Problem B5 from the 1995 Putnam Exam

Evan Dreher

October 13, 2023

1 The Problem

A game starts with four heaps of beans, containing 3, 4, 5, and 6 beans. The two players move alternately. A move consists of taking **either**

- 1. one bean form a heap, provided at least two beans are left behind in that heap
- 2. a complete heap of two or three beans.

The player who takes the last heap wins. To win the game, do you want to move first or second? Give a winning strategy.

2 The Solution

Let p_1 and p_2 denote the two players of the game where p_1 goes first.

First consider a game played by the same rules but with only 1 heap of n beans where $n \geq 3$. If n is odd, p_1 will win because they will reduce it to an even number, and player 2 will reduce it back to odd. This will repeat until player 1 is left with 3 beans in the heap and they will take the heap and win the game. Likewise if n is even p_2 will win.

Now consider the same game but with only two piles of size n and k where both are greater than 3.

If n and k are even, p_1 will lose. Regardless of which heap they choose from they will reduce a pile to an odd quantity. If they reduce a pile to size 3, p_2 can simply take the whole pile and leave an even pile on p_1 's turn which wins the game for p_2 . If instead the odd pile is greater than size 3, p_2 will simply reduce it back to an even number and repeat until victory.

If n and k are odd, p_1 will also lose. p_1 will reduce a pile to an even quantity. p_2 will then take one from the other pile reducing it to an even quantity as well thus leaving p_1 with n and k even which has been previously established to be a win for p_2

Thus if only one of n and k is even, it will be a win for p_1 since they can simply reduce the odd pile to an even one and give p_2 the losing position.

Now consider the same game but with three piles the three piles greater than size 3 denoted n, k, and x. I assert that if the game starts like this and n+k+x mod 2=1, then p_1 will win.

Proof. Since each pile is larger than three, then eventually a move will be made the reduce a pile from size 3 to size 4 and the other boards will both be greater than 3. The current player, denoted p_c will then consider the quantities of the other two boards, denoted n and k. If $n \mod 2 = k \mod 2$, then p_c will simply take the entirety of the pile with 3 beans leaving the other player with a lost position. If $n \mod 2 \neq k \mod 2$, then p_c will reduce the pile of size 3 to size two. If the other player takes the pile of size 2, then it is p_c 's turn when $n \mod 2 \neq k \mod 2$ which was previously established to be a win for p_c . If they do not, then p_c takes the pile of two leaving the other player with a board where $n \mod 2 = k \mod 2$ which was previously established to be a win for p_c .

thus in all cases, once one of the boards is reduced to size 3 for the first time, p_c wins the game. Now let the board state be n, k, x while it is p_1 's turn. p_1 (knowing that they cannot reduce a pile to size 3 without losing the game) will avoid drawing from the pile of size 4 and draw from any pile larger than that. But since p_2 also knows this, they will do the same. With both sides avoiding piles of size 4, there will be n-4+k-4+x-4 moves before a player is forced to draw from a pile of size 4. If n-4+k-4+x-4 is even, then an even number of moves before a player is forced to reduce a board to size 3. After an even number of moves it is p_1 's turn thus p_1 will be forced to make a board of size 3 and lose. If instead n-4+k-4+x-4 then p_2 will be the one forced to make a board of size 3 and lose.

Now consider the actual game. The one with board state 3, 4, 5, 6. I assert that p_1 wins.

Proof. p_1 begins by reducing the pile of size 3 to size 2. If p_2 responds by taking the remainder of the pile then it is p_1 's turn on the board state 4,5,6 which is a win for p_1 since $0+1+2 \mod 2=1$. If p_2 response by taking from the pile of size 5 or 6, p_1 takes the remainder of the pile of size two leaving it to be p_2 's turn on either 4,4,6 or 4,5,5 which is a loss for p_2 since the sum of the values mod 2 is 0. If p_2 responds by reducing the pile of size 4 to size 3, p_1 will respond by taking the remainder of the pile. This leaves the board state 2,5,6 when it is p_2 's turn. If p_2 takes the pile of size 2, then it is p_1 's turn when p_2 mod 2 which is a win for p_2 . If instead p_2 takes from one of the other piles, p_2 will take the remainder of the pile of size 2 leaving it to be p_2 's turn when p_2 mod 2 which is a loss for p_2 . In all cases, p_2 wins by this strategy, therefore, in order to win the game you want to move first. \mathbb{Q} . \mathbb{E} . \mathbb{D}