PREDICTING PRODUCT SHORTAGE AND SURPLUS

WALMART DATA SET

SHIMEI LIM ABHIJIT SUPREM

FANNIE MOK

what & why

Determine product overstock with high accuracy

OVERSTOCK

- Product 12: 98.29%
- Product 19: 96.48%
- Product 45: 95.1%
- Product 60: 98.6%

UNDERSTOCK

- Product 19: 97.49%
- Product 60: 99.97%

- Relevance: product overstock and understock cause loss in efficiency
- Select relevantly representative products with high correlation to other products
- Products associated with representative store clusters

how

OVERSTOCK

UNDERSTOCK

how

where next?

where next?

findings in brief

Determine product overstock with high accuracy

Product 12: 98.29%

• Product 19: 96.48%

• Product 45: 95.1%

• Product 60: 98.6%

• Product 19: 97.49%

• Product 60: 99.97%

- Relevance: product overstock an understock cause loss in efficiency
- Select relevantly representative products with high correlation to other products
- Products associated with representative store clusters

procedure

- Data cleanup delete duplicates, fill missing values
 - Extraction of relevant data
- Clustering Split store types and select representative clusters
 - Small data set
 - Pick clusters with minimum mean and variance of dimension variance
- Product Correlation Measure product pair correlations
 - Pearson correlation of each product pair
- Product Selection Correlation peak finding and thresholding
 - Use absolute correlation
 - Correlation threshold to obtain relevantly representative products
 - Threshold can be lowered for more prediction options
- Random Forest -

clustering

- Store types: |A| = 31; |B| = 11; and |C| = 3
 - Ignored type |C|
 - K-means clustering on A,B separately
- K-selection
 - Run multi-trial K-means from K=2 to $\frac{|type|}{2}$
 - Obtain dimensional variance of cluster C
 - Select clustering with smallest $\overline{var(C)}$ and var(var(C))
 - Results vary
- K-means (labeled clusters in S)
 - argmin $\sum_{i=1}^{k} \sum_{x \in S_i} ||x \mu_i||^2$

product correlation

- Store types: |A| = 31; |B| = 11; and |C| = 3
 - Ignored type |C|
 - K-means clustering on A,B separately
- K-selection
 - Run multi-trial K-means from K=2 to $\frac{|type|}{2}$
 - Obtain dimensional variance of cluster C
 - Select clustering with smallest $\overline{var(C)}$ and var(var(C))
 - Results vary

random forest classification

- Ensemble method
 - Build multiple decision trees to facilitate error-free decisions
 - Use Gini impurity index to iterate
 - $G = \sum_{i=1}^{n_c} p_i (1 p_i)$
- Does not overfit and maintains higher accuracy versus simpler methods
- Effective in high dimensions with non-binary classification
- Can achieve higher accuracy through robust methods
- Can observe variable interactions to obtain relevant features for dimension reduction

learning rate – product 60 (RERL)

learning rate – product 45 (RERL)

learning rate – product 19 (REPL)

learning rate – product 19 (POS)

data flow

variance comparisons

