

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM **Features**

Automotive LPDDR5/LPDDR5X SDRAM

MT62F768M32D2, MT62F1536M32D4, MT62F3G32D8

Features	Options	Marking
• Architecture	Operating Voltage	F
17.1 GB/s maximum bandwidth per channelFrequency range: 1067–5 MHz (data rate range per	$-V_{\rm DD1}/V_{\rm DD2H}/V_{\rm DD2L}/V_{\rm DDQ}/V_{\rm DDQ}({\rm ODT})\\ {\rm offonly}; 1.8V/1.05V/0.9V/0.5V/0.3V$	
pin: 8533–40 Mb/s with WCK:CK = 4:1)	 Array configuration 	
- Selectable CKR (WCK:CK = 2:1 or 4:1)	- 768 Meg x 32 (768M16 x 2Ch x 1R)	768M32
• LPDDR5X data interface	– 1536 Meg x 32 (768M16 x 2Ch x 2R)	1536M32
 Single x16 channel/die 	– 3 Gig x 32 (1536M16 x 2Ch x 2R)	3G32
 Double-data-rate command/address entry 	 Device configuration 	
 Differential command clocks (CK_t/CK_c) for 	– 2 die in package (768M16 x 2 die)	D2
high-speed operation	– 4 die in package (768M16 x 4 die)	D4
– Differential data clocks (WCK_t/WCK_c)	– 8 die in package (1536M8 x 8 die)	D8
– Differential read strobe (RDQS_t/RDQS_c)	 FBGA RoHS-compliant, "green" package 	2
– 16 <i>n</i> -bit or 32 <i>n</i> -bit prefetch architecture	– 315-ball TFBGA	DS
 Command-selectable burst lengths (BL = 16 or 32) 	12.4mm x 15.0mm (TYP)	
in bank group or 16-bank modes	Seated height 1.1mm (MAX)	
 Background ZQ calibration/command-based ZQ 	– 315-ball LFBGA	DV
calibration	12.4mm x 15.0mm (TYP)	
 Link protection (link ECC) support 	Seated height 1.3mm (MAX)	
 Partial-array self refresh (PASR) and partial-array 	 Speed grade, cycle time (^tWCK) 	
auto refresh (PAAR) with segment mask	– 8533 Mb/s	-023
 Ultra-low-voltage core and I/O power supplies 	– 7500 Mb/s	-026
$-V_{DD1} = 1.70-1.95V$; 1.80V TYP	 Functional safety features 	F
$-V_{DD2H} = 1.01-1.12V$; 1.05V TYP	 Micron safety features enabled 	
$-V_{\rm DD2L} = V_{\rm DD2H}$ or 0.87–0.97V; 0.90V TYP	 Suitable for meeting random HW met- 	-
$-V_{\mathrm{DDO}} = 0.50 \mathrm{V}$ TYP or $0.30 \mathrm{V}$ TYP (ODT off only)	rics up to ASIL D	
• I/O characteristics	 Automotive and functional safety 	A^1
– Interface-LVSTL 0.5/0.3	– AEC-Q100	
– I/O type: Low-swing single-ended, V _{SS} terminated	– PPAP	
– V _{OH} -compensated output drive	- ISO 26262 ASIL D compliant develop-	_
– Programmable V _{SS} on-die termination (ODT)	ment	
 Non target ODT support 	- FMEDA (ISO 26262-5:2018, cl. 8, 9)	
– DVFSQ support	- Safety manual	
• Low-power features	Operating temperature	
 – DVFSC: Dynamic voltage frequency scaling core 	40°C ≤ T _C ≤ +95°C	IT
- Single-ended CK, single-ended WCK, and sin-	$-40^{\circ}\text{C} \le T_{\text{C}} \le +105^{\circ}\text{C}$	AT
gle-ended RDQS	$-40^{\circ}\text{C} \le 10^{\circ}\text{C} \le +105^{\circ}\text{C}$ $-40^{\circ}\text{C} \le T_{\text{C}} \le +125^{\circ}\text{C}$	UT^2
– Data copy	• Revision	:B
– Write X	- ICVISIOII	и.

Notes: 1. For functional safety documentation, contact a Micron sales representative.

2. Based on automotive usage model. Contact a Micron sales representative with questions.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Part Number Ordering Information

Part Number Ordering Information

Figure 1: Part Number Chart

Table 1: Part Number List

Part Number	Total Density	Data Rate per Pin
MT62F768M32D2DS-023 AIT:B	3GB (24Gb)	8533 Mb/s
MT62F768M32D2DS-023 AAT:B		
MT62F768M32D2DS-023 AUT:B		
MT62F768M32D2DS-023 FAAT:B		
MT62F1536M32D4DS-023 AIT:B	6GB (48Gb)	
MT62F1536M32D4DS-023 AAT:B		
MT62F1536M32D4DS-023 AUT:B		
MT62F1536M32D4DS-023 FAAT:B		
MT62F3G32D8DV-023 AIT:B	12GB (96Gb)	
MT62F3G32D8DV-023 AAT:B		
MT62F3G32D8DV-023 AUT:B		
MT62F3G32D8DV-023 FAAT:B		
MT62F1536M32D4DS-026 AIT:B	6GB (48Gb)	7500 Mb/s
MT62F1536M32D4DS-026 AAT:B		
MT62F3G32D8DV-026 AIT:B	12GB (96Gb)	
MT62F3G32D8DV-026 AAT:B		

FBGA Part Marking Decoder

Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's FBGA part marking decoder is available at www.micron.com/decoder.

