

COMP4650/6490 Document Analysis

Introduction to Ranked Retrieval

ANU School of Computing

Administrative Matters

- Voting for COMP6490 Class Representatives
 - If you are enrolled in COMP6490
 - Cast your vote on Wattle (in Week 2)
 - Please vote by 2pm Friday 4 August
- Assignment 1
 - Released: Monday 31 July
 - Due: 5pm Wednesday 16 August, AEST (UTC +10)
 - Start working on it

So far...

We looked at:

- Boolean retrieval
- Inverted index data structure
- Tokenisation and other preprocessing steps

Outline

- From Boolean retrieval to ranked retrieval
 - Bag-of-Words (BoW) model
 - Field or zone indexes
 - Boolean retrieval with field
 - Limitations of Boolean retrieval
- Ranked retrieval
 - What is ranked retrieval
 - Weighted field scoring
 - Term frequency & inverse document frequency
 - TF-IDF variants
 - Vector space model

Outline

- From Boolean retrieval to ranked retrieval
 - Bag-of-Words (BoW) model
 - Field or zone indexes
 - Boolean retrieval with field
 - Limitations of Boolean retrieval
- Ranked retrieval
 - What is ranked retrieval
 - Weighted field scoring
 - Term frequency & inverse document frequency
 - TF-IDF variants
 - Vector space model

Bag-of-Words (BoW) Model

- You may notice that we did not care about the ordering of tokens in document
- Bag-of-Words (BoW) assumption: A document is a collection (multiset) of words
 - Doc1: The cat ate the fish
 - Doc2: The fish ate the cat
 - These two documents are the same under BoW assumption
- We will use the BoW assumption throughout the IR part of the course
- Real world systems (e.g. Google) do have to consider ordering
- The NLP module will cover approaches that consider ordering

Field or Zone in Document

- Documents may be semi-structured:
 - Title
 - Author(s)
 - Date of publication
 - Abstract
 - Body
 - ...
- Users may want to limit search scope to a certain field or zone
- A partial solution to the weakness of BoW

Basic Field Index

Equivalent to a separate index for each field

Basic field index

Fields are encoded as extension of dictionary entries

Field in Posting

Reduces size of dictionary & enables efficient weighted field scoring

Boolean Retrieval with Field

SEARCH CRITERIA	
Search for: Everything Library Catalogue Journal articles & eResources C ANU Open Research	ourse Readings
Search filters Any field contains information retrieval	Material Type Books Language
AND Title contains introduction	English ▼ Start Date:
AND Author/Creator Contains Manning	Day ▼ Month ▼ Start Year
NOT ▼ Subject ▼ contains ▼ Enter a search term	End Date: Day ▼ Month ▼ End Year
OR V User tags V contains V Enter a search term	
+ ADD A NEW LINE 5 CLEAR	
→ Any field contains information retrieval AND Title contains introduction AND Author/Creator contains Manning NOT Subject contains → OR User tags contains	₽ SEARCH

Boolean Retrieval with Field

SEARCH CRITERIA	^
Search for: © Everything	urse Readings
Any field contains information retrieval AND Title contains introduction AND Author/Creator contains Manning NOT Subject contains Enter a search term OR User tags contains Enter a search term Boolean Operators + ADD A NEW LINE CLEAR	Material Type Books Language English Start Date: Day Month Start Year End Date: Day Month End Year
→ Any field contains information retrieval AND Title contains introduction AND Author/Creator contains Manning NOT Subject contains → OR User tags contains	₽ SEARCH

Boolean Retrieval with Field

SEARCH CRITERIA	^
Search for: Everything Library Catalogue Journal articles & eResources Code ANU Open Research	urse Readings
Search filters Any field ▼ contains ▼ information retrieval	Material Type Books Language
AND ▼ Title ▼ contains ▼ introduction	English <u>*</u>
AND Author/Creator contains Manning	Start Date: Day ▼ Month ▼ Start Year
NOT ▼ Subject ▼ contains ▼ Enter a search term	End Date: Day ▼ Month ▼ End Year
OR ▼ User tags ▼ contains ▼ Enter a search term	
Fields + ADD A NEW LINE 5 CLEAR	
 → Any field contains information retrieval AND Title contains introduction AND Author/Creator contains Manning NOT Subject contains → OR User tags contains 	₽ SEARCH

Limitations of Boolean Retrieval

- Documents either match or don't
- Good for expert users with precise understanding of their needs and the document collection
- Not good for the majority of users
 - Most users are incapable of writing Boolean queries
 - Or they find it takes too much effort
- Boolean queries often result in either too few or too many results
 - Query1: "bluetooth pairing iphone" => 100,000 hits
 - Query2: "bluetooth pairing iphone sony mdr-xb50" => 0 hits

Outline

- From Boolean retrieval to ranked retrieval
 - Bag-of-Words (BoW) model
 - Field or zone indexes
 - Boolean retrieval with field
 - Limitations of Boolean retrieval
- Ranked retrieval
 - What is ranked retrieval
 - Weighted field scoring
 - Term frequency & inverse document frequency
 - TF-IDF variants
 - Vector space model

What is Ranked Retrieval

- Given a query, rank documents so that best results are early in the list
 - When results are ranked a large result set is not an issue
 - Only show the top-k (~10) results
 - Won't overwhelm the user
- Need a scoring function
 - Document d and query q: score(d, q)
- Document with a larger score will be ranked before those with smaller scores

Weighted Field Scoring

- Simple keyword query (most users) vs. advanced search with fields (expert users)
- How can we still make use of the fields without extra effort from the user?
 - Intuitively, term importance depends on its location
 - e.g. terms in the headline of a news article are typically more important than terms in main text

Weighted Field Scoring

- Simple keyword query (most users) vs. advanced search with fields (expert users)
- How can we still make use of the fields without extra effort from the user?
 - Intuitively, term importance depends on its location
 - e.g. terms in the headline of a news article are typically more important than terms in main text

Assign different weights to terms based on their location (field)!

Weighted Field Scoring

If a query term t occurs in field i of a document d then add weight g_i to the score for d and t

- ullet fields, Let g_i be the weight of field i and $\sum_{i=1}^\ell g_i = 1$
- t:a query term, d:document

$$Score(d, t) = \sum_{i=1}^{\ell} g_i \times s_i$$
 where $\begin{cases} s_i = 1, \text{ if } t \text{ is in field } i \text{ of } d \\ s_i = 0, \text{ otherwise} \end{cases}$

• A score of a query term ranges [0, 1]

Weighted Field Scoring

Example query: Hamlet

Field	Weight g_i
title	0.5
text	0.2
author	0.3

TF and IDF

Definition (Term Frequency (TF))

 $\mathsf{tf}_{t,d}$ is the number occurrences of term t in document d.

Rank documents based on the frequency of query terms

- The frequency of term in document is ignored in our Boolean retrieval model
- Let q be a set of query terms $(t_1, t_2, ..., t_m)$, a term frequency score of document d given query q is

$$score_{tf}(d, q) = \sum_{i=1}^{m} tf_{t_i, d}$$

TF and IDF

Table: Term frequency of two documents

Example: Rank by TF

	car	insurance	auto
doc1	1	2	3
doc2	5	0	2

- If our query q is "car insurance", then the score of each document is:
 - $score(doc1, q) = tf_{car, doc1} + tf_{insurance, doc1} = 1 + 2 = 3$
 - $score(doc2, q) = tf_{car, doc2} + tf_{insurance, doc2} = 5 + 0 = 5$
 - Therefore, doc2 is ranked higher than doc1
- Note:
 - Here every query term has an equal importance
 - What words are more important than others?

TF and IDF

Importance of Terms

- Every term could have a different weight
 - e.g. a collection of documents on the auto industry is likely to have the term car in almost every document
- How can we reduce the weight of terms that occur too often in the collection?
 - Use the document frequency of the terms

TF and IDF

Definition (Document Frequency)

Document frequency df_t : the number of documents in the collection that contain term t.

- Document frequency (df) is a good way to measure an importance of a term
 - High frequency => not important (e.g. stopwords)
 - Low frequency => important
- Why not collection frequency?
 - Collection frequency (cf):
 the total number of occurrences
 of a term in the collection

Word	cf	df
try	10422	8760
insurance	10440	3997

- cf and df behave very differently in this example
- cf is sensitive to documents that contain a word many times

TF and IDF

Definition (Inverse Document Frequency (IDF))

Let df_t be the number of documents in the collection that contain a term t. The inverse document frequency (IDF) can be defined as follows:

$$idf_t = log \frac{N}{df_t}$$

where N is the total number of documents.

