Линейная алгебра

Дима Трушин

Семинар 8

Проекции

Пусть V – некоторое векторное пространство и $U,W\subseteq V$ – некоторые подпространства. Вудем говорить, что V раскладывается в прямую сумму этих подпространств, если $U\cap W=0$ и V=U+W, т.е. любой вектор $v\in V$ представляется в виде v=u+w, где $u\in U$ и $w\in W$ (то есть $U+W=\{u+w\mid u\in U,\ w\in W\}$). Думать про это надо так, U и W – это непересекающиеся подпространства и V является наименьшим пространством их содержащим. Такое разложение всегда получается так: берем какой-нибудь базис e_1,\ldots,e_n пространства V, делим его на две части e_1,\ldots,e_k и e_{k+1},\ldots,e_n и полагаем $U=\langle e_1,\ldots,e_k\rangle$ и $W=\langle e_{k+1},\ldots,e_n\rangle$. Если пространство V является прямой суммой подпространств U и W, то мы будем обозначать это дело следующим образом $V=U\oplus W$. В этом случае любой вектор v единственным образом раскладывается в виде v=u+w, где $u\in U$ и $w\in W$. Еще в этом случае dim U + dim W = dim V.

Утверждение. Пусть V – евклидово пространство и $U \subseteq V$ – произвольное подпространство. Тогда $V = U \oplus U^{\perp}$.

Таким образом в евклидовом пространстве V при фиксированном подпространстве $U\subseteq V$, любой вектор $v\in V$ единственным образом раскладывается в сумму $v=\operatorname{pr}_U v+\operatorname{ort}_U v$, где $\operatorname{pr}_U v\in U$ и $\operatorname{ort}_U v\in U^\perp$.

Определение. Если V – евклидово пространство, $U \subseteq V$ – произвольное подпространство и $v \in V$, то

- \bullet Вектор рг $_{U}v$ называется ортогональной проекцией v на U.
- \bullet Вектор $\operatorname{ort}_U v$ называется ортогональной составляющей v относительно U.

Обратите внимание, что ортогональная проекция v на U – это проекция v на U вдоль U^{\perp} , а ортогональная составляющая — проекция v на U^{\perp} вдоль U.

Формула БАБА

Давайте я в начале разберу задачу нахождения проекции вектора на подпространство вдоль другого подпространства (здесь нам не нужно никакое скалярное произведение). Пусть V – некоторое векторное пространство и $V=U\oplus W$. Тогда на пространстве V задан оператор проекции $P\colon V\to V$ такой, что $\ker P=W$ и $P|_U=\operatorname{Id}$, то есть, если $v\in V$ раскладывается в сумму v=u+w, где $u\in U$ и $w\in W$, то Pv=u – оператор вычисления проекции на U вдоль W.

Теперь мы хотим научиться эффективно считать P. Для этого предположим $V = \mathbb{R}^n$, $U = \langle u_1, \dots, u_k \rangle$, $W = \{ y \in \mathbb{R}^n \mid Ay = 0 \}$, где $A \in \mathcal{M}_{s\,n}(\mathbb{R})$. В этом случае $P \colon \mathbb{R}^n \to \mathbb{R}^n$ задается некоторой матрицей. Наша задача – найти эту матрицу.

Предположим для простоты, что векторы u_1, \ldots, u_k образуют базис U, а строки матрицы A линейно независимы. Определим матрицу $B = (u_1 | \ldots | u_k) \in M_{n,k}(\mathbb{R})$. Тогда утверждаются следующие вещи:

- 1. Количество столбцов B совпадает с количеством строк A, то есть k=s.
- 2. Матрица AB обратима.
- 3. Оператор проекции задается формулой $P = B(AB)^{-1}A$. Мнемоническое правило «БАБА».

