PART 5

多项式运算

多项式运算

● n次多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- > ai组成的集合称为系数集
- 讨论三种多项式运算
 - ▶使用代数基本规则的普通多项式运算
 - ▶ 系数运算是模p运算的多项式运算,即系数在Z。中
 - ▶系数在Zp中,且多项式被定义为模一个n次多项式m(x)的多项式运算

普通多项式运算

- 对应系数相加减(+,-)
- 系数依次相乘 (×)
- 如

$$f(x) = x^{3} + x^{2} + 2 , \quad g(x) = x^{2} - x + 1$$

$$f(x) + g(x) = x^{3} + 2x^{2} - x + 3$$

$$f(x) - g(x) = x^{3} + x + 1$$

$$f(x) \times g(x) = x^{5} + 3x^{2} - 2x + 2$$

注意:定义在整数集上的多项式不支持除法运算,整数集不是域

系数在模Zp中的多项式运算

- 系数是域F的元素时,构成多项式环(不构成整环,因为有可能有零因子)
- · 系数是Zp的元素的多项式
- 最感兴趣的是mod 2
 - ▶所有系数是0或1
 - >例如: $f(x) = x^3 + x^2$ 和 $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + x^2$

多项式的因式

• 对于任何多项式:

- > f(x) = q(x) g(x) + r(x), r(x) 称为余式
- $r(x) = f(x) \mod g(x)$
- 若r(x) = 0 , 则称g(x)整除f(x)
- 用一个不可约多项式作为模,则可构成一个域(可以定义除法了)

Example $GF(2^3)$

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$011 \\ x + 1$	$\frac{100}{x^2}$	$\frac{101}{x^2 + 1}$	$110 \\ x^2 + x$	111 $x^2 + x + 1$
000	0	0	1	X	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^{2} + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^{2} + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x + 1	х	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^{2} + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	Ж	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	Х	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	Х	1	$x^{2} + x$	χ^2	x+1

(b) Multiplication

有限域GF (2^m)

- GF (2^m) 表示有限域的阶 (元素个数) 为2^m 其中元素通常用长度为m的二进制串表示
- GF (2^m) = { $(a_{m-1}, a_{m-2}, ..., a_1, a_0)$ } 其中 $a_i \in \{0,1\}$
- > 还可表示成多项式形式:

$$GF(2^m) = \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \cdots + a_1x + a_0\}$$
 其中, $a_i \in \{0,1\}$
域元素($a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \cdots + a_1x + a_0$)通常表示为:
 $GF(2^m) = \{(a_{m-1}a_{m-2}\cdots a_1a_0)\}$ 其中, $a_i \in \{0,1\}$

GF (28) 上的加法

■ 在GF (2⁸) 上的加法定义为<u>二进制多项式</u>的加法,等同于按位异或运算。

Example: '57' + '83' = 'D4', or with the polynomial notation:

$$(x^{6} + x^{4} + x^{2} + x + 1) + (x^{7} + x + 1) = x^{7} + x^{6} + x^{4} + x^{2}$$
.

In binary notation we have: "01010111" + "10000011" = "11010100". Clearly, the addition corresponds with the simple bitwise EXOR (denoted by \oplus) at the byte level.

在GF(28)上的乘法

▶ 在GF (28) 上的乘法定义为二进制多项式的乘积模一个次数为8的不可约二进制多项式,此不可约二进制多项式为

 $m(x)=x^8+x^4+x^3+x+1$:

$$c(x) = a(x) \cdot b(x) = a(x) \times b(x) \mod m(x)$$

> 什么是不可约多项式:

当且仅当f(x)不能表示为两个多项式积(两个多项式都在 F 上,次数都低于f(x)),f(x)称为 F 上的不可约多项式,也叫素多项式。

 $> m(x) = x^8 + x^4 + x^3 + x + 1$ 是GF (2^8) 上的一个不可约多项式,是在30个8 次不可约多项式中选择的一个。

乘法 "•"

$$c(x) = a(x) \cdot b(x) = a(x) \times b(x) \mod m(x)$$

$$a(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$b(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0$$

$$c(x) = c_7 x^7 + c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0$$

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

是普通多项式乘法,但系数运算可看作比特的乘法和异或运算,即看作域{0,1}上的运算。

在GF (28) 上的乘法

 $(01110011) \cdot (10010101) = ?$

$$(x^6 + x^5 + x^4 + x + 1) \cdot (x^7 + x^4 + x^2 + 1)$$
 Mod $(x^8 + x^4 + x^3 + x + 1)$

一个乘法例子

$$(x^6 + x^5 + x^4 + x + 1) \cdot (x^7 + x^4 + x^2 + 1)$$
 Mod $(x^8 + x^4 + x^3 + x + 1)$

● 73*95= (01110011) · (10010101)

$$(x^{6} + x^{5} + x^{4} + x + 1) \cdot (x^{7} + x^{4} + x^{2} + 1)$$

$$= x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + 3x^{8} + 2x^{7} + 2x^{6} + 2x^{5} + 2x^{4} + x^{3} + x^{2} + x + 1$$

$$= x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{3} + x^{2} + x + 1$$

$$+ 2(x^{8} + x^{4} + x^{3} + x + 1)$$

$$= (x^{5} + x^{4} + x^{3} + x^{2} + 1)(x^{8} + x^{4} + x^{3} + x + 1) + (x^{6} + x^{5} + x^{4})$$

所以, (01110011) · (10010101) = (01110000)

在GF(28)上的乘法例子2

Example: '57' • '83' = 'C1', or:

$$(x^{6} + x^{4} + x^{2} + x + 1) (x^{7} + x + 1) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{7} + x^{5} + x^{5} + x^{3} + x^{2} + x + x^{6} + x^{4} + x^{2} + x + 1$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \text{ modulo } x^8 + x^4 + x^3 + x + 1$$

$$= x^7 + x^6 + 1$$

多项式乘法逆

● 定义4: 在GF (2⁸) 上的二进制多项式b(x)的乘法逆为 满足下列方程式的二进制多项式a(x),记为b⁻¹(x)

 $a(x)b(x) \mod m(x)=1$

$$\mathbf{a}(\mathbf{x}) = \mathbf{x}^3 + \mathbf{1}$$

 $\mathbf{m}(\mathbf{x}) = (x^8 + x^4 + x^3 + x + 1)$

