

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 443 059 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:17.06.1998 Bulletin 1998/25

(51) Int CI.6: **C07D 231/18**, A01N 43/56, C07F 7/08, C07F 9/6503, C07D 231/22

(21) Application number: 90103338.1

(22) Date of filing: 21.02.1990

(54) 3-(Substituted phenyl)pyrazole derivatives, salts thereof, herbicides therefrom, and process for producing said derivatives or salts

3-(Substituierte Phenyl)pyrazolderivate, deren Salze, deren Herbizide und Verfahren zur Herstellung dieser Derivate oder Salze

Dérivés de 3-(phényl substitué)-pyrazol, leurs sels, leurs herbicides, et les procédés de préparation de ces dérivés ou de leurs sels

(84) Designated Contracting States: BE ES NL

(43) Date of publication of application: 28.08.1991 Bulletin 1991/35

(73) Proprietor: NIHON NOHYAKU CO., LTD. Chuo-ku Tokyo (JP)

(72) Inventors:

Miura, Yuzo
 Mishinomiya-shi (JP)

 Mabuchi, Tsutomu Kawachinagano-shi (JP)

 Kajioka, Misuru Sakai-shi (JP) Yanai, Isao
 Osakasayama-shi (JP)

(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

(56) References cited:

EP-A- 0 052 333

EP-A- 0 361 114

FR-A- 2 262 663

GB-A- 2 073 172

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 443 059 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

40

45

The present invention relates to 3-(substituted phenyl)pyrazole derivatives or salts thereof, a process for producing said derivatives or salts, and to herbicidal compositions comprising said derivatives or salts and methods for applying said herbicidal compositions. The 3-(substituted phenyl)pyrazole derivatives are represented by the general formula

wherein

X denotes halogen,

R1 denotes CH₃,

R² denotes hydroxy, mercapto, alkylthio, haloalkoxy or haloalkylthio,

R³ denotes hydrogen or halogen, and

R⁴ denotes (i) formyl, (ii) nitro, (iii) -CO-B-R⁶ wherein B denotes -O-, -S-, or -NR⁷, R⁶ and R⁷ are the same or different and each denote hydrogen or cycloalkyl, and when B is -O-, R⁶ can be an alkali metal atom or -CO-B-R⁶ denotes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, methoxycarbonylmethoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, methoxycarbonylethoxycarbonyl, ethoxycarbonyl, or propoxycarbonylethoxycarbonyl, (iv) -D-R⁸ wherein D denotes -O-,-S(O)_n, n being an integer of 0 to 2, or -NR⁹-, R⁸ and R⁹, which are the same or different, each denotes hydrogen; alkyl; haloalkyl; aminosulfonyl; phenylalkyl or phenoxy-alkyl optionally having on the phenyl ring one or more halogen substituents which are the same or different; or -D-R⁸ denotes an alkenyloxy group containing propenyl, butenyl, or pentenyl; an alkynyloxy group containing propynyl, butynyl or pentynyl; an alkenylamino group containing propenyl, butenyl or pentenyl; an alkoxy-carbonylalkoxy or an alkylthiccarbonylalkoxy group containing each methyl, ethyl, propyl or butyl; or (v) -(CHR¹⁰)_m-CO-E-R¹² wherein E denotes -O-, -S-, or -NR¹¹; R¹⁰ denotes hydrogen and R¹¹ and R¹², which are the same or different, each denotes hydrogen; alkyl; haloalkyl; phenyl optionally having on the phenyl ring one or more halogen substituents; phenylalkyl optionally having on the phenyl ring one or more halogen substituents; or R¹¹, jointly with R¹², forms a piperidino or morpholinyl group, and when E is -O-, R¹² can be an alkali metal atom;

and m denotes an integer of 0 to 3.

Further, the present invention provides a 3-(substituted phenyl)-pyrazole derivative or a salt thereof, the derivative being represented by the general formula

wherein

a) X is Cl, R1 is CH3, R2 is CH3S, R3 is Cl and R4 is selected from

55

5

$$\label{eq:hoocch} \begin{split} &\text{HOOCCH}(\text{CH}_3)\text{O}, \quad \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}3)\text{O}, \quad \text{i-C}_3\text{H}_7\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{CH}_2\text{=CHCH}_2\text{OOCCH}, \\ &\text{(CH}_3)\text{O}, \quad \text{CH}{\equiv}\text{CCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{CH}_2\text{=} \text{CHCH}_2\text{S}, \quad \text{CH}_2\text{=C}(\text{CI})\text{CH}_2\text{S}, \quad \text{CH}{\equiv}\text{CCH}_2\text{S}, \quad \text{HO}_2\text{CCH}(\text{CH}_3)\text{S}, \\ &\text{(CH}_3)\text{O}, \quad \text{CH}_3\text{OOCCH}, \quad \text{CH}_3\text{OOCCH$$

10

15

$$\begin{split} & \text{CI}(\text{CH}_2)_3 \text{OOCCH}(\text{CH}_3)\text{S}, \quad \text{CH}_2 = \text{CHCH}_2 \text{OOCCH}(\text{CH}_3)\text{S}, \quad \text{CH} = \text{CCH}_2 \text{OOCCH}(\text{CH}_3)\text{S}, \quad \text{C}_2\text{H}_5 \text{CH}(\text{CH}_3)\text{CH}_2 \text{OOCCH}(\text{CH}_3)\text{S}, \quad \text{C}_2\text{H}_5 \text{CH}(\text{CH}_3)\text{CH}_2 \text{OOCCH}(\text{CH}_3)\text{S}, \quad \text{C}_3\text{NHSO}_2, \quad \text{C}$$

25

20

$$\langle \bigcirc \rangle$$
-CH₂CH₂OOCNH,

30

 $\label{eq:ch2} \text{CH$_2$-$CHCH$_2$OOCCH$_2$NH, C_2H$_5$OOCCH(CH_3$)NH, $HOOCCH$_2NH, CH_3OOCCH$_2$NH, $HOOCCH($CH$_3$)NH and CH_3$OOCCH($CH$_3$)NH; }$

- b) X is CI, R¹ is CH $_3$, R² is CH $_3$ SO, R³ is CI and R⁴ is selected from NO $_2$, CH $_3$ SO $_2$ NH, CH $_3$ NHSO $_2$ NH, i- C $_3$ H $_7$ NHSO $_2$ NH and CH $_3$ NHSO $_2$ (CH \equiv CCH $_2$);
 - c) X is CI, R¹ is CHF₂, R² is CH₃S, R³ is CI and R⁴ is selected from NH₂, CH₃NHSO₂NH, CH₃NHSO₂N(CH=CCH₂) and CH₃N(CH=CCH₂)SO₂N(CH=CCH₂);
- d) X is Cl, R¹ is CHF₂, R² is CH₃SO, R³ is Cl and R⁴ is selected from NH₂ and NO₂;
 - e) X is Cl, R1 is CH3, R2 is CHF2O, R3 is Cl and R4 is selected from

45

50

 $\texttt{C}_2 \texttt{H}_5 \texttt{OCH}_2 \texttt{CH}_2 \texttt{O}, \, \texttt{NCCH}_2 \texttt{O}, \, \texttt{CH}_3 \texttt{OOCO}, \, \texttt{n-C}_6 \texttt{H}_{13} \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH}_2 \texttt{=CHCH}_2 \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH} \texttt{=CCH}_2 \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH} \texttt{=CH}_2 \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH}_2 \texttt{OOCCH}_2 \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH}_2 \texttt{OOCCH}_2 \texttt{OOCCH}_2 \texttt{O}, \, \texttt{CH}_2 \texttt{OOCCH}_2 \texttt{OOCCH$

(н)-оосси₂о,

55

C2H5O(CH2)2OOCCH2O, C2H5O(CH2)2O(CH2)2OOCCH2O.

$$\bigcirc$$
-CH₂OOCCH₂O, HOOCCH(CH₃)O, i-C₃H₇NH₃OOCCH(CH₃)O,

$$\label{eq:ch2} \begin{split} &\text{CH}_2\text{=}\text{CHCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH} \\ &\text{CH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_3\text{NHCOCH}(\text{CH}_3)\text{O}, \ \text{CH}_3\text{P}(\text{OOCH}_2\text{S}, \ \text{CH}_3\text{OOCCH}_2\text{S}, \ \text{CH}_3\text{OOCCH}_3\text{S}, \ \text{C$$

$$\oplus \ominus$$
NaOOCCH(CH₃)S, i-C₃H₇NH₃OOCCH(CH₃)S,

 $\begin{array}{llll} & \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{S}, & \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{S}, & \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{S}(0), & \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{S}_2, & \text{i-C}_3\text{H}_7\text{OOCCH}(\text{CH}_3)\text{S}, & \text{CH}_2\text{=CHCH}_2\text{OOCCH}(\text{CH}_3)\text{S}, & \text{CH} \text{=CCH}_2\text{OOCCH}(\text{CH}_3)\text{S}, & \text{CH}_2\text{=CHCH}_2\text{OOCCH}(\text{CH}_3)\text{S}, & \text{CH}_3\text{CCH}_2\text{CCH}(\text{CH}_3)\text{S}, & \text{CH}_3\text{CCH}(\text{CH}_3)\text{S}, & \text{CH}_3\text{NHCOCH}(\text{CH}_3)\text{S}, & \text{CH$

 CH_3SO_2NH , CH_3NHSO_2NH , $CH_2=CHCH_2NH$, $CH=CCH_2NH$, CH_3OOCNH , CPH_3NP ,

CH₃OOCCH₂NH, HOOCCH(CH₃)NH,

Na OOCCH (CH₃) NH,
$$i-c^3H^4$$
NH³OOCCH (CH³) NH⁴

O-NHCOCH₂o,

5

 \bigcirc - $n(ch_3)coch_2o$,

 $\begin{array}{lll} {\it 10} & & {\it CH_3SO_2NHCOCH_2O}, & {\it CH_3SO_2NHCOCH(CH_3)O}, & {\it (CH_3)_3SiCH_2O-COCH_2O}, & {\it CH_3OC_2H_4OC_2H_4O-COCH(CH_3)O}, \\ {\it CH_2=C(CH_3)CH_2S}, & {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it NCCH_2S}, \\ {\it NCCH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CH_2=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, & {\it CICH=C(CI)CH_2S}, \\ {\it CIC$

15

⊕ ⊝ Na O-COCH₂S,

20

 $\begin{aligned} &\text{HO-COCH}_2\text{S}, \text{ i-C}_3\text{H}_7\text{O-COCH}_2\text{S}, \text{ n-C}_4\text{H}_9\text{O-COCH}_2\text{S}, \text{ C}_1\text{2}\text{H}_2\text{5}\text{O-COCH}_2\text{S}, \text{ CH}_3\text{S-COCH}_2\text{S}, \text{ C}_2\text{H}_5\text{S-COCH}_2\text{S}, \text{ i-C}_3\text{H}_7\text{S-COCH}_2\text{S}, \text{ CH} \equiv \text{CCH}_2\text{O-COCH}_2\text{S}, \text{ C}_2\text{H}_5\text{OC}_2\text{H}_4\text{OC}_2\text{H}_4\text{O-COCH}_2\text{S}, \end{aligned}$

H-o-coch₂s

30

25

35

 $(\text{CH}_3)_3 \text{SiCH}_2 \text{O-COCH}_2 \text{S}, \quad \text{CH}_3 \text{NHCOCH}_2 \text{S}, \quad (\text{CH}_3)_2 \text{NCOCH}_2 \text{S}, \quad \text{H}_2 \text{C=CHCH}_2 \text{NHCOCH}_2 \text{S}, \quad (\text{H}_2 \text{C=CHCH}_2)_2 \\ \text{NCOCH}_2 \text{S}, \quad \text{HC=CCH}_2 \text{NHCOCH}_2 \text{S}, \quad \text{CH}_3 \text{NHCOCH}_2 \text{CH}_2 \text{CH}_2$

40

45

 $\text{i-C}_4 \text{H}_9 \text{O-COCH(CH}_3) \text{S}, \ \text{t-C}_4 \text{H}_9 \text{CH}_2 \text{O-COCH(CH}_3) \text{S}, \ \text{n-C}_6 \text{H}_{13} \text{O-COCH(CH}_3) \text{S}, \\$

50

55

 C_2H_3S -COCH(CH₃)S, i- C_3H_7S -COCH(CH₃)S, NCCH(CH₃)O-COCH(CH₃)S, CH₃SC₂H₄O-COCH(CH₃)S,

5

10

 $(\text{CH}_3)_3 \text{SiCH}_2 \text{O-COCH}(\text{CH}_3) \text{S}, \ \text{CH}_2 = \text{CHCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \ (\text{H}_2 \text{C=CHCH}_2)_2 \text{NCOCH}(\text{CH}_3) \text{S}, \ \text{HC} = \text{CCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \ \text{CH}_3 \text{CO-O-}(\text{CH}_2)_2 \text{S}, \ \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3)_2 \text{S}, \ \text{CH}_3 \text{O-COCH}(\text{i-C}_3 \text{H}_7) \text{S}, \ \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{N(CH}_3), \ \text{CH}_2 = \text{CHCH}_2 \text{O-CO}, \ \text{CH}_3 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \ \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \ \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \ \text{C}_3 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \ \text{C}_4 \text{O-COC}, \ \text{C}_5 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \ \text{C}_7 \text{O-COCH}(\text{CH}_3) \text{O$

15

$$\left\langle \text{H}\right\rangle$$
-OCOCH₂O,

20

25

and CH₃O-CO-OCH₂S-CO;

f) X is Cl, R¹ is CH₃, R² is CHF₂S, R³ is Cl and R⁴ is selected from CH₂=CHCH₂S, CH≡CCH₂S, C₂H₅OCH₂CH₂S, CH₃SCH₂S, NCCH₂S, C₂H₅OOCS, CH₃OOCCH₂S, C₂H₅OOCCH₂S, C₂H₅OOCCH₂S, C₂H₅OOCS, CH₃OOCCH₂S, C₂H₅OOCCH₂S, C₂H₅OOCCH

30

35 CH₃NHC

CH₃NHOCCH₂S, (CH₃)₂NOCCH₂S, HOOCCH(CH₃)S,

$$\oplus \ominus$$
NaOOCCH(CH₃)S, i-C₃H₇NH₃ OOCCH(CH₃)S,

40

50

45

 $\mathsf{CF_3CH_2O\text{-}COCH_2O},\ \mathsf{CH_2}\text{=}\mathsf{CHCH_2O\text{-}COCH_2O},$

55

CH3NHCOCH2O, CH2=CHCH2O-COCH(CH3)O, CH3NHCOCH(CH3)O, NCCH2O-COCH2O, CH3O-COCH(CH3)

S, NCCH2O-COCH(CH3)S, C2H5O-CO(CH2)3S,

$$\bigcirc$$
-N (CH₃) COCH₂O,

HO-COCH₂NH, C₂H₅O-COCH₂NH and C₂H₅O-COCH(CH₃)NH;

g) X is F, R¹ is CH₃, R² is CH₃SO, R³ is Cl and R⁴ is 5-NO₂;

h) X is F, R¹ is CH₃, R² is CH₃S, R³ is CI and R⁴ is selected from 5-NH₂, 5-SH, 5-CH \equiv CCH₂O, 5-CH \equiv CCH₂S and 5-C₂H₅OOCCH(CH₃)S;

i) X is F, R¹ is CH₃, R² is CHF₂O, R³ is Cl and R⁴ is selected from HO-COCH₂O, CH₃O-COCH₂O, CH₂=CHCH₂O-COCH₂O, CH=CCH₂O-COCH(CH₃)O, CH₂=CHCH₂O-COCH(CH₃)O, CH=CCH₂O-COCH(CH₃)O, CH₂=CHCH₂S, CH₂=C(CH₃)CH₂S, CH=CCH₂S, C₂H₅OC₂H₄S, HO-COCH₂S, CH₃O-COCH₂S, C₂H₅O-COCH₂S, C₂H₅O-COCH₂S, CH₃C-COCH₂S, CH₃C-COCH₃S, CH₃C-COCH₃S, CH₃C-COCH₃C-COCH₃S, CH₃C-COCH₃C-C

j) X is CI, R1 is CH₃, R2 is CHF₂O, R3 is Br and R4 is BrCH₂CH(Br)CH₂O or BrC=CCH₂O.

The present inventors made intensive studies in order to develop a novel harbicide and as a result have found that 3-(substituted phenyl)pyrazole derivatives represented by the above general formula (I) (hereinafter, simply referred to as formula (I)) and salts thereof are novel compounds, not yet written in literature, and they show excellent herbicidal effects on weeds even at lower dosages. Based on this finding, the present invention has been accomplished.

Prior to the present invention, compounds considered as analogous to the present inventive compounds were disclosed as herbicides in Japanese Patent Application Kokai Nos. Sho.50-117936 (corresponding to GB-A-1488285) Sho.52-91861, Sho.54-70270, and Sho.55-9062 and in other literature. However, the present inventive 3-(substituted phenyl)pyrazole derivative represented by formula (I) or salts thereof have never been disclosed and show superior herbicidal effects at lower dosages than those where the compounds disclosed in the above patent applications do.

The present inventive 3-(substituted phenyl)-pyrazole derivatives represented by formula (I) and salts thereof include structural isomers as shown below. These structural isomers form simultaneously in the production of 3-(substituted phenyl)pyrazole derivatives and each isomer can be isolated by a suitable separating method, e.g. recrystallization or column chromatography. The scope of the present invention also includes these structural isomers.

50

5

20

30

In this formula, R1, R2, R3, R4, and X are as defined above.

5

10

15

20

25

30

35

40

45

50

55

Certain compounds of the 3-(substituted phenyl)pyrazole derivatives represented by formula (I) have optical isomers, which are also included in the scope of the present invention.

The substituent R¹ in 3-(substituted phenyl)-pyrazole derivatives represented by formula (I) and salts thereof is methyl.

The substituent R² can be exemplified by hydroxy, mercapto alkylthio, haloalkoxy, and haloalkylthio groups, of which preferred are haloalkoxy groups and particularly preferred is a difluoromethoxy group.

The substituent R³ can be exemplified by hydrogen and halogen atoms, of which preferred are halogen atoms, particularly a chlorine atom.

The substituent R⁴ can be exemplified by formyl, nitro, -CO-B-R⁶ (wherein, B and R⁶ are as defined above) and -D-R⁸ (wherein, D and R⁸ are as defined above). Preferred examples of -CO-B-R⁶ are methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, methoxycarbonylmethoxycarbonyl, ethoxycarbonylmethoxycarbonyl, or propoxycarbonylethoxycarbonyl, ethoxycarbonyl, or propoxycarbonylethoxycarbonyl.

Preferred examples of -D-R⁸ are alkoxy and alkylthio groups containing each methyl, ethyl, propyl, or butyl; alkenyloxy groups containing each propenyl, butenyl, or pentenyl; alkynyloxy groups containing each propenyl, butynyl, or pentenyl; alkenylamino groups containing each propenyl, butenyl, or pentenyl; and alkoxy-carbonylalkoxy and alkylthiocarbonylalkoxy groups containing each methyl, ethyl, propyl, or butyl.

The substituent X is a halogen atom which can be exemplified by chlorine, bromine, fluorine, and iodine, of which preferred are chlorine and fluorine.

Salts of 3-(substituted phenyl)pyrazole derivatives represented by formula (I) are of mineral acids including, e.g. sulfuric acid and hydrochloric acid and of organic acids including, e.g. p-toluenesulfonic acid.

Salts of 3-(substituted phenyl)pyrazole derivatives represented by formula (I) can be produced by treating these derivatives with a suitable mineral acid or organic acid.

Typical processes for producing 3-(substituted phenyl)pyrazole derivatives of formula (I) or salts thereof can be illustrated by the following reaction schemes (), (2) and (3)

Reaction Scheme (1)

50

55

5

C1

$$R^3$$

Halogenation

HqYlpC

 R^3

(II-2)

(II-3)

Sommelet

reaction

Acid

hydrolysis HOC

 R^3

Oxidation

HOOC

 R^3
 R^3

In the above equation, X, R¹, R², R³, and -CO-B-R⁶ are as defined above, Y¹ and Z denote halogen, and p and q denote each an integer of 1 or 2 with the proviso that the sum of p and q is 3. That is, the 3-(substituted phenyl)pyrazole derivative represented by formula (I-4) can be produced as follows: A pyrazole derivative represented by formula (II-2) is reacted with a halogenating agent in an inert solvent to give a pyrazole derivative represented by formula (II-3), which in turn is subjected to Sommelet reaction with hexamethylenetetramine in an inert solvent and further hydrolyzed with acid to give a 3-(substituted phenyl)-pyrazole derivative represented by formula (I-5), which in turn is oxidized in an inert solvent to give (I-6), which in turn is halogenated in an inert solvent to give an acid halide represented by formula (II-4). Pyrazole derivatives represented by the following formula (I-3);

20

25

30

5

in which R¹, R², R³, R³, X and B are defined above, Y denotes halogen or OH, which consist of a derivative of formula (I-6) (corresponding to the case when Y is OH and a derivative of formula (II-4) (corresponding to the case when Y is halogen) are reacted with a compound represented by formula (II-1) or with a halide represented by formula (II-1) in an inert solvent in the presence or absence of a base to produce the 3-(substituted phenyl)pyrazole derivative represented by formula (I-4).

(1) Preparation of compound (II-3) from compound (II-2)

Any inert solvent may be used in this reaction that does not markedly hinder the reaction from proceeding. Such solvents include, though not limited to; halogenated hydrocarbons, e.g. methylene chloride, chloroform, and carbon tetrachloride; aromatic hydrocarbons, e.g. benzene, toluene, and xylene; nitriles, e.g. acetonitrile and benzonitrile; linear ethers, e.g. methyl Cellosolve and diethyl ether; cyclic ethers, e.g. dioxane and tetrahydrofuran; and sulforane, dimethyl sulfone and dimethylsulfoxide. These solvents may be used alone or in combination.

Halogenating agents suitable for use in the above reaction include, for example, N-bromosuccinimide (NBS), N-chlorosuccinimide (NCS), bromine, chlorine, t-butyl hypohalogenite, and trichloromethanesulfonyl halide. When NBS or NCS is used as a halogenating agent, it is preferable to use an organic peroxide such as benzoyl peroxide or light as a catalyst or exciter.

The amount of halogenating agent used may be chosen from the range of 1 mole to an excess of 1 mole per mole of the pyrazole derivative of formula (II-2).

The reaction temperature ranges from 0°C to the boiling point of the inert solvent used.

The reaction period is chosen from the range of several minutes to 48 hours so as to complete the reaction.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (II-3) can be obtained from the reaction product solution by an ordinary method, e.g. solvent extraction, and if necessary, by purification procedure such as recrystallization or column chromatography.

35

40

50

55

(2) Preparation of compound (I-5) from compound (II-3)

This reaction process consists of the first step of carrying out Sommelet reaction and the second step of carrying out acid hydrolysis. Inert solvents suitable for use in the first step include organic acids, e.g. glacial acetic acid, mineral acids, e.g. hydrochloric acid and sulfuric acid, water, and mixtures of these solvents.

Hexamethylenetetramine is used in an amount equimolar to the pyrazole derivative of formula (II-3). An excess of hexamethylenetetramine can also be used.

The reaction temperature ranges from 10°C to the boiling point of inert solvent used, preferably from 30 to 180°C. After completion of the reaction, the resultant solution containing the objective compound is subjected to the acid hydrolysis in the second step.

To the acid hydrolysis, the reaction product solution from the first step is subjected as such or with a large excess of mineral acid such as hydrochloric acid or sulfuric acid added as occasion demands, the latter procedure being preferable.

The reaction temperature is in the range of 80 to 180°C and the reaction period is chosen from the range of several minutes to 48 hours so as to complete the reaction.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (I-5) can be obtained from the reaction product solution by an ordinary method, e.g. solvent extraction, and if necessary, by purification procedure such as recrystallization or column chromatography.

(3) Preparation of compound (I-6) from compound (I-5)

Inert solvents suitable for use in this reaction include aromatic hydrocarbons such as benzene, toluene, and xylene, and further pyridine and its derivatives and water. These solvents may be used alone or in combination.

Oxidants, e.g. potassium permanganate and potasium dichromate, can be used as oxidizing agents in amounts of 1 to 5 moles, preferably 1 to 2 moles, per mole of the 3-(substituted phenyl)pyrazole derivative of formula (I-5).

The reaction temperature is from 0°C to the boiling point of inert solvent used, preferably in the range of 30 to 180°C. The reaction period is chosen from the range of several minutes to 48 hours so as to complete the reaction.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (I-6) can be obtained from the reaction product solution by an ordinary method e.g. solvent extraction, and if necessary, by purification procedure such as recrystallization or column chromatography.

(4) Preparation of compound (II-4) from compound (I-6)

10

20

25

30

35

40

5

Inert solvents suitable for use in this acid halide-forming reaction include; halogenated hydrocarbons, e.g. methylene chloride, chloroform, and carbon tetrachloride; aromatic hydrocarbons, e.g. benzene, toluene, and xylene; linear ethers, e.g. methyl Cellosolve, diethyl ether, and diisopropyl ether; and cyclic ethers, e.g. dioxane and tetrahydrofuran.

Halogenating agents suitable for this reaction include, for example, thionyl chloride, phosphorus pentachloride, and phosphorus trichloride.

The halogenating agent may be used in amounts of 1 mole to an excess of 1 mole, preferably in such an excess, per mole of the 3-(substituted phenyl)pyrazole derivative of formula (I-6).

A catalytic amount of triethylamine, pyridine, dimethylformamide, or the like may be added for the purpose of promoting this reaction.

The reaction temperature is in the range of room temperature to the boiling point of solvent used. The reaction period ranges from several minutes to 48 hours depending upon the amounts of reactants used and the reaction temperature.

After completion of the reaction, the excess halogenating agent and the solvent are removed from the reaction product solution by evaporation to isolate the objective compound, which may be subjected to the next reaction after purification, if necessary, by recrystallization, distillation, or some other method.

(5) Preparation of compound (I-4) from compound (I-6) or from compound (II-4)

This reaction is esterification or amide-forming reaction. The esterification can be carried out by using an excess of the alcohol corresponding to the objective ester in the presence of a mineral acid, e.g. concentrated sulfuric acid, which acts as a reactant and a solvent. For the esterification, the 3-(substituted phenyl)pyrazole derivative of formula (I-6) can also be used in the form of alkali metal salt.

The esterification or the amide-forming reaction can also be carried out in the presence of an inert solvent and a dehalogenating agent. Inert solvents suitable for use in the acid halide-forming reaction can also be used in this case.

The alcohol or amine or the halide of formula (II-1-1) may be used in an equimolar amount or more.

Dehalogenating agents suitable for use in this reaction are inorganic bases and organic bases. The inorganic bases include alkali metal salts, e.g. sodium hydroxide and potassium hydroxide and the organic bases include tertiary amines, e.g. triethylamine, and 4-dimethylaminopyridine, and 1,8-diazabicyclo-[5,4,0]-7-undecene (DBU).

The reaction temperature is in the range of 0°C to the boiling point of the solvent used, preferably in the range of 0 to 150°C. The reaction period ranges from several minutes to 48 hours depending upon the amounts of reactants used, the reaction temperature, etc.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (I-4) can be obtained from the reaction product solution by an ordinary method, e.g. solvent extraction, and if necessary, by purification procedure such as recrystallization or column chromatography.

45

50

Reaction Scheme (2)

Process A

C1
$$R^3$$
 Nitration $C1$ R^3 R^3 R^2 O_2N R^3 R^2 (II-5)

Reduction

$$C1 \longrightarrow \begin{array}{c} X \\ N \\ N \end{array}$$
 $R^3 \longrightarrow \begin{array}{c} Diazo \\ Reaction \\ HO \end{array}$
 $R^3 \longrightarrow \begin{array}{c} X \\ N \\ N \end{array}$
 $R^3 \longrightarrow \begin{array}{c} R^3 \\ R^1 \end{array}$

(I-8)

Process B

(II-5) Chlorosulfonation
$$C1 \longrightarrow C1 \longrightarrow R^3$$

$$C1 \longrightarrow R^3$$

$$C1 \longrightarrow R^3$$

Reduction
$$C1 \longrightarrow R^3$$

$$\downarrow_{N} \qquad R^2$$

$$(I-10)$$

In the above equations, R1, R2, R3, R8-1, D, X, and Z are as defined above.

5

10

25

30

35

40

45

50

55

That is, a pyrazole derivative of formula (II-5) is subjected to nitration with a nitrating agent in an inert solvent to give a 3-(substituted phenyl)-pyrazole derivative of formula (I-7). This derivative is then reduced in an inert solvent to give a 3-(substituted phenyl)pyrazole derivative of formula (I-8), which is further diazotized in an inert solvent and then decomposed, whereby a 3-(substituted phenyl)-pyrazole derivative of formula (I-9) can be obtained. On the other hand, a pyrazole derivative of formula (II-5) is subjected to chlorosulfonyl substitution in an inert solvent to give a pyrazole derivative of formula (II-6), which in turn is reduced, whereby a 3-(substituted phenyl)pyrazole derivative of formula (I-10) can be obtained.

Further, a 3- (substituted phenyl)pyrazole derivative of formula (I-2) can be produced from a 3- (substituted phenyl) pyrozole derivative represented by the general formula

wherein X, R¹, R², R³, and D are as defined above, especially of formula (I-8), (I-9), or (I-10) by reacting with a halide of formula (II) in an inert solvent in the presence of a base.

When R⁸⁻¹ in the 3-(substituted phenyl)-pyrazole derivative of formula (I-2) is -CH·R¹⁰-CO·E·R¹² (wherein, R¹⁰, R¹², and E are as defined above), this 3-(substituted phenyl)pyrazole derivative can be produced by converting an acid represented by -CHR¹⁰-CO-E-H to an acid halide in the same manner as in the above reaction process and subjecting the acid halide to esterification, thiol esterification, or amide-forming reaction.

(1) Preparation of compound (I-7) from compound (II-5)

Nitrating agents suitable for use in this reaction include concentrated nitric acid, a mixture of fuming nitric acid with concentrated sulfuric acid, and acetyl nitrate that is formed by mixing concentrated nitric acid with acetic anhydride.

Mineral acids such as sulfuric acid and hydrochloric acid can be used as solvents in this process.

Since this reaction is an equimolar reaction, the use of an equimolar amount of nitrating agent is sufficient though

it may be used in excess.

The reaction temperature is in the range of -10 to 140°C, preferably -10 to 20°C. The reaction period is chosen from the range of several minutes to 48 hours depending upon the amounts of reactants charged, the reaction temperature, etc.

After completion of the reaction, the intended 3-(substituted-phenyl)pyrazole derivative of formula (I-7) can be obtained from the reaction product solution by either pouring it into ice-cold water and collecting the precipitated crystals or subjecting the solution to solvent extraction or other separating procedure to isolate the intended product, and if necessary, by further purification procedure such as recrystallization.

(2) Preparation compound (I-8) from compound (I-7)

Any inert solvent that does not markedly hinder the reaction from proceeding may be used in this reaction. Such inert solvents include; alcohols, e.g. methanol, ethanol, and propanol; linear ethers, e.g. diethyl ether and methyl Cellosolve; cyclic ethers, e.g. dioxane and tetrahydrofuran; organic acids, e.g. acetic acid; mineral acids, e.g. hydrochloric acid; and water.

Reducing agents suitable for this reaction in an acidic medium include, for example, zinc, iorn, tin, and tin chloride. Zinc dust can be used in a neutral or basic medium. For the catalytic hydrogenation, which can be carried out under normal or elevated pressure, suitable catalysts include, for example, Raney nickel, palladium-carbon, palladium oxide, platinum, platinum black, platinum sulfide-carbon, and rhodium-alumina.

In an acidic medium, the reducing agent may be used in an equimolar amount though generally in excess. For the catalytic hydrogenation, the amount of Raney nickel or the like when it is used is from 5 to 20% by weight based on the weight of the 3-(substituted)pyrazole derivative of formula (I-7) and the amount of noble metal such as platinum or palladium when it is used is from 0.02 to 5% by weight on the the same basis.

The reaction temperature is in the range of 0 to 150°C, preferably 10 to 100°C. The reaction period may be chosen from the range of several minutes to 48 hours depending upon the amounts of reactants charged, the reaction temperature, etc.

After completion of the reaction, the intended 3-(substituted phenyl)pyrazole derivative of formula (I-8) can be obtained in the following manner: When the reaction is carried out in an acidic medium, the reaction product solution is poured into ice-cold water, this mixture is turned basic, and the objective product is isolated by a method such as solvent extraction. In case of catalytic hydrogenation, the catalyst is removed from the reaction product fluid by filtration and the objective product is recovered by concentrating the filtrate. If necessary, the objective product is further purified by recrystallization, column chromatography, or some other method.

(3) Preparation of compound (I-9) from compound (I-8)

This process consists of the step of diazotization and the step of decomposition. In the diazotization step, a mineral acid such as sulfuric acid or hydrochloric acid can be used as an inert solvent. For the diazotization, sodium nitrite in the form of powder or aqueous solution of suitable concentration is used in an equimolar amount or in excess.

The reaction temperature is in the range of -5 to 5°C.

The resulting diazonium salt is subjected to decomposition without isolation.

In the decomposition step, 30 to 70% sulfuric acid may be used as an inert solvent.

The decomposition is carried out in the presence of a catalyst at a temperature of 10 to 180°C. When the diazonium salt in solution form is added dropwise to aqueous sulfuric acid, the reaction is conducted at a temperature of 50 to 180°C. When cuprous oxide is used, as a catalyst, the reaction temperature is in the range of 10 to 50°C.

Copper nitrate and cuprous oxide can be used as catalysts. To the reaction system is added copper nitrate and then cuprous oxide is added in limited amounts.

Copper nitrate is used in an amount of 1 to 60 moles, preferably 30 to 60 moles, and cuprous oxide is used in an amount of catalytic to 2 moles, preferably about 1 mole, per mole of the diazonium salt.

The total reaction period of diazotization and decomposition may be chosen from the range of several minutes to 48 hours depending upon the amounts of reactants charged and the reaction temperature.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (I-9) can be obtained by pouring the reaction product solution into ice-cold water, isolating the objective product from the mixture by a method such as solvent extraction, and if necessary, purifying the isolated product by recrystallization, column chromatography, or some other method.

(4) Preparation of compound (II-6) from compound (II-5)

Any solvent may be used for this reaction that does not markedly hinder the reaction. Such solvents include;

14

35

5

10

15

20

25

40

45

50

halogenated hydrocarbons, e.g. methylene chloride, chloroform, and carbon tetrachloride, aliphatic nitriles, e.g. acetonitrile; linear ethers, e.g. methyl Cellosolve; cyclic ethers, e.g. dioxane and tetrahydrofuran; and mineral acids, e.g. concentrated sulfuric acid.

For this chlorosulfonyl substitution, chlorosulfonic acid or the like may be used. Another available method comprises sulfonating the starting compound of formula (II-5) with fuming sulfuric acid, converting the resulting sulfonic acid to an alkali metal salt, and chlorinating it with phosphorus pentachloride to give the objective product. A further method comprises reacting the starting compound with fuming sulfuric acid, followed by the reaction with carbon tetrachloride to give the objective product.

Chlorosulfonic acid is used in an equimolar amount or in excess, preferably in excess.

Fuming sulfuric acid is used also in an equimolar amount or in excess, preferably in excess. Carbon tetrachloride is used in an amount chosen properly from the range of an equimolar amount to an excess.

The reaction temperature is in the range of 0 to 180°C, preferably 15 to 100°C. The reaction period may be chosen from the range of several minutes to 48 hours depending upon the amounts of reactants charged and the reaction temperature.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (II-6) can be obtained by pouring the reaction product solution into water, isolating the objective product from the resulting mixture by solvent extraction, and if necessary, purifying the isolated product by recrystallization, column chromatography, or some other procedure.

(5) Preparation of compound (I-10) from compound (II-6)

This reduction can be carried out in an inert solvent such as glacial acetic acid. Reducing agents suitable for this reaction include, for example, zinc, tin, and tin chloride, which may be used in an amount of 1 mole or more, preferably 5 moles or more, per mole of the compound of formula (II-6).

The reaction temperature is in the range of 0 to 180°C, preferably 15 to 120°C. The reaction period is chosen from the range of several minutes to 48 hours depending upon the amounts of reactants charged and the reaction temperature.

After completion of the reaction, the 3-(substituted phenyl)pyrazole derivative of formula (1-10) can be obtained by pouring the reaction product solution into water, isolating the objective product from the mixture by solvent extraction, and if necessary, purifying the isolated product by recrystallization, column chromatography, or some other procedure.

(6) Preparation of compound (I-2) from compound (I-9) or compound (I-10)

This reaction can be carried out according to the procedure of the above reaction process (1) 5, whereby the 3-(substituted phenyl)pyrazole derivative of formula (I-2) can be produced.

Salts of 3-(substituted phenyl)pyrazole derivatives of formula (I)

These salts are formed from acids including mineral acids, e.g. hydrochloric acid and sulfuric acid, and organic acids, e.g. p-toluenesulfonic acid. The production of these salts can be carried out by treating 3-(substituted phenyl) pyrazole derivatives of formula (I), obtained according to the above stated process, with the above-cited mineral acid or organic acid.

Typical examples of the 3-(substituted phenyl)pyrazole derivatives represented by formula (I) and the salts thereof are shown in Table 1.

