variance of the data (aka total sum of squares)

 \bar{y} : mean of the data point values

variance data vs model
(aka residual sum of squares)
variance of the data

$$\approx 1 \rightarrow R^2 = 0$$

→ although the fit is good

$$\chi_{red}^{2} = \frac{1}{df} \sum_{i=1}^{K} \left(\frac{y_{i} - \hat{y}_{i}}{\sigma_{i}} \right)^{2}$$
$$df = K - N - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^{2} = 1 - \frac{\sum_{i=1}^{K} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{K} (y_{i} - \bar{y})^{2}}$$

variance data vs model
(aka residual sum of squares)

variance of the data
(aka total sum of squares)

 \bar{y} : mean of the data point values

all plots: same R^2

$$\chi_{red}^2 = \frac{1}{df} \sum_{i=1}^K \left(\frac{y_i - \hat{y}_i}{\sigma_i} \right)^2$$
$$df = K - N - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^2 = 1 - \frac{\sum_{i=1}^{K} (y_i - \widehat{y}_i)^2}{\sum_{i=1}^{K} (y_i - \overline{y})^2} = \frac{\text{variance data vs model } (aka \text{ residual sum of squares})}{\text{variance of the data } (aka \text{ total sum of squares})}$$

 \bar{y} : mean of the data point values

conclusion:

- R^2 is not a measure of the fit quality (but χ^2 is)
- error bars are important
- given a good fit, R^2 tells how strong the dependent variable responds to the independent variable

Also, Wiki is full of examples...
...and warnings (see "caveats" therein)

regularization:

λ Lagrangian Multiplier

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{K} \| Y - X\beta \|^{2} \right\}$$

$$\beta^{\hat{}} = \frac{argmin}{\beta} \left\{ \frac{1}{K} \|Y - X\beta\|^2 + \lambda \|\beta\|^1 \right\}$$
the Loss Function
$$L(X, Y, \lambda)$$

L1 or Least absolute shrinkage and selection operator

- encourages **sparsity** of β
- reduces **overfitting**

$$\beta = \frac{argmin}{\beta} \left\{ \frac{1}{K} \|Y - X\beta\|^2 + \lambda \|\beta\|^2 \right\}$$

L2 or Ridge
- penalizes large β

$$\beta = \frac{argmin}{\beta} \left\{ \frac{1}{K} \|Y - X\beta\|^2 + \lambda \max(\mathbf{0}, -\beta) \right\} - \text{penalizes negative } \beta$$

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

	x_1	x_2	x_3	x_4	x_5	y_k
Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	toxicity_score
0	341.704	2.65585	3.09407	2	9.11147	80.9281
1	335.951	3.22262	2.89039	7	8.92848	83.4911
2	235.203	2.44115	2.48203	1	6.49731	61.8406
3	246.505	2.76656	2.71547	7	7.45089	57.0538
4	437.939	3.4801	3.59569	3	10.9156	131.326

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

y: toxicity_score

molecular_weight, electronegativity,
bond_lengths, num_hydrogen_bonds, logP

1) loading data

- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

```
Train = pd.read_csv("molecular_train_gbc.csv")
Test = pd.read_csv("molecular_test_gbc.csv")
```

```
1) loading data
```

- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model


```
1) loading data
Train = pd.read csv("molecular train qbc.csv")
                                                                                 plotting data
      = pd.read csv("molecular test qbc.csv")
Test
                                                                              3) scaling data
                                                                                 fitting model
                                                                                 evaluating model
out = sns.pairplot(Train, kind = "kde", \
                  plot kws = {'color':[176/255, 224/255, 230/255]},\
                  diag kws = {'color': 'black'})
out.map offdiag(plt.scatter, color = 'black')
scaler = MinMaxScaler(feature_range = (0, 1))
                                                                  the scaler returns an np.array
TrainS = scaler.fit_transform(Train)
                                                                  → convert back to data frame
TestS = scaler.transform(Test)
```

```
TrainS = pd.DataFrame(TrainS, columns = Train.columns)
TestS = pd.DataFrame(TestS, columns = Train.columns)
```

Berkeley Linear and Non-Linear Regression

```
TrainS = pd.DataFrame(TrainS, columns = Train.columns)
TestS = pd.DataFrame(TestS, columns = Train.columns)
```

equation = 'toxicity_score ~ ' + '+'.join(Train.columns[:-1])
print(equation)

5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$
 toxicity_score ~ molecular_weight + electronegativity + bond_lengths + num_hydrogen_bonds + logP

```
my_model = ols(equation, data = TrainS).fit()
my_model.summary()
```

