A. Proofs

A.1. Proof of Lamma 1

Proof. In the following, we abbreviate j in Lemma 1 for the simplicity of the notation unless there is no confusion, and prove the lemma in slightly general case of $V[y] = \Sigma$. To prove the lemma, we first state the polyhedral lemma in Lee et al. (2016) as follows:

Lemma 7 (Polyhedral Lemma; (Lee et al., 2016)). Suppose $y \sim \mathrm{N}(\mu, \Sigma)$. Let $\mathbf{c} = \Sigma \boldsymbol{\eta} (\boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta})^{-1}$ for any $\boldsymbol{\eta} \in \mathbb{R}^n$, and let $\mathbf{z} = (I_n - \mathbf{c} \boldsymbol{\eta}^{\top}) \mathbf{y}$. Then we have

$$\begin{aligned} \operatorname{Pol}(S) &= \{ \boldsymbol{y} \in \mathbb{R}^n \mid A\boldsymbol{y} \leq \boldsymbol{b} \} \\ &= \left\{ \boldsymbol{y} \in \mathbb{R}^n \middle| \begin{array}{l} L(S, \boldsymbol{z}) \leq \boldsymbol{\eta}^\top \boldsymbol{y} \leq U(S, \boldsymbol{z}), \\ N(S, \boldsymbol{z}) \geq 0 \end{array} \right\}, \end{aligned}$$

where

$$L(S, \boldsymbol{z}) = \max_{j: (A\boldsymbol{c})_j < 0} \frac{b_j - (A\boldsymbol{z})_j}{(A\boldsymbol{c})_j}, \quad (13a)$$

$$U(S, \mathbf{z}) = \min_{j: (A\mathbf{c})_j > 0} \frac{b_j - (A\mathbf{z})_j}{(A\mathbf{c})_j}$$
(13b)

and $N(S, \mathbf{z}) = \max_{j:(A\mathbf{c})_j=0} b_j - (A\mathbf{z})_j$. In addition, $(L(S, \mathbf{z}), U(S, \mathbf{z}), N(S, \mathbf{z}))$ is independent of $\boldsymbol{\eta}^{\top} \mathbf{y}$.

The polyhedral lemma allows us to construct a pivotal quantity as a truncated normal distribution, that is, for any z, we have

$$[F_{0,\boldsymbol{\eta}^{\top}\Sigma\boldsymbol{\eta}}^{[L(S,\boldsymbol{z}),U(S,\boldsymbol{z})]}(\boldsymbol{\eta}^{\top}\boldsymbol{y})|\boldsymbol{y}\in\operatorname{Pol}(S)]\sim\operatorname{Unif}(0,1),\ \ (14)$$

where $\mathrm{Unif}(0,1)$ denotes the standard (continuous) uniform distribution. In fact, by letting z_0 be an arbitrary realization of z, one can see that

$$[\boldsymbol{\eta}^{\top} \boldsymbol{y} \mid \boldsymbol{y} \in \operatorname{Pol}(S), \boldsymbol{z} = \boldsymbol{z}_{0}]$$

$$\stackrel{\text{d}}{=} [\boldsymbol{\eta}^{\top} \boldsymbol{y} \mid L(S, \boldsymbol{z}_{0}) \leq \boldsymbol{\eta}^{\top} \boldsymbol{y} \leq U(S, \boldsymbol{z}_{0})]$$

$$\sim \operatorname{TN}(\boldsymbol{\eta}^{\top} \boldsymbol{\mu}, \boldsymbol{\eta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\eta}, L(S, \boldsymbol{z}_{0}), U(S, \boldsymbol{z}_{0})),$$

where $\stackrel{d}{=}$ denotes the equality of random variables in distribution. Therefore, probability integral transformation implies

$$[F_{\boldsymbol{\eta}^{\top}\boldsymbol{\mu},\boldsymbol{\eta}^{\top}\boldsymbol{\Sigma}\boldsymbol{\eta}}^{[L(S,\boldsymbol{z}),U(S,\boldsymbol{z})]}(\boldsymbol{\eta}^{\top}\boldsymbol{y})\mid\boldsymbol{y}\in\operatorname{Pol}(S),\boldsymbol{z}=\boldsymbol{z}_{0}]$$

has a uniform distribution $\mathrm{Unif}(0,1)$ for any z_0 . By integrating out z_0 , the pivotal quantity Eq.(14) holds. In addition, an lower α -percentile of the distribution can be obtained as

$$q_{\alpha} = (F_{\boldsymbol{\eta}^{\top}\boldsymbol{\mu},\boldsymbol{\eta}^{\top}\boldsymbol{\Sigma}\boldsymbol{\eta}}^{[L(S,\boldsymbol{z}),U(S,\boldsymbol{z})]})^{-1}(\alpha).$$

In the following, let us denote (S, z) by S for shorthand. The remaining is to show that truncation points in Eqs.(13) are equivalent to

$$L(S) = \boldsymbol{\eta}^{\top} \boldsymbol{y} + \theta_L \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta}$$
 where $\theta_L = \min_{\theta \in \mathbb{R}} \theta$ s.t. $\boldsymbol{y} + \theta \Sigma \boldsymbol{\eta} \in \text{Pol}(S)$

and

$$U(S) = \boldsymbol{\eta}^{\top} \boldsymbol{y} + \theta_{U} \boldsymbol{\eta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\eta}$$
 (15b)
where $\theta_{U} = \max_{\boldsymbol{\theta} \in \mathbb{D}} \boldsymbol{\theta}$ s.t. $\boldsymbol{y} + \boldsymbol{\theta} \boldsymbol{\Sigma} \boldsymbol{\eta} \in \operatorname{Pol}(S)$,

respectively. Simple calculation shows that, for any $\theta \in \mathbb{R}$, we have

$$\begin{aligned} & \boldsymbol{y} + \theta \boldsymbol{\Sigma} \boldsymbol{\eta} \in \operatorname{Pol}(S) \\ & \Leftrightarrow A(\boldsymbol{y} + \theta \boldsymbol{\Sigma} \boldsymbol{\eta}) \leq \boldsymbol{b} \\ & \Leftrightarrow \theta \cdot A \boldsymbol{\Sigma} \boldsymbol{\eta} \leq \boldsymbol{b} - A \boldsymbol{y}. \\ & \Leftrightarrow \begin{cases} & \theta \leq (\boldsymbol{b} - A \boldsymbol{y})_j / (A \boldsymbol{\Sigma} \boldsymbol{\eta})_j, & (A \boldsymbol{\Sigma} \boldsymbol{\eta})_j > 0 \\ & \theta \geq (\boldsymbol{b} - A \boldsymbol{y})_j / (A \boldsymbol{\Sigma} \boldsymbol{\eta})_j, & (A \boldsymbol{\Sigma} \boldsymbol{\eta})_j < 0 \\ & 0 \leq (\boldsymbol{b} - A \boldsymbol{y})_j, & (A \boldsymbol{\Sigma} \boldsymbol{\eta})_j = 0 \end{cases}. \end{aligned}$$

On the other hand, by the definition of c and z in Lemma 7, it is easy to see that

$$L(S) = \boldsymbol{\eta}^{\top} \boldsymbol{y} + \boldsymbol{\eta}^{\top} \Sigma \boldsymbol{\eta} \max_{j: (A \Sigma \boldsymbol{\eta})_j < 0} \frac{(\boldsymbol{b} - A \boldsymbol{y})_j}{(A \Sigma \boldsymbol{\eta})_j}$$

Therefore, for each j such that $(A\Sigma \eta)_j < 0$, we have

$$\max_{j:(A\Sigma\boldsymbol{\eta})_j<0}\frac{(\boldsymbol{b}-A\boldsymbol{y})_j}{(A\Sigma\boldsymbol{\eta})_j}\leq\theta$$

and thus the minimum possible feasible θ would be

$$\theta_L = \min\{\theta \in \mathbb{R} \mid \boldsymbol{y} + \theta \Sigma \eta \in \operatorname{Pol}(S)\}\$$

$$= \max_{j: (A \Sigma \boldsymbol{\eta})_j < 0} \frac{(\boldsymbol{b} - A \boldsymbol{y})_j}{(A \Sigma \boldsymbol{\eta})_j}.$$

Similarly, we see that the equivalency of U(S).

