Final Exam (part 2) - Computational Physics I

10/10

Excellent code!

Deadline: Friday 13 December 2024 (by 17h00)

Credits: 10 points

Please keep the structure provided below and submit an organised notebook with clear answers to each item.

Name: Alan Palma Travez

2. Monte Carlo simulations: Cosmology (10 points)

Supernovae type Ia (SN Ia) are very energetic astronomical explosions, which have a very similar intrinsic known brightness (i.e. they have a very similar absolute magnitude \$M\$), so they can be used as cosmological "standard candles" to measure the luminosity distance, \$d\$, as a function of redshift, \$z\$:

\begin{equation} d=\frac{cz}{H_0} \end{equation}

where \$c\$ is the speed of light and \$H_0\$ is the Hubble constant. Since they have similar absolute magnitudes \$M\$, we can estimate distances by comparing how bright or faint they appear on the sky as indicated by the measured apparent magnitude, \$m\$, which does differ:

 $\label{log:left(frac{d}{\mbox{\sc Mpc}}right)+25 \end{equation} $$ \end{equation}$

Higher \$m\$ values imply objects are fainter; lower \$m\$ values imply objects are brighter. Same for \$M\$. Unfortunately, selection effects associated with instrumental limitations can bias our measurements. For example, far-away SN Ia can be so faint that they may not be detectable, so the sample will be biased towards brighter objects. In the equation above \$\rm Mpc\$ stands for Mega parsecs, which are distance units used in cosmology.

Therefore, to understand selection bias, we want to simulate this effect using a Monte Carlo simulation.

The purpose of this problem is to determine the bias as a function of redshift for a sample of objects (SN Ia) via a Monte Carlo calculation. To set up your simulation, assume that:

- $H_0 = 70\, \mbox{mkm}, s^{-1}\, \mbox{mpc}^{-1}$
- the absolute magnitude of SN Ia \$M=-19.5\,\rm mag\$.
- your supernova search will be able to detect \$100\$% of objects as faint as \$m=18.5\,\rm mag\$, and none fainter.

(a) Write a python function to generate \$N\$ Gaussian random variables with mean \$\langle M\rangle=-19.5\,\rm mag\$ and different standard deviations (\$\sigma_M=0.1\$, \$0.2\$, and \$0.5\,\rm mag\$).

```
In [41]: #Third party libraries
                          import numpy as np
                          import matplotlib.pyplot as plt
                          import scienceplots
In [42]:/plt.style.use(['science', 'notebook', 'no-latex']) #define the plot style
In [43]: def random_variables(N, M_mean, std_arr):
                                      Function generate N Gaussian random variables with mean M_mean for different values
                                       of standard deviations.
                                      Inputs:
                                                 {\sf N} (int): Number of random variables to generate for each standard deviation
                                                 M\_mean (float): Mean value to generate the distribution
                                                 std_arr (float): 1D array containing the standard deviation values.
                                                 rand_var_dic (float): A dictionary where each key is a standard deviation (float) and the value is
                                                                                                                a 1D numpy array of N random variables sampled from the corresponding Gaussian
                                                                                                                distribution.
                                      Author: Alan Palma
                                     #Empty dictionary to save generated array for each sigma
                                      rand_var_dic = {}
                                     #For loop to generate the random variables for each sigma
                                      for std in std arr:
                                                  rand\_var\_dic[std] = np.random.normal(loc = M\_mean, scale = std, size = N) \# Generate the random variables and store it for all the statements of the statement of the statemen
                                      return rand var dic
```

