UNICAMP - Universidade Estadual de Campinas

IMECC - Instituto de Matemática, Estatística e Computação Científica
Departamento de Estatística
ME731 - Métodos em Análise Multivariada

Trabalho

Carlos Caminho Oco RA 168624 marfloy Chaves eduardo RA 173733 Caio Henrique de Sousa Lima RA 214144 Piupiu Mendes Panela RA 219494 Nathan Blusa Amaarela Soltinho RA 222854

1 Questão 1:

Lista 3 questão 4 MANOVA e CBU

1.1 Introdução

O banco de dados é composto pelo perfil de tamanho e formato de 48 tartarugas, sendo 24 machos e 24 fêmeas. As informações obtidas foram largura, comprimento e altura. O estudo tinha como objetivo observar e comparar o sexo ao qual o animal pertencia e sua relação com essas medidas físicas. Para realizar a análise desse banco, foi utilizado o software estatístico R e aplicado algumas metodologias como a Análise de Variância Multivariada (MANOVA).

1.2 Análise descritiva

Tabela 1: Medidas resumo (F = Fem, M = Masc)

	Média	Var.	DP	CV(%)	Min.	Med.	Max.	CA	Cur.
length (F)	136.00	451.39	21.25	15.62	98.00	136.50	177.00	-0.23	2.26
width (F)	102.58	171.73	13.10	12.77	81.00	102.00	132.00	0.31	2.55
height (F)	51.96	66.65	8.16	15.71	38.00	51.00	67.00	-0.03	2.19
length (M)	113.38	138.77	11.78	10.39	93.00	115.00	135.00	-0.08	2.10
width (M)	88.29	50.04	7.07	8.01	74.00	89.00	106.00	0.20	3.15
height (M)	40.71	11.26	3.36	8.24	35.00	40.00	47.00	0.18	2.20

Inicialmente, visualizando as medidas resumo para cada sexo, podemos observar que aparentemente o sexo feminino tem, em média, medidas maiores que o sexo masculino.

Figura 1: Matriz de gráfico de dispersões sexo feminino.

Figura 2: Matriz de gráfico de dispersões sexo masculino.

Para ambos os sexos, as medidas de altura, largura e comprimento são bastante correlacionadas.

Tabela 2: Matriz de covariâncias sexo feminino

	length	width	height
length	451.39	271.17	168.70
width	271.17	171.73	103.29
height	168.70	103.29	66.65

A matriz de covariância para ambos os sexos parecem ser diferentes, na qual as medidas do sexo masculino aparentam ter variância bem menor se comparado ao sexo feminino.

4) Matriz de correlações

Tabela 3: Matriz de covariâncias sexo masculino

	length	width	height
length	138.77	79.15	37.38
width	79.15	50.04	21.65
height	37.38	21.65	11.26

Feminino

```
## length width height
## length 1.0000000 0.9739706 0.9725816
## width 0.9739706 1.0000000 0.9654187
## height 0.9725816 0.9654187 1.0000000
```

Masculino

```
## length width height
## length 1.0000000 0.9497846 0.9455580
## width 0.9497846 1.0000000 0.9122648
## height 0.9455580 0.9122648 1.0000000
```

5) Boxplot

Figura 3: Boxplots das variáveis por sexo.

#histograms

Figura 4: Histogramas das variáveis por sexo.

2 qqplots

Figura 5: QQplots das variáveis por sexo.

Olhando para boxplot,histogramas e qqplots, as variáveis não parecem seguir uma distribuição normal.

2.1 Análise inferencial

Estatística do Teste: 24.03738

```
## nível descritivo: 0.0005140546
## Matrizes de Covariâncias por grupo:
                length
                       width
        grupo
## length 1 451.39130 271.17391 168.69565
## width 1 271.17391 171.73188 103.28623
## height 1 168.69565 103.28623 66.65036
## length 2 138.76630 79.14674 37.37500
## width 2 79.14674 50.04167 21.65399
## height
          2 37.37500 21.65399 11.25906
           Df Wilks approx F num Df den Df Pr(>F)
##
## sex 1 0.40796 21.284 3 44 1.141e-08 ***
## Residuals 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
           Df Pillai approx F num Df den Df Pr(>F)
##
## sex 1 0.59204 21.284 3 44 1.141e-08 ***
## Residuals 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
           Df Hotelling-Lawley approx F num Df den Df Pr(>F)
##
                1.4512 21.284 3 44 1.141e-08 ***
## sex
          1
## Residuals 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                Roy approx F num Df den Df Pr(>F)
##
           \mathsf{Df}
          1 1.4512 21.284 3 44 1.141e-08 ***
## sex
## Residuals 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Tabela 4: Teste de Box-Cox para homocedasticidade

	Estatística do teste	p-valor	
Box-Cox	24.04	0.0005	

Tabela 5: Resultados da MANOVA

	Valor	Aproximação pela distribuição F	p-valor
Wilks	0.41	21.28	< 0.0001
Pillai	0.59	21.28	< 0.0001
Hotelling-Lawley	1.45	21.28	< 0.0001
Roy	1.45	21.28	< 0.0001

Para observar inferencialmente a diferença entre as matrizes de covariância de cada grupo, foi realizado um teste de Box-cox, e tivemos como resultado que as matrizes realmente são diferentes. Após isso, foi realizado uma MANOVA com o objetivo de visualizar se existe diferença entre os vetores de médias para ambos os sexos, e também foi rejeitada a hipótese de que elas são iguais. Dessa forma, queremos ver em qual medidas essas diferenças são mais acentuadas, portanto aplicamos um teste CBU.

