Лекция 10.

Движение точки в центральном поле сил

Движение механической системы, состоящей из одной точки М с массой m, определяется действующей на нее внешней силой, а также ее начальным положением и скоростью. Если уравнение Ньютона автономно $(m\ddot{\vec{r}}=\vec{F}(\vec{r}))$, то в каждый момент времени t сила \vec{F} однозначно определяется положением \vec{r} точки М. Вектор функция \vec{F} – силовое поле, а точка М движется в поле сил \vec{F} .

*Центральное поле си*л в D \in E $^3-$ такое поле, что при существовании точки O (центр сил) и материальной точки единичной массы, находящейся в D, действует сила, направленная вдоль прямой, проходящей через точки O и M. Уравнение Ньютона для движения данной точки в центральном поле сил: $m\ddot{\vec{r}}=\delta\Phi(r)\frac{\vec{r}}{r}$, где $\vec{r}=\overrightarrow{OM}$, $r=|\vec{r}|$, $\Phi(r)=|\vec{F}(\vec{r})|$, $\delta=\pm 1$.

Уравнения Ньютона для:

• Двух гравитирующих точек

Рассмотрим инерциальную систему координат с началом О и две материальные точки М и М₀, с массами m и m₀. Обозначим: $\vec{r}^0 = \overrightarrow{OM_0}, \vec{r} = \overrightarrow{OM}, \vec{\varrho} = \overline{M_0M}, r^0 = |\vec{r}^0|, r = |\vec{r}|, \varrho = |\vec{\varrho}|$. Используя второй закон Ньютона и закон всемирного тяготения, получаем: $\ddot{\vec{r}}^0 = \gamma \frac{m}{\varrho^3} \vec{\varrho}, \ddot{\vec{r}} = -\gamma \frac{m_0}{\varrho^3} \vec{\varrho}$ (γ - всемирная гравитационная постоянная). Вычитая первое уравнение из второго, получаем уравнения движения точки М в центральном силовом поле с центром в M₀: $m\ddot{\vec{\varrho}} = -\frac{\gamma m(m_0+m)}{\varrho^2} \frac{\vec{\varrho}}{\varrho}$.

• Для двух электрических зарядов

Рассмотрим инерциальную систему координат с началом О и две материальные точки М и М₀, с массами m и m₀ и зарядами q и q₀ соответственно. Введём: $\vec{r}^{\,0} = \overrightarrow{OM_0}$, $\vec{r} = \overrightarrow{OM}$, $\vec{\varrho} = \overrightarrow{M_0M}$, $r^{\,0} = |\vec{r}^{\,0}|$, $r = |\vec{r}|$, $\varrho = |\vec{\varrho}|$. Используя второй закон Ньютона и закон Кулона, получаем: $\ddot{\vec{r}}^{\,0} = \pm k \frac{q_0 q}{m_0 \varrho^3} \vec{\varrho}$, $\ddot{\vec{r}} = \mp k \frac{q_0 q}{m_0 \varrho^3} \vec{\varrho}$ (k - положительная постоянная). Вычитая первое уравнение из второго, получаем уравнения движения точки М в центральном силовом поле с центром в M₀: $m\ddot{\vec{\varrho}} = \pm \frac{km(m^{-1}-m^{-1})q_0 q}{\varrho^2} \frac{\vec{\varrho}}{\varrho}$ (минус в соответствует случаю притягивающихся точек).

• Для точки в поле силы Гука

Рассмотрим движение материальной точки М массы m относительно системы координат с началом О под действием силы Гука ($\vec{F}=-\chi\vec{r},\vec{r}=\overrightarrow{OM},\chi$ – зависящая от контекста задачи постоянная). Используя второй закон Ньютона и формулу для силы Гука, получаем уравнение движения точки М в центральном силовом поле с центром силы в точке равновесия О: $m\ddot{\vec{r}}=-\chi r\frac{\vec{r}}{r}$.

При движении материальной точки в центральном поле, главный момент внешних сил относительно центра сил О равен нулю. Следовательно: $\vec{r} \times \dot{\vec{r}} = \vec{c} = (c_1, c_2, c_3)$. $\vec{r} \times \dot{\vec{r}}$ - интегралом площадей, c_1, c_2, c_3 – постоянные площадей. Если x, y, z — координаты радиусвектора \vec{r} , то данное уравнение можно переписать: $y\dot{z} - \dot{y}z = c_1$, $z\dot{x} - \dot{z}x = c_2$, $x\dot{y} - \dot{x}y = c_3$. Умножив эти равенства на x, y, z и сложив иx, получаем плоскость Лапласа: $c_1x + c_2y + c_3z = 0$. Следовательно, если $\vec{c} \neq \vec{0}$, то движение точки происходит в плоскости Лапласа, проходящей через центр сил O.

Геометрическая интерпретация интеграла площадей, говорит о том, что в задаче о движении материальной точки в центральном поле сил наличие этого интеграла является обобщением закона Кеплера о постоянстве секторной скорости планеты.

