Statistic Review With R

Ryan Zhang

October 12, 2015

Population V.S. Sample

- Population: all the individuals we are interested in
 - the characteristic of the population is called a parameter
 - example: population mean μ_X
- Sample: some of the individuals draw from the population
 - the characteristic of the sample is called a statistic
 - \bullet example: sample mean $\hat{\mu}_X$
- Statistical Inference:
 - from sample statistic to population parameter

Population V.S. Sample

```
set.seed(123)
pop = rnorm(9999,170,4)
sample1 = sample(pop, 50)
print(paste("population mean is ", round(mean(pop),2)))
print(paste("sample mean is ", round(mean(sample1),2)))
```

```
## [1] "population mean is 169.99"
## [1] "sample mean is 169.97"
```

Central Tendency

• Mean: Arithmic Average

.

$$\bar{x} = \frac{\sum_{i} x_{i}}{n}$$

- Not robust, affected by outlier
- Median: The middle value
 - More robust
- Mode: Most frequenist outcome
 - \bullet Only meaningful measure for categorical variable

Central Tendency

```
myMean <- function(data) return(sum(data)/length(data))
myMedian <- function(data){
    data <- sort(data)
    if (length(data)%%2==1) data[(length(data)+1)/2]
    else (data[length(data)/2]+data[length(data)/2+1])/2
    }
print(paste("sample mean is",round(myMean(sample1),2)))
print(paste("sample median is ",round(myMedian(sample1),2)))</pre>
```

```
## [1] "sample mean is 169.97"
## [1] "sample median is 169.34"
```

Central Tendency

```
myMode <- function(data){
    freqTable <- table(data)
    return(freqTable[freqTable == max(freqTable)])
}
print(myMode(c(1,1,1,2,2,2,3,3,4,5,6,6,7,7,7)))</pre>
```

```
## data
## 1 2 7
## 3 3 3
```

Measure of Dispersion

- Variance, Skewness and Kurtosis are different moments
- k-th moment:

$$\frac{\Sigma (X - \bar{X})^k}{N}$$

- Variance: k = 2
 - Standard Deviation is Variance adjusted via SQRT to get back to the original unit of measure
- Skewness: k = 3
 - Skewness < 0 ⇒ negative skew
 - $Skewness > 0 \implies$ positive skew
- Kurtosis: k = 4
 - The kurtosis of a normal distribution $N(\mu, \sigma^2)$ is $3\sigma^4$
 - Higher Kurtosis means fatter tails.

- Frequency: the number of times a certain outcome occurs
- If we know the frequencies of all possible outcomes, we can calculate the probability of each single one of them:

$$Pr(outcome_j) = \frac{\text{freq of outcome j}}{\Sigma_i \text{freq of outcome i}} \times 100$$

- For discrete variable, the frequency is literally what it is
- For continuous variable, we need to create intervals and assign values into intervals in order to get the frequency.

• What is $Pr(165 \le X < 167.5)$ in our sample 1?

```
freq_j = sum((sample1 >= 165) & (sample1 < 167.5))
freq_total = length(sample1)
round(freq_j/freq_total,2)*100</pre>
```

```
## [1] 22
```

• This 22% is our emperical probability.

• What is Pr(X < 170) in our sample 1?

```
freq_j = sum(sample1 < 170)
freq_total = length(sample1)
round(freq_j/freq_total,2)*100</pre>
```

```
## [1] 54
```

• This 54% is our emperical probability.

• What is Pr(X > 175) in our sample 1?

```
freq_j = sum(sample1 > 175)
freq_total = length(sample1)
round(freq_j/freq_total,2)*100
```

```
## [1] 12
```

• This 12% is our emperical probability.

