Gaussian Mixture Models

Tuan Nguyen

Ngày 8 tháng 2 năm 2023

Overview

Soft assignment

Normal distribution

Generative model

Hard assignment vs Soft assignment

- In the K-means algorithm, a hard assignment of points to clusters is made.
- However, for points near the decision boundary, this may not be such a good idea.
- Instead, we could think about making a soft assignment of points to clusters.

Normal distribution

Mix Normal distribution

Gaussian Mixture Model

- ► The Gaussian mixture model (or mixture of Gaussians MoG) models the data as a combination of Gaussians
- Above shows a dataset generated by drawing samples from three different Gaussians

Generative model

- ► The mixture of Gaussians is a generative model
- ▶ To generate a datapoint xn, we first generate a value for a discrete variable $z_n \in \{1, ..., K\}$
- ▶ We then generate a value $x_n \sim N(x|\mu_k, \Sigma_k)$ for the corresponding Gaussian

Graphical model

- \triangleright z_n is a latent variable, unobserved
- Need to give conditional distributions $p(z_n)$ and $p(x_n|z_n)$
- ► The one-of-K representation is helpful here: $z_{nk} \in \{0, 1\}$, $z_n = (z_{n1}, ..., z_{nK})$

Graphical Model - Latent Component Variable

- ▶ Use a Bernoulli distribution for $p(z_n)$
 - $\pi_k = p(z_{nk} = 1)$
 - Parameters to this distribution π_k
 - Must have $0 \le \pi_k \le 1$ and $\sum_{k=1}^K \pi_k = 1$
- $\triangleright p(z_n) = \prod_{k=1}^K \pi_k^{z_{nk}}$

Graphical Model - Observed Variable

▶ Use a Gaussian distribution for $p(x_n|z_n)$

$$egin{aligned} p(x_n|z_{nk}=1) &= \mathcal{N}(x_n|\mu_k,\Sigma_k) \ &p(x_n|z_n) &= \prod_{k=1}^K \mathcal{N}(x_n|\mu_k,\Sigma_k)^{z_{nk}} \end{aligned}$$

Graphical Model - Joint distribution

► The full joint distribution is given by

$$p(x,z) = \prod_{n=1}^{N} p(z_n)p(x_n|\mu_k, \Sigma_k)$$
$$= \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(x_n|\mu_k, \Sigma_k)^{z_{nk}}$$

MoG Marginal over Observed Variables

▶ The marginal distribution $p(x_n)$ for this model is

$$p(x_n) = \sum_{z_n} p(x_n, z_n) = \sum_{z_n} p(z_n) p(x_n | z_n)$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$$

- ▶ A mixture of Gaussians \Rightarrow model parameters are $\{\pi_k, \mu_k, \Sigma_k\}$
- Similar to k-means
 - If we know the latent variables z_n , fitting the Gaussians is easy
 - If we know the Gaussian μ_k, Σ_k , finding the latent variables is easy

MoG Marginal over Observed Variables (cont.)

• Rather than latent variables, we will use responsibilities $p(z_{nk} = 1|x_n)$

$$\gamma(z_{nk}) = p(z_{nk} = 1|x_n) \tag{1}$$

$$= \frac{p(z_{nk}1)p(x_n|z_{nk}=1)}{\sum_{j=1}^{K} p(z_{nj}=1)p(x_n|z_{nj}=1)}$$
(2)

$$= \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$
(3)

• $\gamma(z_{nk})$ is the responsibility of component k for datapoint n

MoG Maximum Likelihood Learning

- ▶ Model parameters are $\theta = \{\pi_k, \mu_k, \Sigma_k\}$
- ► We can use the maximum likelihood criterion

$$\begin{aligned} \theta_{ML} &= \arg\max_{\theta} \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k}) \\ &= \arg\max_{\theta} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k}) \right) \end{aligned}$$

► Unfortunately, closed-form solution not possible this time log of sum rather than log of product

ML for Gaussian Mixtures

Consider the log-likelihood function

$$I(\theta) = \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right)$$

We can try taking derivatives and setting to zero, even though no closed form solution exists

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N_k}$$

▶ All depend on $\gamma(z_{nk})$, which depends on all 3 ⇒ iterative scheme can be used

Al For Everyone Ngày 8 tháng 2 năm 2023

EM for Gaussian Mixtures

- ► Initialize parameters, then iterate:
 - E-step: Calculate responsibilities using current parameters

$$\gamma(z_{nk}) = \frac{p(z_{nk}1)p(x_n|z_{nk}=1)}{\sum_{j=1}^{K} p(z_{nj}=1)p(x_n|z_{nj}=1)}$$

• M-step: Re-estimate parameters using these $\gamma(z_{nk})$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

 This algorithm is known as the expectation-maximization algorithm (EM)

Example

Same initialization as with K-means before

Calculate responsibilities $\gamma(z_{nk})$

Calculate model parameters $\{\pi_k, \mu_k, \Sigma_k\}$ using these responsibilities

Iteration 2

Iteration 5

Iteration 20 - converged