Rosetta Scoring Function

Cristina E. Martina

PostDoc, Meiler Lab Leipzig Rosetta Workshop December 2019

cristinaelisamartina@gmail.com

Why we need a scoring function?

Conformational changes

Conformation A

Conformation B

Mutations

Mutation A

Mutation B

How discriminate among A and B?

Scoring Function (or Energy Function)

$$\Delta E_{\text{total}} = \sum_{i} w_{i} E_{i}(\Theta_{i}, \text{aa}_{i})$$

The total energy (ΔE_{total}) is the sum of weighted energy terms ($\Sigma_i \mathbf{w}_i E_i$) that are calculated as functions of geometric degrees of freedom (Θ_i) and chemical identities (\mathbf{aa}_i).

Default scoring functions in Rosetta:

	Score12	Talaris13	Talaris14	REF15	
2004	20)13	201	.7	—

Historically the total energy was given in Rosetta Energy Units, (**REU**)

The newest scoring function (REF15) is given in **kcal/mol**

Types of scoring functions

Low Resolution

Centroid
Simple energy function
Faster

Global search of conformational space (Ab-initio folding, loop modeling)

High Resolution

Full-atom

More accurate energy function

Time consuming

Local search of conformational space

Scoring in Rosetta

The lower the better!

Total Energy

Conformation A

Total Energy = 253 REU

Conformation B

Total Energy = -82 REU

Total Energy

Conformation A

Conformation B

But why the energy is different?

Total Energy = 253 REU

Total Energy = -82 REU

Energy terms

 $E_{\text{fa rep}}(i, j) =$

$$\sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} m_{i,j} d_{i,j} + b_{i,j} & d_{i,j} \leq 0.6 \sigma_{i,j} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} + 1 \right] & 0.6 \sigma_{i,j} < d_{i,j} \leq \sigma_{i,j} \\ 0 & \sigma_{i,j} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_{0} q_{i} q_{j}}{\varepsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^{2}} - \frac{1}{d_{\text{max}}^{2}} & d_{i,j} \leq d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{fa_atr}} = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} -\varepsilon_{i,j} & d_{i,j} \leq \sigma_{ij} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} \right] & \sigma_{i,j} < d_{i,j} \leq 4.5 \text{ Å} \\ f_{\text{poly}}(d_{i,j}) & 4.5 \text{ Å} < d_{i,j} \leq 6.0 \text{ Å} \\ 0 & 6.0 \text{ Å} < d_{i,j} \end{cases}$$

Energy terms

Energy terms

One Body	Two Body	Whole Body
Backbone - p_aa_pp - rama_prepro	Lennard-Jones - fa_atr - fa_rep	Radius of Gyration - rg
Side Chain - fa_dun - yhh planarity	Solvation - fa_sol	Contact Order - co
Reference - ref	Hydrogen Bond - hbond_lr_bb - hbond_sr_bb - hbond_bb_sc - hbond_sc	Structure Alignment - hs_pair - ss_pair - sheet

Energy terms - Full-Atom

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

Energy terms - Full-Atom

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	10	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion in the Abrica to gype we notice in a mean to sate to the energy of interaction between two notices to be and to go to one same to the distinct of the same to the same		kcal/mol	36
fa_elec	energy of interaction between two noticed to go to ome and le the die in the		kcal/mol	50
hbond lr bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond bb sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ψ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal mol)/kT	kT	52
omega	backbox reper than 100 W item to the control of the	Car mol), AU	AU^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol]/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Van der Waals interactions

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Implicit solvation

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Electrostatics

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf fa13	energy of disulfide bridges	1.25	kcal/mol	49

Hydrogen Bonds

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49

Disulfide Bonds

(Alford RF, 2017)

Energy terms - Full-Atom

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	10	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion in the Abrica to gype we notice in a mean to sate to the energy of interaction between two notices to be and to go to one same to the distinct of the same to the same		kcal/mol	36
fa_elec	energy of interaction between two noticed to go to ome and le the die in the		kcal/mol	50
hbond lr bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond bb sc	energy of backbone-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ψ, ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal mol)/kT	kT	52
omega	backbox reper than 100 W item to the control of the	Car mol), AU	AU^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol]/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Protein Backbone

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Protein Side-Chains

(Alford RF, 2017)

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Special-Case Torsions

term	description	weight	units	ref(s)
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

Special-Case, Design

Takes in account the unfolding energy of the amino acids

Adjusts amino acids frequencies during protein design

Weights

 $\Delta E_{\text{total}} = W_1 E_1 + W_2 E_2 + W_3 E_3 + W_4 E_4 + ... + W_n E_n$

$$E_{\text{fa_rep}}(i, j) = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} m_{i,j} d_{i,j} + b_{i,j} & d_{i,j} \leq 0.6\sigma_{i,j} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} + 1 \right] & 0.6\sigma_{i,j} < d_{i,j} \leq \sigma_{i,j} \\ 0 & \sigma_{i,j} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_{0} q_{i} q_{j}}{\varepsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^{2}} - \frac{1}{d_{\text{max}}^{2}} & d_{i,j} \leq d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{elec}}(i, j, d_{i,j}) = \frac{C_0 q_i q_j}{\epsilon(d_{i,j})} \begin{cases} \frac{1}{d_{i,j}^2} - \frac{1}{d_{\text{max}}^2} & d_{i,j} \le d_{\text{max}} \\ 0 & d_{\text{max}} < d_{i,j} \end{cases}$$

$$E_{\text{fa_atr}} = \sum_{i,j} w_{i,j}^{\text{conn}} \begin{cases} -\varepsilon_{i,j} & d_{i,j} \leq \sigma_{ij} \\ \varepsilon_{i,j} \left[\left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{12} - 2 \left(\frac{\sigma_{i,j}}{d_{i,j}} \right)^{6} \right] & \sigma_{i,j} < d_{i,j} \leq 4.5 \text{ Å} \\ f_{\text{poly}}(d_{i,j}) & 4.5 \text{ Å} < d_{i,j} \leq 6.0 \text{ Å} \\ 0 & 6.0 \text{ Å} < d_{i,j} \end{cases}$$

Weights

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

Some weights for specific energy terms are set to zero!

Weights

term	description	weight	units	ref(s)
fa_atr	attractive energy between two atoms on different residues separated by a distance d	1.0	kcal/mol	5, 6
fa_rep	repulsive energy between two atoms on different residues separated by a distance d	0.55	kcal/mol	5, 6
fa_intra_rep	repulsive energy between two atoms on the same residue separated by a distance d	0.005	kcal/mol	5, 6
fa_sol	Gaussian exclusion implicit solvation energy between protein atoms in different residues	1.0	kcal/mol	36
lk_ball_wtd	orientation-dependent solvation of polar atoms assuming ideal water geometry	1.0	kcal/mol	50, 71
fa_intra_sol	Gaussian exclusion implicit solvation energy between protein atoms in the same residue	1.0	kcal/mol	36
fa_elec	energy of interaction between two nonbonded charged atoms separated by a distance d	1.0	kcal/mol	50
hbond_lr_bb	energy of short-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sr_bb	energy of long-range hydrogen bonds	1.0	kcal/mol	38, 49
hbond_bb_sc	energy of backbone—side-chain hydrogen bonds	1.0	kcal/mol	38, 49
hbond_sc	energy of side-chain-side-chain hydrogen bonds	1.0	kcal/mol	38, 49
dslf_fa13	energy of disulfide bridges	1.25	kcal/mol	49
rama_prepro	probability of backbone ϕ , ψ angles given the amino acid type	(0.45 kcal/mol)/kT	kT	50, 51
p_aa_pp	probability of amino acid identity given backbone ϕ , ψ angles	(0.4 kcal/mol)/kT	kT	51
fa_dun	probability that a chosen rotamer is native-like given backbone ϕ, ψ angles	(0.7 kcal/mol)/kT	kT	52
omega	backbone-dependent penalty for cis ω dihedrals that deviate from 0° and trans ω dihedrals that deviate from 180°	(0.6 kcal/mol)/AU	AU ^a	72
pro_close	penalty for an open proline ring and proline ω bonding energy	(1.25 kcal/mol)/AU	AU	51
yhh_planarity	sinusoidal penalty for nonplanar tyrosine χ_3 dihedral angle	(0.625 kcal/mol)/AU	AU	49
ref	reference energies for amino acid types	(1.0 kcal/mol)/AU	AU	1, 51

 $^{^{}a}$ AU = arbitrary units.

You can modify the weights if needed in special applications!

Modifying Weights:

Using the command line:

```
1 - score:weights <filename>
2 - score:set_weight <scoreterm<sub>1</sub>> <wt<sub>1</sub>> <scoreterm<sub>2</sub>> <wt<sub>2</sub>>
3 - score:patch <patchfile>

fa_atr = 0.423
fa_rep = 0.100
```

Using xml script file:

Total Energy

Conformation A (253 REU) Conformation B (-82 REU)

Score File (score.sc):

```
SCORE: score
              fa atr fa rep fa sol fa intra rep
fa intra sol xover4 lk ball wtd
                                    fa elec pro close
                                                          hbond sr bb
hbond lr bb hbond bb sc
                             hbond sc
                                           omega
                                                  fa dun
                                                          p aa pp
yhh planarity ref
                     rama prepro
                                    description
      253.063 -181.52
SCORE:
                             45.561
                                    149.367 0.702
17.998
                      -7.402
                                    -1.488 5.473
                                                          -12.482
                                           7.578 236.014 2.073
0
                             0
              -5.466
                      -3.345
                                    Conformation A
       -82.141 -217.874
                             26.366 130.127 0.591
SCORE:
9.342
                      -10.943
                                    -36.763 1.125
                                                          -20.668
0
              -3.441
                             0
                                           0.491
                                                   54.899
                                                          -2.846
0
              -5.466 -7.08
                                    Conformation B
```

