STAR Analysis Note: psn0689 Analysis Note for Hyperon Transverse Spin Transfer with run12 data

Jincheng Mei, Qinghua Xu

June 12, 2018

Contents

1	Introduction	7
2	Data Set 2.1 Trigger selection	11
3	2.3 Relative luminosity	13 13
4	3.3 Control sample: K_S^0	
4	Extraction of Transverse Spin Transfer 4.1 Trigger Combined D_{TT}	30
5	MC Production and Data Comparison5.1 MC Production	
6	Evaluation of Systematic Uncertainty	47
	6.1 Uncertainty from Decay parameter 6.2 Uncertainty from Beam polarization 6.3 Uncertainty from Estimation of Residual Background Fraction 6.4 Uncertainty from Pileup 6.5 Uncertainty from Trigger Bias 6.6 Total Systematic Uncertainty	47 47 48 50
7	Final Results	62

8	Maii	n Code	64
	8.1	Data Analysis: from MuDsts to D_{TT}	64
	8.2	MC production	66
	8.3	Notes	66
\mathbf{A}	Run	List	68

List of Figures

1.1	Depolarization $D_{\rm NN}$ data as a function of $p_{\rm T}$ in $p^{\uparrow} + p \rightarrow \Lambda^0 + X$ at 200 GeV/c from Fermilab E704 Collaboration measurement. The errors	
	shown are statistical only	7
2.1	z of primary vertex for each of the JP trigger samples	10
2.2	z of primary vertex combined four JP trigger samples	11
2.3	Relative luminosities calculated using the Jet-Patch events without Λ or	
	$\bar{\Lambda}$ candidates. They are used to form the single spin collision events	12
3.1	Sketch of topological cuts applied in the reconstruction of Λ and $\bar{\Lambda}$	14
3.2	Invariant mass distributions of Λ and $\bar{\Lambda}$ candidates after topological se-	
	lections for the trigger-combined sample	15
3.3	$p_{\rm T}$ distribution of reconstructed jets	16
3.4	η distribution of reconstructed jets	17
3.5	ϕ distribution of reconstructed Jets	19
3.6	ΔR distribution in the correlation between the reconstructed jet and Λ ($\bar{\Lambda}$)	
	from JP1 trigger sample as the example	20
3.7	The invariant mass distributions of jet near-side Λ and $\bar{\Lambda}$ candidates for	
	the trigger-combined samples	21
3.8	The $p_{\rm T}$ distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the	
	four JP trigger samples	22
3.9	The η distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the	
	four JP trigger samples	23
3.10	The ϕ distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the	
	four JP trigger samples	24
3.11	Invariant mass of K_S^0 candidates for the trigger-combined sample	25
4.1	Symmetry test of Λ counts when both of the beam polarization and $\cos \theta^*$	
	reverse	27
4.2	Symmetry test of $\bar{\Lambda}$ counts when both of the beam polarization and $\cos \theta^*$	
	reverse	28
4.3	Average values of relative luminosities over runs	29
4.4	$\cos \theta^*$ vs. invariant mass distribution for $\Lambda(\text{left})$ and $\bar{\Lambda}(\text{right})$ with 2 <	
	$p_{\rm T} < 3{\rm GeV/c}$ and $0 < \eta < 1.2{\rm from~JP1}$ sample with the BLUE beam as	
	the polarized beam.	30
4.5	$\cos\theta^*$ distribution for (a) Λ and (b) $\bar{\Lambda}$ from JP1 sample. The solid circle	
	denotes the positive beam polarization and the open circle denotes the	
	negative beam polarization	31
4.6	$D_{\rm TT}$ vs. $\cos \theta^*$ for $\Lambda({\rm left})$ and $\bar{\Lambda}({\rm right})$ with $p_{\rm T}$ of $2 \sim 3{\rm GeV/c}$ using JP1	
	data	31
4.7	D_{TT} for the 4 JP trigger samples. The upper panel is for Λ and the lower	
4.0	is for $\bar{\Lambda}$. The η range is $0 \sim 1.2$ in the left and $-1.2 \sim 0$ in the right	32
4.8	$D_{\rm TT}$ for $\Lambda(\bar{\Lambda})$ and $\delta_{\rm TT}$ for K_S^0 vs. $\cos \theta^*$ in each $p_{\rm T}$ bin from the trigger-	0.0
	combined data sample	33

4.8	D_{TT} for $\Lambda(\bar{\Lambda})$ and δ_{TT} for K_S^0 vs. $\cos\theta^*$ in each p_{T} bin from the trigger-	0.4
4.0	combined data sample	34
4.9	$D_{\rm TT}$ for the trigger-combined sample. The left and right plots are for	25
4.10	$0 < \eta < 1.2$ and $-1.2 < \eta < 0$, correspondingly	35
4.10	The comparison between the results extracted via Cross-Ratio method	
	and Relative Luminosity method. The left and right plots are for $0 < \eta < 1.0$	9.0
4 1 1	1.2 and $-1.2 < \eta < 0$, correspondingly	36
4.11	The comparison between the results extracted by using the hyperon aixs	9.0
F 1	and the jet axis as the substitute of the quark axis, separately	36
5.1	Hard Hard $p_{\rm T}$ distributions before (left) and affter (right) weighting for	90
F 1	each of Λ p_{T} bins.	38
5.1	Hard $p_{\rm T}$ distribution before (left) and affter (right) weighting for each of	20
	Λp_{T} bins	39
5.2	Comparison of primary vertex z after reweighting. The plots are for JP0,	40
	JP1, JP2, AJP trigger conditions from left to right in sequence	40
5.3	Comparison of reconstructed variables of $p(\bar{p})$ from jet near-side $\Lambda(\bar{\Lambda})$.	
	The invariant mass of Λ are shown in the left panel and the right one is	4-4
- 1	for Λ	41
5.4	Comparison of reconstructed variables for jet near-side Λ and $\bar{\Lambda}$. The $p_{\rm T}$,	
	η, ϕ comparisons for Λ are shown in the upper panel and the lower panel	4.1
	is for Λ	41
5.5	Comparisons of reconstructed variables of $p(\bar{p})$ from jet near-side $\Lambda(\bar{\Lambda})$.	
	The $p_{\rm T}$, η , ϕ comparisons for p from Λ are shown in the upper panel and	40
F C	the lower panel is for \bar{p} from Λ	42
5.6	Comparisons of reconstructed variables for $\pi^-(\pi^+)$ decay from jet near-	
	side $\Lambda(\bar{\Lambda})$. The $p_{\rm T}$, η , ϕ comparisons for π^- from Λ are shown in the	4.0
r 7	upper panel and the lower panel is for π^+ from $\bar{\Lambda}$	43
5.7	Comparisons of selection cuts for jet near-side Λ and Λ . The decay length,	
	DCA_V0, DCA_2 comparisons for Λ are shown in the upper panel and	4.4
E 0	the lower panel is for Λ	44
5.8	DCA of p , π from jet near-side Λ and $\bar{\Lambda}$. The upper panel is for Λ and the lower panel is for $\bar{\Lambda}$	45
5.0	The ratio of $\bar{\Lambda}/\Lambda$ yield in different states. The left plot is for inclusive Λ	45
5.9	and $\bar{\Lambda}$ and the right one is for the jet near-side Λ and $\bar{\Lambda}$	16
6.1	·	46
0.1	Hyperon yield vs. collision rate in spin 4-bit configurations of Λ for JP trigger combination. The upper-left graph is for spinbit-5, the upper right	
	graph is for spinbit-6, the low left one is for spinbit-9 and the low right	
	one is for spinbit-10	49
6.2	Hyperon yield vs. collision rate in spin 4-bit configurations of $\bar{\Lambda}$ for JP	43
0.4	trigger combination. The upper-left graph is for spinbit-5, the upper right	
	graph is for spinbit-6, the low left one is for spinbit-9 and the low right	
	one is for spinbit-10	49
	one is for spinion-10	49

6.3	z distribution for Λ (in the left) and $\bar{\Lambda}$ (in the right) with $p_{\rm T}$ of 3 \sim	
	$4 \mathrm{GeV}/c$. X aixs shows z and Y axis shows the yield after normalized.	
	The shifts of the mean values related to the mean value of zero bias	
	sample are shown in the legend	51
6.4	D_{TT} for Λ and $\bar{\Lambda}$ versus z calculated using the model in different p_{T} bins	
	with positive η (left) and negative η (right)	52
6.4	D_{TT} for Λ and $\bar{\Lambda}$ versus z calculated using the model in different p_{T} bins	
	with positive η (left) and negative η (right)	53
6.5	The relative fractions of subprocess for Λ (upper panel) and $\bar{\Lambda}$ (lower	
	panel) with $p_{\rm T}$ of $3 \sim 4{\rm GeV/c.}$	55
6.6	The relative fractions of subprocess for Λ (upper panel) and $\bar{\Lambda}$ (lower	
	panel) in all $p_{\rm T}$ bins	56
6.7	The relative fractions of fragmenting parton flavors for Λ (upper panel)	
	and $\bar{\Lambda}$ (lower panel) with $p_{\rm T}$ of $3 \sim 4 {\rm GeV/c.}$	57
6.8	The relative fractions of fragmentin parton flavors for Λ (upper panel) and	
	$\bar{\Lambda}$ (lower panel) in all $p_{\rm T}$ bins	58
6.9	The feed-down fractions for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) in all $p_{\rm T}$	
	bins	60
7.1	D_{TT} extracted from the trigger combined sample for Λ and $\bar{\Lambda}$. The left	
	grpah is with positive η with respect to the polarized beam and the right	
	one is with negative η with respect to the polarized beam	63

List of Tables

2.1	Ratio of the overlap events between each two triggers. The ratio is the	
	number of events belonging to the trigger of the column and the one of	
	the row together over the number of events belonging to the trigger of the	
	column.	10
3.1	Summary of selection cuts for $\Lambda(\bar{\Lambda})$ reconstruction for Jet-Patch trigger	
	data sample. Here "DCA" denotes "distance of closest approach", "PV"	
	denotes "primary vertex", \vec{r} denotes the vector from primary vertex to	
	the V0 vertex and \vec{p} denotes the momentum vector of V0. Fig. 3.1 shows	
	definitions of topological selection cuts as a reference	13
3.2	Λ and $\bar{\Lambda}$ candidate counts, residual background fractions and signal mass	
	windows after topological selection	14
3.3	Jet near-side Λ and $\bar{\Lambda}$ candidate counts, residual background fractions	
	and signal mass windows	18
3.4	The fraction of hyperons falling in the jet near-side cone for Λ and $\bar{\Lambda}$ in	
	each p_{T} bin	18
3.5	Summary of selection cuts for K_S^0 reconstruction for Jet-Patch trigger	
	data sample. Here "DCA" denotes "distance of closest approach", "PV"	
	denotes "primary vertex", \vec{r} denotes the vector from primary vertex to	
	the V0 vertex and \vec{p} denotes the momentum vector of V0. Fig. 3.1 shows	
	definitions of topological selection cuts as a reference	25
4.1	χ^2 /ndf testing between the results of each two trigger samples	31
6.1	Uncertainty to D_{TT} from estimation of residual background fraction for	
	Λ and $\bar{\Lambda}$	48
6.2	Factors of pileup contribution for Λ and $\bar{\Lambda}$ for each spin configuration	48
6.3	Uncertainty to D_{TT} from pileup for Λ and $\bar{\Lambda}$	50
6.4	Uncertainty to D_{TT} from z shift for Λ and $\bar{\Lambda}$	53
6.5	Uncertainty to D_{TT} from subprocess & fragmenting parton flavor for Λ	
	and $\bar{\Lambda}$	59
6.6	Uncertainty to D_{TT} from feed-down for Λ and $\bar{\Lambda}$	61
6.7	Total Systematic Uncertainty	61
7.1	Values of $D_{\rm TT}$ extracted form trigger combined sample	62

1 Introduction

The spin structure of the proton is a hot topic in QCD. After many years' studies on the longitudinal spin structure, rich knowledge about it has been obtained but the transverse spin structure is still poorly known. Λ and other hyperons have been studied extensively in different aspects of spin physics, due to their self-analyzing weak decay.

