

# Ajuste con procesos de las carteras C2 y C15 sobre el número de siniestros en seguros de autos

Presentado por: Alejandro Arias Garzón

Presentado a: José Alfredo Jiménez Moscoso

# Cartera C2

La cartera C2 se compone de la siguiente manera:

| Siniestros    | C-2   |
|---------------|-------|
| 0             | 20592 |
| 1             | 2651  |
| 2             | 297   |
| 3             | 41    |
| 4             | 7     |
| 5             | 0     |
| 6             | 1     |
| $\geq 7$      | -     |
| Total pólizas | 23589 |

# Cálculo índice de dispersión

Hacemos el respectivo cálculo de  $\bar{n}$  y de  $s_n^2$ .

$$\bar{n} = \frac{\sum \text{Siniestros} \times \text{C--2}}{\text{Total p\'olizas}} = \frac{3402}{23589} = 0,1442198$$

$$s_n^2 = 0.1846623 - (0.1442198)^2 = 0.163863$$

Decimos que d es el índice de dispersión muestral, luego

$$d = \frac{s_n^2}{\bar{n}} = 1{,}136204$$

Como d > 1, existe sobredispersión. Se ajustarán los diferentes procesos dados y se buscará el que mejor ajuste los datos.

Con esto, determinamos un intervalo de confianza al 95 % para  $I_n$ .

$$IC(I_n) = (1,107197, 1,16521)$$

## Estimación de parámetros

#### Proceso Poisson

Por el método de momentos y por máxima verosimilitud, se obtiene que

$$\widehat{\lambda} = \overline{n} = 0.1442198$$

### Proceso de la binomial negativa

Por el método de momentos, se obtiene que

$$\hat{q} = 1 - \frac{\bar{n}}{s_n^2} \approx 0.119876$$

$$\widehat{r} = \frac{\overline{n}^2}{s_n^2 - \overline{n}} \approx 1,058855$$

Y, por el método de máxima verosimilitud, se obtiene lo siguiente

$$\hat{q} = 0.1142683$$

$$\hat{r} = 1,117895$$

#### Proceso de Hofmann

Para determinar los parámetros de la familia de Hofmann se usan las expresiones dadas, luego tomando t=1 se obtiene

$$\widehat{q}=\bar{n}=0{,}1442198$$

$$\hat{k} = \frac{s_n^2 - \bar{n}}{\bar{n}} = 0.1362035$$

Ahora con

 $m_{[3]} = 0.2142886$ 

у

 $\hat{c} = 0.4308702$ 

se determina

$$\widehat{a} = \frac{\widehat{k}}{\widehat{c}} = 0,3161126$$

#### Síntesis

En resumen tendríamos

| Procesos teóricos | Parámetros estimados                |               |               |  |
|-------------------|-------------------------------------|---------------|---------------|--|
|                   | $\lambda, \widehat{r}, \widehat{a}$ | $\widehat{q}$ | $\widehat{k}$ |  |
| Poisson           | 0.1442198                           | -             | =             |  |
| Binomial negativa | 1.058855                            | 0.1198760     | -             |  |
| Hofmann           | 0.3161126                           | 0.1442198     | 0.1362035     |  |

Puesto que  $\widehat{a} \neq 1,$ ajustar un proceso de Panjer no es apropiado.

# Aproximaciones con cada proceso

En la siguiente tabla se presentan las aproximaciones obtenidas con cada uno de los diferentes procesos trabajados

| Siniestros $(k)$ | $n_k$ | P. Poisson | P. BN1    | P. BN2    | P. Hofmann |
|------------------|-------|------------|-----------|-----------|------------|
| 0                | 20592 | 20420.938  | 20605.803 | 20596.759 | 20591.691  |
| 1                | 2651  | 2945.103   | 2615.521  | 2631.03   | 2651.732   |
| 2                | 297   | 212.371    | 322.765   | 318.366   | 296.949    |
| 3                | 41    | 10.209     | 39.451    | 37.809    | 40.255     |
| 4                | 7     | 0.368      | 4.799     | 4.448     | 6.723      |
| 5                | 0     | 0.011      | 0.582     | 0.520     | 1.296      |
| 6                | 1     | 0          | 0.07      | 0.061     | 0.274      |
| $7 \ge$          | -     | -          | -         | -         | -          |
| Total pólizas    | 23589 | 23589      | 23588.99  | 23588.99  | 23588.92   |
| Test $\chi^2$    | _     | 203.881    | 3.80001   | 3.61108   | 0.02435    |
| $\underline{}$   | -     | 2          | 2         | 2         | 1          |

