1. To show surjectivity, we must show that for any $\forall s \in \mathbb{N}, f(m,n) = s$. We let $s \in \mathbb{N}$. Then, s is even or s is odd.

Case s even: If s is even, we can take s to be written in the form $2^a(b)$ where $a \ge 1$ and b is an odd number. Since b is an odd number, b can be written as 2n-1. Then, we can take a+1=m. Thus, $2^{m-1}(2n-1)=2^ab=s$. Thus if s is even, f is surjective.

Case s odd: If s is odd, we can simply take s = 2n - 1 for some $n \in \mathbb{N}$. With this and m = 1, we find $2^0(2n - 1) = s$. Thus if s is odd, f is surjective.

Thus, in all cases, f is surjective.

2. (a) We will proceed by cases.

Case x, y > 0: Assume f(x) = f(y). Since f(x) = f(y) and x, y > 0, 2x + 1 = 2y + 1. By algebra, x = y. Thus, if x, y > 0, f is injective.

Case $x, y \le 0$: Assume f(x) = f(y). Since f(x) = f(y) and $x, y \le 0$, 3x = 3y. By algebra, x = y. Thus, if $x, y \le 0$, f is injective.

Since f is injective in all cases, f is injective.

(b) Above, we proved f is injective. Thus, it suffices to show f is not surjective from $\mathbb{R} \to \mathbb{R}$. Let $3x = \frac{1}{2}$ and $x \leq 0$. Then, $x = \frac{1}{6}$. However, this contradicts the fact that $x \leq 0$. Thus it must be the case that $2x + 1 = \frac{1}{2}$ for some x > 0. Then, $2x = -\frac{1}{2}$ and $x = -\frac{1}{4}$. However, this contradicts that x > 0. Thus, we have found an element in \mathbb{R} such that there is no $f(x) = \frac{1}{2}$. Thus, f is not surjective.

Since f is not surjective, f is not bijective.

- 3. (a) Let $x=y^2+1$. Then $y=\pm\sqrt{x-1}$. Since $y\in[0,\infty],\ y=\sqrt{x-1}$. Let $x\in[1,\infty)$. Then, $y=\sqrt{x-1}$ is a real number and $x=(\sqrt{x-1})^2+1$. Since $x\geq 1,\ y=\sqrt{x-1}\geq 0$. Thus, there exists a $y\in[0,\infty)$ such that $(x,y)\in R$. Assume $(x,u)\in R$ and $(x,v)\in R$. Then, $\sqrt{x-1}=u$ and $\sqrt{x-1}=v$. Thus, u=v. Therefore, R is a function from $[1,\infty)\to[0,\infty)$.
 - (b) Assume $x_1, x_2 \in [1, \infty)$ and $x_2 > x_1$. Then, $x_2 1 > x_1 1$ and $\sqrt{x_2 1} > \sqrt{x_1 1}$. Since $\sqrt{x_2 1} > \sqrt{x_1 1}$, $y_2 > y_1$.
 - (c) Let $x \in [1, \infty), y \in (-\infty, \infty)$. Since $x = y^2 + 1$, $y = \pm \sqrt{x 1}$. Thus, $f(x) = \pm \sqrt{x 1}$. Since x maps to $\pm \sqrt{x 1}$, f(x) = y is not unique. Therefore, f is not a function from $[1, \infty)$ to $(-\infty, \infty)$.

- 4. (a) No, since every y except zero has two x which maps to it, namely $\pm \sqrt{y}$.
 - (b) Yes, since every y in $[0, \infty)$ is mapped to by some x namely \sqrt{y} .
 - (c) Yes, since every y value is mapped to exactly one x value.
 - (d) Yes, since every $y \in [0, \infty)$ is mapped to by some x namely $\frac{y}{y+1}$.
 - (e) $f \circ g = f(g(x)) = (\frac{x}{1-x})^2$. Domain = [0,1). Codomain = $[0,\infty)$ This function is bijective from [0,1) to $[0,\infty)$.
 - (f) $g \circ f = g(f(x)) = \frac{x^2}{1-x^2}$. Domain $= (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ Codomain $= (-\infty, \infty)$. This function is surjective, but not injective.
 - (g) i. Since f was not injective, we also see that $g \circ f$ is also not injective which we could have guessed from Theorem 4.3.3.
 - ii. In our case, f is not bijective yet $f \circ g$ is bijective. This is because g is only defined on [0,1) making the domain of the composite function also [0,1). Since f is bijective on this limited domain, $f \circ g$ is also bijective.
 - (h) i. Inverse function of $g: \frac{x}{x+1}$. Domain: $[0, \infty)$. Codomain: [0, 1).
 - ii. Inverse function of $f \circ g$: $\frac{\sqrt{x}}{\sqrt{x+1}}$. Domain: $[0,\infty)$ Codomain: [0,1).