Ejercicio 9

David García Curbelo

Preámbulo

Toma tu número n=45352609 de la lista publicada para el ejercicio 2. Escribe n en base 2, usa esas cifras para definir un polinomio, f(x), donde tu bit más significativo defina el grado del polinomio n, el siguiente bit va multiplicado por x^{n-1} y sucesivamente hasta que el bit menos significativo sea el término independiente. El polinomio que obtienes es universal en el sentido de que tiene coeficientes en cualquier anillo.

Tenemos que $n_2=10101101000000011010100001$, luego tenemos definido el polinomio

$$f(x) = x^{25} + x^{23} + x^{21} + x^{20} + x^{18} + x^{11} + x^{10} + x^9 + x^7 + x^5 + 1$$

Sea f(x) el polinomio que obtienes con coeficientes en \mathbb{Z} .

Apartado I. Toma $g(x) = f(x) \pmod 2$ y haya el menor cuerpo de característica 2 que contenga a todas las raíces de g. ¿Qué deduces sobre la irreducibilidad de g(x) en $\mathbb{Z}_2[x]$?

El menor cuerpo de característica 2 que contenga a todas las raíces de g es $F_{2^{280}} = F_{2^{8\cdot 5\cdot 7}}$. Ahora, como 280 es mayor estricto que el grado del polinomio, entonces sabemos que g(x) es irreducible en $\mathbb{Z}_2[x]$.

Apartado II. Extrae la parte libre de cuadrados de g(x) y le calculas su matriz de Berlekamp por columnas. Resuelve el s.l. (B-Id)X=0.

Sabemos que el propio polinomio g(x) es libre de cuadrados. Tenemos que x^{2i} con $0 \le i \le 25$ en módulo f(x) tenemos

- 1. 1
- 2. x^2
- 3. x^4
- 4. x^6
- 5. x^8
- 6. x^{10}
- 7. x^{12}
- 8. x^{14}
- 9. x^{16}
- 10. x^{18}
- 11. x^{20}
- 12. x^{22}
- 13. x^{24}

14.
$$x + x^6 + x^8 + x^{10} + x^{11} + x^{12} + x^{19} + x^{21} + x^{22} + x^{24}$$

15.
$$x + x^3 + x^6 + x^{11} + x^{13} + x^{14} + x^{19} + x^{22} + x^{23}$$

16.
$$1 + x^3 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{13} + x^{15} + x^{16} + x^{18} + x^{20} + x^{23} + x^{24}$$

17.
$$1 + x + x^2 + x^6 + x^7 + x^8 + x^{10} + x^{11} + x^{13} + x^{15} + x^{17} + x^{19} + x^{23} + x^{24}$$

$$18. \ \ 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^{10} + x^{13} + x^{15} + x^{17} + x^{18} + x^{20} + x^{21} + x^{22} + x^{23} + x^{24} + x^{$$

19.
$$1 + x + x^2 + x^3 + x^4 + x^{15} + x^{17} + x^{18}$$

20.
$$x^2 + x^3 + x^4 + x^5 + x^6 + x^{17} + x^{19} + x^{20}$$

21.
$$x^4 + x^5 + x^6 + x^7 + x^8 + x^{19} + x^{21} + x^{22}$$

22.
$$x^6 + x^7 + x^8 + x^9 + x^{10} + x^{21} + x^{23} + x^{24}$$

23.
$$1 + x + x^5 + x^6 + x^7 + x^{10} + x^{11} + x^{18} + x^{19} + x^{20} + x^{22} + x^{24}$$

24.
$$x + x^2 + x^3 + x^6 + x^7 + x^9 + x^{10} + x^{11} + x^{13} + x^{19} + x^{20}$$

25.
$$x^3 + x^4 + x^5 + x^8 + x^9 + x^{11} + x^{12} + x^{13} + x^{15} + x^{21} + x^{22}$$

26.
$$x^5 + x^6 + x^7 + x^{10} + x^{11} + x^{13} + x^{14} + x^{15} + x^{17} + x^{23} + x^{24}$$

Obtenemos así las filas de la matriz de Berlekamp a partir de los coeficientes de estos polinomios:

/	1	0	0	0	0	0	0	0	0	0	0	0	0	0	011	0	0.0	0	0	0.0	0	00 P	0	0	0	0 \
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
l	0	1	0	0	0	0	1	0	1	0	1	1	1	0	0	0	0	0	0	1	0	1	1	0	1	0
	0	1	0	1	0	0	1	0	0	0	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0
	1	0	0	1	0	0	0	1	1	1	1	1	0	1	0	1	1	0	1	0	1	0	0	1	1	0
	1	1	1	0	0	0	1	1	1	0	1	1	0	1	0	1	0	1	0	1	0	0	0	1	1	0
	1	1	1	1	1	1	1	1	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1	1	1	0
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0
	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0
	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
l	1	1	0	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	1	1	1	0	1	0	1	$\stackrel{\circ}{0}$
	0	1	1	1	0	0	1	1	0	1	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	$\stackrel{\circ}{0}$
	0	0	0	1	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	0	0	1	1	0	0	0
(0	0	0	0	0	1	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	0	0	1	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
/	U	U	U	U	U	T	T	T	U	U	T	T	U	Т	T	T	U	T	U	U	U	U	U	T	1	0 /

El rango de M-Id es 25. Por tanto habrá una única solución. Resolvemos el sistema (M-Id)X=0 y obtenemos la solución siguiente:

$$\{1,1,1,1,1,0,1,0,1,0,0,1,1,1,0,1,1,0,0,1,0,1,1,1,1,0\}$$

Y esto nos lleva al polinomio g-reductor siguiente:

$$g_1(x) = 1 + x + x^2 + x^3 + x^4 + x^6 + x^8 + x^{11} + x^{12} + x^{13} + x^{15} + x^{16} + x^{19} + x^{20} + x^{22} + x^{23} + x^{24} +$$

Apartado III. Aplica Berlekamp si es necesario recursivamente para hallar la descomposición en irreducibles de g(x) en $\mathbb{Z}_2[x]$. Vemos que el máximo común divisor de los polinomios $g_1(x)$ y g(x) es 1. Por lo tanto, g(x) es

irreducible, en $\mathbb{Z}_2[x]$.

Apartado IV. Haz lo mismo para hallar la descomposición en irreducibles de $f(x) \pmod 3$

Apartado V. ¿Qué deduces sobre la reducibilidad de f(x) en $\mathbb{Z}[x]$?