Discrete Math Ch1: Logic and Proofs

Lab 1

1) Which of these sentences are propositions? What are the truth values of those that are propositions?

- a) Cairo is the capital of Egypt. "True"
- b) 2 + 3 = 5. "True"
- c) 5 + 7 = 10. "False"
- d) x + 2 = 11. "Not proposition"
- e) Answer this question. "Not proposition"

Compound Propositions, constructed from logical connectives and other propositions

Conjunction (AND) (∧)

р	q	p∧q
T	Т	T
Т	F	F
F	Т	F
F	F	F

Disjunction (Inclusive or) (V)

р	q	p∨q
Т	T	Т
Т	F	Т
F	T	Т
F	F	F

Exclusive or(XOR) (⊕)

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication (if, then) (\rightarrow)

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Biconditional (if and only if) (\leftrightarrow)

р	q	p⇔q
Т	Т	Т
Т	F	F
F	T	F
F	F	Т

Different Ways of Expressing $p \rightarrow q$

- if p, then q
- if p, q
- q unless $\neg p$
- \circ q if p
- q whenever p
- q follows from p

- p implies q
- p only if q
- q when p
- p is sufficient for q
- q is necessary for p
- a necessary condition for p is q
- a sufficient condition for q is p

Truth table for 1 proposition (2^1=2 rows)

P T F Truth table for 2 propositions (2^2=4 rows)

P	Q
T	T
Т	F
F	Т
F	F

Truth table for 3 propositions (2^3=8 rows)

P	Q	R
Т	Т	Т
T	T	F
T	F	T
T	F	F
F	T	T
F	Т	F
F	F	Т
F	F	F

P	Q	R	S
T	T	Т	Т
Т	Т	Т	F
Т	Т	F	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	Т	F
Т	F	F	Т
Т	F	F	F
F	Т	Т	Т
F	Т	Т	F
F	Т	F	Т
F	Т	F	F
F	F	Т	Т
F	F	Т	F
F	F	F	Т

F

F

Truth table for 4 propositions (2^4=16 rows)

F

F

- 5) What is the **negation(¬)** of each of these propositions?
 - P ¬P

 T F

 T

- a) Mai has an MP3 player.
 - "Mai does not have an MP3 player"
- b) There is no pollution in New Jersey.
 - "There is pollution in New Jersey"
- c) 2 + 1 = 3. "2 + 1 not equal 3"
- d) The summer in Italy is hot and sunny.
 - "The summer in Italy is not hot and sunny"

8) Suppose that

<u>Smartphone A</u> has 256 MB RAM and 32 GB ROM, and the resolution of its camera is 8 MP;

<u>Smartphone B</u> has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 4 MP;

<u>Smartphone C</u> has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 5 MP.

Determine the truth value(T/F) of each of these propositions.

- a) Smartphone B has the most RAM of these three smartphones.
- b) Smartphone C has more ROM or a higher resolution camera than Smartphone B.
- c) Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A.
- d) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.
- e) Smartphone A has more RAM than Smartphone B *if and only if* Smartphone B has more RAM than Smartphone A.

- 13) Let p and q be the propositions
- p: It is below freezing.
- q: It is snowing.

Write these propositions using p and q and logical connectives (including negations).

- a) It is below freezing and snowing. "p \land q"
- b) It is below freezing but not snowing. "p $\land \neg q$ "
- c) It is not below freezing and it is not snowing. " $\neg p \land \neg q$ "
- d) It is either snowing or below freezing. "p V q"
- e) If it is below freezing, it is also snowing. " $p \rightarrow q$ "
- f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing. " $(p \lor q) \land (p \rightarrow \neg q)$ "
- g) That it is below freezing is necessary and sufficient for it to be snowing. " $p \leftrightarrow q$ "

10) Let p and q be the propositions

Assignment

p: I bought a lottery ticket this week.

q: I won the million dollar jackpot.

g) ¬p ∧ ¬q

Express each of these propositions as an English sentence.

a)
$$\neg p$$
 "I didn't buy a lottery ticket this week."
b) $p \lor q$ "I bought a lottery ticket this week OR I won the million dollar jackpot."
c) $p \to q$ "if I bought a lottery ticket this week, then I won the million dollar jackpot."
d) $p \land q$
e) $p \leftrightarrow q$ "I bought a lottery ticket this week if and only if I won the million dollar jackpot"
f) $\neg p \to \neg q$ "if I didn't buy a lottery ticket this week, then I didn't win the million dollar jackpot"

h) $\neg p \ V \ (p \land q)$ "I didn't buy a lottery ticket this week OR I bought a lottery ticket this week AND I won the million dollar jackpot"

18) Determine whether these bi-conditionals are true or false.

- a) 2 + 2 = 4 if and only if 1 + 1 = 2. " $T \leftrightarrow T = T$ "
- b) 1 + 1 = 2 if and only if 2 + 3 = 4. " $T \leftrightarrow F = F$ "
- c) 1 + 1 = 3 if and only if monkeys can fly. "F \leftrightarrow F= T"
- d) 0 > 1 if and only if 2 > 1. "F \leftrightarrow T = F"

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

44

- 21) For each of these sentences, determine whether an inclusive or, or an exclusive.
- a) Coffee or tea comes with dinner. "Exclusive or"
- b) A password must have at least three digits or be at least eight characters long. "Inclusive or"
- c) The prerequisite for the course is a course in number theory or a course in cryptography.
- d) You can pay using U.S. dollars or euros.

Inclusive OR

р	q	pVq
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive OR

р	q	p⊕q
Т	T	F
Т	F	T
F	Т	T
F	F	F

c and d, Assignment

29) State the converse, contrapositive, and inverse of each of these conditional statements.

```
\mathbf{q} \rightarrow \mathbf{p} ,is the converse of p \rightarrow q \neg \mathbf{q} \rightarrow \neg \mathbf{p} ,is the contrapositive of p \rightarrow q \neg \mathbf{p} \rightarrow \neg \mathbf{q} ,is the inverse of p \rightarrow q
```

a) If it snows today, I will ski tomorrow.

```
"<a href="mailto:converse">converse</a>: if I will ski tomorrow, it snows today "
"<a href="mailto:contra-positive">contra-positive</a>: if I won't ski tomorrow, then it doesn't snow today "
"<a href="mailto:inverse">inverse</a>: If it doesn't snow today, then I will not ski tomorrow "
```

b) I come to class whenever there is going to be a quiz.

Precedence of Logical Operators

Operator	Precedence
¬	1
٨	2
٧	3
\rightarrow	4
\leftrightarrow	5

33) Construct a truth table for each of these compound propositions.

E and F
Assignment

a) p ∧ ¬p

р	¬р	р∧¬р
Т	F	F
F	T	F

b) p V ¬p

P	¬р	р∨¬р
Т	F	Т
F	Т	Т

c) $(p \lor \neg q) \rightarrow q$

р	q	¬q	p∨¬q	(p ∨ ¬q) → q
T	Т	F	Т	T
Т	F	Т	Т	F
F	Т	F	F	Т
F	F	Т	Т	F

d) $(p \lor q) \rightarrow (p \land q)$

р	q	p∨q	р∧q	$(p \lor q) \rightarrow (p \land q)$
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т