FORMULARIO PER L'ESAME DI LOGICA (CORSI A E B)

ANNO ACCADEMICO 2020-21

1. Elementi di teoria degli insiemi

1.A. Insiemi.

Simbolo di appartenenza: \in $[x \in A \text{ significa che } x \text{ è un elemento di } A.]$

Relazione di inclusione: \subseteq $[A \subseteq B \text{ se e solo se } \forall x (x \in A \rightarrow x \in B).]$

Relazione di inclusione stretta: \subset oppure \subsetneq

Principio di estensionalità. Due insiemi coincidono se e solo se hanno gli stessi elementi, ovvero

A = B se e solo se $\forall x (x \in A \leftrightarrow x \in B)$.

Principio di doppia inclusione: A = B se e solo se $A \subseteq B \land B \subseteq A$.

Insieme vuoto: Ø

Insiemi numerici: numeri naturali \mathbb{N} , numeri interi \mathbb{Z} , numeri razionali \mathbb{Q} , numeri reali \mathbb{R}

Insieme delle parti o insieme potenza di A: $\mathscr{P}(A) = \{B \mid B \subseteq A\}$

Intersezione: $A \cap B = \{x \mid x \in A \land x \in B\}$

Intersezione generalizzata: $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I (x \in A_i)\}$

Unione: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Unione generalizzata: $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I (x \in A_i)\}$

Differenza: $A \setminus B = \{x \mid x \in A \land x \notin B\}$

Differenza simmetrica: $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Complemento: $CA = \{x \mid x \notin A\}$

Identità notevoli:

• Doppia negazione: CCA = A

• De Morgan: $C(A \cup B) = CA \cap CB \in C(A \cap B) = CA \cup CB$

• De Morgan generalizzata: $\mathbb{C}\left(\bigcup_{i\in I}A_i\right)=\bigcap_{i\in I}\mathbb{C}A_i$ e $\mathbb{C}\left(\bigcap_{i\in I}A_i\right)=\bigcup_{i\in I}\mathbb{C}A_i$ • Distributività: $A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$ e $A\cup(B\cap C)=(A\cup B)\cap(A\cup C)$

Prodotto cartesiano: $A \times B = \{(x,y) \mid x \in A \land x \in B\}$

Prodotto cartesiano generalizzato:

$$A_0 \times A_1 \times \ldots \times A_{n-1} = \{(x_0, x_1, \ldots, x_{n-1}) \mid \forall i < n (x_i \in A_i)\}$$

Potenza *n*-esima di un insieme $A: A^n = \underbrace{A \times A \times \ldots \times A}_{n \text{ volte}}$

1.B. Relazioni.

Definizione (Relazione). Sia $n \ge 1$. Una relazione n-aria è un sottoinsieme di un prodotto cartesiano della forma $A_0 \times \ldots \times A_{n-1}$. Il suo dominio è

$$dom(R) = \{a \in A \mid (a, b) \in R \text{ per qualche } b \in B\},\$$

il suo range (o immagine) è

$$\operatorname{rng}(R) = \{b \in B \mid (a, b) \in R \text{ per qualche } a \in A\}.$$

Relazione inversa di $R \subseteq A \times B$: $R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$

Proprietà delle relazioni binarie: Una relazione binaria R su A si dice

- riflessiva se a R a per ogni $a \in A$;
- irriflessiva se $\neg(a R a) per ogni a \in A;$
- simmetrica se da a R b segue che b R a;
- antisimmetrica se da a R b e b R a segue che a = b;
- transitiva se da a R b e b R c segue che a R c.

Definizione (*Relazione di equivalenza*). Una **relazione di equivalenza su** A è una relazione (binaria) riflessiva, simmetrica e transitiva su A. La **classe di equivalenza** di un elemento $a \in A$ rispetto ad E è $[a]_E \stackrel{\text{def}}{=} \{x \in A \mid x E a\}$. L'**insieme quoziente** è l'insieme di tutte le classi di equivalenza: $A/E \stackrel{\text{def}}{=} \{[a]_E \mid a \in A\}$.

Definizione (*Ordine*). Una relazione d'ordine su A (o, più semplicemente, un ordine o un ordinamento su A) è una relazione riflessiva, antisimmetrica e transitiva su A. Un ordine R su un insieme A è lineare o totale se a R b o b R a per ogni scelta di $a, b \in A$. Un ordine che non sia lineare si dice anche ordine parziale. Un elemento $a \in A$ tale che b R a per ogni $b \in A$ si dice massimo; un elemento $a \in A$ tale che a R b per ogni $b \in A$ si dice minimo.

Definizione (*Ordine stretto*). Un **ordine stretto** su A è una relazione irriflessiva \prec su A tale che la relazione \preceq su A definita

$$a \prec b$$
 se e solo se $a \prec b \lor a = b$

è un ordine su A (detto **ordine indotto** da \prec).

