KOSHA GUIDE

D - 26 - 2023

공정용 안전밸브의 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 김 기 영

○ 개정자 : 한 인 수

한국산업안전보건공단 전문기술실 오상규

- 제·개정 경과
 - 1997년 3월 화학안전분야 기준제정위원회 심의
 - 1997년 4월 총괄기준제정위원회 심의
 - 2003년 3월 화학안전분야 기준제정위원회 심의
 - 2003년 5월 총괄기준제정위원회 심의
 - 2012년 7월 총괄제정위원회 심의(개정, 법규개정조항 반영)
 - 2023년 7월 화학안전분야 표준제정위원회 심의(개정)
- 관련규격 및 자료
 - API STD 526, "Flanged steel pressure-relief valves"
 - API STD 520, "Sizing, selection, and installation of pressure-relieving devices"
 - BS 6759 Part 1/2/3, "Safety valves"
 - ISO 4126-1, "Safety devices for protection against excessive pressure"
- 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제261조 (안전밸브 등의 설치)
- 안전보건기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1. 목적1
2. 적용범위1
3. 용어의 정의1
4. 오리피스의 명칭별 면적2
5. 안전밸브의 규격3
6. 안전밸브의 최대 설정압력3
7. 오리피스 크기의 산정3
8. 초과압력의 산정4
9. 사용 재질4
10. 설정압력의 허용 오차4
<부록 1>가스용 안전밸브 계산 예(임계흐름인 경우)19
<부록 2> 가스용 안전밸브 계산 예(임계흐름이 아닌 경우)21
<부록 3> 액체용 안전밸브 계산 예23
<부록 4> 수증기용 안전밸브 계산 예 ··································

공정용 안전밸브의 기술지침

1. 목적

이 기준은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제261조 (안전밸브 등의 설치)의 규정에 의하여 화학설비 및 그 부속설비에 설치하는 안전밸브에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

- 이 기준은 화학설비 및 그 부속설비에 설치되는 안전밸브로서 설정압력이 게이지 압력으로 1 bar 이상인 경우에 적용하며 다음 각호의 경우에는 적용하지 아니할 수 있다.
- (1) 수증기 또는 물을 취급하는 설비에 설치되는 경우
- (2) 압축된 공기 또는 불활성 가스를 취급하는 설비에 설치되는 경우
- (3) 운송용 용기에 설치되는 경우

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "안전밸브 (Safety valve)"라 함은 입구쪽의 압력이 일정 압력에 도달하면 자동적으로 스프링이 작동하면서 유체가 분출되고 일정압력 이하가 되면 다시 정상상태로 복원되어 유체가 새어나오지 않도록 만들어진 밸브를 말한다.
 - (나) "설정압력 (Set pressure)"이라 함은 운전중에 안전밸브가 열리도록 설정 한 안전밸브 입구측에서의 압력을 말한다.
 - (다) "호칭압력 (Pressure rating)"이라 함은 플랜지의 압력등급을 나타내기 위하여 사용하는 수치를 말한다.
 - (라) "일반형 안전밸브 (Conventional safety valve)"라 함은 밸브의 토출측 배

압의 변화에 의하여 직접적으로 성능특성에 영향을 받도록 만들어진 스프 링 직동식 안전밸브를 말한다.

- (마) "벨로우즈형 안전밸브 (Balanced bellows safety valve)"라 함은 밸브의 토출측 배압의 변화에 의하여 성능특성에 영향을 받지 않도록 만들어진 스프링 직동식 안전밸브를 말한다.
- (바) "파일롯트조작형 안전밸브 (Pilot-operated safety valve)"라 함은 안전밸브 자체에 내장된 보조의 안전밸브 작동에 의하여 작동되는 안전밸브를 말한다.
- (사) "배압 (Back pressure)"이라 함은 토출측에 연결된 배출물 처리설비 등으로부터 안전밸브의 토출측에 걸리는 압력을 말한다.
- (아) "초과압력 (Overpressure)"이라 함은 안전밸브에서 내부유체가 배출시에 설정압력이상으로 올라가는 압력을 말한다.
- (자) "최고허용압력 (Maximum allowable working pressure)"이라 함은 용기 의 제작에 사용된 재질의 두께 (부식 여유 제외)를 기준으로 하여 산출된 용기 상부에서의 허용가능한 최고의 압력을 말한다.
- (차) "축적압력 (Accumulated pressure)"이라 함은 안전밸브가 작동될 때 안전 밸브에 의하여 축적되는 압력으로서 그 설비내에서 순간적으로 허용될 수 있는 최대압력을 말한다.
- (카) "임계흐름 (Critical flow)"이라 함은 안전밸브 토출측에서의 유체 속도가 음속보다 큰 경우를 말하며, 임계흐름압력 (P_{cf}, Critical flow pressure)이 배압 이상인 경우에 해당한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전 보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 오리피스의 명칭별 면적

