计算机组织结构

4 整数运算

刘博涵

2022年9月29日

教材对应章节

第3章 运算方法和运算部件

第10章 计算机算术运算

算术逻辑单元 (ALU)

- 算术逻辑单元 (ALU) 是计算机实际完成数据算术逻辑运算的部件
 - 数据由寄存器 (Registers) 提交给ALU, 运算结果也存于寄存器
 - ALU可能根据运算结果设置一些标志 (Flags),标志值也保存在处理器内的寄存器中
 - 控制器 (Control unit) 提供控制ALU操作和数据传入送出ALU的信号

全加器

• 一位 (1bit) 加法: *X* + *Y*

X	Y	C_{in}	F	$\boldsymbol{\mathcal{C}}_{\mathrm{out}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$F = X \oplus Y \oplus C_{in}$$

$$C_{out} = X \cdot Y + X \cdot C_{in} + Y \cdot C_{in}$$

 C_{in}

全加器 (一位加法器)

假设:

与门延迟: 1级门延迟 (1ty)或门延迟: 1级门延迟 (1ty)异或门延迟: 3级门延迟 (3ty)

与门和或门可以有多个输入端; 异或门只能有2个输入端

6ty

全加器 (一位加法器)

$$C_{\text{out}} = X \cdot Y + X \cdot C_{in} + Y \cdot C_{in}$$
 \longrightarrow $C_{\text{out}} = X \cdot Y + (X + Y) \cdot C_{in}$ $= X \cdot Y + (X \oplus Y) \cdot C_{in}$

实际需要2个与门,1个或门,2个异或门

延迟?

串行进位 (行波进位) 加法器

- 1位 (1bit) 加法: *X_i* + *Y_i*
- 第 i 位加法: $F_i = X_i \oplus Y_i \oplus C_{i-1}$

$$C_i = X_i C_{i-1} + Y_i C_{i-1} + X_i Y_i$$

- 缺点: 延迟慢
 - C_n : **2n** ty
 - $F_n: (2n + 1) ty$

高位的运算必须等待低位的"进位输出信号" 能否<mark>提前计算</mark>出"进位输出信号"?

全先行进位加法器

$$C_{i} = X_{i} \cdot Y_{i} + (X_{i} + Y_{i}) \cdot C_{i-1}$$

$$C_{1} = X_{1} \cdot Y_{1} + (X_{1} + Y_{1}) \cdot C_{0}$$

$$C_{2} = X_{2} \cdot Y_{2} + (X_{2} + Y_{2}) \cdot X_{1} \cdot Y_{1} + (X_{2} + Y_{2}) \cdot (X_{1} + Y_{1}) \cdot C_{0}$$

$$C_{3} = X_{3} \cdot Y_{3} + (X_{3} + Y_{3}) \cdot X_{2} \cdot Y_{2} + (X_{3} + Y_{3}) \cdot (X_{2} + Y_{2}) \cdot X_{1} \cdot Y_{1} + (X_{3} + Y_{3}) \cdot (X_{2} + Y_{2}) \cdot (X_{1} + Y_{1}) \cdot C_{0}$$

$$C_{4} = \dots$$

设:

- 生成 (Generate) 信号: $G_i = X_i \cdot Y_i$
- 传播 (Propagate) 信号: $P_i = X_i + Y_i$

则:

 $C_4 = ...$

$$C_{1} = G_{1} + P_{1} \cdot C_{0}$$

$$C_{2} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot C_{0}$$

$$C_{3} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot C_{0}$$

全先行进位加法器

延迟: 1ty + 2ty + 3ty = 6ty

延迟和加法器的位数无关

部分先行进位加法器

实现一个32位的加法器

- ◆采用行波进位(RCA):
 - 65级门延迟
- ◆采用全先行进位 (CLA):
 - 6级门延迟
 - ・ 难以实现, C_{32} 需要1个或门和32个与门,且最大需要33输入的与门和或门

- ◆ 部分先行进位加法器 (串联4个8位CLA)
 - 12级门延迟

2021年国产第一台光刻机可以制作28nm芯片 2013年的iPhone5s使用28nm芯片,主频1.3GHz

	28 nm工艺(门	延迟 0.02 ns)	7nm工艺(门延	E迟0.002ns)
加法器	最小延迟时间	最大时钟频率	最小延迟时间	最大时钟频率
32位RCA	1.3ns	0.77GHz	0.13ns	7.7GHz
32位CLA	0.12ns	8.33GHz	0.012ns	83.3GHz
4级8位CLA	0.24ns	4.17GHz	0.024ns	41.7GHz

部分先行进位加法器

- ・思路
 - 采用多个CLA并将其**串联**,取得**计算时间**和**硬件复杂度**之间的**权衡**
- ・例子

延迟怎么算?

