

# Where could SUSY be hiding? – Searching for di-slepton production in ATLAS

Supervised by Dr. Christopher Lester High Energy Physics Group, Cavendish Laboratory



#### Introduction to SUSY

► Supersymmetry is an extension to the Standard Model that relates fermions and bosons.

UNIVERSITY OF

**CAMBRIDGE** 

- ► Because no SUSY particles have yet been observed it must be a broken symmetry, and thus predicts heavier superpartners for all of the Standard Model particles.
- ► The MSSM ("Minimal Supersymmetric Standard Model") has minimal particle content- the superpartners are divided into squarks, gluinos, neutralinos, charginos and sleptons.
- ▶ In R-parity conserving SUSY, the lightest neutralino is the lightest supersymmetric particle (LSP)- and is stable.
- ► The supersymmetric partners have the same weak and strong couplings as their Standard Model counterparts.
- ► Consequently, being a hadron collider, the production of squarks and gluinos is favoured at the LHC as they are produced by the strong interaction.
- $\triangleright$  Typical signatures include large missing energy, and high  $\mathbf{p_T}$  jets and leptons.

#### Motivation for searching for slepton production

- ► The SUSY searches in ATLAS have been very successful this year at excluding large areas of SUSY parameter space.
- lacktriangle As an example in mSUGRA models with  $an(eta)=10, A_0=0$  and  $\mu>0$  the 0-lepton search excluded squarks and gluinos of equal mass below 950GeV with just  $165 \text{fb}^{-1}$  of data. (See ATLAS-CONF-2011-086)
- ► These searches are very powerful at detecting (reasonably) light squarks and gluinos, but are not very sensitive to models with heavy squarks and gluinos  $\rightarrow$  For these models, direct production of the lighter gauginos and sleptons can be important
- ► The low masses can (partly) counteract the small cross sections for direct production:



Figure: Feynman diagram for di-slepton production at the LHC

- ► In mSUGRA the slepton/squark mass relation means if there is slepton production there should also be significant squark production- mass gap between squarks and sleptons does not compensate for the low Electroweak cross section- so to observe sleptons we should also have observed squarks and gluinos...
- ▶ But...assuming that SUSY is hiding somewhere....there are theories where slepton production could be a discovery channel.

## Where to look?

- ► Such a search would be sensitive to any new particles with weak couplings carrying lepton number, which then decay to a lepton and an invisible particle.
- ► For a framework use the pMSSM ("Phenomenological MSSM")- this applies several phenomenological constraints to the unconstrained MSSM which has 105 free parameters. The pMSSM then requires only 19 input parameters which include the sfermion masses.
- lacktriangle Look for models with mass hierarchy  $\mathbf{m}_{ ilde{\chi}},\mathbf{m}_{ ilde{\mathfrak{q}}}>\mathbf{m}_{ ilde{\mathfrak{l}}}>\mathbf{m}_{ ilde{\chi}_1^0}$  which provides a competitive search for SUSY if  $m_{\tilde{g}}, m_{\tilde{q}} >> m_{\tilde{l}}$ .
- ► Mass spectrum for such a model shown below:



Figure: SUSY mass spectrum for a pMSSM model where di-slepton production could give a signal

#### The Di-Slepton Signature

► Feynman diagram for di-slepton production shown below:



Figure: Feynman diagram showing the production of a slepton pair, where each of the sleptons decays to a lepton and an invisible neutralino (the lsp)

- $\triangleright$  Characteristics of such an event are two high  $\mathbf{p_T}$  isolated, opposite signed, same flavour leptons, no jets except for ISR and pileup, and missing transverse energy  $(\mathsf{E}_\mathsf{T}^\mathsf{miss})$
- lacktriangle Major backgrounds come from di-leptonic  $t\bar{t}$ , diboson and  $Z o au au o ee/\mu\mu$ events, as well as other backgrounds with fake leptons and/or missing energy (single top, QCD...)

### Opposite Sign Di-lepton SUSY searches in ATLAS

► SUSY searches in events in ATLAS with 2 oppositely signed leptons and missing energy are sensitive to events involving cascade decays:



Figure: Feynman diagram showing the cascade decay of a squark where two oppositely signed same flavour leptons are produced.

▶ Plots below show kinematic distributions after event selection, object selection and event cleaning, and with a requirement of exactly two leptons, for  $165 pb^{-1}$  data.



(d) Transverse momentum  $(\mathbf{p_T})$  of the leading lepton (c) Invariant mass of the di-lepton pair  $m_{II}$ Figure: Data vs MC distributions for 2-lepton events in the ATLAS detector for  $165pb^{-1}$  of data

## Chasing down a signal...

- ▶ Need to define an approach for searching for di-slepton production in 2 lepton events... current ideas involve:
- 1. Central Jet Veto- this would reduce  $t\bar{t}$  background.
- 2. Potentially use the "Stransverse mass" variable  $m_{T2}$  [C.G. Lester and D. J. Summers, 1999], defined as:

 $\mathbf{m}_{\mathsf{T2}} = \min_{\vec{p}_\mathsf{T} + \vec{q}_\mathsf{T} = \vec{p}_\mathsf{T}} \max \left( \mathbf{m}_\mathsf{T} [\mathbf{a}_\mathsf{T}^\alpha, \tilde{\mathbf{p}}_\mathsf{T}^\alpha(\tilde{\chi})], \mathbf{m}_\mathsf{T} [\mathbf{b}_\mathsf{T}^\alpha, \tilde{\mathbf{q}}_\mathsf{T}^\alpha(\tilde{\chi})] \right)$  where here  $\mathbf{a}$  and  $\mathbf{b}$  refer to the transverse momenta of the leptons and  $\mathbf{p}$  and  $\mathbf{q}$  to the hypothetical momenta of the neutralinos. It can be shown to be bounded above by the mass of the pair-produced parents.

- 3. Investigating possible angular variables.
- ► Hopefully there will be more to come in the future....