5

PHYS 122 HW 5

1

Dielectric interface

The xy plane is the interface between two essentially infinite dielectric slabs. Each dielectric is uniformly polarized. $\vec{P}=P_1\hat{k}$ for z<0 and $\vec{P}=P_2\hat{k}$ for z>0.

a

Determine σ , the surface density of bound charge at the interface.

Give your answer in terms of P_1 and P_2 .

```
\checkmark Answer \checkmark
\sigma_{bound} = \hat{n} \cdot \vec{P}_1 - \hat{n} \cdot \vec{P}_2
\sigma_{bound} = \hat{n} \cdot \hat{k}P_1 - \hat{n} \cdot \hat{k}P_2
\sigma_{bound} = P_1 - P_2
```

b

Assume that the dielectrics are both linear. The one below the xy plane has susceptibility χ_1 ; the one above, χ_2 . Determine E_1 and E_2 the electric fields inside the two dielectrics.

Give your answer in terms of P_1 , P_2 , χ_1 , χ_2 , ϵ_0 and \hat{k} .

```
\checkmark Answerec{E}_1=rac{\hat{k}P_1}{\chi_1\epsilon_0}\ ec{E}_2=rac{\hat{k}P_2}{\chi_2\epsilon_0}
```

C

What is the total charge density σ_{tot} of the interface?

Give your answer in terms of P_1 , P_2 , χ_1 , χ_2 , ϵ_0 and \hat{k} .

✓ Answer

By Gauss law:

$$\sigma = \epsilon_0 \hat{n} \cdot (ec{E}_1 - ec{E}_2)$$

$$\sigma=rac{P_1}{\chi_1}-rac{P_2}{\chi_2}$$

d

Now assume that there is no free charge at the interface. Determine P_2 in terms of P_1 , χ_1 and χ_2 .

✓ Answer

$$\sigma_{bound} = P_1 - P_2 \ \sigma = rac{P_1}{\chi_1} - rac{P_2}{\chi_2}$$

$$egin{aligned} \sigma_{free} &= \sigma - \sigma_{bound} \ &= rac{P_1}{\chi_1} - rac{P_2}{\chi_2} - (P_1 - P_2) \ &= rac{P_1 - \chi_1}{\chi_1} - rac{P_2 - \chi_2}{\chi_2} \ &= 0 \end{aligned}$$

$$rac{P_1 - \chi_1}{\chi_1} = rac{P_2 - \chi_2}{\chi_2} \ rac{\chi_2(P_1 - \chi_1)}{\chi_1} = P_2 - \chi_2 \ P_2 = rac{\chi_2(P_1 - \chi_1)}{\chi_1} - \chi_2 \ \Box$$

2

Charged dielectric sphere

A dielectric sphere of radius a has free charge Q uniformly distributed over its interior.

a

What is the total charge of the sphere?

Q

b

In what direction do you expect the electric field to point?

✓ Answer

Away from the sphere, assuming the sphere has a positive charge

C

Use Gauss's law to determine the electric field external to the sphere for r>a (where r denotes distance from the center of the sphere).

✓ Answer

$$egin{aligned} \Phi &= rac{Q}{\epsilon_0} \ E &= rac{Q}{\epsilon_0 4 \pi r^2} \hat{r} \end{aligned}$$

d

In the interior of the sphere let us assume that the electric field is given by $\vec{E}=E\hat{r}$.

Here \hat{r} is a unit vector that points directly away from the center of the sphere. E might vary with r, the distance from the center.

i

Assume the dielectric is linear with susceptibility χ . What is the polarization inside the sphere?

Give your answer in terms of E, \hat{r} , ϵ_0 , and χ .

$$ec{E}=E\hat{r}$$

$$ec{P}=\chi\epsilon_0ec{E}$$

$ec{P}=\chi\epsilon_0 E\hat{r}$			

ii

Consider a Gaussian surface of radius r < a. How much bound charge does the surface contain?

Give your answer in terms of E, r, ϵ_0 and χ .

$egin{aligned} extstyle extstyle Answer \ Q_{bound} &= -\oint da \; \hat{n} \cdot \vec{P} \ ec{P} &= \chi \epsilon_0 E \hat{r} \ Q_{bound} &= -\oint da \; \hat{n} \cdot \chi \epsilon_0 E \hat{r} \ Q_{bound} &= -\oint da \; \chi \epsilon_0 E \ Q_{bound} &= -4\pi a^2 \chi \epsilon_0 E \ \Box \end{aligned}$

iii

How much free charge does the Gaussian surface of part (ii) contain?