Formula (I):

10

15

20

25

30

40

45

EP 0 443 059 B1

Table 1

											_
Property	m.p. 157.1°C	m.p. 163.2°C	nD 1.5882 (26.5°C)	nD 1.6131 (25.3°C)	m.p. 71.5 - 72.5°C	nD 1.5944 (25,8°C)	nD 1.6075 (25.6°C)	nD 1.5988 (25.9°C)	m.p. 191 - 194°C	m.p. 90 - 93°C	- cont'd -
×	CJ	C1	CJ	CJ	Cl	Cl	C1	CI	Cl	Cl	-
R ⁴	НО	НО	i-C ₃ H ₇ O	CH ₂ =CHCH ₂ O	CH≡CCH ₂ O	c ₂ H ₅ ocH ₂ cH ₂ o	(○)-осн ₂ сн ₂ о	c1_ (O)_ 00c0	нооссн (сн ₃) о	сн ₃ ооссн (сн ₃) о	-
R ³	н	CI	CJ	CJ	CI	C1	CI	13	CI	CI	
R ²	снз	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	СН3	СН3	-
R	CH3	CH ₃	CH ₃	CH 3	СНЗ	СН3	CH ₃	СН3	СН3	СН3	•
Comp'd No.	1	2	м	4	2	9	7	œ	σ,	10	-

nD 1.5763(28.8°C)	m.p. 87 - 90°C	nD 1.5802(23.4°C)	nD 1.5858(23.7°C)	nD 1.6303(24.3°C)	m.p. 91.8°C	m.p. 87.2°C	nD 1.5820(24.7°C)	Viscous substance	nD 1.6370(25.1°C)	m.p. 94.5°C	nD 1.6528(24.9°C)	m.p. 112.1°C	m.p. 74.8°C	
CJ	CJ	C C	C1	C7	CI	CI	ij	CI	IJ	CI	<u> </u>	ე -	Cl	
с ₂ н ₅ ооссн(сн ₃)о	i-C ₃ H ₇ 00CCH(CH ₃)0	СН ₂ =СНСН ₂ ООССН (СН ₃) О	CH≡CCH ₂ OOCCH(CH ₃)O	HS	$\left\{ i-c_3H_7s \right\}$	CHF ₂ S	CHF2CF2S	$CH_2 = CHCH_2S$	$CH_2 = C(C1) CH_2 S$	CH≡CCH ₂ S	c1-{O}-cH ₂ s	c ₂ H ₅ OOCCH ₂ S	c ₂ H ₅ ooccH ₂ cH ₂ s	
CI	ប	CJ	C	CI	ប	ដ	CI	CI	CI	CJ	C1	CJ	CI	
CH ₃ S	СН3	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	снз	снз	CH ₃ S	CH ₃ S	CH ₃ S	CH ³ S	CH ₃ S	CH ₃ S	
СНЗ	СН3	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	СН3	СНЗ	CH ₃	
-	12	13	14	15	16	17	18	19	20	21	22	23	24	

5	1.5878(22.1°C)	176.1°C	1.6131 (24.9°C)	1.6010(25.0°C)	1.5936(25.0°C)	1.6025(25.2°C)	1.6030(25.0°C)	1.5954 (25.0°C)	1.5834 (25.0°C)	1.5983(26.4°C)	203.5°C	1°C	135.7°C	102-105°C	184 - 187°C	- cont'd -
10		m.p. 176									m.p. 203	m.p. 79.1°C	m.p. 135	m.p. 102	m.p. 184	٠
15	Ou		On	Du	Du	Du	Ou	Du	Du	Du	É	<u> </u>	Ë	.	Ė.	_
	C1	C	C1	C1	C1	C1	C1	CI	CI	CI	CJ	CI	CI	CI	CI	
20	S (s (ഗ	S (н (сн ₃) s							_
25	оссн (сн ³	оссн (сн ₃	н ₃) s	сн ³) s	н (сн ₃) s	ссн (сн ³)	оссн (сн ₃	сн (сн ³) s) сн ₂ оосс	сн (сн ³) s				2	2	
30	$(-c_3H_7^{NH_3}^{OOCCH(CH_3)})$ s	$(CH_3)_{2}^{(H_2)}$ (CH ₃) S	сн ³ ооссн (сн ³) s	с ₂ н ₅ ооссн (сн ₃) s	i-с ₃ н ₇ ооссн (сн ₃) s	с1 (сн ₂) 300ссн (сн ₃) s	CH_2 =CHCH200CCH (CH3) S	CH≡CCH ₂ OOCCH (CH ₃) S	$c_2^{H_5}$ CH (CH $_3^{\circ}$) CH $_2^{\circ}$ 00CCH (CH $_3^{\circ}$) S	$(c_2H_5)_2$ NCOCH $(CH_3)_S$	H_2NSO_2	CH ₃ NHSO ₂	$(CH_3)_2NSO_2$	$n-C_3H_7NHSO_2$	CH ₃ SO ₂ NHSO ₂	
35	. i	<u> </u>	ື່ 	υ' '	.ન —		Ü	: 	υ' `	<u> </u>	H,	: 	<u> </u>	r.	ີ່ວ່ 	_
	C1	CJ	CJ	CI	C1	Cl	CI	CI	CJ	C1	CI	C1	CI	CJ	C	
40	CH ³ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	снз	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	CH ₃ S	-
45	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	СН3	СН3	_
50	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	_

- cont'd

5	1.6403(25.0°C)	ن د	1.6368(21.7°C)	1.6241(22.1°C)	1.6238(22.2°C)	1.6088(21.6°C)	ວ.	1.6301(22.2°C)	213 - 214°C	1.6029(20.1°C)	1.6002(25.9°C)	ວຸ	1.5763(26.4°C)	1.5839(26.0°C)	ာ့
10	1.640	. 174.5°C	1.636	1.624	1.623	1.608	. 140.8°C			1.602	1.600	. 134.5°C	1.576	1.583	148.6°C
15	Ou -	m.p.	Qu	Ou	Gn	Qu	m.p.	Qu	m.p.	Qu	Ou	o. E	Ou	Ou	m.p.
20		=	=				=	=	=	<u> </u>	=	-	.	=	:
25						2 N							₃)	(СН ³)	H
30		$\oplus_{\mathbf{z}}$	174	2 _N	CH ₂ =CHCH ₂ NH	$(CH_2=CHCH_2)_2^N$	CH≡CCH ₂ NH	CNH		၁၀	2NH	CH ₃ NHSO ₂ NH	$c_{\rm H_3} {\rm NHSO_2} {\rm N} (c_{\rm H_3})$	$(CH_3)_2 NSO_2 N (CH_3)$	i-C ₃ H ₇ NHSO ₂ NH
35	H ₂ N	Cl H ₃ N⊕	CH ₃ NH	$(CH_3)_2^N$	$CH_2=($	(CH ₂ =	CH≡C	CH 300CNH	HOOC	C2H500C	CH_3SO_2NH	CH ₃ NH	CH 3NH	(CH ₃)	i-C ₃ H
40	CJ	=	=	t	=	=	=	=	=	=	=	=	=	=	=
45	снз	=	=	=	=	=	*	=		=	=	:	=	=	=
	СНЗ	=	=	=	=	=	=	=	=		=	=	.	=	=
50	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55

19

ပ	115°C	υ	1.5938(24.7°C)	U	105°C	υ	υ	stance		U	υ	υ	U	
m.p. 111.5°C	m.p. 112 - 115°C	m.p. 119.5°C	nD 1.5938	m.p. 125.8°C	m.p. 103 -	m.p. 112.0°C	m.p. 127.0°C	Viscous substance		m.p. 207.1°C	m.p. 132.4°C	m.p. 218.7°C	m.p. 144.2°C	
	E	E	<u></u>		E	E	E	<u>></u>		E	E	E	E	_
CJ	=	=	=	:	=	=	=	=	=	=	=	=	=	
CH≡CCH ₂)									-					_
$^{\mathrm{H}_3}$) SO_2 N (OOCNH	CNH	CNH	сн200син	2,00CNH	OCCH ₂ NH	CH ₂ NH	CH ₃)NH			H	HN (н ³)	
$CH = CCH_2^N (CH_3) SO_2^N (CH = CCH_2)$	сн ₃ осн ₂ сн ₂ оосин	BrCH2CH200CNH	NCCH ₂ CH ₂ OOCNH	$CH_2 = C(CH_3)CH_2$ 00CNH	(О)-сн ₂ сн ₂ оосин	CH ₂ =CHCH ₂ OOCCH ₂ NH	сн≡ссн ₂ ооссн ₂ ин	с ₂ н ₅ ооссн (сн ₃) ин		нооссн ₂ ин	сн300ссн2ин	нооссн (сн ₃) ин	сн ₃ ооссн (сн ₃) ин	
Ü	ט	B	ž	Ü		Ü	່ວ	ບິ່		H	່ວ	H	Ü	
C1	=	=	=	=	=	=	=	:		=	:	=	=	
н38						<u> </u>	 , 11-44,-			· · · · · ·				_
CH ₃	=	=	=	=	=	=	=	=		=	=	=	=	
СНЗ	=	=	=	=	=	=	=	=		=	=	=	=	_
95	57	58	59	09	61	62	63	64		99	19	89	69	

- cont'd

5	168,1°C	168.0°C	. 146.3°C	. 184.8°C	. 192.5°C	. 87.4°C	. 133.3°C	1.5625(25.6°C)	1.5675(25.6°C)	187.1°C	165.1°C	1.5567(23.4°C)	1.5434 (23.5°C)	1.5410(25.1°C)	1.5422(23.5°C)
15	m.p.	m.p.	m.p.	m.p.	m.p.	m.p.	m.p.	Qu	Du Ou	m.p.	.q.m	Qu	Qu	Ou	υD
	CI	=	=	=	=	=	=	=	=	=	=	=	=	=	=
20					-				H≡CCH ₂)						
25				HN	H≡CCH ₂)			H≡CCH ₂)	CH_3N ($CH \equiv CCH_2$) SO_2N ($CH \equiv CCH_2$)						
30		сн ₃ so ₂ nн	CH ₃ NHSO ₂ NH	i-C3H7NHSO2NH	CH ₃ NHSO ₂ N (CH≡CCH ₂)		CH ₃ NHSO ₂ NH	CH ₃ NHSO ₂ N (CH≡CCH ₂)	и (сн≡ссн			0	50	n-C3H70	i-C ₃ H ₇ O
35	NO ₂	CH 3	CH ₃	j-ć	CH 3	NH ₂	CH ₃	CH ₃	CH ₃	NH ₂	NO ₂	СНЗО	$c_{2}^{H_50}$	n-0	-i-
40	เว	=	=	=	=	=	:	=	=	=	=	z	=	=	=
45	сн ³ so	=	E	E	. E	снз	=	=	=	сн ³ so	=	CHF_2O	=	=	=
50	CH ₃	=	=		2	CHF2	=		=	=	=	СНЗ	=	z	=
50 -	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84
55															

- cont'd -

5	1.5482(25.4°C)	1.5536 (28.4°C)	84.0°C	79.5°C	98.9°C	1.5387 (23.2°C)	119.8°C	89.7°C	105.0°C	75.3°C	107.8°C	1.5244 (23.0°C)	84.7°C	119.6°C
	H	1												
15	Ou Ou	Qu	m.p.	ď.	m.p.	nD	m.p.	d.m	.d.m	m.p.	d.m	Ou	.d.н	m.p.
	C1	=	=	=	=	=	=	:	:	=	=	=	=	=
20										<u>.</u>				
25								0	0	C) 00CCH ₂ 0	20	CH ₂ O	₂ 0
30	Ŷ	сн ₂ =снсн ₂ о	CH≅CCH ₂ O	$c_2 H_5 O C H_2 C H_2 O$	20	000	сн ₃ ооссн ₂ о	п-с3H100ССН20	i-с ₃ н ₇ ооссн ₂ о	$n-c_4H_900CCH_20$	$\mathrm{cH}_3\mathrm{CH}_2\mathrm{cH}$ (CH_3) оосс $\mathrm{H}_2\mathrm{O}$	$^{\rm n-c_6H_{13}ooccH_2o}$	сн ₂ =снсн ₂ ооссн ₂ о	сн≡ссн ₂ ооссн ₂ о
35		CH ₂ =	CH≡C	$C_{2}^{H_{5}}$	NCCH ₂ O	снзоосо	CH ³ O	n-c ₃	i-c ₃	n-C4	CH ³ C	n-c ⁶	CH ₂ =	СН≘С
	C	=	=	=	=	=	=	=	=	=	=	E	=	=
40	CHF ₂ 0				<u> </u>								·— -	
45	H)	=	=	=	:	=	=	=	=	=	=	=	=	=
	СН3	=	=	=		Ε.	=	=	:		=	=	=	:
50	85	98	87	88	68	06	91	92	93	94	95	96	9.7	8 6

22

- cont'd -

10	m.p. 91.8°C	nD 1.5261(22.9°C)	nD 1.5287(23.0°C)	m.p. 139.1°C	m.p. 158.7°C	Viscous substance	nD 1.5238(25.7°C)	nD 1.5253(18.5°C)	m.p. 84.3°C	m.p. 109.7°C	nD 1.5365(35.2°C)	m.p. 148.9°C	nD 1.5828(21.8°C)
	C	=	=	:	=	=	=	=	=	=	=	=	=
20			оссн ₂ о		***************************************	0			0				
25	2H ₂ O	200ссн20	₂ 0 (сн ₂) ₂ 0	сен 20	0) эссн (сн ₃)	сн ³) о	н (сн ³) о	эссн (сн ³)	сн (сн ³) о	сн ³)0	н (сн ³) о	
30	(н)-ооссн ₂ о	С2H50(СH2)200ССH20	$c_2^{H_5}$ o ($c_{H_2}^{O_2}$) $c_2^{O_2}$ 000000000000000000000000000000000000	(○)-сн ₂ ооссн ₂ о	нооссн (сн ³) о	$\stackrel{\bigoplus}{1-c_3} \stackrel{\bigoplus}{\eta_{NH_3}} \circ $	с ₂ н ₅ ооссн (сн ₃) о	n-с ₄ н ₉ ооссн (сн ₃) о	сн ₂ =снсн ₂ ооссн (сн ₃) о	CH≡CCH ₂ OOCCH (CH ₃)O	сн ³ инсосн (сн ³) о	$(CH_3)_2$ NCOCH $(CH_3)_0$	r 0
35		ပ်` ——	ບິ `	<u> </u>	H	· '	υ΄ `	<u> </u>	: 	ື່ວ ——		<u> </u>	HS
40	C	2	=	=	=	=	:	=	. =	=	:	.	:
45	CHF ₂ 0	=	2	=	=	ŧ	=	ŧ	=	:	=	=	=
	СН3	.	=	=	Ξ	=	\$	=	5	=	:	=	=
50	66	100	101	102	103	104	105	106	107	108	109	110	111

23

5	ņ	ာ _ေ	Ŋ	ာ့	၁ ့	- 55.0°C	υ	127 - 129°C	1.5972(20.2°C)	1.5245(25.3°C)	1.5656(17.2°C)	J.	ວຸ	ပ
10	m.p. 95.7°C	m.p. 110.5°C	m.p. 83.8°C	m.p. 155.4°C	m.p. 123.4°C	m.p. 52.0	m.p. 91.5°C	m.p. 127 -				m.p. 102.0°C	m.p. 171.5°C	m.p. 102.4°C
15	Cl m.	E E	# #	# 	E	# E	E E	<u>.</u>	n Ou	n	- Un	E .	E .	<u>=</u>
20							,	-				•		
25										сн2				CH ₂ S
30		S	н ₇ s	н ₉ s	S	CH ₂ =CHCH ₂ S	сн ₂ =снсн ₂ so	сн≡ссн ₂ s	⊙-cн ₂ s	$(c_2^{\rm H}_5^{\rm O})_2^{\rm P}(0)^{\rm CH}_2^{\rm S}$	ocs	сн ₃ ооссн ₂ s	c_2H_5 00cc H_2 s	сн ₂ =снсн ₂ ооссн ₂ s
35	CH ₃ S	C_2H_5S	i-C3H7S	n-C4HgS	CHF ₂ S	$CH_2=$	$CH_2=$	CH≅C	<u> </u>	(C ₂ H	CH ₃ OOCS	CH ³ O	$C_{2}^{H_{5}}$	CH ₂ =
40	0 0		=	:	=	.	= 	=	=	=	=	=	=	=
45 .	CHF20	=	=	E	=	=	=	: 	=	=	=	=	=	=
	CH ₃	:		=	.	=	: 	=	=	=	2	=	= 	:
50	112	113	114	115	911	117	118	119	120	121	122	123	124	125

5	O	O	stance	1.5654 (19.8°C)	1.5565(28.0°C)	1.5582(20.0°C)	υ	1.5417(22.1°C)	1.5458(20.2°C)	1.5437 (22.2°C)	1.5600(20.4°C)	1.5602(22.2°C)	1.5431 (23.5°C)	1.5386(21.2°C)	cont'd -
10	. 188.9°C	. 205.4°C	Viscous substance	1.5654	1.5565	1.5582	. 105.8°C	1.5417	1.5458	1.5437	1.5600	1.5602	1.5431	1.5386	ŭ
15	m.p.	d E	Vis	Du	Qu	Qu	n.p.	Qu	Qu	Gn	Qu	Ou	Ou	Ou	
	CI	=	=	=	=	=	=	=	:	:	=	:	:	=	
20			70							(сн ³) s	رم د		сн ₃ о (сн ₂) ₂ о (сн ₂) ₂ ооссн (сн ₃) s	н (сн ₃) s	
25	တ	s (ссн (сн³) :	3)s	н ³) S	H ₃) S (0)	н ₃) so ₂	(CH ₃)S	:(сн ³) s	₂) ₂ 00CCH	ссн (сн3)	:н (сн ₃) s	(CH ₂) ₂ 00) сн ₂ оосс	
30	нооссн (сн ³) s	$\oplus \ominus$ NaOOCCH (CH ₃) S	⊕ ⊖ i-c ₃ H ₇ NH ₃ OOCCH(CH ₃)S	сн ³ ооссн (сн ³) s	с ₂ н ₅ ооссн (сн ₃) s	с ₂ н ₅ ооссн (сн ₃) s (о)	с ₂ н ₅ ооссн (сн ₃) so ₂	i-c ₃ H ₇ 00CCH(CH ₃)S	n-с ₄ н ₉ ооссн (сн ₃) s	(сн ₃) ₂ сн (сн ₂) ₂ ооссн (сн ₃) s	CH_2 = CHCH ₂ 00CCH (CH ₃) S	CH≡CCH ₂ OOCCH (CH ₃) S	$_{3}^{\circ}$ (CH $_{2}$) $_{2}^{\circ}$	$(c_2H_50)_2P(0)CH_2OOCCH(CH_3)S$	
35	НОС	⊕ Na N	ं ।	E	C ₂ I	$\begin{bmatrix} c_2 \end{bmatrix}$	$\frac{c_2}{c_2}$	-i -i			СН	Ü ——	CH	<u> </u>	
40	CJ	=	=	2	=	:	z	E	Ξ.	=	=	=	٤ 	=	
	IF 20														
45	CH —	<u> </u>		=		=	=	=	=	=	<u> </u>	=	=	=	
	СН3	=	=	:	=	.	=	=	=	=	\$:	=	E	
50	126	127	128	129	130	131	132	133	134	135	136	137	138	139	
55		····								 .					

5	D.6	1.5672(19.9°C)	1.5532(19.8°C)	၁ ့ 6	132.3°C	1.5457(19.9°C)	1°C	1.5743(20.8°C)	142.9°C	133.0°C	1.4952(25.2°C)	1.5561(24.9°C)	1.5719(25.3°C)	3°C	- cont'd -
15	m.p. 99.9°C	nD 1.5	nD 1.5	m.p. 99.9°C	m.p. 132	nD 1.54	m.p. 99.1°C	nD 1.5	m.p. 142.	m.p. 133	nD 1.49	nD 1.5	nD 1.5	m.p. 76.3°C	•
	CI	=	=======================================	=	=	=	=	<u> </u>	=	Ε.	=	=	=	=	
20															
25	н ₃) S	(сн ₃) s	:н (сн ³) s	н (сн ³) s	(сн ³) s	: (сн ³) s									
30	сн ³ инсосн (сн ³) s	$(CH_3)_2$ NCOCH (CH_3) S	$(c_2H_5)_2$ NCOCH (CH_3) S	$i-C_3$ н $_7$ инсосн (сн $_3$) s	$\langle \bigcirc \rangle$ - NHCOCH (CH ₃) S	o N - COCH (CH ₃) S	NO ₂	$^{\mathrm{NH}_2}$	CH ₃ SO ₂ NH	CH ₃ NHSO ₂ NH	CH ₃ NH	$(CH_3)_2^N$	сн ₂ =снсн ₂ ин	сн≡ссн ₂ ин	
		-			<u> </u>										
40	C1	=	=	.	3		=	=	=	=	=	=	=	=	
45	CHF 20	=	=	=	=	=	:	•	=	;	=	=	:	:	
	СН3	=	=	=	=	=	=	=	=	=	=	=	Ξ	5	
50	140	141	142	143	144	145	146	147	. 148	149	150	151	152	153	

5	υ	υ	บ		υ	248.0 (decomp.)	stance	1.5371 (23.4°C)	1.5500(25.6°C)	1.5510(25.2°C)	1.5461 (17.9°C)	(1)	1.5623(17.7°C)	- 1 to +400 1
10	o. 162.3°C	m.p. 137.1°C	o. 244.1°C	o. 96.2°C). 192.3°C	. 248.0	Viscous substance	1.5371	1.5500	1.5510	1.5461	. 135.2°C		1
15	.d.m	H. F.	ď. ľ	m.p.	m.p.	.d.m	Vis	Ou	Ou	Ou	nD	m.p.	nD	
	CJ	=	=	=	=	=	=	=	:	=	:	:	=	-
20		•					H							-
25			ZEH-		Н	HN (:CH (CH ³) N	HN (E.	3) NH	CH ₃) NH				
30	сн ₃ оосин	C1 H ₃ N	c_{H_3} $-\langle \bigcirc \rangle$ $-s_{O_3}^{\ominus}$ $+s_3^{\ominus}$	сн ₃ ооссн ₂ ин	HOOCCH (CH_3) NH	⊕⊖ Na oocch(ch ₃)nh	⊕⊖ i-с ₃ н ₇ ин ₃ ооссн (сн ₃) ин	с ₂ н ₅ ооссн (сн ₃) ин	сн ₃ иноссн (сн ₃) ин	(CH ₃) ₂ NOCCH (CH ₃) NH	CH3NHSO2	$(CH_3)_2^{NSO_2}$	$(C_2H_5)_2NCOS$	
35	CH ₃ C		Сн3-	CH ³ C	H00C	Na ⊕	i	$C_{2}^{H_{5}}$	CH ³ N	(CH ₃	CH ₃ N	(СН	(С ₂ н	-
40	CI	=	=	=	=	=	=	=	:	=	E	=	=	
45	CHF 20	:	E	=	2	:	ŧ	=	=	=	=	:	=	•
	СН3	2	=	=	=	=	=	=	=	=	=	=	2	•
	154	155	156	157	158	159	160	191	162	163	164	165	166	
55											_	<u>-</u>		

- cont'd

5	1.5767(21.9°C)	1.5810(23.8°C)	1.5536 (24.2°C)	1.5460(24.2°C)	1.5791 (19.8°C)	1.5720(20.0°C)	1.6226(24.3°C)	1.5629(23.1°C)	23.6°C)	23.5°C)	21.7°C)	24.1°C)	23.6°C)	25.0°C)
10	1.5767	1.5810	1.5536	1.5460	1.5791	1.5720(1.6226(1.5629(1.5569 (23.6°C)	1.6218(23.5°C)	1.6069 (21.7°C)	1.6047 (24.1°C)	1.5893(23.6°C)	1.5881(25.0°C)
15	nD	Ωu	Du	Du	Du	Qu	nD	nD	Du	Qu	nD	nD	nD	Qu
	C1		=	I	=	=	=	=	=	=	=	=	=	:
20														
25									H ₃)0					
30		0	υζн	$^{\rm n-C}_{6}{}^{\rm H_{13}}{}^{\rm O}$	$CH_2 = CHCH_2O$	CH≡CCH ₂ O	(○)-cH ₂ o	сн3ооссн2о	с ₂ н ₅ ооссн (сн ₃) о			ທ	s ^L F	$^{1}_{11}^{S}$
35	CH ₃ 0	C2H50	i-C3H70	9 n-c	$CH_2=$	CH≡C	0	CH ³ O	C2HS	н	СН3	C2H5S	i-C ₃ H ₇ S	n-C ₅ H ₁₁ S
40	C1	E	=	Ξ	=	=	=	=	=	=	=	:	=	:
45	CHF 2S	:	=	=	=	=	=	=	=	=	=	=	=	=
_	СН3	=	.	5	=	F	=	=	=	=	=	=	=	=
50	167	168	169	170	171	172	173	174	175	176	177	178	179	180

5	24.2°C)	21.3°C)	23.4°C)	22.3°C)	24.2°C)		24.3°C)	21.8°C)						cont'd -
10	1.5869(24.2°C)	1.6173(21.3°C)	1.6261 (23.4°C)	1.5816(22.3°C)	1.6222(24.2°C)	95.9°C	1.6273(24.3°C)	1.5720(21.8°C)	112.1°C	97.8°C	104.4°C	138.6°C	138.3°C	1
15	nD	Du	Qu	Qu	nD	m.p.	пD	UU	m.p.	m.p.	m.p.	m.p.	m.p.	
	C	Ĕ.	=	=	£	=	5	:	=	=	=	z	=	•
20							· · · · · · · · · · · · · · · · · · ·							-
25														
30	Ø	$CH_2 = CHCH_2S$	CH≡CCH ₂ S	$c_2 H_5 OCH_2 CH_2 S$	CH ₃ SCH ₂ S	, s	$c1-\langle O \rangle - cH_2 s$	c ₂ H ₅ oocs	сн ₃ ооссн ₂ s	c ₂ H ₅ ooccH ₂ s	H > 00CCH ₂ S	CH ₃ NHOCCH ₂ S	$(CH_3)_2$ NOCCH $_2$ S	
35	CHF2S	CH ₂ =	CH≡C	C2HS	CH ₃ S	NCCH ₂ S	C17	C ₂ H ₅	CH ₃ C	C2HE	(H)	CH ₃ N	(CH ₃	
40 .		=	.	=	=	:	=	=	8	F	.	=	=	-
45	CHF ₂ S	=	=	=	=	=	=	=	=	=	=	=	3	-
	CH ₃	=	=	s		.	:	=	=	=	:	=	2	-
50	181	182	183	184	185	186	187	188	189	190	191	192	193	

- cont'd

														
5	149.5°C	220.8°C	Viscous substance	1.5788 (23.4°C)	1.5643(19.4°C)	1.5695(19.4°C)	1.5812(21.2°C)	1.5800(19.4°C)	110.7°C	140.8°C	1.5791(21.0°C)	109.6°C	1.5837(20.3°C)	1.5838(21.6°C)
			cons	4	۲.	ä	Ι.	i.					-	٦.
15	m.p.	m.p.	Vis	Du	Qu	Qu	Qu	nD	m.p.	m.p.	Ωu	m.p.	Du	nD
	CI	=	=	=	=	=	=	ŧ.	:	=	=	E	=	z
20		·												
25		S	$\stackrel{\bigoplus}{\text{i-c}_3}_{\text{H_7NH}_3} \stackrel{\bigcirc}{\text{oocch}}_{\text{(CH}_3)}$ s	₁₃) s	(сн ₃) s	S	scch ₂ s	сн (сн ³) s	SE	1 ³) S	CH ₃)S			
30	нооссн (сн ³) s	\bigoplus \bigcirc Naoocch (CH $_3$) S	⊕ ⊕ с ₃ н ₇ мн ₃ ос	с ₂ н ₅ ооссн(сн ₃)s	n-C ₃ H ₇ OOCCH(CH ₃)S	i-C ₃ H ₇ OOCCH ₂ S	(сн ₃) ₂ снсн ₂ ооссн ₂ s	CH_2 =CHCH $_2$ OOCCH(CH $_3$)S	c ₂ H ₅ 00C(CH ₂) ₃ s	сн ³ иноссн (сн ³) s	$(CH_3)_2$ NOCCH $(CH_3)_S$	2	7	(CH ₃) ₂ N
35	НО	⊕ ¤	ij	$^{\circ}_{2}$	ď	<u>ا</u>	Ü	CH	c_{2}	CH	Ö Ö	NO_2	NH ₂	Ö Ö
40	CI	=	=	=	:	=	=	E	=	:	=	:	=	=
	HF ₂ S												,	
45	CH	=	=	=	=	:	=	=	=	=	=	=	=	-
	CH ₃	=	=	=	=	:	:	=	=	:	=	=	=	:
50	194	195	196	197	198	199	200	201	202	203	204	205	206	207
55														

5	.2°C)	(D.O.	.1°C)		.4°C)		.5°C)	1.5584(25.7°C) Dimethyl sulfate quaternary ammonium salt	.8°C)		.3°C)	nce	, 2°C)	
10	1.6060(21.2°C)	1.5884 (24.0°C)	1.6052(23.1°C)	m.p. 165.7°C	1.5812(20.4°C)	144.5°C	1.5753 (21.5°C)	1.5584(25.7°C) Dimethyl sulfate quaternary ammon. salt	1.5568(22.8°C)	m.p. 151.0°C	1.6260(27.3°C)	Viscous substance	1.5980(25.2°C)	3 86°C
15	On	Uu	Ou	d.E	Qu	g.E	Ωu	Ou	nD	g.E	Un	Visc	nD	m.p.
20	CI	=	=	<u> </u>	=	=	=	:	Ε	Ĺt.	=	: 	=	=
25														
30	CH 2NH	$(CH_2=CHCH_2)_2N$	HN	н	2NH	H	NCOS	с ₂ н ₅ ооссн (сн ₃) о	icH ₂ s				н ₂ о	н2s
35	CH ₂ =CHCH ₂ NH	$(CH_2=CF)$	CH≡CCH ₂ NH	CH ₃ SO ₂ NH	CH ₃ NHSO ₂ NH	сн 300син	$(c_2H_5)_2$ NCOS	C ₂ H ₅ 00C	$(CH_3)_3$ si CH_2 s	5-NO ₂	5-NH ₂	5-SH	5-сн≡ссн20	5-ch≡cch ₂ s
40	Cl	*	:	:	:	=	=	ε	E	=	=	=	:	=
45	CHF ₂ S	5	=	=	2	=	=	CH ₃ S	CHF 20	сн3ѕо	CH ₃ S	:	= .	=
50	СН3	:	=	:	=	=	=	=	=	=	=	=	=	=
55	208	209	210	211	212	213	214	215	216	217	218	219	220	221

5	1.5880(26.4°C)	126.2°C	106.5°C	56.2°C	100.0°C	138.2°C	1.5387(24.3°C)	1.5271(23.9°C)	162.0°C	238.0°C	194.0°C	131.0°C	102.3°C	92.2°C
15	nD	·dw	·dm	.dm	.dm	·dw	nD	nD	·dw	·ďw	·dw	·dw	·du	·dw
	ᄕ	IJ	=	=	=	=	=	=	=	=	=	5	=	=
20 .														
25	H ₃)S						0					осн20		0
30	5-c ₂ H ₅ 00CCH (CH ₃) S	сн30-сосн20	с2н50-сосн20	$CH_2 = CHCH_2O$	сн≡ссн ₂ о		$CH_2 = C(CH_3)CH_2O$	$(CH_3)_3$ SiCH $_2$ O	но-сосн ₂ о	⊕⊖ Na O-COCH ₂ O	$\oplus \ominus$ K O-COCH ₂ O	$\overset{\bigoplus}{\text{i-c}_3\text{H}_7\text{NH}_3}\overset{\bigoplus}{\text{o-cocH}_2\text{o}}$	с ₂ н ₅ о-сосн ₂ о	t-C ₄ H ₉ O-COCH ₂ O
35	5-c ₂	сн ³ 0	$c_2^{H_5}$	$CH_2=$	СН≡С	ОНС	$CH_2=$	(СН3	НО-С	⊕ Na O	⊕× 0-0	i-c ₃]	$c_2^{H_5}$	t-c ₄]
40	CJ	=	=	Ħ	=	CI	=	=	2	=	2	=	=	=
45	CH ₃ S	SCH ₃	=	OCHF ₂	=	=	Ε	=	=	=	=		=	=
	CH ₃	=	=	3	:	=	=	=	=	=	=	=	=	=
50	222	223	224	225	226	227	228	229	230	231	232	233	234	235
55			· · · · · · · · · · · · · · · · · · ·		-			-	<u>-</u>					

5												1°C)		5°C)	ا ت
10	92.8°C	104.3°C	117.5°C	36.0°C	98.0°C	149.7°C	153.3°C	106.9°C	127.7°C	80.0°C	205.6°C	1.5570(18.7°C)	124.5°C	1.5223(29.5°C)	- cont'd
15	•dw	·dm	·dw	·dw	·dw	·dw	.dm	-dw	·dw	·dw	·dm	Du	·dw	Du	
	CI	•	\$:	=	ε	=	=	=	:	=	2	:	=	
20															•
25	сн ₂ =снс (сн ₃) ₂ 0-сосн ₂ 0	осн ₂ о			120		0.	120	осн 20	NCOCH ₂ O	o	ссн ₂ 0	120)-сосн ₂ о	
30	₂ =CHC (CH ₃)	CH ₃ C≡CCH ₂ O-COCH ₂ O	сн ₃ s-сосн ₂ о	с ₂ н ₅ s-сосн ₂ о	i-c3H7S-COCH2O	сн3инсосн20	$(CH_3)_2$ NCOCH $_2$ O	n-C4H9NHCOCH2O	H2C=CHCH2NHCOCH2O	$(H_2^{C=CHCH_2})_2^{NCOCH_2^{O}}$	○ NHCOCH ₂ O	$\bigcirc \rightarrow N(CH_3)COCH_2O$	CH ₃ SO ₂ NHCOCH ₂ O	$(\operatorname{CH}_3)_3$ sich $_2$ o- coch_2 o	
35	———	СН	CH ——	C 2	. <u>'</u>	——	<u>ပ</u>	ğ	H	H)	9	<u> </u>	СН	<u> </u>	_
40	Ü	2	=	:	=	:	.	=	=	=	=	=	=	=	
45	OCHF ₂	2	=	=	=	=	=	=	:	=	=	=	=	. =	_
	CH ₃	2	=	2	=	=	=	=	Ξ	=	=	E	=	=	
50	236	237	238	239	240	241	242	243	244	245	246	247	248	249	_
55															

- cont'd -

5	1.5142(23.9°C)	1.5286(26.5°C)	1.5238(17.3°C)	1.5273(24.3°C)	51.6°C	107.3°C	63.7 - 64.1°C	1.5376(17.3°C)	98.0 - 98.1°C	108.5°C	143.7°C	122.8 - 123.1°C	127.6°C	97.6 - 97.8°C	120.3 - 120.5°C
15	Du	nD	UU	nD	.dm	·ďw	·dw	пD	.dm	·dw	·dm	·dm	·dw	·ďw	·dw
20	CI	=	=	=	=	Ĺ	=	E	=	5	=	2	=	=	:
25	осн (сн ³) о	0	•	0(0(-				-	-			
30	$c_{H_3}c_{2}^{2}H_4c_{2}^{2}H_4^{0}-c_{0}c_{H}(c_{H_3})$ o	с ₂ н ₅ о-сосн (с ₂ н ₅) о	$c_2 H_5 o - co (cH_2)_3 o$	сн ₃ о-сосн (i-с ₃ н ₇) о	$c_{\rm H_3} s_{\rm O_2}$ NHCOCH (CH $_{\rm 3}$) O		1СН ₂ 0	$CH_2 = C(CH_3)CH_2O$	120	сн ₂ о	3H ₂ O	осн ₂ о	с2н50-сосн20	n-C ₃ H ₇ O-COCH ₂ O	i-C ₃ H ₇ O-COCH ₂ O
35	сн ³ ос	C2H50	C2H20	сн ³ 0-(сн ₃ so.	ОНС	$CH_2 = CHCH_2O$	$CH_2=C$	сн≡ссн ₂ о	CH ₃ C≡CCH ₂ 0	но-сосн	сн30-сосн20	C2H50-	n-C ₃ H ₇	i-C ₃ H ₇
40	CJ	=	=	z	=	=	=	=	=	=	=	=	=	=	:
45	OCHF ₂	=	=	=	=	2	:	=	=	=	=	=	=		=
	СН3	=		=	=	=	=	=	=	=	=	=	=	=	=
50	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264
55															

5 · 10	mp. 91.4 - 91.6°C	mp. 89.2 - 89.4°C	mp. 99.0°C	mp. 69.3°C	mp. 83.8°C	mp. 94.5°C	mp. 95.6°C	mp. 67.0 - 67.2°C	Viscous substance	nD 1.5266(25.8°C)	nD 1.5105(22.6°C)	nD 1.5775(21.7°C)	nD 1.5865(21.5°C)	nD 1.5867(21.2°C)	nD 1.5926(22.8°C)	mp. 122.3°C	- cont'd -
	Įī4	=		=	5	=			=	-	<u> </u>	C1	=	:			
20	-																
25		ж ² о	0.				0	0(1	ж (сн ³) о	(сн ³)о	o(²)				•		
30	n-C4H9O-COCH2O	сн ₂ =снсн ₂ о-сосн ₂ о	сн≡ссн2о-сосн2о	с2н58-сосн20	i-c3H7S-COCH2O	но-сосн (сн ³) о	сн ³ о-сосн (сн ³) о	с ₂ н ₅ о-сосн (сн ₃) о	сн ₂ =снсн ₂ о-сосн (сн ₃) о	сн≡ссн20-сосн (сн3) о	с ₂ н ₅ о-сосн (с ₂ н ₅) о	$CH_2 = C(CH_3)CH_2S$	$cH_2 = c (c1) cH_2 s$	сісн=снсн ₂ s	CICH=C(C1)CH ₂ S	s S	
35	n-C ₄]	$CH_2 = 1$	CH≅C	$c_2^{H_5}$	i-C3	но-с	сн ³ 0	$c_2^{H_5}$	$CH_2 = 0$	CH≅C	C_2H_5	$CH_2=1$	$CH_2=($	СІСН	CICH	NCCH2S	
40	C1	:	:	:	:	:	•	2	=	:		:	:		=	=	
45	OCHF ₂	=	=	=	=	2	=	=	8	=	=		E	=	=	=	
	CH ₃	=	=	=	=	=	=	E	.	=	=	=	:	:	=	=	
50	265	566	267	268	269	270	271	272	273	274	275	276	277	278	279	280	
55																	•

5						7.2°C)							
10	232.0°C	113.0°C	164.2°C	99.1°C	62.0°C	1.5010(27.2°C)	98.3°C	73.1°C	97.0°C	85.9°C	76.5°C	87.8°C	82.8°C
15	-dw	·dw	·dw	·dw	-dw	Ou	-dm	-dm	-dw	-dm	•dw	·ďш	·dw
20		=	=	=	=	=	=	=	= 	=	:	=	=
25		осн ₂ ѕ									-coch ₂ s		W
30	⊕ ⊖ Na O-COCH ₂ S	$(i-c_3H_7)_{NH_3} \overset{\bigoplus}{\circ} \circ cocH_2^{S}$	CH ₂ S	i-C ₃ H ₇ O-COCH ₂ S	n-с ₄ н ₉ о-сосн ₂ s	с ₁₂ н ₂₅ о-сосн ₂ s	CH ₃ S-COCH ₂ S	c ₂ H ₅ S-cocH ₂ S	i-C3H7S-COCH2S	сн≅ссн2о-сосн2ѕ	c_2 H $_5$ O c_2 H $_4$ O c_2 H $_4$ O $-$ COCH $_2$ S	H -0-coch2s	O>ch2o-coch2s
35		(i-c ₃	HO-COCH ₂ S	i-C3H.	n-C4H	C ₁₂ H ₂ g	СН38-(C2H5S-	i-C3H7	CH≡CCF	C2H5OC	THE STATE OF THE S	
40		=	=	=	=	z	=	=	.	=	=	=	Ξ
45	OCHF2	=	=	=	=	=	=	=	=	=	=	=	E
	СНЗ	:	=	=	=	=	=	=	=	=	=	=	=
50	281	282	283	284	285	286	287	288	289	290	291	292	293
55													

5	1.5387(29.1°C)	177.8°C	121.6°C	146.6°C	71.8°C	172.0°C	178.1°C	1.5661(21.5°C)	120.4°C	126.5°C	Viscous substance	1.5462(13.9°C)	- cont'd-
15	nD	.dm	·ďw	·ďm	·dw	·dw	·dw	υD	-dw	·dw	Visc	nD	
·	CJ	2	2	:	=	=	=	s	*	\$	=	=	-
20 _	-				<u> </u>								-
25	coch ₂ s			CH ₂ S	ICOCH ₂ S	1 ₂ S		сн ₂ s			CH ₃)S	сн (сн ³) s	
30	(сн ₃) ₃ siсн ₂ о-сосн ₂ s	сн ₃ инсосн ₂ s	$(CH_3)_2$ NCOCH ₂ S	H ₂ C=CHCH ₂ NHCOCH ₂ S	$(H_2^{C=CHCH_2})_2^{NCOCH_2}$ s	HC≡CCH ₂ NHCOCH ₂ S	○ }-NHCOCH ₂ S	\bigcirc -N(CH ₃)COCH ₂ S	NCOCH ₂ S	o NCOCH ₂ S	$i-c_4H_9O-COCH(CH_3)$ S	t-с ₄ н ₉ сн ₂ о-сосн(сн ₃)s	
35	(CH ₃	CH ₃ N	(CH ₃	H ₂ C=	(H ₂ С	HC≅C	0	0		()	i-C4	t-C4	_
40	CJ	=	=	ŧ	=	=	F	:	=	=	5	=	_
45	OCHF ₂	=	=	=	=	=	5	5	=	.	2	=	_
	СН3	=	=	=	=	=	=	E	z	= .	=	=	
50	294	295	296	297	298	299	300	301	302	303	304	305	
55								· · · · ·					_

5	23.2°C)	tance	24.0°C)	24.2°C)	23.1°C)	23.1°C)	tance	14.3°C)	26.8°C)	22.6°C)	(2.6.2)	3.1°C)	(C.6.9)	
· 10	1.5210(23.2°C)	Viscous substance	1.5790(24.0°C)	1.5669 (24.2°C)	1.5501 (23.1°C)	1.5609(23.1°C)	Viscous substance	1.5956 (14.3°C)	1.5429 (26.8°C)	1.5619(22.6°C)	1.5603(22.9°C)	1.5496(23.1°C)	1.5603 (26.9°C)	96.4°C
15	Qu	Visc	Du	пD	Du	Du	Viso	Du	nD	nD	Uu	nD	Du	·dm
	C1	=	· =	=	=	=	=	=	=	=	=	ε	=	=
20	•								S		S			
25	(сн ₃) s	н (сн ₃) s	3) S	сн ₃) s	сн (сн ₃) s	н (сн ₃) s	₁₃) s	₁₃) S	(СН ₃) ₃ SiCH ₂ O-СОСН(СН ₃)S	:H (СН ₃) S	$(H_2^C=CHCH_2)_2^NCOCH(CH_3)$ S	(CH ₃)S	S	₂ S
30	n-С ₆ н ₁₃ о-сосн(сн ₃)s	O - CH ₂ O-COCH (CH ₃) S	с ₂ н ₅ s-сосн(сн ₃)s	i-С ₃ н ₇ s-сосн(сн ₃)s	иссн (сн ₃) 0-сосн (сн ₃) s	сн ₃ sc ₂ н ₄ о-сосн (сн ₃) s	H -0-coch (ch ₃)s	O-s-coch (ch ³)s	₃ sicH ₂ o-(CH_2 =CHCH ₂ NHCOCH (CH ₃) S	CHCH ₂) ₂ NC	HC≡CCH ₂ NHCOCH (CH ₃)S	сн ₃ со-о- (сн ₂) ₂ s	с ₂ н ₅ 0-сос (сн ₃) ₂ s
35	n-C ₆ H		C2H5S	i-c3H	NCCH (снзс	H	Ö	(CH ₃)	CH ₂ =CI	(H ₂ C=0	HCECCE	сн ³ со-	C2H20-
40	C	Ξ	=	Ξ,	=	=	=	=	ŧ	=	=	=	=	=
45	OCHF ₂	z	=	-	=	=	=	=	=	=	=	:	:	=
50	CH ₃	2	=	z	=	ε	=	=	=	=	=	=	=	=
50	306	307	308	309	310	311	312	313	314	315	316	317	318	319
55								·						

