

RF Test Report:

Zinwave ORU FCC part 24 cellular

FCC ID: UPO302-1107

SC_TR_174_C

Contents

1	Revisi	ion History	4
2	Purpo	se	4
3	Refere	ence Documents	4
4	Test I	nformation	5
	4.1	Client and manufacturer	5
	4.2	Test Locations	5
	4.3	Test sample	5
5	Test C	Configuration	6
	5.1	Test sample and Operating mode	6
	5.2	Support equipment	6
	5.3	Equipment arrangement	7
	5.4	Permitted Antennas	7
6	Sumn	nary of Tests performed	8
7	Deter	mination of f ₀	9
8	Trans	mit Power	10
	8.1	Test method	10
	8.2	Test results	10
9	Occup	oied Bandwidth: Input vs output signal	12
	9.1	Test method	12
	9.2	Test results	12
1	0 Condu	ucted Spurious Emissions inc. Band Edge	13
	10.1	Requirement and test method	13
	10.2	Band edge results	14
	10.2.1	Narrowband single frequency	14
	10.2.2	Wideband single frequency	16
	10.2.3	Dual Channel band edge - AWGN	18
	10.2.4	Dual Channel band edge - Narrowband	20
1	1 Test e	equipment	
		• •	

Tables

Table 1: Equipment under test	6
Table 2: Support Equipment	6
Table 3: Summary of tests performed	8
Table 4: Test Equipment	21
Figures	
Figure 1: Test configuration – single channel	7
Figure 2: Test configuration – dual channel	
Figure 3: Determination of f_0 for 1930 – 1995 MHz band	9
Figure 4: Transit power and Peak to Average (PAR) plots	
Figure 5: input vs output plots	12
Figure 6: Narrow band CSE except band edge	14
Figure 7: Narrowband CSE band edge	15
Figure 8: Narrow band CSE except band edge	
Figure 9: Narrowband CSE band edge	17

SC_TR_174_C Page 3 of 21

1 Revision History

Revision	Originator	Date	Comment	Signature
Α	C Blackham	08 Dec	Customer	
	Director,	2015	release	
	Sulis Consultants Ltd			
В	C Blackham	09 Jan	1 st issue	
	Director,	2016		
	Sulis Consultants Ltd			
С	C Blackham	05 Feb	Minor	11
	Director,	2016	updates	111011
	Sulis Consultants Ltd			CODE

2 Purpose

This document details the Zinwave Optical Remote Unit, ORU, model number 302-1107, whilst operating in the 1930-1995 MHz cellular band.

3 Reference Documents

[1]	47CFR2	Title 47 Code of Federal Regulations Part 2: frequency allocations and radio treaty matters; general rules and regulations
[2]	47 CFR24	Title 47 Code of Federal Regulations Part 24: Common Carrier Services
[3]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[4]	KDB 935210 D05 V01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for Industrial and Non-consumer signal booster, repeater and amplifier devices
[5]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[6]	KDB971168 DO1 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.

SC_TR_174_C Page 4 of 21

4 Test Information

4.1 Client and manufacturer

Zinwave Ltd

Harston Mill

Harston

Cambridge

CB22 7GG

UK

4.2 Test Locations

Testing was performed by Charlie Blackham of Sulis Consultants Ltd between $13^{\rm th}$ October and $6^{\rm th}$ January 2016 at Zinwave's offices in Harston.

4.3 Test sample

The results herein only refer to sample detailed in section 5

SC_TR_174_C Page 5 of 21

5 Test Configuration

5.1 Test sample and Operating mode

The equipment under test (EUT) was:

Manufacturer	Name	Model Number	Serial Number	
Zinwave	ORU	302-1107	310400000022	

Table 1: Equipment under test

Modifications during test: None

Procedure:

- Set the system to maximum gain using the network management software
- Connect the signal generator to the RF service module of the Primary Hub
- Raise the signal level until the maximum output power is reached
- Perform the required test.

Test modulations:

 The system supports operation with a number of narrowband and wideband services, testing was performed with MSK and AWGN signal as per KDB 935210 D05.

5.2 Support equipment

The following equipment shall be used, configured as shown in Figure 1:

Name	Part Number	Label	Serial Number				
Zinwave UNIhub (Primary Hub)							
Chassis		302-1001	00-17-68-00-09-B7				
RF Service module		SM 1/6	030370002050				
Optical module		OM 1/6	050750002036				
Zinwave UNIhub (Secondary Hub)							
Chassis		302-1001	00-17-68-00-09-67				
Input Optical module		OM 5/6	050750002039				
Optical module		OM 3/6	050750002010				

Table 2: Support Equipment

SC_TR_174_C Page 6 of 21

5.3 Equipment arrangement

Figure 1: Test configuration - single channel

Figure 2: Test configuration – dual channel

Notes - additional connections not shown:

- IQ output from Signal Generator #1connected to IQ input of signal generator #2
- 2. 10 MHz Ref Clock output of Signal Analyser connected to Ref Clock inputs of the two signal generators

5.4 Permitted Antennas

The system is designed for operation with antennas having a maximum gain of 8.0 dBi or 5.85 dBd.

