FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 9 AM to 12 PM

PHYSICS

TEST PAPER WITH ANSWER & SOLUTION

A balloon is moving up in air vertically above a point A on the ground. When it is at a height h_1 , a girl standing at a distance d (point B) from A (see figure) sees it at an angle 45° with respect to the vertical. When the balloon climbs up a further height h_2 , it is seen at an angle 60° with respect to the vertical if the girl moves further by a distance 2.464 d (point C). Then the height h_2 is (given tan $30^\circ = 0.5774$):

(1) d

- (2) 0.732d
- (3) 1.464d
- (4) 0.464d

- 2. In a resonance tube experiment when the tube is filled with water up to height of 17.0 cm from bottom, it resonates with a given tuning fork. When the water level is raised the next resonance with the same tuning fork occurs at a height of 24.5 cm. If the velocity of sound in air is 330 m/s, the tuning fork frequency is:
 - (1) 1100 Hz
- (2) 3300 Hz
- (3) 2200 Hz
- (4) 550 Hz

3. A helicopter reises from rest on the ground vertically upwards with a constant acceleration g. A food packet is dropped from the helicopter when it is a height h. The time taken by the packet to reach the ground is close to [g is the acceleration due to gravity]:

$$(1) t = \sqrt{\frac{2h}{3g}}$$

(2)
$$t = 1.8 \sqrt{\frac{h}{g}}$$

(3)
$$t = 3.4 \sqrt{\frac{h}{g}}$$

$$(4) t = \frac{2}{3} \sqrt{\left(\frac{h}{g}\right)}$$

- 5. A hollow spherical shell at outer radius R floats just submerged under the water surface. The inner radius of the shell is r. If the specific gravity of the shell material is $\frac{27}{8}$ w.r.t. water, the value of r is :
 - (1) $\frac{4}{9}$ R
- (2) $\frac{8}{9}$ R
- (3) $\frac{1}{3}$ R
- (4) $\frac{2}{3}$ R

4. Activities of three radioactive substances A, B and C are represented by the curves A, B and C, in the figure. Then their half-lives $T_{\frac{1}{2}}(A):T_{\frac{1}{2}}(B):T_{\frac{1}{2}}(C) \text{ are in the ratio :}$

- $(1) \ 3:2:1$
- (2) 4:3:1
- (3) 2 : 1 : 3
- (4) 2:1:1
- 6. Three different processes that can occur in an ideal monoatomic gas are shown in the P vs V diagram. The paths are labelled as $A \rightarrow B$, $A \rightarrow C$ and $A \rightarrow D$. The change in internal energies during these process are taken as E_{AB} , E_{AC} and E_{AD} and the workdone as W_{AB} , W_{AC} and W_{AD} .

The correct relation between these parameters are :

- (1) $E_{AB} = E_{AC} = E_{AD}$, $W_{AB} > 0$, $W_{AC} = 0$, $W_{AD} > 0$
- $(2)~E_{AB} < E_{AC} < E_{AD},~W_{AB} > 0,~W_{AC} > W_{AD}$
- $\begin{array}{l} (3) \ E_{AB} = E_{AC} < E_{AD}, \ W_{AB} > 0, \ W_{AC} = 0, \\ W_{AD} < 0 \end{array}$
- $(4)~{\rm E_{AB}} > {\rm E_{AC}} > {\rm E_{AD}},~{\rm W_{AB}} < {\rm W_{AC}} < ~{\rm W_{AD}}$

7. A solid sphere of radius R carries a charge (Q + q) distributed uniformly over its volume. A very small point like piece of it of mass m gets detached from the bottom of the sphere and falls down vertically under gravity. This piece carries charge q. If it acquires a speed v when it has fallen through a vertical height y (see figure), then: (assume the remaining portion to be spherical).

