Process Control System - Datenblattsammlung

Sensoren	Analog	Ultraschallsensor (34646 mm)	BE.SI.0193
		Durchflusssensor Typ 2	544245
		Drucksensor (050mbar)	BE.EL.0599
		Drucksensor (0100mbar)	167224
		Drucksensor (0400mbar)	BE.EL.0600
		Temperatursensor	170709
		Manometer	162844
	Digital	Kapazitiver Näherungsschalter	258172
	1 3	Schwimmerschalter	164520
		Überlaufschutz	422950
		Schutzschalter Heizung	BE.EL.0162
Aktuatoren	Analog	Pumpe	170712
		Proportionalventil	170714
		· ·	
	Digital	Heizung	170713
		2/2-Wege Magnetventil	170715
		Magnetventil	535987
		Schwenkantrieb	533417
		Magnetspule	34411
		Abluftdrosselventil	10352
		Sensorbox	534469
Anschlussbauteile	Schnittstellen	E/A-Terminal	034035
		E/A Datenkabel	034031
		Analog-Terminal	526213
		Analog-Terminal (Alt)	170699
		Analog- Datenkabel	529141
		7 maiog Datomazo.	027777
	Messwandler	Frequenz/Spannung	BE.EL.0544
		Strom/Spannung	BE.EL.0545
		PT100/Spannung	BE.EL.0546
		-	
Steuereinheiten		Motorregler	170698
		Potentiometerbaustein	BE.EL.0528
Passive Elemente		Druckbehälter	160236
		Behälter	170707
		Rohrverbindungen	170701,170702,170703
		Kunststoffrohr	304518
		Plexiglasrohr	BE.PE.0002
		Kugelhahn	170716
		Filterregelventil mit	152894
		Einschaltventil	
ADC DA		I II han and all a server (200 FO)	(0122)
MPS-PA		Ultraschallsensor (300 50 mm)	691326
		Schwebekörper,	691224
		Durchflusssensor	/00500
		Näherungsschalter, kapazitiv	690588
		Modul Rührer	690579
			161868
		Magnetventil	
		Tank, rund	689200
		Tank, rund Tank, eckig	689200 689201
		Tank, rund	689200

Ultraschallsensor

Funktion

Das Funktionsprinzip eines Ultraschall-Sensors beruht auf der Erzeugung akustischer Wellen und ihrem Nachweis nach der Reflexion an einem Objekt.

Als Träger der Schallwellen dient im Normalfall die atmosphärische Luft. Ein Schallgeber wird für eine kurze Zeitdauer angesteuert und sendet einen für das menschliche Ohr unhörbaren Ultraschallimpuls aus. Nach dem Senden wird der Ultraschallimpuls an einem innerhalb der Reichweite liegenden Objekt reflektiert und an den Empfänger zurückgeworfen. Die Laufzeit des Ultraschallimpulses wird in einer nachfolgenden Elektronik ausgewertet.

In einem gewissen Bereich ist das Ausgangssignal proportional zur Signallaufzeit des Ultraschallimpulses.

Das zu detektierende Objekt kann aus unterschiedlichen Materialien bestehen. Form und Farbe sowie fester, flüssiger oder pulverförmiger Zustand haben keinen oder nur einen geringen Einfluss auf den Nachweis. Bei Objekten mit glatter, ebener Oberfläche muss die Oberfläche senkrecht zur Ultraschallstrahlung ausgerichtet sein.

In seinem Auslieferungszustand vom Hersteller steigt das Ausgangssignal mit zunehmender Distanz zwischen Sensor und Messobjekt.

Für die Messung des Füllstandes in einem Behälter ist diese Einstellung ungünstig. Mit zunehmender Füllstandshöhe wird die Distanz zwischen Sensor und Messobjekt (Wasseroberfläche) geringer, das Messsignal sollte aber steigen. Deshalb wurde die Einstellung des ansteigenden Ausgangssignals ungekehrt.

Ebenso wurde der Messbereich des Sensors auf den Behälter angepasst.

BE.SI.0193

Ultraschallsensor

Technische Daten

Parameter	Wert	
Schutzart	IP 67	
Gewicht	max. 67g	
Umgebungstemperatur	-25 bis 70°C	
Schaltpunktfehler	± 2,5 % (-25 bis 70°C)	
Bemessungsbetriebsspannung Ue	24 V DC	
Betriebsspannungsbereich UB	2030 V DC (bei 1220 V DC um bis zu 20 % reduzierte Empfindlichkeit)	
Zul. Restwelligkeit	10%	
Leerlaufstrom I0	< 50 mA	
Schaltausgang (NC/NO) / Frequenzausgang (FA) Bemessungsbetriebsstrom I _e Spannungsfall U _d	≤ 150 mA ≤ 3 V bei 150 mA	
Analogausgang (UA/IA) Strombereich Bürde	420 mA 0300 Ω	
Sensor aktiv	Betriebsspannung oder hochohmig Eingangsstrom l₌ max. 16 mA	
Sensor nicht aktiv	03 V Eingangstrom I _E max −11 mA	

Einbau

Maßbild, alle Maße in mm

Freiräume

Freiraum

Freiraum im Abstand "x" um die Schallkeulenachse von störenden Objekten freihalten. Winkelabweichung von 3° gilt für glatte Oberflächen.

Ab dem 01.April 2004 sind alle Sensoren, die in Produkten der Adiro Automatisierungstechnik GmbH eingebaut sind, mit den Adiro- Einstellungen konfiguriert. Diese Sensoren sind mit einem speziellen Aufkleber gekennzeichnet.

Schaltbereich (Hersteller-Einstellungen)

- A Schaltbereichsanfang (programmierbar)
- E Schaltbereichsende

BE.SI.0193

Ultraschallsensor

Schaltbereich (Adiro-Einstellungen)

Details Adiro- Einstellungen

Parameter	Wert
Messbereich	Von: 50mm Bis: 345mm
Max. Messbereich	Von: 46mm Bis: 346mm
Ausgangssignal (Strom)	420 mA
Änderungen vorbehalten	

Anschluss

XI : Enable /sync S : Output

 U_A/I_A : Analog output F_A : Frequency output

Anschlussbelegung

1 24V (braun)

3 OV (blau)

4 analoger Ausgang (schwarz)

Die Anschlüsse sind verpolsicher, sowie kurzschluss- und überlastfest. Bei elektrischen Störungen werden geschirmte Leitungen empfohlen.

Synchronisieren durch Verbinden der Klemmen XI (max. 10 BERO)

Quelle: Siemens AG

Durchflusssensor

Funktion

Die in Pfeilrichtung einströmende transparente Flüssigkeit wird durch den Drallkörper in der Messkammer in eine kreiselförmige Bewegung gebracht und auf den leichtgewichtigen dreiflügeligen Rotor geleitet. Die Drehzahl des Rotors ist proportional zum Durchfluss und wird rückwirkungsfrei über das eingebaute optoelektronische Infrarotsystem (Diode und Fototransistor) erfasst.

Der integrierte Verstärker liefert ein stabiles Rechtecksignal, wobei die Signalhöhe von der angelegten Speisespannung (8 – 24 VDC) abhängig ist. Durch die besondere Auslegung des Rotors werden eventuell in der Flüssigkeit vorhandene Gasblasen (Lufteinschlüsse) nicht aufgelöst, sondern mit der Flüssigkeit transportiert.

Die Einbaulage ist beliebig. Die Durchflussrichtung ist durch einen Pfeil auf dem Sensorgehäuse markiert. Beruhigungsstrecken vor oder hinter dem Messgerät sind nicht erforderlich.

Volumenstromschwankungen oder –pulsationen haben keinen negativen Einfluss auf das Messergebnis.

Eintrittseitig ist ein Schutzfilter montiert.

Alle medienberührenden Teile des Messgehäuses werden aus Polyvinylidenfluorid (PVDF) hergestellt.

Aufbau Der Durchflusssensor wird mit Adaptern in eine Rohrleitung eingebaut.

Im Einsatz befindliche Ausführung: B.S.P.(British Standard Pipe Thread = Abkürzung für Britisches Rohrgewinde.)

Hinweis

BE.PC.0031

Durchflusssensor Typ 2

Hinweis

Im Betrieb ist auf die Polarität der angelegten Spannung zu achten. Die Kabelanschlüsse sind farblich markiert.

Betriebsspannung	Pluspol	weiß
	Minuspol	grün
Ausgangssignal	Rechtecksignal	braun

elektrischer Aufbau

Technische Daten

Parameter	Wert
Zulässige Betriebsspannung	8 24 VDC
Stromaufnahme	18 30 mA
Frequenzbereich (Ausgang)	40 1200 Hz
Max. Belastung	2,2 k
Signalabgriff	Infrarot (opto-elektronisch)
K-Faktor (Impulse / dm3)	8000
Messbereich	0,3 9,0 l/min
Messunsicherheit	± 1% vom Messwert, bei 20 °C
Linearität	± 1% des Messwertes
Viskosität	max. 15 cSt (je nach Meßbereich)
Betriebsdruck	max. 10 bar
Standard-Temperaturbereich	-40 °C +85 °C
Verpolschutz	ja
Werkstoffe alle medienberührten Teile Dichtungen	PVDF Viton
Abmessungen Länge Anschlussgewinde	47mm M20x2
Elektrischer Anschluss	Kabel
Änderungen vorbehalten	•

Kennlinien und Maßstäbe

Messbereich

Druckverlustkurve

Abmessungen bei B.S.P (British Standard Pipe Thread = Abkürzung für Britisches Rohrgewinde.) Ausführung

A: 12,7 mm L: 47 mm D: ½" d: 13 mm

Quelle: Beli Technics

Drucksensor

Funktion

Der Druckmessumformer enthält als Sensor eine Keramikmesszelle. Die Elektronik setzt das Messsignal in ein eingeprägtes Stromsignal von 4...20 mA um (wahlweise 0...10 V). Durch den robusten Aufbau sind diese Messumformer für den allgemeinen Industrieeinsatz geeignet.

Aufbau

Zum Schutz gegen Feuchtigkeit und Vibrationen ist die Elektronik vergossen. Der Ausgang ist in 3-Leiterschaltung ausgeführt.

Der Druckausgleich erfolgt durch eine Öffnung in der Gehäuseoberseite und den Anschlussstecker.

Hinweis

Wenden Sie zum Einbau keine Gewalt an.

Schrauben Sie den Druckmessumformer mit einem Schraubenschlüssel fest (max. Drehmoment 50Nm).

Ziehen sie den Druckmessumformer handfest in das Aufnahmegewinde; damit erzielen Sie bereits die volle Dichtwirkung

Behandeln Sie die Geräte vorsichtig; es sind empfindliche Messgeräte. Im Betrieb ist auf die Polarität der angelegten Spannung zu achten.

BE.EL.0599

Drucksensor

Anschlussplan

Parameter	Wert	
3-Leiter-System (010V) 1 2 3 Erde	Versorgung + Versorgung - Signal + Masse	
Änderungen vorbehalten		

Technische Zeichnung

G1/2" DIN 3852 M20 x 1,5

Technische Daten

0 50mBar	
0 10V / 3-Leiter 1436 V DC	
±0,5 % FSO IEC 60770	
<5 ms	
max. 25mA max. 7mA	
Stecker und Kabeldose DIN 43650	
IP 65	
Permanent	
Bei Vertauschten Anschlüssen keine Schädigung, aber auch keine Funktion	
G ¹ / ₂ DIN 3852	
Edelstahl 1.4571) O-Ringe FKM Keramik Al ₂ O ₃	
-25°C+125°C -40°C+125°C -25°C+85°C	
±0,3 % FSO / 10K -2585°C	
Ca. 200g	
beliebig	
>100x10 ⁶ Lastzyklen	
10g RMS (202000Hz) 100g/11ms	

Analog-Drucksensor

Funktion

Der Analog-Drucksensor ist ein piezoresistiver Relativ-Druckaufnehmer mit integriertem Verstärker und eingebauter Temperaturkompensation in einem Aluminiumgehäuse. Der zu messende Druck wird auf ein piezoresistives Element übertragen. Die darin erzeugte Signaländerung wird über einen integrierten Verstärker als Spannung am Anschlussstecker ausgegeben.

Aufbau

Der Analog-Drucksensor wird über einen G ½" Anschluss mit dem Rohrleitungssystem verschraubt. Der elektrische Anschluss erfolgt durch einen 3-poligen Gerätestecker.

Anschlussbelegung

- 1 Versorgungsspannung 24 VDC
- 2 Masse 0 VDC
- 3 Spannungsausgang 0 VDC bis 10 VDC

Drucksensor

Montage

Bei der Montage ist folgendes zu beachten:

- Gerät nur in drucklosem Zustand montieren bzw. demontieren
- Versorgungs- und Entsorgungsverbindungen herstellen. Das Gerät ist unten am Fitting mit einem Schlüssel SW 19 (G ¼) einzuschrauben und mit einem Drehmoment von 45 Nm anzuziehen. Die Einbaulage des Gerätes ist beliebig.
- Elektrostatische Entladung vermeiden. Gehäuse erden.

Das Gerät ist werkseitig kalibriert und wartungsfrei.

Hinweis

Achtung bei Anschluss an Bürkert-Regler!

