第八章 区间估计

知识图解

知识讲解

一、区间估计

1.定义: 设总体 X 的分布中含有一个未知参数 θ . 若对于给定的概率 $1-\alpha(0<\alpha<1)$,存在两个统计量 $\hat{\theta}_1=\hat{\theta}_1\big(X_1,X_2,\cdots,X_n\big)$ 与 $\hat{\theta}_2=\hat{\theta}_2\big(X_1,X_2,\cdots,X_n\big)$,使得

$$P\left\{\hat{\theta}_{1} \leq \theta \leq \hat{\theta}_{2}\right\} = 1 - \alpha$$

则随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 称为参数 θ 的置信水平(或置信度)为 $1-\alpha$ 的置信区间(或区间估计), $\hat{\theta}_1$ 称为置信下限, $\hat{\theta}_2$ 称为置信上限, $1-\alpha$ 称为置信水平.

1

注:

- 1) 对于连续型总体可使用开区间,即 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1 \alpha$.
- 2) 置信水平 $1-\alpha$ 越大,估计的可靠性越高.
- 3) 置信区间的含义: 若反复抽样多次(各次的样本容量相等,均为n),每一组样本值确定一个区间 $(\hat{\theta}_1,\hat{\theta}_2)$,每个这样的区间要么包含 θ 的真值,要么不包含 θ 的真值。按伯努利大数定理,在这么多的区间中,包含 θ 真值的约占 $100(1-\alpha)$ %.
- 4) 在一些实际问题中,人们只关心未知参数的一个下限或上限. 比如某种产品的寿命(希望越大越好),有 $P\{\theta>\hat{\theta}\}=1-\alpha$,称 $\hat{\theta}$ 为 θ 置信水平为 $1-\alpha$ 的单侧置信下限. 同理有单侧置信上限.

【例8.1】 设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 σ^2 已知,设样本均值为 \overline{X} ,则 μ 的置信度为 $1-\alpha$ 的置信区间是_______.(枢轴量法)

注: 枢轴量 $G(X_i,\mu)$ 为不含未知参数的关于样本和待估参数 μ 的函数.

【例8.2】 设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 σ^2 未知,设样本均值为 \overline{X} ,样本方差为 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,则 μ 的置信度为 $1-\alpha$ 的置信区间是______.

【例8.3】 设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知,则 σ^2 的置信度为 $1-\alpha$ 的置信区间是______.

【例8.4】 设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知,设样本均值为 \bar{X} ,样本方差为 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,则 σ^2 的置信度为 $1-\alpha$ 的置信区间是______.

【例8.5】 设 $X_1, X_2, ..., X_m$ 是 来 自 $N(\mu_1, \sigma_1^2)$ 的 样 本 , $Y_1, Y_2, ..., Y_n$ 是 来 自 $N(\mu_2, \sigma_2^2)$ 的样本,且两个样本相互独立.设样本均值分别为 \overline{X} 和 \overline{Y} ,样本方差分别为 $S_X^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \overline{X})^2$, $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$,则 σ_1^2 / σ_2^2 的置信度为 $1-\alpha$ 的置信区间是______.

2. 正态总体参数的双侧区间估计表(均取上分位点)

	待估参数	条件	统 计 量	双侧置信区间
一个总体	均值μ	σ²已知	$\frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$	$\left(\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$
		σ ² 未知	$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$	$\left(\overline{X} - t_{\underline{\alpha}_{2}}(n-1) \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\underline{\alpha}_{2}}(n-1) \cdot \frac{S}{\sqrt{n}}\right)$
	方差σ²	μ已知	$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}\right)$
		μ未知	$\frac{n-1}{\sigma_0^2}S^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$	$\left(\frac{(n-1)S^{2}}{\chi_{\frac{a}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{a}{2}}^{2}(n-1)}\right)$
两个总体	均值差 µ ₁ -µ ₂	σ ₁ ,σ ₂ 均已知	$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} - \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$ \frac{\left((\bar{X} - \bar{Y}) - \mu_{\alpha_{2}} \sqrt{\sigma_{1}^{2} / n_{1} + \sigma_{2}^{2} / n_{2}}, \right. }{(\bar{X} - \bar{Y}) + \mu_{\alpha_{2}} \sqrt{\sigma_{1}^{2} / n_{1} + \sigma_{2}^{2} / n_{2}} \right) $
	均值差 μ ₁ -μ ₂	σ ₁ ,σ ₂ 均未知 但σ ₁ =σ ₂	$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2)$ $\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ $S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$ \left((\overline{X} - \overline{Y}) - t_{\alpha_{2}'}(n_{1} + n_{2} - 2) \cdot S_{w} \sqrt{1/n_{1} + 1/n_{2}}, (\overline{X} - \overline{Y}) + t_{\alpha_{2}'}(n_{1} + n_{2} - 2) \cdot S_{w} \sqrt{1/n_{1} + 1/n_{2}} \right) $
	方差比 σ ₁ ²/σ ₂ ²	μ ₁ ,μ ₂ 均未知	$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1 - \alpha/2}(n_1 - 1, n_2 - 1)}\right)$

