Simple Linear Regression

Partitioning variability

Prof. Maria Tackett

Click here for PDF of slides

Topics

- Use analysis of variance to partition variability in the response variable
- Define and calculate R^2
- Use ANOVA to test the hypothesis

$$H_0: \beta_1 = 0 \text{ vs } H_a: \beta_1 \neq 0$$

Cats data

The data set contains the **heart weight** (**Hwt**) and **body weight** (**Bwt**) for 144 domestic cats.

Distribution of response

Mean	Std. Dev.	IQR
10.631	2.435	3.175

The model

$$\text{Hwt} = -0.357 + 4.034 \times \text{Bwt}$$

How much of the variation in cats' heart weights can be explained by knowing their body weights?

ANOVA

We will use **Analysis of Variance (ANOVA)** to partition the variation in the response variable Y.

Response variable, Y

Total variation

$$SS_{Total} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = (n-1)s_y^2$$

Explained variation (Model)

$$SS_{Model} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Unexplained variation (Residuals)

$$SS_{Error} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} (\mathbf{y_i} - \bar{\mathbf{y}})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

R^2

The **coefficient of determination**, \mathbb{R}^2 , is the proportion of variation in the response, Y, that is explained by the regression model

$$R^{2} = \frac{SS_{Model}}{SS_{Total}} = 1 - \frac{SS_{Error}}{SS_{Total}}$$

R^2 for our model

$$SS_{Model} = 548.092$$

$$SS_{Error} = 299.533$$

$$SS_{Total} = 847.625$$

$$R^2 = \frac{548.092}{847.625}$$

$$= 0.647$$

About 64.7% of the variation in the heart weight of cats can be explained by variation in body weight.

ANOVA table

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

ANOVA table

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

Sum of squares

$$SS_{Total} = 847.625 = 548.092 + 299.533$$

$$SS_{Model} = 548.092$$

$$SS_{Error} = 299.533$$

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

Degrees of freedom

$$df_{Total} = 144 - 1 = 143$$

$$df_{Model} = 1$$

$$df_{Error} = 143 - 1 = 142$$

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

Mean squares

$$MS_{Model} = \frac{548.092}{1} = 548.092$$

$$MS_{Error} = \frac{299.533}{142} = 2.109$$

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

F test statistic: ratio of explained to unexplained variability

$$F = \frac{MS_{Model}}{MS_{Error}} = \frac{548.092}{2.109} = 259.835$$

F distribution

ANOVA test

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

P-value: Probability of observing a test statistic at least as extreme as F Stat given the population slope β_1 is 0

The p-value is calculated using an ${\cal F}$ distribution with 1 and n-2 degrees of freedom

Calculating p-value

ANOVA

Source	Df	Sum Sq	Mean Sq	F Stat	Pr(> F)
Model	1	548.092	548.092	259.835	0
Residuals	142	299.533	2.109		
Total	143	847.625			

The p-value is very small (≈ 0), so we reject H_0 .

The data provide strong evidence that population slope, β_1 , is different from 0.

The data provide sufficient evidence that there is a linear relationship between a cat's heart weight and body weight.

Recap

- Used analysis of variance to partition variability in the response variable
- Defined and calculated R^2
- Used ANOVA to test the hypothesis

$$H_0: \beta_1 = 0 \text{ vs } H_a: \beta_1 \neq 0$$

