${\bf Solutions~to~Walter~Rudin's} \\ {\bf \it Principles~of~Mathematical~Analysis} \\$

Patrick Borse

$egin{aligned} & ext{Abstract.} \ & ext{Analysis.} \end{aligned}$	This document contains solutions to the exercises of Walter Rudin's $Principles\ of\ Mathematical$

Contents

Chapter 1.	The Real and Complex Number Systems	4
Chapter 2.	Basic Topology	11
Chapter 3.	Numerical Sequences and Series	18
Chapter 4.	Continuity	34
Chapter 5.	Differentiation	40
Chapter 6.	The Riemann–Stieltjes Integral	42
Chapter 7.	Sequences and Series of Functions	43
Chapter 8.	Some Special Functions	44
Chapter 9.	Functions of Several Variables	46
Chapter 10.	Integration of Differential Forms	48
Chapter 11.	The Lebesgue Theory	50

CHAPTER 1

The Real and Complex Number Systems

Exercise 1.1. Let r be a nonzero rational and x an irrational real number. Suppose for sake of contradiction that r + x is rational. Then x = (r + x) - r is rational, a contradiction. Similarly, supposing for sake of contradiction that rx is rational, we see that $x = r^{-1}(rx)$ is rational. This is a contradiction, and so both r + x and rx are irrational.

Exercise 1.2. Suppose for sake of contradiction that there is $p \in \mathbf{Q}$ such that $p^2 = 12$. Then there are integers m, n with $n \neq 0$ and which are not both divisible by 3, such that p = m/n. Thus

$$\left(\frac{m}{n}\right)^2 = 12,$$

so

$$m^2 = 12n^2,$$

and then 3 divides m^2 . Thus 3 divides m since 3 is prime, and so $12n^2$ is divisible by 9. But 3 is prime and 12 has only one factor of 3 in its factorization, so 3 divides n^2 . Thus 3 divides n, contradicting the choice of m and n. Hence no such p exists.

Exercise 1.3 (TODO).

Exercise 1.4. Since E is nonempty, there is some $x \in E$. Then $\alpha \le x$ and $x \le \beta$, so $\alpha \le \beta$.

Exercise 1.5. We show that $\alpha = -\sup(-A)$ is the greatest lower bound of A. If $x \in A$, then $-x \in -A$ and so $-x \leq \sup(-A)$. Hence $\alpha \leq x$, and so α is a lower bound of A. If $\alpha < \beta$, then $-\beta < -\alpha = \sup(-A)$ and so $-\beta$ is not an upper bound of -A. Thus there is $x \in A$ such that $-\beta < -x$, and so $x < \beta$. Thus β is not a lower bound of A, and so $\alpha = \inf A$ as desired.

Exercise 1.6. (a) We have that b^m and b^p are positive reals, so $(b^m)^{1/n}$ and $(b^p)^{1/q}$ are well-defined positive reals by Theorem 1.21. We also have that

$$((b^m)^{1/n})^{nq} = (((b^m)^{1/n})^n)^q$$
$$= (b^m)^q$$
$$= b^{mq}$$

and

$$((b^p)^{1/q})^{nq} = (((b^p)^{1/q})^q)^n$$

= $(b^p)^n$
= b^{pn} .

But r = m/n = p/q implies that mq = pn, and so

$$((b^m)^{1/n})^{nq} = ((b^p)^{1/q})^{nq}.$$

By the uniqueness statement in Theorem 1.21,

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence

$$b^r := (b^m)^{1/n}$$

is well-defined. We note also that if n = 1, $b^r = (b^m)^{1/1} = b^m$ and so this definition is compatible with usual exponentiation with integer powers.

(b) Let m, n, p, q be integers such that n, q > 0 with r = m/n and s = p/q. By the definition in part (a),

$$(b^r b^s)^{nq} = ((b^m)^{1/n} (b^p)^{1/q})^{nq}$$

$$= (((b^m)^{1/n})^n)^q (((b^p)^{1/q})^q)^n$$

$$= (b^m)^q (b^p)^n$$

$$= b^{mq} b^{pn}$$

$$= b^{mq+pn}.$$

On the other hand,

$$r+s=\frac{m}{n}+\frac{p}{q}=\frac{mq+pn}{nq}$$

with nq > 0, so

$$(b^{r+s})^{nq} = ((b^{mq+pn})^{1/(nq)})^{nq}$$

= b^{mq+pn} .

Hence

$$(b^r b^s)^{nq} = (b^{r+s})^{nq}.$$

Since b^rb^s and b^{r+s} are positive reals, the uniqueness statement in Theorem 1.21 yields $b^{r+s} = b^rb^s$ as desired.

(c) Since $b^r \in B(x)$, to prove $b^r = \sup B(r)$ it suffices to show that b^r is an upper bound of B(x). Let $t \in \mathbf{Q}$ with $t \le r$. If m, n, p, q are integers with n, q > 0 with r = m/n and t = p/q, then $t \le r$ implies $pn \le mq$. Then

$$(b^{t})^{nq} = ((b^{p})^{1/q})^{nq}$$

$$= (((b^{p})^{1/q})^{q})^{n}$$

$$= b^{pn}$$

$$\leq b^{mq}$$

$$= (((b^{m})^{1/n})^{n})^{q}$$

$$= (b^{r})^{nq}$$

where $b^{pn} \leq b^{mq}$ follows by induction from 1 < b. Thus $b^t \leq b^r$ since nq is a positive integer, proving the claim.

[TODO]

(d) We wish to show that $b^x b^y = \sup B(x+y)$. If $v \in \mathbf{Q}$ such that $v \le x+y$, let t be any rational for which $v-y \le t \le x$, by Theorem 1.20(b). Then $t \le x$ and $v-t \le y$, with $t, v-t \in \mathbf{Q}$. Hence $t \in B(x)$ and $v-t \in B(y)$, so $b^t \le b^x$ and $b^{v-t} \le b^y$ by the definition of b^x and b^y in part (c). Then by part (b),

$$b^v = b^t b^{v-t} < b^x b^y$$

so $b^x b^y$ is an upper bound of B(x+y). On the other hand, suppose $\beta < b^x b^y$. Then $\beta(b^y)^{-1} < b^x$, so $\beta(b^y)^{-1}$ is not an upper bound of B(x). Hence there is $t \in \mathbf{Q}$ such that $t \le x$ and $\beta(b^y)^{-1} < b^t$. Then $\beta < b^t b^y$, so $(b^t)^{-1}\beta < b^y$. Hence $(b^t)^{-1}\beta$ is not an upper bound of B(y), so there is $s \in \mathbf{Q}$ with $s \le y$ such that $(b^t)^{-1}\beta < b^s$. Then $\beta < b^t b^s = b^{t+s}$, by part (b). But $t+s \in \mathbf{Q}$ with t+s < x+y, and so β is not an upper bound of B(x+y). Hence we have shown that $b^x b^y$ is the least upper bound of B(x+y), as desired.

Exercise 1.7. (a) We prove the claim by induction on n. For n = 1, we clearly have an equality. If $n \in \mathbb{N}$, we have from b > 1 that $b^n > 1$ and so $b(b^n - 1) > b^n - 1$. Thus if $b^n - 1 \ge n(b - 1)$, we have

$$b^{n+1} - 1 = b(b^n - 1) + (b - 1)$$

$$> (b^n - 1) + (b - 1)$$

$$\ge n(b - 1) + (b - 1)$$

$$= (n + 1)(b - 1),$$

proving the claim.

(b) If $b^{1/n} \leq 1$, then $b = (b^{1/n})^n \leq 1$, a contradiction. Thus $b^{1/n} > 1$, and so by part (a),

$$b-1 = (b^{1/n})^n - 1 \ge n(b^{1/n} - 1)$$

for all positive integers n.

(c) We saw in part (b) that $b^{1/n} > 1$ for all positive integers n. Thus $b^{1/n} - 1 > 0$, and so by part (b), we have for any positive integer n > (b-1)/(t-1) that

$$b-1 \ge n(b^{1/n}-1) > \frac{b-1}{t-1}(b^{1/n}-1).$$

Then since b-1>0 and t-1>0, rearranging yields

$$t-1 > b^{1/n} - 1$$
.

Hence $b^{1/n} < t$.

(d) From $b^w < y$ and $b^w > 0$, we have $(b^w)^{-1}y > 1$. Thus by part (c), if n is a positive integer with

$$n > \frac{b-1}{(b^w)^{-1}y-1},$$

then

$$b^{1/n} < (b^w)^{-1}y.$$

Thus since $b^w > 0$,

$$b^{w+1/n} < y$$

for sufficiently large n, by Exercise 1.6(d). (We note that by Theorem 1.20(a), such sufficiently large n exist.)

(e) If $b^w > y$, then $y^{-1}b^w > 1$ as y > 0. Hence by part (c), if n is a positive integer for which

$$n > \frac{b-1}{y^{-1}b^w - 1},$$

we have

$$b^{1/n} < y^{-1}b^w$$
.

Then from y > 0,

$$yb^{1/n} < b^w$$
.

We have by Exercise 1.6(b) that

$$b^{w-1/n}b^{1/n} = b^w$$
.

and so

$$b^{w-1/n} = b^w (b^{1/n})^{-1} > y,$$

proving the claim. (Again, by Theorem 1.20(a), such sufficiently large n exist.)

(f) We first show that b^x is a strictly increasing function of x, as this will be used throughout and in part (g). Indeed, let $x_1 < x_2$. Then $x_2 - x_1 > 0$, and so by Theorem 1.20(b), there exists a positive rational r such that $r \le x_2 - x_1$. Let m, n be integers for which n > 0 and r = m/n. Then m = rn is positive. By the definitions in Exercise 1.6(a, c), we have that $(b^m)^{1/n} \le b^{x_2-x_1}$. From b > 1, we have that $b^m > 1$ and thus also $(b^m)^{1/n} > 1$. Hence $1 < b^{x_2-x_1}$, so $b^{x_1} < b^{x_2}$ as desired.

If n is a positive integer for which n(b-1) > 1/y - 1 (such an n exists by Theorem 1.20(a) since b > 1), then by part (a),

$$b^n - 1 \ge n(b - 1) > 1/y - 1.$$

Hence $1/y < b^n$, so $b^{-n} < y$. Thus $-n \in A$, so A is nonempty. On the other hand, if n is a positive integer such that $n(b-1) \ge y-1$,

$$b^n - 1 \ge n(b - 1) \ge y - 1$$

by part (a). Thus if $w \ge n$, $b^w \ge b^n \ge y$ and so $w \notin A$. Hence A is bounded above. Then $x = \sup A$ exists.

Now suppose for sake of contradiction that $b^x \neq y$. If $b^x < y$, then by part (d), $b^{x+1/n} < y$ for some positive integer n. Since x < x + 1/n, this contradicts that x is an upper bound of A. Otherwise, $b^x > y$ and so by part (e), $b^{x-1/n} > y$ for some positive integer n. Then if w > x - 1/n, we have $b^w > b^{x-1/n} > y$ and thus $w \notin A$. Hence x - 1/n is an upper bound of A with x - 1/n < x, a contradiction. Thus $b^x = y$ as desired.

(g) Suppose x_1 and x_2 are distinct reals. WLOG, $x_1 < x_2$. Then since b^x is a strictly increasing function of x (as shown in part (f)), $b^{x_1} < b^{x_2}$ and so there is a unique x for which $b^x = y$.

Exercise 1.8. Suppose for sake of contradiction that there is an order < on \mathbb{C} under which \mathbb{C} is an ordered field. Then by Proposition 1.18(d), we have that 1 > 0 and -1 > 0 since $1 = 1^2$ and $-1 = i^2$. Thus by Proposition 1.18(a), 1 > 0 and 1 < 0, a contradiction.

Exercise 1.9 (TODO).

Exercise 1.10. We have that $|u| \le |w|$ by Theorem 1.33(d), so $|w| + u \ge 0$ and $|w| - u \ge 0$. Then by the Corollary to Theorem 1.21,

$$z^{2} = \left(\left(\frac{|w|+u}{2}\right)^{1/2} + \left(\frac{|w|-u}{2}\right)^{1/2}i\right)^{2}$$

$$= \frac{|w|+u}{2} + 2\left(\frac{|w|+u}{2}\right)^{1/2}\left(\frac{|w|-u}{2}\right)^{1/2}i - \frac{|w|-u}{2}$$

$$= u + 2\left(\frac{|w|^{2}-u^{2}}{4}\right)^{1/2}i$$

$$= u + |v|i.$$

Thus if $v \ge 0$, we have $z^2 = w$, and if $v \le 0$, then $z^2 = \overline{w}$. In the latter case, we have

$$(\overline{z})^2 = \overline{(z^2)} = \overline{\overline{w}} = w$$

by Theorem 1.31(b).

If z is a nonzero complex number with $z^2=0$, then z has a multiplicative inverse in ${\bf C}$ and so z=0, a contradiction. Thus 0 has only one complex square root, 0. Now let w be a nonzero complex number. By the argument above, there exists $z\in {\bf C}$ such that $z^2=w$. Since $w\neq 0$, we have that $z\neq 0$ and so $z\neq -z$. Thus since $(-z)^2=z^2=w$, we have that w has at least two complex square roots. But if $z_1,z_2\in {\bf C}$ such that $z_1^2=z_2^2$, then $(z_1-z_2)(z_1+z_2)=0$ and so $z_2=\pm z_1$. Hence w has exactly two complex square roots, proving the claim.

Exercise 1.11 (TODO).

Exercise 1.12. We prove the claim by induction on n. For n = 1, we have a trivial equality. Now suppose that the claim is proven for any collection of n complex numbers (with $n \in \mathbb{N}$), and let $z_1, \ldots, z_{n+1} \in \mathbb{C}$. Then by Theorem 1.33(e),

$$|z_1 + z_2 + \dots + z_{n+1}| = |(z_1 + z_2 + \dots + z_n) + z_{n+1}|$$

$$\leq |z_1 + z_2 + \dots + z_n| + |z_{n+1}|$$

$$\leq |z_1| + |z_2| + \dots + |z_{n+1}|,$$

which proves the claim.

