Purcell Project Markdown

Dan Hudson

07/August/2020

Load phyloseq object

Phyloseq object was generated on the server using serverScript.R, following the running of this script it was downloaded to the local machine and used to make plots

```
# load data
ps0 <- readRDS("data/ps_notree.rds")</pre>
# read metadata
meta <- read.csv("data/purcell_meta.csv")</pre>
# load metadata into phyloseq object
meta <- sample_data(meta)</pre>
meta$Individual <- as.factor(meta$Individual)</pre>
row.names(meta) <- meta$Sample_name</pre>
ps <- merge_phyloseq(ps0, meta)
# unedited phyloseq object
psOG <- ps
# Assign DNA sequences to refseq slot and replace with simple names to improve readability
dna <- Biostrings::DNAStringSet(taxa_names(ps))</pre>
names(dna) <- taxa_names(ps)</pre>
ps <- merge_phyloseq(ps, dna)
taxa_names(ps) <- paste0("ASV", seq(ntaxa(ps)))</pre>
## phyloseq-class experiment-level object
                                      [ 4872 taxa and 60 samples ]
## otu_table()
                  OTU Table:
## sample_data() Sample Data:
                                      [ 60 samples by 7 sample variables ]
## tax_table()
                  Taxonomy Table: [ 4872 taxa by 6 taxonomic ranks ]
## refseq()
                  DNAStringSet:
                                      [ 4872 reference sequences ]
```

Filter out Yersinia

```
ps <- subset_taxa(ps, Genus != "Yersinia")
```

Custom Rarefaction Plot

Not run in this Markdown

```
# Data
psdata <- ps
# Loading required library and displaying core configuration
library('doParallel')
detectCores(all.tests = TRUE)
# Setting up and registering the cluster
cl <- makeCluster(detectCores(all.tests = TRUE)-1)</pre>
registerDoParallel(cl)
# Calculate alpha diversity
calculate_rarefaction_curves <- function(psdata, measures, depths, parallel = FALSE) {</pre>
  require('plyr') # ldply
  require('reshape2') # melt
 require('doParallel')
  # set parallel options if required
  if (parallel) {
    paropts <- list(.packages = c("phyloseq", "reshape2"))</pre>
  } else {
    paropts <- NULL
  estimate rarified richness <- function(psdata, measures, depth) {</pre>
    if(max(sample_sums(psdata)) < depth) return()</pre>
    psdata <- prune_samples(sample_sums(psdata) >= depth, psdata)
    rarified_psdata <- rarefy_even_depth(psdata, depth, verbose = FALSE)</pre>
    alpha_diversity <- estimate_richness(rarified_psdata, measures = measures)</pre>
    # as.matrix forces the use of melt.array, which includes the Sample names (rownames)
    molten_alpha_diversity <- melt(as.matrix(alpha_diversity),</pre>
                                    varnames = c('Sample', 'Measure'),
                                    value.name = 'Alpha_diversity')
    molten_alpha_diversity
  names(depths) <- depths # this enables automatic addition of the Depth to the output by ldply
  rarefaction curve data <- ldply(depths,
                                   estimate_rarified_richness,
                                   psdata = psdata,
                                   measures = measures,
                                   .id = 'Depth',
                                   .progress = ifelse(interactive() && ! parallel, 'text', 'none'),
                                   .parallel = parallel,
                                   .paropts = paropts)
```

```
# convert Depth from factor to numeric
  rarefaction_curve_data$Depth <- as.numeric(levels(rarefaction_curve_data$Depth))[rarefaction_curve_da
 rarefaction_curve_data
}
rarefaction_curve_data <- calculate_rarefaction_curves(psdata, c('Observed'),</pre>
                                                       rep(c(1, 100, 1:150 * 1000),
                                                           each = 10)
summary(rarefaction_curve_data)
saveRDS(rarefaction_curve_data, file = "Purcell Final/Final_results/rare_object.rds")
# Data
psdata <- ps
# Load Rarefaction Curve Data Object
rarefaction_curve_data <- readRDS(file = "Purcell Final/Final_results/rare_object.rds")</pre>
summary(rarefaction_curve_data)
##
       Depth
                         Sample
                                         Measure
                                                      Alpha_diversity
                                                            : 1.0
## Min.
               1 X13A : 1520
                                     Observed:74070
                                                      Min.
## 1st Qu.: 29000
                    X14A
                          : 1520
                                                      1st Qu.:263.0
## Median: 60000 X14B : 1520
                                                      Median :331.0
## Mean : 62475
                    X15A
                          : 1520
                                                      Mean :320.4
                                                      3rd Qu.:378.0
## 3rd Qu.: 92000 X15C
                            : 1520
## Max. :150000 X18A
                                                      Max. :546.0
                           : 1520
##
                     (Other):64950
# Summarise alpha diversity
rarefaction_curve_data_summary <- ddply(rarefaction_curve_data,</pre>
                                        c('Depth', 'Sample', 'Measure'),
                                        Alpha_diversity_mean = mean(Alpha_diversity),
                                        Alpha_diversity_sd = sd(Alpha_diversity))
colnames(rarefaction_curve_data_summary) <- gsub("X","",</pre>
                                                 colnames(rarefaction_curve_data_summary))
rarefaction_curve_data_summary$Sample <- gsub("X","", rarefaction_curve_data_summary$Sample)</pre>
# Add sample data
rarefaction_curve_data_summary_verbose <- merge(rarefaction_curve_data_summary,</pre>
                                                data.frame(sample_data(psdata)),
                                                by.x = 'Sample',
                                                by.y = 'row.names')
# Produce summary df of rarefaction data
df_mod <- summarySE(rarefaction_curve_data_summary_verbose,</pre>
                   measurevar = "Alpha_diversity_mean",
                   groupvars = c("Depth", "Sample_type"))
## Warning in qt(conf.interval/2 + 0.5, datac$N - 1): NaNs produced
df mod <- df mod %>%
  subset(Depth == 1 | Depth == 1000 | Depth == 10000 | Depth == 20000 | Depth == 30000 | Depth == 40000
```


