Defects in materials

Manish Jain

Department of Physics Indian Institute of Science Bangalore

July 8, 2014

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high- κ dielectric HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high-κ dielectrics HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Motivation – High- κ dielectric material HfO $_2$

- Moore's law about size of transistor.
- \blacksquare HfO₂ has replaced SiO₂ in todays MOSFET devices.

 $\kappa_{\mathrm{SiO}_2} \approx 3.9$ $\kappa_{\mathrm{HfO}_2} \approx 16-17$

¹ http://www.intel.com/technology/45nm/index.htm

High- κ dielectric materials – Motivation

- High defect density.
- Charge trapping by defects in the interfacial layer or oxide threshold voltage instability¹.
- Oxygen-related defects vacancy² (V_O) or interstitials (I_O) major cause.
- Study the stability of point defects V_O.

¹G. Ribes et. al., IEEE Trans. Device Mater. Reliab. **5**, 5 (2005).

²K. Shiraishi et. al., Jpn. J. Appl. Phys., Part 2 **43** L1413 (2004); H. Park et. al., IEEE Electron Device Lett. **29**, 54 (2008).

Motivation – TiO_2

- Photovoltaic material in solar cells¹.
- Photocatalytic material hydrolysis of water².
- Memresistive switches for non-volatile memory³.
- Oxygen vacancies are believed to play a very important role in all these applications.

¹B. O'Regan and M. Gratzel, Nature (London) **353**, 737 (1991).

²A. Fujishima and K. Honda, Nature (London) **238**, 37 (1972).

 $^{^3}$ J. J. Yang, M. D. Pickett, X. Li, D. À. A. Ohlberg, D. R. Stéwart, and R. S. Williams, Nature Nanotechnology 3, 429 (2008).

Outline

- Motivation.
- Computational methods.
 - Defects in oxides.
 - Why are defects challenging?
 - Defects in high-κ dielectrics HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Methods – Ground-state properties

Properties that are intrinsic to a system with all its electrons in equilibrium.

- Density functional theory is the "standard model" for understanding ground-state properties.
- Total energy is a functional of the charge density.
- Kohn-Sham formulation: Map the interacting many-electron problem to non-interacting electrons moving in a self-consistent field.

$$\left(-\frac{\nabla^2}{2} + V_{ionic}(\mathbf{r}) + V_{Hartree}(\mathbf{r}) + V_{xc}(\mathbf{r})\right)\psi(\mathbf{r}) = \epsilon \psi(\mathbf{r})$$

Local density approximation Generalized gradient approximation

Methods – Excited-state properties

Spectroscopic properties that involve experiments creating an excited particle above the ground state.

- Concept and formalism of the interacting particle Green's function (G).
- Many-body perturbation theory is the "standard model" for understanding excited-state properties.

$$G^{-1} = G_0^{-1} + \Sigma$$

■ GW approximation to the self-energy (Σ) .

$$W = \varepsilon^{-1} v$$

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high- κ dielectric HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Why are defects challenging?

- Potentially strong electron-electron correlations.
 - Can be open-shell systems.
 - Multiple localized, interacting electrons.
- Lattice relaxation effects.
- Screening from the host.
 - Mimicking the system by isolated cluster may be incorrect.
- Experiments often involve excited-state properties (deep level transient spectroscopy or optical absorption etc.)
- Computational difficulty isolated defect.

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high- κ dielectric HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Formation energy of an oxygen-vacancy:

$$\mathbf{E}^f[\vec{\mathbf{R}}] = \mathbf{E}[\vec{\mathbf{R}}] - \mathbf{E}_{\text{ref}} + \frac{1}{2}\mathbf{E}_{\mathbf{O}_2}$$

From slides by C. G. Van de Walle

Formation energy of an oxygen-vacancy:

$$E_{q}^{f}[\vec{R}_{q}](E_{F}) = E_{q}[\vec{R}_{q}] - E_{ref} + \frac{1}{2}E_{O_{2}} + q(E_{F} + E_{v})$$

Formation energy of an oxygen-related defect in hafnia:

$$E_q^f[\vec{R}_q](E_F) = E_q[\vec{R}_q] - E_{HfO_2} - n_O\mu_O + q(E_F + E_v)$$

where μ_{O} is the oxygen chemical potential.

