# 03. RAG 훑어보기

3.1 RAG 개념 ~ 3.3 RAG 구현 시 필요한 것

발표 일시 : 2025.04.08(화)

발표자 : 권선옥

# **RAG**

- RAG(Retrieval-Augmented Generation) : 검색 증강 생성(LLM의 정확성, 신뢰성을 높이는데 도움)
  - (Retrieval) LLM이 텍스트를 생성할 때 관련 정보 탐색
  - (Augmented) 외부 정보 검색 기능으로 정보에 대한 맥락을 강화하거나 확장
  - (Generation) 탐색한 정보를 활용하여 새로운 텍스트를 생성



출처: https://aws.amazon.com/ko/whatis/retrieval-augmented-generation/

# RAG 논문

#### **arXiV** > cs > arXiv:2005.11401

Computer Science > Computation and Language

Submitted on 22 May 2020 (v1), last revised 12 Apr 2021 (this version, v4)

#### Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela

- ☆ 논문의 주요 내용
- RAG 모델이 최신 매개변수 기반 seq2seq 모델보다 더 구체적이고 다양하고 사실적인 언어를 생성하는 것을 확인했다.
- 학습된 검색(retrieval) 구성 요소에 대한 효과성을 입증했으며, 재학습 없이도 검색 인덱스를 핫스왑(실시간 교체)하여 모델을 업데이트할 수 있는 방법을 보였다.

| 구분     | 검색기 (Retriever)         | 생성기 (Generator)      |  |
|--------|-------------------------|----------------------|--|
| 모델 유형  | 비매개변수적 (Non-Parametric) | 매개변수적 (Parametric)   |  |
| 학습 방식  | 문서 인덱스를 활용하여 검색         | 훈련된 뉴럴 네트워크를 기반으로 생성 |  |
| 정보 출처  | 외부 문서 데이터베이스 (검색 기반)    | 내부 학습된 가중치 (딥러닝 모델)  |  |
| 변경 가능성 | 문서 인덱스가 변경되면 즉시 업데이트 가능 | 학습된 파라미터를 변경해야 함     |  |

<u>출처: https://arxiv.org/abs/2005.11401</u>

### **RAG**

- 사전 학습된 검색기(Query Encoder + Document Index)와 사전 학습된 seq2seq2 모델(Generator)를 결합하고 한번에 파인튜닝한다.
- 쿼리 x 에 대해 최대 내적 탐색(MIPS)을 사용하여 상위 K개의 문서 z를 찾는다.
  - 내적 값이 클수록 유사도 높음
- 최종 예측 y를 위해, z를 잠재 변수(latent variable)로 간주하고, 서로 다른 문서가 주어진 상태에서 seq2seq 예측을 주변화(marginalize)한다.
  - 잠재 변수 : 관찰되지 않은 변수(hidden) → 최종 예측에 영향을 미치는 숨겨진 요인으로 작용함
  - 주변화 : 특정 변수 하나에 대한 확률값 추정을 위해 나머지 변수를 모두 적분(확률을 합산 or 평균)하여 제거하는 방법(=주변 변수화 한다)



출처: https://arxiv.org/abs/2005.11401

#### RAG

- Table 1 4가지 오픈 도메인 QA 작업 모두에서 다른 모델보다 우수한 성능을 보임
  - closed-book(파라미터 기반)의 생성 유연성 + open-book(검색 기반)의 성능을 결합
- Table 2 생성과 분류 테스트에서 BART를 앞섰고, SOTA 모델과 유사한 성능을 보임
  - 기존 모델이 정답 생성에 필요한 특정 정보를 포함한 'gold passages'에 접근 가능했던 반면, RAG는 접근하지 않고도 (Wikipedia 사용)근접한 성능을 냄
    - → 검색된 문서가 부족하거나 정답을 포함하지 않아도 합리적인 답변을 생성

test set. See Appendix D for further details.

| Model |                               | NQ           | TQA                            | WQ           | CT           |
|-------|-------------------------------|--------------|--------------------------------|--------------|--------------|
|       | T5-11B [52]<br>T5-11B+SSM[52] | 34.5<br>36.6 | - /50.1<br>- /60.5             | 37.4<br>44.7 | -            |
|       | REALM [20]<br>DPR [26]        |              | - / -<br>57.9/ -               |              | 46.8<br>50.6 |
|       | RAG-Token<br>RAG-Seq.         |              | 55.2/66.1<br>56.8/ <b>68.0</b> |              |              |

Table 1: Open-Domain QA Test Scores. For TQA, Table 2: Generation and classification Test Scores. left column uses the standard test set for Open- MS-MARCO SotA is [4], FEVER-3 is [68] and Domain QA, right column uses the TQA-Wiki FEVER-2 is [57] \*Uses gold context/evidence. Best model without gold access underlined.