<sup>&</sup>lt;sup>1</sup>Método de momentos

Los grados de libertad (v) se calculan según la definición y se agrupa según el criterio para usar la bondad de ajuste  $\chi^2$ . Así, Para 2 grados de libertad y  $\alpha=0.05$ , se obtiene que el límite de significancia de  $\chi^2$  es

$$\chi^2_{2,\alpha} = 5,99146$$

En este caso, se rechaza  $H_0$  si  $\chi^2_{2,\alpha} > 5,99146$ . Luego para los valores menores a 5.99146 no hay evidencia para rechazar los modelos supuestos y, por ende, se puede decir que, con una confianza del 5 %, la distribución Hofmann y el proceso de la binomial negativa proporcionan un ajuste razonable de los datos.

 $<sup>^2</sup>$ Método máxima verosimilitud

# Cartera C15

La cartera C15 se compone de la siguiente manera:

| Siniestros    | C-15   |
|---------------|--------|
| 0             | 371481 |
| 1             | 26784  |
| 2             | 2118   |
| 3             | 174    |
| 4             | 18     |
| 5             | 2      |
| 6             | 2      |
| 7             | 0      |
| $\geq 8$      | 0      |
| Total pólizas | 400579 |

# Cálculo índice de dispersión

Hacemos el respectivo cálculo de  $\bar{n}$  y de  $s_n^2$ .

$$\bar{n} = \frac{\sum \text{Siniestros} \times \text{C-15}}{\text{Total p\'olizas}} = \frac{31636}{400579} = 0.07897568$$

$$s_n^2 = 0.09294546 - (0.07897568)^2 = 0.0867083$$

Decimos que d es el índice de dispersión muestral, luego

$$d = \frac{s_n^2}{\bar{n}} = 1,097911$$

Como d > 1, existe sobredispersión. Se ajustarán los diferentes procesos dados y se buscará el que mejor ajuste los datos.

Con esto, determinamos un intervalo de confianza al 95 % para  $I_n$ .

$$IC(I_n) = (1,090627, 1,105196)$$

#### Estimación de parámetros

#### Proceso Poisson

Por los métodos de los momentos y máxima verosimilitud, se obtiene que

$$\widehat{\lambda} = \bar{n} = 0.07897568$$

#### Proceso de binomial negativa

Por el método de momentos, se obtiene que

$$\widehat{q} = 1 - \frac{\bar{n}}{s_n^2} \approx 0.0891797$$

$$\hat{r} = \frac{\bar{n}^2}{s_n^2 - \bar{n}} \approx 0.8066035$$

Y, por el método de máxima verosimilitud, se obtiene lo siguiente

$$\hat{q} = 0.08791084$$

$$\hat{r} = 0.8193855$$

#### Proceso de Hofmann

Para determinar los parámetros de la familia de Hofmann se usan las expresiones dadas, luego tomando t=1 se obtiene

$$\widehat{q}=\bar{n}=0{,}07897568$$

$$\hat{k} = \frac{s_n^2 - \bar{n}}{\bar{n}} = 0.09791141$$

Ahora con

$$m_{[3]} = 0.1044323$$

У

$$\widehat{c}=0{,}1941907$$

se determina

$$\widehat{a} = \frac{\widehat{k}}{\widehat{c}} = 0,5042023$$

#### Síntesis

En resumen tendríamos

| Procesos teóricos | Parámetros estimados                  |                |               |  |
|-------------------|---------------------------------------|----------------|---------------|--|
|                   | $\lambda,  \widehat{r},  \widehat{a}$ | $\widehat{q}$  | $\widehat{k}$ |  |
| Poisson           | 0.07897568                            | _              | -             |  |
| Binomial negativa | 0.8066035                             | 0.0891797      | -             |  |
| Hofmann           | $0,\!5042023$                         | $0,\!07897568$ | 0,09791141    |  |

