NHH

父 5

SKOLEEKSAMEN MET4

Høst 2023

Dato: 29. november 2023

Tidsrom: 09:00 - 12:00

Antall timer: 3

Foreleser/emneansvarlig kan kontaktes av eksamensvakt på telefon: 99385583

TILLATTE HJELPEMIDLER:

Kalkulator Ja ⋈ Nei □

Ordbok: én tospråklig ordbok tillatt.

Alle trykte/egenskrevne hjelpemidler.

Antall sider, inkludert forside og vedlegg: 6

OBS: Vedlegg 1 inneholder R-utregninger som kan være relevante i besvarelsen av noen av oppgavene under.

Oppgave 1

I en spørreundersøkelse¹ fra 2019 blant 500 tilfeldige nordmenn med høgskole- eller universitetsutdanning ble kjønn og om vedkommende hadde kort eller lang utdanning notert. Med kort utdanning mener vi universitets- og høgskoleutdanning på mindre enn eller lik 4 år. Med lang utdanning mener vi universitets- og høgskoleutdanning på mer enn 4 år. Resultatet er oppsummert i tabellen under:

	kort	lang
Menn	132	82
Kvinner	222	64

(a) Test om andelen med lang utdanning blant kvinner er forskjellig fra andelen med lang utdanning blant menn.

Fordelingen av kjønn og lengde på utdanning blant personer med høgskole- eller universitetsutdanning i Norge var i 2009 som følger:

	kort	lang
Menn Kvinner	$0.315 \\ 0.439$	$0.150 \\ 0.096$

(b) Test om fordelingen fra 2009 også kan stemme for 2019.

Anta at vi har spurt n tilfeldige personer om de har høyere utdanning og Y av dem svarer ja. Da er $\hat{p} = Y/n$ et estimat på andelen av befolkningen med høyere utdanning. La X_i være en dummyvariabel som tar verdien 1 dersom individ nr. i i utvalget svarer at de har høyere utdanning og 0 ellers.

(c) Uttrykk estimatet \hat{p} som funksjon av variablene $X_1, X_2, \dots X_n$ og bruk dette resultatet til å argumentere for at \hat{p} er tilnærmet normalfordelt for stor n.

Oppgave 2

En spørreundersøkelse² knyttet til bruk av Norefjell-Reinsjøfjellområdet (NR-området) ble sendt i en link per SMS til tre grupper: et utvalg av lokalbefolkningen i NR-området, et utvalg av fritidsboligeierne i NR-området, og et utvalg av innbyggere i Oslo og Viken. Respondentene tilhører kun en av disse gruppene. Videre ble respondentene bedt om å ta stilling til forskjellige scenarioer, blant annet et scenario med lite utbygging i NR-området.

Vedlegg 2 viser utskriften av en estimert logistisk regresjonsmodell som beskriver sannsynligheten for at respondenten foretrekker scenariet med lite utbygging i NR-

¹Disse dataene er simulert, men trukket fra en fordeling som samsvarer med de faktiske populasjonsandelene i 2019.

²https://www.menon.no/wp-content/uploads/2022-41-Baerekraftig-utvikling-i-Norefjell-Reinsjofjell.pdf

området som funksjon av gruppetilhørighet og andre forklaringsvariabler, se variabelbeskrivelse i Vedlegg 2.

- (a) Skriv opp den estimerte modellen.
- (b) Gi en fortolkning av den estimerte modellen.
- (c) Hva er sannsynligheten for at en 37 år gammel kvinne med doktorgradsutdanning og hytte i området foretrekker lite utbygging (ifølge modellen)?
- (d) Hvor gammel må kvinnen i oppgave c) være for at sannsynligheten for at hun foretrekker lite utbygging skal være 0.8 (ifølge modellen)?

Oppgave 3

Anta at den gjennomsnittlige daglige temperaturen i Bergen ved dag t kan skrives på følgende måte:

$$temperatur_t = T_t + S_t + R_t,$$

der T_t er en trendkomponent, S_t er en sesongkomponent og R_t er residualserien, altså det som ikke fanges opp av trend- og sesongkomponentene. I Vedlegg 3 ser vi tilsvarende estimerte trend- og sesongkomponenter for den gjennomsnittlige daglige temperaturen i Bergen. Vedlegg 3 viser også utskriften av en modell som har blitt tilpasset residualtidsrekken R_t .

- (a) Forklar *kort* hva vi lærer av å se på de estimerte trend- og sesongkomponentene.
- (b) Hvilken tidsrekkemodell har vi tilpasset residualserien R_t ? Skriv opp modellen som har blitt tilpasset residualserien. Dersom dette er den sanne modellen for R_t , er R_t stasjonær?
- (c) Verdien av residualserien ved tid t er $R_t = 0.25$. Prediker R_{t+1} ved hjelp av modellen for residualserien. De tilsvarende prediksjonene for trend- og sesongkomponenten er $\hat{T}_{t+1} = 8.40$ og $\hat{S}_{t+1} = -4.80$. Hva er prediksjonen av temperatur ved tid t+1?
- (d) Prediksjonene for trend- og sesongkomponenten ved tid t+365 (ett år frem i tid) er $\hat{T}_{t+365}=8.40$ og $\hat{S}_{t+365}=-4.80$. Hva er prediksjonen av R_{t+365} og temperaturen om ett år? Kommenter.

Vedlegg 1: Diverse R-utregninger

```
qnorm(0.975)
## [1] 1.959964
qnorm(0.95)
## [1] 1.644854
qnorm(0.90)
## [1] 1.281552
qchisq(.95, df = 2)
## [1] 5.991465
qchisq(.95, df = 3)
## [1] 7.814728
qchisq(.95, df = 4)
## [1] 9.487729
```

Vedlegg 2: Logistisk regresjon for spørreundersøkelse

Tabell 1: Variabelbeskrivelser.

foretrekkerLU	Dummyvariabel som tar verdien 1 dersom respondenten foretrekker lite utbygging		
fritidsbeboer	Dummyvariabel som tar verdien 1 dersom respondenten er fritidsbeboer i NR-området		
lokalbeboer	Dummyvariabel som tar verdien 1 dersom respondenten er lokalbeboer i NR-området		
alder	Alder på respondenten		
utdanning	Utdanningsnivå til respondenten på en skala fra 1-6. $1 = Grunnskole$, $2 = Videregående skole$,		
	3 = Fagbrev, 4 = 3-4år universitet, 5 = 5årig universitet, 6 = doktorgrad.		
kvinne	Dummyvariabel som tar verdien 1 dersom respondenten er kvinne		

Estimert modell:

##		
##	=======================================	Dependent variable:
## ##		foretrekkerLU (logit)
## ##	fritidsbeboer	0.078
##		(0.130)
## ##	lokalbeboer	-0.346**
##	lokalbeboel	(0.139)
##		0.047
## ##	alder	0.017*** (0.004)
##		(0.002)
	utdanning	0.089*
## ##		(0.048)
##	kvinne	0.518***
##		(0.109)
	constant	-0.583**
##		(0.290)
## ##		
	Observations	1,748
	Log Likelihood	-1,043.919
	Akaike Inf. Crit.	2,099.838
	Note:	*p<0.1; **p<0.05; ***p<0.01

Vedlegg 3: Tidsrekkemodell for temperatur


```
## Series: R
## ARIMA(1,0,0) with zero mean
##
## Coefficients:
## ar1
## 0.8147
## s.e. 0.0144
##
## sigma^2 = 2.357: log likelihood = -2980.22
## AIC=5964.44 AICc=5964.45 BIC=5975.21
```