Formation energy of an oxygen-related defect in hafnia:

$$E_q^f[\vec{R}_q](E_F) = E_q[\vec{R}_q] - E_{HfO_2} - n_O\mu_O + q(E_F + E_v)$$

where μ_{O} is the oxygen chemical potential.

Charge transition level : $\varepsilon^{q/q-1}=$ Fermi energy where defect $q \to q-1.$

Formation energy of an oxygen-related defect in hafnia:

$$E_{q}^{f}[\vec{R}_{q}](E_{F}) = E_{q}[\vec{R}_{q}] - E_{HfO_{2}} - n_{O}\mu_{O} + q(E_{F} + E_{v})$$

where μ_{O} is the oxygen chemical potential.

Charge transition level : $\varepsilon^{q/q-1}$ = Fermi energy where defect $q \to q-1$. = $E_{q-1}^f[\vec{R}_{q-1}](E_F=0) - E_q^f[\vec{R}_q](E_F=0)$

High- κ dielectric materials – Methodology

 $\mathsf{DFT} + \mathsf{GW} \mathsf{ methodology}.$

M. Hedström, A. Schindlmayr, G. Schwarz, and M. Scheffler, Phys. Rev. Lett. 97, 226401 (2006); P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev.

Lett. 102, 026402 (2009); M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. 107, 216803 (2011).

High- κ dielectric materials – Methodology

 $\mathsf{DFT} + \mathsf{GW} \mathsf{ methodology}.$

M. Hedström, A. Schindlmayr, G. Schwarz, and M. Scheffler, Phys. Rev. Lett. 97, 226401 (2006); P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev.

Lett. 102, 026402 (2009); M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. 107, 216803 (2011).

High- κ dielectric materials – Computational details

- Three fold coordinated $(V_{O(3)})$ and four fold coordinated $(V_{O(4)})$ vacancies in charge states $\{0, +1, +2\}$
- 96 atom super cells.
- \blacksquare Norm conserving pseudopotentials Hf $5s^25p^65d^26s^2$ and O $2s^22p^4.$
- 250 Ry energy cutoff for wavefunctions.
- PBE functional for structural energies.
- 'One shot' GW done within generalized plasmon pole model done with BerkeleyGW.
- Bulk structural parameters and band gap (6.00 eV) in good agreement with experiment.
- SIESTA for large supercells to get electrostatic corrections.

PBE and quasiparticle level diagram - $\mathsf{V}_{\mathrm{O}(3)}$

GW charge transition

S. Lany and A. Zunger, Phys. Rev. B 81 113201 (2010)

GW charge transition levels (eV)

GW charge transition levels (eV)

	w/o	with
	cor.	cor.
$\varepsilon^{+2/+1}$	4.50	2.66
$\varepsilon^{+2/+1}$	3.42	2.45
$\varepsilon^{+1/0}$	3.55	3.55
$\varepsilon^{+1/0}$	4.33	3.36

High- κ dielectric materials – Formation energy of $V_{\rm O}$

¹M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. **107**, 216803 (2011).

High- κ dielectric materials – Formation energy of $V_{\rm O}$

¹M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. **107**, 216803 (2011).

High- $\!\kappa$ dielectric materials – Formation energy of V_O

¹M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. **107**, 216803 (2011).

$\operatorname{\mathsf{High-}}\kappa$ dielectric materials – Formation energy of vacancies

¹M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. **107**, 216803 (2011).

Defect charging energy – U

$$2V^{+} \rightarrow V^{2+} + V^{0}$$

$$U = E_{+2}^{f}(\vec{R}_{+2}) + E_{0}^{f}(\vec{R}_{0}) - 2E_{+1}^{f}(\vec{R}_{+1})$$
$$= -\varepsilon^{+2/+1} + \varepsilon^{+1/0}$$

Comparison with previous studies

All values are in eV.

