Operações aritméticas e lógicas

1. Indicar o conteúdo dos registos usados e da *flag* de *carry* (CF) após a execução de cada fragmento de código.

a)	add mov	bl, 1 ax, ax ax, -1 al, bl ah, al	d)	xor shr rcr ror	al, 5 bl, bl al, 1 bl, 1 bl, 8 al, 2
b)	mov and xor	eax, 66666666H ebx, 0F000000FH eax, ebx eax, ebx eax, 66666666H	e)	add sbb	bx, OBEEFH bx, 8000H bx, 3EEEH
c)	sar shr neg ror rol	al, 25 al, 1 al, 1 al al, 2 al, 2 al, 2	f)	mov add	ebx, 7FFFFFFH ecx, 7FFFFFFH ecx, 0FH ecx, ebx

- 2. Implementar um programa que determine a posição (peso) do bit 1 mais significativo de um valor não nulo do tipo dword. Por exemplo, se o valor for 00000009H o resultado é 3.
- 3. Considere o seguinte fragmento de um programa:

a) Determine o valor de EBX após a execução do fragmento de código considerando que antes da execução o valor de EAX é:

i. 16; **ii.** 18.

b) Identifique o que faz o código relativamente ao valor de EAX.

4. Implementar um programa em *assembly* IA-32 para calcular o valor das expressões seguintes, assumindo que os operandos e os resultados intermédios são inteiros de 32 bits com sinal.

a)
$$(a+b)-123$$

b)
$$4 \times (a - b) - c$$

c)
$$(a+b)/5$$

AJA, JCF Pág. 1 de 2

- 5. Escrever um fragmento de código para multiplicar dois valores val1 e val2, com 16 bits, devolvendo o resultado em EAX.
- 6. Escrever um fragmento de código para calcular o produto de EAX por 18:
 - a) Usando instruções de multiplicação;
 - b) Sem usar instruções de multiplicação nem ciclos.
- 7. Escrever um programa para calcular o produto interno de dois vetores de números inteiros de 32 bits (do tipo SDWORD). Caso ocorra *overflow*, o programa deve assinalar essa situação.
- 8. Escrever um programa para determinar os valores máximo e mínimo de:
 - a) Uma sequência de elementos do tipo word;
 - b) Uma sequência de elementos do tipo sword.
- **9.** Apresentar o código *assembly* que realiza os testes indicados abaixo. Considerar apenas números sem sinal.
 - a) if ((AL>AH) and (BL>BH)) or (AH<CL)ECX = ECX + 1
 - b) if ((AL>AH) or (BL>BH)) and (AH<CL)ECX = ECX - 1
- 10. Considere uma sequência vec de números inteiros de 32 bits (com sinal). O número de elementos da sequência é dado por vecSize, uma variável global do tipo WORD. Implemente um fragmento de código assembly IA-32 que:
 - a) Determina quantos elementos da sequência são iguais, em valor absoluto, ao conteúdo de EAX (um número positivo). O resultado deve ficar guardado no registo ECX;
 - b) Substitua por zero os elementos da sequência com valor absoluto inferior a OFFH;
 - c) Conte quantos elementos da sequência pertencem ao intervalo [a;b] ($a \le x \le b$). Assuma que os números a e b estão contidos nos registos EAX e EBX, respetivamente, e que o resultado fica no registo ECX.
- 11. Escrever um programa que calcula o valor médio (arredondado às unidades) de uma sequência de valores do tipo DWORD. [Não usar instruções de vírgula flutuante.]
 - a) A primeira versão assume que a soma dos valores da sequência não produz overflow.
 - **b)** A segunda versão deve funcionar corretamente para qualquer sequência, indicando *over-flow* se existir (e interrompendo os cálculos nesse caso).
- 12. A representação BCD (Binary-Coded Decimal) representa cada dígito decimal por um grupo de 4 bits. Escrever e testar um programa que converte entre a representação em cadeia de carateres com 8 dígitos e a representação BCD compactada em 32 bits (DWORD).

Exemplo: A cadeia de carateres '45187023' corresponde em BCD ao valor (representado em binário) 0100 0101 0001 1000 0111 0000 0010 0011.

(Nota: interpretado como número binário puro, este valor seria 1159229475₁₀.)

AJA, JCF Pág. 2 de 2