SPI (Serial Peripheral Interface)

Overview

- SPI = Serial Peripheral Interface
- 4-wire communication bus, widely used in embedded systems.
- Faster than UART & I²C, typically in the MHz range.
- Full-duplex supported (send & receive simultaneously).
- Loosely defined standard → implementations may vary.
- Common in ADC, DAC, displays, memory chips.

Protocol Basics

- Master-Slave protocol
 - Single master (controller)
 - Multiple peripherals (slaves)
- Up to 4 wires:
 - 1. SCLK (Serial Clock) provided by master
 - 2. MOSI (Master Out Slave In) master sends data
 - 3. MISO (Master In Slave Out) slave sends data
 - 4. CS/SS (Chip Select / Slave Select) master selects target (active LOW)

Rey: Master pulls CS low \rightarrow starts clock \rightarrow data exchange \rightarrow CS pulled high at end.

Signal Descriptions

1. SCLK

- Clock generated by master.
- Defines bit timing: 1 clock = 1 bit.
- Idle state can be HIGH or LOW (configurable via CPOL).
- Data sampled on rising or falling edge (via CPHA).

2. MOSI

Data from master → slave.

Transmitted in bytes (LSB-first or MSB-first depending on config).

3. MISO

- Data from slave → master.
- Not always used (e.g., display writes → 3-wire SPI).

4. CS / SS

- Active **LOW** (0 = selected).
- One CS per slave (multi-slave independent).
- Alternative: Daisy Chain (shared CS + serial pass-through).

SPI Modes (Clock Polarity & Phase)

Two config bits:

- CPOL (Clock Polarity):
 - \circ 0 \rightarrow Clock idle LOW, leading edge = rising
 - \circ 1 → Clock idle HIGH, leading edge = falling
- CPHA (Clock Phase):
 - \circ 0 \rightarrow Sample on leading edge
 - \circ 1 \rightarrow Sample on trailing edge

Mode Table:

Mode CPOL CPHA Idle Sample Edge

- 0 0 0 Low Rising 1 0 1 Low Falling 2 1 0 High Falling 3 1 1 High Rising
- ♠ All devices must use the same SPI mode.

♦ Multi-Slave Configurations

1. Independent Slaves

- Each slave has its own CS line.
- Master controls which slave is active.

2. Daisy Chain (Cooperative Slaves)

- Slaves connected in series.
- Data flows: Master → Slave1 (MOSI) → Slave2 → Slave3 ...
- Useful when pin count must be minimized.

Key Takeaways

- SPI is fast, simple, full-duplex, but not standardized (implementation details vary).
- CPOL & CPHA must be set correctly on both master & slave.
- CS line determines which slave is active.
- Used heavily in sensors, displays, ADC/DAC, memories.