(19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) 。Int. CI.⁷ C12Q 1/68 (11) 공개번호 (43) 공개일자 10- 2004- 0083674 2004년10월06일

(21) 출원번호10- 2003- 0018233(22) 출원일자2003년03월24일

(71) 출원인 바이오코아 주식회사

서울특별시 서초구 양재동 108-1 혜산빌딩 5층

(72) 발명자 박영석

서울특별시 송파구 문정2동 150 훼미리아파트 108동 506호

박재찬

서울특별시 강남구 삼성동 39-13 102호

박현경

서울특별시 마포구 대흥동 660 태영아파트 107동 1401호

강진석

경기도 수원시 장안구 정자2동 900-1 장안아파트 222동 1601 호

이경률

서울특별시 용산구 서빙고동 241-21 신동아아파트 8동 408호

(74) 대리인 이상용

구현서 류완수

심사청구 : 있음

(54) 인유두종바이러스(HPV)유전자형 분석용 서스펜션어레이 마이크로스피어 비드 조성물 및 그 검사 방법

요약

본 발명은 자궁경부이상형성(Cervical Dysplasis)의 원인인 연유두죵바이러스(Human Papillomavirus, HPV)를 OT N(One tube nested) 비대칭 PCR로 중폭한 후에 서스펜션 어레이(Suspension array)의 마이크로스피어 비드(Micro sphere bead)와 반응시킴으로써 HPV 유전자형을 간단하고 정확하게 분석하는 방법을 제공한다.

대표도

도 1

명세서

도면의 간단한 설명

도 1는 HPV 유전자의 중폭을 위한 OTN 비대칭 PCR의 전기영동 사진이다. 레인 1에서 6까지는 HPV 유전자가 증폭

된 양성 밴드가 나타난다.

도 2는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 16 유전자형에 관한 형광 반응 결과로, 32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 3번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그래프 및 수치화하여 나타낸 것이다.

도 3는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 18 유전자형에 관한 형광 반응 결과로,32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 4번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그래프 및 수치화하여 나타낸 것이다.

도 4는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 58 유전자형에 관한 형광 반응 결과로,32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 24번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그래프 및 수치화하여 나타낸 것이다.

도 5는 서스펜션 어레이와 마이크로 어레이(Microarray)의 비교실험을 위한 것이다. ①은 마이크로 어레이상에 각 HPV 유전자형 프로브가 고정된 위치를 도식화한 것이며,②은 HPV 16형,③은 HPV 18형 ④ HPV 58형 각 프로브에 나타난 형광사진 결과이다.

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 서스펜션 어레이 조성물 및 그 제조방법에 관한 발명으로, 더욱 상세하게는 인유두종바이러스 (HPV) 유전 자형 분석을 위한 서스펜션 어레이의 조성물 및 그 제조방법에 관한 발명이다.

인유두종바이러스 (Human Papillomavirus, HPV)는 약 8Kb의 이중나선 원형의 유전자를 가진 직경 55 nm의 DNA 바이러스이며 여성의 자궁경부암을 유발하는 여러 가지 악성종양과 밀접한 관계가 있는 것으로 알려져 있다(Godfroid et al., J. Virol. Method 75:69-81, 1998). HPV 유전자는 E1, E2, E4, E5, E6, E7과 L1, L2로 구성되어 있고, E1 단백질은 바이러스 복제에 관여하며, E2 단백질은 바이러스의 복제와 전사의 조절에 관여한다(Wison et al., Virus Genes 24:275-90, 2002). E6 와 E7 유전자는 암유전자 역할을 하는 것으로 각각 암억제 단백질인 p53과 pRB에 결합하는 단백질을 암호화하고 있다(Furumoto et al., J. Med. Invest. 49:124-133, 2002).

