9. 广义积分与含参积分 I: 理论

SDS 高数小班课 (2025 春)

崔畅 北京大学化学与分子工程学院 CuiChang2022@stu.pku.edu.cn

2025.5.24

1 广义积分的审敛

定义 1.1 (无穷积分). 设函数 f(x) 在 $[a, +\infty)$ 上有定义, 且对任意 A > a, 函数 f(x) 在 [a, A] 上可积. 若 $\lim_{A \to \infty} \int_a^A f(x) \, \mathrm{d}x$ 存在, 则称**无穷积分**

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x \equiv \lim_{A \to \infty} \int_{a}^{A} f(x) \, \mathrm{d}x \tag{1}$$

收敛; 否则发散.

例题 1.1 (无穷积分实例: Γ -函数). 设 $n \in \mathbb{N}$, 计算 $\int_0^{+\infty} x^n e^{-x} dx$. (暂不讨论敛散性)

定义 1.2 (瑕积分). 设函数 f(x) 在 (a,b] 上有定义, 且 f(x) 在任意区间 $[a+\epsilon,b] \subset (a,b]$ 上可积, 但 $x \to a_+$ 时 f(x) 无界. 此时, 称 a 为函数 f(x) 的**瑕点**. 若 $\lim_{\epsilon \to 0_+} \int_{a+\epsilon}^b f(x) \, \mathrm{d}x$ 存在, 则称**取积分**

$$\int_{a}^{b} f(x) dx \equiv \lim_{\epsilon \to 0_{+}} \int_{a+\epsilon}^{b} f(x) dx$$
 (2)

收敛; 否则发散.

例题 1.2 (瑕积分实例: B-函数). 设 $m, n \in \mathbb{N}$, 计算 $\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$. (暂不讨论敛散性)

1.1 非负函数的比较审敛法

定理 1.1 (比较审敛法). 给定函数 f(x), g(x).

- 1. (无穷积分) 假设它们在 $[a, +\infty)$ 上有定义, 且当 $x \ge X \ge a$ 时, 有 $0 \le f(x) \le g(x)$. 则 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 收敛蕴涵 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 发散.
- 2. (瑕积分) 假设它们在 (a,b] 上有定义且均以 a 为瑕点, 且当 $x \in (a,c) \subset (a,b]$ 时, 有 $0 \le f(x) \le g(x)$. 则 $\int_a^b g(x) \, \mathrm{d}x$ 收敛蕴涵 $\int_a^b f(x) \, \mathrm{d}x$ 收敛, $\int_a^b f(x) \, \mathrm{d}x$ 发散蕴涵 $\int_a^b g(x) \, \mathrm{d}x$ 发散.

例题 1.3 (以 x^{-p} 为比较对象). 讨论以下积分的敛散性:

- 1. $\int_0^{+\infty} \frac{x^2 dx}{x^4 x^2 + 1}$;
- 2. $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x}$ (其中 p, q > 0);
- 3. $\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$ (其中 p > 0).

注记 1.1. 对常数 p > 0 与 (常义) 积分限 $0 < c < +\infty$, 一个熟知的基本事实是:

- 1. 无穷积分 $\int_{c}^{+\infty} \frac{dx}{x^{p}}$ 在 p > 1 时收敛, 在 0 时发散;
- 2. 瑕积分 $\int_0^c \frac{\mathrm{d}x}{x^p}$ 在 $0 时收敛, 在 <math>p \ge 1$ 时发散.

1 广义积分的审敛

3

因此, $\frac{1}{r_{e}}$ 是审敛中常用的比较对象.

注记 1.2. 与正项级数的比较审敛法类似, 我们也可以写出并应用广义积分的比较审敛 法的极限形式, 这对增长"量级"的分析与放缩的方向具有指导作用.

注记 1.3. 注意检查被积函数的所有瑕点, 这些瑕点和无穷远点处的积分敛散性需要逐个讨论.

1.2 乘积函数的 Dirichlet-Abel 审敛法

定理 1.2 (无穷积分的 Dirichilet-Abel 审敛法). 考虑无穷积分 $\int_a^{+\infty} f(x)g(x) dx$.

