

DD2434 Machine Learning, Advanced Course

Module 3: randomization techniques in machine learning

Aristides Gionis

argioni@kth.se

KTH Royal Institute of Technology

in previous lectures

- discussed common dimensionality-reduction methods, i.e., PCA, MDS, and Isomap
- methods rely on minimizing the reconstruction error
- ▶ a typical statement : find a mapping $f : \mathbb{R}^d \to \mathbb{R}^k$, with $k \ll d$ to minimize

$$E_f = \mathbb{E}[\|\mathbf{x} - \mathbf{y}\| - \|f(\mathbf{x}) - f(\mathbf{y})\|]$$

- ▶ so, reconstruction error guarantees distance preservation on expectation
- for a given pair of points (outliers) the error can be very large
- question : can we devise a mapping to preserve distances in the worst case?
- yes! the Johnson-Lindenstrauss lemma

overview of module 3

- essential probability tools for large-scale data analysis
- ▶ the Johnson-Lindenstrauss lemma
- data streams and computation of frequency moments

reading material

- your favorite book on probability, computing, and randomized algorithms
 - e.g., Motwani and Raghavan, Randomized algorithms (chapters 3 and 4)
- Dasgupta and Gupta. An Elementary Proof of a Theorem of Johnson and Lindenstrauss. 2002
- Achlioptas. Database-friendly Random Projections. 2003
- Alon, Matias, and Szegedy. The space complexity of approximating the frequency moments. 1999

essential probability tools

- union bound
- ▶ linearity of expectation
- concentration inequalities
 - Markov inequality, Chebyshev inequality, Chernoff bound

the union bound

▶ by the probability axioms we know that for any finite (or countably infinite) sequence of pairwise mutually disjoint events E_1, E_2, \ldots it is

$$\Pr\left[\bigcup_{i\geq 1}E_i\right] = \sum_{i\geq 1}\Pr[E_i]$$

▶ moreover, for any events $E_1, E_2, ..., E_n$

$$\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$$

6

how to apply the union bound

- consider a random process for which we can identify the possible "bad" events
- assume that "bad" event i happens with probability p_i
- union bound says that probability that any "bad" event happens is at most $\sum_i p_i$
- if we can show that $\sum_i p_i$ is (significantly) less than 1
- ▶ then, probability of success (no "bad" event) is at least $1 \sum_i p_i$

random variable

- ▶ a random variable X on a sample space Ω is a function $X : \Omega \to \mathbb{R}$
- ▶ a discrete random variable takes only a finite (or countably infinite) number of values

expectation and variance of a random variable

▶ the expectation of a discrete random variable X, denoted by $\mathbb{E}[X]$, is given by

$$\mathbb{E}[X] = \sum_{x} x \, \mathbb{P}[X = x] = \mu_X$$

where the summation is over all values in the range of X

variance

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[(X - \mu_X)^2] = \sigma_X^2$$

linearity of expectation

for any two random variables X and Y

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

for a constant c and a random variable X

$$\mathbb{E}[cX] = c\,\mathbb{E}[X]$$

linearity of expectations — application to coupon collector

- consider a collector of coupons (e.g., stamps, coins, football cards, etc.)
- ► assume *n* different coupon types
- ▶ in each trial, the collector picks a coupon type at random
- how many trials are needed, in expectation, until the collector gets all the coupon types?

analysis (1/2)

- ▶ let $c_1, c_2, ..., c_X$ the sequence of coupon types picked, $c_i \in \{1, ..., n\}$
- ▶ so, the random variable X denotes the total number of trials until all types are collected
- call c_i success if a new coupon type is picked
 - $-c_1$ and c_X are always successes
- divide the sequence in epochs:
 - the *i*-th epoch starts after the *i*-th success and ends with the (i + 1)-th success
 - thus, *i* ranges from 0 to n-1
- ▶ define X_i to be the length of the i-th epoch
- ightharpoonup clearly $X = \sum_{i=0}^{n-1} X_i$

analysis (2/2)

probability of success in the *i*-th epoch

$$p_i = \frac{n-i}{n}$$

 \triangleright X_i is geometrically distributed with parameter p_i , and its expectation is

$$E[X_i] = \frac{1}{p_i} = \frac{n}{n-i}$$

from linearity of expectation

$$E[X] = E\left[\sum_{i=0}^{n-1} X_i\right] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=1}^{n} \frac{1}{i} = nH_n$$

where H_n is the harmonic number, asymptotically equal to $\ln n$

concentration inequalities

- also known as tail inequalities, or concentration bounds
- we want to bound the probability that a random variable deviates from its expectation
- many different bounds, depending on the kind of distribution we are interested in