2

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Part Number Ordering Information

LPDDR5/LPDDR5X Data Sheet List

This data sheet only describes the product specifications that are unique to the Micron devices listed in Table 1.

For general LPDDR5/LPDDR5X specifications, please refer to the data sheets below.

- General LPDDR5/LPDDR5X Specifications 1: Mode Registers
- General LPDDR5/LPDDR5X Specifications 2: AC/DC and Interface Specifications
- General LPDDR5/LPDDR5X Specifications 3: Features and Functionalities

Micron Confidential and Proprietary

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM

Contents

Part Number Ordering Information	2
FBGA Part Marking Decoder	
LPDDR5/LPDDR5X Data Sheet List	
Important Notes and Warnings	
General Notes	
Functional Safety Notes	
Device Configuration	10
Refresh Requirement Parameters	11
Package Block Diagrams	12
Dual Die, Dual Channel, Single Rank	12
Quad Die, Dual Channel, Dual Rank	13
Eight Die, Dual Channel, Dual Rank	
315b Dual Channel, 1 Rank, 2 Rank	15
Package Dimensions	17
315-Ball Package (Package Code: DS)	
315-Ball Package (Package Code: DV)	18
Product-Specific Mode Register Definition	19
I _{DD} Parameters	
Revision History	
Rev. C – 06/2022	
Rev. B – 04/2022	
Rev. A	

Micron Confidential and Proprietary

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM

List of Figures

Figure 1: Part Number Chart	2
Figure 2: Dual Die, Dual Channel, Single Rank Package Block Diagram	
Figure 3: Quad Die, Dual Channel, Dual Rank Package Block Diagram	. 13
Figure 4: Eight Die, Dual Channel, Dual Rank Package Block Diagram	
Figure 5: 315-Ball Dual-Channel Discrete FBGA	
Figure 6: 315-Ball TFBGA – 12.4mm (TYP) x 15.0mm (TYP) x 1.1mm (MAX)	. 17
Figure 7: 315-Ball LFBGA – 12.4mm (TYP) x 15.0mm (TYP) x 1.3mm (MAX)	

Micron Confidential and Proprietary

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM

List of Tables

Table 1: Part Number List	2
Table 2: Die Organization in the Package	
Table 3: Die Addressing	
Table 4: Refresh Requirement Parameters	
Table 5: 315-Ball/Pad Descriptions	
Table 6: Mode Register Contents	
Table 7: I _{DD} Parameters at 7500 Mb/s – Single Die	
Table 8: I _{DD} Parameters at 8533 Mb/s – Single Die	
Table 9: Full-Array Power-Down Self Refresh Current – Single Die	

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Important Notes and Warnings

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM General Notes

General Notes

Throughout the data sheet, figures and text refer to DQs as DQ. DQ should be interpreted as any or all DQs collectively, unless specifically stated otherwise.

RDQS, CK, and WCK should be interpreted as RDQS_t, RDQS_c, CK_t, CK_c, and WCK_t, WCK_c respectively unless specifically stated otherwise. CA includes all CA pins used for a given density.

In timing diagrams, CMD is used as an indicator only. Actual signals occur on CA[6:0].

 V_{REF} indicates $V_{REF(CA)}$ and $V_{REF(DO)}$.

Complete functionality is described throughout the entire document. Any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.

Any specific requirement takes precedence over a general statement.

Any functionality not specifically stated herein is considered undefined, illegal, is not supported, and will result in unknown operation.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Functional Safety Notes

Functional Safety Notes

This automotive LPDDR5/LPDDR5X DRAM product family has been developed according to ISO 26262:2018 requirements to provide a level of systematic fault coverage that allows its use in systems targeting up to ASIL D compliance.

This LPDDR5/LPDDR5X DRAM contains several new functional safety features that operate within the JEDEC LPDDR5/LPDDR5X protocols (commands, timings, and so forth) and are made available to the integrator on "F" parts (see Part Number Ordering Information). The specification addendum governing these functional safety features is available under NDA. This LPDDR5/LPDDR5X DRAM may operate as a standard JEDEC LPDDR5/LPDDR5X DRAM only, or as a standard JEDEC LPDDR5/LPDDR5X DRAM specifically designed to include functional safety features to communicate fault detection (only available on "F" parts). Additional support may be available to customers who need to integrate Micron's products in their functional safety-related applications. This support may include Safety Analysis Report, reporting FMEDA results and metrics, Safety Manual and Pin FMEA Report, providing guidelines and instructions for using Micron products in safety-related applications.

