if we want 0 output,

if we want 1 output,

produce path in pulldown network

produce path in pullup network

3BA4—Part II: Lecture 1.2(CMOS)

 $\hfill \Box$ — We use the following symbols for n-channel and p-channel:

 \triangle_2 — Alternative symbols are:

 \triangle_3 — The general structure of a CMOS circuit is:

3BA4—Part II—Lecture 1.3

© February 8, 2000 Andrew Butterfield

Example CMOS Circuits

Behaviour of MOSFETS:

n-type: Logic '1' on gate, switch Closed p-type: Logic '0' on gate, switch Closed

The Inverter:

a single p-type pullup MOSFET

 $\triangle 1$

Consider a more complex example:

$$\mathsf{OUT} = \overline{A \cdot ((B \cdot C) + D)}$$

What can single CMOS structures do?

Function	Do-able ?	
-		
\overline{A}	yes	
$A \cdot ((B \cdot C) + D)$	yes	
$A \cdot B$	no	
$A \oplus B$	no	
$A \cdot ((B \cdot C) + D)$	no	
$\overline{A} \cdot \overline{B}$	yes	

3BA4—Part II: Lecture 1.3(Example CMOS Circuits)

△¹ — A CMOS Inverter:

 \triangle^2 — The function $\overline{A \cdot ((B \cdot C) + D)}$:

Single Structure Functions

 $\frac{\hbox{Single CMOS structures can implement functions of the form:}}{\hbox{expression with only AND, OR and variables}}$

Given a truth table, how do we establish if a function can be written like this ?

Consider the following functions as examples:

A	B	\overline{AB}	AB	$A \oplus B$
0	0	1	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	1	0

We can construct a ${\it Hasse \ Diagram}$ for 2-inputs, showing the function ${\it \overline{AB}}.$

 $\triangle 1$

We can build a single circuit if

- (i) bottom is labelled with (1) or •
- (ii) bottom is labelled with (0) or \circ
- (iii) any bottom-top path has labels which change only once, from (1) to (0)

 $\triangle 2,3,4$

3BA4—Part II: Lecture 1.4(Single Structure Functions)

 \triangle — A fully labelled Hasse Diagram for \overline{AB} :

 \triangle^2 — A compact Hasse Diagram for \overline{AB} :

 \triangle_3 — A compact Hasse Diagram for AB:

 $\triangle 4$ — A compact Hasse Diagram for $A \oplus B$:

Monotonic Bit-Functions

Consider the following ordering (\leq) on bit-strings of the same length (n):

$$a = a_{n-1}a_{n-2} \dots a_1 a_0 \le b_{n-1}b_{n-2} \dots b_1 b_0 = b$$

if b can be obtained from a by changing zero or more 0s in a to 1s in b

if $a \leq b$, then a will be connected to b in a Hasse Diagram by zero or more arrows.

We say a function f is monotonic decreasing if

$$a \leq b \implies f(a) \succeq f(y)$$

These are exactly the functions implementable as single CMOS structures

- (i) When all inputs are 0, all pulldowns are open, all pullups are closed, so output is 1.
- A 2

 $\triangle 3$

- (ii) When all inputs are 1, all pulldowns are closed, all pullups are open, so output is 0.
- (iii) As we change 0s to 1s, we open pullups, and close pulldowns, so the only possible output transition is $1\ to\ 0$.

3BA4—Part II: Lecture 1.5(Monotonic Bit-Functions)

Three diagrams illustrating CMOS structure behaviour.

 \triangle_1 — All inputs 0:

 \triangle_2 — All inputs 1:

 \triangle — An input changing from 0 to 1:

3BA4—Part II—Lecture 2.1

© February 8, 2000 Andrew Butterfield

 $\triangle 2$

Examples of 3-input functions

A Hasse diagram for $\overline{A(B+C)}$ shows that it is implementable as a single CMOS structure. Label{eq:angle_angle} It also stresses the fact that \preceq is a partial order.

 $010 \not \preceq 101$ and $101 \not \preceq 010$

From a Hasse diagram for $A \oplus B \oplus C$ we find:

Every single-bit input change causes output change.

EXOR is in some sense the "most non-monotonic" bit function

EXOR is the most expensive gate to build in CMOS, (or any other technology)

3BA4—Part II: Lecture 2.1(Examples of 3-input functions)

_ Labelled Hasse diagram for $\overline{A(B+C)}$

 \triangle^2 — Compact Hasse diagram for $A \oplus B \oplus C$

3BA4—Part II—Lecture 2.2

© February 8, 2000 Andrew Butterfield

Electronic Behaviour of MOSFETs

We consider an n-channel device to begin with.

