Mini project 2: primary productivity in coastal waters

In this project you're again given a dataset and some questions. The data for this project come from the EPA's National Aquatic Resource Surveys, and in particular the National Coastal Condition Assessment (NCCA); broadly, you'll do an exploratory analysis of primary productivity in coastal waters.

By way of background, chlorophyll A is often used as a proxy for primary productivity in marine ecosystems; primary producers are important because they are at the base of the food web. Nitrogen and phosphorus are key nutrients that stimulate primary production.

In the data folder you'll find water chemistry data, site information, and metadata files. It might be helpful to keep the metadata files open when tidying up the data for analysis. It might also be helpful to keep in mind that these datasets contain a considerable amount of information, not all of which is relevant to answering the questions of interest. Notice that the questions pertain somewhat narrowly to just a few variables. It's recommended that you determine which variables might be useful and drop the rest.

As in the first mini project, there are accurate answers to each question that are mutually consistent with the data, but there aren't uniquely correct answers. You will likely notice that you have even more latitude in this project than in the first, as the questions are slightly broader. Since we've been emphasizing visual and exploratory techniques in class, you are encouraged (but not required) to support your answers with graphics.

The broader goal of these mini projects is to cultivate your problem-solving ability in an unstructured setting. Your work will be evaluated based on the following:

- choice of method(s) used to answer questions;
- clarity of presentation;
- code style and documentation.

Please write up your results separately from your codes; codes should be included at the end of the notebook.

Part 1: dataset

Merge the site information with the chemistry data and tidy it up. Determine which columns to keep based on what you use in answering the questions in part 2; then, print the first few rows here (but *do not include your codes used in tidying the data*) and write a brief description (1-2 paragraphs) of the dataset conveying what you take to be the key attributes. Direct your

description to a reader unfamiliar with the data; ensure that in your data preview the columns are named intelligibly.

Suggestion: export your cleaned data as a separate .csv file and read that directly in below, as in: pd.read_csv('YOUR DATA FILE').head().

```
import pandas as pd
from IPython.display import HTML
import base64, io, IPython
from PIL import Image as PILImage
from IPython.display import Image
from IPython import display
In [2]: # show a few rows of clean data
pd.read_csv('out').head()
```

Out[2]:

•		UID	State	Date collected	Waterbody name	Region	Water depth (in meters)	Latitude	Longitude	Ammonia	Chlorophy /
	0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471	0.000	3.3
	1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527	0.010	2.4
	2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132	0.000	3.8
	3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443	0.000	6.1
	4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117	0.002	9.7

The dataset above contains amounts of various nutrients (like ammonia, nitrogen, and phosphate) and levels of productivity (via chlorophyll A levels) in several bodies of water across the US during the summer months of 2010. Each observation includes date collected as well as longitude/latidude.

Part 2: exploratory analysis

Answer each question below and provide a visualization supporting your answer. A description and interpretation of the visualization should be offered.

Comment: you can either designate your plots in the codes section with clear names and reference them in your answers; or you can export your plots as image files and display them in markdown cells.

What is the apparent relationship between nutrient availability and productivity?

Comment: it's fine to examine each nutrient -- nitrogen and phosphorus -- separately, but do consider whether they might be related to each other.

Total nitrogen and total phosphorous are moderately correlated with each other. Ammonia has low-moderate correlation with nutrient availability (i.e. nitrogen and phosphorus levels), while chlorophyll A has moderate-high correlation with nutrient availability.

Are there any notable differences in available nutrients among U.S. coastal regions?

Generally, the west has slightly higher phosphorus and ammonia levels, while the east has higher nitrogen levels. Upon further investigation, the west may have higher phosphorus levels due to agricultural malpractice, such as high runoff rates.

The west also has lower variability in ammonia levels, whereas the east has many outliers, specifically the northeast.

One can see that for nitrogen and phosphorus, but nitrogen especially, the Great Lakes tend to have many more outliers than the other regions. This may be due to a lower flow of fresh water to carry nutrients compared to the currents of the oceans, which allows higher opportunity for buildup of nutrients.

For the Gulf, the distribution is incredibly gaussian, but there is one outlier that stands apart from the rest. This would be interesting to investigate.

It must be noted that all but one outlier are in the upper-tail.

Based on the 2010 data, does productivity seem to vary

geographically in some way?

If so, explain how; If not, explain what options you considered and ruled out.

Just like for the nutrients, the Great Lakes region features the most outliers with the lowest median chlorophyll A levels. However, each region features many outliers. The west does not seem to have high chlorophyll concentrations compared to the east and the gulf.

