Estudo do Campo Magnético

Ana Sofia Camões de Sousa | 96508 Duarte Miguel de Aguiar Pinto e Morais Marques | 96523 Isabel Maria Jaló Alexandre | 96537 Martim da Costa Graça Marques Ferreira | 96554 Grupo 5C

Objetivos

O objetivo deste trabalho é o estudo do campo de indução magnética (\vec{B}) . Serão considerados diferentes circuitos percorridos por correntes estacionárias, bem como o efeito num material ferromagnético, considerando corrente alternada.

Montagem

Figura 1: Esquema elétrico e de blocos da montagem para o estudo do campo de indução magnética.

Figura 2: Esquema elétrico e de blocos da montagem para o estudo da indução magnética na presença de um material ferromagnético.

Formulário

Calibração da sonda de Hall

$$\vec{B}(z) = \frac{\mu_0 N I R^2}{2(z^2 + R^2)^{3/2}} \vec{e}_z \tag{1}$$

$$\vec{B}(z=0) = \frac{\mu_0 NI}{2R} \vec{e}_z \tag{2}$$

Bobina circular

$$\vec{B}(x,0,z) = \frac{\mu_0 NRI}{4\pi} \int_0^{2\pi} \frac{d\phi(z\sin\phi\vec{e}_x + (R-x\sin\phi)\vec{e}_z)}{(R^2 + x^2 + z^2 - 2Rx\sin\phi)^{3/2}}$$
(3)

Bobines de Helmholtz

$$\vec{B}_H(x,0,z) = \vec{B}_H(x,0,z - \frac{L}{2}) + \vec{B}_H(x,0,z + \frac{L}{2})$$
(4)

$$\vec{B}(x,0,z) = \frac{\mu_0 NRI}{4\pi} \int_0^{2\pi} \frac{d\phi(z\sin\phi\vec{e}_x + (R - x\sin\phi)\vec{e}_z)}{(R^2 + x^2 + z^2 - 2Rx\sin\phi)^{3/2}}$$
(5)

Solenoides

Solenoide com núcleo de ar:

$$\vec{B}(0,0,z) = \frac{\mu_0 nI}{2} \left(\frac{\frac{L}{2} - z}{\sqrt{(\frac{L}{2} - z)^2 + R^2}} + \frac{\frac{L}{2} + z}{\sqrt{(\frac{L}{2} + z)^2 + R^2}} \right)$$
(6)

Solenoide com núcleo de ferro:

$$\vec{B}(0,0,z) = \frac{\mu(nI+M)}{2} \left(\frac{\frac{L}{2} - z}{\sqrt{(\frac{L}{2} - z)^2 + R^2}} + \frac{\frac{L}{2} + z}{\sqrt{(\frac{L}{2} + z)^2 + R^2}} \right)$$
(7)

Material ferromagnético

Determinação do número de espiras do transformador

$$V_1 = \frac{n_1}{n_3} V_3 (8)$$

$$V_2 = \frac{n_2}{n_3} V_3 \tag{9}$$

Representação da curva de histerese

$$\vec{B} = \mu_0(\vec{M} + \vec{H}) \tag{10}$$

Material ferromagnético:

$$\vec{M} = \vec{M}(\vec{H}) \tag{11}$$

$$\vec{B} = \mu_0(\vec{M} + \vec{H}) = B(\vec{H}) \tag{12}$$

$$\mu_i = \frac{\Delta B}{\Delta H} \tag{13}$$

Material não ferromagnético:

$$\vec{M} = \chi_m \vec{H} \tag{14}$$

$$\vec{B} = \mu_0(\chi_m \vec{H} + \vec{H}) = \mu_0(1 + \chi_m)\vec{H}$$
(15)

$$\mu_r = (1 + \chi_m) \tag{16}$$

$$\vec{B} = \mu_r \mu_0 \vec{H} = \mu \vec{H} \tag{17}$$

Cálculo do campo coercivo

$$H = \frac{n_1 I_1}{L} = \frac{n_1 V_1}{R_1 L} \tag{18}$$

Cálculo dos campos de saturação de remanescente

$$B = \frac{1}{n_2 S} \int V_2 dt \tag{19}$$

Para V_c suficientemente inferior a V_2 :