자궁경부암은 성접촉과 밀접한 관계가 있으며, HPV의 감염이 자궁경부 종양 발생에 관계가 있다고 알려져 있다. 현재까지 약 100여종의 HPV 유전자형이 보고되어 있는데 이 중에서 사람에게 질병을 유발시킬 수 있는 HPV는 약 30여 종이며 이를 크게 고위험군(16, 18, 31, 33, 35 등)과 저위험군(6, 11, 42, 43, 44 등)으로 분류하고 있다(De Villiers, J. Virol. 63:4898-4903, 1989; Jacobs et al., J. Clin. Microbiol. 33:901-905, 1995). 병소의 위치와 병변의 진행정도에 따라 각 특이한 유전자형이 발견되어 HPV 감염의 생물학적 다양성을 인식하게 되었다(Garrenstroom et al., J. Gynecol. Cancer 4:73-78, 1994).

현재 가장 흔히 시행되는 검진법은 자궁세포진 검사(PAP smear)로서 검사자의 숙련도에 의존하여 검사의 정확도가 떨어지는 단점이 있다(Menezes *et al.*, *Acta Cytol.* 45:919-926, 2001). 질확대경을 시행하면 HPV의 감염을 70%까지 진단할 수 있으나, 수련된 전문가와 고가의 장비가 필요하며 인유두종바이러스의 유전자형을 분류할 수 없는 단점이 있다(Reid *et al.*, *Clin Obstet Gynecol.* 32:157-179, 1989).

L1 부위를 PCR로 중폭한 후에 제한효소를 사용하는 PCR- RFLP는 간단하고 쉽게 결과를 얻을 수 있는 장점이 있으나 사용하는 제한 효소가 변이부분을 인식하지 못하면 분석하지 못하는 단점이 있다(Lungu et al., JAMA 267:2493 - 2496, 1992). 또한 HPV 유전자형에 따라서 PCR 증폭의 효율이 달라 검사의 정확도에 문제가 될 수 있다(Qu et al., J. Clin. Microbiol . 35:1304-1310, 1997; Karksen et al., J. Clin. Microbiol . 34:2095-2100, 1996; Gravitt et al., J. Clin. Microbiol . 38:357-361). 상품화되어 있는 하이브리드 캡쳐 키트(Digene, USA)는 PCR 증폭 과 정없이 확인 가능하나 고위험군과 저위험군으로 분류 가능할 뿐 자궁경부암과 상관관계가 높은 16, 18 형과 다른 고위험군을 구별할 수 없다는 단점이 있다(Clavel et al., J. Clin. Pathol. 51:737-740, 1998). 최근에 개발된 마이크로칩 기술를 이용한 HPV 유전자형 분석키트(바이오메드랩, 한국)는 슬라이드상에서 반응하는 2차원적인 방법으로 교잡반응 후에 3차에 걸쳐서 세척과정을 거쳐야 하는 번거로움이 있으며 이미지 작업시 기준점을 정하기 어려운 단점이

있다. 서스펜션 어레이의 특징은 한 튜브(Tube)안에서 교잡반응이 일어나는 3차원적 방법으로 반응 후 Luminex 10 0(Luminex사, 미국)시스템에서 동시에 532nm과 633nm파장을 측정함으로써 형광값을 표시하게 된다. 633nm 파장에서 측정된 형광값은 마이크로스피어 비드를 식별하며, 532nm 파장에서 측정된 형광값은 각 프로브와 반용한 PCR 산물이 Streptavidin- Cy3 또는Streptavidin- Phycoerythrin 결합으로 나타난 값이다(Keji *et al., Cytometry* 33:31 8-323, 1998)

서스펜션 어레이는 프로우메트리(Fluorometry)기술을 이용한 Luminex 100(Luminex사, 미국)시스템을 사용함으로 써 고속측정이 가능하며, 1회 측정으로 100-300개의 마이크로스피어 비드의 형광값의 최대빈도를 확인하기 때문에 정확한 분석이 가능하며, 형광반응의 결과가 수치값으로 나타남으로써 정량 분석 및 자동화 시스템 적용이 용이하다(Armstrong et al., Cytometry 40:102-108,2000).

발명이 이루고자 하는 기술적 과제

본 발명은 상기한 방법의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서, 본 발명의 목적은 유전자형에 관계없이 효과적으로 HPV를 중폭하기 위한 발전된 조성물을 제공하는 것이다.

