

UNCLASSIFIED

AD 410109

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

~~AFOSE-4725~~

N-6 3-4-3

OFFICE OF AEROSPACE RESEARCH

CATALOGED BY DDC
AS AD NO. 410109

POLYTECHNIC INSTITUTE OF BROOKLYN

333 Jay Street, Brooklyn I, New York

PHYSICS DEPARTMENT

FREE ELECTRON MODEL CALCULATION OF THE DEPENDENCE OF THE ATTENUATION OF TRANSVERSE SOUND WAVES ON A MAGNETIC FIELD

PARALLEL TO THE LATTICE DISPLACEMENT

by

Harold L. Grubin

RESEARCH REPORT

GRANT AF-AFOSR 62-258

Studies supported by the
SOLID STATE SCIENCES DIVISION

Office of Aerospace Research
Air Force Office of Scientific Research
Washington 25, D. C.

410109

AFOSR

OFFICE OF AEROSPACE RESEARCH

FREE ELECTRON MODEL CALCULATION OF THE DEPENDENCE OF THE
ATTENUATION OF TRANSVERSE SOUND WAVES ON A MAGNETIC FIELD
PARALLEL TO THE LATTICE DISPLACEMENT

by

Harold L. Grubin

RESEARCH REPORT

GRANT AF-AFOSR 62-258

PRINCIPAL INVESTIGATOR Terje Kjeldaas, Jr.

RESEARCH ASSISTANT Harold L. Grubin

Studies supported by the
SOLID STATE SCIENCES DIVISION

Office of Aerospace Research
Air Force Office of Scientific Research
Washington 25, D. C.

POLYTECHNIC INSTITUTE OF BROOKLYN

333 Jay Street
Brooklyn 1, New York

TABLE OF CONTENTS

	Page
I. ABSTRACT	3
II. INTRODUCTION AND DISCUSSION	3
III. FIG. I MAGNETIC FIELD DEPENDENCE OF THE ATTENUATION	6
IV. TABLE I	7
V. APPENDIX A DESCRIPTION OF CALCULATIONS	12
VI. REFERENCES	78
VII. DISTRIBUTION LIST	79

I.

ABSTRACT

The results of a calculation of the attenuation of ultrasonic waves in a metal when a d.c. magnetic field is present in a direction parallel to the polarization direction of a sound wave is described. A principal part of the report includes tables of use to anyone interested in attenuation calculations. Graphical results for the case in question are included.

II.

INTRODUCTION AND DISCUSSION

This note* reports the results of a calculation of the attenuation of ultrasonic waves in a metal when a d.c. magnetic field H is present in a direction parallel to the polarization direction U of a transverse sound wave. The method of treatment involves the simultaneous solution of Maxwell's equations with the Boltzmann transport equation, applied to a free electron model. Thus, the formulation of the problem is the same as that of Cohen, Harrison and Harrison⁽¹⁾ who in their general discussion of the problem include an evaluation of the attenuation for an infinite electronic mean free path. Indeed the analytical results obtained are identical with those of CHH, however, we solved the linearized Boltzmann equation by standard techniques of partial differential equations rather than by Chambers' method as employed by CHH; furthermore, the attenuation has been evaluated for a set of different values of the electronic mean free path.

The results shown in Fig. 1 may be regarded as the attenuation $\text{Re}(\alpha)$ plotted against $1/H$, for a series of different values of the electronic mean free path l (corresponding to different $q_1^{(2)}$). The abscissa is the dimension-

*Based on a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Physics) at the Polytechnic Institute of Brooklyn.

less variable $X_F = q v_F / \omega_c$ where ω_c is the cyclotron frequency eH/mc . The results shown in Fig. 1, however, are not in agreement with experimental findings⁽³⁾ in particular the presence of a substantial peak in the magneto-acoustic oscillations observed experimentally is not discernible in the free electron model result.

Each curve represents a monotonically increasing function, approaching a limit at zero magnetic field (large X_F), identical with the zero field limit indicated by Pippard⁽⁴⁾. For curves corresponding to larger electronic mean free paths we observe the presence of slight "wiggles" that have the appearance of oscillations about curves having simpler forms. This is most apparent when we consider the curve for infinite mean free path, here we appear to have oscillations about a curve of constant slope. We note that the curve for infinite electronic free path is the same as that of CHH. The oscillations are a consequence of the presence of Bessel functions in the expression of the magneto-acoustic conductivity (see below).

The theory requires the calculation, from the Boltzmann equation, of the magneto-acoustic conductivity. The specific expression turns out to be:

$$\sigma = 3\sigma_0 \sum_{n=-\infty}^{+\infty} \frac{r_n(X_F)}{1+i\tau(n\omega_c - \omega)} \quad (1)$$

where σ_0 is the d.c. conductivity $\frac{N_0 e^2 \tau}{m}$, N_0 the electron density at absolute zero and:

$$r_n(X_F) = \int_0^{\pi/2} d\theta J_n^2(X_F \sin \theta) \cos^2 \theta \sin \theta \quad (2)$$

J_n being a Bessel function of the first kind⁽⁵⁾. Equation (1) is the same as Eq. (4.1) of CHH. The attenuation coefficient $\text{Re}(\alpha)$ is then:

$$\text{Re}(\alpha) = \frac{m}{Mc_s \tau} \text{Re} \left[\frac{1}{\sigma/\sigma_0 - 1} \right] \quad (3)$$

Some comparison may be made between the curves presented in here and those reported by Kjeldaas and Holstein⁽⁶⁾ for the case of a magnetic field perpendicular to the direction of polarization of a transverse sound wave. We observe:

- a) the corresponding expression for the zero field limits are the same,
- b) ~~maxima in the attenuation curves of Kjeldaas and Holstein correspond to valleys in the curves shown here.~~

It should be noted that the distance between valleys is very nearly equal to π . There is a problem in defining points of maxima and minima in the curves presented, since the curves are monotonically increasing; however, one can isolate certain sections of the curves and observe maxima and minima in these sections.

We tabulate in the appendices the computations required to obtain the curves shown in Fig. 1. Table I contains the actual plotted points.

III

FIGURE I

MAGNETIC FIELD DEPENDENCE OF THE ATTENUATION.

ORDINATE: $\text{Re}[\alpha'(X_F)] / \frac{m}{M_C T}$ ABSCISSA: X_F (All curves were obtained by computation at the points indicated on the curve for $g\ell=3$.)

X_p	$\sigma/3\sigma_0$ ($Qf=3$)	$Re d(I_F)/m_{Cs}r$ ($Qf=3$)
0.0	0. 333 333 333	0. 000 000 000
0.5	0. 317 541 907	0. 049 730 211
1.0	0. 279 221 421	0. 193 795 705
1.5	0. 237 185 981	0. 405 366 927
2.0	0. 209 673 585	0. 589 772 661
2.5	0. 187 671 230	0. 776 155 744
3.0	0. 180 149 269	0. 850 317 435
3.5	0. 177 923 677	0. 873 462 480
4.0	0. 177 520 664	0. 877 715 674
4.5	0. 177 389 950	0. 879 099 313
5.0	0. 177 165 011	0. 881 485 127
5.5	0. 176 894 144	0. 884 366 128
6.0	0. 176 667 383	0. 886 784 802
6.5	0. 176 507 776	0. 888 490 925
7.0	0. 176 401 137	0. 889 632 567
7.5	0. 176 322 914	0. 890 470 873
8.0	0. 176 134 072	0. 892 497 740
8.5	0. 176 197 214	0. 891 819 545
9.0	0. 176 148 015	0. 892 347 940
9.5	0. 176 107 778	0. 892 780 302
10.0	0. 176 071 130	0. 893 174 271
10.5	0. 176 041 090	0. 893 497 326
11.0	0. 176 015 163	0. 893 776 238
11.5	0. 175 992 466	0. 894 020 470
12.0	0. 175 972 554	0. 894 234 786

TABLE I (Cont'd.)

X_F	$\sigma_3 \sigma_0$ ($qf=7$)	$R_{eff}(T_F)/\frac{m}{MC_S \tau}$ ($qf=7$)
0.0	0. 333 333 333	0. 000 000 000
0.5	0. 317 188 085	0. 050 901 181
1.0	0. 274 552 107	0. 214 098 616
1.5	0. 219 772 661	0. 516 718 830
2.0	0. 169 437 629	0. 967 292 243
2.5	0. 131 453 708	1. 535 746 905
3.0	0. 110 651 377	2. 012 464 393
3.5	0. 102 256 455	2. 259 777 911
4.0	0. 100 165 116	2. 327 838 539
4.5	0. 099 621 188	2. 316 008 414
5.0	0. 098 553 645	2. 382 252 714
5.5	0. 096 957 568	2. 437 930 016
6.0	0. 095 548 073	2. 488 645 274
6.5	0. 094 771 374	2. 517 236 474
7.0	0. 094 560 001	2. 525 098 665
7.5	0. 094 583 148	2. 524 235 980
8.0	0. 094 572 218	2. 524 643 287
8.5	0. 094 455 250	2. 529 008 001
9.0	0. 094 298 881	2. 534 859 902
9.5	0. 094 186 736	2. 539 068 742
10.0	0. 094 143 134	2. 540 707 847
10.5	0. 094 142 624	2. 540 727 028
11.0	0. 094 144 997	2. 540 637 781
11.5	0. 094 139 938	2. 540 828 052
12.0	0. 094 104 214	2. 542 172 227

TABLE I (Cont'd.)

X_F	$\sigma/30$ ($qf=11$)	$R_{eff}(T_F)/M_{CS,T}$ ($qf=11$)
0.0	0. 333 333 333	0. 000 000 000
0.5	0. 317 139 501	0. 051 062 173
1.0	0. 273 863 673	0. 217 150 597
1.5	0. 216 922 001	0. 536 650 647
2.0	0. 162 118 525	1. 056 108 845
2.5	0. 119 679 190	1. 785 223 841
3.0	0. 094 375 415	2. 531 993 298
3.5	0. 082 880 323	3. 021 863 347
4.0	0. 079 028 110	3. 217 908 454
4.5	0. 077 299 968	3. 312 205 321
5.0	0. 074 921 859	3. 449 079 851
5.5	0. 071 747 564	3. 645 918 477
6.0	0. 068 826 911	3. 843 066 883
6.5	0. 066 982 152	3. 976 450 044
7.0	0. 066 423 231	4. 018 324 587
7.5	0. 065 998 620	4. 050 610 654
8.0	0. 065 758 084	4. 069 085 244
8.5	0. 065 305 466	4. 104 217 973
9.0	0. 064 772 229	4. 146 238 418
9.5	0. 064 372 348	4. 178 206 849
10.0	0. 064 193 292	4. 192 650 555
10.5	0. 064 165 300	4. 194 915 839
11.0	0. 064 158 535	4. 195 463 601
11.5	0. 064 095 852	4. 200 544 542
12.0	0. 063 987 166	4. 209 377 976

TABLE I (Con't.)

10

X_F	$\sigma/3\sigma_0$ ($q\ell=15$)	$Re \alpha(X_F)/m_{KST}^n$ ($q\ell=15$)
0.0	0. 333 333 333	0. 000 000 000
0.5	0. 317 124 157	0. 051 113 029
1.0	0. 273 643 699	0. 218 129 028
1.5	0. 215 993 923	0. 543 253 294
2.0	0. 159 683 391	1. 087 464 020
2.5	0. 115 636 152	1. 882 604 656
3.0	0. 085 031 928	2. 761 691 218
3.5	0. 075 809 091	3. 397 010 027
4.0	0. 071 093 400	3. 688 667 771
4.5	0. 068 693 242	3. 852 490 923
5.0	0. 065 552 423	4. 084 988 747
5.5	0. 061 446 732	4. 424 752 830
6.0	0. 057 573 415	4. 789 709 249
6.5	0. 054 960 948	5. 064 912 368
7.0	0. 053 699 109	5. 207 427 637
7.5	0. 053 143 692	5. 272 302 897
8.0	0. 052 585 968	5. 338 826 611
8.5	0. 051 757 406	5. 440 302 153
9.0	0. 050 811 755	5. 560 161 784
9.5	0. 050 063 842	5. 658 165 254
10.0	0. 049 661 174	5. 712 151 696
10.5	0. 049 510 542	5. 732 572 899
11.0	0. 049 409 025	5. 746 405 810
11.5	0. 049 223 404	5. 771 846 443
12.0	0. 048 963 504	5. 807 791 642

TABLE I (Cont'd.)

11

X_F	$\sigma/\beta\sigma_0$ ($g\ell=\infty$)	$R_{\text{eff}}(X_F)/m_{\text{CSR}}$ ($g\ell=\infty$)
0.0	0. 333 333 333	0. 000 000 000
0.5	0. 317 106 269	0. 051 172 322
1.0	0. 273 385 667	0. 219 278 746
1.5	0. 214 894 401	0. 551 149 456
2.0	0. 156 763 851	1. 126 340 551
2.5	0. 110 702 286	2. 011 079 042
3.0	0. 081 451 231	3. 092 428 429
3.5	0. 066 852 651	3. 986 089 980
4.0	0. 060 848 254	4. 478 108 432
4.5	0. 057 358 432	4. 811 409 442
5.0	0. 052 940 111	5. 296 423 015
5.5	0. 047 231 244	6. 057 475 202
6.0	0. 041 623 793	7. 008 240 222
6.5	0. 037 470 534	7. 895 878 914
7.0	0. 035 028 603	8. 516 032 749
7.5	0. 033 545 414	8. 936 778 044
8.0	0. 032 053 103	9. 399 407 549
8.5	0. 030 099 110	10. 074 524 573
9.0	0. 027 904 243	10. 945 614 626
9.5	0. 025 983 416	11. 828 695 554
10.0	0. 024 646 010	12. 524 839 652
10.5	0. 023 780 906	13. 016 847 521
11.0	0. 023 023 101	13. 478 211 833
11.5	0. 022 086 660	14. 092 066 131
12.0	0. 020 966 886	14. 898 084 881

V

APPENDIX A
DESCRIPTION OF CALCULATIONS

The function $r_n(x_F)$ appearing Eq. (1) is evaluated from

$$r_n(x_F) = \left(\frac{1}{2} + \frac{1-4n^2}{8x_F^2}\right) g_n(x_F) - \frac{1}{8x_F^2} J_{2n}(2x_F) + \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad (A-1)$$

where

$$g_n(x_F) = x_F^{-1} \sum_{m=0}^{\infty} J_{2m+2n+1}(2x_F) \quad (A-2)$$

Equation (A-1) is essentially identical to Eq. (Al) of CHH.

Col. (I) of the tabulated calculations contains the values of $x_F g_n(x_F)$ for $x_F = 0, \frac{1}{2}, 1, \frac{3}{2} \dots 12$. The first term of Eq. (A-1) is then obtained by multiplying the values $\left(\frac{1}{2} + \frac{1-4n^2}{8x_F^2}\right) \frac{1}{x_F}$, (Col. (II)), by the corresponding terms of Col. (I), the results are tabulated in Col. (III). Cols. (IV) and (V) contain the terms $- \frac{1}{8x_F^2} J_{2n}(2x_F)$ and $\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$ respectively. Summing Cols. (III), (IV) and (V) we obtain $r_n(x_F)$, tabulated in Col. (VI).

