VIRUM GYMNASIUM

SRP

Математік

Riemann-integralet

Forfatter Minrui Kevin Zhou Vejledere Niels Nørskov Laursen

18. marts 2025

Resumé

Dette er mit resumé.

Indhold

1	Indledning	1
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2
3	Kontinuitet	4
4	Riemann-integralet	4
5	Numerisk integration	5
6	Diskussion - videreudvikling af integrationsteorien	5
7	Konklusion	5

Minrui Kevin Zhou 3.b 2 DE REELE TAL

1 Indledning

2 De reele tal

I dette afsnit vil vi først og fremmest undersøge nogle vigtige egenskaber ved \mathbb{R} , der er nødvendige for en stringent opbygning af integrationsteorien. Derefter indfører vi grundlæggende teori om topologi for \mathbb{R} , som vi senere skal bruge til at definere kontinuitet samt grænseværdien for en funktion.

2.1 Supremum-egenskaben

Definition 2.1 Overtal, undertal

Antag, at $A \subseteq \mathbb{R}$. Hvis der eksisterer $y \in \mathbb{R}$ sådan at $x \leq y$ for alle $x \in A$, så siges A at være opad begrænset, og y kaldes et overtal for A.

Hvis der eksisterer $z \in \mathbb{R}$ sådan at $x \geq z$ for alle $x \in A$, så siges A at være nedad begrænset, og z kaldes et undertal for A.

Imidlertid, kan det også være interessant at kunne sige noget om, hvorvidt et bestemt overtal er det mindste overtal og et bestemt undertal er det største undertal.

Definition 2.2 Supremum, infimum

Antag, at $A \subseteq \mathbb{R}$. Et element $y \in \mathbb{R}$ kaldes supremum eller mindste overtal af A og betegnes sup A, hvis y har følgende egenskaber:

- y er et overtal for A.
- $y \le z$ for alle overtal z af A.

Et element $\beta \in \mathbb{R}$ kaldes infimum eller største undertal af A og betegnes inf A, hvis β har følgende egenskaber:

- β er et undertal for A.
- $\beta \geq \alpha$ for alle undertal α af A.

Eksempel 2.3 Supremum og infimum af mængder

Betragt mængderne

$$A = \{a \in \mathbb{R} : a \le 1\} \quad \text{og} \quad B = \{b \in \mathbb{R} : b > 0\}.$$

Vi har så sup A=1 og inf B=0. Derudover er mængden A ikke nedad begrænset og mængden B er ikke opad begrænset.

Bemærk, at sup $A \in A$, hvor inf $B \notin B$. Det næste eksempel viser, at en ikke-tom opad begrænset delmængde af \mathbb{Q} kan have supremum, der ikke er i \mathbb{Q} .

Eksempel 2.4 a Ikke-tom opad begrænset delmængde af $\mathbb Q$ uden supremum i $\mathbb Q$

Lad

$$A = \{a \in \mathbb{Q} : a^2 < 2\}$$

Antag, at $q \in \mathbb{Q}$. Vi vil vise, at $q \neq \sup A$. Siden $\sqrt{2}$ er irrational, så må vi have $q^2 < 2$ eller $q^2 > 2$. Hvis $q^2 < 2$, kan vi finde et element i A, der er lidt større end q. Vælg

$$\delta = \frac{2 - q^2}{5}.$$

 $^{^1}$ Afsnittet er baseret på Rudin (1976), s. 3-33. Vi nøjes dog med at kigge på delmængder af \mathbb{R} , hvor Rudins bog behandler teorien mere generelt via metriske rum.

Minrui Kevin Zhou 3.b 2 DE REELE TAL

Siden $q<\left|\sqrt{2}\right|<2$ og $0<\delta\leq\frac{2}{5}<1$, så må der gælde, at $2q+\delta<5$. Vi har så

$$(q + \delta)^2 = q^2 + \delta^2 + 2q\delta$$
$$= q^2 + (2q + \delta) \cdot \delta$$
$$< q^2 + 5\delta$$
$$= 2$$

Med andre ord er $q + \delta$ altså et element i A, og $q \neq \sup A$.

