衡水中学 2018 年高考押题试卷 化学试卷

可能用到的相对原子质量: H-1 C-12 N-14 O-16 Ca-40 Cu-64 Br-80 第 I 卷

选择题:本题共13小题,每小题6分。在每小题给出的四个选项中,只有一项是符含题目要求的。7.化学与社会、生活密切相关,对下列现象或亊实的解释不正确的是

选项	现象或事实	解释
A.	肉制品中添加适量的亚硝酸钠	亚硝酸钠有防腐的作用
B.	液氨常用作制冷剂	液氨汽化时要吸收大量的热
C.	利用静电除尘装置除去粉尘	胶体粒子带电
D.	Al(OH)3用作塑料的阻燃剂	Al(OH)3 受热熔化吸收大量的热

8.下列说法正确的是

A.H₂C=CHCH₃分子中所有原子在同一平面上

B.分子式为 C₃H₅Br₂ 的有机物共有 4 件同分异构体(不含立体异构)

C.乙二醇和甘油互为同系物

D.结构式为...-CH = CH— CH = CH— CH = CH— CH= CH-...的高分子化合物,其单体是乙烯

9.下列实验中,操作和现象以及对应结论都正确且现象与结论具有因果关系的是

选项	操作和现象	结论	
A.	滴有酚酞的 Na ₂ CO ₃ 溶液中加入 BaCl ₂ 溶液,红色变浅	Na ₂ CO ₃ 溶液中存在水解平衡	
	向电石中加入饱和食盐水制乙炔,并将产生的气体直接填		
В.	入酸性高锰酸钾溶液中,溶液紫红色褪去	记明乙炔能被酸性高锰酸钾氧化	
C.	常温下,测得饱和 Na ₂ S 溶液的 PH 大于饱和 Na ₂ CO ₃ 溶液	常温下水解程度: S ²⁻ >CO ₃ ²⁻	
D.	向分液漏斗中加入碘水后再加入 CCl4, 充分振荡, 分层,	CC14可作为碘的萃取剂	
	且上层溶液至紫色	CC14 时 [F / Y映 时 学 联 / 刊	

10.合成药物异搏定路线中某一步骤如图所示,下列说法错误的是

A.物质 X 的分子中存在 2 种含氧官能团

B.物质 Y 可以发生水解和消去反应

C.1molZ 最多可与 2molBr₂ 发生加成反应

D.等物质的量的 X、Y 分别与 NaOH 溶液反应,最多消耗的 NaOH 的物质的量之比为 1:1

11. 锌银(Zn-Ag₂O)电池多应用于军事、航空、移动的通信设备、电子仪器和人造卫星、宇宙航行等方面, 用如图所示装置模拟其工作原理,下列说法正确的是

A.K+向 a 极移动

B.b 极的电极反应式为 Ag₂O+H₂O+2e=2Ag+2OH

C.用该电池给铁棒镀铜,则铁棒与 b 极相连

D.电池工作一段时间后, 电解液的 pH 减小

12.短周期主族元素 $X \times Y \times Z \times W$ 的原子序数依次增大,四种元素形成的单质依次为 $m \times n \times p \times q$; $r \times t \times u$

是这些元素组成的二元化合物, 其中 u 为葡萄酒中的抑菌成分; 25 $\,^{\circ}$ C, 0.01 mol/L 的 v 溶液中: $\frac{c(H^+)}{c(OH^-)}$

= 1.0×10-10。上述物质的转化关系如图所示,下列说法不正确的是

A.简单离子半径: W>Y>Z>X

B.W, Y 分別与 X 元素形成的简单化合物的沸点: Y> W

C.Z₂Y 和 ZX 都只存在离子键

D.能抑制水的电离, u 的水溶液能促进水的电离

13.室温下,下列关亍电解质的说法中正确的是

A.中和等体积、等浓度的氨水和氢氧化钠溶液至 pH 等于 7, 前者消耗的盐酸多

B.向 NaHS 溶液中加入适量 KOH 后: c(Na+)=c(H2S)+c(HS-)+c(S2-)

C.将 amol • L-1 的醋酸与 0.01 mol • L-1 的氢氧化钠溶液等体积混合,溶液中: c(Na+)=c(CH₃COO-),

醋酸的电离常数
$$K_a = \frac{2 \times 10^{-9}}{a - 0.01}$$
 (用含 a 的代数式表示)

