Data Mining Assignment 3

- 1) Read Chapter 6 (only sections 6.1 and 6.7).
- 2) Do Chapter 6 textbook problem #2 (parts a,b,c,d only) on page 404.
- A) Consider the data set shown in Table:

Customer ID	Transaction ID	Items Bought
1	0001	{a, d, e}
1	0024	{a, b, c, e}
2	0012	{a, b, d, e}
2	0031	{a, c, d, e}
3	0015	{b, c, e}
3	0022	{b, d, e}
4	0029	{c, d}
4	0040	{a, b, c}
5	0033	{a, d, e}
5	0038	{a, b, e}

(a) Compute the support for item sets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

10 distinct baskets/transactions

- $\{e\}$: s = 8/10 = 0.8
 - {b, d}: s = 2/10 = 0.2
 - {b, d, e}: s = 2/10 = 0.2
 - (b) Use the results in part (a) to compute the confidence for the association rules $\{b, d\} ---> \{e\}$ and $\{e\} ---> \{b, d\}$. Is confidence a symmetric measure?

Both rules have support 0:2, (support count is 2):

- {b, d} ---> {e}: c = 0.2/0.2 = 1
- {e} ---> {b, d}: c = 0.2/0.8 = 0.25

Support is a symmetric measure, but confidence is not symmetric!

(c) Repeat part (a) by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in at Least one transaction bought by the customer, and 0 otherwise.)

Now we have 5 baskets in total.

- $\{e\}$: s = 4/5 = 0.8
- {b, d}: s = 5/5 = 1
- $\{b, d, e\}$: s = 4/5 = 0.8
- (d) Use the results in part (c) to compute the confidence for the association rules $\{b, d\} ---> \{e\}$ and $\{e\} ---> \{b, d\}$.
 - $\{b, d\} \longrightarrow \{e\}: c = 0.8/1 = 0.8$
 - {e} ---> {b, d}: c = 0.8/0.8 = 1

- 3) Do Chapter 6 textbook problem #6 (parts d,e only) on page 406.
 - A) Consider the market basket transactions shown in Table

Transaction ID	Items Bought	
1	{Milk, Beer, Diapers}	
2	{Bread, Butter, Milk}	
3	{Milk, Diapers, Cookies}	
4	{Bread, Butter, Cookies}	
5	{Beer, Cookies, Diapers}	
6	{Milk, Diapers, Bread, Butter}	
7	{Bread, Butter, Diapers}	
8	{Beer, Diapers}	
9	{Milk, Diapers, Bread, Butter}	
10	{Beer, Cookies}	

d) Find an itemset (of size 2 or larger) that has the largest support.

Put here the table which is in the sol4 pdf

Ignoring the 1-itemsets (and \emptyset), the itemset with the largest support is {bread, butter}.

e) Find a pair of items, a and b, such that the rules $\{a\} \longrightarrow \{b\}$ and $\{b\} \longrightarrow \{a\}$ have the same confidence.

Bread and butter have the same support (s = 5). This means that the rules {bread} \rightarrow {butter} and {butter} \rightarrow {bread} have the same confidence (c = 5/5 = 1). The same can be said with beer and cookies (s = 4, c = 2/4 = 0.5).

4) Using the data at www.stats202.com/more_stats202_logs.txt and treating each row as a "market basket" compute the support and confidence for the rule ip=65.57.245.11 → "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3".

State what the support and confidence values mean in plain English in this context.

Ans: The rule for which we have to find the support and confidence is $\{65.57.245.11\} -> \{\text{``Mozilla/5.0} (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}$

Support for $\{65.57.245.11\} = 5021 / 14803 = 0.33$ Support for $\{\text{``Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}$ Gecko/20070309 Firefox/2.0.0.3" $\} = 1619/14803 = 0.109$

Confidence for rule $\{65.57.245.11\}$ -> $\{\text{``Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}$ Gecko/20070309 Firefox/2.0.0.3" $\}$ = support count ($\{65.57.245.11, \text{``Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}$ Gecko/20070309 Firefox/2.0.0.3" $\}$) / support count ($\{65.57.245.11\}$) = 1619 / 5021 = 0.322