Calculus I

Lorenzo Vaccarecci

A.A. 2022/2023

Indice

1	Noz	ioni di Base					
	1.1	Proprietà di \mathbb{R}					
	1.2	Grafici					
	1.3	Massimi, minimi, estremi superiori e inferiori					
2	Funzioni 5						
	2.1	Iniettività, surgettività, bigettività					
	2.2	Funzioni limitate					
	2.3	Funzioni particolari					
		2.3.1 Funzione pari					
		2.3.2 Funzione dispari					
		2.3.3 Funzione monotòna					
		2.3.4 Funzione composta					
		2.3.5 Funzione inversa					
		2.3.6 Funzioni elementari					
		2.3.7 Funzioni esponenziali e logaritmiche					
		2.3.8 Funzioni trigonometriche					
3	Limiti e continuità						
•	3.1	Intorno					
	3.2	Teorema della permanenza del segno					
	3.3	Limiti					
	3.4	Secondo Teorema del confronto (dei carabinieri)					
	3.5	Primo Teorema del confronto (caso infinito)					
	3.6	Limite di funzioni monotone					
	3.7	Continuità					
	3.8	Discontinuità					
	3.9	Continuità della funzione composta					
	3.10	Teorema degli zeri					
		Valori intermedi					
		Del massimo e del minimo o di Weierstrass					
	0.12						
4	Der	ivate 1					
	4.1	Introduzione					
	4.2	Derivate destra e sinistra					
	4.3	Derivata funzione composta					
	4.4	Massimi e minimi relativi					
	4.5	Teorema di Fermat					
	4.6	Teorema di Rolle					
	4.7	Teorema di Lagrange					
	4.8	Primo teorema di de l'Hôpital					

	4.9	Secondo teorema di de l'Hôpital
	4.10	Limite della derivata
	4.11	Criterio di monotonia
	4.12	Concavità e convessità
5	Inte	grali 1-
	5.1	Integrale di Riemann
		5.1.1 Interpretazione geometrica
	5.2	Teorema della media integrale
	5.3	Teorema fondamentale del calcolo integrale
	5.4	Calcolo di aree mediante l'integrale definito

Nozioni di Base

1.1 Proprietà di \mathbb{R}

- 1. **Densità di** \mathbb{Q} in \mathbb{R} : $\forall x, y \in \mathbb{R}$ $\exists q \in \mathbb{Q}$ tale che x < q < y
- 2. **Densità di** $\mathbb{R} \mathbb{Q}$ **in** \mathbb{R} : $\forall x, y \in \mathbb{R}$ $\exists z \in \mathbb{R} \mathbb{Q}$ tale che x < z < y
- 3. Dato $x \in \mathbb{R}$, esiste un *unico* elemento $m \in \mathbb{Z}$ tale che $m \le x < m + 1$. Tale m è detto **parte intera** di x e si indica con m = [x]

1.2 Grafici

L'asse orizzontale è detto asse delle ascisse e quello verticaale asse delle ordinate.

- (-a,b) è simmetrico a (a,b) rispetto all'asse delle ordinate
- (a, -b) è simmetrico a (a, b) rispetto all'asse delle ascisse
- (-a, -b) è simmetrico a (a, b) rispetto all'origine
- (b,a) è simmetrico a (a,b) rispetto alla bisettrice del primo e terzo quadrante

1.3 Massimi, minimi, estremi superiori e inferiori

Definizione:

Sia E un insieme contenuto in \mathbb{R} ; E si dice **limitato superiormente** se esiste un numero molto grande M per cui risulti che $\forall x \in E, x \leq M$. Il numero M si dice **maggiorante** di E. L'insieme di E si dice **limitato inferiormente** se esiste un numero molto piccolo m per cui risulti che $\forall x \in E, x \geq m$. Il numero m si dice **minorante** di E.

Se sono verificate entrambe le condizioni ($\forall x \in E, m \leq x \leq M$), allora E si dice **limitato**. **Esempio:** Gli intervalli (0,1] e (-1,2) sono insiemi limitati, mentre $(0,+\infty)$ è limitato inferiormente e $(-\infty,0)$ è limitato superiormente.

