

思考:

• 什么样的热量才会引起室温升高?

在某一时刻由外界进入空调房间和在空调房间内部所产生的热量的总和。

※ 2.冷负荷 (Cooling Load) №

为了维持室内温度值恒定,在某一时刻需要供给房间的冷量。

※ 5.冷负荷计算方法

注意:

由于地球白天吸收太阳辐射热,晚上逐渐向大气层释放热量,形成室外气温昼夜呈周期性波动。

—按**不稳定**传热过程计算

初步设计或规划设计时初选设备

空调系统的供冷量。

供热量

用电量

用水量

设备用房面积

(1)围护结构

 $Q_W = K F \cdot \Delta t$

(2)人员:116.3W/人

总负荷:×1.5的新风负荷系数 🛭

即: $Q = (Q_W + 116.3n) \times 1.5$ A

**

2.冷负荷设计指标

	建筑类型	冷负荷指标
	及房间名称	(W/m²)
	客房(标准层)	80 ~ 110
	酒吧、咖啡厅	100 ~ 180
	西餐厅	160 ~ 200
	中餐厅、宴会厅	180 ~ 350
旅馆、	商店、小卖部	100 ~ 160
一派店、 餐饮、	中庭、接待室	90 ~ 120
娱乐类	小会议室(少量吸烟)	200 ~ 300
沃尔天	大会议室 (无吸烟)	180 ~ 280
	理发、美容	120 ~ 180
	健身房、保龄球馆	100 ~ 200
	室内游泳池	200 ~ 350
	办公	90 ~ 120

	建筑类型 及房间名称	冷负荷指标 (W/m²)
医院	高级病房 一般手术室 洁净手术室 X光、CT、B超诊断	80 ~ 110 100 ~ 150 300 ~ 500 120 ~ 150
影剧院	观众席 休息厅(允许吸烟) 化妆室	180 ~ 350 300 ~ 400 90 ~ 120
商场、	百货大楼、营业厅	150 ~ 250

	建筑类型	冷负荷指标
	及房间名称	(W /m²)
体育馆	比赛厅 观众休息厅(允许吸烟) 贵宾室	120 ~ 150 300 ~ 400 100 ~ 120
	展览厅、陈列室	130 ~ 200
	会堂、报告厅	150 ~ 200
	图书阅览室	75 ~ 100
	科研、办公	90 ~ 140
	公寓、住宅	80 ~ 90
	餐馆、饭店	200 ~ 350

**

2.面积指标法

例:某客房面积50m²,估算冷负荷为多少?

	建筑类型 及房间名称	冷负荷指标 (W/m²)
	又仍凹口心	(****)
	客房(标准层)	80 ~ 110
	酒吧、咖啡厅	100 ~ 180
	西餐厅	160 ~ 200
	中餐厅、宴会厅	180 ~ 350
旅馆、	商店、小卖部	100 ~ 160
容饮 .	中庭、接待室	90 ~ 120
娱乐类	小会议室(少量吸烟)	200 ~ 300
沐大小大	大会议室(无吸烟)	180 ~ 280
	理发、美容	120 ~ 180
	健身房、保龄球馆	100 ~ 200
	室内游泳池	200 ~ 350
	办公	90 ~ 120

则估算冷负荷为:50×100=5000W

1 上述指标为总建筑面积的冷负荷指标,建筑物的总建筑面积小于5000m²时,取上限值,大于10000m²时,取下限值。

2 按上述指标确定的冷负荷即是制冷机容量, 不必再加系数。

3 由于地区差异较大,上述指标供参考,设计时应以本地区主管部门和设计部门推荐指标为准。

**

人体散湿量

一舒适性空调一般只考虑人体散湿

 $W=\varphi n\cdot \omega$

kg/s

式中:

例:Д

n——人数

某多功能厅

φ ——群集系数

群集系数可参考阅览室:0.96

某些场所的群集系数

典型场所	群集系数	典型场所	群集系数
影剧院	0.89	体育馆	0.92
图书馆、阅览室	0.96	商场	0.89
旅馆、餐馆	0.93	纺织厂	0.90

人体散湿量

 $W=\phi n\cdot \omega$ kg/s

式中:

n——人数

φ ——群集系数

w——成年男子的散湿量, g/h

例:Д

某多功能厅 夏季室内温度26℃

成年男子散湿量:68g/h

一名	成年	男子	F的	散热	量和	散湿	

			台 风平男	广的取然	14 11 /亚	L			
类 别				室内	温度	(℃)			
失 別	20	21	22	23	24	25	26	27	28
		Ř	争坐: 影剧	院、会堂、	阅览室等				
显热 q1 (W)	84	81	78	75	70	67	62	58	53
潜热 q2 (W)	25	27	30	34	38	41	46	50	55
散湿 g (g/h)	38	40	45	50	56	61	68	75	82
	极轻活动:	办公室、	旅馆、体育	「馆、小型	元器件及商	品的制造、	装配等		
显热 q1 (W)	90	85	79	74	70	66	61	57	52
潜热 q2 (W)	46	51	56	60	64	68	73	77	82
散湿 g (g/h)	69	76	83	89	96	102	109	115	123
	轻度	能活动:商	场、实验室	3、计算机)	房、工厂轻	台面工作等	¥		
显热 q1 (W)	93	87	81	75	69	64	58	51	45
潜热 q2 (W)	90	94	101	106	112	117	123	130	136
散湿 g (g/h)	134	140	150	158	167	175	184	194	203
		中等活动	:纺织车间	引、印刷车[间、机加工	车间等			
显热 q1 (W)	118	112	104	96	88	83	74	68	61
潜热 q2 (W)	117	123	131	139	147	152	161	168	174
散湿 g (g/h)	175	184	196	207	219	227	240	250	260
	重月	度活动: 熵	钢车间、包	寿造车间 、	排练厅、室	内运动场等	争		
显热 q1 (W)	168	162	157	151	145	139	134	128	122
潜热 q2 (W)	239	245	250	256	262	268	273	279	285
散湿 g (g/h)	356	365	373	382	391	400	408	417	425

某多功能厅:100人

则房间湿负荷:

 $W = \varphi n \cdot \omega$

 $=0.96 \times 100 \times 68$

=6528 g/h

由于冬季空气加热、加湿所需要的费用远小于夏季空气冷却、减湿所需费用,而且冬季室内外温差较大,所以可以不考虑室外气温的波动,按**稳定**传热进行计算。

热负荷 $Q_w = K F \cdot (t_n - t_w')$

室外温度采用空调冬季室外计算温度

承德冬季供暖室外计算温度为-13.3℃,冬季空调室外计算温度为-15.7℃。

小结

了解:

空调冷负荷需按不稳定传热进行

逐时计算;

掌握:

冷负荷的两种估算方法;

湿负荷和空调热负荷的计算方法。