Smoothness of Loewner Slits

Carto Wong

University of Washington

Nov 9, 2010

Chordal Loewner differential equation

Let $\mathbb{H} = \{ \text{Im } z > 0 \}$ be the upper halfplane.

- A slit in $\mathbb H$ is a simple curve $\gamma\colon (0,T]\to \mathbb H$ with base $\gamma(0)\in \mathbb R.$
- $g_t \colon H_t \to \mathbb{H}$ is a conformal mapping from $H_t = \mathbb{H} \setminus \gamma([0, t])$ onto \mathbb{H} .

Hydrodynamic normalization:

$$g_t(z) = z + \frac{2t}{z} + \cdots$$
 $(z \to \infty)$

Chordal Loewner differential equation

Theorem

 $g_t(z)$ satisfies

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \lambda(t)},$$

for all $z \in H_t = \mathbb{H} \setminus \gamma([0, t])$, where $\lambda \colon [0, T] \to \mathbb{R}$ is a continuous function. Moreover, $\lambda(t) = g_t(\gamma(t))$.

Example

vertical slit $\gamma(t) = 2i\sqrt{t}$

$$g_t(z) = \sqrt{z^2 + 4t}$$

$$\partial_t g_t(z) = \frac{2}{\sqrt{z^2 + 4t}} = \frac{2}{g_t(z)}$$

So, $\lambda(t) \equiv 0$ for the vertical slit.

We have a map

$$\left\{ \begin{array}{l} \text{slits in the upper} \\ \text{halfplane } \mathbb{H} \text{ modulo} \\ \text{reparametrization} \end{array} \right\} \longrightarrow \left\{ \begin{array}{l} \text{continuous functions} \\ \lambda \colon [0,\,T] \to \mathbb{R} \end{array} \right\}$$

which is 1-1, but not onto.

Kufarev gave an example (in the disc case) of a continuous $\lambda(t)$ which does not generate slit.

Question

When does $\lambda \colon [0, T] \to \mathbb{R}$ generate slit?

- (Kufarev) If λ is C^1 , then it generates a slit.
- (Marshall, Rohde 2005) If $\|\lambda\|_{\operatorname{Lip}(\frac{1}{2})} < c_0$, then it generates a quasi-slit in \mathbb{H} .
- (Lind 2005) The best constant is $c_0 = 4$.

Question

What more can we say if λ is more regular than $Lip(\frac{1}{2})$?

- (see [Ale]) If λ has bounded first derivative, then γ is C^1 .
- [Ale] I. A. Aleksandrov, Parametric continuations in the theory of univalent functions, Izdat. Nauka, 1976.

1st main result

Theorem (W- 2010)

Suppose $\lambda \colon [0,T] \to \mathbb{R}$ is $Lip(\frac{1}{2} + \delta)$ with $0 < \delta \leq \frac{1}{2}$. Then

- $\gamma(t^2)$ is $C^{1,\delta}$ regular on [0, T].
- **1** $\gamma(t)$ grows vertically at t=0 and

$$\left|\gamma'(t) - \frac{i}{\sqrt{t}}\right| \le Nt^{-\frac{1}{2} + \delta}$$

where N > 0 is a constant.

With an extra assumption $\|\lambda\|_{Lip(\frac{1}{2})} \le 1$, both statements are quantitative.

2nd main result

Theorem (W- 2010)

Let $\lambda \colon [0, T] \to \mathbb{R}$ and $0 < \delta \le \frac{1}{2}$.

- If λ is $C^{1,\delta}$, then γ is $C^{1,\frac{1}{2}+\delta}$ regular on (0,T].
- If λ is $C^{1,\frac{1}{2}+\delta}$, then γ is $C^{2,\delta}$ regular on (0,T].

With an extra assumption $\|\lambda\|_{Lip(\frac{1}{2})} \le 1$, both statements are quantitative.

Roughly speaking, $\lambda \in C^{n+\alpha} \Rightarrow \gamma \in C^{n+\frac{1}{2}+\alpha}$ for $n + \alpha \leq 2$.

LE diagram

If we modify one picture,

- how does the other change?
- how do we quantify and estimate the change?

LE diagram

If we modify one picture,

- how does the other change?
- how do we quantify and estimate the change?

