# Application of duality: The max-flow min-cut theorem

#### Outline:

- Define network flow graph
- Maximizing the flow on a graph
- Define minimum cut of a graph
- Max-flow as a linear program (LP)
- Take the dual of the max-flow LP
- Prove max-flow min-cut theorem using strong duality

## Network flow graph

- Let G = (V, A) be a directed graph, where V denotes a set of vertices and A
  denotes a set of arcs (directed eges).
- Example:  $V = \{s, t, u, v\}, A = \{su, sv, ut, vt\}.$



- For every arc  $uv \in A$ , there is an associated capacity  $c_{uv} \ge 0$ .
- Designate special vertices  $s, t \in V$  called *source* and *sink*, respectively.

## Flow on a graph

A flow is a nonnegative number assigned to every arc such that it doesn't exceed the capacity of the arc.



### **Definition of flow**

- A valid *s-t* flow must obey the **flow in = flow out** rule.
- Denote the a flow by a vector  $x \in \mathbb{R}^{|A|}$ .
- $x_{uv} = \text{flow on arc } uv$ .



$$x = \begin{bmatrix} x_{sv_1} \\ x_{sv_2} \\ x_{v_1v_3} \\ x_{v_2v_4} \\ x_{v_1v_2} \\ x_{v_3v_2} \\ x_{v_4v_3} \\ x_{v_3t} \\ x_{v_4t} \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 10 \\ 4 \\ 0 \\ 0 \\ 0 \\ 10 \\ 4 \end{bmatrix}$$

- The flow **into** v is  $f_x^+(v) = \sum_{(v,u) \in A} x_{vu}$ .
- The flow **out of** v is  $f_x^-(v) = \sum_{(u,v) \in A} x_{uv}$ .

## Increasing flow: example

- If x is a valid flow, then  $f_x^+(s) = f_x^-(t)$ .
- We call the flow out of s,  $f_x^+(s)$ , the total flow.
- To increase the flow out of s, we must take into account the capacities of the subsequent edges.
- For example, we can increase the flow by 1.



• Total flow is now  $f_x(s) = 11 + 4 = 15$ .

## **Example**

We can also increase the flow out of s by 4.



Total flow is now  $f_x(s) = 11 + 8 = 19$ .

## Maximizing total flow

- How do we determine when we have reached the highest possible flow?
- How do we know that a different flow would give an even higher total flow?
- It is clear we cannot increase the current flow any further in this graph due to a bottleneck at t (and at s).



## Bottleneck upper bounds the flow

- These bottlenecks can be defined more formally as s-t cuts.
- **Definition**: given a set of vertices  $U \subset V$  such that  $s \in U$  and  $t \notin U$ , the corresponding s-t cut is

$$\delta^+(U) := \{(u, v) \in A : u \in U, v \notin U\}.$$

- The notation  $\delta^+(U)$  means "edges leaving U".
- **Definition**: the capacity of a cut  $\delta^+(U)$  is given by the sum of capacities of all arcs in  $\delta^+(U)$ .

$$c(\delta^+(U)) := \sum_{uv \in \delta^+(U)} c_{uv}$$

Notice: the total flow on a graph cannot exceed the capacity of any s-t cut.

## Cuts and bottlenecks: example

Let  $U := \{s, v_1, v_2, v_3, v_4\} \subset V$ . Then  $\delta^+(U) = \{v_3t, v_4t\} \subset A$ .

The capacity  $c(\delta^+(U))$  of the cut is

$$c(\delta^+(U)) = c_{v_3t} + c_{v_4t} = 15 + 4 = 19.$$



#### Max-flow min-cut theorem

- The max-flow min-cut theorem: the max capacity s-t flow is equal to the minimum capacity s-t cut.
- A surprising fact: this can be proved using LP and strong duality!
- Start by writing the max flow LP as a linear program.

maximize 
$$f_x^+(s)$$
 subject to  $f_x^+(v) - f_x^-(v) = 0 \ \forall v \in V \setminus \{s, t\}$   $0 \le x \le c$ 

#### Vertex-arc incident matrix

Vertex-arc incident matrix.  $M \in \mathbb{R}^{m \times n}$  where

$$m = |V| - 2$$
  $n = |A|$ .

For all  $i \in V \setminus \{s, t\}$  and  $j \in A$ .

$$M_{ij} = egin{cases} +1 & ext{if vertex } i ext{ is the tail of arc } j \ -1 & ext{if vertex } i ext{ is the head of arc } j \ 0 & ext{if vertex } i ext{ is not an endpoint of arc } j \end{cases}$$

Recall  $x_i$  denotes the flow assigned to arc j.

