Atividade AA-08

Nesta tarefa deve-se (i) propôr um autômato finito determinístico **mínimo** D que reconheça as cadeias da linguagem selecionada, a partir de D construir uma gramática G_1 que gere as cadeias reconhecidas por D e a partir de G_1 , usando o algoritmo baseado em sistemas de equações, extrair uma expressão regular \mathcal{R}_1 que gere as mesmas cadeias geradas por G_1 ; (ii) propôr um autômato finito não-determinístico N que reconheça as cadeias da linguagem selecionada e, como no item (i), obter a partir de N uma gramática G_2 (não necessariamente será regular!) e, a partir desta, obter uma expressão regular \mathcal{R}_2 . O autômato N pode ser um NFA ou NFA- ε , com pelo menos uma transição não determinística ou uma transição ε . Atenção: NFA's criados a partir do simples acréscimo de transições $\delta(s_i,\varepsilon) = s_i$ $(\varepsilon$ -laços) a um DFA não serão considerados corretos, por não permitirem uma avaliação razoável do aprendizado dos conceitos abordados nesta atividade avaliativa. (Cada aluna(o) deve consultar na descrição da atividade AA-08, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "lista de linguagens regulares" da Seção "Coletânea de exercícios".)

Rafael Nunes Moreira Costa (202107855)

- $\mathcal{L}_{26} = \{ w \mid |w|_0 + |w|_1 = 2k + 1, k \in \mathbb{N} \text{ e w não contém } \mathbf{10}. \}$
- $ER(\mathcal{L}_{26}) = 0(00 \cup 11) \cup 1(11)^*$.

DFA mínimo que reconhece as cadeias de \mathcal{L}_{26}

Gramática G_1 que gera as cadeias de \mathcal{L}_{26}

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \begin{cases} S \to 0A \mid 1C, \\ A \to 0B \mid 1D \mid \varepsilon, \\ B \to 0A \mid 1C, \\ C \to 1D \mid \varepsilon, \\ D \to 1C \end{cases}.$$

Extração de expressão regular \mathcal{R}_1 da gramática G, tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$S = 0A \cup 1C$	
	2	$A = 0B \cup 1D \cup \varepsilon$	
	3	$B = 0A \cup 1C$	
	4	$C = 1D \cup \varepsilon$	
	5	D = 1C	
II	1	$S = 0A \cup 1C$	
	2	$A = 0B \cup 11C \cup \varepsilon$	$I.5 \rightarrow I.2$
	3	$B = 0A \cup 1C$	
	4	$C = 11C \cup \varepsilon$	$I.5 \rightarrow I.4$
III	1	$S = 0A \cup 1C$	
	2	$A = 0B \cup 11C \cup \varepsilon$	
	3	$B = 0A \cup 1C$	
	4	$C = (11)^*(\varepsilon) = (11)^*$	$II.4 ightarrow ext{Lema}$ de Arden
IV	1	$S = 0A \cup 1(11)^*$	$III.4 \rightarrow III.1$
	2	$A = 0B \cup 11(11)^* \cup \varepsilon$	$III.4 \rightarrow III.2$
	3	$B = 0A \cup 1(11)^*$	$III.4 \rightarrow III.3$
\overline{V}	1	$S = 0A \cup 1(11)^*$	
	2	$A = 00A \cup 01(11)^* \cup 11(11)^* \cup \varepsilon$	$IV.3 \rightarrow IV.2, {\tt Fatoraç\~ao}$
\overline{VI}	1	$S = 0A \cup 1(11)^*$	
	2	$A = (00)^* (01(11)^* \cup 11(11)^* \cup \varepsilon)$	$V.2 ightarrow { m Lema}$ de Arden
\overline{VII}	1	$S = 0((00)^*(01(11)^*) \cup 11(11)^* \cup \varepsilon)) \cup 1(11)^*$	$VI.2 \rightarrow VI.1$
VIII	1	$S = 0((00)^*(01(11)^*)) \cup 0(11)^+ \cup 0(\varepsilon) \cup 1(11)^*$	$VI.1 ightarrow exttt{Fatoração}$

NFA que reconhece as cadeias de \mathcal{L}_{26}

Gramática G_2 que gera as cadeias da linguagem \mathcal{L}_{26}

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \begin{cases} S \to 0A \mid 0C \mid 1A, \\ A \to 1B \mid \varepsilon, \\ B \to 1A, \\ C \to 0S \mid 1D \mid \varepsilon, \\ D \to 1A \end{cases}.$$

Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$S = 0A \cup 0C \cup 1A$	
	2	$A = 1B \cup \varepsilon$	
	3	B = 1A	
		$C = 0S \cup 1D \cup \varepsilon$	
	5	D = 1A	
II	1	$S = 0(1B \cup \varepsilon) \cup 0C \cup 1(1B \cup \varepsilon)$	$I.2 \rightarrow I.1$, Fatoração
	2	$B = 1(1B \cup \varepsilon) = 11B \cup 1$	$I.2 \rightarrow I.3$, Fatoração
	3	$C = 0S \cup 1D \cup \varepsilon$	
	4	$D = 1(1B \cup \varepsilon) = 11B \cup 1$	$I.2 \rightarrow I.5$, Fatoração
III	1	$S = (01B \cup 0) \cup 0C \cup (11B \cup 1)$	Fatoração
	2	$B = (11)^*1$	$II.2 \rightarrow \text{Lema de Arden}$
	3	$C = 0S \cup 1D \cup \varepsilon$	
	4	$D = 11B \cup 1$	
\overline{IV}	1	$S = 01(11)*1 \cup 010 \cup 0C \cup 11(11)*1 \cup 1$	$III.2 \rightarrow III.1$
	2	$C = 0S \cup 1D \cup \varepsilon$	
	3	$D = 11(11)^*1 \cup 1$	$III.2 \rightarrow III.4$
\overline{V}	1	$S = 01(11)^*1 \cup 010 \cup 0C \cup 11(11)^*1 \cup 1$	
	2	$C = 0S \cup 111(11)^*1 \cup 11 \cup \varepsilon$	$IV.3 \rightarrow IV.2$ Fatoração
VI	1	$S = 01(11)*1 \cup 010 \cup 00S \cup 0111(11)*1 \cup 011 \cup 0 \cup 11(11)*1 \cup 1$	$V.2 \rightarrow V.1$ Fatoração
VII	1	$S = (01(11)*1 \cup 010 \cup 00)*$ $0111(11)*1 \cup 011 \cup 0 \cup 11(11)*1 \cup 1$	$VI.1 \rightarrow \text{Lema de Arden}$