

Методика расчета НКД и доходности

Содержание

1	Расчет количества дней		
	1.1	Определение количества дней между датами	1
2	Накопленный купонный доход		
	2.1	Особенности расчета НКД	1
		Функции вычисления НКД для купонных облигаций	
		Определение НКД для ГОВОЗ	
	2.4	Определение НКД для ОФ3-ПК, привязанных к RUONIA	3
		Определение НКД для ОФЗ-ИН	
3	Доходности и ценовые параметры		
	3.1	Функции вычисления доходности	4
		Особенности определения доходности для ОФЗ-ИН	
		Показатели, транслируемые на сайте	
		Показатели страницы "Расчет доходности/цены"	
4	Дополнительные особенности расчета некоторых параметров		10
		Особенности расчета денежных потоков и параметров ИЦБ	10
		Принципы прогнозирования параметров	

1 Расчет количества дней (базисы)

1.1 Определение количества дней между датами

Во всех формулах расчета НКД и доходности возникает необходимость вычисления количества календарных дней от одной даты до другой или длительности периода, определяемого двумя датами.

Базис 365 (366)

Основной базис, используемый в Торговой Системе. Количество календарных дней (а так же длительность периода) от даты T_1 до даты T_2 определяется как разность дат: T_2 — T_1 . Например, от 5 января 2001 до 6 января 2001 — один день (длительность периода — один день), а от 10 марта 2002 до 20 марта 2002 — десять дней (длительность периода — десять дней).

Базисы 30/360

Разница в днях N между двумя датами T_1 и T_2 рассчитывается как выражение:

$$N = D_2 - D_1 + 30 \times (M_2 - M_1) + 360 \times (Y_2 - Y_1), \tag{1}$$

где $D_1/M_1/Y_1$ – дата T_1 (первая дата), $D_2/M_2/Y_2$ – дата T_2 (вторая дата), Существует три варианта базиса 30/360:

• 30/360

Если D_1 приходится на 31 число, D_1 меняется на 30.

Если D_2 приходится на 31 число, D_2 меняется на 30, только если D_1 приходится на 30 или 31 числа.

30E/360

Если D_1 приходится на 31 число, D_1 меняется на 30.

Если D_2 приходится на 31 число, D_2 меняется на 30.

• 30E+/360

Если D_1 приходится на 31 число, D_1 меняется на 30.

Если D_2 приходится на 31 число, D_2 меняется на 1 и M_2 увеличивается на единицу.

2 Накопленный купонный доход

2.1 Особенности расчета НКД

- Правило вычисления НКД определяется в эмиссионных документах для каждой конкретной бумаги, включая базис, порядок округления и пересчета.
- В случае, если формула, по которой производится расчет НКД, указанная эмитентом в решении о выпуске, не совпадает ни с одной из указанных ниже формул, Биржа использует расчетные значения НКД на каждый день каждого купонного периода в числовом формате и в процентах от номинала, полученные от эмитента или НРД.
- Рассчитанное по формулам ниже значение НКД округляется до 2 знаков после запятой по правилу математического округления.

2.2 Функции вычисления НКД для купонных облигаций

Вариант 1

$$A = C \times \frac{T - t_c}{T} \qquad \text{if} \qquad T = T_c - T_0, \tag{2}$$

где C – купонная ставка в рублях за купонный период,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

Вариант 2

$$A = N \times \frac{C}{100} \times \frac{t}{365}$$
 $u = T_p - T_0,$ (3)

где C — купонная ставка в процентах годовых,

N — номинал бумаги в рублях,

 T_{P} – дата, на которую вычисляется НКД,

 T_0 – дата начала купонного периода.

2.3 Особенности определения НКД в соответствии с письмами Минфина России по определенным выпускам ГОВОЗ

Размер НКД определяется по следующей формуле

$$A = \frac{N \times C \times T}{360} \qquad \text{if} \qquad T = 360 \times (Y_2 - Y_1) + 30 \times (M_2 - M_1) + (D_2 - D_1), \tag{4}$$

где A – размер НКД,

N – номинал ценной бумаги,

C – ставка купона,

T – период расчета НКД,

 Y_1 – год предыдущей выплаты купона,

 Y_2 – год текущей даты,

 M_1 – месяц предыдущей выплаты купона,

 M_2 – месяц текущей даты,

 D_1 – день предыдущей выплаты купона,

 D_2 – день текущей даты.

