УДК 519.83

ББК 22.18

ТООО: НАЗВАНИЕ СТАТЬИ

Артем И. Пьяных

Московский университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики 119991, Москва, Ленинские горы, 2-й учебный корпус artem.pyanykh@gmail.com

TODO: TITILE ABSTRACT.

Ключевые слова: TODO: ключевые слова.

©2015 А.И. Пьяных

1. Введение

В работе [1] была рассмотрена многошаговая модель биржевых торгов однотипными акциями, в которой торги между собой ведут два игрока. Перед началом торгов случайный ход определяет цену акции на весь период торгов, которая в состояниях рынка L и H равна 0 и 1 соответственно. Выбранная цена сообщается первому игроку и не сообщается второму, при этом второй игрок знает, что первый – инсайдер. Также оба игрока знают вероятность P высокой цены акции.

На каждом шаге торгов игроки одновременно и независимо назначают некоторую цену за акцию. Игроки могут делать произвольные вещественные ставки, причем игрок, предложивший большую цену, покупает у другого акцию по названной цене. Задачей игроков является максимизация стоимости портфеля, состоящего из некоторого числа акций и суммы денег.

Модель сводится к повторяющейся игре с неполной информацией, как описано в [2], для которой Де Мейером и Салей были найдены оптимальные стратегии игроков и значение игры. Позднее В. Доманским [3] была рассмотрена модификация модели, в которой ставки игроков могли принимать значения только из заданного дискретного множества $\{i/m,\ i=\overline{0,m},\ m\geqslant 1\}$. В данной постановке им было получено решение игры неограниченной продолжительности.

В обеих работах использовался одинаковый механизм проведения транзакции, при котором акция продается по наибольшей из предложенных цен. Можно, однако, рассмотреть и следующий механизм формирования цены акции, предложенный в [4]. Игроки одновременно предлагают цены p_1 и p_2 , при $p_1 > p_2$ акция приобретается первым игроком по цене $\beta p_1 + (1-\beta)p_2$, где $\beta \in [0,1]$ – заданный коэффициент, характеризующий переговорную силу продавца; случай $p_1 < p_2$ симметричен; при $p_1 = p_2$ транзакции не происходит. Более подробное обсуждение связанное с выбором подобного механизма транзакции приведено в [5].

Фактически, в работах [1] и [3] коэффициент β равен 1. Обобщение дискретной модели на случай произвольного β было рассмотрено в [6]. В данной работе обобщение на случай произвольного β проведено для модели игры с непрерывными ставками.

2. Постановка задачи

Обозначим множество возможных состояний рынка через $S = \{H, L\}; s \in S$ при этом обозначает состояние, в котором на самом деле находится рынок.

Два игрока на этом рынке на протяжении n шагов ведут между собой торги за одну единицу рискового актива. Каждый игрок делает ставку из множества I=[0,1]; игрок предложивший большую ставку покупает у другого акцию по заданной цене.

Обозначим через $y_t = (y_t^R, y_t^N)$ портфель первого игрока на t-ом шаге торгов, где y_t^R и y_t^N – количество единиц рискового и безрискового активов соответственно. Если на t-ом шаге игроки делают ставки $p_{1,t} \in I$, $p_{2,t} \in I$, то портфель $y_t = y_{t-1} + t(p_{1,t}, p_{2,t})$, где при $\beta \in [0,1], \ \overline{\beta} = 1 - \beta$

$$t(p_1, p_2) = \mathbb{1}_{p_1 > p_2} (1, -(\beta p_1 + \overline{\beta} p_2)) + \mathbb{1}_{p_1 < p_2} (-1, \overline{\beta} p_1 + \beta p_2),$$

и $\mathbb{1}_{p_1>p_2}$ принимает значение 1 при $p_1>p_2$ и 0 в противном случае. То есть механизм проведения транзакции таков, что одна акция продается по цене равной выпуклой комбинации предложенных ставок с заданным коэффициентом β . Стоимость портфеля при этом равна

$$V(y_t) = \mathbb{1}_{s=H} y_t^R + y_t^N.$$

Будем считать, что игроки обладают неограниченными запасами рисковых и безрисковых активов, то есть торги не могут прекратиться по причине того, что у одного из игроков закончатся деньги или акции. Цель игроков состоит в максимизации прибыли полученной от торгов. Таким образом, не ограничивая общности, можно положить, что в начальный момент времени оба игрока имеют нулевые портфели. При этом прибыль первого игрока будет равна $V(y_n)$, а второго $-V(y_n)$.

