

NOM PRÉNOM :	\square A \square B \square C \square D \square E \square F \square G \square H \square I		
	□j □k □L □]M	□P □Q □R
	□ѕ □т □∪ □]v □w □x	:
	□1 □2 □3 □]4	
Chaque question comporte exactement une bonne rép	oonse.		
$\boxed{1} \text{Simplifier} : \frac{2}{3} - \frac{1}{2} \times \frac{1}{4} = \dots$			$ 3x^2 - 8x + 16 $ $ 4x^2 - 16x - 16 $
$\Box \frac{5}{12} \qquad \Box -\frac{1}{24} \qquad \Box \frac{1}{2}$			$4x^{2} - 10x - 10$
	$\square 2x^2 + 10x -$	10	
$\Box \frac{1}{24} \qquad \Box \frac{13}{24}$	8 Factoriser $25x^2$	-36.	
	$\Box (25x-6)(25$	(x+6)	
2 Soit x un réel non nul. Simplifier : $\frac{3x}{2}$.		[$(5x-6)^2$
$\overline{x^2}$	9 Posons pour tou	ut nombre	réel x différent de -2
$\Box \frac{3}{2x^3} \qquad \Box \frac{2}{3x^3} \qquad \Box \frac{3x^3}{2}$	$f(x) = \frac{2x}{x+2}$. Alor		
$\Box \frac{3}{2x^3} \qquad \Box \frac{2}{3x^3} \qquad \Box \frac{3x^3}{2}$ $\Box \frac{3}{2x} \qquad \Box \frac{6}{x}$	w 1 =		
$\Box \frac{1}{2x} \qquad \Box \frac{1}{x}$		$\Box \frac{4}{(x+1)^2}$	$\frac{2x}{(x+2)^2} \qquad \Box \frac{2x}{(x+2)^2}$
3 Soit x un réel non nul. Alors $\frac{1}{x} + \frac{x}{2} = \dots$	` ,	`	(x+2)
	$\square \frac{2}{x+2}$	$\sqcup 2$	
$\square \frac{2+x}{2x} \qquad \qquad \square \frac{2+x^2}{2x}$	10 Posons pour	tout nomb	ore réel x strictement
$\Box \frac{1}{x} + \frac{1}{2} \qquad \qquad \Box \frac{2+x}{x}$	positif, $f(x) = \ln(2$		
$\frac{1}{x}$		\Box 1	_ 1
$\boxed{4}$ Soient x, y et p des nombres réels avec $x > 0$ et	$\square 2e^x$	$\square \ \frac{1}{2x}$	$\Box \frac{1}{x}$
$y > 0$. $\left(\frac{x}{y}\right)^p = \dots$	$\Box e^{2x}$	$\square \frac{2}{\pi}$	
(9)		x	
			Alors, $\ln(xe^y) = \dots$
$\square \frac{x^p}{y^{\frac{1}{p}}}$ $\square \frac{x^p}{y^{-p}}$	$\frac{\Box}{\Box} \ln(y) + x$		$\bigsqcup xy$
ϑ	$\Box e^{xy}$	$\square y^x$	
5 Soient x et y non nuls. Simplifier $\frac{xy^2}{xy^3 + y^4}$.	12 $e^{2\ln(3)} = \dots$		
$xy^3 + y^4$	 5	□ 9	$\Box \frac{3}{-}$
$\Box \frac{xy^{\frac{3}{3}}}{x+x} \qquad \Box \frac{1}{x^2} \qquad \Box \frac{1}{x}$	<u> </u>	_	$\Box \frac{3}{2}$ $\Box \frac{2}{3}$
$\Box \frac{xy^{\frac{2}{3}}}{x+y} \qquad \Box \frac{1}{y^2} \qquad \Box \frac{1}{y}$ $\Box \frac{x}{(x+y)y} \qquad \Box \frac{1+x}{y}$	\Box 6	\square 4	$\Box \frac{2}{3}$
$\Box {(x+y)y} \qquad \Box {y}$	$\boxed{13}$ Soient x et y	deux réels	Alors, $e^{xy} = \dots$
			$\Box e^x + e^y$
	$\Box \frac{\mathrm{e}^x}{\mathrm{e}^y}$	ſ	⊒ Aucune des ré-
Cocher ci-dessous le signe de p et sa valeur.	$\Box e^x e^y$	_	ponses précédentes
$\square + $ $\square - $ $\square 0$ $\square 1$ $\square 2$ $\square 3$ $\square 4$ $\square 5$ $\square 6$ $\square 7$ $\square 8$ $\square 9$	$\Box \frac{\mathrm{e}^y}{\mathrm{e}^x}$		

14 Simplifier $\sqrt{18}$.

 $\boxed{7}$ Développer $(2x-4)^2$.

