Дискретная математика и математическая логика

Конспект по 2 семестру специальностей «экономическая кибернетика» и «компьютерная безопасность»

(лектор В. И. Бенедиктович)

Оглавление

Глава 1

Булевы функции

Замкнутые классы булевых функций

Пусть $A \subseteq P$

• Замыканием A называется множество функций из P_2 , которые можно выразить в виде формул над A и обозначается [A].

Свойства замыкания:

- 1. $A \subseteq [A]$
- 2. $A \subseteq B \Rightarrow [A] \subseteq [B]$
- 3. [A] = [A]
- 4. $[A] \cup [B] \subseteq [A \cup B]$
- A полная система булевой функции, если $[A] = P_2$.
- ullet Система буевых функций A замкнутая, если [A]=A.

Пример. $A=\{1,x_1\oplus x_2\}$ не замкнута, так как $1\oplus 1=0\notin A$

Пусть A - замкнутый неполный класс системы булевых функций. Тогда если $A\subseteq B,$ то B - неполная система.

$$lacktriangledown B \subseteq A \Rightarrow [B] \subseteq [A] \neq P_2 \Rightarrow [B] \neq P_2 \Rightarrow B$$
 - неполная система.

Примеры замкнутых классов булевых функций

 \boxtimes

I) Класс
$$T_0 = \{f(x_1, \dots, x_n) | f(0, \dots, 0) = 0\}$$

Например:

$$0, \ x, \ x_1 \cdot x_2, \ x_1 \lor x_2, \ x_1 \oplus x_2 \in T_0$$

1,
$$\bar{x}$$
, $x_1 \Rightarrow x_2$, $x_1 | x_2$, $x_1 \downarrow x_2$, $x_1 \Leftrightarrow x_2 \notin T_0$

Мощность класса: $2^n - 1$ ненулевых строк $\Rightarrow |T_0| = 2^2 - 1 = \frac{1}{2}2^{2^n}$

Теорема. Класс T_0 замкнут.

igoplus Поскольку $x \in T_0$, то достаточно показать, что если $f_1, f_2, \ldots, f_n \in T_0$, то $f(f_1, \ldots, f_n) \in T_0$. Действительно, $f(f_1(0, \ldots, 0), \ldots, f_n(0, \ldots, 0)) = f(0, \ldots, 0) = 0$

II) Класс
$$T_1 = \{ f(x_1, \dots, x_n) \in P_2 | f(1, \dots, 1) = 1 \}$$

Например:

$$1, x, x_1 \cdot x_2, x_1 \lor x_2, x_1 \Rightarrow x_2, x_1 \Leftrightarrow x_2 \in T_1 0, \bar{x}, x_1 | x_2, x_1 \downarrow x_2, x_1 \oplus x_2 \notin T_1$$

Теорема. *Класс Класс* T_1 *замкнут.*

- ♦ Доказательство аналогично доказательству предыдущей теоремы
- III) Класс M монотонных функций.

Введём частичный булевый порядок на E_2^n : $\bar{\alpha}=(\alpha_1,\alpha_2,\dots,\alpha_n),\ \bar{\beta}=(\beta_1,\beta_2,\dots,\beta_n)\in E_2^n$

 \boxtimes

Говорят, что $\bar{\alpha} \leqslant \bar{\beta} \Leftrightarrow \alpha_i \leqslant \beta_i$ для $\forall i$

• Функция $f(x_1, \dots, x_n)$ называется **монотонной**, если $\forall \bar{\alpha}, \bar{\beta} : \bar{\alpha} \leqslant \bar{\beta} \Rightarrow f(\bar{\alpha}) \leqslant f(\bar{\beta})$ Множество всех монотонных функций обозначают M.

Например:

$$0, 1, x, x_1 \cdot x_2, x_1 \lor x_2 \in M$$

$$0, \bar{x}, x_1 \Rightarrow x_2 \notin M$$

Теорема. Kласс M замкнут.

$$igoplus$$
 Достаточно показать, что если $f_1, f_2, \ldots, f_m \in M$, то $f(f_1, \ldots, f_m) \in M = \Phi$ Пусть $\bar{\alpha} \leqslant \bar{\beta}$, тогда $f_1(\bar{\alpha}) \leqslant f_1(\bar{\beta}), \ldots, f_m(\bar{\alpha}) \leqslant f_m(\bar{\beta}) \Rightarrow (f_1(\bar{\alpha}), \ldots, f_m(\bar{\alpha})) \leqslant (f_1(\bar{\beta}), \ldots, f_m(\bar{\alpha})) \Rightarrow f(f_1(\bar{\alpha}), \ldots, f_m(\bar{\alpha})) \leqslant f(f_1(\bar{\beta}), \ldots, f_m(\bar{\alpha}))$, то есть $\Phi(\bar{\alpha}) \leqslant \Phi(\bar{\beta})$

