

Bauman Moscow State University Th. Computer Science Dept.

Introduction to Realms of Formal Languages

Antonina Nepeivoda a_nevod@mail.ru

Lecture Outline

- Formal Languages by Examples
 - Automata Around Us
 - Tons of Formalizations
- Course Details
- Basics on Term Rewriting
 - Rewriting and Reduction
 - Ordering and Induction
 - String Rewriting

Physical Concept of Automaton

Automata Specifications

- CPU Scheduler scheme
- Automata-based schemes are used widely:
 - communication protocols;
 - user interfaces;
 - control units;
 - optimisation cycles.

• Simple game menu

Programming: Automata Languages

- One-by-one input steps \Rightarrow automaton model is enough.
- Sequence of multiple steps given simultaneously ⇒ executor is required to verify the sequence wrt the automata model.
- Admissible step sequences *a formal language* of the machine.

McCulloch& Pitts Neural Networks

- — excitatory signal;
- — inhibitory signal;

__ an input neuron;

 \sqrt{k} — an inner neuron firing whenever none of the inhibitory signals and at least k of excitatory signals fire.

Kleene (1951) introduced regular languages, describing the events in McCulloch–Pitts NN in terms of three operations: $\{\cdot, \cup, ^*\}$.

Automata Models 0 Door automaton: Closed Open o, cChannel automaton: Error Closed Open up dwn

Formal Languages Formally

Definition

signature

Let us consider an algebra $\mathcal{A} = \langle \mathcal{M}, \mathcal{F} \rangle$.

carrier

A formal language is a set M of terms in algebra A.

- Classical case: if $\mathcal{A} = \langle \Sigma, \cdot \rangle$, where \cdot is the concatenation operation, then $\mathcal{M} \subseteq \Sigma^*$, where * is iteration (Kleene star, Kleene closure).
- Wider scope: tree automata languages, syntax trees, process graphs...

Formal Languages Examples

- $\{\underbrace{aa...a}_{bb...b} \mid n \in \mathbb{N}\}$ (henceforth $\{a^nb^{3n} \mid n \in \mathbb{N}\}$); $n \text{ times } n \cdot 3 \text{ times}$ • words containing a square number of letters a

$$\bigg\{ w \mid \exists k(\underbrace{|w|_a} = k^2) \bigg\};$$

syntax {

number of letters a in word w

Russian palindromes of the even length

- sequences of balanced parentheses;
- well-formed arithmetic expressions over \mathbb{N} and $\{\cdot, +\}$.

- all tautologies in the classical logic;
- semantics all consistently typed programs in Python;

 formal languages with linear-time-decidable membership.

Varieties of FL Representations

- Set comprehension: $\{w \mid w \text{ does not contain subword } ab\}.$
- Algebraic expressions: b^*a^* .

• Term rewriting systems: $\begin{cases} a \to aa \\ b \to bb \end{cases}$, base set $\{\overbrace{\varepsilon}, a, b, ba\}$.

• Recognising machines:

• First-order or second-order logical formulas:

$$\forall x, y (Q_a(x)) \& S(x, y) \Rightarrow \neg Q_b(y)).$$
x is equal to a y succeeds x y is not equal to b

Varieties of FL Representations

- Set comprehension: $\{w \mid w \text{ does not contain subword } ab\}.$
- Algebraic expressions: b^*a^* .

• Term rewriting systems: $\begin{cases} a \to aa \\ b \to bb \end{cases}$, base set $\{\varepsilon, a, b, ba\}$.
• Recognising machines:

Automata-based representation easily reduces to Turing machines \Rightarrow useful when estimating computational complexity of the language recognition.

Transforming & Analysing Representations

- Efficient conversions between representation classes
- Constructing an optimal form of a representation inside a class

Spherical Cows in RoFL Course

What is a reason to study artificial languages like *«words not containing subwords ba»*?

(common knowledge): A cow is homeomorphic to a sphere with a couple of handles.

- Transducer images are shorter and their intermediate interpretations are more sheer;
- The transducer images reveal the essence of abstract formal properties rather than features of the ad-hoc model;
- In fact, morphisms and FSM transformations can be considered as lexers into the theoretical scope.

Course Structure

I part:

automata

II part:

languages

Introduction and TRS

- Finite Automata;
- Visibly Pushdown Automata;
- Generic Pushdown Automata;
- Deterministic Pushdown Automata:
- Alternating Automata, Memory Automata;
- Cellular Automata, Tree Automata + *Midterm I*.
- Semirings;
- Syntactic Monoids;
- Ehrenfeucht–Fraïssé games and Pumping;
- Hardest Languages and Language Representations;
- Language Inference;
- Combinatorial & Computational Language Properties.
- Midterm II
- Concluding Lecture
- «RoFL Farm»

Course Scores

Score Arrangement

- *Midterms* \times 2 \times 15+.
- Assignments \times 5 \times 8+.
 - Java, Python, Go, JS no score bonus
 - C/C++, Kotlin, Dart, TypeScript, Lua +1 point
 - Rust, Lisp dialects, Scala, Julia +2 points
 - Haskell, Erlang +3 points
 - *Peфan* +4 *points for first time* +3 *afterwards*

• Deadlines for assignments:

- 0-14 days no penalty
- 15-21 days 1 score penalty
- 22-28 days 2 score penalty
- 29- ∞ 3 score penalty

Reputation Count and Queuing

Initial rep = 100 points for everyone.

