Teoría Bayesiana de la Decisión

MIAX-11, noviembre 2023

Repaso, conceptos previos

- Aprendizaje automático
 - Supervisado
 - No supervisado
 - Otros paradigmas
- Aprendizaje supervisado (pattern recognition)
 - Clasificación
 - Regresión
- Modelos paramétricos vs no paramétricos

Aprendizaje supervisado

- Problema: $\{(x_1, t_1), (x_2, t_2), ..., (x_N, t_N)\}$
 - \circ $x_i \equiv$ vector de atributos
 - $t_i \equiv \text{variable objetivo (target)}$
 - N ≡ número de ejemplos/patrones
- Objetivo: predecir t a partir de x
- Un clasificador (regresor) es una función que proporciona una estimación del objetivo: y = f(x) ≈ t
- Modelo paramétrico: la función f depende de unos parámetros ajustables (entrenamiento)

Ejemplo: salmones vs lubinas

 A fishing company wants to automate the process of separation of fish (salmon vs sea bass), using images recorded by a CCD camera

(From Duda, Hart and Stork, Pattern Classification, 2001)

Ejemplo: salmones vs lubinas

Objetivo: ¿Salmón o lubina?

Atributos:

- Longitud
- Brillo
- Posición de las aletas
- ...

Distribución de clases de acuerdo a la longitud

Distribución de clases de acuerdo al brillo

Longitud y brillo conjuntamente

Aprox. 95% acierto

Avg. scale intensity

(From Duda, Hart and Stork, Pattern Classification, 2001)

Longitud y brillo conjuntamente

- En este problema, añadir un nuevo atributo parece mejorar los resultados
- ¿Tendría sentido añadir un tercer atributo? ¿Y un cuarto? ¿Y …?
- ¿Hay un máximo de atributos?
- ¿Cuáles son los mejores?

La maldición de la dimensión (curse of dimensionality)

¿Cuál es el mejor modelo?

(From Duda, Hart and Stork, Pattern Classification, 2001)

Complejidad, generalización, sobreajuste

- Modelos más complejos se adaptan mejor a los datos
- Pero generalizan peor
- Sobreajuste / Overfitting
- Dilema sesgo varianza

Entonces... ¿cuál es el mejor modelo?

No Free Lunch Theorem:

Si el objetivo es una buena generalización, no existen a priori motivos para decantarse por un clasificador frente a otro

Coste frente a precisión

- Usually misclassified patterns from different classes imply different costs
- ► In those cases we might want to adjust the decision boundary in order to minimize the cost associated to misclassifications

Avg. scale intensity

(From Duda, Hart and Stork, Pattern Classification, 2001)

En la clase de hoy

- Teoría Bayesiana de la decisión
- Estimación de densidades
- Clasificador Naive Bayes

Teoría Bayesiana de la decisión

- Clasificación
- Planteamiento estadístico del problema,
- Suposiciones:
 - El problema se puede plantear en términos de probabilidades y costes
 - Todas las probabilidades relevantes son conocidas

Volviendo al problema de los pescados

- La variable w representa la clase, w ∈ {salmón, lubina}
- Probabilidad a priori:
 - p(salmón)
 - o p(lubina)
 - p(salmón) + p(lubina) = 1
 - Representa la probabilidad de observar un salmón/lubina en la cinta (sin información adicional)
- En general: $p(w_1) + p(w_2) + ... + p(w_c) = 1$, c = número de clases

Por ejemplo: p(salmón) = 0.6, p(lubina) = 0.4

Regla de decisión

Regla que prescribe la **acción a tomar** (salmón/lubina) basándose en la entrada (atributos) observada

Supongamos que:

- No hay datos de entrada (sólo conocemos el prior)
- El coste de cada clasificación errónea es el mismo (da igual confundir una lubina con un salmón que un salmón con una lubina)

Lo mejor que podemos hacer es:

$$decisión = \begin{cases} lubina & \text{si } p(lubina) > p(salmón) \\ salmón & \text{si } p(lubina) < p(salmón) \end{cases}$$

Decisión en base al prior

Elegir w_{i} tal que $p(w_{i}) \ge p(w_{j}), j = 1, 2, ..., c$

- Elegimos siempre la clase más probable
- Regla óptima en ausencia de más información (minimiza la probabilidad de error)
- Pero siempre asigna la misma clase (la más probable) a todos los patrones

Por ejemplo, si p(salmón) = 0.6, p(lubina) = 0.4, esta regla diría que **todo son** salmones

Regla de decisión

Regla que prescribe la **acción a tomar** (salmón/lubina) basándose en la entrada (atributos) observada

Supongamos que:

- Conocemos un conjunto de variables que describen a cada patrón
- Características/atributos (supondremos continuas por simplicidad)

$$\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$$

Longitud, anchura, brillo, posición de las aletas, ...

¿Podemos mejorar la regla basada en el prior?

Probabilidad a posteriori

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40

Probabilidades a priori:

$$p(salm\acute{o}n) = 0.6$$
, $p(lubina) = 0.4$

Probabilidades a posteriori:

$$p(salm\acute{o}n \mid L < 50 \text{ cm}) = \textbf{0.4}, \ p(lubina \mid L < 50 \text{ cm}) = \textbf{0.6}$$

 $p(salm\acute{o}n \mid L \ge 50 \text{ cm}) = \textbf{0.8}, \ p(lubina \mid L \ge 50 \text{ cm}) = \textbf{0.2}$

Decisión MAP

Elegir w_i tal que $p(w_i | \mathbf{x}) \ge p(w_i | \mathbf{x}), j = 1, 2, ..., c$

- Elegimos siempre la clase más probable dados los atributos observados
- Estimación MAP (máximo a posteriori)
- La regla MAP también minimiza la probabilidad de error

En el ejemplo anterior, decidiremos *lubina* si L < 50 cm y *salmón* si L ≥ 50 cm

$$p(salm\acute{o}n \mid L < 50 \text{ cm}) = 0.4, p(lubina \mid L < 50 \text{ cm}) = 0.6$$

$$p(salm\acute{o}n \mid L \ge 50 \text{ cm}) = 0.8, p(lubina \mid L \ge 50 \text{ cm}) = 0.2$$

Teorema de Bayes

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

Se deriva a partir de la definición de la probabilidad conjunta:

$$p(w, \mathbf{x}) = p(w \mid \mathbf{x}) \ p(\mathbf{x}) = p(\mathbf{x} \mid w) \ p(w)$$

Teorema de Bayes

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40
Total	50	50	100

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40
Total	50	50	100

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) p(salm\acute{o}n)}{p(L < 50)}$$

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40
Total	50	50	100

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

$$\frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40
Total	50	50	100

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

$$p(salm\acute{o}n \mid L < 50) = \frac{20/60 = 0.33 \quad 60/100 = 0.6}{p(L < 50 \mid salm\acute{o}n) p(salm\acute{o}n)}$$

$$20/50 = 0.4$$

	L < 50 cm	L ≥ 50 cm	Total
Salmón	20	40	60
Lubina	30	10	40
Total	50	50	100

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

$$p(salm\acute{o}n \mid L < 50) = \frac{20/60 = 0.33 \quad 60/100 = 0.6}{p(L < 50 \mid salm\acute{o}n) p(salm\acute{o}n)}$$

$$\frac{p(L < 50)}{50/100 = 0.5}$$

Decisión MAP

Elegir w_i tal que $p(w_i | \mathbf{x}) \ge p(w_i | \mathbf{x}), j = 1, 2, ..., c$

$$p(w \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid w) \ p(w)}{p(\mathbf{x})}$$

La evidencia p(x) no depende de w

Elegir w_i tal que $p(x \mid w_i) p(w_i) \ge p(x \mid w_i) p(w_i)$, j = 1, 2, ..., c

$$w^* = \underset{i}{\operatorname{argmax}} p(\mathbf{x} \mid w_i) p(w_i)$$

Decisión MAP

$$w^* = \underset{i}{\operatorname{argmax}} p(\mathbf{x} \mid w_i) p(w_i)$$

Si conocemos $p(w_i)$ y $p(x \mid w_i)$, esto es lo mejor que podemos hacer

El clasificador de Bayes es óptimo

La decisión depende sólo de:

