An Exploration of Automated
Grading of Complex Assignments

2016-04-26 Chase Geigle, ChengXiang Zhai, Duncan Ferguson

An Exploration of Automated Grading of Complex Assignments

An Exploration of **Automated Grading** of

Complex Assignments

An Exploration of Automated Grading of **Complex Assignments**

M. Brooks et al. "Divide and Correct: Using Clusters to Grade Short Answers at Scale". In: *ACM L@S*. Atlanta, Georgia, USA, 2014, pp. 89–98. ISBN: 9781450326698

A. Nguyen et al. "Codewebs: Scalable Homework Search for Massive Open Online Programming Courses". In: WWW. 2014, pp. 491–502

C. P. Rosé et al. "A Hybrid Text Classification Approach for Analysis of Student Essays". In: *BEA*. ACL, 2003, pp. 68–75

(Why) Do we need these kinds of assignments?	

You are a practitioner with an interest in equine medicine. During a routine visit to an area stable, your client asks you to perform a physical examination and to draw blood and collect urine from a near weaning Thoroughbred foal for future sale. The potential buyer wants a routine examination before purchasing the animal. The foal is high spirited and makes the client chase him around the paddock a few times before he can be haltered. No abnormalities were found on physical examination.

HEMATOLOGY

Test name	Test Result	Ref. Int.	Units
RBC HGB HCT MCV MCH MCHC NRBC	13.1 19 52 39.7 14.5 36.5	6.0-12.0 10.0-18.0 32.0-48.0 34.0-58.0 13.0-19.0 31.0-37.0	n*10^6/ul g/dl % fl pg g/dl n/100 wbc
ANISO			

URINALYSIS (VOIDED)

COLOR	straw	
TRANSP	clear	
S. G.	1.026	
pH	7.5	6.5-9.0

DOLVOUD

www.whenknowingmatters.com

www.whenknowingmatters.com

Todd, Weak and Lethargic Dog
What Endocrine Disease is Most Likely in this Case?
Answer: Addison's disease or deficiency of glucocorticoid and mineralocorticoid
Historical and Physical Exam Findings that Support Endocrine Disease Chosen
Physiology: Associated with Mineralocorticoid Deficiency Note: hypovolemia, hyporatremia, hyperkalemia, dehydration, and shock
recumbency and weakness
anorexic and lethargic
episodes of vomiting foamy bile
weak on presentation and appeared very depressed
MM were tacky
CRT was >2 seconds
o femoral pulses were weak
8% dehydrated
Initially the blood pressure was undetectable
oliver after a 2L bolus of fluids (0.9% saline), the pressure increased to 110 mmHg. Quality Evidence
Note: consistent with low Na+ being very important to clinical presentation
Physiology: Associated with Glucocorticoid Deficiency Associated with low cortisol concentrations; notice that there is overlap with volume and blood
Note: pressure effects of mineralocorticoids
-0 Note intermittent lethargy and decreased appetite glucocorticolds help sustain blood volume physiologically and also stimulate appetite (particularly in pharmacological quantities)
episodes of vomiting foamy bile
Note: glucocorticoids cause leakiness of gil. blood vessels and loss of blood and protein into gut Oliver is Note: glucocorticoids are necessary for optimal fat depots and lipogenesis

The Rubric—Likert; 1 (novice)–5 (expert)

Developing relevant refining (or clarifying) questions to answer based upon an honest assessment of current knowledge base

Approach to seeking answers to developed questions--literature search, etc.

Judgment of Quality of Informationawareness and application of standards of a discipline, bias detection including appropriate humility to detect one's own potential bias, application of statistical concepts

Analysis of an argument

Clarity and communication (written or oral) of thought: conciseness, grammar, spelling, elocution

Application and understanding of appropriate disciplinary content

Questions: 2.82 ± 0.68

Answers: 3.03 ± 0.77

Quality: 3.11 ± 0.98

Analysis: 2.64 ± 0.77

Clarity: 3.38 ± 0.94

Application: 2.87 ± 0.57

(Mean and standard deviation, n = 107)

Research Questions

- **Feasibility:** How effective are state of the art machine learning approaches for automated grading? Are they sufficiently effective to be immediately useful in practice?
- **Formulation and Evaluation:** What is the right way to formulate the grading problem as a machine learning problem? What is the right way to measure effectiveness?
- **Integration:** How should an automated grader be integrated with manual instructor/TA grading? What are the trade-offs?

