Assignment 2

ECE 445

Submission deadline: 13th Nov,2023

- Design a structure as shown in Figure 1.
- 2. Show the meshing, band diagram and electric field at 0V, 0.5V and -1 V, for L=1 um, n-Si=10¹⁶/cm³. Observe how the band structure and electric field changes with respect to applied bias.
- 3. Plot the R_{on} for L=0.5 um, 1 um, 1.5 um, while keeping n-Si 10^{16} /cm³.
- 4. Plot the R_{on} for n-Si= 10^{15} , 10^{16} , 10^{17} /cm³, while keeping L=1 um.
- 5. Plot the maximum electric field E_{max} for L=0.5 um, 1 um, 1.5 um, while keeping n-Si 10^{16} /cm³, at -10 V.
- 6. Plot the maximum electric field E_{max} for n-Si= 10^{15} , 10^{16} , 10^{17} /cm³, while keeping L=1 um. at -10 V.
- 7. Bonus: Find the cut-off frequency $f_{co}=1/(2\pi R_{on}C_{off})$, for your design of choice (Which design do you think would be best for the operating this diode at high frequency? Hint: $C_{off}=\varepsilon A/d$, d=depletion width)