Лемма. О немонотонной функции

Если $f(x_1,...,x_n)$ - немонотонная функция, то $\bar{x} \in [\{0,1,f\}]$

igoplus Пусть $f(x_1,\ldots,x_n)$ - немонотонная функция, то есть $\exists \bar{\alpha} < \bar{\beta} \Rightarrow f(\bar{\alpha}) = 1, f(\bar{\beta}) = 0 (1 > 0).$ $\bar{\alpha} < \bar{\beta}$ означает, что $\exists 1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant n$:

$$\gamma_0 = \bar{\alpha} = (\alpha_1, \dots, \alpha_{i_1-1}, 0, \alpha_{i_1+1}, \dots, \alpha_{i_2-1}, 0, \alpha_{i_2+1}, \dots, \alpha_{i_k-1}, 0, \alpha_{i_k+1}, \dots, \alpha_n)$$

$$\gamma_1 = (\alpha_1, \dots, \alpha_{i_1-1}, 1, \alpha_{i_1+1}, \dots, \alpha_{i_2-1}, 0, \alpha_{i_2+1}, \dots, \alpha_{i_k-1}, 0, \alpha_{i_k+1}, \dots, \alpha_n)$$

$$\gamma_2 = (\alpha_2, \dots, \alpha_{i_1-1}, 1, \alpha_{i_1+1}, \dots, \alpha_{i_2-1}, 1, \alpha_{i_2+1}, \dots, \alpha_{i_k-1}, 0, \alpha_{i_k+1}, \dots, \alpha_n)$$

 $\gamma_k = \bar{\beta} = (\alpha_1, \dots, \alpha_{i_1-1}, 1, \alpha_{i_1+1}, \dots, \alpha_{i_2-1}, 1, \alpha_{i_2+1}, \dots, \alpha_{i_k-1}, 1, \alpha_{i_k+1}, \dots, \alpha_n)$

 $\gamma_0 < \gamma_1 < \gamma_2 < \gamma_3 < \dots < \gamma_k = \beta$ Так как $f(\gamma_0) = 1, f(\gamma_k) = 0, f(\gamma_e) = 1, f(\gamma_{e+1}) = 0$, то $\exists l: 0 \leqslant l \leqslant k-1$, то есть

 $\alpha_e=0, \beta_e=1, \forall i\neq l, \ \alpha_i=\beta_i$ Построим функцию $h(x)=f(\alpha_1,\ldots,\alpha_{e-1},x,\alpha_{e+1},\ldots,\alpha_n)$

$$\begin{cases} h(0) = f(\bar{\alpha}) = 1 \\ h(1) = f(\bar{\beta}) = 0 \end{cases} \Rightarrow h(x) \equiv \bar{x}$$

IV) Класс S самодвойственных функций.

- ullet Функция $f^*(x_1,\ldots,x_n)=ar{f}(ar{x}_1,\ldots,ar{x}_n)$ называется двойственной для функции $f(x_1,\ldots,x_n)$
- Функция $f(x_1, ..., x_n)$ называется самодвойственной, если $f(x_1, ..., x_n) = f^*(x_1, ..., x_n)$ Другими словами:

$$\bar{f}(x_1, \dots, x_n) = f(\bar{x}_1, \dots, \bar{x}_n) \tag{1}$$

ullet Наборы $ar{lpha}=(lpha_1,\ldots,lpha_n)$ и $ar{eta}=(ar{lpha}_1,\ldots,ar{lpha}_n)$ называются противоположными наборами.

Например:

$$x, \overline{x} \in S$$
 $x_1 \cdot x_2 \notin S$, то есть $(x_1 \cdot x_2)^* = \overline{\overline{x}_1 \cdot \overline{x}_2} = x_1 \lor x_2 \neq x_1 \cdot x_2$

Теорема. θ Kласс S замкнут.

 \blacklozenge Достаточно показать, что $f_1, f_2, \ldots, f_n \in S$, то $\Phi = f(f_1, \ldots, f_n) \in S$ $\Phi^*(x_1, \dots, x_n) = \bar{\Phi}(\bar{x}_1, \dots, \bar{x}_n) = \bar{f}(f_1(\bar{x}_1, \dots, \bar{x}_n), \dots, f_n(\bar{x}_1, \dots, \bar{x}_n)) \stackrel{(1)}{=}$ $\stackrel{(1)}{=} \bar{f}(\bar{f}_1(x_1,\ldots,x_n),\ldots,\bar{f}_n(x_1,\ldots,x_n)) = f(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)) = \Phi(x_1,\ldots,x_n)$

Лемма. О несамодвойственной функции.

Eсли $f(x_1,\ldots,x_n)$ - несамодвойственная функция, то $0,1\in[\{\bar x,f\}]$

lack Пусть $f(x_1,\ldots,x_n)$ - несамодвойственная функция. Тогда $\exists \bar{\alpha}=(\alpha_1,\ldots,\alpha_n), f(\bar{\alpha})=$ $f(\bar{\alpha}_1,\ldots,\bar{\alpha}_n)=f(\alpha_1,\ldots,\alpha_n)$.

$$f(\alpha_1, \dots, \alpha_n) = f(\alpha_1, \dots, \alpha_n)$$
.
Заменим α_i на $x \oplus \alpha_i$:
$$\begin{cases} x, \text{если } \alpha_i = 0, \\ \bar{x}, \text{если } \alpha_i = 1; \end{cases}$$

Получим функцию $h(x) \equiv f(x \oplus \alpha_1, \dots, x \oplus \alpha_n)$

$$h(0) = f(\alpha_1, \dots, \alpha_n) = c, \ c = const$$

$$h(1) = f(\bar{\alpha}_1, \dots, \bar{\alpha}_n) = c$$

$$h(x) = c \Rightarrow \bar{c} = \bar{h}(x) \Rightarrow 0, 1 \in [\{\bar{x}, f\}]$$

Полином Жегалкина

• Полином Жегалкина — функция вида $\sum_{\{i_1,\ldots,i_k\}\in\{1,2,\ldots,n\}} a_{i_1,\ldots,a_k}\cdot x_{i_1}\cdot\ldots\cdot x_{i_k}\oplus a \ ,$ где a свободный член.

