

Department of Computer Science CSCI 2824: Discrete Structures Chris Ketelsen

Propositional Logic (Lecture 1)

Conjunctions and Disjunctions

- The rules of logic give precise meaning to mathematical statements.
- These rules are then used to distinguish between valid and invalid mathematical arguments

Def: The basic building block of logic is the **proposition**. A proposition is a declarative sentence that is either true or false, but not both

Example: The following are propositions

- 1. Boulder is a city in Colorado
- 2. Boulder is the capital of Colorado

$$3.2 + 2 = 5$$

$$4.2 + 2 = 4$$

Def: The **truth value** of a proposition is **true**, denoted T, if it is a true proposition, and the truth value of a proposition is **false**, denoted by F, if it is a false proposition

Def: The basic building block of logic is the **proposition**. A proposition is a declarative sentence that is either true or false, but not both

Example: The following are not propositions

- 1. Study hard.
- 2. When is the homework due?

$$3. x + 1 = 8$$

4.
$$x + y = z$$

Often times we replace propositions with symbols, usually p, q, r, s

Example: Let

- p represent Boulder is a city in Colorado
- q represent 2 + 2 = 5

Then p has truth value T

And q has truth value F

Negation

Once we have simple propositions like p and q we want to modify them and combine them in fancy ways

Def: Let p be a proposition. The **negation** of p, denoted $\neg p$, is the statement "It is not the case that p". The truth value of $\neg p$ is the opposite of the truth value of p

Example: Let *p* denote the proposition "*Denver is at least 5000 ft above sea level*"

The negation of p is the proposition "It is not the case that Denver is at least 5000 ft above sea level"

Negation

When modifying or combining propositions, it's often convenient to tabulate all of the possible truth values that could occur. This is done in a **truth table**.

Given simple propositions like p and q, the truth table allows us to enumerate all possible truth values of combinations of p and q

The truth table for the negation operation is

p	$\neg p$
T	$oldsymbol{F}$
$\boldsymbol{\mathit{F}}$	T

Logical Connectives

Now we'll start combining propositions. Two propositions can be combined using logical operators called **connectives**. Some examples of connectives are

- conjunction "and" denoted ∧
- disjunction "or" denoted ∨
- conditional "if then" denoted →
- biconditional "if and only if" denoted ↔

Logical Connectives

Now we'll start combining propositions. Two propositions can be combined using logical operators called **connectives**. Some examples of connectives are

- conjunction "and" denoted ∧
- disjunction "or" denoted ∨
- conditional "if then" denoted →
- biconditional "if and only if" denoted ↔

- Today: conjunction and disjunction
- Next Time: conditionals and biconditionals

Conjunction

Def: Let p and q be propositions. The **conjunction** of p and q, denoted by $p \land q$, is the proposition "p and q". The conjunction $p \land q$ is true when both p and q are true and false otherwise

Example:

"Today for lunch I had a cheeseburger and I had a soda"

Conjunction

Def: Let p and q be propositions. The **conjunction** of p and q, denoted by $p \land q$, is the proposition "p and q". The conjunction $p \land q$ is true when both p and q are true and false otherwise

Example:

- "Today for lunch I had a cheeseburger and I had a soda"
- "Chris is fine but his neighbor Tony has the flu"

Conjunction

To write down the truth table for **conjunction** we need to list all possible combinations of truth values for the propositions being connected. Since we have two variables now, we need more rows in our truth table

p	q	$p \wedge q$
\boldsymbol{T}	T	
\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	
\boldsymbol{F}	T	
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	

Def: Let p and q be propositions. The **disjunction** of p and q, denoted by $p \lor q$, is the proposition "p or q". The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Note: This is an *inclusive or*, i.e. it's fine if both p and q are true.

Example:

 "Students who have taken Linear Algebra or Prob-Stats can take Machine Learning"

The truth table for disjunction looks as follows

p	q	$p \lor q$
T	T	
\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	
\boldsymbol{F}	T	
\boldsymbol{F}	\boldsymbol{F}	

In the previous example, the inclusive or made perfect sense.

Example: But what about this?

"The burger comes with either fries or a salad"

In the previous example, the inclusive or made perfect sense.

Example: But what about this?

"The burger comes with either fries or a salad"

If you think this is the same as the previous example, try getting fries and a salad (with no upcharge) next time you're at a restaurant.

This is an example of the exclusive or

Example: But what about this?