Exercise 1.13. We have by Theorem 1.33(e) that

$$|x| = |(x - y) + y| \le |x - y| + |y|$$

and

$$|y| = |x + (-x + y)| \le |x| + |x - y|.$$

Rearranging,

$$|x| - |y| \le |x - y|$$

and

$$-|x| + |y| \le |x - y|.$$

Since ||x| - |y|| = |x| - |y| or -|x| + |y|, it thus follows that

$$||x| - |y|| \le |x - y|.$$

Exercise 1.14. We have by Theorem 1.31(a) that

$$|1+z|^{2} + |1-z|^{2} = (1+z)\overline{(1+z)} + (1-z)\overline{(1-z)}$$

$$= (1+z)(1+\overline{z}) + (1-z)(1-\overline{z})$$

$$= 1 + (z+\overline{z}) + z\overline{z} + 1 - (z+\overline{z}) + z\overline{z}$$

$$= 2 + |z|^{2}.$$

Exercise 1.15 (TODO).

Exercise 1.16.0D0

(a) Let 2r = d. For $z \in \mathbf{R}^k$, we have

$$|2z - (x+y)|^2 = (2z - (x+y)) \cdot (2z - (x+y))$$

$$= (2z) \cdot (2z) - (2z) \cdot (x+y) - (x+y) \cdot (2z) + (x+y) \cdot (x+y)$$

$$= 4z \cdot z - 4z \cdot x - 4z \cdot y + x \cdot x + 2x \cdot y + y \cdot y$$

[TODO]

(b) Suppose that $z \in \mathbf{R}^k$ such that

$$|z - x| = |z - y| = r.$$

Then by Theorem 1.37(f),

$$\begin{aligned} d &= |x - y| \\ &= |y - x| \\ &\leq |y - z| + |z - x| \\ &= |z - x| + |z - y| \end{aligned} = 2r,$$

Thus $d \leq 2r$, and so if 2r < d, no such z exist.

[TODO: k = 2 or 1]

Exercise 1.17. The proof of this equality is essentially identical to Exercise 1.14: for $x, y \in \mathbf{R}^k$, we have

$$|x+y|^2 + |x-y|^2 = (x+y) \cdot (x+y) + (x-y) \cdot (x-y)$$

= $x \cdot x + (x \cdot y + y \cdot x) + y \cdot y + x \cdot x - (x \cdot y + y \cdot x) + y \cdot y$
= $2|x|^2 + 2|y|^2$.

This is the classical parallelogram identity ("the sum of the squares of the diagonals of a parallelogram equals the sum of the squares of its side lengths") applied to a parallelogram lying in \mathbf{R}^k with vertices at 0, x, y, and x + y.

Exercise 1.18. Suppose first that $k \ge 2$ and $x \in \mathbf{R}^k$. If x = 0, let y be any nonzero vector in \mathbf{R}^k . Then $y \ne 0$ but $x \cdot y = 0$. Otherwise $x \ne 0$, and assume WLOG that $x_1 \ne 0$. Then let

$$y = (-x_2, x_1, 0, \dots, 0).$$

Since $x_1 \neq 0$, we have that $y \neq 0$. Moreover,

$$x \cdot y = (x_1)(-x-2) + (x_2)(x_1) + (x_3)(0) + \dots + (x_k)(0) = 0$$

as desired.

Now suppose that k = 1, so $x \in \mathbf{R}$. If $y \in \mathbf{R}$ is nonzero with $x \cdot y = 0$, then xy = 0 (in the sense of real multiplication) and thus x = 0 as y has a multiplicative inverse. Since there exist nonzero real numbers (e.g., 1), we thus have that the claim fails for k = 1.

Exercise 1.19. If a=b, then |x-a|=2|x-b| if and only if |x-a|=0, that is, x=a. If there exist $c \in \mathbf{R}^k$ and r>0 as in the problem statement, then $c-(r,0,\ldots,0)$ and $c+(r,0,\ldots,0)$ are distinct values of x satisfying |x-a|=2|x-b|, a contradiction. Thus we assume that $a \neq b$.

As in the hint, let c = (4b - a)/3 and r = 2|b - a|/3. Then $c \in \mathbb{R}^k$, and r > 0 since $a \neq b$. Then

$$\begin{aligned} 9|x-c|^2 &= |3x - (4b-a)|^2 \\ &= (3x - (4b-a)) \cdot (3x - (4b-a)) \\ &= (3x) \cdot (3x) - (3x) \cdot (4b-a) - (4b-a) \cdot (3x) + (4b-a) \cdot (4b-a) \\ &= 9x \cdot x - 24x \cdot b - 6x \cdot a + 16b \cdot b - 8b \cdot a + a \cdot a \\ &= 3(4(x \cdot x - 2x \cdot b + b \cdot b) - (x \cdot x - 2x \cdot a + a \cdot a)) + 4(b \cdot b - 2b \cdot a + a \cdot a) \\ &= 3(4|x-b|^2 - |x-a|^2) + 4|b-a|^2 \\ &= 3(4|x-b|^2 - |x-a|^2) + 9r^2. \end{aligned}$$

Hence $9|x-c|^2 = 9r^2$ if and only if $4|x-b|^2 - |x-a|^2 = 0$, that is, |x-a| = 2|x-b| if and only if |x-c| = r. **Exercise 1.20** (TODO).

CHAPTER 2

Basic Topology

Exercise 2.1. Let S be a set. Then there is no $x \in \emptyset$, so vacuously we have that $x \in S$ whenever $x \in \emptyset$. Hence $\emptyset \subseteq S$.

Exercise 2.2 (TODO).

Exercise 2.3 (TODO).

Exercise 2.4 (TODO).

Exercise 2.5 (TODO).

Exercise 2.6. Suppose that $x \notin E'$. Then there is an open neighborhood G of x for which $G \cap E$ is empty or equal to $\{x\}$. Let $y \in G \setminus \{x\}$. Then $y \notin G \cap E$, and so y is not a limit point of E. Hence no point of G other than x is in E', and so x is not a limit point of E'. Thus E' contains all its limit points and so is closed.

Since $E \subseteq \overline{E}$, it is clear that any limit point of E is also a limit point of \overline{E} . Thus suppose x is a limit point of \overline{E} , and let G be an open neighborhood of x. Then G contains some $y \in \overline{E}$ other than x. If $y \in E'$, then letting r be a positive real such that r < d(x,y) and $B_r(y) \subseteq G$, we have that $B_r(y)$ contains a point z of E other than x and y. Then G contains a point of E other than x, and hence x is a limit point of E. This completes the proof that the set of limit points of E equals that of \overline{E} .

It is not the case that E and E' always have the same limit points. For example, let $E = \{1/n \mid n \in \mathbb{N}\}$. Then $E' = \{0\}$, which has now limit point since it is finite (Corollary to Theorem 2.20).

Exercise 2.7. (a) By Theorem 2.27(a), each $\overline{A_i}$ is closed, and thus by Theorem 2.24(d), $\bigcup_{i=1}^n \overline{A_i}$. Then from

$$B = \bigcup_{i=1}^{n} A_i \subseteq \bigcup_{i=1}^{n} \overline{A_i},$$

we have by Theorem 2.27(c) that $\overline{B} \subseteq \bigcup_{i=1}^n \overline{A_i}$. Conversely, for each $i=1,\ldots,n$, we have $A_i \subseteq B \subseteq \overline{B}$ and hence $\overline{A_i} \subseteq \overline{B}$ by Theorem 2.27(a, c). Thus

$$\overline{B} = \bigcup_{i=1}^{n} \overline{A_i}$$

as desired.

(b) For each $i \in \mathbb{N}$, we have $A_i \subseteq B \subseteq \overline{B}$. Hence by Theorem 2.27(a, c), $\overline{A_i} \subseteq \overline{B}$, and so

$$\bigcup_{i=1}^{\infty} \overline{A_i} \subseteq \overline{B}.$$

Let our metric space be the real line **R** with the Euclidean metric. For each $i \in \mathbf{N}$, let $A_i = [1/i, 1]$. Then each A_i is closed and so $A_i = \overline{A_i}$ (Theorem 2.27(b)), and so

$$B = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \left(\frac{1}{i}, 1\right] = (0, 1]$$

and also

$$\bigcup_{i=1}^{\infty} \overline{A_i} = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \left(\frac{1}{i}, 1\right] = (0, 1].$$

But 0 is a limit point of B, and hence

$$\overline{B} \supsetneq \bigcup_{i=1}^{\infty} \overline{A_i}.$$

Exercise 2.8. Let E be an open subset of \mathbf{R}^k for some $k \in \mathbf{N}$, and suppose $x \in E$. Then there is r > 0 such that $B_r(x) \subseteq E$. If s > 0, then $B_{\min(r,s)}(x) \subseteq B_s(x) \cap E$ contains a point other than x (e.g., $x + (\min(r,s)/2,0,\ldots,0)$) and hence x is a limit point of E.

The corresponding claim for closed subsets of \mathbf{R}^k is false for all $k \in \mathbf{N}$. Indeed, any nonempty finite subset of \mathbf{R}^k is vacuously closed by the Corollary to Theorem 2.20 but, for the same reason, is not contained in its set of limit points.

Exercise 2.9. (a) Let $x \in E^{\circ}$; then there is an open neighborhood G of x for which $G \subseteq E$. Since G is open, we have for all $y \in G$ that G is an open neighborhood of y that is contained in E. Hence $G \subseteq E^{\circ}$ and thus E° is open.

- (b) Since E° is open by part (a), we have that if $E^{\circ} = E$ then E is open. Conversely, suppose that E is open. Then by definition, $E \subseteq E^{\circ}$. On the other hand, we always have $E^{\circ} \subseteq E$, and hence $E^{\circ} = E$.
- (c) Since G is open with $G \subseteq E$, we have that every point of G is an interior point of E and so $G \subseteq E^{\circ}$.
- (d) Let $x \notin E^{\circ}$. Then for all open neighborhoods G of x, we have $G \not\subseteq E$ and hence G intersects E^{c} . Thus $x \in \overline{E^{c}}$. Conversely, suppose $x \in \overline{E^{c}}$. Then every open neighborhood G of x intersects E^{c} , and so x is not an interior point of E. Hence $x \notin E^{\circ}$, and so $(E^{\circ})^{c} = \overline{E^{c}}$ as desired.
- (e) No; for example, let $E = \mathbf{Q}$ in \mathbf{R} (with the Euclidean metric). Then $E^{\circ} = \emptyset$ since every segment contains an irrational. But $\overline{E} = \mathbf{R}$ has interior \mathbf{R} .
- (f) No; again, let $E = \mathbf{Q}$ in \mathbf{R} (with the Euclidean metric). Then $\overline{E} = \mathbf{R}$ but $E^{\circ} = \emptyset$ has empty closure.

Exercise 2.10. Part (a) of Definition 2.15 is clear. Moreover, p=q if and only if q=p and so part (b) holds as well. Now let $p,q,r\in X$. If p=q=r, then d(p,q)=d(p,r)=d(r,q)=0 so d(p,q)=d(p,r)+d(r,q). If p=q and r is distinct from p,q, then d(p,q)=0 while d(p,r)=d(r,q)=1 so d(p,q)< d(p,r)+d(r,q). If p=r and q is distinct from p,r, then d(p,q)=1, d(p,r)=0, and d(r,q)=1 so d(p,q)=d(p,r)+d(r,q). Similarly in the case that q=r and p is distinct from q,r. Finally if p,q, and r are distinct, then d(p,q)=d(p,r)=d(p,r)=d(r,q)=1 and so d(p,q)< d(p,r)+d(r,q). This proves part (c) of Definition 2.15, and so d is a metric on X.

[TODO]

Exercise 2.11. (a) This is not a metric on **R**. For example,

$$d_1(0,2) = (0-2)^2 = 4,$$

 $d_1(0,1) = (0-1)^2 = 1,$

and

$$d_1(1,2) = (1-2)^2 = 1$$

so

$$d_1(0,2) \not\leq d_1(0,1) + d_1(1,2).$$

Then d_1 fails to satisfy part (c) of Definition 2.15.

(b) This is a metric on **R**. For all $x, y \in \mathbf{R}$, we have $d_2(x, y) \ge 0$ by the definition of square roots (Theorem 1.21). Moreover, $d_2(x, y) = 0$ if and only if |x - y| = 0, that is, x = y. For $x, y \in \mathbf{R}$, we also have

$$d_2(x,y) = \sqrt{|x-y|}$$
$$= \sqrt{|y-x|}$$
$$= d_2(y,x).$$

Finally, if $x, y, z \in \mathbf{R}$ then

$$d_2(x,y)^2 = |x - y|$$

$$\leq |x - z| + |z - y|$$

$$\leq d_2(x,z)^2 + d_2(z,y)^2$$

$$\leq (d_2(x,z) + d_2(z,y))^2.$$

Hence

$$d_2(x,y) \le d_2(x,z) + d_2(z,y),$$

so d_2 is a metric on \mathbf{R} .

(c) This is not a metric on \mathbf{R} . We observe that

$$d_3(-1,1) = |(-1)^2 - 1^2| = 0$$

but $-1 \neq 1$, so part (a) of Definition 2.15 is not satisfied by d_3 .

(d) This is not a metric on **R**. For example, we have that

$$d_4(0,1) = |0-2(1)| = 2$$

but

$$d_4(1,0) = |1 - 2(0)| = 1.$$

Thus part (b) of Definition 2.15 is not satisfied by d_4 .

(e) This is a metric on **R**. We have for all $x, y \in \mathbf{R}$ that $|x - y| \ge 0$ and 1 + |x - y| > 0, so $d_5(x, y) \ge 0$. Also $d_5(x, y) = 0$ if and only if |x - y| = 0, that is, x = y. Moreover,

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}$$
$$= \frac{|y-x|}{1+|y-x|}$$
$$= d_5(y,x).$$

Finally, for $x, y, z \in \mathbf{R}$,

$$|x-y| \le |x-z| + |z-y| + 2|z-y||x-z| + |z-y||x-y||x-z|,$$

so

$$|x-y|(1+|x-z|)(1+|z-y|) \le |x-z|(1+|x-y|)(1+|z-y|) + |z-y|(1+|x-y|)(1+|x-z|).$$

Thus

$$\frac{|x-y|}{1+|x-y|} \le \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|},$$

that is,

$$d_5(x,y) \le d_5(x,z) + d_5(z,y),$$

so d_5 is a metric on **R**.