- 1. (Dirichlet 审敛法) 若积分 $\int_a^A f(x) dx$ 有界 (其中 $A \ge a$ 任意给定), 函数 g(x) 在 $[a, +\infty)$ 上单调且当 $x \to +\infty$ 时收敛到 0, 则无穷积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.
- 2. (Abel 审敛法) 若无穷积分 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛, 函数 g(x) 在 $[a,+\infty)$ 上单调有界, 则无穷积分 $\int_a^{+\infty} f(x)g(x) \, \mathrm{d}x$ 收敛.

例题 1.4 (无穷积分的 Dirichlet-Abel 审敛法). 讨论无穷积分 $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} \arctan x \, dx$ 的敛散性.

例题 1.5 (乘积因子的构造). 定义函数 $\theta:[0,+\infty)\to[0,+\infty)$ 为

$$\theta(x) = \int_0^x \sqrt{(t+1)(t+2)(t+3)} \, \mathrm{d}t,\tag{3}$$

证明: 无穷积分 $\int_0^{+\infty} \cos(\theta(x)) dx$ 收敛.

定理 1.3 (瑕积分的 Dirichlet-Abel 审敛法). 考虑以 a 为瑕点的瑕积分 $\int_a^b f(x)g(x) dx$.

- 1. (Dirichlet 审敛法) 若积分 $\int_c^b f(x) \, \mathrm{d}x$ 有界 (其中 $a < c \le b$ 任意给定), 函数 g(x) 在 (a,b] 上单调且当 $x \to a$ 时收敛到 0, 则瑕积分 $\int_a^b f(x)g(x) \, \mathrm{d}x$ 收敛.
- 2. (Abel 审敛法) 若瑕积分 $\int_a^b f(x) \, \mathrm{d}x$ 收敛, 函数 g(x) 在 (a,b] 上单调有界,则瑕积分 $\int_a^b f(x)g(x) \, \mathrm{d}x$ 收敛.

例题 1.6 (Dirichlet 积分). 讨论广义积分 $\int_0^{+\infty} \frac{\sin x}{x} dx$ 的敛散性 (绝对收敛、条件收敛或发散).

注记 1.4. 考虑广义积分族

$$I_p \equiv \int_0^{+\infty} \frac{\sin x}{x^p} \, \mathrm{d}x. \tag{4}$$

为使 I_p 在瑕点 x=0 处收敛, 需有 p<2; 为使 I_p 在无穷远点 $x=+\infty$ 处收敛, 需有 p>0 (若使其绝对收敛, 则强化为 p>1). 以上的 Dirichlet 积分是唯一 (条件) 收敛的整数幂次情形 (p=1).

2 含参常义积分的性质

定理 2.1 (连续性). 设二元函数 f(x,y) 在闭矩形区域 $R \equiv [a,b] \times [c,d]$ 上连续,则含参积分

$$g(y) \equiv \int_{a}^{b} f(x, y) \, \mathrm{d}x \tag{5}$$

定义了一个在 [c,d] 上的 (关于参数的) 连续函数.

• 此时, (消去 x 的) 定积分运算 $\int_a^b(\cdot) dx$ 和 (消去 y 的) 极限运算 $\lim_{y \to y_0}(\cdot)$ 具有对易性.

例题 2.1 (含参积分的极限). 计算下列极限:

- 1. $\lim_{n\to\infty} \int_0^1 \frac{dx}{1+(1+\frac{x}{n})^n};$
- 2. $\lim_{y\to 0} \int_0^1 \frac{x}{y^2} e^{-\frac{x^2}{y^2}} dx$.

定理 2.2 (可积性). 设二元函数 f(x,y) 在闭矩形区域 $R \equiv [a,b] \times [c,d]$ 上连续, 则含参积分 $g(y) \equiv \int_a^b f(x,y) \, \mathrm{d}x$ 在 [c,d] 上可积, 且

$$\int_{c}^{d} g(y) \, \mathrm{d}y = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x. \tag{6}$$

• 此时, (消去 x 的) 定积分运算 $\int_a^b (\cdot) dx$ 和 (消去 y 的) 定积分运算 $\int_c^d (\cdot) dy$ 具有对易性.

例题 2.2 (积分的构造与对易). 计算积分 $\int_0^1 \frac{x^2-x}{\ln x} dx$.

