

Uniwersytet Ekonomiczny we Wrocławiu

Programowanie w języku Java

w ramach projektu

"Trzecia Misja Uniwersytetu Ekonomicznego we Wrocławiu dla dzieci i młodzieży"

Część I

Rok szkolny 2021/22

Prowadzący: dr inż. Piotr Tutak

Przedstawiamy się - lista obecności

Informacje wstępne

Środowisko programistyczne: NetBeans IDE 8.2

Język programowania: JAVA

NetBeans IDE

NetBeans IDE jest to środowisko programistyczne (Integrated **D**evelopment **E**nvironment) służące do tworzenia, kompilowania, uruchamiania i testowania programów.

Całe IDE jest napisane w Javie, jednak umożliwia ono również tworzenie programów w innych językach. Ponadto dostępne są również moduły rozszerzający jego możliwości np. usługi sieciowe, aplikacje mobilne.

NetBeans IDE jest produktem dostępnym za darmo oraz bez żadnych ograniczeń co do jego używania.

JAVA – wprowadzenie cz.1

JAVA (wym. dżawa) - obiektowy język programowania

- Stworzony przez grupę Jamesa Goslinga z firmy Sun Microsystems z Kalifornii w 1990 roku
- Początkowa nazwa to OAK czyli dąb
- Podstawowe koncepcje przejęte z języka Smalltalk oraz z języka C++ (duża część składni i słów kluczowych)
- Uniwersalny język programowania, raz napisany kod można wykorzystać w dowolnym środowisku, do którego przeniesiono JVM (Java Virtual Machine, jest to rodzaj wirtualnego komputera)

JAVA – wprowadzenie cz.2

- Dzięki standaryzacji maszyny wirtualnej, programy napisane w Javie są uniwersalne tzn. wykonują się identycznie w każdym systemie operacyjnym
- Programy napisane w Javie są kompilowane do poziomu kodu pośredniego, nazywany kodem bajtowym Javy
- Kod bajtowo jest interpretowany przez JVM do postaci programu wykonywalnego dla danego systemu operacyjnego

JAVA – wprowadzenie cz.3

- Kod źródłowy
- Kompilator
- 3. Kod wynikowy
- 4. Maszyna wirtualna

JAVA – Edytory

Zintegrowane środowiska programistyczne

Borland JBuilder - http://www.borland.com/products/download/

Eclipse – http://www.eclipse.org/

IBM VisualAge for Java - http://www7.software.ibm.com/vad.nsf

JCreator - http://www.jcreator.com/

Kawa - http://www.macromedia.com/

NetBeans - http://www.netbeans.org/

Sun Forte for Java – http://www.sun.com/forte/ffj/index.html

Sun One Studio – http://forte.sun.com/ffj/index.html

VIM – http://www.vim.org/

Instalacja programu NetBeans cz. 1

https://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-3413139-esa.html

Typ systemu

x64-based PC

Instalacja programu NetBeans cz. 2

Programujemy?

Fundusze

Program nr 1 Hello World!

```
Team Tools Window Help
                             × 🚳 JavaApplication1.java × 🚳 JavaApplication2.java ×
                                                                          Source
                         1
                             * To change this license header, choose License Headers in Project Properties.
                             * To change this template file, choose Tools | Templates
                             * and open the template in the editor.
                            package javaapplication2;
                       8
                             * @author Admin
                      10
                      11
                      12
                            public class JavaApplication2 {
                      13
                      14
                      15
                                 * @param args the command line arguments
                      16
                                public static void main(String[] args) {
                      17
                                    // TODO code application logic here
                      18
                                    System.out.print("Hello World!");
                      19
                      20
                      21
                      22
```


Przejście do nowej linii definiujemy poleceniem \n

```
public static void main(String[] args) {
    System.out.print("Hello\nmy\nWorld!!!");
}
```

```
Output - JavaApplication3 (run) ×

run:
Hello
my
World!!!BUILD SUCCESSFUL (total time: 0 seconds)
```