본 발명의 다른 목적은 상기의 조성물을 이용하여 발전된 HPV 유전자형 분석방법을 제공하는 것이다.

발명의 구성 및 작용

상기한 목적을 달성하기 위하여, 본 발명은 서열정보 1에서 32까지의 염기서열을 포함하고 있는 복수의 올리고뉴크 레오티드 프로브 조성물을 제공한다.

본 발명의 각 올리고뉴크레오티드 프로브는 HPV 유전자형 결정을 위한 프로브이고, 상기의 올리고뉴크레오티드 프로브는 마이크로스피어 비드에 고정화되어 있는 것을 특징으로 한다.

또한, 질내분비물로 부터 HPV DNA를 추출하는 단계, 추출한 DNA를 이용하여 OTN 비대칭 PCR을 실시하는 단계, 상기의 비대칭 PCR 부산물과 프로브를 결합시키는 단계 및 상기의 결합을 확인하는 단계를 포함하는 HPV 유전자형 분석방법을 제공한다.

상기의 확인단계는 안티센스 프라이머에 부착된 바이오틴과 결합하는 Streptavidin- Cy3 또는 Streptavidin- Phycoe rythrin을 사용하고 서스펜션 어레이 시스템인 Luminex 100(Luminex사, 미국)을 사용하여 확인하는 것을 특징으로 한다.

본 발명에서는 최근에 Luminex사에서 개발된 서스펜션 어레이의 기술을 이용하여 HPV 유전자형 분석 서스펜션 어레이를 개발하였다. 즉, HPV 유전자형을 결정하기 위하여 HPV L1 부위에서 32개 유전자형에 특이적으로 반응할 수있는 32개의 올리고뉴크레오티드를 제작하였으며, 이를 각각의 마이크로스피어 비드에 고정하였다. 이는 슬라이드상에서 반응하는 2차원적 방법이 아닌 3차원적 방법을 이용함으로써 HPV 유전자형 분석을 극대화하였다.

또한 본 발명에서는 OTN(One tube nested) 비대칭 PCR법을 사용하였다. 이는 하나의 튜브에서 1차와 2차 PCR을 연속적으로 실시하는 OTN PCR 법과 2차 PCR에서 사용하는 센스 및 안티센스 프라이머의 농도를 차이 (1:10)가 나게 함으로서 안티센스에 의해서 증폭되는 PCR 산물을 선택적으로 과량 증폭하게 하게하는 비대칭 PCR 법을 조합하여 사용하였다. 이렇게 과량 증폭된 안티센스 주형 DNA (antisense strand DNA)는 교잡반응에서 변성반응 단계를 생략하게 함으로서 실험을 간편하고 효율적으로 실시하게 한다. 이와 같이 OTN 비대칭 PCR 법을 사용하여 증폭시킨 HPV PCR 부산물과 마이크로스피어 비드에 고정된 올리고뉴크레오티드 프로브와 교잡반응하여 형광 반응이 나타난 프로브를 분석하여 HPV에 대한 32개의 유전자형을 구분하였다.

이하, 비한정적인 실시예를 통하여 본 발명을 상세하게 설명한다.

실시예 1: HPV 프라이머의 합성 및 염기서열

OTN 비대칭 PCR에 사용한 HPV PCR 프라이머는 Bauer(Oxford press, Oxford, 영국, 1992)가 사용한 MY09/MY 11와 Jacobs(*J. Clin. Microbiol* . 35:791-795, 1997)가 사용한 GP5+/GP6+ 프라이머 부위를 사용하였으며 각 프라이머의 안티센스는 바이오틴 형광을 부착하였다.

여기서 사용한 프라이머는 Molecular cloning 3판 (Sambrook과 Rusell, Cold Spring Harbor Laboratory Press, 미국, 2001년)의 10.42에 기술된 올리고뉴크레오티드 합성과 같은 방법을 사용하여 독일의 MWG- biotech 사에 의뢰하여 합성하였다.