# Aproximaciones con cada proceso

A continuación, en la tabla se presentan las aproximaciones obtenidas con cada uno de los diferentes procesos trabajados

| Siniestros $(k)$ | $n_k$  | P. Poisson | P. BN1     | P. BN2     | P. Hofmann |
|------------------|--------|------------|------------|------------|------------|
| 0                | 371481 | 370159.99  | 371506.532 | 371486.741 | 371469.032 |
| 1                | 26784  | 29233.638  | 26723.451  | 26759.254  | 26825.960  |
| 2                | 2118   | 1154.373   | 2152.739   | 2139.987   | 2068.357   |
| 3                | 174    | 30.389     | 179.604    | 176.802    | 192.400    |
| 4                | 18     | 0.600      | 15.243     | 14.841     | 20.520     |
| 5                | 2      | 0.009      | 1.307      | 1.258      | 2.391      |
| 6                | 2      | 0          | 0.113      | 0.107      | 0.296      |
| 7                | 0      | 0          | 0.010      | 0.009      | 0.038      |
| 8 ≥              | 0      | 0          | 0.001      | 0.001      | 0.005      |
| Total pólizas    | 400579 | 400579     | 400579     | 400579     | 400579     |
| Test $\chi^2$    | -      | 1892.685   | 2.576      | 2.356      | 3.917      |
| v                | -      | 2          | 2          | 2          | 2          |

<sup>&</sup>lt;sup>1</sup>Método de momentos

<sup>&</sup>lt;sup>2</sup>Método máxima verosimilitud

Los grados de libertad (v) se calculan según la definición y se agrupa según el criterio para usar la bondad de ajuste  $\chi^2$ . Así, Para 2 grados de libertad y  $\alpha=0.05$ , se obtiene que el límite de significancia de  $\chi^2$  es

$$\chi_{2,\alpha}^2 = 5,99146 \tag{1}$$

En este caso, se rechaza  $H_0$  si  $\chi^2_{2,\alpha} > 5,99146$ . Luego para los valores menores a 5.99146 no hay evidencia para rechazar los modelos supuestos y, por ende, se puede decir que, con una confianza del 5 %, el proceso de Hofmann y el proceso de la binomial negativa proporcionan un ajuste razonable de los datos.

# Código de R

#### Cartera C2

```
install.packages("orthopolynom")
install.packages("gtools")
library(orthopolynom)
library(gtools)
### Numero de siniestros
k < -c(0:6)
n_k<-c(20592,2651,297,41,7,0,1)
Tcasos<-sum(n_k)</pre>
freqrel<-(n_k/Tcasos)</pre>
eps=0.000001;
n_bar <- sum(k*n_k)/Tcasos</pre>
sum(k*n_k)
(sum(k^2*n_k)/Tcasos)
(n_bar^2)
s_{cua} \leftarrow (sum(k^2*n_k)/Tcasos)-(n_bar^2)
n_bar;s_cua
### Prueba Chicuadrado
Chi_cua<- function(obs, esp,alpha=0.05,m=8,gl=2){
  chi<-sum((obs-esp)^2/esp)</pre>
  vchi<-qchisq(1-alpha,df = gl )</pre>
  if(chi<vchi){</pre>
    return(list("No hay evidencia para rechazar H_0",
                 chi, "Valor critico"=vchi))
  if(chi>=vchi){
    return(list("Existe evidencia para rechazar H_0",
                 chi, "Valor critico"=vchi))
  }
}
### intervalo de confianza para el índice de dispersión
d <- s_cua/n_bar #indice de dispersión muestral
z \leftarrow qnorm(0.975, mean = 0, sd = 1)
der \leftarrow d + z * d * sqrt((1 / Tcasos) * (2 + ((d - 1) * (3 * d - 1)) / s_cua))
izq \leftarrow d - z * d * sqrt((1 / Tcasos) * (2 + ((d - 1) * (3 * d - 1)) / s_cua))
izq;der
# Estimación de parámetros
# Distribucion Poisson
lambda<-n_bar
lambda
# Binomial Negativa (método de momentos)
q_bin <- 1-(n_bar/s_cua)
r_bin <- round(n_bar^2/(s_cua-n_bar),10)</pre>
q_bin;r_bin
```