Beim Abschalten der Anlage kann vorübergehend ein Vakuum entstehen und der Sensor liefert somit eine negative Spannung am Ausgang. Dieser Zustand würde zu einer Fehlermeldung am Regler führen. Sie lässt sich durch die Unterdrückung der negativen Spannung vermeiden. Hierfür muss eine Diode eingebaut werden. (siehe nachfolgender Schaltplan)

Schaltplan für die Freilaufdiode

Kennlinien

Ausgangsspannung in Abhängigkeit vom Druck

Technische Daten

Parameter	Wert
Druckmessbereich	0 mbar bis 100 mbar
Überlast	2,5 bar
Versorgungsspannung UB	13 VDC bis 30 VDC
Ausgangssignal	0 VDC bis 10 VDC
Stromaufnahme	max. 25 mA bei Stromausgang max. 5 mA bei Spannungsausgang
Linearitätsfehler	±0,5 % v. M. E.
Ansprechzeit	1 ms
Wiederholgenauigkeit	± 0,1 % v. M. E.
Temperaturdrift Nullpunkt	< 0,3 % vom Endwert/10 K
Temperaturdrift Endwert	< 0,3 % vom Endwert/10 K
Medium	Wasser
Messmembran	Edelstahl
Betriebsumgebungstemperatur	0 °C bis +65 °C
Elektrischer Anschluss	3-poliger Gerätestecker
Prozessanschluss	G ½" Außengewinde, Edelstahl
Gewicht	250 g
Temperaturbereiche Medium Elektronik Lagerung	-25 °C bis +100 °C -25 °C bis +80 °C -40 °C bis +100 °C
Änderungen vorbehalten	

Drucksensor

Technische Zeichnung des Drucksensors

Drucksensor

Schaltzeichen

Funktion

Der Druckmessumformer enthält als Sensor eine Keramikmesszelle. Die Elektronik setzt das Messsignal 0...400 mbar in ein eingeprägtes Stromsignal von 4...20 mA um (wahlweise 0...20 mA oder 0...10 V). Durch den robusten Aufbau sind diese Messumformer für den allgemeinen Industrieeinsatz geeignet. Die Prozesstemperatur kann bis 100 °C betragen.

Aufbau

Zum Schutz gegen Feuchtigkeit und Vibrationen ist die Elektronik vergossen. Der Nullpunkt ist durch ein innenliegendes Verstellpotentiometer einstellbar. Das Potentiometer ist nach Öffnen einer Gehäuseschraube von außen zugänglich. Der Ausgang ist wahlweise in 2- oder 3-Leiterschaltung ausgeführt. Der Druckausgleich erfolgt durch eine Öffnung in der Gehäuseoberseite und den Anschlussstecker.

BE.El.0600

Drucksensor

Hinweis

Im Betrieb ist auf die Polarität der angelegten Spannung zu achten.

Anschlussplan

Parameter	Wert
2-Leiter-Technik (420mA)	
1	Pluspol
2	Minuspol
3	nicht belegt
Erde	angeschlossen
3-Leiter-Technik (020mA / 010V)	
1	Ausgangssignal
2	Minuspol / Ausgangssignal
3	Pluspol
Erde	angeschlossen
Änderungen vorbehalten	

Technische Zeichnung

Technische Daten

Parameter	Wert
Druckmessbereich	0400 mbar
Elektrischer Anschluss	Winkelstecker nach DIN 43650
Schutzart	IP 65
Prozessanschluss	G ½
Messstoffberührte Teile	Keramik, Edelstahl, NBR-Dichtring
Messsystem	Keramikzelle
Temperaturbereiche Prozesstemperatur (bei max. Umgebungstemperatur von 50°C) Lagertemperatur zulässige Umgebungstemperatur kompensierter Temperaturbereich	-25+100 °C -40+85 °C -2585 °C -1055 °C
Temperatureinfluss auf Nullpunkt auf Spanne	<0,25 % v.E./10 K <0,15 % v.E./10 K
Versorgung Hilfsenergie Nennspannung Funktionsbereich max. zul. Betriebsspannung	24 VDC 1140 VDC 40 VDC
Signalausgang 2-Leiter Technik 3-Leiter Technik	420 mA 020 mA oder 010V
Strombegrenzung im Ausgangssignal	Bei 110 % vom Druckbereich
Abgleichbereich	Nullpunkt ± 10 %
Kennlinienabweichung (Linearität, Hysterese, Wiederholbarkeit)	<0,5 % v.E. (Festpunktabgleich)
Ansprechzeit	Зms
Bürde R _L max	$(U_{vers} - 11)/0,02$
Bürde bei Signalausgang 010V	>2,5 kΩ
Gewicht	Ca. 300 g
Störfestigkeit	Nach DIN 50082
Änderungen vorbehalten	

Temperatursensor

Temperatursensor

Funktion

Der Temperatursensor enthält ein Widerstandsthermometer aus Platin mit auswechselbarem Messeinsatz. Der Sensor besteht aus einem Schutzrohr, einem Anschlusskopf und dem Messeinsatz. Beim Einbau ist zu beachten, dass der Sensor die zu messende Temperatur möglichst genau annehmen kann. Wärmeentzug oder Wärmezufuhr durch den Fühler ist zu vermeiden.

Aufbau

Der Temperatursensor wird in eine Gewindebohrung eines Behälters eingeschraubt.

Widerstandsgrundwerte von Pt 100-Widerständen als Funktion der Temperatur:

Temperatur [°C]	-100,00	0,00	100,00	200,00
Grundwert [Ω]	60,25	100,00	138,50	175,84

Kennlinie: Widerstandsverlauf des PT100 über der Temperatur im Bereich von –100°C bis +200°C

170709

Temperatursensor

Hinweis

Die zulässige Strömungsgeschwindigkeit für Wasser beträgt 3 m/s. Zur Demontage des Sensors muss nicht die gesamte Befestigung am Behälter gelöst werden. Es genügt, wenn man die beiden Gewindestifte (siehe Bild unten) löst. Danach lässt sich das Thermoelement aus dem Schutzrohr ziehen

Demontage des Sensors

- 1 Gewindestift (2x)
- 2 Schutzrohr
- 3 Thermoelement

Parameter	Wert	
Bauform	nach DIN 43 763	
Messbereich	-50 °C +150 °C	
Messwiderstand	Pt 100	
Werkstoff	Kunststoff	
Toleranz 0 °C 100 °C	+/- 0,12Ω +/- 0,30Ω	
Werkstoffe: Ummantelung Schutzrohr	rostfreier Stahl rostfreier Stahl	
Abmessungen Einbaulänge Messeinsatzlänge Einschraubgewinde	100 mm 145 mm G ½"	
Elektrischer Anschluss	Kabel, 750 mm lang	
Änderungen vorbehalten		

Anschlussbelegung

Die nachfolgende Tabelle enthält die Darstellung des digitalisierten Messwertes für den Temperaturbereich Standard des Gebers.

Simatic S7 Wertebereich

Temperaturbereich Standard PT 100 850°C	dezimale Einheit	hexadezimale Einheit	Bereich
>1000,0	32767	7FFF _H	Überlauf
1000,0 850,1	10000 8501	2710 _H 2135 _H	Übersteuerungs- bereich
850,0 -200,0	8500 -2000	2134 _H F830 _H	Nennbereich
-200,1 -243,0	-2001 -2430	F82F _H F682 _H	Untersteuerungs- bereich
<-243,0	-32768	8000 _H	Unterlauf

Quelle: Siemens

Manometer

Manometer

Schaltzeichen

Beschreibung

Dieses Manometer nach EN 837-1 dient der Druckmessung und -anzeige in Steuerungen.

Es ist frei von lackbenetzungsstörenden Substanzen. Manometer dürfen bei Dauerbetrieb (Ruhebelastung) nur bis zu ¾ ihres Skalenendwertes belastet werden.

162844

Manometer

Technische Daten

Parameter	Wert
Nenndurchmesser	63 mm
Anzeigebereich	01 bar
Arbeitsdruck	00,7 bar
Medium	flüssige und gasförmige Medien (nicht zulässig: Sauerstoff, Acetylen)
Bauart	Rohrfeder-Manometer
Anschluss	G1/4(Typ MA-401/8-EN: R1/8)
Anschlusslage	Rückseite zentrisch
Temperaturbereich	-20°C+60°C
Messgeräteklasse (DIN 16005/EN 837-1)	2,5
Schwingfestigkeit (DIN IEC 68-2-6/EN 837-1)	5 m/s² bei 10 150 Hz
Schockfestigkeit (DIN IEC 68-2-27/EN 837-1)	150 m/s² bei 11 ms
Schutzart	IP 43
Werkstoffe Gehäuse Sichtscheibe Zifferblatt Beschriftung Anschlussgewinde	PS, schwarz SAN ABS weiß schwarz, blau Messing

kapazitiver Näherungsschalter

kapazitiver Näherungsschalter

Schaltzeichen

Funktion

Das Funktionsprinzip eines kapazitiven Näherungsschalters beruht auf der Auswertung der Kapazitätsänderung eines Kondensators in einem RC-Schwingkreis. Wird ein Material an den Näherungsschalter angenähert, erhöht sich die Kapazität des Kondensators. Dies führt zu einer auswertbaren Änderung des Schwingverhaltens des RC-Kreises. Die Kapazitätsänderung hängt im wesentlichen vom Abstand, von den Abmessungen und von der Dielektrizitätskonstanten des jeweiligen Materials ab.

Der Näherungsschalter hat einen PNP-Ausgang, d. h., die Signalleitung wird im geschalteten Zustand auf positives Potential geschaltet. Der Schalter ist als Schließer ausgelegt. Der Anschluss der Last erfolgt zwischen Näherungsschalter-Signalausgang und Masse.

Eine gelbe Leuchtdiode (LED) zeigt den Schaltzustand an, die grüne Leuchtdiode (LED) die Betriebsbereitschaft. Mit Hilfe einer kleinen Einstellschraube kann die Empfindlichkeit des Sensors individuell angepasst werden.

Der kapazitive Näherungsschalter ist nicht bündig einbaubar.

Aufbau

Der kapazitive Näherungsschalter kann mit zwei Überwurfmuttern in einem Haltewinkel montiert werden. Der Näherungsschalter hat eine zylindrische Bauform mit einem Gewinde M18x1.

kapazitiver Näherungsschalter

Hinweis

Im Betrieb ist auf die Polarität der angelegten Spannung zu achten. Die Kabelanschlüsse sind farblich markiert.

Parameter	Wert
Betriebsspannung Pluspol Minuspol	braun blau
Lastausgang	schwarz

Prinzipschaltbild

- 1 Oszillator
- 2 Demodulator
- 3 Triggerstufe
- 4 Schaltzustandsanzeige
- 5 Ausgangsstufe mit Schutzbeschaltung
- 6 Externe Spannung
- 7 Interne Konstantspannungsquelle
- 8 Kondensator mit aktiver Zone
- 9 Schaltausgang

Technische Daten

Parameter	Wert
Zulässige Betriebsspannung	10 55 VDC
Schaltausgang	PNP, Schließer
Nennschaltabstand (einstellbar)	2 8 mm
Hysterese (bezgl. Nennschaltabstand)	3 15 %
Maximaler Schaltstrom	200 mA
Maxima le Schaltfrequenz	300 Hz
Stromaufnahme im Leerlauf (bei 55 V)	7 mA
Zulässige Betriebs-Umgebungstemperatur	20 °C +70 °C
Schutzart	IP 65
Verpolungsschutz, Kurzschlussfestigkeit	ja
Werkstoffe (Gehäuse)	Thermoplast
Gewicht	0,20 kg
Elektrischer Anschluss	Kabel, 2000 mm lang
Änderungen vorbehalten	

Schwimmerschalter

Schwimmerschalter

Funktion

Dieser Schwimmerschalter ist zum seitlichen Einbau in kompakten Tanks gedacht. Da dieser Sensor aus Versaplast gefertigt ist, kann dieses Modell bei Temperaturen bis 150° C eingesetzt werden; das sind bis zu 50 % mehr als bei anderen Kunststoffen. Versaplast ist eine spezielle Entwicklung des Sensorherstellers. Versaplast-Versionen sind einsetzbar in Wasser, Öl und allen Chemikalien, in denen auch Nylon eingesetzt werden könnte. Die Schalter sind ideal für den Einsatz in der Nahrungsmittelindustrie, Medizintechnik, für Motorenöl und in der Wasseraufbereitung.

Langlebig bietet der Sensor genaue und wiederholbare Ergebnisse bei der Überwachung von Hoch-, Niedrig- und Zwischenfüllständen. Die Montage erfolgt durch ein ½" NPT-Außengewinde. Der Schalter arbeitet in einem Gesamtbereich von − 40° C bis 150° C und einem Druck von 7 bar/20° C. Die Wirkungsweise des Sensors ist einfach und basiert direkt auf der Niveauänderung der Flüssigkeit. Der im Schwimmerkörper integrierte Magnet betätigt den im Gehäuse hermetisch verschlossenen Reed-Schalter. Durch Drehung des Schalters um 180° wird der Reed-Schalter zum Schließer (NO) oder Öffner (NC). Pfeile auf der Außenseite des Gehäuses erleichtern diese Einstellung. Der elektrische Anschluss erfolgt mittels ca. 60 cm langen Litzen. Der Sensor wird von innen befestigt.

BE.PC.0028

Schwimmerschalter

Technische Daten

Parameter	Wert
Material Schaltrohr/Schwimmer Kabelhülle	Versaplast Polypropylen** Nylon* PVC
Temperatur Versaplast PP Nylon	-40°C bis 121°C -40°C bis 107°C -40°C bis 121°C
Min. Dichte der Flüssigkeit Versaplast PP Nylon	0,80 0,55 0,65
Betriebsdruck	7 bar
Reedschaltertyp	20 VA
Litze (Länge ca. 0,6m)	22 AWG
Schwimmerweg	55 mm
Schutzart DIN 40050	IP64
Versandgewicht (ca.)	80g
Änderungen vorbehalten	<u> </u>

^{*} Nicht geeignet für Langzeiteinsatz in Wasser. ** Nicht für Mineralöle geeignet

Bemaßung

Lg: 101,6 mm

L: 69,8 mm

1) 610 mm

2) Dichtring Buna ,N'

3) 5/8"

4) Kontermutter Nylon

Einbau

Durch Drehung der Schwimmerschalter um 180 Grad kann die Schaltfunktion umgekehrt werden. Weist die Pfeilmarkierung auf dem Befestigungselement nach oben, ist die Standard-Schaltfunktion NO.

Ist der Schwimmerschalter so montiert, dass der Schwimmer mit dem Flüssigkeitspegel absinkt, ist die Schalterste llung NO.

Ist der Schwimmerschalter so montiert, dass der Schwimmer mit dem Flüssigkeitspegel ansteigt, ist die Schalterstellung NC.

