7.1. Проверка статистических гипотез

Анализ мощности позволяет определить *размер выборки*, необходимый для выявления эффекта заданной величины с заданной долей уверенности.

Гипотезы: Н₀ - нулевая, Н₁ - алтернативная.

Допуская, что нулевая гипотеза справедлива, вычисляют вероятность получения для *генеральной совокупности* наблюдаемого в выборке или большего значения статистики.

Пример: влияние разговоров по мобильному телефону на время реакции водителя.

 H_0 : $\mu_1 - \mu_2 = 0$ при H_1 : $\mu 1 - \mu 2 \neq 0$.

Статистика

$$(\overline{X}_1 - \overline{X}_2) / (\frac{S}{\sqrt{n}})$$

где \overline{X}_1 и \overline{X}_2 – это средние для каждой выборки значения времени реакции, **S** – это стандартное отклонение для объединенной выбор ки, **n** – число участников в каждой группе.

7.1. Проверка статистических гипотез

Если вероятность не достигает некоторого принятого критического значения (например, р < 0.05), то отвергают нулевую гипотезу в пользу альтернативной. Заранее определенное критическое значение (0.05) называется *уровнем значимости теста*.

	Отвергаем H ₀	\mathbf{He} смогли отвергнуть $\mathbf{H}_{\scriptscriptstyle 0}$		
H₀ справедлива	Ошибка I типа	Верно		
H₀ ложна	Верно	Ошибка II типа		

размер выборки — число наблюдений при каждом типе воздействия или в каждой группе

уровень значимости (альфа) — вероятность совершения статистической ошибки первого типа. Уровень значимости можно также трактовать как вероятность нахождения несуществующей закономерности

мощность теста (вероятность совершения статистической ошибки второго типа). Мощность можно также понимать как вероятность обнаружения существующей закономерности

размер эффекта – величина эффекта, который является предметом альтернативной гипотезы

7.1. Проверка статистических гипотез

Задача при исследовании – повысить мощность статистических тестов, сохранив приемлемый уровень значимости и работая с минимально возможной выборкой.

Четыре величины (размер выборки, уровень значимости, мощность и величина эффекта) тесно взаимосвязаны. Зная значения любых трех, можно определить четвертую.

Функция	Вычисляет мощность для		
pwr.2p.test()	Двух пропорций (равные объемы выборок)		
pwr.2p2n.test()	Двух пропорций (неодинаковые объемы выборок)		
<pre>pwr.anova.test()</pre>	Сбалансированного однофакторного дисперсионного анализа		
<pre>pwr.chisq.test()</pre>	Теста хи-квадрат		
<pre>pwr.f2.test()</pre>	Общей линейной модели		
<pre>pwr.p.test()</pre>	Пропорции (одна выборка)		
pwr.r.test()	Корреляции		
<pre>pwr.t.test()</pre>	Тестов Стьюдента (одна выборка, две выборки, для зависимых переменных)		
pwr.t2n.test()	Тестов Стьюдента (две выборки разного объема)		

7.2. Процедура анализа мощности

7.2.7. Выбор размера эффекта

Статистический метод	Мера размера эффекта	Предлагаемые ориентировочные значения для разных размеров эффектов		
		Малый	Средний	Большой
Тест Стьюдента	d	0.20	0.50	0.80
Дисперсионный анализ	f	0.10	0.25	0.40
Линейные модели	f2	0.02	0.15	0.35
Тест пропорций	h	0.20	0.50	0.80
Тест хи-квадрат	W	0.10	0.30	0.50

7.2. Процедура анализа мощности

7.2.7. Выбор размера эффекта

Пример: сравнить пять групп при помощи однофакторного дисперсионного анализа с уровнем значимости 0.05.

```
library(pwr)
es <- seq(.1, .5, .01)
nes <- length(es)
samsize <- NULL
for (i in 1:nes) {
    result <- pwr.anova.test(k=5, f=es[i], sig.level=.05, power=.9)
    samsize[i] <- ceiling(result$n)
}</pre>
```

