Intrinsic Plagiarism Detection Using Character *n*-gram Profiles

Efstathios Stamatatos

Talk Layout

- Introduction
- The style change function
- Detecting plagiarism
- Evaluation
- Conclusions

Intrinsic Plagiarism Detection

- Ambitious and demanding task
- It can be used:
 - When no appropriate reference corpus is available
 - When the reference corpus is too large (web)
- Closely related to authorship verification
- Detection of irregularities of stylistic nature
 - However, not all stylistic irregularities are caused by plagiarism

Representing Writing Style

- Lexical features
- Character features
- Syntactic features
- Semantic features
- Application-specific features

Character *n*-grams

- Can be easily measured in any text
- Language-independent
- Domain-independent
- Require no text-preprocessing
- Very effective in authorship attribution
- Robust to noise
 - Obfuscation in plagiarism can be considered as noise insertion

The Proposed Approach

- The variation of document style is represented by the style change function
 - Using a sliding window over the text-length
- Writing style is represented by character n-gram profiles
 - The set of different character *n*-grams encountered in the text and their normalized frequencies
- A set of heuristic rules:
 - Decide whether or not the document is plagiarism-free
 - Detect the plagiarized section boundaries
 - Detect irrelevant stylistic inconsistencies

Representing Stylistic Changes

Distance Estimation

- The sliding window text is shorter (or much shorter) than the whole document
- An accurate and robust function for imbalanced profiles is proposed by (Stamatatos, 2007):

$$d_1(A, B) = \sum_{g \in P(A)} \left(\frac{2(f_A(g) - f_B(g))}{f_A(g) + f_B(g)} \right)^2$$

- This is not a symmetric function
 - dissimilarity rather than distance measure

Style Change Function

• d_1 is normalized over the profile length:

$$nd_{1}(A,B) = \frac{\sum_{g \in P(A)} \left(\frac{2(f_{A}(g) - f_{B}(g))}{f_{A}(g) + f_{B}(g)} \right)^{2}}{4|P(A)|}$$

Then, the style change function sc of a document D is:

$$sc(i,D)=nd_1(w_i, D), i=1...|w|$$

- |w| depends on the text-length: $|w| = \left| 1 + \frac{x l}{s} \right|$
 - − *x*: text-length
 - − *l*: sliding window length
 - s: sliding window step

An Example

IPAT-DC

A Plagiarism-free Example

IPAT-DC document #17

Detecting Plagiarism on the Document Level

- This is crucial to keep precision high
- Two options:
 - Pre-processing
 - Post-processing
- Plagiarism-free criterion: $S < t_1$

where

S: the standard deviation of the style change function t_1 : a predefined threshold (0.02)

- Deficiencies:
 - Very short documents tend to have low sc values
 - Very long documents may contain stylistically inconsistent sections (high variance of sc)

A False Negative Example

Identifying Plagiarized Passages

- It is assumed that at least half of the text is not plagiarized
 - The average sc value would correspond to the style of the alleged author
- In general, it is not known the amount of plagiarized text
 - All sc values greater than M+S are removed
 - M' and S' are then calculated
- Plagiarized passage criterion: sc(i',D) > M' + a*S'
 - a determines the sensitivity of the method (set to 2.0)

An Example

IPAT-DC

Another Example

IPAT-DC Document #22

Detecting Irrelevant Style Changes

- Not all stylistic changes are caused by plagiarism
 - Text formatting affects style
 - Genre affects style
 - **—** ...
- To reduce the formatting factor:
 - All text is transformed to lowercase
 - Every character n-gram that contains no letter characters (a-z) is removed from the profile
 - The sliding window parameters operate on letter characters
 - each window has the same number of letter characters (window length l) but different number of total characters (real window length l')

Detecting Irrelevant Style Changes

- To reduce the multiple genre factor:
 - Special Section Criterion: $l' < t_2$ where
 - -l': the real window length
 - $-t_2$: a predefined threshold (1,500)
 - It combines with the plagiarized passage criterion
- Weaknesses
 - One can insert multiple non letter characters to obfuscate a plagiarized section
 - All special sections (table-of-contents, index) are considered plagiarism-free

An Example

IPAT-DC Document #46

Summary of Parameter Settings

Description	Symbol	Value
Character <i>n</i> -gram length	n	3
Sliding window length Sliding window step	l s	1,000 200
Threshold of plagiarism-free criterion	t_I	0.02
Real window length threshold	t_2	1,500
Sensitivity of plagiarism detection	a	2

• Empirically derived, not optimized

Evaluation on the Document Level

Guess	Actual	
	Plagiarism-free	Plagiarized
Plagiarism-free	1102	545 (22%)
Plagiarized	443	1001 (78%)

• Results on IPAT-DC

False Negatives

- The majority of false negatives are relatively short documents (<30K chars)
- The shorter a document, the more likely to false negative

Evaluation on the Passage Level

Corpus	IPAT-DC	IPAT-CC
Recall	0.4552	0.4607
Precision	0.2183	0.2321
F-score	0.2876	0.3086
Granularity	1.22	1.25
Overall score	0.2358	0.2462

Performance remains stable for both corpora

Recall and Precision vs. Text-length

- Recall is affected by decreasing text-length
 - A result of false negative distribution

Conclusions

- A fully-automated approach
 - Easy to follow (no text preprocessing)
 - Able to detect plagiarism-free documents
 - Able to detect plagiarized passage boundaries
- Nearly half of plagiarized passages are detected while precision remains low
 - An increased a value can improve precision (and harm recall)
- Window length determines the shortest plagiarized passage that can be detected

Future Work

- Definition of more sophisticated criteria
- Parameter settings can be optimized by machine learning algorithms
- Different schemes to acquire style change function
 - Comparison of text window with the window complement
 - Comparison of text window with all the other text windows