Elektrische Anschlussbelegung

Parameter	Wert
Pluspol	rot Stecker-Pin: 1
Minuspol	schwarz Stecker-Pin: 3
Stecker-Pin 2 ist unbelegt	

Einfachschwimmerschalter

Funktion

Dieser Einfachschwimmerschalter ist bestens geeignet für Flachtanks oder bei Platzmangel. Er ist ausschließlich für den vertikalen Einbau konzipiert. Das zu messende Medium drückt hierbei den Schwimmkörper nach oben und betätigt ab einer gewissen Position einen Schalter.

Technische Daten

Parameter	Wert
Material Schaltrohr Schwimmer	Polysulfon Polysulfon
Temperatur Kabel Litze	-40°C+80°C -40°C+107°C
Schwimmereintauchtiefe bei Dichte 1:	~15 mm
Betriebsdruck	3 bar
Min. Dichte der Flüssigkeit:	0,75
Reedschalter-Typ:	SPST 50 VA Kabel SPST 20 VA Litze
Elektr. Anschluß: (Länge ca. 0,6 m)	Kabel: 0,34 mm ² PVC Litze: AWG 22 PVC
Schutzart DIN 40050	IP64
Versandgewicht (ca.)	20g
Befestigungsgewinde	1/8" NPT
Änderungen vorbehalten	

BE.PC.0027

Schwimmerschalter (Überlaufschutz)

Technische Zeichnung

 L_1 = Schalter Aktivierung bei Erreichen des Nominal-Füllstandes (bezogen auf spezifisches Gewicht von 1,0)

Polysulfon Schwimmer: 19,0 mm

Elektrische Anschlussbelegung

Parameter	Wert
Pluspol	rot Stecker-Pin: 1
Minuspol	schwarz Stecker-Pin: 3
Stecker-Pin 2 ist unbelegt	

Schwimmerschalter

Funktion

Siehe BE.PC.0028.

Als Basis für diese Baugruppe (BG.EL.0162) dient der Schwimmerschalter BE.PC.0028, der in diesem Fall mit einem steckbaren Anschlusskabel versehen ist. Das ermöglicht den nachträglichen Einbau als Einschaltschutz für die Heizung. Der Schwimmerschalter (S117/LA- 101.4) wird in Schließerstellung in den Behälter eingebaut und soll nur schalten, wenn ein gewünschtes Wasserniveau erreicht wird. Somit kann die Heizung nur in Betrieb genommen werden, wenn das Heizelement vollständig im Wasser ist.

Technische Daten

Siehe BE.PC.0028

Bemaßung

Siehe BE.PC.0028

Einbau

Bitte beachten Sie, dass der "Heizungsschutzschalter" als Schließer (NO) eingebaut werden muss.

Siehe BE.PC.0028

BG.EL.0162

Schwimmerschalter, Einschaltschutz Heizung

Elektrische Anschlussbelegung

Beispiel Fließbild	Temperatur	Workstation
DCI3DICI I IICI3DIIU	Telliberatur	WOLKStation

Parameter	Wert
Pluspol	Braun Stecker-Pin: 1
Minuspol	Blau Stecker-Pin: 3
Analoger Ausgang	Schwarz(unbelegt) Stecker-Pin: 4

Die Anschlussbelegung gilt bei dreipoligen M8 Steckern

In den obigen Bildern wurden Steckerbelegungen und Farben verwendet, die in der Näherungsschalternorm DIN EN 60947-5-2 festgelegt sind. Diese Festlegungen sowie die konstruktiven Vorgaben werden durch nahezu alle Sensoren und Anschlusskabel eingehalten.

Übersicht Anschlußstecker

Kabelaufbau Zur Heizung Zu XMA1

BG.EL.0162

Schwimmerschalter, Einschaltschutz Heizung

Montageanleitung

- 1. Station spannungsfrei schalten und Behälter entleeren.
- 2. Gerade Einsteckverschraubung von der Pumpe(P101) zum Behälter(B101) und Verschlussstopfen unter dem Temperatursensor(B104) entfernen.
- 3. 90° Winkel-Verbinder und kurzes Rohrstück (85 mm) entfernen.
- 4. 90° Winkel mit dem langen Rohrstück(195 mm) verbinden, und in den unteren Anschluss einstecken.
- 5. Schwimmerschalter (in Schließerstellung) im Behälter (101) oberhalb des Temperatursensors von innen Einstecken
- 6. Überwurfmutter von Außen festschrauben.
- 7. Anschlussbuchse an Heizung (E104) lösen und mit Stecker an Schalterkabel verbinden; Buchse von Schalterkabel an Heizung anschließen.
- 8. Dichtheit prüfen.

Pumpe

Typische Einsatzbereiche

- Umwälzpumpe für Wasser, Frostschutzgemisch in Heizanlagen für Kraftfahrzeuge, Boote, Wohnwagen usw.
- Umwälzpumpe zum Kühlen des Frischwassers in Fahrzeugen.
- Allzweckpumpe für Einsätze, wo keine Selbstansaugung erforderlich ist.

Einbauvorschriften

Die Pumpen sind normalansaugende Kreiselpumpen und müssen vor der Inbetriebnahme mit der Förderflüssigkeit aufgefüllt werden.

Die Pumpen dürfen nicht trocken laufen. Ein kurzzeitiger Trockenlauf beschädigt die Pumpe nicht. Beachten Sie, dass mehr als 30 min. Trockenlauf die Pumpe unbrauchbar macht. Beim Trockenlauf sind Laufgeräusche hörbar.

Achtung: Die Pumpe muss immer in die vorgeschriebene Drehrichtung laufen.

Die Pumpen sind für Dauerbetrieb sowie einem Spannungsabfall ±20° gefertigt. Die Pumpen dürfen nicht für Schmutzwasser, welches grobe Schmutzpartikel enthält, verwendet werden.

Die Pumpen können in jeder beliebigen Arbeitsstellung eingebaut werden, waagerecht oder senkrecht. Um die Bildung von Luftsäcken zu vermeiden, ist der Pumpenauslass bei waagerechter Montage nach oben zu drehen oder so auszurichten, dass er sich an der oberen Seite der Pumpe befindet.

Pumpe

Aufbau

Die Pumpe ist in einem Klemmring montiert. Mit zwei Schrauben und Hammermuttern wird sie auf die Profilplatte montiert.

Einzelteile der Pumpe

- 1 Gehäuse, ø 20
- 2 Laufrad
- 3 O-Ring
- 4 Schraube
- 5 Motorträger
- 6 Scheibe
- 7 Welle
- 8 Dichtung
- 9 Magnetgehäuse

Quelle: Johnson Pump

Hinweis

Im Betrieb ist auf die Polarität der angelegten Spannung zu achten. Die Kabelanschlüsse sind farblich markiert.

Betriebsspannung	Pluspol	rot
	Minuspol	schwarz

Die max. Kabellänge beträgt 44m bei:

Kabel: 1,0mm²

Betriebspannung 24V

Technische Daten

Pumpengehäuse Welle	Glasfaserverstärkter Kunststoff (PPA, GF 30%)
	Edelstahl
Verschleißplatte	Edelstahl
O-Ring	EPDM
Laufrad	Körper: Glasfaserverstärkter Kunststoff (PPS GF 40%)
	Magnet: Ferrit
	Lager: Harzgebundener Kohlenstoff
Magnetgehäuse	Glasfaserverstärkter Kunststoff (PSU, GF 30%)
Motorenflansch	Glasfaserverstärkter Kunststoff (PA66, GF 30%)
Motorengehäuse	Stahl, eisenzinkbehandelt, schwarzchromatiert
Motorenabdeckung	Glasfaserverstärkter Kunststoff (PA 66, GF 30%)
Schrauben	Stahl, eisenzinkbehandelt, schwarzchromatiert
Motor	wälzgelagert, Dauermagnetmotor 12/24V
Motorträger	Aluminium, lackiert
Schutzart	IP67 (DIN 40050)
Anschluss	20mm (¾")
Funkentstört	EN 55014
Temperaturbereiche Flüssigkeit Umgebung	-40°C bis + 100°C -40°C bis +70°C
Max. Systemdruck	2,5 bar
Betriebsspannung	24 V
Leistung	26 W

Pumpe

Druck und Leistung

Druck (bar)	Fordermenge (I/min)	Strom bei 24V (A)				
0,1	26	1,1				
0,2	19,5	1,0				
0,3	9,0	0,75				
Messwerte gelten für einen Schlauchanschluss von ¾ " (20 mm)						
Änderungen vorbehalten						

Proportionalventil

Proportionalventil

Funktion

Mit dem Proportionalventil ist eine Durchflusssteuerung neutraler Gase und Flüssigkeiten möglich. Es ist als fernverstellbares Stellglied oder in Regelkreisen einsetzbar. Das Proportionalventil ist ein direkt gesteuertes 2/2-Wegeventil. In Abhängigkeit vom Magnetspulenstrom wird der Ventilkolben von seinem Sitz abgehoben und gibt den Durchfluss von Anschluss 1 nach Anschluss 2 frei. Stromlos ist das Ventil geschlossen. Das Ventil ist federrückgestellt.

Ein externes Normsignal wird in ein PWM-Signal umgewandelt, mit dem die Öffnung des Ventils stufenlos eingestellt werden kann. Die Frequenz des PWM-Signals kann auf das verwendete Ventil abgestimmt werden.

Aufbau

Das Proportionalventil ist auf einem Haltewinkel montiert. Mit einer Schraube und einer Hammermutter kann es an einem MPS-Profil befestigt werden.

Hinweis

Die zulässige Strömungsgeschwindigkeit für Wasser beträgt 3 m/s.

Proportionalventil

Technische Daten Proportionalventil

Parameter	Wert
Zulässige Betriebsspannung (an der Ansteuerelektronik anzuschließen)	24 VDC
Leistungsaufnahme (Magnet)	8 W
Nennbetriebsart	Dauerbetrieb
Schutzart	IP 65f
Nennweite	4 mm
Druckbereich	0 bis 2 bar
Betriebsumgebungstemperatur	max. +55 °C
Ansprechempfindlichkeit	0,5 % vom Endwert
Wiederholgenauigkeit	0,5 % vom Endwert
Durchflussmedien	Neutrale Medien z.B. Wasser, Druckluft
Temperatur des Mediums	0 °C bis +65 °C
Werkstoffe Gehäuse Ventilinnenteile Dichtung	Messing Edelstahl FPM
Abmessungen Höhe mit gesteckter Ansteuerelektronik Länge	108 mm 46 mm
Leitungsanschluss	G 1/4
Elektrischer Anschluss	Steckerfahnen für Ansteuerelektronik
Änderungen vorbehalten	

Proportionalventil

Technische Daten Ansteuerelektronik

Parameter	Wert
Zulässige Betriebsspannung	24 VDC bis max. 28 VDC
Restwelligkeit	max. 10 %
Eingangssignal	0 10 V, 0 20 mA, 4 20 mA
Eingangswiderstand	16,8 kΩ
Leistungsaufnahme	0,5 W
Stromaufnahme bei ca. 24V	ca. 18mA
Umgebungstemperaturbereich	max. +55 °C
Werkstoff (Gehäuse)	Kunststoff
Elektrischer Anschluss	Durchführung für Anschlussleitung 7mm Schraubklemmen im Gehäuse
Änderungen vorbehalten	•

Proportionalventil

Anschlusserläuterungen

Anschlussbild

- 1 Schutzleiter (PE vom Netzteil)
- 2 Betriebsspannung (24 28 VDC) (braun)
- 3 Gemeinsame Masse (blau)
- 4 Normsignaleingang (schwarz)
- 5 Monitorausgang

Einstellpotentiomenter

- R₁ minimaler Durchfluss (Nullpunkt)
- R₂ maximaler Durchfluss (Verstärkung)
- R₃ Rampenzeit (auf- und absteigend gleich)

Schalter und Anzeige

- S₁ Schalter zum Umschalten der Ansteuerfrequenz
 - (on) mittlere Frequenz
 - b (off) niedrige Frequenz
- S₂ Schalter zum Deaktivieren der Nullpunktschaltung
 - a (on) Nullpunktabschaltung deaktiviert
 - b (off) Nullpunktabschaltung aktiviert

LED Anzeige

Leuchtet bei Stromfluss durch die Magnetspule.

LED leuchtet nicht bei:

- fehlender Betriebsspannung
- Eingangssignalen unter 2 %
- aktivierter Nullpunktabschaltung

Sonstige Hinweise

Die Nullpunktabschaltung garantiert ein Dichtschließen des Ventils bei Eingangssignalen <2% des Maximalwertes; dazu wird der Spulenstrom bei Eingangssignalen unterhalb dieser Schwelle (z.B. 0,2 V bei Normsignaleingang 0 .. 10 V) elektronisch auf Null gesetzt (siehe untenstehendes Bild). Die Nullpunktabschaltung kann über einen DIP-Schalter deaktiviert werden, z. B. zur problemlosen Einstellung des Öffnungsbeginns des Ventils mit dem Potentiometer R_1 .

I(U)- Kennlinie

Hinweise zur Inbetriebnahme

Durchflussregelung

- Schalterstellungen
 - S1 unten (ON)
 - S2 oben (OFF)
- Einstellung des Potentiometers R1 bei vorhandenem Bürkert- Regler

Der Tank muss bis zum untersten Limit befüllt sein! Auch die Einstellungen am Controller müssen gemacht sein. Pumpe und Ventil einschalten.

Handventil von Pumpe zu Tank schließen.

Einstellung Y (Signal power to out) 10%.

Display-Knopf solange drücken, bis Y in der oberen Zeile erscheint.

Der obere rechte Knopf sollte nicht leuchten, falls doch, bitte einmal drücken.

Danach Y mit den Pfeiltasten einstellen.

Vorsichtiges Einstellen von R1 mit dem Uhrzeiger. Stoppen, sobald das Wasser läuft (Anzeige Flowmeter I am Controller).

Danach CCW Richtung Min drehen.

Proportionalventil

Druckregelung

Schalterstellungen
 S1 unten (ON)
 S2 oben (OFF)

• Einstellen des R2 Potentiometers in St2:

Setze Y auf 90 %. Drehe R2 auf CW und stop, sobald der Wert von I nicht mehr ansteigt (max. Strömung ca. 2.5 m/s).

Feineinstellung: CCW auf exakten Wendepunkt einstellen.

R1 nochmals prüfen!

Die Einstellung von R2 kann den Wert von R1 auch verändern!

Wenn diese Einstellungen beendet sind, die Einstellungen am Controller auf Remote Modus.

ENTER und SELECT mind. 5 Sek. gleichzeitig drücken, dann SELECT 6 mal drücken, im Display erscheint Zusätze.

ENTER drücken, die Sprache erscheint. SELECT drücken, Seriel erscheint. ENTER Local SELECT

Remote ENTER und ENTER ENTER Serial SELECT*7time. End a ENTER Zusätze SELECT End a ENTER.

CW= im Uhrzeigersinn CCW= gegen Uhrzeigersinn

Heizung

Funktion Die Heizung arbeitet mit einer Spannung von 230 VAC. Sie wird durch ein Relais ein-

und ausgeschaltet. Die Steuerspannung des Relais beträgt 24 VDC.

Aufbau Die Heizung wird mit einer Überwurfmutter in einer 50 mm Bohrung eines Behälters

eingeschraubt.

Hinweis Nehmen Sie die Heizung nur in Betrieb, wenn der Heizstab völlig in die Flüssigkeit

getaucht ist.

Technische Daten der Heizung

Parameter	Wert
Heizleistung	1000 W / 230 VAC
Steuerspannung	24 VDC
Abmessungen Heizstab Einschraubgewinde	150 mm x Ø 20 mm G 1 ½ "
Werkstoffe (Mantel Heizstab)	Edelstahl
Anschluss Heizung Steueranschluss	Netzkabel mit Stecker, 2000 mm lang 3-polige Buchse
Änderungen vorbehalten	•

Heizung

Technische Daten des Relais

Parameter	Wert		
Steuerspannung	24 VDC		
Max. Spulentemperatur	140°C		
Max. Spulenleistung	2,8W		
Betriebstemperatur	-55°C+85°C		
Gehäuse Unversiegeltes Staubschutzgehäuse			
Änderungen vorbehalten			

Quelle: Tyco Electronics

Elektrische Anschlussbelegung

Parameter	Wert
Minuspol	blau Stecker-Pin: 2
Pluspol (Signal)	schwarz Stecker-Pin: 3

Hinweis

Pin 1 ist nicht belegt

Technische Zeichnung des Relais

2/2-Wege Magnetventil

2/2-Wege Magnetventil

Schaltzeichen

Funktion Das 2/2-Wege Magnetventil ist ein direkt gesteuertes Ventil. Bei stromloser Spule

ist das Ventil durch Federkraft geschlossen.

Aufbau Das 2/2-Wege Magnetventil wird mit den Steckverschraubungen in die Rohrleitung

eingebaut.

Einbaulage Die Einbaulage ist beliebig, vorzugsweise Antrieb nach oben.

Medien Neutrale Gase und Flüssigkeiten wie z.B. Druckluft, Stadtgas, Ferngas, Wasser,

Hydrauliköl, Dampf, technisches Vakuum.

Elektrischer Anschluss Steckerfahnen nach DIN 43650 A für Gerätesteckdose Typ 2508.

Hinweis Zur steiferen Befestigung kann vor und hinter dem Ventil ein Rohrhalter montiert

werden.

2/2-Wege Magnetventil

Technische Daten

Parameter	Wert
Anschluss	15 mm
Nennweite	6 mm
Druckbereich	00,5 bar
Temperaturbereich (mit Kunststoffverbindern)	0+65 bar
Dichtwerkstoffe	FPM, EPDM, PTFE/Graphit
Medientemperatur bei FPM bei EPDM bei PTFE/Graphit	-10 bis +100°C -30 bis + 120°C bis +180°C
Betriebsspannung	24 VDC ±10%
Schaltzeiten (Messung am Ventilausgang bei 6 bar und +20°C) Öffnen, Druckaufbau 0 bis 90% Schließen, Druckabbau 100 bis 10%	20 ms 30 ms
Schalthäufigkeit	ca. 1000/min.
Viskosität der verwendbaren Medien	max. 21 mm²/s
Leistungsaufnahme	8 W
Kv-Wert Wasser (Messung bei +20°C, 1 bar am Ventileingang und freiem Auslauf)	0,55 m ³ /h
Änderungen vorbehalten	1

Schnittbild

Stecker

Elektrische Anschlussbelegung

- 1 24V (schwarz)
- 2 Masse (schwarz)
- 3 PE (gn/ge)

Magnetventil

Funktion

Durch elektrische Umsteuerung belüftet das Ventil abwechselnd oder gleichzeitig die nachgeschalteten Druckluftstränge.

- Bestimmungsgemäß dienen die Magnetventile der Steuerung pneumatischer Aktuatoren.
- Betreiben Sie die Ventile nur mit Druckluft mindestens der Qualitätsklasse 5 nach ISO 8573-1. Die Verwendung von Flüssigkeiten und Gasen gehört nicht zum bestimmungsgemäßen Gebrauch.
- Die Magnetventile k\u00f6nnen unter den angegebenen Betriebsbedingungen*) und in Abh\u00e4ngigkeit der verwendeten explosionsgesch\u00fctzten Magnetspule in den Zonen 1 und 2 explosionsf\u00e4higer Gasatmosph\u00e4re betrieben werden.

Warnung

Die Ex-Schutz-gekennzeichneten Magnetventile dürfen in explosionsgefährdeten Bereichen nur mit Ex-Schutzgekennzeichneten Magnetspulen gemäß den Betriebsbedingungen*) verwendet werden.

Wird ein Ventil der Ex-Schutz-Kategorie 2 G mit einer Magnetspule der Ex-Schutz-Kategorie 3 GD kombiniert, so weist das Gesamtsystem die Ex-Schutz-Kategorie 3 G

Wird ein Ventil der Ex-Schutz-Kategorie 2 G mit einer Magnetspule der Ex-Schutz-Kategorie 2 GD kombiniert, so weist das Gesamtsystem die Ex-Schutz-Kategorie 2 G auf. Wird ein Ventil mit einer Ex-Schutz-Zulassung mit einer Magnetspule ohne Ex-Schutz-Zulassung kombiniert, so weist das Gesamtsystem keinen Ex-Schutz auf.

Hinweise

Das Ansaugen von Druckluft darf nicht aus Ex-geschützten Bereichen erfolgen. Verwenden Sie das Gerät im Originalzustand ohne jegliche eigenmächtige Veränderung. Durch nicht vom Hersteller ausgeführte Eingriffe am Gerät erlischt die Zulassung.

Inbetriebnahme

Beachten Sie die Angaben auf dem Typenschild. Einbau und Inbetriebnahme nur von autorisiertem Fachpersonal gemäß Bedienungsanleitung.

Magnetventil

Die Entladung elektrostatisch aufgeladener Teile kann zu zündfähigen Funken führen. Verwenden Sie für den Betrieb der Ventile Schläuche und Schlauchbündel nur bis zu einem maximalen Außen-Ø. von 20 mm. Verbinden Sie zum Potenzialausgleich alle leitenden Metallteile einschließlich des Zubehörs untereinander. Erden Sie das Gesamtsystem. Halten Sie alle geltenden nationalen und internationalen Vorschriften ein. Montieren Sie zur Batterie-/Blockmontage die Ventile auf die dafür vorgesehenen Anschlussleisten oder Anschlussblöcke. Die Befestigung der Magnetspule an den elektrisch betätigten Ventilen erfolgt mit der mitgelieferten Federscheibe und Rändelmutter. Schieben Sie Magnetspule und Federscheibe über das Ankerführungsrohr. Drehen Sie die Rändelmutter fest. Anzugsdrehmoment 1 ... 1,5 Nm.

Schlagvorgänge unter Beteiligung von Rost und Leichtmetallen und ihren Legierungen können Funken bilden. Verwenden Sie kein Werkzeug mit korrodierten Oberflächen. Schützen Sie das Produkt vor herunterfallenden Gegenständen. Beachten Sie bei der Werkstoffauswahl von Montagehilfen und Befestigungszubehör Korrosion, Verschleiß und gegenseitige Wechselwirkungen. Verwenden Sie berücksichtigtes Zubehör*). Begrenzen Sie Anzahl und Abmessungen demontierbarer Verbindungen auf ein Mindestmaß. Verwenden Sie kurze Schläuche. Vermeiden Sie dabei das Auftreten von mechanischen Spannungen. Verschließen Sie ungenutzte Öffnungen mit Blindstopfen bzw. Nutabdeckungen. Sorgen Sie für leichte Zugänglichkeit der zu reinigenden Oberflächen.

Wartung und Pflege

Staubablagerungen auf erhitzten Oberflächen sind leicht entzündlich. Reinigen Sie das Produkt regelmäßig. Warten Sie die Ventile nach 5 Mio. Zyklen oder spätestens nach 6 Monaten. Überprüfen Sie die einwandfreie Funktion Ihres Produktes:

Parameter	Wert
Schaltaussetzer deutlich langsamere Schaltzeiten	Überprüfen Sie steuerungstechnisch die Schaltfunktion des Ventils hinsichtlich Stromschwankungen Signalfehler oder –verzögerungen.
	 Verhindern Sie das Eindringen von Fremdkörpern. Tauschen Sie das Ventil aus.
hörbare Leckage an den Anschlüssen	Überprüfen Sie die Verschraubung der Anschlüsse.
unvollständiges Belüften eines Ausganges	Stellen Sie einen konstanten Druck im System sicher.
Änderungen vorbehalten	

Technische Zeichnungen

Schnittbild des Magnetventils

1: Druckluftanschluss

3,5: Entlüftungen

12: Steuerhilfsluft-Anschluss

Magnetventil

Bemaßung

- [1]: Magnetspule 360° drehbar
- [2]: Bohrung für Codierstift
- [3]: Handhilfsbetätigung 180° umsetzbar
- [4]: Gerätestecker 180° umsetzbar

Elektrischer Anschluss

Die Belegung der beiden Pins der Magnetspule ist vertauschbar.

Schaltzeichen

Schwenkantrieb

Funktion

Der Schwenkantrieb ist ein auf den Prozessautomations-Markt abgestimmter Antrieb in doppeltwirkender oder einfachwirkender Ausführung, einfachwirkend mit verschiedenen Federstärken für verschiedene Versorgungsdrücke. Der Antrieb wird auf Armaturen mit auf 90° beschränktem Bewegungsumfang wie z.B. Kugelhahnen und Absperrklappen eingesetzt, englisch: Quarter Turn Actuator. Schwenkantriebe sind die in der Prozessautomation am häufigsten eingesetzten

pneumatischen Aktuatoren. Normierung der Anschlüsse und eine technisch an den Marktanforderungen orientierte konstruktive Ausführung (keine Endlagendämpfung, niedrige Zyklen usw.) kennzeichnen diese Aktuatoren. Die Anforderungen an Korrosionsbeständigkeit sind hoch (Outdoor, Chemie -> KBK3), an die Lebensdauer eher niedrig (1 Mio), da meist nur gelegentlich geschaltet wird und die Lebensdauer zu schaltender Kugelhähne noch einmal wesentlich darunter liegt.

Schwenkantrieb

SYPAR = Scotch yoke pneumatic actuator rotative

Zur Umwandlung der Linear- in die Schwenkbewegung dient beim DAPS eine Hebel-Schwinge-Kinematik, englisch: "Scotch Yoke".

(Deutsch nach Dubbel "Schubschleife", aber die Bezeichnung ist nicht gebräuchlich). Bei Scotch-Yoke-Antrieben ist das Drehmoment im Gegensatz zu Zahnstange-Ritzel-Antrieben (Rack-Pinion) nicht konstant über dem Schwenkwinkel. Das ist vorteilhaft, um hohe Losbrechmomente der Armatur zu überwinden, aber nachteilig bei Regelarmaturen, da der Verlauf des Drehmoments nicht linear ist. Durch den Wegfall der Zahnfertigung sind sie einfacher und kostengünstiger herzustellen. Ein Scotch-Yoke-Schwenkantriebe, auch SYPAR genannt, ist die Basis für einfache Anwendungen; höherwertige Aufgaben an Regelantrieben werden von den anderen Schwenkantrieben, die nach dem Zahnstange-Ritzel-Prinzip arbeiten, abgedeckt.

Funktionsschema

Einbaulage

Die Einbaulage des Antriebs ist beliebig.

