Quantum Field Theory Problems

Alec Lau

Question 1. Consider the space \mathcal{D} of continuously differentiable complex-valued functions f on [0,1]. Consider the operator A on $L^2([0,1])$ with domain \mathcal{D} , defined by A(f) = if'. Is A symmetric? What happens if one considers instead the domain $\mathcal{D}_{\alpha} := \{f \in \mathcal{D} : f(1) = \alpha f(0)\}$, where α is a complex number with modulus 1? Written by Prof. Sourav Chatterjee.

Proof. We want to check if $\langle A\psi|\varphi\rangle=\langle\psi|A\varphi\rangle$. This gives us $\langle i\psi'|\varphi\rangle, \langle\psi|i\varphi'\rangle$. Rewriting our bra-kets into integrals, we have $\int_0^1 (i\psi')^*\varphi dx$, $\int_0^1 \psi^*i\varphi'dx$. Evaluating the former, we have $\int_0^1 (i\psi')^*\varphi dx=\int_0^1 (-i)\psi'^*\varphi dx=[-i\psi^*\varphi]_0^1-\int_0^1 (-i)\psi^*\varphi'dx$ Thus, on this general a domain, A is not symmetric.

If instead our domain is D_{α} , then, evaluating the same integral, we have $\int_{0}^{1} (i\psi')^{*} \varphi dx = [-i\psi^{*}\varphi]_{0}^{1} - \int_{0}^{1} (-i)\psi^{*}\varphi' dx = [-i\psi^{*}(1)\varphi(1) + i\psi^{*}(0)\varphi(0)] + \int_{0}^{1} i\psi^{*}\varphi' dx$. Computing the first term, we have $[-i(\alpha\psi(0))^{*}\alpha\varphi(0) + i\psi^{*}(0)\varphi(0)] = [-i\alpha^{*}\alpha\psi^{*}(0)\varphi(0) + i\psi(0)\varphi(0)] = (1 - \alpha^{*}\alpha)i\psi^{*}(0)\varphi(0)$. Since α has modulus 1, $\alpha^{*}\alpha = 1$, and this term becomes zero and hence $\int_{0}^{1} (A\psi)^{*}\varphi dx = \int_{0}^{1} \psi^{*}A\varphi$, so A becomes symmetric on this domain.

Question 2. Recall the definition of the manifold X_m , the measure λ_m on X_m , and the Hilbert space $\mathcal{H} = L^2(X_m, d\lambda_m)$. Recall also the operator valued distributions a(p) and $a^{\dagger}(p)$ on the bosonic Fock space of \mathcal{H} . Finally, recall the definitions of $a(\mathbf{p})$ and $a^{\dagger}(\mathbf{p})$. Assuming the commutation relations for a(p) and $a^{\dagger}(p)$ as given, prove that

$$[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}') \mathbb{H}$$
(1)

where \mathbb{K} is the identity operator on the Fock space. Written by Prof. Sourav Chatterjee.

Proof. Integrating this operator in Schwartz space, we have $\int \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{d^3\mathbf{p}}{(2\pi)^3} f(\mathbf{p})^* g(\mathbf{p}') [a(\mathbf{p}), a^{\dagger}(\mathbf{p}')].$ Since $a(\mathbf{p}) = \frac{a(p)}{\sqrt{2w_{\mathbf{p}}}}, a^{\dagger}(\mathbf{p}') = \frac{a^{\dagger}(p')}{\sqrt{2w_{\mathbf{p}'}}}$, we can conclude $[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] = \frac{1}{\sqrt{4w_{\mathbf{p}}w_{\mathbf{p}'}}} [a(p), a^{\dagger}(p')].$ The first expression then becomes $\int \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{1}{\sqrt{4w_{\mathbf{p}}w_{\mathbf{p}'}}} f(\mathbf{p})^* g(\mathbf{p}') [a(p), a^{\dagger}(p')].$ We know from the notes that $[a(p), a^{\dagger}(p')] = \delta(p - p')1$. We want to integrate this on our mass shell with respect to our probability measure in order to apply our useful distribution. Since $\int_{X_m} d\lambda_m(p) f(p) = \int_{\mathbb{R}^3} \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{1}{2w_{\mathbf{p}}} f(w_{\mathbf{p}}, \mathbf{p})$, we have the equality

