PATENT ABSTRACTS OF JAPAN

(11)Publication number :

05-119311

(43)Date of publication of application: 18.05.1993

(51)Int.Cl.

GO2F 1/1335 5/02 GO2B // F21S 1/00

(21)Application number: 03-278017

(71)Applicant : NEC CORP

(22)Date of filing:

24.10.1991

(72)Inventor: SUZUKI MITSUHIRO

(54) BACK LIGHT

(57)Abstract:

PURPOSE: To obtain the back light which is accepted in various conditions including high brightness, low electric power consumption, long life, light weight, and reduced thickness by arraying 8 pieces of small-diameter type fluorescent tubes right under a diffusion plate. CONSTITUTION: This back light has a structure and lighting system to light 8 pieces of the small-diameter type fluorescent tubes 1 having 4.1mm diameter arrayed right under the diffusion plate 2 with one inverter 5. A lighting curtain 4 is provided in addition to the diffusion plate 2 above the fluorescent tubes 1. All of the diffusion plate 2, the lighting curtain 4 and the fluorescent tubes 1 are built in a reflection plate 3 made of polycrabonate having the thickness taking impact resistance into consideration to finish the back light to the total thickness extremely small as the just blow type back light disposing the fluorescent tubes 1 below the diffusion plate 2 in such a case. The back light accepted in the various conditions to be adopted to a color liquid

crystal panel of a thin type and high brightness is obtd. by connecting the fluorescent tubes 1 in parallel and lighting the tubes with one inverter 5 in such a manner.

(19)日本国特許庁(JP) (12) **公開特許公報**(A) (11)特許出願公開番号

特開平5-119311

(43)公開日 平成5年(1993)5月18日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 2 F	1/1335	5 3 0	7724-2K		
G 0 2 B	5/02	В	7316-2K		
# F 2 1 S	1/00	Е	7913-3K		

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号	特願平3-278017	(71)出願人 000004237	
(22)出願日	亚子 2 年 (1001)10 日04日	日本電気株式会社	
(22)山麓口	平成 3 年(1991)10月24日	東京都港区芝五丁目7番1号	
		(72)発明者 鈴木 充博	
		東京都港区芝五丁目7番1号日本電気	株式
		会社内	
		(74)代理人 弁理士 内原 晋	

(54)【発明の名称】 バツクライト

(57)【要約】

【目的】薄型髙精彩カラー液晶パネル用バックライトに 要求される高輝度、低消費電力、長寿命、軽量薄型を実 現する。

【構成】拡散板の直下に直径4.1mmの細型蛍光管を 8本並べ、これらを並列に接続し、1つのインバータで 点灯させる。これにより薄型高精彩のカラー液晶パネル 用バックライトとして採用できる。

【特許請求の範囲】

【請求項1】 拡散板の直下に細型蛍光管を8本並べたことを特徴とするバックライト。

【請求項2】 直径4. 1 mmの細型蛍光管8本を並列 に接続し1つのインバータ回路で、点灯させることを特 徴とするバックライト。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はバックライトに関するものであり、高輝度、低電力、長寿命、超薄型軽量のバックライトを提供するものである。

[0002]

【従来の技術】パーソナルコンピュータ、ワードプロセッサ、テレビ等の表示画面として液晶パネルが用いられている。この液晶パネルの背面より光を照射し、文字あるいは画像を鮮明に表示させる為の補助装置としてバックライトが用いられている。図6に従来のバックライトの1例を説明する為にバックライトの構造図を示す。

【0003】バックライトは光源となる蛍光管1、光を拡散させ均一な照光面を作る為の拡散板2、光を有効に照光面側に集める為の反射板3、拡散板上の輝度を平滑にする為の網点模様付ライティングカーテン4で本体を構成し、蛍光管を点灯させる為に交流高電圧をインバータ5で発生させ、高耐圧電線6によって蛍光管に電圧を供給する。

