실력 완성 | 수학 I

3-1-2.등비수열

수학 계산력 강화

(2)등비수열의 응용

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 등비중항

0이 아닌 세 수 a, b, c가 이 순서대로 등비수열을 이룰 때, b를 a와 c의 등비중항이라 하며 $b^2=ac$ 가 성립한다.

 (\overline{a}) a>0, c>0일 때, $b=\sqrt{ac}$ 에서 b를 a와 c의 기하평균이라 한다.

- Arr 다음 세 수가 이 순서로 등비수열을 이룰 때, x의 값을 구하여라.
- **1.** 2, x, 8
- **2.** 2. 6. x
- 3. x, x^2-2, x^3
- **4.** x-2, x+1, x-5
- **5.** x-2, x, 2x+3 (단, x>0)
- **6.** x+1, 2x, 4x-3

- 7. x-2, x+2, x+7
- 8. x, x+1, 4
- **9.** $3x, x-1, \frac{1}{12}x$ (단, x>1)
- ☑ 다음 물음에 답하여라.
- **10.** 서로 다른 세 수 4, a, b는 이 순서로 등차수열을 이루고, 세 수 a, b, 4는 이 순서로 등비수열을 이룰 때, a, b의 값을 구하여라.
- **11.** 세 수 a, b, 24가 이 순서로 등차수열을 이루고, 세 수 4, a, b가 이 순서로 등비수열을 이룰 때, a, b의 값을 각각 구하여라. (단, ab > 0)
- **12.** 서로 다른 두 수 a, b에 대하여 세 수 a, 3, b는 이 순서로 등차수열을 이루고, 세 수 3, a, b는 이 순서로 등비수열을 이룰 때, a, b의 값을 구하여라.

- 13. 2와 12 사이에 두 양수 a, b를 넣으면 세 수 2, a, b는 이 순서로 등비수열을 이루고, 세 수 a, b, 12는 이 순서로 등차수열을 이룬다. 이때, a, b의 값을 구하여라.
- 14. 서로 다른 두 양수 a, b에 대하여 세 수 -4, a, b는 이 순서로 등차수열을 이루고, 세 수 a, b, 16a는 이 순서로 등비수열을 이룰 때, a, b의 값을 구하여라.
- **15.** 서로 다른 두 양수 a, b에 대하여 세 수 a, b, 9는 이 순서로 등차수열을 이루고, 세 수 a, b, 4a는 이 순서로 등비수열을 이룰 때, a, b의 값을 구하여 라.
- **16.** 세 수 1, a, b가 이 순서로 등차수열을 이루고, 세 수 a, b, 1이 이 순서로 등비수열을 이룰 때, 1이 아닌 실수 a, b의 값을 각각 구하여라.
- **17.** 서로 다른 두 양수 a,b에 대하여 세 수 3a,b,10은 이 순서대로 등차수열을 이루고, 세 수 2,a,b는 이 순서대로 등비수열을 이룰 때, a-2b의 값을 구 하여라.
- $oldsymbol{18}$. 세 수 a,b,c가 이 순서대로 등차수열을 이루고 세 수 2c, a, 4가 이 순서대로 등비수열을 이룬다. a+b+c=0일 때, c-a의 값을 구하여라.

19. 두 양수 a,b에 대하여 세 수 a+3,3,b는 이 순서 대로 등차수열을 이루고, 세 수 $\frac{2}{b}$, 1, $\frac{2}{a+3}$ 는 이 순 서대로 등비수열을 이룬다. 이 때, b-a의 값을 구하 여라.

02 / 등비수열의 합

1. 등비수열의 합 첫째항이 a, 공비가 $r(r \neq 0)$ 인 등비수열의 첫째항부터 제n항까지의 합을 S_n 이라 하면 다음과 같다.

(1)
$$r \neq 1$$
일 때, $S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}$

(2)
$$r = 1$$
일 때, $S_n = na$

(참고)
$$r>1$$
일 때 $S_n=rac{a(r^n-1)}{r-1}$,
$$r<1$$
일 때 $S_n=rac{a(1-r^n)}{1-r}$ 을 이용하면 편리하다.

- 2. 수열의 합과 일반항 사이의 관계 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하면 $a_1 = S_1$, $a_n = S_n - S_{n-1}$ $(n \ge 2)$
- \blacksquare 첫째항 a와 공비 r가 다음과 같은 등비수열 $\{a_n\}$ 의 첫 째 항부터 제10항까지의 합 S_{10} 을 구하여라.

20.
$$a = \frac{1}{9}, r = \sqrt{3}$$

21.
$$a = \sqrt{2}$$
, $r = \sqrt{2}$

22.
$$a=2, r=\frac{1}{3}$$

23.
$$a = -3$$
, $r = -2$

☑ 다음을 만족시키는 등비수열의 합을 구하여라.

24.
$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^9$$

25.
$$2+2^3+2^5+2^7+2^9$$

26.
$$4+(-2)+1+\left(-\frac{1}{2}\right)+\cdots+\left(-\frac{1}{128}\right)$$

- $oldsymbol{\square}$ 다음 등비수열 $\{a_n\}$ 에 대하여 첫째항부터 제n항까지의 합 S_n 을 구하여라.
- **27.** 1, 2, 4, 8, ...
- **28.** 4, 4, 4, 4, ...
- **29.** $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$
- **30.** 2, 8, 32, 128, ...
- **31.** -27, -9 -3, -1, ···

32.
$$\frac{3}{2}$$
, -1, $\frac{2}{3}$, $-\frac{4}{9}$, ...

34.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ...

35.
$$\frac{2}{27}$$
, $\frac{2}{9}$, $\frac{2}{3}$, 2, ...

 $oldsymbol{\square}$ 등비수열 $\{a_n\}$ 의 일반항이 다음과 같이 주어질 때, 첫째 항부터 제n항까지의 합 S_n 을 구하여라.

36.
$$a_n = \frac{1}{3^n}$$

37.
$$a_n = 2^{2n-1}$$

38.
$$a_n = 5 \cdot 2^{n-2}$$

39.
$$a_n = 2 \cdot 3^{n-1}$$

- $oldsymbol{\square}$ 다음 등비수열의 첫째항부터 주어진 항까지의 합 S_n 을 구하여라.
- **40.** 첫째항이 8, 공비가 -3, 끝항이 648
- **41.** 첫째항이 9, 공비가 1, 항수가 11
- **42.** 첫째항이 3, 공비가 2, 항수가 6
- \blacksquare 등비수열 $\{a_n\}$ 에 대하여 다음 물음에 답하여라.
- **43.** $a_1 + a_2 = 1$, $a_3 + a_4 = 3$ 이고 공비가 양수일 때, 첫 째항부터 제6항까지의 합을 구하여라.
- **44.** 첫째항이 5, 공비가 2인 등비수열의 첫째항부터 제n항까지의 합이 처음으로 500보다 크게 되는 자 연수 n의 값을 구하여라.
- **45.** 등비수열 $\{a_n\}$ 에 대하여 $a_1 + a_2 + a_3 + a_4 = 6$, $a_5 + a_6 + a_7 + a_8 = 12$ **일 때**, $a_9 + a_{10} + a_{11} + a_{12}$ 의 값을 구하여라.
- **46.** $a_1 + a_2 + a_3 = 1$, $a_4 + a_5 + a_6 = 8$ 이고 공비가 실수 일 때, 첫째항부터 제9항까지의 합을 구하여라.

- **47.** 수열 $\{a_n\}$ 은 등비수열이고, $a_1 + a_2 + a_3 + a_4 = 5$, $a_5 + a_6 + a_7 + a_8 = 10$ **일 때**, $a_9 + a_{10} + a_{11} + a_{12}$ 의 값을 구하여라.
- 48. 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $S_5 = 10$, $S_{10} = 30$ 이다. 이때, S_{15} 의 값을 구하여라.
- **49.** 모든 항이 양수인 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자. $\frac{S_{20}}{S_{10}} = 10$ 일 때, $\frac{a_{22}}{a}$ 의 값을 구하여라.
- **50.** 모든 항이 실수인 등비수열 $\{a_n\}$ 의 첫째항부터 제3항까지의 합이 21, 첫째항부터 제6항까지의 합 이 189일 때, 첫째항부터 제8항까지의 합을 구하여
- **51.** 첫째항부터 제4항까지의 합이 2, 첫째항부터 제8항까지의 합이 8인 등비수열 $\{a_n\}$ 에 대하여 첫째항 부터 제12항까지의 합을 구하여라.
- **52.** 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $S_{10}=5$, $S_{20}=20$ 이다. 이때, S_{30} 의 값 을 구하여라.

- 53. 첫째항부터 등비수열을 이루는 수열 $\{a_n\}$ 의 첫째 항부터 제n항까지의 합 S_n 이 $S_n = a \cdot 3^{n-1} + 3$ 일 때, 상수 a의 값을 구하여라.
- ${f 54.}$ 각 항이 실수인 등비수열 $\{a_n\}$ 에 대하여 $a_1 + a_2 = 20$, $a_4 + a_5 = 160$ 을 만족한다. 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $\frac{S_{10}}{S_r}$ 의 값을 구하여라.

55. 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합 S_n 에 대하여 $\frac{S_4}{S_2} = 9$ 일 때, $\frac{a_5}{a_2}$ 의 값을 구하여라.

56. 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라고 할 때, $S_4=13S_2$ 가 성립한다. $\frac{a_7}{a_c}$ 의 값을 구하여라.

57. 첫째항이 2이고, 모든 항이 양수인 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $\frac{S_6 - S_4}{S_2} = 36$ 이 성립한다. a_3 의 값을 구하여라.

 \blacksquare 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합 S_n 이 다음과 같을 때, 수열 $\{a_n\}$ 의 일반항을 구하고, 첫째항부터 등비 수열을 이루는지 확인하여라.

58.
$$S_n = 3^{n+1}$$

59.
$$S_n = 2^n + 1$$

60.
$$S_n = 3 \cdot 5^n - 3$$

61.
$$S_n = 2^n - 1$$

62.
$$S_n = 3 \cdot 2^n - 3$$

63.
$$S_n = 2 \cdot 3^n - 2$$

64.
$$S_n = 5^{n+1} - 5$$

65.
$$S_n = 3^n - 1$$

03 / 등비수열의 합의 활용

- (1) 원리합계 : 원금과 이자를 합한 금액을 원리합계라 하고, 원금 a원을 연이율 r로 n년간 예금했을 때, 원리합계 S는 다음 두 가지 방법으로 계산한다.
 - ① 단리법 : 원금에 대해서만 이자를 계산하는 방법 $\Rightarrow S = a(1+rn)($ 원)
 - ② 복리법 : 원금에 이자를 합한 금액을 다시 원금으로 보고 이자를 계산하는 방법 $\Rightarrow S = a(1+r)^n$ (원)
- (2) 적금 : 일정한 금액을 일정한 기간마다 적립하는 것을 적금 또는 적립예금이라 하고, 연이율 r, 1년마다 복리로 a원씩 적립했을 때, n년째 말의 원리합계 S는 각각 다음과 같다.
- ① 매년 초에 적립하는 경우: $S = \frac{a(1+r)\{(1+r)^n-1\}}{a}$ (원)
- ② 매년 말에 적립하는 경우: $S = \frac{a\{(1+r)^n 1\}}{(2)}$ (원) r
- ☑ 다음과 같은 이율과 기간 동안 매년 초에 10만 원씩 n 년 동안 적립할 때, n년 말에 적립되는 금액을 구하여라.
- **66.** 연이율 1%의 복리로 12년 동안 적립 (단, 1.01¹² = 1.13로 계산한다.)

- 67. 연이율 2%의 복리로 36년 동안 적립 (단, $1.02^{36} = 2.04$ 로 계산한다.)
- **68.** 연이율 7%의 복리로 9년 동안 적립 (단, 1.079 = 1.84로 계산한다.)

69. 연이율 8%의 복리로 12년 동안 적립 (단. $1.08^{12} = 2.52$ 로 계산한다.)

70. 연이율 6%의 복리로 11년 동안 적립 (단, 1.06¹¹ = 1.9로 계산한다.)

- 71. 연이율 5%의 복리로 8년 동안 적립 (단, $1.05^8 = 1.48$ 로 계산한다.)
- ☑ 다음 물음에 답하여라.
- **72.** 월이율 1%의 복리로 매월 초에 10만 원씩 24개 월 동안 적립했을 때, 24개월 후에 적립되는 금액을 구하여라. (단, $1.01^{24} = 1.27$ 로 계산한다.)

73. 갑은 여행경비 600만원을 마련하기 위해 2017년 1월 말부터 2018년 12월 말까지 매달 말 a원씩 적 립하려고 한다. 이때 a의 값을 구하여라. (단, 월이 윸 1%의 복리, $1.01^{24} = 1.27$ 으로 계산하여 천의 자 리에서 버림한다.)

74. 매월 1일에 1만 원씩 월이율 1%의 1개월마다의 복리로 적립해 나가려고 한다. 올해 1월 1일에 첫 적립금을 내었을 때, 내년 12월 31일에 받는 원리합 계를 구하여라. (단, $1.01^{25} = 1.28$ 로 계산한다.)

75. 연이율 6%의 복리로 매년 초에 30만 원씩 적립하면 10년 말에는 적립 총액이 얼마나 되는지 구하여라. (단, $1.06^{10} = 1.79$ 로 계산한다.)

- **76.** 2000만 원짜리 자동차를 구입하는 데 있어 모두 할부로 지불하기로 하였다. 구입한 날로부터 1개월 후부터 매달 일정한 금액을 36회로 나누어 갚는다면 매달 갚아야 하는 값을 구하여라. (단, $1.01^{36} = 1.4$, 월이율은 1%, 1개월 마다의 복리로 계산한다.)
- 77. 그림과 같이 한 변의 길이가 6인 정삼각형 ABC가 있다. 첫 번째 시행에서 각 변의 중점을 이어서 만든 정삼각형 $A_1B_1C_1$ 을 색칠하고, 두 번째 시행에서 첫 번째 시행 후 남은 3개의 정삼각형에서 같은 방법으로 만든 정삼각형을 색칠한다. 이와 같은 시행을 5회 반복했을 때, 색칠한 부분의 넓이의 합을 구하여라.

78. 길이가 1인 막대가 있다. 그림과 같이 이 막대를 3등분하여 가운데 부분을 잘라 내는 것을 시행1이 라고 하자. 시행1 이후 남아 있는 두 막대를 각각 3 등분하여 가운데 부분을 잘라내는 것을 시행2라고 하자. 이와 같은 시행을 10번 반복했을 때, 그동안 잘라 낸 모든 막대의 길이의 합을 구하여라.

79. 한 변의 길이가 1인 정사각형이 있다. 이 정사각형을 왼쪽 그림과 같이 9등분하여 중앙의 정사각형을 제거한다. 다음과 같이 나머지 정사각형 8개의각각을 다시 9등분하여 중앙의 정사각형을 제거한다. 이 과정을 n회 반복하여 시행한 후 남은 정사각형들의 넓이의 합을 구하여라.

80. 한 변의 길이가 1인 정사각형 모양의 종이가 있다. 그림과 같이 사각형의 절반을 오려내어 버리는 시행을 한다. 남은 사각형에 같은 시행을 반복한다고 했을 때, n번의 시행 후 버려진 사각형의 넓이의 총합을 구하여라.

정답 및 해설

- 1) ± 4
- $\Rightarrow x^2 = 2 \times 8 = 16$ $\therefore x = \pm 4$
- 2) 18
- \Rightarrow 36 = 2x \therefore x = 18
- $\Rightarrow (x^2-2)^2 = x^4, -4x^2+4=0 \quad \therefore x=\pm 1$
- $\Rightarrow (x+1)^2 = (x-2)(x-5)$ 이므로 $x^2 + 2x + 1 = x^2 - 7x + 10$ 9x = 9 $\therefore x = 1$
- 5) 3
- $\Rightarrow x^2 = (x-2)(2x+3)$ 에서 $x^2 - x - 6 = 0$ (x+2)(x-3) = 0 $\therefore x = 3 \ (\because x > 0)$
- 6) 3
- $\Rightarrow 4x^2 = (x+1)(4x-3)$ x-3=0 $\therefore x=3$
- 7) 18
- $\Rightarrow (x+2)^2 = (x-2)(x+7)$ 4x + 4 = 5x - 14 : x = 18
- $\Rightarrow (x+1)^2 = 4x, \ x^2 2x + 1 = 0$ $(x-1)^2 = 0$: x = 1
- 9) 2

8) 1

- \Leftrightarrow $(x-1)^2=3x imesrac{1}{12}x$ 이므로 $x^2-2x+1=rac{1}{4}x^2$ $3x^2 - 8x + 4 = 0$, (3x - 2)(x - 2) = 0 $\therefore x = \frac{2}{3} + \frac{1}{2} = 2$ 이때, x > 1이므로 x = 2
- 10) a = 1, b = -2
- \Rightarrow 4, a, b는 이 순서로 등차수열을 이루므로 2a = 4 + b a, b, 4는 이 순서로 등비수열을 이루므로 $a = \frac{b^2}{4}$ 을 \bigcirc 에 대입하면
 - $\frac{b^2}{2} = 4 + b$, $b^2 2b 8 = 0$

 - (b+2)(b-4) = 0 : b=-2 = b=4
 - 이때, b=4이면 a=4가 되어 a, b는 서로 다른 수라는 조건에 모순된다.
 - 따라서 b=-2이고 이때의 a=1

- 11) a = 8, b = 16
- ☆ a, b, 24가 이 순서로 등차수열을 이루므로 2b = a + 24
 - 4, a, b가 이 순서로 등비수열을 이루므로 $a^2 = 4b$ ·····(L)
 - \bigcirc 을 \bigcirc 에 대입하면 $a^2 = 2a + 48$
 - (a-8)(a+6)=0
 - $\therefore a = 8, b = 16 \ (\because ab > 0)$
- 12) a = -6, b = 12
- \Rightarrow a, b는 이 순서로 등차수열을 이루므로 6 = a + b..... 🗇
 - 3, a, b는 이 순서로 등비수열을 이루므로 $a^2 = 3b$
 - $b = \frac{a^2}{3}$ 을 \bigcirc 에 대입하여 풀면
 - $6 = a + \frac{a^2}{3}$, $a^2 + 3a 18 = 0$
 - (a+6)(a-3)=0∴ a=-6 또<u> </u> a=3

이때, a=3이면 \bigcirc 에서 b=3이 되어 a, b는 서로 다른 두 수라는 조건에 모순된다.

- a = -6, b = 12
- 13) a = 4, b = 8
- \Rightarrow 2, a, b는 이 순서로 등비수열을 이루므로 $a^2=2b$ a, b, 12는 이 순서로 등차수열을 이루므로
 - 2b = a + 12
- $2b = a^2$ 을 \bigcirc 에 대입하여 풀면
- $a^2 = a + 12, \ a^2 a 12 = 0$
- (a+3)(a-4)=0
- $\therefore a=4 \ (\because a>0), b=8$
- 14) a = 2, b = 8
- \Rightarrow -4, a, b는 이 순서로 등차수열을 이루므로
 - 2a = -4 + b
 - a, b, 16a는 이 순서로 등비수열을 이루므로
 - $b^2 = 16a^2$: $b = \pm 4a$
 - 이때, a, b는 모두 양수이므로 a, b는 서로 같은

부호이다.

- 따라서 b=4a이고 이를 \bigcirc 에 대입하면 2a = 4 $\therefore a=2, b=8$
- 15) a = 3, b = 6
- \Rightarrow a, b, 9는 이 순서로 등차수열을 이루므로
- a, b, 4a는 이 순서로 등비수열을 이루므로
- $b^2 = a \cdot 4a = 4a^2 \qquad \therefore b = \pm 2a$

이때, a, b는 모두 양수이므로 a, b는 서로 같은

따라서 b=2a이고 이를 \bigcirc 에 대입하면

4a = a + 9 : a = 3, b = 6

16)
$$a = \frac{1}{4}$$
, $b = -\frac{1}{2}$

17)
$$-20$$

18) 16

다 하는
$$a$$
와 c 의 등차중항이므로 $2b=a+c$ a 는 $2c$ 와 4의 등비중항이므로 $a^2=8c$ $a+b+c=0$ 에 $a+c=2b$ 를 대입하면 $b=0$ $\begin{cases} a^2=8c \\ a+c=0 \end{cases}$ 를 풀면 $a=-8,\ c=8$ $\therefore c-a=8-(-8)=16$

19)
$$3-2\sqrt{5}$$

다 3은
$$a+3$$
과 b 의 등차중항이므로 $a+3+b=6$ $a+b=3\cdots$ ①
 1은 $\frac{2}{b}$ 와 $\frac{2}{a+3}$ 의 등비중항이므로 $\frac{4}{b(a+3)}=1$ $b(a+3)=4\cdots$ ② ①, ②를 연립하여 풀면 $a=\sqrt{5},\ b=3-\sqrt{5}$ $\therefore b-a=3-\sqrt{5}-\sqrt{5}=3-2\sqrt{5}$

$$20) \ \frac{121}{9} (\sqrt{3} + 1)$$

21)
$$31(2+\sqrt{2})$$

$$\begin{split} & \Rightarrow \ S_{10} \! = \! \frac{\sqrt{2} \! \times \! \left\{ \! \left(\sqrt{2} \right)^{10} \! - \! 1 \right\} }{\sqrt{2} \! - \! 1} \\ & = \! \frac{\sqrt{2} \left(2^5 \! - \! 1 \right) \! \left(\sqrt{2} \! + \! 1 \right) }{\left(\sqrt{2} \! - \! 1 \right) \! \left(\sqrt{2} \! + \! 1 \right)} \! \! = \! 31 \! \left(2 \! + \! \sqrt{2} \right) \end{split}$$

22)
$$3\left\{1-\left(\frac{1}{3}\right)^{10}\right\}$$

$$\implies S_{10} = \frac{2 \times \left\{1 - \left(\frac{1}{3}\right)^{10}\right\}}{1 - \frac{1}{3}} = 3\left\{1 - \left(\frac{1}{3}\right)^{10}\right\}$$

$$\Rightarrow S_{10} = \frac{(-3) \times \{1 - (-2)^{10}\}}{1 - (-2)} = 2^{10} - 1 = 1023$$

24)
$$2\left\{1-\left(\frac{1}{2}\right)^{10}\right\}$$

당 장비는

$$\frac{1}{2}$$
이므로
 $\left(\frac{1}{2}\right)^9$ 을 제 n 항이라 하면

 $a_n = 1 \cdot \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^9$
 $\therefore n = 10$
 $\therefore S_{10} = \frac{1 \cdot \left\{1 - \left(\frac{1}{2}\right)^{10}\right\}}{1 - \frac{1}{2}} = 2\left\{1 - \left(\frac{1}{2}\right)^{10}\right\}$

25) 682

$$\Rightarrow S_5 = \frac{2 \cdot (4^5 - 1)}{4 - 1} = \frac{2}{3} (4^5 - 1) = 682$$

26)
$$\frac{341}{128}$$

첫째항이 4, 공비가
$$\frac{-2}{4} = -\frac{1}{2}$$
인 등비수열이므로 $-\frac{1}{128}$ 을 제 n 항이라고 하면 $4 \times \left(-\frac{1}{2}\right)^{n-1} = -\frac{1}{128} = \left(-\frac{1}{2}\right)^7$ $\left(-\frac{1}{2}\right)^{n-1} = \left(-\frac{1}{2}\right)^9$ $\therefore n = 10$ $\therefore S_{10} = \frac{4 \times \left\{1 - \left(-\frac{1}{2}\right)^{10}\right\}}{1 - \left(-\frac{1}{2}\right)}$ $= \frac{8}{3} \times \left\{1 - \left(-\frac{1}{2}\right)^{10}\right\} = \frac{341}{128}$

27) $2^n - 1$

$$ightharpoonup$$
첫째항이 1 , 공비가 2 이므로 $S_n=rac{1 imes(2^n-1)}{2-1}=2^n-1$

$$\Rightarrow$$
 첫째항이 4 , 공비가 1 이므로 $S_n=4n$

29)
$$\frac{3}{2} \left\{ 1 - \left(\frac{1}{3} \right)^n \right\}$$

$$\Rightarrow$$
 첫째항이 1, 공비가 $\frac{1}{3}$ 이므로

$$S_n = \frac{1 \cdot \left\{1 - \left(\frac{1}{3}\right)^n\right\}}{1 - \frac{1}{3}} = \frac{3}{2} \left\{1 - \left(\frac{1}{3}\right)^n\right\}$$

30)
$$\frac{2}{3}(4^n-1)$$

31)
$$-\frac{81}{2} \left\{ 1 - \left(\frac{1}{3}\right)^n \right\}$$

$$\Rightarrow$$
 첫째항이 -27 , 공비가 $\frac{1}{3}$ 인 등비수열이므로

$$S_n = \frac{-27 \times \left\{1 - \left(\frac{1}{3}\right)^n\right\}}{1 - \frac{1}{3}} = -\frac{81}{2} \left\{1 - \left(\frac{1}{3}\right)^n\right\}$$

32)
$$\frac{9}{10} \left\{ 1 - \left(-\frac{2}{3} \right)^n \right\}$$

$$\Rightarrow$$
 첫째항이 $\frac{3}{2}$, 공비가 $-\frac{2}{3}$ 이므로

$$S_{n} = \frac{\frac{3}{2} \times \left\{1 - \left(-\frac{2}{3}\right)^{n}\right\}}{1 - \left(-\frac{2}{3}\right)} = \frac{9}{10} \left\{1 - \left(-\frac{2}{3}\right)^{n}\right\}$$

33)
$$\frac{1}{2} \{1 - (-3)^n\}$$

첫째항이
$$2$$
, 공비가 -3 이므로
$$S_n = \frac{2 \times \left\{1 - (-3)^n\right\}}{1 - (-3)} = \frac{1}{2} \left\{1 - (-3)^n\right\}$$

34)
$$1 - \left(\frac{1}{2}\right)^n$$

$$\Rightarrow$$
 첫째항이 $\frac{1}{2}$, 공비가 $\frac{1}{2}$ 이므로

$$S_n = \frac{\frac{1}{2} \times \left\{1 - \left(\frac{1}{2}\right)^n\right\}}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^n$$

35)
$$\frac{1}{27}(3^n-1)$$

$$\Rightarrow$$
 첫째항이 $\frac{2}{27}$, 공비가 3 이므로

$$S_n = \frac{\frac{2}{27} \times (3^n - 1)}{3 - 1} = \frac{1}{27} (3^n - 1)$$

36)
$$\frac{1}{2} \left\{ 1 - \left(\frac{1}{3} \right)^n \right\}$$

$$\Rightarrow a_n = \frac{1}{3^n} = \frac{1}{3} \cdot \left(\frac{1}{3}\right)^{n-1}$$
에서 첫째항이 $\frac{1}{3}$,

공비가
$$\frac{1}{3}$$
이므로

$$S_{n} = \frac{\frac{1}{3} \times \left\{1 - \left(\frac{1}{3}\right)^{n}\right\}}{1 - \frac{1}{3}} = \frac{1}{2} \left\{1 - \left(\frac{1}{3}\right)^{n}\right\}$$

37)
$$\frac{2}{3}(4^n-1)$$

$$\Rightarrow a_n=2^{2n-1}=2\cdot 2^{2(n-1)}=2\cdot 4^{n-1}$$
에서 첫째항이 2, 공비가 4이므로
$$S_n=\frac{2\times (4^n-1)}{4-1}=\frac{2}{3}(4^n-1)$$

38)
$$\frac{5}{2}(2^n-1)$$

$$\Rightarrow a_n = 5 \cdot 2^{n-2} = \frac{5}{2} \cdot 2^{n-1} \text{ on } k$$

첫째항이
$$\frac{5}{2}$$
, 공비가 2이므로

$$S_n = \frac{\frac{5}{2} \times (2^n - 1)}{2 - 1} = \frac{5}{2} (2^n - 1)$$

39) $3^n - 1$

$$\Rightarrow$$
 첫째항이 2, 공비가 3이므로
$$S_n = \frac{2 \times (3^n - 1)}{3 - 1} = 3^n - 1$$

40) 488

$$\Leftrightarrow$$
 648을 제 n 항이라고 하면 $8 \times (-3)^{n-1} = 648$ 이므로 $(-3)^{n-1} = 81 = (-3)^4$ $\therefore n = 5$ $\therefore S_5 = \frac{8 \times \left\{1 - (-3)^5\right\}}{1 - (-3)} = 2 \times (1 + 3^5) = 488$

$$\Rightarrow S_{11} = 9 \times 11 = 99$$

$$\Rightarrow S_6 = \frac{3 \times (2^6 - 1)}{2 - 1} = 3 \times 63 = 189$$

43) 13

 \Rightarrow 첫째항을 a, 공비를 r(r>0), 첫째항부터 제n항 까지의 합을 S_n 이라고 하면

$$a_1 + a_2 = a + ar = 1$$
 에서

$$a(1+r)=1$$

$$a_3 + a_4 = ar^2 + ar^3 = 3$$
 에서

$$ar^2(1+r)=3$$

① ÷ ①을 하면
$$r^2 = 3$$

$$\therefore r = \sqrt{3} \quad (\because r > 0)$$

①에서
$$a(1+\sqrt{3})=1$$

$$\therefore a = \frac{\sqrt{3}-1}{2}$$

$$\therefore S_6 = \frac{a(r^6 - 1)}{r - 1} = \frac{\sqrt{3} - 1}{2} \times \frac{3^3 - 1}{\sqrt{3} - 1} = 13$$

⇨ 첫째항이 5, 공비가 2인 등비수열에서 첫째항부터 제n항까지의 합을 S_n 이라고 하면

$$S_n = \frac{5(2^n - 1)}{2 - 1} = 5(2^n - 1)$$

 $S_n > 500$ 에서 $5(2^n - 1) > 500$ 그런데 $2^6 = 64$, $2^7 = 128$ 이므로 $n \ge 7$

따라서 n=7일 때, 처음으로 500보다 크게 된다.

45) 24

다
$$a_1 + a_2 + a_3 + a_4 = S_4 = 6$$
이고
$$a_5 + a_6 + a_7 + a_8 = S_8 - S_4 = 12$$
이므로
$$S_8 = S_4 + 12 = 18$$

등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라 하면

$$S_4 = 6$$
에서 $\frac{a(r^4-1)}{r-1} = 6$ ····· \bigcirc

$$S_8 = 18$$
에서 $\frac{a(r^8-1)}{r-1} = 18$

즉,
$$\frac{a(r^4-1)(r^4+1)}{r-1}=18$$
이고 \bigcirc 을 대입하면

$$r^4 + 1 = 3$$
 : $r^4 = 2$

이때,
$$a_9 + a_{10} + a_{11} + a_{12} = S_{12} - S_8$$
이므로

$$\begin{split} S_{12} &= \frac{a(r^{12}-1)}{r-1} = \frac{a(r^4-1)(r^8+r^4+1)}{r-1} \\ &= 6(2^2+2+1) = 42 \end{split}$$

$$\therefore a_9 + a_{10} + a_{11} + a_{12} = S_{12} - S_8 = 42 - 18 = 24$$

 \Rightarrow 첫째항을 a, 공비를 r, 첫째항부터 제n항까지의 합을 S_{∞} 이라고 하면

$$a_1 + a_2 + a_3 = a + ar + ar^2 = 1 \, \mathrm{old} \, \mathsf{A}$$

$$a(1+r+r^2)=1$$

$$a_4 + a_5 + a_6 = ar^3 + ar^4 + ar^5 = 8$$
 이 사

$$ar^3(1+r+r^2)=8$$

$$\bigcirc$$
 ÷ \bigcirc 을 하면 $r^3 = 8$ $\therefore r = 2 \ (\because r \leftarrow 실수)$

$$r=2$$
을 \bigcirc 에 대입하면 $7a=1$ $\therefore a=\frac{1}{7}$

$$\therefore a = \frac{1}{7}$$

$$\therefore S_9 = \frac{a(r^9 - 1)}{r - 1} = \frac{1}{7} \times \frac{2^9 - 1}{2 - 1} = 73$$

 \Rightarrow 수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r, 첫째항부터 제n항까지의 합을 S_n 이라 하면

$$a_1 + a_2 + a_3 + a_4 = S_4 = 5 \, \mathrm{oll} \, \lambda \mathrm{d}$$

$$\frac{a(r^4-1)}{r-1} = 5 \qquad \cdots \qquad \in$$

$$a_1 + a_2 + \dots + a_8 = S_8 = 5 + 10 = 15$$
 에서

$$\frac{a(r^{8}-1)}{r-1} = 15$$

$$\therefore \frac{a(r^{4}-1)(r^{4}+1)}{r-1} = 15 \dots \bigcirc$$

$$\therefore \frac{r-1}{r-1} = 15 \cdots \cdots \bigcirc$$

①을 ②에 대입하면 $r^4+1=3$, 즉 $r^4=2$ 이므로

$$S_{12} \! = \frac{a(r^{12} \! - \! 1)}{r \! - \! 1} = \frac{a(r^4 \! - \! 1)(r^8 \! + \! r^4 \! + \! 1)}{r \! - \! 1}$$

$$=5(2^2+2+1)=3$$

$$a_9 + a_{10} + a_{11} + a_{12} = S_{12} - S_8 = 35 - 15 = 20$$

48) 70

 \Rightarrow 첫째항을 a, 공비를 r라 하면

$$S_5 = 10$$
에서 $\frac{a(r^5-1)}{r-1} = 10$ ····· \bigcirc

$$S_{10} = 30$$
에서 $\frac{a(r^{10}-1)}{r-1} = 30$

즉,
$$\frac{a(r^5-1)(r^5+1)}{r-1} = 30$$
이고 \bigcirc 을 대입하면

$$r^5 + 1 = 3$$
 $\therefore r^5 = 2$

$$\therefore S_{15} = \frac{a(r^{15} - 1)}{r - 1} = \frac{a(r^5 - 1)(r^{10} + r^5 + 1)}{r - 1}$$
$$= 10(2^2 + 2 + 1) = 70$$

 \Rightarrow 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r이라 하자.

$$\frac{S_{20}}{S_{10}} = \frac{\frac{a(r^{20} - 1)}{r - 1}}{\frac{a(r^{10} - 1)}{r - 1}} = \frac{(r^{10} + 1)(r^{10} - 1)}{(r^{10} - 1)} = r^{10} + 1 = 10$$

$$rac{10}{10} = 9$$

$$\therefore \frac{a_{22}}{a_7} = \frac{ar^{21}}{ar^6} = r^{15} = 9\sqrt{9} = 27$$

50) 765

 \Rightarrow 첫째항을 a, 공비를 r, 첫째항부터 제n항까지의 합을 S_n 이라고 하면

$$S_3 = \frac{a(r^3 - 1)}{r - 1} = 21$$

$$S_6 = \frac{a(r^6 - 1)}{r - 1} = \frac{a(r^3 - 1)(r^3 + 1)}{r - 1} = 189$$

 $\bigcirc \div \bigcirc$ 을 하면 $r^3+1=9$ 이므로

$$r=2$$
를 \bigcirc 에 대입하면 $7a=21$ $\therefore a=3$

$$S_8 = \frac{a(r^8-1)}{r-1} = \frac{3 \times (2^8-1)}{2-1} = 765$$

ightrightarrows 첫째항을 a, 공비를 r, 첫째항부터 제n항까지의 합을 S_n 이라고 하면

$$S_4 = \frac{a(1-r^4)}{1-r} = 2$$

52) 65

53)
$$-9$$
 $\Rightarrow n \ge 2$ 일 때
 $a_n = S_n - S_{n-1}$
 $= (a \cdot 3^{n-1} + 3) - (a \cdot 3^{n-2} + 3)$
 $= 2a \cdot 3^{n-2}$ \bigcirc
 $S_n = a \cdot 3^{n-1} + 3$ 에서
 $a_1 = S_1 = a + 3$ \bigcirc
 \bigcirc , \bigcirc 에서 $a_1 = \frac{2a}{3} = S_1 = a + 3$ \bigcirc 만족시켜야 하
 $\Box \mathbb{R} - \frac{a}{3} = 3$ $\therefore a = -9$

54) 33

ightharpoonup 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r이라 하자.

$$\begin{split} \frac{S_4}{S_2} &= \frac{\frac{a(1-r^4)}{1-r}}{\frac{a(1-r^2)}{1-r}} = \frac{1-r^4}{1-r^2} = \frac{(1+r^2)(1-r^2)}{1-r^2} = 1+r^2\\ 1+r^2 &= 9 \qquad \therefore r^2 = 8 \end{split}$$

$$\therefore \frac{a_5}{a_3} = \frac{ar^4}{ar^2} = r^2 = 8$$

$$ightharpoonup 등비수열의 첫째항을 a , 공비를 r 이라 하자.
$$S_4 = \frac{a(r^4-1)}{r-1} = \frac{a(r^2-1)(r^2+1)}{r-1}, \ S_2 = \frac{a(r^2-1)}{r-1}$$
 $S_4 = 13S_2$ 에 대입하면
$$\frac{a(r^2-1)(r^2+1)}{r-1} = 13 \cdot \frac{a(r^2-1)}{r-1}, \ r^2+1=13,$$
 $r^2=12$
$$\therefore \frac{a_7}{a_5} = \frac{ar^6}{ar^4} = r^2 = 12$$$$

57) 12

 \Rightarrow 첫째항이 2인 등비수열 $\{a_n\}$ 의 공비를 r이라 하 $\frac{S_6-S_4}{S_2} = \frac{a_6+a_5}{a_1+a_2} = \frac{2r^5+2r^4}{2+2r} = \frac{2r^4(r+1)}{2(r+1)} = r^4 = 36$

$$\frac{S_6 - S_4}{S_2} = \frac{a_6 + a_5}{a_1 + a_2} = \frac{2r^3 + 2r^4}{2 + 2r} = \frac{2r^4(r+1)}{2(r+1)} = r^4 = 3r$$

$$r > 0$$
이므로 $r^2 = 6$ 이다.
$$\therefore a_3 = 2 \cdot r^2 = 2 \times 6 = 12$$

- 58) $a_n = 2 \cdot 3^n \ (n \ge 2)$, 제2항부터 등비수열을 이룬
- $\Rightarrow a_n = S_n S_{n-1}$ $=3^n-3=2\cdot 3^n \ (n\geq 2)$ $S_1 = 9$ 와 ③에 n = 1을 대입한 값이 다르므로 수 열 $\{a_n\}$ 은 첫째항이 9이고, 제2항부터 공비가 3 인 등비수열을 이룬다.
- 59) $a_1=3,\ a_n=2^{n-1}\ (n\geq 2),\ 제2항부터 등비수열$ 을 이룬다.
- $\Rightarrow a_n = S_n S_{n-1}$ $=2^{n}+1-(2^{n-1}+1)=2^{n-1} (n \ge 2)$ $S_1=3$ 과 ③에 n=1을 대입한 값이 다르므로 수 열 $\{a_n\}$ 은 첫째항이 3이고, 제2항부터 공비가 2 인 등비수열을 이룬다.
- 60) $a_n = 12 \cdot 5^{n-1} \ (n \ge 1)$, 첫째항부터 등비수열을
- $\Rightarrow a_n = S_n S_{n-1}$ $=3 \cdot 5^{n} - 3 - (3 \cdot 5^{n-1} - 3)$ $=12 \cdot 5^{n-1} \ (n \ge 2)$ $S_1 = 12$ 와 ③에 n = 1을 대입한 값이 같으므로 $a_n = 12 \cdot 5^{n-1} \ (n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬
- 61) $a_n = 2^{n-1} \ (n \ge 1)$, 첫째항부터 등비수열을 이룬

- \Rightarrow $a_n = S_n S_{n-1}$ $= 2^n 1 (2^{n-1} 1)$ $= 2^{n-1} \ (n \ge 2)$ \ominus $S_1 = 2 1 = 1$ 과 \bigcirc 에 n = 1을 대입한 값이 같으므로 $a_n = 2^{n-1} \ (n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬다.
- 62) $a_n = 3 \cdot 2^{n-1} \ (n \ge 1)$, 첫째항부터 등비수열을 이룬다.
- 다 $a_n = S_n S_{n-1}$ $= 3 \cdot 2^n 3 (3 \cdot 2^{n-1} 3)$ $= 3 \cdot 2^{n-1}$ $S_1 = 3$, $a_1 = 3$ n = 1을 대입한 값이 같으므로 수열 $\{a_n\}$ 의 일반 항은 $a_n = 3 \cdot 2^{n-1}$ $(n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬다.
- 63) $a_n = 4 \cdot 3^{n-1} \ (n \ge 1)$, 첫째항부터 등비수열을 이룬다.
- 다 $a_n = S_n S_{n-1}$ $= 2 \cdot 3^n 2 (2 \cdot 3^{n-1} 2)$ $= 4 \cdot 3^{n-1} \ (n \ge 2)$ \cdots \bigcirc $S_1 = 2 \cdot 3^1 2 = 4$ 와 \bigcirc 에 n = 1을 대입한 값이 같으므로 수열 $\{a_n\}$ 의 일반항은 $a_n = 4 \cdot 3^{n-1} \ (n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬다.
- 64) $a_n=4\times 5^n\ (n\geq 1)$, 첫째항부터 등비수열을 이룬다.
- 다 $n \ge 2$ 일 때, $a_n = S_n S_{n-1} = 5^{n+1} 5^n = 4 \times 5^n \qquad \cdots \qquad \bigcirc$ 한편, $a_1 = S_1 = 5^2 5 = 20$ 은 \bigcirc 에 n = 1을 대입한 것과 같다. $\therefore \ a_n = 4 \times 5^n \ (n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬다
- 65) $a_n = 2 \times 3^{n-1} \ (n \ge 1)$, 첫째항부터 등비수열을 이룬다.
- 다 $n \ge 2$ 일 때, $a_n = S_n S_{n-1} = 3^n 1 \left(3^{n-1} 1\right)$ $= 3^n 3^{n-1} = 2 \times 3^{n-1} \qquad \cdots \cdots \qquad \bigcirc$ 한편, $a_1 = S_1 = 3 1 = 2$ 는 \bigcirc 에 n = 1을 대입한 것과 같다. $\therefore a_n = 2 \times 3^{n-1} \quad (n \ge 1)$ 따라서 수열 $\{a_n\}$ 은 첫째항부터 등비수열을 이룬

다.

- 66) 131.3(만 원) $\Rightarrow 10(1+0.01)^{12}+10(1+0.01)^{11}+\dots+10(1+0.01)$ $= \frac{10\times1.01(1.01^{12}-1)}{1.01-1}$ $= \frac{10\times1.01(1.13-1)}{0.01}=131.3$ (만 원)
- 67) 530·4(만 원) $\Rightarrow 10(1+0.02)^{36}+10(1+0.02)^{35}+\dots+10(1+0.02)$ $= \frac{10\times 1.02(1.02^{36}-1)}{1.02-1}$ $= \frac{10\times 1.02(2.04-1)}{0.02}$ = 530·4(만 원)
- 68) 128.4(만 원)

 ⇒ 10(1+0.07)⁹+10(1+0.07)⁸+···+10(1+0.07)

 = $\frac{10 \times 1.07(1.07^{9}-1)}{1.07-1}$ = $\frac{10 \times 1.07(1.84-1)}{0.07}$ = 128.4(만 원)
- 69) 205.2만원

 ⇒ 10(1+0.08)¹²+10(1+0.08)¹¹+···+10(1+0.08)

 = $\frac{10 \times 1.08(1.08^{12}-1)}{1.08-1}$ = $\frac{10 \times 1.08(2.52-1)}{0.08}$ = 205.2(만 원)
- 70) 159만원 $\Rightarrow 10(1+0.06)^{11}+10(1+0.06)^{10}+\dots+10(1+0.06)$ $= \frac{10\times 1.06(1.06^{11}-1)}{1.06-1}$ $= \frac{10\times 1.06(1.9-1)}{0.06}$ = 159(만 원)
- 71) 100.8만원 $\Rightarrow 10(1+0.05)^8+10(1+0.05)^7+\cdots+10(1+0.05)$ $= \frac{10\times1.05(1.05^8-1)}{1.05-1}$ $= \frac{10\times1.05(1.48-1)}{0.05}$ = 100.8(만 원)
- 72) 272.7만원 $\Rightarrow 10(1+0.01)^{24}+10(1+0.01)^{23}+\cdots+10(1+0.01)$ $=\frac{10\times1.01(1.01^{24}-1)}{1.01-1}$ $=\frac{10\times1.01(1.27-1)}{0.01}$

= 272.7(만 원)

73) 22만원

ightharpoonup 매월말에 a만원씩 적립한 원리합계는 다음과 같다.

$$\begin{aligned} &a + a(1 + 0.01) + a(1 + 0.01)^2 + \dots + a(1 + 0.01)^{23} \\ &= \frac{a(1.01^{24} - 1)}{1.01 - 1} = \frac{a(1.27 - 1)}{0.01} = 27a(만원) \\ &27a = 600 \quad \therefore a = 22(만원) \end{aligned}$$

74) 27만 원

 \Rightarrow (첫 번째 적립) 1만 원 $\stackrel{24$ 개월}{\longrightarrow} 1 \times 1.01^{24}

(두 번째 적립) 1만 원 $\xrightarrow{23$ 개월 1×1.01^{23}

(세 번째 적립) 1만 원 $\xrightarrow{22$ 개월 1×1.01^{22} :

(마지막 적립) 1만 원 $\xrightarrow{1$ 개월 \rightarrow 1×1.01

따라서 구하는 적립금의 원리합계는 $1\times 1.01^{24} + 1\times 1.01^{23} + 1\times 1.01^{22} + \dots + 1\times 1.01$ $= \frac{1.01\times (1.01^{24}-1)}{1.01-1} = \frac{1.01^{25}-1.01}{0.01}$ $= \frac{1.28-1.01}{0.01} = 27(만 원)$

75) 4187000원

□ 매년 적립금의 10년 말의 원리합계는 다음 표와 같다.

_ ,				
처음 1년 말…8년 말 9년 말10년 말				원리합계
제1회 30	10년		-	$30 \times (1 + 0.06)^{10}$
제2회	30 <u>9년</u>		-	$30 \times (1 + 0.06)^9$
:		:		:
제9회 3		0	2년	$30 \times (1 + 0.06)^2$
제10회	3	0 1년	$30 \times (1 + 0.06)$	
따라서 구하는 적립금의 원리합계는				
20(10.02)1020(10.02)9				

따라서 구하는 적립금의 원리합계는
$$30 \times (1+0.06)^{10} + 30 \times (1+0.06)^9 + \dots + 30 \times (1+0.06)^2 + 30 \times (1+0.06)$$
$$= \frac{30 \times 1.06 \times (1.06^{10} - 1)}{1.06 - 1}$$

$$=\frac{30\times1.06\times(\,1.79-1\,)}{0.06}$$
 = 418.7(만 원) = 4187000원

76) 70만원

□ 대달 갚아야 할 금액을 a만원이라 하자. 대달 a만원씩 36회 갚아야 할 원리합계는 다음과 같다.

$$a+a(1+0.01)+a(1+0.01)^2+\cdots+a(1+0.01)^{35}$$

$$=\frac{a(1.01^{36}-1)}{1.01-1}=\frac{a(1.4-1)}{0.01}=40a(만원)$$
 2000만원의 원리합계는

77)
$$9\sqrt{3}\left\{1-\left(\frac{3}{4}\right)^{5}\right\}$$

 \Rightarrow n번째 시행 후 색칠한 넓이를 a_n 이라 하자.

$$\begin{aligned} a_1 &= \Delta \mathbf{A}_1 \mathbf{B}_1 \mathbf{C}_1 = 1 \cdot \left(\frac{\sqrt{3}}{4} \cdot 3^2 \right), \\ a_2 &= 3 \cdot \frac{\sqrt{3}}{4} \left(\frac{3}{2} \right)^2 \end{aligned}$$

한번 시행할 때 정삼각형의 개수는 3배, 정삼각형의 한 변의 길이는 $\frac{1}{2}$ 배가 되므로

$$\begin{split} a_n &= 3^{n-1} \cdot \frac{\sqrt{3}}{4} \bigg\{ 3 \bigg(\frac{1}{2} \bigg)^{n-1} \bigg\}^2 = \frac{9\sqrt{3}}{4} \bigg(\frac{3}{4} \bigg)^{n-1} \\ & \therefore \sum_{k=1}^5 \frac{9\sqrt{3}}{4} \bigg(\frac{3}{4} \bigg)^{k-1} = \frac{9\sqrt{3}}{4} \cdot \frac{\bigg\{ 1 - \bigg(\frac{3}{4} \bigg)^5 \bigg\}}{1 - \frac{3}{4}} \\ &= 9\sqrt{3} \bigg\{ 1 - \bigg(\frac{3}{4} \bigg)^5 \bigg\} \end{split}$$

78)
$$1 - \left(\frac{2}{3}\right)^{10}$$

 \Rightarrow 시행 n에서 잘라낸 막대의 길이를 a_n 이라 하면

$$\begin{split} a_1 &= \frac{1}{3} \,, \ a_2 = 2 \,\cdot \left(\frac{1}{3}\right)^2 \,, \ a_3 = 2^2 \,\cdot \left(\frac{1}{3}\right)^3 \,, \ \cdots \\ a_n &= 2^{n-1} \,\cdot \left(\frac{1}{3}\right)^n = \frac{1}{3} \,\cdot \left(\frac{2}{3}\right)^{n-1} \\ &\therefore \sum_{n=1}^{10} a_n = \sum_{n=1}^{10} \frac{1}{3} \,\cdot \left(\frac{2}{3}\right)^{n-1} = \frac{\frac{1}{3} \left\{1 - \left(\frac{2}{3}\right)^{10}\right\}}{1 - \frac{2}{3}} = 1 - \left(\frac{2}{3}\right)^{10} \end{split}$$

79)
$$\left(\frac{8}{9}\right)^n$$

- ⇨ 1회 시행 후 남은 정사각형들의 넓이의 합은 $\left(1 - \frac{1}{9}\right) \times 1^2 = \frac{8}{9}$
 - 2회 시행 후 남은 정사각형들의 넓이의 합은

$$\left(1 - \frac{1}{9}\right) \times \frac{8}{9} = \left(\frac{8}{9}\right)^2$$

: 따라서 n회 시행 후 남은 정사각형들의 넓이의 한다. $\left(1 - \frac{1}{9}\right) \times \left(\frac{8}{9}\right)^{n-1} = \left(\frac{8}{9}\right)^n$

- 80) $1 \left(\frac{1}{2}\right)^n$
- \Rightarrow n번의 시행 후 버려진 사각형의 넓이의 총합은 첫 째항이 $\frac{1}{2} \times 1 = \frac{1}{2}$, 공비가 $\frac{1}{2}$ 인 등비수열이므로

$$\frac{\frac{1}{2}\left\{1 - \left(\frac{1}{2}\right)^n\right\}}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^n$$