(b) Make \$3\$ plots of \$M\$ versus \$N\$, where \$N\$ is the number of generated objects, one for each \$\sigma_M\$.

```
In [44]: # Define an array containing each sigma value

std_arr = np.array([0.1, 0.2, 0.5])

# Define the mean brightness

M_mean = -19.5

# Define the number of variables to generate

N = 6000
```

```
# Create an array
         N_{arr} = np.arange(0, N)
          # print(N_arr[-1])
In [45]: # Evaluate te function created in a)
          variables_arr = random_variables(N, M_mean, std_arr)
          # print(variables_arr[std_arr[0]].shape)
          # print(N_arr.shape)
In [46]: # Figure for visualizing the generated numbers for absolute magnitudes
          fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize = (13,5), sharey=True)
          ax1. ax2. ax3 = axs.flatten()
          fig.suptitle("Random Absolute Magnitudes \n with Gaussian Distribution", fontsize = 15)
          fig.supylabel("M [mag]", fontsize = 15)
         plt1 = ax1.scatter(N_arr, variables_arr[std_arr[0]], marker = "d", color = "limeGreen",label = f"$\\sigma = {std_arr[0]}$")
         # ax1.set_ylim(np.min(variables_arr[std_arr[2]])-0.5, np.max(variables_arr[std_arr[2]])+0.5)
ax1.set_xlabel(f"N = {N}")
         ax1.set_xticks([])
         ax1.legend(frameon = True, fontsize = 11.)
         plt2 = ax2.scatter(N_arr, variables_arr[std_arr[1]], marker = "d", color = "hotpink", label = f"$\\sigma = {std_arr[1]}$")
ax2.set_xlabel(f"N = {N}")
         ax2.set_xticks([])
          ax2.legend(frameon = True, fontsize = 11.)
           plt3 = ax3.scatter(N\_arr, variables\_arr[std\_arr[2]], marker = "d", color = "royalblue", label = f"$\sigma = {std\_arr[2]}$") ax3.set\_xlabel(f"N = {N}") 
          ax3.set\_ylim(np.min(variables\_arr[std\_arr[2]]) - 0.5, \ np.max(variables\_arr[std\_arr[2]]) + 0.5)
          ax3.set_xticks([])
         ax3.legend(frameon = True, fontsize = 11.)
          plt.tight_layout()
          plt.show()
                                                               Random Absolute Magnitudes
                                                                  with Gaussian Distribution
                                                      \sigma = 0.1
                                                                                                    \sigma = 0.2
                                                                                                                                                   \sigma = 0.5
           -18
       [mag]
           -19
       M
           -20
           -21
                                 N = 6000
                                                                               N = 6000
                                                                                                                              N = 6000
In [47]: # Histrogram of the generated absolute magnitude distribution
         fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize = (13,5), sharey=True)
ax1, ax2, ax3 = axs.flatten()
          fig.suptitle("Histogram of Random Absolute Magnitudes \n with Gaussian Distribution", fontsize = 15) fig.supylabel("M [mag]", fontsize = 15)
          bins1, n1, _ = ax1.hist(variables_arr[std_arr[0]], bins = "auto", orientation = "horizontal", color = "limeGreen", label = f"$\\sigma
          ax1.set_xlabel("N")
         ax1.legend(frameon = True, fontsize = 11.)
          bins2, n2, _ = ax2.hist(variables_arr[std_arr[1]], bins = "auto", orientation = "horizontal", color = "hotpink", label = f"$\\sigma :
          ax2.set_xlabel("N")
         ax2.legend(frameon = True, fontsize = 11.)
          bins3, n3, _ = ax3.hist(variables_arr[std_arr[2]], bins = "auto", orientation = "horizontal", color = "royalblue", label = f"$\\sign
          ax3.set xlabel("N")
          ax3.legend(frameon = True, fontsize = 11.)
          plt.tight_layout()
          plt.show()
```


(c) Write a python function to calculate and return:

- the luminosity distances, \$d\$, in \$\rm Mpc\$ given redshifts between \$z=0\$ and \$z=0.1\$.
- the apparent magnitudes, \$m\$, for the same redshift range.
- · Distance:

The speed of light should have units of [km/s]:

 $\ c = 3\times 10^{8} \$ \quad \times 10^{5} \frac{km}{s} \$\$

· Apparent magnitude:

```
In [48]: def compute_magnitudes(z_arr, M):
              Function to compute the luminosity distances and apparent magnitudes for a given set of redshifts.
              Inputs:
                  z_{\rm arr}({
m float})\colon 1D array containing redshift values for which the calculations are performed. M (floar): 1D array of the absolute magnitude of the object.
              Output:
                  d_arr (float): Array of luminosity distances [Mpc] corresponding to the redshifts in z_arr.
                  m_dic (float): Dictionary where keys are redshift values and values are the 1D array with the calculated apparent magnitudes
              Author: Alan Palma
              # 1) Compute the distances within the defined red shift range
              H0 = 70. # Hubble constant [km/s*Mpc]
              c = 3.e5 \# Light speed [km/s]
              d arr = (c * z arr)/H0
              # 2) Compute the apparent magnitudes
              # For loop to evaluate m in all distances d
              m_dic = {} # Empty dictionary to save all m arrays calculated
              for i in range(len(d_arr)):
                  m_dic[z_arr[i]] = M + 5.*np.log10(d_arr[i]) + 25.
              return np.array(d_arr), m_dic
```

