Лекция L7 Домены

Вадим Пузаренко

Лекция L7 Домены

Вадим Пузаренко

6 апреля 2020 г.

Мотивация

Лекция L7 Домены

Вадим Пузаренко

Здесь развивается алгебраический аппарат, необходимый для описания абстрактного языка программирования РСF.

Лекция L7 Домены

Вадим Пузаренко

Определение.

Пусть D — множество. Каждое рефлексивное, антисимметричное и транзитивное отношение \sqsubseteq на D, т. е. бинарное отношение на D, для которого выполняются соотношения для всех $x, y, z \in D$:

- $\mathbf{0} \quad x \sqsubseteq x;$

называется **порядком** на D. В этом случае (D,\sqsubseteq) называется **упорядоченным множеством**.

Лекция L7 Домены

> Вадим Пузаренко

Определение.

Пусть D — множество. Каждое рефлексивное, антисимметричное и транзитивное отношение \sqsubseteq на D, т. е. бинарное отношение на D, для которого выполняются соотношения для всех x, y, $z \in D$:

- $\mathbf{0}$ $x \sqsubseteq x$;
- $x \sqsubseteq y, y \sqsubseteq x \Longrightarrow x = y;$

называется **порядком** на D. В этом случае (D, \sqsubseteq) называется **упорядоченным множеством**.

Пример.

Плоские домены. Для любого множества M положим $M_{\perp} = M \uplus \{\bot\}$, и зададим на нём отношение \sqsubseteq следующим образом $(x,y \in M_{\perp})$:

$$x \sqsubseteq y \Leftrightarrow [(x = y) \lor (x = \bot)].$$

Лекция L7 Домены

> Вадим Пузаренко

Пример.

Степени множеств. Для каждого множества M обозначим через $\mathfrak{P}(M)$ множество всех его подмножеств. Тогда отношение \subseteq включения на $\mathfrak{P}(M)$ будет отношением порядка.

Лекция L7 Домены

> Вадим Тузаренко

Пример.

Степени множеств. Для каждого множества M обозначим через $\mathfrak{P}(M)$ множество всех его подмножеств. Тогда отношение \subseteq включения на $\mathfrak{P}(M)$ будет отношением порядка.

Нами используется понятие порядка в смысле "частичного порядка", т. е. допускаются несравнимые элементы:

Лекция L7 Домены

Вадим Пузаренко

Пример.

Степени множеств. Для каждого множества M обозначим через $\mathfrak{P}(M)$ множество всех его подмножеств. Тогда отношение \subseteq включения на $\mathfrak{P}(M)$ будет отношением порядка.

Нами используется понятие порядка в смысле "частичного порядка", т. е. допускаются несравнимые элементы:

Определение.

Два элемента a, b называются **сравнимыми**, если $a \sqsubseteq b$ или $b \sqsubseteq a$. В противном случае элементы a и b называются **несравнимыми**.

Лекция L7 Домены

> Вадим Тузаренко

Замечание.

Каждое подмножество A упорядоченного множества D будет упорядоченным множеством относительно индуцированного порядка. В частности, любое семейство подмножеств некоторого множества M будет упорядоченным относительно отношения \subseteq .

Лекция L7 Домены

Вадим Тузаренко

Замечание.

Каждое подмножество A упорядоченного множества D будет упорядоченным множеством относительно индуцированного порядка. В частности, любое семейство подмножеств некоторого множества M будет упорядоченным относительно отношения \subseteq .

Определение.

Упорядоченное множество (D,\sqsubseteq) называется **линейно** упорядоченным или **цепью**, если любые два его элемента сравнимы.

Лекция L7 Домены

> Вадим Пузаренко

Замечание.

Каждое подмножество A упорядоченного множества D будет упорядоченным множеством относительно индуцированного порядка. В частности, любое семейство подмножеств некоторого множества M будет упорядоченным относительно отношения \subseteq .

Определение.

Упорядоченное множество (D, \sqsubseteq) называется **линейно** упорядоченным или **цепью**, если любые два его элемента сравнимы.

Примеры.

Множества \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} относительно естественного порядка линейно упорядочены. Более того, порядок на \mathbb{N} индуцирован порядком на \mathbb{Z} , порядок на \mathbb{Z} индуцирован порядком на \mathbb{Q} , и т. д.

Лекция L7 Домены

> Вадим Іузаренко

Определение.

Множество натуральных чисел относительно естественного порядка обозначается через ω . Любое упорядоченное множество вида $a_0 \sqsubseteq a_1 \sqsubseteq \ldots \sqsubseteq a_n \sqsubseteq \ldots, \ n \in \mathbb{N}$, называется ω -цепью.

