HealthHub

DBMS PROJECT

4th SEMESTER

Submitted by-:

Ishita Garg 102203992 Akshita Pathak 102203796 Ayushi Rathore 102203816 Aarushi Bajaj 102203820

Table of Contents

S NO.	CONTENT	PAGE NO.
1	Requirements	3
2	ER Diagram & assumptions	4
3	Relational Schema	5
4	Normalization	6
5	SQL statements for table creation	8
6	SQL statements for insertion commands	11
7	PL/SQL Code	12

REQUIREMENTS

The doctor-patient management system is a software application that is designed to manage the interactions between doctors and patients. The system allows doctors to manage their appointments, prescriptions, and medical records for their patients. Patients can use the system to schedule appointments, view their medical records, and receive prescriptions.

The system is implemented using a database to store the doctor, patient, appointment, prescription, billing, and payment information. The system also includes a user interface that allows doctors and patients to interact with the database.

The doctor-patient management system can be used in a variety of healthcare settings, such as hospitals, clinics, and private practices. The system can improve the efficiency and accuracy of managing patient information, reduce errors, and enhance communication between doctors and patients.

To commercialize the system, it can be marketed to healthcare organizations and private practices. The system can be sold as a subscription-based service or a one-time purchase. The system can also be customized to meet the specific needs of healthcare organizations and practices, which can provide an additional source of revenue.

In summary, the doctor-patient management system is a valuable tool for managing patient information, improving communication, and enhancing the overall quality of healthcare. It can be implemented in various healthcare settings and can be commercialized through subscriptions or customized solutions for organizations and practices.

MODELLING OF REQUIREMENTS AS ER-DIAGRAM

ASSUMPTIONS:

A Doctor can have many Appointments, but each Appointment is with only one Doctor.

A Patient can have only one Appointment and each Appointment has only one Patient.

A Prescription is associated with one Appointment and can have many Medicines.

Many Medicines can be associated with one Prescription and one Billing.

Many supporting staff assist many Doctors.

A Billing is associated with one Appointment and can have many Medicines.

A Payment is associated with one Appointment.

ER- DIAGRAM INTO RELATIONAL SCHEMA

Patients

	patient_id	n	name	add	ress	phone		doct	or_id	doctor	_name	
	specializat	tion	appo	intmen	t_date	appoii	ntment_time	medi	cine_name	dos	age	
Ī	quantity	p	orice_per	_unit	total	_price	payment_a	mount	payment_	date		

AFTER NORMALIZATION

Doctors

doctor_id	name	Specialization	staff_id

Primary Key: doctor _id Foreign Keys: staff_id

Patients

patient_id nar	ne address	phone
----------------	------------	-------

[·] Primary Key: patient_id

Appointments

appointment_id doctor_	id patient_id	appointment_date	appointment_time
------------------------	---------------	------------------	------------------

Primary Key: appointment_id

Foreign Keys: doctor_id , patient_id

Medicines

medicine_id	name	description	price	Bill_id
-------------	------	-------------	-------	---------

Primary Key: medicine _id Foreign Keys: bill id

Prescriptions

prescrip appointme medicine_tion_id nt_id id	dosage	quantity
--	--------	----------

Primary Key: prescription_id

Foreign Keys:appointment_id, medicine_id

Billing

bill_id appointment_id medicine_id quantity	price_pe r_unit		ri
---	--------------------	--	----

Primary Key: bill_id

Foreign Keys: appointment_id, medicine_id

Payments

payment_id appointment_id	amount_paid	payment_date
---------------------------	-------------	--------------

· Primary Key: payment_id

· Foreign Keys:appointment_id

Supporting_Staff

staff_id	name

· Primary Key: staff_id

SQL STATEMENTS FOR TABLE CREATION

CREATE TABLE Doctors (doctor_id NUMBER(10) PRIMARY KEY, name VARCHAR2(50) NOT NULL, specialization VARCHAR2(50) NOT NULL);

TABLE DOCTORS

Column	Column Null?	
DOCTOR_ID	NOT NULL	NUMBER(10,0)
NAME	NOT NULL	VARCHAR2(50)
SPECIALIZATION	NOT NULL	VARCHAR2(50)

CREATE TABLE Patients (patient_id

NUMBER(10) PRIMARY KEY, name

VARCHAR2(50) NOT NULL, address

VARCHAR2(100) NOT NULL, phone

VARCHAR2(20) NOT NULL

);

Table created.

