Sinais e Sistemas Electrónicos

Capítulo 7: O Transistor MOS

Sinais e Sistemas Electrónicos-2024/2025

Sumário

- Introdução;
- MOSFET: uma abordagem funcional;
- MOSFET como amplificador;
- MOSFET como interruptor.

Introdução

O que é um transistor?

• Dispositivo semicondutor que pode funcionar como:

Interruptor electrónico

E. Martins, DET Universidade de Aveiro

7-3

Sinais e Sistemas Electrónicos-2024/2025

Introdução

- Transístores são dispositivos de 3 terminais.
- Duas grandes famílias:
 - > transístores bipolares, ou BJT;
 - > transístores de efeito de campo, ou FET.
- De entre os transístores do tipo FET, o MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor, também chamado de IGFET), é o dispositivo mais importante. É o dispositivo base de mais de 99% dos circuitos integrados digitais.

Transistor de efeito de campo (MOSFET – Metal Oxide Semiconductor Field Effect Transistor)

E. Martins, DET Universidade de Aveiro

7-5

Sinais e Sistemas Electrónicos-2024/2025

Estrutura do MOSFET de canal N

- Dispositivo simétrico: dreno é, por convenção, o terminal de maior tensão (I_{DS} > 0);
- Substrato é ligado à tensão mais baixa do circuito (em geral, GND).

SiO2, oxido isolante (<10nm) SiO2 substrato, tipo P W SiO2 porta, dreno, tipo N CATE N+ Substrato, tipo P

Representação em corte transversal

Funcionamento

E. Martins, DET Universidade de Aveiro

7-7

Sinais e Sistemas Electrónicos- 2024/2025

Característica I/V: regiões de funcionamento

- Para funcionar como interruptor, o MOSFET é polarizado na Região Linear.
- Para funcionar como amplificador, o MOSFET é polarizado na Região de Saturação.

Modelo quadrático ou de Shockley

Modelo de grande sinal do MOSFET

$$I_{DS} = \begin{cases} 0 \; ; \; V_{GS} < V_T \; \; \text{Corte} \\ k \left(2(V_{GS} - V_T) V_{DS} - V_{DS}^{-2} \right) \; ; \; \; V_{GS} \ge V_T \; \; \text{e} \; \; V_{GD} > V_T \quad \text{Linear} \\ k (V_{GS} - V_T)^2 \; ; \; \; V_{GS} \ge V_T \; \; \text{e} \; \; V_{GD} \le V_T \quad \text{Saturação} \end{cases}$$

k é a transconductância do MOSFET, com dimensões de A/ V^2 .

E. Martins, DET Universidade de Aveiro

7-9

Sinais e Sistemas Electrónicos - 2024/2025

Exemplos de cálculo: MOSFETs em DC

Exemplo - polarização

Sabendo que $V_T = 2V$ e $k = 1mA/V^2$, calcular I_{DS} e V_D .

Como $I_G = 0A$, a tensão V_G pode calcular-se usando a expressão do divisor de tensão:

$$V_G = \frac{R_2}{R_1 + R_2} V_{DD} = \frac{1}{3+1} 20 = 5V$$

Como não sabemos se o transístor está linear ou saturado, vamos admitir, arbitrariamente, que está numa das regiões.

$$I_{DS} = k(V_{GS} - V_T)^2$$

 R_1 $3M\Omega$ I_{DS} V_D V_S R_2 $I_{M\Omega}$ $I_{M\Omega}$ I_{DS} I_{DS}

E. Martins, DET Universidade de Aveiro

7-11

Sinais e Sistemas Electrónicos-2024/2025

A tensão V_G também se pode escrever como:

$$V_G = V_{GS} + R_S I_{DS}$$

Substituindo nesta expressão a anterior...

$$V_{GS}^{2} + \left(\frac{1}{kR_{S}} - 2V_{T}\right)V_{GS} + V_{T}^{2} - \frac{V_{G}}{kR_{S}} = 0$$

Substituindo valores, obtemos:

$$V_{GS}^2 - 3.63V_{GS} + 2.148 = 0$$

Cujas soluções são:

$$V_{GS} = 2.886V \quad \lor \quad V_{GS} = 0.744V$$

A segunda solução é < V_T = 2V, logo é descartada

Usando a primeira solução

$$I_{DS} = k(V_{GS} - V_T)^2 = 1(2.89 - 2)^2 = 0.79 mA$$

 V_D é dado por

$$V_D = V_{DD} - R_D I_{DS} = 20 - 4.7(0.79) = 16.3V$$

Com esta tensão temos

$$V_{GD} = V_G - V_D = 5 - 16.3 = -11.3V < V_T$$

O que confirma que o transístor está efectivamente saturado.

