《模式识别》第3次作业

姓名: 谷绍伟 学号: 202418020428007

1 计算与证明

1. 现有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为 $(1,4)^T$ 和 $(2,3)^T$,第二类的两个样本为 $(4,1)^T$ 和 $(3,2)^T$ 。这里,上标 T 表示向量转置。若采用规范化增广样本表示形式,并假设初始的权向量 $a=(0,1,0)^T$,其中向量 a 的第三维对应于样本的齐次坐标。同时,假定梯度更新步长 η_k 固定为 1。试利用批处理感知准则函数方法求解线性判别函数 $g(\mathbf{x})=a^T\mathbf{x}$ 的权向量 \mathbf{a} ,(注:"规范化增广样本表示"是指对齐次坐标表示的样本进行规范化处理)。

答:第一类样本规范化后为 $x_1 = (1,4,1)^T$, $x_2 = (2,3,1)^T$,第二类样本规范化后为 $x_3 = (-4,-1,-1)^T$, $x_4 = (-3,-2,-1)^T$ 。初始化权向量为 $a = (0,1,0)^T$,根据批处理感知准则函数方法,有:

$$x_1: (1,4,1)^T \cdot (0,1,0)^T = 4 > 0$$

$$x_2: (2,3,1)^T \cdot (0,1,0)^T = 3 > 0$$

$$x_3: (-4,-1,-1)^T \cdot (0,1,0)^T = -1 < 0$$

$$x_4: (-3,-2,-1)^T \cdot (0,1,0)^T = -2 < 0$$

希望判别结果全为正数, x_3 和 x_4 被错误分类,更新步长 $\eta_k = 1$,则权向量更新为:

$$a = (0, 1, 0)^T + (-4, -1, -1)^T + (-3, -2, -1)^T = (-7, -2, -2)^T$$

再次计算分类结果:

$$x_1: (1,4,1)^T \cdot (-7,-2,-2)^T = -7 - 8 - 2 = -17 < 0$$

$$x_2: (2,3,1)^T \cdot (-7,-2,-2)^T = -14 - 6 - 2 = -22 < 0$$

$$x_3: (-4,-1,-1)^T \cdot (-7,-2,-2)^T = 28 + 2 + 2 = 32 > 0$$

$$x_4: (-3,-2,-1)^T \cdot (-7,-2,-2)^T = 21 + 4 + 2 = 27 > 0$$

希望判别结果全为正数, x_1 和 x_2 被错误分类, 更新步长 $\eta_k = 1$, 则权向量更新为:

$$a = (-7, -2, -2)^T + (1, 4, 1)^T + (2, 3, 1)^T = (-4, 5, 0)^T$$

再次计算分类结果:

$$x_1: (1,4,1)^T \cdot (-4,5,0)^T = -4 + 20 + 0 = 16 > 0$$

$$x_2: (2,3,1)^T \cdot (-4,5,0)^T = -8 + 15 + 0 = 7 > 0$$

$$x_3: (-4,-1,-1)^T \cdot (-4,5,0)^T = 16 - 5 + 0 = 11 > 0$$

$$x_4: (-3,-2,-1)^T \cdot (-4,5,0)^T = 12 - 10 + 0 = 2 > 0$$

分类结果均为正,无错误分类,则权向量为:

$$a = (-4, 5, 0)^T$$

2. 对于多类分类情形, 考虑 one-vs-all 技巧, 即构建 c 个线性判别函数:

$$g_i(\mathbf{x}) = \mathbf{w_i}^T \mathbf{x} + w_{i0}, i = 1, 2, \cdots, c$$

此时的决策规则为:对于 $j \neq i$,如果 $g_i(\mathbf{x}) > g_j(\mathbf{x})$, \mathbf{x} 则被分为 ω_i 类。现有三个二维空间内的模式分类器,其判别函数为:

$$g_1(\mathbf{x}) = -x_1 + x_2$$
$$g_2(\mathbf{x}) = x_1 + x_2 - 1$$
$$g_3(\mathbf{x}) = -x_2$$