Let's look at Mx row-by-row. Fix a vertex  $v \in \{1, \dots, m\}$ .

$$\mathrm{row}_{v}(Mx) = \sum_{uv \in A} x_{uv} - \sum_{vu \in A} x_{vu} = f_{x}^{+}(v) - f_{x}^{-}(v)$$

# Vertex-arc incident matrix example

$$V = \{s, t, u, v\}$$

$$A = \{su, sv, ut, vt\}$$

rows of M: 
$$i \in \{u, v\}$$

columns of M: 
$$j \in \{su, sv, ut, vt\}$$

$$M = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} x = \begin{bmatrix} x_{su} \\ x_{sv} \\ x_{ut} \\ x_{vt} \end{bmatrix}$$

$$\mathit{Mx} = \begin{bmatrix} x_{su} - x_{ut} \\ x_{sv} - x_{vs} \end{bmatrix} = \begin{bmatrix} 10 - 10 \\ 4 - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

#### Max-flow LP

Therefore we can write the constraint

$$f_x^+(v) - f_x^-(v) = 0 \ \forall v \in V \setminus \{s,t\}$$
 as  $Mx = 0$ .

For the objective, let  $d \in \mathbb{R}^{|A|}$  be the indicator vector for arcs leaving s.

$$d^T x = f_x^+(s)$$
  $d_a = \begin{cases} 1 & \text{if } a \in \delta^+(s) \\ 0 & \text{otherwise} \end{cases}$ 

We get the following LP:

$$\begin{array}{ll}
\text{maximize} & d^T x \\
\text{subject to} & Mx = 0 \\
& 0 \le x \le c
\end{array}$$

# Taking the dual of the max-flow LP

We can simplify the dual LP to the following.

$$\begin{array}{ll} \underset{y,z}{\mathsf{minimize}} & \sum_{uv \in A} c_{uv} z_{uv} \\ \mathsf{subject to} & y_s = -1 \\ y_t = 0 \\ y_u - y_v + z_{uv} \geq 0 \ \forall uv \in A \\ z \geq 0 \end{array}$$

# Max-flow min-cut theorem via Strong duality

- We can check that the primal and dual LPs both have feasible solutions.
- **Strong duality** tells us they both have *optimal solutions* and their *optimal values* are equal, i.e.

$$opt(P) = opt(D).$$

• The max-flow min-cut theorem: the max capacity *s-t* flow is **equal** to the minimum capacity *s-t* cut.

# Max-flow min-cut theorem via Strong duality

- We can check that the primal and dual LPs both have feasible solutions.
- **Strong duality** tells us they both have *optimal solutions* and their *optimal values* are equal, i.e.

$$opt(P) = opt(D).$$

- The max-flow min-cut theorem: the max capacity *s-t* flow is **equal** to the minimum capacity *s-t* cut.
- All that's missing is to show that the optimal value of (D) equals the capacity of the minimum s-t cut, i.e.

(claim) opt(D) = 
$$c(\delta^+(W^*))$$
,

where  $\delta^+(W^*)$  is the minimum capacity cut.

Let  $W^* \subset V$  be such that  $\delta^+(W^*)$  is a minimum capacity s-t cut.

We begin by showing  $opt(D) \le c(\delta^+(W^*))$ .

Construct a feasible  $(\hat{y}, \hat{z})$  by

$$\hat{y}_u = egin{cases} -1 & ext{ if } u \in W^*, \ 0 & ext{ otherwise; } \end{pmatrix} \hat{z}_{uv} = egin{cases} 1 & ext{ if } uv \in \delta^+(W^*), \ 0 & ext{ otherwise.} \end{cases}$$

It's simple to check that  $(\hat{y}, \hat{z})$  is feasible, and thus,  $opt(D) \le obj(\hat{y}, \hat{z})$ .

Let  $W^* \subset V$  be such that  $\delta^+(W^*)$  is a minimum capacity s-t cut.

We begin by showing  $opt(D) \le c(\delta^+(W^*))$ .

Construct a feasible  $(\hat{y}, \hat{z})$  by

$$\hat{y}_u = \begin{cases} -1 & \text{if } u \in W^*, \\ 0 & \text{otherwise;} \end{cases}$$
  $\hat{z}_{uv} = \begin{cases} 1 & \text{if } uv \in \delta^+(W^*), \\ 0 & \text{otherwise.} \end{cases}$ 

It's simple to check that  $(\hat{y}, \hat{z})$  is feasible, and thus,  $opt(D) \leq obj(\hat{y}, \hat{z})$ .

The objective function of (D) evaluates to:

$$\underbrace{\operatorname{obj}(\hat{y},\hat{z})}_{\geq \operatorname{opt}(D)} = \sum_{uv \in A} c_{uv} \hat{z}_{uv} = \sum_{uv \in \delta^+(W^*)} c_{uv} = c(\delta^+(W^*)).$$

Thus  $opt(D) \le c(\delta^+(W^*))$ , as required.

