Linear Algebra 1 Visitionary

by Andrew Lehmann Last updated: June 21, 2024 Typeset in IATeX $\Sigma_{\mathbb{C}}.$

List of Definitions

Chapte	er 1 Euclidean Vectors
1.1	Euclidean vector or tuple
1.2	Tuple addition
1.3	Scalar multiplication
1.4	Canonical Euclidean unit vectors
1.5	Dot product
1.6	Euclidean Norm
1.7	Orthogonal Euclidean vectors
1.8	Displacement vector
1.9	Vector form of a straight line
	or 2 Matrix Algebra
2.1	Matrix
2.2	Set of all $m \times n$ matrices
2.3	Matrix columns and rows
2.4	Transpose of a matrix
2.4	1
	Diagonal matrix
2.6	Symmetric matrix
2.7	Matrix addition
2.8	Scalar multiplication
2.9	Zero matrix
	Additive inverse
	Multiplication of a matrix by a column
	Rotation matrix - arbtirary angle anti-clockwise
	Multiplication of two matrices
2.14	Identity matrix
	Invertible matrix
2.16	Determinant of a 1 by 1 matrix
2.17	Submatrix
2.18	Determinant of an $n \times n$ matrix
2.19	Cramer system
2.20	Cofactor matrix
Chapte	er 3 Linear Systems
3.1	Linear system of equations
3.2	Homogeneous linear system
3.3	Equivalent systems
3.4	Elementary operations
3.5	Overdetermined system
3.6	Underdetermined system
3.7	Cramer system
	er 4 Vector Spaces
4.1	Vector space
4.2	Linear Combination
4.3	Vector subspace
4.4	Span
4.4	Cartesian form of Euclidean vector sub spaces
4.6	Sum of subspaces (sum space)
4.0	Sum of subspaces (sum space)
4.7	Direct sum

i

ŀΙ						٠		٠						٠	٠			٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠		SC	rs]	и	J.	39.	ui	IJ	О	uc	tio	įs	oc	lш	Co		6.3	•	
Ιđ				٠	٠	٠	٠	٠	٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠	SC	Iε	ш	J	69	u	Ι.	ю	Se	ij	o.	391	Сa		8.3	1	
Ιđ																																															ns		7.3	1	
13																																															ļuΙ		9.đ	•	
13	٠			٠	٠	٠	٠	٠	٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	Λ	tilli	nΝ		g.č	•	
13				•	٠	٠	٠	•		•			•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•			•	•	•	•	•	٠		•	٠	•	•	٠	•	٠	٠		•	•	ſe	LUG	Ке		₽.შ	1	
13	٠			٠	٠	٠	٠	٠	٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		yш	Ва		5.3	•	
13				•	٠	٠	٠	•		•			•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•			•	•	•	•	•	٠		•	٠	•	•	٠	•	٠	٠		•	•	e	ag	шІ		2.3	1	
13	•			•	•	٠	•	•		•			•	•	٠	•	•	•	٠	•	٠	٠	•	•	•		•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	Ċ	ele:	ш	J	ıea	пŢ		1.3	i	
																																							SC	gl	Ţ٨	Ι.	sı	Э	αį	T	g 1	ъţ	sb.	СР	
15				٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠	J	oj:	э	Λ	B.	Ιo	S	9 11	gt	ıij	OLO	Co	ç	Ţ.ħ	,	
15	٠			٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			•	٠	٠	٠	٠	٠	٠	٠	٠	٠	u	1	ΙO	S	įs	вq	ľ	BO	įυ	ou	Ca	₽	Ţ.ħ	,	
15	٠			•	٠	٠	٠	٠	•	•	•		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	u	E	ΙO	S	įs	вq	ľ	BO	įυ	ou	Сa	8	Ţ.ħ	,	
15																																															Di				
15																																															Ва				
15																																															пiЛ				
IJ																																															пП		6.£	,	
																	٠														മ	no	Ы	20	ne	, .	ron	10	٠.	C	TTO	отт	OT.	тт/	`	T+++	Co		O.F		
Π																															30	00		94	LLC	٠.		,JC	<i>71</i> 1	11		+ u	.01	ш	η·	ıш	$^{\circ}$		8 V		

Chapter 1: Euclidean Vectors

Definition 1.1 (Euclidean vector or tuple).