При определении купонного дохода используется база расчета "30/360", согласно которой календарный год состоит из 12 полных месяцев по 30 дней в каждом. Таким образом, если дата D_1 (или D_2) равна 31, то D_1 (или D_2) присваивается значение 30. Купонный доход определяется с точностью до двух знаков после запятой (до центов) после умножения на количество ценных бумаг в сделке.

Расчет НКД по сделкам с расчетами в валюте, отличной от валюты номинала Для государственных облигаций внешних облигационных займов Российской Федерации

$$A_{\mathsf{pvf}} = A_{\$} \times Am \times \mathsf{Kypc} \$_{\mathsf{LIF}}, \tag{5}$$

 $A_{\$}$ – НКД в долларах США без округления,

Am – количество ценных бумаг в сделке,

Курс\$_{∪Б} – курс Банка России на дату заключения сделки.

Для облигаций, номинированных в долларах США, с расчетами в рублях

$$A_{\mathsf{pv6}} = \mathsf{OKPY}\mathsf{\Gamma}\mathsf{\Pi}(A_{\$}; 2) \times Am \times \mathsf{Kypc}\$_{\mathsf{LI6}}, \tag{6}$$

где $A_{pv\delta}$ – НКД в рублях,

 $OKPY\Gamma\Pi(A_{\$};2)$ — НКД в долларах США, округленное до 2 знаков после запятой,

Am - количество ценных бумаг в сделке,

Курс\$_{UБ} – курс Банка России на дату заключения сделки.

Для облигаций, номинированных в рублях, с расчетами в валюте

$$A_{\mathsf{вал}} = \frac{\mathsf{О}\mathsf{K}\mathsf{P}\mathsf{Y}\mathsf{\Gamma}\mathsf{\Pi}(A_{\mathsf{py6}};4) \times Am}{\mathsf{K}\mathsf{ypc}\mathsf{B}\mathsf{a}\mathsf{л}\mathsf{ю}\mathsf{m}\mathsf{ы}\$_{\mathsf{Ll}\mathsf{D}}},$$
 (7)

где $A_{\text{вал}}$ – НКД в валюте расчетов,

 $OKPY\Gamma\Pi(A_{py6};4)$ — НКД в рублях, округленное до 4 знаков после запятой,

Am – количество ценных бумаг в сделке,

КурсВалюты\$_{ЦБ} – курс Банка России на дату заключения сделки.

Полученное значение округляется до 2 знаков после запятой.

2.4 Особенности определения НКД в соответствии с приказом Минфина России по определенным выпускам ОФЗ-ПК, привязанных к RUONIA

Размер НКД для бумаг, выпущенных после 20.08.2019, определяется по следующей формуле

$$A = N \times \sum_{i=t_1-7}^{t-7} \frac{RUONIA_i}{d(i)}, \quad A_{t_0} = 0,$$
 (8)

где A_t – размер НКД на дату t^* ,

N – номинал ценной бумаги,

t – дата расчета,

t-7 – дата за 7 календарных дней до даты расчета t,

 t_0 — дата начала купонного периода,

 t_1 – дата, следующая за датой начала купонного периода,

 $t_1 - 7$ – дата за 7 календарных дней до даты t_1 ,

i – календарная дата,

d(i) – прнимает значение 365, в случае если дата i приходится на не високосный год, и 366 для даты i високосного года,

 $RUONIA_i$ – значение ставки RUONIA на дату i, публикуемое на официальном сайте Банка России в информационно-коммуникационной сети «Интернет». В случае отсутствия опубликованного значения ставки RUONIA за i-ый день (в том числе, если i-ый день является выходным или праздничным днем в Российской Федерации), значение ставки принимается равным последнему опубликованному значению. Значение каждой ставки определяется с точностью до двух знаков после запятой в соответствии с правилами математического округления.

* - Источником значений НКД является НРД.

2.5 Особенности определения НКД в соответствии с приказом Минфина России по ОФЗ-ИН

Размер НКД определяется по следующей формуле

$$AI_{im} = N_i \times CPN \times \frac{i - t_m}{365},\tag{9}$$

где AI_{im} – размер НКД на дату i расчетного месяца*,

 N_i – номинальная стоимость облигации в дату i, рассчитывается с точностью до копеек в соответствии с правилами математического округления на каждую календарную дату расчетного месяца, CPN – процентная ставка купонного дохода, % годовых,

i – календарная дата,

 t_{m} – дата начала текущего купонного периода,

m – порядковой номер купона, купонного периода.