To complete the proof, let us consider a Gaussian random variable \boldsymbol{y} with mean $X\boldsymbol{\beta}^*$ and covariance matrix σ^2I_n with some constant σ^2 . We can choose $\boldsymbol{\eta}=(X_S^+)^\top\boldsymbol{e}_j$ for testing the null hypothesis $H_{0,j}:\beta_{S,j}^*=0$ for each $j\in S$, since $\boldsymbol{\eta}^\top\boldsymbol{y}$ reduces to the j-th element of an ordinary least square estimator for the selected model, and in this case, $\boldsymbol{\eta}^\top\Sigma\boldsymbol{\eta}$ reduces to

$$\sigma_S^2 = \sigma^2 \| \boldsymbol{\eta} \|^2 = \sigma^2 (X_S^\top X_S)_{jj}^{-1}.$$

Then the critical values are computed as

$$\ell_{\alpha/2}^S = q_{\alpha/2} = (F_{0,\sigma_s^2}^{[L(S),U(S)]})^{-1}(\alpha/2)$$

and

$$u_{\alpha/2}^S = q_{1-\alpha/2} = (F_{0,\sigma_S^2}^{[L(S),U(S)]})^{-1}(1-\alpha/2),$$

respectively. From the above argument, there are no matter to compute the truncation points in Eqs.(15) based on the observations. In this case, Eqs.(15) can be written as

$$L(S) = \boldsymbol{\eta}^{\top} \boldsymbol{y} + \theta_L \sigma^2 (X_S^{\top} X_S)_{jj}^{-1}$$

where $\theta_L = \min_{\theta \in \mathbb{R}} \theta$ s.t. $\boldsymbol{y} + \theta \sigma^2 (X_S^+)^{\top} \boldsymbol{e}_j \in \text{Pol}(S)$

and

$$U(S) = \boldsymbol{\eta}^{\top} \boldsymbol{y} + \theta_{U} \sigma^{2} (X_{S}^{\top} X_{S})_{jj}^{-1}$$
where $\theta_{U} = \max_{\theta \in \mathbb{R}} \theta$ s.t. $\boldsymbol{y} + \theta \sigma^{2} (X_{S}^{+})^{\top} \boldsymbol{e}_{j} \in \text{Pol}(S)$,

respectively, but we can ignore the scaling factor σ^2 because

$$\min\{\theta \in \mathbb{R}^n \mid \boldsymbol{y} + \theta(X_S^+)^\top \top \boldsymbol{e}_j \in \operatorname{Pol}(S)\}\$$
$$= \min\{\sigma^2 \theta \in \mathbb{R}^n \mid \boldsymbol{y} + \theta \sigma^2 (X_S^+)^\top \boldsymbol{e}_j \in \operatorname{Pol}(S)\}\$$

and

$$\max\{\theta \in \mathbb{R}^n \mid \boldsymbol{y} + \theta(X_S^+)^\top \boldsymbol{e}_j \in \operatorname{Pol}(S)\}\$$
$$= \max\{\sigma^2 \theta \in \mathbb{R}^n \mid \boldsymbol{y} + \theta \sigma^2 (X_S^+)^\top \boldsymbol{e}_j \in \operatorname{Pol}(S)\}.$$

A.2. Proof of Lamma 3

Proof. Since $x_{ij} \in [0,1]$, for any pair (j, \tilde{j}) such that $\tilde{j} \in Des(j)$, $x_j \geq x_{\tilde{j}}$ holds. Then,

$$\begin{split} |\boldsymbol{x}_{.\tilde{j}}^{\top}\boldsymbol{y}| &= |\sum_{i:y_i>0} x_{i\tilde{j}}y_i + \sum_{i:y_i<0} x_{i\tilde{j}}y_i| \\ &\leq \max\left\{\sum_{i:y_i>0} x_{i\tilde{j}}y_i, -\sum_{i:y_i<0} x_{i\tilde{j}}y_i\right\} \\ &\leq \max\left\{\sum_{i:y_i>0} x_{ij}y_i, -\sum_{i:y_i<0} x_{ij}y_i\right\}. \end{split}$$

A.3. Proof of Lemma 4

Proof. In MS, from Eq.(9), the constraint $y + \theta \eta \in Pol(S)$ is written as

$$(-s_{j}\boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{j'})^{\top}(\boldsymbol{y} + \theta \boldsymbol{\eta}) \leq 0$$

$$\Leftrightarrow \frac{-(s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{y}}{(s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{\eta}} \leq \theta \text{ if } (s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{\eta} > 0,$$
(16a)

and
$$\frac{-(s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{y}}{(s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{\eta}} \ge \theta \text{ if } (s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{\eta} < 0.$$
(16b)

$$(-s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{j'})^{\top}(\boldsymbol{y} + \theta \boldsymbol{\eta}) \leq 0$$

$$\Leftrightarrow \frac{-(s_{j}\boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{y}}{(s_{j}\boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{\eta}} \leq \theta \text{ if } (s_{j}\boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top}\boldsymbol{\eta} > 0$$
(16c)

and
$$\frac{-(s_j \boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{y}}{(s_j \boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{\eta}} \ge \theta \text{ if } (s_j \boldsymbol{x}_{\cdot j} - \boldsymbol{x}_{\cdot j'})^{\top} \boldsymbol{\eta} < 0.$$
(16d)

$$-s_i \boldsymbol{x}_{\cdot i}^{\top} (\boldsymbol{y} + \theta \boldsymbol{\eta}) \leq 0$$

$$\Leftrightarrow \frac{-s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}}{s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}} \le \theta \text{ if } s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta} > 0$$
 (16e)

and
$$\frac{-s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y}}{s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta}} \ge \theta \text{ if } s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta} < 0$$
 (16f)

for all $(j, j') \in S \times \bar{S}$. The conditions in Eqs.(16a), (16c), and (16e) suggests that $-\theta_L$ must be at least smaller than $\theta_L^{(a)}$ in Eq.(11a), $\theta_L^{(b)}$ in Eq.(11c), and $\theta_L^{(c)}$ in the second last inequality in Eq.(11), respectively. Therefore, we have

$$\theta_L = -\min\{\theta_L^{(a)}, \theta_L^{(b)}, \theta_L^{(c)}\}.$$

Similarly, the conditions in Eqs.(16b), (16d), and (16f) imply that

$$\theta_L = -\max\{\theta_U^{(a)}, \theta_U^{(b)}, \theta_U^{(c)}\}.$$

A.4. Proof of Lemma 5

Proof. First, note that $0 \le x_{i\tilde{j}'} \le x_{ij'} \le 1$ for any $(j,j',\tilde{j}') \in S \times \bar{S} \times Des_j(j')$. We first prove Eq.(12a).

$$(s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot \tilde{j}'})^{\top}\boldsymbol{y} = s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i}>0} x_{i\tilde{j}'}y_{i} + \sum_{i:y_{i}<0} x_{i\tilde{j}'}y_{i}$$

$$\geq s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i}<0} x_{i\tilde{j}'}y_{i}.$$

$$\geq s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i}<0} x_{ij'}y_{i} = L_{E}^{(a)},$$

which proves the first line. Next, we prove Eq.(12b).

