Lang's Algebra Chapter 3 Solutions

Amanuel Tewodros

September 2, 2025

(1) By the second isomorphism theorem, we have

$$\frac{U}{U\cap W}\cong \frac{U+W}{W}.$$

For two vector spaces, $X \supseteq Y$ over a field K, we have $\dim X/Y = \dim X - \dim Y$. Thus $\dim U - \dim U \cap W = \dim U + W - \dim W$.

(2) Let M be a module over a commutative ring R. Let I be a maximal ideal of R. We first show that for any proper ideal \mathfrak{a} of R and basis set $\{x_1, x_2, \dots\}$, of M,

Lemma 1.

$$\frac{M}{\mathfrak{a}M} \cong \bigoplus_{i} \frac{A}{\mathfrak{a}}(x_i + \mathfrak{a}x_i).$$

Proof. $\mathfrak{a}M$ is submodule of M because $\mathfrak{a}M \subseteq M$ by R-closure property of \mathfrak{a} . It immediatly follows that $\mathfrak{a}M = \bigoplus_i \mathfrak{a}x_i$. By linear independence of x_i , $(\sum_i r_i x_i) \mod \mathfrak{a}x_j = (r_j \mod \mathfrak{a})x_j + \sum_{i \neq j} r_i x_i$. Therefore, $M/\mathfrak{a}M = \bigoplus_i Ax_i/\mathfrak{a}x_i$. By the isomorphism $x_i \mapsto 1_A \mapsto (x_i + \mathfrak{a}x_i)$, $Ax_i/\mathfrak{a}x_i \cong A/\mathfrak{a} \cong A/\mathfrak{a}(x_i + \mathfrak{a}x_i)$.

Taking $\mathfrak a$ as a maximal ideal of R in the above lemma, we see that $M/\mathfrak a M$ is a direct product of vector spaces over the field $A/\mathfrak a$ and thus admit a basis of the same cardinality as that of M. Because the dimension of a vector space is independent of the basis choice, M also has a fixed dimension.

(3) Let $\{x_1, \ldots, x_m\}$ form the basis set of R over k and let $1_R = k_1 x_1 + \ldots k_m x_m$ for $k_i \in k$. For any element $a \in R$, define the sequences $\{y_1, \ldots, y_m\} \subseteq k$, $\{f_1, f_2, \ldots, f_m\} \subseteq R$ as:

$$f_1 = a$$
, $y_1 = w_{1,1}^{-1} k_1$

$$f_{i+1} = f_i y_i - k_i x_i, \quad y_i = k_i w_{i,i}^{-1},$$

,where $f_i = \sum_j w_{i,j} x_j$. By construction, $a^{-1} = \sum_i y_i x_i$. Thus R is a field.

(4) Direct Sums

(a) First, we show the equivalence of the two statements of the theorem. Suppose there is φ such that $g \circ \varphi = \mathrm{id}$. By the injectivness of the composition, $\mathrm{Im}\ \varphi \cap \ker g = \{0\}$. But by exactness, $\ker g = \mathrm{Im}\ f$. We can unambiguously define $\psi(u)$ to be the inverse image of $f^{-1}(u')$ where $u' \equiv u \mod \mathrm{Im}\ \varphi$ and u' = f(x) for some $x \in M'$ because if $f(x) = f(y) \mod \mathrm{Im}\ \varphi$, $f(x-y) \in \mathrm{Im}\ \varphi$ and by injectivity of f, x = y. Since $M/\mathrm{Im}\ f \cong M'' = \mathrm{Im}\ \varphi$, ψ is defined in all of M. Similarly, if the second statement is true, $\ker \psi \cap \mathrm{Im}\ f = \{0\}$ because $\psi \circ f$ is injective. By exactness, $\mathrm{Im}\ f = \ker g$. We can then define $\varphi(u) = u'$ where u' = y mod $\ker \psi$ and g(y) = u for some y. φ is well-defined because if $g(y_1) = g(y_2)$ for $y_1 \neq y_2$, then $y_1 \neq y_2 \mod \ker \varphi$.

Now suppose $x \in M$. $x - \varphi(u) \in \operatorname{Im} f$ for exactly one u by the argument mentioned previously. Thus we can express x = r + s where $r = \varphi(u) \in \operatorname{Im} \varphi$ and $s = x - \varphi(u) \in \operatorname{Im} f$. This implies $M = \operatorname{Im} f \oplus \operatorname{Im} \varphi$. By bijectivness of $g \circ \varphi$, $\operatorname{Im} \varphi \cong M''$. By contrast, if $M = \operatorname{Im} f \oplus N$ for some N, with isomorphism $t : N \to M''$. We can define $g : M \to M''$ as g(u) = u' such that there is $u = y \mod N$ and $t^{-1}(u') = y$. This definition is unambiguous because $N \cap \operatorname{Im} f = \{0\}$. Since $g \circ t^{-1} = \operatorname{id}$, the sequence splits.

