日期 科目 班级 姓名 学号

2022 年 11 月 17 日 泛函分析 强基数学 002 吴天阳 2204210460

第九次作业

题目 1. 设 X 是复 Hilbert 空间, $T \in L(X)$, 证明: $T^* = T \iff (Tx, x) \in \mathbb{R}$, $(\forall \in X)$.

证明. "⇒":
$$(Tx,x)=(x,T^*x)=(x,Tx)=\overline{(Tx,x)}$$
, 则 $(Tx,x)\in\mathbb{R}$.

"
$$\Leftarrow$$
": 由于 $(Tx, x) \in \mathbb{R}$ 于是 $(Tx, x) = (x, Tx) = (x, T^*x)$,于是 $(x, (T-T^*)x) = 0$, $(\forall x \in X)$,于是 $T - T^* = 0 \Rightarrow T = T^*$.

题目 2. 设 X 为 Hilbert 空间, $T_1, T_2 \in L(X)$, $T_1^* = T_1, T_2^* = T_2$,证明: $T_1T_2 = T_2T_1 \iff T_1T_2 = (T_1T_2)^*$.

证明. 由于 $T_1T_2 = (T_1T_2)^{**} = (T_2^*T_1^*)^* = (T_2T_1)^*$

" \Rightarrow ": 由于 $T_1T_2 = T_2T_1$, 于是 $T_1T_2 = (T_1T_2)^*$.

"
$$\leftarrow$$
":由于 $T_1T_2 = (T_1T_2)^* = (T_2T_1)^*$,两边同取共轭可得 $T_1T_2 = T_2T_1$.

题目 3. 设 X 为 Hilbert 空间, $T \in L(X)$,证明 $Ker(T^*) = R(T)^{\perp}$.

证明. 一方面,
$$\forall x \in \operatorname{Ker}(T^*)$$
,则 $0 = (T^*x, y) = (x, Ty)$,($\forall y \in X$),则 $x \in R(T)^{\perp} \Rightarrow \operatorname{Ker}(T) \subset R(T)^{\perp}$. 另一方面, $\forall x \in R(T)^{\perp}$,则 $0 = (x, Ty) = (T^*x, y)$,($\forall y \in X$),则 $T^*x = 0 \Rightarrow x \in \operatorname{Ker}(T^*)$.
综上: $\operatorname{Ker}(T^*) = R(T)^{\perp}$.

题目 4. 证明 $(^{\perp}M)^{\perp} = \bar{M}$.

证明. $\forall x \in M$, $\forall f \in {}^{\perp}M$ 有 $\langle f, x \rangle = 0$, 则 $x \in ({}^{\perp}M)^{\perp}$, 令 $\{x_n\} \subset M$ 且 $x_n \to x \in X$, 由于 f 的连续性,则 $\langle f, x \rangle = \lim_{n \to \infty} f(x_n) = 0 \Rightarrow x \in ({}^{\perp}M)^{\perp}$,于是 $\bar{M} \subset ({}^{\perp}M)^{\perp}$.

假设 \bar{M} 是 $(^{\perp}M)^{\perp}$ 的真子集,则 $\exists x_0 \in (^{\perp}M)^{\perp} - \bar{M}$,且 $d := \rho(x_0, \bar{M}) > 0$,由 Hahn-Banach 定理推论可得 $\exists f \in X^*$ 使得 $f(x_0) = d$, $f|_{\bar{M}} = 0$,于是 $f \in ^{\perp}M$ 且 $f(x_0) = d > 0$,则 $x_0 \notin (^{\perp}M)^{\perp}$ 与 $x_0 \in (^{\perp}M)^{\perp}$ 矛盾. 故 $\bar{M} = (^{\perp}M)^{\perp}$.

题目 5. 设 X, Y 为 B^* 空间, $T \in L(X, Y)$ 则 $\operatorname{Ker}(T^*) = {}^{\perp}R(T)$, $\operatorname{Ker}(T) = \mathbb{R}(T^*)^{\perp}$.