Stationary property

Proof.

$$\partial_u g_{s+u}(z) = \frac{2}{g_{s+u}(z) - \lambda(s+u)}.$$

Scaling property

Proof.

$$\partial_t \left[\frac{1}{\sqrt{\alpha}} g_{\alpha t} (\sqrt{\alpha} z) \right] = \frac{2}{\frac{1}{\sqrt{\alpha}} g_{\alpha t} (\sqrt{\alpha} z) - \frac{1}{\sqrt{\alpha}} \lambda(\alpha t)}.$$

For $0 \le \sigma < 4$, let

$$X_{\sigma} = \left\{\lambda \colon [0,1] o \mathbb{R} \text{ with } \lambda(0) = 0 \text{ and } \|\lambda\|_{\mathsf{Lip}(\frac{1}{2})} \le \sigma \right\}$$

 $(X_{\sigma},\|\cdot\|_{\infty})$ is a compact metric space and

$$\mathsf{Tip} \colon X_{\sigma} \to \mathbb{H}$$
$$\lambda \mapsto \gamma(1)$$

is continuous, and therefore has a compact image $E_{\sigma}=\operatorname{Tip}(X_{\sigma})$.

Two lemmas concerning Tip: $X_{\sigma} \to \mathbb{H}$

Lemma (size of the image)

diam $E_{\sigma} = O(\sigma)$ as $\sigma \to 0$.

Lemma (modulus of continuity)

If
$$\|\lambda_j\|_{Lip(\frac{1}{2})} \leq 1$$
, then

$$|\mathit{Tip}(\lambda_1) - \mathit{Tip}(\lambda_2)| \le c \|\lambda_1 - \lambda_2\|_{\infty}.$$

Slit grows vertically

$$\lambda \in \operatorname{Lip}(rac{1}{2}) \Rightarrow \gamma(t) \in \sqrt{t} E_{\sigma}$$
 $\lambda \in \operatorname{Lip}(rac{1}{2} + \delta) \Rightarrow \gamma(t) \in \sqrt{t} E_{\sigma(t)} \text{ with } \sigma(t) = O(t^{\delta})$

1st main result

Theorem (W- 2010)

Suppose $\lambda \colon [0,T] \to \mathbb{R}$ is $Lip(\frac{1}{2} + \delta)$ with $0 < \delta \leq \frac{1}{2}$. Then

- \bullet γ is $C^{1,\delta}$ regular on (0,T].
- **b** $\gamma(t)$ grows vertically at t=0 $\sqrt{\ }$ and

$$\left|\gamma'(t) - \frac{i}{\sqrt{t}}\right| \le Nt^{-\frac{1}{2} + \delta}$$

where N > 0 is a constant.

With an extra assumption $\|\lambda\|_{Lip(\frac{1}{2})} \leq 1$, both statements are quantitative.

Suppose $\lambda_j \colon [0,T] \to \mathbb{R} \ (j=1,\,2)$ satisfy

$$\begin{cases} |\lambda_j(t_1) - \lambda_j(t_2)| \leq M |t_1 - t_2|^{\frac{1}{2} + \delta} \\ \lambda_1 = \lambda_2 \text{ on } [0, s] \end{cases}$$

Then $|\gamma_1(s+\varepsilon)-\gamma_2(s+\varepsilon)|=O(\varepsilon^?)$ as $\varepsilon\to 0+$.

Fix $\lambda_1 \colon [0,s] \to \mathbb{R}$ and let

$$\mathcal{K}_{arepsilon} = \left\{ \gamma^{\lambda}(s+arepsilon) \in \mathbb{H} \; \middle| egin{array}{l} \lambda \colon [0,s+arepsilon] o \mathbb{R} \; ext{satisfying} \; \lambda = \lambda_1 \; ext{on} \; [0,s] \ & ext{and} \; \sup_{t_1
eq t_2 \in [0,T]} rac{|\lambda(t_1) - \lambda(t_2)|}{|t_1 - t_2|^{rac{1}{2} + \delta}} \leq M \end{array}
ight\}$$