Пример: $x_1x_2x_3 \oplus x_1x_2 \oplus x_1x_3 \oplus x_1 \oplus 1$

Полные системы булевых функций

Система функций $A = x_1 \lor x_2, x_1 \cdot x_2, \bar{x}$ является полной. (Базис Буля)

Шеннона функция f выражается в виде совершенной дизъюнктивной нормальной формы, в которую входят дизъюнкция, конъюнкция, отрицание, тем самым она принадлежит замыканию класса. Если f = 0, то $f = x_1 \cdot \bar{x}_1$. \boxtimes

Теорема. 8 (о сведении)

Eсли cucmeма A-nолная и любая функция из A может быть выражена формулой наdнекоторой системой функций B, то B — полная система.

 $lack A = P_2, A \subseteq [B] \Rightarrow P_2 = [A] \subseteq [B] = [B] \subseteq P_2 \Rightarrow [B] = P_2$. То есть B - полная система.

$extbf{T}$ еорема. $extit{g}$

Сдедующие системы являются полными:

- 1. $A_1 = \{x_1 \lor x_2, \ \bar{x}\}$
- 2. $A_2 = \{x_1 \cdot x_2, \ \bar{x}\}$
- $\beta. A_3 = \{x_1 | x_2\}$
- 4. $A_4 = \{x_1 \cdot x_2, x_1 \oplus x_2, 1\}$

♦

- 1. По теореме 7 система $\{x_1 \lor x_2, \ \overline{x}\}$ полная. По закону де Моргана: $x_1 \cdot x_2 = \overline{x_1} \lor \overline{x_2} \Rightarrow x_1 \cdot x_2 \in [A_1]$. По теореме 8 следует $[A_1] = P_2$.
- 2. По закону де Моргана $x_1 \vee x_2 = \overline{\overline{x_1} \cdot \overline{x_2}} \Rightarrow x_1 \vee x_2 \in [A_2]$. По теореме $8[A_2] = P_2$.
- 3. Можем представить отрицание в виде штриха Шеффера: $\bar{x} = x|x.x_1 \cdot x_2 = \overline{x_1|x_2} = (x_1|x_2)|(x_1|x_2) \Rightarrow \bar{x}, \quad x_1 \cdot x_2 \in [A_3].$ По теореме 8 и доказательству п.2 $A_3 = P_2$.
- 4. $\bar{x} = x \oplus 1 \Rightarrow \bar{x} = [A_4]$. По теореме 8 и доказательству п.2 следует, что $[A_4] = P_2$.

 \boxtimes

Теорема. 10 (теорема Жегалкина)

Любую булевую функцию $f(x_1, ..., x_n)$ можно представить единственным образом в виде полинома Жегалкина $G_f(x_1, ..., x_n)$.

♦ 1) Докажем существование:

В силу теоремы 9 и доказательства п.4 система $\{x_1 \cdot x_2, x_1 \oplus x_2, 1\}$ полная \Rightarrow любая булевая функция $f(x_1, \ldots, x_n)$ может быть реализована над этой системой. После раскрытия скобок используют дистрибутивность конъюнкции относительно сложения по mod $2 \ (\oplus)$ и приведения подобных получаем полином Жегалкина.

2) Докажем единственность:

Подсчитаем количество полиномов Жегалкина от переменных x_1, \ldots, x_n . Каждое слагаемое в полиноме Жегалкина имеет вид конъюнкции переменных x_{i_1}, \ldots, x_{i_k} или существует свободный член 1. Каждая такая конъюнкция определяется подмножеством индексов во множестве индексов $i = \overline{1,n}$ ($\{i_1,\ldots,i_k\} \subset \{1,\ldots,n\}$). Значит, множество всевозможных слагаемых в полиноме равно количеству подмножеств в n-элементном множестве, то есть 2^n .

Чтобы составить полином Жегалкина нужно выбрать подмножество из множества всевозможных слагаемых. Число полиномов Жегалкина равно 2^{2n} , что равно количеству булевых функций от n переменных. А так как любая булевая функция имеет полином Жегалкин, представляющий её, то существует единственный полином представляющий булевую функцию.

В силу этой функции полином Жегалкина представляет собой булевую функцию G_f . $G_f(x_1,\ldots,x_n)$ — алгебраически нормальная формула (АНФ) булевой функции.

Булевая функция $f(x_1, \ldots, x_n)$ существенно зависит от x_i (не является фиктивной переменной) и содержится в каком-либо слагаемом $G_f(x_1, \ldots, x_n)$.

Пример: $x_1 \vee x_2$

Методы приведения к виду полинома Жегалкина

1. Метод неопределенных коэффициентов

 $x_1 \lor x_2 = a \cdot x_1 x_2 + b \cdot x_1 + c \cdot x_2 + d$; нам необхожимо найти a, b, c, d. Подставим (0,0), (0,1), (1,0), (1,1):

$$(0,0)$$
 $d=0$

$$(0,1) 1 = c + d \Rightarrow c = 1$$

$$(1,0) 1 = b + d \Rightarrow b = 1$$

$$(1,1)$$
 $1 = a + b + c + d \Rightarrow a = 1 \pmod{2}$

Следовательно, $x_1 \lor x_2 = x_1x_2 \oplus x_1 \oplus x_2$.

В общем случае для определения неизвестных коэффициентов при $a_{i_1,...,i_k}x_{i_1},...,x_{i_k}$ составляется уравнение $G_f(a_1,...,a_i)=f(a_1,...,a_n)$, из чего следует, что всего 2^n уравений, 2^n неизвестных коэффициентов и в силу теоремы 10 имеет единственное решение.

