Question 1

An engineer is running a simulation of a time-dependent partial differential equation. He increases the timestep Δt . What kind of error increases/decreases with this?

Model error: increases
Model error: decreases

3. Discretisation error: increases4. Discretisation error: decreases

5. Iteration error: increases6. Iteration error: decreases7. Round-off error: increases8. Round-off error: decreases

Question 2

An engineer runs a model of a wind turbine, as sketched in figure 1, with the cylindrical tube denoting the boundary of the domain to be evaluated. At this boundary, the velocity V is set constant. The error associated with this boundary condition can be best characterised as

- 1. Model error
- 2. Aleatory uncertainty
- 3. Discretisation error
- 4. Iteration error
- 5. Epistemic uncertainty
- 6. Round-off error

Figure 1: Wind mill.

Question 3

Consider the partial differential equation

$$\frac{\partial u}{\partial t} + \frac{1}{x} \frac{\partial u}{\partial x} = 0$$

and consider the initial condition shown in the figure below.

The following solution behaviour should be observed:

- The peak will contract as it convects to the right
- The peak will not move but its magnitude will decrease in time
- The peak will expand as it convects to the right
- The peak will contract as it convects to the left
- The peak will split into to left-going and right-going components.
- The peak will not move but its magnitude will increase in time
- The peak will expand as it convects to the left

Question 4

Consider the partial differential equation

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

Part a)

How many characteristics does this partial differential equation have? Enter an integer number.

Part b)

What property is constant along a characteristic? Choose one of

- The solution value is constant along a characteristic.
- The solution value is zero along a characteristic.
- A linear combination of the first derivatives of *u* is constant along a characteristic.
- A linear combination of the first derivatives of u is zero along a characteristic.

Part c)

The number of applied boundary conditions along each boundary is shown in the figure below. What kind of boundary condition can be applied along the x = 0 boundary (i.e. the left boundary)?

- Dirichlet
- Dirichlet or Neumann
- Dirichlet, Neumann or numerical
- Dirichlet or numerical
- Neumann
- Neumann or numerical
- Numerical

Question 5

Consider the domain shown in the figure below, which consists of four nodes in spatial direction. The governing PDE is

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

and along the left boundary, the following boundary condition is applied:

$$\frac{\partial u}{\partial x} + u = q$$

whereas along the right boundary, the boundary condition u = p is applied.

Application of an implicit finite difference scheme, using the drawn stencil in the figure, leads to a matrix equation of the form

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} u_1^{n+1} \\ u_2^{n+1} \\ u_3^{n+1} \\ u_4^{n+1} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Part a)

Calculate the entry A_{11} .

Part b)

Calculate the entry A_{21} .

Part c)

Calculate the entry A_{43} .

Question 6

Consider the stencils shown above. One aims to find a central difference scheme for $\partial u/\partial x$ at u_1 .

	$a \cdot u_i$	$b \cdot u_{i+1}$	$c \cdot u_{i+2}$	
u_i	A_{11}	A_{12}	A_{13}	B_1
	A_{21}	A_{22}	A_{23}	B_2
	A_{31}	A_{32}	A_{33}	B_3
	A_{41}	A_{42}	A_{43}	B_4

Part a)

Compute the entry A_{23} .

Part b)

Compute the entry B_2 .

Part c)

For now, assume that the values on the last row are given by $A_{41}=0$, $A_{42}=3$ and $A_{43}=-1$. Compute the leading term in the truncation error. Use the following notation: $\Delta x=X$, $\partial u/\partial x=D$, $\partial^2 u/\partial x^2=E$, $\partial^3 u/\partial x^3=F$ and $\partial^4 u/\partial x^4=G$.