# San José State University Department of Computer Science

#### **Ahmad Yazdankhah**

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

# **Grammars**

(Part 3)

**Lecture 23 Day 27/31** 

CS 154
Formal Languages and Computability
Spring 2019

# **Agenda of Day 27**

- Summary of Lecture 22
- Quiz 9
- Lecture 23: Teaching ...
  - Grammars (Part 3)

# **Summary of Lecture 22: We learned ...**

#### **Grammars**

Formal definition of grammar:

$$G = (V, T, S, P)$$

- Two grammars are equivalent iff ...
  - both has the same associated language.

#### **Types of Grammars**

- A grammar G is linear if ...
  - the right hand side of every production rule has at most one variable.

- Right-linear grammar is ...
  - a linear grammar whose production rules are of the form:

 $A \rightarrow w \mid u \mid B$ 

Where A, B  $\in$  V and w, u  $\in$  T\*

- Left-linear grammar is ...
  - a linear grammar whose production rules are of the form:

 $A \rightarrow w \mid B u$ 

Where A, B  $\in$  V and w, u  $\in$  T\*

- A grammar is said to be regular if ...
  - it is either right-linear or left-linear.

**Any Question** 

# **Summary of Lecture 22: We learned ...**

#### **Theorems**

- Regular grammars produce regular languages.
- Regular languages have regular grammars.

#### **Context-Free Grammars (CFG)**

A context-free grammar is ...

... a grammar whose production rules are of the form:

 $A \rightarrow V$ 

Where  $A \in V$  and  $v \in (V \cup T)^*$ 



# **Summary of Lecture 22: We learned ...**

#### **Unrestricted Grammar**

 An unrestricted grammar (aka recursively enumerable grammar) is ...

... a grammar whose production rules are of the form:

 $xAy \rightarrow z$  where  $A \in V$ , x, y,  $z \in (V \cup T)^*$ 

#### **Chomsky's Hierarchy**

- Type 0: Recursively-enumerable
- Type 1: Context-sensitive
- Type 2: Context-free
- Type 3: Regular



## **Derivation Techniques**

- There are two derivation techniques:
  - Leftmost and rightmost derivation.
  - Leftmost is the default method.

**Any Question** 

| NAME    | Alan M. Turing |             |       |
|---------|----------------|-------------|-------|
| SUBJECT | CS 154         | TEST<br>NO. | 9     |
| DATE    | 04/25/2019     | PERIOD      | 1/2/3 |



# Quiz 9 Use Scantron

# **Parsing**

## **Introduction**

- Parsing is a very important topic in computer science.
- There are many theorems, algorithms, and a lot of researches about it.

- In this lecture, we give you only a big picture about it.
- So, consider this as a very short introduction about parsing.
- For more information, you need to take "Compiler Course".

## **Motivation**

Assume you have the following statement in your Java program:

```
if (x > 5) {
   y = y * 2 + 1;
}
```



- How does Java compiler know that this is a valid statement?
  - Note: valid = well-formed

To answer this question, let's remove all whitespaces:

$$if(x>5) {y=y*2+1;}$$

- This is just a string like other strings that we have seen so far.
- So, this string is well-formed if we can derive it from a grammar.

# **A Simplified Grammar for If-Statement**



## **Example 24**

Construct a grammar to produce if-statements like:

if (Condition) {Statement}

## **Simplified Requirements**

- 1. Condition: only one condition containing '>' or '<' or '=' symbols
  - e.g. "x<5", "5<x", "x<y", "y>2", "x=3", ...
- 2. Statements: only one Java assignment-statement
  - e.g. "x=y\*2+3;", "y=1+x;", ...
- 3. Identifiers: only x or y.
- 4. Arithmetic operators: \* , +

#### **Solution**

#### Note

The provided grammar on the whiteboard is just for getting some idea.

It is neither efficient nor practical!

• • •

## For Parsing, What Do We Need?

- 1. We need a grammar.
- 2. We need a program called "parser" to transform the strings to a data structure called "PARSE-TREE".



- Note that real compilers are more complicated than this.
- I'll show you the components of Java compiler later.

# **Parse Trees**

## **Parse Trees**

- Let's explain it through some examples.
- The first example shows how to construct a parse-tree for only one production-rule.

## **Example 25**

- Construct a parse-tree for the following production rule.
  - $S \rightarrow abABc$
- Note that the order of children matters.



## **Parse Trees**



## **Example 26**

- Given the following grammar:
  - 1.  $S \rightarrow AB$
  - 2.  $A \rightarrow aaA \mid \lambda$
  - 3.  $B \rightarrow Bb \mid \lambda$
- Construct a parse-tree for the string aab.

#### **Solution**

Note that every string has its own parse-tree.

## **Homework**



- Given the following grammar:
  - 1.  $S \rightarrow aAB$
  - 2.  $A \rightarrow bBb$
  - 3.  $B \rightarrow A \mid \lambda$
- Construct a parse-tree for the following strings:
  - a. w = abbb
  - b. w = abbbb
  - c. w = abbbbb

# **Parsing Algorithms**

# **Parsing Algorithms**

- There are two main types of algorithms for parsers:
  - 1. Top-down
  - 2. Bottom-up
- To see the idea, we'll examine a top-down algorithm called "exhaustive search parsing" (aka "brute force parsing").
  - This algorithm checks all possibilities to derive a sting.
- We'll explain it through an example.
- For more information about other algorithms, you need to take Compiler Course!

## **Example 27**

Given the following grammar:

$$S \rightarrow SS \mid a S b \mid b S a \mid \lambda$$

- Find a derivation sequence for w = aabb.
- Note that if we get the derivation sequence, then drawing the parse-tree would be simple.



#### Example 27 (cont'd)

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$
  
w = aabb

#### Round One

- 1.  $S \Rightarrow SS$
- 2.  $S \Rightarrow aSb$
- 3.  $S \Rightarrow bSa$
- 4.  $S \Rightarrow \lambda$
- Which production rules can be pruned?
- Number 3 and 4 can be pruned because they will never yield to w.

#### Conclusion of Round One

- 1.  $S \Rightarrow SS$
- 2.  $S \Rightarrow aSb$
- $3. S \Rightarrow bSa$
- 4. S ⇒ \
- Therefore, 1 and 2 are our starters after the first round.

19

## Example 27 (cont'd)

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$
  
w = aabb

Conclusion of Round One

Repeated

- 2.  $S \Rightarrow aSb$
- $3. -S \Rightarrow bSa$
- 4<del>. S ⇒ λ</del>
- In round 2, we substitute all possibilities for leftmost S in #1 and #2.

#### Round Two

 Substitute leftmost S of #1 with all possible options:

1.1. 
$$S \Rightarrow SS \Rightarrow SS S$$

1.2. 
$$S \Rightarrow SS \Rightarrow aSb S$$

1.3. 
$$S \Rightarrow SS \Rightarrow bSa S$$

1.4. 
$$S \Rightarrow SS \Rightarrow \lambda S$$

 Substitute leftmost S of #2 with all possible options:

2.1. 
$$S \Rightarrow a S b \Rightarrow a SS b$$

2.2. 
$$S \Rightarrow a S b \Rightarrow a aSb b$$

2.3. 
$$S \Rightarrow a S b \Rightarrow a bSa b$$

2.4. 
$$S \Rightarrow a S b \Rightarrow a \lambda b$$

#### Example 27 (cont'd)

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$
  
w = aabb

Conclusion of Round Two

1.1. 
$$S \Rightarrow SS \Rightarrow SSS$$

Repeated

1.2. 
$$S \Rightarrow SS \Rightarrow aSbS$$

1.4. 
$$S \Rightarrow SS \Rightarrow S$$

2.1. 
$$S \Rightarrow aSb \Rightarrow aSSb$$

2.2. 
$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$-2.3. S \Rightarrow aSb \Rightarrow abSab$$

$$-2.4. S \Rightarrow aSb \Rightarrow ab$$

We continue this process ...

- Round 3
- ... (after a little bit cheating!)
- Substitute leftmost S of #2.2 with all possible options:

2.2.1. 
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaSSbb$$

2.2.2. 
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aa aSb bb$$

2.2.3. 
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabSabb$$

$$2.2.4.$$
 S ⇒ aSb ⇒ aaSbb ⇒ aabb

 So, we got the derivation sequence to derive w = aabb

- Exhaustive parsing has two serious problems:
  - 1. It is extremely inefficient:  $O(|P|^{2|w|+1})$ 
    - Where |P| is the number of production rules, and
       |w| is the size of the string.
  - 2. It is possible that it never terminates if we don't put the appropriate controls in our program.
    - For example, try to find the derivation sequence for w = abb in the previous example.



- How horrible do you think this efficiency is?
- Later, we'll take a practical example under the "Complexity" topic.

# **Exhaustive Search Parsing Algorithm: Good News**

#### 1. Theorem

For every CFG G, there exists an algorithm that parses any  $w \in L(G)$  in  $O(|w|^3)$  steps.

## 2. Using S-Grammar

If the grammar is s-grammar, then the efficiency of parsing would be: O(|w|)

First, let's see what s-grammar is, then we'll take some examples.



#### **Definition**



A context-free grammar G is said to be simple grammar
 (aka s-grammar) if the following two conditions are satisfied:

#### **Condition #1**

All production rules are of the form:

 $A \rightarrow av$  Where  $A \in V$ ,  $a \in T$ ,  $v \in V^*$ 

Means: One terminal as prefix and any number of variables as suffix.

#### **Condition #2**

Any pair (A, a) occurs only once in all production rules.

# **S-Grammars Examples**



## **Example 28**

Is the following grammar s-grammar?
 S → aS | bSS | c

#### **Solution**

25

## **S-Grammars Examples**



## **Example 29**

Is the following grammar s-grammar?
 S → bSS | aS | c | aSS

#### **Solution**

# **Exhaustive Search Parsing Algorithm: S-Grammar**

## 0

#### **Example 30**

- Given the following grammar:
  - 1.  $S \rightarrow aS$
  - 2.  $S \rightarrow bSS$
  - 3.  $S \rightarrow C$
- Is this an s-grammar?
- Derive w = abcc
- Yes, because both conditions of s-grammars are satisfied.
- Derivation of abcc:

1 2 3 3 
$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcC$$

- Note that we are still using "exhaustive search parsing".
- The point is that each string has a unique derivation.
- That's why s-grammar is extensively used in the programming languages.

# **Exhaustive Search Parsing Algorithm: S-Grammar**

#### **Theorem**

If G is an s-grammar, then any string w ∈ L(G) can be parsed in O(|w|).

#### **Proof**

- Let's assume  $w = a_1 a_2 \dots a_n$
- There can be at most one rule with S on the left and starting with a₁ on the right: S ⇒ a₁ A₁ A₂ ... A<sub>m</sub>
- Again, there can be at most one rule with  $A_1$  on the left and starting  $a_2$  on the right:  $A_1 \Rightarrow a_2 B_1 B_2 \dots B_k$
- So, S  $\Rightarrow$  a<sub>1</sub> a<sub>2</sub> B<sub>1</sub> B<sub>2</sub> ... B<sub>k</sub> A<sub>2</sub> ... A<sub>m</sub>
- It means that after |w| we can derive w.

# **Ambiguity in Grammars**

## **Introduction**

- We learned that parsers produce a parse-tree for every w ∈ L(G).
- But the point is that the parse-tree is NOT always UNIQUE.
  - In other words, in some cases, for some w ∈ L(G), there are more than one parse-tree.
- First, let's see this through an example!
- Then, we show what could be the consequence of this non-uniqueness in practice!

# **When Parse-Tree is NOT Unique**

## **Example 31**

Given grammar G as:  $S \rightarrow aSb \mid SS \mid \lambda$ 

Draw possible parse-trees for driving w = aabb.





## **Non-Uniqueness of Parse-Trees Problem in Practice**

#### **Example 32**

- Given grammar G as:
  - 1.  $E \rightarrow E * E$
  - 2.  $E \rightarrow E + E$
  - 3.  $E \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
- E is starting variable.
- Construct a parse-tree for the mathematical expression: 3 + 5 \* 2
  - Note that this expression is just a string.
- This grammar is a simplified version of arithmetic expressions in the programming languages.



- Is this a good parse-tree?
- No, because '\*' should have more priority than + but this parse-tree is calculating (3 + 5) \* 2.

32

## **Non-Uniqueness of Parse Trees Problem in Practice**

## Example 32 (cont'd)

Repeated

- Given grammar G as:
  - 1.  $E \rightarrow E * E$
  - 2.  $E \rightarrow E + E$
  - 3.  $E \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
- E is starting variable.
- Construct a parse-tree for the mathematical expression: 3 + 5 \* 2



- Is this a good parse-tree?
- Yes! It's calculating 3 + (5 \* 2)

## **Non-Uniqueness of Parse Tree Problem in Practice**





# **(1)** Ambiguity in Grammars

#### **Definition**



- A grammar G is said to be ambiguous if there exists some w ∈ L(G) that has at least two different parse-trees.
- In some cases, we can convert an ambiguous grammar to non-ambiguous one.
- But most of the time, it is hard and needs compiler knowledge.
- You might learn these skills in "Compiler Course".
- Let's rewrite the grammar of our previous example and remove the ambiguity.

# **Ambiguity in Grammars**

#### **Example 33**

- Convert the following grammar to an unambiguous grammar.
  - 1.  $E \rightarrow E * E$
  - 2.  $E \rightarrow E + E$
  - 3.  $E \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
- E is starting variable.

#### **Solution**

- 1.  $E \rightarrow E + T \mid T$
- 2.  $T \rightarrow T * D \mid D$
- 3. D  $\rightarrow$  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
- Construct a parse-tree for:
  - 3 + 5 \* 2

#### **Parse Tree**



There is no other parse-tree for this string.

## **Two Open Questions**

- 1. Given a context-free grammar G.
- Is there an efficient algorithm to find out whether G is ambiguous or not?



 As of this moment, there is no general algorithm to answer this question.

# **Two Open Questions**

- 2. Are two given context-free grammars G<sub>1</sub> and G<sub>2</sub> equivalent?
- Is there an efficient algorithm to answer this question?



 Again, as of this moment, there is no general algorithm to answer this question.

# **Java Compiler (From Compiler Course!)**



- Lexical Analyzer (aka Lexer or scanner): breaks the entire code up into words (tokens)
- 2. Parser: by using the grammar, generates the parse-tree, checks the syntax of the sentences
- 3. Semantic Analyzer: checks the sentences meaning
- 4. Optimizer: optimizes the sentences to be more efficient
- **5. Code Generator**: produces the bytecode



## References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5<sup>th</sup> ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3<sup>rd</sup> ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790
- 3. The ELLCC Embedded Compiler Collection, available at: <a href="http://ellcc.org/">http://ellcc.org/</a>