Российский государственный педагогический университет им. А. И. Герцена Институт информационных технологий и технологического образования

Разработка системы поддержки принятия решений о выборе местоположения нового коммерческого объекта на основе модели Хаффа и гис-технологий

Выполнила студентка 4 курса Вехова Ксения Олеговна

Актуальность

Обусловлена заказом геомаркетинговой компании ООО «Центр пространственных исследований» на изготовление системы поддержки принятия решения для платформы GeoIntellect

Цель

Целью выпускной квалификационной работы стала разработка системы поддержки принятия решения в соответствии с требованиями заказчика и ее интеграция в конкретную систему GeoIntellect, предоставленную заказчиком.

Задачи

- Проанализировать и синтезировать знания о предметной области «вероятностные модели пространственного взаимодействия» и на основании этого доказать, что модель Хаффа наиболее подходящая для поставленной цели.
- Спроектировать архитектуру системы поддержки принятия решения в соответствии с выдвинутыми заказчиком требованиями.
- Реализовать систему поддержки принятия решений на основе модели Хаффа и гис-технологий.
- Осуществить апробацию системы в деятельность платформы GeoIntellect.

Анализ вероятностных моделей пространственного взаимодействия

Географические модели

- 1. Модель центральной точки
- 2. Закон розничной торговли Рейли
- 3. Модель Бетти

Вероятностные модели

- 1. Аксиома потребительского выбора Льюса
- 2. Модель Хаффа
- 3. Модель Наканиши-Купера
- 4. Модель МакФаддена
- 5. Модель Фотеринема
- 6. Модель Раста и Донту

Вывод об использовании модели Хаффа

- Выбор модели Хаффа обусловлен требованием заказчика.
- Простота и доступность с точки зрения математического представления и программной реализации.
- Модель характеризуется гибкостью в зависимости от исследуемого рынка, местности и торговой точки, ее можно настроить под все необходимые условия заказчика.

Предназначение системы поддержки принятия решений

СППР предназначена для решения следующих задач:

- оценка привлекательности магазина относительно конкурентов;
- анализ конкурентов;
- расчет потенциального объема посетителей для торговой точки;
- поиск наиболее выгодного местоположения для открытия новой торговой точки;
- планирование успешной стратегии деятельности торговой точки на рынке;

Архитектура системы и примененные технологии для её разработки

- 1. База данных (PostgreSQL, PostGIS).
- 2. Микросервис (.NET Core 3.1, язык С#).
- 3. Веб-модуль (HTML, CSS, Java Script, Leaflet).

Функциональные возможности

- Показывать список всех расчетов пользователя;
- Показывать результаты выбранного расчета;
- Добавлять новый объект к выбранному расчету;
- Создавать новый расчет;
- Визуализировать полигональный слой с населением и слой с торговыми объектами на карте;
- Отображать информацию о торговом объекте на карте;
- Отображать информацию о слои объектов с численностью населения на карте;
- Считывать геолокацию нового объекта на карте;

Алгоритм модели Хаффа

Формула для вычисления привлекательности торговой точки (1)

$$U_{ij} = \frac{S_j}{T_{ij}^{\lambda}} (1),$$

i = 1..N, j = 1..M,

 U_{ij} — привлекательность торговой точки;

 S_j — торговая площадь магазина j;

 T_{ij} — время проезда из района і в магазин j;

л — параметр чувствительности потребителя к расстояниям.

Формула для вычисления вероятности прихода покупателя из определенного района в определенную торговую точку (2)

$$P_{ij} = \frac{\frac{S_j}{T_{ij}^{\lambda}}}{\sum_{j=1}^{M} (\frac{S_j}{T_{ij}^{\lambda}})} (2),$$

i = 1..N, j = 1..M,

 P_{ij} — вероятность прихода покупателя из района і в магазин ј.

 S_j — торговая площадь магазина j;

 T_{ij} — время проезда из района і в магазин j;

N — количество районов города;

М — количество магазинов в исследовании;

λ — параметр чувствительности потребителя к расстояниям.

Результаты вычислений представлены в виде двух слоев: полигональный слой с населением и точечный слой с торговыми объектами. С реализованной системой поддержки принятия решений вы можете ознакомится на платформе GeoIntellect.