- The idf of a rare term is high, whereas the idf of a frequent term is likely to be low. For example
 - Let N = 100, $df_{car} = 60$, $df_{insurance} = 10$
 - Using log base 10: $idf_{car} = 0.22$, $idf_{insurance} = 1$
 - *insurance* is 4 times more important than *car*
- Other log bases are sometimes used such as log base \emph{e} or log base 2

TF and IDF

Definition (TF-IDF)

The tf-idf weight of term t in document d is as follows:

$$\mathsf{tf}\text{-}\mathsf{idf}_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$$

Using *tf-idf* weights, the score of document d given query $q=(t_1,t_2,...,t_m)$ is:

$$Score_{tf-idf}(d,q) = \sum_{i=1}^{m} tf-idf_{t_i,d}$$

TF and IDF

Example: Rank by TF-IDF

Table: Term frequency of two documents

	car	insurance	auto
doc1	1	2	3
doc2	5	0	2

Table: IDF of three terms

car	0.22
insurance	1
auto	0.8

- Given the query "car insurance", the score of each document is:
 - $score(doc1, q) = tf-idf_{car, doc1} + tf-idf_{insurance, doc1} = 2.22$
 - $score(doc2, q) = tf-idf_{car, doc2} + tf-idf_{insurance, doc2} = 1.1$
- Unlike the tf scoring approach, the score of doc1 is greater than doc2

TF and IDF

A question for the audience:

Why does the log base of idf not really matter for ranking documents with the tf-idf score?

TF-IDF variants

Sublinear TF Scaling

- Limitation: tf-idf relies heavily on TF, it increases linearly with TF
 - $tf_{car, doc1} = 20, tf_{car, doc2} = 1$
 - If our query contains "car", then the tf-idf $_{car,\ doc1}$ is 20 times larger than tf-idf $_{car,\ doc2}$
- Claim: the marginal gain of TF should decrease as TF increases (i.e. the relationship should be non-linear)
 - Use logarithmically weighted term frequency (wf)

TF-IDF variants

Sublinear TF Scaling

Logarithmically weighted term frequency (wf)

$$\mathsf{wf}_{t,d} = \left\{ egin{array}{ll} 1 + \mathsf{log}\,\mathsf{tf}_{t,d}, & \mathsf{if}\;\mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{otherwise} \end{array}
ight.$$

$$wf-idf_{t,d} = wf_{t,d} \times idf_t$$

Figure: tf versus wf

TF-IDF variants

Maximum TF Normalisation

- Limitation: Both tf-idf and wf-idf scoring prefer longer documents
 - Assume we have document d
 - Create a new document d' by appending a copy of d to itself

- $score_{f-idf}(d', q) \ge score_{f-idf}(d, q)$
- $score_{wf-idf}(d', q) \ge score_{wf-idf}(d, q)$
- Normalise the tf weights by the maximum tf in a document

TF-IDF variants

Maximum TF Normalisation

- Let $tf_{max}(d)$ be the maximum frequency of any term in document d, i.e. $tf_{max}(d) = \max_{t \in d} tf_{t,d}$
- Normalised term frequency is defined as

$$\mathsf{ntf}_{t,d} = \alpha + (1 - \alpha) \frac{\mathsf{tf}_{t,d}}{\mathsf{tf}_{\mathsf{max}}(d)}$$

- Smoothing term $0 < \alpha < 1$, usually set to 0.4
- $-\alpha \leq \text{ntf} \leq 1$
- This approach also has limitations, e.g. it can be skewed by a single term that occurs too frequently (outlier or stopword)

Vector Space Model

Documents as Vectors

- Given a term-document matrix
 - A document can be represented as a vector of length ${\it V}$
 - V = size of vocabulary

	doc1	doc2	doc3
car	1	7	6
insurance	4	2	11

Table: Term-document matrix with tf

- Document vectors example
 - doc1 = [1,4], doc2 = [7,2], doc3 = [6,11]

Vector Space Model

Document Similarity in Vector Space

- Plot document vectors in vector space
- How to find similar documents in vector space?
 - Distance from vector to vector
 - Angle difference between vectors

Vector Space Model

Cosine Similarity

Standard way of quantifying similarity between documents

$$\mathsf{sim}(ec{d}_1,ec{d}_2) = rac{ec{d}_1 \cdot ec{d}_2}{|ec{d}_1| imes |ec{d}_2|}$$

- Numerator: inner product
- Denominator: product of Euclidean lengths
- 1 if directions of two vectors are the same
- 0 if directions of two vectors are orthogonal

Vector Space Model

Cosine Similarity: Why not Euclidean distance?

- Euclidean distance is sensitive to the vector magnitude (related to how many terms are in a document)
- Cosine similarity is not sensitive to vector magnitude

• Euclidean distance l of normalised vectors vs. cosine similarity $\cos(\alpha)$:

$$l^2 = 2(1 - \cos(\alpha))$$

Vector Space Model

Cosine Similarity: Example

$$sim(\vec{d}_1, \vec{d}_2) = cos(\alpha)$$

= $\frac{7}{\sqrt{17}\sqrt{10}} = 0.54$

$$sim(\vec{d}_1, \vec{d}_3) = cos(\beta)$$

= $\frac{10}{\sqrt{17}\sqrt{8}} = 0.86$

Vector Space Model

Cosine Similarity: Example with TF

	doc1	doc2	doc3
auto	27	4	24
best	3	33	0
car	0	33	29
insurance	14	0	17

Table: Term-document matrix with tf

$$sim(\overrightarrow{d_1}, \overrightarrow{d_2}) = \frac{27 \times 4 + 3 \times 33}{\sqrt{27^2 + 3^2 + 14^2} \times \sqrt{4^2 + 33^2 + 33^2}}$$

$$\mathsf{sim}(ec{d}_1,ec{d}_2) = 0.15$$

$$\mathsf{sim}(\vec{d}_2,\vec{d}_3) = 0.55$$

$$\mathsf{sim}(\vec{d}_1,\vec{d}_3) = 0.70$$

Vector Space Model

Cosine Similarity: Example with TF-IDF

	doc1	doc2	doc3
auto	6.5	3.2	7.6
best	2.3	4.2	0
car	0	6.7	2.6
insurance	7.5	0	5.4

Table: Term-document matrix with tf-idf

If the vector representations of documents are very sparse (many zeros)!
Cosine similarity ignores zeros in either vector.

$$sim(\overrightarrow{d_1}, \overrightarrow{d_2}) = \frac{6.5 \times 3.2 + 2.3 \times 4.2}{\sqrt{6.5^2 + 2.3^2 + 7.5^2} \times \sqrt{3.2^2 + 4.2^2 + 6.7^2}}$$

Vector Space Model

Queries as Vectors

- We have represented documents as vectors, a query can also be represented as a vector
 - Pretend it is a document and use query terms to construct the vector
 - When using tf-idf the document frequency for the query vector comes from the document collection
- We can compute the similarity between the query vector and a document vector using cosine similarity

Vector Space Model

Queries as Vectors

- The score function for the vector space model $Score_{vsm}(d, q) = sim(\vec{d}, \vec{q})$
- If our query is "auto insurance"

	doc1	doc2	doc3	query
auto	27	4	24	1
best	3	33	0	0
car	0	33	29	0
insurance	14	0	17	1

Table: What will be the $sim(\vec{d}_n, \vec{q})$?

 We can rank documents using the cosine similarities between the query vector and the vector of each document

Summary

- From Boolean retrieval to ranked retrieval
 - Bag-of-Words (BoW) model
 - Field or zone indexes
 - Boolean retrieval with field
 - Limitations of Boolean retrieval
- Ranked retrieval
 - What is ranked retrieval
 - Weighted field scoring
 - Term frequency & inverse document frequency
 - TF-IDF variants
 - Vector space model

References

- Chapter 6, Introduction to Information Retrieval
- Some lecture slides are from:
 - Pandu Nayak and Prabhakar Raghavan, CS276
 - Information Retrieval and Web Search, Stanford University