4.Correspondence Analysis

Contingency table

Contingency table (분할표)

범주형 변수인 두 변수에 대해 도수분포표를 2차원으로 확장한 형태의 표.

각 셀은 observed joint frequency를 가진다.

	Male	Female	
Smoke	20	10	30
Non smoke	30	40	70
	50	50	100

Table 12.8 Frequencies of Types of Pottery					
		Type			
Site	Α	В	С	D	Total
P0	30	10	10	39	89
P1	53	4	16	2	75
P2	73	1	41	1	116
P3	20	6	1	4	31
P4	46	36	37	13	132
P5	45	6	59	10	120
P6	16	28	169	5	218
Total	283	91	333	74	781

cell probability
marginal probability
conditional probability

Contingency table

- 관측값과 기댓값이 동일한지 검정.

카이제곱 검정

분할표의 정보를 활용해서, 범주형 변수에 대해 3가지의 카이제곱 검정을 할 수 있다.

1. 적합도 검정

Ho: P; = P; 0

2. 독립성 검정

Ho: P(X, Y)= P(X) PCY)

- 두 변수가 서로 독립인지 검정 3. 동질성 검정

- 각 그룹의 확률분포가 동일한지 검정 Ho Pi3 = P25

분할표 상에서 변수 간의 관계를 알아보기 위해 위와 같은 검정을 활용한다. 그러나 행과 열의 범주들 간의 관계를 파악하기 위해서는 대응분석이라는 새로운 방법이 필요하다.

Chi-square test of independence

카이제곱 검정 – 독립성 검정

$$H_0; p_{ij} = p_i.*\ p_{.j}$$

Expected value under H0: $E_{ij} = \frac{n_i n_{.j}}{n_{.j}}$

카이제곱 통계량:
$$\chi^2 = \sum rac{(n_{ij} - E_{ij})^2}{E_{ij}} \sim \chi_{(I-1)(J-1)}$$

	Male	Female	
Smoke	n_{11}	n_{12}	$n_{1,}$
Non smoke	n_{21}	n_{22}	n _{2.}
	n _{.1}	n _{.2}	n

Motivation

Correspondence Analysis(대응분석)의 목적

분할표의 행과 열의 관계를 보여주는 simple indices를 도출. 즉 **두가지 범주형 변수의 연관성**을 설명한다.

모든 행과 열 범주를 점으로 나타내어 그 relative position을 해석한다.

- 어떤 행 범주에 대해 어떤 열 범주가 가장 중요한지, 어떤 열 범주에 대해 어떤 행 범주가 가장 중요한지

방법: measure of association (χ^2 value)를 decompose \rightarrow chi value로 알 수 있는 정보를 시각화

PCA와 다른 점:

PCA는 total variance를 나누는 principal components를 도출하고, CA에서는 total chi square 값을 나누는 factor들을 구한다.

범주가 3개 이상인 경우 다중대응분석도 할 수 있다. 그러나 여기서는 범주가 2개인 경우만 살펴보자.

Motivation

Example 1

프랑스 바칼로레아 타입 & 지역의 분할표 A~H는 바칼로레아 시험 타입 (Lorraine 지역의 타입별 선호도 (conditional))

ı	Α							
	20.5	7.6	15.3	19.6	3.4	14.5	18.9	0.2

(전체 지역의 타입별 선호도 (marginal))

A	В	С	D	Е	F	G	Н
22.6	10.7	16.2	22.8	2.6	9.7	15.2	0.2

Lorraine 지역에서는 overall frequency에 비해 E,F,G를 선호하고, A,B,C,D를 덜 선호한다고 말할 수 있다

→ 이러한 over/underrepresentation을 측정할 지표를 만들 고,각 행 범주에 대한 열 범주의 weight와 열 범주에 대한 행 범주의 weight를 부여하는 것이 CA에서 하는 일이다!

