Álgebra Linear

Mestrado Integrado em Engenharia Informática

米	5/5
Universidade Escola de Ciên	
Departamento	de Matemática

21 dezembro 2019 Duração: 2 horas

Nome:	Núme	

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

1. A forma em escada reduzida da matriz

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \acute{e} \qquad \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- a) $\mathcal{C}(A)$ é um subespaço de \mathbb{R}^3 de dimensão 2. Uma base de $\mathcal{C}(A)$ é: ((1,5,9),(2,6,10)).
- **b)** $\mathcal{N}(A)$ é um subespaço de \mathbb{R}^4 de dimensão 2.
- c) $(1,-1,1,0) \in \mathcal{N}(A)$? Não.
- **d)** Uma base de $\mathcal{L}(A)$ é: ((1,0,-1,-2),(0,1,2,3)).
- e) Um vetor de \mathbb{R}^4 não pertencente a $\mathcal{L}(A)$ é: (0,0,1,0).
- **2.** Para cada $k \in \mathbb{R}$, considere a aplicação linear $T_k : \mathbb{R}^4 \to \mathbb{R}^3$ associada à matriz $\begin{pmatrix} 2k & 1 & 1 & 0 \\ 0 & k-1 & 1 & 1 \\ 0 & 0 & k & 0 \end{pmatrix}$.
 - a) $T_2(1,2,3,1) = (9,6,6)$.
 - **b)** Um vetor não nulo x tal que $x \in \text{Im } T_1$ é: x = (2,0,0).
 - c) $\dim(\text{Im } T_0) = 2 \text{ e } \dim(\text{Nuc } T_2) = 1.$
 - **d)** Os valores de k para os quais a aplicação T_k é sobrejetiva são: $k \neq 0$.
 - e) Os valores de k para os quais a aplicação T_k não é injetiva são: $k \in \mathbb{R}$.
- **3.** Considere uma matriz A de ordem 3 cujos valores próprios são -1, 1, 3.
 - a) $\det A = -3$.
 - **b)** O sistema $(A + 2I_3)x = 0$ é possível e determinado.
 - c) Os valores próprios da matriz $(2A + 4I_3)^T$ são: 2,6,10.
 - **d)** A matriz $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ é semelhante à matriz A.
 - e) A^2 é diagonalizável?

Sim, porque, se λ é um valor próprio de A com um vetor próprio associado x, então λ^2 é uma valor próprio de A^2 com vetor próprio associado x; logo, os vetores próprios de A são também vetores próprios de A^2 ; como A tem três valores próprios distintos, existem três vetores próprios de A linearmente independentes; logo A^2 também admite três vetores próprios linearmente independentes, sendo, por isso, diagonalizável.

EM ALTERNATIVA:

Como A tem três valores próprios distintos, então A é diagonalizável isto é, existe uma matriz invertível P tal que $P^{-1}AP=D$, com D uma matriz diagonal. Mas,

$$P^{-1}AP = D \Rightarrow A = PDP^{-1} \Rightarrow A^2 = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PD^2P^{-1}$$

 $\Rightarrow P^{-1}A^2P = D^2$

Sendo D uma matriz digonal, também D^2 é uma matriz diagonal, pelo que a igualdade $P^{-1}A^2P=D^2$ mostra que A^2 é uma matriz diagonalizável.

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere o subespaço vetorial de \mathbb{R}^4

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : 3x + 3y - 4w = 0 \text{ e } z = 0\}.$$

a) Determine uma base e indique qual a dimensão de U.

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x = -y + \frac{4}{3}w \text{ e } z = 0\} = \{(-y + \frac{4}{3}w, y, 0, w) : y, w \in \mathbb{R}\}$$
$$= \langle (-1, 1, 0, 0), (4, 0, 0, 3) \rangle$$

Como os vetores $\mathbf{a} = (-1, 1, 0, 0)$ e $\mathbf{b} = (4, 0, 0, 3)$ geram U e são linearmente independentes (imediato), então (\mathbf{a}, \mathbf{b}) é uma base de U e consequentemente U tem dimensão 2.

- **b)** Verifique que o vetor (5,3,0,6) pertence a U e escreva as suas coordenadas na base encontrada na alínea anterior.
 - :: Verificar que $(5, 3, 0, 6) \in U$:
 - 1º Processo: Verificar que $\mathbf{c}=(5,3,0,6)$ satisfaz as condições $x=-y+\frac{4}{3}w$ e z=0 (imediato)
 - 2° Processo: Verificar que $c = 3\mathbf{a} + 2\mathbf{b}$ (imediato), pelo que $c \in \langle \mathbf{a}, \mathbf{b} \rangle = U$
 - 3° Processo: Verificar que car $\begin{pmatrix} -1 & 1 & 0 & 0 \\ 4 & 0 & 0 & 3 \end{pmatrix} = car \begin{pmatrix} -1 & 1 & 0 & 0 \\ 4 & 0 & 0 & 3 \\ 5 & 3 & 0 & 6 \end{pmatrix}$ (imediato)
 - :: Coordenadas de (5,3,0,6) na base (\mathbf{a},\mathbf{b}) :

Como $c = 3\mathbf{a} + 2\mathbf{b}$, as coordenadas de c = (5, 3, 0, 6) na base (\mathbf{a}, \mathbf{b}) são (3, 2).

