2. Замена переменных в кратных интегралах

2.1. Двойной интеграл в полярных координатах

В плоскости Oxy введем систему полярных координат такую, что полюс ее находится в точке O, а полярная ось совпадает с осью Ox. Тогда декартовы координаты x, y некоторой точки связаны с ее полярными координатами ρ, φ соотношениями

$$x = \rho \cos \varphi, \qquad y = \rho \sin \varphi.$$

Разобьем область интегрирования D на частичные области $\Delta\sigma_i$ системой координатных линий: $\rho=const$ (концентрические окружности) и $\varphi=const$ (лучи, исходящие из полюса).

В этом случае площадь частичной области можно найти как разность площадей двух секторов, ограниченных лучами φ_{i-1} и $\varphi_{i-1}+\Delta\varphi_i$ и окружностями ρ_{i-1} и $\rho_{i-1}+\Delta\rho_i$:

$$\Delta\sigma_irac{1}{2}(
ho_{i-1}+\Delta
ho_i)^2\Deltaarphi_i-rac{1}{2}
ho_{i-1}^2\Deltaarphi_i=\left(
ho_{i-1}+rac{\Delta
ho_i}{2}
ight)\Delta
ho_i\Deltaarphi_i\;,$$

или

$$\Delta \sigma_i = \overline{\rho}_i \Delta \rho_i \Delta \varphi_i$$

где $\overline{
ho}_i=
ho_{i-1}+rac{\Delta
ho_i}{2}$ – средний радиус между ho_{i-1} и $ho_{i-1}+\Delta
ho_i$.

Пусть требуется вычислить двойной интеграл $\iint\limits_D f(x,y)d\sigma.$

Составим для него интегральную сумму, выбирая точки $P_i(x_i,y_i)$ лежащими на средних окружностях радиуса $\overline{\rho}_i$, то есть, полагая $x_i=\overline{\rho}_i\cos\varphi_i,\,y_i=\overline{\rho}_i\sin\varphi_i$. Тогда:

$$\sum_{n=1}^n f(x_i,y_i) \Delta \sigma_i = \sum_{n=1}^n f(\overline{
ho}_i \cos arphi_i, \ \overline{
ho}_i \sin arphi_i) \overline{
ho}_i \Delta
ho_i \Delta arphi_i \ .$$

Переходя к пределу, получаем:

$$\iint\limits_{D}f(x,y)d\sigma=\iint\limits_{D}f(
ho\cosarphi,
ho\sinarphi)
ho\,d
ho darphi \ .$$

Если полюс не содержится в области D, пределы интегрирования при переходе к полярным координатам расставляются в соответствии с рисунком по формуле:

$$\int \!\!\! \int \int f(x,y) d\sigma = \int \limits_{arphi_A}^{arphi_B} darphi \int \limits_{
ho_1(arphi)}^{
ho_2(arphi)} f(
ho\cosarphi,
ho\sinarphi)
ho\, d
ho \; .$$

Если полюс лежит внутри области интегрирования, принимают $ho_1(arphi)=0$, $ho_2(arphi)$ – уравнение границы области.

Пример. Вычислить двойной интеграл, переходя к полярным координатам:

$$\iint\limits_{D} \left(1+x^2+y^2
ight)^2 d\sigma \ ; \qquad$$
 область $D \ - \$ круг $\ x^2+y^2 \leq R^2 \ .$

Решение. Перейдем к полярным координатам $x=
ho\cosarphi,\,y=
ho\sinarphi$ в подынтегральной функции:

$$\left(1+x^2+y^2
ight)^2=\left(1+
ho^2\cos^2arphi^2+
ho^2\sin^2arphi^2
ight)^2=\left(1+
ho^2+
ight)^2$$

Уравнение границы области D в полярных координатах: $\rho=R$. Найдем пределы интегрирования: $\rho_1=0,\; \rho_2=R,\; \varphi_A=0,\; \varphi_B=2\pi.$ Вычислим

$$\iint\limits_{D} ig(1+x^2+y^2ig)^2 d\sigma = \int\limits_{0}^{2\pi} darphi \int\limits_{0}^{R} (1+
ho^2)^2
ho \, d
ho = \int\limits_{0}^{2\pi} rac{1}{2} rac{(1+
ho^2)^3}{3}igg|_{0}^{R} darphi = rac{\pi}{3} ig[(1+R^2)^3-1ig] \; .$$

◀ Вопросы преподавателю

Перейти на...

8. Теория вероятностей и математическая статистика >