실시예 2: HPV DNA의 추출, OTN 비대칭 PCR 반응

1) 1.5 ml tube에 분주된 침전물을 넣는다.

PBS로 2회 세척 후 원심분리하여 침전물을 얻는다.

- 2) HPV DNA 추출버퍼(10% chelex resin) 50네를 넣는다.
- 3) 100℃에서 20분간 가열한다.
- 4) 3~5분간 원심분리한 후 분리된 상층액 4.5ul를 PCR에 사용한다.
- 5) 표 1과 같은 방법으로 OTN 비대칭 PCR 반응을 GeneAmp PCR system 9600 thermal cycler (Perkin Elmer사, 미국)에서 연속적으로 수행하였다.
- 6) OTN 비대칭 PCR이 끝난 산물 5ul에 젤 로딩 버퍼(0.25% bromophenol blue, 0.25% xylene cyanol FF, 15% Fi coll 400) 1ul를 넣고 1µ g/ml ethidium bromide (EtBr)가 함유된 2% 아가로스 젤에서 전기영동한 후 UV transillu minator가 부착된 Image analyzer (Vilber Lourmat사, 프랑스)에서 450 bp(MY09/MY11) 또는 150 bp(GP5+/GP6+)의 밴드를 확인하였다.

표 1. HPV OTN 비대칭 PCR 반응 조건

반응 조성물 조건		반응 온도 조건
DW	9.3 ul	95℃, 12 분 1 회
10X buffer	2.0 ul	94°C, 30 초 60°C, 30 초 10 회
2mM dNTP	1.0 ul	72℃, 30 초
1pmol MY 09 프라이버	0.5 ul	
1pmol MY 10 프라이머	0.5 ul	94℃, 30 초
1pmol GP5+ 프라이머	1.0 ul	50℃, 60 초 40 회
10pmol GP6+ 프라이머	1.0 ul	72℃, 30 초
5U Taq 중합효소	0.2 ul	
HPV 핵산 추출물	4.5 ul	
합계	20 ul	72℃, 5.0 min 1 회

실시예 3 : HPV 서스펜션 어레이 제작을 위한 프로브 합성 및 염기서열

마이크로스피어 비드의 카르복실기와 공유결합을 시키기 위하여 모든 프로브의 5' 말단에 아미노 링크를 붙이고 교잡 반응시 반응을 용이하게 하기 위하여 10개의 올리고(dT)를 부착한 다음 표 2와 같은 염기서열을 붙여 합성하였다. 즉 , 'Amino link- Oligo(dT) $_{10}$ - 프로브 염기서열'의 순서로 하여 독일의 MWG사에 의뢰하여 합성하였다. 이때 결정한 HPV 유전자형의 염기서열은 표 3에서 나타낸 것 같이 총 32종의 HPV 유전자형을 분석하여 결정하였다.

표 3. 분석한 HPV 유전자형	
HPV 유전자형	- Control of the control

고위험군	16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 69, 70, 73	Section 1
저위험군	6, 11, 32, 34, 40, 42, 43, 44, 53, 54, 55, 57, 61, 62	HADDON MARKET

표 2 에서 나타낸 염기서열과 같이 약 22 bp에서 32 bp의 크기로 하여 60℃를 전후하여 Tm 값을 설정하여 합성하였다.