证明.
$$\forall f \in \operatorname{Ker}(T^*), \ \mathbb{M}\langle f, Tx \rangle = \langle T^*f, x \rangle = 0, \ \mathbb{M}f \in {}^{\perp}R(T) \\ \forall f \in {}^{\perp}R(T), \ \mathbb{M}\langle T^*f, x \rangle = \langle f, Tx \rangle = 0, \ \mathbb{M}f \in \operatorname{Ker}(T^*) \\ \forall x \in \operatorname{Ker}(T), \ \mathbb{M}\langle T^*f, x \rangle = \langle f, Tx \rangle = f(0) = 0, \ \mathbb{M}x \in R(T^*)^{\perp} \\ \forall x \in R(T^*)^{\perp}, \ \mathbb{M}\langle f, Tx \rangle = \langle T^*f, x \rangle = 0, \ \mathbb{M}x \in \operatorname{Ker}(T) \\ \end{cases} \operatorname{Ker}(T) = R(T^*)^{\perp}$$

题目 6. 设 $X = \{\xi = (x_1, \dots, x_n) \in l^2 : \sum_{n \geq 1} |nx_n|^2 < \infty\}$, $T : x \to l^2$, Tx = x, 证明 $\overline{R(T)} = l^2$.

证明. 先证明 X 为 l^2 的子空间, $\forall \alpha, \beta \in \mathbb{K}$, $\forall \xi, \eta \in X$, 令 $\xi = \{x_n\}$, $\eta = \{y_n\}$, $\forall N > 0$, 有

$$\sum_{1 \leqslant n \leqslant N} |n(\alpha x_n + \beta y_n)|^2 = \alpha^2 \sum_{1 \leqslant n \leqslant N} n^2 x_n^2 + 2\alpha\beta \sum_{1 \leqslant n \leqslant N} n^2 x_n y_n + \beta^2 \sum_{1 \leqslant n \leqslant N} n^2 y_n^2$$

由于 $\xi, \eta \in X$,于是 $\sum_{1 \leqslant n \leqslant N} n^2 x_n^2, \sum_{1 \leqslant n \leqslant N} n^2 y_n^2$ 关于 N 收敛,又由于

$$\sum_{1 \le n \le M} n^2 x_n y_n \le \left(\sum_{1 \le n \le M} |n x_n|^2 \right)^{\frac{1}{2}} \left(\sum_{1 \le n \le M} |n y_n|^2 \right)^{\frac{1}{2}}$$

于是

$$\lim_{N\to\infty} \sum_{1\leqslant n\leqslant N} |n(\alpha x_n + \beta y_n)|^2 = \sum_{n\geqslant 1} |n(\alpha x_n + \beta y_n)|^2 < \infty$$

所以 $\alpha \xi + \beta \eta \in X$, $X \in l^2$ 的闭子空间.

由 Hahn-Banach 定理推论可得,要证 $\overline{R(T)}=l^2$ 即 R(T) 在 l^2 中稠密,只需证: $\forall f\in (l^2)^*, f|_{R(T)}=0\Rightarrow f=\theta$. 反设,存在 $f\neq\theta$ 使得 $f|_{R(T)}=0$,由于 l^2 是 Hilbert 空间,由 Riesz 表示定理可知,存在 $\eta_f\in l^2,\ \eta_f=\{y_n\}$ 使得 $\forall \xi\in X,\ \xi=\{x_n\}$ 有

$$f(\xi) = (\xi, \eta_f) = \sum_{n \ge 1} x_n \bar{y}_n = 0$$

由于 $f \neq \theta$,于是 $\eta_f \neq \theta$,即 $\exists y_n \neq 0$,令 $\xi = (\underbrace{0, \cdots, 0, 1}_{n \uparrow}, 0, \cdots) \in X$,则 $f(\xi) = \bar{y}_n \neq 0$ 与 $f(\xi) = 0$ 矛盾,则 $f|_{R(T)} = \theta \Rightarrow f = \theta$.