Versuch 1

Spannungs- und Strommessung, Spannungsteiler, Stromteiler und Ersatzspannungsquelle

Gruppe:	BTI2-GEP2/02	
Tisch:	2	
Versuchsdatum:	26102015_	
Teilnehmer:	Alexander Mendel	
	Karl-Fabian Witte	
	Christoph Haeberle	

Versuch 1 1/6

- 1. Spannungsmessung
- 1.1 Ausmessen einer unbekannten Spannungsquelle
- 1.1.1 Leerlaufspannung/Klemmenspannung

Gemessen wird die Klemmspannung an einer unbekannten Spannungsquelle.

Geräte: Tenma, Metra Hit 15s, Metra Hit 18s

FRAGE: Ist die Klemmspannung gleich der Leerlaufspannung? Die Klemmenspannung bezeichnet die Differenz aus U0 - I * Ri. Die Leerlaufspannung wird an einer unbelasteten Quelle gemessen.

Schaltplan:

Messwerte:

Messgerät:	METRAhit 15S	METRAhit 18S	<u>Tenma</u> 2,959 V	
Messung U0	2,969 V	2,9678 V		
Nom. Unsicherheit 0,25 % + 1D		0,05 % + 3D	0,3 % + 1D	

Bewertung:

Die nominale Messunsicherheit ist beim METRAhit 18S am geringsten und es löst höher auf. Für diese Messung ist es nicht relevant mit welchem Messgerät gemessen wurde.

1.1.2 Innenwiderstand

In diesem Versuch stellen wir den Innenwiderstand der unbekannten Spannungsquelle mit Hilfe der "Halbausschlag-Methode" fest. Dafür wird zuerst die Leerlaufspannung gemessen und dann die Widerstandsdekade als Last angeschlossen.

Die Widerstandsdekade wird dann möglichst genau ein, so dass die gemessene Spannung halb so groß ist, wie die gemessene Leerlaufspannung.

Geräte: unbekannte Spannungsquelle, Metra Hit 18s, Widerstandsdekade

Frage: Muss hierbei der Innenwiderstand des Spannungsmessers berücksichtigt werden?

Nein, der Innenwiderstand des Messgeräts ist sehr hoch und beeinflusst den Messwert nicht (11Megaohm >> 104,70hm).

Ist die Halbausschlagmethode immer anwendbar oder gibt es Einschränkungen? Nein, da es bei bestimmten Quellen wie ein Kurzschluss sein würde. Schaltplan:

Messwerte (mit Unsicherheiten):

Die Leerlaufspannung beträgt 2,9678V, für die Halbausschlag-Methode teilen wir diesen Wert durch zwei: 1,4839V.

Ab einem Widerstand von 104,7 Ohm entsprach die Spannung unserer gemessenen Spannung der Halbausschlag-Methode (1,4839V).

Bewertung:

1.2 Messung am Spannungsteiler

An einer Reihenschaltung von Widerständen wird die Spannung gemessen. Wir legen eine Spannung von 8,0V an und vergleichen die berechneten mit den gemessenen Werten.

 $Ger\"ate: Metra\ Hit\ 18s,\ Universal spannung squelle\ Rohde \& Schwarz\ Hameg\ HM7042-5,\ Spannung steiler\ X3$

Frage: Wodurch werden die Abweichungen verursacht? Überprüfen Sie ihre Theorie

Die Abweichungen werden durch die Ungenauigkeit der Versuchswiderstände verursacht.

Die Widerstände haben alle einen goldenen Ring, das entspricht einer 5%tigen Toleranz.

Schaltplan: Abb. 1

Messwerte/Berechnungen/Vorberechnungen:

	C1-C2	C2-C3	C3-C4	C4-C5	C5-C6
berechnet	0,8000 V	0,8000 V	1,6000 V	1,6000 V	03,200 V
nomin. Uns.	0,05%+3D	0,05%+3D	0,05%+3D	0,05%+3D	0,05%+3D
Uns. durch D	0.3mV	0.3mV	0.3mV	0.3mV	3mV
Uns. d. %vM	0.4mV	0.4mV	0.8mV	0.8mV	1.6mV
Gesamtuns.	0,0007 V	0,0007 V	0,0011 V	0,0011 V	~0,005 V
gemessen					
	C1-C3	C2-C4	C3-C5	C4-C6	
berechnet	1,6000 V	2,4000 V	03,200 V	04,800 V	
nomin. Uns.	0,05%+3D	0,05%+3D	0,05%+3D	0,05%+3D	
Uns. durch D	0.3mV	0.3mV	3mV	3mV	
Uns. d. %vM	0.8mV	1.2mV	1.6mV	2.9mV	
Gesamtuns.	0,0011 V	0,0015 V	~0,005 V	~0,006 V	
gemessen					
	C1-C4	C2-C5	C3-C6		
berechnet	03,200 V	04,000 V	06,400 V		
nomin. Uns.	0,05%+3D	0,05%+3D	0,05%+3D		
Uns. durch D	3mV	3mV	3mV		
Uns. d. %vM	1.6mV	2.0mV	3.2mV		
Gesamtuns.	~0,005 V	~0,005 V	~0,006 V		
gemessen					
	C1-C5	C2-C6			
berechnet	04,800 V	07,200 V			
nomin. Uns.	0,05%+3D	0,05%+3D			
Uns. durch D	3mV	3mV			
Uns. d. %vM	2.4mV	3.6mV			
Gesamtuns.	~0,005V	~0,007V			
gemessen					

