Lista 3 Zadanie 7

Algorytmy i Struktury Danych

Treść

Wykaż, że nie istnieje algorytm sortujący, który działa w czasie liniowym dla co najmniej połowy n! możliwych danych wejściowych długości n. Czy odpowiedź ulegnie zmianie, jeśli zapytamy o ułamek $\frac{1}{n}$ i $\frac{1}{2^n}$ wszystkich permutacji?

Rozwiązanie

Do rozwiązania tego zadania przyda nam się znajomość ograniczenia n!:

$$\left(\frac{n}{e}\right)^n e \le n! \le e \left(\frac{n+1}{e}\right)^{n+1} e. \tag{1}$$

Na początku rozważymy drzewo decyzyjne o wysokości h, które odpowiada algorytmowi sortującemu n elementów. Liczba permutacji danych wejściowych długości n wynosi n!, zatem rozważane przez nas drzewo decyzyjne musi mieć co najmniej n! liści. Jednocześnie drzewo o wyskości h nie może mieć więcej niż 2^h liści.

Dla co najmniej połowy z n! możliwych permutacji danych wejściowych długości n mamy zatem

$$\frac{n!}{2} \le 2^h.$$

Po nałożeniu \log_2 na obie strony nierówności dostajemy

$$\log_2(n!) - \log_2(2) \le h \log_2(2).$$

Wiedząc, że $log_2(2) = 1$ otrzymujemy natępujące wyrażenie

$$h \ge \log_2(n!) - 1.$$

Skorzystamy teraz z lewej strony nierówności (1) do ograniczenia wartości n!

$$h \ge n \log_2(n) - n \log_2(e) + \log_2(e) - 1 = \Omega(n \log_2(n)),$$

czyli $h = \Omega(n \log_2(n))$. Dla ułamka $\frac{1}{n}$ otrzymujemy

$$\begin{split} &\frac{n!}{n} \leq 2^h \\ &h \geq \log_2(n!) - \log_2(n) \\ &h \geq n \log_2(n) - n \log_2(e) + \log_2(e) - \log_2(n) = \Omega(n \log_2(n)). \end{split}$$

Natomiast dla $\frac{1}{2^n}$ również otrzymujemy:

$$\begin{split} & \frac{n!}{2^n} \leq 2^h \\ & h \geq \log_2(n!) - n \log_2(2) \\ & h \geq n \log_2(n) - n \log_2(e) + \log_2(e) - n = \Omega(n \log_2(n)). \end{split}$$

W żadnym przypadku nie jesteśmy w stanie otrzymać liniowości.