

TURBOSWITCH™ ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	5A
V _{RRM}	600V
t _{rr} (typ)	20ns
V _F (max)	1.5V

FEATURES AND BENEFITS

- SPECIFICTO"FREEWHEEL MODE"OPERATIONS: FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY OPERATIONS
- INSULATED PACKAGE: ISOWATT220AC Electrical insulation: 2000VDC Capacitance < 12 pF

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600V to 1200V.

TURBOSWITCH family, drastically cuts losses in both the diode and the associated switching IGBT or MOSFET in all "freewheel mode" operations

and is particularly suitable and efficient in motor control freewheel applications and in booster diode applications in power factor control circuitries. Packaged either in TO-220AC, ISOWATT220AC or in DPAK, these 600V devices are particularly intended for use on 240V domestic mains.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage		600	V
Vrsm	Non repetitive peak reverse voltage		600	V
I _{F(RMS)}	RMS forward current	S forward current TO-220AC ISOWATT220AC		А
		DPAK		Α
I _{FRM}	Repetitive peak forward current	peak forward current tp=5µs F=5kHz square		Α
I _{FSM}	Surge non repetitive forward current tp=10 ms sinusoidal		55	Α
Tj	Maximum operating junction temperate	150	°C	
Tstg	Storage temperature range	_	-65 to 150	°C

TM: TURBOSWITCH is a trademark of STMicroelectronics

November 1999 - Ed: 3D 1/10

THERMAL AND POWER DATA

Symbol	Parameter	Test conditions	Value	Unit
R _{th(j-c)}	Junction to case	TO-220AC/ DPAK ISOWATT220AC	3.5 6.0	°C/W
P ₁	Conduction power dissipation • $I_{F(AV)} = 5A \delta = 0.5$	TO-220AC/ DPAK Tc= 118°C ISOWATT220AC Tc= 96°C	9	W
P _{max}	Total power dissipation Pmax = P1 + P3 (P3 = 10% P1)	TO-220AC/ DPAK Tc= 115°C ISOWATT220AC Tc= 90°C	10	W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
V _F *	Forward voltage drop	I _F =5A	Tj = 25°C			1.75	V
			Tj = 125°C		1.25	1.5	V
I _R **	Reverse leakage current	$V_R = 0.8 x$	Tj = 25°C			100	μΑ
	_	V_{RRM}	Tj = 125℃		0.75	2	mΑ
V _{to}	Threshold voltage	Ip < 3.I _{AV}	Tj = 125°C			1.15	V
rd	Dynamic resistance					70	mΩ

To evaluate the maximum conduction losses use the following equation :

 $P = V_{to} \times I_{F(AV)} + rd \times I_{F}^{2}(RMS)$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{rr}	Reverse recovery time	Tj = 25°C $I_F = 0.5 \text{ A}$ $I_R = 1 \text{A}$ $Irr = 0.25 \text{A}$ $I_F = 1 \text{ A}$ $dI_F/dt = -50 \text{A}/\mu \text{s}$ $V_R = 30 \text{V}$		20	50	ns
I _{RM}	Maximum reverse recovery current	Tj = 125°C VR = 400V I _F =5A dI _F /dt = -40 A/μs dI _F /dt = -500 A/μs		11	3.0	А
S factor	Softness factor	Tj = 125° C V _R = 400 V I _F = $5A$ dI _F /dt = -500 A/ μ s		0.55		-

TURN-ON SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{fr}	Forward recovery time	Tj = 25°C $I_F = 5$ A, $dI_F/dt = 40$ A/ μ s measured at $1.1 \times V_F$ max			500	ns
V _{Fp}	Peak forward voltage	Tj = 25°C I _F =5A, dI _F /dt = 40 A/μs			10	V

2/10

Fig. 1: Switching OFF losses versus dl/dt.

Fig. 3: Peak reverse recovery current versus dl_F/dt.

Fig. 5: Softness factor (tb/ta) versus dl_F/dt.

Fig. 2: Forward voltage drop versus forward current.

Fig. 4: Reverse recovery time versus dI_F/dt.

Fig. 6: Relative variation of dynamic parameters versus junction temperature (reference $Tj = 125^{\circ}C$).

57

Fig. 7: Transient peak forward voltage versus dl_F/ft.

Fig. 8: Forward recovery time versus dl_F/dt.

Fig. 9: Relative cariation of thermal transient impedance junction to case versus pulse duration (TO-220AC and DPAK).

Fig. 10: Relative cariation of thermal transient impedance junction to case versus pulse duration (ISOWATT220AC).