	$V_{\mathrm{O}(3)}$		V _{O(4)}			
	$\varepsilon^{+2/+1}$	$\varepsilon^{+1/0}$	U	$\varepsilon^{+2/+1}$	$\varepsilon^{+1/0}$	U
GGA	2.74	2.69	-0.05	2.38	2.41	-0.03
HSE ¹	3.93	4.42	0.49	_	_	-
PBE0 ²	3.7	4.1	0.4	_	_	-
GW^3 (24 atoms)	4.00	3.10	-0.90	3.22	2.43	-0.79
GW^4 (96 atoms)	2.56	3.46	0.90	2.21	3.03	0.82

¹J.L. Lyons, A. Janotti and C.G. Van de Walle, Microelectronic Engineering **88**, 1452 (2011).

²P. Broqvist and A. Pasquarello, Appl. Phys. Lett. **89**, 262904 (2006).

³E.-A. Choi, and K. J. Chang, Appl. Phys. Lett., **94**, 122901 (2009).

⁴M. Jain, J. R. Chelikowsky and S. G. Louie, Phys. Rev. Lett. **107**, 216803 (2011).

Defect charging energy - U

$$2V^+ \rightarrow V^{2+} + V^0$$

$$U = E_{+2}^{f}(\vec{R}_{+2}) + E_{0}^{f}(\vec{R}_{0}) - 2E_{+1}^{f}(\vec{R}_{+1})$$
$$= -\varepsilon^{+2/+1} + \varepsilon^{+1/0}$$

Defect charging energy - U

$$2V^+ \to V^{2+} + V^0$$

$$\begin{split} \mathbf{U} &= \mathbf{E}_{+2}^{f}(\vec{\mathbf{R}}_{+2}) + \mathbf{E}_{0}^{f}(\vec{\mathbf{R}}_{0}) - 2\mathbf{E}_{+1}^{f}(\vec{\mathbf{R}}_{+1}) \\ &= -\varepsilon^{+2/+1} + \varepsilon^{+1/0} \\ &\equiv \mathbf{U}_{elec} + \mathbf{U}_{relax} \\ &= \{ \mathbf{E}_{+2}^{f}(\vec{\mathbf{R}}_{+1}) + \mathbf{E}_{0}^{f}(\vec{\mathbf{R}}_{+1}) - 2\mathbf{E}_{+1}^{f}(\vec{\mathbf{R}}_{+1}) \} + \\ \{ [\mathbf{E}_{+2}^{f}(\vec{\mathbf{R}}_{+2}) - \mathbf{E}_{+2}^{f}(\vec{\mathbf{R}}_{+1})] + [\mathbf{E}_{0}^{f}(\vec{\mathbf{R}}_{0}) - \mathbf{E}_{0}^{f}(\vec{\mathbf{R}}_{+1})] \} \end{split}$$

Defect charging energy - U

$$2V^{+} \rightarrow V^{2+} + V^{0}$$

$$\begin{split} \mathbf{U} &= \mathbf{E}_{+2}^f(\vec{\mathbf{R}}_{+2}) + \mathbf{E}_0^f(\vec{\mathbf{R}}_0) - 2\mathbf{E}_{+1}^f(\vec{\mathbf{R}}_{+1}) \\ &= -\varepsilon^{+2/+1} + \varepsilon^{+1/0} \\ &\equiv \mathbf{U}_{\mathrm{elec}} + \mathbf{U}_{\mathrm{relax}} \\ &= \{\mathbf{E}_{+2}^f(\vec{\mathbf{R}}_{+1}) + \mathbf{E}_0^f(\vec{\mathbf{R}}_{+1}) - 2\mathbf{E}_{+1}^f(\vec{\mathbf{R}}_{+1})\} + \\ \{[\mathbf{E}_{+2}^f(\vec{\mathbf{R}}_{+2}) - \mathbf{E}_{+2}^f(\vec{\mathbf{R}}_{+1})] + [\mathbf{E}_0^f(\vec{\mathbf{R}}_0) - \mathbf{E}_0^f(\vec{\mathbf{R}}_{+1})]\} \\ &\qquad \qquad \mathbf{U}_{\mathrm{elec}} \geq 0 \text{ and } \mathbf{U}_{\mathrm{relax}} \leq 0 \end{split}$$

