IAPO REC' L'APTO 24 MAR 2005

SEQUENCE LISTING

<110> Bryan, Janine T.
 Brownlow, Michelle K.
 Schultz, Loren D.
 Jansen, Kathrin U.

<120> OPTIMIZED EXPRESSION OF HPV 45 L1 IN YEAST

<130> 21500

<150> PCT/US2004/31326

<151> 2004-09-24

<150> 60/506,812

<151> 2003-09-29

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1533

<212> DNA

<213> Artificial Sequence

<220>

<223> HPV45 L1R

<400> 1

atggetttgt ggagaccate tgactetact gtetacttge caccaccate tgtegetaga 60 gtegteaaca etgacgacta egteteeaga aceteeatet tetaceaege tggttettee 120 agattgttga etgteggtaa eceatactte agagtegtee eateeggtge tggtaaeaag 180

```
caagetgtte caaaggtete tgettaceaa tacagagtet teagagtege tttgecagae 240
ccaaacaagt teggtttgcc agactetact atetacaace cagaaactca aagattggtc 300
tqqqcatgcg tcggtatgga aatcggtaga ggtcaaccat tgggtatcgg tttgtctggt 360
cacccattct acaacaagtt ggacgacacc gaatccgctc acgctgctac tgctgtcatc 420
actcaagacg tcagagacaa cgtctctgtc gactacaagc aaacccaatt gtgtatcttg 480
ggttgtgtcc cagctatcgg tgaacactgg gctaagggta ccttgtgtaa gccagctcaa 540
ttgcaaccag gtgactgtcc accattggaa ttgaagaaca ctatcatcga agacggtgac 600
atggttgaca ctggttacgg tgctatggac ttctccaccc tgcaggacac taagtgtgaa 660
gttccattgg acatctgtca atctatctgt aagtacccag actacttgca aatgtccgct 720
gacccatacg gtgactctat gttcttctgt ttgagaagag aacaattgtt cgctagacac 780
ttctggaaca gagctggtgt catgggtgac actgttccaa ctgacttgta catcaagggt 840
acctetgeta acatgagaga aactecaggt teetgtgtet actetecate teeatetggt 900
totatoacta ottoogacto toaattgtto aacaagocat actggttgca caaggotcaa 960
ggtcacaaca acggtatctg ttggcacaac caattgttcg tcaccgtcgt tgacactacc 1020
agatetaeta aettgaeett gtgtgettet aeteaaaaee cagtteeaaa eaettaegae 1080
ccaaccaagt tcaagcacta ctccagacac gtcgaggaat acgacttgca attcatcttc 1140
caattgtgta ctatcacctt gaccgctgaa gtcatgtcct acattcactc tatgaactcc 1200
tctatcttgg aaaactggaa cttcggtgtt ccaccaccac caaccacctc cttggttgac 1260
acttacagat tegtecaate tgtegetgte acttgteaaa aggacaceae tecaceagaa 1320
aagcaagacc catacgacaa gttgaagttc tggactgttg acttgaagga aaagttctct 1380
tccgacttgg accaataccc attgggtaga aagttcttgg ttcaagctgg tttgagacgt 1440
agaccaacta teggteeacg taagagacca getgetteea etteeactge ttetagacca 1500
                                                                  1533
gctaagcgtg tcagaatcag atccaagaag taa
```