Rarefy

```
## ...
sample_sums(ps)
                     10C
                                            11C
                                                   12A
                                                           12B
                                                                  12C
                                                                          13A
                                                                                 13B
##
      10A
              10B
                            11A
                                    11B
##
    96045 149391 133488 101852
                                  87122 135639
                                                 60955 141908 134481 164730 149672
##
      13C
              14A
                     14B
                             14C
                                    15A
                                            15B
                                                   15C
                                                           16A
                                                                  16B
                                                                          16C
                                                                                 17A
##
  141290 154794 167659 131939 167015 106082 161420 111021 121601 134735 149622
                                    18C
##
      17B
              17C
                     18A
                             18B
                                            19A
                                                   19B
                                                           19C
                                                                   1A
                                                                           1B
  123675
           91485 154502 123487 153504 152567 146504 115610 136572
                                                                       75035
                                                                               89197
##
##
      20A
              20B
                     20C
                              2A
                                     2B
                                             2C
                                                    ЗA
                                                            3B
                                                                   3C
                                                                           4A
  187470 110105 106713 107518 114008 100238 136162 126355 100973
##
                                                                       98108 118848
##
       4C
                      5B
                              5C
                                                    6C
                                                            7A
                                                                           7C
               5A
                                     6A
## 113301 153840 113210
                          84418 127131 147421 88442 134264 136792 114586 127880
##
       8B
               8C
                      9A
                              9B
                                     9C
          99543 82179 139662 105460
    88579
sample_sums(ps_rare)
##
     10A
            10B
                  10C
                        11A
                               11B
                                     11C
                                            12A
                                                  12B
                                                        12C
                                                               13A
                                                                     13B
                                                                            13C
                                                                                  14A
## 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859
                                                                                54859
##
     14B
            14C
                  15A
                        15B
                               15C
                                            16B
                                                  16C
                                                               17B
                                                                     17C
                                     16A
                                                        17A
                                                                            18A
                                                                                  18B
## 54859 54859 54859 54859 54859
                                         54859 54859 54859
                                                            54859
                                                                   54859
                                                                         54859
                                                                                54859
     18C
                        19C
                                                        20B
                                                               20C
                                                                      2A
##
            19A
                  19B
                                1A
                                      1B
                                             1C
                                                  20A
                                                                             2B
                                                                                   2C
## 54859 54859 54859 54859 54859
                                         54859
                                                54859
                                                      54859
                                                            54859 54859 54859
                                                                                54859
##
            3B
                   3C
                                4B
                                      4C
                                                   5B
                                                          5C
                                                                6A
                                                                      6B
                                                                             6C
      ЗA
                         4A
                                             5A
                                                                                   7A
## 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859 54859
##
            7C
                   88
                                80
                                                   9C
      7B
                         8B
                                      9A
                                             9B
## 54859 54859 54859 54859 54859 54859 54859
```

Alpha Diversity

```
# Calculate alpha diversity, using Richness and Shannon
alpha_summary <- estimate_richness(ps_rare, measures = c("Observed", "Shannon"))
shapiro.test(alpha_summary$0bserved)
##
   Shapiro-Wilk normality test
##
##
## data: alpha_summary$Observed
## W = 0.98663, p-value = 0.7541
shapiro.test(alpha_summary$Shannon)
##
##
   Shapiro-Wilk normality test
## data: alpha_summary$Shannon
## W = 0.97173, p-value = 0.1773
# Blocking Test
r0 <- alpha_summary$0bserved
rS <- alpha_summary$Shannon
f <- c("Clinician", "Self", "Stool") # treatment levels</pre>
```

```
k <- 3 # number of treatment levels
n <- 20 # number of control blocks
tm <- gl(k, 1, n*k, factor(f)) # matching treatment
blk <- gl(n, k, k*n) # blocking factor
av0 \leftarrow aov(r0 \sim tm + blk)
summary(av0)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## tm
               2 108335
                           54168 21.996 4.51e-07 ***
## blk
               19 120686
                            6352
                                  2.579 0.00635 **
## Residuals
              38 93578
                            2463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
avS <- aov(rS ~ tm + blk)
summary(avS)
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## tm
               2 0.994 0.4970
                                  8.835 0.000706 ***
## blk
               19 4.005 0.2108
                                  3.747 0.000260 ***
## Residuals
              38 2.137 0.0562
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Test whether the observed number of OTUs differs significantly between samples
# p adjustment using Benjamini and Hochberg
pairwise.t.test(alpha_summary$0bserved, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
##
   Pairwise comparisons using t tests with pooled SD
##
##
## data: alpha_summary$Observed and sample_data(ps_rare)$Sample_type
##
                  Rectal swab CT Rectal swab ST
## Rectal swab ST 0.0759
## Stool
                  6.3e-06
                                 0.0015
##
## P value adjustment method: BH
pairwise.t.test(alpha_summary$Shannon, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
##
   Pairwise comparisons using t tests with pooled SD
## data: alpha_summary$Shannon and sample_data(ps_rare)$Sample_type
##
                  Rectal swab CT Rectal swab ST
## Rectal swab ST 0.149
                                 0.180
## Stool
                  0.011
##
## P value adjustment method: BH
# Make adjusted p value dataframe
pObs <- pairwise.t.test(alpha_summary$Observed, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
```

```
pSha <- pairwise.t.test(alpha_summary$Shannon, sample_data(ps_rare)$Sample_type, p.adjust = "BH")
variable <- c("Observed", "Observed", "Shannon", "Shannon", "Shannon")</pre>
group1 <- c("Rectal swab CT", "Rectal swab ST", "Rectal swab CT",</pre>
            "Rectal swab CT", "Rectal swab ST", "Rectal swab CT")
group2 <- c("Stool", "Stool", "Rectal swab ST", "Stool", "Stool", "Rectal swab ST")</pre>
pVal \leftarrow c(round(p0bs p.value[2,1], 5), round(p0bs p.value[2,2], 3), round(p0bs p.value[1,1], 3),
       round(pSha$p.value[2,1], 3), round(pSha$p.value[2,2], 3), round(pSha$p.value[1,1], 3))
y.position \leftarrow c(600, 500, 550, 5.15, 4.85, 5.0)
pAdjusted <- bind_cols(variable, group1, group2, pVal, y.position)
## New names:
## * NA -> ...1
## * NA -> ...2
## * NA -> ...3
## * NA -> ...4
## * NA -> ...5
colnames(pAdjusted) <- c("variable", "group1", "group2", "p", "y.position")</pre>
# Plot Observed richness, Shannon, and Simpson diversity values
p <- plot_richness(ps_rare, x = "Sample_type",</pre>
                  measures = c("Observed", "Shannon"))
# Add boxplot, individual data points, and linked lines using geom layers
p$layers <- p$layers[-1]</pre>
p + geom_boxplot() + geom_point() + xlab("Sample Type") +
 geom line(aes(group = Individual), size = 0.3, linetype = "dashed") +
 theme(axis.text.x = element_text(angle = 315, hjust = 0),
        aspect.ratio = 1, legend.position = "none") +
  stat_pvalue_manual(pAdjusted) +
  stat_compare_means(method = "anova", label.y = 3)
```


ggsave("Purcell Final/Final_results/2)Alpha_Diversity.pdf", width = 7, height = 4.5)

