Maschinelles Lernen Zusammenfassung

Thomas Mohr

Contents

1	Grur	ndlagen	4
	1.1	(Un)-überwachtes Lernen	4
	1.2	Inkrementelles Lernen	4
	1.3	Aktives Lernen	4
	1.4	Data cleansing	4
	1.5		4
2	Desl		6
	2.1	Beschreibung von Daten	6
	2.2	Mittelwert	6
	2.3	Median und Midrange	6
	2.4	Modus	6
	2.5	Varianz und Schiefe	7
		2.5.1 Moment k -ter Ordnung	7
	2.6	Quantil	8
		2.6.1 Interquantile range (IQR)	8
	2.7	· · · · ·	8
		2.7.1 Kovarianz für numerische Daten	8
		2.7.2 Korrelationskoeffizienten für numerische Daten	9
		2.7.3 Rangkorrelationskoeffizient	9
			9
	2.8	Visualisierung	0
		2.8.1 Boxplots	0
		2.8.2 Histogramme	1
		2.8.3 Quantil-Plots	2
	2.9	Distanzen	3
			3
			3
			4
			4
			4
	2.10	Dimensionsreduktion und Einbettung in den Vektorraum	5
		2.10.1 Multidimensionale Skalierung	
	2.11	Hauptkomponentenanalyse	
3	Regi	ression 1	6
	3.1	Bewertung und Fehler	6
			7
	3.2	·	8
	3.3	<u> </u>	9
	3.4		9
			9

R	Λna	lvse voi	n Granhdaten	32						
7	War	enkorba	analyse	32						
6	Clus	stering		32						
	5.4	Ausrei	chende Statistik	32						
		5.3.2	Normalverteilung							
		5.3.1	Bernoulli Verteilung							
	5.3	_	entielle Verteilungen							
	5.2		entenabstieg	30						
		5.1.7	Satz von Bayes – im multivariaten Fall							
		5.1.6	Verteilungen							
		5.1.5	Dichteschätzer							
		5.1.4	Schätzung der a-priori Wahrscheinlichkeiten							
		5.1.3	Satz von Bayes – im univariaten Fall							
		5.1.2	Produktregel (Wahrscheinlichkeit)							
		5.1.1	Summenregel (Wahrscheinlichkeit)	24						
	5.1	Satz ve	on Bayes							
5	Probabilistische Verfahren 23									
	4.4	Entsch	eidungsbäume	22						
	4.3		bei binärer Klassifizierung							
			Verdichtungstechniken							
	4.2		Klassifizierer							
	4.1	Fehler	bei Klassifizierung	20						
4	Klas	sifikatio	on	20						
		3.4.2	Bootstrapping	20						

1 Grundlagen

1.1 (Un)-überwachtes Lernen

- Eine **überwachte** Lernaufgabe liegt vor, wenn wir Beispiele haben, die das zu lernende Attribut bereits tragen (Zielvariable).
 - **Regression** im Fall von kontinuierlichen Werten (z.B. \mathbb{R}) eigentlich numerisch
 - Klassifikation im Fall von diskreten Labeln (z.B. TRUE, FALSE; ausgezeichnet, durchschnittlich, schlecht) eigentlich nominal oder ordinal
- Eine **unüberwachte** Lernaufgabe liegt vor, wenn es kein Attribut gibt, das wir lernen wollen und für das wir bereits Beispiele haben.
 - Clustering, also die Unterteilung der Daten in eine Menge von Gruppen
 - Finden von Ausreißern

1.2 Inkrementelles Lernen

• Anstatt das Modell stets von Null an zu lernen, wird das alte Modell mit neuen Beispielen erweitert.

1.3 Aktives Lernen

• Aktive Lernverfahren erzeugen die Beispiele selbst, d.h., sie sagen dem Benutzer, welches Tupel benötigt wird.

1.4 Data cleansing

- Fehlende Werte auffüllen
- Rauschen aus den Daten entfernen
- Daten glätten
- Ausreißer entfernen
- Identische Tupel identifizieren
- Daten komprimieren

1.5 Datensatz

- Ein Datensatz ist eine Tabelle.
- Eine Instanz (auch Objekt) ist eine Zeile in dieser Tabelle.
- Ein Attribut ist ein Feld, das ein Merkmal des Objekts repräsentiert. Mögliche Arten von Attributen sind:

- nominal (kategorisch)
 - * Keine sinnvolle Ordnung
 - * Wir können nicht rechnen (z.B. Mittelwert, Median, Abstände).
- ordinal (sortierte Kategorien)
 - * Sinnvolle Ordnung
 - * Der Unterschied zwischen zwei Ausprägungen ist i.d.R. unbekannt.
- binär
 - * Können nur zwei Werte annehmen
- numerisch
 - * Messbare Quantitäten
 - * Abstand zwischen zwei Werten kann quantifiziert werden.
 - * Auf den Attributen kann gerechnet werden.
 - * Wir unterscheiden:
 - \cdot diskrete Attribute (endliche oder abzählbar un
endliche Menge von womöglichen Ausprägungen)
 - · kontinuierliche Werte, reele Zahlen
 - · Attribute mit echtem Nullpunkt (Gewicht, Größe)
 - · Attribute ohne echten Nullpunkt (Jahresangaben, Temperatur in °C)
- \bullet Ein Datensatz besitzt N Instanzen und d Attribute.
 - $-x_i$ beschreibt die *i*-te Instanz.
 - $-x_{ij}$ beschreibt das j-te Attribut der i-ten Instanz.
 - -x beschreibt einen d-dimensionalen Vektor.
 - Liegt eine überwachte Lernaufgabe vor, so ist das Label der i-ten Instanz t_i .

2 Deskriptive Statistik

2.1 Beschreibung von Daten

• Wir betrachten nun Spalten des Datensatzes, also z.B. Spalte j:

$$X_i = (x_{1i}, \dots, x_{Ni})$$

2.2 Mittelwert

• Der Erwartungswert (Mittelwert) macht Aussagen zur Lage (dem "Zentrum") der Daten:

$$\mu_j := \sum_{i=1}^{N} x_{ij} \cdot p(x_{ij}) = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

• Ist eine Gewichtung vorhanden, so kann der gewichtete <u>Mittelwert</u> herangezogen werden:

$$\mu'_{j} := \frac{\sum_{i=1}^{N} w_{i} x_{ij}}{\sum_{i=1}^{N} w_{i}}$$

• Problematisch bei Ausreißern

2.3 Median und Midrange

- Der Median ist der mittlere Wert in der sortierten Folge X_j .
- Das mittlere Element muss nicht existieren.
 - Per Definition wählen wir dann als Median den Wert

$$\frac{1}{2}(x_{\frac{N}{2},j} + x_{\frac{N}{2+1},j})$$

im Fall numerischer Daten.

- Im Fall von ordinalen Daten kann der Median das <u>linke</u> oder das <u>rechte</u> Element sein, oder jede mögliche Ausprägung dazwischen.
- Der Midrange ist das arithmetische Mittel von Maximum und Minimum von X_i .

2.4 Modus

- Der Modus ist die am häufigsten vorkommende Ausprägung. Somit ist der Modus auch für nominale Attribute berechenbar.
- Wird die maximale Häufigkeit für mehr als einen Wert angenommen, so gibt es mehr als einen Modus.
- Kommt jede Ausprägung maximal einmal vor, so ist der Modus nicht existent.

2.5 Varianz und Schiefe

- Über einen Vergleich von Modus, Median und Mittelwert können wir (erste) Aussagen zur Schiefe machen.
- Über Maximum und Minimum können wir die Ausbreitung bestimmen.
- Mit dem Moment 2-ter und 3-ter Ordnung können wir beides auch quantisieren.
- Das Moment k-ter Ordnung des j-ten Attributs ist definiert als:

$$m_j^{(k)} = E((X_j - \mu_j)^k)$$

mit $E(X) = \sum_{1 \le i \le N} x_{ij} p(x_{ij})$ und μ_i ist Erwartungswert von X_i

2.5.1 Moment k-ter Ordnung

- k = 1 : ?
- $k = 2 : Var(X_j) := E((X_j \mu_j)^2) = E(X_j^2) \mu_j^2$
 - Die Varianz gibt die erwartete quadratische Abweichung vom Mittelwert an.
 - Sie ist also ein Maß für die Streuung der Daten (um den Mittelwert).
 - Die Quadratwurzel der Varianz wird als Standardabweichung bezeichnet und mit σ symbolisiert.
- $k = 3 : v(X_j) := E((X_j \mu_j)^3)$
 - Die Schiefe ist eine Kennzahl für die Asymmetrie einer Verteilung:

$$v(X) = \frac{3(\overline{X} - \tilde{X})}{s}$$

- $-v(X_i) < 0$: Verteilung ist linksschief
- $-v(X_i) > 0$: Verteilung ist rechtsschief
- $-v(X_i) = 0$: Verteilung symmetrisch
- $k = 4 : w(X_j) := E((X_j \mu_j)^4)$
 - Die Kurtosis ist eine Kennzahl für die Wölbung einer Verteilung:

$$w(X) = \frac{1}{N} \sum_{i=1}^{N} (\frac{x_i - \overline{X}}{s})^4$$

- -w(X) < 0: Verteilung ist platykurtisch (flachgipflig)
- -w(X) > 0: Verteilung ist leptokurtisch (steilgipflig)
- -w(X) = 0: Verteilung ist mesokurtisch (normalgipflig)

2.6 Quantil

- \bullet Zur Berechnung der Quantile wird X_j zunächst aufsteigend sortiert.
- Das k-te Quantil ist der Wert x aus X_j , so dass maximal $\frac{k}{q}$ der Werte in X_j kleiner als x sind, und $\frac{(q-k)}{q}$ größer; für 0 < k < q.
- Es gibt somit (q-1) q-Quantile.
- Sei $p:=\frac{k}{q}$. Dann ist das k-te q-Quantil von X_j definiert als:

$$x_{pj} := \begin{cases} \frac{1}{2}(x_{Np} + x_{Np+1}) & Np \text{ gerade} \\ x_{\lfloor Np+1 \rfloor} & Np \text{ ungerade} \end{cases}$$

2.6.1 Interquantile range (IQR)

- Ist definiert als IQR = Q3 Q1
- Es gibt an, wie die 50% der mittleren Daten streuen
- Der IQR kann zudem benutzt werden, um Ausreißer zu erkennen.
 - Berechne $\Delta = 1.5 \cdot IQR$
 - Ein Ausreißer ist ein Wert, der
 - * kleiner $Q1 \Delta$ ist.
 - * größer $Q3 + \Delta$ ist.
- \bullet Q1,Q2,Q3,IQR sowie Minimum und Maximum können graphisch im Boxplot zusammengefasst werden.

2.7 Korrelation zwischen Attributen

- Wir betrachten nun einen (möglichen) Zusammenhang der Spalten X_i und X_j .
- Je nach Attribut existieren unterschiedliche Maße:
 - Korrelationskoeffizienten und Varianz für numerische Daten
 - Rangkorrelationskoeffizienten für ordinale Daten
 - $-\chi^2$ -Test für nominale Attribute

2.7.1 Kovarianz für numerische Daten

- Erlaubt zu messen, wie startk sich zwei Variablen gemeinsam ändern
- Wir benötigen den Begriff des Erwartungswerts, der hier aber dem Mittelwert entspricht:

$$E(X_j) = \overline{X_j} = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

- $Cov(X_i, X_j) = E((X_i \overline{X_i})(X_j \overline{X_j})) = E(X_i X_j) \overline{X_i} \cdot \overline{X_j}$
- Tendieren X_i und X_j dazu sich gemeinsam zu ändern, so ist $Cov(X_i, X_j)$ positiv, bei entgegengesetzter Änderung negativ.
- Das Maß ist nicht normalisiert.

2.7.2 Korrelationskoeffizienten für numerische Daten

• Der Korrelationskoeffizient ist normalisiert im Interval [-1, 1]:

$$cor(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i)}\sqrt{Var(X_j)}}$$

- Wir haben keine Korrelation bei einem Wert von 0.
- Positive (negative) Korrelation liegt bei positiven (negativen) Werten vor.

2.7.3 Rangkorrelationskoeffizient

• Der (Spearman) Rangkorrelationskoeffizient basiert auf den Rängen der Elemente; wir betrachten die Spalten X_i und X_j . Er wird berechnet als:

$$r_s(X_i, X_j) = \frac{\sum_{1 \leq k \leq N} (rank(x_{ki}) - \mu Rank(X_i)) \cdot (rank(x_{kj}) - \mu Rank(X_j))}{\sqrt{\sum_{1 \leq k \leq N} (rank(x_{ki}) - \mu Rank(X_i))^2}} \sqrt{\sum_{1 \leq k \leq N} (rank(x_{kj}) - \mu Rank(X_j))^2}}$$

mit $\mu Rank(X_i)$ ist der mittlere Rang in Spalte i

- Der Rang wird aufsteigend anhand der Werte bestimmt. Der kleinste Wert nimmt dabei Rang 1 ein, der zweitkleinste Rang 2, usw. Tritt ein Wert mehrfach auf, so ergibt sich der Rang aus dem Arithmetischen Mittel.
- rs ist normalisiert in [-1, 1].

2.7.4 χ^2 -Test

- Seien a_1, \ldots, a_c die c Werte, die das Attribut X_k aufweist, b_1, \ldots, b_r die r Werte, die wir in der Spalte X_l finden.
- Berechne in o_{ij} die beobachtete Anzahl der Ereignisse, dass X_k den Wert a_i und X_l den Wert b_j gemeinsam annehmen.
- Wir können auch die erwartete Anzahl berechnen (für nicht korrelierte Atrribute):

$$e_{ij} = \frac{1}{N}(|X_k = a_i| \cdot |X_l = b_j|)$$

• Die Pearson χ^2 Statistik kann wie folgt berechnet werden:

$$\chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- Die Statistik testet die Null-Hypothese der Unabhängigkeit zweier Variablen.
- Der Test basiert auf einem Signifikanzniveau mit $(r-1) \cdot (c-1)$ Freiheitsgraden.
 - Das Signifikanzniveau ist die Wahrscheinlichkeit, mit der die Nullhypothese fälschlicherweise verworfen wird kann, obwohl sie eigentlich richtig ist.
- Die Hypothese kann abgelehnt werden, wenn der Wert der Prüfgröße größer ist als das (1-a)-Quantil der χ^2 Verteilung.

2.8 Visualisierung

2.8.1 Boxplots

- *IQR* ist die breite Mitte der Box.
- Das untere Quartil $(X_{0.25})$ ist die untere/linke Kante der Box.
- Das obere Quartil $(X_{0.75})$ ist die obere/rechte Kante der Box.
- Der Median ist durch eine Linie in der Box gekennzeichnet.
- Die langen Enden der Box heißen Whisker und geben die Grenzen für Ausreißer an.
 Alle Werte die außerhalb der Whisker, und damit des zulässigen Bereichs liegen, heißen Ausreißer.

2.8.2 Histogramme

- Werden zur Darstellung von Häufigkeitsverteilungen verwendet.
- Bei numerischen Attributen müssen disjunkte Klassen definiert werden.
 - Die Balkenbreite kann durch zwei Verfahren bestimmt werden:

* Scott-Regel:
$$w = \frac{3,49 \cdot \sigma}{\sqrt[3]{N}}$$

- * Regel von Diaconis: $w = \frac{2(Q3 Q1)}{\sqrt[3]{N}}$
- Die Häufigkeit ist proportional zum Flächeninhalt.

Beispiel

Klasse	Zahl der	Anzahl der Länder	Klassen-	Rechteckshöhe
j	PKW pro	KW pro (absolute Häufigkeit)		(Häufigkeitsdichte)
	1000	n_j	d_{j}	$h_j = rac{n_j}{h_j}$
1	0 - 200	5	200	0,025
2	200 - 300	6	100	0,06
3	300 - 400	6	100	0,06
4	400 - 500	9	100	0,09
5	500 - 700	6	200	0,03
Summe		32		
\sum				

2.8.3 Quantil-Plots

- Ein Quantil-Plot erlaubt es das Verhalten der Werte eines Attributs abzuschätzen.
- Die Daten im i-ten Attribut werden sortiert und das k-te Element wird abgetragen auf $f_k = \frac{k-0.5}{N}$.

Quantil-Plots (qq-Plots)

- Die Quantile einer Verteilung werden gegen die Quartile einer anderen Verteilung abgetragen.
- Die Werte in werden in den Attributen X_i und X_j sortiert.
- Enthalten beide Attribute die gleiche Anzahl an Elementen, so wird x_{ki} auf x_{kj} mit $1 \le k \le N$ abgebildet.
- Ansonsten ist $|X_i|<|X_j|$ und nur $|X_i|$ Punkte können geplottet werden:

- $-x_{ki}$ ist das $\frac{k-0.5}{|X_i|}$ Quantil.
- Das $\frac{k-0.5}{|X_i|}$ Quantil von X_j muss dann interpoliert werden.

2.9 Distanzen

- Ähnlichkeits- oder Distanzmaß, dass ein Objekt-Paar auf einen numerischen Wert abbildet
- Metrik:
 - Identität: $d(x_i, x_j) = 0 \iff x_i = x_j$
 - Symmetrie: $d(x_i, x_j) = d(x_j, x_i)$
 - Dreiecksungleichung: $d(x_i, x_i) \le d(x_i, x_k) + d(x_k, x_i)$
 - $-d(\cdot,\cdot)$ beschreibt hier ein Funktion und ist nicht mit der Anzahl an Attributen zu verwechseln.
- Eine Distanz kann in eine Ähnlichkeit und umgekehrt umgewandelt werden. Ist $d: 0 \times 0 \to [0,1]$, so kann $s(x_i,x_j) = 1 d(x_i,x_j)$ definiert werden.

2.9.1 Distanz auf numerischen Attributen

• Minkowski Abstand (Metrik)

$$d_h(x_i, x_j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + \ldots + |x_{id} - x_{jd}|^h}$$

- -h = 1: Manhattan Distanz
- -h=2: Euklidische Distanz
- Supremum Distanz für $h \to \inf,$ die zu $\max_{1 \le f \le d} |x_{if} x_{jf}|$ konvergiert

2.9.2 Distanz auf ordinalen Attributen

- Betrachtung der Ränge und einer darauf basierenden Abbildung.
- Sei M_f die Menge möglicher Ränge für das Attribut f.
- Ersetze Wert x_{if} durch dessen Rang $r_{if} \in \{1, \dots, M_f\}$.
- Nun kann mit den Rängen gearbeitet werden, allerdings sollte zuvor normalisiert werden:

$$z_{if} = \frac{r_{if} - 1}{M_f - 1} \in [0, 1]$$

ullet Die z_{if} sind numerisch und können beispielsweise mit der Minkowski Distanz verglichen werden.

13

2.9.3 Distanz auf nominalen Attributen

• Werden Objekte durch d nominale Attribute beschrieben, so kann die Distanz zwischen x_i und x_j wie folgt berechnet werden

$$d(x_i, x_j) = \frac{d - m}{d}$$

wobei m die Anzahl der Übereinstimmungen ist.

