Maciej Medyk - COT6930 - Homework 2

Question 1

PageRank score [0.50pt].

Page rank works by creating a random walk that is counting the number and quality of links to determine importance of the website.

Rooted PageRank [0.50pt].

It's a page rank that is countering problems in standard page rank by periodically teleporting to another node and in this way avoiding carefully crafted loops.

Network community [0.50pt].

It's a set of nodes between which the interactions are frequent.

Clique [0.50pt].

Is a subset of the network in which all nodes are more closely and intensely tided to one another and then they are to other members of the network.

k-Clique [0.50pt].

Is a maximal subgraph in which the largest geodesic distance between any nodes.

Low-rank approximation [0.50pt].

It's a method that analyzes the estimation of proximity and closeness of different users which in turn is helpful in link prediction, dimension reduction, compression.

Question 2

Power Iteration PageRank scores for each website [1.00pt].

	Α	В	С	D	Ε	F	G
Α	0	1	1	1	1	1	1
В	1	0	0	1	1	0	0
С	1	0	0	0	0	1	1
D	1	1	0	0	0	0	0
Ε	1	1	0	0	0	0	0
F	1	0	1	0	0	0	0
G	1	0	1	0	0	0	0

	Α	В	С	D	Е	F	G
Α	0	0.333	0.333	0.500	0.500	0.500	0.500
В	0.167	0	0	0.500	0.500	0	0
С	0.167	0	0	0	0	0.500	0.500
D	0.167	0.333	0	0	0	0	0
Ε	0.167	0.333	0	0	0	0	0
F	0.167	0	0.333	0	0	0	0
G	0.167	0	0.333	0	0	0	0

X_0	
0.1500	
0.1500	
0.1500	
0.1500	
0.1500	
0.1500	
0.1500	

X_1	X ₂
0.4000	0.2667
0.1750	0.1417
0.1750	0.1417
0.0750	0.1250
0.0750	0.1250
0.0750	0.1250
0.0750	0.1250

X ₃
Λ3
0.3444
0.1694
0.1694
0.0917
0.0917
0.0917
0.0917

	_	
X_4		X ₅
0.2963		0.3272
0.1491		0.1633
0.1491		0.1633
0.1139		0.0991
0.1139		0.0991
0.1139		0.0991

0.0991

0.1139

X ₆
0.3070
0.1536
0.1536
0.1090
0.1090
0.1090
0.1090

X ₇
0.3203
0.1601
0.1601
0.1024
0.1024
0.1024
0.1024

Eigenvector based approach to calculate PageRank scores for each web page [1.00pt]

Input matrix:

```
0.000 0.330 0.333 0.500 0.500 0.500 0.500
0.167 0.000 0.000 0.500 0.500 0.000 0.000
0.167 0.000 0.000 0.000 0.000 0.500 0.500
0.167 0.333 0.000 0.000 0.000 0.000 0.000
0.167 0.333 0.000 0.000 0.000 0.000 0.000
0.167 0.000 0.333 0.000 0.000 0.000 0.000
0.167 0.000 0.333 0.000 0.000 0.000 0.000
```

Eigenvalues Eigenvectors:

Eigenvalues:

```
(1.000, 0.000i)
(-0.333, 0.000i)
(-0.667, 0.000i)
(-0.577, 0.000i)
( 0.577, 0.000i)
( 0.000, 0.000i)
(0.000, 0.0001)
```

Eigenvectors:

```
(-0.717, 0.000i) (-0.816, 0.000i) (-0.634, 0.000i) ( 0.000, 0.000i) ( 0.000, 0.000i) ( 0.000, 0.000i) ( 0.000, 0.000i)
(-0.359, 0.000i) ( 0.409, 0.000i) (-0.315, 0.000i) ( 0.544, 0.000i) ( 0.549, 0.000i) ( 0.000, 0.000i) ( 0.000, 0.000i)
(-0.359, 0.000i) ( 0.409, 0.000i) (-0.315, 0.000i) (-0.551, 0.000i) (-0.547, 0.000i) ( 0.000, 0.000i) ( 0.000, 0.000i)
(-0.239, 0.000i) ( 0.000, 0.000i) ( 0.316, 0.000i) (-0.314, 0.000i) ( 0.317, 0.000i) (-0.707, 0.000i) ( 0.000, 0.000i)
(-0.239, 0.000i) ( 0.000, 0.000i) ( 0.316, 0.000i) (-0.314, 0.000i) ( 0.317, 0.000i) ( 0.707, 0.000i) ( 0.000, 0.000i)
(-0.239, 0.000i) ( 0.000, 0.000i) ( 0.316, 0.000i) ( 0.318, 0.000i) (-0.316, 0.000i) ( 0.000, 0.000i) (-0.707, 0.000i)
(-0.239, 0.000i) ( 0.000, 0.000i) ( 0.316, 0.000i) ( 0.318, 0.000i) (-0.316, 0.000i) ( 0.000, 0.000i) ( 0.707, 0.000i)
```