This is most likely due to the corresponding nutrient levels.

How does primary productivity in California coastal waters change seasonally in 2010, if at all?

Does your result make intuitive sense?

There is a slight upward trend, though the variance is high. This might make sense as harvesting in California is typically done in the autumn, so there is a higher risk for fertilizer runoff as mentioned before. This runoff of fertilizer, which is high in phosphorus, may be responsible for the high productivity levels.

Pose and answer one additional question.

What's the relationship between water depth and productivity?

There seems to be a generally negative relationship in chlorophyll a levels and water depth, with intensely high levels in shallow watters (< 20 meters).

Codes

```
import pandas as pd
In [6]:
        import numpy as np
        import altair as alt
        ncca raw = pd.read csv('assessed ncca2010 waterchem.csv')
        ncca_sites = pd.read_csv('assessed_ncca2010_siteinfo.csv')
In [7]: ncca_raw[ncca_raw.PARAMETER_NAME == 'Ammonia'].UNITS.describe()
                    1091
        count
Out[7]:
        unique
                       1
               mg N/L
        top
                 1091
        freq
        Name: UNITS, dtype: object
```

1

ncca_raw In [8]: Out[8]: UID SITE_ID STATE DATE_COL BATCH_ID PARAMETER PARAMETER_NAME **RESUL** NCCA10-0 59 CA 7/1/2010 100714.1 NTL Total Nitrogen 0.40750 1111 NCCA10-1 59 $\mathsf{C}\mathsf{A}$ 7/1/2010 100708.1 NO3NO2 Nitrate/Nitrite 0.01400 1111 NCCA10-Dissolved Inorganic 2 SRP 59 $\mathsf{C}\mathsf{A}$ 7/1/2010 100708.1 0.02800 1111 Phosphate NCCA10-Dissolved Inorganic 3 59 CA 7/1/2010 IM_CALCULATED DIN 0.01400 Nitrogen 1111 NCCA10-59 PTL 4 $\mathsf{C}\mathsf{A}$ 7/1/2010 100714.1 Total Phosphorus 0.06125 1111 NCCA10-16731 7871 6/29/2010 100707.1 NTL Total Nitrogen 0.22875 CA 1108 NCCA10-**7872** 16731 PTL Total Phosphorus 0.04182 6/29/2010 100707.1 1108 NCCA10-Dissolved Inorganic 7873 16731 6/29/2010 100702.1 SRP 0.03300 Phosphate 1108 NCCA10-**7874** 16731 100701.1 NH3 Ammonia 0.01600 6/29/2010 1108 NCCA10-**7875** 16731 CA 6/29/2010 100702.1 NO3NO2 Nitrate/Nitrite 0.01200 1108 7876 rows × 18 columns 4 raw_vars = ['UID', 'STATE', 'DATE_COL', In [9]: 'PARAMETER_NAME', 'RESULT'] sites vars = ['WTBDY NM', 'NCCR REG', 'STATION_DEPTH', 'ALAT_DD', 'ALON DD'] vars_to_keep = raw_vars + sites_vars data_mod1 = pd.merge(ncca_raw, ncca_sites, In [10]: how='right', on = ['UID', 'SITE_ID', 'STATE', 'DATE_COL'])

data mod1

Out[10]:		UID	SITE_ID	STATE	DATE_COL	BATCH_ID	PARAMETER	PARAMETER_NAME	RESULT
	0	59	NCCA10- 1111	CA	1-Jul-10	NaN	NaN	NaN	NaN
	1	60	NCCA10- 1119	CA	1-Jul-10	NaN	NaN	NaN	NaN
	2	61	NCCA10- 1123	CA	1-Jul-10	NaN	NaN	NaN	NaN
	3	62	NCCA10- 1127	CA	1-Jul-10	NaN	NaN	NaN	NaN
	4	63	NCCA10- 1133	NC	9-Jun-10	NaN	NaN	NaN	NaN
	1099	2010099	NCCAGL10- GLBA10- 174	MI	NaN	NaN	NaN	NaN	NaN
	1100	2010110	NCCAGL10- GLBA10- 183	MI	NaN	NaN	NaN	NaN	NaN
	1101	2010113	NCCA10- 2326	LA	NaN	NaN	NaN	NaN	NaN
	1102	2010135	NCCA10- 2328	LA	NaN	NaN	NaN	NaN	NaN
	1103	2010141	NCCAGL10- GLBA10- 179	MI	NaN	NaN	NaN	NaN	NaN
	1104 r	ows × 45	columns						
4									+

```
4
    In [11]:
              on = 'UID'
    data_mod1a
```

