Prófdagur og tími: 05.05.2010 09:00-12:00

Prófstaður:

VR II - St. 258 og 261

Skráðir til prófs: 28

TÖL203M Tölvugrafík

Skriflegt próf

Deild: Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild

Kennari:

Hjálmtýr Hafsteinsson (hh@hi.is / S: 5254932 / GSM: 8958772) Umsjónarkennari

Kennslumisseri: Vor 2010

Úrlausnir skulu merktar með nafni

Prófbók/svarblöð: Línustrikuð prófbók

Hjálpargögn: Vasareiknir

Tölva með textaminni

Öll skrifleg hjálpargögn eru leyfileg.

Önnur fyrirmæli: Prófverkefnið er á ensku fyrir þá sem óska þess.

Aðgangur að prófverkefni að loknu prófi: Kennslusvið sendir eintak í prófasafn

Einkunnir skulu skráðar í Uglu eigi síðar en 19.05.2010.

Prentað: 30.04.10

TÖL203M Tölvugrafík

Lokapróf Kennari: Hjálmtýr Hafsteinsson

5. maí, 2010 kl. 9⁰⁰-12⁰⁰

Öll dæmin hafa sama vægi. Aðeins þarf að leysa 5 dæmi af 6. Fimm bestu dæmin gilda. Öll skrifleg hjálpargögn og reiknivél leyfileg.

1. a) Sýnið 4x4 jafnþætt (e. homogeneous) vörpunarfylki til að varpa efra húsinu (með eitt hornið í (7, 2, 0)) yfir í neðra húsið. Samsvarandi horn á því húsi er (-2, -5, 0). Auk þess hefur stærðin breyst.

- b) Tvívíða vörpunin speglun (e. reflection) speglar punktum um x- eða y-ás hnitakerfis með því að kvarða þá með -1 (sjá bls. 201 í kennslubók). Leiðið út 3x3 jafnþætta vörpunafylkið fyrir tvívíða speglun um ásinn x = y.
- **2.** Skrifið OpenGL forrit (þ.e. **display**-fallið) sem teiknar *Minkowski pylsuna* (e. Minkowski's sausage). Hún fæst með því að byrja með línu af lengd *l* og brjóta hana upp í 8 línubúta sem hver um sig er af lengd *l*/4 og er með lögunina sem sýnd er hér að neðan:

Síðan er hver af hinum 8 línubútum brotinn upp á sama hátt og sýnt er, o.s.frv. Skrifið endurkvæmt fall til að teikna ferilinn fyrir tiltekinn fjölda ítrana.

- 3. Á aftasta blaðinu í prófinu er forritið jord. cpp sem skoðað var í námskeiðinu í vetur.
 - a) [3 stig] Útskýrið staðsetningu áhorfanda í þessu forriti. Hvernig sér hann sólkerfið?
 - b) [7 stig] Breytið forritinu þannig að áhorfandinn sé staddur á yfirborði jarðarinnar (eða því sem næst) og horfði í átt til sólarinnar. Útskýrið vel hvernig kóðinn vinnur (kóði án útskýringa er einskis virði).
- **4.** Kúla með radíus = 1 er staðsett í núllpunkti hnitakerfisins. Yfirborð hennar er litað samkvæmt endurskinslíkani Phong:

$$I = k_a L_a + (k_d L_d \max(\mathbf{l} \cdot \mathbf{n}, 0) + k_s L_s \max((\mathbf{r} \cdot \mathbf{v})^{\alpha}, 0))$$

- a) Gerið ráð fyrir að $k_a = k_d = 1$ og $k_s = 0$. Ef ljósgjafinn er staðsettur í (x_l, y_l, z_l) fyrir utan kúluna, hvaða punktur á yfirborði kúlunnar er bjartastur (þ.e. með mesta styrk á endurskini)?
- b) Gerið nú ráð fyrir að $k_a = 0$, en $k_d > 0$ og $k_s > 0$. Ljósstefna er gefin með vektornum (0, 0, -1). Rissið upp líkanið. Sýnið kúluna og ljósgeislana sem lýsa hana. Sýnið vel hvaða hlutar kúlunnar hafa eitthvað ljós og hvaða hlutar hafa ekkert ljós.
- c) Gerum aftur ráð fyrir að $k_a = 0$, en $k_d > 0$ og $k_s > 0$ (eins og í b)-lið). Ljósið er núna staðsett í punktinum (0, 0, 4). Verður lýsing kúlunnar eins og hún var í b)-lið eða breytist hún (og þá hvernig)? Rökstyðjið vel, til dæmis með því að nota teikningu.

