Introduction to the Theory of Computation Homework 2

Arthur Nunes-Harwitt

Due December, 16th

- 1. Use structural induction to prove that given an alphabet Σ , for any $x \in \Sigma^*$, $(x^{\mathcal{R}})^{\mathcal{R}} = x$. You may use the following lemma (which you do not have to prove). Given an alphabet Σ , for any $a \in \Sigma$ and $x \in \Sigma^*$, $ax^{\mathcal{R}} = x^{\mathcal{R}}a$.
- 2. Exercise 1.6(a),(d),(i),(l),(m),(n).
- 3. Show that the set of *binary* integers (given as strings over {0,1}) that are divisible by 3 is regular, by giving a DFA that recognizes it. Leading 0s are allowed. The empty string should be accepted. Briefly explain your answer.
- 4. Let $\Sigma = \{a, b\}$, and let k be a positive integer constant. Let L_k be the language defined as follows: $L_k = \{x \in \Sigma^* \mid \text{ the number of as in } x \text{ is divisible by } k\}$.

For example, $L_2 = \{x \in \Sigma^* \mid x \text{ contains an even number of as} \}.$

- (a) Draw the transition diagram of a DFA that accepts L_3 .
- (b) Give a 5-tuple specifying the DFA M_k such that $L(M_k) = L_k$. $M_k = (Q_k, \Sigma, \delta_k, q_k, F_k)$ such that
- 5. Exercise 1.32.
- 6. Exercise 1.7(c).
- 7. Let $\Sigma = \{0, 1\}$, and consider the transition table for an NFA below.

q	$\delta(q, \varepsilon)$	$\delta(q, {\tt 0})$	$\delta(q, 1)$
q_0	$\{q_3\}$	$\{q_4\}$	Ø
q_1	Ø	$\{q_0\}$	Ø
q_2	Ø	Ø	$\{q_1\}$
q_3	$\{q_2\}$	Ø	$\{q_6\}$
q_4	$\{q_0\}$	Ø	Ø
q_5	$\{q_3\}$	Ø	$\{q_4\}$
q_6	Ø	$\{q_5\}$	Ø
α 1	· C+/	\	

- Calculate $\delta^*(q_0, 10)$.
- 8. Exercise 1.14.
- 9. Exercise 1.16.