1

Finally, we complete the details of proposition 3.2. We have just shown $M=\operatorname{Im} f\circ\operatorname{Im} \varphi$. By exactness, $\operatorname{Im} f=\ker g$. Also, $\operatorname{Im} f\cong M'$ and $\operatorname{Im} \varphi\cong M''$ by injectivness of f and φ resp. This proves $M\cong M'\oplus M''$. We can write $x\in M$ as f(u)+x-f(u) where $x-f(u)\in\ker \psi$. u is then uniquely determined by x as $\ker \psi\cap\operatorname{Im} f=\{0\}$ by bijectivness of $\psi\circ f$. This shows $M=\operatorname{Im} f\oplus\ker \psi$.

(b) First, we note that φ_i is injective because othewise the composition $\psi_i \circ \varphi_i$ wouldn't be injectice, a contradiction. This implies, for every valid i, there is a submodule $E_i' = \operatorname{Im} \varphi_i$ of E that is isomorphic to E_i . Moreover, if $c \in \operatorname{Im} \varphi_i \cap \operatorname{Im} \varphi_i$ for $i \neq j$, then $\psi_i(c) = \psi_j(c) = 0$, forcing c to be 0. These statements prove

$$\bigoplus_{i=1}^n E_i' \subseteq E.$$

The inverse inclusion follows as follows. Let $x \in E$, then $x = \sum_{i=1}^n \varphi_i(\psi_i(x))$, but $\varphi_i(\psi_i(x)) \in E_i'$. Therefore $x \in \bigoplus_i E_i'$.

Let $x = x_1 + \cdots + x_m$ where $x_i \in E'_i$. The map definied by $x \mapsto (\psi x_i)_{1 \le i \le m}$ is therefore an isomorphism and the inverse map is given by $(\psi x_i)_i \mapsto \sum_i x_i$.

(5) Let $v_m' = a_1v_1 + \cdots + a_mv_m$. Since $a_m \neq 0$, v_m' , and by the assumption that $\{v_i\}$ is linearly independent over \mathbb{R} , the set $\{v_1, \ldots, v_{m-1}, v_m'\}$ is linearly independent over \mathbb{Z} . We also note that, $v_m' - \sum_{i=1}^{m-1} a_i v_i \in A$, thus we can safely assume $a_1 = \cdots = a_{m-1} = 0$.

To show, the set spans A, we consider A/A_0 . Suppose, there is $av_m \in A/A_0$ such that $av_m \neq nv_m'$ for all $n \in \mathbb{Z}$. Let r, s be two integers such that $|ra_m + sa| < a_m$. Since contradicts minimality of a_m , it must be the case that $a_m \mid a$. Therfore $A/A_0 = \mathbb{Z}v_m'$.

(6) We induct on the size of S.

First assume that $S = \{w\}$. Then $\mathbb{Z}\langle S \rangle = \{n[w] : n \in \mathbb{Z}\}$. If M is a subgroup of $\mathbb{Z}\langle S \rangle$, then $M = \mathbb{Z}\langle a[w]\rangle$ for some $a \in \mathbb{Z}$. Here we pick $y_w = a[w]$ which is G-linear.

For the induction step, suppose the statement is true for S, $0 \le |S| \le m-1$. We shall prove the statement is true for S with m elements. Fix on element $w \in S$, and consider projection map $\pi: \mathbb{Z}\langle S \rangle \to \mathbb{Z}\langle G \cdot w \rangle$. By correspondence, $\pi(M)$ is a subgroup of $\mathbb{Z}\langle G \cdot w \rangle$ with basis $\{\bar{y}_{gw}\}_{w \in G}$ which satisfy the property for $\sigma \in G$, $\sigma \bar{y}_{gw} = \bar{y}_{\sigma gw}$. We then lift the basis of $\mathbb{Z}\langle \pi(M) \rangle$ to $\mathbb{Z}\langle S \rangle$ by picking a representatives $\Re = \{y_w\}$ in M for \bar{y}_w . The y_w are linearly independenent thus form part of the basis for M. Again by hypothesis, $M \cap \mathbb{Z}\langle S - G \cdot w \rangle$ has basis $\mathfrak{B} = \{y_w\}_{w \in S - G \cdot w}$ that satisfy the given property. We finally combine \Re and \mathfrak{B} to get the basis of rank m for M.

