Entrega 1: Teoria de la mesura

Arnau Mas

18 d'octubre de 2019

Problema 1

El conjunt de Cantor és un subconjunt compacte i completament desconnectat de [0,1] amb mesura 0. La seva construcció estàndard consisteix en eliminar el terç central de l'interval unitat. A continuació s'elimina el terç central dels dos intervals resultants, i el terç central dels quatre intervals que apareixen. Al pas n apareixen 2^n intervals, la unió dels cuals escrivim C_n . El conjunt de Cantor és la intersecció de tots els C_n . Per a veure que té mesura nul·la, observem que C_0 és l'interval unitat, un conjunt de mesura 1. Al següent pas s'elimina un conjunt de mesura $\frac{1}{3}$ i per tant C_1 té mesura $\frac{2}{3}$. A cada iteració s'elimina un terç de la mesura restant, per tant $m(C_n) = \left(\frac{2}{3}\right)^n$. De fet es té $C_{n+1} \subseteq C_n$. A més, tots els C_n són mesurables per ser unió d'intervals. Per tant C també és mesurable perquè és intersecció de mesurables, i per continuïtat de la mesura de Lebesgue

$$m(C) = m\left(\bigcap_{n=0}^{\infty} C_n\right) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0.$$

De fet, aquest procés es pot repetir treient a cada pas intervals centrats amb longitud en proporció α amb la longitud dels intervals anteriors, amb $0 < \alpha < 1$ (el cas estàndard del conjunt de Cantor ternari correspon a $\alpha = \frac{1}{3}$). I pel mateix argument concloem que el conjunt resultant també és un conjunt nul. Així doncs, per a obtenir un conjunt de Cantor de mesura positiva haurem de procedir de manera diferent.