Math 444/539 Lecture 17

Last lecture: Determined TI (X,p) for X a graph

Goal today: Extend to higher dim (W-cpx's

Informally: (a) X(1) determines generators (b) 2-cells give relations

© K-cells for K>>3 don't affect TT,

Thm (Attaching 2-cell): X space, pex, f;5'->X map, Y=XUD2/~ W/ VEDD2~f(V) +X.

1-e+

N = path in X from p to f(1) $Y' : I \longrightarrow S'$ $Y' : Y' = e^{2\pi i \hat{c}t}$

= T, $(Y, p) \cong T'(X, p)/N$, w/ N normal subgrp generated by $[n \cdot x \cdot \overline{n}]$

Restatement: If TI, (X,P)=(SIR) and w expression for n. v.n' in S, then TI, (Y,p) = < 51 Ruswit

Let $p',q,\in D^2$, $U_2\subseteq D^2$, and $S:I\to D^2$ be:

Set U,=Y\q. Then
a) T,(U2,p')=1

b) U, n U2 = U2 9 path-connected

C) T, (U, nU2, p') = Z w/ gen [8]

Seifert-van Kampen =>

 $T_{i}(Y, \rho') \cong T_{i}(U_{i}, \rho') + T_{i}(U_{2}, \rho') / R$ $= T_{i}(U_{i}, \rho') / R$

with R normal sub gen by [8].

Change basept to fu):

TT, (Y, f(1)) ≅ TT, (U,, f(1))/R1 with R' normal subgrp gen by [70]

Change pasept to p!

TT, (Y, P) = TT, (U, P)/N

with N normal Subgrap gen by [N. Y. T.]

U, def. retracts to X, so TT, (U,p) =TT,(X,p)

Iterating thm, can calc TI(X,p) for any 2d CW Cex X

Exix= w/ D2 9++ached to abc.

e f

Using indicated max tree, $T_1(X^{(o)}, \rho) \cong \text{free grp w/ gen}$ $X_1 = \text{doe}, X_2 = \text{ebf}, X_3 = \text{fca}$

Relation is dabc. In terms of X_1, X_2, X_3 , dabc= X_1, X_2, X_3 $\longrightarrow T_1(X_1, P) = \langle X_1, X_2, X_3 | X_1, X_2, X_3 \rangle$

Thm: For any grp G, there exists a 2th CW cox X w/ TI, (X,p) =G. If G finitely presentable, then X can be chosen to be compact.

Write $G = \langle S | R \rangle$. Define X''' = VS' w wedge point P, so TT, $(X^{(1)}, P) \cong \langle S | \rangle$.

For each reR, attach 2-cell as follows:

Write r=S,'---Sk w/ SiES, Ci=+1

Divide up 2D2 into K segments labeled and oriental using r.

for r=abba-1b-1

Attach D's o that edge labeled Si wraps around loop Si in appropriate diversion

Let X=resulting cox

Above thm => TT, (X,p)= < SIR>

Thm (A++adning K-cells, K>2): X space, peX, $f: S^{K-1} \times Map$, $Y=X \sqcup D^{K} / V \in \partial D^{K} \sim f(V) \in X$. $\Longrightarrow TT, (Y, p) \cong TT, (X, p) if K>2.$

pf!
Pick $q, p' \in In+(D^k)$. Set $U_i = Y \cdot q$ and let $U_2 \subseteq In+(D^k)$ be open ball $w/q_i p' \in U_2$. Then

a) $U_1 \cap U_2 \cong U_2 \setminus q$. Since $U_2 \cong \mathbb{S}^K$ and K > 2, get that $U_1 \cap U_2$ is path-connected and $T_1(U_1 \cap U_2, p^1) = 1$

 $S_{\nu}K =) \pi_{\nu}(V_{\nu}, \rho') \cong \pi_{\nu}(V_{\nu}, \rho').$

U, def. retracts onto X, so conclude that $T_i(Y,p) \cong T_i(X,p)$.

 $\underline{Cor}: X \subset W - cpx, pex^{(2)} \Rightarrow T_i(X,p) \cong T_i(X^{(2)},p).$

Ex: \mathbb{RP}^n has CW-cpx structure St. K-skeleton (KSh) is \mathbb{RP}^k . $\Longrightarrow \mathcal{T}$, $(\mathbb{RP}^n, p) \cong \mathcal{T}$, $(\mathbb{RP}^2, p) \cong \mathbb{Z}/2\mathbb{Z}$ for $n \geqslant 2$.