(4)

MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 5

Abgabe: 23.11.2021 bis 15:00 Uhr in der Übungsgruppe. **Bitte in 2-3er Gruppen abgeben**.

Hausaufgaben (20 Punkte)

A5.1 (a) Zeigen Sie:
$$\sqrt[n]{n} \to 1$$
 für $n \to \infty$. (4)

(b) Folgern Sie aus a) für
$$a > 0$$
: $\sqrt[n]{a} \to 1$ für $n \to \infty$. (2)

Hinweis: Setzen Sie $c_n := \sqrt[n]{n} - 1$ und zeigen Sie

$$n = (1 + c_n)^n \ge 1 + \frac{n(n-1)}{2}c_n^2.$$

Folgern Sie, dass $c_n \to 0$.

A5.2 Wir definieren die Folgen

$$a_n := \left(1 + \frac{1}{n}\right)^n, \qquad b_n := \left(1 + \frac{1}{n}\right)^{n+1}.$$

Zeigen Sie, dass $(a_n)_n$ monoton wachsend und $(b_n)_n$ monoton fallend ist. Folgern Sie, dass $(a_n)_n$ und $(b_n)_n$ konvergent sind und denselben Grenzwert haben.

Hinweis: Bei der Monotonie ist die Bernoullische Ungleichung hilfreich.

A5.3 Beweisen oder widerlegen Sie die Konvergenz der folgenden Reihen. Geben Sie bei Reihe v) auch den Wert der Reihe an. (10)

$$i) \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} \qquad ii) \sum_{n=1}^{\infty} \frac{n^2 - 3n + 1}{n^3 + n^2 - n} \qquad ii) \sum_{n=1}^{\infty} \frac{2^n}{n^n}$$

$$iv) \sum_{n=1}^{\infty} \frac{n!}{n^n} \qquad v) \sum_{n=1}^{\infty} \frac{2^{2n+1}}{9^{n-2}}.$$