	aYahoo	ImageNet	SUN
Visual N-Grams	72.4	11.5	23.0
CLIP	98.4	76.2	58.5

Table 1. Comparing CLIP to prior zero-shot transfer image classification results. CLIP improves performance on all three datasets by a large amount. This improvement reflects many differences in the 4 years since the development of Visual N-Grams (Li et al., 2017).

CLIP is a significant step towards flexible and practical zero-shot computer vision classifiers. As mentioned above, the comparison to Visual N-Grams is meant for contextualizing the performance of CLIP and should not be interpreted as a direct methods comparison between CLIP and Visual N-Grams as many performance relevant differences between the two systems were not controlled for. For instance, we train on a dataset that is 10x larger, use a vision model that requires nearly 100x more compute per prediction, likely used over 1000x their training compute, and use a transformer-based model which did not exist when Visual N-Grams was published. As a closer comparison, we trained a CLIP ResNet-50 on the same YFCC100M dataset that Visual N-Grams was trained on and found it matched their reported ImageNet performance within a V100 GPU day. This baseline was also trained from scratch instead of being initialized from pre-trained ImageNet weights as in Visual N-Grams.

CLIP also outperforms Visual N-Grams on the other 2 reported datasets. On aYahoo, CLIP achieves a 95% reduction in the number of errors, and on SUN, CLIP more than doubles the accuracy of Visual N-Grams. To conduct a more comprehensive analysis and stress test, we implement a much larger evaluation suite detailed in Appendix A. In total we expand from the 3 datasets reported in Visual N-Grams to include over 30 datasets and compare to over 50 existing computer vision systems to contextualize results.

3.1.4. PROMPT ENGINEERING AND ENSEMBLING

Most standard image classification datasets treat the information naming or describing classes which enables natural language based zero-shot transfer as an afterthought. The vast majority of datasets annotate images with just a numeric id of the label and contain a file mapping these ids back to their names in English. Some datasets, such as Flowers102 and GTSRB, don't appear to include this mapping at all in their released versions preventing zero-shot transfer entirely.² For many datasets, we observed these labels may be

Figure 4. Prompt engineering and ensembling improve zero-shot performance. Compared to the baseline of using contextless class names, prompt engineering and ensembling boost zero-shot classification performance by almost 5 points on average across 36 datasets. This improvement is similar to the gain from using 4 times more compute with the baseline zero-shot method but is "free" when amortized over many predictions.

chosen somewhat haphazardly and do not anticipate issues related to zero-shot transfer which relies on task description in order to transfer successfully.

A common issue is polysemy. When the name of a class is the only information provided to CLIP's text encoder it is unable to differentiate which word sense is meant due to the lack of context. In some cases multiple meanings of the same word might be included as different classes in the same dataset! This happens in ImageNet which contains both construction cranes and cranes that fly. Another example is found in classes of the Oxford-IIIT Pet dataset where the word boxer is, from context, clearly referring to a breed of dog, but to a text encoder lacking context could just as likely refer to a type of athlete.

Another issue we encountered is that it's relatively rare in our pre-training dataset for the text paired with the image to be just a single word. Usually the text is a full sentence describing the image in some way. To help bridge this distribution gap, we found that using the prompt template "A photo of a {label}." to be a good default that helps specify the text is about the content of the image. This often improves performance over the baseline of using only the label text. For instance, just using this prompt improves accuracy on ImageNet by 1.3%.

²Alec learned much more about flower species and German traffic signs over the course of this project than he originally anticipated.

Similar to the "prompt engineering" discussion around GPT-3 (Brown et al., 2020; Gao et al., 2020), we have also observed that zero-shot performance can be significantly improved by customizing the prompt text to each task. A few, non exhaustive, examples follow. We found on several fine-grained image classification datasets that it helped to specify the category. For example on Oxford-IIIT Pets, using "A photo of a {label}, a type of pet." to help provide context worked well. Likewise, on Food101 specifying a type of food and on FGVC Aircraft a type of aircraft helped too. For OCR datasets, we found that putting quotes around the text or number to be recognized improved performance. Finally, we found that on satellite image classification datasets it helped to specify that the images were of this form and we use variants of "a satellite photo of a {label}.".

We also experimented with ensembling over multiple zeroshot classifiers as another way of improving performance. These classifiers are computed by using different context prompts such as 'A photo of a big {label}" and "A photo of a small {label}". We construct the ensemble over the embedding space instead of probability space. This allows us to cache a single set of averaged text embeddings so that the compute cost of the ensemble is the same as using a single classifier when amortized over many predictions. We've observed ensembling across many generated zero-shot classifiers to reliably improve performance and use it for the majority of datasets. On ImageNet, we ensemble 80 different context prompts and this improves performance by an additional 3.5% over the single default prompt discussed above. When considered together, prompt engineering and ensembling improve ImageNet accuracy by almost 5%. In Figure 4 we visualize how prompt engineering and ensembling change the performance of a set of CLIP models compared to the contextless baseline approach of directly embedding the class name as done in Li et al. (2017).

3.1.5. Analysis of Zero-Shot CLIP Performance

Since task-agnostic zero-shot classifiers for computer vision have been understudied, CLIP provides a promising opportunity to gain a better understanding of this type of model. In this section, we conduct a study of various properties of CLIP's zero-shot classifiers. As a first question, we look simply at how well zero-shot classifiers perform. To contextualize this, we compare to the performance of a simple off-the-shelf baseline: fitting a fully supervised, regularized, logistic regression classifier on the features of the canonical ResNet-50. In Figure 5 we show this comparison across 27 datasets. Please see Appendix A for details of datasets and setup.

Zero-shot CLIP outperforms this baseline slightly more of-

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

ten than not and wins on 16 of the 27 datasets. Looking at individual datasets reveals some interesting behavior. On fine-grained classification tasks, we observe a wide spread in performance. On two of these datasets, Stanford Cars and Food101, zero-shot CLIP outperforms logistic regression on ResNet-50 features by over 20% while on two others, Flowers 102 and FGVCAircraft, zero-shot CLIP underperforms by over 10%. On OxfordPets and Birdsnap, performance is much closer. We suspect these difference are primarily due to varying amounts of per-task supervision between WIT and ImageNet. On "general" object classification datasets such as ImageNet, CIFAR10/100, STL10, and PascalVOC2007 performance is relatively similar with a slight advantage for zero-shot CLIP in all cases. On STL10, CLIP achieves 99.3% overall which appears to be a new state of the art despite not using any training examples. Zeroshot CLIP significantly outperforms a ResNet-50 on two datasets measuring action recognition in videos. On Kinetics700, CLIP outperforms a ResNet-50 by 14.5%. Zeroshot CLIP also outperforms a ResNet-50's features by 7.7% on UCF101. We speculate this is due to natural language providing wider supervision for visual concepts involving verbs, compared to the noun-centric object supervision in ImageNet.

Looking at where zero-shot CLIP notably underperforms,