$ \Box 3 + \sqrt{2} \qquad \Box \sqrt{2} + \sqrt{3} \qquad \Box 2 + \sqrt{3} $ $ \Box 2\sqrt{3} \qquad \Box 3\sqrt{2} $	□ strictement croissante sur]1, $+\infty$ [□ décroissante sur]1, $+\infty$ [
15 Soient x et y deux réels. Alors, $\sqrt{x^2 + y^2} = \dots$	□ croissante sur $[1, +\infty[$ □ strictement décroissante sur $]0, +\infty[$
	23 Soit $f: x \mapsto e^{1+x}$. Alors, $f(3x+1) = \dots$
Quel est l'ensemble des solutions réelles de $x^2 + 2x - 3 \ge 0$? □ $[-3, 1]$ □ $[-1, 3]$ □ $] - \infty, -1] \cup [3, +\infty[$ □ $[0, 1]$ □ $] - \infty, -3] \cup [1, +\infty[$	Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, on se donne les points $A(2;0)$ et $B(0;b)$ où b est un réel non nul. Le point d'intersection de la droite (AB) avec la droite d'équation $y=3$ a pour coordonnées : $\square\left(2+\frac{6}{b};3\right)\qquad \square\left(-\frac{2}{b};3\right)$ $\square\left(1-\frac{3}{b};3\right)\qquad \square\left(1+\frac{3}{b};3\right)$
Quel est l'ensemble des solutions réelles de $\frac{(x+2)x}{x-1} \geqslant 0?$	$\square \left(2 - \frac{6}{b}; 3\right) \qquad \square \text{ Aucune des réponses précédentes}$
$ \Box [-2,0] \cup]1, +\infty[$ $ \Box]-2,0[$ $ \Box]-\infty, -2[\cup]1, +\infty[$ $ \Box]-\infty, -2[\cup]-2, 0[\cup]0, 1[\cup]1, +\infty[$	25 Dans le plan muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j})$, la droite Δ d'équation $2x + y + 3 = 0$ coupe l'axe des abscisses au point A d'abscisse : $\square -3/2 \square 3 \square -3 \square 0$
	26 Soit $0 < x < 1$. Parmi les 4 nombres réels suivants, cocher celui qui est le plus grand :
$ \begin{array}{cccc} & & & & & & & & \\ \hline 19 & \sin\left(\frac{3\pi}{4}\right) = \dots & & & & \\ & & & & & \\ & & & & & \\ & & & & $	Simplifier $\frac{xy+y^2}{x^4+2x^3y+x^2y^2}$ où $x \neq 0$ et $y \neq 0$. $\square \frac{\sqrt{x+y} y}{x^2} \qquad \square \frac{y}{x^2(x+y)} \qquad \square \frac{y}{x^2}$
$\Box \frac{1}{2} \qquad \Box \frac{\sqrt{2}}{2}$	$ \begin{array}{ccc} & x^2 & x^2(x+y) & x^2 \\ & \frac{1+x^3}{x^3} & \frac{(x+y)y}{x} \end{array} $
20 On considère un nombre réel $x \in \left[\frac{5\pi}{2}, 3\pi\right]$ tel que $\cos(x) = -\frac{4}{5}$. Que vaut $\sin(x)$? $\square \frac{9}{25} \qquad \square \frac{\sqrt{17}}{5} \qquad \square -\frac{3}{5} \qquad \square \frac{3}{5}$	28 Sur une échelle de 1 à 5, 1 signifiant "très facile" et 5 signifiant "très difficile", comment évalueriezvous la difficulté de ce test? 1 2 3 4 5
21 Soit $0 < x < \frac{\pi}{4}$. Encadrer $\frac{1}{\cos^2(x)}$ par deux entiers consécutifs : $n < \frac{1}{\cos^2(x)} < n+1$ où $n = \dots$	
\square -1 \square 2 \square 0 \square 1	
22 La fonction $f: x \mapsto 2x - x^2$ est	

$\Box \frac{3}{2x}$	$\Box \frac{3x}{2}$	$\Box \frac{3x}{4}$
$\Box \frac{3}{2x^2}$	$\Box \frac{3x}{2}$ $\Box \frac{3}{x^3}$	
2 Soit x un rée	el non nul. Alor	$s \frac{1}{x} + \frac{x}{2} = \dots$
		$\frac{2+x}{x}$ $\frac{2+x}{2x}$
		$\frac{2+x}{2x}$
$\boxed{3}$ Simplifier : $\frac{2}{5}$	$\frac{4}{3} - \frac{1}{2} \times \frac{1}{4} = \dots$	

 $\Box \frac{7}{6}$

 $\Box p + q \qquad \Box p \times q \qquad \Box \frac{p}{q}$ $\Box p - q \qquad \Box p^{q}$ $\boxed{5} \text{ Soient } x \text{ et } y \text{ non nuls. Simplifier } \frac{x^{2}y^{2}}{x^{2}y^{3} + xy^{4}}.$ $\Box \frac{1}{y^{2}} \qquad \Box \frac{x}{(x+y)y} \qquad \Box \frac{1}{y}$ $\Box \frac{y^{2} + 1}{y^{2}} \qquad \Box \frac{xy^{\frac{2}{3}}}{x+y}$

4 Soient x, p et q trois nombres réels avec x > 0.

 $y^{2} \qquad x+y$ $\boxed{\textbf{6}} \text{ Si } x \neq 0, \text{ alors } \frac{x^{-4} \times x^{10} \times x^{-2}}{x^{-8} \times \sqrt{x^{6}}} = x^{p} \text{ où } p = \dots$ $Cocher \ ci\text{-}dessous \ le \ signe \ de \ p \ et \ sa \ valeur.}$ $\square + \mid$

7 Développer $(3x-2)^2$.

Alors $(x^p)^q = x^r$ où $r = \dots$

8 Factoriser $25x^2 - 36$.

9 Posons pour tout nombre réel x, $f(x) = e^{-x}$. Alors $f'(x) = \dots$

 $\Box -\ln(x) \qquad \Box e^{-x} \qquad \Box \frac{1}{x}$ $\Box -e^{x} \qquad \Box -e^{-x}$

10 Posons pour tout nombre réel x différent de -2, $f(x) = \frac{x+1}{x+2}$. Alors $f'(x) = \dots$

 $\Box 1 \qquad \Box \frac{1}{x+2} \qquad \Box \frac{2x+3}{(x+2)^2}$ $\Box \frac{1}{(x+2)^2} \qquad \Box \frac{x+1}{(x+2)^2}$

11 Soient x > 0 et y > 0. Alors, $\ln(xe^y) = \dots$

12 Soient x > 0 et y > 0. Alors, $\ln(x + y) = \dots$

 $\square \ 32 \qquad \qquad \square \ \frac{2}{5} \qquad \qquad \square \ \frac{5}{2}$

14 Soient x et y deux réels. Alors, $\sqrt{x^2 + y^2} = \dots$

	22 Soit $f: x \mapsto e^{x-2}$. Alors, $f(3x-1) = \dots$
$\begin{array}{ c c c }\hline \textbf{15} & \text{Simplifier } \sqrt{18}.\\ \hline & 3\sqrt{2} & $	[23] La fonction $f: x \mapsto 2x - x^2$ est □ croissante sur $[1, +\infty[$ □ strictement croissante sur $]1, +\infty[$ □ décroissante sur $]1, +\infty[$ □ strictement décroissante sur $]0, +\infty[$ [24] Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, on se donne les points $A(a; 0)$ et $B(0; 2)$ où a est un réel non nul. Le point d'intersection de la droite (AB) avec la droite d'équation $x = 3$ a pour coordonnées : □ $\left(3; 1 + \frac{3}{a}\right)$ □ $\left(3; 2 - \frac{6}{a}\right)$ □ $\left(3; -\frac{2}{a}\right)$ □ $\left(3; 2 + \frac{6}{a}\right)$
17 Quel est l'ensemble des solutions réelles de $x^2 + 3x - 4 \le 0$?	$\square\left(3;1-\frac{3}{a}\right) \qquad \square \text{ Aucune des réponses précédentes}$ $\boxed{\textbf{25}} \text{ Dans le plan muni d'un repère } (O;\overrightarrow{i},\overrightarrow{j}), \text{ la droite } \Delta \text{ d'équation } x+2y+3=0 \text{ coupe l'axe des ordonnées au point } A \text{ d'ordonnée}:$ $\square 3 \qquad \square -3 \qquad \square -3/2 \qquad \square \text{ 0}$ $\boxed{\textbf{26}} \text{ Soit } 0 < x < 1. \text{ Parmi les 4 nombres réels}$
que $\cos(x) = -\frac{4}{5}$. Que vaut $\sin(x)$? $\square \frac{9}{25} \qquad \square \frac{3}{5} \qquad \square \frac{\sqrt{17}}{5} \qquad \square -\frac{3}{5}$	suivants, cocher celui qui est le plus grand :
19 $\cos\left(\frac{2\pi}{3}\right) = \dots$ $\Box -\frac{\sqrt{3}}{2} \qquad \Box \qquad 0 \qquad \Box \frac{\sqrt{3}}{2}$ $\Box -\frac{1}{2} \qquad \Box \frac{1}{2}$ 20 Soit x un nombre réel. $\sin\left(x + \frac{\pi}{2}\right) = \dots$ $\Box \cos(x) \qquad \Box - \cos(x)$	Simplifier $\frac{x^2y^3}{x^5 + 2x^4y + x^3y^2}$ où $x \neq 0$ et $y \neq 0$. $\square \frac{y^3}{x^3} \qquad \square \frac{y}{x^2} \qquad \square \frac{y^3}{(x+y)^2x}$ $\square \frac{x^{\frac{2}{3}}y^3}{(x+y)^2} \qquad \square \frac{1}{x^3}$ 28 Sur une échelle de 1 à 5, 1 signifiant "très facile" et 5 signifiant "très difficile", comment évalueriez-
	vous la difficulté de ce test? □1 □2 □3 □4 □5