

Bioinformatics, Interpretation and Data Quality Assurance in Genome Analysis

Will Tapper
6th February 2017

Who are we?

Southampton

Module leads:

Dr William Tapper

Senior Research Fellow in Genomic informatics PhD, Genetic Epidemiology, University of Southampton

W.J.Tapper@soton.ac.uk

http://www.southampton.ac.uk/medicine/about/staff/wjt.page

Reader in Genomics and Bioinformatics Director of Bioinformatics Core Facility PhD, Viral Evolution, University of Oxford

C.H.Woelk@soton.ac.uk

http://www.southampton.ac.uk/medicine/about/staff/chw1f12.page

Southampton

Learning outcomes

- 1. Analyse the principals of sequence data quality control, alignment, variant calling, annotation and filtering strategies to identify pathogenic mutations
- Interrogate databases of genomic variation and integrate with clinical data to assess the pathogenic and clinical significance of genome results
- 3. Acquire computer skills and an understanding of statistical methods for analysing NGS data in diagnostics and research
- 4. Gain practical experience of the bioinformatics pipeline through the Genomics England programme
- 5. Justify and defend Professional Best Practice Guidelines in the diagnostic setting for the reporting of genomic variation

Course breakdown

Day 1: Monday 6th February

Lectures (9:00 – 11:45)

- Data basics: raw data, quality control, preparation for alignment
- Aligning data to the genome: methodology, assessment and QC
- Tools for viewing aligned data: IGV and UCSC etc

Workshop (13:00 - 17:00)

- An introduction to Galaxy
- Whole Exome data (WES01)
 - Assess raw data quality pre and post filtering
 - Align to reference genome, assess coverage and quality
 - Visualise and interrogate aligned data

Course breakdown

Day 2: Tuesday 7th February

Lectures (9:00 - 11:45)

- Integration of laboratory and clinical information
- Variant calling: identification of SNVs, indels and quality control
- Epigenomics

Workshop (13:00 - 17:00)

- Whole Genome data (NA12878)
 - Call variants and assess sensitivity and specificity
 - Quality control metrics and visualisation
- Call variants in Whole Exome data (WES01)

Course breakdown

Day 3: Monday 27th February

Lectures (9:00 - 11:45)

- Copy number, large indels and structural rearrangements
- Annotation: genes, variation databases, pathogenicity estimates
- Sensitivity and specificity of genomic tests

Workshop (13:00 - 17:00)

- Whole Exome data (WES01)
 - Annotation of variant call files
 - Generate a list of candidate genes
 - Prioritisation of pathogenic variants
 - Creating a running bioinformatic pipeline

Course breakdown

Day 4: Tuesday 28th February

Lectures (9:00 - 11:45)

- Best practice guideline for reporting clinical significance
- Principals of downstream functional analysis
- Genomics England Training Embassy

Workshop (13:00 - 17:00)

- Filtering strategies to identify pathogenic variants
- Set and begin assessment

Assessment

Analysis

Use Galaxy to analyse whole exome data and identify a causal variant that relates to the patients phenotype

Full report (≤1500 words, 75%)

- Alignment
- Variant calling
- Annotation
- Detect causal variant
- Quality control
- Bioinformatic pipeline

Diagnostic report (500 words, 25%)

Communicate NGS result with GP and discuss best practice guidelines for reporting genomic variation in a diagnostic setting

Lecture outline

- Read types (single end, paired end, mate pair) and applications
- Raw sequence data FastQ files
- Phred scores and the probability of sequencing error
- Methods to assess the quality of raw sequence data
- Quality control:
 - > Trim low quality bases from 3'
 - > Remove reads with low average quality
 - ➤ 5' clipping
 - > Remove adapters

Analysis workflow

Where is the FastQ data from?

Read types

Special applications

Single end

- The best option for degraded DNA samples (FFPE or ancient DNA)
- Fast, cheap, sufficient for counting experiments (eg RNAseq)

Paired end

- Better alignment and variant calling
- Good for small to medium insertions and deletions (indels)
- Some structural variation
- Scaffolding in de novo genome assembly

Mate pairs

- Scaffolding in *de novo* genome assembly
- Best option for structural variation

Paired end sequencing

Read 2

Unmapped read rescued

by its partner

ACTATAAT?????????ACCGCGAT

Single read maps to multiple

- Sequence both ends (<150bp) of a larger fragment of DNA (200-800bp)
- Provides 2 sequences with a gap between of known length but unknown sequence
- Better alignment, especially near repeat DNA, can map across repeats and recover unmapped reads
- Also useful in identifying structural variation

Read 1

FASTQ files

FASTQ files: Raw unaligned reads

Simple extension from traditional FASTA format

• Official specification: http://maq.sourceforge.net/fastq.shtml

FASTQ files: Read identifier

- Identifier describes location of reads on the flow cell
- Identifiers are used to match reads that come from the same DNA fragment (ie read 1 and 2 from pair 1)

A quick guide to Phred scaling

- Each bp in the FASTQ file has a quality score on the Phred scale which describes the probability of sequencing error (p-value)
- Phred value $Q = -10 \times \log_{10}(p\text{-value})$, p-value = $10^{(-Q/10)}$
- Q30 = 0.1% error, 99.9% confidence [-10 x $\log_{10}(0.001)$]
- Q20 = 1% error, 99% confidence $[-10 \times \log_{10}(\mathbf{0.01})]$

Character	ASCII	Phred (Q)	P-value
?	63	30	0.001
5	53	20	0.01

- Importance? Error probability is used in variant calling
- Why not use p-values? Save space: Exome, ~100 Million reads
 10 Billion bases = 10 Gb

Assess sequence quality and pre-process

- Sequencer output: Reads + quality
- How many reads?
- Is the sequence quality ok?
- Are there any problems & fixes?

Basic Statistics

Measure	Value		
Filename	WTCHG_36466_05_2_sequence.txt.gz		
File type	Conventional base calls		
Encoding	Illumina 1.5		
Total Sequences	943293		
Filtered Sequences	0		
Sequence length	100		
%GC	47		

№FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

Per base sequence quality

Range of quality scores over all reads at each position

Per base sequence quality

Range of quality scores over all reads at each position

Why does quality drop towards the end?

- Typical for ensemble-based sequencing by synthesis (eg Illumina)
- Sequence determined from average over all copies in a cluster
- Cluster becomes desynchronised, reduces accuracy of average

Per Sequence Quality Distribution

Average quality scores over all reads

Most reads have high quality

Not a uniform distribution

Remove reads with quality < Q20 over 90% of read

Per Base Sequence Content

• The proportion of each base at each position in the read

Per Sequence GC Content

• Observed GC content per read (red) vs modelled normal distribution (blue)

Per Base N Content

Percentage of uncalled (N) bases at each position

Sequence Duplication Levels

Proportion of data made from sequences at different duplication levels

Good data

Majority of sequence is unique (left side • Low proportion of unique sequence of plot)

Bad data

- Spikes of duplicated sequences (RHS)
- · Over-sequencing, general enrichment, both lines slope from left to right

Overrepresented Sequences

- Lists sequences that account for > 0.1% of the total
- Sequences accounting for >1% of total are either biologically important or indicative of contamination eg adapters
- Adapters are a common contaminant that occurs due to some DNA fragments being shorter than the read length

Sequence	Count	Percentage	Possible Source
SATCGGAAGAGCACACGTCTGAACTCCAGTCACGATATCGTATGC	1547768	38.192098035156306	TruSeq Adapter, Index 1 (98% over 50bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCTCGGTATGC	146635	3.61830603513262	TruSeq Adapter, Index 1 (100% over 50bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACATCAAGATATCGTATGC	6639	0.16382128255358863	TruSeq Adapter, Index 1 (97% over 41bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACGATTTCGTATGC	6462	0.15945370204267054	TruSeq Adapter, Index 1 (98% over 50bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACATTACGATATCGTATGC	5433	0.1340625136486891	TruSeq Adapter, Index 1 (97% over 41bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACATAACGATATCGTATGC	5147	0.1270052931621209	TruSeq Adapter, Index 1 (97% over 41bp)
SATCGGAAGAGCACACGTCTGAACTCCAGTCACCACGATATCGTATGC	4703	0.11604932849066535	TruSeq Adapter, Index 1 (97% over 41bp)

Use programs to remove adapters

What is a k-mer?

 Create a sliding window of size k, move it over all your reads and count the occurrence of k-mers

Eg.
$$k=5$$

DNA: ACGTGTAACGTGACGTTGGA
ACGTG
CGTGT
GTGTA

k-mer content

- Observed: counts enrichment of every 7-mer
- Expected: based on base content of the library

Summary

Lecture 2:

Alignment