Exercise 2.12. Let $\{G_{\alpha}\}_{{\alpha}\in A}$ be an open cover of K. Then there is $\alpha_0\in A$ such that $0\in G_{\alpha_0}$. Since G_{α_0} is an open subset of ${\bf R}$, there is r>0 such that $B_r(0)\subseteq G_{\alpha_0}$. Then for n>1/r, we have that $1/n\in G_{\alpha_0}$. If N denotes the largest natural number less than or equal to 1/r, then for each $n=1,\ldots,N$, let $\alpha_n\in A$ such that $1/n\in G_{\alpha_n}$. Then $\{G_{\alpha_n}\}_{n=0}^N$ is a finite subcover of $\{G_{\alpha}\}_{\alpha\in A}$ for K, so K is compact.

Exercise 2.13 (TODO).

Exercise 2.14. For each natural number $n \geq 2$, let $G_n = (1/n, 1)$. Then $\{G_n\}_{n\geq 2}$ is an open cover of $\{0, 1\}$. Suppose for sake of contradiction that there is a finite subcover of $\{G_n\}_{n\geq 2}$ for $\{0, 1\}$. Let N be the largest natural number for which G_N is in this subcover. Then since $\{1/n, 1\} \supseteq \{1/(n+1), 1\}$ for all $n \geq 2$, we have that $\{0, 1\} = \{1/N, 1\}$, a contradiction. Hence $\{G_n\}_{n\geq 2}$ has no finite subcover for $\{0, 1\}$, so $\{0, 1\}$ is not compact.

Exercise 2.15 (TODO).

Exercise 2.16 (TODO).

Exercise 2.17 (TODO).

Exercise 2.18 (TODO).

Exercise 2.19. (a) By Theorem 2.27(b), we have $A = \overline{A}$ and $B = \overline{B}$. Hence

$$A\cap \overline{B}=A\cap B=\varnothing$$

and

$$\overline{A} \cap B = A \cap B = \emptyset$$
.

Thus A and B are separated.

- (b) Let A, B be disjoint open subsets of a metric space X. Then $B \subseteq A^c$ where A^c is closed (Theorem 2.23), so by Theorem 2.27(c), $\overline{B} \subseteq A^c$. Thus $A \cap \overline{B} = \emptyset$. Similarly, $A \subseteq B^c$ with B^c closed (Theorem 2.23), so by Theorem 2.27(c), $\overline{A} \subseteq B^c$. Then $\overline{A} \cap B = \emptyset$, so A and B are separated.
- (c) It is clear that A and B are disjoint, and $A = B_{\delta}(p)$ is open by Theorem 2.19. We claim that B is also open. Let $q \in B$. Then $d(p,q) > \delta$, and so $d(p,q) \delta > 0$. If $r \in B_{d(p,q)-\delta}(q)$, then $d(r,q) < d(p,q) \delta$

$$d(p,r) \ge d(p,q) - d(r,q) > \delta.$$

Thus $B_{d(p,q)-\delta}(q) \subseteq B$, so q is an interior point of B. Hence B is open. Now by part (b), A and B are separated.

(d) Let X be a connected metric space and suppose that there is $\delta > 0$ such that there is no $q \in X$ with $d(p,q) = \delta$. Then if A and B are defined as in part (c), we have that $X = A \cup B$ with A and B separated. Since $p \in A$, we thus have that $B = \emptyset$ as X is connected.

Hence if $|X| \ge 2$ and p, q are distinct points of X, then for every $\delta \in [0, d(p, q)]$ there exists $r \in X$ with $d(p, r) = \delta$. Then the cardinality of X is at least that of [0, d(p, q)], which by the Corollary to Theorem 2.43 is uncountable.

Exercise 2.20 (TODO).

Exercise 2.21.

Exercise 2.22. As in the hint, we show that \mathbf{Q}^k is a dense subset of \mathbf{R}^k (Theorem 2.13 and its Corollary, \mathbf{Q}^k is countable). Let $x \in \mathbf{R}^k$ and r a positive real. For each i = 1, ..., k there exists $p_i \in \mathbf{Q}$ such that

$$x_i - r/\sqrt{k} < p_i < x_i + r/\sqrt{k}.$$

Then $p = (p_1, \ldots, p_k) \in \mathbf{Q}^k$ with

$$|x_i - p_i| < \frac{r}{\sqrt{k}}$$

for each i, so

$$|x - p| < \sqrt{\left(\frac{r}{\sqrt{k}}\right)^2 + \dots + \left(\frac{r}{\sqrt{k}}\right)^2}$$

$$= \sqrt{\frac{r^2}{k} + \dots + \frac{r^2}{k}}$$

$$= \sqrt{r^2}$$

$$= r$$

Hence $p \in B_r(x)$ and so \mathbf{Q}^k is dense in \mathbf{R}^k .

Exercise 2.23. Let C be a countable dense subset of X. As in the hint, we show that $\{B_r(p)\}_{r \in \mathbf{Q}_{>0}, p \in C}$ is a base for X. By the Corollary to Theorem 2.12, this set is at most countable, and by Theorem 2.19, it consists of open subsets of X. Now let $x \in X$ and suppose G is an open neighborhood of x. Then there is $\delta > 0$ such that $B_{\delta}(x) \subseteq G$, and there is a positive rational $r < \delta/2$. Since C is dense in X, there is $p \in C$ such that d(x, p) < r. Then

$$x \in B_r(p) \subset B_{\delta}(x) \subset G$$

as desired.

Exercise 2.24. (The claim is false; for example, let X be any finite metric space. Rudin likely meant to define a separable metric space as one with an at most countable dense subset. This is the definition I use in the solution below.)

We follow the hint. Let $\delta > 0$ and suppose for sake of contradiction that there are $x_i \in X$ indexed by $i \in \mathbb{N}$ for which $d(x_i, x_j) \geq \delta$ for all distinct $i, j \in \mathbb{N}$. Then the x_i are all distinct and so $\{x_i\}_{i \in \mathbb{N}}$ is an infinite subset of X, and hence has a limit point x. There are then infinitely many $i \in \mathbb{N}$ for which $x_i \in B_{\delta/2}(x)$. Suppose i, j are distinct natural numbers for which $x_i, x_j \in B_{\delta/2}(x)$; then

$$d(x_i, x_i) \le d(x_i, x) + d(x, x_i) < \delta,$$

a contradiction.

Thus for any $\delta > 0$, there are $x_1, \ldots, x_k \in X$ such that $d(x_i, x_j) \geq \delta$ for distinct $i, j = 1, \ldots, N$ and for which there is no $x \in X$ with $d(x_i, x) \geq \delta$ for $i = 1, \ldots, N$. Then $\{B_{\delta}(x_i)\}_{i=1}^N$ covers X. In particular, for each $n \in \mathbb{N}$, there is $N_n \in \mathbb{N}$ and $x_{1,n}, \ldots, x_{N_n,n} \in X$ such that $\{B_{1/n}(x_{i,n})\}_{i=1}^{N_n}$. We claim that $\bigcup_{n \in \mathbb{N}} \{x_{i,n}\}_{i=1}^{N_n}$ is a dense subset of X; by the Corollary to Theorem 2.12, this set is at most countable. Let $p \in X$ and $\delta > 0$. There is $n \in \mathbb{N}$ such that $n > 1/\delta$, so $1/n < \delta$. Then there is $i = 1, \ldots, N_n$ such that $p \in B_{1/n}(x_{i,n})$ and hence $x_{i,n} \in B_{\delta}(p)$, proving the claim.

Exercise 2.25. For any $n \in \mathbb{N}$, $\{B_{1/n}(p)\}_{p \in K}$ is an open cover of K (Theorem 2.19). Then since K is compact, there are $p_1, \ldots, p_{N_n} \in K$ such that $\{B_{1/n}(p_i)\}_{i=1}^{N_n}$ covers K. We claim that $\bigcup_{n \in \mathbb{N}} \{B_{1/n}(p_i)\}_{i=1}^{N_n}$ is a base for K; by the Corollary to Theorem 2.12, it is at most countable. Suppose $x \in X$ and let G be an

open neighborhood of x. Then there is $\delta > 0$ such that $B_{\delta}(x) \subseteq G$. There exists $n \in \mathbb{N}$ with $n > 2/\delta$, so $1/n < \delta/2$. Then since $\{B_{1/n}(p_i)\}_{i=1}^{N_n}$ covers K, there is $i = 1, \ldots, N_n$ such that

$$x \in B_{1/n}(p_i) \subseteq B_{\delta}(x) \subseteq G.$$

Now we show that a metric space X with an at most countable base $\{V_{\alpha}\}_{{\alpha}\in A}$ is separable, using the definition as in the solution to Exercise 2.24. We may assume WLOG that each V_{α} is nonempty. For every ${\alpha}\in A$, let $x_{\alpha}\in V_{\alpha}$. Let $p\in X$ and ${\delta}>0$. Then by Theorem 2.19, $B_{\delta}(p)$ is an open neighborhood of p and so there is ${\alpha}\in A$ such that $x\in V_{\alpha}\subseteq B_{\delta}(p)$. Then $x_{\alpha}\in B_{\delta}(p)$, and so $\{x_{\alpha}\}_{{\alpha}\in A}$ is a dense subset of X.

Exercise 2.26. We follow the hint. By Exercise 2.24, X is separable, and so by Exercise 2.23, X has a countable base $\{V_{\alpha}\}_{\alpha \in A}$. Now suppose $\{G_{\beta}\}_{\beta \in B}$ is an open cover of X. Let A' consist of the $\alpha \in A$ such that $V_{\alpha} \subseteq G_{\beta}$ for some $\beta \in B$. For each $\alpha \in A'$, let $\beta_{\alpha} \in B$ such that $V_{\alpha} \subseteq G_{\beta_{\alpha}}$. Then $\{G_{\beta_{\alpha}}\}_{\alpha \in A'}$ is at most countable by Theorem 2.8. For any $x \in X$, there is $\beta \in B$ such that $x \in G_{\beta}$ and thus $\alpha \in A'$ such that $x \in V_{\alpha} \subseteq G_{\beta}$. Then $x \in G_{\beta_{\alpha}}$ and so $\{G_{\beta_{\alpha}}\}_{\alpha \in A'}$ is an at most countable subcover of $\{G_{\beta}\}_{\beta \in B}$ for X.

Now suppose for sake of contradiction that $\{G_i\}_{i\in\mathbb{N}}$ is a countable open cover of X which has no finite subcover. Then for each $n\in\mathbb{N}$,

$$F_n := (G_1 \cup \cdots \cup G_n)^c$$

is nonempty and $F_n \supseteq F_{n+1}$ for all $n \in \mathbb{N}$. But

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} G_n^c = \varnothing.$$

Then if $x_n \in F_n$ for each $n \in \mathbb{N}$, we have that $\{x_n\}_{n \in \mathbb{N}}$ is infinite. Thus it has a limit point x. Since $\bigcap_{n=1}^{\infty} F_n = \emptyset$, there is $N \in \mathbb{N}$ such that $x \notin F_N$. Since F_N^c is open (Theorem 2.24(a)), F_N^c is then an open neighborhood of x. By Theorem 2.20, F_N^c thus contains infinitely many of the x_n . But $x_n \in F_N$ for $n \geq N$, a contradiction. Thus every open cover of X has a finite subcover, so X is compact.

Exercise 2.27. (Note: The hypothesis that E is uncountable is unnecessary.)

We follow the hint. By Exercise 2.22 and Exercise 2.23, \mathbb{R}^k has a countable base $\{V_n\}_{n\in\mathbb{N}}$. Let W be the union of all V_n such that $V_n\cap E$ is at most countable. Suppose $x\in P$. Then every open neighborhood of x contains uncountably many points of E, and so $V_n\cap E$ is uncountable for any $n\in\mathbb{N}$ such that $x\in V_n$. Thus $x\notin W$. Conversely, suppose $x\notin W$ and let G be an open neighborhood of x. Then there is $n\in\mathbb{N}$ such that $x\in V_n\subseteq G$. Since $x\notin W$, we have that $V_n\cap E$ is uncountable and hence $G\cap E$, which contains $V_n\cap E$, is also uncountable (Theorem 2.8). Hence $x\in P$, and so we have shown that $P=W^c$. Now we have, letting S denote the set of natural numbers n for which $V_n\cap E$ is at most countable,

$$P^{c} \cap E = W \cap E$$
$$= \left(\bigcup_{n \in S} V_{n}\right) \cap E$$
$$= \bigcup_{n \in S} (V_{n} \cap E)$$

is at most countable by Theorem 2.8 and the Corollary to Theorem 2.12.

Now we show that P is perfect. Since $P = W^c$, we have by Theorem 2.24(a) and Theorem 2.23 that P is closed. Let x be a point of X which is not a limit point of P. Then there is an open neighborhood G of x such that $G \cap P \subseteq \{x\}$. Then for all $y \in G$ distinct from x, we have $y \in W$ and thus there is $n_y \in \mathbb{N}$ such

that $x \in V_{n_y}$ and $V_{n_y} \cap E$ is at most countable. Then

$$G \cap E \subseteq \left(\left(\bigcup_{y \in G \setminus \{x\}} V_{n_y} \right) \cup \{x\} \right) \cap E$$
$$\subseteq \left(\bigcup_{y \in G \setminus \{x\}} (V_n \cap E) \right) \cup \{x\}$$

is at most countable by the Corollary to Theorem 2.12. Thus $x \notin P$, and so P is perfect.

Exercise 2.28. Let F be a closed subset of a separable metric space X, and let P be the set of condensation points of F. Every point of P is a limit point of F, and so $P \subseteq F$ since F is closed. By Exercise 2.23, X has a countable base, and so by Exercise 2.27 (note that the solution to Exercise 2.27 applies to any metric space with a countable base), P is a perfect set and $P^c \cap F$ is at most countable. Since

$$F = (P \cup P^c) \cap F = P \cup (P^c \cap F),$$

we thus have that F is the union of a perfect set and an at most countable set.

Now let F be a countable closed subset of \mathbb{R}^k . By Theorem 2.43, F is not perfect, and thus it contains an isolated point.

