Hu et al., 2020 Sinha et al., 2019

Greta Tuckute & Kamoya K Ikhofua

MIT Fall 6.884
Symbolic Generalization

Motivation

Natural language understanding systems to generalize in a systematic and robust way

- Diagnostic tests how can we probe these generalization abilities?
 - Syntactic generalization (Hu et al., 2020, "SG") and logical reasoning (Sinha et al., 2019, "CLUTRR")
- Evaluation metrics for language models?

SG: Man shall not live by perplexity alone

Perplexity is not sufficient to check for human-like syntactic knowledge:

- It basically measures the probability of seeing some collection of words together
- However some words which are rarely seen together are grammatically correct
- Colorless green ideas sleep furiously (Chomsky, 1957)
- Need a more fine-grained way to test human-level understanding of syntax

SG: Paradigm

Assess NL models on custom sentences designed using psycholinguistic and syntax literature/methodology

- Compare critical sentence regions NOT full-sentence probabilities.
- Factor out confounds (e.g token lexical frequency, n-gram statistics)

SG: Paradigm

- Cover the scope of syntax phenomena: 16/47 (Carnie et al., 2012)
- Group syntax phenomena into 6 circuits based on processing algorithm

SG: Circuits

- 1. Agreement
- 2. Licensing
- 3. Garden-Path Effects
- 4. Gross Syntactic Expectation
- 5. Center Embedding
- 6. Long-Distance Dependencies

SG: Agreement

- (A) The farmer that the clerks embarrassed $knows_{V_{sg}}$ many people.
- (B) *The farmer that the clerks embarrassed $know_{V_{pl}}$ many people.
- (C) The farmers that the clerk embarrassed $know_{V_{pl}}$ many people.
- (D) *The farmers that the clerk embarrassed knows_{Vsg} many people.

$$P_{A}(V_{sg}) > P_{B}(V_{pl}) \wedge P_{C}(V_{pl}) > P_{D}(V_{sg})$$

SG: NPI Licensing

The word "any" is a negative polarity item (NPI)

>

• The word "no" can license an NPI when it structurally commands it, such as in A

- A) No managers that respected the guard have had any luck
- B) *The managers {that respected **no** guard} have had **any** luck

(Reflexive Pronoun Licensing was also included in sub-class suites)

SG: NPI Licensing

- (A) No managers that respected the guard have had any luck. [+NEG,-DISTRACTOR]
- (B) *The managers that respected no guard have had any luck. [-NEG,+DISTRACTOR]
- *The managers that respected the guard have had any luck. [-NEG,-DISTRACTOR]
- (D) No managers that respected no guard have had any luck. [+NEG,+DISTRACTOR]

$$P_{\rm A}({
m NPI}) > P_{
m C}({
m NPI}) \land P_{
m D}({
m NPI}) > P_{
m B}({
m NPI}) \land P_{
m A}({
m NPI}) > P_{
m B}({
m NPI})$$

Acceptable orderings:

ADBC

ADCB

DABC

DACB

ACDB (?)

Chance: 5/24

SG: NP/Z Garden-Paths

- (A) !As the ship crossed the waters remained blue and calm. [TRANS,NO COMMA]
- (B) As the ship crossed, the waters remained blue and calm. [TRANS,COMMA]
- (C) As the ship drifted the waters remained blue and calm. [INTRANS,NO COMMA]
- (D) As the ship drifted, the waters remained blue and calm. [INTRANS,COMMA]

 $S_{A}(V^{*}) > S_{B}(V^{*}) \wedge S_{A}(V^{*}) > S_{C}(V^{*}) \wedge$ $S_{A}(V^{*}) - S_{B}(V^{*}) > S_{C}(V^{*}) - S_{D}(V^{*})$

(Main Verb / Reduced Relative Clause paths were also included in sub-class suites)

SG: Gross Syntactic Expectation

END The minister praised the building (A) END *After the minister praised the building . (C) ??The minister praised the MC building, it started to rain. praised (D) After the minster the MC building, it started to rain.

$$P_{\rm A}({\rm END}) > P_{\rm B}({\rm END}) \land P_{\rm D}({\rm MC}) < P_{\rm C}({\rm MC})$$