Antag nu, at $q^2 > 0$ og q > 0 (når $q \le 0$ er det trivielt, at $q \ne \sup A$). Lad

$$\alpha = \frac{q^2 - 2}{2q}$$

$$= \frac{q}{2} - \frac{1}{q}$$

$$< b$$

Vi har så $0 < \alpha < q$, og der gælder

$$(q - \alpha)^2 = q^2 + \alpha^2 - 2q\alpha$$

$$< q^2 - 2q\alpha$$

$$= q^2 - (q^2 - 2)$$

$$= 2$$

Altså er $q - \alpha$ et overtal for A, hvilket vil sige, at $q \neq \sup A$. Vi har nu vist, at mængden A ikke har et supremum i \mathbb{Q} .

Eksempel 2.4 motiverer den næste sætning, som vi her ikke vil bevise, da beviset er relativt langt og ikke interessant for vores foretagende. Sætningen er dog en følge af måden, hvorpå $\mathbb R$ er konstrueret.²

Sætning 2.5 ℝ har supremum-egenskaben

Antag, at $A \in \mathbb{R}$, $A \neq \emptyset$ og A er opad begrænset. Så eksisterer sup $A \in \mathbb{R}$.

Denne egenskab ved \mathbb{R} kaldes for supremum-egenskaben. Bemærk, at en alternativ tilgang her kunne være at definere \mathbb{R} ud fra supremum-egenskaben og derefter bevise \mathbb{R} 's eksistens ved konstruktion. Vi vil nu ud fra supremum-egenskaben af \mathbb{R} vise, at \mathbb{R} også må have infimum-egenskaben.

Sætning 2.6 ℝ har infimum-egenskaben

Antag, at $A \in \mathbb{R}$, $A \neq \emptyset$ og A er nedad begrænset. Så eksisterer inf $A \in \mathbb{R}$.

Bevis. Lad

$$B = \{b \in \mathbb{R} : b \le a \text{ for alle } a \in A\}.$$

Så er B mængden af alle undertal for A. Siden A er nedad begrænset, så er B ikke tom. Siden $A \neq \emptyset$, så er B opad begrænset. Fra supremum-egenskaben eksisterer da sup $B \in \mathbb{R}$.

Per definition 2.2 har vi så, at $\sup B \leq a$ for alle $a \in A$ (fordi alle elementer af A er overtal for B). Siden $\sup B$ også er større end eller lig alle undertal for A, så må $\sup B = \inf A$.

2.2 Topologi i \mathbb{R}

Det skal bemærkes, at når vi arbejder med \mathbb{R} , så kan ordene *punkt* og *tal* bruges i flæng. Begge ord referer i dette tilfælde til elementerne i \mathbb{R} .

^aEksemplet er baseret på Axler (2024), s. 9

 $^{^2\}mathbb{R}$ kan konstrueres fra \mathbb{Q} via Dedekind-snit. Rudin (1976), s. 17-21

Minrui Kevin Zhou 3.b 2 DE REELE TAL

Definition 2.7 Omegn

Antag $p \in \mathbb{R}$. Så er en omegn af et punkt p en mængde

$$N_r(p) = \{ q \in \mathbb{R} : |q - p| < r \}, \quad \text{hvor } r \in \mathbb{R}^+.$$

Tallet r kaldes for radius af omegnen $N_r(p)$.

Med andre ord, er en omegn af et punkt p mængden af alle punkter indenfor en given afstand fra p. Ved en omegn i \mathbb{R} (som vi lige har defineret) er der altså tale om et interval. Dette ses illustreret i fig. 1.

Figur 1: Illustration af en omegn $N_r(p)$

Definition 2.8 Indre punkt, åben mængde

Antag, at $A \subseteq \mathbb{R}$. Et punkt $p \in A$ kaldes et indre punkt af A, hvis der eksisterer en omegn $N_r(p)$ af p sådan at $N_r(p) \subseteq A$.

Mængden A er lukket, hvis alle punkter i A er indre punkter.

Som eksempel på åbne mængder, kan vi betragte omegne.

