0.1 Hoja 1

Ejercicio 1 Sea $u \in A$ una unidad y $x \in A$ un elemento nilpotente. Demostrar que u + x es una unidad.

Comenzamos probando que si $x \in \mathfrak{N}_A$, entonces $1 + x \in \mathcal{U}(A)$. Existe n > 0 tal que $x^n = 0$, y entonces observamos que $(1 + x)x^{n-1} = x^{n-1}$. Así:

$$(1+x^{n-1})(1+x) = 1 + 2x^{n-1} = 1 + 2x^{n-1}(1+x)$$

$$= (1+x^{n-1})(1+x) - 2x^{n-1}(1+x) = 1$$

$$= (1+x^{n-1} - 2x^{n-1})(1+x) = 1$$

$$= 1 - x^{n-1})(1+x) = 1 \quad (1)$$

Por otra parte, si $u \in \mathcal{U}(A)$, existe $v \in A$ tal que uv = 1. Además, por ser \mathfrak{N}_A un ideal, $vx \in \mathfrak{N}_A$ con mismo índice de nilpotencia, y podemos aplicar lo anterior

$$(1 - (vx)^{n-1})(1 + vx) = 1$$

Ahora podemos escribir 1 + vx = v(u + x) y por tanto la anterior identidad queda escrita como

$$[v(1 - (vx)^{n-1})](u+x) = 1$$

Ejercicio 2 Sea A, A_1, A_2 anillos y supongamos que $A \cong A_1 \times A_2$.

- (i) Sea $\mathfrak{a} \subset A$ un ideal. Demostrar que $\mathfrak{a} \cong \mathfrak{a}' \times \mathfrak{a}''$ para ciertos ideales $\mathfrak{a}' \subset A_1$ y $\mathfrak{a}'' \subset A_2$.
- (ii) Sea $\mathfrak{p} \subset A$ un ideal primo. Demostrar que $\mathfrak{p} \cong \mathfrak{p}' \times A_2$ o bien $\mathfrak{p} \cong A_1\mathfrak{p}''$ para ciertos ideales primos $\mathfrak{p}' \subset A_1$ y $\mathfrak{p}'' \subset A_2$.
- (i) En general, si $\phi: A \to B$ es un isomorfismo, y $\mathfrak{a} \subset A$ un ideal, entonces $\phi(\mathfrak{a})$ es un ideal de B:
- Para todo $\phi(x), \phi(y) \in \phi(\mathfrak{a})$ tenemos que $\phi(x) + \phi(y) = \phi(x+y) \in \phi(\mathfrak{a})$. Para todo $\phi(x) \in \phi(\mathfrak{a}), z \in B$ existe $w \in A$ tal que $\phi(w) = z$, y entonces $z\phi(x) = \phi(wx) \in \phi(\mathfrak{a})$.

Y todo ideal del producto $\mathfrak{b} \subset A_1 \times A_2$, es un producto de ideales $\mathfrak{b}_1 \times \mathfrak{b}_2$. Efectivamente, sea

$$\mathfrak{b}_1 = \{ x \in A_1 : \exists y \in A_2 / / (x, y) \in \mathfrak{b} \}$$

y veamos que es un ideal:

- Para todo $x, x' \in \mathfrak{b}_1$ existen $y, y' \in A_2$ tales que $(x, y), (x', y') \in \mathfrak{b}$ y por ser un ideal tenemos $\mathfrak{b} \ni (x, y) + (x', y') = (x + x', y + y')$ y por tanto $x + x' \in \mathfrak{b}_1$. - Para todo $x \in \mathfrak{b}_1$ y todo $z \in A_1$ existe $y \in A_2$ tal que $(x, y) \in \mathfrak{b}$, y además $(z, 0) \in A_1 \times A_2$, y por ser un ideal se tiene $\mathfrak{b} \ni (x, y)(z, 0) = (xz, 0)$ con lo que $xz \in \mathfrak{b}_1$.

