

Année universitaire 2015-2016

Site : \Box Luminy \Box St-Charles \Box St-Jérôme \Box Cht-Gombert \Box Aix-Montperrin \Box Aubagne-Satis Sujet session : \boxtimes 1er semestre - \Box 2ème semestre - \Box Session 2 Durée de l'épreuve : 2h Examen de : \boxtimes L1 / \Box L2 / \Box L3 - \Box M1 / \Box M2 - \Box LP - \Box DU Nom diplôme : Licence IM Code Apogée du module : SMI1U3T ? Libellé du module : Géométrie et arithmétique 1 Documents autorisées : \Box OUI - \boxtimes NON

Exercice 1. Dans \mathbb{R}^3 , considérons deux droites \mathcal{D}_1 et \mathcal{D}_2 d'équations

$$\mathcal{D}_1$$
: $\begin{cases} x-y+3=0\\ z=1 \end{cases}$ et \mathcal{D}_2 : $\begin{cases} x=-t\\ y=t+1\\ z=t+1 \end{cases}$, $t \in \mathbb{R}$.

- 1. Déterminer une équation paramétrique de la droite \mathcal{D}_1 .
- 2. Montrer que les droites \mathcal{D}_1 et \mathcal{D}_2 sont perpendiculaires.
- 3. Donner une équation cartésienne du plan π orthogonal à la droite \mathcal{D}_1 et contenant la droite \mathcal{D}_2 .
- 4. Trouver le point A d'intersection de la droite \mathcal{D}_1 avec le plan π .

Exercice 2. Soit $A(X) = X^6 - X^4 + X^2 - 1$.

- 1. Montrer que 1 et -1 sont deux racines de A(X).
- 2. Effectuer la division euclidienne de A(X) par $X^2 1$.
- 3. Donner la forme exponentielle et algébrique des racines 4-ièmes complexes de -1.
- 4. Donner la décomposition en facteurs irréductibles de A(X) dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.
- 5. Soit $Q(X) = X(X-1)(X^2+1)$. Déterminer pgcd(A,Q) et ppcm(A,Q).

Exercice 3.

- 1. Résoudre dans $\mathbb C$ l'équation $z^2+z+1=0$. Représenter les solutions sous forme exponentielle.
- 2. Montrer que si $a \in \mathbb{K}$ est une racine d'un polynôme de $\mathbb{K}[X]$, alors ce polynôme est divisible par X a.
- 3. Rappeler la définition d'un polynôme irréductible dans $\mathbb{K}[X]$.
- 4. Montrer que le polynôme $P(X) = X^2 + X + 1$ est irréductible dans $\mathbb{R}[X]$. Est-il irréductible dans $\mathbb{C}[X]$?
- 5. Déduire des que stions précédentes que pour tout $m, n, p \in \mathbb{N}$, le polynôme P(X) divise le polynôme $X^{3n} + X^{3m+1} + X^{3p+2}$ dans $\mathbb{C}[X]$.