Půlsemestrálka z MAT - 2005

- 1 Buď ϕ formule v jazyce L teorie T(lineární uspořádání), která má tvar: $\forall x \forall y (x < y \rightarrow \exists z \ (x < z \land z < y))$
 - a) Napište negaci formule φ tak aby neobsahovala logickou spojku negaci (¬).

 - c) Převeďte formuli φ do prenexního tvaru.
- 2 Dokažte, že platí $\forall x \forall y \ f(x,y) \rightarrow \forall x \ f(x,x)$

Návod: Formuli $\forall x \forall y \ f(x,y)$ vezměte jako předpoklad a pak postupně použijte:

- Axiom substituce
- Pravidlou odlouční
- Axiom substituce
- Pravidlo odloučení
- Pravidlo zobecnění
- Věta o dedukci
- $3 \text{Bud'} \Omega = \{p,e\}$ kde p je lineární a e nulární operační symbol.

Položme $Q^* = Q - \{0\}$ (Q je množina č. všech racionálních čísel.)

Uvažujeme Ω – algebra Q^* kde $p_{O^*}(x,y) = x/y$ pro libovolné $x,y \in Q^*$ a $e_{O^*} = 1$.

- a) Rozhodněte, zda zobrazení $\phi: Q^* \to Q^*$ dané vztahem $\phi(x) = 1/x$ pro libovolné $x \in Q^*$ je homomorfismus
- b) Zjistěte, zda relace N definovaná na Q* předpisem $x \sim y <=> xy > 0$ je kongruence na Ω algebře Q*.
- c) Určete, zda Q* patří do variety V typu Ω určené teorií $T = \{p(x,y) = x, p(p(x,y),z) = p(x,p(y,z)\}$
- d) Určete (svými prvky) podalgebru <{2}> v Ω algebře.
- 4 Bud' G grupa s příslušnými operacemi ·,-1,e

Buď $H \subseteq G$ podmnožina, $H \neq \emptyset$. Dokažte, že platí: H je podgrupa grupy G, právě když pro každou dvojici prvků a,b \in H platí $ab^{-1} \in H$.