IAML Tutorial 4

1. Consider a linear 8VM with a linear terms on the following dataset

×	X ₂	7
0.5	1.00	(
J- O	0.5	١ ١
1.0	1.00	ı
0-0	0.5	2
0.5	-0.35	2
0.0	000	2

a. By using your intuition, what weight vector do you think will result from training an SVM on the dataset?

eqn of OB
$$\Rightarrow$$
 $x_2 = -x_1 + 1$
 $x_1 + x_2 = 1$ $x_1 + x_2 - 1 = 0$
 $W = [1, 1]$

- b. Plot the DB. done.
- c. Which are the support vectors? What is the margin of this classifier?

constraint:
$$\min_{i} | W^{T} Y_{i} + W_{0}| = 1$$

+ Goal: find W where the constraint holds

Start from the point exosest to DB

e.g. $(O_{0}, O_{0}, \overline{D}) \rightarrow |(W_{1}, W_{2})|_{O_{0}, \overline{D}} + W_{0}| = 1$

we know that $W_{1} = W_{2}$ from $W_{2} = [1, 1]$, $W_{0} = -1$
 $\longrightarrow |(C_{0}, C_{0}, \overline{D}) - C_{0}| = 1$
 $|(O_{0}, C_{0} - C_{0})| = 1$
 $|(O_{0}, C_{0} - C_{0})| = 1$
 $|(O_{0}, C_{0} - C_{0})| = 1$

So we have
$$W = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 and $W_0 = -2$.

But since the maximum margin satisfies the constraint

$$\frac{1}{11W11} = \frac{1}{\sqrt{2^2 + 2^2}} = \frac{1}{18}$$