A Euclidean vector is a list of n real numbers, also called an n-tuple. We write this list in parentheses, for example $(1,3,-2,\ldots,0)$, and we say that this object belongs to \mathbb{R}^n . An arbitrary tuple can be written $\mathbf{v}=(v_1,v_2,\cdots,v_n)$ where the components $v_i\in\mathbb{R}$ for any index i.

Definition 1.2 (Tuple addition).

Euclidean vectors are added to each other component by component. In symbols

$$(a_1, a_2, \ldots, a_n) + (b_1, b_2, \ldots, b_n) = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n).$$

Note: this means you can only add two tuples together of the same size. It makes no sense to add a 3-tuple to a 5-tuple.

Definition 1.3 (Scalar multiplication).

Let $c \in \mathbb{R}$, called a scalar quantity, and $\mathbf{v} \in \mathbb{R}^n$ with components v_i . Then the scalar multiplication $c\mathbf{v}$ gives a vector \mathbf{w} with components $w_i = cv_i$ for every index i. In tuple form

$$c(v_1, v_2, \dots, v_n) = (cv_1, cv_2, \dots, cv_n).$$

Definition 1.4 (Canonical Euclidean unit vectors).

The canonical Euclidean vectors in \mathbb{R}^n are the n vectors of the form

$$\mathbf{e}_1 = (1, 0, \dots, 0)$$

 $\mathbf{e}_2 = (0, 1, \dots, 0)$
 \vdots
 $\mathbf{e}_n = (0, 0, \dots, 1).$

 $More\ compactly$

$$\mathbf{e}_k = (\alpha_1, \alpha_2, \dots, \alpha_n) \quad \text{where} \quad \alpha_j = \begin{cases} 1 & \text{for } j = k, \\ 0 & \text{for } j \neq k. \end{cases}$$

Definition 1.5 (Dot product).

For two n-tuples **a** and **b**, their dot product, also called scalar product and Euclidean inner product, is the real number given by the addition of component by component multiplication

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i.$$

1

Definition 5.7 (Surjectivity).

Let $f:V\to W$ be a linear map. We say that f is surjective if every vector in the output space has a corresponding input vector. In symbols

$$\forall \mathbf{w} \in W \quad \exists \mathbf{v} \in V \text{ such that } f(\mathbf{v}) = \mathbf{w}.$$

$\begin{tabular}{ll} \textbf{Definition 5.8} & (Categories of linear maps). \\ \end{tabular}$

Let $f: V \to W$ be a linear map.

- If W = V we call f an endomorphism.
- If f is both injective and surjective then we say it is bijective and we call it an isomorphism.
- If f is both an isomorphism and an endomorphism we call it an automorphism.

Definition 5.9 (Composition of linear maps).

Composition of linear maps works exactly as you would expect if you remember the composition of regular functions. We must have a coherence between the output of one linear map and the input of another. So, two linear maps $f: A \to B$ and $g: U \to V$ can be composed as a well defined linear map $g \circ f$ ("g of f") if and only if the output space of f is the input space of g: U = B. For any $\mathbf{u} \in A$ the composition is written

$$g \circ f : A \to V$$
 and $(g \circ f)(\mathbf{u}) = g(f(\mathbf{u})).$

sqsM	Linear	:Ğ	Chapter
------	--------	----	---------

Definition 5.1 (Linear map).

satisfies the following property: A mapping, f_i from a vector space V to a vector space W_i denoted $f:V\to W_i$ is called a linear map if it

$$\forall \mathbf{u}, \mathbf{v} \in V, \forall \alpha, \beta \in \mathbb{R}$$
$$f(\mathbf{v}\mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v}).$$

We say that a linear map preserves linear combinations.

The image of a linear map $f:V\to W$, denoted $\operatorname{im}(f)$, is the set of all possible "output" vectors of the map: Oefinition 5.2 (Image).

$$M \supseteq \{\mathbf{w} \in W \mid \exists \mathbf{v} \in V \ f(\mathbf{v}) = \mathbf{w}\} \subseteq W$$

The rank of a linear map is the dimension of its image: rank(t) = dim(im(t)). Definition 5.3 (Rank).