- c) Diga, justificando, se os vetores u=(2,-2,0,0), v=(4,0,0,3) e w=(6,-2,0,3) são vetores geradores de U.
 - 1º processo: Como $w=u+v, u=-\mathbf{a}, v=\mathbf{b}$, então (ver resultados na página 14 e 16 dos slides) $\langle u,v,w\rangle = \langle u,v,u+v\rangle = \langle u,v\rangle = \langle -\mathbf{a},\mathbf{b}\rangle = \langle \mathbf{a},\mathbf{b}\rangle = U$
 - 2° processo: Calcular $\langle u, v, w \rangle$, verificando que o sistema $(x, y, z, w) = \alpha u + \beta v + \gamma w$ é possível apenas quando 3x + 3y 4w = 0 e z = 0 e, por isso, $\langle u, v, w \rangle = U$.
- d) Indique, caso exista, uma base de \mathbb{R}^4 que inclua os vetores $u, v \in w$. Não existe tal base, porque os vetores $u, v \in w$ são linearmente dependentes, uma vez que w = u + v.

2. Considere a matriz

$$A = \begin{pmatrix} 1 & a & a \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}.$$

a) Mostre que o polinómio característico de A não depende de a.

$$p_A(\lambda) = \det(A - \lambda I) = \left| egin{array}{ccc} 1 - \lambda & a & a \ -1 & 1 - \lambda & -1 \ 1 & 0 & 2 - \lambda \end{array}
ight|.$$

Usando o Teorema de Laplace (última linha), obtém-se

$$p_A(\lambda) = \begin{vmatrix} a & a \\ 1 - \lambda & -1 \end{vmatrix} + (2 - \lambda) \begin{vmatrix} 1 - \lambda & a \\ -1 & 1 - \lambda \end{vmatrix} = \cdots = (1 - \lambda)^2 (2 - \lambda), \text{ pelo que o polinómio característico de } A \text{ \'e independente de } a.$$

b) Verifique que (0, -1, 1) é um vetor próprio de A.

Basta verificar que
$$A \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 para concluir que $(0, -1, 1)$ é um vetor próprio de A associado ao valor próprio 2.

c) Verifique que existe um valor de a para o qual a matriz A é diagonalizável e indique, para este valor, uma matriz que a diagonaliza.

De acordo com a alínea a), a matriz A tem dois valores próprios distintos: 1 (duplo) e 2 (simples). Conclui-se então que a multiplicidade geométrica do vp 2 é 1 e, atendendo à alínea b), podemos dizer que o subespaço próprio associado a este vp é $V_2 = \langle (0, -1, 1) \rangle$.

A matriz será diagonalizável se a multiplicidade geométrica do vp 1 for 2, ou seja, se dim $V_1=2$. Como dim $V_1=3-{\rm car}(A-I)$, pretende saber-se para que valores de a, a matriz A-I tem característica 1. Como

$$A - I = \begin{pmatrix} 0 & a & a \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 0 & -1 \\ 0 & a & a \\ 0 & 0 & 0 \end{pmatrix}$$

conclui-se que car(A - I) = 1 sse a = 0. Neste caso, obtém-se

$$V_1 = \{(x, y, z) \in \mathbb{R}^3 : x = -z\} = \langle (1, 0, -1), (0, 1, 0) \rangle.$$

Como existem três vetores próprios linearmente independentes, a saber, $u=(0,-1,1),\ v=(1,0,-1)$ e w=(0,1,0)), uma matriz P que diagonaliza A é a matriz cujas colunas são u,v,w. Assim, escolhendo,

$$P = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix},$$

obtém-se a seguinte matriz diagonal semelhante a A:

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 3. Seja $A \in \mathbb{R}^{n \times n}$ uma dada matriz e seja $f_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ a aplicação definida por $f_A(X) = XA AX$, para qualquer $X \in \mathbb{R}^{n \times n}$.
 - a) Mostre que f_A é uma aplicação linear.

 f_A é uma aplicação linear sse

1.
$$\forall X, Y \in \mathbb{R}^{n \times n}, \ f_A(X + Y) = f_A(X) + f_A(Y);$$

2.
$$\forall X \in \mathbb{R}^{n \times n}, \ \forall \alpha \in \mathbb{R}, \ f_A(\alpha X) = \alpha f_A(X).$$

Como

$$f_A(X+Y) = (X+Y)A - A(X+Y) = XA + YA - AX - AY = (XA - AX) + (YA - AY) = f_A(X) + f_A(Y),$$

a primeira condição é satisfeita. Além disso, como

$$f_A(\alpha X) = (\alpha X)A - A(\alpha X) = \alpha(XA) - \alpha(AX) = \alpha f_A(X),$$

a segunda condição também é satisfeita e está provado que f_A é uma aplicação linear.

b) Sendo $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, determine Nuc f_A e indique uma sua base.

$$\begin{aligned} \operatorname{Nuc} f_A &= \{X \in \mathbb{R}^{2 \times 2} : f_A(X) = \mathbf{0}_{\mathbb{R}^{2 \times 2}} \} \\ &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} : \begin{pmatrix} a - a - 2c & 2a + 3b - b - 2d \\ c - 3c & 2c + 3d - 3d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \\ &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} : c = 0 \text{ e } a = d - b \right\} = \left\{ \begin{pmatrix} d - b & b \\ 0 & d \end{pmatrix} : b, d \in \mathbb{R} \right\} \\ &= \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \right\rangle \end{aligned}$$

Facilmente se verifica que $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$ são vetores linearmente independentes, pelo que uma base de Nuc f_A é $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$.