1999 年全国高中数学联合竞赛试卷第一试

第一风	
一、选择题	
本题共有 6 小题, 每题均给出(A)、(B)、(C)、(D) 四个结论, 其中有且仅有一个	是
正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得 6 分;不选、选错	
选出的代表字母超过一个(不论是否写在括号内),一律得0分。	^
一、 给定公比为 $q(q \neq 1)$ 的等比数列 $\{a_n\}$,设 $b_1 = a_1 + a_2 + a_3$, $b_2 = a_4 + a_5 + a_6$, …	,
$b_n = a_{3n-2} + a_{3n-1} + a_{3n}$, …,则数列 $\{b_n\}$ 【答】()	
(A) 是等差数列 (B) 是公比为 q 的等比数列	
(C) 是公比为 q^3 的等比数列 CD) 既非等差数列也非等比数列	
2. 平面直角坐标系中,纵、横坐标都是整数的点叫做整点,那么,满足不等	手式
(x -1)*+(y -1)*<2 的整点(x,y)的个数是	答】
()	
(A) 16 (B) 17 (C) 18 (D) 25	
3. 若(log ₅ 3)*-(log ₅ 3)*≥(log ₅ 3) ^{-y} -(log ₅ 3) ^{-y} ,则)
(A) $\mathbf{r} - \mathbf{y} \ge 0$ (B) $\mathbf{r} + \mathbf{y} \ge 0$ (C) $\mathbf{r} - \mathbf{y} \le 0$ (D) $\mathbf{r} + \mathbf{y} \le 0$	
4. 给定下列两个关于异面直线的命题:	10.11
命题 I:若平面 α 上的直线 α 与平面 β 上的直线 α 为异面直线,直线 α 是 α 与 β 的交	隻,
那么,在至多与 8, 6中的一条相交;	
命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线。	
那么 【答】()	
(A) 命題Ⅰ正确,命題Ⅱ不正确 (B) 命題Ⅱ正确,命題Ⅰ不正确	
(C) 两个命題都正确 (D) 两个命題都不正确 カギット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	####
一、 在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有 3 名选手各比 了 2 场之后就退出了,这样,全部比赛只进行了 50 场。那么,在上述 3 名选手之间	
))
(A) 0 (B) 1 (C) 2 (D) 3	,
一、 已知点 $A(1,2)$,过点 $(5,-2)$ 的直线与抛物线 $y^2=4x$ 交于另外两点 B,C ,那么, $\triangle A$	RC.
是	,
(A) 锐角三角形 (B) 钝角三角形 (C) 直角三角形 (D) 不确定 【答】()
二、填空题 (本题满分 54 分,每小题 9 分) 本题共有 6 小题,要求直接将答案写在横线上	•
7. 已知正整数 n 不超过 2000,并且能表示成不少于 60 个连续正整数之和,那么,这	羊的
n 的个数是	
8、已知 θ =arctg $\frac{5}{12}$,那么,复数 $z = \frac{\cos 2\theta + i \sin 2\theta}{239 + i}$ 的辐角主值是	
$\frac{12}{12}$,那么,复数 $2-\frac{1}{239+i}$ 的福用主谊定	
$0 + 5 \wedge 4BC + 3 + BC = C4 + 4B = 2 + 0 + 2 +$	
9、在 $\triangle ABC$ 中,记 $BC=a$, $CA=b$, $AB=c$,若 $9a^2+9b^2-19c^2=0$,则 $\frac{\text{ctg }C}{\text{ctg }A+\text{ctg }B}=$	
x^2 y^2	
10 、已知点 P 在双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 上,并且 P 到这条双曲线的右准线的距离恰是 P 到	
这条双曲线的两个焦点的距离的等差中项,那么, <i>P</i> 的横坐标是 .	

已知直线 ax+by+c=0 中的 a, b, c 是取自集合 $\{-3,-2,-1,0,1,2,3\}$ 中的 3 个不同的

已知三棱锥 S-ABC 的底面是正三角形,A 点在侧面 SBC 上的射影 H是 $\triangle SBC$ 的垂心,

二面角 H-AB-C 的平面角等于 30°,SA= $2\sqrt{3}$ 。那么三棱锥 S-ABC 的体积为______.

元素,并且该直线的倾斜角为锐角,那么,这样的直线的条数是_____.

三、解答题(本题满分60分,每小题20分)

12、

13. 已知当 $x \in [0, 1]$ 时,不等式 $x^2 \cos \theta - x(1-x) + (1-x)^2 \sin \theta > 0$ 恒成立,试求的取值范围。

14. 给定 A(-2,2),已知 B 是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上的动点,F 是左焦点,当 $|AB| + \frac{5}{3} |BF|$ 取最小值时,求 B 的坐标。

15. 给定正整数 n 和正数 M,对于满足条件 $a_1^2 + a_{n+1}^2 \le M$ 的所有等差数列 a_1, a_2, a_3, \cdots .,试求 $S=a_{n+1}+a_{n+2}+\cdots+a_{2n+1}$ 的最大值。

第二试

一、(満分 50 分) 如图,在四边形 ABCD中,对角线 AC 平分 $\angle BAD$. 在 CD 上取一点 E. BE 与 AC 相交于 E. 延长 DF 交 BC 于 C. 求证: $\angle CAC$ = $\angle EAC$.

二、(满分 50 分) 给定实数 禹 b, c, 已知复数 亞, 亞, 西满足:

$$\begin{cases} |z_1| = |z_2| = |z_3| = 1 \\ \frac{z_1}{z_2} + \frac{z_2}{z_3} + \frac{z_3}{z_1} = 1 \end{cases}$$
, 求 | az₁+bz₂+cz₃ |的值。

三、(满分 50 分) 给定正整数 n,已知用克数都是正整数的 k 块砝码和一台天平可以称出质量为 $1, 2, 3, \dots, n$ 克的所有物品。

- (1) 求 k 的最小值 f(n):
- (2) 当且仅当 n 取什么值时,上述 f(n) 块砝码的组成方式是唯一确定的? 并证明你的 结论。

1999 年全国高中数学联合竞赛答案

一、选择题

题号	1	2	3	4	5	6
答案	С	A	В	D	В	С

- **1**. 给定公比为 $q(q \neq 1)$ 的等比数列 $\{a_n\}$,设 $b_1 = a_1 + a_2 + a_3$, $b_2 = a_4 + a_5 + a_6$, …, $b_n = a_{3n-2} + a_{3n-1} + a_{3n}$, …, 则数列 $\{b_n\}$
 - (A) 是等差数列

- (B) 是公比为 a 的等比数列
- (C) 是公比为 d 的等比数列
- (1) 既非等差数列也非等比数列

【答案】(c).

【解析】由题设, $a_n = a_1 q^{n-1}$,

$$\begin{split} \frac{b_{n+1}}{b_n} &= \frac{a_{3n+1} + a_{3n+2} + a_{3n+3}}{a_{3n-2} + a_{3n-1} + a_{3n}} = \frac{a_1 q^{3n} + a_1 q^{3n+1} + a_1 q^{3n+2}}{a_1 q^{3n-3} + a_1 q^{3n-2} + a_1 q^{3n-1}} \\ &= \frac{a_1 q^{3n} \left(1 + q + q^2\right)}{a_1 q^{3n-3} \left(1 + q + q^2\right)} = q^3 \end{split}$$

因此, $\{b_n\}$ 是公比为 q^3 的等比数列。

- 2. 平面直角坐标系中,纵、横坐标都是整数的点叫做整点,那么,满足不等式 $(|x|-1)^2+(|y|-1)^2<2$ 的整点(x, y) 的个数是 【答】()
 - (A) 16
- (*B*) 17
- (*C*) 18
- (*D*) 25

【答案】(A)

【解析】由 $(|x|-1)^2 + (|y|-1)^2 < 2$,可得(|x|-1, |y|-1)为(0, 0),(0, 1),(0, -1), (1, 0)或(-1, 0).从而,不难得到(x, v)共有16个.

- (A) x-y≥0

【答案】(B)

【解析】记 $\mathbf{f}(\mathbf{t}) = (\log_2 3)^t - (\log_5 3)^t$,则 $\mathbf{f}(\mathbf{t})$ 在 R上是严格增函数. 原不等式即 $f(x) \ge f(-y)$. 故 $x \ge -y$, 即 $x+y \ge 0$.

4. 给定下列两个关于异面直线的命题。

命题 I: 若平面 α 上的直线 α 与平面 β 上的直线 α 为异面直线,直线 α 是 α 与 β 的交线, 那么,

c 至多与 a, b 中的一条相交:

命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线。

【答】()

- (A) 命題Ⅰ正确,命題Ⅱ不正确 (B) 命題Ⅱ正确,命題Ⅰ不正确
- (c) 两个命题都正确。
- (D) 两个命题都不正确

【答案】(D).

【解析】易知命题I不正确;又可以取无穷多个平行平面,在每个平面上取一条直线, 且使这些直线两两不同向,则这些直线中的任意两条都是异面直线,从而命题Ⅱ也不正确.

5. 在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了 2场之后就退出了,这样,全部比赛只进行了50场。那么,在上述3名选手之间比赛的场 【答】() 数是

(A) 0 (B) 1 (C) 2

(*D*) 3

【答案】(B)

【解析】设这三名选手之间的比赛场数是 r, 共 n 名选手参赛. 由题意, 可得 $C_{n-3}^2 + 6 - r = 50$,即 $\frac{(n-3)(n-4)}{2}$ =44+r. 由于 0 \leq r \leq 3,经检验可知,仅当 r=1 时,n=13 为正整数.

- 6. 已知点 A(1,2),过点 (5,-2) 的直线与抛物线 y=4x 交于另外两点 B,C 那么, $\triangle ABC$
 - (A) 锐角三角形 (B) 钝角三角形 (C) 直角三角形 (D) 不确定 【答】(【答案】(C)

【解析】 设 B(t², 2t), C(s², 2s), s≠t, s≠1, t≠1, 则直线 BC 的方程为, 化得 2x - (s+t)y + 2st = 0.

由于直线 BC 过点(5, -2), 故 2×5-(s+t)(-2)+2st=0, 即(s+1)(++1)=-4.

因此, $k_{AB}k_{AC}=\frac{4}{(t+1)(s+1)}=-1$,所以, $\angle BAC=90^{\circ}$,从而 $\triangle ABC$ 是直角三角形。

二、填空题

题号	7	8	9	10	11	12
答案	6	<u>#</u> 4	<u>5</u>	$-\frac{64}{5}$	43	$\frac{9\sqrt{3}}{4}$

 已知正整数 π 不超过 2000,并且能表示成不少于 60 个连续正整数之和,那么,这 样的 n 的个数是

【答案】6.

【解析】首项为 a 为的连续 k 个正整数之和为
$$S_k = \frac{(2a+k-1)k}{2} \ge \frac{k(k+1)}{2}$$

由 Sk≤2000,可得 60≤k≤62.

当 k=60时, Sk=60a+30×59, 由 Sk≤2000, 可得 a≤3, 故 Sk=1830, 1890, 1950;

当 k=61时, Sk=61a+30×61, 由 Sk≤2000, 可得 a≤2, 故 Sk=1891, 1952;

当 k=62时,Sk=62a+31×61,由 Sk≤2000,可得 a≤1,故 Sk=1953.

于是,题中的 n 有 6 个.

8. 已知
$$\theta = \operatorname{arctg} \frac{5}{12}$$
,那么,复数 $z = \frac{\cos 2\theta + i \sin 2\theta}{239 + i}$ 的辐角主值是______

【解析】 z 的辐角主值 argz=arg [(12+5i)²(239-i)]

=arg [(119+120i) (239-i)] =arg [28561+28561i]
$$\frac{\pi}{4}$$

9. 在 $\triangle ABC$ 中,记 BC=a,CA=b,AB=c,若 $9a^2$ + $9b^2$ - $19c^2$ =0,则 $\frac{\text{ctg}C}{\text{ctg}A + \text{ctg}B}$ =______.

$$\frac{\operatorname{ctg} C}{\operatorname{ctg} A + \operatorname{ctg} B} = \frac{\frac{\cos C}{\sin C}}{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}} = \frac{\sin A \sin B}{\sin^2 C} \cos C$$

$$= \frac{ab}{c^2} \cdot \frac{a^2 + b^2 - c^2}{2ab} = \frac{a^2 + b^2 - c^2}{2c^2} = \frac{9a^2 + 9b^2 - 9c^2}{2 \times 9c^2}$$

$$= \frac{19c^2 - 9c^2}{2 \times 9c^2} = \frac{5}{9}$$

10. 已知点 P在双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 上,并且 P到这条双曲线的右准线的距离恰是 P到这条双曲线的两个焦点的距离的等差中项,那么,P的模坐标是_____.

【解析】记半实轴、半虚轴、半焦距的长分别为 a、b、c,离心率为 e,点 P 到右准线 1 的距离为 d. 则 a=4, b=3, c=5, , 右准线 1 为.

如果 P 在双曲线右支,则 | PF₁ |= | PF₂ |+2a=ed+2a.

从而, |PF₁|+|PF₂|=(ed+2a)+ed=2ed+2a>2d,

这不可能,故 P 在双曲线的左支,则 | PF₂| -- | PF₁| = 2a , | PF₁| + | PF₂| = 2d. 两式相加得 2 | PF₂| = 2a + 2d. 又 | PF₂| = ed, 从而 ed = a + d.

故
$$d = \frac{a}{e-1} = 16$$
. 因此,P 的横坐标为 $x = \frac{a^2}{c} - d = -\frac{64}{5}$.

11. 已知直线 ax+by+c=0 中的 a, b, c 是取自集合 $\{-3, -2, -1, 0, 1, 2, 3\}$ 中的 3 个不同的元素,并且该直线的倾斜角为锐角,那么,这样的直线的条数是

【答案】43

【解析】设倾斜角为 θ ,则 $tg\theta = -\lambda 0$. 不妨设 $a\lambda 0$,则 $b\langle 0$.

- (1) c=0, a 有三种取法,b 有三种取法,排除 2 个重复 (3x-3y=0, 2x-2y=0 与 x-y=0 为同一直线),故这样的直线有 3×3-2=7条;
- (2) c≠0,则 a 有三种取法,b 有三种取法,c 有四种取法,且其中任两条直线均不相同,故这样的直线有 3×3×4=36条.

从而,符合要求的直线有 7+36=43 条。

12. 已知三棱锥 S-ABC 的底面是正三角形,A 点在侧面 SBC 上的射影 H是 $\triangle SBC$ 的垂心,二面角 H-AB-C 的平面角等于 30°, SA= $2\sqrt{3}$ 。那么三棱锥 S-ABC 的体积为______.

【答案】
$$\frac{9\sqrt{3}}{4}$$

【解析】由题设,AH 上面 SBC. 作 BH 上SC 于 E. 由三垂线定理可知 SC \bot AB. 故 SC \bot 面 ABC. 设 S 在面 ABC 内射影为 0,则 SO \bot 面 ABC. 由三垂线定理之逆定理,可知 CO \bot AB 于 F. 同理,BO \bot AC. 故 0 为 \triangle ABC 的垂心.

又因为△ABC 是等边三角形,故 0 为△ABC 的中心,从而 SA=SB=SC=.

因为 CF ⊥ AB, CF 是 EF 在面 ABC 上的射影,由三垂线定理,EF ⊥ AB,所以,∠EFC 是二面角 H-AB-C 的平面角.故∠EFC=30°,

$$0\text{C=SCcos}60^\circ = \sqrt{3}$$
 , S0= 0C tg60° =3.

又
$$OC = \frac{\sqrt{3}}{3}$$
 AB,故AB= $\sqrt{3}$ $OC = 3$. 所以,VS-ABC= $\frac{9\sqrt{3}}{4}$.

三、解答题

13. 已知当 $x \in [0, 1]$ 时,不等式 $x^2 \cos \theta - x(1-x) + (1-x)^2 \sin \theta > 0$ 恒成立,试求的取值范围。

【解析】

若对一切
$$\mathbf{x} \in [0, 1]$$
, 恒有 $\mathbf{f}(\mathbf{x}) = x^2 \cos \theta - x(1-x) + (1-x)^2 \sin \theta > 0$,

取 x
$$\in$$
 (0, 1), 由于 $f(x) \ge 2x(1-x)\sqrt{\sin\theta\cos\theta} - x(1-x)$,

所以,
$$f(x) > 0$$
 恒成立,当且仅当 $2\sqrt{\sin \theta \cos \theta} - 1 > 0$ (2)

先在
$$[0,2\pi]$$
 中解 (1) 与 (2) :由 $\cos\theta$ >0, $\sin\theta$ >0, 可得 $0<\theta<\frac{\pi}{2}$.

又由 (2) 得
$$\sin 2\theta > \frac{1}{2}$$
 注意到 $0 < 2\theta < \pi$,故有 $\frac{\pi}{6} < 2\theta < \frac{5\pi}{6}$,

所以,
$$\frac{\pi}{12}$$
< θ < $\frac{5\pi}{12}$.

.因此,原题中 θ 的取值范围是
$$2k\pi + \frac{\pi}{12} < \theta < 2k\pi + \frac{5\pi}{12}$$
 , $k \in \mathbb{Z}$.

$$f(x) = x^2 \cos \theta - x(1-x) + (1-x)^2 \sin \theta > 0$$

$$\mathbf{M} \cos \theta = \mathbf{f}(1) > 0, \sin \theta = \mathbf{f}(0) > 0.$$
 (1)

$$\mathbb{R} \quad \mathbf{x}_0 = \frac{\sqrt{\sin \theta}}{\sqrt{\cos \theta} + \sqrt{\sin \theta}} \in (0, 1), \quad \mathbb{Q} \quad \sqrt{\cos \theta} x_0 - \sqrt{\sin \theta} (1 - x_0) = 0.$$

$$\mathbf{H} \mathbf{f} = f(x) = \left[\sqrt{\cos \theta} x - \sqrt{\sin \theta} (1 - x) \right]^2 + 2 \left(-\frac{1}{2} + \sqrt{\cos \theta \sin \theta} \right)_{\mathbf{x}} (1 - \mathbf{x}).$$

所以,
$$0 < f(x_0) = 2^{\left(-\frac{1}{2} + \sqrt{\cos\theta\sin\theta}\right)} x_0 (1-x_0)$$
.

故
$$-\frac{1}{2} + \sqrt{\cos\theta \sin\theta} > 0$$
 (2)

反之, 当(1), (2)成立时,
$$f(0)=\sin\theta>0$$
, $f(1)=\cos\theta>0$, 且 $x\in(0,$

1)时,f(x)
$$\geq 2^{(-\frac{1}{2} + \sqrt{\cos\theta\sin\theta})} x (1-x) > 0.$$

由 cos
$$\theta$$
 >0, sin θ >0, 可得 0< θ < $\frac{\pi}{2}$.

$$\nabla = \frac{1}{2} + \sqrt{\cos\theta \sin\theta} > 0$$
, $\sqrt{\cos\theta \sin\theta} > \frac{1}{2}$

$$\frac{1}{2}$$
 sin20 > $\frac{1}{4}$, sin20 > $\frac{1}{2}$,

注意到 $0<2\theta<\pi$, 故有 $\frac{\pi}{6}<2\theta<\frac{5\pi}{6}$,

所以,
$$\frac{\pi}{12} < \theta < \frac{5\pi}{12}$$
.

因此,原題中 θ 的取值范围是 $2k\pi + \frac{\pi}{12} < \theta < 2k\pi + \frac{5\pi}{12}$, $k \in \mathbb{Z}$

14. 给定 A(-2,2),已知 B 是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上的动点,F 是左焦点,当 $|AB| + \frac{5}{3} |BF|$ 取最小值时,求 B 的坐标。

【解析】

记椭圆的半长轴、半短轴、半焦距分别为 a、b、c,离心率为 e.则 a=5, b=4, c=3, e= $\frac{3}{5}$,左 准线为 \mathbf{x} = $-\frac{25}{3}$,过点 B 作左准线 \mathbf{x} = $-\frac{25}{3}$ 的垂线,垂足为 N,过 A 作此准线的垂线,垂足为 N。由椭圆定义, $|\mathbf{BN}|=\frac{5}{3}$ $|\mathbf{BF}|$.

于是, $|AB| + \frac{5}{3} |BF| = |AB| + |BM| \ge |AE|$ (定值),等号成立当且仅当 B 是 AE 与椭圆的交点时,

此时 B ($-\frac{5\sqrt{3}}{2}$, 2),所以,当 $|AB|+\frac{5}{3}$ |BF| 取最小值时,B 的坐标为 ($-\frac{5\sqrt{3}}{2}$, 2).

15. 给定正整数 n 和正数 M,对于满足条件 $a_1^2 + a_{n+1}^2 \leq M$ 的所有等差数列 a_1, a_2, a_3, \cdots .,试求

S=a_{n+1}+a_{n+2}+····+a_{2n+1}的最大值。

【解析】 设公差为 d,
$$a_{n+1} = \alpha$$
 ,则 $S = a_{n+1} + a_{n+2} + \dots + a_{2n+1} = (n+1) \alpha + \frac{n(n+1)}{2} d$.

$$\alpha + \frac{nd}{2} = \frac{S}{n+1}.$$

$$M \ge a_1^2 + a_{n+1}^2 = (\alpha - nd)^2 + \alpha^2$$

$$= \frac{4}{10}(\alpha + \frac{nd}{2})^2 + \frac{1}{10}(4\alpha - 3nd)^2$$

$$\geqslant \frac{4}{10} \left(\frac{S}{n+1} \right)^2$$

因此 $|s| \le \frac{3}{\sqrt{10}} (n+1) \sqrt{M}$, 且当 $\alpha = \frac{3}{\sqrt{10}} \sqrt{M}$, $d = \frac{4}{\sqrt{10}} \cdot \frac{1}{n} \sqrt{M}$ 时,

S=(n+1) (
$$\frac{3}{\sqrt{10}}\sqrt{M} + \frac{n}{2} - \frac{4}{\sqrt{10}} - \frac{1}{n}\sqrt{M}$$
)

= (n+1)
$$\frac{5}{\sqrt{10}}\sqrt{M} = \frac{\sqrt{10}}{2}$$
 (n+1) \sqrt{M}

由于此时 4 $\alpha = 3$ nd,故 $a_1^2 + a_{n+1}^2 = \frac{4}{10} \left(\frac{S}{n+1} \right)^2 = \frac{4}{10} \cdot \frac{10}{4} M = M$.

所以,S的最大值为 $\frac{\sqrt{10}}{2}$ (n+1) \sqrt{M} .

1999年全国高中数学联合竞赛加试参考答案及评分标准

一、(满分 50 分)如图,在四边形 ABCD中,对角线 AC 平分 $\angle BAD$ 。在 CD 上取一点 E, BE 与 AC 相交于 F, 延长 DF 交 BC 于 G。 求证: $\angle GAC$ = $\angle EAC$.

【解析】连结 BD 交 AC 于 H. 对 \triangle BCD 用塞瓦定理,可得 $\frac{CG}{GB} \cdot \frac{BH}{HD} \cdot \frac{DE}{BC} = 1$

因为 AH 是 \angle BAD 的平分线,由角平分线定理,可得 $\frac{BH}{HD} = \frac{AB}{AD}$

$$\frac{CG}{GB} \cdot \frac{AB}{AD} \cdot \frac{DE}{BC} = 1$$

过点 C 作 AB 的平行线 AG 的延长线于 I, 过点 C 作 AD 的平行线交 AE 的延长线于 J.

$$\frac{CG}{GB} = \frac{CI}{AB}, \ \frac{DE}{EC} = \frac{AD}{CJ}. \quad \frac{CI}{AB} \cdot \frac{AB}{AD} \cdot \frac{AD}{CJ} = 1$$

从而, CI=CJ.

又因为 CI // AB, CJ // AD,

故 ∠ACI=エ-∠ABC=エ-∠DAC=∠ACJ.

因此,△ACI≌△ACJ.

从而, ZIAC= ZJAC, 即 ZGAC= ZEAC

二、(满分50分)给定实数 a, b, c, 已知复数 z, z, z, 满足:

$$\begin{cases} |z_1| + |z_2| + |z_3| + 1 \\ \frac{z_1}{z_2} + \frac{z_2}{z_3} + \frac{z_3}{z_1} = 1 \end{cases}, \quad \vec{x} |az_1 + bz_2 + cz_3| 的值。$$

可设
$$\frac{z_1}{z_3}$$
 , $\frac{z_1}{z_3}$, 则 $\frac{z_1}{z_3} = e^{i(\theta+\varphi)}$.

由题设,有 $e^{i\theta} + e^{ii\phi} + e^{-i(\theta+i\phi)} = 1.$ ϕ 两边取虚部,有 $0 = \sin \theta + \sin \phi - \sin (\theta + \phi)$

$$= 2 \sin \frac{\theta + \psi}{2} \cos \frac{\theta - \phi}{2} - 2 \sin \frac{\theta + \phi}{2} \cos \frac{\theta + \phi}{2}$$

$$= 2 \sin \frac{\theta + \psi}{2} (\cos \frac{\theta - \phi}{2} - \cos \frac{\theta + \phi}{2})$$

$$= 4 \sin \frac{\theta + \psi}{2} \sin \frac{\theta}{2} \sin \frac{\phi}{2}.$$

故θ=2kπ 或 Φ=2kπ 或 θ+Φ=2kπ, k∈Z.

因而, z:=z:或 z:=z;或 z;=z:.

如果 $\mathbf{z}_1 = \mathbf{z}_2$,代入原式即 $1 + \frac{z_1}{z_3} + \frac{z_3}{z_1} = 1$.

$$\left(\frac{Z_3}{Z_1}\right)^2 + 1 = 0$$
, $\frac{Z_3}{Z_1} = \pm i$

这时, $|\mathbf{az_1} + \mathbf{bz_2} + \mathbf{cz_3}| = |\mathbf{z_1}| |\mathbf{a} + \mathbf{b} \pm \mathbf{ci}| = \sqrt{(a+b)^2 + c^2}$.

类似地,如果 $\mathbf{z}_1 = \mathbf{z}_2$,则 $|\mathbf{a}\mathbf{z}_1 + \mathbf{b}\mathbf{z}_2 + \mathbf{c}\mathbf{z}_3| = \sqrt{(b+c)^2 + a^2}$

如果 $z_3=z_1$,则 $|az_1+bz_2+cz_3|=\sqrt{(c+a)^2+b^2}$.

所以,|az:+bz:+cz:|的值为 $\sqrt{(a+b)^2+c^2}$ 或 $\sqrt{(b+c)^2+a^2}$ 或 $\sqrt{(c+a)^2+b^2}$

三、(满分 50 分)给定正整数 n,已知用克数都是正整数的 k 块砝码和一台天平可以称出质量为 $1, 2, 3, \cdots, n$ 克的所有物品。

- (1) 求 k 的最小值 f(n);
- (2) 当且仅当 n 取什么值时,上述 f(n) 块砝码的组成方式是唯一确定的? 并证明你的 结论。

【解析】(1)设这 k 块砝码的质量数分别为 a_1, a_2, \dots, a_k , 且 $1 \le a_1 \le a_2 \le \dots \le a_k$, $a_i \in \mathbb{Z}$, $1 \le i \le k$. 因为天平两端都可以放砝码, 故可称质

量为 \mathbf{x}_{1} \mathbf{a}_{1} , \mathbf{x}_{i} \in {-1, 0, 1}. 若利用这 k 块砝码可以称出质量为 1, 2, 3, …, n 的物品,则上述表示式中含有 1, 2, …, n,由对称性易知也含有 0, -1, -2, …, -n,即

$$\sum_{i=1}^{n} x_i a_i \mid x_i \in \{-1, 0, 1\} \} \supseteq \{0, \pm 1, \cdots, \pm n\}.$$

所以, $2n+1=|\{0,\pm 1,\cdots,\pm n\}|\leqslant |\{\sum_{i=1}^{n}x_ia_i|x_i\in\{-1,0,1\}\}$ $|\leqslant 3^k,$

$$\mathbb{p} \quad n \leqslant \frac{3^{k}-1}{2}$$

设 $\frac{3^{m-1}-1}{2} <_{n} \le \frac{3^{m}-1}{2}$ (n≥1,n∈2),则 k≥n. 且 k=n 时,可取 a₁=1,a₂=3,…,a_n=3ⁿ⁻¹.

由数的三进制表示可知,对任意 $0 \le p \le 3^*-1$,都有 $p = \sum_{i=1}^{n} y_i 3^{i-1}$,其中 y_i ∈ $\{0, 1, 2\}$.

故对一切一 $\frac{3^m-1}{2} \le I \le \frac{3^m-1}{2}$ 的整数 I, 都有 $I = \sum_{i=1}^m x_i 3^{i-1}$,其中 $x_i \in \{-1, 0, 1\}$.

由于 $n \le \frac{3^m-1}{2}$,因此,对一切- $n \le I \le n$ 的整数 I,也有上述表示。综上,可知 k 的最小值

$$f(n) = n \cdot (\frac{3^{m-1}-1}{2} < n \le \frac{3^m-1}{2})$$
.

 $\frac{3^{**}-1}{2}$ (2) I. 当 $\frac{3^{**}-1}{2}$ 时,由(1)可知 1,3,…, 3^{**} ,3*就是一种砝码的组成方式. 下面我们证明 1,3,…, 3^{**} ,3*一1 也是一种方式

若 $1 \le I \le \frac{3^m - 1}{2}$, 由 (1)可知 $I = \sum_{i=1}^m \mathbf{x}_i 3^{i-1}$, $\mathbf{x}_i \in \{-1, 0, 1\}$.

若
$$\frac{3^m-1}{2}$$
 < $1 \le n < 3$ $\frac{3^{m+1}-1}{2}$,

$$\frac{3^m - 1}{2} < 1 + 1 \le \frac{3^{m+1} - 1}{2}.$$

由(1)可知

$$_{I+1}=\sum_{i=1}^{m+1}x_{i}3^{i-1}$$
, $\sharp \Leftrightarrow _{\mathbf{x}_{i}}\in \{-1, 0, 1\}$.

易知 $\mathbf{x}_{-+1}=\mathbf{1}$. (否则 $\mathbf{I} \leqslant \sum_{i=1}^{m} \mathbf{3}^{i-1} - \mathbf{1} = \frac{3^{m}-1}{2} - \mathbf{1}$, 矛盾)则 $\mathbf{I} = \sum_{i=1}^{m+1} x_{i} 3^{i-1}$ -(3*-1).

所以,当 $\mathbf{n} \neq 2$ 时, $\mathbf{f}(\mathbf{n})$ 块砝码的组成方式不惟一.

II. 下面我们证明: 当 $n=\frac{3^{n}-1}{2}$ 时, f(n)=m 块砝码的组成方式是惟

一的, 即 $a_i=3^{i-1} (1 \leq i \leq m)$.

若对每个- $\frac{3^{2}-1}{2}$ $\leq I \leq \frac{3^{2}-1}{2}$,都有 I= $x_{i}a_{i}$, $x_{i} \in \{-1, 0, 1\}$.

即 $\{ \mathbf{z}_{x_i a_i} | x_i \in \{-1, 0, 1\} \} \supseteq \{0, \pm 1, \dots, \pm \frac{3^n-1}{2} \}$. 注意左边集合中至多有 3m 个元素. 故必有

 $\{ \sum_{i=1}^{3} x_i a_i \mid x_i \in \{-1, 0, 1\} \} = \{0, \pm 1, \cdots, \pm \frac{3^{n} - 1}{2} \} .$

从而,对每个 $I_{i} = \frac{3^{m}-1}{2} \le I \le \frac{3^{m}-1}{2}$,都可以惟一地表示为 $I_{i} = \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{a}_{i}$,其中 $\mathbf{x}_{i} \in \{-1,0,1\}$.

因而, $\sum_{i=1}^{m} a_i = \frac{3^m - 1}{2}$. 则 $\sum_{i=1}^{m} (x_i + 1) a_i = \sum_{i=1}^{m} x_i a_i + \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} x_i a_i + \frac{3^m - 1}{2}$.

 $♦ y_i=x_i+1, 则 y_i ∈ {0, 1, 2}.$

由上可知,对每个0≤1≤3*-1,都可以惟一地表示为

 $I = \sum_{i=1}^{m} \mathbf{y}_{i} \mathbf{a}_{i}, \quad \mathbf{H} + \mathbf{y}_{i} \in \{0, 1, 2\}.$

特别地, 易知 1≤ a₁<a₂<…<a₄.

下面用归纳法证明 a_i=3ⁱ⁻¹ (1≤i≤ m).

当 i=1 时,易知 i=1 y; a; 中最小的正整数是 a;, 故 a;=1. 假设当 1≤i≤p 时,a;=3ⁱ⁼¹.

由于 $\sum_{i=1}^{p} y_i a_i = \sum_{i=1}^{p} y_i 3^{i-1}$, $y_i \in \{0, 1, 2\}$ 就是数的三进制表示,易知它们正好是 $0, 1, 2, \dots, 3^{n-1}$, 故 a_{n+1} 应是除上述表示外 $\{\sum_{i=1}^{m} y_i a_i \mid y_i \in \{0, 1, 2\}\}$ 中最小的数,因此, $\{a_{n+1} \mid 0\}$ 是除

由归纳法可知, $a_i=3^{i-1}(1 \leq i \leq n)$.

综合 I , II 可知,当且仅当 n= 2 时,上述 f(n) 块砝码的组成方式是惟一确定的.