Now we show that  $c(\delta^+(W^*)) \leq \operatorname{opt}(D)$ .

Let  $(y^*, z^*)$  be an optimal solution to (D), i.e.,

$$\begin{cases} (y^*, z^*) & \text{is feasible for} \quad (D), \\ obj(y^*, z^*) = opt(D). \end{cases}$$

Let  $\bar{W}:=\{u\in V:\ y_u^*\leq -1\}$ . This is a valid s-t cut since  $s\in \bar{W},\ t\notin \bar{W}$ .

Now we show that  $c(\delta^+(W^*)) \leq \operatorname{opt}(D)$ .

Let  $(y^*, z^*)$  be an optimal solution to (D), i.e.,

$$\begin{cases} (y^*, z^*) & \text{is feasible for} \quad (D), \\ obj(y^*, z^*) = opt(D). \end{cases}$$

Let  $\bar{W}:=\{u\in V : \ y_u^*\leq -1\}.$  This is a valid s-t cut since  $s\in \bar{W}$ ,  $t\notin \bar{W}.$ 

We just need to show that  $obj(y^*, z^*) \ge c(\delta^+(\bar{W}))$ .

Now we show that  $c(\delta^+(W^*)) \leq \operatorname{opt}(D)$ .

Let  $(y^*, z^*)$  be an optimal solution to (D), i.e.,

$$\begin{cases} (y^*, z^*) & \text{is feasible for} \quad (D), \\ obj(y^*, z^*) = opt(D). \end{cases}$$

Let  $\bar{W}:=\{u\in V:\ y_u^*\leq -1\}.$  This is a valid s-t cut since  $s\in \bar{W},\ t\notin \bar{W}.$ 

We just need to show that  $obj(y^*, z^*) \ge c(\delta^+(\bar{W}))$ .

**Why?** We assumed  $\delta^+(W^*)$  is a min capacity s-t. This gives the rightmost inequality

$$\underbrace{\mathrm{obj}(y^*,z^*)}_{\mathrm{=opt}(\mathrm{D})} \geq c(\delta^+(\bar{W})) \geq c(\delta^+(W^*)),$$

as required.

### Last part of the proof!

To show that  $\operatorname{obj}(y^*, z^*) \geq c(\delta^+(\bar{W}))$ , we write:

$$\mathrm{obj}(y^*,z^*) = \sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv} + \sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}.$$

Assume that  $(y^*, z^*)$  is integral (we skip the reason why this is the case).

## Last part of the proof!

To show that  $\operatorname{obj}(y^*,z^*) \geq c(\delta^+(\bar{W}))$ , we write:

$$\mathrm{obj}(y^*,z^*) = \sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv} + \sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}.$$

Assume that  $(y^*, z^*)$  is integral (we skip the reason why this is the case).

Recall  $\bar{W} := \{u \in V : y_u^* \le -1\}.$ 

Thus  $\forall uv \in \delta^+(\bar{W})$ ,  $y_v^* > -1$ , and since  $y_v^*$  is an integer,  $y_v^* \geq 0$ .

$$z_{uv}^* \ge \underbrace{y_v^*}_{\ge 0} - \underbrace{y_u^*}_{\le -1} \ge 1 \quad \forall uv \in \delta^+(\bar{W})$$

## Last part of the proof!

To show that  $\operatorname{obj}(y^*,z^*) \geq c(\delta^+(\bar{W}))$ , we write:

$$\mathrm{obj}(y^*,z^*) = \sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv} + \sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}.$$

Assume that  $(y^*, z^*)$  is integral (we skip the reason why this is the case).

Recall  $\bar{W}:=\{u\in V:\ y_u^*\leq -1\}.$ 

Thus  $\forall uv \in \delta^+(\bar{W})$ ,  $y_v^* > -1$ , and since  $y_v^*$  is an integer,  $y_v^* \ge 0$ .

$$z_{uv}^* \ge \underbrace{y_v^*}_{\ge 0} - \underbrace{y_u^*}_{\le -1} \ge 1 \quad \forall uv \in \delta^+(\bar{W})$$

Since  $(y^*, z^*)$  is feasible,  $z_{uv}^* \ge 0 \ \forall uv \in A$ . Therefore

$$\mathrm{obj}(y^*,z^*) = \underbrace{\sum_{uv \in \delta^+(\bar{W})} c_{uv} z_{uv}^*}_{\geq c(\delta^+(\bar{W}))} + \underbrace{\sum_{uv \notin \delta^+(\bar{W})} c_{uv} z_{uv}^*}_{\geq 0}.$$