

Objetivo 0

COMPONENTE DE PROJETO 3

ANA MARTINS (A91955) E INÊS COSTA (A91975)

Índice

PLANIFICAÇÃO DOS OBJETIVOS	2
•	
ALGORITMIA	4
D. C.	
DIAGRAMA DE BLOCOS	•••
VALORES MÁXIMOS E MÍNIMOS	-

Planificação dos objetivos

- 1. Objetivo 1 Implementar o comando para um canal *PWM* bipolar
 - a. Dificuldades de implementação e possíveis contratempos:

Compreensão dos novos comandos a inserir no programa e do recurso a timers para a geração de sinais PWM por parte do microcontrolador, bem como, do cálculo necessário para o *duty-cycle* do sinal a gerar, necessário para a configuração do respetivo timer.

- b. Tempo estimado para a realização do objetivo: 2 aulas (25/03/2022 e 30/03/2022).
- c. Data de avaliação do objetivo: Aula de 06/04/2022.
- 2. Objetivo 2 Implementar a medida de velocidade
 - a. Dificuldades de implementação e possíveis contratempos:

Compreensão dos novos comandos a inserir no programa para cálculo da velocidade do motor, dos timers e interrupções necessárias para efetuar esse cálculo e, conjuntamente, das constantes de conversão de unidades necessárias para apresentar ao utilizador, consoante aquilo que desejar.

- b. Tempo estimado para a realização do objetivo: 2 aulas (25/03/2022 e 30/03/2022).
- c. Data de avaliação do objetivo: Aula de 06/04/2022.
- 3. Implementação de um modelo de simulação do sistema
- a. Dificuldades de implementação e possíveis contratempos:

 Compreensão do modo de funcionamento do programa *psim* e, simultaneamente, da integração do código produzido anteriormente neste programa.
 - b. Tempo estimado para a realização do objetivo: 2 aulas (25/03/2022 e 30/03/2022).
 - c. Data de avaliação do objetivo: Aula de 06/04/2022.

- 4. Objetivo 4 Verificação experimental da variável de velocidade
- a. Dificuldades de implementação e possíveis contratempos:

 Incorporação do software desenvolvido ao funcionamento do motor/maquete, sendo que durante este processo é possível detetar erros com a magueta que terramos que corrigir. Outre contratempo possível poderá se verificar

motor/maquete, sendo que durante este processo é possível detetar erros com a maquete que teremos que corrigir. Outro contratempo possível, poderá se verificar numa folga no veio do que terá que ser ajustada para seu correto acoplamento.

- b. Tempo estimado para a realização do objetivo: 2 aulas (02/04/2022 e 06/04/2022).
- c. Data de avaliação do objetivo: Aula de 09/04/2022.
- 5. Objetivo 5 Acionamento do motor CC com conversor de eletrónica de potência
- a. Dificuldades de implementação e possíveis contratempos:
 Compreensão e uso do driver da ponte h e acoplamento deste com o motor e software desenvolvido.
 - b. Tempo estimado para a realização do objetivo: 2 aulas (02/04/2022 e 06/04/2022).
 - c. Data de avaliação do objetivo: Aula de 09/04/2022.
- 6. Objetivo 5 (Bonificação) Controlo proporcional da velocidade da carga
 - a. Dificuldades de implementação e possíveis contratempos:
 Implementação de um controlo proporcional no software já desenvolvido.
 - Tempo estimado para a realização do objetivo:
 Caso haja tempo
 - c. Data de avaliação do objetivo:Caso haja tempo

Algoritmia

Objetivo 1

• Função que define o modo de operação a aplicar:

• Função que ativará o sistema de controlo:

Função que definirá a Tensão de Alimentação Normalizada:

Objetivo 2

• Função sentido:

• Função de interrupção que conta os pulsos e inicializa tempo entre pulsos:

• Função de interrupção que calcula a frequência e velocidade do motor:

Diagrama de blocos

Valores Máximos e Mínimos

• STM32:

Valor máximo de tensão de saída e de entrada = 3,3V

• Driver Ponte-H (BTS 7960):

Valores de tensão entrada: 6V - 27V Valores de Corrente: 0A - 43 A Valor máximo de frequência: 25kHz Valores de tensão de controlo: 3,3V - 5V

Duty-cycle: 0% - 100%

• Motor CC:

Tensão Nominal: 6V