Finding Polynomial and Array Invariants using Dynamic Analysis

ThanhVu (Vu) Nguyen*
Deepak Kapur*, Westley Weimer[†], Stephanie Forrest*

*University of New Mexico, †University of Virginia

June 8, 2012

Ensuring that a program behaves correctly is critical

Ensuring that a program behaves correctly is critical

Dynamic analysis discovers invariants from traces

- Input: traces (observed values of variables)
- Output: relations among variables

Ensuring that a program behaves correctly is critical

Dynamic analysis discovers invariants from traces

- Input: traces (observed values of variables)
- Output: relations among variables

Our dynamic system discovers two forms of invariants

Ensuring that a program behaves correctly is critical

Dynamic analysis discovers invariants from traces

- Input: traces (observed values of variables)
- Output: relations among variables

Our dynamic system discovers two forms of invariants

- Polynomials
 - **Equalities**: $x yq = r, x^{10} = -10.23478$
 - Inequalities: $x^2 \varepsilon \le y \le x^2 + \varepsilon$
 - Arrays
 - Simple relations: A[i][j] = -3B[2i] + C[i][j] + D[8]
 - Nested relations: A[i][j] = B[C[i+j]][C[3j]]

Daikon

• Comes with a large set of pre-defined templates

$$\label{eq:polynomials} \begin{aligned} \text{Polynomials}: x+2y-3z+4=0, x=y^2\\ \text{Arrays}: \text{sorted}(A), \text{member}(a,A), \text{reverse}(A,B), A=B \end{aligned}$$

- User-defined: $x = y^2 + 10, x = y^3$
- Filters out templates from traces
- Cannot find general linear or nonlinear relations
- Has limited support for relations among arrays

Overview of the System

Polynomial Invariants


```
def intdiv(x, y):
  r = x
  while r \geq y:
         a = 1
6
        b = y
        while r \geq 2b:
          a = 2a
10
           b = 2b
11
       r = r - b
12
         q = q + a
13
      return q
```



```
def intdiv(x, y):
   r = x
  while r \geq y:
         a = 1
6
         b = y
        while r \geq 2b:
          a = 2a
10
           b = 2b
11
       r = r - b
12
         q = q + a
13
      return q
```

x	y	a	b	q	r
15	2	1	2	0 0 4	15
15 15 15	2	2	4	0	15
15	2	1	2	4	7


```
def intdiv(x, y):
   r = x
  while r \geq y:
         a = 1
6
         b = y
        while r \geq 2b:
          a = 2a
10
           b = 2b
11
       r = r - b
12
         q = q + a
13
      return q
```

x	y	a	b	q	r
15	2	1	2	0	15
15 15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4


```
def intdiv(x, y):
  while r \geq y:
        a = 1
                             15 2 | 1 2 0 15
   b = y
                             15 2 2 4 0 15
      while r \geq 2b:
                             15 2 1 2 4 7
                             4 1 | 1 1 0 4
         a = 2a
10
        b = 2b
11
      r = r - b
12
      q = q + a
13
     return q
```

Invariants at L: $\{b=ya, x=qy+r, r\geq 2ya\}$

Nonlinear Equations

Examples

Integer division : x = qy + r

Extended gcd : $gcd_{A,B} = iA + jB$

Find equations of the form

$$c_0 + c_1 x + c_2 y + c_3 x y + \dots + c_n x^d y^d = 0, \quad c_i \in \mathbb{R}$$

Method

- Generates equations from program traces
- Solves equations using a standard equation solver

• Terms and degrees

$$V = \{r,y,a\}; \hspace{0.2cm} \deg_{\max} = 2 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} T = \{1,r,y,a,ry,ra,ya,r^2,y^2,a^2\}$$

Terms and degrees

$$\begin{split} V = \{r, y, a\}; & \ \deg_{\max} = 2 \quad \Rightarrow \quad T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \\ & \quad T = \{\ldots, \log(r), a^y, \sin(y), \ldots\} \end{split}$$

Terms and degrees

$$V = \{r,y,a\}; \quad \deg_{\max} = 2 \quad \Rightarrow \quad T = \{1,r,y,a,ry,ra,ya,r^2,y^2,a^2\}$$

Equation template

$$c_1 + c_2r + c_3y + c_4a + c_5ry + c_6ra + c_7ya + c_8r^2 + c_9y^2 + c_{10}a^2 = 0$$

Terms and degrees

$$V = \{r,y,a\}; \hspace{0.2cm} \deg_{\max} = 2 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} T = \{1,r,y,a,ry,ra,ya,r^2,y^2,a^2\}$$