공정용 안전밸브의 오리피스의 크기는 <표 4>에서 정한 명칭별 면적에 따라야 한다.

5. 안전밸브의 규격

안전밸브의 규격은 오리피스 크기별로 <표 5>에서 정한 규격에 따른다.

6. 안전밸브의 최대 설정압력

온도에 따른 안전밸브 인입측에서의 최대 설정압력은 <표 6>에 따른다.

7. 오리피스 크기의 산정

- 7.1 오리피스 크기의 계산시에 필요한 자료
 - (1) 설정압력
 - (2) 배출용량
 - (3) 취급유체의 특성
 - (4) 취급유체의 비중 및 분자량
 - (5) 토출온도 및 설계온도
 - (6) 배압
- 7.2 필요한 오리피스 면적의 계산
- 7.2.1 취급유체가 가스 또는 증기(Vapor)인 경우

필요한 오리피스 면적은 다음 식중 하나를 이용하여 계산한다.

- (1) <표 1>에 의한 계산식
- (2) 고압가스 안전관리법에서 규정한 식
- 7.2.2 취급하는 유체가 액체인 경우 <표 2>에 의한 계산식에 따른다.
- 7.2.3 취급하는 유체가 수증기인 경우 <표 3>에 의한 계산식에 따른다.
- 7.3 오리피스 크기의 선정

오리피스의 크기는 7.2항의 기준에 따라 계산하여 얻은 필요한 오리피스 면적보다 큰 면적을 갖는 것을 선정하여야 한다.

8. 초과압력의 산정

안전밸브의 초과압력 산정은 <표 9>에서 정한 수치에 따른다.

9. 사용재질

- (1) 사용재질은 취급하는 유체에 대하여 내식성 및 내마모성 재질을 선정하여야 하며 상세한 사항은 사용자 또는 제작자의 기준에 따른다.
- (2) 주철(Cast iron)재질은 다음의 경우에는 사용하여서는 아니된다.
 - (가) 설계압력이 게이지 압력으로 13 bar를 초과하는 경우
 - (나) 설계온도가 220 ℃를 초과하거나 0 ℃ 미만인 경우

10. 설정압력의 허용 오차

설정압력에 대한 허용 오차범위는 다음과 같다.

- (1) 설정압력이 게이지 압력으로 5 bar 미만인 경우에는 ±0.14 bar 이하
- (2) 설정압력이 게이지 압력으로 5 bar 이상인 경우에는 설정압력의 ±3 % 이하

<표 1> 가스 및 증기인 경우

(1) 임계호름인 경우($P_B \leq P_d = P_1[\frac{2}{(k+1)}]^{k/(k-1)}$)

MKS 단위	FPS 단위
$A = \frac{131.6 W \sqrt{TZ}}{CK_d P_1 K_b K_c \sqrt{M}}$	$A = \frac{W\sqrt{TZ}}{CK_d P_1 K_b K_c \sqrt{M}}$
$A = \frac{352.5 V \sqrt{TZM}}{CK_d P_1 K_b K_c}$	$A = \frac{V \sqrt{TZM}}{6.32CK_d P_1 K_b K_c}$
$A = \frac{189.75 V \sqrt{TZG}}{CK_d P_1 K_b K_c}$	$A = \frac{V\sqrt{TZG}}{1.175CK_d P_1 K_b K_c}$

