$$x' = 2x$$
$$y' = y/2$$

$$x' = x/2$$
$$y' = 2y$$

$$x' = x + y$$
$$y' = x - y$$

2.2.2 Modified Predator-Prey System

Let us recall the modified predator-prey system that we developed in the last section. That is, we will assume that the prey in our model has logistic growth,

$$\begin{split} \frac{dR}{dt} &= aR(1-R/N) - bRF, \\ \frac{dF}{dt} &= -cF + dRF, \end{split}$$

where N is the carrying capacity. In order to investigate the geometric properties of our system, we will rewrite our system in vector form. For each value of t, we will use $\mathbf{x}(t)$ to denote the vector-valued function

$$\mathbf{x}(t) = \begin{pmatrix} R(t) \\ F(t) \end{pmatrix}.$$

This vector-valued function, $\mathbf{x}(t)$ corresponds to our solution curve (R(t), F(t)) in the RF-plane. Now we can write our predator-prey model as a single vector equation,

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} R'(t) \\ F'(t) \end{pmatrix} = \begin{pmatrix} aR(1-R/N) - bRF, \\ -cF + dRF \end{pmatrix}.$$

We can view the right side of the equation as a **vector field**. The specific example that we examined was

$$\frac{dR}{dt} = 2R\left(1 - \frac{R}{10}\right) - RF,$$
$$\frac{dF}{dt} = -5F + RF.$$

The vector field form of this system is

$$\frac{d\mathbf{x}}{dt} = \begin{pmatrix} 2R(1 - R/10) - RF \\ -5F + RF \end{pmatrix}.$$

We can associate a vector in the RF-plane for each value of R and F. For example, if we let (R, F) = (10, 10), we have (R', F') = (-100, 50). At this particular point, the population of rabbits is falling rapidly while the number of foxes is climbing very quickly, We can represent this vector in the phase plane