Exercise 2.29 (TODO).

Exercise 2.30. We prove the equivalent statement, including the fact that $\bigcap_{n=1}^{\infty} G_n$ is dense in \mathbf{R}^k . Clearly since \mathbf{R}^k is nonempty, any dense subset of \mathbf{R}^k is nonempty. Thus it is sufficient to show only that $\bigcap_{n=1}^{\infty} G_n$ is dense. Let V_0 be any nonempty open subset of \mathbf{R}^k . Suppose inductively that we have chosen nonempty open subsets V_0, V_1, \ldots, V_n of \mathbf{R}^k such that $\overline{V_i}$ is compact and contained in $V_{i-1} \cap G_i$ for each $i=1,\ldots,n$. Then since G_{n+1} is dense in \mathbf{R}^k , we have that $V_n \cap G_{n+1}$ is nonempty, and it is open by Theorem 2.24(c). If $x_{n+1} \in V_n \cap G_{n+1}$, there is $r_{n+1} > 0$ such that $\overline{B}_{r_{n+1}}(x_{n+1}) \subseteq V_n \cap G_{n+1}$. Let $V_{n+1} = \overline{B}_{r_{n+1}}(x_{n+1})$. In this way, we construct nonempty open sets $\{V_n\}_{n=0}^{\infty}$ such that $\overline{V_n}$ is compact and contained in $V_{n-1} \cap G_n$ for $n \in \mathbb{N}$. Then by the Corollary to Theorem 2.36, $\bigcap_{n=1}^{\infty} \overline{V_n}$ is nonempty. Since

$$\bigcap_{n=1}^{\infty} \overline{V_n} \subseteq V_0 \cap \left(\bigcap_{n=1}^{\infty} G_n\right),\,$$

it follows that V_0 intersects $\bigcap_{n=1}^{\infty} G_n$. Hence $\bigcap_{n=1}^{\infty} G_n$ is dense in \mathbf{R}^k as desired.

CHAPTER 3

Numerical Sequences and Series

Exercise 3.1. Suppose $\{s_n\}_{n\in\mathbb{N}}$ converges. Then by Theorem 3.11(a), $\{s_n\}_{n\in\mathbb{N}}$ is Cauchy. Hence for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $|s_n - s_m| < \varepsilon$ for $n, m \ge N$. Then

$$||s_n| - |s_m|| \le |s_n - s_m| < \varepsilon$$

for $n, m \ge N$, and so $\{|s_n|\}_{n \in \mathbb{N}}$ is a Cauchy sequence. Thus by Theorem 3.11(c), $\{|s_n|\}_{n \in \mathbb{N}}$ converges.

We provide also a direct proof which does not rely on Cauchy sequences. Suppose $\lim_{n\to\infty} s_n = s$. If s>0, there is $N\in \mathbf{N}$ such that $s_n>0$ for all $n\geq N$. Hence $|s_n|=s_n$ for $n\geq N$, and so $\lim_{n\to\infty}|s_n|=s$. Similarly, if s<0, there is $N\in \mathbf{N}$ such that $s_n<0$ for $n\geq N$. Then $|s_n|=-s_n$ for $n\geq N$, and so $\lim_{n\to\infty}|s_n|=-s$. Finally, suppose s=0. Then for any $\varepsilon>0$, there is $N\in \mathbf{N}$ such that $|s_n|<\varepsilon$ for $n\geq N$. That is, $\lim_{n\to\infty}|s_n|=0$.

The converse is false; for example, let $s_n = (-1)^n$ for all $n \in \mathbb{N}$. Then $\{s_n\}_{n \in \mathbb{N}}$ diverges but $\{|s_n|\}_{n \in \mathbb{N}}$ is constant and thus converges.

Exercise 3.2. We observe that for all $n \in \mathbb{N}$,

$$\left(\sqrt{n^2 + n} + n\right)\left(\sqrt{n^2 + n} - n\right) = \left(\sqrt{n^2 + n}\right)^2 - n^2 = n$$

and thus

$$\sqrt{n^2 + n} - n = \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n} + 1}}.$$

But we have for all $n \in \mathbb{N}$ that

$$1 < \sqrt{1 + \frac{1}{n}} < 1 + \frac{1}{2n}$$

with $\lim_{n\to\infty} 1 = 1$ and $\lim_{n\to\infty} (1+1/(2n)) = 1$. Hence $\lim_{n\to\infty} \sqrt{1+1/n} = 1$. Then

$$\lim_{n \to \infty} \left(\sqrt{1 + \frac{1}{n}} + 1 \right) = 2$$

by Theorem 3.3(b) with

$$\sqrt{1+\frac{1}{n}}+1>0$$

for all $n \in \mathbb{N}$, so that

$$\lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{2}$$

by Theorem 3.3(d). Hence

$$\lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right) = \frac{1}{2}.$$

Exercise 3.3. We first note that each s_n is positive; this will be used implicitly throughout the solution. By Theorem 3.14, it suffices to show that $\{s_n\}_{n\in\mathbb{N}}$ is monotonically increasing and bounded above. We first show by induction that $s_n < 2$ for all $n \in \mathbb{N}$. For n = 1, this claim is true since

$$s_1^2 = 2 < 4 = 2^2.$$

Now suppose $s_n < 2$ for some $n \in \mathbb{N}$. Then

$$s_{n+1}^2 = 2 + \sqrt{s_n} < 2 + \sqrt{2} < 4,$$

so $s_{n+1} < 2$ as desired.

Now we show by induction that $s_n < s_{n+1}$ for all $n \in \mathbb{N}$. We have

$$s_1^2 = 2 < 2 + \sqrt{s_1} = s_2^2$$

so $s_1 < s_2$. Now suppose $s_n < s_{n+1}$ for some $n \in \mathbb{N}$. Then

$$s_{n+1}^2 = 2 + \sqrt{s_n} < 2 + \sqrt{s_{n+1}} = s_{n+2}^2,$$

so

$$s_{n+1} < s_{n+2},$$

which proves the claim.

Exercise 3.4. We prove by induction that for all $m \in \mathbb{N}$,

$$s_{2m-1} = 1 - \frac{1}{2^{m-1}}$$

and

$$s_{2m} = \frac{1}{2} - \frac{1}{2^m}.$$

We have by definition that $s_1 = 0$ and

$$s_2 = \frac{s_1}{2} = \frac{0}{2} = 0,$$

so the claim holds for m=1. Now suppose it holds for some $m \in \mathbb{N}$; then

$$\begin{split} s_{2(m+1)-1} &= s_{2m+1} \\ &= \frac{1}{2} + s_{2m} \\ &= \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{2^m}\right) \\ &= 1 - \frac{1}{2^m} \\ &= 1 - \frac{1}{2^{(m+1)-1}} \end{split}$$

and

$$s_{2(m+1)} = s_{2m+2}$$

$$= \frac{s_{2m+1}}{2}$$

$$= \frac{1 - \frac{1}{2^m}}{2}$$

$$= \frac{1}{2} - \frac{1}{2^{m+1}},$$

proving the claim. Then since $\lim_{m\to\infty} 1/2^{m-1} = 0$, we have by Theorem 3.3(b) that

$$\lim_{m \to \infty} s_{2m-1} = \lim_{m \to \infty} \left(1 - \frac{1}{2^{m-1}} \right) = 1,$$

so $\{s_n\}_{n\in\mathbb{N}}$ has a subsequence convergening to 1. But also $s_n<1$ for all $n\in\mathbb{N}$, and so

$$\limsup_{n\to\infty} s_n = 1.$$

Moreover, from $\lim_{m\to\infty} 1/2^m = 0$, we have by Theorem 3.3(b) that

$$\lim_{m \to \infty} s_{2m} = \lim_{m \to \infty} \left(\frac{1}{2} - \frac{1}{2^m} \right) = \frac{1}{2}$$

and hence $\{s_n\}_{n \in \mathbb{N}}$ has a subsequence converging to 1/2. Let x < 1/2. Then 1/2 - x > 0, so there is $M \in \mathbb{N}$ for which

$$\frac{1}{2} - x > \frac{1}{2^M}.$$

Then for any $m \in \mathbb{N}$, we have

$$\frac{1}{2} - x > \frac{1}{2^m}$$

and so

$$\frac{1}{2} - \frac{1}{2^m} > x.$$

Thus $s_{2m} > x$, and so also $s_{2m-1} > x$ since

$$s_{2m-1} = 2s_{2m} > s_{2m}$$

as $s_{2m} > 0$. Then with N = 2M - 1, we have that $s_n > x$ for all $n \ge N$. Hence by Theorem 3.17,

$$\liminf_{n \to \infty} s_n = \frac{1}{2}.$$

Exercise 3.5. Let E_{a+b} be the set of all $x \in \overline{\mathbf{R}}$ such that $a_{n_k} + b_{n_k} \to x$ for a subsequence $\{a_{n_k} + b_{n_k}\}_{k \in \mathbb{N}}$ of $\{a_n + b_n\}_{n \in \mathbb{N}}$; let E_a and E_b be defined similarly for the sequences $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$. Then $E_{a+b} \subseteq E_a + E_b$, and so

$$\sup E_{a+b} \le \sup (E_a + E_b).$$

If $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$ are both real, then $\sup E_a + \sup E_b$ is an upper bound for $E_a + E_b$. Thus

$$\sup(E_a + E_b) \le \sup E_a + \sup E_b.$$

Hence

$$\sup E_{a+b} \le \sup E_a + \sup E_b,$$

that is,

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

If $\limsup_{n\to\infty}a_n$ or $\limsup_{n\to\infty}b_n$ is ∞ , then there is nothing to prove. Finally, suppose WLOG that $\limsup_{n\to\infty}a_n=-\infty$ and $\limsup_{n\to\infty}b_n\neq\infty$. Then by Theorem 3.17(a), $E_a=\{-\infty\}$ and $\{b_n\}_{n\in\mathbb{N}}$ is bounded above. Let $M\in\mathbf{R}$ such that $b_n\leq M$ for all $n\in\mathbb{N}$. By Theorem 3.6(b), it follows from $E_a=\{-\infty\}$ that every subsequence of $\{a_n\}_{n\to\infty}$ is unbounded below. Hence if $\{a_{n_k}+b_{n_k}\}_{k\in\mathbb{N}}$ is any subsequence of $\{a_n+b_n\}_{n\in\mathbb{N}}$, we see from $a_{n_k}+b_{n_k}\leq a_{n_k}+M$ that $\{a_{n_k}+b_{n_k}\}_{k\in\mathbb{N}}$ is unbounded below. Thus $E_{a+b}=-\infty$, so again we have that $\sup E_{a+b}\leq \sup E_a+\sup E_b$. Then

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

in all cases.

Exercise 3.6. (a) It is clear that the *n*th partial sum of $\sum_{n=1}^{\infty} a_n$ is $\sqrt{n+1}$. Since $\{\sqrt{n+1}\}_{n\in\mathbb{N}}$ is unbounded above, we thus have by Theorem 3.2(c) that $\sum_{n=1}^{\infty} a_n$ diverges.

(b) For each $n \in \mathbb{N}$, we observe that

$$|a_n| = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

$$= \frac{1}{n(\sqrt{n+1} + \sqrt{n})}$$

$$< \frac{1}{n\sqrt{n}}$$

$$= \frac{1}{n^{3/2}}.$$

By Theorem 3.28, $\sum_{n=1}^{\infty} 1/n^{3/2}$ converges since 3/2 > 1. Thus by Theorem 3.25(a), $\sum_{n=1}^{\infty} a_n$ converges. (c) We have for all $n \in \mathbb{N}$ that

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left| (\sqrt[n]{n} - 1)^n \right|}$$
$$= \sqrt[n]{n} - 1.$$

But $\lim_{n\to\infty} (\sqrt[n]{n}-1) = 0$ by Theorem 3.20(c) and Theorem 3.3(b). Thus by Theorem 3.33(a), $\sum_{n=1}^{\infty} a_n$ converges.

(d) If $|z| \leq 1$, then for any $n \in \mathbb{N}$,

$$|a_n| = \left| \frac{1}{1+z^n} \right|$$

$$= \frac{1}{|1+z^n|}$$

$$\ge \frac{1}{1+|z|^n}$$

$$\ge \frac{1}{2}.$$

Thus $\{a_n\}_{n\in\mathbb{N}}$ does not converge to 0, and so by Theorem 3.23, $\sum_{n=1}^{\infty} a_n$ diverges. Now suppose |z| > 1. Then for any $n \in \mathbb{N}$,

$$\begin{split} \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{\frac{1}{1+z^{n+1}}}{\frac{1}{1+z^n}} \right| \\ &= \frac{|1+z^n|}{|1+z^{n+1}|} \\ &\leq \frac{1+|z|^n}{|z|^{n+1}-1} \\ &= \frac{1}{|z|} + \frac{1-\frac{1}{|z|}}{|z|^{n+1}-1}. \end{split}$$

But since |z| > 1, we have that $|z|^{n+1} - 1 \to \infty$ as $n \to \infty$. Hence by Theorem 3.3(b), we have

$$\lim_{n \to \infty} \left(\frac{1}{|z|} + \frac{1 - \frac{1}{|z|}}{|z|^{n+1} - 1} \right) = \frac{1}{|z|} < 1.$$

Thus by Theorem 3.19,

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \le \limsup_{n \to \infty} \left(\frac{1}{|z|} + \frac{1 - \frac{1}{|z|}}{|z|^{n+1} - 1} \right) < 1,$$

and so by Theorem 3.34(a), $\sum_{n=1}^{\infty} a_n$ converges.

Exercise 3.7. We have for all $n \in \mathbb{N}$ that

$$\left(\sqrt{a_n} - \frac{1}{n}\right)^2 \ge 0$$

and thus

$$a_n - \frac{2\sqrt{a_n}}{n} + \frac{1}{n^2} \ge 0.$$

Rearranging,

$$\frac{\sqrt{a_n}}{n} \le \frac{1}{2} \left(a_n + \frac{1}{n^2} \right).$$

By Theorem 3.28, $\sum_{n=1}^{\infty} 1/n^2$ converges and thus by Theorem 3.47,

$$\sum_{n=1}^{\infty} \frac{1}{2} \left(a_n + \frac{1}{n^2} \right)$$

converges. Now since $\sqrt{a_n}/n \ge 0$ for all $n \in \mathbb{N}$, we conclude from Theorem 3.25(a) that $\sum_{n=1}^{\infty} \sqrt{a_n}/n$ converges.