- Massimo: Sia E un sottoinsieme non vuoto di \mathbb{R} . Diremo che E ammette massimo se $\exists x_M \in E$ tale che $\forall x \in E, x \leq x_M$. L'elemento x_M di E (necessariamente unico) si dice il massimo dell'insieme E e si denota con max E.
- Minimo:Sia E un sottoinsieme non vuoto di \mathbb{R} . Diremo che E ammette minimo se $\exists x_m \in E$ tale che $\forall x \in E, x_m \leq x$. L'elemento x_m di E (necessariamente unico) si dice il minimo dell'insieme E e si denota con min E.

Esempio:

L'intervallo (0,1] ha massimo uguale a 1. Non ha minimo. L'intervallo (-1,2) non ha nè massimo nè minimo e l'intervallo $(0,+\infty)$ non ha minimo e $(-\infty,1)$ non ha massimo.

Definizione:

Sia E un sottoinsieme non vuoto e superiormente limitato di \mathbb{R} . Il minimo dell'insieme dei maggiornati di E si chiama **estremo superiore** di E e si denota con sup E.

Sia E un sottoinsieme non vuoto e inferiormente limitato di \mathbb{R} . Il massimo dell'insieme dei minoranti di E si chiama **estremo inferiore** di E e si denota con inf E. Se gli estremi esistono sono **unici**.

- Un insieme non vuoto e superiormente limitato ha massimo se e solo se il suo estremo superiore appartiene all'insieme.
- Un insieme non vuoto e inferiormente limitato ha minimo se e solo se il suo estremo inferiore appartiene all'insieme.

Esempio generale:

Sia E = [-1,3). L'insieme dei maggioranti di E è $[3,+\infty]$ il minimo di questo insieme è 3. Quindi 3 è l'estremo superiore di E ma non il suo massimo. L'insieme dei minoranti di E è $(-\infty,-1]$ il massimo di questo insieme è -1. Quindi -1 è l'estremo inferiore di E ed è il suo minimo.

Funzioni

$$f:A\to B$$

- A è il dominio di f
- B è il codominio di f

2.1 Iniettività, surgettività, bigettività

Una funzione $f: A \to B$ è detta **iniettiva** se $\forall x_1, x_2 \quad x_1 \neq x_2$ di A risulta che $f(x_1) \neq f(x_2)$, ossia se punti distinti hanno immagini distinte. (E' iniettiva se la funzione è continua e solo se è strettamente monotona)

La funzione f è detta surgettiva se $\forall y \in B \ \exists x \in A | y = f(x)$; ossia ogni elemento del codominio è immagine di qualche punto del dominio.

La funzione f è detta **bigettiva** se è sia iniettiva che surgettiva.

2.2 Funzioni limitate

Una funzione f si dice **limitata superiormente** se l'immagine è limitata superiormente cioè $\exists M \in \mathbb{R} | \forall x \in A \quad f(x) \leq M$

Una funzione f si dice **limitata inferiormente** se l'immagine è limitata inferiormente cioè $\exists m \in \mathbb{R} | \forall x \in A \quad f(x) \geq m$

Una funzione f si dice **limitata** se è sia limitata superiormente che inferiormente cioè $\forall x \in A \quad m \leq f(x) \leq M$.

2.3 Funzioni particolari

2.3.1 Funzione pari

- 1. $f(x) = f(-x) \quad \forall x \in \text{dom}(f)$
- 2. Simmetrico rispetto all'asse delle ordinate

2.3.2 Funzione dispari

- 1. $f(x) = -f(-x) \quad \forall x \in \text{dom}(f)$
- 2. Simmetrico rispetto all'origine

2.3.3 Funzione monotòna

• Descrescente: $\forall x_1, x_2 \in \text{dom}(f) \quad x_1 < x_2 \to f(x_1) \le f(x_2)$

• Crescente: $\forall x_1, x_2 \in \text{dom}(f)$ $x_1 < x_2 \to f(x_1) \ge f(x_2)$

2.3.4 Funzione composta

• $dom(g \circ f) = \{x \in dom(f) : f(x) \in dom(g)\}$

2.3.5 Funzione inversa

Una funzione f iniettiva è detta invertibile (f^{-1}) .