Sætning 2.9 Omegne er åbne

Alle omegne $N_r(p)$ af et punkt $p \in \mathbb{R}$ er åbne.

Bevis. Lad $q \in N_r(p)$.

Definition 2.10 Fortætningspunkt

Antag, at $A \subseteq \mathbb{R}$. Et punkt $p \in \mathbb{R}$ er et fortætningspunkt af mængden A, hvis alle omegne $N_r(p)$ indeholder et punkt $q \neq p$ i omegnen sådan at $q \in A$.

Fra definitionen er det klart, at et fortætningspunkt af en mængde ikke nødvendigvis behøver være et element i mængden. Dette tydeliggøres af det næste eksempel.

Eksempel 2.11 Fortætningspunkter af en mængde

Vi betragter mængden B fra eksempel 2.3. Mængden af alle fortætningspunkter af B må være $B' = B \cup \{0\}$. For at se, hvorfor det er tilfældet, lad $p \in B'$. Så for enhver r > 0 indeholder omegnen $N_r(p)$ et punkt $q = p + \frac{r}{2}$. Siden

$$p \ge 0 \iff p + \frac{r}{2} > 0 \iff q > 0$$

så må vi have $q \in B$. Således må alle punkter i B' være fortætningspunkter af B.

Omvendt, antag at $x \notin B'$. Så har vi $x \in \{x \in \mathbb{R} : x < 0\}$. Vi kan så vælge r = |x| > 0, og det er klart at $N_r(x) \cap B = \emptyset$. Vi har nu vist, at B' er mængden af alle fortætningspunkter af B.

3 Kontinuitet

Definition 3.1 Begrænset funktion

4 Riemann-integralet

I denne sektion vil vi definere Riemann-integralet.³ Før vi gør dette, er vi nødt til at starte med nogle definitioner, vi har brug for.

Definition 4.1 Inddeling

Antag $a, b \in \mathbb{R}$ sådan at a < b. Ved en inddeling P af [a; b] forstår vi en endelig mængde $\{x_0, \dots, x_n\}$, hvor

$$a = x_0 < x_1 < \dots < x_n = b$$

og vi skriver

$$\Delta x_i = x_i - x_{i-1} \quad (i = 1, \dots, n)$$

Med en inddeling kan vi dele intervallet [a;b] op i n delintervaller, hvor det i'te delinterval har længden Δx_i :

$$[a;b] = [x_0;x_1] \cup [x_1;x_2] \cup \cdots \cup [x_{n-1};x_n]$$

Vi vil nu definere over- og undersummen af en funktion med hensyn til en given inddeling.

Definition 4.2 Over- og undersum

Antag $f:[a;b]\to\mathbb{R}$ er en begrænset funktion, og $P=\{x_0,\ldots,x_n\}$ er en inddeling af [a;b]. Lad

$$M_i = \sup\{f(x) : x \in [x_{x_{i-1}}; x_i]\}$$
 og $m_i = \inf\{f(x) : x \in [x_{x_{i-1}}; x_i]\}$.

Så er oversummen af f med hensyn til P defineret ved

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i.$$

Tilsvarende er undersummen af f med hensyn til P defineret ved

$$L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i.$$

Skriv eksistens

Sætning 4.3 Uligheder med over- og undersummer

Antag $f:[a;b]\to\mathbb{R}$ er en begrænset funktion og $P_1,\,P_2$ er inddelinger af [a;b] sådan at $P_1\subseteq P_2$. Så gælder

$$L(f,P_1) \le L(f,P_2) \le U(f,P_2) \le U(f,P_1)$$

Bevis. j

 $^{^3{\}rm Sektionen}$ er baseret på Abbott (2002), s. 183-194

Minrui Kevin Zhou 3.b 7 KONKLUSION

- 5 Numerisk integration
- 6 Diskussion videreudvikling af integrationsteorien

7 Konklusion

Litteratur

Abbott, S. (2002). Understanding Analysis. Undergraduate Texts in Mathematics. New York Berlin: Springer. Axler, S. (2024). Supplement for Measure, Integration & Real Analysis. Cham: Springer International Publishing. Rudin, W. (1976). Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. Auckland: McGraw-Hill, 3. ed.