First Order Logic

March 29, 2021

Contents

1	Exercise 4		3	
	1.1	Men are not women	3	
	1.2	Surgeons are doctors	3	
	1.3	Adults can only be Men and Women	4	
	1.4	If a person marries another person, this one is also married		
		to the first one	4	
	1.5	Parents have children	4	
	1.6	Adults are defined as Men and Women who are older than 18	4	
	1.7	Marriage is only allowed between two Adults	4	
	1.8	A person cannot be married to two or more different persons	4	
	1.9	Two persons can only get divorced if they are previously married	4	
	1.10	People can only be given birth by a Man and a Woman	4	
2	Exercise 5			
	2.1	Mike is younger than the boy in the green T-shirt	5	
	2.2	The five-year boy wore a T-shirt with a square symbol	5	
	2.3	Mikes T-shirt is yellow	5	
	2.4	Marys T-shirt does not bear a square symbol	5	
	2.5	Square symbols cannot appear in white T-shirts	5	
	2.6	The youngest person cannot wear a T-shirt	5	
	2.7	There are three T-shirt symbols: squares, pictures, and circles	5	
	2.8	There is not a person wearing a T-shirt with a circle if theres		
		another person older than the first one wearing a square	6	
	2.9	Everybody wearing a T-shirt is older than any other not wear-		
		ing a T-shirt	6	
	2.10	The number of people wearing a T-shirt yellow, are bigger		
		than the ones not wearing a T-shirt with a square	6	

3	Exe	ercise 6			
	3.1	Formalize this knowledge as FOL expressions			
	3.2	Find out whether Tony is a mountain climber or not. Is it possible?			
	3.3	What do you know about John?			
	3.4	Prove that there is a member of the Alpine Club who is a mountain climber but not a skier			
	3.5	Suppose that Mary, a new member of the Alpine Club, likes what Mike and John likes. What can you say about Mary			
4	Exercise 7				
	4.1	Son, Daughter, Brother, Sister, Sibling, Ancestor, Father, Mother, Grandfather, Grandmother, Uncle, Aunt, Cousin, and Nephew.			
	4.2	John has not children. Jon has not siblings			
	4.3	Johns parents are Mary (female) and Paul (male)			
	4.4	Johns sister has some children			
	4.5	The mother of Mary is the aunt of Michael			
5	Exercise 8				
	5.1	No set is an element of itself			
	5.2	A set x is a subset of a set y iff every element of x is an element of y			
	5.3	Something is an element of the union of two sets x and y iff it is an element of x or an element of y			
	5.4	Something is an element of the intersection of two sets x and y iff it is an element of x and an element of y			
6	Exercise 9				
O	6.1	A classmate has a cat, a dog, and a ferret			
	6.2	All your classmates have a cat, a dog, or a ferret			
	6.3	At least one of your classmates has a cat and a ferret, but not			
		a dog			
	6.4	None of your classmates has a cat, a dog, and a ferret			
	6.5	For each of the three animals, there is a classmate of yours			
		that has one			
7	Exercise 13				
	7.1	$\forall x \forall y \ Loves(x,y) \ \dots \dots \dots \dots \dots \dots$			
	7.2	$\forall r \exists u \ Lones(r, u)$			

	7.3	$\exists x \forall y \ Loves(x,y) \ \dots \dots \dots \dots \dots \dots$	11
	7.4	$\exists x \exists y \ Loves(x,y)$	11
	7.5	$\forall x \forall y \ Loves(x,y) \supseteq \forall z \ Loves(x,z) \ \dots \dots \dots \dots$	11
	7.6	$\forall x \forall y \ Loves(x,y) \supseteq \exists z \ Loves(x,z) \ \dots \dots \dots$	11
	7.7	$\forall x \exists y \ Loves(x,y) \supseteq \forall z \ Loves(x,z) \ \dots \dots \dots \dots$	11
	7.8	$\forall x \exists y \ Loves(x,y) \supseteq \exists z \ Loves(x,z) \ \dots \dots \dots \dots$	11
8	Exe	rcise 16	11
	8.1	The domain of the natural numbers, where A is interpreted	
		as even?, and B is interpreted as equals	11
	8.2	The domain of the natural numbers, where A is interpreted	
		as even?, and B is interpreted as is an integer divisor of $\ \ .$	12
	8.3	The domain of the natural numbers, where A is interpreted	
		as even?, and B is interpreted as is an integer multiple of	12
	8.4	The domain of the Booleans, {true,false}, where A is inter-	
		preted as false?, and B is interpreted as equals	12
9	Exe	rcise 18	12
	9.1	$\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z) \Rightarrow R(x,y)^{} P(x,y))) \ . \ . \ . \ . \ .$	12
	9.2	$(\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z)))) \Rightarrow R(x,y)^{} P(x,y) \dots \dots$	12
	9.3	$(\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z)) \Rightarrow R(x,y) \hat{\ } P(x,y))) \ . \ . \ . \ .$	12
	9.4	$(\forall x \ (\exists y \ P(x,y))) \Rightarrow (\exists z \ (Q(y,z) \Rightarrow R(x,y)^{} P(x,y))) \ . \ . \ . \ .$	12
10	Exercise 19		
	10.1	Maria is mother of a son and a daughter	13
	10.2	Maria is mother of only one son and only one daughter	13
	10.3	Maria is mother of a son or a daughter	13
	10.4	All women are beautiful and some men are beautiful	13

1 Exercise 4

Provide expressions to represent the following facts in FOL

1.1 Men are not women

 $\forall x \ men(x) \supset \neg women(x)$

1.2 Surgeons are doctors

 $\forall x \ surgeon(x) \supset doctor(x)$

1.3 Adults can only be Men and Women

 $\forall x \ adult(x) \supset man(x) \lor woman(x)$

1.4 If a person marries another person, this one is also married to the first one

 $\forall x \forall y \ married(x,y) \supset married(y,x)$

1.5 Parents have children

 $\forall x \exists y \ parent(x) \supset haschild(x, y)$

1.6 Adults are defined as Men and Women who are older than 18

 $\forall x \ adult(x) \supset (man(x) \lor woman(x)) \land \neg minor(x)$

1.7 Marriage is only allowed between two Adults

 $\forall x \forall y \ married(x,y) \supset adult(x) \land adult(y)$

1.8 A person cannot be married to two or more different persons

 $\forall x \forall y \forall z \ married(x,y) \land married(y,z) \supset (z=x)$

1.9 Two persons can only get divorced if they are previously married

 $\forall x \forall y \ candivorce(x,y) \supset married(x,y)$

1.10 People can only be given birth by a Man and a Woman

 $\forall z \exists x \exists y \ haschild(x, z) \land haschild(y, z) \supset man(x) \land woman(y)$

2 Exercise 5

Formalize the following sentences as FOL expressions, after identifying function symbols and predicate symbols.

Given a domain, we can construct a FOL knowledge base following these steps

Named individuals mike, mary

No-named individuals boy_1 , $tshirt_1$, $tshirt_2$

Types Boy, Girl, TShirt, Person, Symbol

Properties Color, Symbol, Age

Relationships Younger(x, y), Wears(x, y), Youngest(x)

Functions countWearing(tshirt, color, symbol), age(x)

2.1 Mike is younger than the boy in the green T-shirt

 $Boy(boy_1)$, $TShirt(tshirt_1)$, $Wears(boy_1, tshirt_1)$, $Color(tshirt_1, green)$, $Younger(mike, boy_1)$

2.2 The five-year boy wore a T-shirt with a square symbol

 $Age(boy_1, 5), Symbol(tshirt_1, square)$

2.3 Mikes T-shirt is yellow

 $TShirt(tshirt_{mike}), Wears(mike, tshirt_{mike}), Color(tshirt_{mike}, yellow)$

2.4 Marys T-shirt does not bear a square symbol

 $Girl(mary), TShirt(tshirt_{mary}), Wears(mary, tshirt_{mary}), \neg Symbol(tshirt_{mary}, square)$

2.5 Square symbols cannot appear in white T-shirts.

 $\forall x \ TShirt(x) \land Color(x, white) \supset \neg Symbol(x, square)$

2.6 The youngest person cannot wear a T-shirt

 $\forall x \forall t \ youngest(x) \land TShirt(t) \supset \neg Wears(x,t) \land youngest(x) = person(x) \land (\forall z \ person(x) \supset younger(x,z))$

