Project Summary: Mercedes-Benz Greener Manufacturing

Objective:

The goal of this project is to **optimize the testing time** of Mercedes-Benz cars using **machine learning**. This helps the company **reduce resource consumption**, **increase efficiency**, and contribute to a **greener manufacturing process** by minimizing unnecessary test cycles.

Dataset Overview:

The dataset contains:

- ID: Unique identifier for each car.
- y: Target variable (test time in seconds).
- X0–X385: Features representing various car specifications, some categorical and some numerical.

Project Workflow:

1. Data Preprocessing

- Handling Missing Values:
 - Used median imputation for numerical data.
- Feature Encoding:
 - Categorical features were converted into numerical form using Label Encoding.
- Removing Zero-Variance Columns:
 - Dropped columns where all values were identical (no variation).
- Feature Alignment:
 - Ensured train and test datasets had the same features.

2. Feature Reduction (PCA - Principal Component Analysis)

- Applied **PCA** to reduce the number of features while retaining **95% of the variance**.
- Helps in **reducing dimensionality** and improving model efficiency.

3. Model Training & Evaluation

- Split the dataset into training (80%) and validation (20%) sets.
- Trained machine learning models (e.g., XGBoost, Linear Regression, Random Forest) to predict y (test time).
- Evaluated model performance using R² score and RMSE (Root Mean Squared Error).

4. Prediction on Test Data

• Used the trained model to predict test times for new Mercedes-Benz cars.

Expected Impact:

- ✓ Reduced testing time

 → Faster production cycle.
- **✓ Lower energy consumption** → Cost-effective and eco-friendly.
- **☑ Optimized resource allocation** → Better manufacturing efficiency.

Conclusion:

This project demonstrates how machine learning can help automate and optimize testing processes, making Mercedes-Benz manufacturing more sustainable and efficient.