定理 2.3 (可微性). 设二元函数 f(x,y) 在闭矩形区域 $R \equiv [a,b] \times [c,d]$ 上连续,则含参积分 $g(y) \equiv \int_a^b f(x,y) \, \mathrm{d}x$ 在 [c,d] 上可微,且

$$\frac{\mathrm{d}}{\mathrm{d}y}(g(y)) = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y} \,\mathrm{d}x. \tag{7}$$

- 此时, (消去 x 的) 定积分运算 $\int_a^b (\cdot) dx$ 和偏微分运算 $\frac{\partial}{\partial y}$ 具有对易性.
- 若积分下限 u(y) 与上限 v(y) 是关于 y 的函数,则

$$\frac{\mathrm{d}}{\mathrm{d}y}(g(y)) = \int_{u(y)}^{v(y)} \frac{\partial f(x,y)}{\partial y} \,\mathrm{d}x + \left(f(v(y),y)v'(y) - f(u(y),y)u'(y)\right). \tag{8}$$

例题 2.3 (变限含参积分的导数). 设函数 $f(x) = \int_0^x \frac{\sin t}{t} (x-t)^{2024} dt$, 计算 $f^{(2025)}(1)$.

3 含参广义积分

定义 3.1 (一致收敛). 给定二元函数 f(x,y).

- (无穷积分) 假设 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 对一切 $y \in Y$ 都收敛. 若对任给的 $\epsilon > 0$ 都存在一个与 y 无关的实数 N > a, 使得 $\left| \int_A^{+\infty} f(x,y) \, \mathrm{d}x \right| < \epsilon$ 对任 意 A > N 与 $y \in Y$ 都成立, 则称 $\int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一致收敛.
- (瑕积分) 假设 $g(y) = \int_a^b f(x,y) dx$ (以 a 为瑕点) 对一切 $y \in Y$ 都收敛. 若对任给的 $\epsilon > 0$ 都存在一个与 y 无关的实数 $\delta_0 > 0$, 使得 $\left| \int_a^{a+\delta} f(x,y) dx \right| < \epsilon$ 对任意 $\delta \in (0,\delta_0)$ 与 $y \in Y$ 都成立,则称瑕积分 $\int_a^b f(x,y) dx$ 在区间 Y 上一致收敛.

3.1 一致收敛性的判别法

定理 3.1 (强函数审敛法). 给定二元函数 f(x,y).

- (无穷积分) 假设当 $y \in Y$ 时, f(x,y) 关于变量 x 在区间 [a,A] 上可积 (其中 A > a 任意给定). 若存在函数 $\phi(x)$, 使得 $|f(x,y)| \le \phi(x)$ 对任 意 $(x,y) \in [a,+\infty) \times Y$ 成立, 且无穷积分 $\int_a^{+\infty} \phi(x) \, \mathrm{d}x$ 收敛, 则含参积分 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一致收敛.
- (瑕积分) 假设 f(x,y) 在区间 $(a,b] \times Y$ 上连续, 且对任意 $y \in Y$, 函数 f(x,y) 都以 a 为瑕点. 若存在 (a,b] 上的连续函数 $\phi(x)$, 使得 $|f(x,y)| \le \phi(x)$ 对任意 $(x,y) \in (a,b] \times Y$ 成立, 且瑕积分 $\int_a^b \phi(x) \, \mathrm{d}x$ 收敛, 则含参积 分 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在区间 Y 上一致收敛.

例题 3.1 (强函数审敛法). 任意取定 r > 0. 证明: 含参无穷积分 $\int_0^{+\infty} e^{-xy^2} \cos x \, dx$ 对于 $y \in [r, +\infty)$ 是一致收敛的.

注记 3.1. 当 y=0 时, 显然 $\int_0^{+\infty} \cos x \, dx$ 不再收敛. 所以, 积分 $\int_0^{+\infty} e^{-xy^2} \cos x \, dx$ 具有内闭一致性.

定理 3.2 (Dirichlet-Abel 审敛法). 给定二元函数 f(x,y) 和 g(x,y).

- (无穷积分) 若下面任一组条件得到满足, 则无穷积分 $\int_a^{+\infty} f(x,y)g(x,y) dx$ 在 Y 上一致收敛:
 - (Dirichlet 审敛法) 当 $x \to +\infty$ 时, g(x,y) 关于 x 单调且一致收敛到 0, 且积分 $\int_a^A f(x,y) \, \mathrm{d}x$ 对一切 $A \ge a$ 都关于 $y \in Y$ 一致有界;
 - (Abel 审敛法) 当 $x \to +\infty$ 时, g(x,y) 关于 x 单调且关于 $y \in Y$ 一致 有界, 且积分 $\int_{a}^{+\infty} f(x,y) dx$ 在 Y 上一致收敛.
- (瑕积分) 类似.