2. Метод эквивалентных преобразований

С помощью следующих тождеств: $\bar{A}=A\oplus 1,\ A\vee B=\overline{A}\cdot\overline{B}=(A\oplus 1)\cdot(B\oplus 1)\oplus 1=AB\oplus A\oplus B,\ A\cdot A=A,\ A\cdot 1=A,\ A\oplus A=0,\ A\oplus 0=A,$ приводим формулу к эквивалентной над системой этих трёх функций $x_1\cdot x_2,x_1\oplus x_2,\bar{x}$ и запишем в виде $x_1\vee x_2=x_1\cdot x_2\oplus x_1\oplus x_2.$

3. Метод треугольника Паскаля

Используется, когда функция задана вектором значений. Метод позволяет преобразовать таблицу истинности в полином Жегалкина путем построения вспомогательной треугольной таблицы в соответствии со следующими правилами:

- (а) Строится таблица истинности, в которой строки идут в лексикографическом порядке возрастания двоичных кодов (от 0 до 1): 00...00, 00...01, 00...11, ..., 11...11;
- (b) Строится вспомогательная треугольная таблица, в которой первый столбец совпадает со столбцом значений функции из таблицы истинности;
- (c) Ячейка в каждом последующем столбце таблицы получается путем суммирования по mod 2 двух ячеек: стоящей в той же строке и в строке ниже предыдущего столбца;
- (d) Столбцы вспомогательной треугольной таблицы нумеруются двоичными кодами в том же порядке, что и строки таблицы истинности;
- (e) Каждому двоичному коду ставится в соответствие один из членов полинома Жегалкина в зависимости от позиций кода, в которых стоят единицы;
- (f) Если в верхней строке любого столбца стоит 1, то соответствующий член входит в полином Жегалкина.

x_1	x_2	$x_1 \vee x_2$		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

00	01	10	11
1	x_1	x_2	$x_1 \cdot x_2$
0	1	1	1
1	0	0	
1	0		'
1		Į.	

Из треугольника Паскаля результат: $x_1 \lor x_2 = x_1 \cdot x_2 \oplus x_1 \oplus x_2$

V) Класс L линейных функций.

• Булевая функция $f(x_1, ..., x_n)$ **линейная**, если она может быть задана в виде полинома Жегалкина степени ≤ 1 .

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus a_2x_2\oplus\ldots\oplus a_nx_n$$

где
$$a_i \in E_2 = \{0, 1\}, i = \overline{0, n}$$

Множество всех линейных функций обозначают L.

Например: 0, 1,
$$x$$
, $\bar{x} = x \oplus 1$, $x_1 \oplus x_2$, $x_1 \Leftrightarrow x_2 = x_1 \oplus x_2 \oplus 1 \in L$ $x_1 \cdot x_2$, $x_1 \lor x_2 = x_1 \cdot x_2 \oplus x_1 \oplus x_2$, $x_1 \Rightarrow x_2$, $x_1 | x_2, x_1 \downarrow x_2 \notin L$

Теорема. 11

Kл $acc\ L$ замкнут.

$$lacktriangledown L = [\{1, \ x, \ x_1 \oplus x_2\}]$$
 — замыкание замыкания — замыканию $\Rightarrow L$ замкнут.

Лемма. 3 (о нелинейной функции)

Если булевая функция нелинейная, то $x_1 \cdot x_2 \in [\{0, 1, \bar{x}, f\}].$

♦ Пусть $f = (x_1, ..., x_n)$ – нелинейная, тогда по теореме 10 f может быть представлена в виде полинома Жегалкина со степенью ≤ 1 . Тогда в представление $G_f(x_1, ..., x_n)$ входит произведение $x_1 \cdot x_2 \Rightarrow$ полином Жегалкина можно представить в следующем виде:

$$G_f(x_1,\ldots,x_n) = x_1 \cdot x_2 \cdot p_0(x_3,x_4,\ldots,x_n) \oplus x_1 \cdot p_1(x_3,x_4,\ldots,x_n) \oplus x_2 \cdot p_2(x_3,x_4,\ldots,x_n) \oplus p_3(x_3,x_4,\ldots,x_n), \quad p_0(x_3,x_4,\ldots,x_n) \not\equiv 0.$$

 $\exists a_3,a_4,\ldots,a_n \in E_2: \quad p_0(a_3,\ldots,a_n) = 1$

Пусть
$$p_1(x_3, x_4, \ldots, x_n) = b_1,$$

 $p_2(x_3, x_4, \ldots, x_n) = b_2,$
 $p_3(x_3, x_4, \ldots, x_n) = b_3$

$$G_f(x_1, x_2, a_3, \dots, a_n) = x_1 \cdot x_2 \oplus b_1 \cdot x_1 \oplus b_2 \cdot x_2 \oplus b_3$$

Сделаем подстановки:

$$x_1$$
 заменим на $x_1 \oplus b_2$ $\begin{cases} x_1, \text{если}b_2 = 0, \\ \bar{x}_1, \text{если}b_2 = 1; \end{cases}$ а x_2 заменим на $x_2 \oplus b_1$ $\begin{cases} x_2, \text{если}b_1 = 0, \\ \bar{x}_2, \text{если}b_1 = 1; \end{cases}$.