Contact a Micron sales representative to initiate the process required to obtain the functional safety documentation.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Device Configuration

Device Configuration

Table 2: Die Organization in the Package

Die Organization	768M32 (24 Gb/package)	1536M32 (48 Gb/package)	3G32 (96 Gb/package)
Channel A	x16 mode × 1 die	-	_
Channel B	x16 mode × 1 die	-	_
Channel A, rank 0	-	x16 mode × 1 die	_
Channel B, rank 0	-	x16 mode × 1 die	_
Channel A, rank 1	-	x16 mode × 1 die	-
Channel B, rank 1	-	x16 mode × 1 die	-
Channel A, rank 0, DQ[7:0]	-	-	x8 mode × 1 die
Channel A, rank 1, DQ[7:0]	-	-	x8 mode × 1 die
Channel B, rank 0, DQ[7:0]	-	-	x8 mode × 1 die
Channel B, rank 1, DQ[7:0]	-	-	x8 mode × 1 die
Channel A, rank 0, DQ[15:8]	-	-	x8 mode × 1 die
Channel A, rank 1, DQ[15:8]	-	-	x8 mode × 1 die
Channel B, rank 0, DQ[15:8]	-	-	x8 mode × 1 die
Channel B, rank 1, DQ[15:8]	-	-	x8 mode × 1 die

Note: 1. Refer to the Package Block Diagram section in this data sheet.

Table 3: Die Addressing

Description	768M32 (24Gb/package), (48Gb/package)		3G32 (96 Gb/package)			
Density per die		12Gb			12Gb		
Bits		12,884,901,888			12,884,901,888		
Bank mode	BG mode	16B mode	8B mode	BG mode	16B mode	8B mode	
Configuration	48Mb × 16 DQ × 4 banks × 4BG	48Mb × 16 DQ × 16 banks	96Mb × 16 DQ × 8 banks	96Mb × 8 DQ × 4 banks × 4BG	96Mb × 8 DQ × 16 banks	192Mb × 8 DQ × 8 banks	
Number of banks			8	4	16	8	
Number of bank groups	4	1	1	4	1	1	
Array prefetch bits	256	256	512	512 128		256	
Rows per bank		49,152		98,304			
Columns		64		64			
Page size (bytes)			4096 1024		1024	2048	
Native burst length	16 16		32	16	16	32	
Number of I/Os		16		8			

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Refresh Requirement Parameters

Table 3: Die Addressing (Continued)

Description	768M32 (24Gb/package), (48Gb/package)		3G	32 (96 Gb/packa	ge)	
Bank address	BA[1:0]	BA[3:0]	BA[2:0] BA[1:0] B		BA[3:0]	BA[2:0]	
Bank group address	BG[1:0] –		BG[1:0] – BG[1:0]		BG[1:0]	-	_
Row address	R[15:0] (R14 = 0 when R	15 = 1)	R[16:0] (R15 = 0 when R16 = 1)			
Column address		C[5:0]		C[5:0]			
Burst address	B[3:0] B[3:0]		B[4:0]	B[3:0]	B[3:0]	B[4:0]	
Burst starting address bound- ary		128-bit			128-bit		

Notes: 1. Refer to the SDRAM Addressing section in General LPDDR5/LPDDR5X Specifications 3.

2. Refer to the Speed Grades and Effective Burst Length in General LPDDR5/LPDDR5X Specifications 3.

Refresh Requirement Parameters

Table 4: Refresh Requirement Parameters

		12Gk		
Parameter	Symbol	BG and 16B Mode	8B Mode	Unit
REFRESH cycle time (all banks)	^t RFCab	280	280	ns
REFRESH cycle time (per bank)	^t RFCpb	140	140	ns
Per bank refresh to per bank refresh time (different bank)	^t PBR2PBR	90	90	ns
Per bank refresh to ACTIVATE command time (different bank)	^t PBR2ACT	7.5	10	ns

Note: 1. This table only describes refresh parameters that are density dependent. Refer to Refresh Requirement section in General LPDDR5/LPDDR5X Specifications 3 for all refresh parameters.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Package Block Diagrams

Package Block Diagrams

Dual Die, Dual Channel, Single Rank

Figure 2: Dual Die, Dual Channel, Single Rank Package Block Diagram

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Package Block Diagrams

Quad Die, Dual Channel, Dual Rank

Figure 3: Quad Die, Dual Channel, Dual Rank Package Block Diagram

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Package Block Diagrams

Eight Die, Dual Channel, Dual Rank

Figure 4: Eight Die, Dual Channel, Dual Rank Package Block Diagram

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM 315b Dual Channel, 1 Rank, 2 Rank