Markov inequality

Theorem

let X a random variable taking non-negative values

for all t > 0

$$\Pr[X \ge t] \le \frac{E[X]}{t}$$

or equivalently

$$\Pr[X \ge k \, E[X]] \le \frac{1}{k}$$

- ▶ one of the simplest bounds, it makes no assumption other than non-negativity
- however, because of its generality, it is also a weak bound

Proof.

- ▶ by the definition of expectation $\mathbb{E}[f(X)] = \sum_{x} f(x) \mathbb{P}[X = x]$
- define f(x) = 1 if $x \ge t$ and 0 otherwise
- lacktriangle applying the first equation with this particular function f gives $\mathbb{E}[f(X)] = \mathbb{P}[X \geq t]$
- ▶ notice also that $f(x) \le x/t$, which implies

$$\mathbb{E}[f(X)] \leq \mathbb{E}\left[\frac{X}{t}\right]$$

putting everything together

$$\mathbb{P}[X \geq t] = \mathbb{E}[f(X)] \leq \mathbb{E}\left[\frac{X}{t}\right] = \frac{\mathbb{E}[X]}{t}$$

the last step is linearity of expectation

Chebyshev inequality

Theorem

let X a random variable with expectation μ_X and standard deviation σ_X

then for all t > 0

$$\Pr[|X - \mu_X| \ge t\sigma_X] \le \frac{1}{t^2}$$

Proof.

notice that

$$\mathbb{P}[|X - \mu_X| \ge t\sigma_X] = \mathbb{P}[(X - \mu_X)^2 \ge t^2\sigma_X^2]$$

- the random variable $Y = (X \mu_X)^2$ has expectation σ_X^2
- ▶ apply the Markov inequality on Y

Chernoff bounds

Theorem

let
$$X_1, \ldots, X_n$$
 independent Poisson trials, i.e., $\mathbb{P}[X_i = 1] = p_i$ and $\mathbb{P}[X_i = 0] = 1 - p_i$ define $X = \sum_i X_i$, so $\mu = \mathbb{E}[X] = \sum_i \mathbb{E}[X_i] = \sum_i p_i$ for any $\delta > 0$

$$\mathbb{P}[X > (1+\delta)\mu] \le e^{-\frac{\delta^2\mu}{3}}$$

and

$$\mathbb{P}[X < (1-\delta)\mu] \le e^{-\frac{\delta^2 \mu}{2}}$$

a simple example of using the Chernoff bound

- ▶ consider *n* coin flips; define $X_i = 1$ if *i*-th coin flip is H and 0 if T
- ▶ the total number of H's is $X = \sum_i X_i$, and expectation is $\mu = E[X] = n/2$
- ightharpoonup pick $\delta=rac{2c\sqrt{n}}{n}$, so $(1-\delta)\mu=(1-rac{2c\sqrt{n}}{n})rac{n}{2}=rac{n}{2}-c\sqrt{n}$
- ▶ for that δ the r.h.s. of the Chernoff bound will be $e^{-\frac{\delta^2 \mu}{2}} = e^{-\frac{4c^2 \cdot n \cdot n}{n^2 \cdot 2 \cdot 2}} = e^{-c^2}$ which drops very fast with c
- ▶ the Chernoff bound gives

$$\mathbb{P}\left[X<\frac{n}{2}-c\sqrt{n}\right]=\mathbb{P}[X<(1-\delta)\mu]\leq e^{-\frac{\delta^2\mu}{2}}=e^{-c^2}$$

and similarly $\mathbb{P}[X>\frac{n}{2}+c\sqrt{n}]\leq e^{-\frac{\delta^2\mu}{3}}=e^{-2c^2/3}$