$$\int \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{d^3 \mathbf{p'}}{(2\pi)^3} \frac{1}{\sqrt{4w_{\mathbf{p}}w_{\mathbf{p'}}}} f(\mathbf{p})^* g(\mathbf{p'}) [a(p), a^{\dagger}(p')] =$$

$$\int \int d\lambda_m(p) d\lambda_m(p') \sqrt{4w_{\mathbf{p}}w_{\mathbf{p'}}} f(\mathbf{p})^* g(\mathbf{p'}) [a(p), a^{\dagger}(p')]$$

Integrating once, we find this is equal to $\int d\lambda_m(p) \sqrt{4w_{\mathbf{p}}^2} f(\mathbf{p})^* g(\mathbf{p}) 1 = \int d\lambda_m(p) 2w_{\mathbf{p}} f(\mathbf{p})^* g(\mathbf{p}) 1$. Going back to integrating over momentum space, we find that this is equal to $\int \frac{d^3\mathbf{p}}{(2\pi)^3} f(\mathbf{p})^* g(\mathbf{p}) 1$, where 1 is the identity operator on our Fock space.

Now we consider $\int \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{d^3\mathbf{p}'}{(2\pi)^3} f(\mathbf{p})^* g(\mathbf{p}') (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}') 1$. Integrating once, we find this gives us $\int \frac{d^3\mathbf{p}}{(2\pi)^3} f(\mathbf{p})^* g(\mathbf{p}) 1$, the exact result (up to a set of measure zero) as our original commutator. Thus, $[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')$.

Question 3. Consider the theory for massive scalar bosons of mass m. Let φ be the free field of this theory, and let H_0 be the Hamiltonian for free evolution. Give a formal proof of the relation

$$\frac{\partial \varphi}{\partial t} = i[H_0, \varphi] \tag{2}$$

Written by Prof. Sourav Chatterjee.

Proof. Suppose we have a Schwartz function f. Then, since $H_0 = \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}}{(2\pi)^3} w_{\mathbf{p}} a^{\dagger}(\mathbf{p}) a(\mathbf{p})$ and $\varphi(f) = \int_{\mathbb{R}^{1,3}} dx^4 f(x) \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}'}{(2\pi)^3} \frac{1}{\sqrt{2w_{\mathbf{p}'}}} (e^{-i(x,p)} a(\mathbf{p}') + e^{i(x,p)} a^{\dagger}(\mathbf{p}'))$, we have $(H_0 \varphi)(f) = \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}'}{(2\pi)^3} w_{\mathbf{p}} a^{\dagger}(\mathbf{p}) a(\mathbf{p}) \int_{\mathbb{R}^{1,3}} dx^4 f(x) \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}'}{(2\pi)^3} \frac{1}{\sqrt{2w_{\mathbf{p}'}}} (e^{-i(x,p)} a(\mathbf{p}' + e^{i(x,p)} a^{\dagger}(\mathbf{p}')),$ $(\varphi H_0)(f) = \int_{\mathbb{R}^{1,3}} dx^4 f(x) \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}'}{(2\pi)^3} \frac{1}{\sqrt{2w_{\mathbf{p}'}}} (e^{-i(x,p)} a(\mathbf{p}' + e^{i(x,p)} a^{\dagger}(\mathbf{p}')) \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}}{(2\pi)^3} w_{\mathbf{p}} a^{\dagger}(\mathbf{p}) a(\mathbf{p})$