Exercise 3.8.

Exercise 3.9. (a) We have by Theorem 3.3 and Theorem 3.20(c) that

$$\lim_{n \to \infty} \sqrt[n]{|n^3|} = \lim_{n \to \infty} (\sqrt[n]{n})^3$$
$$= \left(\lim_{n \to \infty} \sqrt[n]{n}\right)^3$$
$$= 1.$$

Hence by Theorem 3.39, the radius of convergence of $\sum_{n=0}^{\infty} n^3 z^n$ is

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|n^3|}} = 1.$$

(b) We observe for all $z \in \mathbf{C}$ and $n \in \mathbf{N}$ that

$$\left| \frac{\frac{2^{n+1}}{(n+1)!} z^{n+1}}{\frac{2^n}{n!} z^n} \right| = \frac{2|z|}{n+1}.$$

By Theorem 3.3(b) and Theorem 3.20(a),

$$\lim_{n \to \infty} \frac{2|z|}{n+1} = 2|z| \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Then by Theorem 3.34(a), $\sum_{n=1}^{\infty} \frac{2^n}{n!} z^n$ converges for all $z \in \mathbb{C}$. Thus the radius of convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n!} z^n$ is ∞ .

(c) For all $n \in \mathbb{N}$, we see by Theorem 3.3(b, c, d) and Theorem 3.20(c) that

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{2^n}{n^2} \right|} = \lim_{n \to \infty} \frac{2}{(\sqrt[n]{n})^2}$$
$$= 2 \frac{1}{(\lim_{n \to \infty} \sqrt[n]{n})^2}$$
$$= 2.$$

Hence by Theorem 3.39, the radius of convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^2} z^n$ is

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{\left|\frac{2^n}{n^2}\right|}} = \frac{1}{2}.$$

(d) This computation is almost identical to that of part (c). By Theorem 3.3(b, c) and Theorem 3.20(c), we have that

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{n^3}{3^n} \right|} = \lim_{n \to \infty} \frac{\left(\sqrt[n]{n}\right)^n}{3}$$
$$= \frac{1}{3} \left(\lim_{n \to \infty} \sqrt[n]{n} \right)^3$$
$$= \frac{1}{3}.$$

Then by Theorem 3.39, the radius of convergence of $\sum \frac{n^3}{3^n} z^n$ is

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{\left|\frac{n^3}{3^n}\right|}} = 3.$$

Exercise 3.10. By Theorem 3.39, we wish to show that $\limsup_{n\to\infty} \sqrt[n]{|a_n|} \ge 1$. Since infinitely many of the a_n are distinct from zero, there is a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ of $\{a_n\}_{n\in\mathbb{N}}$ for which $\sqrt[n]{|a_{n_k}|} \ge 1$ for all $k\in\mathbb{N}$. Then since every subsequence of $\{a_{n_k}\}_{k\in\mathbb{N}}$ and by Theorem 3.19,

$$\limsup_{n \to \infty} a_n \ge \limsup_{k \to \infty} a_{n_k} \ge 1.$$

Exercise 3.11. (a) Suppose for sake of contradiction that $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges. Then by Theorem 3.23,

$$\lim_{n \to \infty} \frac{a_n}{1 + a_n} = 0.$$

Hence there is $N \in \mathbb{N}$ such that

$$\frac{a_n}{1+a_n} < \frac{1}{2}$$

for all $n \geq N$. But then

$$2a_n < 1 + a_n$$

and so $a_n < 1$ for $n \ge N$. Hence

$$|a_n| = a_n < \frac{2a_n}{1 + a_n}$$

for all $n \ge N$, so by Theorem 3.25(a), $\sum_{n=1}^{\infty} a_n$ converges. This is a contradiction and thus $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ diverges whenever $\sum_{n=1}^{\infty} a_n$ diverges.

(b) Fix $N, k \in \mathbb{N}$. Since $a_n > 0$ for all $n \in \mathbb{N}$, we have $s_{N+m} < s_{N+k}$ for all m = 1, ..., k and hence

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge \frac{a_{N+1}}{s_{N+k}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$

$$= \frac{a_{N+1} + \dots + a_{N+k}}{s_{N+k}}$$

$$= \frac{s_{N+k} - s_N}{s_{N+k}}$$

$$= 1 - \frac{s_N}{s_{N+k}}.$$

We have by Theorem 3.24 that $s_n \to \infty$ as $n \to \infty$. Hence for fixed $N \in \mathbb{N}$, since $s_n > 0$ for all $n \in \mathbf{N}$,

$$\lim_{k \to \infty} \left(1 - \frac{s_N}{s_{N+k}} \right) = 1.$$

By the inequality established above, along with Theorem 3.19, it follows that

$$\limsup_{k \to \infty} \sum_{n=N+1}^{N+k} \frac{a_n}{s_n} \ge \limsup_{k \to \infty} \left(1 - \frac{s_N}{s_{N+k}} \right) = 1.$$

By Theorem 3.22, if $\sum_{n=1}^{\infty} \frac{a_n}{s_n}$ converges then there exists $N \in \mathbf{N}$ such that

$$\limsup_{k \to \infty} \sum_{n=N+1}^{N+k} \frac{a_n}{s_n} < 1.$$

Hence $\sum_{n=1}^{\infty} \frac{a_n}{s_n}$ diverges. (c) From $a_n > 0$ for all $n \in \mathbb{N}$, we have $s_{n-1} < s_n$ and thus

$$\frac{a_n}{s_n^2} = \frac{s_n - s_{n-1}}{s_n^2}$$

$$< \frac{s_n - s_{n-1}}{s_{n-1}s_n}$$

$$= \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

for $n \geq 2$. The *n*th partial sum of $\sum_{n=2}^{\infty} \left(\frac{1}{s_{n-1}} - \frac{1}{s_n} \right)$ is

$$\frac{1}{s_1} - \frac{1}{s_n} = \frac{1}{a_1} - \frac{1}{s_n}.$$

But as explained in part (b), $s_n \to \infty$ as $n \to \infty$ and so

$$\sum_{n=2}^{\infty} \left(\frac{1}{s_{n-1}} - \frac{1}{s_n} \right) = \frac{1}{a_1}.$$

Now by Theorem 3.25(a), since $\frac{a_n}{s_n^2} > 0$ for all $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ converges.

(d) It is clear that if $a_n = 1$ for all $n \in \mathbb{N}$ then $\lim_{n \to \infty} a_n = 1$, so by Theorem 3.23, $\sum_{n=1}^{\infty}$ diverges. In this case,

$$\frac{a_n}{1+na_n} = \frac{1}{1+n} \ge \frac{1}{2n}$$

for all $n \in \mathbb{N}$. But $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges by Theorem 3.47 and Theorem 3.28, so by Theorem 3.25(a),

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}$$

diverges. On the other hand, let S denote the set of positive square numbers and suppose

$$a_n = \begin{cases} 1 & n \in S \\ 0 & n \notin S. \end{cases}$$

Then since S is infinite, $\{a_n\}_{n\in\mathbb{N}}$ does not converge to 0. Thus by Theorem 3.23, $\sum_{n=1}^{\infty} a_n$ diverges.

$$\frac{a_n}{1+na_n} = \begin{cases} \frac{1}{1+n} & n \in S \\ 0 & n \notin S. \end{cases}$$

Then by Theorem 3.28 and Theorem 3.24,

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n}$$

converges since $\sum_{n=1}^{\infty} 1/n^2$ converges. Now let $\{a_n\}_{n\in\mathbb{N}}$ be any sequence of positive real numbers. For any $n\in\mathbb{N}$, we have that

$$\frac{a_n}{1 + n^2 a_n} < \frac{a_n}{n^2 a_n} = \frac{1}{n^2}.$$

Thus by Theorem 3.25(a) and Theorem 3.28 (with p = 2), we have that

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}$$

converges.

Exercise 3.12. We first note that $\sum_{k=n}^{\infty} a_k$ converges for all $n \in \mathbb{N}$ by Theorem 3.25(a), and so each r_n is well-defined. Moreover, $\{r_n\}_{n\in\mathbb{N}}$ is monotonically decreasing sequence of positive reals since $a_n>0$ for all $n \in \mathbf{N}$. Finally, by Theorem 3.22, $\lim_{n\to\infty} r_n = 0$.

(a) We observe for m < n,

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > \frac{a_m}{r_m} + \dots + \frac{a_n}{r_m}$$

$$= \frac{a_m + \dots + a_n}{r_m}$$

$$= \frac{r_m - r_{n+1}}{r_m}$$

$$> \frac{r_m - r_n}{r_m}$$

$$= 1 - \frac{r_n}{r_m}.$$

Since $\lim_{n\to\infty} r_n = 0$, we have for fixed $m \in \mathbf{N}$ that

$$\lim_{n \to \infty} \left(1 - \frac{r_n}{r_m} \right) = 0.$$

Thus by Theorem 3.19, we have that

$$\limsup_{n \to \infty} \sum_{k=m}^{n} \frac{a_k}{r_k} \ge \limsup_{n \to \infty} \left(1 - \frac{r_n}{r_m} \right) = 1$$

for all $m \in \mathbb{N}$. But if $\sum_{n=1}^{\infty} \frac{a_n}{r_n}$ converges, then by Theorem 3.22, there is $m \in \mathbb{N}$ such that

$$\limsup_{n \to \infty} \sum_{k=m}^{n} \frac{a_k}{r_k} < 1.$$

Hence $\sum_{n=1}^{\infty} \frac{a_n}{r_m}$ diverges. (b) We observe that for any $n \in \mathbb{N}$,

$$(\sqrt{r_n} + \sqrt{r_{n+1}})(\sqrt{r_n} - \sqrt{r_{n+1}}) = r_n - r_{n+1} = a_n.$$

Thus

$$\sqrt{r_n} - \sqrt{r_{n+1}} = \frac{a_n}{\sqrt{r_n} + \sqrt{r_{n+1}}}$$

$$> \frac{a_n}{\sqrt{r_n} + \sqrt{r_n}}$$

$$= \frac{a_n}{2\sqrt{r_n}}.$$

Rearranging,

$$\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

for all $n \in \mathbb{N}$. Then the *n*th partial sum of $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{r_n}}$ is bounded above by

$$2\sqrt{r_1} = 2\sqrt{\sum_{k=1}^{\infty} a_k}.$$

By Theorem 3.24, it follows that $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{r_n}}$ converges.

Exercise 3.13. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two absolutely convergent series, and let

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

for each $n \ge 0$. Then $\sum_{n=0}^{\infty} |a_n|$ and $\sum_{n=0}^{\infty} |b_n|$ converge absolutely, and so by Theorem 3.45 and Theorem 3.50, we have that

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} |a_k| |b_{n-k}|$$

converges. But

$$|c_n| = \left| \sum_{k=0}^n a_k b_{n-k} \right| \le \sum_{k=0}^n |a_k| |b_{n-k}|.$$

Thus by Theorem 3.25(a), $\sum_{n=0}^{\infty} |c_n|$ converges, that is, the Cauchy product of $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converges absolutely.

Exercise 3.14. (a) Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that $|s_n - s| < \varepsilon$ for $n \ge N$. Then for all $n \ge N$, we have

$$|\sigma_{n} - s| = \left| \frac{s_{0} + s_{1} + \dots + s_{n}}{n+1} - s \right|$$

$$\leq \frac{|s_{0} + s_{1} + \dots + s_{N-1}| + N|s| + |s_{N} + \dots + s_{n} - (n-N+1)s|}{n+1}$$

$$\leq \frac{|s_{0} + s_{1} + \dots + s_{N-1}| + |s_{N} - s| + \dots + |s_{n} - s|}{n+1}$$

$$\leq \frac{|s_{0} + s_{1} + \dots + s_{N-1}| + (n-N+1)\varepsilon}{n+1}$$

$$= \frac{|s_{0} + s_{1} + \dots + s_{N-1}| - N\varepsilon}{n+1} + \varepsilon.$$

Since $\lim_{n\to\infty} 1/(n+1) = 0$, by Theorem 3.3(b) we have that

$$\lim_{n\to\infty} \frac{|s_0+s_1+\cdots+s_{N-1}|-N\varepsilon}{n+1} = 0.$$

Hence by Theorem 3.19,

$$\limsup_{n \to \infty} |\sigma_n - s| \le \limsup_{n \to \infty} \left(\frac{|s_0 + s_1 + \dots + s_{N-1}| - N\varepsilon}{n+1} + \varepsilon \right) = \varepsilon.$$

Since this holds for all $\varepsilon > 0$, we have that $\limsup_{n \to \infty} |\sigma_n - s| = 0$ and hence $\lim_{n \to \infty} \sigma_n = s$ as desired.

(b) Let $s_n = (-1)^n$ for all $n \ge 0$. Then

$$\sigma_n = \begin{cases} \frac{1}{n+1} & n \text{ is even} \\ 0 & n \text{ is odd.} \end{cases}$$

Then since $\lim_{n\to\infty} 1/(n+1) = 0$, we have that $\lim_{n\to\infty} \sigma_n = 0$. But clearly $\{s_n\}_{n\in\mathbb{N}}$ does not converge since it is not Cauchy (Theorem 3.11(a)).

TODO

TODO

TODO

Exercise 3.15.

Exercise 3.16. (a) It is clear by induction that $x_n > 0$ for all $n \in \mathbb{N}$. We first show by induction that $x_n > \sqrt{\alpha}$ for all $n \in \mathbb{N}$. The claim holds for n = 1 by assumption. If $x_n > \sqrt{\alpha}$ for some $n \in \mathbb{N}$, then $x_n \neq \sqrt{\alpha}$ and hence

$$\left(x_n - \frac{\alpha}{x_n}\right)^2 > 0.$$

Thus

$$4x_{n+1}^2 = \left(x_n + \frac{\alpha}{x_n}\right)^2 \ge 4\alpha,$$

and so $x_{n+1} > \sqrt{\alpha}$, proving the claim.

Now for any $n \in \mathbb{N}$, we have

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$$

$$< \frac{1}{2} \left(x_n + \frac{\alpha}{\sqrt{\alpha}} \right)$$

$$= \frac{1}{2} (x_n + \sqrt{\alpha})$$

$$< \frac{1}{2} (2x_n)$$

$$= x_n.$$

In particular, $\{x_n\}_{n\in\mathbb{N}}$ is monotonically decreasing. [TODO: limit]

(b) We observe for any $n \in \mathbb{N}$ that

$$\frac{\varepsilon_n^2}{2x_n} = \frac{(x_n - \sqrt{\alpha})^2}{2x_n}$$

$$= \frac{x_n^2 - 2x_n\sqrt{\alpha} + \alpha}{2x_n}$$

$$= \frac{1}{2}\left(x_n + \frac{\alpha}{x_n}\right) - \sqrt{\alpha}$$

$$= x_{n+1} - \sqrt{\alpha}$$

$$= \varepsilon_{n+1}.$$

Thus since $x_n > \sqrt{\alpha}$ for all $n \in \mathbf{N}$ (as shown in part (a)), we have

$$\varepsilon_{n+1} = \frac{\varepsilon_n^2}{2x_n} < \frac{\varepsilon_n^2}{2\sqrt{\alpha}}.$$

Now let $\beta = 2\sqrt{\alpha}$; we prove by induction that

$$\varepsilon_{n+1} < \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^n}$$

for all $n \in \mathbb{N}$. For n = 1, we have by the above that

$$\varepsilon_2 < \frac{\varepsilon_1^2}{2\sqrt{\alpha}}$$

$$= 2\sqrt{\alpha} \left(\frac{\varepsilon_1}{2\sqrt{\alpha}}\right)^{2^1}$$

$$= \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^1}.$$

Now suppose for some $n \in \mathbb{N}$ that

$$\varepsilon_{n+1} < \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^n}$$
.

Then

$$\varepsilon_{n+2} < \frac{\varepsilon_{n+1}^2}{2\sqrt{\alpha}}$$

$$< \frac{1}{\beta} \left(\beta \left(\frac{\varepsilon_1}{\beta} \right)^{2^n} \right)^2$$

$$= \beta \left(\frac{\varepsilon_1}{\beta} \right)^{2^{n+1}},$$

proving the claim.

(c) We observe that for $\alpha = 3$ and $x_1 = 2$,

$$\frac{\varepsilon_1}{\beta} = \frac{2 - \sqrt{3}}{2\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{1}{2}.$$

Then since

$$\left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$$

$$< \frac{9}{25}$$

$$= \left(\frac{3}{5}\right)^2$$

$$= \left(\frac{1}{2} + \frac{1}{10}\right)^2,$$

we have

$$\frac{1}{\sqrt{3}} - \frac{1}{2} < \frac{1}{10}$$

and so $\varepsilon_1/\beta<1/10$. Since $\sqrt{3}<2$ (as 3<4), we have $\beta=2\sqrt{3}<4$. Thus by part (b),

$$\varepsilon_{n+1} < \beta \left(\frac{\varepsilon_1}{\beta}\right)^{2^n}$$

$$< 4 \left(\frac{1}{10}\right)^{2^n}$$

$$= 4 \cdot 10^{-2^n}.$$

For example,

$$\varepsilon_5 < 4 \cdot 10^{-16}$$

and

$$\varepsilon_6 < 4 \cdot 10^{-32}.$$

Exercise 3.17. (a) We prove that $x_{2n-1} > x_{2n+1}$ for all $n \in \mathbb{N}$. For any $n \in \mathbb{N}$, we see that

$$x_{2n+1} = x_{2n} + \frac{\alpha - x_{2n}^2}{1 + x_{2n}}$$
$$= x_{2n-1} + \frac{\alpha - x_{2n-1}^2}{1 + x_{2n-1}} + \frac{\alpha - x_{2n}^2}{1 + x_{2n}}$$

- (b)
- (c)
- (d)

Exercise 3.18. We assume that α is a positive real number and $x_1 > \sqrt[p]{\alpha}$. [TODO]

Exercise 3.19.

Exercise 3.20. Suppose $\{p_{n_k}\}_{k\in\mathbb{N}}$ is a subsequence of $\{p_n\}_{n\in\mathbb{N}}$ which converges to p. Then for any $\varepsilon>0$, there is $K\in\mathbb{N}$ such that $d(p_{n_k},p)<\varepsilon/2$ for all $k\geq K$. Since $\{p_n\}_{n\in\mathbb{N}}$ is Cauchy, there also exists $N\in\mathbb{N}$ such that $d(p_n,p_m)<\varepsilon/2$ for $n,m\geq N$. For any $n\geq N$, we may choose $k\geq K$ such that $n_k\geq N$. Then

$$\begin{split} d(p_n,p) &\leq d(p_n,p_{n_k}) + d(p_{n_k},p) \\ &< \varepsilon/2 + \varepsilon/2 \\ &= \varepsilon, \end{split}$$

and hence $\lim_{n\to\infty} p_n = p$.

Exercise 3.21. As in the proof of Theorem 3.10(b), we have from $E \subseteq E_n$ for all $n \in \mathbb{N}$ and

$$\lim_{n\to\infty} \operatorname{diam} E_n = 0$$

that $\bigcap_{n=1}^{\infty} E_n$ contains at most one point, so it suffices to show it is nonempty. For each $n \in \mathbb{N}$, let $p_n \in E_n$ (since E_n is nonempty). Then for each $N \in \mathbb{N}$, we have $\{p_n\}_{n \geq N} \subseteq E_N$ and hence

$$\lim_{N \to \infty} \operatorname{diam}\{p_n\}_{n \ge N} = 0$$

since $\lim_{n\to\infty} \operatorname{diam} E_n = 0$. Thus $\{p_n\}_{n\in\mathbb{N}}$ is Cauchy, and so it converges to some point p since X is complete. For any $N\in\mathbb{N}$, the sequence $\{p_n\}_{n\geq N}$ in E_N also converges to p. Hence p is a limit point of E_N for all $N\in\mathbb{N}$, and so $p\in\bigcap_{n=1}^{\infty}E_n$ since each E_n is closed. This proves that $\bigcap_{n=1}^{\infty}E_n$ is nonempty as desired.

Exercise 3.22.

Exercise 3.23. As in the hint, we have for all $m, n \in \mathbb{N}$ that

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n).$$

If $\varepsilon > 0$, then there is $N \in \mathbf{N}$ such that

$$d(p_n, p_m) < \frac{\varepsilon}{2}$$

and

$$d(q_n, q_m) < \frac{\varepsilon}{2}$$

for $n, m \geq N$. Then

$$d(p_n, q_n) - d(p_m, q_m) \le d(p_n, p_m) + d(q_m, q_n)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

and so

$$|d(p_n, q_n) - d(p_m, q_m)| < \varepsilon$$

(by interchanging n and m) for $n, m \ge N$. Thus $\{d(p_n, q_n)\}_{n \in \mathbb{N}}$ is a Cauchy sequence. By Theorem 3.11(c), it follows that $\{d(p_n, q_m)\}_{n \in \mathbb{N}}$ converges.

Exercise 3.24. (a) For any Cauchy sequence $\{p_n\}_{n\in\mathbb{N}}$ in X, we have $d(p_n, p_n) = 0$ for all $n \in \mathbb{N}$ and hence $\{p_n\}_{n\in\mathbb{N}}$ is equivalent to $\{p_n\}_{n\in\mathbb{N}}$. Suppose $\{p_n\}_{n\in\mathbb{N}}$ and $\{q_n\}_{n\in\mathbb{N}}$ are Cauchy sequences such that $\{p_n\}_{n\in\mathbb{N}}$ is equivalent to $\{q_n\}_{n\in\mathbb{N}}$. Then

$$\lim_{n \to \infty} d(p_n, q_n) = 0,$$

and so also

$$\lim_{n \to \infty} d(q_n, p_n) = \lim_{n \to \infty} d(p_n, q_n) = 0.$$

That is, $\{q_n\}_{n\in\mathbb{N}}$ is equivalent to $\{p_n\}_{n\in\mathbb{N}}$. Finally, suppose $\{p_n\}_{n\in\mathbb{N}}$, $\{q_n\}_{n\in\mathbb{N}}$, and $\{r_n\}_{n\in\mathbb{N}}$ are Cauchy sequences in X such that $\{p_n\}_{n\in\mathbb{N}}$ is equivalent to $\{q_n\}_{n\in\mathbb{N}}$ and $\{q_n\}_{n\in\mathbb{N}}$ is equivalent to $\{r_n\}_{n\in\mathbb{N}}$. Then for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that

$$d(p_n, q_n) < \frac{\varepsilon}{2}$$

and

$$d(q_n, r_n) < \frac{\varepsilon}{2}$$

for $n \geq N$. Thus

$$d(p_n, r_n) \le d(p_n, q_n) + d(q_n, r_n)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

for $n \geq N$, and so $\lim_{n\to\infty} d(p_n, r_n) = 0$. Hence $\{p_n\}_{n\in\mathbb{N}}$ is equivalent to $\{r_n\}_{n\in\mathbb{N}}$, and so equivalence of Cauchy sequences in X is an equivalence relation.

(b) Let $P, Q \in X^*$ and supose $\{p_n\}_{n \in \mathbb{N}}$ and $\{p'_n\}_{n \in \mathbb{N}}$ are representatives of P and $\{q_n\}_{n \in \mathbb{N}}$ and $\{q'_n\}_{n \in \mathbb{N}}$ are representatives of Q. Then we have for all $n \in \mathbb{N}$ that

$$d(p_n, q_n) \le d(p_n, p'_n) + d(p'_n, q'_n) + d(q'_n, q_n)$$

so

$$d(p_n, q_n) - d(p'_n, q'_n) \le d(p_n, p'_n) + d(q_n, q'_n)$$

and similarly

$$d(p'_n, q'_n) - d(p_n, q_n) \le d(p_n, p'_n) + d(q_n, q'_n).$$

Hence

$$|d(p_n, q_n) - d(p'_n, q'_n)| \le d(p_n, p'_n) + d(q_n, q'_n).$$

But $\lim_{n\to\infty} d(p_n, p'_n) = 0$ and $\lim_{n\to\infty} d(q_n, q'_n) = 0$ since $\{p_n\}_{n\in\mathbb{N}}$ is equivalent to $\{p'_n\}_{n\in\mathbb{N}}$ and $\{q_n\}_{n\in\mathbb{N}}$ is equivalent to $\{q'_n\}_{n\in\mathbb{N}}$. Thus

$$\lim_{n \to \infty} (d(p_n, q_n) - d(p'_n, q'_n)) = 0,$$

and so

$$\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(p'_n, q'_n)$$

by Theorem 3.3(a) and Exercise 3.23. Hence $\Delta(P,Q)$ is well-defined.

Now we show that Δ is a metric on X^* . Suppose $P, Q \in X^*$, and let $\{p_n\}_{n \in \mathbb{N}}$ be a representative of P and $\{q_n\}_{n \in \mathbb{N}}$ a representative of Q. Then we have by Theorem 3.19 that

$$\Delta(P,Q) = \lim_{n \to \infty} d(p_n, q_n) \ge 0$$

since $d(p_n, q_n) \ge 0$ for all $n \in \mathbb{N}$. Moreover, $\Delta(P, Q) = 0$ if and only if $\lim_{n \to \infty} d(p_n, q_n) = 0$, that is, $\{p_n\}_{n \in \mathbb{N}}$ is equivalent to $\{q_n\}_{n \in \mathbb{N}}$. Thus $\Delta(P, Q) = 0$ if and only if P = Q, so part (a) of Definition 2.15 is established. We also have that $d(p_n, q_n) = d(q_n, p_n)$ for all $n \in \mathbb{N}$, and so

$$\Delta(P,Q) = \lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(q_n, p_n) = \Delta(Q, P).$$

This proves part (b) of Definition 2.15. Finally, suppose also that $R \in X^*$ and $\{r_n\}_{n \in \mathbb{N}}$ is a representative of R. Then we have

$$d(p_n, r_n) \le d(p_n, q_n) + d(q_n, r_n)$$

for all $n \in \mathbb{N}$ and thus by Theorem 3.19 and Theorem 3.3(a),

$$\Delta(P,R) = \lim_{n \to \infty} d(p_n, r_n)$$

$$\leq \lim_{n \to \infty} (d(p_n, q_n) + d(q_n, r_n))$$

$$= \lim_{n \to \infty} d(p_n, q_n) + \lim_{n \to \infty} d(q_n, r_n)$$

$$= \Delta(P, Q) + \Delta(Q, R).$$

This is part (c) of Definition 2.15, and so Δ is a metric on X^* .

(c) Let $\{P_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence in X^* . Let $\{p_{n,k}\}_{n\in\mathbb{N}}$ be a representative of P_k for each $k\in\mathbb{N}$. For all $n,m\in\mathbb{N}$, we have

$$d(p_{n,n}, p_{m,m}) \le d(p_{n,n}, p_{m,n}) + d(p_{m,n}, p_{m,m}).$$

For any $\varepsilon > 0$, there is $K \in \mathbb{N}$ such that

$$\Delta(P_k, P_l) < \frac{\varepsilon}{2}$$

for $k, l \geq K$.

(d) We have that $\{p\}_{n\in\mathbb{N}}$ is Cauchy since d(p,p)=0; thus the class $P_p\in X^*$ is well-defined. By definition, for any $p,q\in X$, we have

$$\Delta(P_p, P_q) = \lim_{n \to \infty} d(p, q) = d(p, q).$$

That is, if $\varphi: X \to X^*$ is given by $\varphi(p) = P_p$, we have

$$\Delta(\varphi(p), \varphi(q)) = d(p, q)$$

for all $p, q \in X$. Then φ is an isometric embedding of X into X^* (note that by part (a) of Definition 2.15, a distance-preserving map of metric spaces is necessarily injective).

