Министерство образования и науки Российской Федерации Министерство высшего и среднего специального образования Республики Узбекистан

Филиал федерального государственного автономного образовательного учреждения высшего образования «Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина» в г. Ташкенте

«УТВЕРЖД	ĮАЮ»
заместитель дир	ректора по
учебной и воспитат	ельной работе
Юзликаева	а Э.Р.
«»	2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ИНФОРМАТИКА

Направление подготовки

21.03.01. – «Нефтегазовое дело»

Профиль подготовки

Бурение нефтяных и газовых скважин (РБ) Эксплуатация и обслуживание объектов добычи газа, газоконденсата и подземных хранилищ $(P\Gamma)$

Эксплуатация и обслуживание объектов добычи нефти (РН)

Квалификация (степень) выпускника

Бакалавр

Форма обучения

Очная

Ташкент 2020г.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является освоение студентами компьютерных технологий и системного программного обеспечения персональных компьютеров, и, кроме того, она является базовой для всех курсов, использующих автоматизированные методы анализа и расчетов, и так или иначе использующих компьютерную технику.

Задачами изучения дисциплины являются:

- ознакомление студентов с техническими средствами реализации информационных процессов, их характеристиками, архитектурой вычислительных комплексов;
- приобретение студентами навыков по разработке моделей решения функциональных и вычислительных задач, составлению алгоритмов их реализации и написание программ на алгоритмическом языке высокого уровня.

Изучение дисциплины позволит овладеть необходимыми компьютерными технологиями и применять их для освоения специальных дисциплин во время обучения и в последующей профессиональной деятельности, локальными и глобальными сетями ЭВМ; методами защиты информации.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Информатика» относится к базовой части математического и естественнонаучного цикла. Дисциплина базируется на курсах цикла естественнонаучных дисциплин, входящих в модули Математика, Физика, читаемых в 1 и 2 семестрах и на материалах дисциплины иностранный язык гуманитарного, социального и экономического цикла.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ

ОСВОЕНИЯ ДИСЦИПЛИНЫ

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие общекультурные и общепрофессиональные компетенции при освоении ООП ВПО, реализующей ФГОС ВПО:

- представлять современную картину мира на основе целостной системы естественнонаучных и математических знаний, ориентироваться в ценностях бытия, жизни, культуры (ОПК-1);
- обобщать, анализировать, воспринимать информацию, ставить цели и выбирать пути ее достижения (ОПК-7);
- способность решать задачи в области профессиональной деятельности с применением современных информационных технологий и прикладных аппаратно-программных средств (ОПК-5);
- стремиться к саморазвитию, повышению своей квалификации и мастерства (ОПК-1);
- самостоятельно приобретать новые знания и умения с помощью информационных технологий и использовать их в практической деятельности, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (УК- 1,-2,-3,-6);
- организовать свой трудна научной основе, самостоятельно оценить результаты своей деятельности; владения навыками самостоятельной работы, в том числе в сфере проведения научных исследований (УК- 1,-2,-3,-6);
- самостоятельно принимать решения в рамках своей профессиональной компетенции, работать над междисциплинарными проектами (УК- 1,-2,-3,-6);
- понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные

требования информационной безопасности, в том числе защиты государственной тайны (УК-1,-2,-3,-6);

- владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки обработки данных и работы с компьютером как средством управления информацией (УК- 1,-2,-3,-6);
- вести поиск и оценку возможности внедрения компьютеризированных систем (включая реализацию программного обеспечения, графического моделирования и др.) для управления технологиями геологической разведки (УК- 1,-2,-3,-6).
- иметь высокую теоретическую и математическую подготовку, а также подготовку по теоретическим, методическим и алгоритмическим основам создания новейших технологических процессов геологической разведки, позволяющую быстро реализовывать научные достижения, использовать современный аппарат математического моделирования при решении прикладных научных задач (УК- 1,-2,-3,-6);
- находить, анализировать и перерабатывать информацию, используя современные информационные технологии (УК- 1,-2,-3,-6);
- обрабатывать полученные результаты, анализировать и осмысливать их с учетом имеющегося мирового опыта, представлять результаты работы, обосновывать предложенные решения на высоком научно-техническом и профессиональном уровне (УК- 1,-2,-3,-6);
- осуществлять разработку и реализацию программного обеспечения для исследовательских и проектных работ в области создания современных технологий геологической разведки (УК- 1,-2,-3,-6);
- выполнять наукоемкие разработки в области создания новых технологий геологической разведки, включая моделирование систем и процессов, автоматизацию научных исследований (УК- 1,-2,-3,-6);

