8.2 Weak Acids and Bases

- Review approximation method to make calculations easier.
- A weak acid is an acid that partially ionizes in solution but exists primarily in the form of molecules.
- A weak base is a base that has a weak attraction for protons.
- According to Brønsted-Lowry, a base must possess an atom with a lone pair of valence electrons capable of accepting a proton from water, which would produce the hydroxide ion.

Percent Ionization of Weak Acids

- Most weak acids ionize less than 50%
- have a pH close to 7.
- Percent ionization: p = <u>concentration of acid ionized</u> × 100% concentration of acid solute
- For weak acids: $[H^+_{(aq)}] = \frac{p}{100} \times [HA_{(aq)}]$
- where p is the percent ionization and [HA_(aq)] is the concentration of the acid.

• E.g. For a 0.10 mol/L solution of acetic acid, 1.3% ionizes:

$$HC_2H_3O_{2(aq)} \leftrightarrow H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$

$$[H^+_{(aq)}] = \frac{1.3}{100} \times [0.10 mol/L]$$

$$[H^+_{(aq)}] = 1.3 \times 10^{-3} \text{ mol/L} \longrightarrow P^{H} = 2.7$$

Ionization Constant for Weak Acids

- ullet Acid ionization constant, K_{α} is the equilibrium constant for the ionization of an acid.
- For the reaction: $HA_{(aq)} \leftrightarrow H^{+}_{(aq)} + A^{-}_{(aq)}$ $K_{a} = \frac{\left[H^{+}_{(aq)}\right]\left[A^{-}_{(aq)}\right]}{\left[HA_{(aq)}\right]}$

 E.g. calculate the acid ionization constant of acetic acid if a 0.100 mol/L solution at equilibrium at SATP has a percent ionization of 1.3%.

$$\begin{aligned} & \text{HC}_2\text{H}_3\text{O}_{2(\text{aq})} \leftrightarrow \text{H}^+(\text{aq}) + \text{C}_2\text{H}_3\text{O}_2^-(\text{aq}) & K_a = \underbrace{\begin{bmatrix} H^+(\text{aq}) & C_2H_3O_2^-(\text{aq}) \\ HC_2H_3O_{2(\text{aq})} & + & C_2H_3O_2^-(\text{aq}) \end{bmatrix}}_{\text{$HC_2H_3O_2(\text{aq})$}} \\ & \text{I} & \text{O}.100 & \text{O} & \text{O} \\ & \text{C} & -x & +x & +x \\ & \text{E} & \text{O}.100-x & x & x \\ & \text{x} = \text{O}.100 \, \text{mol/L} \times \text{O}.013 = \text{O}.0013 \, \text{mol/L} \end{aligned}$$

therefore:
$$[HC_2H_3O_{2(aq)}] = 0.100 - 0.0013 = 0.0987 \text{ mol/L}$$

 $[H^+_{(aq)}] = 0.0013 \text{ mol/L}$
 $[C_2H_3O_2^-_{(aq)}] = 0.0013 \text{ mol/L}$

$$K_a = \frac{\left[H^{+}_{(aq)}\right] \left[C_2 H_3 O_2^{-}_{(aq)}\right]}{\left[H C_2 H_3 O_{2(aq)}\right]} = \frac{(0.0013)(0.0013)}{0.0987} = 1.7 \times 10^{-5}$$

Percent Ionization and Concentration

 Percent ionization varies with the concentration of the solution. In other words, the more dilute the solution the greater the degree of ionization.

Ionization constants for Weak Bases

- Base ionization constant, K_b is the equilibrium constant for the ionization of a base.
- For the reaction: $B_{(aq)} + H_2O_{(I)} \leftrightarrow HB^+_{(aq)} + OH^-_{(aq)}$ $K_b = \frac{\left[HB^+_{(aq)}\right]OH^-_{(aq)}}{\left[B_{(aq)}\right]}$
- Problems are solved in a similar manner as acids (see above).

Organic Bases

 Organic bases usually have a –NH₂ group attached or N with a lone pair of electrons capable of accepting a proton.

