

Ecosystems Overview

Subject & topics Biology Ecology Ecosystems		
Status Not started	Stage & difficulty A Level Practice 1	

Part B Ecosys	stem examples
Which of	the following could be considered ecosystems? Select all that apply.
	a rock pool
	a tree
	a human
	a coral reef
	a forest
	a city
	a field
Part C Ecolog	rical niche
Which of	the following things are part of the ecological niche of a species? Select all that apply.
	the biotic and abiotic conditions that the species is best adapted to
	the types of interactions that species has with other species in the ecosystem
	the habitat in which that species lives
	the maximum population size of the species that can be sustained in a given ecosystem
	the genetic diversity of that species
	the trophic level of that species

Ecological Interactions

Subject & topics Biology Ecology Ecosystems		
Status	Stage & difficulty	
Not started	A Level Practice 2	

Organisms within a species and organisms of different species interact with each other in many different ways within an ecosystem.

latch the intera	ction types to the definitions in the table below.	
Interaction type	Definition	
	organisms of different species competing for the same resource(s)	
	organisms of the same species competing for the same resource(s)	
	one organism killing and consuming another organism	
	an interaction between two organisms that is beneficial for one organism but harmful for the other	
	an interaction between two organisms that is beneficial for both organisms	
	an interaction between two organisms that is beneficial for one organism and neutral (i.e. neither beneficial nor harmful) for the other	
Items: mutualism parasitism predation interspecific competition commensalism intraspecific competition		

Part B Examples
Match the interaction type to the example below.
A European garden spider (<i>Araneus diadematus</i>) spins a web and waits for an insect to land on it. When this happens, the spider kills and eats the insect. This is an example of
A male red deer (<i>Cervus elaphus</i>) challenges another male red deer, and the two males fight until one concedes defeat. The winner gains the opportunity to mate with the females. This is an example of
Grey squirrels (<i>Sciurus carolinensis</i>) and red squirrels (<i>Sciurus vulgaris</i>) eat the same food and occupy the same habitats. The UK population of red squirrels decreased after the introduction of grey squirrels. This is an example of
Species of the <i>Plasmodium</i> genus (single-celled eukaryotes) are transmitted between female <i>Anopheles</i> mosquitoes and humans (<i>Homo sapiens</i>). Once inside a human's blood, <i>Plasmodium</i> cells invade the red blood cells and multiply, using up the nutrients in the red blood cells and eventually causing them to burst - as well as inducing various other symptoms. This is known as malaria. This interaction between <i>Plasmodium</i> and humans is an example of
A honey bee (<i>Apis mellifera</i>) lands on a sunflower (<i>Helianthus annuus</i>) and drinks nectar from the sunflower, which deposits pollen on the bee. The honey bee then flies to another sunflower to drink nectar from there, transferring pollen to that flower. This interaction is an example of
A house sparrow (<i>Passer domesticus</i>) creates a nest in an oak tree (<i>Quercus robur</i>). The sparrow gains shelter and some protection from predators. The oak tree is not affected in any significant way. This is an example of
Items:
mutualism (inter-specific competition) (commensalism) (predation) (parasitism) (intra-specific competition)

Part C Extinction consequences
If a population of a particular animal species ("species X") goes extinct in an ecosystem, which of the following species will likely be negatively affected?
an animal species that predates on species X
a plant species that is predated on by species X
an animal species that competes with species X for food
a plant species that is pollinated by species X
an animal species that parasitises species X
Created for isaacphysics.org by Lewis Thomson

Energy Transfer Efficiency

The diagram in Figure 1 shows a simple food chain.

Figure 1: A food chain where energy from light is transferred in turn to P, Q and R. The numbers represent available energy and are in arbitrary units (a.u.), and the percentages represent efficiency of energy transfer.

The energy transfer between trophic levels is not 100% efficient.

Part B Energy transfer P to Q
Which of the following could explain the inefficiency of energy transfer from P to Q? Select all that apply.
$ m CO_2$ levels are limiting the rate of photosynthesis
energy is lost as heat
some wavelengths of light are not used
some of the light is reflected by the leaves rather than absorbed
cellulose is not digested and is lost in faeces
bones are either not consumed or not digested
Part C Energy transfer Q to R
Which of the following could explain the inefficiency of energy transfer from Q to R? Select all that apply.
$ m CO_2$ levels are limiting the rate of photosynthesis
energy is lost as heat
some wavelengths of light are not used
some of the light is reflected by the leaves rather than absorbed
cellulose is not digested and is lost in faeces
bones are either not consumed or not digested

Part D Available energy in mammal R
Calculate the available energy in mammal R.
What percentage of the initial available light energy in the ecosystem is available in mammal R?

