

Минская городская олимпиада по физике (2003 год)

10 класс.

1. «Сифон»

Узкая трубка с площадью поперечного сечения s длиной l и массы m с помощью короткого гибкого шланга $\mathbf A$ соединена с горизонтально расположенной трубой такого же поперечного сечения. На нижнем конце трубы закреплена насадка $\mathbf B$ (масса которой m_0), изменяющая направление движения жидкости на 90° . По трубе пропускают жидкость плотности ρ , движущуюся внутри трубы со скоростью V. Найдите угол отклонения трубки от вертикали при движении жидкости.

2. «Шарики»

Небольшие металлические шарики могут скользить без трения по длинному непроводящему тонкому стержню. Масса каждого шарика равна m.

- 1. Двум шарикам сообщили одинаковые положительные заряды +q, нижний шарик закрепили, а верхний отпустили. На каком расстоянии z_0 расположатся шарики?
- 2. Двум шарикам сообщили заряды $\pm q$ одинаковые по величине, но противоположные по знаку. Верхний, положительно заряженный закрепили, а нижний отпустили. На каком расстоянии z_1 расположатся шарики?
- 3. Три шарика (заряды двух, верхних равны +q, а нижнего -q) расположили на расстоянии z_0 (см. п.1) руг от друга. Центральный закрепили, а крайние отпустили. На каких расположатся шарики?

расстояниях

3. «Электролит»

В кювету, имеющую форму параллелепипеда высотой $h = 10c_M$ и толщиной $a = 1.0c_M$, вдоль ее боковых стенок поместили две металлические пластинки высотой $h_0 = 7.0 cm$, подключенные к источнику постоянного Затем напряжения U = 220B. кювету полностью водой, находящейся заполнили при температуре $t_0 = 20^{\circ}\,C$. Постройте графики зависимостей от времени а)температуры воды; б) высоты уровня воды в кювете.

Удельное электрическое сопротивление налитой воды равно $\gamma = 2.0 \cdot 10^2 \ Om \cdot M$

и не зависит от температуры, плотность воды $\rho = 1.0 \cdot 10^3 \, \frac{\kappa z}{M^3}$, ее удельная

теплоемкость $c = 4.2 \cdot 10^3 \frac{\text{Дж}}{\kappa z \cdot z \, pad}$, удельная теплота парообразования

 $\lambda = 2.3 \cdot 10^6 \frac{\text{Дж}}{\text{кг}}$, атмосферное давление нормальное, испарением воды до начала кипения можно пренебречь.

4. «Каток»

Машина для уплотнения грунта состоит и корпуса и двух одинаковых однородных цилиндрических катков. Масса корпуса (с имеющимся внутри оборудованием) равна M, масса каждого катка m, радиус катка - R, расстояние между осями катков - L, центр масс корпуса находится на середине расстояния между осями катков, на высоте равной радиусу катков от их осей. В ходе сборки машины была допущена ошибка, в результате которой оказалось, что катки вращаются в противоположные стороны (направление вращения можно переключать). Угловая скорость вращения катков постоянна и равна ω_0 . Коэффициент трения между катками и поверхностью постоянен и равен μ .

а. Машина расположили на горизонтальной поверхности, на корпус установили небольшой груз (например, водитель) массы m_0 , на расстоянии x от оси машины. Найдите закон движения машины.

б. Машину разместили на склон, составляющей малый угол α с горизонтом, так что оси катков горизонтальны. При каких условиях машина сможет подниматься по склону?

в. Машина оказалась на длинном склоне, составляющем угол малый горизонтом, так, что оси колес направлены вдоль склона. В результате через некоторый промежуток времени машина начала соскальзывать c постоянной скоростью. Определите эту скорость.