▶ so, probability that number of H's is outside the range $\left[\frac{n}{2} - c\sqrt{n}, \frac{n}{2} + c\sqrt{n}\right]$ is very small

final notes

- there is a extensive amount of work dedicated to concentration inequalities
 - distribution of the random variable
 - additive vs. multiplicative deviations
 - independent vs. dependent settings
- ▶ useful in randomized algorithms, large-scale data analysis, machine learning theory

what we want to achieve in a nutshell

▶ given a set of n points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ in \mathbb{R}^d we want to construct a mapping $f : \mathbb{R}^d \to \mathbb{R}^k$, with $k \ll d$, so that

$$\|\mathbf{x}_i - \mathbf{x}_j\| \approx \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|, \text{ for all } \mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$$

- ▶ the emphasis here is on the "for all"
 - notice that methods like PCA preserve distances "on expectation"
- ▶ it is also important that we aim for $k \ll d$
 - the result implies that we can embed a set of points in a much lower dimensional space without loosing much information
- ▶ the mapping f will be linear, and will be constructed using random projections
- ▶ this result has many applications in machine learning and theoretical computer science

the Johnson-Lindenstrauss lemma, precise formulation

Theorem (Johnson-Lindenstrauss, 1984)

for any $0 < \epsilon < 1$ and any integer n, let

$$k \ge \frac{4\ln(n)}{\epsilon^2/2 - \epsilon^3/3}$$

then for any set of points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ in \mathbb{R}^d there exists a mapping $f : \mathbb{R}^d \to \mathbb{R}^k$, such that for all $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$:

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

some observations about the Johnson-Lindenstrauss lemma

- result is about existence of a mapping
 - however, such a mapping can be constructed very easily
- $ightharpoonup \epsilon$ is a parameter that controls the quality of distance preservation
- dimensionality k of lower-dimensional space grows with $\mathcal{O}(\epsilon^{-2})$
 - this is intuitive, as smaller distortion requires larger dimension of the host space
- \triangleright dimensionality k of lower-dimensional space grows with $\ln(n)$ (number of points)
- ▶ d can be as large as n (but not larger, as n points lie always on a (n-1)-dimensional hyperplane)
- ▶ thus, the reduction in dimension can be exponentially large (from n to $\mathcal{O}(\ln(n))$)
 - this can be very useful for algorithms that are exponential in d
 - after a random projection such algorithms become polynomial in d
- \triangleright on the other hand, the lemma is useful only if the dimension d is large enough
 - in particular, it should be $d = \omega(\ln(n))$

random projections

1-dimensional space

- ightharpoonup let z be a random vector drawn from the uniform distribution on the unit sphere in \mathbb{R}^d
- ▶ the function $\pi_z : \mathbb{R}^d \to \mathbb{R}$ with $\pi_z(x) = \langle z, x \rangle = z^T x$, for $x \in \mathbb{R}^d$ is a random projection of x on the 1-dimensional space

k-dimensional space

- ▶ let $\mathbf{z}_1, \dots, \mathbf{z}_k$ be k random vectors drawn from the uniform distribution on the unit sphere in \mathbb{R}^d
- ▶ let \mathcal{Z} be the subspace spanned by $\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$, and let \mathbf{Z} be a $k \times d$ matrix whose rows are the vectors $\mathbf{z}_1, \dots, \mathbf{z}_k$
- ▶ the function $\pi_{\mathcal{Z}} : \mathbb{R}^d \to \mathbb{R}^k$ with $\pi_{\mathcal{Z}}(\mathbf{x}) = (\langle \mathbf{z}_1, \mathbf{x} \rangle, \dots, \langle \mathbf{z}_k, \mathbf{x} \rangle) = \mathbf{Z} \mathbf{x}$, for $\mathbf{x} \in \mathbb{R}^d$ is a random projection of \mathbf{x} on the k-dimensional space

expected length of random projections

Proposition (1-dimensional random projection)

let x be a fixed vector in \mathbb{R}^d with ||x|| = 1; let $\pi_z(x)$ be its projection on a random vector z sampled from the uniform distribution on the unit sphere in \mathbb{R}^d ; then

$$\mathbb{E}_{\mathbf{z}}\big[|\pi_{\mathbf{z}}(\mathbf{x})|^2\big] = 1/d$$

• (random projection shrinks vector lengths by $\sqrt{1/d}$)

Proof.

