Variational Auto-Encoder (VAE)

Why VAE?

Practice

Run "7.2.Conv_VAE.ipynb"

Train 400 epochs

400+400 epochs (total = 800 epochs)

400+400+400 epochs (total = 1200 epochs)

VAE

Encoder

```
[15]:
      for batchX, in loader:
         break:
       print(batchX.shape)
      torch.Size([16, 3, 128, 128])
(fc1): Linear(in features=1024, out features=64,
(fc2): Linear(in features=1024, out features=64,
(fc3): Linear(in features=64, out features=1024,
                              m<sub>1</sub>
                NN
input
             Encoder
                              \sigma_1
                                   exp
                               \sigma_2
                               \sigma_3
                              e_1
           From a normal
                              e_2
           distribution
```

```
h = model.encoder(batchX.to(device))
       print(h.shape)
      torch.Size([16, 1024])
                                           m_1
[17]:
      mu=model.fc1(h)
                                           m_2
       print(mu.shape)
                                           m_3
      torch.Size([16, 64])
                                           \sigma_1
[18]:
      logvar=model.fc2(h)
                                            \sigma_2
       print(logvar.shape)
                                            \sigma_3
      torch.Size([16, 64])
                                                 exp
[19]:
       std = logvar.mul(0.5).exp()
                                            \sigma_2
       print(std.shape)
                                            \sigma_3
      torch.Size([16, 64])
                                            e_1
[20]:
      esp=torch.randn(*mu.size())
                                            e_2
       print(esp.shape)
                                            e_3
      torch.Size([16, 64])
[21]:
      z=mu+std*esp.to(device)
       print(z.shape)
      torch.Size([16, 64])
```

Loss function

$$\sigma_i = \text{Log(var)}$$

We want σ_i close to 0 (variance close to 1)

Loss function

print(loss)

```
def loss_fn(recon_x, x, mu, logvar):
[9]:
        #BCE = F.binary cross entropy(recon x, x, size average=False).to(device)
        MSE = F.mse_loss(recon_x, x, reduction='sum')
        # see Appendix B from VAE paper:
        # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
                                                                                         Minimize
        \# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
                                                                                 \sum (exp(\sigma_i) - (1 + \sigma_i) + (m_i)^2)
        KLD = -0.5*torch.mean(1+logvar-mu.pow(2)-logvar.exp()).to(device)
        return MSE+KLD, MSE, KLD
                                                                                       L2 regularization
      tensorY,mu,logvar = model(batchX.to(device))
[23]:
      print(tensorY.shape)
      torch.Size([16, 3, 128, 128])
[24]: loss, mse,kld = loss fn(tensorY, batchX.to(device), mu, logvar)
```

tensor(627375.3750, device='cuda:0', grad fn=<AddBackward0>)

Why loss =
$$MSE(x, \hat{x}) + KL(q(z|x)||P(z))$$
?

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

loss =
$$||\mathbf{x} - \mathbf{x}||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

$$D_{KL}(p||q) = \sum_{i=1}^{N} p(x_i) log(\frac{p(x_i)}{q(x_i)})$$

Minimize
$$\sum_{i=1}^{3} (exp(\sigma_i) - (1 + \sigma_i) + (m_i)^2)$$

The decoder and encoder of VAE model two conditional probability distributions

Gaussian mixture model

The probability of sampling an output image x from latent vector space z can be modelled as a Gaussian mixture model

We want to train a decoder NN that can maximize the likelihood of observing the training images

Maximizing Likelihood

$$P(x) = \int_{z} P(z)P(x|z)dz$$

$$L = \sum log P(x)$$
 Max

P(z) is normal distribution

$$x|z \sim N(\mu(z), \sigma(z))$$

 $\mu(z)$, $\sigma(z)$ is going to be estimated

 $L = \sum_{i=1}^{n} log P(x)$ Maximizing the likelihood of the observed x

$$L = p(x^1) \times p(x^2) \times p(x^3) \times \cdots p(x^m) = \prod_{i=1,\dots,m} P(x^i)$$

Recap: maximize the likelihood of observing the classification of the training data

Rewrite the maximum likelihood item $\log P(x)$ as the summation of a lower bound L_h and KL divergence

$$log P(x) = \int_{z} q(z|x) log P(x) dz \quad q(z|x) \text{ can be any distribution}$$

$$= \int_{z} q(z|x) log \left(\frac{P(z,x)}{P(z|x)}\right) dz = \int_{z} q(z|x) log \left(\frac{P(z,x)}{q(z|x)} \frac{q(z|x)}{P(z|x)}\right) dz$$

$$= \int_{z} q(z|x) log \left(\frac{P(z,x)}{q(z|x)}\right) dz + \int_{z} q(z|x) log \left(\frac{q(z|x)}{P(z|x)}\right) dz$$

$$\geq \int_{z} q(z|x) log \left(\frac{P(x|z)P(z)}{q(z|x)}\right) dz \quad lower bound L_{b}$$

$$D_{KL}(q||p) = \sum_{i=1}^{N} q(x_i) \log(\frac{q(x_i)}{p(x_i)})$$

If we maximum L_b by adjusting P(x|z) and q(z|x) simutaneously, then we can maximum L_b and at the same time minimize the KL distance

Rewrite the lower bound L_b as the summation of two terms: -KL(q(z|x)||P(z)), and $\int_z q(z|x)logP(x|z)dz$

$$\max L_b = \int_{z} q(z|x)log\left(\frac{P(z,x)}{q(z|x)}\right)dz = \int_{z} q(z|x)log\left(\frac{P(x|z)P(z)}{q(z|x)}\right)dz$$

$$= \int_{z} q(z|x)log\left(\frac{P(z)}{q(z|x)}\right)dz + \int_{z} q(z|x)logP(x|z)dz$$

$$-KL(q(z|x)||P(z))$$

Reference: 李弘毅 ML Lecture 18 https://youtu.be/8zomhgKrsmQ

max. L_b can be done by min. KL(q(z|x)||P(z)) and max. $\int_z q(z|x)logP(x|z)dz$. That is why loss = KLD + MSE (x, \hat{x})

HW6 (2)

- Train an VAE to learn a compact representation (try latent vector of size 20, 30, 50) of your facial expression. Test with 10 happy and 10 angry faces.
- Show the recovered image.
- Send the latent vectors to t-SNE to see whether they form clusters.

Normal = 16, Abnormal = 16, Latent vector size = 32, 1200 epochs

t-SNE (perplexity=?) results of training images

Recovered training images

Recovered un-seen test images

Problem of using decoder to generate images

The images generated by AE/VAE are blur because they are the average of the input images

Decoder in AE or VAE generates images that minimize MSE + KL. It does not consider the context information

The decoder does not consider the structured relationships

between pixels

The relation between the components are critical.

Although highly correlated, they cannot influence each other.

Need deep structure to catch the relation between components.

Advantages of GAN

- Still generate the object component-bycomponent
- But it is learned from the discriminator with global view.