The Relationship between Ka and Kb

- See page 560 for proof.
- $K_a \times K_b = K_w$ or $K_a = \underline{K_w}$ or $K_b = \underline{K_w}$ K_b K_a
- E.g. What is the value of the base ionization constant for the acetate ion at SATP? (use the table in appendix)

Things to think about:

$$\begin{array}{l} K_{a} \to HC_{2}H_{3}O_{2(aq)} \leftrightarrow H^{+}{}_{(aq)} + C_{2}H_{3}O_{2}^{-}{}_{(aq)} \\ K_{b} \to C_{2}H_{3}O_{2}^{-}{}_{(aq)} + H_{2}O_{(I)} \leftrightarrow HC_{2}H_{3}O_{2(aq)} + OH^{-}{}_{(aq)} \\ K_{w} \to H_{2}O_{(I)} \leftrightarrow H^{+}{}_{(aq)} + OH^{-}{}_{(aq)} \end{array}$$

$$K_w = 1.0 \times 10^{-14}$$
 (already known)
 $K_a = 1.8 \times 10^{-5}$ (look up K_a for acetic acid)
 $K_b = ?$

$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

• See figure 5 and the table on page 562 for the relationship between conjugate pairs.

The pH of Weak Acid Solutions

 E.g. Calculate the hydrogen ion concentration and the pH of a 0.10 mol/L acetic acid solution.

Things to think about

$$HC_2H_3O_{2(aq)} \leftrightarrow H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$
 $K_a = 1.8 \times 10^{-5}$ (look up K_a for acetic acid)

$$H_2O_{(I)} \leftrightarrow H^+_{(aq)} + OH^-_{(aq)}$$
 $K_w = 1.0 \times 10^{-14}$ (already known)

Sources of H^+ are acetic acid and water, but based on the K values, it is clear that almost all the H^+ comes from acetic acid. Also of note, the K_b value of acetate is also insignificant and has little effect. Therefore we can assume all the H^+ comes from acetic acid.

$$K_{a} = \frac{\left[H^{+}_{(aq)} \left[C_{2}H_{3}O_{2}^{-}_{(aq)}\right]\right]}{\left[HC_{2}H_{3}O_{2(aq)}\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.10 - x\right]} = \frac{\left[x\right]^{2}}{\left[0.10 - x\right]} = 1.8 \times 10^{-5}$$

use quadratic or approximate using 100 rule

$$\frac{[HA]_{initial}}{K_a} = \frac{0.10}{1.8 \times 10^{-5}} = 5.6 \times 10^3 \qquad \text{since } 5.6 \times 10^3 > 100 \text{ we can}$$
assume $0.10 - x = 0.10$

$$K_{a} = \frac{\left[H^{+}_{(aq)}\right]\left[C_{2}H_{3}O_{2}^{-}_{(aq)}\right]}{\left[HC_{2}H_{3}O_{2(aq)}\right]} = \frac{\left[x\right]\left[x\right]}{\left[0.10 - x\right]} = \frac{\left[x\right]^{2}}{\left[0.10\right]} = 1.8 \times 10^{-5}$$

$$x = 1.3 \times 10^{-3}$$

check assumption $\frac{x}{[HA]_{aq}} \times 100\% < 5\%$, which turns out to be 1.3%

$$x = [H^{+}_{(aq)}] = 1.3 \times 10^{-3} \text{ mol/L}$$

 $pH = -log[H^{+}_{(aq)}] = -log[1.3 \times 10^{-3}] = 2.89$

- See summary for calculating the pH of a solution of weak monoprotic acid, HA_(aq) given the value of K_a on page 568
- E.g. You measure the pH of a 0.1 mol/L hypochlorus acid solution and find it to be 4.23. What is the K_a for HOCl_(aa)?

pH = 4.23

$$[H^{+}_{(aq)}] = 10^{-pH} = 10^{-4.23} = 5.9 \times 10^{-5} \text{ mol/L} = [OCl^{-}_{(aq)}]$$

The sources of H+ will primarily be the HOCI since there are so few given by water and the OCF is a weak conjugate base. Therefore...

$$HOCl_{(aq} \leftrightarrow H^{+}_{(aq)} + OCl^{-}_{(aq)}$$

$$K_{a} = \frac{\left[H^{+}_{(aq)} \right] OCl^{-}_{(aq)}}{\left[HOCl_{(aq)}\right]} = \frac{\left[5.9 \times 10^{-5}\right] \left[5.9 \times 10^{-5}\right]}{\left[0.10\right]} = 3.5 \times 10^{-8}$$