(7) For convenience, we identify the properties of a semi-norm as follows

SN-1
$$|v| \ge 0$$

SN-2 $|nv| = |n||v|$

SN-3
$$|u+v| \le |u| + |v|$$

- (a) Let $a, b \in M_0$. Then by SN-2 and SN-3, $|u b| \le |a| + |b| = 0$. By SN-1, we have $|a b| \ge 0$, this $a b \in M_0$. By SN-2, $|0| = |2 \cdot 0| = 2|0|$. This implies $0 \in M_0$. Hence M_0 is a subgroup of M.
- (b) If $M_0 \neq \{0\}$, we can make the transformation $x \mapsto x + M_0$ without loss of generality as such map preserves the linear independence of $\{v_i\}$. Thus, we can assume $M_0 = \{0\}$.

Let $N = \langle v_1, \dots, v_r \rangle$. Since M has rank r, the exponent e of M/N is finite and thus eM is a subgroup of N. Moreover, N/eM is torsion group with finite number of elements. Therefore, we can pick the smallest positive integers $n_{i,j}$ such that

$$\sum_{i=1}^{i} n_{i,j} v_j = dw_i \quad \text{for some } w_i \in M$$

The linear independence follows immediately. Picking n_{ik} in the range [0, d-1],

$$d|w_i| = |dw_i| \le \sum_{j=1}^i n_{i,j} |v_j| \le d \sum_{j=1}^i |v_j|.$$

(8) (a) SN-1 follows immediately because $\log \ge 0$ for all \mathbb{Z}^+ . Since, $h(x^{-1}) = h(x)$, it suffices to prove SN-2 for $n \ge 0$ in which case $h(x^n) = \log \max(|a^n|, |b^n|) = \log \max(|a|, |b|)^n = n \log \max(|a|, |b|) = nh(x)$. Finally, if y = c/d, h(xy) = h(ac/bd). Let $e = \gcd(a, d)$ and $f = \gcd(c, b)$. Then

$$h(xy) = \log \max(|\frac{ac}{ef}|, |\frac{bd}{ef}|)$$

$$= \log \left(\frac{1}{|ef|}(\max(|ac|, |bd|))\right)$$

$$= \log \max(|ac|, |bd|) - \log |ef|$$

$$\leq \log \max(|ac|, |bd|)$$

$$\leq \log \max(|a|, |b|) + \log \max(|c|, |d|)$$

Hence SN-3 is satisfied. $\log \max(|a|,|b|)=0$ if and only if |a|=|b|=1, which makes the kernel of $\ker h=\{\pm 1\}$.

(b) For a given rational number x = a/b, since there are finitely many prime divisors of p, q such that p|a and q|b, M can be generated by the set $\{-1,1\} \cup \{p,1/q \in \mathbb{Q}^* : p|\text{the numerator of } x_1 \cdots x_m, q|\text{the denominator of } x_1 \cdots x_m\}$. From this we can set upper bound on the norm as

$$h(y) \le \sum_{p} \log p$$

where the sum is over all primes p (not necessarily distinct) that divides the numerator or denominator of x_i for some i.

(9) (a) $S^{-1}M$ can be defined as a subset of $M \times S$ for a commutative ring A, a multiplicative subset S and A-module M such that

$$(m_1, s_1) \sim (m_2, s_2)$$

, if there is a an element $s \in S$ that satisfy the equation $s(s_2m_1-s_1m_2)=0$. As with $S^{-1}A$, we can denote (m,s) with m/s. Since $S^{-1}A$ is a commutative ring, we can define the action of $S^{-1}A$ on $S^{-1}M$ as

$$\frac{a}{s'} \cdot \frac{m}{s} = \frac{a \cdot m}{s's}.$$

With this definition of the action of $S^{-1}A$ on $S^{-1}M$, we can show that $S^{-1}M$ is an $S^{-1}A$ -module. Let $a_1/b_1, a_2/b_2 \in S^{-1}A$ and let $m_1/s_1, m_2/s_2 \in S^{-1}M$. Then we have

$$\begin{split} \frac{a_1}{b_1} \cdot \left(\frac{m_1}{s_1} + \frac{m_2}{s_2} \right) &= \frac{a_1}{b_1} \cdot \left(\frac{m_1 s_2 + m_2 s_1}{s_1 s_2} \right) \\ &= \frac{a_1 b_1}{b_1 b_1} \cdot \left(\frac{m_1 s_2 + m_2 s_1}{s_1 s_2} \right) \\ &= \frac{a_1 b_1 s_2 m_1 + a_1 b_1 s_1 m_2}{b_1 s_1 b_1 s_2} \\ &= \frac{a_1 m_1}{b_1 s_1} + \frac{a_1 m_1}{b_1 s_2} \\ &= \frac{a_1}{b_1} \cdot \frac{m_1}{s_1} + \frac{a_1}{b_1} \cdot \frac{m_2}{s_2}. \end{split}$$

and

$$\begin{split} \left(\frac{a_1}{b_1} + \frac{a_2}{b_2}\right) \cdot \frac{m_1}{s_1} &= \left(\frac{a_1b_2 + a_2b_1}{b_1b_2}\right) \cdot \frac{m_1}{s_1} \\ &= \left(\frac{a_1b_2 + a_2b_1}{a_1a_2}\right) \cdot \frac{m_1s_1}{s_1s_1} \\ &= \frac{a_1b_2m_1s_1 + a_2b_1m_1s_1}{s_1b_1s_2b_2} \\ &= \frac{a_1m_1}{b_1s_1} + \frac{a_2m_1}{b_2s_1} \\ &= \frac{a_1}{b_1} \cdot \frac{m_1}{s_1} + \frac{a_2}{b_2} \cdot \frac{m_1}{s_1}. \end{split}$$

(b) Let

$$0 \to M' \xrightarrow{f} M \xrightarrow{f''} M'' \to 0$$

be exact. Then we have the induced sequence,

$$0 \to S^{-1}M' \xrightarrow{g} S^{-1}M \xrightarrow{g''} S^{-1}M'' \to 0$$

where g is defined as g(m/s) = f(m)/s and g'' is defined as g''(m/s) = f''(m)/s. ker $g = \{m/s : f(m)/s = 0\}$. Since f is injective, f(m) = 0 iff m = 0, i.e., ker $g = \{0\}$.

By exactness Im $f = \ker f''$. Evaluating g'' on Im g, g''(g(m/s)) = g''(f(m)/s) = f''(f(m))/s = 0/s = 0. This shows Im $g \subseteq \ker g''$. Let g''(x/s) = f''(x)/s = 0. This implies f''(x) = 0 for some x. By exactness, $\ker f \subseteq \operatorname{Im} f''$, implying x = f(y) for some $y \in M'$. This proves $\operatorname{Im} g \supseteq \ker g''$.

Finally, let $x/s \in S^{-1}M''$. Since $x \in M''$, x = f''(y) for some $y \in M$ by exactness of the first sequence. But then x/s = f''(y)/s = g''(y/s) making g'' surjective.

(10) (a) The natural map under consideration is the map

$$f = x \mapsto (x/1, \dots).$$

If $x/s' \sim 0/1$, for some $s' \in A - \mathfrak{p}$ and $x \in M$, then it means sx = 0 for some $s \in A - \mathfrak{p}$. Therefore, the kernel of f is the set $\{x : sx = 0, \text{ for some } s \in A - \mathfrak{p} \text{ for all maximal ideals } \mathfrak{p}\}$. If $x \in \ker f$, then $\operatorname{Ann}(x)$ is not contained in any maximal ideal \mathfrak{p} , implying $\operatorname{Ann}(x) = A \implies x = 0$.

- (b) Let $f: M'' \to M$ and $\hat{f}: M''_n \to M_p$. Define g and \hat{g} similarly for the second halves of the sequences.
- (\Longrightarrow) This directly follows from part (b) of exercise 9.
- (\iff) Suppose $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}}$ is exact sequence for all primes \mathfrak{p} .

Let f(x) = 0, then $\hat{f}(x/s) = f(x)/s = 0/1$ for all $s \in \mathfrak{p}$. By exactness, \hat{f} is injective. thus x/s = 0. By similar reasoning as part (a) of this problem x = 0. Hence f is injective.