"The burger comes with either fries or a salad"

This is an example of the exclusive or

Def: Let p and q be propositions. The **exclusive or** of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

The truth table for exclusive or looks as follows

p	q	$p \oplus q$
T	T	
T	$\boldsymbol{\mathit{F}}$	
\boldsymbol{F}	T	
\boldsymbol{F}	\boldsymbol{F}	

Conjunction - Disjunction Summary

p	q	$p \wedge q$	$p \lor q$	$p \oplus q$
T	T	T	T	$oldsymbol{F}$
T	\boldsymbol{F}	\boldsymbol{F}	T	T
\boldsymbol{F}	T	\boldsymbol{F}	T	T
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}

Truth Tables of Compound Propositions

Often times we want to evaluate the possible truth values of more complicated compound propositions

Example: Determine the truth values of $\neg(p \lor q) \land q$

Strategy: Determine truth values of constituent propositions first

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg (p \lor q) \land q$
T	T			
T	$\boldsymbol{\mathit{F}}$			
\boldsymbol{F}	T			
\boldsymbol{F}	$\boldsymbol{\mathit{F}}$			

On the island there are two types of inhabitants: **Knights**, who always tell the truth, and **Knaves**, who always lie.

Example: You encounter two people, who we'll call A and B. A tells you that "B is a Knight" and B tells you that "The two of us are of opposite types"? What type of people are A and B?

We will solve this with a truth table

Let's consider all possible combinations of the types of people A and B could be, and see what that means for the truth value of their statements

Example: You encounter two people, who we'll call A and B. A tells you that "B is a Knight" and B tells you that "The two of us are of opposite types"? What type of people are A and B?

A is Knight	B is Knight	A's statement	B's statement
\boldsymbol{T}	\boldsymbol{T}		
T	$oldsymbol{F}$		
\boldsymbol{F}	T		
\boldsymbol{F}	$oldsymbol{F}$		

Translate Statements into Symbols:

- Let p be the proposition "A is a Knight"
- Let q be the proposition "B is a Knight"

Example: You encounter two people, who we'll call A and B. A tells you that "B is a Knight" and B tells you that "The two of us are of opposite types"? What type of people are A and B?

p (A is Knight)	q (B is Knight)	A's statement	B's statement
T	\boldsymbol{T}		
T	$oldsymbol{F}$		
\boldsymbol{F}	\boldsymbol{T}		
\boldsymbol{F}	\boldsymbol{F}		

Translate Statements into Symbols:

- Then A's statement can by translated as:
- And B's statement can by translated as:

Example: You encounter two people, who we'll call A and B. A tells you that "B is a Knight" and B tells you that "The two of us are of opposite types"? What type of people are A and B?

p (A is Knight)	q (B is Knight)	q (A says)	$p \oplus q (B \text{ says})$
\boldsymbol{T}	\boldsymbol{T}		
\boldsymbol{T}	$oldsymbol{F}$		
\boldsymbol{F}	T		
\boldsymbol{F}	$oldsymbol{F}$		

p (A is Knight)	q (B is Knight)	q (A says)	$p \oplus q (B \text{ says})$
\boldsymbol{T}	T	T	$oldsymbol{F}$
\boldsymbol{T}	$oldsymbol{F}$	$oldsymbol{F}$	T
\boldsymbol{F}	T	T	T
\boldsymbol{F}	$oldsymbol{F}$	\boldsymbol{F}	$oldsymbol{F}$

Question: Is there a row (or rows) where A and B's type both make sense with the truth value of their statements?

p (A is Knight)	q (B is Knight)	q (A says)	$p \oplus q (B \text{ says})$
\boldsymbol{T}	T	T	$oldsymbol{F}$
\boldsymbol{T}	$oldsymbol{F}$	$oldsymbol{F}$	T
\boldsymbol{F}	T	T	T
\boldsymbol{F}	$oldsymbol{F}$	\boldsymbol{F}	$oldsymbol{F}$

Conclusion: A and B are both Knaves (corresponding to Row 4)

Example: On the island you encounter two people, A and B. A tells you "I am a Knave or B is a Knight". B says nothing. Use a truth table to determine what type of people A and B are.

Example: On the island you encounter two people, A and B. A tells you "I am a Knave or B is a Knight". B says nothing. Use a truth table to determine what type of people A and B are.

p	q	$\neg p$	$\neg p \lor q \ (A \text{ says})$
T	T		
T	$\boldsymbol{\mathit{F}}$		
\boldsymbol{F}	T		
\boldsymbol{F}	\boldsymbol{F}		

Example: On the island you encounter two people, A and B. A tells you "I am a Knave or B is a Knight". B says nothing. Use a truth table to determine what type of people A and B are.

p	q	$\neg p$	$\neg p \lor q \ (A \text{ says})$
T	T	$oldsymbol{F}$	\mathbf{T}
T	\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	T	T	\boldsymbol{T}
\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	T	\boldsymbol{T}

Only row 1 is consistent with A's nature and the truth value of his statement. So we **conclude** that A and B are **both** Knights.