TABLE PATIENTS

Column	Null?	Туре
PATIENT_ID	NOT NULL	NUMBER(10,0)
NAME	NOT NULL	VARCHAR2(50)
ADDRESS	NOT NULL	VARCHAR2(100)
PHONE	NOT NULL	VARCHAR2(20)

CREATE TABLE Appointments (appointment_id

NUMBER(10) PRIMARY KEY, doctor_id NUMBER(10)

REFERENCES Doctors(doctor_id), patient_id

NUMBER(10) REFERENCES Patients(patient_id),

appointment_date DATE NOT NULL, appointment_time

VARCHAR2(20) NOT NULL

);

TABLE APPOINTMENTS

Column	Null?	Туре
APPOINTMENT_ID	NOT NULL	NUMBER(10,0)
DOCTOR_ID	-	NUMBER(10,0)
PATIENT_ID	-	NUMBER(10,0)
APPOINTMENT_DATE	NOT NULL	DATE
APPOINTMENT_TIME	NOT NULL	VARCHAR2(20)

CREATE TABLE Medicines (medicine_id NUMBER(10) PRIMARY KEY, name VARCHAR2(50) NOT NULL, description VARCHAR2(100) NOT NULL, price NUMBER(10, 2) NOT NULL
);

TABLE MEDICINES

Column	Null?	Туре
MEDICINE_ID	NOT NULL	NUMBER(10,0)
NAME	NOT NULL	VARCHAR2(50)
DESCRIPTION	NOT NULL	VARCHAR2(100)
PRICE	NOT NULL	NUMBER(10,2)

CREATE TABLE Prescriptions (prescription_id NUMBER(10) PRIMARY KEY,
appointment_id NUMBER(10) REFERENCES Appointments(appointment_id), medicine_id
NUMBER(10) REFERENCES Medicines(medicine_id), dosage VARCHAR2(50) NOT

NULL, quantity NUMBER(10) NOT NULL);

TABLE PRESCRIPTIONS

Column	Null?	Туре
PRESCRIPTION_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	-	NUMBER(10,0)
MEDICINE_ID	-	NUMBER(10,0)
DOSAGE	NOT NULL	VARCHAR2(50)
QUANTITY	NOT NULL	NUMBER(10,0)

CREATE TABLE Billing (bill_id NUMBER(10) PRIMARY KEY,

appointment_id NUMBER(10) REFERENCES Appointments(appointment_id),

medicine_id NUMBER(10) REFERENCES Medicines(medicine_id), quantity

NUMBER(10) NOT NULL, price_per_unit NUMBER(10, 2) NOT NULL,

total_price NUMBER(10, 2) NOT NULL

);

TABLE BILLING

Column	Null?	Туре
BILL_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	=	NUMBER(10,0)
MEDICINE_ID	-	NUMBER(10,0)
QUANTITY	NOT NULL	NUMBER(10,0)
PRICE_PER_UNIT	NOT NULL	NUMBER(10,2)
TOTAL_PRICE	NOT NULL	NUMBER(10,2)

CREATE TABLE Payments (payment_id NUMBER(10) PRIMARY KEY,

appointment_id NUMBER(10) REFERENCES Appointments(appointment_id),

amount_paid NUMBER(10, 2) NOT NULL, payment_date DATE NOT NULL
);

SQL

TABLE PAYMENTS

Column	Null?	Туре
PAYMENT_ID	NOT NULL	NUMBER(10,0)
APPOINTMENT_ID	- 2	NUMBER(10,0)
AMOUNT_PAID	NOT NULL	NUMBER(10,2)
PAYMENT_DATE	NOT NULL	DATE

Create table supporting staff(staff id number primary key,name varchar(30));

Table created.

STATEMENTS FOR INSERT COMMANDS

INSERT INTO Doctors (doctor_id, name, specialization) VALUES (1, 'Dr. John Doe', 'General Medicine'); INSERT INTO Doctors (doctor_id, name, specialization) VALUES (2, 'Dr. Jane Smith', 'Pediatrics');

INSERT INTO Doctors (doctor id, name, specialization) VALUES (3, 'Dr. Ross Garg', 'Cardiologist');

INSERT INTO Doctors (doctor id, name, specialization) VALUES (4, 'Dr. Grey Webber', 'Psychiatrist');

INSERT INTO Doctors (doctor id, name, specialization) VALUES (5, 'Dr. Pinky', 'Pediatrics');

DOCTOR_ID	NAME	SPECIALIZATION
1	Dr. John Doe	General Medicine
2	Dr. Jane Smith	Pediatrics
3	Dr. Ross Garg	Cardiologist
4	Dr. Grey Webber	Psychiatrist
5	Dr. Pinky	Pediatrics

INSERT INTO Patients (patient_id, name, address, phone) VALUES (1, 'Smith', '123 Main St, Anytown, USA', '555-1234');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '456 Elm St, Anytown, USA', '555-5678');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (3, 'Amy', '59 Broadway Avenue, Anytown, USA', '555-4321');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '461,Bury Street,,Anytown USA', '555-3396');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (1, 'Smith', '58 Main St, Anytown, USA', '555-6474');

INSERT INTO Patients (patient_id, name, address, phone) VALUES (2, 'Doe', '92 Elm St, Anytown, USA', '555-3992');

PATIENT_ID	NAME	ADDRESS	PHONE
1	Smith	123 Main St, Anytown, USA	555-1234
2	Doe	456 Elm St, Anytown, USA	555-5678
3	Amy	59 Broadway Avenue, Anytown, USA	555-4321
4	Doe	461,Bury Street,,Anytown USA	555-3396
5	Smith	58 Main St, Anytown, USA	555-6474
6	Doe	92 Elm St, Anytown, USA	555-3992

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (1, 1, 1, TO DATE('2024-04-1', 'YYYY-MM-DD'), '10:00 AM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (2, 2, 2, TO DATE('2024-07-4', 'YYYY-MM-DD'), '2:00 PM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (3, 3, 3, TO DATE('2024-03-6', 'YYYY-MM-DD'), '1:00 PM');

INSERT INTO Appointments (appointment_id, doctor_id, patient_id, appointment_date, appointment_time) VALUES (5, 5, 5, TO DATE('2024-02-12', 'YYYY-MM-DD'), '4:00 PM');

APPOINTMENT_ID	DOCTOR_ID	PATIENT_ID	APPOINTMENT_DATE	APPOINTMENT_TIME
1	1	1	01-APR-24	10:00 AM
2	2	2	04-JUL-24	2:00 PM
3	3	3	06-MAR-24	1:00 PM
5	5	5	12-FEB-24	4:00 PM

INSERT INTO Medicines (medicine_id, name, description, price) VALUES (1, 'Tylenol', 'Pain reliever', 5.99); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (2, 'Amoxicillin', 'Antibiotic',12.99); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (3, 'Paracetamol', 'Pain reliever', 7.59);

INSERT INTO Medicines (medicine_id, name, description, price) VALUES (4, 'Dolo-560', 'Antibiotic',4.95); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (5, 'Ofloxin', 'Pain reliever', 5.87); INSERT INTO Medicines (medicine_id, name, description, price) VALUES (6, 'Lisinopril','hypertension',12.99);

MEDICINE_ID	NAME	DESCRIPTION	PRICE
1	Tylenol	Pain reliever	5.99
2	Amoxicillin	Antibiotic	12.99
3	Paracetamol	Pain reliever	7.59
4	Dolo-560	Antibiotic	4.95
5	Ofloxin	Pain reliever	5.87
6	Lisinopril	hypertension	12.99

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (1, 1, 1, 1 tablet every 4 hours', 20);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (2,2, 2, '500mg three times a day', 30);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (3, 3, 3, '1 tablet every day', 50);

INSERT INTO Prescriptions (prescription_id, appointment_id, medicine_id, dosage, quantity) VALUES (5,5, 5, '500mg once a day', 10);

PRESCRIPTION_ID	APPOINTMENT_ID	MEDICINE_ID	DOSAGE	QUANTITY
1	1	1	1 tablet every 4 hours	20
2	2	2	500mg three times a day	30
3	3	3	1 tablet every day	50
5	5	5	500mg once a day	10

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (1, 1, 1, 20, 5.99, 119.80);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (2, 2, 2, 30, 12.99, 389.70);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (3, 3, 3, 50, 7.59, 909.282);

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price) VALUES (5, 5, 5, 10, 5.87, 58.7);