Beta Diversity - Bray-Curtis

```
# Ordinate data using Non-metric multidimensional scaling (NMDS) on Bray-Curtis dissimilarity (distance
bray_dist <- phyloseq::distance(ps_rare, method = "bray")</pre>
ord.nmds.bray <- ordinate(ps_rare, "NMDS", "bray")</pre>
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1660649
## Run 1 stress 0.1742839
## Run 2 stress 0.1690271
## Run 3 stress 0.1963773
## Run 4 stress 0.1689969
## Run 5 stress 0.1660679
## ... Procrustes: rmse 0.0007082043 max resid 0.00380969
## ... Similar to previous best
## Run 6 stress 0.179229
## Run 7 stress 0.1805837
## Run 8 stress 0.1690662
## Run 9 stress 0.1909203
## Run 10 stress 0.1688625
## Run 11 stress 0.1660649
## ... New best solution
## ... Procrustes: rmse 0.0001955691 max resid 0.001334372
## ... Similar to previous best
```

```
## Run 12 stress 0.1660682
## ... Procrustes: rmse 0.0007703815 max resid 0.004055105
## ... Similar to previous best
## Run 13 stress 0.1660648
## ... New best solution
## ... Procrustes: rmse 0.0001232208 max resid 0.000492369
## ... Similar to previous best
## Run 14 stress 0.1660648
## ... New best solution
## ... Procrustes: rmse 5.110814e-05 max resid 0.0002284743
## ... Similar to previous best
## Run 15 stress 0.1689939
## Run 16 stress 0.1689967
## Run 17 stress 0.1744556
## Run 18 stress 0.1744547
## Run 19 stress 0.1976383
## Run 20 stress 0.1688245
## *** Solution reached
# Call newly created file to get the stress value of the plot
ord.nmds.bray
##
## Call:
## metaMDS(comm = veganifyOTU(physeq), distance = distance)
## global Multidimensional Scaling using monoMDS
             wisconsin(sqrt(veganifyOTU(physeq)))
## Distance: bray
## Dimensions: 2
## Stress:
              0.1660648
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(veganifyOTU(physeq)))'
# Stress plot
stressplot(ord.nmds.bray)
```

```
Non-metric fit, R^2 = 0.972
Linear fit, R^2 = 0.902
Ordination Distance
      0.8
      0.4
      0
           0.2
                             0.4
                                                                   8.0
                                                0.6
                                                                                     1.0
                                      Observed Dissimilarity
# Stats
# Test whether the sample types differ significantly from each other using PERMANOVA
adonis(bray_dist ~ sample_data(ps_rare)$Sample_type)
##
## Call:
## adonis(formula = bray_dist ~ sample_data(ps_rare)$Sample_type)
## Permutation: free
## Number of permutations: 999
## Terms added sequentially (first to last)
##
                                      Df SumsOfSqs MeanSqs F.Model
##
                                                                          R2 Pr(>F)
## sample_data(ps_rare)$Sample_type
                                             1.4193 0.70965 2.1981 0.0716 0.002 **
## Residuals
                                      57
                                            18.4025 0.32285
                                                                      0.9284
## Total
                                      59
                                            19.8218
                                                                      1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(formula = bray_dist ~ sample_data(ps_rare)$Individual)
##
```

```
0.26214
## Residuals
                                   40
                                          5.1961 0.12990
                                                                 1.00000
## Total
                                   59
                                         19.8218
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
adonis(bray_dist ~ sample_data(ps_rare)$Sample_type*sample_data(ps_rare)$Individual)
##
## Call:
## adonis(formula = bray_dist ~ sample_data(ps_rare)$Sample_type *
                                                                         sample_data(ps_rare)$Individual
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
##
                                                                     Df SumsOfSqs
## sample_data(ps_rare)$Sample_type
                                                                      2
                                                                           1.4193
## sample_data(ps_rare)$Individual
                                                                      19
                                                                           14.6257
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 38
                                                                           3.7768
## Residuals
                                                                           0.0000
                                                                     59
                                                                          19.8218
## Total
##
                                                                     MeanSas
## sample_data(ps_rare)$Sample_type
                                                                            1
## sample_data(ps_rare)$Individual
                                                                            1
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
                                                                            0
## Residuals
                                                                          Inf
## Total
##
                                                                     F.Model
## sample_data(ps_rare)$Sample_type
                                                                            0
## sample_data(ps_rare)$Individual
                                                                            0
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual
                                                                            0
## Residuals
## Total
##
                                                                           R2 Pr(>F)
## sample_data(ps_rare)$Sample_type
                                                                      0.07160
## sample_data(ps_rare)$Individual
                                                                      0.73786
                                                                                   1
## sample_data(ps_rare)$Sample_type:sample_data(ps_rare)$Individual 0.19054
## Residuals
                                                                      0.00000
## Total
                                                                      1.00000
anosim(bray_dist, sample_data(ps_rare)$Sample_type)
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Sample_type)
## Dissimilarity: bray
## ANOSIM statistic R: 0.2083
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
anoSamp <- (anosim(bray_dist, sample_data(ps_rare)$Sample_type))</pre>
summary(anoSamp)
```

```
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Sample_type)
## Dissimilarity: bray
## ANOSIM statistic R: 0.2083
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
## Upper quantiles of permutations (null model):
      90%
             95% 97.5%
                           99%
## 0.0316 0.0487 0.0642 0.0846
##
## Dissimilarity ranks between and within classes:
##
                  0%
                         25%
                               50%
                                        75% 100%
                   1 491.375 979.5 1411.625 1770 1200
## Between
## Rectal swab CT 48 402.500 711.0 1053.125 1752 190
## Rectal swab ST 60 495.250 928.5 1352.125 1721
                                                  190
## Stool
                  42 271.500 575.0 913.000 1412
```

plot(anoSamp)

