

	0	1	2	3	4	5	6	7	8	9	10
0	0	1	0	0	0	0	0	1	0	0	0
1	0	1	0	0	1	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	1	0
4	0	0	1	0	0	0	0	0	1	0	0
5	0	0	1	0	0	0	1	0	0	0	0
6	0	0	1	0	1	0	0	0	0	0	0
7	0	0	1	1	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	1	0	0
9	0	0	0	1	0	0	0	1	0	0	0
10	0	0	0	1	0	0	1	0	0	0	0
11	0	0	0	1	0	1	0	0	0	0	0
12	0	0	0	1	1	0	0	0	0	0	0
13	1	0	0	0	1	0	0	0	0	0	0
14	0	0	0	0	1	0	0	0	0	0	1
15	0	0	0	0	1	0	0	0	0	1	0
16	0	0	0	0	1	0	0	0	1	0	0
17	0	0	0	0	1	0	1	0	0	0	0
18	1	0	0	0	0	1	0	0	0	0	0
19	0	0	0	0	0	1	0	0	0	0	1
20	0	0	0	0	0	1	0	0	0	1	0
21	0	0	0	0	0	0	1	0	0	1	0
22	0	0	0	0	0	0	1	0	1	0	0
23	0	0	0	0	0	0	1	1	0	0	0
24	1	0	0	0	0	0	0	1	0	0	0
25	0	0	0	0	0	0	0	1	0	0	1
26	1	0	0	0	0	0	0	0	0	1	0

Macierz incydencji

Graf hamiltonowski, cykl Hamiltona: 0, 4, 6, 2, 8, 3, 1, 7, 10, 5, 9, 0

Twierdzenie 1

Graf spójny G jest grafem eulerowskim wtedy i tylko wtedy, gdy stopień każdego wierzchołka grafu G jest liczbą parzystą.

Twierdzenie 2

Graf spójny G jest grafem półeulerowskim wtedy i tylko wtedy, gdy ma dokładnie dwa wierzchołki nieparzystych stopni.

$$Deg(v=1) = 3$$

$$Deg(v=10) = 3$$

$$Deg(v=9) = 5$$

Korzystając z twierdzenia 1 i 2:

Graf nie jest eulerowski ani półeulerowski.

Liczba chromatyczna: 5

Indeks chromatyczny: 8

Minimalne drzewo rozpinające (waga: 10)

Twierdzenie: Dany graf jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu ściągalnego do grafu K₅ lub do grafu K_{3,3}.

Graf zawiera podgraf ściągalny do K₅ (zaznaczony na rysunku), nie jest więc planarny.