Assignment 1 MAT 458

5.4.47a: If $T_n \to T$ strongly, then for all $n, x \in \mathfrak{X}, \|T_n x\| < \infty$. Therefore $\sup_n \|T\| < \infty$ by the uniform boundedness principle. Now suppose that $T_n \to T$ weakly. That is for all $f \in \mathfrak{X}^*, x \in \mathfrak{X}$, we have $fT_n x \to fTx$. By uniform boundeness, we have that $\sup_n \|fT_n\| < \infty$. Since this holds for all f this implies that $\sup_n \|T_n\| < \infty$.

5.4.47b: Let $\langle x_{\alpha} \rangle$ be a net converging to x. We have that for all f, $f(x_{\alpha}) \to f(x)$. Therefore $||f(x_{\alpha})|| \to ||f(x)||$. We also have that $\hat{x}_{\alpha}(f) \to \hat{x}(f)$ and the norms converge to the norm of $||f(x_{\alpha})||$. Therefore $\sup_{\alpha} ||\hat{x}_{\alpha}(f)|| < \infty$. Therefore $||\hat{x}|| = ||x|| < \infty$. Now for Weak * convergence, we have that for all x if $f_{\alpha}(x) \to f(x)$, then

$$\sup_{\alpha} \|f_{\alpha}(x)\| = \sup_{\alpha} \|\hat{x}(f_{\alpha})\| < \infty.$$

Where the last inequality follows from convergence.