x\$class.vec

```
anosim(bray_dist, sample_data(ps_rare)$Individual)
```

```
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.7739
## Significance: 0.001
```

```
##
## Permutation: free
## Number of permutations: 999
anoInd <- anosim(bray_dist, sample_data(ps_rare)$Individual)</pre>
summary(anoInd)
##
## Call:
## anosim(x = bray_dist, grouping = sample_data(ps_rare)$Individual)
## Dissimilarity: bray
##
## ANOSIM statistic R: 0.7739
##
         Significance: 0.001
##
## Permutation: free
## Number of permutations: 999
## Upper quantiles of permutations (null model):
##
      90%
             95% 97.5%
                           99%
## 0.0855 0.1118 0.1381 0.1564
##
## Dissimilarity ranks between and within classes:
##
           0%
                 25%
                        50%
                                75%
                                      100%
## Between 42 480.25 909.5 1336.75 1770.0 1710
           10 18.00
                       26.0
                              30.50
                                      35.0
## 1
## 2
           15 22.00
                      29.0
                              33.00
                                      37.0
                                              3
## 3
           5 18.50
                      32.0
                              32.50
                                      33.0
                                              3
## 4
           8 39.50
                      71.0
                              97.00 123.0
                                              3
## 5
           9 22.50
                       36.0
                              37.00
                                      38.0
                                              3
## 6
           1 11.50
                      22.0
                              23.00
                                      24.0
                                              3
## 7
           19 111.00 203.0 773.00 1343.0
                                              3
                                      30.0
## 8
           4 15.50
                      27.0
                              28.50
                                              3
## 9
           41 42.50
                      44.0 772.00 1500.0
                                              3
           11 54.50
## 10
                      98.0 171.00 244.0
                                              3
## 11
           7 10.00
                      13.0
                              17.00
                                     21.0
                                              3
           31 58.00
## 12
                       85.0
                              86.50
                                      88.0
                                              3
## 13
           20 44.50
                       69.0 483.00 897.0
                                              3
## 14
           23 31.00
                       39.0
                              41.00
                                     43.0
                                              3
## 15
           28 742.50 1457.0 1592.75 1728.5
                                              3
## 16
           2
              8.00
                       14.0
                              15.50
                                     17.0
                                              3
           12 18.50
## 17
                       25.0
                              29.50
                                      34.0
                                              3
## 18
           40 858.50 1677.0 1717.25 1757.5
                                              3
## 19
           3
                9.50
                      16.0
                              17.00
                                      18.0
                                              3
## 20
            6 207.25 408.5 570.25 732.0
                                              3
plot(anoInd)
```

```
R = 0.774, P = 0.001
     2500
     500
x$dis.rank
     500
     0
     -500
          Between
                        3
                              5
                                 6
                                        8
                                           9
                                                 11
                                                        13
                                                              15
                                                                     17
                                                                           19
                                     7
                                         x$class.vec
ps.disper <- betadisper(bray_dist, sample_data(ps_rare)$Sample_type)</pre>
anova(ps.disper)
## Analysis of Variance Table
##
## Response: Distances
             Df Sum Sq
                          Mean Sq F value Pr(>F)
##
              2 0.01114 0.0055698 2.7521 0.07228 .
## Residuals 57 0.11536 0.0020238
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
permutest(ps.disper)
##
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
##
## Response: Distances
             Df Sum Sq
##
                        Mean Sq
                                       F N.Perm Pr(>F)
              2 0.01114 0.0055698 2.7521
                                            999 0.072 .
## Groups
## Residuals 57 0.11536 0.0020238
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
permutest(ps.disper, pairwise = TRUE)
```

Permutation test for homogeneity of multivariate dispersions

##

##

Permutation: free

Number of permutations: 999

```
## Response: Distances
##
            Df Sum Sq Mean Sq
                                      F N.Perm Pr(>F)
              2 0.01114 0.0055698 2.7521
                                           999 0.078 .
## Residuals 57 0.11536 0.0020238
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Pairwise comparisons:
## (Observed p-value below diagonal, permuted p-value above diagonal)
                  Rectal swab CT Rectal swab ST Stool
##
## Rectal swab CT
                                       0.161000 0.352
## Rectal swab ST
                        0.163939
                                                0.030
## Stool
                        0.352525
                                       0.027001
TukeyHSD(ps.disper)
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
## Fit: aov(formula = distances ~ group, data = df)
## $group
                                        diff
                                                     lwr
                                                                 upr
                                                                         p adj
## Rectal swab ST-Rectal swab CT 0.01962352 -0.01461033 0.053857382 0.3583522
## Stool-Rectal swab CT
                                 -0.01356902 -0.04780288 0.020664837 0.6088017
## Stool-Rectal swab ST
                                 -0.03319255 -0.06742640 0.001041313 0.0592313
# Beta Dispersion Plots
Beta.Dispersion <- ps.disper
plot(Beta.Dispersion)
```

Beta.Dispersion

plot(Beta.Dispersion, hull = FALSE, ellipse = TRUE)

Beta.Dispersion

boxplot(Beta.Dispersion)


```
# NMDS plot
cust <- plot_ordination(ps_rare, ord.nmds.bray, justDF = TRUE)

ggplot(cust, aes(x = NMDS1, y = NMDS2)) +
    geom_line(aes(group = Individual), size = 0.2, linetype = "dashed") +
    geom_point(aes(color = Sample_type)) +
    annotate("text", x = -0.85, y = -0.5, label = "Stress =") +
    annotate("text", x = -0.6, y = -0.5, label = round(ord.nmds.bray$stress, 4)) +
    stat_ellipse(aes(color = Sample_type)) +
    ggtitle("Bray-Curtis Ordination") +
    theme(aspect.ratio = 1)</pre>
```


RELATIVE ABUNDANCE - Using Taxonomic Level Class

```
# Subset Phyloseq Objects
ps_class <- subset_taxa(ps_rare, Class != "NA")</pre>
sample_clin <- subset_samples(ps_class, Sample_type == "Rectal swab CT")</pre>
sample self <- subset samples(ps class, Sample type == "Rectal swab ST")</pre>
sample_stool <- subset_samples(ps_class, Sample_type == "Stool")</pre>
# Relative Abundance - Clinician Taken Swab
clin_class <- tax_glom(sample_clin, taxrank = "Class") # aqqlomerate taxa</pre>
clin_transform <- transform_sample_counts(clin_class, function(x) x/sum(x)) #qet abundance in %
clin_melt <- psmelt(clin_transform) # create dataframe from phyloseq object</pre>
clin_melt$Class <- as.character(clin_melt$Class) #convert to character</pre>
clin_melt <- clin_melt[order(-clin_melt$Abundance),]</pre>
clin_melt[!clin_melt$Class %in% c(unique(clin_melt$Class)[1:10]), "Class"] <- "Other"</pre>
# Set order of bars
sort.clin <- clin melt %>%
  plyr::count("Class", wt = "Abundance") %>%
  arrange(desc(freq)) %>%
  pull(Class)
```

```
sort.clin <- sort.clin[!sort.clin %in% "Other"]</pre>
sort.clin <- append("Other", sort.clin)</pre>
# Plot
t1_class <- clin_melt %>%
  mutate(Sample = factor(Sample, levels = c("1A", "2A", "3A", "4A", "5A",
                                             "6A", "7A", "8A", '9A', "10A",
                                             "11A", "12A", "13A", "14A", "15A",
                                             "16A", "17A", "18A", "19A", "20A"))) %>%
  mutate(Class = factor(Class, levels = rev(sort.clin))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale_y_continuous(labels = percent_format()) +
  theme(text = element_text(size = 7)) +
  ggtitle("Clinician - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_brewer(palette = "Spectral", guide = guide_legend(ncol = 2)) +
  theme(legend.text = element_text(size = 6), legend.key.size = unit(0.75, "line"))
# Relative Abundance - Self Taken Swab
self_class <- tax_glom(sample_self, taxrank = "Class") # aqqlomerate taxa</pre>
self_class <- transform_sample_counts(self_class, function(x) x/sum(x)) #get abundance in %
self_melt <- psmelt(self_class) # create dataframe from phyloseq object</pre>
self melt$Class <- as.character(self melt$Class) #convert to character</pre>
self melt <- self melt[order(-self melt$Abundance),]</pre>
self melt[!self melt$Class %in% c(unique(self melt$Class)[1:10]), "Class"] <- "Other"</pre>
# Set order of bars
sort.self <- self_melt %>%
 plyr::count("Class", wt = "Abundance") %>%
  arrange(desc(freq)) %>%
 pull(Class)
sort.self <- sort.self[!sort.self %in% "Other"]</pre>
sort.self <- append("Other", sort.self)</pre>
# Plot
t2_class <- self_melt %>%
  mutate(Sample = factor(Sample, levels = c("1B", "2B", "3B", "4B", "5B",
                                             "6B", "7B", "8B", "9B", "10B",
                                             "11B", "12B", "13B", "14B", "15B",
                                             "16B", "17B", "18B", "19B", "20B"))) %>%
  mutate(Class = factor(Class, levels = rev(sort.self))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale_y_continuous(labels = percent_format()) +
  theme(text = element_text(size = 7)) +
  ggtitle("Self - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_brewer(palette = "Spectral", guide = guide_legend(ncol = 2)) +
  theme(legend.text = element_text(size = 6), legend.key.size = unit(0.75, "line"))
```

```
# Relative Abundance - Stool Sample
stool_class <- tax_glom(sample_stool, taxrank = "Class") # agglomerate taxa</pre>
stool_class <- transform_sample_counts(stool_class, function(x) x/sum(x)) #get abundance in %
stool melt <- psmelt(stool class) # create dataframe from phyloseg object
stool_melt$Class <- as.character(stool_melt$Class) #convert to character
stool melt <- stool melt[order(-stool melt$Abundance),]</pre>
stool_melt[!stool_melt$Class %in% c(unique(stool_melt$Class)[1:10]), "Class"] <- "Other"
# Set order of bars
sort.stool <- stool_melt %>%
 plyr::count("Class", wt = "Abundance") %>%
 arrange(desc(freq)) %>%
 pull(Class)
sort.stool <- sort.stool[!sort.stool %in% "Other"]</pre>
sort.stool <- append("Other", sort.stool)</pre>
# Plot
t3_class <- stool_melt %>%
 mutate(Sample = factor(Sample, levels = c("1C", "2C", "3C", "4C", "5C",
                                             "6C", "7C", "8C", "9C", "10C",
                                             "11C", "12C", "13C", "14C", "15C",
                                             "16C", "17C", "18C", "19C", "20C"))) %>%
  mutate(Class = factor(Class, levels = rev(sort.stool))) %>%
  ggplot(aes(x = Sample, y = Abundance, fill = Class)) +
  geom_bar(stat = "identity", position = "fill") +
  scale_y_continuous(labels = percent_format()) +
  theme(text = element_text(size = 7)) +
  ggtitle("Stool - Class - Top 10") +
  ylab("Relative abundance") +
  scale_fill_brewer(palette = "Spectral", guide = guide_legend(ncol = 2)) +
  theme(legend.text = element_text(size = 6), legend.key.size = unit(0.75, "line"))
ggarrange(t1_class, t2_class, t3_class, nrow = 3, labels = "AUTO", legend = "right")
```


OTU differential abundance testing with DESeq2

```
ps_deseq <- ps %>%
    tax_glom(taxrank = "Genus")

sample_data(ps_deseq)$Sample_type <- gsub(" ", "_", sample_data(ps_deseq)$Sample_type)

sample_data(ps_deseq)$Sample_type <- as.factor(sample_data(ps_deseq)$Sample_type)

# Convert the phyloseq object to a DESeqDataSet
ds <- phyloseq_to_deseq2(ps_deseq, ~ Sample_type)

## converting counts to integer mode
ds <- DESeq(ds)

## estimating size factors

## estimating dispersions

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

## fitting model and testing</pre>
```

```
## -- replacing outliers and refitting for 151 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
# Plot of Dispersion Estimates
plotDispEsts(ds, ylim = c(1e-8, 1e4))
      1e+04
     e-08 1e-05 1e-02 1e+01
dispersion
                                                                              gene-est
                                                                              fitted
                                                                             final
                                 1e+00
           1e-02
                                                        1e+02
                                                                              1e+04
                                   mean of normalized counts
```

MA-plot of Clinician vs Self

hist(resCTST\$pvalue, col = "gray", main = "Wald Model - Clinician vs Self", xlab = "Original p-values")

Wald Model - Clinician vs Self

head(resCTST_sig)

```
baseMean log2FoldChange
                                         lfcSE
                                                               pvalue
           55.398735
                           4.339790 0.7977869 5.439786 5.334449e-08 8.081691e-06
## ASV473
           10.246362
                           7.072850 1.2770450 5.538450 3.051598e-08 8.081691e-06
## ASV930
          8.010744
                           6.131688 1.1954151 5.129338 2.907624e-07 2.936700e-05
  ASV1129
  ASV658
           26.218338
                           4.915902 1.1727001 4.191952 2.765650e-05 1.764129e-03
  ASV1164 14.753210
                           6.139523 1.4686762 4.180311 2.911104e-05 1.764129e-03
            Kingdom
                                                  Class
                            Phylum
           Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales
## ASV473
## ASV930
           Bacteria
                        Firmicutes
                                             Clostridia
                                                            Clostridiales
                        Firmicutes
                                             Clostridia
                                                            Clostridiales
## ASV1129 Bacteria
## ASV658
           Bacteria Proteobacteria Gammaproteobacteria
                                                            Aeromonadales
## ASV1164 Bacteria Proteobacteria Gammaproteobacteria Enterobacterales
                     Family
                                                    Genus
## ASV473
           Pseudomonadaceae
                                              Pseudomonas
## ASV930
             Clostridiaceae
                             Clostridium_sensu_stricto_5
## ASV1129
             Clostridiaceae Clostridium_sensu_stricto_13
## ASV658
             Aeromonadaceae
                                                Aeromonas
                 Hafniaceae
## ASV1164
                                   Hafnia-Obesumbacterium
# Swab CT vs Stool
resCTS <- results(ds, contrast = c("Sample_type", "Rectal_swab_CT", "Stool"),</pre>
                  alpha = alpha)
resCTS <- resCTS[order(resCTS$padj, na.last = NA), ]</pre>
plotMA(resCTS, alpha = 0.01, main = "MA-plot of Clinician vs Stool")
```

MA-plot of Clinician vs Stool

hist(resCTS\$pvalue, col = "gray", main = "Wald Model - Clinician vs Stool", xlab = "Original p-values")

Wald Model - Clinician vs Stool


```
resCTS_sig <- resCTS[(resCTS$padj < alpha), ]
resCTS_sig <- cbind(as(resCTS_sig, "data.frame"), as(tax_table(ps)[rownames(resCTS_sig), ], "matrix")
head(resCTS_sig)</pre>
```

```
baseMean log2FoldChange
                                         lfcSE
                                                    stat
                                                                pvalue
           371.68353
## ASV324
                           26.83942 1.1951058 22.45778 1.074225e-111 2.245130e-109
## ASV262
           569.52608
                           28.30378 1.3237517 21.38149 1.987046e-101
           102.45995
## ASV365
                           26.62194 1.5030862 17.71152
                                                         3.417104e-70
                                                                        2.380583e-68
  ASV662
           112.98959
                           26.88915 1.6814757 15.99140
                                                          1.467033e-57
                                                                        7.665245e-56
                                                         1.364563e-53
  ASV283
            82.54958
                           27.17414 1.7632089 15.41175
                                                                        5.703875e-52
  ASV5
          3585.31720
                           11.79910 0.7864744 15.00252 7.068126e-51
                                                                        2.462064e-49
                                               Class
##
           Kingdom
                              Phylum
                         Firmicutes
                                       Negativicutes
## ASV324 Bacteria
## ASV262 Bacteria
                         Firmicutes
                                          Clostridia
## ASV365 Bacteria
                         Firmicutes
                                          Clostridia
## ASV662 Bacteria
                         Firmicutes
                                             Bacilli
## ASV283 Bacteria
                       Synergistota
                                         Synergistia
## ASV5
          Bacteria Campilobacterota Campylobacteria
##
## ASV324
               Veillonellales-Selenomonadales
## ASV262
                                 Clostridia or
## ASV365 Peptostreptococcales-Tissierellales
## ASV662
                               Lactobacillales
## ASV283
                                 Synergistales
##
  ASV5
                             Campylobacterales
##
                                           Family
## ASV324
                                  Veillonellaceae Negativicoccus
## ASV262
                           Hungateiclostridiaceae Fastidiosipila
## ASV365 Peptostreptococcales-Tissierellales_fa
                                                       Gallicola
## ASV662
                                    Aerococcaceae
                                                        Facklamia
```

MA-plot of Self vs Stool

hist(resSTS\$pvalue, col = "gray", main = "Wald Model - Self vs Stool", xlab = "Original p-values")

Wald Model - Self vs Stool


```
resSTS_sig <- resSTS[(resSTS$padj < alpha), ]
resSTS_sig <- cbind(as(resSTS_sig, "data.frame"), as(tax_table(ps)[rownames(resSTS_sig), ], "matrix")
head(resSTS_sig)</pre>
```

```
##
            baseMean log2FoldChange
                                         lfcSE
                                                    stat
                                                                pvalue
           371.68353
## ASV324
                           29.01285 1.1939499 24.29989 1.965677e-130 5.366298e-128
## ASV262
           569.52608
                           30.44088 1.3230614 23.00791 3.884562e-117 5.302427e-115
           102.45995
## ASV365
                           27.70526 1.5015745 18.45081
                                                         5.137379e-76
                                                                        4.675015e-74
  ASV662
           112.98959
                           27.91069 1.6802657 16.61088
                                                         5.813687e-62
                                                                        3.967841e-60
                           11.98355 0.7864328 15.23785
                                                         1.982790e-52
  ASV5
          3585.31720
                                                                       1.082603e-50
  ASV283
            82.54958
                           26.75502 1.7629576 15.17621
                                                         5.082879e-52 2.312710e-50
                                               Class
##
           Kingdom
                              Phylum
## ASV324 Bacteria
                                       Negativicutes
                         Firmicutes
## ASV262 Bacteria
                         Firmicutes
                                          Clostridia
## ASV365 Bacteria
                         Firmicutes
                                          Clostridia
## ASV662 Bacteria
                         Firmicutes
                                             Bacilli
## ASV5
          Bacteria Campilobacterota Campylobacteria
## ASV283 Bacteria
                       Synergistota
                                         Synergistia
##
                                         Order
## ASV324
               Veillonellales-Selenomonadales
## ASV262
                                 Clostridia or
## ASV365 Peptostreptococcales-Tissierellales
## ASV662
                               Lactobacillales
## ASV5
                             Campylobacterales
##
  ASV283
                                 Synergistales
##
                                           Family
## ASV324
                                  Veillonellaceae Negativicoccus
## ASV262
                           Hungateiclostridiaceae Fastidiosipila
## ASV365 Peptostreptococcales-Tissierellales_fa
                                                       Gallicola
## ASV662
                                    Aerococcaceae
                                                       Facklamia
```

Differential Abundance Figure

```
ggplot(resCTST_sig, aes(x = log2FoldChange, y = reorder(Genus, log2FoldChange), fill= Phylum)) +
  geom_bar(stat = "identity", position = "identity", width = 0.5) +
  labs(title = "Clinician Swab vs Self Swab", y = "Genus", x = "log2 Fold Change") +
  theme(aspect.ratio = 1) +
  scale_fill_brewer(palette = "Set1")
```

Clinician Swab vs Self Swab

Clinician Swab vs Stool

ggarrange(clinVSstool, selfVSstool, ncol = 2, common.legend = TRUE, legend = "right", labels = "AUTO")