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

Студент должен знать:

- понятие информации, основные виды информационных процессов. Процесс передачи информации, источник и приемник информации, кодирование информации. Дискретное (цифровое) представление звуковой, изобразительной, видео информации, двоичную форму представления информации (УК- 1,-2,-3,-6);
- архитектуру и логические основы ЭВМ (УК- 1,-2,-3,-6);
- интерфейсы основных программных пакетов (УК- 1,-2,-3,-6);
- классификацию и формы представления моделей (УК- 1,-2,-3,-6);
- устройство средств информационных и коммуникационных технологий и их функции (УК-1,-2,-3,-6);
- общие понятия о базах данных (УК- 1,-2,-3,-6);
- алгоритмы обработки информации, принципы проектирования программ (УК- 1,-2,-3,-6);
- приемы технологии программирования (УК- 1,-2,-3,-6);
- принципы построения локальных и глобальных сетей ЭВМ, методы защиты информации (УК- 1,-2,-3,-6).

Студент должен уметь:

- представлять информацию в форме текстов, таблиц, схем, графиков, диаграмм, преобразовывать одну форму представления в другую без потери смысла и полноты информации (УК-1,-2,-3,-6);
- создавать электронную презентацию (УК- 1,-2,-3,-6);
- выполнять расчеты с помощью электронных таблиц и математического пакета (УК- 1,-2,-3,-6);
- применять базовые элементы графического дизайна, табличные и графические представления данных (УК- 1,-2,-3,-6);

- составлять алгоритмы вычислительных задач и оформлять структурные схемы с помощью прикладных программ (УК- 1,-2,-3,-6);
- составлять, производить отладку и модифицировать программу в интегрированной среде программирования (УК- 1,-2,-3,-6);

Студент должен владеть:

- приемами работы с информацией различного вида в пакетах прикладных программ: создавать математические формулы, графики, диаграммы, таблицы, переходить от одного представления данных к другому; арифметическими и логическими функциями, ссылками между таблицами, выбирать наиболее информативную и наглядную форму графического дополнения текстовой (в том числе табличной) информации (УК- 1,-2,-3,-6);
- математическим аппаратом информатики для решения задач в соответствии с профилем обучения (УК- 1,-2,-3,-6);
- разработкой типовых алгоритмов вычислительных задач (УК- 1,-2,-3,-6);
- основами языка программирования высокого уровня (УК- 1,-2,-3,-6);

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины составляет **144** часов, из них: **1** зачетная единица, **17** часов лекций, **34** часов практических занятий, иные виды контактной работы **11** часов и **82** часов самостоятельных работ.

№ п/ п	Раздел дисциплины			Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			тель- нтов и	Коды компетенций	Формы текущего контроля успеваемости (по неделям семестра) Форма
		Семестр	Неделя семестра	Л	Л Р	ПЗ	СР		промежуточ- ной аттеста- ции (по семест- рам)
	Информатика	1	1-17	17		34	82		экзамен
1	Основные понятия и методы теории информатики и кодирования, средства реализации информационных процессов. Системы счисления. Меры и единицы представления, измерения и хранения информации. Логические основы работы компьютера. Логические элементы. Логические функции. Логические задачи.	1	1-2	2		4	8	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	Защита СР
2	Эволюция и классификация языков программирования. Алгоритмы, виды алгоритмов, средства и способы их представления.	1	3-4	2		4	8	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	Защита СР