- **b** by a symmetry argument we can assume that $\mathbf{x} = \mathbf{e}_1 = (1, 0, \dots, 0)$
- then

$$\mathbb{E}_{\mathbf{z}}\big[|\pi_{\mathbf{z}}(\mathbf{x})|^2\big] = \mathbb{E}_{\mathbf{z}}\big[|\pi_{\mathbf{z}}(\mathbf{e}_1)|^2\big] = \mathbb{E}_{\mathbf{z}}\big[|\langle \mathbf{z}, \mathbf{e}_1 \rangle|^2\big] = \mathbb{E}_{\mathbf{z}}\big[|z_1|^2\big]$$

the random vector z has unit length

$$1 = \|\mathbf{z}\|^2 = \mathbb{E}_{\mathbf{z}}[\|\mathbf{z}\|^2] = \mathbb{E}_{\mathbf{z}}\left[\sum_{i} |z_i|^2\right] = \sum_{i} \mathbb{E}_{\mathbf{z}}[|z_i|^2]$$

by symmetry again

$$\mathbb{E}_{\mathbf{z}}[|z_i|^2] = 1/d$$
 for all $i = 1, \dots, d$

▶ we can conclude

$$\mathbb{E}_{\mathbf{z}}[|\pi_{\mathbf{z}}(\mathbf{x})|^2] = \mathbb{E}_{\mathbf{z}}[|z_1|^2] = 1/d$$

expected length of random projections

Proposition (k-dimensional random projection)

let \mathbf{x} be a fixed vector in \mathbb{R}^d with $\|\mathbf{x}\| = 1$; let $\pi_{\mathcal{Z}}(\mathbf{x})$ be its projection on a k-dimensional random space \mathcal{Z} ; then

$$\mathbb{E}_{\mathcal{Z}}\big[\|\pi_{\mathcal{Z}}(\mathbf{x})\|^2\big] = k/d$$

• (random projection on k-dimensional space shrinks vector lengths by $\sqrt{k/d}$)

Proof.

- ▶ consider the rotation \mathbf{R} that maps \mathcal{Z} to the k-dimensional space \mathcal{E}_k spanned by the k basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$, that is, $\mathcal{E}_k = \mathbf{R}\mathcal{Z}$; also define $\mathbf{y} = \mathbf{R}\mathbf{x}$
- since a rotation does not change the vector norms we have

$$\mathbb{E}_{\mathcal{Z}}\big[\|\pi_{\mathcal{Z}}(\mathbf{x})\|^2\big] = \mathbb{E}_{\mathsf{R}\mathcal{Z}}\big[\|\pi_{\mathsf{R}\mathcal{Z}}(\mathsf{R}\mathbf{x})\|^2\big] = \mathbb{E}_{\mathsf{R}\mathcal{Z}}\big[\|\pi_{\mathcal{E}_k}(\mathbf{y})\|^2\big]$$

- length of a fixed unit vector projected on a random subspace =
 - = length of a random unit vector projected on a fixed subspace
- therefore, we have

$$\mathbb{E}_{\mathsf{R}\mathcal{Z}}\big[\|\pi_{\mathcal{E}_k}(\mathbf{y})\|^2\big] = \mathbb{E}_{\mathbf{y}}\big[\|\pi_{\mathcal{E}_k}(\mathbf{y})\|^2\big] = \mathbb{E}_{\mathbf{y}}\left[\sum_{i=1}^k |\langle \mathbf{e}_i, \mathbf{y} \rangle|^2\right] = \sum_{i=1}^k \mathbb{E}_{\mathbf{y}}\big[|y_i|^2\big] = k/d$$