Typenbezeichnung

Baureihe -	Nenn- moment	_	Schwenk- winkel	_	Schliess- richtung	Wirk- weise	Feder- stärke	_	Anschluss zur Armatur	Alternativ- anschluss
------------	-----------------	---	--------------------	---	-----------------------	----------------	------------------	---	-----------------------------	--------------------------

Im Einsatz befindlicher Schwenkantrieb:

• DAPS-0015-090-R-F03

Parameter	Wert
Baureihe (DAPS)	D = Drives A = Angepasste Konstruktionen (Branchenlösungen) P = Branche: Prozessautomation S = Scotch-Yoke Schwenkantrieb (im Gegensatz zu Rack-Pinion)
Nennmoment (Zahl, vierstellig)	Nennmoment in Nm. Die Angabe des Nennmomentes ist branchenüblich, daher steht hier nicht der Kolbendurchmesser.
Schwenkwinkel (Zahl, dreistellig)	Schwenkwinkel in Grad. Hubgröße für alle Rotationsantriebe.
Schließrichtung	R: Rechtsschließend L: Linksschließend
Wirkweise - S	Doppeltwirkend S: Spring Return / Einfachwirkend
Federstärke - 1 2 3 4	entfällt bei doppeltwirkend Federstärke für Anschlussdruck 2.8 bar Federstärke für Anschlussdruck 3.5 bar Federstärke für Anschlussdruck 4.2 bar Federstärke für Anschlussdruck 5.6 bar
Anschluss zur Armatur Flansch mit Bohrbildern nach ISO 5211.	Fxx Ein Bohrbild Fxx/yy Zwei konzentrische Bohrbilder
Für xx und yy	03 Flansch-Bohrbild F03 04 Flansch-Bohrbild F04 05 Flansch-Bohrbild F05 07 Flansch-Bohrbild F07 10 Flansch-Bohrbild F10 12 Flansch-Bohrbild F12 14 Flansch-Bohrbild F14 16 Flansch-Bohrbild F16
Änderungen vorbehalten	

Schwenkantrieb

Technische Daten

Parameter	Wert		
Gehäusegröße (Profilquerschnitt –Rechteckmaß gerundet)	50 mm		
Vierkant	V11		
Medium	getrocknete Luft, geölt oder ungeölt, oder Inertgase, die mit dem Aktuator-Schmiermittel kompatibel sind. Wenn geölt, dann muss das Öl laut Hersteller NBR-kompatibel sein.		
Verbrauchsvolumen für 1 Zyklus (Hubraum)	0,06 l/zyk.		
Anschlussgewinde	1/8"		
Schaltzeiten Min. Schaltzeit Öffnen Schließen Zyklus	0,04 s 0,04 s 0,08 s		
Lebensdauer	1 Mio. Zyklen		
Betriebstemperatur	-20°C bis +80°C		
Korrosionsbeständigkeit	FN 940 070 Teil 1, KBK3		
Masse	0,75 kg		
Änderungen vorbehalten			

Druckkennwerte

Definitionen und Messbedingungen nach FN 942 022:

Druckkennwerte Antriebe Kurzzeit.

Ergänzend dazu gelten folgende Definitionen nach Angaben bzw. Werksnorm des Herstellers:

Durchfahrdruck "Antrieb abgestanden"

Öffnen und Schließen ohne Last nach 15 Tagen Ruhe

Durchfahrdruck "Antrieb warmgefahren"

Öffnen und Schließen

Neuer Prüfling ohne Last nach 2 Stunden Dauerbetrieb

Berstdruck

Test beider Kammern mit Öldruck bis Rissbildung oder Deckelöffnen

Testwert: "Maximum supply pressure allowed * 3"

Parameter	Wert	
Durchfahrdruck "Antrieb abgestanden"	0,4 bar	
Durchfahrdruck "Antrieb warmgefahren"	0,25 bar	
Minimaler Betriebsdruck	1 bar	
Nenndruck (für Momentangaben DW)	5,6 bar	
Maximaldruck	8,4 bar	
Berstdruck	>25,2 bar	
Änderungen vorbehalten		

Leckage

Definitionen und Messbedingungen nach FN 942 014: Messung kleiner Durchflüsse Ergänzend dazu gelten folgende Definitionen nach Angaben bzw. Werksnorm des Herstellers:

Methode zur Leckagemessung:

Gemessen wird die Überströmleckage von Kammer A nach Kammer B und von Kammer B nach Kammer A. Dazu wird der Antrieb getaucht und die Druckseite mit Druck beaufschlagt. Von der anderen Seite führt ein Ablass ins Wasser.

Prüfbedingungen:

6 bar auf der Druckseite, Antriebsoberkante 20 mm unter Wasser, Leckageaustrittsrohr 10 mm unter Wasser

Aufnahme des Messwertes:

Zählen der Luftblasen pro Zeit am Ablassrohr, Blasendurchmesser ist 6 mm. Die Angaben sind sowohl in Blasen/10sec als auch in NL/h

Messzeit:

2 h

Zulässige maximale Leckage in [NI/h]: 0,04

Schwenkantrieb

Einstellbare Endanschläge

Nur eine der zwei Endlagen ist einstellbar, normalerweise wird man die Schließposition der Armatur einstellen wollen. Dazu gibt es zwei Einstellschrauben in den beiden Deckeln, die auf die beiden Kolben wirken.

Endlage	Endlage 0°	Endlage 90°
Endlageneinstellung	Keine Einstellung	Einstellbereich ±5%

1	Zylinder	15	Unterlegscheibe
2	Kolben	16	Seegerring
3	Deckel	17	Unterer Wellen- O-Ring (dichtend)
4	Welle	18	Gewindemutter
5	Scotch Yoke	19	Deckel- O-RING
6	Hülse	20	Schraube
7	Wellenring	21	(nicht vorhanden)
8	Hülse	22	(nicht vorhanden)
9	Abstandshülse	23	(nicht vorhanden)
10	Dynamische Dichtung	24	O-Ring
11	Kolbenführung	25	Äußerer, elsatischer Yoke- Stift
12	Kolben O-Ring	26	Innerer, elsatischer Yoke- Stift
13	Oberer Wellen- O-Ring (dichtend)	27	Zentrierscheibe
14	Äußerer O-RING	28	Stroke Einstellschraube

Quelle Festo AG & Co., DBL 938753

Magnetspule

Dieser Ventilmagnet zeichnet sich durch geringe Leistungsaufnahme und Erwärmung aus.

Die Magnetspule entspricht der VDE-Vorschrift 0580 mit der Isolierstoffklasse F. Sie kann ohne Eingriff in den Pneumatikkreislauf ausgewechselt werden.

Die Magnetspule ist für Batteriemontage zulässig. Der Mindestabstand von Spule zu Spule betragt 5 mm.

Die Ausführung ist explosionsgeschützt nach EN 50 028.

technische Zeichnung der Spule

- [1]: Magnetspule ist auf dem Ankerrohr 360° drehbar
- [2]: Steckerfahnen
- [3]: Anzugsdrehmoment der Befestigungsmutter min. 100 Ncm, max. 150 Ncm

Magnetspule

Technische Daten

Parameter	Wert	
Spannung	24 VDC	
Zulässige Spannungsschwankung	±10%	
Leistungsaufnahme	5,65 W	
Einschaltdauer	100%	
Schutzart nach EN 60 529	IP 65 mit Steckdose	
Elektrischer Anschluss	Kabel eingegossen 3x0,75 mm², 1 m bzw. 5 m lang (andere Längen auf Anfrage)	
Umgebungstemperatur	-5 +40 °C	
Mediumstemperatur	-5 +40 °C	
Minimale Anzugszeit	12 ms	
Werkstoffe	Stahl, Cu, Al, Epoxidharz	
Gewicht	0,175 kg	
Änderungen vorbehalten		

Elektrische Anschlussbelegung

Parameter	Wert
Pluspol	Stecker-Pin: 1
Minuspol	Stecker-Pin: 2
PE	Stecker-Pin: 3

Pinbelegung der Steckerfahnen

Prinzipiell können der Plus- und Minuspol vertauscht werden. Der Anschluss des Schutzleiters wird nicht bei jeder Anlagenausführung benötigt.

Abluftdrosselventil mit Schalldämpfer

Funktion

Diese Ventile werden in die Entlüftungsanschlüsse von Steuerventilen eingeschraubt und ermöglichen die Regulierung der Kolbengeschwindigkeit von Zylindern durch Drosseln der Abluft. Die Drosselschraube ermöglicht eine einstellbare Begrenzung des Luftaustritts. Die ausströmende Luft entweicht über den integrierten Schalldämpfer unter verminderter Geräuschentwicklung.

Aufbau

Schnittbild des Ventils

Abluftdrosselventil mit Schalldämpfer

Technische Daten

Parameter	Wert	
Gewindeanschluss	G1⁄4	
Nennweite	5 mm	
Durchfluss*	0 bis 996 I/min	
Druckbereich	0 bis 10 bar	
Temperaturbereich	-10 °C bis 70 °C	
Schallpegel**	80 dB(A)	
Werkstoffe Gehäuse Schalldämpfer Dichtungen	AI, Ms Sinterbronze Perbunan	
Gewicht	0,025 kg	
Änderungen vorbehalten		

^{*} bei 6 bar gegen Atmosphäre

Kennlinie

Nenndurchfluss [I/min]

Gültig ist die Kurve mit der Bezeichnung GRE-1/4

^{**} in 1m Entfernung gemessen

Bemaßung

Technische Zeichnung des Ventils

D: G¼ D1(ø): 18,2 L: 34 L1: 8

Quelle: Festo AG & Co.

Sensorbox

Sensorbox

Technische Daten

Parameter	Wert
Schaltertyp	Mikroschalter
Schaltleistung	16A, 250VAC
Betriebsspannung	030 VDC
Temperaturbereich	-25 °C bis +100 °C
Schutzart	Gehäuse IP65
Korrosionsbeständigkeitsklasse	2
Kabelverschraubung	M20 x 1,5
Displayanzeige	ja
Gehäuseform	rund
Minimale Lebensdauer (Zyklen)	2 x 10 ⁵
CE- Kennzeichnung	ja
LABS- Kriterium	Oberfläche LABS- frei
Änderungen vorbehalten	

Quelle: Festo GmbH & Co.

Elektrische Anschlussbelegung

- 1 braun, 24V
- 2 schwarz, Signal 1
- 3 blau, Signal 2

Aufbau

Die Anschlussklemmen für 8 Eingänge und 8 Ausgänge sind auf einem Grundgehäuse angebracht. Zusätzlich sind Verteilklemmen für 0 V und 24 V zur Versorgung von Sensoren und Aktuatoren vorhanden. Das Gehäuse kann auf Hutschienen aufgeschnappt werden. Alle Anschlusspunkte sowie die Stromversorgung sind auf den 24-poligen Stecker herausgeführt. Mit einem (nicht zum Lieferumfang gehörenden) E/A-Kabel (Bestell-Nr. 34031) wird das E/A-Terminal mit dem Schaltschrank verbunden.

Funktion

Das E/A-Terminal stellt 8 Eingänge und 8 Ausgänge auf Schraubklemmen zur Verfügung. Zur Zustandsanzeige sind 24 LEDs vorhanden, die den Schaltzustand der E/As anzeigen.

Technische Daten

Parameter	Wert	
Anzahl Eingänge mit LED	8	
Anzahl Ausgänge mit LED	8	
Anzahl Klemmen 0 V	22	
Anzahl Klemmen 24 V	12	
Steckverbinder	Amphenol-Tuchel 24-polig, Serie 57 GE	

E/A-Terminal

PIN 1 00 PIN 2 01 PIN 3 02 PIN 4 03 PIN 5 04 PIN 6 05 PIN 7 06 PIN 8 07 PIN 9 24 VA **PIN 10** 24 VA **PIN 11** 0 VA PIN 12 0 VA PIN 13 10 **PIN 14 PIN 15** 12 PIN 16 13 **PIN 17** 14 15 **PIN 18** PIN 19 PIN 20 PIN 21 24 VB **PIN 22** 24 VB **PIN 23** 0 VB PIN 24 0 VB

Pin Belegung

Hinweis

Durch zwei Schiebeschalter können die Eingänge des E/A-Terminals für den Anschluss von plusschaltenden (PNP) bzw. negativschaltenden (NPN) Sensoren umgeschaltet werden.

Anschluss von plusschaltenden Sensoren (PNP): beide Schalter in Stellung PNP

Anschluss von negativschaltenden Sensoren (NPN): beide Schalter in Stellung NPN

Schiebeschalter Positionen

E/A Datenkabel

E/A Datenkabel mit beidseitigen SysLink-Steckern

Aufbau 21-poliges Kabel mit Adernquerschnitt 0,34 mm2. An beiden

Seiten sind 24-poligeSteckverbinder angebracht.

Funktion Das E/A-Kabel verbindet ein E/A-Terminal (Bestell-Nr. 34035) mit einem

Schaltschrank. Es können 16 E/A-Signale übertragen werden. Zusätzlich werden im

Kabel die Sensor- und Aktorversorgung geführt.

Technische Daten Adern 21

Querschnitt 0.34 qmm

Stecker Typ Amphenol 24 pol.

E/A Datenkabel

Adernfarben und Pinbelegungen

01	Bit 0	Ausgangswort	weiß	13	Bit 0	Eingangswort	graurosa
02	Bit 1	Ausgangswort	braun	14	Bit 1	Eingangswort	rotblau
03	Bit 2	Ausgangswort	grün	15	Bit 2	Eingangswort	weißgrün
04	Bit 3	Ausgangswort	gelb	16	Bit 3	Eingangswort	braungrün
05	Bit 4	Ausgangswort	grau	17	Bit 4	Eingangswort	weißgelb
06	Bit 5	Ausgangswort	rosa	18	Bit 5	Eingangswort	gelbbraun
07	Bit 6	Ausgangswort	blau	19	Bit 6	Eingangswort	weißgrau
80	Bit 7	Ausgangswort	rot	20	Bit 7	Eingangswort	graubraun
09	24 V	Versorgung	schwarz	21	24 V	Versorgung	weißrosa
10				22			
11	0 V	Versorgung	rosabraun	23	0 V	Versorgung	weißblau
12	0 V	Versorgung	violett	24			

Analog-Terminal

Funktion

Das Analog-Terminal (Bestell-Nr. 526213) ist eine optimierte Klemmenleiste zum Anschluss von analogen Sensoren und Aktuatoren über 15 pol. Sub-D Schnittstellen an eine Steuereinheit (SPS, EasyPortDA, Simu-Box usw.) Ein 15-poliges Kabel mit Aderquerschnitt 0,25 mm² verbindet das Analog-Terminal parallel mit der Steuereinheit. Es können 4 analoge Eingangs- und 2 analoge Ausgangssignale angeschlossen werden.

Aufbau

Das Analog-Terminal wird auf einer Hutschiene montiert.

Technische Daten

Parameter	Wert	
Anzahl analoge Eingänge	4	
Anzahl analoge Ausgänge	2	
Anzahl Masse für Ein- und Ausgänge	2	
Änderungen vorbehalten		

Die Funktion der Klemmen sind im Belegungsplan allgemein beschrieben und abhängig vom Funktionsumfang des angeschlossenen Industriereglers. Beachten Sie deshalb die Hinweise zu den Anschlussfunktionen des Reglers.