표 2. HPV 유전자형 결정을 위한 프로브 염기서열				
프로브이름	염 기 서 열	반응 HPV 형		
HPV01(서열정보 1)	atccgtaactacatcttccacatacaca	6		
HPV02(서열정보 2)	gcatctgtgtctaaatctgctacatacac	11		
HPV03(서열정보 3)	tcattatgtgctgccatatctacttcaga	16		
HPV04(서열정보 4)	tgcttctacacagtctcctgtacct	18		
HPV05(서열정보 5)	agtacattatctgcagcatctgcatcc	26		
HPV06(서열정보 6)	gtgctgcaattgcaaacagtgatac	31		
HPV07(서열정보 7)	gactgtgtgtgctactgtaacaact	32		
HPV08(서열정보 8)	tatgcacacaagtaactagtgacagtac	33		
HPV09(서열정보 9)	tccacaagtacaactgcaccatatg	34		
HPV10(서열정보10)	tgtgttctgctgtgtcttctagtga	35		
HPV11(서열정보11)	tctacctctatagagtcttccataccttct	39		
HPV12(서열정보12)	cccacaccaaccccatataataacagt	40		
HPV13(서열정보13)	ctgcaacatctggtgatacatatacagct	42		
HPV14(서열정보14)	tctactgaccctactgtgcccag	43		
HPV15(서열정보15)	tacacagtcccctccgtctacatat	44		
HPV16(서열정보16)	acacaaaatcctgtgccaagtacatat	45		
HPV17(서열정보17)	tgctgcggtttccccaacattta	51		
HPV18(서열정보18)	tgctgaggttaaaaaggaaagcacata	52		
HPV19(서열정보19)	tttccgcaaccacagtctatgtcta	53		
HPV20(서열정보20)	tacagcatccacgcaggatagctttaa	54		
HPV21(서열정보21)	tgetacaactcagtetecatetacaac	55		
HPV22(서열정보22)	gtactgctacagaacagttaagtaaatatgat	56		
HPV23(서열정보23)	tctctttgtgtgccactgtaaccac	57		
HPV24(서열정보24)	gcactgaagtaactaaggaaggta	58		
HPV25(서열정보25)	tctactactgcttctattcctaatgtatacac	59		
HPV26(서열정보26)	aaccatttgtactgctacatccccc	61		
HPV27(서열정보27)	gctgcagcagaatacacggcta	62		
HPV28(서열정보28)	actattaatgcagctaaaagcacattaactaa	66		
HPV29(서열정보29)	tctactactgaatcagctgtaccaaat	68		
HPV30(서열정보30)	cacaatctgcatctgccacttttaaac	69		
HPV31(서열정보31)	attgtctgcctgcaccgaaacg	70		
HPV32(서열정보32)	agetetaetaeaaegtatgeeaaet	73		

실시예 4: HPV 유전자형 특이 마이크로스피어 제작

- 1) 100pmole의 아미노기가 붙어있는 프로브를 0.1M MES(M2- (N- morpholino)ethane sulfonic acid pH4.5)에 10 μ M 이 되도록 혼합하였다.
- 2) 마이크로스피어를 제작하기 위하여 Miraibio LabMaP bead(미국)에서 구입 하여 사용하였다. LabMAP bead를 1 0ul를 1.5ml tube로 분주한 후 10,000q에서 1분간 원심분리 후 상층액을 조심스럽게 제거하였다.
- 3) 침사물에 50ul의 0.1M MES buffer(pH4.5)를 넣고 sonication 하였다.
- 4) 10 μ M 프로부 2.5ul를 취하여 상기 제조된 마이크로스피어 비드에 첨가하였다.
- 5) 1% EDC(1- Ethyl- 3- (3- dimethylaminopropyl) carbodiimided hydrochloride)

용액 2.5ul를 첨가하여 암소에서 30분간 2회 반복 반응하였다.

- 6) 0.02% Tween 20 용액 200ul를 첨가한 후 10,000g에서 1분간 원심 분리하여 상층액을 제거하였다.
- 7) 0.1% SDS 용액 200ul을 첨가한 후 10,000g에서 1분간 원심 분리 후 상충액을 제거 하였다.
- 8) 침사물을 0.1M MES(pH4.5) 100ul에 녹인 후 암소에서 냉장보관 하였다.

전체적인 반응을 모식도로 나타내면 다음과 같다.

여기서 R: 올리고뉴크레오티드, X: 마이크로스피어 비드이다.