Proszę napisać program, który wyświetli na ekranie użytkownika:

Hello

*

Zmienne cz. 1

Liczby całkowite

typ	I. bitów	Zakres liczb	
byte	8	–128 do 127	
short	16	-32 768 do 32 767	
int	32	-2 147 483 648 do 2 147 483 647	
long	64	-9 223 372 036 854 775 808 do 9 223 372 036 854 775 807	

Liczby zmiennopozycyjne

typ	I. bitów	Zakres liczb
float	8	$-3,4\cdot10^{38}$ do $3,4\cdot10^{38}$
double	16	-1,8·10 ³⁰⁸ do 1,8·10 ³⁰⁸

int wiek=23;

typ zmiennej

przypisana wartość zmiennej


```
public static void main(String[] args) {
    String message = "To jest mój pierwszy program";
    System.out.println(message);
}
```


Program nr 5 – ćwiczenie

- == równe,
- < mniejsze,
- <= mniejsze bądź równe,
- > większe,
- >= większe bądź równe

&& logiczne i,

Operacje logiczne

|| logiczne lub.


```
int x = 1;
int y = 1;
int z = 2;
x == y && z > y; // true && true => true
x <= y && z <= x; // true && false => false
x == y || z > y; // true || true => true
x <= y || z <= x; // true || false => true
```

Operacja	Wynik
prawda i prawda	prawda
prawda i fałsz	fałsz
fałsz i prawda	fałsz
fałsz i fałsz	fałsz
prawda lub prawda	prawda
prawda lub fałsz	prawda
fałsz lub prawda	prawda
fałsz lub fałsz	fałsz


```
if (temperature < 36) {
    System.out.println("Jesteś osłabiony?");
}</pre>
```



```
Source
 1
   2
       * To change this license header, choose License Headers in Project Properties.
 3
       * To change this template file, choose Tools | Templates
       * and open the template in the editor.
 5
 6
     package javaapplication3;
 8
   9
10
       * @author Admin
11
12
      public class JavaApplication3 {
13
14
   15
          * @param args the command line arguments
16
   17
         public static void main(String[] args) {
 Q
             int temperature=35;
19
             if (temperature < 36) {
20
                 System.out.println("Jesteś osłabiony");
21
22
23
24
25
main >
Output - JavaApplication3 (run) X
    Jesteś osłabiony
    BUILD SUCCESSFUL (total time: 0 seconds)
```



```
if (temperature < 36) {
    System.out.println("Jesteś osłabiony?");
}
else {
    System.out.println("Masz 36 lub więcej stopni.");
}</pre>
```



```
public static void main(String[] args) {
int temperature = 38;
                                                            double t=40;
                                                            if(t<36){
if (temperature < 36) {
                                                              System.out.println("jestes oslabiony");
    System.out.println("Jesteś osłabiony?");
                                                            else if (t < 37) {
                                                                 System.out.println("jestes OK");
else if (temperature < 37) {
                                                            else if(t<42){
    System.out.println("Wszystko w normie!");
                                                                 System.out.println("jestes przeziębiony");
else if (temperature < 38) {
    System.out.println("Jesteś przeziębiony?");
else {
    System.out.println("Masz co najmniej 38 stopni! Biegiem do lekarza!");
```


Proszę napisać program, który na podstawie wprowadzonego wieku przypisze nas do jednej z trzech grup wiekowych:

- 1. $0-12 \rightarrow dziecko$
- 2. 13 − 18 > młodzież
- 3. $18 > x \rightarrow dorosty$


```
int temperature = 37;
switch (temperature) {
    case 35:
        System.out.println("Jesteś osłabiony?");
        break;
    case 36:
        System.out.println("Wszystko w normie!");
        break;
    case 37:
        System.out.println("Jesteś przeziębiony?");
        break;
    case 38:
        System.out.println("Chyba jesteś chory.");
        break;
    default:
        System.out.println("Nie wiem jak się czujesz :(");
        break;
```