<210> 2

<211> 510

<212> PRT

<213> Human Papillomavirus Type 45

<400> 2

Met Ala Leu Trp Arg Pro Ser Asp Ser Thr Val Tyr Leu Pro Pro Pro 1 5 10 15

Ser Val Ala Arg Val Val Asn Thr Asp Asp Tyr Val Ser Arg Thr Ser

20 25 30

Ile Phe Tyr His Ala Gly Ser Ser Arg Leu Leu Thr Val Gly Asn Pro
35 40 45

Tyr Phe Arg Val Val Pro Ser Gly Ala Gly Asn Lys Gln Ala Val Pro

	50					55					60				
Ly	s Val	Ser	Ala	Tyr	Gln	Tyr	Arg	Val	Phe	Arg	Val	Ala	Leu	Pro	Asp
65					70					75					80
Pr	o Asn	Lys	Phe	Gly	Leu	Pro	Asp	Ser	Thr	Ile	Tyr	Asn	Pro	Glu	Thr
				85					90					95	
Gl	n Arg	Leu	Val	Trp	Ala	Cys	Val	Gly	Met	Glu	Ile	Gly	Arg	Gly	Gln
			100					105					110		
Pr	o Leu	Gly	Ile	Gly	Leu	Ser	Gly	His	Pro	Phe	Tyr	Asn	Lys	Leu	Asp
		115					120					125			
As	p Thr	Glu	Ser	Ala	His	Ala	Ala	Thr	Ala	Val	Ile	Thr	Gln	Asp	Val
	130					135					140				
Ar	g Asp	Asn	Val	Ser	Val	Asp	Tyr	Lys	Gln	Thr	Gln	Leu	Cys	Ile	Leu
14	5				150					155					160
Gl	y Cys	Val	Pro	Ala	Ile	Gly	Glu	His	Trp	Ala	Lys	Gly	Thr	Leu	Cys
				165					170					175	
Ьy	s Pro	Ala	Gln	Leu	Gln	Pro	Gly	Asp	Cys	Pro	Pro	Leu	Glu	Leu	Lys
			180					185					190		
As	n Thr	Ile	Ile	Glu	Asp	Gly	Asp	Met	Val	Asp	Thr	Gly	Tyr	Gly	Ala
		195					200					205			
Me	t Asp	Phe	Ser	Thr	Leu	Gln	Asp	Thr	Lys	Cys	Glu	Val	Pro	Leu	Asp
	210					215					220				
Il	e Cys	Gln	Ser	Ile	Cys	Lys	Tyr	Pro	Asp	Tyr	Leu	Gln	Met	Ser	Ala
22	5				230					235					240
As	p Pro	Tyr	Gly	Asp	Ser	Met	Phe	Phe	Cys	Leu	Arg	Arg	Glu	Gln	Leu
				245					250					255	
Ph	e Ala	Arg	His	Phe	Trp	Asn	Arg	Ala	Gly	Val	Met	Gly	Asp	Thr	Val
			260					265					270		
Pr	o Thr	Asp	Leu	Tyr	Ile	Lys	Gly	Thr	Ser	Ala	Asn	Met	Arg	Glu	Thr
		275					280					285			
Pr	o Gly	Ser	Cys	Val	Tyr	Ser	Pro	Ser	Pro	Ser	Gly	Ser	Ile	Thr	Thr
	290					295					300				
Se	r Asp	Ser	Gln	Leu	Phe	Asn	Lys	Pro	Tyr	Trp	Leu	His	Lys	Ala	Gln
30	5				310					315					320
Gl	y His	Asn	Asn		Ile	Cys	Trp	His		Gln	Leu	Phe	Val	Thr	Val
				325					330					335	
Va	l Asp	Thr		Arg	Ser	Thr	Asn	Leu	Thr	Leu	Cys	Ala	Ser	Thr	Gln
			340					345					350		

Asn Pro Val Pro Asn Thr Tyr Asp Pro Thr Lys Phe Lys His Tyr Ser Arg His Val Glu Glu Tyr Asp Leu Gln Phe Ile Phe Gln Leu Cys Thr Ile Thr Leu Thr Ala Glu Val Met Ser Tyr Ile His Ser Met Asn Ser Ser Ile Leu Glu Asn Trp Asn Phe Gly Val Pro Pro Pro Thr Thr Ser Leu Val Asp Thr Tyr Arg Phe Val Gln Ser Val Ala Val Thr Cys Gln Lys Asp Thr Thr Pro Pro Glu Lys Gln Asp Pro Tyr Asp Lys Leu Lys Phe Trp Thr Val Asp Leu Lys Glu Lys Phe Ser Ser Asp Leu Asp Gln Tyr Pro Leu Gly Arg Lys Phe Leu Val Gln Ala Gly Leu Arg Arg Arg Pro Thr Ile Gly Pro Arg Lys Arg Pro Ala Ala Ser Thr Ser Thr Ala Ser Arg Pro Ala Lys Arg Val Arg Ile Arg Ser Lys Lys

<210> 3

<211> 1533

<212> DNA

<213> Human Papillomavirus Type 45

<400> 3

atggetttgt ggeggeetag tgacagtacg gtatatette caccacette tgtggeeaga 60 gttgteaaca etgatgatta tgtgtetege acaageatat tttaceatge aggeagttee 120 egattattaa etgtaggeaa tecatattt agggttgtac etagtggtge aggtaataaa 180 eaggetgtte etaaggtate egeatateag tatagggtgt ttagagtage tttgeeegat 240 eetaataaat ttggattace tgattetact atatataate etgaaacaca aegtttggtt 300 eggeatgtg taggtatgga aattggtegt gggeageett taggtattgg eetaagtgge 360 eatecattt ataataaatt ggatgataca gaaagtgete atgeagetae agetgttatt 420 aegeaggatg ttagggataa tgtgteagtt gattataage aaacacaget gtgtatttta 480 ggttgtgtae etgetatttgg tgageactgg geeaagggea eaetttgtaa aeetgeacaa 540

