CSC236 Term Test 1 Version 2 Solution

Hyungmo Gu

May 6, 2020

Question 1

• Proof. Define $P(n): f(n) = 3^n$.

I will use complete induction to prove that $\forall n \in \mathbb{N}, n > 2 \Rightarrow P(n)$.

Base Case (n = 0):

Let n = 0.

Then, the definition of f(n) tells us f(n) = 1.

Then, we have

$$f(n) = 3^0 \tag{1}$$
$$= 3^n \tag{2}$$

Thus, P(n) follows.

Base Case (n = 1):

Let n=1.

Then, the definition of f(n) tells us f(n) = 3.

Then, we have

$$f(n) = 3^1 \tag{3}$$

$$=3^{n} \tag{4}$$

Thus, P(n) follows.

Base Case (n=2):

Let n=2.

Then, the definition of f(n) tells us f(n) = 9.

Then, we have

$$f(n) = 3^2 \tag{5}$$
$$= 3^n \tag{6}$$

Thus, P(n) follows.

Case (n > 2):

Assume n > 2.

Then, since $0 \le n - 1 < n$, $0 \le n - 2 < n$, and $0 \le n - 3 < n$, the complete induction tells us P(n-1), P(n-2), and P(n-3), i.e. $f(n-1) = 3^{n-1}$, $f(n-2) = 3^{n-2}$, and $f(n-3) = 3^{n-3}$, respectively.

Then, using these facts, we can write

$$f(n) = f(n-1) + 3f(n-2) + 9f(n-3)$$
(7)

$$=3^{n-1}+3\cdot 3^{n-2}+3^2\cdot 3^{n-3} \tag{8}$$

$$=3^{n-1}+3^{n-1}+3^{n-1} (9)$$

$$=3^{n-1}(1+1+1) (10)$$

$$=3^{n-1}3 (11)$$

$$=3^{n} \tag{12}$$

Thus, P(n) follows.

Correct Solution:

Define $P(n): f(n) = 3^n$.

I will use complete induction to prove that $\forall n \in \mathbb{N}, P(n)$.

Inductive Step:

Let $n \in \mathbb{N}$. Assume $H(n) : \bigwedge_{i=0}^{n-1} P(i)$. I will prove P(n) follows. That is, $f(n) = 3^n$.

Base Case (n = 0):

Let n = 0.

Then, the definition of f(n) tells us f(n) = 1.

Then, we have

$$f(n) = 3^0 \tag{13}$$
$$= 3^n \tag{14}$$

Thus, P(n) follows.

Base Case (n = 1):

Let n=1.

Then, the definition of f(n) tells us f(n) = 3.

Then, we have

$$f(n) = 3^1 \tag{15}$$
$$= 3^n \tag{16}$$

Thus, P(n) follows.

Base Case (n=2):

Let n=2.

Then, the definition of f(n) tells us f(n) = 9.

Then, we have

$$f(n) = 3^2 \tag{17}$$
$$= 3^n \tag{18}$$

Thus, P(n) follows.

Case (n > 2):

Assume n > 2.

Then, since $0 \le n-1 < n$, $0 \le n-2 < n$, and $0 \le n-3 < n$, the complete induction tells us P(n-1), P(n-2), and P(n-3), i.e. $f(n-1) = 3^{n-1}$, $f(n-2) = 3^{n-2}$, and $f(n-3) = 3^{n-3}$, respectively.

Then, using these facts, we can write

$$f(n) = f(n-1) + 3f(n-2) + 9f(n-3)$$
 [By definition, since $n > 2$] (19)

$$=3^{n-1}+3\cdot 3^{n-2}+3^2\cdot 3^{n-3} \tag{20}$$

$$=3^{n-1}+3^{n-1}+3^{n-1} (21)$$

$$=3^{n-1}(1+1+1) (22)$$

$$=3^{n-1}3$$
 (23)

$$=3^{n} \tag{24}$$

Thus, P(n) follows.

Notes:

1. Learned that n > i in $\forall n \in \mathbb{N}, n > i \Rightarrow P(n)$ is used when P(n) is true starting i + 1.

If P(n) is true for all natural numbers, then $\forall n \in \mathbb{N}, P(n)$ is used.

2. Learned that 'Assume n > 2' in 'Let $n \in \mathbb{N}$. Assume n > 2. Assume $H(n) : \bigwedge_{i=0}^{n-1} P(i)$ '. is used when P(i) is true starting n = 3.

If P(i) is true for all natural numbers, then, 'Let $n \in \mathbb{N}$. Assume $H(n) : \bigwedge_{i=0}^{n-1} P(i)$ ' is used.

Question 2

• Given the statement to prove

P(x, y, z, w): There are no positive integers x, y, z, w such that $x^4 + 3y^4 + 9z^4 = 27w^4$.