여기서

기 호	MKS 단위	FPS 단위				
A (필요한 오리피스의 면적)	mm²	in²				
₩ (필요분출량)	kg/hr	1b/hr				
T (인입측에서 배출유체의온도)	K	R				
P_1 (인입측 배출압력;설정압력+초과압력)	bara	psia				
Z (유체의 압축계수)	_	-				
V (필요분출량)	Nm³/min at 1 bara & 0°C	ft³/min at 14.7psia & 60°F				
M(배출유체의 분자량)	_	-				
C (비열용량계수)	<표 5> 참조					
K_b (배압용량계수)	벨로우즈형 안전밸브는 <그림1>참조, 일반형 및 파일롯트조작형 안전밸브는 1임					
K_c (결합보정계수)	1, 안전밸브만 설치하는 경우 0.9, 안전밸브와 파열판을 직렬로 설치하는 경우					
K_d (분출계수)	0.9	975				
G (유체의 비중)	공기를 1로	기준한 비중				

(2) 임계흐름이 아닌 경우($P_B \leq P_d = P_1[\frac{2}{(k+1)}]^{k/(k-1)}$) 가. 일반형 및 파일롯트 운전형 안전밸브인 경우

MKS 단위	FPS 단위
$A = \frac{0.179 \times W}{F_2 K_d K_c} \sqrt{\frac{ZT}{MP_1 (P_1 - P_2)}}$	$A = \frac{W}{735F_2 K_d K_c} \sqrt{\frac{ZT}{MP_1 (P_1 - P_2)}}$
$A = \frac{0.4795 V}{F_2 K_d K_c} \sqrt{\frac{ZTM}{P_1 (P_1 - P_2)}}$	$A = \frac{V}{4645F_{2} K_{d} K_{c}} \sqrt{\frac{ZTM}{P_{1} (P_{1} - P_{2})}}$
$A = \frac{2.58 \times V}{F_2 K_d K_c} \sqrt{\frac{ZTG}{P_1 (P_1 - P_2)}}$	$A = \frac{V}{864F_2 K_d K_c} \sqrt{\frac{ZTG}{P_1 (P_1 - P_2)}}$
$F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^{2/k}}$	$\left[\begin{array}{c} \frac{1-r^{(k-1)/k}}{(1-r)} \end{array}\right]$

여기서

기 호	MKS 단위	FPS 단위
A (필요한 오리피스의 면적)	mm²	in ²
W (필요분출량)	kg/hr	1b/hr
V (필요분출량)	Nm³/min at 1 bara & 80°C	ft ³ /min at 14.7psia & 60°F
<i>M</i> (분자량)	_	_
F_2 (비임계흐름계수)	_	-
k (비열비)		
r (배압비율)	P_{2l}	P_1
T (인입측에서 배출유체의온도)	K	R
P_{1} (인입측 배출압력;설정압력+초과압력)	bara	psia
P_2 (총배압;배압(P_B)+초과압력)	bara	psia
Z (유체의 압축계수)	_	-
K_c (결합보정계수)	1, 안전밸브만 설치하는	경우
	0.9, 안전밸브와 파열판을	- 직렬로 설치하는 경우
K_d (분출계수)	0.9	975
G (유체의 비중)	공기를 1로	기준한 비중

나. 벨로우즈형인 경우

(1)항의 임계흐름인 경우의 식을 이용하여 계산

<표 2> 액체인 경우

MKS 단위계	FPS 단위계
$A = \frac{1.178 Q \sqrt{G}}{K_d K_w K_c K_v \sqrt{(P_1 - P_B)}}$	$A = \frac{Q\sqrt{G}}{38K_d K_w K_c K_v \sqrt{(P_1 - P_B)}}$

여기서

기 호	MKS 단위	FPS 단위			
A (필요한 오리피스의 면적)	mm²	in²			
P_{I} (인입측 배출압력;설정압력+초과압력)	barg	psig			
P_B (배압)	barg	psig			
Q (필요분출량)	ℓ /min	gpm			
G (운전온도에서의 유체비중)					
K_c (결합보정계수)	1, 안전밸브만 설치하 0.9, 안전밸브와 파열판	는 경우 을 직렬로 설치하는 경우			
K_d (유체의 분출계수)	0.0	65			
K_w (벨로우즈형 안전밸브의 보정계수)	<그림 2>에서 얻은 값				
$K_{ u}$ (점도에 대한 보정계수)	<그림 3>여	서 얻은 값			

주) 일반형 안전밸브의 경우에는 K_w =1 임.