SG: Center Embedding

The paintings that the artist painted deteriorated

>

*The paintings that the artist deteriorated painted

SG: Long Distance Dependencies

The **keys** to the cabinet **are** on the table

>

*The **keys** to the cabinet **is** on the table

SG: Cleft

The **keys** to the cabinet **are** on the table

>

*The **keys** to the cabinet **is** on the table

Syntactic Generalization

Assess NL models on custom sentences designed using psycholinguistic and syntax literature/methodology

- Test for stability by including syntactically irrelevant but semantically plausible syntactic content before the critical region
 - E.g:
 - The keys to the cabinet on the left are on the table
 - *The keys to the cabinet on the left is on the table
- Compare model class to dataset size

SG: Perplexity and SG Score

(SG:) Perplexity and Brain-Score

SG: The Influence of Model Architecture

SG: The Influence of Model Architecture

- Architectures as priors to the linguistic representation that can be developed
- Robustness depends on model architecture

SG: The Influence of Dataset Size

SG: The Influence of Dataset Size

SG: The Influence of Dataset Size

- Increasing amount of training data yields diminishing returns:
 - "(...) require over 10 billion tokens to achieve human-like performance, and most would require trillions of tokens to achieve perfect accuracy – an impractically large amount of training data, especially for these relatively simple syntactic phenomena." (van Schijndel et al., 2019)
- Limited data efficiency
- Structured architectures or explicit syntactic supervision
- Humans? 11-27 million total words of input per year? (Hart & Risley, 1995; Brysbaert et al., 2016)

CLUTRR: Motivation and Paradigm

- Compositional Language Understanding and Text-based Relational Reasoning
- Kinship inductive reasoning
- Unseen combinations of logical rules
- Model robustness

Kristin and her son **Justin** went to visit her mother **Carol** on a nice Sunday afternoon. They went out for a movie together and had a good time.

Q: How is **Carol** related to **Justin**?

A: Carol is the **grandmother** of Justin

CLUTRR: Motivation and Paradigm

- Productivity
 - mother(mother(Justin))) ~ great grandmother of Justin
- Systematicity
 - Only certain sets allowed with symmetries: son(Justin, Kristin) ~ mother(Kristin, Justin)
- Compositionality
 - o son(Justin, Kristin) consists of components
- Memory (compression)
- Children are not exposed to systematic dataset

CLUTRR: Dataset Generation & Paradigm

CLUTRR: Experiment Results

CLUTRR: Experiment Results

	Models		Unstructured models (no graph)					Structured model (with graph)
Training	Testing	BiLSTM - Attention	BiLSTM - Mean	RN	MAC	BERT	BERT-LSTM	GAT
Clean	Clean	0.58 ±0.05	0.53 ±0.05	0.49 ±0.06	0.63 ±0.08	0.37 ±0.06	0.67 ±0.03	1.0 ±0.0
	Supporting	0.76 ±0.02	$0.64{\scriptstyle~ \pm 0.22}$	$0.58{\scriptstyle~\pm 0.06}$	$0.71{\scriptstyle~\pm 0.07}$	$0.28{\scriptstyle~\pm 0.1}$	0.66 ± 0.06	0.24 ±0.2
	Irrelevant	$0.7{\scriptstyle~\pm 0.15}$	0.76 ± 0.02	$0.59{\scriptstyle~\pm0.06}$	$0.69{\scriptstyle~\pm0.05}$	0.24 ± 0.08	$0.55{\scriptstyle~\pm 0.03}$	0.51 ±0.15
	Disconnected	$0.49{\scriptstyle~\pm 0.05}$	$0.45{\scriptstyle~ \pm 0.05}$	$0.5{\scriptstyle~ \pm 0.06}$	$0.59{\scriptstyle~\pm 0.05}$	$0.24{\scriptstyle~ \pm 0.08}$	$0.5{\scriptstyle~\pm 0.06}$	0.8 ±0.17
Supporting	Supporting	0.67 ±0.06	0.66 ± 0.07	$0.68 \scriptstyle{\pm 0.05}$	$0.65{\scriptstyle~\pm0.04}$	0.32 ±0.09	$0.57{\scriptstyle~\pm 0.04}$	0.98 ±0.01
Irrelevant	Irrelevant	0.51 ±0.06	0.52 ±0.06	$0.5{\scriptstyle~ \pm 0.04}$	0.56 ± 0.04	$0.25{\scriptstyle~ \pm 0.06}$	$0.53{\scriptstyle~\pm 0.06}$	0.93 ±0.01
Disconnected	Disconnected	0.57 ±0.07	0.57 ± 0.06	$0.45{\scriptstyle~\pm 0.11}$	0.4 ±0.1	$0.17{\scriptstyle~ \pm 0.05}$	$0.47{\scriptstyle~\pm 0.06}$	0.96 ±0.01
Average		0.61 ±0.08	0.59 ±0.08	0.54 ±0.07	0.61 ±0.06	0.30 ±0.07	0.56 ±0.05	0.77 ±0.09