315b Dual Channel, 1 Rank, 2 Rank

Table 5: 315-Ball/Pad Descriptions

Symbol	Туре	Description
CK_t_[A:B], CK_c_[A:B]	Input	Clock: CK_t and CK_c are differential clock inputs. All double data rate (DDR) command/address inputs are sampled on both crossing points of CK_t and CK_c. The first crossing point is the rising (falling) edge of CK_t (CK_c) and second crossing point is falling (rising) edge of CK_t (CK_c). Single data rate (SDR) inputs, CS is sampled on the crossing point that is the rising (falling) edge of CK_t (CK_c).
CS0_[A:B], CS1_[A:B]	Input	Chip select: CS is part of the command code, and is sampled on the rising (falling) edge of CK_t (CK_c) unless the device is in power-down or deep sleep mode where it becomes an asynchronous signal. Each rank (0, 1) has its own CS signals. CS1_[A:B] become NC pins in a single-rank package.
CA[6:0]_[A:B]	Input	Command/address inputs: Provide the command and address inputs according to the command truth table.
WCK[1:0]_t_[A:B], WCK[1:0]_c_[A:B]	Input	Data clock: WCK_t and WCK_c are differential clock inputs used for write data capture and read data output.
DQ[15:0]_[A:B]	I/O	Data input/output: Bidirectional data bus.
RDQS[1:0]_t_[A:B], RDQS[1:0]_c_[A:B]	I/O Output	Read data strobe: RDQS_t and RDQS_c are differential output clock signals used to strobe data during a READ operation. RDQS_t is also used as a parity pin during write link protection enabled. Each byte of data has RDQS_t and RDQS_c signals.
DMI[1:0]_[A:B]	I/O	Data mask inversion: DMI serves multiple functions such as data mask (DM), data bus inversion (DBI), and parity at READ with ECC operation by setting the mode register. DMI is a bidirectional signal and each byte of data has a DMI signal.
ZQ_A	Reference	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin should be connected to V_{DDQ} through a 240 Ω ±1% resistor.
V_{DDQ} , V_{DD1} , V_{DD2H} , V_{DD2L}	Supply	Power supplies: Isolated on the die for improved noise immunity.
V _{SS}	Supply	Ground reference: Power supply ground reference.
RESET_n	Input	Reset: When asserted LOW, the RESET pin resets the die. Reset is an asynchronous signal.
NC	-	No connect: Not internally connected.
RFU	-	Reserved Future Use: Not internally connected.

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM 315b Dual Channel, 1 Rank, 2 Rank

