# Feature Engineering

IMPORTANCE OF FEATURE ENGINEERING TO IMPROVE MODEL PERFORMANCE

STUDENT: PAULO EDUARDO DA SILVA JUNIOR

### Summary

- 1. Why is Feature Engineering Important;
- Learned vs. Created Characteristics;
- 3. Common Feature Engineering Operations;
- 4. Data Leaks and How to Avoid Them;
- 5. Importance and Generalization of Features;
- 6. Best Practices for Feature Engineering;
- 7. Conclusion.

## Why is Feature Engineering Important

 Main reasons: performance impact, practical examples where feature selection outperforms algorithm tuning.

#### Learned vs. Created Characteristics

- 1. Deep learning (automatic feature learning);
- Traditional methods (manual definition);
- 3. Examples of text processing:
  - Stopword removal
  - Lemmatization
  - Contraction
  - Punctuation
  - Lowercase
  - Tokenization
  - N-gram



Figure 5-1. An example of techniques that you can use to handcraft n-gram features for your text

# Common Feature Engineering Operations

- Handling missing values;
- 2. Scaling;
- 3. Discretization;
- 4. Encoding of categorical variables;
- Combining features.

Table 5-2. Example data for predicting house buying in the next 12 months

| ID | Age | Gender | Annual income | Marital status | Number of children | Job      | Buy? |
|----|-----|--------|---------------|----------------|--------------------|----------|------|
| 1  | y-( | Α      | 150,000       |                | 1                  | Engineer | No   |
| 2  | 27  | В      | 50,000        |                |                    | Teacher  | No   |
| 3  |     | A      | 100,000       | Married        | 2                  |          | Yes  |
| 4  | 40  | В      |               |                | 2                  | Engineer | Yes  |
| 5  | 35  | В      |               | Single         | 0                  | Doctor   | Yes  |
| 6  | 10  | Α      | 50,000        |                | 0                  | Teacher  | No   |
| 7  | 33  | В      | 60,000        | Single         |                    | Teacher  | No   |
| 8  | 20  | В      | 10,000        |                |                    | Student  | No   |
|    | _   | 11000  | U-1500000000  |                |                    |          |      |



Figure 5-3. In many cases, the log transformation can help reduce the skewness of your data

#### Data Leaks and How to Avoid Them

- 1. Leakage occurs when information from the target variable "leaks" into the model during training, leading to incorrect predictions in production;
- Common causes include:
  - Incorrect splitting of data in time;
  - Scaling before splitting;
  - Data duplication.
- 3. **Leakage Detection**: Testing the importance of each attribute and performing ablation studies can help identify and prevent leaks.



Figure 5-7. Split data by time to prevent future information from leaking into the training process

# Importance and Generalization of Features

- 1. Feature Importance:
  - SHAP;
  - XGBoost;
- 2. Generalizability.



Figure 5-10. Boosting feature importance. X-axis corresponds to the number of features. Feature importance is in log scale. Source: He et al.



Figure 5-9. How much each feature contributes to a model, measured by SHAP. The feature LSTAT has the highest importance. Source: Scott Lundberg

### Best Practices for Feature Engineering

- 1. These are the best practices listed in the book:
  - Split data by time into train/valid/test splits instead of doing it randomly.
  - If you oversample your data, do it after splitting.
  - Scale and normalize your data after splitting to avoid data leakage.
  - Use statistics from only the train split, instead of the entire data, to scale your
  - features and handle missing values.
  - Understand how your data is generated, collected, and processed. Involve
  - domain experts if possible.
  - Keep track of your data's lineage.
  - Understand feature importance to your model.
  - Use features that generalize well.
  - Remove no longer useful features from your models.

### Conclusion

Feature engineering is vital to the success of ML projects;

The best way to learn is through experience: trying out different features and observing how they affect your models' performance.