В результате:

$$G_f(x_1 \oplus b_2, x_2 \oplus b_1, a_3, \dots, a_n) = (x_1 \oplus b_2)(x_2 \oplus b_1) \oplus b_1(x_1 \oplus b_2) \oplus b_2(x_2 \oplus b_1) \oplus b_3 = x_1 \cdot x_2 \oplus b_1$$

$$b_1 \cdot b_2 \oplus b_3, \quad b_1 \cdot b_2 \oplus b_3 = c$$

$$x_1 \cdot x_2 = G_f(x_1 \oplus b_2, x_2 \oplus b_1, a_3, \dots, a_n) \oplus c = \begin{cases} G_f, \text{если} c = 0, \\ \bar{G}_f, \text{если} c = 1; \end{cases} \Rightarrow x_1 \cdot x_2 \in [\{0, \ 1, \ \bar{x}, \ f\}]. \ \boxtimes$$

Заметим, что классы T_0 , T_1 , S, M, L попарно различны:

	T_0	T_1	S	M	L
0	+	-	-	+	+
1	-	+	-	+	+
\bar{x}	-	_	+	-	+

Теорема. 12 (Критерий полноты Поста)

Чтобы система функций A была полной необходимо и достаточно, чтобы она целиком не содержалась ни в одном из классов T_0 , T_1 , S, M, L. (То есть f_0 , f_1 , f_s , f_m , $f_l \in A$ и $f_0 \notin T_0$, $f_1 \notin T_1$, $f_m \notin M$, $f_s \notin S$, $f_l \notin L$.)

- ♦ Необходимость: A -полная и пусть $A \subseteq X$, где X один из классов T_0, T_1, S, M, L . Тогда замыкание $[A] \subseteq [X] \notin P_2 \Rightarrow A$ неполная, из чего следует противоречие. Достаточность: Так как $f_0, f_1, f_s, f_m, f_l \in A$ и $f_0 \notin T_0, f_1 \notin T_1, f_m \notin M, f_s \notin S, f_l \notin L \Leftrightarrow f_0(0, ..., 0) = 1$. Рассмотрим два случая:
- а) $f_0(1,\ldots,1)=1\Rightarrow f_0(x,\ldots,x)\equiv 1\in [A].$ С другой стороны, $f_1(1,\ldots,1)=0\Rightarrow f_1(f_0(x,\ldots,x),\ldots,f_0(x,\ldots,x_n))\equiv 0\in A.$ Так как $0,\ 1\in [A]$ и $f_m\in [A]$, то по лемме 1 о немонотонной функции $\bar x\in [0,\ 1,\ f_m]\in [A].$
- b) $f_0(1,\ldots,1)=0 \Rightarrow f_0(x,\ldots,x)\equiv \bar{x}$. По лемме 2 о не самодвойственной функции: 0, $1\in [\bar{x},\ f_s]\subseteq [A]\Rightarrow$ замыканию класса A принадлежат константы и отрицание и по лемме 3 о нелинейной функции $x_1\cdot x_2\in [0,\ 1,\ \bar{x},\ f_l]\equiv [A]$. Таким образом, $\bar{x},\ x_1\cdot x_2\in [f_0,\ f_1,\ f_s,\ f_m,\ f_l]\subseteq [A]$. По теореме 9 о сведении A полная система.

Замечание: по теореме Поста можно проверить полноту любой системы из множества булевых функций $A = \{f_1, \ldots, f_t\}$. Строим таблицу, где строки соответствуют функциям, а столбцы - классам.

	T_0	T_1	S	M	L
f_1			+		
f_i			+	-	
f_t			+		

На пересечении строки f_i и столбца записываем: «+», если функция f_i принадлежит классу, записанному в данном столбце, и «-», если f_i не принадлежит классу, записанному в данном столбце.

По теореме Поста, система A является полной тогда и только тогда, когда в любом столбце найдётся хотя бы один минус, и неполной, если есть хотя бы один стобцец, полностью состоящий из плюсов (*+»).

Пример:

	T_0	T_1	S	M	L	
\bar{x}	-	-	-	+	+	\Rightarrow система полная.
$x \Rightarrow y$	-	+	-	-	-	

Минимизация булевых функций

Элементарная конъюнкция — выражение вида $K=x_{i_1}^{\sigma_1},\ldots,x_{i_r}^{\sigma_r}$, где r — ранг конъюнкции, $i_k\in\{1,\ldots,n\},\ \sigma_i\in\{0,1\},\ i_j\neq i_k$ при $j\neq k$.

$$x_{i_j}^{\sigma_j} = \begin{cases} x_{i_j}, & \sigma_j = 1, \\ \bar{x}_{i_j}, & \sigma_j = 0 \end{cases}$$
 — литералы.

Утверждение: const = 1 - элементарная конъюнкция, r = 0.

- Полная элементарная конъюнкция элементарная конъюнкция, в которой каждая переменная f_1, \ldots, f_n входит в нее не более 1 раза вместе с отрицанием.
- Дизъюнктивная нормальная форма (ДНФ) $R = \forall_{i=1}^s K_i$, где $K_i \neq K_j$ при $i \neq j$, K_i элементарные коньюнкции.
- ullet Совершенная ДНФ (СДНФ) ДНФ, состоящая из различных полных элементарных конъюнкций.

Булевая функция может быть представлена в виде ДНФ не единственным образом.

СДНФ и СКНФ обеспечивают единственность представления любой булевой функции, но они неудобны при технической реализации булевой функции, поэтому их преобразуют в наиболее простые формы, более рациональные с точки зрения их реализации. Вводят индекс простоты, характеризующий сложность ДНФ. В качестве индекса используют количество переменных и их отрицаний, их литералов.

• Минимальная ДН Φ — ДН Φ , содержащая наименьшее количество литералов среди всех ДН Φ , реализующих данную булевую функцию.