Con esto queda probado que todo $\mathfrak{a} \subset A$ es isomorfo a un producto de ideales.

- (ii) En general, si $\phi : A \to B$ es un isomorfismo, y $\mathfrak{p} \subset A$ un ideal primo, entonces $\phi(\mathfrak{p})$ es un ideal primo de B:
- Sean $x', y' \in B$ tales que $x' = \phi(x), y' = \phi(y) \in \phi(\mathfrak{p})$, entonces $\phi(\mathfrak{p}) \ni x'y' = \phi(x)\phi(y) = \phi(xy)$ por tanto $xy \in \mathfrak{p}$ y como es un ideal primo, $x \in \mathfrak{p}$ o $y \in \mathfrak{p} \iff x' \in \phi(\mathfrak{p})$ o $y' \in \phi(\mathfrak{p})$.
- Si $\mathfrak{p} \subset A_1 \times A_2$ es un ideal primo, entonces sabemos de a) que $\mathfrak{p} = \mathfrak{a}_1 \times \mathfrak{a}_2$ producto de ideales. Veamos que o bien $\mathfrak{p} = \mathfrak{p}_1 \times A_2$ con \mathfrak{p}_1 primo, o bien $\mathfrak{p} = A_1 \times \mathfrak{p}_2$ con \mathfrak{p}_2 primo. Supongamos $\mathfrak{p}_1 \neq A_1$:
- Para todo $x, y \in A_1$ tales que $xy \in \mathfrak{p}_1$ existe $z \in A_2$ tal que $(xy, z) \in \mathfrak{p}$. Entonces se tiene $\mathfrak{p} \ni (xy, z) = (x, z)(y, 1)$ y por lo tanto $(x, z) \in \mathfrak{p}$ o bien $(y, 1) \in \mathfrak{p}$ lo que implica que $x \in \mathfrak{p}_1$ o $y \in \mathfrak{p}_1$. Por tanto \mathfrak{p}_1 es un ideal primo. Más aún, dado $x \in \mathfrak{p}_1$, obviamente se cumple $1 \cdot x \in \mathfrak{p}_1$. Siguiendo lo de arriba, $(1, z)(x, 1) \in \mathfrak{p}$, y como $\mathfrak{p}_1 \neq A_1$ no puede ser que $(1, z) \in \mathfrak{p}$, luego necesariamente $(x, 1) \in \mathfrak{p}$ y por lo tanto $1 \in \mathfrak{p}_2$ y así $\mathfrak{p}_2 = A_2$.

Ejercicio 3 Sea $\mathfrak{a} \subset A$ un ideal. Demostrar que:

$$\sqrt{\mathfrak{a}} = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Spec}(A) \\ \mathfrak{a} \subset \mathfrak{p}}} \mathfrak{p}$$

Utilizando la caracterización que conocemos del nilradical de un anillo aplicado al cociente, y teniendo en cuenta que la biyección del teorema de la correspondencia conserva la primalidad, tenemos que:

$$x \in \sqrt{\mathfrak{a}} \iff x + \mathfrak{a} \in \mathfrak{N}_{A/\mathfrak{a}} = \bigcap_{\bar{\mathfrak{p}} \in \operatorname{Spec}(A/\mathfrak{a})} \bar{\mathfrak{p}} \iff \\ \forall \bar{\mathfrak{p}} \in \operatorname{Spec}(A/\mathfrak{a}), \ x + \mathfrak{a} \in \bar{\mathfrak{p}} \iff \\ \forall \mathfrak{p} \in \operatorname{Spec}(A), \ x \in \mathfrak{p} \quad (2)$$

Ejercicio 4 Sea A un anillo y $f = a_n X^n + \ldots + a_1 X + a_0 \in A[X]$. Demostrar que f es una unidad en A[X] si y solo si a_0 es unidad y todos los a_i son nilpotentes.

