— Higher Institute of Technological Studies of Bizerte

AY: 2022-2023 Exam | AI-ECUE221 05/06/23 (09:00→10:30) M1-S2: Dept. of Electrical Engineering Teacher: A. Mhamdi

Time Limit: 1½ h

This document contains 6 pages numbered from 1/6 to 6/6. As soon as it is handed over to you, make sure that it is complete. The 2 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **•** No document is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- **8** Round results to the nearest thousandth (i.e., third digit after the decimal point).
- Mysterious or unsupported answers will not receive full credit.
- **6** Task N^0_- 2: No penalty for wrong answers.

Task Nº1

30mn | (4 points)

Given the Julia code below:

```
[1]: y_true = [1,1,0,1,0,1,0,0,1,0,1]
y_pred = [0,0,0,1,1,1,0,0,1,0,1];
```

y_true denotes the true or actual outcome values in a dataset, while y_pred refers to the predicted outcome values generated by a machine learning model or other predictive algorithm.

```
[2]: using EvalMetrics
```

```
[3]: cm = ConfusionMatrix(y_true, y_pred)
```

[3]: ConfusionMatrix{Int64}(6, 5, 4, 4, 1, 2)

```
[4]: using NamedArrays
```

(a) (2 points) Reproduce and fill in the confusion matrix, output of cell #5.

[5]: 2×2 Named Matrix{Int64}

- (b) (2 points) Compute the following metrics:
 - ✓ Accuracy
 - ✔ Precision
 - **✓** Recall
 - ✓ F1-score

By applying the formulas, we get:

$$accuracy \ = \ \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \ = \ 0.727$$

Precision =
$$\frac{TP}{TP + FP} = 0.8$$

Recall
$$=$$
 $\frac{1}{\text{EN}}$ $=$ 0.667

f1 - score
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = 0.727$$

AY: 2022-2023	Full Name:		
M1-S2: Dept. of Electrical Engineering	ID:		
Exam Al-ECUE221	Class:		
05/06/23 (09:00→10:30)	Room:		
Геаcher: А. Mhamdi	Time Limit:	1½ h	
Answ	ver Sheet		
< N ⁰ 2		🕏 20mn (16 points)	
(a) (1 point) What is a machine learni	ing model?		
A linear function	ing model:		
A mechanism for improvi	ing models		
√ Generic program made sp			
		ons that help you understand	
the shape of your data.		ons that help you understand	
(b) (1 point) In k-nearest neighbors, th		to a neighbor the more likely	
you are to	lic-closer you are	to a neighbor, the more likely	
√ share common character	istics		
be part of the root node			
○ have an Euclidean connection	ction		
be part of the same clust			
(c) (1 point) You work for a large phan wants to use unsupervised learni drugs. What is an advantage to the	rmaceutical comp ing machine algo	•	
 You will be able to prioriti 	ize different classe	es of drugs, such as antibiotics.	
\bigcirc You can create a training	set of drugs you	would like to discover.	
The algorithms will clust	er together drugs	that have similar traits.	
 Human experts can creat 	te classes of drugs	s to help guide discovery.	
(d) (1 point) We should use multiple li	inear regression to	o predict a dependent variable	
that is growing exponentially with	n time.		
○ Yes			
√ No			

≫ -`		
	(e)	(1 point) Your data science team is working on a machine learning product that can act as an artificial opponent in video games. The team is using a machine learning algorithm that focuses on rewards: If the machine does some things well, then it improves the quality of the outcome. How would you describe this type of machine learning algorithm? Semi-supervised machine learning
		○ Supervised machine learning
		 Unsupervised machine learning
	Æ	√ Reinforcement learning (1 noint) What is one of the most effective of the correct for underfitting your
	(1)	(1 point) What is one of the most effective way to correct for underfitting your model to the data?
		○ Create training clusters
		Remove predictors
		Use reinforcement learning
		√ Add more predictors
	(g)	(1 point) In supervised machine learning, data scientist often have the challenge of balancing between underfitting or overfitting their data model. They often have to adjust the training set to make better predictions. What is this balance called?
		The under/over challenge
		Balance between clustering classification
		√ Bias-variance trade-off
		The multiclass training set challenge
	(h)	(1 point) Which of the following is <u>NOT</u> supervised learning?
		O Decision Tree
		○ Linear Regression
		√ PCA ○ Naiva Pavasian
		○ Naive Bayesian

Do not write anything here

(i) (1 point) What does it mean to underfit your data model?

 $\bigcirc\,$ There is too little data in your training set.

	Do no	t wri	ite an	ythin	g here
--	-------	-------	--------	-------	--------

*-----

- O There is too much data in your training set.
- $\sqrt{}$ There is not a lot of variance but there is a high bias.
- O Your model has low bias but high variance.
- (j) (1 point) Which choice is the best example of labeled data?
 - √ a spreadsheet
 - 20000 recorded voicemail messages
 - 100000 images of automobiles
 - O hundreds of gigabytes of audio files
- (k) (1 point) K-means clustering is what type of machine learning algorithm?
 - Reinforcement
 - Supervised
 - √ Unsupervised
 - Classification
- (l) (1 point) Which is the best explanation for how a model training algorithm works?
 - $\sqrt{}$ Model training algorithms incrementally adjust model parameters to minimize loss function.
 - Model training algorithms slowly add or remove model parameters until the model fits the dataset it was trained on.
 - Model training algorithms train a separate model for each datapoint and then pick the one with the lowest loss function.
 - Model training algorithms are used on a prepared machine learning model to make predictions on new unseen data.
- (m) (1 point) You're working on a binary classification task, to classify if an image contains a cat ('1') or doesn't contain a cat ('0'). What loss \mathcal{L} would you choose to minimize in order to train a model?

$$\bigcirc \mathcal{L} = y \ln \hat{y} + (1 - y) \ln (1 - \hat{y})$$

$$\sqrt{\mathcal{L}} = -y \ln \hat{y} - (1 - y) \ln (1 - \hat{y})$$

$$\bigcirc \mathcal{L} = \|\mathbf{y} - \hat{\mathbf{y}}\|_2^2$$

$$\bigcirc \mathcal{L} = \|\mathbf{y} - \hat{\mathbf{y}}\|_2^2 + \text{constant}$$

ξ			
	(n)	, -	Does Linear Regression have assumptions such as linearity or multivari-
		ate norn	nality that need to be checked?
		\checkmark	True
		\circ	False
	(o)	(1 point)	In the 1983 movie WarGames, the computer learns how to master the
		game of	chess by playing against itself. What machine learning method was the
		compute	er using?
		\circ	Binary learning
		\circ	Supervised learning
		\circ	Unsupervised learning
		\checkmark	Reinforcement learning
	(p)	(1 point)	Which project might be best suited for supervised machine learning?
		\circ	Data scrubbing
		\checkmark	Predicting a risk score
		\circ	Tax filing software
		\circ	Spreadsheet consolidation

Do not write anything here