Thus we have

$$[H_0, \varphi](f) = \int_{\mathbb{R}^{1,3}} dx^4 f(x) \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{d^3 \mathbf{p}'}{(2\pi)^3} \frac{w_{\mathbf{p}}}{\sqrt{2w_{\mathbf{p}'}}} A$$
, where $A =$

$$a^{\dagger}(\mathbf{p})a(\mathbf{p})e^{-i(x,p)}a(\mathbf{p}') + a^{\dagger}(\mathbf{p})a(\mathbf{p})e^{i(x,p')}a^{\dagger}(\mathbf{p}') - e^{-i(x,p')}a(\mathbf{p}')a^{\dagger}(\mathbf{p})a(\mathbf{p}) - e^{i(x,p')}a^{\dagger}(\mathbf{p}')a^{\dagger}(\mathbf{p})a(\mathbf{p})$$

Factoring out scalars, we have

$$A = e^{-i(x,p')}(a^{\dagger}(\mathbf{p})a(\mathbf{p})a(\mathbf{p}')) - a(\mathbf{p}')a^{\dagger}(\mathbf{p})a(\mathbf{p}) + e^{i(x,p')}(a^{\dagger}(\mathbf{p})a(\mathbf{p})a^{\dagger}(\mathbf{p}') - a^{\dagger}(\mathbf{p}')a^{\dagger}(\mathbf{p})a(\mathbf{p}))$$

Because $[a(\mathbf{p}), a(\mathbf{p}')] = 0$ and $[a^{\dagger}(\mathbf{p}), a^{\dagger}(\mathbf{p}')] = 0$, this is equal to

$$e^{-i(x,p')}(a^{\dagger}(\mathbf{p})a(\mathbf{p}')a(\mathbf{p}) - a(\mathbf{p}')a^{\dagger}(\mathbf{p})a(\mathbf{p})) + e^{i(x,p')}(a^{\dagger}(\mathbf{p})a(\mathbf{p})a^{\dagger}(\mathbf{p}') - a^{\dagger}(\mathbf{p})a^{\dagger}(\mathbf{p}')a(\mathbf{p}))$$

$$= e^{-i(x,p')}[a^{\dagger}(\mathbf{p}), a(\mathbf{p}')]a(\mathbf{p}) + e^{i(x,p')}a^{\dagger}(\mathbf{p})[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')]$$

We know from the previous problem that $[a(\mathbf{p}), a^{\dagger}(\mathbf{p}')] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')$. Also, notice that [A, B] = AB - BA = (-1)(BA - AB) = -[B, A]. Thus, A becomes

$$e^{-i(x,p')}(-1)(2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')a(\mathbf{p}) + e^{i(x,p')}a^{\dagger}(2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$
$$= (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')(e^{i(x,p')}a^{\dagger}(\mathbf{p}) - e^{-i(x,p')}a(\mathbf{p}))$$

Now, with this helpful rearrangement, we have $[H_0, \varphi](f) =$

$$\int_{\mathbb{R}^{1,3}} dx^{4} f(x) \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{d^{3} \mathbf{p}}{(2\pi)^{3}} \frac{d^{3} \mathbf{p}'}{(2\pi)^{3}} \frac{w_{\mathbf{p}}}{\sqrt{2w_{\mathbf{p}'}}} (2\pi)^{3} \delta^{(3)}(\mathbf{p} - \mathbf{p}') (e^{i(x,p')} a^{\dagger}(\mathbf{p}) - e^{-i(x,p')} a(\mathbf{p}))$$

$$= \int_{\mathbb{R}^{1,3}} dx^{4} f(x) \int_{\mathbb{R}^{3}} \frac{d^{3} \mathbf{p}}{(2\pi)^{3}} \frac{w_{\mathbf{p}}}{\sqrt{2w_{\mathbf{p}}}} (e^{i(x,p)} a^{\dagger}(\mathbf{p}) - e^{-i(x,p)} a(\mathbf{p}))$$

Let's take the time derivative of $\varphi(f)$ and see what we get. Notice that $(x,p) = tw_{\mathbf{p}} + \mathbf{x} \cdot \mathbf{p}$, so the time derivative of $e^{\pm i(x,p)} = \pm iw_{\mathbf{p}}e^{\pm i(x,p)}$. Thus, $\frac{\partial \varphi}{\partial t} = \int_{\mathbb{R}^{1,3}} dx^4 f(x) \int_{\mathbb{R}^3} \frac{d^3\mathbf{p}'}{(2\pi)^3} \frac{iw_{\mathbf{p}'}}{\sqrt{2w_{\mathbf{p}'}}} (-e^{-i(x,p)}a(\mathbf{p}') + e^{i(x,p)}a^{\dagger}(\mathbf{p}'))$. This is simply i times the previous expression we derived form the commutator. Thus, $\frac{\partial \varphi}{\partial t} = i[H_0, \varphi]$, up to a set of measure zero.