Lemma

Suppose $\lambda \colon [0,T] \to \mathbb{R}$ satisfies

- the (M, T, δ) -Lip $(\frac{1}{2} + \delta)$ condition for some $0 < \delta \le \frac{1}{2}$; and
- $\|\lambda\|_{Lip(\frac{1}{2})} \leq 1$

then for any $0 < s < t \le T$,

$$\frac{1}{C} \le \sqrt{\frac{t-s}{t}} \left| g_s'(\gamma(t)) \right| \le C$$

where $C = C(M, T, \delta) > 0$. Moreover, for all $s \in (0, T)$, the limit

$$\lim_{\varepsilon \to 0+} \sqrt{\varepsilon} g_s'(\gamma(s+\varepsilon)) = \sqrt{s} \exp\left[-\int_0^s \frac{1}{2u} + \frac{2}{\gamma(s-u,s)^2} du\right]$$

exists and is nonzero.

For $\lambda \in Lip(\frac{1}{2} + \delta)$, the lemma says $|g_s'(\gamma(s + \varepsilon))| \approx \varepsilon^{-\frac{1}{2}}$. Near the tip $\gamma(s)$ the slit halfplane cannot have a "corner of angle strictly less than 2π ".

 $\operatorname{diam} K_{\varepsilon} \lesssim \operatorname{diam}[g_s(K_{\varepsilon})] \cdot \sup_{z} \left| g_s^{-1}(z) \right| \lesssim \varepsilon^{1+\delta}.$

Given $\lambda \in \text{Lip}(\frac{1}{2} + \delta)$, modify λ so that it is constant after time s. This does not change the existence and the value of

$$\lim_{\varepsilon \to 0+} \frac{\gamma(s+\varepsilon) - \gamma(s)}{\varepsilon}.$$

Can assume $\gamma(s+\varepsilon)=f_s(\lambda(s)+2i\sqrt{\varepsilon})$, where $f_s=g_s^{-1}$.

Corollary

Assuming the (M, T, δ)-Lip($\frac{1}{2} + \delta$) condition and $\|\lambda\|_{Lip(\frac{1}{2})} \le 1$, for any $0 < s \le T$ we have

$$\gamma'(s) = \frac{i}{\sqrt{s}} \exp \left[\int_0^s \frac{1}{2u} + \frac{2}{\gamma(s-u,s)^2} du \right],$$

where $\gamma(s-u,s) = g_{s-u}(\gamma(s)) - \lambda(s-u)$.

 $\gamma'(s) = \frac{i}{\sqrt{s}} e^{L(s)}$ is equally regular as the function

$$L(s) = \int_0^s \frac{1}{2u} + \frac{2}{\gamma(s-u,s)^2} du.$$

For $\lambda \in \text{Lip}(\frac{1}{2} + \delta)$, we can show $L \in \text{Lip}(\delta)$ by estimating

$$L(s+\varepsilon)-L(s) = \int_0^s \frac{2}{\gamma(s+\varepsilon-u,s+\varepsilon)^2} - \frac{2}{\gamma(s-u,s)^2} du + \int_s^{s+\varepsilon} \frac{1}{2u} + \frac{2}{\gamma(s+\varepsilon-u,s+\varepsilon)^2} du.$$

Current progress

All driving functions below are assumed to satisfy $\|\lambda\|_{\operatorname{Lip}(\frac{1}{2})} \leq 1$. Let $0 < \delta \leq \frac{1}{2}$.

- If $\lambda \in C^{1,\delta}$, then L is $Lip(\frac{1}{2} + \delta)$ and therefore γ is $C^{1,\frac{1}{2} + \delta}$.
- If $\lambda \in C^{1,\frac{1}{2}+\delta}$, then

$$\gamma''(s) = \frac{2\gamma'(s)}{\gamma(s)^2} - 4\gamma'(s)Q(s)$$

where $Q \in \mathsf{Lip}(\delta)$ and is given by

$$Q(s) := \int_0^s \frac{\partial_s \gamma(s-u,s)}{\gamma(s-u,s)^3} du.$$

It means that γ is $C^{2,\delta}$.

Unsolved problem

- Conjecture: If $\lambda \in C^{n+\alpha}$ then $\gamma \in C^{n+\frac{1}{2}+\alpha}$. Proved for $n+\alpha \le 2$.
- The converse statement: if γ ∈ C^{n,α}, how smooth is λ?
 C. Earle, A. Epstein: if γ ∈ Cⁿ (n ≥ 2), then λ ∈ Cⁿ⁻¹.

Thank you!