РК2 Андреев А.В. ИУ5-61Б Вариант 2

Импорт библиотек

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
import warnings
warnings.filterwarnings('ignore')
sns.set(style="ticks")
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC , LinearSVC
from sklearn.datasets.samples_generator import make_blobs
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from matplotlib import pyplot as plt
```

In [2]:

```
from sklearn.datasets import load_iris
boston = load_iris()
data = pd.DataFrame(boston.data, columns=boston.feature_names)
data['TARGET'] = boston.target
```

In [3]:

```
data.head()
```

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [4]:
```

```
data.dtypes
```

Out[4]:

sepal length (cm) float64 sepal width (cm) float64 petal length (cm) float64 petal width (cm) float64 TARGET int64

dtype: object

In [5]:

```
data.isnull().sum()
# проверим есть ли пропущенные значения
```

Out[5]:

sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
TARGET 0
dtype: int64

In [6]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	TARGET	150 non-null	int64

dtypes: float64(4), int64(1)

memory usage: 6.0 KB

In [7]:

```
data.head()
```

Out[7]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [8]:

```
#Построим корреляционную матрицу
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```

Out[8]:

<AxesSubplot:>

In [9]:

```
X = data.drop(['TARGET'], axis = 1)
Y = data.TARGET
print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())
```

Входные данные:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Выходные данные:

Name: TARGET, dtype: int64

```
In [10]:
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 0, test_size =
print('Входные параметры обучающей выборки:\n\n',X_train.head(), \
    '\n\nВходные параметры тестовой выборки:\n\n', X_test.head(), \
    '\n\nВыходные параметры обучающей выборки:\n\n', Y_train.head(), \
    '\n\nВыходные параметры тестовой выборки:\n\n', Y_test.head())
```

Входные параметры обучающей выборки:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (c
m)				
37	4.9	3.6	1.4	0.1
78	6.0	2.9	4.5	1.5
90	5.5	2.6	4.4	1.2
45	4.8	3.0	1.4	0.3
16	5.4	3.9	1.3	0.4

Входные параметры тестовой выборки:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (c
m)				
114	5.8	2.8	5.1	2.
4				
62	6.0	2.2	4.0	1.
0		4.2	1.4	0
33 2	5.5	4.2	1.4	0.
2 107	7.3	2.9	6.3	1.
8	7.5	2.5	0.5	1.
7	5.0	3.4	1.5	0.
2				

Выходные параметры обучающей выборки:

37 0 78 1 90 1 45 0 16 0 Name: TARGET, dtype: int64

Выходные параметры тестовой выборки:

Name: TARGET, dtype: int64

In [11]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error
from sklearn.svm import SVR
```

In [12]:

```
Lin_Reg = LinearRegression().fit(X_train, Y_train)
lr_y_pred = Lin_Reg.predict(X_test)
```

In [13]:

```
plt.scatter(X_test['petal width (cm)'], Y_test, marker = 's', label = 'Тестовая выборка'
plt.scatter(X_test['petal width (cm)'], lr_y_pred, marker = '.', label = 'Предсказанные дан
plt.legend (loc = 'lower right')
plt.xlabel ('petal width (cm)')
plt.ylabel ('TARGET')
plt.show()
```


In [14]:

from sklearn.ensemble import RandomForestRegressor

In [15]:

```
forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
forest_1.fit(X, Y)
```

Out[15]:

RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)

In [16]:

```
Y_predict = forest_1.predict(X_test)
print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_predict))
print('Средняя квадратичная ошибка:', mean_squared_error(Y_test, Y_predict))
print('Median absolute error:', median_absolute_error(Y_test, Y_predict))
print('Коэффициент детерминации:', r2_score(Y_test, Y_predict))
```

Средняя абсолютная ошибка: 0.0 Средняя квадратичная ошибка: 0.0 Median absolute error: 0.0 Коэффициент детерминации: 1.0

In [17]:

```
plt.scatter(X_test['petal width (cm)'], Y_test, marker = 'o', label = 'Тестовая выборка' plt.scatter(X_test['petal width (cm)'], Y_predict, marker = '.', label = 'Предсказанные дан plt.legend(loc = 'lower right') plt.xlabel('petal width (cm)') plt.ylabel('TARGET') plt.show()
```

