Problem 24

Consider a real-valued random variable x.

Under hypothesis \mathcal{H}_0 , x is described by the pdf:

$$p(x|\mathcal{H}_0) = \begin{cases} 3(1-x)^2 & \text{for } 0 < x < 1 \\ 0 & \text{for } x < 0, x > 1 \end{cases}$$

While under hypothesis \mathcal{H}_1 , x is described by the pdf:

$$p(x|\mathcal{H}_1) = \begin{cases} 3x^2 & \text{for } 0 < x < 1 \\ 0 & \text{for } x < 0, x > 1 \end{cases}$$

The a priori probabilities of these two hypotheses are:

$$P(\mathcal{H}_0) = 0.8$$
 and $P(\mathcal{H}_1) = 0.2$

From a **single** observation x, we must (attempt to) **choose** the correct hypothesis (\mathcal{H}_0 or \mathcal{H}_1).

- 1. Determine the Likelihood Ratio Test (i.e., determine L(x) and γ) for both the Maximum Likelihood (ML) and MAP detection criteria.
- 2. Simplify the LRT, such that the decision rule can be expressed in terms of this decision statistic:

$$T_d(x) = x$$

For **this** decision statistic, determine the values of threshold \mathbf{Y}' for **both** the ML and MAP criteria.

3. Say that the **Neyman-Pearson** criterion is instead used, so that the probability of false alarm is

$$P_{FA} = 0.2$$

Determine the resulting probability of detection P_D

4. Plot the Receiver Operating Curve (ROC) for this detection problem (you may use Matlab to plot your expression).