Dividend Paying Stocks

MF 790 Stochastic Calculus

Outline

- Stocks paying a dividend rate.
 - · Asset price and wealth process dynamics.
 - · The pricing formula.
- · Stocks paying discrete dividends.
 - · Asset price and wealth process dynamics.
 - The pricing formula.

If no dividends, $\frac{dSt}{St} = Medt + OtdWt$ $\frac{dDt}{Dt} = - redt$

1) a continuous cliviclend stream.

-assume S pays a continuous dishdend with rate $\alpha = \text{RatJ provess}$.

If I hold $\Delta \epsilon$ shares over $[t, t+d\epsilon]$, then I get the dividend $\Delta \epsilon S_{\epsilon} a_{\epsilon} d\epsilon$

A: proportional rate

Dynamius.

die : Medetotolie - ande

Wealth processes.

key insight: We receive the dividend, and we reinvert it. blc our woulth process is self-financing.

Ke = DeSe+ (Xe-DeSt)

Xtta = DeSeta + (Xe - DeSe) rolet DeSecrete

cliv payment

Xt = AtSt + (Xt - AtSt)

THA = DESTAN + (Xe - DESE) rolt + DESE ande

dXe = DedSe + (Xe-DeSe)rde + DeSearde

= DESt. Mede + DeStOEdWe - DeStatedt

+ (Xe - DeSe) ve dt + Dt Seatch

= YEXtde+ Atle of (dlut + Otde) - Same as before!

dXe = rexed+ + A E JE OZ (dW++ Ozde)

= re Xtdt + Dt Stot dlug

D all counted wearth processes are martingales of $(DeXe) = De\Delta_t Stote dWe$ 2) all counted stock prices are not Q mart

Consider when $X_0 = S_0$, $\Delta \equiv 1$

- this is not just owning a stock

-thb is owning a stock and reinverting He dividends $D_t X_t = D_t S_t + \int_0^t D_u a_u S_u du$

cash flow stream from the dividend

a>o ⇒ DS 4s & supermart.

The prising formula is the same as before.

Ma = EQ[AHIFt] - MQ + St Fedua

 $d(D_{+}X_{t}^{0}) = D_{t}\Delta_{t} \int_{t} dw dw dw dw dw = \frac{r_{e}}{R_{+}G_{e}} \qquad x_{0} = M_{0}^{Q}$ $\Rightarrow D_{1}X_{1}^{0} = D_{1}V_{1}.$

Q: What changes?

Consider a Eurpean option with payoff $V_t = f(S_t)$ $V_t = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_t^T v_t ch} f(S_t) | g_{t+1}^T \right]$ $\frac{dS_t}{S_t} = Cr_t - \alpha_t dt + \sigma_t dW_t^Q$ this changes things

B-S with alludereds

olitical control of the contro

$$V_{t} = \mathbb{E}^{0}[e^{-r(t-t)}(S_{1} - k)^{t} | \mathcal{F}_{t}]$$

$$= e^{-\alpha(t-t)} \mathbb{E}^{(0)}[e^{-(r-\alpha)(t-t)}(S_{1} - k)^{t} | \mathcal{F}_{t}]$$

= e-alt-t) (BS (t, Se; r=r-a)

Discrete Dividend

O くtiくtiく…くtaくで

at each to a lump payment of as Sto is made as the dividend.

Cy: Fis - mbl . Cy < 1 (Stock price after to

Sta + stock price 118ht before the powerent.

jump in Stock Price

X: price that can sump

Xt- : Value before tump at t

Xt: Value ofter - . . .

dynamics in between dividend payment times tG(tj-1, tj) dst : Medt + OedWe

Cot ty, $Sto = (1-a_0)Sto-$

Wealth process clynamics

te (th, t)

dx+=rx++ D+S+O+dW+

at ti

- low of ajst; Atj; due to stock price jump

-gain of aj Sti Stj due to the clividand payment - no jump!

Throughout, [O, T] -> dXe = KX++ A+S=TEOlWE throughout implies the pricing formula is the same

Vt = EP[e-Jirudu V, 194]

But, the actual value might change also the alsolands.

- especially for tarpean options.

Olt = rede + ord Wa te (tj., t;)

Sty = (1-04)Stj-

YE = So (Vu-Lou2) du + Sondun

Sto -= St

Sts = Stine Hy. Hin (1-a;)

St = St St St St

= e + - Yen (1-an) e + + - Yen (1-an) e + - Yen ... (1-an) e + - Yen ... (1-an) e + - Yen ... $= e^{\frac{1}{2}} \prod_{i=1}^{n} (1-a_i)$ $S_{\tau} = S_0 e^{\int_0^1 (r_n - \frac{1}{2} \sigma_n^2) dn + \int_0^1 \sigma_n dw^2 \frac{h}{2^{n-1}} (1-a_i)}$ Can be random

Technically, the Pa; I can be random (as to be 9th mbl)

But, if we ossume they are constant.