The kernel of a linear map $f: V \to W$, denoted $\ker(f)$, is the set of vectors that f maps to the zero vector, Definition 5.4 (Kernel).

'si tryT .W to ,W0

 $\text{Ket}(f) = \{\mathbf{v} \in V \mid f(\mathbf{v}) = \mathbf{0}_W\}.$

The nullity of a linear map is the dimension of its kernel: $\operatorname{nullity}(f) = \dim(\ker(f))$. Definition 5.5 (Nullity).

of W. In symbols we have two equivalent expressions Let $f:V \to W$ be a linear map. We say f is injective if no two vectors of V are mapped to the same vector Definition 5.6 (Injectivity).

$$\forall \mathbf{x}, \mathbf{y} \in V, \quad (f(\mathbf{x}) = f(\mathbf{y}) \Rightarrow f(\mathbf{x}) \neq f(\mathbf{y}))$$

$$\forall \mathbf{x}, \mathbf{y} \in V, \quad (\mathbf{x} \neq \mathbf{y} \Longrightarrow f(\mathbf{x}) \neq f(\mathbf{y}))$$

13

7

where ${f a}$ is an arbitrary pair (x,mx+b) and ${f r}$ is a displacement vector detucen any two distinct pairs $(x_1,mx+b)$ $\{\mathbb{X} \ni t \forall | \forall t \in \mathbb{R} \text{ and } y = mx + b\} = \{a + tr | \forall t \in \mathbb{R}\}$

The set of vectors in \mathbb{R}^n of the form $\mathbf{v}=\mathbf{a}+t\mathbf{r}$ for a parameter $t\in\mathbb{R}$ represents a straight line through the

pictured below. Of course we can also create the displacement vector in the other direction, from b to a, given Given two Euclidean vectors ${\bf a}$ and ${\bf b}_1$ the displacement vector pointing from ${\bf a}$ to ${\bf b}$ is given by ${\bf r}={\bf b}-{\bf a}$ as

 $\|\mathbf{v}\| = \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|$

Two vectors in \mathbb{R}^n are orthogonal if and only if their dot product equals zero.

(d + 2xm, 2x) bnb (d + 2xm, 2x)

space \mathbb{R}^n . That is,

Definition 1.9 (Vector form of a straight line).

Definition 1.7 (Orthogonal Euclidean vectors).

The norm of an n-tuple \mathbf{v} , denoted $\|\mathbf{v}\|$, is given by

Definition 1.6 (Euclidean Norm).

Definition 1.8 (Displacement vector).

Chapter 2: Matrix Algebra

Definition 2.1 (Matrix).

A matrix is a collection of numbers from a field \mathbb{F} (e.g. rational numbers) usually represented by a rectangular array. For example, an $m \times n$ (said m by n) matrix A with coefficients $a_{ij} \in \mathbb{F}$ would be represented by an array with m rows and n columns:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1j} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2j} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3j} & \cdots & a_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{12} & a_{13} & \cdots & a_{ij} & \cdots & a_{im} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nj} & \cdots & a_{nm} \end{pmatrix} = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}.$$

Sometimes it is convenient to refer to the coefficients in the array like so: $a_{ij} = (A)_{ij}$.

Definition 2.2 (Set of all $m \times n$ matrices).

We write the set of all $m \times n$ matrices with coefficients in \mathbb{F} as

$$\mathcal{M}_{m,n}(\mathbb{F})$$

Definition 2.3 (Matrix columns and rows).

For a matrix $A \in \mathcal{M}_{m,n}(\mathbb{F})$ we denote its f^{th} column and i^{th} row

$$A^{(j)} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ a_{3j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix}, \qquad A_{(i)} = \begin{pmatrix} a_{i1} & a_{12} & a_{13} & \cdots & a_{ij} & \cdots & a_{in} \end{pmatrix}$$

Definition 2.4 (Transpose of a matrix).

The transpose of an $m \times n$ matrix, A, is an $n \times m$ matrix, denoted A^T , with rows equal to the columns of A. That is, $(A^T)_{ij} = (A)_{ji}$ for all combinations of i and j.

3

Definition 4.10 (Linear independence).

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ from V is said to be linearly independent if they are not linearly dependent. That is, the equation

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}_V.$$

implies that the constants $\alpha_1, \ldots, \alpha_n$ are all zero.

Definition 4.11 (Basis).

A basis of a vector space V is a minimal set of vectors which spans the vector space. Formally, the set of vectors $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ in a vector space V is a basis of V if it is a set of linearly independent vectors and $SPAN(\mathbf{v}_1, \dots, \mathbf{v}_n) = V$. Note: bases are not unique, but they always contain the same number of vectors.

Definition 4.12 (Dimension).

The dimension of a vector space is the number of elements in a basis for that vector space.

Definition 4.13 (Canonical basis of \mathbb{R}^n).

The canonical basis of the vector space of real n-tuples, \mathbb{R}^n , is the ordered set of n n-tuples with k^{th} element, $\mathbf{c}_k = (\alpha_1, \dots, \alpha_n)$ such that

$$\alpha_j = \begin{cases} 1 & \text{for } j = k, \\ 0 & \text{for } j \neq k. \end{cases}$$

That is, as a set the canonical basis is

$$\mathcal{C}_n = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, \underbrace{(0, 0, \dots, 0, 1, 0, \dots, 0)}_{k^{th} \ tuple}, \dots, (0, 0, \dots, 1)\}.$$

Definition 4.14 (Canonical basis of \mathcal{P}_n).

The canonical basis of the vector space of polynomials with degree up to n, \mathcal{P}_n , is the ordered set of n polynomials with k^{th} element, $\mathbf{c}_k = x^k$. That is, as a set the canonical basis is

$$C_n = \{1, x, x^2, \dots, x^n\}.$$

Definition 4.15 (Coordinates of a vector).

Let \mathbf{v} be a vector in a vector space V. The coordinates of \mathbf{v} with respect to a given basis \mathcal{B} , denoted $[\mathbf{v}]_{\mathcal{B}}$, is a column of the unique set of coefficients in the linear combination of \mathbf{v} in terms of the basis vectors.

A square matrix A is said to be diagonal if all its non-diagonal elements are zero, e.g. $(A)_{ij} = 0$ whenever Definition 2.5 (Diagonal matrix).

Definition 2.6 (Symmetric matrix).

 $\ell \neq i$

A matrix A is symmetric if it is equal to its transpose, $A = A^{T}$.

Matrix addition is done coefficient by coefficient, that is, for two matrices A and B we define the i, f" coefficient Oefinition 2.7 (Matrix addition).

of the addition as the addition of the i,j^{th} coefficients of each matrix:

 $\cdot_{ij}(A) + \iota_{ij}(A) = \iota_{ij}(A + A)$

to be a matrix $B \in \mathcal{M}_{m,n}$ with coefficients given by: Given a number $k \in \mathbb{R}$ (called a scalar) and a matrix $A \in \mathcal{M}_{m,n}$, we define matrix scalar multiplication, kA, Definition 2.8 (Scalar multiplication).

 $p^{ij} = ka^{ij}$.

that is, we multiply every coefficient by the scalar.

.(xirtsm obs.) 8.2 noitinhed

The zero matrix of any shape is a matrix $M_0 \in \mathcal{M}_{m,n}$ consisting entirely of zeros as coefficients.

Definition 2.10 (Additive inverse).

Given a matrix $A \in \mathcal{M}_{ij}$, its additive inverse is the same matrix multiplied by the scalar -1. We denote the

.A- sa A to sersoni suitibba

 $Y \in \mathcal{M}_{m,1}$ with coefficients

Consider a matrix $A \in \mathcal{M}_{m,n}$ and a column $X \in \mathcal{M}_{n,1}$. We define the product AX to result in the column Definition 2.11 (Multiplication of a matrix by a column).

$$(Y)_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m = \sum_{k=1}^m a_{ik}x_k$$

Euclidean vector sub spaces can always be written as a set with some defining equations: Definition 4.5 (Cartesian form of Euclidean vector sub spaces).

 $\{x_1, \dots, x_n\} \in \mathbb{R}^n \mid equations \ relating \ the \ x_k\}$.