Motivation

Example 2

회사 타입과 위치의 분함표 n=3, p=3

$$\mathcal{X} = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 4 \end{pmatrix} \leftarrow \text{Finance} \\ \leftarrow \text{Energy} \\ \leftarrow \text{HiTech}$$

$$\uparrow \text{Frankfurt}$$

$$S_1 = C \left(\frac{r_1 + r_2 + r_{31}}{x_{.1} - 5} \right) = C \frac{4r_1 + r_3}{5} \quad \begin{array}{l} S_{1}, S_{2}, S_{3} \\ r_{1}, r_{2}, r_{3} \end{array}$$

(conditional frequency(profile)의 weight sum)

$$s_j = c \sum_{i=1}^n r_i rac{x_{ij}}{x_{ullet j}} \,,$$
 s: column weight vector jth column의 average we

ith column[□] average weighted frequency by r

$$r_i^* = c^* \sum_{i=1}^P s_j^* rac{x_{ij}}{x_{iullet}} \;, \qquad {
m r: row \, weight \, vector} \ {
m ith \, row \, olds \, average \, weighted \, frequency \, by \, s}$$

r과 s를 동시에 구할 수 있다면, 이를 사용해 각 row category와 column category를 1차원 그래프에 표현할 수 있다. 그래프 상에서 r_i , s_i 가 가까운 거리에 존재하면, i행과 j열은 서로에 대해 높은 중요도를 가짐 -> positive association 그래프 상에서 r_i, s_i 가 먼 거리에 존재하면, i행과 i열은 서로에 대해 낮은 중요도를 가짐 -> negative association

Measuring association by χ^2 statistic

 χ^2 decomposition은 matrix C (nxp) 의 SVD를 찾는 과정이다.

weight vector를 계산하는 대신, 카이제곱 통계량을 decompose하여 두 변수의 연관성을 측정할 수 있다. 2차원 분할표에서 독립성 검정을 위한 카이제곱 통계량 t는 다음과 같다.

$$t = \sum_{i=1}^n \sum_{j=1}^p (x_{ij} - E_{ij})^2 / E_{ij}, \qquad E_{ij} = \frac{x_{i\bullet} \, x_{\bullet j}}{x_{\bullet \bullet}}. \qquad \qquad \text{x: observed value, E: expected value} \\ t \sim \chi^2_{(n-1)(p-1)}$$

matrix C의 각 element(chi value)는 독립성 가정 하에서 observed value와 expected (theoretical) value의 weighted departure라고 할 수 있다.

$$c_{ij} = (x_{ij} - E_{ij})/E_{ij}^{1/2}.$$

Two ways to analyze correspondence matrix

 \mathcal{X} : (unscaled) data matrix

P: Correspondence matrix $(=\frac{1}{N}\mathcal{X}, p_{ij} = x_{ij}/N)$

Goal:
$$\sum\sum rac{p_{ij}-\hat{p_{ij}}}{ab}$$
를 minimize하는 $\hat{\mathbf{P}}$ 를 찾기

- 1. Matrix approximation method
- 2. Profile approximation method

Matrix Approximation method

```
\hat{P}의 근사로 ab^T가 많이 쓰인다.
Scaled matrix of P:A^{-1/2}PB^{-1/2} = II \wedge V^{7}
\widetilde{\lambda_{\nu}}, \widetilde{u}_{\nu}, \widetilde{v}_{\nu}: P의 scaled version의 특이값과 특이벡터들
\lambda_k = \tilde{\lambda}_{k+1}, u_k = \tilde{u}_{k+1}, v_k = \tilde{v}_{k+1}
```

$$\lambda_k = \lambda_{k+1}, u_k = \tilde{u}_{k+1}, v_k = \tilde{v}_{k+1}$$
- rank approximation: $\mathbf{P} = \mathbf{V}$

$$-\operatorname{rank} \operatorname{k \ approximation:} \quad \mathbf{P} - \mathbf{Q} \mathbf{b}' = \sum_{k=1}^K \lambda_k (\mathbf{A}^{-1/2} \mathbf{u}_k) (\mathbf{B}^{-1/2} \mathbf{v}_k)' \\ \qquad \qquad A^{-1/2} \mathbf{U}_k \mathbf{V}_k' B^{-1/2} = A^{-1/2} (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee 2}) B^{-1/2} = a \mathbf{b}' (A^{\vee 2} \mathbf{I}_h) (\mathbf{I}_P B^{\vee$$

$$\begin{array}{ll} \text{(rank s approximation method} & \text{(rank s approximation)} \\ \text{Matrix Approximation method} & \text{D} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, \widetilde{U_k} \, \widetilde{v_k}' \\ \widehat{P} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, \widetilde{U_k} \, \widetilde{v_k}' \\ \widehat{P} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{v_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{P} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{P} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2} \, \widetilde{u_k}) \, (B^{1/2} \, \widetilde{v_k})' \\ \widehat{V_k} = A^{1/2}P \, B^{3/2} = \sum\limits_{k=1}^{s} \, \widetilde{\lambda_k} \, (A^{1/2}P \, B^{3/2} + B^{3/2}$$

Profile Approximation method

row profile, column profile $A^{-1}P$, $B^{-1}P$ 를 P^* 를 사용해 근사

$$(\mathbf{D}_{r}^{-1}\mathbf{P} - \mathbf{P}^{*})\mathbf{D}_{c}^{-1/2} = \mathbf{D}_{r}^{-1/2}(\mathbf{D}_{r}^{-1/2}\mathbf{P} - \mathbf{D}_{r}^{1/2}\mathbf{P}^{*})\mathbf{D}_{c}^{-1/2}$$

$$\sum_{i} \sum_{j} \frac{(p_{ij} - \hat{p}_{ij})^{2}}{r_{i}c_{j}} = \sum_{i} r_{i} \sum_{j} \frac{(p_{ij}/r_{i} - p_{ij}^{*})^{2}}{c_{j}}$$

$$= \operatorname{tr}[\mathbf{D}_{r}^{1/2}\mathbf{D}_{r}^{1/2}(\mathbf{D}_{r}^{-1}\mathbf{P} - \mathbf{P}^{*})\mathbf{D}_{c}^{-1/2}\mathbf{D}_{c}^{-1/2}(\mathbf{D}_{r}^{-1}\mathbf{P} - \mathbf{P}^{*})^{*}]$$

$$= \operatorname{tr}[\mathbf{D}_{r}^{1/2}\mathbf{P}^{*}]\mathbf{D}_{c}^{-1/2}\mathbf{P} - \mathbf{D}_{r}^{1/2}\mathbf{P}^{*})\mathbf{D}_{c}^{-1/2}\mathbf{D}_{c}^{-1/2}(\mathbf{D}_{r}^{-1/2}\mathbf{P} - \mathbf{D}_{r}^{1/2}\mathbf{P}^{*})^{*}]$$

$$= \operatorname{tr}[[(\mathbf{D}_{r}^{-1/2}\mathbf{P} - \mathbf{D}_{r}^{1/2}\mathbf{P}^{*})\mathbf{D}_{c}^{-1/2}][(\mathbf{D}_{r}^{-1/2}\mathbf{P} - \mathbf{D}_{r}^{1/2}\mathbf{P}^{*})\mathbf{D}_{c}^{-1/2}]^{*}]$$

$$\mathbf{D}_{r}^{-1/2}\mathbf{P}\mathbf{D}_{c}^{-1/2} = \sum_{k=1}^{J} \widetilde{\lambda}_{k} \widetilde{\mathbf{u}}_{k} \widetilde{\mathbf{v}}_{k}^{*}$$

$$\mathcal{D}_{r}^{+/2} \times (\mathcal{V}_{r}^{-/2} \mathcal{V}_{r}^{-/2}) \times \mathcal{D}_{c}^{-/2} = \sum_{k=1}^{3} \mathcal{T}_{k} (\mathcal{D}_{r}^{-/2} \mathcal{T}_{k}) (\mathcal{D}_{c}^{-/2} \mathcal{T}_{k})'$$
Profile Approximation method

결국 동일한 형태의 decomposition을 얻게 된다.
$$(-1)^{\nu}$$
 $(-1)^{\nu}$ $(-1)^{\nu}$

$$\mathcal{X}_{i} = A^{1/2} \ln_{n}, \ \mathcal{X}_{i} = B^{1/2} \ln_{n}$$

$$\mathbf{P}^* - \mathbf{1}_I \mathbf{v} \doteq \sum_{k=1}^{K-1} \lambda_k \mathbf{D}_r^{-1/2} \mathbf{u}_k (\mathbf{D}_c^{1/2} \mathbf{v}_k)'$$

$$A^{1/2} \tilde{u}_{1k} = A^{1/2} (A^{N/2} I_n) = I_n$$

 $B^{1/2} B^{1/2} I_p = b$.

