Data Quality: Online Luminosity Monitoring Overview

Nicoletta Garelli, Houry Keoshkerian, Witold Kozanecki, Michel Trottier-McDonald

Luminosity Taskforce

February 25, 2015

Outline

- Luminosity Basics
- Online Luminosity Responsibilities
- Online Luminosity Infrastructure
- Goals for M9

Actual shifter instructions: DQ session tomorrow!

What All Analysts Learn About Luminosity

From an arbitrary process $pp_{\text{inel}} \rightarrow Y$ at the LHC:

How many $pp_{\text{inel}} \rightarrow Y$ events were produced during a run of duration T?

$$N_{pp_{\text{inel}} \to Y} = \int_0^T \mathcal{L}(t) dt \times \sigma_{pp_{\text{inel}} \to Y}$$

where the instantaneous luminosity (\mathcal{L}) is time-dependent, accounting for the varying LHC conditions during the run (proton burn-off, etc.).

- Fundamental for cross-section measurements $(pp \rightarrow W/Z, pp \rightarrow t\bar{t}, pp \rightarrow H, ...)$
- Crucial for estimating sensitivity of model-dependent searches.
- Needed to normalize MC samples.

Other Uses for Luminosity Information

- LHC operators use $\mathcal{L}(t)$ measured by the experiments to optimize collisions at the interaction points.
- The luminosity signals (along with other indicators) when LHC conditions are adequate for physics data-taking.
- Forms the basis for the adjustment of the triggers during data-taking (prescales, etc.).
- The time-evolution of the luminosity together with the beam-spot parameters provide accelerator diagnostics that cannot be obtained by any other means:
 - Often needed during LHC development even if no ATLAS data is taken.

Luminosity: Which One?

Instantaneous Luminosity:

- L as previously defined.
- Calculated by the Online Luminosity Calculator (OLC) for the shortest time interval possible for a particular detector.
- Updates typically every 1-2 seconds for BCM and LUCID.

Luminosity Block (LB):

- A short time period (Δt_{LB} , order ~ 1 min) defined by TDAQ during which LHC and ATLAS conditions are assumed constant, for which the average luminosity is calculated.
- Smallest time granularity with which luminosity data is stored in COOL.

LB-averaged Instantaneous Luminosity:

- Instantaneous luminosity averaged over the duration of a LB (\mathcal{L}_{LB}).
- *_all: summed over all Bunch-Crossing IDentifiers (BCIDs).
- *_phys: restricted to colliding bunches used for physics.

Integrated Luminosity:

$$\int \mathcal{L}dt = \sum_{i}^{N} \mathcal{L}_{\mathsf{LB}_{i}} \Delta t_{\mathsf{LB}_{i}}, \qquad \qquad i \in \{\mathsf{run/fill}\}$$

Online Luminosity Monitoring Responsibilities

Detector Desks:

- Monitor the performance of the detectors up to and including the raw luminosity data they publish on the Information Service (IS).
 - Calorimeters Desk: LUCID, FCal, Tile.
 - Inner Detector Desk: BCM, DBM, (Pixel, SCT and IBL for offline).
 - Trigger Desk: MBTS.

• Run Control Desk:

- Monitors the luminosity infrastructure:
 - Luminosity data flow from detectors to luminosity online tools (OLC).
 - Archiving in COOL database for offline use (OLC2COOL).

• Data Quality Desk:

• Monitors the content of the luminosity publications from the luminosity infrastructure and their internal consistency.

Online Luminosity Monitoring Infrastructure

Online Luminosity Calculator (OLC):

- Software that lives in the TDAQ online environment under the partition called OLC which hosts the OLC Application.
- Collects raw data from the ATLAS sub-detectors (via IS) and LHC beam instrumentation (via the Data Interchange Protocol (DIP)).
- Calculates calibrated instantaneous and integrated luminosities.
- Publishes the information for online usage and permanent storage.

OLC2COOL:

 Archives the online luminosity values from OLC in the COOL database for offline use.

Luminosity diagnostics:

- Data Quality Desk:
 - DCS displays: time histories of \mathcal{L} or ratios of \mathcal{L} .
 - OHP: bunch-by-bunch luminosities (for experts only).
- Run Control Desk:
 - Shifter Assistant rules will be developed for 2015.

• Preferred Algorithm: The one luminosity value that is:

- distributed to ATLAS as a whole (public plots, trigger prescales, etc.),
- sent to LHC page 1,
- Typically used for a first pass of physics analysis,
- The focus of the DQ shifter.

Preferred Algorithm for M9

• The preferred algorithm for M9 is BCMVOR.

- It uses the vertical sensors of the BCM on both sides of ATLAS.
- It counts all events firing either the A side or the C side, or both.

• During M9:

- The BCM will issue simulated luminosity data.
- We do not know yet what other system may begin publishing sensible values.
- We may exercise changing the preferred algorithm.

Luminosity Monitoring Goals for M9

Exercise the online L: stability? problems?

- Let OLC partition run throughout M9.
- Clean-up deprecated IS publications and displays: the DCS display may change in the course of M9.

Develop/exercise the shifter tasks:

 Do DQ shifters have comments on the training material and reference twiki pages?

What We Want From the DQ Shifter in M9

- We want to gather information and feedback:
 - Is the current training/documentation helpful/useful?
 - Keep an eye on anything deviating from expectations:
 - This task is rather limited since we don't have beams: no real luminosity.
 - The correct operation of OLC and OLC2COOL can still be fully monitored
- Keep an eye on the luminosity infrastructure monitoring plots.
- Keep an eye on the luminosity values coming from the preferred algorithm.
- Be aware of interventions by experts: elogs, phone calls, drop-in visits in the control room, etc.