UniversitéA/MIRA de Béjaia Faculté des Sciences Exactes Département Mathématiques 2019/2020

Série d'exercices N1

Exercice 1.

Soit $(A_n), n \in \mathbb{N}$ une suites d'événements et A leurs limite supérieure, alors :

a) Si
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty$$
, on a $\mathbb{P}(A) = 0$.

a) Si
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty$$
, on a $\mathbb{P}(A) = 0$.
b) Si $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = +\infty$, et si les A_n sont indépendants, on a $\mathbb{P}(A) = 1$.

Exercice 2.

Soit (X_n) une suite de v.a. indépendantes de même loi de Bernoulli de paramètre $p \in]0,1[$: $\mathbb{P}(X_n = 1) = p, \mathbb{P}(X_n = 0) = 1 - p.$

- 1. Montrer qu'il y a presque sûrement une infinité de n tels que $X_n = 1$.
- 2. Pour $n \in N$, on définit l'événement $A_n = \{X_n = X_{n+1} = \dots = X_{2n-1} = 1\}$. Montrer que p.s. il n'y a qu'un nombre fini de A_n qui sont réalisés.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoire indépendantes, de loi exponentielle de paramètre 1.

- 1. Montrer que, pour tout $\epsilon > 0$, $\sum_{n \ge 1} \mathbb{P}(X_n > \epsilon) = +\infty$. En déduire que p.s. $\liminf_{n \to \infty} X_n = 0$.
- 2. Etudier selon les valeurs de α la convergence de la série $\sum_{n>0} \mathbb{P}(X_n \geq \alpha \log n).$
- 3. En déduire que presque sûrement on a, $\limsup_{n\to\infty} \frac{X_n}{\log n} = 1$.

Exercice 4.

Soient E un espace de Banach, (X_n) une suite de variables aléatoires et X une variable aléatoire dans $L^0(E)$ et $d_{\mathbb{P}}$ est une application définie par

$$d_{\mathbb{P}}(X,Y) = \inf (c > 0, \mathbb{P}(\|X - Y\| \ge c) \le c), Y \in L^{0}(E)$$

Montrer

- 1- $d_{\mathbb{P}}$ est une métrique sur $L^0(E)$.
- 2- X_n converge vers X en probabilité si et seulement si $d_{\mathbb{P}}(X_n,X)$ converge vers 0, quand $n\to\infty$

Exercice 5.

Soit $(\Omega, \mathfrak{F}, \mathbb{P})$, un espace de probabilité. Soit X une v.a. réelle F- mesurable telle que $\mathbb{E}[X] = 0$ et de variance égale à 1. Soit Y, v.a. réelle $\mathfrak{F}-$ mesurable indépendante de X et de même loi. On suppose que $\frac{1}{\sqrt{2}}(X+Y)$ a même loi que X. Trouver explicitement la loi de X (Indication : se donner $X_1,...,X_{2^n}$ v.a. indépendantes et de même loi que X, et penser au théorème central-limite).

Exercice 6.

Soient $X, X_1, X_2, ... X_n$ des vecteurs aléatoires à valeurs dans \mathbb{R}^d .

Montrer que $X_n \to X$ en loi si et seulement si pour tout $t \in \mathbb{R}^d$, $\langle X_n, t \rangle \to \langle X, t \rangle$ en loi, où \langle , \rangle , désigne le produit scalaire dans \mathbb{R}^d .