<220>

<223> PCR Primer

ttgcaacctg gtgactgtcc tcctttggaa cttaaaaaca ccattattga ggatggtgat 600 atggtggata caggttatgg ggcaatggat tttagtacat tgcaggatac aaagtgcgag 660 qttccattaq acatttqtca atccatctqt aaatatccag attatttqca aatqtctqct 720 qatccctatg qggattctat gtttttttgc ctacgccgtg aacaactgtt tgcaagacat 780 ttttggaata gggcaggtgt tatgggtgac acagtaccta cagacctata tattaaaggc 840 actaqcqcta atatqcqtqa aacccctqqc aqttgtgtqt attccccttc tcccagtggc 900 totattacta cttctgattc tcaattattt aataagccat attggttaca taaggcccag 960 ggccataaca atggtatttg ttggcataat cagttgtttg ttactgtagt ggacactacc 1020 cgcagtacta atttaacatt atgtgcctct acacaaaatc ctgtgccaaa tacatatgat 1080 cctactaagt ttaagcacta tagtagacat gtggaggaat atgatttaca gtttattttt 1140 cagttgtgca ctattacttt aactgcagag gttatgtcat atatccatag tatgaatagt 1200 agtatattgg aaaattggaa ttttggtgta cctccaccac ctactacaag tttagtggat 1260 acatategtt ttgtgcaate agttgctgtt acctgtcaaa aggatactae acctccagaa 1320 aagcaggatc catatgataa attaaagttt tggactgttg acctaaagga aaaattttcc 1380 tccgatttgg atcaatatcc ccttggtcga aagtttttag ttcaggctgg gttacgtcgt 1440 aggectacca taggaceteg taagegteet getgetteea egtetactge atetaggeet 1500 1533 gccaaacgtg tacgtatacg tagtaaaaaa taa <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR Primer <400> 4 ccaccaccac ctatataggt attc 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence

<400> 5				
caaacataca tatatgtgct aaca				24
<210> 6				
<211> 44				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> PCR Primer				
<400> 6				
ctcagatctc acaaaacaaa atggctttgt	ggcggcctag	tgac		44
<210> 7				
<211> 35				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> PCR Primer				
<400> 7				
	2020			35
gacagatett attttttaet aegtataegt	acacg			35
<210> 8				
<211> 1533				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> HPV45 L1R - Antisense				
<400> 8				
taccgaaaca cctctggtag actgagatga	cagatgaacg	gtggtggtag	acagcgatct	60
cagcagttgt gactgctgat gcagaggtct	tggaggtaga	agatggtgcg	accaagaagg	120

tctaacaact gacagccatt gggtatgaag tctcagcagg gtaggccacg accattgttc 180

gttcgacaag gtttccagag acgaatggtt atgtctcaga agtctcagcg aaacggtctg 240 ggtttgttca agccaaacgg tctgagatga tagatgttgg gtctttgagt ttctaaccag 300 accegtacge agecatacet ttagecatet ceagttggta acceatagee aaacagacca 360 gtgggtaaga tgttgttcaa cctgctgtgg cttaggcgag tgcgacgatg acgacagtag 420 tgagttetge agtetetgtt geagagaeag etgatgtteg tttgggttaa eacatagaae 480 ccaacacagg gtcgatagcc acttgtgacc cgattcccat ggaacacatt cggtcgagtt 540 aacgttggtc cactgacagg tggtaacctt aacttcttgt gatagtagct tctgccactg 600 taccaactgt gaccaatgcc acgatacctg aagaggtggg acgtcctgtg attcacactt 660 caaggtaacc tgtagacagt tagatagaca ttcatgggtc tgatgaacgt ttacaggcga 720 ctgggtatgc cactgagata caagaagaca aactettete ttgttaacaa gegatetgtg 780 aagacettgt etegaceaca gtacecaetg tgacaaggtt gaetgaacat gtagtteeca 840 tggagacgat tgtactctct ttgaggtcca aggacacaga tgagaggtag aggtagacca 900 agatagtgat gaaggctgag agttaacaag ttgttcggta tgaccaacgt gttccgagtt 960 ccagtgttgt tgccatagac aaccgtgttg gttaacaagc agtggcagca actgtgatgg 1020 tctagatgat tgaactggaa cacacgaaga tgagttttgg gtcaaggttt gtgaatgctg 1080 ggttggttca agttcgtgat gaggtctgtg cagctcctta tgctgaacgt taagtagaag 1140 gttaacacat gatagtggaa ctggcgactt cagtacagga tgtaagtgag atacttgagg 1200 agatagaacc ttttgacctt gaagccacaa ggtggtggtg gttggtggag gaaccaactg 1260 tgaatgtcta agcaggttag acagcgacag tgaacagttt tcctgtggtg aggtggtctt 1320 ttcgttctgg gtatgctgtt caacttcaag acctgacaac tgaacttcct tttcaagaga 1380 aggetgaace tggttatggg taacecatet tteaagaace aagttegace aaactetgca 1440 tetggttgat agecaggtge attetetggt egaegaaggt gaaggtgaeg aagatetggt 1500 cgattcgcac agtcttagtc taggttcttc att 1533