Figure 5: 315-Ball Dual-Channel Discrete FBGA

_																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	_
Α	NC	NC	V _{DDQ}	DMI0_A	V _{SS}	V _{DD2L}	V _{DD2H}	V _{DD2H}	V _{DD2H}	V _{DD2L}	V _{SS}	DMI1_A	V _{DDQ}	NC	NC	A
В	NC	V _{DDQ}	RDQS0_t_A	V _{SS}	DQ4_A	V _{DD2L}	V _{DD2H}	V _{SS}	V _{DD2H}	V _{DD2L}	DQ12_A	V _{SS}	RDQS1_t_A	V _{DDQ}	NC	В
С	V _{DD1}	DQ1_A	V _{DDQ}	RDQS0_c_A	V _{SS}	DQ5_A	V _{DD2H}	V _{SS}	V _{DD2H}	DQ13_A	V _{SS}	RDQ\$1_c_A	V _{DDQ}	DQ9_A		С
D	DQ0_A	V _{SS}	DQ3_A	V _{DDQ}	WCK0_c_A	V _{SS}	V _{SS}	V _{DD2H}	V _{SS}	V _{SS}	WCK1_c_A	V _{DDQ}	DQ11_A	V _{SS}	DQ8_A	D
Е	V _{SS}	DQ2_A	V _{SS}	WCK0_t_A	V_{DDQ}	DQ6_A	V _{DD2H}	V _{SS}	V _{DD2H}	DQ14_A	V _{DDQ}	WCK1_t_A	V _{SS}	DQ10_A	V _{SS}	E
F	V _{DDQ}	V _{SS}	V _{DDQ}	V _{DDQ}	DQ7_A	V _{DD2H}	V _{DD2H}	V _{SS}	V _{DD2H}	V _{DD2H}	DQ15_A	V _{DDQ}	V _{DDQ}	V _{SS}	V _{DDQ}	F
G	V _{DDQ}	V _{DDQ}	V _{SS}	CA0_A	V _{SS}	CS1_A	V _{SS}	CA2_A	V _{ss}	CA4_A	V _{ss}	CA6_A	V _{ss}	V _{DDQ}	V _{DDQ}	G
Н	RESET_N	V _{DD2L}	V _{SS}	V _{SS}	CA1_A	V _{SS}	CS0_A	V _{SS}	CK_t_A	V _{SS}	CA3_A	V _{SS}	CA5_A	V _{DD2L}	ZQ_A	н
J	V _{SS}	V _{DD2L}	V _{SS}	RFU	V _{DD2H}	RFU	V _{SS}	V _{SS}	CK_c_A	V _{SS}	V _{DD2H}	V _{SS}	V _{ss}	V _{DD2L}	V _{SS}	J
K	V _{DD2H}	V _{DD2H}	V _{ss}	V _{SS}	V _{ss}	V _{DD2H}	к									
L	V _{SS}	V _{DD2H}	V _{ss}	L												
М	V _{DD2H}	V _{DD2H}	V _{ss}	V _{SS}	V _{ss}	V _{DD2H}	М									
N	V _{ss}	V _{DD2L}	V _{ss}	V _{SS}	V _{DD2H}	V _{SS}	CK_c_B	V _{SS}	V _{ss}	V _{ss}	V _{DD2H}	V _{SS}	V _{ss}	V _{DD2L}	V _{ss}	N
Р	RFU	V _{DD2L}	CA5_B	V _{SS}	CA3_B	V _{SS}	CK_t_B	V _{SS}	CS0_B	V _{SS}	CA1_B	V _{SS}	V _{SS}	V _{DD2L}	RFU	Р
R	V _{DDQ}	V _{DDQ}	V _{SS}	CA6_B	V _{ss}	CA4_B	V _{SS}	CA2_B	V _{SS}	CS1_B	V _{SS}	CA0_B	V _{SS}	V _{DDQ}	V _{DDQ}	R
Т	V _{DDQ}	V _{SS}	V _{DDQ}	V _{DDQ}	DQ15_B	V _{DD2H}	V _{DD2H}	V _{ss}	V _{DD2H}	V _{DD2H}	DQ7_B	V _{DDQ}	V _{DDQ}	V _{SS}	V _{DDQ}	т
U	V _{SS}	DQ10_B	V _{SS}	WCK1_t_B	V _{DDQ}	DQ14_B	V _{DD2H}	V _{SS}	V _{DD2H}	DQ6_B	V _{DDQ}	WCK0_t_B	V _{SS}	DQ2_B	V _{SS}	U
V	DQ8_B	V _{SS}	DQ11_B	V _{DDQ}	WCK1_c_B	V _{SS}	V _{SS}	V _{DD2H}	V _{SS}	V _{SS}	WCK0_c_B	V _{DDQ}	DQ3_B	V _{SS}	DQ0_B	٧
w	V _{DD1}	DQ9_B	V _{DDQ}	RDQS1_c_B	V _{ss}	DQ13_B	V _{DD2H}	V _{ss}	V _{DD2H}	DQ5_B	V _{SS}	RDQS0_c_B	V _{DDQ}	DQ1_B	V _{DD1}	w
Υ	NC	V _{DDQ}	RDQS1_t_B	V _{SS}	DQ12_B	V _{DD2L}	V _{DD2H}	V _{ss}	V _{DD2H}	V _{DD2L}	DQ4_B	V _{SS}	RDQS0_t_B	V _{DDQ}	NC	Y
AA	NC	NC	V _{DDQ}	DMI1_B	V _{SS}	V _{DD2L}	V _{DD2H}	V _{DD2H}	V _{DD2H}	V _{DD2L}	V _{SS}	DMI0_B	V _{DDQ}	NC	NC	AA
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
					_		Top V	iew (ball d	own)	_						
	VSS	V _D	D1	V _{DD2H}	V _{DD2L}	V _{DDO}	, c	K	RDQS	WCK	DQ,DM	II CA	, CS, ZQ, RE	SET	NC, RFU	

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Package Dimensions

Package Dimensions

315-Ball Package (Package Code: DS)

Figure 6: 315-Ball TFBGA - 12.4mm (TYP) x 15.0mm (TYP) x 1.1mm (MAX)

- Notes: 1. All dimensions are in millimeters.
 - 2. Solder ball composition: SACQ with CuOSP pads (Sn-4Ag-0.5Cu-3Bi-0.05Ni)

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Package Dimensions

315-Ball Package (Package Code: DV)

Figure 7: 315-Ball LFBGA - 12.4mm (TYP) x 15.0mm (TYP) x 1.3mm (MAX)

Notes: 1. All dimensions are in millimeters.

2. Solder ball composition: SACQ with CuOSP pads (Sn-4Ag-0.5Cu-3Bi-0.05Ni)

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Product-Specific Mode Register Definition

Product-Specific Mode Register Definition

Table 6: Mode Register Contents

Mode									
Register	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
MR0	Per-pin DFE	Pre Empha- sis	Unified NT ODT behavior mode	DMI out- put behav- ior mode	Optimized refresh mode	Enhanced WCK always-on mode	Latency mode	NT ODT timing mode	
	OP[0] = 1b: Device supports different NT ODT latency for DQ and RDQS								
				oports x16 mo vice supports			6M32		
				e supports enh			le		
				evice supports					
		OP[4] = 1b: De	• • •						
		OP[5] = 1		T behavior fol			ehavior		
				Device suppo					
MR1			0, [,] = 05.	Device does i	от зарротет с		ARFM sup-	CS ODT OP support	
		OI	P[0] = 0b: Dev	ice does not su	upport CS OD	Γ behavior OP	•		
			OP[1] = 0	b: Device doe	s not support	ARFM			
MR3				BK/B0	G Org				
		ı	OP[4:3] = 00b	BG, 01b: 8B,	10b: 16B Mod	e Supported			
MR5				Manufact	urer ID				
				1111 11111					
MR6				Revisio					
MR8	VO :-	vidth		0000 0			To		
IVIK8	OP[7:6] = 00b:			OP[5:2] = 0	101b: 12Gb		OP[1:0] = 01		
	768M32, 1536 OP[7:6] = 01b:	M32		01 [5.2] = 0	OP[1:0] = 01b: LPDDR5X SDRAM				
MR13						VRO			
	OP[2] = 0b: Normal operation (default) 1b: Output the $V_{REF(CA)}$ value on DQ7 and $V_{REF(DQ)}$ value on DQ6								
MR19			WCK2DQ OSC FM						
			OP[5] =	1b: WCK2DQ	OSC FM supp	orted			