Question 3

Rooted PageRank to calculate similarity between each pair of nodes. Each time, the random walker has a probability 1 - a where (a = 0.2) to return back to an original node [1.00pt]

Id	lentity	y Matrix
	CITCIC	y iviatiin

identity matrix								
	Α	В	С	D	Е	F	G	
Α	1	0	0	0	0	0	0	
В	0	1	0	0	0	0	0	
С	0	0	1	0	0	0	0	
D	0	0	0	1	0	0	0	
Ε	0	0	0	0	1	0	0	
F	0	0	0	0	0	1	0	
G	0	0	0	0	0	0	1	

1 – a		
L		
8.0	Α	
8.0	В	
8.0	С	
0.8	D	
0.8	Ε	
0.8	F	
0.8	G	

Degree Matrix * A

	Α	В	С	D	E	F	G
Α	0	0.167	0.167	0.167	0.167	0.167	0.167
В	0.333	0	0	0.333	0.333	0	0
С	0.333	0	0	0	0	0.333	0.333
D	0.500	0.500	0	0	0	0	0
E	0.500	0.500	0	0	0	0	0
F	0.500	0	0.500	0	0	0	0
G	0.500	0	0.500	0	0	0	0

=

Identity Matrix – (a * Degree Matrix * A)

	Α	В	С	D	E	F	G
Α	1.000	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033
В	-0.067	1.000	0.000	-0.067	-0.067	0.000	0.000
С	-0.067	0.000	1.000	0.000	0.000	-0.067	-0.067
D	-0.100	-0.100	0.000	1.000	0.000	0.000	0.000
Е	-0.100	-0.100	0.000	0.000	1.000	0.000	0.000
F	-0.100	0.000	-0.100	0.000	0.000	1.000	0.000
G	-0.100	0.000	-0.100	0.000	0.000	0.000	1.000

Inverse (Identity Matrix – (a * Degree Matrix * A))

	Α	В	С	D	E	F	G
Α	1.020	0.041	0.041	0.036	0.036	0.036	0.036
В	0.083	1.017	0.003	0.071	0.071	0.003	0.003
С	0.083	0.003	1.017	0.003	0.003	0.071	0.071
D	0.110	0.106	0.004	1.011	0.011	0.004	0.004
Ε	0.110	0.106	0.004	0.011	1.011	0.004	0.004
F	0.110	0.004	0.106	0.004	0.004	1.011	0.011
G	0.110	0.004	0.106	0.004	0.004	0.011	1.011

(1-a)* Inverse (Identity Matrix - (a * Degree Matrix)

	Α	В	С	D	E	F	G
Α	0.816	0.033	0.033	0.029	0.029	0.029	0.029
В	0.066	0.814	0.002	0.057	0.057	0.002	0.002
С	0.066	0.002	0.814	0.002	0.002	0.057	0.057
D	0.088	0.085	0.003	0.809	0.009	0.003	0.003
Е	0.088	0.085	0.003	0.009	0.809	0.003	0.003
F	0.088	0.003	0.085	0.003	0.003	0.809	0.009
G	0.088	0.003	0.085	0.003	0.003	0.009	0.809

Question 4

Jacarrd's Coefficient [0.25pt]

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
6	0	0	1	1	0	0	1	0

Jacarrd's Coefficient Score (1,6)=2/5=0.400

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
7	0	0	0	1	1	1	0	1

Jacarrd's Coefficient Score (1,7) = 2/6 = 0.333

Adamic/Adar [0.25pt]

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
6	0	0	1	1	0	0	1	0
3	1	1	0	1	1	1	0	0
4	1	1	1	0	0	1	1	0

Adamic Adar Score (1,6) = (1 / log(5)) + (1 / log(5)) = 1.431 + 1.431 = 2.862

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
7	0	0	0	1	1	1	0	1
4	1	1	1	0	0	1	1	0
5	1	0	1	0	0	0	1	0