Differential Abundance - ggplot Heatmap

```
diffCTST <- resCTST_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffCTST)[1] <- "CTST_log2FoldChange"</pre>
diffCTS <- resCTS_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffCTS)[1] <- "CTS_log2FoldChange"</pre>
diffSTS <- resSTS_sig %>%
  select(log2FoldChange, Phylum, Genus)
colnames(diffSTS)[1] <- "STS_log2FoldChange"</pre>
heat <- rbind.fill(as.data.frame(t(diffCTS)), as.data.frame(t(diffSTS)))</pre>
heat <- rbind.fill(as.data.frame(heat), as.data.frame(t(diffCTST)))</pre>
heat <- t(heat)
heat <- as.data.frame(heat)
colnames(heat) <- c("CTS", "CTS_phylum", "CTS_genus",</pre>
                     "STS", "STS_phylum", "STS_genus",
                     "CTST", "CTST_phylum", "CTST_genus")
```

```
heat$sigPhylum <- as.character(heat$CTS_phylum)</pre>
heat$sigPhylum[nrow(heat)] <- as.character(heat$STS_phylum[nrow(heat)])</pre>
heat$sigGenus <- as.character(heat$CTS_genus)</pre>
heat\$sigGenus[nrow(heat)] <- as.character(heat\$STS_genus[nrow(heat)])
heat <- select(heat, -CTS_genus, -STS_genus, -CTST_genus, -CTS_phylum, -STS_phylum, -CTST_phylum)
# file for ggplot based heatmap
SamplingComparison <- c(1:(nrow(heat)*3))</pre>
SamplingComparison[1:nrow(heat)] <- "CTS"</pre>
SamplingComparison[(nrow(heat)+1):(nrow(heat)*2)] <- "STS"</pre>
SamplingComparison[((nrow(heat)*2)+1):(nrow(heat)*3)] <- "CTST"</pre>
log2FC \leftarrow c(1:(nrow(heat)*3))
log2FC[1:nrow(heat)] <- as.numeric(as.character(heat$CTS))</pre>
log2FC[(nrow(heat)+1):(nrow(heat)*2)] <- as.numeric(as.character(heat$STS))</pre>
log2FC[((nrow(heat)*2)+1):(nrow(heat)*3)] <- as.numeric(as.character(heat$CTST))
Phylum <- c(1:(nrow(heat)*3))</pre>
Phylum[1:nrow(heat)] <- heat$sigPhylum</pre>
Phylum[(nrow(heat)+1):(nrow(heat)*2)] <- heat$sigPhylum</pre>
Phylum[((nrow(heat)*2)+1):(nrow(heat)*3)] <- heat$sigPhylum</pre>
Genus <- c(1:(nrow(heat)*3))</pre>
Genus[1:nrow(heat)] <- heat$sigGenus</pre>
Genus[(nrow(heat)+1):(nrow(heat)*2)] <- heat$sigGenus</pre>
Genus[((nrow(heat)*2)+1):(nrow(heat)*3)] <- heat$sigGenus</pre>
ftp <- as.data.frame(cbind(SamplingComparison, log2FC, Phylum, Genus))</pre>
ftp$log2FC <- as.numeric(as.character(ftp$log2FC))</pre>
ftp$SamplingComparison <- factor(ftp$SamplingComparison, levels = c("CTST", "CTS", "STS"))</pre>
heatLog <- ggplot(ftp, aes(SamplingComparison, Genus, fill = log2FC)) + geom_tile() +
  geom_text(aes(label = sprintf("%2.1f", log2FC)), size = 2) +
  theme(axis.title = element_blank(), legend.position = "bottom",
        axis.text.y = element_blank(),
        axis.text.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        plot.background = element_blank(),
        plot.margin = margin(t = 2, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt")) +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5)) +
  scale_fill_distiller(palette = "RdBu") +
  scale_x_discrete(position = "top", labels = (c("Clinician vs Self",
                                                   "Clinician vs Stool",
                                                   "Self vs Stool")))
heatPhylum <- ggplot(ftp, aes(SamplingComparison, Genus, fill = Phylum)) + geom_tile() +
  theme(axis.title = element_blank(), legend.position = "bottom",
        axis.text.y = element_text(size = 8),
        axis.text.x = element_blank(), axis.ticks.x = element_blank(),
        plot.margin = margin(t = 13.5, r = 5, b = 11, l = 0, unit = "pt"),
        legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt"),
        legend.text = element_text(size = 8), legend.key.size = unit(0.75, "line")) +
  scale_fill_brewer(palette = "Set1", guide = guide_legend(ncol = 3))
```


Synerg

-20-10 0 10 20 30

Species Abundance ggplot Heatmap

Actinobacteriota

Campilobacterota

Bacteroidota

Firmicutes

Fusobacteriota

Proteobacteria

ırkholderia-Caballeronia-Parabu'r Blvii28_wastewater-Siudd

Phylum

```
# Make figure with individual abundance to go next to heatmap
heat_ps <- subset_taxa(ps_rare, Genus %in% heat$sigGenus)
heat_ps <- heat_ps %>%
    tax_glom(taxrank = "Genus")

# Clinician Swab
heat_clin <- subset_samples(heat_ps, Sample_type == "Rectal swab CT")
melted_clin <- psmelt(heat_clin)
melted_clin <- select(melted_clin, Individual, Genus, Abundance)
melted_clin$Abundance[melted_clin$Abundance == 0] <- 1
melted_clin$log2Abundance <- log2(melted_clin$Abundance)
melted_clin$log1OAbundance <- log1O(melted_clin$Abundance)
heatCS <- ggplot(melted_clin, aes(Individual, Genus, fill = log1OAbundance)) + geom_tile() +
    scale_x_discrete(position = "top") + xlab("Clinician Swab") +
    theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),</pre>
```

```
axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, l = 0, unit = "pt")) +
  scale_fill_distiller(palette = "RdBu") +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
# Self Swab
heat_self <- subset_samples(heat_ps, Sample_type == "Rectal swab ST")
melted self <- psmelt(heat self)</pre>
melted_self <- select(melted_self, Individual, Genus, Abundance)</pre>
melted_self$Abundance[melted_self$Abundance == 0] <- 1</pre>
melted_self$log2Abundance <- log2(melted_self$Abundance)</pre>
melted_self$log10Abundance <- log10(melted_self$Abundance)</pre>
heatSS <- ggplot(melted_self, aes(Individual, Genus, fill = log10Abundance)) + geom_tile() +
  scale_x_discrete(position = "top") + xlab("Self Taken Swab") +
  theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, l = 0, unit = "pt")) +
  scale_fill_distiller(palette = "RdBu") +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
# Stool
heat_stool <- subset_samples(heat_ps, Sample_type == "Stool")</pre>
melted_stool <- psmelt(heat_stool)</pre>
melted_stool <- select(melted_stool, Individual, Genus, Abundance)</pre>
melted_stool$Abundance[melted_stool$Abundance == 0] <- 1</pre>
melted_stool$log2Abundance <- log2(melted_stool$Abundance)</pre>
melted_stool$log10Abundance <- log10(melted_stool$Abundance)</pre>
heatSt <- ggplot(melted_stool, aes(Individual, Genus, fill = log10Abundance)) + geom_tile() +
  scale_x_discrete(position = "top") + xlab("Stool") +
  theme(axis.title.x = element_text(family = "Helvetica", size = 10, face = "plain"),
        axis.title.y = element_blank(),
        axis.text = element_blank(), legend.position = "bottom", legend.background = element_blank(),
        plot.margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "pt"),
        legend.margin = margin(t = 11, r = 0, b = 0, l = 0, unit = "pt")) +
  scale_fill_distiller(palette = "RdBu") +
  guides(fill = guide_colourbar(title.position = "bottom", title.hjust = 0.5))
heatAbundance <- ggarrange(heatCS, heatSS, heatSt, ncol = 3, common.legend = TRUE, legend = c("bottom")
```

Combined Heatmaps

```
ggarrange(heatChanges, heatAbundance, widths = c(2, 1), legend = c("bottom"))
```