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Product-Specific Mode Register Definition

Table 6: Mode Register Contents (Continued)

Mode Register	OP7	OP6	OP5	OP4	ОР3	OP2	OP1	ОР0				
MR21	WXS ODTD-CSFS WXFS RDCFS WDCFS											
	OP[0] = 1b: WRITE DATA COPY function supported											
	OP[1] = 1b: READ DATA COPY function supported											
	OP[2] = 1b: WRITE X function supported											
			OP[3] =	1b: Device OD	TD-CS is supp	orted						
	OP[7] = 1b: Data to be written can be selected with 0 and 1											
MR22	RE	СС	WE	CC								
	OP[5:4] = 00b: Write link ECC disabled (default) 01b: Write link ECC enabled (See Note 4)											
	OP[7:6] = 00b: Read link ECC disabled (default) 01b: Read link ECC enabled (See Note 4)											
MR24	DFES	DFES Read DCA										
	OP[3] = 1b: Device supports Read DCA											
	OP[7] = 1b: Device supports DFE											
MR26	RDQSTFS											
	OP[6] = 1b: Read/write-based RDQS_t TRAINING function supported											
MR27	RAAI	MULT		RAAIMT RFM								
	OP[0] = 1b: RFM is required											
	OP[5:1] = 01110b: 112											
	OP[7:6] = 01b: 4X											
MR43		SBEC rule										
	(DP[6] = 1b: Sim	ultaneous SBE	byte and DMI are independently counted								
MR57	ARI	:W₃		RFMSB RAAD								
	OP[1:0] = 10b: 2 × RAAIMT											
	OP[3:2] = 00b: 1 = Does not support single-bank mode											
	OP[7:6] = 00b: default (01110b: 112), 01b: Level A = 01101b: 104, Level B = 01100b: 96, Level C = 01011: 88											

Notes: 1. The contents of mode registers described here reflect information specific to each die in these packages.

20

- 2. Refer to General LPDDR5/LPDDR5X Specification 1 for mode registers not described here.
- 3. Refer to General LPDDR5/LPDDR5X Specification 3 for feature description not described here.
- 4. Write link ECC and read link ECC are supported.

I_{DD} Parameters

Refer to I_{DD} Specification Parameters and Test Conditions section in General LPDDR5/LPDDR5X Specifications 2 for detailed conditions.

Table 7: I_{DD} Parameters at 7500 Mb/s - Single Die

	Supply	х	3 7500 MI	b/s	х1	6 7500 M	lb/s	Unit	Note
Symbol		AIT	AAT	AUT	AIT	AAT	AUT		
I _{DD01}	V_{DD1}	3.3	3.3	3.6	3.3	3.3	3.6	mA	
I _{DD02H}	V_{DD2H}	29.5	29.5	34.5	30.0	30.0	35.0		
I _{DD02L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD0Q}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2P1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2P2H}	V_{DD2H}	2.2	2.2	2.7	2.2	2.2	2.7		
I _{DD2P2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2PQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2PS1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2PS2H}	V _{DD2H}	2.2	2.2	2.7	2.2	2.2	2.7		
I _{DD2PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2N1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2N2H}	V _{DD2H}	16.5	16.5	20.5	17.0	17.0	21.0		
I _{DD2N2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2NQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2NS1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2NS2H}	V _{DD2H}	16.5	16.5	20.5	17.0	17.0	21.0		
I _{DD2NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD3P1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD3P2H}	V _{DD2H}	6.0	6.0	8.0	6.0	6.0	8.0		
I _{DD3P2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3PQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD3PS1}	V_{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD3PS2H}	V_{DD2H}	6.0	6.0	8.0	6.0	6.0	8.0	1	
I _{DD3PS2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2	1	
I _{DD3PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6	1	