| Model    | Jeopardy |      | MSMARCO     |             | FVR3  | FVR2   |
|----------|----------|------|-------------|-------------|-------|--------|
|          | B-1      | QB-1 | R-L         | B-1         | Labe  | l Acc. |
| SotA     | -        | -    | 49.8*       | 49.9*       | 76.8  | 92.2*  |
| BART     | 15.1     | 19.7 | 38.2        | 41.6        | 64.0  | 81.1   |
| RAG-Tok. |          |      |             | 41.5        | 72.5  | 89.5   |
| RAG-Seq. | 14.7     | 21.4 | <u>40.8</u> | <u>44.2</u> | , 2.5 | 0713   |

출처: https://arxiv.org/abs/2005.11401

# 3.2.1 정보 검색

#### ● 단계

- 1. 질문 입력 : 쿼리(query)를 입력한다.
- 2. 검색 : 해당 쿼리와 관련된 정보를 DB 에서 탐색한다.
- 3. 유사도 계산 : 쿼리와 DB의 문서 간의 유사도를 계산한다.
  - ■keyword search : 사용자가 입력한 쿼리가 명시적으로 나타난 경우만 탐색(의도, 문맥과 상관 없는 결과 반환되기도 함)
  - ■semantic search : 단어의 의미, 문맥을 이해하여 관련성 높은 결과 반환
- 4. 랭킹 처리 : 질문과 가장 관련이 높은 검색 결과 순으로 나열
  - ■유사도 계산을 통해 사용자의 질문이나 요구에 가장 적합한 정보 결정

3.2.2 (심화)정보 검색

- 벡터와 유사도
  - 벡터(vector) : 방향과 크기를 나타내는 값
  - 유사도
    - ■코사인 유사도 : 두 벡터 간의 각도를 계산하여 유사도 측정
    - ■유클리드 유사도(유클리드 거리) : 두 점 사이의 '직선 거리'를 계산하여 유사도 측정



출처: https://www.lgcns.com/blog/cnstech/ai-data/15526/

# 3.2.1 정보 검색

- 유사도 계산 : 문서 사이의 관련성이나 유사성을 수치로 표현하는 방법
  - 대표적으로 '코사인 유사도'를 사용함
    - ■유사도는 -1과 +1 사이의 값.
    - ■벡터 사이의 각도가 작을수록 코사인 값이 더 커져 코사인 유사도가 더 크다는 것을 나타냄

$$similarity(A,B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$



<u>출처 :</u>

https://www.learndatasci.co
m/glossary/cosine-similarity/

3.2.2 (심화)정보 검색

- 검색 결과 랭킹 처리
  - 검색 엔진이 사용자의 쿼리에 가장 관련성이 높은 문서를 결정하고 이를 순서대로 나열하는 방법(랭킹)
- 랭킹 방법
  - 페이지랭크(PageRank): Google의 검색 결과에 랭킹을 매기는 알고리즘(가장 일반적)
    - ■영향력 있는 페이지가 인용할수록 페이지랭크가 올라감 (ex. 아래 이미지의 'C'는 영향력 있는 'B'가 인용하여 랭크가 높아짐)



출처: https://en.wikipedia.org/wiki/PageRank

3.2.2 (심화)정보 검색

- TF-IDF(Term Frequency Inverse Document Frequency)
  - 특정 단어가 나타나는 단어 빈도(TF)와
  - 그 단어가 전체 문서에서 얼마나 드물게 나타나는지에 대한 문서 빈도(IDF)를 계산하여 랭크를 매기는 방법
  - TF-IDF 값이 높은 문서는 쿼리와 더 관련이 높음(해당 단어가 특정 문서에서는 많이 등장하지만, 다른 문서에서는 거의 등장하지 않는다는 뜻)
  - o ex.
    - ■'RAG'라는 단어가 한 권의 책에 10회 출현 → TF = 10
    - ■모든 책(30권)에서 'RAG'가 2개의 책에서만 출현 → IDF = log(30/2) = log(15)
    - $\blacksquare$ TF-IDF = 10 \* log(15) = 10×1.1761=11.761

#### **PSEUDO LAB 10TH ACADEMY**

# 3.2 RAG 구현 과정

3.2.2 (심화)정보 검색

- 클릭률(Click-Through Rate, CTR)
  - 링크가 얼마나 자주 클릭되는지를 측정하는 지표(높을수록 해당 링크에 대한 관심이 높다는 의미)
  - (클릭수 / 노출수) \* 100
  - ex. 100명이 사이트를 조회하고, 5명만 상품을 구매함 ⇒ (5/100) \* 100 = 5%

The average click-through rate in Google Ads in 2024 is 6.42%.



