Apellidos	GONZÂCEZ	SANTAGO
Nombre	CRISTIAN	

Preguntas sobre grupos:

- 1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2, \mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .
 - (a) ($\sqrt[4]{2}$ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) ($\frac{1}{2}$ punto) Dada $A \in \mathrm{GL}(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A: \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) $(\frac{1}{2}$ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

EJERCICIO 1

a)
$$\vec{v} \sim \vec{w} \iff \vec{v} = \pm \vec{w}$$

$$\vec{\nabla} \sim \vec{w} \implies \vec{\nabla} = \pm \vec{w} \implies \vec{w} = \pm \vec{v}$$
. Simétrica.

$$\overrightarrow{\nabla} \sim \overrightarrow{\nabla} \implies \overrightarrow{\nabla} = \pm \overrightarrow{\nabla} \qquad \Rightarrow \overrightarrow{\nabla} = \pm \overrightarrow{\tau} \qquad \text{Transitiva}$$

luego, ~ es de equivalencia.

los vectores de (15 x 15)/90,0% son

de la forma $V = (a_1 b)$, con a $\in \{1, 2\}$.

Entonces, V~ W C V= ± W

luego, existen des clases de equivalencia:

THE SEXULTE CONTRA CORPERT

to co of week a well

 $[\vec{\nabla}] = \{ \vec{\nabla} \in X \mid \vec{\nabla} = (\vec{1}, \vec{12}), \vec{12} \}$ con Tildenotando las clases del 1 en 153/

$$[\overline{W}] = \{ \overline{V} \in X \mid \overline{W} = (\overline{1}, \overline{1}),$$
an $\overline{1}\overline{z}$ denotando las classes del $\overline{1}$ $\overline{\gamma}$ en $\overline{1}\overline{3}$

 $[T] = \{T \in X \mid T = (2,1), \text{ con } [T] = \{T \in X \mid T = (2,1), \text{ con } [T] = \{T \in X \mid T = (2,2), \text{ con } [T] \in T \text{ denotando las clases del } [T] \in T \text{ denotando las clases del } [T] \in T \text{ denotando } [T] \in T \text{ con } [T] = T \text{ con } [T]$

6)