To obtain the attenuation we must calculate the ratio $r_n(x_F)/[1+(ql)^2 \frac{n^2}{x_F^2}]$ for $ql = 3, 7, 11, 15$; values of this ratio are contained in Cols. (VIII), (IX), (XII) and (XIV), with the values $1+(ql)^2 n^2/x_F^2$ tabulated in Cols. (VII),

(IX), (XI) and (XIII). It should be noted that the above ratio for $ql=\infty$ is non-zero only for $n=0$.

The ratio of $\sigma/3\sigma_0$ (see Eq. (1)) consists in performing a summation of the Cols. (VIII), (X), (XII) and (XIV). These results are tabulated in Table I. A calculation of the relative attenuation $\text{Re} [\alpha(X_F)] / \frac{m}{mc_s}$ is obtained by subtracting one (1) from the reciprocal of $\sigma/3\sigma_0$; this is also tabulated in Table I.

Computations were performed retaining nine places; one can expect the attenuation to have five significant figures when its numerical value is of the order of magnitude of a tenth, and less than five significant figures when the order of magnitude is less than a tenth.

Bessel functions in a form most suitable for the numerical evaluation of the above equations were found in Ref. (5).

		I	II	III
		$x_F g_n(x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2}\right] \frac{1}{x_F}$	Col. I x Col. II
0.5	0	0. 459 865 202	2	+ 0. 919 730 404
	1	0. 019 814 617	- 2	- 0. 039 629 234
	2	0. 000 251 264	- 14	- 0. 003 517 696
	3	0. 000 001 507	- 34	- 0. 000 051 238
	4	0. 000 000 005	- 62	- 0. 000 000 310
1.0	0	0. 712 885 144	5/8	+ 0. 445 553 215
	1	0. 136 160 337	1/8	+ 0. 017 020 042
	2	0. 007 217 088	- 11/8	- 0. 009 923 496
	3	0. 000 177 459	- 31/8	- 0. 000 687 653
	4	0. 000 002 515	- 59/8	- 0. 000 018 548
	5	0. 000 000 023	- 95/8	- 0. 000 000 273
	6	0. 000 000 000	- 139/8	0. 000 000 000
1.5	0	0. 693 783 622	10/27	+ 0. 256 956 897
	1	0. 354 724 664	6/27	+ 0. 078 827 703
	2	0. 045 661 942	- 6/27	- 0. 010 147 098
	3	0. 002 633 508	- 26/27	- 0. 002 535 970
	4	0. 000 086 214	- 54/27	- 0. 000 172 428
	5	0. 000 001 819	- 90/27	- 0. 000 006 063
	6	0. 000 000 026	- 134/27	- 0. 000 000 129
	7	0. 000 000 000		0. 000 000 000

		I	II	III
		$x_F \ g_n (x_F)$	$\left[\frac{1}{2} + \frac{1 - 4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col I x Col. II
2.0	0	0. 512 367 075	17/64	+ 0. 136 097 504
	1	0. 578 410 403	13/64	+ 0. 117 489 613
	2	0. 148 238 930	1/64	+ 0. 023 162 332
	3	0. 016 152 274	- 19/64	- 0. 004 795 206
	4	0. 000 976 205	- 47/64	- 0. 000 716 900
	5	0. 000 037 604	- 83/64	- 0. 000 048 767
	6	0. 000 001 004	- 127/64	- 0. 000 001 992
	7	0. 000 000 019	- 179/64	- 0. 000 000 053
	8	0. 000 000 000	- 239/64	0. 000 000 000
2.5	0	0. 357 655 956	26/125	+ 0. 074 392 438
	1	0. 685 235 093	22/125	+ 0. 120 601 376
	2	0. 320 403 863	10/125	+ 0. 025 632 309
	3	0. 059 263 317	- 10/125	- 0. 004 741 065
	4	0. 005 886 907	- 38/125	- 0. 001 789 619
	5	0. 000 366 624	- 74/125	- 0. 000 217 041
	6	0. 000 015 697	- 118/125	- 0. 000 014 817
	7	0. 000 000 490	- 170/125	- 0. 000 000 666
	8	0. 000 000 011	- 230/125	- 0. 000 000 020
	9	0. 000 000 000		0. 000 000 000

x_F	n	I	II	III
		$x_F g_n(x_F)$	$\left[\frac{1}{2} + \frac{1 - n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
3.0	0	0. 353 110 606	37/216	+ 0. 060 486 538
	1	0. 629 794 464	33/216	+ 0. 096 218 598
	2	0. 515 026 080	21/216	+ 0. 050 071 980
	3	0. 152 939 006	1/216	+ 0. 000 708 050
	4	0. 023 352 355	- 27/216	- 0. 002 919 044
	5	0. 002 187 032	- 63/216	- 0. 000 637 884
	6	0. 000 139 086	- 109/216	- 0. 000 070 186
	7	0. 000 006 415	- 159/216	- 0. 000 004 722
	8	0. 000 000 224	- 219/216	- 0. 000 000 227
	9	0. 000 000 006	- 287/216	- 0. 000 000 007
	10	0. 000 000 000	- 363/216	0. 000 000 000
3.5	0	0. 477 320 154	50/343	+ 0. 069 580 197
	1	0. 482 002 977	46/343	+ 0. 064 641 798
	2	0. 649 558 564	34/343	+ 0. 064 387 729
	3	0. 301 662 240	14/343	+ 0. 012 312 744
	4	0. 068 078 671	- 14/343	- 0. 002 778 721
	5	0. 009 158 163	- 50/343	- 0. 001 335 009
	6	0. 000 823 402	- 94/343	- 0. 000 225 655
	7	0. 000 053 181	- 146/343	- 0. 000 022 636
	8	0. 000 002 591	- 206/343	- 0. 000 001 556
	9	0. 000 000 097	- 274/343	- 0. 000 000 077
	10	0. 000 000 002	- 350/343	- 0. 000 000 002
	11	0. 000 000 000		0. 000 000 000

		I	II	III
		$x_F g_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
4.0	0	0. 605 373 413	65/512	+ 0. 076 854 046
	1	0. 370 737 067	61/512	+ 0. 044 169 845
	2	0. 661 869 274	49/512	+ 0. 063 342 957
	3	0. 476 094 502	29/512	+ 0. 026 966 290
	4	0. 155 505 425	1/512	+ 0. 000 303 721
	5	0. 029 184 531	- 35/512	- 0. 001 995 036
	6	0. 003 587 859	- 79/512	- 0. 000 553 595
	7	0. 000 313 066	- 131/512	- 0. 000 080 100
	8	0. 000 020 463	- 191/512	- 0. 000 007 633
	9	0. 000 001 041	- 259/512	- 0. 000 000 526
	10	0. 000 000 042	- 335/512	- 0. 000 000 027
	11	0. 000 000 001	- 419/512	0. 000 000 000
	12	0. 000 000 000	- 511/512	0. 000 000 000
4.5	0	0. 626 133 219	82/729	+ 0. 070 429 250
	1	0. 380 821 433	78/729	+ 0. 040 746 326
	2	0. 561 756 623	66/729	+ 0. 050 858 624
	3	0. 616 795 478	46/729	+ 0. 038 919 879
	4	0. 289 334 599	18/729	+ 0. 007 144 064
	5	0. 074 454 017	- 18/729	- 0. 001 838 370
	6	0. 012 236 616	- 62/729	- 0. 001 040 699
	7	0. 001 406 315	- 114/729	- 0. 000 219 917
	8	0. 000 119 930	- 174/729	- 0. 000 028 625

	I	II	III
	$x_F s_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
	x_F	n	
	9	0. 000 007 912	- 242/729
4.5	10	0. 000 000 415	- 318/729
	11	0. 000 000 017	- 402/729
	12	0. 000 000 000	0. 000 000 000
	0	0. 533 505 648	101/1000
5.0	1	0. 490 030 902	97/1000
	2	0. 431 653 523	85/1000
	3	0. 665 715 051	65/1000
	4	0. 449 004 134	37/1000
	5	0. 157 148 449	1/1000
	6	0. 034 031 921	- 43/1000
	7	0. 005 059 838	- 95/1000
	8	0. 000 551 865	- 155/1000
	9	0. 000 046 219	- 223/1000
	10	0. 000 003 073	- 299/1000
	11	0. 000 000 166	- 383/1000
	12	0. 000 000 007	- 475/1000
	13	0. 000 000 000	0. 000 000 000
	0	0. 419 899 435	122/1331
5.5	1	0. 596 684 733	118/1331
	2	0. 369 336 700	106/1331
	3	0. 607 622 551	86/1331

	I	II	III
	$x_F g_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
5.5	4 0. 589 246 519	58/1331	+ 0. 025 677 158
	5 0. 280 391 019	22/1331	+ 0. 004 634 562
	6 0. 079 377 010	- 22/1331	- 0. 001 312 016
	7 0. 015 082 389	- 74/1331	- 0. 000 838 540
	8 0. 002 073 298	- 134/1331	- 0. 000 208 731
	9 0. 000 216 866	- 202/1331	- 0. 000 032 912
	10 0. 000 017 897	- 278/1331	- 0. 000 003 738
	11 0. 000 001 196	- 362/1331	- 0. 000 000 325
	12 0. 000 000 065	- 454/1331	- 0. 000 000 022
	13 0. 000 000 002	- 554/1331	0. 000 000 000
6.0	14 0. 000 000 000		
	0 0. 387 061 090	145/1728	+ 0. 032 479 084
	1 0. 610 508 194	141/1728	+ 0. 049 815 772
	2 0. 415 371 255	129/1728	+ 0. 031 008 617
	3 0. 488 842 218	109/1728	+ 0. 030 835 533
	4 0. 659 096 022	81/1728	+ 0. 030 895 126
	5 0. 428 715 113	45/1728	+ 0. 011 164 456
	6 0. 158 302 631	1/1728	+ 0. 000 091 610
	7 0. 038 154 749	- 51/1728	- 0. 001 126 095
	8 0. 006 542 095	- 111/1728	- 0. 000 420 238
	9 0. 000 844 335	- 179/1728	- 0. 000 087 462
	10 0. 000 085 347	- 255/1728	- 0. 000 012 594
	11 0. 000 006 958	- 339/1728	- 0. 000 001 365

		I	II	III
		$x_F g_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col I x Col. II
6.0	x _F	n		
	12	0. 000 000 467	- 431/1728	- 0. 000 000 116
	13	0. 000 000 026	- 531/1728	- 0. 000 000 007
	14	0. 000 000 001	- 639/1728	- 0. 000 000 000
6.5	x _F	n		
	15	0. 000 000 000		
	0	0. 457 211 234	170/2197	+ 0. 035 378 201
	1	0. 527 529 286	166/2197	+ 0. 039 858 835
	2	0. 524 209 470	154/2197	+ 0. 036 744 769
	3	0. 392 589 911	134/2197	+ 0. 023 944 946
	4	0. 633 160 860	106/2197	+ 0. 030 548 498
	5	0. 566 184 662	70/2197	+ 0. 018 039 565
	6	0. 273 496 230	26/2197	+ 0. 003 236 641
	7	0. 083 347 354	- 26/2197	- 0. 000 986 359
	8	0. 017 703 573	- 87/2197	- 0. 000 701 051
	9	0. 002 794 068	- 154/2197	- 0. 000 195 851
	10	0. 000 342 385	- 230/2197	- 0. 000 035 843
	11	0. 000 033 636	- 314/2197	- 0. 000 004 807
	12	0. 000 002 714	- 406/2197	- 0. 000 000 501
	13	0. 000 000 183	- 506/2197	- 0. 000 000 042
	14	0. 000 000 010	- 614/2197	- 0. 000 000 002
	15	0. 000 000 000		0. 000 000 000

$$\begin{array}{ccc}
\text{I} & \text{II} & \text{III} \\
x_F g_n(x_F) & \left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F} & \text{Col. I} \times \text{Col. II}
\end{array}$$

x_F	n				
7.0	0	0.	560	338	910
	1	0.	426	963	756
	2	0.	603	773	162
	3	0.	383	395	514
	4	0.	534	200	433
	5	0.	648	507	631
	6	0.	412	762	283
	7	0.	159	164	310
	8	0.	041	727	497
	9	0.	008	003	348
	10	0.	001	179	708
	11	0.	000	138	421
	12	0.	000	013	273
	13	0.	000	001	060
	14	0.	000	000	070
	15	0.	000	000	003
	16	0.	000	000	000
7.5	0	0.	602	580	962
	1	0.	397	476	924
	2	0.	591	495	181
	3	0.	461	039	047
	4	0.	426	575	392

		I	II	III	
		$x_F \ g_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II	
	x_F	n			
	5	0.	646 621 617	$126/3375$	+ 0. 024 140 540
	6	0.	546 671 140	$82/3375$	+ 0. 013 282 083
	7	0.	267 956 267	$30/3375$	+ 0. 002 381 833
	8	0.	086 649 926	- 30/3375	- 0. 000 770 221
	9	0.	020 121 076	- 98/3375	- 0. 000 584 256
	10	0.	003 547 570	- 174/3375	- 0. 000 182 896
7.5	11	0.	000 493 786	- 258/3375	- 0. 000 037 747
	12	0.	000 055 841	- 350/3375	- 0. 000 005 790
	13	0.	000 005 244	- 450/3375	- 0. 000 000 699
	14	0.	000 000 415	- 558/3375	- 0. 000 000 068
	15	0.	000 000 027	- 674/3375	- 0. 000 000 005
	16	0.	000 000 001	- 798/3375	0. 000 000 000
	17	0.	000 000 000		
	x	0.	550 432 596	$257/4096$	+ 0. 034 536 420
	1	0.	460 035 421	$253/4096$	+ 0. 028 415 273
	2	0.	503 882 916	$241/4096$	+ 0. 029 647 407
	3	0.	561 356 186	$221/4096$	+ 0. 030 288 016
8.0	4	0.	378 842 363	$193/4096$	+ 0. 017 850 726
	5	0.	568 377 328	$157/4096$	+ 0. 021 785 947
	6	0.	636 599 480	$113/4096$	+ 0. 017 562 436
	7	0.	399 776 976	$61/4096$	+ 0. 005 953 709
	8	0.	159 835 894	$1/4096$	+ 0. 000 039 022
	9	0.	044 870 590	- 67/4096	- 0. 000 733 967
	10	0.	009 427 716	- 143/4096	- 0. 000 329 141