STEM SMART Biology Week 24 - Ecosystems

Adapted with permission from NSAA 2021 Section 2 Q42

Energy Transfer and Productivity

Energy transfer between trophic levels is not 100% efficient - only some of the energy stored within one trophic level will be transferred to the trophic level above. This is because energy is lost from the food chain as heat (during respiration) and through material that is excreted (e.g. in faeces and urine).

The quantity of energy stored within the **producers** in an ecosystem over a given time period is called the gross primary productivity (GPP). This is usually expressed in units of energy per unit area per unit time e.g. $kJ m^{-2} yr^{-1}$. The net primary productivity (NPP) refers to how much of this energy during this time period is available to consumers, taking into account the energy lost by the producers as heat during respiration (R) during this time period. This can be represented by the following equation:

$$NPP = GPP - R$$

We can also quantify the net productivity of **consumers** (N), which is the amount of energy stored within consumers that is available to higher trophic levels. We do this by calculating the energy stored within ingested material (I) and subtracting the energy lost through undigested material in faeces and urine (F) and the energy lost as heat during respiration (R). This can be represented by the following equation:

$$N = I - (F + R)$$

The energy flow in one ecosystem is shown below in Figure 1.

Figure 1: Energy flow in an ecosystem. Numbers represent energy values in $kJ\ m^{-2}\ yr^{-1}$. Numbers in boxes represent the energy stored within the bodies of those organisms. The yellow arrow represents sunlight energy fixed by plants, whereas green arrows represent energy ingested by consumers. Red arrows represent energy lost as heat during respiration, whereas purple arrows represent energy lost through undigested material in faeces and urine.

Part A Plants
Identify/calculate the following values for the producers in this ecosystem.
GPP =
NPP =
R =

Part B Herbivores
Identify/calculate the following values for the herbivores in this ecosystem.
N =
$\mathbf{I} = $
$\mathbf{F} = $
$R = \bigcirc$
Part C Carnivores
Identify/calculate the following values for the carnivores in this ecosystem.
N =
$\mathbf{I} = $
$\mathbf{F} = $
R =
Created for isaacphysics.org by Lewis Thomson
Question deck:

Carbon Cycle Diagrams

Part B Chemical processes

Figure 2: Part of the carbon cycle. Three processes are labelled ${\bf P}, {\bf Q}$ and ${\bf R}.$

Which of the following statements is/are correct?	
P requires the presence of mitochondria.	
Overall, Q releases heat.	
R is sensitive to changes in pH and temperature.	

Part C

Sources of carbon

Figure 3: Part of the carbon cycle. Four parts are labelled P, Q, R and S. Arrows represent processes.

Drag and drop the correct descriptions for the boxes in Figure 3.

Description	Вох
CO ₂ in atmosphere	
carbon-rich compounds in animals	
carbon-rich compounds in decomposers	
carbon-rich compounds in plants	

Items:

P

R S

Question elements adapted with permission from NSAA 2022 Specimen Paper Section 1 Q74, NSAA 2021 Section 1 Q72, NSAA 2020 Section 1 Q64

Question deck:

Nitrogen Cycle Processes

Nitrogen is an important component of many biological molecules. However, plants and animals cannot directly utilise atmospheric nitrogen. Most plants obtain nitrogen from nitrates, which they absorb from the soil. Animals obtain nitrogen from plants either directly (by consuming plants) or indirectly (by consuming other animals that obtained nitrogen from plants).

The conversion of atmospheric nitrogen to nitrates (and back) involves many processes. The main processes involved are nitrogen fixation, nitrification, denitrification, and ammonification. Together, these processes make up the nitrogen cycle.

Figure 1: Part of the nitrogen cycle. Arrows represent processes within the nitrogen cycle, some of which are labelled (A-F).

Part A Nitrogen Fixation
Which letter(s) in Figure 1 represent(s) nitrogen fixation? Select all that apply.
A
В
_ c
D
E
F
Part B Nitrification
Which letter(s) in Figure 1 represent(s) nitrification? Select all that apply.
A
В
_ c
D
E
_ F

Part C Denitrification				
Which letter(s) in Fig	ure 1 represent(s) denitri	fication? Select all	that apply.	
	,		,	
A				
В				
С				
D				
E				
F				
Part D Ammonification				
Vhich letter(s) in Fig	u re 1 represent(s) ammoi	nification? Select a	ll that apply.	
A				
В				
С				
D				
E				
F				
apted with permission	from CIE AS Level Novemb	er 2001, Biology Pap	er 1, Question 40	

Nitrogen Cycle Compounds

Figure 1: A part of a the nitrogen cycle. Arrows (A-D) represent processes within the nitrogen cycle.

Match the name to the molecule/ion in the	e table below.
Formula	Name
${ m N}_2$	
$\mathbf{NH_4}^+$	
$\mathrm{NO_2}^-$	
$\mathrm{NO_3}^-$	
Part B Identify the process	
Identify the process	e table below.
Identify the process	e table below. Process
Identify the process Match the figure label to the process in the	
Identify the process Match the figure label to the process in the Label	
Identify the process Match the figure label to the process in the Label A	
Match the figure label to the process in the Label A B	

Part C Nitrogen n	necessity
Which of the	following biological compounds contain nitrogen?
DNA	
starc	ch
RNA	
amin	no acids
trigly	ycerides
gluco	ose
chole	esterol
ATP	

Ecosystem Bacteria

Subject & topics Biology Ecology Nutrient Cycles		
Status Not started	Stage & difficulty A Level Challenge 2	

Part A **Bacterial species** Fill in the table below to show the locations of each type of bacterium in the nitrogen cycle and the reactions they perform. **Product** Type of bacterium Location Reactant(s) Nitrogen is... N_2 and \boldsymbol{H}^+ ions Rhizobium NH_3 reduced Nitrosomonas soil oxidised $\mathrm{NO_3}^-$ Nitrobacter soil $\mathrm{NO_3}^-$ Denitrifying bacteria Items: root nodules NO_2 $\mathrm{NH_4}^+$ oxidised soil reduced of legumes (nitrogen gas) (nitrites) (ammonium ions)

Part B

Nitrogenase

Nitrogen fixation is an important part of the nitrogen cycle.

The rate of nitrogen fixation is reduced by the presence of oxygen.

Rhizobium uses the enzyme nitrogenase to fix atmospheric nitrogen. H_2 can bind instead of N_2 to the binding site shown for N_2 .

Figure 1 shows a simplified representation of the structure of nitrogenase.

Figure 1: Nitrogenase enzyme structure.

The reaction that nitrogenase catalyses is:

$$m N_2 + 8\,H^+ + 8\,e^- + 16$$
 ATP $m \rightarrow 2\,NH_3 + H_2 + 16$ ADP $\rm + 16\,P_i$

Based on the information above, which of the following statements about nitrogenase are correct? Select all that apply.

$ m H_2$ ma $^\circ$	/ act as a	competitive	inhibitor
----------------------	------------	-------------	-----------

 $m H_2$ may act as a **non-competitive** inhibitor

CO may act as a **competitive** inhibitor

CO may act as a non-competitive inhibitor

the cluster of molybdenum, iron and sulfur is a prosthetic group

the cluster of molybdenum, iron and sulfur is part of the nitrogenase enzyme's primary structure

6/25, 5:51 PM	Ecosystem Bacteria — Isaac Science
Part C Leghaemoglobin	
Leghaemoglobin is a molecule, f similar properties to mammaliar	found in leguminous plants, that improves the performance of nitrogenase. It has very
Which of the following statement enzyme? Select all that apply.	nts could explain how leghaemoglobin improves the performance of the nitrogenase
leghaemoglobin acts as a	n enzyme to convert ammonium to nitrates
leghaemoglobin acts as a	n enzyme to convert nitrates to nitrogen
leghaemoglobin stops car	bon monoxide from binding to the allosteric site of nitrogenase
leghaemoglobin increases	s the efficiency of aerobic respiration in the plant cells
leghaemoglobin stops oxy	ygen from reacting with nitrogenase
leghaemoglobin stops hyc	drogen from binding to the active site of nitrogenase
Part D Decomposition	
Many species of bacteria ac	ct as decomposers within ecosystems by breaking down organic material.
Scientists analysed the ener	rgy flow within a grassland ecosystem.
They estimated that the ene	ergy in the decomposers' trophic level was $950000\mathrm{J~m^{-2}~yr^{-1}}.$
The energy within the produ	ucers' trophic level was 800% greater than that of the decomposers.
Calculate the energy in the proc	ducers' trophic level in ${ m kJ~m^{-2}~yr^{-1}}$. Give your answer to 3 significant figures.
Calculate the percentage efficie significant figures.	ency of the energy transfer from producers to decomposers. Give your answer to 2

Adapted with permission from OCR A Level Biology A, June 2017, Unified Biology, Question 4