$$B = \frac{R_2 C}{n_2 S} V_c \tag{20}$$

Cálculo da permeabilidade e da suscetibilidade magnética incrementais (B=0)

$$\mu_i = \frac{\Delta B}{\Delta H} = \mu_{ri}\mu_0 \tag{21}$$

$$\chi_{mi} = (\mu_{ri} - 1) \tag{22}$$

Procedimento experimental

Calibração

- 1. Utilizando uma régua, foi determinado o diâmetro da bobine de Helmholtz como $13.6\pm0.2~cm$.
- 2. Foi montado o circuito com as bobines de Helmholtz, sendo apenas uma percorrida pela corrente elétrica. Foi colocada a sonda de Hall no centro desta bobine. De seguida, foram recolhidos os valores que constam na tabela 1, com o objetivo de ser possível calibrar a sonda de Hall. Após a recolha de cada valor, foi desligado o circuito e recolhido o offset do aparelho. O valor de B tem que ser subtraído por este offset. A incerteza do amperímetro é 1 mA e do sensor de Hall é 0.01 mT (à partida, tendo em conta a respetiva sensibilidade; poderão ser ajustadas verificando-se flutuações nos valores).

$I \pm 0.002 (A)$	$B \pm 0.01 \; (mT)$	$B_{offset} \pm 0.01 \ (mT)$
0.104	0.84	0.20
0.200	1.44	0.21
0.310	2.13	0.21
0.398	2.67	0.21
0.502	3.33	0.22
0.611	4.00	0.21
0.700	4.54	0.21
0.795	5.13	0.22
0.901	5.79	0.21
1.005	6.43	0.21
1.099	6.99	0.21
1.205	7.65	0.21
1.291	8.17	0.20
1.411	8.91	0.20
1.508	9.51	0.20

Tabela 1: Calibração da sonda de Hall

Bobine circular

3. Manteve-se o circuito (apenas uma das bobines de Helmholtz é percorrida por corrente), ajustando a fonte de alimentação para fonte de corrente em (1.002 ± 0.002) A.

4. Foi colocada a zona ativa da sonda de Hall no centro da bobine. Foram recolhidos os valores em 2 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção zz.

$d \pm 0.2 (cm)$	$B_z \pm 0.01 \; (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	6.39	0.26
1.0	6.12	0.25
2.0	5.59	0.26
3.0	4.83	0.23
4.0	4.13	0.24
5.0	3.43	0.25
6.0	2.81	0.26
7.0	2.31	0.27
8.0	1.92	0.27
9.0	1.61	0.27
10.0	1.36	0.28
11.0	1.17	0.27
12.0*	0.87	0.27
13.0*	0.79	0.28
12.0	1.01	0.28
13.0	0.89	0.28
14.0	0.80	0.28
15.0	0.71	0.29
16.0	0.67	0.31
17.0	0.62	0.31

Tabela 2: Medições efetuadas segundo o eixo zz

Reparou-se que os valores sinalizados com * pareciam estar a desviar-se da tendência esperada. Repetiram-se as medições e prosseguiu-se.

5. Foi repetido o processo mas medindo a componente em xx do campo magnético (para x = 0): tabela 3. Ajustou-se a fonte de corrente para $(1.000 \pm 0.002) A$.

$d \pm 0.2 \ (cm) \pm 0.2$	$B_x \pm 0.01 \ (mT)$	$B_{xoffset} \pm 0.01 \ (mT)$
2.0	0.27	0.34
3.0	0.31	0.34
4.0	0.29	0.35
5.0	0.29	0.35
9.0	0.47	0.36
10.0	0.46	0.37
11.0	0.45	0.37
12.0	0.43	0.37
13.0	0.42	0.38
14.0	0.40	0.38
15.0	0.40	0.38
16.0	0.40	0.38
17.0	0.40	0.38

Tabela 3: Medições efetuadas segundo o eixo xx

6 de maio de 2021

6. De seguida, a sonda foi colocada novamente no centro da bobine e desviada de 2.5~cm na direção xx (para longe do experimentalista). Foram recolhidos os valores em 4 referentes ao campo magnético tanto nas direções zz como radial, sendo a sonda deslocada na direção zz. Foi ajustada a fonte de corrente para $(1.000 \pm 0.002)~A$.