		I	II	III
		$x_F \epsilon_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
8.0	11	0. 001 548 725	- 227/4096	- 0. 000 085 830
	12	0. 000 205 299	- 319/4096	- 0. 000 015 988
	13	0. 000 022 491	- 419/4096	- 0. 000 002 300
	14	0. 000 002 073	- 527/4096	- 0. 000 000 267
	15	0. 000 000 162	- 643/4096	- 0. 000 000 025
	16	0. 000 000 010	- 767/4096	- 0. 000 000 002
	17	0. 000 000 000	- 899/4096	- 0. 000 000 000
	18	0. 000 000 000		- 0. 000 000 000
8.5	x_F	n		
	0	0. 456 276 133	290/4913	+ 0. 026 932 643
	1	0. 553 944 625	286/4913	+ 0. 032 246 725
	2	0. 419 014 052	074/4913	+ 0. 023 368 583
	3	0. 606 058 171	254/4913	+ 0. 031 332 948
	4	0. 418 509 111	226/4913	+ 0. 019 251 589
	5	0. 461 364 680	190/4913	+ 0. 017 842 314
	6	0. 652 760 074	146/4913	+ 0. 019 398 121
	7	0. 529 940 922	94/4913	+ 0. 010 139 313
	8	0. 263 369 189	34/4913	+ 0. 001 822 624
	9	0. 089 461 279	- 34/4913	- 0. 000 619 109
	10	0. 022 357 639	- 110/4913	- 0. 000 500 578
	11	0. 004 319 249	- 194/4913	- 0. 000 170 554
	12	0. 000 668 044	- 286/4913	- 0. 000 038 888
	13	0. 000 084 909	- 386/4913	- 0. 000 006 671

	I	II	III
	$x_F g_n(x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2}\right] \frac{1}{x_F}$	Col. I x Col. II
	x_F	n	
	14	0. 000 009 049	- 494/4913
8.5	15	0. 000 000 821	- 610/4913
	16	0. 000 000 064	- 734/4913
	17	0. 000 000 004	- 866/4913
	18	0. 000 000 000	0. 000 000 000
	x 0	0. 406 652 858	325/5832
	1	0. 594 647 743	321/5832
	2	0. 408 326 750	309/5832
	3	0. 563 696 848	289/5832
	4	0. 512 297 573	261/5832
	5	0. 389 533 784	225/5832
	6	0. 593 597 194	181/5832
	7	0. 624 522 018	129/5832
9.0	8	0. 388 929 661	69/5832
	9	0. 160 376 341	1/5832
	10	0. 047 669 895	- 75/5832
	11	0. 010 807 569	- 159/5832
	12	0. 001 943 759	- 251/5832
	13	0. 000 285 402	- 351/5832
	14	0. 000 034 968	- 459/5832
	15	0. 000 003 636	- 375/5832
	16	0. 000 000 324	- 699/5832
	17	0. 000 000 024	- 831/5832
	18	0. 000 000 001	- 971/5832
			0. 000 000 000

	I	II	III
x_F	$x_F \cdot g_n(x_F)$	$\left[\frac{1}{2} + \frac{1 - 4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I \times Col. II
0.	0. 443 464 430	362/6859	+ 0. 023 404 887
1	0. 549 165 861	358/6859	+ 0. 028 663 271
2	0. 476 676 200	346/6859	+ 0. 024 045 774
3	0. 473 103 808	326/6859	+ 0. 022 486 053
4	0. 589 581 782	298/6859	+ 0. 025 615 304
5	0. 394 837 454	262/6859	+ 0. 015 081 996
6	0. 493 209 854	218/6859	+ 0. 015 675 717
7	0. 654 363 621	166/6859	+ 0. 015 836 763
8	0. 515 415 315	106/6859	+ 0. 007 965 304
9.5	9 0. 259 483 531	38/6859	+ 0. 001 437 581
10	0. 091 897 788	- 38/6859	- 0. 000 509 129
11	0. 024 434 380	- 122/6859	- 0. 000 434 610
12	0. 005 099 007	- 214/6859	- 0. 000 159 088
13	0. 000 862 175	- 314/6859	- 0. 000 039 469
14	0. 000 120 983	- 422/6859	- 0. 000 007 443
15	0. 000 014 353	- 538/6859	- 0. 000 001 125
16	0. 000 001 460	- 662/6859	- 0. 000 000 140
17	0. 000 000 128	- 794/6859	- 0. 000 000 014
18	0. 000 000 009	- 934/6859	- 0. 000 000 001
19	0. 000 000 000		

	I	II	III
x_F	$\epsilon_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	$\text{Col. I} \times \text{Col. II}$
0	0. 529 189 404	401/8000	+ 0. 026 525 618
1	0. 462 356 280	397/8000	+ 0. 022 944 430
2	0. 561 257 674	385/8000	+ 0. 027 010 525
3	0. 410 087 907	365/8000	+ 0. 018 710 260
4	0. 594 309 304	337/8000	+ 0. 025 035 279
5	0. 469 183 050	301/8000	+ 0. 017 653 012
6	0. 407 826 747	257/8000	+ 0. 013 101 434
7	0. 611 971 799	205/8000	+ 0. 015 681 777
8	0. 612 783 868	145/8000	+ 0. 011 106 707
9	0. 379 684 055	77/8000	+ 0. 003 654 459
10.0	0. 160 822 152	1/8000	+ 0. 000 020 102
11	0. 050 188 508	- 83/8000	- 0. 000 520 705
12	0. 012 139 819	- 175/8000	- 0. 000 265 558
13	0. 002 358 654	- 275/8000	- 0. 000 081 078
14	0. 000 377 919	- 383/8000	- 0. 000 018 092
15	0. 000 050 956	- 499/8000	- 0. 000 003 178
16	0. 000 005 874	- 623/8000	- 0. 000 000 457
17	0. 000 000 585	- 755/8000	- 0. 000 000 055
18	0. 000 000 050	- 895/8000	- 0. 000 000 005
19	0. 000 000 003	- 1043/8000	0. 000 000 000
20	0. 000 000 000		

	I	II	III
x_F	$g_n(x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
0	0. 584 504 682	442/9261	+ 0. 027 896 670
1	0. 413 384 410	438/9261	+ 0. 019 551 060
2	0. 588 367 902	426/9261	+ 0. 027 064 542
3	0. 424 703 794	406/9261	+ 0. 018 618 911
4	0. 526 854 376	378/9261	+ 0. 021 504 260
5	0. 558 607 838	342/9261	+ 0. 020 628 860
6	0. 385 395 513	298/9261	+ 0. 012 401 237
7	0. 520 975 008	246/9261	+ 0. 013 838 662
8	0. 653 114 250	186/9261	+ 0. 013 117 293
9	0. 502 660 787	118/9261	+ 0. 006 404 704
10.5	0. 256 132 626	42/9261	+ 0. 001 161 599
11	0. 094 039 905	- 42/9261	- 0. 000 426 484
12	0. 026 369 909	- 134/9261	- 0. 000 381 553
13	0. 005 879 820	- 234/9261	- 0. 000 148 566
14	0. 001 073 422	- 342/9261	- 0. 000 039 640
15	0. 000 164 033	- 458/9261	- 0. 000 008 112
16	0. 000 021 348	- 582/9261	- 0. 000 001 341
17	0. 000 002 398	- 714/9261	- 0. 000 000 184
18	0. 000 000 234	- 854/9261	- 0. 000 000 021
19	0. 000 000 019	- 1002/9261	- 0. 000 000 002
20	0. 000 000 001	- 1158/9261	0. 000 000 000
21	0. 000 000 000		

	I	II	III
x_F	$x_F g_n(x_F)$	$\left[\frac{1}{2} + \frac{1 - 4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
0	0. 561 195 556	485/10648	+ 0. 025 561 593
1	0. 444 017 767	481/10648	+ 0. 020 057 526
2	0. 537 322 101	469/10648	+ 0. 023 666 798
3	0. 501 017 999	449/10648	+ 0. 021 126 698
4	0. 442 820 736	421/10648	+ 0. 017 508 220
5	0. 600 085 549	385/10648	+ 0. 021 697 308
6	0. 435 960 126	341/10648	+ 0. 013 961 532
7	0. 429 272 365	289/10648	+ 0. 011 650 987
8	0. 625 182 897	229/10648	+ 0. 013 445 424
9	0. 601 600 644	161/10648	+ 0. 009 096 328
10	0. 371 675 819	85/10648	+ 0. 002 966 983
11.0	0. 161 197 213	1/10648	+ 0. 000 015 138
12	0. 052 474 007	- 91/10648	- 0. 000 448 453
13	0. 013 423 902	- 191/10648	- 0. 000 240 793
14	0. 002 788 469	- 299/10648	- 0. 000 078 301
15	0. 000 481 922	- 415/10648	- 0. 000 018 782
16	0. 000 070 612	- 539/10648	- 0. 000 003 574
17	0. 000 008 902	- 671/10648	- 0. 000 000 560
18	0. 000 000 976	- 811/10648	- 0. 000 000 074
19	0. 000 000 093	- 959/10648	- 0. 000 000 008
20	0. 000 000 007	- 1115/10648	0. 000 000 000
21	0. 000 000 000		

	I	II	III
	$x_F \epsilon_n (x_F)$	$\left[\frac{1}{2} + \frac{1-4n^2}{8x_F^2} \right] \frac{1}{x_F}$	Col. I x Col. II
	$x_F \ n$		
0	0. 483 788 300	530/12167	+ 0. 021 074 036
1	0. 523 307 621	526/12167	+ 0. 022 623 474
2	0. 456 140 244	514/12167	+ 0. 019 269 835
3	0. 572 509 149	494/12167	+ 0. 023 244 803
4	0. 408 735 435	466/12167	+ 0. 015 654 698
5	0. 566 367 146	430/12167	+ 0. 020 016 263
6	0. 523 685 938	386/12167	+ 0. 016 614 019
7	0. 385 826 018	334/12167	+ 0. 010 591 426
8	0. 544 596 986	274/12167	+ 0. 012 264 286
9	0. 650 056 466	206/12167	+ 0. 011 006 113
10	0. 491 349 837	130/12167	+ 0. 005 249 895
11.5	0. 253 200 917	46/12167	+ 0. 000 951 281
11	0. 095 945 376	- 46/12167	- 0. 000 362 742
12	0. 028 180 284	- 146/12167	- 0. 000 338 154
13	0. 006 656 784	- 254/12167	- 0. 000 138 967
14	0. 001 299 301	- 370/12167	- 0. 000 039 511
15	0. 000 213 901	- 494/12167	- 0. 000 008 684
16	0. 000 030 185	- 626/12167	- 0. 000 001 553
17	0. 000 003 698	- 766/12167	- 0. 000 000 232
18	0. 000 000 396	- 914/12167	- 0. 000 000 029
19	0. 000 000 036	- 1070/12167	- 0. 000 000 003
20	0. 000 000 002	- 1234/12167	- 0. 000 000 000
21	0. 000 000 000		
22	0. 000 000 000		

X_F	n	I $X_F \ g_n (X_F)$	II $\left[\frac{1}{2} + \frac{1-4n^2}{8X_F^2} \right] \frac{1}{X_F}$	III Col. I x Col. II
0	0.	424 278 183	577/13824	+ 0. 017 708 949
1	0.	578 316 248	573/13824	+ 0. 023 971 007
2	0.	417 045 889	561/13824	+ 0. 016 924 388
3	0.	579 341 641	541/13824	+ 0. 022 672 441
4	0.	449 319 414	513/13824	+ 0. 016 673 962
5	0.	485 746 073	477/13824	+ 0. 016 760 769
6	0.	589 080 534	433/13824	+ 0. 018 451 379
7	0.	412 755 984	381/13824	+ 0. 011 375 870
8	0.	451 380 998	321/13824	+ 0. 010 481 286
9	0.	634 501 906	253/13824	+ 0. 011 612 339
10	0.	591 048 765	177/13824	+ 0. 007 567 681
11	0.	364 647 487	93/13824	+ 0. 002 453 140
12	0.	161 517 859	1/13824	+ 0. 000 011 683
13	0.	054 563 084	- 99/13824	- 0. 000 390 751
14	0.	014 660 657	- 207/13824	- 0. 000 219 528
15	0.	003 229 253	- 323/13824	- 0. 000 075 452
16	0.	000 596 456	- 447/13824	- 0. 000 019 286
17	0.	000 094 020	- 579/13824	- 0. 000 003 937
18	0.	000 012 826	- 719/13824	- 0. 000 000 667
19	0.	000 001 530	- 867/13824	- 0. 000 000 095
20	0.	000 000 160	- 1023/13824	- 0. 000 000 011
21	0.	000 000 014	- 1187/13824	- 0. 000 000 001
22	0.	000 000 001	- 1359/13824	- 0. 000 000 000
23	0.	000 000 000		

		IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
x_F	n			
	0	- 0. 382 598 843	- 0. 220 025 292	0. 317 106 269
	1	- 0. 057 451 742	+ 0. 105 121 808	0. 008 040 832
	2	- 0. 001 238 319	+ 0. 004 828 399	0. 000 072 384
	0.5	- 0. 000 010 469	+ 0. 000 062 063	0. 000 000 356
	4	- 0. 000 000 047	+ 0. 000 000 374	0. 000 000 017
	5	- 0. 000 000 000	+ 0. 000 000 001	0. 000 000 001
x_F	6		0. 000 000 000	0. 000 000 000
	0	- 0. 027 986 347	- 0. 144 181 201	0. 273 385 667
	1	- 0. 044 104 253	+ 0. 055 972 694	0. 028 888 483
	2	- 0. 004 249 464	+ 0. 015 237 952	0. 001 064 992
	1.0	- 0. 000 150 303	+ 0. 000 858 085	0. 000 020 129
	4	- 0. 000 002 772	+ 0. 000 021 556	0. 000 000 236
	5	- 0. 000 000 031	+ 0. 000 000 308	0. 000 000 004
x_F	6	- 0. 000 000 000	+ 0. 000 000 002	0. 000 000 002
			0. 000 000 000	0. 000 000 000
x_F	0	+ 0. 014 447 330	- 0. 056 509 826	0. 214 894 401
	1	- 0. 027 005 070	+ 0. 002 499 686	0. 054 322 319
	2	- 0. 007 335 232	+ 0. 022 169 524	0. 004 687 194
	3	- 0. 000 632 996	+ 0. 003 373 428	0. 000 204 462
	1.5	- 0. 000 027 413	+ 0. 000 205 241	0. 000 005 400
	5	- 0. 000 000 718	+ 0. 000 006 883	0. 000 000 102
	6	- 0. 000 000 012	+ 0. 000 000 147	0. 000 000 006
x_F	7	- 0. 000 000 000	+ 0. 000 000 002	0. 000 000 002
			+ 0. 000 000 000	0. 000 000 000

		IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
2.0	0	+ 0. 012 410 931	+ 0. 008 255 416	0. 156 763 851
	1	- 0. 011 379 004	- 0. 031 013 425	0. 075 097 184
	2	- 0. 008 785 283	+ 0. 018 630 301	0. 033 007 350
	3	- 0. 001 533 986	+ 0. 007 306 911	0. 000 977 719
	4	- 0. 000 125 895	+ 0. 000 889 841	0. 000 047 046
	5	- 0. 000 006 095	+ 0. 000 056 374	0. 000 001 512
	6	- 0. 000 000 195	+ 0. 000 002 225	0. 000 000 038
	7	- 0. 000 000 004	+ 0. 000 000 060	0. 000 000 003
	8	0. 000 000 000	+ 0. 000 000 001	0. 000 000 001
2.5	0	+ 0. 003 551 935	+ 0. 032 757 913	0. 110 702 286
	1	- 0. 000 931 302	- 0. 034 620 518	0. 085 049 556
	2	- 0. 007 824 652	+ 0. 005 184 534	0. 022 992 191
	3	- 0. 002 620 974	+ 0. 010 388 206	0. 003 026 167
	4	- 0. 000 368 104	+ 0. 002 392 806	0. 000 235 083
	5	- 0. 000 029 356	+ 0. 000 258 467	0. 000 012 070
	6	- 0. 000 001 525	+ 0. 000 016 786	0. 000 000 444
	7	- 0. 000 000 056	+ 0. 000 000 736	0. 000 000 014
	8	- 0. 000 000 001	+ 0. 000 000 023	0. 000 000 002
	9	- 0. 000 000 000	+ 0. 000 000 000	0. 000 000 000

$$\begin{array}{ccc}
\text{IV} & \text{V} & \text{VI} \\
-\frac{1}{8x_F^2} J_{2n}(2x_F) & \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) & r_n(x_F)
\end{array}$$

x_F	n	0	- 0. 002 092 295	+ 0. 023 056 988	0. 081 451 231
3.0	1	+ 0. 003 373 239	- 0. 016 310 510	0. 083 281 327	
	2	- 0. 004 967 244	- 0. 010 304 945	0. 034 799 791	
	3	- 0. 003 414 400	+ 0. 009 687 517	0. 006 981 167	
	4	- 0. 000 785 166	+ 0. 004 517 555	0. 000 813 345	
	5	- 0. 000 096 721	+ 0. 000 796 557	0. 000 061 952	
	6	- 0. 000 007 571	+ 0. 000 079 803	0. 000 002 046	
	7	- 0. 000 000 413	+ 0. 000 005 270	0. 000 000 135	
	8	- 0. 000 000 016	+ 0. 000 000 248	0. 000 000 005	
	9	+ 0. 000 000 000	+ 0. 000 000 008	0. 000 000 001	
	10	+ 0. 000 000 000	+ 0. 000 000 000	0. 000 000 000	
3.5	0	- 0. 003 062 033	+ 0. 000 334 487	0. 066 852 651	
	1	- 0. 003 075 685	+ 0. 005 816 884	0. 073 534 367	
	2	- 0. 001 610 185	- 0. 018 408 996	0. 044 368 548	
	3	- 0. 000 461 189	+ 0. 004 082 598	0. 012 934 153	
	4	- 0. 001 305 821	+ 0. 006 237 966	0. 002 153 424	
	5	- 0. 000 240 197	+ 0. 001 806 633	0. 000 231 427	
	6	- 0. 000 027 098	+ 0. 000 270 162	0. 000 017 409	
	7	- 0. 000 002 093	+ 0. 000 025 701	0. 000 000 972	
	8	- 0. 000 000 118	+ 0. 000 001 717	0. 000 000 043	
	9	- 0. 000 000 005	+ 0. 000 000 085	0. 000 000 003	
	10	- 0. 000 000 000	+ 0. 000 000 003	0. 000 000 001	
	11		0. 000 000 000	0. 000 000 000	

		IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
x_F	n	0 - 0. 001 341 021	- 0. 014 664 771	0. 060 848 254
	1 + 0. 000 882 747	+ 0. 016 430 267	0. 061 482 859	
	2 + 0. 000 823 104	- 0. 014 903 343	0. 049 262 718	
	3 - 0. 002 637 311	- 0. 004 212 947	0. 020 116 032	
	4 - 0. 001 745 742	+ 0. 006 070 880	0. 004 628 859	
	5 - 0. 000 474 742	+ 0. 003 147 631	0. 000 677 853	
	6 - 0. 000 075 186	+ 0. 000 697 558	0. 000 068 777	
	7 - 0. 000 007 962	+ 0. 000 093 193	0. 000 005 131	
	8 - 0. 000 000 609	+ 0. 000 008 536	0. 000 000 294	
	9 - 0. 000 000 035	+ 0. 000 000 575	0. 000 000 014	
	10 - 0. 000 000 001	+ 0. 000 000 029	0. 000 000 001	
	11 0. 000 000 000	+ 0. 000 000 001	0. 000 000 001	
		+ 0. 000 000 000		
x_F	0 + 0. 000 557 614	- 0. 013 628 432	0. 057 358 432	
	1 - 0. 000 894 119	+ 0. 011 840 193	0. 051 692 400	
	2 0. 001 638 708	- 0. 003 497 120	0. 049 000 212	
	3 - 0. 001 261 213	- 0. 010 624 992	0. 027 033 674	
	4 - 0. 001 883 130	+ 0. 003 127 230	0. 008 388 164	
	5 - 0. 000 769 716	+ 0. 004 240 643	0. 001 632 557	
	6 - 0. 000 169 091	+ 0. 001 427 419	0. 000 217 629	
	7 - 0. 000 024 041	+ 0. 000 265 108	0. 000 002 115	
	8 - 0. 000 002 427	+ 0. 000 032 621	0. 000 001 569	
	9 - 0. 000 000 184	+ 0. 000 002 903	0. 000 000 093	
	10 - 0. 000 000 010	+ 0. 000 000 197	0. 000 000 006	

IV V VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

x_F n

4.5	11	- 0. 000 000 000	+ 0. 000 000 010	0. 000 000 001
	12		+ 0. 000 000 000	0. 000 000 000
5.0	0	+ 0. 001 229 678	- 0. 002 173 637	0. 052 940 111
	1	- 0. 001 273 151	- 0. 000 372 665	0. 045 887 375
	2	+ 0. 001 098 013	+ 0. 007 311 022	0. 045 099 584
	3	+ 0. 000 072 294	- 0. 011 269 311	0. 032 074 461
	4	- 0. 001 589 270	- 0. 001 878 619	0. 013 145 263
	5	- 0. 001 037 430	+ 0. 004 218 478	0. 003 338 196
	6	- 0. 000 316 851	+ 0. 002 353 611	0. 000 573 388
	7	- 0. 000 059 785	+ 0. 000 611 602	0. 000 071 133
	8	- 0. 000 007 833	+ 0. 000 100 058	0. 000 006 686
	9	- 0. 000 000 762	+ 0. 000 011 562	0. 000 000 494
	10	- 0. 000 000 057	+ 0. 000 001 005	0. 000 000 030
	11	- 0. 000 000 003	+ 0. 000 000 068	0. 000 000 002
	12	0. 000 000 000	+ 0. 000 000 003	0. 000 000 000
5.5	0	+ 0. 000 707 397	+ 0. 008 035 596	0. 047 231 244
	1	+ 0. 000 574 576	- 0. 009 184 848	0. 043 139 748
	2	+ 0. 000 062 146	+ 0. 010 582 588	0. 040 058 475
	3	+ 0. 000 832 991	- 0. 005 833 224	0. 034 260 127
	4	- 0. 000 929 635	- 0. 006 601 806	0. 018 145 717
	5	- 0. 001 158 794	+ 0. 002 450 942	0. 005 926 710
	6	- 0. 000 502 478	+ 0. 003 107 258	0. 001 292 764
	7	- 0. 000 125 493	+ 0. 001 165 580	0. 000 201 547

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F n

	8	- 0. 000 021 115	+ 0. 000 253 469	0. 000 023 623
	9	- 0. 000 002 595	+ 0. 000 037 669	0. 000 002 162
	10	- 0. 000 000 245	+ 0. 000 004 142	0. 000 000 159
5.5	11	- 0. 000 000 018	+ 0. 000 000 353	0. 000 000 010
	12	- 0. 000 000 001	+ 0. 000 000 024	0. 000 000 001
	13	0. 000 000 000	+ 0. 000 000 001	0. 000 000 001
	14		0. 000 000 000	0. 000 000 000

	0	- 0. 000 165 587	+ 0. 009 310 296	0. 041 623 793
	1	+ 0. 000 294 897	- 0. 008 720 500	0. 041 390 169
	2	- 0. 000 633 676	+ 0. 005 595 997	0. 035 970 938
	3	+ 0. 000 846 266	+ 0. 002 016 309	0. 033 698 108
	4	- 0. 000 156 581	- 0. 008 346 556	0. 022 391 989
6.0	5	- 0. 001 043 319	- 0. 000 833 991	0. 009 287 146
	6	- 0. 000 678 056	+ 0. 003 130 512	0. 002 544 066
	7	- 0. 000 225 834	+ 0. 001 844 483	0. 000 492 554
	8	- 0. 000 048 581	+ 0. 000 539 893	0. 000 071 074
	9	- 0. 000 007 473	+ 0. 000 102 891	0. 000 007 956
	10	- 0. 000 000 872	+ 0. 000 014 179	0. 000 000 713
	11	- 0. 000 000 080	+ 0. 000 001 497	0. 000 000 052
	12	- 0. 000 000 006	+ 0. 000 000 126	0. 000 000 004
	13	0. 000 000 000	+ 0. 000 000 008	0. 000 000 001
	14		+ 0. 000 000 000	0. 000 000 000

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

x_F	n	0	- 0. 000	612	207	+ 0.	002	704	540	0.	037	470	534	
	1	+ 0.	000	644	213	- 0.	001	416	112	0.	039	086	936	
	2	- 0.	000	648	747	- 0.	002	467	302	0.	033	628	720	
	3	+ 0.	000	349	203	+ 0.	007	157	509	0.	031	451	658	
	4	+ 0.	000	417	295	- 0.	005	914	368	0.	025	051	425	
	5	- 0.	000	691	662	- 0.	004	340	619	0.	013	007	284	
	6	- 0.	000	773	777	+ 0.	001	971	914	0.	004	434	778	
	7	- 0.	000	351	363	+ 0.	002	394	328	0.	001	056	606	
	8	- 0.	000	096	818	+ 0.	000	975	659	0.	000	177	790	
	9	- 0.	000	018	548	+ 0.	000	239	573	0.	000	025	174	
6.5	10	- 0.	000	002	654	+ 0.	000	041	210	0.	000	002	713	
	11	- 0.	000	000	296	+ 0.	000	005	342	0.	000	000	239	
	12	- 0.	000	000	026	+ 0.	000	000	545	0.	000	000	018	
	13	- 0.	000	000	002	+ 0.	000	000	045	0.	000	000	001	
	14	- 0.	000	000	000	+ 0.	000	000	003	0.	000	000	001	
	15					+ 0.	000	000	000	0.	000	000	000	
		0	- 0.	000	436	411	- 0.	004	763	398	0.	035	028	603
		1	+ 0.	000	387	805	+ 0.	005	539	010	0.	035	957	429
		2	- 0.	000	194	501	- 0.	007	092	625	0.	032	539	019
7.0		3	- 0.	000	207	061	+ 0.	006	628	260	0.	028	916	343
		4	+ 0.	000	591	768	- 0.	000	651	745	0.	025	832	390
		5	- 0.	000	216	853	- 0.	006	250	938	0.	016	456	859

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F n

	6	- 0. 000	728	189	- 0. 000	318	796	0. 006	925	464
	7	- 0. 000	473	258	+ 0. 002	431	449	0. 002	016	195
	8	- 0. 000	168	706	+ 0. 001	494	869	0. 000	428	961
	9	- 0. 000	040	225	+ 0. 000	480	366	0. 000	069	694
7.0	10	- 0. 000	007	022	+ 0. 000	103	256	0. 000	008	960
	11	- 0. 000	000	946	+ 0. 000	016	359	0. 000	000	936
	12	- 0. 000	000	102	+ 0. 000	002	016	0. 000	000	081
	13	- 0. 000	000	009	+ 0. 000	000	200	0. 000	000	006
	14	0. 000	000	000	+ 0. 000	000	016	0. 000	000	002
	15				+ 0. 000	000	001	0. 000	000	001
	16				+ 0. 000	000	000	0. 000	000	000
	0	+ 0. 000	031	609	- 0. 006	836	801	0. 033	545	414
	1	- 0. 000	092	381	+ 0. 006	652	038	0. 032	704	805
	2	+ 0. 000	264	842	- 0. 005	407	906	0. 031	661	080
	3	- 0. 000	458	110	+ 0. 001	599	874	0. 027	096	554
	4	+ 0. 000	386	630	+ 0. 004	241	831	0. 025	104	079
7.5	5	+ 0. 000	200	159	- 0. 005	333	278	0. 019	007	421
	6	- 0. 000	525	924	- 0. 002	979	406	0. 009	776	753
	7	- 0. 000	547	644	+ 0. 001	623	475	0. 003	457	664
	8	- 0. 000	258	161	+ 0. 001	912	958	0. 000	884	576
	9	- 0. 000	076	946	+ 0. 000	832	589	0. 000	171	387
	10	- 0. 000	016	356	+ 0. 000	225	328	0. 000	026	076

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F n

	11	- 0. 000 002 645	+ 0. 000 043 597	0. 000 003 205
	12	- 0. 000 000 339	+ 0. 000 006 455	0. 000 000 326
	13	- 0. 000 000 035	+ 0. 000 000 762	0. 000 000 028
7.5	14	- 0. 000 000 003	0. 000 000 074	0. 000 000 003
	15	- 0. 000 000 000	0. 000 000 006	0. 000 000 001
	16		0. 000 000 000	0. 000 000 000
	0	+ 0. 000 341 599	- 0. 002 824 911	0. 032 053 108
	1	- 0. 000 363 669	+ 0. 002 097 572	0. 030 149 176
	2	+ 0. 000 395 784	+ 0. 000 212 902	0. 030 256 093
	3	- 0. 000 325 626	- 0. 003 749 798	0. 026 212 592
	4	+ 0. 000 013 713	+ 0. 005 813 262	0. 023 677 701
8.0	5	+ 0. 000 402 745	- 0. 001 895 512	0. 020 293 180
	6	- 0. 000 219 531	- 0. 004 766 322	0. 012 576 583
	7	- 0. 000 532 102	- 0. 000 048 727	0. 005 372 880
	8	- 0. 000 346 588	+ 0. 001 952 746	0. 001 645 180
	9	- 0. 000 130 562	+ 0. 001 242 537	0. 000 378 008
	10	- 0. 000 033 845	+ 0. 000 430 685	0. 000 067 699
	11	- 0. 000 006 550	+ 0. 000 102 118	0. 000 009 738
	12	- 0. 000 000 993	+ 0. 000 018 134	0. 000 001 153
	13	- 0. 000 000 122	+ 0. 000 002 537	0. 000 000 115
	14	- 0. 000 000 012	+ 0. 000 000 289	0. 000 000 010
	15	- 0. 000 000 001	+ 0. 000 000 027	0. 000 000 001
	16	0. 000 000 000	+ 0. 000 000 002	
	17		+ 0. 000 000 000	

		IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
	x_F	n		
	0	+ 0. 000 293 865	+ 0. 002 872 602	0. 030 099 110
	1	- 0. 000 273 985	- 0. 003 420 574	0. 028 552 166
	2	+ 0. 000 191 593	+ 0. 004 734 921	0. 028 295 097
	3	- 0. 000 001 237	- 0. 005 508 723	0. 025 822 988
	4	- 0. 000 265 980	+ 0. 003 388 303	0. 022 373 912
	5	+ 0. 000 344 486	+ 0. 002 184 409	0. 020 371 209
	6	+ 0. 000 084 039	- 0. 004 620 802	0. 014 861 358
8.5	7	- 0. 000 409 024	- 0. 002 114 008	0. 007 616 281
	8	- 0. 000 404 852	+ 0. 001 362 703	0. 002 780 475
	9	- 0. 000 196 904	+ 0. 001 570 651	0. 000 754 638
	10	- 0. 000 062 604	+ 0. 000 721 547	0. 000 158 365
	11	- 0. 000 014 499	+ 0. 000 211 576	0. 000 026 523
	12	- 0. 000 002 594	+ 0. 000 045 118	0. 000 003 636
	13	- 0. 000 000 372	+ 0. 000 007 459	0. 000 000 416
	14	- 0. 000 000 044	+ 0. 000 000 994	0. 000 000 041
	15	- 0. 000 000 004	+ 0. 000 000 109	0. 000 000 004
	16	- 0. 000 000 000	+ 0. 000 000 010	0. 000 000 001
	17		0. 000 000 000	0. 000 000 000

		IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
x_F	n			
0	+	0. 000 020 610	+ 0. 005 222 080	0. 027 904 243
1	+	0. 000 011 624	- 0. 005 198 831	0. 027 542 889
2	-	0. 000 107 468	+ 0. 004 745 709	0. 026 272 837
3	+	0. 000 240 673	- 0. 002 871 796	0. 025 302 414
4	-	0. 000 302 366	- 0. 000 991 173	0. 021 633 358
5	+	0. 000 112 916	+ 0. 004 539 266	0. 019 680 491
6	+	0. 000 271 977	- 0. 002 404 702	0. 016 289 958
7	-	0. 000 203 043	- 0. 003 701 627	0. 009 909 345
8	-	0. 000 402 904	+ 0. 000 097 764	0. 004 296 394
9.0 ⁹	-	0. 000 263 317	+ 0. 001 608 984	0. 001 373 166
10	-	0. 000 103 867	+ 0. 001 053 390	0. 000 336 485
11	-	0. 000 028 867	+ 0. 000 388 868	0. 000 065 351
12	-	0. 000 006 089	+ 0. 000 100 075	0. 000 010 330
13	-	0. 000 001 019	+ 0. 000 019 554	0. 000 001 359
14	-	0. 000 000 139	+ 0. 000 003 043	0. 000 000 152
15	-	0. 000 000 016	+ 0. 000 000 389	0. 000 000 015
16	-	0. 000 000 001	+ 0. 000 000 041	0. 000 000 002
17	0.	0. 000 000 000	+ 0. 000 000 003	0. 000 000 000
18			+ 0. 000 000 000	

x_F	n	IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
0	-	0. 000 203 087	+ 0. 002 781 616	0. 025 983 416
1	+	0. 000 218 498	- 0. 002 344 619	0. 026 537 150
2	-	0. 000 250 204	+ 0. 000 907 806	0. 024 703 376
3	+	0. 000 247 599	+ 0. 001 579 610	0. 024 313 262
4	-	0. 000 128 727	- 0. 004 095 030	0. 021 391 547
5	-	0. 000 126 805	+ 0. 003 856 799	0. 018 811 990
6	+	0. 000 284 568	+ 0. 000 826 070	0. 016 786 355
7	+	0. 000 020 869	- 0. 003 948 711	0. 011 908 921
8	-	0. 000 324 736	- 0. 001 539 256	0. 006 101 312
9	-	0. 000 309 588	+ 0. 001 162 447	0. 002 290 440
9.5	10	- 0. 000 154 637	+ 0. 001 317 399	0. 000 653 633
	11	- 0. 000 051 913	+ 0. 000 633 263	0. 000 146 740
	12	- 0. 000 012 923	+ 0. 000 198 665	0. 000 026 654
	13	- 0. 000 002 519	+ 0. 000 045 995	0. 000 004 007
	14	- 0. 000 000 398	+ 0. 000 008 349	0. 000 000 508
	15	- 0. 000 000 052	+ 0. 000 001 233	0. 000 000 056
	16	- 0. 000 000 005	+ 0. 000 000 152	0. 000 000 007
	17	- 0. 000 000 000	+ 0. 000 000 015	0. 000 000 001
	18		+ 0. 000 000 001	0. 000 000 000
	19		0. 000 000 000	

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F

n

0	-	0	000	208	780	-	0.	001	670	828	-	0.	024	646	010	
1	+	0.	000	200	426	+	0.	002	071	681	0.	025	216	537		
2	-	0.	000	163	338	-	0.	003	125	889	0.	023	721	298		
3	+	0.	000	068	857	+	0.	004	192	389	0.	022	971	506		
4	+	0.	000	092	336	-	0.	003	866	845	0.	021	260	770		
5	-	0.	000	233	103	+	0.	000	797	124	0.	018	217	033		
6	+	0.	000	148	738	+	0.	003	318	766	0.	016	568	938		
7	+	0.	000	182	997	-	0.	002	541	662	0.	013	323	112		
8	-	0.	000	181	474	-	0.	002	923	898	0.	008	001	335		
9	-	0.	000	313	862	+	0.	000	177	973	0.	003	518	570		
10.0	10	-	0.	000	205	934	+	0.	001	352	853	0.	001	167	021	
	11	-	0.	000	084	478	+	0.	000	907	311	0.	000	302	128	
	12	-	0.	000	024	911	+	0.	000	353	344	0.	000	062	875	
	13	-	0.	000	005	654	+	0.	000	097	505	0.	000	010	773	
	14	-	0.	000	001	030	+	0.	000	020	672	0.	000	001	550	
	15	-	0.	000	000	155	+	0.	000	003	523	0.	000	000	190	
	16	-	0.	000	000	019	+	0.	000	000	497	0.	000	000	021	
	17	-	0.	000	000	002	+	0.	000	000	059	0.	000	000	002	
	18	0.	000	000	000		+	0.	000	000	006	0.	000	000	001	
	19						+	0.	000	000	000	0.	000	000	000	

IV V VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

x_F n

	0	- 0. 000 041 472	- 0. 004 074 292	0. 023 780 906
	1	+ 0. 000 022 995	+ 0. 004 120 282	0. 023 694 337
	2	+ 0. 000 033 688	- 0. 004 031 519	0. 023 066 711
	3	- 0. 000 122 050	+ 0. 003 164 460	0. 021 661 321
	4	+ 0. 000 199 261	- 0. 000 838 068	0. 020 865 453
	5	- 0. 000 168 403	- 0. 002 440 068	0. 018 020 389
	6	- 0. 000 037 334	+ 0. 003 676 093	0. 016 039 996
	7	+ 0. 000 227 651	- 0. 000 040 955	0. 014 025 358
	8	- 0. 000 013 626	- 0. 003 364 198	0. 009 739 469
	9	- 0. 000 262 553	- 0. 001 143 746	0. 004 998 405
10.5	10	- 0. 000 243 226	+ 0. 001 005 183	0. 001 923 556
	11	- 0. 000 124 330	+ 0. 001 124 080	0. 000 573 266
	12	- 0. 000 043 730	+ 0. 000 561 665	0. 000 136 382
	13	- 0. 000 011 582	+ 0. 000 186 710	0. 000 026 562
	14	- 0. 000 002 430	+ 0. 000 046 392	0. 000 004 322
	15	- 0. 000 000 417	+ 0. 000 009 127	0. 000 000 598
	16	- 0. 000 000 060	+ 0. 000 001 473	0. 000 000 072
	17	- 0. 000 000 007	+ 0. 000 000 199	0. 000 000 008
	18	- 0. 000 000 000	+ 0. 000 000 023	0. 000 000 002
	19		+ 0. 000 000 002	0. 000 000 000
	20		0. 000 000 000	

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F

n

0	+	0.000	124	639	-	0.	002	663	131	0.	023	023	101	
1	-	0.000	135	644	+	0.	002	391	842	0.	022	313	724	
2	+	0.000	161	932	-	0.	001	472	823	0.	022	355	907	
3	-	0.000	178	979	-	0.	000	248	785	0.	020	698	934	
4	+	0.000	140	720	+	0.	002	448	432	0.	020	097	372	
5	-	0.000	007	796	-	0.	003	652	161	0.	018	037	351	
6	-	0.000	161	754	+	0.	001	789	064	0.	015	588	842	
7	+	0.000	153	589	+	0.	002	302	253	0.	014	106	829	
8	+	0.000	122	392	-	0.	002	494	236	0.	011	073	580	
9	-	0.000	160	042	-	0.	002	344	801	0.	006	591	485	
11.0	10	-	0.000	250	229	+	0.	000	220	979	0.	002	937	733
	11	-	0.000	164	876	+	0.	001	156	311	0.	001	006	573
	12	-	0.000	069	968	+	0.	000	791	739	0.	000	273	318
	13	-	0.000	021	715	+	0.	000	322	894	0.	000	060	386
	14	-	0.000	005	252	+	0.	000	094	646	0.	000	011	093
	15	-	0.000	001	029	+	0.	000	021	536	0.	000	001	725
	16	-	0.000	000	167	+	0.	000	003	972	0.	000	000	231
	17	-	0.000	000	023	+	0.	000	000	611	0.	000	000	028
	18	-	0.000	000	002	+	0.	000	000	080	0.	000	000	004
	19	-	0.000	000	000	+	0.	000	000	009	0.	000	000	001
	20					+	0.	000	000	000	0.	000	000	000

x_F	n	IV	V	VI
		$-\frac{1}{8x_F^2} J_{2n}(2x_F)$	$\frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F))$	$r_n(x_F)$
0	+	0. 000 153 509	+ 0. 000 859 115	0. 022 086 660
1	-	0. 000 150 261	- 0. 001 159 638	0. 021 313 575
2	+	0. 000 133 699	+ 0. 001 994 959	0. 021 398 493
3	-	0. 000 085 878	- 0. 003 045 028	0. 020 113 897
4	-	0. 000 008 345	+ 0. 003 493 537	0. 019 139 890
5	+	0. 000 124 946	- 0. 002 177 314	0. 017 963 895
6	-	0. 000 163 533	- 0. 001 034 551	0. 015 415 935
7	+	0. 000 016 235	+ 0. 003 224 248	0. 013 831 909
8	+	0. 000 179 504	- 0. 000 579 472	0. 011 864 318
9	-	0. 000 032 154	- 0. 002 811 370	0. 008 102 589
11.5	10	- 0. 000 215 682	- 0. 000 863 503	0. 004 170 710
11	-	0. 000 195 357	+ 0. 000 879 275	0. 001 641 199
12	-	0. 000 101 911	+ 0. 000 972 722	0. 000 508 069
13	-	0. 000 037 328	+ 0. 000 502 626	0. 000 127 144
14	-	0. 000 010 435	+ 0. 000 175 717	0. 000 026 315
15	-	0. 000 002 334	+ 0. 000 046 435	0. 000 004 590
16	-	0. 000 000 431	+ 0. 000 009 800	0. 000 000 685
17	-	0. 000 000 067	+ 0. 000 001 709	0. 000 000 089
18	-	0. 000 000 008	+ 0. 000 000 252	0. 000 000 012
19	-	0. 000 000 001	+ 0. 000 000 031	0. 000 000 001
20	0.	0. 000 000 000	+ 0. 000 000 003	0. 000 000 000
21			0. 000 000 000	

IV

V

VI

$$-\frac{1}{8x_F^2} J_{2n}(2x_F) \quad \frac{1}{8x_F} (J_{2n-1}(2x_F) - J_{2n+1}(2x_F)) \quad r_n(x_F)$$

 x_F n

	0	+	0. 000	048	811	+ 0.	003	209	126	0.	020	966	886
	1	-	0. 000	037	668	- 0.	003	284	462	0.	020	648	877
	2	+	0. 000	002	670	+ 0.	003	370	480	0.	020	297	538
	3	+	0. 000	056	030	- 0.	003	044	978	0.	019	683	493
	4	-	0. 000	121	869	+ 0.	001	733	842	0.	018	285	935
	5	+	0. 000	145	584	+ 0.	000	696	956	0.	017	603	309
	6	-	0. 000	063	359	- 0.	002	913	114	0.	015	474	906
	7	-	0. 000	102	455	+ 0.	002	239	057	0.	013	512	472
	8	+	0. 000	144	365	+ 0.	001	505	165	0.	012	130	816
	9	+	0. 000	080	826	- 0.	002	360	146	0.	009	333	019
12	10	-	0. 000	140	549	- 0.	001	905	709	0.	005	521	423
	11	-	0. 000	203	376	+ 0.	000	242	413	0.	002	492	177
	12	-	0. 000	134	585	+ 0.	001	001	821	0.	000	878	919
	13	-	0. 000	058	837	+ 0.	000	698	401	0.	000	248	873
	14	-	0. 000	019	097	+ 0.	000	296	573	0.	000	057	948
	15	-	0. 000	004	883	+ 0.	000	091	652	0.	000	011	317
	16	-	0. 000	001	020	+ 0.	000	022	191	0.	000	001	885
	17	-	0. 000	000	178	+ 0.	000	004	387	0.	000	000	272
	18	-	0. 000	000	026	+ 0.	000	000	728	0.	000	000	035
	19	-	0. 000	000	003	+ 0.	000	000	103	0.	000	000	005
	20	-	0. 000	000	000	+ 0.	000	000	012	0.	000	000	001
	21					+ 0.	000	000	001	0.	000	000	000
	22					+ 0.	000	000	000				

	VII	VIII	IX	X
	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. VII	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. IX
	ql=3		ql=7	
	X_F n			
0.5	0 1	0. 317 106 269	1	0. 317 106 269
	1 37	0. 000 217 319	197	0. 000 040 816
	2 145	0. 000 000 499	785	0. 000 000 092
	3 325	0. 000 000 001	1765	0. 000 000 000
	4 577	0. 000 000 000		
1.0	0 1	0. 273 385 667	1	0. 273 385 667
	1 10	0. 002 888 848	50	0. 000 577 769
	2 37	0. 000 028 783	197	0. 000 005 406
	3 82	0. 000 000 245	442	0. 000 000 045
	4 145	0. 000 000 001	785	0. 000 000 000
	5 226	0. 000 000 000	1226	
1.5	0 1	0. 214 894 401	1	0. 214 894 401
	1 45/9	0. 010 864 463	205/9	0. 002 384 882
	2 153/9	0. 000 275 717	793/9	0. 000 053 196
	3 333/9	0. 000 005 526	1773/9	0. 000 001 037
	4 585/9	0. 000 000 083	3145/9	0. 000 000 015
	5 909/9	0. 000 000 001	4909/9	0. 000 000 000
	6 1305/9	0. 000 000 000		
2.0	0 1.00	0. 156 763 851	1	0. 156 763 851
	1 3.25	0. 023 106 825	53/4	0. 005 667 712
	2 10.00	0. 003 300 735	50	0. 000 660 147
	3 21.25	0. 000 046 010	445/4	0. 000 008 788