Proof. I will prove P(x, y, z, w) using proof by contradiction.

Assume $\exists x, y, z, w \in \mathbb{N}^+, x^4 + 3y^4 + 9z^4 = 27w^4$.

Then, the set $X = \{x \in \mathbb{N}^+ \mid \exists y, z, w \in \mathbb{N}^+, x^4 + 3y^4 + 9z^4 = 27w^4\}$ is not empty.

Then, by principle of well-ordering, there is smallest positive integer $x_0 \in X$, and postive integers $y_0, z_0, w_0 \in \mathbb{N}^+$ such that $x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$.

Then,

$$x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4 \Rightarrow x_0^4 = 27w_0^4 - 3y_0^4 - 9z_0^4$$

\Rightarrow 3 | $x_0^4 \Rightarrow 3$ | x_0 [By hint] (1)

Let
$$\exists x_1 \in \mathbb{N}^+, x_0 = 3x_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 3y_0^4 = 27w_0^4 - 9z_0^4 - x_0^4$
 $\Rightarrow 3y_0^4 = 27w_0^4 - 9z_0^4 - 3^4x_1^4$ [By hint] (2)
 $\Rightarrow y_0^4 = 9w_0^4 - 3z_0^4 - 3^3x_1^4$
 $\Rightarrow 3 \mid y_0^4 \Rightarrow 3 \mid y_0$

Let
$$\exists y_1 \in \mathbb{N}^+, y_0 = 3y_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 9z_0^4 = 27w_0^4 - 3y_0^4 - x_0^4$
 $\Rightarrow 9z_0^4 = 27w_0^4 - 3^5y_1^4 - 3^4x_1^4$ [By hint] (3)
 $\Rightarrow z_0^4 = 3w_0^4 - 3^3y_1^4 - 3^2x_1^4$
 $\Rightarrow 3 \mid z_0^4 \Rightarrow 3 \mid z_0$

Let
$$\exists w_1 \in \mathbb{N}^+, w_0 = 3w_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 3^4x_1^4 + 3^5y_1^4 + 3^6z_1^4 = 3^7w_1^4$
 $\Rightarrow x_1^4 + 3y_1^4 + 3^2z_1^4 = 3^3w_1^4$
 $\Rightarrow x_1^4 + 3y_1^4 + 9z_1^4 = 27w_1^4$
 $\Rightarrow x_1 \in X$

$$(4)$$

Then, this leads to contradiction, because we know $x_1 < x_0, x_1 \in X$, but x_0 is the smallest number in X.

Thus, we can conclude the assumption is false.

Correct Solution:

Given the statement to prove

P(x,y,z,w): There are no positive integers x,y,z,w such that $x^4+3y^4+9z^4=27w^4$.

Proof. I will prove P(x, y, z, w) using proof by contradiction.

Assume $\exists x, y, z, w \in \mathbb{N}^+, x^4 + 3y^4 + 9z^4 = 27w^4$.

Then, the set $X = \{x \in \mathbb{N}^+ \mid \exists y, z, w \in \mathbb{N}^+, x^4 + 3y^4 + 9z^4 = 27w^4\}$ is not empty.

Then, since X is subset of N, by principle of well-ordering, there is smallest positive integer $x_0 \in X$. Furthermore, there are postive integers $y_0, z_0, w_0 \in \mathbb{N}^+$ such that $x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$.

Then,

$$x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4 \Rightarrow x_0^4 = 27w_0^4 - 3y_0^4 - 9z_0^4$$

$$\Rightarrow 3 \mid x_0^4 \Rightarrow 3 \mid x_0$$
 [By hint] (1)

Let
$$\exists x_1 \in \mathbb{N}^+, x_0 = 3x_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 3y_0^4 = 27w_0^4 - 9z_0^4 - x_0^4$
 $\Rightarrow 3y_0^4 = 27w_0^4 - 9z_0^4 - 3^4x_1^4$ [By hint] (2)
 $\Rightarrow y_0^4 = 9w_0^4 - 3z_0^4 - 3^3x_1^4$
 $\Rightarrow 3 \mid y_0^4 \Rightarrow 3 \mid y_0$

Let
$$\exists y_1 \in \mathbb{N}^+, y_0 = 3y_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 9z_0^4 = 27w_0^4 - 3y_0^4 - x_0^4$
 $\Rightarrow 9z_0^4 = 27w_0^4 - 3^5y_1^4 - 3^4x_1^4$ [By hint] (3)
 $\Rightarrow z_0^4 = 3w_0^4 - 3^3y_1^4 - 3^2x_1^4$
 $\Rightarrow 3 \mid z_0^4 \Rightarrow 3 \mid z_0$

Let
$$\exists w_1 \in \mathbb{N}^+, \ w_0 = 3w_1 \Rightarrow x_0^4 + 3y_0^4 + 9z_0^4 = 27w_0^4$$

 $\Rightarrow 3^4x_1^4 + 3^5y_1^4 + 3^6z_1^4 = 3^7w_1^4$
 $\Rightarrow x_1^4 + 3y_1^4 + 3^2z_1^4 = 3^3w_1^4$
 $\Rightarrow x_1^4 + 3y_1^4 + 9z_1^4 = 27w_1^4$
 $\Rightarrow x_1 \in X$ (4)

Then, this leads to contradiction, because we know $x_1 < x_0, x_1 \in X$, but x_0 is the smallest number in X.