Voltages: Drain-Source (v_{DS}) , Gate-Source (v_{GS})

Currents: Drain-Source (i_{DS}) , Gate (i_G)

 $\triangle 1$

$$i_G = 0$$

How do we identify source and drain? The *more positive* is designated the *drain*.

$$v_{DS} \ge 0$$

Behaviour: $i_{DS} =$

$$\begin{array}{ll} 0, & \text{if } v_{GS} \leq V_{TN} \\ & \text{if } v_{GS} \geq V_{TN} \text{ and} \\ \beta_N(v_{DS}(v_{GS} - V_{TN}) - v_{DS}^2/2), & \text{if } v_{DS} \leq v_{GS} - V_{TN} \\ & \text{or} \\ \beta_N(v_{GS} - V_{TN})^2/2, & \text{if } v_{DS} \geq v_{GS} - V_{TN} \end{array}$$

The important parameter is β_N , the MOSFET transconductance, as

$$i_{DS} \propto \beta_N$$

For p-channel devices, we multiply by (-1), and observe that the drain is the more negative terminal.

3BA4—Part II: Lecture 2.2(Electronic Behaviour of MOSFETs)

 ${}_{\triangle 1}$ — A voltage and current-labelled diagram of an n-channel MOSFET

CMOS Inverter Characteristic

The *Transfer Characteristic* of an inverter maps v_{IN} to v_{OUT} :

 $\triangle 1$

$$v_{OUT} = g(v_{IN})$$

We shall always assume: Power is 5V, $V_{TN}=+1V$, $V_{TP}=-1V$.

We assume also, to start, that $\beta_N=\beta_P.$

The shape of the transfer curve depends on the power voltage, V_{TN} , V_{TP} , and the ratio β_N/β_P $^{\triangle 2}$

For an optimal speed and noise-immunity trade-off, we prefer to have $\beta_N/\beta_P=1$

Usually, Power voltage, V_{TN} and V_{TP} are determined by manufacturer

Digital CMOS Designer's only concern is β_N/β_P !

(except for high perfmormance — this gets hairy)

3BA4—Part II: Lecture 2.3(CMOS Inverter Characteristic)

 $_{\triangle 1}$ — A CMOS inverter showing v_{IN} and v_{OUT}

 \triangle^2 — A CMOS inverter transfer curve:

What Determines β_N and β_P ?

n-type MOSFET: Gate electrode, thin insulator p-type channel, between two n-type source/drain (s/d) regions.

Key Parameters:

 $\triangle 1$

L: Channel Length (along i_{DS} direction) W: Channel Width (across i_{DS} direction)

 $t: \mathsf{Insulator\ Thickness}$ $\varepsilon_i: \mathsf{Insulator\ Permittivity}$ $\mu: \mathsf{Charge\ Carrier\ Mobility}$

The transconductance is given by:

$$\beta = \mu \frac{\varepsilon_i}{t} \cdot \frac{W}{L} = \mu C_i \frac{W}{L}$$

where $C_i = arepsilon_i/t$ is the capacitance/unit area of the gate.

Parameters ε_i , t and μ are fixed by manufacturer.

Parameters W and L are set by designer (within limits)

One complication remains: $\mu_N \approx 3\mu_P$ (!)

3BA4—Part II: Lecture 2.4(What Determines β_N and β_P ?)

 $_{\triangle 1}$ — An oblique sectioned view of an n-channel MOSFET:

3BA4—Part II—Lecture 3.1

© February 8, 2000 Andrew Butterfield

Compensating for $\beta_P \approx \beta_N/3$

We want $\beta_N=\beta_P$, where $\beta=\mu C_i W/L$, but $\mu_N\approx 3\mu_P$ — we must compensate

In practice, devices have a minimum size (circa $6\mu m$ in 1980, about $0.15\mu m$ in 1999).

Use current minimum size as unit of length (sometimes called *lambda*, or λ)

Set all channel lengths to minimum (L=1) (this maximises gate switching speed)

Our balancing condition becomes:

$$\beta_N = \mu_N C_i W_N \qquad = \qquad \mu_P C_i W_P = \beta_P$$

We can only determine W_N , W_P as designers, so we get:

$$W_P = 3 \times W_N$$

3BA4—Part II: Lecture 3.1(Compensating for $\beta_P \approx \beta_N/3$)

Effective Resistance Networks

Let us consider the example of a NAND gate

 $\triangle 1$

What is β for a network ?

The reciprocal of β is "effective resistance" R

$$R = 1/\beta$$
 $\beta \propto W$ $R \propto 1/W$

This is approximate only, but works well enough

For a series connection, the resistance is the sum of the resistances of the components.

 $\triangle 2$

For a parallel connection, we might expect the rule for resistor in parallel to apply:

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

However we find the parallel case is in one sense more complicated, while in another sense it becomes simpler!