Program nr 11 – funkcja

Napisać funkcję generującą 5 gwiazdek.

```
public class JavaApplication5 {
   public static void rysuj gwiazdki () {
             System.out.println("*****");
    public static void main(String[] args) {
        rysuj gwiazdki();
 Output - JavaApplication5 (run) ×
       run:
       *****
      BUILD SUCCESSFUL (total time: 0 seconds)
```

```
public class JavaApplication5 {
   public static void rysuj gwiazdki() {
             System.out.println("*****");
    public static void main(String[] args) {
        //rysuj gwiazdki();
 Output - JavaApplication5 (run) X
       run:
       BUILD SUCCESSFUL (total time: 0 seconds)
```


Działania arytmetyczne: dodawanie

Działania arytmetyczne: dodawaniem, odejmowanie, mnożenie i dzielenie

```
public static void main(String[] args) {
   int a=8;
   int b=2;
   int w=a+b;
   System.out.println("Wynik dodawania "+a+" + "+b+" to "+w);

   w=a-b;
   System.out.println("Wynik odejmowania "+a+" - "+b+" to "+w);

   w=a*b;
   System.out.println("Wynik mnożenia "+a+" * "+b+" to "+w);

   w=a/b;
   System.out.println("Wynik dzielenia "+a+" / "+b+" to "+w);
}
```


Program nr 14 – kalkulator (1/3)

Zadanie

Stworzyć program kalkulator, który na podstawie wybranej funkcji będzie wykonywał jedna z czterech działanie arytmetyczne:

- A. Dodawaniem case 1
- B. Odejmowanie case 2
- C. Mnożenie case 3
- D. Dzielenie case 4

Uwagi. Użyć instrukcji switch

```
int temperature = 37;
switch (temperature) {
   case 35:
        System.out.println("Jesteś osłabiony?");
        break:
   case 36:
        System.out.println("Wszystko w normie!");
        break;
        System.out.println("Jesteś przeziębiony?");
        break;
   case 38:
        System.out.println("Chyba jesteś chory.");
        break;
   default:
        System.out.println("Nie wiem jak się czujesz :(");
        break;
```


Program nr 14 – kalkulator (2/3)

Rozwiązanie – krok 1

```
public class JavaApplication6 {

public static void działanie(int wybor, int a, int b) {

switch (wybor) {

case 1:
    int wynik=a+b;
    System.out.println("Wynik dodawania "+a+" + "+b+" to "+wynik);
    break;
    default:
        System.out.println("Blad");
}

public static void main(String[] args) {
    działanie(1,2,4);
}
```

```
Output - JavaApplication6 (run) ×

run:
Wynik dodawania 2 + 4 to 6
BUILD SUCCESSFUL (total time: 0 seconds)
```

```
public class JavaApplication6 {

public static void działanie(int wybor, int a, int b) {
    switch(wybor) {
    case 1:
        int wynik=a+b;
        System.out.println("Wynik dodawania "+a+" + "+b+" to "+wynik);
        break;
    default:
        System.out.println("Błąd");
    }
}

public static void main(String[] args) {
    działanie(5,2,4);
}
```

```
Output - JavaApplication6 (run) ×

run:
Błąd
BUILD SUCCESSFUL (total time: 0 seconds)
```


Program nr 14 – kalkulator (3/3)

Rozwiązanie pełne

```
14
           public static void działanie(int wybor, int a, int b) {
15
                   switch (wybor) {
16
                   case 1:
17
                       int wynik=a+b;
18
                       System.out.println("Wynik dodawania "+a+" + "+b+" to "+wynik);
19
20
                   case 2:
21
                       wynik=a-b;
                       System.out.println("Wynik odejmowania "+a+" - "+b+" to "+wynik);
22
23
                       break:
24
                   case 3:
25
                       wynik=a*b;
26
                       System.out.println("Wynik mnożenia "+a+" * "+b+" to "+wynik);
28
                   case 4:
29
                       wvnik=a/b;
30
                       System.out.println("Wynik dzielenia "+a+" / "+b+" to "+wynik);
31
                       break:
32
                   default:
33
                       System.out.println("Bład");
34
35
36
           public static void main(String[] args) {
                działanie(2,2,4);
38
39
javaapplication6. JavaApplication6
                              ( main )
Output - JavaApplication6 (run) X
     Wynik odejmowania 2 - 4 to -2
     BUILD SUCCESSFUL (total time: 0 seconds)
```


