Remote Sensing 1: GEOG 4/585 Lecture 6.1.

Active remote sensing: LiDAR

Johnny Ryan (he/him/his) jryan4@uoregon.edu

Office hours: Monday 15:00-17:00

in 165 Condon Hall

Required reading: Principles of Remote Sensing pp 345-406

Classification of sensing systems

Earth's surface

Two main types of active remote sensing systems

- RADAR (<u>RA</u>dio <u>D</u>etection <u>A</u>nd <u>R</u>anging)
 - Sometimes called "active microwave remote sensing"
 - Transmits long-wavelength microwaves (~1 100 cm) through the atmosphere and records energy backscattered from the terrain
- LiDAR (<u>Light Detection And Ranging</u>)
 - Transmits relatively short-wavelength laser light (visible/infrared, commonly 532 and 1064 nm) and records energy back-scattered from the terrain

What is a laser?

- <u>Light Amplification by the Stimulated Emission of Radiation</u>
- Lasing medium is "pumped" using very intense flashes of light or electrical discharges to get the atoms into an excited state (higherenergy orbit)
- When the electrons relax to lower-energy orbit, they release energy in the form of photons (light energy)

Laser light

Laser light has different different properties to normal light:

- The light released is *monochromatic*
 - It contains one specific wavelength (color) of light dependent on the amount of energy released by "relaxing" electrons
- The light is very directional
 - A laser light has a very tight beam and is very strong and concentrated
- The light released is coherent
 - It is "organized" each photon moves in step with the others

Electron is pumped to a higher energy level.

3

Pumping level is unstable, so the electron quickly jumps to a slightly lower energy level.

Light and an electron in an excited energy level...

Electron relaxes to a lower

...produces two photons of the same wavelength and phase.

Mirror reflects photons.

©2003 HowStuffWorks

Laser wavelengths

Some typical lasing mediums and their emission wavelengths (in nanometers):

- Argon fluoride (UV): 193
- Krypton fluoride (UV): 248
- Xenon chloride (UV): 308
- Nitrogen (UV): 337
- Argon (blue): 488
- Argon (green): 514
- Helium neon (green): 543
- Helium neon (red) 633
- Rhodamine 6G dye: 570-650
- Ruby (CrAIO3) (red): 694
- Nd:Yag (NIR): 1064
- Carbon dioxide (FIR): 10600

Goldfinger's industrial laser

What is a LiDAR?

- 1. Laser generates a pulse of light
- 2. Pulse reflects off an object and returns to the system receiver
- 3. High-speed counter measures the time of flight from the start pulse to the return pulse
- 4. Time measurement is converted to a distance (because we know speed-of-light)

How does LiDAR work?

- Laser emits up to 200,000+ pulses/second
- Receiver measures returned energy of each pulse
- Discrete Return LiDAR System samples the returned energy of each laser pulse
- Full Waveform LiDAR System continuously samples the intensity of returned laser pulse energy
 - Providing more information about the structure and the physical backscattering characteristics of illuminated targets

* In a vacuum light will travel approximately 0.3m in 1ns

Airborne LiDAR

Scanning laser emitter-receiver unit

Differentially-corrected GPS

Inertial measurement unit (IMU)

Onboard computer for storage and processing

Elevation = aircraft altitude - distance to ground

Profiling LiDAR

- Fixed at nadir, sends out individual pulses in one line
- Measures height along a single transect
- Old technology (1980s) but still in use
 - Drones for altitude control
 - Measuring yardage in golf

Scanning mechanisms

- a) Oscillating mirror
 - Produces a jagged pattern on the ground
- b) Rotating polygon mirror
 - Produces parallel lines oblique to the direction of the platform's progression

Scanning mechanisms

- c) Rotating mirror
 - Makes it possible to scan almost 360°
- d) Dispersive prisms or gratings
 - Rotate around the same axis to generate roses-like scanning patterns

Airborne LiDAR systems

System	Optech ALTM 3100EA	Riegl LMS-Q560	TopoSys Falcon II
Laser	1064 nm	near IR	1540 nm
Altitude	80 – 3500 m	30 – 1500 m	60 – 1600 m
Range measurements	up to 4	full waveform	first and last
Scan frequency	max. 70 Hz	max. 160 Hz	max. 630 Hz
Scan angle	max. ± 25°	max. ± 30°	± 7° (fixed)
Pulse rate	max. 100 kHz	max. 100 kHz, 50 kHz @ ± 22.5°	83 kHz
Beam divergence	0.3 mrad	0.5 mrad	0.5 mrad
Beam pattern	oscillating, sawtooth	rotating polygon, parallel	fiber switch, parallel