(1)
$$v^2 = 2y \left[\frac{qQ}{4\pi \epsilon_0 R (R+y)m} + g \right]$$

(2)
$$v^2 = y \left[\frac{qQ}{4\pi \epsilon_0 R^2 ym} + g \right]$$

(3)
$$v^2 = 2y \left[\frac{qQR}{4\pi \epsilon_0 (R+y)^3 m} + g \right]$$

(4)
$$v^2 = y \left[\frac{qQ}{4\pi \in {}_0 R(R+y)m} + g \right]$$

- **8.** With increasing biasing voltage of a photodiode, the photocurrent magnitude :
 - (1) increases initially and saturates finally
 - (2) increases initially and after attaining certain value, it decreases
 - (3) increases linearly
 - (4) remains constant

9. For a concave lens of focal length f, the relation between object and image distance u and v, respectively, from its pole can best be represented by (u = v is the reference line):

- An electrical power line, having a total 10. resistance of 2Ω , delivers 1 kW at 220 V. The efficiency of the transmission line is approximately:
 - (1) 72%
- (2) 96%
- (3) 91%
- (4) 85%

- 11. Assume that the displacement(s) of air is proportional to the pressure difference (Δp) created by a sound wave. Displacement(s) further depends on the speed of sound (v), density of air (ρ) and the frequency (f). If $\Delta p \sim 10$ Pa, $v \sim 300$ m/s, $p \sim 1$ kg/m³ and f~1000Hz, then s will be the order of (take multiplicative constant to be 1)
 - (1) 10 mm
- (2) $\frac{3}{100}$ mm
- (3) 1 mm
- (4) $\frac{1}{10}$ mm

- 12. A bullet of mass 5g, travelling with a speed of 210 m/s, strikes a fixed wooden target. One half of its kinetic energy is converted into heat in the bullet while the other half is converted into heat in the wood. The rise of temperature of the bullet if the specific heat of its material is 0.030 cal/(g-°C) $(1 \text{ cal} = 4.2 \times 10^7 \text{ ergs}) \text{ close to}$:
 - (1) 83.3°C
- (2) 87.5°C
- (3) 119.2°C
- (4) 38.4°C

- 13. Number of molecules in a volume of 4 cm³ of a perfect monoatomic gas at some temperature T and at a pressure of 2 cm of mercury is close to ? (Given, mean kinetic energy of a molecule (at T) is 4×10^{-14} erg, g = 980 cm/s², density of mercury = 13.6 g/cm^3)
 - $(1) 5.8 \times 10^{18}$
- $(2) 5.8 \times 10^{16}$
- $(3) 4.0 \times 10^{18}$
- $(4) 4.0 \times 10^{16}$

- 14. A square loop of side 2a, and carrying current I, is kept in XZ plane with its centre at origin. A long wire carrying the same current I is placed parallel to the z-axis and passing through the point (0, b, 0), (b >> a). The magnitude of the torque on the loop about zaxis is given by:
 - $(1) \ \frac{2\mu_{0}I^{2}a^{2}}{\pi b}$ $(3) \ \frac{\mu_{0}I^{2}a^{2}}{2\pi b}$
- (2) $\frac{\mu_0 I^2 a^3}{2\pi b^2}$ (4) $\frac{2\mu_0 I^2 a^3}{\pi b^2}$

A physical quantity z depends on four **15.**

observables a, b, c and d, as $z = \frac{a^2 b^{\frac{2}{3}}}{\sqrt{c} d^3}$. The

percentage of error in the measurement of a, b, c and d 2%, 1.5%, 4% and 2.5% respectively. The percentage of error in z is:

- (1) 12.25%
- (2) 14.5%
- (3) 16.5%
- (4) 13.5%
- A galvanometer of resistance G is converted **16.** into a voltmeter of range 0 – 1V by connecting a resistance R₁ in series with it. The additional resistance that should be connected in series with R₁ to increase the range of the voltmeter to 0 - 2V will be:
 - $(1) R_1$
- (2) $R_1 + G$
- (3) $R_1 G$
- (4) G

- **17.** A wheel is rotaing freely with an angular speed ω on a shaft. The moment of inertia of the wheel is I and the moment of inertia of the shaft is negligible. Another wheel of momet of inertia 3I initially at rest is suddenly coupled to the same shaft. The resultant fractional loss in the kinetic energy of the system is:

18. The value of the acceleration due to gravity is g_1 at a height $h = \frac{R}{2}$ (R = radius of the earth) from the surface of the earth. It is again equal to g₁ at a depth d below the surface of the earth.

The ratio $\left(\frac{d}{R}\right)$ equals :

- (1) $\frac{7}{9}$ (2) $\frac{4}{9}$ (3) $\frac{1}{3}$ (4) $\frac{5}{9}$

19. An electron is constrained to move along the y-axis with a speed of 0.1 c (c is the speed of light) in the presence of electromagnetic wave, whose electric field is

 $\vec{E} = 30\hat{i} \sin(1.5 \times 10^7 t - 5 \times 10^{-2} x) V / m$.

The maximum magnetic force experienced by the electron will be:

(given $c = 3 \times 10^8 \text{ ms}^{-1}$ and electron charge $= 1.6 \times 10^{-19} \text{ C}$

- (1) $1.6 \times 10^{-19} \text{ N}$
- $(2) 4.8 \times 10^{-19} \text{ N}$
- $(3) 3.2 \times 10^{-18} \text{ N}$
- $(4) 2.4 \times 10^{-18} \text{ N}$

- 20. Two capacitors of capacitances C and 2C are charged to potential differences V and 2V, respectively. These are then connected in parallel in such a manner that the positive terminal of one is connected to the negative terminal of the other. The final energy of this configuration is:
 - (1) $\frac{9}{2}$ CV²
- (3) zero
- (2) $\frac{25}{6}$ CV² (4) $\frac{3}{2}$ CV²
- 21. Two concentric circular coils, C_1 and C_2 , are placed in the XY plane. C₁ has 500 turns, and a radius of 1 cm. C₂ has 200 turns and radius of 20 cm. C₂ carries a time dependent current $I(t) = (5t^2 - 2t + 3)$ A where t is in s. The emf induced in C_1 (in mV), at the instant t = 1s

is $\frac{4}{x}$. The value of x is ____.

- 22. A force $\vec{F} = (\hat{i} + 2\hat{j} + 3\hat{k})N$ acts at a point $(4\hat{i} + 3\hat{j} \hat{k})m$. Then the magnitude of torque about the point $(\hat{i} + 2\hat{j} + \hat{k})m$ will be \sqrt{x} N-m. The value of x is _____.
- 24. A particle of mass 200 MeV/c² collides with a hydrogen atom at rest. Soon after the collision the particle comes to rest, and the atom recoils and goes to its first excited state. The initial kinetic energy of the particle (in eV) is $\frac{N}{4}$. The value of N is : (Given the mass of the hydrogen atom to be

1 GeV/c²) _____.

- 23. A beam of electrons of energy E scatters from a target having atomic spacing of 1Å. The first maximum intensity occurs at $\theta = 60^{\circ}$. Then E (in eV) is _____.

 (Planck constant h = 6.64×10^{-34} Js, $1 \text{ eV} = 1.6 \times 10^{-19}$ J, electron mass m = 9.1×10^{-31} kg)

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 9 AM to 12 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

1. The equation that represents the water-gas shift reaction is :

(1)
$$CO(g) + H_2O(g) \xrightarrow{673K} CO_2(g) + H_2(g)$$

(2)
$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + 3 H_2(g)$$

(3)
$$C(s) + H_2O(g) \xrightarrow{1270K} CO(g) + H_2(g)$$

$$(4)2C(s)+O_2(g)+4N_2(g) \xrightarrow{1273K} 2CO(g)+4N_2(g)$$

3. The values of the crystal field stabilization energies for a high spin d⁶ metal ion in octahedral and tetrahedral fields, respectively, are:

(1)
$$-0.4 \Delta_0$$
 and $-0.27 \Delta_t$

(2)
$$-1.6 \Delta_0$$
 and $-0.4 \Delta_t$

(3)
$$-0.4 \Delta_0$$
 and $-0.6 \Delta_t$

(4)
$$-2.4~\Delta_0$$
 and $-0.6~\Delta_t$

2. Consider the following reaction

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$
; $\Delta H^0 = +58 \text{ kJ}$

For each of the following cases (a, b), the direction in which the equilibrium shifts is:

- (a) Temperature is decreased
- (b) Pressure is increased by adding N_2 at constant T
- (1) (a) towards reactant, (b) no change
- (2) (a) towards product, (b) towards reactant
- (3) (a) towards product, (b) no change
- (4) (a) towards reactant, (b) towards product
- **4.** Which of the following is not an essential amino acid:
 - (1) Valine
 - (2) Leucine
 - (3) Lysine
 - (4) Tyrosine

5. In the following reaction sequence the major products A and B are :

$$+ \bigcirc O \xrightarrow{\text{anhydrous}} A \xrightarrow{1. Zn - Hg/HCl} B$$

(1)
$$A = \bigcup_{CO_2H} \bigcup_{O} B = \bigcup_{O} \bigcup_{O} A = \bigcup_{O} \bigcup_{O} \bigcup_{O} A = \bigcup_{O} \bigcup_{O} \bigcup_{O} A = \bigcup_{O} \bigcup_{O}$$

(2)
$$A = \bigcup_{CO_2H} O$$

(3)
$$A = \bigcup_{CO_2H} \bigcup_{O} B = \bigcup_{O} \bigcup_{O} B = \bigcup_{O} \bigcup_{O} \bigcup_{O} B = \bigcup_{O} \bigcup_{O$$

(4)
$$A = \bigcup_{CO_2H} \bigcup_{CO_$$

6. The increasing order of the acidity of the α -hydrogen of the following compounds is:

- (1) (C) < (A) < (B) < (D)
- (2) (B) < (C) < (A) < (D)
- (3) (A) < (C) < (D) < (B)
- (4) (D) < (C) < (A) < (B)

- **7.** An Ellingham diagram provides information about :
 - (1) the pressure dependence of the standard electrode potentials of reduction reactions involved in the extraction of metals.
 - (2) the kinetics of the reduction process.
 - (3) the temperature dependence of the standard Gibbs energies of formation of some metal oxides.
 - (4) the conditions of pH and potential under which a species is thermodynamically stable.
- **8.** Which of the following derivatives of alcohols is unstable in an aqueous base?
 - (1) RO CMe₃
- $(2) \underset{RO}{\overset{O}{\longrightarrow}} M\epsilon$
- (3) RO
- (4) RO O

- 12. A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B(in s): (Use ln 2 = 0.693)
 - (1) 180
- (2) 120
- (3) 300
- (4) 900

- 9. The structure of PCl₅ in the solid state is
 - (1) square pyramidal
 - (2) tetrahedral [PCl₄]⁺ and octahedral [PCl₆]⁻
 - (3) square planar [PCl₄]⁺ and octahedral [PCl₆]⁻
 - (4) trigonal bipyramidal

- 10. The most appropriate reagent for conversion of C_2H_5CN into $CH_3CH_2CH_2NH_2$ is :
 - (1) Na(CN)BH₃
- (2) LiAlH₄
- (3) NaBH₄
- (4) CaH_2
- 11. The difference between the radii of 3^{rd} and 4^{th} orbits of Li^{2+} is ΔR_1 . The difference between the radii of 3^{rd} and 4^{th} orbits of He^+ is ΔR_2 . Ratio $\Delta R_1:\Delta R_2$ is :
 - (1) 8 : 3
- (2) 3 : 2
- $(3) \ 3 : 8$
- (4) 2 : 3

13. The increasing order of basicity of the following compounds is

- (1) (A) < (B) < (C) < (D)
- (1) (A) < (B) < (C) < (D)(2) (B) < (A) < (C) < (D)
- (3) (D) < (A) < (B) < (C)
- (4) (B) < (A) < (D) < (C)

14. Identify the correct molecular picture showing that happens at the critical micellar concentration (CMC) of an aqueous solution of a surfactant (• polar head; —non-polar tail; • water).

- (1) (B)
- (2) (A)
- (3) (D)
- (4) (C)

- **15.** If a person is suffering from the deficiency of nor-adrenaline, what kind of drug can be suggested?
 - (1) Anti-inflammatory (2) Analgesic
 - (3) Antihistamine
- (4) Antidepressant

- 16. The correct electronic configuration and spinonly magnetic moment (BM) of Gd^{3+} (Z = 64), respectively, are
 - (1) [Xe]5f⁷ and 8.9
- (2) [Xe]4f⁷ and 7.9
- (3) [Xe] $5f^7$ and 7.9
- (4) [Xe]4f⁷ and 8.9

- **17.** The condition that indicates a polluted environment is
 - (1) BOD value of 5 ppm
 - (2) eutrophication
 - (3) 0.03% of CO₂ in the atmosphere
 - (4) pH of rain water to be 5.6