$$(s_{j}\boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot \tilde{j}'})^{\top}\boldsymbol{y} = s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i} > 0} x_{i\tilde{j}'}y_{i} + \sum_{i:y_{i} < 0} x_{i\tilde{j}'}y_{i}$$

$$\leq s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i} > 0} x_{i\tilde{j}'}y_{i}.$$

$$\leq s_{j}\boldsymbol{x}_{\cdot j}^{\top}\boldsymbol{y} + \sum_{i:y_{i} > 0} x_{ij'}y_{i} = U_{E}^{(a)},$$

which proves the second line. Eqs. (12c) to (12h) are proved similarly.

A.5. Proof of Theorem 6

Proof. First, we prove (i). For any $(j, j', \tilde{j}') \in S \times \bar{S} \times Des_j(j')$, by using Lemma 5 directly, a lower and an upper bound of $s_j \boldsymbol{x}_{\cdot,j}^{\top} \boldsymbol{y} + \boldsymbol{x}_{z,j}^{\top} \boldsymbol{y}$ can be obtained as

$$L_E^{(a)} \le s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{y} + \boldsymbol{x}_{\cdot \tilde{j}'}^{\top} \boldsymbol{y} \le U_E^{(a)}$$
(17)

Similarly, a lower and an upper bound of $s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta} + \boldsymbol{x}_{\cdot \tilde{j}'}^{\top} \boldsymbol{\eta}$ can be also obtained as

$$L_D^{(a)} \le s_j \boldsymbol{x}_{\cdot j}^{\top} \boldsymbol{\eta} + \boldsymbol{x}_{\cdot \tilde{j}'}^{\top} \boldsymbol{\eta} \le U_D^{(a)}$$
 (18)

From Eq.(18), we have

$$U_D^{(a)} < 0 \Rightarrow (s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot \tilde{j}'})^{\top} \boldsymbol{\eta} < 0$$

for all $(j,\tilde{j}')\in S\times Des_j(j')$. It means that the (j,\tilde{j}') -th constraint does not affect the solution of the optimization problem in Eq.(11a). Now, we consider the case of $U_D^{(a)}>0$. If $L_D^{(a)}>0$, the value

$$\frac{(s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^\top \boldsymbol{y}}{(s_j \boldsymbol{x}_{\cdot j} + \boldsymbol{x}_{\cdot j'})^\top \boldsymbol{\eta}}$$

can be bounded below by $L_E^{(a)}/U_D^{(a)}$ when $L_E^{(a)}>0$, and $L_E^{(a)}/L_D^{(a)}$ when $L_E^{(a)}<0$, while the value can take any small values if $L_D^{(a)}<0$. As a result, for the current optimal solution $\hat{\theta}_L^{(a)},(j,j')$ -th constraint does not affect the solution of the optimization problem Eq.(11a), if

$$L_D^{(a)} > 0, \; L_E^{(a)} > 0 \quad \text{and} \quad \frac{L_E^{(a)}}{U_D^{(a)}} > \hat{\theta}_L^{(a)}, \label{eq:local_local_local_local}$$

or

$$L_D^{(a)} > 0, \; L_E^{(a)} < 0 \quad \text{and} \quad \frac{L_E^{(a)}}{L_D^{(a)}} > \hat{\theta}_L^{(a)},$$

because $L_D^{(a)} > 0$ implies $U_D^{(a)} > 0$. Similarly, we can prove (ii) – (iv) by the same argument.