BILL_ID	APPOINTMENT_ID	MEDICINE_ID	QUANTITY	PRICE_PER_UNIT	TOTAL_PRICE
1	1	1	20	5.99	119.8
2	2	2	30	12.99	389.7
3	3	3	50	7.59	909.28
5	5	5	10	5.87	58.7

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (1, 1, 119.80, TO_DATE('2024-04-11', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (2, 2, 389.70, TO_DATE('2024-07-18', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (3, 3, 900.00, TO_DATE('2024-03-11', 'YYYY-MM-DD'));

INSERT INTO Payments (payment_id, appointment_id, amount_paid, payment_date) VALUES (4, 5, 58.7, TO_DATE('2024-02-12', 'YYYY-MM-DD'));

PAYMENT_ID	APPOINTMENT_ID	AMOUNT_PAID	PAYMENT_DATE
1	1	119.8	11-APR-24
2	2	389.7	18-JUL-24
4	5	58.7	12-FEB-24
3	3	900	11-MAR-24

Insert into supporting_staff values(1,'Aditi'); Insert into supporting_staff values(2,'Rahul'); Insert into supporting_staff values(3,'Abhay'); Insert into supporting_staff values(4,'Ananya');

STAFF_ID	NAME
1	Aditi
2	Rahul
3	Abhay
4	Ananya

PL/SQL CODE

PROCEDURE

procedure to delete a record of a patient with id 5

```
CREATE OR REPLACE PROCEDURE update_table(patient_id1 in number)

IS

BEGIN

delete from Patients WHERE patient_id = patient_id1;

END;
```

```
patient_id1 in number

patient_id1 in number
```

Procedure created.

CURSOR WITH FUNCTION

Patient's name extraction using patient id using cursors

```
CREATE OR REPLACE FUNCTION get_patient_info(patient_id1 IN NUMBER)
RETURN char
Is
cursor c is select*from patients;
rec c%rowtype;
name1 char;
begin
  for rec in c loop
  select name into name1 from patients where patient_id=patient_id1;
  end loop;
  return name1;
END;
Declare
name char;
pno number:=2;
begin
name:=get_patient_info(pno);
dbms_output.put_line('patient name for id 2 is'||name);
end;
```

EXCEPTION HANDLING WITH FUNCTION

total billing using appointment id using exception handling

TRIGGER WITH FUNCTION

updating billing info using triggers

-- create a function to update billing when a prescription is added

CREATE OR REPLACE FUNCTION update_billing()

```
IS
```

v price number;

BEGIN-- get the medicine price

SELECT price INTO v price FROM Medicines

WHERE medicine_id = NEW.medicine_id;-- calculate the total price

v total price := v price * NEW.quantity;-- update the billing table

INSERT INTO Billing (bill_id, appointment_id, medicine_id, quantity, price_per_unit, total_price)

VALUES(bill_seq.NEXTVAL, NEW.appointment_id, NEW.medicine_id, NEW.quantity, v_price, v_total_price);-- return the new row

RETURN NEW;

EXCEPTION

WHEN OTHERS THEN-- handle any exceptions that occur

Dbms output.put line ('Error updating billing: '| SQLERRM);

END;-- create a trigger to call the function when a prescription is added

CREATE OR REPLACE TRIGGER prescription_added

AFTER INSERT ON Prescriptions

FOR EACH ROW

BEGIN

update_billing();

END;

Function created.

CONCLUSIONS

In conclusion, the doctor-patient management system represents a significant advancement in healthcare technology, offering streamlined management of patient interactions, appointments, prescriptions, and medical records. Its implementation can lead to improved efficiency, accuracy, and communication between healthcare providers and patients, ultimately enhancing the quality of care delivered. By offering customizable solutions and flexible commercial models, such as subscription-based services or one-time purchases, this system can cater to the diverse needs of healthcare organizations and practices. Overall, it stands as a valuable asset in modernizing healthcare delivery and optimizing patient outcomes.

References

- https://drive.google.com/file/d/1DABTfDAGois13Zw9hNT9rwY6HE66V-vu/view?usp=sharing
- https://www.geeksforgeeks.org/how-to-design-a-database-for-healthcare-management-system/
- https://medium.com/@apoorvchowdhry55/hospital-management-system-f21b978a1b8c
- https://chat.openai.com/c/ee4fbf42-3ec8-41c6-b17b-bc29d408c58b
- https://github.com/topics/hospital-management-system