Challenge 5

Thus far

- We have:
 - Neutered anti-analysis measures & outsmarted a packer
 - NUKED A FRIGGIN' ASTEROID!!!1!
 - Used tainting to reveal the tracking system manual
 - ... but just found a random hex string (8)

Thus far

- We have:
 - Neutered anti-analysis measures & outsmarted a packer
 - NUKED A FRIGGIN' ASTEROID!!!1!
 - Used tainting to reveal the tracking system manual
 - ... but just found a random hex string @
- MANAGED TO SAVE EARTH

Now

- One of our agents has recovered what he claims is one of the asteroid pieces that have fallen to Earth
- He's provided:
 - Photographs
 - Chemical analysis
 - Transcript of peculiar inscriptions
 found on the meteorite

- The Inscriptions seem to be in binary
- Define units based on fundamental constants
- Use mathematical & logical primitives
- We've set our crack team of xornolinguists on the case

- They found two things:
 - A blob of binary they couldn't make sense of (yet)
 - Mathematical Rosetta Stone
 - ... that they kindly split up into more manageable chunks
 - ... and translated it into a program for us
 - ... but it looks quite convoluted even so

- They found two things:
 - A blob of binary they couldn't make sense of (yet)
 - Mathematical Rosetta Stone
 - ... that they kindly split up into more manageable chunks
 - ... and translated it into a program for us
 - ... but it looks quite convoluted even so
- Symbex/SMT to the rescue!

Challenges

- The aliens have a weird language
 - Not all possible char combinations form a valid word
 - Not all valid words have any real meaning
 - Each word w/ meaning maps to a "class of meaning" called a marklar
 - Words that have the same marklar are perfect synonyms
 - There are many words for every marklar
- All this is expressed compactly within said Rosetta Stone

Tasks

- What conditions must a word fulfill to be valid?
- What conditions must a word fulfill to have meaning?
- How many possible marklars are there?
- And we'd like one word for every marklar, too.

- 1. Determine which words are valid & find one with a marklar
 - Use static analysis / dissassembly / decompilation
- Binary does encoding/decoding to/from an internal representation
 - Running the en-/de-coder through symbex is a pain
 - Figure out what it does and implement it as a program/script
 - Use static analysis / dissassembly / decompilation

- 2. Use symbex to gather the constraints that need to apply for a word to have meaning
 - Identify piece of code performing the check
 - Run it through symbex
 - Obtain the constraints as SMT expressions
 - In terms of internal representation

- 3. Find and capture the marklar assignment algorithm
 - Identify piece of code computing the marklar of a word
 - Capture this algorithm as SMT expression
 (in terms of internal representation, no I/O de-/encoding)

- 4. Solve gathered constraints and obtain all possible marklars
 - Generate marklar.out text file containing all possible marklars along with one word associated with each, one pair per line, separated by a space (i.e. "MARKLAR _ WORD")
 - Use previously gathered constraints
 - SMT solver will produce solutions in internal representation
 Use your own hacked-together input/output encoders to produce the right marklars & words from internal representation

- 5. Capture constraints for I/O coding
 - Capture constraints for input decoding
 - i.e. internal representation w.r.t. word
 - Integrate into your solving script
 - Capture constraints for output encoding
 - i.e. marklar w.r.t. internal representation
 - Integrate into your solving script
 - Produce marklar.out without your hacked I/O encoders

Grading

- 1. Determine conditions for valid words & find one word/marklar pair 1p
- 2. Find and capture algorithm determining whether a word has meaning 1p
- 3. Find and capture the algorithm that assigns marklars to words 1p
- 4. Solve constraints and obtain all marklars + one word for each 2p
 - we expect efficient implementations (more on that later)
- 5. Integrate I/O coding into your symbex script 2p
 - Input decoding into internal repr 1p
 - Output encoding from internal repr 1p
- More to come, stay tuned! 3p

BONUS

- Submission speed bonus for the fastest 5 students.
 - 50, 40, 30, 20 & 10 pts, respectively
- Execution speed bonus for the fastest 5 scripts.
 - 50, 40, 30, 20 & 10 pts, respectively
 - For fairness: done on a dedicated test binary similar to yours (ergo: provide handy constants for anything you hardcode!)

Submission Guidelines

You need to deliver a zip file containing:

- 'marklar.out' MARKLAR _ WORD pairs
- angr scripts used to dump SMT and generate marklar.out
- 'README' describing what what you did, how and why
- More to come, stay tuned!

Submission Guidelines

We expect reasonably efficient solutions.

- We'll run with CPython & pypy and take the fastest time
- You get 10min on a 7700K w/ 32GB RAM for parts 2-4
- ...although if you hit this limit you're doing it wrong
- ...good scripts should finish much sooner
- You get 30min on the same system for part 5 integrated

Submission Guidelines

- You will receive your Rosetta Stone binaries by e-mail
- Submission will be through Canvas.
- Deadline: Sunday, 24th May 2020, 23:59 CEST
- Delay penalties: 1pt/24h delayed

GOOD LUCK!