2.7 There are three T-shirt symbols: squares, pictures, and circles

 $\forall t \forall s \ TShirt(t) \land Symbol(t, s) \supset Symbol(t, square) \lor Symbol(t, picture) \lor Symbol(t, circle)$

2.8 There is not a person wearing a T-shirt with a circle if theres another person older than the first one wearing a square

 $\forall x \forall t_1 \ (\exists y \exists t \ Wears(x,t) \land Symbol(t, square) \land age(y) > age(x)) \supset \neg (Wears(x,t_1) \land Symbol(t_1, circle))$

2.9 Everybody wearing a T-shirt is older than any other not wearing a T-shirt

 $\forall x \forall y \forall t_x \forall t_y \ Wears(x,t) \land TShirt(t_x) \land Wears(y,t_y) \land TShirt(t_y) \supset age(x) > age(y)$

2.10 The number of people wearing a T-shirt yellow, are bigger than the ones not wearing a T-shirt with a square

 $countWearing(true, yellow, any) > countWearing(any, any, \{picture, circle, none\})$

3 Exercise 6

Given the following description Tony, Mike, and John belong to the Alpine Club. Every member of the Alpine Club who is not a skier is a mountain climber. Mountain climbers do not like rain, and anyone who does no like snow is not a skier. Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.

3.1 Formalize this knowledge as FOL expressions

- 1. Tony, Mike, and John belong to the Alpine Club in(tony, aclub), in(mike, aclub), in(john, aclub)
- 2. Every member of the Alpine Club who is not a skier is a mountain climber $\forall x \ in(x, aclub) \land \neg skier(x) \supset climber(x)$
- 3. Mountain climbers do not like rain, and anyone who does no like snow is not a skier $\forall x \ climber(x) \supset \neg like(x, rain) \ \forall x \ \neg like(x, snow) \supset \neg skier(x)$
- 4. Mike dislikes whatever Tony likes, and likes whatever Tony dislikes $\forall a \ like(tony, a) \supset \neg like(mike, a) \ \forall a \ \neg like(tony, a) \supset like(mike, a)$

3.2 Find out whether Tony is a mountain climber or not. Is it possible?

We don't have enough knowledge to state if Tony is a mountain climber or not.

3.3 What do you know about John?

- in(john, aclub) = true
- $\neg skier(john) \supset climber(john)$
- $climber(john) \supset \neg like(john, rain)$
- $\neg like(john, snow) \supset \neg skier(john)$

3.4 Prove that there is a member of the Alpine Club who is a mountain climber but not a skier

- 1. Tony dislikes anything that Mike likes (and the other way around)
- 2. Either Tony or Mike dislikes snow
- 3. Either Tony or Mike is not a skier
- 4. Either Tony or Mike is a mountain climber
- 5. Either Tony or Mike is not a mountain climber (due to point 1)

3.5 Suppose that Mary, a new member of the Alpine Club, likes what Mike and John likes. What can you say about Mary

The fact that Mary is a new member implies all the following

- in(mary, aclub) = true
- $\neg skier(mary) \supset climber(mary)$
- $climber(mary) \supset \neg like(mary, rain)$
- $\neg like(mary, snow) \supset \neg skier(mary)$

Remeber that $\forall a \; like(tony,a) \supset \neg like(mike,a)$ and $\forall a \; \neg like(tony,a) \supset like(mike,a)$ In natural language, the phrase Likes what Mike and John likes can be interpreted as

Conjunction $\forall a \ like(mike, a) \land like(john, a) \supset like(mary, a)$

Equivalence $\forall a \ like(mary, a) \supset like(mike, a) \land like(john, a)$

Partial $\exists a \ like(mary, a) \supset \neg(like(mike, a) \land like(john, a)) \supset \neg like(mike, a) \lor \neg like(john, a) \supset like(tony, a)$

Inclusive disjunction $\forall a \ like(mike, a) \lor like(john, a) \supset like(mary, a)$

Equivalence $\forall a \ like(mary, a) \supset like(mike, a) \lor like(john, a)$

Partial $\exists a \ like(mary, a) \supset \neg(like(mike, a) \lor like(john, a)) \supset \neg like(mike, a) \land \neg like(john, a) \supset like(tony, a)$

4 Exercise 7

Given the relationship Parent(x, y) representing the fact x is parent of y, and Male(x) representing x is male, define in FOL the following family relationships

4.1 Son, Daughter, Brother, Sister, Sibling, Ancestor, Father, Mother, Grandfather, Grandmother, Uncle, Aunt, Cousin, and Nephew.

