Weather Prediction System

By: Kelvin Lin, Ming Su, Joe Lin, Karen Wang

What's the problem?

- * A farmer's livelihood is dependent on their ability to grow crops.
- * This is hard when factors beyond their control like weather get in their way.

Current Solutions

* Look outside the window.

- * Problem?
- * By the time you see bad weather, it's too late to do anything!

Current Solutions (2)

* Check the weather network.

- * Problem?
- * Some farms are huge and far away from weather stations. Their predictions may not be accurate!

Introducing the Weather Prediction System!

What is the Weather Prediction System?

* The weather prediction system helps farmers by providing **customized predictions** so farmers know what's coming!

How is this done?

* The weather prediction system uses machine learning technology as well as open datasets to make informed predictions about the future.

Finding the Data

* First, we determined the criteria for safe and dangerous weather conditions by interviewing a **real** farmer from Saskatchewan.

Finding the Data (2)

- * We found a local weather archive from the Town of North Carolina, which we will use for this demonstration.
- * In theory, farmers will be able to use their own local data.

Finding the Data (3)

* We determined that the following criterion makes weather conditions dangerous:

Element	Condition	
Rain	Precipitation<6	
Wind	Wind>20 miles/hr	
Snow	snowdepth>0.5 inches	
Cold	Max_temp<86 degree F	
Ice	Ice True/False	

Cleaning the Data Set

* To make the data usable, we reformatted the dataset to look like this:

Rain	Ice	Snow	Wind	Hail	Danger
T/F	T/F	T/F	T/F	T/F	T/F

* Of course, the danger column was calculated using the table from the previous slide.

Training the Classifier

- * The classifier was trained in Python (for simplicity).
- * For each label, rain, ice, snow, wind, and hail were used as attributes, danger was used as output.

Evaluating the Performance

Next Steps

- * Weather is inheriently a time-dependent variable.
- Having rain today makes it less likely to rain tomorrow.
- * Our model does not take that into account!

Next Steps (2)

- * To improve the accuracy of our model, we need to add memory to our model.
- * We can do this with a recurrent neural network!