试画出决策面,指出为何此时不存在分类不确定性区域。

答: 若 x 属于 ω_i 类,则有:

$$g_1(\mathbf{x}) > g_2(\mathbf{x}) \Rightarrow x_1 < \frac{1}{2}$$

$$g_1(\mathbf{x}) > g_3(\mathbf{x}) \Rightarrow x_1 < 2x_2$$

若 x 属于 ω_2 类,则有:

$$g_2(\mathbf{x}) > g_1(\mathbf{x}) \Rightarrow x_1 > \frac{1}{2}$$

 $g_2(\mathbf{x}) > g_3(\mathbf{x}) \Rightarrow x_1 + 2x_2 > 1$

若 \mathbf{x} 属于 ω_3 类,则有:

$$g_3(\mathbf{x}) > g_1(\mathbf{x}) \Rightarrow x_1 > 2x_2$$

$$g_3(\mathbf{x}) > g_2(\mathbf{x}) \Rightarrow x_1 + 2x_2 < 1$$

因此,决策边界交于 $x_1 = \frac{1}{2}$, $x_2 = \frac{1}{4}$ 的位置,且不存在分类不确定性区域,如图 1所示:

Figure 1: 分类决策面

2 计算机编程

本章所使用的数据如下表:

	ω_1		ω_2		ω_3		ω_4	
sample	x_1	x_2	x_1	x_2	x_1	x_2	x_1	x_2
1	0.1	1.1	7.1	4.2	-3.0	-2.9	-2.0	-8.4
2	6.8	7.1	-1.4	-4.3	0.5	8.7	-8.9	0.2
3	-3.5	-4.1	4.5	0.0	2.9	2.1	-4.2	-7.7
4	2.0	2.7	6.3	1.6	-0.1	5.2	-8.5	-3.2
5	4.1	2.8	4.2	1.9	-4.0	2.2	-6.7	-4.0
6	3.1	5.0	1.4	-3.2	-1.3	3.7	-0.5	-9.2
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2	-5.3	-6.7
8	0.9	1.2	2.5	-6.1	-4.1	3.4	-8.7	-6.4
9	5.0	6.4	8.4	3.7	-5.1	1.6	-7.1	-9.7
10	3.9	4.0	4.1	-2.2	1.9	5.1	-8.0	-6.3

- 1. Write a program to implement the "batch perception" algorithm.
- **a.** Starting with a=0, apply your program to the training data from ω_1 and ω_2 . Note that the number of iterations required for convergence (即记录下收敛的步数)。
- **b.** Apply your program to the training data from ω_3 and ω_2 . Again, note that the number of iterations required for convergence.
 - 答:程序见附件中的 batch_perception.py 文件,运行结果如下表所示:

任务	Iteration	权向量	更新步长
a	23	(-0.304, 0.341, 0.340)	0.01
b	16	(-0.041, 0.049, 0.019)	0.01

2. Implement the Ho-Kashyap algorithm and apply it to the training data from ω_1 and ω_3 . Repeat to apply it to the training data from ω_2 and ω_4 . Point out the training errors, and give some analyses.

答:程序见附件中的 Ho_Kashyap.py 文件,设置更新因子为 0.01,初始误差为 1,初始 $b_{ini}=0.01$,最小 $b_{min}=0.001$,最大迭代次数为 150000 次,运行结果如下表所示:

任务样本	结果	迭代次数	权向量
ω_1 , ω_3	不收敛	150000	(0.003454, -0.002515, 0.004814)
ω_2 , ω_4	收敛	23076	(0.005339, 0.004746, 0.03688)

样本 ω_2 和 ω_4 正常收敛,但样本 ω_1 和 ω_3 不收敛,对样本分布进行可视化,结果 如图 2。可见 ω_2 和 ω_4 是线性可分的,但 ω_1 和 ω_3 不是线性可分,因此 Ho-Kashyap 算 法在分类 ω_1 和 ω_3 上不收敛。

Figure 2: 分类可视化

- 3. 请写一个程序,实现 MSE 多类扩展方法。每一类用前 8 个样本来构造分类器,用后两个样本作测试。请写出主要计算步骤,并给出你的正确率。
 - 答:代码见文件中 MSE.py 文件,主要步骤如下:

- 1. 构造分类器,用前8个样本来构造分类器,用后两个样本作测试,回归值使用one-hot编码。
- 2. 根据训练样本计算出权值 W。
- 3. 根据此权值和测试样本计算出预测值 E。
- 4. 对预测值取 argmax,得到分类输出,判断正确率。

经过测试,分类结果正确率为100%。