

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 12 December 2015		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015	
4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic Moieties				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Andrew J. Guenthner; Scott T. Iacono; Cynthia A. Corley; Christopher M. Sahagun; Kevin R. Lamison; Josiah T. Reams; Mohammed K. Hassan; Sarah E. Morgan; Joseph M. Mabry				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER Q16J	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680				8. PERFORMING ORGANIZATION REPORT NO.	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB, CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-TP-2015-425	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES For presentation at 14th Pacific Polymer Conference; Kauai, HI (December 2015) PA Case Number: #15694; Clearance Date: 12/3/2015					
14. ABSTRACT Viewgraph/Briefing Charts					
15. SUBJECT TERMS N/A					
16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 17	19a. NAME OF RESPONSIBLE PERSON J. Mabry
b. ABSTRACT Unclassified					19b. TELEPHONE NO (include area code) N/A
c. THIS PAGE Unclassified					

Standard Form
298 (Rev. 8-98)
Prescribed by ANSI
Std. 239.18

MACROMOLECULAR NETWORKS CONTAINING FLUORINATED CYCLIC MOIETIES

12 December 2015

*Andrew J. Guenthner,¹ Scott T. Iacono,² Cynthia A. Corley,² Christopher M. Sahagun,³
Kevin R. Lamison,⁴ Josiah T. Reams,⁴ Mohammed K. Hassan,⁵ Sarah E. Morgan,⁵
Joseph M. Mabry¹*

*¹Aerospace Systems Directorate, Air Force Research Laboratory
Edwards AFB, CA 93524*

²United States Air Force Academy, Colorado Springs, CO

³National Research Council / Air Force Research Laboratory, Edwards AFB, CA

⁴ERC Incorporated, Air Force Research Laboratory, Edwards AFB, CA

⁵University of Southern Mississippi, Hattiesburg, MS

Phone: 661-275-5769; email: andrew.guenthner@us.af.mil

Outline

- Background / Motivation
 - Cyanate esters
 - Link between F and Low Water Uptake
- PFCB Dicyanate Esters
 - Monomer Properties
 - Cure Properties
 - Network Properties

Acknowledgements: Air Force Office of Scientific Research, Air Force Research Laboratory – Program Support; AMG team members (AFRL/RQRP);

Cyanate Esters for Next-Generation Aerospace Systems

Glass Transition Temperature
200 – 400 °C (dry)
150 – 300 °C (wet)

Resin Viscosity
Suitable for
Filament
Winding / RTM

Compatible with
Thermoplastic
Tougheners and
Nanoscale
Reinforcements

High T_g

Ease of Processing
Resistance to Harsh Environments

Onset of Weight Loss:
> 400 °C with High Char Yield

Good Flame,
Smoke, &
Toxicity
Characteristics

Low Water Uptake
with Near Zero
Coefficient of
Hygroscopic Expansion

Cyanate Esters Around the Solar System

Our Solar System

- On Earth, cyanate ester / epoxy blends have been qualified for use in the toroidal field magnet casings for the ITER thermonuclear fusion reactor

- Unique cyanate ester composites have been designed by NASA for use as instrument holding structures aboard the James Webb Space Telescope

- The science decks on the Mars Phoenix lander are made from M55J/cyanate ester composites
- The solar panel supports on the MESSENGER space probe use cyanate ester composite tie layers

Images: courtesy NASA (public release)

Importance of Moisture Uptake in Composite Component Performance

Photo by U.S. Navy photo by
Photographer's Mate 1st
Class Anibal Rivera (public
domain).

U.S. Navy photo by Photographer's Mate 3rd
Class Mark J. Rebilas (RELEASED)

U.S. Navy photo by Mass Communication Specialist 3rd
Class Torrey W. Lee (public domain)

- Water can add significantly to launch or take-off weight (3% water in composite resins = about 50 lbs of extra weight on a large SRM)
- Items with high water content can fail catastrophically when suddenly heated
- Long-term exposure to water can facilitate many mechanisms of chemical degradation, necessitating substantial “knock down” factors in design allowables
- Though more stable than epoxy resins, cyanate esters can degrade on long-term exposure to hot water

Control of Moisture Uptake Through Repeat Unit Structure

Adding fluorine reduces moisture uptake and dielectric constant but adds density.