L

so far

- we have shown that the expected length of a unit vector on a random k-dimensional subspace is $\sqrt{k/d}$
- we also want to show that the distribution is sharply concentrated around its mean

concentration properties of random projections

Proposition

let $L = \|\pi_{\mathcal{Z}}(\mathbf{x})\|^2$, be the squared length of a random projection of unit vector \mathbf{x}

then
$$\mathbb{E}[L] = k/d$$
, and

for $\beta > 1$

$$\mathbb{P}\bigg[L \ge \beta \frac{k}{d}\bigg] \le \exp\bigg(\frac{k}{2}(1 - \beta + \ln \beta)\bigg)$$

for $\beta < 1$

$$\mathbb{P}\bigg[L \le \beta \frac{k}{d}\bigg] \le \exp\bigg(\frac{k}{2}(1 - \beta + \ln \beta)\bigg)$$

• (the probability that $\|\pi_{\mathcal{Z}}(\mathbf{x})\|^2$ deviates by more than a factor β from its expectation is exponentially small)

implication of concentration inequalities

Proposition

let
$$0 < \epsilon < 1$$
 and $k \ge 4(\epsilon^2/2 - \epsilon^3/3)^{-1} \ln(n)$

let **x** be any vector, and
$$L = \|\pi_{\mathcal{Z}}(\mathbf{x})\|^2$$

define
$$\mu = k/d||\mathbf{x}||^2$$
, so $\mathbb{E}[L] = \mu$

then

$$\mathbb{P}[L \ge (1+\epsilon)\mu] \le \frac{1}{n^2}$$
 and $\mathbb{P}[L \le (1-\epsilon)\mu] \le \frac{1}{n^2}$

Proof.

b by the concentration inequality claimed before, with $\beta=1+\epsilon>1$

$$\mathbb{P}[L \ge (1+\epsilon)\mu] \le \exp\left(\frac{k}{2}(1-(1+\epsilon)+\ln(1+\epsilon))\right)$$

$$\le \exp\left(\frac{k}{2}\left(-\epsilon+\left(\epsilon-\epsilon^2/2+\epsilon^3/3\right)\right)\right) = \exp\left(-\frac{k(\epsilon^2/2-\epsilon^3/3)}{2}\right)$$

$$\le \exp(-2\ln n) = \frac{1}{n^2}$$

where the second inequality follows by $\ln(1+x) \le x - x^2/2 + x^3/3$, which holds for all $x \ge 0$ and the last inequality holds by our choice of $k \ge 4(\epsilon^2/2 - \epsilon^3/3)^{-1} \ln(n)$

▶ the case of $\mathbb{P}[L \leq (1-\epsilon)\mu] \leq \frac{1}{n^2}$ can be shown in a similar manner

2

- consider mapping $f: \mathbb{R}^d \to \mathbb{R}^k$ so that $f(\mathbf{x}) = \sqrt{d/k} \, \pi_{\mathcal{Z}}(\mathbf{x})$
- ▶ fix two vectors \mathbf{x}_i and \mathbf{x}_j in the set $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- \triangleright consider the difference of \mathbf{x}_i and \mathbf{x}_i as a new vector $\mathbf{y} = \mathbf{x}_i \mathbf{x}_i$
- ▶ note that $||f(\mathbf{x}_i) f(\mathbf{x}_i)|| = ||f(\mathbf{x}_i \mathbf{x}_i)|| = ||f(\mathbf{y})||$
- ▶ the expected length of f(y) is simply $\mathbb{E}[\|f(y)\|^2] = \|y\|^2$ and by the previous proposition

$$\mathbb{P}\big[\|f(\mathbf{y})\|^2 \leq (1-\epsilon)\|\mathbf{y}\|^2\big] \leq \frac{1}{n^2} \quad \text{ and } \quad \mathbb{P}\big[\|f(\mathbf{y})\|^2 \geq (1+\epsilon)\|\mathbf{y}\|^2\big] \leq \frac{1}{n^2}$$

SO

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2$$
 (JL)

does not hold with probability at most $2/n^2$ (union bound)

- \triangleright consider now all $\binom{n}{2}$ pairs of points in \mathcal{X}
- ▶ (JL) does not hold for at least one pair with probability at most (union bound, again)

$$\frac{(n-1)\,n}{2} \cdot \frac{2}{n^2} = 1 - \frac{1}{n}$$

- ▶ it follows that (JL) holds for all pairs with probability at least $\frac{1}{n}$
- robability of existence of a mapping f that satisfies (JL) for all pairs is at least $\frac{1}{n}$
- non zero probability implies that such a mapping exists
 - (an instance of the probabilistic method)

how can we find such a random projection?

