Gauss 求積実装クイックガイド

D2 佐々木 徹

May 16, 2024

対象

理論的な部分はひとまず置いて実装をしたい人向け

概要

Gauss 求積 (Gauss quadrature) の定義

積分を和の形式に表現する近似法. 和にして計算コスト削減できる.

$$\int \mathrm{d}x \, f(x) \sim \sum_{i=1}^{N} w_i f(x_i)$$

積分区間および求積点 x_i と重率 w_i は多項式を選ぶと自動的に決定される.

[a, b]	w(x)	Name	Symbol	N_R
[-1, 1]	1	Legendre	$P_{B}(x)$	2/(2n+1)
[-1, 1]	$1/\sqrt{1-x^2}$	Chebyshev	$T_n(x)$	$\pi (n = m = 0)$
				$\pi/2 \ (n = m \neq 0)$
[-1, 1]	$(1-x^2)^{\lambda-\frac{1}{2}}$	Gegenbauer	$C_n^{(\lambda)}(x)$	$\frac{2^{1-2\lambda}\pi\Gamma(n+2\lambda)}{n!(n+\lambda)\Gamma^2(\lambda)}$
[-1, 1]	$(1-x)^{\alpha}(1-x)^{\beta}$	Jacobi	$P_n^{(\alpha,\beta)}(x)$	$\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{n!\Gamma(n+\alpha+\beta+1)}$
[-1, 1]	1	Sine	$\sin(n\pi x)$	1
[-1, 1]	1	Cosine	$\cos(n\pi x)$	1
$[-\infty, \infty]$	e^{-x^2}	Hermite	$H_n(x)$	$2^n \sqrt{\pi} n!$
$[-\infty, \infty]$	1	Hermite	$h_n(x) = e^{-x^2/2}H_n(x)$	$2^n\sqrt{\pi}n!$
[0, ∞]	$x^{\alpha}e^{-x}$	Associated Laguerre	$L_n^{(\alpha)}(x)$	$\frac{\Gamma(n+\alpha+1)}{n!}$
[0, ∞]	$x^{2\alpha+1}e^{-x^2}$	Sonine	$S_{\alpha}^{(n)}(x^2)$	$\frac{\Gamma(n+\alpha+1)}{2a^4}$

Python での実装

np.polynomial ライブラリ

 $\overline{\mathsf{各々の多項式における求積点}\,x_i}$ と重率 $\,w_i\,$ を与えるライブラリがある.

- Legendre 多項式: np.polynomial.legendre.leggauss
- Hermite 多項式: np.polynomial.hermite.hermgauss
- Chebyshev 多項式: np.polynomial.chebyshev.chebgauss

実装 (ex. $\int_{-1}^{+1} dx e^x$)

```
import numpy as np
    x = np.polynomial.legendre.leggauss(10)
    sum_x = 0
    for i in range (0, len(x[0])):
        sum_x += x[1][i]*np.exp(x[0][i])
    print(sum_x)
```

結果

Gauss-Legendre quadrature, exp(x): 2.3504023872876028 Numerical integration, exp(x): 2.3504023872876028

DVRとの対応

グリッド基底 ↔ スペクトラル基底のユニタリー行列

スペクトラル基底として例えば,調和振動子固有関数 (\propto Hermite 多項式) など.固有関数基底とグリッド基底との行き来ができると便利がよい.

$$h_n(x) = \sqrt{w(x)} \frac{H_n(x)}{N_{H_n}}, \quad \int dx \, h_m(x) h_n(x)$$

に対してユニタリー行列は次のように計算する.

$$\mathbb{U} = \begin{pmatrix} h_0(x_1) & h_1(x_1) & h_2(x_1) & \cdots & h_{N-1}(x_1) \\ h_0(x_2) & h_1(x_2) & h_2(x_2) & \cdots & h_{N-1}(x_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_0(x_N) & h_1(x_N) & h_2(x_N) & \cdots & h_{N-1}(x_N) \end{pmatrix}$$

Sasaki Gauss quadrature May 16, 2024 5/6

DVRとの対応

ユニタリー行列の実装

```
1
           import numpy as np
           import sympy as sp
3
           x = np.polynomial.legendre.leggauss(10)
           T = np.zeros((len(x[0]), len(x[0])))
4
           for i in range (0, len(x[0])):
5
              for j in range (0, 2*dimension + 1):
6
                   wj = x_legendre[1][j]
                   Ni = 2/(2*i + 1)
8
                   T[i][j] = float(np.sqrt(wj)*np.sqrt(1/Ni)
9
                      *sp.legendre(i, x[0][j]))
           print(T)
10
```