- \Leftarrow) Sabemos que \mathfrak{N}_A es un ideal, así que $\sum_{j=1}^n a_j X^j \in \mathfrak{N}_A$, y como $a_0 \in \mathcal{U}(A)$, en virtud del ejercicio 1 se tiene que $\sum_{j=1}^n a_j X^j + a_0 = f \in \mathcal{U}(A)$.
- \Rightarrow) Como f es una unidad, existe $g = \sum_{j=1}^m b_j X^j \in A[X]$ tal que fg = 1. En primer lugar, esto implica que $a_0b_0 = 1$ luego $a_0 \in \mathcal{U}(A)$.

FALTA LA SEGUNDA PARTE

Ejercicio 5 Sea A un DIP. Si a es un ideal propio, demostrar que son equivalentes

- a) a es un ideal primo,
- b) a es un ideal maximal,
- c) existe $f \in A$ irreducible tal que $\mathfrak{a} = \langle f \rangle$.

Si $a, b \in A \setminus \{0\}$ no son unidades, $y d, m \in A$ tales que $\langle a \rangle + \langle b \rangle = \langle d \rangle$, $\langle a \rangle \cap \langle b \rangle = \langle m \rangle$, demostrar que $d = \gcd(a, b)$ $y m = \operatorname{lcm}(a, b)$.

- $a) \iff b$) La implicación \iff se tiene siempre. Sea $\mathfrak{a} = aA$ un ideal primo, y supongamos que existe $\mathfrak{b} = bA$ tal que $\mathfrak{a} \subsetneq \mathfrak{b}$. Existe $x \in A$ tal que $bx = a \in \mathfrak{a}$ primo, luego $b \in \mathfrak{a}$ o $x \in \mathfrak{a}$. No puede ser que $b \in \mathfrak{a}$ porque en tal caso existiría un $z \in A$ tal que az = b y entonces para todo $t \in A$ se tendría que $bt = a(zt) \in aA = \mathfrak{a}$ y por tanto $\mathfrak{b} \subseteq \mathfrak{a}$, en contra de nuestra hipótesis. Por tanto $x \in \mathfrak{a}$, y existe $x \in A$ tal que x = ax, entonces $x \in a$ y por tanto $x \in a$ y por tanto $x \in a$ y existe $x \in a$. Así $x \in a$ es maximal.
- b) \iff c) Sea $\mathfrak{a} = aA$ un ideal, y supongamos que a se puede expresar como a = uv con $u, v \notin \mathcal{U}(A)$. Entonces $\mathfrak{a} \subseteq uA$ y, además, $uA \neq A$ porque u no es unidad. Veamos que $uA \not\subseteq \mathfrak{a}$, o equivalentemente, $u \notin \mathfrak{a}$. Si $u \in \mathfrak{a}$ existe un w tal que u = aw = u(vw) y por tanto u(1-vw) = 0 luego 1 = vw, ya que $u \neq 0$ pues si no $\mathfrak{a} = 0$ que no es maximal. Esto va en contra de la suposición de que $v \notin \mathcal{U}(A)$. Así que $\mathfrak{a} \subseteq uA \subseteq A$ y por tanto no es un ideal maximal.

Supongamos ahora que a es irreducible, y existe $\mathfrak{b} = bA \supset \mathfrak{a}$. Existe $w \in A$ tal que a = bw, y como a es irreducible entonces $b \in \mathcal{U}(A)$ o $w \in \mathcal{U}(A)$, en cualquier caso $\mathfrak{b} = A$, y por tanto \mathfrak{a} es maximal.

Ejercicio 6

- (i) Sea A un anillo, demostrar que existe una biyección entre las descomposiciones $\Phi: A \to A_1 \times \ldots \times A_n$ via un isomorfismo de anillos y los conjuntos de idempotentes ortogonales de A, ie. $\{e_1, \ldots, e_n\} \subset A$ tales que $\sum_{i=1}^n e_i = 1_A$ y $e_i e_j = \delta_{ij} e_i$.
- (ii) Demostrar que dada una descomposición, los A_i se identifican con ideales de A, no con subanillos. ¿Qué descomposición corresponde al conjunto de idempotentes $\{0_A, 1_A\}$.
- (i) Veamos este apartado de dos formas: una donde los idempotentes son endomorfismos y otra donde son elementos de A.
- 1. Si tenemos $A = A_1 \times \cdots \times A_n = \bigoplus_{i=1}^n A_i$, entonces podemos tomar la proyección $A \to A_i$ compuesta con la inclusión $A_i \to A$ que resulta en un endomorfismo de A que denotamos e_i . Este endomorfismo es idempotente. Efectivamente, si tomamos $x = (x_1, \dots, x_n) \in A = \bigoplus_{i=1}^n A_i$ entonces $e_i \circ e_i(x) = e_i(0, \dots, 0, x_i, 0, \dots, 0) = (0, \dots, 0, x_i, 0, \dots, 0)$. Son ortogonales porque $e_j(0, \dots, 0, x_i, 0, \dots, 0) = (0, \dots, 0)$. Y también tenemos que suman la identidad porque para cualquier $x \in A$:

$$e_1(x) + \ldots + e_i(x) + e_j(x) + \ldots + e_n(x) =$$

$$= (x_1, 0, \ldots, 0) + \cdots + (0, \ldots, x_i, 0, \ldots, 0) + (0, \ldots, 0, x_j, \ldots, 0) + (0, \ldots, 0, x_n) =$$

$$= (x_1, \ldots, x_i, x_j, \ldots, x_n) = x \quad (3)$$

Por otra parte, si tenemos un subconjunto $\{e_i\}_{i=1}^r$ tal que $\sum_{i=1}^r e_i = 1$ y $e_i e_j = \delta_{ij} e_i$ podemos definir una descomposición de A tomando A_i las imágenes de los e_i .

2. Dado el isomorfismo $\Phi: \bigoplus A_i \to A$, este determina un conjunto de idempotentes según a donde envíe a los elementos siguientes:

$$\Phi: A_1 \times \ldots \times A_n \to A$$

$$(1, 0, \ldots, 0) \mapsto e_1$$

$$(0, 1, \ldots, 0) \mapsto e_2$$

$$\vdots$$

$$(0, 0, \ldots, 1) \mapsto e_n$$

Efectivamente, por ser homomorfismo ha de cumplirse que

$$1_A = \Phi(1, 1, \dots, 1) = \Phi(1, 0, \dots, 0) + \dots + \Phi(0, 0, \dots, 1) = e_1 + e_2 + \dots e_n \quad (4)$$

$$0_A = \Phi(0, 0, \dots, 0) = \Phi((0, \dots, 0, \dots, 0) \cdot (0, \dots, 0, \dots, 0)) \quad i \neq j$$
(5)

$$e_i = \Phi((0, \dots, \stackrel{i}{1}, \dots, 0) \cdot (0, \dots, \stackrel{i}{1}, \dots, 0)) = e_i e_i$$
 (6)

Recíprocamente, dados $\{e_i\}_{i=1}^r$ tomemos los ideales $\mathfrak{a}_i = e_i A$ de A. Estos tienen estructura de anillo conmutativo unitario con las operaciones heredadas y tomando $1_{\mathfrak{a}_i} = e_i$. En efecto, todo el resto de propiedades se cumple automáticamente y comprobamos que esa es la unidad: para todo $x \in \mathfrak{a}_i$ existe $a \in A$ tal que $x = e_i a$ y entonces $xe_i = e_i x = e_i e_i a = e_i a = x$.

Ahora consideramos $\phi_i: A \to \mathfrak{a}_i$ dado por $x \mapsto \phi_i(x) = xe_i$ que es un homomorfismo suprayectivo (esto segundo es obvio porque $\mathfrak{a}_i = e_i A$):

$$\phi_i(x+y) = (x+y)e_i = xe_i + ye_i = \phi_i(x) + \phi_i(y)$$
(7)

$$\phi_i(xy) = xye_i = xye_i e_i = (xe_i)(ye_i) = \phi_i(x)\phi_i(y) \tag{8}$$

Finalmente podemos coger $\Phi: A \to \bigoplus \mathfrak{a}_i$ como $\Phi = \bigoplus_i \phi_i$ que es homomorfismo suprayectivo por serlo cada una de las coordendas, y además es inyectivo porque si $x \in A$ es tal que $0 = \Phi(x) = (xe_1, \dots, xe_n)$ entonces $0 = \sum_i xe_i = x \sum_i e_i = x$. Por lo tanto Φ es el isomorfismo que buscabamos.

(ii) Claramente $A_i \cong 0 \times \ldots \times A_i \times \ldots \times 0$ y este es un ideal de $A_1 \times \ldots \times A_n \cong A$ lo que demuestra la identificación. Efectivamente dados $a, b \in A_i$, y $(x_1, \ldots, x_n) \in A_1 \times \ldots \times A_n$ tenemos

$$(0, \dots, \stackrel{i)}{a}, \dots, 0) - (0, \dots, \stackrel{i)}{b}, \dots, 0) = (0, \dots, \stackrel{i)}{a} - b, \dots, 0) \in 0 \times \dots \times A_i \times \dots \times 0$$
 (9)

$$(x_1, \dots, x_n) \cdot (0, \dots, a, \dots, 0) = (0, \dots, x_i^i, \dots, 0) \in 0 \times \dots \times A_i \times \dots \times 0$$
 (10)

No es un subanillo porque carece del elemento unidad de $A_1 \times ... \times A_n$ que es la tupla con todo unos.

Finalmente, si tomamos el conjunto de idempotentes 0_A , 1_A obtenemos la descomposición trivial $A = \{0_A\} \times A$. Si seguimos la forma 2. de proceder, el isomorfismo $\Phi: A_1 \times A_2 \to A$ debería asignar $(1,0) \mapsto 0_A$ y $(0,1) \mapsto 1_A$. Está bien definido porque se cumple que $1_A = 0_A + 1_A = \Phi(1,0) + \Phi(0,1) = \Phi(1,1)$ como debe ser.

Ejercicio 7 Encontrar un sistema de idempotentes ortogonales no trivial y una descomposición asociada para

- (i) \mathbb{Z}_{nm} con gcd(n, m) = 1.
- (ii) $\mathbb{Q}[X]/\langle x^2(x-1)\rangle$.
- (iii) $K[X]/\langle fg \rangle$ con gcd(f,g) = 1.
- (i) Sabemos que si m,n son coprimos entonces $\mathbb{Z}_{mn}\cong\mathbb{Z}_m\times\mathbb{Z}_n$. Esta es nuestra descomposición. Para sacar los idempotentes ortogonales nos valemos de la identidad de Bezout: por ser coprimos existen μ,ν tales que $\mu m + \nu n = 1_{\mathbb{Z}}$. Además tenemos que

$$[\mu m] + [\nu n] = [1_{\mathbb{Z}}] = 1_{\mathbb{Z}_{mn}} \tag{11}$$

$$[\mu m][\nu n] = [\mu \nu][nm] = [0] \tag{12}$$

$$[\mu m][\mu m] = [\mu m][1 - \nu n] = [\mu m] \tag{13}$$

Por tanto, $e_1 = [\mu m]$ y $e_2 = [\nu n]$ son los elementos que buscamos. La descomposición viene dada por los ideales $[\mu m]\mathbb{Z}_{mn}$ y $[\nu n]\mathbb{Z}_{mn}$. Veamos que son precisamente \mathbb{Z}_n y \mathbb{Z}_m respectivamente. Los elementos del ideal $[\mu m]\mathbb{Z}_{mn}$ son los restos de la división $\frac{\mu mx}{mn} = \frac{\mu x}{n}$, es decir, son restos que determina una clase en \mathbb{Z}_n , por tanto $[\mu m]\mathbb{Z}_{mn} \subset \mathbb{Z}_n$. Pero además, si $[x], [y] \in \mathbb{Z}_{mn}$ son tales que $[\mu mx] = [\mu my]$ en \mathbb{Z}_{mn} , entonces $\mu m(x-y) \in mn\mathbb{Z}$ por lo tanto $x-y \in n\mathbb{Z}$. Es decir, que hay exactamente n clases en nuestro ideal, por tanto $[\mu m]\mathbb{Z}_{mn} = \mathbb{Z}_n$.