526213

Analog-Terminal

Pin-Belegung

PIN-Belegung		Analog- Terminal
Analog	Funktion	Klemme
OUT	UA1	1
	UA2	2
	AGNDA	3
IN	IE2	4
	IE1	5
	AGNDE	6
	UE2	7
	UE1	8
OUT	IA2	9
	IA1	10
IN	IE4	12
	IE3	13
	UE4	14
	UE3	15

U = Spannung

I = Strom

E = Eingang

A = Ausgang

GND = Masse

Analog-Datenkabel

Das Analog-Datenkabel, ein 15-poliges Kabel mit Aderquerschnitt 0,25 mm², verbindet **parallel** ein Analog-Terminal mit einer Steuereinheit (SPS, EasyPortDA, usw.). Es können 4 analoge Eingangs- und 2 analoge Ausgangssignale übertragen werden. Zusätzlich wird im Kabel die Masse geführt.

Pin-Belegung Analog-Datenkabel

Kontaktbelegung		Analog-Datenkabel	
Analog	Funktion	15-pol. Sub D	Farbcode
OUT	UA1	1	WS
	UA2	2	bn
	AGNDA	3	gn
IN	IE2	4	gb
	IE1	5	gr
	AGNDE	6	rs
	UE2	7	bl
	UE1	8	rt
OUT	IA2	9	SW
	IA1	10	grrs
IN	IE4	12	rtbl
	IE3	13	wsgr
	UE4	14	bngn
	UE3	15	wsge

Analog-Datenkabel - Pin-Belegung

Analog-Terminal - Draufsicht

Funktion

Das Analog-Terminal ist eine optimierte Klemmenleiste zum Anschluss von Sensoren und Aktuatoren über SYSLINK an einen Industrieregler. Eine integrierte 10 VDC Spannungsquelle ermöglicht den Anschluss von Sensoren oder Sollwertgebern, die eine Versorgungsspannung von 10 VDC benötigen.

Aufbau

Das Analog-Terminal wird auf einer Hutschiene montiert.

Technische Daten

Parameter	Wert
Zulässige Betriebsspannung	24VDC
Anzahl analoge Eingänge	5
Anzahl digitale Eingänge	1
Anzahl analoge Ausgänge	2
Anzahl digitale Ausgänge	4
Betriebsspannungsanzeige	LED, grün "24VDC"
Konstantspannungsanzeige	LED, grün "10VDC"
Steckverbinder für Anschluss an Regeleinrichtung	Amphenol-Tuchel 24-polig, Serie 57 GE
Änderungen vorbehalten	

Die Funktion der Klemmen sind im Belegungsplan allgemein beschrieben und abhängig vom Funktionsumfang des angeschlossenen Industriereglers. Beachten Sie deshalb die Hinweise zu den Anschlussfunktionen des Reglers.

170699

Analog-Terminal

Klemme XA2	Anschluss- bezeichnung	Funktion	Pinbelegung SYSLINK
1	PT100 (1)	3-Leiter-Anschluss	13 grrs
2	PT100 (2)	für Widerstands-Thermoelement,	14 rtbl
3	PT100 (3)	Belegung siehe Reglerhandbuch	15 wsgn
4	Level (+)	+24VDC	
5	Level (∫)	0/420mA Stromsignal, Reglereingang	18 gebn
6	Level (-)	OVDC	
7	Flow (+)	+10VDC Konstantspannung	
8	Flow (∫)	01000Hz Frequenzsignal, Reglereingang	16 bngn
9	Flow (-)	OVDC	
10	ext.SP (+)	+10VDC Konstantspannung	
11	ext.SP(\(\subseteq \)	010V Spannungssignal; externer Sollwert	19 wsgr
12	ext.SP (-)	OVDC	
13	S.Funct. (+)	+10VDC Konstantspannung	
14	S.Funct. ()	010V Spannungssignal, Reglereingang	17 wsge
15	S.Funct. (-)	OVDC	
16	InBin (+)	+24VDC	
17	InBin (∫)	Schaltsignal, Binäreingang Regler	20 grbn
18	InBin (-)	OVDC	J
19	+	+24VDC	9 sw
20	+	+24VDC	10
21	+	+24VDC	21 wsrs
22	+	+24VDC	22
23	-	OVDC	
24	OutB3 (∫)	Schaltsignal, Binärausgang Regler	7 bl
25	-	OVDC	
26	OutAlarm (nc)	Öffner 1 (24VDC), Alarm-Relais 3 Regler	5 gr
27	OutAlarm (no)	Schließer 1 (24VDC), Alarm-Relais 3 Regler	6 rs
28	-	OVDC	8 rt
29	-	OVDC	11 rsbn
30	-	OVDC	12 vi
31	-	OVDC	23 wsbl
32	-	OVDC	24
33	OutU	010V Spannungssignal, Reglerausgang	1 ws
34	-	OVDC	
35	Outl	0/420mA Stromsignal, Reglerausgang	2 bn
36	-	OVDC	
37	OutB1 (∫)	Schließer (24VDC), Relais 1 Binärausgang Regler	3 gn
38	-	OVDC	
39	OutB2 (∫)	Schließer (24VDC), Relais 2 Binärausgang Regler	4 ge

Klemmen- und SYSLINK-Belegung des Analog-Terminals

Messwandler Frequenz/Spannung (ähnliche Abbildung)

Funktion

Technische Daten Messwandler Der Messwandler wandelt den Messwert des Durchflusssensors in eine Spannung im Bereich von 0 bis 10V. Er wird mit einer Gleichspannung von 24 V betrieben. Er ist steckbar auf dem Basisklemmenblock montiert und kann durch Ziehen einfach aus diesem entfernt werden.

Parameter	Wert	
Zulässige Umgebungstemperatur	55°C	
Betriebsspannung	20-30 VDC	
Stromaufnahme	12mA	
Linearitätsfehler	<0,1%	
Übertragungsfehler	<0,1%	
Eingang Rechteck-Frequenzgenerator Signalpegel Torzeit	0-1kHz 6V _{SS} -30V _{SS} 3s	
Ausgang Ausgangssignal Ausgangsbürde	0-10V >2kO	
Farbe	grau	
Änderungen vorbehalten		

Quelle: WAGO Kontakttechnik GmbH

BE.EL.0544

Messwandler Frequenz/Spannung

Hinweis zum Basisklemmenblock

Der Basisklemmenblock ist mit seitlicher Beschriftung ausgeführt. Er besitzt 2-Leiter-Klemmen. Frontverdrahtung; Anschlüsse: CAGE CLAMP-Anschluss

Messwandler f/U mit Basisklemmenblock

- 1) Messwandler f/U (steckbar)
- 2) Basisklemmenblock
- 3) Beschriftungsfeld

Elektrische Anschlussbelegung

Technische Daten Basisklemmenblock

Parameter	Wert
Querschnitt von [mm²]	0,08 mm ²
Querschnitt bis [mm²]	2,5 mm ²
Querschnitt von [AWG]	28 AWG
Querschnitt bis [AWG]	14 AWG
BemessungsspannungEN	400 V
Bemessungsstoßspannung	6 kV
Verschmutzungsgrad	3
Nennstrom	10 A
Gewicht	21,028 g
Farbe	grau
Verdrahtungsart	Frontverdrahtung
Gesamte Anzahl der Klemmstellen	2
Gesamte Anzahl der Potenziale	2
Höhe [mm]	28 mm
Höhe [inch]	1,1 in
Breite [mm]	22 mm
Breite [inch]	0,866 in
Tiefe [mm]	50 mm
Tiefe [inch]	1,97 in
Abisolierlänge von [mm]	8 mm
Abisolierlänge bis [mm]	9 mm
Abisolierlänge [inch]	0,33 in
Änderungen vorbehalten	

Quelle: WAGO Kontakttechnik GmbH

Messwandler Strom/Spannung

Funktion

Der Messwandler wandelt den Messwert des Ultraschallsensors in eine Spannung im Bereich von 0 bis 10V. Er wird mit einer Gleichspannung von 24 V betrieben. Er ist steckbar auf dem Basisklemmenblock montiert und kann durch Ziehen einfach aus diesem entfernt werden.

Technische Daten Messwandler

Parameter	Wert
Eingangssignal	420mA
Eingangsstrom	22 mA
Eingangswiderstand	<400 O
Spannungsfall Eingang max.	<8V
Ausgangssignal	010V
Bürde	>2kO
Drahtbrucherkennung	LED grün = aus
Übertragungsfehler (bezogen auf Endwert)	<0,15%/<0,1%
Temperaturkoeffizient (bezogen auf Endwert)	<0,02%/K
Grenzfrequenz (Sinus)	1 kHz
Isolationsspannung Eingang/Ausgang	4kV, 50Hz, 1min
Versorgungsspannung RW <6%	DC 20V30V
Zul. Umgebungstemperatur	0°C+55°C
Farbe	grau
Änderungen vorbehalten	

Quelle: WAGO Kontakttechnik GmbH

BE.EL.0545

Messwandler Strom/Spannung

Hinweis zum Basisklemmenblock

Der Basisklemmenblock ist mit seitlicher Beschriftung ausgeführt. Er besitzt 2-Leiter-Klemmen. Frontverdrahtung; Anschlüsse: CAGE CLAMP-Anschluss.

Messwandler f/U mit Basisklemmenblock

- 1) Messwandler I/U (steckbar)
- 2) Basisklemmenblock
- 3) Beschriftungsfeld

Technische Daten Basisklemmenblock

Parameter	Wert
Querschnitt von [mm²]	0,08 mm ²
Querschnitt bis [mm²]	2,5 mm²
Querschnitt von [AWG]	28 AWG
Querschnitt bis [AWG]	14 AWG
BemessungsspannungEN	400 V
Bemessungsstoßspannung	6 kV
Verschmutzungsgrad	3
Nennstrom	10 A
Gewicht	21,028 g
Farbe	grau
Verdrahtungsart	Frontverdrahtung
Gesamte Anzahl der Klemmstellen	2
Gesamte Anzahl der Potenziale	2
Höhe [mm]	28 mm
Höhe [inch]	1,1 in
Breite [mm]	22 mm
Breite [inch]	0,866 in
Tiefe [mm]	50 mm
Tiefe [inch]	1,97 in
Abisolierlänge von [mm]	8 mm
Abisolierlänge bis [mm]	9 mm
Abisolierlänge [inch]	0,33 in
Änderungen vorbehalten	

Quelle: WAGO Kontakttechnik GmbH

Messwandler PT 100/U

Schaltzeichen

Funktion

Technische Daten Messwandler Der Messwandler wandelt den Messwert des PT100- Wiederstandes in eine Spannung im Bereich von 0 bis 10V, wobei der Bereich des Messwandlers von 0 bis 100°C geht. Er wird mit einer Gleichspannung von 24 V betrieben.

Er ist steckbar auf dem Basisklemmenblock montiert und kann durch Ziehen einfach aus diesem entfernt werden.

Parameter	Wert
Temperaturbereich	0°C 100°C
Betriebsspannung	DC 24 V (+/-10%)
Nennstrom	30 A
Ausgang	0 10 V
Bürde	= 500 kOhm
Fehlerausgang (plus-schaltend)	U _b /max. 20 mA
Übertragungsfehler (bezogen auf Endwert)	= 0,3%
Temperaturkoeffizient	<0,02 %/K
Elektromagnetische Verträglichkeit Prüfung nach IEC 801-2/4/5	B bestanden nach EN 50082 T2 (E3.94)
zul. Umgebungstemperatur	0 °C + 55 °C
Gewicht	29,8 g
Farbe	grau
Änderungen vorbehalten	

Quelle: WAGO Kontakttechnik GmbH

BE.EL.0546

Messwandler PT 100/U

Hinweis zum Basisklemmenblock

Der Basisklemmenblock ist mit seitlicher Beschriftung ausgeführt. Er besitzt 2-Leiter-Klemmen. Frontverdrahtung; Anschlüsse: CAGE CLAMP-Anschluss

Messwandler PT100/U mit Basisklemmenblock

- 1) Messwandler PT 100/U (steckbar)
- 2) Basisklemmenblock
- 3) Beschriftungsfeld

Elektrische Anschlussbelegung

Technische Daten Basisklemmenblock

Parameter	Wert
Querschnitt von [mm²]	0,08 mm ²
Querschnitt bis [mm²]	2,5 mm²
Querschnitt von [AWG]	28 AWG
Querschnitt bis [AWG]	14 AWG
BemessungsspannungEN	400 V
Bemessungsstoßspannung	6 kV
Verschmutzungsgrad	3
Nennstrom	10 A
Gewicht	21,028 g
Farbe	grau
Verdrahtungsart	Frontverdrahtung
Gesamte Anzahl der Klemmstellen	2
Gesamte Anzahl der Potenziale	2
Höhe [mm]	28 mm
Höhe [inch]	1,1 in
Breite [mm]	22 mm
Breite [inch]	0,866 in
Tiefe [mm]	50 mm
Tiefe [inch]	1,97 in
Abisolierlänge von [mm]	8 mm
Abisolierlänge bis [mm]	9 mm
Abisolierlänge [inch]	0,33 in
Änderungen vorbehalten	

Quelle: WAGO Kontakttechnik GmbH

Motorregler

Motorregler

Funktion

Mit dem Motorregler kann die Versorgungsspannung und damit die Drehzahl der Pumpe variiert werden.

Auf der Oberseite des Reglers befindet sich eine LED, welche den Betriebszustand anzeigt. Folgende Zustände sind definiert:

grün: normaler Betrieb rot: Fehlerzustand

Ein Fehlerzustand kann mit Hilfe des Rücksetzeingangs (RESET) zurückgesetzt werden. Durch Anlegen von OV an diesem Eingang wird der Fehler gelöscht.

Aufbau

Der Motorregler wird auf einer Hutschiene montiert.

Anschlussbelegung

170698

Motorregler

Hinweis

• Nullabgleich des Reglers

Auf der Platine befindet sich ein Potentiometer (siehe Bild unten). Mit einem kleinen Schraubendreher kann der Nullabgleich des Reglers eingestellt werden. Ziel dieser Einstellung ist es bei 0V Eingangsspannung 0V Aushangsspannung zu erhalten und bei 10V Eingangsspannung 24V Ausgangsspannung.