Now let gf(x)=n. By definition, $\hat{g}\hat{f}(x/s)=n/s$. By exactness, the left-hand side is 0. Thus s'n=0 for $s'\in\mathfrak{p}$ for all prime \mathfrak{p} . Again, by similar reasoning as part (a), n has to be 0 and Im $f\subseteq\ker g$. To see the converse, suppose g(y)=0. Consequently, $\hat{g}(y/s)=g(y)/s=0$ for all $s\in\mathfrak{p}$ and by exactness, $y/1=\hat{f}(x/t_{\mathfrak{p}})=f(x)/t_{\mathfrak{p}}$ for some $t_{\mathfrak{p}}$ depending on \mathfrak{p} . This implies $s_{\mathfrak{p}}(f(x)-t_{\mathfrak{p}}y)=0$ or equivalently $f(s_{\mathfrak{p}}x)=r_{\mathfrak{p}}y$ for some $x\in M'_{\mathfrak{p}}$ and $r_{\mathfrak{p}}=s_{\mathfrak{p}}t_{\mathfrak{p}}$ implying $r_{\mathfrak{p}}y\in\operatorname{Im} f$ for all prime \mathfrak{p} . Since $M/\operatorname{Im} f$ is also an A-module, it implies $r_{\mathfrak{p}}(x+\operatorname{Im} f)=0$ for all \mathfrak{p} implying $x+\operatorname{Im} f=0+\operatorname{Im} f$ or in other words, $x\in\operatorname{Im} f$. This proves $\operatorname{Im} f=\ker g$.

Finally, suppose $y \in M''$. By surjectivity of \hat{g} , $y/1 = \hat{g}(x/s) = g(x)/s$ for some $x \in M$. By definition, $s_{\mathfrak{p}}(g(x) - t_{\mathfrak{p}}y) = 0$. By similar argument as above, $y \in \operatorname{Im} g$, proving the exactness of the first sequence.

(c) Let $\phi: M \to M_{\mathfrak{p}}$ be the natural map in question. Then $\phi(x) = x/1$. If $\phi(x) = 0$, then sx = 0 for some $s \in A - \mathfrak{p}$. This contradicts the assumption M is torsion-free and since $0 \notin A - \mathfrak{p}$, x = 0.

Projective modules over Dedekind rings

(11) Let \mathfrak{o} be a Dedekind domain, and let M be a finitely generated torsion-free \mathfrak{o} -module. For each prime ideal \mathfrak{p} , consider the localization $\mathfrak{o}_{\mathfrak{p}}$ and the localized module $M_{\mathfrak{p}}$.

Since $\mathfrak{o}_{\mathfrak{p}}$ is a Dedekind domain with only one prime ideal $S^{-1}\mathfrak{p}$, by the result from the previous chapter it is a PID. Finite generation and torsion-freeness of $M_{\mathfrak{p}}$ follow from the corresponding properties of M, and Theorem 7.3 then implies that $M_{\mathfrak{p}}$ is a free $\mathfrak{o}_{\mathfrak{p}}$ -module (and hence projective).

Now let F be a free \mathfrak{o} -module, and suppose there is a surjective homomorphism

$$f:F \twoheadrightarrow M$$
.

Localizing at p, we obtain a surjective map

$$f_{\mathfrak{p}}: F_{\mathfrak{p}} \to M_{\mathfrak{p}}.$$

Since $M_{\mathfrak{p}}$ is projective, there exists a homomorphism

$$g_{\mathfrak{p}}:M_{\mathfrak{p}}\to F_{\mathfrak{p}}$$

such that

$$f_{\mathfrak{p}} \circ g_{\mathfrak{p}} = \mathrm{id}_{M_{\mathfrak{p}}}.$$

Because M is finitely generated, say by m_1, \ldots, m_r , each $g_{\mathfrak{p}}(m_i/1) \in F_{\mathfrak{p}}$ can be written with a denominator not in \mathfrak{p} . Let $c_{\mathfrak{p}} \in \mathfrak{o} \setminus \mathfrak{p}$ be the product of all these denominators for $i = 1, \ldots, r$. Then

$$c_{\mathfrak{p}} g_{\mathfrak{p}}(l_{\mathfrak{p}}(M)) \subseteq F$$
,

where $l_{\mathfrak{p}}: M \to M_{\mathfrak{p}}$ is the localization map.

We claim that the set $\{c_{\mathfrak{p}}:\mathfrak{p} \text{ prime}\}$ generates the unit ideal (1). Indeed, if this ideal were proper, it would be contained in some maximal ideal \mathfrak{m} ; but then $c_{\mathfrak{m}} \in \mathfrak{m}$, contradicting $c_{\mathfrak{m}} \notin \mathfrak{m}$. Thus there exist primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and elements $x_1, \ldots, x_n \in \mathfrak{o}$ such that

$$\sum_{i=1}^n x_i \, c_{\mathfrak{p}_i} = 1.$$

Define

$$g:=\sum_{i=1}^n x_i\,c_{\mathfrak{p}_i}\cdot g_{\mathfrak{p}_i}\circ l_{\mathfrak{p}_i}:M\to F.$$

This is well-defined since each $c_{\mathfrak{p}_i}g_{\mathfrak{p}_i}(l_{\mathfrak{p}_i}(M))\subseteq F$.

