CPSC 320 2024W1: A Reduction Tutorial Problem

A SAT Reduction

A graph G = (V, E) is **bipartite** if we can partition the vertices V into two disjoint sets U and W such that no two vertices in U are connected, and no two vertices in W are connected. For instance, the graph below:

is bipartite if we define $U = \{a, b\}$ and $W = \{c, d, e\}$. In the **Bipartite Graph Problem** (BGP), we want to determine if a given input graph is bipartite. In this problem, you will reduce BGP to Boolean Satisfiability (SAT), defined below.

SAT: The input is a collection of m clauses over n boolean variables $X_1, X_2, \ldots X_n$. Each clause is a disjunction of some of the variables or their complements.

The problem consists in answering the question "Is there a way to assign truth values to each variable that makes **every** clause of the instance True?

For example, the SAT instance given by:

$$(X_1 \vee \overline{X}_2) \wedge (X_2) \wedge (\overline{X}_1 \vee X_3 \vee X_4)$$

is satisfiable by setting all variables to True. (This is not the only truth assignment that works for this instance.)

1.	Given a BGP instance, we need to figure out how to express it as a SAT instance. The first step is to figure out what the variables in our SAT instance should represent. Is there any aspect of the BGP problem that we can encode as a choice between two options (since this behaves like a variable in SAT)?
	Give your variables a name, and describe what each variable represents. Hint: my reduction introduces one variable for each vertex in V .
2.	Consider a pair of vertices v_i, v_j . What, if anything, can we say about their corresponding variables
	in the SAT instances if v_i and v_j share an edge? What about if they don't share an edge?
3.	Combine your answers to questions 1 and 2 to give a complete reduction from BGP to SAT.

4.	In the next two questions, we'll prove the correctness of your reduction from BGP to SAT – that is, we'll show that the reduced SAT instance is satisfiable if and only if the input to BGP is a bipartite graph.
	For the first direction: Prove that, if the input graph to BGP is bipartite, your reduced SAT instance is satisfiable. Hint: if G is bipartite, you know there's a way to assign vertices to be in V or W , such that there are no edges between any vertices in U or between any vertices in W . Try to use this assignment of vertices to construct a truth assignment to the variables in SAT.

5. Now, for the opposite direction: prove that, if the reduced SAT instance is satisfiable, the input graph to BGP is bipartite. Hint: if the reduced SAT instance is satisfiable, you know there is a truth assignment such that every clause is True. Try to use this truth assignment to partition the vertices in V into the sets U and W.