Bild der Platine: Die rote Markierung umrandet das Potentiometer für den Nullabgleich

Parameter	Wert
Zulässige Betriebsspannung	24 VDC
Eingang	-10 +10 VDC
Ausgang	-24 +24 VDC
Ausgangsstrom	max. 1 A
Anschlüsse	Schraubklemmen
Änderungen vorbehalten	

Potentiometerbaustein

Potentiometerbaustein

Beschreibung

Der Potentiometerbaustein kann mit 10 VDC oder 24 VDC betrieben werden. Über den Vorwiderstand wird die Spannung am Potentiometer heruntergeteilt, so dass beim Anschluss von 24 VDC ein Einstellbereich des Sollwertes von ca. 0...11 V möglich ist.

Der Anschluss erfolgt über Schraubklemmen. Der Potetiometerbaustein ist auf 35 mm DIN-Schienen nach EN 50022 schnappbar.

Technische Daten

Parameter	Wert
Potentiometerwert	10 kO
Widerstandstoleranz	±20 %
Leistung Potentiometer	1 W
Leistung Widerstand	0,25 W
Temperaturbereich	0+60°C
Befestigungsart	Schnappbar auf DIN-Schiene EN 50022
Abmessungen H x B x T	75 x 45 x 65 mm
Änderungen vorbehalten	

Quelle: Murrelektronik GmbH

BE.EL.0528

Potentiometerbaustein

Maßskizze

Prinzipschaltbild

Quelle: Murr Elektronik

Elektrische Anschlussbelegung

24V	10V	SW	OV

Klemmenleiste, Draufsicht

Druckbehälter

Druckbehälter

Funktion

Der Druckbehälter dient zum Speichern eines Mediums unter Druck.

Aufbau

Der Druckbehälter ist mit einem Befestigungswinkel an einem Profilstab angeschraubt. Der Anschluss an das Rohrleitungssystem erfolgt durch G1/2" Verschraubung.

Technische Daten

Parameter	Wert
Medium	Wasser
Bauart	In einem Stück gefertigt
Befestigungsart	Befestigungswinkel
Anschluss	G 1⁄2 "
Volumen	21
Druckbereich *	-0,95 bar bis 16 bar
Werkstoffe	Edelstahl (X 5 Cr Ni 18 10)
Gewicht	1,681 kg
Änderungen vorbehalten	

Hinweis

Beim Einsatz des Druckbehälters in der Station Druckregelung ist nur ein maximaler Druck von 0,5 bar zulässig!

Behälter

Funktion

Gewindebohrungen für Zu und Abflüsse und für Sensoren mit Gewindeanschluss sind vorhanden. Eine Bohrung ist zur Montage einer Heizung vorgesehen. Nicht benötigte Bohrungen werden mit Verschlussstopfen versehen.

Aufbau

Der Behälter wird mit vier Schrauben und Hammermuttern auf die Profilplatte montiert oder an einem MPS-Profil befestigt.

Hinweis

Befestigungsschrauben vorsichtig anziehen.

Parameter	Wert
Material	Plexiglas (PMMA)
Zulässige Betriebstemperatur	max. +65 °C
Fassungsvermögen	ca. 12 l
Abmessungen (Außenmaße) Breite Tiefe Höhe	240 mm 190 mm 380 mm
Abmessungen (Innenmaße) Breite Tiefe Höhe	190 mm 175 mm 370 mm
Werkstoff	Kunststoff
Leitungsanschlüsse: Einschraubanschlüsse	15 mm Rohr-Ø
Änderungen vorbehalten	

Rohrverbindungen

Rohrverbindungen

Funktion

Die Verrohrung der verfahrenstechnischen Anlagen erfolgt schnell, sicher und dicht mit dem Rohr- und Steckverbindersystem. Die einzelnen Komponenten der Verrohrung sind:

•	gerade Rohrstücke	(BestNr. 304518)
	verschiedene Längen erhältlich	

Verschlussstopfen

• 90°-Steckverbinder (Abb. o.) (Best.-Nr. 170701)

• 90°-Einsteckwinkelverbinder (Abb. o.)

T-Steckverbinder (Abb. o.) (Best.-Nr. 170702)Absperrhahn (Abb. o.) (Best.-Nr. 170703)

Aufbau

Die Verrohrung besteht aus einem Rohr- und Steckverbindersystem aus Kunststoff.

Montage/Demontage

- Zum Ablängen der Rohre wird ein Rohrschneider benötigt.
- Die Rohrmontage erfolgt ohne Werkzeuge.
- Montage:
 Das Rohr wird bis zum Anschlag in den Steckverbinder geschoben.

170701, 170702, 170703

Verrohrung

• Demontage:

Zum Lösen der Verbindung wird die Klemmhülse am Steckverbinder eingedrückt und das Rohr herausgezogen.

Parameter	Wert
Betriebswerte Kaltwasser-System Heißwasser-System Zentralheizungs-System	20 °C / 10 bar 65 °C / 7 bar 82 °C / 4 bar
Abzugskräfte	> 1200 N / 20 °C
Berstdruck	> 40 bar / 20 °C
Durchflussmedien	Wasser, verschiedene Gase
Betriebsdruck	max. 6 bar bei 80 °C
Werkstoff	Kunststoff
Rohrdurchmesser	Ø außen: 15 mm
Änderungen vorbehalten	

Rohr

Funktion

Mit dem Rohr sind sämtliche Verbindungen erstellt. Eine Ausnahme bildet die Verrohrung mit Plexiglas.

Parameter	Wert
Temperatur und Druck heißes Wasser kaltes Wasser periodisch mit Unterbrechungen*	6 bar bei 65°C 12 bar bei 20°C 114°C
Ausdehnung	1% auf der Gesamtlänge (20°C 82°C)
Medien	Alles, außer: Gas, Benzin, Öl oder Pressluft
Licht	Vor ultraviolettem Licht schützen (langzeitige Sonnenbestrahlung, usw.)
Änderungen vorbehalten	

^{*}verwenden Sie die Rohre niemals zusammen mit einer unkontrollierten Hitzequelle!

Plexiglasrohr

Plexiglasrohr

Funktion

Das Plexiglasrohr ist eine durchsichtige Verrohrung und dient zur Sichtprüfung des beförderten Mediums.

Parameter	Wert
Material	Acrylpolymeres auf Basis von Methylmethacrylat
Erweichungstemperatur	>100°C
Flammpunkt	>250°C (ASTM D1929-68)
Zündtemperatur	>400°C (ASTM D1929-68)
Dichte	1,18g/cm³ bei 20°C
Thermische Zersetzung	>250°C
Änderungen vorbehalten	

Kugelhahn

Funktion

Durch Schwenken des Hebels wird der Durchfluss in beiden Richtungen vollständig abgesperrt.

Aufbau

Der Kugelhahn wird mit Steckverschraubungen in die Rohrleitung eingebaut.

Hinweis

In obiger Abbildung ist der Kugelhahn geschlossen. Wird der Hebel um 90° gedreht, so ist er vollständig geöffnet.

Parameter	Wert
Anschluss	15 mm
Nennweite	15
Druckbereich	0 7 bar
Temperaturbereich (mit Kunststoffsteckverbindern)	0 +65 °C
Betätigungskraft	5 Nm
Gewicht	ca. 0,45 kg
Änderungen vorbehalten	

Einschaltventil mit Filterregelventil

Einschaltventil mit Filterregelventil

Schaltzeichen

Funktion

Das Filter mit Wasserabscheider reinigt die Druckluft von Schmutz, Rohrsinter, Rost und Kondenswasser.

Das Druckregelventil regelt die zugeleitete Druckluft auf den eingestellten Betriebsdruck und gleicht Druckschwankungen aus. Die Strömungsrichtung wird durch einen Pfeil auf dem Gehäuse gekennzeichnet. An der Filterschale befindet sich die Kondensat-Ablassschraube. Das Manometer zeigt den eingestellten Druck. Das Einschaltventil/Absperrventil belüftet/entlüftet die gesamte Steuerung. Das 3/2-Wegeventil wird mit dem roten Drehknopf betätigt.

152894

Einschaltventil mit Filterregelventil

Aufbau

Das Filterregelventil mit Manometer, Einschaltventil, Steckverschraubungen und Kupplungsstecker ist an einer schwenkbaren Aufnahme montiert. Über der Filterschale befindet sich der Metallkorb. Die Befestigung der Einheit auf der Profilplatte erfolgt mit Zylinderschrauben und Hammermuttern Befestigungsvariante "C"). Beigelegt ist eine Kupplungsdose mit Gewindebuchse und Überwurfmutter für Kunststoffschlauch PUN 6 x 1.

Hinweis

Beim Schaltungsaufbau ist auf die senkrechte Einbaulage des Filterregelventiles zu achten. Das Druckregelventil hat einen Einstellknopf. Durch Drehen kann der gewünschte Druck eingestellt werden. Wenn der Einstellknopf zum Gehäuse verschoben wird, ist die Einstellung fixiert.

Parameter	Wert
Medium	Druckluft
Bauart	Sinterfilter mit Wasserabscheider, Membranregelventil
Einbaulage	senkrecht ±5°
Normalnenndurchfluss*	750 l/min
Vordruck maximal	1600 kPa (16 bar)
Arbeitsdruck maximal	1200 kPa (12 bar)
Anschluss	Kupplungsstecker für Kupplungsdose G 1/8 S- Steckanschluss für Kunststoffschlauch PUN 6 x 1
Änderungen vorbehalten	

^{*} Vordruck: 1000 kPa (10 bar), Betriebsdruck: 600 kPa (6 bar), Differenzdruck: 100 kPa (1 bar).

Ultraschallsensor

Funktion

Das Funktionsprinzip eines Ultraschallsensors beruht auf der Erzeugung akustischer Wellen und ihrem Nachweis nach der Reflexion an einem Objekt.

Als Träger der Schallwellen dient im Normalfall die atmosphärische Luft. Ein Schallgeber wird für eine kurze Zeitdauer angesteuert und sendet einen für das menschliche Ohr unhörbaren Ultraschallimpuls aus. Nach dem Senden wird der Ultraschallimpuls an einem innerhalb der Reichweite liegenden Objekt reflektiert und an den Empfänger zurückgeworfen. Die Laufzeit des Ultraschallimpulses wird in einer nachfolgenden Elektronik ausgewertet.

In einem gewissen Bereich ist das Ausgangssignal proportional zur Signallaufzeit des Ultraschallimpulses.

Das zu detektierende Objekt kann aus unterschiedlichen Materialien bestehen. Form und Farbe sowie fester, flüssiger oder pulverförmiger Zustand haben keinen oder nur einen geringen Einfluss auf den Nachweis. Bei Objekten mit glatter, ebener Oberfläche muss die Oberfläche senkrecht zur Ultraschallstrahlung ausgerichtet sein.

In seinem Auslieferungszustand vom Hersteller steigt das Ausgangssignal mit zunehmender Distanz zwischen Sensor und Messobjekt.

Für die Messung des Füllstandes in einem Behälter ist diese Einstellung ungünstig. Mit zunehmender Füllstandshöhe wird die Distanz zwischen Sensor und Messobjekt (Wasseroberfläche) geringer, das Messsignal sollte aber steigen. Deshalb wurde die Einstellung des ansteigenden Ausgangssignals umgekehrt.

Ebenso wurde der Messbereich des Sensors auf den Behälter angepasst.

691326

Ultraschallsensor

Technische Daten

Parameter	Wert
Analogausgang (UA) Spannungsbereich Messbereich	010 V 300 50 mm
Kennlinie	fallend
Betriebsspannung U _e	24 V DC
Zul. Restwelligkeit	10 %
Leerlaufstrom I0	< 50 mA
Schaltausgang (NC/NO) / Frequenzausgang (FA) Bemessungsbetriebsstrom I _e Spannungsfall U _d	150 mA 3 V bei 150 mA
Umgebungstemperatur	-25 70 °C
Schaltpunktfehler	± 2,5 % (-25 70 °C)
Schutzart	IP67
Gewicht	Max. 67 g
Änderungen vorbehalten	·

Einbau

Maßbild, alle Maße in mm

Freiräume

Freiraum

Freiraum im Abstand "x" um die Schallkeulenachse von störenden Objekten freihalten. Winkelabweichung von 3° gilt für glatte Oberflächen.

Schaltbereich (Hersteller-Einstellungen)

- A Schaltbereichsanfang (programmierbar)
- E Schaltbereichsende

Ultraschallsensor

Anschluss

1: L+ 2030 V DC 3: L - 0 V		
	2	4
3RG623□-3□ A	S -L	ΧI
3RG623□-3□ B	ΧI	S
3RG623□-3□ s	ΧI	U _A / I _A / F _A

XI : Enable /sync

S : Output

U_A / I_A : Analog output

FA: Frequency output

Anschlussbelegung

- 1 24 V (braun)
- 3 0 V (blau)
- 4 analoger Ausgang (schwarz)

Die Anschlüsse sind verpolsicher, sowie kurzschluss- und überlastfest. Bei elektrischen Störungen werden geschirmte Leitungen empfohlen.

Synchronisieren durch Verbinden der Klemmen XI (max. 10 BERO)

Durchfluss-Sensor

Funktion

Das Gerät besteht aus einem senkrecht angeordneten, nach oben sich öffnenden, konischen Glasrohr, das von unten vom zu messenden Fluid durchströmt wird. Ein im Rohr befindlicher kegeliger Schwebekörper wird vom Flüssigkeitsstrom angehoben und in Schwebe gehalten, wenn zwischen der nach unten gerichteten Gewichtkraft des Schwebekörpers einerseits und der nach oben gerichteten Aufströmkraft und Auftriebskraft andererseits, Gleichgewicht besteht. Auf der Höhe der Ablesekante des Schwebekörpers kann auf einer außen angebrachten Skala der Volumenstrom abgelesen werden. Schräge Einkerbungen am Schwebekörper versetzen ihn in Rotation und verhindern ein Verklemmen.