Histogram

qplot(x = sample1, binwidth = 2.5)

Frequency Polygon

qplot(x = sample1, geom = "freqpoly", binwidth = 2.5)

Normal Distribution

```
linspace = seq(-4,4,0.01)
qplot(x = linspace, y = dnorm(linspace), geom = "line")
```


Skewed Distribution

- Right == Positive == long tail on right hand side
- Left == Negative == long tail on left hand side

```
# some example data
set.seed(123)
binomSample <- rnbinom(9999, 10, .7)
pd <- density(binomSample, bw = 1)</pre>
```

Positive/Right Skewed Distribution

```
qplot(x = pd$x, y = pd$y, geom = "line") +
    geom_vline(xintercept = mean(binomSample)) +
    geom_vline(xintercept = median(binomSample), linetype = 4)
```


Negative/Left Skewed Distribution

```
qplot(x = -1*pd$x, y = pd$y, geom = "line") +
    geom_vline(xintercept = -1*mean(binomSample)) +
    geom_vline(xintercept = -1*median(binomSample), linetype = 4)
```


Probability From Distributions

- If $X \sim N(0,1)$
- What is $Pr(X \leq -2)$

```
pnorm(-2, \underline{mean} = 0, \underline{sd} = 1)
```

[1] 0.02275013

Probability From Distributions

- If $X \sim N(0,1)$
- What is $Pr(-2 \le X \le 2)$

```
pnorm(2, mean = 0, sd = 1) - pnorm(-2, mean = 0, sd = 1)
```

[1] 0.9544997

Probability From Distributions

- If $X \sim N(0,1)$
- What is $Pr(X \ge 2)$

pnorm(2, mean = 0, sd = 1, lower.tail = F)

[1] 0.02275013

Quantile

- An lower alpha quantile is a value q_{α} such that $100 \times alpha$ percent of the data is less than or equal to it.
- In other word: $Pr(X \leq q_{\alpha}) = \alpha$
- \bullet Median is just the 50% quantile

```
quantile(sample1)
median(sample1)
```

```
## 0% 25% 50% 75% 100%
## 163.1585 166.8809 169.3390 172.6214 179.5953
## [1] 169.339
```

• These are our emperical quantiles

Quantile

• The upper 0.05 quantile is often seen

```
qnorm(0.05,lower.tail = F)
```

```
## [1] 1.644854
```

- Which simple means that:
 - If $X \sim N(0, 1)$
 - Then $Pr(X \ge \text{upper } q_{\alpha}) = 0.05$
 - Where upper $q_{\alpha} = 1.644854$

Conditional Probability

- The probability of an event happen given another event happened
- Denoted as:
 - Pr(A|B)
 - Pr(A|X=x)
 - etc.

Conditional Probability

$$Pr(Speal.Length>=4.9)$$

$$\neq$$

$$Pr(Speal.Length>=4.9|Species="setosa")$$

```
## [1] 89
## [1] 68
```

Conditional Probability

$$Pr(X \ge 2|X \sim N(0,1))$$

$$\neq$$

$$Pr(X \ge 2|X \sim t(\nu = 30))$$

```
pnorm(2, mean = 0, sd = 1, lower.tail = F)
pt(2,df = 30, lower.tail = F)
```

```
## [1] 0.02275013
## [1] 0.02731252
```

- T-distribution has fatter tail than normal distribution
- Try it out by calculating the Kurtosis if you want
- As $\nu \to \infty$ T distribution will be more close to Standard Normal distribution

Conditional Probability View of Quantile

```
qnorm(0.05, \underline{mean} = 0, \underline{sd} = 1, \underline{lower.tail} = F)
```

[1] 1.644854

- If $X \sim N(0,1)$
- Then $Pr(X \ge 1.644854) = 0.05$
- \bullet Expressed as conditional probability:
 - $Pr(X \ge 1.644854 | X \sim N(0,1)) = 0.05$

Sampling and Sampling Distribution

 \bullet sample mean depend on the sample

mean(sample1)

• Is $\hat{\mu}_{X|sample 1}$

Sampling and Sampling Distribution

- Repeated draw samples from population
- Calculate mean on each sample

```
sample_means <- vector()
set.seed(0306)
for(i in 1:30){
    s = sample(pop,size = 200, replace = F)
    sample_means <- c(sample_means, mean(s))
}
sample_means[1:5]</pre>
```

```
## [1] 169.9021 169.8980 169.9382 169.9669 170.1715
```

