武汉大学 2016-2017 学年第一学期期末考试 概率统计 D (A 卷答题卡)

*						考	4	<u>ڊ</u>	芝	号			
姓名 —	学院									Ť			T
		[6]	[0]	EOI	503	500	[0]	100	103	[0]		203	1
·····		1.0	2.3	1.0	1.7	Cit	ξ 5	513	613	EC	5.5	12.0	
注意事项	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	010	[2]	523	523	[2]	[23	[2]		1	1
	考号信息点。	[3]	133	[33	033	530	[3]	[33	533	E30	133	133	- 1
	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	043	[4]	[4]	[43	[4]	[43	[4]	[4]	[4]	[42	243	Į.
	作解答题:字体工整、笔迹清楚。	050	[5]	[5]	I60	[4]	053	050	553	[5]	[5]	[5]	[
	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	£6J	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[/
	写的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	673	[7]	[7]	[7]	[7]	[7]	573	[73	[7]	[
	4.保持卷面清洁,不要折叠、不要弄破。	[8]	[8]	E80	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[:
1		[9]	[9]	[9]	[9]	[9]	£93	[9]	[9]	[9]	[9]	[9]	[
<u> </u>		[9]	[9]	693	[9]	[9]	£93	[9]	[9]	[9]	[9]	[5	}]

 $P(A) = 0.5, P(B) = 0.4, C = \overline{A} \cup B$ 求 (1) $P(\overline{C})$;

(2) $P(C|(A \cup B))$.

二、(12 分) 某人出游,他坐火车、汽车、飞机的概率分别为0.4,0.2,0.4,而对应迟到的概率分别为 $\frac{1}{4},\frac{1}{3}$ 求: (1)他迟到的概率; (2)如果他迟到了,他是坐汽车来的概率?

三、 $(12 \, \oplus)$ 若随机变量 X 在区间 (0,2) 服从均匀分布;(1) 求方程 $y^2 + 2y + X = 0$ 有实根的概率。(2) 若对随机变量 X 进行 4 次独立观察,记 Y 为上方程有解的次数,求 Y 的数学期望和方差。

四、(16 分) 若随机变量
$$(X,Y)$$
 的联合概率密度为 $f(x,y) = \begin{cases} \frac{2}{\pi}e^{-\frac{1}{2}(x^2+y^2)} & x>0,y>0\\ \pi &$ 其它

的求随机变量X和Y的边沿概率密度 $f_x(x); f_y(y);$ (2)X和Y是否独立 ? (3)求 $Z = X^2 + Y^2$ 的概率密度。

五、(12分)某生产线加工产品的合格率为0.8、已知:合格每件可获利80元,不合格每件亏损20元。

(1) 为保证每天的平均利润不低于 6000 元,问他们至少要加工多少件产品? $_{\rm L}$ (2) 为保证每天的利润不6000 元的概率大于 0.977 ,问他们至少要加工多少件产品?(已知 $\Phi(2.0)=0.977$)

六、(12分)某商店经销某商品,已知销售量在(0,100)上服从均匀分布,若每销售一单位获利500元 果需求量大于进货量,可以从其他部门调剂,此时每单位获利300元;如果有积压,则每单位亏损20问:进货量为多少时,平均获利最大?最大为多少? 七、(12分)若一批种子的发芽率为0.8,分别用切比雪夫不等式和中心极限定理估计这样的种子10000 粒发芽数在7800——8200 之间的概率。(标准正态分布的分布函数用 $\Phi(x)$ 表示)

八、(12分)若 X_1, X_2, \cdots, X_n 相互独立服从同一正态分布 $N(\mu, \sigma^2)$,