

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0224418 A1 Braun et al.

Dec. 4, 2003 (43) **Pub. Date:**

(54) GENES AND POLYMORPHISMS ASSOCIATED WITH CARDIOVASCULAR DISEASE AND THEIR USE

(76) Inventors: Andreas Braun, San Diego, CA (US); Patrick W. Kleyn, Concord, MA (US); Aruna Bansal, Landbeach (GB)

> Correspondence Address: HELLER EHRMAN WHITE & MCAULIFFE LLP 4350 LA JOLLA VILLAGE DRIVE 7TH FLOOR SAN DIEGO, CA 92122-1246 (US)

(21) Appl. No.: 10/403,902

Mar. 27, 2003 (22) Filed:

Related U.S. Application Data

Division of application No. 09/802,640, filed on Mar. (62) 9, 2001, now abandoned.

Publication Classification

(51)	Int. Cl.7	 1/68
(52)	U.S. Cl.	 435/6

ABSTRACT (57)

Genes and polymorphisms associated with cardiovascular disease, methods that use the polymorphism to detect a predisposition to developing high cholesterol, low HDL or cardiovascular disease, to profile the response of subjects to therapeutic drugs and to develop therapeutic drugs are provided.

GENES AND POLYMORPHISMS ASSOCIATED WITH CARDIOVASCULAR DISEASE AND THEIR USE

RELATED APPLICATIONS

[0001] This application is a divisional application of copending U.S. patent application Ser. No. 09/802,640, filed Mar. 9, 2001, to Andreas Braun, Aruna Bansal and Patrick Kleyn, entitled "GENES AND POLYMORPHISMS ASSOCIATED WITH CARDIOVASCULAR DISEASE AND THEIR USE." The benefit of priority to this application is claimed and the subject matter of the application is incorporated herein in its entirety.

FIELD OF THE INVENTION

[0002] The field of the invention involves genes and polymorphisms of these genes that are associated with development of cardiovascular disease. Methods that use polymorphic markers for prognosticating, profiling drug response and drug discovery are provided.

BACKGROUND OF THE INVENTION

[0003] Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease" markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.

[0004] Polymorphisms

[0005] Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (see, e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a disease. Polymorphisms of the genome can lead to altered gene function, protein function or mRNA instability. To identify hose polymorphisms that have clinical relevance is the goal of a world-wide scientific effort. Discovery of such polymorphisms will have a fundamental impact on the identification and development of diagnostics and drug discovery.

[0006] Single Nucleotide Polymorphisms (SNPs)

[0007] Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

[0008] The organization of SNPs in the primary sequence of a gene into one of the limited number of combinations that exist as units of inheritance is termed a haplotype. Each haplotype therefore contains significantly more information than individual unorganized polymorphisms and provides an accurate measurement of the genomic variation in the two chromosomes of an individual. While it is well-established that many diseases are associated with specific variation in gene sequences and there are examples in which individual polymorphisms act as genetic markers for a particular phenotype, in other cases an individual polymorphism may be found in a variety of genomic backgrounds and therefore shows no definitive coupling between the polymorphism and the phenotype. In these instances, the observed haplotype and its frequency of occurrence in various genotypes will provide a better genetic marker for the phenotype.

[0009] Although risk factors for the development of cardiovascular disease are known, such as high serum cholesterol levels and low serum high density lipoprotein (HDL) levels, the genetic basis for the manifestation of these phenotypes remains unknown. An understanding of the genes that are responsible for controlling cholesterol and HDL levels, along with useful genetic markers and mutations in these genes that affect these phenotypes, will allow for detection of a predisposition for these risk factors and/or cardiovascular disease and the development of therapeutics to modulate such alterations. Therefore, it is an object herein to provide methods for using polymorphic markers to detect a predisposition to the manifestation of high serum cholesterol, low serum HDL and cardiovascular disease. The ultimate goals are the elucidation of pathological pathways, developing new diagnostic assays, determining genetic profiles for positive responses to therapeutic drugs, identifying new potential drug targets and identifying new drug candidates.

SUMMARY OF THE INVENTION

[0010] A database of twins was screened for individuals which exhibit high or low levels of serum cholesterol or HDL. Using a full genome scanning approach, SNPs present in DNA samples from these individuals were examined for alleles that associate with either high levels of cholesterol or low levels of HDL. This lead to the discovery of the association of the cytochrome C oxidase subunit VIb (COX6B) gene and the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene with these risks factors for

developing cardiovascular disease. Specifically, a previously undetermined association of an allelic variant at nucleotide 86 of the COX6B gene and high serum cholesterol levels has been discovered. In addition, it has been discovered that an allelic variant at nucleotide 2577 of the GPI-1 gene is associated with low serum HDL levels. There was no previously known association between these two genes and risk factors related to cardiovascular disease.

[0011] Methods are provided for detecting the presence or absence of at least one allelic variant associated with high cholesterol, low HDL and/or cardiovascular disease by detecting the presence or absence of at least one allelic variant of the COX6B gene or the GPI-1 gene, individually or in combination with one or more allelic variants of other genes associated with cardiovascular disease.

[0012] Also provided are methods for indicating a predisposition to manifesting high serum cholesterol, low serum HDL and/or cardiovascular disease based on detecting the presence or absence of at least one allelic variant of the COX6B or GPI-1 genes, alone or in combination with one or more allelic variants of other genes associated with cardiovascular disease. These methods, referred to as haplotyping, are based on assaying more than one polymorphism of the COX6B and/or GPI-1 genes. One or more polymorphisms of other genes associated with cardiovascular disease may also be assayed at the same time. A collection of allelic variants of one or more genes may be more informative than a single allelic variant of any one gene. A single polymorphism of a collection of polymorphisms present in the COX6B and/or GPI-1 genes and in other genes associated with cardiovascular disease may be assayed individually or the collection may be assayed simultaneously using a multiplex assay method.

[0013] Also provided are microarrays comprising a probe selected from among an oligonucleotide complementary to a polymorphic region surrounding position 86 of the sense strand of the COX6B gene coding sequence; an oligonucleotide complementary to a polymorphic region surrounding the position of the antisense strand of COX6B corresponding to position 86 of the sense strand of the COX6B gene coding sequence; an oligonucleotide complementary to a polymorphic region surrounding position 2577 of the sense strand of the GPI-1 gene; and an oligonucleotide complementary to a polymorphic region surrounding the position of the antisense strand of GPI-1 corresponding to position 2577 of the sense strand of the GPI-1 gene. Microarrays are well known and can be made, for example, using methods set forth in U.S. Pat. Nos. 5,837,832; 5,858,659; 6,043,136; 6,043,031 and 6,156,501.

[0014] Further provided are methods of utilizing allelic variants of the COX6B or GPI-1 gene individually or together with one or more allelic variants of other genes associated with cardiovascular disease to predict a subject's response to a biologically active agent that modulates serum cholesterol, serum HDL, or a cardiovascular drug.

[0015] Also provided are methods to screen candidate biologically active agents for modulation of cholesterol, HDL or other factors associated with cardiovascular disease. These methods utilize cells or transgenic animals containing one or more allelic variants of the COX6B gene and/or the GPI-1 gene alone or in combination with allelic variants of one or more other genes associated with cardiovascular

disease. Such animals should exhibit high cholesterol, low HDL or other known phenotypes associated with cardiovascular disease. Also, provided are methods to construct transgenic animals that are useful as models for cardiovascular disease by using one or more allelic variants of the COX6B gene and/or the GPI-1 gene alone or in combination with allelic variants of one or more other genes associated with cardiovascular disease.

[0016] Further provided are combinations of probes and primers and kits for predicting a predisposition to high serum cholesterol, low HDL levels and/or cardiovascular disease. In particular, combinations and kits comprise probes or primers which are capable of hybridizing adjacent to or at polymorphic regions of the COX6B and/or GPI-1 gene. The combinations and kits can also contain probes or primers which are capable of hybridizing adjacent to or at polymorphic regions of other genes associated with cardiovascular disease. The kits also optionally contain instructions for carrying out assays, interpreting results and for aiding in diagnosing a subject as having a predisposition towards developing high serum cholesterol, low HDL levels and/or cardiovascular disease. Combinations and kits are also provided for predicting a subject's response to a therapeutic agent directed toward modulating cholesterol, HDL, or another phenotype associated with cardiovascular disease. Such combinations and kits comprise probes or primers as described above.

[0017] In particular for the methods, combinations, kits and arrays described above, the polymorphisms are SNPs. The detection or identification is of a T nucleotide at position 86 of the sense strand of the COX6B gene coding sequence or the detection or identification of an A nucleotide at the corresponding position in the antisense strand of the COX6B gene coding sequence. Also embodied is the detection or identification of an A nucleotide at position 2577 of the sense strand of the GPI-1 gene or the detection or identification of a T nucleotide at the corresponding position in the antisense strand of the GPI-1 gene. In addition to the SNPs discussed above, other polymorphisms of the COX6B and GPI-1 genes can be assayed for association with high cholesterol or low HDL, respectively, and utilized as disclosed above.

[0018] Other genes containing allelic variants associated with high serum cholesterol, low HDL and/or cardiovascular disease, include, but are not limited to: cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein B (APO A4); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit, and angiotensin II type 1 receptor gene.

[0019] The detection of the presence or absence of an allelic variant can utilize, but are not limited to, methods such as allele specific hybridization, primer specific extension, oligonucleotide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.

[0020] In particular, primers utilized in primer specific extension hybridize adjacent to nucleotide 86 of the COX6B gene or nucleotide 2577 of the GPI-1 gene or the corre-

sponding positions on the antisense strand (numbers refer to GenBank sequences, see pages 15-17). A primer can be extended in the presence of at least one dideoxynucleotide, particularly ddG, or two dideoxynucleotides, particularly ddG and ddC. Preferably, detection of extension products is by mass spectrometry. Detection of allelic variants can also involve signal moieties such as radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.

[0021] Other probes and primers useful for the detection of allelic variants include those which hybridize at or adjacent to the SNPs described in Tables 1-3 and specifically those that comprise SEQ ID NOs.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118.

DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 depicts the allelic frequency and genotype for pools and individually determined samples of blood from individuals having low cholesterol levels and those with high cholesterol levels.

[0023] FIG. 2 depicts the allelic frequency and genotype for pools and individually determined samples of blood from individuals having high HDL levels and those with low HDL levels

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0024] A. Definitions

[0025] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents, patent applications and publications referred to throughout the disclosure herein are, unless noted otherwise, incorporated by reference in their entirety. In the event that there are a plurality of definitions for terms herein, those in this section prevail.

[0026] As used herein, sequencing refers to the process of determining a nucleotide sequence and can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence in nucleic acid samples taken from the subjects that comprise the database, the region of interest from the samples can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art, and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Pat. Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequenced by hybridization (see, e.g., U.S. Pat. Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Ser. Nos. 08/419,994 and 09/395,409). Alternatively, sequencing may be performed using other known methods, such as set forth in U.S. Pat. Nos. 5,525,464; 5,695,940; 5,834,189; 5,869,242; 5,876,934; 5,908,755; 5,912,118; 5,952,174; 5,976,802; 5,981,186; 5,998,143; 6,004,744; 6,017,702; 6,018,041; 6,025,136; 6,046,005; 6,087,095; 6,117,634, 6,013,431, WO 98/30883; WO 98/56954; WO 99/09218; WO/00/58519, and the others.

[0027] As used herein, "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof.

A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides in length.

[0028] As used herein, "polymorphic gene" refers to a gene having at least one polymorphic region.

[0029] As used herein, "allele", which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.

[0030] As used herein, the term "subject" refers to mammals and in particular human beings.

[0031] As used herein, the term "gene" or "recombinant gene" refers to a nucleic acid molecule comprising an open reading frame and including at least one exon and (optionally) at least one intron sequence. A gene can be either RNA or DNA. Genes may include regions preceding and following the coding region (leader and trailer).

[0032] As used herein, "intron" refers to a DNA sequence present in a given gene which is spliced out during mRNA maturation.

[0033] As used herein, the term "coding sequence" refers to that portion of a gene that encodes an amino acid sequence of a protein.

[0034] As used herein, the term "sense strand" refers to that strand of a double-stranded nucleic acid molecule that encodes the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.

[0035] As used herein, the term "antisense strand" refers to that strand of a double-stranded nucleic acid molecule that is the complement of the sequence of the mRNA that encodes the amino acid sequence encoded by the double-stranded nucleic acid molecule.

[0036] As used herein, a DNA or nucleic acid homolog refers to a nucleic acid that includes a preselected conserved nucleotide sequence. By the term "substantially homologous" is meant having at least 80%, preferably at least 90%, most preferably at least 95% homology therewith or a less percentage of homology or identity and conserved biological activity or function.

[0037] Regarding hybridization, as used herein, stringency conditions to achieve specific hybridization refer to the washing conditions for removing the non-specific probes or primers and conditions that are equivalent to either high, medium, or low stringency as described below:

- 1) high stringency:
- 0.1 x SSPE, 0.1% SDS, 65° C. 0.2 x SSPE, 0.1% SDS, 50° C
- medium stringency:
 low stringency:
- 1.0 × SSPE, 0.1% SDS, 50° C.

[0038] It is understood that equivalent stringencies may be achieved using alternative buffers, salts and temperatures.

[0039] As used herein, "heterologous DNA" is DNA that encodes RNA and proteins that are not normally produced in vivo by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous DNA by affecting transcription, translation, or other regulatable biochemical processes or is not present in the exact orientation or position as the counterpart DNA in a wildtype cell. Heterologous DNA may also be referred to as foreign DNA. Any DNA that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which is expressed is herein encompassed by heterologous DNA. Examples of heterologous DNA include, but are not limited to, DNA that encodes traceable marker proteins, such as a protein that confers drug resistance, DNA that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and DNA that encodes other types of proteins, such as antibodies. Antibodies that are encoded by heterologous DNA may be secreted or expressed on the surface of the cell in which the heterologous DNA has been introduced.

[0040] As used herein, a "promoter region" refers to the portion of DNA of a gene that controls transcription of the DNA to which it is operatively linked. The promoter region includes specific sequences of DNA that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of the RNA polymerase. These sequences may be cis acting or may be responsive to trans acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

[0041] As used herein, the phrase "operatively linked" generally means the sequences or segments have been covalently joined into one piece of DNA, whether in single or double stranded form, whereby control or regulatory sequences on one segment control or permit expression or replication or other such control of other segments. The two segments are not necessarily contiguous. For gene expression a DNA sequence and a regulatory sequence(s) are connected in such a way to control or permit gene expression the appropriate molecular, e.g., transcriptional activator proteins, are bound to the regulatory sequence(s).

[0042] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of preferred vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication. Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in

the form of "plasmids" which refer generally to circular double stranded DNA loops which, in their vector form are not bound to the chromosome. "Plasmid" and "vector" are used interchangeably as the plasmid is the most commonly used form of vector. Also included are other forms of expression vectors that serve equivalent functions and that become known in the art subsequently hereto.

[0043] As used herein, "indicating" or "determining" means that the presence or absence of an allelic variant may be one of many factors that are considered when a subject's predisposition to a disease or disorder is evaluated. Thus a predisposition to a disease or disorder is not necessarily conclusively determined by only ascertaining the presence or absence of one or more allelic variants, but the presence of one of more of such variants is among an number of factors considered.

[0044] As used herein, "predisposition to develop a disease or disorder" means that a subject having a particular genotype and/or haplotype has a higher likelihood than one not having such a genotype and/or haplotype for developing a particular disease or disorder.

[0045] As used herein, "transgenic animal" refers to any animal, preferably a non-human animal, e.g. a mammal, bird or an amphibian, in which one or more of the cells of the animal contain heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. This molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA. In the typical transgenic animals described herein, the transgene causes cells to express a recombinant form of a protein. However, transgenic animals in which the recombinant gene is silent are also contemplated, as for example, using the FLP or CRE recombinase dependent constructs. Moreover, "transgenic animal" also includes those recombinant animals in which gene disruption of one or more genes is caused by human intervention, including both recombination and antisense techniques.

[0046] As used herein, "associated" refers to coincidence with the development or manifestation of a disease, condition or phenotype. Association may be due to, but is not limited to, genes responsible for housekeeping functions, those that are part of a pathway that is involved in a specific disease, condition or phenotype and those that indirectly contribute to the manifestation of a disease, condition or phenotype.

[0047] As used herein, "high serum cholesterol" refers to a level of serum cholesterol that is greater than that considered to be in the normal range for a given age in a population, e.g., about 5.25 mmoles/L or greater, i.e., approximately one standard deviation or more away from the age-adjusted mean.

[0048] As used herein, "low serum HDL" refers to a level of serum HDL that is less than that considered to be in the normal range for a given age in a population, e.g. about 1.11

mmoles/L or less, i.e., approximately one standard deviation or more away from the age-adjusted mean.

[0049] As used herein, "cardiovascular disease" refers to any manifestation of or predisposition to cardiovascular disease including, but not limited to, coronary artery disease and myocardial infarction. Included in predisposition is the manifestation of risks factors such as high serum cholesterol levels and low serum HDL levels.

[0050] As used herein, "target nucleic acid" refers to a nucleic acid molecule which contains all or a portion of a polymorphic region of a gene of interest.

[0051] As used herein, "signal moiety" refers to any moiety that allows for the detection of a nucleic acid molecule. Included are moieties covalently attached to nucleic acids and those that are not.

[0052] As used herein, "biologically active agent that modulates serum cholesterol" refers to any drug, small molecule, nucleic acid (sense and antisense), protein, peptide, lipid, carbohydrate etc. or combination thereof, that exhibits some effect directly or indirectly on the cholesterol measured in a subject's serum.

[0053] As used herein, "biologically active agent that modulates serum HDL" refers to any drug, small molecule, nucleic acid (sense and antisense), protein, peptide, lipid, carbohydrate etc. or combination thereof that exhibits some effect directly or indirectly on the HDL measured in a subject's serum.

[0054] As used herein, "expression and/or activity" refers to the level of transcription or translation of the COX6B or GPI-1 gene, mRNA stability, protein stability or biological activity.

[0055] As used herein, "cardiovascular drug" refers to a drug used to treat cardiovascular disease or a risk factor for the disease, either prophylactically or after a risk factor or disease condition has developed. Cardiovascular drugs include those drugs used to lower serum cholesterol and those used to alter the level of serum HDL.

[0056] As used herein, "combining" refers to contacting the biologically active agent with a cell or animal such that the agent is introduced into the cell or animal. For a cell any method that results in an agent traversing the plasma membrane is useful. For an animal any of the standard routes of administration of an agent, e.g. oral, rectal, transmucosal, intestinal, intravenous, intraperitoneal, intraventricular, subcutaneous, intramuscular, etc., can be utilized.

[0057] As used herein, "positive response" refers to improving or ameliorating at least one symptom or detectable characteristic of a disease or condition, e.g., lowering serum cholesterol levels or raising serum HDL levels.

[0058] As used herein, "biological sample" refers to any cell type or tissue of a subject from which nucleic acid, particularly DNA, can be obtained.

[0059] As used herein, "array" refers to a collection of three or more items, such a collection of immobilized nucleic acid probes arranged on a solid substrate, such as silica, polymeric materials or glass.

[0060] As used herein, a composition refers to any mixture. It may be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.

[0061] As used herein, a combination refers to any association between two or among more items.

[0062] As used herein, "kit" refers to a package that contains a combination, such as one or more primers or probes used to amplify or detect polymorphic regions of genes associated with cardiovascular disease, optionally including instructions and/or reagents for their use.

[0063] As used herein "specifically hybridizes" refers to hybridization of a probe or primer only to a target sequence preferentially to a non-target sequence. Those of skill in the art are familiar with parameters that affect hybridization; such as temperature, probe or primer length and composition, buffer composition and salt concentration and can readily adjust these parameters to achieve specific hybridization of a nucleic acid to a target sequence.

[0064] As used herein "nucleic acid" refers to polymucleotides such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The term should also be understood to include, as equivalents, derivatives, variants and analogs of either RNA or DNA made from nucleotide analogs, single (sense or antisense) and double-stranded polynucleotides. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine. For RNA, the uracil base is uridine.

[0065] As used herein, "mass spectrometry" encompasses any suitable mass spectrometric format known to those of skill in the art. Such formats include, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT Application No. 99/57318 and U.S. Pat. No. 5,118,937) Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

[0066] B. Cytochrome c Oxidase VIb Gene

[0067] Cytochrome c oxidase (COX) is a mitochondrial enzyme complex integrated in the inner membrane. It transfers electrons from cytochrome to molecular oxygen in the terminal reaction of the respiratory chain in eukaryotic cells. COX contains of three large subunits encoded by the mitochondrial genome and 10 other subunits, encoded by nuclear genes. The three subunits encoded by mitochondrial genome are responsible for the catalytic activity. The cytochrome c oxidase subunit VIb (COX6B) is one of the nuclear gene products. The function of the nuclear encoded subunits is unknown. One proposed role is in the regulation of catalytic activity; specifically the rate of electron transport and stoichiometry of proton pumping. Other proposed roles are not directly related to electron transport and include energydependent calcium uptake and protein import by the mitochondrion. Proteolytic removal of subunits VIa and VIb has been associated with loss of calcium transport in reconstituted vesicles. Steady-state levels of the COX6B transcript are different in different tissues (Taanman et al., Gene (1990), 93:285).

[0068] The COX6B gene is generically used to include the human COX6B gene and its homologs from rat, mouse, guinea pig, etc.

[0069] Several single nucleotide polymorphism have been identified in the human COX6B gene. One of these is

located at position 86 and is a C to T transversion which is manifested as a silent mutation in the coding region, ACC to ACT (threonine to threonine)(SEQ ID NO.: 2). Although this is a silent mutation at the amino acid level, it may represent an alteration that changes codon usage, or it may reflect mRNA stability or it may be in linkage disequilibrium with a non-silent change. Other known single nucleotide polymorphisms of the COX6B gene include, but are not limited to, those listed in Table 1.

TABLE 1

Gene	GenBank Accession No.	SNP	SNP Location
COX6B (SEQ ID NO.: 1)	NM_001863	C/T A/G	86 60
(A/T A/T	324 123

[0070] Based on methods disclosed herein and those used in the art, one of skill would be able to utilize all the SNPs described and find additional polymorphic regions of the COX6B gene to determine whether allelic variants of these regions are associated with high cholesterol levels and cardiovascular disease.

[0071] C. GPI-1 Gene

[0072] Glycosylphosphatidylinositol (GPI) functions to anchor various eukaryotic proteins to membranes and is essential for their surface expression. Thus, a defect in GPI anchor synthesis affects various functions of cell, tissues and organs. Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by the transfer of N-acetylglucosamine (GIcNAc) from UDP-GIeNAc to phosphatidylinositol (PI) and is catalyzed by a GIcNAc transferase, GPI-GIcNAc transferase (GPI-GnT). Four mammalian gene products form a protein complex that is responsible for this enzyme activity (PIG-A, PIG-H. PIG-C and GPI-1). PIG-A. PIG-H. PIG-C are required for the first step in GPI anchor biosynthesis; GPI-1 is not. Stabilization of the enzyme complex, rather than participation in GIcNAc transfer, has been suggested as a possible role for GPI-1 (Watanabe et al. EMBO (1998) 17: 877).

[0073] The GPI-1 gene is generically used to include the human GPI-1 gene and its homologs from rat, mouse, guinea pig, etc.

[0074] A polymorphism has been identified at position 2577 of the human GPI-1 gene. This is a G to Atransversion. This SNP is located in the 3' untranslated region of the mRNA, and does not affect protein structure, but may affect mRNA stability or may be in linkage disequilibrium with a non-silent change. Other known single nucleotide polymorphisms of the GPI-1 gene include, but are not limited to, those listed in Table 2.

TABLE 2

Gene	GenBank Accession No.	SNP	SNP Location
GPI-1	NM_004204	C/T	2829
(SEQ ID NOS.: 6, 7)		A/G	2577
		C/T	2519
		C/T	2289

TABLE 2-continued

Gene	GenBank Accession No.	SNP	SNP Location
		C/T	1938
		C/G	1563
		A/G/C/T	2664
		A/G	2656
		A/C/T	2167
		G/C/A	2166

[0075] Based on methods disclosed herein and those used in the art, one of skill would be able to use all the described SNPs and find additional polymorphic regions of the GPI-1 gene to determine whether allelic variants of these regions are associated with low levels of HDL and cardiovascular disease.

[0076] D. Other Genes and Polymorphism Associated with Cardiovascular Disease

[0077] Many other genes and polymorphisms contained within them have been associated with risks factors for cardiovascular disease (aberrations in lipid metabolism; specifically high levels of serum cholesterol and low levels of HDL, etc.) and/or the clinical phenotypes of atherosclerosis and cardiovascular disease. Table 3 presents a list of some of these genes and some associated polymorphisms (SNPs): cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase (LIPC); E-selectin; G protein beta 3 subunit and angiotensin II type 1 receptor gene. The SNP locations are based on the GenBank sequence. Table 3 is not meant to be exhaustive, as one of skill in the art based on the disclosure would be able to readily use other known polymorphisms in these and other genes, new polymorphisms discovered in previously identified genes and newly identified genes and polymorphisms in the methods and compositions disclosed herein.

TABLE 3

Gene	GenBank Accession No.	SNP	SNP Location
CETP	NM_000078	C/A	991
(SEQ ID NOS.: 11, 12)		C/T	196
		A/G	1586
		A/G	1394
		A/G	1439
		C/G	1297
		C/T	766
		G/A	1131
		G/A	1696
LPL	NM_000237	A/G	1127
(SEQ ID NOS.: 13, 14)		A/C	3447
. , ,		C/T	1973
		C/T	3343
		G/A	2851
		C/T	3272
		A/T	2428
		T/C	2743
		G/A	1453

TABLE 3-continued

TABLE 3-continued

	GenBank		SNP		GenBank		SNP
Gene	Accession No.	SNP	Location	Gene	Accession No.	SNP	Locatio
		C/A	3449			C/T	7673
		G/A	1282			C/A/G/T	8344
		G/A	579			G/C/T/A	4393
		A/C	1338			A/C/T/G	5894
		A/G/T/C	2416-2426			A/T	12019
		A/G	2427			C/T	11973
		C/T	1302			G/C/T/A	7065
		G/A	609			C/G	947
		G/C	1595			C/G	7331
		G/A	1309			A/G	7221
		C/T	2454			G/C	6402
		C/T	2988			G/C	3780
		G/A	280			C/G	1661
		G/A	1036			A/T	8167
PO A4	NM 000482	G/T	1122			C/A	8126
EQ ID NOS.: 15, 16)		G/C	1033			C/T	421
		G/A	1002			C/T	1981
		C/T	960			G/A	12510
		C/T	894			G/C	12937
		G/A	554	APO B (con't)		G/A	11042
			9 5 0	ALO B (OILI)			2834
		G/A T/C	336			C/T A/G	2834 5869
		G/A	334			A/G	11962
		C/T	330			C/G	4439
		A/G	201			G/A	7824
		A/G	16			G/A	13569
		A/T	1213			G/A	9489
PO E	NM_000041	C/T	448			G/A	2325
EQ ID NOS.: 17, 18)		G/A	448			G/A	10259
RNA)		C/T	586			C/G	14
		C/T	197	MTHFR	NM_005957	G/A	5442
		C/T	540	(SEQ ID NOS.: 33, 34)		A/G	5113
patic Lipase	NM_000236	C/G	680			A/G	5113
ÉQ ID NOS.: 19, 20)	_	G/A	1374			A/G	5110
, _ , , , , , , , , , , , , , , ,		G/A	701			A/G	5102
		C/A	1492			A/C/T	5097
		A/G	648			A/C/T	5097
		G/C	729			C/T	5079
		G/A	340			C/T	5079
		G/T	522			T/C	5071
ON 1	NM_000446		172			T/C	5071
	NW_000446	A/T					
SEQ ID NOS.: 21, 22)		A/G	584			T/C	5051
		G/C	190			G/A	5012
ON 2	XM_004947	C/G	475			C/A	5000
EQ ID NOS.: 23, 24)		C/G	964			A/G	4998
PO C3	NM_000040	C/T	148			A/G	4994
EQ ID NOS.: 25, 26)		T/A	471			A/G	4994
		G/C	386			A/G	4994
		G/T	417			C/T	4991
		T/A	495			C/T	4991
BC 1	XM_005567	G/A	8591			C/T	4991
EQ ID NOS.: 27, 28)						A/G	4986
PO A1	NM_000039	C/G	770			A/G	4986
EQ ID NOS.: 29, 30)		G/A	656			A/G	4986
/		C/G	589			C/T	4985
		C/G	414			T/A	4982
		A/T	430			T/G	4981
		C/T	708			T/C	4981
		C/T	221			T/C	4981
		T/G	223	MTHFR (con't)		G/C/A	4967
		C/T	597	milia (con t)		G/A	4967
		A/G	340			A/G	4963
		G/C	690			G/C/T	
	*** *********************************						4962
PO B	NM_000384	A/G/C/T	13141			A/C/G/T	4961
EQ ID NOS.: 31, 32)		A/G/C/T	12669			A/C/T	4961
		C/T	11323			A/C	4961
		G/C	10422			A/C	4961
		A/C	10408			A/C/T	4960
		C/G	10083			T/C	4938
		C/T	7064			T/C	4937
		C/T	6666			T/C	4933
		C/T	1980			G/C/T	4933

TABLE 3-continued

GenBank SNP Gene Accession No. SNP Location C/T 4929 T/A/G 4929 A/G 4928 G/C 4928 C/G 4927 G/A 4923 C/T 4919 A/T/G 4913 C/T 4912 A/T 4903 C/T 4902 A/G 49nn G/A 4808 G/T 4898 4897 СΤ G/T 4894 4836 T/C/G C/T 3862 C/T 4922 C/T 4959 T/C 4981 A/G 4994 A/G 5044 T/C 5051 G/C 5066 C/T 5079 MTHFR (con't) C/A/G 5085 5092 CIT 5103 A/G A/G 5113 C/T 1021 E-Selectin NM 000450 G/A 3484 (SEQ ID NOS.: 35, 36) 3093 G/A T/G 2939 T/C 2902 C/T 1937 C/T 1916 C/T 1839 C/T 1805

TABLE 3-continued

Gene	GenBank Accession No.	SNP	SNP Location
		C/T	1518
		G/C	1377
		C/T	1376
		G/A	999
		T/C	857
		A/C	561
		C/G	506
		A/G	392
		G/T	98
G protein \$3 subunit	NM_002075	C/T	1828
(SEQ ID NOS.: 37, 38)		C/T	1546
		G/T	1431
		G/A	1231
		C/T	1230
Angiotensin II type 1	NM_00686	G/A	1453
receptor gene		C/G	968
(SEQ ID NOS.: 39, 40)		G/C	966
		T/C	941
		G/A	894
		T/C	659

[0078] Assays to identify the nucleotide present at the polymorphic site include those described herein and all others known to those who practice the art.

[0079] For some of the SNPs described above, there are provided a description of the MassEXTEND™ reaction components that can be utilized to determine the allelic variant that is present. Included are the forward and reverse primers used for amplification. Also included are the MassEXTEND™ primer used in the primer extension reaction and the extended MassEXTEND™ primers for each allele. MassEXTEND™ reactions are carried out and the products analyzed as described in Examples 2 and 3.

[0080] CETP

Position 991 (C/A) PCR primers:		
Forward:	ACTGCCTGATAACCATGCTG	(SEQ ID NO.: 41)
Reverse:	ATACTTACACACCAGGAGGG	(SEQ ID NO.: 42)
MassEXTENDTM Primer:	ATGCCTGCTCCAAAGGCAC	(SEQ ID NO.: 43)
Primer Mass:	5757.8	
Extended Primer-Allele C:	ATGCCTGCTCCAAAGGCACC	(SEQ ID NO.: 44)
Extended Primer Mass:	6030.9	
Extended Primer-Allele A:	ATGCCTGCTCCAAAGGCACAT	(SEQ ID NO.: 45)
Extended Primer Mass:	6359.2	
Position 196 (CIT)		
PCR primers:		
Forward:	TACTTCTGGTTCTCTGAGCG	(SEQ ID NO.: 46)
Reverse:	ACTCACCTTGAACTCGTCTC	(SEQ ID NO.: 47)
MassEXTEND ** Primer:	TGGTTCTCTGAGCGAGTCTT	(SEQ ID NO.: 48)

_CC.	icinaca	
Primer Mass:	6130	
Extended Primer-Allele C:	TGGTTCTCTGAGCGAGTCTTC	(SEQ ID NO.: 49)
Extended Primer Mass:	6707.4	
Extended Primer-Allele T:	TGGTTCTCTGAGCGAGTCTTTC	(SEQ ID NO.: 50)
Extended Primer Mass:	6333.1	
Position 1586 (AIG)		
POR primers:		
Forward:	TGCAGATGGACTTTGGCTTC	(SEQ ID NO.: 51)
Reverse:	TGCTTGCCTTCTGCTACAAG	(SEQ ID NO.: 52)
MassEXTENDTM Primer:	CTTCCCTGAGCACCTGCTG	(SEQ ID NO.: 53)
Primer Mass:	5715.7	
Extended Primer-Allele G:	CTTCCCTGAGCACCTGCTGGT	(SEQ ID NO.: 54)
Extended Primer Mass:	6333.1	
Extended Primer-Allele A:	CTTCCCTGAGCACCTGCTGA	(SEQ ID NO.: 55)
Extended Primer Mass:	601 2.9	
APOA4		
Position 1122 (GIT)		
POR primers:		
Forward:	AACAGCTCAGGACGAAACTG	(SEQ ID NO.: 56)
Reverse:	AGAAGGAGTTGACCTTGTCC	(SEQ ID NO.: 57)
MassEXTEND ** Primer:	GGAAGCTCAAGTGGCCTTC	(SEQ ID NO.: 5)8
Primer Mass:	5828.8	
Extended Primer-Allele G:	GGAAGCTCAAGTGGCCTTCC	(SEQ ID NO.: 59)
Extended Primer Mass:	6102.0	
Extended Primer-Allele T:	GGAAGCTCAAGTGGCCTTCAAC	(SEQ ID NO.: 60)
Extended Primer Mass:	6728.4	
Position 1033 (GIC)		
PCR primers:		
Forward:	AAGTCACTGGCAGAGCTGG	(SEQ ID NO.: 61)
Reverse:	GCACCAGGGCTTTGTTGAAG	(SEQ ID NO.: 62)
MassEXTEND * Primer:	TTTTCCCCGTAGGGCTCCA	(SEQ ID NO.: 63)
Primer Mass:	5730.7	
Extended Primer-Allele G:	TTTTCCCCGTAGGGCTCCAC	(SEQ ID NO.: 64)
Extended Primer Mass:	6003.9	
Extended Primer-Allele C:	TTTTCCCCGTAGGGCTCCAGC	(SEQ ID NO.: 65)
Extended Primer Mass:	6333.1	
Position 1002 (G/A)		

PCR primers:		
Forward:	TGCAGAAGTCACTGGCAGAG	(SEQ ID NO.: 66)
Reverse:	GTTGAAGTTTTCCCCGTAGG	(SEQ ID NO.: 67)
MassEXTEND ** Primer:	ACTCCTCCACCTGCTGGTC	(SEQ ID NO.: 68)
Primer Mass:	5675.7	
Extended Primer-Allele G:	ACTCCTCCACCTGCTGGTCC	(SEQ ID NO.: 69)
Extended Primer Mass:	5948.9	
Extended Primer-Allele A:	ACTCCTCCACCTGCTGGTCTA	(SEQ ID NO.: 70)
Extended Primer Mass:	6277.1	
Position 960 (CIT)		
PCR primers:		
Forward:	AGGACGTGCGTGGCAACCTG	(SEQ ID NO.: 71)
Reverse:	AGCTGTGCCAGTGACTTCTG	(SEQ ID NO.: 72)
MassEXTEND ** Primer:	GTGACTTCTGCAGCCCCTC	(SEQ ID No.: 73)
Primer Mass:	571 5.7	
Extended Primer-Allele T:	GTGACTTCTGCAGCCCCTCA	(SEQ ID NO.: 74)
Extended Primer Mass:	601 2.9	
Extended Primer-Allele C:	GTGACTTCTGGAGCCCCTCGGT	(SEQ ID NO.: 75)
Extended Primer Mass:	6662.3	
Position 894 (CIT)		
Position 894 (CIT) PCR primers:		
	cctgaccttccagatgaag	(SEQ ID No.: 76)
PCR primers:	CCTCACCTTCCAGATGAAG	(SEQ ID NO.: 76)
PCR primers:		
PCR primers: Forward: Reverse:	TCAGGTTGCCACGCACGTC	(SEQ ID NO.: 77)
PCR primers: Forward: Reverse: MassEXTEND ** Primer:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC	(SEQ ID NO.: 77)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6	(SEQ ID NO.: 77)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC	(SEQ ID NO.: 77)
PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8	(SEQ ID NO.: 77) (SEQ ID NO.: 78)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78)
PCR primers: Porward: Reverse: MassEXTEND * Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Position 554 (G/A)	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG	(SEQ ID NO.: 77) (SEQ ID NO.: 78)
PCR primers: Forward: Reverse: MassEXTEND ** Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Position 554 (G/A) PCR primers:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Forward: Forward:	TCAGGTTGCCACGTCC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGACAGCTTCAGCAG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Forward: Forward: Reverse:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGACAGCTTCAGCAG TCTCCATGCGCTGTGCGTAG	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)
PCR primers: Forward: Reverse: MassEXTEND " Primer: Primer Mass: Extended Primer-Allele C: Extended Primer Mass: Extended Primer Mass: Extended Primer Mass: Fosition 554 (G/A) PCR primers: Forward: Reverse: MassEXTEND " Primer:	TCAGGTTGCCACGCACGTC CAGGATCTCGGCCAGTGC 5500.6 CAGGATCTCGGCCAGTGCC 5773.8 CAGGATCTCGGCCAGTGCTG 61 18.0 ACCTGCGACAGCTTCAGCAG TCTCCATGCGCTGTGCGTAG AGCTGCGCACCCCAGGTCA	(SEQ ID NO.: 77) (SEQ ID NO.: 78) (SEQ ID NO.: 79) (SEQ ID NO.: 80)

-co	ntinued	
Extended Primer-Allele G:	AGCTGCGCACCCAGGTCAGC	(SEQ ID NO.: 85)
Extended Primer Mass:	6072.0	
APOE		
Position 448 (CIT)		
PCR primers:		
Forward:	TGTCCAAGGAGCTGCAGGC	(SEQ ID NO.: 86)
Reverse:	CTTACGCAGCTTGCGCAGGT	(SEQ ID NO.: 87)
MassEXTEND ** Primer:	GCGCAGATGGAGGACGTG	(SEQ ID NO.: 88)
Primer Mass:	5629.7	
Extended Primer-Allele C:	GCGGACATGGAGGACGTGC	(SEQ ID No.: 89)
Extended Primer Mass:	5902.8	
Extended Primer-Allele T:	GCGGACATGGAGGACGTGTG	(SEQ ID NO.: 90)
Extended Primer Mass:	6247.1	
LPL		
Position 1127 (A/G)		
PCR primers:		
Forward:	GTTGTAGAAAGAACCGCTGC	(SEQ ID NO.: 91)
Reverse:	GAGAACGAGTCTTCAGGTAC	(SEQ ID NO.: 92)
MassEXTEND * Primer:	ACAATCTGGGCTATGAGATCA	(SEQ ID NO.: 93)
Primer Mass:	6454.2	
Extended Primer-Allele A:	ACAATCTGGGCTATGAGATCAA	(SEQ ID No.: 94)
Extended Primer Mass:	6751 .4	
Extended Primer-Allele G:	ACAATCTGGGCTATGAGATCAGT	(SEQ ID NO.: 95)
Extended Primer Mass:	7071 .6	
Position 3447 (A/C)		
PCR primers:		
Forward:	GACTCTACACTGCATGTCTC	(SEQ ID NO.: 96)
Reverse:	ACCCTTCTGAAAAGGAGAGG	(SEQ ID NO.: 97)
MassEXTENDTM Primer:	GAGGAGAGACAAGGCAGATA	(SEQ ID NO.: 98)
Primer Mass:	6273.1	
Extended Primer-Allele A:	GAGGAGAGACAAGGCAGATAT	(SEQ ID NO.: 99)
Extended Primer Mass:	6561.3	
Extended Primer-Allele C:	GAGGAGAGACAAGGCAGATAGT	(SEQ ID NO.: 100)
Extended Primer Mass:	6890.5	
Position 1973 (C/TI		
PCR primers:		
Forward:	AAAGGTTCAGTTGCTGCTGC	(SEQ ID NO.: 101)
Reverse:	GCTGGGGAAGGTCTAATAAC	(SEQ ID NO.: 102)

-con		

MassEXTENDTM Primer:	GTTGCTGCTGCCTCGAATG	(SEQ ID NO.: 103)
Primer Mass:	5770.7	
Extended Primer-Allele C:	GTTGCTGCTGCCTCGAATCC	(SEQ ID NO.: 104)
Extended Primer Mass:	6043.9	
Extended Primer-Allele T:	GTTGCTGCTGCCTCGAATCTG	(SEQ ID NO.: 105)
Extended Primer Mass:	6388.2	
LIPC		
Position 680 (CIG)		
PCR primers:		
Forward:	CGTCTTTCTCCAGATGATGC	(SEQ ID No.: 106)
Reverse:	AGTGTCCTATGGGCTGTTTG	(SEQ ID No.: 107)
MassEXTEND * Primer:	GGATGCCATTCATACCTTTAC	(SEQ ID NO.: 108)
Primer Mass:	6556.1	
Extended Primer-Allele C:	GGATGCCATTCATACCTTTACC	(SEQ ID NO.: 109)
Extended Primer Mass:	6629.3	
Extended Primer-Allele G:	GGATGCCATTCATACCTTTACGC	(SEQ ID No.: 110)
Extended Primer Mass:	6958.5	
Position 1374 (GIA)		
PCR primers:		
Forward:	TGGGAAAACAGTGCAGTGTG	(SEQ ID NO.: 111)
Reverse:	TGATCGTCTTCAGAACGAGG	(SEQ ID No.: 112)
MassEXTEND ** Primer:	CCAGACCATCATCCCATGGA	(SEQ ID No.: 113)
Primer Mass:	6030.9	
Extended Primer-Allele A:	CCAGACCATCATCCCATGGAA	(SEQ ID No.: 114)
Extended Primer Mass:	6328.1	
Extended Primer-Allele G:	CCAGACCATCATCCCATGGAGC	(SEQ ID NO.: 115)
Extended Primer Mass:	6633.3	
Position 701 (G/A)		
PCR primers:		
Forward:	CAGCAATCGTCTTTCTCCAG	(SEQ ID NO.: 116)
Reverse:	TCCTATGGGCTGTTTGATGC	(SEQ ID NO.: 117)
MassEXTEND * Primer:	GTCTTTCTCCAGATGATGCCA	(SEQ ID NO.: 118)
Primer Mass:	6372.2	
Extended Primer-Allele A:	GTCTTTCTCCAGATGATGCCAA	(SEQ ID NO.: 119)
Extended Primer Mass:	6669.4	
Extended Primer-Allele G:	GTCTTTCTCCAGATGATGCCAGT	(SEQ ID NO.: 120)
Extended Primer Mass:	6989.6	,
A CONTRACTOR OF THE PARTY OF TH		

[0081] E. Databases

[0082] Databases for determining an association between polymorphic regions of genes and intermediate and clinical phenotypes, comprise biological samples (e.g., blood) which provide a source of nucleic acid and clinical data covering diseases (e.g., age, sex, ethnicity medical history and family medical history) from both individuals exhibiting the phenotype (intermediate phenotype (risk factor) or clinical phenotype (disease)) and those who do not. These databases include human population groups such as twins, diverse affected families, isolated founder populations and drug trial subjects. The quality and consistency of the clinical resources are of primary importance.

[0083] F. Association Studies

[0084] The examples set forth below utilized an extreme trait analysis to discover an association between an allelic variant of the COX6B gene and high cholesterol and an association between an allelic variant of the GPI-1 gene and low HDL. This analysis is based on comparing a pair of pools of DNA from individuals who exhibit respectively hypo or hypernormal levels of a biochemical trait (e.g., cholesterol or HDL) and individually examining SNPs for a difference in allelic frequency between the pools. An association is considered to be positive if a statistically significant value of at least 3.841 using a 1-degree-of-freedom chi-squared test of association, p=0.05, is obtained. Standard multiple testing corrections are applied if more than one SNP is considered at a time, i.e., multiple SNPs are tested during the same study. Although not always required, it may be necessary to further examine the frequency of allelic variants in other populations, including those exhibiting normal levels of the given trait.

[0085] For a qualitative trait (e.g., hypertension) association studies are based on determining the occurrence of certain alleles in a given population of diseased vs. healthy individuals.

[0086] Allelic variants of COX6B, GPI-1 and other genes found to associate with high cholestrol, low HDL and/or cardiovascular disease can represent useful markers for indicating a predisposition for developing a risk factor for cardiovascular disease. These allelic variants may not necessarily represent functional variants affecting the expression, stability, or activity of the encoded protein product. Those of skill in the art would be able to determine which allelic variants are to be used, alone or in conjunction with other variants, only for indicating a predisposition for cardiovascular disease or for profiling of drug reactivity and for determining those which may be also useful for screening for potential therapeutics.

[0087] Any method used to determine association can be utilized to discover or confirm the association of other polymorphic regions in the COX6B gene, the GPI-1 gene or any other gene that may be associated with cardiovascular disease.

[0088] G. Detection of Polymorphisms

[0089] 1. Nucleic Acid Detection Method

[0090] Generally, these methods are based in sequencespecific polynucleotides, oligonucleotides, probes and primers. Any method known to those of skill in the art for detecting a specific nucleotide within a nucleic acid sequence or for determining the identity of a specific nucleotide in a nucleic acid sequence is applicable to the methods of determining the presence or absence of an allelic variant of a COX6B gene or GPI-1 gene or another gene associated with cardiovascular disease. Such methods include, but are not limited to, techniques utilizing nucleic acid hybridization of sequence-specific probes, nucleic acid sequencing, selective amplification, analysis of restriction enzyme digests of the nucleic acid, cleavage of mismatched heteroduplexes of nucleic acid and probe, alterations of electrophoretic mobility, primer specific extension, oligonucleotide ligation assay and single-stranded conformation polymorphism analysis. In particular, primer extension reactions that specifically terminate by incorporating a dideoxynucleotide are useful for detection. Several such general nucleic acid detection assays are described in U.S. Pat. No. 6,030,778.

[0091] a. Primer Extension-Based Methods

[0092] Several primer extension-based methods for determining the identity of a particular nucleotide in a nucleic acid sequence have been reported (see, e.g., PCT Application No. PCT/US96/03651 (WO96/29431), PCT Application No. PCT/US97/20444 (WO 98/20019), PCT Application No. PCT/US91/00046 (WO91/13075), and U.S. Pat. No. 5,856,092). In general, a primer is prepared that specifically hybridizes adjacent to a polymorphic site in a particular nucleic acid sequence. The primer is then extended in the presence of one or more dideoxynucleotides, typically with at least one of the dideoxynucleotides being the complement of the nucleotide that is polymorphic at the site. The primer and/or the dideoxynucleotides may be labeled to facilitate a determination of primer extension and identity of the extended nucleotide.

[0093] In a preferred method, primer extension and/or the identity of the extended nucleotide(s) are determined by mass spectrometry (see, e.g., PCT Application Nos. PCT/US96/03651 (WO96/29431) and PCT/US97/20444 (WO 98/20019)).