Definizione (*Pre-ordine o quasi ordine*). Un **pre-ordine** o **quasi ordine** su A è una relazione binaria \lesssim su A che è riflessiva e transitiva. Se \lesssim è un pre-ordine su A, allora

$$a \sim b \Leftrightarrow a \preceq b \land b \preceq a$$

è una relazione di equivalenza su A (detta relazione di equivalenza indotta da \precsim) e la relazione su A/\sim

$$[a]_{\sim} \leq [b]_{\sim} \Leftrightarrow a \lesssim b$$

è ben definita ed è un ordine (detto **ordine indotto da** ≾).

1.C. Funzioni.

Definizione (Funzione). Una relazione $f \subseteq A \times B$ si dice **funzione** da A in B se per ogni $a \in A$ c'è un $b \in B$ tale che $(a,b) \in f$ e inoltre $b_1 = b_2$ per ogni $(a,b_1) \in f$ e $(a,b_2) \in f$.

In questo caso scriviamo $f: A \to B$ e l'unico $b \in B$ tale che $(a,b) \in f$ si indica con f(a). Se $f: A \to B$ è una funzione, A = dom(f) si dice **dominio** della funzione f, mentre B si dice **codominio**.

L'elemento f(a) si dice **valore** di f su a, oppure **immagine** di a mediante f. L'insieme $\operatorname{rng}(f) = \{f(a) \mid a \in A\}$ è il **range** o l'**immagine** della funzione f. Dato $C \subseteq A$, l'insieme $f[C] = \{f(a) \mid a \in C\}$ si dice **immagine** di C. (In particolare, $f[A] = \operatorname{rng}(f)$.)

La **preimmagine** o **controimmagine** di un elemento $b \in B$ è l'insieme $f^{-1}[\{b\}] = \{a \in A \mid f(a) = b\}$. (Con un leggero abuso di notazione, spesso so scrive $f^{-1}(b)$ invece di $f^{-1}[\{b\}]$.) Più in generale, se $D \subseteq B$ l'insieme $f^{-1}[D] = \{a \in A \mid f(a) \in D\}$ è detto **preimmagine** o **controimmagine** di D.

Restrizione di una funzione $f: A \to B$ a $C \subseteq A$:

$$f \upharpoonright C \colon C \to B, \qquad c \mapsto f(c)$$

Composizione di due funzioni $f: A \to B$ e $q: B \to C$:

$$g \circ f \colon A \to C, \qquad a \mapsto g(f(a))$$

Proprietà: Una funzione $f: A \to B$ si dice

- iniettiva (o iniezione) se da $a_1 \neq a_2$ segue che $f(a_1) \neq f(a_2)$, o, equivalentemente, se da $f(a_1) = f(a_2)$ segue che $a_1 = a_2$;
- suriettiva (o suriezione) se ogni $b \in B$ è della forma f(a) per qualche $a \in A$ (equivalentemente, rng(f) = B);
- biettiva (o biezione) se è sia iniettiva che suriettiva.

Inversa di un'iniezione $f: A \to B$: è la funzione $f^{-1}: \operatorname{rng}(f) \to A$ che manda ciascun $b \in \operatorname{rng}(f)$ nell'unico elemento in $f^{-1}(b)$.

Prodotto di due funzioni $f: X \to Y$ e $g: Z \to W$:

$$f \times g \colon X \times Z \to Y \times W, \qquad (x, z) \mapsto (f(x), g(z)).$$

Stringhe finite. Una stringa finita (su A) è una sequenza finita di simboli provenienti da A, che in questo caso viene detto **alfabeto**. L'insieme di tutte le stringhe finite su A si indica con A^* oppure $A^{\leq \mathbb{N}}$. La **lunghezza** di una stringa s, denotata con $\ln(s)$, è il numero di simboli che vi compaiono. La stringa vuota viene indicata con ε . L'insieme delle stringhe su A di lunghezza n è il prodotto cartesiano A^n . Una stringa s non vuota viene spesso rappresentata come $\langle s_0, s_1, \ldots, s_{\ln(s)-1} \rangle$.

Concatenazione di due stringhe $s, t \in A^*$: la stringa st di lunghezza lh(s) + lh(t) ottenuta facendo seguire i simboli elencati in s dai simboli elencati in t

Stringhe infinite. Una stringa infinita (su A), detta anche successione, è una sequenza infinita di simboli provenienti da A, di solito rappresentata come $\langle s_0, s_1, \ldots, s_n, \ldots \rangle$ oppure $\langle s_n \rangle_{n \in \mathbb{N}}$. L'insieme di tutte le stringhe infinite su A si indica con $A^{\mathbb{N}}$; in particolare, $2^{\mathbb{N}}$ è l'insieme di tutte le stringhe infinite binarie, ovvero delle successioni sull'insieme $\{0,1\}$.

[Osservazione. Una stringa finita $\langle s_0, s_1, \ldots, s_{n-1} \rangle$ di lunghezza n su A può anche essere rappresentata come una funzione $s \colon \{0, 1, \ldots, n-1\} \to A$ tale che $s(i) = s_i$ per ogni $i = 0, \ldots, n-1$. Analogamente una stringa infinita $\langle s_n \rangle_{n \in \mathbb{N}}$ su A può anche essere rappresentata come una funzione $s \colon \mathbb{N} \to A$ tale che $s(i) = s_i$ per ogni $i \in \mathbb{N}$.]

