- Random sampling
 - point estimation
 - good estimation
 - ullet unbiased: $E[\hat{ heta}]= heta$; Asymptotically unbiased estimator: $\lim_{n o\infty}E[\hat{ heta}]= heta$
 - consistency: $\lim_{n\to\infty}P(|\hat{\theta}-\theta|>\epsilon)=0$ (像是 $\hat{\theta}$ 依概率P收敛到 θ ,但unbiased 又不是a.s.,中间还添加了一个期望,两个性质之间没有关系)
 - MSE: $MSE = E[(\hat{ heta} heta)^2] = VAR(\hat{ heta}) + bias(\hat{ heta})^2$
 - $bias = E[\hat{\theta}] \theta$
 - UMVUE: MSE最小的那个统计量
 - how to find a UMVUE?
 - T是一个统计量, 由X来计算的统计量
 - sufficiency: 已知T的情况下, X的概率分布和真实的参数独立<--只要知道 T, 那么知不知道真实参数对我来说没有关系了, 所以称为是sufficient
 - theorem
 - Theorem (Neyman-Fisher Factorization theorem: Necessary and sufficient conditions for sufficiency)

A statistic $T=T(X_1,X_2,\ldots,X_n)$ is sufficient for parameter θ if and only if the joint density function (probability density function or probability mass function) $f(x_1,\ldots,x_n|\theta)$ can be expressed as

$$f(x_1,\dots,x_n|\theta)=g(T(x_1,x_2,\dots,x_n),\theta)\times h(x_1,\dots,x_n)$$
 where $g(\cdot)$ and $h(\cdot)$ are some nonnegative functions.

property

Theorem (Rao-Blackwell Theorem)

We let $T=T(X_1,X_2,...,X_n)$ be a sufficient statistics for parameter θ and $\hat{\theta}_n$ be an unbiased estimator for θ . We define an estimator θ as $\tilde{\theta}=\mathbb{E}[\hat{\theta}_n|T]$.

Then
$$\tilde{\theta}$$
 is unbiased estimator and $\mathbb{E}\left[\left(\tilde{\theta}-\theta\right)^2\right] \leq \mathbb{E}\left[\left(\hat{\theta}_n-\theta\right)^2\right]$.

 $\zeta(0) \Rightarrow \theta \text{ unbias}$

- completeness
 - definition

We say a statistic $T=T(X_1,X_2,...,X_n)$ is complete if and only if the following condition holds: If $\mathbb{E}_{\theta}(g(T))=0$ for all θ , then g(T)=0.

property

Theorem

We let $T=T(X_1,X_2,\dots,X_n)$ be a <u>sufficient and complete</u> statistic for a parameter θ and $\hat{\theta}_n$ be any anbiased estimator, then the estimator

$$\theta = \mathbb{E}[\theta_n|T]$$

is the unique UMVUE.

(*In other words, the estimator generated from Rao-Blackwell theorem is the desired UMVUE.)

- 既然有这么好的性质、那怎么判断一个T是充分完备统计量呢?
 - property

- interval estimation
 - 如果仅仅是点估计的话,可能会导致样本外数据的拟合效果很差,所以我们引入了区间 估计
 - z检验, t检验
 - two population mean estimation

```
Theorem If X_1, X_2, ..., X_n \sim N(\mu_X, \sigma^2) and Y_1, Y_2, ..., Y_m \sim N(\mu_Y, \sigma^2) are independent random samples, then a (1-\alpha)100\% confidence interval for \mu_X - \mu_Y, the difference in the population means is: (\overline{X} - \overline{Y}) \pm (t_{\frac{\alpha}{2}n+m-2}) S_p \sqrt{\frac{1}{n} + \frac{1}{m}} where S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}, the "pooled sample variance", S_p^2 is an unbiased estimator of the common variance \sigma^2.
```

- hypothesis testing
 - one tail test
 - $H_0 :<$

• $H_0 :>$

Two tail test

- p value approach
 - p是现在实际情况的概率,如果 H_0 :<=,那么p是右边的概率,p小于lpha,说明X落在拒绝域,拒绝 H_0
- Martingale
 - definition

Definition 8.3

An adapted sequence (X_n, \mathcal{F}_n) of real random variables is called a *martingale* if for all $n \in \mathbb{N}$ it holds that $E|X_n| < \infty$ and

 $\frac{E(X_{n+1}|\mathcal{F}_n)=X_n\ a.s.,}{\text{and a }\textit{submartingale}} \text{ if for all } n\in\mathbb{N} \text{ it holds that } E|X_n|<\infty \text{ and}$

$$E(X_{n+1}|\mathcal{F}_n) \geq X_n \ a.s.,$$

and a supermartingale if $(-X_n, \mathcal{F}_n)$ is a submartingale.

Stopping times

definition

Definition 9 (Discrete time)

A *stopping time* is a random variable $\tau: \Omega \to \mathbb{N} \cup \{\infty\}$ such that $(\tau = n) \in \mathcal{F}_n$

for all $n \in \mathbb{N}$. If $\tau < \infty$ we say that τ is a finite stopping time.

We have an equivalent definition of a stopping time:

A random variable $\tau:\Omega\to\mathbb{N}\cup\{\infty\}$ is a stopping time if and only if $(\tau \leq n) \in \mathcal{F}_n$ for all $n \in \mathbb{N}$.

property

• Let $X_1, X_2, ...$ be a sequence of random variables, all defined on a common sample space Ω . Let τ be a nonnegative integer-valued random variable, also defined on Ω . We call τ a *stopping time* <u>adapted</u> to the sequence $\{X_n\}$ if $P(\tau < \infty) = 1$, and if for each $n \ge 1$, if $I_{\{\tau \le n\}}$ is a function of only $X_1, X_2, \dots X_n$.