Gaussian processes for high order finite volume methods

February 20, 2020

lan May, Dongwook Lee

Department of Applied Mathematics University of California Santa Cruz Santa Cruz, CA

Introduction

Solve the compressible ideal MHD equations (2D)

$$\mathbf{F}(\mathbf{U}) = \begin{pmatrix} \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{U}) + \frac{\partial}{\partial y} \mathbf{G}(\mathbf{U}) = 0 \\ \mathbf{U} = \begin{pmatrix} \rho & \rho v & \rho w & B_x & B_y & B_z & E \end{pmatrix}^T \\ \rho u & \rho u^2 + p_{tot} - B_x^2 \\ \rho u v - B_x B_y \\ \rho u w - B_x B_z \\ 0 \\ u B_y - v B_x (= -E_z) \\ u B_z - w B_x (= E_y) \\ u (E + p_{tot}) - B_x (\mathbf{u} \cdot \mathbf{B}) \end{pmatrix} \quad \mathbf{G}(\mathbf{U}) = \begin{pmatrix} \rho v \\ \rho u v - B_x B_y \\ \rho v v - B_x B_y \\ \rho v w - B_y B_z \\ v B_x - u B_y (= E_z) \\ 0 \\ v B_z - w B_y (= -E_x) \\ v (E + p_{tot}) - B_y (\mathbf{u} \cdot \mathbf{B}) \end{pmatrix}$$

while satisfying

$$\nabla \cdot \mathbf{B} = 0$$

Solver overview

Hydrodynamic subsystem

- Hydrodynamic variables reconstructed as before
- Fluxes in subsystem corrected as before

Magnetic field

- Field is only stored as cell average values
- Face centered field reconstructed through divergence free GP
- Magnetic fluxes corrected to obey something like constrained transport

No staggered grid!

3

Divergence free kernel function

Prediction of vector valued function requires a matrix valued kernel. We can construct an inherently divergence free kernel from a scalar kernel via

$$\mathbf{K}_{div}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} (\partial_{2,2} + \partial_{3,3}) & -\partial_{1,2} & -\partial_{1,3} \\ -\partial_{2,1} & (\partial_{1,1} + \partial_{3,3}) & -\partial_{2,3} \\ -\partial_{3,1} & -\partial_{3,2} & (\partial_{1,1} + \partial_{2,2}) \end{pmatrix} K_{scl}(\mathbf{x}, \mathbf{y})$$

where
$$\partial_{k,l} = \frac{\partial^2}{\partial x_k \partial y_l}$$
.

Divergence free kernel function

Prediction of vector valued function requires a matrix valued kernel. We can construct an inherently divergence free kernel from a scalar kernel via

$$\mathbf{K}_{div}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} (\partial_{2,2} + \partial_{3,3}) & -\partial_{1,2} & -\partial_{1,3} \\ -\partial_{2,1} & (\partial_{1,1} + \partial_{3,3}) & -\partial_{2,3} \\ -\partial_{3,1} & -\partial_{3,2} & (\partial_{1,1} + \partial_{2,2}) \end{pmatrix} K_{scl}(\mathbf{x}, \mathbf{y})$$

where
$$\partial_{k,l}=rac{\partial^2}{\partial x_k\partial y_l}.$$

In 2D with squared-exponential

With $x_3 = y_3 = 0$, the above becomes

$$\mathbf{K}^{div}(\mathbf{x}, \mathbf{y}) = \frac{1}{\ell^2} \begin{pmatrix} \left(2 - \frac{(x_2 - y_2)^2}{\ell^2}\right) & \frac{(x_1 - y_1)(x_2 - y_2)}{\ell^2} & 0\\ \frac{(x_1 - y_1)(x_2 - y_2)}{\ell^2} & \left(2 - \frac{(x_1 - y_1)^2}{\ell^2}\right) & 0\\ 0 & 0 & \ell^2 \end{pmatrix} e^{-\frac{||\mathbf{x} - \mathbf{y}||}{2\ell^2}}$$