(e) Let $P \in X^*$ and $\varepsilon > 0$. Suppose $\{p_n\}_{n \in \mathbb{N}}$ is a representative of P. Then $\{p_n\}_{n \in \mathbb{N}}$ is Cauchy, and so there is $N \in \mathbb{N}$ such that $d(p_n, p_m) < \varepsilon/2$ for $n, m \ge N$. Thus

$$\lim_{n\to\infty} d(p_n, p_N) \le \frac{\varepsilon}{2} < \varepsilon$$

by Theorem 3.19, and so

$$\Delta(P, P_{p_N}) < \varepsilon.$$

But $P_{p_N} = \varphi(p_N) \in \varphi(X)$, and hence $\varphi(X)$ is dense in X^* . Now suppose X is complete, and let $P \in X^*$. Let $\{p_n\}_{n \in \mathbb{N}}$ be a representative of P. Then $\{p_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X, and so since X is complete, there is $p \in X$ such that $\{p_n\}_{n \in \mathbb{N}}$ converges to p. Thus

$$\lim_{n \to \infty} d(p_n, p) = 0$$

 $\lim_{n\to\infty}d(p_n,p)=0,$ and so $\{p_n\}_{n\in\mathbf{N}}$ is equivalent to $\{p\}_{n\in\mathbf{N}}$. Then $P=\varphi(p),$ and so $\varphi(X)=X^*.$

Exercise 3.25.

CHAPTER 4

Continuity

Exercise 4.1. No, such an f is not necessarily continuous. For example, suppose $f: \mathbf{R} \to \mathbf{R}$ is given by

$$f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0. \end{cases}$$

Then if $x \neq 0$, we have for all positive h < |x| that

$$f(x+h) - f(x-h) = 0 - 0 = 0$$

and so

$$\lim_{h \to 0} (f(x+h) - f(x-h)) = 0.$$

For x = 0, we observe that for any h > 0,

$$f(h) - f(-h) = 0 - 0 = 0.$$

Thus

$$\lim_{h \to 0} (f(x+h) - f(x-h)) = 0$$

for all $x \in \mathbf{R}$. But f is discontinuous at 0: since f(t) = 0 for all $t \neq 0$, we have

$$\lim_{t \to 0} f(t) = 0 \neq 1 = f(0).$$

Exercise 4.2. We provide first a "topological" proof. We have by Theorem 2.27(a) that $\overline{f(E)}$ is a closed subset of Y, and so by the Corollary to Theorem 4.8, $f^{-1}(\overline{f(E)})$ is a closed subset of X. But

$$E \subseteq f^{-1}(f(E)) \subseteq f^{-1}(\overline{f(E)}).$$

Thus by Theorem 2.27(c), $\overline{E} \subseteq f^{-1}(\overline{f(E)})$, that is, $f(\overline{E}) \subseteq \overline{f(E)}$.

Now we provide a "metric" proof. Let $p \in \overline{E}$, and let $\varepsilon > 0$. Since f is continuous, there is $\delta > 0$ such that if $q \in X$ with $d_X(p,q) < \delta$, then $d_Y(f(p),f(q)) < \varepsilon$. But since $p \in \overline{E}$, there is $x \in E$ for which $d_X(p,x) < \delta$. Thus $d_Y(f(p),f(x)) < \varepsilon$ with $f(x) \in f(E)$, and so $f(p) \in \overline{f(E)}$. Then $f(\overline{E}) \subseteq \overline{f(E)}$ as desired.

Let $\iota:(0,1)\to \mathbf{R}$ be the inclusion and E the segment (0,1). Then ι is continuous and $\iota(E)=E$ so $\overline{\iota(E)}=[0,1]$ while $\iota(\overline{E})=\iota(E)=E$ is a proper subset of [0,1].

Exercise 4.3. First the "topological" proof: $\{0\}$ is a closed subset of **R**. Hence by the Corollary to Theorem 4.8, $Z(f) = f^{-1}(0)$ is a closed subset of X.

Now we provide a "metric" proof. Let p be a limit point of Z(f) and $\varepsilon > 0$. Since f is continuous, there is $\delta > 0$ such that if $q \in X$ with $d_X(p,q) < \delta$, then $|f(p) - f(q)| < \varepsilon$. But p is a limit point of Z(f), and so there is $q \in Z(f)$ with $d_X(p,q) < \delta$. Then $|f(p) - f(q)| < \varepsilon$, so $|f(p)| < \varepsilon$ as f(q) = 0. Since this holds for all $\varepsilon > 0$, it follows that f(p) = 0 and so $p \in Z(f)$.

4. CONTINUITY

Exercise 4.4. It is clear from the definition of continuity that $f: X \to f(X)$ is continuous when f(X) is considered as a subspace of Y. Since E is dense in X, we have $\overline{E} = X$ and so by Exercise 4.2, $f(X) \subseteq \overline{f(E)}$, where the closure of f(E) is taken in f(X). But then

$$f(X) \subseteq \overline{f(E)} \subseteq f(X),$$

and so $\overline{f(E)} = f(X)$. Hence f(E) is dense in f(X).

Now suppose $g: X \to Y$ is another continuous function such that g(p) = f(p) for all $p \in E$. Suppose $p \in X$ and $\varepsilon > 0$. Let $\delta > 0$ such that if $q \in X$ with $d_X(p,q) < \delta$, then $d_Y(f(p),f(q)) < \varepsilon/2$ and $d_Y(g(p),g(q)) < \varepsilon/2$. Since E is dense in X, there is $q \in E$ with $d_X(p,q) < \delta$. Then since f(q) = g(q), we have

$$d_Y(f(p), g(p)) \le d_Y(f(p), f(q)) + d_Y(f(q), g(p))$$

$$= d_Y(f(p), f(q)) + d_Y(g(p), g(q))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus $d_Y(f(p), g(p)) < \varepsilon$ for all $\varepsilon > 0$, and so $d_Y(f(p), g(p)) = 0$ and hence f(p) = g(p).

Exercise 4.5.

Exercise 4.6. (Note: I assume that $E \subseteq \mathbf{R}$ and f is real-valued. I think this is what the problem intended, but the phrasing is unclear.)

Let Γ denote the graph of f. Suppose first that f is continuous. Let $(x,y) \in \mathbf{R}^2 \setminus \Gamma$, and suppose first that $x \in E$. Then $f(x) \neq y$, and so |f(x) - y| > 0. Let $\varepsilon = |f(x) - y|$. By continuity of f, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ if $x' \in E$ with $|x - x'| < \delta$. In this case,

$$|f(x') - y| \ge |f(x) - f(y)| - |f(x) - f(x')|$$

= $\varepsilon - |f(x) - f(x')|$
> 0,

so $f(x') \neq y$. If $r = \min(\delta, \varepsilon)$, we thus have $B_r((x,y)) \subseteq \mathbf{R}^2 \setminus \Gamma$. Now suppose $x \notin E$. By Theorem 2.34, E is closed in \mathbf{R} and so there is r > 0 such that $B_r(x) \subseteq \mathbf{R} \setminus E$. Then $B_r((x,y)) \subseteq \mathbf{R}^2 \setminus \Gamma$. Hence every point of $\mathbf{R}^2 \setminus \Gamma$ is an interior point, and so Γ is a closed subset of \mathbf{R}^2 (Corollary to Theorem 2.23). We have by Theorem 2.41((b) \Longrightarrow (a)) that E is a bounded subset of \mathbf{R} , and by Theorem 4.15, f(E) is a bounded subset of \mathbf{R} . Hence $E \times f(E)$ is bounded, and so also Γ is bounded as $\Gamma \subseteq E \times f(E)$. Then Γ is a closed and bounded subset of \mathbf{R}^2 , and so Γ is compact by Theorem 2.41((a) \Longrightarrow (b)).

Conversely, suppose that Γ is compact. Let $x \in E$ and let $\varepsilon > 0$. Suppose for sake of contradiction that for all $n \in \mathbb{N}$, there is $x_n \in E$ such that $|x - x_n| < 1/n$ while $|f(x) - f(x_n)| \ge \varepsilon$. Since Γ is compact, the sequence $\{(x_n, f(x_n))\}_{n \in \mathbb{N}}$ in Γ has a subsequence $\{(x_{n_k}, f(x_{n_k}))\}_{n \in \mathbb{N}}$ which converges in Γ . But $\lim_{k \to \infty} x_{n_k} = x$ so $\{(x_{n_k}, f(x_{n_k}))\}_{n \in \mathbb{N}}$ converges to (x, f(x)). This contradicts that $|f(x) - f(x_{n_k})| \ge \varepsilon$ for all $k \in \mathbb{N}$, and so f is continuous at x. Thus f is continuous on E.

Exercise 4.7. We handle f and g separately, starting with f. [TODO]

Exercise 4.8. Since f is uniformly continuous, there is $\delta > 0$ such that if $x' \in E$ with $|x - x'| < \delta$, then |f(x) - f(x')| < 1. We have that $\{B_{\delta}(x)\}_{x \in E}$ covers \overline{E} , and \overline{E} is compact by Theorem 2.41((a) \Longrightarrow (b)), since E is bounded. Thus there are $x_1, \ldots, x_n \in E$ such that $\{B_{\delta}(x_i)\}_{i=1}^n$ covers E. Now if $x \in E$, there is $i = 1, \ldots, n$ such that $|x - x_i| < \delta$. Thus $|f(x) - f(x_i)| < 1$, and so

$$|f(x)| \le |f(x) - f(x_i)| + |f(x_i)| < 1 + |f(x_i)|.$$

4. CONTINUITY

36

Hence for any $x \in E$, we have

$$|f(x)| < 1 + \max_{1 \le i \le n} |f(x_i)|$$

so f is bounded on E.

The identity function $id_{\mathbf{R}}: \mathbf{R} \to \mathbf{R}$ is uniformly continuous but unbounded.

Exercise 4.9. Let $f: X \to Y$ be a function between metric spaces, and suppose first that f is uniformly continuous. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that if $p, q \in E$ with $d_X(p,q) < \delta$, then $d_Y(f(p), f(q)) < \varepsilon/2$. If $E \subseteq X$ with diam $E < \delta$, then $d_X(p,q) < \delta$ for all $p,q \in E$ and thus $d_Y(f(p), f(q)) < \varepsilon/2$ for all $p,q \in E$. Hence

diam
$$f(E) \le \varepsilon/2 < \varepsilon$$
.

Conversely, suppose that for all $\varepsilon > 0$ there is $\delta > 0$ such that if $E \subseteq X$ with diam $E < \delta$, then diam $f(E) < \varepsilon$. Now if $\varepsilon > 0$, pick $\delta > 0$ such that diam $E < \delta$ implies diam $f(E) < \varepsilon$ for $E \subseteq X$. Then if $p, q \in E$ with $d_X(p, q) < \delta$, we have that diam $\{p, q\} < \delta$ and thus diam $\{f(p), f(q)\} < \varepsilon$. Hence $d_Y(f(p), f(q)) < \varepsilon$, and so f is uniformly continuous.

Exercise 4.10. Let $f: X \to Y$ be a continuous function of metric spaces with X compact. We follow the hint (although we use limits of subsequences, rather than limit points of sets). Suppose for sake of contradiction that f is not uniformly continuous. Then there is $\varepsilon > 0$ such that there is no $\delta > 0$ for which if $p, q \in X$ with $d_X(p, q) < \delta$, then $d_Y(f(p), f(q)) < \varepsilon$. Thus for each $n \in \mathbb{N}$, there are $p_n, q_n \in X$ with $d_X(p_n, q_n) < 1/n$ and $d_Y(f(p), f(q)) \ge \varepsilon$. By Theorem 3.6(a), there is a subsequence $\{p_{n_k}\}_{k \in \mathbb{N}}$ of $\{p_n\}_{n \in \mathbb{N}}$ converging to some $p \in X$. By Theorem 3.6(a), we may also assume WLOG (by taking a further subsequence) that also $\{q_{n_k}\}_{k \in \mathbb{N}}$ converges to some $q \in X$. Now for all $k \in \mathbb{N}$, we have

$$d_X(p,q) \le d_X(p,p_{n_k}) + d_X(p_{n_k},q_{n_k}) + d_X(q_{n_k},q).$$

Taking $k \to \infty$, we conclude that $d_X(p,q) = 0$ and so p = q.

Let $\delta > 0$ such that if $p' \in X$ with $d_X(p, p') < \delta$, then $d_Y(f(p), f(p')) < \varepsilon/2$. Since

$$\lim_{k \to \infty} p_{n_k} = \lim_{k \to \infty} q_{n_k} = p,$$

there is $k \in \mathbb{N}$ such that

$$d_X(p_{n_k}, p), d_X(q_{n_k}, p) < \delta.$$

Then

$$d_Y(f(p),f(p_{n_k})),d_Y(f(p),f(q_{n_k}))<\frac{\varepsilon}{2},$$

so

$$d_X(f(p_{n_k}), f(q_{n_k})) \le d_X(f(p_{n_k}), f(p)) + d(f(p), f(q_{n_k}))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

This contradicts the choice of $\{p_n\}_{n\in\mathbb{N}}$ and $\{q_n\}_{n\in\mathbb{N}}$, and so in fact there exists $\delta>0$ such that if $p,q\in X$ with $d_X(p,q)<\delta$, then $d_Y(f(p),f(q))<\varepsilon$. That is, f is uniformly continuous.

Exercise 4.11. Let $\{x_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in X, and let $\varepsilon > 0$. Since f is uniformly continuous, there exists $\delta > 0$ such that if $p, q \in X$ with $d_X(p, q) < \delta$, then $d_Y(f(p), f(q)) < \varepsilon$. Since $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy, there is $N \in \mathbb{N}$ such that $d_X(x_n, x_m) < \delta$ for $n, m \geq N$. Thus for $n, m \geq N$, we have $d_Y(f(x_n), f(x_m)) < \varepsilon$, and so $\{f(x_n)\}_{n\in\mathbb{N}}$ is Cauchy. [TODO: Exercise 13]

4. CONTINUITY

Exercise 4.12. Let $f: X \to Y$ and $g: Y \to Z$ be uniformly continuous functions of metric spaces. We claim that $h = g \circ f: X \to Z$ is also uniformly continuous. Indeed, let $\varepsilon > 0$. Then by uniform continuity of g, there is $\eta > 0$ such that $d_Z(h(p), h(q)) < \varepsilon$ whenever $p, q \in X$ such that $d_Y(f(p), f(q)) < \eta$. By uniform continuity of f, there is $\delta > 0$ such that $d_Y(f(p), f(q)) < \eta$ whenever $p, q \in X$ such that $d_X(p, q) < \delta$. Hence for $p, q \in X$ with $d_X(p, q) < \delta$, we have $d_Z(h(p), h(q)) < \varepsilon$. Thus h is uniformly continuous.