Доказательство. Матрица A задает линейное отображение $A \colon \mathbb{R}^n \to \mathbb{R}^s$ такое, что $\ker A = W$ и $\operatorname{Im} A = \mathbb{R}^s$ (так как строки матрицы A линейно независимы, то $\operatorname{rk} A = s$, но $\operatorname{rk} A = \dim \operatorname{Im} A$). Матрица B задает отображение $B \colon \mathbb{R}^k \to \mathbb{R}^n$ такое, что $\operatorname{Im} B = U$ и $\ker B = 0$ (так как столбцы B линейно независимы).

(1) Мы знаем, что

$$\dim U + \dim W = n$$
 то есть
$$\dim \ker A + \dim \operatorname{Im} A = n$$

$$\dim W + s = n$$
 откуда $s = k$

- (2) Теперь рассмотрим отображение $AB: \mathbb{R}^k \to \mathbb{R}^k$. Заметим, что $\operatorname{Im} B \cap \ker A = U \cap W = 0$. Значит $\ker AB = 0$, то есть AB обратимый оператор.
- (3) Теперь выведем формулу для P. Пусть v=u+w, где $v\in\mathbb{R}^n$ произвольный вектор, $u\in U$ и $w\in W$ его единственное разложение по прямой сумме подпространств. Тогда Av=Au+Aw=Au. С другой стороны, так как $u\in U$, мы имеем u=Bx для некоторого $x\in\mathbb{R}^k$. Тогда Av=ABx. Так как AB обратимая квадратная матрица, имеем $x=(AB)^{-1}Av$. Значит $u=Bx=B(AB)^{-1}Av$, что и требовалось.

Обратите внимание, что проектор P на U вдоль W зависит от двух подпространств, а не только от U. Если вы измените одно из них, то проектор изменится.

Формула Атата

Теперь я хочу разобрать случай проектора на подпространство вдоль его ортогонального дополнения. Такой проектор называется ортопроектором. Пусть $V=\mathbb{R}^n$ со стандартным скалярным произведением $(x,y)=x^ty$ и пусть подпространство $U\subseteq V$ задано своим базисом $U=\langle u_1,\ldots,u_k\rangle$. Составим матрицу $A=(u_1|\ldots|u_k)\in M_{n\,k}(\mathbb{R})$. Тогда $U^\perp=\{y\in\mathbb{R}^n\mid A^ty=0\}$. Пусть теперь $v\in V$ – произвольный вектор и $v=\operatorname{pr}_U v+\operatorname{ort}_U v$. Тогда формула «БАБА» превращается в $\operatorname{pr}_U v=A(A^tA)^{-1}A^tv$. Мнемоническое правило для запоминания: в евклидовом пространстве БАБА – это Атата.

Обратите внимание, что проектор P всегда зависит от двух подпространств: то, на которое проектируем U, и то, вдоль которого проектируем W. Но в случае ортогонального проектирования $W=U^{\perp}$, потому ортопроектор P реально зависит только от одного подпространства.

Метод наименьших квадратов

Пусть мы хотим решить систему Ax=b, где $A\in \mathrm{M}_{m\,n}(\mathbb{R}),\ b\in \mathbb{R}^m$ и $x\in \mathbb{R}^n$ – столбец неизвестных. И предположим, что система не имеет решений, но от этого наше желание ее решить не становится слабее. Давайте обсудим, как удовлетворить наши желания в подобной ситуации и когда такие ситуации обычно встречаются.

Введем на пространстве \mathbb{R}^m стандартное скалярное произведение $(x,y)=x^ty$. Тогда, на процесс решения системы можно смотреть так: мы подбираем $x\in\mathbb{R}^n$ так, чтоб |Ax-b|=0. Если решить систему невозможно, то этот подход подсказывает, как надо поступить. Надо пытаться минимизировать расстояние между Ax и b. То есть решить задачу

$$|Ax - b| \to \min$$

 $x \in \mathbb{R}^n$

Теперь давайте поймем, как надо решать такую задачу. Пусть матрица A имеет вид $A=(A_1|\dots|A_n)$, где $A_i\in\mathbb{R}^m$ – ее столбцы. Тогда система Ax=b означает, $x_1A_1+\dots+x_nA_n=b$. То есть система разрешима тогда и только тогда, когда $b\in\langle A_1,\dots,A_n\rangle$. Значит наша задача минимизировать расстояние между b и $\langle A_1,\dots,A_n\rangle$. Мы можем разложить вектор b на проекцию и ортогональную составляющую относительно $\langle A_1,\dots,A_n\rangle$. Обычная теорема пифагора говорит, что минимум расстояния достигается на $b_0=\operatorname{pr}_{\langle A\rangle}b$. В этом случае вместо исходной системы Ax=b мы должны решить систему $Ax=b_0$. И если x_0 – ее решение, то $|Ax_0-b|$ как раз и будет минимальным.

Давайте теперь предположим, что столбцы матрицы A линейно независимы. Тогда по формуле «Атата» мы знаем, что $b_0 = A(A^tA)^{-1}A^tb$. Кроме этого должно выполняться $b_0 = Ax_0$. Так как столбцы A линейно независимы, такое x_0 должно быть единственным. Но мы видим, что в качестве x_0 подходит $x_0 = (A^tA)^{-1}A^tb$.

Двойственность для подпространств

Утверждение. Пусть $V = \mathbb{R}^n$ – евклидово пространство. Тогда:

1. Для любого подпространства $W \subseteq V$ выполнено

$$\dim W^{\perp} + \dim W = \dim V$$

- 2. Для любого подпространства $W \subseteq V$, $V = W \oplus W^{\perp}$.
- 3. Для любого подпространства $W \subseteq V$ выполнено $(W^{\perp})^{\perp} = W$.
- 4. Для любых подпространств $W\subseteq E\subseteq V$ верно, что $W^\perp\supseteq E^\perp$. Причем W=E тогда и только тогда, когда $W^\perp=E^\perp$.
- 5. Для любых подпространств $W, E \subseteq V$ выполнено равенство

$$(W+E)^{\perp}=W^{\perp}\cap E^{\perp}$$

6. Для любых подпространств $W, E \subseteq V$ выполнено равенство

$$(W \cap E)^{\perp} = W^{\perp} + E^{\perp}$$

Самосопряженные операторы

Пусть V — евклидово пространство и пусть $\phi: V \to V$ — линейный оператор. Тогда сопряженный к нему линейный оператор ϕ^* — это такой оператор, что $(\phi(v), u) = (v, \phi^*(u))$ для всех $v, u \in V$. Оператор называется самосопряженным, если $\phi^* = \phi$.

Теперь разберемся, что происходит в ортонормированном базисе. В этом случае $V = \mathbb{R}^n$, $(x,y) = x^t y$, а $\phi(x) = Ax$, а $\phi^*(x) = Bx$. Тогда условие (Ax,y) = (x,By) означает $x^t A^t y = x^t By$. То есть $B = A^t$. То есть матрица для ϕ^* это A^t . Значит самосопряженный оператор в ортонормированном базисе задается симметричной матрицей.

В случае произвольного базиса скалярное произведение задается $(x,y)=x^tBy$, где B – симметричная невырожденная положительно определенная матрица. Тогда если $\phi x=Ax$ и $\phi^*x=A'x$, то условие (Ax,y)=(x,A'y) расписывается так: $(Ax)^tBy=x^tBA'y$. То есть $x^tA^tBy=x^tBA'y$ для всех $x,y\in\mathbb{R}^n$. Последнее значит, что $A^tB=BA'$. Значит $A'=B^{-1}A^tB$ – это формула связывает матрицу ϕ и ϕ^* в произвольных базисах.

Утверждение. Пусть $\phi: V \to V$ – самосопряженный оператор в евклидовом пространстве. Тогда

- 1. Все его собственные значения вещественны.
- 2. Собственные вектора с разными собственными значениями ортогональны друг другу.
- $\it 3. \, Cyществует \, opтонормированный \, basuc \, npocmpaнcmea \, V \, cocmoлиций \, us \, cobcmвенных \, векторов \, \phi.$
- 4. B некотором ортонормированном базисе матрица ϕ имеет диагональный вид, c вещественными числами на диагонали.

Переформулируем это утверждение на языке матриц.

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – симметрическая матрица. Тогда

- 1. Все собственные значения А вещественные.
- 2. Все собственные вектора с разными собственными значениями ортогональны.
- 3. Существует ортогональная матрица $C \in \mathrm{M}_n(\mathbb{R})$ такая, что $C^{-1}AC$ является диагональной вещественной матрицей.

Самосопряженный оператор называется *положительным*, если все его собственные значения **неотрица- тельные**. Да, да, именно так. Нулевая матрица тоже считается положительным оператором. Вот такая вот дурацкая терминология.

Алгоритм разложения симметрических матриц

Дано Матрица $A \in M_n(\mathbb{R})$ такая, что $A^t = A$.

 $^{^{1}}$ Обратите внимание, чтот тут нет разницы между $C^{-1}AC$ и $C^{t}AC$, так как C ортогональная.

Задача Найти разложение $A=C\Lambda C^t$, где $C\in \mathrm{M}_n(\mathbb{R})$ – ортогональная матрица, $\Lambda\in \mathrm{M}_n(\mathbb{R})$ – диагональная матрица.

Алгоритм

- 1. Найти собственные значения матрицы A.
 - (a) Составить характеристический многочлен $\chi(\lambda) = \det(A \lambda E)$.
 - (b) Найти корни $\chi(\lambda)$ с учетом кратностей: $\{(\lambda_1, n_1), \dots, (\lambda_k, n_k)\}$, где λ_i корни, n_i кратности.
- 2. Для каждого λ_i найти ортонормированный базис в пространстве собственных векторов отвечающему λ_i .
 - (a) Найти ФСР системы $(A \lambda_i E)x = 0$. Пусть это будет $v_1^i, \dots, v_{n_i}^i$. Обратите внимание, что их количество будет в точности равно кратности n_i .
 - (b) Ортогонализовать $v_1^i, \dots, v_{n_i}^i$ методом Грама-Шмидта. Обратите внимание, после ортогонализации останется ровно n_i векторов.
 - (c) Сделать каждый вектор длинны один: $v^i_j \mapsto \frac{v^i_j}{|v^i_i|}$.
- 3. Матрица Λ будет диагональной с числами $\lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_2, \dots, \lambda_k, \dots, \lambda_k$ на диагонали, где каждое λ_i повторяется n_i раз. Обратите внимание, всего получится n чисел.
- 4. Матрица C будет составлена из столбцов $v_1^1,\dots,v_{n_1}^1,v_1^2,\dots,v_{n_2}^2,\dots,v_1^k,\dots,v_{n_k}^k$. Обратите внимание, порядок собственных векторов соответствует порядку собственных значений в матрице Λ .

Сингулярное разложение (SVD)

Это утверждение я сформулирую только на матричном языке.

Утверждение. Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$. Тогда существуют

- 1. ортогональная матрица $C \in \mathrm{M}_m(\mathbb{R})$.
- 2. ортогональная матрица $D \in M_n(\mathbb{R})$.
- 3. положительные вещественные числа $\lambda_1 \geqslant \ldots \geqslant \lambda_s > 0$

такие, что $A = C\Lambda D^t$, где

$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_s & \\ & & & 0 \end{pmatrix} \in \mathcal{M}_{mn}(\mathbb{R})$$

Пусть столбцы матрицы C – это вектора v_i , а столбцы матрицы D – это вектора u_i . Тогда утверждение означает, что

$$A = \lambda_1 v_i u_i^t + \ldots + \lambda_s v_s u_s^t$$

То есть мы представили матрицу A в виде «ортогональной» суммы матриц ранга один, в том смысле, что все v_i ортогональны друг другу и все u_i ортогональны друг другу.

Усеченное сингулярное разложение Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R}), \ C \in \mathrm{M}_{m\,s}(\mathbb{R}), \ D \in \mathrm{M}_{n\,s}(\mathbb{R})$ и $\Lambda \in \mathrm{M}_{s}(\mathbb{R})$ – диагональная матрица с числами $\lambda_1 \geqslant \ldots \geqslant \lambda_s > 0$ на диагонали. Предположим, что столбцы матриц C и D ортонормированны (то есть все между собой ортогональны и длины один). Тогда равенство вида $A = C\Lambda D^t$ называется усеченным сингулярным разложением.

Если нам известно сингулярное разложение $A = C\Lambda D^t$, то усеченное из него делается так: 1) составим матрицу C', состоящую из первых s столбцов матрицы C, 2) составим матрицу D', состоящую из первых s столбцов матрицы D, 3) определим матрицу Λ' как квадратную s на s матрицу c диагональю из матрицы Λ . Тогда $A = C'\Lambda'(D')^t$ будет усеченным разложением.

Замечание Философский смысл этого разложения следующий. Пусть наша матрица — это квадратная черно-белая картинка, где числа — интенсивности черного цвета. На вектора v_i и u_i надо смотреть как на «ортогональные» компоненты «базовых» цветовых интенсивностей. А λ_i — это мощности этих самых сигналов. Потому, если λ_i достаточно малы, то наш глаз не способен различить соответствующие сигналы. Потому, если мы выкинем их из нашей матрицы, то на глаз, матрица A не будет отличаться от полученной.

Обычно в реальной жизни выходит, что достаточно только первых штук пять слагаемых. Тогда $A' = \lambda_1 v_1 u_1^t + \ldots + \lambda_5 v_5 u_5^t$ будет на глаз не отличима от A. В чем же польза от такого? На хранение матрицы A нам потребуется mn чисел. Для хранения матрицы A' нам надо 5 чисел λ_i и еще 5 пар векторов v_i и u_i , на хранение каждого из которых надо m и n чисел соответственно. И того затраты 5 + 5m + 5n = 5(m + n + 1). Это дает огромный выигрыш в количестве хранимой информации и является основой для многих алгоритмов архивации с потерей данных вроде JPG.

Алгоритм нахождения сингулярного разложения

Дано Матрица $A \in M_{mn}(\mathbb{R})$.

Задача Найти разложение $A=C\Lambda D^t$, где $C\in \mathrm{M}_m(\mathbb{R})$ ортогональная, $D\in \mathrm{M}_n(\mathbb{R})$ ортогональная, $\Lambda\in \mathrm{M}_{m\,n}(\mathbb{R})$ содержит на диагонали элементы $\lambda_1\geqslant\ldots\geqslant\lambda_s>0$, а все остальные нули.

Алгоритм

- 1. Составим матрицу $S = AA^t \in \mathcal{M}_m(\mathbb{R})$. Тогда $S = C\Lambda\Lambda^tC^t$.
- 2. Так как $S^t=S$. То с помощью алгоритма для симметрических матриц найдем ее разложение $S=\bar{C}\bar{\Lambda}\bar{C}^t$. Причем, обязательно получится, что диагональная матрица $\bar{\Lambda}$ состоит из неотрицательных элементов.
- 3. Тогда $C=\bar{C},$ а $\Lambda\Lambda^t=\bar{\Lambda}.$ То есть $\lambda_i^2=\bar{\lambda}_i.$ Так как $\lambda_i>0,$ то они находятся как $\lambda_i=\sqrt{\bar{\lambda}_i}.$
- 4. Теперь надо найти D из условия $A=C\Lambda D^t$. Обратите внимание Λ не обязательно квадратная и не обязательно обратимая. Заметим

$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_s & \\ & & & 0 \end{pmatrix} = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_s & \\ & & & E \end{pmatrix} \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 0 \end{pmatrix}$$

Значит

$$\begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_s & \\ & & & E \end{pmatrix}^{-1} C^t A = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 0 \end{pmatrix} D^t$$

Представим D в виде $D=(D_1|D_2),$ где D_1 – состоит из первых s столбцов. Тогда

$$\begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_s & \\ & & & E \end{pmatrix}^{-1} C^t A = \begin{pmatrix} D_1^t \\ 0 \end{pmatrix}$$

Отсюда нашлась D_1 .

5. Матрица D_2 однозначно не восстанавливается. Чтобы найти какую-то D, надо дополнить столбцы D_1 до базиса в \mathbb{R}^n и ортонормировать полученную систему. Тогда это даст все столбцы матрицы D. Обратите внимание, первые s столбцов должны остаться столбцами из D_1 .

Замечания

- 1. Надо заметить, что нельзя попытаться составить матрицу A^tA и из нее найти матрицу D. Так как матрицы D и C определены не однозначно и зависят друг от друга. Если вы нашли какую-то матрицу C, то к ней подойдет не любая найденная матрица D, а только та, что является решением $A = C\Lambda D^t$.
- 2. Приведенным выше алгоритмом имеет смысл пользоваться, если у матрицы A количество строк меньше, чем количество столбцов. Если же столбцов меньше, чем строк, то надо найти сингулярное разложение для $A^t = C\Lambda D^t$. Тогда $A = D\Lambda^t C^t$ будет искомым сингулярным разложением для A.

Алгоритм нахождения усеченного сингулярного разложения

Дано Матрица $A \in M_{mn}(\mathbb{R})$.

Задача Найти разложение $A = C\Lambda D^t$, где $C \in \mathrm{M}_{m\,s}(\mathbb{R})$, $D \in \mathrm{M}_{n\,s}(\mathbb{R})$ – матрицы с ортонормированными столбцами, $\Lambda \in \mathrm{M}_s(\mathbb{R})$ – диагональная матрица с элементами $\lambda_1 \geqslant \ldots \geqslant \lambda_s > 0$ на диагонали.

Алгоритм

- 1. Составим матрицу $S = AA^t \in \mathcal{M}_m(\mathbb{R})$. Тогда $S = C\Lambda^2C^t$.
- 2. Надо найти ненулевые собственные значения матрицы (с учетом кратности) S и упорядочить их по невозрастанию:
 - (a) Составить характеристический многочлен $\chi(\lambda) = \det(S \lambda E)$.
 - (b) Найти корни $\chi(\sigma)$ с учетом кратностей: $\{(\sigma_1, n_1), \dots, (\sigma_k, n_k)\}$, где σ_i ненулевые корни, n_i кратности. Мы считаем, что $\sigma_1 \geqslant \dots \geqslant \sigma_k > 0$.
- 3. Для каждого σ_i найти ортонормированный базис в пространстве собственных векторов отвечающему σ_i .
 - (a) Найти ФСР системы $(S \sigma_i E)x = 0$. Пусть это будет $v_1^i, \dots, v_{n_i}^i$. Обратите внимание, что их количество будет в точности равно кратности n_i .
 - (b) Ортогонализовать $v_1^i, \dots, v_{n_i}^i$ методом Грама-Шмидта. Обратите внимание, после ортогонализации останется ровно n_i векторов.
 - (c) Сделать каждый вектор длинны один: $v^i_j \mapsto \frac{v^i_j}{|v^i_j|}$.
- 4. Составим все векторы v_j^i в столбцы матрицы C так, что сначала идут векторы для σ_1 , потом для σ_2 и тд.
- 5. Положим $\lambda_1 = \sqrt{\sigma_1}, \dots, \lambda_s = \sqrt{\sigma_s}$. Определим $\Lambda \in \mathrm{M}_s(\mathbb{R})$ как диагональную матрицу с числами $\lambda_1, \dots, \lambda_s$ на диагонали.
- 6. Найдем матрицу D решая уравнение $A=C\Lambda D^t.$ Так как столбцы C ортогональны, то получим $D^t=\Lambda^{-1}C^tA.$