CLUTRR: Model Robustness

CLUTRR: Model Robustness

	Models		Unstructured models (no graph)					Structured model (with graph)
Training	Testing	BiLSTM - Attention	BiLSTM - Mean	RN	MAC	BERT	BERT-LSTM	GAT
Clean	Clean	0.58 ±0.05	0.53 ±0.05	$0.49_{\ \pm 0.06}$	0.63 ±0.08	0.37 ±0.06	0.67 ±0.03	1.0 ±0.0
	Supporting	$0.76_{\pm 0.02}$	$0.64{\scriptstyle~ \pm 0.22}$	$0.58{\scriptstyle~ \pm 0.06}$	$0.71{\scriptstyle~\pm 0.07}$	0.28 ± 0.1	0.66 ± 0.06	0.24 ±0.2
	Irrelevant	$0.7{\scriptstyle~\pm 0.15}$	$0.76_{\pm 0.02}$	$0.59{\scriptstyle~\pm0.06}$	$0.69{\scriptstyle~\pm 0.05}$	$0.24_{\pm 0.08}$	$0.55_{\pm 0.03}$	$0.51_{\pm 0.15}$
	Disconnected	$0.49{\scriptstyle~ \pm 0.05}$	$0.45{\scriptstyle~ \pm 0.05}$	$0.5{\scriptstyle~\pm 0.06}$	$0.59{\scriptstyle~\pm 0.05}$	$0.24{\scriptstyle~ \pm 0.08}$	$0.5_{\pm 0.06}$	0.8 ±0.17
Supporting	Supporting	0.67 ±0.06	$0.66_{\pm 0.07}$	0.68 ±0.05	$0.65{\scriptstyle~\pm0.04}$	0.32 ±0.09	$0.57{\scriptstyle~\pm 0.04}$	0.98 ±0.01
Irrelevant	Irrelevant	0.51 ±0.06	0.52 ±0.06	$0.5_{\pm 0.04}$	0.56 ± 0.04	0.25 ±0.06	0.53 ±0.06	0.93 ±0.01
Disconnected	Disconnected	0.57 ±0.07	$0.57{\scriptstyle~\pm0.06}$	$0.45{\scriptstyle~\pm 0.11}$	$0.4_{\pm0.1}$	0.17 ±0.05	$0.47{\scriptstyle~\pm 0.06}$	0.96 ±0.01
Average		0.61 ±0.08	$0.59{\scriptstyle~ \pm 0.08}$	0.54 ±0.07	0.61 ±0.06	$0.30{\scriptstyle~\pm 0.07}$	$0.56_{\pm 0.05}$	0.77 ±0.09

Future work & Perspectives

- Sub-word tokenization
- Common-sense reasoning
- Abstractions as probabilistic

References

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How Many Words Do We Know? Practical Estimates of Vocabulary Size Dependent on Word Definition, the Degree of Language Input and the Participant's Age. *Frontiers in psychology*, 7, 1116. https://doi.org/10.3389/fpsyg.2016.01116

Hart, B., & Risley, T. R. (1995). *Meaningful differences in the everyday experience of young American children*. Baltimore, MD: Paul H. Brookes Publishing Company.

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J., Fedorenko, E (2020): Artificial Neural Networks Accurately Predict Language Processing in the Brain, *bioRxiv* 2020.06.26.174482; doi: https://doi.org/10.1101/2020.06.26.174482.