Score File (score.sc):

	fa_atr					
fa_intra_sol_xo	ver4 lk_ball	wtd	fa elec	pro clos	se	hbond_sr_bb
hbond_lr_bb	hbond_bb_sc	hbond_s	С	omega	fa_dun	p_aa_pp
	ref rama_pr					
SCORE: 253.063	-181.52	45.561	149.367	0.702		
17.998	-7.402		-1.488	5.473		-12.482
0	0	0		7.578	236.014	2.073
0	-5.466 -3.345		Conforma	ation_A		
SCORE: -82.141	-217.874	26.366	130.127	0.591		
9.342	-10.943	3	-36.763	1.125		-20.668
0	-3.441	0		0.491	54.899	-2.846
0	-5.466 -7.08		Conforma	ation_B		

Score File (score.sc):

```
SCORE: score fa atr fa rep fa sol fa intra rep
                                  fa elec pro close hbond sr bb
fa intra sol xover4 lk ball wtd
hbond_lr_bb hbond_bb_sc hbond_sc
                                         omega fa dun p aa pp
yhh planarity ref rama_prepro description
SCORE: 253.063 -181.52
                           45.561 149.367 0.702
17.998
                                  -1.488 5.473
                    -7.402
                                                       -12.482
                                         7.578 236.014 2.073
0
                           0
                    -3.345
0
             -5.466
                                  Conformation A
                           26.366 130.127 0.591
      -82.141 -217.874
SCORE:
9.342
                    -10.943
                                                       -20.668
                                  -36.763 1.125
             -3.441
                                                54.899
0
                           0
                                         0.491
                                                       -2.846
             -5.466 -7.08
                                  Conformation B
0
```

Total Energy

Conformation A (253 REU) Conformation B (-82 REU)

	score	fa_atr	fa_rep
Α	253.1	-181.5	45.6
В	-82.1	-217.9	26.4
Delta (A-B)	335.2	36.4	19.2

Total Energy

Conformation A (253 REU)

Conformation B (-82 REU)

	score	fa_atr	fa_rep
Α	253.1	-181.5	45.6
В	-82.1	-217.9	26.4
Delta (A-B)	335.2	36.4	19.2

Sampling in Rosetta

If $E_{new} < E_{old}$: Accept structure

Conformational Landscape

Conformational Landscape

Conformational Landscape

Other score terms and functions

Membrane proteins:

Score functions for membrane proteins:

- mpframework_smooth_fa_2012
- ref2015_memb
- franklin2019

Constraints:

(Usually obtained from experimental data)

Atom Pair Restrains a distance between Atom1 and Atom2

Dihedral Restrains a dihedral angle

Angle Restrains an angle

Coordinate Restrains an atom to a fix XYZ position

Site Restrains a residue to interact with another chain

•••

Score terms for other biomolecules:

biomolecule	term	description	unit	ref
noncanonical	mm_lj_intra_rep	repulsive van der Waals energy between two atoms from the same residue	kcal/mol	67
amino acids	mm_lj_intra_atr	attractive van der Waals energy between two atoms from the same residue	kcal/mol	67
	mm_twist	molecular mechanics derived torsion term for all proper torsions	kcal/mol	67
	unfolded	energy of the unfolded state based on explicit unfolded state model	AUa	67
	split_unfolded_1b	one-body component of the two-component reference energy, lowest energy of a side chain in a dipeptide model system	AU	in the SI
	split_unfolded_2b	two-body component of the two-component reference energy, median two-body interaction energy based on atom-type composition	AU	in the SI
carbohydrates	sugar_bb	energy for glycosidic torsions	kcal/mol	70
DNA	gb_elec	generalized Born model of the electrostatics energy	kcal/mol	107
RNA	fa_stack	π – π stacking energy for RNA bases	kT	113
	stack_elec	electrostatic energy for stacked RNA bases	kT	114
	fa_elec_rna_phos	electrostatic energy (fa_elec) between RNA phosphate atoms	kT	62
	rna_torsion	knowledge-based torsional potential for RNA	kT	62
	rna_sugar_close	penalty for opening an RNA sugar	kT	62

^aAU = arbitrary units.

Score terms for experimental data:

- Electron density
- Residual dipolar coupling (RDC)
- SAXs

References:

	REF2015:
	ILLI 2015.
•	Alford RF, et. al, The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design . <i>Journal of Chemical Theory and Computation</i> , 2017. <i>13</i> (6), 3031-3048
•	Park H, et. al Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules Journal of Chemical Theory and Computation, 2016. 12 (12), 6201-6212
	Old Scorefxn (Talaris):
•	O'Meara MJ, et. al, A Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. Journal of Chemical Theory and Computation, 2015.
•	Leaver-Fay A, et. al Scientific benchmarks for guiding macromolecular energy function improvement. <i>Methods in enzymology</i> , 2013 . 523: p. 109.
	Links:

https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/score-types

https://www.rosettacommons.org/docs/latest/rosetta_basics/scoring/scoring-explained