Если $\vec{r}(t) = \overrightarrow{OM(t)}$ - радиус-вектор точки M(t) в момент t > t_0 , то ее cekmophas ckopocmb — вектор $\overline{\sum(t)} = \dot{S}(t)\vec{l}$, S(t) — площадь фигуры, лежащей в плоскости Лапласа, между векторами $\vec{r}(t_0)$ и $\vec{r}(t)$ и дугой $(M(t_0), M(t))$ траектории этой точки. Вектор $\vec{l} = (\vec{r}(t) \times \dot{\vec{r}}(t_0))/|\vec{r}(t) \times \dot{\vec{r}}(t_0)|$ (ортагонален плоскости Лапласа)

Теорема: Пусть материальная точка M(t) массы m движется в центральном поле сил с центром сил O \in E³ и $\vec{r}(t) = \overrightarrow{OM(t)}$ - радиус-вектор этой точки. Если $\overline{\sum(t)}$ - секторная скорость точки M(t), то: $\overline{\sum(t)} = \frac{1}{2} (\vec{r}(t) \times \dot{\vec{r}}(t_0)) = \frac{1}{2} \vec{c}$, где \vec{c} - постоянная площадей.

Изменение кинетического момента, вычисляемого относительно подвижного полюса

Помня вышеописанные определения, введём новые: радиус-вектор центра масс системы - $\vec{r}_c = m^{-1} \sum_j m_j \vec{r}_j$, $m = \sum_j m_j$, главный вектор ее количества движения - $\vec{Q} = \sum_j m_j \vec{v}_j$, радиус вектор точки А - \vec{r}_A , скорость точки А - \vec{v}_A , ускорение точки А - \vec{w}_A , А \in Е 3 – движется относительно некоторого репера с началом в О, главным моментом внешних сил - $\vec{\mathcal{M}}_A = \sum_j (\vec{r}_j \times \vec{r}_A) \times \vec{F}_j$ и главный момент количества движения - $\vec{\mathcal{K}}_A = \sum_j (\vec{r}_j \times \vec{r}_A) \times m_j (\vec{v}_j - \vec{v}_A)$ механической системы относительно подвижного полюса А.

Теорема об изменении кинетического момента: Производная кинетического момента механической системы относительно подвижного полюса A и ее главный момент внешних сил относительно того же полюса связаны равенством: $\frac{d}{dt}\vec{\mathcal{K}}_A + m(\vec{r}_c - \vec{r}_A) \times \vec{w}_A = \vec{\mathcal{M}}_A$.

Следствие: Если при любом t полюс A = A(t) совпадает с центром масс системы или движется прямолинейно и равномерно, то $\frac{d}{dt}\vec{\mathcal{K}}_A + m(\vec{r}_C - \vec{r}_A) \times \vec{w}_A = \overrightarrow{\mathcal{M}}_A <=> \frac{d}{dt}\vec{\mathcal{K}} = \overrightarrow{\mathcal{M}}$

Работа силы и изменение кинетической энергии материальной точки

Рассмотрим уравнение движения в ${\sf E}^3$ материальной точки M массы m, на которую действует сила $\vec F\colon m {d\vec v\over dt} = \vec F$.

Умножив скалярно данное уравнение на $d\vec{r}$, получим теорему об изменении кинетической энергии материальной точки в дифференциальной форме: $dT = \vec{F} d\vec{r}$. Это уравнение записано в терминах бесконечно малых величин, но можно получить его в терминах относительно конечных величин, умножив скалярно $m\frac{d\vec{v}}{dt} = \vec{F}$ на \vec{v} или разделив $dT = \vec{F} d\vec{r}$ на dt: $\frac{dT}{dT} = \vec{F} \vec{v}$.

А - работа по перемещению материальной точки под действием силы \vec{F} из точки M_0 в точку M вдоль дуги (M_0,M) , где $M_0=M(t_0)$, M=M(t), $t>t_0$: $T-T_0=A$, $A=\int_{(M_0,M)}\vec{F}\,d\vec{r}$, где $T_0=T|_{t=t_0}$. Обозначая символами X, Y, Z координаты вектора \vec{F} , получим: $A=\int_{(M_0,M)}(X\,dx+Y\,dy+Z\,dz)$

Если задать дугу (M_0,M) в параметрической форме, то работу можно записать как определенный интеграл по параметру (обычно используется время t или естественная координата s): $A=\int_{t_0}^t \vec{F} \vec{v} dt = \int_{s_0}^s \vec{F} \vec{\tau} ds = \int_{s_0}^s F \cos \angle (\vec{F}; \vec{v}) ds$, где $F=\left|\vec{F}\right|$, $\vec{\tau}=\vec{v}/v$.

Мощность - $N=rac{dA}{dt}=\vec{F}\,\vec{v}$. Используя $rac{dT}{dT}=\vec{F}\,\vec{v}$ получаем, что производная кинетической энергии материальной точки равна мощности работы, выполняемой главным вектором сил, действующих на эту точку.