2.9.4 Distanz auf binären Attributen

	1	0	\sum
1	q	r	q+r
0	s	t	s+t
\sum	q+s	r+t	d

- Je nachdem, ob Attribute symmetrisch sind, können zwei verschiedene Distanzen definiert werden.
 - Ist sowohl der Zustand "0" als auch "1" gleichwertig, so definieren wir die Distanz als:

$$d(x_i, x_j) = \frac{r+s}{d}$$

 Im Fall eines asymmetrischen Attributs tragen die "1"-en die tatsächliche Information; "0"-en sind nicht von Interesse:

$$d)(x_i, x_j) = \frac{r+s}{q+r+s}$$

– Der Jaccard-Koeffizient ist ein häufig vorkommendes Ähnlichkeitsmaß:

$$s(x_i, x_j) = 1 - d(x_i, x_j) = \frac{q}{q + r + s}$$

2.9.5 Distanz auf gemischten Typen

• Sei d die Anzahl unterschiedlicher Attributstypen:

$$d(x_i, x_j) = \frac{\sum_{f=1}^d \delta_{ij}^{(f)} \frac{|x_{if} - x_{jf}|}{\max_{1 \le h \le N} x_{hf} - \min_{1 \le h \le N} x_{hf}}}{\sum_{f=1}^d \delta_{ij}^{(f)}}$$

- $\delta_{if}^{(f)}$ ist ein binärer Indikator.
 - Er ist 0, falls (x_{if} oder x_{jf} unbekannt sind, oder wenn) $x_{if} = x_{jf} = 0$ und das binäre Attribut f asymmetrisch ist; ansonsten ist $\delta_{if}^{(f)} = 1$.

2.10 Dimensionsreduktion und Einbettung in den Vektorraum

2.10.1 Multidimensionale Skalierung

- Überführung von Punkten aus einem d-dimensionalen Raum in einen m-dimensionalen Raum (d > m) oder metrischer Raum in Vektorraum.
- Die paarweisen Euklidischen Abstände sollen dabei möglichst wenig verändert werden.
- Es gilt:

$$d(x_i, x_j)^2 = d_{ij}^2 = \sum_{k=1}^d (x_{ik} - x_{jk})^2$$

$$= \sum_{k=1}^d (x_{ik})^2 - 2 \sum_{k=1}^d x_{ik} x_{jk} + \sum_{k=1}^d (x_{jk})^2$$

$$= b_{ii} + b_{jj} - 2b_{ij}$$

- Zentriere Daten im Urpsrung: $\sum_{i=1}^{N} x_{ij} = 0 \quad \forall j = 1, \dots, d$
- Die b_{ij} können zu einer $(N \times N)$ -Matrix B zusammengefasst werden. Daher gilt $B = XX^T$.
- X ist die gesuchte Matrix, die den Datensatz durch N Attribut-Vektoren beschreibt und die es nun zu approximieren gilt.
- Spektrale Zerlegung:

$$X = CD^{\frac{1}{2}}$$

mit C ist die Matrix, deren Spalten den Eigenvektoren von B entsprechen; D ist eine diagonale Matrix mit den Eigenwerten.

2.11 Hauptkomponentenanalyse

• Die Hauptkomponentenanalyse (PCA) projiziert ein Objekt $x \in \mathbb{R}^d$ auf $z \in \mathbb{R}^d$ wie folgt:

$$z = w^T x$$

- Ziel ist es durch eine Projektion die Varianz auf den neuen Attributen Z_1, \ldots, Z_d zu maximieren.
- Tatsächlich beträgt dabei die Korrelation zwischen allen Paaren (Z_i, Z_j) auch 0.
- Gesucht ist ein neuer m(< d) dimensionaler Raum, auf dem die Daten mit minimalem Informationsverlust projiziert werden können.

3 Regression

- Es liegen numerische Daten vor.
- Es existiert eine Zielvariable, die wir aus den anderen hervorgesagt werden soll.
- Ein Modell

$$f: \mathbb{R}^d \to \mathbb{R}$$

soll gelernt werden.

- Das Problem wird als
 - univariat bezeichnet, falls d = 1.
 - multivariat bezeichnet, falls d > 1.
- Ein Modell y(x) muss bewertet werden können.
- Dazu wird eine Fehlerfunktion $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ benötigt, die den Fehler auf den zukünftigen Eingaben misst.
- Eine gängige Wahl für die Regression ist der quadratische Fehler:

$$(y(x),t) \rightarrow (y(x)-t)^2$$

• Das Risiko (der erwartete Fehler) kann somit wie folgt angegeben werden:

$$R(y) = E[L] = \int L(t, y(x)) dP(x, t)$$

• Dieses Risiko kann jedoch nicht berechnet werden.

3.1 Bewertung und Fehler

• Die Approximation $R(y) = \int L(t, y(x)) dP(x, t)$ führt zum empirischen Risiko:

$$R_{emp}(y) = \frac{1}{N} \sum_{i=1}^{N} L(y(x_i), t_i)$$
$$= \frac{1}{N} \sum_{i=1}^{N} (y(x_i) - t_i)^2$$

• Dieser Ausdruck kann ausgewertet werden. Es wird eine Funktion (ein Modell) $y: \mathbb{R}^d \to \mathbb{R}$ gesucht, die das empirische Risiko minimiert.

3.1.1 Fitten eines Polynoms

- Nun wird der multivariate Fall betrachtet $(x_{i0} = 1 \text{ für } 1 \leq i \leq N)$.
 - Somit wird eines neues Attribut X_0 hinzugefügt, mit Wert 1 für jede Instanz.

$$\begin{pmatrix} X_0 & \dots & X_d \\ 1 & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ 1 & \dots & x_{Nd} \end{pmatrix}$$

$$y(x_i, w) = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id}$$
$$= \sum_{j=0}^{d} w_j x_{ij}$$

ullet Nun muss das optimale w gefunden werden, also jenes, für das

$$R_{emp}(w) = \frac{1}{N} \sum_{i=1}^{N} L(y(x_i), t_i)$$

minimiert wird.

• Gesucht wird also $w^* = A^{-1}y$ mit:

$$A = \begin{pmatrix} \sum_{i} x_{i0} x_{i0} & \sum_{i} x_{i1} x_{i0} & \sum_{i} x_{i2} x_{i0} & \dots & \sum_{i} x_{id} x_{i0} \\ \sum_{i} x_{i0} x_{i1} & \sum_{i} x_{i1} x_{i1} & \sum_{i} x_{i2} x_{i1} & \dots & \sum_{i} x_{id} x_{i1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{i} x_{i0} x_{id} & \sum_{i} x_{i1} x_{id} & \sum_{i} x_{i2} x_{id} & \dots & \sum_{i} x_{id} x_{id} \end{pmatrix}$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{pmatrix}$$

$$y = \begin{pmatrix} \sum_{i} t_{i} x_{i0} \\ \sum_{i} t_{i} x_{i1} \\ \sum_{i} t_{i} x_{i2} \\ \vdots \\ \sum_{i} t_{i} x_{id} \end{pmatrix}$$

• Die Berechnung kann effizienter gestaltet werden durch $w^* = (D^T D)^{-1} D^T t$ mit:

$$D = \begin{pmatrix} x_{i0} & x_{11} & x_{12} & \dots & x_{1d} \\ x_{i0} & x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{i0} & x_{N1} & x_{N2} & \dots & x_{Nd} \end{pmatrix}$$

$$t = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_N \end{pmatrix}$$

3.2 Overfitting

- Es wird nicht nur das durch die Daten zugrundeliegende Modell, sondern auch das Rauschen, gelernt.
- Jedoch soll ein Modell erzeugt werden, das gut generalisiert.
- Es kann ein Regularisierungsterm verwendet werden, um hohe Koeffizienten zu bestrafen:

$$R'(w) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i, w) - t_i)^2 + \frac{\lambda}{2} \|w\|^2$$

- Ein $\lambda=0$ führt zu dem alten Ansatz; je größer λ , desto stärker werden hohe Koeffizienten bestraft.
- Es soll eine gute Generalisierung erreicht werden, demzufolge muss

$$\int L(t, y(x))dP(x, t)$$

minimiert werden.

- Es wird ein Datensatz zum Lernen und einer zum Validieren benötigt.
- ullet Ist nur ein Datensatz gegeben, so kann die k-fold Kreuzvalidierung Anwendung finden.
- Eine weitere Methode (bei wenigen Daten) ist das Bootstrapping.

3.3 k-fold Kreuzvalidierung

- \bullet Die Daten werden zufällig permutiert und in k (annähernd) große Buckets verteilt.
- Es wird beginnend bei i = 1 das Bucket i beiseite gelegt.
- Die verbleibenden Buckets werden als Trainingsdaten verwendet; das beiseite gelegte als Testdatensatz.
- Somit ergeben sich k Ergebnisse, mit denen die Modelle bewertet werden können.
- Aggregierung z.B. durch Mittelwert und Standardabweichung führt zu Punktschätzer.

3.4 Evalutation der Modelle

3.4.1 Wilcoxon Test

- Es werden zwei Stichproben danach getestet, ob
 - der Mittelwert der einen Stichprobe kleiner-gleich dem Mittelwert der anderen Probe ist (einseitiger Test):

$$H_0: \mu_1 \leq \mu_2$$

und

$$H_1: \mu_1 > \mu_2$$

- die Mittelwerte identisch sind (zweiseitiger Test):

$$H_0: \mu_1 = \mu_2$$

und

$$H_1: \mu_1 \neq \mu_2$$

• Für den Test müssen folgende Stichprobenvariablen berechnet werden $(R_{\cdot,1})$ ist der Vektor der empirischen Fehler der ersten Parametrisierung, $R_{\cdot,2}$ analog):

$$D_i = R_{i,1} - R_{i,2}$$

• Berechnet werden folgende Werte:

$$rg_{i} = rang(|D_{i}|)$$

$$W_{+} = \sum_{i=1}^{N} \mathbb{I}_{R_{i,1}, -R_{i,2} > 0} rg_{i}$$

$$W_{-} = \sum_{i=1}^{N} \mathbb{I}_{R_{i,1}, -R_{i,2} < 0} rg_{i}$$

$$W = \mathbb{I}_{q} = \begin{cases} 1 & q \\ 0 & \neg q \end{cases}$$

• Gilt $R_{i,1} - R_{i,2} = 0$, so wird das Paar keinem der Werte W_+ und W_- zugeordnet.

Beispiel

R_1	R_2	D_i	$ D_i $	rg_i	W_{+}	W_{-}
5	8	-3	3	2,5		2,5
3	10	-7	7	5		5
15	12	3	3	2,5	2,5	
25	20	5	5	4	4	
18	19	-1	1	1		1

 \bullet Berechne Minimum aus den Summen von W_+ und $W_-\colon$

$$\min\{6.5, 8.5\} = 6.5$$

•
$$\forall i.R_{i,1} - R_{i,2} \neq 0 \implies n = N = 5$$

3.4.2 Bootstrapping

- Bei sehr kleinen Datensätzen würden die Folds (Kreuzvalidierung) sehr klein werden.
- \bullet Daher werden zufällig Ngleichverteilte Instanzen aus dem Datensatz der Größe Ngezogen; das Ziehen erfolgt mit Zurücklegen.
- Diese Prozedur kann k-mal wiederholt werden, um mehrere Trainings- und Testdatensätze zu erzeugen.
- Es gilt:

$$\underbrace{(1-\frac{1}{N})^N}_{\mbox{Instanz }x_i \mbox{ wird nach}} \approx e^{-1}$$
 N Ziehungen nicht gezogen
$$= 0,368$$

• Somit enthält der Trainingsdatensatz 63, 2% der Instanzen.

4 Klassifikation

4.1 Fehler bei Klassifizierung

• Auf analoge Weise zur Regression ergibt sich das Risiko für die Klassifikation:

$$\sum_{k} \sum_{j} \int_{R_{j}} L_{kj} P(x, k) dx$$

-k, j sind Klassen

- $-R_j$ sind Klassenregionen
- Der Fehler kann asymmetrisch sein
- Erneut kann das Risiko nicht ausgewertet werden und daher wird der empirische Fehler (mit \hat{t}_i ist prognostizierte Klasse) bestimmt:

$$\frac{1}{N} \sum_{i=1}^{N} L_{\hat{t}_i, t_i} \overset{\text{symmetrische Variante}}{\widehat{\approx}} \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{t_i \neq \hat{t}_i}$$

4.2 k-NN Klassifizierer

- \bullet Anstatt ein Modell zu lernen, werden im Beispiel der Trainingsdaten die k ähnlichsten Objekte gesucht, und damit k Ausprägungen des zu lernenden Attributs.
- Basierend auf den k Ausprägungen wird eine Mehrheitsentscheidung getroffen.
- Dazu wird ein geeignetes Ähnlichkeitsmaß benötigt, z.B. ein passendes h bei der Minkowski-Distanz.
- \bullet Bei großen Datensätzen kann der k-NN Klassifizierer ineffizient werden.

4.2.1 Verdichtungstechniken

- Bestimmte Instanzen definieren stückweise lineare Funktionen (Voronoi-Diagramm), die zur Klassifikation gebutzt werden können.
- Die Instanzen werden greedy bestimmt; Ausgang ist 1-NN.
 - 1. Initial ist die Menge Z der gesuchten Instanzen leer
 - 2. Durchlaufen der Instanzen x des Datensatzes in jedem neuen Zyklus in neuer zufälliger Reihenfolge (bis Z stabil ist) und betrachte x_i :
 - a) Finde das Element x_j in Z, das die minimale Distanz zu x_i ausweist (ist Z noch leer, so füge x_i zu Z hinzu).
 - b) Weist x_i nicht das selbe Label auf wie x_i , so füge x_i zu Z hinzu.

4.3 Fehler bei binärer Klassifizierung

- Andere Maße vergleichen
 - wahr positiv (tp)
 - wahr negativ (tn)
 - falsch positiv (fp)
 - falsch negativ (fn)

	Predicted class			
True class	Positive	Negative	Total	
Positive	tp: true positive	fn: false negative	p	
Negative	fp: false positive	tn: true negative	n	
Total	p'	n'	N	

- Die ROC-Kurve trägt für verschiedene Parametrisierungen eines Algorithmus (z.B. Loss-Matrix) $\frac{fp}{n}$ gegen $\frac{tp}{p}$ ab.
- Interessant ist vor allem die AUC, also die Fläche unter der ROC-Kurve. Ist diese eins, so liefert der Klassifizierer ein optimales Ergebnis.

4.4 Entscheidungsbäume

- Der Entscheidungsbaum ist ein hierarchisches Modell.
- Es werden lokale Regionen durch eine Sequenz von Aufteilungen identifiziert.
- Jeder Knoten definiert eine Testfunktion mit einem diskreten Ergebnis.
- Es wird an der Wurzel gestartet und ein Durchlauf entlang eines Pfades bis zum Blatt wird gestartet.
- Die Baum-Induktion erfolgt durch eine Stichprobe (Trainingsdaten); die Verfahren sind greedy und suchen in jedem Schritt die lokal beste Aufteilung.
- Die Zahl der Elemente, die Knoten m erreichen, sei N_m (in der Wurzel ist diese Zahl N).
- $N_m^{(i)}$ der Elemente gehört zu Klasse C_i und somit gilt:

$$\sum_{i} N_m^{(i)} = N_m$$

 \bullet Die Schätzung am Knoten m beträgt:

$$\hat{P}(C_i \mid x, m) \equiv p_m^{(i)}$$

$$= \frac{N_m^{(i)}}{N_m}$$

- Ein Knoten ist rein, wenn die Schätzung entweder 0 oder 1 ist.
- Bei reinen Knoten ist keine weitere Zerlegung notwendig; es wird ein Blatt gebildet.
- Eine Möglichkeit zur Messung der Unreinheit ist die Entropie:

$$I_m = -\sum_{i=1}^k p_m^{(i)} \log_2 p_m^{(i)}$$

mit $\lim_{n\to 0} n \log_2 n = 0$ und daher $0 \log_2 0 \stackrel{def}{=} 0$.

• Eine uniforme Verteilung hat eine höhere Entropie als eine nicht-uniforme Verteilung.

Beispiel

- Betrachtet wird der Knoten m (zu Beginn die Wurzel).
 - Welches Attribut soll zur nächsten Verzweigung gewählt werden?
 - Es werden univariate B\u00e4ume verwendet; multivariate bringen im Allgemeinen keine Vorteile.
- Angenommen es wird das Attribut $a, 1 \le a \le d$ betrachtet.
 - Ist es numerisch, gibt es zwei Verzweigungen gemäß Test $x_{ia} \leq \theta_0$.
 - Ist es diskret, so gibt es so viele Verzweigungen, wie das Attribut (verschiedene) Ausprägungen hat.
 - Es gibt im Allgemeinen v Verzweigungen.
- Von den N_m Elementen, die Knoten m erreichen, nehmen N_{mj} die j-te der v Verzweigungen, $N_{mj}^{(i)}$ davon gehören zur Klasse i.
- Für die Kinder von m können die Wahrscheinlichkeiten für die Klasse i ermittelt werden, für Kind j gilt insbesondere:

$$\hat{P}(C_i \mid x, m, j) \equiv p_{mj}^{(i)}$$

$$= \frac{N_{mj}^{(i)}}{N_{mj}}$$

• Würde im Attribut a verzweigt werden, so ergibt sich bei einem k-Klassen Problem eine neue Entropie von:

$$I'_{m} = -\sum_{j=1}^{v} \frac{N_{mj}}{N_{m}} \cdot \sum_{i=1}^{k} p_{mj}^{(i)} \log_{2} p_{mj}^{(i)}$$

5 Probabilistische Verfahren

- Es werden nun Wahrscheinlichkeitsverteilungen auf den Attributen und der Zielvariable betrachtet.
- \bullet Gegeben ist ein univariater Datensatz, anhand dessen Kunden, basierend auf dem Attribut $Einkommen~X_1$, auf Kreditwürdigkeit hin klassifiziert werden sollen.
- Die Kreditwürdigkeit kann durch eine Bernoulli Variable dargestellt werden, bedingt durch die Variable X_1 .
- ullet C=1 entspricht dabei hohem Ausfallrisiko, und C=0 einem geringem Ausfallrisiko

- Wäre $P(C \mid X_1)$ bekannt, so könnte für einen neuen Kunden x_{N+1} basierend auf $P(C = 1 \mid x_{N+1,1}) > 0.5$ eine Entscheidung getroffen werden.
- Es könnte sogar die Fehlerwahrscheinlichkeit

$$1 - \max\{P(C = 0 \mid x_{N+1,1}, x_{N+1,2}), P(C = 1 \mid x_{N+1,1}, x_{N+1,2})\}$$

berechnet oder eine Ablehnungsoption verwendet werden.

5.1 Satz von Bayes

• Mit dem Satz von Bayes kann $P(C \mid x)$ berechnet werden:

$$P(C \mid x) = \frac{P(C)p(x \mid C)}{p(x)}$$

- -P(C) ist die **a-priori** Wahrscheinlichkeit.
- $-p(x \mid C)$, der **Klassen-Likelihood**, ist die Wahrscheinlichkeit, dass ein zu C gehörendes Ereignis den Beobachtungswert x hat.
- -p(x) ist die **Evidenz**, die Randwahrscheinlichkeit, dass die Beobachtung x gemacht wird (nicht direkt berechenbar).

5.1.1 Summenregel (Wahrscheinlichkeit)

- Angenommen $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$ ist bekannt.
- Es gilt

$$p(X = x_i) = \frac{c_i}{N}$$
$$= \sum_j \frac{n_{ij}}{N}$$

und damit

$$p(X = x_i) = \sum_{j} \frac{n_{ij}}{N}$$
$$= \sum_{j} p(X = x_i, Y = y_j)$$

5.1.2 Produktregel (Wahrscheinlichkeit)

- Tatsächlich ist bekannt: $p(Y = y_j \mid X = x_i) = \frac{n_{ij}}{c_i}$.
- Ferner ist bekannt: $p(X = x_i) = \frac{c_i}{N}$.
- Daraus ergibt sich

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$
$$= \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$

und somit

$$p(X = x_i, Y = y_j) = p(Y = y_j \mid X = x_i)p(X = x_i)$$

- P(C) und $p(x \mid C)$ können basierend auf den Daten oder einer Stichprobe davon berechnet werden.
- $p(x) = p(x \mid C = 1)P(C = 1) + p(x \mid C = 0)P(C = 0)$ im Fall eines binären Klassifikationsproblems
- \bullet Im allgemeinen Fall gibt es k Klassen:

$$P(C_i \mid x) = \frac{P(C_i)p(x \mid C_i)}{\sum_k P(C_k)p(x \mid C_k)}$$

• Klasse k wird gewählt, falls $k = \arg \max_{i} P(C_i \mid x)$

5.1.3 Satz von Bayes - im univariaten Fall

- Die Dichten der Verteilungen $P(C_i)$ und $p(x \mid C_i)$ müssen für alle i geschätzt werden.
- Es kann eine (bis auf die Parameter) bekannte Verteilung vorliegen.
 - Es gibt Tests, um auf eine bestimmte Verteilung hin zu testen.
 - Es reichen jedoch auch Histrogramme und qq-Plots.
 - Die Berechnung der unbekannten Parameter erfolgt durch Optimierung (Maximum Likelihood).
- Die Verteilung kann sich aus mehreren bekannten Dichten zusammensetzen (z.B. Mixture of Gaussians).
- Wenn die Dichte nicht bekannt ist, so kann auf ein k-NN oder Kernel Verfahren zurückgegriffen werden.

5.1.4 Schätzung der a-priori Wahrscheinlichkeiten

• Die a-priori Wahrscheinlichkeiten werden aus dem Datensatz geschätzt mit

$$p(C_k) = \frac{N_k}{N}$$

wobei N_k die Anzahl der Instanzen mit der Klassenzugehörigkeit k ist und N die Anzahl der Daten im Datensatz.

5.1.5 Dichteschätzer

• Gegeben sind unabhängige und identisch verteilte Stichproben:

$$X = \{x_{i1}\}_{i=1}^{N} = \{x_i\}_{i=1}^{N}$$

- Die x_i sind nach einer bis auf θ bekannten Dichte $p(x \mid \theta)$ gezogen worden.
- Gefunden werden soll das θ , bei dem die x_i am wahrscheinlichsten aus $p(x \mid \theta)$ gezogen wurden.
- Aufgrund der iid Annahme ergibt sich die Likelihood:

$$l(\theta \mid X) \equiv p(X \mid \theta)$$
$$= \sum_{i=1}^{N} p(x_i \mid \theta)$$

• Ziehen des Logarithmus (log-Likelihood) und Ableiten ermöglicht nun das Maximieren.

Gauss-Verteilung

•
$$p(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \frac{-(x-\mu)^2}{2\sigma^2}$$

• Die Maximum Likelihood (ML) Schätzer sind

$$\hat{m} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\hat{s}^2 = \frac{\sum_{i=1}^{N} (x_i - \hat{m})^2}{N}$$

Bernoulli-Verteilung und deren Verallgemeinerung

•
$$P(x \mid p) = p^x (1-p)^{1-x}, x \in \{0, 1\}$$

• Der ML Schätzer ist
$$\hat{p} = \frac{\sum_{i=1}^{N} x_i}{N}$$

 \bullet Verallgemeinert auf k Zustände erhält man $(\sum_{j=1}^k p_j = 1)$

$$P(x_{i1}, \dots, x_{ik} \mid p) = \prod_{j=1}^{k} p_j^{x_{ij}}$$

und als ML Schätzer

$$\hat{p} = \frac{\sum_{i=1}^{N} x_{ij}}{N}$$

Binomialverteilung

• Verwandt mit dem Bernoulli Experiment

• m ist die Anzahl der Beobachtungen mit x=1 für ein Bernoulli Experiment (bzw. die zugehörige Variable)

•
$$Bin(m \mid N, p) = {N \choose m} p^m (1-p)^{N-m}$$

•
$$E(m) = Np$$

•
$$Var(m) = Np(1-p)$$

5.1.6 Verteilungen

ullet Setzt sich eine Verteilung aus n Verteilungen (z.B. Normalverteilungen) zusammen, so gilt:

$$p(x) = \sum_{j=1}^{n} \pi_j \mathcal{N}(x \mid \mu_j, \sigma_j)$$

•
$$\sum_{j=1}^{n} \pi_j = 1$$

- Nun sollen die Parameter $\mu_j, \sigma_j, \pi_j, (1 \le j \le n)$ aus den Daten geschätzt werden.
- Mit der log-Likelihood Methode ergibt sich:

$$\sum_{i=1}^{N} \log \sum_{j=1}^{n} \pi_{j} \mathcal{N}(x_{i} \mid \mu_{j}, \sigma_{j}) \to \max$$

Wenn die Daten nicht einer bekannten Verteilung folgen?

- Dichte basierend auf Histogramm
- Die Punkte stammen aus einer unbekannten Verteilung mit Dichte $p(\cdot)$
- Die Punkte sind im 1-dimensionalen Euklidischen Raum eingebettet
- \bullet p(x) soll geschätzt werden. Dazu wird ein kleines Interval R um x betrachtet.
- Bilde $P = \int_{R} p(x) dx$ und ziehe Stichprobe der Größe N aus p(x)
- \bullet Jeder Punkt hat eine Wahrscheinlichkeit von P in R zu fallen.
- Die Zahl K der Punkte, die in R fallen, ist binomialverteilt

$$Bin(K \mid N, P) = \binom{N}{K} p^{k} (1 - P)^{N - K}$$

- Die Varianz und der Erwartungswert der Binomialverteilung sind bekannt:
 - Der erwartete Anteil der Punkte, die in R fallen, ist P.
 - -Für die Varianz um
 <u>diesen</u> Mittelwert $\frac{P(1-P)}{N}$
- Dadurch kann festgestellt werden, dass:
 - Für große N hat die Verteilung einen scharfen Peak um das erwartete P und damit $K \approx NP$.
 - Wird das Interval ausreichend klein gemacht, so dass p(x) annähernd konstant in R ist, so erhält man $P \approx p(x)V$ mit V ist "Volumen" von R.
 - Kombinieren beider Beobachtungen führt zu:

$$p(x) = \frac{K}{NV}$$

- K kann nun fixiert und V aus den Daten ermittelt werden (k-NN)
- \bullet Alternativ kann V fixiert und K aus den Daten ermittelt werden (Kernel-Technik).
- ullet Betrachte zunächst die k-NN Methode:
 - -p(x) soll an x geschätzt werden. Wähle K fest, aber beliebig.

- Lege Interval um x und lasse es wachsen, bis es genau K Punkte umfasst.
- $-\ p(x) = \frac{K}{NV}$ mit Nder Stichproben
- Das Kernelverfahren verwendet eine Kernel-Funktion:

$$\kappa(u) = \begin{cases} 1 & |u| \le \frac{1}{2} \\ 0 & \text{sonst} \end{cases}$$

- κ repräsentiert ein Einheitsintervall (Parzen-Fenster).
- $\kappa(\frac{x-x_i}{h})$ ist 1, falls der Punkt x_i in einem Interval der Länge h und Mitte x liegt.
- Die Gesamtanzahl ist somit

$$K_x = \sum_{i=1}^{N} \kappa(\frac{x - x_i}{h})$$

 \bullet Es ist bereits bekannt, dass $p(x) = \frac{K}{NV}$ und es ergibt sich damit

$$p(x) = \frac{1}{Nh} \sum_{i=1}^{N} \kappa(\frac{x - x_i}{h})$$

mit V = h.

• Es kann auch ein Gauß-Kern verwendet werden, um zu einer stetigen Dichte zu gelangen:

$$p(x) = \frac{1}{N} \sum_{t=1}^{N} \frac{1}{\sqrt{w\pi h^2}} \cdot e^{\frac{\|x - x_i\|^2}{2h^2}}$$

ullet Dabei repräsentiert h die Standardabweichung der Gauß-Komponente.

5.1.7 Satz von Bayes - im multivariaten Fall

• Es bleibt vieles beim Alten:

$$P(C \mid x) = \frac{P(C)p(x \mid C)}{p(x)}$$

- Die Dichten $p(x \mid C)$ und p(x) sind nun aber multivariat.
 - Der ML Schätzer funktioniert wie gewohnt; es gibt jedoch mehr Parameter zu schätzen.
 - Nach wie vor können Mixtures, z.B. Mixture of Gaussians verwendet werden.

Multivariate Normalverteilung

- $p(x \mid \sum, \mu) = \frac{1}{(2\pi)^{\frac{d}{2}} |\sum|^{\frac{1}{2}}}$
- Mit den ML Schätzern:

$$m_{j} = \frac{\sum_{i=1}^{N} x_{ij}}{N}$$

$$s_{ij} = \frac{\sum_{k=1}^{N} (x_{ki} - m_{i})(x_{kj} - m_{j})}{N}$$

- Die Kernel- und k-NN Schätzer müssen nur geringfügig angepasst werden:
 - Anstatt eines Intervalls, wird eine Hyperkugel um x gelegt; die Kugel wächst, bis sie genau K Daten enthält.
 - Im Fall des Kernels repräsentiert das Parzen Fenster nun kein Interval mehr, sondern eine Hyperkugel.
- Es können jedoch auch vereinfachende Annahmen gemacht werden (Naive Bayes).
- Eine (naive) Möglichkeit zur Vereinfachung ist anzunehmen, dass für jede Klasse C_k die Verteilungen der individuellen Attribute bedingt unabhängig sind; dann gilt:

$$p(x_i \mid C_k) = \prod_{1 < l < d} p(x_{il} \mid C_k)$$

• Somit ergibt sich final:

$$P(C_k \mid x_i) = \frac{P(C_k) \prod_{l=1}^{d} p(x_{il} \mid C_k)}{\sum_{j} P(C_j) \prod_{l=1}^{d} p(x_{il} \mid C_j)}$$

5.2 Gradientenabstieg

- Das Mixture of Gaussians Modell konnte nicht analytisch gelöst werden.
- Es kann jedoch der Gradient berechnet werden.
- Annahme: f(x) ist zu minimieren und der Gradient $\nabla f(f)$ ist bekannt.

5.3 Exponentielle Verteilungen

• Gegeben durch

$$p(x \mid \eta) = h(x)g(\eta)e^{\eta^T u(x)}$$

 $_{
m mit}$

$$g(\eta) \int h(x) e^{\eta^T u(x)} dx = 1$$

- x kann Skalar oder Vektor sein (sowohl diskret oder kontinuierlich).
- η sind sogenannte natürliche Parameter der Verteilung.
- u(x) ist eine Funktion von x.

5.3.1 Bernoulli Verteilung

• Ist bekanntlich gegeben durch:

$$p(x \mid \mu) = \mu^x (1 - \mu)^{1-x}$$

• Rechts wird eine Potenz des Logarithmus verwendet

$$p(x \mid \mu) = e^{x \ln \mu + (1-x) \ln(1-\mu)}$$
$$= (1-\mu)e^{\ln(\frac{\mu}{1-\mu})x}$$

und erkennen, dass

$$\eta = \ln(\frac{\mu}{1-\mu})$$

$$u(x) = x$$

$$h(x) = 1$$

$$g(\eta) = \sigma(-\eta)$$

mit

$$\sigma(\eta) = (1 + e^{-\eta})^{-1}$$

• Damit gilt:

$$p(x \mid \mu) = \sigma(-\eta)e^{\eta x}$$

5.3.2 Normalverteilung

• Ist bekanntlich gegeben durch:

$$p(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{1}{2\sigma^2}(x-\mu)^2}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2} e^{(-\frac{1}{2\sigma^2} + \frac{\mu}{\sigma^2} x \frac{1}{2\sigma^2} \mu^2)}}$$

• Betrachte sofort das Ergebnis mit $\eta = (\eta_1, \eta_2)$ und

$$\eta = \begin{pmatrix} \frac{\mu}{\sigma^2} \\ \frac{-1}{2\sigma^2} \end{pmatrix}$$

$$u(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$$

$$h(x) = (2\pi)^{-\frac{1}{2}}$$

$$g(\eta) = (-2\eta_2)^{\frac{1}{2}} e^{\frac{\eta_1^2}{4\eta_2}}$$

5.4 Ausreichende Statistik

 $\bullet\,$ Es kann auch der Likelihood berechnet werden:

$$p(X \mid \eta) = (\prod_{i=1}^{N} h(x_i))g(\eta)^N e^{\eta^T} \sum_{i=1}^{N} u(x_i)$$

• Setzen des Gradienten von $\ln(p(X \mid \eta))$ btgl. η gleich Null liefert:

$$-\nabla \ln g(\eta_{ML}) = \frac{1}{N} \sum_{i=1}^{N} u(x_i)$$

- \bullet Für die Bernoulli-Verteilung genügt es die Summe der x zu speichern.
- Für die Normalverteilung wird die Summe von x und x^2 benötigt.
- Für $N \to \inf$ ergibt sich E(u(x)) und η_{ML} geht in das wahre η über.

6 Clustering

- 7 Warenkorbanalyse
- 8 Analyse von Graphdaten