Probleme

- 1) St re retolve in C eurofiile:
 - a) $x^3 3x + 1 = 0$
 - $x^4 2x^2 + 8x 3 = 0$
 - c) Coloulogi as (211) + as (411) + as (811) mi

 $\cos\left(\frac{2\pi}{9}\right) \cdot \cos\left(\frac{4\pi}{9}\right) \cdot \cos\left(\frac{8\pi}{9}\right)$

2) (de Morgon) Fie X o melfine ni (Ai) i E I o formilie

de submelfini Pa X. Atuai:

$$\frac{1}{\bigcup A_{i}} = \bigcap \overline{A_{i}} \stackrel{\text{if}}{=} \overline{A_{i}} = \bigcup \overline{A_{i}}$$

$$ieI$$

$$ieI$$

unde pentry y = x, y = Cx(Y) = X \ Y.

3) Fie f: A -> B o functive ni (Ai) & B(A)

(Bi)j∈d ⊆ P(B). Atmai:

- a) $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$
- b) f(nAi) = nf(Ai). beca

of ute injective are loc epolitate.

- c) Dati un exemple in care induzione lo b)
 este strictor!
- a) $f'(\bigcup_{j \in J} B_i) = \bigcup_{j \in J} f'(B_j)$

$$|e\rangle = \vec{f}'(\bigcap_{j \in J} B_{j}) = \bigcap_{j \in J} \vec{f}'(B_{j}).$$

4) Fix
$$f: A \rightarrow B$$
 of function m
 $f: \mathcal{F}(A) \rightarrow \mathcal{F}(B)$, $f(X) := f(X)$
 $f^*: \mathcal{F}(B) \rightarrow \mathcal{F}(A)$, $f^*(Y) := f'(Y)$.

c)
$$f = \frac{2i\eta^2 c X V U}{3}$$
; $f = \frac{1}{3}$ $f = \frac{1}{3}$

e)
$$f(X_1 \cap X_2) = f(X_1) \cap f(X_2), (\forall X_1, X_2 \subseteq A.$$

e) $f(X_1 \cap X_2) = f(X_1) \cap f(X_2), (\forall X_1, X_2 \subseteq A.$

e)
$$f(X_1/X_2)$$

f) $f(A \setminus X) \subseteq B - f(X)$, $(Y) X \subseteq A$.

5) In ipoterele of an notofile de la Ex 4) oralati de 5) In ipoterele of an notofile:

a)
$$f = \frac{\text{mirror}}{8}$$
 = 100 s = 1

e)
$$B \setminus f(x) = f(A \setminus x), (x) \times A$$
.

a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(n) = \frac{5}{3+x^2}$

b)
$$f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$
, $f(m, n) = m^2 - n^2$

Pentru fieure den fuchii colculati. f'(0).

c)
$$g: \mathbb{R} \setminus \left\{\frac{3}{5}\right\} \longrightarrow \mathbb{R} \setminus \left\{\frac{2}{5}\right\}$$

$$g(x) = \frac{2x-1}{5x-1} \quad \text{Daw.} \quad g = \text{hijection}$$

calculaj: inversa ai g.

inversa:
a)
$$f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$$
, $f(x,y) = (2x+1, 2y+x^2, 2y+x^2)$

$$f: N \to N, f(m) = \{m-5, m \neq 6\}$$

a)
$$f: M \to M$$
, $f(n) = 3n+2$
b) $f: M \to M$, $f(n) = 3n+2$

od)
$$f: M \rightarrow M$$
, $f(n) = 3n+2$
e) $f: M \rightarrow Z$, $f(n) = \begin{cases} \frac{n}{2}, \text{ dow } n = por \\ -\frac{n}{2}, \text{ dow } n = impar \end{cases}$

8) Arrively as fungicle de mei jos munt hijechie:

a)
$$f: \mathbb{Z} \rightarrow M$$
, $f(n) := \begin{cases} 2n, & n \ge 0 \\ -2n+1, & n < 0 \end{cases}$

b) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $g(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $g(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $g(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $g(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $g(m_1 n) := 2^m (2n+1) - 1$

c) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f(m_1 n) := 2^m (2n+1) - 1$

g) $f(m$

11) (principiul includerii ni exclusterii) Fie A, ... 3 An mulfinni finite. Atmai: $|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{i=1}^{n} |A_i| - \sum_{i=1}^{n} |A_i \cap A_j|^{-1}$ + + (-1) + | A, n A2 n... An |. 12) Fie m, ne M*, A = {1,2,...mb, B = {1,2...nb. a) numbrul tuturor funchiilor f: A -> B; b) -11 1+-1+ --- 11 injective f: A→B c) -11 +1- 11- 5. E.A.>B.

d) -11--: 11
bijective f: A→B.

3) Fie A o multime. S.E.A: 13) Fix A o multime. S. E. A: a) A este finite; b) Orice functive injective f: A → A ente brijection; c) Orice functie mijectiva g: A -> A ente bijectiva; 14) e) Fie A o multime numsrehils ni i: B -> A o functie injectivi. Atmai Beite finits nou numsvohilt. b) Fix A = mulfime numrohils si p: A -> B o functie surjectivit. Atmai B ente finits. does on the Ken is s. ou rumsvahild. is as in the returning

at al las y. Down purche company

- 15)* Tie (Xn) ners o formilie nummerile de multimi numbrobile. Atunci UXn este o multime rumordild.
- 16)* Arstofi au (3) f: IR -) IR o functie avis. 1f(m)-f(y)/>1, (+)x+y ∈ R.
- 17) Construité o functie f: () C injective ni nemrjectiva (resp. rurjectiva ni neinjectiva).
- 18) Care din urmstrouble reletir hinere p mut reflexive, nimetrice, entisimetrice rou transitive:
 - ngm (=) (3) KEN, K + 0 a.1. M= Kn
 - npm det n2+n=m2+m, (41 m, n e Z. b) Z,
 - c) IR,
 - npm (=) n2+m2 = 2, (4) n, m & Z d) Z,

Diagrama Hasse a unei mulfini partiel ordonate (X, E). Fie (X, E) o muetine purpled ordenator frimital. Elementele levi X mont notate cu puncte · ni dans x, y ex cu x ≤ y i x ≠ y otunci punctul

coresponantor lui se il roien "mai jos" decet cel el lui y. Dons puncle compuntatore

19) a) Scriek déagrame House rentre (P({a,b,c}), E ni a multimii $(X := \{ n \in \mathbb{N}^* \mid n \mid 30\}, 1)$ en relefie de ordine de dévisibilitée. Comparafi-le! b) soniet: li apremo Hasse pentru ({3,5,30,45/2, cu reletio de dimphilitate. c) Scrieti disgrama Harre pentru multimea (X:= {KEM* | K | 244, 1) n' colcules. majoranti/minoranti, supremen (infenioral multimi J:= {2,3,4,6,24} EX, door exists!

20) Re R definim reletie: $n \sim y \stackrel{\text{def}}{=} n - y \in \mathbb{Z}$.

Arstef: ca $R/N \simeq [0,1)$

25) 55 re colculere removul tuturor relepcilor de ochivelents care re pot defini de o multime cu m elemente, m E N. .

26)* Fie X ni y mulfime neviole. Arthofi ca:

|X| \leq |Y| \quad |Y| \leq |X|.

(ie. fie (3) f: X -> Y injective for g: Y -> X inj.)

=) CONS: Orice mulfime de numera cordinale e total order