<표 3> 수증기인 경우

MKS 단위계	FPS 단위계
$A = \frac{1.904 W}{P_1 K_d K_b K_c K_n K_{sh}}$	$A = \frac{W}{51.5P_1 K_d K_b K_c K_n K_{sh}}$
K _n = 1, P ₁ 이 103 bara 이하인 경우	K _n = 1, P ₁이 1,515 psia 이하인 경우
$K_n = \frac{2.764P_1 - 1000}{3.324P_1 - 1061},$	$K_{n} = \frac{0.1906P_{1} - 1000}{0.2292P_{1} - 1061},$
P₁이 103 bara를 초과하는 경우	P₁이 1,515 psia를 초과하는 경우

여기서

기 호	MKS 단위	FPS 단위
A (필요한 오리피스의 면적)	mm²	in²
₩ (필요분출량)	kg/hr	1b/hr
P_{l} (인입측 배출압력;설정압력+초과압력)	bar	psia
K_b (배압용량계수)	벨로우즈형 안전밸브는 파일로트조작형 안전밸브	<그림 1>참조, 일반형 및 L는 1임.
K_c (결합보정계수)	1, 안전밸브만 설치하	는 경우 을 직렬로 설치하는 경우
K_d (분출계수)	0.9	075
K_n (Napier 방정식에 의한 보정계수)	_	-
K_{sh} (과열수증기 보정계수)	<班 62	> 참조

<표 4> 오리피스의 명칭별 면적

오리피스의 명칭	오리피스의 면적	i (구멍의 면적)
오디퍼스의 명정	mm²	in ²
D	71	0.110
E	125	0.196
F	198	0.307
G	325	0.503
Н	506	0.785
J	830	1.287
K	1186	1.838
L	1841	2.853
M	2323	3.600
N	2800	4.340
Р	4116	6.380
Q	7129	11.050
R	10323	16.000
Т	16774	26.000

<표 5> 안전밸브의 규격

		오리피스의 면적(m²)											
	D	71	•	•	•								
	Е	125	•	•	•								
	F	198	•	•	•								
오	G	325			•	•	•						
리	Н	506				•	•						
피	J	830					•	•	•				
스	K	1186							•				
의	L	1841							•	•			
	M	2323								•			
크	N	2800								•			
기	Р	4116								•			
	Q	7129									•		
	R	10323									•	•	
	Т	16774											•
			1×2	1½×2	$1\frac{1}{2} \times 2\frac{1}{2}$	1½×3	2×3	$2\frac{1}{2} \times 4$	3×4	4×6	6×8	6×10	8×10
					밸브 몸	체 규격(인입측 호	칭 구경	× 토출측	호칭 규칙	격, inch)		

<표 6> 안전밸브의 최대 허용토출압력 및 중심면간 거리

인입측 mm 105 105 105 105 105 105 105 105 105 105	E 출 mm 114 114 114 114 140 140 165 114 114 114 114 114 114
mm 105 105 105 105 105 105 140 105 105 105 105	mm 114 114 114 114 140 140 165 114 114
105 105 105 105 105 105 105 140 105 105 105	114 114 114 114 140 140 165 114 114
105 105 105 105 105 140 105 105 105 105	114 114 114 140 140 165 114 114 114
105 105 105 105 105 140 105 105 105 105	114 114 114 140 140 165 114 114 114
105 105 105 105 140 105 105 105 105	114 114 140 140 165 114 114 114
105 105 105 140 105 105 105 105	114 140 140 165 114 114 114
105 105 140 105 105 105 105	140 140 165 114 114 114
105 140 105 105 105 105	140 165 114 114 114
140 105 105 105 105	165 114 114 114
105 105 105 105	114 114 114
105 105 105	114 114
105 105	114
105	
I	114
	140
105	140
	165
124	121
I	121
	152
I	165
124	121
I	121
	152
	152
I	152
	171
	171
130	124
I	124
	124
	162
I	162
	162
	124
	124
I	143
	171
	181
	181
	140 124 124 124 124 124 124 140 124 124 124 124 124 130 130 130 130 130 154 154 154 157 137 137 137 137

