Notation

- \mathcal{S} : state space
- \mathcal{A} : action pace
- r: reward function
- $\pi(a \mid s)$: policy function
- p(au): true (experts') induced distribution over trajectories
- $au = ((s_0, a_0), ..., (s_T, a_T))$: a trajectory of state-action pairs
- $\mathcal{D}=(au_1,..., au_N)$: a dataset of experts' demonstrations

Background

In the MaxEnt framework (Todorov, 2008) of RL, the goal is to find a policy π such that trajectories sampled follow a distribution

$$p(au) = rac{1}{Z} \exp R(au)$$

where $R(\tau):=\sum_t r(s_t,a_t)$. The function r is assumed to be determinisitic. Conversely, in inverse RL (within MaxEnt framework) we are presented an experts' policy $\pi^{(e)}$ and want to solve

$$\max_r \; \mathbb{E}_{ au \sim p} \left[R(au) - \log Z(r)
ight]$$

Paper 1: GAN-GCL (GAN guided cost learning)

Finn, C., Christiano, P., Abbeel, P., & Levine, S. (2016). A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. In: NeurIPS 2016.

IRL as MLE

We can interpret it as a maximum likelihood problem

$$\min_{ heta} \; \mathbb{E}_{ au \sim p} \left[-\log p_{ heta}(au)
ight]$$

where $p_{\theta}(\tau) = \frac{1}{Z} \exp(-c_{\theta}(\tau))$ is parametrized by the **Boltzmann distribution**.

Typical problem with Boltzmann distribution is estimating the partition function Z. Let $c_{\theta}(\tau)$ be the energy cost function (think of a negative reward). And assume we can sample from another policy with known density π . Then

$$Z = \int \exp(-c_{\theta}(\tau)) d\tau = \int \exp(-c_{\theta}(\tau)) \frac{\mu(\tau)}{\mu(\tau)} d\tau = \mathbb{E}_{\tau \sim \mu} \left[\frac{\exp(-c_{\theta}(\tau))}{\mu(\tau)} \right]$$

Then we have a loss function for the parameters θ :

$$egin{aligned} \mathcal{L}_{ ext{IRL}}(heta) &= \mathbb{E}_{ au\sim p}[-\log p_{ heta}(au)] \ &= \mathbb{E}_{ au\sim p}[c_{ heta}(au)] + \log Z \ &= \mathbb{E}_{ au\sim p}[c_{ heta}(au)] + \log \mathbb{E}_{ au\sim \mu}\left[rac{\exp(-c_{ heta}(au))}{\mu(au)}
ight] \end{aligned}$$

The optimal importance sampling for this function is precisely proportional to p [discussion]. We can train any μ to be as close as possible but with a regularization entropy term

$$\mathcal{L}_{ ext{sampler}}(\mu) = \mathbb{E}_{ au \sim \mu}[c_{ heta}(au)] + \mathbb{E}_{ au \sim \mu}[\log q(au)]$$

We now take a look at cost-guided GANs and explore the connection.

GANs

For a true data distribution p and generator distribution π the discriminator's objective in GAN is

$$\mathcal{L}_{ ext{discriminator}}(D_{ heta}) = \mathbb{E}_{ au \sim p}[-\log D_{ heta}(au)] + \mathbb{E}_{ au \sim \pi}[-\log(1-D_{ heta}(au))]$$

And the generator objective is

$$\mathcal{L}_{ ext{generator}}(\pi) = \mathbb{E}_{ au \sim \pi}[-\log D_{ heta}(au)] + \mathbb{E}_{ au \sim \pi}[\log(1 - D_{ heta}(au))]$$

Cost-guided GANs

For a **fixed** generator with $\pi(\tau)$, the optimal discriminator is

$$D^*(au) = rac{p(au)}{p(au) + \pi(au)}$$

where $p(\tau)$ is the actual distribution of the data.

Moreover, the global minumum of $D_*(\tau)$ is obtained when $\pi \equiv p$,at which the discriminator gives equal probability to fake and generated data.

When the density of π can be evaluated, GAN can be modified to estimate p

$$D_{ heta}(au) = rac{p_{ heta}(au)}{p_{ heta}(au) + \pi(au)} = rac{rac{1}{Z} \exp(-c_{ heta}(au))}{rac{1}{Z} \exp(-c_{ heta}(au)) + \pi(au)}$$

at optimality, $p_{ heta}(au) = rac{1}{Z} \exp(-c_{ heta}(au)) = p(au)$.

Cost-guided GANs solve IRL

Here is another trick. Let μ be a mixture of the data and policy samples $\mu(\tau) = \frac{1}{2}(p(\tau) + \pi(\tau))$. This μ can be used for the importance sampling estimate:

The authors prove three foundational results:

- 1. The value of Z which minimizes $\mathcal{L}_{ ext{discriminator}}$ is the importance sampling estimate of Z using μ .
- 2. For this value of Z the derivative, $\partial_{\theta} \mathcal{L}_{\mathrm{discriminator}} = \partial_{\theta} \mathcal{L}_{\mathrm{IRL}}$. Thus the discriminator optimizes $\mathcal{L}_{\mathrm{IRL}}$.
- 3. The generator's loss satisfies $\mathcal{L}_{\mathrm{generator}}(\pi) = \log Z + \mathcal{L}_{\mathrm{sampler}}(\pi)$.

