Online News Articles

Bayrischer Innenminister will keine Altersgrenze mehr -»Verfassungsschutz soll Kinder beobachten - **Bild.de**

SPD: Bundestagswahl: Kandidat Schulz stellt Pläne zu Innerer Sicherheit vor - **FOCUS Online**

Linke-Parteitag in Hannover: Bedingt gesprächsbereit -SPIEGEL ONLINE

Wagenknecht sieht kaum Chancen für Rot-Rot-Grün – **stern.de**

Klare Mehrheit: Bundestag will Einheitsdenkmal bis 2019 – welt.de

Anschlag in Kabul: Schulz will Abschiebungen nach Afghanistan aussetzen – **Zeit Online**

Data Cleaning and Shaping

Data Pre-Processing includes the following steps:

- 1. Remove common words (Stopwords), punctuation, numbers and non-alphanumerical terms.
- 2. Stemming words to root words

Document-Term Matrix

The document term matrix is simply a mapping of how often each word appears in a particular article.

1	Term:	5	
Docs	afd	berlin	bundestagswahl
1008	11	4	1
1009	10	4	1
1010	2	4	0
1166	21	8	29
1174	20	8	29
1582	45	16	33
1663	136	8	3
1670	114	23	38
1678	134	26	43
243	2	10	2

Structural Topic Model

The algorithm analyzes the occurrences and attempts to identify the latent topics.

Generative Model: Latent
Dirichlet allocation, where the
prior distributions with globally
shared mean parameters are
replaced with means
parameterized by a linear
function of observed covariates.

Covariates: News Agency, Month

Algorithm: Gibbs Sampling

Probabilities and Classification

The output of the model is a set of probabilities mapping words to topics, and documents (news articles) to topics

Topic-document distribution θ

	1 [‡]	2 ‡	3
1	0.0062111801	0.0062111801	0.006211
2	0.005555556	0.005555556	0.016666
3	0.0097402597	0.0032467532	0.006493
4	0.0045662100	0.0022831050	0.006849
5	0.0063291139	0.0126582278	0.012658
6	0.0080645161	0.0040322581	0.459677

Estimation

We use the Topic-document distribution to estimate the conditional outcome distribution of Facebook shares v_i of document i on the topical prevalence θ_i of that document.

 $p[v_i|\theta_i]$

Term-topic distribution ϕ

	abschaffung «dbl»	abschied <dbl></dbl>	amt <dbl></dbl>
1	8.365681e-06	1.756793e-04	8.365681e-06
2	9.637068e-06	9.637068e-06	9.637068e-06
3	3.779347e-06	3.779347e-06	3.779347e-06
4	2.859872e-06	2.859872e-06	2.859872e-06
5	1.235697e-05	1.235697e-05	1.235697e-05