【0004】インバータは通常数10V程度の直流電圧を発振回路に通して交流電圧に変換し、トランス7でこれを約1,000Vまで昇圧する。トランスと蛍光管の間には蛍光管電流を制御する為に高耐圧コンデンサ8を接続する。

【0005】カラー液晶パネルに用いられるバックライトは拡散板上の輝度が2,000cd/m²程度と高輝度を要求され、更に輝度むらがなく低消費電力,軽量薄型が求められる。

【0006】対角線寸法が10インチ程度のカラー液晶パネル用のバックライトは、図6に示す様に直径10mm前後の蛍光管を2~6本程度使用し、消費電力が10W. 重量が500g. 厚身が20mm程度が一般的である。

【0007】輝度を均一にする為に用いるライティングカーテンの効果を図7に示す。蛍光管に直交する方向に拡散板上の輝度を測定するとライティングカーテンがない場合には点線で示す輝度カーブになる。サーブの頂はそれぞれ、蛍光管の真上になる。蛍光管のピッチを狭くすると、輝度カーブの底の輝度が上昇する傾向がある。ライティングカーテンは、透明な樹脂フィルム上の少なくとも片面に光を遮断あるいは反射する小型の点の組合せパターンを印刷法、あるいは真空蒸着法で形成している。輝度が高い蛍光管の真上は透過光を制限する為にパターンを高密度に設計する。この様なライティング

カーテンを拡散板の下に設けることによって輝度カーブ の頂点輝度を低下させ、均一な照光面を得ることができ る。

【0008】また従来のバックライトは図8に示す様にバックライト本体1に内蔵している各々の蛍光管2とインベータ3の回路ブロックは対になっており、蛍光管の本数だけトランスを必要としている。また、電圧を供給する高耐圧電線は高圧側電線4と低圧側電線5を必要とし、蛍光管の倍の本数になる。高耐圧電線は3,000 V以上の耐圧を必要とすることから、被覆が厚くなる為、バックライトの構造を検討する際には、電線をはわせるスペースの確保を考慮しなければならない。

【0009】蛍光管電流は周波数50KHz程度の微小電流である為、損失なく電流を供給するには電線長を極力短かくし、もれ電流を少なくすることが必要である。 【0010】バックライトを構成する部品の中で最も寿命が短かいものは蛍光管であり、5mAの電流を流した場合、寿命は約10.000時間である。カラー液晶用のバックライトは高輝度を必要とする為、通常、蛍光管

[0011]

【発明が解決しようとする課題】高輝度、低消費電力、 長寿命、軽量薄型の市場要求に対し、従来のバックライトの構造では対応できない問題点があった。

電流は5mA~10mAで点灯させている。

[0012]

【課題を解決するための手段】本発明のバックライトは拡散板の直下に直径 4. 1 mmの細型蛍光管を 8 本並べ 1 つのインバータで点灯させる構造及び点灯方式を備えている。

[0013]

【実施例】

【実施例1】本発明の実施例を図面を用いて説明する。 【0014】図1は本発明の1実施例となるバックライトの組立構造図、図2はバックライトの断面図である。 【0015】このバックライトは直径4.1mm.長さ230nmの細型蛍光管を14mmピッチで8本並べた。蛍光管の上方には1.5mmの拡散板、188μmのライティングカーテンが備えてある。

【0016】反射板と蛍光管のギャップを1mm、反射板と拡散フィルムのギャップを6mmとした。

【0017】耐衝撃性を考慮した肉厚1.5mmのポリカーボネート製の反射板に拡散板、ライティングカーテン、蛍光管を全て内蔵させ、バックライトの総厚9.5mmと、蛍光管を拡散板の下に配置する直下型バックライトとしては従来にない超薄型に仕上げた。

【0018】このバックライトの平面寸法は光学系機能部で268、9mm×139、8mmとし、対角寸法8~9、5インチの液晶パネルに採用できる。インバータはバックライト本体の真横に配置できるように小型に製作した。