【例8.6】 设一批零件的长度服从正态分布 $N(\mu,\sigma^2)$, 其中 μ,σ^2 均未知.现从中随机抽取 16 个零件,测得样本均值 $\overline{x}=20(cm)$,样本标准差 s=1(cm),则 μ 的置信度为 0.90 的置信区间是(

(A)
$$\left(20 - \frac{1}{4}t_{0.05}(16), 20 + \frac{1}{4}t_{0.05}(16)\right)$$
 (B) $\left(20 - \frac{1}{4}t_{0.1}(16), 20 + \frac{1}{4}t_{0.1}(16)\right)$

(C)
$$\left(20 - \frac{1}{4}t_{0.05}(15), 20 + \frac{1}{4}t_{0.05}(15)\right)$$
 (D) $\left(20 - \frac{1}{4}t_{0.1}(15), 20 + \frac{1}{4}t_{0.1}(15)\right)$

【例8.7】 设总体 $X \sim N(\mu, \sigma^2)$,来自 X 的一个简单随机样本 $X_1, X_2, ..., X_n$, μ 已知,未知参数 σ^2 的置信度 $1-\alpha$ 的置信区间为(

(A)
$$\left[\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}\right]$$
 (B)
$$\left[\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}\right]$$

(C)
$$\left[\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}\right]$$
 (D)
$$\left[\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right]$$

【例8.8】 设轴承内环锻压零件的平均高度 X 服从正态分布 $N(\mu,0.4^2)$. 现从中抽取 20 只内环,其平均高度 $\overline{x}=32.3\,\mathrm{mm}$,求内环平均高度的置信度为95%的置信区间.

【例8.9】 设冷铜丝的折断力服从正态分布,从一批铜丝中任取10根,测试折断力,得数据为578,572,570,568,572,570,570,596,584,572 求: (1) 样本均值和样本方差; (2) 方差的置信区间($\alpha = 0.05$).

【例8.10】 设总体 $X \sim N(\mu, \sigma^2)$, 来自 X 的一个简单随机样本 $X_1, X_2, ..., X_n$, 记

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i$$
 , $T = \sum_{i=1}^n (X_i - ar{X})^2 + \sum_{i=n+1}^{2n} (X_i - \mu)^2$, 当 μ 已知时, 基于 T 构造估计 σ^2

的置信水平为 $1-\alpha$ 的置信区间为(

(A)
$$\left(\frac{T}{\chi_{1-\frac{\alpha}{2}}^2(2n)}, \frac{T}{\chi_{\frac{\alpha}{2}}^2(2n)}\right)$$

(B)
$$\left(\frac{T}{\chi_{\frac{\alpha}{2}}^{2}(2n)}, \frac{T}{\chi_{\frac{1-\alpha}{2}}^{2}(2n)}\right)$$

(C)
$$\left(\frac{T}{\chi_{1-\frac{\alpha}{2}}^2(2n-1)}, \frac{T}{\chi_{\frac{\alpha}{2}}^2(2n-1)}\right)$$
 (D) $\left(\frac{T}{\chi_{\frac{\alpha}{2}}^2(2n-1)}, \frac{T}{\chi_{1-\frac{\alpha}{2}}^2(2n-1)}\right)$

(D)
$$\left(\frac{T}{\chi_{\frac{\alpha}{2}}^2(2n-1)}, \frac{T}{\chi_{\frac{1-\alpha}{2}}^2(2n-1)}\right)$$

【例8.11】 某大学从来自 A, B 两市的新生中分别随机抽取 5 名与 6 名新生, 测其身高 (单位: cm) 后算得 \bar{x} =175.9, \bar{y} =172.0, s_1^2 =11.3, s_2^2 =9.1. 假设两市新 生身高分别服从正态分布 $X \sim N\left(\mu_1, \sigma^2\right), Y \sim N\left(\mu_2, \sigma^2\right)$, 其中 σ^2 未知. 试求 $\mu_1 - \mu_2$ 的置信度为 0.95 的置信区间. ($t_{0.025}(9) = 2.2622, t_{0.025}(11) = 2.2010$)

【例8.12】 某车间有两条流水线加工一类表盘,假设表盘直径服从正态分布. 现从两条流水线分别抽查 5 个和 6 个表盘,得直径(单位:cm)数据如下:

1号流水线: 5.06, 5.08, 5.03, 5.00, 5.07

2号流水线: 4.98, 5.03, 4.97, 4.99, 5.02, 4.95

试求两条流水线加工表盘直径的方差比 σ_1^2/σ_2^2 的置信度为 0.95 的置信区间.

$$(F_{0.975}(4,5) = \frac{1}{F_{0.025}(5,4)} = \frac{1}{9.36}, F_{0.025}(4,5) = 7.39)$$

【例8.13】 在测量反应时间(服从正态分布)的试验中,一心理学家估计的标准 差为0.05s,为了以95%的置信度使他对平均反应时间的估计误差不超过0.01s, 应取多大的样本容量n?