	VII		VIII		IX		X
	$1+(ql)^2 \frac{n^2}{x_F^2}$		Col. VI/Col. VII		$1+(ql)^2 \frac{n^2}{x_F^2}$		Col. VI/Col. IX
	ql=3				ql=7		
	x_F	n					
	4	37.00	0. 000 001 271		197		0. 000 000 238
2.0	5	57.25	0. 000 000 026		1229/4		0. 000 000 004
	6	82.00	0. 000 000 000		442		0. 000 000 000
	0	1	0. 110 702 286		1		0. 110 702 286
	1	61/25	0. 034 856 375		221/25		0. 009 620 990
	2	169/25	0. 003 401 211		809/25		0. 000 710 512
2.5	3	349/25	0. 000 216 774		1789/25		0. 000 042 288
	4	601/25	0. 000 009 778		3161/25		0. 000 001 859
	5	925/25	0. 000 000 326		4925/25		0. 000 000 061
	6	1321/25	0. 000 000 008		7081/25		0. 000 000 001
	7	1789/25	0. 000 000 000		9629/25		0. 000 000 000
	0	1.00	0. 081 451 231		1		0. 081 451 231
	1	2.00	0. 041 640 663		58/9		0. 012 922 964
	2	5.00	0. 006 959 958		205/9		0. 001 527 795
3.0	3	10.00	0. 000 698 116		50		0. 000 139 623
	4	17.00	0. 000 047 843		793/9		0. 000 009 230
	5	26.00	0. 000 002 382		1234/9		0. 000 000 451
	6	37.00	0. 000 000 055		197		0. 000 000 010
	7	50.00	0. 000 000 002		2410/9		0. 000 000 000
	8	65.00	0. 000 000 000		3145/9		

VII

VIII

IX

X

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

ql=3

ql=7

 x_F

n

0	1	0.	066	852	651	1	0.	066	852	651	
1	85/49	0.	042	390	399	245/49	0.	014	706	873	
2	193/49	0.	011	264	553	833/49	0.	002	609	914	
3	373/49	0.	001	699	124	1813/49	0.	000	349	571	
4	625/49	0.	000	168	828	3187/49	0.	000	033	129	
3.5	5	949/49	0.	000	011	949	4949/49	0.	000	002	291
6	1345/49	0.	000	000	634	7105/49	0.	000	000	120	
7	1813/49	0.	000	000	026	9653/49	0.	000	000	004	
8	2353/49	0.	000	000	000	12593/49	0.	000	000	000	
<hr/>											
0	1. 00 00	0.	060	848	254	1	0.	060	848	254	
1	1. 56 25	0.	039	349	029	65/16	0.	015	134	242	
2	3. 25 00	0.	015	157	759	53/4	0.	003	717	940	
3	6. 06 25	0.	003	318	108	457/16	0.	000	704	281	
4.0	4	10. 00 00	0.	000	462	885	50	0.	000	092	577
5	15. 06 25	0.	000	045	002	1241/16	0.	000	008	739	
6	21. 25 00	0.	000	003	236	445/4	0.	000	000	618	
7	28. 56 25	0.	000	000	179	2417/16	0.	000	000	033	
8	37. 00 00	0.	000	000	007	197	0.	000	000	001	
9	46. 56 25	0.	000	000	000	3985/16	0.	000	000	000	

VII	VIII	IX	X
$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. VII	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. IX
ql=3		ql=7	

x_F	n	0	1	0.	057	358	432	1	0.	057	358	432	
4.5	1	117/81		0.	035	787	046	277/81		0.	015	115	828
	2	225/81		0.	017	640	076	865/81		0.	004	588	459
	3	405/81		0.	005	406	734	1845/81		0.	001	186	844
	4	657/81		0.	001	034	157	3217/81		0.	000	211	203
	5	981/81		0.	000	134	798	4981/81		0.	000	026	548
	6	1377/81		0.	000	012	801	7137/81		0.	000	002	469
	7	1845/81		0.	000	000	092	9685/81		0.	000	000	017
	8	2385/81		0.	000	000	053	12625/81		0.	000	000	010
	9	2997/81		0.	000	000	002	15957/81		0.	000	000	000
	10	3681/81		0.	000	000	000						
x_F	n	0	1. 00	0.	052	940	111	1	0.	052	940	111	
5.0	1	1. 36		0.	033	740	716	2.96		0.	015	502	491
	2	2. 44		0.	018	483	436	8.84		0.	005	101	762
	3	4. 24		0.	007	564	731	18.64		0.	001	720	732
	4	6. 76		0.	001	944	565	32.36		0.	000	406	219
	5	10. 00		0.	000	333	819	50		0.	000	066	763
	6	13. 96		0.	000	041	073	71.56		0.	000	008	012
	7	18. 64		0.	000	003	816	97.04		0.	000	000	733
	8	24. 04		0.	000	000	278	126.44		0.	000	000	052
	9	30. 16		0.	000	000	016	159.76		0.	000	000	003
	10	37. 00		0.	000	000	000	197.00		0.	000	000	000

	VII	VIII	IX	X
	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. VII	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. IX
	ql=3		ql=7	
	x_F	n		
	0	1	0. 047 231 244	1 0. 047 231 244
	1	157/121	0. 033 247 831	317/121 0. 016 466 591
	2	265/121	0. 018 290 850	905/121 0. 005 355 884
	3	445/121	0. 009 315 674	1885/121 0. 002 199 191
	4	697/121	0. 003 150 117	3257/121 0. 000 674 127
5.5	5	1021/121	0. 000 702 381	5021/121 0. 000 142 826
	6	1417/121	0. 000 110 391	7177/121 0. 000 021 795
	7	1885/121	0. 000 012 937	9725/121 0. 000 002 507
	8	2425/121	0. 000 001 178	12665/121 0. 000 000 225
	9	3037/121	0. 000 000 086	15997/121 0. 000 000 016
	10	3721/121	0. 000 000 005	19721/121 0. 000 000 000
	11	4477/121	0. 000 000 000	23837/121
	0	1. 00	0. 041 623 793	1 0. 041 623 793
	1	1. 25	0. 033 112 135	2.361111... 0. 017 529 953
	2	2. 00	0. 017 985 469	6.4444... 0. 005 581 697
	3	3. 25	0. 010 368 648	13.24999... 0. 002 543 253
6.0	4	5. 00	0. 004 478 397	22.777... 0. 000 983 062
	5	7. 25	0. 001 280 985	35.0277... 0. 000 265 136
	6	10. 00	0. 000 254 406	50 0. 000 050 881
	7	13. 25	0. 000 037 173	67.69444... 0. 000 007 276
	8	17. 00	0. 000 004 180	88.11111... 0. 000 000 806

VII

VII

IX

X

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

q1=3

q1=7

$$x_F \ n$$

9	21. 25	0. 000 000 374	111.2499... 0. 000 000 071
10	26. 00	0. 000 000 029	137.11111... 0. 000 000 005
11	31. 25	0. 000 000 001	165.6944... 0. 000 000 000
12	37. 00	0. 000 000 000	197

0	1	0. 037 470 534	1	0. 037 470 534
1	205/169	0. 032 222 888	365/169	0. 018 097 786
2	313/169	0. 018 157 360	953/169	0. 005 963 540
3	493/169	0. 010 781 602	1933/169	0. 002 749 782
4	745/169	0. 005 682 806	3305/169	0. 001 280 996
5	1069/169	0. 002 056 343	5069/169	0. 000 433 661
6	1465/169	0. 000 511 588	7225/169	0. 000 103 733
7	1933/169	0. 000 092 377	9773/169	0. 000 018 271
8	2473/169	0. 000 012 149	12713/169	0. 000 002 363
9	3085/169	0. 000 001 379	16045/169	0. 000 000 265
10	3769/169	0. 000 000 121	19769/169	0. 000 000 023
11	4525/169	0. 000 000 008	23885/169	0. 000 000 001
12	5353/169	0. 000 000 000	28393/169	0. 000 000 000

0	1	0. 035 028 603	1	0. 035 028 603
1	58/49	0. 030 377 827	2	0. 017 978 714
2	85/49	0. 018 757 787	5	0. 006 507 803
3	130/49	0. 010 899 236	10	0. 002 891 634

VII

VIII

IX

X

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

ql=3

ql=7

 x_F

n

4	193/49	0. 006	558	482	17	0. 001	519	552	
5	274/49	0. 002	943	014	26	0. 000	632	956	
6	373/49	0. 000	909	779	37	0. 000	187	174	
7.0	7	10	0. 000	201	619	50	0. 000	040	323
	8	625/49	0. 000	033	630	65	0. 000	006	599
	9	778/49	0. 000	004	389	82	0. 000	000	849
	10	949/49	0. 000	000	462	101	0. 000	000	088
	11	1138/49	0. 000	000	040	122	0. 000	000	007
	12	1345/49	0. 000	000	002	145	0. 000	000	000

0	1	0. 033	545	414	1	0. 033	545	414	
1	261/225	0. 028	193	797	421/225	0. 017	478	815	
2	369/225	0. 019	305	536	1009/225	0. 007	060	201	
3	549/225	0. 011	105	145	1988/225	0. 003	065	221	
4	801/225	0. 007	052	707	3361/225	0. 001	680	576	
7.5	5	1125/225	0. 003	801	484	5125/225	0. 000	834	472
	6	1521/225	0. 001	446	265	7281/225	0. 000	302	124
	7	1989/225	0. 000	391	138	9829/225	0. 000	079	150
	8	2529/225	0. 000	078	698	12769/225	0. 000	015	586
	9	3141/225	0. 000	012	277	16101/225	0. 000	002	395
	10	3825/225	0. 000	001	533	19825/225	0. 000	000	295

VII

VIII

IX

X

$$\frac{1+(ql)^2}{x_F^2} \quad \text{Col. VI/Col. VII} \quad \frac{1+(ql)^2}{x_F^2} \quad \text{Col. VI/Col. IX}$$

ql=3

ql=7

 x_F n

11	4581/225	0. 000 000 157	23941/225	0. 000 000 030
12	5409/225	0. 000 000 013	28449/225	0. 000 000 002
13	6309/225	0. 000 000 000	33349/225	0. 000 000 000
0	1.000000	0. 032 053 108	1	0. 032 053 108
1	1.140625	0. 026 432 154	113/64	0. 017 075 639
2	1.562500	0. 019 363 899	65/16	0. 007 447 653
3	2.265625	0. 011 569 695	505/64	0. 003 321 991
4	3.250000	0. 007 285 446	53/4	0. 001 786 996
5	4.515625	0. 004 493 991	1289/64	0. 001 007 574
6	6.062500	0. 002 074 487	457/16	0. 000 440 318
7	8.656250	0. 000 620 693	2465/64	0. 000 139 498
8	10.000000	0. 000 164 518	50	0. 000 032 903
9	12.390625	0. 000 030 507	4033/64	0. 000 005 998
10	15.062500	0. 000 004 494	1241/16	0. 000 000 872
11	18.015625	0. 000 000 540	5993/64	0. 000 000 103
12	21.250000	0. 000 000 054	445/4	0. 000 000 010
13	24.765625	0. 000 000 004	8345/64	0. 000 000 000
0	1	0. 030 099 110	1	0. 030 099 110
1	325/289	0. 025 389 464	485/289	0. 017 013 558
2	433/289	0. 018 885 180	1073/289	0. 007 620 953
3	613/289	0. 012 174 296	2053/289	0. 003 635 091

	VII	VIII	IX	X
	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. VII	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. IX
	ql=3		ql=7	
x_F	n			
4	865/289	0. 007 475 214	3425/289	0. 001 887 900
5	1189/289	0. 004 951 454	5189/289	0. 001 134 569
6	1585/289	0. 002 709 736	7345/289	0. 000 584 742
7	2053/289	0. 001 072 140	9893/289	0. 000 222 491
8	2593/289	0. 000 309 894	12833/289	0. 000 062 616
9	3205/289	0. 000 068 046	16165/289	0. 000 013 491
8.5	3839/289	0. 000 011 768	19889/289	0. 000 002 301
10	4645/289	0. 000 001 650	24005/289	0. 000 000 319
11	5473/289	0. 000 000 191	28513/289	0. 000 000 036
12	6373/289	0. 000 000 018	33413/289	0. 000 000 003
13	7345/289	0. 000 000 001	38705/289	0. 000 000 000
15	8389/289	0. 000 000 000		
0	1.000000	0. 027 904 243	1	0. 027 904 243
1	1.111111	0. 024 788 600	130/81	0. 017 161 338
2	1.444444	0. 018 188 887	277/81	0. 007 682 670
3	2.000000	0. 012 651 207	9/58	0. 003 926 236
4	2.777771	0. 007 788 008	865/81	0. 002 025 782
9.0	5.000000	0. 003 257 991	9/205	0. 000 715 168
5	3.777777	0. 005 209 541	1306/81	0. 001 220 612
6	6.444444	0. 001 537 656	2482/81	0. 000 323 391
8	8.111111	0. 000 529 692	3217/81	0. 000 108 177

	VII	VIII	IX	X
	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. VII	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. IX
	ql=3		ql=?	
	x_F	n		
9	10.00000	0. 000 137 316	50	0. 000 027 463
10	12.11111	0. 000 027 783	4981/81	0. 000 005 471
11	14.44444	0. 000 004 524	6010/81	0. 000 000 880
9.0 ¹²	17.000000	0. 000 000 607	9/793	0. 000 000 117
13	19.77777	0. 000 000 068	8362/81	0. 000 000 013
14	22.77777	0. 000 000 006	9685/81	0. 000 000 001
0	1	0. 025 983 416	1	0. 025 983 416
1	397/361	0. 024 130 758	557/361	0. 017 199 122
2	505/361	0. 017 659 245	1145/361	0. 007 788 575
3	685/361	0. 012 813 266	2125/361	0. 004 130 394
4	937/361	0. 008 241 567	3497/361	0. 002 208 278
5	1261/361	0. 005 385 510	5261/361	0. 001 290 843
6	1657/361	0. 003 657 135	7417/361	0. 000 817 024
9.5 ⁷	2125/361	0. 002 023 115	9965/361	0. 000 431 422
8	2665/361	0. 000 826 481	12905/361	0. 000 170 675
9	3277/361	0. 000 252 318	16237/361	0. 000 050 923
10	3961/361	0. 000 059 571	19961/361	0. 000 011 821
11	4717/361	0. 000 011 230	24077/361	0. 000 002 200
12	5545/361	0. 000 001 735	28585/361	0. 000 000 336
13	6445/361	0. 000 000 224	33485/361	0. 000 000 043

