First Order Motion Model for Image Animation

Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, Nicu Sebe

Kihong Kim

Introduction

- Image animation
 - Animating object in a source image according to the motion of a driving video

Background

- Prior works
 - Are object specific
 - Require landmark detectors
 - Impose too strong motion prior

- Our Work
 - Object-agnostic model
 - Does not require object-specific prior
 - Animates multiple objects categories

Driving video

Source

Generated

Self-supervised Training

- Direct supervision is not available
 - Train Keypoint Detector in a self-supervised manner
- Extracting each source & target frame from the same video
 - Reconstruct the training videos by combining a single frame and a learned latent motion

Overview

- Motion Module $T_{S \leftarrow D}$
 - Predict a dense motion field from a source and driving frame $(T_{S \leftarrow D})$
- Image Generation Module
 - Renders an image of the source object moving as provided in the driving video

Motion Module – Keypoint Detector

- Keypoint Detector predict keypoint displacement and local affine transformation
- Approximate $T_{S \leftarrow D}$ by its first order Taylor expansion in a neighborhood of the keypoint locations

•
$$T_{S \leftarrow D(p)} = T_{S \leftarrow D(p_k)} + \left(\frac{d}{dp} T_{S \leftarrow D(p)}|_{p=p_k}\right)$$

Taylor expansion

$$\begin{split} e^x &= f(0)\frac{x^0}{0!} + f'(0)\frac{x^1}{1!} + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + f^{(4)}(0)\frac{x^4}{4!} + f^{(5)}(0)\frac{x^5}{5!} + \cdots \\ &= \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots \\ &= \sum_{n=0}^{\infty} \frac{x^n}{n!} \end{split}$$

Motion Module – Keypoint Detector

•
$$T_{X \leftarrow R(p)} = T_{X \leftarrow R(p_k)} + \left(\frac{d}{dp} T_{X \leftarrow R(p)}|_{p=p_k}\right)$$

Assume an abstract reference frame R

•
$$T_{S \leftarrow D} = T_{S \leftarrow R} \circ T_{R \leftarrow D} = T_{S \leftarrow R} \circ T_{D \leftarrow R}^{-1}$$

• R allow us to independently process S and D

Motion Module – Keypoint Detector

•
$$T_{S \leftarrow D} = T_{S \leftarrow R} \circ T_{R \leftarrow D} = T_{S \leftarrow R} \circ T_{D \leftarrow R}^{-1}$$

•
$$T_{X \leftarrow R(p)} \cong \left\{ T_{X \leftarrow R(p_k)}, \frac{d}{dp} T_{X \leftarrow R(p)}|_{p=p_1} \right\} + \dots + \left\{ T_{X \leftarrow R(p_k)}, \frac{d}{dp} T_{X \leftarrow R(p)}|_{p=p_k} \right\}$$

•
$$T_{S \leftarrow D(z)} \approx T_{S \leftarrow R(p_k)} + J_k(z - T_{D \leftarrow R(p_k)})$$

•
$$J_k = \left(\frac{d}{dp} T_{S \leftarrow R(p)}|_{p=p_k}\right) \left(\frac{d}{dp} T_{D \leftarrow R(p)}|_{p=p_k}\right)^{-1}$$

Motion Module - Dense Motion

• $T_{S \leftarrow D(z)} \approx T_{S \leftarrow R(p_k)} + J_k(z - T_{D \leftarrow R(p_k)})$

• Dense Motion network combines the local approximations to obtain dense motion field $\widehat{T}_{S \leftarrow D(z)}$

• Dense Motion network outputs an occlusion mask $\hat{O}_{S\leftarrow D}$

Motion Module - Dense Motion

•
$$\hat{T}_{S \leftarrow D(z)} = M_0 z + \sum_{k=1}^K M_k (T_{S \leftarrow R(p_k)} + J_k (z - T_{D \leftarrow R(p_k)}))$$