SC_TR_174_C Page 7 of 21

6 Summary of Tests performed

Test	47 CFR Part	FCC limit	Section	Result
Determination of f ₀	KDB 935210 D05	None	7	N/A
	Section 3.3		,	,
Transmit Power	24.232(a)	1640 8		Pass
	24.238	None	9	Pass
Occupied Bandwidth	KDB 935210 D05			
	Section 3.4			
Conducted Spurious Emissions	24.238	-13dBm / MHz ¹	10	Pass

Table 3: Summary of tests performed

SC_TR_174_C Page 8 of 21

¹ Except for emissions the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

7 Determination of f₀

As per kDB 935210 D05 section 3.3, but measurement was performed over the service band frequency range only.

Figure 3: Determination of f_0 for 1930 – 1995 MHz band

SC_TR_174_C Page 9 of 21

8 Transmit Power

8.1 Test method

The equipment was configured as per figure 1 and the measurements were made in accordance with KDB 971168 D01 using an RMS detector and the Peak to Average ratio was measured using the CCDF function of the analyser.

The signal generator was set to provide -5dBm to the input of the hub and the frequency set to an appropriate channel to include f_0 as determined in section 7.

8.2 Test results

Mode	Frequency (MHz)	TX power (dBm)	TX power ERP (dBm)	TX power ERP (W)	Limit ERP (W)	Result
Narrowband	1930.2	17.99	25.99	0.40	1640.0	Pass
Wideband	1932.5	18.35	26.35	0.43	1640.0	Pass

SC_TR_174_C Page 10 of 21

Figure 4: Transit power and Peak to Average (PAR) plots

SC_TR_174_C Page 11 of 21

9 Occupied Bandwidth: Input vs output signal

9.1 Test method

KDB 935210 D05 section 3.4

The occupied bandwidths of the input and output signal were measured using the in-built 99% Occupied Bandwidth function of the FSV40.

9.2 Test results

Figure 5: input vs output plots

SC_TR_174_C Page 12 of 21

10 Conducted Spurious Emissions inc. Band Edge

10.1 Requirement and test method

27.53(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

- (3) Measurement procedure.
- (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

The licensed band of operation was considered to be a single 5 MHz channel for the 5 MHz operation.

Emissions exceeded the limit close to the fundamental transmission frequency and these were investigated using RMS detector and adjacent channel power measurement capability of the spectrum analyser as shown on plots Screen 11.

SC_TR_174_C Page 13 of 21

10.2 Band edge results

10.2.1 Narrowband single frequency

Figure 6: Narrow band CSE except band edge

SC_TR_174_C Page 14 of 21

Figure 7: Narrowband CSE band edge

SC_TR_174_C Page 15 of 21

10.2.2 Wideband single frequency

Figure 8: Narrow band CSE except band edge

SC_TR_174_C Page 16 of 21

Figure 9: Narrowband CSE band edge

SC_TR_174_C Page 17 of 21

10.2.3 Dual Channel band edge - AWGN

Check set-up

SC_TR_174_C Page 18 of 21

SC_TR_174_C Page 19 of 21

10.2.4 Dual Channel band edge - Narrowband

SC_TR_174_C Page 20 of 21

11 Test equipment

Description	Manufacturer	Model	Serial Number	Calibration
Signal Analyser	Rohde & Schwarz	FSV 40	Livingston Hire asset X479651	Code: 161467 Due 19 May 16
Signal Analyser	Rohde & Schwarz	FSV 7	Zinwave asset 000073	R&S 20-516458 Due 14 Nov 16
Signal Generator	Rohde & Schwarz	SMBV100A	Microlease asset 45440	Ref: 45440 Due 19 Nov 15
Signal Generator	Rohde & Schwarz	SMJ100A	100156	T493937A Due: 24 Dec 16
Cable	Utiflex	BUA01G	FA210A0009M30309	ABEX UK. Ref: green bua01g Due 08 Oct 17
Signal Generator	Agilent	E4437B	US39260377	
Attenuator	Mini-circuits	VAT 10	3 0433	
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120274	Verified as part of system test
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120295	or system test
2-way splitter (input)	Mini-circuits	ZN2PD2-63- S+	UU21401232	

Table 4: Test Equipment

Measurement uncertainty for test equipment

Analyser ±0.5 dB

SC_TR_174_C Page 21 of 21