RamsayTheory

Andrew Tulloch

Contents

Chapter 1.	Monochromatic Systems	4
Chapter 2.	Van Der Waerden's Theorem	7
Chapter 3.	The Hales-Jewett Theorem	9
Bibliograph	V	10

CHAPTER 1

Monochromatic Systems

THEOREM 1.1 (Ramsay's theorem). Whenever $\mathbb{N}^{(2)}$ is two-coloured, there exists an infinite monochromatic set.

- (i) Called a "two-pass" proof.
- (ii) Same proof that whenever $N^{(2)}$ is k-coloured. Alternatively, view color as 1 and "2 or 3 or ... or k". and by theorem one we get an infinite set of colour 1 then just induct on k.
- (iii) Having an infinite monochromatic set is stronger than asking for an arbitrarily large finite monochromatic set.

Example 1.2. Any sequence x_1, x_2, \ldots in \mathbb{R} (or any totally ordered set) has a monotone subsequence.

PROOF. Color **up** if $x_i < x_j$, **down** if $x_i \ge x_j$, and apply Theorem 1.1.

What about $\mathbb{N}^{(r)}$, $r = 3, 4, \ldots$ If we two-color $\mathbb{N}^{(r)}$, can we get an infinite monochromatic set? For example, consider n = 3. Color $N^{(3)}$ by colouring (i, j, k) red if i divides j + k, blue if not.

THEOREM 1.3 (Ramsey's theorem for r-sets). Whenever $\mathbb{N}^{(r)}$ is two-coloured, there exists an infinite monochromatic set.

PROOF. Induction on r. r = 1 is trivial by the pigeonhole principle. r = 2 is shown by Theorem 1.1.

Now, given a two-colouring of $N^{(r)}$. Choose $a_1 \in \mathbb{N}$. We induce a two-colouring c' of $(\mathbb{N} - \{a_1\}^{(r-1)})$ by $c'(F) = c(F \cup \{a_1\})$ for all $F \in (\mathbb{N} - \{a_1\})^{(r-1)}$. By induction, there exists an infinite monochromatic set $B_1 \subseteq N - \{a_1\}$ for c'.

So all r-sets $F \cup \{a_1\}$, $F \subset B_1$ have the same color (c_1, say) . Choose $a_2 \in B_1$. By the same argument, there exists an infinite set $B_2 \subset B_1 - \{a_2\}$ such that all r-sets $F \cup \{a_2\}$, $F \subset B_2$ have the same colour. Continue inductively. We obtain a sequence of points a_1, a_2, \ldots and colors c_1, c_2, \ldots such that each r-set a_{i_1}, \ldots, a_{i_r} with $i_1 < \cdots < i_2$ has color c_{i_1} . But we must have $c_{i_1} = c_{i_2} = c_{i_3} = \ldots$ for some infinite subsequence. Then $\{a_{i_1}, a_{i_2}, \ldots\}$ is an infinite monochromatic sequence.

EXAMPLE 1.4. We can show that given any $(1, x_1), (2, x_2), \ldots$ we can find a subsequence inducing a monotone function. Consider the three-colouring of $(1, x_1), (2, x_2), (3, x_3), \ldots$ by colouring triples of points **convex** or **convex** depending on the colouring of the set.

THEOREM 1.5. Infinite Ramsey (Theorem 1.3) implies the finite version. That is, for all $m, r \in \mathbb{N}$, whenever $[m]^{(r)}$ is two-coloured there exists a monochromatic m-set.

PROOF. Suppose not, so for all $n \geq r$ there exists a two-colouring c_n of $[m]^{(r)}$ without a monochromatic m-set. We'll construct a 2-colouring of $\mathbb{N}^{(r)}$ without a monochromatic m-set, contradicting Theorem 1.3.¹

There are only finitely many ways to two-color $[r]^{(r)}$ (two, in fact). So infinitely many of the c_n agree on $[r+1]^{(r)}$. Say, $c_i|[r+1]^{(r)}=d_{r+1}$. Now,

- (i) the d_i are nested, and
- (ii) no d_n has a monochromatic m-set (as there is some k such that $d_n = c_k[n]^{(r)}$.

Define a colouring $c: \mathbb{N}^{(r)} \to [2]$ by $c(F) = d_n(F)$ for any $n \geq \max F$. We obtain our contradiction.

- Remark 1.6. (i) Proof gives no bound on what n = n(m,r) we could take. There are direct proofs that do give upper bounds.
- (ii) Called a "compactness argument". Essentially, we are proving that the space $[0,1]^{\mathbb{N}}$ (all infinite 0-1 sequences) with the product topology (e.g. the metric $d(f,g) = \frac{1}{\min(n:f_n \neq g_n)}$ is (sequentially) compact.