Son $Parent(x,y) \wedge Male(y) \supset Son(y,x)$

Daughter $Parent(x, y) \land \neg Male(y) \supset Daughter(y, x)$

Brother $Parent(x, y) \wedge Son(z, x) \supset Brother(z, y)$

Sister $Parent(x,y) \wedge Daughter(z,x) \supset Sister(z,y)$

Sibling $Brother(x,y) \vee Sister(x,y) \supset Sibling(x,y)$

Ancestor $Parent(x, y) \lor (Parent(x, z) \land Ancestor(z, y))) \supset Ancestor(x, y)$

Father $(Son(y, x) \lor Daughter(y, x)) \land Son(x, z) \supset Father(x, y)$

Mother $(Son(y, x) \lor Daughter(y, x)) \land Daughter(x, z) \supset Mother(x, y)$

Grandfather $Father(x, z) \land (Father(z, y) \lor Mother(z, y)) \supset Grandfather(x, y)$

Grandmother $Mother(x, z) \land (Father(z, y) \lor Mother(z, y)) \supset Grandmother(x, y)$

Uncle Brother $(x,z) \land (Father(z,y) \lor Mother(z,y)) \supset Uncle(x,y)$

Aunt $Sister(x, z) \wedge (Father(z, y) \vee Mother(z, y)) \supset Aunt(x, y)$

Cousin $(Son(x,t) \lor Daughter(x,t)) \land Sibling(t,z) \land (Father(z,y) \lor Mother(z,y)) \supset Cousin(x,y)$

Nephew $Sibling(y,t) \wedge (Father(t,x) \vee (Mother(t,x)) \supset Nephew(x,y)$

4.2 John has not children. Jon has not siblings.

 $\neg(\exists x \; Father(john, x)), \; \neg(\exists x \; Sibling(john, x))$

4.3 Johns parents are Mary (female) and Paul (male).

Mother(mary, john), Father(paul, john)

4.4 Johns sister has some children.

 $\exists x \ \exists y Sister(x, john) \land Mother(x, y)$

4.5 The mother of Mary is the aunt of Michael.

 $\exists x \; Mother(mary, x) \land Aunt(x, michael)$

5 Exercise 8

Given the simplified set theory in which all the variables are considered sets, and using the predicates Sub(x,y) = "x is a subset of y", E(e,x) = "e is an element of the set x", and the functions u(x,y) = "the union of x and y", i(x,y) = "the intersection of x and y"; provide FOL expressions to represent the following knowledge:

5.1 No set is an element of itself

 $\forall e \forall x \ E(e, x) \supset e \neq x$

5.2 A set x is a subset of a set y iff every element of x is an element of y

 $\forall x \forall y \forall e \ E(E(e,x),y) \supset Sub(x,y)$

5.3 Something is an element of the union of two sets x and y iff it is an element of x or an element of y

$$\forall x \forall y \forall e \ E(e, x) \lor E(e, y) \supset E(e, u(x, y))$$

5.4 Something is an element of the intersection of two sets x and y iff it is an element of x and an element of y

$$\forall x \forall y \forall e \ E(e,x) \land E(e,y) \supset E(e,i(x,y))$$

6 Exercise 9

Let C(x) be the statement x has a cat, let D(x) be the statement x has a dog, and let F(x) be the statement x has a ferret. Express each of these statements in first-order logic using these relations. Let the domain be your classmates.

