FICHE 04-06: Supplémentaire commun

Yvann Le Fay

Juillet 2019

Enoncé

1. Soit K un corps infini, E un K-ev. Montrer qu'il n'existe pas $V_1, \ldots V_n$ des sous-espaces stricts de E tels que

$$E = V_1 \cup \ldots \cup V_n$$

2. Soit F_1, \ldots, F_p des sous-espaces de E de même dimension finie. Montrer qu'il existe G un sous-espace de E qui soit supplémentaire de chacun des F_i pour $i \in [1; p]$.

Solution

S'il existe une telle suite de sous-espace vectoriel alors il en existe une qui soit de taille minimale et telle qu'aucun de ces sous-espaces ne soit inclu dans la réunion des n-1 autres. Supposons donc par l'absurde l'existence d'une telle famille minimale, $V_1, \ldots V_n$

Il existe $x \in V_n \setminus V_1 \cup \ldots \cup V_{n-1}$ et $y \in V_1 \cup \ldots \cup V_{n-1} \setminus V_n$. Soit $\lambda \in K$, alors $\lambda x + y \in V_n$ ou $\lambda x + y \in V_1 \cup \ldots \cup V_n$. Le premier cas est à exclure car sinon $y \in V_n$. Ainsi il existe $i_{\lambda} \in [1; n-1]$ tel que $\lambda x + y \in V_{i_{\lambda}}$, considérons l'application qui à $\lambda \in K$ associe un des i_{λ} .

$$\begin{cases} K \to [1; n-1] \\ \lambda \mapsto i_{\lambda} \end{cases}$$

Cette application est injective, en effet, soient $\lambda, \mu \in K$ tels que $i_{\lambda} = i_{\mu} = j$, alors $(\lambda - \mu)x \in V_j$, d'où $\lambda = \mu$ car $x \notin V_j$. Ainsi, on en déduit que

$$|K| \le n - 1$$

Absurde car K est infini.

Notons r la position commune des F_i . Posons G un espace de taille maximale tel que

$$\forall i \in [1; p], G \cap F_i = \emptyset$$

Supposons par l'absurde que dim $G + \dim F_i < \dim E$, alors il existe $x \in E$ tel que $G' = G \oplus Kx$ et

$$\forall i \in [1; p], G' \cap F_i = \emptyset$$

Ce qui trahit la maximalité de G, ainsi

$$\forall i \in [1; p], G \oplus F_i = E$$