What if we coloured $\mathbb{N}^{(2)}$ with ∞ many colours (i.e. w have $c: \mathbb{N}^{(2)} \to X$ for some set X). Obviously, we cannot find an infinite M on which c is constant - for example, let c be injective.

Can we always find an infinite M such that c is either constant on $M^{(2)}$ or injective on $M^{(2)}$? No - for example, $1 \mapsto \{2, 3, 4, \dots\}, 2 \mapsto \{3, 4, 5, \dots\}, \dots$ as different colours as a counterexample.

THEOREM 1.7 (Canonical Ramsey Theorem). Let $c: \mathbb{N}^{(2)} \to X$ for some set X. Then there exists an infinite $M \in \mathbb{N}$ such that one of the following holds:

- (i) c is constant on $M^{(2)}$,
- (ii) c is injective on $M^{(2)}$,
- (iii) $c(i,j) = c(k,l) \iff i = k \text{ with } (i,j,k,l \in M, i < j,k < l)$
- (iv) $c(i,j) = c(k,l) \iff j = l$) with $(i,j,k,l \in M, i < j,k < l)$

Remark 1.8. This generalizes enormously Theorem 1.1 - if X is finite then (i), (iii), (iv) cannot arise.

¹ If the c_n nested - that is, if $c_n|_{[n-1](r)} = c_{n-1}$, can take union, but they may **not** be nested

PROOF. We'll apply this for Ramsey's theorem on 4-sets. Two-colour $\mathbb{N}^{(4)}$ by giving (i, j, k, l) colour same if c(i, j) = c(k, l), different otherwise.

By Ramsey's theorem for 4-sets (Theorem 1.3), there exists an infinite set M_1 that is monochromatic for this colouring.

If M_1 is coloured **same**, for any i, j and k, l in M_1^2 , choose $m, n \in M_1^{(2)}$ within m > j, l. Then c(i, j) = c(m, n) and c(k, l) = c(m, n). So c(i, j) = c(k, l) so c is constant on $M_1^{(2)}$.

So now, we may assume M_1 is coloured differently. Now two-colour $M_1^{(4)}$ by giving (i, j, k, l) same if c(i, l) = c(j, k), different otherwise. By Theorem 1.3, there exists an infinite set $M_2 \subset M_1$ that is monochromatic for this colouring.

If M_2 are coloured the same, choose i < j < k < l < m < n in M_2 . Then c(j,k) = c(i,n) and c(l,m) = c(i,n), whence c(j,k) = c(l,m), which is a contradiction, as $M_2 \subset M_1$. Thus, M_2 is coloured **different**.

Two-colour $M_2^{(4)}$ by giving (i, j, k, l) colour **same** if c(i, k) = c(j, l), **different** otherwise. We have an infinite monochromatic colouring $M_3 \subset M_2$ for this colouring. If M_3 coloured **same**, choose i < j < k < l < m < n in M_3 . Then c(i, l) = c(j, m) and c(i, l) = c(k, m), so c(j, n) = c(k, m), a contradiction. So M_3 is coloured **different**.

Two-colour $M_3^{(3)}$ by giving (i,j,k) colour same if c(i,j) = c(j,k), different otherwise. We have an infinite monochromatic sequence $M_4 \subset M_3$ for this colouring. If M_4 is coloured same, choose i < j < k < l in M_4 . Then c(i,j) = c(j,k) = c(k,l), a contradiction. So, M_4 is coloured differently.

Two-colour $M_4^{(3)}$, by giving (i,j,k) colour **left-same** if c(i,j) = c(i,k), **left-different** otherwise. We have an infinite monochromatic set $M_5 \subset M_4$ for this. Then two-colour $M_5^{(3)}$ by giving (i,j,k) colour **right-same** if c(j,k) = c(i,k), **right-different** if not. We get an infinite monochromatic sequence M_6 for this colouring.

If M_6 is **left-different**, **right-different**, we have case (iii). If M_6 is **left-same**, **right-different**, we have case (ii). If M_6 is **left-different**, **right-same**, we have case (iv). If M_6 is **left-same**, **right-same**, choosing i < j < k in M_6 , then c(i,j) = c(i,k) = c(j,k), which is a contradiction.

- Remark 1.9. (i) Could use just one colouring, according to the pattern of colours on the 2-sets inside a given 4-set.
- (ii) For any r, one can show similarly. For **any** colouring c of $\mathbb{N}^{(r)}$, there exists an infinite $M \subset \mathbb{N}$ and $I \subset [r]$ such that for all $i_1 < \cdots < i_r$ and $j_1 < \cdots < j_r$ in M, $c(i_1, \ldots, i_r) = c(j_1, \ldots, j_r) \iff i_n = j_n$ for all $n \in I$. These 2^r colourings are the canonical colourings of $\mathbb{N}^{(r)}$.

