Algebra Definitions

On Rings, Polynomials, and Fields

1 Section 16.1 - Rings

- 1. A **ring** R is a set that is closed under two binary operations, + and \times . The following conditions must also be satisfied:
 - (a) Additive commutativity.
 - (b) Additive associativity.
 - (c) Additive identity.
 - (d) Additive inverse.
 - (e) Multiplicative associativity.
 - (f) Multiplicative distributivity 1 & 2.
- 2. A ring with unity (or with identity) is a ring R that has multiplicative identity.
- 3. A **commutative ring** is a ring R that has multiplicative commutativity.
- 4. An **integral domain** is a commutative ring R with identity such that for all $a, b \in R$ ab = 0 implies a = 0 or b = 0.
- 5. A division ring is a ring R that has multiplicative inverse for all nonzero $a \in R$.
- 6. A **zero divisor** of a commutative ring R is an $a \in R$ $(a \neq 0)$ such that there exists a nonzero $b \in R$ such that ab = 0.
- 7. The **ring of quaternions** is the set $\mathbb{H} = \{a+b\hat{i}+c\hat{j}+d\hat{k} \mid a,b,c,d \in \mathbb{R}\},$ where $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \hat{i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \hat{j} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \hat{k} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$

2 Section 16.2 - Integral Domains and Fields

- 1. A **field** is a commutative division ring.
- 2. The **characteristic** of a ring R is the least positive integer n such that nr = 0 for all $r \in R$. If no such n exists, the characteristic of R is defined to be 0. (denote the characteristic of R by charR).

3 Section 16.3 - Ring Homomorphisms and Ideals

- 1. A **ring homomorphism** is a map $\phi : R \to S$ (where R, S are rings) such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.
- 2. A **ring isomorphism** is a bijective map $\phi: R \to S$ where R, S are rings.
- 3. The **kernel** of a ring homomorphism $\phi : R \to S$ is the set $\ker \phi := \{r \in R \mid \phi(r) = 0\}.$
- 4. An **evaluation homomorphism** is a ring homomorphism of the form $\phi_{\alpha}: C[a,b] \to \mathbb{R}$ or other such related homomorphisms.
- 5. An **ideal** of a ring R is a subring I such that if $a \in I$ and $r \in R$, then $ar, ra \in I$.
- 6. The **trivial ideals** of a ring R are the subrings $\{0\}$ and R.
- 7. A **principal ideal** of a commutative ring R (with identity) is an ideal of the form $\langle a \rangle = \{ar \mid r \in R\}$.
- 8. A **two-sided ideal** I is a subring of a ring R such that $rI \subset I$ and $Ir \subset I$ for all $r \in R$.
- 9. A **one-sided ideal** I is a subring of a ring R is one such that $rI \subset I$ for all $r \in R$ (a **left ideal**) or $Ir \subset I$ for all $r \in R$ (a **right ideal**).

4 Section 17.1 - Polynomial Rings

- 1. A **polynomial over** R is an expression of the form $f(x = \sum_{i=0}^{n} a_i x^i)$ with **indeterminate** x. Define a_0, \ldots, a_n to be the **coefficients** of f and a_n is the **leading coefficient** of f. A polynomial is **monic** if its leading coefficient a_n is 1. The **degree** (write: $\deg f(x) = n$) is the largest nonnegative number for which $a_n \neq 0$. If no such n exists, then f = 0, the **zero polynomial** and define the degree of f = 0 to be $-\infty$. Denote R[x] to be the set of all polynomials with coefficients in a ring R.
- 2. R[x,y] is the ring of polynomials in two indeterminates x,y with coefficients in R. $R[x_1,\ldots,x_n]$ is the ring of polynomials in n indeterminates with coefficients in R.

5 Section 17.2 - The Division Algorithm

- 1. Let $p(x) \in F[x]$ and $\alpha \in F$. Then α is a **zero** (or **root**) of p(x) if $p(x) \in \ker \phi_{\alpha}$, where ϕ_{α} is an evaluation homomorphism. In other words, α is a zero of p(x) if $p(\alpha) = 0$.
- 2. Let F be a field. A monic polynomial d(x) is a **greatest common divisor** of $p(x), q(x) \in F[x]$ if $d(x) \mid p(x)$ and $d(x) \mid q(x)$; and, for any other polynomial d'(x) that divides both p(x) and $q(x), d'(x) \mid d(x)$. (write: $d(x) = \gcd(p(x), q(x))$). Two polynomials p(x), q(x) are **relatively prime** if $\gcd(p(x), q(x)) = 1$.