Out[11]:		UID	SITE_ID_x	STATE_x	DATE_COL_x	BATCH_ID	PARAMETER	PARAMETER_NAME
	0	59	NCCA10- 1111	CA	7/1/2010	100714.1	NTL	Total Nitrogen
	1	59	NCCA10- 1111	CA	7/1/2010	100708.1	NO3NO2	Nitrate/Nitrite
	2	59	NCCA10- 1111	CA	7/1/2010	100708.1	SRP	Dissolved Inorganic Phosphate
	3	59	NCCA10- 1111	CA	7/1/2010	IM_CALCULATED	DIN	Dissolved Inorganic Nitrogen
	4	59	NCCA10- 1111	CA	7/1/2010	100714.1	PTL	Total Phosphorus
	•••							
	7883	2010099	NaN	NaN	NaN	NaN	NaN	NaN
	7884	2010110	NaN	NaN	NaN	NaN	NaN	NaN
	7885	2010113	NaN	NaN	NaN	NaN	NaN	NaN
	7886	2010135	NaN	NaN	NaN	NaN	NaN	NaN
	7887	2010141	NaN	NaN	NaN	NaN	NaN	NaN

7888 rows × 48 columns

data_mod2 = data_mod1a.loc[:,vars_to_keep_1a] In [101... In [102... data_mod2 Out[102]: UID STATE_X DATE_COL_X PARAMETER_NAME RESULT WTBDY_NM NCCR_REG STATIC 0 59 $\mathsf{C}\mathsf{A}$ 7/1/2010 Total Nitrogen 0.407500 Mission Bay West 1 59 Nitrate/Nitrite 0.014000 CA 7/1/2010 Mission Bay West Dissolved Inorganic 2 Mission Bay 59 $\mathsf{C}\mathsf{A}$ 7/1/2010 0.028000 West Phosphate Dissolved Inorganic 3 59 7/1/2010 0.014000 CA Mission Bay West Nitrogen 4 59 $\mathsf{C}\mathsf{A}$ 7/1/2010 Total Phosphorus 0.061254 Mission Bay West Lake Great **7883** 2010099 NaN NaN NaN NaN Michigan Lakes Lake Great **7884** 2010110 NaN NaN NaN NaN Michigan Lakes Fourleague **7885** 2010113 NaN NaN NaN NaN Gulf Bay Hackberry **7886** 2010135 NaN NaN NaN NaN Gulf Lake Lake Great 2010141 7887 NaN NaN NaN NaN Michigan Lakes 7888 rows × 11 columns 4 In [103... data_mod3 = data_mod2[data_mod2.STATE_x.notna()] data mod3

Out[103]:		UID	STATE_x	DATE_COL_x	PARAMETER_NAME	RESULT	WTBDY_NM	NCCR_REG	STATION
	0	59	CA	7/1/2010	Total Nitrogen	0.407500	Mission Bay	West	
	1	59	CA	7/1/2010	Nitrate/Nitrite	0.014000	Mission Bay	West	
	2	59	CA	7/1/2010	Dissolved Inorganic Phosphate	0.028000	Mission Bay	West	
	3	59	CA	7/1/2010	Dissolved Inorganic Nitrogen	0.014000	Mission Bay	West	
	4	59	CA	7/1/2010	Total Phosphorus	0.061254	Mission Bay	West	
	•••								
	7873	16731	CA	6/29/2010	Total Nitrogen	0.228750	San Diego Bay	West	
	7874	16731	CA	6/29/2010	Total Phosphorus	0.041821	San Diego Bay	West	
	7875	16731	CA	6/29/2010	Dissolved Inorganic Phosphate	0.033000	San Diego Bay	West	
	7876	16731	CA	6/29/2010	Ammonia	0.016000	San Diego Bay	West	
	7877	16731	CA	6/29/2010	Nitrate/Nitrite	0.012000	San Diego Bay	West	

7876 rows × 11 columns

```
In [104... data_mod4 = data_mod3.pivot(
        index = data_mod3.drop(['PARAMETER_NAME', 'RESULT'], axis = 1).columns,
        columns = 'PARAMETER_NAME',
        values = 'RESULT'
    ).reset_index(
    ).rename_axis(
        columns = {'PARAMETER_NAME':''}
    )
    data_mod4
```

Out[104]:

