

KEY-VALUE STORE LSM-TREE BASICS

Siqiang Luo

Assistant Professor

IN PREVIOUS LECTURES

■ We discuss the basic structure of an LSM-tree

- **☐** We introduce the main functions of an LSM-tree
 - **□** (e.g., Get(), Put(), Delete())

- We introduce
 - **□** (e.g., fence pointers, Bloom filters)

OPTIMIZATION – FENCE POINTERS

OPTIMIZATION – BLOOM FILTERS

BLOOM FILTER

- 1. Stored in main memory
- 2. Built on a set S of keys
- 3. Given a key *K*, the Bloom filter answers TRUE or FALSE for key *K*
- 4. If it answers FALSE, it means the key *K* does not exist in key set *S*
- 5. If it answers TRUE, it means the key *K* may exist in key set *S*, and it is still possible that the key *K* does not exist in key set *S*.
- 6. FPR (False-Positive Rate) is the probability that the filter returns TRUE for a key *K*, but actually *K* does not exist in set *S*. We usually use *P* to denote FPR. Clearly, *P* is in [0, 1] (e.g., *P*=0.3)

ILLUSTRATION OF BLOOM FILTER

WHY BLOOM FILTER IS HELPFUL?

Disk

Step 2.2: Querying K in the Bloom filter of Level 1. If returning FALSE, skip current level and start checking the Bloom filter in Level 2. So on so forth.

Page 1 Page 2

SUMMARY

- 1. Check buffer level (Level 0)
- 2. Starting from Level 1, always check its Bloom filter first, and then its Fence pointer.
- 3. If Bloom filter returns FALSE, then do not access the fence pointer and directly go to the next level for checking.
- 4. If Bloom filter returns TRUE, then access the fence pointer to fetch the corresponding page in that level. If the key is found, return the value and terminate the program; otherwise go to the next level for checking.
- 5. If the key has not been found in any level, return NULL (or empty set) and terminate the program.

INTERNAL DESIGNS OF BLOOM FILTER

Th	The main purpose of the filter:			
	Built on a set of keys $S=\{K_1, K_2,, K_n\}$, where each key is from a large universe U .			
	If the Bloom filter returns FALSE, it is 100% correct that the key is NOT in <i>S.</i> Also, with HIGH probability, it can tell if a key is in <i>S.</i>			
	Space efficient: on average, each key only occupies a few bits in Bloom filter.			
	Inserting a new element into the Bloom filter should be fast			
	Querying a key from the Bloom filter should be fast			

THE CORE OF BLOOM FILTER – HASH FUNCTION

A hash function h maps a uniformly at random chosen key $x \in U$ to an integer from $R_m = [0, m-1]$ such that each element in R_m is mapped with equal probability.

A Bloom filter is a bit vector B of m bits, with k independent hash functions h_1, \ldots, h_k

- \square Initially all the m bits are 0.
- Insert x into S: compute $h_1(x)$, ..., $h_k(x)$ and set $B[h_1(x)] = B[h_2(x)] = \cdots = B[h_k(x)] = 1$.
- Query if $x \in S$: Compute $h_1(x)$, ..., $h_k(x)$. If $B[h_1(x)] = B[h_2(x)] = \cdots = B[h_k(x)] = 1$, then answer TRUE, else answer FALSE.

EXAMPLE

- \Box m=5, k=2
- $\Box h_2(x) = (2x+3) \mod 5$
- \Box Initially B[0]=B[1]=B[2]=B[3]=B[4]=B[5]=0
- ☐ Then insert 9 and 11

7	/ \	. 1	/ \
h_1	$ \gamma \rangle$	hal	(x)
10	$(\boldsymbol{\omega})$	107	(ω)
_	` /	_	` /

B

Initialize:

Insert 9: 4 1

Insert 11: 1 0

0	0	0	0	0
0	1	0	0	1
1	1	0	0	1

EXAMPLE

Now query 15 and 16

	$h_1(x)$	$h_2(x)$	\mathbf{Answer}
Query 15:	0	3	No, not in B (correct answer)
Query 16:	1	0	Yes, in B (wrong answer: false positive)

ANALYSIS

☐ When m/n is fixed (m/n) is often called bits-per-key), the optimal k is $\ln 2 \times (m/n)$ (See here for proof if you are interested)

☐ Then, the optimal FPR is about 0.6185 m/n

□ So, larger *m* means small FPR (approaches to 0); smaller *m* means higher FPR (approaches to 1).

SUMMARY OF LSM-TREE

■ Multi-level structured

☐ Out-of-place updates (delete acts as a special insert)

☐ Fence pointers → reduce I/Os of Get()

□ Bloom filters → reduce I/Os of Get()

CLARIFICATIONS

In practice, fence pointers can be implemented in different ways.

Option 1: containing the min/max of each page;

Option 2: containing only the min (or max) of each page;

For analysis purpose, we reasonably assume that when using Fence pointers, it always incurs one I/O.

VARIANTS OF LSM-TREE

- ☐ Leveled LSM-tree (or Leveling LSM-tree)
 - The LSM-tree with leveling merge policy.

- Tiered LSM-tree (or Tiering LSM-tree)
 - The LSM-tree with tiering merge policy.
- ☐ Until now, the LSM-tree we introduce belongs to Leveling LSM-tree.

■ Next, we introduce what is Tiering LSM-tree

LEVELING LSM-TREE VS TIERING LSM-TREE

The difference lies in the way of merging a full level to its next level Leveling LSM-tree: When a level needs to be merged, always sort-merge to the next level Tiering LSM-tree: When a level needs to be merged, will not be sort-merged with the next level, but sort themselves and put it as a tier stored in the next level

LEVELING LSM-TREE EXAMPLE

LEVELING LSM-TREE EXAMPLE

LEVELING LSM-TREE EXAMPLE

TIERING LSM-TREE EXAMPLE

TIERING LSM-TREE EXAMPLE

TIERING LSM-TREE EXAMPLE

SOME PROPERTIES

☐ A tier in Level i roughly has the size of the capacity of Level (i-1)

 \Box Usually, in tiering LSM-tree, starting from Level 1, the merge is triggered when there are T tiers in it, where T is the size ratio.

☐ Question: In each level of tiering LSM-tree, is a key unique?

FENCE POINTERS AND BLOOM FILTERS IN TIERING LSM-TREES

Bloom filter and fence pointers are built for each tier of each disk level (except Level 0)

PROS AND CONS OF TIERING LSM-TREE

Advantages:
☐ Avoid costly sort merges
□ Put/Delete is faster
Disadvantages:
☐ Get is slower
3 Summary
☐ Leveling LSM-tree: faster data reads, slower data writes
☐ Tiering LSM-trees: slower data reads, faster data writes