5. Í þessu dæmi eigið þið að sýna líkan fyrir hendi með fimm fingrum. Hendin er flatur kassi og fingurnir eru samsettir úr smærri kössum. Hver fingur hefur 3 liði, sem hver um sig getur snúist um 90° frá liðnum fyrir framan. Auk þess eru 3 liðamót, sem við táknum með kúlu.

- a) Setjið þetta líkan upp sem tré og skrifið inná hvaða varpanir eru gerðar á hverjum stað. Þið þurfið aðeins að sýna tréð fyrir einn fingur, en segið hvar hinir fingurnir væru í trénu.
- b) Skrifið OpenGL kóða sem teiknar líkanið (þ.e. display-fallið). Þið þurfið sömuleiðis aðeins að sýna kóða fyrir einn fingur, en segið hvar kóði fyrir hina fingurna kæmi.

6. Skrifið GLSL litara sem lætur hlut hverfa smátt og smátt og birtast síðan aftur snögglega þegar hann er alveg horfinn. Notið ykkur α-gildi í lit hlutarins. Hvaða gildi þarf litarinn að fá frá OpenGL forritinu? Sýnið bæði hnúta- og bútalitara.

```
// Einfalt sýnisforrit með snúandi jörð og sól
  // Hjálmtýr Hafsteinsson, janúar 2010
  //----
  #include <GL/glut.h>
 #include <math.h>
  float year = 0.0;
 float day = 0.0;
 void myDisplay (void)
      glClear (GL COLOR BUFFER BIT);
      glPushMatrix();
            glTranslatef( 0.0, 0.0, -3.0 );
glRotatef( 30.0, 1.0, 0.0, 0.0 );
            glPushMatrix();
    glRotatef( 90.0, 1.0, 0.0, 0.0 ); // Snúa sól svo póll snúi upp
    glutWireSphere( 1.0, 20, 16 );
            glPopMatrix();
           glRotatef( year, 0.0, 1.0, 0.0 );
glTranslatef( 2.0, 0.0, 0.0 );
glRotatef( day, 0.0, 1.0, 0.0 );
                                                               // Árlegur snúningur
// Fjarlægð frá sól
                                                               // Dagssnúningur
            glPushMatrix();
                 glRotatef( 90.0, 1.0, 0.0, 0.0);
glutWireSphere( 0.2, 10, 8 );
                                                                    // Snúa jörð svo póll snúi upp
            glPopMatrix();
           glTranslatef( 0.4, 0.0, 0.0 );
glutWireSphere( 0.1, 10, 8 );
      glPopMatrix();
      glutSwapBuffers();
void myIdle( void )
      day += 10.0;
      year += 10.0/360.0;
     if( day > 360.0 ) day = 0.0;
if( year > 360.0 ) year = 0.0;
     glutPostRedisplay();
}
void myinit()
     glClearColor (1.0, 1.0, 1.0, 1.0);
glColor3f(1.0,0.0,0.0);
     glMatrixMode(GL_PROJECTION);
glOrtho(-3.0, 3.0, -3.0, 3.0, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
1
void
main(int argc, char **argv)
     glutInit(&argc, argv);
     glutInitDisplayMode (GLUT DOUBLE | GLUT RGB );
     glutInitWindowSize(600, 600);
glutCreateWindow("Jörð og sól");
     glutDisplayFunc (myDisplay);
     glutIdleFunc(myIdle);
    myinit();
     glutMainLoop();
```