ホモトピー論の基本について

2024年4月30日

概要

ホモトピー論の基本について網羅的に書いたものではなく、勉強中に特に注意して考えたことをまとめたもの.

目次

1		ホモトピー群	1
	1.1	相対ホモトピー群の 2 種類の定義	1
	1.2	Hurewicz の定理	2
	1.3	Freudenthal の懸垂定理	2
	1.4	Whitehead の定理	2
2		局所係数の(コ)ホモロジー	2
	2.1	局所系の 2 種類の定義	2
	2.2	局所係数の(コ)ホモロジーの計算例	2
3		障害理論	2
	3.1	CW 複体上の写像を延ばせるかどうかの criterion	2
	3.2	F-M 空間	2

1 ホモトピー群

1.1 相対ホモトピー群の2種類の定義

 I^n の部分空間 J^n を $J^n:=\partial I^{n-1}\times I\cup I^{n-1}\times \{0\}$ と定める。 $n=1,\ 2,\ 3$ の場合を書けば形がわかる。n=1 の場合 $\{0\}$, n=2 の場合上が空いたコの字型(\sqcup),n=3 の場合上の開いた箱型である。

基点付き空間対 (X,A,*) とは空間対 (X,A) と A の点 $*\in A$ の組のことである.このとき,n>0 に対し (X,A,*) の n 次ホモトピー群 $\pi_n(X,A,*)$ を 3 対のホモトピー集合

$$\pi_n(X, A, *) := [(I^n, \partial I^n, J^n), (X, A, *)]$$

と定める.

- 1.2 Hurewicz の定理
- 1.3 Freudenthal の懸垂定理
- 1.4 Whitehead の定理
- 2 局所係数の(コ)ホモロジー
- 2.1 局所系の2種類の定義
- 2.2 局所係数の(コ)ホモロジーの計算例
- 3 障害理論
- 3.1 CW 複体上の写像を延ばせるかどうかの criterion
- 3.2 E-M 空間

索引

 J^n , 1

基点付き空間対, 1

(n 次) ホモトピー群, 1