Boxplot Sanity Checks

```
resCTS_sig <- resCTS_sig[order(-resCTS_sig$log2FoldChange),]
int <- row.names(resCTS_sig)[1:12]
ASVlabs <- tax_table(ps)[int, 6]
names(ASVlabs) <- int
ASVlabs <- as.list(ASVlabs)

ASV_labeller <- function(variable,value){
   return(ASVlabs[value])
}

# Sanity Plots with Fold Change
tcounts <- t(log2((counts(ds[int, ], normalized = TRUE, replaced = FALSE) + .5))) %>%
   merge(colData(ds), ., by = "row.names") %>%
   gather(ASV, log2FC, (ncol(.)-length(int) + 1):ncol(.))

tcounts %>%
   select(Row.names, Sample_type, Individual, ASV, log2FC) %>%
   head %>%
```

knitr::kable()

Row.names	Sample_type	Individual	ASV	log2FC
10A	Rectal_swab_CT	10	ASV262	3.017179
10B	$Rectal_swab_ST$	10	ASV262	5.359164
10C	Stool	10	ASV262	-1.000000
11A	$Rectal_swab_CT$	11	ASV262	4.888552
11B	$Rectal_swab_ST$	11	ASV262	-1.000000
11C	Stool	11	ASV262	-1.000000

Warning: The labeller API has been updated. Labellers taking `variable` and
`value` arguments are now deprecated. See labellers documentation.


```
ggsave("Purcell Final/Final_results/8)Sanity_FoldChange_plots.pdf", width = 7, height = 8)
# Sanity Plots with Abundance
sanity_ps <- subset_taxa(ps_deseq, taxa_names(ps_deseq) %in% int)</pre>
```

- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Removed 474 rows containing non-finite values (stat_boxplot).

ggsave("Purcell Final/Final_results/8)Sanity_logAbundance_plots.pdf", width = 7, height = 8)

- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Transformation introduced infinite values in continuous y-axis
- ## Warning: Removed 474 rows containing non-finite values (stat_boxplot).

Session Info

```
sessionInfo()
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_NZ.UTF-8/en_NZ.UTF-8/en_NZ.UTF-8/c/en_NZ.UTF-8/en_NZ.UTF-8
## attached base packages:
## [1] parallel stats4
                           stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
##
## other attached packages:
  [1] DESeq2_1.26.0
                                    SummarizedExperiment_1.16.1
## [3] DelayedArray_0.12.3
                                    BiocParallel_1.20.1
                                    Biobase_2.46.0
## [5] matrixStats_0.56.0
## [7] GenomicRanges_1.38.0
                                    GenomeInfoDb_1.22.1
## [9] IRanges_2.20.2
                                    S4Vectors_0.24.4
## [11] BiocGenerics_0.32.0
                                    scales_1.1.1
## [13] tidyr_1.1.0
                                    ggpubr_0.4.0
## [15] extrafont_0.17
                                    ggplot2_3.3.2
## [17] phyloseg 1.30.0
                                    dplyr 1.0.0
## [19] vegan_2.5-6
                                    permute_0.9-5
## [21] Rmisc 1.5
                                    plyr 1.8.6
## [23] lattice_0.20-41
                                    RColorBrewer_1.1-2
##
## loaded via a namespace (and not attached):
     [1] colorspace 1.4-1
                                ggsignif 0.6.0
                                                        ellipsis 0.3.1
##
##
     [4] rio_0.5.16
                                htmlTable_2.0.1
                                                        XVector_0.26.0
     [7] base64enc_0.1-3
                                rstudioapi_0.11
                                                        farver_2.0.3
  [10] bit64_0.9-7.1
##
                                AnnotationDbi_1.48.0
                                                        codetools_0.2-16
                                                        knitr_1.29
##
   [13] splines_3.6.3
                                geneplotter_1.64.0
  [16] ade4_1.7-15
                                                        jsonlite_1.7.0
                                Formula_1.2-3
## [19] annotate_1.64.0
                                broom_0.7.0
                                                        Rttf2pt1_1.3.8
   [22] cluster_2.1.0
##
                                png_0.1-7
                                                        compiler_3.6.3
##
  [25] backports_1.1.8
                                Matrix_1.2-18
                                                        acepack_1.4.1
##
  [28] htmltools_0.5.0
                                tools_3.6.3
                                                        igraph_1.2.5
  [31] gtable_0.3.0
                                glue_1.4.1
                                                        GenomeInfoDbData_1.2.2
## [34] reshape2_1.4.4
                                Rcpp_1.0.5
                                                        carData_3.0-4
                                vctrs_0.3.2
                                                        Biostrings_2.54.0
## [37] cellranger_1.1.0
## [40] multtest 2.42.0
                                ape 5.4
                                                        nlme 3.1-148
## [43] extrafontdb_1.0
                                                        xfun_0.15
                                iterators_1.0.12
## [46] stringr_1.4.0
                                openxlsx_4.1.5
                                                        lifecycle_0.2.0
## [49] XML_3.99-0.3
                                rstatix_0.6.0
                                                        zlibbioc_1.32.0
## [52] MASS_7.3-51.6
                                hms 0.5.3
                                                        biomformat 1.14.0
## [55] rhdf5_2.30.1
                                yaml_2.2.1
                                                        curl_4.3
```

##	[58]	memoise_1.1.0	gridExtra_2.3	rpart_4.1-15
##	[61]	RSQLite_2.2.0	latticeExtra_0.6-29	stringi_1.4.6
##	[64]	highr_0.8	genefilter_1.68.0	foreach_1.5.0
##	[67]	checkmate_2.0.0	zip_2.0.4	rlang_0.4.7
##	[70]	pkgconfig_2.0.3	bitops_1.0-6	evaluate_0.14
##	[73]	purrr_0.3.4	Rhdf5lib_1.8.0	labeling_0.3
##	[76]	htmlwidgets_1.5.1	cowplot_1.0.0	bit_1.1-15.2
##	[79]	tidyselect_1.1.0	magrittr_1.5	R6_2.4.1
##		generics_0.0.2	$Hmisc_4.4-0$	DBI_1.1.0
##	[85]	pillar_1.4.6	haven_2.3.1	foreign_0.8-76
##	[88]	withr_2.2.0	mgcv_1.8-31	survival_3.2-3
##	[91]	abind_1.4-5	RCurl_1.98-1.2	nnet_7.3-14
##	[94]	tibble_3.0.3	crayon_1.3.4	car_3.0-8
##	[97]	rmarkdown_2.3	jpeg_0.1-8.1	locfit_1.5-9.4
##	[100]	grid_3.6.3	readxl_1.3.1	data.table_1.12.8
##	[103]	blob_1.2.1	forcats_0.5.0	digest_0.6.25
##	[106]	xtable_1.8-4	munsell_0.5.0	