Defect charging energy – U

$2V^+ \to V^{2+} + V^0$				
	$\mathrm{U}_{\mathrm{elec}}$	$U_{ m relax}$	U	
$V_{O(3)}$	2.24	-1.33	0.90	
$V_{O(4)}$	2.13	-1.35	0.81	

High- κ dielectric materials – Conclusions

- DFT+GW method for calculating the stability of oxygen vacancies.
- Qualitative agreement with previous hybrid functional calculations on the vacancies.
- Quantitative disagreement with previous hybrid functional calculations - vacancies near a Si/HfO₂ interface.

	DFT+GW	HSE
V_{O}	+1,0	+2,+1

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high- κ dielectric HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Vacancies in TiO_2 – Computational details

- Oxygen vacancies (V_O) in rutile in charge states $\{0, +1, +2\}$
- 72 atom super cells.
- 200 Ry energy cutoff for wavefunctions.
- HSE functional for structural energies.
- 'One shot' GW done within generalized plasmon pole model done with BerkeleyGW.
- Bulk structural parameters and band gap (3.13 eV) in good agreement with experiment.

Schematic quasiparticle level diagram - $V_{\rm O}$

Polaron formation – V_{O}^{+1}

Relaxation of the atoms: Two minima

Polaron formation – V_0^{+1}

Relaxation of the atoms: Two minima

- A state in the gap polaron.
- $\blacksquare V_{O}^{+1} \rightarrow V_{O}^{+2} + \text{polaron}.$
- Lower in energy by 1.2 eV.
- Not relevant for charge transition level

- A state in the gap defect state.
- Charge density on the defect site.
- Local minima.
- Relevant for charge transition level

TiO_2 – Formation energy of vacancies

Comparison with previous studies

All values are in eV.

	V_{O}			
	$\varepsilon^{+2/+1}$	$\varepsilon^{+1/0}$	U	
GGA^1	2.0	2.0	0	
HSE^2	3.8	3.1	-0.7	
GW^3	3.01	2.56	-0.45	

Negative U defect.

 $^{^1\}mathrm{H}$. Iddir, S. Ogut, P. Zapol, and N. D. Browning, Phys. Rev. B **75**, 073203 (2007). (value from plot)

 $^{^2}$ A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, Phys. Rev. B $\bf 81$ 085212 (2010). (value from plot)

³ A. Malashevich, M. Jain and S. G. Louie, Phys. Rev. B **89**, 075205, (2014).

TiO_2 – Conclusions

- DFT+GW method for calculating the stability of oxygen vacancies.
- Negative U defect.
- Qualitative agreement with previous hybrid functional calculations.
- Quantitative disagreement with previous hybrid functional calculations.

$$\begin{array}{c|cc} & \mathsf{DFT+GW} & \mathsf{HSE} \\ \hline V_O & +2,0 & +2 \end{array}$$

Outline

- Motivation.
- Computational methods.
- Defects in oxides.
 - Why are defects challenging?
 - Defects in high- κ dielectric HfO₂.
 - Defects in technologically important material TiO₂.
 - Defects for quantum computing.

Defects for spin-qubit applications

■ Room temperature individually addressable spin systems in the solid-state for quantum computing.

Defects for spin-qubit applications

- Room temperature individually addressable spin systems in the solid-state for quantum computing.
- NV⁻ center in diamond is the leading candidate.

Defects for spin-qubit applications

- Room temperature individually addressable spin systems in the solid-state for quantum computing.
- NV⁻ center in diamond is the leading candidate.

- Possible room-temperature qubit with long coherence time $(\sim 1 \text{ms})$ for quantum computing.
- High sensitivity, high-spatial resolution magnetometry.

NV⁻ center in diamond – Motivation

Optical initialization at room-temperature provides initial spin pure state for spin-qubit operation.

Notation : $^{2S+1}$ Λ

 $\boldsymbol{\Lambda}$: Irreducible representation of the orbital symmetry

 $S:\mathsf{Total}\;\mathsf{Spin}$

NV⁻ center in diamond – Motivation

Optical initialization at room-temperature provides initial spin pure state for spin-qubit operation.