For example, the general form of planar vector subspaces of \mathbb{R}^3 is

$$V_P = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}$$

 $."0 = z_0 + yd + xb$ where a_i , b and c are some given constants. This set is read aloud as "all the triples (x, y, z) such that

Definition 4.6 (Sum of subspaces (sum space)).

Suppose we have a vector space V with vector subspaces F and G. We define the sum of subspaces (or

pətouəp təs məu v sv (əəvds uns

 $F + G = \{ \mathbf{f} + \mathbf{g} \mid \mathbf{f} \in F, \ \mathbf{g} \in G \}$

Note: The sum space is a subset of the parent vector space: $F+G\subset V$.

Let F and G be two vector subspaces of a vector space V and let E=F+G be the sum space. We say E is Definition 4.7 (Direct sum).

denote this direct sum with a new symbol vectors in G. That is, for every $v \in E$, there exists unique vectors $f \in F$ and $g \in G$ such that v = f + g. We a direct sum of F and G if each element of E has a unique decomposition as a sum of vectors in F and

 $E = F \oplus G$

Let F and G be two vector subspaces of V. F and G are called **complementary** if V is a direct sum of F Definition 4.8 (Complementary vector subspaces).

fi filuo pur fi 'si tryI .D pur

bnn, $\mathcal{D} + \mathcal{A} = \mathcal{V} \bullet$

 $\bullet \ \ \mathbb{F} \cap \mathbb{G} = \{\mathbf{0}_{V}\}$

To set of vectors $\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ from a vector space V is said to be linearly dependent if there exists a set of Definition 4.9 (Linear dependence).

 $\alpha_{\mathbf{I}} \mathbf{\Lambda}_{\mathbf{I}} + \dots + \alpha_{n} \mathbf{\Lambda}_{n} = \mathbf{0}_{V}.$

Ħ

constants $\{\alpha_1, \ldots, \alpha_n\}$ not all zero such that

Note: the right hand side of the equation is the zero vector, not the real number 0.

Visually

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \cdots + x_m \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix}$$

$$\implies Y = x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_m A^{(m)}$$

Definition 2.12 (Rotation matrix - arbtirary angle anti-clockwise).

By using a column $X \in \mathcal{M}_{2,1}$ to represent a Euclidean vector, the following matrix allows the operation of rotataion, anti-clockwise, of X by an angle θ :

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

where the rotated vector is represented by a column $X' \in \mathcal{M}_{2,1}$ obtained by matrix multiplication $X' = R_{\theta}X$.

Definition 2.13 (Multiplication of two matrices).

Consider two matrices $A \in \mathcal{M}_{n,m}$ and $B \in \mathcal{M}_{m,q}$. We define the product AB to be the matrix $C \in \mathcal{M}_{n,q}$ with coefficients

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

$$\Rightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1q} \\ b_{21} & b_{22} & \dots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mq} \end{pmatrix}$$

$$= \begin{pmatrix} b_{11} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + b_{m1} \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} \dots b_{1q} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + b_{mq} \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix}$$

$$first \ column$$

Additionally, for the product

we will call the indices for the columns of A and rows of B the inner indices (blue), whereas the indices for the rows of A and columns of B will be called the outer indices (red).

Chapter 4: Vector Spaces

Definition 4.1 (Vector space).

A vector space over a field \mathbb{F} is a set, call it V, with elements called vectors supplied with definitions of two operations, vector addition (VA) and scalar multiplication (SM), that satisfy the following vector space axioms:

$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V and \forall k, l \in \mathbb{F}$	
$(VA1) \mathbf{u} + \mathbf{v} \in V$	$(closure\ under\ vector\ addition)$
$(VA2) (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	$(associativity\ of\ vector\ addition)$
(VA3) $\exists 0 \in V$, such that $\mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}$	$(additive\ identity)$
$(VA4) \exists -\mathbf{u} \in V \text{ such that } \mathbf{u} + (-\mathbf{u}) = 0$	$(additive\ inverse)$
$(VA5)$ $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	$(commutativity\ of\ vector\ addition)$
$(SM1)$ $k\mathbf{u} \in V$	(closure under scalar multiplication)
$(SM2) k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$	$(distributivity\ over\ vector\ addition)$
$(SM3) (k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$	(distributivity over field addition)
$(SM4)$ $k(l\mathbf{u}) = (kl)\mathbf{u}$	(compatibility of scalar and field multiplication)
$(SM5)$ 1 $\mathbf{u} = \mathbf{u}$	$(multiplicative\ identity)$

Definition 4.2 (Linear Combination).