B. Selectivxe inference for OMP

Lemma 8. Let $\eta := (X^+)^{\top} e_j$. The solutions of the optimization problems in (7) are respectively written as

$$\theta_{L} = -\min\{\theta_{L}^{(a)}, \theta_{L}^{(b)}, \theta_{L}^{(c)}\},\$$

$$\theta_{U} = -\max\{\theta_{U}^{(a)}, \theta_{U}^{(b)}, \theta_{U}^{(c)}\},\$$

where

$$\theta_L^{(a)} := \min_{\substack{h \in [k], \ j' \in \bar{S}_h, \\ (s_{(h)} \boldsymbol{x}_{\cdot (h)} + \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta} > 0}} \frac{(s_{(h)} \boldsymbol{x}_{\cdot (h)} + \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{y}}{(s_{(h)} \boldsymbol{x}_{\cdot (h)} + \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta}},$$

$$\theta_L^{(b)} := \min_{\substack{h \in [k], \ j' \in \bar{S}_h, \\ (s_{(h)} \boldsymbol{x}_{\cdot (h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta} > 0}} \frac{(s_{(h)} \boldsymbol{x}_{\cdot (h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{y}}{(s_{(h)} \boldsymbol{x}_{\cdot (h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta}},$$

$$\theta_L^{(c)} := \min_{\substack{h \in [k], \\ s_{(h)} \boldsymbol{x}_{\cdot(h)}^\top P_{S_h} \boldsymbol{\eta} > 0}} \frac{s_{(h)} \boldsymbol{x}_{\cdot(h)}^\top P_{S_h} \boldsymbol{y}}{s_{(h)} \boldsymbol{x}_{\cdot(h)}^\top P_{S_h} \boldsymbol{\eta}},$$
(19c)

$$\theta_U^{(a)} := \max_{\substack{h \in [k], \ j' \in \bar{S}_h, \\ (s_{(h)}\boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot j'})^\top P_{S_h}\boldsymbol{\eta} < 0}} \frac{(s_{(h)}\boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot j'})^\top P_{S_h}\boldsymbol{y}}{(s_{(h)}\boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot j'})^\top P_{S_h}\boldsymbol{\eta}},$$

$$\theta_U^{(b)} := \max_{\substack{h \in [k], \ j' \in \bar{S}_h, \\ (s_{(h)}\boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta} < 0}} \frac{(s_{(h)}\boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{y}}{(s_{(h)}\boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot j'})^{\top} P_{S_h} \boldsymbol{\eta}},$$

$$\theta_U^{(c)} := \max_{\substack{h \in [k], \\ s_{(h)} \boldsymbol{x}_{\cdot (h)}^\top P_{S_h} \boldsymbol{\eta} < 0}} \frac{s_{(h)} \boldsymbol{x}_{\cdot (h)}^\top P_{S_h} \boldsymbol{y}}{s_{(h)} \boldsymbol{x}_{\cdot (h)}^\top P_{S_h} \boldsymbol{\eta}}.$$
 (19f)

Lemma 9. For any
$$h \in [k]$$
 and $(j', \tilde{j}') \in \bar{S}_h \times Des_{(h)}(j')$,

$$L_{E}^{(a)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y} + \sum_{i:[P_{S_{h}} \boldsymbol{y}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{y}]_{i}$$

$$\leq (s_{(h)} \boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{y},$$

$$U_{E}^{(a)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y} + \sum_{i:[P_{S_{h}} \boldsymbol{y}]_{i} > 0} x_{ij'} [P_{S_{h}} \boldsymbol{y}]_{i}$$

$$\geq (s_{(h)} \boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{y},$$

$$L_{D}^{(a)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} + \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\leq (s_{(h)} \boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

$$U_{D}^{(a)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} + \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} > 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\geq (s_{(h)} \boldsymbol{x}_{\cdot(h)} + \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

$$L_{E}^{(b)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} P_{S_{h}} \boldsymbol{y} - \sum_{i:[P_{S_{h}} \boldsymbol{y}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{y}]_{i}$$

$$\leq (s_{(h)} \boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{y},$$

$$U_{E}^{(b)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} - \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\leq (s_{(h)} \boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

$$L_{D}^{(b)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} - \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} > 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\leq (s_{(h)} \boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

$$U_{D}^{(b)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} - \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\geq (s_{(h)} \boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

$$U_{D}^{(b)} := s_{(h)} \boldsymbol{x}_{\cdot(h)}^{\top} \boldsymbol{\eta} - \sum_{i:[P_{S_{h}} \boldsymbol{\eta}]_{i} < 0} x_{ij'} [P_{S_{h}} \boldsymbol{\eta}]_{i}$$

$$\geq (s_{(h)} \boldsymbol{x}_{\cdot(h)} - \boldsymbol{x}_{\cdot,\tilde{j}'})^{\top} P_{S_{h}} \boldsymbol{\eta},$$

