Generalized Additive Models (GAMs) CMDA 4654 Project 2

Group 19: Brady Bolton, Eryk Jesse, Charles Lee, Dan Schlicht

Replying to @millerdl

140 char vrsn

1 GAMs are just GLMs
2 GAMs fit wiggly terms
3 use + s(foo) not foo in frmla
4 use method = "REML"
5 gam.check()

2:37 PM · Mar 16, 2017 · TweetDeck

- Type of generalized linear model
- Response variable depends on smooth functions $f_i(x_i)$
- General structure of a GAM: $g(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)$
- Smooth functions can be many different things (polynomials, splines, weighted means, etc)

- Two options for packages, mgcv and gam
- mgcv is more commonly used and better supported

Description

mgcv provides functions for generalized additive modelling (g<u>am</u> and <u>bam</u>) and generalized additive mixed modelling (g<u>amm</u>, and <u>random_effects</u>). The term GAM is taken to include any model dependent on unknown smooth functions of predictors and estimated by quadratically penalized (possibly quasi-) likelihood maximization. Available distributions are covered in <u>family_mgcv</u> and available smooths in <u>smooth_terms</u>.

Particular features of the package are facilities for automatic smoothness selection (Wood, 2004, 2011), and the provision of a variety of smooths of more than one variable. User defined smooths can be added. A Bayesian approach to confidence/credible interval calculation is provided. Linear functionals of smooths, penaliziation of parametric model terms and linkage of smoothing parameters are all supported. Lower level routines for generalized indige regression and penalized linearly constrained least squares are also available. In addition to the main modelling functions, jagam provided facilities to ease the set up of models for use with JAGS, while ginla provides marginal inference via a version of Integrated Nested Laplace Approximation.

```
library(mgcv)
set.seed(0)
sim_data <- gamSim(1, n = 400, dist="normal", scale=2)
Gu & Wahba 4 term additive model
head(sim data)
                            x1
                                       x2
1 5.114211 0.8966972 0.1478457 0.34826473 0.04572472 7.962274 0.6377368
2 2.175828 0.2655087 0.6588776 0.85868745 0.36652658 5.514517 1.4814113
3 6.334878 0.3721239 0.1850700 0.03443876 0.74139303 3.576406 1.8407682
4 6.853276 0.5728534 0.9543781 0.97099715 0.93350625 8.692625 1.9478442
5 7.743879 0.9082078 0.8978485 0.74511014 0.67320995 8.752859 0.5687870
6 13.920886 0.2016819 0.9436971 0.27325524 0.70135711 16.190349 1.1841037
        f1
                    f2 f3
1 1 344055 5 980482e+00 0
2 3.735028 2.980780e-01 0
3 1.447937 2.877006e-01
4 6 744695 8 611364e-05
5 6.023672 2.160400e+00 0
6 6.602142 8.404104e+00 0
```

```
fit \leftarrow gam(v \sim s(x0) + s(x1) + s(x2) + s(x3), data = sim data)
summary(fit)
Family: gaussian
Link function: identity
Formula:
v \sim s(x0) + s(x1) + s(x2) + s(x3)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.9150 0.1049 75.44 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Approximate significance of smooth terms:
       edf Ref.df F p-value
s(x0) 5.173 6.287 4.564 0.000138 ***
s(x1) 2.357 2.927 103.053 < 2e-16 ***
s(x2) 8.517 8.931 84.308 < 2e-16 ***
s(x3) 1 000 1 000 0 441 0 506929
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
R-sq.(adi) = 0.726 Deviance explained = 73.7%
GCV = 4.611 Scale est. = 4.4029 n = 400
```


gam.check(fit)

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values


```
data("mtcars")
mtcars gam <-
  gam(mpg ~ s(disp), data = mtcars, method = "REML")
summary(mtcars gam)
Family: gaussian
Link function: identity
Formula:
mpg ~ s(disp)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0906 0.3788 53.04 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(disp) 4.884 5.904 36.3 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.874 Deviance explained = 89.4%
-REMI = 74 101 Scale est = 4.5918 n = 32
```

```
library(ggplot2)
ggplot(data = mtcars, aes(x = disp, y = mpg)) +
    theme_bw() + geom_point() +
    geom_smooth(method = "gam", formula = y ~ s(x))
```


gam.check(mtcars_gam)

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values


```
data("iris")
```

```
# df <- read.csv('health_data.csv')
# show the data</pre>
```

Conclusion

Conclusion

Conclusion

References