Honors Data Structures

Lecture 22: Minimum Spanning Trees

4/13/2022

Daniel Bauer

Total cost: 62

Total cost: 32

3 base

- Given an undirected, connected graph G=(V,E).
- A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

- Given an undirected, connected graph G=(V,E).
- A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

T is acyclic. There is a single path between any pair of vertices.

Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

T is acyclic. There is a single path between any pair of vertices.

Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

T is acyclic. There is a single path between any pair of vertices.

Any node can be the root of the spanning tree.

Given an undirected, connected graph G=(V,E).

 A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

Any node can be the root of the spanning tree.

- Given an undirected, connected graph G=(V,E).
- A spanning tree is a tree that connects all vertices in the graph. T=(V, E_T ⊆ E)

Number of edges in a spanning tree: |V|-1

Spanning Trees, Applications

- Constructing a computer/power networks (connect all vertices with the smallest amount of wire).
- Clustering Data.
- Dependency Parsing of Natural Language (directed graphs. This is harder).
- Constructing mazes.
- ...
- Approximation algorithms for harder graph problems.
- •

Minimum Spanning Trees

- Given a weighted undirected graph G=(E,V).
- A minimum spanning tree is a spanning tree with the minimum sum of edge weights.

Minimum Spanning Trees

- Given a weighted undirected graph G=(E,V).
- A minimum spanning tree is a spanning tree with the minimum sum of edge weights.

(often there are multiple minimum spanning trees)

Prim's Algorithm for finding MSTs

- Another greedy algorithm. A variant of Dijkstra's algorithm.
- Cost annotations for each vertex v reflect the lowest weight of an edge connecting v to other vertices already visited.
 - That means there might be a lower-weight edge from another vertices that have not been seen yet.
- Keep vertices on a priority queue and always expand the vertex with the lowest cost annotation first.


```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
22
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```



```
for all v:
  v.cost = ∞
  v.visited = false
 v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
24
```

Running time: Same as Dijkstra's Algorithm $O(|E| \log |V|)$


```
v.cost = ∞
  v.visited = false
  v.prev = null
start.cost = 0
PriorityQueue q
q.insert(start)
while (q is not empty):
  u = q.pollMin()
  u.visited = true
  for each v adjacent to u:
    if not v.visited:
     if (cost(u,v) < v.cost):</pre>
        v.cost = cost(u,v)
        v.prev = u
        q.insert(v)
```

- Observation:
 - A spanning tree has |V|-1 edges.
 - Choose any root. Then all vertices (except for the root) will have exactly one parent.
 - Adding ANY edge to an MST will create a cycle.

- Show: Any spanning tree produces by Prim's algorithm is minimal.
- Proof by contradiction: Assume a tree produced by Prim's was not an MST.
- Then we must have chosen a first edge (u,v) that was not consistent with an MST at some point.
 - Let T be a tree on the subset S prior to adding (u,v).
 - Let M be an extension of T that is an MST of the graph.

- Let T be a tree on the subset S prior to adding (u,v).
- Let M be an extension of T that is an MST of the graph.
- All other edges in M that we could have chosen instead of (u,v)
 (at the same time) must have higher cost than (u,v), or Prim's
 algorithm would have chosen them.

- Let T be a tree on the subset S prior to adding (u,v).
- Let M be an extension of T that is an MST of the graph.
- All other edges in M that we could have chosen instead of (u,v)
 (at the same time) must have higher cost than (u,v), or Prim's
 algorithm would have chosen them.
- Adding (u,v) to M would produce a cycle.
- Removing any other edge from the cycle would restore the spanning tree.
 Because (u,v,) has a lower cost, this would lower the total cost of M.
- Therefore M could not have been minimal.

Kruskal's Algorithm for finding MSTs

- Kruskal's algorithm maintains a "forest" of trees.
- Initially each vertex is its own tree.
- Sort edges by weight. Then attempt to add them one-by one. Adding an edge merges two trees into a new tree.
- If an edge connects two nodes that are already in the same tree it would produce a cycle. Reject it.

Sort edges (or keep them on a heap)

(v1, v2)	2
(v1, v3)	4
(v1, v4)	1
(v2, v4)	3
(v2, v5)	10
(v3, v4)	2
(v3,v6)	5
(v4, v5)	7
(v4, v6)	8
(v4, v7)	4
(v5, v7)	6
(v6, v7)	1


```
(v1, v4)
(v6, v7) 1
(v1,v2) 2
(v3, v4) 2
(v2, v4) 3
(v1,v3) 4
(\vee 4, \vee 7) 4
(v3, v6) 5
         6
(v5, v7)
(v4, v5)
(v4, v6)
          8
(v2, v5)
          10
```



```
(v1, v4)
(v6, v7)
(v1,v2) 2
(v3, v4) 2
(v2, v4) 3
(v1,v3) 4
(\vee 4, \vee 7) 4
(v3, v6) 5
        6
(v5, v7)
(v4, v5)
(v4, v6)
          8
(v2, v5)
          10
```


1	OK
1	OK
2	
2	
3	
4	
4	
5	
6	
7	
8	
10	
	 1 2 3 4 5 6 7 8

1	OK
1	OK
2	OK
2	
3	
4	
4	
5	
6	
7	
8	
10	
	1 2 3 4 4 5 6 7 8

1	OK
1	OK
2	OK
2	OK
3	
4	
4	
5	
6	
7	
8	
10	
	 1 2 3 4 5 6 7 8

(v1,v4)	1	OK
(v6,v7)	1	OK
(v1,v2)	2	OK
(v3,v4)	2	OK
(v2, v4)	3	reject
(v1, v3)	4	
(v4, v7)	4	
(v3,v6)	5	
(v5, v7)	6	
(v4, v5)	7	
(v4, v6)	8	
(v2, v5)	10	

(v1, v4)	1	OK
(v6,v7)	1	OK
(v1,v2)	2	OK
(v3,v4)	2	OK
(v2, v4)	3	reject
(v1,v3)	4	reject
(v4, v7)	4	
(v3,v6)	5	
(v5, v7)	6	
(v4, v5)	7	
(v4,v6)	8	
(v2, v5)	10	

(v1,v4)	1	OK
(v6,v7)	1	OK
(v1,v2)	2	OK
(v3,v4)	2	OK
(v2, v4)	3	reject
(v1,v3)	4	reject
(v4, v7)	4	OK
(v3,v6)	5	
(v5, v7)	6	
(v4, v5)	7	
(v4, v6)	8	
(v2, v5)	10	

(v1, v4)	1	OK
(v6,v7)	1	OK
(v1,v2)	2	OK
(v3,v4)	2	OK
(v2, v4)	3	reject
(v1,v3)	4	reject
$(\vee 4, \vee 7)$	4	OK
(v3,v6)	5	reject
(v5, v7)	6	
(v4, v5)	7	
(v4, v6)	8	
(v2, v5)	10	

(v1, v4)	1	OK
(v6, v7)	1	OK
(v1,v2)	2	OK
(v3,v4)	2	OK
(v2, v4)	3	reject
(v1,v3)	4	reject
(v4, v7)	4	OK
(v3,v6)	5	reject
(v5, v7)	6	OK
(v4, v5)	7	
(v4,v6)	8	
(v2.v5)	10	

Implementing Kruskal's Algorithm

- Try to add edges one-by-one in increasing order. Build a heap in O(|E|). Each deleteMin takes O(log |E|)
- How to maintain the forest?
 - Represent each tree in the forest as a set of vertices in the tree.
 - When adding an edge, check if both vertices are in the same set (*find*). If not, take the *union* of the two sets.
 - This can be done efficiently using a disjoint set data structure.

Implementing Kruskal's Algorithm

- Try to add edges one-by-one in increasing order. Build a heap in O(|E|). Each deleteMin takes O(log |E|)
- How to maintain the forest?
 - Represent each tree in the forest as a set of vertices in the tree.
 - When adding an edge, check if both vertices are in the same set (*find*). If not, take the *union* of the two sets.
 - This can be done efficiently using a *disjoint set* data structure.

Application: Hierarchical Clustering

- This is a very common data analysis problem.
- Group together data items based on similarity (defined over some feature set).
- Discover classes and class relationships.

Zoo Data Set

101 animals

represent each data item as a vector of integers (15 attributes).

	bear	chicke	tortoise	flea
hair	1	0	0	0
feathers	0	1	0	0
eggs	0	1	1	1
milk	1	0	0	0
airborne	0	1	0	0
aquatic	0	0	0	0
predator	1	0	0	0
toothed	1	0	0	0
backbone	1	1	1	0
breathes	1	1	1	1
venomou	0	0	0	0
fins	0	0	0	0
legs	4	2	4	6
tail	1	1	1	0
domestic	0	1	0	0

cavy Remove k-1 lowest cost edges 0.40 to produce k clusters. sealion 0.40sole 0.07 skua dogfish parakeet vulture crow 0.07flamingo 0.33moth 0.00housefly $\dot{\kappa}$ 0.0 gnat 44

cavy

0.40

• Remove k-1 lowest cost edges to produce k clusters.

cavy

• Remove k-1 lowest cost edges to produce k clusters.

cavy

• Remove k-1 lowest cost edges to produce k clusters.