Лекция L7 Домены

> Вадим 1узаренко

Определение.

Множество натуральных чисел относительно естественного порядка обозначается через ω . Любое упорядоченное множество вида $a_0 \sqsubseteq a_1 \sqsubseteq \ldots \sqsubseteq a_n \sqsubseteq \ldots, \ n \in \mathbb{N}$, называется ω -цепью.

Определение.

Подмножество A упорядоченного множества (D,\sqsubseteq) называется направленным, если $A\neq\varnothing$ и любые два элемента $a,b\in A$ имеют верхнюю грань в A, а именно, найдётся $c\in A$ такой, что $a\sqsubseteq c$ и $b\sqsubseteq c$.

Лекция L7 Домены

Вадим Тузаренко

Определение.

Множество натуральных чисел относительно естественного порядка обозначается через ω . Любое упорядоченное множество вида $a_0 \sqsubseteq a_1 \sqsubseteq \ldots \sqsubseteq a_n \sqsubseteq \ldots, \ n \in \mathbb{N}$, называется ω -цепью.

Определение.

Подмножество A упорядоченного множества (D,\sqsubseteq) называется направленным, если $A\neq\varnothing$ и любые два элемента $a,b\in A$ имеют верхнюю грань в A, а именно, найдётся $c\in A$ такой, что $a\sqsubseteq c$ и $b\sqsubseteq c$.

Примеры.

- Каждая цепь является направленным множеством.
- Для любого множества M множество $\mathfrak{P}_{fin}(M)$ всех его конечных подмножеств будет направленным относительно отношения \subseteq включения.

Лекция L7 Домены

Вадим Тузаренко

Определение.

Пусть (A,\sqsubseteq) — упорядоченное множество. Тогда $a\in A$ называется

- наименьшим элементом, если выполняется соотношение $a \sqsubseteq x$ для всех $x \in A$;
- **минимальным элементом**, если выполняется соотношение $[x \sqsubseteq a \Longrightarrow x = a]$ для всех $x \in A$.

Аналогично вводятся понятия **наибольшего** и **максимального** элементов.

Лекция L7 Домены

> Вадим Пузаренко

Определение.

Пусть (A,\sqsubseteq) — упорядоченное множество. Тогда $a\in A$ называется

- наименьшим элементом, если выполняется соотношение $a \sqsubseteq x$ для всех $x \in A$;
- **минимальным элементом**, если выполняется соотношение $[x \sqsubseteq a \Longrightarrow x = a]$ для всех $x \in A$.

Аналогично вводятся понятия **наибольшего** и **максимального элементов**.

Замечание.

- Любой наименьший элемент является единственным минимальным, однако далеко не всегда минимальный элемент будет наименьшим, даже если он единственный.
- Для линейно упорядоченных множеств понятия наименьшего и минимального элементов совпадают.

Лекция L7 Домены

Вадим Пузаренко

Замечание.

- Любое конечное упорядоченное множество имеет минимальные элементы. Более того, если минимальный элемент единственный, то он будет наименьшим.
- В общем случае упорядоченное множество может не иметь ни наименьшего, ни даже минимального элементов.

Лекция L7 Домены

Вадим Пузаренко

Замечание.

- Любое конечное упорядоченное множество имеет минимальные элементы. Более того, если минимальный элемент единственный, то он будет наименьшим.
- В общем случае упорядоченное множество может не иметь ни наименьшего, ни даже минимального элементов.

Определение.

Пусть A — подмножество упорядоченного множества (D, \sqsubseteq) и $c \in D$. Говорят, что c — верхняя грань множества A, если $x \sqsubseteq c$ для всех $x \in A$. Дуальным образом определяется понятие нижней грани множества A.

Лекция L7 Домены

> Вадим 1узаренко

Определение.

Пусть A — подмножество упорядоченного множества (D,\sqsubseteq) и $c\in D$. Говорят, что c — точная верхняя грань (супремум) множества A, если c — наименьший элемент среди верхних граней множества A; а именно, выполняются следующие условия:

Если супремум множества A существует, то будем его обозначать как $\sup(A)$ или $\coprod A$.

Дуальным образом определяется понятие **точной нижней грани (инфимума)** множества A. Если инфимум множества A существует, то будем его обозначать как $\inf(A)$ или $\prod A$.

Лекция L7 Домены

> Вадим Тузаренко

Определение.