加法

- $[X + Y]_c = [X]_c + [Y]_c (MOD 2^n)$
- 溢出:

- $X_n = Y_n \coprod F_n \neq X_n$, Y_n : $overflow = X_n Y_n \overline{F_n} + \overline{X_n} \overline{Y_n} F_n$
- $C_n \neq C_{n-1}$: $overflow = C_n \oplus C_{n-1}$

减法

• $[X - Y]_c = [X]_c + [-Y]_c (MOD 2^n)$

• 溢出: 与加法相同

乘法

10进制计算机 (ENIAC)

2进制计算机 (EDVAC)

被乘数 乘数	0111 × 0110	
	0000	
÷7 /\ 10	0111	
部分积	0111	
	0000	
积	0101010	

乘法运算过程

0111
× 0110
0000
0111
0111
0000
0101010

乘数	被乘数	部分积
0110	0111	0000
0110	0111	0000
0 1 1 0	0 1 1 1 0	0111 0
0110	0 1 1 1 0 0	10101 0
0 1 1 0	0111000	0101010

乘数右移一位 被乘数左移一位 中间结果直接 与部分积累加

需要: n位支持右移 2n位支持左移 2n位寄存器

寄存器寄存器

2n位加法器

乘法流程图

N位乘法器

乘数寄存器: X 被乘数寄存器: Y

乘积寄存器: Z

乘法流程优化: 加法和移位并行

时钟上升沿到来之前

- 各寄存器中的数据被取出
- 寄存器中数据不会发生变化

时钟上升沿到来时

- 寄存器根据输入发生变化
- 已经被取出的数据不会发生变化

乘法流程优化: 加法和移位并行

乘法器优化:减少不必要的硬件

- 一个n位加法器
- 一个n位的寄存器:被乘数
- 一个2n位支持右移的寄存器:乘数和乘积共用

优化的乘法运算过程

	令仔恭A	令仔器B
	部分积 乘数	被乘数
初始化	00000110	0111
A右移,首位补0	0000011	0111
A高4位加运算	01110011	0111
A右移,首位补0	00111001	0111
A高4位加运算	10101001	0111
A右移,首位补0	01010100	0111
A右移,首位补0	00101010	0111

史方四人

史方即D

优化的乘法流程图

乘法的问题

问题1: $[X \times Y]_c \neq [X]_c \times [Y]_c$

问题2:溢出

原码一位乘法

- 将被乘数和乘数由补码表示改为原码表示
- · 符号位和数值位分开运算
- 将乘积结果由原码表示改为补码表示

	符号位	数值位
- 7	1	111
× -6	⊕ 1	× 110
42	0	101010

补码一位乘法: 布斯算法

$$[X \times Y]_{c} = [X \times y_{n}y_{n-1} \dots y_{2}y_{1}]_{c}$$

$$= [X \times (-y_{n} \times 2^{n-1} + y_{n-1} \times 2^{n-2} + \dots + y_{2} \times 2^{1} + y_{1} \times 2^{0})]_{c}$$

$$= [X \times \begin{pmatrix} -y_{n} \times 2^{n-1} + y_{n-1} \times (2^{n-1} - 2^{n-2}) + \dots \\ +y_{2} \times (2^{2} - 2^{1}) + y_{1} \times (2^{1} - 2^{0}) \end{pmatrix}]_{c}$$

$$= [X \times \begin{pmatrix} (y_{n-1} - y_{n}) \times 2^{n-1} + (y_{n-2} - y_{n-1}) \times 2^{n-2} + \dots \\ +(y_{1} - y_{2}) \times 2^{1} + y_{0} - y_{1} \times 2^{0} \end{pmatrix}]_{c}$$

$$= [2^{n} \times \sum_{i=0}^{n-1} (X \times (y_{i} - y_{i+1}) \times 2^{-(n-i)})]_{c}$$