Замечание:

Число различных элементарных конъюнкций от n переменных равно 3^n , так как любая переменная может входить в конъюнкцию, не входить в конъюнкцию или входить с отрицанием, следовательно количество ДНФ равно 2^{3^n} .

• Импликанта булевой функции $f(x_1,\ldots,x_n)$ — булевая функция $g(x_1,\ldots,x_n)$, если для любого набора $\bar{\alpha}\in E_2^n$ из $g(\bar{\alpha})=1$, следует, что $f(\bar{\alpha})=1$ или $g\vee f\equiv f$. f — имплицента булевой функции $g(x_1,\ldots,x_n)$.

Замечание:

Всякая элементарная конъюнкция, входящая в булевую функцию является её импликантой.

Конъюнкция любого числа импликант также импликанта болевой функции.

• Импликанта от $f(x_1, \ldots, x_n)$, являющаяся элементарной конъюнкцией, называется простой, если никакая её часть не является булевой функцией f.

- ullet Сокращенная ДНФ ДНФ, реализующая f и состаящая из всех простых импликант.
- Тупиковая сокращенная ДНФ сокращенная ДНФ, если отбрасывание любых элементов конъюнкции или литерала приводит ее к неэквивалентной ДНФ.
- Кратчайшая ДНФ ДНФ, содержащая минимальное количество импликант.

Замечание:

Булевая функция может иметь несколько тупиковых ДНФ.

• Минимальная ДНФ — тупиковая ДНФ f, содержащая наименьшее количество литералов.

Замечание:

Булевая функция может иметь несколько минимальных и кратчайших ДН Φ ; существует тупиковая ДН Φ , не являющаяся кратчайшей, и существует кратчайшая ДН Φ , не являющаяся минимальной.

Утверждение:

Минимальная ДНФ булевой функции $f(x_1, \ldots, x_n)$ получается из сокращенной ДНФ путем удаления некоторых элементарных конъюнкций.

♦ Покажем, что все импликанты, составляющие минимальную ДНФ, являются простыми.
От противного:

Пусть $R = k_1 \lor k$, где k_1 -не простая конъюнкция, k - дизъюнкция остальных конъюнкций, которые входят в разложение булевой функции.

Так как k_1 - не простая конъюнкция, то её можно представить в виде произведение других конъюнкций: $k_1 = k_1' \cdot k_2''$, где k_1' - импликанта f, то есть $k_1' \vee f = f$. Тогда $f = (k_1 \vee k) \vee k_1' = (k_1' \cdot k_2'' \vee k) \vee k_1' = k_1' k_2'' \vee k k_1' = k_1' \vee k$, что меньше, чем $k_1' \cdot k_2'' \Rightarrow R$ не минимальная, получили противоречие.

Этапы минимизации булевой функции:

- 1. Построение СДНФ;
- 2. Получение сокращенной ДНФ;
- 3. Нахождение всех тупиковых ДНФ;
- 4. Выбор из тупиковых ДНФ минимальных;

Теорема. 1 (Квайна)

Если в произвольной $ДН\Phi$ булевой функции произвести всевозможные обобщенные склеивания, а затем выполнить все поглощения, то получится сокращенная $ДH\Phi$.

- I) Метод Блейка-Порецкого:
 - 1. Построение СДНФ;
 - 2. По теореме Квайна, производим все обобщённые склеивания, пока возможно, по правилу:

$$xk_1 \vee \bar{x}k_2 = xk_1 \vee \bar{x}k_2 \vee k_1k_2$$

3. По теореме Квайна производим всевозможные поглопоглощения по правилу: $k_1 \vee k_1 k_2 = k_1$

4. удаляем лишние конъюнкции по правилу обобщённого склеивания:

$$xk_1 \vee \bar{x}k_2 \vee k_1k_2 = xk_1 \vee \bar{x}k_2$$

Пример:

 $\omega(f) = (11011011)$

(0	/		
x	y	z	f(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1. $f(x, y, z) = \bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee x\bar{y}\bar{z} \vee xy\bar{z} \vee xyz$

2.
$$\bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z = \bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}\bar{y}$$

$$\bar{x}\bar{y}z\vee\bar{x}yz=\bar{x}\bar{y}z\vee\bar{x}yz\vee\bar{x}z$$

$$\bar{x}\bar{y}\bar{z}\vee x\bar{y}\bar{z}=\bar{x}\bar{y}\bar{z}\vee x\bar{y}\bar{z}\vee\bar{y}\bar{z}$$

$$xy\bar{z} \lor xyz = xy\bar{z} \lor xyz \lor xy$$

$$\bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee x\bar{y}\bar{z} \vee xy\bar{z} \vee xyz \vee \bar{x}\bar{y} \vee \bar{x}z\bar{y}\bar{z} \vee xy$$

3. Поглощаем:

$$\bar{x}\bar{y}z\vee\bar{x}\bar{y}z\vee\bar{x}\bar{y}=\bar{x}\bar{y}$$

$$x\bar{y}\bar{z}\vee\bar{y}\bar{z}=\bar{y}\bar{z}$$

$$\bar{x}yz \vee \bar{x}z = \bar{x}z$$

$$xyz \lor xyz \lor xy = xy$$

$$f(x, y, z) = \bar{x}\bar{y} \vee \bar{x}z \vee \bar{y}\bar{z} \vee xy$$

4. Склеиваем:

$$f(x,y,z) = \bar{x}z \vee \bar{y}\bar{z} \vee xy$$

II) Метод Квайна:

2 операции:

