Medical Image Analysis Lecture 03

Variational Methods & Denoising

We are not afraid of variational methods!

- CV deals with inverse (often ill-posed) problems:
 - Given observed data: estimate unknown quantities!
- Image Denoising / Restoration

Observed data: Noisy Image

Unknown Quantity: Clean Image

Denoising

- Inherent problem in (medical) image acquisition
- Physical processes involved often lead to compromises w.r.t signal to noise ratio

Increasing noise

- CV deals with inverse (often ill-posed) problems:
 - Given observed data: estimate unknown quantities!
- 3D Reconstruction

Observed data: Stereo Images & Depth Maps

Unknown Quantity: 3D Model

- CV deals with inverse (often ill-posed) problems:
 - Given observed data: estimate unknown quantities!
- Image Segmentation

Observed data: Lena

Unknown Quantity: Fore-/Background

- CV deals with inverse (often ill-posed) problems:
 - Given observed data: estimate unknown quantities!
- Motion Fields & Image Registration

Observed data: Bus in Motion

Unknown Quantity: Optical Flow

III-Posed Problems

- Many solutions possible
- Regularization of the solution is needed.
 - Restrict space of possible solutions!

Figure 1.1: A degraded image using motion blur and 2% additive Gaussian noise.

- How to choose regularization of a given problem?
 - A priori knowledge has to be incorporated to restrict the solution space.

Bayesian Inference

- No direct solutions -> constrict space of possible solutions to physically meaningful ones
- Statistical interpretation
 - Image u: random variable (drawn from probability distribution)
 - Assume it's possible to compute belief of hypothesis u being true p(u | f)
 - We want to find u', the maximally probable hypothesis u solving our inverse problem given the observed image f.

$$u' = \max_{u} \{ p(u \mid f) \}$$

Maximum a posteriori estimation (MAP)

Bayesian Inference

Observed data f

Bayes Rule

Bayes Rule:

Tells us how to update probability of hypothesis u given new observations f

Example: Tikhonov Denoising

Independence assumption: Pixelwise product of distributions

$$\max \left\{ p(u \mid f) = \prod_{\Omega} p(u)p(f \mid u) \right\}$$

Model probabilities as normal distributions

$$p(u) = \exp\left(-\frac{|\nabla u|^2}{2}\right), \quad p(f \mid u) = \exp\left(-\frac{\lambda}{2}(u - f)^2\right)$$

Maximizing exp is \prod minimizing its argument

$$\min \left\{ E = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right\}$$

Minimizing functional by solving Euler-Lagrange equations Calculus of Variations

$$-\Delta u + \lambda (u - f) = 0$$

A. Tikhonov, On the Stability of Inverse Problems, 1943

Calculus of Variations

Quiz: What makes x_0 special?

$$f'(x_0) = 0.$$

 $f: \mathbf{R} \to \mathbf{R}$

Calculus of Variations

Functional

 $J: A \rightarrow \mathbf{R}$

A is a set of admissible functions -> function space

Fundamental Problem of Calculus of Variations:

Given a functional J and a set A of admissible functions, find the <u>function(s)</u> in A that give(s) an extreme value to J.

Calc. of Variations: Example 1

$$A = \{ f \in C^1[a,b], y(a) = y_0, y(b) = y_1 \}.$$

$$J(y) = \int_{a}^{b} \sqrt{1 + (y'(x))^2} dx, y \in A.$$

Quiz: What is this functional about?

Quiz: What is the obvious solution when minimizing J(y)?

Calculus of Variations

Generic Variational Formulation

$$J(y) = \int_{a}^{b} L(x, y, y') dx, \qquad y(a) = y_0, \ y(b) = y_1,$$

Euler Lagrange Equation (P.D.E.)

min {J(y)}
$$\longrightarrow L'_y(x,y,y') - \frac{d}{dx}L'_{y'}(x,y,y') = 0, x \in [a,b].$$

Setting the Functional Derivative to Zero!

Functional (Gateaux) Derivative

$$\delta J(u;v) = \lim_{\varepsilon \to 0} \frac{J(u+\varepsilon v) - J(u)}{\varepsilon},$$

"Competing Curves"

Example 1: Derivation

$$A = \{ f \in C^1[a,b], y(a) = y_0, y(b) = y_1 \}.$$

$$J(y) = \int_{a}^{b} \sqrt{1 + (y'(x))^2} dx, y \in A.$$

min{J(y)} -> Blackboard!

Solution:

$$y = \frac{y_1 - y_0}{b - a} x + \frac{by_0 - ay_1}{b - a}.$$

Example 2: Brachistochrone Problem

Brachistochrone Solution

Euler-Lagrange for Two Dimensions

$$J(u) = \iint_{\Omega} L(x, y, u(x, y), u'_{x}(x, y), u'_{y}(x, y)) dxdy,$$

$$\min \left\{ J(\mathbf{u}) \right\} \implies L'_{u} - \frac{\partial}{\partial x} L'_{u'_{x}} - \frac{\partial}{\partial y} L'_{u'_{y}} = 0.$$

Now we are back at our Tikhonov Denoising functional:

$$\min \left\{ E = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right\}$$

Tikhonov Functional Derivation

Blackboard

Euler-Lagrange Equation

$$-\Delta u + \lambda (u - f) = 0$$

Summary Tikhonov

$$\min \left\{ E = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right\}$$

Example: Tikhonov Denoising

- Energy Functional
 - dependence on unknown function u (continuous domain)
- Calculus of Variations gives theorem to describe a functional at stationary points
 - Setting Functional (Gateaux) derivative to zero leads to the Euler-Lagrange
 PDE
 - The functional has to fulfill the Euler-Lagrange equation!

$$-\Delta u + \lambda (u - f) = 0$$

0	1	0
1	-4	1
0	1	0

Laplace Operator

Numerical Implementation Tikhonov

$$-\Delta u + \lambda (u - f) = 0$$

- Discretization necessary:
 Rather easy for quadratic Tikhonov model -> only Laplace operator
- Numerical Solver:
 - Gradient Descent Optimization: u=u(t)

timestep

$$u^{t+1} = u^t - \tau(-\Delta u^t + \lambda(u^t - f))$$

 Direct (semi-implicit) Method: Huge equation system over all pixels to solve for solution u

$$Au(x_i) = \lambda f(x_i)$$

$$i = 1...N$$

Example: Tikhonov Denoising

What the heck is this all about?

Quiz: Scale of Gauss? -> Matlab

- By solving the partial differential equation $-\Delta u + \lambda (u f) = 0$ numerically, we implemented a Gauss blurring filter!
 - Excellent, but why is this interesting, people do this for decades?
 - We now work in a mathematical framework for the analysis of inverse problems including their modeling, regularization & numerical implementation! (Variational Framework)

Extensions of Tikhonov

 Literature proposed edge-preserving denoising methods using the quadratic L2-norm (Tikhonov) regularization

Bilateral Filtering (Tomasi-Manduchi)

Mean Shift Filtering (Comaniciu-Meer)

 Anisotropic Diffusion (Perona-Malik, Weickert)

 These methods model smoothing dependent on image gradient, while Tikhonov (i.e. Gauss) ignores image gradient ∇f!

Extensions of Tikhonov

- Anisotropic Diffusion (Taxonomy of Weickert)
 - Generalize Quadratic Regularization

$$\int_{\Omega} |\nabla u|^2 dx = \int_{\Omega} \nabla u^T \nabla u dx = \int_{\Omega} \nabla u^T D \nabla u dx$$

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{D ... Diffusion Tensor}$$

- Perona-Malik
$$D = \begin{pmatrix} g(|\nabla f|^2) & 0 \\ 0 & g(|\nabla f|^2) \end{pmatrix}$$

Also Incorporate

Also Incorporate Gradient Orientation!
$$D = \begin{pmatrix} d_{11}(\nabla f) & d_{12}(\nabla f) \\ d_{12}(\nabla f) & d_{22}(\nabla f) \end{pmatrix}$$

Alternative Extension: Total Variation Denoising

Remember: Tikhonov used quadratic prior

$$\min \left\{ E = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 dx \right\}$$

• Different, robust norm for prior?

$$\int_{\Omega} |\nabla u| dx = \int_{\Omega} \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2} dx$$

Total Variation Norm

Suddenly edges are preserved!

Quadratic prior does not allow sharp edges!

Total Variation Denoising

 Image denoising model introduced by Rudin, Osher and Fatemi in 1992 (a.k.a. ROF, TV-L2 model)

$$\text{TV} = \min_{u} \left\{ \int_{\Omega} \nabla u \, dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^2 \, dx \right\}$$

$$\lambda = 10$$

Quadratic vs. Total Variation

Let's have a closer look at edges in f!

Sample f at 100 locations

Functions	Total Variation	Quadratic
$f_1(x)$	1.0	1.0
$f_2(x)$	1.0	0.11
$f_3(x)$	1.0	0.01

Figure 2.3: Total Variation does not see any difference between these three functions

Minimizing quadratic norm favors f3! Minimizing TV norm makes no distinction

Numerical Implementation - TV

- However, Total Variation (TV) model unfortunateley harder to minimize compared to quadratic!
 - Why? : Derivative undefined at zero!
 - Remember: Euler Lagrange eq. leads to derivative!
- Approaches
 - Slow Gradient Descent Methods
 - Sophisticated Primal-Dual Methods

Numerical Implementation - ROF

Minimize the following energy:

$$\min_{u} \left\{ \int_{\Omega} |\nabla u| dx + \frac{\lambda}{2} \int_{\Omega} (u - f)^{2} dx \right\}$$

Euler-Lagrange for $J(u) = \frac{1}{p} \iint |\nabla u|^p dxdy$, $1 \le p < \infty$,

is

$$-\operatorname{div}\left(\left|\nabla u\right|^{p-2}\nabla u\right) = 0$$

So: Associated Euler-lagrange equation of our energy is: $-\nabla \frac{\nabla u}{|\nabla u|} + \lambda (u - f) = 0$

$$-\nabla \frac{\nabla u}{|\nabla u|} + \lambda (u - f) = 0$$

Numerical Implementation - ROF

Explicit (Gradient Descent) Optimization:

$$u^{t+1} = u^{t} - \tau \left[-\nabla \cdot \left(\frac{\nabla u^{t}}{\sqrt{\left|\nabla u^{t}\right|^{2} + \varepsilon}} \right) + \lambda (u^{t} - f) \right]$$

Choice of ε difficult & critical!

large: slow convergence, smooth over edges

small: divide by nearly zero (numerically unstable)

We call this solution: ROF-primal

ROF for Color Images

 Sophisticated models available combining RGB channels (e.g. vector TV)

- Simple:
 - Treat R,G,B planes separately
 - Three, uncoupled ROF steps & combine denoised RGB again

END

One minute paper:

- a) What did I learn today?
- b) Which topics remained open?

See you next week!

