Исследование и разработка моделей векторного представления слов

Кемаев Юрий, 441 гр.

Научный руководитель: к.ф-м.н, доцент Турдаков Д. Ю.

ИСП РАН, 2017г.

Векторные представления слов

Определение

Векторные представления слов — распределенные векторы многомерного пространства, полученные в результате взаимно-однозначного отображения из лексикона естественного языка и отражающие семантические и синтаксические особенности слов.

Модель векторного представления слов — совокупность предпосылок и знаний, на основе которых осуществляется такое отображение.

Ключевое свойство

Вектора аналогичных понятий обладают следующим свойством:

$$v_{
m король} - v_{
m мужчина} pprox v_{
m королева} - v_{
m женщина}$$

Откуда, зная три слова из такого отношения, можно алгебраически получить четвертое:

$$v_{\mathsf{король}} = \underset{w \in \mathsf{Словарь}}{\operatorname{argmin}} \ ||v_w - (v_{\mathsf{королева}} - v_{\mathsf{женщина}} + v_{\mathsf{мужчина}})||$$

Зависимость между парами однородных аналогий

Зачем они нужны?

Представления выступают в роли *признаков машинного обучения*, позволяя качественно решить такие задачи, как:

- 💶 извлечение информации из текстов
- распознавание речи
- анализ тональности
- тематическое моделирование
- автоматическое реферирование
- фильтрация контента
- машинный перевод
- тенерирование текста
- синтез речи
- ـ

Такие задачи возникают в области **информационного поиска** — процесса поиска в большой коллекции некоего неструктурированного материала, удовлетворяющего информационные потребности.

Цель работы

Цель

Исследование существующих и разработка новых моделей векторных представлений для эффективной и качественной векторизации слов русского языка

Этапы работы:

- Анализ существующих моделей с целью выявления наиболее эффективных и применимых на практике
- Разработка и реализация новых моделей
- Выбор данных и метрик для тестирования
- Сравнительный анализ разработанных моделей и существующих

Этапы работы

- Разработка и реализация новых моделей
- Выбор данных и метрик для тестирования
- Ф Сравнительный анализ

Основа моделей векторизации слов

Дистрибутивная гипотеза

Лингвистические единицы, встречающиеся в схожих контекстах, имеют близкие значения

Harris, Z. (1954) Distributional structure

Word2Vec Continuous Bag-of-Words (2013)

Цель

Модель Continuous Bag-of-Words предсказывает слово w_t по его контексту $w_{t-k},\dots,w_{t-1},w_{t+1},\dots,w_{t+k}$ (Mikolov et. al, 2013)

Word2Vec Skipgram (2013)

Цель

Модель Skipgram предсказывает контекст $w_{t-k},\ldots,w_{t-1},w_{t+1},\ldots,w_{t+k}$ по слову w_t (Mikolov et. al, 2013)

Недостатки существующих моделей

Основные недостатки

- Существующие модели слабо учитывают морфологию языка (критично для русского языка!)
- ... и никак не используют накопленные априорные знания о нем в процессе обучения

FastText (2016)

Цель

Модель FastText предсказывает контекст

 $w_{t-k}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+k}$ по слову w_t и его n-граммам (Joulin et. al, 2016)

Ключевая идея

Неявное использование морфологических особенностей языка путем представления слова как среднего от векторов своих n-грамм

РуТез-2.0

Краткое описание

РуТез-2.0 — тезаурус для русского языка, содержит ≈ 35 тыс. понятий, связанных 4-мя типами отношений

Текстовый вход: САД

ДЕТСКИЙ САД

<u>(ДЕТСАД, ДЕТСАДИК, ДЕТСАДОВСКИЙ, ДЕТСКИЙ САД, САД, САДИК, САДОВСКИЙ, САД-ЯСЛИ, ЯСПИ-САД)</u>

выше дошкольное учреждение

САД (УЧАСТОК ЗЕМЛИ)

(САД. САДИК, САДОВЫЙ)

ВЫШЕ_А <u>ЗЕМЕЛЬНЫЙ УЧАСТОК</u> АССОЦ1 <u>САДОВАЯ КУЛЬТУРА</u>

Информация о слове "сад"

Russian Distributional Thesaurus

Краткое описание

Russian Distributional Thesaurus (RDT) — тезаурус для русского языка, содержит ≈ 932 тыс. понятий и граф их подобия

Ближайшие соседи слова "физика"

Этапы работы

- Разработка и реализация новых моделей
- Выбор данных и метрик для тестирования
- Фанительный анализ

Лингвистические характеристики слов языка

Каждое слово обладает множеством свойств в разных областях языкознания (в синтаксическом, семантическом и др. срезах). Примеры областей и свойств:

- морфемный состав свойствами слова являются его морфемы
- граф аналогий языка свойствами слова являются его связи с другими словами
- n-граммый состав свойствами словя являются его n-граммы

Представление слова

Каждому слову из лексикона ставится в соответствие

$$F^w = \{(i,j) \mid i = 1, \ldots, k; j = 1, \ldots, S_i; p_j^i(w) = 1\}$$

— набор индексов свойств из каждой области языкознания.

Ключевая идея

Переход от представлений слов к представлениям свойств

Представление слова

Теперь слово w представляется как усреднение по векторам всех своих свойств:

$$v(w) = \frac{1}{|F^w|} \sum_{(i,j) \in F^w} v(i,j)$$

Модификации архитектуры нейронной сети

Выделенное семейство моделей позволяет ввести некоторые модификации архитектуры оригинальной сети для максимально эффективного использования информации, предоставляемой каждой областью языкознания.

Semi-boosting сеть

Ключевая идея

Обучить k моделей, каждая из которых исправляет коллективную ошибку предшествующих (по аналогии с *градиентным бустингом*).

