COEP Technological University

A Unitary Public University of Government of Maharashtra

(MA-20001) Ordinary Differential Equations and Multivariate Calculus

Program: S.Y.B.Tech. Sem. I

Examination: Re-Test 2

Date: 4/11/2023

Branch:

Academic Year: 2023-24 Maximum Marks: 20

Time: 8 am - 9 am

Student MIS Number:

Name and Signature of the Invigilator: _

Q.1	Q.2	Q.3	Total	Signature
	-	-		

Attempt All the Questions.

Question [I](10 marks)

- (1) If the auxiliary equation of $(x^3D^3 + 4x^2D^2)y = 0$ is $m^3 + m^2 2m = 0$ then:
 - (a) It's three linearly independent solutions are ...
 - (b) General solution is ...

[CO2][1.5]

(2) For the differential equation $x^2y'' - xy' + y = x \ln x$, x > 0, find $y_p(x)$ using the method of variation of parameters. Given that the linearly independent solutions of corresponding homogeneous equation [CO3][3]are $y_1(x) = x$ and $y_2(x) = x \ln x$.

Detailed Answer:

(3) In an RLC circuit, the charge Q on the plate is given by $L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = E$ sin pt. The circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$. If initially the current I(t) and the charge Q(t) be zero, then show that, for small values of $\frac{R}{L}$, the current in time t is given by $\frac{Et}{2L}$ sin pt. [CO5][3.5] Detailed Answer:

(4) Solve $y'' - 3y' + 2y = 4x^2$ by the method of undetermined coefficients. Detailed Answer:

[CO3][2]

Question [II](5 marks)

(1) Using appropriate theorems/properties, find the Laplace transform of $\int_0^t \frac{1 - e^{-u}}{u} du$. [CO3][3] Detailed Answer:

(2) Fill in the blanks: If $\mathcal{L}\{f(t)\} = F(s)$ then
(a) $\mathcal{L}\{t|f(t)\} = \dots$ (b) $\mathcal{L}\{\sin(3t)|U(t-\pi)|\} = \dots$

(a)
$$\mathcal{L}\left\{t\ f(t)\right\} = \dots$$

(b)
$$\mathcal{L}\{\sin(3t)\ U(t-\pi)\} = ...$$

[CO1, CO2][2]

Question [III](5 marks)

(1) If $\mathcal{L}\{f(t)\} = F(s)$ (where s > k for some k), then prove that $\mathcal{L}\{e^{at} f(t)\} = F(s-a)$ (where s - a > k). [CO4][2]

Detailed Answer:

(2) Find
$$\mathcal{L}^{-1}\left\{\frac{s^2+3}{s(s^2+9)}\right\}$$
. Detailed Answer:

ROUGH WORK (Will Not Be Assessed)