Пусть A — подмножество упорядоченного множества (D,\sqsubseteq) и $c\in D$. Говорят, что c — точная верхняя грань (супремум) множества A, если c — наименьший элемент среди верхних граней множества A; а именно, выполняются следующие условия:

- \bigcirc $x \sqsubseteq c$ для всех $x \in A$;

Если супремум множества A существует, то будем его обозначать как $\sup(A)$ или $\coprod A$.

Дуальным образом определяется понятие **точной нижней грани** (инфимума) множества A. Если инфимум множества A существует, то будем его обозначать как $\inf(A)$ или $\prod A$.

Если
$$A=\{a_i|i\in I\}$$
, то будем использовать записи $\bigsqcup_{i\in I}a_i$ и $\prod_{i\in I}a_i$

Лекция L7 Домены

Вадим Пузаренко

Примеры.

- ullet Если $A\subseteq D$ имеет наибольший элемент, то $c=\bigsqcup A$.
- ullet В $\mathfrak{P}(M)$ любая система $\mathcal{A}=\{A_i|i\in I\}$ имеет супремум, а именно, $C=igcup_{i\in I}A_i$.
- В общем случае, множество может не иметь супремума; к примеру, в ω каждая строго возрастающая цепь $n_0 < n_1 < n_2 < \ldots < n_m < \ldots$ не имеет точной верхней грани.

Лекция L7 Домены

Определение.

Упорядоченное множество (D,\leqslant) называется ω -доменом, если оно имеет наименьший элемент \bot и любая ω -цепь $a_0\leqslant a_1\leqslant\ldots\leqslant a_n\leqslant\ldots$ элементов из D имеет точную верхнюю грань в D.

Лекция L7 Домены

> Вадим Тузаренко

Определение.

Упорядоченное множество (D,\leqslant) называется ω -доменом, если оно имеет наименьший элемент \bot и любая ω -цепь $a_0\leqslant a_1\leqslant\ldots\leqslant a_n\leqslant\ldots$ элементов из D имеет точную верхнюю грань в D.

Определение.

Упорядоченное множество (D,\leqslant) называется **доменом**, если оно имеет наименьший элемент \bot и любое направленное множество $A\subseteq D$ имеет точную верхнюю грань $\bigsqcup A$ в D.

Лекция L7 Домены

Вадим Тузаренко

Определение.

Упорядоченное множество (D,\leqslant) называется ω -доменом, если оно имеет наименьший элемент \bot и любая ω -цепь $a_0\leqslant a_1\leqslant\ldots\leqslant a_n\leqslant\ldots$ элементов из D имеет точную верхнюю грань в D.

Определение.

Упорядоченное множество (D,\leqslant) называется **доменом**, если оно имеет наименьший элемент \bot и любое направленное множество $A\subseteq D$ имеет точную верхнюю грань $\bigsqcup A$ в D.

Замечание.

В определении домена "любое направленное множество" можно заменить на "любая цепь".

Лекция L7 Домены

Вадим Пузаренко

Примеры.

- Любой домен является ω -доменом.
- Плоский домен является ω -доменом (даже доменом) в смысле этого определения.
- ullet ω не является ω -доменом, однако $\omega \cup \{\top\}$ будет уже ω -доменом.
- ullet $\mathfrak{P}_{\mathit{fin}}(M)$ не будет ω -доменом, если M бесконечно.
- Множество $\mathfrak{P}_{count}(M)$ всех не более, чем счётных подмножеств является ω -доменом. Однако оно не является доменом, если множество M несчётно.
- $\bullet \ \mathfrak{P}(M)$ является доменом.
- Каждое конечное упорядоченное множество с наименьшим элементом является доменом.

Лекция L7 Домены

Вадим Пузаренко

Примеры.

- ullet Любой домен является ω -доменом.
- Плоский домен является ω -доменом (даже доменом) в смысле этого определения.
- ullet ω не является ω -доменом, однако $\omega \cup \{\top\}$ будет уже ω -доменом.
- ullet $\mathfrak{P}_{\mathit{fin}}(M)$ не будет ω -доменом, если M бесконечно.
- Множество $\mathfrak{P}_{count}(M)$ всех не более, чем счётных подмножеств является ω -доменом. Однако оно не является доменом, если множество M несчётно.
- ullet $\mathfrak{P}(M)$ является доменом.
- Каждое конечное упорядоченное множество с наименьшим элементом является доменом.

Любой ли счётный ω -домен является доменом?

Определение.