$d \pm 0.2 \; (cm)$	$B_z \pm 0.01 \; (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$	$B_r \pm 0.01 \; (mT)$	$B_{roffset} \pm 0.01 \ (mT)$
0.0	7.25	0.44	-	-
1.0	6.79	0.45	-	-
2.0	5.97	0.46	-0.60	0.43
3.0	4.96	0.47	-0.66	0.43
4.0	4.12	0.47	-0.65	0.43
5.0	3.36	0.47	-0.44	0.43
6.0	2.78	0.48	-	-
7.0	2.29	0.48	-	-
8.0	1.95	0.48	-	-
9.0	1.68	0.49	0.09	0.43
10.0	1.46	0.49	0.16	0.42
11.0	1.30	0.50	0.20	0.43
12.0	1.17	0.50	0.24	0.43
13.0	1.07	0.51	0.29	0.42
14.0	0.98	0.51	0.30	0.42
15.0	0.90	0.51	0.32	0.42
16.0	0.86	0.52	0.34	0.42
17.0	0.82	0.52	0.36	0.42

Tabela 4: Medições efetuadas paralelamente ao eixo zz, a 2.5 cm de distância

7. De seguida, a sonda foi colocada novamente no centro da bobine. Foram recolhidos os valores em 5 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção radial, para longe do experimentalista (no semieixo negativo dos xx definido na Figura 1). A fonte de corrente foi ajustada para $(0.999 \pm 0.002) A$.

$d \pm 0.2 (cm)$	$B_z \pm 0.01 \ (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	6.47	0.48
0.5	6.52	0.48
1.0	6.61	0.48
1.5	6.74	0.49
2.0	6.98	0.49
2.5	7.22	0.49
3.0	7.70	0.48
3.5	8.08	0.48
4.0	8.80	0.48
4.5	9.71	0.50
5.0	11.44	0.49
5.5	13.62	0.47

Tabela 5: Medições efetuadas segundo o eixo xx

Bobines de Helmholtz

8. Foi determinada a distância entre as bobines como sendo $6.8 \pm 0.1~cm$.

9. O circuito foi agora montado de forma a que ambas as bobines de Helmholtz sejam percorridas por corrente elétrica, no mesmo sentido, ajustando a fonte de alimentação para $(1.004\pm0.002)~A.$

10. Foi colocada a zona ativa da sonda de Hall no centro das bobines. Foram recolhidos os valores em 6 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção zz.

$d \pm 0.2 \; (cm)$	$B_z \pm 0.01 \ (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	9.30	0.51
1.0	9.28	0.50
2.0	9.18	0.50
3.0	8.88	0.50
4.0	8.34	0.50
5.0	7.56	0.50
6.0	6.52	0.51
7.0	5.61	0.51
8.0	4.72	0.51
9.0	3.94	0.51
10.0	3.28	0.51
11.0	2.73	0.51
12.0	2.35	0.50
13.0	2.01	0.51
14.0	1.75	0.51
15.0	1.54	0.51
16.0	1.38	0.51
17.0	1.25	0.51
18.0	1.14	0.52
19.0	1.05	0.52
20.0	0.99	0.52
21.0	0.92	0.51

Tabela 6: Medições efetuadas segundo o eixo zz

^{11.} De seguida, a sonda foi colocada novamente no centro das bobines e desviada de 2.5~cm, para longe do experimentalista. Foi ajustada a fonte de corrente para $(1.005\pm0.002)~A$. Foram recolhidos os valores em 7 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção zz.

$d \pm 0.2 \; (cm)$	$B_z \pm 0.01 \; (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	9.33	0.50
1.0	9.45	0.50
2.0	9.58	0.50
3.0	9.42	0.50
4.0	8.82	0.50
5.0	7.74	0.51
6.0	6.47	0.50
7.0	5.40	0.51
8.0	4.38	0.51
9.0	3.67	0.51
10.0	3.05	0.51
11.0	2.58	0.52
12.0	2.21	0.52
13.0	1.90	0.52
14.0	1.67	0.52
15.0	1.49	0.52
16.0	1.34	0.53
17.0	1.21	0.52
18.0	1.12	0.53
19.0	1.04	0.53
20.0	0.96	0.52
21.0	0.91	0.52

Tabela 7: Medições efetuadas paralelamente ao eixo zz, a 2.5 cm de distância na direção zz

12. De seguida, a sonda foi colocada novamente no centro das bobines. Foram recolhidos os valores em 8 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção radial. Foi ajustada a fonte de corrente para $(1.004 \pm 0.002) A$.