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a set of vectors in a vector space V. A linear combination of these vectors is a new vector, $\mathbf{w} \in V$, of the form

$$\mathbf{w} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

where the α_k are real numbers.

Definition 4.3 (Vector subspace).

Suppose that V is a vector space and W is a subset of V. We call W a vector subspace if it satisfies the vector space axioms for the same definition of vector addition and scalar multiplication defined for V.

Definition 4.4 (Span).

Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a set of vectors from a vector space V. The span of these vectors is the set of all linear combinations of those vectors:

$$SPAN(\mathcal{B}) = SPAN(\mathbf{v}_1, \dots, \mathbf{v}_n) = \{\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n \mid \forall \alpha_1, \dots, \alpha_n \in \mathbb{R}^n \}.$$

This set forms a vector subspace of V. It is obviously non-empty because it at least contains the vectors of \mathcal{B} . It is also automatically closed under vector addition and scalar multiplication because those are exactly the operations we used to create all the vectors in the span! Therefore $SPAN(\mathcal{B})$ is a vector subspace of V.

Definition 2.14 (identity matrix). The n-dimensional identity matrix I is a square matrix of size $n \times n$ with Is along the diagonal and 0s

$$\begin{cases} i = i & \text{whenever } i = j, \\ 0 & \text{whenever } i \neq j. \end{cases}$$

Definition 2.15 (Invertible matrix).

elsewhere, that is,

A matrix A is invertible if and only if there exists a matrix B such that

$$I = AA = AA$$

This matrix B is called the inverse of A and is denoted A^{-1} . As we have commutative matrices, AB = BA, recall that this can only happen if A is square. So, only square matrices can have inverses.

Definition 2.16 (Determinant of a 1 by 1 matrix).

The determinant of any 1 by 1 matrix is given by its only coefficient:

$$det\left(\left(a\right) \right) \Rightarrow a$$

Definition 2.17 (Submatrix). From a matrix A_{ij} by deleting the ith row and jth column:

$$\begin{pmatrix} n_1D & & & & & & & & & & & & & & & \\ n_1D & & & & & & & & & & & & & & \\ n_1I-ib & & & & & & & & & & & & \\ n_2I-ib & & & & & & & & & & & \\ n_2I-ib & & & & & & & & & & \\ n_2I-ib & & & & & & & & & & \\ n_2I-ib & & & & & & & & & \\ n_2I-ib & & & & & & & & & \\ n_2I-ib & & & & & & & & & \\ n_2I-ib & & & & & & & & \\ n_2I-ib & & & & & & & & \\ n_2I-ib & & & & & & & & \\ n_2I-ib & & & & & & & & \\ n_2I-ib & & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & & & & & \\ n_2I-ib & & & \\ n_2I-ib & & & & \\ n_2I-ib$$

Note: we generally have to specify in words that we create a submatrix. The notation A_{ij} is a little ambiguous without being explicit.

 $\frac{Multiplying one equation by a non-zero constant}{I_1 + I_2 - I_3 = 0} \equiv (S_2) \begin{cases} I_1 + I_2 - I_3 = 0 \\ I_2 + I_2 - I_3 = 0 \end{cases} = (S_1) \begin{cases} I_1 + I_2 - I_3 = 0 \\ I_2 - (I_3) = (I_3) \end{cases}$

 $\frac{Adding \ a \ multiple \ of one equation \ to \ another \ equation}{I3I_1 - 6I_2 = 20} \equiv (S_2) \begin{cases} I_1 + I_2 - I_3 = 0 \\ I5I_1 - 4I_2 - 2I_3 = 20 \end{cases}$

Definition 3.5 (Overdetermined system). An overdetermined system).

a system allows solutions only if certain conditions are met.