Table 7: I_{DD} Parameters at 7500 Mb/s - Single Die

	Supply	x8	x8 7500 Mb/s			x16 7500 Mb/s			
Symbol		AIT	AAT	AUT	AIT	AAT	AUT	Unit	Note
I _{DD3N1}	V_{DD1}	1.7	1.7	2.0	1.7	1.7	2.0	mA	
I _{DD3N2H}	V_{DD2H}	21.5	21.5	25.5	22.0	22.0	26.0		
I _{DD3N2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3NQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD3NS1}	V _{DD1}	1.7	1.7	2.0	1.7	1.7	2.0	mA	
I _{DD3NS2H}	V _{DD2H}	21.5	21.5	25.5	22.0	22.0	26.0		
I _{DD3NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD4R1}	V _{DD1}	9.0	9.0	10.0	11.0	11.0	12.0	mA	3, 4
I _{DD4R2H}	V _{DD2H}	290.0	295.0	305.0	430.0	435.0	445.0		
I _{DD4R2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD4RQ}	V_{DDQ}	58.0	58.0	58.0	116.0	116.0	116.0		
I _{DD4W1}	V _{DD1}	8.0	8.0	9.0	10.0	10.0	11.0	mA	3
I _{DD4W2H}	V _{DD2H}	200.0	205.0	215.0	280.0	285.0	295.0		
I _{DD4W2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD4WQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD51}	V _{DD1}	17.0	17.0	17.0	17.0	17.0	17.0	mA	
I _{DD52H}	V _{DD2H}	115.0	115.0	120.0	115.0	115.0	120.0		
I _{DD52L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5Q}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD5AB1}	V _{DD1}	2.5	2.5	2.8	2.5	2.5	2.8	mA	
I _{DD5AB2H}	V _{DD2H}	23.5	23.5	27.5	24.0	24.0	28.0		
I _{DD5AB2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5ABQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD5PB1}	V _{DD1}	2.5	2.5	2.8	2.5	2.5	2.8	mA	
I _{DD5PB2H}	V _{DD2H}	23.5	23.5	27.5	24.0	24.0	28.0		
I _{DD5PB2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5PBQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		

Notes: 1. Published I_{DD} values except I_{DD4RQ} are the maximum I_{DD} values considering the worst-case conditions of process, temperature, and voltage.

- 2. BG mode. DVFSC and DVFSQ disabled.
- 3. BL = 16, DBI disabled.
- 4. I_{DD4RQ} value is reference only. Typical value. Output load = 5pF; R_{ON} = 40 ohms; T_{C} = 25°C
- 5. $V_{DD1} = 1.70-1.95V$; $V_{DD2H} = 1.01-1.12V$; $V_{DD2L} = 0.87-0.97V$; $V_{DDQ} = 0.47-0.57V$
- 6. Notes 1 and 2 apply to entire table.

Table 8: I_{DD} Parameters at 8533 Mb/s – Single Die

		3x	x8 8533 Mb/s			x16 8533 Mb/s			
Symbol	Supply	AIT	AAT	AUT	AIT	AAT	AUT	Unit	Note
I _{DD01}	V _{DD1}	3.3	3.3	3.6	3.3	3.3	3.6	mA	
I _{DD02H}	V _{DD2H}	29.5	29.5	34.5	30.0	30.0	35.0		
I _{DD02L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD0Q}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2P1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2P2H}	V _{DD2H}	2.2	2.2	2.7	2.2	2.2	2.7		
I _{DD2P2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2PQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD2PS1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2PS2H}	V _{DD2H}	2.2	2.2	2.7	2.2	2.2	2.7		
I _{DD2PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2	1	
I _{DD2PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6	1	
I _{DD2N1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2N2H}	V_{DD2H}	16.5	16.5	20.5	17.00	17.0	21.0	1	
I _{DD2N2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2	1	
I _{DD2NQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6	1	
I _{DD2NS1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD2NS2H}	V _{DD2H}	16.5	16.5	20.5	17.0	17.0	21.0		
I _{DD2NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD2NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD3P1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD3P2H}	V_{DD2H}	6.0	6.0	8.0	6.0	6.0	8.0	1	
I _{DD3P2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3PQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6	1	
I _{DD3PS1}	V _{DD1}	1.5	1.5	1.8	1.5	1.5	1.8	mA	
I _{DD3PS2H}	V_{DD2H}	6.0	6.0	8.0	6.0	6.0	8.0	1	
I _{DD3PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD3N1}	V _{DD1}	1.7	1.7	2.0	1.7	1.7	2.0	mA	
I _{DD3N2H}	V_{DD2H}	21.5	21.5	25.5	22.0	22.0	26.0		
I _{DD3N2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3NQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		

