1.

$$\max Z = 4x_1 + 9x_2 + 2x_3^2$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解:

(1) k=3

$$f_3(s_3) = \max_{0 \le r_2 \le r_2} \left\{ 2x_3^2 + f_4(s_4) \right\} = \max_{0 \le r_2 \le r_2} \left\{ 2x_3^2 \right\}$$

由函数增减性可知 $x_3 = s_3$, $f_3(s_3) = 2s_3^2$

(2)
$$k=2$$
 $s_3 = s_2 - x_2$

$$f_2\left(s_2\right) = \max_{0 \le xy \le xy} \left\{9x_2 + f_3\left(s_3\right)\right\} = \max_{0 \le yy \le xy} \left\{9x_2 + 2s_3^2\right\} = \max_{0 \le xy \le xy} \left\{9x_2 + 2(s_2 - x_2)^2\right\}$$

$$\Leftrightarrow \varphi_2(x_2) = 9x_2 + 2(s_2 - x_2)^2, \quad \emptyset \varphi_2'(x_2) = 9 - 4(s_2 - x_2) = 0 \Leftrightarrow x_2 = s_2 - \frac{9}{4}$$

由于 $\varphi_2''(x_2)=4>0$ 所以 $x_2=s_2-\frac{9}{4}$ 为极小值点,故极大值点必在 $[0,s_2]$ 端点,计算两端点函数值

$$\varphi_2(0) = 2s_2^2 \quad \varphi_2(s_2) = 9s_2$$

故

$$f_2(s_2) = \begin{cases} 9s_2 & 0 \le s_2 \le \frac{9}{2} \\ 2s_2^2 & \frac{9}{2} < s_2 \le 10 \end{cases}$$

(3)
$$k=1$$
 $s_2 = s_1 - x_1$

$$f_{1}(s_{1}) = \max_{0 \le x_{1} \le s_{1}} \left\{ 4x_{1} + f_{2}(s_{2}) \right\} = \begin{cases} \max_{0 \le x_{1} \le s_{1} \\ x_{2} = s_{2}} \left\{ 4x_{1} + 9(s_{1} - x_{1}) \right\} & 0 \le s_{2} \le \frac{9}{2} \\ \max_{0 \le x_{1} \le s_{1} \\ x_{2} = 0} \left\{ 4x_{1} + (s_{1} - x_{1})^{2} \right\} & \frac{9}{2} < s_{2} \le 10 \end{cases}$$

显然
$$\max_{0 \le x_1 \le s_1 \atop x_2 = s_2 \atop 0 \le s_2 \le \frac{9}{2}} \left\{ 4x_1 + 9(s_1 - x_1) \right\} = 9s_1 \qquad x_1 = 0$$

$$\Leftrightarrow \varphi_1(x_1) = 4x_1 + (s_1 - x_1)^2, \quad \emptyset \varphi_1'(x_1) = 4 - 2(s_1 - x_1) = 0 \Leftrightarrow x_1 = s_1 - 2$$

由于 $\varphi_1''(x_1) = 2 > 0$ 所以 $x_1 = s_1 - 2$ 为极小值点,故极大值点必在 $[0, s_1]$ 端点,计算两端点函数值

$$\varphi_1(0) = 2s_1^2 \quad \varphi_1(s_1) = 4s_1$$

故

$$f_1(s_1) = \begin{cases} 4s_1 & 0 \le s_1 \le 2 \\ 2s_1^2 & 2 < s_1 \le 10 \end{cases} \text{ px } f_1(s_1) = 9s_1 \ (0 \le s_1 \le 10)$$

由于 $s_1 \le 10$, 由函数增减性可知, 取 $s_1 = 10$, $f_1(s_1) = 200$ 为指标函数最优值。

回代求解最优决策,有 $x_1^* = 0$ $x_2^* = 0$ $x_3^* = 10$ $s_2^* = 10$ $s_3^* = 10$ 则线性规划问题最优解为 $X^* = (0,0,10)^T$ 最优值为 $Z^* = 200$ 。

2.

$$\max Z = 3x_1^3 - 4x_1 + 2x_2^2 - 5x_2 + 2x_3$$
s.t.
$$\begin{cases} 4x_1 + 2x_2 + 3x_3 \le 18 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

(1) k=3

$$f_3(s_3) = \max_{0 \le x_3 \le \frac{s_3}{3}} \left\{ 2x_3 + f_4(s_4) \right\} = \max_{0 \le x_3 \le \frac{s_3}{3}} \left\{ 2x_3 \right\}$$

由函数增减性可知 $x_3 = \frac{s_3}{3}$, $f_3(s_3) = \frac{2}{3}s_3$

(2)
$$k=2$$
 $s_3 = s_2 - 2x_2$

$$f_{2}(s_{2}) = \max_{0 \leq x_{2} \leq \frac{s_{2}}{2}} \left\{ 2x_{2}^{2} - 5x_{2} + f_{3}(s_{3}) \right\} = \max_{0 \leq x_{2} \leq \frac{s_{2}}{2}} \left\{ 2x_{2}^{2} - 5x_{2} + \frac{2}{3}s_{3} \right\} = \max_{0 \leq x_{2} \leq \frac{s_{2}}{2}} \left\{ 2x_{2}^{2} - \frac{19}{3}x_{2} + \frac{2}{3}s_{2} \right\}$$

$$\Leftrightarrow \varphi_{2}(x_{2}) = 2x_{2}^{2} - \frac{19}{3}x_{2} + \frac{2}{3}s_{2}, \quad \emptyset \ \varphi'_{2}(x_{2}) = 4x_{2} - \frac{19}{3} = 0 \ \text{$\buildrel \# x_{2} = $\frac{19}{12}$}$$