출처: https://www.wordstream.com/blog/2024-google-ads-benchmarks

# 3.2.3 텍스트 생성

- 사용자의 질문과 검색 결과로 텍스트를 생성
  - 단순히 정답만 제시하는 것이 아닌 검색 결과를 함께 제시함으로써 구체적인 결과 생성



# 3.3.1 데이터

- RAG에서 사용 가능한 데이터는 특별히 정해진 형식이 없음
- 중요한 것은 데이터의 규범, 규제를 고려하는 것(개인정보 포함 여부, 저작권법 침해 여부 등)
- 획득한 데이터는 두 가지 방법으로 사용됨
  - semantic search : 단어의 의미, 문맥을 이해하여 관련성 높은 결과 반환
  - <u>vector search</u> : 쿼리 벡터와 가장 유사한 벡터를 기반 → <u>embedding 필요!</u>

#### **PSEUDO LAB 10TH ACADEMY**

3.3 RAG 구현 시 필요한 것

3.3.1 데이터

● 임베딩(embedding) : 복잡한 데이터를 간단한 형태(숫자)로 바꾸는 것

1. Word2Vec : 단어 → 벡터로 변환

- 2. GloVe(Global Vectors for Word Representation)
  - 단어의 의미 → 벡터로 변환

```
from gensim.models import KeyedVectors
from gensim.scripts.glove2word2vec import glove2word2vec

glove_path = 'glove.68/glove.68.100d.txt'

with open(glove_path, 'w') as f:
f.write("cat 0.5 0.3 0.2\n")
f.write("dog 0.4 0.7 0.8\n")

word2vec_output_file = glove_path + '.word2vec'

glove2word2vec(glove_path, word2vec_output_file)

model = KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)

cat_vector = model['cat']

cat_vector

v 0.0s

C:\Users\tjsdh\AppData\Local\Temp\ipykernel_20564\624368931.py:11: DeprecationWarning: Cat_glove2word2vec(glove_path, word2vec_output_file)

array([0.5, 0.3, 0.2], dtype-float32)
```

3. OpenAl 모델

```
The state of the
```

# 3.3.2 벡터 DB

● 벡터 DB : 벡터 저장소(데이터 간의 '유사성'을 바탕으로 검색하는 데 사용됨)

○ ex. 사용자 질문 : "배송 상태를 어떻게 확인할 수 있나요?"

■query\_vector : 질문의 벡터 표현

■top\_k : 가장 유사한 문서의 수

```
POST /search
{
"query_vector": 0.13, -0.24, 0.33, ..., 0.78],
"top_k": 5
}
```

3.3.2 벡터 DB

#### ● 벡터 DB 종류

| 벡터 DB                  | 유료/무료             | 특징                                     |
|------------------------|-------------------|----------------------------------------|
| Pinecone (파인콘)         | 유료 (무료 티어 제공)     | 클라우드 기반 벡터 검색, 간단한 API                 |
| Milvus (밀버스)           | 오픈소스 (무료) + 유료 옵션 | 높은 수준의 제어 가능, 대규모 데이터 지원               |
| Qdrant (쿼드런트)          | 오픈소스 (무료) + 유료 옵션 | Rust 기반, 고성능 검색 엔진,<br>클라우드 & 온프레미스 지원 |
| Chroma (크로마)           | 오픈소스 (무료)         | 간단한 사용법, AI 및 RAG 최적화                  |
| Elasticsearch (엘라스틱서치) | 오픈소스 (무료) + 유료 옵션 | 기존 검색 엔진 + 벡터 검색 기능 추가                 |
| Faiss (파이스)            | 오픈소스 (무료)         | Facebook AI 연구팀 개발,<br>GPU 가속 지원       |

# 3.3.3 framework

# LangChain(LLM 밀키트)

- 개념: LLM을 활용한 애플리케이션 개발에 특화된 오픈소스 프레임워크\*
  - \*앱 개발 시 기본적인 것을 제공하는 소프트웨어 도구 모음
- 출시: 2022년 10월 말, 오픈 소스로 출시됨
- 상징 : 앵무새(인간의 언어를 따라서 말할 수 있다는 점) + 사슬燚 (언어 모델과 언어 모델을 활용할 수 있는 다양한 도구를 결합)
- RAG 구현을 위해 '정보 검색' & '텍스트 생성'(LLM) → '정보 검색'을 위한 준비 필요
  - 임베딩, 유사도 검색, 랭킹 처리 → 랭체인으로 모두 가능

# 핵심요익

- RAG는 정보를 찾고(Retrieval), 외부 정보 검색으로 맥락을 확장(Augmented)하여, 새로운 텍스트를 생성(Generation)하는 기술이다.
- RAG는 정보 탐색 + 텍스트 생성 단계로 구성되며, 정보 탐색에는 쿼리 입력 -> DB 검색 -> 유사도 계산 -> 랭킹 처리 단계를 거친다.
- 유사도 계산은 문서 사이의 관련성이나 유사성을 수치로 표현하는 방법으로 코사인 유사도가 대표적이다.
- 랭킹 방법에는 페이지랭크, TF-IDF, 클릭률 등이 있다.
- RAG 활용 서비스 개발을 위해서는 데이터, 벡터 DB, framework가 필요하며 데이터는 임베딩을 통해 벡터로 변환해야한다.