【0019】〔実施例2〕蛍光管を8本並べたことによる高輝度化への効果を図3に示す。

【0020】蛍光管に直交する方向に拡散板上の輝度を 測定すると点線が示す様にライティングカーテンがない 場合でも蛍光管ピッチが、狭いために輝度カーブの底が 大きく低下せず、ライティングカーテンを用いて容易に 高輝度でかつ、輝度の均一性に優れたバックライトを実 現することができた。

【0021】 [実施例3] 低消費電力を実現する為に、図4に示す構造を製作した。従来、蛍光管とインバータが一対になっていたのに対し、8本の蛍光管を並列に接続し、1つのインバータで点灯させたところ、従来の方式よりも光変換効率が約20%上昇した。理由は、インバータ内部での損失がトランス1つ分のみで済む為と、図5に示す様に、電力を蛍光管に供給する高耐圧電線がバックライト本体に高耐圧コンデンサを内蔵することがで2本で済みようになり、かつ、蛍光管を2枚の基板に半田付することで高耐圧電線が最短でインバータに接続できる構造であることから蛍光管に供給される電流が、途中で損失することが極めて少ない為である。

【0022】 [実施例4] 8本の蛍光管を並列に接続することによって拡散板上の輝度を2,000cd/m² 得るのに蛍光管1本当り1.8mAの蛍光管電流で済んだ。蛍光管の寿命は流す蛍光管電流の2乗に反比例する為、5mAで10.000時間保証するこの蛍光管の寿命は推定77.000時間まで延ばすことができる。

[実施例5] 以上の説明したバックライトの性能は、拡散板上の輝度が $2000cd/m^2$, 消費電力7W, 寿命約80.000時間, 重量がインバータを含んで220g. 厚み9.5mmを実現し、更に耐衝撃性能が、加速度100Gに合格することができた。

[0023]

【発明の効果】以上説明したように本発明によれば拡散板の直下に直径4.1mmの細型蛍光管を8本並べ、更にこれらの蛍光管を並列に接続し、1つのインバータで点灯させることにより薄型高精彩のカラー液晶パネルに採用する為の高輝度、低消費電力、長寿命、軽量薄型の緒条件に全て合格することができた。

【0024】このバックライトの構造は多様化する他の 液晶製品にも充分に応用が可能であり、極めて、優れた 発明である。

【図面の簡単な説明】

【図1】発明の一実施例のバックライト組立構造図。

- 【図2】図1に示したバックライトの断面図。
- 【図3】図1に示したバックライトの拡散板上輝度分布図。
- 【図4】図1に示したバックライトの部品結線図。
- 【図5】図1に示したバックライトの発光部構造図。
- 【図6】従来のバックライト組立構造図。
- 【図7】図6で示したバックライトの拡散板上輝度分布図。
- 【図8】図6で示したバックライトの部品結線図。

【符号の説明】

- 1 蛍光管
- 2 拡散板
- 3 反射板
- 4 ライティングカーテン
- 5 インバータ
- 6 高耐圧電線
- 7 トランス
- 8 高耐圧コンデンサ
- 1 バックライト本体
- 2 蛍光管
- 3 インバータ
- 4 電圧側高耐圧電線
- 5 低圧側高耐圧電線
- 6 高圧側蛍光管取付基板
- 7 低圧側蛍光管取付基板
- 1 蛍光管
- 2 高圧側蛍光管取付基板
- 3 低圧側蛍光管取付基板
- 4 高圧側高耐圧電線
- 5 低圧側高耐圧電線
- 6 高耐圧コンデンサ
- 1 蛍光管
- 2 拡散板 3 反射板
- 4 ライティングカーテン
- 5 インバータ
- 6 高耐圧電線
- 7 トランス
- 8 高耐圧コンデンサ
- 1 バックライト本体
- 2 蛍光管
- 3 インバータ
- 4 耐圧側高耐圧電線
- 5 低圧側高耐圧電線

【図2】

