

Model Optimization and Tuning Phase Report

Date	10s July 2024
Team ID	739835
Project Title	Credit card approval prediction using ML
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	# Solute the performance of the tuned model accuracy accuracy, scored, types, fleet_parency)') print("Accuracy on Test Set: (accuracy)') print("Accuracy on Test Set: (accuracy)') Optimal Hyperparencters: ("criterion': 'gini', 'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 10, 'uplitter': 'best') Accuracy on Test Set: 0.715976333698457
Random Forest	<pre># Define the Random Forest classifier rf_classifier = RandomForestClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'n_estimators': [50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy, scorefy, Lett, y_pred] print(f'(softial hyperparameters: (best_marmay)') print(f'(Rousey on Test Set: (mercuracy)') Optimal Hyperparameters: ('criterion': 'entropy') 'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'm_estimators': 1900 Accuracy on Test Set: 0.77514798994038

Performance Metrics Comparison Report (2 Marks):

Model		Optir	mized Met	tric	
Decision Tree	print(classification_reference precision 0 0.99 1 1.00 accuracy macro avg 1.00 weighted avg 1.00 print("Classification_reference print("Classification matrix [[2685 7] [15 2320]]	recall f1-score 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 fication re	support 2692 2335 5027 5027 5027		

	T	
Random Forest	precision recall f1-score support	
	Not Approved 0.80 0.85 0.82 500	
	Approved 0.83 0.78 0.80 500	
	accuracy 0.81 1000	
	macro avg 0.81 0.81 1000 weighted avg 0.81 0.81 1000	
	<pre>print(confusion_matrix(ytest,ypred))</pre>	
	Confusion matrix	
	[[2617 75]	
	[199 2136]]	
Logistic Regression	<pre>print(classification_report(ytest, ypred)) classification report</pre>	
	precision recall f1-score support	
	0 0.93 0.97 0.95 2692 1 0.97 0.91 0.94 2335	
	accuracy 0.95 5027	
	macro avg 0.95 0.94 0.94 5027 weighted avg 0.95 0.95 0.95 5027	
	<pre>confusion_matrix(y_test,ypred)</pre>	
	array([[43, 32],	
	[29, 65]])	
Gradient Boosting	<pre>print(classification_report(ytest,ypred))</pre>	
Gradient Boosting	Classification report	
	precision recall f1-score support	
	0 1.00 1.00 2692 1 1.00 1.00 1.00 2335	
	macro avg 1.00 1.00 5027	
	<pre>weighted avg 1.00 1.00 5027 confusion_matrix(y_test,ypred)</pre>	
	confusion_macrix(y_cest,ypreu/	
	array([[63, 12],	
	[26, 68]])	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Gradient Boosting	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.