Reinforcement Learning

强化学习是一类算法,是让计算机实现从一开始什么都不懂,脑袋里没有一点想法,通过不断地尝试,从错误中学习,最后找到规律,学会了达到目的的方法.这就是一个完整的强化学习过程.

Reinforcement Learning is a branch of Machine Learning, also called Online Learning. It is used to solve interacting problems where the data observed up to time t is considered to decide which action to take at time t + 1.

Desired outcomes provide the Al with reward, undesired with punishment. Machines learn through trial and error.

Multi-Armed Bandit (多臂老虎机)

给定 K 个老虎机,每台老虎机的赢钱概率不同。在不确定哪台老虎机赢钱概率最高的情况下,每玩一台老虎机,在损失一次机会的同时我们以一定的概率收到报酬。假定第 $i=1,2,3,\ldots K$ 个老虎机给我们报酬 $r\in R$ 的概率是 $P_i(r)$,且报酬的均值为 h_i 。那么决策便是,给定有限的机会次数 T,如何玩这些老虎机才能使得期望累积收益最大化。

医生如果只给病人开出目前疗效最好的药,那么也许疗效更好的新药永远也得不到测试。但如果不停地试新药,新药也许效果不好,病人会怨声载道。如何trade-off "探索"(exploration)新鲜事和"利用"(exploitation)已有知识 就是多臂老虎机问题的核心。

探索(Exploration)vs 利用(Exploitation)

先考虑一种极端的方式,那就是均匀的玩每台老虎机,这样可以保证对每台老虎机的收益情况我们都能足够了解。然而,这往往会浪费不必要的资源在太差的老虎机上,就像无头苍蝇一样。这种策略被称之为**探索**(exploration),很显然如果信息太过于匮乏的话,这种策略不失为一种好方法。

再考虑另一个极端的方式,那就是只玩当前给我们收益报酬最高的那台老虎机,显然这一策略可以在初期较快的获得更高的回报,然而却因为过度贪婪捡了芝麻丢了西瓜,以至于长远错过真正好的老虎机,就像辛勤的蜜蜂一样。这种策略被称之为 利用 (exploitation),很显然如果信息足够充分的话,这种策略不失为一种好方法。

最好的策略显然不是这二者之一,中和这两种截然矛盾的资源分配策略可以给我们更好的思路。比如说,前期信息匮乏,我们采用更多的探索;而后期,信息了解差不多后,我们转向利用,诸如高中生以及博士生的关系。再比如说,再边利用的同时也进行探索,诸如Google的传统部门以及Google X之间的关系。但这里值得一提的是,如果问题规模过大,比如说资源的数量不足以支撑探索尽量多的信息,那么反而利用是一种更『现实』的策略。

- ullet We have d arms. For example, arms are ads that we display to users each time they connect to a web page.
- Each time a user connects to this web page, that makes a round.
- ullet At each round n, we choose one ad to display to the user.
- At each round n, ad_i gives reward $r_i(n) \in \{0,1\}$: $r_i(n) = 1$ if the user clicked on the ad_i , 0 if the user didn't.
- Our goal is to maximize the total reward we get over many rounds.

Upper Confidence Bound (UCB)

在开始阶段,每个对象都给定相同的 Expected Value(红虚线)以及 Confidence Bound(灰框)。 随机选择对象,如果该对象成功(赢钱,或者 user clicked),则 EV 和 CB 上移,且 CB 范围缩减(只要执行该对象,不论成功失败, CB都会缩减)。如果对象失败,则 EV 和 CB 下移,且 CB 缩减。

初始设定(彩色实线是测量后的 distribution 参考线)

Round 1: 随机选择其中一个对象(如 D3), 结果 D3 失败(输钱或者 user 没有 click)。EV 和 CB 下移,并且 CB 缩减

Round 2: 因为 D3 失败, 所以随机在除 D3 外的对象里选择(如 D4), 结果 D4 成功。EV 和 CB 上移, 且 CB 缩减

Round 3: 因为 D4 成功,继续选择 D4, EV 和 CB 上移,且 CB 缩减

Round 4: 随机选其他剩下的对象(如 D1),结果 D1 成功, EV 和 CB 上移,且 CB 缩减

Round 5: 再随机选择(如 D2), 结果 D2 失败, EV 和 CB 下移, 且 CB 缩减

Round 6: 随机选择或者选剩下的(如 D5),结果 D5 成功, EV 和 CB 上移,且 CB 缩减

Round 7: 继续选择,或者利用 D5,结果 D5 成功, EV 和 CB 上移,且 CB 缩减

循环几轮后,可以当 CB 缩减到一定程度后,选择当前最优进行利用(Exploitation)

STEP 1: At each round n, we consider two numbers for each ad_i :

- $N_i(n)$ the number of times the ad_i was selected up to round n.
- $R_i(n)$ the sum of rewards of the ad_i up to round n.