Table 8: I_{DD} Parameters at 8533 Mb/s - Single Die

		3x	8533 MI	b/s	х1	6 8533 M	b/s	Unit	Note
Symbol	Supply	AIT	AAT	AUT	AIT	AAT	AUT		
I _{DD3NS1}	V_{DD1}	1.7	1.7	2.0	1.7	1.7	2.0	mA	
I _{DD3NS2H}	V _{DD2H}	21.5	21.5	25.5	22.0	22.0	26.0		
I _{DD3NS2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD3NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD4R1}	V _{DD1}	10.0	10.0	11.0	12.0	12.0	13.0	mA	3, 4
I _{DD4R2H}	V _{DD2H}	320.0	325.0	335.0	480.0	485.0	495.0		
I _{DD4R2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD4RQ}	V_{DDQ}	63.0	63.0	63.0	126.0	126.0	126.0		
I _{DD4W1}	V _{DD1}	9.0	9.0	10.0	11.0	11.0	12.0	mA	3
I _{DD4W2H}	V _{DD2H}	220.0	225.0	235.0	310.0	315.0	325.0		
I _{DD4W2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD4WQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD51}	V _{DD1}	17.0	17.0	17.0	17.0	17.0	17.0	mA	
I _{DD52H}	V _{DD2H}	115.0	115.0	120.0	115.0	115.0	120.0		
I _{DD52L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5Q}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD5AB1}	V _{DD1}	2.5	2.5	2.8	2.5	2.5	2.8	mA	
I _{DD5AB2H}	V _{DD2H}	23.5	23.5	27.5	24.0	24.0	28.0		
I _{DD5AB2L}	V_{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5ABQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		
I _{DD5PB1}	V _{DD1}	2.5	2.5	2.8	2.5	2.5	2.8	mA	
I _{DD5PB2H}	V _{DD2H}	23.5	23.5	27.5	24.0	24.0	28.0		
I _{DD5PB2L}	V _{DD2L}	0.2	0.2	0.2	0.2	0.2	0.2		
I _{DD5PBQ}	V_{DDQ}	0.6	0.6	0.6	0.6	0.6	0.6		

Notes: 1. Published I_{DD} values except I_{DD4RQ} are the maximum I_{DD} values considering the worst-case conditions of process, temperature, and voltage.

- 2. BG mode. DVFSC and DVFSQ disabled.
- 3. BL = 16, DBI disabled.
- 4. I_{DD4RQ} value is reference only. Typical value. Output load = 5pF; R_{ON} = 40 ohms; T_{C} = 25°C
- 5. $V_{DD1} = 1.70-1.95V$; $V_{DD2H} = 1.01-1.12V$; $V_{DD2L} = 0.87-0.97V$; $V_{DDQ} = 0.47-0.57V$
- 6. Notes 1 and 2 apply to entire table.

Table 9: Full-Array Power-Down Self Refresh Current - Single Die

Temperature	Symbol	Supply	Value	Unit
25°C	I _{DD61}	V _{DD1}	0.25	mA
	I _{DD62H}	V _{DD2H}	0.45	
	I _{DD62L}	V _{DD2L}	(see note 4)	
	I _{DD6Q}	V_{DDQ}	(see note 4)	
	I _{DD6DS1}	V _{DD1}	0.25	
	I _{DD6DS2H}	V _{DD2H}	0.45	
	I _{DD6DS2L}	V _{DD2L}	(see note 4)	
	I _{DD6DSQ}	V_{DDQ}	(see note 4)	
95°C	I _{DD61}	V _{DD1}	3.70	mA
	I _{DD62H}	V _{DD2H}	12.00	
	I _{DD62L}	V _{DD2L}	0.20	
	I _{DD6Q}	V_{DDQ}	0.60	
	I _{DD6DS1}	V _{DD1}	3.70	
	I _{DD6DS2H}	V _{DD2H}	12.00	
	I _{DD6DS2L}	V _{DD2L}	0.20	
	I _{DD6DSQ}	V_{DDQ}	0.60	
105°C	I _{DD61}	V _{DD1}	4.00	mA
	I _{DD62H}	V _{DD2H}	17.00	
	I _{DD62L}	V _{DD2L}	0.20	
	I _{DD6Q}	V_{DDQ}	0.60	
	I _{DD6DS1}	V _{DD1}	4.00	
	I _{DD6DS2H}	V _{DD2H}	17.00	
	I _{DD6DS2L}	V _{DD2L}	0.20	
	I _{DD6DSQ}	V_{DDQ}	0.60	
125°C	I _{DD61}	V _{DD1}	7.00	mA
	I _{DD62H}	V _{DD2H}	36.00	
	I _{DD62L}	V _{DD2L}	0.20	
	I _{DD6Q}	V_{DDQ}	0.60	
	I _{DD6DS1}	V _{DD1}	7.00	
	I _{DD6DS2H}	V _{DD2H}	36.00	
	I _{DD6DS2L}	V _{DD2L}	0.20	
	I _{DD6DSQ}	V_{DDQ}	0.60	

25

- Notes: 1. $I_{DD6}25^{\circ}\text{C}$ is the typical value in the distribution with nominal V_{DD} and a reference-only value. $I_{DD6}95/105/125^{\circ}\text{C}$ is the maximum I_{DD} guaranteed value considering the worst-case conditions of process, temperature, and voltage.
 - 2. DVFSC and DVFSQ disabled.
 - 3. $V_{DD1} = 1.70 1.95V$; $V_{DD2H} = 1.01 1.12V$; $V_{DD2L} = 0.87 0.97V$; $V_{DDQ} = 0.47 0.57V$
 - 4. V_{DD2L} and V_{DDQ} power rails are not used during power-down self refresh.

26

315b: x32 Automotive LPDDR5/LPDDR5X SDRAM Revision History

Revision History

Rev. C - 06/2022

• Add DDP

Rev. B - 04/2022

- Updated IDD values for Production status release
- Updated Part Number List table

Rev. A

• Initial preliminary release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support Micron and the Micron logo are trademarks of Micron Technology, Inc.

All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.