Measuring association by χ^2 statistic

2개의 범주형 변수가 n x p 의 2차원 분할표를 이룬다고 해보자.

$$C_{i,j}\sqrt{b_{ij}} = \left(\frac{x_{i,j} - \overline{e}_{i,j}}{\sqrt{\overline{e}_{i,j}}}\right)\sqrt{x_{ij}}$$

$$\left(\overline{e}_{i,j} = \frac{x_{i,j}}{N}\right) = \frac{N x_{i,j} - x_{i,j}}{\sqrt{x_{i,j}}} \frac{1}{\sqrt{N}}$$

$$= \text{Filed Model}$$

Sum over all J

(CVB=0 proof.)

- marginal row frequencies **a** (n x 1), marginal column frequencies **b** (p x 1) -> scaling 하는 데에 쓰임

$$a = A1_n$$
 and $b = B1_p$. $A = \operatorname{diag}(x_{i \bullet})$ and $B = \operatorname{diag}(x_{\bullet j})$.

 $G\overline{b} = \frac{N\overline{\alpha_i} - \overline{\alpha_i} \cdot N}{\sqrt{\alpha_i} \cdot N} = 0$

$$\mathcal{C}\sqrt{b} = 0$$
 and $\mathcal{C}^{\top}\sqrt{a} = 0$,

Measuring association by χ^2 statistic

Cal SVD: $C = \Gamma \Lambda \Delta^{\top}$

 $(\Gamma: CC^T \cong | \ eigenvectors, \Delta: C^TC \cong | \ eigenvectors, \Lambda: CC^T \cong | \ eigenvalues = \ diag(\lambda_1^{\frac{1}{2}}, \dots, \lambda_R^{\frac{1}{2}}), \ \mathsf{R} = \mathsf{rank}(\mathsf{C}))$

$$c_{ij} = \sum_{k=1}^{R} \lambda_k^{1/2} \gamma_{ik} \delta_{jk}.$$

카이제곱 통계량 t 의 decomposition은 C의 SVD, CC'의 고유값 분해

$$\operatorname{tr}(\mathcal{CC}^{\top}) = \sum_{k=1}^{R} \lambda_k = \sum_{i=1}^{n} \sum_{j=1}^{p} c_{ij}^2 = t. \qquad c_{ij} = (x_{ij} - E_{ij}) / E_{ij}^{1/2}. \qquad t = \sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - E_{ij})^2 / E_{ij},$$

Measuring association by χ^2 statistic

Duality relations에 따라, Δ, Γ의 elements는 다음과 같다.

C의 행과 열의 projection \bigwedge $\mathcal{C}\delta_k = \sqrt{\lambda_k}\gamma_k, \qquad \delta_k^\top \sqrt{b} = 0, \quad \gamma_k^\top \sqrt{a} = 0.$ $\mathcal{C}^\top \gamma_k = \sqrt{\lambda_k}\delta_k.$

 $\mathbf{C} \cdot \gamma_k = \sqrt{\lambda_k} \sigma_k$. 이 eigenvector δ_k, γ_k 가 관심의 대상이다. χ^2 의 decomposition을 설명하는 벡터이고, 행과 열의 graphical display를 설명하는 데에 사용된다.

(
$$Sk^{T}J_{0}=0$$
 proof)
 $CJ_{0}=T\Lambda\Delta^{T}J_{0}=0$ ($GJ_{0}=0$ is known)
 $C^{T}CT\Lambda\Delta^{T}JJ_{0}=\Lambda\Delta^{T}J_{0}=0$
 $SL_{0}(Sk^{T}JJ_{0})=0$

Measuring association by χ^2 statistic

(k=1~R) 총 R개의 eigenvectors, eigenvalues에서 만약 첫번째 eigenvalue가 dominant하다면 weighted departure는 아래와 같이 표현 가

$$c_{ij} = \sum_{k=1}^{R} \lambda_k^{1/2} \gamma_{ik} \delta_{jk} \approx \lambda_1^{1/2} \gamma_{i1} \delta_{j1}.$$

만약 $\gamma_{lr}.\delta_{1j}$ 가 매우 크고 같은 부호를 가지면, c_{ij} 또한 매우 크고, i번째 행과 j번째 열은 positive association이다. 다른 부호를 가진다면 negative association이다.

일반적으로, 첫번째 두 eigenvalues λ_1,λ_2 가 총 카이제곱 값의 대부분을 설명하고, $\gamma_1,\gamma_2,\delta_1,\delta_2$ 를 사용해 행과 열의 graphical display를 얻는다.