- Submit a work at deadline daytime: rep -2.
- Submit a work at deadline night: rep -5.
- Submit a work on the eve of Reset Event: rep-10.
- Artefacts of someone's else code: rep-25.
- Unable to explain self code: rep-50.
- Submit a work on the eve of exam (daytime): rep-35.
- Submit a work on the eve of exam (night): rep-50.
- Submit a work not assigned to self: rep-75.
- Other (violating RoFL Farm rules, etc) ad hoc.

The assignments are considered in **descending order** of rep! $rep \le 0 \Rightarrow personal task arrangement.$

Term Rewriting and All That

Any symbolic computation is a term rewriting process, controlled by an appropriate set of *rewrite rules* — *term rewriting system*.

Unification and Pattern Matching

A rewriting process *unifies* term t and LHS s_1 of a rule $s_1 \rightarrow s_2$ by constructing a substitution.

Unification Formally

Given two terms t_1 , t_2 , **a unifier** is a pair of variable substitutions $\langle \theta_1, \theta_2 \rangle$ s.t. $t_1\theta_1 = t_2\theta_2$.

Notation Clash: Substitutions

In algebraic courses, given a substitution σ , its application to a term Φ is denoted with $\sigma(\Phi)$.

In mathematical logic & computer science, a *postfix notation* $\Phi \sigma$ is more usual.

Origins of the Notation

In classical mathematical logic textbooks (Tarski, Curry) the substitutions were denoted by [x/A]. Hence, the postfix notation was natural: formula F(x,x)[x/A] is pretty more readable than [x/A](F(x,x)).

In modern computer science, the notations [x := A] are $[x \mapsto A]$ are both widely used.

Reduction, Redexes, Normal Forms

Given a TRS
$$\left\{\Phi_i \to \Psi_i\right\}_{i=1}^n$$
 and a term T ,

Basic Notions of Rewriting

- A redex is a subterm T_0 that can be unified with some Φ_i by unifier $\langle \theta_1, \theta_2 \rangle$.
- **Reduction** replaces $T_0\theta_1$ in T by $\Psi_i\theta_2$.
- Term T is in a normal form if T contains no redex.
- Normalisation reduction to the normal form: $T \rightarrow T'$.

Given TRS
$$\begin{cases} 0 + x \to x \\ 0 \cdot x \to 0 \end{cases}$$
, the term $(0 + 1) \cdot 0$ contains a redex $0 + 1$,

and the reduced term $1 \cdot 0$ is in the normal form.

Adding commutativity rules results in unrestricted reductions.

α -conversions and α -equivalence

- If x, z are variables, the rewriting rules $\{eq(x, x) \rightarrow True\}$ and $\{eq(z, z) \rightarrow True\}$ are *equivalent*; while the rule $\{eq(x, z) \rightarrow True\}$ is not equivalent to both.
- α -conversion is a semantic-preserving variable renaming. Non-trivial in case of bound variables.

λ-calculus

- Constructors: Apply(M, N) and $\lambda x.M$, bounding x in M.
- Rewriting rule: Apply($\lambda x.M$), N) $\rightarrow M[x := N]$.

Reduction + capture-avoiding substitution = universal computation model.

Proving Properties of FL and Term Ordering

Check that the language $\mathcal{L} = \{ w \mid |w|_a \text{ is even} \}$ is the set of normal forms generated from term srt $\{S\}$ using the following TRS T: $S \to a S a$ $S \to b S$ $S \to S b$ $S \to \varepsilon$

- Check that all words from \mathcal{L} can be generated by T.
- Check that all the normal forms η s.t $S \rightarrow \eta$ are in \mathcal{L} .

Assume that there exists w s.t. S woheadrightarrow w and $|w|_a$ is odd. The reduction step before the application of $\{S \to \varepsilon\}$ can always be replaced by $\{S \to \varepsilon\} \Rightarrow$ making the word w shorter. We can repeat this process to ∞ , contradicting that |w| is finite.

Key moment: the length ordering admits no infinite descending chains.

Noetherian Orders and Well-Quasi-Orders

One of the Example 2 Ordering as an Induction Base

- A preorder \leq is well-founded on set \mathcal{A} if it admits no infinite descending chains, i.e. all chains $t_0 \succeq t_1 \succeq \dots$ are finite.
- A preorder is **Noetherian** on set \mathcal{A} if it stabilizes upwards (no infinite strictly ascending chains, abbreviated ACC).
- A preorder \leq is a well-quasi-order on set \mathcal{A} if every infinite term sequence from \mathcal{A} contains t_i , t_j s.t. $\left(i < j \& t_i \leq t_j\right)$.