Theorem 10. (i) Consider solving the optimization problem in Eq.(19a), and let $\hat{\theta}_L^{(a)}$ be the current optimal solution, i.e., we know that the optimal $\theta_L^{(a)}$ is at least no greater than $\hat{\theta}_L^{(a)}$. If

$$\begin{split} \{U_D^{(a)} < 0\} \cup \{L_D^{(a)} > 0, L_E^{(a)} < 0, L_E^{(a)}/L_D^{(a)} > \hat{\theta}_L^{(a)}\} \\ \cup \{L_D^{(a)} > 0, L_E^{(a)} > 0, L_E^{(a)}/U_D^{(a)} > \hat{\theta}_L^{(a)}\} \end{split}$$

is true, then the \tilde{j}' -th constraint in Eq. (10a) for any $h \in [k]$ and $(j', \tilde{j}') \in \bar{S}_h \times Des_{(h)}(j')$ does not affect the optimal solution in Eq.(19a).

(ii) Next, consider solving the optimization problem in Eq.(19b), and let $\hat{\theta}_I^{(b)}$ be the current optimal solution. If

$$\begin{split} \{U_D^{(b)} < 0\} \cup \{L_D^{(b)} > 0, L_E^{(b)} < 0, L_E^{(b)} / L_D^{(b)} < \hat{\theta}_L^{(b)}\} \\ \cup \{L_D^{(b)} > 0, L_E^{(b)} > 0, L_E^{(b)} / U_D^{(b)} < \hat{\theta}_L^{(b)}\} \end{split}$$

is true, then the \tilde{j}' -th constraint in Eq. (10b) for any $h \in [k]$ and $(j', \tilde{j}') \in \bar{S}_h \times Des_{(h)}(j')$ does not affect the optimal solution in Eq.(19b).

(iii) Furthermore, consider solving the optimization problem in Eq.(19d), and let $\hat{\theta}_U^{(a)}$ be the current optimal solution. If

$$\{L_D^{(a)} > 0\} \cup \{U_D^{(a)} < 0, L_E^{(a)} < 0, L_E^{(a)} / U_D^{(a)} > \hat{\theta}_U^{(a)} \}$$
$$\cup \{U_D^{(a)} < 0, L_E^{(a)} > 0, L_E^{(a)} / L_D^{(a)} > \hat{\theta}_U^{(a)} \}$$

is true, then the \tilde{j}' -th constraint in Eq. (10a) for any $h \in [k]$ and $(j', \tilde{j}') \in \bar{S}_h \times Des_{(h)}(j')$ does not affect the optimal solution in Eq.(19d).

(iv) Finally, consider solving the optimization problem in Eq.(19e), and let $\hat{\theta}_U^{(b)}$ be the current optimal solution. If

$$\begin{split} \{L_D^{(b)} > 0\} \cup \{U_D^{(b)} < 0, L_E^{(b)} < 0, L_E^{(b)} / U_D^{(b)} > \hat{\theta}_U^{(b)} \} \\ \cup \{U_D^{(b)} < 0, L_E^{(b)} > 0, L_E^{(b)} / L_D^{(b)} > \hat{\theta}_U^{(b)} \} \end{split}$$

is true, then the $(\tilde{j}'$ -th constraint in Eq. (10b) for any $h \in [k]$ and $(j', \tilde{j}') \in \bar{S}_h \times Des_{(h)}(j')$ does not affect the optimal solution in Eq.(19e).