基于DES的安卓系统安全通讯的 设计与实现

姓名 <u>陈伟桐(S201407001)</u>

姓名 <u>刘</u>岩(S201407077)

指导教师__ 蔡永泉____

一、 安卓系统平台简介

Android 是一种由 Google 公司领导及开发的基于 Linux 的自由及 开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电 脑。

Android 一词的本义指"机器人",同时也是 Google 于 2007 年 11 月 5 日宣布的基于 Linux 平台的开源手机操作系统的名称,该平台由操作系统、中间件、用户界面和应用软件组成。

2012 年 7 月美国科技博客网站 BusinessInsider 评选出二十一世纪十款最重要电子产品,Android 操作系统和 iPhone 等榜上有名。

二、 Des 加密算法原理说明

数据加密标准(DES,Data Encryption Standard)是一种使用密钥加密的块密码,1976 年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用 56 位密钥的对称算法。这个算法因为包含一些机密设计元素,相对短的密钥长度以及怀疑内含美国国家安全局(NSA)的后门而在开始时有争议,DES 因此受到了强烈的学院派式的审查,并以此推动了现代的块密码及其密码分析的发展。

DES 算法加密过程主要分为以下几个步骤:

1. 初始置换

将输入的明文,根据初始换位表进行置换,获得初始置换结

2. 逐层置换

- 1) 将初始置换后的数据分为左右各 32 位
- 2) 将 32 位数据扩展为 48 位
- 3) 对 Key 进行压缩换位,获得 K
- 4) 将右数据 R 与 K 进行异或
- 5) 左右交叉换位
- 6) 将左右合并成新的 massage
- 7) 重复 1-6 过程 16 次,获得逐层置换结果

3. 最后换位

将上一步的置换结果,根据最终换位表进行置换,获得密文,加密完成

其中涉及的置换表如下:

IP									
58	50	42	34	26	18	10	2		
60	52	44	36	28	20	12	4		
62	54	46	38	30	22	14	6		
64	56	48	40	32	24	16	8		
57	49	41	33	25	17	9	1		
59	51	43	35	27	19	11	3		
61	53	45	37	29	21	13	5		
63	55	47	39	31	23	15	7		

	IP^{-1}							
40	8	48	16	56	24	64	32	
39	7	47	15	55	23	63	31	
38	6	46	14	54	22	62	30	
37	5	45	13	53	21	61	29	
36	4	44	12	52	20	60	28	
35	3	43	11	51	19	59	27	
34	2	42	10	50	18	58	26	
33	1	41	9	49	17	57	25	

初始换位表

最终换位表

LC-T

E							
32	1	2	3	4	5		
4	5	6	7	8	9		
8	9	10	11	12	13		
12	13	14	15	16	17		
16	17	18	19	20	21		
20	21	22	23	24	25		
24	25	26	27	28	29		
28	29	30	31	32	1		

左							
57	49	41	33	25	17	9	
1	58	50	42	34	26	18	
10	2	59	51	43	35	27	
19	11	3	60	52	44	36	
右							
63	55	47	39	31	23	15	
7	62	54	46	38	30	22	
14	6	61	53	45	37	29	
21	13	5	28	20	12	4	

PC-2								
14	17	11	24	1	5			
3	28	15	6	21	10			
23	19	12	4	26	8			
16	7	27	20	13	2			
41	52	31	37	47	55			
30	40	51	45	33	48			
44	49	39	56	34	53			
46	42	50	36	29	32			

32-48 扩展表

压缩型换位1表

压缩型换位2表

以下为S位置置换表

```
S1Form = new byte[]
    14,4,13,1,2,15,11,8,9,10,6,12,5,9,0,7,
    0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
    4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
    15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13
};
S2Form = new byte[]
{
    15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
    3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
    0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
    13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9
};
S3Form = new byte[]
{
    10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
    13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
    13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
    1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12
};
```

```
S4Form = new byte[]
{
    7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
    13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
    10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
    3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14
};
S5Form = new byte[]
    2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
    3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
    0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
    13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9
};
S6Form = new byte[]
{
    12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
    10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
    9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
    4,3,2,12,9,5,15,10,11,14,1,7,12,0,8,13
};
S7Form = new byte[]
{
    4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
    13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
    1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
    6,11,13,8,1,4,10,7,9,5,0,15,13,2,3,12
};
S8Form = new byte[]
{
    13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
    1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
    7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
    2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
```

三、 安全通讯程序架构设计

程序主要分为客户端和服务器两部分,客户端负责将用户的语音存储起来,加密后发送给服务器,以及接收服务器发来的信息,进行解密;服务器负责接收用户发来的消息并进行转发。

客户端主要流程:

通话流程:

服务器主要流程:

四、 安全通讯程序实现模块

登录界面:

等待通话界面:

用户列表界面:

通话界面:

五、 项目简介及使用说明

本项目在 Android 系统上实现了"DES 加密"通话功能,使用 TCP 传送数据。由于是为了学习 DES 加密,所以做的比较简单,语音通话的降噪和回音消除都没有实现。项目中的两个文件夹分别是服务器项目和 Android 应用项目。两者都是 Eclipse 项目,基于 jdk1.6。Android 项目 sdk 版本是 Android4.2。使用时需要修改服务器项目及 android 项目下的"Const.java"文件中的 ServerIP 为你服务器的 ip,才能运行。

源码结构如下:

ChuanYinServer/ src 服务器

|- com/yichang/chuanyin/server 服务器包

Qianlichuanyin/src 客户端

|- com/yichang/qianlichuanyin/main 客户端主类包

|- com/yichang/qianlichuanyin/net 客户端网络包

|- com/yichang/qianlichuanyin/view 客户端界面包