OLS (ordinary least squares)

my_model.summary()

number of data points is much larger than the number of regressors D

→ degree of freedom approx. no of obs

	OLS Regress	ion Results		
Dep. Variable:	toxicity_score	R-squared:	0.790	
Model:	OLS	Adj. R-squared:	0.789	
Method:	Least Squares	F-statistic:	597.5	
Date:	Fri, 13 Sep 2024	Prob (F-statistic)	: 3.34e-266	p-value for
Time:	20:57:10	Log-Likelihood:	1013.0	constant model
No. Observations:	800	AIC:	-2014.	
Df Residuals:	794	BIC:	-1986.	
Df Model:	5	p-v	alues for	
Covariance Type:	nonrobust	fac	tors	

1) (oad	ling	data

- plotting data
- scaling data
- fitting model
- evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

 2σ conf range of factors

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.1494	0.012	12.533	0.000	0.126	0.173
molecular_weight	0.7961	0.089	8.982	0.000	0.622	0.970
electronegativity	-0.1682	0.015	-11.591	0.000	-0.197	-0.140
bond_lengths	0.0204	0.049	0.417	0.677	-0.076	0.116
num_hydrogen_bonds	0.0035	0.008	0.458	0.647	-0.011	0.018
logP	0.1246	0.072	1.723	0.085	-0.017	0.267

Omnibus:	2.249	Durbin-Watson:	1.984
Prob(Omnibus):	0.325	Jarque-Bera (JB):	2.240
Skew:	-0.129	Prob(JB):	0.326
Kurtosis:	2.980	Cond. No.	65.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

more accurate: determining the p-values for the factors using ANOVA for the corresponding residuals

```
table = sm.stats.anova_lm(my_model, typ = 1)
print(table)
```

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

	df	sum_sq	mean_sq	F	PR(>F)
molecular_weight	1.0	13.346285	13.346285	2847.525516	8.024085e-265
electronegativity	1.0	0.640388	0.640388	136.631363	3.085962e-29
bond_lengths	1.0	0.000684	0.000684	0.145954	7.025342e-01
num_hydrogen_bonds	1.0	0.000703	0.000703	0.150055	6.985866e-01
logP	1.0	0.013917	0.013917	2.969353	8.524510e-02
Residual	794.0	3.721459	0.004687	NaN	NaN

vs from t-test

0.0000

0.0000

0.6766

0.6473

0.0852

```
residuals = my_model.resid
plt.hist(residuals, color = 'w', edgecolor = 'black')
plt.title('fit residuals')
plt.ylabel('#')
plt.xlabel('value')
plt.show()
```


- loading data
- plotting data
- scaling data
- fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

residuals approx. normally distributed around $\mu = 0$

```
residuals = my_model.resid
plt.hist(residuals, color = 'w', edgecolor = 'black')
plt.title('fit residuals')
plt.ylabel('#')
                                               residuals approx.
plt.xlabel('value')
                                               normally distributed
plt.show()
                                               around \mu = 0
```

- loading data
- plotting data
- scaling data
- fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

stats.probplot(residuals, dist = "norm", plot = pylab) pylab.show()

Berkeley Linear and Non-Linear Regression

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

Berkeley Linear and Non-Linear Regression

```
Ypred = my model.predict(TestS)
higher = np.max([Ypred, TestS.toxicity score])
lower = np.min([Ypred, TestS.toxicity score])
plt.plot([lower, higher], [lower, higher], c = [0, 0, 0, 0.2], linewidth = 4)
plt.scatter(TestS.toxicity_score, Ypred, marker = '.', c = 'k')
plt.ylabel('prediction')
plt.xlabel('toxicity score')
                                     1.0
plt.show()
                                     0.8
                                   0.6
0.4
                                     0.2
                                     0.0
                                                0.2
                                                              0.6
                                                                     0.8
                                                                           1.0
                                         0.0
                                                       0.4
                                                       toxicity_score
```

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

```
mean_dev = np.sum( abs(TestS.toxicity_score - Ypred) )/len(Ypred)
print(mean_dev)
```


<u>Outline</u>

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

<u>linear model:</u> regressors are continuous or categorical,

response is continuous

<u>logistic model:</u> response is **categorical**

y:	response
x:	regressors (assumed to be independent)
β:	factors
β_0 :	intercept
ε:	error (stochasticity of the data, assumed to be normally dist.)

	Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0		341.704	2.65585	3.09407	2	9.11147	Toxic
1		335.951	3.22262	2.89039	7	8.92848	Toxic
2		235.203	2.44115	2.48203	1	6.49731	Non-Toxic
3		246.505	2.76656	2.71547	7	7.45089	Non-Toxic
4		437.939	3.4801	3.59569	3	10.9156	Non-Toxic

<u>linear model:</u> regressors are continuous or categorical,

response is continuous

<u>logistic model:</u> response is **categorical**

y: response

x: regressors (assumed to be independent)

 β : factors β_0 : intercept

 ϵ : error (stochasticity of the data, assumed to be

normally dist.)

dichotomic model: probability to be in state A) $\rightarrow p$

probability to be in state B) $\rightarrow 1 - p$

label
Toxic
Toxic
Non-Toxic
Non-Toxic
Non-Toxic

ansatz:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

log odds ratio: linear model

dichotomic model:

probability to be in state A) $\rightarrow p$

probability to be in state B) $\rightarrow 1 - p$

y: response

p

regressors (assumed to be independent)

β:

factors

 β_0 :

intercept error (stochasticity of the data, assumed to be

normally dist.)

Toxic
Toxic
Non-Toxic
Non-Toxic
Non-Toxic

ansatz:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

log odds ratio: linear model

→ probability for being in a certain state

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}}$$

often:

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

examples:

- probability that a gene has been mutated
- probability of being diseased (cancer, alzheimer etc) as function of age, environmental influence etc ...
- Verhulst equation: $N(t) = N_0 \frac{e^{rt}}{C + e^{rt}}$
- activation functions in ANNs

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

y: response x: regressors (assumed to be independent) β : factors β_0 : intercept ϵ : error (stochasticity of the data, assumed to be normally dist.)

Note: one can derive the logit function from max. entropy too!

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \dots}}$$

onset of Alzheimer's disease (AD) is a function of *age* and years spent in *education* (and other risk factors we ignore here for the sake of simplicity)

education: $d = x_1$ [yrs] age: $a = x_2$ [yrs]

model: $p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$

+ data set + fit \Rightarrow $\beta_0 = +0.1$ $\beta_1 = -1.5$ $\beta_2 = +0.12$

- positive value → increasing p

- negative value → decreasing p

intercept: "background" prevalence, not
 related to environmental/internal conditions

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs] $\beta_0 = +0.1$

age:
$$a = x_2 \text{ [yrs]} \qquad \qquad \beta_1 = -1.5 \\ \beta_2 = +0.12$$

example: **65yrs** old person, **8yrs** spent in education $\Rightarrow p_{AD} = 1.6\%$

65yrs old person, **13yrs** spent in education $\Rightarrow p_{AD} = 0.001\%$

How does education compensate aging?

$$p_{AD}(d+\bar{d},a+\bar{a})=p_{AD}(d,a)$$

$$\rightarrow \bar{a} = 12.5 \, \bar{d}$$

hence, one more year prolonged education compensates 12.5 years of aging

(warning: don't confuse correlation with causation here!)

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs]

age:
$$a = x_2$$
 [yrs]

$$\beta_0 = +0.1$$

$$\beta_0 = +0.1$$

$$\beta_1 = -1.5$$

$$\beta_2 = +0.12$$

How does the risk of onset changes per year?

relative change:

$$\frac{p_{AD}(a+1) - p_{AD}(a)}{p_{AD}(a)} \approx e^{\beta_2} - 1 \approx 12.7\%$$

response y: regressors (assumed to be independent) x: β: factors β_0 : intercept error (stochasticity of the data, assumed to be ε: normally dist.)

 $p_{AD}\ll 1$ (hence, for small Δa and "young" ages, i. e. below $pprox 80 \mathrm{yrs}$)

the risk of getting AD increases by 12.7% every year

(warning: does not mean that it increases by 127% in ten yrs - we made an approximation!)

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs]

age:
$$a = x_2$$
 [yrs]

$$\beta_0 = +0.1$$
 $\beta_1 = -1.5$
 $\beta_2 = +0.12$

How does the risk of onset changes per year?

more precise: relative change of the odds ratio

$$\frac{\frac{\partial}{\partial x_i} \left(\frac{p_{AD}}{1 - p_{AD}} \right)}{\frac{p_{AD}}{1 - p_{AD}}} = \beta_i$$

 x_i is the desired regressor, for example, age again (x_2)

y: response x: regressors (assumed to be independent) β : factors β_0 : intercept error (stochasticity of the data, assumed to be normally dist.)

the factors β_i indicate how strong (and in which direction) p changes wrt a regressor x_i

let us return to the molecule data set:

- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0	341.704	2.65585	3.09407	2	9.11147	Toxic
1	335.951	3.22262	2.89039	7	8.92848	Toxic
2	235.203	2.44115	2.48203	1	6.49731	Non-Toxic
3	246.505	2.76656	2.71547	7	7.45089	Non-Toxic
4	437.939	3.4801	3.59569	3	10.9156	Non-Toxic

import statsmodels.api as sm

it is the same data set → plotting and scaling is as before

```
X = sm.add_constant(TrainS)
Y = pd.get_dummies(Train['label'])
```

my_model = sm.GLM(Y, X, family = sm.families.Binomial()).fit()
my_model.summary()

Generalized Linear Model Regression Results

['Non-Toxic', 'Toxic'] Dep. Variable: No. Observations: Model: Df Residuals: Model Family: Df Model: Binomial Link Function: Scale: Logit Method: IRLS Log-Likelihood: Date: Sat, 14 Sep 2024 Deviance: Pearson chi2: Time: 20:59:18 Pseudo R-squ. (CS): p-values for No. Iterations:

Covariance Type:	nonrobust			factors			
	coef	std err	z	P> z		[0.025	0.975]
const molecular weight	6.1641 -10.4920	0.585 3.626	10.536 -2.893	0.000 0.004		5.017 -17.599	7.311 -3.385
electronegativity	3.2874	0.599	5.492	0.000		2.114	4.461
bond_lengths	0.6736	1.913	0.352	0.725		-3.075	4.422
num_hydrogen_bonds	-0.3082	0.303	-1.018	0.309		-0.902	0.285

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

$$0 = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}}$$

p-value for constant model

800

794

1.0000

-332.82

665.64

0.4243

1.14e+03

 2σ conf range of factors

accuracy:

How *often* did the model make the correct prediction.

cross-entropy:

How *certain* was the model when making the prediction.

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

loading data

plotting data

fitting model

5) evaluating model

scaling data

```
How often did the model make the correct prediction.
accuracy:
               How certain was the model when making the prediction.
cross-entropy:
predProbs
            = my model.predict(sm.add constant(TestS))
            = np.round(predProbs).astype(int)
Pred
predictions = ['Non-Toxic' if i==1 else 'Toxic' for i in Pred]
                                              In [51]: predictions
                    ['Non-Toxic', 'Toxic']
Dep. Variable:
                                              Out[51]:
                                              ['Toxic',
                                               'Toxic',
                                               'Non-Toxic',
                                               'Non-Toxic',
                                               'Toxic',
                                               'Toxic',
                                               'Toxic',
TestY = Test['label']
            = 100*(TestY == predictions).sum()/len(predictions)
accuracy
print(f'accuracy = \{accuracy: .2f\}\%')
accuracy = 80.50%
```

cross-entropy: How *certain* was the model when making the prediction.

accuracy is $\approx 80\%$ But does it depend on the class? \rightarrow confusion matrix

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

ideal world:

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

cross-entropy: How ce

How *certain* was the model when making the prediction.

accuracy is $\approx 80\%$ But does it depend on the class? \rightarrow confusion matrix

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

```
L = ['Non-Toxic', 'Toxic']
```

```
cm = confusion_matrix(TestY, predictions, labels = L, normalize = 'true')
disp = ConfusionMatrixDisplay(confusion_matrix = cm, display_labels = L)
```

disp.plot(cmap = 'gray')

plt.show()

two labels

cross-entropy: How *certain* was the model when making the prediction.

accuracy is $\approx 80\%$ But does it depend on the class? \rightarrow confusion matrix

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

cross-entropy: How *certain* was the model when making the prediction.

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

loading data

plotting data

fitting model

```
How often did the model make the correct prediction.
accuracy:
               How certain was the model when making the prediction.
cross-entropy:
                                                                   3) scaling data
PredProbs = np.vstack((predProbs, 1 - predProbs))
                                                                   5) evaluating model
fig, ax = plt.subplots(len(L), 1, sharex = True)
fig.set_figheight(6)
fig.subplots_adjust(hspace = 0.5)
fig.suptitle('entropy')
for i, l in enumerate(L):
    idx = [k for k, y in enumerate(TestY) if y == 1]
    idx = np.array(idx)
    (value, where) = np histogram(PredProbs[i,idx],\
                                    bins = np.arange(0, 1, 0.01), \
                                    density = True)
    w = 0.5*(where[1:] + where[:-1])
    ax[i].plot(w, value, 'k-')
    ax[i].set_ylabel('frequency')
    ax[i].set_title(1)
ax[len(L)-1].set_xlabel('probability')
plt.show()
```

cross-entropy: How *certain* was the model when making the prediction.

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

Thank you very much for your attention!