Sampling and Sampling Distribution

• Distribution of sample means

```
d = density(sample_means)
qplot(d$x, d$y, geom = "line")
```


Central Limit Theorem for Sample Mean

- From any population distribution, as long as the variance of that population is finite
- \bullet We draw n samples from the distribution, and calculate n sample means
- If n is sufficiently large (usually 30 will do)
- Then the distribution of the n sample means will be approximately normal

Law of Large Numbers

- From any population distribution, as long as the variance of that population is finite
- We draw n samples from the distribution, and calculate n sample means
- \bullet The mean of n sample means converge in probability to population mean as $n\to\infty.$

Good News and Bad News

- Good News: If we can draw large numbers of samples from population
 - The distribution of sample means will be normal
 - ${\color{red} 2}{\color{black} 2}$ The mean of sample means will be close to population mean
- Bad News: Often time all we have is a sample
- What we do next?

Null Hypothesis Significance Testing, NHST

- \bullet Null hypothesis: the population mean is μ_0
- \bullet If null is true, then the mean of sample means will be $\mu_0,$ plus sample means normally distributed
- • Esitmate standard error (standard deviation of the sampling distribution) using $\frac{\sigma}{\sqrt{n}}$
- Then the sampling distribution follows $N(\mu_0, \frac{\sigma^2}{n})$

Null Hypothesis Significance Testing, NHST

- Given null is true, we can infer that the sampling distribution as shown in previous slide
- Then, we can ask the question:
 - What is the probability we obtain a sample mean large than or equal to the one $\hat{\mu}_X$ we have?
 - $Pr(X \ge \hat{\mu}_X | X \sim N(\mu_0, \frac{\sigma^2}{n}))$
 - $Pr(X \ge \hat{\mu}_X | \text{null is true})$

Null Hypothesis Significance Testing, NHST

- $Pr(X \ge \hat{\mu}_X | \text{null is true})$ the p-value is a upper quantile
- Meaning, what percentage of sample means have a value greater than or equal to the one we had.
- If the percentage/ probability is very small, we tend to believe that the null is not true.
- Then we reject the null.
- Remark: This is stupid logic.

Procedure of NHST of Sample Mean

- Specify null and alternative hypothesis
- 2 Calculate test statistic
 - $z = \frac{\hat{\mu}_X \mu_0}{\frac{\sigma}{\sqrt{n}}}$ if population variance is known (do we really have this case?)
 - $t = \frac{\hat{\mu}_X \mu_0}{\frac{\hat{\sigma}}{\sqrt{n}}}$ if population variance is unknown
- Calculate the p value
 - $Pr(X \ge \hat{\mu}_X | \text{null is true})$ suppose we we do a right-tailed test
 - Which is equal to $Pr(Z \ge z|Z \sim N(0,1))$ if population variance is known
 - and $Pr(T \ge t | T \sim t(\nu))$ if population variance is unknown
- Make judgement

Various form of NHST of the mean

H_A	p value
$\mu \neq \mu_0$ $\mu \geq \mu_0$ $\mu \leq \mu_0$	$2Pr(Z \ge z)$ $Pr(Z \ge z)$ $Pr(Z \le z)$
	$\mu \neq \mu_0$

```
t.test(sample1,mu = 172, alternative = "two.sided")
t.test(sample1,mu = 172, alternative = "greater")
t.test(sample1,mu = 172, alternative = "less")
```

NHST One sample T.Test in R

t.test(sample1,<u>mu = 172, alternative = "less")</u>

```
##
## One Sample t-test
##
## data: sample1
## t = -3.5813, df = 49, p-value = 0.000392
## alternative hypothesis: true mean is less than 172
## 95 percent confidence interval:
## -Inf 170.9225
## sample estimates:
## mean of x
## 169.9741
```

- \bullet If we draw a 95% interval around the mean of sampling distribution
- Ofcourse we will include the true mean of sampling distribution

