

DIABETIC RETINOPATHY DETECTION

Team 10: Shuai ZHANG, Peng GU

1. Input Pipeline

- IDRID Dataset
 - a dataset of retinal images with and without signs of diabetic retinopathy
- Preprocessing and Augmentation
 - For each image:
 - ► normalize to [0, 1]
 - resize to (512, 512, 3)
 - augmentation
 - For dataset:
 - ► load csv file
 - create tfrecords
 - balance dataset

2. Model and Training

Three models, namely vgg-like, resnet-like and transfer model (densenet121) were implemented. At the end, ensemble learning was applied by combining three models.

- Overview of Model Architectures
 The architectures of all three models
 are shown in fig 1.
 - Vgg-like model
 - base filters 16
 - 4 vgg blocks
 - dropout rate 0.5
 - Resnet-like model
 - ▶ base filters 16

- ► 6 basic blocks
- dropout rate 0.5
- Transfer model
 - GAP layer, dropout layer and a classification output layer on top of the model
 - dropout rate 0.4
 - first 88 convolutional layers frozen, the other layers trainable
- Ensemble learning
 - Averaging
 - Voting

Figure 1: Illustration of the ensemble model

- Training Details
 - Class weighted balanced loss and accuracy
 - Multiply the loss and accuracy of each sample by the inverse of the class weight.
 - Optimizer
 - Adam
 - Learning rate
 - vgg-like model: 1e-3
 - resnet-like model: 1e-3

transfer model: 1e-6

3. Evaluation

- Confusion matrix
 - The confusion matrix test on vgg-like model is shown in fig2.

Figure 2: Confusion Matrix

- ROC curve
 - The ROC curve test on vgg-like model is shown in fig3.

Figure 3: ROC curve

- F1 score
 - harmonic mean of the precision and recall, shown in fig4

- more suitable to unbalanced dataset
- reached about 0.9

$$F1 \ Score = 2 \times \frac{recall \times precision}{recall + precision}$$

Figure 4: Definition of F1 score

- Deep visualization
 - The performance in form of grad-CAM test on vgg-like model is shown in fig5.

Figure 5: Deep visualization

4. Results

Overall, vgg-like model performs slightly better. After ensemble learning, the accuracy is further improved.

Architecture	F1 Score	Accuracy
Vgg-like	0.89	87.4%
Resnet-like	0.89	87.4%
Transfer(densenet121)	0.88	84.5%
Ensemble	0.90	88.3%

Table 1: Results for binary classification