$$= [P_{i+1}]_{c}$$

$$[P_{i+1}]_{c} = [2^{-1} \times (P_{i} + X \times (y_{i} - y_{i+1}))]_{c}$$

补码一位乘法: 布斯算法

$$[X imes Y]_c =$$
 $2^n imes [P_n]_c$ 即约定部分积的小数点到最右侧 $[P_{i+1}]_c = [2^{-1} imes (P_i + X imes (y_i - y_{i+1}))]_c$ 求得 $[P_i]_c$ 后,根据两位即可求得 $[P_{i+1}]_c$ $y_{i+1}y_i = 01$ 则 $[P_{i+1}]_c = [2^{-1} imes (P_i + X)]_c$ 小执行 $[P_i]_c + [\pm X]_c$ 然后右移一位 $y_{i+1}y_i = 00$ 则 $[P_{i+1}]_c = [2^{-1} imes (P_i - X)]_c$ 小右移一位 $y_{i+1}y_i = 11$ 则 $[P_{i+1}]_c = [2^{-1} imes P_i]_c$ 一右移一位

运算步骤:

- 1. 增加 $y_0 = 0$
- 2. 根据 $y_{i+1}y_i$ 决定是否执行[P_i]_c + [$\pm X$]_c
- 3. 右移部分积
- 4. 重复步骤 2和步骤 3共 n 次,得到最终结果

布斯乘法运算过程

	- 7
×	- 6
	42

$$[X]_c = 1001$$

 $[-X]_c = 0111$
 $[Y]_c = 1010$

i	$y_{i+1}y_i$	操作
0	0 0	右移
1	10	$[P_i]_c + [-X]_c$
		右移
2	0 1	$[P_i]_c + [X]_c$
		右移
3	10	$[P_i]_c + [-X]_c$
		右移

	寄存器A	寄存器B
	部分积 乘数	被乘数
	00001010	1001
	00000101	1001
	01110101	1001
	00111010	1001
	11001010	1001
	01100101	1001
•••	11010101	1001
	01101010	1001

布斯乘法运算过程

	- 7
×	- 6
	42

$$[X]_c = 1001$$

 $[-X]_c = 0111$
 $[Y]_c = 1010$

i	$y_{i+1}y_i$	操作
0	0 0	右移
1	10	$[P_i]_c + [-X]_c$
		右移
2	0 1	$[P_i]_c + [X]_c$
		右移
3	10	$[P_i]_c + [-X]_c$
		右移

奇仔器A	奇仔器B
部分积 乘数	被乘数
00001010	1001
00000101	1001
 01110101	1001
 00111010	1001
11001010	1001
 11100101	1001
01010101	1001
00101010	1001

字左型D

字左盟A

=42

乘法溢出

对于带符号整数:

- 当 $-2^{n-1} \le x \cdot y \le 2^{n-1} 1$ 时不溢出
- 即当乘积的高n位全0或全1,并等于低n位的最高位时,不溢出

对于无符号整数:

- 当乘积的高n位全0,不溢出

带符号整数和无符号整数的溢出判断不同 —— 分无符号数乘指令和带符号数乘指令

硬件不判断溢出:寄存器会存2n位乘积

软件判断溢出: 1) 编译器判断溢出; 2) 程序员通过高级语言判断溢出

阵列乘法器

除法

不同情形的处理

• 若被除数为0,除数不为0:商为0

例如: $0 \div 1 = 0$

• 若被除数不为0,除数为0:发生"除数为0"异常

例如: $1 \div 0 = NaN$

• 若被除数、除数均为0: 发生"除法错"异常

例如: $0 \div 0 = NaN$

• 若被除数、除数均不为0: 进行进一步除法运算

例如: 1 ÷ 1 = ?

除法

手工演算除法

- 在被除数的左侧补充符号位,将除数的最高位与被除数的次高位对齐
- 从被除数中减去除数,若够减,则上商为1;若不够减,则上商为0
- 右移除数, 重复上述步骤

除法器

- 一个2n位加法器
- 一个2n位寄存器: 被除数/余数
- 一个2n位支持右移的寄存器:除数
- 一个n位支持左移的寄存器:商

除法运算过程

		0010	
0011	0	0000111	
	0	000	
•		0001	•
	_	0000	
		0011	
		0011	_
		0001	
	_	0000	
		0001	-