(d) Write a python function that:

- reads the resulting \$m\$ values from item (c),
- $\bullet \ \ \text{removes values with apparent magnitudes larger than the detection threshold $m=18.5 \norm{\lambda,\rm mag$,} \\$
- re-calculates the mean observed magnitude \$\\angle M_{\rm observed}\\rangle\$ of the SN Ia from the actually detected objects for the same redshift range.
- returns the bias as a function of redshift. The bias in \$M\$ can be calculated with:

 $\label{thm:local_local_local} $$ \left(M_{=l} M_{=l} M_{=l} \right) - \label{local_l$

For re-calculating the mean observed magnitud is is used:

 $\ M=m-5\log\left(\frac{d}{{\rm Mpc}\right)-25}$

```
In [49]: def compute_Mbias(m_dic, d_arr, z_arr, M_mean, m_th):

Function to compute the bias in absolute magnitude M by applying a threshold to apparent magnitudes m.

Inputs:

m_dic(float): Dictionary where keys are redshift values z and values are arrays of apparent magnitudes m.
```

```
d_{arr}(float): 1D array of luminosity distances [Mpc] corresponding to each redshift in z_{arr}.
         z_arr(float): 1D array of reshift values.
M_mean(float): Mean absolute magnitude.
         m_th(float): Threshold for apparent magnitudes.
         m\_clean(float): Dictionary where keys are redshift value z,
        and values are 1D array filtered apparent magnitudes for each redshift. m_no_obs(float): Dictionary where keys are redshift value z,
                           and values are not observed apparent magnitudes for each redshift.
         delta_M_list(float): 1D Array of magnitude biases for each redshift.
    Author: Alan Palma
    #For loop to iterate for all m values related with each shift value
    m_clean = {} #Empty dictionary to save m cleaned
    m_no_obs = {} #Empty dictionary to save no observed m values
    delta_M_list = [] #Empty list to save bias
    for i in range(len(d arr)):
         # 1) Remove values from m
         m_clean[z_arr[i]] = np.where(m_dic[z_arr[i]] > m_th, 0., m_dic[z_arr[i]])
         # Save also m values of no observed (For plotting)
         \label{eq:mno_obs} \texttt{[z\_arr[i]] = np.where(m\_dic[z\_arr[i]] < m\_th, 0., m\_dic[z\_arr[i]])}
         # 2) Recalculate the observed magnitude and get the mean
        \label{eq:model} $M\_obs = m\_clean[z\_arr[i]] - 5.*np.log10(d\_arr[i]) - 25.
        M_mean_obs = np.mean(M_obs)
         # 3) Computhe the bias
        delta_M = np.abs(M_mean_obs - M_mean)
        delta_M_list.append(delta_M) #Append to the list
    delta_M_list = np.array(delta_M_list)
    return m clean, m no obs, delta M list
(e) Make $3$ plots of $m$ versus $N$, where $N$ is the number of generated objects, one for each $\sigma_M=0.1$, $0.2$, and $0.5\,\rm mag$, showing
```