<표 6> 계속

오리피스			플랜지의 크기					38℃에서 최대허용 토출압력		중심면간 거리		
명칭	면적	직경	공칭	<u>인입</u> 직경	측 호칭압력	공칭	<u>토출</u> 직경	*측 호칭압력	일반형	벨로우즈형	,	토출
	mm²	mm	in	mm		in	mm		bar	bar	mm	mm
	111111	"""	3	80	150	4	100	150	19.7	10.3	156	162
			3	80	300	4	100	150	19.7	10.3	156	162
K	1186	38.86	3	80	300	4	100	150	19.7	10.3	156	162
			3	80	600	4	100	150	19.7	13.8	184	181
			3	80	900	6	150	150	19.7	13.8	198	216
			3	80	1500	6	150	300	41.4	13.8	197	216
			3	80	150	4	100	150	19.7	6.9	156	165
			3	80	300	4	100	150	19.7	6.9	156	165
Т Т	10/1	10 11	4	100	300	6	150	150	19.7	11.7	179	181
L	1841	48.41	4	100	600	6	150	150	19.7	11.7	179	203
			4	100	900	6	150	150	19.7	11.7	197	222
			4	100	1500	6	150	150	19.7	11.7	197	222 184
			4	100	150	6	150	150	19.7	5.5	178	184
			4	100	300	6	150	150	19.7	5.5	178	184
M	2323	54.38	4	100	300	6	150	150	19.7	11.0	178	184
			4	100	600	6	150	150	19.7	11.0	178	203
			4	100	900	6	150	150	19.7	11.0	197	222
			4	100	150	6	150	150	19.7	5.5	197	210
			4	100	300	6	150	150	19.7	5.5	197	210
N	2800	59.71	4	100	300	6	150	150	19.7	11.0	197	210
			4	100	600	6	150	150	19.7	11.0	197	222
			4	100	900	6	150	150	19.7	11.0	197	222 229
			4	100	150	6	150	150	19.7	5.5	181	
			4	100	300	6	150	150	19.7	5.5	181	229
P	4116	72.39	4	100	300	6	150	150	19.7	10.3	225	254
			4	100	600	6	150	150	19.7	10.3	225	254
			4	100	900	6	150	150	19.7	10.3	225	254
			6	150	150	8	200	150	7.9	4.8	240	241
Q	7129	95.27	6	150	300	8	200	150	7.9	4.8	240	241
٧	1125	30.21	6	150	300	8	200	150	7.9	7.9	240	241
			6	150	600	8	200	150	7.9	7.9	240	241
			6	150	150	8	200	150	4.1	4.1	240	241
R	10323	11464	6	150	300	8	200	150	4.1	4.1	240	241
10	10020	111.01	6	150	300	10	250	150	6.9	6.9	240	267
			6	150	600	10	250	150	6.9	6.9	240	267
			8	200	150	10	250	150	2.1	2.1	276	279
Т	16774	146.14	8	200	300	10	250	150	2.1	2.1	276	279
	10111	1-10.1-1	8	200	300	10	250	150	4.1	4.1	276	279
			8	200	300	10	250	150	6.9	6.9	276	279

^{※ 1.} 최대허용 토출압력은 게이지압력임.

^{2.} 중심 면간거리의 허용오차는 인입측 공칭직경이 100mm이하인 것은 ±1.5mm, 100mm를 초과하는 것은 ±3.0mm 이하이어야 한다.

