AMENDMENTS TO THE CLAIMS

4

1-26. (Canceled)

27. (Previously Presented) A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge; and

wherein the surface of the first layer has a dielectric function that varies spatially according to a pattern with an ideal lattice constant and a detuning parameter with a value greater than zero.

- 28. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about 1.5 millimeters.
- 29. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about two millimeters.
- 30. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about 2.5 millimeters.
- 31. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about three millimeters.
- 32. (Original) The light-emitting device of claim 27, wherein the light-emitting device includes at least one additional edge having a length of at least about one millimeter.

33. (Original) The light-emitting device of claim 27, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device emerges from the light-emitting device via the surface of the first layer.

5

- 34. (Original) The light-emitting device of claim 27, wherein at least about 95% of the total amount of light generated by the light-generating region that emerges from the light-emitting device emerges from the light-emitting device via the surface of the first layer.
- 35. (Original) The light-emitting device of claim 27, wherein the multi-layer stack of materials comprises a multi-layer stack of semiconductor materials.
- 36. (Original) The light-emitting device of claim 35, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material.
- 37. (Original) The light-emitting device of claim 36, wherein the light-generating region is between the layer of n-doped semiconductor material and the layer of p-doped semiconductor material.
- 38. (Original) The light-emitting device of claim 27, further comprising a support that supports the multi-layer stack of materials.
- 39. (Original) The light-emitting device of claim 38, further comprising a layer of reflective material that is capable of reflecting at least about 50% of light generated by the light-generating region that impinges on the layer of reflective material, the layer of reflective material being between the support and the multi-layer stack of materials.

40. (Original) The light-emitting device of claim 39, wherein the first layer comprises a layer of an n-doped material, the multi-layer stack of materials further includes a layer of p-doped material, and a distance between the layer of p-doped semiconductor material and the layer of reflective material is less than a distance between the layer of n-doped semiconductor material and the layer of reflective material.

6

- 41. (Original) The light-emitting device of claim 40, further comprising a p-ohmic contact layer between the layer of p-doped material and the layer of reflective material.
- 42. (Original) The light-emitting device of claim 27, further including a current-spreading layer between the first layer and the light-generating region.
- 43. (Original) The light-emitting device of claim 27, wherein the multi-layer stack of materials comprise semiconductor materials.
- 44. (Original) The light-emitting device of claim 43, wherein the semiconductor materials are selected from the group consisting of III-V semiconductor materials, organic semiconductor materials and silicon.
- 45. (Previously Presented) The light-emitting device of claim 27, wherein the pattern does not extend into the light-generating region.
- 46. (Previously Presented) The light-emitting device of claim 27, wherein the pattern does not extend beyond the first layer.
- 47. (Previously Presented) The light-emitting device of claim 27, wherein the pattern extends beyond the first layer.

48. (Original) The light-emitting device of claim 27, further comprising electrical contacts configured to inject current into the light-emitting device.

7

- 49. (Original) The light-emitting device of claim 48, wherein the electrical contacts are configured to vertically inject electrical current into the light-emitting device.
- 50. (Original) The light-emitting device of claim 27, wherein the light-emitting device is selected from the group consisting of light-emitting diodes, lasers, optical amplifiers, and combinations thereof.
- 51. (Original) The light-emitting device of claim 27, wherein the light-emitting device comprises a light emitting diode.
- 52. (Original) The light-emitting device of claim 27, wherein the light-emitting device is selected from the group consisting of OLEDs, flat surface-emitting LEDs, HBLEDs, and combinations thereof.
- 53. (Original) The light-emitting device of claim 27, wherein the light-emitting device is in the form of a packaged light-emitting device.
- 54. (Original) The light emitting device of claim 27, wherein the light-emitting device is in the form of a packaged die.
 - 55. (Canceled)
 - 56. (Previously Presented) A light-emitting device, comprising:

multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long,

and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge;

wherein the first layer comprises a semiconductor material and a surface of the first layer has a dielectric function that varies spatially according to a nonperiodic pattern comprising a plurality of non-concentric holes, a majority of the non-periodic pattern having order; and

wherein the light emerging from the light-emitting device via the surface of the first layer is substantially incoherent.

57-59. (Canceled)

60. (Previously Presented) The light-emitting device of claim 27, wherein the surface of the first layer has features with a size of less than about ÿ/5, where ÿ is a wavelength of light that can be generated by the light-generating region and that can emerge from the light-emitting device via the surface of the first layer.

61-62. (Canceled)

- 63. (Previously Presented) The light emitting device of claim 56, wherein the nonperiodic pattern comprises a pattern selected from the group consisting of aperiodic patterns, Robinson patterns, and Amman patterns.
- 64. (Previously Presented) The light emitting device of claim 56, wherein the nonperiodic pattern comprises a quasicrystalline pattern.
- 65. (Previously Presented) The light-emitting device of claim 27, wherein the pattern comprises a plurality of holes.

66. (Cancelled)

67. (Previously Presented) The light-emitting device of claim 56, wherein the holes have a cross-sectional dimension of less than 190 nanometers.