Пусть (D,\sqsubseteq_1) и (E,\sqsubseteq_2) — упорядоченные множества.

ullet Функция f:D o E называется **монотонной**, если выполняется соотношение $(a,b\in D)$:

$$a \sqsubseteq_1 b \Longrightarrow f(a) \sqsubseteq_2 f(b).$$

② Если, к тому же, D и E являются ω -доменами, то $f:D\to E$ называется ω -непрерывной функцией, если она монотонна и дополнительно удовлетворяет следующему условию:

$$f(\bigsqcup_{n\in\mathbb{N}}a_n)=\bigsqcup_{n\in\mathbb{N}}f(a_n)$$

для любой ω -цепи $\{a_n|n\in\mathbb{N}\}$ в D.

© Если, к тому же, D и E являются доменами, то $f:D\to E$ называется **непрерывной** функцией, если она монотонна и дополнительно удовлетворяет следующему условию:

$$f(\bigsqcup A) = \bigsqcup f(A)$$

для любого направленного множества $A\subseteq D$.

Непрерывные функции

Лекция L7 Домены

Вадим Пузаренко В то время, как через $(D \to E)$ обозначаем множество всех функций из D в E, для множества всех непрерывных функций из D в E будем использовать обозначение $[D \to E]$.

Непрерывные функции

Лекция L7 Домены

Вадим Пузаренко В то время, как через $(D \to E)$ обозначаем множество всех функций из D в E, для множества всех непрерывных функций из D в E будем использовать обозначение $[D \to E]$.

Примеры.

- Если D конечный или плоский домен, то каждая монотонная функция $f:D \to E$ непрерывна.
- ullet Следующие отображения $f:M_\perp o N_\perp$ между плоскими доменами непрерывны:
 - lacktriangle постоянная функция $\mathrm{const}_b: x \mapsto b$ для любого $b \in \mathcal{N}_\perp$;
 - 🛾 отображение вида

$$x \mapsto egin{cases} f(x), & \mathsf{если}\ x \in D_f; \ ot & \mathsf{иначе}; \end{cases}$$

где f:M o N — частичная функция с областью задания $D_f\subseteq M$.

Примеры.

Пусть $\mathbf{2}=\{\bot,\top\}$ — двухэлементный домен. Отображение $f_1:\mathfrak{P}(\mathbb{R}) \to \mathbf{2}$, определённое следующим образом:

$$f_1(X) = egin{cases} op, & ext{если } X ext{ бесконечно;} \ op, & ext{если } X ext{ конечно;} \end{cases}$$

монотонно, однако не ω -непрерывно.

Отображение $f_2:\mathfrak{P}(\mathbb{R}) o \mathbf{2}$, определённое следующим образом:

$$f_2(X) = egin{cases} op, & ext{ если } X \text{ несчётно;} \ op, & ext{ если } X \text{ не более, чем счётно;} \end{cases}$$

 ω -непрерывно, однако не является непрерывным.

Неподвижная точка

Лекция L7 Домены

> Вадим Тузаренко

Теорема L16

Пусть $D-\omega$ -домен и пусть $f-\omega$ -непрерывная функция. Тогда f имеет наименьшую неподвижную точку $\mathbb{Y} f$, определённую следующим образом:

$$\mathbb{Y}f=\bigsqcup_{n\in\mathbb{N}}f^n(\bot).$$

Неподвижная точка

Лекция L7 Домены

Вадим Пузаренко

Теорема L16

Пусть $D-\omega$ -домен и пусть $f-\omega$ -непрерывная функция. Тогда f имеет наименьшую неподвижную точку $\mathbb{Y} f$, определённую следующим образом:

$$\mathbb{Y} f = \bigsqcup_{n \in \mathbb{N}} f^n(\bot).$$

Доказательство.

Так как \bot — наименьший элемент D, имеем $\bot \sqsubseteq f(\bot)$. Из монотонности вытекает соотношение $f(\bot) \sqsubseteq f(f(\bot)) = f^2(\bot)$. Далее, индукцией доказывается, что $f^n(\bot) \sqsubseteq f^{n+1}(\bot)$ для всех $n \in \mathbb{N}$.

Итак, мы приходим к ω -цепи $\bot \sqsubseteq f(\bot) \sqsubseteq \ldots \sqsubseteq f^n(\bot) \sqsubseteq \ldots$, имеющей точную верхнюю грань в D, поскольку $D-\omega$ -домен.

Неподвижная точка

Лекция L7 Домены

Вадим Пузаренко

Доказательство (продолжение).