- \bullet If we draw a 95% interval around a value that is smaller than the lower 0.025 quantile
- The mean of sampling distribution will not be included

- The formula is $\hat{\mu}_X \pm t_{\frac{\alpha}{2},\nu} se$
- Back to standard scale it is simply $0 \pm t_{\frac{\alpha}{2},\nu}$
- In conditional probabilty sense:

$$Pr(-t_{\frac{\alpha}{2},\nu} \leq T \leq t_{\frac{\alpha}{2},\nu}|T \sim t(\nu)) = 0.95$$

- How often we get a sample mean below the lower 0.025 quantile or larger than the upper 0.025 quantile?
- \bullet 0.025 + 0.025 = 0.05 = 5\%
- That is to say 5% of the intervals we constructed this way will not include the true mean of sampling distribution, which according to Law of Large Numbers should be the true population mean.

Connection Confidence Interval and NHST

- If a null hypothesis $\mu = \mu_0$ can be rejected at a α significance level
- Then the $100(1-\alpha)$ percent confidence interval will not contain μ_0

t.test(sample1,mu = 172, alternative = "two.sided")

```
##
## One Sample t-test
##
## data: sample1
## t = -3.5813, df = 49, p-value = 0.0007839
## alternative hypothesis: true mean is not equal to 172
## 95 percent confidence interval:
## 168.8373 171.1109
## sample estimates:
## mean of x
## 169.9741
```

Paired Two Sample T-Test

- Same measure score before treatment and after treatment
- $H_0: \mu_1 \mu_2 = d_0$

```
set.seed(1106)
sample2 = sample(pop, size = 50, replace = T) + 0.8
t.test(sample1, sample2, mu = 0, paired = T)
```

Paired Two Sample T-Test

• It is equivalent to a one sample test on the differences

t.test(sample1-sample2)

```
##
## One Sample t-test
##
## data: sample1 - sample2
## t = -2.2143, df = 49, p-value = 0.03149
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -3.2614750 -0.1580463
## sample estimates:
## mean of x
## -1.709761
```

Un-Paired Two Sample T-Test

- Need variance pooling, also the degrees of freedom has a funky formula
- Not going to talk about the details..

```
set.seed(2014)
sample3 = sample(pop, size = 111, replace = T) + rnorm(111, 0 ,0.11)
t.test(sample1, sample2, paired = F)
```

```
##
## Welch Two Sample t-test
##
## data: sample1 and sample2
## t = -2.2931, df = 95.811, p-value = 0.02403
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.1898512 -0.2296701
## sample estimates:
## mean of x mean of y
## 169.9741 171.6839
```

Chi-Square Confidence Interval for Population Variance

- Make inference on the population variance
- Test statistic $\frac{(n-1)\hat{\sigma}^2}{\sigma_0^2} = \frac{\Sigma(X-\hat{\mu}_X)^2}{\sigma_0^2}$

```
myChisq.CI <- function(v, level = 0.95){
    n = length(v)
    left <- round((n-1)*var(v)/qchisq(1-(1-level)/2,n-1),4)
    right <- round((n-1)*var(v)/qchisq((1-level)/2,n-1),4)
    print(paste(left,right))
}
myChisq.CI(sample1)
var(pop)</pre>
```

```
## [1] "11.1645 24.8455"
## [1] 15.95734
```

Chi-Square Test on Population Variance

• You can perform Chi-Square test on it too.

```
myChisq.Test <- function(v, var0, tail = "Two-tail"){
    n = length(v)
    chisq <- (n-1)*var(v)/var0
    if (tail == "Right-tail"){p <- 1-pchisq(chisq,n-1)}
    else if (tail == "Left-tail"){p <- pchisq(chisq,n-1)}
    else {
        if (var > var0) p <- 2*(1-pchisq(chisq, n-1))
        else p <- 2*(pchisq(chisq, n-1))}
    return(p)}
myChisq.Test(sample1,10, "Right-tail")</pre>
```

```
## [1] 0.004821433
```

```
var(sample1)
```

```
## [1] 15.99994
```