STEP 2: From these two numbers we compute:

- the average reward of ad_i up to round n $\overline{r}_i(n) = rac{R_i(n)}{N_i(n)}$
- the confidence interval $[\overline{r}_i(n)-\Delta_i(n),\overline{r}_i(n)+\Delta_i(n)]$ at round n with $\Delta_i(n)=\sqrt{rac{3}{2}rac{log(n)}{N_i(n)}}$

STEP 3: We select the ad_i that has the maximum UCB: $\overline{r}_i(n) + \Delta_i(n)$

$$rac{R_i(n)}{N_i(n)} + \sqrt{rac{3}{2} rac{log(n)}{N_i(n)}}$$

i 表示当前的臂,n 表示目前的尝试次数, $N_i(n)$ 表示臂 i 被选中的次数。公式加号左边表示臂 i 当前的平均收益,右边表示该收益的 Bonus ,本质上是均值的标准差,反应了候选臂效果的不确定性,就是置信区间的上边界。

使用 UCB 算法的流程如下:

- 1. 对所有臂先尝试一次
- 2. 按照公式计算每个臂的最终得分

3. 选择得分最高的臂作为本次结果

直观理解下 UCB 算法为什么有效?

- 当一个臂的平均收益较大时,也就是公式左边较大,在每次选择时占有优势
- 当一个臂被选中的次数较少时,即 $N_i(n)$ 较小,那么它的 Bonus 较大,在每次选择时占有优势

所以 UCB 算法倾向选择被选中次数较少以及平均收益较大的臂。

UCB in Python

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

The dataset is a simulation data

```
In [2]: dataset = pd.read_csv('Ads_CTR_Optimisation.csv')
    dataset.head()
```

Out[2]:

	Ad 1	Ad 2	Ad 3	Ad 4	Ad 5	Ad 6	Ad 7	Ad 8	Ad 9	Ad 10
0	1	0	0	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	0	0	0	0

战略1: 随机展示 (Random Selection)

有10个版本的广告(ads)。每次用户登入账号就会随机展示其中一个广告,如果用户点击,则记'1',不点,则记'0'。不考虑探索和利用。

```
In [3]: import random
N = 10000
d = 10
ads_selected = []
total_reward = 0
for n in range(0,N):
    ad = random.randrange(d) # 从10个广告中随机抽取。
    ads_selected.append(ad)
    reward = dataset.values[n,ad] # 根据 dataset 来判断用户是否点击了当前广告。
    total_reward = total_reward + reward # 最终总共有多少点击
print(total_reward)
```

1264

```
In [4]: # Visualising the Results - Histogram
    plt.hist(ads_selected)
    plt.title('Histogram of ads selections')
    plt.xlabel('Ads')
    plt.ylabel('Number of times each ad was selected')
    plt.show()
```


战略2: UCB

STEP 1: At each round n, we consider two numbers for each ad_i :

- $N_i(n)$ the number of times the ad_i was selected up to round n.
- $R_i(n)$ the sum of rewards of the ad_i up to round n.

```
In [5]: import math

# A vector contains each of those numbers of selections of ad_i
d = 10 # d 为 10 个广告数
numbers_of_selections = [0] * d
# The different sums of rewards of each 10 ads at each round
sums_of_rewards = [0] * d
# this vector will give us the list of all the different ad version
# that are selected at each round
ads_selected = []
# reward总数
total_reward = 0
```

STEP 2: From these two numbers we compute:

• the average reward of ad_i up to round n

$$\overline{r}_i(n) = rac{R_i(n)}{N_i(n)}$$

- the confidence interval $[\overline{r}_i(n) - \Delta_i(n), \overline{r}_i(n) + \Delta_i(n)$ at round n with

