Devoir sur table nº 1

Mathématiques

Durée : 2h. Calculatrice interdite.

- Mettre le numéro des questions.
- Justifiez vos réponses.

• ENCADREZ vos résultats.

- Utilisez des mots en français entre les assertions mathématiques.
- Numérotez les copies (pas les pages).
- Bon courage!

Question de cours

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Montrer que si f est impaire alors son graphe C_f est symétrique par rapport à l'origine O du repère.

Solution. Soit $M(x,y) \in \mathcal{C}_f$. Montrons que M'(x',y'), le symétrique de M par rapport à l'origine, appartient aussi à \mathcal{C}_f . On a : y = f(x), x' = -x et y' = -y. Ainsi, f(x') = f(-x) = -f(x) car f est impaire. Donc finalement, f(x') = -y = y' i.e. $M' \in \mathcal{C}_f$.

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire à l'aide de quantificateurs les phrases suivantes.

- 1) La fonction f ne prend que des valeurs positives.
- 2) La fonction f est constante sur \mathbb{R} .
- 3) Tout réel admet un antécédent par f.
- 4) $f \colon \mathbb{R} \to \mathbb{R}$ n'est pas bijective.

Solution.

- 1) $\forall x \in \mathbb{R}, \ f(x) \geqslant 0.$
- 2) $\exists C \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = C.$
- 3) $\forall y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ y = f(x).$
- 4) Quantification de $f: \mathbb{R} \to \mathbb{R}$ bijective : $\forall y \in \mathbb{R}, \exists ! x \in \mathbb{R}, y = f(x)$. Négation : $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y \neq f(x)$ ou $\exists (x, x') \in \mathbb{R}^2, x \neq x' \text{ et } y = f(x) = f(x')$.

Exercice 2. Soit f la fonction définie par $f(x) = \sin^2(x) - \cos(2x)$.

- 1) Réduire au maximum le domaine d'étude de f. On notera I ce domaine.
- 2) Expliquer comment, à partir du graphe de f sur I, en déduire le graphe sur \mathbb{R} .
- 3) Montrer que : $\forall x \in \mathbb{R}, \ f(x) = 3\sin^2(x) 1.$
- 4) Déterminer les variations de f sur I.

Solution.

- 1) $D_f = \mathbb{R}$. Pour tout $x \in \mathbb{R}$, $f(x+\pi) = (-\sin x)^2 \cos(2x+2\pi) = f(x)$. Donc f est π -périodique. De plus, pour tout $x \in \mathbb{R}$, $f(-x) = (-\sin x)^2 \cos(2x)$ en utilisant la parité du cosinus et l'imparité du sinus. Donc f est paire. On peut ainsi réduire son domaine d'étude à $I = \left[0, \frac{\pi}{2}\right]$.
- 2) La partie du graphe sur $\left[-\frac{\pi}{2},0\right]$ se déduit $\left[\text{par symétrie d'axe }(Oy)\right]$. Le reste se déduit par $\left[\text{translation}\right]$ de la portion de graphe sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
- 3) Formule de duplication : $\cos(2x) = 1 2\sin^2(x)$. D'où, $f(x) = \sin^2 x 1 + 2\sin^2 x = 3\sin^2 x 1$.
- 4) On dérive cette dernière identité : $f'(x) = 6 \cos x \sin x \ge 0$ sur $\left[0, \frac{\pi}{2}\right]$ et avec égalité en x = 0 et $x = \frac{\pi}{2}$. Ainsi, f est strictement croissante sur I.

Exercice 3. Soit $m \in \mathbb{R}$. On considère les deux équations suivantes, d'inconnue $x \in \mathbb{R}$.

$$(E_m)$$
: $mx = \sqrt{2x+1}$ et (F_m) : $m^2x^2 - 2x - 1 = 0$.

- 1) Déterminer le domaine de résolution de (E_m) .
- 2) On suppose $m \neq 0$. Montrer que (F_m) possède deux solutions : une négative qu'on note $x_1(m)$ et une positive qu'on note $x_2(m)$.
- 3) Montrer qu'alors $x_1(m) \geqslant -\frac{1}{2}$.
- 4) Étant donné x appartenant au domaine de résolution, l'implication " $(E_m) \Longrightarrow (F_m)$ " est-elle vraie en général? Que dire de la réciproque?
- 5) Résoudre (E_m) pour tout $m \in \mathbb{R}$. On pourra éventuellement distinguer plusieurs cas.

Solution.

1)
$$(E_m)$$
 est définie lorsque $2x + 1 \ge 0$ *i.e.* $x \ge -\frac{1}{2}$. Donc $D = \left[-\frac{1}{2}, +\infty\right[$.

2) Pour $m \neq 0$, (F_m) est une équation polynomiale de degré 2. On pose $\Delta = (-2)^2 + 4m^2 = 4(1+m^2) > 0$. If y a donc deux solutions:

$$x_1(m) = \frac{2 - 2\sqrt{1 + m^2}}{2m^2} = \frac{1 - \sqrt{1 + m^2}}{m^2}$$
 et $x_2(m) = \frac{1 + \sqrt{1 + m^2}}{m^2}$.

On a bien
$$x_2(m) \ge \frac{1+\sqrt{1}}{m^2} > 0$$
 et $1 < \sqrt{1+m^2}$ donc $x_1(m) < 0$.

3) On procède par équivalence :

$$\begin{split} x_1(m)\geqslant -\frac{1}{2} &\iff 2-2\sqrt{1+m^2}\geqslant -m^2 \quad \text{car } 2m^2>0\\ &\iff 1+m^2-2\sqrt{1+m^2}+1\geqslant 0\\ &\iff \left(\sqrt{1+m^2}-1\right)^2\geqslant 0 \quad \text{ce qui est vrai.} \end{split}$$

D'où le résultat.

4) Rappel : si a=b alors $a^2 = b^2$. La réciproque est vraie si on suppose a et b de même signe. Ainsi, pour $x \in D$, on a toujours : $(E_m) \implies (mx)^2 = 2x + 1 \implies (F_m)$. En revanche, la réciproque n'est pas vraie en général : si on prend par exemple m=1 et $x = x_1(1) = 1 - \sqrt{2}$ alors (F_m) est vraie mais pas (E_m) car une racine est toujours positive.

5) On peut mettre (E_m) au carré et conserver une équivalence lorsque $mx \ge 0$ i.e. m et x de même signe. On distingue donc 3 cas.

Cas m < 0: (E_m) n'a pas de solution x > 0 (car une racine est toujours positive) et pour $x \leq 0$, on a $(E_m) \iff (F_m)$ car tout est positif. On a vu à la question 2) que sur \mathbb{R}_- , (F_m) a une solution : $x_1(m)$. De plus, $x_1(m) \in D$ d'après la question 3).

Ainsi,
$$\mathscr{S} = \left\{ \frac{1 - \sqrt{1 + m^2}}{m^2} \right\}$$
.

$$\underline{\operatorname{Cas}\ m=0}: \boxed{\mathscr{S}=\left\{-\frac{1}{2}\right\}}.$$

 $\underline{\text{Cas } m > 0}$: cette fois on doit résoudre (E_m) seulement sur \mathbb{R}_+ ce qui donne $\mathscr{S} = \left\{ \frac{1 + \sqrt{1 + m^2}}{m^2} \right\}$.

$$\mathcal{S} = \left\{ \frac{1 + \sqrt{1 + m^2}}{m^2} \right\}.$$

Exercice 4. Soit f la fonction définie par $f(x) = \exp\left(\frac{1}{\ln x}\right)$.

- 1) Déterminer l'ensemble de définition \mathcal{D} de f.
- 2) Calculer la limite de f en 0 et en $+\infty$, ainsi que les limites à droite et à gauche de f en 1.
- 3) Dresser le tableau de variations de f, limites comprises.
- a) Montrer que, pour tout $x \in \mathcal{D}$, $f(x) \in \mathcal{D}$.

- b) En déduire que la fonction $f \circ f$ est définie sur \mathcal{D} et la calculer.
- c) Montrer que f est bijective de \mathcal{D} dans \mathcal{D} et donner f^{-1} . Qu'en déduire sur la courbe représentative de f?

Solution.

1) Soit $x \in \mathbb{R}$. La fonction exponentielle étant définie sur \mathbb{R} , f est définie en x si, et seulement si, ln est défini en x et est non nul. Or le logarithme népérien est défini sur $]0, +\infty[$ et s'annule uniquement en 1. Ainsi :

$$\mathcal{D} =]0, 1[\cup]1, +\infty[.]$$

• Le logarithme tend vers $-\infty$ en 0, donc par passage à l'inverse,

$$\lim_{x \to 0} \frac{1}{\ln x} = 0.$$

En composant par l'exponentielle, on conclut que $\lim_{x\to 0} f(x) = 1$.

• Quand $x \to 1$ par valeurs inférieures, $\ln x \to 0$ par valeurs inférieures; par passage à l'inverse, on obtient

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{1}{\ln x} = -\infty$$

Ainsi, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{y \to -\infty}} \exp(y)$ soit

$$\lim_{x \to 1^-} f(x) = 0.$$

• De même,

$$\frac{1}{\ln x} \xrightarrow[x \to 1^+]{} +\infty \qquad \text{donc} \qquad \boxed{f(x) \xrightarrow[x \to 1^+]{} +\infty.}$$

• Enfin, en $+\infty$, le logarithme népérien tend vers $+\infty$ donc son inverse vers 0, ce qui donne

$$\lim_{+\infty} f = \exp(0) = 1.$$

3) Le logarithme étant dérivable et non nul sur $\mathbb{R}_+^* \setminus \{1\}$, son inverse est dérivable sur cet ensemble ; l'exponentielle étant de plus dérivable sur \mathbb{R} , f est dérivable sur $\mathbb{R}_+^* \setminus \{1\}$, d'après le théorème de composition de fonctions dérivables.

En utilisant la formule de dérivation d'une fonction composée, on obtient, pour tout réel x > 0 différent de 1,

$$f'(x) = \left(\frac{1}{\ln x}\right)' \times \exp\left(\frac{1}{\ln x}\right)$$
$$= -\frac{\ln'(x)}{(\ln x)^2} \times \exp\left(\frac{1}{\ln x}\right)$$
$$= -\frac{1}{x(\ln x)^2} f(x).$$

Or, l'exponentielle étant toujours strictement positive, tout comme le carré du logarithme, f'(x) a le même signe que x pour tout $x \in \mathbb{R}_+^* \setminus \{1\}$, donc f' est strictement négative sur \mathcal{D} . Ainsi, f est strictement décroissante sur chacun des intervalles inclus dans \mathcal{D} , i.e. sur]0,1[et $]1,+\infty[$.

Les limites de f aux bornes de \mathcal{D} ayant été calculées à la question 2, on en déduit le tableau de variations de f:

4) a) Soit $x \in \mathcal{D}$; on veut montrer que f(x) appartient à \mathcal{D} , *i.e.* que c'est un réel strictement positif et différent de 1. Puisque l'exponentielle est strictement positive sur \mathbb{R} , on a

$$f(x) = \exp\left(\frac{1}{\ln x}\right) > 0.$$

Il reste à montrer que f(x) différent de 1. Or, le seul point en lequel la fonction exponentielle atteint la valeur 1 est 0; on en déduit que, pour que f(x) soit nul, il faudrait que $1/\ln x$ soit nul, ce qui est impossible car l'inverse d'un réel n'est jamais nul. Ainsi, $f(x) \in \mathbb{R}_+^* \setminus \{1\}$ pour tout $x \in \mathcal{D}$: on a bien montré que, pour tout $x \in \mathcal{D}$, $f(x) \in \mathcal{D}$.

b) Soit $x \in \mathcal{D}$. Alors d'après la question précédente, f(x) appartient à \mathcal{D} , qui est l'ensemble de définition de f. Ainsi f est définie en f(x): autrement dit, f(f(x)) est bien défini, et ce pour tout $x \in \mathcal{D}$, ce qui prouve que $f \circ f$ est définie sur \mathcal{D} .

Pour tout $x \in \mathcal{D}$, on a alors

$$f \circ f(x) = \exp\left(\frac{1}{\ln f(x)}\right)$$
$$= \exp\left(\frac{1}{\ln\left(\exp\left(\frac{1}{\ln x}\right)\right)}\right)$$
$$= \exp\left(\frac{1}{1/\ln x}\right)$$
$$= \exp(\ln x)$$

soit:
$$\forall x \in \mathcal{D}, f \circ f(x) = x$$
.

c) Si l'on pose g = f, on a d'après la question précédente :

$$\begin{cases} \forall x \in \mathcal{D}, g(f(x)) = x \\ \forall x \in \mathcal{D}, f(g(x)) = x \end{cases}$$

Ceci montre que f est bijective et que $f^{-1} = g$, mais on a posé g = f: autrement dit, f est bijective et est égale à sa propre bijection réciproque.

La courbe représentative de f^{-1} étant la symétrique de celle de f par rapport à la droite d'équation y=x, on en déduit que <u>la courbe représentative de f est symétrique par rapport à la droite d'équation y=x.</u>

Exercice 5. On considère deux fonctions f et g définies par : $f(x) = e^x + \frac{1}{x}$ et $g(x) = x^2 e^x - 1$.

- 1) Étude de la fonction q.
 - a) Dresser le tableau de variations de g sur \mathbb{R} , limites comprises.
 - b) Démontrer qu'il existe un unique réel $a \in \mathbb{R}$ tel que g(a) = 0 (on ne cherchera pas à calculer sa valeur exacte).

Indication: on donne 2 < e < 3.

- c) Démontrer que a appartient à l'intervalle $]\frac{1}{2},1[$.
- d) Déterminer le signe de g(x) sur \mathbb{R} .
- 2) Étude de la fonction f.
 - a) Déterminer le domaine de définition de f.
 - b) Donner le domaine de dérivabilité de f et calculer f'.
 - c) Donner les limites de f aux bornes du domaine de définition et interpréter graphiquement ces limites.
 - d) Dresser le tableau de variation de f sur son domaine de définition, limites comprises.
 - e) Démontrer que f admet un unique minimum local, dont la valeur est le nombre réel suivant :

$$m = \frac{1}{a^2} + \frac{1}{a}.$$

- f) Justifier que $2 \leq m \leq 6$.
- g) Tracer l'allure du graphe de f. On fera apparaı̂tre les droites remarquables (tangentes, asymptotes).

Solution.

1) a) g est définie et dérivable sur \mathbb{R} comme somme de fonctions dérivables. $\forall x \in \mathbb{R}, g'(x) = 2xe^x + x^2e^x = xe^x(2+x)$. g' est du signe de x(2+x). On obtient le tableau de variations suivant :

x	$-\infty$		-2		0		$+\infty$
x		_		_	0	+	
x+2		_	0	+		+	
g'(x)		+	0	_	0	+	
			g(-2)				$+\infty$
g		/	y ·		\		*
	-1				-1		

Justification : par croissance comparée, on a $\lim_{x\to -\infty} x^2 e^x = 0$ donc $\lim_{x\to -\infty} g(x) = -1$.

b) On a besoin des valeurs de g(0) et g(-2):

$$g(0) = -1 < 0 \text{ et } g(-2) = 4e^{-2} - 1 = \frac{4}{e^2} - 1.$$

Or
$$2 < e < 3$$
 donc $\frac{1}{9} < \frac{1}{e^2} < \frac{1}{4}$ donc $g(-2) = \frac{4}{e^2} - 1 < 0$.

D'après les variations de g, g(x) est strictement négatif pour $x \leq 0$: g ne s'annule pas sur \mathbb{R}_{-} .

Sur \mathbb{R}_+ , g est continue et strictement croissante. Donc elle réalise une bijection de \mathbb{R}_+ sur

Donc elle s'annule une fois et une seule sur \mathbb{R} en $a \in \mathbb{R}_+$.

- c) g(1)=e-1>0 et $g\left(\frac{1}{2}\right)=\frac{\sqrt{e}}{4}-1<\frac{\sqrt{4}}{4}-1<0$. D'après le théorème des valeurs intermédiaires, g s'annule sur $\left]\frac{1}{2},1\right[$. Donc $a\in\left]\frac{1}{2},1\right[$.
- d) D'après les variations de g:

x	$-\infty$	a	$+\infty$
g(x)	_	0	+

- a) f est définie sur \mathbb{R}^* . 2)
 - b) f est dérivable sur \mathbb{R}^* comme somme de fonctions dérivables.

$$\forall x \neq 0, \quad f'(x) = e^x - \frac{1}{x^2}$$

c) Toutes les limites sont des limites directes :

$$\lim_{x\to +\infty} f(x) = +\infty \qquad \lim_{x\to -\infty} f(x) = 0 \qquad \lim_{x\to 0^+} f(x) = +\infty \qquad \lim_{x\to 0^-} f(x) = -\infty$$
 Le graphe de f admet une asymptote verticale $x=0$.

Le graphe de f admet une asymptote horizontale en $-\infty$ d'équation y=0.

d) $\forall x \neq 0$, $f'(x) = e^x - \frac{1}{x^2} = \frac{x^2 e^x - 1}{x^2} = \frac{g(x)}{x^2}$.

Donc f' est du signe de q

x	$-\infty$ ($a + \infty$			
f'(x)	_	$- 0 + +\infty$			
	0	$+\infty$ $+\infty$			
f		y			
J					
$-\infty$		f(a)			

e) D'après les variations de f, f admet un minimum local en x = a de valeur : $f(a) = e^a + \frac{1}{a}$. Or a est solution de $g(a) = 0 \Leftrightarrow a^2 e^a - 1 = 0$. Donc $e^a = \frac{1}{a^2}$

On a donc bien $f(a) = \frac{1}{a^2} + \frac{1}{a}$

f) D'après la question 1c) : $\frac{1}{2} \leqslant a \leqslant 1$ donc $1 \leqslant \frac{1}{a} \leqslant 2$ et $1 \leqslant \frac{1}{a^2} \leqslant 4$. En sommant, on obtient $|2 \leqslant m \leqslant 6$.

g)