4.3. Discrete and continuous random variables

Definition 4.3

Let $X:S o\mathbb{R}$ be a random variable.

1. We shall say X is *discrete* if there exists a function $p:\mathbb{R} o \mathbb{R}$ such that

$$P(X \in A) = \sum_{x \in A} p(x)$$

for all events $A\subset \mathbb{R}.$ In this case, p(x) is called the *probability mass* function of X.

2. We shall say X is continuous if there exists a function $f:\mathbb{R} o \mathbb{R}$ such that

$$P(A) = \int_A f(x) \; \mathrm{d}x$$

for all events $A\subset \mathbb{R}.$ In this case, f(x) is called the *probability density* function of X.

Recognizing Discrete and Continuous Random Variables

- If the range of a random variable is finite or countably infinite, then it is discrete.
- If the range of a random variable is a *continuum* of values, then it is continuous.

Problem Prompt

Let's get some practice recognizing discrete and continuous random variables, and computing some of their probability measures. Do problems 8 and 9 on the worksheet.

4.4. Distribution and quantile functions

Let X be a random variable. The *distribution function of* X is the function $F:\mathbb{R} o \mathbb{R}$ defined by

$$F(x) = P(X \le x)$$
.

In particular:

1. If X is discrete with probability mass function p(x), then

$$F(x) = \sum_{y \leq x} p(y)$$

where the sum ranges over all $y \in \mathbb{R}$ with $y \leq x$.

2. If X is continuous with density function f(x), then

$$F(x) = \int_{-\infty}^x f(y) \; \mathrm{d}y.$$

Definition 4.5

Let X be a random variable with distribution function $F:\mathbb{R} o [0,1].$ The quantile function of X is the function $Q:[0,1] o \mathbb{R}$ defined so that

$$Q(p) = \min\{x \in \mathbb{R} : p \leq F(x)\}.$$

In other words, the value x=Q(p) is the smallest $x\in\mathbb{R}$ such that $p\leq F(x)$.

- 1. The value Q(p) is called the p-th quantile of X.
- 2. The quantile Q(0.5) is called the *median of* X.

Problem Prompt

Do problem 10 on the worksheet.