- Los **prioris**, $p(w_i)$
- Las verosimilitudes, p(x | w_i)

(Si los prioris son uniformes, la decisión depende únicamente de la verosimilitud)

Coste (no simétrico) asociado a cada tipo de error

 $C(w_i \mid w_j)$ es el coste de elegir la clase w_i cuando la clase real es w_j

Por ejemplo:

Clase real

Salmón Lubina
Salmón 0 100
Lubina 50 0

Predicción

Nos cuesta más clasificar un salmón como lubina que una lubina como salmón

Riesgo o coste esperado

$$R(w \mid \boldsymbol{x}) = C(w \mid w_1) \ p(w_1 \mid \boldsymbol{x}) + C(w \mid w_2) \ p(w_2 \mid \boldsymbol{x}) + \dots + C(w \mid w_c) \ p(w_c \mid \boldsymbol{x})$$

La mejor decisión en este caso es:

$$w^* = \underset{i}{\operatorname{argmin}} R(w_i \mid \boldsymbol{x})$$

Que coincide con la regla de Bayes cuando el coste es:

$$C(w_i \mid w_j) = \begin{cases} 0 \text{ si } i = j \\ 1 \text{ si } i \neq j \end{cases}$$

Resumen

Clasificador de Bayes / regla MAP:

$$w^* = \underset{i}{\operatorname{argmax}} p(\mathbf{x} \mid w_i) p(w_i)$$

Necesitamos conocer:

- Los **prioris**, $p(w_i)$
- Las verosimilitudes, p(x | w_i)

¿Cómo podemos estimarlos a partir de una muestra finita?

Estimación de densidades

- Mediante histogramas
- Mediante kernels
- Estimación paramétrica de densidades (EM)
- Naive Bayes

Estimación mediante histogramas

Problemas:

- Cómo elegir el tamaño del bin
- Difícil de aplicar en dimensión alta (maldición de la dimensión)

La maldición de la dimensión

A medida que aumenta la dimensión del problema, el número de puntos necesarios para estimar correctamente la densidad crece exponencialmente

Estimación mediante kernels

La densidad es la suma de una **función de kernel** aplicada sobre cada punto del problema:

$$\rho(\mathbf{x}) = \sum_{i} k(\mathbf{x} - \mathbf{x}_{i})$$

Tipos de kernel

https://scikit-learn.org/stable/modules/density.html#kernel-density

Kernel gausiano

Kernel tophat

Estimación paramétrica (máxima verosimilitud)

- Suponemos forma funcional conocida, $f(x, \theta)$
- Ajustamos los parámetros θ para maximizar la probabilidad de las observaciones x (máxima verosimilitud)
- Puede usarse el algoritmo EM
- Es típico suponer que f es una **mezcla de distribuciones gausianas** cuyos parámetros (medias y covarianzas) se desconocen

https://scikit-learn.org/stable/modules/mixture.html#gmm

Mezcla de gausianas

Clasificador Naive Bayes

Clasificador que combina el teorema de Bayes con la suposición de que los atributos son **independientes** dada la clase:

$$P(y\mid x_1,\ldots,x_n) = rac{P(y)P(x_1,\ldots,x_n\mid y)}{P(x_1,\ldots,x_n)} \hspace{0.5cm} igsqcup P(y\mid x_1,\ldots,x_n) = rac{P(y)\prod_{i=1}^n P(x_i\mid y)}{P(x_1,\ldots,x_n)}$$

$$egin{aligned} \hat{y} = rg \max_{y} P(y) \prod_{i=1}^{n} P(x_i \mid y) \end{aligned}$$

Es típico suponer además que las distribuciones son gausianas

Naive Bayes gausiano

1.9.1. Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is assumed to be Gaussian:

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \mathrm{exp}\left(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}
ight)$$

The parameters σ_y and μ_y are estimated using maximum likelihood.

Presupone independencia entre los atributos

https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes

Notebook 8_1_estimacion_densidades.ipynb