D.向 NH₄Cl 溶液中加入少量等浓度的稀盐酸,则 $\frac{c(NH_4^+)}{c(NH_3\cdot H_2O)}$ 的值减小

26. (15分)

溴化钙易溶于水, 医学上可用于治疗神经衰弱、癫痫等症。

请回答下列问题:

I.工业上溴的制备。

- (1)步骤③中主要反应的化学方程式为
- (2)不能直接用"溴水混合物 I"进行蒸馏得到液溴,原因是____。
- Ⅱ.实验室溴化钙的制备。

(3) "合成"步骤中,所需装置最合适的是_____(填选项字母)。

(4)"合成"步骤中的反应方程式为 ,"合成"步骤中需控制温度不能过高,原因

是	,投料时控制	$ n(Br_2);$	n(NH	3)=1:	0.8,其	目的是		o
(5)步骤⑧酸化时应加力	入的酸是		0					
(6)设计实验测定产品(主要成分 CaBr2)纯质	度(不必	丛描述 掺	操作过程	程的细	节,物理	里量的数值	可用字母表
	o							
14 分)								
氯氨是氯气遇到氨气质	反应生成的一类化合	·物,是	常用的	饮用水	《二级消	海剂 ,	主要包括-	一氯胺、二氯
和三氯胺(NH ₂ C1、NH	IC1 ₂ 和 NC1 ₃),副产	物少于	·其它水	消毒剂	IJ.			
回答下列问题:								
(1)①一氯胺(NH ₂ Cl)的	电子式为。							
②工业上可利用反应($Cl_2(g)+NH_3(g)=NH_2C$	Cl(g)+H	Cl(g)制	备一氯	〔胺,日	上知部分	化学键的银	建能如下表质
(假设不同物质中同和	中化学键的链能相同]),则词	亥反应的	勺△H=			°	
	化学键	N-H	Cl-Cl	N-Cl	H-Cl			
	键能(kJ/mol)	391.3	243.0	191.2	431.	3		
③一氯胺是重要的水剂	背毒剂,其 <mark>原</mark> 因是由	于一氯	胺在中	性、酸	这性环 境	中会发	生水解,生	生成具有强烈
菌作用的物质,该反应	应的化学方程式为_	K		<u>J</u> .			J.	
(2)用 Cl ₂ 和 NH ₃ 反应制	削 <mark>备二氯</mark> 胺的方程式	为 2Cl ₂	(g)+NH	$I_3(g) =$	≕ NH	Cl ₂ (g)+2	HCl(g),向]容积均为 1
甲、乙两个恒温(反应	立温度分别为 400℃、	、T℃)茗	序器中 分	分别加。	入 2 mo	1 C1 ₂ 和	2 mol NH	3,测得各容
n(Cl2)随反应时间 t 的图	变化情况如下表所示	₹:						
	t/min	0	40	80	120	160		
	n(Cl ₂)(甲容器)/mol	1 2.00	1.50	1. 10	0.80	0.80		
	n(Cl ₂) (乙容器)/n	nol 2.00	1.45	1.00	1.00	1.00		
①甲容器中,0~40 m	 in 内用 NH3 的浓度;	 变化表 [;]	 示的平5	 均反应	 速率 v(NH3)=_		o
②该反应的△H	0(填 ">" 或 "<	"),理	里由是_				o	
③对该反应,下列说法	去正确的是		(填选項	(字母)) _o			
A.若容器内气体密度7	下变,则表明反应达	到平衡	状态					
B.若容器内 C1 ₂ 和 NH	[3物质的量之比不变	,则表	明反应	达到平	至衡状态	÷		
Q 与应注到亚施丘 = t	主他冬姓不恋 在百	容器中	充入一	定量氦	气,C	l ₂ 的转化	之 率增大	
C.反应达到平衡后,其	*他苏门个文, 在冰							
C.反应达到平衡后, 身 D.反应达到平衡后, 身		一定量	的 NHC	C12, 刊	^z 衡向這	色反应方	向移动	

Cl₂和 HCl 的物质的量浓度与平衡总压的关系如图所示:

- ①A、B、C 三点中 Cl₂转化率最高的是 点(填 "A" "B"或 "C")。
- ②计算 C 点时该反应的压强平衡常数 $K_p(C)=$ _____(K_p 是平衡分压代替平衡浓度计算,分压=总压×物质的量分数)

28. (14分)

CoCl₂ • 6H₂O 可用作油漆干燥剂,工艺上可用含钴废料(主要为 Co,含少量 Fe、Al 等杂质)为原料来制取 CoCl₂ • 6H₂O,以下是制备该物质的一种新工艺流程:

已知: 部分阳离子以氢氧化物形式沉淀时溶液的 PH 见下表:

沉淀物	Fe(OH) ₃	Fe(OH) ₂	Co(OH) ₂	Al(OH) ₃
开始沉淀	2.7	7.5	7.6	3.8
完全沉淀	3.2	9.7	9.2	5.2

请回答下列问题:

[1]"酸浸"时 Co 转化为 Co ²⁺ ,反应的离子方程式为。"酸浸"时不能用硝酸的原因是
(2) "氧化"中欲使 3 mol 的 Fe^{2+} 为 Fe^{3+} ,则需要氧化剂过氧化氢的质量至少为g。
(3)加入碳酸钠调节 pH 至 a, a 的范围是。"滤渣"中所含的两种沉淀的化学式为
(4)滤液中加盐酸的目的是。
(5)操作 I 为。
(6)以 CoCl ₂ •6H ₂ O、NH ₄ Cl、H ₂ O ₂ 浓氨水为原料可以制备[Co(NH ₃) ₆]Cl ₃ 的反应方程式为。
式为 •

35.[化学——选修 3:物质结构与性质](15 分)

已知 $A \times B \times C \times D \times E \times F \times G$ 为前四周期中的常见元素,且原子序数依次增大,A 的原子半径最小,B 的基态原子 L 层电子数是 K 层电子数的 2 倍,C 的基态原子最外层电子排布式为 $ns^m np^{m+2}$, $D \times E \times F \times G$

G 是位于同一周期的金属元素,元素 D 的焰色反应要透过蓝色钴玻璃才能观察到紫色,且 D、G 的原子序数相差 10,E 元素有多种化合价。它的一种氫化物在空气中易被氧化且最终变为红褐色,且 E.、F 的电子数相差 1。

请回答下	「列	问题:
------	----	-----

((1)基	杰 E	原子的化	个电子排布式为	0

(2)与 BC 分子互为等电子体的离子为 (填化学式)。
(2)与 BC 分丁 4. 分	現化子氏ル

((3)在 B.A.	BCa中.	\mathbf{R}	原子采取的杂化方	式分别为			
٦	$J / \perp D J \Delta J $	\mathbf{DC}_{2}	D	// 1 // // III/ / / / / / / / / / / / /	エレノノ ハコノコ	`	1	

(4)单质 C 有两种同素异形体,其中沸点高的是	(填分子式),	而它的简单氢化物的沸点比同
主族的简单氢化物都高的原因是	0	

(6)金属 D、G 晶体的晶胞结构如图<mark>所示。</mark>

①其中表示金属 D 晶体晶胞的结构图为_____(填"I"或"II")。

②金属 G 的晶胞中,测得晶胞边长为 361 pm, G 原子的半径约为_____pm (保留三位有效数字),

D、G 两种晶胞中金属的配位数之比为。

③金属 G、锌两种元素的第一电离能、第二电离能如下表所示:

电离能/kJ • mol ⁻¹	I_1	I_2
G	746	1958
锌	906	1733

G 的第二电离能(I₂)大于锌的第二电离能,其主要原因是

36.[化学——选修 5:有机化学基础](15 分)

3, 4, 5-三甲氧基苯甲醛是制备抗菌增效剂 TMP 的中间体,通常可以通过以下途径合成。

- (1)写出 C 的名称: ; 下列说法不正确的是_____(填选项字母)。
- A.反应②要控制条件防止—CHO 被氧化
- B.1 mol 有机物 F 最多能与 3 mol H₂ 发生加成反应
- C.有机物 D 不能使 KMnO₄溶液褪色
- D.第 I 步所涉及的反应类型有氧化反应、还原反应
- (3) D 与新制 Cu(OH)2 反应的化学方程式为_____。
- (4)满足下列条件的 C 的同分异构体有______种,写出其中一种的结构简式: _____。