$$\Delta_i(n) = \sqrt{rac{3}{2}rac{log(n)}{N_i(n)}}$$

STEP 3: We select the ad_i that has the maximum UCB: $\overline{r}_i(n) + \Delta_i(n)$

```
In [6]: | for n in range(0,dataset.shape[0]):
            ad = 0
            max_upper_bound = 0
            for i in range(0,d): # Go through 10 ads
                if (numbers of selections[i] > 0):
                # Since we don't have any information at beginning,
                # we will select ad1 on round 1, ad2 on round 2... up to round 10
                # we'll use the following UCB stratige as long as we have informati
        on
                # (after first 10 rounds)
                    # STEP 2
                    average_reward = sums_of_rewards[i]/numbers_of_selections[i]
                    # in Python, index starts from 0, so n+1 in log function
                    delta i = math.sqrt(3/2*math.log(n+1)/numbers of selections[i])
                    # STEP 3
                    upper_bound = average_reward + delta_i
                else: # for the 1st 10 rounds
                    upper_bound = 1e400
                if upper_bound > max_upper_bound:
                    max upper bound = upper bound
                    ad = i
            # this vector contains all the different ad selected at each round
            ads selected.append(ad)
            # After updating ads selection, then we need update numbers of selectio
        n
            numbers of selections[ad] = numbers of selections[ad] + 1
            # Since we only have simulation data, then we go through it and give th
            # rewards for which ad has been selected in the simulation dataset
            # 根据 dataset 来判断用户是否点击了当前广告。
            # (0 if non-select, 1 if select)
            reward = dataset.values[n,ad]
            # Update sums of rewards after ad selected at each round
            sums_of_rewards[ad] = sums_of_rewards[ad] + reward
            # Performance Evaluating
            total reward = total reward + reward
```

```
In [7]: print(total_reward)
```

2178

查看最佳广告:根据 EE (探索和利用)原因,UCB最后停留在"利用"上,即最佳广告会在最后被一直点击。 最佳广告为 4。

```
In [8]: ads_selected[-10:]
Out[8]: [4, 4, 4, 4, 4, 4, 4, 4]
```

```
In [9]: # Visualising the Results - Histogram
plt.hist(ads_selected)
plt.title('Histogram of ads selections')
plt.xlabel('Ads')
plt.ylabel('Number of times each ad was selected')
plt.show()
```


Thompson Sampling

介绍汤普森采样之前,可以先来介绍一个分布: beta 分布。beta 分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。

beta 分布有两个控制参数: α 和 β 。 先来看下几个 beta 分布的概率密度函数的图形:

beta 分布图形中的 x 轴取值范围是 (0,1),可以看成是概率值,参数 α 和 β 可以控制图形的形状和位置:

- $\alpha + \beta$ 的值越大,分布曲线越窄,也就是越集中。
- $\frac{\alpha}{\alpha+\beta}$ 的值是 beta 分布的均值(期望值),它的值越大, beta 分布的中心越靠近 1,否则越靠近 0 。

注意: 当参数 α 和 β 确定后,使用 beta 分布生成的随机数有可能不一样,所以汤普森采样法是不确定算法。

beta 分布和 Bandit 算法有什么关联呢?实际上,每个臂是否产生收益的概率 p 的背后都对应一个 beta 分布。我们将 beta 分布的 α 参数看成是推荐后用户的点击次数, β 参数看成是推荐后用户未点击的次数。

来看下使用汤普森算法的流程:

- 1. 每个臂都维护一个 beta 分布的参数,获取每个臂对应的参数 α 和 β ,然后使用 beta 分布生成随机数。
- 2. 选取生成随机数最大的那个臂作为本次结果
- 3. 观察用户反馈,如果用户点击则将对应臂的 lpha 加 1,否则 eta 加 1

在实际的推荐系统中,需要为每个用户保存一套参数,假设有 m 个用户, n 个臂(选项,可以是物品,可以是策略), 每个臂包含 α 和 β 两个参数,所以最后保存的参数的总个数是 2mn。

可以直观的理解下为什么汤普森采样算法有效:

- 当尝试的次数较多时,即每个臂的 $\alpha + \beta$ 的值都很大,这时候每个臂对应的 beta 分布都会很窄,也就是说, 生成的随机数都非常接近中心位置,每个臂的收益基本确定了。
- 当尝试的次数较少时,即每个臂的 α + β 的值都很小,这时候每个臂对应的 beta 分布都会很宽,生成的随机数有可能会比较大,增加被选中的机会。
- 当一个臂的 α + β 的值很大,并且 $\frac{\alpha}{\alpha+\beta}$ 的值也很大,那么这个臂对应的 beta 分布会很窄,并且中心位置接近 1 ,那么这个臂每次选择时都很占优势。

Thompson Sampling Algorithm

Step 1. At each round n, we consider two numbers for each ad i:

- $N_i^1(n)$ the number of times the ad i got reward 1 up to round n,
- $N_i^0(n)$ the number of times the ad i got reward 0 up to round n.

Step 2. For each ad i, we take a random draw from the distribution below:

$$\theta_i(n) = \beta(N_i^1(n) + 1, N_i^0(n) + 1)$$

Step 3. We select the ad that has the highest $\theta_i(n)$.