<표 7> 비열 용량계수

k(비열비)	С	k(비열비)	С	<i>k</i> (비열비)	С	<i>k</i> (비열비)	С
1.01	317	1.31	348	1.61	373	1.91	395
1.02	318	1.32	349	1.62	374	1.92	395
1.03	319	1.33	350	1.63	375	1.93	396
1.04	320	1.34	351	1.64	376	1.94	397
1.05	321	1.35	352	1.65	376	1.95	397
1.06	322	1.36	353	1.66	377	1.96	398
1.07	323	1.37	353	1.66 1.67	378	1.97	378
1.08	325	1.38	354	1.68	379	1.98	379
1.09	326	1.39	355	1.69	379	1.99	400
1.10	327	1.40	356	1.70	380	2.00	400
1.11	328	1.41	357	1.71	381	_	_
1.12	329	1.42	368	1.72	382	_	_
1.13	330	1.43	369	1.73	382	_	_
1.14	331	1.44	360	1.74	383	_	_
1.15	332	1.45 1.46	360	1.75	384	_	_
1.16	333	1.46	361	1.76	384	_	_
1.17	334	1.47	362	1.77	385	_	_
1.18	335	1.48	363	1.78	386	_	_
1.19	336	1.49	364	1.79	386	_	_
1.10	337	1.50	365	1.80	387	_	_
1.21	338	1.51	365	1.81	388	_	_
1.22	339	1.52	366	1.82	389	_	_
1.23	340	1.53	377	1.83	399	_	_
1.24	341	1.54	378	1.84 1.85	390	_	_
1.25	342	1.55	379	1.85	391	_	_
1.26	343	1.56	379	1.86	391	_	_
1.27	344	1.57	370	1.87	392	_	_
1.28	345	1.58	371	1.88	393	_	_
1.29	346	1.59	372	1.89	393	_	_
1.30	347	1.60	373	1.90	394	_	_

<표 8> 과열 수증기 보정 계수

							- , ,				
설정	압력					온도 ('	C/。 F)				
bar	psig	149/300	204/400	260/500	316/600	371/700	427/800	482/900	538/1000	593/1100	649/1200
1.03	15	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
1.38	20	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
2.76	40	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.74	0.72	0.70
4.14	60	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
5.52	80	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
6.90	100	1.00	0.99	0.94	0.89	0.84	0.81	0.77	0.75	0.72	0.70
8.28	120	1.00	0.99	0.94	0.89	0.84	0.81	0.78	0.75	0.72	0.70
9.06	140	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
11.0	160	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
12.4	180	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
13.8	200	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
15.2	220	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
16.6	240	_	1.00	0.95	0.90	0.85	0.81	0.78	0.75	0.72	0.70
17.9	260	_	1.00	0.95	0.90	0.85	0.81	0.78	0.75	0.72	0.70
19.3	280	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
20.7	300	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
24.1	350	_	1.00	0.96	0.90	0.86	0.82	0.78	0.75	0.72	0.70
27.6	400	_	1.00	0.96	0.91	0.86	0.82	0.78	0.75	0.72	0.70
34.5	500	_	1.00	0.96	0.92	0.86	0.82	0.78	0.75	0.73	0.70
41.4	600	_	1.00	0.97	0.92	0.87	0.82	0.79	0.75	0.73	0.70
55.2	800	_	_	1.00	0.95	0.88	0.83	0.79	0.76	0.73	0.70
69.0	1000	_	_	1.00	0.96	0.89	0.84	0.78	0.76	0.73	0.71
86.2	1250	_	_	1.00	0.97	0.91	0.85	0.80	0.77	0.74	0.71
103	1500	_	_	_	1.00	0.93	0.86	0.81	0.77	0.74	0.71
121	1750	_	_	_	1.00	0.94	0.86	0.81	0.77	0.73	0.70
138	2000	_	_	_	1.00	0.95	0.86	0.80	0.76	0.72	0.69
172	2500	_	_	_	1.00	0.95	0.85	0.78	0.73	0.69	0.66
207	3000	_	_	_	_	1.00	0.82	0.74	0.69	0.65	0.62

<표 9> 안전밸브의 설정압력, 축적압력 및 초과압력

원인	하니	-의 안전밸브 /	설치	여러개의 안전밸브 설치			
전 인	설정압력	축적압력	초과압력	설정압력	축적압력	초과압력	
화재시가 아닌 경우 첫번째 밸브 나머지 밸브	100%	110%	10%	100% 105%	116% 116%	16% 11%	
화재시인 경우 첫번째 밸브 나머지 밸브	100%	121%	21%	100% 110%	121% 121%	21% 11%	

주) 모든 수치는 최고허용압력의 %임.

 P_B = 배압 (게이지압력) P_S = 설정압력 (게이지압력)

- (주) 1. 초과압력이 21%인 경우에는 배압비율 50%까지는 K_b 는 1임.
- (주) 2. 이 그림은 설정압력이 3.5 bara(50 psig) 이상인 경우에만 사용가능함. 그렇지 않은 경우에는 제조자의 결정에 따름.