(e) Make \$3\$ plots of \$m\$ versus \$N\$, where \$N\$ is the number of generated objects, one for each \$\sigma_M=0.1\$, \$0.2\$, and \$0.5\\rm mag\$, showing the detection threshold and colouring distinctly the objects that would not be detected.

```
In [50]: # Call the function created in c)
                               # Define red shift limits
                               z \min = 0.0
                                z_{max} = 0.1
                               n_z = 100 # Number of points to create the z redshift array
                               # Generate the red shift array z
                               z = np.linspace(z_min, z_max, n_z)
                               # Compute m for all M with different standar diviations
                               d_std1, m_dic_std1 = compute_magnitudes(z, variables_arr[std_arr[0]]) # sigma = 0.1
                               d_std2, m_dic_std2 = compute_magnitudes(z, variables_arr[std_arr[1]]) # sigma = 0.2
d_std3, m_dic_std3 = compute_magnitudes(z, variables_arr[std_arr[2]]) # sigma = 0.5
                               # print(type(m_dic_std1))
                            /var/folders/lk/z3g6vdb52msdt9x8k77krt080000gn/T/ipykernel\_31795/685526529.py: 28: RuntimeWarning: divide by zero encountered in log10 and the state of the sta
                               m_dic[z_arr[i]] = M + 5.*np.log10(d_arr[i]) + 25.
In [51]: # Call the function created in d)
                               # Define the threshold value
                               m_{th} = 18.5
                                # Compute for all m with different standar diviations
                                 \texttt{m\_clean\_std1, m\_No\_obs\_std1, Mbias\_std1} = \texttt{compute\_Mbias(m\_dic\_std1, d\_std1, z, M\_mean, m\_th)} \ \# \ \textit{sigma} = \emptyset.1 
                               m_clean_std2, m_No_obs_std2, Mbias_std2 = compute_Mbias(m_dic_std2, d_std2, z, M_mean, m_th) # sigma = 0.2 m_clean_std3, m_No_obs_std3, Mbias_std3 = compute_Mbias(m_dic_std3, d_std3, z, M_mean, m_th) # sigma = 0.5
                            /var/folders/lk/z3g6vdb52msdt9x8k77krt080000gn/T/ipykernel\_31795/3212820504.py: 37: RuntimeWarning: divide by zero encountered in log1 and the statement of t
                                  M_{obs} = m_{clean}[z_{arr[i]}] - 5.*np.log10(d_{arr[i]}) - 25.
                            /var/folders/lk/z3g6vdb52msdt9x8k77krt080000gn/T/ipykernel_31795/3212820504.py:37: RuntimeWarning: invalid value encountered in subtr
                         M_{obs} = m_{clean}[z_{arr[i]}] - 5.*np.log10(d_{arr[i]}) - 25.
In [52]: # Create an subarray of z values for plotting
                               z_{sub} = np.array([z[len(z)//4], z[len(z)//2], 3*z[len(z)//4], z_{max}])
                               # print(len(z)//2)
In [53]: # Figure of m apparent magnitud for all distributions
                                #For loop to generate images for some z values in z_sub array
```

```
for z_i in z_sub:
        fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize = (13,5), sharey = True)
       ax1, ax2, ax3 = axs.flatten()
        fig.suptitle(f"Apparent Magnitude for Measuring Brightness \n Redshift (z) = {'%.3f' % z_i}", fontsize = 15, weight='bold')
       fig.supylabel("m [mag]", fontsize = 15)
       ax1.plot(N_arr, m_No_obs_std1[z_i], color = "gray", linestyle = " ", marker = "d", label = f"Not detected")
ax1.plot(N_arr, m_clean_std1[z_i], color = "limeGreen", linestyle = " ", marker = "d", label = f"Detected")
ax1.axhline(y=18.5, color = 'red', linestyle = '--', linewidth = 1.5, label = "Threshold = 18.5")
ax1.set_title(f"Gausian distribution $\sigma = {std_arr[0]}$", fontsize = 12)
ax1.set_xlabel(f"N = {N}")
       ax1.set_xticks([])
        ax1.legend(frameon = True, fontsize = 11.)
       ax2.plot(N_arr, m_No_obs_std2[z_i], color = "gray", linestyle = " ", marker = "d", label = f"Not detected")
ax2.plot(N_arr, m_clean_std2[z_i], color = "hotpink", linestyle = " ", marker = "d", label = f"Detected")
ax2.axhline(y=18.5, color = 'red', linestyle = '--', linewidth = 1.5, label = "Threshold = 18.5")
ax2.set_title(f"Gausian distribution $\sigma = {std_arr[1]}*", fontsize = 12)
       ax2.set_xlabel(f"N = {N}")
       ax2.set_xticks([])
       ax2.legend(frameon = True, fontsize = 11.)
      ax3.plot(N_arr, m_No_obs_std3[z_i], color = "gray", linestyle = " ", marker = "d", label = f"Not detected") ax3.plot(N_arr, m_clean_std3[z_i], color = "royalblue", linestyle = " ", marker = "d", label = f"Detected") ax3.axhline(y=18.5, color = 'red', linestyle = '---', linewidth = 1.5, label = "Threshold = 18.5") ax3.set_title(f"Gausian distribution $\sigma = {std_arr[2]}$", fontsize = 12) ax3.set_xlabel(f"N = {N}") ax3.set_xticke(f)
       ax3.set xticks([])
       ax3.legend(frameon = True, fontsize = 11.)
       ax1.set_ylim(18.5 - 4., 18.5 + 4.)
       plt.tight_layout()
       plt.show()
```