•
$$M_k(z) = \exp\left(\frac{\left(T_{D \leftarrow R(p_k)} - z\right)^2}{\sigma}\right) - \exp\left(\frac{\left(T_{S \leftarrow R(p_k)} - z\right)^2}{\sigma}\right)$$

Heatmap indicate to the dense motion network where each transformation happens

Occlusion-Aware Image Generation

- $\xi' = \hat{O}_{S \leftarrow D} \odot f_w(\xi, \hat{T}_{S \leftarrow D})$
- Occluded parts in S cannot be recovered by image-warping and thus should be inpainted
- Mask out feature map regions that should be inpainted

Generation Module

- Generation Module renders an image of the source object moving as provided in the driving video
- warps the source image according to $\hat{T}_{S\leftarrow D}$ and inpaints the image parts that are occluded in the source image

Loss function

Reconstruction Loss

- $L_{rec}(\widehat{D}, D) = \sum_{i=1}^{I} |N_i(\widehat{D}) N_i(D)|$
- Perceptual loss using the pre-trained VGG-19
- Multiple resolution
 - 256x256, 128x128, 64x64, 32x32

Equivariance Constraint

- Our keypoint predictor doesn't require any keypoint annotations during training.
- This may lead to unstable performance
- $T_{X \leftarrow R}(p_k) \equiv T_{X \leftarrow Y} \circ T_{Y \leftarrow R}(p_k)$

Testing Stage – Relative Motion Transfer

Animation using absolute coordinates

Animation using relative coordinates

Experiment

VoxCeleb

cropping face from image using bounding box 19,522 training videos and 525 test videos

UvA-Nemo

Facial analysis dataset 1116 training videos and 124 test videos

• BAIR robot pushing

42,880 training and 128 test videos 30 frame long, 256x256 resolution

Tai-Chi-HD

3,049 training, 285 testing 128 to 1024 frames

Ablation Study

Table 1: Quantitative ablation study for video reconstruction on *Tai-Chi-HD*.

	Tai-Chi-HD							
	\mathcal{L}_1	(AKD, MKR)	AED					
Baseline	0.073	(8.945, 0.099)	0.235					
Pyr.	0.069	(9.407, 0.065)	0.213					
$Pyr.+\mathcal{O}_{\mathbf{S}\leftarrow\mathbf{D}}$	0.069	(8.773, 0.050)	0.205					
Jac. w/o Eq. (12)	0.073	(9.887, 0.052)	0.220					
Full	0.063	(6.862, 0.036)	0.179					

- L1 Distance
- AKD (Average Keypoint Distance)
 - Evaluate whether the motion of the input video is preserved
- MKR (Missing Keypoint Rate)
 - Evaluate the appearance quality of each generated frame
- AED (Average Euclidean Distance)
 - Evaluate Euclidean distance between G.T and generated frame representation

Figure 3: Qualitative ablation on Tai-Chi-HD.

Ablation Study

Table 3: Video reconstruction: comparison with the state of the art on four different datasets.

		Tai-Chi-HD		VoxCeleb			Nemo			Bair
	\mathcal{L}_1	(AKD, MKR)	AED	\mathcal{L}_1	AKD	AED	\mathcal{L}_1	AKD	AED	\mathcal{L}_1
X2Face [41]	0.080	(17.654, 0.109)	0.272	0.078	7.687	0.405	0.031	3.539	0.221	0.065
Monkey-Net [29]	0.077	(10.798, 0.059)	0.228	0.049	1.878	0.199	0.018	1.285	0.077	0.034
Ours	0.063	(6.862, 0.036)	0.179	0.043	1.294	0.140	0.016	1.119	0.048	0.027

 Our approach is able to generate significantly better looking videos in which each body part is independently animated

Conclusion

- Mathematical formulation describes the motion field
 - a set of keypoints displacement and local affine transformations
- Dense Motion Network produce Occlusion mask to inpaint occluded region
 - Occluded parts in S cannot be recovered by image-warping
- Test our method on four different datasets containing various objects
 - Our approach outperforms existing method

Thank You!