Chapitre

Puissance, travail et énergie

8. Puissance d'une force

8.1. Définition

Théorème 1.1 : Définition d'une force

Soit une force \overrightarrow{F} appliquée à un système M se déplaçant à une vitesse $\overrightarrow{v}_{M/R}$. La puissance de \overrightarrow{F} est donnée par $P=\overrightarrow{F}\cdot\overrightarrow{v}$ et s'exprime en Watt $(kg\cdot m^2\cdot s^{-3})$. Elle dépend du référentiel d'étude.

La puissance est positive si $\theta \in [\frac{-\pi}{2}, \frac{\pi}{2}]$. On dit que la force est motrice au temps où la puissance est calculée. \times

La puissance est négative si $\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]$. On dit que la force est résistante au temps où la puissance est calculée.

8.1. Théorème de la puissance cinétique

Théorème 1.2 : Théorème de la puissance cinétique

La dérivée temporelle de l'énergie cinétique vaut la somme des puissances des forces exercées sur le système.

$$\dot{E_c} = \sum_i P(\overrightarrow{F_i})$$

π Preuve 1.1

Il découle du PFD, appliqué au système ramené à un point M

$$m \overrightarrow{a} = \sum_{i} \overrightarrow{F_{i}}$$

$$(m \overrightarrow{a}) = \sum_{i} \overrightarrow{F_{i}} \cdot \overrightarrow{v}$$

$$m \overrightarrow{a} \cdot \overrightarrow{v} = \sum_{i} \overrightarrow{F_{i}} \cdot \overrightarrow{v}$$

$$\frac{1}{2} m \frac{\mathrm{d}||\overrightarrow{v}||^{2}}{\mathrm{d}t} = \sum_{i} \overrightarrow{F_{i}} \cdot \overrightarrow{v}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{2} m ||\overrightarrow{v}||^{2}) = \sum_{i} \overrightarrow{F_{i}} \cdot \overrightarrow{v}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (E_{c}) = \sum_{i} \overrightarrow{F_{i}} \cdot \overrightarrow{v}$$

On perd l'information sur les forces qui sont perpendiculaires au déplacement mais on gagne en simplicité. Un raisonnement énergétique peut simplifier les choses.

Exemple sur le pendule

On fait un bilan des forces :

$$\begin{cases} \overrightarrow{T} = & -T\overrightarrow{e_{\rho}} \\ \overrightarrow{P} = & -mg\sin\varphi\overrightarrow{e_{\varphi}} \end{cases}$$

$$\begin{split} P(\overrightarrow{T}) &= \overrightarrow{T} \cdot \overrightarrow{v} = (-T\overrightarrow{e_\rho}) \cdot (l \dot{\varphi} \overrightarrow{e_\varphi}) = 0 \text{ car } \overrightarrow{T} \perp \overrightarrow{v} \stackrel{\mathbb{Q}}{\rightarrow} \\ P(\overrightarrow{P}) &= \overrightarrow{P} \cdot \overrightarrow{v} = -mgl \sin(\varphi) \times \dot{\varphi}. \end{split}$$

On applique le TPC :

$$\begin{split} \dot{E}_c &= P(\overrightarrow{P}) + P(\overrightarrow{T}) \\ \frac{1}{2} m \frac{\mathrm{d}}{\mathrm{d}t} l^2 \dot{\varphi}^2 &= -mgl \sin(\varphi) \times \dot{\varphi} \\ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} l \dot{\varphi} &= -g \sin(\varphi) \\ l \ddot{\varphi} + g \sin(\varphi) &= 0 \end{split}$$

En faisant l'approximation des petits angles, on retrouve l'EQD trouvée avec l'analyse classique (PFD).

Ast

On rappelle que l'expression de la vitesse en coordonnées polaire avec un rayon constant est $\rho\dot{\varphi}\overrightarrow{e_{\varphi}}$

8. Travail et Théorème de l'énergie cinétique

8.2. Travail d'une force

Soit un système se déplaçant de A vers B suivant un chemin C(AB). On veut connaître le travail d'une force \overrightarrow{F} lors de ce déplacement. On décompose le chemin en déplacements élémentaires $\operatorname{d}\overrightarrow{r}$ et on introduit le travail élémentaire $\delta W^{\ \mathbf{i}}$, avec $\delta W = \overrightarrow{F} \cdot \operatorname{d}\overrightarrow{r}$ car \overrightarrow{F} est considérée comme constante sur ce petit déplacement.

