Agenda

- 1. Indexing in models using R (from Tuesday)
- 2. Adding student-level predictors
- 3. Adding class-level predictors
- 4. Random intercepts in R

Intercept-only model

Partial pooling (random effects)

$$S_{ik} \sim \operatorname{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = a_k$
 $a_k \sim \operatorname{Norm}(\gamma, \phi)$
 $\sigma \sim \operatorname{Unif}(0, 100)$
 $\gamma \sim \operatorname{Norm}(500, 100)$
 $\eta \sim \operatorname{Unif}(0, 100)$

Number of participants by race/ethnicity

White	4222
Black	2126
Asian	19
Hispanic	9
Native	
American	4
Other	11
Total	6391

Number of classes by experimental condition

Small	122
Large	114
Large +	
Aide	98
Total	334

But first, some notation

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

 β_0 is the intercept.

$$eta_{0k} \sim \mathsf{Norm}(\gamma_0, oldsymbol{\phi}_0)$$

Coefficient β_1 measures difference in test scores for Black and white students.

Subscripts on γ and ϕ to remind us which coefficient they refer to.

But first, some notation

$$S_{ik} \sim \operatorname{Norm}(\mu_{ik}, \sigma) \qquad S_{ik} \sim \operatorname{Norm}(\mu_{ik}, \sigma) \\ \mu_{ik} = \beta_{0k} + \beta_1 B_i \qquad \mu_{ik} = \beta_{0k} + \beta_1 B_i \\ \beta_{0k} \sim \operatorname{Norm}(\gamma_0, \phi_0) \qquad \beta_{0k} = \gamma_0 + \eta_{0k} \\ \eta_{0k} \sim \operatorname{Norm}(0, \phi_0) \\ \text{Equivalent ways to describe the same distribution for } \beta_{0k}.$$

Full model

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$eta_{0k} = \gamma_0 + \eta_{0k}$$
 $\eta_{0k} \sim ext{Norm}(0, oldsymbol{\phi}_0)$

$$eta_1,\ldots,eta_5\sim ext{Norm}(0,50)$$
 $\sigma\sim ext{Unif}(0,100)$ $\gamma_0\sim ext{Norm}(500,100)$ $\phi_0\sim ext{Unif}(0,100)$

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$eta_{0k} = \gamma_0 + \eta_{0k}$$
 $\eta_{0k} \sim \mathsf{Norm}(0, oldsymbol{\phi}_0)$

$$eta_1,\ldots,eta_5 \sim ext{Norm}(0,50)$$
 $\sigma \sim ext{Unif}(0,100)$
 $eta_0 \sim ext{Norm}(500,100)$
 $oldsymbol{\phi}_0 \sim ext{Unif}(0,100)$

	Mean	_	redible nterval
Y 0	530.65	528.21	533.29
β_1	-26.78	-29.52	-23.17
$oldsymbol{eta_2}$	6.70	-9.03	25.07
β_3	16.39	-10.53	41.08
β4	-13.10	-49.60	20.18
$oldsymbol{eta}_5$	14.81	-9.17	33.92
σ	47.03	46.37	47.75
 ϕ_0	23.98	22.01	25.83
β_{1k}	•	•	•

$$y_0 = 530.65$$

$$\beta_1 = -26.78$$

Comparing to pooled model

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_0 + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$eta_0,\ldots,eta_5 \sim \mathsf{Norm}(0,50)$$
 $\sigma \sim \mathsf{Unif}(0,100)$

	90% credible		redible
	Mean	interval	
$oldsymbol{eta}_0$	533.00	531.59	534.29
β_1	-36.86	-39.11	-34.71
$oldsymbol{eta_2}$	12.61	-7.84	29.98
β_3	7.61	-21.58	31.06
β_4	-28.47	-66.14	8.46
$oldsymbol{eta}_5$	13.83	-10.70	35.93
σ	52.37	51.49	53.07

Comparing to pooled model

Random effects

		90% c	redible
	Mean	i	nterval
γo	530.65	528.21	533.29
β_1	-26.78	-29.52	-23.17
$oldsymbol{eta_2}$	6.70	-9.03	25.07
β_3	16.39	-10.53	41.08
β4	-13.10	-49.60	20.18
$oldsymbol{eta}_5$	14.81	-9.17	33.92
σ	47.03	46.37	47.75
ф 0	23.98	22.01	25.83
β_{1k}	•	•	•

Pooled

90% credible			redible
	Mean	interval	
$oldsymbol{eta}_0$	533.00	531.59	534.29
β_1	-36.86	-39.11	-34.71
$oldsymbol{eta_2}$	12.61	-7.84	29.98
β_3	7.61	-21.58	31.06
β4	-28.47	-66.14	8.46
$oldsymbol{eta}_5$	13.83	-10.70	35.93
σ	52.37	51.49	53.07

Random effects
$$| \gamma_0 = 530.65$$
 Pooled $| \beta_0 = 533.00$ $| \beta_1 = -36.86$

Number of participants by race/ethnicity

Total	6391
Other	11
American	4
Native	
Hispanic	9
Asian	19
Black	2126
White	4222

Number of classes by experimental condition

Small	122
Large	114
Large +	
Aide	98
Total	334

Full model

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$\beta_{0k} = \gamma_0 + \gamma_1 Small_k + \eta_{0k}$$

 $\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$

Coefficient γ_1 measures average test score for classes in the "small" experimental condition.

$$eta_1,\ldots,eta_5 \sim ext{Norm}(0,50)$$
 $\sigma \sim ext{Unif}(0,100)$
 $eta_0 \sim ext{Norm}(500,100)$
 $eta_1 \sim ext{Norm}(0,50)$
 $eta_0 \sim ext{Unif}(0,100)$

Note

For computational efficiency and other pragmatic reasons, second-level terms like γ_1 sometimes need to be implemented as first-level components.

In random-intercept models, this is a trivial matter, but it gets more complex with models we will cover soon.

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$eta_{0k} = \gamma_0 + \gamma_1 Small_k + \eta_{0k} \ \eta_{0k} \sim ext{Norm}(0, oldsymbol{\phi}_0)$$

Think about γ_1 as a second-level variable.

Mathematically, γ₁ can be included at the first level.

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \gamma_1 Small_k + \beta_1 Black_i + \beta_2 Asian_i + \beta_3 Hispanic_i + \beta_4 NativeAmerican_i + \beta_5 Other_i$

$$eta_{0k} = oldsymbol{\gamma}_0 + oldsymbol{\eta}_{0k} \ \sim \mathsf{Norm}(0,oldsymbol{\phi}_0)$$

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_1 B lack_i + \beta_2 A sian_i$
 $+ \beta_3 H ispanic_i + \beta_4 N a tive A merican_i$
 $+ \beta_5 O ther_i$

$$eta_{0k} = \gamma_0 + \gamma_1 Small_k + \eta_{0k}$$
 $\eta_{0k} \sim \mathsf{Norm}(0, oldsymbol{\phi}_0)$

	Mean		redible nterval
Y 0	526.15	523.34	529.04
V 1	12.37	8.26	16.82
β_1	-26.70	-29.88	-23.51
$oldsymbol{eta_2}$	7.34	-8.59	24.19
β_3	16.37	-6.66	42.92
β_4	-14.17	-48.66	23.74
$oldsymbol{eta}_5$	14.83	-8.74	35.25
σ	47.03	46.33	47.69
ф 0	23.32	21.32	25.31
β_{1k}	•	•	•