1.D. Cardinalità.

Definizione (*Cardinalità*). Due insiemi X e Y hanno la stessa **cardinalità**, in simboli $X \approx Y$ oppure |X| = |Y|, se esiste una biezione $f: X \to Y$.

X si inietta in Y, in simboli $X \lesssim Y$ oppure $|X| \leq |Y|$, se esiste una iniezione $f: X \to Y$. Scriveremo $X \prec Y$ (oppure |X| < |Y|) quando $X \lesssim Y$ ma $Y \not \subset X$.

Proposizione. Sia $X \neq \emptyset$. Allora $X \lesssim Y$ se e solo se c'è una suriezione $g: Y \to X$.

Teorema (Cantor-Schröder-Bernstein). Se $X \lesssim Y$ e $Y \lesssim X$ allora $X \approx Y$.

Definizione (*Insiemi finiti e infiniti*). Un insieme si dice **finito** se e solo se è in biezione con $\{0, \ldots, n-1\}$ per qualche $n \in \mathbb{N}$ (dove poniamo $\{0, \ldots, n-1\} = \emptyset$ quando n = 0). Se X è finito ed in biezione con $\{0, \ldots, n-1\}$ scriviamo |X| = n. Un insieme che non è finito si dice **infinito**.

Proposizione. X è infinito se e solo se $\mathbb{N} \lesssim X$. In particolare \mathbb{N} è il più piccolo insieme infinito: se X è infinito $|\mathbb{N}| \leq |X|$.

Proposizione. Un insieme X è infinito se e solo se esiste $Y \subset X$ tale che $Y \approx X$.

Definizione (*Insiemi numerabili*). Un insieme si dice **numerabile** se è in biezione con \mathbb{N} . Un insieme infinito che non sia numerabile si dice **più che numerabile**.

Proposizione. Se X è numerabile, anche $X \times X$ e le potenze cartesiane finite X^n di X lo sono.

Proposizione. Se X è non vuoto l'insieme $X^{<\mathbb{N}}$ è infinito. Se X è numerabile anche $X^{<\mathbb{N}}$ lo è.

Teorema (*Cantor*). Per ogni insieme X non vuoto si ha $|X| < |\mathscr{P}(X)|$.

Esempi di insiemi numerabili: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{N}^{<\mathbb{N}}$

Esempi di insiemi più che numerabili: $\mathscr{P}(\mathbb{N})$, $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, \mathbb{R}

2. Principio d'induzione

Principio di induzione (semplice). Data una proprietà P dei numeri naturali, se

vale
$$P(0)$$
 e per ogni $n \in \mathbb{N}$ vale $P(n) \to P(n+1)$,

allora

per ogni
$$k \in \mathbb{N}$$
 vale $P(k)$,

ovvero la proprietà P vale per tutti i numeri naturali.

[La base dell'induzione è la dimostrazione di P(0), mentre il passo induttivo è la dimostrazione dell'implicazione $P(n) \to P(n+1)$ per un generico $n \in \mathbb{N}$, che normalmente si articola nel modo seguente: si assume che P(n) sia vera (questa è detta ipotesi induttiva), e si dimostra che allora vale anche P(n+1) (questa viene talvolta detta tesi induttiva).]

Principio del minimo. Se la proprietà P è vera per qualche numero naturale, allora c'è un minimo numero naturale n per il quale vale la proprietà P.

Una proprietà P dei numeri naturali è **progressiva**, in simboli Prog(P), se per ogni $n \in \mathbb{N}$ si ha che se la proprietà P vale per tutti gli m < n, allora vale anche per n.

Principio di induzione forte. Se Prog(P), allora per ogni $k \in \mathbb{N}$ vale P(k).

Principio di induzione strutturale (semplice). Sia A un insieme con una funzione $h: A \to \mathbb{N}$ suriettiva. Data una proprietà P, assumiamo che:

- (\star) P(a) vale per tutti gli $a \in A$ con h(a) = 0.
- $(\star\star)$ Per ogni $n\in\mathbb{N}$ si ha che:

Se P(a) vale per ogni a con h(a) = n, allora P(a) vale per ogni a con h(a) = n + 1.

Allora P(a) vale per ogni $a \in A$.

Principio di induzione strutturale forte. Sia A un insieme con una funzione $h: A \to \mathbb{N}$ suriettiva. Data una proprietà P, assumiamo che

(†) Per ogni $n \in \mathbb{N}$ si ha che:

Se P(a) vale per ogni a con h(a) < n, allora P(a) vale per ogni a con h(a) = n.

Allora P(a) vale per ogni $a \in A$.

3. Logica proposizionale

3.A. Sintassi.