$d \pm 0.2 (cm)$	$B_z \pm 0.01 \ (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	9.30	0.50
0.5	9.31	0.50
1.0	9.29	0.50
1.5	9.27	0.50
2.0	9.25	0.50
2.5	9.20	0.50
3.0	9.11	0.50
3.5	8.96	0.50
4.0	8.73	0.50
4.5	7.92	0.50
5.0	6.71	0.50

Tabela 8: Medições efetuadas segundo o eixo xx

13. De seguida, a sonda foi colocada novamente no centro das bobines e desviada de 2.5~cm, para longe do experimentalista. A fonte de corrente foi ajustada para $(1.004 \pm 0.002)~A$.

Foram recolhidos os valores em 9 referentes ao campo magnético na direção radial, sendo a sonda deslocada na direção zz.

$d \pm 0.2 \; (cm)$	$B_r \pm 0.01 \; (mT)$	$B_{roffset} \pm 0.01 \ (mT)$
0.0	0.08	0.46
1.0	0.15	0.46
5.0	-1.01	0.45
6.0*	-0.81	0.46
7.0*	-0.82	0.46
8.0*	-0.68	0.46
6.0	-1.09	0.45
7.0	-1.00	0.44
8.0	-0.72	0.44
9.0	-0.58	0.45
10.0	-0.33	0.43
11.0	-0.16	0.43
12.0	-0.02	0.44
13.0	0.07	0.43
14.0	0.13	0.43
15.0	0.17	0.43
16.0	0.22	0.43
17.0	0.27	0.42
18.0	0.29	0.42
19.0	0.30	0.41
20.0	0.32	0.41
21.0	0.33	0.41

Tabela 9: Medições efetuadas paralelamente ao eixo zz, a 2.5 cm de distância na direção xx

Os valores sinalizados com * foram repetidos e desconsiderados, dado não aparentarem seguir a tendência dos restantes.

Solenoides

- 14. Foi determinado o diâmetro exterior do solenoide com núcleo de ar como sendo: $(4.000 \pm 0.002)~cm$.
- 15. Foi determinado o diâmetro exterior do solenoide com núcleo de ferro como sendo: $(5.846 \pm 0.002)~cm$. Esta medição poderá estar afeta de algum erro, já que as espiras estão envoltas por fita cola.
- 16. Foi determinado o comprimento do solenoide com núcleo do ar: (18.690 ± 0.002) cm.
- 17. Foi determinada a densidade de espiras do solenoide com núcleo de ar como sendo: 13 ± 1 espiras em (1.00 ± 0.05) cm;
- 18. Foi determinado o comprimento do solenoide com núcleo de ferro: (14.978 ± 0.002) cm.
- 19. Foi determinada a densidade de espiras do solenoide com núcleo de ferro como sendo: 15 ± 1 espiras em (1.00 ± 0.05) cm.

- 20. Foi montado o circuito com o solenoide com núcleo de ar, sendo ajustada a fonte de alimentação para (1.007 ± 0.002) A.
- 21. Foi determinado o meio do solenoide com núcleo e, pousando o braço da sonda em cima do condensador de modo a que a própria sonda estivesse no meio do solenóide, fez-se uma marca no braço da sonda na zona sobre o extremo do condensador. Desta forma era possível saber, ao colocar a sonda dentro do condensador, quando é que ela chegava ao meio (era quando a marca começasse a entrar no condensador).
- 22. Foi colocada a zona ativa da sonda de Hall no centro do solenoide. Foram recolhidos os valores em 10 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção zz.