Exercise 4.13. We follow the hint. Let $p \in X$. Then for all $n \in \mathbb{N}$,

$$\operatorname{diam}(B_{1/n}(p) \cap E) \le \operatorname{diam}(B_{1/n}(p)) = \frac{2}{n}.$$

If $\varepsilon > 0$, then by Exercise 4.9, there is $N \in \mathbf{N}$ such that

$$\operatorname{diam}(f(B_{1/n}(p)\cap E))<\varepsilon$$

for all $n \geq N$. Then by Theorem 3.10(a),

$$\lim_{n \to \infty} \operatorname{diam}(\overline{f(B_{1/n}(p) \cap E)}) = 0.$$

On the other hand, each $B_{1/n}(p) \cap E$ is bounded and so $f(B_{1/n}(p) \cap E)$ is bounded by Exercise 4.8. Then by Theorem 2.41((a) \Longrightarrow (b)), $\overline{f(B_{1/n}(p) \cap E)}$ is compact for all $n \in \mathbb{N}$. Since $B_{1/n}(p) \supseteq B_{1/(n+1)}(p)$ for all $n \in \mathbb{N}$, we have

$$f(B_{1/n}(p)\cap E)\supseteq f(B_{1/(n+1)}(p)\cap E).$$

Finally, each $\overline{f(B_{1/n}(p) \cap E)}$ is nonempty since E is dense in X. Then by Theorem 2.27(c),

$$\overline{f(B_{1/n}(p)\cap E)}\supseteq \overline{f(B_{1/(n+1)}(p)\cap E)}$$

for all $n \in \mathbb{N}$. Now by Theorem 3.10(b), there is $g(p) \in \mathbb{R}$ such that

$$\bigcap_{n \in \mathbf{N}} \overline{f(B_{1/n}(p) \cap E)} = \{g(p)\}.$$

We claim that $g: X \to \mathbf{R}$ is a continuous extension of f. If $p \in E$, then $f(p) \in \overline{f(B_{1/n}(p) \cap E)}$ for all $n \in \mathbf{N}$ and hence g(p) = f(p). That is, g extends f to X. Now fix $p \in X$ and let $\varepsilon > 0$. By Exercise 4.10, there is $\delta > 0$ such that diam $f(F) < \varepsilon/3$ whenever $F \subseteq E$ with diam $F < \delta$. Suppose $g \in X$ with $d_X(p,q) < \delta$. Then letting $g \in \mathbf{N}$ such that $2/n < \delta$, we have

diam
$$f(B_{1/n}(p) \cap E) < \frac{\varepsilon}{3}$$

and so

$$\operatorname{diam} \overline{f(B_{1/n}(p) \cap E)} < \frac{\varepsilon}{3}$$

by Theorem 3.10(a). Similarly,

$$\operatorname{diam} \overline{f(B_{1/n}(q) \cap E)} < \frac{\varepsilon}{3}.$$

Since E is dense in X, there are $p', q' \in E$ such that $p' \in B_{1/n}(p) \cap E$ and $q' \in B_{1/n}(q) \cap E$. Then

$$g(p), f(p') \in \overline{f(B_{1/n}(p) \cap E)}$$

and

$$g(q), f(q') \in \overline{f(B_{1/n}(p) \cap E)}$$

implies

$$d_Y(g(p), f(p')), d_Y(g(q), f(q')) < \frac{\varepsilon}{3}.$$

4. CONTINUITY

38

Hence

$$d_Y(g(p), g(q)) \le d_Y(g(p), g(p')) + d_Y(g(p'), g(q')) + d_Y(g(q'), g(q))$$

$$= d_Y(g(p), f(p')) + d_Y(f(p'), f(q')) + d_Y(g(q), g(q'))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

Thus f is continuous at p, and so f is continuous on X.

The proof above remains valid with modification when the range space \mathbf{R} is replaced by \mathbf{R}^k for any $k \in \mathbf{N}$. [TODO: compact metric space, complete metric space, any metric space]

Exercise 4.14. Let $g: I \to \mathbf{R}$ be given by g(x) = f(x) - x for all $x \in I$; we wish to show that g(x) = 0 for some $x \in I$. Then g is continuous by Theorem 4.9. We have that

$$g(0) = f(0) \in [0, 1]$$

and

$$g(1) = f(1) - 1 \in [-1, 0].$$

If g(0) = 0 or g(1) = 0, we are done, so suppose $g(0), g(1) \neq 0$. Then g(0) > 0 > g(1), so by Theorem 4.23, there is $x \in (0,1)$ such that g(x) = 0 as desired.

Exercise 4.15. Let $f : \mathbf{R} \to \mathbf{R}$ is an open continuous function. For any reals x < y, we have that f((x, y)) is open, so

$$\inf_{[x,y]} f, \sup_{[x,y]} f \not\in f((x,y))$$

as $\inf_{[x,y]} f$ and $\sup_{[x,y]} f$ cannot be interior points of f((x,y)). But by Theorem 2.40 and Theorem 4.16,

$$\inf_{[x,y]}f,\sup_{[x,y]}f\in f([x,y]).$$

Thus

$$\inf_{[x,y]} f, \sup_{[x,y]} f \in \{ f(x), f(y) \},\$$

so we either have that for all $z \in (x, y)$,

$$f(x) < f(z) < f(y)$$

or for all $z \in (x, y)$,

$$f(x) > f(z) > f(y).$$

If f is monotonic on **Z**, then the above property shows that f is monotonic on **R**. Suppose for sake of contradiction that f is not monotonic on **Z**, and so there is $n \in \mathbf{Z}$ such that

$$f(n) > f(n-1), f(n+1)$$

or

$$f(n) < f(n-1), f(n+1).$$

WLOG, suppose that f(n) > f(n-1), f(n+1). Then

$$\sup_{[n-1,n+1]} f \ge f(n) > f(n-1), f(n+1)$$

implies that

$$\sup_{[n-1,n+1]} f \notin \{f(n-1), f(n+1)\},\$$

a contradiction. Hence f is monotonic on \mathbf{R} as desired.

4. CONTINUITY

39

Exercise 4.16.

Exercise 4.17. We follow the hint. Let E be the set of all $x \in (a, b)$ such that f(x-) and f(x+) exist with f(x-) < f(x+). For any $x \in E$, there is $p \in \mathbf{Q}$ such that f(x-) . Since <math>f(x-) < p, there is $\delta > 0$ such that if $t \in (a, b)$ with $x - \delta < t < x$, then f(t) < p. Then if $q \in \mathbf{Q}$ such that $a, x - \delta < q < x$, we have that if q < t < x then f(t) < p. Similarly, from f(x+) > p there is $r \in \mathbf{Q}$ such that x < r < b and if x < t < r, then f(t) > p. Let g(x) = (p, q, r).

Suppose for sake of contradiction that there are distinct $x, y \in E$ with g(x) = g(y), and let

$$g(x) = g(y) = (p, q, r).$$

Suppose, WLOG, that x < y. Then there is $z \in \mathbf{R}$ such that x < z < y. Thus

implies both that f(z) > p (as a < q < z < y) and f(z) < p (as x < z < r < b), a contradiction. Then x = y, so g is injective. Then E is in bijection with a subset of \mathbb{Q}^3 , so by Theorem 2.13, its Corollary, and Theorem 2.8, E is at most countable. By an analogous argument, the set E' of $x \in (a, b)$ for which f(x-) and f(x+) exist with f(x-) > f(x+) is at most countable.

Let F denote the set of $x \in (a, b)$ such that $\lim_{t \to x} f(t)$ exists but $\lim_{t \to x} f(t) < f(x)$. Then for any $x \in F$, there are $p, q, r \in \mathbf{Q}$ such that

$$\lim_{t \to x} f(t)$$

and

$$a < q < x < r < b$$
,

and such that if q < t < x or x < t < r, then f(t) < p. Let h(x) = (p, q, r); we claim that $h : F \to \mathbf{Q}^3$ is injective. Suppose for sake of contradiction that $x, y \in F$ such that h(x) = h(y) with $x \neq y$, and let

$$h(x) = h(y) = (p, q, r).$$

We suppose, WLOG, that x < y. Then

implies that f(x) < p, as q < x < y. But h(x) = (p, q, r) implies that p < f(x), so this is a contradiction. Thus h is injective, and so F is in bijection with a subset of \mathbf{Q}^3 . By Theorem 2.13, its Corollary, and Theorem 2.8, F is at most countable. Similarly, the set F' of all $x \in (a, b)$ such that f(x-) and f(x+) exist with f(x) < f(x-) = f(x+) is at most countable.

Finally, the set $E \cup E' \cup F \cup F'$ of all simple discontinuities of f on (a, b) is at most countable by the Corollary to Theorem 2.12.

Exercise 4.18.

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Exercise 4.24.

Exercise 4.25.

Exercise 4.26.

Differentiation

- Exercise 5.1.
- Exercise 5.2.
- Exercise 5.3.
- Exercise 5.4.
- Exercise 5.5.
- Exercise 5.6.
- Exercise 5.7.
- Exercise 5.8.
- Exercise 5.9.
- Exercise 5.10.
- Exercise 5.11.
- Exercise 5.12.
- Exercise 5.13.
- Exercise 5.14.
- Exercise 5.15.
- Exercise 5.16.
- Exercise 5.17.
- Exercise 5.18.
- Exercise 5.19.
- Exercise 5.20.
- Exercise 5.21.
- Exercise 5.22.
- Exercise 5.23.
- Exercise 5.24.
- Exercise 5.25.

- Exercise 5.26.
- Exercise 5.27.
- Exercise 5.28.
- Exercise 5.29.

The Riemann–Stieltjes Integral

- Exercise 6.1.
- Exercise 6.2.
- Exercise 6.3.
- Exercise 6.4.
- Exercise 6.5.
- Exercise 6.6.
- Exercise 6.7.
- Exercise 6.8.
- Exercise 6.9.
- Exercise 6.10.
- Exercise 6.11.
- Exercise 6.12.
- Exercise 6.13. Exercise 6.14.
- Exercise 6.15.
- Exercise 6.16.
- Exercise 6.17.
- Exercise 6.18.
- Exercise 6.19.

Sequences and Series of Functions

- Exercise 7.1.
- Exercise 7.2.
- Exercise 7.3.
- Exercise 7.4.
- Exercise 7.5.
- Exercise 7.6.
- Exercise 7.7.
- Exercise 7.8.
- Exercise 7.9.
- Exercise 7.10.
- Exercise 7.11.
- Exercise 7.12.
- Exercise 7.13.
- Exercise 7.14.
- Exercise 7.15.
- Exercise 7.16.
- Exercise 7.17.
- Exercise 7.18.
- Exercise 7.19.
- Exercise 7.20.
- Exercise 7.21.
- Exercise 7.22.
- Exercise 7.23.
- Exercise 7.24.
- Exercise 7.25.
- Exercise 7.26.

Some Special Functions

- Exercise 8.1.
- Exercise 8.2.
- Exercise 8.3.
- Exercise 8.4.
- Exercise 8.5.
- Exercise 8.6.
- Exercise 8.7.
- Exercise 8.8.
- Exercise 8.9.
- Exercise 8.10.
- Exercise 8.11.
- Exercise 8.12.
- Exercise 8.13.
- Exercise 8.14.
- Exercise 8.15.
- Exercise 8.16.
- Exercise 8.17.
- Exercise 8.18.
- Exercise 8.19.
- Exercise 8.20.
- Exercise 8.21.
- Exercise 8.22.
- Exercise 8.23.
- Exercise 8.24.
- Exercise 8.25.

- Exercise 8.26.
- Exercise 8.27.
- Exercise 8.28.
- Exercise 8.29.
- Exercise 8.30.
- Exercise 8.31.

Functions of Several Variables

- Exercise 9.2.
- Exercise 9.3.
- Exercise 9.4.
- Exercise 9.5.
- Exercise 9.6.
- Exercise 9.7.
- Exercise 9.8.
- Exercise 9.9.
- Exercise 9.10.
- Exercise 9.11.
- Exercise 9.12.
- Exercise 9.13.
- Exercise 9.14.
- Exercise 9.15.
- Exercise 9.16.
- Exercise 9.17.
- Exercise 9.18.
- Exercise 9.19.
- Exercise 9.20.
- Exercise 9.21.
- Exercise 9.22.
- Exercise 9.23.
- Exercise 9.24.
- Exercise 9.25.

- Exercise 9.26.
- Exercise 9.27.
- Exercise 9.28.
- Exercise 9.29.
- Exercise 9.30.
- Exercise 9.31.

Integration of Differential Forms

- Exercise 10.1.
- Exercise 10.2.
- Exercise 10.3.
- Exercise 10.4.
- Exercise 10.5.
- Exercise 10.6.
- Exercise 10.7.
- Exercise 10.8.
- Exercise 10.9.
- Exercise 10.10.
- Exercise 10.11.
- Exercise 10.12.
- Exercise 10.13.
- Exercise 10.14.
- Exercise 10.15.
- Exercise 10.16.
- Exercise 10.17.
- Exercise 10.18.
- Exercise 10.19.
- Exercise 10.20.
- Exercise 10.21.
- Exercise 10.22.
- Exercise 10.23.
- Exercise 10.24.
- Exercise 10.25.

- Exercise 10.26.
- Exercise 10.27.
- Exercise 10.28.
- Exercise 10.29.
- Exercise 10.30.
- Exercise 10.31.
- Exercise 10.32.

The Lebesgue Theory

- Exercise 11.1.
- Exercise 11.2.
- Exercise 11.3.
- Exercise 11.4.
- Exercise 11.5.
- Exercise 11.6.
- Exercise 11.7.
- Exercise 11.8.
- Exercise 11.9.
- Exercise 11.10.
- Exercise 11.11.
- Exercise 11.12.
- Exercise 11.13.
- Exercise 11.14.
- Exercise 11.15.
- Exercise 11.16.
- Exercise 11.17.
- Exercise 11.18.