F-test

• Hypothesis for the ratio of two population variances

```
• H_0: \frac{{\sigma_1}^2}{{\sigma_2}^2} = 1
```

```
myF.Test <- function(v1,v2,tail = "Two-tail"){
    var1 <- var(v1); var2 <- var(v2); n1 <- length(v1); n2 <- length(v2)
    f <- var1/var2
    if (tail == "Right-tail") p <- 1-pf(f, n1-1,n2-1)
    else if (tail == "Left-tail") p <- pf(f, n1-1,n2-1)
    else {
        if (var1 > var2) p <- 2*(1-pf(f, n1-1, n2-1))
        else p <- 2*(pf(f, n-1, n2-1))
        return(p)}
}
var(sample1);var(sample2);print(myF.Test(sample1, sample2, "Right-tail"))</pre>
```

```
## [1] 15.99994
## [1] 11.79786
## [1] 0.1448279
```

Break

- I Guess GR521 didn't go this far now... Right?
- We switch to ST625 for now...

Linear Regression

- Identify linear relationship between dependent variable and independent variables
- Linear function is of form:
 - $Y = \alpha + \beta X$
- Example data

```
set.seed(312)
weights <- rnorm(50, 130, 7)
heights <- weights * 1.3 + rpois(50,7)
df <- cbind.data.frame(y = heights, x = weights)</pre>
```

Simple Regression

• One dependent variable in the linear function

```
qplot(x = x, y = y, data = df) +
    geom_abline(intercept = 3.598477, slope = 1.329348)
```


Conditional Means

• Conditional Means: $\mu_{Y|X}$

```
df$interval <- cut(df$x, breaks = seq(115,155,5))
qplot(x = interval, y = y, data = df, geom = "boxplot") + geom_jitter() +
    stat_summary(fun.y=mean, geom="point", shape=8, size=5,color = "blue")</pre>
```


Assumptions of Linear Regression

- Linearity: regression line connecting all conditional means
- Nomarlity: all conditional distribution are normally distributed
- Equal Variance (Homeoscedasticity): variances for all conditional distribution are the same
- Independence of the error terms: residuals are independently distributed

OLS Regression Line

- \bullet Find the coefficients for $Y=\alpha+\beta X$ such that the RMSE, MSE, SSE can be minimized
- SSE = $\Sigma (Y \hat{Y})^2$

```
model <- lm(y~x, data= df)
coefficients <- summary(model)$coefficients[,"Estimate"]
coefficients
RMSE <- sqrt(sum(model$residuals^2)/model$df.residual)
RMSE</pre>
```

```
## (Intercept) x
## 3.598477 1.329348
## [1] 2.986083
```

OLS Regression Line

summary(model)

```
##
## Call:
## lm(formula = v \sim x, data = df)
##
## Residuals:
##
      Min
          10 Median
                              30
                                    Max
## -4.2841 -2.3455 -0.8654 2.2957 8.4508
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.59848 7.74260 0.465 0.644
## x
            1.32935 0.05937 22.390 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.986 on 48 degrees of freedom
## Multiple R-squared: 0.9126, Adjusted R-squared: 0.9108
## F-statistic: 501.3 on 1 and 48 DF, p-value: < 2.2e-16
```

Make Predictions

- This is calculate the estimated values for conditional means
- $\hat{Y} = a \times 1 + bX$
- \bullet Where a and b are estimated values for α and β from the OLS fitted linear regression function

```
c(1, 144) %*% coefficients
model$fitted.values[1:5]
```

```
## [,1]
## [1,] 195.0245
## 1 2 3 4 5
## 183.9710 190.4468 184.9275 169.4796 175.4987
```

Naive Benchmark

- ullet Use a horizontal line at height of \bar{Y} as predictions
- RMSE for OLS line 2.9860834
- \bullet RMSE for horizontal overall mean line 9.9981528 , this is simply the standard deviation of y

