Calculus & Lineære Algebra

Noter fra Student: Vivek Misra vimis22@student.sdu.dk

University of Southern Denmark (SDU)

Introduktion til Lineære Ligninger

- Hensigten med Lineære Ligninger er, at kunne bruge dem i sammenhæng med analyse og fortolkning af variabler.
 - Lineære Ligninger der defineret udefra følgende formel:

$$a \cdot x + b = c$$

- Udefra denne ligning, kan disse værdier omdannes til en samlet Matrisse.
- Den samlede Matrisse er kaldt for en Augmented Matrix med notationen: \tilde{A} .

Introduktion til Lineære Ligninger

- EKSEMPEL: Her giver smagsprøve på, hvordan Lineære Variabler er set.
 - Vi forestiller os, at Vinay kommer til Odense, Danmark.
 - Han leder efter en lejlighed, hvor han leder efter forskellige kvaliteter.
 - Eksempel på Kvaliteter, kan være antal Badeværelser, Rum

• Vi kan udefra Lejligheds-Eksemplet se, at vi bygger en Model udefra noget Data.

Introduktion til Lineære Ligninger

 Vi kan udefra billederne se, at vi kan omdanne Lineære Ligninger om til Matrisser på følgende måde i Matematik:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ a_{n+1} & a_{n+2} & a_{n+3} \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_n \end{bmatrix}$$

 Vi kan se, at værdierne skrives vertikalt i matrisserne og derved er omskrevet på følgende måde i Lineære Ligninger:

$$A \cdot x = b$$

Invers af Matrix i Lineære Ligninger

- Vi kan se, at vi skal gange invers af A med både A og B.
 - DET SKAL ALTID SKE BAG VED A-VÆRDIEN!
 - Vi viser her et eksempel:

$$Ax = b \Rightarrow A^{-1} \cdot Ax = A^{-1} \cdot b \Rightarrow x = A^{-1} \cdot b$$

- Vi kan se, at når det gælder til en normal 2D-Matrisse er det okay.
- Men når det gælder til en 3D-Matrisse, kan det skabe komplikationer.
 - Det er her, hvor vi kommer til at kigge på Gauss Jordan Elimination.
 - Vi kommer også til at kigge på Cramers Rule med Henblik på Determinanten.
 - Og så har vi også Back-Substitution som skal hjælpe med at indsætte værdier i Lineære Ligninger.

Back-Substitutionsmetoden

- Substitutionsmetoden er også kendt som Erstatningsmetoden.
- Vi starter med, at arbejde fra 2 ligninger:

Ligning 1:
$$2y = x + 7$$

Ligning 2: $x = y - 4$

• STEP 1: Indsæt x-værdien fra ligning 2 i ligning 1.

$$2y = (y - 4) + 7$$

$$2y = y - 4 + 7 \Rightarrow$$

$$2y = y + 3$$

$$2y - y = y + 3 - y \Rightarrow y = 3$$

Back-Substitutionsmetoden

• STEP 1: Indsæt x-værdien fra ligning 2 i ligning 1.

$$2y = x + 7$$

$$2y = (y - 4) + 7$$

$$2y = y - 4 + 7 \Rightarrow$$

$$2y = y + 3$$

$$2y - y = y + 3 - y \Rightarrow y = 3$$

STEP 2: Indsæt den isolerede y-værdi fra ligning 1 i ligning 2.

$$x = y - 4$$
$$x = 3 - 4 = -1$$

Back-Substitutionsmetoden

STEP 3: Opsamle værdierne for Overblik.

$$y = 3$$
$$x = -1$$

- STEP 4: Indsæt værdierne i de respektive ligninger.
 - Det betyder, at begge værdier indsættes i Ligning 1 og Ligning 2 således:

Ligning 1:
$$2y = x + 7$$

 $2 \cdot 3 = -1 + 7 = 6$

Ligning 2:
$$x = y - 4$$

-1 = 3 - 4

- Den primære hensigt med Cramers Rule er, at kunne finde x,y,z værdier udefra den "Augmenteret Matrisse".
- Vi kommer her til at vise, hvordan udregningen foregår når man skal finde det i sammenhæng med **inverse af matrisser**.
- Vi tager udgangspunkt i det følgende ligning som står nedenfor:

$$3x + 3y = 1$$

 $4y + 4z = 3$
 $2y + 1z = 0$

Det er vigtigt, at gøre obs på, at der er ingen forskel i om ligning står ved siden af hinanden eller om på hinanden som:

$$3x + 3y = 1$$
, $4y + 4z = 3$, $2y + 1z = 0$

STEP 1: Lav Augmented Matrix

• Vi starter med, at opskrive ligningerne ned for at skabe overblik.

$$3x + 3y = 1$$

$$4y + 4z = 3$$

$$2y + 1z = 0$$

 Nu laver vi Augmented Matrix. X står i kolonne 1, Y står i kolonne 2, og z i kolonne 3.

$$\tilde{A} = \begin{bmatrix} 3 & 3 & 0 & 1 \\ 0 & 4 & 4 & 3 \\ 0 & 2 & 1 & 0 \end{bmatrix}$$

STEP 2: Find den Generelle Determinant.

• Nu skriver vi kun den tredimensionelle matrisse og udregner determinanten derfra.

$$A = \begin{bmatrix} 3 & 3 & 0 \\ 0 & 4 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\det(A) = 3 \cdot (4 \cdot 1 - 4 \cdot 2) - 3 \cdot (0 \cdot 1 - 4 \cdot 0) + 0 \cdot (0 \cdot 2 - 4 \cdot 0) = -12$$

- STEP 3: Indsæt resultat værdierne inde på x's plads i første kolonne.
 - Nu skriver vi kun den tredimensionelle matrisse og udregner determinanten derfra.

$$A_{x} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 4 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\det(A_x) = 1 \cdot (4 \cdot 1 - 4 \cdot 2) - 3 \cdot (3 \cdot 1 - 4 \cdot 0) + 0 \cdot (3 \cdot 2 - 4 \cdot 0) = -13$$

- STEP 4: Indsæt resultat værdierne inde på y's plads i anden kolonne.
 - Nu skriver vi kun den tredimensionelle matrisse og udregner determinanten derfra.

$$A_y = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\det(A_{\gamma}) = 3 \cdot (3 \cdot 1 - 4 \cdot 0) - 1 \cdot (0 \cdot 1 - 4 \cdot 0) + 0 \cdot (0 \cdot 0 - 3 \cdot 0) = 0$$

- STEP 5: Indsæt resultat værdierne inde på z's plads i tredje kolonne.
 - Nu skriver vi kun den tredimensionelle matrisse og udregner determinanten derfra.

$$A_z = \begin{bmatrix} 3 & 3 & 1 \\ 0 & 4 & 3 \\ 0 & 2 & 0 \end{bmatrix}$$

$$\det(A_z) = 3 \cdot (4 \cdot 0 - 3 \cdot 2) - 3 \cdot (0 \cdot 0 - 3 \cdot 0) + 1 \cdot (0 \cdot 2 - 4 \cdot 0) = -18$$

• STEP 6: Find X,Y,Z gennem Divisionen

• Indtil nu kender vi følgende værdier fra de sidste Determinanter.

Udregnede Determinanter	Kvotienter
$\det(A) = 12$	Ignorere!
$\det(A_X) = -13$	$x = \frac{\det(A_X)}{\det(A)} = -\frac{13}{12} = -1,08$
$\det(A_y)=0$	$y = \frac{\det(A_y)}{\det(A)} = \frac{0}{12} = 0$
$\det(A_z) = -18$	$z = \frac{\det(A_z)}{\det(A)} = -\frac{18}{12} = -1.5$

Gaussian Elimination

Det er her, hvor tingene bliver komplekst.

Kig venligst på Youtube!