Архитектура semi-boosting сети

Полносвязная сеть с dropout

Ключевая идея

Получить усреднение параметров нейронной сети по всевозможным 2^N архитектурам, где N — количество нейронов входного слоя в сети.

Архитектура полносвязной сети с dropout

Реализация

Особенности реализации

Реализация моделей имеет обладает следующими основными свойствами:

- \bullet реализация выполнена на языке C++
- архитектура модели выбирается пользователем
- параметры модели задаются пользователем
- обучение происходит параллельно на нитях (threads)
- вертикальная и горизонтальная масштабируемость
- расширяемость можно подключать любые предметные области (требуется соблюсти формат)

Этапы работы

- Разработка и реализация новых моделей
- Выбор данных и метрик для тестирования
- Ф Сравнительный анализ

RUSSE

Оценка качества

Качество выходных представлений моделей тестировалось с использованием комплекта задач и данных **RUSSE**, созданного специально с целью оценки оценки векторов слов русского языка.

Данное решения было принято по следующим причинам:

- данный комплект позволяет всесторонне оценить качество векторов, так как включает в себя несколько тестовых задач (6 штук)
- в комплекте представлены почти все существующие на данный момент задачи для русского языка
- в свободном доступе имеется обертка, написанная на Python

RUSSE, данные

RUSSE содержит 6 наборов данных для оценки:

- lacktriangle русифицированный набор WordSim353 Rel 250 кортежей
- $oldsymbol{2}$ русифицированный набор WordSim353 Sim 202 кортежа
- RusseHJ набор понятий и оценок, выставленных людьми, 333 кортежа
- ullet датасет с кортежами связанных отношениями разной природы слов 9549 кортежей
- ullet два датасета с когнитивными ассоциациями по 1952 и 3003 кортежа соответственно

Данные для обучения и предобработка

Входными данными для обучения были взяты ≈ 12 **млн** сообщений из различных открытых сообществ социальной сети "Вконтакте".

Процесс предобработки состоит из следующих шагов:

- Замена знаков препинания на пробелы
- Приведение слов в нижний регистр
- 3 Замена всех числительных на "1"
- Лемматизация с помощью морфологического анализатора Yandex Mystem 3
- Осоздание словаря, содержащего 100 тыс. наиболее частотных уникальных понятий
- Фильтрация слов корпуса, которые не вошли в сформированный словарь (размер корпуса уменьшился на 1.3%)

Области языкознания

Использовались 4 области знаний:

- n-граммы слов, полученные с помощью морфологического анализатора **pymorphy2** (понадобиться: понадоб, понадоби, понадо, надо, онадоби, ...)
- морфемы слов, полученные эвристически (разглашать: раз-глаш-ать)
- аналогии, полученные из тезауруса Russian distributional thesaurus (производная: производный, константа, функция, компонента, ...)
- синонимы, полученные из тезауруса **PyTeз-2.0** (публикование: обнародование, опубликовывать, помещать, печататься, ...)

Параметры тестируемых моделей

Общие для всех моделей параметры были взяты по умолчанию (предложенные авторами базовых моделей), а именно:

- размерность выходных представлений 300
- размер скользящего окна 5
- количество шумных слов для данного 5
- длина n-грамм от 3 до 6
- learning rate − 0.025
- количество эпох 1
- линейное подавление learning rate через каждые 100 шагов скользящего окна

Каждая модель из разработанных использует не более 10 своих самых частотных свойств из каждой предметной области.

Этапы работы

- Разработка и реализация новых моделей
- Выбор данных и метрик для тестирования
- Оравнительный анализ

Результат, часть 1

Модель	WS353 rel	WS353 sim	HumJudge
CBoW (2013)	0.5951	0.6869	0.6782
SGNS (2013)	0.6327	0.7249	0.6967
FastText (2016)	0.6021	0.7264	0.6896
fully-conn.	0.6344	0.7607	0.7237
f-c (no t.)	0.6359	0.7557	0.7240
f-c + dropout	0.5972	0.7154	0.7175
f-c + dropout (no t.)	0.5809	0.6362	0.6832
semi-boosting	0.6594	0.7855	0.7642
semi-boosting (no t.)	0.6538	0.7196	0.7704
mean-prior.	0.5907	0.6695	0.6632
mean-prior. (no t.)	0.5847	0.6564	0.6248

Таблица: Оценка (Spearman's correlation с экспертной разметкой) выходных векторных представлений слов

Результат, часть 2

Модель	RuTes sem	AssocThes	AssocOnline
CBoW (2013)	0.7120	0.5184	0.8554
SGNS (2013)	0.7241	0.5256	0.8581
FastText (2016)	0.7130	0.5287	0.8434
fully-conn.	0.7315	0.5315	0.8604
f-c (no t.)	0.7240	0.5255	0.8584
f-c + dropout	0.7160	0.5183	0.8481
f-c + dropout (no t.)	0.6718	0.5134	0.8215
semi-boosting	0.7405	0.5420	0.8701
semi-boosting (no t.)	0.7260	0.5400	0.8634
mean-prior.	0.7009	0.5010	0.8315
mean-prior. (no t.)	0.6843	0.5051	0.8241

Таблица: Оценка (ассигасу) выходных векторных представлений слов

Выводы

В рамках настоящей выпускной квалификационной работы были получены следующие результаты:

- Проведен анализ существующих методов построения векторных представлений слов, составлен их подробный обзор
- Введено семейство моделей векторного представления слов, обобщающее идеи существующих (моделей).
- Разработаны и реализованы несколько методов векторизации, показывающих одни из лучших результатов в задачах обработки русского языка

Спасибо за внимание