•		UID	STATE_x	DATE_COL_x	WTBDY_NM	NCCR_REG	STATION_DEPTH	ALAT_DD	ALON_DD
	0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471
	1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527
	2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132
	3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443
	4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117
	•••								
	1087	16727	MI	6/18/2010	Lake Michigan	Great Lakes	0.6	44.98607	-85.64046
	1088	16728	MI	6/25/2010	Lake Michigan	Great Lakes	2.3	44.94789	-85.94790
	1089	16729	MI	6/16/2010	Lake Michigan	Great Lakes	31.2	44.83721	-85.52862
	1090	16730	CA	6/29/2010	San Diego Bay	West	4.1	32.66443	-117.13879
	1091	16731	CA	6/29/2010	San Diego Bay	West	4.8	32.66243	-117.12712

1092 rows × 24 columns

In [105... data_mod4[data_mod4['Total Dissolved Nitrogen'].notna()]

Out[105]:

	UID	STATE_x	DATE_COL_x	WTBDY_NM	NCCR_REG	STATION_DEPTH	ALAT_DD	ALON_DD
221	587	VA	7/13/2010	Warwick River	Northeast	3.0	36.899760	-76.458730
222	588	VA	7/13/2010	Lower James River	Northeast	1.5	36.954960	-76.273370
258	639	VA	7/8/2010	Back Bay	Northeast	1.5	36.610230	-75.981980
397	819	VA	8/5/2010	Broad/Linkhorn Bay	Northeast	0.9	36.890760	-76.070580
398	820	VA	7/27/2010	Elizabeth River	Northeast	10.4	36.769190	-76.296590
399	822	VA	7/27/2010	Lower James River	Northeast	15.6	36.880450	-76.335060
659	1235	VA	7/21/2010	Pocomoke Sound	Northeast	5.2	37.381930	-76.010570
660	1236	VA	7/22/2010	Milford Haven	Northeast	10.2	37.625233	-76.206816
661	1237	VA	7/22/2010	Potomac River	Northeast	10.0	37.678733	-76.262283
662	1238	VA	7/22/2010	Pocomoke Sound	Northeast	11.5	37.620250	-76.079017
663	1239	VA	7/20/2010	Pocomoke Sound	Northeast	5.8	37.115433	-76.019100
664	1240	VA	7/21/2010	Milford Haven	Northeast	2.7	37.443450	-76.239730
665	1241	VA	7/20/2010	Pocomoke Sound	Northeast	3.4	37.238600	-76.043500
671	1251	VA	9/16/2010	Hog Island Bay	Northeast	2.5	37.365020	-75.724020
923	1794	VA	6/30/2010	Chickahominy River	Northeast	3.5	37.293100	-76.893183
924	1796	VA	8/25/2010	Pocomoke River	Northeast	1.3	37.942600	-75.642600
925	1797	VA	7/21/2010	Milford Haven	Northeast	9.9	37.397550	-76.165530
926	1798	VA	9/9/2010	Rappahannock River	Northeast	3.7	37.579900	-76.385900
927	1799	VA	7/22/2010	Pocomoke Sound	Northeast	3.1	37.595380	-75.937333
928	1800	VA	7/21/2010	York River	Northeast	7.2	37.294017	-76.327500

		UID	STATE_x	DATE_COL_x	WTBDY_NM	NCCR_REG	STATION_DEPTH	ALAT_DD	ALON_DD
_	929	1801	VA	8/25/2010	Upper James River	Northeast	6.3	37.262570	-76.981650
	942	1836	VA	8/5/2010	Upper James River	Northeast	1.0	37.363930	-77.268250
	946	1856	VA	7/15/2010	York River	Northeast	2.2	37.160067	-76.302633

23 rows × 24 columns

```
(data mod4.notna().sum()/len(data mod4)) > 0.9
          UID
                                              True
Out[106]:
          STATE x
                                              True
          DATE_COL_x
                                              True
          WTBDY NM
                                              True
          NCCR REG
                                              True
           STATION DEPTH
                                              True
          ALAT DD
                                              True
          ALON DD
                                              True
          PROVINCE
                                              True
           Ammonia
                                              True
          Chlorophyll A
                                              True
          Dissolved Inorganic Nitrogen
                                              True
          Dissolved Inorganic Phosphate
                                              True
          Dissolved Silica
                                             False
          Nitrate
                                             False
          Nitrate/Nitrite
                                              True
          Nitrite
                                             False
          Nitrogen Particulate
                                             False
          Phosphorus Particulate
                                             False
          Total Dissolved Nitrogen
                                             False
           Total Dissolved Phosphorus
                                             False
           Total Kjeldahl Nitrogen
                                             False
           Total Nitrogen
                                              True
           Total Phosphorus
                                              True
          dtype: bool
          data_mod5 = data_mod4[data_mod4.columns[(data_mod4.notna().sum()/len(data_mod4)) > 0.9
In [109...
           data = data_mod5.rename(
               columns = {
                   'STATE_x':'State',
                   'DATE_COL_x':'Date collected',
                   'WTBDY_NM':'Waterbody name',
                   'NCCR_REG': 'Region',
                   'STATION DEPTH': 'Water depth (in meters)',
                   'ALAT_DD':'Latitude',
                   'ALON_DD':'Longitude',
                   'PROVINCE': 'Province'
           data
```