* - Источником значений НКД является НРД.

3 Доходности и ценовые параметры

3.1 Функции вычисления доходности

Функция вычисления доходности к погашению для бескупонных облигаций

$$Y = \frac{100 - P}{P} \times \frac{YearBasis}{t} \times 100, \quad P = \frac{100}{1 + \frac{Y}{100} \times \frac{t}{YearBasis}}, \tag{10}$$

где Y – доходность к погашению, в процентах годовых,

P – цена облигации, в процентах от номинала,

t – число дней до даты погашения.

Функция вычисления доходности к погашению / оферте для купонных облигаций

$$P + A = \sum_{i,j=m}^{n} \left(\frac{C_i}{\left(1 + \frac{Y}{100}\right)^{\frac{t_i}{365}}} + \frac{N_j}{\left(1 + \frac{Y}{100}\right)^{\frac{t_j}{365}}} \right),$$

$$A = C \times \frac{T - t_c}{T} \qquad \text{M} \qquad T = T_c - T_0,$$
(11)

где P — цена облигации в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

m – текущий купонный период,

n – число купонных периодов до погашения/ближайшей оферты,

 C_i – размер *i*-ого купона в валюте расчетов,

 t_i – число дней до выплаты i-ого купона,

 N_{j} – размер выплаты j-ой части номинала/цена оферты облигации в валюте расчетов,

 t_{i} – число дней до выплаты j-ой номинальной суммы долга,

 \mathring{Y} – эффективная доходность к погашению/оферте, %,

C – купонная ставка в валюте расчетов за текущий купонный период,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона, T_0 – дата начала купонного периода.

Функция вычисления доходности к оферте для купонных облигаций

$$Y = \left(\frac{R+C}{P+A} - 1\right) \times \frac{365}{t} \times 100,$$

$$A = C \times \frac{T-t_c}{T} \qquad \text{if} \qquad T = T_c - T_0,$$

$$(12)$$

где P – цена облигации в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

R – цена ближайшей оферты в валюте расчетов,

C – купонная ставка в валюте расчетов за текущий купонный период,

t – число дней до даты оферты,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

3.2 Особенности определения доходности в соответствии с письмами Минфина России по ОФЗ-ИН

Функция вычисления доходности к погашению для ОФЗ-ИН

$$\frac{P}{100} + \frac{R_C}{100} \times \frac{(d_{\text{Тек.}} - d_{\text{Haч.куп.}})}{365} = \sum_{i,j=m}^{n} \frac{\frac{R_i}{100} \times \frac{T_i}{365}}{\left(1 + \frac{Y}{100}\right)^{\frac{t_i}{365}}} + \frac{1}{\left(1 + \frac{Y}{100}\right)^{\frac{t}{365}}},\tag{13}$$

где Y – эффективная доходность к погашению, %,

P – цена, в процентах от номинала,

 R_C – ставка текущего купона, в процентах годовых,

 $d_{\mathsf{ТЕК.}}$ – дата, на которую рассчитывается доходность,

 $d_{\mathsf{нач.куп.}}$ – дата начала текущего купонного периода,

 R_i – ставка i-ого купонного периода, в процентах годовых,

 T_i – длительность i-ого купонного периода,

 t_i – число дней до i-ого купонного периода),

t – число дней до погашения.

3.3 Показатели, транслируемые на сайте

Доходность для купонных облигаций с одним (последним) купонным периодом до погашения

$$Y = \left(\frac{N+C}{P+A} - 1\right) \times \frac{365}{t} \times 100,\tag{14}$$

где Y – доходность к погашению для купонных облигаций с одним (последним) купонным периодом до погашения, %,

P – цена облигации в валюте расчетов,

A – НКД в валюте расчетов,

N — номинал облигации в валюте расчетов,

C – ближайшая купонная выплата в валюте расчетов,

t – число дней до даты погашения.

Доходность к оферте, транслируемая в ходе и итогах торгов на сайте

Примечание: для расчета используется цена последней за 31 календарный день сделки (если в этот период сделок не было – параметр не рассчитывается).

