

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4 Pilz Industrial Motion
- Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4. Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4 Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4. Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4. Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4. Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

- 1. OMPL Planners and new features
- 2. STOMP
- 3. Realtime's High-frequency planner
- 4. Pilz Industrial Motion
- 5. Descartes Cartesian Planner
- 6. TrajOpt + Bullet
- 7. Planner Benchmarks (Upgraded)

Open Motion Planning Library (OMPL)

Sampling-based motion planners:

- ► Single-query: RRTConnect, RRT, KPIECE,
- ► Multi-query: PRM, LazyPRM, . . .
- Optimizing: RRTstar, PRMstar, Bitstar, . . .

Unrealized potential:

- Multi-query planner support (PRM variants, SPARS)
- Experience-based planners (persisting planner data)
- Custom optimization objectives
- Control-based planners

OMPL - AnytimePathShortening

Problem: Single-query planners can compute unpredictable results

Approach: Run multiple single-query planners and combine paths

- Repeatedly run (different) single-query planners
- Attempt to shortcut and hybridize solutions

Movelt: https://github.com/ros-planning/moveit/pull/1686 (WIP)

OMPL - AnytimePathShortening

Problem: Single-query planners can compute unpredictable results

Approach: Run multiple single-query planners and combine paths

- Repeatedly run (different) single-query planners
- Attempt to shortcut and hybridize solutions

Movelt: https://github.com/ros-planning/moveit/pull/1686 (WIP)

OMPL-CostConvergence Termination Condition

Problem: Optimizing planners use up full planning time

Approach: Terminate planner if solutions don't improve

- ▶ Poll costs of each new solution
- ► Terminate if best cost converges to a threshold relative to the running average cost

Movelt: https://github.com/ros-planning/moveit/pull/1557 (WIP) OMPL: https://github.com/ompl/ompl/119

OMPL - CostConvergenceTerminationCondition

Problem: Optimizing planners use up full planning time

Approach: Terminate planner if solutions don't improve

- Poll costs of each new solution
- ► Terminate if best cost converges to a threshold relative to the running average cost

Movelt: https://github.com/ros-planning/moveit/pull/1557 (WIP) OMPL: https://github.com/ompl/ompl/119

Constraint planning - Manifold Approximation

Pre-generate approximate state space for constraint manifold

- Generate state space database using moveit_generate_state_database
- 2. Load database to move_group/constraint_approximations_path
- 3. Reference constraint ID for planning

https://ros-planning.github.io/moveit_tutorials/doc/planning_with_approximated_constraint_manifolds/planning_with_approximated_constraint_manifolds_tutorial.html

Stochastic Trajectory Optimization for Motion Planning (STOMP)

Realtime Robotics' RapidPlan - rtr_moveit

- ▶ Implemented by PickNik for Realtime Robotics (Q1 2019)
- ► Parallel collision checking using dedicated hardware chip

Repository: https://github.com/RealtimeRobotics/rtr moveit

Pilz Industrial Motion - pilz_industrial_motion

- ▶ ROSin FTP implemented by Pilz GmbH & Co. KG
- Completed in February 2019
- ► Convenient API for industrial Cartesian trajectories in Movelt
- ► Supports blending sequential motion commands

Repository: https://github.com/PilzDE/pilz_industrial_motion

Descartes Cartesian Planner

New Capability by PickNik and Carbon Robotics (April 2019)

Repository: https://github.com/PickNikRobotics/descartes_capability

TrajOpt

2 GSoC projects 2019 (TrajOpt + Bullet)

Current state of TrajOpt

- ► Planner Plugin implemented
- ► Simple joint-space goals are working
- Removed dependencies to Tesseract

Advantages:

- More deterministic
- Supports sparse constraints natively
- Supports free-space and Cartesian space
- Utilizes continuous collision checking
- ▶ Directly optimizes velocity, acceleration, jerk

TrajOpt: https://github.com/ros-planning/moveit/pull/1626 (WIP)

Bullet

Features:

- ▶ Unified robot and world in single environment
- ► Support for continuous collision checks

Collision Environment	Bullet Unified	Bullet	FCL
Robot self check, no col	270,000	15,000	110,000
World 100 meshes, no col	38,000	2,000	35,000
World 100 meshes, 4 col	8,600	1,600	800
(Collision checks per second)	1		

Bullet: https://github.com/ros-planning/moveit/pull/1572 (WIP)

Planner Benchmarks (Upgraded)

New Features:

- Support for full planning pipelines (instead of planner only)
- Comparison of planners for all results (not only per experiment)
- Added metric for repeatability based on Fréchet distance
- Generate experiments from combinations of predefined targets

See: https://github.com/ros-planning/moveit/pull/1510 https://github.com/ros-planning/moveit/pull/1531 https://github.com/ros-planning/moveit/pull/1548