- we know that a "good" random projection exists with probability at least 1/n
- we can easily sample a random projection and check if it satisfies the desired property
 - if not, we discard it and repeat
- we will need $\mathcal{O}(n)$ trials to find one with the desired property
- checking one trial requires time $\mathcal{O}(n^2d)$
- so, we have a randomized algorithm
- ▶ total running time $\mathcal{O}(n^3d)$, on expectation
 - quite expensive, but at least polynomial

how to construct a random projection?

- ightharpoonup we need to sample random vectors from the uniform distribution on the unit sphere in \mathbb{R}^d
- how to sample one such a vector?

answer:

- 1. sample each coordinate independently from the normal distribution $\mathcal{N}(0,1)$
- 2. normalize the vector to unit norm

how to construct a random projection?

- ▶ an alternative elegant construction was given by Achlioptas (2003) :
- reate a $k \times d$ matrix **Z**, where each entry z_{ij} is sampled independently as follows

$$z_{ij} = \begin{cases} 1 & \text{with probability } 1/6 \\ 0 & \text{with probability } 4/6 \\ -1 & \text{with probability } 1/6 \end{cases}$$

▶ the matrix **Z** is used to define the random projection $f(\mathbf{x}) = \sqrt{3/k} \mathbf{Z} \mathbf{x}$

simplified version of Johnson-Lindenstrauss lemma

Theorem (Achlioptas, 2003)

for $\epsilon, \beta > 0$, and integer n, take

$$k \ge \frac{4 + 2\beta}{\epsilon^2/2 - \epsilon^3/3} \ln(n)$$

for any set of points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ in \mathbb{R}^d construct the mapping f as shown in the previous slide;

then

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

holds for all pairs $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$, with probability at least $1 - \frac{1}{n^{\beta}}$

simplified version of Johnson-Lindenstrauss lemma

- notes on the JL version by Achlioptas
 - spherical symmetry is not essential; concentration is more crucial
 - construction succeeds with high probability; one sampled matrix is sufficient (whp)
 - matrix Z is sparse, matrix-vector multiplication very easy; "database friendly"

embeddings in algorithmic design and machine learning

- the Johnson-Lindenstrauss lemma can be used to speed up many algorithms, simply by reducing the dimensionality of the data
- the topic of embedding is very broad and has many different "flavors"
 - high to low dimensional spaces
 - general metrics to vector spaces
 - graphs to trees
 - graphs to vector spaces

embeddings in algorithmic design and machine learning

- ▶ *k*-means clustering of *d*-dimensional points :
 - there exist a random projection of the data to dimension $\mathcal{O}(k/\epsilon^2)$ that preserves the k-means clustering solution to factor $2 + \epsilon$
- column subset selection problem
 - select k columns of a matrix that give the best rank-k approximation of the matrix
 - random projections can be used to give a good approximation to this problem
- streaming computation
 - compute a "sketch" over a data stream to estimate useful properties of the stream
 - many streaming algorithms rely on random projections

data streams

- a data stream is a massive sequence of data
 - too large to store (on disk, memory, cache, etc.)
- examples:
 - social media (e.g., twitter feed, foursquare checkins)
 - sensor networks (weather, radars, cameras, etc.)
 - network traffic (trajectories, source/destination pairs)
 - satellite data feed
- how to deal with such data? what are the issues?

issues when working with data streams

space

- data size is very large
- often not possible to store the whole dataset
- inspect each data item, make some computations, not possible to store it, never get to inspect it again
- some times data is stored, but making one single pass takes a lot of time, especially when the data is stored on disk
- other times, we can afford a small number of passes over the data