The pH of Weak Base Solutions

- Similar to acid problems.
- See summary on page 574
- E.g. Calculate the pH of a 0.100 mol/L aqueous solution of hydrazine, a weak base if the K_b for N₂H_{4(aq)} is 1.7×10⁻⁶

$$N_2H_{4(aq)} + H_2O_{(I)} \leftrightarrow N_2H_{5^+(aq)} + OH^-_{(aq)}$$
 $K_b=1.7\times10^{-6}$ $K_w=1.0\times10^{-14}$

Most OH-comes from hydrazine since the constant is so much bigger. We can ignore the OH-from water. We can also ignore the influence of N_2H_{5} + since it is a weak conjugate acid.

$$K_b = \frac{\left[N_2 H_5^{+}(aq)\right] O H^{-}(aq)}{\left[N_2 H_4(aq)\right]} \qquad \text{we need concentrations}$$

$$K_b = \frac{\left[N_2 H_5^{+}_{(aq)}\right] O H_{(aq)}^{-}}{\left[N_2 H_{4(aq)}\right]} = \frac{x^2}{0.100 - x} = 1.7 \times 10^{-6}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = 4.11 \times 10^{-4}$$
 [OR 4.123 x 10⁻⁴ by estimation]

$$[OH^{-}_{(aq)}] = 4.11 \times 10^{-4} \text{ mol/L}$$

 $pOH = -log[OH^{+}_{(aq)}] = -log[4.11 \times 10^{-4}] = 3.38$
 $pH = pK_w - pOH = 14 - 3.38 = 10.62$

Therefore the pH of a 0.100 mol/L hydrazine solution is 10.62.

Polyprotic Acids

- Acids with more than 1 proton to be released.
- In general: $K_{a1} > K_{a2} > K_{a3} > ...$
- You would assume these questions to be quite difficult but the first constant is usually so much bigger than the second that we can ignore all but the first constant.

• E.g. Calculate the pH of 1.00 mol/L phosphoric acid, H₃PO_{4(aq)} (From textbook...textbook solution is incorrect)

From table 10 on page 575
$$K_{\alpha 1} = 7.1 \times 10^{-3}$$
 $K_{\alpha 2} = 6.3 \times 10^{-8}$ $K_{\alpha 3} = 4.2 \times 10^{-13}$

Since K_{a1} is so much larger than the other 2 we can assume all the H^+ comes from the first ionization.

$$H_3PO_{4(aq)} \leftrightarrow H^+_{(aq)} + H_2PO_4^-_{(aq)}$$
 $K_{a1} = 7.1 \times 10^{-3}$ $H_2O_{(I)} \leftrightarrow H^+_{(aq)} + OH^-_{(aq)}$ $K_w = 1.0 \times 10^{-14}$

Since phosphoric acid is a much stronger acid than water, we can assume all the H+ comes from the phosphoric acid.

$$K_{a1} = \frac{\left[H^{+}_{(aq)}\right] \left[H_{2}PO_{4}^{-}_{(aq)}\right]}{\left[H_{3}PO_{4(aq)}\right]} = 7.1 \times 10^{-3} = \frac{\left(x\right)\left(x\right)}{\left(1.00 - x\right)} = \frac{x^{2}}{1.00 - x}$$
$$7.1 \times 10^{-3} = \frac{x^{2}}{1.00 - x}$$

$$1.00 - x$$
$$x^{2} + 7.1 \times 10^{-3} x - 7.1 \times 10^{-3} = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = 8.079 \times 10^{-2}$$

$$x = [H^{+}_{(aq)}] = 8.079 \times 10^{-2} \text{ mol/L}$$

 $pH = -log[H^{+}_{(aq)}] = -log[8.079 \times 10^{-2}] = 1.09$

Homework

- Practice 1,2,3,4,5,6,7,8,9,10,12,13,14
- Questions 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

8.2 Weak Acids and Bases

STUDENT

- Review approximation method to make calculations easier.
- A weak acid is an acid that partially ionizes in solution but exists primarily in the form of molecules.
- A weak base is a base that has a weak attraction for protons.
- According to Brønsted-Lowry, a base must possess an atom with a lone pair of valence electrons capable of accepting a proton from water, which would produce the hydroxide ion.

