2

根据题意 $f(x) = x^3 - 2x - 5$ 在区间[2,3]上连续,根据误差不超过 0.5×10^{-3} ,得出所需迭代次数如下,解出n = 10

$$\frac{|b-a|}{2^{n+1}} < \varepsilon \Rightarrow n = \left\lfloor \frac{\ln(|b-a|) - \ln\varepsilon}{\ln 2} \right\rfloor$$

再根据迭代次数得到的解为x=2.09423828125, 迭代过程如下

迭代次数k	$[a_i,b_i]$	x_k
0	[2,3]	2.5
1	[2,2.5]	2.25
2	[2, 2.25]	2.125
3	[2, 2.125]	2.0625
4	[2.0625, 2.125]	2.09375
5	[2.09375, 2.125]	2.109375
6	[2.09375, 2.109375]	2.1015625
7	[2.09375, 2.1015625]	2.09765625
8	[2.09375, 2.09765625]	2.095703125
9	[2.09375, 2.095703125]	2.0947265625
10	[2.09375, 2.0947265625]	2.09423828125

5.

根据题意 $f(x) = x^3 - x^2 - 1$ 是定义域上的连续函数,且有f(1.5) > 0, f(1.42) < 0 故f(x) 在1.5附近的根属于区间[1.42,1.5]

(1)根据题意

$$x = \phi(x) = 1 + \frac{1}{x^2} \Rightarrow x_{k+1} = \phi(x_k) = 1 + \frac{1}{x_k^2}$$

当x ∈ [1.42, 1.5]时, $\phi(x)$ 单调递减

 $\phi(1.42) = 1.4959, \phi(1.5) = 1.4444, \therefore \phi(x) \in [1.4444, 1.4959] \subset [1.42, 1.5]$

$$\nabla : |\phi'(x)| = |-\frac{2}{x^3}| \le 0.6985 < 1$$

- ∴ 根据定理 1.3, $\alpha x \in [1.42, 1.5]$ 时, $\phi(x)$ 收敛
- : (1)的迭代公式在 1.5 附近收敛

(2)根据题意

$$x = \phi(x) = (1 + x^2)^{\frac{1}{3}} \Rightarrow x_{i+1} = (1 + x_i^2)^{\frac{1}{3}}$$

当 $x \in [1.42, 1.5]$ 时, $\phi(x)$ 单调递增 $\phi(1.5) = 1.4812, \phi(1.42) = 1.4449, \therefore \phi(x) \in [1.4449, 1.4812] \subset [1.42, 1.5]$

$$\nabla : |\phi'(x)| = \left| \frac{2}{3} x (1 + x^2)^{-\frac{2}{3}} \right| \le \left| \frac{2}{3} \cdot \frac{3}{2} \cdot (1 + x^2)^{-\frac{2}{3}} \right| \le 0.4790 < 1$$

- ∴ 根据定理 1.3, $\alpha x \in [1.42, 1.5]$ 时, $\phi(x)$ 收敛
- ∴ (2)的迭代公式在 1.5 附近**收敛**

(3)根据题意

∴ (3)的迭代公式在 1.5 附近局部 <u>发散</u>

通过比较迭代方式(1)与迭代方式(2)的 $|\phi'(x)|$,并选择较小的 $|\phi'(x)|$ 进行迭代运算,以便加快迭代速度,可以得到方程的根约为 <u>1.4655771837422105</u>

k	x_k	x_{k+1}	$ x_{k+1}-x_k $
0	1.5	1.4812480342	0.01875197
1	1.4812480342	1.4727057296	0.00854230
2	1.4727057296	1.4688173137	0.00388842
3	1.4688173137	1.4670479732	0.00176934
4	1.4670479732	1.4662430101	8.04963086E-4
5	1.4662430101	1.4658768202	3.66189946E-4
6	1.4658768202	1.4657102408	1.66579393E-4
7	1.4657102478	1.4656344765	7.57755374E-5
8	1.4656344765	1.4655999959	3.44693852E-5
9	1.4655999959	1.4655843162	1.56796577E-5
10	1.4655843162	1.4655771837	7.13245344E-6

12.

根据Newton迭代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 当 $f(x) = x^n - a = 0$ 时,代入 $f(x_k)$, $f'(x_k)$ 得
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^n - a}{nx_k^{n-1}} = \frac{(n-1)x^n + a}{nx^{n-1}} \quad (k = 0, 1, ...)$$
 当 $f(x) = 1 - \frac{a}{x^n} = 0$ 时,代入 $f(x_k)$, $f'(x_k)$ 得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{1 - \frac{a}{x^n}}{\frac{a}{x^{n+1}}} = \frac{a(n+1)x_k - x_k^{n+1}}{an} \quad (k=0,1,\dots)$$

由于
$$a^{\frac{1}{n}}$$
是方程的单根,可得 $\lim_{k \to \infty} \frac{\alpha - x_{i+1}}{(\alpha - x_i)^2} = \lim_{k \to \infty} \frac{\varepsilon_{i+1}}{\varepsilon_i^2} = -\frac{f''(\alpha)}{2f'(\alpha)}$

当
$$f(x) = x^n - a = 0$$
时,代入 $f(x_k), f'(x_k)$ 得

$$\lim_{k \to \infty} \frac{\varepsilon_{i+1}}{\varepsilon_i^2} = -\frac{f''(\alpha)}{2f'(\alpha)} = -\frac{n(n-1)\alpha^{n-2}}{2n\alpha^{n-1}} = -\frac{n-1}{2}a^{-\frac{1}{n}}$$

当
$$f(x) = 1 - \frac{a}{x^n} = 0$$
时,代入 $f(x_k), f'(x_k)$ 得

$$\lim_{k \to \infty} \frac{\varepsilon_{i+1}}{\varepsilon_i^2} = -\frac{f''(\alpha)}{2f'(\alpha)} = -\frac{-\frac{n(n+1)a}{\alpha^{n+2}}}{2 \cdot \frac{an}{\alpha^{n+1}}} = \frac{n+1}{2}a^{-\frac{1}{n}}$$