Adamic Adar Score (1,7) = (1/log(5)) + (1/log(3)) = 1.431 + 2.096 = 3.527 Preferential attachment (0.25pt)

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
6	0	0	1	1	0	0	1	0

Preferential Attachment Score (1,6)=4*3=12

	1	2	3	4	5	6	7	8
1	0	1	1	1	1	0	0	0
7	0	0	0	1	1	1	0	1

Preferential Attachment Score (1,7) = 4 * 4 = 16

Katz (with b=0.05) (0.25pt)

S-E	L	Count	B^L	(B^L)*Count
1-6	2	2	0.0025000	0.0050000
1-6	3	7	0.0001250	0.0008750
1-6	4	9	0.0000063	0.0000563
1-6	5	19	0.0000003	0.0000059
		Katz	0.00593719	

Katz Score (1,6) = 0.050000 + 0.0008750 + 0.0000563 + 0.0000059 = 0.00593719

S-E	Len	Count	B^L	(B^L)*Count
1-7	2	2	0.0025000	0.0050000
1-7	3	5	0.0001250	0.0006250
1-7	4	11	0.0000063	0.0000688
1-7	5	16	0.0000003	0.0000050
		Katz	0.00569875	

```
Katz Score (1,7) = 0.005000 + 0.006250 + 0.0000688 + 0.0000050 = 0.00569875
```

SimRank score with C=1 [0.50pt]

```
Node 1 = { 2, 3, 4, 5 }

Node 6 = { 3, 4, 7 }

SimRank Score (1, 6) = 2/(4*3) = 2/12 = 0.1667

Node 1 = { 2, 3, 4, 5 }

Node 7 = { 4, 5, 6, 8 }

SimRank Score (1, 7) = 2/(4*4) = 2/16 = 0.1250
```

Question 5

Complete set of communities by using 3-cliquie [0.25pt]

```
{5,6,7,8,9,10,11,13,14,15,16,17}=12
{7,8,9,10,11,13,14,15,16,17,18}=11
{1,2,3,4,5,6,7,8}=8
```

Complete set of communities by 3-club [0.25pt]

```
{4,5,6,7,8,9,10,11,12}=9
{7,9,13,14,15,16,17,18}=8
{1,2,3,4,5,6,7,8}=8
```

Complete set of communities by 3-core [0.25pt]

```
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
```

Geodesic distance between each pair of nodes, and use Multidimensional Scaling (MDS) to convert the network into a two dimensional space [1.25pt]

Identity matrix – $(e * e^{T})$

Ident	dentity matrix – (e * e')																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
2	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
3	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
4	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
5	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
6	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
7	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
8	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
9	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
10	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
11	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
12	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056
13	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056	-0.056
14	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056	-0.056
15	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056	-0.056
16	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056	-0.056
17	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944	-0.056
18	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056	0.944

Geodesic Distance Matrix Squared

deou	eodesic Distance Matrix Squared																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	1	1	1	4	4	9	9	16	16	16	16	16	25	25	25	25	36
2	1	0	1	1	4	4	9	9	16	16	16	16	16	25	25	25	25	36
3	1	1	0	1	1	4	4	9	16	16	16	16	9	16	16	16	16	25
4	1	1	1	0	1	1	4	4	9	9	9	9	9	16	16	16	16	25
5	4	4	1	1	0	1	1	4	9	9	9	9	4	9	9	9	9	16
6	4	4	4	1	1	0	1	1	4	4	4	4	4	9	9	9	9	16
7	9	9	4	4	1	1	0	4	9	9	9	9	1	4	4	4	4	9
8	9	9	9	4	4	1	4	0	1	1	1	1	9	4	9	4	9	9
9	16	16	16	9	9	4	9	1	0	1	1	4	4	1	4	1	4	4
10	16	16	16	9	9	4	9	1	1	0	1	1	9	4	9	4	9	9
11	16	16	16	9	9	4	9	1	1	1	0	1	9	4	9	4	9	9
12	16	16	16	9	9	4	9	1	4	1	1	0	16	9	16	9	16	16
13	16	16	9	9	4	4	1	9	4	9	9	16	0	1	1	1	1	4
14	25	25	16	16	9	9	4	4	1	4	4	9	1	0	1	4	4	1
15	25	25	16	16	9	9	4	9	4	9	9	16	1	1	0	1	4	4
16	25	25	16	16	9	9	4	4	1	4	4	9	1	4	1	0	1	1
17	25	25	16	16	9	9	4	9	4	9	9	16	1	4	4	1	0	1
18	36	36	25	25	16	16	9	9	4	9	9	16	4	1	4	1	1	0

