BASIC ELECTRONICS ENGINEERING (RBL1B002)

MODULE-1

BJT DC BIASING

- 4 types of biasing circuits are there.
 - Fixed Bias Circuit
 - Emitter Stabilized Bias Circuit
 - Voltage Divider Bias Circuit
 - DC bias with voltage feedback

NOTE:

$$1. I_E = I_B + I_C$$

$$2. \ \beta = \frac{I_C}{I_R}$$

3.
$$I_E \approx I_C$$

4.
$$V_{BE} = \begin{cases} 0.7 & for Si \\ 0.3 & for Ge \end{cases}$$

$$5. V_{XY} = V_X - V_Y$$

- In the previous bias configurations, the bias current I_{CQ} and voltage V_{CEQ} at Q point were a function of the current gain (β) of the transistor.
- Since β is temperature sensitive it is desirable to develop a bias circuit that is independent of transistor β or less dependent on β .
- The Voltage divider bias configuration provides such type of network.
- If the circuit parameters are properly chosen the resulting levels of I_{CQ} and V_{CEQ} can be almost totally independent of β .

There are two methods that can be applied to analyse the voltage divider configuration.

- 1) Exact Analysis
- 2) Approximate Analysis

The exact analysis can be applied to any voltage divider configuration.

But the approximate method can be applied only if some specific conditions are satisfied.

EXACT Analysis:

The BE junction of the voltage divider bias circuit can be redrawn as

Assuming the current I, by KVL

$$V_{CC} - IR_1 - IR_2 = 0$$

$$\Rightarrow$$
 I = $\frac{V_{CC}}{R_1 + R_2}$

Hence the voltage across R2 i.e. thevenin's voltage is given by

$$E_{Th} = I \times R_2 = \frac{R_2 V_{CC}}{R_1 + R_2}$$

And the thevenin's resistance is given by

$$R_{TH} = R_1 R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Hence the BE loop can be redrawn as

Now by KVL in this BE loop, we have

$$E_{TH} - I_B.R_{TH} - V_{BE} - I_E.R_E = 0$$

$$\Rightarrow E_{TH} - V_{BE} - I_B R_{TH} - (\beta + 1) I_B. R_E = 0$$

$$\Rightarrow E_{TH} - V_{BE} = I_B [R_{TH} + (\beta + 1) R_E]$$

$$\Rightarrow I_B = \frac{E_{TH} - V_{BE}}{R_{TH} + (\beta + 1)R_E}$$
Now $I_C = \beta I_B$

Now by KVL in this CE loop, we have

$$V_{CC} - I_{C}R_{C} - V_{CE} - I_{E}R_{E} = 0$$

Substituting $I_E \approx I_C$

$$V_{CE} = V_{CC} - I_C R_C - I_C R_E$$

$$\Rightarrow V_{CE} = V_{CC} - I_C (R_C + R_E)$$

$$V_{CE} = V_C - V_E \& V_E = I_E R_E$$

$$V_C = V_{CE} + V_E$$

$$V_B = V_{BE} + V_E$$

Load Line Analysis – Voltage Divider Bias Circuit

The CE loop of the fixed bias circuit:

By KVL:

$$V_{CC} - I_C R_C - V_{CE} - I_E R_E = 0$$

$$\Rightarrow$$
 $V_{CE} = V_{CC} - I_C (R_C + R_E)$

Let
$$I_C = 0$$
, So $V_{CE} = V_{CC}$
Again, let $V_{CE} = 0$, So $I_C = V_{CC} / (R_C + R_E)$

Approximate Analysis: $(\beta R_E \ge 10R_2)$

The input section of the voltage divider configuration can be represented by

 R_i is the equivalent resistance between base & ground for the transistor with emitter resistance R_E .

Assuming $R_i >> R_E$, we have $I_B = 0$. Hence $I_1 = I_2$ and $R_1 \& R_2$ can be considered as series.

So by voltage division rule, the voltage across R_2 which is the base voltage is given by

$$V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

Since $R_i = (\beta+1) R_E \approx \beta R_{E_i}$, the condition for this analysis can be chosen as $\beta R_E \ge 10R_{2_i}$

Now
$$V_E = V_B - V_{BE}$$

The emitter current can be determined as,

$$I_E = \frac{V_E}{R_E}$$

and, $I_C \approx I_E$

Now by applying KVL in CE loop

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

PRACTICE

Example:

Determine the dc bias voltage V_{CE} and the current I_{C} for the voltage divider configuration using exact analysis & approximate analysis.

Here $I_C' = I_B + I_C$ The actual value of $I_C \& I_C'$ far exceeds the value of I_B . Hence we can say that, $I'_C \approx I_C$

Applying KVL in BE loop, $V_{CC} - I'_{C}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$ $V_{CC} - I_{C}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$ $\Rightarrow V_{CC} - I_{C}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$ $\Rightarrow V_{CC} - \beta I_{B}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$ $(\beta+1)I_{R}R_{E} = 0$

$$\Rightarrow I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta R_C + (\beta + 1)R_E}$$

Applying KVL in CE loop,

$$V_{CC} - I'_{C}R_{C} - V_{CE} - I_{E}R_{E} = 0$$

$$\Rightarrow$$
 $V_{CC} - I_{C}R_{C} - V_{CE} - I_{E}R_{E} = 0$

$$\Rightarrow$$
 $V_{CC} - I_C R_C - V_{CE} - I_C R_E = 0$

$$\Rightarrow$$
 $V_{CE} = V_{CC} - I_C (R_C + R_E)$

PRACTICE