Question 4. In φ^4 field theory, compute the first order term in the perturbative expansion of the scattering amplitude

$$\langle \boldsymbol{p}_2, \boldsymbol{p}_3, \boldsymbol{p}_4 | S | \boldsymbol{p}_1 \rangle$$
 (3)

Written by Prof. Sourav Chatterjee.

Proof. In a first order Dyson series expansion of S gives us $1 - \frac{ig}{4!} \int_{\mathbb{R}} d^4x : \varphi(x)^4 : +\mathcal{O}(g^2)$. We then have

$$\langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | S | \mathbf{p_1} \rangle = \langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | \mathbf{p_1} \rangle - \frac{ig}{4!} \int_{\mathbb{R}} d^4 x \langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | : \varphi(x)^4 : | \mathbf{p_1} \rangle + \mathcal{O}(g^2)$$

$$= \langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | \mathbf{p_1} \rangle - \frac{ig}{4!} \int_{\mathbb{R}} d^4 x \langle 0 | a(\mathbf{p_2}) a(\mathbf{p_3}) a(\mathbf{p_4}) : \varphi(x)^4 : a^{\dagger}(\mathbf{p_1}) | 0 \rangle + \mathcal{O}(g^2)$$

For the first term, we notice that $\langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | \mathbf{p_1} \rangle = \langle 0 | a(\mathbf{p_2}) a(\mathbf{p_3}) a(\mathbf{p_4}) a^{\dagger}(\mathbf{p_1}) | 0 \rangle$. Applying the first two operators we get either ground state back if $\mathbf{p_1} = \mathbf{p_4}$ or 0 if not. Annihilating the ground state with the third operator, we get 0, so in both cases $\langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4} | \mathbf{p_1} \rangle = 0$. Focusing on the integrand, we recall the following useful rules: $\langle 0 | a(\mathbf{p}) \varphi(x) | 0 \rangle = \frac{e^{i(x,p)}}{\sqrt{2w_{\mathbf{p}}}}, \langle 0 | \varphi(x) a^{\dagger}(\mathbf{p}) | 0 \rangle = \frac{e^{-i(x,p)}}{\sqrt{2w_{\mathbf{p}}}}.$ $\langle 0 | a(\mathbf{p_2}) a(\mathbf{p_3}) a(\mathbf{p_4}) : \varphi(x)^4 : a^{\dagger}(\mathbf{p_1}) | 0 \rangle = \langle 0 | a(\mathbf{p_2}) \varphi(x) | 0 \rangle \langle 0 | a(\mathbf{p_3}) \varphi(x) | 0 \rangle \langle 0 | a(\mathbf{p_4}) \varphi(x) | 0 \rangle \langle 0 | a^{\dagger}(\mathbf{p_1}) \varphi(x) | 0 \rangle.$ This expression is equal to $(e^{i(x,p_2+p_3+p_4-p_1)})/(\sqrt{16w_{\mathbf{p_2}}w_{\mathbf{p_3}}w_{\mathbf{p_4}}w_{\mathbf{p_1}}})$ for each suitable contraction diagram. Since the scattering involves 1 incoming particle and three outgoing particles, we want