9

- 68. (Previously Presented) The light-emitting device of claim 56, wherein the length of the edge is at least about three millimeters.
- 69. (Previously Presented) The light-emitting device of claim 56, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device via the surface of the first layer.
- 70. (Previously Presented) The light-emitting device of claim 56, wherein the multi-layer stack of materials comprises a multi-layer stack of semiconductor materials.
- 71. (Previously Presented) The light-emitting device of claim 56, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material, and the light-generating region comprises a semiconductor material.
- 72. (Previously Presented) The light-emitting device of claim 56, wherein the pattern does not extend into the light-generating region.
- 73. (Previously Presented) The light-emitting device of claim 56, wherein the light-emitting device comprises a light-emitting diode.
- 74. (Previously Presented) The light-emitting device of claim 56, wherein the pattern is configured so that light emerging from the light-emitting device via the first surface is more collimated than a lambertian distribution of light.
 - 75. (Previously Presented) A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge; and

wherein the first layer comprises a semiconductor material and a surface of the first layer has a dielectric function that varies spatially according to a nonperiodic pattern comprising holes being devoid of material within a perimeter defined by the first layer, a majority of the nonperiodic pattern having order.

- 76. (Previously Presented) The light-emitting device of claim 75, wherein the holes have a cross-sectional dimension of less than 190 nanometers.
- 77. (Previously Presented) The light-emitting device of claim 75, wherein the length of the edge is at least about three millimeters.
- 78. (Previously Presented) The light-emitting device of claim 75, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device via the surface of the first layer.
- 79. (Previously Presented) The light-emitting device of claim 75, wherein the multilayer stack of materials comprises a multi-layer stack of semiconductor materials.
- 80. (Previously Presented) The light-emitting device of claim 75, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material, and the light-generating region comprises a semiconductor material.

- 81. (Previously Presented) The light-emitting device of claim 75, wherein the pattern does not extend into the light-generating region.
- 82. (Previously Presented) The light-emitting device of claim 75, wherein the light-emitting device comprises a light-emitting diode.
- 83. (Previously Presented) The light-emitting device of claim 75, wherein the pattern is configured so that light emerging from the light-emitting device via the first surface is more collimated than a lambertian distribution of light.
 - 84. (Previously Presented) A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge;

wherein the first layer comprises a semiconductor material and a surface of the first layer has a dielectric function that varies spatially according to a nonperiodic pattern comprising a plurality of non-concentric holes; and

wherein the non-periodic pattern is configured so that light emerging from the light-emitting device via the first surface is more collimated than a lambertian distribution of light.

85. (Previously Presented) The light emitting device of claim 84, wherein the holes have a cross-sectional dimension of less than 190 nanometers.

86. (Previously Presented) The light-emitting device of claim 84, wherein the length of the edge is at least about three millimeters.

12

- 87. (Previously Presented) The light-emitting device of claim 84, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device via the surface of the first layer.
- 88. (Previously Presented) The light-emitting device of claim 84, wherein the multilayer stack of materials comprises a multi-layer stack of semiconductor materials.
- 89. (Previously Presented) The light-emitting device of claim 84, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material, and the light-generating region comprises a semiconductor material.
- 90. (Previously Presented) The light-emitting device of claim 84, wherein the pattern does not extend into the light-generating region.
- 91. (Previously Presented) The light-emitting device of claim 84, wherein the light-emitting device comprises a light-emitting diode.
 - 92. (Cancelled)
 - 93. (Previously Presented) A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge; and

13

wherein the first layer comprises a semiconductor material and a surface of the first layer has a dielectric function that varies spatially according to a nonperiodic pattern comprising features, a majority of the features having substantially the same size and a majority of the nearest neighbor distances between features being substantially the same.

- 94. (Previously Presented) The light emitting device of claim 93, wherein the pattern comprises a plurality of holes.
- 95. (Previously Presented) The light emitting device of claim 94, wherein the holes have a cross-sectional dimension of less than 190 nanometers.
- 96. (Previously Presented) The light-emitting device of claim 93, wherein the length of the edge is at least about three millimeters.
- 97. (Previously Presented) The light-emitting device of claim 93, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device via the surface of the first layer.
- 98. (Previously Presented) The light-emitting device of claim 93, wherein the multilayer stack of materials comprises a multi-layer stack of semiconductor materials.
- 99. (Previously Presented) The light-emitting device of claim 93, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material, and the light-generating region comprises a semiconductor material..

- 100. (Previously Presented) The light-emitting device of claim 93, wherein the pattern does not extend into the light-generating region.
- 101. (Previously Presented) The light-emitting device of claim 93, wherein the light-emitting device comprises a light-emitting diode.
- 102. (Previously Presented) The light-emitting device of claim 93, wherein the pattern is configured so that light emerging from the light-emitting device via the first surface is more collimated than a lambertian distribution of light.
- 103. (Previously Presented) The light-emitting device of claim 56, wherein a majority of the holes have substantially the same size.
- 104. (Previously Presented) The light-emitting device of claim 56, wherein a majority of the nearest neighbor distances between holes is substantially the same.
- 105. (Previously Presented) The light-emitting device of claim 75, wherein a majority of the holes have substantially the same size.
- 106. (Previously Presented) The light-emitting device of claim 75, wherein a majority of the nearest neighbor distances between holes is substantially the same.