CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 11: MDPs (Part 2)

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcement

- Project 2: Multi-agent Search
 - Deadline: Nov 03, 2023

Thanh H. Nguyen 10/22/23

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀

• Quantities:

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned 2
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

The Bellman Equations

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Racing Search Tree

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 VALUES AFTER O ITERATIONS

Gridworld Display

000

0.00 0.00 0.72 1.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 **VALUES AFTER 2 ITERATIONS**

Gridworld Display

Gridworld Display 0.00 → 0.52 0.78 → 1.00 lack-1.00 0.00 0.43 0.00 0.00 0.00 0.00 VALUES AFTER 3 ITERATIONS

0.37 → 0.66 → 0.83 1.00 \triangle 0.00 0.51 -1.00 ∢ 0.00 0.00 0.00 0.31 VALUES AFTER 4 ITERATIONS

Gridworld Display

Gridworld Display 0.74 → 0.85 → 0.63 → 1.00 lack \triangle -1.00 0.53 0.57 lack0.39 → **♦ 0.26** 0.42 0.46 VALUES AFTER 8 ITERATIONS

k = 100

Computing Time-Limited Values

Value Iteration

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

 V_2

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problems with Value Iteration

•Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

s, a, s'
s, a

- Problem 1: It's slow $O(S^2A)$ per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Gridworld Display 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 VALUES AFTER 0 ITERATIONS

000

0.00 0.00 0.72 1.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 **VALUES AFTER 2 ITERATIONS**

Gridworld Display

Gridworld Display 0.00 → 0.52 0.78 → 1.00 lack-1.00 0.00 0.43 0.00 0.00 0.00 0.00 VALUES AFTER 3 ITERATIONS

0.37 → 0.66 → 0.83 1.00 \triangle 0.00 -1.00 0.51 ∢ 0.00 0.00 0.00 0.31 VALUES AFTER 4 ITERATIONS

Gridworld Display

Gridworld Display 0.74 → 0.85 → 0.63 → 1.00 lack \triangle -1.00 0.53 0.57 lack0.39 → **♦ 0.26** 0.42 0.46 VALUES AFTER 8 ITERATIONS

k = 100

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = \text{expected total discounted rewards starting in s and following } \pi$

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step look-ahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Example: Racing

- Discount: $\gamma = 0.1$
- Initial policy
 - $\pi_0(Cool) = Slow$

 - $\pi_0(Overheated) = \emptyset$

Example: Racing

• Discount: $\gamma = 0.1$