- для бескупонных облигаций используется функция (10);
- для купонных облигаций используется функция (11).

Вмененная инфляция (только для ОФЗ с плавающим номиналом)

$$P + A = 0.5 \times \sum_{t_k > t} \frac{\left(1 + ICPI\right)^{\frac{t_k - t}{365}} \times C}{\left(1 + r\left(\frac{t_k - t}{365}\right)\right)^{\frac{t_k - t}{365}}} + \frac{\left(1 + ICPI\right)^{\frac{t_n - t}{365}}}{\left(1 + r\left(\frac{t_n - t}{365}\right)\right)^{\frac{t_n - t}{365}}},\tag{15}$$

где ICPI - вмененная инфляция (Implied CPI), %,

t – текущая дата,

P – цена облигации без НКД (в % от номинала),

A - HKД облигации (в % от номинала),

 t_1,\ldots,t_n – даты оставшихся купонных выплат,

 t_0 – дата последней прошедшей купонной выплаты,

C – купон (в % от номинала),

r(s) – доходность бескупонной кривой (G-кривой) на срок s лет, % (см. по ссылке).

Вмененный ожидаемый уровень инфляции (только для ОФЗ с плавающим номиналом)

$$P + A = 0.5 \times \sum_{t_k > t} \frac{(1 + BEI)^{\frac{t_k - t}{365}} \times C}{(1 + y)^{\frac{t_k - t}{365}}} + \frac{(1 + BEI)^{\frac{t_n - t}{365}}}{(1 + y)^{\frac{t_n - t}{365}}},$$
(16)

где BEI - вмененный ожидаемый уровень инфляции (Break-even inflation), %,

t – текущая дата,

P – цена облигации без НКД (в % от номинала),

A - HKД облигации (в % от номинала),

 t_1,\ldots,t_n – даты оставшихся купонных выплат,

 t_0 – дата последней прошедшей купонной выплаты,

C – купон (в % от номинала),

y – доходность к погашению базы расчета (для ОФЗ 52001 база - ОФЗ 26215, для ОФЗ 52002 база - ОФЗ 26224), %.

Вмененная RUONIA (только для ОФЗ, привязанных к RUONIA)

$$P + A = \frac{I_0\left(\frac{t_1 - t_0}{365}\right)}{\left(1 + r\left(\frac{t_1 - t}{365}\right)\right)^{\frac{t_1 - t}{365}}} + 0.5 \times \sum_{t_k > t_1} \frac{IR + \alpha}{\left(1 + r\left(\frac{t_k - t}{365}\right)\right)^{\frac{t_k - t}{365}}} + \frac{1}{\left(1 + r\left(\frac{t_n - t}{365}\right)\right)^{\frac{t_n - t}{365}}},\tag{17}$$

где IR – вмененная RUONIA (Implied RUONIA), %,

t – текущая дата,

P – цена облигации без НКД (в % от номинала),

A - HKД облигации (в % от номинала),

 t_1,\ldots,t_n – даты оставшихся купонных выплат,

 t_0 – дата последней прошедшей купонной выплаты,

 I_0 – ближайший известный купон, %,

 α – известная премия к купону, %,

r(s) – доходность бескупонной кривой (G-кривой) на срок s лет, % (см. по ссылке).

Вмененная ключевая ставка Банка России (только для облигаций Банка России с ключевой ставкой)

Примечание: рассчитывается для облигаций с более, чем 1 купонным периодом.

$$P + A = \frac{I_0\left(\frac{t_1 - t_0}{365}\right)}{\left(1 + r\left(\frac{t_1 - t}{365}\right)\right)^{\frac{t_1 - t}{365}}} + 0.5 \times \sum_{t_k > t_1} \frac{CBR}{\left(1 + r\left(\frac{t_k - t}{365}\right)\right)^{\frac{t_k - t}{365}}} + \frac{1}{\left(1 + r\left(\frac{t_n - t}{365}\right)\right)^{\frac{t_n - t}{365}}},$$

$$\tag{18}$$

где CBR – вмененная CBR_Rate, %,

t – текущая дата,

P – цена облигации без НКД (в % от номинала),

A - HKД облигации (в % от номинала),

 t_1, \ldots, t_n – даты оставшихся купонных выплат,

 t_0 – дата последней прошедшей купонной выплаты,

 I_0 – ближайший известный купон, %,

r(s) – доходность бескупонной кривой (G-кривой) на срок s лет, % (см. по ссылке).