#### ###Newton

```
f_r<-function(r,n_bar= n_bar,n_k= n_k){</pre>
  as=0;al=0;sol=0
  for (k in 1: (length(n_k)-1)){
    for(m in 0:(k-1)){
      as<-(1/(m+r))+as
    al <- (n_k[k+1]*as)+al
    as=0
  sol<-(log(1+(n_bar/r))*Tcasos)-al</pre>
  return(sol)
}
# Funcion f'(r)-----
f_der<- function(r,n_bar,n_k){</pre>
  as=0;al=0;sol=0
  for(k in 1:(length(n_k)-1)){
    for(m in 0:(k-1)){
      as<-(1/(m+r)^2)+as
    al < -(n_k[k+1]*as)+al
    as=0
  }
  sol \leftarrow (-n_bar/(r^2+(n_bar*r)))*Tcasos+al
  return(sol)
}
i=0
r<-r_bin
repeat{
  r1 < -r - (f_r(r = r, n_bar = n_bar, n_k = n_k)/
           f_der(r = r,n_bar = n_bar,n_k = n_k))
  i=i+1
  if(abs(r1-r)<eps){break}
  r=r1
  r1=0
}
r1
q<-n_bar/(n_bar+r1)
# Familia Hofmann-----
# Momentos-----
q_t <- n_bar
k_t <- (s_cua-n_bar)/n_bar
m_3 <-sum((k-n_bar)^3*freqrel)</pre>
c_t <- (m_3-s_cua)/(n_bar*k_t)-k_t-2
a_t <- k_t/c_t
q_t;k_t;m_3;c_t;a_t
# Distribución de Hofmann
Lamb<- q_t*(1+c_t)^(-a_t)
p0 \leftarrow exp(-(q_t/c_t)*((((1+c_t)^(1-a_t)-1))/(1-a_t)))
Hofmann <- function(p_0,n,a,q,c){</pre>
  p1=0;pa=0
  valores<-numeric(n+1)</pre>
```

```
for(i in 1:n){
    for(k in 0:(i-1)){pa=}
      (pochhammer(a,k)/factorial(k)*((c^k)/((1+c)^(a+k)))*
          valores[i-k])+pa
    }
   p1=(q/(i))*pa
    valores[i+1]<-p1
   pa=0
  }
  return(valores)
# Estimación de las probabilidades
Estpois <- dpois(x = k,lambda = lambda)</pre>
# Estimacion No. de casos con Poisson
estp<-round(Estpois*Tcasos,3)</pre>
estp
data.frame(estp)
sum(estp) # Casos Totales con Poisson
ajuspois1 \leftarrow c(estp[1:3],sum(estp[4:7]))
# Se agrupan los datos
n_ka<-c(n_k[1:3],sum(n_k[4:7]))
# Se agrupa de la misma manera los observados
Chi_p<-sum((n_ka-ajuspois1)^2/ajuspois1)</pre>
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajuspois1)
# Estimacion de probabilidades con Binomial
# negativa por el metodo de los momentos
Estbinom1 <- dnbinom(x=k,size=r_bin,prob=(1-q_bin))</pre>
# Estimación número de casos con binomial negativa
estbinn1 <- round(Estbinom1*Tcasos,3)</pre>
data.frame(estbinn1)
# Casos Totales con la estimación binomial negativa
sum(estbinn1)
ajusbinn11 <- c(estbinn1[1:4],sum(estbinn1[5:7]))</pre>
n_ka<-c(n_k[1:4],sum(n_k[5:7]))
# Se agrupa de la misma manera los observados
Chi_binn1<-sum((n_ka-ajusbinn11)^2/ajusbinn11)
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajusbinn11)
# Estimacion de probabilidades con Binomial
# negativa por el metodo MV
Estbinom2 <- dnbinom(x = k,size = r1,prob = (1-q))
# Estimacion No. de casos con binomial negativa, por MV
estbinn2 <- round(Estbinom2*Tcasos,3)</pre>
data.frame(estbinn2)
# Casos Totales con la estimacion binomial negativa por MV
sum(estbinn2)
ajusbinn21 <- c(estbinn2[1:4],sum(estbinn2[5:7]))</pre>
# Se agrupa de la misma manera los observados
n_ka<-c(n_k[1:4],sum(n_k[5:7]))
```