Conclusion

- Using GAN is equivalent to IRL on trajectories
- Putting a special structure on the discriminator can be used to estimate the expert's policy $p(\tau)$, which in turns gives an estimate of the cost/reward of trajectory
- No examples given by the authors. Why can that be?

Paper 2: Adversarial Inverse Reinforcement Learning (AIRL)

Fu, J., Luo, K., & Levine, S. (2018). *Learning Robust Rewards with Adverserial Inverse Reinforcement Learning.* In: ICLR.

State-action centric vs trajectory-centric

The GAN-GCL of Finn et al. (2016) is trajectory-centric, which gives in high-variance estimates and results in very poor learning.

The goal will be to be able to learn rewards for each state-action pair instead. The problem to solve is **reward entanglement**.

State-action version

Obvious idea is to use GAN-GCL at the state-action level using a discriminator of the form

$$D_{ heta}(s,a) = rac{\exp(f_{ heta}(s,a))}{\exp(f_{ heta}(s,a)) + \pi(a\mid s)}$$

- ullet $f_{ heta}$ serves the experts reward function
- What would happen at optmality?
- Was $\frac{1}{Z}$ necessary, it got out of the picture.

Generator's loss is policy method

Take a look at the generator's loss

$$egin{aligned} \hat{r}_{ heta}(s,a) &:= -\log D_{ heta}(s,a) + \log(1 - D_{ heta}(s,a)) \ &= -\log rac{\exp(f_{ heta}(s,a))}{\exp(f_{ heta}(s,a)) + \pi(a\mid s)} + \log rac{\pi(a\mid s)}{\exp(f_{ heta}(s,a)) + \pi(a\mid s)} \ &= -f_{ heta}(s,a) + \log(\pi(a\mid s)) \end{aligned}$$

When adding over trajectories, we obtain the generator's objective

$$\mathcal{L}_{ ext{generator}}(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left(f_{ heta}(s_t, a_t) - \log \pi(a_t \mid s_t)
ight)
ight]$$

which is an entropy regularized policy method.

Reward ambiguity

- Suppose we learn a reward function r(s,a,s'). Then for any $\Phi:\mathcal{S}\to\mathbb{R}$ a reward function $\hat{r}(s,a,s')=r(s,a,s')+\Phi(s')-\Phi(s)$ leads to the same optimal policy. The term $\Phi(s')-\Phi(s)$ is also called the **shaping term**.
- The actors argue that having a shaped reward function is not good. Because it will not be robust to changes in dynamics. Why?

Entangled rewards

- The reward of a policy should ideally not depend on the environments transition function. But with an entangled reward it does. Why?
- ullet Example. Assume deterministic dynamics and T(s,a) the transition function. Then given a different T^\prime

$$r(s,a) + \Phi(T(s,a))
eq r(s,a) + \Phi(T'(s,a))$$

Theory on entanglement

The authors prove two interesting results

- ullet A reward function is **disentangled** with respect to dynamics if is the same for all transition functions T up to a function of initial state only (I'm skipping technical definition).
- Any reward function r(s, a, s') that is disentangled must be a function of s only.

The algorithmic solution

Since with the proposed methods one cannot learn a function of s only (Why?). The authors proposed the following change to the discriminator

$$D_{ heta,\phi}(s,a,s') = rac{\exp\{f_{ heta,\phi}(s,a,s')\}}{f_{ heta,\phi}(s,a,s') + \pi(a\mid s)}$$

where

$$f_{ heta,\phi}(s,a,s') = g_{ heta}(s,a) + h_{\phi}(s') - h_{\phi}(s)$$

The shaping term

The **shaping term** h_{ϕ} has the role of helping mitigate unwanted shaping effects. The authors show that under deterministic dynamics and a ground-truth state-only function

$$h_\phi\mapsto V^*(s)$$

where $V^*(s)$ is the value function. Therefore

$$f^*(s,a) = \{r^*(s) + V^*(T(s,a))\} - V^*(s) \ = Q^*(s,a) - V^*(s)$$

which is the advantage function.

Benchmarks

Table 1: Results on transfer learning tasks. Mean scores (higher is better) are reported over 5 runs. We also include results for TRPO optimizing the ground truth reward, and the performance of a policy learned via GAIL on the training environment.

	State-Only?	Point Mass-Maze	Ant-Disabled
GAN-GCL	No	-40.2	-44.8
GĀN-GCL	Yes	-41.8	-43.4
AĪRL (ours)	No	-31.2	-41.4
AĪRL (ours)	Yes		130.3
GAIL, policy transfer	N/A	-29.9	-58.8
TRPO, ground truth	_ N/A		315.5

Paper 3: Variational Adversarial Inverse Reinforcement Learning (VAIRL)

Peng, X. B., Kanazawa, A., Toyer, S., Abbeel, P., & Levine, S. (2019). Variational discriminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining information flow. In: ICLR.

References

- Finn, C., Christiano, P., Abbeel, P., & Levine, S. (2016). A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. In: NeurIPS.
- Fu, J., Luo, K., & Levine, S. (2018). Learning Robust Rewards with Adverserial Inverse Reinforcement Learning. In: ICLR.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative adversarial nets. In: NeurIPS.