

Frequency Learning with Symbolic Concept Acquisition

Todd R. Johnson The Ohio State University

This research was supported in part by grants N00014-95-1-0241 and N00014-96-1-0472 from the Office of Naval Research, Cognitive and Neural Sciences and Technology Division

Presented at the 1997 Soar Workshop, The Ohio State University, Columbus, OH.

Frequency Learning

- * Through experience people implicitly acquire and correctly use frequency information (e.g., Hasher & Zacks, 1984; Gluck & Bower, 1988).
 - Frequency of occurrence (base rates)
 - Conditional probabilities (P(H | D))
- Frequency acquisition is exhibited in subject behavior
 - Probability matching: Distribution of choices (approximately) matches the probability of each choice
 - People can closely estimate the acquired probabilities

Example: Identify Friend or Foe

- Determine whether a plane is hostile or friendly based on
 - Route: on (R+) or off (R-) a commercial air route
 - ID: commercial response (ID+) or no response (ID-) to a radio warning

Probabilities

- P(F) = 2/3, P(H) = 1/3
- P(ID+|F) = P(R+|F) = P(ID-|H) = P(R-|H) = .8
- P(ID-|F) = P(R-|F) = P(ID+|H) = P(R+|H) = .2

Design

- 75 trials for each subject (50 friendly, 50 hostile)
- Each trial
 - Present evidence
 - Receive subject's decision (friendly or hostile)
 - Present actual intent

Can Soar Learn and Use Frequencies?

- Soar has no direct support for frequency learning or for probabilistic selection of choices
- But: Symbolic Concept Acquisition (SCA) can exhibit frequency effects
- Learning
 - Supervised inductive concept learning
 - Learns a mapping from a set of features to a class
 - Mapping is a set of recognition rules
 - Acquires recognition rules from abstract (few features) to specific (all features)

SCA Rules Example

id

route

isa

hostile friendly no-response commercial

off-commercial on-commercial

contact

object1

Prediction in SCA

- * Try to match recognition rules from specific to general, based on the number of features tested by the rules.
- Example: 4 feature rules, 3, 2, 1.
- Stop whenever one or more rules fire and randomly select from among the proposed classes

Applying SCA to the Friend or Foe Task

- Using Doug Pearson's SCA2
- Features and values
 - Name: object1
 - isa: contact
 - Route: on_commercial, off_commercial
 - ID: commercial, no_response
- Categories
 - Friendly
 - Hostile
- For each instance (trial)
 - First, SCA makes a prediction
 - Second, SCA is trained using the instance and the actual outcome

SCA Results

The model tends to get pulled to 50%.

Explanation:
With enough
trials SCA learns
a friendly and
hostile rule for
each feature set.

Modifyng SCA to Support Frequency Learning (SCA-F)

- Learn a duplicate rule for fully specialized instances
- For example:
 - If R+, ID+ then Propose F1: Friendly
 - If R+, ID+ then Propose F2: Friendly
 - If R+, ID+ then Propose H1: Hostile
 - Since Soar will randomly select a class,
 - P(F | R+ID+) = 2/3
 - P(H | R+ID+) = 1/3

SCA-F Results

In all cases, SCA-F produces better results than SCA.

Conclusion

- Golden Nuggets
 - SCA-F (and Soar) can do frequency learning
 - Performs almost as well as Rescorla-Wagner
 - Consistent with instance based theories of learning (e.g., Logan)

Lumps of Coal

- Does not handle temporal sequences of features
- Does not predict order effects in belief updating
- No theory for converting implicit frequencies into verbalizable ones

Coal Dust

Currently time increases with the number of rules