<그림 1> 벨로우즈형 안전밸브의 배압용량계수

 P_B = 배압 (게이지압력) P_S = 설정압력 (게이지압력)

<그림 2> 벨로우즈형 안전밸브의 보정계수

MKS 단위계	FPS 단위계
$Re = \frac{Q(18,800 \times G)}{\mu \sqrt{A}}$	$Re = \frac{Q(2,800 \times G)}{\mu \sqrt{A}}$
$Re = \frac{85,220 \times Q}{U\sqrt{A}}$	$Re = \frac{12,700 \times Q}{U \sqrt{A}}$

여기서

기 호	MKS 단위	FPS 단위	
Re (레이놀드 수)	_	_	
Q (필요분출량)	ℓ/min	gpm	
G (유체의 비중)	-	-	
μ (유체의 점도)	cent	ipoise	
<i>U</i> (유체의 점도)	say	bolt	
A (오리피스 면적)	mm²	in²	

<그림 3> 점도 보정계수

<부록 1>

가스용 안전밸브 계산 예(임계흐름인 경우)

다음 조건의 탄화수소 유체에 필요한 일반형 안전밸브의 크기를 계산하시오.

◦ 배출량(W) : 53,500 1b/hr

◦ 분자량(M) : 65

• 배출유체의 온도(T) : 627 R

설정압력 : 75 psig배압(P₂) : 14.7 psia

유체의 압축계수(Z): 0.84유체의 비열비(k): 1.09

• 초과압력 : 10 %

1. *P*₁ 계산

2. 임계흐름압력 계산

$$P_{cf}$$
 = $P_1 \times \left[\frac{2}{k+1}\right]^{k/(k-1)}$
= $97.2 \times \left[\frac{2}{1.09+1}\right]^{1.09/(1.09-1)}$
= 97.2×0.59
= 57.3 psia

3. 임계흐름 여부 결정

$$P_B$$
 = 14.7 psia P_B 가 P_d 보다 작으므로 임계흐름임.

4. 계수의 결정

$$K_b = 1$$
(일반형 안전벨브)

$$K_c$$
 = 1(안전밸브만 설치)

$$K_d = 0.975$$

5. 오리피스 면적 산출

$$A = \frac{W\sqrt{TZ}}{CK_d P_1 K_b K_c \sqrt{M}}$$
 (식표 1의 임계흐름인 경우)

$$=\frac{53,500\sqrt{627\times0.84}}{326\times0.975\times97.2\times1.0\times1.0\sqrt{65}}$$

$$= 4.93 \text{ in}^2$$

<부록 2>

가스용 안전밸브 계산 예(임계흐름이 아닌 경우)

다음 조건의 탄화수소 유체에 필요한 일반형 안전밸브의 크기를 계산하시오.

◦배출량(W): 53,500 1b/hr

◦ 분자량(M) : 65

• 배출유체의 온도(T) : 627 R

• 설정압력 : 75 psig

◦ 배압(P_B) : 55 psig

유체의 압축계수(Z): 0.84유체의 비열비(k): 1.09

• 초과압력 : 10 %

1. P_1 및 P_2 계산

$$P_1$$
 = 설정압력 + 초과압력

$$=$$
 75 \times (1+0.1)

= 82.5 psig

= 97.2 psia

$$P_2$$
 = 배압 + 초과압력

$$=$$
 55 + 75 \times 0.1

= 62.5 psig

= 77.2 psia

2. 임계흐름압력 계산

$$P_{cf} = P_1 \times [\frac{2}{k+1}]^{k/(k-1)}$$

=
$$97.2 \times \left[\frac{2}{1.09+1}\right]^{1.09/(1.09-1)}$$

= 57.3 psia

3. 임계흐름 여부 결정

$$P_B$$
 = 55 psig = 69.7 psia P_B 가 P_d 보다 크므로 임계흐름이 아님.