Definizione (*Proposizioni* o *formule proposizionali*). Fissiamo un insieme L non vuoto i cui elementi A, B, C, \ldots si dicono **lettere proposizionali**. L'insieme $\operatorname{Prop}(L) = \bigcup_{n \in \mathbb{N}} \operatorname{Prop}_n(L)$ delle **proposizioni** (o **formule proposizionali**) su L è il sottoinsieme di

$$(L \cup \{(,),\neg,\vee,\wedge,\rightarrow,\leftrightarrow\})^*,$$

definito ponendo

$$\begin{split} \operatorname{Prop}_0(L) &= \{ (\mathbf{A}) \mid \mathbf{A} \in L \} \\ \operatorname{Prop}_{n+1}(L) &= \operatorname{Prop}_n(L) \cup \{ (\neg \mathbf{P}) \mid \mathbf{P} \in \operatorname{Prop}_n(L) \} \cup \\ & \cup \{ (\mathbf{P} \ \Box \ \mathbf{Q}) \mid \mathbf{P}, \mathbf{Q} \in \operatorname{Prop}_n(L), \ \Box \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \} \,. \end{split}$$

Le proposizioni della forma (A) (per qualche $A \in L$) si dicono **proposizioni atomiche**. Se una proposizione è invece della forma ($\neg P$) o della forma ($P \square Q$), $\neg e \square$ sono rispettivamente il suo **connettivo principale**, e P e Q le **sottoproposizioni immediate**. Una proposizione non atomica P viene detta **negazione**, **congiunzione**, **disgiunzione**, **implicazione** oppure **bi-implicazione** quando il suo connettivo principale è \neg , \wedge , \vee , \rightarrow o \leftrightarrow , rispettivamente.

Altezza di una proposizione: l'altezza ht(P) di una proposizione P è definita da

ht:
$$\text{Prop}(L) \to \mathbb{N}$$
, $\text{ht}(P) = \min \{ n \in \mathbb{N} \mid P \in \text{Prop}_n(L) \}$.

Albero sintattico di una proposizione P: albero binario finito etichettato tale che

- (1) la radice è etichettata con P;
- (2) ogni nodo ha nessuno, uno o due successori immediati a seconda che la proposizione etichetta del nodo sia atomica, della forma ($\neg Q$), o della forma ($Q \square R$), rispettivamente. Nel secondo caso il successore è etichettato con Q, nel terzo caso i due successori sono etichettati rispettivamente con Q e con R.

L'altezza di P coincide con l'altezza del suo albero sintattico diminuita di una unità.

Convenzioni sulle parentesi:

- Non si scrivono le parentesi nelle proposizioni atomiche e non si scrivono le parentesi più esterne.
- Si eliminano alcune coppie di parentesi intorno ad alcune sottoproposizioni, utilizzando il criterio di priorità tra connettivi dato dalla seguente graduatoria:

• Per occorrenze multiple dello stesso connettivo si conviene l'associazione a destra.

3.B. Semantica.

Tavole di verità dei connettivi:

Ρ	Q	$P \rightarrow Q$	P	Q	$P \leftrightarrow Q$
$\overline{\mathbf{V}}$	\mathbf{V}	V	$\overline{\mathbf{V}}$	\mathbf{V}	V
\mathbf{V}	${f F}$	\mathbf{F}	${f V}$	\mathbf{F}	${f F}$
\mathbf{F}	\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}	${f F}$
${f F}$	\mathbf{F}	\mathbf{V}	${f F}$	\mathbf{F}	${f V}$

Definizione (Interpretazioni e valutazioni). Sia L un insieme di lettere proposizionali. Un'**interpretazione** è una funzione $i: L \longrightarrow \{0,1\}$. Una **valutazione** è invece una funzione $v: \text{Prop}(L) \to \{0,1\}$ che soddisfa le seguenti condizioni:

$$\begin{split} v((\neg \mathbf{P})) &= 1 - v(\mathbf{P}) \\ v((\mathbf{P} \wedge \mathbf{Q})) &= \min\{v(\mathbf{P}), v(\mathbf{Q})\} \\ v((\mathbf{P} \vee \mathbf{Q})) &= \max\{v(\mathbf{P}), v(\mathbf{Q})\} \\ v((\mathbf{P} \rightarrow \mathbf{Q})) &= \max\{1 - v(\mathbf{P}), v(\mathbf{Q})\} \\ v((\mathbf{P} \leftrightarrow \mathbf{Q})) &= 1 - |v(\mathbf{P}) - v(\mathbf{Q})|. \end{split}$$

Ogni valutazione $v \colon \operatorname{Prop}(L) \to \{0,1\}$ induce un'interpretazione $i \colon L \to \{0,1\}$ definita ponendo i(A) = v(A) per ogni $A \in L$. Viceversa, ogni interpretazione i si estende a una valutazione i^* ponendo $i^*(A) = i(A)$ per ogni $A \in L$ e definendo $i^*(P)$ per le proposizioni P non atomiche come segue:

$$i^*((\neg P)) = 1 - i^*(P)$$

$$i^*((P \land Q)) = \min\{i^*(P), i^*(Q)\}$$

$$i^*((P \lor Q)) = \max\{i^*(P), i^*(Q)\}$$

$$i^*((P \to Q)) = \max\{1 - i^*(P), i^*(Q)\}$$

$$i^*((P \leftrightarrow Q)) = 1 - |i^*(P) - i^*(Q)|.$$

Definizioni. Sia P una proposizione.