Input matrix:

```
9.515 9.015 7.293 6.293 3.710 3.154 0.821 0.654 -2.401 -1.762 -1.762 -0.623 -2.123 -5.985 -5.290 -6.068 -5.290 -9.151 7.293 7.293 6.071 4.571 3.488 1.492 1.599 -1.068 -4.123 -3.485 -3.485 -2.346 -0.346 -3.207 -2.512 -3.290 -2.512 -5.373 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.710 3.7
-2.929 -1.290
3.071 3.210
2.210 5.349
2.904 4.543
3.627 5.265
4.904 6.043
6.043 8.182
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.293
1.432
3.627
3.349
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.627
5.265
```

Eigenvalues Eigenvectors:

```
(54.072, 0.0001)
(20.380, 0.0001)
(-5.054, 0.0001)
(-3.050, 0.0001)
(3.463, 0.0001)
(3.010, 0.0001)
(1.890, 0.0001)
(-1.512, 0.0001)
(-1.512, 0.0001)
(-1.167, 0.0001)
(-0.563, 0.0001)
(-0.391, 0.0001)
(-0.003, 0.0001)
(0.000, 0.0001)
(0.048, 0.0001)
(0.448, 0.0001)
(0.550, 0.0001)
(0.550, 0.0001)
```

Identity matrix – (e * e^T) * Geodesic Distance Matrix Squared

Identi	ty illati	17 – (1		deo	uesic L	ristant	e Mat	IIX Jqu	ai eu									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	9.515	9.015	7.293	6.293	3.710	3.154	0.821	0.654	-2.401	-1.762	-1.762	-0.623	-2.123	-5.985	-5.290	-6.068	-5.290	-9.151
2	9.015	9.515	7.293	6.293	3.710	3.154	0.821	0.654	-2.401	-1.762	-1.762	-0.623	-2.123	-5.985	-5.290	-6.068	-5.290	-9.151
3	7.293	7.293	6.071	4.571	3.488	1.432	1.599	-1.068	-4.123	-3.485	-3.485	-2.346	-0.346	-3.207	-2.512	-3.290	-2.512	-5.373
4	6.293	6.293	4.571	4.071	2.488	1.932	0.599	0.432	-1.623	-0.985	-0.985	0.154	-1.346	-4.207	-3.512	-4.290	-3.512	-6.373
5	3.710	3.710	3.488	2.488	1.904	0.849	1.015	-0.651	-2.707	-2.068	-2.068	-0.929	0.071	-1.790	-1.096	-1.873	-1.096	-2.957
6	3.154	3.154	1.432	1.932	0.849	0.793	0.460	0.293	-0.762	-0.123	-0.123	1.015	-0.485	-2.346	-1.651	-2.429	-1.651	-3.512
7	0.821	0.821	1.599	0.599	1.015	0.460	1.127	-1.040	-3.096	-2.457	-2.457	-1.318	1.182	0.321	1.015	0.238	1.015	0.154
8	0.654	0.654	-1.068	0.432	-0.651	0.293	-1.040	0.793	0.738	1.377	1.377	2.515	-2.985	0.154	-1.651	0.071	-1.651	-0.012
9	-2.401	-2.401	-4.123	-1.623	-2.707	-0.762	-3.096	0.738	1.682	1.821	1.821	1.460	-0.040	2.099	1.293	2.015	1.293	2.932
10	-1.762	-1.762	-3.485	-0.985	-2.068	-0.123	-2.457	1.377	1.821	2.960	2.460	3.599	-1.901	1.238	-0.568	1.154	-0.568	1.071
11	-1.762	-1.762	-3.485	-0.985	-2.068	-0.123	-2.457	1.377	1.821	2.460	2.960	3.599	-1.901	1.238	-0.568	1.154	-0.568	1.071
12	-0.623	-0.623	-2.346	0.154	-0.929	1.015	-1.318	2.515	1.460	3.599	3.599	5.238	-4.262	-0.123	-2.929	-0.207	-2.929	-1.290
13	-2.123	-2.123	-0.346	-1.346	0.071	-0.485	1.182	-2.985	-0.040	-1.901	-1.901	-4.262	2.238	2.377	3.071	2.293	3.071	3.210
14	-5.985	-5.985	-3.207	-4.207	-1.790	-2.346	0.321	0.154	2.099	1.238	1.238	-0.123	2.377	3.515	3.710	1.432	2.210	5.349
15	-5.290	-5.290	-2.512	-3.512	-1.096	-1.651	1.015	-1.651	1.293	-0.568	-0.568	-2.929	3.071	3.710	4.904	3.627	2.904	4.543
16	-6.068	-6.068	-3.290	-4.290	-1.873	-2.429	0.238	0.071	2.015	1.154	1.154	-0.207	2.293	1.432	3.627	3.349	3.627	5.265
17	-5.290	-5.290	-2.512	-3.512	-1.096	-1.651	1.015	-1.651	1.293	-0.568	-0.568	-2.929	3.071	2.210	2.904	3.627	4.904	6.043
18	-9.151	-9.151	-5.373	-6.373	-2.957	-3.512	0.154	-0.012	2.932	1.071	1.071	-1.290	3.210	5.349	4.543	5.265	6.043	8.182