On a alors le travail de la forc ${\sf F}$ sur le chemin C(AB)

$$W_{C(AB)}(\overrightarrow{F}) = \int_{C(AB)} \delta W = \int_{C(AB)} \overrightarrow{F} \cdot d\overrightarrow{r}$$
(8.1)

On appelle circulation du vecteur \overrightarrow{F} sur le chemin C(AB) la quantité précédente.

Propriétés

- · On peut séparer le chemin en morceau, puis sommer les travaux
- · Si on parcourt le chemin dans l'autre sens, le travail sera opposé.
- Généralement, la circulation dépend du chemin emprunté entre les 2 points.
- Si W > 0, la force est dite motrice, dans le cas contraire elle est négative, si W = 0, la force ne travaille pas.

Déplacement élémentaire

On a
$$\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} \iff d\overrightarrow{r} = \overrightarrow{v} \times dt$$
.

En cartésien à 3D : $\mathrm{d}\overrightarrow{r}=\mathrm{d}x\overrightarrow{e_x}+\mathrm{d}y\overrightarrow{e_y}+\mathrm{d}z\overrightarrow{e_z}$

En cylindrique : $\mathrm{d}\rho \overrightarrow{e_{\rho}} + \rho \mathrm{d}\varphi \overrightarrow{e_{\varphi}} + \mathrm{d}z \overrightarrow{e_{z}}$.

8.2. Calcul du travail d'une force

Forces ⊥ au mouvement

On a $W_{C(AB)}(\overrightarrow{F})=\int_{C(AB)}\overrightarrow{F}\cdot d\overrightarrow{r'}=\int_{C(AB)}0$. Elle ne fournit aucun travail.

i Info

On l'écrit δW et non $\mathrm{d}W$, car généralement, ce n'est pas la différentielle d'une fonction W car cela signifirait que \in_A^B $\mathrm{d}f=f(B)-F(A)$ et donc que W ne dépend que des points et non du chemin.

Cas d'une force constante

On a $W_{C(AB)}(\overrightarrow{F}) = \int_{C(AB)} \mathrm{d}\overrightarrow{r} = \overrightarrow{F} \cdot \int_{C(AB)} \mathrm{d}\overrightarrow{r} = \overrightarrow{F} \cdot \overrightarrow{AB}$. En effet, la somme de tous les petits déplacement élémentaires donne \overrightarrow{AB} .

Exemple du poids

On dit que le poids est constant : $W_{C(AB)}(\overrightarrow{P})=\overrightarrow{F}\cdot\overrightarrow{AB}=-mg(z_b-z_a).$ On peut aussi faire

$$W_{C(AB)}(\overrightarrow{P}) = \int \overrightarrow{P} \cdot d\overrightarrow{r}$$

$$= \int \overrightarrow{P} \cdot (dx \overrightarrow{e_x} + dy \overrightarrow{e_y} + dz \overrightarrow{e_z})$$

$$= \int -mg d\overrightarrow{z}$$

$$= -mg(z_b - z_a)$$

Forces non constantes

Force de rappel du ressort : Dans un déplacement après l_0 , on a $W_{C(AB)}(\overrightarrow{F_r}) = \int_{C(AB)} \overrightarrow{F_r} \cdot \mathrm{d}\overrightarrow{r} = \int \overrightarrow{F_r} \cdot (\mathrm{d}x\overrightarrow{e_x} + \mathrm{d}y\overrightarrow{e_y} + \mathrm{d}z\overrightarrow{e_z}) = \int \overrightarrow{F_r} \cdot \mathrm{d}x\overrightarrow{e_x} = \int_{x_a}^{x_b} -kx\mathrm{d}x = -k[\frac{x^2}{2}]_{x_a}^{x_b} = -\frac{1}{2}k(x_b^2 - x_a^2)$

Si $|x_b| > |x_a|$, la force est résistante.

