Energy-Adaptive Monitoring for Resilient Smart Farms

Motivation

- Lack of security-aware smart farm technologies under resource constraints
- Introducing serious food contamination when animal conditions are not properly monitored
- Potential high revenue loss of farmers due to the failure of protecting farms from attacks

Research Goal: Develop an uncertainty-aware MADRL-based monitoring system to achieve high monitoring quality under fluctuating energy, cyberattacks, and adversarial examples.

Problem Statement

Objective function: Minimize monitoring error (\mathcal{ME}) and system overload (\mathcal{OL})

$$\underset{P=\{p_1,p_2,\ldots,p_T\}}{\operatorname{arg\,max}} \sum_{t=1}^T f(g_t(p_1,p_2,\ldots,p_t)), \quad s.t. \quad \forall t \in [1,T], p_t \in \mathcal{P},$$

T: total monitoring step
P: update policy

 p_t : monitoring action at time step t

 ${\mathcal P}$: action space

 g_t : sensor network at time step t

 $f: g_t \mapsto -\mathcal{ME}(g_t) - \mathcal{OL}(g_t)$

Network and Node Models

- Network Model: A wireless solar sensor network-based smart farm environment
 - Bluetooth Low Energy (BLE) protocol
 - 100*m* coverage
 - 2Mbps data rate
 - Long Range (LoRa) protocol
 - > 1km coverage
 - 27kbps data rate
- Node Model
 - Temperature: $temp_t^i$
 - Heart beat: hb'_t
 - Velocity: ma_t^i
 - Battery level: bl_t^i

Figure 1: Wireless Solar Sensor Node-based Smart Farm Environment.

Figure 2: The overall data flow of the smart farm network.

Attack Model

HBS: high battery sensors; LBS: low battery sensors; MIMA: man-in-the-middle attackers

- Non-compliance to the protocol: P_{NCA}
 - Reject the data request
- False data injection
 - Inject from internal/external attacker: P_{IDA}/P_{EDA}
- Denial-of-Service (DoS): P_{IDA}
 - Send redundant data requests

Uncertainty-Aware Animal Monitoring

SL-based Formulation of a Multinomial Opinion

- A multinomial opinion X: $\omega_X = (\boldsymbol{b}_X, u_X, \boldsymbol{a}_X)$

 b_X : belief mass distribution over \mathbb{X} u_X : uncertainty mass representing vacuity of evidence a_X : base rate distribution over \mathbb{X}

■ The dissonance $\boldsymbol{b}_{X}^{\text{Diss}}$ of an opinion X:

$$m{b}_X^{ ext{Diss}} = \sum_{x_i \in \mathbb{X}} \left(rac{m{b}_X(x_i) \sum\limits_{x_j \in \mathbb{X} \setminus x_i} m{b}_X(x_j) \mathsf{Bal}(x_j, x_i)}{\sum\limits_{x_i \in \mathbb{X} \setminus x_i} m{b}_X(x_j)}
ight)$$

relative mass balance:

$$\mathsf{Bal}(x_j, x_i) = 1 - \frac{|\boldsymbol{b}_X(x_j) - \boldsymbol{b}_X(x_i)|}{\boldsymbol{b}_X(x_j) + \boldsymbol{b}_X(x_i)}$$

DRL-based Monitoring Update

States:

- Global critic state:
- $s_t^i = g_t(k_1, k_2, \dots, k_t)$ Local actor state:
- $s_t^i = g_t^i(k_1, k_2, \dots, k_t)$
- \mathbf{g}_t/g_t^i is represented by the history action sequence

Actions:

- n_t^i : the total number of LBS
- Action space: $\mathbf{a}_t^i = \{0, \lfloor \frac{n_t'}{2} \rfloor, n_t^i\}$

Rewards:

■ $r_t^i = f(g_t(k_1, k_2, \dots, k_t))$ based on $f(g_t) = -\mathcal{ME}(g_t) - \mathcal{OL}(g_t)$ where k_i is an action taken in step i

Figure 3: The proposed Multi-Agent Deep Reinforcement Learning (MADRL) framework.