Percent Ionization of Weak Acids

- Most weak acids ionize less than 50%
- have a pH close to 7.

Percent ionization:

- For weak acids:
- where p is the percent ionization and [HA_(aq)] is the concentration of the acid.

E.g.

Ionization Constant for Weak Acids

- Acid ionization constant, K_{α} is the equilibrium constant for the ionization of an acid.
- For the reaction: $HA_{(aq)} \leftrightarrow H^{+}_{(aq)} + A^{-}_{(aq)}$

0.1	g, calculate the acid ionization constant of acetic acid if a 100 mol/L solution at equilibrium at SATP has a percent nization of 1.3%.
Perc	ent Ionization and Concentration
sol	ercent ionization varies with the concentration of the lution. In other words, the more dilute the solution the eater the degree of ionization.
Ioniza	ation constants for Weak Bases
ior	ise ionization constant, K_b is the equilibrium constant for the nization of a base. If the reaction:
• Pro	oblems are solved in a similar manner as acids (see above).

Organic Bases

•	Organic bases usually have a –NH ₂ group attached or N with
	a lone pair of electrons capable of accepting a proton.

The Relationship between Ka and Kb

• See page 560 for proof.

• E.g. What is the value of the base ionization constant for the acetate ion at SATP? (use the table in appendix C7)

Things to think about:

• See figure 5 and the table on page 562 for the relationship between conjugate pairs.

The pH of Weak Acid Solutions

• E.g. Calculate the hydrogen ion concentration and the pH of a 0.10 mol/L acetic acid solution.

Sources of H^+ are acetic acid and water, but based on the K values, it is clear that almost all the H^+ comes from acetic acid. Also of note, the K_b value of acetate is also insignificant and has little effect. Therefore we can assume all the H^+ comes from acetic acid.

- See summary for calculating the pH of a solution of weak monoprotic acid, HA_(aq) given the value of K_a on page 568
- E.g. You measure the pH of a 0.1 mol/L hypochlorus acid solution and find it to be 4.23. What is the K_{α} for HOCl_(aq)?

The sources of H+ will primarily be the HOCI since there are so few given by water and the OCI is a weak conjugate base. Therefore...

The pH of Weak Base Solutions

- Similar to acid problems.
- See summary on page 574
- E.g. Calculate the pH of a 0.100 mol/L aqueous solution of hydrazine, a weak base if the K_b for $N_2H_{4(aq)}$ is 1.7×10^{-6}

Most OH-comes from hydrazine since the constant is so much bigger. We can ignore the OH-from water. We can also ignore the influence of N_2H_{5} + since it is a weak conjugate acid.

Polyprotic Acids

- Acids with more than 1 proton to be released.
- In general: $K_{a1} > K_{a2} > K_{a3} > \dots$
- You would assume these questions to be quite difficult but the first constant is usually so much bigger than the second that we can ignore all but the first constant.

• E.g. Calculate the pH of 1.00 mol/L phosphoric acid, H₃PO_{4(aq)} (From textbook...textbook solution is incorrect)

From table 10 on page 575
$$K_{\alpha 1} = 7.1 \times 10^{-3}$$
 $K_{\alpha 2} = 6.3 \times 10^{-8}$ $K_{\alpha 3} = 4.2 \times 10^{-13}$

Since K_{a1} is so much larger than the other 2 we can assume all the H^+ comes from the first ionization.

$$H_3PO_{4(aq)} \leftrightarrow H^+_{(aq)} + H_2PO_4^-_{(aq)}$$
 $K_{a1} = 7.1 \times 10^{-3}$ $H_2O_{(1)} \leftrightarrow H^+_{(aq)} + OH^-_{(aq)}$ $K_w = 1.0 \times 10^{-14}$

Since phosphoric acid is a much stronger acid than water, we can assume all the H+ comes from the phosphoric acid.

Homework

- Practice 1,2,3,4,5,6,7,8,9,10,12,13,14
- Questions 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18