Положим $x_0 = \bigsqcup_{n \in \mathbb{N}} f^n(\bot)$; тогда из ω -непрерывности f вытекает соотношение $f(x_0) = f(\bigsqcup_{n \in \mathbb{N}} f^n(\bot)) = \bigsqcup_{n \in \mathbb{N}} f^{n+1}(\bot) = x_0$. Тем самым, x_0 — неподвижная точка f. Покажем, что это наименьшая неподвижная точка. Пусть x_1 — неподвижная точка f; тогда $\bot \sqsubseteq x_1$ и, в силу монотонности f, $f^n(\bot) \sqsubseteq f^n(x_1) = x_1$

f; тогда $\bot\sqsubseteq x_1$ и, в силу монотонности f, $f^n(\bot)\sqsubseteq f^n(x_1)=x_1$ для всех $n\in\mathbb{N}$. Следовательно, $x_0=\bigsqcup_{n\in\mathbb{N}}f^n(\bot)\sqsubseteq x_1$. Таким

образом, x_0 — наименьшая неподвижная точка f.

Определение.

Пусть $(D_j,\sqsubseteq_j)_{j\in J}$ — семейство доменов. Положим **прямое произведение**

$$\prod_{j \in J} D_j = \{f: J o igcup_{j \in J} D_j | f(j) \in D_j$$
 для всех $j \in J\}.$

Если $D_j=D$ для всех $j\in J$, то $\prod\limits_{j\in J}D_j$ обозначается как D^J и называется **прямой степенью**. Определим покоординатно порядок на $\prod\limits_{i\in J}D_j$, а именно,

$$f_1 \sqsubseteq f_2 \Longleftrightarrow [f_1(j) \sqsubseteq_j f_2(j)$$
 для всех $j \in J],$

где
$$f_1, f_2 \in \prod_{j \in J} D_j$$
.

Прямое произведение

Лекция L7 Домены

Вадим Пузаренко Тогда $(\prod_{j\in J} D_j,\sqsubseteq)$ — домен, причём $\bot=(\bot_j)_{j\in J}$ — наименьший

элемент, где \perp_j — наименьший элемент D_j .

Каково бы ни было направленное множество $A\subseteq\prod_{j\in J}D_j$, имеем

$$\bigsqcup A(j) = \bigsqcup_{f \in A} f(j)$$
 для любого $j \in J$,

т. е. точная верхняя грань направленного множества задаётся покоординатно.

Прямое произведение

Лекция L7 Домены

Вадим Пузаренко Тогда $(\prod_{j\in J} D_j, \sqsubseteq)$ — домен, причём $\bot = (\bot_j)_{j\in J}$ — наименьший элемент, где \bot_i — наименьший элемент D_i .

Каково бы ни было направленное множество $A\subseteq\prod_{i\in I}D_i$, имеем

$$\bigsqcup A(j) = \bigsqcup_{f \in A} f(j)$$
 для любого $j \in J$,

т. е. точная верхняя грань направленного множества задаётся покоординатно.

Канонические проекции

Канонические проекции

$$\mathrm{pr}_{j_0}:\prod_{i\in I}D_j o D_{j_0}$$
, где $f\stackrel{\mathrm{pr}_{j_0}}{\longmapsto}f(j_0)$ $(j_0\in J)$

непрерывны, поскольку для направленного множества $A \subseteq \prod\limits_{j \in J} D_j$

имеем

$$\operatorname{pr}_{j_0}(\bigsqcup A) = \operatorname{pr}_{j_0}(\bigsqcup \{f | f \in A\}) = \bigsqcup \{f(j_0) | f \in A\} = \bigsqcup_{f \in A} \operatorname{pr}_{j_0}(f).$$

Система функций

Лекция L7 Домены

Вадим Пузаренко Пусть сначала (E,\sqsubseteq_1) — домен, а D — произвольное множество. На множестве $(D \to E)$ всех функций вида $f:D \to E$ определим отношение порядка следующим образом $(f,g \in (D \to E))$:

$$f \sqsubseteq_0 g \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall x \in D[f(x) \sqsubseteq_1 g(x)].$$

Данное отношение называется поточечным порядком.

Лекция L7 Домены

Вадим Пузаренко Пусть сначала (E,\sqsubseteq_1) — домен, а D — произвольное множество. На множестве $(D \to E)$ всех функций вида $f:D \to E$ определим отношение порядка следующим образом $(f,g \in (D \to E))$:

$$f \sqsubseteq_0 g \stackrel{\text{def}}{\Longleftrightarrow} \forall x \in D[f(x) \sqsubseteq_1 g(x)].$$

Данное отношение называется поточечным порядком.