3	Технологии программирования. Языки программирования высокого уровня. Среда программирования С++. Типы данных. Основные операторы и операции. Разработка линейного алгоритма, математические функции, правила записи арифметического выражения	1	5-6	2	4	8	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	Защита СР
4	Условные операторы. Реализация разветвленных алгоритмов.	1	7-8	2	4	8	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	КР
5	Операторы циклов. Разработка алгоритмов и программ, реализующих циклический процесс.	1	9-10	2	4	10	УК- 1,-2,-3,-6;	Защита СР
6	Массивы. Разработка алгоритмов и программ для работы с одномерными массивами. Сортировка одномерных массивов. Разработка алгоритмов и программ для работы с двумерными массивами	1	11-12	2	4	10	УК- 1,-2,-3,-6;	Защита СР
7	Разработка алгоритмов и программ с применением подпрограмм-функций.	1	13-14	2	4	10	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	КР
8	Строковый тип. Разработка программ с использованием строк. Файлы в С++	1	15-16	2	4	10	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	Защита СР
9	Структуры	1	17	1	2	10	ОПК-1,-4,-5,-7; УК- 1,-2,-3,-6;	Итоговая ра- бота
	Всего			17	34	82		

KP- контрольные работы, ΠP – лабораторные работы; ΠS -практическая занятия; CP – самостоятельная работа студента; $K\Pi$ – курсовой проект.

4.1 Содержание разделов дисциплины

1. Основа информатики. Технические средства реализации информационных процессов. Основные понятия и методы теории информатики и кодирования, средства реализации информационных процессов. Единицы хранения данных. Типы файла. Дискретное (цифровое) представление текстовой, числовой, звуковой, графической, видео-информации. Двоичная форма представления информации. Системы счисления. Меры и единицы представления, измерения и хранения информации. Основные виды технических средств информатизации. Типы ЭВМ, их основные характеристики, этапы развития и области использования. Логические основы работы компьютера. Логические элементы. Логические функции. Логические задачи.

Состав и назначение основных элементов персонального компьютера: устройства ввода, вывода, хранения и отображения информации: центрального процессора, устройств памяти, периферийных устройств, шин, интерфейсов, носителей информации.

2. Алгоритмизация и программирование.

Этапы решения задач на компьютерах. Алгоритмы, виды алгоритмов и способы их представления. Основные алгоритмические конструкции: следование, ветвление, цикл, вспомогательные алгоритмы. Структуры данных в алгоритмах обработки информации.

Языки программирования высокого уровня. Язык как способ представления и передачи информации; естественные и формальные языки, математические модели языков. Эволюция и классификация языков программирования. Программное обеспечение и технологии программирования. Алгоритмические языки, использование алгоритмического языка для описания задач в соответствии с профилем; сложность вычисления (продолжительность работы алгоритма) и сложность описания объекта (длина кратчайшего описания). Структурное программирование. Модульный принцип программирования. Подпрограммы. Принципы проектирования программ сверху-вниз и снизу-вверх.

4.2 Основные темы практических занятий

- 1. Системы счисления. Основы кодирования (ОПК-1,-4,-5,-7, УК-1,-2,-3,-6,-6).
- 2. Логические основы работы компьютера. Логические элементы. Логические функции. Логические задачи (ОПК-1,-4,-5,-7, УК- 1,-2,-3,-6).
- 3. Разработка блок-схем линейных алгоритмов. Форматы представления данных (ОПК-1,-4,-5,-7, УК- 1,-2,-3,-6,-6).
- 4. Реализация линейных алгоритмов. Вычисление арифметических выражений с использованием математических функций (УК- 1,-2,-3,-6).
- 5. Реализация разветвлённых алгоритмов с использованием оператора ІГ (УК- 1,-2,-3,-6).
- 6. Реализация разветвлённых алгоритмов с использованием оператора SWITCH (УК- 1,-2,-3,-6).
- 7. Реализация циклических алгоритмов с использованием оператора FOR (УК- 1,-2,-3,-6).
- 8. Реализация циклических алгоритмов с использованием оператора WHILE (УК- 1,-2,-3,-6).
- 9. Реализация циклических алгоритмов с использованием оператора DOWHILE (УК- 1,-2,-3,-6).
- 10. Работа с одномерными массивами. (УК- 1,-2,-3,-6);
- 11. Работа с двумерными массивами. (УК- 1,-2,-3,-6);
- 12. Структурное программирование: подпрограммы, подпрограммы -функции, передача параметров. (УК- 1,-2,-3,-6);
- 13. Реализация алгоритмов с использованием подпрограмм (УК- 1,-2,-3,-6);
- 14. Реализация алгоритмов с использованием подпрограмм для одномерных массивов (УК-1,-2,-3,-6);
- 15. Реализация алгоритмов с использованием подпрограмм для двумерных массивов (УК- 1,-2,-3,-6);
- 16. Работа с файлами (УК- 1,-2,-3,-6);
- 17. Реализация алгоритмов с использованием подпрограмм для структур (УК- 1,-2,-3,-6);