Out[109]:

		UID	State	Date collected	Waterbody name	Region	Water depth (in meters)	Latitude	Longitude	Province	Amı
	0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471	Californian Province	
	1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527	Californian Province	
	2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132	Californian Province	
	3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443	Californian Province	
	4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117	Carolinian Province	
	•••										
•	1087	16727	MI	6/18/2010	Lake Michigan	Great Lakes	0.6	44.98607	-85.64046	Great Lakes Province	
1	1088	16728	МІ	6/25/2010	Lake Michigan	Great Lakes	2.3	44.94789	-85.94790	Great Lakes Province	
1	1089	16729	MI	6/16/2010	Lake Michigan	Great Lakes	31.2	44.83721	-85.52862	Great Lakes Province	
1	1090	16730	CA	6/29/2010	San Diego Bay	West	4.1	32.66443	-117.13879	Californian Province	
•	1091	16731	CA	6/29/2010	San Diego Bay	West	4.8	32.66243	-117.12712	Californian Province	

1092 rows × 16 columns

```
In [110... data_csv = data.to_csv('out', index=False)
```

2

What is the apparent relationship between nutrient availability and productivity?

```
In [111... alt.data_transformers.disable_max_rows()
Out[111]: DataTransformerRegistry.enable('default')
In [112... data.head(1)
```

```
Out[112]:
                                                       Water
                             Date Waterbody
                                                       depth
                                                                                   Province Ammonia
              UID State
                                              Region
                                                              Latitude Longitude
                         collected
                                       name
                                                          (in
                                                      meters)
                                                                                  Californian
                     CA 7/1/2010 Mission Bay
           0
               59
                                                West
                                                          2.5 32.77361 -117.21471
                                                                                                  0.0
                                                                                    Province
 In [115...
           # df for scatter
           scatter_df = data.melt(
               id_vars = ['UID', 'State', 'Date collected',
                           'Waterbody name', 'Region', 'Water depth (in meters)',
                           'Latitude', 'Longitude', 'Chlorophyll A', 'Province'],
               var_name = 'Nutrient',
               value_name = 'Level'
           )
           scatter_df
 In [116...
```

Out[116]:

	UID	State	Date collected	Waterbody name	Region	Water depth (in meters)	Latitude	Longitude	Chlorophyll A	F
0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471	3.34	Ca
1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527	2.45	Ca
2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132	3.82	Ca
3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443	6.13	Ca
4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117	9.79	Ci
•••										
6547	16727	MI	6/18/2010	Lake Michigan	Great Lakes	0.6	44.98607	-85.64046	0.75	
6548	16728	MI	6/25/2010	Lake Michigan	Great Lakes	2.3	44.94789	-85.94790	2.27	
6549	16729	MI	6/16/2010	Lake Michigan	Great Lakes	31.2	44.83721	-85.52862	1.11	
6550	16730	CA	6/29/2010	San Diego Bay	West	4.1	32.66443	-117.13879	2.11	Ca
6551	16731	CA	6/29/2010	San Diego Bay	West	4.8	32.66243	-117.12712	2.19	Ca