► time

- data "flies by" at a high speed
- computation time per data item needs to be small

data streams

- data items can be of complex types
 - documents, images, geo-located time-series . . .
- ▶ to study basic algorithmic ideas we abstract away application-specific details
- consider the data stream as a sequence of numbers

data-stream model

for simplicity assume that the input is a stream of numbers

data-stream model

stream: m elements from universe of size n, e.g.,

$$\langle x_1, x_2, \dots, x_m \rangle = 6, 1, 7, 4, 9, 1, 5, 1, 5, \dots$$

- goal: compute a function over the elements of the stream, e.g., median, number of distinct elements, quantiles, etc.
- constraints:
 - 1. limited working memory, sublinear in n and m, e.g., $\mathcal{O}(\log n + \log m)$,
 - 2. access data sequentially
 - 4. limited number of passes, in some cases only one pass
 - 4. process each element quickly, e.g., $\mathcal{O}(1)$, $\mathcal{O}(\log n)$, etc.

warm up: computing some simple functions

- ▶ assume that a number can be stored in $O(\log n)$ space
- ▶ min and max can be computed with $O(\log n)$ space
- ▶ sum and mean need $\mathcal{O}(\log n + \log m)$ space

$$\mu_X = \mathbb{E}[X] = \mathbb{E}[x_1, \dots, x_m] = \frac{1}{m} \sum_{i=1}^m x_i$$

variance

$$Var[X] = Var[x_1, ..., x_m] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_X)^2$$

can be computed in a single pass?

how to tackle massive data streams?

- a general and powerful technique: sampling
- ▶ idea:
 - 1. keep a random sample of the data stream
 - 2. perform the computation on the sample
 - 3. extrapolate
- example: compute the median of a data stream
 - the median of the sample is a good estimate of the median on the whole stream

how to tackle massive data streams?

- a general and powerful technique: sampling
- ▶ idea:
 - 1. keep a random sample of the data stream
 - 2. perform the computation on the sample
 - 3. extrapolate
- example: compute the median of a data stream
 - the median of the sample is a good estimate of the median on the whole stream
- but ... how to keep a random sample of a data stream?

reservoir sampling

▶ problem : take a uniform sample s from a stream of unknown length while keeping in memory a single number

reservoir sampling

- ▶ problem : take a uniform sample s from a stream of unknown length while keeping in memory a single number
- ► algorithm :
 - 1. initially $s \leftarrow x_1$
 - 2. on seeing the *t*-th element, $s \leftarrow x_t$ with probability 1/t

reservoir sampling

- problem: take a uniform sample s from a stream of unknown length while keeping in memory a single number
- ► algorithm :
 - 1. initially $s \leftarrow x_1$
 - 2. on seeing the *t*-th element, $s \leftarrow x_t$ with probability 1/t
- ► analysis:
 - what is the probability that $s = x_i$ at some time $t \ge i$?

$$\mathbb{P}[s = x_i] = \frac{1}{i} \left(1 - \frac{1}{i+1} \right) \dots \left(1 - \frac{1}{t-1} \right) \left(1 - \frac{1}{t} \right)$$
$$= \frac{1}{i} \frac{i}{i+1} \dots \frac{t-2}{t-1} \frac{t-1}{t} = \frac{1}{t}$$

- reservoir sampling algorithm uses $O(\log n)$ bits of memory
- \triangleright can easily be extended to taking k samples with $\mathcal{O}(k \log n)$ bits of memory

how to tackle massive data streams?

- another powerful technique: sketching
- ► idea:
 - apply a random projection that maps high-dimensional data to a small "sketch"
 - post-process sketch to estimate quantities of interest

▶ $X = (x_1, x_2, ..., x_m)$ a sequence of elements each element x_j has a "key" in the set $N = \{1, ..., n\}$ $m_i = |\{j : x_j = i\}|$ the number of occurrences of key i

- ▶ $X = (x_1, x_2, ..., x_m)$ a sequence of elements each element x_j has a "key" in the set $N = \{1, ..., n\}$ $m_i = |\{j : x_j = i\}|$ the number of occurrences of key i
- ▶ define the *k*-th frequency moment

$$F_k = \sum_{i=1}^n m_i^k$$

- ▶ $X = (x_1, x_2, ..., x_m)$ a sequence of elements each element x_j has a "key" in the set $N = \{1, ..., n\}$ $m_i = |\{j : x_j = i\}|$ the number of occurrences of key i
- ▶ define the *k*-th frequency moment

$$F_k = \sum_{i=1}^n m_i^k$$

- $-F_0$ is the number of distinct elements
- $-F_1$ is the length of the sequence
- $-F_2$ is the second moment: index of homogeneity, size of self-join, other applications
- $-F_{\infty}^{*}$ frequency of most frequent element