Equation template

$$c_1 + c_2r + c_3y + c_4a + c_5ry + c_6ra + c_7ya + c_8r^2 + c_9y^2 + c_{10}a^2 = 0$$

System of linear equations

```
trace 1 : \{r=15, y=2, a=1\} eq 1 : c_1+15c_2+2c_3+c_4+30c_5+15c_6+2c_7+225c_8+4c_9+c_{10}=0 :
```


Terms and degrees

$$V = \{r,y,a\}; \hspace{0.2cm} \deg_{\max} = 2 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} T = \{1,r,y,a,ry,ra,ya,r^2,y^2,a^2\}$$

Equation template

$$c_1 + c_2r + c_3y + c_4a + c_5ry + c_6ra + c_7ya + c_8r^2 + c_9y^2 + c_{10}a^2 = 0$$

System of linear equations

```
trace 1 : \{r=15, y=2, a=1\} eq 1 : c_1+15c_2+2c_3+c_4+30c_5+15c_6+2c_7+225c_8+4c_9+c_{10}=0 :
```

Solve for coefficients c_i

$$V = \{x, y, a, b, q, r\}; \deg_{\max} = 2 \implies \{b = ya, x = qy + r\}$$

Nonlinear Inequalities

Example:

Square root :
$$x + \varepsilon \ge y^2 \ge x - \varepsilon$$

Find inequalities of the form

$$c_0 + c_1 x + c_2 y + c_3 x y + \dots + c_n x^d y^d \ge 0, \quad c_i \in \mathbb{R}$$

Method

- Polyhedra
 - Represents trace values as points
 - Builds a bounded convex polyhedron and extracts facets
- ② Deduction
 - Deduces invariants when additional information is given

Finding Nonlinear Inequalities using Polyhedra

Finding Nonlinear Inequalities using Polyhedra

Finding Nonlinear Inequalities using Polyhedra

Finding Nonlinear Inequalities using Deduction

ullet Use inequality tests P from loop or branch conditions

while
$$(r \geq 2b)$$
 {[L] . . . }

Finding Nonlinear Inequalities using Deduction

ullet Use inequality tests P from loop or branch conditions

while
$$(r \geq 2b)$$
 {[L]...}

ullet Obtain equality relations Q at llet

$$\{b = ay, qy + r = x\}$$

Finding Nonlinear Inequalities using Deduction

ullet Use inequality tests P from loop or branch conditions

while
$$(r \geq 2b)$$
 {[L]...}

Obtain equality relations Q at L

$$\{b=ay,qy+r=x\}$$

ullet Deduce new, non-trivial inequality relations at llet from P and Q

$$(r \ge 2b \land b = ay) \Rightarrow r \ge 2ay$$

 $(r \ge 2b \land qy + r = x) \Rightarrow x - qy \ge 2b$

Results for Polynomial Invariants

Program	Desc	Inv Type
divbin	div	eq
cohendiv	div	eq, ieq
mannadiv	int div	eq
hard	int div	eq
sqrt1	sqr	eq, ieq
dijkstra	sqr	eq
freire1	sqr	eq
freire2	cubic root	eq
cohencube	cube	eq
euclidex1	gcd	eq
euclidex2	gcd	eq
euclidex3	gcd	eq
lcm1	gcd, lcm	eq
lcm2	gcd, lcm	eq
prodbin	product	eq
prod4br	product	eq
fermat1	divisor	eq
fermat2	divisor	eq
knuth	divisor	eq
geo2	geo series	eq
geo3	geo series	eq
ps2	pow sum	eq
ps3	pow sum	eq
ps4	pow sum	eq

Results for Polynomial Invariants

Program	Desc	Inv Type	Vars	Degree	Annotated Invs	
divbin	div	eq	5	2	1	
cohendiv	div	eq, ieq	6	2	2	
mannadiv	int div	eq	5	2	1	
hard	int div	eq	6	2	1	
sqrt1	sqr	eq, ieq	4	2	2	
dijkstra	sqr	eq	5	2	1	
freire1	sqr	eq	3	2	1	
freire2	cubic root	eq	4	3	2	
cohencube	cube	eq	5	3	3	
euclidex1	gcd	eq	10	2	3	
euclidex2	gcd	eq	8	2	2	
euclidex3	gcd	eq	12	2	4	
lcm1	gcd, lcm	eq	6	2	1	
lcm2	gcd, lcm	eq	6	2	1	
prodbin	product	eq	5	2	1	
prod4br	product	eq	6	3	1	
fermat1	divisor	eq	5	2	1	
fermat2	divisor	eq	5	2	1	
knuth	divisor	eq	8	3	1	
geo2	geo series	eq	4	2	1	
geo3	geo series	eq	5	3	1	
ps2	pow sum	eq	3	2	1	
ps3	pow sum	eq	3	3	1	
ps4	pow sum	eq	3	4	1	