开始阶段,通过在各个对象上的尝试数次并记录结果数据。通过这些数据建立各自的 distribution 来预测各个 EV 的位置(竖直彩色实线为最终真实 Expected Value,在图中为参考线,但是仍是当前未知状态。且当前仅仅预测真实 EV 应该在 distribution 范围内,而非预测精确位置)。

在新回合里,先从各个 distribution 里随机提取结果数值将其视为新回合将会获得的 EV。数值最高的对象,即为新回合将要执行的对象。(如图,绿 distribution 中选出的值最高,所以新回合将执行绿色对象)

执行绿色对象后,会得到一个绿色对象的真实反馈数据,利用此数据对绿色的 distribution 进行更新。

每个回合,根据各个 distribution 提取的数值后,执行相应的对象。随后再根据产生的真实新数据来更新相对应的 distribution。不断重复此步骤,直至最佳对象的 distribution 范围收敛。

UCB vs. Thompson Sampling

Thompson Sampling in Python

战略3: Thompson Sampling

```
In [26]: N = dataset.shape[0]
# A vector contains each of those numbers of selections of ad_i
d = 10 # d 为 10 个广告数
# this vector will give us the list of all the different ad version
# that are selected at each round
ads_selected = []
# reward总数
total_reward = 0
```

STEP 1: At each round n, we consider two numbers for each ad_i :

- $N_i^1(n)$ the number of times the ad_i got reward 1 up to round n.
- $N_i^0(n)$ the number of times the ad_i got reward 0 up to round n.

```
In [27]:    numbers_of_rewards_1 = [0] * d
    numbers_of_rewards_0 = [0] * d
```

STEP 2: For each ad_i , we take a random draw from the beta distribution below: $\theta_i(n)=\beta(N_i^1(n)+1,N_i^0(n)+1)$

Bayesian Inference

- Ad *i* gets rewards **y** from Bernoulli distribution $p(\mathbf{y}|\theta_i) \sim \mathcal{B}(\theta_i)$.
- θ_i is unknown but we set its uncertainty by assuming it has a uniform distribution $p(\theta_i) \sim \mathcal{U}([0,1])$, which is the prior distribution.
- Bayes Rule: we approach θ_i by the posterior distribution

$$\underbrace{p(\theta_i|\mathbf{y})}_{\text{posterior distribution}} = \frac{p(\mathbf{y}|\theta_i)p(\theta_i)}{\int p(\mathbf{y}|\theta_i)p(\theta_i)d\theta_i} \propto \underbrace{p(\mathbf{y}|\theta_i)}_{\text{likelihood function}} \times \underbrace{p(\theta_i)}_{\text{prior distribution}}$$

- We get $p(\theta_i|\mathbf{y}) \sim \beta(\text{number of successes} + 1, \text{number of failures} + 1)$
- At each round n we take a random draw $\theta_i(n)$ from this posterior distribution $p(\theta_i|\mathbf{y})$, for each ad i.
- At each round n we select the ad i that has the highest $\theta_i(n)$.

 θ_i can be interpreted as the numbers of successes divided by the total number of times we selected the ad_i (probability of success)

STEP 3: We select the ad that has the highest $\theta_i(n)$

```
In [28]: # Need random library for random draw from beta distribution
         import random
         for n in range(0,dataset.shape[0]):
             ad = 0
             max_random = 0 # highest random draw for Thompson Sampling
             for i in range(0,d): # Go through 10 ads
                 # STEP 2 :
                 # Random draws from Beta distribtuion of parameters that we choose
                 random_beta = random.betavariate(numbers_of_rewards_1[i] + 1,
                                                  numbers of rewards 0[i] + 1)
                 # STEP 3 : We still need take the highest random draw
                 if random beta > max random:
                     max random = random beta
                     ad = i
             # this vector contains all the different ad selected at each round
             ads selected.append(ad)
             # Since we only have simulation data, then we go through it and give th
             # rewards for which ad has been selected in the simulation dataset
             # 根据 dataset 来判断用户是否点击了当前广告。
             # (0 if non-select, 1 if select)
             reward = dataset.values[n,ad]
             # Need increment variables in STEP 1 when we got the reward or not
             if reward == 1:
                 # Need increment the reward variable only for the ad which is the h
         ighest random draw
                 # This ad is also the ad we selected in the real world
                 numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
             else:
                 # Need increment if no reward
                 numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
             # Performance Evaluating
             total reward = total reward + reward
```

Since Thompson Sampling Algo has some random factors, so the total_reward will be varied little bit. In the case, it's averaging at 2600.

It beats UCB !!!!!

```
In [31]: # Visualising the Results - Histogram
         plt.hist(ads_selected)
         plt.title('Histogram of ads selections')
         plt.xlabel('Ads')
         plt.ylabel('Number of times each ad was selected')
         plt.show()
```


The # 5 Ad (best Ad) has been more selected than UCB.

Thompson Sampling can quickly figure out which Ad is the best to select