Topic 17 - Redox

Subject content

- (a) define oxidation and reduction (redox) in terms of oxygen/hydrogen gain/loss
- (b) define redox in terms of electron transfer and changes in oxidation state
- (c) identify redox reactions in terms of oxygen/hydrogen gain/loss, electron gain/loss and changes in oxidation state
- (d) describe the use of aqueous potassium iodide and acidified potassium manganate(VII) in testing for oxidising and reducing agents from the resulting colour changes

Redox reaction: oxidation of a substance + reduction of another substance

Oxidation & reduction

Characteristics	Oxidation	Reduction
1. Oxygen	gain	loss
2. Hydrogen	loss	gain
3. Electrons	loss	gain
4. Oxidation state	increase	decrease

Oxidising agent & reducing agent

Oxidising agent	Reducing agent
causes oxidation of other substances, itself is reduces	causes reduction of other substances, itself is oxidised
 gives oxygen removes hydrogen removes electrons increases oxidation state of another reactant 	 removes oxygen gives hydrogen gives electrons decreases oxidation state of another reactant

17.1 Examples of Oxidation & Reduction Oxidation & reduction:

Туре	Reaction	Oxidation	Reduction
gain/loss of oxygen			H ₂ O lost oxygen to form H ₂ . Thus, H ₂ O is reduced to H ₂ .
	CuO (s) + H_2 (g) \rightarrow Cu (s) + H_2 O (I)	H_2 gained oxygen to form H_2O . Thus, H_2 is oxidised to H_2O .	CuO lost oxygen to form Cu. Thus, CuO is reduced to Cu.
	$\begin{array}{c} 2 \text{ Cu (s)} + \text{O}_2 \text{ (g)} \\ \rightarrow 2 \text{ CuO (s)} \end{array}$	Cu gained oxygen to form CuO. Thus, Cu is oxidised to CuO.	O_2 lost oxygen. Thus, O_2 is reduced.
loss/gain of hydrogen	$Cl_2(g) + 2 HI (aq)$ $\rightarrow 2 HCI (aq) + I_2 (aq)$	I in HI lost hydrogen to form I ₂ . Thus, HI is oxidised to I ₂ .	CI_2 gained hydrogen to form HC/. Thus, CI_2 is reduced to HC/.
	2 NH ₃ (g) + CuO (s) \rightarrow N ₂ (g) + 3 Cu (s) + 3 H ₂ O (g)	N in NH $_3$ lost hydrogen to form N $_2$. Thus, NH $_3$ is oxidised to N $_2$.	CuO lost oxygen to form Cu. Thus, CuO is reduced to Cu.
loss/gain of electrons	Cu (s) + 2 AgNO ₃ (aq) \rightarrow Cu(NO ₃) ₂ (aq) + 2 Ag (s)	Cu lost electrons to form Cu^{2+} in $Cu(NO3)_2$. Thus, Cu is oxidised to $Cu(NO_3)_2$. $Cu \rightarrow Cu^{2+} + 2 e^-$	Ag^+ in $AgNO_3$ gained electrons to form Ag . Thus, $AgNO_3$ is reduced to Ag . $Ag^+ + e^- \rightarrow Ag$
	2 Na (s) + CI_2 (g) \rightarrow 2 NaC I (s)	Na lost electrons to form Na ⁺ in NaC <i>I</i> . Thus, Na is oxidised to NaC <i>I</i> . Na → Na ⁺ + e ⁻	CI gained electrons to form CI in NaCI. Thus, CI is reduced to NaCI. $CI_2 + 2 e^- \rightarrow 2CI$
	2 KI (aq) + CI_2 (g) \rightarrow 2 KC <i>I</i> (aq) + I_2 (s)	I ⁻ in KI lost electrons to form I ₂ . Thus, KI is oxidised to I ₂ . 2 I ⁻ \rightarrow I ₂ + 2 e ⁻	Cl_2 gained electrons to form Cl in KCl . Thus, Cl_2 is reduced to KCl . $Cl_2 + 2 e^- \rightarrow 2 Cl$

17.2 Increase or Decrease of Oxidation State

Oxidation state: an arbitrary charge of an atom if it existed as an ion Guideline:

Guideline	Example	Oxidation state
1. OS of element = 0	Na	0
	O ₂	0
2. OS of simple ion = charge of	Fe ²⁺	+2
ion	Ct	-1
3. Fixed OS of elements in	All Grp I elements in compounds	+1
compounds	All Grp II elements in compounds	+2
	H in most compounds	+1
	O in most compounds	-2
4. Sum of OS of atoms / ions in	NaC/	+1 + (-1) = 0
compound = 0	H ₂ O	$(+1) \times 2 + (-2) = 0$
Sum of OS of atoms in polyatomic ion = charge of ion	OH ⁻	(-2) + (+1) + -1

Presentation for working of calculation:

Calculate the oxidation state of chromium (Cr) in chromic acid (H₂CrO₄).