24 programs 35

Results for Polynomial Invariants

Program	Desc	Inv Type	Vars	Degree	Annotated Invs	Discovered Invs	Time (secs)
divbin	div	eq	5	2	1	1	0.5
cohendiv	div	eq, ieq	6	2	2	2	1.3
mannadiv	int div	eq	5	2	1	1	0.3
hard	int div	eq	6	2	1	1	0.9
sqrt1	sqr	eq, ieq	4	2	2	2	0.7
dijkstra	sqr	eq	5	2	1	1	0.5
freire1	sqr	eq	3	2	1	1	0.2
freire2	cubic root	eq	4	3	2	2	3.2
cohencube	cube	eq	5	3	3	3	12.6
euclidex1	gcd	eq	10	2	3	3	6.5
euclidex2	gcd	eq	8	2	2	2	2.5
euclidex3	gcd	eq	12	2	4	4	10.1
lcm1	gcd, lcm	eq	6	2	1	1	0.5
lcm2	gcd, lcm	eq	6	2	1	1	0.6
prodbin	product	eq	5	2	1	1	0.3
prod4br	product	eq	6	3	1	1	8.1
fermat1	divisor	eq	5	2	1	1	8.0
fermat2	divisor	eq	5	2	1	1	0.4
knuth	divisor	eq	8	3	1	1	71.5
geo2	geo series	eq	4	2	1	1	0.2
geo3	geo series	eq	5	3	1	1	3.1
ps2	pow sum	eq	3	2	1	1	0.1
ps3	pow sum	eq	3	3	1	1	0.3
ps4	pow sum	eq	3	4	1	1	8.0
24 programs					35	35	avg 3.6

Array Invariants

Simple Array Relations

Examples

block2State : R[i][j] = t[4i + j]

 $\mathsf{keySetupEnc8}: R[i][j] = \mathsf{cipherKey}[8i+j]$

Find simple array relations of the form

$$A_1 + c_2 A_2 + \dots + c_n A_n + c_0 = 0, \quad c_i \in \mathbb{R}$$

Method

- Flattens array elements as new variables
- Infers linear equalities among array elements
- Finds relations among array indices

Represent array elements with new variables

• Represent array elements with new variables

Find linear relations from traces

$$A_0 - 7B_0 = 0$$

$$A_1 - 7B_2 = 3$$

$$A_2 - 7B_4 = 6$$

Hypothesize

$$A[i] = {\color{red} l} B[{\color{blue} j}] + {\color{blue} k}, \qquad i \in \{0,1,2\}$$

Hypothesize

$$A[i] = {}^{\mathbf{l}}B[{}^{\mathbf{j}}] + {}^{\mathbf{k}}, \qquad i \in \{0, 1, 2\}$$

 \bullet Find j

Hypothesize

$$A[i] = {}^{l}B[j] + k, \qquad i \in \{0, 1, 2\}$$

- Find j
 - \blacksquare Express relation between A[i] and B[j] as ${\color{blue} j=ip+q}$