Eigenvalues Eigenvectors:

Eigenvalues:

```
(54.072, 0.0001)
(20.380, 0.000i)
(-5.054, 0.000i)
(-3.050, 0.000i)
  3.463. 0.000il
  3.010, 0.0001)
1.890, 0.0001)
-1.512, 0.0001)
  1.318, 0.0001)
  -1.167, 0.000i)
-0.563, 0.000i)
-0.391, 0.000i)
(-0.156, 0.000i)
  0.000, 0.0001)
  0.033, 0.000i)
0.448, 0.000i)
0.500, 0.000i)
  0.500, 0.000i)
```

```
(-0.024, 0.0001)
(-0.024, 0.0001)
(-0.273, 0.0001)
                                                                                                                                                                                           (-0.002, 0.0001)
(-0.002, 0.0001)
( 0.024, 0.0001)
                                                                                                                                                                                                                               ( 0.084, 0.0001)
( 0.084, 0.0001)
( 0.222, 0.0001)
(-0.420, 0.000i)
(-0.420, 0.000i)
(-0.297, 0.000i)
                                                                         ( 0.243, 0.000i)
( 0.243, 0.000i)
(-0.255, 0.000i)
                                                                                                               (-0.113, 0.0001)
(-0.113, 0.0001)
( 0.079, 0.0001)
                                                                                                                                                     (-0.195, 0.000i)
(-0.195, 0.000i)
( 0.155, 0.000i)
                                                                                                                                                                                                                                                                      (-0.159, 0.0001)
(-0.159, 0.0001)
( 0.070, 0.0001)
                                     ( 0.007,
(-0.165,
( 0.050,
(-0.283.
                 0.00011
                                                       0.00011
                                                                           ( 0.199.
                                                                                             0.00011
                                                                                                                   0.064.
                                                                                                                                   0.00011
                                                                                                                                                      (-0.100.
                                                                                                                                                                         0.00011
                                                                                                                                                                                            (-0.002.
                                                                                                                                                                                                              0.00011
                                                                                                                                                                                                                                 (-0.062.
                                                                                                                                                                                                                                                    0.00011
                                                                                                                                                                                                                                                                         0.008.
                                                                                                                                                                                                                                                                                          0.00011
                                                                          ( 0.199,
(-0.130,
( 0.142,
(-0.344,
(-0.229,
(-0.353,
(-0.169,
(-0.169,
( 0.074,
                                                                                                                                                                                                                                                                      ( 0.008, 0.0001)
(-0.004, 0.0001)
( 0.146, 0.0001)
(-0.156, 0.0001)
( 0.447, 0.0001)
(-0.066, 0.0001)
(-0.066, 0.0001)
(-0.066, 0.0001)
                  0.000i)
0.000i)
                                                       0.000i)
0.000i)
                                                                                             0.000i)
0.000i)
                                                                                                                   0.186,
0.265,
0.294,
                                                                                                                                   0.000i)
                                                                                                                                                                         0.0001
                                                                                                                                                                                              0.027,
                                                                                                                                                                                                              0.000i)
0.000i)
                                                                                                                                                                                                                                 (-0.010,
(-0.286,
                                                                                                                                                                                                                                                    0.0001)
                                                                                                                                                         0.477,
0.121,
-0.527,
-0.098,
                                                                                             0.0001)
                                                                                                                                   0.0001)
                                                                                                                                                                                                                                 (-0.124,
 -0.029,
                 0.0001)
                                     (-0.247,
                                                        0.0001)
                                                                                                                                                                         0.0001)
                                                                                                                                                                                               0.052, 0.0001)
                                                                                                                                                                                                                                                    0.0001)
                                    (-0.247, 0.0001)
( 0.246, 0.0001)
( 0.193, 0.0001)
( 0.349, 0.0001)
( 0.349, 0.0001)
( 0.502, 0.0001)
                                                                                                                                                                                           ( 0.032, 0.0001)
( 0.072, 0.0001)
( -0.074, 0.0001)
( -0.027, 0.0001)
( -0.027, 0.0001)
( 0.064, 0.0001)
 -0.019, 0.000i)
                                                                                             0.0001)
                                                                                                                  -0.288,