Notation : $^{2S+1}$ Λ

 Λ : Irreducible representation of the orbital symmetry

 $S:\mathsf{Total}\;\mathsf{Spin}$

At Room Temperature

Degenerate mixed ground state un-entangled spin pure state

NV⁻ center in diamond – Unsolved problem

- Identification of singlet-level structure.
- Effective optical initialization path between the two triplet levels.

NV⁻ center in diamond – Single particle levels

NV⁻ is a deep level center in a band gap of diamond with multiple localized, interacting electrons.

 $^{^1}$ J. Lischner, J. Deslippe, M. Jain and S. G. Louie, Phys. Rev. Lett. f 109, 036406 (2012)

NV⁻ center in diamond – Dangling orbitals

NV⁻ center in diamond – Extended Hubbard model

Effective Coulomb

$$\begin{split} \hat{\mathbf{H}} &= \sum_{i,\sigma} \mathbf{E}_i n_{i\sigma} + \sum_{i \neq j,\sigma} t_{i,j} c_{i,\sigma}^{\dagger} c_{j,\sigma} \\ &+ \sum_{i} \mathbf{U} n_{i,\uparrow} n_{j,\downarrow} + \sum_{i \neq j,\sigma,\sigma'} \mathbf{V} n_{i,\sigma} n_{j,\sigma'} \\ &+ \sum_{i} \mathbf{U} n_{i,\uparrow} n_{j,\downarrow} + \sum_{i \neq j,\sigma,\sigma'} \mathbf{V} n_{i,\sigma} n_{j,\sigma'} \\ &+ \mathbf{U} \cdot \mathbf{N} = \mathbf{V} \mathbf$$

parameters.

correlation

Strong electron-electron

NV⁻ center in diamond – Model parameters from GW

Use ab initio GW to get model parameters, incorporating realistic electron-electron interactions.

NV⁻ center in diamond – Model parameters from GW

- $U/t > 3 \rightarrow \text{strongly correlated system}$.
- Reasonable values of parameters.
- Geometry dependent parameters.

All parameters are in eV.

	$E_{\mathrm{C}}\text{-}E_{\mathrm{N}}$	t_{NC}	t_{CC}	U	V
Ground-state	2.56	-0.68	-1.03	3.43	0.83
Excited-state	2.86	-0.75	-0.90	3.45	0.67

NV⁻ center in diamond – Level diagram

Level diagram¹ from exact diagonalization of model Hamiltonian – all many-electron correlation effects within our Hilbert space.

All energies in eV.

	Theory	Exp
1	2.1	2.2
2	2.0	1.945
3	1.8	1.8
$ au_{rad}^{^3E}$	20ns	13ns
$ au_{nonrad}^{^3E}$	30ns	50ns

¹S. Choi, M. Jain and S. G. Louie, Phys. Rev. B **86**, 041202 (2012)

NV center in diamond – Proposed optical pathway¹

Qualitatively and quantitatively consistent with available experimental data.

¹S. Choi, M. Jain and S. G. Louie, Phys. Rev. B **86**, 041202 (2012)

NV⁻ center in diamond – Conclusion

- Constructed extended Hubbard Hamiltonian from *ab initio* GW calculations.
- Through exact diagonalization, many-electron effects strongly affect the energy level diagram qualitatively and quantitatively.
- Computed ground- and excited-state energy surfaces and transition rates between them provided a consistent picture with experiments.
- Proposed an optical initialization pathway in which inter-sytstem crossing plays a crucial role.

Conclusion

- *Ab initio* methods to understand and predict properties of defects in materials.
- Oxygen vacancies in high- κ material HfO₂ and photocatalytic material TiO₂.
- NV⁻ center in diamond for quantum computing application.

Acknowledgements

Prof. Steven Louie

Prof. James Chelikowsky

Dr. Andrei Malashevich

Dr. Johannes Lischner

Dr. Sang-Kook Choi

Dr. Jack Deslippe

Dr. Georgy Samsonidze

Prof. Marvin Cohen