а) попарное неполное склеивание:

$$kx \lor k\bar{x} = kx \lor k\bar{x} \lor k$$

б) элементарное поглощение:

$$kx^\sigma\vee k=k$$

Теорема. 2 (Квайна)

Исходя из $CДH\Phi$, если произвести всевозможные операции a) и b), то получим сокращенную $ДH\Phi$

Алгоритм Квайна:

- 1. По таблице истинности стротм СДНФ;
- 2. Выполняем всевозможные операции неполного попарного склеивания для элементарных конъюнкций длины n

- 3. Выполняем всевозможные операции элементарного поглощения для элементарных конъюнкций длины n-1
- 4. В результате получится множество элементарных конъюнкций, состоящее из 2 подмножеств: элементарных конъюнкций длины n и элементарных конъюнкций длины n-1
- 5. Если множество элементарных конъюнкций длины n-1 не пусто, то заново выполняем операции а) и б)
- 6. Завершается алгоритм, когда подмножество элементарных конъюнкций не будет либо пустым, либо нельзя будет выполнить ни одной операции. С результате получим сокращённую ДН Φ

Переход от СДНФ к сокращенной ДНФ происходит с помощью импликантной матрицы Квайна. В этой матрице полные элементарные конъюнкции СДНФ записываются в заголовке столбцов, а простые импликанты сокращенных ДНФ в заголовках строк. На пересечении ставится «+», если импликант в строке входит в конъюнкцию k_i .

Минимальные ДНФ строятся по этой матрице:

Вначале строится тупиковая ДНФ, в которой выбирается минимальное число простых импликант сокращенной ДНФ, дизъюнкция которых накроет плюсами все столбцы импликантной матрицы, т.е. каждый столбец содержит *+, стоящий на пересечении со строкой, соответствующей одной из выбранных импликант.

Далее из тупиковых ДНФ выбирается минимальная ДНФ, имеющая наименьшее число вхождений переменных из всех построенных тупиковых из матрицы.

Замечание:

Для столбцов, имеющих только один «+», соответствующие им простые импликанты сокращенной ДНФ являются базисными, дизъюнкции которых составляют ядро булевой функции, которое обязательно входит в минимальную ДНФ.

Пример:

- 1. $f(x,y,z) = \bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{y}z \vee \bar{x}yz \vee x\bar{y}\bar{z} \vee xy\bar{z} \vee xyz$
- 2. Попарное неполное склеивание: $\bar{x}\bar{y}\bar{z}\vee\bar{x}\bar{y}z\vee\bar{x}yz\vee x\bar{y}\bar{z}\vee xy\bar{z}\vee xyz\vee\bar{x}\bar{y}\vee\bar{y}\bar{z}\vee\bar{x}z\vee yz\vee x\bar{z}\vee xy$
- 3. Сокращённая ДНФ:

$$f(x,y,z) = \bar{x}\bar{y} \vee \bar{y}\bar{z} \vee \bar{x}z \vee yz \vee x\bar{z} \vee xy$$

	$\bar{x}\bar{y}\bar{z}$	$\bar{x}\bar{y}z$	$\bar{x}yz$	$x\bar{y}\bar{z}$	$xy\bar{z}$	xyz	
$\bar{x}\bar{y}$	\oplus	\oplus					V
$\bar{y}\bar{z}$	土			土			W
$\bar{x}z$		士	士				W
yz			\oplus			\oplus	V
$\bar{x}\bar{z}$				\oplus	\oplus		V
xy					士	土	W

Тупиковые ДНФ:

$$\bar{x}\bar{y} \lor yz \lor x\bar{z}$$
 и

Глава 2

Теория графов

Основные понятия

• Граф - следующая упорядоченная пара: G = (V, E), где V - непустое множество, состоящая из вершин графа, а $E \subseteq V^{(2)}$, где $V^{(2)}$ - все двухэлементные подмножества из V.

$$V^{(2)} = \{\{v, w\} | v, w \in V\}$$

• Граф конечный, если множество вершин конечно|V|=n.

Если |E|=n, то граф G обозначается G(n,m)

n=|V| - порядок графа G.

m = |E| - размер графа G.

Если n = 1, то граф тривиальный.

• Граф **простой**, если он не имеет петель - $\{v,w\}$ и не имеет кратных ребер, то есть несколько пар $\{v,w\}$.

Вершины v и w **смежные**, обозначают $v\tilde{w}$, если ребро $\{v,w\}\in E$.

Ребро $e = \{v, w\} = vw$ инцидентно вершинам v и w, а эти вершины v, w называют концами e.

Два ребра называют смежными, если существует $v \in V$, которой они инцидентны или существует их общий конец.

Пусть есть $v \in V(G)$. тогда множество всех вершин u таких, что $u\tilde{v}, N_G(v) = \{u \in V(G)|u\tilde{v}\}$ называют окружением вершины v.

 $N_G(v) \cup \{v\} = N_G[v] = N[v]$ — замкнутое окружение вершины v.

ullet Степень вершины $v-deg_G(v)=|N_G(v)|$ равна числу рёбер, выходящих из данной вершины.

Если $V'\subseteq V(G)$, то окружение множества вершин V' - множество $N_G(V')=\bigcup\limits_{v\in V'}N_G(v)$

• Вершина, которая смежна с любой вершиной из V называется **доминирующей**, то есть $v \in V; \ \forall u \in V \setminus \{v\}, \ v \sim u$

Если $v \in V$, такая что для любой $u \in V \setminus \{v\}$ $v \sim u$, то v - доминирующая.