Тогда $((D \rightarrow E), \sqsubseteq_0)$ — домен:

- ullet постоянная функция const_{\perp} наименьший элемент множества (D o E);
- ② если $\{f_i|i\in I\}$ направленное множество (функций из $(D\to E)$), то для каждого $x\in D$ совокупность $\{f_i(x)|i\in I\}$ также будет направленным множеством (в E). При этом $(\bigsqcup_{i\in I}f_i)(x)=\bigsqcup_{i\in I}f_i(x)$ для всех $x\in D$.

Лекция L7 Домены

Вадим Пузаренко

Пусть, к тому же, (D, \sqsubseteq_2) — домен.

Предложение L10

Если $\{f_i|i\in I\}$ — направленное множество непрерывных функций, то $f\leftrightharpoons\bigsqcup_{i\in I}f_i$ также непрерывна.

Лекция L7 Домены

Вадим Пузаренко

Пусть, к тому же, (D, \sqsubseteq_2) — домен.

Предложение L10

Если $\{f_i|i\in I\}$ — направленное множество непрерывных функций, то $f\leftrightharpoons\bigsqcup_{i\in I}f_i$ также непрерывна.

Доказательство.

Монотонность. Пусть $x,y\in D$ таковы, что $x\sqsubseteq_2 y$. Тогда $f_i(x)\sqsubseteq_1 f_i(y)$ для всех $i\in I$. Далее, $f(x)=\bigsqcup_{i\in I} f_i(x)\sqsubseteq_1 \bigsqcup_{i\in I} f_i(y)=f(y)$.

Лекция L7 Домены

Вадим Пузаренко

Доказательство (продолжение).

Направленность. Пусть теперь $\{x_j|j\in J\}$ — направленное множество в D. Нам необходимо показать, что имеет место $f(\bigsqcup_{j\in J}x_j)=\bigsqcup_{j\in J}f(x_j)$.

Действительно, имеем
$$f(\bigsqcup_{j\in J}x_j)=(\bigsqcup_{i\in I}f_i)(\bigsqcup_{j\in J}x_j)=\bigsqcup_{i\in I}f_i(\bigsqcup_{j\in J}x_j)=$$

$$\bigsqcup_{i\in I}(\bigsqcup_{j\in J}f_i(x_j))\stackrel{\text{(1)}}{=}\bigsqcup_{j\in J}(\bigsqcup_{i\in I}f_i(x_j))=\bigsqcup_{j\in J}((\bigsqcup_{i\in I}f_i)(x_j))=\bigsqcup_{j\in J}f(x_j).$$

Лекция L7 Домены

Вадим Пузаренко

Доказательство (продолжение).

Направленность. Пусть теперь $\{x_j|j\in J\}$ — направленное множество в D. Нам необходимо показать, что имеет место $f(\bigsqcup_{j\in J}x_j)=\bigsqcup_{j\in J}f(x_j)$.

Действительно, имеем
$$f(\bigsqcup_{j\in J} x_j) = (\bigsqcup_{i\in I} f_i)(\bigsqcup_{j\in J} x_j) = \bigsqcup_{i\in I} f_i(\bigsqcup_{j\in J} x_j) = (\bigsqcup_{i\in I} f_i)$$

$$\bigsqcup_{i\in I}(\bigsqcup_{j\in J}f_i(x_j))\stackrel{\text{(1)}}{=}\bigsqcup_{j\in J}(\bigsqcup_{i\in I}f_i(x_j))=\bigsqcup_{j\in J}((\bigsqcup_{i\in I}f_i)(x_j))=\bigsqcup_{j\in J}f(x_j).$$

Упражнение.

Доказать
$$\stackrel{\text{(1)}}{=}$$
.

Лекция L7 Домены

> Вадим Тузаренко

Следствие L4

Множество $[D \to E]$ всех непрерывных функций $f:D \to E$ является доменом относительно поточечного порядка.

Лекция L7 Домены

Вадим Пузаренко

Следствие L4

Множество $[D \to E]$ всех непрерывных функций $f:D \to E$ является доменом относительно поточечного порядка.

Предложение L11

Пусть $D_1,\ D_2$ и E — домены. Тогда функция $f_1^D \times D_2 \to E$ непрерывна, если и только если она покомпонентно непрерывна, а именно, все функции

$$x \mapsto f(x, y_0) : D_1 \to E, y_0 \in D_2;$$

 $y \mapsto f(x_0, y) : D_2 \to E, x_0 \in D_1;$
непрерывны.

Лекция L7 Домены

Вадим Пузаренко

Следствие L4

Множество $[D \to E]$ всех непрерывных функций $f: D \to E$ является доменом относительно поточечного порядка.