Reconstruction

Integrated kernel

Let K and C be the 1D point and integrated kernel functions respectively. The integrated divergence free kernel is then

$$\mathbf{C}_{xx}^{div}(\mathbf{x}, \mathbf{y}) = \frac{2}{\ell^2} C(x_1, y_1) \left(2C(x_2, y_2) - K(x_2, y_2) \right)$$

$$\mathbf{C}_{yy}^{div}(\mathbf{x}, \mathbf{y}) = \frac{2}{\ell^2} C(x_2, y_2) \left(2C(x_1, y_1) - K(x_1, y_1) \right)$$

$$\mathbf{C}_{xy}^{div}(\mathbf{x}, \mathbf{y}) = \frac{1}{\ell^3} \sqrt{\frac{\pi}{2}} \left(erf\left(\frac{(x_1 - y_1) + 1}{\ell\sqrt{2}}\right) + erf\left(\frac{(x_1 - y_1) - 1}{\ell\sqrt{2}}\right) \right)$$

$$\left(erf\left(\frac{(x_2 - y_2) + 1}{\ell\sqrt{2}}\right) + erf\left(\frac{(x_2 - y_2) - 1}{\ell\sqrt{2}}\right) \right)$$

where ℓ and the cell center locations x_i, y_i are given in units of the grid spacing.

Covariance matrix

Each entry

$$\mathbf{C}_{ij} = \mathbf{C}^{div}(\mathbf{x}_i, \mathbf{x}_j)$$

is now a 3×3 block. In total, C is still symmetric positive definite.

Prediction matrix

Sample vector becomes a sample matrix with 3 columns. As for \mathbf{C} , \mathbf{T} can be written using scalar GP pieces. Prediction follows exactly as before.

$$\mathbf{B}_* = \mathbf{T}^T \mathbf{C}^{-1} \mathbf{q}$$

WENO Revisited

Detour to board...

WENO Revisited

Detour to board...

Temporary method for B

- Scatter field magnitude onto 2D scalar stencil
- Calculate smoothness indicators, effective weights
- Apply those effective weights here
- Weakly justified by considering a field with 1 nonzero component

The $\nabla \cdot \mathbf{B} = 0$ constraint in shock capturing codes. (Toth 1999)

Toth's Flux-interpolated CD scheme

- Use shock-capturing code to generate fluxes at all cell interfaces
- Correct the magnetic fluxes prior to update to maintain $\nabla \cdot \mathbf{B} = 0$
- Discretize ∇⋅ with cell-centered finite differences

Consider $\Omega = E_z$

$$\Omega_{i,j} = \frac{1}{4} \left(-f_{i-1/2,j}^{B_y} - f_{i+1/2,j}^{B_y} + g_{i,j-1/2}^{B_x} + g_{i,j+1/2}^{B_x} \right),$$

differencing this to obtain B_x and B_y fluxes satisfies $\nabla \cdot \mathbf{B} = 0$ discretely to ϵ_{mach} . (see board)

Generalizing Toth's approach

Distinguishing between average and point data

Toth's correction at an edge is similar point→average correction from earlier

- Grow stencil to more edges, larger radii
- Prune stencil to match symmetry of discrete divergence operator
- Solve for stencil weights satisfying:
 - Divergence free constraint
 - Consistency
 - Integrate transverse polynomials exactly

Orszag-Tang vortex 200×200 , Radius 1, $\ell = 12\Delta$, $\sigma = 3\Delta$

Orszag-Tang vortex 200×200 , Radius 2, $\ell = 12\Delta$, $\sigma = 3\Delta$

Orszag-Tang vortex $_{400\times400, \text{ Radius 1}, \ \ell=12\Delta, \ \sigma=3\Delta}$

Orszag-Tang vortex 400×400 , Radius 2, $\ell = 12\Delta$, $\sigma = 3\Delta$

Final thoughts

Conclusion

- An unstaggered, unsplit method is possible
- \bullet Toth's $2^{\rm nd}$ order scheme can nominally be extended to higher order
- Measuring $\nabla \cdot {\bf B}$ to lower accuracy than remaining method seems fine

Next steps

- Perform convergence study (CPAW)
- Extend to rectangular cells
- Implement MHD characteristic variables
 - Is there a convenient way to transform B too?
- Generalize flux formulation to arbitrary radius
- ...
- Extend to 3D and AMR