Notes on NEWUOA

Zaikun Zhang *

June 7, 2021 10:23pm

Algorithm 0.1

 $\text{Resulting Points} : \frac{\text{Proposition 1.1.}}{\text{Input } \Delta_0 \in (0, +\infty), \ m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}, \ \text{and} \ \mathcal{X}_0 \subset \mathbb{R}^n \ \text{with} \ x_0 \in \mathcal{X}_0 }$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

- 1. $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$
- 2. $Q_k = \operatorname{argmin}\{\|\nabla^2 Q \nabla^2 Q_{k-1}\|_F : Q \in \mathcal{Q} \text{ and } Q(x) = f(x) \text{ for } x \in \mathcal{X}_k\}.$
- 3. If $\|\nabla Q_k\| \leq \eta \Delta_k$, then set $\kappa_k = \infty$, $\rho_k = -1$, and $\Delta_{k+1} = \Delta_k/2$. Otherwise, set $x_k^+ = \operatorname{argmin}\{Q_k(x) : \|x x_k\| \leq \Delta_k\}$, $x_k^- = \operatorname{argmin}\{\kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k \setminus \{x_k\}\}$, $\kappa_k = \kappa(\mathcal{X}_k, x_k^+, x_k^-)$, $\rho_k = [f(x_k) f(x_k^+)]/[Q_k(x_k) Q_k(x_k^+)]$, and Δ_k according to ρ_k .
- 4. If $\rho_k > 0$ or $\kappa_k < \kappa_0$, then set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$. Otherwise, set $y_k^- = \operatorname{argmax}\{\|y x_k\| : y \in \mathcal{X}_k\}, y_k^+ = \operatorname{argmin}\{\kappa(\mathcal{X}_k, y, y_k^-) : \|y x_k\| \le \Delta_k\},$ and $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{y_k^+\} \setminus \{y_k^-\}$. Increment k. Go to Step 1.

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk