A new Ad-Hoc parallel file system for HPC environments based on the Expand parallel file system

Félix García-Carballeira

felix.garcia@uc3m.es

uc3m Universidad Carlos III de Madrid

Agenda

- Introduction to Expand Parallel file system
- Expand as Ad-hoc parallel file system for large clusters and supercomputers
 - Motivation
 - Architecture
 - Data distribution
 - Metadata Management
- ▶ Performance evaluation
- Conclusions and future work

Introduction to Expand

Expand: distributed systems and small clusters

Expand: distributed systems and small clusters

- Advantages of using NFS:
 - Standard server
 - No changes to NFS server are required
 - Independent of the operating system used in the clients
 - Allows the using of servers with different architectures and operating systems
 - The parallel file system construction is greatly simplified
 - NFS is very familiar to users: easy configuration

Expand: IoT environments

Expand: ad-hoc parallel file system for large clusters

Motivation for developing an Ad-hoc file system

- ▶ Typical supercomputer architecture:
 - ▶ The number of compute nodes is much larger than the number of I/O nodes:
 - Possible bottleneck

Backend parallel file system

ISPDC 2023

8

Motivation for developing an Ad-hoc file system

- ▶ Typical supercomputer architecture:
 - The number of compute nodes is much larger than the number of I/O nodes:
 - Possible bottleneck
 - Data away from applications:
 - Use of network
 - ▶ Reduces data access performance

Backend parallel file system

Motivation for developing an Ad-hoc file system

- ▶ Typical supercomputer architecture:
 - The number of compute nodes is much larger than the number of I/O nodes:
 - Possible bottleneck
 - Data away from applications:
 - Use of network
 - ▶ Reduces data access performance
 - Different applications running at the same time:
 - File system conflicts and interferences

Ac-hoc file systems

- ▶ Temporary storage system for single applications or workflows of applications that use the available storage of compute nodes (HDD, SSD or SHM)
- ▶ The servers are deployed on the application's compute nodes

Ac-hoc file systems: advantages

- Reduces bottlenecks
- Temporary data (checkpoints, intermediate data) does not need to be stored in the backend file system
- In application workflows data remains for the different workflow processes

Architecture of the Expand Ad-Hoc

Architecture of the Expand Ad-Hoc

- Advantages of using MPI:
 - Standard interface and portable to different platforms
 - Offers good performance in clusters

- File in Expand:
 - ▶ Metadata subfile
 - Several data subfiles
- Data distributed on different servers

- File in Expand:
 - ▶ Metadata subfile
 - Several data subfiles
- Data distributed on different servers

- File in Expand:
 - ▶ Metadata subfile
 - ▶ Several data subfiles
- Data distributed on different servers

- File in Expand
- 0 1 2 3 4 5 6 7 8

- File in Expand:
 - Metadata subfile
 - Several data subfiles
- Data distributed on different servers

Directory structure

ISPDC 2023

19

/Expand

Metadata management

- Distributed metadata management:
 - Two levels
 - No locks
 - No metadata manager
- Metadata distributed among servers:
 - Master node
 - Hash function(name)
 - Load balancing

File in Expand

Metadata management

- Distributed metadata management:
 - Two levels
 - No locks
 - No metadata manager
- Metadata distributed among servers:
 - Master node
 - Hash function(name)
 - Load balancing

File in Expand

- Benchmark used: IOR
 - Open-source benchmark
 - A popular and effective way to evaluate the performance of distributed and parallel file systems is by using a variety of input/output (I/O) loads
- ▶ IOR access pattern: file sharing
 - All processes share the same file
 - Challenge for most parallel file systems

ISPDC 2023

22

- Platform:
 - ▶ MareNostrum 4. Barcelona Supercomputing Center (BSC)
- Main properties:
 - Nodes: 3,456
 - ▶ *Total cores*: 165,888
 - ▶ Main memory: 384.75 TB
 - ▶ SSD: 240 GB
 - Interconnection networks: I 00Gb Intel Omni-Path (Full-Fat Tree)
 - ▶ Peak Performance: II.15 Petaflops
 - ▶ Parallel file system: GPFS

- File systems evaluated:
 - Expand Ad-Hoc (512 KB of block size)
 - ▶ **GekkoFS** (512 KB of block size)

M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A. Brinkmann, "GekkoFS: a temporary distributed file system for HPC applications," in 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2018, pp. 319–324.

▶ **GPFS**: parallel file system used in MareNostrum 4

- Configuration:
 - Compute nodes: 1, 2, 4, ... up to 128 compute nodes
 - Local storage: SSD and Shared Memory (SHM) for GekkoFS and Expand
 - ▶ Transfer size used in IOR: 64 KiB, 512 KiB, and I MiB.
 - Client processes per compute node: 8
 - Operations: read and write in parallel on a shared file
 - Size written by each client: 4 GiB (resulting in a 4 TiB)
 - Number of processes: 8 up to 1024 processes
- ▶ All results in logarithmic scale
- All tests have been executed 10 times and the average results and standard deviation are shown in all figures.

Conclusions and Future Works

Main conclusions:

- Expand Ad-Hoc is available as an open-source project in the following GitHub repository:
 - https://github.com/xpn-arcos/xpn
- Expand Ad-Hoc uses user-space MPI-based data servers on the same compute nodes on which applications are running
- Expand Ad-Hoc provides a good performance compared to other solutions

▶ Future work:

Fault tolerant support

22nd IEEE International Symposium on Parallel and Distributed Computing

A new Ad-Hoc parallel file system for HPC environments based on the Expand parallel file system

Félix García Carballeira

felix.garcia@uc3m.es

uc3m Universidad Carlos III de Madrid

- ▶ Other results not included in the article:
 - A file per process. Each process accesses an individual file