6552 rows × 12 columns

```
In [123... # panel
         scatter_panel_ammonia = alt.Chart(scatter_df).mark_circle(opacity = 0.2).encode(
             x = alt.X('Ammonia:Q', scale = alt.Scale(zero = True), title = ''),
             y = alt.Y('Level', scale = alt.Scale(zero = True), title = '')
          ).properties(
             width = 150,
             height = 150
             column = alt.Column('Nutrient', title = 'Ammonia Levels mg N/L')
          ).resolve_scale(x = 'independent', y = 'independent')
         # panel
          scatter_panel_Chl = alt.Chart(scatter_df).mark_circle(opacity = 0.2).encode(
             x = alt.X('Chlorophyll A', scale = alt.Scale(zero = True), title = ''),
             y = alt.Y('Level', scale = alt.Scale(zero = True), title = '')
          ).properties(
             width = 150,
             height = 150
```

```
).facet(
               column = alt.Column('Nutrient', title = 'Chlorophyll A Levels ug/L')
           ).resolve_scale(x = 'independent', y = 'independent')
In [125... scatter_panel_Chl
Out[125]:
          scatter_panel_P_N = alt.Chart(data).mark_circle(opacity = 0.2).encode(
In [126...
              x = alt.X('Total Phosphorus', scale = alt.Scale(zero = True)),
              y = alt.Y('Total Nitrogen', scale = alt.Scale(zero = True))
           ).properties(
              width = 150,
              height = 150
In [127... scatter_panel_P_N
Out[127]:
In [130... x mx = data.iloc[:, 8:15].drop(columns = 'Province')
          # long form dataframe for plotting panel
           scatter df long = x mx.melt(
              var_name = 'row',
              value name = 'row index'
           ).join(
               pd.concat([x_mx, x_mx, x_mx, x_mx, x_mx,
                          x mx, x mx, axis = 0.reset index(),
           ).drop(
              columns = 'index'
           ).melt(
              id_vars = ['row', 'row_index'],
              var name = 'col',
              value_name = 'col_index'
           )
          # panel
           scatter panel = alt.Chart(scatter df long).mark point(opacity = 0.4).encode(
              x = alt.X('row_index', scale = alt.Scale(zero = False), title = ''),
              y = alt.Y('col_index', scale = alt.Scale(zero = False), title = '')
           ).properties(
              width = 150,
              height = 75
           ).facet(
              column = alt.Column('col', title = ''),
              row = alt.Row('row', title = '')
           ).resolve_scale(x = 'independent', y = 'independent')
In [131... | # Pairwise relationship for plotting panel
           scatter panel
Out[131]:
In [132... scatter_panel.save('variance_scatter.html')
In [133... # Correlation matrix for just nutrients and productivity
```

x_mx.corr()

Out[133]:

	Ammonia	Chlorophyll A	Dissolved Inorganic Nitrogen	Dissolved Inorganic Phosphate	Nitrate/Nitrite	Total Nitrogen
Ammonia	1.000000	0.076214	0.223906	0.373070	0.128686	0.288228
Chlorophyll A	0.076214	1.000000	0.188035	0.196624	0.185112	0.641165
Dissolved Inorganic Nitrogen	0.223906	0.188035	1.000000	0.258240	0.995142	0.716507
Dissolved Inorganic Phosphate	0.373070	0.196624	0.258240	1.000000	0.224840	0.378746
Nitrate/Nitrite	0.128686	0.185112	0.995142	0.224840	1.000000	0.700950
Total Nitrogen	0.288228	0.641165	0.716507	0.378746	0.700950	1.000000

In []:

In [33]: # correlation matrix for all quantitative variables
data.iloc[:,2:15].corr()

Out[33]:

	Water depth (in meters)	Latitude	Longitude	Ammonia	Chlorophyll A	Dissolved Inorganic Nitrogen	Dissolved Inorganic Phosphate	Nitrat
Water depth (in meters)	1.000000	0.306774	-0.078211	-0.122657	-0.144925	-0.025702	-0.141074	_
Latitude	0.306774	1.000000	-0.020342	-0.100746	-0.241976	0.102828	-0.325458	
Longitude	-0.078211	-0.020342	1.000000	-0.042832	0.053520	-0.026439	-0.282131	-
Ammonia	-0.122657	-0.100746	-0.042832	1.000000	0.076214	0.223906	0.373070	
Chlorophyll A	-0.144925	-0.241976	0.053520	0.076214	1.000000	0.188035	0.196624	
Dissolved Inorganic Nitrogen	-0.025702	0.102828	-0.026439	0.223906	0.188035	1.000000	0.258240	
Dissolved Inorganic Phosphate	-0.141074	-0.325458	-0.282131	0.373070	0.196624	0.258240	1.000000	
Nitrate/Nitrite	-0.014072	0.114923	-0.021377	0.128686	0.185112	0.995142	0.224840	
Total Nitrogen	-0.215607	-0.279980	0.027846	0.288228	0.641165	0.716507	0.378746	
Total Phosphorus	-0.184730	-0.416150	-0.181539	0.321642	0.512931	0.234987	0.807155	