Aufbau

Der Durchflussmesser nach dem Schwebekörperprinzip verfügt über ein Messrohr aus Trogamid-T bzw. Polysulfon, das für den Einsatz bei neutralen bzw. aggressiven Medien geeignet ist. Die an den Enden des Messrohrs angespritzten Gewindestutzen dienen zur Aufnahme von Armaturenverschraubungen. An den Stirnseiten eingelassene O-Ringe sorgen für eine zuverlässige Abdichtung zwischen Messrohr und Armaturenverschraubung ohne Radialkräfte zu erzeugen, die zum Bersten des Rohres führen können.

Die auf das Messrohr aufgedruckte Messskala ist jeweils auf das entsprechende Durchflussmedium abgestimmt und gibt die Durchflussmenge in I/h bzw. m³/h. Angespritzte Schwalbenschwanzleisten dienen zur Aufnahme von Sollwert-Zeigern, Grenzwert- und Signaleinrichtungen.

Schwebekörper Durchfluss-Sensor

Hinweis

Schwebekörper-Durchflussmesser sind auf die Messung kleiner bis mittlerer Volumenströme von niedrigviskosen Flüssigkeiten ohne Feststoffpartikel oder von Gasströmen bei niedrigen Drücken begrenzt.

Technische Zeichnung

- 1 Messrohr
- 2 Schwebekörper
- 3 Anschlussverschraubung
- 4 Überwurfmutter
- 5 Schwebekörperfänger
- 6 O-Ring (Dichtung)

Schwebekörper Durchfluss-Sensor

Parameter	Wert
Messbereich, max.	60 l/h
Gehäuseform	"D" Durchgangskörper
Messrohrgröße	10 mm
Messrohrwerkstoff	Trogamid- T
Anschlussart	Gewindestutzen mit Armaturenverschraubung
Dichtwerkstoff	FPM
Betriebsdruck	Max. 10 bar
Gewicht	0,07 Kg PVC Verschraubung 0,18 Kg Temperguss
Nennweite	DN15 (15 mm)
Änderungen vorbehalten	

Näherungsschalter, kapazitiv

Schaltzeichen

Funktion

Das Funktionsprinzip eines kapazitiven Näherungsschalters beruht auf der Auswertung der Kapazitätsänderung eines Kondensators in einem RC-Schwingkreis. Wird ein Material an den Näherungsschalter angenähert, erhöht sich die Kapazität des Kondensators. Dies führt zu einer auswertbaren Änderung des Schwingverhaltens des RC-Kreises. Die Kapazitätsänderung hängt im wesentlichen vom Abstand, von den Abmessungen und von der Dielektrizitätskonstanten des jeweiligen Materials ab.

Der Näherungsschalter hat einen PNP-Ausgang, d. h., die Signalleitung wird im geschalteten Zustand auf positives Potential geschaltet. Der Schalter ist als Schließer ausgelegt. Der Anschluss der Last erfolgt zwischen Näherungsschalter-Signalausgang und Masse.

Eine gelbe Leuchtdiode (LED) zeigt den Schaltzustand an, die grüne Leuchtdiode (LED) die Betriebsbereitschaft. Mit Hilfe einer kleinen Einstellschraube kann die Empfindlichkeit des Sensors individuell angepasst werden.

Der kapazitive Näherungsschalter ist nicht bündig einbaubar.

Aufbau

Der kapazitive Näherungsschalter kann mit zwei Überwurfmuttern in einem Haltewinkel montiert werden. Der Näherungsschalter hat eine zylindrische Bauform mit einem Gewinde M18x1.

Näherungsschalter, kapazitiv

Hinweis

Im Betrieb ist auf die Polarität der angelegten Spannung zu achten. Die Kabelanschlüsse sind farblich markiert.

Parameter	Wert
Betriebsspannung Pluspol Minuspol	braun blau
Lastausgang	schwarz

Prinzipschaltbild

- 1 Oszillator
- 2 Demodulator
- 3 Triggerstufe
- 4 Schaltzustandsanzeige
- 5 Ausgangsstufe mit Schutzbeschaltung
- 6 Externe Spannung
- 7 Interne Konstantspannungsquelle
- 8 Kondensator mit aktiver Zone
- 9 Schaltausgang

Parameter	Wert
Zulässige Betriebsspannung	10 55 V DC
Schaltausgang	PNP, Schließer
Nennschaltabstand (einstellbar)	2 8 mm
Hysterese (bezgl. Nennschaltabstand)	3 15 %
Maximaler Schaltstrom	200 mA
Maximale Schaltfrequenz	300 Hz
Stromaufnahme im Leerlauf (bei 55 V)	7 mA
Zulässige Betriebs-Umgebungstemperatur	20 °C +70 °C
Schutzart	IP65
Verpolungsschutz, Kurzschlussfestigkeit	Ja
Werkstoffe (Gehäuse)	Thermoplast
Gewicht	0,20 kg
Elektrischer Anschluss	Kabel, 2000 mm lang
Änderungen vorbehalten	

Modul Rührer

Funktion Die Durchmischung der Flüssigkeit im Behälter erfolgt durch einen Rührer mit einem

ungeregelten 24 V DC Motor. Der Rührer (Propellerrührer) erzeugt eine starke axiale Abströmung mit starker Umwälzwirkung und einer geringen Rotationsströmung um die Rührachse. Die Vermischung erfolgt deshalb überwiegend durch die vertikale

Umwälzung.

Aufbau Einbau in den Behälterdeckel.

Hinweis Nur für dünnflüssige Behälterinhalte. Während des Betriebes muss der Deckel

geschlossen bleiben.

Modul Rührer

Elektrische Anschlüsse

In Betrieb ist auf die Polarität der angelegten Spannung zu achten. Die Kabelanschlüsse sind farblich markiert

Parameter		Wert
Pluspol (+)	+ M	rot
Minuspol (-)	-	schwarz

Parameter	Wert
Nennspannung	24 V DC
Nennabgabeleistung	50 W
Umdrehung pro min.	800-1000 UPM
Anschluss	2-adriges Kabel
Lebensdauer	200 Stunden
Änderungen vorbehalten	

Magnetventil

Schaltzeichen

Funktion

Das Compact Performance Einzelventil CPE ist ein vorgesteuertes 5/2 monostabiles Ventil mit externer Steuerluft.

Es zeichnet sich durch minimale Baubreite und geringe elektrische Leistungsaufnahme, dadurch nur geringe Erwärmung, bei höchsten

Durchflusswerten aus.

Kurze Schläuche mit kleinstem Luftvolumen:

- schnelle Schaltzeiten

- kleinste Reaktionszeiten

Montage

Die Einbaulage ist beliebig: Montage auf Hutschienen oder Wandmontage.

Aufbau

Kolben-Schieber, mit pneumatischer Feder zur Rückstellung.

Betriebsmedium

Trockene, gefilterte Druckluft TF

Trockene, gefilterte und geölte Druckluft TFG

Gefilterte und nicht geölte Druckluft, Filterfeinheit 40 μm

Gefilterte, geölte Druckluft, Filterfeinheit 40 µm

Getrocknete Luft, geölt oder ungeölt

Steuermedium

Getrocknete Luft, geölt oder ungeölt.

Magnetventil

Parameter	Wert
Abluft-Funktion	drosselbar
Betätigungsart	elektrisch
Signalverarbeitung/Messprinzip	Infrarot
Betriebsdruckbereich externe Steuerluft	-0,9 10 bar
Betriebsdruckbereich interne Steuerluft	3 8 bar
b-Wert	0,41
C-Wert	1,43 l/s bar
Normalnenndurchfluss	350 I/min
Schaltzeit aus	16 ms
Schaltzeit ein	16 ms
Betriebsdruck	3 8 bar
Spulenkennwerte	24 V DC 1 W
Mediumstemperatur	5 50 °C
Anschluss Steuerabluft 82	M3
Anschluss Steuerabluft 84	M3
Anschluss Steuerluft 12	M3
Anschluss Steuerluft 14	M3
Anschluss Steuerluft 1	M7
Anschluss Steuerabluft 2	M7
Anschluss Steuerluft 3	M7
Anschluss Steuerabluft 4	M7
Anschluss Steuerluft 5	M7
Werkstoff-Information Dichtungen	NBR
Werkstoff-Information Gehäuse	Aluminium-Druckguss
Änderungen vorbehalten	,

Tank rund

Funktion Gewindebohrungen für Zuflüsse und für Sensoren mit Gewindeanschluss sind auf

dem Deckel und für Abflüsse unten vorhanden. Nicht benötigte Bohrungen werden

mit Verschlussstopfen versehen.

Aufbau Der Behälter wird mit vier Schrauben und Hammermuttern über Haltewinkel seitlich

auf ein Profil und anschließend im Ganzen auf Profilplatte montiert.

Hinweis Befestigungsschrauben vorsichtig anziehen.

Tank rund

Parameter	Wert
Material	PMMA = Polymethylmetaacrylat (Plexiglas)
Zulässige Betriebstemperatur	max. +65 °C
Fassungsvermögen	ca. 4 l
Abmessungen Zylinder (Außenmaße) Durchmesser Höhe	150 mm 210 mm
Abmessungen Zylinder (Innenmaße) Durchmesser Höhe	140 mm 200 mm
Abmessungen Kegelstumpf (Außenmaße) Durchmesser (Kleiner) Höhe	60 mm 90 mm
Abmessung Kegelstumpf (Innenmaße) Durchmesser (Kleiner) Höhe	50 mm 80 mm
Werkstoff	Kunststoff
Leitungsanschlüsse: Einschraubanschlüsse	15 mm Rohr-Ø
Änderungen vorbehalten	

Tank eckig

Funktion

Eine Gewindebohrung für Abfluss ist unten vorhanden. Für Zuflüsse und für Sensoren sind Bohrungen mit Gewindeanschluss seitlich vorhanden. Je eine Bohrung ist vorne zur Montage einer Heizung und eines Temperatursensors vorgesehen. Nicht benötigte Bohrungen werden mit Verschlussstopfen versehen. Im Deckel befinden sich mehrere Öffnungen, so genannte Stutzen. Ein Stutzen ist für den Rührer vorgesehen.

Aufbau

Der Behälter wird mit vier Schrauben und Hammermuttern über Haltewinkel seitlich auf zwei Profile und anschließend im Ganzen auf Profilplatte montiert.

Hinweis

Befestigungsschrauben vorsichtig anziehen.

Tank eckig

Parameter	Wert
Material	PMMA = Polymethylmetaacrylat (Plexiglas)
Zulässige Betriebstemperatur	Max. +65 °C
Fassungsvermögen	ca. 12 l
Abmessungen (Außenmaße) Breite Tiefe Höhe	200 mm 200 mm 350 mm
Abmessungen (Innenmaße) Breite Tiefe Höhe	190 mm 190 mm 340 mm
Werkstoff	Kunststoff
Leitungsanschlüsse: Einschraubanschlüsse	15 mm Rohr-Ø
Änderungen vorbehalten	

Filter

Funktion

Aufbau

Der Filter bietet einen sehr hohen Keimschutz, großen Wasserdurchsatz von 13 Litern/min sowie komfortablen Kartuschenwechsel. Der Durchfluss erfolgt durch die Gesamtlänge des Filterbetts, daher höchstmögliche Molekularsiebung und Breitbandabsorbtion mit einer Rückhaltekonstanten von 0,5 μ m. Keimschutz für 15.000 Liter bei konstant 30 Litern/min, 200.000-qm- Filterfläche.

Umfasst das Filtergehäuse mit integriertem Absperrventil und Entlüftung, die Filterkartusche 20290, 2 Stück 10-mm-Anschlüsse, Halterung und Schlauchschellen. Die Filterkartusche ist mit 3-Stufen-Filtrierung ausgestattet.

- 1. Stufe Vorfilter gegen Grobverschmutzung.
- Stufe Hauptfilter
 gegen Chlor, Tankzusätze, Pflanzenschutzmittel, industrielle
 Chemieverschmutzungen, sonstige anorganische Chemikalien, z.B. Atrazin,
 Simazin, Lindan, Dioxin usw. Hält Keime, Bakterien und Cysten → = 0,5 μm
 zurück, z.B. Ekoli Bakterien (Ø 0,5 μm).
- Stufe Nachfilter gegen Schwebstoffe, mit Schutznetz aus PP, Mineralstoffe bleiben im Trinkwasser.

Filter

Parameter	Wert
Max. Durchflussmenge/Wasserdurchsatz	13,04 I/min
Eingangsdruck	7,6 bar max.
Gewicht	1886 g +500 g
Umgebungstemperatur	50 °C max.
Anschluss	10 mm
Änderungen vorbehalten	

Doppel-Rückschlagventil

Funktion

Das Ventil besitzt eine Sperrfunktion. In eine Richtung kann das Ventil durchströmt werden, in die entgegengesetzte Richtung ist der Durchfluss gesperrt.

Auf dem Ventil ist eine manuelle Einstellung zu sehen. Dabei handelt es sich um eine Funktionsverschraubung (zum Entlüften).

Hinweis

Beim Einbau ist die Richtung der Rückschlagfunktion zu beachten.

Es darf nicht für Gas, Heizöl oder komprimierte Luftanwendungen verwendet werden.

Befestigungen und Rohr sollen vor Gebrauch sauber und unbeschädigt gehalten werden.

Montage/Demontage

Die Rohrmontage erfolgt ohne Werkzeuge.

Montage:

• Das Rohr wird bis zum Anschlag in den Steckverbinder geschoben.

Demontage:

• Zum Lösen der Verbindung wird die Klemmhülse am Steckverbinder eingedrückt und das Rohr herausgezogen.

Doppel Rückschlagventil

Parameter	Wert
Betriebswerte Kaltwasser-System Heißwasser-System Zentralheizungs-System	20 °C/10 bar 65 °C/6 bar 82 °C/3,0 bar
Durchflussmedium	Wasser
Werkstoff	Kunststoff
Rohrdurchmesser	Außen-Ø: 15 mm
Änderungen vorbehalten	