$9_{48} (K9n_6)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -u^2+a, \ u^3-u^2+u+1 \rangle \\ I_2^u &= \langle b-u, \ -u^3+a+1, \ u^4+u^3+u^2+1 \rangle \\ I_3^u &= \langle u^2+b+u, \ u^3+2u^2+a+2u, \ u^4+u^3+u^2+1 \rangle \\ I_4^u &= \langle -u^3+u^2+b-u+1, \ -u^3+2a+u-1, \ u^4-2u^3+3u^2-3u+2 \rangle \\ I_5^u &= \langle b+u, \ a+2u+1, \ u^2+1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 17 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, -u^2 + a, u^3 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u^2 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} - u \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} - u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u^2 - u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u^2 - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u^2 - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6u + 8

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$u^3 + u^2 + u - 1$
c_5, c_7	$u^3 + u^2 + 3u - 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$y^3 + y^2 + 3y - 1$	
c_5, c_7	$y^3 + 5y^2 + 11y - 1$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.771845 + 1.115140I		
a = -0.64780 + 1.72143I	2.02941 + 9.53188I	3.36893 - 6.69086I
b = 0.771845 + 1.115140I		
u = 0.771845 - 1.115140I		
a = -0.64780 - 1.72143I	2.02941 - 9.53188I	3.36893 + 6.69086I
b = 0.771845 - 1.115140I		
u = -0.543689		
a = 0.295598	0.875992	11.2620
b = -0.543689		

II.
$$I_2^u = \langle b - u, -u^3 + a + 1, u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 1 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u^{2} - u \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} - u - 1 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u + 2$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^4 + 2u^3 + 3u^2 + 3u + 2$
c_2, c_3, c_6 c_8, c_9	$u^4 - u^3 + u^2 + 1$
<i>C</i> ₅	$u^4 + 2u^3 + u^2 + 3u + 4$
C ₇	$u^4 + u^3 + 3u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^4 + 2y^3 + y^2 + 3y + 4$
c_2, c_3, c_6 c_8, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
<i>c</i> ₅	$y^4 - 2y^3 - 3y^2 - y + 16$
<i>c</i> ₇	$y^4 + 5y^3 + 7y^2 + 2y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -1.50411 - 0.10631I	-3.50087 + 1.41510I	2.17326 - 4.90874I
b = 0.351808 + 0.720342I		
u = 0.351808 - 0.720342I		
a = -1.50411 + 0.10631I	-3.50087 - 1.41510I	2.17326 + 4.90874I
b = 0.351808 - 0.720342I		
u = -0.851808 + 0.911292I		
a = 0.504108 + 1.226850I	3.50087 - 3.16396I	5.82674 + 2.56480I
b = -0.851808 + 0.911292I		
u = -0.851808 - 0.911292I		
a = 0.504108 - 1.226850I	3.50087 + 3.16396I	5.82674 - 2.56480I
b = -0.851808 - 0.911292I		

III.
$$I_3^u = \langle u^2 + b + u, \ u^3 + 2u^2 + a + 2u, \ u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - 2u^{2} - 2u \\ -u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u - 1 \\ u^{3} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} - u^{2} - u \\ -u^{2} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u^{2} - u \\ -u^{3} - 2u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u + 2$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_8, c_9	$u^4 - u^3 + u^2 + 1$
c_2, c_6	$u^4 + 2u^3 + 3u^2 + 3u + 2$
c_5	$u^4 + u^3 + 3u^2 + 2u + 1$
c_7	$u^4 + 2u^3 + u^2 + 3u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_8, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
c_2, c_6	$y^4 + 2y^3 + y^2 + 3y + 4$
c_5	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_7	$y^4 - 2y^3 - 3y^2 - y + 16$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = 0.59074 - 2.34806I	-3.50087 + 1.41510I	2.17326 - 4.90874I
b = 0.043315 - 1.227190I		
u = 0.351808 - 0.720342I		
a = 0.59074 + 2.34806I	-3.50087 - 1.41510I	2.17326 + 4.90874I
b = 0.043315 + 1.227190I		
u = -0.851808 + 0.911292I		
a = 0.409261 + 0.055548I	3.50087 - 3.16396I	5.82674 + 2.56480I
b = 0.956685 + 0.641200I		
u = -0.851808 - 0.911292I		
a = 0.409261 - 0.055548I	3.50087 + 3.16396I	5.82674 - 2.56480I
b = 0.956685 - 0.641200I		