St = Soe Sound to sound with

\$ -5. # (1-a3)

- we only adjust the initial stock price E.g. pricing a call in B-S with clividench

 $S_7 = S_0 \frac{1}{17} (1-a_0) e^{(r-\frac{1}{10}a_0)} 7 + \sigma w^2$ Call price at 0 < t < 7, if $S_t = S$ is the same! $S_7 = S_t e^{(r-\frac{1}{10}a_0)} (7-t_0) + \sigma c w^2 - w^2$

Conditioning on $S_t = S$ incorporate the dividends $S_t = S_t =$

But, once we done this,

price = CBS (t.s.)

Model

- · Fixed $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$. W is a Brownian motion.
 - · Here, $\mathbb{F} = \mathbb{F}^W$ (so we can use martingale representation).
- · Take adapted processes μ, σ, r .
 - · Risky asset $S \sim \text{genGBM}(\mu, \sigma)$. $\frac{dS_t}{S_t} = \mu_t dt + \sigma_t dW_t$.
 - · In the absence of dividends.
 - · Discount process $D \sim \operatorname{genGBM}(r, 0)$. $\frac{dD_t}{D_t} = -r_t dt$.
 - $\cdot \mu, \sigma, r$ such that (S, D) are well defined.

Continuous Dividends

- · Assume the stock pays a continuous dividend <u>rate</u> a.
 - · What this means: if I hold Δ_t shares over [t, t + dt], then I receive a dividend payment of $\Delta_t a_t S_t dt$.
 - a: adapted process.
 - This does not really apply to a single stock, but is not too bad an assumption for, e.g., mutual funds.
- · Stock dynamics: $\frac{dS_t}{S_t} = \mu_t dt + \sigma_t dW_t a_t dt$.
 - Dividend payment reduces the stock price.

Wealth Dynamics

- · Assume over [t, t + dt] we hold Δ_t shares of S.
 - Denote by X the (self-financing) wealth process.
 - $\cdot X_t = \Delta_t S_t + (X_t \Delta_t S_t).$

$$\cdot X_{t+dt} = \underbrace{\Delta_t S_{t+\Delta}}_{\text{stock}} + \underbrace{\Delta_t S_t a_t dt}_{\text{dividend}} + \underbrace{(X_t - \Delta_t S_t) r_t dt}_{\text{money market}}.$$

Same dynamics as without dividends!

$$\begin{split} dX_t &= \Delta_t dS_t + \Delta_t S_t a_t dt + (X_t - \Delta_t S_t) r dt, \\ &= \Delta_t S_t \left((\mu_t - a_t) dt + \sigma_t dW_t \right) + \Delta_t S_t a_t + (X_t - \Delta_t S_t) r dt, \\ &= r_t X_t dt + \Delta_t \sigma_t S_t \left(dW_t + \Theta_t dt \right), \\ \Theta_t &= \frac{\mu_t - r_t}{\sigma_t}. \end{split}$$

Wealth Dynamics

- $\cdot dX_t = r_t X_t dt + \Delta_t S_t (dW_t + \Theta_t dt).$
 - · Same dynamics because drop stock price $(-S_t a_t dt)$ is exactly offset by the dividend payment $(S_t a_t dt)$.
- Define the risk neutral measure Q through

$$\cdot \frac{d\mathbb{Q}}{d\mathbb{P}}\big|_{\mathcal{F}_T} = Z_T^{\Theta} = e^{-\int_0^T \Theta_u dW_u - \frac{1}{2} \int_0^T \Theta_u^2 du}.$$

- Girsanov: $W_t^{\mathbb{Q}} = W_t + \int_0^t \Theta_u du, t \leq T$ is a \mathbb{Q} B.M..
- $dX_t = r_t X_t dt + \Delta_t S_t dW_t^{\mathbb{Q}}$.
 - Discounted wealth processes are still martingales under Q.

Stock Dynamics

· What about the stock?

$$\cdot \frac{dS_t}{S_t} = (\mu_t - a_t)dt + \sigma_t dW_t = (r_t - a_t)dt + \sigma_t dW_t^{\mathbb{Q}}.$$

- Discounted stock price is NOT a martingale under Q!
- · If $a \ge 0$, discounted stock price is \mathbb{Q} super-martingale.
- · We must reinvest the dividends to obtain a martingale.
- · I.e. for $\Delta \equiv 1$ and $X_0 = S_0$, as dividends are reinvested

$$D_t S_t \neq D_t X_t = D_t S_t + \int_0^t D_u S_u a_u du.$$

$$\frac{dS_t}{S_t} = (r_t - a_t)dt + \sigma_t dW_t^{\mathbb{Q}}.$$

- This matters when we price European options.
- · Consider a call option for constant μ, σ, r, a .
 - As the discounted wealth process dynamics are the same, and martingale representation still holds, the pricing formula is the same.

$$V_{t} = \mathbb{E}^{\mathbb{Q}} \left[e^{-r(T-t)} (S_{T} - K)^{+} \middle| \mathcal{F}_{t} \right], \qquad S \stackrel{\mathbb{Q}}{\sim} GBM \left(r - a, \sigma^{2} \right),$$

$$= e^{-a(T-t)} \mathbb{E}^{\mathbb{Q}} \left[e^{-(r-a)(T-t)} (S_{T} - K)^{+} \middle| \mathcal{F}_{t} \right],$$

$$= e^{-a(T-t)} c(t, S_{t}; r - a).$$

c(t, s; r - a): BS call price for a money market rate of r - a.

