CHAPTER TWO

The Solution of Nonlinear Equations f(x) = o

Objectives

- What is Numerical Analysis.
- Bracketing methods for finding a root
- Bisection method.

Introduction

- **Numerical analysis** is the study of algorithms that use numerical approximation for the problems of mathematical analysis.
- The overall *goal* of the field of numerical analysis is the design and analysis of techniques to give approximate but accurate solutions to hard problems

The solution of nonlinear equations f(x)=0

- Numerical methods to find numerical approximation for the root of an equation.
- Iterative techniques are used.
- Iteration: process repeated until an answer is achieved.
- Need starting value and a rule or function for computing successive terms.

Bracketing methods for finding a root

Root of an equation or zero of a function:

• Assume that f(x) is a continuous function \Rightarrow any number \mathbf{r} for which $f(r) = \mathbf{o}$ is called a root of a function(equation) $f(x) = \mathbf{o}$.

Example

- The equation $2x^2 + 5x 3 = 0$ has two roots.
- Using quadratic formula

$$\bullet \ \chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Then,
$$x_1 = \frac{-5 + \sqrt{25 - 4 \times 2 \times -3}}{2 \times 2} = \frac{2}{4}$$
 , $x_1 = \frac{1}{2}$

• And,
$$x_2 = \frac{-5 - \sqrt{25 - 4 \times 2 \times -3}}{2 \times 2} = \frac{-12}{4}$$
 , $x_2 = -3$

$$\rightarrow 2x^2 + 5x - 3 = (2x - 1)(x + 3)$$

The Bisection Method of Bolzano

The Bisection Method of Bolzano

• Step 1: Start with initial interval [a, b], where f(a) and f(b) have opposite signs.

$$\rightarrow f(a) \times f(b) < 0$$

- Note : y = f(x) is a continuous function.
 - →The graph will be unbroken.
 - \rightarrow The graph will cross the x-axis at a root x = r
- Step 2: Choose a midpoint to halve the interval

$$c = \frac{a+b}{2}$$

The Bisection Method of Bolzano

- Step 3: analyze the possibilities:
- 1. f(a) and f(c) have opposite signs: \rightarrow root \underline{r} lies in $[a, c] \rightarrow$ set b = c and return to step 2
- 2. f(c) and f(b) have opposite signs: \rightarrow root \underline{r} lies in $[c,b] \rightarrow$ set a=c and return to step 2
- 3. f(c) = 0 $\Rightarrow \operatorname{root} r = c$

Example

- The function $f(x) = x \times sin(x) 1$, is continuous at [0,2].
- Then: $a_0 = 0$, $b_0 = 2$

•
$$f(a_0) = f(0) = -1$$
, $f(b_0) = f(2) = 0.818595$ (opposite signs)

•
$$f(c_0) = f(1) = -0.158529$$
 (Note: x is in radians)

Numerical Analysis - prepared by: Eng Shatha Al-Hasan

Example - continued

• $f(c_0) f(b_0) < 0$ \rightarrow then, root r lies in the interval $[c_0, b_0]$

Step 3

- Then, $[a_1, b_1] = [c_0, b_0] = [1,2]$
- Now, **start new iteration**:
- $f(a_1) = f(1) = -0.158529$, $f(b_1) = f(2) = 0.818595$ (opposite signs)
- $c_1 = \frac{a_1 + b_1}{2} = \frac{1+2}{2} = 1.5$
- $f(c_1) = f(1.5) = 0.496242$
- $f(a_1) f(c_1) < 0 \rightarrow$ then, root r lies in the interval $[a_1, c_1]$
- Then, $[a_2, b_2] = [a_1, c_1] = [1,1.5]$

Example - continued

• The following table show the calculations for 8 iterations.

Table 2.1	Bisection	Method	Solution	of $x \sin(x)$) —	l = 0	0
-----------	-----------	--------	----------	----------------	-----	-------	---

k	Left end point, a_k	Midpoint, ck	Right end point, b_k	Function value $f(c_k)$
7	0	1.	2.	-0.158529
	1.0	1.5	2.0	0.496242
2	1.00	1.25	1.50	0.186231
3	1,000	1.125	1.250	0.015051
4	1.0000	1.0625	1.1250	-0.071827
5	1.06250	1.09375	1.12500	-0.028362
6	1.093750	1.109375	1.125000	-0.006643
7	1.1093750	1.1171875	1.1250000	0.004208
8	1.10937500	1.11328125	1.11718750	-0.001216
: '	<u>:</u>	:	<u>:</u>	:

ullet After many iterations the root will converge to $oldsymbol{r}pprox 1.114157141$

Error bound $|r - c_n|$ - Bisection Method

Figure 2.7 The root r and midpoint c_n of $[a_n, b_n]$ for the bisection method.

[1]

$$\bullet |r - c_n| \le \frac{b_n - a_n}{2}$$

- Then, $error\ bound = \delta = |r c_n| \le \frac{b_0 a_0}{2^{n+1}}$
- δ delta \rightarrow tolerance value

Numerical Analysis - prepared by: Eng Shatha Al-Hasan

Error bound $|r - c_n|$ - Bisection Method

• The number n of repeated bisections needed to guarantee that the n^{th} midpoint c_n is an approximation to a root that has an error less than the pre assigned value δ is:

$$n = int\left(\frac{\ln(b_0 - a_0) - \ln(\delta)}{\ln(2)}\right)$$

Termination Criterion

- When to terminate the iterations.
- The iterations can be terminated when the following condition occurs during any iteration.

$$(b-a) < \delta$$

ullet δ sufficiently small.

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

Center for E-Learning and Open Educational Resource

مركب التعلم الإلكتروني ومصادر التعليم المفتوحة