Abb: 1

2. Strommessung

2.1 Strommessung an einem Verbraucher

An der Widerstandsdekade stellen wir 80.0 Ohm ein und an der Universalspannungsquelle 4,0 V. Gemessen wird der Belastungsstrom mit allen drei Multimetern mit der jeweiligen genauen Anzahl der signifikanten Ziffern und den Unsicherheiten. Gleichzeitig wird der Spannungsabfall über dem Strom-Multimeter gemessen, wobei auch auf die Unsicherheiten geachtet werden muss.

Geräte: Widerstandsdekade, Universalspannungsquelle Rohde&Schwarz Hameg HM7042-5, Tenma, Metra Hit 15s, Metra Hit 18s

Schaltplan:

Messwerte(mit Unsicherheiten):

Theoretischer Wert: 4V/80Ohm = 50mA

	METRAhit 18S	METRAhit 15S	<u>Tenma</u>	
Strom I	49,60 mA	41,2 mA	46,1 mA	
Spannungsabfall U (18s)	2	- 0,7127mV		
Spannungsabfall U (15s)	0,039mV	-	0,283V	
Spannungsabfall U (Tenma)	40,0mV	0,710mV	0,710mV -	
Nom, Unsicherheit (U)	0,05%+3D	0,05%+3D	1,2% +1D	

2.2 Messung an einem Stromteiler

An einer Parallelschaltung von Widerständen messen wir den Strom. Hier vergleichen wir wider die gemessenen mit den berechneten Werten.

Geräte: Metra Hit 18s, Stromteiler X4, Universalspannungsquelle Rohde&Schwarz Hameg HM7042-5

Frage: Versuchen sie die Abweichung zwischen Berechnung und Messung zu erklären?

Schaltplan:

Messwerte(mit Unsicherheiten)/Vorberechnungen:

	A1 – A2	C1 – C2	D1 – D2	E1 – E2	F1 – F2
berechneter Strom	10.000 mA	5,000 mA	2,5000mA	1,2500mA	1,2500mA
nominale Unsicherheit	0,001mA	0,001mA	0,0010mA	0,0010mA	0,0010mA
berechnete Unsicherheit	0,005mA	~0,003mA	~0,0013mA	~0,0006mA	~0,0006mA
gemessen	10,095 mA	5,055 mA	2,4730 mA	1,2441 mA	1,2424 mA

Versuchen Sie die Abweichungen zwischen Berechnung und Messung zu erklären?

Die Abweichungen werden durch die Ungenauigkeit der Versuchswiderstände und der nominalen Messunsicherheiten des Messgeräts verursacht.

Die Widerstände haben alle einen goldenen Ring, das entspricht einer 5%tigen Toleranz.

Versuch 1 6 / 6

- 3. Ersatzspannungsquelle eines lin. Netzwerk (U, R)
- 3.1 Bestimmung der Ersatzspannungsquellen-Parameter

Wir messen Strom und Spannung an einer Doppelspannungsquelle.

- a) Spannungsquelle 1 und 2 werden mit zwei Drahtbrücken verbunden. Gemessen wird U0 und Ri (Halbausschlagmethode)
- b) Spannungsquelle 1 und 2 werden durch eine Drahtbrücke ersetzt. Von U1 auf U2 auf Klemme B. Gemessen wird jetzt der direkte Innenwiderstand an der Schaltung.

hier evtl. noch ein bisschen was am Text machen

Geräte: Doppelspannungsquelle X5, Metra Hit 18s

Schaltplan:

 $U_1 = 4,5V$

 $U_2 = 3.0 V$

 $R_1=3,0k\Omega$

 $R_2=2,0k\Omega$

 $R_3=1,2k\Omega$

 $R_4=0,6k\Omega$

 $R_5=1,2k\Omega$

Messwerte/Vorberechnungen: Vorberechnung: siehe Anlagen

3.2 Vergleich eines lin. Netzwerks mit seiner Ersatzspannungsquelle Mit der Widerstandsdekade und der Universalspannungsquelle bauen wir das Netzwerk nach....

3.2 Vergleich eines lin. Netzwerks mit seiner Ersatzspannungsquelle

Bauen Sie eine Ersatzspannungsquelle mit den in 3.1 gefundenen Parametern auf, d.h.

- stellen Sie die gemessene Leerlaufspannung U₀ an der Universalspannungsquelle ein und
- den gemessenen Innenwiderstand R_i an der Widerstandsdekade.

Messen Sie jetzt

- am linearen Netzwerk und
- an der Ersatzspannungsquelle

den Strom durch drei unterschiedliche Belastungswiderstände von ca. 1k Ω , 1,8k Ω und 3,3k Ω . Stellen Sie eine Tabelle auf und vergleichen Sie die Ergebnisse.