

Por Sarah Everke y Florencia Valdivia

Machine Learning

Categorías

Categorías

Set de datos

Subscril	Previous contacts	Campaign	Contact duration (secs)	Month	Day	Contact	Loan	Housing	Balance (Euros)	Debt	Education	Marital	Job	Age
no	0	1	79	oct	19	cellular	no	no	1787	no	primary	married	unemployed	30
no	4	1	220	may	11	cellular	yes	yes	4789	no	secondary	married	services	33
no	1	1	185	apr	16	cellular	no	yes	1350	no	tertiary	single	management	35
no	0	4	199	jun	3	unknown	yes	yes	1476	no	tertiary	married	management	30
no	0	1	226	may	5	unknown	no	yes	0	no	secondary	married	blue-collar	59
no	3	2	141	feb	23	cellular	no	no	747	no	tertiary	single	management	35
no	2	1	341	may	14	cellular	no	yes	307	no	tertiary	married	self-employed	36
no	0	2	151	may	6	cellular	no	yes	147	no	secondary	married	technician	39
no	0	2	57	may	14	unknown	no	yes	221	no	tertiary	married	entrepreneur	41
no	2	1	313	apr	17	cellular	yes	yes	-88	no	primary	married	services	43
no	0	1	273	may	20	unknown	no	yes	9374	no	secondary	married	services	39
no	0	2	113	apr	17	cellular	no	yes	264	no	secondary	married	admin.	43
no	0	2	328	aug	13	cellular	no	no	1109	no	tertiary	married	technician	36
yes	0	1	261	apr	30	cellular	no	no	502	no	secondary	single	student	20
no	1	1	89	jan	29	cellular	yes	yes	360	no	secondary	married	blue-collar	31
no	0	2	189	aug	29	cellular	yes	no	194	no	tertiary	married	management	40
no	0	5	239	aug	27	cellular	no	no	4073	no	secondary	married	technician	56
no	2	1	114	apr	20	cellular	no	yes	2317	no	tertiary	single	admin.	37
no	0	1	250	may	23	unknown	no	yes	-221	no	primary	single	blue-collar	25
no	1	1	148	jul	7	cellular	no	no	132	no	secondary	married	services	31
no	0	2	96	nov	18	cellular	no	yes	0	no	unknown	divorced	management	38
no	0	3	140	nov	19	cellular	no	no	16	no	tertiary	divorced	management	42
no	0	2	109	jun	12	unknown	no	no	106	no	secondary	single	services	44
no	0	2	125	jul	7	cellular	no	no	93	no	secondary	married	entrepreneur	44
no	0	3	169	jan	30	cellular	no	no	543	no	tertiary	married	housemaid	26
no	0	2	182	nov	20	cellular	no	no	5883	no	tertiary	married	management	41

Set de datos

Training set: utilizado para entrenar el modelo.

Testing set: utilizado para medir el rendimiento.

Validation set: utilizado para ajustar los hiperparámetros.

¿En qué casos lo usamos?

- SVM es excelente para conjuntos de datos relativamente pequeños con pocos outliers.
- Casos de uso: Clasificación, regresión, detección de outliers, clustering.
- Es buen algoritmo para casos extremos donde queremos clasificar un nuevo dato que es difícil (caso extremo).

Un caso extremo...

Es un algoritmo de aprendizaje automático supervisado que normalmente se utiliza para la clasificación. Dadas 2 o más clases de datos etiquetados, actúa como un clasificador discriminante, definido por un hiperplano óptimo que separa todas las clases. Los nuevos ejemplos mapeados en ese mismo espacio se pueden clasificar en función del **lado de la brecha** en el que caen.

Support Vectors

Los **support vectors** son los puntos de datos más cercanos al hiperplano. Si estos puntos se eliminan de un conjunto de datos, alterarían la posición del hiperplano divisor. Pueden considerarse los elementos críticos de un conjunto de datos, son los que nos ayudan a construir nuestro SVM.

Hiperplano

Es una **superficie de decisión lineal** que divide el espacio en dos partes, siendo un clasificador binario. Queremos encontrar la superficie de decisión que esté lo más lejos posible de cualquier punto de datos.

El hiperplano está dado por $g(x) = wx_k + c$

y
$$g(x)=wx_k+c\left\{egin{array}{ll} >0, & ext{ si } x_k\in C_1\ \leq 0, & ext{ si } x_k\in C_2 \end{array}
ight.$$

Por conveniencia se define $z_k=\pm 1$ dependiendo de la clase que pertenece x_k y la desigualdad anterior queda como $z_k(wx_k+c)>0,\ k=1...n$

La distancia una instancia x_k al hiperplano está dada por $d=rac{|g(x_k)|}{||w||}$

Así, el problema de optimización es $rgmax_{w,c}\left\{rac{1}{||w||} \min_k\left\{z_k g(x_k)
ight\}
ight\}$ sujeto a $z_k(wx_k+c)>0,\;k=1..0$

Así, el problema de optimización es $rgmax_{w,c}\left\{rac{1}{||w||}\min_{k}\left\{z_kg(x_k)
ight\}
ight\}$ sujeto a $z_k(wx_k+c)>0,\;k=1..0$

Así, el problema de optimización es

$$rgmax rac{1}{||w||}$$
 $rgmin ||w||$ $rgmin rac{1}{2}||w||^2$ sujeto a $z_k(wx_k+c)>0$ sujeto a $z_k(wx_k+c)>0$ sujeto a $z_k(wx_k+c)>0$

Más detalles en: https://www.youtube.com/watch?v=_PwhiWxHK80

SVM: Caso no lineal

Mapear los datos a **espacio de mayor dimensionalidad** donde los datos son linealmente separables.

SVM: Caso no son separables

Se introducen variables de slack $|\xi_k| = |z_k - g(x_k)|$

SVM: Caso no son separables

El problema de optimización queda

$$rgmin_{w,c}rac{1}{2}||w||^2+C\sum_{k=1}^K \xi_k$$
sujeto a $z_k(wx_k+c)>0,\ k=1..0$

Ejercicios

¿Cómo usamos SVM para más de dos clases?

¿Cómo usamos SVM para más de dos clases?