由于 $\varphi_2''(x_2)=4>0$ 所以 $x_2=\frac{19}{12}$ 为极小值点,故极大值点必在 $[0,\frac{s_2}{2}]$ 端点,计算两端点函数值

$$\varphi_2(0) = \frac{2}{3}s_2$$
 $\varphi_2\left(\frac{s_2}{2}\right) = \frac{s_2^2}{2} - \frac{5}{2}s_2$

故

$$f_2(s_2) = \begin{cases} \frac{2}{3}s_2 & 0 \le s_2 \le \frac{19}{3} \\ \frac{s_2^2}{2} - \frac{5}{2}s_2 & \frac{19}{3} < s_2 \le 18 \end{cases}$$

(3)
$$k=1$$
 $s_2 = s_1 - 4x_1$

$$f_{1}(s_{1}) = \max_{0 \le x_{1} \le \frac{s_{1}}{4}} \left\{ 3x_{1}^{3} - 4x_{1} + f_{2}(s_{2}) \right\} = \begin{cases} \max_{0 \le x_{1} \le \frac{s_{1}}{4}} \left\{ 3x_{1}^{3} - 4x_{1} + \frac{2}{3}s_{2} \right\} & 0 < s_{2} \le \frac{19}{3} \\ \max_{0 \le x_{1} \le \frac{s_{1}}{4}} \left\{ 3x_{1}^{3} - 4x_{1} + \frac{s_{2}^{2}}{2} - \frac{5}{2}s_{2} \right\} & \frac{19}{3} \le s_{2} \le 18 \end{cases}$$

得到

$$f_1(s_1) = \frac{3}{64}s_1^3 - s_1$$
 $x_1 = \frac{s_1}{4}x_2 = \frac{s_2}{2} \, \text{Ex} x_1 = \frac{s_1}{4}x_2 = 0$

由于 $s_1 \le 18$,取 $s_1 = 18$, $f_1(s_1) = 255.375$ 为指标函数最优值。

回代求解最优决策,有
$$x_1^* = \frac{s_1}{4} = 4.5$$
 $x_2^* = 0$ $x_3^* = 0$ $s_2^* = 0$ $s_3^* = 0$ 则线性规划问题最优解为 $X^* = (\frac{9}{2},0,0)^{\mathrm{T}}$ 最优值为 $Z^* = 255.375$ 。

3. 某人外出旅游,需将 5 件物品装入包裹,若包裹总重量有不超过 13kg 限制,物品单件重量及价值如下表。试问如何装这些物品,使总价值最大?

物品	A	В	С	D	Е
单件重量(Kg)	7	5	4	3	1
单件价值(元)	9	4	3	2	0.5

解:

此决策问题可划分为 5 个阶段,ABCDE 分别为一个阶段 k=1,2,3,4,5 状态及状态量:k 阶段拥有的资源数 x_k $0 \le x_k \le 13$ $x_1 = 13$ 决策与决策变量:k 阶段放入 A 背包的单件重量 u_k $0 \le u_k \le x_k$

状态转移方程: $x_{k+1} = x_k - u_k$

阶段效益: r_k

目标函数:
$$R = \sum_{k=1}^{n} r_k$$

基本方程:
$$\begin{cases} f_k(x_k) & \max_{0 \le u_k \le x_k} \left\{ r_k + f_{k+1}(x_{k+1}) \right\} \\ f_6(x_6) = 0 & k = 1, 2, 3, 4, 5 \end{cases}$$

该问题为离散问题,则用表格法进行求解

k	x_k	u_k	r_{k}	$r_k + f_{k+1}$	$f_{\scriptscriptstyle k}$	$ extbf{\emph{P}}_{kn}^*$
5	13	0	0	0+0	0	
	12	1	0.5	0.5+0	0.5	Е
4	13	0	0	0+0	0	
	12	0	0	0+0.5	0.5	E
	10	3	2	2+0	2	D
	9	3	2	2+0.5	2.5	DE
3	13	0	0	0+0	0	
	12	0	0	0+0.5	0.5	E
	10	0	0	0+2	2	D
	9	0	0	0+2.5	2.5	DE
	9	4	3	3+0	3	C
	8	4	3	3+0.5	3.5	CE
	6	4	3	3+2	5	CD
	5	4	3	3+2.5	5.5	CDE
2	13	0	0	0+0	0	
	12	0	0	0+0.5	0.5	Е
	10	0	0	0+2	2	D
	9	0	0	0+2.5	2.5	DE
	9	0	0	0+3	3	C
	8	0	0	0+3.5	3.5	CE
	6	0	0	0+5	5	CD
	5	0	0	0+5.5	5.5	CDE
	8	5	4	4+0	4	В
	7	5	4	4+0.5	4.5	BE

	1				_	I
	5	5	4	4+2	6	BD
	4	5	4	4+2.5	6.5	BDE
	4	5	4	4+3	7	BC
	3	5	4	4+3.5	7.5	BCE
	1	5	4	4+5	9	BCD
	0	5	4	4+5.5	9.5	BCDE
1	6	7	9	9+0	9	A
	5	7	9	9+0.5	9.5	AE
	3	7	9	9+2	11	AD
	2	7	9	9+2.5	11.5	ADE
	2	7	9	9+3	12	AC
	1	7	9	9+3.5	12.5	ACE
	1	7	9	9+4	13	AB
	0	7	9	9+4.5	13.5	ABE

可知 $P_{kn}^* = ABE$ (放入背包的物品)最优值 $f_1 = 13.5$ (最大总价值)