1. $dom(f^{-1}) = img(f)$

2. $y = f(x) \iff x = f^{-1}(y)$

3. $(f^{-1} \circ f)(x) = x \quad \forall x \in \text{dom}(f)$

4. $(f \circ f^{-1})(y) = y \quad \forall y \in \text{img}(f)$

Sia f una funzione strettamente monotòna. Allora f è invertibile e la sua inversa ha la stessa monotonia.

2.3.6 Funzioni elementari

 \bullet *n* dispari

$$- \sqrt[n]{x^n} = x \quad \forall x \in \mathbb{R}$$
$$- (\sqrt[n]{x})^n = x \quad \forall x \in \mathbb{R}$$

 \bullet *n* pari

$$- \sqrt[n]{x^n} = |x| \quad \forall x \in \mathbb{R}$$
$$- (\sqrt[n]{x})^n = x \quad \forall x \in [0, +\infty)$$

$$(a^m)^{\frac{1}{n}} = \sqrt[n]{a^m}$$

2.3.7 Funzioni esponenziali e logaritmiche

• Se a > 1 e $x \in \mathbb{R}$

$$a^x = \sup\{a^q : q \in \mathbb{Q}, q \le x\}$$

• Se 0 < a < 1

$$a^x = \frac{1}{\left(\frac{1}{a}\right)^x}$$

La funzione esponenziale con base $a \neq 1$ è invertibile perchè è strettamente monotona. La sua inversa è la funzione logaritmica di base a e si indica con $\log_a x$.

6

 $e \simeq 2.72$

2.3.8 Funzioni trigonometriche

• Formule di addizione e sottrazione

$$-\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$-\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \pm \sin(\alpha)\sin(\beta)$$

• Formule di duplicazione

$$-\sin(2x) = 2\sin(x)\cos(x)$$

$$-\cos(2x) = 2\cos^2(x) - 1$$

•
$$\cos(x+\pi) = -\cos(x)$$

•
$$\sin(x+\pi) = -\sin(x)$$

•
$$\cos(x + \frac{\pi}{2}) = -\sin(x)$$

•
$$\sin(x + \frac{\pi}{2}) = \cos(x)$$

•
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

La funzione tangente è dispari e strettamente crescente in ogni intervallo $(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi),k\in\mathbb{Z}$

Limiti e continuità

3.1 Intorno

Sia $x_0 \in \mathbb{R}$ e sia r > 0 un numero reale. Chiameremo **intorno di** x_0 **di raggio** r l'intervallo aperto

$$I_r(x_0) = (x_0 - r, x_0 + r) = \{x \in \mathbb{R} : |x - x_0| < r\}$$

3.2 Teorema della permanenza del segno

$$\lim_{x \to x_0} f(x) = l \quad \lim_{x \to x_0} g(x) = m$$

Se l < m allora esiste un intorno I tale che $\forall x \in I(x_0) - x_0 : f(x) < g(x)$

3.3 Limiti

$\lim_{x \to x_0} f(x) = l$		
$l \in \mathbb{R}$	$\forall \varepsilon > 0 \exists \delta > 0 \text{ t.c } 0 < x - x_0 < \delta \text{ e } x \in \text{dom}(f)$	$ f(x) - l < \varepsilon$
$l = +\infty$	$\forall M > 0 \exists \delta > 0 \text{ t.c } 0 < x - x_0 < \delta \text{ e } x \in \text{dom}(f)$	f(x) > M
$l = -\infty$	$\forall M > 0 \exists \delta > 0 \text{ t.c } 0 < x - x_0 < \delta \text{ e } x \in \text{dom}(f)$	f(x) < -M
$\lim_{x \to +\infty} f(x) = l$		
$l \in \mathbb{R}$	$\forall \varepsilon > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x > b \text{ e } x \in \text{dom}(f)$	$ f(x) - l < \varepsilon$
$l = +\infty$	$\forall M > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x > b \text{ e } x \in \text{dom}(f)$	f(x) > M
$l=-\infty$	$\forall M > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x > b \text{ e } x \in \text{dom}(f)$	f(x) < -M
$\lim_{x \to -\infty} f(x) = l$		
$l \in \mathbb{R}$	$\forall \varepsilon > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x < b \text{ e } x \in \text{dom}(f)$	$ f(x) - l < \varepsilon$
$l = +\infty$	$\forall M > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x < b \text{ e } x \in \text{dom}(f)$	f(x) > M
$l = -\infty$	$\forall M > 0 \exists b \in \mathbb{R} \text{ t.c. } \forall x < b \text{ e } x \in \text{dom}(f)$	f(x) < -M

