Formation Machine Learning

Premiers modèles supervisés

Giraud François-Marie

4 Juin 2019

Machine Learning

Regression Linéaire

Regression Linéaire

Définition du problème :

Soit $\{(x_i,y_i)\}_{i\in\mathbb{R}}$ un ensemble de données tel que $\forall i,x_i\in\mathbb{R}$ et $y_i\in\mathbb{R}$

Trouver $\phi^*(x_i) = y_i^*$ telle que

$$\forall i, y_i^* - y_i \to 0$$
 sous la contrainte que ϕ^* soit une fonction linéaire (affine)

Regression Linéaire

Regression Linéaire

Machine Learning

Fonction de Coût/Erreur

Fonction de Coût/Erreur

Erreur moyenne:

$$\frac{1}{n} \sum_{i=[1..n]} \sqrt{(y_i^* - y_i)^2}$$

Critère des moindres carrés :

$$\frac{1}{n} \sum_{i=[1..n]} (y_i^* - y_i)^2$$

Fonction de Coût/Erreur

$$E_{\Omega} = \frac{1}{2n} \sum_{i=[1..n]} (y_i^* - y_i)^2$$

Machine Learning

Optimisation

Optimisation

Des solutions analytiques existent!

mais ...

Optimisation

Calcul du gradient de l'erreur par rapport aux paramètres :

$$\frac{\partial Err}{\partial w_i}$$

Mise à jour :

$$W_i = w_i - \gamma * grad$$

où : 0 < $\gamma < 1$ (learning rate)

Optimisation

- 1 initialisation aléatoire du modèle
- 2 Tant que(critère arret == 0)
 - Selection aléatoire d'un batch de données
 - Forward : Passe avant du batch dans le modèle
 - Calcul de l'erreur par rapport aux sorties attendues
 - Backward : Rétropropagation du gradient de l'erreur en fonction des paramèrtres dans le modèle (mise à jour du modèle)
 - Calcul critère arret

Machine Learning

Gradient de l'erreur

Gradient et mise à jour

$$y = a.x + b$$

$$E_{\Omega} = \frac{1}{2n} \sum_{i=[1..n]} (y_i^* - y_i)^2 E_{\Omega} = \frac{1}{2n} \sum_{i=[1..n]} (y_i^* - (a.x_i + b))^2$$

...

$$\begin{array}{l} \frac{\partial E_{\Omega}}{\partial a} = \frac{1}{n} \sum_{i=[1..n]} (a.x_i + b - y_i^*).x \\ \frac{\partial E_{\Omega}}{\partial b} = \frac{1}{n} \sum_{i=[1..n]} (a.x_i + b - y_i^*) \end{array}$$

 $U^{2'}=2U'*U$

M.A.J:

$$\begin{aligned} a &\leftarrow a - \gamma. \frac{\partial E_{\Omega}}{\partial a} \\ b &\leftarrow b - \gamma. \frac{\partial E_{\Omega}}{\partial b} \end{aligned}$$

où $1>\gamma>0$ (learning rate)

Machine Learning

002.american-flag

 \approx Distance entre la sortie et la cible?

Sortie:

Cible:

0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Machine Learning

Petite vidéo d'explication des méthodes à noyaux (Kernel SVM)

Généralisation à un problème de régression logistique à ${\it K}>2$ classes :

- One Vs All : K modèles. Agréagation par meilleur score.
- One Vs One : $\frac{K(K-1)}{2}$ modèles. Vote majoritaire.

QUESTIONS?

Arbres de décision

Arbres de decisio

Module 5

Objectifs

Objectifs

- construire un arbre de décision aussi bien pour la régression que pour la classification
- combiner plusieurs arbres efficacement avec Random Forest

Arbres de décision

Introduction

Modèle de classification ou regréssion qui classe un input dans une de ses feuilles pour rendre sa prédiction :

Les arbres de décision

• gèrent les inputs numériques comme catégoriels

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables
- sont très rapides durant l'inférence

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables
- sont très rapides durant l'inférence
- ne nécessitent pas de normalisation des données

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables
- sont très rapides durant l'inférence
- ne nécessitent pas de normalisation des données
- leur apprentissage est hautement parallèlisable

- gèrent les inputs numériques comme catégoriels
- ne nécessitent pas que la variable d'output soit normalement distribuée (regression linéaire)
- sont interprétables
- sont très rapides durant l'inférence
- ne nécessitent pas de normalisation des données
- leur apprentissage est hautement parallèlisable
- \rightarrow Couteau-suisse du machine learning tabulaire.

Désavantages

• peuvent overfit les données, mais l'ensembling résoud ce problème

Désavantages

- peuvent overfit les données, mais l'ensembling résoud ce problème
- sont sensibles aux déséquilibres de classe

Désavantages

- peuvent overfit les données, mais l'ensembling résoud ce problème
- sont sensibles aux déséquilibres de classe
- ightarrow Si les classes ne sont pas équilibrées, peut-être les resampler.