Sampling Distribution of the Slope Coefficient

- Similar to the sampling distribution of mean
- If we can drawn many independent samples from the population
- For each sample we get the coefficients via OLS
- ullet Then we get a sampling distribution of both a and b

```
bs <- vector() -> as
set.seed(36)
for (i in 1:30){
    w <- rnorm(50, 130, 7); h <- weights * 1.3 + rpois(50,7);m <- lm(h~w);
    as <- c(as,m$coefficients[1])
    bs <- c(bs,m$coefficients[2])}
bs[1:5]</pre>
```

```
## w w w w w w ## -0.257624667 -0.011424271 -0.255341005 0.043474584 0.003996654
```

Sampling Distribution of the Slope Coefficient

```
bs.density <- density(bs)
qplot(bs.density$x, bs.density$y, geom = "line")</pre>
```


Standard Error for Sampling Distribution of the Slope Coefficient

```
b.SE <- RMSE/sqrt(sum((df$x - mean(df$x))^2))
summary(model)
b.SE</pre>
```

```
##
## Call:
## lm(formula = v \sim x, data = df)
##
## Residuals:
##
      Min
              10 Median
                             30
                                    Max
## -4.2841 -2.3455 -0.8654 2.2957 8.4508
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.59848 7.74260 0.465 0.644
## x
         1.32935 0.05937 22.390 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.986 on 48 degrees of freedom
## Multiple R-squared: 0.9126, Adjusted R-squared: 0.9108
## F-statistic: 501.3 on 1 and 48 DF, p-value: < 2.2e-16
##
## [1] 0.05937144
                                                 →□→ → = → ○○
```

T-Test for the Slope Coefficient

• $\frac{(b-\beta)}{\hat{\sigma}_b}$ is t distributed

```
t <- coefficients[2]/b.SE
pt(t, df = model$df.residual, lower.tail = F)
summary(model)$coefficients</pre>
```

```
## x

## 2.348994e-27

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.598477 7.74259940 0.4647634 6.442024e-01

## x 1.329348 0.05937144 22.3903559 4.697989e-27
```

Sampling Distribution of Estimated Conditional Mean

- Use the different regression functions we got using sampling method, we can make many predictions for a given x value
- These predictions are the estimated conditional mean that different regression line pass through
- And... these conditional means form a sampling distribution

```
preds <- cbind(as, bs) %*% c(1,144)
row.names(preds) <- NULL
preds[1:5]</pre>
```

[1] 173.0738 176.6668 173.6359 176.6817 175.7985

Sampling Distribution of Estimated Conditional Mean

• The standard error term for this sampling distribution is funky

•
$$\sigma_{\hat{\mu}_{Y|X}} = \sqrt{\frac{\sigma_{Y|X}^2}{n} + (X - \bar{X})^2 \frac{\sigma_{Y|X}^2}{\Sigma (X - \bar{X})^2}}$$

```
preds.density <- density(preds)
qplot(preds.density$x, preds.density$y, geom = "line")</pre>
```


Confidence Interval of the Predictions

```
weight.linspace <- seq(115,155,1)
predict.CI <- predict(model, data.frame("x" = weight.linspace), interval = "containing to be a sequence of the sequence
```


Prediction Interval

• Standard Error is even more funky:

$$\sigma_{\hat{\mu}_{Y|X}} = \sqrt{\sigma_{Y|X}^2 + \frac{\sigma_{Y|X}^2}{n} + (X - \bar{X})^2 \frac{\sigma_{Y|X}^2}{\Sigma (X - \bar{X})^2}}$$

predict.PI <- predict(model, data.frame("x" = weight.linspace), interval_</pre>

Covariance

```
 \bullet \ \frac{\Sigma(X\!-\!\bar{X})(Y\!-\!\bar{Y})}{n}
```

```
ggplot(aes(x = x, y = y), data = df) + geom_point() +
    geom_vline(xintercept = mean(df$x)) +
    geom_hline(yintercept = mean(df$y))
```


