CLAIMS

What is claimed is:

1	1.	An apparatus comprising:	
2		a contact on a substrate;	
3		a dielectric material overlying the contact;	
4		a phase change element overlying the dielectric material on a substrate;	
5	and		
6		a heater element disposed in the dielectric material and coupled to the	
7	contact and the phase change element,		
8		wherein a portion of the dielectric material comprises a thermal	
9	conductivity less than silicon dioxide.		
1	2.	The apparatus of claim 1, wherein the portion of the dielectric material is	
2	adjacent the heater element.		
1	3.	The apparatus of claim 2, wherein the heater element has a first portion	
2	and a second portion and the second portion is disposed adjacent the phase		
3	change element, wherein the portion of the dielectric material is adjacent the		
4	second portion of the heater element.		
1	4.	The apparatus of claim 2, wherein the heater element comprises a body	
2	surro	ounded in all directions by the dielectric material, the body defining, by a	
3	cross-section through the body, volumes of dielectric material:		
4		a first volume adjacent a left side of the body;	
5		a second volume adjacent a right side of the body;	
6 .		a third volume adjacent a front side of the body; and	
7		a fourth volume adjacent a back side of the body,	
8.		wherein the portion of the dielectric material comprises one of the first	
9	volume, the second volume, the third volume, and the fourth volume.		
1	5.	The apparatus of claim 4, wherein the heater element has a first portion	
2	and a	a second portion and the second portion is disposed adjacent the phase	
3	chan	change element, wherein the portion of the dielectric material is adjacent the	

second portion of the heater element.

4

- 1 6. The apparatus of claim 5, wherein the portion of the dielectric material
- 2 comprises more than one of the first volume, the second volume, the third
- 3 volume, and the fourth volume.
- 1 7. The apparatus of claim 1, wherein the dimensions of the phase change
- 2 element define an area over the dielectric material, and the portion of the
- 3 dielectric material is within a volume comprising the area.
- 1 8. The apparatus of claim 7, wherein the portion of dielectric material
- 2 comprises the entire area.
- 1 9. The apparatus of claim 1, wherein the thermal conductivity is three to 10
- 2 times less than silicon dioxide.
- 1 10. The apparatus of claim 1, wherein the dielectric material comprises
- 2 Xerogel.
- 1 11. An apparatus comprising:
- 2 a contact on a substrate;
- a dielectric material overlying the contact;
- 4 a chalcogenide memory element overlying the dielectric material on a
- 5 substrate; and
- 6 a heater element disposed in the dielectric material and coupled to the
- 7 contact and the chalcogenide memory element,
- 8 wherein a portion of the dielectric material comprises a thermal conductivity less
- 9 than silicon dioxide.
- 1 12. The apparatus of claim 11, wherein the portion of the dielectric material is
- 2 adjacent the heater element.
- 1 13. The apparatus of claim 11, wherein the heater element comprises a body
- 2 surrounded in all directions by the dielectric material, the body defining, by a
- 3 cross-section through the body, volumes of dielectric material:
- 4 a first volume adjacent a left side of the body;
- 5 a second volume adjacent a right side of the body;
- 6 a third volume adjacent a front side of the body; and

- 7 a fourth volume adjacent a back side of the body,
- 8 wherein the portion of the dielectric material comprises one of the first
- 9 volume, the second volume, the third volume, and the fourth volume.
- 1 14. The apparatus of claim 13, wherein the heater element has a first portion
- 2 and a second portion and the second portion is disposed adjacent the phase
- 3 change element, wherein the portion of the dielectric material is adjacent the
- 4 second portion of the heater element.
- 1 15. The apparatus of claim 14, wherein the portion of the dielectric material
- 2 comprises more than one of the first volume, the second volume, the third
- 3 volume, and the fourth volume.
- 1 16. The apparatus of claim 11, wherein the portion of the dielectric material
- 2 has a thermal conductivity that is three to 10 times less than silicon dioxide.
- 1 17. The apparatus of claim 11, wherein the portion of the dielectric material
- 2 comprises Xerogel.
- 1 18. A method comprising:
- 2 introducing over a contact formed on a substrate, a dielectric material, a
- 3 portion of which comprises a thermal conductivity less than silicon dioxide;
- 4 introducing a heater element through the dielectric material to the contact;
- 5 and
- 6 introducing a phase change material over the dielectric material and the
- 7 heater element.
- 1 19. The method of claim 18, wherein introducing the dielectric material
- 2 comprises introducing the portion which comprises the thermal conductivity less
- 3 than silicon dioxide adjacent the heater element.
- 1 20. The method of claim 18, wherein the heater element comprises a body and
- 2 introducing the dielectric comprises surrounding the body of the heater element
- 3 in all directions by the dielectric material, the body defining, by a cross-section
- 4 through the body, volumes of dielectric material:
- 5 a first volume adjacent a left side of the body;
- 6 a second volume adjacent a right side of the body;

- a third volume adjacent a front side of the body; and 7 a fourth volume adjacent a back side of the body, and 8 the portion of the dielectric material comprises one of the first volume, the 9 second volume, the third volume, and the fourth volume.
- The method of claim 20, wherein the heater element has a first portion and 21. 1
- a second portion and the second portion is disposed adjacent the phase change 2
- 3 element and introducing the dielectric material comprises introducing the
- 4 portion with the thermal conductivity less than silicon dioxide adjacent the
- 5 second portion of the heater element.

10

- 22. The method of claim 21, wherein introducing the dielectric material 1
- comprises introducing the portion of the thermal conductivity less than silicon 2
- 3 dioxide within more than one of the first volume, the second volume, the third
- volume, and the fourth volume. 4