valores[1]<-p\_0

```
Chi_binn2<-sum((n_ka-ajusbinn21)^2/ajusbinn21)
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajusbinn21)
#CON HOFMANN
Est_hof \leftarrow Hofmann(p_0 = p0, n = 6, a = a_t, q = q_t, c = c_t)
est_hof <- round(Est_hof*Tcasos,3)</pre>
est_hof
sum(est_hof)
ajushof <- c(est_hof[1:4],sum(est_hof[5:7]))</pre>
n_ka<-c(n_k[1:4],sum(n_k[5:7]))
Chi_hof<-sum((n_ka-ajushof)^2/ajushof)
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajushof)
### Salida Final
test=c("test",".",round(Chi_p,3),round(Chi_binn1,3),
       round(Chi_binn2,3),round(Chi_hof,3))
salida=cbind(k,n_k,estp,estbinn1,estbinn2,est_hof)
salida=rbind(salida,test)
salida
Cartera C15
install.packages("orthopolynom")
```

```
install.packages("gtools")
library(orthopolynom)
library(gtools)
### Numero de siniestros
k < -c(0:8)
n_k < -c(371481, 26784, 2118, 174, 18, 2, 2, 0, 0)
Tcasos<-sum(n_k)</pre>
freqrel<-(n_k/Tcasos)</pre>
eps=0.000001;
n_bar <- sum(k*n_k)/Tcasos</pre>
sum(k*n_k)
(sum(k^2*n_k)/Tcasos)
(n_bar^2)
s_{cua} \leftarrow (sum(k^2*n_k)/Tcasos)-(n_bar^2)
n_bar;s_cua
### Prueba Chicuadrado
Chi_cua<- function(obs, esp,alpha=0.05,m=8,gl=2){
  chi<-sum((obs-esp)^2/esp)</pre>
  vchi<-qchisq(1-alpha,df = gl )</pre>
  if(chi<vchi){</pre>
    return(list("No hay evidencia para rechazar H_0",
                  chi, "Valor critico"=vchi))
  }
  if(chi>=vchi){
    return(list("Existe evidencia para rechazar H_0",
                  chi, "Valor critico"=vchi))
```

```
}
}
### intervalo de confianza para el índice de dispersión
d <- s_cua/n_bar #indice de dispersión muestral
z \leftarrow qnorm(0.975, mean = 0, sd = 1)
der \leftarrow d + z * d * sqrt((1 / Tcasos) * (2 + ((d - 1) * (3 * d - 1)) / s_cua))
izq \leftarrow d - z * d * sqrt((1 / Tcasos) * (2 + ((d - 1) * (3 * d - 1)) / s_cua))
izq;der
# Estimación de parámetros
# Distribucion Poisson
lambda<-n_bar
lambda
# Binomial Negativa (método de momentos)
q_bin <- 1-(n_bar/s_cua)</pre>
r_bin <- round(n_bar^2/(s_cua-n_bar),10)</pre>
q_bin;r_bin
###Newton
f_r<-function(r,n_bar= n_bar,n_k= n_k){</pre>
  as=0;al=0;sol=0
  for(k in 1:(length(n_k)-1)){
    for(m in 0:(k-1)){
      as<-(1/(m+r))+as
    }
    al <- (n_k[k+1]*as)+al
    as=0
  sol<-(log(1+(n_bar/r))*Tcasos)-al
  return(sol)
}
# Funcion f'(r)-----
f_der<- function(r,n_bar,n_k){</pre>
  as=0;al=0;sol=0
  for (k in 1: (length(n_k)-1)){
    for(m in 0:(k-1)){
      as<-(1/(m+r)^2)+as
    al < -(n_k[k+1]*as) + al
    as=0
  }
  sol \leftarrow (-n_bar/(r^2+(n_bar*r)))*Tcasos+al
  return(sol)
}
i=0
r<-r_bin
repeat{
  r1 < -r - (f_r(r = r, n_bar = n_bar, n_k = n_k) /
           f_der(r = r,n_bar = n_bar,n_k = n_k))
```

```
i=i+1
  if(abs(r1-r)<eps){break}
  r=r1
  r1=0
}
r1
q<-n_bar/(n_bar+r1)
# Familia Hofmann-----
# Momentos-----
q_t <- n_bar
k_t <- (s_cua-n_bar)/n_bar</pre>
