OBJECTIFS 👌

- Connaître les différents modes de représentation d'une fonction : expression littérale, représentation graphique, ...
- Déterminer graphiquement des images et des antécédents.
- Résoudre graphiquement une équation ou une inéquation.
- Déterminer graphiquement le signe d'une fonction ou son tableau de variations.
- Exploiter une équation de courbe (appartenance d'un point, calcul de coordonnées).

Image, antécédent

À RETENIR 99

Définition

Soit 2 un ensemble de nombres réels. Définir une **fonction** f sur \mathcal{D} revient à associer à chaque réel a de \mathcal{D} un unique réel, noté f(a), et appelé **image** de a par la fonction f.

Antécédent
$$a$$

$$a \in \mathcal{D}$$
Fonction f

$$f(a) \in \mathbb{R}$$

$$f(a) \in \mathbb{R}$$

On dit également que a est **un antécédent** de f(a) par la fonction f. L'ensemble \mathcal{D} est **l'ensemble de définition** de la fonction f.

À RETENIR 33

Notation

Pour une fonction f, à un nombre x, on fait correspondre le nombre f(x) (lire « f de x »). On note $f: x \mapsto f(x)$. Attention donc à ne pas confondre f et f(x): f est une fonction, mais f(x) est un nombre.

EXERCICE 1

On considère la fonction $f: x \mapsto -5x + 7$.

1. Compléter le tableau de valeurs suivant.

Nombre x	-2	-1	0	1	2
Image $f(x)$					

2. En utilisant le tableau, répondre aux questions suivantes.

a. Que vaut f(-2)?

À RETENIR 30

Remarque

Un nombre peut avoir zéro, un, ou plusieurs antécédents par une fonction, mais une unique image.

EXERCICE 2
On considère la fonction carré $f: x \mapsto x^2$.
1. Donner tous les antécédents de 4 par la fonction f .
2. Est-ce que -9 peut avoir un antécédent par la fonction f ? Justifier.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-2.

Représentation graphique

1. Tracer la représentation graphique d'une fonction

À RETENIR 99

Définition

Dans un repère, la **représentation graphique** d'une fonction f est l'ensemble des points de coordonnées (x; f(x)). Cette représentation graphique est également appelée **courbe représentative de la fonction** f.

EXERCICE 3

Le but de cet exercice est de tracer la courbe représentative de la fonction $f: x \mapsto 0, 5x^2$.

1. Est-ce que le point A(2;-1) appartient à la courbe représentative de f? Justifier.

.....

2. Compléter le tableau de valeurs suivant.

Nombre x	-3	-2	-1	0	1	2	3
Image $f(x)$							

3. Dans le repère ci-dessous, placer les points de coordonnées (x; f(x)) donnés par le tableau. Puis, les relier pour tracer \mathscr{C}_f , la courbe représentative de f.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-3

2. Exploiter la représentation graphique d'une fonction

À RETENIR 👀

Méthodes

- **1.** Pour déterminer graphiquement l'image d'un nombre *x*, on place *x* sur l'axe des abscisses et on lit l'ordonnée du point de la courbe correspondant.
- **2.** Pour déterminer graphiquement les antécédents d'un nombre *y*, on place *y* sur l'axe des ordonnées et on lit les abscisses des points de la courbe correspondants.

EXERCICE 4

On a tracé ci-contre la courbe représentative \mathscr{C}_f d'une fonction f.

1. Déterminer graphiquement l'image des nombres suivants par la fonction f.

2. Déterminer graphiquement un antécédent de 1 par la fonction f.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-4.

À RETENIR 99

Méthodes

Soient f et g deux fonctions et k un nombre réel.

- 1. Pour résoudre graphiquement l'équation f(x) = k, on cherche l'abscisse des points de la courbe représentative de f qui ont pour ordonnée le réel k.
- **2.** Pour résoudre graphiquement l'équation f(x) = g(x), on cherche l'abscisse des points d'intersection des courbes représentatives de f et de g.

Avec des techniques similaires, on peut résoudre des inéquations du type $f(x) \le k$, f(x) < g(x), ...

EXERCICE 5

√Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-5.

1. Parité

À RETENIR 00

Définitions

Soit f une fonction d'ensemble de définition \mathcal{D} .

- On dit que f est **paire** si pour tout $x \in \mathcal{D}$, on a $-x \in \mathcal{D}$ et f(-x) = f(x).
- On dit que f est **impaire** si pour tout $x \in \mathcal{D}$, on a $-x \in \mathcal{D}$ et f(-x) = -f(x).

À RETENIR 99

Propriétés

Dans un repère orthogonal:

- 1. la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées;
- 2. la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

EXERCICE 6

- 1. Représenter graphiquement sur [-3;3] la fonction $f: x \mapsto x^2$ dans le repère ci-contre.
- **2.** Représenter de même la fonction $g: x \mapsto x^3$.
- 3. Que peut-on en déduire?

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-6.

2. Signe

À RETENIR 99

Définition

Étudier le signe d'une fonction f définie sur un ensemble \mathcal{D} revient à déterminer le signe des images f(x) en fonction de $x \in \mathcal{D}$. On présente souvent ces résultats dans un **tableau de signes**.

EXEMPLE \$

Le tableau de signes de la fonction g de l'exercice précédent sur l'intervalle [-3;3] est construit cicontre.

Valeur de x	-3		0		3
Signe de $g(x)$		_	0	+	

À RETENIR 99

Propriété

On peut obtenir le signe d'un produit à partir du signe de ses facteurs en appliquant la règle des signes. On peut obtenir de même le signe d'un quotient à partir du signe de son numérateur et de son dénominateur.

EXERCICE 7

- **1. a.** Résoudre l'inéquation 2x + 4 > 0 pour $x \in \mathbb{R}$.
 - **b.** En déduire le signe de 2x + 4 sur \mathbb{R} .
- **2.** Étudier le signe de -x + 3 sur \mathbb{R} .

3. a. Déduire de ce qui précède le signe de la fonction $f: x \mapsto (2x+4)(-x+3)$ sur \mathbb{R} .

- **4.** Étudier de même le signe de la fonction $g: x \mapsto \frac{2x+4}{-x+3}$ sur \mathbb{R} .

3. Variations

À RETENIR 99

Définition

Soit f une fonction définie sur un intervalle I. f est dite :

- **croissante** sur I si, lorsque x augmente, alors f(x) augmente;
- **décroissante** sur I si, lorsque x augmente, alors f(x) diminue;
- **constante** sur *I* si elle garde la même valeur sur *I*;
- **monotone** sur I si f est croissante ou décroissante sur I.

Étudier les variations de f revient à déterminer comment f croît ou décroît sur I. On présente souvent ces résultats dans un **tableau de variations**.

EXEMPLE 🔋

La fonction f est décroissante sur $[0;1] \cup [3;4]$, et croissante sur [1;3]. On peut regrouper cela dans le tableau de variations ci-dessous.

Valeur de x	0	1	3	4
Variations de f	2 —	→ 0 —	→ l —	→ 0

EXERCICE 8

On a tracé la courbe représentative d'une fonction f ci-contre.

1. Dresser son tableau de variations sur l'intervalle [-2;2].

√Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-8.

À RETENIR 99

Définitions

Soit f une fonction définie sur un intervalle I. Le **maximum** de f est la plus grande valeur atteinte par cette fonction sur I; et le **minimum** de f est la plus petite valeur atteinte par cette fonction sur I.

EXERCICE 9

Déterminer le maximum de la fonction f précédente sur [-2;2].

← Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions/#correction-9.