```
## Response length :
##
## Call:
## lm(formula = length ~ sex)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -38.000 -10.625
                  0.812 11.969 41.000
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               136.000
                            3.506 38.786 < 2e-16 ***
                            4.959 -4.563 3.75e-05 ***
## sexM
               -22.625
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 17.18 on 46 degrees of freedom
## Multiple R-squared: 0.3116, Adjusted R-squared: 0.2966
## F-statistic: 20.82 on 1 and 46 DF, p-value: 3.752e-05
##
##
## Response width :
##
## Call:
## lm(formula = width ~ sex)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -21.5833 -5.5417 -0.4375 4.8854 29.4167
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.583
                            2.149 47.725 < 2e-16 ***
               -14.292
                            3.040 -4.701 2.38e-05 ***
## sexM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.53 on 46 degrees of freedom
## Multiple R-squared: 0.3246, Adjusted R-squared: 0.3099
## F-statistic: 22.1 on 1 and 46 DF, p-value: 2.376e-05
##
##
## Response height :
##
## Call:
## lm(formula = height ~ sex)
##
## Residuals:
```

```
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -13.9583 -2.7708 -0.7083
                             4.1042 15.0417
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           1.274 40.783 < 2e-16 ***
## (Intercept)
                51.958
## sexM
               -11.250
                            1.802 -6.244 1.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.241 on 46 degrees of freedom
## Multiple R-squared: 0.4587, Adjusted R-squared: 0.447
## F-statistic: 38.99 on 1 and 46 DF, p-value: 1.246e-07
##
           vbeta
                   epbeta
                               estt
                                          pvalor
## [1,] 136.00000 3.506416 38.786047 0.000000e+00
## [2,] 102.58333 2.149484 47.724628 0.000000e+00
## [3,] 51.95833 1.274014 40.783157 0.000000e+00
## [4,] -22.62500 4.958820 -4.562577 3.752223e-05
## [5,] -14.29167 3.039830 -4.701470 2.376030e-05
## [6,] -11.25000 1.801729 -6.244004 1.246117e-07
```

Tabela 6: Estimativas dos parâmetros do modelo

	Estimativa	EP	Estatística t	p-valor
μ_1	136.00	3.51	38.79	< 0.0001
μ_2	102.58	2.15	47.72	< 0.0001
μ_3	51.96	1.27	40.78	< 0.0001
α_{21}	-22.63	4.96	-4.56	< 0.0001
α_{22}	-14.29	3.04	-4.70	< 0.0001
α_{23}	-11.25	1.80	-6.24	< 0.0001

##Variável Length

Estatistica Qui-quadrado = 20.82

```
## pvalor = 0
## Matriz C :
   [,1] [,2]
## [1,] 0 1
## Matriz U :
##
   [,1]
## [1,] 1
## [2,]
## [3,]
## Matriz M :
## [1] 0
##Variável Width
## Estatistica Qui-quadrado = 22.1
## pvalor = 0
## Matriz C :
   [,1] [,2]
##
## [1,] 0 1
## Matriz U :
##
   [,1]
## [1,]
## [2,]
## [3,]
## Matriz M :
## [1] 0
##Variável Height
## Estatistica Qui-quadrado = 38.99
## pvalor = 0
## Matriz C :
## [,1] [,2]
## [1,] 0
```

```
## Matriz U :
## [,1]
## [1,] 0
## [2,] 0
## [3,] 1
## Matriz M :
## [1] 0
```

Observando o resultado dos teste CBU, podemos observar que as diferenças estão em todas as medidas (largura, comprimento e altura).

#MRLNM (estimativas parâmetros)

Aqui eu não sei o que falar

OBS: DEPOIS TEM QUE VER A LISTA FEITA PRA VER SE FALTA ALGO