실시예 5: HPV PCR 산물과의 결합 반응

- 1) 바이오틴이 부착된 프라이머로 증폭된 HPV PCR 산물을 변성화 과정 없이 하이브리다이제이션 용액(3X SSC, 0. 3% SDS)과 I:4의 비율로 혼합한 후 Streptavidin- Cy3 또는 Streptavidin- Phycoerythrin이 1/500이 되도록 첨가하였다.
- 2) 60℃에서 1시간 동안 반응하였다.
- 3) 0.1X SSC 75ul를 첨가하여 반응을 중지하였다.
- 4) 결과 확인은 Luminex 100 LabMAP (Luminex사, 미국)를 사용하여 형광을 나타내는 HPV 유전자형을 분석하였다.
- 그 결과를 도2에서 5에 나타내었다. 도 2는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 16 유전자형에 관한 형광 반응 결과로, 32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 3번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그래프 및 수치화하여 나타낸 것이며, 도 3는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 18 유전자형에 관한 형광 반응 결과로,32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 4번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그래프 및 수치화하여 나타낸 것이다.

또 도 4는 532nm 파장에서 측정한 서스펜션 어레이의 HPV 58 유전자형에 관한 형광 반응 결과로,32개의 프로브 중에서 표 2의 '반응 HPV형'에 표시된 것과 같이 프로브 24번이 고정된 마이크로스피어 비드에서 측정된 형광값을 그

래프 및 수치화하여 나타낸 것이며, 도 5는 서스펜션 어레이와 마이크로 어레이(Microarray) 의 비교실험을 위한 것이다. 서스펜션 어레이에 사용한 것과 동일한 프로브를 알데하이드 슬라이드에 고정한 후 교잡반응을 통한 형광반응의 결과를 나타낸 것이다. ①은 마이크로 어레이상에 각 HPV 유전자형 프로브가 고정된 위치를 도식화한 것이며,②은 HPV 16형,③은 HPV 18형 ④ HPV 58형 각 프로브에 나타난 형광사진 결과이다.

이와 같이 HPV 유전자형을 분석하는데 HPV L1 부위을 OTN 비대칭 PCR로 증폭하여 HPV 유전자형에 따라 다르게 증폭되는 단점을 최소화하였으며, 마이크로스피어 비드에 고정된 프로브와 반응시키기 위하여 변성화 과정을 거쳐야 하는 번거로움을 제거 하였다. 이 L1 부위에서 HPV 유전자형을 분석한 것은 프라이머 선택에 용이하다는 장점이 있다.

발명의 효과

본 발명에서는 HPV L1 부위의 유전자를 분석하여 유전자형을 진단하는 서스펜션 어레이를 개발하였다.

상기에서 상세히 설명하고 입중하였듯이, HPV를 유전자형에 관계없이 효과적으로 검출하기 위해서는 본 발명의 프라이머쌍을 이용하며, 종래의 네스티드 PCR에서 요구되는 2번의 PCR를 수행하지 않고 검출이 가능하므로 그 절차와 시간을 대폭 단축시킬 있다. 또한 마이크로스피어 비드에 고정된 프로브와 반응하도록 PCR 산물을 변성화 시키는 번 거로움을 제거하였다. 본 발명에 의한 HPV 유전자형 진단키트는 서스펜션 어레이를 이용하기 때문에 정확한 유전자형 판별이 가능하여 암의 진단 및 백신을 이용한 HPV 감염의 예방과 치료에 중요한 정보를 제공할 수 있는 효 과가 있다.

(57) 청구의 범위

청구항 1.

서열정보 1 에서 32의 염기서열을 포함하고 있는 복수의 올리고뉴크레오티드 프로브 조성물.

청구항 2.

제 1 항에 있어서,

상기의 각 올리고뉴크레오티드 프로브는 HPV 유전자형 결정을 위한 프로브인 것을 톡징으로 하는 율리고뉴크레오티드 프로브 조성물.

청구항 3.

제 1 항 또는 제 2 항에 있어서,

상기의 올리고뉴크레오티드 프로브는 마이크로스피어 비드에 고정화되어 있는 것을 특징으로 하는 올리고뉴크레오 티드 프로브 조성물.

청구항 4.

- a) OTN 비대칭 PCR을 실시하는 단계:
- b) 상기의 비대칭 PCR 부산물과 제 1항 또는 제 2항 중 어느 한 항의 프로브를 결합시키는 단계: 및
- c) 상기의 결합을 확인하는 단계를 포함하는 HPV 유전자형 분석방법.