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации программы дисциплины «Информатика» используются различные образовательные технологии. Аудиторные занятия проводятся в виде лекций с использованием ПК и мультимедийный сенсорный монитор и практических работ в дисплейных классах кафедры «Информатика». Самостоятельная работа студентов предусматривает работу под руководством преподавателей (консультации).

Большую роль в курсе «Информатика» имеет комплекс практических работ, главной задачей которого является обучение студентов в процессе их самостоятельной работы на

компьютерах, получение навыков применения современных информационных систем для решения различных профессиональных задач. В процессе такого обучения студенты получают навыки использования различных источников информации, а также наглядно убеждаются в эффективности компьютерных методов решения сформулированных задач. При этом основное внимание уделяется освоению студентами современных компьютерных технологий на материале проблемной среды из области их будущей профессиональной деятельности.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ.

В течение преподавания курса «Информатика» в качестве форм текущей аттестации студентов используется такие формы как: собеседования при приеме работ, тесты, контрольные работы с оценкой. По итогам обучения проводится промежуточная аттестация в виде зачёта.

Для самостоятельной работы студенту необходимо иметь персональный компьютер, манипулятор типа мышь, переносные носители информации, программное обеспечение, интернет.

Контрольные вопросы для самостоятельного освоения дисциплины:

Меры и единицы представления и хранения информации, кодирование, системы счисления (ОПК-1,2,5; ПК- P-1, P-9, P-10, C-2; УК-1, 2, 6):

- 1. Значение арифметического выражения $3 \cdot 16^4 + 5 \cdot 16^3 + 3 \cdot 16^2 + 1$ равно:
- 2. Если числа в двоичной системе счисления имеют вид 111₂ и 111₂, то их сумма в десятичной системе счисления равна?
- 3. Последняя цифра числа 78965431267₁₀ в двоичной системе счисления равна?
- 4. В компьютерной графике 24-битовая цветовая триада RGB (255,255,255) представляет ивет?
- 5. Основным элементом растрового изображения является?
- 6. Сколько бит в слове МЕГАБАЙТ?

Состав и назначение основных элементов персонального компьютера. Принципы работы персонального компьютера, алгебра логики (ОПК-1,2,5; ПК- P-1, P-9, P-10, C-2; УК-1, 2, 6):

- 1. Арифметико-логическое устройство (АЛУ) является составной частью?
- 2. В структуру ЭВМ фон Неймана входят?
- 3. Устройство, реализующее взаимодействие компьютеров в сети называется?
- 4. Устройства для ввода/вывода информации?
- 5. Память для хранения программ и данных?
- 6. К внешним запоминающим устройствам (ВЗУ) относятся?
- 7. Разрядностью микропроцессора является?
- 8. Быстродействие процессора определяется?
- 9. Для временного хранения информации в персональном компьютере используется?
- 10. Для объединения функциональных устройств персонального компьютера в вычислительную систему используется?

- 11. Кэш-память используется для ...
- 12. Разрешающей способностью (разрешением) монитора является?

Виды программного обеспечения и их характеристики, языки программирования (ОПК-1,2,5; ПК- Р-1, Р-9, Р-10, С-2; УК-1, 2, 6):

К инструментальному программному обеспечению относятся?

- 1. Служебным (сервисным) программным обеспечением является...
- 2. Операционная система это?
- 3. Компонент интегрированной системы программирования, предназначенный для перевода исходного текста программы в машинный код, называется?
- 4. Создание исполняемого файла из исходного текста программы предполагает выполнение процессов:
- а) компиляции
- б) компоновки
- в) интерпретации
- г) исполнения программы
 - 5. Файловая система определяет?
 - 6. В операционной системе Windows допустимым именем файла является?
 - 7. Файловая система распознаёт формат файла по...?