6 Section 17.3 - Irreducible Polynomials

1. A nonconstant polynomial $f(x) \in F[x]$ is **irreducible** over a field F if f(x) cannot be expressed as a product of two polynomials $g(x), h(x) \in F[x]$, where $\deg g(x), \deg h(x) < \deg f(x)$.

7 Section 3.1 - Integer Equivalence Classes & Symmetries

- 1. A **symmetry** of a geometric figure is a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles.
- 2. A map from the plane to itself preserving the symmetry of an object is called a **rigid motion**.
- 3. A **permutation** of a set S is a bijective map $\pi: S \to S$.

8 Section 3.2 - Definitions & Examples

- 1. A binary operation or law of composition on a set G is a function $G \times G \to G$ that assigns to each pair $(a, b) \in G \times G$ a unique element $a \circ b$, or $ab \in G$, called the composition of a and b.
- 2. A **group** (G, \circ) is a set G together with a binary operation $(a, b) \mapsto a \circ b$ that satisfies the following axioms (where $a, b, c \in G$):
 - (a) Associativity $((a \circ b) \circ c = a \circ (b \circ c))$.
 - (b) Identity $(\exists e \in G \text{ such that } e \circ a = a \circ e = a)$.
 - (c) Inverse $(\forall a \in G \exists a^{-1} \in G \text{ such that } a \circ a^{-1} = a^{-1} \circ a = e)$.
- 3. A group G with the property that $a \circ b = b \circ a$ (for all $a, b \in G$) is called **abelian** or **commutative**. Groups not satisfying this property are said to be **nonabelian** or **noncommutative**.
- 4. Let $U(n) := \mathbb{Z}_n \setminus \{0\}$. Then, U(n) is called the **group of units** of \mathbb{Z}_n .
- 5. We have the following:
 - (a) $\mathbb{C}^* = \{z \in \mathbb{C} : z \neq 0\}$ is the multiplicative group of complex numbers.
 - (b) $\mathbb{M}_2(\mathbb{R}) = \{2x2 \text{ matrices of real entries}\}.$
 - (c) $GL_2(\mathbb{R}) = \{2x2 \text{ invertible matrices of real entries}\}$ is the **general** linear group.

- (d) $GL_2(\mathbb{R}) \subseteq M_2(\mathbb{R})$.
- 6. Let $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $I = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $K = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Then, the set $Q_8 = \{\pm 1, \pm I, \pm J, \pm K\}$ is called the **quaternion group**.
- 7. A group G is **finite** (or has **finite order**) if it contains a finite number of elements. Otherwise, the group is said to be **infinite** (or has **infinite order**). The **order** of a finite group is the number of elements that it contains.

9 Section 3.3 - Subgroups

- 1. Let G be a group. H is a **subgroup** of G if H is a subset of G such that when the group operation of G is restricted to H, then H is a group on its own right.
- 2. The subgroup $H = \{e\}$ of a group G is called the **trivial group**. A subgroup that is a proper subset of G is called a **proper subgroup**.
- 3. $SL_2(\mathbb{R})$ is the **special linear group** and we have the following definitions: $SL_2(\mathbb{R}) = \{2x2 \text{ matrices of real entries and determinant } 1\}$.

10 Section 4.1 - Cyclic Subgroups

1. Let G be a group and $a \in G$. Let $\langle a \rangle = \{a^k : k \in \mathbb{Z}\}$. Then, $\langle a \rangle$ is called the **cyclic subgroup** generated by a. If G contains some element a such that $G = \langle a \rangle$, then G is a **cyclic group** and call a the **generator** of G. If $a \in G$, define the **order** of a to be the smallest $n \in \mathbb{Z}_{>0}$ such that $a^n = e$, and write |a| = n. If there is not such integer n, we say that the order of a is infinite and write $|a| = \infty$.

11 Section 4.2 - Multiplicative Group of Complex Numbers

1. The **circle group** is defined to be $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$

- 2. The complex numbers satisfying the equation $z^n = 1$ are called the **nth** roots of unity.
- 3. A generator for the group of n^{th} roots of unity is called a **primitive nth root of unity**.