1

We know 0 < a < b. a and b are nonzero, so ab is nonzero, and thus has an inverse with respect to multiplication, $b^{-1}a^{-1}$. $b^{-1}a^{-1} > 0$ since ab > 0, so since if a < b and c > 0, ac < bc, we can conclude that since 0 < a < b, $0 \cdot b^{-1}a^{-1} < a \cdot b^{-1}a^{-1} < b \cdot b^{-1}a^{-1}$. Multiplication is commutative over \mathbb{R} , so this means $0 < b^{-1} < a^{-1}$, or $0 < \frac{1}{b} < \frac{1}{a}$, as desired.

 $\mathbf{2}$

[Induction on n]: When n=2, this is simply the triangle inequality. Suppose the claim holds for all $n \leq N$ for some N. Let $a_1, \ldots, a_{N+1} \in \mathbb{Q}$. Consider $|a_1 + \ldots + a_{N+1}|$, and denote $b=a_1 + \ldots + a_N$. Then $b \in \mathbb{Q}$, and $|a_1 + \ldots + a_{N+1}| = |b + a_{N+1}|$. By the hypothesis, $|b + a_{N+1}| \leq |b| + |a_{N+1}|$. We know $|b| = |a_1 + \ldots + a_N| \leq |a_1| + \ldots + |a_N|$, so

$$|a_1 + \ldots + a_{N+1}| = |b + a_{N+1}|$$

$$\leq |b| + |a_{N+1}|$$

$$= |a_1 + \ldots + a_N| + |a_{N+1}|$$

$$\leq |a_1| + \ldots + |a_N| + |a_{N+1}|$$

So by induction, the claim holds.

3

3.a

(i). No. (ii). Yes, 7.

3.b

(i). Yes. (ii). Yes, 2.

3.c

(i). No. (ii). Yes, 90.

3.d

(i). No. (ii). Yes, 10.

3.e

(i). No. (ii). Yes, 1.

4

4.a

(i). No. (ii). Yes, -1.

4.b

(i). Yes. (ii). Yes, 1.

4.c

(i). No. (ii). No.

4.d

(i). No. (ii). No.

4.e

(i). No. (ii). Yes, 1.

5

Suppose not. Then there is some $x \in S \cap T$. $x \in S$, so $x \ge \inf S$. Similarly, $s \in T$, so $x \le \sup T$. Thus we have $x \le \sup T < \inf S \le x$, so x < x, a contradiction, and so $S \cap T = \emptyset$, as desired.

6

Yes: $S = (0, 1), T = \{0, 1\}.$

7

We know that if $a,b \in \mathbb{R}$ such that a < b, then there exists $q \in \mathbb{Q}$ with a < q < b.

Suppose S did have a maximum element, say s. $s \in \mathbb{Q} \subseteq \mathbb{R}$, so by the denseness of \mathbb{Q} in \mathbb{R} , there exists $r \in \mathbb{Q}$ such that $q < r < \sqrt{2}$. We see by the definition of s that it contains r, so q is not the maximum element of S, a contradiction, and so S has no maximum element.

8

We consider two cases: a < 1, and $a \ge 1$.

Case a < 1: $a \neq 0$, so there must be some $n \in \mathbb{N}$ such that an > 1. Then $a > \frac{1}{n}$. $n \geq 1$, and a < 1, so we also have n > a. Thus $\frac{1}{n} < a < n$, as desired.

Case $a \ge 1$: Simply choose $n = \lceil (a) \rceil + 1$. $n \ge 2$, and $a \ge 1$, so $\frac{1}{n} \le \frac{1}{2} < a$, so we have $\frac{1}{n} < a < n$, as desired.

9

$$\left[\frac{1}{2}\left(a+\frac{2}{a}\right)\right]^2 > 2:$$

$$\left[\frac{1}{2}\left(a+\frac{2}{a}\right)\right]^{2} = \left[\frac{1}{2a}\left(a^{2}+2\right)\right]^{2}$$

$$= \frac{1}{4a^{2}}\left(a^{2}+2\right)^{2}$$

$$= \frac{1}{4a^{2}}\left(a^{4}+4a^{2}+4\right)$$

$$= \frac{a^{2}}{4}+1+\frac{1}{a^{2}}$$

$$> 2+\frac{1}{a^{2}}$$

$$\frac{1}{2}\left(a + \frac{2}{a}\right) < a:$$

$$\frac{1}{2}\left(a+\frac{2}{a}\right) = \frac{a}{2} + \frac{1}{a}$$

$$= \frac{a}{2} + \frac{a}{a^2}$$

$$< \frac{a}{2} + \frac{a}{2}$$

$$= a$$

 $\left[4/\left(a+\frac{2}{a}\right)\right]^2 < 2:$

$$\left[4/\left(a+\frac{2}{a}\right)\right]^{2} = \left(\frac{4a}{a^{2}+2}\right)^{2}$$

$$= \frac{16a^{2}}{a^{4}+4a^{2}+4}$$

$$< \frac{32}{4+8+4}$$

$$= 2$$

 $a < 4/\left(a + \frac{2}{a}\right):$

$$\frac{4}{a + \frac{2}{a}} = \frac{4}{a + \frac{2}{a}}$$
$$= \frac{4a}{a^2 + 2}$$
$$> \frac{4a}{2 + 2}$$
$$= a$$

If $a^2 > 2$, then $\left[\frac{1}{2}\left(a + \frac{2}{a}\right)\right]^2 > 2$, so it is not in S, a contradiction, since $0 \le \frac{1}{2}\left(a + \frac{2}{a}\right) < a = \sup S$.

If $a^2 < 2$, then $0 \le \left[4/\left(a + \frac{2}{a}\right)\right]^2 < 2$, so it is in S, a contradiction, since $\sup S = a < 4/\left(a + \frac{2}{a}\right)$ So it must be the case that $a^2 = 2$, as desired.