5	1.5572(23.4°C)	1.5365(22.8°C)	ပ	<i>r</i> >	1.5446 (26.8°C)	1.5317(26.8°C)	1.5370 (25.7°C)	1.5672(26.0°C)		1.5862(22.3°C)	1.5603(22.9°C)	ن	1.5396(20.8°C)	1.5571 (26.1°C)	1.5767(26.3°C)
10	1.5572	1.5365	216.7°C	63.9°C	1.5446	1.5317	1.5370	1.5672	78.5°C	1.5862	1.5603	133.8°C	1.5396	1.5571	1.5767
15	Qu	Qu	·dw	·dw	nD	Qu	Qu	Qu	·ďw	uD	Qu	·ďm	Qu	Qu	Gr.
	C1	=	=	\$	5	E	=	=	2	=	=	5	=	=	=
20															
25	-c3H2)S	$c_2 H_5 O - COCH (CH_3) N (CH_3)$				8	н ³) о-со	сн3) о-со		сн20			сн3)0		н ₂ о
30	$CH_{3}O-COCH(i-C_{3}H_{7})S$, _н 50-сосн	но-со	сн ³ о-со	с ₂ н ₅ о-со	сн ₂ =снсн ₂ о-со	сн ³ о-сосн (сн ³) о-со	с ₂ н ₅ о-сосн (сн ₃) о-со	сн≡ссн2о-со	BrCH_2 CH (Br) CH $_2$ O	Brc≡ccH ₂ o	сн30-сосн20	с ₂ н ₅ о-сосн (сн ₃) о	NCCH ₂ 0	сн ₂ =с (сн ₃) сн ₂ о
<i>35</i>	- 	ပ်` ——	H ——	: 	ပ <u>ဲ`</u>	: 		ပ <u>ဲ`</u>	: 	<u>Б</u>		: 	υ` 	ž	Ö ——
40	77	8	=	=	3	:	=	=	=	Br	٤ 	=	=	C1	=
45	OCHF ₂	E	:	:	=	.	:	=	=	=	=	:	=	SCHF ₂	=
	CH ₃	=	=	=	=	=	:	=	=	=	=	2	=	=	=
50	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334
55						·									

- cont'd -

														_	
5	25.8°C)	23.8°C)	23.4°C)		26.3°C)	26.2°C)			24.0°C)	17.9°C)	19.1°C)		24.0°C)		24.0°C)
10	1.5930(25.8°C)	1.5765(23.8°C)	1.5713(23.4°C)	82.6°C	1.6194 (26.3°C)	1.6137 (26.2°C)	72.6°C	84.5°C	1.5377(24.0°C)	1.5670 (17.9°C)	1.5637 (19.1°C)	82.8°C	1.5523(24.0°C)	132.2°C	1.5579(24.0°C)
15	Qu	Qu	Qu	·ďw	uD	Qu	·dw	·dw	Ωu	Du	Qu	·dw	Du	· dw	nD
20		=	=	=	=	=	ſщ	=	=	=	=	=	=	=	•
25															
30	сісн=снсн ₂ о	1 ₂ 0	22H40	$^{4}2^{S}$	сісн=снсн ₂ s	$CH_2 = C(C1)CH_2S$				1CH ₂ S	$CH_2 = C(CH_3)CH_2S$	125	2H4S	3H ₂ S	coch ₂ s
35	с1сн=(сн ₃ осн ₂ о	$c_2^{H_5}$	сн ₃ осн ₂ s	C1CH=($CH_2=C$	HS	CH ₃ S	F2HCS	сн ₂ =снсн ₂ s	$CH_2=C$	CH≡CCH ₂ S	$c_2 H_5 o c_2 H_4 s$	HO-COCH ₂ S	сн ³ о-сосн ⁵
40	C1	5	=	=	=	=	=	=	=	=	z	=	=	=	=
45	SCHF ₂	=	=	=	=	=	OCHF ₂	=	=	=	=	=	=	=	
50	СН3		=	=	=	E		:	=	=		2	=	=	=
	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349
55															

- cont'd -

														_
5	1.5342(17.9°C)	1.5420 (25.0°C)	1.5391 (24.1°C)	1.5562(24.1°C)	57.9°C	28.9°C	1.5794(17.9°C)	147.0°C	141.2°C	1.5463(19.1°C)	1.5494 (25.0°C)	1.5328(18.0°C)	1.5343(25.1°C)	
		ਜ												
15	- Qu	Qu	Ou	Du	ďu	·dw	ПD	ďw	ďu	Ou	Qu	 Gn	Ou	_
	[z ₁	=	z	=	Ε	=	=	=	=	=	=	=	=	
20		· · · · · · · · · · · · · · · · · · ·												_
25		<u> </u>	w	CH ₂ S	2 ^S		н28				s (3)S	сн3) s	
30	с ₂ н ₅ о-сосн ₂ s	$c_2^{H_5}o-coc_{H_2}^{S}s(o)$	n-C4H9O-COCH2S	CH ₂ =CHCH ₂ O-COCH ₂ S	сн ₃ sсн ₂ o-сосн ₂ s	H -0-coch2s	О у-сн20-сосн2s	сн ₃ инсосн ₂ s	$(CH_3)_2$ NCOCH ₂ S	но-сосн (сн ₃) s	сн ³ о-сосн (сн ³) s	с ₂ н ₅ о-сосн (сн ₃) s	n-с ₄ н ₉ о-сосн (сн ₃) s	
35	C_2H_5	$C_2^{H_5}$	n-C4	$CH_2=$	CH ₃ S	(H)	0	CH ₃ N	(СН3	HO-C	сн30	$c_2^{H_5}$	n-C4	
				· · · · · · · · · · · · · · · · · · ·		,							 -	
40	<u></u>	:	=	=	=	=	.	:	=	=	:	=	=	_
45	OCHF ₂	=	=	=	=	=	=	=	=	=	=	=	=	
	СНЗ	E	=	=	=	=	=	=	=	=	=	=	=	_
50	350	351	352	353	354	355	356	357	358	359	360	361	362	-

- cont'd -

5	1.5471(25.0°C)	substance	1.5355(18.4°C)	O	O	1.5424(23.6°C)	1.5510(27.1°C)	C)	1.5264(26.6°C)	1.5430(17.0°C)	1.5320(21.0°C)	1.5218(20.5°C)	1.5820(24.5°C)	1.5314(23.0°C)	1.5212(14.1°C)
10	1.5471	Viscous sub	1.5355	146.9°C	131.2°C	1.5424	1.5510	111.5°C	1.5264	1.5430	1.5320	1.5218	1.5820	1.5314	1.5212
15	Ou	Vis	nD	·dw	·dw	Qu	Du	ďw.	Uu	Qu	nD	nD	Qu	Qu	Ou
	দ্ৰ	=	=	=	z	Ξ	=	2	=	=	ε	=	=	Ξ	=
20	တ	-	(сн ₃) s										-		
25	эсн (сн ₃)	н (сн ₃) S	0-сосн					~	13) NH			~	-	00-0(₃) 0-c0
30	сн ₂ =снсн ₂ о-сосн (сн ₃) s	сн≡ссн ₂ о-сосн (сн ₃) s	сн ₃ ос ₂ н ₄ ос ₂ н ₄ о-сосн (сн ₃) s	2NH	сн ₃ инѕо ₂ ин	CH ₂ =CHCH ₂ NH	н ₂ ин	с2н50-сосн2ин	С ₂ н ₅ о-сосн (сн ₃) ин	CO	00-	сн ₂ =снсн ₂ о-со	сн≡ссн ₂ о-со	сн ³ о-сосн (сн ³) о-со	с ₂ н ₅ о-сосн (сн ₃)о-со
<i>35</i>	CH ₂ =C	CH≡CC	сн ³ ос	CH ₃ SO ₂ NH	CH ₃ NH	CH ₂ =C	CH≡CCH ₂ NH	C ₂ H ₅ 0	C ₂ H ₅ 0	сн ³ 0-со	C2H50-C0	CH ₂ =C	CHECC	CH ₃ 0-(C2H50
40	CI	=	=	=	=	=	=	=	=	=	=	=	=	=	=
45	OCHF ₂	=	:	5	=	5	=	:	#	=	5	3	2	=	=
	CH ₃	=	=	.	Ξ	5	=	=	=	=	=	=	=	=	=
50	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377
55															

EP 0 443 059 B1

5	102.9°C	104.4°C	157.7°C	135.2°C	1.5736 (24.0°C)	113.3°C	117.5°C	77.2°C	1.5619(28.3°C)	116.8°C	1.5620 (23.4°C)	1.5496 (24.5°C)	- cont'd -
15	·dw	đu	-dw	·ďw	nD	·dw	•dw	·dw	пD	·dw	Du	Ωu	
	เ	=	=	=	=	=	=	=	5	=	=	=	•
20	-			<u>,</u>									-
25		Ø				20	20	осн ₂ о	0		3)0	(СН ³)0	
30	O - 0c2H40	≻о-сосн ₂ s	но-сосн ₂ о	⊕ ⊖ Na O-COCH ₂ O	с ₂ н ₅ о-сосн ₂ о	i-c ₃ H ₇ O-COCH ₂ O	сғ ₃ сн ₂ 0-сосн ₂ 0	$CH_2 = CHCH_2O - COCH_2O$	н У-о-сосн ₂ о	сн ₃ инсосн ₂ о	сн ³ 0-сосн (сн ³) о	i-С ₃ н ₇ о-сосн (сн ₃)о	
35	(O)	(H)	-ОН	⊕ z	C ₂ H	i-c	CF3	CH ₂	Œ,	CH ₃	CH ₃	-i-	_
40	c1	=	8	Ξ	=	=	=	E	:	=	5	=	
45	SCHF ₂	=	=	=	=	=	Ε	:	=	=	=	=	_
	СН3	=	=	=	Ξ.	=	=	=	=	=	E	=	
50	378	379	380	381	382	383	384	385	386	387	388	389	_ -

5	1.5643(23.5°C)	1.5641(23.5°C)	1.5488(28.1°C)	1.5694(28.0°C)	1.5891(26.4°C)	1.5801 (26.5°C)	107.0°C	136.9°C	204.0°C (decomp.)	110.0°C	1.5730(23.9°C)	91.8°C	139.1°C	- cont'd -
15	nD	Ou	Uu	Ou	On	UD	·dw	·dw	·dw	·du	nD	·ďw	·dw	
20	Cl	=	E	:	=	:	=	:	=	=	=	2	=	•
25	сн ³) о		0(S		0,			H			•
30	сн ₂ =снсн ₂ о-сосн (сн ₃) о	сн ₃ инсосн (сн ₃) о	сн ₃ о-сосн (n-с ₄ н ₉) о	NCCH ₂ O-COCH ₂ O	сн ³ 0-сосн (сн ₃) s	иссн ₂ о-сосн (сн ₃) s	с ₂ н ₅ о-со (сн ₂) ₃ s	\bigcirc -N (CH ₃) COCH ₂ O	HO-COCH ₂ NH	С2н50-сосн2ин	С ₂ н ₅ о-сосн (сн ₃) ин	H)-ococh ₂ o	О}-сн₂о-сосн₂о	
35	CH ₂ =C	CH ₃ NH	сн30-	NCCH ₂	сн ₃ 0-	NCCH ₂	c_2 H $_5$ O		но-со	$c_2^{\rm H_50}$	C_2H_50	H		
40	C C	=	=	=	=	s	=	=	=	=	=	=	=	•
45	SCHF2	=	s	=	=	s	=	=	=	3	=	OCHF ₂	=	_
50	CH ₃	=	=	=	=	=	E	:	5	=	Ξ.	=	Ξ.	-
	390	391	392	393	394	395	396	397	398	399	400	401	402	
55														-

				_				
5	Solid substance	=	Viscous substance	Solid substance	mp. 246.4°C	1.5727(24.1°C)	Viscous substance	1.5269(23.5°C)
15	Soli		Visc	Soli	щĎ	nD	Visc	UU
20	<u>[</u>	=	E	=	CI	=	Ĺų.	=
20								
25						ဝှ		-
30	0				9- -0-	сн ₃ о-со-осн ₂ s-со	NCO	$i-C_3H_7^{(+)}NH_4^{(-)}$
35	но-со	NO2	NH ₂	H0-	(+) (-) (Na O-CO	СНЗО	(CH ₃	i-C ₃
40	Ü	=		=	=	=	=	ıı
45	OCHF ₂	=	=	=	=	:	:	:
	CH ₃	=	=	=	=	=	F	=
50	403	404	405	406	407	408	409	410
55								

Table 2 shows NMR data on viscous or crystalline substances shown in Table 1.

Table 2

	Comp'd No.	NMR (δ value, CDCl ₃ /TMS, ppm
5	19	2.38 (3H, s), 3.50 (2H, br), 3.96 (3H, s), 4.93 - 5.33 (2H, m), 5.46 - 6.23 (1H, m), 7.25 (1H, s), 7.43 (1H, s).
10	64	1.23 (3H, t), 1.51 (3H, d), 2.40 (3H, s), 3.97 (3H, s), 4.18 (2H, q), 3.80 - 4.16 (1H, m), 4.90 (1H, d), 6.64 (1H, s), 7.40 (1H, s).
	104	1.13 (6H, d), 1.58 (3H, d), 2.83 - 3.45 (1H, m), 3.80 (3H, s), 4.59 (1H, q), 6.75 (1H, t), 6.92 (1H, s), 7.51 (1H, s), 7.75 - 8.35 (3H, br).
15	128	1.18 (6H, d), 1.49 (3H, d), 2.92 - 3.58 (1H, m), 3.81 (3H, s), 4.06 (1H, q), 6.68 (1H, t), 7.43 (2H, s), 7.62 - 8.32 (3H, br).
	160	1.12 (6H, d), 1.48 (3H, d), 2.60 - 3.30 (1H, m), 3.73 (3H, s), 3.91 (1H, q), 6.55 (1H, s), 6.68 (1H, s), 7.33 (1H, s), 7.98 (3H, s).
20	196	1.20 (6H, d), 1.48 (3H, d), 3.28 (1H, m), 3.90 (1H, m), 4.00 (3H, s), 6.74 (1H, t, J=56 Hz), 7.45 (2H, s), 8.00 (3H, s).
25°	219	2.28 (3H, t), 3.91 (1H), 3.99 (3H, s), 7.21 (1H, d), 7.50 (1H, d).
	273	1.70 (3H, d), 3.80 (3H, s), 4.5 - 4.9 (2H), 5.0 - 5.5 (2H), 5.5 - 5.2 (1H), 6.70 (1H, t, J=73 Hz), 7.0 - 7.4 (2H).
30	304	0.82 (6H, d), 1.56 (3H, d), 3.80 (2H, d), 3.73 - 4.23 (2H, m), 6.70 (1H, t), 7.20 (1H, s), 7.23 (1H,s).
	307	1.53 (3H, d), 3.75 (3H, s), 4.06 (1H, q), 5.10 (2H, s), 6.61 (1H, t), 7.18 (5H, s), 7.41 (1H, s).
35	312	1.53 (3H, d), 0.68 - 2.11 (10H, m), 3.80 (3H, s), 4.10 (1H, q), 4.33 - 4.90 (1H, br), 6.70 (1H, t), 7.20 (1H, s), 7.23 (1H, s).
40	364	1.54 (3H, d), 2.42 (1H, t), 3.80 (3H, s), 3.98 (1H, q), 4.61 (2H, d), 6.71 (1H, t, J=72 Hz), 7.31 (1H, d, J=9 Hz), 7.80 (1H, d, J=7.6 Hz).
	404 (CDCl ₃ +d ₆ ⋅ DMSO)	3.80 (3H, s), 6.70 (1H, t, J=72 Hz), 7.22 (1H, d, J=10 Hz), 8.12 (1H, d, J=8 Hz).
	405	3.83 (3H, s), 6.67 (1H, t, J=72 Hz), 7.36 (1H, d, J=10 Hz), 8.20 (1H, d, J=8 Hz).
45	406	3.73 (3H, s), 3.85 (2H, s, br), 6.64 (1H, t, J=72 Hz), 6.82 (1H, d, J=8 Hz), 7.04 (1H, d, J=10 Hz).
50	407	3.80 (3H, s), 6.00 (1H, Br), 6.65 (1H, t, 72 Hz), 7.01 (1H, d, J=10 Hz), 7.01 (1H, d, J=8 Hz)
30	410	3.10 (6H, s), 3.80 (3H, s), 6.70 (1H, t, J=72 Hz), 7.23 (1H, d, J=10 Hz), 7.53 (1H, d, J=8 Hz)

Pyrazole derivatives of formula (II-2) that are starting materials for 3-(substituted phenyl)-pyrozole derivatives of formula (I) or salts thereof can be produced, for instance, according to the following reaction schemes. Pyrazole derivatives of formula (II-2), in connection with their raw materials, are classified into groups of formulae (II-7), (II-8), (II-9), and (II-10).

C1
$$\xrightarrow{X}$$

Halogenation C1 \xrightarrow{X}
 \xrightarrow{N}
 \xrightarrow{N}

(II-10)

In the above equations, R^1 , R^2 , R^5 , X, and Z are as defined above, R^{3-1} denotes halogen, and R^{5-1} denotes alkyl or haloalkyl.

As shown above, a pyrazole derivative of formula (II-8') can be prepared by reacting a compound of formula (V-1) with diethyl carbonate, reacting the resulting compound of formula (V-2) with a hydrazine of formula (IV), and reacting the resulting pyrazole derivative of formula (II-7') with Lawsson's reagent.

The pyrazole derivative of formula (II-10) can be produced from a pyrazole derivative of formula (II-7) that is the tautomer of pyrazole derivative of formula (II-7) or from a pyrazole derivative of formula (II-8) that is the tautomer of pyrazole derivative of formula (II-8) by reacting a halide of formula (III-1), followed by halogenating the resulting pyrazole derivative of formula (II-9).

Thus, the pyrazole derivatives of formula (II-2) can be produced that are raw materials used in the above production process \bigcirc

Pyrazole derivatives of formula (II-5) that are raw materials in the process ②A can be produced from compounds of the following formula (V-3) in the same manner as stated above.

$$C1-\sqrt{\bigcirc}-CO-CH_3$$
 (V-3)

Table III shows typical examples of the compounds of formula (II-2) which have been prepared according to the above process

Formula (II-2):

25

35

30

10

15

20

40

45

50

Table 3

Comp'd No.	R ¹	R²	R ³	Х	Property
II.1	СНз	OCH ₃	CI	F	nD 1.5633(26.5°C)
II.2	CH ₃	OCHF ₂	Н	CI	nD 1.5467(24.4°C)
11.3	CH ₃	OCHF ₂	Н	F	Oily matter
11.4	CH ₃	OCHF ₂	CI	CI	nD 1.5511(24.5°C)
II.5	CH₃	OCHF ₂	CI	F	mp. 93.7°C
II.6	CH₃	OCHF ₂	Br	CI	nD 1.5627(24.8°C)
11.7	CH ₃	OCHF ₂	Br	F	mp. 126.4°C
11.8	i-C₃H ₇	SCH₃	H	F	Oily matter
11.9	i-C ₃ H ₇	SCH ₃	CI	F	nD 1.5830(15.1°C)
II.10	t-C ₄ H ₉	OCHF ₂	CI	F	nD 1.5402(24.8°C)
II.11	t-C ₄ H ₉	OCHF ₂	Br	F	nD 1.4848(24.2°C)

Table 4 shows typical examples of the pyrazole derivatives of formula (II-5)

Formula (II-5):

Comp'd No.

 R^1

5

10

$$C1 \xrightarrow{X} R^3$$

 \mathbb{H}_3

Х

Property

15

Table 4

 H^2

20

25

30

35

40

45

11.12 CH₃ OCH₃ Н CI mp. 79.4°C II.13 CH₃ SCH₃ Н CI mp. 59.5 - 60.0°C SCH₃ 11.14 CH₃ Н F mp. 40.8°C 11.15 CH₃ OCH₃ CI CI mp. 71 - 73°C 11.16 CH₃ CI SCH₃ CI mp. 62.5 - 63.5°C CH₃ 11.17 CI SCH₃ F nD 1.6066(21.5°C) CH₃ II.18 OCH₃ Br CI mp. 83 - 85°C 11.19 CH₃ SCH₃ Br CI mp. 70.0 - 75.5°C 11.20 CH₃ OCHF₂ Н CI mp. 39.2°C 11.21 CH₃ SCHF₂ Н CI nD 1.6001 (20.2°C) 11.22 СНз OCHF₂ F Н mp. 41.2 - 41.5°C 11.23 CH₃ OCHF₂ CI CI mp. 27 - 28°C SCHF₂ 11.24 CI CH₃ CI nD 1.5900(20.2°C) 11.25 CH₃ OCHF₂ CI F mp. 35.9 - 36.2°C) 11.26 CH₃ OCHF₂ Br CI nD 1.5664(21.0°C) 11.27 CH₃ SCHF₂ Br CI nD 1.5993(18.3°C) 11.28 CH₃ OCHF₂ Br mp. 63.9°C 11.29 OCHF₂ CH₃ F CI nD 1.5441(20.8°C) 11.30 OCF₂CHF₂ CH₃ Н CI nD 1.5237(20.5°C) OCF2CHF2 11.31 CH₃ CI CI nD 1.5283(10.6°C) 11.32 CH₃ OCF2CF2CI CI CI mp. 68 - 70°C 11.33 OCF₂CHFCF₃ CH₃ Н CI mp. 68 - 70°C 11.34 C_2H_5 OCHF₂ CI CI nD 1.5422(27.3°C)

Example 1 Preparation of 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-benzoic acid (compound No. 404)

1-1 Preparation of 3-(5-bromomethyl-4-chloro-2-fluorophenyl)-4-chloro-5-difluoromethoxy-1-methyl-lH-pyrazole

55

The present invention is illustrated with reference to typycal examples thereof.

15

20

25

5

4-Chloro-3-(4-chloro-2-fluorc-5-methylphenyl)-5-difluoromethoxy-l-methyl-IH-pyrazole (6.9 g , 20 mmoles) was suspended in 100 ml carbon tetrachloride, and N-bromosuccinimide (3.97 g, 22 mmoles) together with a catalytic amount of benzoyl peroxide was added and reacted with the pyrazole derivative under reflux for 5 hours. Then the removal of insoluble matter from the product solution by filtration, concentration of the filtrate, and purification of the residue by column chromatography gave the title compound (5.64 g) as a viscous substance, yield 70%.

NMR (CDCI₃/TMS), δ (ppm):

3.83 (3H, s), 4.53 (2H, s), 6.67 (1H, t, J=72 Hz), 7.22 (1H, d, J=10 Hz), 7.60 (1H, d, J=8 Hz).

1-2 Preparation of 2-chloro-(4-chlor--5-difluoromethoxy-I-methyl-1H-pyrazol-3-yl)-4-fluorobenzaldehyde (compound No. 255)

30

35

40

4-Chloro-3-(4-chloro-5-dibromomethyl-2-fluorophenyl)-5-difluromethoxy-1-methyl-1H-pyrazole (14.4 g, 30 mmoles) was suspended in 50 ml conc. hydrochloric acid and reacted under reflux for 5 hours. Then the reaction product solution, poured into ice-cold water, was extracted with ethyl acetate. The extract solution was washed successively with 5% aqueous NaHCO₃ and water, and dehydrated and concentrated. The residue was purified by column chromatography, giving the title compound (6.0 g), m.p. 107.3°C, yield 59%.

1-3 Preparation of 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorobenzoic acid (com-

pound No. 403)

A solution of potassium permanate (1.1 g, 7 mmoles) in 22 ml water was dropped slowly into a suspension of 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorobenzaldehyde (1.7 g, 5 mmoles) in 18 ml water at 70 - 80°C to react. After dropping was finished, the reaction was further continued for 1 hour at 70 - 80°C. Then the reaction product solution was cooled to room temperature, and made alkaline with 10% aqueous NaOH. The by-product manganese dioxide was filtered off, and washed with hot water. The filtrate and the washing were mixed together, acidified with hydrochloric acid, and extracted with ether. The ether layer was washed with water, dehydrated, and evaporated to dryness, giving the title compound (1.0 g) in block form, yield 56%.

50

45

Example 2 Preparation of ethyl 5-(4-chloro-1-methyl-5-methylthio-1H-pyrazol-3-yl)-2,4-dichlorobenzoate (compound No. 50)

5

C1

C1

C1

HOOC

$$CH_3$$

C1

 CH_3

Ethyl 5-(4-chloro-1-methyl-5-methylthio-1H pyrazol-3-yl)-2,4-dichlorobenzoate (0.30 g, 0.85 mmole) and thionyl chloride (0.10 g, 0.85 mmole), mixed with 20 ml methylene chloride, were reacted together under reflux for 2 hours. Then the solvent was evaporated away under reduced pressure to give an acid chloride, which in turn was reacted with a large excess of ethanol under reflux for 1.5 hours. Then, romoval of the solvent by evaporation under reduced pressure and purification of the resulting residue by silica gel column chromatography gave the title compound (0.11 g) in paste form, yield 33.9%.

nD(20.1°C): 1.6029

30

55

40 Example 3 Preparation of methyl 2-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorobenzoate (compound No. 372)

A KOH powder (0.1 g, 1.8 mmoles) and methyl iodide (0.26 g, 1.8 mmols) were added to a solution of 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorobenzoic acid in 20 ml acetone and reacted with this pyrazole derivative under reflux 3 hours. Then the extraction with ethylacetate, washing with water, dehydration, and concentration of the extract solution, and purification of the residue by column chromatography gave the title compound (0.15 g), yield 48%.

nD (17.0°C): 1.5430

Example 4 Preparation of 5-(4-chloro-5-difluoromethoxy-l-methyl-lH-pyrazol-3-yl)-2,4-dichlorobenzaldehyde (compound No. 227)

C1 C1 C1 C1 C1
$$\sim$$
 C1 \sim C1

After addition of 100 ml water to a solution of 3-(5-bromomethyl-2,4-dichlorophenyl)-4-chloro-5-difluoromethoxyl-methyl-1H-pyrazole (26.60 g, 63.3 mmoles) in 100 ml glacial acetic acid, hexamethylenetetramine (8.87 g, 63.3 mmoles) was added and reacted under reflux for 2 hours. Further, 40 ml conc. sulfuric acid was added and reacted under reflux for 13 hours. Then the reaction product mixture, poured into ice-cold water, was extracted with ethyl acetate. The extract solution was washed with 5% aqueous NaHCO₃ and then with water, dehydrated, and concentrated. Purification of the residue by column chromatography gave the title compound (12.66 g), m.p. 138.2°C, yield 56.3%.

Example 5 Preparation of 4-chloro-3-(4-chloro-2-fluoro-5-nitrophenyl)-5-difluoromethoxy-1-methyl-1H-pyrazole (compound No. 404)

20

25

30

45

A mixture of 60% nitric acid (1.58 g, 0.015 mole) and conc. sulfuric acid (4.90 g, 0.05 mole) was added dropwise to a solution of 4-chloro-3-(4-chloro-2-fluorophenyl)-5-difluoromethoxy-1-methyl-1H-pyrazole (3.11 g, 0.01 mole) in 6 ml conc. sulfuric acid at temperatures of -10 to 10°C. Thereafter the reaction mixture was further stirred for 3 hours at room temperature. The reaction product mixture, poured into ice-cold water, was extracted with ethyl acetate. The ethyl acetate layer was washed successively with 5% aqueous NaHCO₃ and water, dehydrated, and evaporated to dryness, giving the title compound (3.0 g), yield 84%.

NMR, δ (ppm): 3.83 (3H, s), 6.67 (1H, t, J=72 Hz), 7.36 (1H, d, J=10 Hz), 8.20 (1H, d, J=8 Hz).

Example 6 Preparation of 4-chloro-3-(4-chloro-2-fluoro-5-nitrophenyl)-1-methyl-5-methylsulfinyl-1H-pyrazole (compound No. 217)

A mixture of conc. sulfuric acid (1.65 g) and conc. nitric acid (sp. gr. 1.38, 8.4 mmoles) was added dropwise to a

solution of 4-chloro-3-(4-chloro-2-fluorophenyl)-1-methyl-5-methyllhio-1H-pyrazole (0.98 g, 3.4 mmoles) in 2 ml conc. sulfuric acid under cooling with ice. After the addition was finished, the reaction mixture was further stirred for 2 hours at room temperature, and allowed to stand overnight. Then the resulting mixture was poured into ice-cold water, and the formed crystals were filtered off, washed successively with water and ether, and dried, giving crystals (1.04 g) of the title compound, m.p. 151.0°C, yield 87.5%.

Example 7 Preparation of 3-(5-amino-4-chloro-2-fluorophenyl)-4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazole (compound No. 405)

10

15

20

25

30

55

To 4-chloro-3-(4-chloro-2-fluoro-5-nitrophenyl)-5-difluoromethoxy-l-methyl-1H-pyrazole (3.0 g, 8.5 mmoles) in a mixture of 15 ml ethanol and 15 ml conc. hydrochloric acid was added stannous chloride (7.70 g, 34 mmole) and the reduction was conducted under reflux for 8 hours. Then the product solution was poured into ice-cold water, the resulting mixture was made alkaline with 20% aqueous NaOH, and the objective product was extracted with ethyl acetate. Dehydration and concentration of the extract solution and purification of the residue by column chromatography gave the title compound (2.15 g), yield 78%.

NMR, δ (ppm): 3.73 (3H, s), 3.85 (2H, s, br), 6.64 (1H, t, J=72 Hz), 6.82 (1H, d, J=8 Hz), 7.04 (1H, d, J=10 Hz).

Example 8 Preparation of 4-chloro-3-(2,4-dichloro-5-hydrophenyl)-1-methyl-5-methylthio-1H-pyrazole (compound No. 2)

C1

C1

$$H_2N$$
 CH_3
 CH_3
 $CU(NO_3)_2 \cdot 3H_2O$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

A solution of sodium nitrile (1.33 g) in 4.5 ml water was added dropwised to a 5°C or lower temperature solution of 4-chloro-3-(5-amino-2,4-dichlorophenyl)-1-methyl-5-methylthio-1H-pyrazole (5.67 g, 17 mmoles) in 20 ml 50% sulfuric acid while maintaining the reaction temperature between -5 and +5°C. After the addition was finished, the reaction mixture was further stirred for 20 minutes at 0 - 5°C. Then the resulting solution was removed into a 1-ℓ Elenmeyer flask, and a 40% aqueous copper nitrate solution (about 100 g of a total of 318.8 g) was first added dropwise to the former solution kept at temperatures of 0 - 10°C, and secondly the remainder copper nitrate solution was added dropwise. After stirring of the whole mixture for 30 minutes at room temperature, cuprous oxide (2.51 g, 17 mmoles) was added in limited amounts, conducting the reaction for 1 hour at room temperature. Then the resulting solution was poured into ice-cold water, and the objective product was extracted with ethyl acetate. The extract solution was washed with water and concentrated. The residue was purified by recrystallization from methylene chloride, giving crystals

(2.61 g) of the title compound, m.p. 163.2°C, yield 46.4%.

Example 9 Preparation of 4-chloro-3-(2,4-dichloro-5-mercaptophenyl)-1-methyl-5-methylthio-1H-pyrazole (compound No. 15)

A mixture of 4-chloro-3-(5-chlorosulfonyl-2,4-dichlorophenyl)-1-methyl-5-methylthio-1H-pyrazole (7.71 g, 19 mmoles), 80 ml glacial acetic acid, and zinc dust (24.8 g, 380 mmoles) was subjected to reaction under reflux for 3.5 hours. The resulting solution was poured into ice-cold water, and the objective product was extracted with ethyl acetate. The extract solution was washed with water, dehydrated, and concentrated, giving the title compound (5.75 g) as oily matter, yield 89.1 %.

nD (24.3°C): 1.6303

30 Example 10 Preparation of 4-chloro-3-[4-chloro-2-fluoro-5-(2-propynylthio)phenyl]-1-methyl-5-methylthio-1H-pyrazole (compound No. 221)

A mixture of 4-chloro-3-(4-chloro-2-fluoro-5-mercaptophenyl)-1-methyl-5-methylthio-1H-pyrazole (0.60 g, 1.86 mmoles), 30 ml acetone, a $\rm K_2CO_3$ powder (2.04 mmoles), and propargyl bromide (2.23 mmoles), was subjected to reaction under reflux for 2 hours. Then the resulting solution was filtered to remove acetone-insoluble matter and the filtrate was concentrated and purfied by silica gel column chromatography, giving crystals (0.54 g) of the title compound, m.p. 93 - 96°C, yield 80.5%.

55

50

5

10

15

20

Example 11 Preparation of 4-chloro-3-[2,4-dichloro-5-(2-propynyloxy)phenyl]-1-methyl-5-methylthio-1H-pyrazole (compound No. 5)

15

20

25

30

55

A mixture of 4-chloro-3-(2,4-dichloro-5-hydroxyphenyl)-1-methyl-5-methylthio-IH-pyrazole (2.00 g, 6.2 mmoles), 20 ml acetone, anhydrous K₂CO₃ (1.28 g, 9.3 mmoles), and propargyl bromide (1.10 g, 9.3 mmoles) was subjected to reaction under reflux for 2 hours. Then the resulting solution was filtered to remove acetone-insoluble matter. The filtrate was concentrated and purified by silica gel column chromatography, giving crystals (1.89 g) of the title compound, m.p. 71.5 - 72.5°C, yield 84.3%.

Example 12 Preparation of ethyl 2-[5-(4-chloro-1-methyl-5-methylthio-IH-pyrazol-3-yl)-2,4-dichloro-phenoxy] propionate (compound No. 11)

A mixture of 4-chloro-3-(2,4-dichloro-5-hydroxyphenyl)-l-methyl-5-methylthio-1H-pyrazole (3.50 g, 10.8 mmoles), 50 ml acetone, anhydrous $\rm K_2CO_3$, and ethyl 2-bromopropionate (2.06 g, 11.4 mmoles) was subjected to reaction under reflux for 2 hours. Then the resulting solution was filtered to remove acetone-insoluble matter, and the filtrate was concentrated and purified by silica gel column chromatography, giving the title compounds as oily matter, yield 70.0%. nD(28.8°C):1.5763

Example 13 Preparation of 2-[5-(4-chloro-I-methyl-5-methylthio-1H-pyrazol-3-yl)-2,4-dichlorophenylthio]propionic acid (compound No. 25)

After addition of NaOH (0.31 g, in pellet form, 95% content) to a solution of ethyl 2-[5-(4-chloro-l-methyl-5-methylthio-1H-pyrazol-3-yl)-2,4-dichlorophenylthio]propionate (2.28 g, 5.18 mmoles) in 50 ml ethanol, several drops of water added, thereby conducting the reaction for 3 hours at room temperature. Then the solvent was removed by evaporation of the resulting solution under reduced pressure. Water and ethyl acetate were added to the residue and the formed aqueous layer was separated. The aqueous layer was acidified with hydrochloric acid. The objective product was extracted from the aqueous layer with ethyl acetate. The extract solution was washed with water, dehydrated, and evaporated to dryness, giving crystals (1.74 g) of the title compound, m.p. 180.0°C, yield 81.6%.

Example 14 Preparation of 4-chloro-3-(2,4-dichloro-5-dimethylaminophenyl)-5-difluoromethylthio-1-methyl-1H-pyrazole (compound No. 207)

A mixture of 3-(5-amino-2,4-dichlorophenyl)-4-chloro-5-difluoromethylthio-1-methyl-1H-pyrazole (0.72 g, 2 mmoles), 15 ml sulforane, NaHCO₃ (0.18 g, 2.2 mmoles), and methyl iodide (0.34 g, 2.4 mmoles) was subjected to reaction at 80°C for 16 hours. Then the resulting mixture was poured into water and the objective product was extracted with ether. The extract solution was washed with water, dehydrated, and evaporated to dryness, giving the title compound (0.62 g) in paste form, yield 80.2%.

nD (21.6°C): 1.5838

Example 15 Preparation of N,N-dimethyl 2-[5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-2,4-dichlorophenoxy]propionamide (compound No. 110)

A solution of 2-[5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazole-3-yl)-2,4-dichlorophenoxy]propionyl chloride (0.80 g, 1.78 mmoles) in 20 ml anhydrous tetrahydrofuran was added dropwise to a solution of 50% dimethylamine (0.32 g, 3.56 mmoles) in 20 ml tetrahydrofuran at room temperature to react the pyrazole derivative with dimethylamine. After the addition was finished, the reaction was continued further for 1 hour. Then ethyl acetate was added to the reaction product solution, and the mixture was washed with water. The separated organic layer was dehydrated, concentrated under reduced pressure, and purified by silica gel chromatography, giving crystals (0.24 g) of the title compound, m.p. 148.9°C, yield 27%.

Example 16 Preparation of 4-chloro-3-(2,4-dichloro-5-methylaminosulfonylaminophenyl)-5-difluoromethoxy-1-methyl-1H-pyrazole (compound No. 149)

N-Methylaminosulfonyl chloride (0.22 g, 1.67 mmoles) was added dropwise to a solution of 3-(5-amino-2,4-dichlorophenyl)-4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazole (0.44 g, 1.28 mmoles) and triethylamine (0.17 g, 1.67 mmoles) in 20 ml anhydrous tetrahydrofuran under cooling with ice to react with the pyrazole derivative. After the addition was finished, the reaction was continued further for 2 hours. Then ethyl acetate was added to the reaction product solution, and the mixture was washed with water. The separated organic layer was dehydrated, concentrated, and purified by recrystallization from a n-hexane-ether mixture, giving the title compound (0.40 g), m.p. 133.0°C, yield 71.7%.

Example 17 Preparation of 5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-N-methyl-2,4-dichlorobenzenesulfonamide (compound No. 164)

A solution of 4-chloro-3-(5-chlorosulfonyl-2,4-dichlorophenyl)-5-difluoromethoxy-1-methyl-1H-pyrazole (0.43 g, 1 mmole) in 2 ml tetrahydrofuran was added dropwise to a 40% aqueous methylamine solution dissolved in 20 ml tetrahydrofuran to react the pyrazole derivative with methylamine. After the addition was finished, the reaction was continued further for 30 minutes at room temperature. Then ethyl acetate was added to the reaction product solution to extract the objective product. The extract solution was washed with water, dehydrated, and evaporated to dryness, giving the title compound (0.42 g) in paste form, yield 100%.

nD (17.9°C): 1.5461

15

20

25

30

35

40

45

50

55

Example 18 Preparation of 2-[5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-2,4-dichloroanilino] isopropylammonium propionate (compound No. 160)

Isopropylamine (0.05 g, 0.88 mmole) was added to a solution of 2-[5-(4-chloro-5-difluoromethoxy-l-methyl-IH-pyra-zol-3-yl)-2,4-dichloroanlino]-propionic acid (0.33 g, 0.8 mmole) in 20 ml tetrahydrofuran, thereby being reacted with the acid for 30 minutes at room temperature. Thereafter the solvent was removed from the reaction product solution by evaporation under reduced pressure, giving the title compound quantitatively (100% yield) as oily matter.

NMR δ (ppm); 1.12 (6H, d), 1.48 (3H, d), 2.60 - 3.30 (1H, m), 3.73 (3H, s), 3.91 (1H, q), 6.55 (1H, s), 6.68 (1H, s) 7.73 (1H, s), 7.98 (3H, s).

Example 19 Preparation of ethyl 2-[5-(4-chloro-1,2-dimethyl-5-methylthio-1H-pyrazolium-3-yl)-2,4-dichlorophenoxy] propionatemethyl sulfate (compound No. 215)

C1 C1
$$(CH_3)_2SO_4$$

C2 $H_5OOCCHO$ CH_3 CCH_3

C1 CH_3 CCH_3

C1 CH_3 CCH_3

C1 CH_3 CCH_3

C1 CH_3SO_4

C1 CH_3SO_4

C1 CH_3SO_4

Dimethyl sulfate (0.13 g, 1.04 mmoles) was added to a solution of ethyl 2-[5-(4-chloro-I-methyl-5-methylthio-1H-pyrazoI-3-yI)-2,4-dichlorophenoxy]-propionate (0.22 g, 0.52 mmole) in 20 ml benzene, thereby being reacted with the pyrazole derivative under reflux for 5 days. Thereafter the solvent was removed from the reaction product solution by evaporation under reduced pressure. The residue was dissolved in ethyl acetate, the solution was washed with a small amount of water, and the organic layer was dehydrated and evaporated to dryness, giving the title quateranry salt in paste form, yield 52.6%.

nD (25.7°C): 1.5548

25

30

40

45

50

55

The present inventive 3-(substituted phenyl)-pyrazole derivatives represented by formula (I) and salts thereof are capable of controlling annual and perennial weeds grown in paddy fields, upland fields, orchards, and swamps, such as barnyardgrass (Echinochloa Crus-galli Beauv., an annual gramineous grass which is a typical weed strongly injurious, grown in paddy fields), Mizugayatsuri (Cyperus serotinus Rottb., a perennial weed of Cyperaceae family, grown in swamps, ditches and paddy fields), Urikawa (Sagittaria pygmaea Miq., an injurious perennial weed of Alismataceae family, grown in swamps, ditches, and paddy fields). Hotarui (Scirpus juncoides Roxb. subsp. juncoides, a perennial cyperaceous weed grown in swamps, water ways, and paddy fields), wild oats (Avena fatua L., an annual gramineous grass grown in plains, highlands, and upland fields), large crabgrass (Digitaraia adscendcus Henr., an annual gramineous grass which is a typical strongly injurious weed grown in upland fields and orchards), Curlydock (Rumex japonicus Houtt, a perennial polygonaceous weed grown in upland fields and on roadsides), umbrella sedge (Cyperus Iria L., an annual cyperaceous weed grown in upland fields and on roadsides), Redroot pigweed (Amaranthus vetroflexus L., an annual weed of Amaranthaceae family grown in upland fields, roadsides, and vacant lands), Cleavers (Galium aparine L, a strongly injurious annual weed of Rubiaceae family grown in upland fields), Bridseye Speedwell (Veronica persica L., a strongly injurious weed of Scrophulariaceae family grown in upland fields and orchards), Scented mayweed (Matricaria chamomilla L., injurious composite weed grown in upland fields), velvetleaf (Abutilon theophrasti L., a strongly injurious weed of Malvaceae family grown in upland fields), cocklebur (Xanthium strumarium L., a strongly injurious annual composite weed grown in upland fields), and tall morningglory (Ipomoea purpurea Voigt, a strongly injurious weed of Convolvulaceae family grown in upland fields).

Since the 3-(substituted phenyl)pyrazole derivatives of formula (I) and salts thereof exhibit excellent controlling effect on weeds before or immediately after germination, characteristic physiological activities of these compounds can be manifested by treating fields with the derivative or the salt before or after planting of useful plants therein (including fields where useful plants are already planted) in the stage prior to weed emergence or in the period from the initial stage to the middle stage of weed growth. However, the applications of the present inventive herbicides are not limited such forms as stated above. The present herbicides can be applied to control not only weeds in paddy fields or upland fields but also general weeds grown in other places, for example, reaped fields, temporarily non-cultivated paddy fields and upland fields, ridges between paddy fields, agricultural pathways, waterways, lands constructed for pasture, graveyards, parks, roads, playgrounds, unoccupied areas around buildings, reclaimed lands, railways, and forests. It is most desirable in economy as well to treat these areas with the present herbicides, before the end of the

initial stage of weed growth, but the treatment is not limited to this but can be carried out in the middle stage of weed growth.

The 3-(substituted phenyl)pyrazole derivative of formula (I) or salt thereof, when applied as a herbicide, is generally made up, according to the customary procedure for preparing agricultural chemicals, into a form convenient to use. That is, the pyrazole derivative or salt thereof is blended with a suitable inert carrier and if necessary, further with an adjuvant, in proper ratios, and the mixture is made up into a suitable form of preparation, e.g. a suspension, emulsifiable concentrate, solution, wettable powder, granules, dust, or tablets, through dissolution, disersion, suspension, mixing, impregnation, adsorption, or sticking. In the present invention, either solid or liquid inert carriers may be used. Suitable materials as solid carriers include soybean flour, cereal flour, wood flour, bark flour, saw dust, powdered tobacco stalks, powdered walnut shells, bran, powdered cellulose, extraction residues of vegetables, powdered synthetic polymers or resins; clays (e.g. kaolin, bentonite, and acid clay), talcs (e.g. talc and pyrophyllite), silica powders or flakes (e.g. diatomaceous earth, silica sand, mica and white carbon, i.e. highly dispersed silicic acid, also called finely divided hydrated silica or hydrated silicic acid), activated carbon, powdered sulfur, powdered pumice, calcined diatomaceous earth, ground brick, fly ash, sand, calcium carbonate powder, calcium phosphate powder, and other inorganic or mineral powders, chemical fertilizers (e.g. ammonium sulfate, ammonium nitrate, urea, and ammonium chloride) and compost. These materials may be used alone or in combination.

Suitable materials as liquid carriers include liquids which themselves have solvent power as well as liquids which do not have solvent power but can disperse active ingredients with the aid of adjuvants. Typical examples of such liquids, which may be used alone or in combination, are water, alcohols (including methanol, ethanol, isopropanol, butanol, and ethylene glycol), ketones (including acetone, methyl ethyl ketone, methyl isobutyl ketone, di-isobutyl ketone, and cyclohexanone), ethers (including ethyl ether, dioxane, Cellosolve, dipropyl ether, and tetrahydrofuran), aliphatic hydrocarbons (including gasoline, and mineral oils), aromatic hydrocarbons (including benzene, toluene, xylene, solvent naphtha, and alkylnaphthalenes), halogenated hydrocarbons (including dichloroethane, chloroform and carbon tetrachloride), esters (including ethyl acetate, diisopropyl phthalate, dibutyl phthalate, and dioctyl phthalate), amides (including dimethylformamide, diethylformamide, and dimethylsulfoxide.

The following materials are cited as typical examples of the adjuvants which may be used alone or in combination or may not be used at all.

For the purpose of emulsifying, dispersing, solubilizing, and/or wetting active ingredients, there may be used surface active agents such as polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene higher fatty acid esters, polyoxyethylene resinates, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monoleate, alkylarylsulfonates, naphthalenesulfonic acid condensation products, ligninsulfonates, and higher alcohol sulfate esters.

For the purpose of stabilizing the dispersion of active ingredients, tackifying and/or binding them, there may be used adjuvants, for example, casein, gelatin, starch, methylcellulose, carboxymethylcellulose, gum arabic, polyvinyl alcohol, turpentine, bran oil, bentonite, and ligninsulfonates.

For the purpose of improving flow properties of solid herbicidal products there may be used adjuvants, for example, waxes, stearates, and alkyl phosphates.

Adjuvants, e.g. naphthalenesulfonic acid condensation products and polyphates, can be used as peptizers in dispersible herbicidal products.

Adjuvants, e.g. silicone oils, can also the used as defoaming agents.

10

40

50

55

The content of active ingredients may be varied as occasion demands; the suitable contents are from 0.01 to 50% by weight for preparing, for example, dusts or granules as well as emulsifiable concentrates or wettable powders.

For destroying various weeds or inhibiting their growth, the herbicidal composition containing the 3-(substituted phenyl)pyrazole derivative of formula (I) or salt thereof as an active ingredient is applied as such or after being properly diluted with or suspended in water or other media, in amounts effective for destroying weeds or inhibiting their growth, to the foliage and stalks of the weeds or to soil in the area where the emergence or growth of weeds is undesirable.

The amount of the present herbicidal composition to be used, depending upon various factors, e.g. the purpose of application, object weeds, emergence or growth states of weeds and crops, emergence tendency of weeds, weather, environmental conditions, form of the herbicidal composition, mode of the application, type or state of the application locus, and time of the application, is chosen properly according to the purpose from the range of 1.0 g to 10 Kg, in terms of the amount of active ingredient, per hectare.

When the present herbicidal composition is applied to paddy fields or upland fields, it is desirable to choose such low doses as not to injure crops but to destroy weeds or control their growth. When the composition is applied to non-farming areas, suitable doses of active ingredient for destroying the weeds are chosen from amounts of 100 g/hectare and more

The present herbicidal composition can be applied jointly with other herbicides for the purpose of expanding both the range of controllable weed species and the period of time when effective applications are possible or for the purpose

of reducing the dosage.

The following examples illustrate herbicidal effects and formulations of the present inventive herbicidal composition without limiting the scope of the invention.

Test Example 1 Herbicidal effect on paddy field weeds of pre-emergence stage

Pots (1/10,000-are) were filled with soil to simulate a paddy field, then plated separately with seeds of barn-yardgrass, konagi (Monochoria vaginalis (Burm.f.) Presl var plantaginae), and hotarui which are all injurious weeds grown in paddy fields, and were conditioned so that the seeds might become in pre-emergence stage.

Soil in each pot was sprayed with each of solutions containing compounds (listed in Table 1) of the present invention as active ingredients at a predetermined concentration. 21 Days later, the herbicidal effect was examined, the percentages of killed weeds were calculated in comparison with those on the untreated soil, and the herbicidal activity was judged and the chemical injury of a rice plant was examined at the same time and judged according to the following criterion:

Herbicidal activity

10

15

20

25

30

35

40

45

Rating	Percentage of killed weed
5	95% or more
4	70 - 95% (exclusive)
3	50 - 70% (exclusive)
2	30 - 50% (exclusive)
1	10 - 30% (exclusive)
0	less than 10%

Phytotoxicity

Rating	Degree of phytotoxicity
0	No phytotoxicity
1	Browning occurs but disappears in the initial growth stage, growth inhibition is not observed.
2	Browning and distinct growth inhibition are observed but normal conditions are soon restored.
3	Browning and growth inhibition are remarkable and the restoration is slow.
4	Browing and growth inhibition are remarkable and some of the rice plants are killed.
5	All the rice plants were killed.

For comparison the following compounds were also tested.

Compound A: 3-phenyl-5-methylthiopyrazole, described on page 3 in Japanese Patent Application Kokai No. Sho. 51-91861; compound B: described in Example 1 on page 4 in the same patent application; compound C: compound No. 8 described in Japanese Patent Application Kokai No. Sho. 54-70270; compound D: compound No. 159 described on page 9 in Japanese Patent Application Kokai No. Sho. 55-9062.

Compound A.

Compound B.

55

Compound C.

Results of the test are shown in Table 5.

15		Та	able 5			
			Phytotoxicity	Pre-emerg	ence treatn	nent
	Comp'd No.	Amount of active ingredient Kg/ha	rice	Barnyardgrass	Hatarui	Konagi
	86	0.8	5	5	5	5
20		0.1	4	5	5	5
	87	0.8	5	5	5	5
	:	0.1	4	5	5	5
	117	0.8	4	5	5	5
25		0.1	3	5	5	5
	119	0.8	4	5	5	5
		0.1	2	5	5	5
	152	0.8	3	5	5	5
		0.1	2	5	5	5
30	153	0.8	5	5	5	5
		0.1	3	5	5	5
	253	0.B	5	5	5	5
		0.1	1	3	5	5
35	256	0.8	5	5	5	5
		0.1	4	5	5	5
	257	0.8	5	5	5	5
		0.1	3	5	5	5
	258	0.8	5	5	5	5
40		0.1	4	5	5	5
	259	0.8	5 .	4	5	5
		0.1	3	2	4	4
	260	0.8	5	5	5	5
45		0.1	3	2	5	5
40	268	0.8	5	5	5	5
		0.1	3	5	5	5
	269	0.8	5	5	5	5
		0.1	3	2	5	5
50	275	0.8	5	5	5	5
	-	0.1	2	3	5	5
	344	0.8	5	5	5	5
		0.1	4	5	5	5
55	346	0.8	5	5	5	5
55		0.1	4	5	5	5
	359	0.8	5	5	5	5
		0.1	3	5	5	5

Table 5 (continued)

		Phytotoxicity	Pre-emerge	ence treatn	nent
Comp'd No.	Amount of active ingredient Kg/ha	rice	Barnyardgrass	Hatarui	Konagi
368	0.8	5	5	5	5
	0.1	2	5	5	5
369	0.8	5	5	5	5
	0.1	3	5	5	5
370	0.8	5	5	5	5
	0.1	2	2	5	5
371	0.8	5	5	5	5
	0.1	2	1	5	5
Α	5	0	0	0	0
В	5	0 '	0	2	0
С	5	0	0 ′	0	0
D	5	0	0	0	0

As shown in table 5, the present 3-(substituted phenyl) pyrazole derivatives or salt thereof, represented by the general formula (I), exhibit more excellent controlling effects of weeds than comparative compound A, B, C or D at pre-emergence treatment in paddy fields. Even when the derivatives exhibit both herbicidal activity on weeds and phytotoxicity on crops at the same dosage, however, by the selection of a proper lower dosage, sufficient herbicidal activity is retained but phytotoxicity on crops is reduced remarkably.

Test Example 2 Herbicidal effect on paddy field weeds of post-emergence stage

Pots (1/10,000-are) were filled with soil to simulate a paddy field, then planted separately with seeds of barn-yardgrass and hotarui and with tubers of mizugayatsuri and urikawa, which are all injurious weeds grown in paddy fields, and were conditioned so that these weeds might grow to 1-leaf stage.

Soil in each pot was sprayed with each of solutions containing compounds (listed in Table 1) of the present invention as active ingredient at a predetermined concentration. 21 Days later, the herbicidal effect was examined, the percentages of killed weeds were calculated in the same manner as in Test Example 1, and the phytotoxicity of a rice plant also examined and judged according the criterior shown in Test Example 1.

Results of the test are shown in Table 6.

EP 0 443 059 B1

5	t	Urikawa	0	m	4	2	2	က	m	н	7	2	2	ď
10	past-emergence treatment	Mizugaytsuri	. 0	2	۳,	1	S	4	5	ю	0	7	Ŋ	u
20	past-emerg	Hotarui	1	4	2	m	2	4	4	4		4	Ŋ	_
25 eTQEE	of	Barnyardgrass	4	'n	S	Ŋ	S	ហ	S	S	4	Ŋ	2	u
35	Phyto-	toxicity	7	2	5	3	5	4	æ	4	2	٣	S	₩
40	Amount of	active ingredient Kg/ha	5	S	2	8.0	5	8.0	Ŋ	S	8.0	2	5	α
50		COMP G No.	2	n	4		5		9	7		œ	6	

ı
ס
ير
con
þe
ţ
ŀ

5	Ŋ	4	2	2	2	က	S	S	7	5	S,	٣	ო	ო	2	m	4	Ω	4	S	4
10	S	Ŋ,	2	2	z,	0	2	5	0	2	2	0	-	0	0	Ŋ	~		٣	4	m
15								_													
20	5	4	m	2	4	7	2	4	-	S	4	7	7	7	-	2	м	Ŋ	2	2	m
25	5	ß	Ŋ	2	2	٣	Ŋ	S	٣	S	S	٣	4	2	S	ស	ហ	ហ	4	Ŋ	e
30																		·			******
35	ις	4	7	Ŋ	4	0	2	4	7	2	2	н	н	2	-	7	7	2	~	Ŋ	5
40	2	8.0	0.1	Ŋ	8.0	0.1	Ŋ	8.0	0.1	Z.	8.0	5	S	Ŋ	5	2	Ŋ	2	8.0	2	8.0
45									<u></u>			9					<u></u>	- 2		9	
50	11			12			13			14		16	18	19	20	21	23	7		7	

5		m	ស	4	2	4	2	4	5	7	S	4	S	4	Ŋ	4	S	4	5	<u>г</u>
10	4	٣	2	0	4	2	7	0	4	т.	2	0	2	0	7	0	2	0	2	2
15															, · · ·					
20	rv.	2	<u>د</u>	2	ഹ	æ	2	7	2	2	S	2	2	7	5	7	2	2	4	7
25	S.		· ·	Ŋ	Z)	5	2	5	2	5	5	2	5	5	Ŋ	2	S	5	2	2
30							*********		<u> </u>											===
35	4	М	S	7	5	m	5	7	S	м	2	7	<u>س</u>	7	ى	7	Ŋ	7	S.	2
40																				
45	S	0.8	S	0.8	2	0.8	S	0.8	ស	0.8	2	0.8	2	0.8	5	0.8	Ŋ	0.8	S	0.8
50	27		28		29		30		31		32		33		34		35		37	

5	Ŋ	4	7	S	4	4	4	4	4	2	S	4	4	7	ĸ	3	4	S	7	m
10	ю	2	0	4	н	н	2	2	п	2	3	2	m	0	5	0	4	S	0	S
15	·													· · · · · · ·						
20	4	2	2	7	2	7	7	<u>н</u>	7	2	2	2	e	2	2	-	4	2	-	4
25	S	ß	4	ហ	Ŋ	S	ς,	7	Ŋ	5	ស	2	ហ	S	Ŋ	0	5	2	٣	S.
30				:			1								===	·				
35	2	٦	Н	п	Н.	н	Н	٦	п	S	m	5	4	H	S	2	٣	4	2	2
40								•			æ		8	7		8			8	
45	ى دى	5	ហ	S	5	2	2	5	2	2	0	5	· 	0	5	•	2	2	<u>.</u>	- 5
50	38	41	42	43	44	45	46	47	48	49		20			51		52	53		54

																						•
5	5	-	7	5	ហ	.Ω	S	Ŋ	5	Ŋ	ഗ	S	S	ഗ	ഗ	ഹ	Ŋ	4	ч	S	7	cont'd -
	7	0	4	2	0	2	0	7	0	۲.	7	0	-	0	c	0	2	S	æ	2	2	- to be co
15									·													-
20		5	m 	<u>۳</u>	0	<u>ო</u>	0	Ŋ	<u>۳</u>	7	٣	0	7	0	2	3	2	2	m	5	S	_
25	۲r	5 2	2	5	7	S	2	2	S	က	5	2	3	0	S	2	2	5	Ŋ	ហ	ю	
30	÷											· · ·	<u>:</u>		· <u>- ·</u>						···-	:
35	^	1 0	7	m	٦	m	٦	.c	2	п	m	٦	S	2	2	2	'n	2	2	5	æ	
40																						
45		n LO	· 15	S	0.8	ഗ	0.8	5	0.8	Ŋ	Ŋ	0.8	ស	0.8	ß	0.8	S	0.8	0.1	2	0.8	
	r v	57	. 69	62		63		64		99	67		89		69		7.1			72		
50																						

-																						_
5	7	4	Т	0	2	2	0	S	2	5	2	2	S	2	S	ស	-	ഗ	4	S	S	cont'd -
10	4	4	0	4	2	٦	2	Ŋ	Ŋ	S	S	4	5	S	Z.	5	5	2	5	5	S	- to be co
15			<u></u>	····				<u></u>		- , , ,								· · · · · · · · · · · · · · · · · · ·				-
20	4	4	7	2	4	4	2	, N	ທ	<u>د</u>	4	4	2	4	m	ς,	0	'n	m	ß	4	_
25	4	2	3	0	4	2	2	2	2	2	2	2	2	S	2	2	5	2	5	5	2	
30											<u></u>		- ::		,							=
35	2	S	က	2	2	2	7	ω	М	S	т	т	<u>د</u>	m	7	2	m	2	۳ 	.c	m	
40	5	2	8.0	5	5		5	2	8.0	5	8.0	5	5	8.0	2	5	0.1	5	0.1	2	8.0	
45																	·		.'	· · · · · · · · · · · · · · · · · · ·		-
50	73	74		75	9/	77	78	81		82		83	84		85	98		87		88		

5	2	2	S	8	2	2	2	S	S.	2	ស	2	2	2	2	S	S	2	S	S
10	2	2	5	т	2	ហ	Ŋ	5	5	0	2	2	2	S	2	2	2	5	5	ഗ
15																				
20	2	2	2	m	2	m	2	ഹ	Ŋ	2	S	4	2	S	S	5	5	4	2	m
25	5	Ŋ	S	2	S	4	s.	4	S	7	2	2	S		S	2	2	4	2	4
30				:																
35	Ŋ	4	Ŋ	m	Ŋ	m	Ŋ	m	Ŋ	2	Ŋ	м	Ŋ	4	ហ	4	2	2	ഹ	2
40	ĸ	8.0	5	8.0	Ŋ	0.1	8.0	0.1	8.0	0.1	8.0	0.1	2	8.0	5	8.0	8.0	0.1	8.0	0.1
50	68		06		91		92		93		94		95		96		97		86	

- to be cont'd -

5	2	ß	2	S	Ŋ	2	ري -	Ŋ	Ŋ	Ŋ	ហ	ഗ	.S	2	S	2	'n	c,	2	ن ا
10	Ŋ	S	Ŋ	S	Ŋ	0	Ŋ	2	5	-	2	0	2	Н	Ŋ	0	2	S	2	ស
15																			· <u> </u>	
20	2	Ŋ	ς.	S	5	н	S	Ŋ	ഗ	0	'n	0	s	4	2	0	2	4	S	го
25	2	Ŋ	Ŋ	S	2	٣	Ŋ	2	2	0	Ŋ	0	5	4	Ŋ	4	ស	4	ហ	Ŋ
30	·														<u></u>			, ,		
<i>35</i>	S	m	Ŋ	4	Ŋ	2	ഗ	4	S	2	2	2	S	4	S	е	ហ	м	S	m
40																				
45	Ŋ	0.8	<u>ب</u>	0.8		0.1	2	0.8	0.8	0.1	0.8	0.1	0.8	0.1	0.8	0.1	2	0.1		0.1
50	66		100		101		102		103		104		105		106		108		109	

- to be cont'd

5	2	S	S	m	2	7	S	2	5	Ŋ	S	4	5	0	S	ν. ·	ഗ	ഹ	Ŋ	m
10	Z.	0	S	4	Ŋ	4	ж	1	Ŋ	2	4	3	22	Ŋ	Ŋ	Ŋ	2	0	2	Ŋ
15							,													
20	2	м	4	7	5	0	Z.	7	Ŋ	Ω.	S	7	S.	0	S	m	m	0	κĵ	m
25	2	2	ß	2	2	2	2	2	2	2	Ŋ	2	Ŋ	5	2	S	S	ß	5	S
30															<u>.</u>	,			-	
35	2	4	5	2	2	2	2	3	S	ĸ	5	7	5	m	2	7	. 2	۳	2	2
40		.1		0.8	ω.	.1	- "	ω.		φ.		ω.		٦.		ω.		∞.		ω.
45	5	0	2	0	0	0	2	0	5	0	S	0	5	0	Ω	0	2	0	2	0
50	110		111		112		113		114		115		116		117		118		119	

5	ഗ	S	2	2	で	ß	5	S	2	ゼ	2	2	4	2	2	4	2	S	4	S	rv.
10	ស	ر د	2	2	3	2	0	5	5	3	2	2	П	5	2	2	2	4	0	2	Ŋ
15																				·	
20	٣	Ŋ	m	2	e	5	m	2	Ş	3	2	5	7	2	4	٣	S	2	7	2	<u>د</u>
25	2	5	S	S	S	S	ß	2	5	4	Ŋ	Ŋ	Ŋ	S	S	m	S	S	1	ស	ς.
30		<u></u> :																			
35	m	Ŋ	m	4	е	S	7	S	4	3	S	5	8	5	S	۳	5	S	8	S	ις.
40	5	5	0.8	5	0.8	5	0.1	2	8.0	0.1	S	8.0	0.1	2	8.0	0.1	5	8.0	0.1	2	0.8
45							-					-									
50	120	121		122		123		125			126			127			128			129	

5	2	5	2	2	٣	Ŋ	m	ß	S	5	'n	S	S	Ŋ	2	2	2	5	S	S	2	cont'd -
10	7	2	7	2	0	5	П	2	2			2		ស	2	е	ស	S	7	S	ſ	- to be co
15																						_
20 -	4		2	2	2	2	8	2	2		2	2	2	5	Ω	4	4	3	2	5	ιΩ	_
25	2	ស	S	Ŋ	75	ស	4	5	5	S	ស	5	r.	S.	2	5	2	5	ß	5	5	
30 <u>.</u>	5	5	2			5		2		3	2	9	3		<u></u>	е	10	10	<u> </u>	10		=
=											<u> </u>	- ,										=
45	0.1	0.8	0.1	S	0.8	2	0.8	ب	8.0	0.1	5	0.8	0.1	ഹ	8.0	0.1	Ŋ	0.8	0.1	5	8.0	_
50	129	130		131		132		133			134			135			136			137		

5	in	2	S	2	2	2	2	ý	S	S	S	S	S	5	4	2	S	2	2	4
10	ю	Ŋ	Ŋ	Ŋ	ഹ	0	2	2	2	.S	χ,	0	Z.	Ŋ	٣	Ŋ	S	0	Ŋ	S
15						<u></u>														
20	S	Ŋ	ທ	S	2	2	2	2	2	2	S	٣	2	5	0	ស	2	m	4	4
25	ις	2	2	2	5	S	ហ	2	Ŋ	ហ	S	ഹ	Ŋ	Ŋ	2	2	S	ß	2	S
30								=		.					<u></u>					
35		Ŋ	ო	2	S	ĸ	2	2	m	5	5	4	Ŋ	S	E	Ŋ	'n	m	4	ო — _
40	0.1	Ŋ	0.8	5	0.8	0.1	2	0.8	0.1	r2	0.8	0.1	2	0.8	0.1	2	8.0	0.1	2	0.8
45													. <u></u>		-					
50	137	138		139			140			141			142			143			144	

5	2	2	4	Ŋ	S	2	S	S	S	Ŋ	Ŋ	S	Ω.	2	m	ß	2	Ŋ	2	m	ស
10	S		0	2	2	5	5	5	2	5	4	2	5	5	0	2	т	S	2	m	ı
15																					
20	5	'n	2	4	5	2	s	ß	ß	2	м	2	2	5	1	S	S	ហ	ß	7	4
25	.	5	5	5	Ŋ	2	ß	5	5	5	5	· 5	5	2	S.	S	2	S	S	S	Ŋ
30			**										` `			===					 -
35	5	ហ	e	2	7	2	м	2	٣	Ŋ	4	2	S.	2	m	<u>ب</u>	м	5	S	m	m
40																					
45	₂		0.1		Ŋ		0.8		0.8					0.8	_		0.8		0.8		2
45																					
50	145			146	147	148		149		150			151			. 152		153			154
	-																				

76

5	5	2	2	2	2	S	2	<u>ر</u> ح	Ŋ	4	2	S	ഹ	2	ഗ	Ŋ	ហ	Ŋ	ഹ	<u>ν</u>
10	Ŋ	2	5	S.	S	S	ю	7	2	0	2	0	Ŋ	4	2	Ŋ	S	S	2	т
15											···-									
20	Ŋ	7	S	7	S	5	5	7	ഗ	m	m	0	ιΩ	S	4	<u>г</u>	ις.	m	Ŋ	ស
25	S	4	S	4	S	S	ហ	2	S	4	S	S	Ŋ	2	ហ	5	5	2	S	ഹ
30		<u> </u>					; -		<u></u>											·
35	S	٣	Ŋ	2	2	m	Ŋ	m	S	m	, N	m	Ŋ	Ŋ	2	2	4	m	Ŋ	m
40						•														
45	ľ	0.8		0.8								•				ហ	•	0.1	•	0.1
50	155		156		157		158		159		160		191		.,—	162		(163	
							_													

77

5		.		4	4	2	2	2	4		m	2	2	Ŋ	ഗ	2	4	2	5	5	Ŋ	cont'd -
10	2	5	0	4	Ŋ	2	0	4	7	S	2	2	0	4	2	2	4	2	2	٦	S	- to be ac
15																					···-	-
20	2	5	ო	ស	4	ς	m	ς	7	4	2	2	0	0	4	2	0	2	2	2	т	
25	2	2	2	5		S	S	2	5	2	Ŋ	2	4	2	2	2	4	2	2	m	Ŋ	~
30							·	- :- : .													-	=
35	5	2	7	т	ĸ	Ŋ	m	S	m	Ŋ	7	Ŋ	7	<u>د</u>	m	5	7	7	m	٣	2	-
40	S	0.8	0.1	S	5	S	8.0	5	8.0	S	0.8	5	8.0	5	. 2	5	0.8	Ŋ.	S	Ŋ	S	-
45							 , -										· ·····			-		-
50	164			165	166	167	_	168		169		170		171	172	173		174	175	176	177	_

											-											
5	4	7	0	ഹ	7	2	2	2	2	ო	2	5	0	2	0	S		ഹ	2	ß	Ŋ	cont'd -
10	ς.	4	7	2	Ŋ	2	2	S	0	S	5	S	4	4	7	m	-	5	ហ	Э	ı	- to be co
15												···-					_ 	·· ··				•
20	e	æ	0	2	4	S	4	4	7	3	4	4	2	2	0	S	0	ഗ	m	2	4	-
25	2	2	2	2	2	2	2	Ŋ	2	2	Z.	Ŋ	5	Ŋ	2	2	4	ហ	5	ហ	4	
30			-	<u></u>				 :														:
35	2	S	2	m	7	2	n	2	m	7	m	7	7	2	2	2		2	2	2	м	<u>=</u>
40			8.				ω.		ω.			2			8.	8.	1.1		8.		8.	
45		Ŋ	•	<u>.</u>	S		•	2	•	<u>د</u>	<u>د</u>	<u>د</u>	<u></u>		0	0	0	·C	0		· 	-
50	178	179		180	181	182		183		184	185	186	187	188		189		190		191		

5	2	S	4	Ŋ	2	Ŋ	4	Ŋ	ю	S	Ŋ	Ω.	Ŋ	ĸ	S	2	2	S	S	Ŋ	ഗ	cont'd -
10	٣	ч	7	2	S.	S	3	2	2	Ŋ	ю	٣	ı	5	4	2	0	ഗ	0	2	0	- to be co
15																						_
20	Ŋ	٣	2	5	ю	5	æ	2	2	S	2	S	2	5	7	S	0	m	0	5	7	
25	Ŋ	4	е	5	Е	5	3	5	က	5	5	5	5	2	S	S	ĸ	ß	4	ហ	٣	
30		•		-,	-333-				=== <u>=</u> -	: ==	===		 -:									=
35	<u></u>	m	٣	5	М	4	М	S	2	5	æ	5	e e	S	Е	2	~	s S	m	S	2	==
40		8			8		8		œ		8		8		8	8	1	8	7		8	
	Ŋ	0	2	5	0.	Z	0	S	0.	5	0.	2	0	5	0	0.	0	0	0	2	0	
45				-																		
<i>50</i>	192		193	194		195		196		197		198		199		200		201	. – —	202		_

5	ഗ	2	2	ς,	4	2	S.	7	ഹ	Ŋ	'n	'n	ß	Z,	Ŋ	Ŋ	m	m	Ŋ	ഹ	ر د
10	4	2	4	2	0	4	н.	, v o	2	2	Ŋ	2	2	4	2	2	ю	3	2	0	0
15				··········															·		
20	4	2	2	7	4	ស	m	2	4	4	П	2	5	4	2	2	4	m	5	2	2
25	2	4	S	S	5	S	5	5	5	ر د		2	Ŋ	4	Ŋ	2		ß	2		S
30 =	1271	cte ct.				!			 -		<u> </u>							·			
35	Ŋ	2	Ŋ	m	7	S		7	7	2	2	٣	5	2	2	٣	4	4	Ŋ	7	r-1
40	2	8.0	5	8.0	5	2	8.0	5	5	2	8.0	5	5	8.0	2	8.0	S	5	2	8.0	2
45																	-,				
50	203		204		205	206		207	208	209		210	211		212		213	214	216		218

5	5	Ŋ	2	႕	S	S	5	S	2	Ŋ	2	2	2	2	2	2	2	2	ß	Ŋ	S	m	cont'd -
10	2	٣	2	2	2	2	ß	4	2	2	4	5	S	2	5	2	Σ	2	2	0	2	2	- to be co
15													· ·										•
20	5	2	2	m	2	4	S	1	2	Ŋ	2	2	Ŋ	Ŋ	S	٦	2	2	2	ຕ	2	2	
25	5	2	2	2	5	2	2	2	2	2	2	2	4	2	2	2	2	2	2	2	4	m	
30																							
35	Ŋ	٣	2	3	2	en.	'n	m	Ω.	m	7	7	m	S			ري		ω	7	S	m	
40		8		8		8		8		8			~			•							
45	ស	0	2	•	2	•	S	•	5		S	5	0.8	5	0.8	0.1	2	0.8	0.8	0.1	0.8	0.1	
50	220	-	221		222	-	223	*********	224	No. of the Control of	225	226	227	228		 ·	229		230	····	231		

to be cont'd

5	2	2	.Ω	Ŋ	Ŋ	Ŋ	S	Ŋ	Ŋ	വ	ഗ	Ŋ	ഗ	S	ر د	2	ഹ	Ŋ	ß	'n	ن.
10	S	Ŋ	5	2	S	0	5	2	S	Ŋ	Ŋ	Ŋ	2	S	2	S	2	Ŋ	2	0	ហ
15		······																			
20	S	S	ភ	0	Ŋ	0	Ŋ	S	ស	S	ις.	υ.	2	ις	2	2	Ŋ	ß	ស	ĸ	'n
25	2	2	S	٦		0	2	5	2	5	ß	4	ß	5	2	S	5	5	ß	ß	2
30			 -										-1		حدد						
35	S	e	2	7	5	2	Ŋ	n	2	7	25	m	Ŋ	4	m	Ŋ	m	ις	4	m	m
40																					
45	5	0.8	0.8	0.1	0.8	0.1	0.8	0.1	2	0.8	0.8	0.1	2	8.0	0.1	8.0	0.1	2	8.0	0.1	0
50	232		233		234		235		236		237		238			239		240			241

+	5	5	5	2	5	2	2	2	2	3	2	2	2	2	S	2	2	2	S	2	S	S	cont'd -
242 0.8	10	5	m	Ŋ	ς.	Ŋ	ς	5	2	7	5	0	2	2	0	2	S	2	2	Н	S	0	- to be co
242 0.8 243 25 243 25 244 25 244 25 245 245 246 25 246 25 248 248 25 248 25 25 25 25 25 25 25 25 25 25 25 25 25	15			_									 -									.=	
242 0.8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20	5	4	2	4	2	0	2	0	4	2		2	2	2	2	2	2	2	m	2	5	-
242 0.8 5 243 0.8 5 244 5 0.8 3 245 0.8 3 246 5 0.8 3 247 0.8 5 248 5 0.8 7 249 5 5 249 5 5 250 0.8 4 0.1 2 0.1 2 0.8 6 4 0.1 3 250 0.8 7 0.1 3 251 0.8 6 0.1 3 0.1 3	25	Ŋ	S	S	2	2	Ŋ	2	2	7	S		S	2	S	5	S	2	2	2	5	м	
242 0.8 243 5. 244 5. 244 5. 244 5. 246 5. 247 0.8 0.1 249 5. 0.1 250 0.8 0.1 251 0.8	30																		د درن			 1 	<u>e:</u>
242 0.8 243 5. 244 5. 245 0.8 244 5. 246 5. 247 0.8 0.1 249 5. 0.1 250 0.8 0.1 251 0.8	35		ĸ	n		2	ĸ	<u>.</u>		m	2	2	2	4	m		7	2	S	m	Z)	7	
			•	S	•	5	•	. •	•	S	•	•	ıń.	•	•	5	•	0.1	•	0.1	•	0.1	
	50	242		243		244		245		246	247		248			249			250		251		_

												•										-
5	'n	S	S	S	z,	ഹ	ľ	Z.	ഗ	ī	Ŋ	S	2	S	S	S	S	.co	Ŋ	S	S	cont'd -
10	ហ	S	S.	5	S	2	S	0	Ŋ	ഗ	S	S	2	2	S	ស	ഗ	5	S	2	S	- to be o
15				W. 1.7 2 .																		-
20	Ŋ	S	S	ß	2	S	2	5	2	5	2	m	2	2	2	2	0	2	2	2	S	
25	S	Ŋ	Ŋ	S	ß	Ŋ	S	S	ហ.	Ŋ	Ŋ	Ŋ	2	2	2	4	ю	2	4	2	ю	-
30						<u></u>																Ŀ
35	S	m	2	4	2	4	2	٠,	Ŋ	က	Ŋ	er.	Ŋ	4	2	4	က	2	m	2	м	.
40		8			80	_	2		2	1	2	-	2	-	8	2	1	8	2	2	~ 4	
45		0		0	•	0	0	•	0		0	•	•	0	•	0	0	0	0	0	0	-
50	252		253		254		255		256		257		258		259			260		261		_
										_												

- to be cont'd

5	2	2	S	2	S	Ŋ	'n	Ŋ	Ŋ	5	Ŋ	ī.	Ŋ	'n	ഗ	S	ъ	2	S	ις
10	S	2	2	2	2	5	2	വ	S	2	2	5	2	2	2	2	5	2	2	4
15										• 11										
20	5	S	ഹ	ഹ	S	S	S	2	5	ហ			.		Ŋ	S	5	က	S	S
25	S	z,	2	2	S	Ŋ	S	Ŋ	S	S	2	S	S	Ŋ	Ŋ	Ŋ	S	2	2	4
30																	-			
35		2	S	2	5	2	2	2	2	ഗ	5	4	5	4	٣	2	4	n	5	<u>ო</u>
40	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	8.0	0.2	0.1	8.0	0.2	0.1	0.8	0.2
45					-															
50	262		263		264		265		266		267		268			269			270	

5	S	S	Ŋ	ഹ	ς.	S	Ŋ	ഹ	S	S	2	2	S	2	S	2	2	2	2	♥
10	2	2	2	Z.	2	2	O	Ŋ	S	5	S.	m	5	4	2	4	2	0	4	7
15											•••									
20	ស	2	5	2	2	2	ις.	. 2	S	S	S	က	ស	5	2	2	S	Ŋ	Ŋ	4
25	S	Ŋ	Ŋ	2	2	5	2	5	2	Ŋ	5	2	Ŋ	ς,	S	5	Ŋ	Ŋ	ស	Ŋ.
30			<u> </u>						-	··	···									
35	2	М	5	ж	S	4	Ж	ហ	4	ഹ	m	2	Ŋ	М	5	2	Ŋ	7	4	н
40	0.2	0.1	0.2	0.1	8.0	0.2	0.1	0.2	0.1	0.8	0.2	0.1	5	8.0	5	8.0	2	8.0	2	8.0
45				· · · - ·			 -									···				
50	271		272		273			274		275			276		277		278		279	

5	5	Ŋ	ഗ	2	S	ر ک	S	2	S	ഹ	2	. 20	2	S	Ŋ	S	Ŋ	Ŋ	S	<u>ب</u>
10	Ŋ	5	5	4	rJ.	4	S	S	Ŋ	ഹ	Ŋ	Ŋ	3	ហ	S.	2	Z.	5	5	0
15																				
20	'n	2	5	4	2	S	2	S.	S	2	2	2	0	2	3	S	2	3	2	ن
25	S	2	S	4	S	2	5	2	S	Ŋ	S	2	т	Ŋ	4	Ŋ	S	2	ഗ	S
30																		 :	 .	70-70
35	Ŋ	m	S	m	Ŋ	m	ហ	m	ς.	m	5	4	м	Ŋ	4	S	4	3	5	m
40	S	8.0	5	8.0	2	8.0	5	8.0	2	0.8	2	8.0	0.1	5	8.0	5	8.0	0.1	0.8	0.1
45			-							·										
50	280		281		282		283		284		285			286		287			288	

88

ı
d
-
¥
C
\overline{a}
ပ္ပ
O
pe
to
಼
ı

5	ហ	5	2	2	2	S	S	ហ	S	S	Ŋ	'n	S.	Ŋ	ß	ഹ	Ŋ	Ŋ	ហ	'n
10	ស	0	S.	4	ഹ	S	2	4	0	S	2	0	S	S	0	2	2	2	2	0
15							····								 –			·	· · · ·	
20	S	4	2	S	2	2	2	2	2	S	S	2	2	2	m	Ŋ	ß	5	5	0
25	S	S	2	2	2	2	Ŋ	S	2	2	2	S	S	2	2	Ŋ	ß	5	S	ଫ
30	:===									<u></u>					**		ندح		<u> </u>	
35	'n	ж	Ŋ	m	S	m	S	4	n	2	4	ĸ	2	4	7	<u>.</u>	m	S	4	2
40	8.0	0.1	5	8.0	2	8.0	2	8.0	0.1	5	8.0	0.1	2	8.0	0.1	5	0.8		8.0	
45										··· ···										
50	289		290		291		292			293			294			295	.	296		