For $m \in M$, we have

$$f(g(m)) = \sum_{i=1}^{n} x_i \, c_{\mathfrak{p}_i} \, f(g_{\mathfrak{p}_i}(m/1)) = \sum_{i=1}^{n} x_i \, c_{\mathfrak{p}_i} \, (m/1) = \left(\sum_{i=1}^{n} x_i \, c_{\mathfrak{p}_i}\right) m = 1 \cdot m = m.$$

Thus $f \circ g = \mathrm{id}_M$, showing that M is a direct summand of F and hence projective.

(12) (a) Define a map $\mathfrak{a} \oplus \mathfrak{b} \to \mathfrak{o}$ as

$$(a,b) \mapsto ca + b$$
.

where c is as defined in question 19 of chapter II. Since $c\mathfrak{a}$ and \mathfrak{b} are coprime the image of this map is \mathfrak{o} . The kernel of this map which is given by $c\mathfrak{a} \cap \mathfrak{b} \supseteq c\mathfrak{a}\mathfrak{b}$ also satisfies the reverse inclustion because for $d \in c\mathfrak{a} \cap \mathfrak{b}$, we can write $d = d(ca + b) = ca \cdot d + d \cdot a \in c\mathfrak{a}\mathfrak{b}$. Therefore, kernel is $c\mathfrak{a}\mathfrak{b}$. Since the map $\mathfrak{a}ib \to c\mathfrak{a}\mathfrak{b}$ is bijective, and \mathfrak{o} is fintely generated and torsion-free (thus free), it follows that

$$\mathfrak{a}\oplus\mathfrak{b}\cong\mathfrak{o}\oplus\mathfrak{ab}$$

(b) First we show that $f=m_c$ for some $c\in K$. Let $a_1,a_2\in \mathfrak{a}$. For fixed elements, a_1,a_2 , we can assume $f(a_1)=c_1a_1$ and $f(a_2)=c_2a_2$ for $c_1,c_2\in K$ since both \mathfrak{a} and \mathfrak{b} are contained in the field K. By the definition of fractional ideals, there is an element $c\in \mathfrak{o}$ such that $ca_1,ca_2\in \mathfrak{o}$ and $ca_1a_2\in \mathfrak{a}$. By the olinearlity f and by commutativity of K, $f(ca_1a_2)=ca_1f(a_2)=ca_2f(a_1)\implies c_1=c_2$. Thus $f=m_c$. This also proves $\mathfrak{b}=c\mathfrak{a}$ for some $c\in K$.

We can define an extension of f, f_K , in K as $f_K(x) = f_K(a^{-1}ax) = a^{-1}xf_K(a) = a^{-1}f(a)x = cx$. f_K is clearly K-linear and agrees with f on \mathfrak{a} .

Remark 2. Lang takes for granted that the assumption that there exists a K-linear map f_K . This is not obvious and we have just proved that in fact there exists a K-linear map that is an extension of f.

(c) The assertion that m_b is an element of \mathfrak{a}^\vee follows directly from the inclusion $b\mathfrak{a}\subseteq\mathfrak{a}^{-1}\mathfrak{a}=\mathfrak{o}$. This implies $\mathfrak{a}^{-1}\subseteq\mathfrak{a}^\vee$. We show the reverse inclusion holds.

Let $\phi \in \mathfrak{a}^{\vee}$. By the previous subproblem, it suffices to show that $\phi(\mathfrak{a})$ is an ideal of \mathfrak{o} . Since $\phi(\mathfrak{a})$ is a \mathfrak{o} -submodule of \mathfrak{o} , $\phi(\mathfrak{a})$ is an additve subgroup of \mathfrak{o} . For $a,b \in \mathfrak{a}$, by properties of \mathfrak{o} -homomorphism ϕ , $\phi(\phi(a)b) = \phi(a)\phi(b) \in \phi(\mathfrak{a})$. Finally, for $c \in \mathfrak{o}$, $c\phi(\mathfrak{a}) = \phi(c\mathfrak{a}) \subseteq \phi(a)$ where the last inclusion followed from the definition of fractional ideals.

Thus, we have $\phi(\mathfrak{a}) = c\mathfrak{a}$ where $c = \phi_K(1)$. c has to be a member of \mathfrak{a}^{-1} because otherwise $c\mathfrak{o} + \mathfrak{a}^{-1}$ would be an inverse of \mathfrak{a} making \mathfrak{a}^{-1} non-unqiue, a contradiction in Dedekind domains.