Give your answer in terms of Q, r and a.

iv

Now apply Gauss's law to the surface to determine E in terms of Q, r, a, ϵ_0 and χ . Thus we have now determined the electric field both inside and outside the dielectric sphere.

```
\checkmark AnswerQ_{tot} = Q_{free} + Q_{bound}= \epsilon_0 \oint da \ \hat{n} \cdot \vec{E}= \epsilon_0 \oint da \ \hat{n} \cdot E\hat{r}
```

$$egin{align*} &= \epsilon_0 \oint da \ E \ &= 4\pi a^2 \epsilon_0 E \ Q_{free} = rac{Qa^3}{r^3} \ Q_{bound} = -4\pi a^2 \chi \epsilon_0 E \ &rac{Qa^3}{r^3} - 4\pi a^2 \chi \epsilon_0 E = 4\pi a^2 \epsilon_0 E \ &rac{Qa^3}{r^3} = 4\pi a^2 \epsilon_0 E (1+\chi) \ E = rac{Qa}{4r^3\pi\epsilon_0(1+\chi)} \ \Box$$

V

Now determine the polarization \vec{P} inside the sphere.

Give your answer in terms of Q, r, a, ϵ_0 and χ .

Hint: use the results of parts (i) and (iv)

\checkmark Answer $ec{P}=\chi\epsilon_0 E\hat{r} \ E=rac{Qa}{4r^3\pi\epsilon_0(1+\chi)} \ ec{P}=rac{Qa\chi}{4r^3\pi(1+\chi)}\hat{r}$

νi

What is the polarization \vec{P} outside the sphere?

✓ Answer

Assuming that the sphere is surrounded by empty space,

$$\vec{P} = \vec{0}$$

vii

What is the surface density σ_b of bound charge on the surface of the dielectric sphere?

Give your answer in terms of Q, ϵ_0 , a and χ .

✓ Answer

$$\sigma_{bound} = \hat{n} \cdot \vec{P}_1 - \hat{n} \cdot \vec{P}_2$$

$$ec{P}_1 = ec{P}$$

$$ec{P}_2 = ec{0}$$

$$ec{P}=rac{Qa\chi}{4r^3\pi(1+\chi)}\hat{r}$$

$$r = a$$

$$ec{P}=rac{Q\chi}{4a^2\pi(1+\chi)}\hat{r}$$

$$\sigma_{bound} = rac{Q\chi}{4a^2\pi(1+\chi)}$$

3

Spherical capacitor

A conducting sphere of radius a is surrounded by a conducting shell (inner radius b, outer radius c). The sphere has a charge Q; the shell, a charge -Q. The space between the sphere and the shell is filled with a linear dielectric with susceptibility χ .

Assume the dielectric contains no free charge.

a

What is the total charge of the system (sphere, shell and dielectric)? What is the electric field external to the shell (i.e. for r>c where r denotes distance from the center). Justify your answer.

✓ Answer

Since the dielectric has no free charge,

$$Q_{tot} = Q - Q + 0$$

$$Q_{tot} = 0$$

b

What is the electric field in the interior of the conducting sphere? Where does the charge ${\it Q}$ reside?

Answer

Perfect conductors have no electric field within them

$$\vec{E} = \vec{0}$$

Q resides on the surface of the sphere.

C

What is the electric field within the shell (for b < r < c)?

✓ Answer

Perfect conductors have no electric field within them

$$\vec{E} = \vec{0}$$

d

Where does the charge on the shell reside? On the inner surface? The outer surface? Over both? Justify your answer.

✓ Answer

On the inner surface.

As the shell must have $\vec{E}=\vec{0}$ within, this means that any Gaussian surface cutting through just the shell must have a flux of 0.

Therefore, any Gaussian surface cutting through the shell must enclose no charge.

Therefore, a charge of -Q must be present on the inner surface of the shell, to cancel out the Q of the inner sphere.

e

Now assume that the electric field in the dielectric region is $\vec{E}=E\hat{r}$ where \hat{r} is a unit vector that points radially outward, away from the center. E might depend on r.

Ī

Determine the polarization \vec{P} inside the dielectric. Give your answer in terms of E, χ , ϵ_0 and \hat{r}

✓ Answer

$$ec{P}=\chi\epsilon_0ec{E}$$

$$ec{P}=\chi\epsilon_0 E\hat{r}$$

ii

Consider a spherical Gaussian surface of radius r with a < r < b. How much bound charge does it enclose? Give your answer in terms of χ , E, r and ϵ_0 .