3 含参广义积分 6

例题 3.2 (Dirichlet-Abel 审敛法). 讨论积分 $I(\alpha) = \int_0^{+\infty} \frac{\sin x}{x} e^{-\alpha x} dx$ 在 $\alpha \in [0, +\infty)$ 时的一致收敛性.

3.2 一致收敛积分的性质

定理 3.3 (连续性、可积性). 给定二元函数 f(x,y).

• (无穷积分) 假设 f(x,y) 在区间 $[a,+\infty) \times [c,d]$ 上连续, 且无穷积分 $g(y) = \int_a^{+\infty} f(x,y) \, \mathrm{d}x$ 在 [c,d] 上一致收敛. 则 g(y) 在 [c,d] 上连续、可积 (和极限运算或积分运算对易):

$$\int_{c}^{d} g(y) \, \mathrm{d}y = \int_{a}^{+\infty} \mathrm{d}x \int_{c}^{d} f(x, y) \, \mathrm{d}y. \tag{9}$$

• (瑕积分) 假设 f(x,y) 在区间 $(a,b] \times [c,d]$ 上连续, 且瑕积分 $g(y) = \int_a^b f(x,y) \, \mathrm{d}x$ 在 [c,d] 上一致收敛. 则 g(y) 在 [c,d] 上连续、可积 (和极限运算或积分运算对易):

$$\int_{c}^{d} g(y) \, \mathrm{d}y = \int_{a}^{b} \mathrm{d}x \int_{c}^{d} f(x, y) \, \mathrm{d}y. \tag{10}$$

例题 3.3 (广义积分号下的常义积分). 设 0 < a < b, 计算无穷积分 $\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx$. **注记 3.2.** 设 a, b > 0, 函数 f(x) 连续, 且无穷积分 $\int_a^{+\infty} \frac{f(x)}{x} dx$ 对一切 a > 0 都收敛. 此时, 成立 *Flulani* 公式:

$$\int_0^{+\infty} \frac{f(ax) - f(bx)}{x} \, \mathrm{d}x = f(0) \ln \frac{b}{a}.$$
 (11)

定理 3.4 (可微性). 给定二元函数 f(x,y).

• (无穷积分) 假设 f(x,y) 在区间 $[a,+\infty)\times[c,d]$ 上连续, 且无穷积分 $g(y)=\int_a^{+\infty}f(x,y)\,\mathrm{d}x$ 在 [c,d] 上逐点收敛, 无穷积分 $\int_a^{+\infty}\frac{\partial f(x,y)}{\partial y}\,\mathrm{d}x$ 在 [c,d] 上一致收敛. 则 g(y) 在 [c,d] 上可微 (和微分运算对易):

$$\frac{\mathrm{d}g(y)}{\mathrm{d}y} = \int_{a}^{+\infty} \frac{\partial f(x,y)}{\partial y} \,\mathrm{d}x. \tag{12}$$

• (瑕积分) 假设 f(x,y) 在区间 $(a,b] \times [c,d]$ 上连续, 且瑕积分 $g(y) = \int_a^b f(x,y) \, \mathrm{d}x$ 在 [c,d] 上逐点收敛, 瑕积分 $\int_a^b \frac{\partial f(x,y)}{\partial y} \, \mathrm{d}x$ 在 [c,d] 上一致收敛. 则 g(y) 在 [c,d] 上可微 (和微分运算对易):

$$\frac{\mathrm{d}g(y)}{\mathrm{d}y} = \int_{a}^{b} \frac{\partial f(x,y)}{\partial y} \,\mathrm{d}x. \tag{13}$$

例题 3.4 (广义积分号下的微分). 设 b 是实数.

3 含参广义积分 7

1. 证明含参变量 b 的无穷积分

$$\int_0^{+\infty} e^{-x^2} x \cos(2bx) dx \tag{14}$$

在 $(-\infty, +\infty)$ 上一致收敛.

2. 证明:

$$\int_0^{+\infty} e^{-x^2} \sin(2bx) dx = e^{-b^2} \int_0^b e^{t^2} dt.$$
 (15)