- **18.** In the sixth period, the orbitals that are filled are
 - (1) 6s, 5f, 6d, 6p
- (2) 6s, 6p, 6d, 6f
- (3) 6s, 5d, 5f, 6p
- (4) 6s, 4f, 5d, 6p
- **19.** The potential energy curve for the H_2 molecule as a function of internuclear distance is :

Internuclear

distance

20. A diatomic molecule X₂ has a body-centred cubic (bcc) structure with a cell edge of 300 pm. The density of the molecule is 6.17 g cm⁻³. The number of molecules present in 200 g of X2 is

(Avogadro constant $(N_A) = 6 \times 10^{23} \text{ mol}^{-1}$)

- $(1) 8 N_A$
- $(2) 40 N_A$
- $(3) 4 N_A$
- $(4) 2 N_A$

- 21. an oxidation-reduction reaction in which 3 electrons are transferred has a ΔG^o of 17.37 kJ mol^{-1} at 25°C. The value of E_{cell}^{o} (in V) is $\times 10^{-2}$ $(1 \text{ F} = 96,500 \text{ C mol}^{-1})$
- The minimum number of moles of O2 required 22. for complete combustion of 1 mole of propane and 2 moles of butane is .

23. The total number of coordination sites in ethylenediaminetetraacetate (EDTA4-) is

- 24. The number of chiral carbon(s) present in peptide, Ile-Arg-Pro, is _____.
- 25. A soft drink was bottled with a partial pressure of CO₂ of 3 bar over the liquid at room temperature. The partial pressure of CO₂ over the solution approaches a value of 30 bar when 44 g of CO₂ is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is $\underline{\hspace{1cm}} \times 10^{-1}$.

(First dissociation constant of $H_2CO_3 = 4.0 \times 10^{-7}$; $\log 2 = 0.3$; density of the soft drink = 1 g mL⁻¹)

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 9 AM to 12 PM

MATHEMATICS

TEST PAPER WITH SOLUTION

- 1. If $3^{2 \sin 2\alpha 1}$, 14 and $3^{4 2 \sin 2\alpha}$ are the first three terms of an A.P. for some α , then the sixth term of this A.P. is:
 - (1) 66
- (2) 65
- (3) 81
- (4) 78

2. If the function $f(x) = \begin{cases} k_1(x-\pi)^2 - 1, & x \le \pi \\ k_2 \cos x, & x > \pi \end{cases}$

is twice differentiable, then the ordered pair (k_1, k_2) is equal to:

- $(1)\left(\frac{1}{2},1\right)$
- (2) (1, 1)
- $(3) \left(\frac{1}{2}, -1\right)$
- (4) (1, 0)

- 3. If the common tangent to the parabolas, $y^2 = 4x$ and $x^2 = 4y$ also touches the circle, $x^2 + y^2 = c^2$, then c is equal to:
 - (1) $\frac{1}{2}$
- $(2) \ \frac{1}{2\sqrt{2}}$
- (3) $\frac{1}{\sqrt{2}}$
- (4) $\frac{1}{4}$

- 4. The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to:
 - $(1) (\sim x \wedge y) \vee (\sim x \wedge \sim y)$
 - (2) $(x \land \sim y) \lor (\sim x \land y)$
 - (3) $(x \wedge y) \vee (\sim x \wedge \sim y)$
 - $(4) \ (x \wedge y) \wedge (\sim x \vee \sim y)$

- 5. If the volume of a parallelopiped, whose coterminus edges are given by the vectors $\vec{a} = \hat{i} + \hat{j} + n\hat{k} \;, \qquad \vec{b} = 2\hat{i} + 4\hat{j} n\hat{k} \qquad \text{and}$ $\vec{c} = \hat{i} + n\hat{j} + 3\hat{k} \;\; (n \geq 0), \; \text{is 158 cu. units, then :}$
 - $(1) \vec{a} \cdot \vec{c} = 17$
- $(2) \vec{b} \cdot \vec{c} = 10$
- (3) n = 7
- (4) n = 9

6. If y = y(x) is the solution of the differential

equation $\frac{5+e^x}{2+y} \cdot \frac{dy}{dx} + e^x = 0$ satisfying

- y(0) = 1, then a value of $y(\log_e 13)$ is:
- (1) 1

(2) -1

(3) 2

(4) 0

- 7. A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be:
 - (1) 63
- (2) 38
- (3) 54
- (4) 36