Well-Founded Monotone Algebras

A preorder \leq is monotone on \mathcal{A} , if $\forall f, t_1, ..., t_n, s, s' \in \mathcal{A} \Big(s \leq s' \Rightarrow f(t_1, ..., s, ..., t_n) \leq f(t_1, ..., s', ..., t_n) \Big)$, and is strictly monotone, if converse always fails.

Well-Founded Monotone Algebras

WFMA over the signature F on a well-founded set $\langle \mathcal{A}, \rangle \rangle$ is an algebra s.t. for any $f \in F$ there exists a function $f_{\mathcal{A}} : \mathcal{A}^n \to \mathcal{A}$ being strictly monotone wrt all its arguments.

- $\langle \mathbb{N}, \rangle \rangle$ can be a WFMA over a signature $(f_1, 2), (f_2, 1)$, given e.g. interpretations $f_1(x, y) = x + y + 1, f_2(x) = 2 \cdot x$;
- $\langle \mathbb{Q}^+, \rangle \rangle$ and $\langle \mathbb{Z}, \rangle \rangle$ are not WFMAs.

TRS Termination

Given a variable set \mathcal{V} , extension of $\sigma: \mathcal{V} \to \mathcal{A}$ is defined as:

- $[x, \sigma] = x\sigma$;
- $[f(t_1,\ldots,t_n),\sigma]=f_{\mathcal{A}}([t_1,\sigma],\ldots,[t_n,\sigma]).$

A TRS $\{l_i \rightarrow r_i\}$ is **compatible** with WFMA $\mathcal{A} \Leftrightarrow$ for all i, σ condition $[l_i, \sigma] > [r_i, \sigma]$ holds.

Informally: the image of l_i is greater than the image of r_i for the extension of any substitution $\sigma: \mathcal{V} \to \mathcal{A}$.

Consider TRS $\{f(f(x)) \rightarrow f(x)\}\$ and WFMA carrier $\mathcal{N} = \langle \mathbb{N}, \rangle \rangle$.

- Let $f_N(x) = 2 \cdot x$ and $\sigma = [x := 0]$: $f_N(f_N(x))\sigma = f_N(x)\sigma = 0$, \Rightarrow WFMA is not compatible with the TRS.
- Let $f_N(x) = x + 1$: $\forall x (f_N(f_N(x)) f_N(x) = 1) \Rightarrow$ the TRS and WFMA are compatible.

WFMA and TRS

Main Theorem on TRS Termination

A TRS $\{l_i \rightarrow r_i\}$ terminates \Leftrightarrow there exists a WFMA compatible with $\{l_i \rightarrow r_i\}$.

The TRS $\left\{ \frac{d}{dx}(t_1 + t_2) \to \frac{d}{dx}t_1 + \frac{d}{dx}t_2 \right\}$ is terminating, which is verified by WFMA \mathcal{N} over $\langle \mathbb{N}, \rangle \rangle$:

- $\bullet +_{\mathcal{N}}(u, v) = u + v + 1;$
- $\frac{d}{dx}N(u) = 2 \cdot u$.

Indeed,

$$\begin{split} \frac{d}{dx}_{N}\left(t_{1}+_{N}t_{2}\right) &= 2\cdot\left(t_{1}+t_{2}+1\right);\\ \frac{d}{dx}_{N}t_{1}+_{N}\frac{d}{dx}_{N}t_{2} &= 2\cdot t_{1}+2\cdot t_{2}+1. \end{split}$$

Free Monoid (aka String DataType) as a FL Carrier

Usual case: the string data type is a carrier of a TRS; the only constructor is the string concatenation.

Then the term rewriting system becomes a string rewriting system (SRS): $\{l_i \rightarrow r_i\}$, where l_i , r_i are strings.

OD Terminal & Nonterminal Symbols

Given disjoint alphabets N, Σ , we say that elements of Σ are terminal symbols, and elements of N are non-terminals in a given SRS $\{l_i \rightarrow r_i\}$, if words $w \in N \cup \Sigma$ containing letters from N are considered as partially computed (even if they are in the normal form).

Formal Grammars

Definition

A grammar is a tuple $G = \langle N, \Sigma, P, S \rangle$, where:

- *N non-terminal alphabet*;
- Σ terminal alphabet;
- P string rewriting system $\{\alpha_i \rightarrow \beta_i\}$, where α_i is non-empty;
- $S \in N$ is an initial nonterminal.

A language $\mathcal{L}(G)$ of a grammar G is the set $\{u \mid u \in \Sigma^* \& S \to^* u\}$, where \to^* is a composition of reductions.