In [134... # store correlation matrix
 corr_mx = x_mx.corr()

```
# melt to long form
corr_mx_long = corr_mx.reset_index().rename(
    columns = {'': 'row'}
).melt(
    id_vars = 'row',
    var_name = 'col',
    value_name = 'Correlation'
)
# visualize
heatmap = alt.Chart(corr_mx_long).mark_rect().encode(
    x = alt.X('col', title = '', sort = {'field': 'Correlation', 'order': 'ascending']
y = alt.Y('row', title = '', sort = {'field': 'Correlation', 'order': 'ascending']
    color = alt.Color('Correlation',
                          scale = alt.Scale(scheme = 'blueorange',
                                                domain = (-1, 1),
                                                type = 'sqrt'),
                         legend = alt.Legend(tickCount = 5))
).properties(width = 200, height = 200)
# visualize
heatmap = alt.Chart(corr_mx_long).mark_rect().encode(
    x = alt.X('col', title = '', sort = {'field': 'Correlation', 'order': 'ascending']
y = alt.Y('row', title = '', sort = {'field': 'Correlation', 'order': 'ascending']
    color = alt.Color('Correlation',
                          scale = alt.Scale(scheme = 'blueorange',
                                                domain = (-1, 1),
                                                type = 'sqrt'),
                         legend = alt.Legend(tickCount = 5))
).properties(width = 200, height = 200)
```

In [135... heatmap

Out[135]:

In [136... corr_mx

Out[136]:

	Ammonia	Chlorophyll A	Dissolved Inorganic Nitrogen	Dissolved Inorganic Phosphate	Nitrate/Nitrite	Total Nitrogen
Ammonia	1.000000	0.076214	0.223906	0.373070	0.128686	0.288228
Chlorophyll A	0.076214	1.000000	0.188035	0.196624	0.185112	0.641165
Dissolved Inorganic Nitrogen	0.223906	0.188035	1.000000	0.258240	0.995142	0.716507
Dissolved Inorganic Phosphate	0.373070	0.196624	0.258240	1.000000	0.224840	0.378746
Nitrate/Nitrite	0.128686	0.185112	0.995142	0.224840	1.000000	0.700950
Total Nitrogen	0.288228	0.641165	0.716507	0.378746	0.700950	1.000000

```
In [255... heatmap_html = heatmap.save('heatmap.html')
```

Are there any notable differences in available nutrients among U.S. coastal regions?

In [138... data

Out[138]:

	UID	State	Date collected	Waterbody name	Region	Water depth (in meters)	Latitude	Longitude	Province	Amı
0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471	Californian Province	
1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527	Californian Province	
2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132	Californian Province	
3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443	Californian Province	
4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117	Carolinian Province	
•••										
1087	16727	MI	6/18/2010	Lake Michigan	Great Lakes	0.6	44.98607	-85.64046	Great Lakes Province	
1088	16728	MI	6/25/2010	Lake Michigan	Great Lakes	2.3	44.94789	-85.94790	Great Lakes Province	
1089	16729	MI	6/16/2010	Lake Michigan	Great Lakes	31.2	44.83721	-85.52862	Great Lakes Province	
1090	16730	CA	6/29/2010	San Diego Bay	West	4.1	32.66443	-117.13879	Californian Province	
1091	16731	CA	6/29/2010	San Diego Bay	West	4.8	32.66243	-117.12712	Californian Province	

1092 rows × 16 columns

```
P_box = alt.Chart(scatter_df[scatter_df['Nutrient'] == 'Total Phosphorus']).mark_boxpl
    size = 50
).encode(
    x = alt.X('Region', title = 'Total Phosphorus',
              scale = alt.Scale(zero = False)),
    y = alt.Y('Level'),
    color = alt.Color('Region')
).properties(
    width = 300,
    height = 250
)
NH3_box = alt.Chart(scatter_df[scatter_df['Nutrient'] == 'Ammonia']).mark_boxplot(
    size = 50
).encode(
    x = alt.X('Region', title = 'Ammonia',
              scale = alt.Scale(zero = False)),
    y = alt.Y('Level'),
    color = alt.Color('Region')
).properties(
    width = 300,
    height = 250
```

```
In [140... N_box & P_box & NH3_box
```

Out[140]:

```
scatter_df
In [141...
```

Out[141]:

•		UID	State	Date collected	Waterbody name	Region	Water depth (in meters)	Latitude	Longitude	Chlorophyll A	F
	0	59	CA	7/1/2010	Mission Bay	West	2.5	32.77361	-117.21471	3.34	Ca
	1	60	CA	7/1/2010	San Diego Bay	West	3.5	32.71424	-117.23527	2.45	Ca
	2	61	CA	7/1/2010	Mission Bay	West	2.2	32.78372	-117.22132	3.82	Ca
	3	62	CA	7/1/2010	San Diego Bay	West	9.5	32.72245	-117.20443	6.13	Ca
	4	63	NC	6/9/2010	White Oak River	Southeast	1.0	34.75098	-77.12117	9.79	Ci
	•••										
	6547	16727	MI	6/18/2010	Lake Michigan	Great Lakes	0.6	44.98607	-85.64046	0.75	
	6548	16728	MI	6/25/2010	Lake Michigan	Great Lakes	2.3	44.94789	-85.94790	2.27	
	6549	16729	MI	6/16/2010	Lake Michigan	Great Lakes	31.2	44.83721	-85.52862	1.11	
	6550	16730	CA	6/29/2010	San Diego Bay	West	4.1	32.66443	-117.13879	2.11	Ca
	6551	16731	CA	6/29/2010	San Diego Bay	West	4.8	32.66243	-117.12712	2.19	Ca
6552 rows × 12 columns											

Matar

Based on the 2010 data, does productivity seem to vary geographically in some way?

If so, explain how; If not, explain what options you considered and ruled out.

```
Out[64]:
           scatter_df.head(1)
In [66]:
Out[66]:
                                                       Water
                                                        depth
                                                                                  Chlorophyll
                             Date
                                  Waterbody
              UID State
                                              Region
                                                               Latitude Longitude
                                                                                               Nutrient
                         collected
                                        name
                                                          (in
                                                      meters)
               59
                        7/1/2010 Mission Bay
                                                West
                                                          2.5 32.77361 -117.21471
                                                                                         3.34
                                                                                              Ammonia
                     CA
           ca scatter = alt.Chart(scatter df[scatter df['State'] == 'CA']).mark point(
In [208...
           ).encode(
               x = 'Date collected:T',
               y = 'Chlorophyll A',
               color = 'Waterbody name'
In [209... ca total = ca scatter + ca scatter.transform regression('Date collected',
                                                                        'Chlorophyll A',
                                                                      method = 'poly',
                                                                      order = 3).mark line()
In [210...
           ca total
Out[210]:
           data.head(1)
In [207...
Out[207]:
                                                        Water
                             Date Waterbody
                                                        depth
              UID State
                                              Region
                                                               Latitude Longitude
                                                                                    Province Ammonia
                         collected
                                        name
                                                          (in
                                                      meters)
                                                                                   Californian
           0
               59
                        7/1/2010 Mission Bay
                                                West
                                                          2.5 32.77361 -117.21471
                                                                                                   0.0
                                                                                    Province
           depth scatter facet = alt.Chart(scatter df).mark circle(
In [248...
               opacity = 0.4
           ).encode(
               x = alt.X('Water depth (in meters)',
                          scale = alt.Scale(zero = True)),
               y = alt.Y('Chlorophyll A',
                          scale = alt.Scale(zero = True))
           ).properties(
               width = 400,
               height = 200
           ).facet(
               row = 'Region'
           ).resolve scale(x = 'independent', y = 'independent')
           depth scatter facet
```

Out[248]:

```
data[data['Water depth (in meters)'] > 180]
 In [247...
Out[247]:
                                                           Water
                                Date Waterbody
                                                           depth
                                                                  Latitude
                UID State
                                                 Region
                                                                            Longitude
                                                                                        Province Ammon
                            collected
                                           name
                                                              (in
                                                         meters)
                                           Puget
                                                                                       Columbian
           118 422
                       WA
                           7/10/2010
                                                   West
                                                            185.0 47.80405 -122.457533
                                                                                                      0.00
                                                                                         Province
                                          Sound
                                           Puget
                                                                                       Columbian
           245
                 624
                                                   West
                                                            198.0 47.39325 -122.344383
                                                                                                      0.01
                       WA
                             7/7/2010
                                          Sound
                                                                                         Province
 In [249...
           depth scatter = alt.Chart(scatter df).mark circle(
               opacity = 0.4
           ).encode(
               x = alt.X('Water depth (in meters)',
                          scale = alt.Scale(zero = True)),
               y = alt.Y('Chlorophyll A',
                          scale = alt.Scale(zero = True))
           ).properties(
               width = 400,
               height = 200
           depth_scatter
```

Out[249]: