Содержание

1	Определение первообразной, общий вид первообразной, обозначение неопределенных интегралов, примеры	1
2	Основные свойства операции интегрирования	3
3	Таблица неопределенных интегралов	4
4	Формула интегрирования по частям, примеры	5
5	Замена переменной интегрирования, примеры	6
6	Интегрирование рациональных функций, примеры	7

1 Определение первообразной, общий вид первообразной, обозначение неопределенных интегралов, примеры

Рассмотрим задачу отыскания функции по известной ее производной.

Определение

Функция F(x) называется первообразной для функции f(x) на промежутке Δ числовой оси, если F(x) дифференцируема на этом промежутке и при этом $F'(x) = f(x) \ \forall x \in \Delta$.

Если F(x) — это первообразная для f(x), то и любая функция вида F(x)+C, где C — произвольная постоянная, также является первообразной для f(x): $(F(x)+C)'=F'(x)=f(x) \ \forall x\in \Delta$.

Лемма

Пусть функция F(x) — первообразная для f(x) на промежутке Δ числовой оси. Тогда любая другая первообразная $\Phi(x)$ для f(x) имеет на этом промежутке вид $\Phi(x) = F(x) + C$, где C — произвольная постоянная.

Доказательство

Пусть $\Phi(x)$ — первообразная для f(x), т.е. $\Phi'(x) = f(x) \ \forall x \in \Delta$. Тогда справедливы равенства $(\Phi(x) - F(x))' = \Phi'(x) - F'(x) = 0 \ \forall x \in \Delta$.

Таким образом, функция $\varphi(x) = \Phi(x) - F(x)$ дифференцируема на Δ и ее производная тождественно равна нулю на этом промежутке. Как доказано ранее, это означает, что функция $\varphi(x)$ тождественно постоянна на промежутке Δ . \square

Таким образом, первообразная данной функции на промежутке определена с точностью до аддитивной постоянной.

Понятие первообразной естественным образом расширяется на случай кусочно-дифференцируемых функций.

Определение

Пусть функция F(x) непрерывна на промежутке Δ числовой оси и имеет в Δ производную всюду кроме, возможно, конечного числа точек, причем в точках существования производной F'(x) выполняется равенство F'(x) = f(x). Тогда F(x) также называется первообразной для функции f(x) на промежутке Δ .

Доказанная выше лемма об общем виде дифференцируемой первообразной функции допускает следующее обобщение и на случай кусочно-дифференцируемой первообразной.

Лемма

Пусть функция f(x) на промежутке Δ числовой оси имеет кусочнодифференцируемую первообразную F(x). Тогда любая другая кусочнодифференцируемая первообразная для f(x) имеет на этом промежутке вид F(x)+C, где C — произвольная постоянная.

Любая первообразная функции f(x) называется также неопределенным интегралом от этой функции. Для обозначения первообразной используется символ $\int f(x)dx$. В этом обозначении символ \int называется знаком интеграла, символы f(x)dx называются подынтегральным выражением, а функция f(x) называется подынтегральной функцией. Операция отыскания (взятия) неопределенного интеграла от заданной функции называется интегрированием этой функции.

Таким образом, если F(x) — какая-либо первообразная функции f(x),

то справедливо следующее равенство $\int f(x)dx = F(x) + C$, где C — произвольная постоянная.

Пример. Проинтегрировать функцию $f(x) = x^2$.

Peшение. Рассмотрим дифференцируемую на всей числовой прямой функцию $F(x)=\frac{1}{3}x^3$. Для любой точки x имеем равенство $F'(x)=x^22$. Следовательно, $F(x)=\frac{1}{3}x^3$ — это первообразная, или неопределенный интеграл для $f(x)=x^2$: $\int x^2 dx=\frac{1}{3}x^3+C$. \square

Пример. Проинтегрировать функцию $f(x) = \operatorname{sgn} x$.

Peшение. Рассмотрим кусочно-дифференцируемую на всей числовой прямой функцию F(x)=|x|. В любой точке $x\neq 0$ существует производная F'(x) и при этом имеет место равенство F'(x)=+1 при x>0, F'(x)=-1 при x<0. Следовательно, $F'(x)=\operatorname{sgn} x$ для любой точки $x\neq 0$, или $\int \operatorname{sgn} x dx = |x| + C$. \square

2 Основные свойства операции интегрирования

Сформулируем основные свойства неопределенных интегралов.

- I_1 Пусть функция f(x) имеет на промежутке Δ первообразную. Тогда всюду на Δ , кроме, возможно, конечного числа точек, имеет место равенство $\frac{d}{dx}(\int f(x)dx) = f(x) \Leftrightarrow d(\int f(x)dx) = f(x);$
- I_2 Пусть функция F(x) непрерывная и кусочно-дифференцируемая на промежутке Δ числовой оси. Тогда F(x) является первообразной для функции F'(x) на Δ , т.е. $\int F'(x)dx = \int dF(x) = F(x) + C$. Заметим, что здесь F'(x) может быть не определена в конечном числе точек. В этих точках функцию F'(x) можно задать (доопределить) произвольным образом, на справедливость интегральной формулы это никак не повлияет;
- I_3 Аддитивность неопределенного интеграла. Пусть функции f(x) и g(x) имеют на промежутке Δ первообразные. Тогда их сумма f+g также имеет на промежутке Δ первообразную и при этом $\int (f+g)(x)dx = \int f(x)dx + \int g(x)dx$;
- I_4 Однородность неопределенного интеграла. Пусть функция f(x) имеет на промежутке Δ первообразную. Тогда для любого веществен-

ного $\alpha \neq 0$ произведение $\alpha f(x)$ также имеет на промежутке Δ первообразную и при этом $\int \alpha f(x) dx = \alpha \int f(x) dx$. При $\alpha = 0$ имеем равенство $\int 0 f(x) dx = \int 0 dx = C$.

 Π ример. Проинтегрировать функцию $f(x) = \alpha x^2 + \beta \operatorname{sgn} x$, где α , β — вещественные числа.

Peшение. Пользуясь свойствами первообразных, получаем $\int (\alpha x^2 + \beta \operatorname{sgn} x) dx = \alpha \int x^2 dx + \beta \int \operatorname{sgn} x dx = \frac{\alpha}{3} x^3 + \beta |x| + C.$

3 Таблица неопределенных интегралов

Знание производных элементарных функций дает таблицу неопределенных интегралов.

1.
$$\int 0dx = C$$
;

2.
$$\int x^{\alpha} dx = \frac{1}{\alpha+1} x^{\alpha+1} + C, \ \alpha \neq -1;$$

3.
$$\int \frac{1}{x} dx = \ln(|x|) + C;$$

4.
$$\int \frac{1}{1+x^2} dx = \arctan(|X|) + C;$$

5.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C;$$

6.
$$\int a^x dx = \frac{1}{\ln{(a)}} a^x + C$$
, где $a > 0$, $a \neq 1$. При $a = e$ имеем из последнего равенства $\int e^x dx = e^x + C$;

7.
$$\int \sin(x)dx = -\cos(x) + C;$$

8.
$$\int \cos(x)dx = \sin(x) + C;$$

9.
$$\int \frac{dx}{\cos^2(x)} = \operatorname{tg}(x) + C;$$

10.
$$\int \frac{dx}{\sin^2(x)} = -\cot(x) + C;$$

11.
$$\int \frac{1}{\sqrt{x^2 \pm 1}} dx = \ln(|x + \sqrt{x^2 \pm 1}|) + C.$$

Формулы 1–11 для неопределенных интегралов справедливы на тех промежутках числовой оси, на которых определены подынтегральные функции. Для доказательства формул 1–11 достаточно продифференцировать

функции в правой части и убедиться, что полученные производные совпадают с соответствующими подынтегральными функциями.

Производная элементарной функции — это также элементарная функция. Однако первообразная элементарной функции не всегда является элементарной функцией. Если все же некоторый неопределенный интеграл является элементарной функцией, то говорят, что этот интеграл вычисляется.

4 Формула интегрирования по частям, примеры

Будем рассматривать сейчас первообразные, имеющие производные во всех точках промежутка без исключения.

Теорема (формула интегрирования по частям)

Пусть функции u=f(x) и v=g(x) дифференцируемы на промежутке Δ . Тогда если произведение g(x)f'(x) имеет на Δ первообразную, то и функция f(x)g'(x) также имеет здесь же первообразную и при этом

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx. \tag{(IbP)}$$

Доказательство

Для доказательства формулы интегрирования по частям достаточно вычислить производную от функции в правой части равенства (IbP). \square Иной вариант записи формулы (IbP):

$$\int udv = uv - \int vdu. \tag{(IbP')}$$

Здесь u = f(x), dv = g'(x)dx, т.е. v = g(x).

 Π ример. Проинтегрировать функцию $\ln(x)$.

Решение. Возьмем в формуле интегрирования по частям $u=\ln{(x)}$ и dv=dx. Тогда v=x и $du=\frac{dx}{x}$. После подстановки (IbP') получим $\int \ln{(x)} dx = x \ln{(x)} - \int x \frac{x}{2} dx = x \ln{(x)} - x + C$. \square

 $\Pi pumep$. Вычислить интеграл $\int xe^x dx$.

Решение. Возьмем в формуле интегрирования по частям u=x и $dv=e^x dx$. Тогда $v=e^x$ и du=dx. После подстановки (IbP') получим $\int xe^x dx=xe^x-\int e^x dx=xe^x-e^x+C$. \square

5 Замена переменной интегрирования, примеры

Для вычисления интегралов помимо интегрирования по частям часто применяется формула, связанная с заменой переменной интегрирования. По-прежнему предполагаем, что рассматриваемые здесь первообразные имеют производные во всех без исключения точках операционного промежутка.

Теорема (формула замены переменной интегрирования)

Пусть функции f(y) и $\varphi(x)$ определены на некоторых промежутках числовой оси, $\varphi(x)$ дифференцируема и при этом имеет смысл композиция $f(\varphi(x))$. Тогда произведение $f(\varphi(x))\varphi'(x)$ имеет в качестве первообразной функцию $F(\varphi(x))$, где F(y) — это первообразная для f(y):

$$\int f(\varphi(x))\varphi'(x)dx = \int f(y)dy. \tag{(ChV)}$$

Доказательство

Сформулированная теорема сразу следует из формулы дифференцирования сложной функции. \square

Отметим, что равенство (ChV) называют еще формулой подстановки новой переменной интегрирования (подстановка $y = \varphi(x)$).

 Π ример. Вычислить интеграл $\int \operatorname{ctg}(x) dx$.

Решение. Полагаем $y=\sin{(x)}$, тогда в соответствии с равенством (ChV) имеем $\int \cot{(x)} dx = \int \frac{\cos{(x)}}{\sin{(x)}} dx = \int \frac{dy}{y} = \ln{(|y|)} + C = \ln{(|\sin{(x)}|)} + C$. \Box

Равенство (ChV), записанное в обратном порядке, т.е. в виде

$$\int f(y)dy = \int f(\varphi(x))\varphi'(x)dx. \qquad ((ChV'))$$

называют иногда методом замены переменной интегрирования. В качестве новой переменной при этом выступает $x = \varphi^{-1}(y)$, т.е. для применимости формулы (ChV') функция $y = \varphi(x)$ должна иметь обратную на рассматриваемом множестве изменения переменной y.

 $\Pi puмер$. Вычислить интеграл $\int \frac{dx}{\sqrt{x^2+a^2}}$, где a>0.

Решение. Сделаем замену переменной $x=a \sinh(t)$, где гиперболический синус $\sinh(t)$ определяется равенством $\sinh(t)=\frac{e^t-e^{-t}}{2}$. Вместе с синусом рассмотрим гиперболический косинус $\cosh(t)=\frac{e^t+e^{-t}}{2}$. Несложно проверить, что $\cosh^2(t)-\sinh^2(t)=1$. С учетом этого имеем $\int \frac{dx}{\sqrt{x^2+a^2}}=\int \frac{a \cosh(t)}{a^2 \cosh^2(t)} dt=t+C$, где t находим как корень уравнения $a \sinh(t)=x$. Подставляя сюда определение гиперболического синуса, получаем для e^t следующее квадратное уравнение: $(e^t)^2-\frac{2x}{a}e^t-1=0$. Решая это уравнение, находим $e^t=\frac{x+\sqrt{x^2+a^2}}{a} \Leftrightarrow t=\ln(x+\sqrt{x^2+a^2})-\ln(a)$. Таким образом, получаем $\int \frac{dx}{\sqrt{x^2+a^2}}=t+C=\ln(x+\sqrt{x^2+a^2})+C$, где C- произвольная постоянная. \Box

6 Интегрирование рациональных функций, примеры

Рациональной функцией (или дробью) называется отношение двух полиномов, т.е. функция вида $\frac{Q_m(x)}{P_n(x)}$, где числитель задается равенством $Q_m(x) = a_0 x^m + a_1 x^{m-1} + \cdots + a_{m-1} x + a_m$, а знаменатель равенством $P_n(x) = b_0 x^n + b_1 x^{n-1} + \cdots + b_{n-1} x + b_n$. Если m < n, то дробь называется правильной.

Для интегрирования рациональных функций используется следующее известное свойство полиномов с вещественными коэффициентами.

Лемма (разложение полинома на множители)

Любой полином $P_n(x)$ степени n с вещественными коэффициентами однозначно представим в виде произведения полиномиальных сомножителей вида $(x-a)^k$ и $((x-\alpha)^2+\beta^2)^k$, где числа a, α , β вещественны, $\beta>0$. При этом сумма степеней всех сомножителей в представлении полинома $P_n(x)$ равна его степени n.

Для того чтобы вычислить интеграл от рациональной функции следует сначала выделить ее целую часть. Если дробь правильная, то ее

целая часть равна нулю. Если же степень m ее числителя не меньше степени n ее знаменателя, $m \ge n$, то целая часть дроби — это полином степени m-n. Интеграл от этого полинома легко вычисляется с помощью таблиц. Вычитая из рациональной функции ее целую часть, получаем правильную дробь. Эту правильную дробь методом неопределенных коэффициентов представляют в виде суммы простых дробей, т.е. дробей вида $\frac{A}{(x-a)^k}$ и $\frac{Ax+B}{((x-\alpha)^2+\beta^2)^k},\ k\geq 1.$

Лемма (интегрирование правильных дробей)

При интегрировании дроби вида $\frac{A}{(x-a)^k}$ получается либо дробь того же вида (при k>1), либо функция вида $A\ln(|x-a|)$ (при k=1). Первообразная простой дроби $\frac{Ax+B}{((x-\alpha)^2+\beta^2)^k}$, где $k\geq 1$, представляет собой линейную комбинацию простых дробей того же вида и, возможно, функции $\ln\left((x-\alpha)^2+\beta^2\right)$ или же функции $\arctan\left(\frac{x-\alpha}{\beta}\right)$.

 Π ример. Вычислить интеграл $\int \frac{dx}{(x^2+1)^2}$. Pewenue. Применим формулу интегрирования по частям, полагая $u=\frac{1}{x^2+1}$ и dv=dx. Тогда получим $\int \frac{dx}{x^2+1}=\frac{x}{x^2+1}-\int x\frac{-2x}{(x^2+1)^2}dx=\frac{x}{x^2+1}+2\int \frac{dx}{x^2+1}-2\int \frac{dx}{(x^2+1)^2}$. Выразив последнее слагаемое в итоговой правой части через все остальное и разделив результат на два, получаем $\int \frac{dx}{(x^2+1)^2}=\frac{x}{2(x^2+1)}+\frac{1}{2}\int \frac{dx}{x^2+1}=\frac{x}{2(x^2+1)}+\frac{1}{2}\arctan\left(x\right)+C$. \square Π ример. Вычислить интеграл $\int \frac{x^3+x^2+x}{(x^2+1)^2}dx$.

Pewenue. Под интегралом здесь находится правильная дробь f(x), допускающая следующее разложение в сумму простых дробей: f(x) = $\frac{x^3+x^2+x}{(x^2+1)^2}=\frac{x}{x^2+1}+\frac{1}{x^2+1}-\frac{1}{(x^2+1)^2}$. Следовательно, справедливо равенство $\int f(x)dx = \frac{1}{2}\ln{(x^2+1)} + \arctan{(x)} - \int \frac{dx}{(x^2+1)^2}$. Подставляя сюда уже найденное в предыдущем примере значение последнего интеграла, получаем искомый результат $\int f(x)dx = \frac{1}{2}\ln(x^2+1) + \frac{1}{2}\arctan(x) - \frac{x}{2(x^2+1)} + C$. \square