• Se $i^*(P) = 1$, si dice che P è **vera** nell'interpretazione i, o che i **soddisfa** P, o che i è un **modello** di P, e si scrive anche

$$i \models P$$
.

- Se esiste almeno un'interpretazione i tale che $i \models P$, si dice che P è soddisfacibile, o coerente.
- Se non esiste alcun modello di P, si dice che P è insoddisfacibile, o incoerente, o contraddittoria, o una contraddizione.
- Se per ogni interpretazione i si ha $i \models P$, si dice che P è (**logicamente**) valida, o **logicamente** vera, o una tautologia, e si scrive

$$\models P$$
.

Definizioni. Sia $\Gamma \subseteq \text{Prop}(L)$ un insieme (finito o infinito) di proposizioni costruite a partire dallo stesso insieme di lettere proposizionali L.

• Un'interpretazione $i: L \to \{0,1\}$ è un **modello** di Γ , in simboli

$$i \models \Gamma$$
,

se $i \models P$ per ogni $P \in \Gamma$. In questo caso diciamo anche che Γ è soddisfatto da i, o che i soddisfa Γ .

- Γ si dice **soddisfacibile** (o **coerente**) se *esiste* un'interpretazione i tale che $i \models \Gamma$; in caso contrario, ovvero se $i \not\models \Gamma$ per ogni interpretazione i, si dice che Γ è **insoddisfacibile** (o **incoerente**).
- L'insieme di proposizioni Γ è **valido** se $i \models \Gamma$ per ogni interpretazione i. In questo caso scriviamo $\models \Gamma$.

Definizione (*Conseguenza logica*). Dati $\Gamma \subseteq \text{Prop}(L)$ e $Q \in \text{Prop}(L)$, diciamo che Q è **conseguenza logica** di Γ , in simboli

$$\Gamma \models Q$$
,

se per ogni interpretazione i, se $i \models \Gamma$ allora $i \models Q$. Scriviamo $\Gamma \not\models Q$ per dire che Q NON è conseguenza logica di Γ .

Quando $\Gamma = \{P_1, \dots, P_n\}$ è un insieme finito, allora scriviamo semplicemente

$$P_1, \ldots, P_n \models Q$$

invece di $\{P_1, \dots, P_n\} \models Q$ e diciamo che Q è conseguenza logica delle proposizioni P_1, \dots, P_n . In particolare, quando $\Gamma = \{P\}$ scriviamo $P \models Q$ e diciamo che Q è conseguenza logica di P.

Vale l'equivalenza seguente:

$$P_1, \dots, P_n \models Q$$
 se e solo se $\models (P_1 \land \dots \land P_n) \rightarrow Q$.

Teorema. Siano $P \in Prop(L)$ e $\Gamma \subseteq Prop(L)$.

- (1) P è valida (ovvero una tautologia) se e solo se $\neg P$ è una contraddizione.
- (2) P è soddisfacibile se e solo se ¬P non è valido,
- (3) $\Gamma \models P$ se e solo se $\Gamma \cup \{\neg P\}$ è insoddisfacibile.

Definizione ($Equivalenza\ logica$). Date $P,Q \in Prop(L)$ si dice che P e Q sono **logicamente** equivalenti, e si scrive

$$P \equiv Q$$
.

se per ogni interpretazione i si ha $i \models P$ se e solo se $i \models Q$. Scriviamo $P \not\equiv Q$ per dire che P e Q NON sono logicamente equivalenti.

Valgono le seguenti equivalenze:

- $P \equiv Q$ se e solo se $\models P \leftrightarrow Q$.
- $P \equiv Q$ se e solo se $P \models Q$ e $Q \models P$.
- $P \equiv Q$ se e solo se $i^*(P) = i^*(Q)$ per ogni interpretazione i.

4. Logica del prim'ordine

4.A. Sintassi.

Vbl: Insieme delle variabili

Linguaggio del prim'ordine $L = \text{Const} \cup \text{Func} \cup \text{Rel}$: insieme di simboli dove

- Const = $\{c, d, e, \dots\}$ è l'insieme dei simboli di costante
- Func = $\{f, g, h, \dots\}$ è l'insieme dei simboli di funzione
- Rel = $\{P, Q, R, \dots\}$ è l'insieme dei simboli di relazione (o predicato).

Ad ogni simbolo di funzione f e di relazione P è associato un numero intero positivo detto **arietà** del simbolo, che si indica con ar(f) e ar(P), rispettivamente.

Definizione (*Termini*). L'insieme Term = $\bigcup_{n\in\mathbb{N}}$ Term_n dei **termini** (o *L*-**termini**) di un dato linguaggio del prim'ordine L è il sottoinsieme di

$$\Big(\{(,)\} \cup \mathrm{Vbl} \cup \mathrm{Const} \cup \mathrm{Func}\Big)^*$$

definito ponendo

Term₀ = Vbl
$$\cup$$
 Const,
Term_{n+1} = Term_n \cup
 $\{f(t_1 \dots t_k) \mid f \in \text{Func e } t_1, \dots, t_k \in \text{Term}_n \text{ e } k = \text{ar}(f)\}.$

Scriviamo $t(x_1, \ldots, x_n)$ per indicare che le variabili che occorrono nel termine t sono (alcune tra le) x_1, \ldots, x_n .