Ниже мы рассмотрим теоретико-игровую постановку основной задачи (прямую игру), а также двойственной к ней в смысле Де Мейера (двойственную игру). Как отмечено в [1], прямая игра больше подходит для анализа стратегии первого игрока, в то время как двойственную удобнее использовать при анализе стратегии второго игрока.

2.1. Прямая игра

Перед началом игры ходом случая определяется $s \in S$ таким образом, что $p(s=H)=P,\ p(s=L)=1-P.$ Выбранное s сообщается первому игроку (инсайдеру), второй игрок при этом не осведомлен о настоящем значении s и знает только вероятности выбора случаем того или иного состояния.

Обозначим через $h_t = (p_{1,1}, p_{2,1}, \dots, p_{1,t}, p_{2,t})$ историю ставок к моменту времени t, а через H_t – множество всевозможных h_t . Стратегией первого игрока является последовательность ходов $\sigma = (\sigma_1, \dots, \sigma_n)$, где $\sigma_t = (\sigma_t^L, \sigma_t^H)$. При фиксированном $s \in S$ ход $\sigma_t^s : H_{t-1} \to \Delta(I)$ является отображением из множества историй ставок к моменту времени t-1 в множество $\Delta(I)$ вероятностных распределений на I. То есть, на каждом шаге инсайдер в зависимости от состояния s и истории h_{t-1} рандомизирует выбор ставки на множестве I. Обозначим множество стратегий первого игрока Σ_n .

Аналогично стратегией второго игрока назовем последовательность ходов $\tau = (\tau_1, \dots, \tau_n)$, где $\tau_t : H_{t-1} \to \Delta(I)$. Таким образом, не имея информации о состоянии s, второй игрок опирается только на историю ставок. Обозначим множество стратегий второго игрока T_n .

Пара стратегий (σ, τ) вместе с ходом случая индуцирует на (S, H_n) вероятностное распределение $\Pi[P, \sigma, \tau]$. Тогда выигрыш первого игрока равен

$$g_n(P, \sigma, \tau) = \mathbb{E}_{\Pi[P, \sigma, \tau]} V(y_n).$$

Выигрыш второго игрока при этом равен $-g_n(P, \sigma, \tau)$.

Полученную игру обозначим через $G_n(P)$. Ее нижнее и верхнее значения даются формулами

$$V_{1,n}(P) = \sup_{\sigma} \inf_{\tau} g_n(P, \sigma, \tau), \quad V_{2,n}(P) = \inf_{\tau} \sup_{\sigma} g_n(P, \sigma, \tau).$$

В том случае, когда $V_{1,n}(P)=V_{2,n}(P)=V_n(P)$, будем говорить, что игра имеет значение $V_n(P)$. Стратегии σ^* и τ^* называются оптимальными, если

$$\inf_{\tau} g_n(P, \sigma^*, \tau) = V_{1,n}(P), \ \sup_{\sigma} g_n(P, \sigma, \tau^*) = V_{2,n}(P).$$

Дальнейшие построения будут основаны на рекурсивной структуре игры $G_n(P)$. Рассмотрим стратегию σ первого игрока как пару $(\sigma_1, \tilde{\sigma})$, где σ_1 – ход игрока на первом шаге игры, а $\tilde{\sigma}$ – семейство

стратегий в игре продолжительности n-1, зависящих от ставок $(p_{1,1}, p_{2,1})$ на первом шаге. Аналогично стратегию τ второго игрока можно представить как пару $(\tau_1, \tilde{\tau})$.

Пара (σ_1, τ_1) вместе с ходом случая индуцирует вероятностное распределение $\Pi[P, \sigma_1, \tau_1]$ на $(S, p_{1,1}, p_{2,1})$. Обозначим через

$$P(p_{1,1}, p_{2,1}) = \Pi[P, \sigma_1, \tau_1](s = H \mid p_{1,1}, p_{2,1}).$$

апостериорную вероятность состояния H при условии, что первый игрок сделал ставку $p_{1,1}$, а второй — $p_{2,1}$.

Таким образом, для значения выигрыша первого игрока справедливо представление (см. [1])

$$g_{n+1}(P, \sigma, \tau) = g_1(P, \sigma_1, \tau_1) +$$

$$+ \mathbb{E}_{\Pi[P, \sigma_1, \tau_1]} g_n(P(p_{1,1}, p_{2,1}), \tilde{\sigma}(p_{1,1}, p_{2,1}), \tilde{\tau}(p_{1,1}, p_{2,1})).$$

Отметим, что так как $p_{2,1}$ не зависит от s, то апостериорная вероятность $P(p_{1,1},p_{2,1})=P(p_{1,1})=\Pi[P,\sigma_1](s=H|p_{1,1})$ зависит только от $p_{1,1}$.

Лемма 2.1. Для любого $P \in [0,1]$ выполняется неравенство

$$V_{1,n+1}(P) \geqslant \max_{\sigma_1} \min_{p_{2,1}} g_1(P, \sigma_1, p_{2,1}) + \mathbb{E}_{\Pi[P,\sigma_1]} V_{1,n}(P(p_{1,1})). \tag{2.1}$$

Доказательство данного утверждения можно найти в [1]. Таким образом, для получения оценки в игре продолжительности n+1, нам необходимо знать нижнее значение игры продолжительности n при всевозможных значениях параметра P. Подчеркнем, что база индукции имеет место, так как значение игры нулевой продолжительности $V_0(P)=0$.

2.2. Двойственная игра

Следуя [1], определим двойственную игру $G_n^*(x)$ следующим образом. Перед началом игры первый игрок (инсайдер) выбирает текущее состояние $s \in S$. Если s = H, то он вынужден заплатить второму игроку пенальти размера x в конце игры. В остальном игра аналогична G_n .

Таким образом, стратегией первого игрока в двойственной игре является пара (P, σ) , где $P \in [0, 1], \sigma \in \Sigma_n$. Множество стратегий второго игрока совпадает с T_n .

Выигрыш второго игрока, который он стремится максимизировать, определяется как

$$g_n^*(x, (P, \sigma), \tau) = xP - g_n(P, \sigma, \tau),$$

а верхнее и нижнее значения игры даются, соответственно, формулами

$$W_{1,n}(x) = \inf_{(P,\sigma)} \sup_{\tau} g_n^*(x, (P, \sigma), \tau), \quad W_{2,n}(x) = \sup_{\tau} \inf_{(P,\sigma)} g_n^*(x, (P, \sigma), \tau).$$

В том случае, когда $W_{1,n}(x) = W_{2,n}(x) = W_n(x)$, будем говорить, что игра имеет значение $W_n(x)$.

Аналогично предыдущему пункту, можно провести рассмотрение рекурсивной структуры игры $G_n^*(x)$ и получить результат аналогичный результату леммы 2.1. За деталями обращаться к [1].

Лемма 2.2. Для любого $x \in \mathbb{R}$ выполняется неравенство

$$W_{2,n+1}(x) \geqslant \sup_{\tau_1} \inf_{p_{1,1}} W_{2,n}(x - g_1^H(p_{1,1}, \tau_1) + g^L(p_{1,1}, \tau_1)) - g_1^L(p_{1,1}, \tau_1),$$

где $g_1^H(p_{1,1},\tau_1)=g_1(1,p_{1,1},\tau_1),\ g_1^L(p_{1,1},\tau_1)=g_1(0,p_{1,1},\tau_1)$ – выигрыши в состояниях H и L соответственно.

Заметим, что в данном случае база индукции также имеет место, так как значение игры нулевой продолжительности

$$W_0^*(x) = \phi(x) = \min(x, 0).$$

3. Оценки на выигрыш первого игрока

Отметим, что функции $V_{1,n}(\cdot)$ и $W_{2,n}(\cdot)$ являются вогнутыми на своей области определения. Доказательство данного факта может быть найдено в [1].

Обозначим через $f^*(x^*) = \inf\{x^* \cdot x - f(x) \mid x\}$ сопряженную к f в смысле Фенхеля функцию. Доказательство последующих фактов будет проведено при следующих предположениях:

- 1. $V_{1,n}(\cdot)$ гладкая на [0,1],
- 2. $V_{1,n}^*(\cdot)$ гладкая на \mathbb{R} ,
- 3. $W_{2,n}(\cdot)$ гладкая на \mathbb{R} .

Справедливость данных предположений будет обоснована в дальней-шем.