- $\alpha > 0$
 - $-\lim_{x\to 0^+} x^\alpha = 0$
 - $-\lim_{x\to+\infty} x^{\alpha} = +\infty$
- *a* > 1
 - $-\lim_{x\to+\infty} a^x = +\infty$
 - $-\lim_{x\to-\infty} a^x = 0$
 - $-\lim_{x\to 0^+} \log_a(x) = -\infty$

$$-\lim_{x\to+\infty}\log_a(x) = +\infty$$

• 0 < a < 1

$$-\lim_{x\to+\infty} a^x = 0$$

$$-\lim_{x\to-\infty} a^x = +\infty$$

$$-\lim_{x\to 0^+} \log_a(x) = +\infty$$

$$-\lim_{x\to+\infty}\log_a(x) = -\infty$$

3.4 Secondo Teorema del confronto (dei carabinieri)

$$f(x) \le g(x) \le h(x) \quad \forall x \in I(x_0) - \{x_0\}$$

Se

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \text{ allora } \lim_{x \to x_0} g(x) = l$$

3.5 Primo Teorema del confronto (caso infinito)

$$f(x) \le g(x) \quad \forall x \in I(x_0) - \{x_0\}$$

Se

$$\lim_{x \to x_0} f(x) = +\infty \text{ allora } \lim_{x \to x_0} g(x) = +\infty$$

se

$$\lim_{x \to x_0} g(x) = -\infty \text{ allora } \lim_{x \to x_0} f(x) = -\infty$$

3.6 Limite di funzioni monotone

• Funzione crescente

$$- \lim_{x \to c^{+}} f(x) = \inf\{f(x) : x \in I_{+}(c), x > c\}$$

$$- \lim_{x \to c^{-}} f(x) = \sup\{f(x) : x \in I_{-}(c), x < c\}$$

• Funzione decrescente

$$-\lim_{x\to c^+} f(x) = \sup\{f(x) : x \in I_+(c), x > c\}$$

$$- \lim_{x \to c^{-}} f(x) = \inf\{f(x) : x \in I_{-}(c), x < c\}$$

3.7 Continuità

Si dice che f è continua in x_0 se esiste il limite di f in x_0 ed è uguale a $f(x_0)$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Sia f una funzione continua nell'intervallo I allora la sua immagine f(I) è un intervallo.

3.8 Discontinuità

- Di prima specie: $\lim_{x\to x_0} f(x)$ esiste ma $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$
- Eliminabile: $\lim_{x\to x_0} f(x)$ esiste ma $\lim_{x\to x_0} f(x) \neq f(x_0)$

Una funzione può non essere definita in un punto x_0 ma essere continua in esso, in tal caso si scrive una nuova funzione f^* :

$$f^*(x) = \begin{cases} f(x) & x \in \text{dom}(f) \\ l & x = x_0 \end{cases}$$

3.9 Continuità della funzione composta

$$\lim_{x \to x_0} f(x) = y_0$$

- 1. se $y_0 \in \mathbb{R}$, g è continua in y_0
- 2. se $y_0 = \pm \infty$, esiste (finito o infinito) $\lim_{y \to y_0} g(y)$

Allora esiste il limite per $x \to x_0$ della funzione composta $g \circ f$ e si ha:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x)) = \lim_{y \to y_0} g(y)$$

3.10 Teorema degli zeri

Sia f una funzione continua su un intervallo chiuso e limitato [a, b]. Se f assume valori discordi agli estremi dell'intervallo allora esiste uno zero di f nell'intervallo aperto (a, b). Siano f e g due funzioni continue in un intervallo chiuso e limitato [a, b] tali che f(a) < g(a) e f(b) > g(b). Allora esiste uno zero nell'intervallo (a, b).

3.11 Valori intermedi

Sia f una funzione continua su un intervallo che assume i valori distinti α e β , allora assume tutti i valori compresi fra α e β .

3.12 Del massimo e del minimo o di Weierstrass

Sia f una funzione continua nell'intervallo chiuso e limitato [a,b]. Allora f assume massimo e minimo.