 $\text{IV. } I_4^u = \langle -u^3 + u^2 + b - u + 1, \ -u^3 + 2a + u - 1, \ u^4 - 2u^3 + 3u^2 - 3u + 2 \rangle$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{1}{2}u^3 - \frac{1}{2}u + \frac{1}{2} \\ u^3 - u^2 + u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u + \frac{1}{2} \\ u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - \frac{3}{2}u + \frac{3}{2} \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - \frac{3}{2}u + \frac{3}{2} \\ u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -\frac{1}{2}u^3 + u^2 - \frac{3}{2}u + \frac{3}{2} \\ u^3 - u^2 + u - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} \frac{1}{2}u^3 + \frac{1}{2}u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u^3 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u + 2

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_6	$u^4 - u^3 + u^2 + 1$
c_3, c_8, c_9	$u^4 + 2u^3 + 3u^2 + 3u + 2$
c_5, c_7	$u^4 + u^3 + 3u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6	$y^4 + y^3 + 3y^2 + 2y + 1$
c_3, c_8, c_9	$y^4 + 2y^3 + y^2 + 3y + 4$
c_5, c_7	$y^4 + 5y^3 + 7y^2 + 2y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.956685 + 0.641200I		
a = -0.130534 + 0.427872I	3.50087 - 3.16396I	5.82674 + 2.56480I
b = -0.851808 + 0.911292I		
u = 0.956685 - 0.641200I		
a = -0.130534 - 0.427872I	3.50087 + 3.16396I	5.82674 - 2.56480I
b = -0.851808 - 0.911292I		
u = 0.043315 + 1.227190I		
a = 0.38053 - 1.53420I	-3.50087 - 1.41510I	2.17326 + 4.90874I
b = 0.351808 - 0.720342I		
u = 0.043315 - 1.227190I		
a = 0.38053 + 1.53420I	-3.50087 + 1.41510I	2.17326 - 4.90874I
b = 0.351808 + 0.720342I		

V.
$$I_5^u = \langle b+u, \ a+2u+1, \ u^2+1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u - 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u - 1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

(ii) Obstruction class = 1

 $a_8 = \begin{pmatrix} -u \\ 0 \end{pmatrix}$

(iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$u^2 + 1$
c_5, c_7	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$(y+1)^2$
c_5, c_7	$(y-1)^2$

Solutions to I_5^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a = -1.00000 - 2.00000I		-4.93480	-4.00000
	- 1.000000 <i>I</i>		
u = -	-1.000000I		
a = -1.00000 + 2.00000I		-4.93480	-4.00000
b =	1.000000I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$(u^{2}+1)(u^{3}+u^{2}+u-1)(u^{4}-u^{3}+u^{2}+1)^{2}(u^{4}+2u^{3}+\cdots+3u+2)$
c_5,c_7	$(u+1)^{2}(u^{3}+u^{2}+3u-1)(u^{4}+u^{3}+3u^{2}+2u+1)^{2}$ $\cdot (u^{4}+2u^{3}+u^{2}+3u+4)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8 c_9	$(y+1)^{2}(y^{3}+y^{2}+3y-1)(y^{4}+y^{3}+3y^{2}+2y+1)^{2}$ $\cdot (y^{4}+2y^{3}+y^{2}+3y+4)$
c_5, c_7	$(y-1)^{2}(y^{3} + 5y^{2} + 11y - 1)(y^{4} - 2y^{3} - 3y^{2} - y + 16)$ $\cdot (y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{2}$