3.1. Оценка снизу

Параметризуем стратегию σ_1 при помощи пары функций (f,Q) из [0,1] в [0,1], удовлетворяющих:

$$\diamond$$
 f – не убывает на $[0,1]$, (3.1a)

$$\Rightarrow \int_0^1 Q(u) \, \mathrm{d}u = P, \tag{3.1b}$$

Если случайная величина u равномерно распределена на [0,1], то положим $f(u) = p_{1,1}$ и Q(u) = P(f(u)), что дает нам $\Pi[P, \sigma_1]$.

Лемма 3.1. $V_{1,n+1}(P) \geqslant \sup_{(f,Q)} \inf_{p_{2,1}} F_{n+1}((f,Q),p_{2,1}), \ \epsilon \partial e$

$$F_{n+1}((f,Q), p_{2,1}) = \int_0^1 \mathbb{1}_{f(u) > p_{2,1}}(Q(u) - \beta f(u) - \alpha p_{2,1}) du + \int_0^1 \mathbb{1}_{f(u) < p_{2,1}}(\alpha f(u) + \beta p_{2,1} - Q(u)) du + \int_0^1 V_{1,n}(Q(u)) du.$$

$$(3.2)$$

Доказательство получается подстановкой f и Q в (2.1).

Будем искать уравнивающую стратегию первого игрока. Пусть $p_{2,1}=f(\gamma),\ \gamma\in[0,1]$ и $f(\cdot)$ строго возрастает в γ . Тогда

$$F_{n+1}((f,Q), f(\gamma)) = \int_{\gamma}^{1} (Q(u) - \beta f(u) - \alpha f(\gamma)) du + \int_{0}^{\gamma} (\alpha f(u) + \beta f(\gamma) - Q(u)) du + \int_{0}^{1} V_{1,n}(Q(u)) du.$$
(3.3)

По предположению $F_{n+1}((f,Q),f(\gamma))$ не зависит от γ , следовательно

$$\frac{\partial F_{n+1}}{\partial \gamma} = (\gamma - \alpha)f'(\gamma) + 2f(\gamma) - 2Q(\gamma) = 0.$$

Отсюда

$$f(u) = (u - \alpha)^{-2} \int_{\alpha}^{u} 2(x - \alpha)Q(x) dx.^{1}$$
(3.4)

Подставив (3.4) в (3.3) при $\gamma = 1$ получим

$$\Phi(Q) = F_{n+1}((f(u), Q), f(1)) =
= \int_0^1 (2s - 1)Q(s) ds + \int_0^1 V_{1,n}(Q(u)) du.$$
(3.5)

Найдем Q как решение изопериметрической вариационной задачи

$$\Phi(Q) \to \max, \quad \int_0^1 Q(u) \, \mathrm{d}u = P.$$
(3.6)

Перед тем, как перейти к решению (3.6), заметим, что если функция $f(\cdot)$ – вогнутая и ограниченная, ее субдифференциал $\partial f(\cdot)$ не является однозначно определенным в худшем случае не некотором счетном множестве точек. Таким образом, если то, как определена $f'(\cdot)$ на множестве меры нуль не существенно, $f'(\cdot)$ можно доопределить единственным образом как непрерывную слева или справа функцию.

Применяя метод множителей Лагранжа (см. [7]), получим решение (3.6) в следующем виде:

$$Q(u) = V_{1,n}^{*\prime}(1 - \lambda - 2u),$$
где² (3.7)

$$\int_0^1 V_{1,n}^{*\prime} (1 - \lambda - 2u) \, \mathrm{d}u = P, \tag{3.8}$$

Так как $V_{1,n}(\cdot)$ определена на [0,1], то $V_{1,n}^{*\prime}(\cdot)$ не возрастает на $\mathbb R$ от 1 до 0. Следовательно λ , удовлетворяющая (3.8), существует. Кроме того доопределим $V_{1,n}^{*\prime}(\cdot)$ таким образом, чтобы Q(u) была непрерывной справа при $u < \alpha$ и непрерывной слева при $u \geqslant \alpha$.

 $^{^1 \}Pi$ ри $u=\alpha$ доопределим $f(\alpha)$ по непрерывности как $Q(\alpha).$

²Через $f^*(x^*) = \inf_x \{x \cdot x^* - f(x)\}$ обозначена сопряженная к $f(\cdot)$ функция.

Лемма 3.2. Пара функций (f,Q), определенная в (3.4), (3.7) принимает значения в [0,1] и удовлетворяет (3.1a) – (3.1c), т.е. является корректной параметризацией стратегии первого игрока.