Data Aggregation at LoRa Gateways

Uncertainty (Vacuity) Maximization

- Move belief mass b_X to uncertainty mass u_X
- Update uncertainty based on recent data

$$\omega_X = (\boldsymbol{b}_X, u_X, \boldsymbol{a}_X) \longrightarrow \ddot{\omega}_X = (\ddot{\boldsymbol{b}}_X, \ddot{u}_X, \boldsymbol{a}_X)$$
$$\ddot{u}_X = \min_i \left[\frac{\boldsymbol{P}_X(x_i)}{\boldsymbol{a}_X(x_i)} \right],$$
$$\ddot{\boldsymbol{b}}_X(x_i) = \boldsymbol{P}_X(x_i) - \boldsymbol{a}_X(x_i) \cdot \ddot{u}, \text{ for } x_i \in \mathbb{X}$$
Trigger condition: $u_X < \rho$

Experimental Setup

Dataset: EmbediVet Devices (EVD)

Metric	Description		
Serial	A unique animal identifier		
Heart rate	Heart bits per min.		
Average-temperature	Average body temperature in Celsius		
Min-temperature	Minimum temperature in Celsius		
Max-temperature	Maximum temperature in Celsius		
Average-activity	Average activity recorded by the number of		
	steps taken		
Battery-level	Residual battery life		
Timestamp	Date and time of transmission		

Environmental Setup

- Modeling sun's movement in a day
- Consensus agreement: Ensure the maximum number of requests executed in the consolidated priority list based on Hopcroft–Karp algorithm ¹
- Gateway locations: Cover the whole farm with the same coverage of each gateway

¹Hopcroft et al., 1973

Asymptotic Complexity Analysis

Scheme	Complexity	
MADQN/MAPPO	$O(n_e \times t_{train})$	
Greedy	$O(n_{action})$	
Random	O(1)	
Data Mitigation (DM)	O(1)	

- MADQN/MAPPO incurs smaller cost than Greedy with large action space
- Random and DM are the most efficient algorithms among all while showing poor performance

Performance Comparison $(\mathcal{R}, \mathcal{ME}, \mathcal{OL})$

- (a) Accum. reward (R)
 (b) Monitoring error (ME)
 (c) Overload (OL)
 MAPPO-UM has a stationary decision process and achieves the best performance among all comparing schemes.
- DRL algorithms with uncertainty maximization (UM) outperform those without UM.
- The UM technique can update the uncertainty information from time to time, which reflects the sensor network status in a timely manner.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ ● へのの

Performance Comparison $(\mathcal{BML}, \mathcal{U}, \mathcal{FR})$

- MAPPO-UM achieves the best battery maintenance level (\mathcal{BML}) compared to other schemes.
- Different schemes could have very different policies due to two conflict goals in our multi-objective function.
- The overall performance order of the considered schemes is: MAPPO-UM \geq MADQN-UM \approx MAPPO-NUM \geq MADQN-NUM \geq Greedy \geq Random.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

Sensitivity Analysis for Adversarial Attacks

Attack P _{ADV}	FGSM	MIM	PGD	BIM
0.1	2	2	8	3
0.2	7	9	14	9
0.3	12	8	16	8
0.4	13	13	21	9

FGSM: Fast Gradient Sign Method MIM: Momentum Iterative Method PGD: Projected Gradient Descent BIM: Basic Iterative Method P_{ADV} : Adversarial attack probability

- MAPPO-UM is evaluated with respect to accumulated reward.
- The results are shown in the relative performance decline *permillage* ².
- PGD is the strongest while BIM is the weakest.

²a rate or proportion per thousand

Effect of Varying the Internal Attack Probability (P_{IDA})

■ The overall performance order with respect to the three metrics is: $MAPPO-UM \geq MAPPO-NUM \geq Greedy \geq MADQN-UM \geq MADQN-NUM \\ > DM > Random.$

Effect of Varying the External Attack Probability (P_{EDA})

■ The overall performance order with respect to the three metrics is: $MAPPO-UM \geq MAPPO-NUM \geq Greedy \geq MADQN-UM \geq MADQN-NUM \\ > DM > Random.$

Effect of Varying the Attacker's Non-Compliance Probability (P_{NCA})

■ The overall performance order with respect to the three metrics is: MAPPO-UM ≥ MAPPO-NUM ≥ Greedy ≥ MADQN-UM ≥ MADQN-NUM > DM > Random.

Key Contributions & Findings

Our proposed MAPPO-UM achieves:

- A strong resilience against attacks by achieving the best monitoring quality and minimum system overload.
- The best energy maintenance level by intelligently leveraging the uncertainty information.
- The enhanced monitoring quality and energy-adaptive operation with the uncertainty maximization (UM) technique using more recent evidence.
- Different optimal monitoring policies in different scenarios due to the different payoffs to monitoring updates.
- Strong robustness under harsh environments as demonstrated via extensive sensitivity analyses.