Этапы решения задач на компьютерах. Свойства и способы записи алгоритма (ОПК-1,2,5; ПК- P-1, P-9, P-10, C-2; УК-1, 2, 6):

- 1. К свойствам алгоритма относятся?
- 2. Правильная последовательность этапов разработки ПО?
- 3. Проектирование программ путем последовательного разбиения большой задачи на меньшие подзадачи соответствует...
- 4. При разработке программного продукта состав и форма входных и выходных данных определяется на этапе?
 - 5. Средством записи алгоритма являются?

Программирование (ОПК-1,2,5; ПК- Р-1, Р-9, Р-10, С-2; УК-1, 2, 6):

- 1. Если элементы массива D[5] равны соответственно 3, 4, 5, 1, 2, то значение выражения D[D[4]] D[D[3]] равно ?
- 2. Параметры, указываемые в подпрограмме при вызове из основной программы, называются?
 - 3. Идентификатор в С++ не может начинаться с...
 - 4. Элементы массива p[5] равны соответственно 1, -1, 5, 2, 4. Значение выражения p[1] * p[3] p[2 * p[2] + p[p[4] p[2]]] равно?
 - 5. Тело цикла в программе

$$a = 1; b = 1;$$
 while $a + b < 8$ $\{a = a + 1; b = b + 2;\}$ выполнится раз?

Примерные варианты контрольных работ раздела «Информатика». Часть1

1. Значения х, у задать по вводу с клавиатуры. Написать программу вычисления заданных арифметических выражений а, b. Результаты вывести на форму в формате с фиксированной точкой, с точностью 4 знака после запятой.

$$a = y^{\sqrt{|x|}} + \cos^3(y-3), \qquad b = \frac{y * \left(tg(z) - \frac{\pi}{6}\right)}{|x| + \frac{1}{y^2 + 1}},$$

где z = 25.001.

Написать программу реализации алгоритма.

2. Написать программу реализации алгоритма. Использовать цикл while.

$$-3 \le x \le 3$$
 $H = 0,56$ $l = 1.3$
$$y = \frac{\cos(4x) - l^{z}}{1,5}$$

$$z = \begin{cases} 3 \cdot (x + 1,8) + \cos^{2}(x) & -2 \le x < 2 \\ \frac{x^{2}}{x + 2} + tg(x) & \text{остальные случаи;} \end{cases}$$

Примерные варианты тестов раздела «Информатика». №1

- 1. Число 7467₁₀ перевести в двоичную систему счисления.
- 2. Для чисел X, Y, Z, заданных в различных системах счисления, X = 324; $Y = 14_6$; $Z = 21_{14}$ определить значение выражения 3*min(X,Y,Z) Z в десятичной системе счисления.

№2

1. Укажите необходимый знак соответствия:

2 Кбайт ? 2^{10} байт

- 2. Число байт, необходимое для записи числа 8¹³: 5;10; 11; 3; 4.
- 3. Число байт, необходимое для записи текста:

«Группа УГР-20-01?»

№3

1. Определите значение переменной а после выполнения фрагмента алгоритма.

2. Записать арифметическое выражение в соответствии с требованиями алгоритмического языка С++:

$$f = \frac{\sqrt{x + e^{4x}} - x^{3+y} + 2x}{\sin(x+1)^2}$$

3. Какому типу переменной должен соответствовать идентификатор X, если в программе есть оператор:

Примерный вариант итоговой работы:

1. Задан одномерный массив $A[6] = \{2, 4, 3, 5, 3, 1\}$ вычислить значение выражения:

$$Y = A[A[A[3]] - A[A[A[4]]]$$

2. Написать программу реализации вычисления:
$$Y = \frac{5.1 * Z + \sin(1.3 + \pi)}{\sqrt{3Z^2 + b}},$$