to consider all contraction diagrams of the "four all connected to the center $\varphi(x)$ operator"-shape. The $\varphi(x)^4$ operator has 4 tails, to which the incoming and outgoing particles get connected. Since there are 8 operators, there are (8-1)!! diagrams, and 4! diagrams of this type. Thus we have 4! $(e^{i(x,p_2+p_3+p_4-p_1)})/(\sqrt{16w_{\mathbf{p_2}}w_{\mathbf{p_3}}w_{\mathbf{p_4}}w_{\mathbf{p_1}}})$ terms. Sticking these back into our integral and integrating, we get $(-\frac{ig}{4!}(4!)(2\pi)^4\delta^{(4)}(p_2+p_3+p_4-p_1))/(\sqrt{16w_{\mathbf{p_2}}w_{\mathbf{p_3}}w_{\mathbf{p_4}}w_{\mathbf{p_1}}})$. Thus we have $\langle \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}|S|\mathbf{p_1}\rangle = (-ig(2\pi)^4\delta^{(4)}(p_2+p_3+p_4-p_1))/(\sqrt{16w_{\mathbf{p_2}}w_{\mathbf{p_3}}w_{\mathbf{p_4}}w_{\mathbf{p_1}}) + \mathcal{O}(g^2)$.

Question 5. Derive Maxwell's equations as the Euler-Lagrange equations of the action

$$S = \int d^4x (-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}), \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \tag{4}$$

treating the components $A_{\mu}(x)$ as the dynamical variables. Write the equations in standard from by identifying $E^i = -F^{0i}$ and $\epsilon^{ijk}B^k = -F^{ij}$. Construct the energy-momentum tensor for this theory. Peskin & Schroeder 2.1.

Proof. First we calculate $F^{\mu\nu}$. Given our identification with E^i and B^i , we have

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$
 (5)

We notice that

$$\frac{\partial F_{\alpha\beta}}{\partial (\partial_{\gamma}A_{\lambda})}F^{\alpha\beta} = (\delta^{\gamma}_{\alpha}\delta^{\lambda}_{\beta} - \delta^{\lambda}_{\alpha}\delta^{\gamma}_{\beta})F^{\alpha\beta} = F^{\gamma\lambda} - F^{\lambda\gamma}, \tag{6}$$

with

$$F^{\lambda\gamma} = (\partial_{\lambda}A_{\gamma} - \partial_{\gamma}A_{\lambda}) = -(\partial_{\gamma}A_{\lambda} - \partial_{\lambda}A_{\gamma}) = -F^{\gamma\lambda}$$
 (7)

Similarly, we have

$$F_{\alpha\beta} \frac{\partial F^{\alpha\beta}}{\partial (\partial_{\gamma} A_{\lambda})} = F_{\alpha\beta} (\delta^{\gamma\alpha} \delta^{\lambda\beta} - \delta^{\lambda\alpha} \delta^{\gamma\beta}) = F^{\gamma\lambda} - F^{\lambda\gamma} = 2F^{\gamma\lambda} \Rightarrow \tag{8}$$

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\gamma} A_{\lambda})} = \frac{\partial F_{\alpha\beta}}{\partial (\partial_{\gamma} A_{\lambda})} F^{\alpha\beta} + F_{\alpha\beta} \frac{\partial F^{\alpha\beta}}{\partial (\partial_{\gamma} A_{\lambda})} = (-\frac{1}{4}) 4 F^{\gamma\lambda}$$
(9)

$$\frac{\partial \mathcal{L}}{\partial A_{\lambda}} = 0 \tag{10}$$

Thus, by the Euler-Lagrange Equations, we have

$$\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{\nu})}) = \frac{1}{4}\partial_{\mu}F^{\mu\nu} = 0 \tag{11}$$

Writing out the sum over μ and substituting $E^i = -F^{0i}$ and $\epsilon^{ijk}B^k = -F^{ij}$, we get

$$-\partial_{\mu}F^{\mu\nu} = \partial_{0}F^{0\nu} + \partial_{1}F^{1\nu} + \partial_{2}F^{2\nu} + \partial_{3}F^{3\nu} \tag{12}$$

$$= -\frac{\partial \mathbf{E}}{\partial t} - \partial_1 \epsilon^{1jk} B^k - \partial_2 \epsilon^{2jk} B^k - \partial_3 \epsilon^{3jk} B^k \tag{13}$$

$$= -\frac{\partial \mathbf{E}}{\partial t} + \partial_1 \epsilon^{j1k} B^k + \partial_2 \epsilon^{j2k} B^k + \partial_3 \epsilon^{j3k} B^k \tag{14}$$

$$= -\frac{\partial \mathbf{E}}{\partial t} + \nabla \times \mathbf{B} = 0 \tag{15}$$