Feasibility of Automatic Grade Prediction

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |r(f(x_i)) - r(y_i)|$$

	Baseline	SVOR ¹
sim (3)	0.9358 ± 0.0882	0.8811 ± 0.0940
sim + sel (5)	0.9566 ± 0.1677	0.8642 ± 0.0325
toks (2646)	0.9075 ± 0.0789	$0.7660 \pm 0.0910^{\dagger}$
all (2651)	0.9792 ± 0.1568	$0.7566 \pm 0.0738^{\dagger}$

†: statistically signifigant using an unpaired t-test with $p \leq 0.05$.

Table: Effectiveness (in terms of MAE) of incorporating additional features in grade prediction for "quality" dimension using SVOR methods compared to the mode-assigning baseline. Number of features is given in parenthesis.

¹http://www.work.caltech.edu/~htlin/program/libsvm/

Feasibility of Automatic Grade Prediction

	Baseline	SVOR
sim (3)	0.7906 ± 0.0771	0.7830 ± 0.0836
sim + sel (5)	0.7623 ± 0.0649	0.7811 ± 0.0561
toks (2646)	0.7528 ± 0.0550	0.7415 ± 0.0597
all (2651)	0.7189 ± 0.0617	0.7226 ± 0.0527

Table: Similar experiment to Table 1, but for "clarity" dimension.

- ☐ Main takeaway: effectiveness very much depends on
 - rubric dimension
 - features used

Is outright grade prediction really our goal? (Hint: maybe it shouldn't be)

- Annotator agreement?
 - Low in practice², even for short-answer questions!
 - Only going to be worse for complex assignments. . .
 - Significant barrier to leveraging peer grading
- The machine will always be imperfect.
 - ☐ How sensitive is the grading process to "small" mistakes?
 - ☐ Can we reduce this sensitivity?

²M. Mohler and R. Mihalcea. "Text-to-text Semantic Similarity for Automatic Short Answer Grading". In: *EACL*. 2009, pp. 567–575.

Can we treat grading as a **ranking problem**? (Hint: probably, or I wouldn't put it on a slide)

- Annotator agreement?
 - Much easier to get people to agree on "is a better than b?" 3
 - □ Provides an easy mechanism for **leveraging peers**: their inherent positivity (bless them) **won't bias a pairwise decision**!
- The machine will always be imperfect.
 - ☐ Significantly less sensitive to minute mistakes in the ranking, as long as it is largely consistent with instructor preference
 - □ Grading → assigning cutoffs: quite natural!

Evaluation metric: "distance" between machine and instructor ranking (lower is better)⁴

$$NDPM = \frac{2n_d + t_x}{2(n_c + n_d + t_x)}$$

³C. Callison-Burch et al. "(Meta-) Evaluation of Machine Translation". In: *WMT*. 2007, pp. 136–158.

⁴Y. Y. Yao. "Measuring Retrieval Effectiveness Based on User Preference of Documents". In: *J. Am. Soc. Inf. Sci.* 46.2 (1995), pp. 133–145.

Is batch-mode machine learning the right setup?

(Hint: maybe it shouldn't be)

- ☐ Batch-mode learning: Grade a bunch of assignments (or provide a bunch of pairwise assessments), give them to the machine, wait for a bit, and use its output on unlabeled assignments for grading
 - ☐ This is **not very collaborative!**
 - Machine is not able to inform instructor to grade most helpful assignments/pairs!
 - Unclear stopping decision: how many more should I grade to get a certain level of accuracy?

Can **active learning**⁵ be more effective? (Hint: probably, or I wouldn't put it on a slide)

Active learning:

- Grade some small number of assignments/pairs
- 2 Provide them to the machine to learn from
- The machine suggests the next assignment/pair to grade
- (Go to 1 until you're satisfied with the machine's output)
- ☐ Benefits:
 - This is collaborative by design
 - □ A clear stopping criterion: after each assignment/pair a new ranking is generated—stop when you're happy with it

⁵no, not that kind of active learning

Figure: A comparison between a randomized learning solution and an active learning solution to the grading-as-ranking problem. Reported is the average NDPM (lower is better) over 5 runs, with error bars indicating one standard deviation.

Questions?

(Thanks!)