VII	VIII	IX	X
-----	------	----	---

$$\frac{1+(ql)^2}{x_F^2} \quad \text{Col. VI/Col. VII} \quad \frac{1+(ql)^2}{x_F^2} \quad \text{Col. VI/Col. IX}$$

ql=3

ql=7

x_F	n
-------	-----

14	7417/361	0. 000	000	024	38777/361	0. 000	000	004
9.5	8461/361	0. 000	000	002	44461/361	0. 000	000	000
15	9577/361	0. 000	000	000	50537/361			

16	1.00	0. 024	646	010	1.00	0. 024	646	010
0	1.09	0. 023	134	437	1.49	0. 016	923	850
1	1.36	0. 017	442	130	2.96	0. 008	013	952
2	1.81	0. 012	691	439	5.41	0. 004	246	119
3	2.44	0. 008	713	430	8.84	0. 002	405	064
4	3.25	0. 005	605	240	13.25	0. 001	374	870
5	4.24	0. 003	907	768	18.64	0. 000	888	891
6	5.41	0. 002	462	682	25.01	0. 000	532	711
7	6.76	0. 001	183	629	32.36	0. 000	247	260
8	8.29	0. 000	424	435	40.69	0. 000	086	472
9	10.00	0. 000	116	702	50.00	0. 000	023	340
10	11.89	0. 000	025	410	60.29	0. 000	005	011
11	13.96	0. 000	004	503	71.56	0. 000	000	878
12	16.21	0. 000	000	664	83.81	0. 000	000	128
13	18.64	0. 000	000	083	97.04	0. 000	000	015
14	21.25	0. 000	000	008	111.25	0. 000	000	001
15	24.04	0. 000	000	000	126.44	0. 000	000	000

VII

VIII

IX

X

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

q1=3

q1=7

 x_F

n

0	1	0. 023	780	906	1	0. 023	780	906
1	477/441	0. 021	906	085	637/441	0. 016	403	771
2	585/441	0. 017	388	751	1225/441	0. 008	304	015
3	765/441	0. 012	487	114	2205/441	0. 004	332	264
4	1017/441	0. 009	047	851	3577/441	0. 002	572	453
5	1341/441	0. 005	926	168	5341/441	0. 001	487	922
6	1737/441	0. 004	072	330	7497/441	0. 000	943	529
7	2205/441	0. 002	805	071	10045/441	0. 000	615	747
8	2745/441	0. 001	564	701	12985/441	0. 000	330	774
10.5	3357/441	0. 000	656	626	16317/441	0. 000	135	092
	4041/441	0. 000	209	920	20041/441	0. 000	042	327
	4797/441	0. 000	052	701	24157/441	0. 000	010	465
	5625/441	0. 000	010	692	28665/441	0. 000	002	098
	6525/441	0. 000	001	795	33505/441	0. 000	000	348
	7497/441	0. 000	000	254	38857/441	0. 000	000	049
	8541/441	0. 000	000	030	44541/441	0. 000	000	005
	9657/441	0. 000	000	003	50617/441	0. 000	000	000
	17	0. 000	000	000				

VII

VIII

IX

X

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

ql=3

ql=7

 x_F

n

0	1	0. 023	023	101	1	0. 023	023	101
1	130/121	0. 020	768	927	170/121	0. 015	882	121
2	157/121	0. 017	229	711	317/121	0. 008	533	327
3	202/121	0. 012	398	866	562/121	0. 004	456	532
4	265/121	0. 009	176	535	611/121	0. 002	687	051
5	346/121	0. 006	307	859	1346/121	0. 001	621	485
6	445/121	0. 004	238	763	1885/121	0. 001	000	663
7	562/121	0. 003	037	235	2522/121	0. 000	676	814
11.0	697/121	0. 001	922	386	3257/121	0. 000	411	391
	850/121	0. 000	938	317	4090/121	0. 000	195	004
10	1021/121	0. 000	348	154	5021/121	0. 000	070	795
11	10	0. 000	100	657	50	0. 000	020	131
12	1417/121	0. 000	023	339	7177/121	0. 000	004	607
13	1642/121	0. 000	004	449	8402/121	0. 000	000	869
14	1885/121	0. 000	000	712	9725/121	0. 000	000	138
15	2146/121	0. 000	000	097	11146/121	0. 000	000	018
16	2425/121	0. 000	000	022	12665/121	0. 000	000	002
17	2722/121	0. 000	000	002	14282/121	0. 000	000	000
18	3037/121	0. 000	000	000				

VII

VIII

IX

X

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

ql=3

ql=7

 x_F n

0	1	0. 022	086	660	1	0. 022	086	660
1	565/529	0. 019	955	541	725/529	0. 015	551	560
2	673/529	0. 016	819	915	1313/529	0. 008	621	327
3	853/529	0. 012	473	917	2293/529	0. 004	644	933
4	1105/529	0. 009	162	897	3665/529	0. 002	762	619
5	1429/529	0. 006	650	035	5429/529	0. 001	750	396
6	1825/529	0. 004	468	509	7585/529	0. 001	075	152
7	2293/529	0. 003	191	050	10133/529	0. 000	722	104
8	2833/529	0. 002	215	398	13073/529	0. 000	480	090
11.5	3455/529	0. 001	244	200	16405/529	0. 000	261	278
	4129/529	0. 000	534	343	20129/529	0. 000	109	608
	4885/529	0. 000	177	726	24245/529	0. 000	035	809
	5713/529	0. 000	047	045	28753/529	0. 000	009	347
	6613/529	0. 000	010	170	33653/529	0. 000	001	998
	7585/529	0. 000	001	835	38945/529	0. 000	000	357
	8629/529	0. 000	000	281	44629/529	0. 000	000	054
	9745/529	0. 000	000	037	50705/529	0. 000	000	0007
	10933/529	0. 000	000	004	57173/529	0. 000	000	000
	12193/529	0. 000	000	000	64033/529			

VII

VIII

IX

X

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. VII

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. IX

ql=3

ql=7

 x_F

n

0	1	0. 020	966	886	1	0. 020	966	886
1	1.0625	0. 019	434	237	193/144	0. 015	406	416
2	1.25	0. 016	238	030	340/144	0. 008	596	604
3	1.5625	0. 012	597	435	585/144	0. 004	845	167
4	2.0	0. 009	142	967	928/144	0. 002	837	472
5	2.5625	0. 006	869	584	1369/144	0. 001	851	626
6	3.25	0. 004	761	509	1908/144	0. 001	167	917
7	4.0625	0. 003	326	146	2545/144	0. 000	764	556
8	5.0	0. 002	426	163	3280/144	0. 000	532	572
9	6.0625	0. 001	539	467	4113/144	0. 000	326	757
12.0	10.	0. 000	761	575	5044/144	0. 000	157	629
	11.5625	0. 000	291	057	6073/144	0. 000	059	093
12	10.	0. 000	087	891	50	0. 000	017	578
13	11.5625	0. 000	021	524	8425/144	0. 000	004	253
14	13.25	0. 000	004	373	9748/144	0. 000	000	856
15	15.0625	0. 000	000	751	11169/144	0. 000	000	145
16	17.0	0. 000	000	110	12688/144	0. 000	000	021
17	19.0625	0. 000	000	014	14305/144	0. 000	000	002
18	21.25	0. 000	000	001	16020/144	0. 000	000	000
19	23.5625	0. 000	000	000	17833/144			

XI

XII

XIII

XIV

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XI

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XIII

ql=11

ql=15

x_F	n	0	1	2	3	4	5	6	7	8	9
0	1	0.	317	106	269						
1	485	0.	000	016	579						
2	1937	0.	000	000	037						
3	4357	0.	000	000	000						

0	1	0.	317	106	269						
1	485	0.	000	016	579						
2	1937	0.	000	000	037						
3	4357	0.	000	000	000						

0	1	0.	273	385	667						
1	122	0.	000	236	790						
2	485	0.	000	002	195						
3	1090	0.	000	000	018						
4	1937	0.	000	000	000						

0	1	0.	214	894	401						
1	493/9	0.	000	991	685						
2	1945/9	0.	000	021	688						
3	4365/9	0.	000	000	421						
4	7753/9	0.	000	000	006						
5	12109/9	0.	000	000	000						

0	1	0.	156	763	851						
1	125/4	0.	002	403	109						
2	122	0.	00	270	552						
3	1093	0.	000	003	578						

	XI	XII	XIII	XIV	
	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII	
	q1=11		q1=15		
	x_F	n			
	4	485	0. 000 000 097	901	0. 000 000 052
2.0	5	3029/4	0. 000 000 001	5629/4	0. 000 000 000
	6	1090	0. 000 000 000	2026	
	0	1	0. 110 702 286	1	0. 110 702 286
	1	509/25	0. 004 177 286	925/25	0. 002 298 636
	2	1961/25	0. 000 293 118	3625/25	0. 000 158 566
2.5	3	4381/25	0. 000 017 268	8125/25	0. 000 009 311
	4	7769/25	0. 000 000 756	14425/25	0. 000 000 407
	5	12125/25	0. 000 000 024	22525/25	0. 000 000 013
	6	17449/25	0. 000 000 000	32425/25	0. 000 000 000
	0	1	0. 081 451 231	1	0. 081 451 231
	1	130/9	0. 005 765 630	26	0. 003 203 127
	2	493/9	0. 000 635 290	101	0. 000 344 552
3.0	3	122	0. 000 057 222	226	0. 000 030 890
	4	1945/9	0. 000 003 763	401	0. 000 002 028
	5	3034/9	0. 000 000 183	626	0. 000 000 098
	6	485	0. 000 000 004	901	0. 000 000 002
	7	5938/9	0. 000 000 000	1226	0. 000 000 000

	XI	XII	XIII	XIV
	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII
	ql=11		ql=15	
x_F	n			
0	1	0. 066 852 651	1	0. 066 852 651
1	533/49	0. 006 760 195	949/49	0. 003 796 821
2	1985/49	0. 001 095 243	3649/49	0. 000 595 795
3	4405/49	0. 000 143 875	8149/49	0. 000 077 773
3.5	7793/49	0. 000 013 540	14449/49	0. 000 007 302
4	12149/49	0. 000 000 933	22549/49	0. 000 000 502
5	17473/49	0. 000 000 048	32749/49	0. 000 000 026
6	23765/49	0. 000 000 002	44149/49	0. 000 000 001
7	31025/49	0. 000 000 000	57649/49	0. 000 000 000
8				
0	1	0. 060 848 254	1	0. 060 848 254
1	137/16	0. 007 180 479	241/16	0. 004 081 849
2	125/4	0. 001 576 406	229/4	0. 000 860 484
3	1105/16	0. 000 291 272	2041/16	0. 000 157 695
4	122	0. 000 037 941	226	0. 000 020 481
4.0	3041/16	0. 000 003 566	5641/16	0. 000 001 922
5	1093/4	0. 000 000 251	2029/4	0. 000 000 135
6	5945/16	0. 000 000 013	11041/16	0. 000 000 007
7	485	0. 000 000 000	901	0. 000 000 000
8				

	XI	XII	XIII	XIV
	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII
	ql=11		ql=15	
	x_F	n		
	0	1	0. 057 358 432	1 0. 057 358 432
	1	565/81	0. 007 410 768	981/81 0. 004 268 179
	2	2017/81	0. 001 967 782	3681/81 0. 001 078 244
	3	4437/81	0. 000 493 515	8181/81 0. 000 267 660
4.5	4	7825/81	0. 000 086 829	14481/81 0. 000 046 919
	5	12181/81	0. 000 010 856	22581/81 0. 000 005 856
	6	17505/81	0. 000 001 007	32481/81 0. 000 000 542
	7	23797/81	0. 000 000 007	44181/81 0. 000 000 003
	8	31057/81	0. 000 000 004	57681/81 0. 000 000 002
	9	39285/81	0. 000 000 000	72981/81 0. 000 000 000
	0	1	0. 052 940 111	1 0. 052 940 111
	1	5.84	0. 007 857 427	10 0. 004 588 737
	2	20.36	0. 002 215 107	37 0. 001 218 907
	3	44.56	0. 000 719 803	80 0. 000 391 151
	4	78.44	0. 000 167 583	145 0. 000 090 656
	5	122	0. 000 027 362	226 0. 000 014 770
5.0	6	175.24	0. 000 003 272	325 0. 000 001 764
	7	238.16	0. 000 000 298	442 0. 000 000 160
	8	310.76	0. 000 000 021	577 0. 000 000 011
	9	393.04	0. 000 000 001	730 0. 000 000 000

XI	XII	XIII	XIV
----	-----	------	-----

$$\frac{1+(q_1)^2 \frac{n^2}{x_F^2}}{\text{Col. VI/Col. XI}}$$

$$\frac{1+(q_1)^2 \frac{n^2}{x_F^2}}{\text{Col. VI/Col. XIII}}$$

ql=11

ql=15

x_F	n
-------	---

0	1	0. 047	231	244	1	0. 047	231	244
1	605/121	0. 008	627	949	1021/121	0. 005	112	546
2	2057/121	0. 002	356	380	3721/121	0. 001	302	627
3	4477/121	0. 000	925	949	8221/121	0. 000	504	254
4	7865/121	0. 000	279	164	14521/121	0. 000	151	203
5.5	12221/121	0. 000	058	680	22621/121	0. 000	031	702
6	17545/121	0. 000	008	915	32521/121	0. 000	004	809
7	23837/121	0. 000	001	023	44221/121	0. 000	000	551
8	30097/121	0. 000	000	094	57721/121	0. 000	000	049
9	39325/121	0. 000	000	006	72021/121	0. 000	000	003
10	48521/121	0. 000	000	000	90121/121	0. 000	000	000

0	1	0. 041	623	793	1	0. 041	623	793
1	4.36111	0. 009	490	739	7.25	0. 005	708	988
2	14.4444	0. 002	490	295	26.00	0. 001	383	497
3	31.2499	0. 001	078	339	57.25	0. 000	588	613
4	54.777	0. 000	408	778	101	0. 000	221	702
5	85.0277	0. 000	109	224	157.25	0. 000	059	059
6.0	122	0. 000	020	853	226	0. 000	011	256
7	165.694	0. 000	002	972	307.25	0. 000	001	603
8	216.111	0. 000	000	328	401	0. 000	000	177

