Numerical Problem on Calculating CNN Parameters

A Convolutional Neural Network (CNN) is designed with the following architecture:

Layer 1: Convolutional Layer

• Input Image Size: 128 × 128 × 3

• Number of Filters: 16

• Kernel Size: 5 × 5

• Stride: 1

Padding: same

Layer 2: Max Pooling Layer

Pool Size: 2 × 2

• Stride: 2

Layer 3: Convolutional Layer

Number of Filters: 32

Kernel Size: 3 × 3

• Stride: 1

Padding: valid

Layer 4: Fully Connected Dense Layer

Number of Neurons: 128

Layer 5: Output Layer

• Number of Neurons: **10** (for classification into 10 classes)

Questions

- 1. Calculate the **output size** of each layer.
- 2. Compute the **number of trainable parameters** in each layer.
- 3. Find the **total number of trainable parameters** in the network.

Step 1: First Convolutional Layer

• Input Size: $128 \times 128 \times 3$

• Filter Size: 5×5

• Number of Filters: 16

• Stride: 1

• Padding: "same" (output size remains the same)

1.1 Output Shape Calculation

Since **padding is "same"**, the formula for output size is:

$$\begin{aligned} \text{Output Size} &= \frac{\text{Input Size} - \text{Kernel Size} + 2 \times \text{Padding}}{\text{Stride}} + 1 \\ &= \frac{128 - 5 + 2(2)}{1} + 1 = 128 \end{aligned}$$

So, Output Shape: 128 imes 128 imes 16

1.2 Parameter Calculation

Each filter has:

$$ext{Weights} = (ext{Kernel Width} imes ext{Kernel Height} imes ext{Input Channels}) + 1 ext{(bias)}$$

$$= (5 imes 5 imes 3) + 1 = 76$$

Since we have **16 filters**, total trainable parameters:

$$16 \times 76 = 1,216$$

Step 2: First Max Pooling Layer

• Pool Size: 2×2

• Stride: 2

• Padding: "valid" (no padding)

2.1 Output Shape Calculation

Pooling reduces the size as:

$$egin{split} ext{Output Size} &= rac{ ext{Input Size} - ext{Pool Size}}{ ext{Stride}} + 1 \ &= rac{128 - 2}{2} + 1 = 64 \end{split}$$

So, Output Shape: $64 \times 64 \times 16$

No trainable parameters in pooling layers.

Step 3: Second Convolutional Layer

• Input Shape: 64 imes 64 imes 16

• Filter Size: 3×3

• Number of Filters: 32

• Stride: 1

Padding: "valid" (no padding)

3.1 Output Shape Calculation

Since **padding is "valid"**, the output size is reduced:

$$\begin{aligned} \text{Output Size} &= \frac{\text{Input Size} - \text{Kernel Size}}{\text{Stride}} + 1 \\ &= \frac{64 - 3}{1} + 1 = 62 \end{aligned}$$

So, Output Shape: 62 imes 62 imes 32

3.2 Parameter Calculation

Each filter has:

Weights =
$$(3 \times 3 \times 16) + 1 = 145$$

Since we have **32 filters**, total trainable parameters:

$$32 \times 145 = 4,640$$

Step 4: Flattening

• Input Shape: 62 imes 62 imes 32

Since the **flatten layer** converts 3D tensors into 1D:

Output Shape =
$$62 \times 62 \times 32 = 123,008$$

📌 No trainable parameters in flattening.

Step 5: Fully Connected Dense Layer

• Input Neurons: 123,008

• Output Neurons: 128

5.1 Parameter Calculation

Weights =
$$123,008 \times 128 = 15,745,024$$

$$Bias = 128$$

Total Parameters = 15,745,152

Step 6: Output Layer

• Input Neurons: 128

• **Output Neurons**: 10 (for 10-class classification)

6.1 Parameter Calculation

$$ext{Weights} = 128 imes 10 = 1,280$$
 $ext{Bias} = 10$ $ext{Total Parameters} = 1,290$

Final Table: Summary of Parameters

Layer	Output Shape	Trainable Parameters
Conv2D (16 filters)	(128, 128, 16)	1,216
MaxPooling2D	(64, 64, 16)	0
Conv2D (32 filters)	(62, 62, 32)	4,640
Flatten	(123,008)	0
Dense (128 neurons)	(128)	15,745,152
Dense (Output, 10 neurons)	(10)	1,290
Total Parameters	-	15,752,298

Final Answer

Total Trainable Parameters = 15,752,298

This CNN model learns **over 15.75 million parameters** through **backpropagation and gradient descent**.