Zmienne

1. Liczby całkowite

typ	I. bitów	Zakres liczb
byte	8	–128 do 127
short	16	-32 768 do 32 767
int	32	-2 147 483 648 do 2 147 483 647
long	64	-9 223 372 036 854 775 808 do 9 223 372 036 854 775 807

3. Boolean:

- 0 (false fałsz)
- 1 (true prawda)
- 4. String ciąg znaków

2. Liczby zmiennopozycyjne

typ	I. bitów	Zakres liczb
float	8	$-3,4\cdot10^{38}$ do $3,4\cdot10^{38}$
double	16	-1,8·10 ³⁰⁸ do 1,8·10 ³⁰⁸

nazwa zmiennej

int wiek=23;

typ zmiennej

przypisana wartość zmiennej

Tablice

> W informatyce liczenie zawsze zaczynamy od zera dlatego najmniejszym indeksem w tablicy jest zero.

- Uzyskanie wartości danego indeksu tablicy: array[4] → 16
- Modyfikacja wartości danego indeksu tablicy: array[4] = 20
- Metoda array.length sprawdzi nam długość tablicy: 5
 Długość tablicy jest zawsze o 1 większa od ostatniego numeru indeksu tablicy.

Tablice – tworzenie. Sposób 1

```
public static void main(String[] args) {
   // I Sposób
   int[]tab=new int[5]; // tablica przyznaja jeden rozmiar, który zostaje już do końca
   System.out.println(tab[0]); // tablica po stworzeniu jest wypełniona elementami domyślnymi, dla int są to zera
    tab[0]=2;
   tab[1]=13;
   tab[2]=5;
   tab[3]=8;
   tab[4]=12;
   System.out.println(tab[0]);
   System.out.println(tab[1]);
   System.out.println(tab[2]);
    System.out.println(tab[3]);
    System.out.println(tab[4]);
    System.out.println(tab.length);
    //System.out.println(tab[5]);
```



```
run:
0
2
13
5
8
12
5
BUILD SUCCESSFUL (total time: 0 seconds)
```

*Obsługa błędu → tab [5]

int i=4; if (i>=0 && i < tab.length) System.out.println(tab[i])

Tablice – tworzenie. Sposób 2

```
public static void main(String[] args) {
    // II Sposób
    String[] kolory ={"czerwony", "zielony", "niebieski"};
    System.out.println(kolory[1]);
    System.out.println("Długość" + kolory.length);
    kolory[1]="czarny";
    System.out.println(kolory[1]);
}
```



```
run:
zielony
Długość3
czarny
BUILD SUCCESSFUL (total time: 0 seconds)
```


Wczytywanie danych

```
package in_out;
import java.util.Scanner;

public class In_out {

    /**
    * @param args the command line arguments
    */
    public static void main(String[] args) {
        Scanner scan=new Scanner(System.in);
        System.out.println("Ile masz lat?");
        String wiek=scan.nextLine();
        System.out.println("A wiec masz "+wiek);
    }
}
```

```
run:
Ile masz lat?
25
A więc masz 25
BUILD SUCCESSFUL (total time: 2 seconds)
```

nextInt() – odczytuje kolejną liczbę całkowitą nextDouble() – odczytuje kolejną liczbę zmiennoprzecinkową nextBoolean() – odczytuje kolejną liczbę typu boolean

JAVA oferuje gotowe klasy, które w prosty sposób umożliwiają wprowadzenie danych przez użytkownika "z klawiatury".

