פונקציות ממשיות - חורף תשס"א - גליון תרגילים מס' 5

להגשה: עד יום א', 7.1.01. שאלה עם * היא שאלת רשות.

בכל השאלות להלן אחרת. m הוא מרחב מידה; חיובית, אלא אם כן צויין אחרת. m היא מידת לבג על היא מידה חיצונית. m_e היא מידה חיצונית.

- -ט כך שר $C,B\in\mathcal{M}$ עבורן קיימים $A\subset X$ את אוסף הקבוצות .1 .1 .1 ... \mathcal{M}^* . $\mu^*(A)=\mu(C)$ את נגדיר במקרה הוא $\mu(B\backslash C)=0$. $\mu(B\backslash C)=0$. $\mu(C)$... ההשלמה של \mathcal{M} ביחס ל-
 - $-\sigma$ אלגברה ש- \mathcal{M}^* אלגברה
 - ב. הוכיחו ש- \mathcal{M} היא ה σ אלגברה הנוצרת ע"י \mathcal{M}^* והמשפחה ב. $\{A\subset X\mid\exists B\in\mathcal{M}:\ A\subset B\,,\,\mu(B)=0\}$
 - . $\mu^*|_{\mathcal{M}}=\mu$ -שו \mathcal{M}^* וש- μ^* מוגדרת היטב על μ^*
 - ד. הוא מרחב מידה $(X, \mathcal{M}^*, \mu^*)$ הוא מרחב מידה.
- 2. אנו אומרים שמרחב המידה (החיובית: (X,\mathcal{M},μ) הוא שלם אם עבור כל $B\subset A$ אם אנו אומרים שמרחב המידה (החיובית: $(\mu(B)=0)$ בודאי $\mu(A)=0$
- א. הוכיתו ש- $(\mathbb{R},\mathcal{L},m)$ הוא מרחב מידה שלם. σ -אלגברה של לבג ב-
- ב. בעזרת שיקולי ספירה הוכיחו ש- $(\mathbb{R}^n,\mathcal{B},m)$ ש- אלגברה של בורל ב- ב. בעזרת שיקולי ספירה הוכיחו ש- (תת-קבוצות של קבוצת קנטור).
 - ג. הסיקו שיש קבוצות ב- \mathbb{R}^n שהן מדידות לבג שאינן מדידות בורל.
 - m -ד. הוכיתו ש- \mathcal{L} היא ההשלמה של
- עם $A\in\mathcal{M}$ -ט מידה מישור מידה חופית, $D\subset\mathbb{C}$, $f\in L^1(\mu)$, אידה טופית, $M_A(f)=\frac{1}{\mu(A)}\int_A f\,d\mu$. נגדיר את הממוצע ווא . $\mu(A)>0$
- א. הוכיחו שאם r>0 הכדור הסגור ברדיוס $\bar B(z,r)$ שא. הוכיחו שאם r>0 א. $\bar B(z,r)$ הכדור הסגור ברדיוס $M_A(f)\in \bar B(z,r)$, $|M_A(f)-z|\leq r$ או $x\in A$ או בור כל $z\in \mathbb C$
- ב. הוכיחו שעבור D סגורה אם $M_A(f) \in D$ לכל A מדידה שמידתה חיובית אז $x \in X$ עבור כמעט כל $f(x) \in D$
- 4. קטע דיאדי חצי פתוח הוא קטע מהצורה $(\frac{a}{2^n}, \frac{b}{2^n})$ כש- $n \in \mathbb{N}$ ו- $n \in \mathbb{N}$ שלמים. קוביה I_1, \ldots, I_n באדית חצי פתוחה ב- I_1, \ldots, I_n היא קבוצה מהצורה $I_{i=1}$ כאשר I_i הם I_i היא איחוד בן-מנייה קטעים דיאדיים חצי פתוחים. הוכיחו שכל קבוצה פתוחה ב- I_i היא איחוד בן-מנייה של קוביות דיאדיות חצי פתוחות זרות.
- (B-נתונות תיבה B וקבוצה $A\subset B$ ב- \mathbb{R}^n . נגדיר את המידה הפנימית של $A\subset B$ נתונות תיבה B וקבוצה $A\subset B$ ב- B. נתונות תיבה B והוכיתו ש- B מדידה לבג אם"ם B והוכיתו ש- B מדידה לבג אם"ם B והוכיתו ש- B מדידה לבג אם מדידה לבג
- למדידות: קבוצה היא מדידה לבג אם"ם מדידה לבג אם"ם למדידות: $A\subset \mathbb{R}^n$ למדידות: Caratheodory לכל הוכיחו את קריטריון לכל לכל הוכיחו את חסומה מתקיים $B\subset \mathbb{R}^n$ לכל לכל
- -ט בנו קנטור כך הומיומורפית לקבוצת קנטור כך ש- $A\subset [0,1]$ בהנתן $0<\alpha<1$ בנו קבוצה -n. (הדרכה: זרקו בשלב ה-n-י n קטעים ארים באורך $m(A)=\alpha$

בהצלתה.