(13) (a) M should be torsion-free. Otherwise, by projectivity of M, for some free module $F \supseteq M$ and any surjective \mathfrak{o} -homomorphism $f: F \to M$, there is a correspoding $g: M \to F$ such that $f \circ g = \mathrm{id}_M$. If non-zero $x \in M$ is a torision element, say with exponent $a \in \mathfrak{o}$, then $0 = g(ax) = ag(x) \in F$ implying either a = 0 or g(x) = 0. Since $f(g(x)) = x \neq 0$, it follows a = 0, proving M is torsion free.

Localizing M at any prime ideal $\mathfrak p$ of $\mathfrak o$, we see that the module $M_{\mathfrak p}$ is a PID that is torsion-free and finity generted. This makes $M_{\mathfrak p}$ free. Let $M_{\mathfrak p}=\bigoplus_{i=1}^n\mathfrak o_{\mathfrak p}m_i$. By finiteness of m_i , there is an element $c\in\mathfrak o$ such that $cm_i\in M$ for all i. We then find F' as

$$F' = \bigoplus_{i=1}^n \mathfrak{o}(cm_i) \subseteq M.$$

Now, let $\{v_1, \ldots, v_k\}$ be the generators of M and let

$$v_i = \sum_{j=1}^n r_j^{(i)} m_i.$$

Pick $d \in \mathfrak{o}$ such that $dr_i^{(i)} \in \mathfrak{o}$ which exists by the finiteness of $r_i^{(i)}$. It follows that $dM \subseteq \bigoplus_{i=1}^n \mathfrak{o} m_i$ and that

$$M\subseteq\bigoplus_{i=1}^n\mathfrak{o}(\frac{1}{d}m_i)=F.$$

The equality rank $F = \operatorname{rank} F'$ immediately follows.

(b) Let $\frac{1}{d}m_i = e_i$ in the proof of (b). We prove the statement by inducting on the number of basis elements, n. When n = 1, then define $\mathfrak{a}_1 = \{a : ae_1 \in M\}$. This subset of \mathfrak{o} is an ideal of \mathfrak{o} because if $m = ae_1$ for some a, then $rae_1 = rm \in M$ for any $r \in \mathfrak{o}$.

For the induction step, suppose N is a submodule of M spanned by $e_1, \ldots e_{n-1}$. By induction hypothesis, $N = \bigoplus_{i=1}^{n-1} \mathfrak{a}_i e_i$. Consider the exact sequence

$$0 \to N \to M \to M/N \to 0$$
.

Since rank M/N = rank M - rank N = 1, and by the projectivity of M/N, the induction follows.

(c) The statement that $M \cong \mathfrak{o}^{n-1} \oplus \mathfrak{a}$ for some ideal \mathfrak{a} follows immediately from part (b) of this problem and part (a) of problem 12.

Let $F: K_o(\mathfrak{o}) \to \operatorname{Pic}(\mathfrak{o})$ be the given association. First, we show that this association is a group homomorphism. By the linear independence of F (as defined in (a)), the 'decomposition' of M in terms of \mathfrak{a}_i is unique. Thus, $\mathfrak{a} = \mathfrak{a}_1 \cdots \mathfrak{a}_n$ is uniquely determined by M, making F a well-defined mapping.

Consider M, N are two finite projective modules. Then $F(M)+F(N)=\mathfrak{o}^{n-1}\oplus\mathfrak{a}\oplus\mathfrak{o}^{m-1}\oplus\mathfrak{b}=\mathfrak{o}^{n-m-2}\oplus\mathfrak{a}\oplus\mathfrak{b}=\mathfrak{o}^{n-m+1}\oplus\mathfrak{a}\mathfrak{b}=F(M\oplus N)$. Thus F is a group homomorphism.

Let $M \in \ker F$. Then, $F(M) = \mathfrak{o}$. This implies $M = \mathfrak{o}^n$ is free which is a single equivalence class in $K_0(A)$. Therefore, M = [0]. Finally, taking M as any ideal \mathfrak{a} of \mathfrak{o} as \mathfrak{o} -module, we see that $F(M) = \mathfrak{a}$, making F surjective and thus an isomorphism.

A few snakes

(14) Let $M' \xrightarrow{\phi'} M \xrightarrow{\phi} M'' \to 0$ and let $0 \to N' \xrightarrow{\psi'} N \xrightarrow{\psi} N''$ be the two exact sequence in the diagram.