Derivate

4.1 Introduzione

Coefficiente angolare della retta tangente al grafico nel punto P:

$$m_{tan} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Sia f una funzione e siano x_0 interno al suo dominio e il rapporto $\frac{f(x_0+h)-f(x_0)}{h}$ dove h è detto **rapporto incrementale**. Si dice che f è derivabile in x_0 se esiste finito il limite del rapporto incrementale, che si indica con $f'(x_0)$:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Usando il cambiamento di variabile $x = x_0 + h$ si può riscrivere il limite:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Se una funzione f è derivabile in un punto x_0 allora esiste la retta, non verticale, tangente al grafico di f nel punto $(x_0, f(x_0))$, ed ha equazione:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

- Se una funzione f è derivabile in un punto x_0 allora è continua in quel punto.
- Se f non è continua in un punto allora non può essere derivabile in quel punto.
- La continuità non implica la derivabilità (viceversa si)

4.2 Derivate destra e sinistra

Sia $[x_0, x_0 + \delta) \subset \text{dom}(f)$. Si definisce **derivata destra** di f in x_0 il limite, se esiste finito:

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

Analogalmente si definisce la derivata sinistra che si indica con $f'_{-}(x_0)$.

Se le derivate destra e sinistra in un punto x_0 sono (finite e) diverse, allora si dice che in x_0 la funzione ha un punto angoloso. Osserviamo infine che una funzione è derivabile se e solo se esistono le derivate destra e sinistra e sono uguali.

4.3 Derivata funzione composta

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

4.4 Massimi e minimi relativi

- il punto x_0 è detto **punto di massimo relativo** se esiste un intorno $I_{\delta}(x_0) = (x_0 \delta, x_0 + \delta)$ tale che $\forall x \in \text{dom}(f) \cap I_{\delta}(x_0) \quad f(x_0) \geq f(x)$
- il punto x_0 è detto **punto di minimo relativo** se esiste un intorno $I_{\delta}(x_0) = (x_0 \delta, x_0 + \delta)$ tale che $\forall x \in \text{dom}(f) \cap I_{\delta}(x_0) \quad f(x_0) \leq f(x)$

Un punto x_0 interno al dominio di f si dice un punto critico di f se f è derivabile in x_0 e $f'(x_0) = 0$.

4.5 Teorema di Fermat

Sia f definita in un intorno nel punto x_0 e derivabile in x_0 . Se x_0 è un punto di estremo relativo per f allora $f'(x_0) = 0$

4.6 Teorema di Rolle

Sia f continua nell'intervallo chiuso e limitato [a, b], derivate nell'intervallo aperto (a, b) e tale che f(a) = f(b). Allora esiste un punto x_0 nell'intervallo (a, b) t.c. $f'(x_0) = 0$

4.7 Teorema di Lagrange

Sia f continua nell'intervallo chiuse e limitato [a, b] e derivabile nell'intervallo aperto (a, b). Allora esiste un punto x_0 nell'intervallo aperto (a, b) tale che:

$$f(b) - f(a) = f'(x_0)(b - a)$$

4.8 Primo teorema di de l'Hôpital

Forma indeterminata $\frac{0}{0}$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.9 Secondo teorema di de l'Hôpital

Forma indeterminata $\frac{\infty}{\infty}$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

12

4.10 Limite della derivata

$$\lim_{x \to x_0} f'(x) = l \quad \text{allora} \quad \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$$

Segue che se una funzione f è continua in x_0 ed esiste il limite $\lim_{x\to x_0} f'(x) = l$ si ha:

- se $l \in \mathbb{R}$ allora f è derivabile in x_0 e si ha $f'(x_0) = l$
- se $l = \pm \infty$ allora f non è derivabile in x_0

4.11 Criterio di monotonia

- 1. se f è crescente[decrescente] in I allora $f'(x) \geq 0[f'(x) \leq 0]$ per ogni x in I
- 2. se $f'(x) \ge 0[f'(x) \le 0]$ in I allora f è crescente[decrescente] su I
- 3. se f'(x) > 0[f'(x) < 0] in I allora f è strettamente crescente[decrescente] su I

I punti 1 e 2 si possono rovesciare:

- 1. $f'(x) \ge 0 \quad \forall x \in I \iff f$ è crescente su I
- 2. $f'(x) \le 0 \quad \forall x \in I \iff f$ è decrescente su I

Mentre non è possibile rovesciare il punto 3.