청구항 5.

제 4 항에 있어서.

상기 b)단계의 바이오틴이 부착된 비대칭 PCR 부산물과 프로브를 결합시키는 단계는 스트렙트아비딘(Streptavidin) - Cy3 또는 스트렙트아비딘- 피고에리트린 (Phycoerythrin)을 하나의 튜브에서 동시에 반응시켜, 루미넥스(Luminex) 100 LabMAP과 같은 Flow cytometry 방법을 사용하여 확인하는 것을 특징으로 하는 HPV 유전자형 분석방법.

도면

도면1

M : Ф X174 DNA /Hae III 1 - 6 : HPV 양성 N : 음성컨트롤

6 11:16 18 28 31 32 39 34 35 32 40 42 43 44 45 51 至 52 54 56 66 57 独身群 数据级到 70 73 PC

HPV 음성사형	222	HPV 유권자형	質量故
6	Đ.	51	- 3
31	2	58	1
16	92 -	53	(1
16	4	5.4	- 5
26		3.3	3
31	4	58	
32		57	-1
33	2	I 58	3
34	- 3	59	1
35		161	3
39	4	62	3 .
40	2	1 88	
42 [1,68	
40	3,		<u></u>
44	6	70	4
45		1 72	
20	89		

- 「無RCGRV Positive control)」 Amino link Oligo(dT) an GPG+ 互라이어를 의象 하여 PCR후 PCR product를 마이크로스피어 비드에 고경함. 모드 HPV 유천자형에서 모두 반응

도면3

HPV & VINE:	2144	HPV 유전자형	带型改
6		51	2
11	2	52	5
16	2	5.9	-6
1.8	96	54	** &
2ú	2	55	3
31	3	56	-4.
32	3	59	4
33	2	58	2
34	ð	59	1
.15	6	61	3
30	5	62	2
40	2	66	J
4.2	1	6.8	ê
43	2	69	d.
44	- 6	70	2
45	á	73	1.
PC	87		

※FC(EPY Positive control) : Amino link-Oligo(df)는 CP6+ 프라이머를 이용 하여 PCR후 PCR product를 바이크로스피어 비드에 고정한. 모드 HPV 유권자형에서 모두 반응

도면4

等级测量

	14.4.1	Appendix and the second		
Į	ppv. s. žizdai	9347	HPV SHAP	14.44
		3	and the same of th	I
1	11	3	52	5
1	2.6	. 5	59	3
į	18	i.	54	2
Į	26	5	55	4.
J	61	4	56	4
Ì	20	3	5.7	1
1	. 35	2	58	92
-	34	- 5	59	5
1	2) A		61	2
	39	VIETE STATE OF THE PROPERTY OF	65	- 4
i	40	2	66	3
ĺ	4.2	J.	53	7
ı	3.8		89	
ĺ	anaranianananan dalam karantaran sarah 44	6	7.0	3
Ì	15	i i i i i i i i i i i i i i i i i i i	73	
	PC:	Q()		
3		and the second s	elimina inferior annual property and an extensive state of the	Care in the Casas and a second

※PC(NPV fasilive control) : Amino link-Oligo(cf)a-GP6t 프라이어를 이용 하여 PER을 PCR product를 마이크로스웨어 비드에 고청함. 또드 HPV 유전가형에서 모두 반응

도면5

① HPV Genotyping chip 프로브 위치

● : Biotin 프로브, PC: HPV 유전자형 포지티브 컨트롤(Positive control) *PC(HPV Positive control) : Amino link-Oliso(dT) 10-GP6+ 프라이터를 이용하여 PCR후 PCR product를 파이크로 스피어 비드에 고정함. 모든 HPV 유전자형에서 모두 반응 ② HPV 16형 ③ HPV 18형 ④ HPV 58형