m_3 <-sum((k-n_bar)^3*freqrel)</pre>
c_t <- (m_3-s_cua)/(n_bar*k_t)-k_t-2
a_t \leftarrow k_t/c_t
q_t;k_t;m_3;c_t;a_t
# Distribución de Hofmann
Lamb<- q_t*(1+c_t)^(-a_t)
p0 <- \exp(-(q_t/c_t)*((((1+c_t)^(1-a_t)-1)^-)/(1-a_t)))
Hofmann <- function(p_0,n,a,q,c){</pre>
  p1=0;pa=0
  valores<-numeric(n+1)</pre>
  valores[1]<-p_0
  for(i in 1:n){
    for(k in 0:(i-1)){pa=
      ( pochhammer(a,k)/factorial(k)*((c^k)/((1+c)^(a+k)))*
         valores[i-k])+pa
   p1=(q/(i))*pa
    valores[i+1]<-p1
   pa=0
  }
  return(valores)
# Estimación de las probabilidades
Estpois <- dpois(x = k,lambda = lambda)</pre>
# Estimacion No. de casos con Poisson
estp<-round(Estpois*Tcasos,3)</pre>
estp
data.frame(estp)
sum(estp) # Casos Totales con Poisson
ajuspois1 \leftarrow c(estp[1:3],sum(estp[4:9]))
# Se agrupan los datos
n_ka<-c(n_k[1:3],sum(n_k[4:9]))
# Se agrupa de la misma manera los observados
Chi_p<-sum((n_ka-ajuspois1)^2/ajuspois1)</pre>
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajuspois1)
# Estimacion de probabilidades con Binomial
# negativa por el metodo de los momentos
Estbinom1 <- dnbinom(x=k,size=r_bin,prob=(1-q_bin))</pre>
```

```
# Estimación número de casos con binomial negativa
estbinn1 <- round(Estbinom1*Tcasos,3)</pre>
data.frame(estbinn1)
# Casos Totales con la estimación binomial negativa
sum(estbinn1)
ajusbinn11 <- c(estbinn1[1:4],sum(estbinn1[5:9]))</pre>
n_ka<-c(n_k[1:4],sum(n_k[5:9]))
# Se agrupa de la misma manera los observados
Chi_binn1<-sum((n_ka-ajusbinn11)^2/ajusbinn11)
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajusbinn11)
# Estimacion de probabilidades con Binomial
# negativa por el metodo MV
Estbinom2 <- dnbinom(x = k, size = r1, prob = (1-q))
# Estimacion No. de casos con binomial negativa, por MV
estbinn2 <- round(Estbinom2*Tcasos,3)</pre>
data.frame(estbinn2)
# Casos Totales con la estimacion binomial negativa por MV
sum(estbinn2)
ajusbinn21 <- c(estbinn2[1:4],sum(estbinn2[5:9]))</pre>
# Se agrupa de la misma manera los observados
n_ka<-c(n_k[1:4],sum(n_k[5:9]))
Chi_binn2<-sum((n_ka-ajusbinn21)^2/ajusbinn21)
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajusbinn21)
#CON HOFMANN
Est_hof \leftarrow Hofmann(p_0 = p0, n = 8, a = a_t, q = q_t, c = c_t)
est_hof <- round(Est_hof*Tcasos,3)</pre>
data.frame(est_hof)
sum(est_hof)
ajushof <- c(est_hof[1:5],sum(est_hof[6:9]))</pre>
n_ka<-c(n_k[1:5],sum(n_k[6:9]))
Chi_hof<-sum((n_ka-ajushof)^2/ajushof)</pre>
# Se hace la prueba Chi-cuadrado
Chi_cua(obs = n_ka,esp=ajushof)
### Salida Final
test=c("test",".",round(Chi_p,3),round(Chi_binn1,3),
       round(Chi_binn2,3),round(Chi_hof,3))
salida=cbind(k,n_k,estp,estbinn1,estbinn2,est_hof)
salida=rbind(salida,test)
salida
Referencias
```

```
[Jiménez, J. A. (2022)] Introducción a la teoría estadística del riesgo
[Vanegas, L. H. (2022)] https://r2022.netlify.app/
```