где
$$-2 \le x \le 2$$
; $h = 0.2$; $b=3.56$;

$$Z = \begin{cases} 0.24\cos(x) + \sqrt[3]{b+4}, & \text{при } 0 < x < \frac{\pi}{3} \\ e^{4.2-b} - ctg(x-2\pi/5), & \text{при } \frac{\pi}{3} \le x < 1.5 \\ \log_4(x^2+6.7b) + \left|x^3-2\right|, & \text{в остальных случаях;} \end{cases}$$

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) основная литература:

- 1. Герберт Шилдт. С++. Базовый курс. 3-изд. Москва+Санкт-Петербург+Киев. 2015
- 2. Голицына О.Л., Попов И.И., Максимов Н.В., Партыка Т.Л. Информационные технологии: учебник. М., 2009
- 3. Павловская Т.А. С/С++ Программирование на языке высокого уровня. Учебник для ВУЗов. СПб.;Питер, 2009.-461 с.
- 4. Павловская Т.А., Щупак Ю.А. С/С++ Структурное программирование. Практикум. Учебное пособие, СПб. Питер, 2007-239 с.
- 5. Перепухова И.Г., Сидоров В.В. Сборник заданий по курсу «Информатика». Часть 1. MSOFFICE 2000, М.: РГУ нефти и газа им. И.М. Губкина, 2005
- 6. Сингаевская Г. И.: Функции в Microsoft Office Excel 2010. Санкт-Петербург, Диалектика, Вильямс, 2011.- 1094 с.
- 7. Якубов А.Х., Равилов Ш.М., Сидоров В.В.Методические указания к выполнению лабораторных работ по предмету "Информатика". Часть 1. Алгоритмизация и программирование.Вып.2. Т.: Ташфилиал РГУ Н и Г им. И.М. Губкина, 2015 -60c.
- 8. Саттаров А.С., Информатика и информационные технологии. Учебник для академических лицеев и прфессиональных колледжей Издание четвертое. Издательско-полиграфический творческий ом "O'QITUVCHI" Ташкент-2016.

б) дополнительная литература

- 1. Васильев А. Н. Excel 2010 на примерах. СПб: БХВ Петербург, 2010. 432 с.
- 2. Дьяконов В.П.: Mathematica 5/6/7. Полное руководство. ДМК Пресс, 2011.- 622 с.
- 3. Шитов В. Н. Самоучитель новейших компьютерных программ: Windows 7, Word 2010, Excel 2010. М.: ООО "Дом Славянской книги", 2010. 736 с.
- 4. Волков А. А. Самоучитель Word, Excel и электронная почта. М.: Триумф, 2008. 320 с
- 5. Культин H. Б. С++ в задачах и примерах 2-е изд., СПб.: БXB Петербург, 2015. 368 с.

в) программное обеспечение и Интернет-ресурсы:

- 1. Культин Н. Б. С/С++ в задачах и примерах: 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2009. 368 с.: ил. + CD-ROM. https://www.litres.ru/nikita-kultin/
- 2. Бьерн Страуструп. Язык программирования C++. Второе дополненное издание. Языки программирования / C++. https://studfile.net/preview/6829961/
- 3. Дидактические материалы по информатике и математике / А.П. Шестаков http://compscience.narod.ru
- 4. **StudFiles** сайт предназначен студентам с доступом бесплатного скачивания учебных материалов https://studfile.net/

Научно-техническая библиотека

Российский государственный университет 6. нефти и газа (НИУ) имени И.М. Губкина

https://lib.gubkin.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисплейные классы оснащены персональными компьютерами, объединенными в сеть. Практические работы проводятся в ауд. 207, 208. На компьютеры установлено необходимое программное обеспечение.

При демонстрации лекционных материалов используется мультимедийный сенсорный экран. Лекционные занятия проводятся в ауд. 101, 102, 103.

Программа составлена в соответствии с требованиями Φ ГОС ВПО с учетом рекомендаций и Примерной ООП ВПО по направлению и профилю подготовки 21.03.01. — «Нефтегазовое дело».

ПРОГРАММУ СОСТАВИЛИ:	
Доцент отделения Математики и информатики Преподаватель	Саттаров А.С. Ахмедова И.Н.
Заведующий отделением:	проф. Гамкрелидзе Н.Г.
СОГЛАСОВАНО:	
Начальник учебно-методического отдела	Узакова З.Ф.