

Eletrofisiologia cardíaca

Biomorfofuncional I

Módulo I – Sistemas Cardiovascular e Respiratório

Profa. Dra. Juliana Vasconcelos

- 1. Caracterize a célula muscular cardíaca contrátil.
- Cite as miofibrilas participantes da contração muscular cardíaca.
- 3. Quais características do muscúlo cardíaco quanto a sua capacidade contrátil?
- 4. Além das células miocárdicas contráteis, exite outro tipo celular muscular cardíaco? Qual?
- 5. Cite a organização do sistema de condução elétrica no coração? Onde essa força é gerada?
- Diferencie o potencial de ação da célula contrátil e da célula autoexcitável no coração.
- 7. O que representa o traçado do ECG? Explique cada segmento.

Objetivos

- Diferenciar potencial de membrana e potencial de ação;
- Relacionar a geração de um potencial de ação em um cardiomiócito com a abertura/fechamento de canais iônicos;
- Analisar a importância da mudança de permeabilidade ao sódio e cálcio para o acoplamento excitaçãocontração;
- Diferenciar o potencial de ação registrado por uma fibra cardíaca e daquele registrado em uma célula do marca-passo natural cardíaco;
- Analisar o papel do sistema nervoso autônomo na modulação da atividade cardíaca.

O tecido muscular

(a) As fibras do músculo esquelético são células grandes e multinucleadas que apresentam um aspecto listrado ou estriado na microscopia.

(b) As fibras do músculo cardíaco também são estriadas, mas são menores, ramificadas e mononucleadas. Essas células estão unidas em série por junções, chamadas de discos intercalares.

(c) As fibras do músculo liso são pequenas e não apresentam estriações.

Ultraestrutura do músculo estriado

- Presença de miofilamentos
- Organização em sarcômeros
- Dependência de cálcio e ATP

O músculo cardíaco

- Excitabilidade
- Automaticidade
- Condutividade
- Refratariedade

Eletrofisiologia cardíaca

Funcionamento cardíaco

- Rituais antigos Maias Sacrifícios humanos
- Sinal para contração miogênico
- O sistema intrínseco de condução coordena os ritmos básicos do batimento cardíaco
- Ausência de placa motora

Miocárdio

Células miocárdicas autoexcitáveis ou marcapasso

- Nodos ou nó sinoatrial (nó SA)
- Nodo atrioventricular (nó AV)
- Feixe de His ou fascículo atrioventricular
- Fibras de Purkinje
- Células miocárdicas contráteis
 - Músculo estriado cardíaco

(b) Os discos intercalares contêm desmossomos que transferem força de célula para célula e as junções comunicantes que permitem que os sinais elétricos passem rapidamente de célula a célula.

Células contráteis

Potenciais de ação (PA)

- Rápida sequência de mudanças elétricas
- Lei do tudo ou nada
- Presença de canais de cálcio tipo L

Fase	Canais de Membrana		
0	Canais de Na+ abertos		
0	Canais de Na ⁺ fechados		
2	Canais de Ca ²⁺ abertos; canais de K ⁺		
	rápidos fechados		
3	Canais de Ca ²⁺ fechados; canais de K ⁺		
	lentos abertos		
4	Potencial de repouso		

Células marca-passo

- A permeabilidade intrínseca das fibras do nodo sinusal aos íons sódio que causa sua autoexcitação
- Potencial de membrana instável potencial marca-passo
- Presença de canais If permeáveis ao Na e K

Despolarização - influxo de Ca+

Despolarização - rápido influxo de Na+

Depolarizations of autorhythmic cells rapidly spread to adjacent contractile cells through gap junctions.

	Músculo esquelético	Miocárdio contrátil	Miocárdio autoexcitável
Potencial de membrana	Estável a – 70 mV	Estável a – 90 mV	Potencial marca-passo instável; normalmente começa em - 60 mV
Eventos que levam ao limiar do potencial	Entrada resultante de Na¹ através dos canais dependentes de ACh	A despolarização entra via junções comunicantes	Entrada resultante de Na ⁺ através dos canais I _r ; reforçada pela entrada de Ca ²⁺
Fase de ascensão do potencial de ação	Entrada de Na ⁺	Entrada de Na ⁺	Entrada de Ca ²⁺
Fase de repolarização	Rápida; causada pelo efluxo de K ⁺	Prolongamento do platô, causado pela entrada de Ca ²⁺ ; fase rápida, causada pelo efluxo de K ⁺	Rápida; causada pelo efluxo de K
Hiperpolarização	Devido ao efluxo excessivo de K ⁺ durante a alta permeabilidade ao K ⁺ ; quando os canais de K ⁺ se fecham, o vazamento de K ⁺ e Na ⁺ restaura o potencial para o estado de repouso	Nenhuma; o potencial em repouso é de – 90 mV, o potencial de equilíbrio do K ⁺	Normalmente nenhuma; quando a repolarização atinge — 60 mV, os canais I _r se abrem novamente; a ACh pode hiperpolarizar a célula
Duração do potencial de ação	Curta: 1 a 2 ms	Prolongada: + 200 ms	Variável; geralmente + 150 ms
Período refratário	Geralmente curto	Longo, uma vez a restauração dos portões dos canais de Na ⁺ persiste até o fim do potencial de ação	Não é significante na função normal

Acoplamento excitação-contração

O Eletrocardiograma

Atividade elétrica no coração

*Em alguns casos, a onda Q não é vista no ECG. Por esse motivo, os segmentos e intervalos são nomeados usando-se a onda R, porêm inicam com a primeira onda do complex QRS.

Arritmmias cardíacas

 BAV é a interrupção parcial ou completa da transmissão do impulso dos átrios aos ventrículos

Modulação da atividade cardíaca

O controle tônico é parassimpático: bloqueio do SNA para o coração, a frequência de despolarização espontânea do nó SA é de 90 a 100 vezes por minuto

Referências recomendadas

•SILVERTHORN DU. Fisiologia humana: Uma abordagem integrada. 7º ed.,

Porto Alegre: Ed. Artmed, 2017.

- •COOPER, G. M.; HAUSMAN, R.E. 2005. **A Célula: Uma Abordagem Molecular.** 3ªed., Porto Alegre: Artmed.
- •BERNE, RM, LEVI, MN, KOEPPEN, BM, STANTON, BA **Fisiologia**. Elservier Editora, 2004.
- •MELLO-AIRES, M. Fisiologia. 3ª edição. Rio de Janeiro: Guanabara Koogan, 2007.
- •JUNQUEIRA, L. C. U; CARNEIRO, J. Histologia básica texto e atlas. 10ª edição. Rio de Janeiro: Guanabara Koogan, 2004.