In 1997, a significant spin transfer along the normal direction of the Λ production plane, $D_{\rm NN}$, was observed by the E704 Collaboration at Fermilab [2].

Figure 1.1: Depolarization $D_{\rm NN}$ data as a function of $p_{\rm T}$ in $p^{\uparrow}+p \to \Lambda^0+X$ at 200 GeV/c from Fermilab E704 Collaboration measurement. The errors shown are statistical only.

The transverse spin transfer, $D_{\rm TT}$, of hyperons in pp collisions is defined in Eq. 1.1 as the asymmetry of the cross section of hyperons polarized parallel and anti-parallel to the incoming protons. It is the natural connection to the transversely polarized parton distribution and the transversely polarized fragmentation functions.

$$D_{\mathrm{TT}}^{\Lambda} \equiv \frac{d\sigma^{(p^{\uparrow}p \to \Lambda^{\uparrow}X)} - d\sigma^{(p^{\uparrow}p \to \Lambda^{\downarrow}X)}}{d\sigma^{(p^{\uparrow}p \to \Lambda^{\uparrow}X)} + d\sigma^{(p^{\uparrow}p \to \Lambda^{\downarrow}X)}} = \frac{d\delta\sigma^{\Lambda}}{d\sigma^{\Lambda}},\tag{1.1}$$

where \uparrow and \downarrow denote the positive and negative polarization directions correspondingly, $\delta\sigma^{\Lambda}$ is the cross section of Λ when the initial state is transversely polarized and σ^{Λ} is the cross section of Λ when the initial state is unpolarized. $\delta\sigma^{\Lambda}$ can be factorized into three parts shown as 1.2 [8]:

$$\frac{d\delta\sigma^{\Lambda}}{dp_{\rm T}^{\Lambda}} = \sum_{abcd} \int dx_a dx_b dz \delta f_a(x_a) f_b(x_b) \delta\sigma^{(a^{\uparrow}b \to c^{\uparrow}d)} \delta D_c^{\Lambda}(z), \tag{1.2}$$

where, $\delta D_c^H(z)$ and $\delta f(x)$ are the polarized fragmentation function in the transversely polarized case and the transversity distribution function of the quarks or antiquarks. They can be studied experimentally in semi-inclusive deep inelasitic lepton-nucleon scattering with transversely polarized nucleon or high- p_T hyperon production in transversely polarized pp collisions by measuring the hyperon polarization in the final state. The partonic spin transfer factor for the elementary hard scattering process is denoted by $\delta \sigma^{(a^{\uparrow}b\to c^{\uparrow}d)}$, which is calculatable by pQCD [3].

We present the first measurement on transverse spin transfer of Λ and $\bar{\Lambda}$ in transversely polarized pp collisions at $\sqrt{s}=200\,\mathrm{GeV}$ with the STAR detector at RHIC. The measurement covers a kinematic range of $|\eta|<1.2$ in pseudo-rapidity and transverse momentum p_{T} from $1.0\,\mathrm{GeV/c}$ up to $8.0\,\mathrm{GeV/c}$. The spin transfer, D_{TT} , is determined from the asymmetry of Λ counts with opposite beam polarization states, in which the detector acceptance mostly cancels. D_{TT} dependent on p_{T} is presented both in positive and negative pseudo-rapidity ranges.

2 Data Set

2.1 Trigger selection

The data used in this analysis is the transversely polarized pp collisions taken in 2012 at $\sqrt{s} = 200 \,\text{GeV}$ with STAR detector and was produced with library P12id. Four triggers are selected in the analysis:

- Jet-Patch 0 (JP0) trigger with id 370601.
- Jet-Patch 1 (JP1) trigger with id 370611.
- Jet-Patch 2 (JP2) trigger with id 370621.
- Adjacent Jet Patch (AJP) trigger with id 370641.

QA was applied for Jet-Patches samples for hyperon analysis and 573 runs left. The average values of some variables per event in each run are used to test the data quality. For each variable, the average value should be stable or have a regularity with the fill running. The run is removed if it is strongly deviated from the average line or regularity. The QA details can be found at:

http://www.star.bnl.gov/protected/spin/jcmei/pp200trans_2012/htmlCode/pp200trans_2012_dataQA.html

The short runs whose running time is shorter than 3 mins or events are smaller than 5k are also removed. Considering that we need to make the correlation between Λ hyperons and reconstructed jets, the runs removed in J. Kevin Adkins' jet tree are also removed. The run number list can be found in Appendix.

The events with primary vertex of $|V_z| < 60 \,\mathrm{cm}$ are selected to ensure uniform tracking efficiency.

The Jet-Patch (JP) trigger conditions in 2012 required a transvese energy deposit in a patch of towers of BEMC or EEMC to exceed the threshold. The BEMC or EEMC patch covers $\Delta\eta \times \Delta\phi = 1 \times 1$ in pseudo-rapidity, η and azimuthal angle, ϕ . The thresholds are $E_{\rm T} \sim 3.5~{\rm GeV}$ for JP0, $E_{\rm T} \sim 5.4~{\rm GeV}$ for JP1, $E_{\rm T} \sim 7.3~{\rm GeV}$ for JP2 and two adjacent patches to each exceed $E_{\rm T} \sim 3.5~{\rm GeV}$ for AJP. JP triggers are preferred to collecting pp events including scaterring with high transverse momentum transfer. Consequently, the $p_{\rm T}$ of Λ ($\bar{\Lambda}$) produced through the fragmentation of high transverse momentum parton is expected to be higher. However, JP triggers are not (necessarily) caused by Λ or $\bar{\Lambda}$. This implies that the trigger is biased in a way that is different for different classes of Λ or $\bar{\Lambda}$. The trigger bias effect on our measurement is considered as a systematic uncertainty and will be disscused in Section 6.

The overlap events were only taken into one (the one with lower threshold) of the fired triggers to avoid double counting. The ratio of the overlap events between each two triggers are shown in TABLE 2.1

The statistics of the data sample used in this analysis are 141.7 M totally and for each trigger sample used are:

- 24.6 M JP0 events.

- $85.3 \,\mathrm{M}$ JP1 events.
- $18.0\,\mathrm{M}$ JP2 events.
- $13.9\,\mathrm{M}$ AJP events.

The distributions of primary vertex z for each of the JP trigger samples are shown in Fig. 2.1. The distribution of primary vertex z for trigger-combined sample is shown in Fig. 2.2.

Figure 2.1: z of primary vertex for each of the JP trigger samples

Table 2.1: Ratio of the overlap events between each two triggers. The ratio is the number of events belonging to the trigger of the column and the one of the row together over the number of events belonging to the trigger of the column.

Trigger Overlap	JP0	JP1	JP2	AJP
JP0	100.00%	1.01%	0.86%	0.85%
JP1	8.64%	100.00%	42.19%	14.53%
JP2	2.97%	16.89%	100.00%	8.40%
AJP	1.33%	2.66%	3.84%	100.00%

Figure 2.2: z of primary vertex combined four JP trigger samples

2.2 Beam polarization

Beam polarizations are average values over fills with run events used in the analysis weighted. The beam polarizations are 64.35% for blue beam and 58.38% for yellow beam.

We use measurements on the website: http://www.phy.bnl.gov/cnipol/fills/?rp=12&fn=&ft=1&be=100&mode=1&sb=Select

2.3 Relative luminosity

In this analysis, due to the lack of the scaler files for parts of the runs, the Jet-Patch events without Λ or $\bar{\Lambda}$ candidates was used to estimate the relative luminosities. The relative luminosities of R_4 , R_5 and R_6 are defined as

$$R_4 = \frac{\mathscr{L}^{\uparrow\uparrow}}{\mathscr{L}^{\downarrow\downarrow}} = \frac{n^{\uparrow\uparrow}}{n^{\downarrow\downarrow}} \tag{2.1}$$

$$R_5 = \frac{\mathscr{L}^{\downarrow\uparrow}}{\mathscr{L}^{\downarrow\downarrow}} = \frac{n^{\downarrow\uparrow}}{n^{\downarrow\downarrow}} \tag{2.2}$$

$$R_6 = \frac{\mathscr{L}^{\uparrow\downarrow}}{\mathscr{L}^{\downarrow\downarrow}} = \frac{n^{\uparrow\downarrow}}{n^{\downarrow\downarrow}} \tag{2.3}$$

At first, the pp events without Λ or $\bar{\Lambda}$ candidates were counted for the four spin states of crossing bunches. Then the relative luminosities obtained by using the Eq. 2.1-2.3. The three relative luminosities are shown in Fig. 2.3. The counts of the four spin states and three relative luminosities can be found in Appendix.

Figure 2.3: Relative luminosities calculated using the Jet-Patch events without Λ or $\bar{\Lambda}$ candidates. They are used to form the single spin collision events.

3 $\Lambda(\bar{\Lambda})$ Reconstruction and Jet Correlation

3.1 $\Lambda(\bar{\Lambda})$ Reconstruction

The reconstruction was done similarly with the previous longitudinal spin transfer analysis [5]. The candidates were identified from the topology of their dominant weak decay channels, $\Lambda \to p\pi^-$ and $\bar{\Lambda} \to \bar{p}\pi^+$ each having a branching ratio of 63.9%. A search was made in each event to find (anti-)proton and pion tracks of opposite curvatures with an identification cut on track's dE/dx measured in TPC. The tracks were paired to form $\Lambda(\bar{\Lambda})$ candidates and then topological selections were applied to further reduce the background. The topological selections include criteria for the distance of closest approach between the paired tracks and the distance between the middle point of the closest approach and the beam collision vertex, and demanded that the momentum sum of the track pair pointed at the collision vertex. The criteria were tuned in each p_T bin to preserve signals in the mass window while reducing the background fraction to 10% or less. The cuts were summarized in TABLE. 3.1 for all the JP samples and the sketch picture Fig. 3.1.

Table 3.1: Summary of selection cuts for $\Lambda(\bar{\Lambda})$ reconstruction for Jet-Patch trigger data sample. Here "DCA" denotes "distance of closest approach", "PV" denotes "primary vertex", \vec{r} denotes the vector from primary vertex to the V0 vertex and \vec{p} denotes the momentum vector of V0. Fig. 3.1 shows definitions of topological selection cuts as a reference.

$p_{\mathrm{T}}\left[\mathrm{GeV/c}\right]$	(1,2)	(2,3)	(3,4)	(4,5)	(5,6)	(6,8)
N(hits) of daughter tracks	> 14	> 14	> 14	> 14	>14	> 14
$N(\sigma) dE/dx$ for daughters	< 3	< 3	< 3	< 3	< 3	< 3
DCA of V0-daughters [cm]	< 0.80	< 0.70	< 0.60	< 0.50	< 0.45	< 0.45
DCA of V0 to PV [cm]	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
$\cos{(ec{r},ec{p})}$	> 0.995	> 0.995	> 0.995	> 0.995	> 0.995	> 0.995
Decay Length [cm]	> 3.5	> 4.0	> 4.0	> 4.5	> 5.0	> 5.0
DCA of $p(\bar{p})$ to PV [cm]	> 0.25	> 0.20	> 0.10	> 0.05	> 0.05	> 0.05
DCA of $\pi^-(\pi^+)$ to PV [cm]	> 0.60	> 0.55	> 0.50	> 0.50	> 0.50	> 0.50
Momentum of π^- (π^+) [GeV/c]	> 0.15	> 0.15	> 0.20	> 0.25	> 0.30	> 0.40

The invariant mass distributions of Λ and $\bar{\Lambda}$ candidates for the trigger-combined sample are shown in Fig. 3.2. The distributions of the invariant mass in each JP trigger samples could be found from the link:

http://www.star.bnl.gov/protected/spin/jcmei/pp200trans_2012/htmlCode/pp200trans_2012_rec_step_all_cut_crp0995_J0.html

Figure 3.1: Sketch of topological cuts applied in the reconstruction of Λ and $\bar{\Lambda}$.

Table 3.2: Λ and $\bar{\Lambda}$ candidate counts, residual background fractions and signal mass windows after topological selection.