Decreasing cyanurate density also reduced moisture uptake but reduces thermomechanical performance.

PFCB chemistry offers a new route to reduced moisture uptake through both decreased cyanurate density and fluorination.

Synthesis of PFCB Dicyanate

- 56% overall yield of monomer from Bisphenol T starting material
- Purified by washing with methanol

Purity of PFCB-Cy

- Ratio of primary peak to total: 99.1% for BPG6, 98.1% for PFCB-Cy
- Most likely impurity is monophenol (incomplete conversion)

Comparative Polycyanurate Network Physical Properties

Uncatalyzed Network / Property	BADCy	LECy	RTX-366	AroCy F	PFCBCy
% F by wt.	0	0	0	29.5%	26.5%
Density (g/cc @ full cure)	1.19 (est1)	1.210 \pm 0.004	1.14 (est2)	1.46 (est2)	1.59 (est3)
Cross-link density @ full cure (mmol / cc)	2.9 (est1)	3.05 \pm 0.01	2.0 (est2)	2.5 (est2)	2.5 (est3)
Water Uptake (wt.% @ full cure, 96 hr @ 85 °C)	2.1 \pm 0.5 (est1)	1.9 \pm 0.2	0.6*	1.8*	0.56 \pm 0.10
Water Uptake (mmol / cc, @ full cure 96 hr @ 85 °C)	1.4 \pm 0.3 (est1)	1.3 \pm 0.1	0.4*	1.5*	0.5 \pm 0.1

Est1: based on equivalent catalyzed system; uncertainty < 0.01 g/cc / 0.5 wt%

Est2: based on assumption of zero net shrinkage; uncertainty 0.03 g/cc

Est3: based on structure-property correlation, uncertainty 0.03 g/cc

* Conversion unknown, saturation after immersion at 100 °C

- Adding F does not necessarily reduce water concentrations in polycyanurates

DSC Comparison of PFCBCy and Other Di(cyanate Ester)s

- PFCBCy monomer DSC indicates purity of 85% by van't Hoff method, likely reflection of stereoisomerism.
- Melting point is only slightly higher than BADCy, but post-cured glass transition temperatures are significantly lower than BADCy or LECy.

TMA Data on PFCBCy Networks

- Glass transition temperature of “as cured” system is near 190 °C, in agreement with DSC.
- Residual cure in situ to a glass transition temperature of around 220 °C is seen.
- Water immersion for 96 hrs at 85 °C leads to significant network degradation

TGA Data for PFCBCy

- TGA of uncured monomers indicates significant monomer volatility.
- TGA of cured networks indicates modestly improved thermo-chemical stability
- The main factor influencing onset of weight loss is cyanurate decomposition, which appears to be mainly unaffected by PFCB incorporation

Ion Mobility Measurements

- Use of interdigitated electrodes allows for characterization of a single drop of resin
- Insensitive to physical dimensions, surface curvature, and creep

Ion Mobility Measurements (1)

- Lower ion mobility likely reflects lower water content and more rapid cure. Vitrification slows the cure of the LECy.

Ion Mobility Measurements (2)

- PFCBCy retains lower ion mobility throughout the cure process

Summary

- A combination of fluorination and lower cross-link density enables PFCBCy to achieve the lowest recorded weight-basis water uptake for a cyanate ester, 0.56% for 96 hr at 85 °C.
- On a concentration basis, the PFCBCy exhibits moisture uptake comparable to similar non-fluorinated polycyanurate networks with a relatively long contour length between cross-links.
- In general, processing conditions for PFCBCy are acceptably close to those for more widely-used monomers such as Primaset® BADCy, however, moisture sensitivity and volatilization of monomer are likely worse compared to BADCy.
- The glass transition temperature of PFCBCy networks at full cure is around 210 °C, which is slightly higher than other, low moisture polycyanurate networks.
- Ion mobility studies of the cure of polycyanurate networks reveal the generally more rapid cure kinetics of PFCBCy compared to systems such as Primaset® LECy, while also showing promise for studying molecular motion in these networks.