Предложение L11

Пусть $D_1,\ D_2$ и E — домены. Тогда функция $f_1^D \times D_2 \to E$ непрерывна, если и только если она покомпонентно непрерывна, а именно, все функции

$$x \mapsto f(x, y_0) : D_1 \to E, y_0 \in D_2;$$

 $y \mapsto f(x_0, y) : D_2 \to E, x_0 \in D_1;$
непрерывны.

Доказательство.

(⇒) Остаётся в качестве упражнения. (⇐) Проверка справедливости свойства монотонности остаётся в качестве упражнения.

Лекция L7 Домены

Вадим Пузаренко

Доказательство (продолжение).

Пусть
$$\{(x_i,y_i)|i\in I\}$$
 — направленное множество в $D_1\times D_2$. Тогда имеем $f(\bigsqcup_{i\in I}(x_i,y_i))=f(\bigsqcup_{i\in I}x_i,\bigsqcup_{i\in I}y_i)=f(\bigsqcup_{i\in I}x_i,\bigsqcup_{j\in I}y_j)=$

$$\bigsqcup_{i\in I} f(x_i, \bigsqcup_{j\in I} y_j) = \bigsqcup_{i\in I} \bigsqcup_{j\in I} f(x_i, y_j) \stackrel{\text{(1)}}{=} \bigsqcup_{i\in I} f(x_i, y_i).$$

Остаётся только проверить равенство $\stackrel{\text{(1)}}{=}$. Так как каждый элемент, входящий в правую часть, встречается и в левой, имеем $\bigsqcup f(x_i, y_i) \sqsubseteq \bigsqcup \bigsqcup f(x_i, y_i)$. В обратную сторону, так как

 $i \in I$ $i \in I$ $j \in I$ $\{(x_i, y_i) | i \in I\}$ — направленное множество, для любых $i, j \in I$

 $\{(x_i, y_i)|i \in I\}$ — направленное множество, для люоых $I, j \in I$ найдётся $k \in I$, для которого выполняется соотношение $(x_i, y_i) \sqsubseteq (x_k, y_k)$ и $(x_i, y_i) \sqsubseteq (x_k, y_k)$, а следовательно,

 $(x_i,y_j) \sqsubseteq (x_k,y_k)$. Тем самым, $\bigsqcup_{i\in I} f(x_i,y_j) \sqsubseteq \bigsqcup_{k\in I} f(x_k,y_k)$. В силу

антисимметричности, выполняется равенство $\stackrel{(1)}{=}$

Лекция L7 Домены

Вадим Пузаренко

Предложение L12

Для произвольных доменов D и E функция $\mathrm{app}:[D \to E] \times D \to E, \ (f,x) \mapsto f(x)$ непрерывна.

Лекция L7 Домены

Вадим Пузаренко

Предложение L12

Для произвольных доменов D и E функция $\mathrm{app}:[D \to E] \times D \to E, \ (f,x) \mapsto f(x)$ непрерывна.

Доказательство.

Воспользуемся предложением L11.

- (1) Для каждой $f \in [D \to E]$ функция $x \mapsto f(x)$ непрерывна.
- (2) Докажем, что для каждого $x \in D$ функционал $f \mapsto f(x)$ непрерывен. Пусть $\{f_i | i \in I\}$ множество, направленное в $[D \to E]$. Тогда точная верхняя грань в $[D \to E]$ определяется поточечно: $(\coprod f_i)(x) = \coprod f_i(x)$.

Непрерывные функции

Лекция L7 Домены

> Вадим Тузаренко

Замечание.

Два последних утверждения не обобщаются на случай бесконечных прямых произведений, с одной стороны; а с другой стороны, не имеют аналогов в курсе анализа.

Непрерывные функции

Лекция L7 Домены

Вадим Пузаренко

Замечание.

Два последних утверждения не обобщаются на случай бесконечных прямых произведений, с одной стороны; а с другой стороны, не имеют аналогов в курсе анализа.

Пример.

Пусть D, E и F — домены. $\mathrm{id}_D: D \to D$ непрерывна. Если $f: D \to E$ и $g: E \to F$ непрерывны, то непрерывной будет и их композиция $(g \circ f): D \to F$ (здесь $\{x_i | i \in I\}$ — направленное множество): $(g \circ f)(\bigsqcup_{i \in I} x_i) = g(f(\bigsqcup_{i \in I} x_i)) = g(\bigsqcup_{i \in I} f(x_i)) = \bigsqcup_{i \in I} g(f(x_i)) = \bigsqcup_{i \in I} (g \circ f)(x_i)$. Легко проверяется свойство монотонности (упражнение!!!)