- 8. The product of the roots of the equation $9x^2 - 18|x| + 5 = 0$, is

= $g(x)e^{(e^x+e^{-x})}+c$, where c is a constant of integration, then g(0) is equal to:

 $(2) e^{2}$

(3) e

(4) 1

10. If the minimum and the maximum values of the

function $f: \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \to R$, defined by :

$$f(\theta) = \begin{vmatrix} -\sin^2 \theta & -1 - \sin^2 \theta & 1 \\ -\cos^2 \theta & -1 - \cos^2 \theta & 1 \\ 12 & 10 & -2 \end{vmatrix}$$

are m and M respectively, then the ordered pair (m, M) is equal to:

- (1) (0, 4)
- (2) (-4, 4)
- (3) $(0, 2\sqrt{2})$ (4) (-4, 0)

- (1) 2

11. Let $\lambda \in R$. The system of linear equations

$$2x_1 - 4x_2 + \lambda x_3 = 1$$

$$x_1 - 6x_2 + x_3 = 2$$

$$\lambda x_1 - 10x_2 + 4x_3 = 3$$

is inconsistent for:

- (1) exactly one negative value of λ .
- (2) exactly one positive value of λ .
- (3) every value of λ .
- (4) exactly two values of λ .

- 13. If the four complex numbers z, \overline{z} , $\overline{z} 2 \operatorname{Re}(\overline{z})$ and $z 2\operatorname{Re}(z)$ represent the vertices of a square of side 4 units in the Argand plane, then |z| is equal to :
 - (1) 4

- (2) 2
- (3) $4\sqrt{2}$
- (4) $2\sqrt{2}$

12. If S is the sum of the first 10 terms of the series

$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \tan^{-1}\left(\frac{1}{21}\right) + \dots,$$

then tan(S) is equal to:

- $(1) \frac{5}{11}$
- $(2) -\frac{6}{5}$
- (3) $\frac{10}{11}$
- (4) $\frac{5}{6}$

(1) -1

 $(3) \ 3$

16.

If (a, b, c) is the image of the point (1, 2, -3)

in the line, $\frac{x+1}{2} = \frac{y-3}{-2} = \frac{z}{-1}$, then

(2) 2

(4) 1

a + b + c is equal to

- 14. If the point P on the curve, $4x^2 + 5y^2 = 20$ is farthest from the point Q(0, -4), then PQ^2 is equal to:
 - (1) 21
- (2) 36
- (3) 48
- (4) 29

- 15. The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference of the remaining two observations is:
 - (1) 2

(2) 4

 $(3) \ 3$

(4) 1

- 17. The value of $\int_{-\pi/2}^{\pi/2} \frac{1}{1 + e^{\sin x}} dx$ is
 - (1) π
- (2) $\frac{3\pi}{2}$

- $(3) \ \frac{\pi}{4}$
- $(4) \ \frac{\pi}{2}$

$$p(x) = x^2 - x - 2 = 0$$
, then $\lim_{x \to \alpha^+} \frac{\sqrt{1 - \cos(p(x))}}{x + \alpha - 4}$

If α is the positive root of the equation,

- If $2^{10} + 2^9 \cdot 3^1 + 2^8 \cdot 3^2 + \dots + 2 \cdot 3^9 + 3^{10} = S 2^{11}$, 18. then S is equal to:

is equal to

20.

(1) $\frac{3^{11}}{2} + 2^{10}$

(3) 311

 $(4) \ 2 \cdot 3^{11}$

- If the co-ordinates of two points A and B are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and P is any point on the conic, $9x^2 + 16y^2 = 144$, then
 - (1) 8

- (2) 6
- (3) 16

PA + PB is equal to:

(4) 9

21. Four fair dice are thrown independently 27 times. Then the expected number of times, at least two dice show up a three or a five,

- 22. If the line, 2x y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x 2y + \alpha = 0$ and $6x 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is _____
- 24. The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is _____.

- **25.** Let $f(x) = x \cdot \left[\frac{x}{2}\right]$, for -10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to _____.
- 23. The natural number m, for which the coefficient of x in the binomial expansion of $\left(x^m + \frac{1}{x^2}\right)^{22}$ is 1540, is _____.