Problem Set #5

Reiko Laski

Exercise 8.1

Optimizer: $(\frac{14}{5}, \frac{16}{5})$

Exercise 8.2

Exercise 8.3

maximize
$$4b + 3j$$

subject to $15b + 10j \le 1800$
 $2b + 2j \le 300$
 $j \le 200$
 $b, j \ge 0$

Exercise 8.4

$$\begin{array}{ll} \text{maximize} & 2x_{AB} + 5x_{AD} + 5x_{BC} + 2x_{BD} + 7x_{BE} + 9x_{BF} + 2x_{CF} + 4x_{DE} + 3x_{EF} \\ \text{subject to} & x_{AB} + x_{AD} = 10 \\ & x_{BC} + x_{BD} + x_{BE} + x_{BF} - x_{AB} = 1 \\ & x_{CF} - x_{BC} = -2 \\ & x_{DE} - x_{AD} - x_{BD} = -3 \\ & x_{EF} - x_{BE} - x_{DE} = 4 \\ & - x_{BF} - x_{CF} - x_{EF} = -10 \\ & 0 \leq x_{AB}, x_{AD}, x_{BC}, x_{BD}, x_{BE}, x_{BF}, x_{CF}, x_{DE}, x_{EF} \leq 6 \\ \end{array}$$

Exercise 8.5

(i)

$$\begin{array}{ll} \text{maximize} & 3x_1+x_2\\ \text{subject to} & x_1+3x_2+w_1=15\\ & 2x_1+3x_2+w_2=18\\ & x_1-x_2+w_3=4\\ & x_1,x_2,w_1,w_2,w_3\geq 0 \end{array}$$

Optimizer: (6,2)Optimum value: 20

(ii)

maximize
$$4x + 6y$$

subject to $-x + 3x_2 + w_1 = 11$
 $x + y + w_2 = 27$
 $2x + 5y + w_3 = 90$
 $x, y, w_1, w_2, w_3 \ge 0$

ζ	=			4x	+	6y
w_1	=	11	+	x	_	y
w_2	=	27	_	x	_	y
w_3	=	90	_	2x	_	5y
ζ	=	66	+	10 <i>x</i>	_	$6w_1$
\overline{y}	=	11	+	x	_	$\overline{w_1}$
w_2	=	16	_	2x	+	w_1
w_3	=	35	_	7x	+	$5w_1$
ζ	=	116	+	$\frac{8}{7}w_1$	_	$\frac{10}{7}w_3$
$\frac{\zeta}{y}$	=	116 16	+	$\frac{8}{7}w_1$ $\frac{2}{7}w_1$	_	$\frac{\frac{10}{7}w_3}{\frac{1}{7}w_3}$
	= =		+		_ _ +	
\overline{y}	= = = =	16	+ +	$\frac{2}{7}w_1$	_ _ + _	$\frac{1}{7}w_{3}$
$y \\ w_2$	= = =	16 6	+ - + + -	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$
y w_2 x	= = = =	16 6 5	+ - + + - +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$ $\frac{1}{7}w_3$
$ \begin{array}{c} y\\w_2\\x\\\hline \zeta \end{array} $	= = = = =	16 6 5 132	+ - - + - +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + - - - +	

Optimizer: (15, 12) Optimum value: 132

Exercise 8.6

$$\begin{array}{ll} \text{maximize} & 4b+3j \\ \text{subject to} & 15b+10j+w_1=1800 \\ & 2b+2j+w_2=300 \\ & j+w_3=200 \\ & b,j,w_1,w_2,w_3\geq 0 \end{array}$$

ζ	=			4b	+	3j
w_1	=	1800	_	15b	_	10j
w_2	=	300	_	2b	_	2j
w_3	=	200	_	j		
ζ	=	450	+	b	_	$\frac{3}{2}w_{2}$
$\overline{w_1}$	=	300	_	5b	+	$5w_2$
j	=	150	_	b	_	$\frac{1}{2}w_2$
w_3	=	50	+	b	+	$\frac{1}{2}w_2$
ζ	=	510	_	$\frac{1}{5}w_1$	_	$\frac{1}{2}w_2$
\overline{b}	=	60	_	$\frac{1}{5}w_1$	+	w_2
j	=	90	+	$\frac{1}{5}w_1$	_	$\frac{3}{2}w_{2}$
w_3	=	110	_	$\frac{1}{5}w_1$	+	$\frac{3}{2}w_{2}$

Optimal choice: 60 GI Barb soldiers, 90 Joey dolls

Maximal profit: \$510

Exercise 8.7

(i)

maximize
$$x_1 + 2x_2$$

subject to $-4x_1 - 2x_2 + x_3 = -8$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $-4x_1 - 2x_2 + x_3 - x_0 = -8$
 $-2x_1 + 3x_2 + x_4 - x_0 = 6$
 $x_1 + x_5 - x_0 = 3$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Optimal point: (3,4) Optimal value: 11

(ii)

$$\begin{array}{ll} \text{maximize} & 5x_1+2x_2\\ \text{subject to} & 5x_1+3x_2+x_3=15\\ & 3x_1+5x_2+x_4=15\\ & 4x_1-3x_2+x_5=-12\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

Auxiliary problem:

maximize
$$-x_0$$

subject to $5x_1 + 3x_2 + x_3 - x_0 = 15$
 $3x_1 + 5x_2 + x_4 - x_0 = 15$
 $4x_1 - 3x_2 + x_5 - x_0 = -12$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

The original problem has no feasible solutions.

(iii)

$$\begin{array}{ll} \text{maximize} & -3x_1+x_2\\ \text{subject to} & x_2+x_3=4\\ & -2x_1+3x_2+x_4=6\\ & x_1,x_2,x_3,x_4\geq 0 \end{array}$$

Optimal point: (0,2)Optimal value: 2

Exercise 8.8

Exercise 8.9

Exercise 8.10

Exercise 8.11

Exercise 8.12

Optimal point: (1,0,1,0) Optimum value: 1

Exercise 8.15

Exercise 8.17

Exercise 8.18