[CoV/a]	Λ			$ar{\Lambda}$	mass window $[\text{GeV}/\text{c}^2]$	
$p_{\mathrm{T}}\left[\mathrm{GeV/c}\right]$	counts	bkg. frac.	counts	bkg. frac.	mass window [Gev/c]	
(1,2)	2378150	0.057	1827999	0.082	(1.111, 1.119)	
(2,3)	833695	0.066	783074	0.075	(1.111, 1.121)	
(3,4)	308065	0.066	290993	0.071	(1.109, 1.123)	
(4,5)	108569	0.065	94996	0.066	(1.108, 1.124)	
(5,6)	42417	0.073	32733	0.077	(1.106, 1.126)	
(6,8)	26136	0.090	17187	0.107	(1.104, 1.128)	

Figure 3.2: Invariant mass distributions of Λ and $\bar{\Lambda}$ candidates after topological selections for the trigger-combined sample.

3.2 Jet Correlation

In our analysis, the outgoing quark momentum direction is used to determine the polarization direction of $\Lambda(\bar{\Lambda})$. In STAR experiment, the tracks in TPC and the energy deposits in EMC towers are used to reconstruct jets using the anti- $k_{\rm T}$ algorithm with a resolution parameter R=0.6. The jets used in this analysis is the public jet tree of pp200GeV_2012 which was generated by J. Kevin Adkins. Fig. 3.3, 3.4 and 3.5 show the $p_{\rm T}$, η and ϕ distribution of reconstructed jets.

Figure 3.3: $p_{\rm T}$ distribution of reconstructed jets.

The selection cuts applied on jets include $-0.7 < \eta < 0.9$, $E_{\rm T} > 5\,{\rm GeV}$, 0.1 < EMF < 0.95. EMF is the neutral energy fraction of jet, and it is defined as the ratio of BEMC and EEMC $E_{\rm T}$ sum over the jet $E_{\rm T}$.

The correlation between $\Lambda(\bar{\Lambda})$ candidates and the reconstructed jets is made by constraining the distance $\Delta R (= \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$ between momentum directions of $\Lambda(\bar{\Lambda})$ candidates and jets in $\eta - \phi$ space. The ΔR distributions of $\Lambda(\bar{\Lambda})$ from JP1 sample are shown in Fig. 3.6 as an example.

The $\Lambda(\bar{\Lambda})$ hyperons in the jet near-side ($\Delta R < 0.6$) are used to measure $D_{\rm TT}$. The fraction of jet near-side $\Lambda(\bar{\Lambda})$ is increasing with $p_{\rm T}$ increasing. This is beacause $\Lambda(\bar{\Lambda})$ with higher $p_{\rm T}$ is more likely from a jet. We note that jet reconstruction in STAR uses the sample of primary tracks in an event, which often includes the $p(\bar{p})$ from $\Lambda(\bar{\Lambda})$ decay but not the decay pion. In additional, the annihilation effect of \bar{p} in EMC, which provides additional energy to the JP trigger compared to $\Lambda(p)$ case leads to an excess of $\bar{\Lambda}$ counts to Λ 's in lower $p_{\rm T}$ range. With the increase of $p_{\rm T}$, the fraction of the energy

Figure 3.4: η distribution of reconstructed jets.

contributed from the annihilation effect of \bar{p} in the whole energy deposits in EMC is becoming smaller, so the counts of Λ becomes larger than $\bar{\Lambda}$ in higher $p_{\rm T}$ range. No attempt was made to correct the jet or revise the jet finding and reconstruction for these effects. After such requirements, the invariant mass distributions of Λ and $\bar{\Lambda}$ from all JP samples are shown in Fig. 3.7 and the sum number of Λ ($\bar{\Lambda}$) candidates from all JP data with the residual background fractions in mass windows for each $p_{\rm T}$ bin is listed in Table 3.3. The fractions of Λ and $\bar{\Lambda}$ hyperons falling in jet near-side cone is shown in TABLE 3.4.

The distributons of $p_{\rm T}$, η and ϕ for the jet near-side Λ and $\bar{\Lambda}$ candidates are shown in Fig. 3.8, 3.9 and 3.10.

The distributions in each JP trigger samples could be found from the link: http://www.star.bnl.gov/protected/spin/jcmei/pp200trans_2012/htmlCode/pp200trans_2012_rec_step_all_cut_crp0995_J1.html

3.3 Control sample: K_S^0

A null-measurement was performed of the spin transfer for the spinless K_S^0 meson, which has a similar event topology with Λ hyperon. The decay channel

$$K_S^0 \to \pi^+\pi^-$$

Table 3.3: Jet near-side Λ and $\bar{\Lambda}$ candidate counts, residual background fractions and signal mass windows.

$p_{ m T} [{ m GeV/c}]$		Λ		$ar{\Lambda}$	mass window $[\text{GeV/c}^2]$	
$p_{\Gamma}[\text{GeV/C}]$	counts	bkg. frac.	counts	bkg. frac.	mass window [Gev/c]	
(1,2)	469681	0.065	502226	0.074	(1.111, 1.119)	
(2,3)	318358	0.079	368042	0.077	(1.111, 1.121)	
(3,4)	181550	0.071	193221	0.072	(1.109, 1.123)	
(4,5)	77866	0.065	71833	0.066	(1.108, 1.124)	
(5,6)	32441	0.070	25571	0.075	(1.106, 1.126)	
(6,8)	20256	0.084	13486	0.102	(1.104, 1.128)	

Table 3.4: The fraction of hyperons falling in the jet near-side cone for Λ and $\bar{\Lambda}$ in each $p_{\rm T}$ bin.

$p_{\mathrm{T}}\left[\mathrm{GeV}/\mathrm{GeV}\right]$	c [1,2)	[2,3)	[3,4)	[4,5)	[5,6)	[6,8)
Λ	19.75%	38.19%	58.93%	71.72%	76.48%	77.50%
$ar{\Lambda}$	27.47%	47.00%	66.40%	75.62%	78.12%	78.47%

Figure 3.5: ϕ distribution of reconstructed Jets.

with the branching ratio of 69.20%. The topological selection cuts applied on the reconstruction of the K_S^0 are shown in Table 3.5. The invavriant mass distribution of K_S^0 is shown in Fig. 3.11.

Figure 3.6: ΔR distribution in the correlation between the reconstructed jet and $\Lambda(\bar{\Lambda})$ from JP1 trigger sample as the example.

Figure 3.7: The invariant mass distributions of jet near-side Λ and $\bar{\Lambda}$ candidates for the trigger-combined samples.

Figure 3.8: The $p_{\rm T}$ distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the four JP trigger samples.

Figure 3.9: The η distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the four JP trigger samples.

Figure 3.10: The ϕ distributions of Λ and $\bar{\Lambda}$ candidates in the jet near-side from the four JP trigger samples.

Table 3.5: Summary of selection cuts for K_S^0 reconstruction for Jet-Patch trigger data sample. Here "DCA" denotes "distance of closest approach", "PV" denotes "primary vertex", \vec{r} denotes the vector from primary vertex to the V0 vertex and \vec{p} denotes the momentum vector of V0. Fig. 3.1 shows definitions of topological selection cuts as a reference.

$p_{\mathrm{T}}\left[\mathrm{GeV/c}\right]$	(1,2)	(2,3)	(3,4)	(4,5)	(5,6)	(6,8)
N(hits) of daughter tracks	>14	> 14	> 14	> 14	> 14	> 14
$N(\sigma) dE/dx$ for daughters	< 3	< 3	< 3	< 3	< 3	< 3
DCA of V0-daughters [cm]	< 0.70	< 0.65	< 0.55	< 0.45	< 0.40	< 0.35
DCA of V0 to PV [cm]	< 0.60	< 0.70	< 0.80	< 0.80	< 0.80	< 0.80
$\cos{(ec{r},ec{p})}$	> 0.99	> 0.99	> 0.99	> 0.99	> 0.99	> 0.99
Decay Length [cm]	>1.20	> 1.40	> 1.50	> 1.60	> 1.80	> 2.00
DCA of $\pi^-(\pi^+)$ to PV [cm]	> 0.60	> 0.55	> 0.50	> 0.45	> 0.40	> 0.35
Momentum of $\pi^-(\pi^+)$ [GeV/c]	> 0.15	> 0.15	> 0.20	> 0.25	> 0.30	> 0.40

Figure 3.11: Invariant mass of K_S^0 candidates for the trigger-combined sample.

4 Extraction of Transverse Spin Transfer

Usually, the polarization and spin transfer of $\Lambda(\bar{\Lambda})$ can be measured via its weak decay channel $\Lambda \to p\pi^-(\bar{\Lambda} \to \bar{p}\pi^+)$ from the angular distribution of the final state,

$$\frac{dN}{d\cos\theta^*} = \frac{N_{\text{tot}}}{2} A(\cos\theta^*) (1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta^*), \tag{4.1}$$

where $N_{\rm tot}$ is the total number of Λ produced in collisions, $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.642 \pm 0.013$ [4] is the decay parameter, θ^* is the angle between the decay proton momentum in the Λ 's rest frame and the Λ polarization direction (Fig. 3.1) and $A(\cos \theta^*)$ is the detector acceptance which may vary with θ^* as well as other observables. The average of the detector acceptance shows as:

$$\langle A(P,\cos\theta^*)\rangle = \frac{\int A(\cos\theta^*)N(P,\cos\theta^*)d\cos\theta^*}{\int N(P,\cos\theta^*)d\cos\theta^*},$$
(4.2)

where $N(P, \cos \theta^*)$ is the number of Λ with beam polarization P and $\cos \theta^*$. The acceptance is expected to be a constant in a small $\cos \theta^*$ interval $[\theta_1^*, \theta_2^*)$ and the average of the acceptance is used, which is noted as $\langle A(P, \cos \theta_1^*, \cos \theta_2^*) \rangle$. Then the number of Λ with the inversed polarization in the small interval $[\cos(\theta_1^*), \cos(\theta_2^*)]$ could be obtained

$$N(P) = \langle A(P, \cos \theta_1^*, \cos \theta_2^*) \rangle N_{tot}(\cos \theta_2^* - \cos \theta_1^*) + \frac{\alpha}{2} P(\cos^2 \theta_2^* - \cos^2 \theta_1^*)$$
 (4.3)
$$N(-P) = \langle A(-P, \cos \theta_1^*, \cos \theta_2^*) \rangle N_{tot}(\cos \theta_2^* - \cos \theta_1^*) - \frac{\alpha}{2} P(\cos^2 \theta_2^* - \cos^2 \theta_1^*).$$

Due to the symmetry of the detector geometry, the acceptances of the inversed polarizations should be the same, namely $\langle A(P,\cos\theta_1^*,\cos\theta_2^*)\rangle = \langle A(-P,\cos\theta_1^*,\cos\theta_2^*)\rangle$. Thus the asymmetry of inversed polarizations is

$$\frac{N(P) - N(-P)}{N(P) + N(-P)} = \alpha P_{\Lambda} \frac{\cos \theta_1^* + \cos \theta_2^*}{2},\tag{4.4}$$

Further, the polarization of Λ can be expressed as:

$$P_{\Lambda} = \frac{1}{\alpha \langle \cos \theta^* \rangle} \frac{N(P) - N(-P)}{N(P) + N(-P)},\tag{4.5}$$

where $\langle \cos \theta^* \rangle$ is the average value of $\cos \theta^*$ in a small interval $[\theta_1^*, \theta_2^*]$. In Eq. 4.5, the acceptance of the detector has been cancelled. In the pp collision, the polarization of Λ will be inversed with the polarization of incoming proton inversed, namely

$$P_{\Lambda}(p^{\uparrow}p \to \Lambda X) = -P_{\Lambda}(p^{\downarrow}p \to \Lambda X) \tag{4.6}$$

The Λ polarization in experiment is transferred from the beam polarization

$$P_{\Lambda} = D_{\rm TT} P,\tag{4.7}$$

Figure 4.1: Symmetry test of Λ counts when both of the beam polarization and $\cos \theta^*$ reverse.

where D_{TT} is actually the ratio of beam polarization transferred to Λ polarization.

To minimize the uncertainty associated with the detector acceptance effects, $D_{\rm TT}$ has been extracted through the asymmetry of Λ counts in small $\cos \theta^*$ intervals with opposite beam polarization:

$$D_{\rm TT} = \frac{1}{\alpha P \langle \cos \theta^* \rangle} \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}},\tag{4.8}$$

where α is the decay parameter [4], P is the polarization of the beam, $\langle \cos \theta^* \rangle$ is the average value in each small $\cos \theta^*$ bin, $N^{\uparrow}(N^{\downarrow})$ are the counts of hyperons in a small $\cos \theta^*$ interval when the beam is positively (negatively) polarized and R is the relative luminosity ratio for these two polarization states. The detector acceptance in this $\cos \theta^*$ interval is largely canceled because the acceptance in a small $\cos \theta^*$ interval is expected to be the same when flipping the beam spin.

In this analysis, the cross-ratio method is used to extract $D_{\rm TT}$ and thus the relative luminosity R Eq. 4.8 can be canceled. Based on the symmetry of the cross section of hyperon when both of beam polarization and $\cos \theta^*$ reverse, namely

$$\sigma^{\uparrow}(\cos \theta^*) = \sigma^{\downarrow}(-\cos \theta^*), \quad \sigma^{\downarrow}(\cos \theta^*) = \sigma^{\uparrow}(-\cos \theta^*),$$
 (4.9)

where σ is the cross section of hyperons and $\uparrow(\downarrow)$ is the beam polarization direction. The symmetry can be tested using the hyperon counts distribution with $\cos \theta^*$. The symmetries are shown in Fig. 4.1 and Fig. 4.2 for Λ and $\bar{\Lambda}$ correspondingly. The symmetries are good within the uncertainty. Then from the following equation Eq. 4.10 and Eq. 4.13, we could find that the relative luminosities are canceled when single beam is polarized.

$$\sigma^{\uparrow} = \frac{N^{\uparrow}}{\mathscr{L}^{\uparrow}}, \quad \sigma^{\downarrow} = \frac{N^{\downarrow}}{\mathscr{L}^{\downarrow}},$$
 (4.10)

Figure 4.2: Symmetry test of $\bar{\Lambda}$ counts when both of the beam polarization and $\cos \theta^*$ reverse.

$$\frac{\sqrt{\sigma^{\uparrow}(\cos\theta^{*})\sigma^{\downarrow}(-\cos\theta^{*})} - \sqrt{\sigma^{\uparrow}(-\cos\theta^{*})\sigma^{\downarrow}(\cos\theta^{*})}}{\sqrt{\sigma^{\uparrow}(\cos\theta^{*})\sigma^{\downarrow}(-\cos\theta^{*})} + \sqrt{\sigma^{\uparrow}(-\cos\theta^{*})\sigma^{\downarrow}(\cos\theta^{*})}}$$
(4.11)

$$= \frac{\sqrt{\frac{N^{\uparrow}(\cos\theta^{*})}{\mathcal{L}^{\uparrow}}} \frac{N^{\downarrow}(-\cos\theta^{*})}{\mathcal{L}^{\downarrow}} - \sqrt{\frac{N^{\uparrow}(-\cos\theta^{*})}{\mathcal{L}^{\uparrow}}} \frac{N^{\downarrow}(\cos\theta^{*})}{\mathcal{L}^{\downarrow}}}{\sqrt{\frac{N^{\uparrow}(\cos\theta^{*})}{\mathcal{L}^{\uparrow}}} \frac{N^{\downarrow}(-\cos\theta^{*})}{\mathcal{L}^{\downarrow}}} + \sqrt{\frac{N^{\uparrow}(-\cos\theta^{*})}{\mathcal{L}^{\uparrow}}} \frac{N^{\downarrow}(\cos\theta^{*})}{\mathcal{L}^{\downarrow}}}$$
(4.12)

$$= \frac{\sqrt{N^{\uparrow}(\cos\theta^*)N^{\downarrow}(-\cos\theta^*)} - \sqrt{N^{\uparrow}(-\cos\theta^*)N^{\downarrow}(\cos\theta^*)}}{\sqrt{N^{\uparrow}(\cos\theta^*)N^{\downarrow}(-\cos\theta^*)} + \sqrt{N^{\uparrow}(-\cos\theta^*)N^{\downarrow}(\cos\theta^*)}},$$
(4.13)

At last, the equation used to extract $D_{\rm TT}$ is expressed as Eq. 4.14.

$$D_{\rm TT} = \frac{1}{\alpha P_{\rm beam} \langle \cos \theta^* \rangle} \frac{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} - \sqrt{N^{\uparrow}(-\cos \theta^*) N^{\downarrow}(\cos \theta^*)}}{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} + \sqrt{N^{\uparrow}(-\cos \theta^*) N^{\downarrow}(\cos \theta^*)}},$$
(4.14)

Here the approximation

$$\mathscr{L}^{\uparrow\uparrow} \approx \mathscr{L}^{\uparrow\downarrow}$$
. $\mathscr{L}^{\downarrow\downarrow} \approx \mathscr{L}^{\downarrow\uparrow}$

are used here and actually the approximation is highly convinced which is shown in Fig. 4.3. The values of relative luminosities are really closed to each other and the residual polarized parts of the unpolarized beam expected are really small. The residual polarized parts are hardly affect the $D_{\rm TT}$ results especially in the positive η range.

To measure the transverse spin transfer, $D_{\rm TT}$, the polarization direction of Λ needs to be determined first. Here, the polarization direction of Λ is considered as the same with the polarization direction of the outgoing quark which can be obtained via the rotation relationship with the polarization direction of the incoming quark [3]. At the experimental level, the polarization direction of the beam is substituted for that of the

Figure 4.3: Average values of relative luminosities over runs.

incoming quark and the momentum direction of the jet reconstructed is substituted for that of the outgoing quark.

After the reconstruction and jet correlation, the $\Lambda(\bar{\Lambda})$ sample was obtained. The $\cos \theta^*$ for each $\Lambda(\bar{\Lambda})$ candidate was calculated with the blue and yellow beam as the polarized beam separately. The spin 4-bit sorted distributions were combined using the relative luminosities as the weight to form the distribution sorted by beam polarization. The $\cos \theta^*$ vs. invariant mass distributions and $\cos \theta^*$ distributions of Λ and $\bar{\Lambda}$ for inversed beam polarizations with η of $0 \sim 1.2$, p_T of $2 \sim 3\,\text{GeV/c}$ and BLUE beam as the polarized beam from JP1 sample are shown in Fig. 4.4 and Fig. 4.5 are used as examples. The distributions from all Λ p_T and all JP trigger samples bins could be found from the link:

http://www.star.bnl.gov/protected/spin/jcmei/pp200trans_2012/htmlCode/pp200trans_2012_dttExtraction_1.html

The distributions of $\cos \theta^*$ versus invariant mass could be found from the link, too. The drop in the middle range ($\cos \theta^* \sim 0$) is due to the missing of the daughter particle with small $p_{\rm T}$.

Figure 4.4: $\cos \theta^*$ vs. invariant mass distribution for $\Lambda(\text{left})$ and $\bar{\Lambda}(\text{right})$ with $2 < p_T < 3 \,\text{GeV/c}$ and $0 < \eta < 1.2 \,\text{from JP1}$ sample with the BLUE beam as the polarized beam.

 $D_{\rm TT}$ in each small $\cos \theta^*$ interval were obtained using Eq. 4.8 and shown in Fig. 4.6. Here the results are from JP1 sample and with the Λ $p_{\rm T}$ of $2 \sim 3\,{\rm GeV}/c$.

Then $D_{\rm TT}$ in each $\cos \theta^*$ interval are fitted using a constant in each $p_{\rm T}$ bin and the fitted result is used as the $D_{\rm TT}$ for the $p_{\rm T}$ bin. Fig. 4.7 shows the $D_{\rm TT}$ of Λ ($\bar{\Lambda}$) for JP triggers.

4.1 Trigger Combined D_{TT}

 $D_{\rm TT}$ values for each of the JP trigger samples are consistent with each other within the statistical uncertainty and the χ^2 test for the results of each two trigger samples are shown in TABLE 4.1 so we combined the events from each of the trigger samples into one data sample.

The $D_{\rm TT}$ for $\Lambda(\bar{\Lambda})$ and $\delta_{\rm TT}$ for K_S^0 vs. $\cos \theta^*$ in each $p_{\rm T}$ bin are shown in Fig. 4.8.

Figure 4.5: $\cos \theta^*$ distribution for (a) Λ and (b) $\bar{\Lambda}$ from JP1 sample. The solid circle denotes the positive beam polarization and the open circle denotes the negative beam polarization.

Figure 4.6: $D_{\rm TT}$ vs. $\cos\theta^*$ for $\Lambda({\rm left})$ and $\bar{\Lambda}({\rm right})$ with $p_{\rm T}$ of $2\sim 3\,{\rm GeV/c}$ using JP1 data.

Table 4.1: χ^2/ndf testing between the results of each two trigger samples

Trigger	Λ		$\overline{\Lambda}$	
	$0 < \eta < 1.2$	$-1.2 < \eta < 0$	$0 < \eta < 1.2$	$-1.2 < \eta < 0$
JP0 : JP1	6.47/6	2.58/6	3.84/6	5.94/6
JP0: JP2	6.09/6	2.48/6	5.85/6	3.09/6
JP0: AJP	5.02/6	2.97/6	6.10/6	3.47/6
JP1 : JP2	6.68/6	2.60/6	10.45/6	3.27/6
JP1 : AJP	2.70/6	2.86/6	7.84/6	4.62/6
JP2 : AJP	6.57/6	3.80/6	12.56/6	4.23/6

Figure 4.7: $D_{\rm TT}$ for the 4 JP trigger samples. The upper panel is for Λ and the lower is for $\bar{\Lambda}$. The η range is $0 \sim 1.2$ in the left and $-1.2 \sim 0$ in the right.

Figure 4.8: $D_{\rm TT}$ for $\Lambda(\bar{\Lambda})$ and $\delta_{\rm TT}$ for K_S^0 vs. $\cos \theta^*$ in each $p_{\rm T}$ bin from the trigger-combined data sample.

Figure 4.8: $D_{\rm TT}$ for $\Lambda(\bar{\Lambda})$ and $\delta_{\rm TT}$ for K_S^0 vs. $\cos \theta^*$ in each $p_{\rm T}$ bin from the trigger-combined data sample.

 $D_{\rm TT}$ extracted from the JP trigger-combined data sample are shown in Fig. 4.9.

Figure 4.9: $D_{\rm TT}$ for the trigger-combined sample. The left and right plots are for $0 < \eta < 1.2$ and $-1.2 < \eta < 0$, correspondingly.

 K_S^0 was reconstructed in our analysis which is used to do the cross check. We constructed the so-called "spin asymmetry", $\delta_{\rm TT}$, of K_S^0 using the same structure with $D_{\rm TT}$ of Λ shown in Eq. 4.15 where the N is the number of K_S^0 reconstructed and $\alpha_{K_S^0}$ is assumed as 1 which used as the decay parameter of Λ .

$$\delta_{\rm TT} = \frac{1}{\alpha_{K_S^0} P \langle \cos \theta^* \rangle} \frac{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} - \sqrt{N^{\uparrow}(-\cos \theta^*) N^{\downarrow}(\cos \theta^*)}}{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} + \sqrt{N^{\uparrow}(-\cos \theta^*) N^{\downarrow}(\cos \theta^*)}}$$
(4.15)

Higher statistics and lower background fraction make K_S^0 a good choice to do the check. The results of $\delta_{\rm TT}$ versus $p_{\rm T}$ from trigger combined sample are shown in bottom panels in Fig. 4.8.

4.2 Cross check of $D_{\rm TT}$ measurement method

The main results were extracted via the Cross-Ratio method. We also used the relative luminosity method to extract $D_{\rm TT}$ as the cross check. In the relative luminosity method, $D_{\rm TT}$ in a small $\cos \theta^*$ interval is extracted via the equation following,

$$D_{\rm TT} = \frac{1}{\alpha P_{\rm beam} \langle \cos \theta^* \rangle} \frac{\left(\frac{N^{\uparrow\uparrow}}{R_4} + \frac{N^{\uparrow\downarrow}}{R_6}\right) - \left(N^{\downarrow\downarrow} + \frac{N^{\downarrow\uparrow}}{R_5}\right)}{\left(\frac{N^{\uparrow\uparrow}}{R_4} + \frac{N^{\uparrow\downarrow}}{R_6}\right) + \left(N^{\downarrow\downarrow} + \frac{N^{\downarrow\uparrow}}{R_5}\right)}.$$
 (4.16)

The comparison between the results corresponding to the two methods is shown in Fig. 4.10. The result comparison between the two methods are consistent to each other. This is a good proof to the stabilty of our measurement method.

In the main results extraction, we used the jet axis as the substitute of the quark axis. The results extracted by using the hyperon aixs as the substitute of the quark axis are shown in Fig 4.11 for the cross check and a good agreement is observed in the comparison.

Figure 4.10: The comparison between the results extracted via Cross-Ratio method and Relative Luminosity method. The left and right plots are for $0 < \eta < 1.2$ and $-1.2 < \eta < 0$, correspondingly.

Figure 4.11: The comparison between the results extracted by using the hyperon aixs and the jet axis as the substitute of the quark axis, separately.

5 MC Production and Data Comparison

5.1 MC Production

Private MC sample was generated to compare with data and further do the study of trigger bias. The MC sample was generated using pure pythia of version 6.4.28 [6] with Perugia 2012 tune [7] and GEANT-based simulation framework. The sample was generated in each $\Lambda p_{\rm T}$ and hard $p_{\rm T}$ interval separately and then combined with weight of hard $p_{\rm T}$ in each $\Lambda p_{\rm T}$ interval. The hard $p_{\rm T}$ distributions for each $\Lambda p_{\rm T}$ are shown in Fig. 5.1.

The hard $p_{\rm T}$ does not comply with exponential distribution perfectly. This is because that only Λ ($\bar{\Lambda}$) events were stored by using Λ filter. The Λ filter was used in order to improve the generation efficiency and save disk space. The filter is based on the StMCfilter and requests at least one Λ or $\bar{\Lambda}$ in a pythia event. In the generation, we set PARP(90)=0.213 which is consistent with Embedding production of jet $A_{\rm LL}$ analysis by Kevin and K_factor = 2 which makes the $p_{\rm T}$ spectrum of Λ hyperons better consistent with data.

Jet Patch trigger conditions are applied using the standard STAR trigger simulator. Particle identification of p, π and Λ are implemented via StAssociateMaker in MC events then the same selection cuts are applied on except dE/dx. The efficiency of the track association is about 70% for single track and thus the eifficiency of finding a Λ into $p\pi$ is only 50%, which is an obstacle to generate MC sample with enough statistics. Jets are reconstructed with anti- $K_{\rm T}$ algorithm with R=0.6 which is same with data.

5.2 Data and MC Comparison

The comparisons between data and MC were made. The $\Lambda(\bar{\Lambda})$ with $p_{\rm T}$ of $3 \sim 4 \, GeV/c$ from JP1 sample are used as the example shown in the fillowing figures.

The comparison of primary vertex z after reweighting between data and simulation is shown in Fig. 5.2. The reweighting is made for each trigger sample separately. They are consistent with each other as the expected.

The comparisons of reconstructed variables for jet near-side Λ and Λ between data and simulation are shown in the following plots. The JP1 sample is used here for example and the others could be found from the link:

http://www.star.bnl.gov/protected/spin/jcmei/pp200trans_2012/htmlCode/pp200trans_2012_MCDataComparison_J1.html

Fig. 5.3 and Fig. 5.4 show the comparisons of the invariant mass, p_T , η , ϕ for jet near-side Λ and $\bar{\Lambda}$. In η comparison, data lower than simulation at the mid-rapidity is related to the efficiency drop in data from pileup. The MC smaple was produced uing pure pythia and pileup is not involved in.

Fig. 5.5 and Fig. 5.6 show the comparison of p_T , η , ϕ for p and π from jet near-side $\bar{\Lambda}$ and Λ . The similar behaviour can be found in η distribution.

The comparisons of selection cuts are shown in the following plots.

Figure 5.1: Hard Hard p_T distributions before (left) and affter (right) weighting for each of Λ p_T bins.

Figure 5.1: Hard $p_{\rm T}$ distribution before (left) and affter (right) weighting for each of Λ $p_{\rm T}$ bins.

Figure 5.2: Comparison of primary vertex z after reweighting. The plots are for JP0, JP1, JP2, AJP trigger conditions from left to right in sequence.

Figure 5.3: Comparison of reconstructed variables of $p(\bar{p})$ from jet near-side $\Lambda(\bar{\Lambda})$. The invariant mass of $\bar{\Lambda}$ are shown in the left panel and the right one is for Λ .

Figure 5.4: Comparison of reconstructed variables for jet near-side Λ and $\bar{\Lambda}$. The $p_{\rm T}$, η , ϕ comparisons for Λ are shown in the upper panel and the lower panel is for $\bar{\Lambda}$.

Figure 5.5: Comparisons of reconstructed variables of $p(\bar{p})$ from jet near-side $\Lambda(\bar{\Lambda})$. The $p_{\rm T},~\eta,~\phi$ comparisons for p from Λ are shown in the upper panel and the lower panel is for \bar{p} from $\bar{\Lambda}$.

Figure 5.6: Comparisons of reconstructed variables for $\pi^-(\pi^+)$ decay from jet near-side $\Lambda(\bar{\Lambda})$. The $p_{\rm T}$, η , ϕ comparisons for π^- from Λ are shown in the upper panel and the lower panel is for π^+ from $\bar{\Lambda}$.

Figure 5.7: Comparisons of selection cuts for jet near-side Λ and $\bar{\Lambda}$. The decay length, DCA_V0, DCA_2 comparisons for Λ are shown in the upper panel and the lower panel is for $\bar{\Lambda}$.

Decay length, DCA_V0 and DCA_2 comparisons are shown in Fig. 5.7. Significant difference can be observed in DCA_V0 comparison. This is because the resolution of primary vertex in simulation is better than in data.

The comparisons of DCA_p and DCA_ π are shown in Fig. 5.8.

The comparisons between data and simulation is generally consistent with each other. In order to make sure whether the annihilation effect of \bar{p} is simulated in the MC production, the ratio of $\bar{\Lambda}/\Lambda$ is studied in both simulation and data and the ratios for different classes of production are shown in Fig. 5.9. The natrual yield of $\bar{\Lambda}$ should be lower than Λ in pp collisions and the ratio is about 88% varying with p_T [1]. The ratios shown in Fig. 5.9 indicate that more $\bar{\Lambda}$ than Λ are reconstructed relatively in lower p_T bins. This is caused by the annihilation effect of \bar{p} which makes it easier to pass the trigger threshold for the event including $\bar{\Lambda}$. With the increasing of p_T , the energy contributed from the annihilation of \bar{p} is no longer the main fraction making the trigger fired so the ratio is going down.

Figure 5.8: DCA of p, π from jet near-side Λ and $\bar{\Lambda}$. The upper panel is for Λ and the lower panel is for $\bar{\Lambda}$.

Figure 5.9: The ratio of $\bar{\Lambda}/\Lambda$ yield in different states. The left plot is for inclusive Λ and $\bar{\Lambda}$ and the right one is for the jet near-side Λ and $\bar{\Lambda}$.

6 Evaluation of Systematic Uncertainty

The systematic uncertainties in this analysis are stated in this section. Uncertainty sources we have considered include:

- the decay parameter,
- the measurement of beam polarization,
- the pileup effect,
- the estimation of residual background fraction,
- the trigger bias.

The systematic uncertainty caused by the trigger bias for the results of the combination sample was combined with weights determined by the point-by-point inverse statistical variance (as in an ordinary weighted average). The systematic scale uncertainties were reevaluated for the $D_{\rm TT}$ value of the combined sample. The systematic uncertainties from the estimation of the residual background fraction and pileup were reevaluated using the trigger combined sample.

6.1 Uncertainty from Decay parameter

The decay parameter α is taken from external measurements. We use the PDG value, 0.0642 ± 0.013 [4]. This 2% scale uncertainty is common to the JP trigger samples.

6.2 Uncertainty from Beam polarization

The magnitude of the beam polarizations is measured by the RHIC polarimetry group and has a 3.4% scale uncertainty for Run12 $\sqrt{s} = 100 \,\text{GeV}$ data.

The beam polarization and its uncertainty are evaluated using the present data. The details of the measurement could be found from the link:

http://public.bnl.gov/docs/cad/Documents/RHIC%20polarization%20for%20Runs% 209-12.pdf The uncertainty of this part is estimated via the scale multiply the $D_{\rm TT}$ mean value of the trigger-combined data sample.

6.3 Uncertainty from Estimation of Residual Background Fraction

The transverse spin transfer $D_{\rm TT}$ is extracted using Eq. 6.1 considering the background substraction.

$$D_{\rm TT} = \frac{D_{\rm TT}^{raw} - rD_{\rm TT}^{bkg}}{1 - r},\tag{6.1}$$

where $D_{\rm TT}^{raw}$ is the $D_{\rm TT}$ value using the Λ candidates in the signal mass window containing residual backgrounds. The uncertainty in the residual background fraction is taken into account as a systematic uncertainty of $D_{\rm TT}$. The background fraction used in the main results is evaluated by counting events in the side-bands, interpolating them to the signal region, and comparing them with the observed counts in the signal region.

In order to estimate the systematic uncertainty caused by the background estimation, the background fraction was estimated also from a linear fit to the background and Gaussian to describe the signal. The difference of the resulting $D_{\rm TT}$ values for these two methods is taken as the sysmatic uncertainty in r. The results are listed in TABLE. 6.1 with p_T for trigger combined data sample.

Table 6.1: Uncertainty to $D_{\rm TT}$ from estimation of residual background fraction for Λ and $\bar{\Lambda}$

	$0 < \eta$	< 1.2	$-1.2 < \eta < 0$		
$p_{\rm T} \left[{ m GeV}/c ight]$	Λ	$\bar{\Lambda}$	Λ	$\bar{\Lambda}$	
$1 \sim 2$	0.0000	0.0000	0.0000	0.0000	
$2\sim 3$	0.0000	0.0000	0.0000	0.0000	
$3 \sim 4$	0.0000	0.0000	0.0000	0.0000	
$4 \sim 5$	0.0000	0.0001	0.0002	0.0004	
$5 \sim 6$	0.0009	0.0001	0.0005	0.0003	
$6 \sim 8$	0.0028	0.0002	0.0002	0.0007	

6.4 Uncertainty from Pileup

The effect of event-overlap was studied by hyperon data sample and examining the hyperon yield per STAR event versus collision rate. The ratio is expected to be constant in the absednce of pile-up when the collision rate was $20\,\mathrm{kHz}$. Constant and linear extrapolation to small collision rate, where pileup logically vanishes, was used to assess this systematic uncertainty contribution. The factor of pileup effect was estimated using the 4 JP samples and separately for the spin 4-bit sorted sample. Fig. 6.1 and Fig. 6.2 show the distribution for Λ and $\bar{\Lambda}$ of JP trigger combined sample.

The values are tabulated in TABLE. 6.2.

The systematic uncertainty propagation on $D_{\rm TT}$ due to pileup is calculated by determining the difference between the extracted $D_{\rm TT}$ sample and the pileup corrected $D_{\rm TT}$ for each spin 4-bit configuration,

$$(\delta D_{\text{TT}}^{sys.pileup})^2 = \sum_{k=++,-+,+-,--} [D_{\text{TT}}(n^k) - D_{\text{TT}}((1-u^k)n^k)]^2, \tag{6.2}$$

where n^{++} , n^{-+} , n^{+-} , and n^{--} are the spin 4-bit sorted hyperons counts and u^{++} , u^{-+} , u^{+-} , and u^{--} are the spin 4-bit sorted pileup contributions. The uncertainty values from pileup for trigger combined data sample are tabulated in TABLE. 6.3.

Table 6.2: Factors of pileup contribution for Λ and Λ for each spin configuration.

spin bit	5	6	9	10
Λ	0.087 ± 0.010	0.104 ± 0.011	0.084 ± 0.010	0.097 ± 0.011
$ar{\Lambda}$	0.093 ± 0.010	0.076 ± 0.010	0.092 ± 0.010	0.088 ± 0.010

Figure 6.1: Hyperon yield vs. collision rate in spin 4-bit configurations of Λ for JP trigger combination. The upper-left graph is for spinbit-5, the upper right graph is for spinbit-6, the low left one is for spinbit-9 and the low right one is for spinbit-10.

Figure 6.2: Hyperon yield vs. collision rate in spin 4-bit configurations of $\bar{\Lambda}$ for JP trigger combination. The upper-left graph is for spinbit-5, the upper right graph is for spinbit-6, the low left one is for spinbit-9 and the low right one is for spinbit-10.

Table 6.3: Uncertainty to $D_{\rm TT}$ from pileup for Λ and $\bar{\Lambda}$

-					
	$0 < \eta$	< 1.2	$-1.2 < \eta < 0$		
$p_{\rm T} \left[{ m GeV}/c ight]$	Λ	$ar{\Lambda}$	Λ	$\bar{\Lambda}$	
$1 \sim 2$	0.0005	0.0001	0.0006	0.0003	
$2\sim 3$	0.0002	0.0005	0.0007	0.0003	
$3 \sim 4$	0.0002	0.0007	0.0002	0.0011	
$4 \sim 5$	0.0017	0.0012	0.0014	0.0007	
$5 \sim 6$	0.0013	0.0016	0.0013	0.0012	
$6 \sim 8$	0.0009	0.0022	0.0017	0.0031	

6.5 Uncertainty from Trigger Bias

The data samples in this analysis are triggered for energy deposits in BEMC and EEMC, but not directly on the Λ and $\bar{\Lambda}$. The trigger condition may thus introduce a bias that needs to be taken into account in either the measurement or the phenomenological interpretation of the data. We choose to account for the possible size of this effect in a systematic uncertainty in the measurements and have considered three main manifestations:

- ullet changes in the fractional momentum z of the produced Λ and $\bar{\Lambda}$ within the associated jet,
- changes in the relative contributions from different hard sub-processes and fragmenting partons with different flavors in the production.
 - possible differences in the fraction of feed-down contributions,

The uncertainty caused by each of the three items is estimated in each of the JP trigger data samples separately, then combined using ratios of each of the JP trigger data samples extracted in data as weights. For the trigger combined data sample, the uncertaintues of the three items are added in quadrature.

These possible changes are examined in MC simulation before and after applying the Jet Patch trigger conditions using the standard STAR trigger simulator and GEANT-based simulation framework. Events were produced using PYTHIA version 6.4.28 [6] with Perugia 2012 tune [7].

Theoretical model [8] is used to evaluate the uncertainty into $D_{\rm TT}$ from trigger bias. The polarization of hyperons is separated into two parts as shown in Eq. 6.3.

$$P_{H_i} = \sum_{f} t_{H_i,f}^F P_f R_{H_i,f} + \sum_{j} t_{H_i,H_j}^D P_{H_j} R_{H_i,H_j},$$
(6.3)

The polarization of H_i hyperon is the sum of the polarization of H_i produced directly from the fragmenting parton and produced from other particle (H_j) decay. The first part shows the polarization of hyperons produced directly from fragmenting parton, where $t_{H_i,f}^F$ is the transfer of polarization from the fragmenting parton to final state

Figure 6.3: z distribution for Λ (in the left) and $\bar{\Lambda}$ (in the right) with $p_{\rm T}$ of $3 \sim 4\,{\rm GeV}/c$. X aixs shows z and Y axis shows the yield after normalized. The shifts of the mean values related to the mean value of zero bias sample are shown in the legend.

hypreons directly, P_f is the polarization of the fragmenting parton and $R_{H_i,f}$ is the relative fraction of H_i produced directly from fragmenting parton; The second part is about the polarization of H_i produced from other hyperons decay and t_{H_i,H_j}^D is the transfer of polarization from other polarized hyperons.

6.5.1 Fractional momentum z

The fractional momentum z is defined as the ratio of p_T^{Λ} over $p_T^{jet.asso}$, namely

$$z = \frac{p_{\rm T}^{\Lambda}}{p_{\rm T}^{jet.accosiated}} \tag{6.4}$$

It can be changed with JP trigger condition applied and the $D_{\rm TT}$ is dependent on z based on the model calculation. z are extracted from the MC sample before and after applying JP trigger conditions and shown in Fig. 6.3.

The z-dependent $D_{\rm TT}$ for Λ and $\bar{\Lambda}$ calculated using the model are shown in Fig. 6.4. The $D_{\rm TT}$ values are corresponding to z for each trigger are obtained using Eq. 6.5,

$$D_{\rm TT} = \frac{\sum_{i} D_{\rm TT}^{i} n^{i}}{\sum_{i} n^{i}},\tag{6.5}$$

where n^i and D_{TT}^i are the number of Λ or $\bar{\Lambda}$ offered by the MC sample and the value of D_{TT} calculated using the model in the *i*th bin along z. We assigned the D_{TT} value of the last bin in the D_{TT} versus z to the bins with z > 0.85 and the events in the bins with z > 1.0 are excluded in the calculation.

The differences of $D_{\rm TT}$ between before and after applying the triger conditions are used as the systematic uncertainty to $D_{\rm TT}$ form z shift. The uncertainty is shown in TABLE. 6.4

Figure 6.4: $D_{\rm TT}$ for Λ and $\bar{\Lambda}$ versus z calculated using the model in different $p_{\rm T}$ bins with positive η (left) and negative η (right).

Figure 6.4: $D_{\rm TT}$ for Λ and $\bar{\Lambda}$ versus z calculated using the model in different $p_{\rm T}$ bins with positive η (left) and negative η (right).

Table 6.4: Uncertainty to D_{TT} from z shift for Λ and $\bar{\Lambda}$

				($0 < \eta < 1$.2				
	JI	JP0 JP1 JP2 AJP		JP	Com	bined				
$p_{ m T}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$
$1 \sim 2$	0.0001	0.0001	0.0004	0.0002	0.0009	0.0005	0.0004	0.0003	0.0005	0.0003
$2 \sim 3$	0.0001	0.0001	0.0005	0.0003	0.0013	0.0009	0.0005	0.0004	0.0007	0.0004
$3 \sim 4$	0.0007	0.0006	0.0018	0.0015	0.0031	0.0026	0.0019	0.0015	0.0021	0.0017
$4 \sim 5$	0.0018	0.0016	0.0039	0.0038	0.0061	0.0061	0.0040	0.0048	0.0045	0.0044
$5 \sim 6$	0.0021	0.0024	0.0048	0.0055	0.0077	0.0088	0.0059	0.0080	0.0058	0.0067
$6 \sim 8$	0.0021	0.0028	0.0049	0.0060	0.0078	0.0099	0.0070	0.0097	0.0061	0.0077
	$-1.2 < \eta < 0$									
				_	$1.2 < \eta <$	< 0				
	JI	20	JI	- P1		< 0 P2	Α.	JP	Com	bined
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	JΙ	P ₀ Λ	JΙ				Λ.	JP Ā	Γ	$rac{ m bined}{ar{\Lambda}}$
$\frac{p_{\rm T}}{1\sim 2}$				21	JI	22				
	Λ	$ar{\Lambda}$	Λ	P1 Λ	Δ	P2	Λ	$ar{\Lambda}$	Λ	Ā
$1 \sim 2$	Λ 0.0000	$\bar{\Lambda}$ 0.0000	Λ 0.0000	P1 Λ 0.0000	JI Λ 0.0000	$\begin{array}{c} 2\\ \bar{\Lambda}\\ 0.0000 \end{array}$	Λ 0.0000	$\bar{\Lambda}$ 0.0000	Λ 0.0000	$\bar{\Lambda}$ 0.0000
$ \begin{array}{c} 1 \sim 2 \\ 2 \sim 3 \end{array} $	Λ 0.0000 0.0001	$ \bar{\Lambda} $ 0.0000 0.0000	Λ 0.0000 0.0001	P1 Λ 0.0000 0.0001	Λ 0.0000 0.0001	72 0.0000 0.0001	Λ 0.0000 0.0001	$ \bar{\Lambda} $ 0.0000 0.0001	Λ 0.0000 0.0001	Λ 0.0000 0.0001
$ \begin{array}{c} 1 \sim 2 \\ 2 \sim 3 \\ 3 \sim 4 \end{array} $	Λ 0.0000 0.0001 0.0001	$\bar{\Lambda}$ 0.0000 0.0000 0.0001	Λ 0.0000 0.0001 0.0002	71 0.0000 0.0001 0.0001	JI Λ 0.0000 0.0001 0.0002	$\begin{array}{c} 2 \\ \bar{\Lambda} \\ 0.0000 \\ 0.0001 \\ 0.0002 \end{array}$	Λ 0.0000 0.0001 0.0002	$\bar{\Lambda}$ 0.0000 0.0001 0.0001	Λ 0.0000 0.0001 0.0002	$\bar{\Lambda}$ 0.0000 0.0001 0.0001
$ \begin{array}{c} 1 \sim 2 \\ 2 \sim 3 \\ 3 \sim 4 \\ 4 \sim 5 \end{array} $	Λ 0.0000 0.0001 0.0001 0.0000	Λ 0.0000 0.0000 0.0001 0.0001	Λ 0.0000 0.0001 0.0002 0.0001	P1 Λ 0.0000 0.0001 0.0001 0.0002	Λ 0.0000 0.0001 0.0002 0.0002	P2 Λ 0.0000 0.0001 0.0002 0.0003	Λ 0.0000 0.0001 0.0002 0.0001	Λ 0.0000 0.0001 0.0001 0.0002	Λ 0.0000 0.0001 0.0002 0.0001	$\bar{\Lambda}$ 0.0000 0.0001 0.0001 0.0002

6.5.2 Subprocess & flavor of fragmenting parton

The polarization of the fragmenting parton is transfed from the incoming parton which can be expressed as

 $P_f = \frac{\delta f}{f} D_T^{a^{\uparrow}b \to c^{\uparrow}d}, \tag{6.6}$

where P_c is the polarization of the fragmenting parton c, δf is the transversely polarized partonic distribution function and f is the unpolaried partonic distribution function and $D_T^{a^\uparrow b \to c^\uparrow d}$ is the partonic spin transfer for the subprocess $a^\uparrow b \to c^\uparrow d$. The JP trigger conditions could change the relative fractions of different subprocess and thus the relative fractions of the fragmenting partons with different flavor. The relative fractions of the subprocess are obtained from the MC sample and the example of p_T of $3 \sim 4 \,\text{GeV/c}$ is shown in Fig. 6.5. The main subprocesses are $q_a q_b \to q_a q_b$, $q_a g \to q_a g$ and $gg \to gg$.

The relative fractions for all $p_{\rm T}$ bins are summaried in Fig. 6.6. The relative fractions of $qq \to qq$ and $qg \to qg$ are increasing and the relative fraction of $gg \to gg$ is decreasing with the trigger threshold increasing and hyperon $p_{\rm T}$ increasing.

The relative fractions of the fragmenting partons with different flavors changed with the different trigger conditions applied. The relative fractions are extracted from the MC sample. Fig. 6.7 shows the original fragmenting parton flavors for Λ ($\bar{\Lambda}$) with $p_{\rm T}$ of $3 \sim 4\,{\rm GeV/c}$ as an example. The fraction distribution indicates that gluon is the main part in the fragmenting partons for both of Λ and $\bar{\Lambda}$ and d and d quarks are following. The \bar{s} quark is obviously a main source for $\bar{\Lambda}$ than Λ . This is also the reason why we expect $\bar{\Lambda}$ is able to provide information for the polarization of strange sea quark.

The relative fractions for all $p_{\rm T}$ bins are summaried in Fig. 6.8. The relative fraction of gluon is decreasing while the relative fractions of quarks are increasing with hyperon $p_{\rm T}$ increasing. With trigger threshold increasing, the relative fraction of $s\left(\bar{s}\right)$ is decreasing while the relative fractions of gluon, $d\left(\bar{d}\right)$ and $u\left(\bar{u}\right)$ are increasing.

The relative fraction changes of subprocess and fragmenting parton with different flavor is combined to each other strongly. In the model calculation, the relative fraction of fragmenting parton with different flavor is used as the input to calculate the $D_{\rm TT}$ for each trigger. Based on the model calculation and the relative fractions of fragmenting parton with different flavor, the trigger-dependent $D_{\rm TT}$ was obtained. The difference of $D_{\rm TT}$ between before and after applying the trigger conditions is used as the systematic uncertainty to $D_{\rm TT}$ from the changes of subprocess and fragmenting parton flavor. The uncertainty from this part is tabulated in TABLE. 6.5.

6.5.3 Feed-down contributions

The possible effect from differences in the feed-down contribution on Λ and $\bar{\Lambda}$ production were studied in simulation. The relative fractions of $\Lambda(\bar{\Lambda})$'s mother particles can be obtained from the MC data samples.

The relative fractions for all $p_{\rm T}$ bins are summaried in Fig. 6.9. The solid circle is representative of the hyperon produced directly from the fragmenting parton and this part is decreasing with trigger threshold increasing. The relative fractions of hyperons

Figure 6.5: The relative fractions of subprocess for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) with $p_{\rm T}$ of $3\sim 4\,{\rm GeV/c}$.

Figure 6.6: The relative fractions of subprocess for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) in all $p_{\rm T}$ bins.

fParton distribution for L, J1, pt3 **→** MB **→**JP0 +JP2 ♦ AJP 8.0 0.7 0.6 0.5 0.4 0.3 0.2 g fParton fParton distribution for A, J1, pt3 **→** MB →JP0 +JP1 +JP2 0.7 0.6 0.5 0.4 0.3 0.2 g fParton

Figure 6.7: The relative fractions of fragmenting parton flavors for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) with $p_{\rm T}$ of $3\sim 4\,{\rm GeV/c}$.

Figure 6.8: The relative fractions of fragment in parton flavors for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) in all $p_{\rm T}$ bins.

Table 6.5: Uncertainty to $D_{\rm TT}$ from subprocess & fragmenting parton flavor for Λ and $\bar{\Lambda}$

$0 < \eta < 1.2$											
	JP0 JP1		P1	JP2		AJP		Combined			
p_{T}	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	
$1 \sim 2$	0.0000	0.0001	0.0002	0.0001	0.0003	0.0004	0.0003	0.0004	0.0002	0.0002	
$2 \sim 3$	0.0001	0.0001	0.0005	0.0003	0.0011	0.0007	0.0009	0.0001	0.0007	0.0004	
$3 \sim 4$	0.0005	0.0002	0.0013	0.0006	0.0023	0.0017	0.0014	0.0005	0.0015	0.0009	
$4 \sim 5$	0.0011	0.0003	0.0024	0.0009	0.0043	0.0021	0.0041	0.0007	0.0031	0.0012	
$5\sim6$	0.0011	0.0005	0.0029	0.0013	0.0048	0.0019	0.0046	0.0023	0.0037	0.0016	
$6 \sim 8$	0.0011	0.0006	0.0026	0.0013	0.0048	0.0022	0.0041	0.0019	0.0036	0.0017	
				_	19 < n <	- n					
	II	20	TE		$1.2 < \eta < 0.00$		Λ.	ID	Com	hinad	
	JF		JF	P1	JF	2	Α.			bined	
p_{T}	JF Λ	P0 Λ	JF Λ		•		Α.	JP Λ	Com	bined $ar{\Lambda}$	
$p_{\rm T}$ $1 \sim 2$				P1	JF	2					
	Λ	$ar{\Lambda}$	Λ	P1	JΙ	P2 Λ	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	
$1 \sim 2$	Λ 0.0000	$\bar{\Lambda}$ 0.0000	Λ 0.0000	$\frac{\bar{\Lambda}}{0.0000}$	JF Λ 0.0000	$\frac{\bar{\Lambda}}{0.0000}$	Λ 0.0000	$\bar{\Lambda}$ 0.0000	Λ 0.0000	$\bar{\Lambda}$ 0.0000	
$\begin{array}{c c} 1 \sim 2 \\ 2 \sim 3 \end{array}$	Λ 0.0000 0.0000	Λ 0.0000 0.0000	Λ 0.0000 0.0000	$\frac{\bar{\Lambda}}{0.0000}$ 0.0001	Λ 0.0000 0.0000	$ \begin{array}{c c} \hline \Lambda \\ 0.0000 \\ 0.0001 \end{array} $	Λ 0.0000 0.0000	$ \bar{\Lambda} $ 0.0000 0.0000	Λ 0.0000 0.0000	$ \bar{\Lambda} $ 0.0000 0.0001	
$ \begin{array}{c c} 1 \sim 2 \\ 2 \sim 3 \\ 3 \sim 4 \end{array} $	Λ 0.0000 0.0000 0.0000	Λ 0.0000 0.0000 0.0000	Λ 0.0000 0.0000 0.0001	$\begin{array}{c} \hline \Lambda \\ \hline 0.0000 \\ 0.0001 \\ \hline 0.0000 \\ \end{array}$	JI Λ 0.0000 0.0000 0.0002	$\begin{array}{c} \hline \lambda \\ \hline 0.0000 \\ 0.0001 \\ \hline 0.0001 \\ \end{array}$	Λ 0.0000 0.0000 0.0001	Λ 0.0000 0.0000 0.0000	Λ 0.0000 0.0000 0.0001	Λ 0.0000 0.0001 0.0000	

produced from Σ^0 , Σ^{*0} and Ξ^0 decay are increasing with the trigger threshold increasing. This is because that π^0 or γ is produced simultaneously in the decay, which provides more energy to make the trigger fired esaier.

Based on the model calculation and the relative fractions of feed-down sources for each trigger condition, the trigger-dependent $D_{\rm TT}$ was obtained. The difference of $D_{\rm TT}$ between before and after applying the trigger conditions is used as the systematic uncettainty to $D_{\rm TT}$ from the changes of the feed-down sources. TABLE 6.6 shows the values of the uncertainty.

6.6 Total Systematic Uncertainty

The total systematic uncertainty was estimated by adding the above contributions in quadrature for each $p_{\rm T}$ interval in the analysis. This was done separately for the Λ and $\bar{\Lambda}$ samples with positive and negative η ranges. The values are shown in TABLE. 6.7.

Figure 6.9: The feed-down fractions for Λ (upper panel) and $\bar{\Lambda}$ (lower panel) in all $p_{\rm T}$ bins.

Table 6.6: Uncertainty to $D_{\rm TT}$ from feed-down for Λ and $\bar{\Lambda}$

$0 < \eta < 1.2$											
	J.	P0	J.	P1	JI	JP2 A			JP Combined		
p_{T}	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	
$1 \sim 2$	0.0000	0.0001	0.0001	0.0001	0.0000	0.0001	0.0003	0.0001	0.0001	0.0001	
$2 \sim 3$	0.0002	0.0000	0.0004	0.0001	0.0004	0.0003	0.0001	0.0000	0.0004	0.0001	
$3 \sim 4$	0.0004	0.0002	0.0003	0.0003	0.0014	0.0008	0.0002	0.0004	0.0007	0.0004	
$4 \sim 5$	0.0007	0.0003	0.0013	0.0007	0.0020	0.0013	0.0016	0.0005	0.0015	0.0008	
$5\sim6$	0.0007	0.0008	0.0013	0.0014	0.0009	0.0024	0.0013	0.0030	0.0012	0.0018	
$6 \sim 8$	0.0006	0.0010	0.0019	0.0019	0.0024	0.0028	0.0008	0.0020	0.0020	0.0022	
$-1.2 < \eta < 0$											
				_	$1.2 < \eta <$	< 0					
	JI	20	JI		$1.2 < \eta <$ JF		Α.	JP	Com	bined	
p_{T}	JI A	P0 Λ	JI Λ				Α.	JP Ā	Γ	$\begin{array}{c} \text{bined} \\ \bar{\Lambda} \end{array}$	
$\begin{array}{c c} \hline p_{\rm T} \\ \hline 1 \sim 2 \end{array}$				P1	JF	P2					
	Λ	$ar{\Lambda}$	Λ	P1 Λ	JΕ	P2 Λ	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	
$1 \sim 2$	Λ 0.0000	$\bar{\Lambda}$ 0.0000	Λ 0.0000	P1	JF Λ 0.0000	P2	Λ 0.0001	$\bar{\Lambda}$ 0.0000	Λ 0.0000	$\bar{\Lambda}$ 0.0000	
$\begin{array}{ c c c }\hline 1 \sim 2 \\ \hline 2 \sim 3 \\ \hline \end{array}$	Λ 0.0000 0.0000	$\bar{\Lambda}$ 0.0000 0.0000	Λ 0.0000 0.0000	71 0.0000 0.0001	Λ 0.0000 0.0001	P2 Λ 0.0000 0.0001	Λ 0.0001 0.0001	$ \bar{\Lambda} $ 0.0000 0.0001	Λ 0.0000 0.0001	$\bar{\Lambda}$ 0.0000 0.0001	
$ \begin{array}{c c} 1 \sim 2 \\ 2 \sim 3 \\ 3 \sim 4 \end{array} $	Λ 0.0000 0.0000 0.0001	Λ 0.0000 0.0000 0.0000	Λ 0.0000 0.0000 0.0001	$\frac{\bar{\Lambda}}{\Lambda}$ 0.0000 0.0001 0.0000	JF Λ 0.0000 0.0001 0.0001	P2 Λ 0.0000 0.0001 0.0000	Λ 0.0001 0.0001 0.0002	Λ 0.0000 0.0001 0.0000	Λ 0.0000 0.0001 0.0001	Λ 0.0000 0.0001 0.0000	

Table 6.7: Total Systematic Uncertainty

	$0 < \eta$	< 1.2	-1.2 <	$-1.2 < \eta < 0$		
$p_{\rm T} \left[{ m GeV}/c ight]$	Λ	$ar{\Lambda}$	Λ	$\bar{\Lambda}$		
$1 \sim 2$	0.0008	0.0006	0.0000	0.0003		
$2 \sim 3$	0.0012	0.0008	0.0001	0.0003		
$3 \sim 4$	0.0029	0.0021	0.0003	0.0011		
$4 \sim 5$	0.0059	0.0049	0.0004	0.0009		
$5 \sim 6$	0.0071	0.0073	0.0010	0.0017		
$6 \sim 8$	0.0080	0.0086	0.0013	0.0041		

7 Final Results

Events that satisfy the JP trigger conditions were analyzed as separate samples. Events that satisfy two or more conditions were analyzed only as part of one of the JP samples to avoid double-counting (or correlation). The $D_{\rm TT}$ results are consistent with each other within uncertainty. The $D_{\rm TT}$ results using the combined sample were also extracted.

The final results are shonwn in Fig. 7.1 including statistical uncertainty (black lines) and the systematic uncertainty (grey bands). The values are listed in TABLE. 7.1.

Table 7.1: Values of D_{TT} extracted form trigger combined sample

		0 < r	$\eta < 1.2$			
		Λ			$ar{\Lambda}$	
$p_{\rm T} \left[{ m GeV}/c \right]$	D_{TT}	stat.	sys.	D_{TT}	stat.	sys.
$1 \sim 2$	0.000	0.007	0.001	0.011	0.006	0.001
$2 \sim 3$	0.013	0.008	0.001	-0.002	0.008	0.001
$3 \sim 4$	0.026	0.011	0.003	-0.002	0.011	0.002
$4 \sim 5$	-0.008	0.017	0.006	0.024	0.017	0.005
$5 \sim 6$	0.007	0.026	0.007	0.009	0.028	0.007
$6 \sim 8$	0.031	0.033	0.008	-0.034	0.040	0.009
		-1.2	$< \eta < 0$			
		Λ			$ar{\Lambda}$	
$p_{\rm T} \left[{ m GeV}/c \right]$	D_{TT}	stat.	sys.	D_{TT}	stat.	sys.
$1 \sim 2$	-0.005	0.007	0.001	-0.001	0.006	0.000
$2 \sim 3$	-0.006	0.008	0.001	0.001	0.008	0.000
$3 \sim 4$	-0.017	0.011	0.001	-0.004	0.011	0.001
$4 \sim 5$	-0.023	0.017	0.002	0.002	0.017	0.001
$5\sim6$	0.023	0.026	0.002	0.017	0.028	0.002
$6 \sim 8$	0.021	0.033	0.002	-0.056	0.040	0.004

Figure 7.1: $D_{\rm TT}$ extracted from the trigger combined sample for Λ and $\bar{\Lambda}$. The left grpah is with positive η with respect to the polarized beam and the right one is with negative η with respect to the polarized beam.

8 Main Code

The top directory for the code is

```
pp200trans_2012
```

and the more details and updated introduction of the analysis code can be found in CVS directories.

8.1 Data Analysis: from MuDsts to $D_{\rm TT}$

Currently, the muDst files for run12_200GeV are not available on RCF disk any longer. For test, one can always download a samll number of muDst files from HPSS. The full file list can be accessed via catalog:

```
get_file_list.pl -keys path,filename \\
-cond production=P12id,trgsetupname~pp200_production_2012, \\
filetype=daq_reco_MuDst,filename~st_physics,\\
tpx=1,emc=1,eemc=1,sanity=1,storage=hpss -limit 0
```

For reading the MuDst files (when the data is on the disk), you can just go inside directory LamRec, compile, and run the executable file Run job.csh, after which the analysis jobs will be submitted. The output files – the Lambda trees can be found in the scratch directory.

More detail steps are shown following:

In LamRec:

Lambda reconstruction from MuDst root files.

- 1. The code compliled with SL16b Library initially but the Library seems to be removed. starpro sholud be OK.
- 2. Excute the following commands:

starpro

cons

Run_jobs.csh start_runIndex end_runIndex

3. The output files will be stored in the Tree directory.

In JetRec:

Jet Tree are simplified here for Lambda and jet correlation.

- 1. Retrive origin jet tree from HPSS to JetTree directory. The jet tree files are located in: /home/jcmei/JetTree_run12/JetRec_Kevin/
- 2. Make file lists in each one of the runs with the whole path. MakeList.csh

- 3. Submit jobs to simplify jet trees:
 Run_simpleJet_jobs.csh start_runIndex end_runIndex
- 4. The output files will be stored in the simpleJetTree directory.

In JetMatch:

Make the correlation between Lambda and jets.

- Make file list. makeList.csh
- 2. Submit jobs to make the correlation. Run_job.csh start_runIndex end_runIndex
- Obtain root files by run. mergeBYrun.csh
- 4. cd dataBYrun
 lss | grep root > file.lis

In Ana directory:

The data is further selected and dealed with to obtain the final results.

- 1. Go to Select
- 2. Run_jobs.csh
- 3. cd data
 lss | grep root > file.lis
- 4. Go to fillHist
- 5. Run_job.csh
- 6. Go to imFit/code/
- 7. invariant mass fit and background estimetion $excute_imFit.C$
- 8. To Ana/fiilHist Run_job_2cos.csh
- 9. cd data/cos cd sig hadd merged_ALL.cos.root ALL/*_ALL.cos.root cd ../bkg hadd merged_ALL.cos.root ALL/*_ALL.cos.root
- 10.Extract D_TT
 To Ana/result

```
cos2dtt_crossRatio.csh
textDtt.csh

11.Make Money plots
   To Ana/imFit/code

   python paperPlot_im.py
   python paperPlot_imcos.py
   python paperPlot_dttcos.py
   python paperPlot_result.py

The plots will be in the output directory.
```

8.2 MC production

Generation MC data sample:

```
cd mcProduction/Gen/
Run_gen.csh par1 par2 par3
```

Here par1, par2 and par3 are the low and high edges of the hard pT and the circle number of the generation.

Jets and Hyperons reconstruction of MC data sample:

```
cd pp200trans_2012/mcProduction/Rec/
Run_job.csh
```

PTV(hyperon pT) and PTH(hard pT) are needed to specify in the macro. Make histograms of MC data sample:

```
cd pp200trans_2012/mcProduction/Ana/
cd merge
Run_job.csh
cd ../toHist
Run_job.csh
```

PTV(hyperon pT) and PTH(hard pT) are also needed to specify in the macro.

8.3 Notes

As usual, the .csh and .xml scripts should be appropriately modified as needed (path and directory) and corresponding file lists are needed in some steps. In the code collection directory, the README file should be more updated. Now, all the needed histograms are produced. The trigger bias can be extracted by using a few short macros. In

pp200trans_2012/mcProduction/tBias

directory, the macros used in this analysis can be taken as reference. Overall, this codes mentioned in this section are not professional enough. If any confusion are met, please feel free to contact Jincheng Mei (jcmei@rcf.rhic.bnl.gov).

A Run List

Here is the run list we used in the final results:

13044126	13045001	13045005	13045006	13045007	13045012	13045029	13045056
13045133	13045134	13045135	13045138	13045145	13045146	13045164	13046001
13046003	13046004	13046121	13047003	13047023	13047024	13047026	13047027
13047028	13047029	13047030	13047031	13047032	13047034	13047035	13047122
13047123	13047124	13047126	13048009	13048010	13048011	13048012	13048013
13048014	13048015	13048016	13048017	13048018	13048019	13048030	13048031
13048032	13048040	13048041	13048042	13048043	13048044	13048045	13048049
13048050	13048051	13048052	13048053	13048087	13048088	13048089	13048090
13048091	13048092	13048093	13049004	13049005	13049006	13049031	13049032
13049035	13049039	13049041	13049042	13049045	13049046	13049047	13049048
13049049	13049050	13049072	13049073	13049080	13049081	13049082	13049086
13049087	13049088	13049093	13049094	13049096	13049098	13049099	13049101
13050001	13050006	13050007	13050009	13050011	13050012	13050016	13050020
13050022	13050023	13050028	13050029	13050031	13050032	13050033	13050036
13050037	13050038	13050039	13050041	13050042	13050043	13050044	13050046
13050047	13051006	13051007	13051008	13051009	13051010	13051011	13051012
13051015	13051016	13051017	13051019	13051020	13051021	13051022	13051023
13051024	13051026	13051028	13051068	13051069	13051070	13051071	13051072
13051073	13051074	13051081	13051083	13051085	13051086	13051087	13051088
13051092	13051093	13051095	13052001	13052002	13052003	13052004	13052005
13052009	13052010	13052011	13052012	13052013	13052014	13052015	13052016
13052017	13052018	13052019	13052020	13052021	13052036	13052037	13052039
13052042	13052043	13052045	13052048	13052050	13052051	13052052	13052053
13052054	13052056	13052061	13052088	13053004	13053005	13053006	13053007
13053012	13053013	13053015	13053027	13053028	13054023	13054044	13054060
13054061	13054062	13054063	13054064	13054065	13054066	13054068	13054069
13054070	13054084	13054085	13055001	13055004	13055006	13055007	13055008
13055009	13055010	13055011	13055014	13055016	13055017	13055018	13055019
13055020	13055021	13055022	13055023	13055024	13055035	13055036	13055037
13055038	13055039	13055068	13055070	13055072	13055073	13055075	13055076
13055080	13055081	13055082	13055086	13055087	13056005	13056007	13056008
13056020	13056021	13056022	13056023	13056024	13056025	13056026	13056027
13056028	13056029	13056030	13056031	13056033	13056034	13056035	13056037
13056038	13056039	13057005	13057006	13057007	13057008	13057009	13057010
13057011	13057014	13057015	13057016	13057017	13057018	13057019	13057021
13057022	13057023	13057024	13057025	13057026	13057027	13057044	13057045
13057046	13057047	13057048	13057049	13057050	13057051	13057052	13057053
13057055	13057056	13057057	13057058	13058002	13058008	13058015	13058016
13058017	13058018	13058025	13058026	13058028	13058029	13058031	13058032

13059005	13059006	13059007	13059008	13059009	13059010	13059011	13059012
13059013	13059014	13059015	13059016	13059017	13059018	13059020	13059021
13059022	13059023	13059025	13059026	13059027	13059076	13059077	13059078
13059079	13059080	13059082	13059083	13059084	13059085	13059086	13059087
13060001	13060002	13060003	13060008	13060009	13060010	13060011	13060012
13061024	13061025	13061029	13061030	13061031	13061035	13061061	13062001
13062002	13062004	13062005	13062006	13062007	13062013	13062025	13062026
13062028	13062029	13062049	13062050	13062052	13062059	13062060	13062061
13062062	13062063	13063009	13063010	13063011	13063020	13063022	13063023
13063030	13063031	13063032	13063034	13063035	13063036	13063053	13063054
13063062	13063063	13063065	13063067	13063068	13063071	13063072	13063073
13063074	13063076	13064001	13064002	13064003	13064004	13064005	13064006
13064012	13064014	13064020	13064021	13064022	13064023	13064024	13064025
13064026	13064028	13064029	13064031	13064032	13064052	13064055	13064056
13064057	13064059	13064061	13064064	13064065	13064066	13064068	13064070
13064074	13064075	13065005	13065006	13065007	13065008	13065009	13065013
13065014	13065015	13065016	13065017	13065018	13065019	13065020	13065021
13065022	13065046	13065047	13065048	13065049	13065050	13065052	13065053
13065055	13065056	13065058	13065059	13065060	13066021	13066022	13066023
13066024	13066025	13066026	13066027	13066028	13066029	13066030	13066031
13066033	13066034	13066035	13066036	13067003	13067010	13067011	13067012
13067013	13068017	13068022	13068027	13068029	13068034	13068036	13068037
13068084	13068085	13068086	13068087	13068088	13068090	13069001	13069002
13069003	13069004	13069005	13069006	13069007	13069008	13069013	13069014
13069016	13069017	13069018	13069020	13069021	13069022	13069023	13069024
13069026	13069027	13069030	13069031	13069035	13069036	13069066	13069067
13069068	13069069	13069073	13070006	13070008	13070010	13070011	13070012
13070014	13070016	13070017	13070018	13070020	13070021	13070022	13070024
13070025	13070026	13070027	13070056	13070057	13070058	13070059	13070060
13070061	13071003	13071004	13071005	13071006	13071008	13071009	13071010
13071011	13071012	13071064	13072001	13072002	13072003	13072004	13072005
13072006	13072007	13072008	13072009	13072010	13072011	13072014	13072015
13072016	13072017	13072018	13072019	13072020			

References

- [1] B. I. Abelev, J. Adams, and M. M. al Aggarwal. Strange particle production in p+p collisions at $\sqrt{s} = 200$ gev. *Phys. Rev. C*, 75:064901, Jun 2007.
- [2] A. Bravar et al. Spin transfer in inclusive Lambda0 production by transversely polarized protons at 200-GeV/c. *Phys. Rev. Lett.*, 78:4003–4006, 1997.
- [3] John C. Collins, Steve F. Heppelmann, and Glenn A. Ladinsky. Measuring transversity densities in singly polarized hadron-hadron and lepton-hadron collisions. *Nuclear Physics B*, 420(3):565 582, 1994.
- [4] J. Beringer et al. Review of particle physics. Phys. Rev. D, 86:010001, Jul 2012.
- [5] B. I. Abelev et al. (STAR Collaboration). Longitudinal spin transfer to Λ and $\overline{\Lambda}$ hyperons in polarized proton-proton collisions at $\sqrt{s} = 200$ GeV. *Phys. Rev. D*, 80:111102, Dec 2009.
- [6] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 05:026, 2006.
- [7] Peter Z. Skands. Tuning monte carlo generators: The perugia tunes. *Phys. Rev. D*, 82:074018, Oct 2010.
- [8] Qing-hua Xu, Zuo-tang Liang, and Ernst Sichtermann. Anti-lambda polarization in high energy pp collisions with polarized beams. Phys. Rev. D, 73:077503, Apr 2006.