LiDAR data

- Raw return data are XYZ points
- High spatial resolution
 - o Laser footprint on ground \leq 0.50 meters
 - Typical density is 0.5 to 20+ pulses/m²
- Large volume of data
 - 5,000 to 60,000+ pulses/hectare
 - o 10 to 100+ thousands of returns/hectare
 - o 0.4 to 5.4+ MB/hectare

Digital surface models

- We can produce digital surface models (DSM) using LiDAR data
- Colors represent height above some datum (e.g. mean sea level)

Reflectivity

- The strength of LiDAR returns depends on the reflectivity of an illuminated object
- The reflective percentages are referred to as LiDAR intensity
- Light intensity is particularly useful in distinguishing features in land use/cover
 - o e.g. impervious surfaces stand out in light intensity images.

MATERIAL	REFLECTIVITY @ λ = 900 nm
Dimension lumber (pine, clean, dry)	94%
Snow	80-90%
White masonry	85%
Limestone, clay	up to 75%
Deciduous trees	typ. 60%
Coniferous trees	typ. 30%
Carbonate sand (dry)	57%
Carbonate sand (wet)	41%
Beach sands, bare areas in desert	typ. 50%
Rough wood pallet (clean)	25%
Concrete, smooth	24%
Asphalt with pebbles	17%
Lava	8%
Black rubber tire wall	2%

Multiple returns

- Often the receiver will record more than one return from the same place on the ground.
- These multiple returns provide more information about the structure and the physical backscattering characteristics of illuminated targets
- Enables mapping of sub-canopy terrain, and therefore canopy height

* In a vacuum light will travel approximately 0.3m in 1ns

Digital terrain (or "bare earth") models

- First step for quantifying canopy height is to separate ground from non-ground returns
- Usually achieved by classifying our point cloud either manually or with an automatic filtering approach
- Often use fixed kernel sizes and assume:
 - Ground returns are local minimums within the point cloud or,
 - Ground cannot exhibit slopes steeper than a set angle

Point cloud classification

 There are pre-defined classification schemes defined by the American Society for Photogrammetry and Remote Sensing (ASPRS)

Table 1. ASPRS Standard LIDAR Point Classes

Classification Value (bits 0:4)	Meaning
0	Created, never classified
1	Unclassified
2	Ground
3	Low Vegetation
4	Medium Vegetation
5	High Vegetation
6	Building
7	Low Point (noise)
8	Model Key-point (mass point)
9	Water
10	Reserved for ASPRS Definition
11	Reserved for ASPRS Definition
12	Overlap Points2
13-31	Reserved for ASPRS Definition

Canopy height model

By subtracting a digital surface model (DSM) from "bare earth" digital elevation model (DEM) we can produce a map that represents the height of features (e.g. trees) that from the ground.

LiDAR in space

- ICESat (2003-2010)
 - Carried the Geoscience Laser Altimeter
 System (GLAS)
 - One infrared laser (1064 nm)
 - O Ground footprint of 70 m
- ICESat-2 (2018-present)
 - Carries the Advanced Topographic Laser Altimeter System (ATLAS)
 - O Photon-counting LiDAR
 - One green laser (532 nm) split into six beams
 - o Ground footprint of 13 m

Pho the Photon

ICESat-2

 Main objective is to measure volumetric changes in Earth's ice sheets and their contributions to sea level rise

ICESat-2 beyond the poles

As well as measure elevational changes of the Earth's cryosphere, ICESat-2 will also:

- survey heights of the world's forests
- survey bathymetry of shallow water water bodies and coasts

Aboveground biomass in boreal region

Bathymetric mapping by LiDAR

Aerosols and water vapor

 Laser measurements can be weakened by interacting with dust and vapor particles, which scatter the laser beam and the signal returning from the target

Atmospheric LiDAR

 Vertical profiles of cloud and aerosol layers produced by NASA's Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission

Summary

- Airborne LiDAR is a very popular tool, especially in forestry, glaciology, and archeology
- LiDAR is most accurate technique for acquiring elevation data
- Spaceborne LiDAR now being used very successfully (e.g. ICESat-2)
- But lasers are blocked by clouds and aerosols
- Since the beam is so narrow, LiDAR has relatively sparse data coverage compared to multispectral imagery and radar

How does LiDAR work?

- Laser Pulse Generators
 - Airborne topographic mapping lidars use 1064 nm (infrared) diodepumped YAG lasers
- Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y₃Al₅O₁₂) is a crystal that is commonly used as a lasing medium for solid-state lasers