3.4 Функции показателей, используемых на странице "Расчет доходности/цены"

Номинальная доходность

Купонные облигации:
$$Y_N = n \times \left(\sqrt[n]{1 + \frac{Y}{100}} - 1 \right) \times 100;$$
 (19)

Бескупонные облигации:
$$Y_N = \left(\frac{N}{P} - 1\right) \times \frac{YB}{t} \times 100, \tag{20}$$

где Y_N – номинальная доходность, %,

Y – эффективная доходность, %,

n – частота выплат купонов в год,

P — цена облигации в валюте расчетов,

N – номинальная стоимость облигации в валюте расчетов,

t — число дней до даты погашения/ближайшей оферты,

YB – базис года (число дней в году).

Простая доходность

$$Y_S = \left(\frac{\sum_{i,j=m}^n (C_i + N_j)}{P + A} - 1\right) \times \frac{YB}{t} \times 100, \tag{21}$$

где Y_S – простая доходность, %,

 C_i – размер i-ого купона в валюте расчетов,

 N_{i} – размер выплаты j-ой номинальной суммы долга в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

n – число купонных периодов,

m – текущий купонный период,

t — число дней до даты погашения/ближайшей оферты,

YB – базис года (число дней в году).

Текущая доходность

$$Y_C = 100 \cdot \frac{C}{P} \tag{22}$$

где Y_C – текущая доходность, %,

C – размер следующего купона, %,

P – цена облигации, %.

Скорректировання текущая доходность

$$Y_{AC} = Y_C + \frac{100 - P}{t} \tag{23}$$

где Y_{AC} – скорректированная текущая доходность, %,

 Y_C – текущая доходность, %,

P – цена облигации, %,

t – число лет до даты погашения / ближайшей оферты.

G-спред (G-spread)

$$G_{SPRD} = 100 \left(Y - r \left(D \right) \right) \tag{24}$$

где G_{SPRD} – G-спред (G-spread), б.п.,

Y – эффективная доходность к погашению/ближайшей оферте, %,

r(s) – доходность бескупонной кривой (G-кривой) на срок s лет, % (см. по ссылке),

D – дюрация Маколея в годах.

Z-спред (Z-spread) к кривой бескупонной доходности

$$P + A = \sum_{i,j=m}^{n} \left(\frac{C_i}{\left(1 + \frac{1}{100}r\left(\frac{t_i}{YB}\right) + \frac{Z_{SPRD}}{10000}\right)^{\frac{t_i}{YB}}} + \frac{N_j}{\left(1 + \frac{1}{100}r\left(\frac{t_j}{YB}\right) + \frac{Z_{SPRD}}{10000}\right)^{\frac{t_j}{YB}}} \right), \tag{25}$$

$$A = C \times \frac{T - t_c}{T} \qquad \text{M} \qquad T = T_c - T_0,$$

где Z_{SPRD} – Z-спред (Z-spread), б.п.,

P — цена облигации в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

m – текущий купонный период,

n – число купонных периодов до погашения/ближайшей оферты,

 C_i – размер *i*-ого купона в валюте расчетов,

 t_i — число дней до выплаты i-ого купона,

 N_{i} – размер выплаты j-ой части номинала/цена оферты облигации в валюте расчетов,

 t_{i} – число дней до выплаты j-ой номинальной суммы долга,

r(s) – доходность бескупонной кривой (G-кривой) на срок s лет, % (см. по ссылке),

YB — базис года (число дней в году),

C – купонная ставка в валюте расчетов за текущий купонный период,

 t_c — число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

Дюрация Маколея

$$D = \frac{\sum\limits_{i,j=m}^{n} \left(\frac{t_i}{YB} \times \frac{C_i}{\left(1 + \frac{Y}{100}\right)^{\frac{t_i}{YB}}} + \frac{t_j}{YB} \times \frac{N_j}{\left(1 + \frac{Y}{100}\right)^{\frac{t_j}{YB}}}\right)}{P + A},$$

$$A = C \times \frac{T - t_c}{T} \quad \text{if} \quad T = T_c - T_0,$$

$$(26)$$

где D – дюрация Маколея в годах,

P — цена облигации в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

m – текущий купонный период,

n – число купонных периодов до погашения/ближайшей ближайшей оферты,

 C_{i} – размер *i*-ого купона в валюте расчетов,

 t_i – число дней до выплаты i-ого купона,

 N_{i} – размер выплаты j-ой части номинала/цена оферты облигации в валюте расчетов,

 t_{j} – число дней до выплаты j-ой номинальной суммы долга,

Y – эффективная доходность к погашению/ближайшей оферте, %,

YB – базис года (число дней в году),

C – купонная ставка в валюте расчетов за текущий купонный период,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

