

Local Features Histograms Hough transform Corners Scale Invariant Feature transform (SIFT) Haar Features (face detection)

Point Features

Corners

Want uniqueness

Look for image regions that are unusual

Lead to unambiguous matches in other images

How to define "unusual"?

Local measures of uniqueness

Suppose we only consider a small window of pixels

· What defines whether a feature is a good or bad candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection

Local measure of feature uniqueness

- · How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Corner Features

- · Places where TWO strong edges meet.
- They can be used for:
 - Object tracking
 - 3D triangulation (stereo)
 - Object recognition
 - Mosaic images

Detection of Corner Features

- Need two strong edges:
- Example: Create the following matrix:

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Both I_{x} or I_{y} are large in a neighborhood of corner

Detection of Corner Features

 What happens if the corner is not aligned with the image coordinate system?

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Both, I_{x} or I_{y} are large in neighborhood of the corner But this is also true for a slanted edge!

Detection of Corner Features

 Solution: "rotate" the corner to align it with the image coordinate system!

Detection of Corner Features

- · How do we do this rotation?
 - Since C is symmetric, it can be diagonalized;
 - the diagonalization is done by the rotation we need!

Feature detection: the math

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Eigenvalues and eigenvectors of C

- Define shifts with the smallest and largest change (E value)
- x_+ = direction of **largest** increase.
- λ ₊ = amount of increase in direction x₊
- x_. = direction of **smallest** increase.
- λ = amount of increase in direction x₊

Harris Corner Detector: Cornerness Measure

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04-0.06)

The computation of the eigenvalues is computationally expensive. Harris proves that:

$$R \! = \! \big(\sum I_{x}^{2} \! \cdot \! \sum I_{y}^{2} \! - \! \big(\sum I_{x} \! \cdot \! I_{y} \big)^{2} \big) \! - \! k \! \cdot \! \big(\sum I_{x}^{2} \! + \! \sum I_{y}^{2} \big)^{2}$$

Harris Corner Detector: Corner Response

- *R* depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Algorithm: Harris Corner Detector

- 1. Computer x and y derivatives I_x and I_y of the input image
- 2. Computer products of derivatives I_xI_x , I_xI_y and I_yI_y
- 3. For each pixel, compute the matrix M in a local neighborhood
- 4. Compute the corner response R at each pixel
- 5. Threshold the value of R to select corners
- 6. Perform non-maximum suppression

Harris detector example

Find local maxima of R

Invariance

Suppose you rotate the image by some angle

• Will you still pick up the same features?

What if you change the brightness?

Scale?

Properties of Harris Corners

☑ Rotation Invariance

- ${f \Sigma}$ Ellipse rotates but the shape (i.e. eigenvalues) remain the same
- ט Corner response R is invariant to image rotation.

Properties of Harris Corners Partial invariance to affine intensity change Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$ Intensity scale: $I \rightarrow a I$ X (image coordinate) X (image coordinate)

We know how to detect good points Next question: **How to match them?**

We know how to detect good points Next question: **How to match them?**

Feature descriptors

Feature descriptors

How to match them?

Lots of possibilities (this is a popular research area)

- · Simple option: match square windows around the point
- State of the art approach: SIFT
 - David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

Invariance

Suppose we are comparing two images l₁ and l₂

- I₂ may be a transformed version of I₁
- What kinds of transformations are we likely to encounter in practice?

We'd like to find the same features regardless of the transformation

- This is called transformational invariance
- · Most feature methods are designed to be invariant to
 - Translation, 2D rotation, scale
- · They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

- 1. Make sure your detector is invariant
 - · Harris is invariant to translation and rotation
 - · Scale is trickier
 - common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
 - More sophisticated methods find "the best scale" to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor

- A descriptor captures the information in a region around the detected feature point
- · The simplest descriptor: a square window of pixels
 - What's this invariant to?
- Let's look at some better approaches...

Rotation invariance for feature descriptors

Find dominant orientation of the image patch

· Rotate the patch according to this angle

Figure by Matthew Brown

Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- · Create histogram of surviving edge orientations

Adapted from slide by David Lowe

Orientation Assignment : Concept

- Create histogram of local gradient directions at the selected scale
- Assign canonical orientation at the peak of the smoothed histogram
- ☑ If two major orientations, use both

SIFT Feature Calculation

- Yake the region around a keypoint according to its scale
- 2 Rotate and align with the previously calculated orientation
- 외 8 orientation bins calculated at 4x4 bin array
- $3 \times 4 \times 4 = 128$ dimension feature

Local Extrema in DoG Images

- ☑ Minima
- Maxima
- ≥ 26 neighbourhood

Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- · Fast and efficient—can run in real time
- Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in l_2 , find the one with min distance

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

feature distance

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

ROC Curves

- Generated by counting # current/incorrect matches, for differentthreholds
- Want to maximize area under the curve (AUC)
- · Useful for comparing different feature matching methods

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- · Motion tracking
- · Object recognition
- · Indexing and database retrieval
- Robot navigation
- ... other

Object recognition (David Lowe)

Feature Detectors – Classic and State of the Art

Feature	Detection	Extraction	OpenCV	Published
Harris	Yes	No	Yes	1988
KLT	Yes	No	Yes	1994
LBP	No	Yes	Yes	1994
SIFT	Yes	Yes	Yes	IJCV 2004
FAST	Yes	No	Yes	ECCV 2006
SURF	Yes	Yes	Yes	CVIU 2008
BRIEF	No	Yes	~	ECCV 2010
ORB	Yes	Yes	Yes	ICCV 2011
BRISK	Yes	Yes	Yes	ICCV 2011
FREAK	Yes	Yes	Yes	CVPR 2012

Object recognition (David Lowe)

How do we build panorama?

• We need to match (align) images

Feature-based alignment outline

- Extract features
- Compute *putative matches*

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

Relational Graphs

• Features and their relationships can be organized by using a *relational graph*.

•Graph matching algorithms → Exponential cost !!!!!

Fitting

Choose a parametric model to represent a set of features

simple model: circles

complicated model: car

Source: K. Grauman

Once detected... How do we match an object in an image?

Object matching in three steps

 Detect features in the template and search images

Match features: find "similar-looking" features in the two images

3. Find a transformation *T* that explains the movement of the matched features

Affine transformations

A 2D affine transformation has the form:

$$T = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

Fitting affine transformations

- We will fit an affine transformation to a set of feature matches
 - Problem: there are many incorrect matches

Very similar idea

• Given two images with a set of feature matches, how do we compute an affine transform between the two images?

Fitting an affine transformation

- In other words:
 - Find 2D affine xform T that maps points in image 1 as close as possible to their matches in image 2

Multi-variable fitting

- Let's consider 2D affine transformations
 - maps a 2D point to another 2D point

$$T = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

We have a set of n matches

$$[x_1 y_1] \rightarrow [x_1' y_1']
[x_2 y_2] \rightarrow [x_2' y_2']
[x_3 y_3] \rightarrow [x_3' y_3']
...
[x_n y_n] \rightarrow [x_n' y_n']$$

Fitting an affine transformation

Consider just one match

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix}$$

$$\mathbf{a}\mathbf{x}_1 + \mathbf{b}\mathbf{y}_1 + \mathbf{c} = \mathbf{x}_1'$$

$$\mathbf{d}\mathbf{x}_1 + \mathbf{e}\mathbf{y}_1 + \mathbf{f} = \mathbf{y}_1'$$

 $[x_1 y_1] \rightarrow [x_1' y_1']$

2 equations, 6 unknowns → we need at least
 3 matches, but can fit n using least squares

Fitting an affine transformation

- This is just a bigger linear system, still (relatively) easy to solve
- Really just two linear systems with 3 equations each (one for a,b,c, the other for d,e,f)