Definition 3.6 (Underdetermined system).

An underdetermined system has less equations, or infinitely many. We say "there are not enough equations". Such a system has either no solutions, or infinitely many.

Definition 3.7 (Cramer system). Suppose we have the following linear system of equations)

$$(S) \qquad \begin{cases} u^u x^{uu} p + \dots + \overline{z} x^{\overline{z}u} p + \overline{1} x^{\overline{1}u} p \\ \vdots \\ u^u x^{\overline{u}\overline{v}} p + \dots + \overline{z} x^{\overline{z}\overline{v}} p + \overline{1} x^{\overline{1}\overline{v}} p \\ \vdots \\ u^u x^{\overline{u}\overline{v}} p + \dots + \overline{z} x^{\overline{z}\overline{v}} p + \overline{1} x^{\overline{1}\overline{u}} p \end{cases}$$

mith the associated matrix form

$$\begin{array}{c} X \\ \hline \begin{pmatrix} u_{fl} \\ \vdots \\ z_{fl} \\ t_{fl} \end{pmatrix} = \begin{array}{c} X \\ \hline \begin{pmatrix} u_x \\ \vdots \\ z_x \\ t_x \end{pmatrix} \begin{pmatrix} uu_p & \dots & zu_p & \mathbf{t}u_p \\ \vdots & \ddots & \vdots & \vdots \\ uz_p & \dots & zz_p & \mathbf{t}z_p \\ u\mathbf{t}_p & \dots & z\mathbf{t}_p & \mathbf{t}\mathbf{t}_p \end{pmatrix}$$

We say that (S) is a Cramer system if $det(A) \neq 0$.

Definition 2.18 (Determinant of an $n \times n$ matrix).

For any square matrix $A \in \mathcal{M}_{n,n}$, its determinant is given by

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

where the a_{ij} are coefficients of A, A_{ij} is the i, j^{th} submatrix of A and for any $1 \le j \le n$. We can also sum over the j index for any $1 \le i \le n$

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

and we will show that the answer is the same.

Definition 2.19 (Cramer system).

Suppose we have the following linear system of equations (with unknowns equal to equations)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = y_n \end{cases}$$
(S)

with the associated matrix form

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}}_{A} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{Y}$$

We say that (S) is a Cramer system if $det(A) \neq 0$.

Definition 2.20 (Cofactor matrix).

From a matrix A we generate its cofactor matrix C_A which has entries given by determinants of submatrices of A with the same plus/minus pattern as in a determinant calculation. That is, the entries of C_A are $c_{ij} = (-1)^{i+j} \det(A_{ij})$:

$$C_A = \begin{pmatrix} |A_{11}| & -|A_{12}| & |A_{13}| & \cdots \\ -|A_{21}| & |A_{22}| & -|A_{23}| & \cdots \\ |A_{31}| & -|A_{32}| & |A_{33}| & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Chapter 3: Linear Systems

Definition 3.1 (Linear system of equations).

A system of m linear equations with n unknowns, denoted (S), has the general form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_m \end{cases}$$
 (S)

where the x_j are the unknowns we want to find, a_{ij} are the coefficients and the y_i are the constant terms.

Definition 3.2 (Homogeneous linear system).

For any system of linear equations, (S), given by AX = Y, we associate the **homogeneous system**, denoted (H):

$$AX = 0_m$$

for the column

$$0_m = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{M}_{m,1}$$

We will denote the solution set of (H) by \mathcal{H} .

Note: the homogeneous system always admits at least one solution, the trivial solution $X = 0_n$.

Definition 3.3 (Equivalent systems).

Two systems of linear equations are **equivalent** if they share the same set of solutions.

Definition 3.4 (Elementary operations).

There are **elementary operations** that we can do to systems of equations that give new systems that remain equivalent to the old.

$$\underbrace{Exchanging \ two \ equations}_{ Exchanging \ two \ equations} \\ (S_1) \begin{cases} I_1 + I_2 - I_3 = 0 \\ 13I_1 - 6I_2 = 20 \end{cases} \equiv (S_2) \begin{cases} 13I_1 - 6I_2 = 20 \\ I_1 + I_2 - I_3 = 0 \end{cases}$$