授课教师:王新茂 整理:张永畅

线性代数 A2 期中考试

2020年11月25日9:45—11:45, 地点5302

	姓名	学号	得分
--	----	----	----

说明: 第 1 题 10 分, 第 2 \sim 7 题各 15 分, 共 100 分.

1. 求
$$\begin{pmatrix} x & x^2 & x^3 \\ x^2 & x^4 & x^6 \\ x^3 & x^6 & x^9 \end{pmatrix} \in \mathbb{R}[x]^{3 \times 3}$$
 的模相抵标准形.

- 2. 设复方阵 A 满足 $d_A(x) = \varphi_A(x) = (x x^3)^6$. 求 $B = A^4$ 的特征多项式、最小多项式和初等因子组.
- 3. 设 $P = J_n(1)$ 是 n 阶 Jordan 块. 求复线性空间 $\mathbb{C}^{n \times n}$ 上的线性变换 $\mathcal{A}(X) = P^{-1}XP$ 的所有特征值及其对应的特征子空间.
- 4. 设 n 阶复方阵 A 的每行、每列都恰有一个非零元素.证明:存在可逆复方阵 P,使得 $P^{-1}AP$ 是对角阵.
- 5. 证明或否定:对于任意可逆实方阵 A,存在实方阵 B,使得 $A = B^3$.
- 6. 设 $\mathcal{D}: f(x) \mapsto f'(x)$ 是实线性空间 $V = \mathbb{R}[x]$ 上的微分变换,U 是 \mathcal{D} -不变子空间. 证明: 若 $U \neq V$,则存在 $\alpha \in V$ 使得 $U = \{f(\mathcal{D})\alpha \mid f \in V\}$.
- 7. 设 V 是数域 \mathbb{F} 上的线性空间,A 是 V 上的线性变换, $f,g \in \mathbb{F}[x]$ 互素. 证明:

$$\operatorname{Ker} f(\mathcal{A})g(\mathcal{A}) = \operatorname{Ker} f(\mathcal{A}) \oplus \operatorname{Ker} g(\mathcal{A}).$$

参考答案

- 1. 由初等模变换或者 $D_1 = x$, $D_2 = x^4(x-1)$, $D_3 = x^{10}(x-1)^3(x+1)$, 可得模相 抵标准形为 $\operatorname{diag}(x, x^3(x-1), x^6(x-1)^2(x+1))$.
- 2. A 的 Jordan 标准形为 diag $(J_6(1), J_6(-1), J_6(0))$, A^4 的 Jordan 标准形为 diag $(J_6(1), J_6(1), J_2(0), J_2(0), 0, 0)$,初等因子组 $\{(x-1)^6, (x-1)^6, x^2, x^2, x, x\}$, $\varphi_B = x^6(x-1)^{12}$, $d_B = x^2(x-1)^6$.
- 3. $\mathcal{A}(X) = \lambda X \ (X \neq O) \Rightarrow XP = \lambda PX \Rightarrow (\lambda P I)X = X(P I) \Rightarrow (\lambda P I)^n X = X(P I)^n = O \Rightarrow \lambda = 1 \Rightarrow$ 特征值空间 = $\{f(P) \mid f \in \mathbb{C}[x]\}$.
- 4. A 可置换相似成 $\operatorname{diag}(A_1, \cdots, A_k)$ 形式,每个 A_i 形如 $\begin{pmatrix} a_1 & & & \\ & & \ddots & \\ & & & a_{p-1} \end{pmatrix}$, a_p

 $a_1, \dots, a_p \neq 0$,其它元素都是 0. $A_i^p = (a_1 \dots a_p)I \Rightarrow d_{A_i}$ 无重根 $\Rightarrow A_i$ 可相似成对角阵. 故 A 可相似成对角阵.

5. 结论正确. 不妨设 $d_A = \varphi_A = p^n$, 其中 $p \in \mathbb{R}[x]$ 不可约.

情形 1: p(x) = x - a. $A = J_n(a)$ 实相似. 设 $C = J_n(\sqrt[3]{a})$, 则 $C^3 = A$ 实相似, 故存在实方阵 B 使得 $B^3 = A$.

情形 2: $p(x) = (x - w)(x - \bar{w}), w \notin \mathbb{R}.$ A 与 diag $(J_n(w), J_n(\bar{w}))$ 复相似. 设实方阵

$$C = \begin{pmatrix} C_1 & E & & \\ & C_1 & \ddots & \\ & & \ddots & E \\ & & & C_1 \end{pmatrix}, \ \mbox{\sharp $\mbox{$\downarrow$}$ } E = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ C_1 = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \ \mbox{\sharp $\mbox{$\sharp$}$ } E \ (a+b\,{\rm i})^3 = w,$$

则 C 与 $\operatorname{diag}(J_n(a+bi),J_n(a-bi))$ 复相似, C^3 与 A 复相似,进而 C^3 与 A 实相似. 故存在实方阵 B 使得 $B^3=A$.

- 6. $\forall \alpha \in U$, $\operatorname{Span}(\alpha, \mathcal{D}\alpha, \dots, \mathcal{D}^k\alpha) = \mathbb{R}_{k+1}[x]$, 其中 $k = \deg \alpha$. 若 $\max_{\alpha \in U} \deg \alpha = \infty$, 则 U = V. 否则,设 $\alpha \in U$ 使得 $\deg \alpha$ 最大,则 $U = \{f(\mathcal{D})\alpha \mid f \in V\}$.
- 7. 根据 Bezout 定理,存在 $u, v \in \mathbb{F}[x]$,使得 $uf + vg = \gcd(f, g) = 1$.

易知 $\operatorname{Ker} f(A)$ 和 $\operatorname{Ker} g(A)$ 都是 $\operatorname{Ker} f(A)g(A)$ 的子空间.

对任意 $\alpha \in \operatorname{Ker} f(\mathcal{A})g(\mathcal{A})$,有 $\alpha = \alpha_1 + \alpha_2$,其中 $\alpha_1 = u(\mathcal{A})f(\mathcal{A})\alpha \in \operatorname{Ker} g(\mathcal{A})$, $\alpha_2 = v(\mathcal{A})g(\mathcal{A})\alpha \in \operatorname{Ker} f(\mathcal{A})$. 故 $\operatorname{Ker} f(\mathcal{A})g(\mathcal{A}) \subset \operatorname{Ker} f(\mathcal{A}) + \operatorname{Ker} g(\mathcal{A})$.

特别, 当 $\alpha \in \text{Ker } f(A) \cap \text{Ker } g(A)$ 时, 由 $\alpha_1 = \alpha_2 = 0$, 得 $\alpha = 0$.

综上, $V = \operatorname{Ker} f(A) \bigoplus \operatorname{Ker} g(A)$.