Detecting Majorana Fermions through Persistent Currents in Normal-Superconducting Rings

Philippe Jacquod

Outline

- Symmetries (i) conservation laws (ii) degeneracies
 - (iii) universality classes

Symmetry classes and classification of topological states

- -topological insulators and superconductors
- -Z and Z2 topological invariants

Majoranas: Why? How?

Detecting Majoranas with persistent currents

Final remarks: reciprocity, symmetry of the free energy and Friedel sum rule

Continuous symmetries and conservation laws

Noether's theorem

"If a system has a continuous symmetry, then there are corresponding quantities whose values are conserved in time."

"To every differentiable symmetry generated by local actions corresponds a conserved current."

Ex.: spatial translational symmetry -> momentum conservation rotational symmetry -> angular momentum conservation time translational symmetry -> energy conservation

• • • •

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0 \qquad \longrightarrow \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{dp_i}{dt} = 0$$

Continuous symmetries and conservation laws

Noether's theorem

"If a system has a continuous symmetry, then there are corresponding quantities whose values are conserved in time."

"To every differentiable symmetry generated by local actions corresponds a conserved current."

Ex.: spatial translational symmetry -> momentum conservation
 rotational symmetry -> angular momentum conservation
 time translational symmetry -> energy conservation

• • • •

In quantum mechanics : symmetries as unitary operators -> U+HU=H Ex.: spatial translational symmetry -> U = exp[-i P x] rotational symmetry -> U = exp[-i J ϕ]

• • • •

Discrete symmetries and degeneracies

C: charge conjugation, $q \rightarrow -q$

 $P: parity, (x,y,z) \rightarrow -(x,y,z)$

T: time reversal, t -> -t

PH: Particle <-> Hole symmetry (with SC)

SLS: Chiral / sublattice symmetry (Dirac, graphene...)

Ex.: time-reversal symmetry -> twofold "Kramers" degeneracy

- (i) no spin: invert momentum -> complex conjugation, T = -i K, $T^2 = 1$
- (ii) spin 1/2: invert momentum and spin -> $T = -i O^{Y} K$, $T^{2} = -1$

!! T and PH are antiunitary operators :

- •T[a $|\phi_1\rangle$ + b $|\phi_2\rangle$]= a* $|T\phi_1\rangle$ + b* $|T\phi_2\rangle$
- $|\langle T\varphi_2 | T\varphi_1 \rangle| = |\langle \varphi_2 | \varphi_1 \rangle|$

Random Matrix Theory: (i) Wigner

Problem: excitation spectrum of heavy nuclei many-body problem; do not know Hamiltonian

Solution: write Hamiltonian as random matrix

Example : $\langle H_{ij} \rangle = 0$, $P(H) = \exp\{-\beta \ Tr[H^2]\}$ ~ Gaussian ensembles ask that the ensemble is stationary under unitary

transformation $H \rightarrow H' = U^{\dagger} H U$

Random Matrix Theory: (ii) Dyson's 3-fold way

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 6 NOVEMBER-DECEMBER 1962

The Threefold Way.

Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FREEMAN J. DYSON

"The irreducible representations of a group by unitary matrices fall into three classes (...) real, complex and pseudoreal (quaternionic)."

-> three ensembles that are stationary under $H \rightarrow H' = U^{\dagger} H U$

$$P(H) = \exp\{-\beta \operatorname{Tr}[H^2]\}$$

 $\beta=1$: orthogonal ensemble of real symmetric H

 β =2: unitary ensemble of complex hermitian H

 β =4: symplectic ensemble of real quaternionic H

Random Matrix Theory: (ii) Dyson 3-fold way

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 6 NOVEMBER-DECEMBER 1962

The Threefold Way.

Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FREEMAN J. DYSON

- •Extend the theory to unitary matrices S
- Three ensembles defined by invariance under

$$S \rightarrow U^T S U$$

 $\beta=1$: Circular orthogonal ensemble

$$S \rightarrow USV$$

 β =2: Circular unitary ensemble

$$S \rightarrow W^R S W$$

 β =4: Circular symplectic ensemble

U, V are arbitrary unitary matrices, W is a real quaternionic unitary matrix (symplectic), $W^R = \sigma^y W^T \sigma^y$ is the dual of W

Random Matrix Theory: (iii) Chiral symmetry

Chiral symmetric Hamiltonian operator

$$H = \begin{pmatrix} 0 & h \\ h^{\dagger} & 0 \end{pmatrix} \qquad H = -\sigma^z H \sigma^z$$

J Verbaarschot

-> three new ensemble of RMT (also vs. TRS/SRS or $T^2=-1,0,1$)

Examples:

QCD Dirac operator

Lattice models with sublattice symmetry, e.g. graphene

Random Matrix Theory: (iv) Particle-hole symmetry

- Quantum coherent metal (N) in contact with a superconductor (S)
- Andreev reflection of electron into hole
- Fermi energy of S sets E=0 -> breaking of energy translational symmetry
- -> Four new ensembles of Bogoliubov-de Gennes H

$$H = \begin{pmatrix} h - \mu_{\rm sc} & \Delta \\ \Delta^* & \mu_{\rm sc} - \sigma^y h^* \sigma^y \end{pmatrix}$$

defined by presence/absence of TRS and/or SRS

•Particle (E>0) - hole (E<0) symmetry

$$H = -PHP^{-1} \qquad P = -i\sigma^y \tau^y K$$
 spin space Nambu space

M Zirnbauer

A Altland

Symmetry classes - the 10-fold way

"Dyson's 3-fold way + particle-hole symmetry"

Time-reversal symmetry
Particle-hole symmetry

Antiunitary symmetries P^2 , $T^2 = -1.0.1$

3x3=9 and two possibilities for P=T=0 -> 10-fold way

Symmetry class		TRS	PHS	SLS	
Wigner-Dyson	A (unitary)	0	0	0	
	AI (orthog.)	+1	0	0	
	AII (sympl.)	-1	0	0	
Chiral	AIII (unitary)	0	0	1	
	BDI (orthog.)	+1	+1	1	
	CII (sympl.)	-1	-1	1	
Altland-Zirnbauer	D	0	+1	0	
	C	0	-1	0	
	DIII	-1	+1	1	
	CI	+1	-1	1	

Topological phase of matter: the integer quantum hall effect

Chiral edge states and the IQHE (Halperin '82, Büttiker '88)

~2D electrons in magnetic field + confining potential

- ·Landau levels "move up" at edge
- Number of edge states fixed by chemical potential
- Not sensitive to perturbation
- Velocity of edge states v_y~d_xV
 - -> states are chiral (broken TRS)

Topological phase of matter: the integer quantum hall effect

Chiral edge states and the IQHE

(Halperin '82, Büttiker '88)

Edge states do not backscatter!

(where can they go?)

- -> perfect transmission
- -> Hall conductance quantized as $G=n 2e^2/h$
- -> n=0,1,2,3,...: Z-topological insulator topological # = # of edge states = # of occupied LL in bulk

"Topological protection from gap between LL's"

Topological insulators

Topological insulator: definition

"Material that is insulating in the bulk but carries metallic (i.e. extended) states at its boundary"

Band theory predicts
a gap at the Fermi energy
-> bulk band insulator

Yet, the bulk carries a topological quantum number n

Connecting the bulk to the outside (with n=0) generates gapless edge states

F Bloch

Topological superconductors

Topological superconductor: definition

"Material that is superconducting in the bulk - with a quasiparticle excitation gap - but with zero-energy gapless surface states."

Those surface states are Majorana fermions

E Majorana

Classification of nontrivial topological states vs. symmetries

PHYSICAL REVIEW B 78, 195125 (2008)

Classification of topological insulators and superconductors in three spatial dimensions

Andreas P. Schnyder, 1 Shinsei Ryu, 1 Akira Furusaki, 2 and Andreas W. W. Ludwig³

		TRS	PHS	SLS	d=1	d=2	d=3
Standard	A (unitary)	0	0	0	_	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	_	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	_	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	_
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-
	C	0	-1	0	-	${\bf Z}$	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	-	i okskovalnokakovine -	Z

Answer given by homotopy group of band structure as map from the Brillouin Zone to Hamiltonian space

Kitaev's chain: 1D p-wave superconductor

(special case μ =0 and Δ =t)

Kithaev's chain: 1D p-wave superconductor

Kithaev's chain: 1D p-wave superconductor

Absence of $\tilde{c}_M = (\gamma_{N,2} + i\gamma_{1,1})/2$!!! -> zero-energy state ("two half-fermions")

Majorana platforms: how to generate a 1D p-wave superconductor

- •Fu and Kane: Interface between SC and TI
- Lutchyn, Sau, Sarma; Oreg, Refael, von Oppen:
 Proximity-coupled nanowire with spin-orbit

$$H = (p_y^2/2m - \mu)\tau_z + up_y\sigma_z\tau_z + B_z\sigma_x + \Delta\tau_x$$

Signatures of Majorana fermions

•Fu and Kane; Lutchyn, Sau, Sarma: "Period-doubling of the Josephson effect"

- ·Law, Lee, Ng; Flensberg; Sau, Tewari, Lutchyn, Stanescu, Sarma:
- "T=1 resonance peak in tunneling conductance"

Signatures of Majorana fermions?

Mourik et al. (Kouwenhoven)Zero-bias anomaly

Signatures of Majorana fermions?

- Mourik et al. (Kouwenhoven)
- Deng et al. (Xu Beijing)
- Das et al. (Heiblum)
- •Finck et al. (van Harlingen)
- Churchill et al. (Marcus)

Zero-bias anomaly

·Rokhinson et al.

Josephson effect (?)

General idea:

- -ring pierced by B-flux
- -low enough T
- -QM: p -> p-eA

-> ground-state current with period h/p e (p integer)

Lévy et al.

General idea:

- -ring pierce by B-flux
- -low enough T
- -QM: p -> p-eA

-> ground-state current with period h/p q (p integer; q charge of the transferred particle)

Büttiker and Klapwijk: ring with superconducting segment

 $L \gg \xi$: h/pq=h/2e, h/4e..