- (a) Let g(x) = 0. By commutativity, $\psi(gx) = h(\phi x) = 0$. By the injectivity of h, $\phi(x) = 0$. By exactness of the top sequence, $x = \phi'(y)$ for $y \in M'$. By commutativity of the diagram, $0 = g(\phi'y) = \psi'(fy)$. By exactness of the bottom sequence f(y) = 0. By the injectivity of f, then g = 0 and its image under g', g' is also g'. This proves g' is a mono-morphism.
- (b) Let $x \in N$. Then $\psi x \in N''$. By surjectivity of h and ϕ , there is an element $y \in M$ such that $h(\phi y) = \psi x$. By commutativity, it follows that $\psi x = \psi(gy)$ and consequently $x gy \in \ker \psi$. By exactness, $x gy = \psi'z$ for some $z \in N'$ and by surjectivity of f, $x gy = \psi'(fw)$ for some $w \in M'$. By commutativity, it follows that $x gy = g(\phi'w)$ or $x = g(y + \phi'w)$, implying $x \in \operatorname{Im} g(g)$ is surjective).
- (c) If f and h are isomorphims, then g is isomorphims by (a) and (b) of this problem. Consider g and h are isomorphims, i.e., $\ker g = \ker h = \operatorname{Coker} g = \operatorname{Coker} h = 0$. By the snake lemma, there is a map $\ker h \to \operatorname{Coker} f$ showing f is surjective. By injectivity of the map $M' \to M$, $\ker f \to \ker g$ is injective, making $\ker f = 0$. Hence, f is an isomorphism. Now suppose f and g are isomorphisms. By the snake lemma, $\ker g \to \ker h \to \operatorname{Coker} f$ is exact. Since $\ker g = \operatorname{Coker} f = 0$, $\ker h = 0$. Similarly, by the exactness of the sequence $\operatorname{Coker} g \to \operatorname{Coker} h \to 0$, $\operatorname{Coker} h = 0$.
- (15) We denote the module homomorphimsm as follows:

We apply the snake lemma on the following diagram:

$$0 \longrightarrow \beta M_2 \longrightarrow M_3 \longrightarrow \gamma M_3 \longrightarrow 0$$

$$\downarrow^{f_3|_{\beta M_2}} \qquad \downarrow^{f_3} \qquad \downarrow^{f_4|_{\gamma M_3}}$$

$$0 \longrightarrow \beta' N_2 \longrightarrow N_3 \longrightarrow \gamma' N_3 \longrightarrow 0$$

Exacteness of the top and bottom sequence and commutativity of the diagram follow immediately. By the snake lemma, we have the short exact sequence:

$$0 \to \ker f_3|_{\beta M_2} \to \ker f_3 \to \ker f_4|_{\gamma M_3} \to \operatorname{Coker} f_3|_{\beta M_2} \to \operatorname{Coker} f_3 \to \operatorname{Coker} f_4|_{\beta M_3} \to 0$$

- (a) By assumption $\ker f_4|_{\gamma M_3}=0$. Thus, it suffices to show that $\ker f_3|_{\beta M_2}=0$. Let $x\in\ker f_3|_{\beta M_2}$. Then $x=\beta(y)$ for some $y\in M_2$. By commutativity, we have $0=f_3(\beta y)=\beta'(f_2y)$, implying $f_2y\in\ker\beta'=\alpha'N_1$ where the last equality follows from the exactness of the bottom sequence. Since f_1 is surjective, there is an element $z\in M_1$ such that $\alpha'(f_1z)=f_2(\alpha z)=f_2y$. By injectivity of f_2 , $y=\alpha(z)\implies x=\beta(\alpha z)=0$. Hence f_3 is injective.
- (b) Let $x=\beta'(y)\in\beta'N_2$. By surjectivity of $f_2,y=f_2(z)$ for some $z\in M_2$. By commutativity, $\beta'(y)=f_3(\beta z)\in f_3\beta M_2\Longrightarrow \operatorname{Coker} f_3|_{\beta M_2}=0$. Hence, it suffices to prove that $\operatorname{Coker} f_4|_{\gamma M_3}=0$. Now let $x=\gamma'(y)$ for some $y\in N_3$. By exactness $x\in\ker\delta'$. By surjectivity of f_4 , there is $f_4(z)=x$ and by commutativity $0=\delta'(f_4z)=f_5(\delta z)$. Since f_5 is injective, $\delta z=0\Longrightarrow z\in\ker\delta=\gamma M_3$ where the last equality followed from the exactness of the top sequence. Hence $x\in f_4|_{\gamma M_3}$ and $\operatorname{Coker} f_4|_{\gamma M_3}=0$. This proves the statement.

Remark 3. The diagram-chasing argument is more direct and arguably a better proof. I provided this proof as a practice on the application of the snake lemma.