

Memory Management - 10

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

Course Syllabus - Unit 3

Unit-3:Unit 3: Memory Management: Main Memory

Hardware and control structures, OS support, Address translation, Swapping, Memory Allocation (Partitioning, relocation), Fragmentation, Segmentation, Paging, TLBs context switches Virtual Memory – Demand Paging, Copy-on-Write, Page replacement policy – LRU (in comparison with FIFO & Optimal), Thrashing, design alternatives – inverted page tables, bigger pages. Case Study: Linux/Windows Memory

Course Outline

Topic Outline

- Virtual Memory Page replacement
- What happens if there is no free Frame ?
- Basic Page Replacement
- Page and Frame Replacement Algorithms
- Graph of Page Faults versus the number of Frames

Topic Outline

- First-In-First-Out (FIFO) Algorithm
- FIFO illustrating Belady's Anomaly
- Optimal Page Replacement Algorithm
- Least Recently Used (LRU) Algorithm
- Use of a Stack to Record Most Recent Page References

Topic Outline

- LRU Algorithm Implementation
- Second-Chance (clock) Page-Replacement Algorithm
- Enhanced Second-Chance Algorithm
- Counting Algorithms
- Page-Buffering Algorithms

Topic Outline

PES UNIVERSITY ONLINE

- Applications and Page Replacement
- Allocation of Frames
- Fixed Allocation
- Priority Allocation
- Global vs. Local Allocation

Non-Uniform Memory Access

Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers => only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory => large virtual memory can be provided on a smaller physical memory

Page Replacement

- 1. Find the location of the desired page on disk
- 2. Find a free frame:
 - i. If there is a free frame, use it
 - ii. If there is no free frame, use a page replacement algorithm to
 - iii. Select a Victim frame
 - Write Victim frame to disk if dirty

Page Replacement

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note: Potentially 2 page transfers for page fault – increasing EAT, if the page is swapped

Page and Frame Replacement Algorithms

- Frame-allocation algorithm FRA determines
 - How many frames to give each process ?
 - Which frames to replace?
- Page-replacement algorithm PRA
 - Want lowest page-fault rate on both first access and re-access

Page and Frame Replacement Algorithms

- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
 - String is just page numbers, not full addresses
 - Repeated access to the same page does not cause a page fault if available in the frame
 - Results depend on number of frames available
- In all our examples, the reference string of referenced page numbers of the same process is

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22
Page #	7	0	1	2	0	3	0	4	2	3	0	3	0	3	2	1	2	0	1	7	0	1

Optimal Page Replacement Algorithm

- Replace page that will not be used for longest period of time
- How do you know this ?
- Can't read the future
- Used for measuring how well your algorithm performs

PRA: Optimal Page Replacement Algorithm

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22
Page #	7	0	1	2	0	3	0	4	2	3	0	3	0	3	2	1	2	0	1	7	0	1

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22
1	7	7	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	7
2		0	0	0	0	0	0	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0
3			1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1	1	1	1
Flag	PF	PF	PF	PF	РН	PF	РН	PF	РН	РН	PF	РН	PH	PH	РН	PF	РН	РН	РН	PF	РН	РН

Working Set => { 7,0,1,2,3,4 }

Total Number of Page Requests = > 22

Total Number of Frames => 3

Total Number of Page faults => 9

% of Page Faults = > 9/22 => 40.90%

% of Page Hits => 59.09 %

Legend

Page Fault => PF

Least Recently Used Page Replacement Algorithm

- Use past knowledge rather than future
- Replace page that has not been used in the most amount of time
- Associate time of last use with each page
- Generally good algorithm and frequently used
- But how to implement?