<110>	BI COORE CO., LTD.	
<120>	Microsphere composition of suspension array for analyzing Human	
	Papillomavirus (HPV) genotype and detecting method thereof	
<160>	32	
<170>	Kopat ent I n 1.71	
<210>	1	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	1	
at cogt aa	ct acatictiticca catiacaca	28
<210>	2	
<211>	29	
<212>	DVA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	2	
gcat ct gt	gt et aaat et ge it acat acac	29
<210>	3	
<211>	29	
<212>	DVA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	3	
t cat t at g	tg etgecatate tactteaga	29
<210>	4	
<211>	25	
<212>	DVA	
<213>	Artificial Sequence	

<220>		
<223>	Probe for analyzing HPV genotype	
<400>	4	
t gct t ct a	aca cagtiet eet gilt acet	25
<210>	5	
<211>	27	
<212>	DNA.	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	5	
agt acat t	at ct gcagcat c t gcat cc	27
<210>	6	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	6	
gt gct gca	aat t gcaaacagt gat ac	25
<210>	7	
<211>	25	
<212>	CINA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	7	
gact gt gt	gt gct act gt aa caact	25
<210>	8	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	

<400>	8	
t at gcaca	aca agt aact agt gacagt ac	28
<210>	9	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	9	
t ccacaag	gt a caact gcacc at at g	25
<210>	10	
<211>	25	
<212>	CINA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	10	
t gt gt t ct	gc t gt gt ct t ct agt ga	25
<210>	11	
<211>	30	
<212>	CINA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	11	
t ct acct o	et a tagagtette catacettet	30
<210>	12	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	12	
cccacaco	caa ccccat at aa t aacagt	27

cccacaccaa ccccat at aa t aacagt

<210>	13	
<211>	29	
<212>	CNA .	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	13	
ct gcaaca	tic tiggtigatiaca tiatiacagct	29
<210>	14	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	14	
t ct act ga	cc ct act gt gcc cag	23
<210>	15	
<211>	25	
<212>	DVA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	15	
t acacagt	cc cct ccgt ct a cat at	25
<210>	16	
<211>	27	
<212>	DVA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	16	
acacaaaa	tic ctigtigccaag tiacatiat	27
<210>	17	
<211>	23	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	17	
t gct gcgg	tt tccccaacat tta	23
<210>	18	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	18	
t gct gagg	tt aaaaaggaaa gcacata	27
<210>	19	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	19	
ttt ccgca	ac cacacagt ct at gt ct a	27
<210>	20	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	20	
t acagcat	cc acgcaggata gctttaa	27
<210>	21	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Probe for analyzing HPV genotype	
<400>	21	
t gct acaa	act cagticticcat ctiacaac	27
<210>	22	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	22	
gt act gct	ac agaacagt ta agtaaatatg at	32
<210>	23	
<211>	25	
<212>	DNA.	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	23	
tctctttg	gtig it gecaet gtia laceae	25
<210>	24	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	
<400>	24	
gcact gaa	egt aactaaggaa ggta	24
<210>	25	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe for analyzing HPV genotype	

<400>	25			
totactactg cttotattoc taatgtatac ac 32				
<210>	26			
<211>	25			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Probe for analyzing HPV genotype			
<400>	26			
aaccatttgt actgctacat ccccc 25				
<210>	27			
<211>	22			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Probe for analyzing HPV genotype			
<400>	27			
get geage	ag aat acacggc ta	22		
<210>	28			
<211>	32			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Probe for analyzing HPV genotype			
<400>	28			
act at t aa	atg cagetaaaag cacattaact aa	32		
<210>	29			
<211>	30			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Probe for analyzing HPV genotype			
<400>	29			
tict act act a ict gaat cagc it gt accaaat 30				

<210>	30		
<211>	27		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Probe for analyzing HPV genotype		
<400>	30		
cacaatictigic at ctigicact ititiaaac 27			
<210>	31		
<211>	22		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Probe for analyzing HPV genotype		
<400>	31		
attgtctgcctgcaccgaaacg 22			
<210>	32		
<211>	25		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Probe for analyzing HPV genotype		
<400>	32		
aget et aet alleaegt at gelleaet			