8.2. Théorème de l'énergie cinétique

Théorème 2.1 : Énoncé

$$\Delta_{AB}E_c = \sum_i W_{C,AB}(\overrightarrow{F_i})$$

Preuve 2.1 : À partir du TPC

On utilise aussi le fait que $\overrightarrow{v} \times dt = dr \operatorname{car} \frac{d\overrightarrow{r}}{dt}$.

$$\frac{\mathrm{d}E_C}{\mathrm{d}t} = \sum_i P(\overrightarrow{F_i})$$

$$\int_{t_a}^{t_b} \frac{\mathrm{d}E_C}{\mathrm{d}t} \mathrm{d}t = \int_{t_a}^{t_b} \sum_i (\overrightarrow{F_i}) \cdot \overrightarrow{v} \times \mathrm{d}t$$

$$E_c(B) - E_c(A) = \sum_i \int \overrightarrow{F_i} \cdot \mathrm{d}\overrightarrow{r'}$$

$$= \sum_i \int \delta W$$

$$= \sum_i W_{C,AB}(\overrightarrow{F_i})$$

②

Exemple d'application

On étudie une particule dans un champ électrique constant. (exercice 5.1) On veut connaître la valeur de $\overrightarrow{v_d}$. On a donc, avec $\overrightarrow{F_e} = eE_0\overrightarrow{e_x}$ la force électrostatique.

$$E_c(d) - E_c(0) = \sum_i W_{C,AB}(\overrightarrow{F_i})$$

$$E_c(d) - E_c(0) = W_{C,OA}(\overrightarrow{F_e})$$

$$= \int_{0,d} \overrightarrow{F_e} \cdot dr$$

$$= \int_{0,d} qE_0 \overrightarrow{e_x} \cdot dx \overrightarrow{e_x}$$

$$= \int_{0,d} qE_0 dx$$

$$= qE_0 d$$

On peut maintenant multiplier par $\frac{2}{m}$ et obtenir v_d .

8. Énergie potentielle et forces conservatives

8.3. Notion de forces conservatives

Notion de différentielle

Pour une fonction f qui est C^1 , on peut définir df(a) = f(a+dx) - f(a).

La dérivée est $f'(a) = \lim_{d \to 0} \frac{f(a+dx)-f(a)}{dx}$.

On a donc $\mathrm{d}f(a)=f'(a)\mathrm{d}x\iff f'(a)=\frac{\mathrm{d}f(a)}{\mathrm{d}x}.$ On peut le généraliser au cas de fonctions de plusieurs variables f(x,y,z) et obtenir des dérivées partielles pour chaque variables.

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz.$$

Force conservative

Définition 3.1: Définition 1

Une force \overrightarrow{F} est dite conservative s'il existe une fonction $u(\overrightarrow{r})$ de l'espace tel que le travail élémentaire $\delta W(\overrightarrow{F}) = \overrightarrow{F} \cdot d\overrightarrow{r}$ soit égal à $\delta W = -du$.

Définition 3.2: Définition 2

Une force est conservative \iff le travail de \overrightarrow{F} dans le déplacement de A vers B ne dépend pas du chemin pris.

Preuve 3.1

Si \overrightarrow{F} est conservative, alors $\exists u(\overrightarrow{r})$ telle que $\delta W=-\mathrm{d}u.$ On a donc

$$W(\overrightarrow{F}) = \int \delta W(\overrightarrow{F})$$
$$= -\int du$$
$$= -[u(B) - u(A)]$$

Cette dernière expression ne dépend pas du chemin.

Définition 3.3: Définition 3

 \overrightarrow{F} est conservative \iff le travail sur tout chemin fermé est nul (le point de départ = point d'arrivée).

On a alors $W(\overrightarrow{F}) = \oint \delta W$.

Î

Preuve 3.2

Soit 2 points A et B et 2 chemins. Le chemin C_1-C_2 est fermé, donc $W(\overrightarrow{F})=0 \iff W_{C_1}(\overrightarrow{F})-W_{C_2}(\overrightarrow{F})=0 \iff W_{C_2}(\overrightarrow{F})=W_{C_1}(\overrightarrow{F}).$

8.3. Énergie potentielle

π

Définition 3.4 : Énergie potentielle

Si une force \overrightarrow{F} est conservative, il existe une fonction u telle que $\delta W(\overrightarrow{F})=-\mathrm{d} u$. On appelle u énergie potentielle, notée E_{P_F} .