0

- ①红外光谱检测表明分子中含有苯环、一〇一〇一结构
- ②H—NMR 谱显示分子中有四种不同化学环境的氢
- (5)已知: RCHO+CH₃COOR' CH₃CH₃ONa → RCH=CHCOOR',请结合题给信息,设计以苯酚和乙酸乙酯

参考答案

- 7.D 8.B 9.A 10.D 11.B 12.D 13.B
- 26. (15分)
 - $I.(1)SO_2+Br_2+2H_2O=H_2SO_4+2HBr$ (2分)
 - (2)浓度较低,如果直接蒸馏,处理量大,生产成本高(2分)
 - II.(3)B(2分)
 - (4)3Ca(OH)₂+3Br₂+2NH₃=3CaBr₂+N₂↑+6H₂O(2 分) 温度过高,Br₂、NH₃易挥发(1 分)确保 Br₂ 被充分还原(2 分)
 - (5)HBr(或氢溴酸或溴化氢)(1分)
 - (6)取样品 α g,加水溶解(1 分)滴入足量 Na₂CO₃溶液(1 分)充分反应后过滤,洗涤、干燥、冷却,称量,得到 b g 碳酸钙,则样品的纯度为 $\frac{2b}{\alpha} \times 100\%$ (1 分)(其他合理答案也给分)
- 27. (14分)
 - (1)① H:N:CI: (1分)
 - ②+11.3 kJ/mol (2分, 不写"+"或不写单位, 扣 1分)
 - ③NH₂Cl+H₂O=NH₃+HClO (2分)
 - (2) ①6.25×10-8mol L-1 min-1 (1分)
 - ②<(1分) 温度越高,反应速率越快,平衡向吸热反应方向移动,其他条件相同时,T℃时的反应速率比 400℃时的反应速率快,且乙容器中平衡时 Cl₂的转化率比甲容器中 Cl₂的转化率小(2分。"原理"和"事实"两个要点各1分)
 - ③AB (2分)
 - (3)①B(1分)
 - ②0.5MPa (2分)
- 28. (14分)
 - (1)Co+2H⁺=Co²⁺+H₂↑ (2分)减少有毒气体的排放,防止大气污染;防止产品中混有硝酸盐(1分,任答一点即可)
 - (2)51(2分)
 - (3)5.2≤α<7.6 (1分) Fe(OH)₃、Al(OH)₃ (2分)
 - (4)调节溶液的 pH,抑制钴离子水解(2分,只答调节 pH 得1分)
 - (5)蒸发浓缩,冷却结晶、过滤、洗涤、干燥(2分,蒸发浓缩、冷却结晶得1分,过滤得1分)

(6)2CoCl₂•6H₂O+2NH₄Cl+10NH₃+H₂O₂=2[Co(NH₃)₆]Cl₃+14H₂O (2 分)

35. (15分)

(1)3d⁴4s² (1分)

(2)CN-(或 NO+或 C₂-)(1分)

(3)sp² (1分) sp (1分)

(4)O₃(1分) 水分子间存在氢键(1分)

(5)产生白色沉淀(1分) [Co(NH₈)₆SO₄]Br(1分)

(6)①I(1分)

②128 (2分) 2:3 (2分)

③锌的价电子是 3d¹⁰4s²,而铜的是 3d¹⁰4s¹,在失去一个电子后,铜失去的第二个电子在 3d 的全满轨道上,而锌的第二个电子在 4s 的半满轨道上,3d 全满比 4s 半满能量低,结构也更稳定,所以需要更多能量(2分)

36. (15分)

(1)对硝基甲苯(1分) BC(2分,少选一个扣1分,多选或错选不给分)

(2) 取(2分, 写成分子式或结构简式不给分) 取代(1分)

(3)
$$H_1 N$$
 $CHO + 2Cu(OH)_1 + NaOH $\stackrel{\triangle}{\longrightarrow} H_1 N$ $COON_8 + Cu_1O + 3H_1O$$

(2分,不配平扣1分)