Модифицированная дюрация

$$MD = \frac{D}{1 + Y/n} \tag{27}$$

где *MD* – модифицированная дюрация,

D — дюрация Маколея в годах,

Y – эффективная доходность к погашению/оферте, %,

n – частота выплат купонов в год.

Стоимость базисного пункта

$$PV\!BP = \frac{M\!\!D}{100} \left(P + A\right),$$

$$A = C \times \frac{T - t_c}{T} \qquad \text{if} \qquad T = T_c - T_0,$$

где PVBP - стоимость базисного пункта,

MD – модифицированная дюрация,

P – цена облигации в валюте расчетов,

A – накопленный купонный доход в валюте расчетов,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

Выпуклость (Convexity)

$$Conv = \frac{\sum\limits_{i,j=m}^{n} \left(\frac{t_i}{YB} \times \left(\frac{t_i}{YB} + 1\right) \times \frac{C_i}{\left(1 + \frac{Y}{100}\right)^{\frac{t_i}{YB} + 2}} + \frac{t_j}{YB} \times \left(\frac{t_j}{YB} + 1\right) \times \frac{N_j}{\left(1 + \frac{Y}{100}\right)^{\frac{t_j}{YB} + 2}}\right)}{P + A}, \quad (29)$$

$$A = C \times \frac{T - t_c}{T} \quad \text{if} \quad T = T_c - T_0,$$

где Conv — выпуклость,

P – цена облигации в валюте расчетов,

A — накопленный купонный доход в валюте расчетов,

m – текущий купонный период,

n – число купонных периодов до погашения/ближайшей ближайшей оферты,

 C_i – размер *i*-ого купона в валюте расчетов,

 t_i – число дней до выплаты i-ого купона,

 N_{i} – размер выплаты j-ой части номинала/цена оферты облигации в валюте расчетов,

 t_{i} – число дней до выплаты j-ой номинальной суммы долга,

Y – эффективная доходность к погашению/ближайшей оферте, %,

YB – базис года (число дней в году),

С – купонная ставка в валюте расчетов за текущий купонный период,

 t_c – число дней до даты выплаты купона,

 T_c – дата выплаты купона,

 T_0 – дата начала купонного периода.

4 Дополнительные особенности расчета некоторых параметров

4.1 Особенности расчета денежных потоков и параметров для ипотечных ценных бумаг (ИЦБ)

- Все расчеты денежных потоков и ценовых параметров происходят в соответствии с Ценовой конвенцией для ипотечных ценных бумаг.
- Расчет параметров происходит по облигациям эмитентов, заключивших с Московской Биржей договор о передаче статистических данных, таких как CPR, CDR, $W\!A\!C$ и $W\!A\!M$.
- Для расчета ценовых параметров в рамках конвенции величина аналогичная НКД рассчитывается дополнительно внутри конвенции.
- В качестве даты погашения берется дата последнего купона, в котовый выплачивается остаток номинала. При наличии опциона clean-up call дата погашения сдвигается нат соответствующую методике более раннюю дату.
- Калькулятор на сайте учитывает данную методику.
- На расчитанные параметры по ИЦБ ДОМ.РФ распространяется Положение об ограничении ответственности по ценовым показателям ИЦБ ДОМ.РФ.

4.2 Принципы прогнозирования параметров

- Для расчета параметров облигации при неизвестных значениях купонов, эти значения берутся равными последней известной купонной ставке, если иное не определено в эмиссионных документах.
- Для расчета доходности ипотечных ценных бумаг поток платежей по бумаге берется в соответствии с Ценовой конвенцией для ипотечных ценных бумаг, если эмитент заключил договор с Московской биржей по передаче необходимых статистических данных.