Непрерывные функционалы

Лекция L7 Домены

Вадим Пузаренко

Пример.

сотр :
$$[D \to E] \times [E \to F] \to [D \to F]$$
 — непрерывный функционал. Сначала докажем, что $g \circ (\bigsqcup_{i \in I} f_i) = \bigsqcup_{i \in I} (g \circ f_i)$, где $\{f_i | i \in I\}$ — направленное множество в $[D \to E]$ (здесь $x \in D$): $(g \circ (\bigsqcup_{i \in I} f_i)(x) = g((\bigsqcup_{i \in I} f_i)(x)) = g(\bigsqcup_{i \in I} f_i(x)) = \bigsqcup_{i \in I} g(f_i(x)) = \bigsqcup_{i \in I} (g \circ f_i)(x)$. Аналогично доказывается, что $(\bigsqcup_{i \in I} g_i) \circ f = \bigsqcup_{i \in I} (g_i \circ f)$, где $\{g_i | i \in I\}$ — направленное множество в $[E \to F]$. Проверка покомпонентной монотонности оставляется в качестве упражнения. Остаётся применить предложение L11.

Непрерывные функционалы

Лекция L7 Домены

Вадим Пузаренко

Примеры.

 ${
m it}^{(2)}:[D o D] o [D o D],\ f\mapsto f\circ f$ — непрерывный функционал. Действительно, этот функционал может быть определён как композиция непрерывных функционалов:

$$\begin{array}{ccc} [D \to D] & \to & [D \to D] \times [D \to D] & \stackrel{\text{comp}}{\longrightarrow} & [D \to D] \\ f & \mapsto & (f, f) & \mapsto & f \circ f \end{array}$$

Проверка того, что отображение $f \mapsto (f,f)$ будет непрерывным функционалом, остаётся в качестве упражнения. it $^{(n)}: [D \to D] \to [D \to D], \ f \mapsto f^n -$ непрерывный функционал. Проверка того, что отображение $f \mapsto f^n$ будет непрерывным функционалом, остаётся в качестве упражнения.

Непрерывные функционалы

Лекция L7 Домены

Вадим Пузаренко

Примеры.

 $\mathbb{Y}_{D}^{(n)}: [D \to D] \to D$, $f \mapsto f^n(\bot)$ — непрерывный функционал. Действительно, этот функционал может быть определён как композиция непрерывных функционалов:

$$\begin{array}{ccc} [D \to D] & \xrightarrow{\operatorname{it}^{(n)}} & [D \to D] \times [D \to D] & \to & [D \to D] \\ f & \mapsto & f^n(\bot) \end{array}$$

 $\mathbb{Y}_D: [D o D] o D, \ f \mapsto f^n(\bot) -$ непрерывный функционал. Имеем $\mathbb{Y}_D^{(0)} \sqsubseteq \mathbb{Y}_D^{(1)} \sqsubseteq \ldots \sqsubseteq \mathbb{Y}_D^{(n)} \sqsubseteq \ldots, \ \tau. \ e. \ \{\mathbb{Y}_D^{(n)} | n \in \mathbb{N}\}$ образует ω -цепь, поэтому $\mathbb{Y}_D = \bigsqcup_{n \in \mathbb{N}} \mathbb{Y}_D^{(n)}$ непрерывен.

Напомним, что $\mathbb{Y}_D(f) = \bigsqcup_{n \in \mathbb{N}} \mathbb{Y}_D^{(n)}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\bot)$ является наименьшей неподвижной точкой, по теореме L16. В частности, $\mathbb{Y}_D(f) = f(\mathbb{Y}_D(f))$.

Преобразование Карри

Лекция L7 Домены

Вадим Пузаренко

Пусть D_1 , D_2 и E — домены. Следуя подходу Карри, получаем две взаимно обратные биекции

$$(D_1 \times D_2 \to E) \stackrel{\mathrm{curry}}{\longrightarrow} (D_1 \to (D_2 \to E)), \ (D_1 \to (D_2 \to E)) \stackrel{\mathrm{uncurry}}{\longrightarrow} (D_1 \times D_2 \to E),$$

индуцирующие две взаимно обратные непрерывные биекции

$$[D_1 \times D_2 \to E] \xrightarrow{\text{curry}} [D_1 \to [D_2 \to E]],$$

$$[D_1 \to [D_2 \to E]] \xrightarrow{\text{uncurry}} [D_1 \times D_2 \to E].$$

Проверка свойства непрерывности функционалов оставляется в качестве упражнения.

Лекция L7 Домены

Вадим Пузаренко

Спасибо за внимание.