Altezza di un termine: l'altezza ht(t) di un termine t è il più piccolo $n \in \mathbb{N}$ tale che $t \in \text{Term}_n$.

Albero sintattico di un termine t: albero finito etichettato tale che

- (1) la radice è etichettata con t;
- (2) se un nodo è etichettato con una costante o una variabile, non ha nessun successore immediato;
- (3) se un nodo è etichettato con un termine della forma $f(t_1, ..., t_n)$ dove ar(f) = n, allora ha n successori immediati etichettati con $t_1, ..., t_n$, rispettivamente.

L'altezza di t coincide con l'altezza del suo albero sintattico diminuita di una unità.

Definizione (Formule atomiche). Una formula atomica (nel linguaggio del prim'ordine L) è una stringa della forma

$$(R(t_1,\ldots,t_n))$$

dove R è un simbolo di predicato n-ario in L e t_1, \ldots, t_n sono L-termini, oppure della forma

$$(t_1 = t_2)$$

dove t_1, t_2 sono *L*-termini.

Definizione (Formule). L'insieme $\operatorname{Fml} = \bigcup_{n \in \mathbb{N}} \operatorname{Fml}_n$ delle formule (o L-formule) di un dato linguaggio del prim'ordine L è il sottoinsieme di

$$(L \cup Vbl \cup \{(,), \neg, \lor, \land, \rightarrow, \leftrightarrow\})^*$$

definito ponendo:

$$\begin{split} \operatorname{Fml}_0 &= \{ \phi \mid \varphi \text{ è una formula atomica del linguaggio } L \} \\ \operatorname{Fml}_{n+1} &= \operatorname{Fml}_n \cup \{ (\neg \varphi) \mid \varphi \in \operatorname{Fml}_n \} \cup \\ & \cup \{ (\varphi \square \psi) \mid \varphi, \psi \in \operatorname{Fml}_n, \ \square \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \} \cup \\ & \cup \{ (Qx\varphi) \mid \varphi \in \operatorname{Fml}_n, \ Q \in \{ \exists, \forall \}, \ x \in \operatorname{Vbl} \} \,. \end{split}$$

Se una formula è della forma $(\neg \varphi)$, $(\varphi \Box \psi)$ oppure della forma $(Qx\varphi)$, allora \neg , \Box o Q, rispettivamente, sono la sua **costante logica principale**; nei primi due casi parliamo anche di **connettivo principale**, nell'ultimo caso Q si dice anche **quantificatore principale** e φ è il suo **raggio d'azione**; le formule φ e ψ sono le **sottoformule principali** della formula data. Diciamo che una formula φ è una **negazione**, **congiunzione**, **disgiunzione**, **implicazione**, **bi-implicazione**, **formula esistenziale** oppure **formula universale** quando la sua costante logica principale è \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \exists o \forall , rispettivamente.

Altezza di una formula φ : l'altezza $\operatorname{ht}(\varphi)$ di una formula φ è il più piccolo $n \in \mathbb{N}$ tale che $\varphi \in \operatorname{Fml}_n$.

Albero sintattico di una formula φ : albero binario finito etichettato tale che

- (1) la radice è etichettata con φ ;
- (2) se un nodo è etichettato con una formula del tipo $(\neg \psi)$, allora ha un unico successore immediato etichettato con ψ ;
- (3) se un nodo è etichettato con una formula del tipo del tipo ($\psi \square \chi$) con \square connettivo binario, allora ha due successori immediati etichettati con ψ e χ , rispettivamente;
- (4) se un nodo è etichettato con una formula del tipo $(\exists x\psi)$ oppure $(\forall x\psi)$, allora ha un unico successore immediato etichetto con ψ .

L'altezza di φ coincide con l'altezza del suo albero sintattico diminuita di una unità.

Definizione (Occorrenze libere e vincolate). Un'occorrenza di una variabile x in una formula φ è **vincolata** se segue un quantificatore oppure cade nel raggio d'azione di un quantificatore del tipo $\exists x$ o $\forall x$; in caso contrario, l'occorrenza in questione si dice **libera**.

Si dice che la variabile x occorre libera in φ (oppure che x è una variabile libera di φ) se c'è almeno un'occorrenza libera di x in φ . L'insieme delle variabili libere di φ è indicato con $FV(\varphi)$.

Scriviamo
$$\varphi(x_1,\ldots,x_n)$$
 per indicare che $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

Definizione (*Enunciati*). Una formula φ si dice **enunciato** (o *L*-enunciato, o formula chiusa) se non contiene variabili libere, ovvero $FV(\varphi) = \emptyset$.