Let the oxidation state of Cr in H2CrO4 be x.

$$(+1) \times 2 + \times + (-2) \times 4 = 0$$

$$+2 + x - 8 = 0$$

$$x = +8 - 2$$

$$x = +6$$

^{*} do not omit +ve / -ve signs for oxidation states in working

Polyatomic ions:

lon	Name	lon	Name
OH.	hydroxide ion	C/O ₃ -	chlorate ion
NO ₃ -	nitrate ion	C/O ₄ -	perchlorate ion
SO ₄ ²⁻	sulfate ion	CrO4 ²⁻	chromate ion
SO ₃ ²⁻	sulfite ion	Cr ₂ O ₇ ²⁻	dichromate ion
CO ₃ ² -	carbonate ion	MnO₄⁻	permanganate ion
PO ₄ 3-	phosphate ion		
HCO ₃ -	hydrogencarbonate ion		
NH ₄ ⁺	ammonium ion		

Determine if a chemical reaction is a redox reaction: (use change in oxidation state of element)

Non-redox reactions	Redox reactions
 Precipitation reaction Neutralisation reaction Acid-base reaction Acid-carbonate reaction 	 Displacement reaction (of halogens, metals) Grp I metal-water reaction Synthesis reaction Acid-metal reaction Disproportionation reaction Comproportionation reaction

Examples of types of redox reactions:

•	$Br_2(g) + 2 I^-(aq) \rightarrow 2 Br^-(aq) + I_2(s)$	[displacement rxn of halogens]
•	Cu^{2+} (aq) + Zn (s) \rightarrow Cu (s) + Zn ²⁺ (aq)	[displacement rxn of metals]
•	Mg (s) + 2 HC/ (aq) \rightarrow MgC/ ₂ (aq) + H ₂ (g)	[acid-metal rxn]
•	2 Na (s) + Cl_2 (g) \rightarrow 2 NaC/ (s)	[synthesis rxn]

17.3 Oxidising Agent and Reducing Agent Examples of oxidising agents & reducing agents:

Oxidising agents	Reducing agents
 potassium manganate(VII) (KMnO₄) bromine (Br₂) chlorine (Cl₂) concentrated sulfuric acid (H₂SO₄) nitric acid (HNO₃) oxygen (O₂) potassium dichromate(VI) (K₂Cr₂O₇) hydrogen peroxide (H₂O₂) 	 potassium iodide (KI) carbon (C) carbon monoxide (CO) hydrogen (H₂) hydrogen sulfide (H₂S) metals sulfur dioxide (SO₂) ammonia (NH₃) hydrogen peroxide (H₂O₂)

Test for presence of oxidising agent

Procedure	Add <u>aqueous potassium iodide (KI)</u> to unknown solution	
Observation	colourless (KI) \rightarrow brown (I ₂)	
Explanation	$2 I^{-}$ (aq) $\rightarrow I_{2}$ (aq) + 2 e ⁻ lodide ions in aqueous KI are oxidised to iodine by the oxidising agent. Thus, iodide is formed and dissolves in water to give brown solution.	

Test for presence of reducing agent

Procedure	Add acidified potassium manganate(VII) (KMnO ₄) to unknown solution	
Observation	Decolourised: $purple (Mn^{7+}) \rightarrow colourless (Mn^{2+})$	
Explanation	<u>MnO₄</u> (aq) + 8 H ⁺ (aq) + 5 e ⁻ → <u>Mn</u> ²⁺ (aq) + 4 H ₂ O (/) Manganate(VII) ion in acidified potassium manganate(VII) is reduced by the reducing agent to manganese ion, which is colourless.	
Procedure	Add potassium dichromate(VI) (K ₂ Cr ₂ O ₇) to unknown solution	
Observation	orange $(Cr^{6+}) \rightarrow green$ (Cr^{3+})	
Explanation	$\underline{\mathbf{Cr_2O_7}^{2-}}$ (aq) + 14 H ⁺ (aq) + 6 e ⁻ (aq) \rightarrow 2 $\underline{\mathbf{Cr^{3+}}}$ (aq) + 7 H ₂ O (/) Dichromate(VI) ion in potassium dichromate(VI) is reduced by the reducing agent to chromium ion, which is green.	