5	Ŋ	5	S	5	S	2	Z.	Ŋ		S	5	Ŋ	S	ഗ	5	5	0	Ŋ	S	2	5	cont'd -
10	S	4	4	2	ۍ	Ŋ		0			2	2	0	5	m	2	0	2	0	2	4	to be con
15									·····													
20	വ	m	5	က	5	5	2	4	5	4	5	ß	Э	2	S	S		2	m	5	S S	
25	2	2	2	Ŋ	5	2	5	4	S	5	S	2	5	S	S	2	2	5	5	5	2	
30		<u> </u>																				-
35	5	ж	Ŋ	3	2	n	Ŋ	٣	2	m	5	4	2	S	m	2	m 	2	m	2	m	= .
40 .	2	8.0	Ŋ	8.0	5	8.0	5	8.0	2	8.0	5	8.0	0.1	5	8.0	0.8	0.1	8.0	0.1	S	8.0	
45																						-
50	297		298		299		300		301		302			303		304		305		306		_

5	S	0	S	2	S	2	ഗ	S	2	ഗ	S	2	S	S	4	2	0	ഗ	S	'n
10	0	0	S	S	æ	S	2	0	2	4	0	2	2	0	2	0	0	2	2	0
15																				
20	S	2	2	2	2	2	2	2	2	5	0	S	S	n	2	2	m	2	2	m
25	ις	ю	ß	S		S	ហ	S	Ŋ	Ŋ	ហ	ស	S	4	S	Ŋ	М	Ŋ	ស	ις
30						-		- '	-			-:	y		. ere		¥12.7	<u> </u>		
35	Ŋ	m	Ŋ	4	m	ς.	4	m	2	4	7	ហ	4	7	Z.	4	7	Ŋ	4	m
40	8.0	0.1	5	8.0	0.1	2	8.0	0.1	2	8.0	0.1	2	8.0	0.1	2	8.0	0.1	2	•	0.1
45														-,	- 					
50	307		308			309			310			311			312			313		

5	'n	S	5	ഹ	2	2	2	ر د	.C	2	Ŋ	S.	S	2	ഗ	Ŋ	Ŋ	Ŋ	ſ	Ŋ	ις.	cont'd -
10	5	4	4	2	2	0	5	S	0	5	Ŋ	0	S	4	0	5	т	m	S	2	2	- to be co
15																						-
20	ß	Ŋ	0	ហ	ហ	S	S	ß	4	S	2	4	S	ស	7	S	4	7	Ŋ	4	'n	-
25	· W	2	т	5	5	2	2	5	5	S	S	ហ		. دی	က	5	5	4	5	2	Ŋ	
30		-									- -											=
35	Ŋ	4	2	25	4	т	5	4	m	2	4	2	Ŋ	4	2	ഹ	4	2	S	m 	e e	 -
40																						
45	ιΛ	0.8	0.1	2	0.8	0.1	2	0.8	0.1	2	0.8	0.1		0.8	0.1	2		0.1	2	0.8	2	_
50	314			315			316			317			318			319			320		321	
																		_		_		

1

- to be cont'd

5	S	S	5	2	S	Z	2	2	S	2	2	2	S	S	2	S	S	2	4	2	2
10	0	2	0	2	S	5	ഹ	_γ	2	2	Ŋ	S	S	2	5	4	2	2	0	2	 o
15																				·	
20		2	e	S	S	2	2	5	5	S	S	ις.	S	ις.	Ŋ	r.	m	4	2	Ŋ	ഗ
25	S	4	~	5	۲S .	Ŋ	5	S	Ŋ	S	ഹ		Ŋ	2	2	2	2	S	m	2	m
30				,	·							-									
35	п	2	٣	2	S	2	2	2	S	2	2	2	5	ស	2	2	7	n		Ŋ	7
40	8.0	8.0	0.1	0.8	0.1	0.8	0.1	8.0	0.1	0.8	0.1	8.0	0.1	8.0	0.1			5	0.1	•	0.1
45		2		 `		4				 						 6		0			
50	321	322		323		324		325		326		327		328		329		330		331	

- to be cont'd -

5	5	5	2	2	5	Ŋ	4	2	5	Ŋ	5	Ŋ	5	5	5	4	Ŋ	က	2	5	ις.
10		0	2	2	5	4	2	0	5	5	5	5	5	2	2	0	4	2	4	2	2
15																<u>-</u> -				·	
20	Ŋ	5	ιΩ	S	2	٣	2	4	2	5	2	4	2	2	2	m	Ŋ	m	Ŋ	4,	5
25	ري 	ာ	2	Ŋ	ις.	S	2	2	S	2	S	2	2	22	ري د	S	ۍ.	2	2	4	Ŋ
30										·						•			·		
35	Ŋ	e	5	2	2	7	4	<u></u>	2	т	Ŋ	m	S.	2	м	· ~	4	7	2	7	S
40	ω.	.1		ω.		8.		8.		8.		8.		8.		ω.		ω_	80	7	2
45				0	ഹ	0	- 5	0	2	0		<i>i</i> /	5	·		•		•	•	0	·
50	. 332		333		334		335		336		337		338		339		340		341		342

94

5	ស	Ŋ	ι.	ഗ	Ŋ	Ŋ	ഗ	ις.	'n	S	ഹ	'n	Ŋ	Ŋ	ហ	ഗ	Ŋ	S	ß	so .
10	ĸ	5	m	2	ហ	ស	Ŋ	٣	Ŋ	Ŋ	2	0	2	3	Ŋ	Z.	S	0	ស	ທ ·
																		4		
25		u)	<u>u)</u>	<u></u>	u)	<u>u)</u>	<u></u>	u)		<u></u>							·			~
30	S	2	2	2	5	2	2	2	2	2	2	H	S	5	5	5	2	S	5	S.
35	m	S	2	2	2	2	4	8	'n	4								m.		H
40		0		~1			~		~		~~~				~		2		·····	2
45	0.1	0	0.1	0.3	0.1	3.0	0.5	0.1	0.5	0.1	0	0.	0	0.1	0	0.1	0	0.1	0	···
50	342	343		344		345			346		347	W	348		349		350		351	

1
Ъ
cont
Ö
U
be
Ω
to
ť
ı
•

5 .	Ŋ	2	2	5	S	2	S	ស	S	5	S	2	2	2	2	5	2	2	2	ഗ
10	2	2	2	5	2	S	2	0	ر ک	0	5	4	5	0	2	4	2	2	Z)	ر ک
15																	-1 man		·	
20	Ŋ	5	5	Ŋ	S	4	ហ	4	Ŋ	2	. 22	4	ς	0	4	ı	S	5	5	m
25	S	2	5	2	5	2	2	2	2	4	S	2	2	4	Ŋ	2	2	2	ស	Ŋ
30														2			<u></u>	·		
35	2	Ŋ	2	5	2	ε	5	m	S	m	2	4	ν.	m	2	m	2	κ.	5	
40	. 2	٦.	.2	.1	8.	.2	.2	.1	7	٦.	.2	٦.	2	٦.	80	. 2	7	۲.	7	ار
45	0	0	0	0	0	0	0	0	0		.0	0	· -	0	ó	0	ó	·	· -	·
50	352		353		354		355		356		357		358		359		360		361	

5	Ŋ	2	2	2	2	2	ß	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	S	ហ	Ŋ	Ŋ	'n	4	Ŋ	4
10	Z.	m	2	0	Ŋ	0	S	0	ស	æ	5	5	5	0	2	ഗ	2	0	2	0
	_						•							-	· <u> </u>					
20	5	m	S	S	5	3	S	0	2	2	5	5	5	2	Ŋ	7	ις.	m	2	r.
25	S	2	ر د	2	2	2	2	2	Ŋ	ς.	ري د	ស	2	2	Ŋ	Ŋ	Ŋ	3	Ŋ	4
30														ar u			_00 212		- ,	
35	v	m	ςs	e e	72	m	ις	m	2	m	ហ	ю	2	æ	2	ب	Ŋ		ഗ	7
40	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	8.0	0.2	8.0	0.1	0.2	0.1	0.2	0.1	0.2	0.1
45					· . • .											 -	 .	· · ·		
50	362		363		364		365		366		367		368		369		370		371	

97

to be cont'd

5	7.0	4	Ŋ	S	S	ر د	S	Ŋ	5	Ŋ	Ŋ	2	2	5	2	2	2	S	Ŋ	ഗ
10	S	5	S	_C	S	2	2	2	2	S	2	0	2	4	м	l	Ŋ	4	S	S.
20	5	2	S	2	Ŋ	2	5	2	Ŋ		2	S	5	7	5	4	S	·	S	<u></u>
25	٠٠.	2	5	S	5	Ŋ	S.	Ŋ	Ŋ	2	5	2	2	5	2	4	S.	S	5	4
30		 -			 ,					-		Linaigo				·				
35	ľ	5	2	Ŋ	ហ	S	Ŋ	Ŋ	r.	S	Ŋ	2	2	7	S	7	2	7	2	m
40	.2	٦.	8.	т.	80	٦.	8	٦.	8 0	-	7	т.		8		89		- 11		ω
45		· 0	0	0	•	· 	•	•	· ·	· 0	.0	· -	<u>د</u>	0	w	.0	S	0.	Ŋ	•
50	372		373		374		375	· · · ·	376		377		378		379		380		381	

5	S	2	2	S	2	2	2	2	2	2	5	2	2	2	2	2	2	2	2	S	ſſ
10	S	5	Ŋ	S.	0	5	S.	2	0	0	Ŋ	2	Ŋ	ഹ	Ŋ	0	ഗ	ഗ	0	S	Ŋ
20	S	5	2	2	0	.5	Ŋ	5	ر د	7	ស	4	ហ	rs L	2	m	ស	Ŋ	٠	2	·S
- 25	2	2	2	2	2	2	2	2	5	S	2	2	2	2	ر د	4	2	2	2	2	2
<i>30</i>		<u> </u>	•	·								zard					· ··· :				
35	S	м	2	4	1	Ŋ	4	5	2	0	ស	m	S	m	2	7	S	4	7	· S	m
40																		~			
<i>45</i>	'n	0.8	2	0.8	0.1	2	0.8	S	0.8	0.1	2	0.8		0.8	0.8	0.1	5	0.8	0.1	Ŋ	0.8
50	382		383			384		385			386		387		388		389			390	

5	Ŋ	22	Ŋ	<u>س</u>	Ŋ	5	7.0	S	2	2	2	ហ	S	2	2	Ŋ	22	5	2	2	S.
10	S	2	2	0	Ŋ	2	2	0	m	0	0	2	0	5	2	7	0	2	0	2	2
15	,																			_	
20	2	4	5	m	5	2	5	2	ς.	5	2	2	2	2	4	4	2	S	4	2	رم د
25	2	2	2	2	S	4	5	2	2	ς.	4	5	က	Ŋ	2	2	0	2	2	2	Ŋ
30				····							-										
35	ĽΩ	е	4	7	5	4	S	м	S	ব	٦	Э	Н	2	3	ж	Н	ស	2	2	
40		89		80		8		8		œ			8		œ		ω		8		ω
45	. CJ	· •	5	.0	5	•	2	•	2	.0	.0	2	•	5	. 0	5	0	S	0	2	0
<i>50</i>	391		392		393		394		395			396		397		398		399		400	

5	2	5	5	5	5	2	2	2	'n	4	Ŋ	3	0	0	0	0
- 10		ഗ	ស	ഗ	S	0	ស	0	S	0	4	0	0	0	0	0
20	ı,	ß	Ŋ	S	4	7	2	Ŋ	4	е	8	0	0	0	0	0
25		2	r.	S	S	m	Ŋ	2	2	8	4	m	0	2	0	0
30				 -												
35	5	4	S	4	2	4	Ŋ	S	Ŋ	т	4	ĸ	0	0	0	0
40		8.		ω.	.2	۲.	.2	٦.	.2	٦.	.2	۲.				
45		0	S	0	0	0	0	0	0	0	0	0	5	ഹ	<u></u>	
50	401		402		403		404		405		406		A	α,	υ	Ω

As shown in table 6, the present 3-(substituted phenyl)pyrazole derivatives or salt thereof, represented by the general formula (I), exhibit more excellent controlling effects of weeds than comparative compound A, B, C or D at post-emergence treatment in paddy fields. Even when the derivatives exhibit both herbicidal activity on weeds and phytotoxicity on crops at the same dosage, however, by the selection of a proper lower dosage, sufficient herbicidal activity is retained but phytotoxicity on crops is reduced remarkably.

Test Example 3 Herbicidal effect on upland field weeds of pre-emergence stage.

Polyethylene vats of 10 cm W x 20 cm L x 5 cm depth were filled with soil, and planted separately with seeds of barnyardgrass, velvetleaf, cocklebur, jimsonweed, birdseye speedwell, cleavers, which are upland field weeds, and separately with seeds of soybean and wheat as upland field crops.

Soil in each pot was sprayed with each of solutions containing compounds (listed in Table 1) of the present invention as active ingredient at a predetermined concentration. 14 Days later, the herbicidal effect was examined, the percentages of killed weeds were calculated in the same manner as in Test Example 1, and the phytotoxicity of soybean and wheat plants were also examined and judged according the criterion shown in Test Example 1.

Results of the test are shown in Table 7.

10

15

EP 0 443 059 B1

10		
15		
20		
25		_
30		Тэһ]о 7
35		
40		
45		

5

_																	
		cleavers	S	S	S	3	2		S	1	S	ı	S	5	1	5	ı
		birdseye speedwell	1	ı	ı	ı	ı	ı	ı	ı	ı	i	ı	ţ	ı	1	ı
	treatment	jimsonweed	5	4	S	7	7	Н	5	S	Ŋ	ហ	Ŋ	S	Ŋ	Ŋ	5
	Pre-emergence treatment	cocklebur	5	0	2	0	0	0	ı	æ	5	2	4	1	ı	S	2
	Pre-	velvet- leaf	S	Ŋ	4	т	4	м	2	4	5	2	4	4	2	Ŋ	2
		banyard- grass	5	ß	Ŋ	Ŋ	4	м	2	2	2	m	Ŋ	ß	2	5	Ŋ
	Phytotoxicity	soybean	0	7	0	2	٦	0	4	0	4	2	S	4	-	4	7
	Phytot	wheat	٦	2	ĸ		0	0	4	7	S	m	Ŋ	4	m	4	m
	Amount of Comp'd active	ingredient Kg/ha	5	ស	S	S	ß	Ŋ	ď	0.8	'n	8.0	'n	ហ	8.0	'n	8.0
;	Comp'd	0 Z	3	4	5	9	7	œ	0		10		11	12	-	13	

5	Ŋ	1	2	0	S	4	ഹ	0	0	4	4	ۍ ص	4	2	4	2	2	4	2	m
10	1	1	ı	1	ı	1	1	1 .	1	ı	ı	1	l	1	1	t	ı	ı	1	I
15	S	2	4	4	4	4	m	Н	Н	7	S	S	4	2	2	5	ស	S	S	S
20	·	1	7	0	2	٦	0	0	0	0	0	ı	0	ı	1	1 -	0	5	ı	
25	<u></u>	2		0	4	1	0	2	0	0	2	2	4	2	4		4		5	4
30				7																
35		ر.	4	-	4	S	м	4	4	0	<u>س</u>	2	4	2	4	4	<u>м</u>	5	4	м ——
40	<u>۳</u>	0	ı	0	2	1	0	0	•	7	0	m	-	4	2	2	0	ω	6	г
45	Ŋ	m		0	~	7	-1	0	0	0	<u>н</u>	4	2	4	2	4	7	2	М	н —
50	S	0.8	2	2	5	2	5	ഹ	2	22	5	S	8.0	S	0.8	S	8.0	Ŋ	Ŋ	0.8
. 55	14		16	17	18	19	20	21	23	24	25	26		27		28		29	30	

5	<u></u>	4	m	Ŋ	S	S	4	т	2	5	2	0	4	0	ς	S	4	4	2	4	5
10	i	1	1	1	ı	ı	ı	ı	1	ı	ı	ı	1	ı	. 1	ı	t	ı	I	ı	ı
15	25	2	2	S.	. 73	2	S	2	2	2	'n	2	4	0	е	ស	2	4	Ŋ	2	ν.
20	ю	ı	0	ı	0	ı	0	ı	0	4	0	0	ı	0	0	0	0	0		0	0
25	4	2	4	4	m	2	4	4	m	2		m	4		2	٣	2	٠ ٣	2	2	4
30	S	4	٣	4	3		2	2	4	2	2	0	2	<u>۳</u>	4	4	4	m	4	-	2
<i>35</i> -	7	2	0	2	0	2	0	2	0	n	-	0	2	0	0	0	0	0	0	0	Ŋ
	m	٣	7	4	2	ж	-	æ	М	m	2	0	7	0	0	0	0	0	0	0	Э
<i>45</i>	.c	5			8.0	5	_	S		5	S	2	5	S	S	S	'n	S	Ŋ	S.	S
55	31	32		33		34		35		37	38	40	41	42	43	44	45	46	47	48	49

5	ស	S	S	2	-	0	0	5	2	4	2	2	4	2	Ŋ	1	2	1	5	ر د
10	1	ı	ı	ı	ı		ı	1	ı	ı	•	ı	ı	i	ı	ı	ı	1	ı	ı
15	'n	Ŋ	Ŋ	5	2	0	2	2	5	4	2	5	ю	2	ഗ	5	5	2	2	ī.
20	l	2	ı	2	0	0	0	1	4	0	2	7	ı	0	ഗ	4	Ŋ	4	1	4
<i>25</i>	4	2	2	S		7		2	4	2	2	2	2	4	2	2	5	2	Ŋ	4
35	ហ	25	S	2	m	e e	4	Ŋ	ß	4	Ŋ	Ŋ	5	2	5	Ŋ	Ŋ	2	2	S
40	Ŋ	22	м	S	0	0	0	Ŋ	7	т	2	-1	П	0	4	2	4	7	٣	2
45	2	2	0	Н	0	0	0	ĸ	<u>н</u>		. 2	н	0	0	5	m	Ŋ	Э	4	7
50	ιΛ	2		S	2	2	2	ហ	Ŋ	2	S	Ŋ	ស	S	S		S			
55	20	51	52	54	55	57	59	7.1	72	73	74	92	77	78	81		82		83	

5	S	1	ī,	4	2	2	2	2	2	i	2	2	0	0	'n	'n	S	S	S	د
10	I	ı	ł	1	ı	1	ı	1	1	Þ	2	2	ι	ı	ı		2	Ŋ	5	κ
15	Ŋ	Ŋ	5	Ŋ	ស	ທ	5	2	S	Ŋ	ı	l	5	7	S	S	ı	ı	ı	1
20	ហ	4	Ŋ	4	2	S	ഗ	S	2	m	m	1	1	т	ហ	2	Ŋ	4	Z,	4
25	2	2	2	2	ß	2	2	2	2	4	Ŋ	m	Ŋ	4	Ŋ	ស	۲O	4	Ŋ	m
35	2	2	S	4	5	Ŋ	٦	2	2	S	5	2	2	4	S	4	2	S	S	4
40	4	7	4	-	2	ю	4	e	м	0	ĸ	Н	7	0	4	7	ĸ	7	7	н
45	2	m	Ω.	7	Ŋ	ю	2	m	4	m	4	-	4	7	4	7	4		4	
45	S	8.0	2	0.8	Ŋ	0.8	S	0.8	S	0.8	S	0.8	ស	0.8	S	0.8	2	0.8	2	0.8
50 .	84		85		98		87	-	88		68		06		91		92		93	
																				

5	5	S	5	2	2	2	S	S	S	2	2	2	2	2	2	2	2		ഹ	ഗ
10	ß	ഹ	2	S	ഗ	S	ഗ	S	ഹ	2	ഗ	2	S	2	2	2	5	S	ı	1
15	1	ı	ı	ı	ì	ı	1	ì	ı	ı	1	ı	•	1	ı	ı	ı	ı	5	1
20	2	2	3	-	Ŋ	2	S.	٣	2	4	2	4	n	г	٣		2	4	2	0
25	Ŋ	2	4	7	2	2	2	2	2	2	2	r	2	4	2	2	2	2	2	4
30	2	2	S	2	2	S	5	4		4	25	7	S	m	2	4	۲n	4	S	2
35 · · · · · · · · · · · · · · · · · · ·	2	<u>-</u>	2	-	4	-	m	<u>-</u>	m		æ		ĸ	7	m	-	4	ч	m	
-	4	2	т	-	4	н	ო	Н	4	Н	٣	н	7	7	4	-	4	Н	4	ю
45	S	8.0	ر ک	8.0	2	8.0	2	8.0	5	8.0	2	8.0	2	8.0	5	0.8	Ω.	8.0	S	8.0
50	94		95		96		16		86		66		100		101		102	-	103	,
55																				

5	20	5	S	S	S	4	S.	5	ស	S	<u>د</u>	2	S	S.	Ŋ	М	5	ı	S	i	- q -
10	1	ı	ı	1	S	ស	S	S	ហ	Ŋ	ı	ı	•	1	1	1	ı	1	t	ı	to be cont'd
15	S	1	ر.	Ŋ	ı	I	1	1	ı	1	£	2	Ŋ	S	4	2	S	S	2	2	l T
20	ı	0	ı	1	2	1	٣	ı	٣	ı	2	,	7	ı	-	<u> </u>	S	m	2	7	
25	Ŋ	ις	Ŋ	Ŋ	Ŋ	Ŋ	'n	4	ις	Ŋ	2	Ŋ	ر.	Ŋ	Ŋ	4	2		۲S	2	
30	د	4	S	2	2	ν	2	2	2	۲۵	S	2	2	2	2	, -	S	S	2	S	
35	4	2	3	Н	3	٦	٣		m	н	3	Н	3	-	2	0	4	2	4	7	
40	4	ю	4	т	4	m	S	٣	4	м	4	М	S	m	4	7	4	٣	Ŋ	т	
45	2	8.0	2	8.0	S	8.0	S	8.0	2	8.0	S	8.0	Ŋ	8.0	Ŋ	8.0	ري د	8.0	'n	8.0	
55	104		105		106		107		108		109		110		111		112		113		

5	Ŋ	4	2	٣	2	2	S	Ŋ	<u>υ</u>	ഗ	'n	ഗ	ഹ	4	ر ا	Ŋ	<u>ب</u>	Ŋ	S	Ŋ	ا ت
10	ſ	١.	ı	ι	ı	1	ı	ı	S	2	ı	ı	ı	i	ı	1	ı	l .	1	ı	to be cont'd
15	2	S	Ŋ	2	S	S	ഗ	2	1	ı	S	2	5	4	S	Ŋ	5	S	Ŋ	2	ī
20	5	4	2	ı	2		7	0	m		4	7	7	ı	m	-	7	ı	2	ı	
25	. ح	S	2	2	5	Ŋ	S	Ŋ	5	4	'n	4	'n	ر ک	S	5	S	4	Ŋ	S	_
30		e		4	Ŋ	'n	r.	ſŊ	Ŋ	4	-C		5	4	2	4	Ŋ	4	2	4.	_
35	m		·	0	7	7	· m	0	7	0	7	0	Ж		<u>.</u>	Н	m	0	m		=
40	<u></u>	0	e	0	4	.	4	2	4	7	4	2	т	ч	4	2	4	2	4	2	
45	S	8.0	'n	8.0	2	0.8	2	0.8	2	8.0	S	8.0	5	8.0	5	0.8	ហ	8.0	S	8.0	==
50	114		115	., <u>. </u>	116		117		118		119	_	120		121	;	122	<u> </u>	123		
55																					

5	5	S	S	5.	ഹ	ហ	Ŋ	4	ഗ	ഹ	ľ	Ŋ	Ŋ	4	7	0	ഗ	4	2	'n
10	5	Ŋ	ſ	ı	ı	1	ı	ł	ţ	ı	ı	1	ı	1	1	ı	ŀ	ı	ı	ı
15	ı	ı	S	2	S	2	4	3	S	S	2	2	2	4	7	0	ហ	2	ហ	4
20	2		t	· ·	ı	ı	0	0	ı	ı	0	0	ı	ı	ı	ł	1	ı	1	1
25	Ŋ	4	2	2	2	2	2	4	2	ر د	2	4	4	3	ĸ	٦	2	2	S	ιΩ
30	5	2	2	5	2	4	2	4	S	2	2	S	2	4	4	т	ហ	7	4	m
35	ю		4	2	4	Н	7	7	7		4	0	4	0	т	0	4	2	m	-
40	4	2	4	7	4	2	4	2	4	2	4	-	4	0	m	0	4	7	4	7
45	Ŋ	8.0	2	8.0	S	8.0	2	8.0	S	8.0	Ŋ	8.0	S	0.8	2	8.0	S	8.0	S	8.0
55	125		126		127		128		129		130	•	131		132	•	133		134	
-																				

5	5	4	S	4	Ŋ	S	ı	I	Ŋ	.C	2	Ŋ	2	S	'n	Ŋ	· ·	ഹ	'n	4
10	ı	1	ı	ı	1	ì	ı	ŧ	ı	ı	ı	t	ı	1	ı	ı	ı	ı	•	1
15	2	4	Z)	S	Ŋ	Ŋ	2	S		5	2	2	5	5	2	2	2	5	5	S
20	1	ı	<u> </u>			1	2	-	2	ĸ	1	ı	ı	1		ı	ı	1	ı	1
25	2	Ŋ	2	S	Ŋ	S	5	2	2	2	2	S	2	2	2	2	2	2	S	4
30	ın	4	Ŋ	4	S	7	Ŋ	4	2	S	2	Ŋ	ហ	Ŋ	'n	Ŋ	S	S	S	4
40	4	2	4	7	4	7	4	7	4	2	4	2	m	-	4	m	4	2	С	H
40	7	7	4	2	4	7	4	2	4	2	4	٣	4	7	4	ĸ	2	m	m	
45	Ŋ	8.0	S	8.0	2	8.0	2	8.0	Ŋ	0.8	2	8.0	5	8.0	S	8.0	2	8.0	2	8.0
50	135		136		137		138		139		140		141		142		143		144	

1

5	72	ഹ	S	2	5	S	ഹ	ഹ	2	2	2	S	'n	゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	.c	4	Ŋ	<u>د</u>	S	4
10	ı	ı	ı	ı	ı	i	ı	ı	ı	ι	ı	ı	1	ı	ı	ı	ì	ı	ı	ı
15	Ŋ	2	Ŋ	S	5	5	S	2	2	S	S	S	5	Ŋ	ស	4	Ŋ	4	5	4
20	7	0	4	m	7	S.	4	2	m	٦	รว	4	5	m	m	7	4	ю	7	0
25	ى	2	2	2			5	2	5	5	2	2	5	2	4	7	2	4	4	m
35	Ŋ	4	S	S	Ŋ	S	5	2	2	2	2	S	2	5	Ω.	7	5	7	2	4
	70	m	4	7	0	S	m	7	ĸ	-	4	2	4	2	7	0	m	0	m	0
40	S	က	e	7	5	n	4	2	Z.	r	4	2	4	က	e	7	3	-	8	
45 50	S	8.0	2	2	S	5	2	8.0	2	0.8	S	8.0	Ŋ	8.0	S	8.0	S	8.0	2	8.0
55	145	•	146	147	148	149	150		151		152		153	-	154		155		156	

<i>5</i>	Ŋ	S	ю	0	2	0	7	0	4	ŧ	ഹ	4	Ŋ	4	ις	Ŋ	ស	4	ហ	4	ا س	3
10	ì	ı	ı	ı	ı	ı	ı	ı	1	1	ı	ı	ı	•	ı	1	1	1	ı	1	 	1
15	ı	ı	Ŋ	4	S	Ŋ	2	m	4	m	Ŋ	ഗ	'n		2	Z.	Ŋ	4	S	4	1	
20 -	Ŋ	4	0	0	0	0	0	0	2	0	4	m	2	0	ı	ı	1	ı	1	1	<u> </u>	
25	м	2	2	4	2	4	2	۳	2	2	2	4	5	4	S	4	S	S	2	4		
30																						
35	4		4	e	4	m	4	٣	2	4	2	2	2	2	2	S	2	4	2	4		
	т	0	m	0	m	0	m	0	e		m	Н	м	1	3	7	Э	1	Э	0		
40	<u></u>	٦	m	1	m	-	m	0	ĸ	-	2	m	ري د	m	٣	-	4	7	4	2		
45								-					_ ===				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		· 			
50	Ŋ	0.8	2	0.8	2	0.8	S	0.8	ß	0.8	S	0.8	2	0.8	5	0.8	S	0.8	S	0.8		
	157		158		159	-	160		191		162		163		164		165		166			
55																						

5	5	4	2	4	2	4	4	4	2	5	ις	4	4	m	'n	4	ۍ	2	-	-	0
10	1	ı	i	1	ı	1	1	ı	ı	1	ì	ı	ı	ı	ı	1	ı	t	t	ı	1
15	5	2	S	작	2	0	2	0	1	ı	S	ı	2	0	2	i	Z.	i	2	ĸ	2
20	т	н	5	-	ហ	m	2	m	0	0		0	0	0	0	0	ı	0	0	0	0
25	2	4	2	4	S	4	4	2	7	2	۲۵	4	2	0	4		2	4	2	4	3
30		4	'n	4	2	4	4	7	Ŋ	7	2	4	m	7	ហ	4	Ŋ	4	m	Ŋ	4
35	.	H	м	0	М	0	m	0	2	т	٣	1	т	0	m	0	4	7	2	2	0
40	m	-	ю	0	е	H	٣	0	٣	٦	4	2	ĸ	0	٣		4	7	2	m	0
45	50	8.0	Ŋ	8.0	٠.	8.0	2	8.0	2	8.0	Ŋ	8.0	2	8.0	2	8.0	ഗ	8.0	5	2	8.0
50	167		168		169		170		171		172		173		174		175	***	176	177	
55			_																		

5	Н	0	വ	٣	4	2	2	0	Ŋ	ī.	ഹ	ഹ	7	· 		٦	-	Ŋ	4	ഗ	ις.
10	ı		1	î	ı	ı	ı	ı	ı	ı	1	1	ı	ı	1	ı	Ŋ	ı	ı	S	ស
15	7	0	2	Ŋ	m		S	3	2	2	S	ю	2	2	7	2	7	S	4	ı	0
20	0	0	0	0	ı	0	1	0	ı	0		ı	ı	0	0	0	1	1	0	1	ı
25	4	m	4	m	4	2	Ŋ	4	4	ю	т	٦	7	7	ស	m	7	4	7	4	7
35	S	4	2	4	2	7	4	m	2	4	4	4	4	2	'n	2	3	5	4	4	т
40	е	н	m	0	7	0	က	0	٣	0	2	0	7	2	2	2	7	3	0	က	H
	m	-	m	1	е	1	٣	0	m	0	m	٦	m	m	8	7	7	ĸ	7	က	٦
45	'n	8.0	2	8.0	2	8.0	Ŋ	8.0	2	8.0	2	8.0	່ເກ	Ŋ	Ŋ	ري د	2	Ŋ	8.0		8.0
55	178		179		180		181		182		183		184	185	186	187	188	189		190	

5		5	S	2	-	2	2		0	П	0	2	٣	Ŋ	2	2	٦	S	2	ហ	ഹ
10		S	Ŋ	ī	ı	1	ī	ı	ı	ı	i	ı	ì	S	S	S	S	5	Ŋ	ហ	5
15	1	ı	ı	ı	2	2	5	4	ю	4	m	2	ſſ	ı	ı	ı	ı	ı	1	ı	1
20			1	0	ı	Ŋ	2	•	0	ı	0	ı	ı	ı	ı	2	٦	1	0		0
25	5	m	7	-	m	ß	2	5	2	S	S	4	n	2	m	4	2	٣	H	4	2
30	4	m	Ŋ	2	2		4	Ŋ	7	2	4	5	4	4	m	4	ĸ	m	7	4	m
35	м	Н	٣	0	Н	m	7	м	٦	m		٣	0	ю		м	п	٣	0	m	н
40 .	٣	п	က	0	7	4	7	m	7	ĸ	0	e	, — ·	က	п	m		m	П	m	0
45	Ŋ	0.8	ហ	0.8	5	2	8.0	2	8.0	5	0.8	2	8.0	2	8.0	2	8.0	5	8.0	2	8.0
55	191		192	.,	193	194		195	•	196		197		198		199		200		201	
_												_									

5		ı c			ហ	<u>د</u>	- LO	4	· _	ı c	·	ı c	, <u>-</u>	· c	•	, () u	n .	<u>م</u>	S	S
10	ທ		ı vo	ı ıs	Ŋ	Ŋ	ı	1	ı	1	ı	ı	ı	ı	1	,	i		I	i	ı
15	1	ı	ı	1	ı	ı	4	7	7	0	Ŋ	4	4	7	4		, ,	١ ٥	-	5	Ω.
20	1	0	1	0	2	н	ı	0	ı	0	1	0	ı	0	· 1	0	ſſ) 4	, L	ν. 	
30	7	0	7	0	4	7	2	0	4	2	2	n	5	m	 -	m	m	,	i u	n	4
35	æ	2	m	2	m	2	4	м	4	٣	4	ю	4	т	4	4	7	2	ı u	7	ις.
40	2	0	2	0	٣	٦	٣	М	7	0	7	0	2	0	-	Н	2	0	4	•	~
45	7	0	2	0	٣	ч	e e	٦	2	0	2	0	7	0	-	7	m	-	r-)	0
50	S	0.8	S.	0.8	ស	0.8	ហ	0.8	2	0.8	S.	0.8	ស	0.8	Ŋ	2	S	8.0	Ŋ	(». •
55	202		203		204		206		207		208		509		210	212	216		220		
-																					

5	2	5	Ŋ	ĸ	н	-	ហ	Ŋ	2	5	4	Ŋ	5	2	4	5	2	ß	S	5	S
10	ı	1	i	ı	5	5	5	5	S	2	2	2	2	5	2	2	2	2	Ŋ	S	Ŋ
15	ß	4	5	2	1	ı	ı	,1	ı	ı	ı	ı	ı	1	ı	ı	1	ı	1	i	ı
20	0	ı	e e	-	-	0	7	0	0		0		0		0		0	7	-		0
25	4	n	~	7	4		5	2	4	2	٣	2	2	2	4		2	2	<u>.</u> 	2	4
30	Ŋ	Ŋ	Ŋ	'n	4	e	2	4	æ	4	2	Ŋ	4	7	n	2	4	4	m	2	4
<i>35</i>	æ		м	0	7	0	<u>۳</u>	٦	3	2	0	4	2	n	Н	m	П	7	0	er e	
	ю	٦	м	м	м	٦	2	m	М	ĸ	-	4	2	ю	-	м	Н	m	н	m	н
50	Ŋ	0.8	2	0.8	2	0.8	۲Ω	8.0	Ŋ	S	8.0	Ŋ	8.0	5	8.0	5	8.0	2	8.0	Ŋ	8.0
55	221		222		224		225		227	229		230		231		232		233		234	

5	2	0	4	н_	ഹ	4	S	Ϋ́	S	'n	'n	ĸ	ഹ	м	4	ю	4	٦	5	ح
10	S	2	2	2	S	z,	S	2	ស	2	2	2	2	2	5	S	2	2	2	ī,
15	ı	ı	ı	ı	ı	ı	1	1	1	ı	ı	ı	ı	ı	1	ı	ı	ı	ı	ı
20	0	0	н	0		0	2	1	7	ı	2	1	-	0	1	0		0	Ŋ	М
25	S	4	S	4	2	8	2	2	2	2	2	2	S	4	2	2	2	4	۲	4
<i>35</i> .	m	2	4	7	m	7	S	4	2	4	ις.	4	2	m	2	7	4	2	<u>د</u>	4
40	. 2	0	н	0	2	0	4	7	က		m	٦	7	0	2	0		0	m	н
	ю	н	2	0	ĸ	7	4	2	e	-	e	H	m	п	m	н	7	0	m	г
50	S	0.8	8.0	0.2	Ŋ	8.0	S		S	8.0	r.	8.0	Ŋ	8.0	S	0.8	0.8	0.2		8.0
55	235		236		237		238		239		240		241		242		243		244	

5	<u>د</u>	ß	2	-	2	4	2	S	S	2	2	2	4	2	S	4	S	2	S	<u>د</u>
10	ß	Ŋ	Ŋ	S	S	ς	S	Z)	ις	ς	Ŋ	ស	S	S	2	ហ	5	2	2	'n
15		ı	1	ı	1	ı	ı	ı	1	1	1	1	ı	1	ı	ı	1	1	ı	ı
20	7	0	0	0	7	0	2	0	-	0	4	2	7	0	m	2	7	0	7	7
25	S	4	4	-	2	r	2	4	2	2	5	5	4	2	2	S	5	4	25	
35	S	m	m	7	ι'n	m	'n	т	r.	Ŋ	5	2	4	М	S	4	Ŋ	4	ស	4
40	æ	٦	3	п	7	0	٣	Н	3	п	n	-	2	0	Ю	H	3	Н	2	m
40 -	м	7	т	Н	n	1	М	Н	4	2	4	2	ю	٠٠ı	4	2	m		Ŋ	m
45	Ŋ	8.0		8.0	2	8.0	S	8.0	5	8.0	2	8.0	5	8.0	Ŋ	8.0	Ŋ	8.0	8.0	0.2
50	245		247		248		249		250		251		252		253		254		255	
55																				

5	ហ	<u>د</u>	5	4	<u>υ</u>	ω	4	7	m	-	ഗ	ر د	4	7	m	7	е	0	m	0	-
10	Ŋ	2	2	2	2	Ŋ	'n	4	ഹ	2	2	2	2	S	Ŋ	Ŋ	Ŋ	S	Ŋ	S	
. 15		i	l	ı	1	ı	ı	1	ı	1	1	1	1	ı	i	ı	1	ï	ı	1	-
20	7	П	2	0	4	2		0		0	4	e.	п	0	H	0	н		r-1	0	-
25		2	r.	S	S	S	m	-	Ŋ	m	S	2	S	e	4	7	4		ın	4	_
30	<u></u>	4	2	Ŋ		4	4	2	4	m	2	4	4	2	m	0	m	0	4	7	-
35	<u></u>	7	2	0	4	m	Ж	0	7	0	n			0	~	0		0	-	0	=
40	'n		m	-п	ហ	٣	m	0	М		4	2	7	0	7	0	7		· m	· -	_
45	0.2		8.0	0.2	0.2	0.1	8.0	0.2	8.0	0.2	8.0	0.2	8 0	0.2	8.0	0.2	8	2.0	a α	0.2	
50	256	2	257		258		259		260		261		262	1	263)) 	264	r > 1	365	0	_
55																					_

5	5	S	5	м	4	٣	4	2	2	ю	S	2	Ŋ	Н	2	4	2	v
10	Ŋ	S	S	2	Ŋ	2	2	5	ທ	2	S	S	ι.	S	S	2	2	S
15	1	I	ſ	ı	ı	ı	ı	1	1	ı	ı	ı	ı	ı	ı	ı	ı	ı
20	н	0	н	0	0	0	m	0	m	m	7	0	-	0		٦	-	0
30	m	0	4	7	4	2	2	e	2	2	2	2	4	2	2	S	2	4
35	4	7	m	0	ഗ	7	Ŋ	v	S	4	Ŋ	ഹ	Ŋ	4	S	3	S	ĸ
40		0	7	ı		0	н	0	н	0	7	Н	н	0	-	0	Н	0
	2	0	7	0	м	ч	ю	Н	8	ч	ю	2	m	н	8	-	т	~
45	8.0			0.2		0.2	0.8	0.2			8.0			0.2	8.0	0.2	8.0	0.5
55	266		267		269		270		271		272		273		274		275	

ı
Q
Ţ
con
၀
pe
ţ
i

5	4	m	4	2	4	e	4	m ́	S	S.	S	S	S	Ŋ	ស	Ŋ	S	S	5	2
10	.c	5	ß	S	ស	S	S	ις	ις	ស	5	S	2	2	5	5	5	2	2	S
15	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	1	1	ı	ı	ı	ı	1	1	1	!
20	1	0		0	-	0		0	H	0	rı	0	7	0	7	0	Н	0	n	7
<i>25</i> <i>30</i>		4	2	2	2	4		<u></u> -	2	e	2	5	ſſ	2	2	S	2	m	S	2
35	5	٣	4	m	4	e	4	7	Ŋ	4	2	4	2	4	ស	4	5	₹	Ŋ	4
40	m	7	m	٦	т	٦	3	0	2	0	m	1	ю	7	n	7	3	1	ო	н
•	4	2	က	H	3	-	Э	0	4	7	М	٦	m	н	е	н	٣	п	m	н
45	S	0.8		8.0	2	8.0	S	8.0	S	8.0	S	8.0	S	8.0	5	8.0	2	8.0	S	8.0
55	276		277		278		279		280		281		282		283		284		285	

5	'n	2	S	2	S	2	ς,	4	2	2	2	2	ς.	\$	2	2	2	2	2	'n
10	ß	2	ഹ	S	ഗ	Ŋ	2	ហ	2	Ŋ	S	2	Ŋ	Ŋ	ις	Ω	5	Ŋ	S	ſΛ
15	ı	1	ſ	ı	1	1	ı	1	ı	ı	1	ı	i	ı	ı	1	1	1	ı	1
20		0	7	ı	7	ı	7	ı	2		7	-	4	7	7	0	-	0	٦	0
25		4	S	Ŋ	S	Ŋ	S	2	2	2	m	-	2	4	2	4	m	Н	2	4
35	2	m	2	♥	Ŋ	4	Ŋ	4	Ŋ	Ŋ	Ŋ	4	īΩ	m	m	7	4	m	S	4
40	т	Н	2	0	ო	<u></u> н	n	H	m	<u>-</u>	m	Н	2	0	-	0	Н	0	8	0
40	m	н	4	7	4	2	4	2	м	п	ю		m	-	m	-1	m		ю	H
45	2	8.0		8.0	S	8.0	Ŋ	8.0	S	8.0	Ŋ	8.0		8.0		8.0		8.0		8.0
55	286		287		288		289		290		291		292		293	-	294	-	295	

5	S	2	ഗ	2	ഹ	Ŋ	Ŋ	4	5	4	z,	Ŋ	Ŋ	ĸ	Ŋ	Ŋ	Ŋ	r.	S	m
10	Ŋ	5		S	S	ις.	ហ	S	2	5	2	ĸ	S.	S	2	2	5	S	2	ហ
15	ı	ı	ı	ı	ı	ı	ı	1	i	ı	1	ı	1	ı	ı	i	ı	ı	ı	1
20		0	-		7	1	-	0		0	7	0	H	0	-	0	7	٦	н	0
25	ഹ	4	.S	4	S	4	S	4	ហ	m	in	Ŋ	Ŋ	m	Ŋ	m	Ŋ	7	ري د	ა
35	S	4	ß	4	4	m	S	m	4	2	Ŋ	4	4	m	4	m	2	4	2	4
40	ю	~	٣	Н	m	-	м	Н	2	0	7	0	2	0		0	m	-	٣	
	4	2	m	7	ო	-	4	7	т	~	4	2	٣	٦	4	2	m	1	С	-
50	S	8.0	2	8.0	2	8.0	2	0.8	2	0.8	ß	8.0	ιΩ	0.8	2	0.8	2	0.8	S	8.0
55	296		297		298		299		300		302		301		303		304		305	

5	ري د	S	2	2	2	4	S	2	S	ഹ	5	S	2	2	S	2	S	2	2	٧.
10	Ŋ	2	ß	2	2	Ŋ	Ŋ	2	ഗ	2	ហ	5	2	Ŋ	S	2	S	S	2	S
15	ı	ı	ı	ı	1	ı	ı	1	ı	ı	i	ı	1	1	ı	ı	1	ı	ı	1
20	7	7	2	0	2	ı	2	ı	7	0	н	0	2	0	2	0	н	0	2	
25		m	Ŋ	4	ري د	Ŋ	Ŋ	2	r.	'n	4	2	S	2	Ŋ	2	2	4	'n	4
30	4	m	2	4	2	4	5	4	'n	3	m	7	S	4	4	7	S	m	Z.	m
35	m	~	7	0	m	러	4	2	2	٣	2	0	m	7	2	0	n	г	m	rļ.
40	4	2	m	-	4	7	4	7	4	2	М	-	n	1	m	н	m	-	7	7
45	S	8.0	2	8.0	2	8.0	S	8.0	S	8.0	5	8.0	2	8.0	2	8.0	5	8.0	2	8.0
	306		307		308		309		310		312		313	· · · -	314		315	-	316	
55																				

5	ľ	ហ	Ŋ	Ŋ	ഹ	ഗ	4	7	ഗ	4	4	7	ß	4	ß	ო	5	4	Ŋ	ភ
10	ς	2	2	2	2	2	2	ß	2	Ŋ	S	ო	ß	ഹ	S	2	5	2	S	ហ
- 15	ı	1	1	ı	ı	1	i	ı	ı	1	ı	1	ı	1	1	ı	1	1	1	1
20	5	-	7	-	2	м	2			0	-	0	Ŋ	m	4	е	1		S	m
25 .	Ŋ	4	٣	-	2	S	2	2		m	4		S	4	2	4	Ŋ	2	S	S
30	2	т	2	4	رد.	Ŋ	2	4	4	7	٣	0	z,	2	'n	2	ر د	4	2	4
35	m		7	0	æ	-	m	0	2	0		0	4	7	4	7	4	2	er	٦
40	4	7	е		т	H	ю	0	Ä	r-1	2	0	4	7	2	٣	m		4	2
45 50	Ŋ	0.8	S	0.8	S	8.0	ហ	8.0	2	8.0	5	8.0	2	8.0	S	0.8	S	0.8	Ŋ	8.0
55	31.7		318		319		320		321		322		323		324		325		326	

5		-2	5	4	4	-	Ŋ	ın ِ	5	S	4	2	ı	2	Ŋ	Ŋ	1	ഹ	4	ς.	ю
10	ιn	2	S	2	S	Ŋ	2	'n	S	Ŋ	Ŋ	S	2	2	S	S	4	5	2	Ŋ	S
15	1	1	ı	ı	ı	ı	ı	ı	ı	1	1	ı	•	1	ı	ı	ı	ı	ı	ı	ì
20	5	2	4	2	7	0	Н	52	2	Ŋ	М	-	H	-	0	п	0	2	-	-1	0
25 -	2	5	Z.	2	m	0	ĸ	S	5	2	4	5	٣	4	2	2	0	2	2	m	
<i>35</i>	ഗ	4	2	4	m	٦	4	2	2	2	8	4	м	т	2	4	0	5	4	4	е
40 -	м	7	4	2	٦	0	7	S	4	5	m	2	0	7	0	н	0	7	0	7	0
w.	4	2	٣	П	2	0	e	\$	м	70	м	m	а	7	0	2	0	7	0	7	0
45	ιζ	8.0	Ŋ	8.0	5	8.0	5	ស	8.0	8.0	0.2	2	0.8	5	8.0	Ŋ	0.8	5	8.0	ſ,	8.0
55	327		328		329	-	330	331		332		333		334		335		336		337	

5	2	5	4	2	ഗ .	4	m	4	7	4	7	4	2	4	2	4	7	4	٦	4	ri .	ا و
10	Ŋ	S	Ŋ	ς,	Ŋ	Ŋ	m	S	S	5	S	ر د	Ŋ	S	2	2	2	Ŋ	Ŋ	z.	'n	to be cont'd
15	1	ı	1	ı	1	ı.	ı	1	ı	1	1	ı	ı	ı	ı	ı	ı	ı	1	1	ı	, ,
20		0	0	-	0	7	0		0		0	-	0	н	0	Н	0	1	0		0	-
25					~			5	2	- 2	<u>۔</u> د		<u>-</u>				4.	2	4	2		_
30		,																				_
	4	m	4	m	2	м	0	2	4	Ŋ	4	2	æ	Z.	м	Ŋ	m	2	m	S	т	
35	2	0	ᆏ	2	0	r-I	0	-	0	٦	0	-г	0	7	Н	н	0		0	٦	0	=
40			2	2	0	E		m		Э		т	٦	m	-	м		٣		3	H	
45		8.0	2	2	8.0	8.0	0.2	0.8	0.2	0.8	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	=
50												****					. =					
55	338		339	340		341		342		343		344		345		346		347		348		
																						-

5	4	٦	4	4	4	7	Ŋ	4	m	0	4	4	4	0	4	0	4	0	м	0
10	S	S	2	S.	'n	Ŋ	5	Z.	Ŋ	2	2	2	2	S	5	2	2	S	S	ស
15	ı	ı	ı	ı	ı	ı	ı	t	ı	ı	1	ı	1	1	ì	i	1	ı	ı	1
20	H	0		0	٦	1		0	-	0	0	0	0	0	0	0	-	0	-	0
<i>25</i>	5	4	5	m	4	٣	2	7	5	4	7	2	4	2	4	 -	4	-	. 2	♥
35	4	2	4	2	ж	0	4	2	4	2	4	2	4	2	4	-	7	m	4	m
40	Н	0	٦	0	႕	0	٦	0	ri	0	H	0	7	0	٦	0	٦	0	1	0
	m	Н	m	П	7	0	٣	н	7	0	m	н	7	0	2	Н	2	0	7	0
45	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2
	349		350		351	•	352		353	•	354		355		356		357		358	
55																				

5	4	т	Ŋ	٣	4	0	2	e	S	4	4	5	4	7	Э	0	m	0	S	ທ ຸ.
10	Ŋ	Z.	Ŋ	S	S	2	S	2	S	S	Z.	S	2	ഹ	2	2	2	0	S	S.
15	ı	1	1	1	ı	ı	1	ı	1	1	ı	ı	ı	ı	1	1	ı	ı	1	1
20		0	٦	1	-	0	1	0	2	· -	٦,	0	-	0	-	0	-	0	2	
25	2	5	5	2	4	m	2	z,	2	2	2	2	ı,	5.	4	7	4	2	2	
30	ۍ	В	22	4	4	m	4	m	2	4	2	<u>-</u>	S	4	4	m	4		2	25
35		0		0		0	-	0	3			0		0	<u>-</u>	0	-	0	m	
40	m	-1	e		3		m	1	2	æ	Э	-	7	0	e	٦	2	0	4	7
45	0.8	0.2	8.0	0.2	8.0	0.2	8.0	0.2	2	8.0	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	2	0.8
50	359		360		361		362		363		364		365		366	·	367	<u> </u>	368	
55			<u>~</u>		ř		m		m		m	_	<u>~</u>		<u>რ</u>		m		<u></u>	

5		7	4	0	4	2	S	4	5	4	2	2	5	S	S	S.	S	4	ഹ	ı	ر م -
10	5	2	2	7	2	2	7	2	2	2	2	2	2	2	2	2	2	Ŋ	S	4	l o be cont'd
15	ı	ı	ı	ı	ı	1	ı	ı	ı	1	ı	ı	1	1	ı	ı	ı	, I	ı	ı	- to
20	2	0	2	0	1	0	2	4	4	m	4	2	4	2	4	2	2	<u>.</u>	-	0	_
25		_				-															_
30		<u></u>		4	<u>د</u>	4	<u></u>	4	<u>د</u>		···		- 2	 				<u></u>		0	
35	Ŋ	4	4	2	5	m	2	2	S	2	2	2	2	2	2	2	2	4	ς,	٦	=
40	7	7	2	1	7	0	4	2	4	2	4	2	4	2	4	2	က	-	1	0	-
40 _	m	ч	m	0	m	٦	4	7	4	7	2	m	2	m	2	n	n		n	0	-
45	8.0	0.2	8.0	0.2	8.0	0.2	8.0	0.2	. 8.0	0.2	8.0	0.2	0.8	0.2	8.0	0.2	8.0	0.2	5	8.0	=
50					•																-
55	369		370		371		372		373		374		375		376		37.7	_	378		_

5	ស	2	m	7	m	7	2	S	m	ı	7	1	7	ı	2	4	S	S	2	<u>.</u>
10	5	2	2	4	2	2	2	2	S	2	S	S	S	Ŋ	Ŋ	2	S	S	Ŋ	ιυ ,
15	I	ı	ı	ı	1 -	i	,	1	1	1	1	1	ı	ì	ì	ı	ı	ı	1	ı
20	2			0	-4	0	~ 1.	0	٦	0	-	0	H	0		0	-	0	r	0
25	S	m	4	7	2	4	2	n	2	4	4	2	4	2	2	m	2	4	2	4
30	4	m	т	2	m	2	5	4	2	m	4	т	4	ზ	4	7	4	m	4	m
35	m	-1	· H	0	т	Н	2	0	7	0	7	0	т	٦	-	0	7	0	2	0
40	m	н	m	Н	7	0	2	0	ж	н	М	Н	4	2	М	0	3	П	ъ	Н
45	2	8.0	5	8.0	Ŋ	0.8	S.	8.0	2	8.0	S	8.0	Ŋ	8.0	5	8.0	2	8.0	2	8.0
50	379	··	380		381		382		383		384	· •	385		386		388		389	
55																				

5	- 2	2	2	S	S	4	ע	2	ഗ	5	ഗ	2	4	0	8	æ	0	4	7	2	4
10	\$	2	2	ភ	5	2	Z.	2	S	Ŋ	Ŋ	5	S	Ŋ	S.	S	'n	ī.	Ŋ	S	ស
15	ı)	1	ı	ı	ı	ì	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	1	1	1
20	Н	0	0	0	н	0		0	0	0	-	0	-	0			0		0	2	4
25	<u></u>	5	m	1	4		4	7	4	2	5	2	n	0	8	٣	-	4	7	2	т
30 35	4	m	4	٣	4	2	4	2	4	2	4	2	7'	2	n	4	7	4	m	2	4
	m	Н	2	0	-	0	2	0	3	1	2	0	-	0	-	7	0	Н	0	т	Н
40	m	н	ю	٦	2	0	٣	0	3	7	m	-1	2	0	7	7	0	2	0	m	
45		8.0	22	8.0	ري د	8.0	2	8.0	S	8.0	S	8.0	5	0.8	Ŋ	2	8.0	5	8.0	5	8.0
55	390		391		392		393		394		395		396		398	399		400		401	
								-													

5	5	S	S	4	S	2	S	4	S	4	0	0	0	0
10	ī.	Ŋ	5	Ω	ស	2	2	ζ.	2	S	0	0	0	0
15	ı	1	1	ı	1	ı	ı	1	ı	ı	0	0	0	0
25	S	4	2		m	-	H	0	-	0	0	0	0	0
30	S	S	2	S	S	2	S	4	2	4	0	0	0	0
35	S	4	Ŋ	4	5	2	4	<u>س</u>	4	e T	0	0	O.	0
40	m		ო	-	4	7	m		3	н	0	0	0	0
45 =	m 	п	4	7	r.	e N	4	7	4	2	0	0	0	0
50	Ŋ	0.8	0.8	0.2	4	0.8	ις.	0.8	Ŋ	0.8	S	ις	Ŋ	2
<i>55</i>	402		403		404		405		406	·	Ą	М	ن ن	۵ .

As shown in table 7, the present 3-(substituted phenyl)-pyrazole derivatives or salt thereof, represented by the general formula (I), exhibit more excellent controlling effects of weeds than comparative compound A, B, C or D at pre-emergence treatment in paddy fields. Ever when the derivatives exhibit both herbicidal activity on weeds and phytotoxicity on crops at the same dosage, however, by the selection of a proper lower dosage, sufficient herbicidal activity is retained but phytotoxicity on crops is reduced remarkably.

Test Example 4 Herbicidal effect on upland field weeds of post-emergence stage.

Polyethylene vats of 10 cm W x 20 cm L x 5 cm depth were filled with soil, and planted with seeds of upland field weeds shown below and with seeds of soybean and wheat as upland field crops. These weeds and crops were grown to leaf stages shown below. Then these weeds and crops were sprayed separately with solutions containing compounds (listed in Table 1) of the present invention as active ingredient at a predetermined concentration. 14 Days later, the herbicidal effect was examined, the percentages of killed weeds were calculated in the same manner as in Test Example 1, and the phytotoxicity of soybean and wheat plants were examined and judged according to the criterion shown in Test Example 1.

Species of test weeds and leaf stages thereof and leaf stages of test soybean and wheat plants

Barnyardgrass	2-leaf stage
Velvetleaf	2 "
Cocklelur	1 "
Jimsonweed	1 "
Birdseye Speedwell	1 "
Cleavers	2 "
Wheat	2 "
Soybean	1 "

Results of the test are shown in Table 8.

	1					_															
5			cleavers	1	4	ស	S	ιΩ	S	ស	4	1	2	5	5	S	2	2	5	2	continued)
10		treatment	birdseye speedwell	ı	1	ı	ı	ı	1	1	ı	1	1	ı	1	1	ı	ı	ı	ı	To be con
15			jimson- weed	5	4	2	2	2	2	2	ß	2	2	2	2	5	S	2	S	Ŋ	-
20		post-emergence	cock- lebur	4	4	2	2	Ŋ	2	2	2	7	2	2	2	2	2	. 5	2	ហ	
25	Table 8	sod	velvet- leaf	5	4	S	2	5	ស	2	2	S	2	S	5	5	ß	2	2	5	•
<i>30</i>	T	•	banyard- grass	2	2	S	4	25	Ŋ	ഹ	4	2	4	7	Ŋ	4	2	4	4	ю	•
		o- ity	soy- bean	2	4	5	4	2	4	S	4	4	2	5	Ŋ	S	S	4	S	4	
40 .		Phyto- toxicity	wheat	1	2	S	m	2	ĸ	m	2	H	5	r	2	4	5	4	5	ж	
<i>45</i> <i>50</i>		Amount of active	ingredient Kg/ha	5	5	5	0.2	5	0.2	5	5	2	2	8.0	8.0	0.1	5	0.1	8.0	0.2	
55		d.	No.	2	٣	4		2		9	7	∞	σ		10		11		12		

5	2	S	S	5	ς,	4	4	2	S	S	2	S	5	4	2	4	۲S	ιΩ	S	5	ß	ued)
10	1	ı	ı	1	1	ı	ı	1	ı	1	ı	1	t	ı	ı	1	1	ı	1	1	1	 be continued)
15	5	Ŋ	ın	ហ	Ŋ	Ŋ	25	S	Ŋ	<u>ب</u>	_ν	5	4	r.	2	4	S	2	2	Ŋ	'n	(To
	2	5	5	5	Ŋ	4	4	4	S	4	S	Ŋ	2	Ж	Ŋ	т	S	S	2	2	2	_
30	2	S	ις.	Ŋ	2	2	Ŋ	S	Ŋ	Ŋ	5	5	ഗ	S	2	S	ß	2	2	ۍ.	5	
35	4	m	4	٣	7	m	т	٣	ß	m	4	4	2	2	2	п	4	4	2	2	m	_
40	5	4	2	4	3	m m	2	2	2	<u>۳</u>	S	2	m	2	7	2	Ŋ	Ŋ	2	5	S	
45	5	4	5	М	2	7	7	. 2	2	m	m	Ŋ	7	<u></u>	7	2	er —	.v	m	S	4	=
50	8.0	0.1	0.8	0.2	S	Ŋ	ស	S	S	0.8	5	S	0.8	2	5	2	Ŋ	0.8	0.2	2	0.8	
55	13		14	-	15	16	17	18	19		20	21		22	23	24	25	26		27		

																						-	-
5	5	S	ις.	<u>د</u>	ιΩ	ıc.	- 2	L)	.c		5	-C	5	S	2	ις.	۳ 	.C	Ŋ	S			ned)
10		ı	ı	ì	ı	1	1	1	ı	1	t	1	1	t	ı	ı	t	ı	ı	1	1	ι	be continued)
15	2	ហ	S.	2	Ŋ	S	2	2	2	2	2	2	2	ហ	Ŋ	2	2	S	2	S	S	2	(To
20	. 2	Ŋ	2	S	S	S	2	2	2	2	2	2	2	2	5	Ŋ	4	2	2	4	0	S	
25	2	5	Ŋ	بر	2	2	2	2	2	2	2	2	2	5	Ŋ	S	4	S	5	Ŋ	5	2	-
30	4	2		4	2	е	ς.	2	m	m	5	e	2	<u>.</u>	4	2	0	4	-	2	0	m	_
35	5	4	2	S	2	2	2	ر د	2	4	2	2	2	2	4	2		Z.	2	7	m	2	=
40	5	m	5	4		4,	ſΩ	m	2	٣	S	ĸ	S	r	4	- 2	0	2	2	0	0	2	
45	8.0	0.1	2	0.1	2	8.0	Ŋ	0.2	8.0	0.1	5	8.0	2	8.0	2	8.0	2	Ŋ	5	ស	2	S	
50										····													
55	28		29		30		31		32		33		34		35		36	37	. 38	40	41	42	

5	'n	ഗ	ហ	ĸ	ις	5	S	ហ	ß	S	Ŋ	ហ	4	-	4	4	ı	ю	S	S	5	Ŋ
10	ı	1	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	1	ı	1	1	ı	ı	Ŋ	5	5	25
15	- 2	2	2	Ŋ	Ŋ	Ŋ	Ŋ	ហ	22			2	Ŋ	ıΩ	2	2	2	4	ı	1		
20	m	4	2	4	4	4	5	5	Ŋ	Ŋ	· ·	ۍ-	m	7	7	m	4	4			2	5
<i>30</i>	S	S	2	ß	2	. 5	5	Ŋ	2	۲ŋ	2	'n	ß	Z.	4	4	4	ĸ	S	S	Ŋ	2
35	2	က	ო	٣	e	2	2	5	2	S	m	4	Н	Н	2	0	2	0	4	2	4	2
40	χ.	٣		4	7	S	2	5	2	2	4	S	2	ю	7	2	7	2	5	m	2	4
:	7	2	7	8	٦ 	2	4	r.	3	m	7	7	0	0	0	0	7	0	4	2	4	7
<i>45</i>	Ŋ	ĸ	r,	ហ	Ŋ	S	2	2	0.2	2	5	Ŋ	2	5	ហ	ស	S	ις	Ω	0.8	ς.	0.8
55	43	44	45	46	47	48	49	20		51	52	54	55	99	57	58	59	09	62		63	

5	2	S	Ŋ	2	S	Ŋ	2	0	2	2	2	2	н	2	4	m	က	5	'n	ις.	Ŋ	ned)
10	2	S	5	5	2	5	5	1	1	1	ì	ŧ	ı	1	ı	1	1	ı	ı	1	ı	 be continued)
15	ı		1	1	ı	ı	ı	3	2	2	Ŋ	2	2	2	2	2	5	2	2	2	S	(To
20	- 2	2	2	5	2	2	2	-	2	2	٣	2	7	2	5	4	2	2	5	ري	2	
25	5	5	S	2	2	2	S	7		2	2	5	2	2	2	2	2	2	2	2	χ.	
30		m	4	5	3	-	3	0	2	4	-		-	2	4	m		5	Ŋ	2	w	
35 ≖ 40 -	5	ĸ	Ŋ	4	S	Э	2	Г	Ŋ	4	m	m	7	<u>-</u>	Ŋ	4	2	S	ις	2	2	
45	2	٣	4	2	3	1	3	0	3	2	П	<u></u>	<u>н</u>	2	2	Н	-	2	m	2	е	
50	2	0.8	2	0.8	Ŋ	0.8	0.8	2	2	2	2	2	2	2	2	S	S	0.8	0.2	8.0	0.2	
55	64		99		67		89	70	7.1	72	73	74	7.5	92	77	78	79	81		82		_

5	ß	ιΩ	5	ທ .	S	2	2	2	2	'n	2	5	S	5	2	2	ហ	2	ις.	5	S	ιΩ
10	İ	ı	ı	1	1	ı	1	ı	ì	:	1	ı	2	S	1	ı	ı	1	2	2	Ŋ	ĸ
15	<u>۔</u>	5	2	5	2	ري د	ι,	Ŋ	2	ഹ	Ŋ	ഹ	1		2	2	S	ۍ	1	ı	l	1
20	Ŋ	2	2	5	<u>د</u> د	S	ۍ	Ŋ	2	S	ហ	S	S.	2	2	5	2	2	2	ស	Ŋ	ιυ .
25	رر 	5	2	2	2	S.	2	ស	Ŋ	2	2	2	S	S	2	ر د	2	z,	5	2	2	S
30 35	ហ	3	Ŋ	4	2	4	5	ιΩ	Ŋ	22	Ŋ	2	72	4	2	m	2	2	ر د	4	2	4
40	2	4	S	5	Ŋ	3	Ŋ	ر ک	2	2	S	Ŋ	S	Ŋ	Ŋ	m	22	Ŋ	S	Ŋ	2	ω
45	2	м	'n	m	Ŋ	<u>м</u>	2	m	2	4	2	m	2	4	2	<u>~</u>	2	м	Ŋ	2	Ŋ	
50	8.0	0.2	0.8	0.2	0.8	0.2	0.8	0.2	8.0	0.1	0.8	0.1	75	0.8	0.8	0.2	5	0.8	ß	0.8	Ŋ	8.0
55	83		84		85		98		87		88	_	68		06		91		92		93	

5	5	5	2	2	rú		2	2	5	2	2	2	2	2	2	2	2	Ŋ	ហ	S	5	Ŋ
10	2	2	5	2	S	2	2	2	2	2	2	2	2	2	Ŋ	S.	Z.	Z)	•	ı	ı	1
15	1	ı	ı	ı	ı	ı	ı	1	<u> </u>	l	J	ı	1	1	ı	 I	1	1	2	2	2	S.
20	5	2	5	Ŋ	5	2	2	ۍ د	ر2	2	25	2	2	2	2	2	22	Ŋ	2	S	2	Ŋ
25	2	S	S	2	2	2	2	Ŋ	S	2	S	Ŋ	S	Ŋ	Ŋ	S.	S	S	2	5	Ŋ	2
30 35	ស	5	5	4	Ŋ	4	2	4	5	4	5	4	4	n	2	7	2	4	2	м	S	m
	5	2	S	S	S	S	2	ۍ.	S	S	Ŋ	Ŋ	5	5	2	5	S	Ŋ	r.	4.	Ŋ	4
40	Ŋ	n	<u>υ</u>	7	2	7	S	2	ഹ	2	ഹ	7	<u>ν</u>	7	ស	2	S.	2	5	٣	Ŋ	m
45 50	S	0.8	S	0.8	Ŋ	0.8	2	0.8	S	0.8	S	0.8	5	0.8	Ŋ	0.8	5	0.8	Ŋ	8.0	2	8.0
55	94		95		96		97	· · ·	86		66		100		101		102		103		104	

5	ß	2	5	2	2	2	2	2	5	Ŋ	2	ß	S	4	5	ស	S	2	S	Z)	S	ហ
10	ŀ	ı	Z.	ഹ	ហ	2	2	2	ı	1	ı	ı	١.	ı	ı	ı	ı	•	ı	ì	ı	ı
15	Ŋ	5		1	ı	1	1	ı	Ŋ	ς.	Ŋ	ហ	2	Ŋ	Ŋ	S	2	Ŋ	5	Z.	2	r.
20 .	S	S	2	2	2	S	'n	2	2	ر ک	2	Ŋ	2	4	S	ۍ. دن	Ŋ	ហ	S	S	Ŋ	เก
25	S	Ŋ	S	Ŋ	2	2	2	2	2	2	2	2	Ŋ	2	S.	ហ	25	ς.	ડ	2	S	ιΩ
<i>30</i> <i>35</i>	Ŋ	2	2	5	Ω.	4	2	5	Ŋ	5	Ŋ	Ŋ	4	7	Ŋ	4	Ŋ	S	Ŋ	4	ß	4
40	Ŋ	Ŋ	Ŋ	2	Ŋ	Ŋ	S	2	Ŋ	ഹ	2	Ŋ	Ŋ	2	2	Ŋ	5	ις	Ŋ	Ŋ	2	\$
40	5	4	ហ	m	Ŋ	m	ഹ	m	ß	7	ري د	4	작	2	2	٣	2	m	4	2	4	2
45	S	8.0	S	8.0	Ŋ	8.0	2	0.8	ហ	8.0	Ŋ	8.0	Ŋ	0.8	8.0	0.2	8.0	0.2	Ŋ	0.8		8.0
50		**************************************				<u>., </u>				·										_		
55	105		106		107		108		109		110		111		112		113		114		115	

5	S	S	S	2	2	ហ	Ŋ	S	S	2	Ŋ	വ	Ŋ	2	2	2	4	ET.	2	S	2	ĸ
10	ı	ı	ı	ı	S	S	1	1	ı	1	1	1	i	ı	1	ı	ı	ı	2	2	1	ı
15 -	2	.c	S	2	i	1	2	2	ν.	 S	ۍ ص	ۍ	5	S	2	S	ις.	Ŋ	ı	ı	Ŋ	r.
20 _	Ŋ	2	-N	ۍ	Ŋ	Ŋ	Ŋ	S	Z)	2	S	S	S	2	S	S	S	4	S	Ŋ	5	ى د
25 <u> </u>	25	2	2	2	Ŋ	S.	ς,	<u>ب</u>	S	2	S	2	2	5	S	S	S	4	Ŋ	S	S	5
35	ហ	4	S	n	2	3	Ŋ	ĸ	4	m	ហ	4	Ŋ	m	'n	4	7	0		4	Ŋ	4
<u>-</u> 40 .	5	S	2	က	5	5	5	5	5	m	Ŋ	2	2	Ω.	ъ	5	М	7	Ŋ	2	5	r.
45	<u></u>	m	5	m	S	m	5	m	4	2	2	m	<u>τ</u>	е	Ω.	м	m	0	S	Э	5	e
50	5	0.8	8.0	0.2	5	0.8	0.8	0.2	5	0.8	2	0.8	8.0	0.2	Ŋ	0.8	5	0.8	S	8.0	0.8	0.2
55	116		117		118		119		120		121		122		123		124		125		126	

5	S	5	S	ıΩ	2	Ŋ	S	2	2	2	Ŋ	ß	2	2	5	2	2	2	2	2	S	'n
10	ı	1	ì	1	ı	ı	i	ı	i	1	i	ı	1	1	ı	1	1	ı	ı	ı	ı	ı
15		S	2	2	5	S	ស	Z.	S	S	ر د	2	5	ស	ഹ	2	ر د		S	ស	5	<u>.</u> د
20 _	2	2	2	2	ري د	2	2	2	2	2	25	Z)	2	2	ស	S	S	S	ر د	S.	ഹ	2
25	2	2	ς.	2	5	5	2	2	2	2	2	S	2	Ŋ	Ŋ	เร	S	ς.	ស	'n	Ŋ	Ŋ
30 ·	Ŋ	S	Ŋ	z,	Ŋ	ហ	Ŋ	S	2	د	2	S	2	4	2	4	2	2	2	S	2	ß
	Ŋ	Ŋ	5	S	S	ار د	S	۲C	Ŋ	ιυ	'n	Ŋ	Ω.	Z.	S	2	2	2	2	S	S	ιΩ
40	Ŋ	3	2	٣	5	٣	2	m	2	<u>س</u>	2	٣	2	m	Ŋ	m	S	ო	Ŋ	m	Ŋ	m
45 50	2	0.8	Ŋ	0.8	0.8	0.2	5	0.8	0.8	0.2	S	0.8	0.8	0.2	2	0.8	Ŋ	0.8	5	0.8	ហ	8.0
55	127		128		129		130		131		132		133		134		135		136		137	

5	Ŋ	2	2	.	2	2	2	5	2	5	5	2	S	S	5	S	S	S	5	ស	Ω.	ι Λ ·
10	ı	!	ı	ı	ı	1	1	1	t	ı	ı	1	1	1	ı	1	ı	ı	1	ı	ı	ı
15	2	Ŋ	2	2	S	2	2	2	ß	2	5	2	S	2	2	5	ۍ		Ŋ		ις.	۲S
20	- 2	2	2	Ŋ	2	2	2	2	2	2	2	ري د	2	2	2	2	S	2	Ŋ	Ŋ	'n	ا
25	5	2	Ŋ	Ŋ	2	5	5	2	2	2	2	Ŋ	s)	2	2	2	2	S	S	2	ഹ	S
30	Ŋ	4	2	S	S.	S	Ŋ	2	ß	5	5	4	2	က	2	S	2	5	S	4	2	S
35	2	2	2	S	2	S	S	S.	S.	4	Ŋ	Ŋ	S	4	Ŋ	4	2	5	Ŋ	Ŋ	ر ک	Ŋ
40	2	m	2	m	S.	4	S	ю	2	3	5	٣	5	3	ហ	e E	ю	4	м	Э	Z.	4
<i>45 50</i>	S	8.0	S	8.0	S	8.0	ഗ	8.0	S	8.0	Ŋ	8.0	5	8.0	ស	8.0	Ŋ	Ŋ	ស	Ŋ	Ŋ	8.0
55	138		139		140		141	-	142		143		144		145		146	147	148	149	150	

5	ß	2	5	2	2	2	2	4	2	5	2	Ŋ	Ŋ	Ŋ	2	S	S	2	2	2	2	5
10	ı	1	1	ı	ı	I	ı	I	1	ł	ı	ı	ĸ	2	t	ı	i	1	ı	1	1	1
15	2	Ŋ	2	2	S	ഗ	Ŋ	S	2	ۍ	2	5	l	1	'n	5	ۍ. د	Ŋ	Ŋ	Ŋ	2	<u> </u>
20	.S	ιΩ	Ŋ	2	S	Ŋ	Ŋ	4	ហ	Ŋ	ហ	2	2	S	S	2	2	4	Ŋ	Ŋ	ν.	<u></u>
25	5	2	2	Ŋ	5	2	ς.	S	Ň	S	S	5	Ŋ	Ŋ	S	S.	S	Z.	Ŋ	Ŋ	Ŋ	Ŋ
30	2	2	Ŋ	2	Ŋ	2	4	m	2	4	ις	4	Ŋ	4	2	4	2	m	S.	4	S.	S.
,	S	2	Ŋ	ഹ	Ŋ	Ŋ	S	m	Ŋ	4	ß	4	Ŋ	Ŋ	S	m	2	4	S	Ŋ	2	ı,
40	ហ	4	ر د	4	S	4	<u>۳</u>	-	3	ж	4	2	2	м	2	٣	2	Υ	Ŋ	က	2	4
45	ß	8.0	ស	0.8	0.8	0.2	2	0.8	2	8.0	5	0.8	ഗ	8.0	S	0.8	Ŋ	8.0	S	0.8	2	8.0
50	151		152		153		154	-	155		156		157		158		159		160		161	
55			,-1		,				. ,		. '				. ,		. ,					

5	'n	ĽΩ	2	S	ß	S	Ŋ	4	ß	S	5	2	5	2	2	2	2	4	2	2	2	ī,
10	I	ı	ı	1	ı	ı	i	1	ı	1	1	ı	ı	1	2	Ωí	5	2	1	1	ı	1
15		2	2	2	'n	2	2	2		2	ις	Ω.	2	Ŋ	ı	ı	1	ı	ري د	رک	5	25
20	ړ.	S	Ŋ	S	S	Z)	S	4	2	ıΩ	۲	Ŋ	2	Ω		2	2	ហ	2	2	2	2
25 30	rv.	۲,	ς.	S	S	2	2	2	2	2	5	5	2	2	2	S.	5	5	S.	Ŋ	S.	Ŋ
35	'n	4	2	4	2	4	4	7	2	m	ហ	r	Ŋ	m	Ŋ	æ	4	7	ហ	4	S	4
	2	2	Ŋ	S	Ŋ	Ŋ	Ŋ	т	S	2	5	4	5	5	5	3	5	4	2	2	S	S
40	'n	4	ហ	4	5	ĸi	4	2	2	7	3	3	2	ю	5	м	n	н	2	n	Ŋ	4
45	Ŋ	0.8	5	8.0	2	8.0	5	8.0	2	8.0	5	8.0	Ŋ	8.0	S	8.0	٠ ر	8.0	S	8.0	5 ،	8.0
55	162		163		164		165		166	-	167		168		169		170		171		172	

.c	4	Ŋ	S	S	2	2	5	S	2	2	Ŋ	ហ	₂	ın	4	S	4	ഹ	ហ	.C	S
2	2	ı	ı	1	1	ı	ı	1		ı	1	1	1	ı	ı	1	1	1	ı	1	1
l	 I	5	2	ហ	m	2	2	2	2	2	5	2	2	2		2	'n	2	2		2
	Ŋ	2	2	ر د	4	2	2	2	2	2	2	2	S	4	m	2	4	Ŋ	Ŋ	S	Ŋ
5	S	Ŋ	Ŋ	2	Ŋ	Ŋ	S	2	S	2	2	2	S	'n	ß	2	2	ر ک	2	2	2
4	7	5	4	4	2	4	2	2	Э	Ŋ	4	5	4	4	2	4	ĸ	5	4	2	5
Ŋ	m	ഹ	Ŋ	2	m	S	'n	S	Ŋ	5	ស	Ŋ	Ŋ	4	2	5	4	Ŋ	Ŋ	S	S
m	-1	ស	м	ഗ	٣	m	-	ß	m	2	3	S	ю	Э		4	2	2	n	2	m
ις	8.0	5	8.0	0.8	0.2	5	0.8	5	8.0	5	8.0	S	8.0	2	8.0	S	0.8	S	8.0	2	8.0
		- 4		175		91		177		82		62			***************************************	81		182		183	
17		17		17		1.7		1.		1.		T		7		Ä		٦ 		Ä	······

5	S	2	Ŋ	r.	Ŋ	5	.Ω	3	Ŋ	Ŋ	ß	S	S	5	Ŋ	5	5	S	4	2	ហ	S
10	1	ı	ı	ı	1	ı	J .	ı	i	ı	ı	ı	Ŋ	Z.	Ŋ	Ŋ	S	S	4	7	1	ı
15	'n	S	ß	S	5	2	ς.	4	2	2	2	2	1	ı		I	ı	1	ı	ı	S.	<u>ب</u>
20	Ŋ	5	S.	S	2	2	2	n	2	5	. 5	5	2	2	S	5	2	5	4	2	5	S
25	2	2	2	Ŋ	5	2	2	4	2	5	2	S	2	<u>د</u>	5	2	2	ν.		4	2	2
30	5	Э	4	2	Ŋ	က်	4	7	4	m	2	m	2	4	2	m	4	2	٣	н	2	٣
35	2	Ŋ	<u>ب</u>	2	Ŋ	ហ	2	m	ري ا	Ŋ	2	2	Ŋ	Ŋ	S	Ŋ	Ŋ	м	т	0	Ŋ	2
40	4	7	4	2	5	٣	e	0	4	2	2	m	2	4	2	m	٣	Ţ	m	0	5	
45	S	0.8		0.8		0.8	2	0.8	S	0.8	S	8.0	'n	0.8	2	8.0	2	0.8	5	0.8	Ŋ	8.0
50								·····		-						·						
55 ₋	184		185		186		187		188		189		190		191		192		193		194	

5	Ŋ	2	S	ស	2	S	2	2	2	2	2	S	2	Ŋ	5	2	2	4	S	5	S	4
10	ı	1	1	1	t	ŧ	2	2	S	S	ις.	S.	2	2	2	Ŋ	ις	5	Z.	Ŋ	ı	ı
15	ហ	2	Ŋ	S.	<u>ب</u>	Ŋ	ı	ì	ı	i	ı	1	ı	ı	ı	1	1	ı	1	ı	S	<u>.</u>
20	2	S	Ŋ	Ŋ	2	5	ഹ	2	S	2	5	S	2	2	S	2	4	ε,	S	2	Ŋ	m
30	2	S	'n	S	2	2	2	Ŋ	ິທ	2	5	S	5	S	2	Ŋ	ស	ഗ	ιΩ	ς.	2	
35	Ŋ	m	4	က	Ŋ	4	ß	e	S	m	Ŋ	4	S	4	4	2	m	ч	ß	ĸ	4	m
	Ŋ	Ŋ	S	3	5	Ŋ	Ω.	2	S	4	2	5	5	Ŋ	S	S	4	2	Ŋ	5	Ŋ	5
40	Ŋ	ю	ഗ	ю	S	4	5	ж	2	m	S	ж	Ŋ	m	4	2	4	7	2	3	m	7
45	ស	0.8	0.8	0.2	5	0.8	5	0.8	5	0.8	2	0.8	2	0.8	S	0.8	Ŋ	0.8	ហ	0.8	2	0.8
50																			-			
55	195		196		197		198		199		200	·	201		202	·	203	<u>.</u>	204		205	

5	ស	5	S	5	2	5	1	1	5	4	5	ហ	£,	5	S	m	1	1	S	5	S	Ŋ
10	ı	i	ı	ı	ı	ı	ı	í	1	1	ı	ı	1	ı	ı	ı	1	ı	ı	S	Ŋ	ı
15	Ŋ	٧	ហ	2	2	Ŋ	2	2	2	- 2	2	S	2	2	2	2	2	S	2	ı	1	'n
20		2	5	4	S	5	5	4	5	m	Ŋ	4	2	S	4	m	5	7	S	2	5	2
25	S	2	2	5	2	5	S	5	2	2	2	5	5	2	S	m	S	2	S	2	Ŋ	<u></u>
30	4	7	S	ĸ	2	4	4	7	4	r	4	7	2	4	e	-	4	7	m	2	n	m
35	2	S	ß	m	2	7	5	3	4	7	Ŋ	4	2	5	2	0	5	4	2	2	4	ις
40	4	2	4	2	2	e M	4	7	<u>۳</u>	П	٣	п	2	n	٣	Н	3	т	2	S	٣	4
45	រភ	0.8	ιn	0.8	ហ	0.8	Ŋ	8.0	ស	8.0	S	8.0	5	8.0	S	0.8	ις	8.0	S	ស	8.0	ß
50		-					_	 -,								•					 ,	
55	206		20.		208		205		210		211		215		213	 , <u>-</u> -	214		215	216		218

5	S	S	52	5	S	ហ	S	ιΩ	Ŋ	ហ	ß	æ	S	3	S	4	5	ς.	ស	Ŋ	5	Ŋ
10	ı	1.	ı	ı	ı	ı	2	ស	Ŋ	Ŋ	ហ	4	4	4	S	4	5	Ŋ	r.	S	Ŋ	5
15 -		2	Ŋ	2	S	Ŋ	1	1	ı	ı	ı	l	ı	ı	ı	ı	ı	ı	ı	ı	1	1
20	2	S	S	2	S	2	2	2	ഹ	S	4	7	4	7	2	4	2	5	2	5	2	- 22
25 ~ 30 -	'n	2	2	2	2	2	2	2	5	S	5	4	5	4	5	2	2	S	5	2	2	2
35 -	20	4	Ŋ	m	4	m	2	S	Ŋ	4	.Ω	m	ις	m	\$	m	ις.	4	ιΩ	4	ഗ	4
40	5	4 5	5	3	5	4	5 5	3	5	2 5	5 5	2 2	5 5	3 2	5 5	3	5	3	5 5	3 2		2 5
45		8.		8.0	 8.	0.1		8.		8.0		8.0		8.0		8.0	8.0	3.2		8.0		8.0
50	<u>ι</u> Ω						un.		U)		u)		u ,		u ,			_	<u>u</u> ,			_
55	220		221		222		223		224		225		226		227		228	<u> </u>	229		230	

5	- 2	S	2	ß	5	Ŋ	S	ស	2	5	ស	Ŋ	S	Z.	5	S	2	5	5	5	S	4
10	ហ	ς.	5	5	ξ.	r.	S	Ŋ	Ŋ	S	Ŋ	5	ស	Ŋ	50	2	5	2	5	2	S	Ŋ
15	·	1	ı	i	1	1	1	ı	ı	1	1	ı	ı	1		ī	1	1	ı	1	1	ı
20	m	ı	S	Ŋ	2	2	2	Ŋ	2	2	2	5	S	2	2	2	2	2	2	S	S	<u>ي</u>
25	2	2	5	5	5	2	5	5	5	2	2	2	2	2	2	2	2	2	S	S	S.	ഹ
30	'n	4	S	m	S	4	S	5	Ŋ	m	4	7	ഹ	4	ហ	4	5	2	2	Ŋ	. 73	m
35	2	5	2	2	2	2	2	2	٥.	2	2	4	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	ហ	Ŋ	S	r.
40	4	2	S	2	Ŋ	2	5	2	5	3	3	1	4	7	Ω.	2	5	2	2	7	4	2
45	ß	8.0	S	8.0	S	8.0	S	8.0	S	8.0	8.0	0.2	Ŋ	8.0	Ŋ	8.0	S	8.0	Ŋ	8.0	ഗ	8.0
50 -	231		232		233		234		235		236		237		238		239		240		241	

5	5	S	5	5	S	Ŋ	2	ß	Ŋ	4	5	4	S	S	2	2	Ŋ	ß	Ŋ	S	Ŋ	ned)
10	رد	2	2	3	5	2	Ŋ		S	4	Ŋ	S	2	2	Ŋ	S	S.	'n	ហ	S	ທ	 be continued)
15	I	ı	1	ı	1		ı	1			ı	1	ı	1	1		1	1	ı	ı	ı	—(To
20		Ŋ	ıΩ	ۍ	S	2	- 5	ۍ	2	4	2	2	2	2	2	2	2	2	2	ۍ	ۍ.	
25	<u></u>	2	2	ß	20	2	S	2	2	S	2	2	٠S	Ŋ	S	2	2	ις	2	S	S	
30	ۍ	m	7'	2	Ŋ	۳	S	2	4	2	4	m	5	4	2	4	2	S	2	5	Ŋ	
35	57	2	マ	7	ហ	м	S	m	4	2	2	S	Ŋ	'n	2	Ŋ	Ŋ	Ŋ	т	'n	ഗ	***
40	Ŋ	m	m	Н	Ŋ	m	S.	2	4.	7	4	7	25	7	4	7	3	Ŋ	m	ហ	m	
45	S	0.8	0.8	0.2	ห	0.8	ග	0.8	Ŋ	0.8	Ŋ	0.8	2	0.8	5	0.8	0.8	5	0.8	5	0.8	
55	242		243		244		245		246		247		248		249		250	251		252		
00																						

5	S	S	ß	Ŋ	5	5	5	5	ß	Ŋ	Ŋ	Ω	5	Ŋ	3	2	5	5	5	2	2	Ŋ
10	S	Ŋ	2	Ŋ	Z.	Ŋ	Ŋ	S	Ŋ	Ŋ	5	Ŋ	2	2	2	2	2	Ŋ	2	S	5	ις
15	ı	1.	t	ı	ı	ı	ı	ı	ı	ı	1	1	ı	,	ł	ı	ı	ı	- 	1	1	l
20	2	5	2	2	S	2	2	S	۲ŋ	S	'n	S	Ŋ	2	2	2	2	2	2	2	2	rs
30	ī	ري د	Ŋ	5	5	Ŋ	S	2	2	νĵ	2	2	2	2	S	2	2	S	S.	S	S	5
35	4	м	2	2	2	ហ	ഗ	4	ស	4	Ŋ	4	S	9	5	4	2	4	S	Ж	S	4
40		3 4		3	5	3	5	4 4	5	- 5			3 5	1 3	5	2 4	4 5	2 5	5	2 4	4 5	2 5
45	æ.	۲.		ω,	∞ .	.2	0.2	0.1	.2	٦.	.2	۲.	· ·	.2	æ.	.2	8.	.2	8 .	.2		.2
50	0	-		0	0	0	0	0	0.	0.	.0	0.	.0	•	•	0	0	0	0	0	.0	0
55	253		254		255		256		257		258		259		260		261		262	- ,	263	

5	S	5	S	5	ß	S	ហ	S	ß	S	ις	ß	2	4	Ŋ	ĸ	Ŋ	S	2	S	S	S
10	S	S	S	5	5	S	ις	2	S	Z.	5	ις	Ŋ	Ŋ	S	2	ហ	S	Ŋ	S	ស	S
15	ı	•	ı	1	ı	1	ı	ı	ı	1	ı	ı	1	ı	ı	ı	ı	ı	ı	1	ı	ı
20	5	5	2	2	2	S	5	5	2	2	5	5	r.	4	S	S	S	S	2	S	S	5
25	Ŋ	S	Ŋ	ស	S	Ŋ	S	S	2	2	2	ω.	ស	2	2	5	2	2	<u>د</u>	2	2	Ŋ
35	S	٣	Ŋ	n	S	٣	2	4	2	₫.	Ŋ	4	Ŋ	4	5	2	Ŋ	Ŋ	S	ιΩ	ľΩ	ις L
40	<u></u>	2	2	<u>ν</u>	2	2	Ŋ	2	5	2	2	ر.	5	4	Ŋ	Ŋ	S	.v	ιΩ	m		S
	4	2	4	- 2	4	2	4		2			- 5	2	Θ	2					<u>е</u>	<u>د</u>	
45 50	8.0	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.2	0.1	0.2	0.1	0.8	0.2	0.2	0.1
55	264		265		266		267		268		269		270		271		272		273		274	

5	s	2	S	4	S	S	2	5	5	5	ιΩ	ß	Ω.	S	Ŋ	S	Ŋ	Ŋ	Ŋ	S	5	S
10	3	S	2	2	2	5	2	5	2	2	2	2	2	2	2	2	2	S	5	2	S	ß
15	. 1	,		1	<u>.</u>	ı	1	1	——- I	I	ı	I	ı	ı	ı	1	ı	1	1	ı	ı	ı
20	Ŋ	2	2	Ŋ	2	2	2	2	2	S	S	2	S	2	2	Ŋ	Z.	2	5	S	5	S
25 `	Ŋ	2	S	S	S	Z,	Ŋ	z,	Ŋ	Ŋ	2	5	5	2	5	2	5	2	2	2	2	2
30	'n	m	4	7	5	4	2	4	5	3	2	က	2	4	2	4	2	4	2	3	5	4
35	5	4	ري د	ю	S	5	S	S	5	S	S	е	S	Z.	S.	Ŋ	Ŋ	5	2	S	2	5
40	25	E .	ഹ	m	S	٣	S	٣	5	ю	5	7	Ŋ	7	2	7	2	7	2	7	S.	2
45	0.2	0.1	0.8	0.2	2	8.0	Ŋ	0.8	5	8.0	S	8.0	S	8.0	S	8.0	رى آ	0.8	S	8.0	Ŋ	8.0
	275		276		277	-	278		279		280	- 2.41	281		282		283		284		285	
,																						

5	S	2	2	Ŋ	S	S	S	S	ß	ις	ß	ហ	ហ	Ŋ	Ŋ	Ŋ	ις	S	S	Ŋ	ស	'n
10	۲	S	5	ß	S	5	S	2	5	Ŋ	Ŋ	S	S	S	Ŋ	Ŋ	S	Z.	Ŋ	Ŋ	Ŋ	5
15	ı	ı	1	ı	1	ı	1	1	1	1	1	ì	1	1	ı	i	1	1	ı	1	1	ı
20 .	2	Ŋ		2	2	Σ	S	Ŋ	S	<u>.</u>	2	Ŋ	5	Ŋ	Ŋ	S	z,	Ŋ	S	Ŋ	Ŋ	· ·
25	ហ	S	Ŋ	Z.	<u>د</u>	S	2	ហ	S	Ŋ	2	2	S	Ŋ	2	2	2	ស	2	2	2	5
35	S	2	Ŋ	4	2	4	5	4	2	4	4	ĸ	2	4	2	4	S	4	4	Ж	4	ю
40	2	m	Ŋ	S	2	2	2	2	S	2	S	2	2	2	2	2	2	2	2	2	2	ж -
45	S	2	2	m	Ŋ	m	ហ	7	5	2	2	2	2	7	2	2	5	2	2	7	4	e
50	ıΩ	0.8	2	0.8	5	0.8	5	0.8	2	0.8	2	0.8	2	0.8	ß	0.8	2	0.8	S	0.8	0.8	0.2
55	286		287		288		289		290		291		292		293		294		295		296	

5	S	5	C)	ß	5	υ	S	2	ß	2	Ŋ	5	Ŋ	5	5	5	S	5	2	ហ	2	5
10	Ŋ	2	2	Ŋ	ហ	ហ	ഹ	Ŋ	S	Ŋ	ഹ	Ŋ	S	ហ	S	2	S	S	2	S	2	'n
15	l	ı	ı	1	ı	ı	ı	ı	1	1	1	ı	ı	1	ı	1	ı	i	ı	1	ı	1
20	5	2	Ŋ	5	2	S	ν.	2	2	S	2	2	2	2	2	2	2	2	2	2	Ŋ	ហ
25	7.5	5	2	2	ហ	ĸ	S	S	ß	Ŋ	5	Z.	2	Ŋ	Ŋ	Ŋ	Ŋ	S	Ŋ	2	S	S
30	S	т	5	٣	2	4	5	m	S	e	S	e	5	4	5	4	2	m	2	4	2	ĸ
35	2	4	2	м	Ŋ	5	'n	S	Ŋ	4	Ŋ	S	S	'n	Ŋ	Ŋ	ſſ	ις.	Ŋ	Ŋ	2	2
40	ហ	2	S	m	2	2	ιΩ	2	ß	m	2	٣	S	8	S	<u>۳</u>	S.	2	2	٣	5	2
45	Ŋ	0.8	Ŋ	8.0	5	0.8	Ŋ	8.0	Ŋ	0.8	2	0.8										
50	297		298		299		300		301	,	302		303		304		305		306		307	
55																						

5	Ŋ	5	2	S	ις	S	ις	Ŋ	2	ις	S	S	S	2	S	2	2	2	S	S	S	ស
10	5	Ŋ	'n	Ŋ	Ŋ	ß	S	S	S	2	S	2	S	2	2	2	2	2	2	S	S	S
15		1	ı	ı	ı	ı	1	1	ı	t	ı	ı	i	ı	ı	ı	ı	ı	ı	ı	ı	ı
20	2	S	ស	Ŋ	ហ	S	ហ	Ŋ	S	S	2	ഹ	Ŋ	ហ	S	ı	S	ı	1	ı	2	
25	Ŋ	5	S	S	Ŋ	S	ស	ഗ	S.	Ŋ	5	2	S	5	2	5	2	2	2	2	2	2
30	5	4	2	4	2	٣	2	4	Ŋ	т	5	ĸ	ស	4	S	7	S	m	S	4	Ŋ	т
35	25	2	S	2	2	Ŋ	2	2	2	2	2	S	2	4	2	Ŋ	S	Ŋ	2	Ŋ	Ŋ	ю
40	ഗ	m	S	m	رد د	7	īΟ	m	Ŋ	7	Ŋ	2	Ŋ	<u>۳</u>	2	2	5	٣	2	Ж	5	7
45	Ŋ	0.8	2	8.0	S	8.0	5	8.0	2	8.0	5	8.0	2	8.0	Ŋ	8.0	5	0.8	ιΩ	0.8	Ŋ	8.0
50																						
55	308		309		310		311		312		313		314		315		316		317		318	

5	ις	5	2	2	Ŋ	ស	2	5	5	S	5	5	S	S	Ŋ	5	5	Ŋ	Ŋ	'n	S	ς,
10	\$	5	S	S	Ŋ	2	5	5	ۍ.	S	Ŋ	S	S	S	κú	5	S.	2	Ŋ	Z.	2	Ŋ
15	ı	ı	ı	1	ı	ı	ı	ı	1	1	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	- <u> </u>	ı
20	'n	20	2	2	S	2	2	Ŋ	S	S	2	2	2	2	Ω.	2	2	2	Ŋ	J.	.S	ري د
25	2	5	2	2	2	2	2	S	S	S	2	S	S	2	Ŋ	5	Ŋ	2	Ŋ	'n	ហ	2
30	Ŋ	3	5	4	4	ю	2	4	S		2	4	2	2	2	4	5	4	2	Ŋ		٣
35	ιń	m	ις	2	Ŋ	m	Ŋ	2	2	Ŋ	Ŋ	Ŋ	5	2	5	5	S	5	Ŋ	S	2	m
40	5	m.	5	n	4	7	Ŋ	Ж	2	4	S	4	£	ĸ	Ŋ	4	2	4	S	7	S	7
45	Ŋ	0.8	2	0.8	2	0.8	ស	0.8	8.0	0.1	0.8	0.1	0.8	0.2	0.8	0.2	8.0	0.2	Ŋ	0.8	5	8.0
50	319		320		321		322	···	323		324		325		326		327		28		329	
55	<u> </u>		<u> </u>		<u>س</u>		е	_			3		3		<u>۳</u>		۳		6		(1)	

5	5	2	S	2	2	2	S	S	S	2	S	S	S	S	ស	1	ស	2	ß	5	2	2
10	Ŋ	2	Ŋ	ß	2	C)	2	S	2	2	2	ر د	2	Ŋ	Ŋ	S		5	Ŋ	ហ	Ŋ	S
15	1	1	ı	ı	ı	ı	ı	ı	1	1		1	1	ı	ı	1	i	ı		1	ı	-
20	Ŋ	m	Ŋ	Ŋ	S	S	2	<u>ح</u>	5	S	2	4	2	2	Ŋ	S	2		Ŋ	Ŋ	ın,	<u> </u>
25	S	ۍ	۲	Ŋ	2	S	5	Ŋ	S	ري د	S	S	2	2	2	2	ς.	'n	2		2	2
<i>30</i> <i>35</i>	25	7	5	4	2	ĸ	4	2	S	4	Ŋ	m	5	4	S	m	2	4	4	2	Ŋ	Ж
	Ŋ	2	2	ហ	2	4	2	4	4	2	Ŋ	m	S	4	Ŋ	4	S	4	4	7	2	m
40	4		2	7	Ŋ	ю	4	2	4	2	4	2	2	4	ব	2	S	3	4	7	4	2
45	ហ	0.8	2	8.0	0.8	0.2	25	8.0	S	8.0	Ŋ	8.0	Ŋ	8.0	ហ	8.0	S	8.0	2	0.8	2	8.0
55	330		331		332		333		334		335		336		337		338		339		340	

5	S	4	2	5	2	4	2	2	2	S	5	S	S	S	S	5	S	2	2	2	S	Ŋ
10	Ŋ	2	r)	5	Ŋ	2	2	2	2	2			ر ک	2	5	Ŋ	2	2	2	2	2	S
15	ı	<u></u>	1	ſ	ı	1	1	1	1	1	ı	1	ı	ı	1		1		ı	1	ı	
20	ហ	4	Ŋ	2	S	S	ഗ	Ŋ	2	ر د	2	2	2	2	2	2	2	<u>ب</u>	Ŋ	Z.	2	2
25	S	2	2	2	2	5	2	Ŋ	2	2	2	2	2	۲۵	5	Ŋ	ς.	2	ις.	ر ک	2	ري
30	က	2	S	m	2	ĸ	2	4,	2	4	2	4	2	4	4.	-	2	4	2	m	S	4
35	٣	٦	Ŋ	Ŋ	2	4	2	2	7.	2	2	Ŋ	Ŋ	S	2	ю	ιΩ	Ŋ	Ŋ	Ŋ	Ŋ	2
40	3	-4	ហ	м	Ŋ	м	2	4	S	м	ζ.	4	S	4	4	2	ស	4	Ŋ	4	S	4
45	8.0	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2			0.1	0.8	0.2	8.0	0.2	0.8	0.2	0.2	0.1
50				···																_		
55	341		342		343		344		345		346		347		348		349		350		351	

5	S	Ŋ	S	S	S	2	2	S	S	5	S	ഗ	ഹ	S	Ŋ	Ŋ	S	S	2	5	5	S
10	S	2	Ŋ	Ŋ	S	Ŋ	2	2	2	2	٠	ۍ	2	2	Ŋ	'n	۲	Ŋ	ഹ	Ŋ	5	ī.
15 -	ı	1	ı	1	1	ı	1	ı	1	ı	ı	1	ı	1	ı	1	ı	ı	1	ì	1	1
20 -	Ŋ	2		٠.	5	Ŋ	S.	ഹ	2	2	2	4	2	2	2	<u>د</u>	ß	2	2	S	Ŋ	2
25	Ŋ	Ŋ	S	2	S	2	2	2	Ŋ	ß	Ŋ	Ŋ	2	Ŋ	S	2	2	5	5	ιΩ	Ŋ	ъ
30 -	Ŋ	5	z,	Ŋ	Ŋ	m	Ŋ	4	S	4	4	2	'n	m	ហ	Ŋ	'n	4	Ŋ	4	Ŋ	4
35	Ŋ	2	ស	2	Ŋ	2	S.	2	2	2	2	n	ぜ	2	5	. 22	5	Ŋ	2	2	2	4
40	ហ	<u>س</u>	2	4	S	9	5	۳ 	ß	m	4	2	4	2	2	3		4	2	4	.υ	4
45	0.8	0.2	0.2	0.1	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.2	0.1	0.2	0.1	0.2	0.1
50	352		353		354		355		356		357		358		359		360	•	361		362	
55																						

5	Ŋ	5	S	ĸ	S	5	5	S	S	Ŋ	S	Ŋ	S	Ŋ	S	4	S	S	Z.	Ŋ	Ŋ	'n
10	5	S	S	5	5	S	5	1	5	ۍ	S.	S	ស	Ŋ	Ŋ	2	5	5	Z.	S	2	.C
15	ı	ı	1	ı	ı	ı	ı	ı	ı	1	1	ı	ī	i	1	ı	ı	3	1	1	ı	i
20	Ŋ	2	2	2	S	ν	S.	4	ហ	2	5	S	2	S	2	S	2	2	2	2	S	2
30	Ŋ	5	S	2	2	ഹ	ស	ഗ	2	2	5	5	S	5	2	2	Ŋ	ស	2	5	2	S
35	Ŋ	4	2	4	5	ហ	Ŋ	n	S	m	4	m	S	4	2	4	ഹ	S	5	5	S	4
-	2	2	S	2	5	5	5	7	5	5	2	4	5	5	5	5	2	2	2	3	5	S
40 -	3	ო	2	4	5	m	4	2	4	2	2	4	5	4	4	2	5	4	2	4	5	7
45	0.8	0.2	0.2	0.1	0.8	0.2	0.8		0.8	0.2	0.8	0.1	0.2	0.1	0.8	0.2	0.2	0.1	0.2		0.8	0.2
50	363		364		365	•	366	-	367		368	-	369		370		371		372	······································	373	
55	1.7		.,,				(')				(*)						س		(A)			

5	5	2	2	2	2	5	S	2	2	S	S	S	ស	ស	2	ហ	S	S	S	ις	Ŋ	Ŋ
10	2	2	S	2	'n	Ŋ	S	5	S	ς.	Ŋ	Ŋ	Ŋ	Ŋ	ហ	Ŋ	Ŋ	S	S	ιΩ	ιΩ	ري ا
15	ì	ı	1	ı	ı	ı	1	ı	1	ı	ı	ı	1	ı	ı	ı	ι	ı	ı	1	1	1
20 .	S	2	-2	5	S	S	ഹ	ഹ	2	Ŋ	2	ഗ	S	2	2	2	2	2	2	S	2	S
25	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	S	2	2	ហ	2	2	5	2	ς.	Ŋ	.c	S	Ŋ	Ŋ	Ŋ	Ŋ	S
30	2	4	Z.	4	2	4	2	2	4	7	Ŋ	r	S	'n	'n	4	Ŋ	Ŋ	Ŋ	m	Ŋ	m
35	2	S	5	2	2	Ŋ	Ŋ	Ŋ	4	2	5	Ω.	2	5	2	Ŋ	S	S	2	5	Ŋ	2
40	.c	4	S	4	Ŋ	4	Ŋ	4	4	2	Ŋ	м	4	2	4	2	5	æ	4	2	S	7
45	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	5	8.0	Ŋ	8.0	S	8.0	Ŋ	0.8	Ŋ	0.8	2	0.8	2	8.0
50						· ·,		·····									~					
55	374		375		376		37;		378		375		380		381		382		383		384	

5	5	S	5	5	5	5	2	5	5	S	72	5	2	0		5	5		5	Ŋ	5	5
10	S	5	2	2	z,	12	5	2	2	5	2	2	5	2	2			2	2	2	2	5
15	ı	ı		1	1	1	ı	f	ı	ı	ı	1	ı	J	1		· · ·	ı	1	ı	J	
20	2	5	Ŋ	Ŋ	ιΩ	2	2	-5	2	2	5	5	5	5	S	Ŋ	S		25	-2	5	<u>س</u> .
25	5	Ŋ	ιΩ	5	2	5	2	2	2	Ŋ	۲۵	5	Ŋ	ນ	Ŋ	5	5	5	٦Ċ	2	2	S
35	5	4'	Ŋ	4	2	7	4	m	4	4	4	Э	4	2	S	8	2	4	5	4	S	m
40	2	2	5	S	Ŋ	Ŋ	.co	4	S	4	Ŋ	4	5	S	Ŋ	5	Ω.	5	5	Ŋ	5	2
± 45	S	2	ۍ د	2	5	٣	.C	4	7.	4	2	4	Ŋ	е —	2	7	S	М	5	æ	Ω.	2
50	Ŋ	0.8		0.8	S	0.8	0.8	0.1	0.8	0.2	0.8	0.1	5	0.8		0.8	5	8.0	ហ	0.8	<u>ς</u>	8.0
- 55	385		386		387		388		389		390		391		392		393		394		395	

5		72	.c	5	<u>υ</u>	5	S	S	52	5	ß	5	5		2	5	S	Ŋ	5	S	ις	5
10	Ŋ	5	5	5	5	5	5	5	5	5	2	2	5	Ŋ	S	5	ហ	5	2	5	5	5
15	ı	ı	ı	-	1	ı	ı	1	1	1	ı	,	1	1	ı	ı	1	1	ı	ı	1	1
20 .	Ŋ	ιΩ	Ŋ	2	2	2	2	2	S	2	ហ	Ŋ	2	2	2	Ŋ	2	5	S	2	ഗ	4
30	ľ	5	2	2	7	2	2	2	īΩ	ស	S	5	2	Ŋ	2	Ŋ	Ŋ	2	5	5.	5	5
35	4	2	Ŋ	2	4	2	2	n	4	4	Ω.	4	ഹ	4	4	m	4	ю	4	т	4	3
40		2	- 2	4	5	5	r.	Ŋ	Z.	5	5	2	Z.	ħ.	S	5	5	4	2	4	Ŋ	4
- 45	4	2	Ω	3	4	2	5	2	5	4		2	5	2	5	4	ī.	3	5	m	Ŋ	3
50	2	0.8	5	0.8	5	0.8	S	0.8	0.8	0.2	S	8.0	2	0.8	0.8	0.2	5	0.8	2	0.8	2	0.8
55	396		397		398		399		400		401		402		403		404		405		406	

25 3 1 1 5 5 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7							_
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5		æ	2	٦	m	
25 2 3 1 1 0 0 0 1 2 2 2 2 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10		J	ı	ı	ı	
25			2	٣	7	ĸ	
3 1 1 5 3 3 6 6 7 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8			П	0	0	ч	_
	25		က	7	7	æ	_
7 1 1 7 0 0 0 0 45 50			0	0	0	7	
45 V V V V			2	Н		2	
45 		· · · · · · · · · · · · · · · · · · ·			0	0	
	45				5	ហ	
	55		A	В	Ü	۵	

As shown in table 8, the present invented 3-(substituted phenyl)pyrazole derivatives or salt thereof, represented

by the general formula (I), exhibit more excellent controlling effect on weeds than comparative compound A, B, C or D on post-emergence treatment in upland fields. Even when the invented derivatives exhibit both herbicidal activity on weeds and phytotoxicity on crops at same dosage, by the selection of proper lower dosage, sufficient herbicidal activity is retained and chemical injury on crops is diminished remarkably.

Formulation Example 1

5

10

20

25

30

35

40

45

50

5

A wettable powder composition was prepared by uniform mixing and grinding of the following ingredients:

Compound No. 1	50 parts
Clay-white carbon mixture (clay is the major component)	45 *
Polyoxyethylene nonyphenyl ether	5 "

Formulation Example 2

A granular composition was prepared by uniform mixing and grinding of the following ingredients, kneading the mixture with a suitable amount of water, and granulating the kneaded mxture.

Compound No. 7	5 parts
Bentonite-clay mixture	90 "
Calcium ligninsulfonate	5 "

Formulation Example 3

An emulsifiable concentrate was prepared by uniform mixing of the following ingredients:

Compound No. 12	50 parts	
Xylene	40 "	
Mixture of polyoxyethylene nonylphenyl ether and calcium alkylbenzenesulfonate	10 "	

Formulation Example 4

A wettable powder composition was prepared by uniform mixing and grinding of the following ingredients:

Compound No. 33	50 parts
Clay-white carbon mixture (clay is the major component)	45 "
Polyoxyethylene nonylphenyl ether	5 *

Formulation Example 5

A granular composition was prepared by uniform mixing and grinding of the following ingredients, kneading the mixture with a suitable amount of water, and granulating the kneaded mixture.

Compound No. 122	5 parts
Bentonite-clay mixture	90 "
Calcium ligninsulfonate	5 "

Formulation Example 6

An emulsifiable concentrate was prepared by uniform mixing the following ingregients:

55	Compound No. 381	50 parts
	Xylene	40 "
	Mixture of polyoxyethylene nonylphenyl ether and calcium alkylbenzenesulfonate	10 "

Claims

5

10

20

25

30

35

40

45

50

A 3-(substituted phenyl)pyrazole derivative or a salt thereof, the derivative being represented by the general formula

15 wherein

X denotes halogen,

R¹ denotes CH₃,

R² denotes hydroxy, mercapto, alkylthio, haloalkoxy or haloalkylthio,

H³ denotes hydrogen or halogen, and

R⁴ denotes (i) formyl, (ii) nitro, (iii) -CO-B-R⁶ wherein B denotes -0-, -S-, or -NR⁷, R⁶ and R⁷ are the same or different and each denote hydrogen or cycloalkyl, and when B is -O-, R⁶ can be an alkali metal atom or -CO-B-R⁶ denotes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, methoxycarbonylmethoxycarbonyl, propoxycarbonylmethoxycarbonyl, methoxycarbonylethoxycarbonyl, ethoxycarbonyl, or propoxycarbonylethoxycarbonyl,

(iv) -D-R⁸ wherein D denotes -O-,-S(O)_n, n being an integer of 0 to 2, or -NR⁹-, R⁸ and R⁹, which are the same or different, each denotes hydrogen; alkyl; haloalkyl; aminosulfonyl; phenylalkyl or phenoxy-alkyl optionally having on the phenyl ring one or more halogen substituents which are the same or different; or -D-R⁸ denotes an alkenyloxy group containing propenyl, butenyl, or pentenyl; an alkynyloxy group containing propenyl, butenyl or pentenyl; an alkoxy-carbonylalkoxy or an alkylthiocarbonylalkoxy group containing each methyl, ethyl, propyl or butyl; or (v) -(CHR¹⁰)_m-CO-E-R¹² wherein E denotes -0-, -S-, or -NR¹¹; R¹⁰ denotes hydrogen and R¹¹ and R¹², which are the same or different, each denotes hydrogen; alkyl; haloalkyl; phenyl optionally having on the phenyl ring one or more halogen substituents; phenylalkyl optionally having on the phenyl ring one or more halogen substituents; or R¹¹, jointly with R¹², forms a piperidino or morpholinyl group, and when E is -O-, R¹² can be an alkali metal atom; and m denotes an integer of 0 to 3.

2. A 3-(substituted phenyl)-pyrazole derivative or a salt thereof, the derivative being represented by the general formula

wherein

a) X is CI, R^1 is CH_3 , R^2 is CH_3S , R^3 is CI and R^4 is selected from

$$\label{eq:hooch} \begin{split} &\text{HOOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{i-C}_3\text{H}_7\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_2\text{=CHCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_2\text{=C}(\text{CI})\text{CH}_2\text{S}, \ \text{CH}_2\text{=C}(\text{CI})\text{CH}_2\text{S}, \ \text{CH}_2\text{=CCH}(\text{CH}_3)\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{=C}(\text{CI})\text{CH}_2\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}_2\text{S}, \ \text{CH}$$

⊕⊕ i-c₃H₇NH₃OOCCH(CH₃)s,

⊕ ⊝ (CH₃) 2NH200CCH (CH₃) S,

CH2CH2OOCNH,

- $\label{eq:ch2} $$ CH_2=CHCH_2OOCCH_2NH, CH=CCH_2OOCCH_2NH, C_2H_5OOCCH(CH_3)NH, HOOCCH_2NH, CH_3OOCCH_2NH, HOOCCH(CH_3)NH and CH_3OOCCH(CH_3)NH;$
- b) X is CI, R¹ is CH₃, R² is CH₃SO, R³ is CI and R⁴ is selected from NO₂, CH₃SO₂NH, CH₃NHSO₂NH, i- C₃H₇NHSO₂NH and CH₃NHSO₂(CH \equiv CCH₂);
- c) X is CI, R¹ is CHF_{2.} R² is CH₃S, R³ is CI and R⁴ is selected from NH₂, CH₃NHSO₂NH, CH₃NHSO₂N (CH=CCH₂) and CH₃N(CH=CCH₂)SO₂N(CH=CCH₂);
- d) X is CI, R^1 is CHF_2 , R^2 is CH_3SO , R^3 is CI and R^4 is selected from NH_2 and NO_2 ;
- e) X is CI, R1 is CH3, R2 is CHF2O, R3 is CI and R4 is selected from

H

5

10

15

20

25

30

35

40

50

(H)-00CCH₂O,

C2H5O(CH2)2OOCCH2O, C2H5O(CH2)2O(CH2)2OOCCH2O,

 CH_2OOCCH_2O , HOOCCH (CH₃)O, i-C₃H₇NH₃OOCCH (CH₃)O,

 $\begin{aligned} &\text{CH}_2\text{=CHCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{CH} = \text{CCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{CH}_3\text{NHCOCH}(\text{CH}_3)\text{O}, \quad \text{(CH}_3)_2\text{NCOCH}(\text{CH}_3)\text{O}, \\ &\text{CH}_2\text{=CHCH}_2\text{S}, \quad \text{CH}_2\text{=CHCH}_2\text{SO}, \quad \text{CH} = \text{CCH}_2\text{S}, \quad \text{(C}_2\text{H}_5\text{O})_2\text{P}(\text{O})\text{CH}_2\text{S}, \quad \text{CH}_3\text{OOCS}, \quad \text{CH}_3\text{OOCCH}_2\text{S}, \\ &\text{C}_2\text{H}_5\text{OOCCH}_2\text{S}, \quad \text{CH}_2\text{=CHCH}_2\text{OOCCH}_2\text{S}, \quad \text{HOOCCH}(\text{CH}_3)\text{S}, \end{aligned}$

 $\bigoplus \bigcirc$ NaOOCCH(CH_1)S i-c

5

10

15

20

25

30

35

40

45

50

55

$$\oplus \ominus$$
 NaOOCCH (CH₃) s, i-c₃H₇NH₃OOCCH (CH₃) s,

NHCOCH (CH₃) S,

o N - COCH (CH₃) S,

 CH_3SO_2NH , CH_3NHSO_2NH , $CH_2=CHCH_2NH$, $CH=CCH_2NH$, CH_3OOCNH , CPH_3NP ,

$$CH_3 - O - SO_3H_3N$$

CH3OOCCH2NH, HOOCCH(CH3)NH,

$$\oplus \ominus$$
Na OOCCH (CH₃) NH, i-C₃H₇NH₃OOCCH (CH₃) NH,

$$\begin{array}{c}
\oplus \ominus \\
\text{i-c}_{3}^{\text{H}_{7}^{\text{NH}_{3}}} \text{ o-coch}_{2}^{\text{o}},
\end{array}$$

O-NHCOCH₂O,

5

 $\mathsf{CH_{3}SO_{2}NHCOCH_{2}O}, \quad \mathsf{CH_{3}SO_{2}NHCOCH(CH_{3})O}, \quad (\mathsf{CH_{3})_{3}SiCH_{2}O-COCH_{2}O}, \quad \mathsf{CH_{3}OC_{2}H_{4}OC_{2}H_{4}O-COCH}$ $(\mathsf{CH_3})\mathsf{O},\,\mathsf{CH_2} = \mathsf{C}(\mathsf{CH_3})\mathsf{CH_2}\mathsf{S},\,\mathsf{CH_2} = \mathsf{C}(\mathsf{CI})\mathsf{CH_2}\mathsf{S},\,\mathsf{CICH} = \mathsf{CHCH_2}\mathsf{S},\,\mathsf{CICH} = \mathsf{C}(\mathsf{CI})\mathsf{CH_2}\mathsf{S},\,\mathsf{NCCH_2}\mathsf{S},$

10

15

20

 $\mathsf{HO\text{-}COCH}_2\mathsf{S}, \, \mathsf{i\text{-}C}_3\mathsf{H}_7\mathsf{O\text{-}COCH}_2\mathsf{S}, \, \mathsf{n\text{-}C}_4\mathsf{H}_9\mathsf{O\text{-}COCH}_2\mathsf{S}, \, \mathsf{C}_{12}\mathsf{H}_{25}\mathsf{O\text{-}COCH}_2\mathsf{S}, \, \mathsf{CH}_3\mathsf{S\text{-}COCH}_2\mathsf{S}, \, \mathsf{C}_2\mathsf{H}_5\mathsf{S\text{-}COCH}_2\mathsf{S}, \, \mathsf{C}_{12}\mathsf{H}_{25}\mathsf{O\text{-}COCH}_2\mathsf{S}, \, \mathsf{C}_{12}\mathsf{H}_{25}\mathsf{O\text{-}COCH}_2\mathsf{C}, \, \mathsf{C}_{12}\mathsf{H}_{25}\mathsf{O\text{-}COCH}_2\mathsf{C}, \,$ $\text{i-C}_3\text{H}_7\text{S-COCH}_2\text{S}, \ \text{CH} \equiv \text{CCH}_2\text{O-COCH}_2\text{S}, \ \text{C}_2\text{H}_5\text{OC}_2\text{H}_4\text{OC}_2\text{H}_4\text{O-COCH}_2\text{S}, \\$

25

30

$$\bigcirc$$
-CH₂O-COCH₂S,

(CH₃)₃SiCH₂O-COCH₂S, CH₃NHCOCH₂S, (CH₃)₂NCOCH₂S, H2C=CHCH2NHCOCH2S, (H2C= CHCH₂)₂NCOCH₂S, HC≡CCH₂NHCOCH₂S,

35

$$\bigcirc$$
-NHCOCH₂S, \bigcirc -N(CH₃)COCH₂S,

40

45

 $i\text{-}{\rm C_4H_9O\text{-}COCH(CH_3)S,\ t\text{-}C_4H_9CH_2O\text{-}COCH(CH_3)S,\ n\text{-}C_6H_{13}O\text{-}COCH(CH_3)S,\ n\text{-}C_6H_{13}O\text{-}COCH(CH_3)S$

50

 ${\tt C_2H_5S-COCH(CH_3)S,\ i-C_3H_7S-COCH(CH_3)S,\ NCCH(CH_3)O-COCH(CH_3)S,\ CH_3SC_2H_4O-COCH(CH_3)S,\ NCCH(CH_3)S,\ NCCH(CH_3)$

55

5

 $(\text{CH}_3)_3 \text{SiCH}_2 \text{O-COCH}(\text{CH}_3) \text{S}, \quad \text{CH}_2 = \text{CHCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \quad (\text{H}_2 \text{C} = \text{CHCH}_2)_2 \text{NCOCH}(\text{CH}_3) \text{S}, \quad \text{HC} = \text{CCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \quad \text{CH}_3 \text{CO-O-}(\text{CH}_2)_2 \text{S}, \quad \text{C}_2 \text{H}_5 \text{O-COC}(\text{CH}_3)_2 \text{S}, \quad \text{CH}_3 \text{O-COCH}(\text{i-C}_3 \text{H}_7) \text{S}, \quad \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{NCOCH}(\text{CH}_3) \text{O-CO}, \quad \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \quad \text{C}_3 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \quad \text{C}_4 \text{O-COCH}(\text{CH}_3) \text{$

10

15

20

and CH₃O-CO-OCH₂S-CO;

f) X is CI, R¹ is CH₃, R² is CHF₂S, R³ is CI and R⁴ is selected from CH₂=CHCH₂S, CH≡CCH₂S, C₂H₅OCH₂C, CH₃SCH₂S, NCCH₂S, C₂H₅OOCCH₂S, C₂

25

30

CH₃NHOCCH₂S, (CH₃)₂NOCCH₂S, HOOCCH(CH₃)S,

35

-

40

45

 $\mathsf{CF_3CH_2O\text{-}COCH_2O},\, \mathsf{CH_2}\text{=}\mathsf{CHCH_2O\text{-}COCH_2O},$

50

55

 $\label{eq:ch3NHCOCH2O} $$ CH_2=CHCH_2O-COCH(CH_3)O, CH_3NHCOCH(CH_3)O, NCCH_2O-COCH_2O, CH_3O-COCH(CH_3)S, NCCH_2O-COCH(CH_3)S, C_2H_5O-CO(CH_2)_3S, $$$

5

15

20

25

HO-COCH₂NH, C₂H₅O-COCH₂NH and C₂H₅O-COCH(CH₃)NH;

g) X is F, R1 is CH3, R2 is CH3SO, R3 is CI and R4 is 5-NO2;

h) X is F, R1 is CH₃, R2 is CH₃S, R3 is Cl and R4 is selected from 5-NH₂, 5-SH, 5-CH=CCH₂O, 5-CH=CCH₂S 10 and 5-C2H5OOCCH(CH3)S;

> i) X is F, R1 is CH3, R2 is CHF2O, R3 is CI and R4 is selected from HO-COCH2O, CH3O-COCH2O, CH2- $\mathsf{CHCH_2O\text{-}COCH_2O}, \mathsf{CH=CCH_2O\text{-}COCH_2O}, \mathsf{HO\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH_2=CHCH_2O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CCH_2O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CH_3O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CH_3O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CH_3O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CH_3O\text{-}COCH}(\mathsf{CH_3}) \mathsf{O}, \mathsf{CH=CH_3O\text{-}COCH}(\mathsf{CH_3O$ $\mathsf{COCH}(\mathsf{CH}_3)\mathsf{O}, \quad \mathsf{CH}_2 = \mathsf{CHCH}_2\mathsf{S}, \quad \mathsf{CH}_2 = \mathsf{C}(\mathsf{CH}_3)\mathsf{CH}_2\mathsf{S}, \quad \mathsf{CH} = \mathsf{CCH}_2\mathsf{S}, \quad \mathsf{C}_2\mathsf{H}_5\mathsf{OC}_2\mathsf{H}_4\mathsf{S}, \quad \mathsf{HO}\text{-}\mathsf{COCH}_2\mathsf{S}, \quad \mathsf{CH}_3\mathsf{OC}_2\mathsf{H}_4\mathsf{S}, \quad \mathsf{CH}_3\mathsf{OC}_2\mathsf{H}_4\mathsf{S}, \quad \mathsf{CH}_3\mathsf{OC}_2\mathsf{H}_4\mathsf{S}, \quad \mathsf{CH}_3\mathsf{OC}_2\mathsf{H}_4\mathsf{S}, \quad \mathsf{CH}_3\mathsf{OC}_2\mathsf{CH}_3\mathsf{CH}_3\mathsf{OC}_2\mathsf{CH}_3\mathsf{CH}_3\mathsf{OC}_2\mathsf{CH}_3\mathsf{CH}_3\mathsf{OC}_2\mathsf{CH}_3\mathsf{C$ COCH₂S, C₂H₅O-COCH₂S, C₂H₅O-COCH₂S(O), n-C₄H₉O-COCH₂S, CH₂=CHCH₂O-COCH₂S, CH₃SCH₂O-COCH₂S, CH₃SCH₂O-COCH₂SCH₂SCH₂O-COCH₂SCH₂SCH₂SCH₂O-COCH₂SCH COCH₂S,

$$H \rightarrow O-COCH_2S$$
, $O \rightarrow CH_2O-COCH_2S$,

 $\mathsf{CH_3NHCOCH_2S}, \ (\mathsf{CH_3})_2 \mathsf{NCOCH_2S}, \ \ \mathsf{HO-COCH(CH_3)S}, \ \ \mathsf{CH_3O-COCH(CH_3)S}, \ \ \mathsf{C_2H_5O-COCH(CH_3)S}, \ \ \mathsf{n-n-COCH(CH_3)S}, \$ $C_4H_9O\text{-}COCH(CH_3)S, CH_2=CHCH_2O\text{-}COCH(CH_3)S, CH=CH_2O\text{-}COCH(CH_3)S, CH_3OC_2H_4O\text{-}COCH(CH_3)S, CH_3OC_2H_4O\text{-}COCH(CH$ $(\text{CH}_3)\text{S}, \quad \text{CH}_3\text{SO}_2\text{NH}, \quad \text{CH}_3\text{NHSO}_2\text{NH}, \quad \text{C}_2\text{H}_5\text{O-COCH}_2\text{NH}, \quad \text{C}_2\text{H}_5\text{O-COCH}(\text{CH}_3)\text{NH}, \quad \text{CH}_2\text{=CHCH}_2\text{O-CO}, \quad \text{CH}_3\text{NH}, \quad \text{CH}_3\text$ CH=CCH₂O-CO, CH₃O-COCH(CH₃)O-CO, C₂H₅O-COCH(CH₃)O-CO, (CH₃)₂NCO and

30

j) X is Cl, R¹ is CH₃, R² is CHF₂O, R³ is Br and R⁴ is BrCH₂CH(Br)CH₂O or BrC≡CCH₂O.

35

3. A process for producing 3-(substituted phenyl)-pyrazole derivatives represented by the general formula

40

50

45

wherein X, R1, R2 and R3 are as defined in claim 1, and D-R8-1 is defined as D-R8 in claim 1 except that R8-1 is not hydrogen,

the process comprising reacting a pyrazole derivative represented by the general formula

55

wherein X, R1, R2, R3, and D are as detained above, with a halide represented by the general formula

$$R^{8-1}$$
-Z (II)

wherein R8-1 is defined above and Z is halogen.

5

10

15

20

25

30

35

40

45

50

55

4. A process for producing 3-(substituted phenyl)pyrazole derivatives represented by the general formula

wherein X, R¹, R², R³ and -CO-B-R⁶ are as defined in claim 1, the process comprising reacting a pyrazole derivative represented by the general formula

wherein X, R^1 , R^2 and R^3 are as defined above and Y denotes halogen or OH, with a compound represented by the general formula

wherein R6 and B are as defined above.

- 5. A herbicidal composition which contains a 3-(substituted phenyl)pyrazole derivative or a salt thereof according to claim 1 or 2 as an active ingredient.
- 6. Use of the herbicidal composition of claim 5, for paddy fields, upland fields, or non-farming area purposes.

7. A method for controlling undesirable plants which comprises applying a herbicidal composition containing a 3-(substituted phenyl)pyrazole derivative or a salt thereof.according to claim 1 or 2 as an active ingredient, in a dose of 1.0 g to 10 Kg in terms of the quantity of active ingredient per hectare.

Patentansprüche

5

10

15

20

25

30

35

40

45

50

 3-(substituiertes Phenyl)pyrazol-Derivat oder ein Salz davon, wobei das Derivat dargestellt wird durch die allgemeine Formel (I)

worin

X Halogen bedeutet,

R1 CH3 bedeutet,

R2 Hydroxy, Mercapto, Alkylthio, Haloalkoxy oder Haloalkylthio bedeutet,

R3 Wasserstoff oder Halogen bedeutet, und

R4

(i) Formyl bedeutet, (ii) Nitro bedeutet,

(iii) -CO-B-R⁶ bedeutet, worin B -O-, -S- oder -NR⁷- bedeutet, wobei R⁶ und R⁷ gleich oder verschieden sind und jeweils Wasserstoff oder Cycloalkyl bedeuten, und wenn B -O- ist, R⁶ ein Alkalimetallatom sein kann oder -CO-B-R⁶ Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Butoxycarbonyl, Methoxycarbonylmethoxycarbonyl, Ethoxycarbonylmethoxycarbonyl, Propoxycarbonylmethoxycarbonyl, Methoxycarbonylethoxycarbonyl, Ethoxycarbonylethoxycarbonyl oder Propoxycarbonylethoxycarbonyl bedeutet, (iv) -D-R⁸ bedeutet, worin D -O-, -S(O)_n-, worin n eine ganze Zahl von 0 bis 2 ist, oder -NR⁹- bedeutet, worin R⁸ und R⁹, die gleich oder verschieden sind, jeweils Wasserstoff; Alkyl; Haloalkyl; Aminosulfonyl; Phenylalkyl oder Phenoxyalkyl bedeuten, worin der Phenylring gegebenenfalls einen oder mehrere Halogensubstituenten haben kann, die gleich oder verschieden sein können; oder -D-R⁸ eine Alkenyloxygruppe, enthaltend Propenyl, Butenyl oder Pentenyl; eine Alkinyloxygruppe, enthaltend Propinyl, Butinyl oder Pentenyl; eine Alkenylaminogruppe, enthaltend Propenyl, Butenyl oder Pentenyl; eine Alkoxycarbonylalkoxy- oder eine Alkylthiocarbonylalkoxygruppe, enthaltend jeweils Methyl, Ethyl, Propyl oder Butyl bedeutet; oder

(v) -(CHR¹⁰)_m-CO-E-R¹² bedeutet, worin E -O-, -S- oder -NR¹¹ bedeutet; R¹⁰ Wasserstoff bedeutet und R¹¹ und R¹², die gleich oder verschieden sein können, jeweils Wasserstoff; Alkyl; Haloalkyl; Phenyl, gegebenenfalls mit einem oder mehreren Halogensubstituenten an dem Phenylring; Phenylalkyl, gegebenenfalls mit einem oder mehreren Halogensubstituenten am Phenylring, bedeutet; oder R¹¹, verbunden mit R¹², eine Piperidin- oder Morpholinylgruppe bedeutet; und wenn E -O- ist, R¹² ein Alkalimetallatom sein kann; und

m eine ganze Zahl von 0 bis 3 bedeutet.

2. 3-(substituiertes Phenyl)pyrazol-Derivat oder ein Salz davon, wobei das Derivat dargestellt wird durch die allgemeine Formel (I)

worin

5

10

15

20

25

30

35

40

45

50

55

a) X CI ist, R1 CH3 ist, R2 CH3S ist, R3 CI ist und R4 gewählt wird aus

C1-(O)-00C0

 $\begin{aligned} & \text{HOOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{i-C}_3\text{H}_7\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_2\text{=CHCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{=CC(CI)CH}_2\text{S}, \ \text{CH}_2\text{=CCH}_2\text{CH}(\text{CH}_3)\text{S}, \ \text{CH}_2\text{=CCH}_2\text{CH}_$

i-c³H²NH³00CCH(CH³) s '

⊕ ⊕ (CH₃)₂NH₂OOCCH(CH₃) S₂

 \bigcirc CH₂CH₂OOCNH,

- $\label{eq:chch2} \text{CH}_2\text{=}\text{CHCH}_2\text{OOCCH}_2\text{NH}, \text{CH}_2\text{OOCCH}_2\text{NH}, \text{C}_2\text{H}_5\text{OOCCH}(\text{CH}_3)\text{NH}, \text{HOOCCH}_2\text{NH}, \text{CH}_3\text{OOCCH}_2\text{NH}, \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{NH}; \\ \text{HOOCCH}(\text{CH}_3)\text{NH} \text{ und CH}_3\text{OOCCH}(\text{CH}_3)\text{NH}; \\ \text{CH}_3\text{OOCCH}(\text{CH}_3)\text{NH}
- b) X CI ist, R¹ CH $_3$ ist, R² CH $_3$ SO ist, R³ CI ist und R⁴ gewählt wird aus NO $_2$, CH $_3$ SO $_2$ NH, CH $_3$ NHSO $_2$ NH, i-C $_3$ H $_7$ NHSO $_2$ NH und CH $_3$ NHSO $_2$ (CH \equiv CCH $_2$);
- c) X CI ist, R¹ CHF $_2$ ist, R² CH $_3$ S ist, R³ CI ist und R⁴ gewählt wird aus NH $_2$, CH $_3$ NHSO $_2$ NH, CH $_3$ NHSO $_2$ N (CH \equiv CCH $_2$) und CH $_3$ N(CH \equiv CCH $_2$)SO $_2$ N(CH \equiv CCH $_2$);
- d) X Cl ist, R1 CHF2 ist, R2 CH3SO ist, R3 Cl ist und R4 gewählt wird aus NH2 und NO2;
- e) X CI ist, R1 CH3 ist, R2 CHF2O ist, R3 CI ist und R4 gewählt wird aus

 $C_2H_5O(CH_2)_2OOCCH_2O$, $C_2H_5O(CH_2)_2O(CH_2)_2OOCCH_2O$,

$$\bigcirc$$
 -CH₂OOCCH₂O, HOOCCH (CH₃)O, i-C₃H₇NH₃OOCCH (CH₃)O,

$$\label{eq:ch2} \begin{split} & \text{CH}_2\text{=}\text{CHCH}_2\text{OOCCH}(\text{CH}_3)\text{O}, \quad \text{CH} \\ & \text{CH}_2\text{=}\text{CHCH}_2\text{S}, \quad \text{CH}_2\text{=}\text{CHCH}_2\text{S}, \quad \text{CH}_2\text{=}\text{CHCH}_2\text{S}, \quad \text{CH}_3\text{OOCCH}_2\text{S}, \quad \text{CH}_3\text{OOCCH}_3\text{S}, \quad \text{CH}_3\text{OO$$

$$\oplus \ominus$$
 . $\oplus \ominus$. $\oplus \ominus$

 $\mathsf{CH_3SO_2NH},\,\mathsf{CH_3NHSO_2NH},\,\mathsf{CH_2} = \mathsf{CHCH_2NH},\,\,\mathsf{CH} = \mathsf{CCH_2NH},\,\,\mathsf{CH_3OOCNH},\,\,\mathsf{CI} \\ \ominus \mathsf{H_3N^{\oplus}},\,\,\mathsf{CH_3OOCNH},\,\,\mathsf{CI} \\ \ominus \mathsf{H_3N^{\oplus}},\,\,\mathsf{CH_3OOCNH},\,\,\mathsf{CI} \\ \ominus \mathsf{H_3N^{\oplus}},\,\,\mathsf{CH_3OOCNH},\,\,\mathsf{CI} \\ \ominus \mathsf{H_3N^{\oplus}},\,\,\mathsf{CI} \\ \ominus \mathsf$

CH3OOCCH2NH, HOOCCH(CH3)NH,

N¶ COCCH (CH³) NH'
$$i-C^3H^4$$
NH³00CCH (CH³) NH' $\oplus \ominus$

$$\label{eq:ch2} \begin{split} \text{CH$_2$-CHC(CH$_3$)$_2$O-$COCH$_2$O}, \quad \text{CH$_3C=CCH_2$O-$COCH$_2$O}, \quad \text{CH$_3$NHCOCH$_2$O}, \quad \text{(CH$_3$)$_2$NCOCH$_2$O}, \quad \text{n-C$_4$H$_9}\\ \text{NHCOCH$_2$O}, \quad \text{H$_2C=$CHCH$_2$NHCOCH$_2$O}, \quad \text{(H$_2C=$CHCH$_2$)$_2$NCOCH$_2$O}, \quad \text{(CH$_3$)$_2$NCOCH$_2$O}, \quad \text{(CH$_3$)$_3$NCOCH$_2$O}, \quad \text{(CH$_3$)$_3$NCOCH$_2$O}, \quad \text{(CH$_3$)$_3$NCOCH$_3$O}, \quad \text{(CH$_3$)$_3$NCO$$

 $\label{eq:ch3} \text{CH$_3O_2NHCOCH$_2$O}, \quad \text{CH$_3$O_2$NHCOCH$_(CH_3$)O}, \quad \text{(CH$_3$)_3$SiCH$_2$O-COCH$_2$O}, \quad \text{CH$_3$OC$_2$H$_4$O-COCH$_2$O}, \\ \text{CCH$_3$O}, \quad \text{CH$_2$=C(CH$_3$)CH$_2$S}, \quad \text{CH$_2$=C(CI)CH_2$S}, \quad \text{CICH$=CHCH$_2$S}, \quad \text{CICH$=C(CI)$CH$_2$S}, \quad \text{NCCH$_2$S}, \\ \text{CICH$_3$OC$_2$H$_4$O-COCH$_3$OC$_2$C(CI)CH_2$C(CI)$CH$_3$C(CI)CH_2$C(CI)$CH$_3$C(CI)CH_3$C(CI$

 $\begin{aligned} & \text{HO-COCH}_2\text{S, i-C}_3\text{H}_7\text{O-COCH}_2\text{S, n-C}_4\text{H}_9\text{O-COCH}_2\text{S, C}_{12}\text{H}_25\text{O-COCH}_2\text{S, CH}_3\text{S-COCH}_2\text{S, C}_2\text{H}_5\text{S-COCH}_2\text{S, C}_2\text{H}_4\text{O-COCH}_2\text{S, C}_2\text{H}_4\text{O-COCH$

 $(\text{CH}_3)_3 \text{SiCH}_2 \text{O-COCH}_2 \text{S}, \ \text{CH}_3 \text{NHCOCH}_2 \text{S}, \ (\text{CH}_3)_2 \text{NCOCH}_2 \text{S}, \ \text{H}_2 \text{C=CHCH}_2 \text{NHCOCH}_2 \text{S}, \ (\text{H}_2 \text{C=CHCH}_2)_2 \\ \text{NCOCH}_2 \text{S}, \ \text{HC=CCH}_2 \text{NHCOCH}_2 \text{S}, \ \\ \text{CH}_3 \text{NHCOCH}_2 \text{CH}_2 \text{CHCH}_2 \text{CHCH}$

NCOCH₂S, O NCOCH₂S, 5 $i-C_4H_9O-COCH(CH_3)S$, $t-C_4H_9CH_2O-COCH(CH_3)S$, $n-C_6H_{13}O-COCH(CH_3)S$, O - сн₂о - сосн (сн₃) s / 10 C_2H_5S -COCH(CH₃)S, i- C_3H_7S -COCH(CH₃)S, NCCH(CH₃)O-COCH(CH₃)S, CH₃SC₂H₄O-COCH(CH₃)S, 15 -0-COCH (CH₃) S 20 O)-s-сосн (сн₃) s, $(\mathsf{CH}_3)_3 \mathsf{SiCH}_2 \mathsf{O} - \mathsf{COCH}(\mathsf{CH}_3) \mathsf{S}, \quad \mathsf{CH}_2 = \mathsf{CHCH}_2 \mathsf{NHCOCH}(\mathsf{CH}_3) \mathsf{S}, \quad (\mathsf{H}_2 \mathsf{C} = \mathsf{CHCH}_2)_2 \mathsf{NCOCH}(\mathsf{CH}_3) \mathsf{S}, \quad \mathsf{HC} = \mathsf{CHCH}_2 \mathsf{NHCOCH}(\mathsf{CH}_3) \mathsf{S}, \quad \mathsf{CH}_2 = \mathsf{CHCH}_2 \mathsf{NHCOCH}(\mathsf{CH}_3) \mathsf{S}, \quad \mathsf{CH}_3 = \mathsf{CHCH}_3 \mathsf{NHCOCH}(\mathsf{CH}_3) \mathsf{S}, \quad \mathsf{CH}_3 = \mathsf$ 25 $\texttt{CCH}_2 \texttt{NHCOCH}(\texttt{CH}_3) \texttt{S}, \ \ \texttt{CH}_3 \texttt{CO-O-(CH}_2)_2 \texttt{S}, \ \ \texttt{C}_2 \texttt{H}_5 \texttt{O-COC(CH}_3)_2 \texttt{S}, \ \ \texttt{CH}_3 \texttt{O-COCH}(\texttt{i-C}_3 \texttt{H}_7) \texttt{S}, \ \ \texttt{C}_2 \texttt{H}_5 \texttt{O-COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{CH}_3 \texttt{O-COCH}(\texttt{i-C}_3 \texttt{H}_7) \texttt{S}, \ \ \texttt{C}_2 \texttt{H}_5 \texttt{O-COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{CH}_3 \texttt{O-COCH}(\texttt{i-C}_3 \texttt{H}_7) \texttt{S}, \ \ \texttt{C}_2 \texttt{H}_5 \texttt{O-COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{CH}_3 \texttt{O-COCH}(\texttt{i-C}_3 \texttt{H}_7) \texttt{S}, \ \ \texttt{C}_2 \texttt{H}_5 \texttt{O-COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_3 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_4 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_5 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_6 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_7 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{S}, \ \ \texttt{C}_8 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{COCH}(\texttt{COCH}_3)_2 \texttt{$ $(CH_3)N(CH_3)$, $CH_2=CHCH_2O-CO$, $CH_3O-COCH(CH_3)O-CO$, $C_2H_5O-COCH(CH_3)O-CO$, $CH=CCH_2O-CO$, 30 CH,O-COCH,O 35 und CH₃O-CO-OCH₂S-CO; 40 f) X CI ist, R¹ CH₃ ist, R² CHF₂S ist, R³ CI ist und R⁴ gewählt wird aus CH₂=CHCH₂S, CH≡CCH₂S, C2H5OCH2CH2S, CH3SCH2S, NCCH2S, C2H5OOCS, CH3OOCCH2S, C2H5OOCCH2S, 45 CH₃NHOCCH₂S, (CH₃)₂NOCCH₂S, HOOCCH(CH₃)S, 50 Nacocch (CH³) s, $i-c^3H^4$ NH³ cocch (CH³) s, \bigoplus

 $C_2H_5OC_2H_4O$, CH_3OCH_2S , $CICH=CHCH_2S$, $CH_2=C(CI)CH_2S$,

CF3CH2O-COCH2O, CH2=CHCH2O-COCH2O,

10

5

15

 $\label{eq:ch3NHCOCH2O} $$ CH_2=CHCH_2O-COCH(CH_3)O, CH_3NHCOCH(CH_3)O, NCCH_2O-COCH_2O, CH_3O-COCH(CH_3)S, NCCH_2O-COCH(CH_3)S, C_2H_5O-CO(CH_2)_3S, $$ $$$

$$\bigcirc$$
-N (CH₃) COCH₂O,

20

HO-COCH₂NH, C₂H₅O-COCH₂NH und C₂H₅O-COCH(CH₃)NH;

g) X F ist, R1 CH3 ist, R2 CH3SO ist, R3 CI ist und R4 5-NO2 ist;

25

h) X F ist, R¹ CH₃ ist, R² CH₃S ist, R³ Cl ist und R⁴ gewählt wird aus 5-NH₂, 5-SH, 5-CH≡CCH₂O, 5-CH≡CCH₂S und 5-C₂H₅OOCCH(CH₃)S;

30

35

$$H \rightarrow O-COCH_2s$$
, $O \rightarrow CH_2O-COCH_2s$,

40

45

50

j) X CI ist, R¹ CH₃ ist, R² CHF₂O ist, R³ Br ist und R⁴ BrCH₂CH(Br)CH₂O oder BrC≡CCH₂O ist.

3. Verfahren zur Herstellung von 3-(substituiertes Phenyl)prazol-Derivaten der allgemeinen Formel (I-2)

worin X, R1, R2 und R3 definiert sind wie in Anspruch 1, und D-R8-1 definiert ist wie D-R8 in Anspruch 1 mit dem Unterschied, daß R8-1 kein Wasserstoff ist,

wobei das Verfahren das Umsetzen eines Pyrazol-Derivats der allgemeinen Formel (I-1)

worin X, R1, R2, R3 und D wie oben definiert sind, mit einem Halogenid der allgemeinen Formel (II)

$$R^{8-1}$$
-Z (II)

worin R8-1 definiert ist wie oben und Z Halogen ist, umfaßt.

5

10

15

20

25

30

40

45

50

55

Verfahren zur Herstellung von 3-(substituiertes Phenyl)pyrazol-Derivaten der allgemeinen Formel (I-4)

worin X, R1, R2, R3 und -CO-B-R6 definiert sind wie in Anspruch 1, wobei das Verfahren das Umsetzen eines Pyrazol-Derivats der allgemeinen Formel (I-3)

worin X, R1, R2 und R3 wie oben definiert sind und Y Halogen oder OH bedeutet, mit einer Verbindung der allge-

meinen Formel (II-1)

$$R^6$$
-B-H (II-1)

worin R6 und B wie oben definiert sind, umfaßt.

- 5. Herbizide Zusammensetzung, die ein 3-(substituiertes Phenyl)pyrazol-Derivat oder ein Salz davon nach Anspruch 1 oder 2 als aktiven Inhaltsstoff enthält.
- Verwendung der herbiziden Zusammensetzung nach Anspruch 5 f
 ür Reisfelder, Hochlandfelder oder f
 ür Zwecke in nicht-landwirtschaftlichen Gebieten.
- 7. Verfahren zur Kontrolle von unerwünschten Pflanzen, welches das Aufbringen einer herbiziden Zusammensetzung, welche ein 3-(substituiertes Phenyl)pyrazol-Derivat oder ein Salz davon nach Anspruch 1 oder 2 als aktiven Inhaltsstoff enthält, in einer Dosis von 1,0 g bis 10 kg, bezogen auf die Menge des aktiven Inhaltsstoffs, pro Hektar umfaßt.

Revendications

5

10

15

20

25

30

35

40

45

50

55

1. Dérivé de 3-(phényl substitué) pyrazole ou sel de celui-ci, le dérivé étant représenté par la formule générale

dans laquelle

X signifie un halogène.

R1 signifie CH3,

R2 signifie un hydroxy, un mercapto, un alkylthio, un haloalcoxy ou un haloalkylthio,

R³ signifie l'hydrogène ou un halogène, et

R⁴ signifie (i) le formyle, (ii) le nitro, (iii) -CO-B-R⁶ dans laquelle B signifie -O-, -S-, ou -NR⁷, R⁶ et R⁷ sont les mêmes ou différents et signifient chacun l'hydrogène ou un cycloalkyle, et lorsque B est -O-, R⁶ peut être un atome de métal alcalin ou -CO-B-R⁶ signifie le méthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, le butoxycarbonyle, le méthoxycarbonylméthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, le méthoxycarbonyle, le méthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, ou le propoxycarbonyle propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, ou le propoxycarbonyle propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le méthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbonyle, le propoxycarbonyle, l'éthoxycarbonyle, l'éthoxycarbony

(iv) -D-R⁸ dans laquelle D signifie -O-, -S(O)_n, n étant un nombre entier de 0 à 2, ou -NR⁹-, R⁸ et R⁹, qui sont les mêmes ou différents, signifient chacun l'hydrogène ; un alkyle ; un haloalyle ; un aminosulfonyle ; un phénylalkyle ou un phénoxy-alkyle ayant éventuellement sur l'anneau phényle un ou plusieurs substituants halogène qui sont les mêmes ou différents ; ou -D-R⁸ signifie un groupe alcényloxy contenant le groupe propényle, butényle ou pentényle ; un groupe alcynyloxy contenant le groupe propynyle, butynyle ou pentynyle ; un groupe alcénylamino contenant le groupe propényle, butényle ou pentényle ; un groupe alcoxy-carbonylalcoxy ou alkylthiocarbonylalcoxy contenant chacun le méthyle, l'éthyle, le propyle ou le butyle ; ou (v) -(CHR¹⁰)_m-CO-E-R¹² dans laquelle E signifie -O-, -S- ou -NR¹¹; R¹⁰ signifie l'hydrogène et R¹¹ et R¹², qui sont les mêmes ou différents, signifient chacun l'hydrogène ; un alkyle ; un haloalkyle ; un phényle ayant éventuellement sur l'anneau phényle un ou plusieurs substituants halogène ; un phénylalkyle ayant éventuellement sur l'anneau phényle un ou plusieurs substituants halogène ; ou R¹¹, conjointement avec R¹² forme un groupe pipéridino ou morpholinyle, et lorsque E est -O-, R¹² peut être un atome de métal alcalin ; et m signifie un nombre entier de 0 à 3.

2. Dérivé de 3-(phényl substitué) pyrazole ou sel de celui-ci, le dérivé étant représenté par la formule générale

dans laquelle

5

10

15

20

25

30

35

40

45

50

55

a) X est CI, R1 est CH3, , R2 est CH3S, R3 est CI et R4 est sélectionné parmi

C1-(O)-00C0

 $\begin{aligned} & \text{HOOCCH(CH}_3)\text{O}, \ \text{CH}_3\text{OOCCH(CH}_3)\text{O}, \ \text{C}_2\text{H}_5\text{OOCCH(CH}_3)\text{O}, \ \text{i-C}_3\text{H}_7\text{OOCCH(CH}_3)\text{O}, \ \text{CH}_2\text{=CHCH}_2\text{OOCCH(CH}_3)\text{O}, \ \text{CH}_2\text{=CHCH}_2\text{S}, \ \text{CH}_2\text{=C(CI)CH}_2\text{S}, \ \text{CH}_2\text{=CCH}_2\text{CH}_2\text{CH}_3\text{CH}_3\text{CH}_3\text{S}, \ \text{CH}_3\text{C$

i-c³H²NH³OOCCH(CH³)s,

(CH₃) 2NH2OOCCH (CH₃) S/

CH³CH³OOCMH³

- $\label{eq:ch2} \text{CH$_2$=$CHCH_2$OOCC$H$_2$NH, C_2H$_5$OOCCH(CH$_3$)NH, $HOOCC$H$_2$NH, CH_3$OOCC$H$_2$NH, CH_3$OOCC$H$_2$NH, CH_3$OOCC$H$_3$NH; }$
- b) X est CI, R¹ est CH₃, R² est CH₃SO, R³ est CI et R⁴ est sélectionné parmi NO₂, CH₃SO₂NH, CH₃NHSO₂NH, i-C₃H₇NHSO₂NH, et CH₃NHSO₂(CH \equiv CCH₂);
- c) X est Cl, R¹ est CHF₂, R² est CH₃S, R³ est Cl et R⁴ est sélectionné parmi NH₂, CH₃NHSO₂NH, CH₃NHSO₂N (CH=CCH₂), et CH₃N(CH=CCH₂)SO₂N(CH=CCH₂);
- d) X est Cl, R1 est CHF₂, R2 est CH₃SO, R3 est Cl et R4 est sélectionné parmi NH₂ et NO₂ ;
- e) X est CI, R1 est CH3, R2 est CHF2O, R3 est CI et R4 est sélectionné parmi

5

 $C_2H_5OCH_2CH_2O$, NCCH₂O, CH=CCH₂OOCCH₂O,

CH₃OOCO,

 $\text{n-C}_6\text{H}_{13}\text{OOCCH}_2\text{O},$

 $\mathsf{CH_2}\!\!=\!\!\mathsf{CHCH_2OOCCH_2O},$

10

15

 $C_2H_5O(CH_2)_2OOCCH_2O, C_2H_5O(CH_2)_2O(CH_2)_2OOCCH_2O,$

$$\bigcirc$$
 CH₂OOCCH₂O, HOOCCH(CH₃)O, i-C₃H₇NH₃OOCCH(CH₃)O,

20

 $\begin{aligned} & \text{CH}_2\text{=CHCH}_2\text{OOCCH(CH}_3)\text{O}, \quad \text{CH} = \text{CCH}_2\text{OOCCH(CH}_3)\text{O}, \quad \text{CH}_3\text{NHCOCH(CH}_3)\text{O}, \quad \text{(CH}_3)_2\text{NCOCH(CH}_3)\text{O}, \\ & \text{CH}_2\text{=CHCH}_2\text{S}, \quad \text{CH}_2\text{=CHCH}_2\text{SO}, \quad \text{CH} = \text{CCH}_2\text{S}, \quad \text{(C}_2\text{H}_5\text{O})_2\text{P(O)CH}_2\text{S}, \quad \text{CH}_3\text{OOCCS}, \quad \text{CH}_3\text{OOCCH}_2\text{S}, \\ & \text{C}_2\text{H}_5\text{OOCCH}_2\text{S}, \quad \text{CH}_2\text{=CHCH}_2\text{OOCCH}_2\text{S}, \quad \text{HOOCCH(CH}_3)\text{S}, \end{aligned}$

25

30

35

40

Cł

 $\mathsf{CH_3SO_2NH},\ \mathsf{CH_3NHSO_2NH},\ \mathsf{CH_2} = \mathsf{CHCH_2NH},\ \mathsf{CH} = \mathsf{CCH_2NH},\ \mathsf{CH_3OOCNH},\ \mathsf{C} \\ \mathsf{D} + \mathsf{D}$

45

$$CH_3 - O - SO_3H_3N$$

50

CH₃OOCCH₂NH, HOOCCH(CH₃)NH,

55

5

$$i-c^3H^4NH^3$$
 $o-coch^5o'$

10

 $\begin{aligned} \mathsf{CH_2} &= \mathsf{CHC}(\mathsf{CH_3})_2 \mathsf{O} - \mathsf{COCH_2O}, & \mathsf{CH_3} \mathsf{C} = \mathsf{CCH_2O} - \mathsf{COCH_2O}, & \mathsf{CH_3} \mathsf{NHCOCH_2O}, & (\mathsf{CH_3})_2 \mathsf{NCOCH_2O}, & \mathsf{n-C_4H_9NHCOCH_2O}, & \mathsf{H_2C} = \mathsf{CHCH_2NHCOCH_2O}, & (\mathsf{H_2C} = \mathsf{CHCH_2})_2 \mathsf{NCOCH_2O}, & (\mathsf{CH_3})_2 \mathsf{NCOCH_2O}, & \mathsf{CH_3}

15

20

25

 $\label{eq:ch3} \text{CH}_3\text{SO}_2\text{NHCOCH}_2\text{O}, \quad \text{CH}_3\text{SO}_2\text{NHCOCH}(\text{CH}_3)\text{O}, \quad (\text{CH}_3)_3\text{SiCH}_2\text{O-COCH}_2\text{O}, \quad \text{CH}_3\text{OC}_2\text{H}_4\text{O-COCH}_2\text{OCC}, \\ (\text{CH}_3)\text{O}, \quad \text{CH}_2\text{-C}(\text{CH}_3)\text{CH}_2\text{S}, \quad \text{CH}_2\text{-C}(\text{CI})\text{CH}_2\text{S}, \quad \text{CICH}_2\text{CICH}_2\text{S}, \quad \text{CICH}_2\text{CICH}_2\text{S}, \quad \text{CICH}_2\text{CICH}_$

⊕ ⊖ Na O-COCH₂S,

30

35

 $\begin{aligned} & \text{HO-COCH}_2\text{S, i-C}_3\text{H}_7\text{O-COCH}_2\text{S, n-C}_4\text{H}_9\text{O-COCH}_2\text{S, C}_{12}\text{H}_{25}\text{O-COCH}_2\text{S, CH}_3\text{S-COCH}_2\text{S, C}_2\text{H}_5\text{S-COCH}_2\text{S, i-C}_3\text{H}_7\text{S-COCH}_2\text{S, C}_2\text{H}_5\text{OC}_2\text{H}_4\text{O-COCH}_2\text{S, C}_2\text{H}_4\text{O-COCH}_2\text{S, C}_3\text{H}_4\text{O-COCH}_2\text{S, C$

40

O-сн²о-сосн²s

45

$$\begin{split} &(\mathsf{CH}_3)_3\mathsf{SiCH}_2\mathsf{O}\text{-}\mathsf{COCH}_2\mathsf{S}, & \mathsf{CH}_3\mathsf{NHCOCH}_2\mathsf{S}, \\ &(\mathsf{H}_2\mathsf{C}\text{=}\mathsf{CHCH}_2)_2\mathsf{NCOCH}_2\mathsf{S}, & \mathsf{HC}\text{=}\mathsf{CCH}_2\mathsf{NHCOCH}_2\mathsf{S}, \end{split}$$

(CH₃)₂NCOCH₂S,

 $\mathsf{H_2C=CHCH_2NHCOCH_2S},$

50

i-C₄H₉O-COCH(CH₃)S, t-C₄H₉CH₂O-COCH(CH₃)S, n-C₆H₁₃O-COCH(CH₃)S,

 $C_{2}H_{5}S\text{-COCH}(CH_{3})S, \text{ i-}C_{3}H_{7}S\text{-COCH}(CH_{3})S, \text{ NCCH}(CH_{3})O\text{-COCH}(CH_{3})S, \text{ CH}_{3}SC_{2}H_{4}O\text{-COCH}(CH_{3})S, \text{ NCCH}(CH_{3})S, \text$

10

5

15

20

 $(\text{CH}_3)_3 \text{SiCH}_2 \text{O-COCH}(\text{CH}_3) \text{S}, \quad \text{CH}_2 = \text{CHCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \quad (\text{H}_2 \text{C} = \text{CHCH}_2)_2 \text{NCOCH}(\text{CH}_3) \text{S}, \quad \text{HC} = \text{CCH}_2 \text{NHCOCH}(\text{CH}_3) \text{S}, \quad \text{CH}_3 \text{CO-O-}(\text{CH}_2)_2 \text{S}, \quad \text{C}_2 \text{H}_5 \text{O-COC}(\text{CH}_3)_2 \text{S}, \quad \text{CH}_3 \text{O-COCH}(\text{i-C}_3 \text{H}_7) \text{S}, \quad \text{C}_2 \text{H}_5 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \quad \text{C}_3 \text{O-COCH}(\text{CH}_3) \text{O-CO}, \quad \text{C}_4 \text{O-COCH}(\text{CH}_3) \text{O-COCH$

25

30

et CH₃O-CO-OCH₂S-CO;

f) V ant CL D1 ant CH

f) X est Cl, R¹ est CH₃, R² est CHF₂S, R³ est Cl et R⁴ est sélectionné parmi CH₂=CHCH₂S, CH=CCH₂S, C₂H₅OCH₂CH₂S, CH₃SCH₂S, NCCH₂S, C₂H₅OOCS, CH₃OOCCH₂S, C₂H₅OOCCH₂S,

H-00CCE²S,

40

35

CH₃NHOCCH₂S, (CH₃)₂NOCCH₂S, HOOCCH(CH₃)S,

45

$$H_{\text{MSOOCCF}}(CH^3)$$
 2\(\text{i-C}^3H^2\) MH3 OOCCH(CH) (CH) 2\(\text{i-C}^3\) 2\(\text{i-C}^3\)

50

CF3CH2O-COCH2O, CH2=CHCH2O-COCH2O,

5

10

15

20

25

30

35

40

45

50

 $CH_3NHCOCH_2O$, $CH_2=CHCH_2O-COCH(CH_3)O$, $CH_3NHCOCH(CH_3)O$, $NCCH_2O-COCH_2O$, $CH_3O-COCH(CH_3)S$, $NCCH_2O-COCH(CH_3)S$, $C_2H_5O-CO(CH_2)_3S$,

HO-COCH₂NH, C₂H₅O-COCH₂NH et C₂H₅O-COCH(CH₃)NH;

- g) X est F, R1 est CH3, R2 est CH3SO, R3 est CI et R4 est 5-NO2;
- h) X est F, R¹ est CH₃, R² est CH₃S, R³ est Cl et R⁴ est sélectionné parmi 5-NH₂, 5-SH, 5-CH≡CCH₂O, 5-CH≡-CCH₂S et 5-C₂H₅OOCCH(CH₃)S;
- i) X est F, R¹ est CH3, R² est CHF2O, R³ est Cl et R⁴ est sélectionné parmi HO-COCH2O, CH3O-COCH2O, CH2-CHCH2O-COCH2O, CH2-CHCH2O-COCH2O, HO-COCH(CH3)O, CH2-CHCH2O-COCH(CH3)O, CH2-CHCH2O-COCH(CH3)O, CH2-CHCH2O-COCH(CH3)O, CH2-CHCH2S, CH2-C(CH3)CH2S, CH2-CCH2S, C2H5O-COCH2S, CH3O-COCH2S, C2H5O-COCH2S, C2H5O-COCH2S, C2H5O-COCH2S, C2H5O-COCH2S, C43CO-COCH2S, CH3CO-COCH2S, C43CO-COCH2S, C43CO-C

j) X est Cl, R¹ est CH₃, R² est CHF₂O, R³ est Br et R⁴ est BrCH₂CH(Br)CH₂O ou BrC≡CCH₂O.

3. Procédé de production de dérivés de 3-(phényl substitué) pyrazole représentés par la formule générale

dans laquelle X, R¹, R² et R³ sont tels que définis dans la revendication 1, et D-R⁸⁻¹ est défini comme D-R⁸ en revendication 1 sauf que R⁸⁻¹ n'est pas l'hydrogène, le procédé comprenant la réaction d'un dérivé de pyrazole représenté par la formule générale

dans laquelle X, R¹, R², R³ et D sont tels que définis ci-dessus, avec un halogènure représenté par la formule générale

$$R^{8-1}$$
-Z (II)

dans laquelle R8-1 est défini ci-dessus et Z est un halogène.

5

10

20

25

30

35

40

45

50

4. Procédé de production de dérivés de 3-(phényl substitué) pyrazole représentés par la formule générale

dans laquelle X, R¹, R², R³ et -CO-B-R6 sont tels que définis dans la revendication 1, le procédé comprenant la réaction d'un dérivé de pyrazole représenté par la formule générale

dans laquelle X, R¹, R² et R³ sont tels que définis ci-dessus et Y signifie un halogène ou OH, avec un composé représenté par la formule générale

$$R^6$$
-B-H (II-1)

dans laquelle R⁶ et B sont tels que définis ci-dessus.

- 5. Composition herbicide qui contient un dérivé de 3-(phényl substitué) pyrazole ou un sel de celui-ci selon la revendication 1 ou la revendication 2 comme ingrédient actif.
- 6. Utilisation de la composition herbicide de la revendication 5 pour l'application à des rizières, des champs de hautes terres ou des zones non agricoles.

	7.	Procédé pour réguler des plantes indésirables qui comprend l'application d'une composition herbicide contenant un dérivé de 3-(phényl substitué)pyrazole ou un sel de celui-ci selon la revendication 1 ou la revendication 2 comme ingrédient actif, selon une dose de 1,0 g à 10 kg en termes de quantité d'ingrédient actif par hectare.	
5			
10			
15			
20			
25			
30			í
35			
10			
15			
50			
55			