Coefficient of Correlation

- Coefficient of Correlation is standardized covariance $\Sigma(Y = \overline{Y})(Y = \overline{Y})$
- $\bullet \quad \frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{n\sigma_X\sigma_Y}$
- It has value within range [-1, 1]
- The absolute value of it suggest the strength of linear relationship

```
cov(df$x, df$y)/sd(df$x)/sd(df$y)
cor(df$x, df$y)
```

```
## [1] 0.9553117
## [1] 0.9553117
```

Coefficient of Determination

 Total bariability in Y = variability associated with X + variability not associated with X

$$\begin{split} \hat{\sigma}_{Y}^{2} &= \hat{\sigma}_{\mu_{Y}|X}^{2} + \hat{\sigma}_{Y|X}^{2} \\ \frac{\Sigma (Y - \hat{\mu}_{Y})^{2}}{n - 1} &= \frac{\Sigma (\hat{\mu}_{Y}|X - \hat{\mu}_{Y})^{2}}{n - 1} + \frac{\Sigma (Y - \hat{\mu}_{Y}|X)^{2}}{n - 1} \end{split}$$

```
sum((df$y - mean(df$y))^2)/(length(df$y)-1)
sum((model$fitted.values-mean(df$y))^2)/(length(df$y)-1)
sum((df$y - model$fitted.values)^2)/(length(df$y)-1)
91.22834+8.73472
1-8.73472/99.96306
cor(df$y, df$x)^2
```

```
## [1] 99.96306
## [1] 91.22834
## [1] 8.73472
## [1] 99.96306
## [1] 0.9126205
## [1] 0.9126205
```

Adjusted R Squared

•
$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1}(1-R^2)$$

summary(model)

```
##
## Call:
## lm(formula = v \sim x. data = df)
##
## Residuals:
##
      Min 10 Median 30
                                    Max
## -4.2841 -2.3455 -0.8654 2.2957 8.4508
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.59848 7.74260 0.465 0.644
## x
            1.32935 0.05937 22.390 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.986 on 48 degrees of freedom
## Multiple R-squared: 0.9126, Adjusted R-squared: 0.9108
## F-statistic: 501.3 on 1 and 48 DF, p-value: < 2.2e-16
```

Analysis of Variance

- Partition of sum of squares again...
- Sum of square deviations = sum of square of regression + sum of square of errors

 $\Sigma (Y - \mu_Y)^2 = \Sigma (\hat{\mu}_{Y|X} - \mu_Y)^2 + \Sigma (Y - \hat{\mu}_{Y|X})^2$

```
SSR <- sum((model$fitted.values-mean(df$y))^2)
SSE <- sum((df$y-model$fitted.values)^2)
SS <- sum((df$y-mean(df$y))^2)
SSR + SSE
SS</pre>
```

```
## [1] 4898.19
## [1] 4898.19
```


Analysis of Variance

```
• F = \frac{\text{Mean Square Regression}}{\text{Mean Square Error}}
```

$$F = \frac{\frac{\sum (\hat{\mu}_{Y|X} - \mu_{Y})^{2}}{k-1}}{\frac{\sum (Y - \hat{\mu}_{Y|X})^{2}}{n-1}}$$

```
MSR <- sum((model$fitted.values-mean(df$y))^2)/(2-1)
MSE <- sum((df$y-model$fitted.values)^2)/model$df.residual
f <- MSR/MSE
c(MSR,MSE,f,pf(f,1,48,lower.tail = F))
anova(model)</pre>
```

Analysis of Variance

- What is been tested?
- Test whether $\mu_{Y|X} = \mu_Y$
- Test whether $\beta_0 = \beta_1 = \dots = \beta_m = 0$
- Test whether $R^2 = 0$
- Test whether $\rho = 0$
- Same thing...

Model Comparison Using Anova

```
model2 <- lm(y~x+I(x^2), data =df)
anova(model2, model)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: y ~ x + I(x^2)
## Model 2: y ~ x
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 47 423.44
## 2 48 428.00 -1 -4.5657 0.5068 0.4801
```