Hypothesize

$$A[i] = {}^{l}B[j] + k, \qquad i \in \{0, 1, 2\}$$

- Find j
 - **E**xpress relation between A[i] and B[j] as j = ip + q

$$A_0 - 7B_0 = 0 \quad \Rightarrow \quad 0 = 0p + q$$

Finding Simple Array Relations

Hypothesize

$$A[i] = lB[j] + k, \qquad i \in \{0, 1, 2\}$$

- Find j
 - **E**xpress relation between A[i] and B[j] as j = ip + q

$$A_0 - 7B_0 = 0 \Rightarrow 0 = 0p + q$$

 $A_1 - 7B_2 = 3 \Rightarrow 2 = 1p + q$
 $A_2 - 7B_4 = 6 \Rightarrow 4 = 2p + q$

Finding Simple Array Relations

Hypothesize

$$A[i] = {}^{l}B[j] + {}^{k}, \qquad i \in \{0, 1, 2\}$$

- Find *j*
 - **E**xpress relation between A[i] and B[j] as j = ip + q

$$A_0 - 7B_0 = 0 \Rightarrow 0 = 0p + q$$

 $A_1 - 7B_2 = 3 \Rightarrow 2 = 1p + q$
 $A_2 - 7B_4 = 6 \Rightarrow 4 = 2p + q$

■ Solve for p, q

Finding Simple Array Relations

Hypothesize

$$A[i] = {}^{l}B[j] + {}^{k}, \qquad i \in \{0, 1, 2\}$$

- Find *j*
 - **Express** relation between A[i] and B[j] as j = ip + q

$$A_0 - 7B_0 = 0 \Rightarrow 0 = 0p + q$$

 $A_1 - 7B_2 = 3 \Rightarrow 2 = 1p + q$
 $A_2 - 7B_4 = 6 \Rightarrow 4 = 2p + q$

■ Solve for p, q

• Find l, k

$$A[i] = 7B[2i] + 3i$$

Nested Array Relations

Examples

 $\mathsf{invSubBytes}: R[i][j] = S[T[i][j]]$

Find nested array relations of the grammar

$$A[i_1] \cdots [i_k] \quad \mapsto \quad e$$

$$e \quad \mapsto \quad B[e] \cdots [e]$$

E.g.
$$A[i][j] = B[C[j+3]][D[E[2i+j]]$$

Method

- Uses reachability analysis to find potential nesting relations
- Reduces to a satisfiability problem and solves with a theorem prover

Finding Nested Array Relations

Given

$$A = [7, 1, -3], B = [1, -3, 5, 1, 0, 7, 1], C = [8, 5, 6, 6, 2, 1, 4]$$

Generate nestings

$$A[i] = B[\ldots], A[i] = C[\ldots], \ldots, C[i] = A[\ldots], A[i] = B[C[\ldots]], \ldots$$

Validate nestings

Discard
$$B[i] = C[\dots]$$
 because $B[1] \notin C$

$$A[0] \stackrel{?}{=} B[C[\dots]]$$

$$A[1] \stackrel{?}{=} B[C[\dots]]$$

$$A[2] \stackrel{?}{=} B[C[\dots]]$$

$$A[0] = B[C[1]]$$

 $A[1] = B[C[2]] \lor B[C[3]]$

$$A[0] = B[C[1]]$$

 $A[1] = B[C[2]] \lor B[C[3]]$
 $A[2] = B[C[5]]$

$$\begin{array}{rcl} A[0] & = & B[C[1]] \\ A[1] & = & B[C[2]] \lor B[C[3]] \\ A[2] & = & B[C[5]] \end{array}$$

 \bullet Express relation between A[i] and B[C[j]] as j=ip+q

$$A[0] = B[C[1]]$$

 $A[1] = B[C[2]] \lor B[C[3]]$
 $A[2] = B[C[5]]$

 \bullet Express relation between A[i] and B[C[j]] as j=ip+q $\{1=0p+q, 2=1p+q, 5=2p+q\}$

$$A[0] = B[C[1]]$$

 $A[1] = B[C[2]] \lor B[C[3]]$
 $A[2] = B[C[5]]$

 \bullet Express relation between A[i] and B[C[j]] as j=ip+q $\{1=0p+q, 2=1p+q, 5=2p+q\}$

• Solve for p, q

No Solution

$$A[0] = B[C[1]]$$

 $A[1] = B[C[2]] \lor B[C[3]]$
 $A[2] = B[C[5]]$

 \bullet Express relation between A[i] and B[C[j]] as j=ip+q $\{1=0p+q, 3=1p+q, 5=2p+q\}$

$$\begin{array}{rcl} A[0] & = & B[C[1]] \\ A[1] & = & B[C[2]] \vee B[C[3]] \\ A[2] & = & B[C[5]] \end{array}$$

 \bullet Express relation between A[i] and B[C[j]] as j=ip+q $\{1=0p+q, 3=1p+q, 5=2p+q\}$

• Solve for p, q

$$\begin{aligned} \{q=1,p=2\} & \Rightarrow & j=2i+1 \\ & \Rightarrow & A[i]=B[C[2i+1]] \end{aligned}$$

Supporting Functions

Examples

$$\begin{split} \text{addRoundKey}: R[i][j] &= \text{xor}(T[i][j], H[i][j]) \\ \text{multWord}: R[i] &= T[\text{mod}(L[A[i]] + L[B[i]], 255)] \end{split}$$

Treat functions as a special type of arrays

$$m(2,3) = 6$$
, $m(-1,1) = -1$, $m(0,0) = 0$,...
 $\downarrow \downarrow$
 $M[2][3] = 6$, $M[-1][1] = -1$, $M[0][0] = 0$,...