Discrete Dividends

- · Consider when dividends are paid discretely.
 - Fix times $0 < t_1 < t_2 < \cdots < t_n < T$.
 - · At t_j a dividend is paid of $a_j S_{t_i}$ for a \mathcal{F}_{t_i} mbl rv a_j .
 - · S_{t_i-} : stock price right before the dividend payment.
 - · Stock price drops from S_{t_i} to $S_{t_i} = S_{t_i} (1 a_j)$.
 - · If we hold Δ_{t_j} shares in S at t_j , we receive $\Delta_{t_j} a_j S_{t_j}$.
 - · In between dividend times, $S \sim \text{genGBM}(\mu, \sigma^2)$.
 - $t \in (t_{j-1}, t_j) \text{ implies } \frac{dS_t}{S_t} = \mu_t dt + \sigma_t dW_t = r_t dt + \sigma_t dW_t^{\mathbb{Q}}.$

Wealth Dynamics

- · As before, because we obtain the dividend, the wealth dynamics are the same.
- · Between dividend times

$$dX_t = \Delta_t dS_t + (X_t - \Delta_t S_t) r_t dt = r_t X_t dt + \Delta_t S_t \sigma_t dW_t^{\mathbb{Q}}.$$

- · At dividend time t_i .
 - · Loss due to drop in stock price: $\Delta_t a_j S_{t_i}$.
 - · Gain due to dividend payment: $\Delta_t a_j S_{t_i}$.
 - · Exact offset no jump in wealth.
- · Thus, $dX_t = r_t X_t + \Delta_t S_t \sigma_t dW_t^{\mathbb{Q}}$ throughout.
 - · Discounted wealth processes are again martingales under \mathbb{Q} .

Replication and Pricing

- Because $dX_t = r_t X_t + \Delta_t S_t \sigma_t dW_t^{\mathbb{Q}}$ throughout.
 - The pricing formula is again the same.
 - · For a payoff V_T , $V_t = \mathbb{E}^{\mathbb{Q}}\left[e^{-\int_t^T r_u du}V_T \middle| \mathcal{F}_t\right]$.
- · For European options with payoff $V_T = f(S_T)$ we need to know what S_T looks like under \mathbb{Q} .

S_T under \mathbb{Q}

· Write
$$Y_t := \int_0^t \left(r_u - \frac{1}{2} \sigma_u^2 \right) du + \int_0^t \sigma_u dW_u^{\mathbb{Q}}$$
.

$$\cdot$$
 $S \stackrel{\mathbb{Q}}{\sim} \operatorname{genGBM}(r, \sigma^2)$ in (t_j, t_{j+1}) implies

$$S_{t_{j+1}} = (1 - a_{j+1})S_{t_{j+1}-} = (1 - a_{j+1})S_{t_j}e^{Y_{t_{j+1}}-Y_{t_j}}.$$

$$egin{aligned} rac{S_T}{S_0} &= rac{S_T}{S_{t_n}} imes rac{S_{t_n}}{S_{t_{n-1}}} imes \cdots imes rac{S_{t_1}}{S_0}, \ &= e^{Y_T - Y_{t_n}} imes (1 - a_n) e^{Y_{t_n} - Y_{t_{n-1}}} imes (1 - a_{n-1}) e^{Y_{t_{n-1}} - Y_{t_{n-2}}} imes \cdots imes e^{Y_{t_1}}, \ &= e^{Y_T} \prod_{i=1}^n (1 - a_{t_i}). \end{aligned}$$

S_T under $\mathbb Q$

· We just showed

$$S_T = S_0 e^{\int_0^T \left(r_u - \frac{1}{2}\sigma_u^2\right)du + \int_0^T \sigma_u dW_u^{\mathbb{Q}}} \prod_{i=1}^n (1 - a_i).$$

- · This works assuming a_j is \mathcal{F}_{t_i} mbl, $a_j < 1, \forall j$.
- If we specify to when the $\{a_{t_j}\}$ are non-random constants.
 - $S \stackrel{\mathbb{Q}}{\sim} \operatorname{genGBM}(r, \sigma^2)$ with initial price

$$\widehat{S}_0 := S_0 \prod_{i=1}^n (1 - a_{t_i}).$$

Option Pricing in the Black-Scholes Model

• Assume r, σ are constant, in addition to the $\{a_i\}$.

$$\cdot S_T = \widehat{S}_0 e^{\left(r - \frac{1}{2}\sigma^2\right)T + \sigma W_T^{\mathbb{Q}}}$$

- · Black-Scholes model, but with the adjusted starting price.
- For times 0 < t < T and given $S_t = s$, option prices are as before.
- At time t = 0 we just have to plug in the adjusted starting price.
 - E.g. call price is $c(0, \hat{S}_0)$.