Ainsi, $W(\overrightarrow{F})=\int \delta W=-\int dE_p=-E_p(B)-E_p(A)$. La variation d'énergie potentielle sur AB vaut l'opposé du travail, autrement dit $^{\mathbb{Q}}$:

$$\Delta_{AB}E_p = -W_{C,AB}(\overrightarrow{F})$$

Conséquence

L'énergie potentielle est définit à une constante près. Il faut donc se fixer un point de référence où elle est nulle.

Méthode

Une façon de calculer E_p est d'écrire $\delta W = -\mathrm{d}E_p \iff \overrightarrow{F} \cdot \mathrm{d}\overrightarrow{r'} = -\mathrm{d}E_p$. Il faut ensuite intégrer.

Exemple du poids

$$\overrightarrow{P}=-mg\overrightarrow{e_z}.$$
 On veut

$$\delta W(\overrightarrow{P}) = -\mathrm{d}E_{p}$$

$$\overrightarrow{P} \cdot \mathrm{d}\overrightarrow{R} = -\mathrm{d}E_{p}$$

$$(-mg\overrightarrow{e_{z}} \cdot (\mathrm{d}x\overrightarrow{e_{x}} + \mathrm{d}y\overrightarrow{e_{y}} + \mathrm{d}z\overrightarrow{e_{z}}) = -\mathrm{d}E_{p}$$

$$-mg\mathrm{d}z = -\mathrm{d}E_{p}$$

$$\frac{\mathrm{d}E_{p}}{\mathrm{d}z} = mg$$

$$E_{p} = mgz + CST$$

On choisit $E_p=0$ pour z=0, dans ce cas la constante vaut 0 et $E_p=mgz$. Le signe de l'expression dépend de l'axe.

Astuce

On peut dire aussi ΔE_p vaut le travail qu'un utilisateur doit fournit pour amener le système du point A au point B.

8.3. Opérateur gradient

Soit une fonction u de $\mathbb{R}^3 \to \mathbb{R}$. On introduit un vecteur $\operatorname{grad}(u)$ tel que $\mathrm{d} u = \operatorname{grad}(u) \cdot \mathrm{d} \overrightarrow{r}$. En cartésien, $\mathrm{d} u = \frac{\partial u}{\partial x} \mathrm{d} x + \frac{\partial u}{\partial y} \mathrm{d} y + \frac{\partial u}{\partial z} \mathrm{d} z$ et selon (8.3.3), $\mathrm{d} u = \operatorname{grad}_x(u) \mathrm{d} x + \operatorname{grad}_y(u) \mathrm{d} y + \operatorname{grad}_z(u) \mathrm{d} z$.

On obtient le vecteur gradient en cartésien : i

$$\operatorname{grad}(u) = \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial z} \end{pmatrix}$$

i Info

L'expression du gradient dépend du système de coordonnées dans lequel on se trouve

Propriétés

- · Il est linéaire
- Il est dirigé dans le sens des u croissants, c'est à dire pour maximiser l'augmentation de u.
- \cdot Il est orthogonal aux équipotentielles de $\it u$, surfaces sur lesquelles $\it u$ est constant.

π Preuve

$$du = \operatorname{grad}(u) \cdot d\overrightarrow{r'}$$
$$= ||\overrightarrow{\operatorname{grad}(u)}|| \times ||\overrightarrow{dr}|| \times \cos(\theta)$$

Si $\mathrm{d}\overrightarrow{r}$ est dans la direction et le sens de $\mathrm{grad}(u)$, alors $\mathrm{d}u$ est maximal, car $\theta=0$ et $\cos=1$

Si on se déplace orthogonalement à $\operatorname{grad}(u)$, $\mathrm{d} u = || \overline{\operatorname{grad}(u)}|| \times || \overrightarrow{\mathrm{d} u}|| \times 0$. Le grandient est orthogonal aux équipotentielles de u, surfaces sur lesquelles u est constant.

8.3.4alcul de E_p avec le gradient

Pour une force conservative, on a $\delta W = \overrightarrow{F} \cdot d\overrightarrow{r} = -dE_p$ et $dE_p = \operatorname{grad}(E_p) \cdot d\overrightarrow{r}$, donc $\overrightarrow{F} \cdot d\overrightarrow{r} = -\operatorname{grad}(E_p) \cdot d\overrightarrow{r}$. On obtient que

$$\overrightarrow{F} = -\operatorname{grad}(E_p)$$

.

