<u>Lab09</u>

Part01

NMOS LOAD:

PMOS LOAD:

1) Detailed design procedure and hand analysis.

* M6, M7, M8 toil Curt Sources :-Nicm high < - Ugs, - Vds 7 + Vd - Nds = 0,234 N from Swing Now = 1.4 Noting = 0,22 toke This value. from CMRR Aven = 36-74 = -38db $\frac{1}{2gm_{34}r_{07}} = 0.0125$ assue Curat load 3m = 10 in gm 3,4 = 62.5 :. gas = 1.5625 from $V^* \rightarrow \left(\frac{9m}{Td}\right)_7 = \frac{2}{V^*} = 10$ L = 580n = 0.58 H - gm= 125

* 16, 117 & 118 Same L Because Thy come from Current mirror also Same gm = 10 W= 5.77 12.5 MA 47.5 NA w8 = x 10 MA W6 = x W8 = X = 22 M W6 = x' = 4.66 M 9ds7 = 1.5625 - 12,5MA 47.5 MA 9ds8 = x 9d58 = x = 5.93 M Gime = 4Gmi * M5 Gimz = & Gim, = 634.16 = IBZ = 4IBI => but we have budget in IBZ = 47,5 NA 9ms = 13,35) 0 Id

• Vgs of 2nd input stage should follow Vgs of 1st stage current mirror so

 $Vgs_{3,4}$ =619mv , gds=0.62u and Id=6.25u

From ADT L=730n W=1.18u

Gm/id=10.27 > 10 Condition satisified

• Rz = 1/Gm2 =1.567 kohm

Parameter	W	L	Gm	ID	Gm/ID	Vov	V*
Input Pair M0&M1	7.8 u	0.9 u	79.27 u	6.25u	12.6	15.25m	160.18m
Tail CS M7	5.77u	580n	125 u	12.5 u	10	195.19m	200.74m
Current Mirror M6	4.66u	580n	100 u	10 u	10	195.19m	200.74m
CM Load M3&M4	1.18u	730n	82.62u	6.25u	10.27	200.33m	151.56m
2 nd input M5	3.58u	220n	628u	47.5u	13.35	139.85m	151.56m
Output Load M8	22 u	580n	475u	47.5u	10	195.19m	200.74m

- Yes, current and gm and vgs are exactly equal for both branches
- 1st stage output should be close to VDD/3 Well Defined
- 2nd stage should be close to
 Vdd/2 iLL Defined so output higher by ΔΙκ_ο

	1
vid	0.000
/VOUT (V)	1.156
/I0/net18 (V)	607.3E-3

1) Diff small signal ccs:

Test	Output	Nominal	Spec	Weight	Pass/Fail
ITI_ANALOG2:Labo9_TB:1	ymax(dB20(v("/VOUT" ?resul	66.53			
ITI_ANALOG2:Labo9_TB:1	ymax(mag(v("/VOUT" ?result	2.121k			
ITI_ANALOG2:Labo9_TB:1	unityGainFreq(v("/VOUT" ?r	4.685M			
ITI_ANALOG2:Labo9_TB:1	bandwidth(v("/VOUT" ?result	2.241k			
ITI_ANALOG2:Labo9_TB:1	gainBwProd(v("/VOUT" ?res	4.764M			

diff gain (in dB) vs frequency.

66.52db

Parameter	Hand	Simulation
Gain	2000	2121
GBW	5M	4.76M
BW	2500	2241

• GBW and BW less than calculated due to parasetics.

2)CM small signal ccs:

- CM gain in dB vs frequency.
 - -8.4db this gain after multiplying by 2nd stage gain = 30db

Parameter	Hand	Simulation
Gain	-38db	-39.34db

At the first stage

3) (Optional) CMRR:

• CMRR in dB vs frequency

75db

Parameter	Hand	Simulation
CMRR	74db	75db

4) (Optional) Diff large signal ccs:

~ equal the Avd

5) CM large signal ccs (region vs VICM):

Simulation	0.185	1.07
Hand	0.203	1.039

- Dc voltages not equal in input terminals due to the error of the feedback system
- DC voltage at the output of the first stage not exactly equal to the value in the open-loop simulation due to diff in Vicm
- current (and gm) in the input pair not exactly equal there is difference due to the mismatch in input pair

2) Loop gain:

Test	Output	Nominal
ITI_ANALOG2:Labo9_TB2:1	bandwidth(getData("loopGain	2.341k
ITI_ANALOG2:Labo9_TB2:1	unityGainFreq(getData("loop	4.684M
ITI_ANALOG2:Labo9_TB2:1	gainBwProd(getData("loopGa	4.757M
ITI_ANALOG2:Labo9_TB2:1	ymax(mag(getData("loopGain	2.027k

- Values are equal to those from open loop gain because Beta=1
- LG=Beta x Aol = Aol
- gainMargin(dB)=65.475506 gainMarginFreq(Hz)=2.3205746e+09 phaseMargin(Deg)=77.390461 phaseMarginFreq(Hz)=4631467.5

$$PM=90-tan^{-1}(\frac{\frac{gm0}{Cc}}{\frac{gm7}{cl}})=75.83$$

• PM=77.4deg >70 condition satisfied

Parameter	Hand	Simulation
Gain	2000	2300
GBW	5M	4.757M
BW	2500	2027

3) Slew rate:

Parameter	Hand	Simulation
Slew rate	Id/Cc=5M/us	4.2M/us

Could be better with using smaller Cc , hence BW1 and GBW increases and PM dec slightly since second stage pole is not changed (CL dependent not Cc , Cc just make the output node LIN and hence Wp2 go outwards).

4) Settling time:

Parameter	Hand	Simulation
Rise time	70.6nS	54.88nS

No ringing since we have PM = 77, the system is criticaly damped