Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 21: Osservabilità e ricostruibilità a tempo discreto

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

	_
	—
	_
	_
	—
	 _
	—
	_
	—
	_
	_
-	
	_

In questa lezione

- Deservabilità e ricostruibilità: definizioni generali
- Deservabilità di sistemi lineari a t.d.
- ▶ Ricostruibilità di sistemi lineari a t.d.

Osservabilità e ricostruibilità

sistema con stato x(t), ingresso u(t) e uscita y(t)

$$u(t) \longrightarrow \sum_{|x(t)|} y(t)$$

Osservabilità = possibilità di determinare lo stato iniziale $x_0 = x(t_0)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

Ricostruibilità = possibilità di determinare lo **stato finale** $x^* = x(t^*)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

Stati indistinguibili e non osservabili

sistema con stato x(t), ingresso u(t) e uscita y(t)

Definizione: Uno stato x_0' si dice indistinguibile dallo stato x_0'' in $[t_0, t^*]$ se, per ogni ingresso $u(\cdot)$, l'uscita $y'(\cdot)$ corrispondente allo stato iniziale $x(t_0) = x_0'$ e l'uscita $y''(\cdot)$ corrispondente allo stato iniziale $x(t_0) = x_0''$ coincidono su $[t_0, t^*]$.

Definizione: Uno stato x_0 si dice non osservabile nell'intervallo $[t_0, t^*]$ se è indistinguibile dallo stato $x(t_0) = 0$.

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

4 Aprile 2022

Esempio introduttivo

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

$$y(t) = i_R(t) = i_{L_1}(t) + i_{L_2}(t)$$

$$t_0 = 0, L_1 = L_2 = L$$

$$x_0 = egin{bmatrix} lpha \ -lpha \end{bmatrix}$$
 , $lpha \in \mathbb{R}$, è non osservabile in $[0,t]$, $orall t > 0$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

Osservabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t)$$

 $y(t) = Hx(t)$ $x(0) = x_0 \in \mathbb{R}^n$

$$u(0), u(1), u(2), \dots \longrightarrow \sum_{x(t)} y(0), y(1), y(2), \dots$$

$$y(k) = HF^{k}x_{0} + H\mathcal{R}_{k}u_{k}, \quad k = 0, 1, ..., t - 1$$

Insieme di stati iniziali indistinguibili da x_0 in [0, t-1] (= in t passi)?

Quando possiamo determinare univocamente $x_0 \in \mathbb{R}^n$ dalle misure?

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

4 Aprile 2022

Stati indistinguibili

$$x(0) = x_0$$
: $y(k) = HF^k x_0 + H\mathcal{R}_k u_k$, $k = 0, 1, ..., t - 1$

$$x(0) = x'_0$$
: $y'(k) = HF^k x'_0 + H\mathcal{R}_k u_k$, $k = 0, 1, ..., t - 1$

$$y'(k) - y(k) = 0, \ \forall k \iff \underbrace{\begin{bmatrix} H \\ HF \\ HF^2 \\ \vdots \\ HF^{t-1} \end{bmatrix}}_{\triangle \mathcal{O}} (x'_0 - x_0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \iff x'_0 - x_0 \in \ker \mathcal{O}_t$$

 $\triangleq \mathcal{O}_t = \mathsf{matrice} \; \mathsf{di} \; \mathsf{osservabilit} \; \mathsf{ain} \; t \; \mathsf{passi}$

 $x_0 + \ker \mathcal{O}_t = \{x_0 + x, x \in \ker \mathcal{O}_t\} = \text{insieme di stati indistinguibili in } t \text{ passi da } x_0$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

Spazio non osservabile

 $X_{NO}(t)$ = insieme di stati indistinguibili in t passi da $x_0 = 0$ = insieme di stati non osservabili in t passi = spazio non osservabile in t passi = $\ker(\mathcal{O}_t)$

Teorema: Gli spazi non osservabili soddisfano:

$$X_{NO}(1) \supseteq X_{NO}(2) \supseteq X_{NO}(3) \supseteq \cdots$$

Inoltre, esiste un primo intero $i \le n$ tale che

$$X_{NO}(i) = X_{NO}(j), \forall j \geq i.$$

$$X_{NO} \triangleq X_{NO}(i) = \text{(minimo) spazio non osservabile}$$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

4 Aprile 2022

Criterio di osservabilità del rango

Definizione: Un sistema Σ a t.d. si dice (completamente) osservabile se $X_{NO} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) osservabile in t passi se t è il più piccolo intero tale che $X_{NO}(t) = \{0\}$.

 $\mathcal{O} \triangleq \mathcal{O}_n = \text{matrice di osservabilità del sistema}$ (Matlab[®] obsv(sys))

 Σ osservabile \iff ker $(\mathcal{O}) = \{0\} \iff$ rank $(\mathcal{O}) = n$

p = 1: Σ osservabile \iff $det(\mathcal{O}) \neq 0$

p > 1: Σ osservabile \iff $det(\mathcal{O}^{\top}\mathcal{O}) \neq 0$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$
 \implies non osservabile $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$
 \implies osservabile (in 2 passi) $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

4 Aprile 2022

Ricostruibilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = x_0$$

$$y(0), y(1), y(2), \dots$$

$$y(k) = HF^k x_0 + HR_k y_k, \quad k = 0, 1, \dots, t-1$$

Quando possiamo determinare univocamente $x^* = x(t-1) \in \mathbb{R}^n$ dalle misure?

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

Spazio non ricostruibile

$$x^* = x(t-1) = F^{t-1}x_0 + \mathcal{R}_{t-1}u_{t-1}$$

misure
$$\{u(k)\}_{k=0}^{t-1}, \{y(k)\}_{k=0}^{t-1}$$

- stati iniziali compatibili con le misure: $x_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $F^{t-1}X_0 + F^{t-1}X_{NO}(t) + \mathcal{R}_{t-1}u_{t-1}$ = $x^* + F^{t-1}X_{NO}(t)$

 $X_{NR}(t) = \text{spazio non ricostruibile in } t \text{ passi} = F^{t-1}X_{NO}(t) = \{F^{t-1}x, x \in \ker(\mathcal{O}_t)\}$

 $X_{NR} = \text{(minimo)}$ spazio non ricostruibile $= X_{NR}(n+1) = F^n X_{NO}$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

4 Aprile 2022

Criterio di ricostruibilità

Definizione: Un sistema Σ a t.d. si dice (completamente) ricostruibile se $X_{NR} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) ricostruibile in t passi se t è il più piccolo intero tale che $X_{NR}(t) = \{0\}$.

$$\Sigma$$
 ricostruibile \iff $\ker(F^n) \supseteq \ker(\mathcal{O}) = X_{NO}$

 Σ osservabile $(X_{NO} = \{0\}) \Rightarrow \Sigma$ ricostruibile

 $\Sigma \ \mathsf{ricostruibile} \not \Rightarrow \Sigma \ \mathsf{osservabile} \ !!!$

G. Baggio

Lez. 21: Osservabilità e ricostruibilità a t.d.

Esempi

$$\textbf{1.} \ x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R} \\ y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \qquad \Longrightarrow \begin{array}{l} \text{non osservabile} \\ \text{ma ricostruibile se } \alpha_1 = 0 \end{array}$$