Graphical display

C의 weighted rows, weighted columns의 projection을 통해 graphical display를 표현한다.

$$(h_k^T a = 0 \text{ proof})$$

 $A^{-1/2} - a = A^{-1/2} \cdot A \cdot 1_n = A^{1/2} \cdot 1_n = \sqrt{a}$

([A (A-1/2 y,)] a

projections on weighted rows and columns:

$$r_k = \mathcal{A}^{-1/2} \mathcal{C} \delta_k = \sqrt{\lambda_k} \mathcal{A}^{-1/2} \gamma_k, s_k = \mathcal{B}^{-1/2} \mathcal{C}^{\top} \gamma_k = \sqrt{\lambda_k} \mathcal{B}^{-1/2} \delta_k.$$

$$\frac{r_k^{\top} a = 0}{s_k^{\top} b = 0}.$$

(: nJa=0)

Graphical display

Duality relation에 의한 δ_k, γ_k 에 따르면 r, s는 다음과 같이 표현된다.

By
$$\delta_k = \frac{1}{\sqrt{\lambda_k}} \mathcal{C}^{\mathsf{T}} \gamma_k,$$
$$\gamma_k = \frac{1}{\sqrt{\lambda_k}} \mathcal{C} \delta_k.$$

Alogen.

$$r_k = \mathcal{A}^{-1/2}\mathcal{C}\delta_k = \sqrt{\lambda_k}\mathcal{A}^{-1/2}\gamma_k, \\ s_k = \mathcal{B}^{-1/2}\mathcal{C}^{\top}\gamma_k = \sqrt{\lambda_k}\mathcal{B}^{-1/2}\delta_k.$$

$$r_k = \frac{1}{\sqrt{\lambda_k}}\mathcal{A}^{-1/2}\mathcal{C}\mathcal{B}^{1/2}s_k, \\ s_k = \frac{1}{\sqrt{\lambda_k}}\mathcal{B}^{-1/2}\mathcal{C}^{\top}\mathcal{A}^{1/2}r_k,$$

$$r_k = \frac{1}{\sqrt{\lambda_k}}\mathcal{A}^{-1/2}\mathcal{C}\mathcal{B}^{1/2}s_k, \\ s_k = \sqrt{\frac{s_*}{\lambda_k}}\mathcal{B}^{-1/2}\mathcal{X}^{\top}r_k.$$

$$\Rightarrow$$

$$r_k = \frac{1}{\sqrt{\lambda_k}} \mathcal{A}^{-1/2} \mathcal{C} \mathcal{B}^{1/2} s_k,$$

$$s_k = \frac{1}{\sqrt{\lambda_k}} \mathcal{B}^{-1/2} \mathcal{C}^{\top} \mathcal{A}^{1/2} r_k,$$

$$r_k \equiv \sqrt{\frac{\lambda_k}{\lambda_k}} \mathcal{A}^{-1} \mathcal{X} s_k,$$

 $s_k = \sqrt{\frac{x_{\bullet \bullet}}{\lambda_k}} \mathcal{B}^{-1} \mathcal{X}^{\top} r_k.$

Chi-square decomposition으로 구한 projection이 앞장에서 정의한 weight vector와 동일한 관계를 가지게 됨을 알 수 있다.

$$s_j = c \sum_{i=1}^n r_i \frac{x_{ij}}{x_{\bullet j}}, \qquad r_i^* = c^* \sum_{j=1}^p s_j^* \frac{x_{ij}}{x_{i\bullet}},$$

Graphical display

Row factors. Column factors

$$r_k = \sqrt{\frac{x_{\bullet\bullet}}{\lambda_k}} \mathcal{A}^{-1} \mathcal{X} s_k,$$

$$s_k = \sqrt{\frac{x_{\bullet\bullet}}{\lambda_k}} \mathcal{B}^{-1} \mathcal{X}^{\top} r_k.$$

Mean and Variance of factors

$$\begin{aligned}
\overline{r}_k &= \frac{1}{x_{\bullet}} r_k^{\top} a = 0, \\
\overline{s}_k &= \frac{1}{x_{\bullet}} s_k^{\top} b = 0,
\end{aligned}$$

$$\begin{aligned} & \mathsf{Var}(r_k) = \frac{1}{x_{\bullet \bullet}} \sum_{i=1}^n x_{i \bullet} r_{ki}^2 = \frac{r_k^T \mathcal{A} r_k}{x_{\bullet \bullet}} = \frac{\lambda_k}{x_{\bullet \bullet}}, \\ & \mathsf{Var}(s_k) = \frac{1}{x_{\bullet \bullet}} \sum_{j=1}^p x_{\bullet j} s_{kj}^2 = \frac{s_k^T \mathcal{B} r_k}{x_{\bullet \bullet}} = \frac{\lambda_k}{x_{\bullet \bullet}}. \end{aligned}$$

 $rac{\lambda_k}{\Sigma \lambda_l}$ (t의 decomposition의 k번째 factor) 는 k번째 factor에 의한 분산의 일부로도 해석 가능

Absolute contributions to the variance of the factor

$$\begin{aligned} & \mathsf{Var}(r_k) = \tfrac{1}{x_{\bullet\bullet}} \sum_{i=1}^n x_{i\bullet} r_{ki}^2 = \tfrac{r_k^\top \mathcal{A} r_k}{x_{\bullet\bullet}} = \tfrac{\lambda_k}{x_{\bullet\bullet}}, \\ & \mathsf{Var}(s_k) = \tfrac{1}{x_{\bullet\bullet}} \sum_{j=1}^p x_{\bullet j} s_{kj}^2 = \tfrac{s_k^\top \mathcal{B} x_{\bullet}}{x_{\bullet\bullet}} = \tfrac{\lambda_k}{x_{\bullet\bullet}}. \end{aligned}$$

absolute contributions of row i to the variance of the factor r k:

$$C_a(i, r_k) = \frac{x_{i\bullet} r_{ki}^2}{\lambda_k}, \text{ for } i = 1, \dots, n, \ k = 1, \dots, R$$

어떤 행 범주가 kth row factor의 dispersion에서 가장 중요한지 알 수 있다.

absolute contributions of column i to the variance of the factor r_k:

$$C_a(j, s_k) = \frac{x_{\bullet j} s_{kj}^2}{\lambda_k}$$
, for $j = 1, ..., p, k = 1, ..., R$

6. Interpreting with Biplots

Notions

용어 정리

```
graphical representation: r_k, s_k profile: 행 또는 열의 conditional frequency distribution. (profile을 projection해서 r, s 도출) 두 행 혹은 두 열의 proximity: similar profile을 가지는가? 한 행과 한 열의 proximity: 이 행(또는 열)이 특별히 important weight를 그 열(또는 행)에 가지는가? origin: r_k, s_k의 average. 행, 열 범주를 projection시킨 point가 origin에 가깝게 위치하면 average profile absolute contribution: factor들의 분산 안에서 각 행 또는 열의 weight를 평가
```


Biplots

biplot이란

행과 열을 low dimension에 점들로 represent한 그림

지금까지 행렬을 분해하고 projection을 한 것은 결국 biplot으로 display하기 위한 것

lower dimensional factorial variables의 스칼라곱으로 해석되고, data matrix의 각 elements를 이 스칼라곱들을 통해 approximately recover하 고자 함.

예를 들어, 10×5 data matrix가 있다고 하자. biplot은 10개의 row points와 5개의 column points를 찾아 50개의 스칼라곱을 만들 수 있다. 50개의 data elements에 근사할 수 있는 것을 만드는 것이 목표. row points, column points는 $q_i \in R^k$, $t_j \in R^k$. 보통 k = 2. ex. q_2 , t_3 의 스칼라곱 $\to x_{74}$ 에 근사

$$\begin{aligned} x_{ij} &= q_i^\top t_j + e_{ij} \\ &= \sum_k q_{ik} t_{jk} + e_{ij}. \end{aligned}$$