Convenzioni sulle parentesi:

- Si omettono le parentesi più esterne e le parentesi che racchiudono le formule atomiche.
- Si eliminano alcune coppie di parentesi intorno ad alcune sottoformule, utilizzando il criterio di priorità tra costanti logiche dato dalla seguente graduatoria:

- Per le costanti logiche di massima priorità (ovvero quelle che si applicano ad una formula sola), si conviene l'associatività a destra.
- Similmente, per occorrenze multiple dello stesso connettivo binario si conviene l'associatività a destra.

4.B. Semantica.

Sia $L = \text{Rel} \cup \text{Func} \cup \text{Const}$ un linguaggio del prim'ordine.

Definizione (Strutture). Una L-struttura

$$\mathcal{A} = \langle A, R^{\mathcal{A}}, \dots, f^{\mathcal{A}}, \dots, c^{\mathcal{A}}, \dots \rangle$$

consiste di

- (1) un insieme non vuoto A, detto universo o dominio della struttura;
- (2) un'interpretazione in \mathcal{A} di ogni simbolo di L, definita come segue:
 - se $R \in \text{Rel } \grave{\text{e}}$ un simbolo relazionale n-ario, la sua interpretazione $R^{\mathcal{A}}$ in \mathcal{A} $\grave{\text{e}}$ una relazione n-aria su A, ovvero $R^{\mathcal{A}} \subseteq A^n$;
 - se $f \in \text{Func}$ è un simbolo funzionale n-ario, allora $f^{\mathcal{A}} : A^n \to A$, ovvero $f^{\mathcal{A}}$ è una funzione n-aria con argomenti e valori in A;
 - se $c \in \text{Const}$ è un simbolo di costante, la sua interpretazione in \mathcal{A} consiste di un elemento $c^{\mathcal{A}} \in A$.

Definizione (Assegnazioni). Un'assegnazione (nella L-struttura \mathcal{A}) per un insieme di variabili $\{x_1, x_2, \ldots, x_n\}$ è una funzione che associa ad ogni variabile x_i dell'insieme un elemento $a_i \in A$ (per ogni $1 \leq i \leq n$). Una tale assegnazione verrà di solito denotata con

$$x_1/a_1, x_2/a_2, \ldots, x_n/a_n$$

Definizione (Interpretazione di termini). L'interpretazione di un L-termine $t(x_1, \ldots, x_n)$ in una L-struttura \mathcal{A} mediante l'assegnazione $x_1/a_1, \ldots, x_n/a_n$ si indica con

$$t^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]$$

ed è definita per ricorsione su ht(t):

- se t è la variabile x_i (per qualche $1 \le i \le n$), allora $t^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n]$ è l'elemento a_i ;
- se t è una costante c, allora $t^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]$ è l'elemento $c^{\mathcal{A}}$;
- se $t \in f(t_1, \ldots, t_k)$, allora $t^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n]$ è l'elemento

$$f^{\mathcal{A}}(t_1^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n],\ldots,t_k^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]).$$

Definizione (*Relazione di soddisfazione*). Definiamo per ricorsione su $\operatorname{ht}(\varphi)$ cosa vuol dire che una L-formula $\varphi(x_1,\ldots,x_n)$ è vera in una L-struttura \mathcal{A} mediante l'assegnazione $x_1/a_1,\ldots,x_n/a_n$, in simboli

$$\mathcal{A} \models \varphi[x_1/a_1,\ldots,x_n/a_n].$$

- Se φ è una formula atomica del tipo (t = s) con t ed s termini, allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se $t^{\mathcal{A}}[x_1/a_1, \dots, x_n/a_n] = s^{\mathcal{A}}[x_1/a_1, \dots, x_n/a_n]$.
- Se φ è una formula atomica del tipo $(P(t_1, \ldots, t_k))$ con P simbolo di relazione k-ario e t_1, \ldots, t_k termini, allora $\mathcal{A} \models \varphi[x_1/a_1, \ldots, x_n/a_n]$ se e solo se $(t_1^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n], \ldots, t_k^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n]) \in P^{\mathcal{A}}$.
- Se φ è una negazione $(\neg \psi)$, allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se non è vero che $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n]$.
- Se φ è una disgiunzione $(\psi \vee \chi)$, allora $\mathcal{A} \models \varphi[x_1/a_1, \ldots, x_n/a_n]$ se e solo se $\mathcal{A} \models \psi[x_1/a_1, \ldots, x_n/a_n]$ oppure $\mathcal{A} \models \chi[x_1/a_1, \ldots, x_n/a_n]$ (o entrambe).
- Se φ è una congiunzione $(\psi \land \chi)$, allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n]$ e $\mathcal{A} \models \chi[x_1/a_1, \dots, x_n/a_n]$.
- Se φ è un'implicazione ($\psi \to \chi$), allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n]$ implica che $\mathcal{A} \models \chi[x_1/a_1, \dots, x_n/a_n]$.
- Se φ è una bi-implicazione ($\psi \leftrightarrow \chi$), allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n]$ implica $\mathcal{A} \models \chi[x_1/a_1, \dots, x_n/a_n]$ e viceversa.