Using SMT solver

Apply SMT solving to improve reachability analysis

$$A[0] = B[C[1]]$$

$$A[1] = B[C[2]] \lor B[C[3]]$$

$$A[2] = B[C[5]]$$

$$\downarrow \downarrow$$

$$(0p + q = 1) \land (1p + q = 2 \lor 1p + q = 3) \land (2p + q = 5)$$

Results for Array Invariants

Function	Desc	Inv Type	Arrays	Dimension	Annotated Invs	
multWord	mult	N(4)	7	2	1	
xor2Word	xor	N(1)	4	2	1	
xor3Word	xor	N(1)	5	3	1	
subWord	subs	N(1)	3	1	1	
rotWord	shift	Ì ´	2	1	1	
block2State	convert	S	2	2	1	
state2Block	convert	S	2	2	1	
subBytes	subs	N(1)	3	2	1	
invSubByte	subs	N(1)	3	2	1	
shiftRows	shift	Ś	2	2	1	
invShiftRow	shift	S	2	2	1	
addKey	add	N(1)	4	2	1	
mixCol	mult	Ü	4	2	1	
invMixCol	mult	U	4	2	1	
keySetEnc4	driver	S,U	2	2	2	
keySetEnc6	driver	S,U	2	2	2	
keySetEnc8	driver	S,U	2	2	2	
keySetEnc	driver	Ü	4	1	1	
keySetDec	driver	U	4	2	1	
keySched1	driver	U	3	2	1	
keySched2	driver	U	3	2	1	
aesKeyEnc	driver	eq,U	7	2	2	
aesKeyDec	driver	eq,U	7	2	2	
aesEncrypt	driver	Ü	8	4	1	
aesDecrypt	driver	U	8	4	1	

Results for Array Invariants

Function	Desc	Inv Type	Arrays	Dimension	Annotated Invs	Discovered Invs	Time (secs)
multWord	mult	N(4)	7	2	1	1	3.6
xor2Word	xor	N(1)	4	2	1	1	0.1
xor3Word	xor	N(1)	5	3	1	1	0.1
subWord	subs	N(1)	3	1	1	1	0.4
rotWord	shift	Ì ´	2	1	1	1	0.5
block2State	convert	S	2	2	1	1	2.0
state2Block	convert	S	2	2	1	1	11.7
subBytes	subs	N(1)	3	2	1	1	0.6
invSubByte	subs	N(1)	3	2	1	1	3.8
shiftRows	shift	Ś	2	2	1	1	12.2
invShiftRow	shift	S	2	2	1	1	8.3
addKey	add	N(1)	4	2	1	1	0.6
mixCol	mult	Ù	4	2	1	0	-
invMixCol	mult	U	4	2	1	0	-
keySetEnc4	driver	S,U	2	2	2	1	4.5
keySetEnc6	driver	S,U	2	2	2	1	6.7
keySetEnc8	driver	S,U	2	2	2	1	10.6
keySetEnc	driver	U	4	1	1	0	-
keySetDec	driver	U	4	2	1	0	-
keySched1	driver	U	3	2	1	0	-
keySched2	driver	U	3	2	1	0	-
aesKeyEnc	driver	eq,U	7	2	2	1	0.1
aesKeyDec	driver	eq,U	7	2	2	1	0.1
aesEncrypt	driver	Ü	8	4	1	0	-
aesDecrypt	driver	U	8	4	1	0	-
25 functions	N=Neste	ed, S =Si	mple, U =u	nsupported	30	17	tot 65.9

Summary

Dynamic Analysis

- Polynomial Invariants
 - Equalities: solve equations over (nonlinear) terms
 - Inequalities: construct a polyhedron over trace points
 Use deduction when additional information is available
- Array Invariants
 - Simple relations: find relations among individual elements
 - Nested relations: perform reachability analysis and use SMT solving

Results

- Identify 100% of the nonlinear invariants in 24 arithmetic algorithms
- Find 60% of the array relations of an AES implementation
- Current dynamic analysis work cannot find these invariants

Thank you for your attention!

Project is open source and available at

```
http://code.google.com/p/invgen/
```

Ask me about (or read the paper for details)

- refining and dealing with spurious invariants (more theorem proving)
- complexities of the techniques (e.g. finding nested arrays is NP-complete)
- additional invariants (e.g. disjunctive properties)
- using discovered invariants to repair programs (current work)