[0094] b. Polymorphism-Specific Probe Hybridization

[0095] A preferred detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, 10, 15, 20, 25, or 30 nucleotides around the polymorphic region. The probes can contain naturally occurring or modified nucleotides (see U.S. Pat. No. 6,156, 501). For example, oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele-specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324: 163; Saiki et al. (1989) Proc. Natl Acad. Sci USA 86: 6230; and Wallace et al. (1979) Nucl. Acids Res. 6: 3543). Such allele specific oligonucleotide hybridization techniques may be used for the simultaneous detection of several nucleotide changes in different polymorphic regions. For example, oligonucleotides having nucleotide sequences of specific allelic variants are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of the sample nucleic acid. In a preferred embodiment, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Oligonucleotides can be bound to a solid support by a variety of processes, including

lithography. For example a chip can hold up to 250,000 cligonucleotides (GeneChip, Affymetrix, Santa Clara, Calif.). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7: 244 and in Kozal et al. (1996) Nature Medicine 2: 753. In one embodiment, a chip includes all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.

[0096] C. Nucleic Acid Amplification-Based Methods

[0097] In other detection methods, it is necessary to first amplify at least a portion of a COX6B gene, GPI-1 gene or another gene associated with cardiovascular disease prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification is performed for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 1 50 and 350 base pairs apart.

[0098] Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87: 1874-1878); transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86: 1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio/Technology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

[0099] Alternatively, allele specific amplification technology, which depends on selective PCR amplification may be used in conjunction with the alleles provided herein. Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238; Newton et al. (1989) Nucl. Acids Res. 17:2503). In addition it may be desirable to introduce a restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1).

[0100] d. Nucleic Acid Sequencing-Based Methods

[0101] In one embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence at least a portion of the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease and to detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence. Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (Proc. Natl. Acad. Sci. USA (1977) 74:560) or Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci 74:5463). It is also contemplated that any of a variety of automated

sequencing procedures may be used when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by H. Koster; U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/21822, entitled "DNA Sequencing by Mass Spectrometry Via Exonuclease Degradation" by H. Koster), and U.S. Pat. No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by H. Koster; Cohen et al. (1996) Adv Chromatogr 36:127-162; and Griffin et al. (1993) Appl Biochem Biotechnol 38:147-159). It will be evident to one skilled in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track sequencing or an equivalent, e.g., where only one nucleotide is detected, can be carried out. Other sequencing methods are disclosed, e.g., in U.S. Pat. No. 5,580,732 entitled "Method of DNA sequencing employing a mixed DNA-polymer chain probe" and U.S. Pat. No. 5,571,676 entitled "Method for mismatchdirected in vitro DNA sequencing".

[0102] e. Restriction Enzyme Digest Analysis

[0103] In some cases, the presence of a specific allele in nucleic acid, particularly DNA, from a subject can be shown by restriction enzyme analysis. For example, a specific nucleotide polymorphism can result in a nucleotide sequence containing a restriction site which is absent from the nucleotide sequence of another allelic variant.

[0104] f. Mismatch Cleavage

[0105] Protection from cleavage agents, such as, but not limited to, a nuclease, hydroxylamine or osmium tetroxide and with piperidine, can be used to detect mismatched bases in RNA/RNA DNA/DNA, or RNA/DNA heteroduplexes (Myers, et al. (1985) Science 230:1242). In general, the technique of "mismatch cleavage" starts by providing heteroduplexes formed by hybridizing a control nucleic acid, which is optionally labeled, e.g., RNA or DNA, comprising a nucleotide sequence of an allelic variant with a sample nucleic acid, e.g, RNA or DNA, obtained from a tissue sample. The double-stranded duplexes are treated with an agent, which cleaves single-stranded regions of the duplex such as duplexes formed based on basepair mismatches between the control and sample strands. For instance, RNA/ DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digest the mismatched regions.

[0106] In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or somium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine whether the control and sample nucleic acids have an identical mucleotide sequence or in which nucleotides they differ (see, for example, Cotton et al. (1988) Proc. Natl Acad Sci USA 85: 4397; Saleeba et al. (1992) Methods Enzymol. 217: 286-295). The control or sample nucleic acid is labeled for detection.

[0107] g. Electrophoretic Mobility Alterations

[0108] In other embodiments, alteration in electrophoretic mobility is used to identify the type of allelic variant in the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease. For example, single-strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In another preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet

[0109] h. Polyacrylamide Gel Electrophoresis

[0110] In yet another embodiment, the identity of an allelic variant of a polymorphic region in the COX6B gene, GPI-1 gene or other gene associated with cardiovascular disease is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:1275).

[0111] i. Oligonucleotide Ligation Assay (OLA)

[0112] In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Pat. No. 4,998,617 and in Landegren, U. et al., Science 241:1077-1080 (1988). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

[0113] Several techniques based on this OLA method have been developed and can be used to detect specific allelic variants of a polymorphic region of a gene. For example, U.S. Pat. No. 5,593,826 discloses an OLA using an oligonucleotide having 3'-amino group and a 5'-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. (1996) Nucl. Acids Res. 24: 3728), OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each OLA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.

[0114] j. SNP Detection Methods

[0115] Also provided are methods for detecting single nucleotide polymorphisms. Because single nucleotide polymorphisms constitute sites of variation flanked by regions of invariant sequence, their analysis requires no more than the determination of the identity of the single nucleotide present at the site of variation and it is unnecessary to determine a complete gene sequence for each patient. Several methods have been developed to facilitate the analysis of such single nucleotide polymorphisms.

[0116] In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Pat. No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.

[0117] In another embodiment, a solution-based method for determining the identity of the nucleotide of a polymorphic site is employed (Cohen, D. et al. (French Patent 2,650,840; PCT Application No. WO91/02087)). As in the Mundy method of U.S. Pat. No. 4,656,127, a primer is employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.

[0118] k. Genetic Bit Analysis

[0119] An alternative method, known as Genetic Bit Analysis or GBATM is described by Goelet, et al. (U.S. Pat. No. 6,004,744, PCT Application No. 92/15712). The method G Goelet, et al. uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a

polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. (French Patent 2,650,840; PCT Application No. WO91/02087), the method of Goelet, et al. is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.

[0120] I. Other Primer-Guided Nucleotide Incorporation Procedures

[0121] Other primer-guided nucleotide incorporation procedures for assaying polymorphic sites in DNA have been described (Komher, J. S. et al., Nucl. Acids Res. 17:7779-7784 (1989); Sokolov, B. P., Nucl. Acids Res. 18:3671 (1990); Syvanen, A. C., et al., Genomics 8:684-692 (1990), Kuppuswamy, M. N. et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1143-1147 (1991); Prezant, T. R. et al., Hum. Mutat. 1:159-164 (1992); Ugozzoli, L. et al., GATA 9:107-112 (1992); Nyren, P. et al., Anal. Biochem. 208:171-175 (1993)). These methods differ from GBA™ in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run (Syvanen, A. C., et al., Amer. J. Hum. Genet. 52:46-59 (1993)).

[0122] For determining the identity of the allelic variant of a polymorphic region located in the coding region of a gene, yet other methods than those described above can be used. For example, identification of an allelic variant which encodes a mutated protein can be performed by using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation. Binding assays are known in the art and involve, e.g., obtaining cells from a subject, and performing binding experiments with a labeled lipid, to determine whether binding to the mutated form of the protein differs from binding to the wild-type protein.

[0123] m. Molecular Structure Determination

[0124] If a polymorphic region is located in an exon, either in a coding or non-coding region of the gene, the identity of the allelic variant can be determined by determining the molecular structure of the mRNA, pre-mRNA, or cDNA. The molecular structure can be determined using any of the above described methods for determining the molecular structure of the genomic DNA, e.g., sequencing and SSCP.

[0125] n. Mass Spectrometric Methods

[0126] Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Pat. No. 5,605,798, allowed co-pending U.S. application Ser. No. 08/617,256, allowed co-pending U.S. application Ser. No. 08/744,481, U.S. application Ser. No. 08/744,481, U.S. application No. WO 98/20019). These methods can be automated (see, e.g., co-pending U.S. application Ser. No. 09/285,481, which describes an automated process line). Preferred among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. application Ser. No. 08/617,256,

09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed co-pending U.S. application Ser. No. 08/744,481, International PCT Application No. PCT/US97/20444, published as International PCT Application No. WO 98/20019, and based upon U.S. application Ser. Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Ser. No. 09/074,936, allowed U.S. application Ser. No. 08/787,639, and U.S. application Ser. Nos. 08/746,055 and 08/786,988, and published International PCT Application No. WO 98/20020).

[0127] A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the peaks in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in allowed co-pending U.S. application Ser. No. 08/787,639, co-pending U.S. application Ser. Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Ser. No. PCT/US97/ 20195, which published as International PCT Application No. WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAYTM. MassARRAYTM relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments relating to genetic variants without tags.

[0128] Multiplex methods allow for the simultaneous detection of more than one polymorphic region in a particular gene or polymorphic regions in several genes. This is the preferred method for carrying out haplotype analysis of allelic variants of the COX6B and/or GPI-1 genes separately, or along with allelic variants of one or more other genes associated with cardiovascular disease.

[0129] Multiplexing can be achieved by several different methodologies. For example, several mutations can be simultaneously detected on one target sequence by employing corresponding detector (probe) molecules (e.g., oligonucleotides or oligonucleotide mimetics). The molecular weight differences between the detector oligonucleotides must be large enough so that simultaneous detection (multiplexing) is possible. This can be achieved either by the sequence itself (composition or length) or by the introduction of mass-modifying functionalities into the detector oligonucleotides (see below).

[0130] Mass modifying moieties can be attached, for instance, to either the 5'-end of the oligonucleotide, to the nucleobase (or bases), to the phosphate backbone, and to the 2'-position of the nucleoside (nucleosides) and/or to the terminal 3'-position. Examples of mass modifying moieties include, for example, a halogen, an azido, or of the type, XR, wherein X is a linking group and R is a mass-modifying

functionality. The mass-modifying functionality can thus be used to introduce defined mass increments into the oligonucleotide molecule.

[0131] The mass-modifying functionality can be located at different positions within the nucleotide moiety (see, e.g., U.S. Pat. No. 5,547,835 and International PCT Application No. WO 94/21822). For example, the mass-modifying moiety, M, can be attached either to the nucleobase, (in case of the c7-deazanucleosides also to C-7), to the triphosphate group at the alpha phosphate or to the 2'-position of the sugar ring of the nucleoside triphosphate. Modifications introduced at the phosphodiester bond, such as with alpha-thio nucleoside triphosphates, have the advantage that these modifications do not interfere with accurate Watson-Crick base-pairing and additionally allow for the one-step postsynthetic site-specific modification of the complete nucleic acid molecule e.g., via alkylation reactions (see, e.g., Nakamaye et al. (1988) Nucl. Acids Res. 16:9947-59). Particularly preferred mass-modifying functionalities are boronmodified nucleic acids since they are better incorporated into nucleic acids by polymerases (see, e.g., Porter et al. (1995) Biochemistry 34:11963-11969; Hasan et al. (1996) Nucleic Acids Res. 24:2150-2157; Li et al. (1995) Nucl. Acids Res. 23:4495-4501).

[0132] Furthermore, the mass-modifying functionality can be added so as to affect chain termination, such as by attaching it to the 3'-position of the sugar ring in the nucleoside triphosphate. For those skilled in the art, it is clear that many combinations can be used in the methods provided herein. In the same way, those skilled in the art will recognize that chain-elongating nucleoside triphosphates can also be mass-modified in a similar fashion with numerous variations and combinations in functionality and attachment positions.

[0133] For example, without being bound to any particular theory, the mass-modification can be introduced for X in XR as well as using oligo-/polyethylene glycol derivatives for R. The mass-modifying increment (m) in this case is 44, i.e. five different mass-modified species can be generated by just changing m from 0 to 4 thus adding mass units of 45 (m=0), 89 (m=1), 133 (m=2), 177 (m=3) and 221 (m=4) to the nucleic acid molecule (e.g., detector oligonucleotide (D) or the nucleoside triphosphates, respectively). The oligo/polyethylene glycols can also be monoalkylated by a lower alkyl such as, but are not limited to, methyl, ethyl, propyl, isopropyl and t-butyl. Other chemistries can be used in the mass-modified compounds (see, e.g., those described in Oligonucleotides and Analogues, A Practical Approach, F. Eckstein, editor, IRL Press, Oxford, 1991).

[0134] In yet another embodiment, various mass-modifying functionalities, R, other than oligo/polyethylene glycols, can be selected and attached via appropriate linking chemistries, X. A simple mass-modification can be achieved by substituting H for halogens, such as F, Cl, Br and/or I, or pseudohalogens such as CN, SCN, NCS, or by using different alkyl, aryl or aralkyl moieties such as methyl, ethyl, propyl, isopropyl, t-butyl, hexyl, phenyl, substituted phenyl, benzyl, or functional groups such as CH₂F, CHF₂, CF₃, Si(CH₃)₂, Si(CH₃)₂, Si(CH₃)₃. Yet another mass-modification can be obtained by attaching homo- or heteropeptides through the nucleic acid molecule (e.g., detector (D)) or nucleoside triphosphates). One

example, useful in generating mass-modified species with a mass increment of 57, is the attachment of oligoglycines (m) to nucleic acid molecules (r), e.g., mass-modifications of 74 (r=1, m=0), 131 (r=1, m=1), 188 (r=1, m=2), 245 (r=1, m=3) are achieved. Simple oligoamides also can be used, e.g., mass-modifications of 74 (r=1, m=0), 88 (r=2, m=0), 102 (r=3, m=0), 116(r=4, m=0), etc. are obtainable. Variations in additions to those set forth herein will be apparent to the skilled artisan.

[0135] Different mass-modified detector oligonucleotides can be used to simultaneously detect all possible variants/mutants simultaneously. Alternatively, all four base permutations at the site of a mutation can be detected by designing and positioning a detector oligonucleotide, so that it serves as a primer for a DNA/RNA polymerase with varying combinations of elongating and terminating nucleoside triphosphates. For example, mass modifications also can be incorporated during the amplification process.

[0136] A different multiplex detection format is one in which differentiation is accomplished by employing different specific capture sequences which are position-specifically immobilized on a flat surface (e.g., a 'chip array'). If different target sequences T1-Tn are present, their target capture sites TCS1-TCSn will specifically interact with complementary immobilized capture sequences C1-Cn. Detection is achieved by employing appropriately mass differentiated detector oligonucleotides D1-Dn, which are mass modifying functionalities M1-Mn.

[0137] o. Other Methods p Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using OJ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

[0138] Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

[0139] 2. Primers and Probes

[0140] Primers refer to nucleic acids which are capable of specifically hybridizing to a nucleic acid sequence which is adjacent to a polymorphic region of interest or to a polymorphic region and are extended. A primer can be used alone in a detection method, or a primer can be used together with at least one other primer or probe in a detection method. Primers can also be used to amplify at least a portion of a nucleic acid, a forward primer (i.e., 5' primer) and a reverse primer (i.e., 3' primer) will preferably be used. Forward and reverse primers hybridize to complementary stands of a double stranded nucleic acid, such that upon extension from each primer, a double stranded nucleic acid is amplified.

[0141] Probes refer to nucleic acids which hybridize to the region of interest and which are not further extended. For example, a probe is a nucleic acid which hybridizes adjacent to or at a polymorphic region of a COX6B gene, a GPI-1 gene or another gene associated with cardiovascular disease and which by hybridization or absence of hybridization to the DNA of a subject will be indicative of the identity of the allelic variant of the polymorphic region of the gene. Pre-

ferred probes have a number of nucleotides sufficient to allow specific hybridization to the target nucleotide sequence. Where the target nucleotide sequence is present in a large fragment of DNA, such as a genomic DNA fragment of several tens or hundreds of kilobases, the size of a probe may have to be longer to provide sufficiently specific hybridization, as compared to a probe which is used to detect a target sequence which is present in a shorter fragment of DNA. For example, in some diagnostic methods, a portion of a COX6B gene, a GPI-1 gene or another gene associated with cardiovascular disease may first be amplified and thus isolated from the rest of the chromosomal DNA and then hybridized to a probe. In such a situation, a shorter probe will likely provide sufficient specificity of hybridization. For example, a probe having a nucleotide sequence of about 10 nucleotides may be sufficient.

[0142] Preferred primers and probes hybridize adjacent to or at the polymorphic sites described in TABLES 1-3. In addition, preferred primers include SEQ ID NOS.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118.

[0143] Primers and probes (RNA, DNA (single-stranded or double-stranded), PNA and their analogs) described herein may be labeled with any detectable reporter or signal moiety including, but not limited to radioisotopes, enzymes, antipodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent and any other light producing chemicals. Additionally, these probes may be modified without changing the substance of their purpose by terminal addition of nucleotides designed to incorporate restriction sites or other useful sequences, proteins, signal generating ligands such as acridinium esters, and/or paramagnetic particles.

[0144] These probes may also be modified by the addition of a capture moiety (including, but not limited to paramagnetic particles, biotin, fluorescein, dioxigenin, antigens, antibodies) or attached to the walls of microtiter trays to assist in the solid phase capture and purification of these probes and any DNA or RNA hybridized to these probes. Fluorescein may be used as a signal moiety as well as a capture moiety, the latter by interacting with an anti-fluorescein antibody.

[0145] Any probe or primer can be prepared according to methods well known in the art and described, e.g., in Sambrook, J. Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. For example, discrete fragments of the DNA can be prepared and cloned using restriction enzymes. Alternatively, probes and primers can be prepared using the Polymerase Chain Reaction (PCR) using primers having an appropriate sequence.

[0146] Oligonucleotides may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch (Novato, Calif.); Applied Biosystems (Foster City, Calif.), etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

[0147] H. Transgenic Animals

[0148] Methods for making transgenic animals using a variety of transgenes have been described in Wagner et al. (1981) Proc. Nat. Acad. Sc. U.S.A. 78: 5016; Stewart et al. (1982) Science 217: 1046; Constantini et al. (1981) Nature 294: 92; Lacy et al. (1983) Cell 34: 343; McKnight et al. (1983) Cell 34: 335; Brinstar et al. (1983) Nature 306: 332; Palmiter et al. (1982) Nature 300: 611; Palmiter et al. (1982) Cell 29: 701; and Palmiter et al. (1983) Science 222: 809. Such methods are described in U.S. Pat. Nos. 6,175,057; 6,180,849 and 6,133,502.

[0149] The term "transgene" is used herein to describe genetic material that has been or is about to be artificially inserted into the genome of a mammalian cell, particularly a mammalian cell of a living animal. The transgene is used to transform a cell, meaning that a permanent or transient genetic change, preferably a permanent genetic change, is induced in a cell following incorporation of exogenous DNA. A permanent genetic change is generally achieved by introduction of the DNA into the genome of the cell. Vectors for stable integration include, but are not limited to, plasmids, retroviruses and other animal viruses and YACS. Of interest are transgenic mammals, including, but are not limited to, cows, pigs, goats, horses and others, and particularly rodents, including ratis and mice. Preferably, the transgenic-animals are mice.

[0150] Transgenic animals contain an exogenous nucleic acid sequence present as an extrachromosomal element or stably integrated in all or a portion of its cells, especially germ cells. Unless otherwise indicated, it will be assumed that a transgenic animal comprises stable changes to the germline sequence. During the initial construction of the animal, "chimeras" or "chimeric animals" are generated, in which only a subset of cells have the altered genome. Chimeras are primarily used for breeding purposes in order to generate the desired transgenic animal. Animals having a heterozygous alteration are generated by breeding of chimeras. Male and female heterozygotes are typically bred to generate homozygous animals.

[0151] The exogenous gene is usually either from a different species than the animal host, or is otherwise altered in its coding or non-coding sequence. The introduced gene may be a wild-type gene, naturally occurring polymorphism (e.g., as described for COX6B, GPI-1 and other genes associated with cardiovascular disease) or a genetically manipulated sequence, for example having deletions, substitutions or insertions in the coding or non-coding regions. When the introduced gene is a coding sequence, it is usually operably linked to a promoter, which may be constitutive or inducible, and other regulatory sequences required for expression in the host animal.

[0152] Transgenic animals can comprise other genetic alterations in addition to the presence of alleles of COX6B and/or GPI-1 genes. For example, the genome can be altered to affect the function of the endogenous genes, contain marker genes, or contain other genetic alterations (e.g., alleles of other genes associated with cardiovascular disease).

[0153] A "knock-out" of a gene means an alteration in the sequence of the gene that results in a decrease of function of the target gene, preferably such that target gene expression

is undetectable or insignificant. A knock-out of an endogenous COX6B or GPI-1 gene means that function of the gene has been substantially decreased so that expression is not detectable or only present at insignificant levels. "Knock-out" transgenics can be transgenic animals having a heterozygous knock-out of the COX6B or GPI-1 gene or a homozygous knock-out of one or both of these genes. "Knock-outs" also include conditional knock-outs, where alteration of the target gene can occur upon, for example, exposure of the animal to a substance that promotes target gene alteration, introduction of an enzyme hat promotes recombination at the target gene site (e.g., Cre in the Cre-lox system), or other method for directing the target gene alteration postnatally.

[0154] A "knock-in" of a target gene means an alteration in a host cell genome that results in altered expression (e.g., increased (including ectopic)) of the target gene, e.g., by introduction of an additional copy of the target gene, or by operatively inserting a regulatory sequence that provides for enhanced expression of an endogenous copy of the target gene. "Knock-in" transgenics of interest can be transgenic animals having a knock-in of the COX6B or GPI-1. Such transgenics can be heterozygous or homozygous for the knock-in gene. "Knock-ins" also encompass conditional knock-ins.

[0155] A construct is suitable for use in the generation of transgenic animals if it allows the desired level of expression of a COX6B or GPI-1 encoding sequence or the encoding sequence of another gene associated with cardiovascular disease. Methods of isolating and cloning a desired sequence, as well as suitable constructs for expression of a selected sequence in a host animal, are well known in the art and are described below.

[0156] For the introduction of a gene into the subject animal, it is generally advantageous to use the gene as a gene construct wherein the gene is ligated downstream of a promoter capable of and operably linked to expressing the gene in the subject animal cells. Specifically, a transgenic non-human mammal showing high expression of the desired gene can be created by microinjecting a vector ligated with said gene into a fertilized egg of the subject non-human mammal (e.g., rat fertilized egg) downstream of various promoters capable of expressing the protein and/or the corresponding protein derived from various mammals (rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc., preferably rats etc.) Useful vectors include Escherichia coli-derived plasmids, Bacillus subtilis-derived plasmids, yeast-derived plasmids, bacteriophages such as lambda, phage, retroviruses such as Moloney leukemia virus, and animal viruses such as vaccinia virus or baculovirus.

[0157] Useful promoters for such gene expression regulation include, for example, promoters for genes derived from viruses (cytomegalovirus, Moloney leukemia virus, JC virus, breast cancer virus etc.), and promoters for genes derived from various mammals (humans, rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc.) and birds (chickens etc.) (e.g., genes for albumin, insulin II, erythropoietin, endothelin, osteocalcin, muscular creatine kinase, platelet-derived growth factor beta, keratins K1, K10 and K14, collagen types I and II, atrial natriuretic factor, dopamine beta-hydroxylase, endothelial receptor tyrosine kinase (generally abbreviated Tic2), sodium-potassium adenosine triph-

osphorylase (generally abbreviated Na,K-ATPase), neurofilament light chain, metallothioneins I and IIA, metalloproteinase I tissue inhibitor, MHC class I antigen (generally abbreviated H-2L), smooth muscle alpha actin, polypeptide chain elongation factor 1 alpha (EF-1 alpha), beta actin, alpha and beta myosin heavy chains, myosin light chains 1 and 2, myelin base protein, serum amyloid component, myoglobin, renin etc.).

[0158] It is preferable that the above-mentioned vectors have a sequence for terminating the transcription of the desired messenger RNA in the transgenic animal (generally referred to as terminator); for example, gene expression can be manipulated using a sequence with such function contained in various genes derived from viruses, mammals and birds. Preferably, the simian virus SV40 terminator etc. are commonly used. Additionally, for the purpose of increasing the expression of the desired gene, the splicing signal and enhancer region of each gene, a portion of the intron of a eukaryotic organism gene may be ligated 5' upstream of the promoter region, or between the promoter region and the translational region, or 3' downstream of the translational region as desired.

[0159] A translational region for a protein of interest can be obtained using the entire or portion of genomic DNA of blood, kidney or fibroblast origin from various mammals (humans, rabbits, dogs, cats, guinea pigs, hamsters, rats, mice etc.) or of various commercially available genomic DNA libraries, as a starting material, or using complementary DNA prepared by a known method from RNA of blood, kidney or fibroblast origin as a starting material. Also, an exogenous gene can be obtained using complementary DNA prepared by a known method from RNA of human fibroblast origin as a starting material. All these translational regions can be utilized in transgenic animals.

[0160] To obtain the translational region, it is possible to prepare DNA incorporating an exogenous gene encoding the protein of interest in which the gene is ligated downstream of the above-mentioned promoter (preferably upstream of the translation termination site) as a gene construct capable of being expressed in the transgenic animal.

[0161] DNA constructs for random integration need not include regions of homology to mediate recombination. Where homologous recombination is desired, the DNA constructs will comprise at least a portion of the target gene with the desired genetic modification, and will include regions of homology to the target locus. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990) Methods in Enzymology 185:527-537.

[0162] The transgenic animal can be created by introducing a COXOB or GPI-1 gene construct into, for example, an unfertilized egg, a fertilized egg, a spermatozoon or a germinal cell containing a primordial germinal cell thereof, preferably in the embryogenic stage in the development of a non-human mammal (more preferably in the single-cell or fertilized cell stage and generally before the 8-cell phase), by standard means, such as the calcium phosphate method, the electric pulse method, the lipofection method, the agglutination method, the microinjection method, the particle gun

method, the DEAE-dextran method and other such method. Also, it is possible to introduce a desired COX6B or GPI-1 gene into a somatic cell, a living organ, a tissue cell, or the like, by gene transformation methods, and utilize it for cell culture, tissue culture etc. Furthermore, these cells may be fused with the above-described germinal cell by a commonly known cell fusion method to create a transgenic animal.

[0163] For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of appropriate growth factors, such as leukemia inhibiting factor (LIF). When ES cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected. The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in in vitro culture.

[0164] Animals containing more than one transgene, such as allelic variants of COX6B and/or GPI-1 and/or other genes associated with cardiovascular disease can be made by sequentially introducing individual alleles into an animal in order to produce the desired phenotype (manifestation or predisposition to cardiovascular disease).

[0165] I. Effect of Allelic Variants on the Encoded Protein and Disease Related Phenotype

[0166] The effect of an allelic variant on a COX6B or GPI-1 protein (altered amount, stability, location and/or activity) can be determined according to methods known in the art. Alielic variants of the COX6B and GPI-1 genes can be assayed individually or in combination with other variants known to be associated with cardiovascular disease.

[0167] If the mutation is located in an intron, the effect of the mutation can be determined, e.g., by producing transpenic animals in which the allelic variant linked to lipid metabolism and/or cardiovascular disease has been introduced and in which the wild-type gene or predominant allele may have been knocked out. Comparison of the level of expression of the protein in the mice transgenic for the allelic variant with mice transgenic for the predominant allele will reveal whether the mutation results in increased or decreased synthesis of the associated protein and/or aberrant tissue distribution of the associated protein. Such analysis

could also be performed in cultured cells, in which the human variant allele gene is introduced and, e.g., replaces the endogenous gene in the cell. Thus, depending on the effect of the alteration a specific treatment can be administered to a subject having such a mutation. Accordingly, if the mutation results in decreased production of a COX6B or GPI-1 protein, the subject can be treated by administration of a compound which increases synthesis, such as by increasing COX6B or GPI-1 gene expression, and wherein the compound acts at a regulatory element different from the one which is mutated. Alternatively, if the mutation results in increased COX6B or GPI-1 protein levels, the subject can be treated by administration of a compound which reduces protein production, e.g., by reducing COX6B or GPI-1 gene expression or a compound which inhibits or reduces the activity of COX6B or GPI-1 protein.

[0168] J. Diagnostic and Prognostic Assays

[0169] Typically, an individual allelic variant that associates with a risk factor for cardiovascular disease will not be used in isolation as a prognosticator for a subject developing high cholesterol, low HDL or cardiovascular disease. An allelic variant typically will be one of a plurality of indicators that are utilized. The other indicators may be the manifestation of other risk factors for cardiovascular disease, e.g., family history, high blood pressure, weight, activity level, etc., or additional allelic variants in the same or other genes associated with altered lipid metabolism and/or cardiovascular disease.

[0170] Useful combinations of allelic variants of the COX6B gene and/or the GPI-1 gene can be determined by examining combinations of variants of these genes, which are assayed individually or assayed simultaneously using multiplexing methods as described above or any other labelling method that allows different variants to be identified. In particular, variants of COX6B gene and/or the GPI-1 gene may be assayed using kits (see below) or any of a variety microarrays known to those in the art. For example, oligonucleotide probes comprising the polymorphic regions surrounding any polymorphism in the COX6B or GPI-1 gene may be designed and fabricated using methods such as those described in U.S. Pat. Nos. 5,492,806; 5,525,464; 5,695,940; 6,018,041; 6,025,136; WO 98/30883; WO 98/56954; WO99/09218; WO 00/58516; WO 00/58519, or references cited therein. Similarly one of skill in the art can determine useful combinations of allelic variants of the COX6B and/or GPI-1 genes along with variants of other genes associated with cardiovascular disease.

[0171] K. Pharmacogenomics

[0172] It is likely that subjects having one or more different allelic variants of the COX6B or GPI-1 polymorphic regions will respond differently to therapeutic drugs to treat cardiovascular disease or conditions. For example, there are numerous drugs available for lowering cholesterol levels: including lovastatin (MEVACOR; Merck & Co.), simvas-(XOCOR; Merck & Co.), dextrothyroxine tatin (CHOLOXIN; Knoll Pharmaceutical Co.), pamaqueside (Pfizer), cholestryramine (QUESTRAN; Bristol-Myers Squibb), colestipol (COLESTID; Pharmacia & Upjohn), acipomox (Pharmacia & Upjohn), fenofibrate (LIPIDIL), gemfibrozil Warner-Lambert), cerivastatin (LOPID; (LIPOBAY; Bayer), fluvastatin (LESCOL; Novartis), atorvastatin (LIPITOR, Warner-Lambert), etofylline clofibrate

(DUOLIP: Merckle (Germany)), probucol (LORELCO: Hoechst Marion Roussel), omacor (Pronova (Norway), etofibrate (Merz (Germany), clofibrate (ATROMID-S; Wyeth-Averst (AHP)), and niacin (numerous manufacturers). All patients do not respond identically to these drugs. Alleles of the COX6B or the GPI-1 gene which associate with altered lipid metabolism will be useful alone or in conjunction with markers in other genes associated with the development of cardiovascular disease to predict a subject's response to a therapeutic drug. For example, multiplex primer extension assays or microarrays comprising probes for alleles are useful formats for determining drug response. A correlation between drug responses and specific alleles or combinations of alleles of the COX6B or GPI-1 genes and other genes associated with cardiovascular disease can be shown, for example, by clinical studies wherein the response to specific drugs of subjects having different allelic variants of polymorphic regions of the COX6B or GPI-1 genes alone or in combination with allelic variants of other genes are compared. Such studies can also be performed using animal models, such as mice having various alleles and in which, e.g., the endogenous COX6B or GPI-1 genes have been inactivated such as by a knock-out mutation. Test drugs are then administered to the mice having different alleles and the response of the different mice to a specific compound is compared. Accordingly, assays, microarrays and kits are provided for determining the drug which will be best suited for treating a specific disease or condition in a subject based on the individual's genotype. For example, it will be possible to select drugs which will be devoid of toxicity, or have the lowest level of toxicity possible for treating a subject having a disease or condition, e.g., cardiovascular disease or high cholesterol or low HDL.

[0173] L. Kits

[0174] Kits can be used to indicate whether a subject is at risk of developing high cholesterol, low HDL and/or cardiovascular disease. The kits can also be used to determine if a subject who has high cholesterol or low HDL carries associated variants in the COX6B or GPI-1 genes or other cardiovascular disease-related genes. This information could be used, e.g., to optimize treatment of such individuals as a particular genotype may be associated with drug response.

[0175] In preferred embodiments, the kits comprise a probe or primer which is capable of hybridizing adjacent to or at a polymorphic region of a OX6B or GPI-1 gene and thereby identifying whether the COX6B or GPI-1 gene contains an allelic variant which is associated with cardio-vascular disease. Primers or probes that specifically hybridize at or adjacent to the SNPs described in Tables 1-3 could be included. In particular, primers or probes which comprise the sequences of SEQ ID NOs.: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118 could be included in the kits. The kits preferably further comprise instructions for use in carrying out assays, interpreting results and diagnosing a subject as having a predisposition toward developing high cholesterol, low HDL and/or cardiovascular disease.

[0176] Preferred kits for amplifying a region of a COX6B gene, GPI-1 gene, or other genes associated with cardiovascular disease (such as those listed in Table 3) comprise two primers which flank a polymorphic region of the gene of interest. For example primers can comprise the sequences of

SEQ ID NOs.: 3, 4, 8, 9, 41, 42, 46, 47, 51, 52, 56, 57, 61, 62, 66, 67, 71, 72, 76, 77, 81, 82, 86, 87, 91, 92, 96, 97, 101, 102, 106, 107, 111, 112, 116, and 117. For other assays, primers or probes hybridize to a polymorphic region or 5' or 3' to a polymorphic region depending on which strand of the target nucleic acid is used. For example, specific probes and primers comprise sequences designated as SEQ ID NOs: 5, 10, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, and 118. Those of skill in the art can synthesize primers and probes which hybridize adjacent to or at the polymorphic regions described in TABLES 1-3 and other SNPs in genes associated with cardiovascular disease.

[0177] Yet other kits comprise at least one reagent necessary to perform an assay. For example, the kit can comprise an enzyme, such as a nucleic acid polymerase. Alternatively the kit can comprise a buffer or any other necessary reagent.

[0178] Yet other kits comprise microarrays of probes to detect allelic variants of COX6B, GPI-1, and other genes associated with cardiovascular disease. The kits further comprise instructions for their use and interpreting the results.

[0179] The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention. The practice of methods and development of the products provided herein employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); DNA Cloning, Volumes I and II (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Pat. No. 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription and Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., New York); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds., Immunochemical Methods In Cell and Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986).

EXAMPLE 1

[0180] Isolation of DNA from Blood Samples of a Stratified Population

[0181] Blood samples were obtained from a population of unrelated Caucasian women between the ages of 18-79 (average age-48). The women had, no response to media campaigns, attended the Twin Research Unit at the St. Thomas Hospital in London, England. For current purposes, only one member of a twin pair was used to insure that all observations were independent. Blood samples from 1400 unrelated individuals were measured for levels of choles-

terol and HDL. Cholesterol and HDL level in blood samples were quantitated using standard assay methods.

[0182] The population was stratified into pools of 200 people, which represented the lower extreme and the upper extreme for serum levels of cholesterol and HDL.

Cholesterol

Pool 1: Individuals were considered to have low cholesterol (0.12–3.6 mmoles/L).

Pool 2: Individuals were considered to have high cholesterol (5.25–11.57 mmoles/L).

HDL

Pool 3: Individuals were considered to have low levels of HDL (0.240-1.11 mmoles/L)
Pool 4: Individuals were considered to have high levels

Pool 4: Individuals were considered to have high leve of HDL (2.10–3.76 mmoles/L).

[0183] DNA Extraction Protocol

[0184] DNA was extracted from blood samples of each of the pools by utilizing the following protocol.

[0185] Section 1

- [0186] 1. Blood was extracted into EDTA tubes.
- [0187] 2. Blood sample was spun at 3,000 rpm for 10 minutes in a clinical centrifuge.
- [0188] 3. The buffy coat (the leukocytes, a yellowish layer of cells on top of the red blood cells) was removed and pooled into a 1 ml conical tube.
- [0189] 4. 0.9% saline was added to fill the tube and resuspend the leucocytes. Sample were immediately further processed or stored at 4° C. for 24 hrs.
- [0190] 5. The sample was spun at 2,500 rpm for 10 minutes.
- [0191] 6. The buffy coat was again removed as cleanly as possible leaving behind any red cells, the sample was suspended in red cell lysis buffer and left for 20 minutes at 4° C.
- [0192] 7. The sample was spun again at 2,500 rpm for 10 minutes. If a pellet of unlysed red cells remained lying above the leucocytes the treatment with red cell lysis buffer was repeated.
- [0193] 8. The leucocyte pellet was resuspended in 2 ml 0.9% saline.
- [0194] 9. The DNA was liberated by the addition of leucocyte lysis buffer—the tube was capped and gently inverted several times, until the liquid became viscous with DNA. The samples were handled with care to avoid shearing and damage to the DNA.
- [0195] 10. Samples were frozen for storage prior to full extraction.

[0196] Section 2

[0197] 11. 2 ml of 5 M sodium perchlorate was added to the thawed sample and mixed by inversion. The sample was heated to 60° C. for 30-40 minutes to fully denature proteins.

- [0198] 12. An equal volume of chloroform/isoamyl alcohol (24:1) was added at room temperature and the sample mixed for 10 minutes.
- [0199] 13. The sample was spun without a break at 3,000 rpm for 10 minutes.
- [0200] 14. The top aqueous phase was removed into a clean tube and two volumes of cold 100% ethanol added and mixed by inversion to precipitate DNA.
- [0201] 15. The DNA was removed using a sterile loop and resuspended in 1-5 ml TE buffer depending on the DNA yield.
- [0202] 16. The optical density was measured at 260 and 280 nm to check yield and purity of the DNA sample. For use in Examples 2 and 3, all DNA had an absorbance ratio of 1.6 at 260/280, a total yield of 32 μ g and a concentration of 10 ng/ μ l. If initial purity levels were unacceptable a re-extraction was carried out (sections 12-15 above).

EXAMPLE 2

[0203] Detection of an Association Between an SNP at Position 86 of the Human COX6B Gene and High Cholesterol

[0204] DNA samples (as prepared in Example 1), representing 200 women, from the lower extreme, pool 1 (low levels of cholesterol) and the upper extreme, pool 2 (high levels of cholesterol) were amplified and analyzed for genetic differences using a MassEXTENDTM assay detection method. For each pool, single nucleotide polymorphisms were examined throughout the entire genome to detect differences in allelic frequency of a variant allele between the pools.

[0205] PCR Amplification of Samples from Pools 1 and 2

[0206] PCR primers were synthesized by Operon (Alameda, Calif.) using phosphoramidite chemistry. Amplification of the COX6B target sequence was carried out in two 50 µl PCR reactions with 100 ng of pooled human genomic DNA, obtained as described in Example 1, taken from samples in pool 1 or pool 2, although amounts ranging from 100 ng to 1 ug could be used. Individual DNA concentrations within the pooled samples were present in equal concentration with a final concentration of 0.5 ng. Each reaction contained 1×PCR buffer (Qiagen, Valencia, Calif.), 200 µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl2, and 25 pmols of the long primer containing both the universal primer sequence and the target specific sequence 5'-AGCGGATAA-CAATTTCACACAGGTAGTCTGGTTCTGGTTGGGG-3' (SEQ ID NO.: 4), 2 pmoles of the short primer 5'-AGGAT-TCAGCACCATGGC-3' (SEQ ID NO.: 3) and 10 pmoles of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCGGATAACAATTTCACA-CAGG-3' (SEQ ID NO.: 121). Alternatively, the biotinylated universal primer could be 5'-GGCGCACGCCTCCACG-3' (SEQ ID NO.: 122). After an initial round of amplification with the target with the specific forward (long) and reverse primer (short), the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded

DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (Waltham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.

[0207] Immobilization of DNA

[0208] The 50 μ l PCR reaction was added to 25 μ l of streptavidin coated magnetic bead (Dynal, Lake Success, N-Y) prewashed three times and resuspended in 1 M NH₄Cl, 0.06 M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.

[0209] Genotyping

[0210] The frequency of the alleles at position 86 in the COX6B gene was measured using the MassEXTEND™ assay and MALDI-TOF. The SNP identified at position 86 of COX6B in the GenBank sequence is represented as a C to T transversion. The MassEXTEND™ assay used detected the sequence of the complementary strand, thus the SNP was represented as G to A in the primer extension products. The DNA coated magnetic beads were resuspended in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl₂ and 50 mM each of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5 U of a thermostable DNA polymerase (Amersham Pharmacia Biotech, Piscataway, N.J.) and 20 pmoles of a template specific oligonucleotide primer 5'-AATCAAGAACTACAAGAC-3' (SEQ ID NO.: 5) (Operon, Alameda, Calif.). Primer extension occurred with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nl of each sample to a silicon chip preloaded with 150 nl of H3PA (3-hydroxy picolinic acid) (Sigma Aldrich, St Louis, Mo.) matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker Daltonics, Billerica, Mass.; PerSeptive, Foster City, Calif.). The mass of the primer used in the MassEXTEND™ reaction was 5493.70 daltons. The predominant allele is extended by the addition of ddC, which has a mass of 5766.90 daltons. The allelic variant results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6111.10 daltons.

[0211] In addition to being analyzed as part of a pool, each individual sample (0.5 ng) was amplified as described above and analyzed individually using a MassEXTEND[™] reaction as described above.

[0212] Pooled populations of women (200 women per pool) with high cholesterol (pool 2) showed an increase in the frequency of the A allele at nucleotide position 86 of COX6B as compared with those with low levels of cholesterol (pool 1) (see FIG. 1). The association of this allelic variant of the COX6B gene with high cholesterol gave a statistically significant value of 14.30 using a 1-degree-of-freedom chi-squared test of association. In other words, the increase of 2.75% to 9.05% is significant, with a p value of

0.000156 (see FIG. 1). The genotype of each of the individuals in the pooled population was also determined by carrying out MassEXTEND™ reactions on each DNA samples individually. These analysis confirmed the pooling data showing that there was an increase in the frequency of the A allele of 2.27% to 9.93%, (p=0.0000061). The genotypes in pool 2 showed a decrease in the homozygous GG genotype from 95.4% to 82.35% and an increase in the heterozygous GA genotype from 4.55% to 15.44%. None of the individuals with low levels of serum cholesterol exhibited the homozygous AA genotype.

EXAMPLE 3

[0213] Detection of an Association Between an SNP at Position 2577 of the Human GPI-1 Gene and Low HDL

[0214] DNA samples (as prepared in Example 1), representing 200 women, from pool 3 (low level of HDL) and pool 4 (high levels of HDL) were amplified and analyzed for genetic differences using a MassEXTEND™ detection method. For each pool, SNPs were examined throughout the genome to detect differences in allelic frequency of variant alleles between the pools.

[0215] PCR Amplification of Samples from Pools 3 and 4

[0216] PCR primers were synthesized by Operon (Alameda, Calif.) using phosphoramidite chemistry. Amplification of the GPI-1 target sequence was carried out in single 50 µl PCR reaction with 100 ng of pooled human genomic DNA (200 samples), obtained as described in Example 1, taken from samples in pool 3 or pool 4, although amounts ranging from 100 ng to 1 ug could be used. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration of 0.5 ng. Each reaction contained 1xPCR buffer (Qiagen, Valencia, Calif.), 200 uM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl₂, and 25 pmols of the forward primer containing both the universal primer sequence and the target specific short sequence 5'-AGCAGGGCTTCCTCCTTC-3' (SEO ID NO.: 8) 2 pmoles of the long primer 5'-AGCGGATAACAATTTCA-CACAGGTGACCCAGCCGTACCTATTC-3' (SEQ ID NO.: 9) and 10 pmoles of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCG-GATAACAATTTCACACAGG-3' (SEQ ID NO.: 121). After an initial round of amplification with the target with the specific forward (long) and reverse primer (short), the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (Watham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.

[0217] Immobilization of DNA

[0218] The 50 μ l PCR reaction was added to 25 μ l of streptavidin coated magnetic bead (Dynal, Lake Success, N.Y.) prewashed three times and resuspended in 1 M NH₄Cl,

0.06 M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.

[0219] Genotyping

[0220] The frequency of the alleles at position 2577 in the GPI-1 gene was measured using the MassEXTEND™ assay and MALDI-TOF. The SNP identified at position 2577 of GPI-1 in the GenBank sequence is represented as a G to A transversion. The MassEXTEND™ assay used detected this sequence, thus the SNP was represented as C to T in the primer extension products. The DNA coated magnetic beads were resuspended in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl and 50 mM each of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5 U of a thermostable DNA polymerase (Amersham Pharmacia Biotech, Piscataway, N.J.) and 20 pmoles of a template specific oligonucleotide primer 5'-AAGGGAGACAGATTTGGC-3' (SEQ ID NO.: 10) (Operon, Alameda, Calif.). Primer extension occurred with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nl each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker Daltonics, Billerica, Mass.; PerSeptive, Foster City, Calif.). The mass of the primer used in the MassEXTEND™ reaction was 561 2.70 daltons. The predominant allele is extended by the addition of ddC, which has a mass of 5885,90 daltons. The allelic variant results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6230.10 daltons.

[0221] In addition to being analyzed as a pool, each individual sample (0.5 ng) was amplified as described above and analyzed individually using the MassEXTEND™ reaction as described above.

[0222] Pooled populations of women (200 women per pool) with low HDL (pool 3) showed an increase in the T allele of 11.33% at nucleotide position 2577 as compared with those with high levels of HDL (pool 4). The association of this allelic variant of the GPI-1 gene with low HDL gave a statistically significant value of 15.04 using a 1-degreeof-freedom chi-squared test of association. In other words, the increase of 16.23% to 27.57% is significant, with a p value of 0.0001064 (see FIG. 2). The genotype of each of the individuals in the pooled population was also determined by carrying out individual MassEXTEND™ reactions on individual DNA samples. These analysis confirmed the pooling data showing that there was an increase in the frequency of the T allele of 19.49% to 26.1%, (p=0.024). The measured genotypes in pool 3 showed a decrease in the homozygous CC genotype from 65.24% to 54.21% and an increase in the heterozygous CT genotype from 30.51% to 39.25%. The homozygous TT genotypes increased 2.3%.