- Se φ è una formula esistenziale $(\exists y\psi)$, allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se per qualche $b \in A$ si ha che $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n, y/b]$.
- Se φ è una formula universale $(\forall y \psi)$, allora $\mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]$ se e solo se per ogni $b \in A$ si ha che $\mathcal{A} \models \psi[x_1/a_1, \dots, x_n/a_n, y/b]$.

Definizione (*Insiemi di verità*). Data una *L*-formula φ con $FV(\varphi) = \{x_1, \ldots, x_n\} \neq \emptyset$ e una *L*-struttura \mathcal{A} , l'insieme di verità di φ in \mathcal{A} è

$$\varphi(\mathcal{A}) = \{(a_1, \dots, a_n) \in A^n \mid \mathcal{A} \models \varphi[x_1/a_1, \dots, x_n/a_n]\}.$$

Definizioni. Sia φ un L-enunciato.

• Se φ risulta vero in una struttura \mathcal{A} (indipendentemente da qualunque assegnazione, visto che $FV(\varphi) = \emptyset$) scriviamo

$$A \models \varphi$$

e diciamo che ϕ è **vero** (o **soddisfatto**) in \mathcal{A} , o che \mathcal{A} è un **modello di** ϕ , o ancora che \mathcal{A} **soddisfa** ϕ .

- Se esiste almeno una *L*-struttura \mathcal{A} tale che $\mathcal{A} \models \varphi$, allora si dice che φ è **soddisfacibile** o **coerente**.
- Se non esiste alcun modello di φ , si dice che φ è insoddisfacibile, o incoerente, o contradditorio, o una contraddizione.
- Se per ogni L-struttura \mathcal{A} si ha che $\mathcal{A} \models \varphi$, si dice che φ è (**logicamente**) valido, o **logicamente** vero, e si scrive

$$\models \varphi$$
.

Definizioni. Sia Γ un insieme (finito o infinito) di L-enunciati.

• Una L-struttura \mathcal{A} è un **modello** di Γ , in simboli

$$\mathcal{A} \models \Gamma$$
,

se $\mathcal{A} \models \varphi$ per ogni $\varphi \in \Gamma$. In questo caso diciamo che Γ è **soddisfatto** da \mathcal{A} , o che \mathcal{A} **soddisfa** Γ .

- Γ si dice **soddisfacibile** (o **coerente**) se $\mathcal{A} \models \Gamma$ per qualche L-struttura \mathcal{A} ; in caso contrario, ovvero se $\mathcal{A} \not\models \Gamma$ per ogni L-struttura \mathcal{A} , si dice che Γ è **insoddisfacibile** (o **incoerente**).
- Γ si dice valido se $\mathcal{A} \models \Gamma$ per ogni L-struttura \mathcal{A} . In questo caso scriviamo $\models \Gamma$.

Definizione (*Conseguenza logica*). Sia Γ un insieme di *L*-enunciati e sia φ un *L*-enunciato. Diciamo che φ è **conseguenza logica** di Γ , in simboli

$$\Gamma \models \varphi$$

quando per ogni L-struttura \mathcal{A} , se $\mathcal{A} \models \Gamma$ allora $\mathcal{A} \models \varphi$. Scriviamo $\Gamma \not\models \varphi$ per dire che φ NON è conseguenza logica di Γ .

Quando $\Gamma = \{\psi_1, \dots, \psi_n\}$ è un insieme finito, allora scriviamo semplicemente

$$\psi_1, \ldots, \psi_n \models \varphi$$

invece di $\{\psi_1,\ldots,\psi_n\} \models \varphi$. In particolare, quando $\Gamma = \{\psi\}$ scriviamo $\psi \models \varphi$.

Vale l'equivalenza seguente:

$$\psi_1, \dots, \psi_n \models \varphi$$
 se e solo se $\models (\psi_1 \wedge \dots \wedge \psi_n) \rightarrow \varphi$.

Teorema. Sia φ un *L*-enunciato e Γ un insieme di *L*-enunciati.

- (1) φ è valido se e solo se $\neg \varphi$ è una contraddizione.
- (2) φ è soddisfacibile se e solo se $\neg \varphi$ non è valido.
- (3) $\Gamma \models \varphi$ se e solo se $\Gamma \cup \{\neg \varphi\}$ è insoddisfacibile.

Definizione (*Equivalenza logica*). Due *L*-enunciati φ e ψ sono **logicamente equivalenti**, in simboli $\varphi \equiv \psi$, se per ogni *L*-struttura \mathcal{A} si ha che $\mathcal{A} \models \varphi$ se e solo se $\mathcal{A} \models \psi$. Scriviamo $\varphi \not\equiv \psi$ per dire che φ e ψ NON sono logicamente equivalenti.

Valgono le seguenti equivalenze:

- $\phi \equiv \psi$ se e solo se $\models \phi \leftrightarrow \psi$
- $\bullet \ \phi \equiv \psi \quad \mathrm{se \ e \ solo \ se} \quad \phi \models \psi \ \mathrm{e} \ \psi \models \phi.$