4.12 Concavità e convessità

Sia f una funzione derivabile in x_0 .

Si dice che f è convessa in x_0 se esiste un intorno $I_{\delta}(x_0)$ tale che:

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0)$$

Si diche che f è concava se esiste un intorno $I_{\delta}(x_0)$ tale che:

$$f(x) \le f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0)$$

Si diche che f ha un flesso in x_0 se esiote un intorno $I_{\delta}(x_0)$ tale che:

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0), x > x_0$$

$$f(x) \le f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0), x < x_0$$

oppure

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0), x < x_0$$

$$f(x) \le f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I_{\delta}(x_0), x > x_0$$

Integrali

Sia f una funzione definita sull'intervallo aperto finito o infinito I. Una funzione $F:I\to\mathbb{R}$ è detta una primitiva di f in I se è derivabile in I

$$F'(x) = f(x) \quad x \in I$$

Ogni funzione continua su un intervallo ammette primitiva.

Sia f una funzione che ammette una primitiva F su un intervallo I. Allora la funzione

$$F(x) + c \quad c \in \mathbb{R}$$

è una primitiva di f in I. Viceversa se F e G sono due primitive di f sull'intervallo I allora esiste una costance c tale che G(x) - F(x) = c.

L'insieme di tutte le primitive di f in un intervallo I si chiama **integrale indefinito** di f sull'intervallo I e si indica con il simbolo:

$$\int f(x)dx$$

La funzione f è detta funzione integranda. La variabile x è detta variabile di integrazione.

$$\int f(x)dx = F(x) + c$$

5.1 Integrale di Riemann

Un insieme di punti $\{x_0, x_1, \ldots, x_n\}$ di intervallo [a, b] tali che $x_0 = a < x_1 < \ldots < x_n = b$ è detto **partizione di** [a, b] e verrà denotata con $P(x_0 \ldots x_n)$ o semplicemente con P. Sia f tale che $m \le f(x) \le M$ in [a, b]. Date due partizioni P e Q di [a, b] si ha

$$m(b-a) \le s(f,P) \le S(f,Q) \le M(b-a)$$

Una funzione f limitata sull'intervallo [a, b] è detta intergabile in [a, b] se esiste un **unico** numero reale I tale che per ogni partizione P di [a, b] si ha

$$s(f,P) \leq I \leq S(f,P)$$

e tale numero è detto integrale definito di f in [a, b] e si indica con il simbolo

$$\int_{a}^{b} f(x)dx$$

5.1.1 Interpretazione geometrica

Se $f \ge 0$ la regione T del piano definita da

$$T = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, 0 \le y \le f(x)\}$$

$$T = \int_{a}^{b} f(x)dx$$

Se $f(x) \leq 0$ in [a, b] si pone

$$T = -\int_{a}^{b} f(x)dx$$

Se f non ha segno costante si definisce trapezoide di f su [a,b] la regione T dl piano definita da

$$T = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, 0 \le y \le f(x) \lor f(x) \le y \le 0\}$$

Sono integrabili sull'intervallo limitato I

- 1. le funzioni limitate in I che hanno al più un numero finito di punti di discontinuità
- 2. le funzioni monotone limitate su I

5.2 Teorema della media integrale

Sia f una funzione integrabile sull'intervallo (a, b) e siano

$$m = \inf_{x \in (a,b)} f(x) \quad M = \sup_{x \in (a,b)} f(x)$$

allora si ha

$$m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$$

Se inoltre f è continua in [a, b] allora esiste un punto $c \in (a, b)$ tale che

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

5.3 Teorema fondamentale del calcolo integrale

$$\forall x \in I \quad F'(x) = f(x)$$

Se f è una funzione continua si ha che la derivata della sua funzione integrale è f

5.4 Calcolo di aree mediante l'integrale definito

Siano f e g due funzioni integrabili sull'intervallo [a,b] e tali che $f(x) \leq g(x)$ per $x \in [a,b]$. Si vuole calcolare l'area della regione T definita da

$$T=\{(x,y): a\leq x\leq b, g(x)\leq y\leq f(x)\}$$

$$T = \int_{a}^{b} (f(x) - g(x))dx$$