4/10

APPLICATION DATA

The TURBOSWITCH is especially designed to provide the lowest overall power losses in any "FREEWHEEL Mode" application (Fig.A) considering both the diode and the companion transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

Fig. A: "FREEWHEEL" MODE

57

APPLICATION DATA (Cont'd)

Fig. B: STATIC CHARACTERISTICS

Fig. C: TURN-OFF CHARACTERISTICS

Conduction losses:

$$P1 = V_{t0} \cdot I_{F(AV)} + R_d \cdot I_{F^2(RMS)}$$

Reverse losses:

$$P2 = VR . IR . (1 - \delta)$$

Turn-on losses: (in the transistor, due to the diode)

P5 =
$$\frac{V_R \times I_{RM}^2 \times (3 + 2 \times S) \times F}{6 \times dI_F / dt} + \frac{V_R \times I_{RM} \times I_L \times (S + 2) \times F}{2 \times dI_F / dt}$$

Turn-off losses (in the diode):

$$P3 = \frac{V_R \times I_{RM}^2 \times S \times F}{6 \times dI_F/dt}$$

P3 and P5 are suitable for power MOSFET and IGBT

APPLICATION DATA (Cont'd)

Fig. D: TURN-ON CHARACTERISTICS

Turn-on losses:

 $P4 = 0.4 \text{ (VFP - VF)} . I_{Fmax} . t_{fr} . F$

PACKAGE MECHANICAL DATA DPAK

	DIMENSIONS			
REF.	Millin	Millimeters Inches		hes
	Min.	Max	Min.	Max.
Α	2.20	2.40	0.086	0.094
A1	0.90	1.10	0.035	0.043
A2	0.03	0.23	0.001	0.009
В	0.64	0.90	0.025	0.035
B2	5.20	5.40	0.204	0.212
С	0.45	0.60	0.017	0.023
C2	0.48	0.60	0.018	0.023
D	6.00	6.20	0.236	0.244
Е	6.40	6.60	0.251	0.259
G	4.40	4.60	0.173	0.181
Н	9.35	10.10	0.368	0.397
L2	0.80	typ.	0.031 typ.	
L4	0.60	1.00	0.023	0.039
V2	0°	8°	0°	8°

FOOTPRINT DIMENSIONS (in millimeters)

■ Cooling method : by conduction (C)

8/10

PACKAGE MECHANICAL DATA

ISOWATT220AC

	DIMENSIONS				
REF.	Millim	neters	Inches		
	Min.	Max.	Min.	Max.	
Α	4.40	4.60	0.173	0.181	
В	2.50	2.70	0.098	0.106	
D	2.40	2.75	0.094	0.108	
Е	0.40	0.70	0.016	0.028	
F	0.75	1.00	0.030	0.039	
F1	1.15	1.70	0.045	0.067	
G	4.95	5.20	0.195	0.205	
Н	10.00	10.40	0.394	0.409	
L2	16.00typ.		0.63	0 typ.	
L3	28.60	30.60	1.125	1.205	
L6	15.90	16.40	0.626	0.646	
L7	9.00	9.30	0.354	0.366	
Diam	3.00	3.20	0.118	0.0126	

■ Cooling method : by conduction (C)
■ Recommanded torque value : 0.55m.N

■ Maximum torque value: 0.7m.N

PACKAGE MECHANICAL DATA

TO-220AC

		DIMEN	ISIONS	
REF.	Millimeters		Inches	
	Min.	Max.	Min.	Max.
Α	4.40	4.60	0.173	0.181
С	1.23	1.32	0.048	0.051
D	2.40	2.72	0.094	0.107
Е	0.49	0.70	0.019	0.027
F	0.61	0.88	0.024	0.034
F1	1.14	1.70	0.044	0.066
G	4.95	5.15	0.194	0.202
H2	10.00	10.40	0.393	0.409
L2	16.40 typ.		0.64	5 typ.
L4	13.00	14.00	0.511	0.551
L5	2.65	2.95	0.104	0.116
L6	15.25	15.75	0.600	0.620
L7	6.20	6.60	0.244	0.259
L9	3.50	3.93	0.137	0.154
М	2.6	2.6 typ. 0.102 typ.		2 typ.
Diam. I	3.75	3.85	0.147	0.151

Cooling method: by conduction (C)
 Recommanded torque value: 0.55m.N
 Maximum torque value: 0.7m.N

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTA506D	STTA506D	TO-220AC	1.86g	50	Tube
STTA506F	STTA506F	ISOWATT220AC	2g	50	Tube
STTA506B	STTA506B	DPAK	0.3g	75	Tube
STTA506B-TR	STTA506B	DPAK	0.3g	2500	Tape & reel

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57