Apparent Magnitude for Measuring Brightness Redshift (z) = 0.025

N = 6000

N = 6000

N = 6000

Apparent Magnitude for Measuring Brightness Redshift (z) = 0.076

Histogram of Apparent Magnitude for Measuring Brightness Redshift (z = 0.025)


```
fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize = (16,4), sharey = True)
            ax1, ax2, ax3 = axs.flatten()
            fig.suptitle(f"Bias \ as \ a \ Function \ of \ Redshift", \ fontsize = 15, \ weight='bold') \\ fig.supylabel(f"$|\Delta M|$", \ fontsize = 11)
            ax1.plot(z, Mbias_std1, color = "limeGreen", linestyle = "-", marker = ".", label = f"$\setminus sigma = {std_arr[0]}$") ax1.set_xlabel("z") 
            ax1.legend(frameon = True, fontsize = 11.)
            ax2.plot(z, Mbias\_std2, color = "hotpink", linestyle = "-", marker = ".", label = f"$\\\sigma = \{std\_arr[1]\}$")
            ax2.set_xlabel("z")
            ax2.legend(frameon = True, fontsize = 11.)
            ax3.plot(z, Mbias\_std3, color = "royalblue", linestyle = "-", marker = ".", label = f"$\setminus sigma = \{std\_arr[2]\}$")
            ax3.set_xlabel("z")
            ax3.legend(frameon = True, fontsize = 11.)
            plt.tight_layout()
            plt.show()
                                                                                Bias as a Function of Redshift
                   \sigma = 0.1
                                                                                                                                                                               \sigma = 0.5
           15
        10 k
                        0.02
                                  0.04
                                           0.06
                                                     0.08
                                                                                 0.02
                                                                                            0.04
                                                                                                     0.06
                                                                                                               0.08
                                                                                                                         0.10
                                                                                                                                           0.02
                                                                                                                                                     0.04
                                                                                                                                                               0.06
                                                                                                                                                                        0.08
              0.00
                                                               0.10
                                                                        0.00
                                                                                                                                 0.00
In [56]: # Figure of the bias as function of reshift values in z (all together)
            fig = plt.figure(figsize = (14,4))
           plt.plot(z, Mbias_std1, color = "limeGreen", linestyle = "-", marker = ".", label = f"$\\sigma = {std_arr[0]}$")
plt.plot(z, Mbias_std2, color = "hotpink", linestyle = "-", marker = ".", label = f"$\\sigma = {std_arr[1]}$")
plt.plot(z, Mbias_std3, color = "royalblue", linestyle = "-", marker = ".", label = f"$\\sigma = {std_arr[2]}$")
            plt.title(f"Bias as a Function of Redshift", fontsize = 15, weight='bold')
            plt.xlabel("z")
            plt.ylabel(f"$|\\Delta M|$", fontsize = 11)
           plt.xlim(0, 0.1)
           plt.legend(frameon = True, fontsize = 11.)
            plt.show()
                                                                              Bias as a Function of Redshift
                         \sigma = 0.1
                          \sigma = 0.2
             15
                          \sigma = 0.5
             10
               5
               0.00
                                               0.02
                                                                               0.04
                                                                                                                0.06
                                                                                                                                                 0.08
                                                                                                                                                                                 0.10
```

 $(g) \ Based \ on \ your \ results, \ at \ which \ redshift \ does \ selection \ bias \ become \ important \ in \ each \ case?$

• Based on the results found above, it can be seen that the selection bias becomes important depending on the spread of the distribution. For the Gaussian distribution with \$\sigma = 0.1\$, the selection bias becomes important at a redshift value around \$0.08\$. In the case of the distribution with \$\sigma = 0.2\$, the selection bias becomes important at a shorter redshift, around \$0.07\$. Finally, in the more spread distribution with \$\sigma = 0.5\$, the selection bias is observed around \$0.05\$.

