

Functions

What is a polynomial?

Bart van den Dries

The calculator

Polynomials

$$p(x) = \begin{bmatrix} x \\ \\ Polynomial \end{bmatrix}$$

Polynomial function:

Constructed from:

- variable x
- numbers
- addition
- multiplication

Polynomials

Simplify:

- Expand brackets
- Gather terms
- Order terms

Standard form

Standard form in general:

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

Degree is n

Example: Coefficients
$$(x^3 - 4)^2 - x^6 + 2x^5 = 2x^5 - 8x^3 - 16$$

Simplify:

- Expand brackets
- Gather terms
- Order terms

The degree

$$p(x) = 2x^3 + 8x^2 - 13x$$

X	2x ³	8x²	-13x	<i>p</i> (x)
1	2	8	-13	-3

$$p(x) \sim 2x^3$$

The degree

$$p(x) = 2x^3 + 8x^2 - 13x$$

X	2x ³	8x²	-13x	<i>p</i> (x)
-1	-2	8	13	19
-10	-2,000	800	130	-1,070
-100	-2,000,000	80,000	1,300	-1,918,700
-1,000	-2,000,000,000	8,000,000	13,000	-1,991,987,000

$$p(x) \sim 2x^3$$

The degree

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

For $x \gg 0$ or $x \ll 0$
 $p(x) \sim a_n x^n$ Behavior determined by degree!

The calculator

Approximated by polynomials!

Thank you for your attention!