Thus, we can conclude the assumption is false.

Note:

• Noticed professor wrote 'Divide by 3' as a reasoning in calculation.

```
Let z_1 \in \mathbb{N}^+, 3z_1 = z_0 \Rightarrow 81z_1^4 = 3w_0^4 - (9x_1^4 + 27y_1^4)

\Rightarrow 27z_1^4 = w_0^4 - (3x_1^4 + 9y_1^4) \Rightarrow 3x_1^4 + 9y_1^4 + 27z_1^4 = w_0^4 \quad \# \text{ divide by 3}

\Rightarrow 3 \mid w_0^4 \Rightarrow 3 \mid w_0 \quad \# \text{ since 3 divides LHS and allowed assumption}
```

Question 3

 \bullet Proof. Define $\mathcal T$ as the smallest set such that

a. ()
$$\in \mathcal{T}$$

b. If $t_1, t_2 \in \mathcal{T}$, $(t_1 t_2) \in \mathcal{T}$

I need to prove $\forall t \in \mathcal{T}, P(t)$. That is, left(t) is odd.

Basis:

Let $() \in \mathcal{T}$.

Then, since there is only 1 left parenthesis and 1 is odd, P(t) holds.

Inductive Step:

Let t_1, t_2 be arbitrary string in \mathcal{T} . Assume $H(t_1, t_2) : P(t_1)$ and $P(t_2)$. That is left (t_1) and left (t_2) are odd. Let $(t_1t_2) \in \mathcal{T}$.

I need to prove $P((t_1t_2))$ follows. That is, $left((t_1t_2))$ is odd.

The initial left parenthesis in (t_1t_2) increases the total number of left parenthesis by 1. This means, we have

$$\operatorname{left}((t_1 t_2)) = \operatorname{left}(t_1) + \operatorname{left}(t_2) + 1 \tag{1}$$

Then, since we know from induction hypothesis that $left(t_1)$ and $left(t_2)$ are odd, we can write $left(t_1) + left(t_2)$ is even.

Then, we can write $left(t_1) + left(t_2) + 1$ is odd.

Then, we can conclude $left((t_1t_2))$ is odd.

Thus, $P((t_1t_2))$ follows.

Correct Solution:

Define \mathcal{T} as the smallest set such that

a. $() \in \mathcal{T}$

b. If $t_1, t_2 \in \mathcal{T}$, $(t_1t_2) \in \mathcal{T}$

I need to prove $\forall t \in \mathcal{T}, P(t)$. That is, left(t) is odd.

Basis:

Let $() \in \mathcal{T}$.

Then, since there is only 1 left parenthesis and 1 is odd, P(t) holds.

Inductive Step:

Let t_1, t_2 be arbitrary string in \mathcal{T} . Assume $H(t_1, t_2) : P(t_1)$ and $P(t_2)$. That is left (t_1) and left (t_2) are odd. In other words, $\exists k_1, k_2 \in \mathbb{Z}$ such that left $(t_1) = 2k_1 + 1$, left $(t_2) = 2k_2 + 1$. Let $(t_1t_2) \in \mathcal{T}$.

I need to prove $P((t_1t_2))$ follows. That is, $\operatorname{left}((t_1t_2))$ is odd. In other words, $\exists k_3 \in \mathbb{Z}$, $\operatorname{left}((t_1t_2)) = 2k_3 + 1$.

Let $k_3 = k_1 + k_2 + 1$.

The initial left parenthesis in (t_1t_2) increases the total number of left parenthesis by 1. This means, we have

$$\operatorname{left}((t_1 t_2)) = \operatorname{left}(t_1) + \operatorname{left}(t_2) + 1 \tag{1}$$

Then,

$$left((t_1t_2)) = 2k_1 + 1 + 2k_2 + 1 + 1$$

$$= 2(k_1 + k_2 + 1) + 1$$

$$= 2k_3 + 1$$
(2)
(3)
(4)

Thus, $P((t_1t_2))$ follows.

Notes:

1. Realized that the professor wanted to test whether students can unfold definitions twice using terms like 'In other words'.