Klasa Scanner znajduje się w pakiecie java.until, dlatego aby skorzystać z niej należy ją zaimportować → import

Następnie stworzyć obiekt typu Scanner

Metoda nextLine() wstrzymuje działanie programu do momentu wpisania przez użytkownika danych "z klawiatury", zatwierdzając enterem

- do wyświetlania danych w konsoli posługujemy się strumieniem, przypisanym do obiektu System.out
- do wczytywanie danych z klawiatury skorzystamy ze strumienia System.in

Program nr 15 – równanie kwadratowe (1/3)

$$x^{2} + 3x - 4 = 0$$

$$a = 1 \quad b = 3 \quad c = -4$$

$$\Delta = b^{2} - 4 \cdot a \cdot c = 3^{2} - 4 \cdot 1 \cdot (-4) = 9 + 16 = 25$$

$$\sqrt{\Delta} = \sqrt{25} = 5$$

$$x_{1} = \frac{-b + \sqrt{\Delta}}{2 \cdot a} = \frac{-3 + 5}{2 \cdot 1} = \frac{2}{2} = 1$$

$$x_{2} = \frac{-b - \sqrt{\Delta}}{2 \cdot a} = \frac{-3 - 5}{2 \cdot 1} = \frac$$

$$\Delta > 0 \quad \Delta = 0 \quad \Delta < 0$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2 \cdot a}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2 \cdot a}$$

$$x_3 = \frac{-b + \sqrt{\Delta}}{2 \cdot a}$$
Brak pierwiastków

Program nr 15 – równanie kwadratowe (2/3)

```
import java.util.Scanner;
public class Rownanie kwadratowe {
    public static void main(String[] args) {
        Scanner scan=new Scanner(System.in);
        System.out.println("Wprowadź a:");
        int a=scan.nextInt();
        System.out.println("Wprowadź b:");
        int b=scan.nextInt();
        System.out.println("Wprowadź c:");
        int c=scan.nextInt();
        System.out.println("a="+a+" b="+b+" c="+c);
```


Program nr 15 – równanie kwadratowe (3/3)

```
package matematyka;
import static java.lang.Math.*;
public class Matematyka {
    /**
    * @param args the command line arguments
    */
    public static void main(String[] args) {
        double first = 9.0;
        int second = 3;
        double sqrt = sqrt(first); //pierwiastek kwadratowy
        double power = pow(first, second); //9 do potegi 3

        System.out.println("Pierwiastek z " + first + " wynosi: " + sqrt);
        System.out.println("Liczba " + first + " podniesiona do potegi " + second + " to " + power);
}
```


Pętla for

Petla for

```
for(wyrażenie początkowe ; warunek ; modyfikator_licznika){
  instrukcje do wykonania
}
```

```
public static void main(String[] args) {
   for (int i=0;i<12;i++) {
      System.out.println(i);
   }
}</pre>
```



```
Output - JavaApplication7 (run) ×

run:

0
1
2
3
4
5
6
7
8
9
10
11
BUILD SUCCESSFUL (total time: 0 seconds)
```


Pętla for – kombinacja 3 cyfrowa

```
public static void main(String[] args) {
    int i,j,k;
    for (i = 0; i < 37; i++) {
        for (j = 0; j < 37; j++) {
            for (k = 0; k < 37; k++) {
                System.out.println(i+" "+j+" "+k+"\n");
        }
}</pre>
```

```
Output - JavaApplication16 (run) ×

0 0 34

0 0 35

0 0 36

0 1 0

0 1 1

0 1 2
```


Program nr 16 – pętla for i funkcja (1/2)

Zadanie

Napisz funkcję rysującą prostokąt o zadanych wymiarach, który składa się z samych gwiazdek.