                                                                                                                                   0.0001)
                                                                                                                                                                         0.000i)
                                                                                                                                                                                                                                ( 0.262,
( 0.088,
(-0.059,
(-0.059,
                                                                                                                                                                                                                                                    0.000i)
0.000i)
  0.141, 0.0001)
0.081, 0.0001)
0.081, 0.0001)
                                                                                             0.0001)
                                                                                                                   0.361.
                                                                                                                                   0.0001)
                                                                                                                                                                         0.00011
                                                                                             0.000i)
0.000i)
                                                                                                                   0.063,
                                                                                                                                   0.000i)
0.000i)
                                                                                                                                                                         0.000i)
0.000i)
                                                                                                                                                                                                                                                    0.000i)
0.000i)
                                                                                                                                                                                                                                (-0.147,
  -0.010, 0.000i)
                                                                                             0.0001)
                                                                                                                  -0.379,
                                                                                                                                   0.0001)
                                                                                                                                                         0.435,
-0.226,
                                                                                                                                                                         0.0001)
                                                                                                                                                                                                                                                    0.0001)
                                                                                                                                                                                                                                                                       (-0.154,
                                                                                                                                                                                                                                                                                          0.0001)
                                                                                                                                                                                           (-0.116, 0.000i)
(-0.515, 0.000i)
(-0.517, 0.000i)
(-0.301, 0.000i)
  0.114. 0.000i)
                                     (-0.343.
                                                        0.00011
                                                                           (-0.264.
                                                                                             0.00011
                                                                                                                (-0.463.
                                                                                                                                   0.00011
                                                                                                                                                                         0.0001)
                                                                                                                                                                                                                                 (-0.075.
                                                                                                                                                                                                                                                    0.00011
                                                                                                                                                                                                                                                                         0.159.
                                                                                                                                                                                                                                                                                          0.0001
                                                                                                                                                                                                                                ( 0.447, 0.0001)
( -0.426, 0.0001)
( -0.413, 0.0001)
  0.245, 0.0001)
0.231, 0.0001)
0.252, 0.0001)
                                    (-0.017, 0.0001)
(-0.234, 0.0001)
(-0.037, 0.0001)
                                                                         ( 0.378, 0.0001)
( 0.024, 0.0001)
( 0.364, 0.0001)
( 0.066, 0.0001)
( 0.181, 0.0001)
                                                                                                                                                         0.172,
-0.030,
0.014,
                                                                                                                                                                                                                                                                      ( 0.159, 0.0001)
( 0.352, 0.0001)
(-0.218, 0.0001)
( 0.271, 0.0001)
( 0.188, 0.0001)
                                                                                                                                   0.0004
                                                                                                                                                                         0.00041
                                                                                                                (-0.251,
(0.241,
                                                                                                                                   0.0001)
0.0001)
                                                                                                                                                                        0.000i)
0.000i)
                                                                                                                                                     (-0.154, 0.0001) ( 0.549, 0.0001) ( 0.063, 0.0001) ( 0.188, 0.0001) ( 0.051, 0.0001) ( 0.203, 0.0001) ( 0.411, 0.0001) (-0.598, 0.0001)
   0.235, 0.0001)
                                     (-0.241, 0.0001)
                                                                                                                (-0.200, 0.0001)
( 0.010, 0.0001)
  0.395, 0.0001)
                                    (-0.091, 0.000i)
```