3BA4—Part II: Lecture 3.2(Effective Resistance Networks)

— Circuit Diagram for a NAND Gate

△2 — Diagram showing series FETs viewed as equivalent Resistances

Handling Parallel Paths

Reminder: balancing β s to get symmetrical, fats changeover, with good noise properties.

NAND switches 0 to 1 in 2 distinct ways:

(i) A single pullup has just closed

(ii) both pullups have just closed

Which case do we use for balancing?

Worst Case: single branch working alone.

Analyse and consider parallel branches separately.

Exploit symmetry:

Two pullups are similar

Two pulldowns are similar

 $\triangle 1$

 $\triangle 2$

3BA4—Part II: Lecture 3.3(Handling Parallel Paths)

 \triangle_1 — showing the distinction between one and both pullups acting to produce a 0 to 1 transition:

 \triangle^2 — showing the two branches needing balancing

Lets Calculate!

We assume co-efficient $\mu_N C_i = 1$ for simplicity

$$\begin{split} \beta_{PU} &= \beta_P = W_P/3 \\ \beta_{PD} &= 1/R_{PD} \qquad R_{PD} = 2R_N \qquad R_N = 1/\beta_N \\ \beta_N &= W_N \\ &\Longrightarrow \qquad R_N = 1/W_N \\ &\Longrightarrow \qquad R_{PD} = 2/W_N \\ &\Longrightarrow \qquad \beta_{PD} = W_N/2 \end{split}$$

We find that $W_N/2=W_P/3$ to balance the gate

We have some freedom to choose what ${\cal W}_N$ and ${\cal W}_P$ are.

Two main possibilities:

Poss. 1 — let smallest have W=1

$$W_N = 1 \qquad W_P = 1.5$$

Poss. 2 — Choose smallest values keeping everything integral

$$W_N = 2$$
 $W_P = 3$

(often required by CAD tools)

3BA4—Part II: Lecture 3.4(Lets Calculate!)

A Simpler Way

There is a simple procedure that eliminates a lot of tedious error-prone algebra

 $\triangle 1$

Step 1. Set all widths equal to 1

Step 2. Multiply all p-type widths by 3

Step 3

For a series connection of length n, multiply all the widths by n.

Step 4

Scale everything to minimise widths, (subject to keeping them integral, if reqd.)

Notes:

- Steps 1 & 2 can be combined
- A MOSFET in several parallel paths is only multiplied once during Step 3.
- A MOSFET on several parallel paths of different lengths needs special treatment

3BA4—Part II: Lecture 3.5(A Simpler Way)

□ showing complicated circuit sized the easier way

The sequence of 4 comma-separated numbers show the outcome of each of the four steps.

Manufacturing Process for ICs

Silicon (Si) — semiconductor (wanted very pure)

 $\mathsf{Sand}(SiO_2) o \mathsf{heat} o Si$

Silicon Dioxide (SiO_2 ,glass) - good insulator

Impurities (n-type,p-type) added

to control electronic behaviour

Pure Si arrives as tubular ingots

Ingots sliced into Wafers (3 to 8 inches)

Chip implemented as small rectangle (*Die*)

side dimensions typically a few mm.

The Die is the "unit" of design.

Identical copies of Die tiled over wafer.

3BA4—Part II: Lecture 4.1(Manufacturing Process for ICs)

 of Si ingot: \triangle_2 — of Si wafer: \triangle of sample dies: 8mm 5mm $\triangle 4$ — of wafer tiled with dies:

© February 8, 2000 Andrew Butterfield

IC Design Documents

Design "Documents" specify shapes on "Layers".

Shapes on different layers overlap to make devices

A Mask is constructed per layer.

 $\triangle 1$

Mask comprises opaque material on glass

— with some opaque material removed

 $\triangle 2$

Masks cover entire wafer

Masks used to generate regions of desired shape — material determined by layer.

3BA4—Part II: Lecture 4.2(IC Design Documents)

□ of document layers producing separate masks

Patterning Steps

Using Mask to generate material regions:

- 1. Cover wafer with Photo-Resist
- 2. Expose photo-resist to light through mask
- 3. Develop photo-resist exposed resist removed, unexposed resist remains

 $\triangle 1$

4. Process wafer to add/remove material

OR

5. Remove remaining resist

Variations

may apply material before Step 1 then etch in step 4b.

3BA4—Part II: Lecture 4.3(Patterning Steps)

3BA4—Part II: Lecture 4.4(Producing an nMOS Device)

3BA4—Part II: Lecture 5.1(TITLE)

New "layer" called CCut (contact-cut) Specifies where holes should be cut, through SiO2, to underlying layers.

3BA4—Part II: Lecture 5.2(Connecting Devices)

3BA4—Part II: Lecture 5.3 (Joining Metal to Poly/Diff)

item $\triangle 1$