Biplots

Link between correspondence analysis and biplot

row, column frequency에 대해 xii를 표현하면

$$x_{ij} = E_{ij} \left(1 + \frac{\sum_{k=1}^{R} \lambda_k^{\frac{1}{2}} \gamma_{ik} \delta_{jk}}{\sqrt{\frac{x_{i*} x_{ij}}{x_{**}}}} \right)$$

$$c_{ij} = (x_{ij} - E_{ij})/E_{ij}^{1/2}. \longrightarrow \sqrt{E_{i3}} C_{i3} + E_{i3} = \mathcal{A}_{i3}$$

$$c_{ij} = \sum_{k=1}^{R} \lambda_k^{1/2} \gamma_{ik} \delta_{jk}. \qquad E_{i3} \left(1 + \frac{C_{i3}}{\sqrt{E_{i3}}} \right) = \mathcal{A}_{i3}$$

$$E_{ij} = \frac{x_{i \bullet} x_{\bullet j}}{x_{\bullet \bullet}}.$$

Biplots

Link between correspondence analysis and biplot

profile : conditional frequencies

projection term 개수를 K개로 제한(보통 2) eigenvector와 projection의 관계 사용해 정리

row profile - average row profile:

$$\left(\frac{x_{ij}}{x_{i\bullet}} - \frac{x_{i\bullet}}{x_{\bullet\bullet}}\right) = \sum_{k=1}^{R} \lambda_k^{\frac{1}{2}} \gamma_{ik} \left(\sqrt{\frac{x_{\bullet j}}{x_{i\bullet} x_{\bullet\bullet}}}\right) \delta_{jk} = \sum_{k=1}^{K} \left(\frac{x_{i\bullet}}{\sqrt{\lambda_k x_{\bullet\bullet}}} r_{ki}\right) s_{kj} + e_{ij}$$

column profile - average column profile:

$$\left(\frac{x_{ij}}{x_{\bullet j}} - \frac{x_{\bullet j}}{x_{\bullet \bullet}}\right) = \sum_{k=1}^{R} \lambda_k^{\frac{1}{2}} \gamma_{ik} \left(\sqrt{\frac{x_{i\bullet}}{x_{\bullet j} x_{\bullet \bullet}}}\right) \delta_{jk} = \sum_{k=1}^{K} \left(\frac{x_{\bullet j}}{\sqrt{\lambda_k x_{\bullet \bullet}}} s_{kj}\right) r_{ki} + e'_{ij}$$

=> column factor s_k와 row factor r_k의 rescaled version이 row profile과 average의 difference가 biplot을 구성한다. row factor r_k와 column factor s_k의 rescaled version이 column profile과 average의 difference가 biplot을 구성한다.

Example

Belgium regions and newspapers

벨기에는 프랑스어와 네덜란드어를 공용어로 사용하고, 지역에 따라 사용하는 언어가 다르다.

row: 15개 (신문 종류) (사용 언어에 따라 3종류로 대분류할 수 있음)

column: 10개 (지역) (Flanders, Wallonia, Brussels 3 지역으로 대분류할 수 있음)

λ_j	Percentage of variance	Cumulated percentage
183.40	0.653	0.653
43.75	0.156	0.809
25.21	0.090	0.898
11.74	0.042	0.940

centered 0

Example

Belgium regions and newspapers

Table 15.2 Absolute contributions of row factors r_k

	$C_a(i,r_1)$	$C_a(i, r_2)$	$C_a(i, r_3)$
v_a	0.0563	0.0008	0.0036
$v_b \gamma$.	0.1555	0.5567	0.0067
v_c	0.0244	0.1179	0.0266
v_d	0.1352	0.0952	0.0164
v_e	0.0253	0.1193	0.0013
f_f	0.0314	0.0183	0.0597
f_g	0.0585	0.0162	0.0122
f_h	0.1086	0.0024	0.0656
f_i	0.1001	0.0024	0.6376
b_j	0.0029	0.0055	0.0187
b_k	0.0236	0.0278	0.0237
b_l	0.0006	0.0090	0.0064
v_m	0.1000	0.0038	0.0047
f_n	0.0966	0.0059	0.0269
f_0	0.0810	0.0188	0.0899
Total	1.0000	1.0000	1.0000

Table 15.3 Absolute contributions of column factors sk

	$C_a(j, s_1)$	$C_a(j, s_2)$	$C_a(j, s_3)$
brw	0.0887	0.0210	0.2860
bxl	0.1259	0.0010	0.0960
anv	0.2999	0.4349	0.0029
brf	0.0064	0.2370	0.0090
foc	0.0729	0.1409	0.0033
for	0.0998	0.0023	0.0079
hai	0.1046	0.0012	0.3141
lig	0.1168	0.0355	0.1025
lim	0.0562	0.1162	0.0027
lux	0.0288	0.0101	0.1761
Total	1.0000	1.0000	1.0000