- Доминирующее множество множество U, такое что для любого $v \in V(G) \setminus \{u\}$ существует $u \in U$, такое что $v \sim u$.
 - ullet Число доминирования $\gamma(G)$ мощность наименьшего доминирующего множества.
 - Если $\deg(v) = 0$, то v изолированная.
 - Если $\deg(v) = 1$, то v висячая или лист.

Минимальная степень вершин - $\delta(G) \ge 0$.

Максимальная степень вершин - $\Delta(G) \leq n - 1$.

• Список степеней, упорядоченный по возрастанию - степенная последовательность $\delta = d_1 \le d_2 \le \cdots \le d_n \le \Delta$.

Регулярный / однородный граф степени k (k-регулярный) - граф, такой что $\deg(v) = k, \ v \in V$. При k = 3 граф кубический.

- \bullet Псевдограф граф, который может содержать петли и кратные ребра, кратные петли.
- Мультиграф граф, который может содержать кратные ребра.
- ullet Если EV^2 (составлено из упорядоченных двоек/пар), то граф **G—ориентированный** (орграф), а его ребра дуги.

Если v — начало дуги (v, w), то дуга исходит из v. Если w — конец дуги (v, w), то дуга заходит в w.

- \bullet Количество заходящих дуг **полустепень захода** deq w.
- Количество исходящих дуг полустепень исхода deg + v. Если в E существует состоящие из более чем двух вершин $e\{v, w, u\}$, то G —гиперграф.

Для любого(мульти/псевдо) графа справедлива лемма:

Лемма. Лемма о рукопожатиях: $deg(v_1) + deg(v_2) + \ldots + deg(v_n) = 2m, \quad \forall i, v_i \in V.$

 \blacklozenge Это следует из того, что вклад каждого ребра в левую часть такой же, что и петли в правую часть равенства, равный двум.

Следствие:

Количество вершин нечетных степеней четно.

On — пустой граф — граф, состоящий из n изолированных вершин (нет ребер).

Kn — полный граф — граф, где все вершины попарно смежны: $m = C_n^2$.

Pn —цепь на n вершинах — граф, у которого 2 листа, а остальные вершины имеют степень 2. Длина (см. далее) равна n-1.

Cn —цикл на n вершинах — связный (см. далее) граф, у которого все вершины имеют степень 2. G' = (V', E') — подграф графа G, если $V' \subseteq V$, $E \subseteq E'$.

• Собственный подграф — граф G', где V'V и/или EE'.

Если V'V(G), то **порожденный (индуцированный) подграф** множества вершин V'G[V'] =def(V', E'), где $E' = vu \in E(G)|v, u \in V'$.

$$W \subseteq V(G) \Rightarrow G[V \setminus W] = defG - W$$

$$F \subseteq E(G) \Rightarrow G + F = (V, E(G) \cup F) \Rightarrow G - F = (V, E(G) \setminus F)$$

$$V = \{v\} \Rightarrow G - \{v\}$$
 аналогично $G - v$

$$F = \{e\} \Rightarrow G + \{e\}$$
 аналогично $G + e$

$$\Rightarrow G - \{e\}$$
 аналогично $G - e$

Независимое множество вершин $W \subseteq V(G) - W$, такое что G[W] - пустой.

Мощность максимального W — число независимостей $\alpha(G)$.

Клика $W \subset V(G) - W$, такое что G[W] - полный.

Мощность максимального W — кликовое число w(G).

• Остов (субграф) — подграф G' = (V', E'), такой что V' = V(G).

Пусть G = (V, E) — произвольный подграф.

Реберный граф — L(G), такой что:

- 1) вершины L ребра G
- 2) 2 вершины ij и kl принадлежащие E(G) смежные, если в G ij и kl смежные. deg(ij) в L(G) = deg(i) в G + deg(j) в G $^{\circ}2$.

Замечание: порядок |L(G)| = m, если G(n, m).

Утверждение: размер $L(G) = m_L = \frac{1}{2} \cdot \sum_{i=1}^{n} d_i^2 - m$.

lacktriangle Вершина i в G имеет степень d_i , то в L(G) она образует $C^2_{d_i}$ ребер, каждая пара ребер—вершина в $L(G) \Rightarrow m_L = \sum_{i=1}^n C_{d_i}^2 = \frac{1}{2} \cdot \sum_{i=1}^n d_i (d_i - 1) =$ [по дистрибутивности и лемме о

рукопожатиях] $=\frac{1}{2} \cdot \sum_{i=1}^{n} d_i^2 - m$. \boxtimes

Следствие: $\sum_{i=1}^n d_i^2 = \sum_{ij \in E(G)} (d_i + d_j)$ — первый индекс Загреба $\spadesuit \ 2m_L = \sum_{ij \in E(G)} d_i j = \sum_{ij \in E(G)} (d_i + d_j - 2) = \sum_{ij \in E(G)} (d_i + d_j) - 2m;$

$$2(m_L + m) = \sum_{ij \in E(G)} (d_i + d_j)$$
 и $2(m_L + m) = \sum_{i=1}^2 d_i^2$.

• Помеченный граф -1) граф, вершинам или ребрам которого присвоены какиелибо метки (числа, буквы); 2)граф порядка n, если его вершинам присвоить попарно различные номера от 1 до n.

Теорема. 1

Количество помеченных графов порядка $n=2^{C_n^2}.$

♦ По определению количество ребер в полном графе порядка n равно числу всевозможных пар вершин равное $C_n^2 \Rightarrow$ количество всех графов с фиксированным множеством вершин равное числу всех подмножеств множества всевозможных пар вершин = $2^{C_n^2}$.