[0223] Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

```
<160> NUMBER OF SEO ID NOS: 122
<210> SEQ ID NO 1
<211> LENGTH: 439
<212> TYPE: DNA
<213> ORGANISM: Homo Sapien
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (45)...(305)
<400> SEQUENCE: 1
ttgagetgea ggttgaatee ggggtgeett taggatteag cace atg geg gaa gae
                                                                                              56
                                                                  Met Ala Glu Asp
atg gag acc aaa atc aag aac tac aag acc gcc cct ttt gac agc cgc
Met Glu Thr Lys Ile Lys Asn Tyr Lys Thr Ala Pro Phe Asp Ser Arg
                                                                                             104
tto coe aac cag aac cag act aga aac tge tgg cag aac tac ctg gac
Phe Pro Asn Gln Asn Gln Thr Arg Asn Cys Trp Gln Asn Tyr Leu Asp
tto cac cgc tgt cag aag gca atg acc gct aaa gga ggc gat atc tct
Phe His Arg Cys Gln Lys Ala Met Thr Ala Lys Gly Gly Asp Ile Ser
                                                                                             200
gtg tgc gaa tgg tac cag cgt gtg tac cag tcc ctc tgc ccc aca tcc
Val Cys Glu Trp Tyr Gln Arg Val Tyr Gln Ser Leu Cys Pro Thr Ser
                                      60
```

SEQUENCE LISTING

tgg gtc aca gac tgg gat gag caa cgg gct gaa ggc acg ttt ccc ggg Trp Val Thr Asp Trp Asp Glu Gln Arg Ala Glu Gly Thr Phe Pro Gly 70 75 80	296
aag ato tga actggotgoa totooottto ototgtooto catoottoto Lys Ile * 85	345
ccaggatggt gaagggggac ctggtaccca gtgatcccca ccccaggatc ctaaatcatg	405
acttacctgc taataaaaac tcattggaaa agtg	439
<210> SEQ ID NO 2 <211> LENGTH: 86 <212> TYPE: PRT <213> ORGANISM: Homo Sapien	
<400> SEQUENCE: 2	
Met Ala Glu Asp Met Glu Thr Lys Ile Lys Asn Tyr Lys Thr Ala Pro 1 5 10 15	
Phe Asp Ser Arg Phe Pro Asm Gln Asm Gln Thr Arg Asm Cys Trp Gln 25 30	
Asn Tyr Leu Asp Phe His Arg Cys Gln Lys Ala Met Thr Ala Lys Gly 35 40 45	
Gly Asp Ile Ser Val Cys Glu Trp Tyr Gln Arg Val Tyr Gln Ser Leu 50 60	
Cys Pro Thr Ser Trp Val Thr Asp Trp Asp Glu Gln Arg Ala Glu Gly 65 70 80	
Thr Phe Pro Gly Lys Ile 85	
<210> SEQ ID NO 3 <211> LEMCTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 3	
aggattcagc accatggc	18
<210> SEQ ID NO 4 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR Primer	
<400> SEQUENCE: 4	
agoggataac aatttoacac aggtagtotg gttotggttg ggg	4.3
<210> SEQ ID NO 5 <211> LENGTH: 18 <212- TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: 223> OTHER INFORMATION: Massextend primer <400> SEQUENCE: 5	
aatcaagaac tacaagac	18
<210> SEQ ID NO 6	

												con	стп	uea					
<212 <213	<211> LENGTH: 2921 <212> TYEE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> AUGUMENTE SAMERIA <221> AUGUMENT																		
					3)	.(184	18)												
<400	> SE	QUEN	ICE:	6															
cago	gago	ege d	gtc	gtate	ge e	cggg	aaa g	g gga	atog	gggt	aaa	caac	aaa a	atoo	ggacco	60			
cgcc	gee	ega q	acaci	acaa.	2e G	cgga	agcad	e eeq	geet	ccg				etc a Leu 1		114			
gcc Ala 5																162			
qqa Gl y																210			
cac His																258			
agg Arg	cag Gln	gcc Ala 55	agc Ser	cag Gln	gtg Val	ggc Gly	gtg Val 60	gcc Ala	gtg Val	ctg Leu	ggc Gl y	acc Thr 65	tgg Trp	tgc Cys	cac His	306			
tge Cys	agg Arg 70	cag Gln	gag Glu	ecc Pro	gag Glu	gag Glu 75	agc Ser	ctg Leu	ggc Gly	age Arg	ttc Phe 80	ctg Leu	gag Glu	agc Ser	ctg Leu	354			
ggt Gl y 85																402			
ggc Gl y																450			
gcc Ala	ccc Pro	ggt Gly	gcc Ala 120	cct Pro	ggt Gl y	gag Glu	gac Asp	cag Gln 125	gtc V al	atg Met	ctc Leu	atc Ile	ttc Phe 130	tat Tyr	gac Asp	498			
cag Gln																546			
gac Asp																594			
gtc Val 165																642			
ttt Phe																690			
gag Glu	Ala	ser	11e 200	Leu	Ala	Glu	Leu	Ala 205	Arg	Arg	Ala	Ser	Gly 210	Pro	Ile	738			
tgt C ys																786			
tqc C ys	ega Arg 230	gtg Val	ttc Phe	aaq Lys	ctc Leu	tgq Trp 235	ccc Pro	ctg Leu	tee Ser	ttc Phe	ctc Leu 240	G1A aaa	agc Ser	aaa Lys	ctc Leu	834			
tcc	acg	tgc	gaa	cag	ctc	cgg	cac	cgg	ctg	gag	cac	ctc	acg	cta	atc	882			

Ser 245	Thr	Сув	Glu	Gln	Leu 250	Arg	His	Arg	Leu	Glu 255	His	Leu	Thr	Leu	Ile 260	
							aac Asn									930
							ctg Leu									978
							agc Ser 300									1026
ctc Leu	gtt Val 310	cct Pro	gtg Val	get Ala	gac Asp	cac His 315	gtg Val	gcc Ala	gag Glu	gag Glu	ctc Leu 320	cag Gln	cat His	ctg Leu	ctg Leu	1074
							gcc Ala									1122
							ttc Phe									1170
agc Ser	tac Tyr	atc Ile	cac His 360	ctc Leu	atg Met	tcc Ser	occ Pro	ttc Phe 365	gtg Val	gag Glu	cac His	atc Ile	ctt Leu 370	tgg Trp	cac His	1218
							ggc Gly 380									1266
							acc Thr									1314
							ctg Leu									1362
							aag Lys									1410
							gac Asp									1458
ttc Phe	acc Thr	atc Ile 455	ctg Leu	ctc Leu	ttc Phe	ctc Leu	ctg Leu 460	eet Pro	acc Thr	aca Thr	gcc Ala	ctg Leu 465	tac T y r	tac Tyr	ctg Leu	1506
							ctg Leu									1554
							aac Asn									1602
ctt Leu	cgg Arg	ctc Leu	tgc C ys	egg Arg 505	ecc Pro	tac Tyr	agg Arg	ctg Leu	gcg Ala 510	gct Ala	ggc Gl y	gtg Val	aag L y s	ttc Phe 515	cgt Arg	1650
							agg Arg									1698
							gtg Val 540									1746
tgt	ggc	tgc	cac	ccc	aag	cac	tee	tgg	ggc	gcc	ctg	tgc	cgc	aag	ctg	1794

Cys Gly Cys His Pro Lys His Ser Trp Gly Ala Leu Cys Arg Lys Leu 550 560	
ttc ctt ggg gag ctc atc tac ccc tgg agg cag aga ggg gac aag cag Phe Leu Gly Glu Leu Ile Tyr Pro Trp Arg Gln Arg Gly Aep Lys Gln 565 570 580	1842
gac tga gggaactget ggetegeetg geaccaccae acggeeacag ceagecatet $\ensuremath{\mathtt{Asp}}$ *	1898
getetgecag ggtggcacca geteagetgg egeatgteee gtgetttgtg gaegetgetg	1958
tgtgctcotg aacacggcag gccctgctat cacaccttgg gcttggaggt cattgggagt	2018
gagcagatgt gggggtggcc agccaggctg gccgcactcc atcactggca ctgcctgcct	2078
tgggaccogc ttcccacctg ctgcggtcac catggtggcg agcacagcaa ccccaggtgt	2138
ccagageact geoccatgee caccetgeat acceaggtee agagggteeg tecaccacag	2198
cagococagg tggagggotg gtotocotgg gggotococa gtggototgo cotggotgtg	2258
ggggtggagg gaccttgcca ggatgaaccc tocagtccca ggcaccctct agctccctca	2318
googaacago accotgoato tgggggattg aagcagtogo tgaccooogt coccagoggg	2378
cocgggccct cactccctga accacacggg gtttatttgc ggatgttccc tggagaggtc	2438
getttgtgaa gaaaccatca gcaggetgtg agcatcgcca ggetgetgtg ggggegggag	2498
cagootcagt gtcaagggco tgoccactga cocagoogta cotattogto cacggtgcco	2558
cgtagcagca ggtcctgcgg ccaaatctgt ctcccttcat gggcctccca gggaaggagg	2618
aagccctgct gtgcagacac ctctgtggcc ccccaggggt gtgagcggcc tggggagggg	2678
geogtggeac tgaggeegaa agtgeetgee agaeggeaeg gtetgggtge gggtgtteee	2738
tgtgageceg agteegette aggaggggag cetgeaggtg eeggetggtg aggggatgae	2798
gegetgtggg tgggaggagg cagegeceat etcageagea ceaggactge etgggactee	2858
ctggcaaccc agcaccgggg aagccgtcag ctgctgtgac aataaaacct gccccgtgtc	2918
tgg	2921
<210> SEQ ID NO 7 <211- LENGTH: 581 <212- TYPE: PRT <213- ORGANISM: Homo Sapien	
<400> SEQUENCE: 7	
Met Val Leu Lys Ala Phe Phe Pro Thr Cys Cys Val Ser Ala Asp Ser 1 5 10 15	
Gly Leu Leu Val Gly Arg Trp Val Pro Glu Gln Ser Ser Ala Val 20 25 30	
Leu Ala Val Leu His Phe Pro Phe Ile Pro Ile Gln Val Lys Gln Leu 35 40	
Leu Ala Gin Val Arg Gln Ala Ser Gln Val Gly Val Ala Val Leu Gly 50 60	
Thr Trp Cys His Cys Arg Gln Glu Pro Glu Glu Ser Leu Gly Arg Phe 65 70 75 80	
Leu Glu Ser Leu Gly Ala Val Phe Pro His Glu Pro Trp Leu Arg Leu 85 90 95	
Cys Arg Glu Arg Gly Gly Thr Phe Trp Ser Cys Glu Ala Thr His Arg	
Gln Ala Pro Thr Ala Pro Gly Ala Pro Gly Glu Asp Gln Val Met Leu	

The Pile Tyr Asp Gin Arg Gin Ala Giy Val Leu Leu Ser Gin Leu Pro 140 130 135 Val Leu Leu Ser Gin Leu His Leu Pro 145 Val Leu Pro Asp Arg Gin Ala Giy Ala Thr Thr Ala Ser Thr Giy 145 Val Leu Ala Ala Val Phe Asp Thr Val Ala Arg Ser Giu Val Leu Phe 165 Arg Ser Asp Arg Phe Asp Gin Giy Pro Val Arg Leu Ser His Trp Gin 180 195 Ser Giu Val Giu Ala Ser IIe Leu Ala Giu Leu Ala Arg Arg Ala 200 Ser Giu Giy Val Giu Ala Ser IIe Leu Ala Giu Leu Ala Arg Arg Ala 210 Pro IIe Cys Leu Leu Leu Ala Giu Leu Ala Arg Arg Ala 225 Ser Giu Ser Ala Cys Arg Val Phe Lys Leu Trp Pro Leu Ser Phe Leu 225 Leu Trp Pro Leu Ser Thr Cys Giu Gin Leu Arg His Arg Leu Ciu His 265 Leu Leu Ser Thr Cys Giu Gin Leu Arg His Arg Leu Ciu His 266 Arg 275 Ala Asn Thr Val Ala Ser Val Leu Leu Asp Val Ala Leu 270 Giu His 225 Mala Asn Thr Val Ala Ser Val Leu Leu Asp Val Ala Leu 280 Ser Mala Ash Arg 170 Ala Giu Leu Ala Arg Arg Arg 280 Ser Giu Gin His 280 Arg 315 Val Ala Giu Leu Asp Mala Giu Leu Asp Val Ala Leu 280 Ser Mala Ash Arg Arg 280 Ser Val Leu Leu Asp Val Ala Leu 280 Ser Mala Ash Arg Arg 315 Val Ala Giu Giu Leu Ala Asp Ala Leu Leu Gin Trp Leu Met Giy Ala Pro Ala Giu Giu Leu Asp Met 320 Ser Arg Ala Leu Leu Gin Trp Leu Met Giy Ala Pro Ala Giu Leu Lys Met 325 Ala Ash Arg Ala Leu Asp Gin Val Leu Giy Arg Phe Phe Leu Tyr Mei Ile 326 Ash Arg Ala Leu Asp Gin Val Leu Giy Arg Phe Phe Leu Tyr Mei Ile 330 Ser Arg Ala Leu Leu Gin Trp Leu Met Giy Ala Pro Ala Giy Leu Lys Met 331 Ser Ala Giu Giu Leu Asp Arg Ala Leu Asp Gin Val Leu Giy Arg Phe Phe Leu Tyr Trp Leu Met 345 Arg 365 Ala Giu Ash Arg Leu Leu Asp Arg Ala Leu Leu Fro Arg Leu Leu Giu His 360 Arg Arg Arg Ala Leu Leu Trp His Val Giy Ala Arg Leu Met Ser Pro Phe Val Giu His 370 Ala Giu Ash Arg Ala Leu Leu Trp His Val Giy Ala Arg Leu Trp Cye Leu Lys Ile His Giy Arg Arg Met Pro Arg Arg Arg Arg Giy Leu Leu Ser Arg Ile Ile Ala Leu Leu Trp Pro			115					120					125			
Thy Val Leu Pro Asp Arg Gin Ala Gly Ala Thr Thr Ala Ser Thr Gly 145			115					120					125			
145	Ile		Tyr	Asp	Gln	Arg		Val	Leu	Leu	Ser		Leu	His	Leu	Pro
Arg Ser Asp arg Phe Asp Glu Gly Fro Val Arg Leu Ser His Trp Gln 180 Ser Glu Gly Val Glu Ala Ser II Leu Ala Glu Leu Ala Arg Arg Ala 205 Ser Gly Pro II e Cys Leu Leu Leu Ala Ser Leu Leu Ser Leu Val Ser 210 Ser Gly Pro II e Cys Leu Leu Leu Ala Ser Leu Leu Ser Leu Val Ser 220 Ala Val Ser Ala Cys Arg Val Phe Lys Leu Trp Pro Leu Ser Phe Leu 245 Gly Ser Lys Leu Ser Thr Cys Glu Gln Leu Arg His Arg Leu Glu His 255 Leu Thr Leu II Phe Ser Thr Arg Lys Ala Glu Asn Pro Ala Gln Leu 275 Gly Leu Met Leu Leu Ser Trp Leu His Gly Arg Ser Arg II e Gly His 290 Leu Ala Asp Ala Leu Val Pro Val Ala Asp His Val Ala Glu Glu Leu 330 Gln His Leu Leu Gln Trp Leu Met Gly Ala Phis Val Ala Glu Clu Leu 330 Ann Arg Ala Leu Asp Gln Val Leu Gly Arg Phe Phe Leu Tyr His II e 345 His Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 Leu Ser Leu Leu Ser Asp II e II e Ala Leu Leu Thr Phe His II e 375 Leu Ser Leu Leu Ser Asp II e II e Ala Leu Leu Thr Phe His Gly Arg Ser Arg II e Gly His 370 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys II e His Gly 370 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Phe Arg Gly Lys Lys Trp Ann Val Leu 425 Gly Thr Leu Leu Phe Thr II e Leu Leu Asp Cu Leu Arg His Gly Arg Ser Ser Leu Leu Ser Asp II e II e Ala Leu Leu Thr Phe His II e Tyr 370 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Cu Val Cu Leu 425 Gly Thr Leu Leu Phe Thr II e Leu Leu Phe Leu Leu Pro Thr Thr Ado 405 Gly Thr Leu Leu Phe Thr II e Leu Leu Asp Leu Asp Cu Leu Val Ala 380 Cys Phe Tyr Leu Val Phe Thr Leu Leu Asp Leu Val Val Ala Val 465 Gly Leu II e His Leu Leu Leu Val Asp Leu II e Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Arg Leu Arg Leu 470 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Arg Leu Arg Cys Leu Lys II e Asn Ser Leu 485		Val	Leu	Pro	Asp	Arg 150	Gln	Ala	Gly	Ala		Thr	Ala	Ser	Thr	
See Glu Gly Val Glu Ala See Ile Leu Ala Glu Leu Ala Arg Arg Ala 200 20	Gly	Leu	Ala	Ala		Phe	Asp	Thr	Val		Arg	Ser	Glu	Val		Phe
Ser Gly Pro Ile Cys Leu Leu Leu Ala Ser Leu Leu Ser Leu Val Ser 215 Ser Gly Pro Ile Cys Leu Leu Leu Ala Ser Leu Leu Ser Leu Val Ser 215 Ala Val Ser Ala Cys Arg Val Phe Lys Leu Trp Pro Leu Ser Phe Leu 245 Ser Lys Leu Ser Thr Cys Glu Gln Leu Arg His Arg Leu Glu His 255 Leu Thr Leu Ile Phe Ser Thr Arg Lys Ala Glu Asn Pro Ala Gln Leu 276 Met Arg Lys Ala Asn Thr Val Ala Ser Val Leu Leu Asp Val Ala Leu 295 Gly Leu Met Leu Leu Ser Trp Leu His Gly Arg Ser Arg Ile Gly His 300 Leu Ala Asp Ala Leu Val Pro Val Ala Asp His Val Ala Glu Glu Leu 325 Gln His Leu Leu Gln Trp Leu Met Gly Ala Pro Ala Gly Leu Lys Met 325 Ann Arg Ala Leu Asp Gln Val Leu Gly Arg Phe Phe Leu Tyr His Ile 355 Ile Leu Trp Ile Ser Tyr Ile His Leu Met Ser Pro Phe Val Glu His 375 Ile Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly Arg Phe Phe Leu Tyr Ala 365 Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Cln Leu Fhe Ile 445 Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Cln Leu Phe Leu Tyr Thr Ala 465 Gln Gly Leu Ile His Leu Leu Val Phe Thr Leu Leu Phe Leu Leu Val Val Ala 361 Gln Gly Leu Ile His Leu Leu Val Asp Leu Arg Leu Val Val Ala Ser Leu Val Val Ala Ser Val Val Val Ala Ser Leu Val Val Ala Ser Leu Val Val Asp Cln Leu Val Val Asp Cln Leu Val Val Asp Cln Leu Val Val Val Asp Cln Clau Val Val Val Asp Cln Clau Val	Arg	Ser	Asp		Phe	Asp	Glu	Gly		Val	Arg	Leu	Ser		Trp	Gln
210	Ser	Glu		Val	Glu	Ala	Ser		Leu	Ala	Glu	Leu		Arg	Arg	Ala
235	Ser		Pro	Ile	Сув	Leu		Leu	Ala	Ser	Leu		Ser	Leu	Val	Ser
Leu Thr Leu Ile Phe Ser Thr Arg Lys Ala Glu Asn Pro Ala Gln Leu 265 Met Arg Lys Ala Asn Thr Val Ala Ser Val Leu Leu Asp Val Ala Leu 275 Gly Leu Met Leu Leu Ser Trp Leu His Gly Arg Ser Arg Ile Gly His 300 Leu Ala Asp Ala Leu Val Pro Val Ala Asp His Val Ala Glu Clu Leu 325 Gln His Leu Leu Gln Trp Leu Met Gly Ala Pro Ala Gly Leu Lys Met 340 Ann Arg Ala Leu Asp Gln Val Leu Gly Arg Phe Phe Leu Tyr His Ile 340 His Leu Trp Ile Ser Try Ile His Leu Met Ser Pro Phe Val Glu His 355 Ile Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly 410 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu His 180 Gly Thr Leu Leu Phe Thr Leu Leu Leu Phe Leu Leu Thr Thr Ala 455 Gly Thr Leu Leu Phe Thr Leu Leu Phe Leu Leu Val Val Ala 480 Gln Gly Leu Ile His Leu Leu Leu Arg Leu Leu Thr Thr Ala 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Leu Arg Leu Leu Val Val Ala 380 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Arg Leu 495 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg Leu Cys Leu Arg Pro Leu Arg Leu Ar		Val	Ser	Ala	Сув		Val	Phe	Lys	Leu		Pro	Leu	Ser	Phe	
Met Arg Lys Ala Ash Thr Val Ala Ser Val Leu Leu Ash Val Ala Leu 280 Val Ala Ash	Gly	Ser	Lys	Leu		Thr	Сув	Glu	Gln		Arg	His	Arg	Leu		His
275 280 285	Leu	Thr	Leu		Phe	Ser	Thr	Arg		Ala	Glu	Asn	Pro		Gln	Leu
Leu Ala Asp Ala Leu Val Pro Val Ala Asp His Val Ala Glu Glu Leu 305 Gln His Leu Leu Gln Trp Leu Met Gly Ala Pro Ala Gly Leu Lys Met 325 Aan Arg Ala Leu Asp Gln Val Leu Gly Arg Phe Phe Leu Tyr His Ile 340 His Leu Trp Ile Ser Tyr Ile His Leu Met Ser Pro Phe Val Glu His 355 Ile Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 Leu Ser Leu Leu Ser Asp Ile Ile Ala Leu Leu Thr Phe His Ile Tyr 395 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly 410 Leu Ser Ser Leu Trp Arg Leu Phe Arg Gly Lys Lys Trp Asn Val Leu 420 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu Phe Ile A45 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 455 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Phe Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500	Met	Arg		Ala	Asn	Thr	Val		Ser	Val	Leu	Leu		Val	Ala	Leu
310 310 311 312 313 314 315 316 317 318 318 319 318 319 310 311 311 311 311 312 313 313	Gly		Met	Leu	Leu	Ser		Leu	His	Gly	Arg		Arg	Ile	Gly	His
325 330 335 Ann Arg Ala Leu Aap Gln Val Leu Gly Arg Phe Phe Leu Tyr His Ile 340 345 345 345 345 355 355 355 360 Ann Arg Ala Leu Aap Gln Val Leu Gly Arg Phe Phe Leu Tyr His Ile 350 360 Ann Arg Ala Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 375 Ann Ann Ann Ann Ann Ann Ann Ann Ann An		Ala	Asp	Ala	Leu		Pro	Val	Ala	Asp		Val	Ala	Gl u	Glu	
340 345 346 347 348 349 340 340 340 340 340 340 340	Gln	His	Leu	Leu		Trp	Leu	Met	Gly		Pro	Ala	Gly	Leu		Met
355 11e Leu Trp His Val Gly Leu Ser Ala Cys Leu Gly Leu Thr Val Ala 370 Leu Ser Leu Leu Ser Asp Ile Ile Ala Leu Leu Thr Phe His Ile Tyr 395 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly 415 Leu Ser Ser Leu Trp Arg Leu Phe Arg Gly Lys Lys Trp Asn Val Leu 420 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu Phe Ile 435 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 450 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Leu Arg	Asn	Arg	Ala		Asp	Gln	Val	Leu		Arg	Phe	Phe	Leu		His	Ile
370 Leu Ser Leu Leu Ser Asp Ile Ile Ala Leu Leu Thr Phe His Ile Tyr 385 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly 405 Leu Ser Ser Leu Trp Arg Leu Phe Arg Gly Lys Lys Trp Asn Val Leu 420 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu Phe Ile 435 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Phe Thr Thr Ala 460 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Phe Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Leu Arg Leu Leu Arg Leu Lys Phe Arg Leu A	His	Leu		Ile	Ser	Tyr	Ile		Leu	Met	Ser	Pro		Val	Glu	His
385 390 395 400 Cys Phe Tyr Val Tyr Gly Ala Arg Leu Tyr Cys Leu Lys Ile His Gly 415 Leu Ser Ser Leu Trp Arg Leu Phe Arg Gly Lys Lys Trp Asn Val Leu 420 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu Phe Ile 445 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 455 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Leu Val Val Ala Val 475 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Leu Arg Leu Leu Arg Leu Leu Arg	Ile		Trp	His	Val	Gl y		Ser	Ala	Cys	Leu		Leu	Thr	Val	Ala
405 410 415 Leu Ser Ser Leu Trp Arg Leu Phe Arg Gly Lys Lys Trp Asn Val Leu 425 Arg Gln Arg Val Asp Ser Cys Ser Tyr Asp Leu Asp Gln Leu Phe Ile 445 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 450 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Leu Arg Leu		Ser	Leu	Leu	Ser		Ile	Ile	Ala	Leu		Thr	Phe	His	Ile	
425 430 Arg Gln Arg Val Asp Ser Cys ser Tyr Asp Leu Asp Gln Leu Phe Ile 435 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 455 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu Leu Arg Leu	Сув	Phe	Tyr	Val		Gly	Ala	Arg	Leu		Сув	Leu	Lys	Ile		Gly
435 Gly Thr Leu Leu Phe Thr Ile Leu Leu Phe Leu Leu Pro Thr Thr Ala 450 Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg L	Leu	Ser	Ser		Trp	Arg	Leu	Phe		Gly	Lys	Lys	Trp		Val	Leu
Leu Tyr Tyr Leu Val Phe Thr Leu Leu Arg Leu Leu Val Val Ala Val 465 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu	Arg	Gln		Val	Asp	Ser	Сув		Tyr	Asp	Leu	Asp		Leu	Phe	Ile
465 470 475 480 Gln Gly Leu Ile His Leu Leu Val Asp Leu Ile Asn Ser Leu Pro Leu 485 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 505 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu	Gly		Leu	Leu	Phe	Thr		Leu	Leu	Phe	Leu		Pro	Thr	Thr	Ala
485 490 495 Tyr Ser Leu Gly Leu Arg Leu Cys Arg Pro Tyr Arg Leu Ala Ala Gly 500 505 500 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu		Tyr	Tyr	Leu	Val		Thr	Leu	Leu	Arg		Leu	Val	Val	Ala	
500 505 510 Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu	Gln	Gly	Leu	Ile		Leu	Leu	Val	Asp		Ile	Asn	ser	Leu		Leu
Val Lys Phe Arg Val Leu Arg His Glu Ala Ser Arg Pro Leu Arg Leu 515 520 525	Tyr	ser	Leu		Leu	Arg	Leu	Cys		Pro	Tyr	Arg	Leu		Ala	Gly
	val	Lys	Phe 515	Arg	Val	Leu	Arg	ніs 520	Glu	Ala	Ser	Arg	Pro 525	Leu	Arg	Leu

Leu Met Gln Ile Asn Pro Leu Pro Tyr Ser Arg Val Val His Thr Tyr 530 540
Arg Leu Pro Ser Cys Cly Cys His Pro Lys His Ser Trp Cly Ala Leu 545 550 560
Cys Arg Lys Leu Phe Leu Gly Glu Leu Ile Tyr Pro Trp Arg Gln Arg 565 570 575
Gly Asp Lys Gln Asp 580
<210> SEQ ID NO 8 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: FCR primer
<400> SEQUENCE: 8
agcagggett ceteette 18
<210> SEQ ID NO 9 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 9
ageggataac aattteacac aggtgaccca geegtaccta tte 43
<210> SEQ ID NO 10 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <23> OTHER INFORMATION: MassExtend primer <400> SEQUENCE: 10
aaggagaca gatttggc 18
<pre><210> SEQ ID NO 11 <211> LERWITH: 1790 <212> TYPE: DNA</pre>
<400> SEQUENCE: 11
gtgaatotot ggggocagga agacoctgot gcccggaaga gcctcatgtt ccgtgggggc 60
tgggcggaea tacatatacg ggctccaggc tgaacggctc gggccactta cacaccactg 120
octgataaco atg ctg gct gcc aca gtc ctg acc ctg gcc ctg ctg ggc 169 Met Leu Ala Ala Thr Val Leu Thr Leu Ala Leu Leu Gly 1 5 10
aat god dat god tgo too aaa ggo aco tog cac gag goa ggo ato gtg Asn Ala His Ala Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val 15 20 25
tgc cgc atc acc aag cct gcc ctc ctg gtg ttg aac cac gag act gcc Cys Arg Ile Thr Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala

-continued

30					35					40					45		
	gtg Val															313	
	gag Glu															361	
	atc Ile															409	
	gaa Glu 95															457	
	aag Lys															505	
	gat Asp															553	
	aac Asn															601	
	gac Asp															649	
	cga Arg 175															697	
	acc Thr															745	
	atc Ile															793	
	ctt Leu															841	
ccc Pro	gtc Val	atc Ile 240	aca Thr	gcc Ala	tcc Ser	tac Tyr	ctg Leu 245	gag Glu	toc Ser	cat His	cac His	аад Lув 250	ggt Gly	cat His	ttc Phe	889	
	tac Tyr 255															937	
	ctg Leu															985	
	ttc Phe															1033	
	agc Ser															1081	
	aac Asn															1129	
agc Ser	cag Gln	gcc Ala	caa Gln	gtc Val	acc Thr	gtc Val	cac His	tgc Cys	ctc Leu	aag Lys	atg Met	ccc Pro	aaq Lys	atc Ile	tcc Ser	1177	

335 340 345	
tgo caa aac aag gga gto gtg gto aat tot toa gtg atg gtg aaa tto Cys Gln Asn Lys Gly Val Val Val Asn Ser Ser Val Met Val Lys Phe 350 365	1225
ctc ttt cca cgc cca gac cag caa cat tct gta gct tac aca ttt gaa Leu Phe Pro Arg Pro Asp Gln Gln His Ser Val Ala Tyr Thr Phe Glu 370 375 380	1273
gag gat atc gtg act acc gtc cag gcc tcc tat tct aag aaa aag ctc Glu Asp Ile Val Thr Thr Val Gln Ala Ser Tyr Ser Lys Lys Lys Leu 385 390	1321
tto tta ago oto ttg gat tto dag att aca oca aag act gtt too aac Phe Leu Ser Leu Leu Asp Phe Gln Ile Thr Pro Lys Thr Val Ser Asn 400 405	1369
ttg act gag agc agc tcc gag tcc atc cag agc ttc ctg cag tca atg Leu Thr Glu Ser Ser Ser Glu Ser Ile Gln Ser Phe Leu Gln Ser Met 415 420 425	1417
atc acc gct gtg ggc atc cct gag gtc atg tct cgg ctc gag gta gtg Tle Thr Ala Val Gly Tle Pro Glu Val Met Ser Arg Leu Glu Val Val 430 435 440	1465
ttt aca goc otc atg aac agc aaa ggc gtg agc otc tte gac atc atc Phe Thr Ala Leu Met Aen Ser Lys Gly Val Ser Leu Phe Asp Ile Ile 450 455 460	1513
aac cct gag att atc act cga gat ggc ttc ctg ctg ctg cag atg gac Asn Pro Glu Ile Ile Thr Arg Asp Gly Phe Leu Leu Leu Gln Met Asp 465 470 475	1561
ttt ggc ttc oct gag cac otg otg gtg gat ttc otc oag agc ttg agc Phe Gly Phe Pro Glu His Leu Leu Val Asp Phe Leu Gln Ser Leu Ser 480 485 490	1609
tag aagtotocaa ggaggtoggg atggggottg tagcagaagg caagcaccag	1662
geteacaget ggaaceetgg tgteteetee agegtggtgg aagttgggtt aggagtaegg	1722
agatggagat tggctcccaa ctcctcccta tcctaaaggc ccactggcat taaagtgctg	1782 1790
tatccaag	1190
<210> SEQ ID NO 12 <211> LENGTH: 493 <212> TYPE: PRT <213> ORGANISM: Homo sabien	

<213> ORGANISM: Homo sapien

<400> SEQUENCE: 12

Met Leu Ala Ala Thr Val Leu Thr Leu Ala Leu Leu Gly Asn Ala His 1 5 10 15

Ala Cys Ser Lys Gly Thr Ser His Glu Ala Gly Ile Val Cys Arg Ile 20 25 30

Thr Lys Pro Ala Leu Leu Val Leu Asn His Glu Thr Ala Lys Val Ile

Gln Thr Ala Phe Gln Arg Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys 50

Ala Met Met Leu Leu Gly Gln Val Lys Tyr Gly Leu His Asn Ile Gln 65 70 75 80

Ile Ser His Leu Ser Ile Ala Ser Ser Gln Val Glu Leu Val Glu Ala 85 90 95

Thr Leu Lys Tyr Gly Tyr Thr Thr Ala Trp Trp Leu Gly Ile Asp Gln

		115					120					125			
Ser I	1e 30	Asp	Phe	Glu	Ile	Asp 135	ser	Ala	Ile	Asp	Leu 140	Gln	Ile	Asn	Thr
Gln L 145	eu	Thr	Сув	Asp	Ser 150	Gly	Arg	Val	Arg	Thr 155	Asp	Ala	Pro	Asp	Cys 160
Tyr L	eu	Ser	Phe	His 165	Lys	Leu	Leu	Leu	His 170	Leu	Gln	Gly	Glu	Arg 175	Glu
Pro G	ly	Trp	11e 180	Lys	Gln	Leu	Phe	Thr 185	Asn	Phe	Ile	Ser	Phe 190	Thr	Leu
Lys L	eu	Val 195	Leu	Lys	Gly	Gln	11e 200	Сув	Lує	Glu	Ile	Asn 205	Val	Ile	Ser
Asn I	1e 10	Met	Ala	Asp	Phe	Val 215	Gln	Thr	Arg	Ala	Ala 220	Ser	Ile	Leu	Ser
Asp G 225	ly	Asp	Ile	Gly	Val 230	Asp	Ile	Ser	Leu	Thr 235	Gly	Asp	Pro	Val	Ile 240
Thr A	la	Ser	Туг	Leu 245	Glu	Ser	His	His	Lys 250	Gly	His	Phe	Ile	Tyr 255	Lys
Asn V	al	Ser	Glu 260	Авр	Leu	Pro	Leu	Pro 265	Thr	Phe	Ser	Pro	Thr 270	Leu	Leu
Gly A		Ser 275	Arg	Met	Leu	Tyr	Phe 280	Trp	Phe	Ser	Glu	Arg 285	Val	Phe	His
Ser L 2	eu 90	Ala	Lys	Val	Ala	Phe 295	Gln	Авр	Gly	Arg	Leu 300	Met	Leu	Ser	Leu
Met G 305	ly	Asp	Glu	Phe	110 310	Ala	Val	Leu	Glu	Thr 315	Trp	Gly	Phe	Asn	Thr 320
Asn G	ln	Glu	Ile	Phe 325	Gln	Glu	Val	Val	Gly 330	Gly	Phe	Pro	Ser	Gln 335	Ala
Gln ∀	al	Thr	Val 340	His	Cys	Leu	Lys	Met. 345	Pro	Lys	Ile	Ser	C y s 350	Gln	Asn
L ys G	ly	V al 355	Val	Val	Asn	Ser	Ser 360	Val	Met	Val	Lys	Phe 365	Leu	Phe	Pro
Arg P	70	Asp	Gln	Gln	His	Ser 375	Val	Ala	Tyr	Thr	Phe 380	Glu	Glu	Asp	Ile
Val T 385	hr	Thr	Val	Gln	Ala 390	Ser	Tyr	Ser	Lys	Lys 395	Lys	Leu	Phe	Leu	Ser 400
Leu L	eu	Asp	Phe	Gln 405	Ile	Thr	Pro	Lys	Thr 410	Val	Ser	Asn	Leu	Thr 415	Glu
Ser S	er	Ser	Glu 420	Ser	Ile	Gln	Ser	Phe 425	Leu	Gln	Ser	Met	Ile 430	Thr	Ala
Val G	ly	Ile 435	Pro	Glu	Val	Met	ser 440	Arg	Leu	Glu	Val	Val 445	Phe	Thr	Ala
Leu M	et 50	Asn	Ser	Lys	Gly	Val 455	ser	Leu	Phe	Asp	Ile 460	Ile	Asn	Pro	Glu
Ile I 465	le	Thr	Arg	Asp	Gly 470	Phe	Leu	Leu	Leu	Gln 475	Met	Asp	Phe	Gly	Phe 480
Pro G	lu	His	Leu	Leu 485	Val	Asp	Phe	Leu	Gln 490	Ser	Leu	Ser			

<210> SEQ ID NO 13 <211> LENGTH: 3549 <212> TYPE: DNA <213> ORGANISM: Homo sapien

_																
<221 <222	l> NA 2> LO 3> OT	EATUE AME/E CATE CHER LPL)	CEY:	(175	o)	. (160 : Nuc	02) cleot	ide	sequ	ience	e end	odir	ng 1:	ipopı	otein	lipase
<400)> SE	QUE	ICE :	13												
ccc	ctcti	tee 1	toot	cctc	aa g	ggaa	agot	g cc	cact	tota	get	gccc	tge (catco	eccttt	60
aaaq	gggc	gac 1	ttgc	tcag	eg c	caaa	ccgc	g get	cca	gccc	tct	ccag	cct o	ccgg	etcage	120
agga	etcai	tca (gtog	gtee	gc g	cett	gcag	e te	etec	agag	gga	egege	aga (cgag	atg Met 1	177
gag Glu	agc Ser	aaa Lys	gcc Ala 5	ctg Leu	ctc Leu	gtg Val	ctg Leu	act Thr 10	ctg Leu	gcc Ala	gtg Val	tgg Trp	ctc Leu 15	cag Gln	agt Ser	225
ctg Leu	acc Thr	gcc Ala 20	tcc Ser	cgc Arg	gga Gly	GJÅ āāā	gtg Val 25	gcc Ala	gcc Ala	gcc Ala	gac Asp	caa Gln 30	aga Arg	aga Arg	gat Asp	273
					agt Ser											321
gct Ala 50	gag Glu	gac Asp	act Thr	tgc Cys	cac His 55	ctc Leu	att Ile	ccc Pro	gga Gly	gta Val 60	gca Ala	gag Glu	tcc Ser	gtg Val	get. Ala 65	369
acc Thr	tgt C y s	cat His	ttc Phe	aat Asn 70	cac His	agc Ser	agc Ser	aaa Lys	acc Thr 75	ttc Phe	atg Met	gtg Val	atc Ile	cat His 80	ggc Gly	417
tgg Trp	acg Thr	gta Val	aca Thr 85	gga Gl y	atg Met	tat Tyr	gag Glu	agt Ser 90	tgg Trp	gtg Val	cca Pro	aaa Lys	ctt Leu 95	gtg Val	gcc Ala	465
					gaa Glu											513
ctg Leu	tca Ser 115	cgg Arg	get Ala	cag Gln	gag Glu	cat His 120	tac Tyr	cca Pro	gtg Val	tcc Ser	gcg Ala 125	ggc Gly	tac Tyr	acc Thr	aaa Lys	561
ctg Leu 130	gtg Val	gga Gly	cag Gln	gat Asp	gtg Val 135	gcc Ala	egg Arg	ttt Phe	atc Ile	aac Asn 140	tgg Trp	atg Met	gag Glu	gag Glu	gag Glu 145	609
ttt Phe	aac Asn	tac Tyr	cct Pro	ctg Leu 150	Asp	aat Asn	gtc Val	cat His	ctc Leu 155	ttg Leu	gga Gl y	tac Tyr	agc Ser	ctt Leu 160	gga Gly	657
gcc Ala	cat His	gct Ala	gct Ala 165	ggc Gly	att Ile	gca Ala	gga Gly	agt Ser 170	ctg Leu	acc Thr	aat Asn	aag Lys	aaa Lys 175	gtc Val	aac Asn	705
					gat Asp											753
gcc Ala	ccg Pro 195	agt Ser	cgt Arg	ctt Leu	tct Ser	cct Pro 200	gat Asp	gat Asp	gca Ala	gat Asp	ttt Phe 205	gta Val	gac Asp	gtc Val	tta Leu	801
					ggg Gl y 215											849
cca Pro	gtt Val	Gly ggg	cat His	gtt Val 230	gac Asp	att Ile	tac Tyr	ccg Pro	aat Asn 235	gga Gly	ggt Gl y	act Thr	ttt Phe	cag Gln 240	cca Pro	897

gga tgt aac att gga gaa gct atc cgc gtg att gca gag aga gga ctt Gly Cys Asn Ile Gly Glu Ala Ile Arg Val Ile Ala Glu Arg Gly Leu 245 250	945
gga gat gtg gac dag cta gtg aag tgc tcc cac gag cgc tcc att cat Gly Asp Val Asp Gln Leu Val Lys Cys Ser His Glu Arg Ser Ile His 260 270	993
ctc ttc atc gac tct ctg ttg aat gaa gaa aat cca agt aag gcc tac Leu Phe Ile Asp Ser Leu Leu Asn Glu Glu Asn Pro Ser Lys Ala Tyr 275 280 285	1041
agg tgc agt tcc aag gaa gcc ttt gag aaa ggg ctc tgc ttg agt tgt Arg Cys Ser Ser Lys Glu Ala Phe Glu Lys Gly Leu Cys Leu Ser Cys 290 295 300 305	1089
aga aag aac cgc tgc aac aat ctg ggc tat gag atc aat aaa gtc aga Arg Lys Asn Arg Cys Asn Asn Leu Gly Tyr Glu Ile Asn Lys \forall al Arg 310 315 320	1137
gcc aaa aga agc agc aaa atg tac ctg aag act cgt tct cag atg ccc Ala Lys Arg Ser Ser Lys Met Tyr Leu Lys Thr Arg Ser Gln Met Pro 325 330 335	1185
tao aaa gto tto cat tao caa gta aag att cat ttt tot ggg act gag Tyr Lys Val Phe His Tyr Gln Val Lys Ile His Phe Ser Gly Thr Glu 340 345	1233
agt gaa acc cat acc aat cag goo ttt gag att tot otg tat ggc acc Ser Glu Thr His Thr Asn Gln Ala Phe Glu Ile Ser Leu Tyr Gly Thr 355 360 365	1281
gtg gee gag agt gag aac atc eca tte act etg eet gaa gtt tee aca Val Ala Glu Ser Glu Asn Ile Pro Phe Thr Leu Pro Glu Val Ser Thr 370 375 380	1329
aat aag acc tac tcc ttc cta att tac aca gag gta gat att gga gaa Asn Lys Thr Tyr Ser Phe Leu Ile Tyr Thr Glu Val Asp Ile Gly Glu 390 395 400	1377
cta ctc atg ttg aag ctc aaa tgg aag agt gat tca tac ttt agc tgg Leu Leu Met Leu Lys Leu Lys Trp Lys Ser Asp Ser Tyr Phe Ser Trp 405 410 415	1425
tca gac tgg tgg agc agt ccc ggc ttc gcc att cag aag atc aga gta Ser Asp Trp Trp Ser Ser Pro Gly Phe Ala Ile Gln Lys Ile Arg Val 420 425 430	1473
aaa gca gga gag act cag aaa aag gtg atc ttc tgt tct agg gag aaa Lys Ala Gly Glu Thr Gln Lys Lys Val Ile Phe Cys Ser Arg Glu Lys 435 440 445	1521
gtg tct cat ttg cag aaa gga aag gca cct gcg gta ttt gtg aaa tgc Val Ser His Leu Gln Lys Gly Lys Ala Pro Ala Val Phe Val Lys Cys 450 465	1569
cat gac aag tot otg aat aag aag toa ggc tga aactgggoga atotacagaa His Asp Lys Ser Leu Asn Lys Lys Ser Gly * 470 475	1622
caaagaacgg catgtgaatt ctgtgaagaa tgaagtggag gaagtaactt ttacaaaaca	1682
tacccagtgt ttggggtgtt tcaaaagtgg attttcctga atattaatcc cagccctacc	1742
cttgttagtt attttaggag acagtetcaa geactaaaaa gtggetaatt caatttatgg	1802
ggtatagtgg ccaaalagca catcolocaa cgtlaaaaga cagtggatca tgaaaagtgc	1862
tgttttgtcc tttgagaaag aaataattgt ttgagcgcag agtaaaataa ggctccttca	1922
tgtggcgtat tgggccatag cctataattg gttagaacct cctattttaa ttggaattct	1982
ggatotttog gactgaggoo ttotoaaact ttactotaag totocaagaa tacagaaaat	2042
gcttttccgc ggcacgaatc agactcatct acacagcagt atgaatgatg ttttagaatg	2102

attecetett getattggaa	tgtggtccag	acgtcaacca	ggaacatgta	acttggagag	2162
ggacgaagaa agggtotgat	aaacacagag	gttttaaaca	gtccctacca	ttggcctgca	2222
tcatgacaaa gttacaaatt	caaggagata	taaaatctag	atcaattaat	tcttaatagg	2282
ctttatcgtt tattgcttaa	teeetetete	ccccttcttt	tttgtctcaa	gattatatta	2342
taataatgtt ctctgggtag	gtgttgaaaa	tgagcctgta	atcctcagct	gacacataat	2402
ttgaatggtg cagaaaaaa	aaagataccg	taattttatt	attagattct	ccaaatgatt	2462
ttcatcaatt taaaatcatt	caatatctga	cagttactct	tcagttttag	gcttaccttg	2522
gtcatgcttc agttgtactt	ccagtgcgtc	tcttttgttc	ctggctttga	catgaaaaga	2582
taggtttgag ttcaaatttt	gcattgtgtg	agcttctaca	gattttagac	aaggaccgtt	2642
tttactaagt aaaagggtgg	agaggttcct	ggggtggatt	cctaagcagt	gcttgtaaac	2702
catcgcgtgc aatgagccag	atggagtacc	atgagggttg	ttatttgttg	tttttaacaa	2762
ctaatcaaga gtgagtgaac	aactatttat	aaactagatc	tectattttt	cagaatgete	2822
ttctacgtat aaatatgaaa	tgataaagat	gtcaaatatc	tcagaggcta	tagctgggaa	2882
ecegactgtg aaagtatgtg	atatotgaac	acatactaga	aagctctgca	tgtgtgttgt	2942
cettcagcat aatteggaag	ggaaaacagt	egateaaggg	atgtattgga	acatgtegga	3002
gtagaaattg ttcctgatgt	gccagaactt	cgaccctttc	tctgagagag	atgatcgtgc	3062
ctataaatag taggaccaat	gttgtgatta	acatcatcag	gcttggaatg	aattctctct	3122
aaaaataaaa tgatgtatga	tttgttgttg	gcatcccctt	tattaattca	ttaaatttct	3182
ggatttgggt tgtgacccag	ggtgcattaa	cttaaaagat	tcactaaagc	agcacatage	3242
actgggaact ctggctccga	aaaactttgt	tatatatatc	aaggatgttc	tggetttaca	3302
ttttatttat tagctgtaaa	tacatgtgtg	gatgtgtaaa	tggagcttgt	acatattgga	3362
aaggtcattg tggctatctg	catttataaa	tgtgtggtgc	taactgtatg	tgtctttatc	3422
agtgatggte teacagagee	aactcactct	tatgaaatgg	getttaacaa	aacaagaaag	3482
aaacgtactt aactgtgtga	agaaatggaa	tcagctttta	ataaaattga	caacatttta	3542
ttaccac					3549

```
<210> SEQ ID NO 14
```

<400> SEQUENCE: 14

Met Glu Ser Lys Ala Leu Leu Val Leu Thr Leu Ala Val Trp Leu Gln

Ser Leu Thr Ala Ser Arg Gly Gly Val Ala Ala Ala Asp Gln Arg Arg 20 25 30

Asp Phe Ile Asp Ile Glu Ser Lys Phe Ala Leu Arg Thr Pro Glu Asp 35 40 45

Thr Ala Glu Asp Thr Cys His Leu Ile Pro Gly Val Ala Glu Ser Val 50 55

Ala Thr Cys His Phe Asn His Ser Ser Lys Thr Phe Met Val Ile His 65 70 75 80

Gly Trp Thr Val Thr Gly Met Tyr Glu Ser Trp Val Pro Lys Leu Val

<211> LENGTH: 475 <212> TYPE: PRT

<213> ORGANISM: Homo sapien

Ala	Ala	Leu	Tyr 100	Lys	Arg	Glu	Pro	Asp 105	Ser	Asn	Val	Ile	Val 110	Val	Asp
Trp	Leu	Ser 115	Arg	Ala	Gln	Glu	His 120	туr	Pro	Val	Ser	Ala 125	Gly	Tyr	Thr
Lys	Leu 130	val	Gly	Gln	Asp	Val 135	Ala	Arg	Phe	Ile	Asn 140	Trp	Met	Glu	Glu
Glu 145	Phe	Asn	туг	Pro	Leu 150	Авр	Asn	V al	His	Leu 155	Leu	Gly	Tyr	Ser	Leu 160
Gly	Ala	His	Ala	Ala 165	Gly	Ile	Ala	Gly	ser 170	Leu	Thr	Asn	Lys	Lys 175	Val
Asn	Arg	Ile	Thr 180	Gly	Leu	Авр	Pro	Ala 185	Gly	Pro	Asn	Phe	Glu 190	Tyr	Ala
Glu	Ala	Pro 195	Ser	Arg	Leu	Ser	Pro 200	Asp	Asp	Ala	Asp	Phe 205	Val	Asp	Val
Leu	His 210	Thr	Phe	Thr	Arg	Gly 215	Ser	Pro	Gly	Arg	Ser 220	Ile	Gly	Ile	Gln
Lу в 225	Pro	Val	Gly	His	Val 230	Asp	Ile	Tyr	Pro	Asn 235	Gly	Gly	Thr	Phe	Gln 240
Pro	Gly	Сув	Asn	Ile 245	Gly	Glu	Ala	Ile	Arg 250	Val	Ile	Ala	Glu	Arg 255	Gly
Leu	Gly	Asp	Val 260	Asp	Gln	Leu	Val	Lys 265	Сув	ser	His	Glu	Arg 270	Ser	Ile
His	Leu	Phe 275	Ile	Asp	Ser	Leu	Leu 280	Asn	Glu	Glu	Asn	Pro 285	Ser	Lys	Ala
Tyr	Arg 290	Сув	Ser	Ser	Lys	Glu 295	Ala	Phe	Glu	Lys	Gly 300	Leu	Сув	Leu	Ser
Сув 305	Arg	Lys	Asn	Arg	Сув 310	Asn	Asn	Leu	Gly	Tyr 315	Glu	Ile	Asn	Lys	Val 320
Arg	Ala	Lys	Arg	Ser 325	Ser	Lys	Met	Tyr	Leu 330	Lys	Thr	Arg	Ser	Gln 335	Met
Pro	Tyr	Lys	Val 340	Phe	His	Tyr	Gln	Val 345	Lys	Ile	His	Phe	Ser 350	Gly	Thr
Glu	Ser	Glu 355	Thr	His	Thr	Asn	Gln 360	Ala	Phe	Glu	Ile	Ser 365	Leu	Tyr	Gly
Thr	Val 370	Ala	Glu	Ser	Glu	Авп 375	Ile	Pro	Phe	Thr	Leu 380	Pro	Glu	Val	Ser
Thr 385	Asn	⊥ув	Thr	Tyr	Ser 390	Phe	Leu	Ile	Tyr	Thr 395	Glu	Val	Авр	Ile	Gly 400
Glu	Leu	Leu	Met	Leu 405	Lys	Leu	Lys	Trp	Lys 410	Ser	Asp	Ser	Tyr	Phe 415	Ser
Trp	Ser	Asp	Trp 420	Trp	Ser	Ser	Pro	Gly 425	Phe	Ala	Ile	Gln	Lys 430	Ile	Arg
Val	Lys	Ala 435	Gly	Glu	Thr	Gln	Lys 440	Lys	Val	Ile	Phe	С у в 445	Ser	Arg	Glu
Lys	Val 450	Ser	His	Leu	Gln	Lys 455	Gly	Lys	Ala	Pro	Ala 460	Val	Phe	Val	Lys
Сув 465	His	Asp	Lys	Ser	Leu 470	Asn	Lys	Lys	Ser	Gly 475					
<210)> SE	EQ II		15											

<211> LENGTH: 1466 <212> TYPE: DNA

-continued
<pre><213> ORGANISM: Homo sapien <220> FEATURE: <221> NAME/KEY: CDS <221- NAME/KEY: CDS <222- LOCATION: (115)(1305) <223- OTHER INFORMATION: Nucleotide sequence encoding apolipoprotein A-IV (AFOA4)</pre>
<400> SEQUENCE: 15
agttcccact gcagcgcagg tgagctctcc tgaggacctc tctgtcagct cccctgattg 60
tagggaggoa tocagtgtgg caagaaacto otocagocoa goaagcagot cagg atg 117 Met 1
tto otg aag goo gtg gto otg aco otg goo otg gtg got gto goo gga 165 Phe Leu Lys Ala Val Val Leu Thr Leu Ala Leu Val Ala Val Ala Gly 5 10 15
goc agg got gag gto agt got gac cag gtg goc aca gtg atg tgg gac 213 Ala Arg Ala Glu Val Ser Ala Asp Gln Val Ala Thr Val Met Trp Asp 20 25 30
tac tto ago cag otg ago aac aat goo aag gag goo gtg gaa cat oto 261 Tyr Phe Ser Gln Leu Ser Asn Asn Ala Lys Glu Ala Val Glu His Leu 35 40
oag aaa tot gaa oto aoc oag oaa oto aat goo oto tto oag gac aaa 309 Gln Lys Ser Glu Leu Thr Gln Gln Leu Asn Ala Leu Phe Gln Asp Lys 50 65
ctt gga gaa gtg aac act tac gca ggt gac ctg cag aag aag ctg gtg 357 Leu Gly Glu Val Asn Thr Tyr Ala Gly Asp Leu Gln Lys Lys Leu Val 70 75 80
ccc ttt gcc acc gag ctg cat gaa cgc ctg gcc aag gac tcg gag aaa 405 Pro Phe Ala Thr Glu Leu His Glu Arg Leu Ala Lys Asp Ser Glu Lys 85 90 95
otg aag gag att ggg aag gag otg gag gag otg agg gco ogg otg 453 Leu Lys Glu Glu Ile Gly Lys Glu Leu Glu Glu Leu Arg Ala Arg Leu 100 105
otg oco cat goc aat gag gtg agc cag aag atc ggg gac aac ctg oga 501 Leu Pro His Ala Asn Glu Val Ser Gln Lys Ile Gly Asp Asn Leu Arg 115 120 125
gag ott dag dag ogd otg gag odd tad gog gad dag otg ogd add dag Glu Leu Gln Gln Arg Leu Glu Pro Tyr Ala Asp Gln Leu Arg Thr Gln 135 140 145
gtc aac acg cag gcc gag cag ctg cgc cag ctg acc ccc tac gca 597 Val Asn Thr Gln Ala Glu Gln Leu Arg Arg Gln Leu Thr Pro Tyr Ala 150 155 160
cag cgc atg gag aga gtg ctg cgg gag aac gcc gac agc ctg cag gcc 645 Gln Arg Met Glu Arg Val Leu Arg Glu Asn Ala Asp Ser Leu Gln Ala 165 170 175
tog otg agg occ cac goc gac gag otc aag goc aag ato gac cag aac 693 Ser Leu Arg Pro His Ala Asp Glu Leu Lys Ala Lys Ile Asp Gln Asn 180 185 190
gtg gag gag oto aag gga ogo ott aog oco tao got gao gaa tto aaa 741 Val Glu Glu Leu Lys Gly Arg Leu Thr Pro Tyr Ala Asp Glu Phe Lys 195 200 205
gtc aag att gac cag acc gtg gag gag ctg cgc cgc agc ctg gct ccc 789 Val Lys Ile Asp Gln Thr Val Glu Glu Leu Arg Arg Ser Leu Ala Pro 210 225 220
tat gct dag gad aog dag gag aag dtd aad dag dtt gag ggd dtg 837 Tyr Ala Gln Asp Thr Gln Glu Lys Leu Asn His Gln Leu Glu Gly Leu 230 235 240
acc tto cag atg aag aag gac gcc gag gag ctc aag gcc agg atc tog 885

_																	 	 _
Thr	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	Arg 255	Ile	Ser			
							cag									933		
ALA	ser	260	GIU	GIU	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	270	AIA	GIU	Asp			
							aac Asn									981		
	275	017		Lou	9	280			014	CLJ	285	0111	2,70	501	Lou			
							gac Asp									1029		
290			-	•	295		•			300				_	305			
							aac Asn									1077		
				310					315					320				
			Leu				ctg Leu	Gly					Asp			1125		
			325					330					335					
							aag Lys 345									1173		
++c	++-		acc	++c	220	gag	aaa	gag	acc	carr	cac	554	act	ctc	tee	1221		
Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Lys	Thr	Leu	Ser	1221		
ete		qaq	etq	qaq	caa		cag	qaa	caq	cat		qaq	caq	caq	caq	1269		
							Gln											
gag	cag	gtg	cag	atg	ctg	gcc	cct	ttg	gag	agc	tga	gct	gece	etg		1315		
Slu	Gln	Val	Gln	Met 390	Leu	Ala	Pro	Leu	G1u 395	Ser	*							
gtg	cact	gge (cca	ccct	g t	ggac	acct	gcc	tgc	cctg	cca	cctg	tct q	gtct	gtecca	1375		
age	aagti	t c t (ggta	tgaa	et t	gagge	acaca	a tg	taca	gtgg	gag	gtga	gac o	cacci	Lotosa	1435		
tat	tcaat	taa o	agot	gctg	ag a	atct	agoot	t c								1466		
<210)> SE	EQ II	NO.	16														
:21	l> LE 2> TY	PE:	PRT															
	3> OF				sap	oien												
)> SE				TT = 1	77-1	T	mb	T	21-	T	77-1	71-	TT= 1	21-			
1	Pne	шец	гув	5	Vai	vai	Leu	THE	10	MIG	Leu	vai	MIG	15	ATG			
:ly	Ala	Arg	Ala 20	Glu	Val	Ser	Ala	Asp 25	Gln	Val	Ala	Thr	Val	Met	Trp			
Asp	Tvr	Phe		Gln	Leu	Ser	Asn		Ala	Lvs	Glu	Ala		Clu	His			
		35					40					45						
Leu	Gln 50	Lys	Ser	Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Ala 60	Leu	Phe	Gln	Asp			
_ys	Leu	Gly	Glu	Val		Thr	Tyr	Ala	Gly		Leu	Gln	Lys	Lys	Leu			
65			_	_	70					75	_				80			
/al	Pro	Phe	Ala	Thr 85	Glu	Leu	His	Glu	Arg 90	Leu	Ala	Lys	qaA	ser 95	Glu			
ys	Leu	Lys		Glu	Ile	Gly	Lys		Leu	Glu	Glu	Leu		Ala	Arg			
	T 637	Dwe	100	n1 -	A ===	G1	Val	105	c1-	T 77.0	т1-	G1	110	A C =	Ter			
eu	Led	115	urs	AIA	ASO	GIU	120	oer	GTU	гуѕ	тте	125	АБР	Asn	_eu			
		115					120					125						

	130		0111			135			-1-		140	0111	204			
Gln 145	Val	Asn	Thr	Gln	Ala 150	Glu	Gln	Leu	Arg	Arg 155	Gln	Leu	Thr	Pro	Tyr 160	
Ala	Gln	Arg	Met	Glu 165	Arg	Val	Leu	Arg	Glu 170	Asn	Ala	Asp	ser	Leu 175	Gln	
Ala	ser	Leu	Arg 180	Pro	His	Ala	Asp	Glu 185	Leu	Lys	Ala	Lys	Ile 190	Asp	Gln	
Asn	Val	Glu 195	Glu	Leu	Lys	Gly	Arg 200	Leu	Thr	Pro	Tyr	Ala 205	Asp	Glu	Phe	
Lys	Val 210	Lys	Ile	Asp	Gln	Thr 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala	
Pro 225	Tyr	Ala	Gln	Asp	Thr 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240	
Leu	Thr	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	ьув	Ala	Arg 255	Ile	
ser	Ala	Ser	Ala 260	Glu	Glu	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	Leu 270	Ala	Glu	
Asp	Val	Arg 275	Gly	Asn	Leu	Arg	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser	
Leu	Ala 290	Glu	Leu	Gly	Gly	His 295	Leu	Asp	Gln	Gln	Val 300	Glu	Glu	Phe	Arg	
Arg 305	Arg	Val	Glu	Pro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320	
Gln	Met	Glu	Gln	Leu 325	Arg	Thr	Lys	Leu	Gly 330	Pro	His	Ala	Cly	Asp 335	Val	
Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	350	Val	Asn	
Ser	Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Lys	Thr	Leu	
Ser	Leu 370	Pro	Glu	Leu	Glu	Gln 375	Gln	Gln	Glu	Gln	His 380	Gln	Glu	Gln	Gln	
Gln 385	Glu	Gln	Val	Gln	Met 390	Leu	Ala	Pro	Leu	Glu 395	Ser					
<211 <212 <213 <220 <221 <222	1> LE 2> TY 3> OF 0> FE 1> NA 2> LO 3> OT	ATUR ME/K	DNA SM: SE: SEY: ON:	Homo CDS (61)	> sar)(TION:	1014		:ide	Sequ	ience	e end	codir	ng ar	poli	ceprotein	E
		QUEN														
cgc	agege	gag c	gtgaa	agga	eg to	cctt	ccca	a gga	agec	gact	ggc	caato	cac a	aggc	aggaag	•
					gct Ala											10
cag Gln	gcc Ala	aaq Lys	gtg Val 20	g a g Glu	caa Gln	gcg Ala	gtg Val	gag Glu 25	aca Thr	gaq Glu	ccg Pro	g a g Glu	ecc Pro 30	gag Glu	ctq Leu	15
cgc	cag	cag	acc	gag	tgg	cag	agc	ggc	cag	cgc	tgg	gaa	ctg	gca	ctg	20

Arg	Gln	Gln 35	Thr	Glu	Trp	Gln	Ser 40	Gly	Gln	Arg	Trp	Glu 45	Leu	Ala	Leu		
	ege Arg 50															252	
	cag Gln															300	
	atg Met															348	
	gaa Glu															396	
	gag Glu															444	
	tgc Cys 130															492	
ggc Gly 145	cag Gln	agc Ser	acc Thr	gag Glu	gag Glu 150	ctg Leu	cgg Arg	gtg Val	ogo Arg	ctc Leu 155	gcc Ala	tcc Ser	cac His	ctg Leu	ege Arg 160	540	
	ctg Leu															588	
ctg Leu	gca Ala	gtg Va l	tac Tyr 180	caq Gln	gcc Ala	ggg Gly	gcc Ala	ege Arg 185	gag Glu	ggc Gly	gcc Ala	gag Glu	ege Arg 190	ggc Gly	ctc Leu	636	
	gcc Ala															684	
	gcc Ala 210															732	
	cag Gln															780	
agc Ser	egg Arg	acc Thr	ege Arg	gac Asp 245	ege Arg	ctg Leu	gac Asp	gag Glu	gtg Val 250	aag Lys	gag Glu	cag Gln	gtg Val	gcg Ala 255	gag Glu	828	
gtg Val	cgc Arg	gcc Ala	aag Lys 260	ctq Leu	gag Glu	gaq Glu	cag Gln	gcc Ala 265	caq Gln	cag Gln	ata Ile	ege Arg	ctg Leu 270	cag Gln	gcc Ala	876	
	gcc Ala															924	
gac Asp	atg Met 290	cag Gln	ege Arg	caq Gln	tgg Trp	gcc Ala 295	Gl y	ctg Leu	gtg Val	gaq Glu	aag Lys 300	gtg Val	cag Gln	gct Ala	gcc Ala	972	
	ggc Gly												tga *			1014	
acq	ccgae	age o	ctgca	agcc	at g	cgac	ccca	c qc	cacc	ccgt	gcc	tect	gcc ·	tccg	gcag	c 1074	
atg	cago	999 f	ıgacı	atg	ta a	caga	ccca	g cc	gtaa	tcct	ggg	gtgg	acc o	ctagi	ttaa	t 1134	
aaa	gatto	cac o	aag	tttc	ac g	С										1156	

<220> FEATURE: <221> NAME/KEY: CDS

```
<210> SEQ ID NO 18
<211> LENGTH: 317
<212> TYPE: PRT
<213> ORGANISM: Homo sapien
<400> SEQUENCE: 18
Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys
Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu
20 25 30
Arg Gln Gln Thr Glu Trp Gln ser Gly Gln Arg Trp Glu Leu Ala Leu
Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln 50 60
Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala
65 70 75 80
Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu
85 90 95
Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser
Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp
Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu Val Gln Ala Met Leu
130 135 140
Gly Gln Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg 145 150 155 160
Lys Leu Arg Lys Arg Leu Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg 165 170 175
Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu
180 185 190
Ser Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val
Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg
210 215 220
Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly 225 230 235 240
Val Arg Ala Lys Leu Glu Glu Glu Ala Gln Gln Ile Arg Leu Gln Ala
260 265 270
Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu 275 280 285
Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala 290 295 300
Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His 305 310 315
<210> SEQ ID NO 19
<211> LENGTH: 1603
<212> TYPE: DNA
<213> ORGANISM: Homo sapien
```

	3> 07		INF			(155) : Nu		ide	sequ	ience	e end	codir	ng he	pati	ic la	ipase	
<400)> SE	QUE	ICE:	19													
ggt	eteti	tg (gette	caga	aa t	tacc	aaga	a ago	actg	gacc	aag	ggtgi	aaa o	egga		atg Met 1	60
							tcc Ser										108
							caa Gln 25										156
aga Arg	aga Arg 35	gct Ala	caa Gln	gct Ala	gtt Val	gaa Glu 40	aca Thr	aac Asn	aaa Lys	acg Thr	ctg Leu 45	cat His	gag Glu	atg Met	aag Lys		204
							gaa Glu										252
							cag Gln										300
							G]Å daa										348
aac Asn	tgg Trp	atc Ile 100	tgg Trp	cag Gln	atg Met	gtg Val	gcc Ala 105	gcg Ala	ctg Leu	aag Lys	tct Ser	cag Gln 110	ccg Pro	gcc Ala	cag Gln		396
cca Pro	gtg Val 115	aac Asn	gtg Val	ggg Gly	ctg Leu	gtg Val 120	gac Asp	tgg Trp	atc Ile	acc Thr	ctg Leu 125	gcc Ala	cac His	gac Asp	cac His		444
							acc Thr										492
							gaa Glu										540
							ctg Leu										588
ggc Gly	agt Ser	tcc Ser 180	atc Ile	ggt Gl y	gga Gly	acg Thr	cac His 185	aag Lys	att Ile	ggg Gly	aga Arg	atc Ile 190	aca Thr	ggg Gly	ctg Leu		636
							gag Glu										684
							gtg Val										732
							ggc Gly										780
							taa Ser										828
							cag Gln										876

_															
		260					265					270			
	ata Ile 275														924
	ctg Leu														972
	agc Ser														1020
	acg Thr														1068
	ctc Leu														1116
	cag Gln 355														1164
	act Thr														1212
	ccc Pro														1260
	ctt Leu														1308
	aag Lys														1356
	acc Thr 435														1404
	aag Lys														1452
	tgt Cys														1500
	atc Ile														1548
	aga Arg	tga *	gat	ttaa	tga .	agac	ccag	tg t	aaag	aata	a at	gaat	ctta		1597
ctc	ctt														1603
<21 <21	0> SI 1> LI 2> TI 3> OI	ENGTI	1: 49 PRT	9	o saj	pien									
<40	0> SI	EQUE	NCE:	20											

Met Asp Thr Ser Pro Leu Cys Phe Ser Ile Leu Leu Val Leu Cys Ile 1 $$ 10 $$ 15

Phe Ile Gln Ser Ser Ala Leu Gly Gln Ser Leu Lys Pro Glu Pro Phe $20 \\ 25 \\ 30$

Gly Arg	Arg	Ala	Gln	Ala	Val	Glu	Thr	Asn	Lys	Thr	Leu	His	Glu	Met
	35					40			_		45			
Lys Thr 50	Arg	Phe	Leu	Leu	Phe 55	Gly	Glu	Thr	Asn	Gln 60	Gly	Сув	Gln	Ile
Arg Ile 65	Asn	His	Pro	Asp 70	Thr	Leu	Gln	Glu	С у в 75	Gly	Phe	Asn	Ser	ser 80
Leu Pro	Leu	Val	Met 85	Ile	Ile	His	Gly	Trp 90	Ser	Val	Asp	Gly	∀al 95	Leu
Glu Asn	Trp	11e 100	Trp	Gln	Met	Val	Ala 105	Ala	Leu	Lys	ser	Gln 110	Pro	Ala
Gln Pro	Val 115	Asn	Val	Gly	Leu	Val 120	Asp	Trp	Ile	Thr	Leu 125	Ala	нів	Авр
His Tyr 130	Thr	Ile	Ala	Val	Arg 135	Asn	Thr	Arg	Leu	Val 140	Gly	Lys	Glu	Val
Ala Ala 145	Leu	Leu	Arg	Trp 150	Leu	Glu	Glu	Ser	Val 155	Gln	Leu	Ser	Arg	Ser 160
His Val	His	Leu	Ile 165	Gly	Tyr	Ser	Leu	Gly 170	Ala	His	Val	Ser	G ly 175	Phe
Ala Gly	Ser	Ser 180	Ile	Gly	Gly	Thr	His 185	Lys	Ile	Gly	Arg	Tle 190	Thr	Gly
Leu Asp	Ala 195	Ala	Gly	Pro	Leu	Phe 200	Glu	Gly	Ser	Ala	Pro 205	Ser	Asn	Arg
Leu Ser 210	Pro	Asp	Asp	Ala	Asn 215	Phe	Val	Asp	Ala	Ile 220	His	Thr	Phe	Thr
Arg Glu 225	His	Met	Gly	Leu 230	Ser	Val	Cly	Ile	Lys 235	Gln	Pro	Ile	Gly	His 240
Tyr Asp	Phe	Tyr	Pro 245	Asn	Gly	Gly	Ser	Phe 250	Gln	Pro	Gly	Сув	His 255	Phe
Leu Glu	Leu	Tyr 260	Arg	His	Ile	Ala	Gln 265	His	Gly	Phe	Asn	Ala 270	Ile	Thr
Gln Thr	Ile 275	Lys	Сув	Ser	His	Glu 280	Arg	Ser	Val	His	Leu 285	Phe	Ile	Asp
Ser Leu 290	Leu	His	Ala	Gly	Thr 295	Gln	Ser	Met	Ala	Tyr 300	Pro	Cys	Gly	Asp
Met Asn 305	Ser	Phe	Ser	Gln 310	Gly	Leu	Сув	Leu	Ser 315	Сув	Lys	Lys	Gly	Arg 320
Cys Asn	Thr	Leu	Gly 325	Tyr	His	Val	Arg	Gln 330	Glu	Pro	Arg	Ser	Lys 335	Ser
Lys Arg	Leu	Phe 340	Leu	Val	Thr	Arg	Ala 345	Gln	Ser	Pro	Phe	Lys 350	Val	Tyr
His Tyr	Gln 355	Leu	Lys	Ile	Gln	Phe 360	Ile	Asn	Gln	Thr	Glu 365	Thr	Pro	Ile
Gln Thr 370	Thr	Phe	Thr	Met	ser 375	Leu	Leu	Gly	Thr	L ys 380	Glu	Lys	Met	Gln
Lys Ile 385	Pro	Ile	Thr	Leu 390	Gly	Lys	Gly	Ile	Ala 395	Ser	Asn	Lys	Thr	Tyr 400
Ser Phe	Leu	Ile	Thr 405	Leu	Авр	Val	Авр	Ile 410	Gly	Glu	Leu	Ile	Met 415	Ile
Lys Phe	Lys	Trp 420	Glu	Asn	Ser	Ala	Val 425	Trp	Ala	Asn	Val	Trp 430	Авр	Thr

Val.	~ 7															
****	GIN	1hr 435	lle	Ile	Pro	Trp	Ser 440	Thr	Gly	Pro	Arg	Нів 445	Ser	Gly	Leu	
Val	Leu 450	Lys	Thr	Ile	Arg	Val 455	Lys	Ala	Gly	Glu	Thr 460	Gln	Gln	Arg	Met	
Thr 465	Phe	Сув	Ser	Glu	Asn 470	Thr	Asp	Asp	Leu	Leu 475	Leu	Arg	Pro	Thr	Gln 480	
Glu	Lys	Ile	Phe	Val 485	Lys	Сув	Glu	Ile	Lys 490	Ser	Lys	Thr	Ser	Lув 495	Arg	
Lys	Ile	Arg														
<211 <212 <213 <220 <221 <222	.> LE ?> TY 8> OF 0> FE .> NA ?> LO 8> OT	ME/K	DNA SM: E: EY: ON: INFO	Homo CDS (10)	o sap	(107		:ide	sequ	ience	e enc	codin	ng pa	ıraox	conase	
<400	> SE	QUEN	CE:	21												
aaad	cgad	oc at Me	et. Al	g aa la Ly	ag c ys L	tg a eu I	tt go le Ai	og of la Le	co ac	oc of nr Le	eu Le	tg ge eu Gi	gg at ly Me	tg go	ga otg ly Leu	51
gca Ala 15	ctc Leu	ttc Phe	agg Arg	aac Asn	cac His 20	cag Gln	tct Ser	tot Ser	tac T y r	caa Gln 25	aca Thr	cga Arg	ctt Leu	aat Asn	get Ala 30	99
ctc Leu	cga Arg	gag Glu	gta Val	caa Gln 35	ccc Pro	gta Val	gaa Glu	ctt Leu	ect Pro 40	aac Asn	tgt Cys	aat Asn	tta Leu	gtt Val 45	aaa Lys	147
gga Gl y	atc Ile	gaa Glu	act Thr 50	ggc Gl y	tct Ser	gaa Glu	gac Asp	atg Met 55	gag Glu	ata Ile	ctg Leu	cct Pro	aat Asn 60	gga Gly	ctg Leu	195
							aag Lys 70									243
							ctt Leu									291
							atc Ile									339
tca Ser	ttt Phe	aac Asn	cct Pro	cat His 115	Gly	att Ile	agc Ser	aca Thr	ttc Phe 120	aca Thr	qat Asp	gaa Glu	gat Asp	aat Asn 125	gcc Ala	387
atg Met	tac Tyr	ctc Leu	ctg Leu 130	gtg Val	gtg Val	aac Asn	cat His	cca Pro 135	gat Asp	gcc Ala	aag Lys	tcc Ser	aca Thr 140	gtg Val	gag Glu	435
ttg Leu	ttt Phe	aaa Lys 145	ttt Phe	caa Gln	gaa Glu	gaa Glu	gaa Glu 150	aaa Lys	tog ser	ctt Leu	ttg Leu	саt Нів 155	cta Leu	aaa Lys	acc Thr	483
atc Ile	aga Arg 160	cat His	aaa Lys	ctt Leu	ctg Leu	cct Pro 165	aat Asn	ttg Leu	aat Asn	gat Asp	att Ile 170	gtt Val	gct Ala	gtg ⊽al	gga Gly	531
							aat Asn									579
tta	caa	tcc	tgg	gag	atg	tat	ttg	ggt	tta	gcg	tgg	tcg	tat	gtt	gtc	627

												con	ттп	uea			
Leu	Gln	Ser	Trp	Glu 195	Met	Tyr	Leu	Gly	Leu 200	Ala	Trp	Ser	Tyr	Val 205	Val		
tac T y r	tat Tyr	agt Ser	Pro	agt Ser	gaa Glu	gtt Val	cga Arg	Val	gtg Val	gca Ala	gaa Glu	gga Gly	ttt Phe	gat Asp	ttt Phe	675	
ac+	aat	age	210 atc	aac	a++	tca	ccc	215	aac	aac	+a+	atc	220 tat	ate	act	723	
						Ser										123	
						att Ile 245										771	
						tcc Ser										819	
ata					gag	aca Thr				tgg					ccc	867	
aat	ggc	atg	aaa	atc	ttc	ttc	tat	gac	tca	gag	aat	cct	cct	gca	tca	915	
Asn	Gly	Met	L y s 290	Ile	Phe	Phe	Tyr	Asp 295	Ser	Glu	Asn	Pro	Pro 300	Ala	Ser		
						aac Asn										963	
cag Gln	gtt Val 320	tat Tyr	gca Ala	gaa Glu	aat Asn	gge Gly 325	aca Thr	gtg Val	ttg Leu	caa Gln	ggc Gly 330	agt Ser	aca Thr	gtt Val	gcc Ala	1011	
tet Ser 335	gtg Val	tac Tyr	aaa Lys	ggg Gly	aaa Lys 340	ctg Leu	ctg Leu	att Ile	ggc Gly	aca Thr 345	gtg Val	ttt Phe	cac His	aaa Lys	gct Ala 350	1059	
		tgt C y s				cag	accg	att ·	tgca	ccca	tg c	cata	gaaa	2		1107	
tga	ggcca	att a	attt		eg e	ttgc	cata	t tc	gag	gacc	cag-	tgtt	ctt a	aget	jaacaa	1167	
tga	atget	tga o	cact	aaat	gt g	gaca	tcat	g aa	gcat	caaa	gca	ctgt:	tta e	actg	ggagtg	1227	
atai	tgatç	gtg t	agg	gott	tt t	tttg	agaa	t ac	acta	tcaa	atc	agto	ttg q	gaata	acttga	1287	
aaa	cctce	att t	acce	ataa	aa a	teet	tete	a cta	aaaa	tgga	taa	atca	gtt é	aaaa	aaaa	1346	
<212	l> LE 2> TY	Q II ENGTH PE: RGANI	: 35 PRT	55	ടെമു	pien											
<400)> SE	QUEN	ICE:	22													
Met 1	Ala	Lys	Leu	Ile 5	Ala	Leu	Thr	Leu	Leu 10	Gly	Met	Gly	Leu	Ala 15	Leu		
Phe	Arg	Asn	His 20	Gln	Ser	Ser	Tyr	Gln 25	Thr	Arg	Leu	Asn	Ala 30	Leu	Arg		
Glu	Val	Gln 35	Pro	Val	Glu	Leu	Pro 40	Asn	Cys	Asn	Leu	Val 45	Lys	Gly	Ile		
Glu	Thr 50	Gly	Ser	Glu	Asp	Met 55	Glu	Ile	Leu	Pro	Asn 60	Gly	Leu	Ala	₽he		
Ile 65	ser	ser	Gly	Leu	Ly ∈ 70	Tyr	Pro	Gly	Ile	Lys 75	ser	Phe	Asn	Pro	Asn 80		
ser	Pro	Gly	Lys	11e 85	Leu	Leu	Met	Asp	Leu 90	Asn	Glu	Glu	Asp	Pro 95	Thr		

Val	Leu	Glu	Leu 100	Gly	Ile	Thr	Gly	Ser 105	Lys	Phe	Asp	Val	Ser 110	Ser	Phe	
Asn	Pro	Нів 115	Gly	Ile	ser	Thr	Phe 120	Thr	Asp	Glu	Asp	Asn 125	Ala	Met	Tyr	
Leu	Leu 130	Val	Val	Asn	нів	Pro 135	Asp	Ala	Lys	Ser	Thr 140	Val	Glu	Leu	Phe	
Lys 145	Phe	Gln	Glu	Glu	Glu 150	Lys	ser	Leu	Leu	Нів 155	Leu	Lys	Thr	Ile	Arg 160	
His	Lys	Leu	Leu	Pro 165	Asn	Leu	Asn	Asp	Ile 170	Val	Ala	Val	Gly	Pro 175	Glu	
His	Phe	Tyr	Gly 180	Thr	Asn	Asp	His	Tyr 185	Phe	Leu	Asp	Pro	Tyr 190	Leu	Gln	
ser	Trp	Glu 195	Met	Tyr	Leu	Gly	Leu 200	Ala	Trp	ser	Tyr	Val 205	Val	Tyr	Tyr	
ser	Pro 210	ser	Glu	Val	Arg	Val 215	Val	Ala	Glu	Gly	Phe 220	Asp	Phe	Ala	Asn	
Gly 225	Ile	Asn	Ile	Ser	Pro 230	Asp	Gl y	Lys	Tyr	Val 235	Tyr	Ile	Ala	Glu	Leu 240	
Leu	Ala	His	Lys	Ile 245	His	Val	туг	Glu	Lys 250	His	Ala	Asn	Trp	Thr 255	Leu	
Thr	Pro	Leu	Lys 260	Ser	Leu	Авр	Phe	Asn 265	Thr	Leu	Val	Asp	Asn 270	Ile	Ser	
	Asp	275					280					285				
	L y s 290					295					300					
305	Arg				310					315					320	
	Ala			325					330					335		
	Lys		Lys 340	Leu	Leu	Ile	Gly	Thr 345	Val	Phe	His	Lys	Ala 350	Leu	Tyr	
Сув	Glu	155 355														
<211)> SE .> LE	NGTH	: 15													
<213	> TY > OF	GANI	SM:	Homo	sap	ien										
<221	> FE .> NA	ME/K	EY:													
<222 <223	> LC > OT 2	CATI HER (PON	INFO	(1). RMAT	ION:	.097) Nuc	leot	ide	sequ	ence	enc	odir	ng pa	raox	onase	
<400)> SE	QUEN	CE:	23												
cgg Arg 1	agc Ser	gag Glu	gca Ala	gcg Ala 5	ege Arg	ccg Pro	gct Ala	ccc Pro	geg Ala 10	cca Pro	tgg Trp	ggc Gly	ggc Gly	tgg Trp 15	tgg Trp	48
ctg Leu	tgg Trp	gct Ala	tgc Cys 20	tgg Trp	gga Gly	tog Ser	ogc Arg	tgg Trp 25	ogo Arg	tcc Ser	tgg Trp	gcg Ala	aga Arg 30	ggc Gly	ttc Phe	96
	cac His												aat Asn 45			144

acc	ttc	cac	act	gcc	acc	tga	tta	aag	gaa	ttg	aag	ctg	gct	ctg	aag	192
Thr	Phe	His	Thr 50	Ala	Thr	*	Leu	Lys	Glu 55	Leu	Lys	Leu	Ala	Leu 60	Lys	
ata Ile	ttg Leu	aca Thr	tac Tyr 65	ttc Phe	cca Pro	atg Met	gtc Val	tgg Trp 70	ctt Leu	ttt Phe	tta Leu	gtg Val	tgg Trp 75	gtc Val	taa *	240
						gct Ala										288
						aag L y s										336
						tgg Trp										384
						aca Thr										432
						tgg Trp										480
att Ile	ctc Leu	tgt Cys	tgc C ys	atc Ile 155	tga *	aaa Lys	cag Gln	tca Ser	aac Asn	atg Met 160	agc Ser	ttc Phe	ttc Phe	caa Gln	gtg Val 165	528
						ttg Leu										576
acc Thr	act Thr	act Thr	tct Ser	ctg Leu 185	atc Ile	ctt Leu	tct Ser	taa *	agt Ser	att Ile 190	tag *	ааа Lув	cat His	act Thr	tga *	624
Thr						ttg Leu 200										672
						att Ile 215										720
						ttg Leu										768
						ata Ile										816
						ata Ile 260										864
aca Thr 270	tet Ser	ggg Gly	tag *	get Ala	gtc Val	atc Ile 275	cta Leu	atg Met	gcc Ala	aga Arg	agc Ser 280	tct Ser	tog Ser	tgt Cys	atg Met	912
						cgt Arg										960
						tga *										1008
ttc Phe	tcc Ser	aag Lys	gaa Glu	gtt Val 320	ctg Leu	tag *	cct Pro	cag Gln	tgt Cys	atg Met 325	atg Met	gga Gly	agc Ser	tgc Cys	tca Ser 330	1056

			tat Tyr										a.a.	attgt	acttt	1107
tggc	atga	aaa q	gtgc	gataa	ac ti	taaca	atta	att	ttet	atg	aat	gct	aat	tctga	ıgggaa	1167
ttta	acca	age a	aacat	tgad	ec ca	agaa	atgte	a tg	cate	gtgt	aqt	aat	ttt	attc	agtaa	1227
ggaa	cgg	caa t	tttt	gtto	ot ta	agago	acti	tte	acaa	aaaa	agg	aaaa	tga .	acag	gttatt	1287
taaa	atgo	cca a	agcaa	aggga	ac a	gaaaa	agaaa	a gct	gott	teg	aata	aaag	tga .	ataca	attttg	1347
caca	aagt	taa q	geete	cacct	tt to	geett	ccaa	cto	cca	gaac	atg	gatte	cca :	ctgaa	ataga	1407
gtga	atta	ata t	tttc	ettaa	aa at	tgtga	igtga	a cct	cact	tet	ggc	actg	tga :	ctact	atgge	1467
tgtt	taga	aac t	tacto	gatas	ac g	tatt	tgat	gtt	ttgt	act	tace	atct	ttg ·	tttac	catta	1527
aaaa	gtt	gga ç	gttat	tatta	na a	gacta	act	aaa	tcc	cagt	ttt					1570
<211 <212 <213	> LE > TY > OF	NGTH PE: RGANI	NO H: 34 PRT ISM:	Homo	sa <u>r</u>	oien										
		-			Arq	Pro	Ala	Pro	Ala	Pro	Trp	Gly	Gly	Trp	Trp	
1				5	,				10		•	-	1	15		
Leu	Trp	Ala	С у в 20	Trp	Gly	Ser	Arg	Trp 25	Arg	Ser	Trp	Ala	Arg 30	Gly	Phe	
Trp	His	Ser 35	Glu	Ile	Asp	Leu	Lys 40	Pro	Pro	Glu	Lys	Asn 45	Leu	Thr	Phe	
His	Thr 50	Ala	Thr	Leu	Lys	Glu 55	Leu	Lys	Leu	Ala	Leu 60	Lув	Ile	Leu	Thr	
Т у г 65	Phe	Pro	Met	Val	Trp 70	Leu	Phe	Leu	Va1	Trp 75	Val	Asn	Ser	Gln	Asp 80	
Ser	Thr	Ala	Leu	His 85	Gln	Ile	Ser	Leu	Glu 90	Glu	Tyr	Trp	Ile	Lys 95	Lys	
Lys	Asn	Gln	Gly 100	His	Gl y	Asn	Glu	Ser 105	Val	Val	Gly	Leu	Ile 110	Trp	Pro	
His	Ser	Ile 115	His	Met.	Ala	Ser	Ala 120	Leu	Ser	Thr	Thr	Met. 125	Thr	Gln	Phe	
Ile	Ser 130	Leu	Leu	Thr	Thr	Gln 135	Asn	Ser	Arg	Ile	Gln 140	Trp	Lys	Phe	Leu	
Asn 145	Leu	Lys	Lys	Gln	Lys 150	Ile	Leu	Сув	Сув	Ile 155	Lys	Gln	Ser	Asn	Met 160	
Ser	Phe	Phe	Gln	Val 165	Met	Thr	Ser	Gln	Leu 170	Leu	Asp	Arg	His	Ile 175	Ser	
Met	Pro	Gln	Met 180	Thr	Thr	Thr	Ser	Leu 185	Ile	Leu	Ser	Ser	Ile 190	Lys	His	
Thr	Thr	Tyr 195	Thr	Gly	Gln	Met	Leu 200	Phe	Thr	Thr	Val	Gln 205	Met	Lys	Leu	
Lys	Trp 210	Gln	Lys	Asp	Leu	11e 215	Gln	Gln	Met	Gly	ser 220	Ile	Phe	His	Leu	
Met 225	Ile	Ser	Ile	Ser	Met 230	Leu	Leu	Thr	Tyr	Trp 235	Leu	Met	Lys	Phe	Met 240	
Phe	Trp	Lys	Asn	Thr 245	Leu	Ile	ıle	Leu	ser 250	Arg	Tyr	Leu	ser	Trp 255	Ile	

His	Trp	Trp	11e 260	Ile	Tyr	Leu	Leu	Ile 265	Leu	Pro	Arg	Gly	Thr 270	Ser	Gly	
Ala	Val	Ile 275	Leu	Met	Ala	Arg	Ser 280	Ser	Ser	Сув	Met	Thr 285	Arg	Thr	Ile	
Leu	Pro 290	Arg	Gln	Arg	Phe	Ser 295	Ala	ser	Arg	Thr	Phe 300	Tyr	Leu	Arg	Ser	
Leu 305	Gln	Leu	Gln	Phe	Met 310	Pro	Thr	Met	Gly	Leu 315	Phe	ser	Lys	Glu	Val 320	
Leu	Pro	Gln	Cys	Met 325	Met	Gly	Ser	Сув	Ser 330	Ala	Leu	Tyr	Thr	Thr 335	Glu	
Pro	Сув	Ile	Val 340	Asn	Ser											
<21: <21: <21: <22: <22: <22: <22: <22:	1> LE 2> TY 3> OF 0> FE 1> NA 2> LO 3> OT C-	EQ II ENGTH (PE: RGANI EATUF AME/F DCATI (HER -III)	DNA SM: CE: CON: CN: CN: CN: CN: CN: CN: CN: CN: CN: C	Homo CDS (47) ORMAT	((346)		:ide	sequ	ience	enc	codir	ng ap	oolig	coprotein	
		tte a			ag go	eaget	geto	c ca	ggaa	aga	ggt			ag o		55
egg Arg	gta Val 5	ctc Leu	ctt Leu	gtt Val	gtt Val	gcc Ala 10	ctc Leu	ctg Leu	gcg Ala	ctc Leu	ctg Leu 15	gcc Ala	tct Ser	gcc Ala	cga Arg	103
		gag Glu														151
atg Met	aag L y s	cac His	gee Ala	acc Thr 40	aag Lys	acc Thr	gee Ala	aag Lys	gat Asp 45	gca Ala	ctg Leu	agc Ser	agc Ser	gtg Val 50	cag Gln	199
		cag Gln														247
		ctg Leu 70														295
		gat Asp														343
tga	gac	ctcaa	ata «	caca	aagto	c ac	ctgo	ctat	t aa	atcci	tgcg	agct	teeti	gg		396
gtc	ctgca	aat o	etcc	aggg	et go	eccct	gtag	gt	tgct	aaa	agg	gacaç	gta 1	tct	cagtgc	456
tet	ccta	ece o	acc.	tcat	ga at	tggc	eaaa	t to	agg	atg	ctg	gccto	ecc é	ata	aagetg	516
gac	aagaa	agc t	got	atg												533
<210)> SE	EQ II	NO.	26												

<210> SEQ ID NO 26 <211> LENGTH: 99 <212> TYFE: PRT <213> ORGANISM: Homo sapien

<400> SEQUENCE: 26

Met Gln Pro Arg Val Leu Leu Val Val Ala Leu Leu Ala Leu Leu Ala 10 Ser Ala Arg Ala Ser Glu Ala Glu Asp Ala Ser Leu Leu Ser Phe Met Gln Gly Tyr Met Lys His Ala Thr Lys Thr Ala Lys Asp Ala Leu Ser Ser Val Gln Glu Ser Gln Val Ala Gln Gln Ala Arg Gly Trp Val Thr Asp Gly Phe Ser Ser Leu Lys Asp Tyr Trp Ser Thr Val Lys Asp Lys Phe Ser Glu Phe Trp Asp Leu Asp Pro Glu Val Arg Pro Thr Ser Ala Val Ala Ala <210> SEQ ID NO 27 <211> LENGTH: 8925 <212> TYPE: DNA <213> ORGANISM: Homo sapier <220> FEATURE: <221> NAME/KEY: misc_feature <221> NABASANI: RIBCLEGUIRE
2222 LOCATIONE: 5081, 5082, 5083, 5084, 5085, 5086, 5087, 5088, 5089,
5090, 5091, 5092, 5093, 5094, 5095, 5096, 5097, 5098, 5099, 5100,
5101, 5102, 5103, 5104, 5105, 5106, 5107, 5108, 5109, 5110,
5111, 5112, 5113, 5114, 5115, 5116, 5117, 5118, 5119 <2205 FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 5120, 5121, 5122, 5123, 5124, 5125, 5126, 5127, 5128, 5129, 5130, 5131, 5132, 5133, 5134, 5135, 5136, 5137, 5138, 5139, 5140, 5141, 5142, 5143, 5144, 5145, 5146, 5147, 5148, 5149, 5150, 5151, 5152, 5153, 5154, 5156, 5157, 5158 <223> OTHER INFORMATION: n = A,T,C or G <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 5159, 5160, 5161, 5162, 5163, 5164, 5165, 5166, 5167, 5168, 5169, 5170, 5171, 5172, 5173, 5174, 5175, 5176, 5177, 5178, 5179 <223> OTHER INFORMATION: n = A.T.C or G <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (5020)...(6162) <223> OTHER INFORMATION: Nucleotide encoding ATP-binding cassette (ABC1) <400> SEQUENCE: 27 ctcagtgtca gctgctgctg gaagtggcct ggcctctatt tatcttcctg atcctgatct ctgttcggct gagctaccca ccctatgaac aacatgaatg ccattttcca aataaagcca 120 tgccctctgc aggaacactt ccttgggttc aggggattat ctgtaatgcc aacaacccct 180 qtttccqtta cccqactcct qqqqaqqctc ccqqaqttqt tqqaaacttt aacaaatcca 240 300 ttgtggctcg cctgttctca gatgctcgga ggcttctttt atacagccag aaagacacca qcatqaaqqa catqcqcaaa qttctqaqaa cattacaqca qatcaaqaaa tccaqctcaa 360 acttgaaget teaagattte etggtggaca atgaaacett etetgggtte etgtateaca acctetetet eccaaagtet actgtggaca agatgetgag ggetgatgte attetecaca 480 aggtattttt qcaaggctac cagttacatt tgacaagtct qtgcaatgga tcaaaatcag 540 aagagatgat toaacttggt gaccaagaag tttotgagot ttgtggcota ccaagggaga 600 aactggctgc agcagagcga gtacttcgtt ccaacatgga catcctgaag ccaatcctga 660 gaacactaaa ctctacatct cccttcccga gcaaggagct ggctgaagcc acaaaaacat 720

tgctgcatag	tcttgggact	ctggcccagg	agctgttcag	catgagaagc	tggagtgaca	780
tgcgacagga	ggtgatgttt	ctgaccaatg	tgaacagctc	cagctcctcc	acccaaatct	840
accaggctgt	gtctcgtatt	gtctgcgggc	atcccgaggg	aggggggctg	aagatcaagt	900
ctctcaactg	gtatgaggac	aacaactaca	aagccctctt	tggaggcaat	ggcactgagg	960
aagatgctga	aaccttctat	gacaactcta	caactcctta	ctgcaatgat	ttgatgaaga	1020
atttggagtc	tagtcctctt	tcccgcatta	tetggaaage	tctgaagccg	ctgctcgttg	1080
ggaagatoot	gtatacacct	gacactccag	ccacaaggca	ggtcatggct	gaggtgaaca	1140
agaccttcca	ggaactggct	gtgttccatg	atctggaagg	catgtgggag	gaactcagcc	1200
ccaagatctq	gaccttcatg	gagaacagcc	aagaaatgga	ccttgtccgg	atgctgttgg	1260
acagcaggga	caatgaccac	ttttgggaac	agcagttgga	tggcttagat	tggacagccc	1320
aagacatcgt	ggcgtttttg	gccaagcacc	cagaggatgt	ccagtccagt	aatggttctg	1380
tgtacacctg	gagagaaget	ttcaacgaga	ctaaccaggc	aatccggacc	atateteget	1440
tcatggagtg	tgtcaacctg	aacaagctag	aacccatagc	aacagaagtc	tggctcatca	1500
acaagtccat	ggagetgetg	gatgagagga	agttetggge	tggtattgtg	ttcactggaa	1560
ttactccagg	cagcattgag	ctgccccatc	atgtcaagta	caagatccga	atggacattg	1620
acaatgtgga	gaggacaaat	aaaatcaagg	atgggtactg	ggaccctggt	cctcgagctg	1680
acccctttga	ggacatgegg	tacgtctggg	ggggettege	ctacttgcag	gatgtggtgg	1740
agcaggcaat	catcagggtg	ctgacgggca	ccgagaagaa	aactggtgtc	tatatgcaac	1800
agatgcccta	tecetgttae	gttgatgaca	tctttctgcg	ggtgatgagc	cggtcaatgc	1860
ccctcttcat	gacgetggee	tggatttact	cagtggctgt	gatcatcaag	ggcatcgtgt	1920
atgagaagga	ggcacggctg	aaagagacca	tgcggatcat	gggcctggac	aacagcatcc	1980
tctggtttag	ctggttcatt	agtagcctca	ttcctcttct	tgtgagcgct	ggcctgctag	2040
tggtcatcct	gaagttagga	aacctgctgc	cctacagtga	teccagegtg	gtgtttgtct	2100
tcctgtccgt	gtttgctgtg	gtgacaatcc	tgcagtgctt	cctgattagc	acactcttct	2160
ccagagccaa	cctggcagca	gcctgtgggg	gcatcatcta	cttcacgctg	tacctgccct	2220
acgtcctgtg	tgtggcatgg	caggactacg	tgggcttcac	actcaagatc	ttogotagoo	2280
tgctgtctcc	tgtggctttt	gggtttggct	gtgagtactt	tgcccttttt	gaggagcagg	2340
gcattggagt	gcagtgggac	aacctgtttg	agagtcctgt	ggaggaagat	ggcttcaatc	2400
tcaccacttc	ggtctccatg	atgctgtttg	acaccttcct	ctatggggtg	atgacctggt	2460
acattgaggc	tgtctttcca	ggccagtacg	gaattcccag	gccctggtat	tttccttgca	2520
ccaagtccta	ctggtttggc	gaggaaagtg	atgagaagag	ccaccctggt	tocaaccaga	2580
agagaatatc	agaaatctgc	atggaggagg	aacccaccca	cttgaagctg	ggcgtgtcca	2640
ttcagaacct	ggtaaaagtc	taccgagatg	ggatgaaggt	ggctgtcgat	ggcctggcac	2700
tgaattttta	tgagggccag	atcacctcct	tcctgggcca	caatggagcg	gggaagacga	2760
ccaccatgtc	aatcctgacc	gggttgttcc	ccccqacctc	qqqcaccqcc	tacatcctqq	2820
gaaaagacat	tegetetgag	atgagcacca	teeggeagaa	cctgggggtc	tgtccccagc	2880
ataacgtgct	gtttgacatg	ctgactgtcg	aagaacacat	ctggttctat	gcccgcttga	2940
aagggctctc	tgagaagcac	gtgaaggcgg	agatggagca	gatggccctg	gatgttggtt	3000

tgccatcaag caagctgaaa agcaaaacaa gccagctgtc aggtggaatg cagagaaagc	3060
tatotgtggc ottggcottt gtcgggggat ctaaggttgt cattotggat gaacccacag	3120
ctggtgtgga cccttactcc cgcaggggaa tatgggagct gctgctgaaa taccgacaag	3180
geogcaecat tattetetet acacaccaca tggatgaage ggacgteetg ggggacagga	3240
ttgccatcat ctcccatggg aagctgtgct gtgtgggctc ctccctgttt ctgaagaacc	3300
agctgggaac aggctactac ctgaccttgg tcaagaaaga tgtggaatcc tccctcagtt	3360
cetgcagaaa cagtagtage actgtgtcat acetgaaaaa ggaggacagt gttteteaga	3420
gcagttctga tgctggcctg ggcagcgacc atgagagtga cacgctgacc atcgatgtct	3480
ctgctatctc caacctcatc aggaagcatg tgtctgaagc ccggctggtg gaagacatag	3540
ggcatgagct gacctatgtg ctgccatatg aagctgctaa ggagggagcc tttgtggaac	3600
tettteatga gattgatgae eggeteteag acetgggeat ttetagttat ggeateteag	3660
agacgaccot ggaagaaata ttootoaagg tggoogaaga gagtggggtg gatgotgaga	3720
cctcagatgg taccttgcca gcaagacgaa acaggogggc cttcggggac aagcagagct	3780
gtettegece gttcactgaa gatgatgetg etgatecaaa tgattetgae atagacecag	3840
aatccagaga gacagaettg ctcagtggga tggatggcaa agggtcctac caggtgaaag	3900
gctggaaact tacacagcaa cagtttgtgg cccttttgtg gaagagactg ctaattgcca	3960
gacggagtcg gaaaggattt tttgctcaga ttgtcttgcc agctgtgttt gtctgcattg	4020
cccttgtgtt cagoctgato gtgccaccot ttggcaagta ccccagcotg gaacttcago	4080
cctggatgta caacgaacag tacacatttg tcagcaatga tgctcctgag gacacgggaa	4140
ccctggaact cttaaacgcc ctcaccaaag accctggctt cgggacccgc tgtatggaag	4200
gaaacccaat cccagacacg ccctgccagg caggggagga agagtggacc actgccccag	4260
ttccccagac catcatggac ctcttccaga atgggaactg gacaatgcag aaccettcac	4320
etgeatgeea gtgtageage gacaaaatca agaagatget geetgtgtgt eeeceagggg	4380
caggggggct gcctcctcca caaagaaaac aaaacactgc agatatcctt caggacctga	4440
caggaagaaa cattteggat tatetggtga agaegtatgt geagateata geeaaaaget	4500
taaagaacaa gatctgggtg aatgagttta ggtatggcgg cttttccctg ggtgtcagta	4560
atactcaagc acttcctccg agtcaagaag ttaatgatgc catcaaacaa atgaagaaac	4620
acctamaget ggccmaggae agttctgcmg atcgmtttet cameagettg ggmagmatta	4680
tgacaggact ggacaccasa aataatgtca aggtgtggtt caataacaag ggctggcatg	4740
caatcagete titeetgaat gicatcaaca atgeeattet eegggeeaac etgeaaaagg	4800
gagagaaccc tagccattat ggaattactg ctttcaatca tcccctgaat ctcaccaagc	4860
agcagetete agaggtgget eggatgacea cateagtgga tgteettgtg tecatetgtg	4920
teatetttge aatgteette gteecageea getttgtegt atteetgate caggageggg	4980
teageaaage aaaacacetg cagtteatea gtggagtga age etg tea tet act Ser Leu Ser Ser Thr 1 5	5034
ggo tot ota att ttg tot ggg ata tgt gos att aag ttg ttt coa ann Gly Ser Leu Ile Leu Ser Gly Ile Cys Ala Ile Lys Leu Phe Pro Xaa 10 15 20	5082
nnn nnn nnn nnn nnn nnn nnn nnn nnn nn	5130

_																	
			25					30					35				
									nnn Xaa							5178	1
									ctc Leu							5226	i
									aca Thr							5274	
									agt Ser 95							5322	
									cct Pro							5370	ı
									gag Glu							5418	1
									gtt Val							5466	
aaa Lys 150	ctg Leu	ggc Gly	ctc Leu	gtg Val	aag Lys 155	tat Tyr	gga Gly	gaa Glu	aaa Lys	tat Tyr 160	gct Ala	ggt Gly	aac Asn	tat Tyr	agt Ser 165	5514	
									gcc Ala 175							5562	!
									acc Thr							5610	1
									cta Leu							5658	
									atg Met							5706	i
									gga Gly							5754	
agt Ser	gtc Val	cag Gln	cat His	cta Leu 250	aaa Lys	aat Asn	agg Arg	ttt Phe	gga Gly 255	gat Asp	ggt Gl y	tat Tyr	aca Thr	ata Ile 260	gtt Val	5802	!
									ctg Leu							5850	1
									cta Leu							5898	
									tta Leu							5946	i
									ega Arg							5994	:
									gta Val							6042	!

