Graphs Class 1

Types of Graphs

- Undirected vs Directed ____
- **Unweighted vs Weighted**
- Cyclic + Acyclic
- Connected + Disconnected
- **Complete graph**

Connected Nodes is a groph,

: There or more than God Ph Cyclic nodes (yclic Acyclic

Connected Googh: Where you can seach any node node other ayy disconnected Connected

every pair et nodes has Complite major a direct ede a) is a complete großh cyclic or acyclic De how mony edges it a complete graft of nodes > cyclic it no st nodes > 2

Common Terms

nodes

- Vertices + Edges
 - Neighbours + Degree
- Self loop
- Path + Walk + Cycle
- Simple Graph
- Bridge + Articulation Point

connections I w nodes

Airected graphs

Inde re

outdessel

B neighboup dessee N(B) = SA, FDY degree et a node = n. eighbour no. of edges th work for a googh that come inside it o/ - set of nodes that n is directly connected with

 $\Rightarrow 0$ deg(x) = no. of x — neighbours

He my works for them Dedson # general definition U 2 dy(n) = ns of eggs that go out if a node or come into a node

Caraph (3) Tree + Graph for a tree the no it eges goine out of a node = no. et neighbours of that node

Path Vs Walk vs (gcle

path Cycle a gooph)

any morner t done in a googh is called a walk only encounter Unique nodes and edges while month A-) B-D-> B-> A (walk) A->B->B (walk) Lycle starts A-DD (path) node and comes back onl B-> B (cycle) to the same node using unique nodes and edges. Only stoot node = end node

Simple Googh -> googh which does not contain any sett loops and does not contain nuttiple edges blu any gair et nodes $(dy(x) = no \cdot of neighbour of x in a simple groph)$ Bridge = any edge that when someoned from the graph increases the no. of connected components

Articulation point = any node that when removed from the graph increases the no. of connected components

Connected comfount

a connected comp within a googh is a set of nodes that are connected. a disconnect großh has more than I connected component

not an articulation point bridge Amman not a bridge articulation Point

Some Common Results

simple

• An undirected graph where each node has at degree at least 2 will contain a cycle

• A directed graph where each node has at least 1 in-degree and at least 1 out-degree will contain a cycle when we study directed graphs

(undirected + simple) graph Some Common Results

The sum of all degrees is even. The number of vertices with odd degree is even.

• Some more as we move ahead...

$$\frac{1}{2} dy(i) = ven$$

 $\chi = 1$ dep (π) = even 104 edje contributes +2 to the total degree sam. every

 $DS = d_1 + d_2 + d_3 - \dots - d_n$ even ro. of odd teoms is also even

•

Representation

- Adjacency Matrix
- Adjacency List with Vector
- Adjacency List with Set
- Pros and Cons of each
- How is Input given in problems?

matin stooing Adjaany the no. of edges blu every pair of nodes

0 the no. et edjes blu every pair of nodes Adjaancy matrix: Spad -> o(n2) Time -> 0 (edges) to populate (i) Time to invest an edge -> O(1) Time to delete an edge -> o(1) 3) Time to find out degree of a node -> o(n)

 $A \longrightarrow [B]$ AMMMMMMM - [A C,D] adjacency list vettor $C \rightarrow (P,D)$ spaa - 50 (edges) tinu to folute -> 0 (egges) time to insert an edge -> 0(1) time to find out time to delete an edge -> 0(1) degree -> 0(1) time to delete an edge -> o(n)

 $A \longrightarrow [B]$ Armananan B - A C D adjacence list $C \longrightarrow CPD$ (ordered) spaa - 10 (edges) folulate -> 0 (e-logn) tina to $\frac{-)}{(\log n)} \quad \text{time to find out} \quad \text{degree} \rightarrow o(1)$ tine to insert an edge time to delete an edge -> O(logh)

Trade of	adjacency	adjaancy list with rector	adjaoncy list with ret
Sqes	(n2)	(e)	0(0)
time to populate	0(6)	0 (e)	0 (elogn)
insert edge	0(1)		o(10gr)
delete edge	0(1)) (loyn)
degree of	0(1)	0(1)	0(1)

 $\# 1 \le n \le 1000$, $1 \le e \le 10^7$, $1 \le q \le 10^6$ query \rightarrow add an edge / delete an edge finally after all quivies -) point the degree of each matrix $\rightarrow 0(n^2)$ sque $o(e+q+n^2)$ time adj list with rector — > 0(e) space o(e+q-n+n) time adj list with set -10(e) space 0(elogn + glogn + n) time

in 99% grobbons uil be giren $|20| \ge 0 \ge 1$ > 99.916 prosens you won't have to delete edpes

Traversals

BFS (Single source and Multi source) Application of Traversals Connected components (Problem) Path construction Cycle detection (simple graph) Shortest Path (Problem) (undirekt / unwighted

Jeasch explore erent neighbour connflétely before coming back Derious rode

no. Et connected components vector < 6001> vis(n, false) int count = 0 for (int i = 0; i< n; i++) H (| vis [i])S Ats (i, edges, vis); count++;

find out any path slw two nodes Ati (cuss, edges, vis, preu, fasents) S Vis (cun) = true faxent (cun) = 12ev While (cui) (=-1) S ans. jush (cur) (uir = faxint) (cuis) 2 Hurresch

check while doing DB that for any node all the neighborn (except the parent) must not be already visited for an acyclic graph