Доказательство. Так как $V_{1,n}^{*\prime}(\cdot)$ убывает от 1 до 0, то $Q(\cdot)$ принимает значения в [0,1] и, кроме того, не убывает на [0,1].

Далее, можно заметить, что f(u) является математическим ожиданием Q(x), где x – случайная величина распределенная между α и u с плотностью $2|x-\alpha|/(u-\alpha)^2$. Следовательно, $f(\cdot)$ также принимает значения в [0,1].

Сделаем замену переменного $t = (x - \alpha)/(u - \alpha)$ в (3.4). Тогда

$$f(u) = \int_0^1 2tQ \left(t(u - \alpha) + \alpha\right) dt.$$

Отсюда видно, что (3.1a) выполнено. Далее, (3.1b) выполнено по построению. Чтобы показать, что (3.1c) выполняется, рассмотрим несколько случаев.

Пусть $\alpha < u_1 < u_2$. Тогда, так как Q не убывает, почти при всех $t \in [0,1]$ выполнено $Q(t(u_1-\alpha)+\alpha) = Q(t(u_2-\alpha)+\alpha)$. Из непрерывности Q слева следует равенство при t=1, т.е. $Q(u_1)=Q(u_2)$.

При $\alpha = u_1 < u_2$ имеем $f(u_1) = f(\alpha) = Q(\alpha)$. Отсюда почти при всех $t \in [0,1]$ выполнено $Q(t(u_2 - \alpha) + \alpha) = Q(\alpha)$. Снова из непрерывности Q слева получаем $Q(u_1) = Q(u_2) = Q(\alpha)$.

Доказательство при $u_1 < u_2 \leqslant \alpha$ получается аналогично с заменой непрерывности слева на непрерывность справа. Так же рассматривается и случай $u_1 < \alpha < u_2$. Таким образом (3.1c) выполнено.

Лемма 3.3. Если $f(u_1) = f(u_2)$ при $u_1 < u_2$, то f(u) = Q(u) при $u \in [u_1, u_2]$.

Доказательство. Действительно, если $f(u_1) = f(u_2)$, то из леммы 3.2 следует, что $f(\cdot)$ и $Q(\cdot)$ константны на $[u_1, u_2]$. Тогда из (3.4) для

 $f(u_2)$ имеем

$$f(u_2) = (u_2 - \alpha)^{-2} \int_{\alpha}^{u_2} 2(x - \alpha)Q(x) dx =$$

$$= (u_2 - \alpha)^{-2} \left(\int_{\alpha}^{u_1} 2(x - \alpha)Q(x) dx + \int_{u_1}^{u_2} 2(x - \alpha)Q(x) dx \right) =$$

$$= (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + \int_{u_1}^{u_2} 2(x - \alpha)Q(u_1) dx \right) =$$

$$= (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + ((u_2 - \alpha)^2 - (u_2 - \alpha)^2) Q(u_1) \right).$$

С другой стороны, для $f(u_1)$ справедливо

$$f(u_1) = (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + \left((u_2 - \alpha)^2 - (u_2 - \alpha)^2 \right) f(u_1) \right).$$

Таким образом, $f(u_1) = Q(u_1)$, а следовательно f(u) = Q(u) при $u \in [u_1, u_2]$.

Обозначим $K(\lambda) = \int_0^1 V_{1,n}^* (1-\lambda-2u) \,\mathrm{d}u$. Тогда $K'(\lambda) = P$. Подставив (3.7), (3.8) в (3.5), получим

$$\Phi(Q) = \lambda \int_0^1 Q(s) \, ds + \int_0^1 \left[(2s - 1 - \lambda)Q(s) + V_{1,n}(Q(s)) \right] ds =$$

$$= PK^{*\prime}(P) - \int_0^1 \left[(1 + \lambda - 2s)Q(s) + V_{1,n}(Q(s)) \right] ds =$$

$$= PK^{*\prime}(P) - \int_0^1 V_{1,n}^* (1 + \lambda - 2s) \, ds =$$

$$= PK^{*\prime}(P) - K(\lambda) = PK^{*\prime}(P) - K(K^{*\prime}(P)) = K^*(P).$$

Выше было использовано несколько свойств субдифференциалов замкнутых вогнутых функций, в частности эквивалентность следующих условий (см., например, [8, Теорема 23.5]):

- (a) $x^* \in \partial f(x)$,
- (b) $x \in \partial f^*(x^*)$,
- (c) $\langle z, x^* \rangle f(z)$ достигает минимума по z в точке x.