✓ Answer

$$Q_{bound} = - \oint da \; \hat{n} \cdot ec{P}$$

$$Q_{bound} = -\oint da \; \hat{n} \cdot \chi \epsilon_0 E \hat{r}$$

$$Q_{bound} = -\oint da \ \chi \epsilon_0 E$$

$$Q_{bound} = -4\pi r^2 \chi \epsilon_0 E$$

iii

How much total charge does the Gaussian surface enclose? Give your answer in terms of χ , E, r, ϵ_0 and Q.

✓ Answer

$$Q_{tot} = Q_{free} + Q_{bound} = \epsilon_0 \oint da \; \hat{n} \cdot ec{E}$$

$$Q_{bound} = -4\pi r^2 \chi \epsilon_0 E$$

$$Q_{free} = Q$$

$$Q_{tot} = Q - 4\pi r^2 \chi \epsilon_0 E$$

iv

Use Gauss's law to determine the electric field \vec{E} . Give your answer in terms of χ , ϵ_0 , r and Q.

$$Q_{tot} = Q - 4\pi r^2 \chi \epsilon_0 E$$

$$Q - 4\pi r^2 \chi \epsilon_0 E = \epsilon_0 \oint da \; \hat{n} \cdot ec{E}$$

$$egin{aligned} Q - 4\pi r^2 \chi E &= 4\pi r^2 E \ Q &= 4\pi r^2 E (1+\chi) \ E &= rac{Q}{4\pi r^2 (1+\chi)} \ ec{E} &= rac{Q}{4\pi r^2 (1+\chi)} \hat{r} \ \Box \end{aligned}$$

V

Determine the potential difference $V_2 - V_1$ where V_2 is the potential of the conducting shell and V_1 is the potential of the conducting sphere.

$otag egin{aligned} Answer \ ec{E} &= rac{Q}{4\pi r^2(1+\chi)} \hat{r} \ V_b - V_a &= -\int\limits_a^b ec{E} \cdot d\hat{r} \ V_b - V_a &= -\int\limits_a^b rac{Q}{4\pi r^2(1+\chi)} \, dr \ V_b - V_a &= -rac{Q}{4\pi(1+\chi)} \int\limits_a^b rac{1}{r^2} \, dr \ V_b - V_a &= rac{Q}{4\pi(1+\chi)} \left(rac{1}{r} ight)^b \ V_b - V_a &= rac{Q}{4\pi(1+\chi)} \left(rac{1}{r} ight)^c \ V_b - V_a &= rac{Q}{4\pi(1+\chi)} \left(rac{1}{b} - rac{1}{a} ight) \ \Box \end{aligned}$

f

Capacitance

A capacitor is a device that consists of two conducting "electrodes". Usually one electrode has a positive charge; the other has an equal and opposite negative charge. The capacitance of the capacitor is defined as $C=\frac{Q}{V}$ where Q is the charge on the positive electrode and $V=V_+-V_-$ is the potential difference between the two electrodes.

Calculate the capacitance of the spherical capacitor analyzed in parts (a)-(e). Give your answer in terms of a, b, ϵ_0 and χ

 $egin{aligned} V_b - V_a &= rac{Q}{4\pi(1+\chi)} \left(rac{1}{b} - rac{1}{a}
ight) \ C &= rac{Q}{V} \end{aligned} \ C = 4\pi(1+\chi)rac{ab}{a-b} \ \Box$

ii*

You should find that $C \propto (1 + \chi)$. In the absence of a dielectric filling $\chi = 0$. Thus filling the space between the electrodes with dielectric enhances the capacitance by a factor of $1 + \chi$.

4

Capacitor and dielectrics

A parallel plate capacitor with plate area A and plate separation d is connected to a battery of voltage V_0 . It is initially empty and then a dielectric slab of thickness t (where t < d) and dielectric constant κ (or χ) is inserted between the plates such that it covers the entire plate area but doesn't completely fill the space between the plates.

a

Find the capacitance of the capacitor when it is empty.

```
\checkmark AnswerC = rac{\epsilon_0 A}{d}
```

b

Find the capacitance of the capacitor after the dielectric is inserted.

$extstyle extstyle extstyle extstyle Answer <math>C_1 = (\kappa \epsilon_0) rac{A}{t}$ $C_2 = rac{\epsilon_0 A}{d - t}$ $C = rac{1}{rac{1}{C_1} + rac{1}{C_2}}$ $C = \left(rac{d - t}{\epsilon_0 A} + rac{t}{A \kappa \epsilon_0} ight)^{-1}$

C

If the battery remains connected while the dielectric is inserted, by what factor does the energy stored in the capacitor change? Check your results for t=d and t=0 to see if your factor has the expected behavior.

✓ Answer

By a factor of κ

This lines up with substituting t=d or t=0 into the final equation