Back to fitting

 Just like in the case of fitting a line or computing a median, we have some bad data (incorrect matches)

Dealing with outliers

- The set of putative matches contains a very high percentage of outliers
- · Geometric fitting strategies:
 - · Hough transform
 - RANSAC

Hough Transform (Voting schemes)

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Hough transform

- · An early type of voting scheme
- · General outline:
 - · Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - · Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Fitting an affine transformation

Consider just one match

$$\begin{bmatrix} x_1 y_1 \end{bmatrix} \rightarrow \begin{bmatrix} x_1' y_1' \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix}$$

$$\mathbf{a}\mathbf{x}_1 + \mathbf{b}\mathbf{y}_1 + \mathbf{c} = \mathbf{x}_1'$$

$$\mathbf{d}\mathbf{x}_1 + \mathbf{e}\mathbf{y}_1 + \mathbf{f} = \mathbf{y}_1'$$

Acumule votes in the [a,b,c] and the [d,e,f] Hough arrays. Remember the curse of dimensionality

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - · Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.</u> Comm. of the ACM, Vol 24, pp 381-395, 1981.

Slide: S. Lazebnik

Testing goodness

 Idea: count the number of points that are "close" to the line

Testing goodness

- How can we tell if a point agrees with a line?
- Compute the distance the point and the line, and threshold

Testing goodness

- If the distance is small, we call this point an inlier to the line
- If the distance is large, it's an outlier to the line
- For an inlier point and a good line, this distance will be close to (but not exactly) zero
- For an outlier point or bad line, this distance will probably be large
- Objective function: find the line with the most inliers (or the fewest outliers)

Optimizing for inlier count

How do we find the best possible line?

RANSAC for line fitting

Repeat N times:

- Pick s points uniformly at random (s=2)
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

Choosing the parameters

- Initial number of points s
 - · Typically minimum number needed to fit the model
- Distance threshold t
- Probability p, that at least one random sample is free from outliers after N iterations.(e.g: p=0'99)
- Outlier ratio e.

$$\left(1-\left(1-e\right)^{s}\right)^{N}=1-p$$

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- · Adaptive procedure:
 - N=∞, sample_count =0
 - While N > sample_count
 - Choose a sample and count the number of inliers
 - Set e = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

- Increment the sample_count by 1

Transform Fitting Algorithm (RANSAC)

- 1. Select 3 putative matches at random
- 2. Solve for the affine transformation T
- 3. Count the number of matches that are inliers to *T*
- 4. If *T* has the highest number of inliers so far, save it
- 5. Recompute N
- 6. Repeat for N rounds, return the best T

How do we solve for T given 3 matches?

Three matches give a linear system with six equations:

$$[x_{1} y_{1}] \rightarrow [x_{1}' y_{1}'] \qquad \begin{array}{l} ax_{1} + by_{1} + c = x_{1}' \\ dx_{1} + ey_{1} + f = y_{1}' \end{array}$$

$$[x_{2} y_{2}] \rightarrow [x_{2}' y_{2}'] \qquad \begin{array}{l} ax_{2} + by_{2} + c = x_{2}' \\ dx_{2} + ey_{2} + f = y_{2}' \end{array}$$

$$[x_{3} y_{3}] \rightarrow [x_{3}' y_{3}'] \qquad \begin{array}{l} ax_{3} + by_{3} + c = x_{3}' \\ dx_{3} + ey_{3} + f = y_{3}' \end{array}$$

Randomized algorithms

- Very common in computer science
 - In this case, we avoid testing an infinite set of possible lines, or all O(n²) lines generated by pairs of points
- These algorithms find the right answer with some probability
- Often work very well in practice

Object matching in three steps

1. Detect features in the template and search images

Match features: find "similar-looking" features in the two images

3. Find a transformation *T* that explains the movement of the matched features

Do these two images overlap?

NASA Mars Rover images

Answer below

NASA Mars Rover images