4. 계수의 결정

$$K_d = 0.975$$
 $K_c = 1(안전밸브만 설치)$
 $r = P_2/P_1 = 77.2/97.2 = 0.794$

$$F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^{2/k}\left[\frac{1-r^{(k-1)/k}}{(1-r)}\right]}$$

$$= \sqrt{\frac{1.09}{1.09-1}}(0.794)^{2/1.09}\left[\frac{1-0.794}{1-0.794}\right]^{(1.09-1)/1.09}$$

$$= 0.85$$

5. 오리피스 면적 산출

$$A = \frac{W}{735F_2 K_d K_c} \sqrt{\frac{ZT}{MP_1 (P_1 - P_2)}}$$

$$= \frac{53,500}{735 \times 0.85 \times 0.975 \times 1.0} \sqrt{\frac{0.84 \times 627}{65 \times 97.2 (97.2 - 77.2)}}$$

$$= 5.6 \text{ in}^2$$

<부록 3>

액체용 안전밸브 계산 예

다음 조건의 원유를 취급하는 용기에 필요한 안전밸브의 크기를 계산하시오.

◦ 배출량(Q) : 1,800 gpm

• 비중(G): 0.9

설정압력 : 250 psig배압(P_B) : 0~50 psig

• 초과압력 : 10 %

• 점도(U) : 2000 Saybolt

1. 안전밸브의 종류

배압이 변하므로 벨로우즈형 안전밸브로 선정

2. P_1 및 P_B 계산

P₁ = 설정압력 + 초과압력

 $= 250 \times 1.1$

= 275 psig

 P_B = 배압

= 50 psig

3. 계수의 결정

 $K_c = 1$ (안전밸브만 설치)

 $K_d = 0.65$

 $K_w = 0.97$ (그림 2로부터, 배압비율 = $P_B/P_S \times 100 = 50/250 \times 100 = 20$)

4. 점도에 보정계수를 1로 가정하고 오리피스 면적 계산

$$A_{R} = \frac{Q \sqrt{G}}{38K_{d} K_{w} K_{c} K_{v} \sqrt{P_{1} - P_{B}}}$$

$$=\frac{1,800\sqrt{0.9}}{38\times0.65\times0.97\times1\times1\sqrt{275-50}}$$

$$= 4.752 \text{ in}^2$$

5. 오리피스 크기의 선정

<표 1>에서 필요한 오리피스 면적 (A_R) 보다 크고 가장 근사치인 P 오리피스를 선정하면 선정된 오리피스 면적은 6.38 in^2 임.

6. 레이놀드수 계산 및 K_v 선정

$$R = \frac{12,700 \times Q}{U \times \sqrt{A}}$$

$$= \frac{12,700\times1,800}{2,000\times\sqrt{6.38}}$$

$$= 4,525$$

$$K_v = 0.964$$
(그림 3으로 부터)

7. 최종면적 계산 및 확인

$$A = \frac{A_R}{K_V}$$

$$=\frac{4.752}{0.964}$$

$$= 4.93 \text{ in}^2$$

A가 선정된 오리피스의 면적보다 작으므로 P 오리피스로 최종 선정

<부록 4>

수증기용 안전밸브 계산 예

다음 조건의 포화수증기를 취급하는 용기에 필요한 일반형 안전밸브의 크기를 계산하시오.

◦배출량(W): 153,500 1b/hr

• 설정압력 : 1,600 psig

• 초과압력 : 10 %

◦ 배 압: 0 psia

1. *P*₁ 계산

$$P_1$$
 = 설정압력 + 초과압력

 $= 1,600 \times 1.1$

= 1,760 psig

= 1,774.7 psia

2. 계수의 결정

$$K_d = 0.975$$

 K_b = 1(일반형 안전밸브)

 K_c = 1(안전밸브만 설치)

$$K_n = \frac{0.1906 \ P_1 - 1000}{0.2292 \ P_1 - 1061}$$

$$= \frac{0.1906 \times 1774.7 - 1000}{0.2292 \times 1774.7 - 1061}$$

= 1.01

$$K_{sh} = 1$$

3. 필요한 오리피스 면적 산출

$$A = \frac{W}{51.5 P_{1} K_{d} K_{b} K_{c} K_{n} K_{sh}}$$

$$= \frac{153,500}{51.5 \times 1774.7 \times 0.975 \times 1 \times 1 \times 1.01 \times 1}$$

 $= 1.705 \text{ in}^2$

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 오상규

○ 개정사유 : 계산식의 오류수정

○ 주요 개정내용

- (식표-2) 액체인 경우" MKS 단위계 A 계산식 0.1178을 1.178로 오류 수정