Foundations of Financial Economics DSGE: two-period Arrow-Debreu economy

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

March 27, 2020

Topics

▶ Two period Arrow-Debreu exchange economy

AD exchange economy: contracts

AD contract: is a real forward contract such that

- for a price associated to state s = i, \tilde{q}_i paid at time t = 0
- be there is delivery of a contingent good at time t = 1 at state s = i

$$x_{1,i} = \begin{cases} 1, & \text{if } s = i \\ 0, & \text{if } s \neq i \end{cases}$$

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ s = i - 1 \\ \vdots \\ s = i - 1 \\ \vdots \\ s = i + 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$s = N$$

This allows to extend the static GE theory to the present intertemporal and stochastic economy context

AD exchange economy: markets

Existing markets:

- ▶ 1 spot market operating at time t = 0, where the price p_0 is set
- ▶ N markets for AD contracts operating at time t = 0, where the price vector \tilde{Q} clears the market.

We can characterize the AD markets by the payoff sequence (\tilde{Q}, X_1) where

prices are

$$\tilde{Q} = (\tilde{q}_1, \dots, \tilde{q}_s, \dots, \tilde{q}_N)$$

▶ and the deliveries are

$$X_{1} = (x_{1,s})_{s=1}^{N} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

AD exchange economy: spot market

Transactions in the spot market:

the net demand: z_0 .

then total expenditure: $p_0 z_0$

AD exchange economy: Arrow-Debreu markets

Transactions in every AD market:

▶ The number of contracts is

$$Z_1 = (z_{1,1}, \ldots, z_{1,s}, \ldots, z_{1,N})^{\top}$$

where

- if the agent is a buyer of the k-contract, then $z_{1,k} > 0$, and
 - **pays** $\tilde{q}_k z_k$ at time t=0
 - receives z_k units of the good at time t = 1 if the state k occurs and 0 otherwise
- if the agent is a seller of the *l*-contract, then $z_{1,l} < 0$, and
 - **receives** $\tilde{q}_l z_l$ at time t = 0 and
 - ▶ **delivers** z_l units of the good at time t = 1 if the state l occurs and 0 otherwise
- ▶ Then total net expenditure in all AD markets is

$$\tilde{Q}.Z_1 = \sum_{s=1}^N \tilde{q}_s z_{1,s}$$

▶ The budget constraint is $p_0z_0 + \tilde{Q}.Z_1 = 0$

AD exchange economy: consumption financing

▶ The consumer has a sequence of endowments

$$Y = \{y_0, Y_1\}$$

- ▶ allowing financing the (random) sequence of consumption, $c = \{c_0, C_1\}$, out of his endowment, such that
 - ightharpoonup in the period t=0

$$c_0 = z_0 + y_0$$

▶ at time t = 1, contingent on the information and contracts performed at time t = 0

$$C_1 = Z_1 + Y_1 = \begin{pmatrix} c_{1,1} \\ \dots \\ c_{1,s} \\ \dots \\ c_{1,N} \end{pmatrix} = \begin{pmatrix} z_1 \\ \dots \\ z_s \\ \dots \\ z_N \end{pmatrix} + \begin{pmatrix} y_{1,1} \\ \dots \\ y_{1,s} \\ \dots \\ y_{1,N} \end{pmatrix}$$

AD exchange economy: consumer's budget constraint

As

$$\begin{cases} c_0 - y_0 = z_0, & \text{at } t = 0 \\ c_{1,s} - y_{1,s} = z_{1,s}, & \text{at } t = 1, \text{ for every } s = 1, \dots, N \end{cases}$$

i.e. for every period and for any state of nature total income is equal to total expenditure

then the budget constraint at time t = 0 is

$$p_0(c_0 - y_0) + \tilde{Q} \cdot (C_1 - Y_1) = p_0(c_0 - y_0) + \sum_{s=1}^{N} \tilde{q}_s(c_{1,s} - y_{1,s}) = 0$$

AD exchange economy: stochastic discount factor

We define:

▶ the relative price of AD contracts also called the price of the state of nature

$$Q^{\top} = \left(q_1, \dots, q_s, \dots, q_N\right)$$

where

$$q_s \equiv \frac{\tilde{q}_s}{p_0}, \ s = 1, \dots, N.$$

▶ the stochastic discount factor is

$$M^{\top} = \left(m_1, \dots, m_s, \dots, m_N\right)$$

where

$$m_s \equiv \frac{q_s}{\pi_s}, \ s = 1, \dots, N.$$

AD exchange economy: consumer's problem

▶ Objective: choose a **contingent plan** $C = \{c_0, C_1\}$ that maximizes the **intertemporal utility** functional

$$U(c_0, C_1) = \mathbb{E}_0 [u(c_0) + \beta u(C_1)]$$

subject to the intertemporal (instantaneous) budget constraint

$$\mathbb{E}_0 [c_0 + mC_1] \le \mathbb{E}_0 [y_0 + mY_1] = h_0$$

ightharpoonup given: stochastic discount factor and endowments (M, Y), where we define the **wealth of the consumer**

$$h_0 \equiv \mathbb{E}_0 \left[y_0 + m Y_1 \right]$$

AD exchange economy: general equilibrium

Definition: GE in an **AD** exchange economy: The general equilibrium for an AD economy is **defined** by the sequence of distribution of consumptions $(C^{i*})_{i=1}^{I}$ and by the stochastic discount factor M^* , such that $(C^{i*})_{i=1}^{I} = \left(\left\{c_0^{i*}, C_1^{i*}\right\}\right)_{i=1}^{I}$, for a given distribution of endowments

$$Y = (Y^1, \dots, Y^I)$$
, for $Y^i = \{y_0^i, Y_1^i\}$, $i = 1, \dots, I$

such that:

• every consumer $i \in \mathcal{I}$ determines the optimal sequence of consumption

$$\begin{split} C^{i*} &= \text{arg max} \left\{ \mathbb{E}^i_0 \left[u^i(c^i_0) + \beta^i u^i(C^i_1) \right] s.t. \mathbb{E}^i_0 \left[c^i_0 + m C^i_1 \right] \leq h^i_0 \right\} \\ &\text{given } Y^i \text{ and } M, \end{split}$$

▶ and markets clear:

$$\sum_{i=1}^{I} c_0^i = \sum_{i=1}^{I} y_0^i, \dots \sum_{i=1}^{I} c_{1,s}^i = \sum_{i=1}^{I} y_{1,s}^i, \ s = 1, \dots, N$$

AD exchange and homogeneous economy: general equilibrium

Assume agents are homogeneous: same preferences, same information, same endowments

Definition: GE in an AD exchange homogeneous economy:

The general equilibrium for an AD economy is **defined** by the sequence of consumption and prices $(\{c_0^*, C_1^*\}, M^*)$ such that:

▶ the representative consumer determines the optimal sequence

$$C^* = \arg \max \{ \mathbb{E}_0 [u(C_0) + \beta u(C_1)] \text{ s.t.} \mathbb{E}_0 [C_0 + mC_1] \le h_0 \}$$

given $Y = \{Y_0, Y_1\}$ and M,

▶ markets clear

$$c_0^* = y_0, \dots, C_1^* = Y_1$$

or, equivalently

$$c_{t,s}^* = y_{t,s}, \ t = 0, 1, \ s = 1, \dots, N$$

AD general equilibria: intuition

Allows for the determination of the equilibrium value for the stochastic discount factor M: market price for transactions across time and the states of nature:

- ▶ Homogeneous agent economy: dependent upon the preferences, information and the endowments of the economy
- ▶ Heterogeneous agent economy: dependent upon the preferences, information and the endowments of the economy and their distribution among agents (i.e, when there are differences in information, attitudes towards risk and wealth)

AD exchange and homogeneous economy

Determination of equilibrium prices

We determine the equilibrium in two steps:

1. first, determine the optimality conditions

$$u'(c_0^*)m_s = \beta u'(c_{1,s}^*), \ s = 1, \dots, N$$

if we assume there is no satiation;

2. second, use the market equilibrium conditions

$$c_{t,s}^* = y_{t,s}, \ t = 0, 1, \ s = 1, \dots, N$$

Then, the **equilibrium** stochastic discount factor is

$$m_s^* = \beta \left(\frac{u'(y_{1,s})}{u'(y_0)} \right), \ s = 1, \dots, N$$

or equivalently the equilibrium AD price is

$$q_s^* = \beta \pi_s \left(\frac{u'(y_{1,s})}{u'(y_0)} \right), \ s = 1, \dots, N$$

AD exchange and homogeneous economy

Equilibrium values

Then the general equilibrium when consumers are homogeneous and there is no satiation:

consumption is similar to the case in an autarkic economy

$$\{C_t^*\}_{t=0}^1 = \{Y_t\}_{t=0}^1$$

but, in this case, we say there is **aggregate uncertainty**;

• equilibrium stochastic discount factor (SDF)

$$M^* = \left(eta\left(rac{u^{'}(y_{1,1})}{u^{'}(y_0)}
ight), \ldots, eta\left(rac{u^{'}(y_{1,N})}{u^{'}(y_0)}
ight)
ight)^{ op}$$

is functions of the **fundamentals** (resources and preferences)

• equilibrium relative price for AD contracts

$$Q^* = \left(\beta \pi_1 \left(\frac{u'(y_{1,1})}{u'(y_0)}\right), \dots, \beta \pi_N \left(\frac{u'(y_{1,N})}{u'(y_0)}\right)\right)^{\top}$$

is a function of the **fundamentals** (resources, preferences and information)

An example with log utility SDF for state s

Assuming:

▶ logarithmic Bernoully utility function

$$u(c) = \ln(c)$$

▶ stochastic endowment's growth factor

$$y_{1,s} = (1 + \gamma_s)y_0, \ s = 1, \dots, N$$

▶ How does uncertainty affects the stochastic discount factor and the utility of the consumer ?

An example with log utility

Distribution of the SDF

• the stochastic discount factor is $m_s^* = \frac{\beta}{1+\gamma_s}$

Figure: Growth factor $(1 + \Gamma)$ and stochastic the associated discount factor M

- ► Conclusions:
 - 1. there is aggregate uncertainty
 - 2. stochastic discount factor is **negatively correlated** with rate of growth

An example with log utility Sampling the SDF

▶ the stochastic discount factor is

$$m_s^* = \frac{\beta}{1 + \gamma_s}$$

Figure: Sampling from $\gamma \sim N(0, 0.02)$ and the stochastic discount factor

An example with log utility

Aggregate uncertainty and lack of insurance

► The utility for the consumer is (prove it)

$$U(C^*) = \ln(c_0^*) + \beta \mathbb{E}_0[\ln(C_1^*)] =$$

$$= \ln(y_0) + \beta \mathbb{E}_0[\ln(Y_1)] =$$

$$= \ln\left(y_0^{1+\beta}(G\mathbb{E}_0[1+\Gamma])^{\beta}\right)$$

increases with y_0 and with the geometric mean of the growth rate.

- ▶ Question: why this looks like the utility in a Robinson-Crusoe economy?
- Question: what are the consequences of more volatility, to the stochastic discount factor and to consumer's utility?

References

- ► (LeRoy and Werner, 2014, Part III), (Lengwiler, 2004, ch. 2), (Altug and Labadie, 2008, ch. 3)
- Sumru Altug and Pamela Labadie. Asset pricing for dynamic economies. Cambridge University Press, 2008.
- Yvan Lengwiler. *Microfoundations of Financial Economics*. Princeton Series in Finance. Princeton University Press, 2004.
- Stephen F. LeRoy and Jan Werner. *Principles of Financial Economics*. Cambridge University Press, Cambridge and New York, second edition, 2014.