Hands on session: POLARIZATION via Berry phase with Quantum ESPRESSO

Sharmila Shirodkar

Jawaharlal Nehru Centre for Advanced Scientific Research

Bangalore

Exercises

- Exercise 1: To calculate polarization via Berry phase for symmetric tetragonal $BaTiO_3$
- Exercise 2: To optimize the structure of tetragonal BaTiO₃ with displaced Ti atom, and calculate the polarization via Berry phase
- Exercise 3: To determine the Born effective charges from Polarization for Cubic $BaTiO_3$

Steps that are followed

- 1) Do a total energy calculation that calculates the charge density (scf) with well converged kmesh and ecutwfc
- 2) Make sure that the system is insulating at every kpoint.

Berry phase is ill-defined for metals!

3) Run berry phase calculations (nscf) to

evaluate the Berry phase along k-point strings

$$\phi_{n,j} = \Omega_{\mathrm{BZ}}^{-1} \operatorname{Im} \int_{\mathrm{BZ}} d^3k \, \langle u_{n\mathbf{k}} | \mathbf{G}_j \cdot \nabla_{\mathbf{k}} | u_{n\mathbf{k}} \rangle.$$

$$\mathbf{P}_n = \frac{1}{2\pi} \frac{e}{\mathbf{\Omega}} \sum_j \phi_{n,j} \mathbf{R}_j$$

- 4) Total polarization = Ionic part + electronic part
- 5) Spontaneous polarization= P(asymmetric cell) P(symmetric cell)

Executable: pw.x

To run the script: nohup sh job_sy.sh &

Step1: run a scf calculation on the equilibrium structure

Look at sy.scf.in

Step2: run a nscf calculation with sy.bscf.in

```
/usr/local/apps/espresso-5.1/bin/pw.x < sy.bscf.in > sy.bscf.out
&control
  calculation = 'nscf'
                                    nscf calculation
  restart_mode='from_scratch',
  prefix='symm',
  pseudo dir = '../../pseudo',
                                                For doing Berry phase calculations
  outdir='tmp-sy'
  lberry=.true.
                               direction of the k-point strings in reciprocal space.
                               Allowed values: 1, 2, 3 where 1 = \text{first}, 2 = \text{second},
  gdir
            = 3
                               3=third reciprocal lattice vector
             = 10
  nppstr
                                 Number of kpoints in the string along gdir
K_POINTS {automatic}
10 10 20 0 0 0
                                 nppstr = nk3
```

Exercise 1: polarization of symmetric tetragonal $BaTiO_3$

In sy.bscf.out

```
K-POINTS STRINGS USED IN CALCULATIONS
```

G-vector along string (2 pi/a): 0.00000 0.00000 0.97699

Modulus of the vector (1/bohr): 0.82171

Number of k-points per string: 10 — nppstr

Number of different strings: 6 ———— Depends on nk1 and nk2

IONIC POLARIZATION

Ion	Specie	es Charge	Position	Phase
1	Ba	10.000	0.0000 0.0000 0.0000	0.00000 (mod 2)
2	Ti	12.000	0.5000 0.5000 0.5118	0.00000 (mod 2)
3	O	6.000	0.5000 0.5000 0.0000	0.00000 (mod 2)
4	O	6.000	0.5000 0.0000 0.5118	-1.00000 (mod 2)
5	O	6.000	0.0000 0.5000 0.5118	-1.00000 (mod 2)

IONIC PHASE: 0.00000 (mod 2)

No contribution from ions!

In sy.bscf.out ELECTRONIC POLARIZATION

Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2, +1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1)

Spin	String	g Weight	First k-point in string	Phase	
up up Up Up	1 2 5 6	0.040000 0.160000 0.320000 0.160000	0.0000 0.0000 0.0000 0.0000 0.2000 0.0000 0.2000 0.4000 0.0000 0.4000 0.4000 0.0000	0.00000 (mod 1) 0.00000 (mod 1) 0.00000 (mod 1) 0.00000 (mod 1)	nk1
down down Down Down	2 5	0.040000 0.160000 0.320000 0.160000	0.0000 0.0000 0.0000 0.0000 0.2000 0.0000 0.2000 0.4000 0.0000 0.4000 0.4000 0.0000	0.00000 (mod 1) 0.00000 (mod 1)	and nk2

The total phase and polarization in symmetric structure = 0
No contribution from electrons!

