Class 4 DTMC

Class 4

Shikhar Saxena

January 13, 2023

Contents

Stochastic Process $\{X(t), t \in T\}$]
OTMC	1
Chapman Kolmogorov Equation for DTMC	4
Classification of States	4
Irreducible	6
Recurrent and Transient States	2
Limiting Probabilities	4
Stationary Distribution	6

Stochastic Process $\{X(t), t \in T\}$

- $\circ X(t): \Omega \to \mathcal{S}$
- $\circ~T$ and $\mathcal S$ are parameter and state space respectively

DTMC

• Obeys Markov Property

Consider Transition Probability Matrix

$$P = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

Now if we consider $S_n = \sum X_i$ and $\hat{\mu}_n = S_n/n$ then $\hat{\mu}_n$ will depend on P and might not go as expected from Strong Law of Large Numbers (SLLN).

 $\circ \overline{\mu}$: Initial Distribution over \mathcal{S}

Chapman Kolmogorov Equation for DTMC

- This follows only for homogeneous DTMCs
 - \star For non-homogeneous, P depends on n (the timestep).

$$P^{(n+l)} = P^{(n)}P^{(l)}$$

Classification of States

Accessible State

- j is accessible from i if $p_{ij}^n > 0$ for some n
- \circ Denoted as $i \to j$
- $i \to j$ and $j \to i$ then we say that i and j communicate. This is denoted by $i \leftrightarrow j$.

Communication is an equivalence relation.

 $i \leftrightarrow i$ achieved in $P^0 = I$.

States which communicate belong to the same equivalence class

Irreducible

Irreducible when $i \leftrightarrow j$, $\forall i, j \in \mathcal{S}$ i.e., only one communicating class.

Recurrent and Transient States

 $F_{ii} = P(\text{ever returning to } i \text{ having started in } i)$

- State i is recurrent if $F_{ii} = 1$
- $\circ\,$ If $F_{ii} < 1$ then State i is transient
 - \star Each communicating class share recurrence or transience

Limiting Probabilities

The dependence on initial distribution starts to vanish after long time.

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)} = [\lim_{n \to \infty} P^n]_{ij}$$

Stationary Distribution

$$\pi = \pi P$$

Proof. Stochastic Matrices always have an eigenvalue 1, so stationary distribution will always exist. \Box

• πP is essentially the pmf of X_1 having picked X_0 according to π

• $\pi = \pi P$ says that the distribution of X_1 will also be π (if initial distribution was π)

Remark. If Limiting Distribution exists, then it is same as stationary distribution.