- (ii) $A = \mathbb{Q}[x]/\langle x^2(x-1)\rangle$. Este ejemplo es el mismo que el anterior pero en un anillo de polinomios. En ambos casos tenemos un dominio euclídeo y por tanto una identidad de Bezout para el máximo común divisor. En concreto, $\gcd(x^2, x-1) = 1$ que sale en la primera división $x^2 = x(x-1)+1$ o equivalentemente $x^2+x(1-x)=1$, y podemos tomar como conjunto de idempotentes ortogonales $\{x^2, x(1-x)\}$ que cumplirán, análogamente a lo dicho en a), que $A = \mathbb{Q}[x]/\langle x^2\rangle \times \mathbb{Q}[x]/\langle x(1-x)\rangle$.
- (iii) Literalmente lo mismo que el (ii) pero ahora genérico. Se cumple exactamente lo mismo.

Ejercicio 9 Sea A un anillo y $\mathfrak{a} \subset A$ un ideal. Denotamos

$$\mathfrak{a}[X] = \{ f \in A[X] | f \text{ tiene sus coeficientes en } \mathfrak{a} \}$$

Demostrar que $\mathfrak{a}[X]$ es el extendido de \mathfrak{a} via la inclusión. Si \mathfrak{p} es ideal primo de A, ¿es $\mathfrak{p}[X]$ un ideal primo de A[X]?

Estamos considerando la extensión de \mathfrak{a} por la inclusión $i:A\hookrightarrow A[X]$, entonces

$$\mathfrak{a}^e = \langle \mathfrak{i}(a) \rangle \equiv \langle \mathfrak{a} \rangle_{A[X]} = \left\{ \sum_{i=0}^n a_i g_i \big| \ a_i \in \mathfrak{a}, g_i \in A[X], n \in \mathbb{N} \right\}$$

Ahora bien, $\sum_{i=0}^n a_i g_i = \sum_{i=0}^n a_i \sum_{j=0}^m b_j^i X^j = \sum_{i,j} (a_i b_j^i) X^j$ y se cumple $a_i b_j^i \in \mathfrak{a}$ para todo i,j por ser un ideal.

Ejercicio 11 Sea A un anillo, \mathfrak{a} un ideal, $y \mathfrak{p}_1, \ldots, \mathfrak{p}_n$ ideales primos. Si $\mathfrak{a} \subset \bigcup_{i=1}^n \mathfrak{p}_i$, entonces $\mathfrak{a} \subset \mathfrak{p}_i$ para algún $i \in \{1, \ldots, n\}$.

Probamos el contrarrecíproco por inducción sobre n. El caso n=1 es obvio. Supongamos que si tenemos n ideales primos y $\mathfrak{a} \not\subset \mathfrak{p}_i$ para ningún i, entonces $\mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i$, y estudiamos el caso n+1. Vamos a encontrar un elemento de \mathfrak{a} que no pertenece a ningún \mathfrak{p}_i .

Para cada j consideramos un $z_j \in \mathfrak{a} \setminus \bigcup_{i \neq j} \mathfrak{p}_i \neq \emptyset$. La diferencia conjuntista es efectivamente no vacía por hipótesis de inducción, pues hay n ideales primos en esa unión. Además, podemos suponer que $z_j \in \mathfrak{p}_j$ para cada j, pues en caso contrario existe algún z_j que no pertenece a ninguno de los ideales primos y hemos terminado. Afirmamos que el elemento $z = z_1 \cdot \ldots \cdot z_n + z_{n+1} \in \mathfrak{a}$ no pertenece a la unión.