Executable: pw.x

Step1: Displace Ti atom in +z direction and relax the structure.

Look in relax.in file

```
&control
  calculation = 'relax'
                                            Structural relaxation calculation
  restart mode='from scratch',
  prefix='asymm-relax',
  tstress = .true.
  tprnfor = .true.
  pseudo dir = '../../pseudo',
  outdir='tmp'
ATOMIC POSITIONS {crystal}
     0.000
              0.0000
                      -0.0000
Ba
     0.5000
             0.5000
                       0.5200
 Τi
                                            Ti atom is displaced along z
     0.5000 0.5000
                        0.0000
     0.5000 0.0000 0.5000
     0.0000 0.5000
                      0.5000
 \mathbf{O}
               /usr/local/apps/espresso-5.1/bin/pw.x < relax.in > relax.out
```

Look at the final relaxed co-ordinates in relax.out file

Use the above co-ordinates in asy.scf.in and asy.bscfx.in, asy.bscfy.in and asy.bscfz.in files

Step2: Repeat Steps 2 and 3 from exercise 1

In asy.bscf.out

IONIC POLARIZATION

Ion	Specie	es Charge	Position	Phase
1	Ba	10.000	0.0000 0.0000 0.0	0.20605 (mod 2)
2	Ti	12.000	0.5000 0.5000 0.5	428 0.36374 (mod 2)
3	O	6.000	0.5000 0.5000 -0.0	158 -0.09257 (mod 2)
4	O	6.000	0.5000 0.0000 0.5	038 0.95354 (mod 2)
5	O	6.000	0.0000 0.5000 0.5	038 0.95354 (mod 2)

IONIC PHASE:

0.38429 (mod 2)

Finite contribution from ions!

In asy.bscfz.out ELECTRONIC POLARIZATION

Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1)

Spin String Weight First k-point in string Phase up 1 0.040000 0.0000 0.0000 0.0000 0.06891 (mod 1) 0.160000 0.0000 0.2000 0.0000 0.03158 (mod 1) up 5 0.320000 0.2000 0.4000 0.0000 -0.02818 (mod 1) up 0.4000 0.4000 0.0000 0.160000 -0.05090 (mod 1) up down 1 0.040000 0.0000 0.0000 0.0000 0.06891 (mod 1) down 0.160000 0.0000 0.2000 0.0000 0.03158 (mod 1) down down 0.160000 0.4000 0.4000 0.0000 -0.05090 (mod 1)

ELECTRONIC PHASE: -0.01845 (mod 2)

Finite contribution from electrons!

Total polarization is non-zero along z!

In asy.bscf.out

SUMMARY OF PHASES

Ionic Phase: 0.38429 (mod 2)

Electronic Phase: -0.01845 (mod 2)

TOTAL PHASE: 0.36584 (mod 2)

Sum of electronic and ionic phases

VALUES OF POLARIZATION

~~~~~~~~~~~~~~~~

P= -ie/ $(2\pi^3)$ \*berry phase

The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell):

 $P = 0.0065551 \pmod{0.0358362} e/bohr^2$ 

 $P = 0.3747686 \pmod{2.0488144} C/m^2$ 

quantum

Polarization

Polarization in different units

The polarization direction is: (0.00000, 0.00000, 1.00000)

### Polarization of tetragonal BaTiO<sub>3</sub>

```
P(asymmetric phase)- P(symmetric phase)
```

```
= 37 \mu C/cm^2 - 0 \mu C/cm^2
```

 $= 37 \,\mu\text{C/cm}^2$ 

Why is the polarization not same as in experiments (26  $\mu$ C/cm<sup>2</sup>)?

Check the convergence of P with nppstr and nk1, nk2

#### Exercise 3: Born Effective charges for cubic BaTiO<sub>3</sub>

Step1: Look at scf.in

The Ti atom is displaced by +z direction by 0.01a

Step2: Look at bscf.in

Now run a berry phase calculation along gdir=3

Step3: Calculate the Born Effective charge