A Simple Visual ML Experiment (2/2)

Model 1

- $f(\underline{x}) = +1$ when \underline{x} has an axis of symmetry
- $f(\underline{x}) = -1$ when \underline{x} is not symmetric
- The test set is symmetrical $\implies f(\underline{\mathbf{x}}_0) = +1$

Model 2

- $f(\underline{x}) = +1$ when the top left square \underline{x} is empty
- $f(\underline{x}) = -1$ when the top left square \underline{x} is full
- The test set has top left square full $\implies f(\mathbf{x}_0) = -1$
- Many functions fit the 6 training examples
 - ullet Some have a value of -1 on the test point, others +1
 - Which one is it?
- How can a limited data set reveal enough information to define the entire target function?
 - Is machine learning possible?

Is Machine Learning Possible?

- The function can assume any value outside data
 - E.g., with summer temperature data, the function could assume a different value for winter
- How to learn an unknown function?
 - Estimating at unseen points seems impossible in general
 - Requires assumptions or models about behavior
- Difference between:
 - Possible
 - No knowledge of the unknown function
 - E.g., could be linear, quadratic, or sine wave outside known data
 - Probable
 - Some knowledge of the unknown function from domain knowledge or historical data patterns
 - E.g., if historical weather data forms a sinusoidal pattern, unknown points likely follow that pattern

Supervised Learning: Bin Analogy (1/2)

- Consider a bin with red and green marbles
 - We want to estimate $Pr(pick a red marble) = \mu$ where the value of μ is unknown
 - We pick N marbles independently with replacement
 - The fraction of red marbles is ν

- Does ν say anything about μ ?
 - "No"
 - In strict terms, we don't know anything about the marbles we didn't pick
 - The sample can be mostly green, while the bin is mostly red
 - This is possible, but not probable
 - "Yes"
 - Under certain conditions, the sample frequency is close to the real frequency
- Possible vs probable
 - It is possible that we don't know anything about the marbles in the bin
 - It is probable that we know something
 - Hoeffding inequality makes this intuition formal

Hoeffding Inequality

- ullet Consider a Bernoulli random variable X with probability of success μ
- Estimate the mean μ using N samples with $\nu = \frac{1}{N} \sum_{i} X_{i}$
- The probably approximately correct (PAC) statement holds:

$$\Pr(|\nu - \mu| > \varepsilon) \le \frac{2}{e^{2\varepsilon^2 N}}$$

Remarks:

- Valid for all N and ε , not an asymptotic result
- Holds only if you sample ν and μ at random and in the same way
- If N increases, it is exponentially small that ν will deviate from μ by more than ε
- The bound does not depend on μ
- Trade-off between N, ε , and the bound:
 - ullet Smaller arepsilon requires larger N for the same probability bound
 - Since $\nu \in [\mu \varepsilon, \mu + \varepsilon]$, you want small ε with a large probability
- It is a statement about ν and not μ although you use it to state something about ν (like for a confidence interval)

Supervised Learning: Bin Analogy (2/2)

- Let's connect the bin analogy, Hoeffding inequality, and feasibility of machine learning
 - You know f(x) at points $x \in \mathcal{X}$
 - You choose an hypothesis $h: \mathcal{X} \to \mathcal{Y} = \{0,1\}$
 - Each point $x \in \mathcal{X}$ is a marble
 - You color red if the hypothesis is correct $h(\underline{x}) = f(\underline{x})$, green otherwise
 - The in-sample error $E_{in}(h)$ corresponds to ν
 - The marbles of unknown color corresponds to $E_{out}(h) = \mu$
 - $\underline{x}_1,...,\underline{x}_n$ are picked randomly and independently from a distribution over \mathcal{X} which is the same as for E_{out}
- Hoeffding inequality holds and bounds the error going from in-sample to out-of-sample

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le c$$

- Generalization over unknown points (i.e., marbles) is possible
- Machine learning is possible!

Validation vs Learning Set-Up: Bin Analogy

- You have learned that for a given h, in-sample performance $E_{in}(h) = \nu$ needs to be close to out-of-sample performance $E_{out}(h) = \mu$
 - This is the validation setup, after you have already learned a model
- In a **learning setup** you have *h* to choose from *M* hypotheses
 - You need a bound on the out-of-sample performance of the chosen hypothesis $h \in \mathcal{H}$, regardless of which hypothesis you choose
 - You need a Hoeffding counterpart for the case of choosing from multiple hypotheses

$$\begin{split} \forall g \in \mathcal{H} &= \{h_1, ..., h_M\} \Pr(|E_{in}(g) - E_{out}(g)| > \varepsilon) \\ &\leq \Pr(\bigcup_{i=1}^{M} (|E_{in}(h_i) - E_{out}(h_i)| > \varepsilon)) \\ &\leq \sum_{i=1}^{M} \Pr(|E_{in}(h_i) - E_{out}(h_i)| > \varepsilon) \qquad \text{(by the union bound)} \\ &< 2M \exp(-2\varepsilon^2 N) \qquad \text{(by Hoeffding)} \end{split}$$

Problem: the bound is weak

Validation vs Learning Set-Up: Coin Analogy

- In a validation set-up, we have a coin and want to determine if it is fair
- Assume the coin is unbiased: $\mu = 0.5$
 - Toss the coin 10 times
 - How likely is that we get 10 heads (i.e., the coin looks biased $\nu=0$)?

Pr(coin shows
$$\nu = 0$$
) = $1/2^{10} = 1/1024 \approx 0.1\%$

• In other terms the probability that the out-of-sample performance $(\nu=0.0)$ is very different from the in-sample perf $(\mu=0.5)$ is very low

Validation vs Learning Set-Up: Coin Analogy

- In a learning set-up, we have many coins and we need to choose one and determine if it's fair
- If we have 1000 fair coins, how likely is it that at least one appears totally biased using 10 experiments?
 - I.e., out-of-sample performance is completely different from in-sample performance

Pr(at least one coin has
$$\nu=0)=1$$
 – Pr(all coins have $\nu\neq 0$)
$$=1-\left(\text{Pr(a coin has }\nu\neq 0)\right)^{10}$$

$$=1-\left(1-\text{Pr(a coin has }\nu=0)\right)^{10}$$

$$=1-\left(1-1/2^{10}\right)^{1000}$$

$$\approx 0.63\%$$

• It is probable, more than 50%

Hoeffding Inequality: Validation vs Learning

- In validation / testing
 - We can use Hoeffding to assess how well our g (the chosen hypothesis) approximates f (unknown hypothesis):

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le 2 \exp(-2\varepsilon^2 N)$$

where:

$$E_{in}(g) = \frac{1}{N} \sum_{i} e(g(\underline{x}_{i}), f(\underline{x}_{i}))$$

$$E_{out}(g) = \mathbb{E}_{\underline{x}}[e(g(\underline{x}), f(\underline{x}))]$$

- Since the hypothesis g is final and fixed, Hoeffding inequality guarantees that we can learn since it gives a bound for E_{out} to track E_{in}
- In learning / training
 - We need to account that our hypothesis is the best of M hypotheses, so the union bound gives:

$$\Pr(|E_{in} - E_{out}| > \varepsilon) < 2M \exp(-2\varepsilon^2 N)$$

- The bound for E_{out} from Hoeffding is weak
- Is the bound weak because it needs to be or because the Hoeffding inequality is not good enough?