N. ABDAT

Exercice 4: Soit la relation R (A, B, C, E, H) et soient F et G deux ensembles de Dfs suivants :

$$F = \{A \rightarrow B, CE \rightarrow H, C \rightarrow E, A \rightarrow CH\}$$

$$G = \{ C \rightarrow EH, A \rightarrow BC \}$$

- (1)
- **(2)**
- (3)
- **(4)**

(5) (6)

1. F et G équivalents?

F couverture de G $(G+ \subset F+)$?

 $C \rightarrow EH$?

(3)+(2) $C \rightarrow E$ et $CE \rightarrow H$ donne par Pseudo – Transitivité $CC \rightarrow H$ donc $C \rightarrow H$ (7)

(3)+(7) $C \rightarrow E$ et $C \rightarrow H$ donne par union $\underline{C \rightarrow EH}$ (5)

 $A \rightarrow BC$?

On décompose (4) : $A \rightarrow C(8)$ $A \rightarrow H$ (9)

(1)+(8) par union on obtient $A \rightarrow BC$ (6)

Donc G+⊂ F+, F est une couverture de G

Conclusion $G+\subset F+$ et $F+\subset G+$ alors F+=G+F et G sont équivalents

2. Couverture minimale de F.

Pté 1 : les membres droits sont singletons : non vérifiée dans (4)

On décompose df 4, On obtient : $A \rightarrow C$ et $A \rightarrow H$

 $\{A \rightarrow B, CE \rightarrow H, C \rightarrow E, A \rightarrow C, A \rightarrow H\}$ pté 1 vérifiée

Pté2 : membres gauches des dfs irréductibles (dfs élémentaires) ?

(3)+(2) C→E et CE→H donne par Pseudo – Transitivité CC→H donc C→H

C→H donc CE→H n'est pas élémentaire Pté2 non vérifiée. On remplace CE→H par C→H

 $\{A \rightarrow B, C \rightarrow H, C \rightarrow E, A \rightarrow C, A \rightarrow H\}$ pté 2 vérifiée

Pté 3 : Aucune Df n'est redondante?

 $A \rightarrow C$ et $C \rightarrow H$ par transitivité $A \rightarrow H$ Df redondante à enlever

On obtient une couverture minimale de $F = \{A \rightarrow B, C \rightarrow H, C \rightarrow E, A \rightarrow C\}$

G couverture de F $(F+ \subset G+)$?

On décompose (6) $A \rightarrow BC$ on obtient $\underline{A \rightarrow B}$ (1) et $A \rightarrow C$

 $A \rightarrow C$ et $C \rightarrow EH$ par transitivité $A \rightarrow EH$

Par décomposition de $A \rightarrow EH$ on a $A \rightarrow E$ et $A \rightarrow H$

Et par union de $A \rightarrow C$ et $A \rightarrow H$ on obtient $\underline{A \rightarrow CH}$ (4)

Par augmentation de (5) on a CE→EH et par decomposition on a

 $CE \rightarrow E$ et $\underline{CE \rightarrow H}$ (2)

Décomposition de (5) $C \rightarrow EH$ on obtient $\underline{C \rightarrow E}$ (3) et $C \rightarrow H$

Donc F+⊂ G+, G est une couverture de F

3. Clés candidates de R:

Soit **AC** la superclé formée des membres gauches des DFs de **G** :

 $A \subset C$ car $A \to C$ (par décomposition de $A \to BC$)

A unique et irréductible donc A est une clé candidate et c'est la seule

Exercice 5:

Soit une relation R (A, B, C, D, E, F), et l'ensemble de Dfs suivant :

$$\{ AC \rightarrow D, B \rightarrow AF, C \rightarrow BE, F \rightarrow EC \}$$

$AC+=\{A,C\}$

1^{ère} itération:

 $A C \rightarrow D : \{A,C\} \subset AC+ \Longrightarrow AC+=\{A,C,D\}$

 $B \rightarrow A F$ $B \notin AC+ => AC+inchangé$

 $C \rightarrow BE$ $C \in AC+ \Rightarrow AC+=\{A,C,D,B,E\}$

 $F \rightarrow EC$ $F \notin AC+ \Rightarrow AC+ inchangé$

$AC+=\{A,C,D,B,E\}$

2^{ème} itération:

 $A C \rightarrow D : AC+ inchangé$

 $B \rightarrow A F$ $B \in AC+= \{A,C,D,B,E,F\}$

 $C \rightarrow BE$: AC+ inchangé

 $F \rightarrow EC$ AC+ inchangé

$AC+=\{A,C,D,B,E,F\}$

3^{ème} itération:

 $A C \rightarrow D : AC+ inchangé$

 $B \rightarrow A F$: AC+ inchangé

 $C \rightarrow BE : AC+ inchangé$

 $F \rightarrow EC$ AC+ inchangé

$AC+=\{A,C,D,B,E,F\}$

AC+ inchangé => **Arrêt**

$BE += \{B,E\}$

1^{ère} itération:

 $A C \rightarrow D : \{A,C\} \not\subset BE + => BE + inchangé$

 $B \rightarrow A F \quad B \in BE+=>BE+=\{B,E,A,F\}$

 $C \rightarrow BE : C \notin BE+ => BE+ inchangé$

 $F \rightarrow EC F \in BE+=>BE+=\{B,E,A,F,C\}$

$BE+=\{B,E,A,F,C\}$

2^{ème} itération:

 $A C \rightarrow D : \{A,C\} \subset BE + \Longrightarrow BE + = \{B,E,A,F,C,D\}$

 $B \rightarrow A F$: BE+ inchangé

 $C \rightarrow BE$: BE+ inchangé

 $F \to EC \quad : \; BE \text{+ inchang\'e}$

$BE+=\{B,E,A,F,C,D\}$

3^{ème} itération:

 $A C \rightarrow D$: BE+ inchangé

 $B \rightarrow A F$: BE+ inchangé

 $C \rightarrow BE$: BE+ inchangé

 $F \rightarrow EC$: BE+ inchangé

$BE+=\{B,E,A,F,C,D\}$

BE+ inchangé => **Arrêt**

2) clés candidates de R.

 $\{AC \rightarrow D, B \rightarrow AF, C \rightarrow BE, F \rightarrow EC\}$ Il y a 3 clés candidates: B / C / F

Démonstration :

ACBF superclé formée des membres gauches des Dfs :

ACBF

ACBF car $B \rightarrow AF$

CB car $C \rightarrow B$ (par décomposition de $C \rightarrow BE$) C: unique et irréductible c'est une clé candidate

3. couverture minimale de l'ensemble de DF.

 $\{AC \rightarrow D, B \rightarrow AF, C \rightarrow BE, F \rightarrow EC\}$

Pté 1 : les membres droits des dfs sont singletons

Pté 1 non vérifiée car , $B \rightarrow A F$, $C \rightarrow BE$, $F \rightarrow EC$

Par décomposition $B \to A F \Rightarrow B \to A \text{ et } B \to F$, $C \to BE \Rightarrow C \to B \text{ et } C \to E$, $F \to EC \Rightarrow F \to E \text{ et } F \to C$

On obtient { $A C \rightarrow D$, $B \rightarrow A$, $B \rightarrow F$, $C \rightarrow B$, $C \rightarrow E$, $F \rightarrow E$, $F \rightarrow C$ }

Pté2 : membres gauches des dfs irréductibles (dfs élémentaires) ?

 $A C \rightarrow D$?

 $C \rightarrow B$ et $B \rightarrow A$ par transitivité on a : $C \rightarrow A$

 $C \to A \ \ \text{et AC} \to D \ \text{par pseudo-transitivit\'e} \ \ \text{on a} \ \ C \to D \ \ \text{donc AC} \to D \ \text{n'est pas \'el\'ementaire} \ \text{on la remplace par C} \to D$

On obtient $\{C \rightarrow D, B \rightarrow A, B \rightarrow F, C \rightarrow B, C \rightarrow E, F \rightarrow E, F \rightarrow C\}$

Pté 3 : Aucune Df n'est redondante?

 $F \rightarrow C$ et $C \rightarrow E$ par transitivité $F \rightarrow E$ redondante à enlever **couverture minimale :**

 $\{C \rightarrow D, B \rightarrow A, B \rightarrow F, C \rightarrow B, C \rightarrow E, F \rightarrow E, F \rightarrow C\}$

ACBF

ACBF car B \rightarrow A (décomp de B \rightarrow AF) CBF car C \rightarrow BE

CF car $F \rightarrow EC$

F : unique et irréductible c'est une clé candidate

Autre solution : $F \rightarrow EC$ donne par

décomposition $F \rightarrow C$

 $F \rightarrow C$ et C clé candidate =>

F clé candidate

ACBF

ACBF car $F \rightarrow C$ (décomp de $F \rightarrow EC$)

ABF car $B \rightarrow AF$

B : unique et irréductible c'est une clé candidate

Autre solution:

BE superclé car BE+={B,E,A, F, C,D}

 $B \rightarrow F$ (décomposition de $B \rightarrow A F$)

 $B \to F$ et $F \to E$ par transitivité $B \to E$ donc B clé candidate

В

Autre couverture minimale:

 $B \rightarrow F$ et $F \rightarrow E$, par transitivité $B \rightarrow E$

 $C \rightarrow B$ et $B \rightarrow E$ par transitivité $C \rightarrow E$ on elimine $C \rightarrow E$

couverture minimale:

 $\{C \rightarrow D, B \rightarrow A, B \rightarrow F, C \rightarrow B, C \rightarrow E, F \rightarrow E, F \rightarrow C\}$