$d \pm 0.2 \; (cm)$	$B_z \pm 0.01 \ (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	3.68	0.44
1.0	3.65	0.43
2.0	3.63	0.43
3.0	3.57	0.42
4.0	3.54	0.43
5.0	3.50	0.43
6.0	3.43	0.43
7.0	3.25	0.42
8.0	2.89	0.42
9.0	2.16	0.43
10.0	1.43	0.44
11.0	1.00	0.45
12.0	0.76	0.45
13.0	0.65	0.46
14.0	0.60	0.48

Tabela 10: Medições efetuadas segundo o eixo zz

- 23. Foi realizada uma segunda medição do diâmetro exterior do solenoide com núcleo de ferro: 5.710 ± 0.002 (resolução do nónio). A incerteza real, tal como acima, poderá ser superior dadas as dificuldades na medição e a fita cola que reveste a bobine.
- 24. Foi montado o circuito com o solenoide com núcleo de ferro, sendo ajustada a fonte de alimentação para 1.007 A.
- 25. Foi colocada a zona ativa da sonda de Hall no topo do solenoide. Foram recolhidos os valores em 11 referentes ao campo magnético na direção zz, sendo a sonda deslocada na direção zz.
- 26. Utilizou-se uma régua para tentar confirmar o alinhamento da sonda em cada medida.

$d \pm 0.2 \; (cm)$	$B_z \pm 0.01 \; (mT)$	$B_{zoffset} \pm 0.01 \ (mT)$
0.0	7.45	0.56
0.5	7.20	0.68
1.0	6.80	0.73
1.5	5.84	0.73
2.0	5.33	0.71
2.5	4.53	0.69
3.0	3.93	0.65
3.5	3.30	0.64
4.0	2.92	0.63
4.5	2.56	0.62
5.0	2.21	0.60
5.5	2.00	0.59
6.0	1.80	0.57
6.5	1.63	0.55
7.0	1.51	0.56
7.5	1.44	0.57
8.0	1.32	0.59
8.5	1.27	0.59

Tabela 11: Medições efetuadas segundo o eixo zz

Campo de indução magnética na presença de um material ferromagnético

27. Começou-se por efetuar a montagem experimental.

28. Para o estudo da curva de histerese, foi ajustada a fonte de tensão alternada para o mínimo. Selecionou-se o modo XY no osciloscópio (X - tensão aos terminais de R₁, proporcional a H, Y - tensão de saída no integrador V_c, proporcional a B). Foi então aumentada a tensão no gerador de corrente alternada e ajustadas as escalas do osciloscópio até visualizar o ciclo de histerese. Os valores de X eram apresentados em ms, sendo necessário ter em conta quantos mV era cada divisão para converter os valores em de ms para mV. Devido à dispersão das linhas do ciclo de histerese, foram medidos os valores nos extremos das linhas (valores interiores - int, valores exteriores - ext) de forma a ter valores mais realistas e um intervalo de incerteza. No primeiro valor medido, correspondente ao H_{coercivo}, registou-se apenas o intervalo entre os cursores, tendo-se obtido os valores de 25.00 ms e 36.00 ms (25 ms correspondiam a 100 mV). Acabou-se por decidir registar também os valores individuais de cada cursor, tendo-se repetido esta primeira medição. Os restantes resultados estão registados em abaixo, sendo que para esses valores 25 ms correspondem a 50 mV. Considerou-se como incerteza o último algarismo apresentado.

Valor	$B_{saturao}(V)$	$B_{remanescente} (V)$	$H_{coercivo} (ms)$
Δ_{ext}	2.18	1.28	72.00
$Cursor_{ext1}$	1.10	0.640	36.00
$Cursor_{ext2}$	-1.08	-0.640	-36.00
Δ_{int}	1.96	1.06	51.00
$Cursor_{int1}$	0.980	0.520	27.00
$Cursor_{int2}$	-0.980	-0.540	-24.00

Tabela 12: Valores obtidos para o ciclo de histerese proporcionais às grandezas referidas

29. Foram ainda determinados dois pontos do ciclo de histerese perto do zero do X para tentar estimar a permeabilidade e a suscetibilidade magnética. Obtiveram-se os pontos $(21.00 \ ms; -240 \ mV)$ e $(37.00 \ ms; -200 \ mV)$. Após converter os valores para tensão $(25 \text{ms são } 50 \ \text{mV})$, obtém-se para o declive o valor de 13.75, sendo este o valor estimado para μ_i .

Figura 3: Fotografia do ciclo de histerese obtido

30. De modo a determinar o número de espiras do transformador, foram aplicadas tensões eficazes entre 3 V e 50 V no enrolamento primário, sendo registados os valores para a tensão neste (V_1) , no secundário (V_2) e no enrolamento com 4 espiras (V_3) : tabela 13.