- we can compute all frequency moments using $O(n \log m)$ memory bits in a straightforward manner
- can be done more efficiently?
- problem studied by Alon, Matias, and Szegedy in their seminal paper
- \blacktriangleright the idea is to create a sketch that requires small space and provides an estimate of F_k
- sketch can be considered a random projection on the streaming setting

estimating F_2

recall our problem setting :

```
X=(x_1,x_2,\ldots,x_m) a sequence of elements each element x_j has a "key" in the set N=\{1,\ldots,n\} m_i=|\{j:x_j=i\}| the number of occurrences of key i F_k=\sum_{i=1}^n m_i^k
```

estimating F_2

recall our problem setting :

```
X=(x_1,x_2,\ldots,x_m) a sequence of elements each element x_j has a "key" in the set N=\{1,\ldots,n\} m_i=|\{j:x_j=i\}| the number of occurrences of key i F_k=\sum_{i=1}^n m_i^k
```

- the sketching algorithm :
 - hash each key $i \in \{1, \dots, n\}$ to a random $\epsilon_i \in \{-1, +1\}$
 - maintain sketch $Z = \sum_i \epsilon_i m_i$, need only $\mathcal{O}(\log n + \log m)$ space
 - take $X = Z^2$
 - return $Y = \frac{1}{k} \sum_{j=1}^{k} X_j$, i.e., the average of k such estimates X_1, \ldots, X_k , where $k = \frac{16}{\lambda^2}$, and where λ controls the accuracy of the estimate

expectation of the estimate is correct

$$\mathbb{E}[X] = \mathbb{E}[Z^2]$$

$$= \mathbb{E}\left[\left(\sum_{i=1}^n \epsilon_i m_i\right)^2\right]$$

$$= \sum_{i=1}^n m_i^2 \mathbb{E}[\epsilon_i^2] + 2\sum_{i < j} m_i m_j \mathbb{E}[\epsilon_i] \mathbb{E}[\epsilon_j]$$

$$= \sum_{i=1}^n m_i^2 = F_2$$

accuracy of the estimate

easy to show

$$\mathbb{E}[X^2] = \sum_{i=1}^n m_i^4 + 6 \sum_{i < j} m_i^2 m_j^2$$

accuracy of the estimate

easy to show

$$\mathbb{E}[X^2] = \sum_{i=1}^{n} m_i^4 + 6 \sum_{i < j} m_i^2 m_j^2$$

which gives

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 4 \sum_{i < i} m_i^2 m_j^2 \le 2F_2^2$$

accuracy of the estimate

easy to show

$$\mathbb{E}[X^2] = \sum_{i=1}^{n} m_i^4 + 6 \sum_{i < j} m_i^2 m_j^2$$

which gives

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 4\sum_{i < j} m_i^2 m_j^2 \le 2F_2^2$$

and by Chebyshev's inequality

$$\Pr[|Y - F_2| \ge \lambda F_2] \le \frac{\text{Var}[Y]}{\lambda^2 F_2^2} = \frac{\text{Var}[X]/k}{\lambda^2 F_2^2} \le \frac{2F_2^2/k}{\lambda^2 F_2^2} = \frac{2}{k\lambda^2} = \frac{1}{8}$$

estimation of F_2

Theorem (Alon, Matias, Szegedy, 1999)

let X_1, \ldots, X_k be AMS sketches, with $k = \frac{16}{\lambda^2}$, and Y be their average $Y = \frac{1}{k} \sum_{j=1}^k X_j$ then, Y is an unbiased estimator of F_2 , and the quality of the approximation is given by

$$\Pr[|Y - F_2| \ge \lambda F_2] \le \frac{1}{8}$$

summary and discussion

- random projections have many applications, also in streaming computation
- streaming is a widely-researched topic; it has been studied in the context of
 - estimating number of distinct items in data streams
 - estimating frequencies and finding most frequent items
 - matrix approximations and PCA
 - graph mining