3.2.1

Сдвиг фаз в цепи переменного тока

Егор Берсенев

1 Цель работы

Изучить влияние активного сопротивления, индуктивности и ёмкости на сдвиг фаз между током и напряжением в цепи переменного тока.

2 Оборудование

Генератор звуковой частоты, двухканальный осциллограф, магазин емкостей, магазин сопротивлений, катушка индуктивности, резисторы, мост переменного тока.

3 Теоретическая часть

Измерять сдвиг фаз в цепях переменного тока можно с помощью осицилографа. Пусть нужно измерить сдвиг фаз между двумя напряжениями U_1 и U_2 . Подадим эти напряжения на соответсвующие входы осциллографа. Смещения луча определяются

$$x = x_0 \cos \Omega t$$
 $y = y_0 \cos (\Omega t + \alpha)$

Исключим время

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \frac{2xy}{x_0y_0}\cos\alpha = \sin^2\alpha$$

Это выражение определяет эллипс на экране осциллографа. Для расчёта сдвига фаз можно измерить отрезки $2y_{x=0}$ и $2y_0$ и, подставляя эти значения в уравнение эллипса, найдем

$$\alpha = \pm \arcsin\left(\frac{y_{x=0}}{y_0}\right)$$

На практике применяются фазовращатели, позволяющие в широких пределах изменять фазу напряжения. Этот прибор включает в себя два одинаковых резистора, емкость и реостат. Используя метод комплексных амплитуд, найдем зависимость сдвига фаз между входным и выходным напряжением в зависимости соотношения

между импедансами сопротивления R и ёмкости C. Для этого выразим выходное напряжение через параметры контура и частоту внешнего источника.

Пусть комплексная амплитуда входного напряжения \hat{U}_0 . Тогда напряжение между точками 1 и 3 в силу равенства сопротивлений:

$$\hat{U}_{13} = \frac{\hat{U}_0}{2}.$$

Пусть фаза входного напряжения равна нулю, тогда $\hat{U_0}$ будет действительной величиной. Примем напряжение в точке 1 равным нулю, тогда:

$$\hat{U_{03}} = \frac{U_0}{2}$$

Рассчитаем амплитуду в точке 4. Импеданс последовательно соединенных емкости и сопротивления равен

$$Z = R - \frac{i}{\Omega C}.$$

Для комплексной амплитуды тока $\hat{I_0}|$, проходящего через R и C, имеем

$$\hat{I}_0 = \frac{U_0}{Z} = \frac{U_0}{R - \frac{i}{\Omega C}},$$

а для комплексной амплитуды напряжения в точке 4 —

$$\hat{U}_{04} = \hat{I}_0 R = U_0 \frac{R}{R - \frac{i}{\Omega C}}$$

Тогда выходное напряжение:

$$\hat{U}_{\text{вых}} = \hat{U}_{04} - \hat{U}_{03} = \hat{U}_{04} - \frac{U_0}{2} = \frac{U_0}{2} \frac{R + \frac{i}{\Omega C}}{R - \frac{i}{\Omega C}}.$$

Величина выходного напряжения не меняется, посколько модули комплексных величин одинаковы. Сдвиг фаз равен $2\arctan\left(\frac{1}{\Omega RC}\right)$ и меняется от $\frac{\pi}{2}$ до 0.

3.1 Экспериментальная установка

Экспериментальная установка:

Установка для исследования фазовращателя:

4 Ход работы

4.1 Измерение зависимости сдвига фаз от R в RC-цепи

$$R=12.2{
m Om}$$

$$f=1000{
m \Gamma m}$$

$$\Omega=6280{
m pag/c}$$

$$C=5\cdot 10^{-1}{
m \Phi}$$

Таблица 1: Измерение зависимости сдвига фаз от R в RC-цепи

1.	devina 1. Henre penne subnemies in expire que et 10 b 100 aen						
R	x	x_0	f, рад	$\cot f$	RS	$\frac{1}{\Omega CR}$	ΩCR
0	5	10	1,571	$6,13\cdot 10^{-17}$	12,2	26,10	0,04
500	2,5	10	0,785	1,00	512,2	0,62	1,61
1000	1,5	10	0,471	1,96	1012,2	0,31	3,18
1500	1	10	0,314	3,08	1512,2	0,21	4,75
2000	0,8	10	0,251	3,89	2012,2	0,16	6,32
750	1,8	10	0,565	1,58	762,2	0,42	2,39
1250	1	10	0,314	3,08	1262,2	0,25	3,96

4.2 Исследование зависимости сдвига фаз от R в RL-цепи

$$R=12.2\,\mathrm{Om}$$

$$f=1000\,\mathrm{\Gamma m}$$

$$\Omega=6280\,\mathrm{pag/c}$$

$$L=0.5024\,\mathrm{mFh}$$

Таблица 2: Исследование зависимости сдвига фаз от R в RL-цепи

da zi irosiis damiis aasiisiinistii adsii a das or it s rez							
R	x	x_0	f рад	$\cot f$	RS	$\frac{\Omega L}{RS}$	$\frac{RS}{\Omega L}$
0	6	10	1,885	-0,325	44	71,706	0,014
400	2,5	10	0,785	1	444	7,106	0,141
800	1,5	10	0,471	1,963	844	3,738	0,268
1200	1	10	0,314	3,078	1244	2,536	0,394
1600	0,8	10	0,251	3,895	1644	1,919	0,521
1000	1,2	10	0,377	2,526	1044	3,022	0,331

4.3 Теоретические графики

Сдвиг фаз в RL-цепи:

Сдвиг фаз в RC-цепи:

4.4 Исследование зависимости сдвига фаз от частоты в RCLцепи

Расчетная частота резонанса $f_0 = 1055\,\Gamma$ ц, $C = 5\cdot 10^{-1}\Phi,\, L = 0.5024\,\mathrm{m}\Gamma$ н.

Таблица 3: Исследование зависимости сдвига фаз от частоты в RCL-цепи, 1

f	x	x_0	$\int f$	$\frac{f}{f_0}$
800	6	31	0,608	0,797
750	7	39,5	0,557	0,747
850	5,5	30	0,576	0,846
900	4,5	28	0,505	0,896
950	3	26,5	0,356	0,946
700	3	14,5	0,650	0,697
650	3,5	16	0,687	0,647
1040	2	24	0,262	1,036
1100	3,5	23	0,478	1,095
1140	4	22	0,571	1,135
1200	4	21	0,598	1,195
1240	4	20	0,628	1,235
1300	3	19	0,496	1,295

Таблица 4: Исследование зависимости сдвига фаз от частоты в RCL-цепи, 2

$\mid f \mid$	x	x_0	l f	$\frac{J}{f_0}$
800	6	31	0,608	0,797
750	7	39,5	0,557	0,747
850	5,5	30	0,576	0,846
900	4,5	28	0,505	0,896
950	3	26,5	0,356	0,946
700	3	14,5	0,650	0,697
650	3,5	16	0,687	0,647
1040	2	24	0,262	1,036
1100	3,5	23	0,478	1,095
1140	4	22	0,571	1,135
1200	4	21	0,598	1,195
1240	4	20	0,628	1,235
1300	3	19	0,496	1,295

Таблица 5: Результаты измерений

R	0	100
p_1	0.948	0.929
p_2	1.062	1.081
dp	0.114	0.152
Q	8.74	6.59
Q_t	$1.39 \cdot 10^4$	6.752

4.5 Векторная диаграмма

5 Вывод

В цепи переменного тока, содержащей емкости и индуктивности возникает разность фаз между током и напряжением. При включении индуктивности ток опережает напряжения, при включении емкости наоборот.