

sandipan_dey 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

★ Course / Week 9: Vector Spaces / 9.3 Review of Sets

()

Next >

9.3.3 Operations with Sets

 \square Bookmark this page

Previous

■ Calculator

Week 9 due Dec 9, 2023 18:12 IST Completed

9.3.3 Operations with Sets

Note

In at least one place $S \setminus T$ should be $T \setminus S$ (the complement of S relative to T).

Video

then it's all the elements that are in both that are denoted by S intersection

T. And in our example, we see that the elements 2, 3 are in both sets,

and therefore, the intersection of S and T is given by the elements 2 and 3.

Now we get to the complement of two sets.

And here, what they're saying is, look, we have a set T and a set S.

And what we want is we want all of the elements that are in T but not in S.

It's denoted by this backslash.

And sometimes-- let's see, this is wrong.

This should be S bar.

It's like that.

X

▶ 2.0x

CC

66

And that's done if it's understood what set T we're talking about.

And sometimes, we'll talk about S complement like that.

Video

♣ Download video file

1:58 / 3:22

Transcripts

- ▲ Download SubRip (.srt) file
- ▲ Download Text (.txt) file

Reading Assignment

0 points possible (ungraded)

Read Unit 9.3.3 of the notes. [LINK to Week9.pdf]

Done/Skip

Submit

✓ Correct

Discussion

Topic: Week 9 / 9.3.3

Hide Discussion

Homework 9.3.3.1

10.0/10.0 points (graded)

Let S and T be two sets. Then $S \subset S \cup T$.

When proving that one set is a subset of another set, you start by saying "Let $x \in S$ " by which you mean "Let x be an arbitrary element in S". You then proceed to show that this arbitrary element is also an element of the other set.

Let $x \in S$. We will prove that $x \in S \cup T$.

$$egin{array}{ll} x \in S \ \Rightarrow & < P \Rightarrow P \lor R > \ x \in S \lor x \in T \ \Rightarrow & < x \in S \cup T \Leftrightarrow x \in S \lor x \in T > \ x \in S \cup T \end{array}$$

Hence $S \subset S \cup T$.

Submit

Answers are displayed within the problem

Homework 9.3.3.2

1/1 point (graded)

Let S and T be two sets. Then $S\cap T\subset S$.

Always

✓ Answer: Always

Let $x \in S \cap T$. We will prove that $x \in S$.

$$egin{array}{ll} x \in S \cap T \ \Rightarrow & < x \in S \cap T \Leftrightarrow x \in S \wedge x \in T > \ x \in S \wedge x \in T \ \Rightarrow & < P \wedge R \Rightarrow P > \ x \in S \end{array}$$

Hence $S \cap T \subset S$.

Submit

Answers are displayed within the problem

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>