Disproportionation & comproportionation reaction:

Disproportionation reaction	Comproportionation reaction
1 compound of intermediate oxidation state converts to 2 compounds, one of higher and one of lower oxidation states	2 reactants containing same element with different oxidation state, form product in which elements reach same oxidation state
2 A → A' + A"	A' + A" → 2 A
$2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2$	$IO_3^- + 5 I^- + 6 H^+ \rightarrow 3 I_2 + 3 H_2O$

Typical questions

Multiple choice questions

1 The equation below shows the reaction that occurs between iron(III) chloride and hydrogen sulfide.

$$2 \text{ FeC} I_3 \text{ (aq)} + H_2 S \text{ (g)} \rightarrow 2 \text{ FeC} I_2 \text{ (aq)} + 2 \text{ HC} I \text{ (aq)} + S \text{ (s)}$$

Which element is oxidised in the reaction?

- **A** Iron
- **B** Chloride
- C Hydrogen
- **D** Sulfur
- 2 In which pair of substances does the named element have the same oxidation state?
 - A Copper in Cu₂O and Cu
 - **B** Iron in FeO and Fe₂O₃
 - C Manganese in MnO₂ and KMnO₄
 - D Sulfur in SO₃ and H₂SO₄
- 3 In which reaction does the oxidation state of chlorine increase by one?
 - **A** $2 \text{ KC/O}_3 (s) \rightarrow 2 \text{ KC/} (s) + 3 \text{ O}_2 (g)$
 - **B** $Cl_2(g) + 2 \text{ NaOH (aq)} \rightarrow \text{NaC} l \text{ (aq)} + \text{NaC} l \text{O (aq)} + \text{H}_2 \text{O (} l \text{)}$
 - **C** $Cl_2(g) + H_2(g) \rightarrow 2 HCl(g)$
 - **D** NaCl (aq) + AgNO₃ (aq) \rightarrow AgCl (s) + NaNO₃ (aq)
- 4 Which reaction is a redox reaction?
 - A Barium chloride + potassium sulfate → barium sulfate + potassium chloride
 - **B** Potassium hydroxide + hydrochloric acid → potassium chloride + water
 - C Potassium iodide + chlorine → potassium chloride + iodine
 - **D** Silver nitrate + potassium chloride → silver chloride + potassium nitrate
- **5** What colour changes occur when sulfur dioxide is passed through aqueous potassium iodide and acidified potassium manganate(VII) separately?

	Aqueous potassium iodide	Acidified potassium manganate(VII)
A	colourless to brown	no change
В	colourless to brown	purple to colourless
С	no change	no change
D	no change	purple to colourless

- **6** Hydrogen peroxide reacts with acidified potassium iodide to form iodine as one of the products. It also turns acidified potassium manganate(VII) from purple to colourless. Which statement is true about hydrogen peroxide in both reactions?
 - **A** Hydrogen peroxide acts as both an oxidising agent and a reducing agent.
 - **B** Hydrogen peroxide acts only as a reducing agent.
 - **C** Hydrogen peroxide acts only as an oxidising agent.
 - **D** Hydrogen peroxide is neither an oxidising agent nor a reducing agent.
- 7 Which reactions are oxidation reactions?

- A 1 and 2
- **B** 1 and 3
- **C** 2 and 3
- **D** 1, 2 and 3

Reaction 3:

 CH_3CO_2H (acid) $\rightarrow CH_3CO_2Na$ (salt)

Charges of CH3COO does not change

Structured questions

1 The reaction between ammonium perchlorate (NH_4C/O_4) , and aluminium metal is used to propel space shuttles. The equation for the reaction is shown below.

$$6 \text{ NH}_4\text{C}/\text{O}_4 \text{ (s)} + 10 \text{ A}/\text{ (s)} \rightarrow 4 \text{ A}/\text{2}\text{O}_3 \text{ (s)} + 2 \text{ A}/\text{C}/\text{3} \text{ (s)} + 12 \text{ H}_2\text{O} \text{ (l)} + 3 \text{ N}_2 \text{ (g)}$$

(a) State the oxidation numbers of nitrogen and chlorine in ammonium perchlorate.

Let the oxidation number of nitrogen in ammonium perchlorate be x. Since NH_4^+ has a +1 charge and the oxidation number of hydrogen is +1, x + 4(+1) = +1 x = -3

Let the oxidation number of chlorine be *y*.

Since C/O_4^- has a -1 charge and the oxidation number of oxygen is -2, y + 4(-2) = -1 y = +7

Thus, the oxidation number of chlorine in NH_4C/O_4 is +7.

Thus, the oxidation number of nitrogen in NH_4C/O_4 is -3.

(b) Identify the oxidising agent in the above reaction. Give a reason for your answer.

Ammonium perchlorate is the oxidising agent. It oxidises aluminium to aluminium oxide and aluminium chloride. The oxidation number of aluminium increases from 0 to AI to +3 in AI_2O_3 and $AICI_3$.