Money-in-the-Utility Model

Dmitry Mukhin

dmukhin@wisc.edu

In other models, money is indicated with other assets: C, F.

Primitives of the endowment model:

1. preferences: $U = \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}-1}{1-\sigma} + \kappa \frac{(M_t/P_t)^{1-\phi}-1}{1-\phi} \right)$,

Competitive equilibrium boils down to the household problem

2. endowment: Y_t is given. \triangle

We can introduce money as:

- 1) ad hec -money in whility -transaction constraint
 - cash in advance const.
- 2) deep theory of money
 - -Search Miction

 $\max \mathbb{E} \sum_{t=0}^{\infty} \beta^t \Big(\frac{C_t^{1-\sigma}-1}{1-\sigma} + \kappa \frac{(M_t/P_t)^{1-\phi}-1}{1-\phi} \Big)$ s.t. $C_tP_t + B_t + M_t = Y_tP_t + (1+i_{t-1}^b)B_{t-1} + (1+i_{t-1}^m)M_{t-1}$. Intersally rate between intervally.

Take the FOC wrt C_t , B_t and M_t respectively:

GOV BC:

$$\beta^t C_t^{-\sigma} = \lambda_t P_t, \qquad \lambda_t = \frac{\mathbf{B}^t \mathbf{C}_t^{-\sigma}}{\mathbf{P}_t}$$

Market clearing:

$$\lambda_t = \mathbb{E}_t \lambda_{t+1} (1 + i_t^b), \quad \mathbf{E}_t \lambda_{t+1} = \frac{\lambda_t}{1 + i_t^b}$$

C+= y+

$$\kappa \beta^t \frac{M_t^{-\phi}}{P_t^{1-\phi}} - \lambda_t + \mathbb{E}_t \lambda_{t+1}.(1+i_t^m) = 0,$$

where B_t and M_t are the amount of bonds and money held by a representative household, i_t^b and i_t^m are the respective nominal interest rates. Substitute in the Lagrange multiplier from the first equation into the second one to obtain a standard Euler equation:

Substitute the first two FOCs into the third one to obtain the optimal money demand:

$$\left(\frac{M_t}{P_t}\right)^{\phi} = \kappa \frac{1 + i_t^b}{i_t^b - i_t^m} C_t^{\sigma}.$$
(2)

Mt = P(yb, it) ISLM model
Pt
- When the interest rate goes up, demand for money goes down
- interest rate is the opportunity cost of holding moneys.
- Mt 20 -> it 70 Zero lower bound
-lower bound of zero because holding money would have a
higher return Uc you wouldn't be losing money
- now we do see countries with negative interest vates for banks,
not for households. Households would cause a bank rush. For
banks, there are transaction costs, need for financial stability.
- effective lower bound-interest rates can go negative, but not
too negative
- Government Instruments:
- interest rate it 3 monetary
- money supply M& TOOK
- taxes Tt 3 fiscal tools
- bonds &)
- fiscal took- fix lit, Mis and change lit, bis.
-Ricardian equivalence-lower to today -> higher
T to morrow
- "monetary dominance"
- monetary tools-fix & To, Bos and change & it, Mos.
- "fiscal dominance"
- fiscal theory of price level - changes gov BC (unconventional)
DM++B+-(1+1+-1)B+-1+P+· T+= P+·9+
real pince level
- gov chooses & Mt, Bt, it, Tolgts.

- now the HHBC 15: Copb + M& + B& = Po 16 + To+ (1+16.) Boy+ (1+16) Man

-earn interest on money reserves

- optimal monetary policy - Mt/Pt 1, it =0.

- Friedman rule

 $- \not\vdash \rightarrow 0$ " cashless limit"