 $L < \xi : h/pq=h/e, h/2e ...$

General idea:

-> ground-state current with period h/p q
(p integer; q charge of the transferred particle)

Can one detect the presence of Majorana bound states via the periodicity of persistent currents?

The setup:

Normal metallic ring interrupted by a Coulomb blockaded

superconducting segment

- -> fix parity on the SC:
- •n, n+2, n+4... electrons in the trivial phase
- •n, n+1, n+2, n+3... electrons in the topological phase

Electron Teleportation via Majorana Bound States in a Mesoscopic Superconductor

Liang Fu

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 23 October 2009; published 2 February 2010)

Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor–quantum-spin-Hall-insulator–magnetic-insulator hybrid system.

I.e. Green's function

sign change with n->n+1

$$G^{e,o}(x, t \to \infty; y, 0) = \mp i \xi_2^*(y) \xi_1(x) \sim O(1)$$

"long-range coherence"

- -> tunneling of single electron
- -> needs fixed parity

Effective Hamiltonian

$$H = H_{\text{ring}} + \delta(f^{\dagger}f - 1/2) + (\lambda_1 c_{\text{L}}^{\dagger}f + \text{H.c.})$$
$$+ [-i\lambda_2(-1)^{f^{\dagger}f} c_{\text{R}}^{\dagger}f \exp(i\varphi) + \text{H.c.}].$$

C: fermions on the ring f: fermion on the topological SC

 λ : hopping on SC from left/right

 δ : energy difference between N and N+1 states (tunable)

$$\phi = \hbar \varphi / e$$

Additional projection onto |# e in ring, # e on SC> = |M,n> and |M-1,n+1>

$$H_{\text{red}} = \begin{pmatrix} \epsilon_M & \tilde{\lambda}_1 - i\tilde{\lambda}_2(-1)^{n_0}e^{i\varphi} \\ \tilde{\lambda}_1 + i\tilde{\lambda}_2(-1)^{n_0}e^{-i\varphi} & \delta \end{pmatrix}$$

$$I(\varphi) = -(e/\hbar)\partial_{\varphi}E_{-}$$

$$I(\varphi) = \frac{e}{\hbar} \frac{(-1)^{n_0} \tilde{\lambda}_1 \tilde{\lambda}_2 \cos \varphi}{\sqrt{(\epsilon_M - \delta)^2 / 4 + \tilde{\lambda}_1^2 + \tilde{\lambda}_2^2 + 2\tilde{\lambda}_1 \tilde{\lambda}_2 (-1)^{n_0} \sin \varphi}}$$

$$I(\varphi) = \frac{e}{\hbar} \frac{(-1)^{n_0} \tilde{\lambda}_1 \tilde{\lambda}_2 \cos \varphi}{\sqrt{(\epsilon_M - \delta)^2 / 4 + \tilde{\lambda}_1^2 + \tilde{\lambda}_2^2 + 2\tilde{\lambda}_1 \tilde{\lambda}_2 (-1)^{n_0} \sin \varphi}}$$

- (i) finite current at zero flux
- (ii) parity-dependence
- (iii) h/e harmonics despite SC

Free energy symmetry

Generally: $I(\phi) = -\partial_\phi \mathcal{F}$ with free energy even in B-field

How can one get finite I(0)?

Answer:
$$\mathcal{F}(\phi,B_{\rm Z})=\mathcal{F}(-\phi,-B_{\rm Z})$$
 i.e. F even in total field (flux + Zeeman)

Proof: take wire hamiltonian

$$H = (p_y^2/2m - \mu)\tau_z + up_y\sigma_z\tau_z + B_z\sigma_x + \Delta\tau_x$$

 $B_{\rm Z} \to -B_{\rm Z}$ is equivalent to space inversion in y-direction ~ interchanges Majorana operators ~ $\phi \to -\phi$

Onsager symmetry

Aharonov-Bohm conductance setup

Fixed BZ -> antisymmetric conductance

But NOT a violation of Onsager, i.e.

$$G(\phi, B_{\rm Z}) = G(-\phi, -B_{\rm Z})$$

Friedel sum rule

"Friedel sum rule": -connection between a scattering phase and
the number of occupied states in the scatterer
-for Coulomb blockade, this works for the
transmission phase

$$N_{dot} = \frac{1}{\pi} \theta_F(E_F)$$

i.e. additional phase of π when n->n+1

Friedel sum rule

"Friedel sum rule": -connection between a scattering phase and
the number of occupied states in the scatterer
-for Coulomb blockade, this works for the
transmission phase

$$N_{dot} = \frac{1}{\pi} \theta_F(E_F)$$

i.e. additional phase of π when n->n+1

-not observable for trivial superconductor

-observable for topological superconductor

$$G^{e,o}(x, t \to \infty; y, 0) = \mp i \xi_2^*(y) \xi_1(x) \sim O(1)$$

e.g.via Fisher-Lee connection $t_{ab} = -2 i (\Gamma_a \Gamma_b)^{1/2} G_{ab}$

In Memoriam Markus Büttiker (1950-2013)

