

Introduction to Embedded Systems - WS 2022/23

Exercise 8: Architecture Synthesis II

Task 1: Scheduling with Pipeline Resources

Pipeline-resources process data in time intervals that are smaller than the actual execution time w. As soon as after the start of a task v_1 the so-called *pipeline-interval* PI has elapsed, the next task v_2 can be started on the same resource (see Figure 1). Non-pipeline-resources are a special case of pipeline-resources with PI = w.

Figure 1: Tasks on pipeline-resource

Figure 2: Sequence graph for Pipelining

- a) Modify the LIST algorithm given in the lecture notes so that pipeline-resources are considered. Which step has to be reformulated and how? (Explain your answer!)
- b) Perform the scheduling for the sequence graph given in Figure 2 using the modified algorithm. You can use Table 1. The multiplication (r_2) lasts 4 time units and the length of the pipeline-interval is 2 time

units. The addition (r_1) lasts 2 time units and cannot be executed as pipeline-operation. 1 adder and 1 multiplier are available. Use the number of successor nodes as priority criterion. What is the resulting latency?

Task 2: Integer Linear Programming

Given the sequence graph $G_S = (V_S, E_S)$ in Fig. 3.

Figure 3: Sequence graph.

For the execution times of the operations assume: A multiplication operation (MULT) takes 2 time units and all other (ALU) operations take 1 time unit each. Two units of the resource type r_1 (multiplier) and two units of the resource type r_2 (ALU) are allocated.

- (a) Apply the ASAP and ALAP algorithms to compute the earliest (l_i) and the latest (h_i) starting time of all operations $v_i \in V_s, i \in \{1, \dots, 11\}$. For ALAP, assume the maximum latency $\overline{L} = 7$. Fill in the starting times in Table 2.
- (b) Formulate the problem of latency minimization with restricted resources as an integer linear program (ILP). For this, you should introduce the binary variables $x_{i,t} \in \{0,1\} \ \forall v_i \in V_S$ and $\forall t \in \{t \in \mathbb{Z} \mid l_i \leq t \leq h_i\}$. $\tau(v_i)$ is used to denote the starting time of operation $v_i \in V_S$ and $\alpha(r_i)$ with $r_i \in V_R = \{\text{MULT}, \text{ALU}\}$ denotes the number of allocated resource instances. Given the above notations, write down the following equations/inequations without using the Σ symbol.
 - (i) Express the objective function of the ILP
 - (ii) Define $\tau(v_i) \ \forall i \in \{1, \dots, 11\}$ as a function of $x_{i,t}$, where $l_1 \leq t \leq h_1$
 - (iii) Express all data dependencies
 - (iv) Express all resource limitations
- (c) In an analogous manner try to formulate an ILP that solves the problem of cost minimization with latency limitation. Hint: We assume that the cost of a realization is the sum of the costs c of the multipliers with $c(r_1)=2$ per allocated unit, and of the ALUs with $c(r_2)=1$ per allocated unit. For the latency bound, we choose $\bar{L}=6$.

t	k		
0	r_1		
	r_2		
1	r_1		
	r_2		
2	r_1		
	r_2		
3	r_1		
	r_2		
4	r_1		
	r_2		
5	r_1		
	r_2		
6	r_1		
	r_2		
7	r_1		
	r_2		
8	r_1		
	r_2		
9	r_1		
	r_2		
10	r_1		
	r_2		
11	r_1		
	r_2		
12	r_1		
	r_2		
13	r_1		
	r_2		

Table 1: Table for Task 1

Task 3: Iterative Algorithms

Please answer the following questions considering the given video codec application specified as a marked graph in Figure 4. $\label{eq:3} 3$

	l_i (ASAP)	$h_i(ALAP)$
v_1		
v_2		
v_3		
v_4		
v_5		
v_6		
v_7		
v_8		
v_9		
v_{10}		
v_{11}		

Table 2: Earliest and latest starting times (Task 2a)

Figure 4: Video codec marked graph representation

Table 3: Execution time of each function

(a) Formulate all existing dependencies in Figure 4 from ν_i to ν_j in the form of

$$\tau(\nu_i) - \tau(\nu_i) \ge w(\nu_i) - d_{ij} \cdot P,$$

where P is the minimum iteration interval. The execution time of each function is listed in Table 3.

(b) Assuming unlimited resources and only one token on the edge between ν_5 and ν_1 , determine the minimum iteration interval P and the latency L. To justify your answer, draw the scheduling on the timeline given in Figure 5 with the dependency from ν_5 to ν_1 highlighted.

Figure 5: Scheduling result of the video codec

(c) The motion estimation function (ν_1) uses the result of the previous frame (See the dependency between ν_1 and ν_5). Let us now suppose that any arbitrary number of tokens can be inserted to reduce P using functional pipelining. Then, determine the minimum number of tokens that should be added on the

edge $\nu_5 \to \nu_1$ to achieve P=10? To justify your answer, draw the pipelined scheduling on the timeline given in Figure 6 with the dependency from ν_5 to ν_1 highlighted and calculate the latency L of the schedule.

Figure 6: Pipelined scheduling result of the video codec