Si perteneciese, a algún \mathfrak{p}_j para $j \leq n$, entonces $z_{n+1} = z_j - z_1 \cdot \ldots \cdot z_n \in \mathfrak{p}_j$, en contra de la construcción. Por otro lado, si $z \in \mathfrak{p}_{n+1}$, entonces $z_1 \cdot \ldots \cdot z_n = z - z_{n+1} \in \mathfrak{p}_{m+1}$ y por ser este un ideal primo alguno de los z_i , con $1 \leq i \leq n$, pertenece a \mathfrak{p}_{n+1} , de nuevo en contra de la construcción de z.

Ejercicio 13 Sea A un anillo e $I \subset A[X_1, \ldots, X_n]$ un ideal. Demostrar que $A[X_1, \ldots, X_n]/I \cong A$ y que si A es un cuerpo, I es maximal.

La última afirmación es evidente, porque un ideal es maximal si y solo si el cociente es un cuerpo. Para ver el isomorfismo solo hace falta coger el homomorfismo suprayectivo $\operatorname{eval}_{a_1,\ldots,a_n}:A[X_1,\ldots,X_n]\to A$ cuyo núcleo son los polinomios de la forma $\sum_i(x_i-a_i)f$, pues todos sus términos deben anularse, y entonces ker $\operatorname{eval}_{a_1,\ldots,a_n}=I$ y hemos terminado.

Ejercicio 15 Se trata de repetir las demostraciones sobre extensiones finitas de cuerpos y la algebricidad de los generadores.

 \Rightarrow) Si A es un K-espacio vectorial de dimensión finita m, entonces para cada i las potencias $1, x_i, \ldots, x_i^m$ son m+1 vectores del espacio y por tanto son linealmente

dependientes. Esto implica que existen $\lambda_0^i, \ldots, \lambda_m^i \in K$ tales que $\lambda_0^i + \lambda_1^i x_i + \ldots + \lambda_m^i x_i^m = 0$, es decir, que el polinomio no nulo $f_i(T) = \lambda_0^i + \lambda_1^i T + \ldots + \lambda_m^i T^m \in K[T]$ tiene a x_i por raíz.

 \Leftarrow) Lo probamos por inducción. Escribimos solo el caso base $A=K[x_1]$. Consideramos el homomorfismo evaluación $\operatorname{eval}_{x_1}: K[T] \to A$. El núcleo $\ker \operatorname{eval}_{x_1} = \operatorname{indeal} \operatorname{primo} \operatorname{de} K[T]$. Efectivamente, si $f,g \in K[T]$ son tales que $0=fg(x_1)=f(x_1)g(x_1)$ entonces por ser A un DI, $f(x_1)=0$ ó $g(x_1)=0$, como queríamos probar. Por ser K un cuerpo, K[T] es un DIP (es dominio euclídeo) y así $\ker \operatorname{eval}_{x_1}$ es un ideal maximal, está generado por un elemento irreducible f, y entonces por la caracterización de maximales $K[T]/\langle f \rangle \cong \operatorname{Im} \operatorname{eval}_{x_1}$ es un cuerpo. Dado que la imagen es un cuerpo que contiene a K y a x_1 y está contenida en A, debe coincidir con A.

Tomamos f el único polinomio mónico irreducible que genera el núcleo. Resulta que el grado n de f es la dimensión de $K[x_1]$. Efectivamente, $1+\langle f \rangle, \ldots, T^{n-1}+\langle f \rangle$ es una base de $K[T]/\langle f \rangle$ (demostración en el libro de Gamboa). Además el isomorfismo $g+\langle f \rangle \mapsto g(x_1)$ entre $K[T]/\langle f \rangle$ e Im $\operatorname{eval}_{x_1}$ es un isomorfismo de K-espacios vectoriales porque deja fijos todos los elementos de K. Entonces $1, x_1, \ldots, x_1^{n-1}$ es una base de $A=K[x_1]$.