330	3	35	340	
gac caa agt gat gat ga Asp Gln Ser Asp Asp As 345				6090
cag aca gta gtg gac gt Gln Thr Val Val Asp Va 360				6138
aaa gtg aaa gaa agc ta Lys Val Lys Glu Ser Ty 375		ectgt tcatacgg	gg tggctgaaag	6192
taaagaggaa ctagactttc	ctttgcacca tgtg	aagtgt tgtggag	aaa agagccagaa	6252
gttgatgtgg gaagaagtaa	actggatact gtac	gatac tattcaa	tgc aatgcaattc	6312
aatgcaatga aaacaaaatt	ccattacagg ggca	gtgcct ttgtagc	cta tgtcttgtat	6372
ggctctcaag tgaaagactt	gaatttagtt tttt	acctat acctatg	tga aactctatta	6432
tggaacccaa tggacatatg	ggtttgaact caca	sttttt tttttt	ttt tgtteetgtg	6492
tattotcatt ggggttgcaa	caataattca tcaa	gtaatc atggcca	gcg attattgatc	6552
aaaatcaaaa ggtaatgcac	atceteatte acta	agecat gecatge	eca ggagaetggt	6612
tteceggtga cacatecatt	gctggcaatg agtg	gecag agttatt	agt gccaagtttt	6672
tcagaaagtt tgaagcacca	tggtgtgtca tgct	cacttt tgtgaaa	gct gctctgctca	6732
gagtotatoa acattgaata	tcagttgaca gaat	ggtgcc atgcgtg	get aacateetge	6792
tttgattccc tctgataagc	tgttctggtg gcag	aacat gcaacaa	aaa tgtgggtgtc	6852
tccaggcacg ggaaacttgg	ttccattgtt atat	gtoct atgotto	gag ccatgggtct	6912
acagggtcat ccttatgaga	ctcttaaata tact	agato otggtaa	gag gcaaagaatc	6972
aacagccaaa ctgctggggc	tgcaagctgc tgaa	ccagg gcatggg	att aaagagattg	7032
tgcgttcaaa cctagggaag	cctgtgccca tttg	cctga ctgtctg	cta acatggtaca	7092
etgeatetea agatgtttat	ctgacacaag tgta	tattt etggett	ttt gaattaatct	7152
agaaaatgaa aagatggagt	tgtattttga caea	aatgtt tgtactt	ttt aatgttattt	7212
ggaattttaa gttctatcag	tgacttetga atec	tagaa tggcctc	ttt gtagaaccct	7272
gtggtataga ggagtatggc	cactgoccca ctat	tttat tttctta	tgt aagtttgcat	7332
atcagtcatg actagtgcct	agaaagcaat gtga	ggtca ggatctc	atg acattatatt	7392
tgagtttctt tcagatcatt	taggatactc ttaa	ctcac ttcatca	atc asstatttt	7452
tgagtgtatg ctgtagctga	aagagtatgt acgt	acgtat aagacta	gag agatattaag	7512
totcagtaca cttcctgtgc	catgttattc agct	cactgg tttacaa	ata taggttgtct	7572
tgtggttgta ggagcccact	gtaacaatac tggg	eagoet tttttt	ttt ttttttaatt	7632
gcaacaatgc aaaagccaag	aaagtataag ggtc	acaagt ctaaaca	atg aattottoaa	7692
cagggaaaac agctagettg	aaaacttgct gaaa	acaca acttgtg	ttt atggcattta	7752
gtaccttcaa ataattggct	ttgcagatat tgga	accee attaaat	ctg acagtotoaa	7812
atttttcatc tcttcaatca	ctagtcaaga aaaa	ataaa aacaaca	aat acttccatat	7872
ggagcatttt tcagagtttt	ctaacccagt ctta	ttttc tagtcag	taa acatttgtaa	7932
aaatactgtt tcactaatac	ttactgttaa ctgt	cttgag agaaaag	aaa aatatgagag	7992
aactattgtt tggggaagtt	caagtgatct ttca	atatca ttactaa	ctt cttccacttt	8052

ttccagaatt tg							_
	aatattaa	cgctaaaggt	gtaagactt	c agatttc	aaa ttaa	tettte 811	.2
tatattttt aa	atttacag	aatattatat	aacccacto	go tgaaaaa	gaa aaaa	atgatt 817	2
gttttagaag tt	aaagtcaa	tattgatttt	aaatataag	gt aatgaag	gca tatt	tccaat 823	12
aactagtgat at	ggcatcgt	tgcattttac	agtatette	ca aaaatac	aga attt	atagaa 829	2
taatttetee te	atttaata	tttttcaaaa	ı tcaaagtta	at ggtttcc	tca tttt	actaaa 835	2
atcgtattct aa	ttcttcat	tatagtaaat	ctatgagca	a ctcctta	ctt cggt	tcctct 841	. 2
gatttcaagg cc	atatttta	aaaaatcaaa	aggcactgt	g aactatt	ttg aaga	aaacac 847	2
aacattttaa ta	cagattga	aaggacctct	tctgaagct	a gaaacaa	tct atag	ttatac 853	12
atcttcatta at	actgtgtt	accttttaaa	atagtaatt	t tttacat	ttt cctg	tgtaaa 859	2
cctaattgtg gt	agaaattt	ttaccaacto	tatactcaa	at caagcaa	aat ttct	gtatat 865	2
tccctgtgga at	gtacctat	gtgagtttca	gaaattoto	ca aaatacg	tgt tcaa	aaattt 871	. 2
e tgettttge at	ctttggga	caceteagaa	aacttatta	a caactgt	gaa tatg	agaaat 877	2
acagaagaaa at	aataagcc	ctctatacat	aaatgccca	ag cacaatt	cat tgtt	aaaaaa 883	2
caaccaaacc to	acactact	gtatttcatt	atetgtact	g aaagcaa	atg cttt	gtgact 889	2
attaaatgtt gc	acatcatt	cattcactgt	ata			892	25
<pre><210> SEQ ID I <211> LENGTH: <212> TYPE: Pi <213> ORGANISI <220> FEATURE <221> NAME/KE <222> LOCATION</pre>	380 RT M: Homo s : Y: VARIAN	r	25 26 27	20 20	20. 04		
34, 35, 50, 51, <223> OTHER II	36, 37, 52, 53, NFORMATIO	38, 39, 40 54	, 41, 42,	43, 44, 4	5, 46, 4	32, 33, 7, 48, 49,	
34, 35, 50, 51, <223> OTHER II <400> SEQUENCE	36, 37, 52, 53, NFORMATION	38, 39, 40 54 N: Xaa = A	, 41, 42,	43, 44, 4	5, 46, 4	7, 48, 49,	
34, 35, 50, 51, <223> OTHER II	36, 37, 52, 53, NFORMATION	38, 39, 40 54 N: Xaa = A	, 41, 42,	43, 44, 4	5, 46, 4	7, 48, 49,	
34, 35, 50, 51, <223> OTHER II <400> SEQUENCE Ser Leu Ser S	36, 37, 52, 53, NFORMATION E: 28 er Thr Gl 5	38, 39, 40 54 N: Xaa = A y Ser Leu	ny Amino A Ile Leu Se	43, 44, 4 acid er Gly Ile	5, 46, 4 Cys Ala 15	7, 48, 49,	
34, 35, 50, 51, <223> OTHER II <400> SEQUENCI Ser Leu Ser S 1	36, 37, 52, 53, NFORMATION E: 28 er Thr Gl 5 ro Kaa Xa	38, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa	ny Amino A Ile Leu Se 10 Kaa Kaa Ka	43, 44, 4 acid er Gly Ile na Xaa Xaa	5, 46, 4 Cys Ala 15 Xaa Xaa 30	7, 48, 49, Ile Xaa	
34, 35, 50, 51, 50, 51, 523> OTHER II <400> SEQUENCI Ser Leu Ser S 1 Lys Leu Phe P 2 Xaa Xaa Xaa Xaa X	36, 37, 52, 53, NFORMATION E: 28 er Thr G1 5 ro Xaa Xa	38, 39, 40 51 52 53 54 55 55 56 56 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	ny Amino A Ile Leu Se 10 Xaa Kaa Ka 25 Xaa Kaa Ka	43, 44, 4 acid er Gly Ile ax Xaa Xaa 45	5, 46, 4 Cys Ala 15 Xaa Xaa 30	7, 48, 49, Ile Xaa	
34, 35, 50, 51, 520, 51, 520, 51, 520, 51, 523 OTHER II can be ser ser ser ser ser ser ser ser ser se	36, 37, 52, 53, S2, 53, SECRET	38, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa 40 a Ile Phe 55	ny Amino A Ile Leu Se 10 Xaa Xaa Xa Xaa Xaa Xa Pro Phe Gl	43, 44, 4 acid er Gly Ile na Xaa Xaa aa Xaa Xaa 45 In Cys Phe 60	Cys Ala 15 Xaa Xaa 30 Xaa Xaa	7, 48, 49, Ile Xaa Xaa Leu	
34, 35, 50, 51, 520, 51, 520, 51, 520, 51, 520, 51, 6223> OTHER II c400> SEQUENCI SER Leu Ser S 1 Lys Leu Phe P 2 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	36, 37, 52, 53, 52, 53, 52, 53, 52, 53, 52, 53, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52	33, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa 40 a Ile Phe 55 y Lys Ser	Ile Leu Se 10 Xaa Xaa Xa 25 Pro Phe GI Ser Thr Pr 75	43, 44, 4 cid Er Gly Ile na Xaa Xaa Aa Xaa Aa Xaa Ab In Cys Phe 60	Cys Ala 15 Xaa Xaa 30 Xaa Xaa Gly Leu Leu Thr	7, 48, 49, Ile Xaa Xaa Leu Gly 80	
34, 35, 50, 51, 5223> OTHER II < 400> SEQUENCE SER Leu Ser S 1 Lys Leu Phe P 2	36, 37, 52, 53, 52, 54, 52, 54, 52, 54, 52, 54, 52, 54, 52, 54, 55, 54, 55, 54, 54, 54, 54, 54, 54	33, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa 40 a Ile Phe 55 y Lys Ser g Gly Asp	Ile Leu Se Ile Leu Se Ile Leu Se Xaa Xaa Xa Z5 Xaa Xaa Xa Pro Phe Gl Ser Thr Pr 75 Ala Phe Le	43, 44, 4 ccid er Gly Ile ana Xaa Xaa aa Xaa Xaa 45 ln Cye Phe 60 e Lye Met	Cys Ala 15 Xaa Xaa Gly Leu Leu Thr Cys Ser 95	7, 48, 49, Ile Xaa Xaa Leu Gly 80 Ile	
34, 35, 50, 51, 5223> OTHER II < 400> SEQUENCE SER Leu Ser S 1 Lys Leu Phe P 2	36, 37, 52, 53, NFORMATION E: 28 er Thr Gl 5 ro Xaa Xa aa Xaa Xa aa Xaa Xa aa Xaa Thr Ar 85	33, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa a Ile Phe 55 y Lya Ser g Gly Asp u Val His	Ile Leu Se Ile Asn Me Ile Se Ile Asn Me Ile Se	43, 44, 4 acid ar Gly Ile aa Xaa Xaa aa Xaa Xaa aa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa X	Cys Ala 15 Xaa Xaa 30 Xaa Xaa Gly Leu Thr Cys Ser 95 Cys Pro 110 Val Glu	7, 48, 49, Ile Xaa Xaa Leu Gly 80 Ile Gln	
34, 35, 50, 51, <223> OTHER II <4400> SEQUENCE SER LEU SER S 1 LEU SER S 2 LEU Phe P 2 LEU SER S 35 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	36, 37, 52, 53, 52, 53, 52, 53, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50	33, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa 40 a Ile Phe 55 y Lye Ser g Gly Asp u Val His u Leu Leu 120	Ile Leu Se Ile Leu Se Ile Leu Se Ile Leu Se Xaa Xaa Xa Z5 Xaa Xaa Xa Pro Phe Gl Ser Thr Pr 75 Ala Phe Le Gln Asn Me 105	43, 44, 4 ccid er Gly Ile an Xan Xan A5 In Cys Phe 60 bu Asn Ile bu Asn Ile cet Gly Tyr	Cys Ala 15 Xaa Xaa 30 Xaa Xaa Gly Leu Thr Cys Ser 95 Cys Pro 110 Val Glu	7, 48, 49, Ile Xaa Xaa Leu Gly 80 Ile Gln Phe	
34, 35, 50, 51, <223> OTHER II <400> SEQUENCE SER LEU SER S 1 Lys Leu Phe P 2 Xaa Xaa Xaa X 35 Xaa Xaa Xaa X 35 Gly Val Asn G 65 Asp Thr Thr V Leu Ser Asn I 115 Phe Asp Ala I 115	36, 37, 52, 53, 52, 53, NFORMATION E: 28 er Thr Gl ro Xaa Xa aa Xaa Xa aa Xaa Xa aly Ala Gl 70 al Thr Ar 85 le His Gl 00 le Thr Gl	33, 39, 40 54 N: Xaa = A y Ser Leu a Xaa Xaa a Xaa Xaa a 11e Phe 55 y Lys Ser g Gly Asp u Val His u Leu Leu 120 y Val Pro 135 s Leu Gly	Ile Leu Se Ile Se Ile Leu Se Ile Leu Se Ile Se Ile Leu	ar Gly Ile ar Gly Ile ar Xaa Xaa aa Xaa Xaa aa Xaa Xaa ab Xaa Xaa Xaa ab Xaa Xaa ab Xaa Xaa Xaa ab Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa Xaa ab Xaa Xaa Xaa	Cys Ala 15 Xaa Xaa 30 Xaa Xaa Gly Leu Thr Cys Ser 95 Cys Pro 110 Val Glu Lys Val	7, 48, 49, Ile Xaa Xaa Leu Gly 80 Ile Gln Phe	

Ala Leu Ile Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thi	r
Gly Met Asp Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Sei 195 200 205	r
Val Val Lys Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu 210 215 220	u
Glu Cys Glu Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Ar 225 230 235 240	
Phe Arg Cys Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly As 245 250 255	P
Gly Tyr Thr Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lyr 260 265 270	s
Pro Val Gln Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Leu Ly. 275 280 285	8
Glu Lys His Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser 290 295 300	r
Ser Leu Ala Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu 305 310 326	
His Ile Glu Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe 325 330 335	е
Val Asn Phe Ala Lys Asp Gln Ser Asp Asp Asp His Leu Lys Asp Leu 340 345 350	u
Ser Leu His Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser 355 360 365	r
Phe Leu Gln Asp Glu Lys Val Lys Glu Ser Tyr Val 370 380	
<210> SEQ ID NO 29 <211> LENGTH: 897 <212- TYPE: DNA <213> ORGANISM: Homo sapien <220> FEATURE: <221> NAMP/KEY: CDS <222> LOCATION: (39)(842) <223> CHER INFORMATION: Nucleotide sequence encoding apolipops A-1 (APOA1)	rotein
<400> SEQUENCE: 29	
anagertage areagerest coordegage cottones at an and got got got got	a+a 56
agagactgog agaaggaggt cocccacggo oottoagg atg aaa got gog gtg (Met Lys Ala Ala Val 1 1 5	
	Leu g 104
Met Lys Ala Ala Val I 1 1 2 acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Ter	g 104 P g 152
Met Lys Ala Ala Val I 1 1 5 acc ttg goc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgg Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Tri 10 15 20 cag caa gat gaa ccc ccc cag agc ccc tgg gat cga gtg aag gac ctg	g 104 P g 152 u 200
Met Lys Ala Ala Val I 1 5 acc ttg gcc gtg ctc ttc ctg acg ggg agc cag gct cgg cat ttc tgc Thr Leu Ala Val Leu Phe Leu Thr Gly Ser Gln Ala Arg His Phe Try 10 20 cag caa gat gas ccc cag agc ccc tgg gat cga gtg aag gac ctc Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu 25 30 gcc act gtg tac gtg gat gtg ctc aaa gac agc ggc aga gac tat gtc Ala Thr Val Tyr Val Asp Val Leu Lys Asp Ser Gly Arg Asp Tyr Val	g 104 P 152 g 200 1 248

ca: Gl:	ctc Leu	ggc	ect Pro 90	gtg Val	acc Thr	cag Gln	gag Glu	ttc Phe 95	tgg Trp	gat Asp	aac Asn	ctg Leu	gaa Glu 100	aag Lys	gag Glu	į	344
ac. Th	gag Glu	ggc Gly 105	ctg Leu	agg Arg	cag Gln	gag Glu	atg Met 110	agc Ser	aag L y s	gat Asp	ctg Leu	gag Glu 115	gag Glu	gtg Val	aag Lys	3	392
	aag Lys 120	Val														4	440
ga G1: 13!	atg Met	gag Glu	ctc Leu	tac Tyr	ege Arg 140	cag Gln	aag Lys	gtg Val	gag Glu	ccg Pro 145	ctg Leu	cgc Arg	gca Ala	gag Glu	ctc Leu 150	4	488
ca. Gli	a gag n Glu	ggc Gly	gcg Ala	ege Arg 155	cag Gln	aag L y s	ctg Leu	cac His	gag Glu 160	ctg Leu	caa Gln	gag Glu	aag L y s	ctg Leu 165	agc Ser		536
	ctg Leu															5	584
cto	g ege Arg	acg Thr 185	cat His	ctg Leu	gcc Ala	ccc Pro	tac Tyr 190	agc Ser	gac Asp	gag Glu	ctg Leu	cgc Arg 195	cag Gln	cgc Arg	ttg Leu	é	632
	geg Ala 200	Arg														•	680
	tac Tyr															7	728
	aag Lys															7	776
	agc Ser															8	824
	ctc Leu					ggc	geee	gee (geeg	cccc	sc ti	teeeq	ggtgo	:		8	872
to	igaat	aaa o	gtt.	tcca	aa g	tggg										8	897
<2: <2:	10> Si 11> Li 12> Ti 13> Oi	engti Ype :	1: 26 PRT	57	o sag	oien											
<40	00> S	EQUE	ICE:	30													
Me-	. Lys	Ala	Ala	Val	Leu	Thr	Leu	Ala	Val	Leu	Phe	Leu	Thr	Gly 15	Ser		
	Ala		20					25					30				
Ası	Arg	Val 35	Lys	Asp	Leu	Ala	Thr 40	Val	Tyr	Val	Asp	Val 45	Leu	Lys	Asp		
Se	6ly 50	Arg	Asp	Tyr	Val	Ser 55	Gln	Phe	Glu	Gly	ser 60	Ala	Leu	Gly	Lys		
G1: 65	1 Leu	Asn	Leu	Lys	Leu 70	Leu	Asp	Asn	Trp	Asp 75	ser	Val	Thr	Ser	Thr 80		
Phe	ser	Lys	Leu	Arg 85	Glu	Gln	Leu	Gly	Pro 90	Val	Thr	Gln	Glu	Phe 95	Trp		

Asp	Asn	Leu	Glu 100	Lys	Glu	Thr	Glu	Gly 105	Leu	Arg	Gln	Glu	Met 110	Ser	Lys	
Asp	Leu	Glu 115	Glu	Val	Lys	Ala	Lys 120	Val	Gln	Pro	Tyr	Leu 125	Asp	Asp	Phe	
Gln	Lув 130	Lys	Trp	Gln	Glu	Glu 135	Met	Glu	Leu	Tyr	Arg 140	Gln	Lys	Val	Glu	
Pro 145	Leu	Arg	Ala	Glu	Leu 150	Gln	Glu	Gly	Ala	Arg 155	Gln	Lys	Leu	His	Glu 160	
Leu	Gln	Glu	Lys	Leu 165	Ser	Pro	Leu	Gly	Glu 170	Glu	Met	Arg	Asp	Arg 175	Ala	
Arg	Ala	His	Val 180	Asp	Ala	Leu	Arg	Thr 185	His	Leu	Ala	Pro	Tyr 190	Ser	Asp	
Glu	Leu	Arg 195	Gln	Arg	Leu	Ala	Ala 200	Arg	Leu	Glu	Ala	Leu 205	Lys	Glu	Asn	
Gly	Gly 210	Ala	Arg	Leu	Ala	Glu 215	туг	His	Ala	Lys	Ala 220	Thr	Glu	His	Leu	
ser 225	Thr	Leu	Ser	Glu	Lys 230	Ala	Lys	Pro	Ala	Leu 235	Glu	Asp	Leu	Arg	Gln 240	
Gly	Leu	Leu	Pro	Val 245	Leu	Glu	Ser	Phe	Lys 250	Val	Ser	Phe	Leu	Ser 255	Ala	
Leu	Glu	Glu	Tyr 260	Thr	Lys	Lys	Leu	Asn 265	Thr	Gln						
		PE:														
<220 <221 <222 <223)> FE l> NA 2> LC 3> OT (1	ME/K	E: EY: ON: INFO	CDS (129 RMAT		(138		ide	sequ	ience	enc	odir	ng ap	oolip	cproteir	ı В
<220 <221 <222 <223)> FE l> NA 2> LO 3> OT (1	EATUR ME/K CATI THER APOB)	E: EY: ON: INFO	CDS (129 RMAT)) ION:	(138 Nuc	leot								ocproteir agcccg	60
<220 <221 <222 <223 <400 atto)> FE l> NA 2> LO 3> OT (1) (2) SE	EATUF AME/K CCATI THER APOB) EQUEN	E: EY: ON: INFO	CDS (129 RMAT 31))	(138 Nuc	:leot	e cct	toto	eggt	tgat	geeq	get (jagga		
<220 <221 <222 <223 <400 atto	0> FE 1> NA 2> LO 3> OT (1) 0> SE	EATUR MME/K DCATI IHER APOB) EQUEN EGG 9	E: EY: ON: INFO	CDS (129 RMAT 31 etgeg	eg ag	(138 Nuc	eleot	c cat	tete	eggt geag	tgat ccca	egeeq aggaq g etq a Lei	get o	gagga gagga	agaaag	60
<220 <221 <222 <223 <400 atto)> FE > NA > LO > CO	EATUR MME/K DCATI IHER APOB) EQUEN EGG 9	E: EY: ON: INFO ICE: Igaco : aggo	CDS (129)RMAT 31 etgeg geogo Pro	gg gg eg ag g ceg p rec	getga geeg geeg geeg geeg Are	elect	c cac c cac c gcg	ggccg g ctq g Leu	eggt gcag g cto l Lei	tgct ccca g gcg 1 Ala 10	aggaq aggaq g etq Lev	get q gec q g ctq g ctq gaa	gagga gecea geca geca geca geca geca gec	agocog cacego g otg a Leu gaa	60 120
<220 221</222</223</223</224</224</225</225</226</226</226</227</226</227</228</228</228</228</228</228</228</td <td>)> FE > NA > LO > LO > OT </td> <td>EATUR AME/K CCATI FHER APOB) EQUEN EQUEN EGG 9 AGC 6 Met 1</td> <td>E: (EY: (ON: INFO (CE: (gaco (aggo (</td> <td>CDS (129)RMAT 31 etgag geogo Pro ctg Leu</td> <td>gg gg eg ag g ccg p Pro</td> <td>getga getga getga gecg gecg agg Arc 5 ctg Leu</td> <td>elect ngtgo gaggo g eco g Pro ctg Leu</td> <td>c cat c cat c gcg Ala gcg Ala</td> <td>gccq gctq Let ggc Gly</td> <td>ggt gcag g cto 1 Lei gcc Ala 25</td> <td>tgct cccs g gcc 1 Als 1(agg Arg</td> <td>gccq aggaq g ctq a Lei) gcc Ala</td> <td>get o gec o g cto g cto gaa Glu</td> <td>gagga geeca g gee n Ala gag Glu</td> <td>agooog cacege g ctg a Leu gaa Glu 30</td> <td>60 120 170</td>)> FE > NA > LO > LO > OT	EATUR AME/K CCATI FHER APOB) EQUEN EQUEN EGG 9 AGC 6 Met 1	E: (EY: (ON: INFO (CE: (gaco (aggo (CDS (129)RMAT 31 etgag geogo Pro ctg Leu	gg gg eg ag g ccg p Pro	getga getga getga gecg gecg agg Arc 5 ctg Leu	elect ngtgo gaggo g eco g Pro ctg Leu	c cat c cat c gcg Ala gcg Ala	gccq gctq Let ggc Gly	ggt gcag g cto 1 Lei gcc Ala 25	tgct cccs g gcc 1 Als 1(agg Arg	gccq aggaq g ctq a Lei) gcc Ala	get o gec o g cto g cto gaa Glu	gagga geeca g gee n Ala gag Glu	agooog cacege g ctg a Leu gaa Glu 30	60 120 170
<220 221</222</223</400 atto</td <td>> FE NA NA</td> <td>EATUR AME/K CCATI CHER APOB) CQUEN CCG 9 AGC 0 Met 1 Ctg Leu gaa</td> <td>E: EY: EY: INFO CE: ggacc caggg ctg Leu aat Asn</td> <td>CDS (129 (129) The control of the c</td> <td>etg sector cetg Leu 20 agc Ser tac</td> <td>(138 Nucc</td> <td>gagge gagge g ccc ctg Leu gtc Val</td> <td>geg Ala tgt Cys</td> <td>ggcgi Lei ggc Gly cca Pro 40</td> <td>gcag gcag gctg Lei gcc Ala 25 aaa Lys</td> <td>tgct cccs g gcg 1 Als 1(agg Arg gat Asp</td> <td>gccq aggaq g ctq a Let) gcc Ala gcg Ala</td> <td>get of get of the get</td> <td>gagga gecca gag gag Glu ega Arg 45</td> <td>gaa Glu 30 ttc Phe</td> <td>60 120 170</td>	> FE NA	EATUR AME/K CCATI CHER APOB) CQUEN CCG 9 AGC 0 Met 1 Ctg Leu gaa	E: EY: EY: INFO CE: ggacc caggg ctg Leu aat Asn	CDS (129 (129) The control of the c	etg sector cetg Leu 20 agc Ser tac	(138 Nucc	gagge gagge g ccc ctg Leu gtc Val	geg Ala tgt Cys	ggcgi Lei ggc Gly cca Pro 40	gcag gcag gctg Lei gcc Ala 25 aaa Lys	tgct cccs g gcg 1 Als 1(agg Arg gat Asp	gccq aggaq g ctq a Let) gcc Ala gcg Ala	get of get of the get	gagga gecca gag gag Glu ega Arg 45	gaa Glu 30 ttc Phe	60 120 170
<220 <221 <222 <400 attace again again attace again attac	observation of the control of the co	EATUR ME/K OCATII HER APOB) EQUEN Ceg 9 4 4 6 1 6 1 6 1 6 4 6 6 1 6 6 1 6 1 6 1	E: EY: CON: INFO ICE: agaco: aggo: ctggaco: teu aat Asn cgg Arg 50	CDS (129 (129 RMAT) 31 31 ctggccgc ctggccgc ctg Leu gtc Val 35 aaag Lys	egg gg gg accg accg accg accg accg accg	(138 Nuc	de de la constant de	geg Ala tgt Cys aac Asn 55	ggccg ggcgly ggc Gly cca Pro 40 tat	gcag gcag gcc Ala 25 aaa Lys gag Glu	tgot cccs j gcc i Ala i (agg Arg gat Asp gct Ala	aggagagagagagagagagagagagagagagagagaga	gcc qcc qcc qcc qcc qcc qcc qcc qcc qcc	gaggagagagagagagagagagagagagagagagagag	agacag gaaagaa Leu gaa Glu 30 ttc Phe agt	60 120 170 218
<220 <221 <222 <222 <400 atto ccca aged cct Pro 15 atg Met aaag Lys gga ggly aaag	observation of the control of the co	EATUR MME/K CQATI THER APOB) CQUEN CQUEN CCG G G G G G G G CCG CCG	E: EY: CON: INFO CON: INFO CON: INFO CON: INFO CON: INFO CASS	CDS (1298 (1	cg ag gg ag ag ag agc 20 Pro agc Tyr gct Ala	(138 Nuccesses N	agtgo gaggo ctg Leu gtc Val tac Tyr	geg Ala tgt Cys aac Asn 55 aga Arg	ggccgly ctq. Let	gcaggt gcag gcc Ala 25 aaa Lys gag Glu gcc Ala	tget cccs g gcc g gcc agg Arg gct Asp gct Ala acc Thr	gcg Ala gcg Ala gag Glu agg Arg 75	ggct oggcc o	gaggecce gaggecce 1 Ald gag Glu cga Arg 45 toc Ser	gaa Glu 30 ttc Phe agt ser	60 120 170 218 266

Ser 95	Gln	Cys	Thr	Leu	Lys 100	Glu	Val	Tyr	Gly	Phe 105	Asn	Pro	Glu	Gly	Lys 110		
							aac Asn									506	
							gcc Ala									554	
							cct Pro 150									602	
							gtt Val									650	
							gtg Val									698	
							aat Asn									746	
Arg	Asp	Leu	Gly 210	Gln	Сув	Asp	aga Arg	Phe 215	Lys	Pro	Ile	Arg	Thr 220	Gly	Ile	794	
Ser	Pro	Leu 225	Ala	Leu	Ile	Lув	ggc Gly 230	Met	Thr	Arg	Pro	Leu 235	Ser	Thr	Leu	842	
Ile	Ser 240	Ser	Ser	Gln	Ser	Сув 245	cag Gln	Tyr	Thr	Leu	Asp 250	Ala	Lys	Arg	Lys	890	
His 255	Val	Ala	Glu	Ala	Ile 260	Cys	aag Lys	Glu	Gln	His 265	Leu	Phe	Leu	Pro	Phe 270	938	
Ser	Tyr	Asn	Asn	Lys 275	Tyr	Gly	atg Met	Val	Ala 280	Gln	Val	Thr	Gln	Thr 285	Leu	986	
Lys	Leu	Glu	290	Thr	Pro	Lys	atc Ile	Asn 295	Ser	Arg	Phe	Phe	Gly 300	Glu	Gly	1034	
Thr	Lys	Lys 305	Met	Gly	Leu	Ala	Phe 310	Glu	Ser	Thr	Lys	Ser 315	Thr	Ser	Pro	1082	
Pro	Lys 320	Gln	Ala	Glu	Ala	Val 325	ttg Leu	Lys	Thr	Leu	Gln 330	Glu	Leu	Lys	Lys	1130	
Leu 335	Thr	Ile	Ser	Glu	Gln 340	Asn	atc Ile	Gln	Arg	Ala 345	Asn	Leu	Phe	Asn	Lys 350	1178	
Leu	Val	Thr	G1u	Leu 355	Arg	Gly	Leu	Ser	360	Glu	Ala	Val	Thr	Ser 365	Leu	1226	
Leu	Pro	Gln	Leu 370	Ile	Glu	Val	tee	5er 375	Pro	Ile	Thr	Leu	Gln 380	Ala	Leu	1274	
Val	Gln	Сув 385	Gly	Gln	Pro	Gln	tgc Cys 390	Ser	Thr	His	Ile	Leu 395	Gln	Trp	Leu	1322	
aaa	cgt	gtg	cat	gcc	aac	ccc	ctt	ctg	ata	gat	gtg	gtc	acc	tac	ctg	1370	

													COII	CIII	ueu			
L	ys	Arg 400	Val	His	Ala	Asn	Pro 405	Leu	Leu	Ile	Asp	Val 410	Val	Thr	Tyr	Leu		
V								tca Ser									1418	
A	ac sn	atg Met	gcg Ala	agg Arg	gat Asp 435	cag Gln	ege Arg	agc Ser	cga Arg	gcc Ala 440	acc Thr	ttg Leu	tat Tyr	gcg Ala	ctg Leu 445	agc Ser	1466	
								aag Lys									1514	
								ctg Leu 470									1562	
								tat Tyr									1610	
Me								tta Leu									1658	
								aag Lys									1706	
								atg Met									1754	
								gat Asp 550									1802	
								atg Met									1850	
A								cca Pro									1898	
								gcc Ala									1946	
g: A:	at sp	atc Ile	caa Gln	gat Asp 610	ctg Leu	aaa Lys	aag Lys	tta Leu	gtg Val 615	aaa Lys	gaa Glu	gct Ala	ctg Leu	ааа Lys 620	gaa Glu	tct Ser	1994	
								Phe 630									2042	
	eu							cca Pro									2090	
I.								gat Asp									2138	
Se	gc er	atg Met	ctg Leu	aaa Lys	act Thr 675	acc Thr	ctc Leu	act Thr	gcc Ala	ttt Phe 680	gga Gly	ttt Phe	gct Ala	tca Ser	get Ala 685	gac Asp	2186	
								gga Gly									2234	
g	ct	ctt	ttt	aaa	aag	caa	gga	ttt	ttc	cca	gac	agt	gtc	aac	aaa	gct	2282	

Ala	Leu	Phe 705	Gly	Lys	Gln	Gly	Phe 710	Phe	Pro	Asp	Ser	Val 715	Asn	Lys	Ala			
		tgg Trp														2330		
		cac His														2378		
		gga Gly														2426		
		gaa Glu														2474		
		ggt Gly 785														2522		
		atg Met														2570		
Glu 815	Va1	atc Ile	Arg	Lys	Gly 820	Ser	Lys	Asn	Asp	Phe 825	Phe	Leu	His	Tyr	Tle 830	2618		
Phe	Met	gag Glu	Asn	Ala 835	Phe	Glu	Leu	Pro	Thr 840	Gly	Ala	Gly	Leu	Gln 845	Leu	2666		
Gln	Ile	tct Ser	850	Ser	Gly	Val	Ile	Ala 855	Pro	Gly	Ala	Lys	A1a 860	Gly	Val	2714		
Lys	Leu	gaa Glu 865	Val	Ala	Asn	Met	Gln 870	Ala	Glu	Leu	Val	Ala 875	Lys	Pro	Ser	2762		
Val	Ser 880	gtg Val	Glu	Phe	Val	Thr 885	Asn	Met	Gly	Ile	11e 890	Ile	Pro	Asp	Phe	2810		
Ala 895	Arg	agt Ser	Gl y	Val	Gln 900	Met	Asn	Thr	Asn	Phe 905	Phe	Нів	Glu	Ser	Gly 910	2858		
Leu	Glu	gct Ala	His	Val 915	Ala	Leu	Lys	Ala	Gly 920	Lys	Leu	Lys	Phe	11e 925	Ile	2906		
Pro	Ser	cca Pro	Lys 930	Arg	Pro	Val	Lys	Leu 935	Leu	Ser	Gly	Gly	Asn 940	Thr	Leu	2954		
His	Leu	gtc Val 945	Ser	Thr	Thr	Lys	Thr 950	Glu	Val	Ile	Pro	Pro 955	Leu	Ile	Glu	3002 3050		
Asn	Arg 960	Gln	Ser	Trp	Ser	Val 965	Сув	Lys	Gln	Val	Phe 970	Pro	Gly	Leu	Asn	3050		
Tyr 975	Сув	acc Thr	Ser	Gly	Ala 980	Tyr	Ser	Asn	Ala	Ser 985	Ser	Thr	Asp	Ser	Ala 990	3098		
Ser	Tyr	Tyr	Pro	Leu 99!	Thr 5	Gly	Asp	Thr	Arg	Leu)	Glu	Leu	Glu	Leu 100	Arg 5			
CCT	aca	gga	gag	att	gag	cag	tat	tct	gtc	agc	gca	acc	tat	gag	CtC	3194		

Pro	Thr	Gly	Glu 1010		Glu	Gln	Tyr	Ser 1015		Ser	Ala	Thr	Ty r		Leu	
	aga Arg		Asp					Asp					Val			3242
	gaa Glu 1040	Gly					Glu					Phe				3290
	cag Gln					ser					Ile					3338
	gac Asp				Ile					Asp					Gly	3386
	acg Thr			Arg					Ile					Ile		3434
	gtc Val		Leu					Ser					Glu			3482
	atc Ile 1120	Lys					Ile					Ala				3530
	gag Glu					Trp			Ala		Leu					3578
gac Asp	tca Ser	tct Ser	gct Ala	aca Thr 1155	Ala	tat Tyr	ggc Gly	tcc Ser	aca Thr 1160	Val	tcc Ser	aag Lys	agg Arg	gtg Val 1165	Ala	3626
	cat His			Glu					Phe					Gly		3674
	gta Val		Thr			Met		Ser					Asp			3722
	tat Tyr 1200	Pro					Met					Leu				3770
	gtc Val					Met					Val					3818
	gtt Val				Ser					Ala					Pro	3866
Tyr	acc Thr	Gln	Thr 1250	Leu)	Gln	Asp	His	Leu 1255	Asn	Ser	Leu	Lys	Glu 1260	Phe	Asn	3914
Leu	cag Gln	Asn 1265	Met	Gly	Leu	Pro	Asp 1270	Phe	His	Ile	Pro	Glu 1275	Asn	Leu	Phe	3962
tta Leu	aaa Lys 1280	Ser	gat Asp	ggc Gly	agg	gtc Val 1285	Lys	tat Tyr	acc Thr	ttg Leu	aac Asn 1290	Lys	aac Asn	agt Ser	ttg Leu	4010
	att Ile					Pro					Ser					4058
aag	atg	tta	gag	act	gtt	agg	aca	cca	gcc	cto	cac	ttc	aag	tot	gtg	4106

	nr Val Arg Thr Pro 315	Ala Leu His Phe 1320	Lys Ser Val 1325	
	ea tot oga gag tto no Ser Arg Glu Phe 1335	Gln Val Pro Thr		4154
	a ctg caa gtg cct In Leu Gln Val Pro 1350		Leu Asp Leu	4202
	ac age aac ttg tac yr Ser Asn Leu Tyr 1365			4250
	ge aca gae cat tte ar Thr Asp His Phe 1380			4298
Met Lys Ala Asp Se	et gtg gtt gac ctg er Val Val Asp Leu 195			4346
	ea tat gac cac aag nr Tyr Asp His Lys 1415			4394
	go cac aaa ttt ota og His Lys Phe Leu 1430		Lys Phe Ser	4442
	et gga aac aac cca eu Gly Asn Asn Pro 1445			4490
tte gat gea tet ag Phe Asp Ala Ser Se 1455	gt too tgg gga coa er Ser Trp Gly Pro 1460	cag atg tct gct Gln Met Ser Ala 1465	tca gtt cat Ser Val His 1470	4538
Leu Asp Ser Lys Ly	ng aaa cag cat ttg ys Lys Gln His Leu 175	ttt gtc aaa gaa Phe Val Lys Glu 1480	gtc aag att Val Lys Ile 1485	4586
	ga gto tot tog tto ng Val Ser Ser Phe 1495			4634
	gg gat cet aac act rg Asp Pro Asn Thr 1510		Gly Glu Ser	4682
	nc toc toc tac ctc on Ser Ser Tyr Leu 1525			4730
	at gga acc ctc tcc sp Gly Thr Leu Ser 1540			4778
Gln Ser Gly Ile Il	et aaa aat act get le Lys Asn Thr Ala 555			4826
	aa tet gae aee aat 78 Ser Asp Thr Asn 1575			4874
	ng gat atg acc ttc at Asp Met Thr Phe 1590		Ala Leu Leu	4922
	ng get gat tae gag In Ala Asp Tyr Glu 1605			4970
ctt tct gga tca ct	a aat too cat ggt	ctt gag tta aat	gct gac atc	5018

Leu Ser Gly Ser Leu Asn 1615 162			
tta ggc act gac aaa att Leu Cly Thr Asp Lys Ile 1635			5066
att ggc caa gat gga ata Ile Gly Gln Asp Gly Ile 1650			5114
agt ctc ctg gtg ctg gag Ser Leu Leu Val Leu Glu 1665	aat gag ctg aat gca Asn Glu Leu Asn Ala 1670	gag ott ggo oto tot Glu Leu Gly Leu Ser 1675	5162
ggg gca tot atg aaa tta Gly Ala Ser Met Lys Leu 1680			5210
gca aaa ttc agt ctg gat Ala Lys Phe Ser Leu Asp 1695 170	Gly Lys Ala Ala Leu	Thr Glu Leu Ser Leu	5258
gga agt gct tat cag gcc Gly Ser Ala Tyr Gln Ala 1715			5306
tto aac tto aag gto agt Phe Asn Phe Lys Val Sen 1730	caa gaa gga ctt aag Gln Glu Gly Leu Lys 1735	ctc tca aat gac atg Leu Ser Asn Asp Met 1740	5 3 5 4
atg ggc toa tat gct gaa Met Gly Ser Tyr Ala Glu 1745			5402
att gca ggc tta tca ctg Ile Ala Gly Leu Ser Leu 1760			5450
agc tct gac aag ttt tat Ser Ser Asp Lys Phe Tyr 1775 178	Lys Gln Thr Val Asn	Leu Gln Leu Gln Pro	5498
tat tot otg gta act act Tyr Ser Leu Val Thr Thr 1795	tta aac agt gac ctg Leu Asn Ser Asp Leu 1800	aaa tac aat gct ctg Lys Tyr Asn Ala Leu 1805	5546
gat oto acc aac aat ggg Asp Leu Thr Asn Asn Gly 1810			5594
gtg gct ggt aac cta aaa Val Ala Gly Asn Leu Lys 1825	gga gcc tac caa aat Gly Ala Tyr Gln Asn 1830	aat gaa ata aaa cac Asn Glu Ile Lys His 1835	5642
atc tat gcc atc tct tct Ile Tyr Ala Ile Ser Ser 1840	gct gcc tta tca gca Ala Ala Leu Ser Ala 1845	agc tat aaa gca gac Ser Tyr Lys Ala Asp 1850	5690
act gtt gct aag gtt cag Thr Val Ala Lys Val Gln 1855 186	Gly Val Glu Phe Ser	His Arg Leu Asn Thr	5738
gac atc gct ggg ctg gct Asp Ile Ala Gly Leu Ala 1875	toa gcc att gac atg ser Ala Ile Asp Met 1880	age aca aac tat aat Ser Thr Asn Tyr Asn 1885	5786
tca gac tca ctg cat ttc Ser Asp Ser Leu His Phe 1890			5834
ttt acc atg acc atc gat Phe Thr Met Thr Ile Asp 1905	gca cat aca aat ggc Ala His Thr Asn Gly 1910	aat ggg aaa ctc gct Asn Gly Lys Leu Ala 1915	5882
ctc tgg gga gaa cat act	ggg cag ctg tat agc	aaa ttc ctg ttg aaa	5930

Leu Trp Gly Glu His 1920	Thr Gly Gln Leu Ty 1925	Ser Lys Phe Leu Leu Lys 1930	
		gat tac aaa ggc tcc aca Asp Tyr Lys Gly Ser Thr 1945 1950	5978
	Ser Arg Lys Ser Il	agt gca gct ctt gaa cac Ser Ala Ala Leu Glu His O 1965	6026
aaa gtc agt gcc ctg Lys Val Ser Ala Leu 1970	ctt act cca gct ga Leu Thr Pro Ala Gl 1975	cag aca ggc acc tgg aaa Gln Thr Gly Thr Trp Lys 1980	6074
		ago cag gac ttg gat gct Ser Gln Asp Leu Asp Ala 1995	6122
tac aac act aaa gat Tyr Asn Thr Lys Asp 2000	aaa att ggc gtg ga Lys Ile Gly Val Gl 2005	ctt act gga cga act ctg Leu Thr Gly Arg Thr Leu 2010	6170
		aaa gtg cca ctt tta ctc Lys Val Pro Leu Leu Leu 2025 2030	6218
	Ile Ile Asp Ala Le	gag atg aga gat gcc gtt Glu Met Arg Asp Ala Val O 2045	6266
gag aag ccc caa gaa Glu Lys Pro Gln Glu 2050	ttt aca att gtt gc Phe Thr Ile Val Al 2055	ttt gta aag tat gat aaa Phe Val Lys Tyr Asp Lys 2060	6314
Asn Gln Asp Val His 2065	Ser Ile Asn Leu Pr 2070	ttt ttt gag acc ttg caa Phe Phe Glu Thr Leu Gln 2075	6362
gaa tat ttt gag agg Glu Tyr Phe Glu Arg 2080	aat cga caa acc at Asn Arg Gln Thr Il 2085	ata gtt gta gtg gaa aac Elle Val Val Val Glu Asn 2090	6410
		gat caa ttt gta aga aaa Asp Gln Phe Val Arg Lys 2105 2110	6458
	Gly Lys Leu Pro Gl	caa got aat gat tat otg Gln Ala Asn Asp Tyr Leu O 2125	6506
aat toa tto aat tgg Asn Ser Phe Asn Trp 2130	gag aga caa gtt to Glu Arg Gln Val Se 2135	cat gcc aag gag aaa ctg His Ala Lys Glu Lys Leu 2140	6554
act gct ctc aca aaa Thr Ala Leu Thr Lys 2145	aag tat aga att ac Lys Tyr Arg Ile Th 2150	gaa aat gat ata caa att Glu Asn Asp Ile Gln Ile 2155	6602
		gaa aaa cta tot caa ctg Glu Lys Leu Ser Gln Leu 2170	6650
		att aaa gat agt tat gat Tle Lys Asp Ser Tyr Asp 2185 2190	6698
	Ile Ala Ile Ala As	att att gat gaa atc att Ile Ile Asp Glu Ile Ile 0 2205	6746
		cat atc cgt gta aat tta His Ile Arg Val Asn Leu 2220	6794
gta aaa aca atc cat	gat cta cat ttg tt	att gaa aat att gat ttt	6842

Val Lys Thr Ile His 2225	s Asp Leu His Leu Phe 2230	Ile Glu Asn Ile Asp Phe 2235	
		att caa aat gtg gat act Ile Gln Asn Val Asp Thr 2250	6890
		aaa ctg cag cag ctt aag Lys Leu Gln Gln Leu Lys 2265 2270	6938
	n Ile Asp Ile Gln His	cta gct gga aag tta aaa Leu Ala Gly Lys Leu Lys 2285	6986
		ctt tta gat caa ttg gga Leu Leu Asp Gln Leu Gly 2300	7034
		gtt ctt gag cat gtc aaa Val Leu Glu His Val Lys 2315	7082
		gaa gta gct gag aaa atc Glu Val Ala Glu Lys Ile 2330	7130
		atc gag agg tat gaa gta Ile Glu Arg Tyr Glu Val 2345 2350	7178
	n Val Leu Met Asp Lys	tta gta gag ttg acc cac Leu Val Glu Leu Thr His 2365	7226
		cta agc aat gtc cta caa Leu Ser Asn Val Leu Gln 2380	7274
caa gtt aag ata aag Gln Val Lys Ile Lys 2385	a gat tac ttt gag aaa s Asp Tyr Phe Glu Lys 2390	ttg gtt gga ttt att gat Leu Val Gly Phe Ile Asp 2395	7322
		ttt aaa aca ttc att gaa Phe Lys Thr Phe Ile Glu 2410	7370
		aag aaa tta aag tca ttt Lys Lys Leu Lys Ser Phe 2425 2430	7418
	e Val Asp Glu Thr Asn	gac aaa atc cgt gag gtg Asp Lys Ile Arg Glu Val 2445	7466
act cag aga ctc aat Thr Gln Arg Leu Ass 2450	t ggt gaa att cag gct n Gly Glu Ile Gln Ala 2455	ctg qaa cta cca caa aaa Leu Glu Leu Pro Gln Lys 2460	7514
		acc aag gcc aca gtt gca Thr Lys Ala Thr Val Ala 2475	7562
gtg tat ctg gaa ago Val Tyr Leu Glu Ser 2480	c cta cag gac acc aaa r Leu Gln Asp Thr Lys 2485	ata acc tta atc atc aat Ile Thr Leu Ile Ile Asn 2490	7610
		ttg get cac atg aag gee Leu Ala His Met Lys Ala 2505 2510	7658
	r Leu Glu Asp Thr Arg	gac cga atg tat caa atg Asp Arg Met Tyr Gln Met 2525	7706
gac att cag cag gaa	a ctt caa cga tac ctg	tct ctg gta ggc cag gtt	7754

Asp Ile Gln Gln Glu 2530	Leu Gln Arg Tyr Leu 2535	Ser Leu Val Gly Gln Val 2540	
		tgg tgg act ctt gct gct Trp Trp Thr Leu Ala Ala 2555	7802
aag aac ctt act gac	ttt gca gag caa tat	tot ato caa gat tgg got Ser Ile Gln Asp Trp Ala	7850
2560	2565	2570	7000
Lys Arg Met Lys Ala	Leu Val Glu Gln Gly 2580	ttc act gtt cot gaa atc Phe Thr Val Pro Glu Ile 2585 2590	7898
	Thr Met Pro Ala Phe	gaa gtc agt ctt cag gct Glu Val Ser Leu Gln Ala 0 2605	7946
		ttt ata gtc ccc cta aca Phe Ile Val Pro Leu Thr 2620	7994
gat ttg agg att cca	tca gtt cag ata aac	ttc aaa gac tta aaa aat	8042
2625	2630	Phe Lys Asp Leu Lys Asn 2635	
		gaa ttt acc atc ctt aac Glu Phe Thr Ile Leu Asn 2650	8090
Thr Phe His Ile Pro		ttt gtc gaa atg aaa gta Phe Val Glu Met Lys Val 2665 2670	8138
aag atc atc aga acc Lys Ile Ile Arg Thr 2675	Ile Asp Gln Met Glr	aac agt gag ctg cag tgg Asn Ser Glu Leu Gln Trp 0 2685	8186
ccc gtt cca gat ata Pro Val Pro Asp Ile 2690	tat ctc agg gat ctc Tyr Leu Arg Asp Leu 2695	aag gtg gag gac att cct Lys Val Glu Asp Ile Pro 2700	8234
		tta cca gaa atc gca att Leu Pro Glu Ile Ala Ile 2715	8282
		aat gat ttt caa gtt cct Asn Asp Phe Gln Val Pro 2730	8330
		cac atc tca cac aca att His Ile Ser His Thr Ile 2745 2750	8378
	Gly Lys Leu Tyr Ser	att ctg aaa atc caa tct Ile Leu Lys Ile Gln Ser 0 2765	8 4 2 6
		ata ggg aat gga acc acc Ile Gly Asn Gly Thr Thr 2780	8474
tca gca aac gaa gca ser Ala Asn Glu Ala 2785	ggt atc gca gct too Gly Ile Ala Ala Ser 2790	atc act gcc aaa gga gag Ile Thr Ala Lys Gly Glu 2795	8522
		caa gca aat gca caa ctc Gln Ala Asn Ala Gln Leu 2810	857C
		aag gag tca gtg aag ttc Lys Glu Ser Val Lys Phe 2825 2830	8618
tcc agc aag tac ctg	aga acg gag cat ggg	agt gaa atg ctg ttt ttt	8666

Ser	Ser	Lys	Tyr	Leu 283		Thr	Glu	His	Gly 2840		Glu	Met	Leu	Phe 2845		
				Glu					Thr		gca Ala			His		8714
			Thr					Asn			att Ile		Lys			8762
		Leu					Asn				ttc Phe 2890	нів				8810
	Pro					Ser					ctg Leu					8858
					Ala					Trp	act Thr				Lys	8906
				Trp					Phe		gat Asp			Thr		8954
Glu	Ser	Gln 2945	Ile	Ser	Phe	Thr	11e 2950	Glu)	Gly	Pro	ctc Leu	Thr 2955	Ser	Phe	Gly	9002
Leu	Ser 2960	Asn)	Lys	Ile	Asn	Ser 2965	Lys	His	Leu	Arg	gta Val 2970	Asn)	Gln	Asn	Leu	9050
Val 2975	Tyr	Glu	Ser	Gly	Ser 298	Leu)	Asn	Phe	Ser	Lys 2985		Glu	Ile	Gln	Ser 2990	9098
Gln	Val	Asp	Ser	Gln 299!	His 5	Val	Gly	His	Ser 3000	Val	cta Leu	Thr	Ala	1005 1005	Gly i	9146
Met	Ala	Leu	Phe 3010	Gly	Glu	Gly	Lys	Ala 3015	Glu 5	Phe	act Thr	Gl y	Arg 3020	His	Asp	9194
Ala	Нів	Leu 3025	Asn	Gly	Lув	Val	11e 3030	Gly	Thr	Leu	aaa L y s	Asn 3035	Ser	Leu	Phe	9242
Phe	Ser 3040	Ala	Gln	Pro	Phe	Glu 3045	Ile	Thr	Ala	Ser	aca Thr 3050	Asn)	Asn	Glu	Gly	9290
Asn 3055	Leu	Lys	Val	Arg	Phe 3060	Pro	Leu	Arg	Leu	Thr 3065		Lys	Ile	Asp	Phe 3070	9338
Leu	Asn	Asn	Туг	Ala 307!	Leu 5	Phe	Leu	Ser	Pro 3080	Ser	gcc Ala	Gln	Gln	Ala 3085	Ser	9386
Trp	Gln	Val	Ser 3090	Ala	Arg	Phe	Asn	Gln 3095	Tyr	Lys	tac Tyr	Asn	Gln 3100	Aвn)	Phe	9434
Ser	Ala	Gly 3105	Asn	Asn	Glu	Asn	3110	Met)	Glu	Ala	cat	Val 3115	Gly	Ile	Asn	9482
Gly	Glu 3120	Ala	Asn	Leu	Asp	Phe 3125	Leu	Asn	Ile	Pro	Leu 3130	Thr	Ile	Pro	Glu	9530
atg	cgt	cta	cct	tac	aca	ata	atc	aca	act	cct	cca	ctg	aaa	gat	tto	9578

Met 3135		Leu	Pro	Tyr	Thr 3140		Ile	Thr	Thr	Pro 3145		Leu	Lys	Asp	Phe 3150	
					Thr			aag Lys		Phe					Lys	9626
				Leu				gct Ala 3175	Gln					Lys		9674
			Ile					gct Ala)					Phe			9722
		Ile					Arg	cat His				Asn				9770
	Leu					Lys		tat Tyr			Thr					9818
					Glu			cac His		Glu					Phe	9866
caa Gln	att Ile	cct Pro	gga Gly 3250	Tyr	act Thr	gtt Val	cca Pro	gtt Val 3255	Val	aat Asn	gtt Val	gaa Glu	gtg Val 3260	Ser	cca Pro	9914
			Glu					ggc Gly					Lys			9962
agc Ser	atg Met 3280	Pro	agt Ser	ttc Phe	tcc Ser	atc Ile 3285	Leu	ggt Gly	tct Ser	gac Asp	gtc Val 329	Arg	gtg Val	cct Pro	tca Ser	10010
tac Tyr 3295	Thr	tta Leu	atc Ile	ctq Leu	cca Pro 3300	Ser	tta Leu	gag Glu	ctg Leu	cca Pro 330	Val	ctt Leu	cat His	gtc Val	cct Pro 3310	10058
					Ser			cat His		Lys					Ile	10106
				Ile				ggc Gly 3335	Asn					Phe		10154
			Ser					aat Asn					Leu			10202
		Asp					Leu	ctt Leu				Ser				10250
gat Asp 3375	Ala	ctg Leu	cag Gln	tac Tyr	aaa Lys 3380	Leu	gag Glu	ggc Gly	acc Thr	aca Thr 3385	Arg	ttg Leu	aca Thr	aga Arg	aaa Lys 3390	10298
					Ala			ctg Leu		Leu					Val	10346
gag Glu	ggt Gly	agt Ser	cat His 3410	Asn	agt Ser	act Thr	gtg Val	agc Ser 3415	Leu	acc Thr	acg Thr	aaa Lys	aat Asn 3420	Met	gaa Glu	10394
			Ala					gcc Ala					Leu			10442
aat	ttc	aag	caa	gaa	ctt	aat	gga	aat	acc	aag	tca	aaa	cct	act	gtc	10490

Asn Phe Lys Gln Glu Leu Asn Gly Asn Thr Lys Ser Lys Pro Thr Val 3440 3445	
tot toe toe atg gaa ttt aag tat gat tte aat tot tea atg etg tae Ser Ser Ser Met Glu Phe Lys Tyr Asp Phe Asn Ser Ser Met Leu Tyr 3455 3460 3465 3470	10538
tct acc gct aaa gga gca gtt gac cac aag ctt agc ttg gaa agc ctc Ser Thr Ala Lys Gly Ala Val Asp His Lys Leu Ser Leu Glu Ser Leu 3475 3480 3485	10586
acc tot tac ttt toc att gag toa tot acc aaa gga gat gtc aag ggt Thr Ser Tyr Phe Ser Ile Glu Ser Ser Thr Lys Gly Asp Val Lys Gly 3490 3495 3500	10634
tog gtt ctt tot ogg gaa tat toa gga act att got agt gag goo aac Ser Val Leu Ser Arg Glu Tyr Ser Gly Thr Ile Ala Ser Glu Ala Asn 3505 3510 3515	10682
act tac ttg aat tcc aag agc aca cgg tct tca gtg aag ctg cag ggc Thr Tyr Leu Asn Ser Lys Ser Thr Arg Ser Ser Vel Lys Leu Gln Gly 3520 3530	10730
act too aaa att gat gat att tgg aac ott gaa gta aaa gaa aat ttt Thr Ser Lys Ile Asp Asp Ile Trp Asn Leu Glu Val Lys Glu Asn Phe 3535 3540 3545	10778
got gga gaa goc aca oto caa ego ata tat too oto tgg gag cao agt Ala Gly Glu Ala Thr Leu Gln Arg Ile Tyr Ser Leu Trp Glu His Ser 3555 3560 3565	10826
acg aaa aac cac tta cag cta gag ggc ctc ttt ttc acc aac gga gaa Thr Lys Asn His Leu Gln Leu Glu Gly Leu Phe Phe Thr Asn Gly Glu 3570 3575 3580	10874
cat aca agc aaa gcc acc ctg gaa ctc tct cca tgg caa atg tca gct His Thr Ser Lys Ala Thr Leu Glu Leu Ser Pro Trp Gln Met Ser Ala 3585 3590 3595	10922
ctt gtt cag gtc cat gca agt cag ccc agt tcc ttc cat gat ttc cct Leu Val Gln Val His Ala Ser Gln Pro Ser Ser Phe His Asp Phe Pro 3600 3605 3610	10970
gac ctt ggc cag gaa gtg gcc ctg aat gct aac act aag aac cag aag Asp Leu Gly Gln Glu Val Ala Leu Asn Ala Asn Thr Lys Asn Gln Lys 3615 3620 3625 3630	11018
ato aga tgg aaa aat gaa gto ogg att oat tot ggg tot tto oag ago Ile Arg Trp Lys Asn Glu Val Arg Ile His Ser Gly Ser Phe Gln Ser 3645 3640 3645	11066
cag gtc gag ctt toc aat gac caa gaa aag gca cac ctt gac att gca Gln Val Glu Leu Ser Asn Asp Gln Glu Lys Ala His Leu Asp Ile Ala 3650 3655 3660	11114
gga tcc tta gaa gga cac cta agg ttc ctc aaa aat atc atc cta cca Gly Ser Leu Glu Gly His Leu Arg Phe Leu Lys Asn Ile Ile Leu Pro 3665 3670 3675	11162
gtc tat gac aag agc tta tgg gat ttc cta aag ctg gat gta acc acc Val Tyr Asp Lys Ser Leu Trp Asp Phe Leu Lys Leu Asp Val Thr Thr 3680 3695	11210
agc att ggt agg aga cag cat ctt ogt gtt toa act gcc ttt gtg tac Ser Ile Gly Arg Arg Gln His Leu Arg Val Ser Thr Ala Phe Val Tyr 3695 3700 3705 3710	11258
acc ama mac occ amt ggc tat tom the toc atc oct gtm amm gtt ttg Thr Lys Asn Pro Asn Gly Tyr Ser Phe Ser Ile Pro Val Lys Val Leu 3715 3720 3725	11306
gct gat aaa ttc att act cct ggg ctg aaa cta aat gat cta aat tca Ala Asp Lys Phe Ile Thr Pro Gly Leu Lys Leu Asn Asp Leu Asn Ser 3730 3735 3740	11354
gtt ctt gtc atg cct acg ttc cat gtc cca ttt aca gat ctt cag gtt	11402

Val Leu Val Met Pro T 3745	hr Phe His Val Pro Phe 3750	Thr Asp Leu Gln Val 3755	
	ac ttc aga gaa ata caa asp Phe Arg Glu Ile Gln 3765		11450
Arg Thr Ser Ser Phe A	cc ctc aac cta cca aca ala Leu Asn Leu Pro Thr 1780 378.	Leu Pro Glu Val Lys	11498
	rtg tta aca aaa tat tot 'al Leu Thr Lys Tyr Ser 3800		11546
ttg att ccc ttt ttt g Leu Ile Pro Phe Phe G 3810	ag ata acc gtg cct gaa lu Ile Thr Val Pro Glu 3815	tet cag tta act gtg Ser Gln Leu Thr Val 3820	11594
tcc cag ttc acg ctt c Ser Gln Phe Thr Leu P 3825	ca aaa agt gtt tca gat Pro Lys Ser Val Ser Asp 3830	ggc att gct gct ttg Gly Ile Ala Ala Leu 3835	11642
	cc aac aag atc gca gac la Asn Lys Ile Ala Asp 3845		11690
ate ate gtg cet gag c Ile Ile Val Pro Glu G 3855 3	ag acc att gag att ccc In Thr Ile Glu Ile Pro 860 386	too att aag tto tot Ser Ile Lys Phe Ser 5 3870	11738
	tc att cct tcc ttt caa fal Ile Pro Ser Phe Gln 3880		11786
ttt gag gta gac tct c Phe Glu Val Asp Ser P 3890	cc gtg tat aat gcc act ro Val Tyr Asn Ala Thr 3895	tgg agt gcc agt ttg Trp Ser Ala Ser Leu 3900	11834
aaa aac aaa gca gat t Lys Asn Lys Ala Asp T 3905	at gtt gaa aca gtc ctg 'yr Val Glu Thr Val Leu 3910	gat too aca tgo ago Asp Ser Thr Cys Ser 3915	11882
tca acc gta cag ttc c Ser Thr Val Gln Phe L 3920	eta gaa tat gaa cta aat eu Glu Tyr Glu Leu Asn 3925	gtt ttg gga aca cac Val Leu Gly Thr His 3930	11930
Lys Ile Glu Asp Gly T	ncg tta god tot aag act Thr Leu Ala Ser Lys Thr 1940 394	Lys Gly Thr Leu Ala	11978
His Arg Asp Phe Ser A 3955	ca gaa tat gaa gaa gat la Glu Tyr Glu Glu Asp 3960	Gly Lys Phe Glu Gly 3965	12026
Leu Gln Glu Trp Glu G 3970	ga aaa gog cac ctc aat Hy Lys Ala His Leu Asn 3975	Ile Lys Ser Pro Ala 3980	12074
Phe Thr Asp Leu His L 3985	tg ege tac cag aaa gac eu Arg Tyr Gln Lys Asp 3990	Lys Lys Gly Ile Ser 3995	12122
Thr Ser Ala Ala Ser P 4000	ca goe gta gge acc gtg Pro Ala Val Gly Thr Val 4005	Gly Met Asp Met Asp 4010	12170
Glu Asp Asp Asp Phe S 4015	ect ama tgg mac ttc tac er Lys Trp Asn Phe Tyr 1020 402.	Tyr Ser Pro Gln Ser 4030	12218
Ser Pro Asp Lys Lys L 4035	etc acc ata ttc aaa act eu Thr Ile Phe Lys Thr 4040	Glu Leu Arg Val Arg 4045	12266
gaa tot gat gag gaa a	ct cag atc aaa gtt aat	tgg gaa gaa gag gca	12314

Glu Ser Asp Glu Glu Thr Gln Ile Lys Val Asn Trp Glu Glu Glu Ala 4050 4055 4060	
get tot gge ttg eta ace tet etg aaa gae aac gtg eee aag gee aca Ala Ser Gly Leu Leu Thr Ser Leu Lys Asp Asn Val Pro Lys Ala Thr 4065 4070 4075	12362
ggg gto ott tat gat tat gto aac aag tac cac tgg gaa cac aca ggg Gly Val Leu Tyr Asp Tyr Val Asn Lys Tyr His Trp Glu His Thr Gly 4080 4090	12410
oto aco otg aga gaa gtg tot toa aag otg aga aga aat otg cag aac Leu Thr Leu Arg Glu Val Ser Ser Lys Leu Arg Arg Asn Leu Gln Asn 4095 4100 4105	12458
aat gct gag tgg gtt tat caa ggg gcc att agg caa att gat gat atc Asn Ala Glu Trp Val Tyr Gln Gly Ala Ile Arg Gln Ile Asp Asp Ile 4115 4120 4125	12506
gac gtg agg ttc cag aaa gca gcc agt ggc acc act ggg acc tac caa Asp Val Arg Phe Gln Lys Ala Ala Ser Gly Thr Thr Gly Thr Tyr Gln 4130 4135 4140	12554
gag tgg aag gac aag gcc cag aat ctg tac cag gaa ctg ttg act cag Glu Trp Lys Asp Lys Ala Gln Asn Leu Tyr Gln Glu Leu Leu Thr Gln 4145 4150 4155	12602
gaa ggc caa gcc agt ttc cag gga ctc aag gat aac gtg ttt gat ggc Glu Gly Gln Ala Ser Phe Gln Gly Leu Lys Asp Asn Val Phe Asp Gly 4160 4170	12650
ttg gta oga gtt act caa aaa ttc cat atg aaa gtc aag cat ctg att Leu Val Arg Val Thr Gln Lys Phe His Met Lys Val Lys His Leu Ile 4175 4180 4185 4190	12698
gac toa oto att gat tit otg aac tto ooc aga tto oag tit oog ggg Asp Ser Leu Ile Asp Phe Leu Asn Phe Pro Arg Phe Gln Phe Pro Gly 4195 4200 4205	12746
aaa cct ggg ata tac act agg gag gaa ctt tgc act atg ttc ata agg Lys Pro Gly Ile Tyr Thr Arg Glu Glu Leu Cys Thr Met Phe Ile Arg 4210 4220	12794
gag gta ggg acg gta ctg tcc cag gta tat tcg aaa gtc cat aat ggt Glu Val Gly Thr Val Leu Ser Gln Val Tyr Ser Lys Val His Asn Gly 4225 4230 4235	12842
toa gaa ata otg ttt too tat tto caa gao ota gtg att aca ott oot Ser Glu Ile Leu Phe Ser Tyr Phe Gln Asp Leu Val Ile Thr Leu Pro 4240 4245 4250	12890
ttc gag tta agg aaa cat aaa cta ata gat gta atc tcg atg tat agg Phe Glu Leu Arg Lys His Lys Leu Ile Asp Val Ile Ser Met Tyr Arg 4255 4260 4265 4270	12938
gaa ctg ttg aaa gat tta tca aaa gaa gcc caa gag gta ttt aaa gcc Glu Leu Leu Lys Asp Leu Ser Lys Glu Ala Gln Glu Val Phe Lys Ala 4275 4280 4285	12986
att cag tot oto aag acc aca gag gtg ota ogt aat ott cag gac ott Ile Gln Ser Leu Lys Thr Thr Glu Val Leu Arg Asn Leu Gln Asp Leu 4290 4295 4300	13034
tta caa tto att tto caa cta ata gaa gat aac att aaa cag ctg aaa Leu Gln Phe Ile Phe Gln Leu Ile Glu Asp Asn Ile Lys Gln Leu Lys 4305 4310 4315	13082
gag atg aaa ttt act tat ott att aat tat atc caa gat gag atc aac Glu Met Lys Phe Thr Tyr Leu Ile Asn Tyr Ile Gln Asp Glu Ile Asn 4320 4325 4330	13130
aca atc ttc aat gat tat atc cca tat gtt ttt aaa ttg ttg aaa gaa Thr Ile Phe Asn Asp Tyr Ile Pro Tyr Val Phe Lys Leu Leu Lys Glu 4335 4340 4345 4350	13178
aac cta tgc ctt aat ctt cat aag ttc aat gaa ttt att caa aac gag	13226

-concinued	
Asn Leu Cys Leu Asn Leu His Lys Phe Asn Glu Phe Ile Gln Asn Glu 4355 4360 4365	
ctt cag gaa get tet caa gag tta cag cag ate cat caa tae att atg Leu Cln Glu Ala Ser Gln Glu Leu Gln Gln Ile His Gln Tyr Ile Met 4370 4375 4380	13274
gcc ctt cgt gaa gaa tat ttt gat cca agt ata gtt ggc tgg aca gtg Ala Leu Arg Glu Glu Tyr Phe Asp Pro Ser Ile Val Gly Trp Thr Val 4385 4390 4395	13322
aaa tat tat gaa ctt gaa gaa aag ata gtc agt ctg atc aag aac ctg Lys Tyr Tyr Glu Leu Glu Glu Lys Ile $ extsf{Val}$ Ser Leu Ile Lys Asn Leu 4400 4405 4410	13370
tta gtt gct ctt aag gac ttc cat tct gaa tat att gtc agt gcc tct Leu Val Ala Leu Lys Asp Phe His Ser Glu Tyr Ile Val Ser Ala Ser 4415 4420 4425 4430	13418
aac ttt act tcc caa ctc tca agt caa gtt gag caa ttt ctg cac aga Asn Phe Thr Ser Gln Leu Ser Ser Gln Val Glu Gln Phe Leu His Arg 4435 4440 4445	13466
aat att cag gaa tat ctt agc atc ctt acc gat cca gat gga aaa ggg Asn Ile Gln Glu Tyr Leu Ser Ile Leu Thr Asp Pro Asp Gly Lys Gly 4450 4455 4460	13514
aaa gag aag att goa gag ott tot goo act got oag gaa ata att aaa Lys Glu Lys Ile Ala Glu Leu Ser Ala Thr Ala Gln Glu Ile Ile Lys 4465 4470 4475	13562
agc cag gcc att gcg acg aag aaa ata att tot gat tac cac cag cag Ser Gln Ala Ile Ala Thr Lys Lys Ile Ile Ser Asp Tyr His Gln Gln 4480 4485 4490	13610
ttt aga tat aan otg can gat ttt ton gac onn ott tot gat tac tat Phe Arg Tyr Lys Leu Gln Asp Phe Ser Asp Gln Leu Ser Asp Tyr Tyr 4495 4500 4505 4510	13658
gaa aaa ttt att got gaa too aaa aga ttg att gac ctg too att caa Glu Lys Phe Ile Ala Clu Ser Lys Arg Leu Ile Asp Leu Ser Ile Gln 4515 4520 4525	13706
aac tac cac aca ttt ctg ata tac atc acg gag tta ctg aaa aag ctg Asn Tyr His Thr Phe Leu Ile Tyr Ile Thr Glu Leu Leu Lys Lys Leu 4530 4535 4540	13754
caa toa acc aca gtc atg aac ccc tac atg aag ctt gct cca gga gaa Gln Ser Thr Thr Val Met Asn Pro Tyr Met Lys Leu Ala Pro Gly Glu 4545 4550 4555	13802
ctt act atc atc ctc taa tittitaaaa gaaatciica titatictic Leu Thr Ile Ile Leu * 4560	13850
ttttccaatt gaactttcac atagcacaga aaaaattcaa actgcctata ttgataaaac	13910
catacagtga gccagccttg cagtaggcag tagactataa gcagaagcac atatgaactg	13970
gacctgcacc asagctggca ccagggctcg gasggtctct gasctcagas ggatggcatt	14030
ttttgcaagt taaagaaaat caggatotga gttattttgc taaacttggg ggaggggaa	14090
caaataaatg gagtotttat tgtgtatcat a	14121
<210> SEQ ID NO 32 <211> LENGTH: 4563 <212> TYPE: PRT <213> ORGANISM: Homo sapien	
<400> SEQUENCE: 32	
Met Asp Pro Pro Arg Pro Ala Leu Leu Ala Leu Leu Ala Leu Pro Ala 1 5 10 15	

Leu	Leu	Leu	Leu 20	Leu	Leu	Ala	Gly	Ala 25	Arg	Ala	Glu	Glu	Gl u 30	Met	Leu
Glu	Asn	Val 35	Ser	Leu	Val	Сув	Pro 40	Lys	Авр	Ala	Thr	Arg 45	Phe	Lys	His
Leu	Arg 50	Lys	туг	Thr	Tyr	Asn 55	туг	Glu	Ala	Glu	Ser 60	Ser	Ser	Gly	Val
Pro 65	Gly	Thr	Ala	Авр	Ser 70	Arg	Ser	Ala	Thr	Arg 75	Ile	Asn	Сув	ьув	v al 80
Glu	Leu	Glu	Val	Pro 85	Gln	Leu	Cys	ser	Phe 90	Ile	Leu	ьув	Thr	ser 95	Gln
Сув	Thr	Leu	Lys 100	Glu	Val	Tyr	Gly	Phe 105	Asn	Pro	Glu	Gly	Lys 110	Ala	Leu
Leu	Lys	Lys 115	Thr	Lys	Asn	Ser	Glu 120	Glu	Phe	Ala	Ala	Ala 125	Met	Ser	Arg
Tyr	Glu 130	Leu	Lys	Leu	Ala	Ile 135	Pro	Glu	Gly	Lys	Gln 140	Val	Phe	Leu	Tyr
Pro 145	Glu	Lys	Asp	Glu	Pro 150	Thr	Туг	Ile	Leu	Asn 155	Ile	Lys	Arg	Gly	Ile 160
Ile	Ser	Ala	Leu	Leu 165	Val	Pro	Pro	Glu	Thr 170	Glu	Glu	Ala	Lys	Gln 175	Val
Leu	Phe	Leu	Asp 180	Thr	Val	Tyr	Gly	Asn 185	Сув	Ser	Thr	His	Phe 190	Thr	Val
Lує	Thr	Arg 195	Lys	Gly	Asn	Val	Ala 200	Thr	Glu	Ile	Ser	Thr 205	Glu	Arg	Asp
Leu	Gly 210	Gln	Сує	Asp	Arg	Phe 215	Lys	Pro	Ile	Arg	Thr 220	Gly	Ile	Ser	Pro
Leu 225	Ala	Leu	Ile	Lys	G1y 230	Met	Thr	Arg	Pro	Leu 235	Ser	Thr	Leu	Ile	Ser 240
Ser	Ser	Gln	Ser	Cys 245	Gln	Tyr	Thr	Leu	Asp 250	Ala	Lys	Arg	Lys	His 255	Val
Ala	Glu	Ala	11e 260	Сув	Lув	Glu	Gln	Нів 265	Leu	Phe	Leu	Pro	Phe 270	Ser	Tyr
Asn	Asn	Lys 275	Tyr	Gly	Met	Val	Ala 280	Gln	Val	Thr	Gln	Thr 285	Leu	Lув	Leu
Glu	Asp 290	Thr	Pro	Lys	Ile	Asn 295	Ser	Arg	Phe	Phe	Gl y 300	Glu	Gly	Thr	Lys
L у в 305	Met	Gly	Leu	Ala	Phe 310	Glu	ser	Thr	Lув	ser 315	Thr	Ser	Pro	Pro	Lув 320
Gln	Ala	Glu	Ala	Val 325	Leu	Lys	Thr	Leu	Gln 330	Glu	Leu	Lys	Lys	Leu 335	Thr
Ile	Ser	Glu	Gln 340	Asn	Ile	Gln	Arg	Ala 345	Asn	Leu	Phe	Asn	Lys 350	Leu	Val
Thr	Glu	Leu 355	Arg	Gly	Leu	Ser	Asp 360	Glu	Ala	Val	Thr	Ser 365	Leu	Leu	Pro
Gln	Leu 370	Ile	Glu	Val	Ser	Ser 375	Pro	Ile	Thr	Leu	Gln 380	Ala	Leu	Val	Gln
С у в 385	Gly	Gln	Pro	Gln	С у в 390	Ser	Thr	His	Ile	Leu 395	Gln	Trp	Leu	Lys	Arg 400
Val	His	Ala	Asn	Pro 405	Leu	Leu	Ile	Asp	Val 410	Val	Thr	туг	Leu	Val 415	Ala
Leu	Ile	Pro	Glu	Pro	Ser	Ala	Gln	Gln	Leu	Arg	Glu	Ile	Phe	Asn	Met

			420					425					430		
Ala	Arg	Авр 435	G1n	Arg	Ser	Arg	Ala 440	Thr	Leu	Tyr	Ala	Leu 445	Ser	His	Ala
Val	Asn 450	Asn	Tyr	His	ГÀз	Thr 455	Asn	Pro	Thr	Gly	Thr 460	Gln	Glu	Leu	Leu
Asp 465	Ile	Ala	Asn	Tyr	Leu 470	Met	Glu	Gln	Ile	Gln 475	Asp	Asp	Сув	Thr	Gly 480
Asp	Glu	Asp	Tyr	Thr 485	Tyr	Leu	Ile	Leu	Arg 490	Val	Ile	Gly	Asn	Met 495	Gly
Gln	Thr	Met	Glu 500	Gln	Leu	Thr	Pro	Glu 505	Leu	Lys	Ser	Ser	Ile 510	Leu	Lys
Сув	Val	Gln 515	Ser	Thr	Lys	Pro	Ser 520	Leu	Met	Ile	Gln	Lу в 525	Ala	Ala	Ile
Gln	Ala 530	Leu	Arg	Lys	Met	Glu 535	Pro	Lys	Asp	Lys	Asp 540	Gln	Glu	Val	Leu
Leu 545	Gln	Thr	Phe	Leu	Asp 550	Asp	Ala	Ser	Pro	Gly 555	qaA	Lys			560
Ala	Tyr	Leu	Met	Leu 565	Met	Arg	Ser	Pro	Ser 570	Gln	Ala	Asp	Ile	А вп 575	Lys
Ile	Val	Gln	11e 580	Leu	Pro	Trp	Glu	Gln 585	Asn	Glu	Gln	Val	Lys 590	Asn	Phe
Val	Ala	Ser 595	His	Ile			600					605		-	Ile
	Asp 610		_	_		615	Lys				620				
625	Thr				630		Lys			635					640
-	Ser			645				_	650				_	655	
	Asn		660					665					670		
Leu	Lys	675					Phe 680					685			
Glu	690					695	Gl y				700				Leu
705	Gly				710					715					720
_	Val			725			Asp		730				Leu	735	Asp
	Phe	_	740				Asp -	745					750		Asn -
	Ile	755					760					765			
	770					775					780				
785	Phe				790					795					800
	Gly			805					810					815	
IIe	Arg	⊥уs	61 y 820	ser	rys	Asn	Asp	Phe 825	Phe	Leu	H1S	Tyr	11e 830	Pne	Met

Glu	Asn	Ala 835	Phe	Glu	Leu	Pro	Thr 840	Gly	Ala	Gly	Leu	Gln 845	Leu	Gln	Ile
Ser	Ser 850	Ser	Gly	Val	Ile	Ala 855	Pro	Gly	Ala	Lys	Ala 860	Gly	Val	Lys	Leu
Glu 865	Val	Ala	Asn	Met	Gln 870	Ala	Glu	Leu	Val	Ala 875	Lys	Pro	Ser	Val	Ser 880
Val	Glu	Phe	Val	Thr 885	Asn	Met	Gly	Ile	11e 890	Ile	Pro	Asp	Phe	Ala 895	Arg
ser	Gly	Val	Gln 900	Met	Asn	Thr	Asn	Phe 905	Phe	His	Glu	ser	Gly 910	Leu	Glu
Ala	His	Val 915	Ala	Leu	Lys	Ala	Gl y 920	Lys	Leu	Lys	Phe	11e 925	Ile	Pro	Ser
Pro	Lys 930	Arg	Pro	Val	Lys	Leu 935	Leu	Ser	Gly	Gly	Asn 940	Thr	Leu	His	Leu
Val 945	Ser	Thr	Thr	Lys	Thr 950	Glu	Val	Ile	Pro	Pro 955	Leu	Ile	Glu	Asn	Arg 960
Gln	Ser	Trp	Ser	Val 965	Сув	Lys	Gln	Val	Phe 970	Pro	Gly	Leu	Asn	Tyr 975	Cys
Thr	Ser	Gly	Ala 980	Tyr	Ser	Asn	Ala	Ser 985	Ser	Thr	Asp	Ser	Ala 990	Ser	Tyr
Tyr	Pro	Leu 995	Thr	Gly	Asp	Thr	Arg 1000		Glu	Leu	Glu	Leu 1005		Pro	Thr
Gly	Glu 1010		Glu	Gln	Tyr	Ser 1015		Ser	Ala	Thr	Tyr 102		Leu	Gln	Arg
Glu 1025		Arg	Ala	Leu	Val 1030	Asp)	Thr	Leu	Lys	Phe 1035		Thr	Gln	Ala	Glu 1040
Gly	Ala	Lys	Gln	Thr 1045		Ala	Thr	Met	Thr 1050		Lys	Tyr	Asn	Arg 1055	
Ser	Met	Thr	Leu 1060	Ser	Ser	Glu	Val	Gln 1065	Ile	Pro	Asp	Phe	Asp 1070		Asp
Leu	Gly	Thr 1075		Leu	Arg	Val	Asn 1080		Glu	Ser	Thr	Glu 1085		Lys	Thr
Ser	Tyr 1090		Leu	Thr	Leu	Авр 1095		Gln	Asn	Lys	Lys 1100		Thr	Glu	Val
Ala 1105		Met	Gly	His	Leu 1110	Ser	Сув	Asp	Thr	Lys 1115		Glu	Arg	Lys	Ile 1120
Lys	Gly	Val	Ile	Ser 1125		Pro	Arg	Leu	Gln 1130		Glu	Ala	Arg	Ser 1135	
Ile	Leu	Ala	His 1140		Ser	Pro	Ala	Lys 1145		Leu	Leu	Gln	Met 1150		Ser
Ser	Ala	Thr 1155		Tyr	Gly	Ser	Thr 1160		Ser	Lys	Arg	Val 1165		Trp	His
Tyr	Asp 1170		Glu	Lys	Ile	Glu 1175		Glu	Trp	Asn	Thr 1180		Thr	Asn	Val
Asp 1185		Lув	Lys	Met	Thr 1190	Ser)	Asn	Phe	Pro	Val 1195		Leu	Ser	Авр	Tyr 1200
Pro	Lув	Ser	Leu	His 1205	Met	Tyr	Ala	Asn	Arg 1210	Leu)	Leu	Авр	His	Arg 1215	Val
Pro	Glu	Thr	Авр 1220	Met)	Thr	Phe	Arg	Нів 1225	Val	Gly	Ser	Lув	Leu 1230	Ile)	Val

											-	cont	tinı	ıed	
Ala	Met	Ser 1235		Trp	Leu	Gln	Lys 1240		Ser	Gly	Ser	Leu 1245		Tyr	Thr
Gln	Thr 1250		Gln	Авр	His	Leu 1255		Ser	Leu	Lys	Glu 1260	Phe	Asn	Leu	Gln
Asn 1265		Gly	Leu	Pro	Asp 1270		His	Ile	Pro	Glu 1275		Leu	Phe	Leu	Lys 1280
ser	Авр	Gly	Arg	Val 1285		Tyr	Thr	Leu	Asn 1290		Asn	Ser	Leu	Lув 1295	
Glu	Ile	Pro	Leu 1300		Phe	Gly	Gly	Lys 1305		ser	Arg	Asp	Leu 1310		Met
Leu	Glu	Thr 1315		Arg	Thr	Pro	Ala 1320		His	Phe	Lys	Ser 1325		Gly	Phe
нis	Leu 1330		Ser	Arg	Glu	Phe 1335		Val	Pro	Thr	Phe 1340	Thr	Ile	Pro	Lys
Leu 1345		Gln	Leu	Gln	Val 1350		Leu	Leu	Gly	Val 1355		Asp	Leu	Ser	Thr 1360
Asn	Val	Tyr	Ser	Asn 1365	Leu	Tyr	Asn	Trp	Ser 1370		Ser	Tyr	Ser	Gly 1375	Gly
Asn	Thr	Ser	Thr 1380		His	Phe	Ser	Leu 1385	Arg	Ala	Arg	Tyr	His 1390		Lys
Ala	Asp	Ser 1395		Val	Asp	Leu	Leu 1400		Tyr	Asn	Val	Gln 1405		Ser	Gly
Glu	Thr 1410		Tyr	qaA	His	Lys 1415		Thr	Phe	Thr	Leu 1420	Ser	Сув	Asp	Gly
Ser 1425		Arg	His	Lys	Phe 1430		Авр	Ser	Asn	11e 1435	Lys	Phe	Ser	His	Val 1440
Glu	Lys	Leu	Gly	Asn 1445		Pro	Val	Ser	Lys 1450		Leu	Leu	Ile	Phe 1455	
Ala	ser	Ser	Ser 1460		Gly	Pro	Gln	Met 1465		Ala	ser	Val	His 1470		Asp
Ser	Lув	Lув 1475	Lys	Gln	Нів	Leu	Phe 1480	Val	Lув	Glu	Val	Lув 1485	Ile	Авр	Gly
Gln	Phe 1490		Val	Ser	Ser	Phe 1495		Ala	Lys	Gly	Thr 1500	Tyr)	Gly	Leu	Ser
Сув 1505	Gln	Arg	Авр	Pro	Asn 1510	Thr	Gl y	Arg	Leu	Asn 1515	Gl y	Glu	Ser	Asn	Leu 1520
Arg	Phe	авп	Ser	Ser 1525		Leu	Gln	Gly	Thr 1530	Asn)	Gln	Ile	Thr	Gly 1535	Arg
Tyr	Glu	Asp	Gly 1540		Leu	Ser	Leu	Thr 1545		Thr	Ser	Asp	Leu 1550		Ser
Gly	Ile	Ile 1555	Lys	Asn	Thr	Ala	Ser 1560	Leu	Lys	Tyr	Glu	Asn 1565	Tyr	Glu	Leu
Thr	Leu 1570		Ser	qaA	Thr	Asn 1575		Lys	Tyr	Lys	Asn 1580	Phe	Ala	Thr	Ser
Asn 1585		Met	Asp	Met	Thr 1590		Ser	Lys	Gln	Asn 1595		Leu	Leu	Arg	Ser 1600
Glu	Tyr	Gln	Ala	Asp 1605	Tyr	Glu	Ser	Leu	Arg 1610	Phe	Phe	Ser	Leu	Leu 1615	
Gly	Ser	Leu	Asn 1620		His	Gly	Leu	Glu 1625		Asn	Ala	Asp	Ile 1630		Gly

Thr Asp Lys Ile Asn Ser Gly Ala His Lys Ala Thr Leu Arg Ile Gly

												COII	СТП	ueu	
		1635	ā				1640)				1645	ā		
Gln	Asp 1650		Ile	Ser	Thr	Ser 1655	Ala	Thr	Thr	Asn	Leu 1660	Lys)	Cys	Ser	Leu
Leu 1665		Leu	Glu	Asn	Glu 1670	Leu)	Asn	Ala	Glu	Leu 167	Gl y	Leu	Ser	Gly	Ala 1680
Ser	Met	Lys	Leu	Thr 1685		Asn	Gly	Arg	Phe 1690		Glu	His	Asn	Ala 1695	
Phe	Ser	Leu	Asp 1700		Lys	Ala	Ala	Leu 1705		Glu	Leu	Ser	Leu 1710		Ser
Ala	Tyr	Gln 1715		Met	Ile	Leu	Gly 1720		Asp	Ser	Lys	Asn 1725		Phe	Asn
Phe	Lу в 1730	Val	Ser	Gln	Glu	Gly 1735		Lys	Leu	Ser	Asn 1740		Met	Met	Gly
Ser 1745	Tyr	Ala	Glu	Met	Lys 175	Phe	Asp	His	Thr	Asn 1755	Ser	Leu	Asn	Ile	Ala 1760
Gly	Leu	Ser	Leu	Asp 1765		Ser	Ser	Lys	Leu 1770		Asn	Ile	Tyr	Ser 1775	
Asp	Lys	Phe	Tyr 1780		Gln	Thr	Val	Asn 1785		Gln	Leu	Gln	Pro 1790		Ser
Leu	Val	Thr 1795	Thr	Leu	Asn	Ser	Asp 1800	Leu)	Lys	Tyr	Asn	Ala 1805	Leu	Авр	Leu
Thr	Asn 1810		Gly	Lys	Leu	Arg 1819		Glu	Pro	Leu	Lys 1820		His	Val	Ala
Gly 1825		Leu	Lys	Gly	Ala 1830	Tyr	Gln	Asn	Asn	Glu 1835		Lув	His	Ile	Tyr 1840
Ala	Ile	Ser	Ser	Ala 1845		Leu	Ser	Ala	Ser 1850		Lys	Ala	Asp	Thr 1855	
Ala	Lys	Val	Gln 1860		Val	Glu	Phe	Ser 1865		Arg	Leu	Asn	Thr 1870		Ile
Ala	Gly	Leu 1875	Ala	Ser	Ala	Ile	Asp 1880		Ser	Thr	Asn	Tyr 1885		Ser	Asp
Ser	Leu 1890		Phe	Ser	Asn	Val 1895		Arg	Ser	Val	Met 1900		Pro	Phe	Thr
Met 1905	Thr	Ile	Asp	Ala	His 1910	Thr	Asn	Gly	Asn	Gly 191	L y s	Leu	Ala	Leu	Trp 1920
Gly	Glu	His	Thr	Gly 1925		Leu	Tyr	Ser	L y s 1930		Leu	Leu	Lys	Ala 1935	
Pro	Leu	Ala	Phe 1940		Phe	Ser	His	Asp 1945	Tyr	Lys	Gly	Ser	Thr 1950		His
His	Leu	Val 1955		Arg	Lys	Ser	11e 1960	Ser	Ala	Ala	Leu	Glu 1965		Lys	Val
Ser	Ala 1970		Leu	Thr	Pro	Ala 1975		Gln	Thr	Gly	Thr 1986		Lys	Leu	Lys
Thr 1985	Gln	Phe	Asn	Asn	Asn 1990	Glu)	Tyr	Ser	Gln	Asp 1995	Leu	Asp	Ala	Tyr	Asn 2000
				2005	5	Val			2010)				2015	5
			2020)		Pro		2025	i				2030)	
Pro	Ile	Asn 2035		Ile	Asp	Ala	Leu 2040		Met	Arg	qaA	Ala 2045		Glu	Lys

Pro Gln Glu Phe Thr Ile Val Ala Phe Val Lys Tyr Asp Lys Asn Gln 2050 2055 2060	
Asp Val His Ser Ile Asn Leu Pro Phe Phe Glu Thr Leu Gln Glu Tyr 2065 2070 2075)
Phe Glu Arg Asn Arg Gln Thr Ile Ile Val Val Val Glu Asn Val Gln 2085 2090 2095	
Arg Asn Leu Lys His Ile Asn Ile Asp Gln Phe Val Arg Lys Tyr Arg $2100 \hspace{1cm} 2105 \hspace{1cm} 2110$	
Ala Ala Leu Gly Lys Leu Fro Gln Gln Ala Asn Asp Tyr Leu Asn Ser 2115 2120 2125	
Phe Asn Trp Glu Arg Gln Val Ser His Ala Lys Glu Lys Leu Thr Ala 2130 2135 2140	
Leu Thr Lys Lys Tyr Arg Ile Thr Glu Asn Asp Ile Gln Ile Ala Leu 2145 2150 2155 2166)
Asp Asp Ala Lys Ile Asn Phe Asn Glu Lys Leu Ser Gln Leu Gln Thr $$2165$$ $$2170$$ $$2175$	
Tyr Met Ile Gln Phe Asp Gln Tyr Ile Lys Asp Ser Tyr Asp Leu His 2180 2185 2190	
Asp Leu Lys Ile Ala Ile Ala Asn Ile Ile Asp Glu Ile Ile Glu Lys 2195 2200 2205	
Leu Lys Ser Leu Asp Glu His Tyr His Ile Arg Val Asn Leu Val Lys 2210 2215 2220	
Thr Ile His Asp Leu His Leu Phe Ile Glu Asn Ile Asp Phe Asn Lys 2225 2230 2235 2240)
Ser Gly Ser Ser Thr Ala Ser Trp Ile Gln Asn Val Asp Thr Lys Tyr 2245 2250 2255	
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His	
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 2265 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His	
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 2270 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2275 2285 Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr)
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2285 Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr 2290 Ile Ser Phe Glu Arg Ile Asp Asp Val Leu Glu His Val Lys His Phe)
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2275 Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr 2290 2300 Ile Ser Phe Glu Arg Ile Asn Asp Val Leu Glu His Val Lys His Phe 2305 Val Ile Asn Leu Ile Gly Asp Phe Glu Val Ala Glu Lys Ile Asn Ala)
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2277 Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr 2290 Ile Ser Phe Glu Arg Ile Asn Asp Val Leu Glu His Val Lys His Phe 2305 Val Ile Asn Leu Ile Gly Asp Phe Glu Val Ala Glu Lys Ile Asn Ala 2235 Phe Arg Ala Lys Val His Glu Leu Ile Glu Arg Tyr Glu Val Asp Gln)
2245 2250 2255 Gln Ile Arg Ile Gln Ile Gln Glu Lys Leu Gln Gln Leu Lys Arg His 2260 Ile Gln Asn Ile Asp Ile Gln His Leu Ala Gly Lys Leu Lys Gln His 2277 Ile Glu Ala Ile Asp Val Arg Val Leu Leu Asp Gln Leu Gly Thr Thr 2290 Ile Ser Phe Glu Arg Ile Asn Asp Val Leu Glu His Val Lys His Phe 2305 Val Ile Asn Leu Ile Gly Asp Phe Glu Val Ala Glu Lys Ile Asn Ala 2325 Phe Arg Ala Lys Val His Glu Leu Ile Glu Arg Tyr Glu Val Asp Gln Leu Glu Ile Gln Val Leu Gln Ile Gln Val Leu Met Asp Lys Leu Val Glu Leu Thr His Gln Tyr)

 Val
 Lys
 Lys
 Lys
 Leu
 Asn
 Glu
 Leu
 Ser
 Phe Lys
 Lys
 Thr
 Phe
 Ile
 Glu
 Asp
 Val

 Asn
 Lys
 Phe
 Leu
 Asp
 Met
 Leu
 Ile
 Lys
 Lys
 Leu
 Lys
 Phe
 Asp
 Phe
 Asp
 Tyr

 Ass
 Phe
 Val
 Asp
 Clu
 Thr
 Asp
 Lys
 Ile
 Arg
 Glu
 Val
 Thr
 Gln

 Ass
 Phe
 Val
 Ass
 Phe
 Val
 Thr
 Glu
 Val
 Thr
 Glu

-continued Arg Leu Asn Gly Glu Ile Gln Ala Leu Glu Leu Pro Gln Lys Ala Glu 2455 Ala Leu Lys Leu Phe Leu Glu Glu Thr Lys Ala Thr Val Ala Val Tyr 2470 2475 Leu Glu Ser Leu Gln Asp Thr Lys Ile Thr Leu Ile Ile Asn Trp Leu 2490 Gln Glu Ala Leu Ser Ser Ala Ser Leu Ala His Met Lys Ala Lys Phe 2505 Arg Glu Thr Leu Glu Asp Thr Arg Asp Arg Met Tyr Gln Met Asp Ile Gln Gln Glu Leu Gln Arg Tyr Leu Ser Leu Val Gly Gln Val Tyr Ser 2535 Thr Leu Val Thr Tyr Ile Ser Asp Trp Trp Thr Leu Ala Ala Lys Asn Leu Thr Asp Phe Ala Glu Gln Tyr Ser Ile Gln Asp Trp Ala Lys Arg 2565 2570 2575Met Lys Ala Leu Val Glu Gln Gly Phe Thr Val Pro Glu Ile Lys Thr 2580 2585 2590 Ile Leu Gly Thr Met Pro Ala Phe Glu Val Ser Leu Gln Ala Leu Gln Lys Ala Thr Phe Gln Thr Pro Asp Phe Ile Val Pro Leu Thr Asp Leu 2615 Arg Ile Pro Ser Val Gln Ile Asn Phe Lys Asp Leu Lys Asn Ile Lys 2625 2630 2635 264 Ile Pro Ser Arg Phe Ser Thr Pro Glu Phe Thr Ile Leu Asn Thr Phe His Ile Pro Ser Phe Thr Ile Asp Phe Val Glu Met Lys Val Lys Ile 2660 2665 2670 Ile Arg Thr Ile Asp Gln Met Gln Asn Ser Glu Leu Gln Trp Pro Val 2680 Pro Asp Ile Tyr Leu Arg Asp Leu Lys Val Glu Asp Ile Pro Leu Ala 2690 2695 2700 Arg Ile Thr Leu Pro Asp Phe Arg Leu Pro Glu Ile Ala Ile Pro Glu 2705 2710 2715 2726 Phe Ile Ile Pro Thr Leu Asn Leu Asn Asp Phe Gln Val Pro Asp Leu His Ile Pro Glu Phe Gln Leu Pro His Ile Ser His Thr Ile Glu Val 2745 Pro Thr Phe Gly Lys Leu Tyr Ser Ile Leu Lys Ile Gln Ser Pro Leu Phe Thr Leu Asp Ala Asn Ala Asp Ile Gly Asn Gly Thr Thr Ser Ala Asn Glu Ala Gly Ile Ala Ala Ser Ile Thr Ala Lys Gly Glu Ser Lys 2785 2790 2795 280 Leu Glu Val Leu Asn Phe Asp Phe Gln Ala Asn Ala Gln Leu Ser Asn Pro Lys Ile Asn Pro Leu Ala Leu Lys Glu Ser Val Lys Phe Ser Ser 2820 2825 2830

Lys Tyr Leu Arg Thr Glu His Gly Ser Glu Met Leu Phe Phe Gly Asn $2835 \hspace{1.5cm} 2840 \hspace{1.5cm} 2845$ Ala Ile Glu Gly Lys Ser Asn Thr Val Ala Ser Leu His Thr Glu Lys

												con	tini	ıea	
	2850)				2855	ā				2860)			
Asn 2865	Thr	Leu	Glu	Leu	Ser 287	Asn)	Gly	Val	Ile	Val 2875	Lys	Ile	Asn	Asn	Gln 2880
Leu	Thr	Leu	Asp	Ser 288		Thr	Lys	Tyr	Phe 2890		Lys	Leu	Asn	Ile 2895	
Lys	Leu	Asp	Phe 2900		ser	Gln	Ala	Asp 2905	Leu	Arg	Asn	Glu	Ile 2910		Thr
Leu	Leu	Lys 2915	Ala	Gly	His	Ile	Ala 2920	Trp	Thr	Ser	Ser	Gly 2925	L y s	Gly	Ser
Trp	Lу в 2930		Ala	Сув	Pro	Arg 2935		Ser	qaA	Glu	Gly 2940	Thr	His	Glu	Ser
Gln 2945		Ser	Phe	Thr	11e 295		Gly	Pro	Leu	Thr 2955		Phe	Gly	Leu	Ser 2960
Asn	Lys	Ile	Asn	Ser 2965	Lys	His	Leu	Arg	Val 2970	Asn)	Gln	Asn	Leu	Val 2975	Tyr
Glu	Ser	Gly	Ser 2980		Asn	Phe	Ser	Lys 2985		Glu	Ile	Gln	Ser 2990		Val
Авр	Ser	Gln 2995		Val	Gly	His	Ser 3000		Leu	Thr	Ala	Lу в 3005		Met	Ala
Leu	Phe 3010		Glu	Gly	Lys	Ala 3015		Phe	Thr	Gly	Arg 3020	нів)	Авр	Ala	His
Leu 3025		Gly	Lys	Val	11e 3030		Thr	Leu	Lys	Asn 3035		Leu	Phe	Phe	Ser 3040
Ala	Gln	Pro	Phe	Glu 3045		Thr	Ala	Ser	Thr 3050		Asn	Glu	Gly	Asn 3055	
Lys	Val	Arg	Phe 3060		Leu	Arg	Leu	Thr 3065		Lys	Ile	Asp	Phe 3070		Asn
Asn	Tyr	Ala 3075		Phe	Leu	Ser	Pro 3080		Ala	Gln	Gln	Ala 3085		Trp	Gln
Val	Ser 3090	Ala)	Arg	Phe	Asn	Gln 3095	Tyr	Lys	Tyr	Asn	Gln 310	Asn)	Phe	Ser	Ala
Gly 3105	Asn	Asn	Glu	Asn	Ile 3110		Glu	Ala	His	Val 3115		Ile	Asn	Gly	Glu 3120
Ala	Asn	Leu	Asp	Phe 312:		Asn	Ile	Pro	Leu 3130		Ile	Pro	Glu	Met 3135	
Leu	Pro	Tyr	Thr 3140		Ile	Thr	Thr	Pro 3145		Leu	Lys	Asp	Phe 3150		Leu
Trp	Glu	Lys 3155		Gly	Leu	Lys	Glu 3160	Phe	Leu	Lys	Thr	Thr 3165		Gln	Ser
Phe	Asp 3170		ser	Val	Lys	Ala 3175		Tyr	Lys	Lys	Asn 3180	Lys)	His	Arg	His
Ser 3185		Thr	Asn	Pro	Leu 319	Ala	Val	Leu	Сув	Glu 3195	Phe	Ile	Ser	Gln	Ser 3200
Ile	Lys	Ser	Phe	Asp 3205		His	Phe	Glu	Lys 3210		Arg	Asn	Asn	Ala 3215	
Asp	Phe	Val	Thr 3220		Ser	Tyr	Asn	Glu 3225		Lys	Ile	Lys	Phe 3230		Lys
Tyr	Lys	Ala 3235	Glu	Lys	Ser	His	Asp 3240		Leu	Pro	Arg	Thr 3245		Gln	Ile
Pro	Gly 3250		Thr	Val	Pro	Val 3255		Asn	Val	Glu	Val 3260	Ser	Pro	Phe	Thr

Ile Glu Met Ser Ala Phe Gly Tyr Val Phe Pro Lys Ala Val Ser Met 3265 3270 3275 3280

Pro Ser Phe Ser Ile Leu Gly Ser Asp Val Arg Val Pro Ser Tyr Thr 3285 3290 3295

Leu Ile Leu Pro Ser Leu Glu Leu Pro Val Leu His Val Pro Arg Asn 3300 3305 3310

Leu Lys Leu Ser Leu Pro His Phe Lys Glu Leu Cys Thr Ile Ser His $3315 \hspace{1.5cm} 3320 \hspace{1.5cm} 3325$

Ile Phe Ile Pro Ala Met Gly Asn Ile Thr Tyr Asp Phe Ser Phe Lys 3330 3335 3340

 Ser Ser Val
 Ile Thr
 Leu Asn
 Thr
 Asn
 Ala
 Glu
 Leu Phe Asn
 Gln
 Ser

 3345
 3350
 3355
 3350
 3355
 3360

Asp Ile Val Ala His Leu Leu Ser Ser Ser Ser Ser Val Ile Asp Ala

Leu Gln Tyr Lys Leu Glu Gly Thr Thr Arg Leu Thr Arg Lys Arg Gly 3380 3385

Leu Lys Leu Ala Thr Ala Leu Ser Leu Ser Asn Lys Phe Val Glu Gly 3395 3400 3405

Ser His Asn Ser Thr $\forall al$ Ser Leu Thr Thr Lys Asn Met Glu $\forall al$ Ser 3410 3415 3420

Val Ala Lys Thr Thr Lys Ala Glu Ile Pro Ile Leu Arg Met Asn Phe 3425 3430 3435 3440

Lys Gln Glu Leu Asn Gly Asn Thr Lys Ser Lys Pro Thr Val Ser Ser 3445 3455

Ser Met Glu Phe Lys Tyr Asp Phe Asn Ser Ser Met Leu Tyr Ser Thr 3460 3465 3470

Tyr Phe Ser Ile Glu Ser Ser Thr Lys Gly Asp Val Lys Gly Ser Val 3490 3500

Leu Ser Arg Glu Tyr Ser Gly Thr Ile Ala Ser Glu Ala Asn Thr Tyr 3505 3510 3515 3526

Leu Asn Ser Lys Ser Thr Arg Ser Ser Val Lys Leu Gln Gly Thr Ser 3525 3530 3535

Lys Ile Asp Asp Ile Trp Asn Leu Glu Val Lys Glu Asn Phe Ala Gly 3540 3550

Glu Ala Thr Leu Gln Arg Ile Tyr Ser Leu Trp Glu His Ser Thr Lys 3555 3560 3565

Asn His Leu Gln Leu Glu Gly Leu Phe Phe Thr Asn Gly Glu His Thr 3570 3575 3580

Ser Lys Ala Thr Leu Glu Leu Ser Pro Trp Gln Met Ser Ala Leu Val 3585 3590 360

Gln Val His Ala Ser Gln Pro Ser Ser Phe His Asp Phe Pro Asp Leu 3605 3610 3615

Gly Gln Glu Val Ala Leu Asn Ala Asn Thr Lys Asn Gln Lys Ile Arg 3620 3625 3630

Trp Lys Asn Glu Val Arg Ile His Ser Gly Ser Phe Gln Ser Gln Val 3635 3640 3645

Glu Leu Ser Asn Asp Gln Glu Lys Ala His Leu Asp Ile Ala Gly Ser 3650 3660

			-con	tinued
Leu Glu Gly His 3665	Leu Arg Phe 3670	Leu Lys Asr	Ile Ile Leu 3675	Pro Val Tyr 3680
Asp Lys Ser Leu	Trp Asp Phe 3685	Leu Lys Leu 369		Thr Ser Ile 3695
Gly Arg Arg Gln 3700		Val Ser Thr 3705	Ala Phe Val	Tyr Thr Lys 3710
Asn Pro Asn Gly 3715	Tyr Ser Phe	Ser Ile Pro 3720	Val Lys Val 3725	
Lys Phe Ile Thr 3730	Pro Gly Leu 3735		Asp Leu Asn 3740	Ser Val Leu
Val Met Pro Thr 3745	Phe His Val 3750	Pro Phe Thr	Asp Leu Gln 3755	Val Pro Ser 3760
Cys Lys Leu Asp	Phe Arg Glu 3765	Ile Gln Ile 377		Leu Arg Thr 3775
Ser Ser Phe Ala		Pro Thr Leu 3785	Pro Glu Val	Lys Phe Pro 3790
Glu Val Asp Val 3795	Leu Thr Lys	Tyr Ser Glr 3800	Pro Glu Asp 3805	
Pro Phe Phe Glu 3810	Ile Thr Val		Gln Leu Thr 3820	Val Ser Gln
Phe Thr Leu Pro 3825	Lys Ser Val 3830	Ser Asp Gly	7 Ile Ala Ala 3835	Leu Asp Leu 3840
Asn Ala Val Ala	Asn Lys Ile 3845	Ala Asp Phe 385		Thr Ile Ile 3855
Val Pro Glu Gln 3860		Ile Pro Ser 3865	: Ile Lys Phe	Ser Val Pro 3870
Ala Gly Ile Val 3875	Ile Pro Ser	Phe Gln Ala 3880	Leu Thr Ala 3885	
Val Asp Ser Pro 3890	Val Tyr Asn 3895		Ser Ala Ser 3900	Leu Lys Asn
Lys Ala Asp Tyr 3905	Val Glu Thr 3910	Val Leu Asp	Ser Thr Cys 3915	Ser Ser Thr 3920
Val Gln Phe Leu	Glu Tyr Glu 3925	Leu Asn Val		His Lys Ile 3935
Glu Asp Gly Thr 3940		Lys Thr Lys 3945	Gly Thr Leu	Ala His Arg 3950
Asp Phe Ser Ala 3955	Glu T y r Glu	Glu Asp Gly 3960	Lys Phe Glu 3965	Gly Leu Gln
Glu Trp Glu Gly 3970	Lys Ala His 3975		Lys Ser Pro 3980	Ala Phe Thr
Asp Leu His Leu 3985	Arg Tyr Gln 3990	Lys Asp Lys	Lys Gly Ile 3995	Ser Thr Ser 4000
Ala Ala Ser Pro	Ala Val Gly 4005	Thr Val Gly		Asp Glu Asp 4015
Asp Asp Phe Ser	Lys Trp Asn	Phe Tyr Tyr 4025	Ser Pro Gln	Ser Ser Pro 4030
Asp Lys Lys Leu 4035	Thr Ile Phe	Lys Thr Glu 4040	Leu Arg Val	
Asp Glu Glu Thr 4050	Gln Ile Lys 4055	Val Asn Trp 5	Glu Glu Glu 4060	Ala Ala Ser

Gly Leu Leu Thr Ser Leu Lys Asp Asn Val Pro Lys Ala Thr Gly Val

											-	con	tini	ıea	
4065	5				4070)				4075					4080
Leu	Tyr	Asp	Tyr	Val 4085	Asn	L y s	Tyr	His	Trp 4090	Glu	His	Thr	Gly	Leu 4095	Thr
Leu	Arg	Glu	Val 4100	Ser	Ser	Lys	Leu	Arg 4105	Arg	Asn	Leu	Gln	Asn 4110	Asn	Ala
Glu	Trp	Val 4115	Tyr	Gln	Gly	Ala	Ile 4120	Arg	Gln	Ile	qaA	Asp 4125	Ile	Asp	Val
Arg	Phe 4130		Lys	Ala	Ala	Ser 4135	Gly	Thr	Thr	Gly	Thr 4140	Tyr	Gln	Glu	Trp
Lув 4145		Lys	Ala	Gln	Asn 4150	Leu)	Туг	Gln	Glu	Leu 4155		Thr	Gln	Glu	Gly 4160
Gln	Ala	Ser	Phe	Gln 4165		Leu	Lys	Asp	Asn 4170	Val	Phe	Asp	Gly	Leu 4175	
Arg	Val	Thr	Gln 4180		Phe	His	Met	Lys 4185	Val	Lys	His	Leu	Ile 4190		Ser
Leu	Ile	Авр 4195		Leu	Asn	Phe	Pro 4200		Phe	Gln	Phe	Pro 4205		Lуs	Pro
Gly	11e 4210		Thr	Arg	Glu	Glu 4215		Сув	Thr	Met	Phe 4220		Arg	Glu	Val
Gly 4225	Thr	Val	Leu	Ser	Gln 4230	Val	Tyr	Ser	Lys	Val 4235	His	Asn	Gly	Ser	Glu 4240
Ile	Leu	Phe	Ser	Tyr 4245	Phe	Gln	Asp	Leu	Val 4250	Ile	Thr	Leu	Pro	Phe 4255	Glu
Leu	Arg	Lys	His 4260		Leu	Ile	Asp	Val 4265		Ser	Met	Tyr	Arg 4270		Leu
Leu	Lys	А вр 4275		Ser	Lys	Glu	Ala 4280		Glu	Val	Phe	Lув 4285		Ile	Gln
Ser	Leu 4290		Thr	Thr	Glu	Val 4295	Leu	Arg	Asn	Leu	Gln 4300		Leu	Leu	Gln
Phe 4305		Phe	Gln	Leu	11e 4310	Glu)	Asp	Asn	Ile	Lys 4315		Leu	Lys	Glu	Met 4320
Lys	Phe	Thr	Tyr	Leu 4325		Asn	Tyr	Ile	Gln 4330		Glu	Ile	Asn	Thr 4335	
Phe	Asn	Asp	Tyr 4340	Ile	Pro	Tyr	Val	Phe 4345	Lys	Leu	Leu	Lys	Glu 4350	Asn	Leu
Сув	Leu	Asn 4355		His	Lys	Phe	Asn 4360		Phe	Ile	Gln	Asn 4365		Leu	Gln
Glu	Ala 4370		Gln	Glu	Leu	Gln 4375		Ile	His	Gln	Tyr 4380		Met	Ala	Leu
Arg 4385		Glu	Tyr	Phe	Asp 4390	Pro	Ser	Ile	Val	Gly 4395	Trp	Thr	Val	Lys	Tyr 4400
Tyr	Glu	Leu	Glu	Glu 4405	Lys	Ile	Val	Ser	Leu 4410	Ile	Lys	Asn	Leu	Leu 4415	
Ala	Leu	Lys	Asp 4420		His	Ser	Glu	Tyr 4425		Val	Ser	Ala	Ser 4430		Phe
Thr	Ser	Gln 4435		Ser	Ser	Gln	Val 4440		Gln	Phe	Leu	Н і в 4445		Asn	Ile
Gln	Glu 4450	Туг	Leu	Ser	Ile	Leu 4455		Asp	Pro	Asp	Gly 4460		Gly	Lys	Glu
Lys 4465		Ala	Glu	Leu	Ser 4470	Ala)	Thr	Ala	Gln	Glu 4475		Ile	Lys	ser	Gln 4480

Ala	Ile	Ala	Thr	Lys 4485		Ile	Ile	Ser	Asp 4490		His	Gln	Gln	Phe 4495		
Tyr	Lys	Leu	Gln 4500		Phe	Ser	Asp	Gln 4505		Ser	Asp	Tyr	Tyr 4510		Lys	
Phe	Ile	Ala 4515		Ser	Lув	Arg	Leu 4520		двр	Leu	Ser	11e 4525		Asn	Tyr	
His	Thr 4530	Phe	Leu	Ile	Tyr	Ile 4535		Glu	Leu	Leu	Lys 4540	Lув)	Leu	Gln	Ser	
Thr 4545	Thr	Val	Met	Asn	Pro 4550	Tyr	Met	Lys	Leu	Ala 4555	Pro	Gly	Glu	Leu	Thr 4560	
Ile	Ile	Leu														
<211 <212 <213 <220 <221 <221 <222 <223	> LE > TY > OR > FE > NA > LC > OI	Q ID NGTH PE: GANI ATUR ME/K CATI HER 10-n	DNA SM: E: EY: ON: INFO	Homo CDS (13) RMAT	(ION:	1983 Nuc	leot									
		-		g gt	gaa d As	ic ga in Gl	ia go .u Al		ıa gç rg Gl	ja aa y As	ac aç sn Se		je et er Le	ccaa eu Aa	e ccc sn Pro	51
tgc Cys	ttg Leu 15	gag Glu	ggc Gly	agt Ser	gcc Ala	agc Ser 20	agt Ser	ggc Gly	agt Ser	gag Glu	agc Ser 25	tcc Ser	aaa Lys	gat Asp	agt Ser	99
		tqt C y s														147
cgg Arg	gag Glu	aag Lys	atg Met	agg Arg 50	egg Arg	cga Arg	ttg Leu	gaa Glu	tct Ser 55	ggt Gly	gac Asp	aag Lys	tgg Trp	ttc Phe 60	tcc Ser	195
ctg Leu	gaa Glu	ttc Phe	ttc Phe 65	cct Pro	cat Pro	cga Arg	act Thr	gct Ala 70	gag Glu	gga Gly	gct Ala	gtc Val	aat Asn 75	ctc Leu	atc Ile	243
tca Ser	agg Arg	ttt Phe 80	gac Asp	agg Arg	atg Met	gca Ala	gca Ala 85	ggt Gly	ggc Gly	ccc Pro	ctc Leu	tac Tyr 90	ata Ile	gac Asp	gtg Val	291
		cac His														339
atg Met 110	atg Met	atc Ile	gcc Ala	agc Ser	acc Thr 115	gcc Ala	gtg Val	aac Asn	tac Tyr	tgt C y s 120	ggc Gl y	ctg Leu	gag Glu	acc Thr	atc Ile 125	387
ctg Leu	cac His	atg Met	acc Thr	tgc Cys 130	tgc C y s	ogt Arg	cag Gln	cgc Arg	otg Leu 135	gag Glu	gag Glu	atc Ile	acg Thr	ggc Gly 140	cat His	435
		aaa Lys														483
gga Gly	gac Asp	cca Pro 160	ata Ile	ggt Gly	gac Asp	cag Gln	tgg Trp 165	gaa Glu	gag Glu	gag Glu	qaq Glu	gga Gly 170	ggc Gly	ttc Phe	aac Asn	531
tac	gca	gtg	gac	ctg	gtg	aag	cac	atc	cga	agt	gag	ttt	ggt	gac	tac	579

ī	yr	Ala 175	Val	Asp	Leu	Val	Lys 180	His	Ile	Arg	Ser	Glu 185	Phe	Gly	Asp	Tyr	
P								tac Tyr									627
								cac His									675
								ctt Leu									723
								gac Asp 245									771
								qqc Gl y									819
L								cca Pro									867
P	ro	atc Ile	aaa Lys	gac Asp	aac Asn 290	gat Asp	gct Ala	gcc Ala	atc Ile	ege Arg 295	aac Asn	tat Tyr	ggc Gly	atc Ile	gag Glu 300	ctg Leu	915
								ctt Leu									963
L	tc eu	cac His	ttc Phe 320	tac Tyr	acc Thr	ctc Leu	aac Asn	ege Arg 325	gag Glu	atg Met	gct Ala	acc Thr	aca Thr 330	gag Glu	gtg Val	ctg Leu	1011
								gag Glu									1059
A								cgc Arg									1107
								agt Ser									1155
								tgg Trp									1203
								ctc Leu 405									1251
								tgg Trp									1299
s								ctt Leu									1347
								ctg Leu									1395
								gag Glu									1443
g	gc	atc	ctc	acc	atc	aac	tca	cag	ccc	aac	atc	aac	aaa	aag	ccg	tcc	1491

Gly	Ile	Leu 480	Thr	Ile	Asn	Ser	Gln 485	Pro	Asn	Ile	Asn	Gly 490	Lys	Pro	Ser	
														ttc Phe		1539
														gca Ala		1587
														ctt Leu 540		1635
														ccg Pro		1683
														ccc Pro		1731
gta 7al	gtg Val 575	gat Asp	ccc Pro	gtc Val	agc Ser	ttc Phe 580	atg Met	ttc Phe	tgg Trp	aag Lys	gac Asp 585	gag Glu	gcc Ala	ttt Phe	gcc Ala	1779
														ccg Pro		1827
														aac Asn 620		1875
														gtg Val		1923
														gaa Glu		1971
	gct Ala 655			ccci	tgcg	tec 1	tgac	geeet	tg c	gttg	gage	c act	teet	gtcc		2023
					_	_									etataa	2083
	tteet														ccagg	2143 2196
<21:	0> SE 1> LE 2> TY 3> OF	NGTH PE:	: 65	66	o saj	pien										
<400)> SE	QUEN	CE:	34												
let 1	Val	Asn	Glu	Ala 5	Arg	Gly	Asn	Ser	Ser 10	Leu	Asn	Pro	Cys	Leu 15	Glu	
5ly	Ser	Ala	Ser 20	ser	Gly	Ser	Glu	Ser 25	ser	Lys	Asp	Ser	Ser 30	Arg	Сув	
		35					40					45		Glu		
	50					55					60			Glu		
Phe	Pro	Pro	Arg	Thr	Ala 70	Glu	Gl y	Ala	Va1	Asn 75	Leu	Ile	Ser	Arg	Phe 80	

Asp	Arg	Met	Ala	Ala 85	Gly	Gly	Pro	Leu	Ty r 90	Ile	Asp	Val	Thr	Trp 95	His
Pro	Ala	Gly	Asp 100	Pro	Gly	Ser	Asp	Lys 105	Glu	Thr	Ser	Ser	Met 110	Met	Ile
Ala	Ser	Thr 115	Ala	Val	Asn	туг	С у в 120	Gly	Leu	Glu	Thr	11e 125	Leu	Нів	Met
Thr	С у в 130	Сув	Arg	Gln	Arg	Leu 135	Glu	Glu	Ile	Thr	Gly 140	Нів	Leu	Нів	Lув
Ala 145	Lys	Gln	Leu	Gly	Leu 150	Lys	Asn	Ile	Met	Ala 155	Leu	Arg	Gly	Asp	Pro 160
Ile	Gly	Asp	Gln	Trp 165	Glu	Glu	Glu	Glu	Gly 170	Gly	Phe	Asn	Tyr	Ala 175	Val
Asp	Leu	Val	L y s 180	His	Ile	Arg	Ser	Glu 185	Phe	Gly	Asp	Tyr	Phe 190	Asp	Ile
Сув	Val	Ala 195	Gly	Tyr	Pro	Lys	Gl y 200	His	Pro	Glu	Ala	Gly 205	Ser	Phe	Glu
Ala	Asp 210	Leu	Lys	His	Leu	Lys 215	Glu	Lys	Val	Ser	Ala 220	Gly	Ala	Asp	Phe
Ile 225	Ile	Thr	Gln	Leu	Phe 230	Phe	Glu	Ala	Asp	Thr 235	Phe	Phe	Arg	Phe	Val 240
Lys	Ala	Cys	Thr	Asp 245	Met	Gly	Ile	Thr	Сув 250	Pro	Ile	Val	Pro	Gly 255	Ile
Phe	Pro	Ile	Gln 260	Gly	Tyr	His	Ser	Leu 265	Arg	Gln	Leu	Val	Lys 270	Leu	Ser
Lys	Leu	Glu 275	Val	Pro	Gln	Glu	11e 280	Lys	Asp	Val	Ile	Glu 285	Pro	Ile	Lys
Asp	Asn 290	Asp	Ala	Ala	Ile	Arg 295	Asn	Tyr	Gly	Ile	Glu 300	Leu	Ala	Val	Ser
Leu 305	Сув	Gln	Glu	Leu	Leu 310	Ala	Ser	Gly	Leu	Val 315	Pro	Gly	Leu	His	Phe 320
Tyr	Thr	Leu	Asn	Arg 325	Glu	Met	Ala	Thr	Thr 330	Glu	Val	Leu	Lys	Arg 335	Leu
Gly	Met	Trp	Thr 340	Glu	Asp	Pro	Arg	Arg 345	Pro	Leu	Pro	Trp	Ala 350	Leu	Ser
Ala	His	Pro 355	Lys	Arg	Arg	Glu	Glu 360	Asp	Val	Arg	Pro	11e 365	Phe	Trp	Ala
Ser	Arg 370	Pro	Lys	Ser	Tyr	11e 375	туг	Arg	Thr	Gln	Glu 380	Trp	Авр	Glu	Phe
Pro 385	Asn	Gly	Arg	Trp	Gl y 390	Asn	Ser	Ser	Ser	Pro 395	Ala	Phe	Gly	Glu	Leu 400
Lys	Asp	Tyr	Tyr	Leu 405	Phe	Tyr	Leu	Lys	Ser 410	Lys	Ser	Pro	Lys	Glu 415	Glu
Leu	Leu	Lys	Met 420	Trp	Gly	Glu	Glu	Leu 425	Thr	Ser	Glu	Ala	Ser 430	Val	Phe
Glu	Va1	Phe 435	Val	Leu	Tyr	Leu	Ser 440	Gly	Glu	Pro	Asn	Arg 445	Asn	Gly	His
Lys	Val 450	Thr	Cys	Leu	Pro	Trp 455	Asn	Asp	Glu	Pro	Leu 460	Ala	Ala	Glu	Thr
Ser 465	Leu	Leu	Lys	Glu	Glu 470	Leu	Leu	Arg	Val	Asn 475	Arg	Gln	Gly	Ile	Leu 480
Thr	Ile	Asn	Ser	Gln	Pro	Asn	Ile	Asn	Gly	Lys	Pro	Ser	Ser	Asp	Pro

Ile Va															
Ile Va			485					490					495		
	l Gly	Trp 500	Gly	Pro	Ser	Gly	Gly 505	Tyr	Val	Phe	Gln	Lys 510	Ala	Tyr	
Leu Gl	Phe 515	Phe	Thr	Ser	Arg	Glu 520	Thr	Ala	Glu	Ala	Leu 525	Leu	Gln	Val	
Leu Ly: 530		Tyr	Glu	Leu	Arg 535	Val	Asn	Tyr	His	Leu 540	Val	Asn	Val	Lys	
Gly Gla	ı Asn	Ile	Thr	Asn 550	Ala	Pro	Glu	Leu	Gln 555	Pro	Asn	Ala	Val	Thr 560	
Trp Gl	y Ile	Phe	Pro 565	Gly	Arg	Glu	Ile	Ile 570	Gln	Pro	Thr	Val	Val 575	Asp	
Pro Va	l Ser	Phe 580	Met	Phe	Trp	Lys	As p 585	Glu	Ala	Phe	Ala	Leu 590	Trp	Ile	
Glu Ar	Trp	Gly	Lys	Leu	Tyr	Glu 600	Glu	Glu	Ser	Pro	Ser 605	Arg	Thr	Ile	
Ile Gl:		Ile	His	Asp	Asn 615	туг	Phe	Leu	Val	Asn 620	Leu	Val	Asp	Asn	
Asp Phe	e Pro	Leu	Авр	Asn 630	Сув	Leu	Trp	Gln	Val 635	Val	Glu	Asp	Thr	Leu 640	
Glu Le	ı Leu	Asn	Arg 645	Pro	Thr	Gln	Asn	Ala 650	Arg	Glu	Thr	Glu	Ala 655	Pro	
<221> F	CCAT	ION:	(11)											i 71 (67	
<222> I <223> 0 <400> S cctgage	OCAT OTHER SEQUE	ION: INFO NCE:	(111 ORMA 35 agca	rion: gt ga	Nuc	cleot	c tga	agaga	atcc	tgt	gttt	gaa o	caact		60
<222> I <223> 0 <400> 8	OCAT OTHER SEQUE	ION: INFO NCE:	(111 ORMA 35 agca	rion: gt ga	Nuc	cleot	c tga	agaga	atcc	tgt	gttt	gaa o	caact	gette	
<222> I <223> C <400> S cotgago ccasasa att got	COCAT OTHER SEQUE acag ogga	ION: INFO NCE: aggc: aagt:	(11: DRMA: 35 agcadattto	rion: gt ga ca aq	: Nuc	cleot ccacc aaacc	c tga	agaga agggt	atcc tgaa ttg	tgt; aags	gttto	gaa o	caact gaagt att	gette c atg Met 1	60
<222> I <223> (<223> (<400> S cctgage ccaeaaa att gct Ile Ale gag agg agg	COCAT OTHER SEQUE acag ogga t tca a ser	ION: INFO NCE: aggco aagto cag Gln 5	(11: DRMA: 35 agcar attt ttt Phe	gt ga ca aq ctc Leu	tca ser	ccacc aaacc gct Ala	ctc ctc Leu 10	agaga agggt act Thr	atcc tgaa ttg Leu acg	tgts aags gtg Val	gttte aacte ctt Leu gct	gaa cott cott cott Leu 15	aact gaagt att Ile	egette ce atg Met 1 aca Lys	60
<222> I <223> 0 <400> S cctgags	ECATOTHER SEQUE acag sega t tca ser t gga r Gly 20 g gcc a Ala	ION: INFO NCE: aggc. aagt. cag Gln 5 gcc Ala agt	(11: ORMA: 35 agca attt ttt Phe tgg Trp	gt ge ca ae ctc Leu tct Ser	tca Ser tac Tyr	get Ala aac Asn 25	ctc Leu 10 acc Thr	agaga act Thr tcc Ser	atcc tgaa ttg Leu acg Thr	tgts aags gtg Val gaa Glu aca	gttte aacte ctt Leu gct Ala 30	ctc ctc Leu 15 atg Met	aact gaagt att Ile act Thr	egette de atg Met 1 aca Lys tat Tyr	60 119 167
<222> I <223> C <400> S cctgage ccaaaaa att gc; Ile Ale gag agg Glu Se; gat gaa Asp Gli	COCAT THER EEQUE acaag caga t tca a Ser Gly 20 gcc 11 Ala 5 a aaca	ION: INFO NCE: agged aagtd Gln 5 gcc Ala agt Ser	(11: DRMA: 35 agca attt ttt Phe tgg Trp gct Ala	gt gaggt gaggt gaggt gagggt gaggt gagggt gaggt gagggt gaggt gag	tca Ser tac Tyr	ccacco aaaacco gct Ala aac Asn 25 cag Gln	ctc Leu 10 acc Thr	agaga agaga act Thr tcc Ser agag Arg	ttgaa ttgaa ttg Leu acg Thr tac Tyr	tgte aagg	ctt Leu gct Ala 30 cac	ctt quantities of the ctg Leu ttg	att Ile act Thr gtt Val	gette c atg Met 1 aaa Lys tat Tyr gca Ala	60 119 167 215
<pre><222> I <223> C <400> S cctgage ccaaaaa att gcf Ile Ale gag agf Glu Ser gat gae Asp Gli att cae Ile Gli Ile Gli</pre>	COCATTHER EEQUE acag cgga t tca acag cgga t tga cgga t tca cgga cgga t tca cgga cgga acag cgga a	ION: INFO INFO RCE: aggc: aagt: Gln 5 gcc Ala agt Ser aaa Lys	(11:1) RMAT 35 agcarattt. ttt Phe ttgg Trp gct Ala gaa Glu tac	gt gd gd ca ac ctc Leu tct Ser tat Tyr gag Glu 55 tgg	: Nuc	ccacc gct Ala aac Asn 25 cag Gln gag	ctc teu 10 acc Thr caa Gln tac Tyr	agagaga acttrhr tcc Ser agg Arg cta Leu	ttgaa ttgaa ttgaa ttg Leu acg Thr tac Tyr aac Asn 60	tgts aagg gtg Val gaa Glu aca Thr 45 tcc Ser	ctt Len gct Ala 30 cac His	ctc	att Ile act Thr gtt Val agc ser	egette ce atg Met 1 aaa Lys tat Tyr gca Ala tat Tyr 65	60 119 167 215
<pre><222> I <223> C <400> S cctgage ccasas att gcf Ile Ale gag agf Glu See gat gac Asp Gli att cat Ile Gli 50</pre>	OCATOTHER EQUE acag cgga t tcaa ser t ggag gcal Ala acac acac gcal gcal gcal acac gcal	ION: INFC INFC Cagge aagte cagge Gln 5 gcc Ala agt Ser aaa Lys tat Tyr	(111 GRMA: 35 agca attt. ttt Phe tgg Trp gct Ala Glu tac Tyr 70 acc	gt gag ca acca acca acca acca acca acca	tca Ser tac Tyr tgt cys 40 att Ile	got Ala aacc Asn 25 cag Gln gag Gly cot	ctc tett	agagagagagagagagagagagagagagagagagagag	ttgaa ttgaa ttgaa ttgaa ttg Leu acg Thr tac Tyr aac Asn 60 aaa Lys	tgte aagg Val gaa Glu aca Thr 45 tec Ser gte Val	ctt Leu gct Ala 30 cac His ata Ile aac Asn	ctc Leu 15 atg Met ctg Leu ttg Leu aatt Asn	att Ile act Thr gtt Val agc Ser gtg Val 80	egette ce atg Met 1 aaa taaa Lys tat Tyr gca Ala tat Tyr ff5 tgg Trp	60 119 167 215 263

_																	
			100					105					110				
	е Т							gat Asp									503
	៩ ន							cta Leu									551
								gaa Glu									599
ac Th	t t r C	gс	aag Lys	tgt Cys 165	gac Asp	cct Pro	ggc Gly	ttc Phe	agt Ser 170	gga Gly	ctc Leu	aag Lys	tgt Cys	gag Glu 175	caa Gln	att Ile	647
gt Va	ga 1A	sn	tgt Cys 180	aca Thr	gcc Ala	ctg Leu	gaa Glu	tcc Ser 185	cct Pro	gag Glu	cat His	gga Gl y	agc Ser 190	ctg Leu	gtt Val	tgc Cys	695
	r H							agc Ser									743
tg C y 21	s A	at sp	agg Arg	ggt Gl y	tac Tyr	ctg Leu 215	cca Pro	agc Ser	agc Ser	atg Met	gag Glu 220	acc Thr	atg Met	caq Gln	tgt C y s	atg Met 225	791
								cct Pro									839
								gcc Ala									887
		ro						aac Asn 265									935
	u G							gcc Ala									983
	yА							cca Pro									1031
								ggc Gly									1079
								tca Ser									1127
		he						gcc Ala 345									1175
	n T							gtt Val									1223
	u S							tac Tyr									1271
gg Gl	c a y S	gt er	ttc Phe	egt Arg	tat Tyr 390	ggg Gly	tee Ser	agc Ser	tgt Cys	gag Glu 395	ttc Phe	tee Ser	tgt Cys	gag Glu	cag Gln 400	ggt Gly	1319
								agg Arg									1367

-concentrated	
405 410 415	
tgg gac aac gag aag ooc aca tgt gaa got gtg aga tgc gat got gtc Trp Asp Asn Glu Lys Pro Thr Cys Glu Ala Val Arg Cys Asp Ala Val 420 425	1415
cac cag ccc ccg aag ggt ttg gtg agg tgt gct cat tcc cct att gga His Gln Pro Pro Lys Gly Leu Val Arg Cys Ala His Ser Pro Ile Gly 435 440 445	1463
gaa ttc acc tac aag tcc tct tgt gcc ttc agc tgt gag gag gga ttt Glu Phe Thr Tyr Lys Ser Ser Cys Ala Phe Ser Cys Glu Glu Gly Phe 450 460 465	1511
gaa tta tat gga tca act caa ctt gag tgc aca tct cag gga caa tgg Glu Leu Tyr Gly Ser Thr Gln Leu Glu Cys Thr Ser Gln Gly Gln Trp 470 475 480	1559
aca gaa gag gtt cct tcc tgc caa gtg gta aaa tgt tca agc ctg gca Thr Glu Glu Val Pro Ser Cys Gln Val Val Lys Cys Ser Ser Leu Ala 485 490 495	1607
gtt cog gga aag atc aac atg agc tgc agt ggg gag coc gtg ttt ggc Val Pro Gly Lys Ile Asn Met Ser Cys Ser Gly Glu Pro Val Phe Gly 500 505 510	1655
act gtg tgc aag ttc gcc tgt cct gaa gga tgg acg ctc aat ggc tct Thr Val Cys Lys Phe Ala Cys Pro Glu Gly Trp Thr Leu Asn Gly Ser 515 520 525	1703
gca gct cgg aca tgt gga gcc aca gga cac tgg tct ggc ctg cta cct Ala Ala Arg Thr Cys Gly Ala Thr Gly His Trp Ser Gly Leu Leu Pro 530 545	1751
acc tgt gaa get eec act gag tee aac att eec ttg gta get gga ett Thr Cys Glu Ala Pro Thr Glu Ser Asn Ile Pro Leu Val Ala Gly Leu 550 560	1799
tet get get gga ete tee ete etg aca tta gea eea ttt ete ete tgg Ser Ala Ala Gly Leu Ser Leu Leu Thr Leu Ala Pro Phe Leu Leu Trp 565 570 575	1847
ctt cgg aaa tgc tta cgg aaa gca aag aaa ttt gtt cct gcc agc agc Leu Arg Lys Cys Leu Arg Lys Ala Lys Lys Phe Val Pro Ala Ser Ser 580 585 590	1895
tgc caa agc ctt gaa tca gac gga agc tac caa aag cct tct tac atc Cys Gln Ser Leu Glu Ser Asp Gly Ser Tyr Gln Lys Pro Ser Tyr Ile 595 600 605	1943
ctt taa gttcaaaaga atcagaaaca ggtgcatctg gggaactaga gggatacact Leu * 610	1999
gaagttaaca gagacagata actetecteg ggtetetgge eettettgee tactatgeea	2059
gatgccttta tggctgaaac cgcaacaccc atcaccactt caatagatca aagtccagca	2119
ggcaaggacg gccttcaact gaaaagactc agtgttccct ttcctactct caggatcaag	2179
aaagtgttgg ctaatgaagg gaaaggatat tttcttccaa gcaaaggtga agagaccaag	2239
actotgaaat otoagaatto ottttotaao totooottgo togotgtaaa atottggoac	2299
agaaacacaa tattttgtgg ctttetttet tttgccctte acagtgttte gacagetgat	2359
tacacagttg ctgtcataag aatgaataat aattatccag agtttagagg aaaaaaatga	2419
ctaaaaatat tataacttaa aaaaatgaca gatgttgaat gcccacaggc aaatgcatgg	2479
agggttgtta atggtgoaaa tootaotgaa tgototgtgo gagggttaot atgoacaatt taatcacttt catcoctatg ggattcagtg cttcttaaag agttcttaag gattgtgata	2539 2599
tittactiq catiqaatat attataatot tocatactic ticaticaat acaaqiqtqq	2659
5 5	

			-continued	ī
tagggactta aaaaact	tgt aaatgetgte	aactatgata	tggtaaaagt tact	tattct 2719
agattacccc ctcattg	ttt attaacaaat	tatgttacat	ctgttttaaa ttta	atttcaa 2779
aaagggaaac tattgtc	ccc tagcaaggca	tgatgttaac	cagaataaag ttc	gagtgt 2839
ttttactaca gttgttt	ttt gaaaacatgg	tagaattgga	gagtaaaaac tgaa	atggaag 2899
gtttgtatat tgtcaga	tat tttttcagaa	atatgtggtt	tocacgatga aaaa	acttcca 2959
tgaggccaaa cgttttg	aac taataaaagc	ataaatgcaa	acacacaaag gtat	aatttt 3019
atgaatgtet ttgttgg	aaa agaatacaga	aagatggatg	tgctttgcat tcct	tacaaag 3079
atgtttgtca gatgtga	tat gtaaacataa	ttcttgtata	ttatggaaga ttt	taaattc 3139
acaatagaaa ctcacca	tgt aaaagagtca	tctggtagat	ttttaacgaa tgaa	agatgtc 3199
taatagttat tooctat	ttg ttttcttctg	tatgttaggg	tgctctggaa gaga	aggaatg 3259
cctgtgtgag caagcat	tta tgtttattta	taagcagatt	taacaattcc aaag	ggaatct 3319
ccagttttca gttgatc	act ggcaatgaaa	aattotoagt	cagtaattgc caa	agetget 3379
ctagccttga ggagtgt	gag aatcaaaact	ctcctacact	tocattaact tage	catgtgt 3439
tgaaaaaaa agtttca	gag aagttetgge	tgaacactgg	caacgacaaa gcc	aacagtc 3499
aaaacagaga tgtgata	agg atcagaacag	cagaggttct.	tttaaagggg cag	aaaaact 3559
ctgggaaata agagaga	aca actactgtga	tcaggctatg	tatggaatac agt	gttattt 3619
tctttgaaat tgtttaa	gtg ttgtaaatat	ttatqtaaac	tgcattagaa atta	agetgtg 3679
tgaaatacca gtgtggt	ttg tgtttgagtt	ttattgagaa	ttttaaatta taa	ottaaaa 3739
tattttataa tttttaa	agt atatatttat	ttaagcttat	gtcagaccta tttg	gacataa 3799
cactataaag gttgaca	ata aatgtgctta	tgttt		3834
<210> SEQ ID NO 36 <211> LENGTH: 610 <212> TYPE: PRT <213> ORGANISM: HOD	mo sapien			
<400> SEQUENCE: 36				
Met Ile Ala Ser Gl 1 5	n Phe Leu Ser	Ala Leu Thr 10	Leu Val Leu Leu 15	ı Ile
Lys Glu Ser Gly Al		Asn Thr Ser 25	Thr Glu Ala Met 30	: Thr
Tyr Asp Glu Ala Se 35	r Ala Tyr Cys (Gln Gln Arg	Tyr Thr His Let 45	ı Val
Ala Ile Gln Asn Ly 50	s Glu Glu Ile (55	Glu Tyr Leu	Asn Ser Ile Let 60	ı Ser
Tyr Ser Pro Ser Ty 65	r Tyr Trp Ile (Gly Ile Arg 75	Lys Val Asn Ası	val 80
Trp Val Trp Val Gl	y Thr Gln Lys i	Pro Leu Thr 90	Glu Glu Ala Lya 95	3 Asn
Trp Ala Pro Gly Gl		Arg Gln Lys 105	Asp Glu Asp Cys	s Val
Glu Ile Tyr Ile Ly 115	s Arg Glu Lys 1 120	Asp Val Gly	Met Trp Asn Asp 125	; Glu
Arg Cys Ser Lys Ly 130	s Lys Leu Ala 1 135	Leu Cys Tyr	Thr Ala Ala Cys	; Thr

Asn Thr Ser Cys Ser Gly His Gly Glu Cys Val Glu Thr Ile Asn Asn

145	_,				150					155					160
															100
Tyr	Thr	Суб	Lys	С у в 165	Asp	Pro	Gly	Phe	Ser 170	Gly	Leu	Lys	Сув	Glu 175	Gln
Ile	Val	Asn	Cys 180	Thr	Ala	Leu	Glu	Ser 185	Pro	Glu	His	Gly	Ser 190	Leu	Val
Сув	Ser	His 195	Pro	Leu	Gly	Asn	Phe 200	Ser	Tyr	Asn	Ser	Ser 205	Сув	Ser	Ile
Ser	Cys 210	Asp	Arg	Gly	Tyr	Leu 215	Pro	Ser	Ser	Met	Glu 220	Thr	Met	Gln	Сув
Met 225	Ser	Ser	Gly	Glu	Trp 230	Ser	Ala	Pro	Ile	Pro 235	Ala	Сув	Asn	Val	Val 240
Glu	Сув	Asp	Ala	Val 245	Thr	Asn	Pro	Ala	Asn 250	Gly	Phe	Val	Glu	С у в 255	Phe
Gln	Asn	Pro	Gly 260	Ser	Phe	Pro	Trp	Asn 265	Thr	Thr	Сув	Thr	Phe 270	Asp	Сув
Glu	Glu	Gly 275	Phe	Glu	Leu	Met	Gly 280	Ala	Gln	Ser	Leu	Gln 285	Сув	Thr	Ser
Ser	Gly 290	Asn	Trp	Авр	Asn	Glu 295	Lys	Pro	Thr	Сув	Lys 300	Ala	Val	Thr	Сув
Arg 305	Ala	Val	Arg	Gln	Pro 310	Gln	Asn	Gly	Ser	Val 315	Arg	Сув	Ser	Нів	Ser 320
Pro	Ala	Gly	Glu	Phe 325	Thr	Phe	Lys	Ser	Ser 330	Сув	Asn	Phe	Thr	С у в 335	Glu
Glu	Gly	Phe	Met 340	Leu	Gln	Gly	Pro	Ala 345	Gln	Val	Glu	Сув	Thr 350	Thr	Gln
Gly	Gln	Trp 355	Thr	Gln	Gln	Ile	Pro 360	Val	Сув	Glu	Ala	Phe 365	Gln	Сув	Thr
Ala	Leu 370	Ser	Asn	Pro	Glu	Arg 375	Gl y	Tyr	Met	Asn	С у а 380	Leu	Pro	Ser	Ala
Ser 385	Gly	Ser	Phe	Arg	Туг 390	Gly	Ser	Ser	Cys	Glu 395	Phe	Ser	Cys	Glu	Gln 400
Gly	Phe	Val	Leu	L y s 405	Gly	Ser	Lys	Arg	Leu 410	Gln	Cys	Gly	Pro	Thr 415	Gly
Glu	Trp	Asp	Asn 420	Glu	Lys	Pro	Thr	Cys 425	Glu	Ala	Val	Arg	Cys 430	Asp	Ala
Val	His	Gln 435	Pro	Pro	Lуз	Gly	Leu 440	Val	Arg	Сув	Ala	His 445	Ser	Pro	Ile
Gly	Glu 450	Phe	Thr	Tyr	Lys	Ser 455	Ser	Сув	Ala	Phe	Ser 460	Суз	Glu	Glu	Gly
Phe 465	Glu	Leu	Tyr	Gly	ser 470	Thr	Gln	Leu	Glu	C ys 475	Thr	Ser	Gln	Gly	Gln 480
Trp	Thr	Glu	Glu	Val 485	Pro	Ser	Сув	Gln	Val 490	Val	Lys	Суз	Ser	ser 495	Leu
Ala	Val	Pro	Gly 500	Lys	Ile	Asn	Met	Ser 505	Сув	Ser	Gly	Glu	Pro 510	Val	Phe
Gly	Thr	Val 515	Cys	Lys	Phe	Ala	С у в 520	Pro	Glu	Gly	Trp	Thr 525	Leu	Asn	Gly
ser	Ala 530	Ala	Arg	Thr	Сув	Gly 535	Ala	Thr	Gly	His	Trp 540	ser	Gly	Leu	Leu
Pro 545	Thr	Cys	Glu	Ala	Pro 550	Thr	Glu	ser	Asn	11e 555	Pro	Leu	Val	Ala	Gly 560

Leu	Ser	Ala	Ala	Gl y 565	Leu	Ser	Leu	Leu	Thr 570	Leu	Ala	Pro	Phe	Leu 575	Leu	
Trp	Leu	Arg	Lys 580	Сув	Leu	Arg	Lys	Ala 585	Lys	Lys	Phe	Val	Pro 590	Ala	Ser	
ser	Сув	Gln 595	ser	Leu	Glu	ser	Asp 600	Gly	ser	Tyr	Gln	Lу в 605	Pro	Ser	Tyr	
Ile	Leu 610															
<211 <212 <213 <220 <221 <222	l> LE 2> TY 3> OF 3> FE 1> NE 2> LO 3> OT	ENGTH (PE: (GAN) (ATUE) (ME/I (CAT)	SM: RE: REY: REY: INFO	Homo CDS (406	o sag () ()otein	(142 : Nuc	cleot							ıcled	otide 1	oinding
<400)> SE	QUE	ICE:	37												
CCA	caata	agg (ggcag	jacc:	tg to	ccat	cctt	e te	gtg	ggtc	cect	tgta	eet 1	ttete	cccca	60
acaç	ggato	eag a	1000	agage	ge ag	getge	gttg	g gg1	.t.t.g1	toga	gaag	gaag	gat 1	tate	cagato	120
agto	cctt	tct a	aatci	cago	et co	etge	ctgt	a cc	etcc	cata	ctc	acca	aac o	cctc	ttcccc	180
acce	acce	tga (gctga	agga	ge a	agti	ttga	g gc	ccc	ccaa	ccc	eeeg	eeg q	gtcg	gggcca	240
ggc	agge	ca	ggcc	aget	ec to	ctgg	cago	a gaq	gcc t	gggc	agg	gac	aaa d	ggg	cgcggg	300
cgto	gca	get :	gagg	gagt	aa g	gagg	ctaa	age	gaac	egga	gct	ggaa	acc o	cggc	gaggt	360
CCA	jeca	gag (cccaa	agago	ec a	gagt	gacco	e ete	egac	etgt	cag				ag atg Lu Met	417
gag Glu 5	c aa Gln	ctg Leu	cgt Arg	caq Gln	gaa Glu 10	gcg Ala	gag Glu	cag Gln	ctc Leu	aaq Lys 15	aag Lys	cag Gln	att Ile	gca Ala	gat Asp 20	465
gcc Ala	agg Arg	aaa Lys	gcc Ala	tgt Cys 25	gct Ala	gac Asp	gtt Val	act Thr	ctg Leu 30	gca Ala	gag Glu	ctg Leu	gtg Val	tct Ser 35	ggc Gly	513
					cga Arg											561
					att Ile											609
ctq Leu	ctg Leu 70	gta Val	agt Ser	gcc Ala	tcg Ser	caa Gln 75	gat Asp	Gl y ggg	aaq L y s	ctg Leu	atc Ile 80	gtg Val	tgg Trp	gac Asp	aqc Ser	657
tac Tyr 85	acc Thr	acc Thr	aac Asn	aag Lys	gtg Val 90	cac His	gcc Ala	atc Ile	cca Pro	ctg Leu 95	ege Arg	tcc Ser	tcc Ser	tgg Trp	gtc Val 100	705
atg Met	acc Thr	tgt Cys	gcc Ala	tat Tyr 105	gcc Ala	cca Pro	tca Ser	el A aaa	aac Asn 110	ttt Phe	gtg Val	gca Ala	tgt C y s	999 Gly 115	G] À aaa	753
					tcc Ser											801
gtc Val	aag Lys	gtc Val	agc Ser	cqq Arg	g a g Glu	ctt Leu	tct Ser	gct Ala	cac His	aca Thr	qqt Gl y	tat Tyr	ctc Leu	tcc Ser	tqc Cys	849

	135				140					145					
tgc cgc Cys Arg 150														897	
acg tgt Thr Cys 165														945	
gtg gga Val Gly			y Asp											993	
aat ctc Asn Leu	Phe :													1041	
gtg cga Val Arg														1089	
atc aac Ile Asn 230	Ala :													1137	
tcg gat Ser Asp 245														1185	
ctg atc Leu Ile			r His											1233	
gcc ttc Ala Phe	Ser I													1281	
aac tgc Asn Cys														1329	
tct ggc Ser Gly 310														1377	
atg gct Met Ala 325														1425	
tga gga	ggatg	ga gaa	aggga	ag t	ggaag	ggcag	g tga	aaca	cact	cag	cagc	ccc		1478	
ctgcccg	acc co	catctc	att c	aggt	gttet	cti	cta	tatt	ccg	ggtg	cca 1	tece	cacta	a 1538	
gctttct	cct ti	t.gaggg	cag t	gggg	agcat	gg	gact	gtgc	ctt	tggg	agg (cage	itcag	g 1598	
gacacag	ggg c	aagaa	ctg c	cccat	tata	te	cat	ggcc	ttc	cctc	ccc (acagt	cctc	a 1658	
cagcctc	tee et	ttaatg	agc a	agga	caaco	e tgo	ecce	tccc	cag	ccct	ttg	caggo	ccaq	c 1718	
agacttg	agt ct	tgaggc	ссс а	ggcc	ctage	g at	cat	acc	cag	agcc	act a	acctt	tgto	c 1778	
aggcctg															
tggccct			-		teett	tt:	cta	ectt	ttt	ttet	ete d	etaag	gacac		
tgcaata	aag to	gtagca	ccc t	ggt										1922	

<210> SEQ ID NO 38 <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Homo sapien

<400> SEQUENCE: 38

1				5					10					15	
Gln	Ile	Ala	Asp 20	Ala	Arg	Lys	Ala	Сув 25	Ala	Asp	Val	Thr	Leu 30	Ala	Glu
Leu	Val	Ser 35	Gly	Leu	Glu	Val	Val 40	Gly	Arg	V al	Gln	Met 45	Arg	Thr	Arg
Arg	Thr 50	Leu	Arg	Gly	Нів	Leu 55	Ala	Lув	Ile	Tyr	Ala 60	Met	His	Trp	Ala
Thr 65	Asp	ser	Lys	Leu	Leu 70	Val	ser	Ala	ser	Gln 75	Asp	Gly	Lys	Leu	Ile 80
Va1	Trp	Asp	Ser	Tyr 85	Thr	Thr	Asn	Lys	Val 90	His	Ala	Ile	Pro	Leu 95	Arg
Ser	Ser	Trp	Val 100	Met	Thr	Сув	Ala	Tyr 105	Ala	Pro	Ser	Gly	Asn 110	Phe	Val
Ala	Cys	Gly 115	Gly	Leu	Asp	Asn	Met 120	Сув	Ser	Ile	Tyr	Asn 125	Leu	Lys	Ser
Arg	Glu 130	Gly	Asn	Val	Lys	Val 135	Ser	Arg	Glu	Leu	Ser 140	Ala	His	Thr	Gly
Tyr 145	Leu	Ser	Сув	Сув	Arg 150	Phe	Leu	Asp	Asp	Asn 155	Asn	Ile	Va1	Thr	Ser 160
Ser	Gly	Asp	Thr	Thr 165	Сув	Ala	Leu	Trp	А вр 170	Ile	Glu	Thr	Gly	Gln 175	Gln
Lys	Thr	Val	Phe 180	Val	Gly	His	Thr	Gly 185	Asp	Сув	Met	Ser	Leu 190	Ala	Val
Ser	Pro	Авр 195	Phe	Asn	Leu	Phe	11e 200	Ser	Gly	Ala	Сує	Авр 205	Ala	Ser	Ala
Lys	Leu 210	Trp	Asp	Val	Arg	Glu 215	Gly	Thr	Сув	Arg	Gln 220	Thr	Phe	Thr	Gly
His 225	Glu	Ser	Asp	Ile	Asn 230	Ala	Ile	Сув	Phe	Phe 235	Pro	Asn	Gly	Glu	Ala 240
Ile	Сув	Thr	Gly	Ser 245	Asp	Авр	Ala	Ser	С у в 250	Arg	Leu	Phe	Авр	Leu 255	Arg
Ala	Asp	Gln	Glu 260	Leu	Ile	Сув	Phe	Ser 265	His	Glu	Ser	Ile	11e 270	Сув	Gly
Ile	Thr	Ser 275	Val	Ala	Phe	Ser	Leu 280	Ser	Gly	Arg	Leu	Leu 285	Phe	Ala	Gly
Tyr	Авр 290	Авр	Phe	Asn	Сув	Asn 295	Val	Trp	Авр	Ser	Met 300	Lув	Ser	Glu	Arg
Val 305	Gly	Ile	Leu	Ser	Gly 310	His	Asp	Asn	Arg	Val 315	Ser	Сув	Leu	Gly	Val 320
Thr	Ala	Asp	Gly	Met 325	Ala	Val	Ala	Thr	Gly 330	Ser	Trp	Asp	Ser	Phe 335	Leu
Lys	Ile	Trp	Asn 340												
<211 <212 <213 <220 <221)> SE .> LE ?> TY 8> OF 8> OF .> NA ?> LC	NGTH PE: GANI ATUF ME/F	I: 24 DNA SM: RE: CEY:	Home CDS			:21								
	ro <	HER	INFO		NOI:	Nuc		ide	sequ	ence	enc	odin	ıg an	giot	ensi
		· - P				,									

Met Gly Glu Met Glu Gln Leu Arg Gln Glu Ala Glu Gln Leu Lys Lys

<400> SEQUENCE: 39	
acgtcccage gtctgagaga acgagtaage aagaattcaa agcattctge agcctgaatt	60
ttgaaggagt gtgtttaggc actaagcaag ctgatttatg ataactgctt taaacttcaa	120
caaccaaagg cataagaact aggagctgct gacatttcaa t atg aag ggc aac tcc $$\tt Met\ Lys\ Gly\ Asn\ Ser\ 1\ 5\ 5$	176
acc ctt gcc act act agc aaa aac att acc agc ggt ctt cac ttc ggg Thr Leu Ala Thr Thr Ser Lys Asn Ile Thr Ser Gly Leu His Phe Gly 10 15 20	224
ctt gtg aac atc tct ggc aac aat gag tct acc ttg aac tgt tca cag Leu Val Asn Ile Ser Gly Asn Asn Glu Ser Thr Leu Asn Cys Ser Gln 25 30 35	272
aaa cca tca qat aaq cat tta qat gca att cct att ctt tac tac att Lys Pro Ser Asp Lys His Leu Asp Ala Ile Pro Ile Leu Tyr Tyr Ile $$40$$	320
ata ttt gta att gga ttt ctg gtc aat att gtc gtg gtt aca ctg ttt Ile Phe Val Ile Gly Phe Leu Val Asn Ile Val Val Val Thr Leu Phe $55 \\$ 60	368
tgt tgt caa aag ggt cot aaa aag gtt tot agc ata tac atc ttc aac Cys Cys Gln Lys Gly Pro Lys Lys Val Ser Ser Ile Tyr Ile Phe Asn 70 85	416
ctc gct gtg gct gat tta ctc ctt ttg gct act ctt cct cta tgg gca Leu Ala Val Ala Asp Leu Leu Leu Leu Ala Thr Leu Pro Leu Trp Ala 90 95 100	464
acc tat tat tot tat aga tat gac tgg ctc ttt gga cct gtg atg tgc Thr Tyr Tyr Ser Tyr Arg Tyr Aep Trp Leu Phe Gly Pro Val Met Cys $105 \hspace{1.5cm} 110 \hspace{1.5cm} 115$	512
aaa gtt ttt ggt tct ttt ctt acc ctg aac atg ttt gca agc att ttt Lys Val Phe Gly Ser Phe Leu Thr Leu Asn Met Phe Ala Ser Ile Phe 120 125	560
ttt atc acc tgc atg agt gtt gat agg tac caa tct gtc atc tac ccc Phe Ile Thr Cys Met Ser Val Asp Arg Tyr Gln Ser Val Ile Tyr Pro $135 \\ 140 \\ 145$	608
ttt otg tot oaa aga aga aat ooc tgg oaa goa tot tat ata gtt ooc Phe Leu Ser Gln Arg Arg Arn Pro Trp Gln Ala Ser Tyr Ile Val Pro 150 166	656
ctt gtt tgg tgt atg gcc tgt ttg tcc tca ttg cca aca ttt tat ttt Leu Val Trp Cys Met λ la Cys Leu Ser Ser Leu Pro Thr Phe Tyr Phe 170 175	704
cga gac gtc aga acc att gaa tac tta gga gtg aat gct tgc att atg Arg Asp Val Arg Thr Ile Glu Tyr Leu Gly Val Asn Ala Cys Ile Met 185 190 195	752
got tto coa cot gag aaa tat goo caa tgg toa got ggg att goo tta Ala Phe Pro Pro Glu Lys Tyr Ala Gln Trp Ser Ala Gly Ile Ala Leu 200 205 210	800
atg aaa aat atc ctt ggt ttt att atc cct tta ata ttc ata gca aca Met Lys Asn Ile Leu Gly Phe Ile Ile Pro Leu Ile Phe Ile Ala Thr 215 220 225	848
tgc tat ttt gga att aga aaa cac tta ctg aag acg aat agc tat ggg Cys Tyr Phe Gly Ile Arg Lys His Leu Leu Lys Thr Aen Ser Tyr Gly 230 245	896
aag aac agg ata acc cgt gac caa gtc ctg aag atg gca gct gct gtt Lys Asn Arg Ile Thr Arg Asp Gln Val Leu Lys Met Ala Ala Ala Val 250 255	944
gtt ctg gcc ttc atc att tgg tgc ctt ccc ttc cat gtt ctg acc ttc	992

Val Leu Ala Phe Ile Ile Trp Cys Leu Pro Phe His Val Leu Thr Phe $265 \hspace{1cm} 270 \hspace{1cm} 275$	
ctg gat gct ctg gcc tgg atg ggt gtc att aat agc tgc gaa gtt ata Leu Asp Ala Leu Ala Trp Met Gly Val Ile Asn Ser Cys Glu Val Ile 280 285 290	1040
gca gtc att gac ctg gca ctt cct ttt gcc atc ctc ttg gga ttc acc Ala Val Ile Asp Leu Ala Leu Pro Phe Ala Ile Leu Leu Gly Phe Thr 295 300 305	1088
aac agc tgc gtt aat ccg ttt ctg tat tgt ttt gtt gga aac cgg ttc Asn Ser Cys Val Asn Pro Phe Leu Tyr Cys Phe Val Gly Asn Arg Phe 310 315 320 325	1136
caa cag aag ete ege agt gtg ttt agg gtt eea att act tgg ete eaa Gln Gln Lys Leu Arg Ser Val Phe Arg Val Pro Ile Thr Trp Leu Gln 330 335 340	1184
ggg aaa aga gag agt atg tot tgo ogg aaa ago agt tot ott aga gaa Gly Lys Arg Glu Ser Met Ser Cys Arg Lys Ser Ser Ser Leu Arg Glu 345 350 355	1232
atg gag acc ttt gtg tct taa acggagagca aaatgcatgt aatcaacatg Met Glu Thr Phe Val Ser \star	1283
gctacttgct ttgaggctca ccagaattat ttttaagtgg ttttaataaa ataataaaat	1343
ttcccctaat cttttctgaa tcttctgaaa ccaaatgtaa ctatgtttat cgtccagtga	1403
otttoaggaa tgccoattgt tttotgatat gtttgtacaa gatttoattg gtgagacata	1463
tttacaacct agaagtaact ggtgatatat ctcaaattgt aattaataat agattgtgaa	1523
taatgatttg gggattcaga tttetetttg aaacatgett gtgtttetta gtggggtttt	1583
atatecattt ttateaggat tteetettga accagaacea gtettteaac teattgeate	1643
atttacaaga caacattyta agagagatga gcacttctaa gttgagtata ttataataga	1703
ttagtactgg attattcagg ctttaggcat atgottcttt aanaacgcta tanattatat	1823
toototttgoa titoacittga giggaggitt atagitaato tataaciaca tattgaatag ggotaggaat atagattaaa toatactoot atgotttago tiattittao agitatagaa	1883
agcaagatgt actataacat agaattgcaa totataatat ttgtgtgttc actaaactct	1943
gaataagcac titttaaaaa actitctact cattitaatg attqttaaa qqtttctatt	2003
ttototgata ottitttgaa atoagtaaac actgtgtatt gttgtaaaat gtaaaggtoa	2063
cttttcacat ccttqacttt ttaqatqtqc tqctttqata tataqqacat tqatttqatt	2123
tttattatta atgetttggt tetgggttgt tteetaaaat atetgggtgg ettaaaaaa	2183
actetttaac ttqtaataaa coottaactg goataggaaa tggtatocag aatggaattt	2243
tgctacatgg ggtctgggtg ggggcaaaga gacccagtca attacatgtt tggtaccaag	2303
aaaggaacct gtcagggcag tacaatgtga ctttgaaaat atataccgtg ggggtagttt	2363
taccctatat otataaacac tgtttgttcc agaatotgta tgattctatg gagctatttt	2423
aaaccaattg caggtctaga	2443
<210> SEQ ID NO 40 <211> LENGTH: 363	

<211> LENGTH: 363
<212> TYPE: PRT
<213> ORGANISM: Homo sapien

<400> SEQUENCE: 40

Met Lys Gly Asn Ser Thr Leu Ala Thr Thr Ser Lys Asn Ile Thr Ser

1				5					10					15	
Gly	Leu	His	Phe 20	Gly	Leu	Val	Asn	11e 25	Ser	Gly	Asn	Asn	Glu 30	Ser	Thr
Leu	Asn	Сув 35	Ser	Gln	Lys	Pro	Ser 40	Asp	Lys	His	Leu	Asp 45	Ala	Ile	Pro
Ile	Leu 50	Tyr	Tyr	Ile	Ile	Phe 55	Val	Ile	Gly	Phe	Leu 60	Val	Asn	Ile	Val
Val 65	Val	Thr	Leu	Phe	С у в 70	Сув	Gln	Lys	Gly	Pro 75	Lys	Lys	Val	Ser	Ser 80
Ile	Tyr	Ile	Phe	Asn 85	Leu	Ala	Val	Ala	А вр 90	Leu	Leu	Leu	Leu	Ala 95	Thr
Leu	Pro	Leu	Trp 100	Ala	Thr	Tyr	Tyr	Ser 105	Tyr	Arg	Tyr	Asp	Trp 110	Leu	Phe
Gly	Pro	Val 115	Met	Сув	Lys	Val	Phe 120	Gly	Ser	Phe	Leu	Thr 125	Leu	Asn	Met
Phe	Ala 130	Ser	Ile	Phe	Phe	Ile 135	Thr	Сув	Met	Ser	Val 140	Asp	Arg	Tyr	Gln
Ser 145	Val	Ile	Tyr	Pro	Phe 150	Leu	Ser	Gln	Arq	Arg 155	Asn	Pro	Trp	Gln	Ala 160
	Tyr			165					170					175	
Pro	Thr	Phe	Tyr 180	Phe	Arg	Авр	Val	Arg 185	Thr	Ile	Glu	Tyr	Leu 190	Gly	Val
Asn	Ala	Сув 195	Ile	Met	Ala	Phe	Pro 200	Pro	Glu	Lys	Tyr	Ala 205	Gln	Trp	Ser
Ala	Gly 210	Ile	Ala	Leu	Met	Lys 215	Asn	Ile	Leu	Gly	Phe 220	Ile	Ile	Pro	Leu
225	Phe				230					235					240
	Asn			245					250					255	
Met	Ala	Ala	Ala 260	Val	Val	Leu	Ala	Phe 265	Ile	Ile	Trp	Сув	Leu 270	Pro	Phe
	Val	275					280					285			
Ser	С у в 290	Glu	Val	Ile	Ala	Val 295	Ile	Asp	Leu	Ala	Leu 300	Pro	Phe	Ala	Ile
Leu 305	Leu	Gly	Phe	Thr	Asn 310	Ser	Сув	Val	Asn	Pro 315	Phe	Leu	Tyr	Сув	Phe 320
Val	Gly	Asn	Arg	Phe 325	Gln	Gln	Lys	Leu	Arg 330	Ser	Val	Phe	Arg	Val 335	Pro
Ile	Thr	Trp	Leu 340	Gln	Gly	Lys	Arg	Glu 345	Ser	Met	Ser	Сув	Arg 350	Lys	Ser
Ser	Ser	Leu 355	Arg	Glu	Met	Glu	Thr 360	Phe	Val	Ser					
)> SE														

<210> SEQ ID NO 41
<211> LENGTH: 20
<211> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 41	
actgootgat aaccatgotg	20
<210> SEQ ID NO 42 <211> LENGTH: 20 <212> Type: DNA <213> ORGANISM: Artificial Sequence <220> FRATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 42	
atacttacac accaggaggg	20
<211> SEQ ID NO 43 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 43	
atgeetgete camaggeme	19
<210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 44	
atgeetgete camaggemee	20
<210> SEQ ID NO 45 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 45	
atgcctgctc canaggcaca t	21
augustysta saaaggaasa t	
<210> SEQ ID NO 46 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 46	
<400> SEQUENCE: 46	
tacttctggt tctctgagcg	20
	20
tacttctggt tctctgagcg <210> SEQ ID NO 47 <211> LENGTH: 20 <212> TTFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	20

<210> SEQ ID NO 48 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 49	
tggttctctg agcgagtctt	20
<210> SEQ ID NO 49 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 49	
tggttetetg agegagtett c	21
<210> SEQ ID NO 50 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 50	
tggttctctg agcgagtctt tc	22
<210> SEQ ID NO 51 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 51	
tgcagatgga ctttggcttc	20
<210> SEQ ID NO 52 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 52	
tgcttgcctt ctgctacaag	20
<210> SEQ ID NO 53 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 53	
ottoootgag cacotgotg	19
<210> SEQ ID NO 54 <211> LENGTH: 21 <212> TYPE: DNA	

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 54	
ettecetgag cacetgetgg t	21
<210> SEQ ID NO 55 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 55	
ottoootgag cacotgotga	20
<210> SEQ ID NO 56 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <4400> SEQUENCE: 56	
aacagctcaq gacgaaactg	20
<210> SEQ ID NO 57 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 57	20
agaaggagtt gaccttgtcc	20
<210> SEQ ID NO 58 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> ORGANISM: Primer	
<400> SEQUENCE: 58 ggaageteaa gtggcette	19
ggaagusaa guggaassa	
<210> SEQ ID NO 59 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 59	
ggaageteaa giggeettee	20
<210> SEQ ID NO 60 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

<400> SEQUENCE: 60	
ggaagotoaa gtggoottoa ac	22
<210> SEQ ID NO 61 <211> LENGTH: 19 <212> Type: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 61	
aagtcactgg cagagctgg	19
<210> SEQ ID NO 62 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 62	
geaccaggge titgttgaag	20
<211> SEQ ID NO 63 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 63	
ttttccccgt agggeteca	19
<210> SEQ ID NO 64 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 64	
ttttccccgt agggctccac	20
<210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OHER INFORMATION: Primer	
<400> SEQUENCE: 65	
ttttccccgt agggctccag c	21
<210> SEQ ID NO 66 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 66	
tgcagaagtc actggcagag	20

<210> SEQ ID NO 67 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 67	
gttgaagttt tccccgtagg	20
<210> SEQ ID NO 68 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 68	
actcctccac ctgctggtc	19
<210> SEQ ID NO 69 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 69	
actcctccac ctgctggtcc	20
<210> SEQ ID NO 70 <211-> LENGTH: 21 <212-> TYPE: DNA <213-> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 70	
actcctccac ctgctggtct a	21
<210> SEQ ID NO 71 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 71	
aggacgtgcg tggcaacctg	20
<210> SEQ ID NO 72 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 72	
agetetgeca gtgaettetg	20
<210> SEQ ID NO 73 <211> LEMGTH: 19 <212> TUDE: DND	

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 73		
gtgacttctg cagcccctc	19	
<210> SEQ ID NO 74 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artitifical sequence		
<400> SEQUENCE: 74		
gtgacttctg cagcccctca	20	
<210> SEQ ID NO 75 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 75		
gtgacttotg cagococtcg gt	22	
<210> SEQ ID NO 76 <2211> LEMGUTH: 19 <212> TUPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 76		
cctgaccttc cagatgaag	19	
<210> SEC ID NO 77 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 77		
tcaggttgcc acgcacgtc	19	
<210> SEQ ID NO 78 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 78		
caggateteg gecagtge	18	
<210> SEQ ID NO 79 <211> LEMGYH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SECUENCE: 79		

caggatctcg gccagtgcc	19
<210> SEQ ID NO 80 <2211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> ORGENISM: Primor	
<400> SEQUENCE: 80	
caggatotog gccagtgotg	20
<210> SEQ ID NO 81 <211> LERGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 81	
acctgcgaga gcttcagcag	20
<210> SEQ ID NO 82 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 82	
totocatgog ctgtgcgtag	20
<210> SEQ ID NO 83 <211> LENGTH: 18 <212> TYPE: DNA <213> GRGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 83	
agetgegeac ceaggtea	18
<210> SEQ ID NO 84 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: 223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 84	
agotgogoac coaggtoaa	19
<210> SEQ ID NO 85 <211> LERGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 85	
agetgegeac ceaggteage	20
<210> SEC ID NO 86	

<211> LENGTH: 19 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 86	
tgtccaagga gotgcaggc	19
<210> SEQ ID NO 87 <211> LENGTH: 20	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 87	
cttacgcagc ttgcgcaggt	20
<210> SEQ ID NO 88 <211> LENGTH: 18	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 88	
geggacatgg aggaegtg	18
<210> SEQ ID NO 89 <211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 89	
goggacatgg aggacgtgc	19
<210> SEQ ID NO 90 <211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 90	
gcggacatgg aggacgtgtg	20
<210> SEQ ID NO 91	
<211> LENGTH: 20 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 91	
gttgtagaaa gaaccgctgc	20
<210> SEQ ID NO 92 <211> LENGTH: 20	
<212> TYFE: DNA <213> ORGANISM: Artificial Sequence	
<213> ORGANISM: AICHICIAI Sequence	

<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 92	
gagaacgagt cttcaggtac	20
<210> SEQ ID NO 93 <211> LEMGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 93	
acaatctggg ctatgagatc a	21
<210> SEQ ID NO 94 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 94	22
aceatotggg ctatgagato aa	22
<210> SEQ ID NO 95 <211> LEMGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 95	
acaatctggg ctatgagatc agt	23
<210> SEQ ID NO 96 <211> LEBNTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 96 cactctacac tgcatgtctc	20
<210> SEQ ID NO 97 <211> LENGTH: 20 <212> TYFE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 97	
accettetga aaaggagagg	20
<210> SEQ ID NO 98 <211> LEMGYH: 20 <212> TYPE: DNA <213> ORGANTSM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 98	

	-concinued
gaggagagac aaggcagata	20
<210> SEQ ID NO 99 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 99	
gaggagagac aaggcagata t	21
<210> SEQ ID NO 100 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 100	
gaggagagac aaggcagata gt	22
<210> SEQ ID NO 101 <211> LERGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 101	
aaaggttcag ttgctgctgc	20
<210> SEQ ID NO 102 <211> LEBGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 102	
gctggggaag gtctaataac	20
<210> SEQ ID NO 103 <211> LEMGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 103	
gttgctgctg cctcgaatc	19
<210> SEQ ID NO 104 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 104	
gttgctgctg cctcgaatcc	20
<210> SEC ID NO 105	

<211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 105	
gttgctgctg cctcgaatct g	21
<210> SEQ ID NO 106 <211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 106	
cgtctttctc cagatgatgc	20
<210> SEQ ID NO 107 <211> LENGTH: 20	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 107	
agtgtcctat gggctgtttg	20
<210> SEQ ID NO 108	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 108	
ggatgccatt cataccttta c	21
<210> SEQ ID NO 109 <211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 109	
ggatgccatt cataccttta cc	22
<210> SEQ ID NO 110 <211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 110 ggatgccatt cataccttta cgc	23
ggacgoodee caeacoeeca ego	2-7
<210> SEQ ID NO 111 <211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	

<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 111	
tgggaaaaca gtgcagtgtg	20
<210> SEQ ID NO 112 <211> LENGTH: 20 <212> TYPE: DNA <213> OKGRANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 112	
tgatcgtctt cagaacgagg	20
<210> SEQ ID NO 113 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 113	
ccagaccate ateateccat gga	2.3
<210> SEQ ID NO 114 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 114	
ccagaccatc atcccatgga a	21
<210> SEQ ID NO 115 <211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 115</pre>	22
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	22
<213 > ORGANISM: Artificial Sequence <220 > FRATURE: <223 > OTHER INFORMATION: Primer <400 > SEQUENCE: 115 ccagaccatc atccatgqa gc <210 > SEQ ID NO 116 <211 > LERNGTH: 20 <212 TYFE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer	22
<213 ORGANISM: Artificial Sequence <220 FEATURE: <223 OTHER INFORMATION: Primer <400> SEQUENCE: 115 ccagaccatc atccatgqa qc <210> SEQ ID NO 116 <211> LENGTH: 20 <2112 TYPE: DNA <133 ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 116	

tcctatgggc tgtttgatgc	20	
<210> SEQ ID NO 118		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 118		
gtetttetee agatgatgee a	21	
<210> SEQ ID NO 119		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 119		
gtetttetee agatgatgee aa	22	
<210> SEQ ID NO 120		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 120		
gtotttotoo agatgatgoo agt	23	
<210> SEQ ID NO 121		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 121		
ageggataac aattteacac agg	23	
<210> SEQ ID NO 122		
<211> LENGTH: 16		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 122		
ggcgcacgcc tccacg	16	

What is claimed:

- A method for detecting the presence or absence in a subject of at least one allelic variant of a polymorphic region of a gene associated with cardiovascular disease, comprising:
 - the step of detecting the presence or absence of an allelic variant of a polymorphic region of a cytochrome C oxidase subunit VIb (COX6B) gene of the subject that
- is associated with high serum cholesterol or an allelic variant of a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject that is associated with low serum high density lipoprotein (HDL).
- 2. The method of claim 1, wherein the allelic variant is of a polymorphic region of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.

- 3. The method of claim 1, further comprising detecting the presence or absence in a subject of least one allelic variant of another gene associated with cardiovascular disease.
- 4. The method of claim 3, wherein the other gene is selected from the group consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 5. The method of claim 2, wherein the polymorphic region is a single nucleotide polymorphism (SNP).
- 6. The method of claim 5, wherein the SNP is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene sequence and the allelic variant is represented by an A nucleotide in the sense strand or a T nucleotide in the corresponding position in the antisense strand.
- 7. The method of claim 1, wherein the detecting step is by a method selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.
 - 8. The method of claim 6, further comprising:
 - (a) hybridizing a target nucleic acid comprising a N-acetylglucosaminyl transferase component GPI-1 (GPI-1)-encoding nucleic acid or fragment thereof with a nucleic acid primer that hybridizes adjacent to nucleotide 2577 of the GPI-1 gene;
 - (b) extending the nucleic acid primer using the target nucleic acid as a template; and
 - (c) determining the mass of the extended primer to identify the nucleotide present at position 2577, thereby determining the presence or absence of the allelic variant.
- 9. The method of claim 1, wherein the detecting step comprises mass spectrometry.
- 10. The method of claim 1, wherein the detecting step utilizes a signal moiety selected from the group consisting of: radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.
- 11. The method of claim 8, wherein the nucleic acid primer is extended in the presence of at least one dideoxynucleotide.
- 12. The method of claim 11, wherein the dideoxynucleotide is dideoxyguanosine (ddG).
- 13. The method of claim 8, wherein the primer is extended in the presence of at least two dideoxynucleotides and the dideoxynucleotides are dideoxyguanosine (ddG) and dideoxycytosine (ddC).
- 14. A method for indicating a predisposition to cardiovascular disease in a subject, comprising:
 - the step of detecting in a target nucleic acid obtained from the subject the presence or absence of at least one allelic variant of polymorphic regions of a cytochrome C oxidase subunit VIb (COX6B) gene associated with high serum cholesterol or at least one allelic variant of

- polymorphic regions of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum HDL wherein the presence of an allelic variant is indicative of a predisposition to cardiovascular disease compared to a subject who does not comprise the allelic variant.
- 15. The method of claim 14, wherein the allelic variant is of a polymorphic region of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 16. The method of claim 15, wherein the polymorphic region is a single nucleotide polymorphism (SNP).
- 17. The method of claim 16, wherein the SNP is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene sequence and the allelic variant is represented by an A nucleotide in the sense strand or a T nucleotide in the corresponding position in the antisense strand.
- 18. The method of claim 14, wherein the detecting step is by a method selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation assay, restriction enzyme site analysis and single-stranded conformation polymorphism analysis.
 - 19. The method of claim 17, further comprising:
 - (a) hybridizing a target nucleic acid comprising a N-acetylglucosaminyl transferase component GPI-1 (GPI-1)-encoding nucleic acid or fragment thereof with a nucleic acid primer that hybridizes adjacent to nucleotide 2577 of the GPI-1 genc;
 - (b) extending the nucleic acid primer using the target nucleic acid as a template; and
 - (c) determining the mass of the extended primer to identify the nucleotide present at position 2577, thereby determining the presence or absence of the allelic variant.
- 20. The method of claim 14, wherein the detecting step comprises mass spectrometry.
- 21. The method of claim 14, wherein the detecting step utilizes a signal moiety selected from the group consisting of: radioisotopes, enzymes, antigens, antibodies, spectrophotometric reagents, chemiluminescent reagents, fluorescent reagents and other light producing reagents.
- 22. The method of claim 14, further comprising detecting the presence or absence of at least one allelic variant of polymorphic regions of another gene associated with cardiovascular disease, wherein the presence of the two allelic variants is associated with a predisposition to cardiovascular disease compared to a subject who does not comprise the combination of allelic variants.
- 23. The method of claim 22, wherein the other gene is selected from the group consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 24. The method of claim 22, wherein the two allelic variants are of the cytochrome C oxidase subunit VIb (COX6B) gene and the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.

- 25. A method of screening for biologically active agents that modulate serum high density lipoprotein (HDL), comprising:
 - (a) combining a candidate agent with a cell comprising a nucleotide sequence encoding an allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low levels of serum HDL and operably linked to a promoter such that the nucleotide sequence is expressed as a GPI-1 protein in the cell; and
 - (b) determining the affect of the agent upon the expression and/or activity of the GPI-1 protein.
- 26. A method of screening for biologically active agents that modulate serum high density lipoprotein (HDL), comprising:
 - (a) combining a candidate agent with a transgenic mouse comprising a transgenic nucleotide sequence stably integrated into the genome of the mouse encoding an allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low levels of serum HDL operably linked to a promoter, wherein the transgenic nucleotide sequence is expressed and the transgenic animal develops a low level of serum HDL; and
 - (b) determining the affect of the agent upon the serum HDL level.
- 27. The method of claim 25, wherein the allelic variant is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 28. The method of claim 26, wherein the allelic variant is at position 2577 of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 29. A method for predicting a response of a subject to a cardiovascular drug, comprising:
 - detecting the presence or absence of at least one allelic variant of a cytochrome C oxidase subunit VIb (COX6B) gene of the subject associated with high serum cholesterol or at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject associated with low serum high density lipoprotein (HDL);

wherein the presence of at least one allelic variant is indicative of a positive response.

- 30. The method of claim 29, wherein the allelic variant is of the N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 31. A method for predicting a response of a subject to a biologically active agent that modulates serum high density lipoprotein (HDL), comprising:
 - detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene of the subject associated with low HDI; wherein the presence of an allelic variant is indicative of a positive response.
- 32. A method for predicting a response of a subject to a biologically active agent that modulates serum high density lipoprotein (HDL) levels, comprising:
 - (a) detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low HDL of the subject; and

- (b) detecting the presence or absence of an allelic variant in at least one other gene of subject associated with cardiovascular disease, wherein the presence of both allelic variants is indicative of a positive response.
- 33. The method of claim 31, wherein the allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene is at position 2577.
- 34. The method of claims 32, wherein the allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene is at position 2577.
- 35. The method of claim 32, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cytochrome C oxidase subunit VIb (COX6B); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein B (APO B); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type I receptor gene.
- 36. A primer or probe that specifically hybridizes adjacent to or at a polymorphic region of a cytochrome C oxidas subunit VIb (COX6B) gene associated with high serum cholesterol in combination with a primer or probe that specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low HDL.
- 37. The primers or probes of claim 36, further comprising primers or probes that specifically hybridizes adjacent to or at a polymorphic region of another gene associated with cardiovascular disease.
- 38. The primers or probes of claim 36, wherein the polymorphic region of the cytochrome C oxidase subunit VIb (COX6B) gene comprises nucleotide 86 of the coding strand and the polymorphic region of the N-acetylglu-cosaminyl transferase component GPI-1 (GPI-1) gene comprises nucleotide 2577.
- 39. The primers or probes of claim 37, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein B (APO B4); apolipoprotein E (APO E4); apolipoprotein E (APO E5); apolipoprotein E (APO E7); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 40. A kit for indicating whether a subject has a predisposition to developing cardiovascular disease, comprising:
 - (a) at least one probe or primer that specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum high density lipoprotein (HDL).
- 41. The kit of claim 40 further comprising instructions for use.
- **42**. The kit of claim 40, wherein the polymorphic region comprises nucleotide 2577 of the coding strand.
- 43. A kit for indicating whether a subject has a predisposition to developing cardiovascular disease, comprising:

- (a) at least one probe or primer which specifically hybridizes adjacent to or at a polymorphic region of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene associated with low serum high density lipoprotein (HDL); and
- (b) at least one probe or primer which specifically hybridizes adjacent to or at a polymorphic region of another gene associated with cardiovascular disease.
- 44. The kit of claim 43, further comprising instructions for use.
- 45. The kit of claim 43, wherein the other gene associated with cardiovascular disease is selected from the group of genes consisting of cytochrome C oxidase subunit VIb (COX6B); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO B); apolipoprotein E (APO B); apolipoprotein E (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene.
- 46. A method of diagnosing a predisposition to cardiovascular disease in a human, said method comprising the steps of:
 - (a) obtaining a biological sample from the human;
 - (b) isolating DNA from the biological sample; and
 - (c) detecting the presence or absence of at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene in the DNA.
- 47. The method of claim 46, wherein at least one variant is a G to A transversion at position 2577 of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
- 48. A method of determining a response of a human to a cardiovascular drug, said method comprising the steps of:
 - (a) obtaining a biological sample from the human;
 - (b) isolating DNA from the biological sample; and
 - (c) detecting the presence or absence of at least one allelic variant of a cytochrome C oxidase subunit VIb (COX6B) gene in the DNA or at least one allelic variant of a N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene in the DNA.

- 49. The method of claim 46, wherein the detecting step is performed by an assay selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation, restriction enzyme site analysis, and single-stranded conformation polymorphism analysis.
- 50. The method of claim 48, wherein the detecting step is performed by an assay selected from the group consisting of allele specific hybridization, primer specific extension, oligonucleotide ligation, restriction enzyme site analysis, and single-stranded conformation polymorphism analysis.
- **51**. A microarray comprising a nucleic acid having a sequence of a polymorphic region from a human N-acetyl-glucosaminyl transferase component GPI-1 (GPI-1) gene.
- 52. The microarray of claim 51, wherein the polymorphic region comprises a locus selected from the group consisting of position 2577 of the human N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene, position 2829 of the human GPI-1 gene, position 2839 of the human GPI-1 gene, position 2289 of the human GPI-1 gene, position 1938 of the human GPI-1 gene, position 1563 of the human GPI-1 gene, position 2656 of the human GPI-1 gene, and position 2664 of the human GPI-1 gene.
- 53. The microarray of claim 52, wherein the polymorphic region comprises position 2577 of the human N-acetylglucosaminyl transferase component GPI-1 (GPI-1) gene.
 - 54. A kit comprising:
 - (a) at least one probe specific for a polymorphic region of a human gene selected from the group consisting of cytochrome C oxidase subunit VIb (COX6B); N-acetylglucosaminyl transferase component GPI-1 (GPI-1); cholesterol ester transfer protein, plasma (CETP); apolipoprotein A-IV (APO A4); apolipoprotein A-I (APO A1); apolipoprotein E (APO E); apolipoprotein B (APO B); apolipoprotein C-III (APO C3); a gene encoding lipoprotein lipase (LPL); ATP-binding cassette transporter (ABC 1); paraoxonase 1 (PON 1); paraoxonase 2 (PON 2); 5,10-methylenetetrahydrofolate r reductase (MTHFR); a gene encoding hepatic lipase, E-selectin, G protein beta 3 subunit and angiotensin II type 1 receptor gene; and
 - (b) instructions for use.

* * * * *