Теорема 3.1. Для выигрыша первого игрока в игре $G_n(P)$ справедлива оценка $V_{1,n+1}(P) \geqslant K^*(P)$. Доказательство. Из леммы 2.1 следует, что нам достаточно доказать, что при любом $p_{2,1} \in [0,1]$ выполнено $F_{n+1}((f,Q),p_{2,1}) \geqslant K^*(P)$.

Рассмотрим несколько случаев. Пусть $p_{2,1} < f(0)$. Тогда

$$F_{n+1}((f,Q), p_{2,1}) = \int_0^1 [Q(u) - \beta f(u) - \alpha p_{2,1}] du + \int_0^1 V_{1,n}(Q(u)) du \geqslant F_{n+1}((f,Q), f(0)) = K^*(P).$$

Аналогично можно показать, что при $p_{2,1} > f(1)$

$$F_{n+1}((f,Q),p_{2,1}) \geqslant F_{n+1}((f,Q),f(0)) = K^*(p).$$

Пусть теперь $p_{2,1} = f(\gamma), \ \gamma \in [0,1]$. Кроме того, введем обозначения

$$\gamma^{-} = \inf \{ x \mid f(x) = f(\gamma) \}, \quad \gamma^{+} = \sup \{ x \mid f(x) = f(\gamma) \}.$$

Тогда

$$F_{n+1}((f,Q), p_{2,1}) = \int_{\gamma^{+}}^{1} (Q(u) - \beta f(u) - \alpha f(\gamma)) du + \int_{0}^{\gamma^{-}} (\alpha f(u) + \beta f(\gamma) - Q(u)) du + \int_{0}^{1} V_{1,n}(Q(u)) du.$$
(3.9)

Однако, из леммы 3.3 следует, что $Q(u) = f(\gamma)$ при $u \in [\gamma^-, \gamma^+]$. А значит (3.9) совпадает с (3.3) и $F_{n+1}((f,Q),p_{2,1}) \geqslant K^*(p)$ по построению.

3.2. Оценка сверху

Аналогично тому, как это было сделано для первого игрока, параметризуем τ_1 при помощи неубывающей функции $h:[0,1] \to [0,1]$. Если случайная величина u равномерно распределена на [0,1], положим $h(u)=p_{2,1}$. Подобным образом может быть получено любое распределение τ_1 .

Лемма 3.4. $W_{2,n+1} \geqslant \sup_h \inf_{p_{1,1}} G(p_{1,1},h)$, где

$$G(p_{1,1},h) = W_{2,n} \left(x - \int_0^1 (\mathbb{1}_{h(u) < p_{1,1}} - \mathbb{1}_{h(u) > p(u)}) \, du \right) - \int_0^1 \left[\mathbb{1}_{h(u) < p_{1,1}} (-\beta p_{1,1} - \alpha h(u)) + \mathbb{1}_{h(u) > p_{1,1}} (\alpha p_{1,1} + \beta h(u)) \right] du.$$
(3.10)

4. Значение игры

СПИСОК ЛИТЕРАТУРЫ

- 1. De Meyer B., Saley H. On the strategic origin of Brownian motion in finance // Int J Game Theory. 2002. V. 31. P. 285–319
- 2. Aumann R.J., Maschler M.B. Repeated Games with Incomplete Information. The MIT Press, Cambridge, London
- 3. Domansky V. Repeated games with asymmetric information and random price fluctuations at finance markets // Int J Game Theory. 2007. V. 36(2). P. 241–257
- 4. Chatterjee K., Samuelson W. Bargaining under Incomplete Information // Operations Research. 1983. V. 31. N. 5. P. 835–851
- Пьяных А.И. Об одной модификации модели биржевых торгов с инсайдером // Математическая теория игр и её приложения. 2014. 6. № 4. С. 68–84.
- 6. Пьяных А.И. Многошаговая модель биржевых торгов с асимметричной информацией и элементами переговоров // TODO
- 7. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1965.
- 8. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973.

TODO: TITLE OF THE ARTICLE

Artem Pyanykh, Moscow State University, postgraduate student (artem.pyanykh@gmail.com).

 $Abstract {:}\ TODO {:}\ TITILE\ ABSTRACT.$

Keywords: TODO: keywords.