Лабораторна робота №4

Обробка зображень та робота з наборами файлів цифрових зображень

Мета: Отримати знання та навики в обробці цифрових зображень за допомогою бібліотек Pillow та/або OpenCV та роботі з обробки набору зображень.

Завдання 1. Робота з набором файлів.

- 1) Сформувати в папці на диску набір із 15 зображень різних форматів, розмірів та колірних моделей. Додати туди 2-3 файли, що не є зображеннями.
- 2) Створити функцію, що в якості аргумента приймає адресу папки на диску та повертає датафрейм з наступною інформацією про зображення, що знаходяться в папці:
 - ім'я файлу;
 - кольорову модель;
 - формат;
 - кількість каналів у зображенні;
 - розмір файлу у мегабайтах байтах, округлених до двох знаків після коми;
 - ширину картинки;
 - висоту картинки;
 - повний шлях до файлу;
 - зменшене зображення.

Зауваження:

- а) Якщо файл не ϵ зображенням не додавати інформацію про нього в датафрейм.
- б) Для обробки набору файлів можете скористатися вбудованими модулями glob (https://docs.python.org/3/library/glob.html), або zipfile https://docs.python.org/3/library/zipfile.html
- в) Для відображення картинки в датафреймі можете скористатись методом, описаним в наступному матеріалі

Приклад:

Завдання 2.

Створити функцію, що в якості аргумента приймає:

- шлях до папки;
- назва вихідного зображення;
- кількість зображень в рядку;
- кількість зображень в стовпчику

і повертає зображення постера.

Вважаємо, що постер є прямокутним і число картинок в постері $a \times b$, де а — число стовпчиків, а b — число рядків.

Зауваження:

1) Створити функцію, що перетворює картинку на квадрат з максимально можливим розміром сторони (наприклад, якщо картинка розміром 800×533,

то вихідний розмір повинен бути 533×533). Обрізаємо картинку з двох країв, тобто розмір розраховуємо від центру.

- 2) Всі картинки, з яких створено постер, повинні бути однакового розміру, Тобто після обрізки необхідно змінити розмір, наприклад, на 500×500.
- 3) Картинки для додавання в постер обирати випадковим чином. Картинки можуть повторюватись.
- 4) На картинку «накласти фільтр» червоного, зеленого, синього, жовтого, пурпурного або голубого кольорів, що також обираються випадковим чином та можуть повторюватись.
- 5) Надати 3-4 варіанти постерів, що збережено у файлах на диску.
- 6) Використовувати зображення, що знаходяться в папці, що сформована в завданні 1
- 7) Для обробки зображень використовувати бібліотеки Pillow та/або OpenCV.

Зміст звіту:

У якості звіту представити Jupyter notebook з описом завдань, кодом та вихідними зображеннями. Надати 2 приклади постерів у окремих файлах та різних форматах.

Приклади

1)

3)

In [243]: img = to_poster(r'D:\2022\images2', 'post2x3_1.prg', 2, 3)
img Out[243]: