Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.

Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана) Факультет «Робототехника и комплексная автоматизация» Кафедра «Системы автоматизированного проектирования»

Домашнее задание по дисциплине

«Теория вероятности и математическая статистика»

Вариант 6

Выполнил: студент группы РК6-32Б Журавлев Н. В.

Проверил: Берчун Ю. В.

Москва 2020

Типовой расчёт №4

Задание 1.

- 1.1) Постройте свой генератор с параметрами а = R1, c = G1, X0 = B1, m = 100 (здесь и далее числовые значения берутся из таблиц исходных данных к первому домашнему заданию). Составьте таблицу элементов последовательности до первого повторения, определите период генератора.
- 1.2) Постройте свой генератор с рационально выбранными параметрами а и с (согласно таблицам ниже), X0 = B1, m = 100. Составьте таблицу элементов последовательности до первого повторения, убедитесь в достижении максимального периода генератора.

Группа	Параметр а
РК6-32Б	41

Вариант	Параметр c
6.	57

- 1.3) Возьмите первые n = 50 значений из ранее полученной таблицы. Разбейте отрезок [0;99] на r = 10 равных частей [0;9], [10;19], ..., [90;99]. Определите число элементов усечённой последовательности пі, попавших в соответствующий диапазон и постройте гистограмму.
- 1.4) Рассчитаем значение коэффициента χ^2 по n = 50 точкам:

$$\chi_n^2 = \frac{\sum_{i=1}^r (n_i - n \cdot p_i)^2}{n \cdot p_i}$$

где pi — вероятность попадания случайной величины в соответствующий диапазон (численно соответствует площади под графиком плотности распределения для рассматриваемого диапазона).

Для равномерного распределения $p_i = const = \frac{1}{r} = 0,1$, и поэтому в рассматриваемой задаче $n \cdot p_i = 5$.

1.5) Требуется определить такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению. Полученный уровень значимости можно будет рассматривать как характеристику качества работы генератора случайных чисел, с помощью которого была получена статистическая выборка.

Таблицы критических значений распределения χ_n^2 в часто ограничены представлением уровней значимости, близкими к 0 или к 1. Поэтому в рамках решаемой задачи рекомендуется пользоваться расширенным

вариантом этой таблицы, в котором представлены и промежуточные значения (приводится ниже).

- 1.6) Требуется рассчитать выборочные характеристики (выборочное среднее, смещённую и исправленную оценки выборочной дисперсии) для n = 5, 10, 25 и 50 и сравнить их с соответствующими характеристиками теоретического равномерного распределения (математическим ожиданием и дисперсией). Результаты свести в таблицу, с указанием величины отклонений от теоретических значений.
- 2.1) Требуется провести 100 экспериментов, меняя значение rnd. Результаты моделирования оформляются в виде таблицы, в которой предусматриваются следующие столбцы:
 - коэффициент загрузки первого кассира;
 - коэффициент загрузки второго кассира;
 - средняя длина первой очереди;
 - средняя длина второй очереди.

Рассчитайте выборочные средние и исправленные выборочные оценки дисперсии для каждой собранной характеристики при n = 10, 25, 50, 100.

На основе полученных выборок для n = 100 построить гистограммы. Ширину интервалов выбирать не более половины исправленной оценки среднеквадратичного отклонения соответствующей величины. При попадании в крайние интервалы менее 5 значений объединять их с соседними.

- 2.2) Для каждой пары собранных характеристик рассчитайте выборочные ковариации и коэффициенты корреляции (для значений n = 10, 25, 50, 100).
- 2.3) Для тех же значений n = 10, 25, 60 требуется рассчитать доверительные интервалы для математических ожиданий каждой из собранных характеристик с уровнями значимости $\alpha = 0,1$ и 0,01 (для двусторонней симметричной области).

Решение

1.1)

Генератор строится по формуле:

$$X_i = (a \cdot X_{i-1} + c) \mod m$$

Используя excel построим таблицу и найти период генератора:

i	Xi		
0	11		
1	74		
2	52		
3	20		
4	28		
5	76		
6	64		
7	92		
8	60		
9	68		
10	16		
11	4		Период генератора
12	32	=>	27
13	0		
14	8		
15	56		
16	44		
17	72		
18	40		
19	48		
20	96		
21	84		
22	12		
23	80		
24	88		
25	36		
26	24		
27	52		

1.2)

Выбрав рационально параметры, определим период нового генератора:

1	Xi				
0	11			50	61
1	8			51	58
2	85			52	35
3	42			53	92
4	79			54	29
5	96			55	46
6	93		Период генератора	56	43
7	70	=>	100	57	20
8	27			58	77
9	64			59	14
10	81			60	31
11	78			61	28
12	55			62	5
13	12			63	62
14	49			64	99
15	66			65	16
16	63			66	13
17	40			67	90
18	97			68	47
19	34			69	84
20	51			70	1
21	48			71	98
22	25			72	75
23	82			73	32
24	19			74	69
25	36			75	86
26	33			76	83
27	10			77	60
28	67			78	17
29	4			79	54
30	21			80	71
31	18			81	68
32	95			82	45 2
33	52			83 84	
34	89				39
35	6			85	56
36	3			86	53
37	80			87	30
38	37			88	87
39	74			89	24 41
40	91			90	
41	88			91	38
42	65			92	15
43	22			93	72
44	59			94	9
45	76			95	26
46	73			96	23
47	50			97	0
48	7			98	57
49	44			99	94
50	61			100	11

Как мы видим увелся период генератора и стал равный 100.

1.3)

Возьмем первые n=50 значений из ранее полученной таблицы. Разобьем отрезок [0;99] на r=10 равных частей [0;9], [10;19], ..., [90;99]. Определим число элементов усечённой последовательности n_i , попавших в соответствующий диапазон и построим гистограмму:

1.4)

Если бы мы имели дело с идеальным генератором, то на каждый отрезок попало бы ровно по 5 значений. В нашем же случае высота столбиков разная, значит нужно оценить, насколько критичны эти отклонения.

Воспользуемся методом проверки статистических гипотез на основе критерия Пирсона:

Численно оценим совокупную величину отклонения элементов выборки от теоретически ожидаемых результатов, для этого рассчитаем значение коэффициента X_n по n=50 точкам:

$$X_n^2 = \frac{\sum_{i=1}^r (n_i - n \cdot p_i)^2}{n \cdot p_i}$$

Для равномерного распределения $p_i = const = \frac{1}{r} = 0,1,$ и поэтому в рассматриваемой задаче $n \cdot p_i = 5.$

Получаем результат: $X_n = 7,2$

1.5)

Определим такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению.

Посмотрев по таблице получаем: $\alpha \approx 0.7$

1.6)

Рассчитаем выборочные характеристики (выборочное среднее, смещённую и исправленную оценки выборочной дисперсии) для n = 5, 10, 25 и 50:

Выборочное среднее определяется как среднее арифметическое элементов выборки:

$$\underline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Выборочная дисперсия:

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Исправленная оценка выборочной дисперсии:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \underline{x})^2$$

Математическое ожидание равномерного распределения:

$$M = \frac{a+b}{2}$$

Дисперсия равномерного распределения:

$$D = \frac{(b-a)^2}{12}$$

Сравним их с характеристиками теоретического равномерного распределения и запишем результаты в таблицу:

-									
	n	X	σ^2	S^2	М	D	x -M	σ^2-D	S^2-D
	5	45	1058	1322,5	49,5	816,75	4,5	241,25	505,75
	10	57,5	994,25	1104,722	49,5	816,75	8	177,5	287,9722
	25	55	748	779,1667	49,5	816,75	5,5	68,75	37,58333
	50	51,5	844,25	861,4796	49,5	816,75	2	27,5	44,72959

2.1)

Проведём 100 экспериментов, рассматривая имитационную модель системы массового обслуживания на GPSS, меняя значение rnd. Результаты моделирования запишем в виде таблицы, со столбцами:

- Значение коэффициента rnd
- Коэффициент загрузки первого кассира;
- Коэффициент загрузки второго кассира;
- Средняя длина первой очереди;
- Средняя длина второй очереди.

rnd		UTIL. (1)	UTIL. (2)	AVE.CONT. (1)	AVE.CONT. (2)				_	_
	1	0,781	0,577	0,201	0,058	50	0,793	0,573	0,216	0,077
	2	0,81	0,555	0,219	0,103	51	0,765	0,524	0,158	0,037
	3	0,793	0,532	0,166	0,049	52	0,812	0,527	0,227	0,072
_	4	0,798	0,535	0,100	0,049	53	0,808	0,548	0,172	0,03
_	_		-			54	0,748	0,532	0,147	0.042
-	5	0,794	0,525	0,193	0,051	55	0,757	0,568	0,24	0,09
-	6	0,825	0,574	0,242	0,083	56	0,783	0,569	0,222	0,066
-	7	0,758	0,526	0,167	0,058	57	0,784	0,569	0,221	0,056
-	8	0,789	0,565	0,23	0,082	58	0,748	0,559	0,176	0,064
-	9	0,78	0,531	0,199	0,068	59	0,765	0,548	0,183	0,056
	10	0,749	0,533	0,203	0,087	60	0,799	0,588	0,223	0,030
	11	0,809	0,62	0,331	0,197		-		-	-
	12	0,8	0,577	0,244	0,155	61	0,779	0,546	0,152	0,034
	13	0,784	0,521	0,193	0,094	62	0,801	0,591	0,2	0,056
	14	0,775	0,555	0,16	0,046	63	0,764	0,581	0,182	0,057
	15	0,787	0,568	0,197	0,058	64	0,768	0,593	0,198	0,071
	16	0,794	0,581	0,219	0,065	65	0,76	0,555	0,161	0,031
	17	0,795	0,564	0,213	0,079	66	0,803	0,567	0,195	0,082
	18	0,802	0,577	0,214	0,075	67	0,767	0,546	0,183	0,072
	19	0,765	0,556	0,197	0,064	68	0,802	0,57	0,218	0,103
	20	0,749	0,555	0,165	0,055	69	0,82	0,601	0,263	0,095
	21	0,743	0,487	0,124	0,031	70	0,778	0,518	0,145	0,038
	22	0,79	0,595	0,281	0,106	71	0,76	0,582	0,151	0,038
	23	0,809	0,571	0,237	0,098	72	0,795	0,587	0,252	0,111
	24	0,786	0,59	0,274	0,138	73	0,765	0,575	0,192	0,057
	25	0,795	0,601	0,192	0,075	74	0,792	0,562	0,207	0,069
	26	0,793	0,577	0,268	0,116	75	0,771	0,582	0,192	0,066
	27	0,783	0,57	0,172	0,05	76	0,808	0,618	0,228	0,099
	28	0,781	0,56	0,2	0,074	77	0,79 0,782	0,598 0,546	0,214 0,218	0,07
	29	0,73	0,523	0,133	0,033	79	0,782	-	0,218	0,097
	30	0,782	0,58	0,251	0,099	80	0,799	0,587	0,233	0,108
	31	0,806	0,574	0,211	0,065	81	0,302	0,569	0,221	0,061
	32	0,801	0,567	0,283	0,093	82	0,776	0,566	0,185	0,054
	33	0,758	0,479	0,145	0,026	83	0,803	0,58	0,181	0,046
	34	0,802	0,642	0,323	0,137	84	0,791	0,589	0,244	0,094
	35	0,799	0,562	0,201	0,057	85	0,77	0,574	0,172	0,057
	36	0,795	0,592	0,282	0,113	86	0,773	0,579	0,153	0,057
	37	0,779	0,576	0,164	0,04	87	0,77	0,551	0,176	0,047
	38	0,772	0,546	0,147	0,034	88	0,773	0,541	0,156	0,053
	39	0,793	0,572	0,207	0,081	89	0,792	0,603	0,23	0,077
	40	0,77	0,522	0,174	0,03	90	0,802	0,553	0,228	0,089
	41	0,771	0,559	0,173	0,048	91	0,796	0,557	0,211	0,058
	42	0,769	0,557	0,14	0,02	92	0,787	0,578	0,227	0,076
	43	0,784	0,561	0,234	0,076	93	0,749	0,503	0,124	0,036
	44	0,766	0,523	0,185	0,067	94	0,782	0,588	0,114	0,048
	45	0,802	0,574	0,328	0,214	95	0,782	0,588	0,221	0,048
	46	0,826	0,614	0,22	0,083	96	0,792	0,571	0,221	0,062
	47	0,743	0,525	0,129	0,032	97	0,766	0,542	0,218	0,085
	48	0,778	0,569	0,246	0,113	98	0,799	0,618	0,238	0,106
	49	0,794	0,594	0,233	0,085	99	0,799	0,606	0,253	0,088
	50	0,793	0,573	0,216	0,077	100	0,79	0,557	0,195	0,048

Рассчитаем выборочные средние и исправленные выборочные оценки дисперсии для каждой собранной характеристики при n = 10, 25, 50, 100:

		n=	10	
			UTIL. (1)	
i		X	(xi-X)^2	S^2
·	1	0,7877	4,489E-05	0,000
\vdash	2	-,	0,00049729	-,
\vdash	3		2,809E-05	
\vdash	4		0,00010609	
	5		3,969E-05	
_	6		0,00139129	
\vdash	7			
	$\overline{}$		0,00088209	
	8		1,69E-06	
	9		5,929E-05	
	10		0,00149769	
			UTIL. (2)	
i		X	(xi-X)^2	S^2
	1	0,5453	0,00100489	0,0004
	2		9,409E-05	
	3		0,00017689	
	4		0,00010609	
	5		0,00041209	
	6		0,00082369	
	7		0,00037249	
	8		0,00038809	
	9		0,00020449	
	10		0,00015129	
			AVE.CONT. (1)	
i		X	(xi-X)^2	S^2
i	1		(xi-X)^2 2,89E-06	
i	1 2	X	(xi-X)^2 2,89E-06 0,00038809	
i	1 2 3	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889	
i	1 2 3 4	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169	
i	1 2 3 4 5	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05	
i	1 2 3 4 5	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329	0,000
i	1 2 3 4 5 6 7	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329	0,000
i	1 2 3 4 5 6 7	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249	0,000
i	1 2 3 4 5 6 7 8	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249 9E-08	0,000
i	1 2 3 4 5 6 7	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249	0,000
i	1 2 3 4 5 6 7 8	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249 9E-08	0,000
i	1 2 3 4 5 6 7 8	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249 9E-08	0,000
i	1 2 3 4 5 6 7 8 9	X	(xi-X)^2 2,89E-06 0,00038809 0,00110889 0,00069169 3,969E-05 0,00182329 0,00104329 0,00094249 9E-08 1,369E-05	0,0006

	n=	25					
		UTIL. (1)					
						AVE.CONT. (1)	
	X	(xi-X)^2	S^2				
1	0,7864	2,916E-05		i	X	(xi-X)^2	S^2
2	5,7557	0,00055696	0,000.22	1	0,20936	6,98896E-05	0,00191
3		4,356E-05		2		9,29296E-05	
4		0,00013456		3		0,00188009	
- 5				4		0,00132205	
		5,776E-05		5		0,00026765	
6		0,00148996		6		0,00106537	
7		0,00080656		7		0,00179437	
8		6,76E-06		8		0,00042601	
9		4,096E-05		9		0,00010733	
10		0,00139876		10		4,04496E-05	
11		0,00051076		11		0,01479629	
12		0,00018496		12		0,00119993	
13		5,76E-06		13		0,00026765	
14		0,00012996		14		0,00243641	
15		3,6E-07		15		0,00015277	
16		5,776E-05		16		9,29296E-05	
17		7,396E-05		17		1,32496E-05	
18		0,00024336		18		2,15296E-05	
19		0,00045796		19		0,00015277	
20		0,00139876		20		0,00196781	
21		0,00188356		21		0,00728633	
22		1,296E-05		22		0,00513229	
23		0,00051076		23		0,00076397	
24		1,6E-07		24		0,00417833	
25		7,396E-05		25		0,00030137	
		UTIL. (2)				AVE.CONT. (2)	
	X	(xi-x)^2	S^2	i	X	(xi-₹)^2	S^2
1	0,55884	0,000329786		1	0,08064	0,00051257	0,00142

							_			
					n=	50	╝			
			UTIL. (1)						AVE.CONT. (1)	
i		X	(xi-X)^2	S^2		i		X	(xi-X)^2	S^2
	1	0,7846	1,3E-05	0,000419			1	0,20998	8,06404E-05	0,002515
							_			
			(-1			-			(-)	
			UTIL. (2)						AVE.CONT. (2)	
_						_				
i		X	(xi-X)^2	S^2		i		X	(xi-X)^2	S^2
	1	0,56124	0,000248	0,000964			1	0,07758	0,000383376	0,001616
			T				_		T	

	n=	100												
		UTIL. (1)								UTIL. (2)				
i		X	(xi-₹)^2	S^2	5/2			i		X	(xi-₹)^2	S^2	S/2	_
	1	0,78375	7,5625E-06	0,00037	0,00	9612			1	0,56557	0,000131	0,00079	0,014101	158
	7		م ممموصموء						٠,		0.00011		1	
	I	AVE.CONT.	(1)						AVE.	CONT. (2)				_
	7	7	(xi-X)^2	S^2		S/2	i		X		(xi-₹)^2	S^2	5/2	-
	1	0,204	1,32496	E-05 0,00	1833	0,021408		1		0,07202	0,000197	0,001063	0,016305	

На основе полученных выборок для n = 100 построим гистограммы. Ширину интервалов выберем не более половины исправленной оценки среднеквадратичного отклонения соответствующей величины. При попадании в крайние интервалы менее 5 значений объединим их с соседними:

Коэффициент загрузки первого кассира

Средняя длина первой очереди

Средняя длина второй очереди

2.2)

Для каждой пары собранных характеристик рассчитаем выборочные ковариации и коэффициенты корреляции (для значений n=10, 25, 50, 100). Исправленная выборочная ковариация пары случайных величин:

$$cov_n(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Исправленный выборочный коэффициент корреляции:

$$\rho(X,Y) = \frac{cov_n(X,Y)}{S_n(X) \cdot S_n(Y)}$$

В результате получаем:

		n= 10	
	UTIL		AVE.COUNT.
i	$(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$		i $(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$
	1 -0,000212 0,000217 0,474369		1 -1,7E-05 0,000398 0,769627
		n= 25	
		11= 25	
	UTIL		AVE.COUNT.
	OTIL		AVE.COOKI.
i	$(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$		i $(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$
<u> </u>	1 -9,806E-05 0,000338 0,552109		1 0,00018927 0,001452 0,881927
		n= 50	
	UTIL		AVE.COUNT.
i	$(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$		i $(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$
	1 -5,674E-05 0,000415 0,652617		1 0,000175828 0,00182 0,902434
		n- 100	
		n= 100	
	UTIL		AVE.COUNT.
	OTIL		AVE.COUNT.
i	$(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$		i $(xi-\overline{x})(yi-\overline{y})$ $cov(X,Y)$ $\rho(X,Y)$
<u> </u>	1 -0,001587 0,00032 0,589694		1 5,10328E-05 0,001234 0,883983
	1 -0,001367 0,00032 0,383034		1 3,10320L-03 0,001234 0,003303

2.3)

Для значений n = 10, 25, 60 рассчитаем доверительные интервалы для математических ожиданий каждой из собранных характеристик с уровнями значимости $\alpha = 0,1$ и 0,01 (для двусторонней симметричной области):

$$\underline{x} - \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha) < M < \underline{x} + \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha)$$

 $t_{n-1}(lpha)$ мы ищем по таблице критических точек распределения Стьюдента.

				α =	0.1									
					0,2									
		UTIL. (1)				UTIL. (2)				AVE.CONT. (1)			AVE.CONT. (2)	
		tn-1(α)				tn-1(α)				tn-1(α)			tn-1(α)	l
n = 10		1,83				1,83				1,83			1,83	ĺ
	0,774691		0,800709		0,53351		0,5571	0	,184291		0,214309	0,0564486		0,07955
		tn-1(α)				tn-1(α)				tn-1(α)			tn-1(α)	i .
n = 25		1,71				1,71				1,71			1,71	1
	0,777602	< M <	0,791598		0,54863	< M <	0,5691	0	,194415	< M <	0,224305	0,067751	< M <	0,09352
		tn-1(α)				tn-1(α)				tn-1(α)			tn-1(α)	i
n = 60		1,67				1,67				1,67			1,67	1

						α=	0,01					
	UTIL. (1)			UTIL. (2)				AVE.CONT. (1)			AVE.CONT. (2)	
	tn-1(α)			tn-1(α)				tn-1(α)			tn-1(α)	
	4,78			4,78				4,78			4,78	
0,75372	< M <	0,82168	0,514511	< M <	0,5760893		0,160096	< M <	0,238504	0,037827	< M <	0,098173
	tn-1(α)			tn-1(α)				tn-1(α)			tn-1(α)	
0,769294	-	0,799906	0,536502	< M <	0,5811776		0,176673	< M <	0,242047	0,05245		0,10883
	tn-1(α)			tn-1(α)				tn-1(α)			tn-1(α)	
	3,46			3,46				3,46			3,46	
0,773915	< M <	0,792718	0,547806	< M <	0,5743271		0,186466	< M <	0,229134	0,057505	< M <	0,091462