

Full Custom Layout and Standard Cell Approximation

ALİ DOĞUŞ GÜNGÖRDÜ

Outline

- 1. Introduction to the Integrated Circuits
- 2. Physical Layers for Layout
- 3. Standard Cells
- 4. DRC, LVS, PEX with Calibre
- 5. References

INTRODUCTION

How does an integrated circuit look like?

Wafer and die → Almost pure silicon (%99)

INTRODUCTION

Inside a die

Die, bonding pads, bond wire and package & pins Opening the chip (or die) to the real world to test or connect

HOW DOES A MOSFET LOOK LIKE?

PHYSICAL LAYERS IN THE LAYOUT (PSUB-NWELL)

Watch out for parasitic diode between n-well and p-sub

P-sub → Ground (most negative supply)

N-well → VDD (most positive supply)

Reverse biasing the parasitic diode!

DIFFERENT CMOS PROCESSES

METAL LAYERS

Metal-1 >> Via1 >> Metal-2

Metal-2 >> Via2 >> Metal-3

Metal-3 >> Via3 >> Metal-4

You cannot directly jump from M1 to M3 or M2 to M4 etc.

NIK TO THE RESITES!

METAL DESIGN RULES

IMPORTANCE OF VIA

ACTIVE LAYER (DIFFUSION & DOPING)

Opening in the field oxide to dope

ACTIVE LAYER (DIFFUSION & DOPING)

Correspondence of Diffusion Layer + Type of Doping in Cadence

POLY LAYER

POLY LAYER

CONNECTING POLY-DIFF-MET LAYERS

You need a contact layer to reduce the resistance between semiconductor and metal interface

CONTACT LAYER

POLY TO METAL OR DIFF TO METAL INTERFACE

CREATING SCHEMATIC AND SYMBOL with CADENCE VIRTUOSO

XFAB 0.18 PROCESS → Create a Library with your name (i.e. AliDogus) → Create a new cell

Name the Cell (i.e. NAND_Custom

Select "ne" and "pe" from PRIMLIB as nmos and pmos, respectively

Do not forget the bulk connections (nwell to DVDD and psub to gnd)

DVDD-> as power supply naming

DGND-> as ground naming

IN1→INPUT1

IN2→INPUT2

OUT->OUTPUT

Follow this naming to work together without any problem

Create symbol for hierarchical simulation from schematic editor

CREATING SCHEMATIC AND SYMBOL with CADENCE VIRTUOSO

POST SCHEMATIC SIMULATION USING ADEL

Create a new cell-view for simulation (i.e. NAND_custom_sim)

Call the cell that you designed from your library

Apply stimulation to characterize the gate

DVDD=1.8V, only use a one global GND

POST SCHEMATIC SIMULATION USING ADE-L

