Ćw 1. (7 pkt), data oddania: do 18.10.2021 - Zagadnienie przeszukiwania i podstawowe podejścia do niego Zaimplementować metodę gradientu prostego dla funkcji jednej zmiennej. Zbadać działanie metody w zależności od parametrów wejściowych: - punkt startowy - współczynnika uczenia Eksperymenty przeprowadzić dla funkcji z jednym minimum oraz dla funkcji z minimum lokalnym, czyli np.: x²+3x+8, x⁴ - 5x²

Nie trzeba implementować liczenia pochodnej z funkcji wejściowej - podajemy jako już znaną funkcję, hint: f(x) i $\nabla f(x)$ najlepiej przekazać jako argument funkcji np.: # lambda x: x ** 2 # lambda gx: 2 * gx

Testy:

Dla funkcji x²+3x+8:

Na początku znalazłem optymalny współczynnik uczenia alfa dla konkretnego x₀:

```
wynik: -1.5709644585665583; alfa: 0.05; kroki: 38
wynik: -1.5504403158265496; alfa: 0.1; kroki: 20
wynik: -1.53391115364245; alfa: 0.150000000000000002; kroki: 14
wynik: -1.535271936; alfa: 0.2; kroki: 10
wynik: -1.52734375; alfa: 0.25; kroki: 8
wynik: -1.514336; alfa: 0.300000000000000004; kroki: 7
wynik: -1.52835; alfa: 0.35000000000000003; kroki: 5
wynik: -1.528; alfa: 0.4; kroki: 4
wynik: -1.5035; alfa: 0.45; kroki: 4
wynik: -1.5; alfa: 0.5; kroki: 2
wynik: -1.4965; alfa: 0.55; kroki: 4
wynik: -1.472; alfa: 0.6000000000000001; kroki: 4
wynik: -1.52835; alfa: 0.65; kroki: 5
wynik: -1.5143360000000001; alfa: 0.7000000000000001; kroki: 7
wynik: -1.47265625; alfa: 0.75; kroki: 8
wynik: -1.464728064; alfa: 0.8; kroki: 10
wynik: -1.4660888463575499; alfa: 0.8500000000000001; kroki: 14
wynik: -1.4495596841734504; alfa: 0.9; kroki: 20
wynik: -1.429035541433441; alfa: 0.9500000000000001; kroki: 38
```

Najlepsze rezultaty otrzymałem przy użyciu alfa=0.5, niezależnie od wybranego punktu startowego algorytm znajduje minimum tej funkcji w dwóch krokach (licząc punkt startowy x₀)

Dla większych wartości współczynnika uczenia (np. 0.7) krok jest zbyt duży, przez co pojawiają się oscylacje.

Dla mniejszych wartości alfa kroki są mniejsze, więc algorytm wolniej zbiega do minimum.

Algorytm znacznie trudniej sobie radzi z trudniejszymi funkcjami, gdzie jest wiele ekstremów. Gdy punkt startowy jest w okolicy maksimum lokalnego oraz alfa jest zbyt małe, algorytm nie znajduje minimum I "wpada" w bliskie temu punktowi maksimum lokalne, gdyż gradient jest zbyt mały; należy wtedy zwiększyć współczynnik uczenia alfa. Zbyt duży współczynnik powoduje rozbieżność algorytmu.

Wnioski:

Metoda gradientu prostego nie zawsze znajdzie minimum globalne funkcji, które mają więcej niż jedno ekstremum. Algorytm jest w stanie znaleźć tylko jedno z nich, zależnie od kombinacji punktu początkowego i współczynnika uczenia. Gdy krok jest zbyt duży, algorytm przeskoczy najbliższe minimum, a gdy jest zbyt mały może dłużej do niego zbiegać. Algorytm może również niepożądanie "utknąć" w maksimum, gdyż gradient tam jest równy 0.