	寄存器X	寄存器Y	寄存器Z
	余数	除数	商
初始化	00000111	00110000	0000
余数<除数	00000111	00011000	0000
Y右移	00000111	00011000	0000
余数<除数	00000111	00001100	0000
Y右移	00000111	00001100	0000
余数>除数	00000111	00000110	0000
X-Y; Y右移; Z左移补1	00000001	00000110	0001
余数<除数	00000001	00000011	0001
Z左移补 <mark>0</mark>	00000001	00000011	0010

优化的除法器

- · 余数和除数的减法运算中,实际上只有n位参与了运算
- · 余数和除数寄存器中,至少有一个需要支持左移或右移
- · 商寄存器必须支持左移,且只需要n位

- 一个n位加法器
- 一个n位支持左移的寄存器:被除数/余数
- 一个n位支持左移的寄存器:余数/商
- 一个n位寄存器:除数

异号的除法

比较余数和除数

• 如何判断 "**够减**" : 余数是否足够 "大"

• 如果余数和除数的符号相同: 减法

• 如果余数和除数的符号不同: 加法

中间余数	除数	减法		加法	
R	Y	0	1	0	1
0	0	够	不够		
0	1			够	不够
1	0			不够	够
1	1	不够	够		

余数减除数后: 1) 绝对值变小; 2) 符号不能变

补码除法运算过程

$$-7 \div 3 = -2 \dots - 1$$

初始化 X和Z左移,空1位 余数+除数 (变号) 恢复余数、补商 X和Z左移,空1位 余数+除数(变号) 恢复余数、补商 X和Z左移,空1位 余数+除数(未变号) X和Z左移,空1位 余数+除数 (变号) 恢复余数、补商

寄存器X 寄存器Z 寄存器Y 除数 商 余数 0011 1111001 1111001 0011 0010001 0011 11110010 0011 1110010 0011 0001010 0011 11100100 0011 1100100 0011 0011 11111001 1111001 0011 0010001 0011 11110010 0011 11111110

补码除法流程图

不恢复余数除法

问题:恢复余数成本高

大致思路: 不恢复余数

- ・只考虑减法
 - 如果**余数** *R_i*足够大

$$R_{i+1} = 2R_i - Y$$

• 如果余数 R_i 不够大

$$R_{i+1} = 2(R_i + Y) - Y = 2R_i + Y$$

补码不恢复余数除法流程图 1

N位乘法器 余数寄存器: X 除数寄存器: 商寄存器: 判断 和Y符号 同号 X-Y X+Y第二轮

补码不恢复余数除法流程图 2

不恢复余数补码除法运算过程

$$-7 \div 3 = -2 \dots - 1$$

初始化

余数+除数 (同号)

X和Z左移,末位补1

2余数-除数 (同号)

X和Z左移,末位补1

2余数-除数 (同号)

X和Z左移,末位补1

2余数-除数 (异号)

X和Z左移,末位补0

2余数+除数 (同号)

商修正、余数修正

寄存器X 寄存器Z 寄存器Y

	余数	商	除数	
	1111	1001	0011	
	0010	1001	0011	
	0101	0011	0011	
į	0010	0011	0011	
:	0100	0111	0011	•••
į	0001	0111	0011	
	0010	1111	0011	
į	1111	1111	0011	j
	1111	1110	0011	
	0010	1110	0011	
	1111	1110	0011	

余数和被除数异号 &被除数和除数异号: 余数-除数

Z左移一位补1;被除数和除数异号: Z末位加1

其他

只有一种情况发生溢出:

• $\stackrel{\underline{}}{=} \frac{-2^{n-1}}{-1} = 2^{n-1}$

编译器处理一个变量与 2^n 相除时,一般采用右移运算实现:

无符号: 逻辑右移

・ 帯符号: 算术右移

• 能整除时:直接右移得到结果,被移出的全为0

• 不能整除时:被移出数存在非0,采取朝零舍入

• 无符号: 直接右移得到结果, 移出的低位直接舍弃

• **带符号**:加偏移量2^k – 1,然后再移k位,低位截断

例: 14/4=3 0000 1110 >> 0000 0011 -14/4=-3 1111 0010 + 0000 0011 = 1111 0101 >> 1111 1101

阵列除法器

总结

- 算术逻辑单元 (ALU)
 - 全加器
 - 串行进位加法器,全先行进位加法器,部分先行进位加法器
- 补码表示的整数运算

• 加法: 溢出判定

• 减法: 硬件实现

• 乘法: 布斯算法

• 除法:恢复余数 / 不恢复余数

谢谢

bohanliu@nju.edu.cn

