Question 1 (15 Points)

The figure shows a ground mobile robot {B} and an aerial robot {A} with a camera {C} mounted at its bottom.

- a) How many independent variables are needed to completely define the pose of the aerial robot in 3D space? Explain. (3 Points)
- b) Represent the camera's pose with respect to the ground robot's frame in homogenous transformation matrix ${}^{\text{B}}\text{T}_{\text{C}}$. (3 Points)
- c) The aerial robot rotates -90° about axis Z_B , transforming frame {A} and {C} to {A1} and {C1}, Represent the new camera's pose with respect to the ground robot's frame in homogenous transformation matrix ${}^BT_{C1}$.
- d) The camera rotates -45° about axis X_{c1} , transforming frame {C1} to {C2}, Represent the new camera's pose with respect to the ground robot's frame in homogenous transformation matrix ${}^{B}T_{C2}$.
- e) The ground robot moves from frame {B} to {B2} via transformation ${}^BT_{B2}$. Using the camera to retrieve the new pose of the ground robot in the camera's frame {C2}, we obtained results:

$$T_{B2} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Using the results, represent the ground robot's movement in homogenous transformation matrix ${}^{\rm B}T_{\rm B2}$. (3 Points)

Question 2 (15 Points)

The figure below shows a robotic manipulator with a prismatic joint and rotational joint with joint variables q_1 and q_2 respectively.

a) Fill in the D-H table based on the frame assignment in the figure. (2 Points)

	Link Twist $lpha_{i-1}$	Link Length a_{i-1}	Joint Angle $\boldsymbol{\theta}_i$	Link offset d_i
⁰ T ₁	0	0	0	Q_1
¹ T ₂	(i)?	(ii)?	(iii)?	(iv)?

- b) The robot is manipulating a mass, m with the end effector $\{E\}$ under the influence of gravity. Ignore the mass of the linkage structure and treat the motion as a pointed mass at the end effector. State any other assumption you are making while answering the following.
- (i) Express the position of the mass, m in frame $\{0\}$, ${}^{0}P_{E}$ in terms of q_{1} and q_{2} . (3 Points)
- (ii) Write down the potential energy of the system in terms of q_1 and/or q_2 . (1 Points)
- (iii) Show that the kinetic energy of the system can be expressed as

$$K = \frac{m}{2}\dot{q_1}^2 + \frac{m}{2}l^2\dot{q_2}^2 - ml\dot{q_1}\dot{q_2}\sin{q_2}$$

(3 Points)

(iv) Write down an expression for the Lagrangian, L

(1 Points)

(v) Obtain the dynamic equations relating the joint force and torque $(f, \tau)^T$ with the joint motion. (5 Points)

Solution:

Question 1

- a) 6 independent variables: 3 for position (xyz translation), 3 for orientation (roll, pitch, yaw)
- b) Knowing that BR_C and AR_C are the same and hence ${}^BP_C = {}^AP_C {}^BP_C$, directly write down

$$^{\text{B}}\mathsf{T}_{\text{C}} = \begin{bmatrix} 0 & 0 & 1 & -3 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Alternatively,

$$\begin{split} & ^{\mathsf{B}}\mathsf{T}_{\mathsf{C}} = ^{\mathsf{B}}\mathsf{T}_{\mathsf{A}} ^{\mathsf{A}}\mathsf{T}_{\mathsf{C}} \\ & = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -4.1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -0.1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4.1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -0.1 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 & 1 & -3 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} &c) \, ^{\text{B}} T_{\text{C1}} = \, ^{\text{B}} T_{\text{B1}} \, ^{\text{B1}} T_{\text{C1}} = Rotate_{\text{Z}} \! \left(-90^{\circ} \right) \, ^{\text{B}} T_{\text{C}} \\ = & \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & -3 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d)
$${}^{B}T_{C2} = {}^{B}T_{C1} {}^{C1}T_{C2} = {}^{B}T_{C1} Rotate_{x} (-45^{\circ})$$

$$= \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 3 \\ 0 & -1/\sqrt{2} & -1/\sqrt{2} & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

e)
$${}^{B}T_{B2} = {}^{B}T_{C2} {}^{C2}T_{B2}$$

$$= \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 3 \\ 0 & -1/\sqrt{2} & -1/\sqrt{2} & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & -1/\sqrt{2} & -1/\sqrt{2} & 3/\sqrt{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1.5 \\ 0 & 0 & 1 & 2.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solution:

Question 2

$$|T, (i) 90 (ii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (ii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (ii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (ii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (ii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iii) 0 (iii) -q_2 (iv) 0$$

$$|T, (i) 90 (iv) 0 (iv) 0$$

$$|T, (i) 90 (iv) 0 (iv) 0 (iv) 0$$

$$|T, (i) 90 (iv) 0 (iv) 0 (iv) 0$$

$$|T, (i) 90 (iv) 0 (iv)$$

Question 3 (20 Points)

For the following robot schematics, compute the forward kinematics using the Product of Exponentials approach. Each of the following figures shows a robot with n joints in its zero position. You must find the missing pieces so we may write the pose of the end-effector (frame 1) as:

$$T_{01} = e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_n]\theta_n]} M$$

where $\theta_1, ..., \theta_n$ are the joint variables.

Recall that the base of the robot (the fixed frame $\{0\}$) is visualized by the large square. The end-effector or tool of the robot is denoted by the two-finger gripper at frame $\{1\}$. The order of the joints is determined by the following the mechanisms from the base to end-effector. A revolute joint is visualized as a cylinder (i.e., a rectangle from the side view, a circle from the top view). If working with a top view of a revolute joint, you may assume that the axis of rotation is pointing out of the page. A prismatic joint is visualized as a small square followed by a small rectangle that is in the direction of actuation. A topview of a prismatic joint is visualized as two nested squares.

a) Find the configuration for a simple robot. (4 Points)

- (i) Find M and the screw axes for each joint.
- (ii) Write out the matrix exponential that gives the forward kinematics of this simple robot.
- (iii) If $\theta_1 = 0.85$, what is the pose of the end effector? Given $\cos \theta_1 = 0.66$ and $\sin \theta_1 = 0.75$. Solution:

(i)
$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} S = \begin{bmatrix} 0 & 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & 0 \end{bmatrix}$$

- (ii) plug into matrix exponential equation as seen in slides
- (iii) $T_01 = [0.659983145885 0.7512804051400; 0.751280405140.6599831458850 2; 0012; 0001]$

b) A more complex robot

- i) Find M. (4 Points)
- ii) Find the screw axes for each joint. (12 Points)

Solution:

- i) $M = [0 \ 0 \ -1 \ -4; \ 0 \ 1 \ 0 \ 0; \ 1 \ 0 \ 0 \ -6; \ 0 \ 0 \ 0 \ 1]$
- ii) $S = [1\ 0\ 0\ 0\ -1\ -1;\ 0\ 1\ 0\ 1\ 0\ 0;\ 0\ 0\ 0\ 0\ 0;\ 0\ -2\ 0\ 4\ 0\ 0;\ 2\ 0\ 1\ 0\ 6\ 6;\ 0\ 2\ 0\ 2\ 0\ 0]$