Now, the most accurate values for \$z\$ will be determined by deriving the array containing the bias and selecting the desired value using a threshold algorithm. The threshold value should be close to zero since the bias remains constant initially and then starts to increase. The chosen value for \$z\$ is the first number in the newly filtered bias array.

```
In [57]: # Function to found values where the bias become important

def select_z_bias(M_bias, z_arr, th_dev):
    """
    Function to determine the point z where the bias becomes significant.
    Inputs:
```

```
M_bias(float): 1D array containing the bias values as a function of redshift.
                    z_arrr(float): ID array containing the redshift values th_dev(float): Threshold for the derivative to define significance in the bias.
                Output:
                    point(float): Tuple containing the redshift value z and the corresponding bias value
                                      where the bias becomes significant.
                Author: Alan Palma
                # Compute the derivative
                h = z[1] - z[0] # Spacing of z array
                d_M_bias = np.gradient(M_bias, h, axis=0) # Derivative
                # Filter the values next to zero with a threshold value
                selected = np.where(d_M_bias > th_dev)
                # Get the index of the first slected value
                indx = selected[0][0]
                # Extract the point where the bias become important by indexing
                point = (z_arr[indx], M_bias[indx])
                return point
In [\stackrel{\smile}{9}\!_{8}]\colon # Define the threshold to selected z in all bias arrays (should be next to zero)
           th z = 1.e-10
          # Call the function for all bias arrays
           In [V]: # Report the results
          print(f"The redshift value z where the bias become important in the distribution with sigma=0.1 is {'%.3f' % point_std1[0]}") print(f"The redshift value z where the bias become important in the distribution with sigma=0.2 is {'%.3f' % point_std2[0]}")
          print(f"The redshift value z where the bias become important in the distribution with sigma=0.5 is {'%.3f' % point_std3[0]}")
         The redshift value z where the bias become important in the distribution with sigma=0.1 is 0.078
         The redshift value z where the bias become important in the distribution with sigma=0.2 is 0.069 The redshift value z where the bias become important in the distribution with sigma=0.5 is 0.042
In [60]: # Figure to show the selected points
         fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize = (16,4), sharey = True)
          ax1, ax2, ax3 = axs.flatten()
           fig.suptitle(f"Bias as a Function of Redshift", fontsize = 15, weight='bold')
           fig.supylabel(f"$|\\Delta M|$", fontsize = 11)
           ax1.plot(z, Mbias\_std1, color = "limeGreen", linestyle = "-", label = f"\$\backslash = {std\_arr[0]}\$")
           ax1.scatter(point_std1[0], point_std1[1], marker = "o", color = "black", label = f"z critical = {'%.3f' % point_std1[0]}", zorder = :
           ax1.set_xlabel("z")
          ax1.legend(frameon = True, fontsize = 11.)
          ax2.plot(z, Mbias_std2, color = "hotpink", linestyle = "-", label = f"$\\sigma = {std_arr[1]}$")
ax2.scatter(point_std2[0], point_std2[1], marker = "o", color = "black", label = f"z critical = {'%.3f' % point_std2[0]}", zorder = :
ax2.set_xlabel("z")
           ax2.legend(frameon = True, fontsize = 11.)
          ax3.plot(z, Mbias_std3, color = "royalblue", linestyle = "-", label = f"$\\sigma = {std_arr[2]}$")
ax3.scatter(point_std3[0], point_std3[1], marker = "o", color = "black", label = f"z critical = {'%.3f' % point_std3[0]}", zorder = 1
           ax3.set xlabel("z")
           ax3.legend(frameon = True, fontsize = 11.)
           plt.tight layout()
           plt.show()
                                                                           Bias as a Function of Redshift
                 \sigma = 0.1
                                                                                                                                                             z critical = 0.042
                \bullet z critical = 0.078
                                                                        z critical = 0.069
          15 F
        10
            5
            0
             0.00
                      0.02
                                        0.06
                                                  0.08
                                                           0.10
                                                                   0.00
                                                                            0.02
                                                                                      0.04
                                                                                              0.06
                                                                                                       0.08
                                                                                                                 0.10
                                                                                                                         0.00
                                                                                                                                  0.02
                                                                                                                                                    0.06
                                                                                                                                                              0.08
                                                                                                                                                                       0.10
                                0.04
                                                                                                                                           0.04
```

- Therefore, we know that at these values, the measured data deviates from our mean value (the true M value), which arises from detection limitations.
- In broader distributions, the tails of the distribution will be larger, leading to more extreme maxima values (brighter and fainter) Since our detectable threshold is \$18.5 mag\$, it does not matter if some SN la are brighter because our instrument will detect them anyway. However, there is a problem with

	fainter SNe, as we are losing information since they are not detectable. For this reason, the redshift at which the bias becomes important is shorter for the narrower distribution.
In []:	
In []:	