$\mathbb{Z}\text{-}\Delta_2\text{-FLATNESS}$ CONSTANT CASE 1 OF TRIANGLE COMPUTATIONS

JOHANNES HOFSCHEIER

ABSTRACT. Details for bounding the width of the triangles from case 4 of [1, Table 1]. case_04.pl contains the polymake code and case_04.py contains the python code.

Let e_1, e_2 be the standard basis of \mathbb{Z}^2 . Consider the locking points $(A, B, C) = (e_1 + e_2, -e_2, -3e_1 - e_2)$ and let $P' \subset \mathbb{R}^2$ be their convex hull. Let $P \subset \mathbb{R}^2$ be a triangle circumscribed around those three locking points. Recall that $\mathbf{0}$ and e_1 are assumed to be contained in the interior of P. We consider the width directions e_2^* . The slopes m_{XY} , m_{YZ} and m_{ZX} of the facets of P through $\{X,Y\}$, $\{Y,Z\}$ and

FIGURE 1. A triangle P (in red) with locking points $(A, B, C) = (e_1 + e_2, -e_2, e_2)$.

 $\{Z,X\}$ respectively can be expressed in terms of λ , μ , and ν (use case_01.py):

$$m_{XY} = \frac{-2 + 2\lambda + 2\mu}{-3 + 3\lambda + 4\mu}, \qquad m_{YZ} = \frac{-2 + 2\mu}{-4 + 4\mu + \nu}, \qquad m_{ZX} = \frac{2\lambda}{1 + 3\lambda - \nu}.$$

Since $P' \subset P$, we have $m_{XY} \leq \frac{1}{4}$, $m_{YZ} \leq 0$, and $0 \leq m_{ZX} \leq \frac{2}{3}$. Since $-e_2$ is not in the interior of P, we have $m_{XY} \geq 0$. Similarly, since $-4e_1 - e_2$ is not in the interior of P, we have $m_{ZX} \geq \frac{1}{2}$. Hence the slopes of P satisfy:

$$0 \le m_{XY} \le \frac{1}{4}, \qquad m_{YZ} \le 0, \qquad \frac{1}{2} \le m_{ZX} \le \frac{2}{3}.$$

Arithmetic manipulations of these inequalities yield constraints on the parameters λ , μ , and ν which define the polytope of admissible parameters

$$Q = \{(\lambda, \mu, \nu) \in [0, 1]^3 : 0 \le \lambda + \mu - 1, 0 \le \lambda + \nu - 1, 0 \le -5\lambda - 4\mu + 5, 0 \le 3\lambda - \nu + 1, 0 \le 4\mu + \nu - 4\}.$$

We now determine the widths of P in the directions e_2^* (use case_04.py). On Q, these are achieved at Z-X, Y-X, and Z-Y respectively:

$$\operatorname{width}_{e_2^*}(P) = e_2^*(Z - X) = \frac{2\lambda}{\delta}$$

We thus obtain

$$\operatorname{width}(P) \leq \operatorname{width}_{e_2^*}(P) = \frac{2\lambda}{\delta} =: \frac{f(\lambda, \mu, \nu)}{\delta}.$$

By using ${\tt case_04.pl}$ and Mathematica, we get that

$$\max_{(\lambda,\mu,\nu)\in Q}\frac{f(\lambda,\mu,\nu)}{\delta}=3,$$

and the maximum is achieved exactly at $(\lambda, \mu, \nu) = (\frac{1}{3}, \frac{5}{6}, \frac{2}{3})$. Hence there is a unique maximiser, namely the triangle with vertices given by

$$\frac{1}{2} \begin{pmatrix} -10 & 2 & 2 \\ -3 & 3 & 0 \end{pmatrix}.$$

Notice that the width maximiser is **not** admissible since e_1 is contained in the

FIGURE 2. The width maximiser (in red) with locking points $(A, B, C) = (e_1 + e_2, e_2, -3e_1 - e_2)$.

boundary. Hence the widths of admissible (i.e., $\mathbf{0}$ and e_1 contained in the interior) inclusion-maximal \mathbb{Z} - Δ_2 -free triangles with locking points (A,B,C) approach 3, but never reach it.

REFERENCES

[1] G. Codenotti, T. Hall, J. Hofscheier, Generalised flatness constants: a framework applied in dimension 2, preprint, arxiv.