- a) a < b ← → ∀ € > 0 , a < b + €.
- b) ∀ €>0, a< b+ € ⇒ a < b.

C) a ≤ b ⇔ ∀ €>0, a < b + € is true.
Proof. ">"

a≤b => ∀ €>0, a ≤ b < b + €.

" = " proof by contradiction

Assume a>b, then take &= a-b>o,

a < b+ E = b+ (a-b) = a.

A contradiction, so a < b.

1. 3. 9

a) Take $\mathcal{E} = \sup B - \sup A > 0$, $\exists b \in B$ s.t. $\sup B - \mathcal{E} = \sup A < b$. $\forall a \in A$, $a \in \sup A < b$, so b is an upper bound of A.

b) Take A = B = (0,1), supA = supB = 1. There is no $b \in B$ that is an upper bound of A.

1.4.3

Proof. Assume $A = \bigcap_{n=1}^{\infty} (o, \frac{1}{n}) \neq \phi$, take $\chi \in A$. $\chi > 0$, by Archimedean property, $\exists m \in \mathbb{N}, s + \frac{1}{m} < \chi$, so $\chi \notin (o, \frac{1}{m})$. Hence $\chi \notin \bigcap_{n=1}^{\infty} (o, \frac{1}{n}) = A$, a contradiction. So $A = \phi$. 1.5.6

- a) $A_n = (n, n+1), n \in \mathbb{Z}$
- b) No such collection exists.

Let SZ = { On=(ax, bx)} nex be a collection of disjoint open intervals.

Since Q is dense in IR, Y NEN, 3 TheQNON.

 $\forall \lambda_1 \neq \lambda_2 \in \Lambda$, $\gamma_{\lambda_1} \neq \gamma_{\lambda_2} \text{ Since } O_{\lambda_1} \cap O_{\lambda_2} = \phi$

Now we have a 1-1 correspondence between

I and a subset of Q given by

 $0_{\lambda} \mapsto r_{\lambda}$

Since Q is countable and its subsets are countable or finite, 52 is countable or finite.

2.2.2 b)

$$\left| \frac{2n^2}{n^3+3} - 0 \right| < \frac{2n^2}{h^3} = \frac{2}{h} < 2 \cdot \frac{\xi}{2} = \xi.$$

So
$$\lim \frac{2h^2}{h^3+3} = 0$$

2.3.1 6)

We may assume $\chi>0$ since the case $\chi=0$ is done in part a). Since $(\chi_n) \to \chi$,

Now Y n>N,

$$| Jx_n - Jx | = \frac{|Jx_n - Jx| \cdot (Jx_n + Jx)}{|Jx_n + Jx|}$$

$$= \frac{|x_n - x|}{|x_n - x|}$$

$$\frac{1}{\sqrt{1}} < \frac{1}{\sqrt{1}} = \varepsilon$$

 S_{0} $(\sqrt{1}X_{n}) \rightarrow \sqrt{1}X$.

2.3.3

So lim /n = L.

X Note that we can not use algebraic limit theorem here since it is not given that (Yn) converges.

2.4.3 b)

The sequence an is given by $a_1 = Jz$, $a_{n+1} = Jza_n$, $n \in M$.

i) On 1

 $a_2 = \sqrt{252} > \sqrt{52} = a_1$

If an+1> an, then an+2= \(\sum_{2an+1} > \sum_{2an} = a_{n+1}. \)

ii) 5 = an < 2.

J2 5 01 = J2 < 2.

If 12 < an < 2, then 12 < an < an+1 = Jzan < Jz=2.

Now by Monotone Convergence Theorem, (an) converges.

Let $\lim_{n \to \infty} (a_n) = a$, take $\lim_{n \to \infty} t_n = \int_{2a_n}^{2a_n} t_n$ we have $a = \int_{2a}^{2a_n} (N_0 t_0) t_n = t_0$

the result of 2.3.1 here), Q=0 or Q=2.

Since 5= an<2, T= a = 2, hence a=2.

2,5,5

Proof. Assume that all convergent subsequence of a bounded sequence (an) converge to a CIR but (an) does not converge to a

So (an) has subsequence (a_{n_k}) s.t. $\forall k \in \mathbb{N}$, $a_{n_k} \notin V_{\epsilon}(a)$.

Now (a_{n_k}) is a bounded sequence and hence by Bolzano-Weierstrass Thm it has a convergent subsequence (a_{n_k}) . From the assumption

 $(a_{n_{k_i}}) \rightarrow a$ but $\forall i \in \mathbb{N}$, $a_{n_{k_i}} \notin V_{\epsilon}(a)$,

a Contradiction.

 S_0 $(a_n) \rightarrow a$.

2.6. 5

i False.

Take
$$S_{n} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
, $n \in \mathbb{N}$.

 $\forall \ \mathcal{E} > 0$, $\exists \ N \in \mathbb{N}$, $S : t : \forall \ n \ge \mathbb{N}$,

 $|S_{n+1} - S_n| = \frac{1}{n+1}| < \mathcal{E}$.

(S_n) is not bounded

ii True.

If (x_n) , (y_n) are pseudo- Cauchy,

 $\forall \ \mathcal{E} > 0$, $\exists \ N \in \mathbb{N}$, $S : t : \forall \ n \ge \mathbb{N}_1$, $|X_{n+1} - X_n| < \frac{\mathcal{E}}{2}$.

 $\exists \ N_2 \in \mathbb{N}$, $S : t : \forall \ n \ge \mathbb{N}_2$, $|Y_{n+1} - Y_n| < \frac{\mathcal{E}}{2}$.

Take $N = \max \{N_1, N_2\}$, $\forall \ n \ge \mathbb{N}$,

 $|(X_{n+1} + Y_{n+1}) - (X_n + Y_n)|$

$$\begin{aligned} & \left| \left(X_{n+1} + Y_{n+1} \right) - \left(X_n + Y_n \right) \right| \\ & \in \left| \left| X_{n+1} - X_n \right| + \left| Y_{n+1} - Y_n \right| \\ & < \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E} \end{aligned}$$

$$So \left(X_n + Y_n \right) is pseudo- Cauchy$$

2.7.2

C)
$$a_n = (-1)^{n+1} \cdot \frac{n+1}{2n}$$
.
 $|a_n| = \frac{n+1}{2n} > \frac{n}{2n} = \frac{1}{2}$.
So (a_n) does not converge to 0 and $\sum a_n$ diverges.

e) The partial sum
$$S_{2n} = 1 - \frac{1}{2^{2}} + \frac{1}{3} - \frac{1}{4^{2}} + \cdots + \frac{1}{2^{n-1}} - \frac{1}{(2n)^{2}}$$

$$> 1 - \frac{1}{1 \cdot 2} + \frac{1}{3} - \frac{1}{3 \cdot 4} + \cdots + \frac{1}{2^{n-1}} - \frac{1}{(2^{n-1})(2^{n})}$$

$$= \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{n}}$$

$$= \frac{1}{2} (1 + \frac{1}{2} + \cdots + \frac{1}{n})$$

(Szn) is unbounded, so the series diverges