6.1 A classmate has a cat, a dog, and a ferret.

$$\exists x \ C(x) \land D(x) \land F(x)$$

6.2 All your classmates have a cat, a dog, or a ferret.

$$\forall x \ C(x) \lor D(x) \lor F(x)$$

6.3 At least one of your classmates has a cat and a ferret, but not a dog.

$$\exists x \ C(x) \land F(x) \land \neg D(x)$$

6.4 None of your classmates has a cat, a dog, and a ferret.

$$\neg(\exists x \ C(x) \land D(x) \land F(x))$$

6.5 For each of the three animals, there is a classmate of yours that has one.

$$\exists x \exists y \exists z \ C(x) \land D(y) \land F(z)$$

7 Exercise 13

What is the meaning of the following FOL expressions:

7.1 $\forall x \forall y \ Loves(x,y)$

Everybody loves everybody

7.2 $\forall x \exists y \ Loves(x,y)$

Everybody loves somebody

7.3 $\exists x \forall y \ Loves(x,y)$

Somebody loves everybody

7.4 $\exists x \exists y \ Loves(x,y)$

Somebody loves somebody

7.5
$$\forall x \forall y \ Loves(x,y) \supseteq \forall z \ Loves(x,z)$$

If everybody loves everybody then x loves everybody

7.6
$$\forall x \forall y \ Loves(x,y) \supseteq \exists z \ Loves(x,z)$$

If everybody loves everybody then x loves somebody

7.7
$$\forall x \exists y \ Loves(x,y) \supseteq \forall z \ Loves(x,z)$$

If everybody loves somebody then x loves everybody

7.8
$$\forall x \exists y \ Loves(x,y) \supset \exists z \ Loves(x,z)$$

If everybody loves somebody then x loves somebody

8 Exercise 16

For the sentence $\forall x(\forall y(A(x) \land B(x,y) \Rightarrow A(y)))$ state whether it is true or false, relative to the following interpretations. If false, give values for x and y witnessing that.

8.1 The domain of the natural numbers, where A is interpreted as even?, and B is interpreted as equals

 $\forall x \forall y \ even(x) \land equals(x,y) \Rightarrow even(y)$ is true

8.2 The domain of the natural numbers, where A is interpreted as even?, and B is interpreted as is an integer divisor of

 $\forall x \forall y \ even(x) \land divisor(x,y) \Rightarrow even(y) \text{ is false}$

8.3 The domain of the natural numbers, where A is interpreted as even?, and B is interpreted as is an integer multiple of

 $\forall x \forall y \ even(x) \land multiple(x,y) \Rightarrow even(y) \text{ is false, } x = 6, \ y = 3$

8.4 The domain of the Booleans, {true,false}, where A is interpreted as false?, and B is interpreted as equals

 $\forall x \forall y \ false(x) \land equals(x,y) \Rightarrow false(y) \text{ is true}$

9 Exercise 18

Check for free and bound variables in the following expressions

9.1
$$\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z) \Rightarrow R(x,y) \hat{\ } P(x,y)))$$

No free variables

9.2
$$(\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z)))) \Rightarrow R(x,y) \hat{\ } P(x,y)$$

x and y are free in the last part of the expression

9.3
$$(\forall x \ (\exists y \ P(x,y) \Rightarrow \exists z \ (Q(y,z)) \Rightarrow R(x,y)^P(x,y)))$$

No free variables

9.4
$$(\forall x \ (\exists y \ P(x,y))) \Rightarrow (\exists z \ (Q(y,z) \Rightarrow R(x,y)^{\hat{}} P(x,y)))$$

x and y are free in the second and last part of the expression

10 Exercise 19

Represent in FOL

10.1 Maria is mother of a son and a daughter

 $\exists x \exists y \ x = son(maria) \land y = daughter(maria)$

10.2 Maria is mother of only one son and only one daughter

 $\forall x \forall y \forall z \ x = son(maria) \land \ y = daughter(maria) \land \neg(z = x) \land \neg(z = y) \supset \neg mother(maria, z)$

10.3 Maria is mother of a son or a daughter

 $\forall x \ son(x, maria) \supset \neg(\exists y \ daughter(y, maria)) \ \forall x \ daughter(x, maria) \supset \neg(\exists y \ son(y, maria))$

10.4 All women are beautiful and some men are beautiful

 $\forall x \ woman(x) \supset beautiful(x) \ \exists x \ men(x) \supset beautiful(x)$