Définition 3.5 : Définition 4 d'une force conserva-

Une force \overrightarrow{F} est conservative \iff il existe une fonction E_p telle que $\overrightarrow{F}=-\operatorname{grad}(E_p)$. On dit que \overrightarrow{F} dérive d'une énergie

Cette définition est utile pour calculer une énergie potentielle.

Exemple du poids

Avec un axe orienté vers le haut. $\overrightarrow{P}=-mg\overrightarrow{e_z}$. On cherche une fonction E_p telle que $\overrightarrow{P}=-\operatorname{grad}(E_p)$. On a donc :

$$-\frac{\partial E_p}{\partial x}=0\Rightarrow E_p$$
 ne dépend pas de x

$$-rac{\partial E_p}{\partial u}=0\Rightarrow E_p$$
 ne dépend pas de y

$$-rac{\partial E_p}{\partial x}=0\Rightarrow E_p$$
 ne dépend pas de x
$$-rac{\partial E_p}{\partial y}=0\Rightarrow E_p \text{ ne dépend pas de } y$$

$$-rac{\partial E_p}{\partial z}=-mg\Rightarrow rac{\mathrm{d} E_p}{\mathrm{d} z}=mg\Rightarrow E_p=mgz+Cst.$$

8.3.5alcul de E_p pour des forces conservative

Force de rappel du ressort

 $\overrightarrow{F_r}=-kx\overrightarrow{e_x}$. On cherche E_p telle que $\overrightarrow{F_r}=-\operatorname{grad}(E_p)$. Elle ne dépend ni de y ni de z. On a alors $-kx=-\frac{\mathrm{d}E_p}{\mathrm{d}x}\iff E_p=\frac{1}{2}kx^2+Cst$. On choisit souvent l'énergie potentielle nulle à l'équilibre, ici on prend $E_p=0$ pour x=0, car on a choisit de mettre l'origine à la longueur à

Force de gravitation

 $\overrightarrow{F_g}=-rac{GMm}{r^2}\overrightarrow{e_r}$ C'est valable dans la base sphérique. On a donc $\overrightarrow{F_g}=$ $-\operatorname{grad}(E_p)$, donc : $-GMm\frac{1}{r^2}=-rac{\mathrm{d}E_p}{\mathrm{d}r}\iff E_p=-GmM\frac{1}{r}-Cst$. On se donne $E_p\to 0$ quand $r\to \infty$, donc il faut que la constante soit

Force électrostatique

 $\overrightarrow{F_e} = -rac{qq_0}{4\piarepsilon_0 imes r^2}.$ C'est valable dans la base sphérique où la force ne dépend que du vecteur $\overrightarrow{e_r}$, on a donc : $\overrightarrow{F_e} = -\gcd(E_p)$, donc : $\frac{1}{4\pi\varepsilon_0}$ ×

MÉCANIQUE & Puissance, travail et énergie, Énergie mécanique

$$\frac{qq_0}{r^2} = -\frac{\mathrm{d}E_p}{\mathrm{d}r} \iff E_p = \frac{1}{4\pi\varepsilon_0} \times \frac{qq_0}{r} + Cst.$$

On choisi que $E_p o 0$ quand $r o \infty$, donc la constante est nulle.

8. Énergie mécanique

Définition 4.1: Définition

C'est l'énergie cinétique plus la somme des toutes les énergies potentielles des forces conservatives.

8.4. Théorème de l'énergie mécanique

π

Théorème 4.1:

La variation de l'énergie mécanique correspond à la somme des travaux des forces non conservatives, qui dissipent de l'énergie, comme les frottements.

$$\Delta_{AB} = \sum_{i} W_{C,AB}(\overrightarrow{F_{NC}})$$

π Preuve 4.1 : À partir du TEC

$$\Delta E_c = \sum_i W(\overrightarrow{F_i})$$

$$= \sum_i W(\overrightarrow{F_{c,i}}) + \sum_i W(\overrightarrow{F_{nc,i}})$$

$$\Delta E_c - \sum_i W(\overrightarrow{F_{c,i}}) = \sum_i W(\overrightarrow{F_{nc,i}})$$

$$\Delta E_c - (-\Delta E_p) = \sum_i W(\overrightarrow{F_{nc,i}})$$

$$\Delta E_c + \Delta E_p = \sum_i W(\overrightarrow{F_{nc,i}})$$

$$\Delta E_m = \sum_i W(\overrightarrow{F_{nc,i}})$$

En l'absence de forces non conservatives, l'énergie mécanique se conserve.