	XI	XII	XIII	XIV
	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. XIII
	ql=11		ql=15	
X_F	n			
9	273.2499	0. 000 000 029	507.25	0. 000 000 015
10	337.1111	0. 000 000 002	626.00	0. 000 000 001
6.0	11 407.6944	0. 000 000 000	757.25	0. 000 000 000
0	1	0. 037 470 534	1	0. 037 470 534
1	653/169	0. 010 115 914	1069/169	0. 006 179 319
2	2105/169	0. 002 099 882	3769/169	0. 001 507 894
3	4525/169	0. 001 174 658	8269/169	0. 000 642 802
4	7913/169	0. 000 535 029	14569/169	0. 000 290 595
5	12269/169	0. 000 179 169	22669/169	0. 000 096 970
6.5	6 17593/169	0. 000 042 600	32569/169	0. 000 023 011
7	23885/169	0. 000 007 476	44269/169	0. 000 004 033
8	31145/169	0. 000 000 964	57769/169	0. 000 000 520
9	39373/169	0. 000 000 108	73069/169	0. 000 000 058
10	48569/169	0. 000 000 009	90169/169	0. 000 000 005
11	58733/169	0. 000 000 000	109069/169	0. 000 000 000
0	1	0. 035 028 603	1	0. 035 028 603
7.0	1 170/49	0. 010 364 200	274/49	0. 006 430 343
2	533/49	0. 002 991 391	949/49	0. 001 680 096
3	1138/49	0. 001 245 079	2074/49	0. 000 683 173

XI

XII

XIII

XIV

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XI

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XIII

ql=11

ql=15

 x_F

n

4	$1985/49$	0. 000	637	676	$3649/49$	0. 000	346	886
5	$3074/49$	0. 000	262	324	$5674/49$	0. 000	142	119
6	$4405/49$	0. 000	077	036	$8149/49$	0. 000	041	642
7	122	0. 000	016	526	226	0. 000	009	334
8	$7793/49$	0. 000	002	697	$14449/49$	0. 000	001	454
7.0	$9850/49$	0. 000	000	346	$18274/49$	0. 000	000	186
	$12149/49$	0. 000	000	036	$22549/49$	0. 000	000	019
11	$14690/49$	0. 000	000	003	$27274/49$	0. 000	000	001
12	$17473/49$	0. 000	000	000	$32449/49$	0. 000	000	000

0	1	0. 033	545	414	1	0. 033	545	414
1	$709/225$	0. 010	378	816	$1125/225$	0. 006	540	961
2	$2161/225$	0. 003	296	503	$3825/225$	0. 001	862	416
3	$4581/225$	0. 001	330	872	$8325/225$	0. 000	732	339
4	$7969/225$	0. 000	708	798	$14625/225$	0. 000	386	216
7.5	$12325/225$	0. 000	346	991	$22725/225$	0. 000	188	192
	$17649/225$	0. 000	124	639	$32625/225$	0. 000	067	425
7	$23941/225$	0. 000	032	495	$44325/225$	0. 000	017	551
8	$31201/225$	0. 000	006	378	$57825/225$	0. 000	003	441
9	$39429/225$	0. 000	000	978	$73125/225$	0. 000	000	527

XI

XII

XIII

XIV

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XI

$$1+(q_1)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XIII

ql=11

ql=15

 x_F

n

10	$48625/225$	0. 000 000 120	$90225/225$	0. 000 000 065
11	$58789/225$	0. 000 000 012	$109125/225$	0. 000 000 006
12	$69921/225$	0. 000 000 001	$129825/225$	0. 000 000 000
13	$82021/225$	0. 000 000 000		

0	1	0. 032 053 108	1	0. 032 053 108
1	$185/64$	0. 010 429 985	$289/64$	0. 006 676 634
2	$137/16$	0. 003 533 558	$241/16$	0. 002 008 703
3	$1153/64$	0. 001 454 992	$2089/64$	0. 000 803 066
4	$125/4$	0. 000 757 686	$229/4$	0. 000 413 584
5	$3089/64$	0. 000 420 447	$5689/64$	0. 000 228 293
6	$1105/16$	0. 000 182 104	$2089/16$	0. 000 096 326
7	$5993/64$	0. 000 057 377	$11089/64$	0. 000 031 009
8	122	0. 000 013 485	226	0. 000 007 279
9	$9865/64$	0. 000 002 452	$18289/64$	0. 000 001 322
10	$3041/16$	0. 000 000 356	$5689/16$	0. 000 000 190
11	$14705/64$	0. 000 000 042	$27289/64$	0. 000 000 022
12	$1093/4$	0. 000 000 004	$2089/4$	0. 000 000 002
13	$20513/64$	0. 000 000 000	$38089/64$	0. 000 000 000

	XII	XIII	XIV	
	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII
ql=11			ql=15	
$x_F \ n$				
	0 1	0. 030 099 110	1	0. 030 099 110
	1 773/289	0. 010 674 742	1189/289	0. 006 939 929
	2 2225/289	0. 003 675 183	3889/289	0. 002 102 669
	3 4645/289	0. 001 606 640	8389/289	0. 000 889 598
	4 8033/289	0. 000 804 937	14689/289	0. 000 440 197
	5 12389/289	0. 000 475 202	22789/289	0. 000 258 338
8.5	6 17713/289	0. 000 242 473	32689/289	0. 000 131 387
	7 24005/289	0. 000 091 693	44389/289	0. 000 049 586
	8 31265/289	0. 000 025 701	57889/289	0. 000 013 881
	9 39493/289	0. 000 005 522	73189/289	0. 000 002 979
	10 48689/289	0. 000 000 239	90289/289	0. 000 000 506
	11 58853/289	0. 000 000 130	109189/289	0. 000 000 070
	12 69985/289	0. 000 000 015	129889/289	0. 000 000 008
	13 82085/289	0. 000 000 001	152389/289	0. 000 000 000
	14 95153/289	0. 000 000 000	176689/289	
	0 1	0. 027 904 243	1	0. 027 904 243
9.0	1 202/81	0. 011 044 425	306/81	0. 007 290 764
	2 565/81	0. 003 766 548	981/81	0. 002 169 316
	3 130/9	0. 001 751 705	234/9	0. 000 973 169
	4 2017/81	0. 000 868 766	3681/81	0. 000 476 039

XI

XII

XIII

XIV

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XI

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XIII

ql=11

ql=15

 x_F

n

5	3106/81	0. 000	513	238	5706/81	0. 000	279	376
6	493/9	0. 000	297	382	909/9	0. 000	161	286
7	6010/81	0. 000	133	553	11106/81	0. 000	072	272
8	7825/81	0. 000	044	473	14481/81	0. 000	024	032
9	122	0. 000	011	255	226	0. 000	006	075
9.0	12181/81	0. 000	002	237	22581/81	0. 000	001	207
	14722/81	0. 000	000	359	27306/81	0. 000	000	193
	1945/9	0. 000	000	047	3609/9	0. 000	000	025
	20530/81	0. 000	000	005	38106/81	0. 000	000	002
	23791/81	0. 000	000	000	44181/81	0. 000	000	000

0	1	0. 025	983	416	1	0. 025	983	416
1	845/361	0. 011	337	172	1261/361	0. 007	597	074
2	2297/361	0. 003	882	419	3961/361	0. 002	251	431
3	4717/361	0. 001	860	735	8461/361	0. 001	037	358
4	8105/361	0. 000	952	788	14761/361	0. 000	523	158
9.5	12461/361	0. 000	544	990	22861/361	0. 000	297	061
	17785/361	0. 000	340	729	32761/361	0. 000	184	972
	24077/361	0. 000	178	557	44461/361	0. 000	096	694
	31337/361	0. 000	070	286	57961/361	0. 000	038	000
	39565/361	0. 000	020	898	73261/361	0. 000	011	286

	XI	XII	XIII	XIV
	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{X_F^2}$	Col. VI/Col. XIII
	$ql=11$			$ql=15$
	X_F	n		
9.5	10	48761/361	0. 000 004 839	90361/361 0. 000 002 611
	11	58925/361	0. 000 000 898	109261/361 0. 000 000 484
	12	70057/361	0. 000 000 137	129961/361 0. 000 000 074
	13	82157/361	0. 000 000 017	152461/361 0. 000 000 009
	14	95225/361	0. 000 000 001	176761/361 0. 000 000 001
	15	109261/361	0. 000 000 000	202861/361 0. 000 000 000
10.0	0	1.00	0. 024 646 010	1 0. 024 646 010
	1	2.21	0. 011 410 197	3.25 0. 007 758 934
	2	5.84	0. 004 061 866	10.00 0. 002 372 129
	3	11.89	0. 001 932 002	21.25 0. 001 081 012
	4	20.36	0. 001 044 242	37.00 0. 000 574 615
	5	31.25	0. 000 582 945	57.25 0. 000 318 201
	6	44.56	0. 000 371 834	82.00 0. 000 202 060
	7	60.29	0. 000 220 983	11.25 0. 000 119 758
	8	78.44	0. 000 102 005	145.00 0. 000 055 181
	9	99.01	0. 000 035 537	183.25 0. 000 019 200
	10	122.00	0. 000 009 565	226.00 0. 000 005 163
	11	147.41	0. 000 002 049	273.25 0. 000 001 105
	12	175.24	0. 000 000 358	325.00 0. 000 000 193

	XI	XII	XIII	XIV	
	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII	
	ql=11		ql=15		
	x_F	n			
13	205.49	0. 000 000 052	281.25	0. 000 000 028	
14	238.16	0. 000 000 006	442.00	0. 000 000 003	
10.0	273.25	0. 000 000 000	507.25	0. 000 000 000	
15					
0	1	0. 023 780 906	1	0. 023 780 906	
1	925/441	0. 011 296 435	1341/441	0. 007 792 097	
2	2377/441	0. 004 279 520	4041/441	0. 002 517 302	
3	4797/441	0. 001 991 378	8541/441	0. 001 118 445	
4	8185/441	0. 001 124 210	14841/441	0. 000 620 016	
5	12541/441	0. 000 633 680	22941/441	0. 000 346 409	
6	17865/441	0. 000 395 949	32841/441	0. 000 215 390	
7	24157/441	0. 000 256 041	44541/441	0. 000 138 864	
10.5	8	31417/441	0. 000 136 712	58041/441	0. 000 074 001
9	39645/441	0. 000 055 600	73341/441	0. 000 030 055	
10	48841/441	0. 000 017 368	90441/441	0. 000 009 379	
11	59005/441	0. 000 004 284	109341/441	0. 000 002 312	
12	70137/441	0. 000 000 857	130041/441	0. 000 000 462	
13	82237/441	0. 000 000 142	152541/441	0. 000 000 076	
14	95305/441	0. 000 000 019	176841/441	0. 000 000 010	
15	109341/441	0. 000 000 002	202941/441	0. 000 000 000	

XI

XII

XIII

XIV

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XI

$$1+(ql)^2 \frac{n^2}{x_F^2}$$

Col. VI/Col. XIII

ql=11

ql=15

 x_F n

0	1	0. 023	023	101	1	0. 023	023	101
1	2	0. 011	156	862	346/121	0. 007	803	354
2	5	0. 004	471	181	1021/121	0. 002	649	426
3	10	0. 002	069	893	2146/121	0. 001	167	088
4	17	0. 001	182	198	3721/121	0. 000	653	529
5	26	0. 000	693	744	5746/121	0. 000	379	832
6	37	0. 000	421	320	8221/121	0. 000	229	442
11.0	50	0. 000	282	136	11146/121	0. 000	153	142
	65	0. 000	170	362	14521/121	0. 000	092	273
	82	0. 000	080	383	18346/121	0. 000	043	473
	101	0. 000	029	086	22621/121	0. 000	015	713
	122	0. 000	008	250	226/121	0. 000	004	453
	145	0. 000	001	884	32521/121	0. 000	001	016
	170	0. 000	000	355	38146/121	0. 000	000	191
	197	0. 000	000	056	44221/121	0. 000	000	030
	226	0. 000	000	007	50746/121	0. 000	000	000
	257	0. 000	000	000				

	XI	XII	XIII	XIV
	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(q_1)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII
	q1=11		q1=15	
	x_F	n		
0	1	0. 022 086 660	1	0. 022 086 660
1	1013/529	0. 011 130 188	1429/529	0. 007 890 049
2	2465/529	0. 004 592 212	4129/529	0. 002 741 536
3	4885/529	0. 002 178 147	8629/529	0. 001 233 080
4	8273/529	0. 001 223 860	14929/529	0. 000 678 210
5	12629/529	0. 000 752 466	23029/529	0. 000 412 649
6	17953/529	0. 000 454 243	32929/529	0. 000 247 654
7	24245/529	0. 000 301 797	44629/529	0. 000 163 953
11.5	31505/529	0. 000 199 213	58129/529	0. 000 107 970
8	39733/529	0. 000 107 876	73429/529	0. 000 058 372
9	48929/529	0. 000 045 091	90529/529	0. 000 024 371
10	59093/529	0. 000 014 691	109429/529	0. 000 007 933
11	70225/529	0. 000 003 827	130129/529	0. 000 002 065
12	82325/529	0. 000 000 816	152629/529	0. 000 000 440
13	95393/529	0. 000 000 145	176929/529	0. 000 000 078
14	109429/529	0. 000 000 022	203029/529	0. 000 000 011
15	124433/529	0. 000 000 002	230929/529	0. 000 000 001
16	140405/529	0. 000 000 000	260629/529	0. 000 000 000
17				

	XII	XIII	XIV
$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XI	$1+(ql)^2 \frac{n^2}{x_F^2}$	Col. VI/Col. XIII
ql=11			ql=15
x_F n			
0	1	0. 020 966 886	1 0. 020 966 886
1	265/144	0. 011 220 521	2.5625 0. 008 058 098
2	628/144	0. 004 654 212	7.25 0. 002 799 660
3	1233/144	0. 002 298 802	15.0625 0. 001 306 787
4	2080/144	0. 001 265 949	26 0. 000 703 305
5	3169/144	0. 000 799 897	40.0625 0. 000 439 396
6	4500/144	0. 000 495 196	57.25 0. 000 270 304
7	6073/144	0. 000 320 401	77.5625 0. 000 174 213
8	7888/144	0. 000 221 455	101 0. 000 120 107
9	9945/144	0. 000 135 138	127.5625 0. 000 073 164
10	12244/144	0. 000 064 936	157.25 0. 000 035 112
11	14785/144	0. 000 024 272	190.0625 0. 000 013 112
12	122	0. 000 007 204	226 0. 000 003 889
13	20593/144	0. 000 001 740	265.0625 0. 000 000 938
14	23860/144	0. 000 000 349	307.25 0. 000 000 188
15	27369/144	0. 000 000 059	352.5625 0. 000 000 032
16	31120/144	0. 000 000 008	401 0. 000 000 004
17	35113/144	0. 000 000 001	452.5625 0. 000 000 000
18	39348/144	0. 000 000 000	

REFERENCES

VII

DISTRIBUTION LIST

<u>No. of copies</u>	<u>Agency</u>
6	Hqs, Air Force Office of Scientific Research Office of Aerospace Research ATTN: SRPS Washington 25, D. C.
1	Hqs, Aeronautical Systems Division Air Force Systems Command ATTN: ASRMDD USAF Wright-Patterson AWB Ohio
Remainder	Harold L. Grubin Polytechnic Institute of Brooklyn 333 Jay Street Brooklyn 1, New York