$V_1 \pm 0.02 \; (V)$	$V_2 \pm 0.001 \ (V)$	$V_3 \pm 0.001 \ (V)$
2.942 ± 0.002	0.273	0.022
4.38	0.413	0.034
6.57	0.624	0.051
7.32	0.696	0.057
8.54	0.813	0.066
10.31	0.985	0.080
11.40	1.096	0.089
12.63	1.211	0.099
13.39	1.287 ± 0.002	0.105
15.40	1.482 ± 0.002	0.121
16.18	1.556 ± 0.002	0.127
17.69	1.706 ± 0.002	0.139
18.76	1.811 ± 0.002	0.147
19.92	1.924 ± 0.002	0.156
20.66 ± 0.03	1.996 ± 0.002	0.162

Tabela 13: Determinação do número de espiras

31. Foram determinados os parâmetros do transformador, encontrando-se representados abaixo.

Figura 4: Esquema do transformador

Pa	$\frac{1}{1}$ râmetros ± 0.002 (cm)
a	3.856
b	4.026
c	15.004
d	10.982
e	4.036
f	17.006
g	4.060
h	13.036

Tabela 14: Medidas do transformador

Apresentação e análise dos dados

Calibração da sonda de Hall

De forma a calibrar a sonda de Hall, os dados da tabela 1 foram analisados, tendo em conta a equação (2). Como N=320 espiras, teoricamente esperava-se que o campo magnético tivesse uma relação linear com a corrente elétrica de declive 0.00296 ± 0.00005 .

Utilizando o *fitteia*, obteve-se o ajuste da figura 5, obtendo-se o declive experimental 0.00617 ± 0.00002 . Assim sendo, o fator corretivo (valor teórico/valor experimental) é 0.479 ± 0.009 . O ajuste apresenta uma ligeira ordenada na origem de valor $(0.6\pm1.5)\times10^5$. O zero encontra-se no intervalo de incerteza da ordenada na origem.

Figura 5: Ajuste do campo magnético em função da corrente elétrica

Bobine circular

Os valores contidos na tabela 3 tiveram como objetivo confirmar que a componente radial do campo magnético é, de facto, negligível.

É importante referir que não é fácil alinhar a sonda precisamente com o centro das bobines e solenoides, sendo difícil movimentá-la sempre no mesmo eixo sem desvios. É também complicado precisar a distância que se desloca, daí ter-se considerado uma incerteza considerável para as distâncias.

6 de maio de 2021

Figura 6: Tabela 2

Figura 7: Tabela 4

Figura 8: Tabela 5

Bobines de Helmholtz

Figura 9: Tabela 6

6 de maio de 2021

Figura 10: Tabela 8

Figura 11: Tabelas 7 e 9

Solenoides

Figura 12: Tabela 10

Figura 13: Tabela 11

Campo de indução magnética na presença de um material ferromagnético

Determinação do número de espiras no transformador

Com recurso aos valores de 13, foram realizados ajustes com o objetivo de determinar o número de espiras no primário e no secundário. Foi obtido para o primário $N=506\pm4$, $b=(0.13\pm0.09)~V$ e para o secundário 49.2 ± 0.4 , $b=(-0.002\pm0.009)~V$ (onde b são as ordenadas na origem). Idealmente seria b=0~V, o que indica algum erro experimental, mas face aos valores de N, ambos os b são desprezáveis (o segundo tem até o 0 no intervalo de incerteza).

Figura 14: Determinação experimental do número de espiras no primário

Figura 15: Determinação experimental do número de espiras no secundário

Determinação do material do transformador

Utilizando os dados retirados do ciclo de histerese obtidos, calcularam-se os valores de $B_{rem} = (0.8 \pm 0.2)~T$, $B_{sat} = (1.4 \pm 0.2)~T$ e $H_{coer} = (6.5 \pm 3.2)~T$. Estes não se adequam propriamente a nenhum dos materiais apresentados na tabela, mas consideramos que o mais provável seria a liga de Fe-Ni, sendo que os nossos valores de B_{rem} e B_{sat} estão mais próximos dos de Fe-Si mas o H_{coer} obtido é demasiado pequeno quando comparado com o típico neste material.

Observações

Diversos erros podem ter afetado esta experiência, sendo de referir a dificuldade em determinar a densidade de espiras dos solenoides e as flutuações elevadas dos valores das tensões aquando da determinação do número de espiras no transformador.