Arbres de classification

Arbres de régression

Approche « top-down », procédure récursive :

 créer un nœud de départ qui contient toutes les instances du training set

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :
 - choisir un nœud non traité

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :
 - choisir un nœud non traité
 - si le nœud remplit des conditions de feuille finale, ne rien faire

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :
 - choisir un nœud non traité
 - si le nœud remplit des conditions de feuille finale, ne rien faire
 - sinon, créer deux branches à partir du nœud non traité pour répartir les instances dans deux nouveaux nœuds

Approche « top-down », procédure récursive :

- créer un nœud de départ qui contient toutes les instances du training set
- tant qu'il reste des nœuds non-traités :
 - choisir un nœud non traité
 - si le nœud remplit des conditions de feuille finale, ne rien faire
 - sinon, créer deux branches à partir du nœud non traité pour répartir les instances dans deux nouveaux nœuds

Conditions de feuilles finales : contient n_{min} éléments, est déjà à profondeur p_{max} , splitterait sans décroître assez l'entropie...

Décision rendue

En fonction de la tâche, une fois arrivé dans la feuille de fin :

Classification classe majoritaire

Régression moyenne des valeurs cibles

Splits possibles

Splits possibles d'une feature donnée :

Catégorielle chaque catégorie vs le reste

Ordinale/Continue milieu de chaque valeur ou quantiles

Évaluation de la qualité d'un split

En fonction de la tâche :

Régression coût si on rendait la moyenne des instances comme résultat

$$Loss = \sum |\hat{y} - y| \approx variance$$

Classification Entropie de Shannon :

$$Loss = -\sum_{x \in X} P_x * \log_2(P_x)$$

 $=0 \Rightarrow$ il n'y a pas d'incertitude maximale quand on a une distribution uniforme

Exemple — démarrage

ID, jardinage, jeux vidéos, chapeaux, âge

1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73

Première étape : création du nœud de départ

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur jardinage :

1, 2, 3, 4, 5, 6, 7, 8, 9 jardinage
$$\hat{y}$$
 jardinage \hat{y} jardinage $\hat{$

Loss totale: 122,3

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur jeux vidéos :

Loss totale: 123,3

ID, jardinage, jeux vidéos, chapeaux, âge

Split du premier nœud. Il faut tester 3 splits. Split sur chapeaux :

1, 2, 3, 4, 5, 6, 7, 8, 9

chapeaux

1, 4, 5, 7, 9

$$\hat{y} = 42, 8$$
 $\hat{y} = 37, 25$
 $\hat{z} = 110, 8$
 $\hat{z} = 91$

Loss totale: 201,8

ID, jardinage, jeux vidéos, chapeaux, âge

1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73_

122,3 jardinage123,3 jeux vidéos201,8 chapeaux

ightarrow On split donc sur jardinage

ID, jardinage, jeux vidéos, chapeaux, âge

Γ1	0	1	1	13
2	0	1	0	14
3	0	1	0	15
4	1	1	1	25
5	0	1	1	35
6	1	0	0	49
7	1	1	1	68
8	1	0	0	71
9	1	0	1	73_

Résultat après le premier split :

À vous de jouer!

Limiter l'overfit

Fait par :

- la profondeur maximum
- le nombre minimum d'instances dans chaque feuille
- une baisse d'entropie maximale à chaque split
- le nombre minimum d'instances pour split
- le pruning

Random Forest

Introduction

- les arbres de décision overfit facilement
- ils sont rapides à apprendre
- en combiner beaucoup est faisable et réduit la variance
- ightarrow création d'une forêt (ensemble d'arbres) aléatoire

But

Produire des arbres décorrélés et moyenner leurs prédictions pour réduire la variance.

Outil 1 — bagging (row sampling)

Boostrap aggregating (Bagging) :

- tirer un échantillon du dataset avec replacement
- entraı̂ner un arbre sur cet échantillon
- répéter B fois

Le bagging s'appelle aussi row sampling.

Outil 2 — random subspace method (column sampling)

- à chaque split, considérer seulement un sous-ensemble des features
- valeurs conseillées :
 - classification : $|\sqrt{m}|$ features par split
 - regréssion : $\left|\frac{m}{3}\right|$ features par split, 5 exemples par node minimum

Random Forest

Random Forest

- Pas de sur-apprentissage en augmentant le nombre d'arbres
- Une fois appris, le modèle est très rapide

Conclusion

Conclusion

- les arbres sont interprétables, rapides à entraîner, combinables.
- random forest combine des arbres faibles en un prédicteur versatile

TP 1

Exploration de données

TP 2 : Régression Linéaire

www.regression-linéaire.ipynb

TP 2 : Régression Logistique

www.regression-logistique.ipynb

TP 2: SVM

www.svm.ipynb

TP 2: Random Forest

www.random-forest-court.ipynb

TP 2: Random Forest

www.random-forest-long.ipynb