For example, let r = 2. $I = \{1\}$ is case (iii). $I = \{2\}$ is case

CHAPTER 2

Van Der Waerden's Theorem

Theorem 2.1. Whenever \mathbb{N} is two-coloured, there exists a monochromatic arithmetic progression of length m, for any $m \in \mathbb{N}$.

THEOREM 2.2. Let $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that whenever [n] is 2-coloured, there exists a monochromatic arithmetic progression of length m.

One idea in the proof is - we show that $\forall m, k \in \mathbb{N}$, whenever [n] is k-coloured, there exists a monochromatic arithmetic progression of length m.

Write W(m,k) for the least such n (if it exists) - a "Wan Der Waerden's number". Let A_1, \ldots, A_r be arithmetic progressions of length m-1, say

$$A_i = \{a_i, a_i + d_i, \dots, a_i + (m-2) * d_i\}$$
(2.1)

We say A_1, \ldots, A_r are **focused** at f if $a_i + (m-1)d_i = f$ for all i - for example, $\{1,4\}$ and $\{5,6\}$ are focused at 7. If each A_i are monochromatic (for a given colouring), with no two A_i the same colour, say that A_i, \ldots, A_r are colour-focused at f.²

PROPOSITION 2.3. Let $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that whenever [n] is k-coloured, there exists a monochromatic arithmetic progression of length 3.³

LEMMA 2.4. We claim the following result - for all $r \leq k$, there exists n such that whenever [n] is k-coloured, there exists a monochromatic arithmetic progression of length 3 or there exist r colour-focused arithmetic progressions of length 2.

PROOF. Proceed by induction on r. This is true for r = 1 (setting n = k + 1.) We'll show that if n is suitable for r - 1 then

$$(k^{2n}+1)\cdot 2n\tag{2.2}$$

is suitable for r. Indeed, given a k-colouring of $[(k^{2n} + 1)2n]$ with no monochromatic arithmetic progression of length 3.

¹Harder results **could** be easier to prove - if the proof is by induction!

²So if we have a r-colouring, and A_1, \ldots, A_r are colour-focused. Then, we get a monochromatic arithmetic progression of length m - by asking, what colour is the focus f.

³This will be subsumed by Van Der Waerden's theorem

Break up $[(k^{2n}+1)2n]$ into intervals $B_1, \ldots, B^{k^{2n}+1}$ of length 2m - so $B_i = [2m(i-1)+1, 2ni]$ for $i=1,2,\ldots,k^{2n}+1$. Now, there are k^{2m} ways to k-colour a block. Thus, there exist two blocks coloured identically - say B_s and B_{s+t} .

... Complete this proof

Missed lecture..

THEOREM 2.5 (Strengthened Van Der Warden). Let $m \in \mathbb{N}$. Then whenever \mathbb{N} is finitely coloured there exists an arithmetic progression that (together with it's common difference) is monochromatic.

PROOF. Induction on k, the number of colours. Given n suitable for k-1 (whenever [n] is k-1 coloured there exists a monochromatic arithmetic progression with common difference of length n), then W(n(m-1)+1,k) is suitable for k.

Given k-colouring of [W(n(m-1)+1,k)], there exists a monochromatic arithmetic progression of length n(m-1)+1 - say $a,a+d,a+2d,\ldots,a+n(m-1)d$. If d or 2d or \ldots is the same color as the arithmetic progression, we are done. Otherwise, $\{d,2d,\ldots,nd\}$ is k-1coloured, so we are done by induction.

Remark 2.6. (i) Henceforth, we do not care about bounds.

(ii) The case k=2 is Shur's theorem - whenever \mathbb{N} is finitely coloured, there exist x,y,z monochromatic with x+y=z.

CHAPTER 3

The Hales-Jewett Theorem

Let X be a finite set. Subset of X^n is a **line** or **combinatorial line** if there exists $I \subset [n]$, $I \neq \emptyset$, and $a_i \in X$ for each $i \in [n] - I$, such that

$$L = \{ x \in X^n | x_i = a_i \forall i \notin I, x_j = x_k forall j, k \in I \}$$
(3.1)

THEOREM 3.1. Let $m, k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that whenever $[m]^n$ is k-coloured there exists a monochromatic line.

Remark 3.2. (i) The smallest such n is denoted HJ(m, k).

- (ii) So m-in-a-row naughts and crosses played in enough dimensions cannot end in a draw. ¹
- (iii) Hales-Jewett implies Van Der Waerden's theorem. Indeed, given a k-colouring on \mathbb{N} , induce a k-colouring of $[m]^n$ by $c'((x_1, x_2, \ldots, x_n) = c(x_1 + x_2 + \cdots + x_n)$. By Hales-Jewett, there exists a monochromatic line for c'.

¹Exercise: show that first-player winers.

Bibliography