Maxwell's Equations are

$$\mu_0 \mathbf{J} = -\frac{\partial \mathbf{E}}{\partial t} + \nabla \times \mathbf{B} \tag{16}$$

For a system with no sources, $\mathbf{J} = 0$, so this comes down to the Euler-Lagrange equations found above.

In constructing the energy-momentum tensor, we examine the usual formula in Peskin & Schroeder:

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A_{\gamma})} \partial^{\nu} A_{\gamma} - \mathcal{L} \delta^{\mu\nu} \tag{17}$$

$$= -F^{\mu\gamma}\partial^{\nu}A_{\gamma} + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}g^{\mu\nu} \tag{18}$$

where $g^{\alpha\beta}$ is our Minkowski metric. We see that, from the above assertion that $F^{\mu\nu}=-F^{\nu\mu}$, so

this is not a symmetric tensor. Thus we add $\partial_{\lambda}(F^{\mu\lambda}A^{\nu})$ to $T^{\mu\nu}$. This term is antisymmetric in its first two indices, and thus is divergenceless, so adding this gives us the same globally conserved momentum and energy. Writing this out, we have

$$\widehat{T^{\mu\nu}} := T^{\mu\nu} + \frac{1}{4} \partial_{\lambda} (F^{\mu\lambda} A^{\nu}) \tag{19}$$

$$= -F^{\mu\gamma}\partial^{\nu}A_{\gamma} + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}g^{\mu\nu} + (\partial_{\lambda}F^{\mu\lambda})A^{\nu} + F^{\mu\lambda}(\partial_{\lambda}A^{\nu})$$
 (20)

$$= F^{\mu\iota}(\partial_{\iota}A^{\nu} - \partial^{\nu}A_{\iota}) + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}g^{\mu\nu} + (-\partial_{\lambda}F^{\lambda\mu})A^{\nu}$$
(21)

$$=F^{\mu\nu}F^{\nu}_{\iota} + \frac{1}{4}F_{\mu\nu}F^{\mu\nu}g^{\mu\nu} + (-0)A^{\nu}$$
(22)

This is obviously symmetric in indices, and so is now a viable energy-momentum tensor. We now check $\widehat{T^{00}}$ and $\widehat{T^{0i}}$:

$$\widehat{T}^{00} = F^{0\iota} F_{\iota}^{0} + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \tag{23}$$

$$=E^{\iota}E_{\iota}+\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\tag{24}$$

Where, I assume, the second product is the Frobenius inner product of this tensor. In examining this inner product, we have

$$\langle , \rangle = \operatorname{tr}(\overline{F^{\mu\nu}}F^{\mu\nu}) = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix} \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$
(25)

$$= \operatorname{tr}(\begin{pmatrix} -E^2 \\ -E_x^2 + B_z^2 + B_y^2 \\ -E_y^2 + B_z^2 + B_x^2 \\ -E_z^2 + B_x^2 + B_y^2 \end{pmatrix})$$

$$(26)$$

This is equal to $2(B^2 - E^2)$. Thus, we have that $\widehat{T^{\mu\nu}} = E^2 + \frac{1}{4}2(B^2 - E^2) = \frac{1}{2}(E^2 + B^2)$.

For $\widehat{T^{0i}}$, we have

$$\widehat{T^{0i}} = F^{0j}F_j^i + \frac{1}{2}(B^2 - E^2)g^{0i}$$
(27)

$$=E^{j}\epsilon_{jik}B^{k}g^{mi} + \frac{1}{2}(B^{2} - E^{2})g^{0i}$$
(28)

$$= \mathbf{E} \times \mathbf{B} = \mathbf{S} \tag{29}$$