1 2 1 -0.420 -0.024 2 -0.420 -0.024 3 -0.297 -0.273 4 -0.283 0.007 5 -0.159 -0.165 6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241 18 0.395 -0.091	Calculation of S1 and S2										
2 -0.420 -0.024 3 -0.297 -0.273 4 -0.283 0.007 5 -0.159 -0.165 6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241		1	2								
3 -0.297 -0.273 4 -0.283 0.007 5 -0.159 -0.165 6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	1	-0.420	-0.024								
4 -0.283 0.007 5 -0.159 -0.165 6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	2	-0.420	-0.024								
5 -0.159 -0.165 6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	3	-0.297	-0.273								
6 -0.137 0.050 7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	4	-0.283	0.007								
7 -0.029 -0.247 8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	5	-0.159	-0.165								
8 -0.019 0.246 9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	6	-0.137	0.050								
9 0.141 0.193 10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	7	-0.029	-0.247								
10 0.081 0.349 11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	8	-0.019	0.246								
11 0.081 0.349 12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	9	0.141	0.193								
12 -0.010 0.502 13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	10	0.081	0.349								
13 0.114 -0.343 14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	11	0.081	0.349								
14 0.245 -0.017 15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	12	-0.010	0.502								
15 0.231 -0.235 16 0.252 -0.037 17 0.235 -0.241	13	0.114	-0.343								
16 0.252 -0.037 17 0.235 -0.241	14	0.245	-0.017								
17 0.235 -0.241	15	0.231	-0.235								
	16	0.252	-0.037								
18 0.395 -0.091	17	0.235	-0.241								
	18	0.395	-0.091								

	1	2
1	7.353	0
2	0	4.514

S1	S2
-3.088	-0.108
-3.088	-0.108
-2.184	-1.232
-2.081	0.032
-1.169	-0.745
-1.007	0.226
-0.213	-1.115
-0.140	1.111
1.037	0.871
0.596	1.576
0.596	1.576
-0.074	2.266
0.838	-1.548
1.802	-0.077
1.699	-1.061
1.853	-0.167
1.728	-1.088
2.905	-0.411
	-3.088 -3.088 -3.088 -2.184 -2.081 -1.169 -1.007 -0.213 -0.140 1.037 0.596 -0.596 -0.074 0.838 1.802 1.699 1.853 1.728

Implement a k-means clustering algorithm (selecting k=2 and using node 18 and node 1 as the initial centers), and report the community structures after 10 iterations [2.00pt]

					Iterat	Iterat	ion 02					
	s1	s2			c1	c2			c1	c2		
1	-3.088	-0.108	-3.088	-0.108	0.000	6.001	-1.449	0.036	1.645	4.539	-1.449	0.036
2	-3.088	-0.108		1	0.000	6.001	1	9	1.645	4.539	1	9
3	-2.184	-1.232			1.442	5.155	1		1.466	3.826	1	
4	-2.081	0.032			1.017	5.006	1		0.632	3.532	1	
5	-1.169	-0.745			2.022	4.088	1		0.830	2.714	1	
6	-1.007	0.226			2.108	3.964	1		0.481	2.471	1	
7	-0.213	-1.115			3.046	3.196	1		1.689	1.982	1	
8	-0.140	1.111			3.190	3.404	1		1.694	1.961	1	
9	1.037	0.871			4.240	2.266	2		2.623	0.997	2	
10	0.596	1.576			4.051	3.046	2		2.560	1.825	2	
11	0.596	1.576			4.051	3.046	2		2.560	1.825	2	
12	-0.074	2.266			3.837	4.005	1		2.620	2.761	1	
13	0.838	-1.548			4.182	2.359	2		2.782	1.631	2	
14	1.802	-0.077			4.890	1.152	2		3.253	0.354	2	
15	1.699	-1.061			4.881	1.370	2		3.334	1.054	2	
16	1.853	-0.167			4.941	1.080	2		3.309	0.423	2	
17	1.728	-1.088		1	4.915	1.358	2	9	3.370	1.087	2	9
18	2.905	-0.411	2.905	-0.411	6.001	0.000	1.450	-0.037	4.377	1.502	1.450	-0.037

