Домашнее задание №1

Сабитов Сергей А-13а-19

8 апреля 2022 г.

1 Задание №1

1.1
$$\{\omega \in (a, b, c)^* | |\omega|_c = 1\}$$

1.2 $\{\omega \in a, b^* | |\omega|_a \le 2, |\omega|_b \ge 2\}$

1.3 $\{\omega \in (a,b)^* | |\omega|_a \neq |\omega|_b\}$

Конечный автомат не имеет паямяти, поэтому мы не можем поставить условие равенства или не равенства.

1.4 $\{\omega \in a, b^* | \omega \omega = \omega \omega \omega\}$

Язык состоит из пустого слова, так как только для $\omega = \lambda$ условие выполняется

2 Задание №2. Построить конечный автомат, используя прямое произведение

2.1
$$L_1 = \{ \omega \in (a, b) | |\omega|_a \ge 2 \land |\omega|_b \ge 2 \}$$

 $L_1 1 = \{ \Sigma = \{a, b\}, Q_1 = \{1, 2, 3\}, 1, T_1 = \{3\}, \delta_1 \}$

$$L_12 = \{\Sigma = \{a,b\}, Q_2 = \{1,2,3\}, 1, T_2 = \{3\}, \delta_2\}$$

1.
$$\Sigma = \{a, b\}$$

$$2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(3,3)\}$$

5. δ :

A1	A2	a	b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	31	32
3	2	32	33
3	3	33	33

2.2 $L_2 = \{\omega \in (a,b)^* | |\omega| \ge 3 \land |\omega|$ нечетное $\}$

Имеем следующие автоматы:

 $|\omega| \ge 3$

$$L21 = \{\Sigma = \{a, b\}, Q_1 = \{1, 2, 3, 4\}, S_1 = \{1\}, T_1 = \{4\}, \delta_1\}$$

$|\omega|$ нечетное

$$L22 = \{\Sigma = \{a, b\}, Q_1 = \{1, 2\}, S_1 = \{1\}, T_1 = \{2\}, \delta_2\}$$

Строим прямое произ-

ведение

1.
$$\Sigma = \{a, b\}$$

2.
$$Q = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2), \}$$

3.
$$S = \{(1,1)\}$$

4.
$$T = \{(4,2)\}$$

5. δ :

L21	L22	a	b
1	1	2,2	2,2
1	2	2,1	2,1
2	1	3,2	3,2
2	2	3,1	3,1
3	1	4,2	4,2
3	2	4,1	4,1
4	1	4,2	4,2
4	2	4,1	4,1

2.3
$$L_3 = \{\omega \in (a,b) | |\omega|_a$$
четно $\wedge |\omega|$ кратно трем $\}$ $L_{31} = \{\omega \in (a,b) | |\omega|_a$ четно $\} = \{\Sigma = \{a,b\}, Q_1 = \{1,2\}, 1, T_1 = \{1\}, \delta_1\}$

 $L_{32}=\{\omega\in(a,b)||\omega|_b$ кратно 3 $=\{\Sigma=\{a,b\},Q_1=\{1,2,3\},1,T_1=\{1\},\delta_1\}$

- 1. $\Sigma = \{a, b\}$
- $2. \ \ Q = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$
- 3. $S = \{(1,1)\}$
- 4. $T = \{(1,1)\}$
- 5. δ :

L31	L32	a	b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

2.4
$$L_4 = \overline{L_3}$$

 $\overline{L_3} = \{\Sigma_3, Q_3, s_3, Q_3 \backslash T_3, \delta_3\} \ Q_3 \backslash T_3 = 12, 13, 21, 22, 23$

2.5
$$L_4 = L_2 - L_3$$

- 3 Задание №3
- $3.1 \quad \{ab + aba\}^*a$

Автомат с лямбда переходами:

Удаляя лямбда переходы и применяя алгоритм Томпсона получаем ДКА:

3.2 $a(a(ab)^*b)^*(ab)^*$ HKA:

ДКА:

3.3
$$(a + (a+b)(a+b)b)^*$$

1. Строим НКА:

2. По НКА строим эквивалентный ДКА (алгоритм Томпсона):

$$3.4 \quad (b+c)((ab)^*c + (ba)^*)^*$$

3.5 Построим НКА

4 Задание №4

4.1 $\{(aab)^*b(aba)^m|n \ge 0, m \ge 0\}$

Язык является регулярным, построим автомат:

4.2 $\{uaav|u \in (a,b)^*, v \in (a,b)^*, |u|_b \ge |u|_a\}$

Рассмотрим отрицание языка L: $\overline{L}=\{uaav|u\in(a,b)^*,v\in(a,b)^*,|u|_b<|u|_a\}$

Фиксируем произвольное $n \in N$. Возьмем слово $w = b^n aaa^n$.

Длина слова не меньше n: $|w| = 2 * n + 2 \ge n$.

Рассмотрим следующее разбиение слова:

$$x = b^k \quad y = b^{n-k}$$
$$z = aaa^n$$

$$y \neq \lambda \quad |xy| \le n$$

$$k \neq 0 \quad n - k \ge 0$$

Других разбиений нет. Если язык регулярный, то $\forall i \geq 0: xy^iz \in \overline{L}$

$$b^k b^{(n-k)*i} aaa^n$$

Видно, что $\forall i>1: xy^iz \notin \overline{L}$

Так как \overline{L} нерегулярный, то и L - нерегулярный язык.

4.3
$$L = \{a^m \omega | \omega \in \{a, b\}^*, 1 \le |\omega|_b \le m\}$$

Рассмотрим отрицание языка L: $\overline{L} = \{a^m \omega | \omega \in \{a, b\}^*, |\omega|_b \ge m\}$ Фиксируем произвольное $n \in N$. Возьмем слово $w = a^n b^n$.

Длина слова не меньше n: $|w| = 2 * n \ge n$. Рассмотрим следующее разбиение слова:

$$x = a^{k_1} \quad y = a^{k_2}$$
$$z = a^{n-k_1-k_2}b^n$$

$$y \neq \lambda \quad |xy| \leq n$$

$$k_1 \neq 0 \quad k_1 + k_2 \leq n$$

Других разбиений нет. Если язык регулярный, то $\forall i \geq 0: xy^iz \in \overline{L}$

$$a^{k_1}a^{k_2*i}a^{n-k_1-k_2}b^n = a^{n+k_1*(i-1)}b^n$$

Видно, что $\exists i: xy^iz \notin \overline{L}$

Так как \overline{L} нерегулярный, то и L - нерегулярный язык.

4.4
$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

Фиксируем произвольное $n \in N$. Берем слово

$$w = a^{n-1}ba^n \in L$$

Очевидно, длина слова не меньше n: $|w|=2n\geq n.$ Рассмотрим следующее разбиение слова:

$$a^{n-1-l}a^lba^n$$

где $x=a^{n-1-l}; y=a^l b; \ z=a^n$ и $l\geq 0; \ l\leq n-1;$

Других разбиений нет.

При i=0 слово $xy^iz=a^{n-1-l}(a^lb)^ia^n=a^{n-1-l}a^n$ не будет пренадлежать языку L, следовательно, язык нерегулярный.

4.5
$$L = \{ucv | u \in \{a, b\}^* v \in \{a, b\}^* u \neq v^R\}$$

Фиксируем произвольное $n \in N$. Берем слово

$$w = a^n c a^{2n} \in L$$

Длина слова не меньше n: $|w| = 3n + 1 \ge n$. Рассмотрим следующее разбиение слова:

$$a^{n-l}a^lca^{2n}$$

где $x=a^{n-l}; y=a^l; z=ca^{2n}$ и $l>0; l\leq n;$

Других разбиений нет.

При i=2 слово принимает такой вид: $xy^iz=a^{n-l}(a^l)^ica^{2n}=a^{n-l+il}ca^n=a^{n+l}ca^{2n};$

Таким образом, при l = n:

$$a^{2n}ca^{2n}$$

То есть, $u=v^R$, следовательно, слово не будет пренадлежать языку L, следовательно, язык L - нерегулярный.