NOTA: Se não se confirmasse o estado saturado do transístor, teríamos que refazer os cálculos considerando-o na região linear.

E. Martins, DET Universidade de Aveiro

7-13

Sinais e Sistemas Electrónicos-2024/2025

MOSFET como amplificador

MOSFET como amplificador

 Na região de saturação i_{DS} só depende de v_{GS}

$$i_{DS} = k(v_{GS} - V_T)^2$$

- O MOSFET funciona como uma fonte de corrente controlada por tensão...
- ... ou um amplificador de transconductância;
- Esta é pois a região adequada para operar o MOSFET como amplificador.

E. Martins, DET Universidade de Aveiro

7-15

Sinais e Sistemas Electrónicos-2024/2025

Exemplo de aplicação: amplificador audio

- ... mas a forma de onda da corrente i_{DS} não aparece igual à da fonte v_{gs} !
- Porquê?

Exemplo de aplicação: amplificador audio

- Para valores de v_{GS} inferiores à tensão de limiar, V_T , o transístor corta;
- A solução é *polarizar* o transístor de forma a garantir que $v_{GS} > V_T$ para todos os valores do sinal de entrada.

E. Martins, DET Universidade de Aveiro

7-17

Sinais e Sistemas Electrónicos - 2024/2025

Exemplo de aplicação: amplificador audio

Assumimos $V_T = 0.8V$ por isso de $-1.5 + V_{GS} = 0.8$ obtemos $V_{GS} = 2.3V$

- A polarização garante que o MOSFET conduz para todos os valores de v_{gs}.
- Forma de onda de i_{DS} é uma reprodução fiel de v_{gs} .

Sinais e Sistemas Electrónicos-2024/2025

MOSFET como interruptor

MOSFET como interruptor

• Neste modo de funcionamento o MOSFET funciona como um interruptor controlado por tensão;

E. Martins, DET Universidade de Aveiro

7-21

Sinais e Sistemas Electrónicos-2024/2025

MOSFET como interruptor

• Na posição de fechado o 'interruptor' deve ter a *menor resistência possível*, portanto o MOSFET deve estar a funcionar na Região Linear;

MOSFET na Região Linear

MOSFET

MOSFET como interruptor

Consideremos um MOSFET que funciona como interruptor para uma resistência de carga, $R_L = 10 K\Omega$

Admitamos para o MOSFET: $V_T = 1V$ e $k = 100 \mu A/V^2$

- Para $V_i < V_T$ o MOSFET fica cortado, pelo que $I_{DS} = 0$;
- Se $V_i = V_{DD}$ o MOSFET conduz. Será que fica na região linear?... Vejamos:

$$I_{DS} = k \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^{2} \right] = k \left[2(V_{DD} - V_T)V_{DS} - V_{DS}^{2} \right]$$

• Além disso sabemos que: $V_{DS} = V_{DD} - R_L I_{DS}$ Substituindo aqui a equação de I_{DS} e resolvendo, obtemos: $V_{DS} = 0.6V$

• Como $V_{GD} = V_i - V_{DS} = 4.4V > V_T$ o que confirma a região linear!

E. Martins, DET Universidade de Aveiro

7-23

 $V_{DD} = 5V$

Resistência

de carga

Sinais e Sistemas Electrónicos-2024/2025

Aplicação 1: Interruptor de potência

• Transístor é usado para controlar o estado on/off de uma carga

 Como a corrente de porta é nula, o MOSFET pode ser controlado por um microcontrolador;

• Quando anoitece, R_F aumenta, aumentando V_G . O transístor conduz, actuando no relé que liga o circuito de iluminação.

Aplicação 2: Circuitos digitais

 Transístor é usado também como interruptor mas os sinais são considerados binários (digitais);

E. Martins, DET Universidade de Aveiro

7-25

Sinais e Sistemas Electrónicos - 2024/2025

Aplicação 2: Circuitos digitais

Porta lógica NOR

Aplicação 2: Circuitos digitais

- Célula de memória dinâmica (DRAM);
- Um transístor + um condensador por cada bit;
- O valor lógico de cada bit expresso pela tensão em C_S :
 - $\triangleright V_{DD}$ - V_T para '1'
 - *▶ 0V* para '0'

$$\triangleright \Delta V_{BL} > 0 \Rightarrow 1'$$

$$ightharpoonup \Delta V_{BL} < \theta \Rightarrow '\theta'$$

Célula DRAM 1-T C_{BL} C_{BL} C_{BL} C_{BL} C_{BL} C_{BL} C_{C} C_{C}