	Iterat	ion 03	_		Iterat	ion 04	_		ion 05	_		
	c1	c2			c1	c2			c1	c2		
1	1.645	4.539	-1.449	-0.036	1.645	4.539	-1.449	-0.036	1.645	4.539	-1.449	-0.036
2	1.645	4.539	1	9	1.645	4.539	1	9	1.645	4.539	1	9
3	1.466	3.826	1		1.466	3.826	1		1.466	3.826	1	
4	0.632	3.532	1		0.632	3.532	1		0.632	3.532	1	
5	0.830	2.714	1		0.830	2.714	1		0.830	2.714	1	
6	0.481	2.471	1		0.481	2.471	1		0.481	2.471	1	
7	1.689	1.982	1		1.689	1.982	1		1.689	1.982	1	
8	1.694	1.961	1		1.694	1.961	1		1.694	1.961	1	
9	2.623	0.997	2		2.623	0.997	2		2.623	0.997	2	
10	2.560	1.825	2		2.560	1.825	2		2.560	1.825	2	
11	2.560	1.825	2		2.560	1.825	2		2.560	1.825	2	
12	2.620	2.761	1		2.620	2.761	1		2.620	2.761	1	
13	2.782	1.631	2		2.782	1.631	2		2.782	1.631	2	
14	3.253	0.354	2		3.253	0.354	2		3.253	0.354	2	
15	3.334	1.054	2		3.334	1.054	2		3.334	1.054	2	
16	3.309	0.423	2		3.309	0.423	2		3.309	0.423	2	
17	3.370	1.087	2	9	3.370	1.087	2	9	3.370	1.087	2	9
18	4.377	1.502	1.450	0.037	4.377	1.502	1.450	0.037	4.377	1.502	1.450	0.037

	Iterati	ion 06			Iterat	ion 07			Iterat	ion 08		
	c1	c2			c1	c2			c1	c2		
1	1.645	4.539	-1.449	-0.036	1.645	4.539	-1.449	-0.036	1.645	4.539	-1.449	-0.036
2	1.645	4.539	1	9	1.645	4.539	1	9	1.645	4.539	1	9
3	1.466	3.826	1		1.466	3.826	1		1.466	3.826	1	
4	0.632	3.532	1		0.632	3.532	1		0.632	3.532	1	
5	0.830	2.714	1		0.830	2.714	1		0.830	2.714	1	
6	0.481	2.471	1		0.481	2.471	1		0.481	2.471	1	
7	1.689	1.982	1		1.689	1.982	1		1.689	1.982	1	
8	1.694	1.961	1		1.694	1.961	1		1.694	1.961	1	
9	2.623	0.997	2		2.623	0.997	2		2.623	0.997	2	
10	2.560	1.825	2		2.560	1.825	2		2.560	1.825	2	
11	2.560	1.825	2		2.560	1.825	2		2.560	1.825	2	
12	2.620	2.761	1		2.620	2.761	1		2.620	2.761	1	
13	2.782	1.631	2		2.782	1.631	2		2.782	1.631	2	
14	3.253	0.354	2		3.253	0.354	2		3.253	0.354	2	
15	3.334	1.054	2		3.334	1.054	2		3.334	1.054	2	
16	3.309	0.423	2		3.309	0.423	2		3.309	0.423	2	
17	3.370	1.087	2	9	3.370	1.087	2	9	3.370	1.087	2	9
18	4.377	1.502	1.450	0.037	4.377	1.502	1.450	0.037	4.377	1.502	1.450	0.037

	Iterat	ion 09	Iterat	ion 10	_			
	c1	c2			c1	c2		
1	1.645	4.539	-1.449	-0.036	1.645	4.539	-1.449	-0.036
2	1.645	4.539	1	9	1.645	4.539	1	9
3	1.466	3.826	1		1.466	3.826	1	
4	0.632	3.532	1		0.632	3.532	1	
5	0.830	2.714	1		0.830	2.714	1	
6	0.481	2.471	1		0.481	2.471	1	
7	1.689	1.982	1		1.689	1.982	1	
8	1.694	1.961	1		1.694	1.961	1	
9	2.623	0.997	2		2.623	0.997	2	
10	2.560	1.825	2		2.560	1.825	2	
11	2.560	1.825	2		2.560	1.825	2	
12	2.620	2.761	1		2.620	2.761	1	
13	2.782	1.631	2		2.782	1.631	2	
14	3.253	0.354	2		3.253	0.354	2	
15	3.334	1.054	2		3.334	1.054	2	
16	3.309	0.423	2		3.309	0.423	2	
17	3.370	1.087	2	9	3.370	1.087	2	9
18	4.377	1.502	1.450	0.037	4.377	1.502	1.450	0.037

C1 - (-1.449, -0.036)

C2 - (1.450, 0.037)