Si les forces conservatives en présence ont des E_p connues, on utilise plutôt ce théorème.

8.4. Théorème de la puissance mécanique

Théorème 4.2 : TPM

$$\frac{\mathrm{d}E_m}{\mathrm{d}t} = \sum_j P(\overrightarrow{F_{NC,j}})$$

Preuve 4.2: À partir du TPC

$$\frac{\mathrm{d}E_c}{\mathrm{d}t} = \sum_k P(\overrightarrow{F_c}) + \sum_l P(\overrightarrow{F_{NC}})$$

$$= \sum_l \overrightarrow{F_C} \cdot \overrightarrow{v} + \sum_l P(\overrightarrow{F_{NC}})$$

$$= \sum_l \overrightarrow{F_C} \cdot \frac{\mathrm{d}\overrightarrow{r}}{\mathrm{d}t} + \sum_l P(\overrightarrow{F_{NC}})$$

$$= \sum_l \delta W(\overrightarrow{F_C} \frac{1}{\mathrm{d}t} + \sum_l P(\overrightarrow{F_{NC}})$$

$$= \sum_l \frac{-\mathrm{d}E_p}{\mathrm{d}t} + \sum_l P(\overrightarrow{F_{NC}})$$

$$\Rightarrow \frac{\mathrm{d}E_m}{\mathrm{d}t} = \sum_l P(\overrightarrow{F_{NC,j}})$$

8. Interprétation graphique de l'énergie potentielle

On s'interesse à des systèmes dont le mouvement possède un seul degré de liberté $^{\mathbb{Q}}$ et conservatif. On considère E_p la somme de toutes les énergies potentielles. On note \overrightarrow{F} la résultante des forces. E_p correspond donc à l'énergie potentielle associée à \overrightarrow{F} .

Il y a un seul degré de liberté : $\overrightarrow{F}(x) = F(x)\overrightarrow{e_x}$. On peut écrire $\overrightarrow{F} = -\gcd(E_p) \Rightarrow F(x) = -\frac{\mathrm{d}E_p}{\mathrm{d}x}$.

On peut alors interpréter le graphique E_p en fonction de x.

Position d'équilibre

L'accélération est nulle, donc $\overrightarrow{F} = \overrightarrow{0} \iff -\frac{\mathrm{d}E_p}{\mathrm{d}x} = 0$, donc les positions d'équilibre correspondent aux points où la courbe $E_p(x)$ admet une tangente horizontale, aux extremum locaux par exemple.

Un seul paramètre décrit le mouvement (cas d'un mouvement rectiligne par exemple, mouvement circulaire à rayon constant)

Signe de la dérivée

Si $\frac{\mathrm{d}E_p}{\mathrm{d}x} > 0, F(x) < 0$ (courbe croissate)

Si
$$\frac{\mathrm{d}E_p}{\mathrm{d}x} < 0, F(x) > 0$$

Schéma 1

8.5. \$tabilité des positions d'équilibre

Définition 5.1

Une position d'équilibre est site stable si elle revient à cette position après une petite perturbation car les forces en présence tendent à l'y ramener. Dans le cas contraire, elle est instable.

Condition pour qu'une position d'quilibre soit table

Soit x_0 une positon d'équilibre, $F(x) = 0 \iff -\frac{\mathrm{d}E_p}{\mathrm{d}x} = 0$

Pour qu'une position soit stable, il faut que $F(x_0+{\rm d}x)<0$ quand x>0 ou $F(x_0+{\rm d}x)>0$ quand x<0

On réécrit la première égalité :

$$\frac{F(x_0 + \mathrm{d}x) - F(x_0)}{\mathrm{d}x} < 0$$

$$\frac{\mathrm{d}F}{\mathrm{d}x}(x_0) < 0 \iff -\frac{\mathrm{d}^2 E_p}{\mathrm{d}x^2} < 0$$

$$\frac{\mathrm{d}^2 E_p}{\mathrm{d}x^2} > 0$$

Il faut donc que la courbe soit convexe en x_0

En ajoutant l'information de l' E_m , on peut connaître l'évolution du système.

Schéma 2

X Difficulté

Il s'agit bien de la dérivée en fonctio de x en non la dérivée temporelle