PRA: Least Recently Used Page Replacement Algorithm - LRU

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22
Page #	7	0	1	2	0	3	0	4	2	3	0	3	0	3	2	1	2	0	1	7	0	1

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22
1	7	7	7	2	2	2	2	4	4	4	0	0	0	0	0	1	1	1	1	1	1	1
2		0	0	0	0	0	0	0	0	3	3	3	3	3	3	3	3	0	0	0	0	0
3			1	1	1	3	3	3	2	2	2	2	2	2	2	2	2	2	2	7	7	7
Flag	PF	PF	PF	PF	РН	PF	РН	PF	PF	PF	PF	РН	PH	PH	PH	PF	РН	PF	РН	PF	РН	РН

Working Set => { 7,0,1,2,3,4 }

Total Number of Page Requests = > 22

Total Number of Frames => 3

Total Number of Page faults => 12

% of Page Faults = > 12/22 => 54.54%

% of Page Hits => 45.45%

Legend

Page Fault => PF

LRU Algorithm Implementation

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to find smallest value
 - Search through table needed
- Stack implementation
- Keep a stack of page numbers in a double link form:
- Page referenced: move it to the top
 - Requires 6 pointers to be changed
 - But each update more expensive
- No search for replacement
- LRU and OPT are cases of stack algorithms that don't suffer from Belady's Anomaly

Least Recently Used Page Replacement Algorithm

Page Replacement Algorithms - Comparison

PES

First in First Out Page Replacement Algorithm

Working Set => $\{7, 0, 1, 2, 3, 4\}$

Total Number of Page Requests = > 22

Total Number of Frames => 3

Total Number of Page faults => 15

% of Page Faults = > 15/22 => 68.18%

% of Page Hits => 31.81 %

Legend

Page Fault => PF

Page Hit => PH

Optimal Page Replacement Algorithm

Working Set => $\{7,0,1,2,3,4\}$

Total Number of Page Requests = > 22

Total Number of Frames => 3

Total Number of Page faults => 9

% of Page Faults = > 9/22 => 40.90%

% of Page Hits => 59.09 %

Legend

Page Fault => PF

Page Hit => PH

Least Recently Used Page Replacement Algorithm

Working Set => $\{7,0,1,2,3,4\}$

Total Number of Page Requests = > 22

Total Number of Frames => 3

Total Number of Page faults => 12

% of Page Faults = > 12/22 => 54.54%

% of Page Hits => 45.45%

Legend

Page Fault => PF

Optimal Page Replacement Algorithm - Practice Problem

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
Page #	1	2	3	4	1	2	5	1	2	3	4	5

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
1												
2												
3												
Flag												

Working Set => { }

Total Number of Page Requests = >

Total Number of Frames =>

Total Number of Page faults =>

% of Page Faults = >

% of Page Hits =>

Legend

Page Fault => PF

Optimal Page Replacement Algorithm - Practice Problem

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
Page #	1	2	3	4	1	2	5	1	2	3	4	5

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
1												
2												
3												
4												
Flag												

Working Set => { }

Total Number of Page Requests = >

Total Number of Frames =>

Total Number of Page faults =>

% of Page Faults = >

% of Page Hits =>

Legend

Page Fault => PF

Least Recently Used Page Replacement Algorithm - Practice Problem

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
Page #	1	2	3	4	1	2	5	1	2	3	4	5

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
1												
2												
3												
Flag												

Working Set => { }

Total Number of Page Requests = >

Total Number of Frames =>

Total Number of Page faults =>

% of Page Faults = >

% of Page Hits =>

Legend

Page Fault => PF

Least Recently Used Page Replacement Algorithm - Practice Problem

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
Page #	1	2	3	4	1	2	5	1	2	3	4	5

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
1												
2												
3												
4												
Flag												

Working Set => { }

Total Number of Page Requests = >

Total Number of Frames =>

Total Number of Page faults =>

% of Page Faults = >

% of Page Hits =>

Legend

Page Fault => PF

Topic Outline

- Virtual Memory Page replacement
- What happens if there is no free Frame ?
- Basic Page Replacement
- Page and Frame Replacement Algorithms
- Graph of Page Faults versus the number of Frames

Topic Outline

PES UNIVERSITY ONLINE

First-In-First-Out (FIFO) Algorithm

- FIFO illustrating Belady's Anomaly
- Optimal Page Replacement Algorithm

Least Recently Used (LRU) Algorithm

LRU Algorithm Implementation

THANK YOU

Nitin V Pujari Faculty, Computer Science Dean - IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com and complete reading assignments provided by the Anchor on Edmodo