Na przykład po wywołaniu tej funkcji z parametrami 8 i 3 powinniśmy dostać:

Program nr 16 – pętla for i funkcja (2/2)

Rozwiązanie

```
12
       public class JavaApplication7 {
13
14
          public static void rysuj prostokąt(int a, int b) {
15
               for (int i=0;i<b;i++) {
16
                            for (int k=0; k<a; k++) {
17
                            System.out.print("*");
18
19
                System.out.println("");
 20
 21
 22
 23
 24
            public static void main(String[] args) {
 25
               rysuj prostokąt(8, 3);
 26
27
28
 29
javaapplication7.JavaApplication7
                               ( main >
Output - JavaApplication7 (run) X
     run:
     BUILD SUCCESSFUL (total time: 0 seconds)
```


Pętla while

Pętla while

```
while(warunek){
 instrukcje do wykonania
}
```

```
Output - JavaApplication19 (run) ×

run:

To jest petla

Koniec petli

BUILD SUCCESSFUL (total time: 0 seconds)
```


Pętla do while

Petla do while

```
do{
  instrukcje do wykonania
}
while(warunek);
```

```
public static void main(String[] args) {
    int licznik = 0;
    do{
        System.out.println("To jest petla");
        licznik++;
    }
    while(licznik<0);
    System.out.println("Koniec petli");
}</pre>
```

```
Output-JavaApplication19 (run) ×

run:

To jest petla

Koniec pętli

BUILD SUCCESSFUL (total time: 0 seconds)
```


Petla for each

Petla for each

→ dla każdego elementu z tablicy

for(Typ_Obiektu nazwa_obiektu : nazwa_tablicy){ ... }

```
public static void main(String[] args) {
  int[] tablica = new int[5]; //wypełnienie tablicy
  for (int i = 0; i < 5; i++) {
     tablica[i] = i + 1;
  }
  for (int x : tablica) { //wyświetlenie przy użyciu pętli for each
     System.out.println(x);
  }
}</pre>
```

```
Output - JavaApplication19 (run) ×

run:

1
2
3
4
5
BUILD SUCCESSFUL (total time: 0 seconds)
```


Tablice – pętla for each

```
public static void main(String[] args) {
    String[] kolory ={"czerwony", "zielony", "niebieski", "czarny", "biały"};

    System.out.println("For:");
    for (int i=0; i<kolory.length ;i++)
        System.out.println (kolory[i]);

    System.out.println("For each:"); // pętla obiektowa dla każdego elementu
    for (String item : kolory) { // (zmienna pomocnicza typu jak tablica : tablica)
        System.out.println(item);
    }
}</pre>
```

```
run:
For:
czerwony
zielony
niebieski
czarny
biały
For each:
czerwony
zielony
niebieski
czarny
biały
BUILD SUCCESSFUL (total time: 0 seconds)
```


Program nr 17

Napisać program za pomocą jednej z poznanych pętli który wyświetli na ekranie użytkownika wszystkie numery dni wprowadzonego miesiące.

Podpowiedź.

Zastosować instrukcje warunkową


```
public class Test{
  public static void main(String[] args){
    System.out.println("Witaj Javo");
  }
}
```

- 1 deklaracja klasy o nazwie **T**est, ciało klasy
- 2 deklaracja funkcji o nazwie **m**ain, ciało metody
- Pierwsza litera nazwy klasy przyjęło się zapisywać wielką literą
- Nazwy metod piszemy małymi literami

Dzięki temu wiemy co jest klasą a co metodą.

Test.java → kompilator → Test.class → uruchomienie JVM → wynik na konsoli

Plik źródłowy (Nasz kod – język java zrozumiały dla nas) Plik pośredni, System operacyjny plik wykonywalny (kod pośredni, kod bajtowy, układ 0101100)

Nawiasy klamrowe – 2 konwencje zapisu

```
public class Hello{
    public static void main(String[] args){
        System.out.print("Hello World");
    }
}
```

```
public class Hello
{
    public static void main(String[] args)
    {
        System.out.print("Hello World");
    }
}
```


Tutorial

- https://www.samouczekprogramisty.pl/kurs-programowania-java
- https://javastart.pl/baza-wiedzy
- https://www.javappa.com/kurs-java
- http://programowaniejava.pl

Źródła

• https://matfiz24.pl/funkcja-kwadratowa/rownanie-kwadratowe

Dziękuję za uwagę!

