Agend		
اأن	In-depth theexing, B-Tree	2 / hr 30-2hr un Indersing
add not = 2	BCNF (leftoner)	15-20 min
File pp To	Dish as files.	DB Jos Disk Hlw
	Dak is NOT in the RA	m. Disk Hlw
Objective:	Le search, insert, modify,	fopen dulek C: fclose
ba:	BST/ Balanced BST - and	rume date is in the RAM. Main menun
Need t	harmon Binary hanch come up with Ds that u	vonk un <u>disk</u> s. (secondary memory)

DS such that access based on (2) Why do we need an inder custom es

Search a customer with siven

id.

fearch for automens

with name prefix

"Sa"

id adder. name a, nı ı 4 nz 92 6 n_3 az

Search based on some attailule vous often We often creak indexes on a given tolle

(>=1)

from does disk access work?

SD card. is spent on copying data from disk to RAM.

Cost of accessing data. addr name Size of I block = 512B OB1 2 size of I now = S 5 Max record/block = / 512/ =) B2 Search for id=11 2 } 58 16? Most # disk neads = 3. call File size = F byten | block = 512 bytes 32.5 - 33 X - 2 n x 512 = F => n= F ceil. $lorg = \frac{1024}{512} = 2$ 400 Min. no. of disk need.

adde of hert nod in RAM.

problem: If whole index doesn't fit into a siryl block,
this doesn't work.

LL

N levels of index N of disk access = N+1

BST AUL VS Red blank B-Tone inspired form mores trees.

height balanced money tone.

peroperties			an fit a block size.	degree = t
$\sqrt{0}$	Every node	is a block.	<i>•</i>	order=226
		stuned in the 1		
3 A	ll the leaves	we at the se	me level.	
	·	e node cer		<u> </u>
		ne atlent (
A A	the nodes (ion centain ma	\sim (2t-1) ke	min of 1
				/- 3°
t=3	18,15,25,	21,24,27,30,1	0, 17 (7) 10, 5	-2.9
Every	//	> _ :		
will have	ເບັ່	[18]	s (18, 61.ck	adh)
speed	18	[10]		root"
1-3	(i.)	18	11-118	J leaf
24-1=13			}	
		[I]		
min=1				

Then we input 2

Order of B-True =
$$\frac{\text{max no. of children}}{\text{(terms of t)}}$$

= $(\frac{1}{2})$

max disk alle as = Hershi onles of

Depend on t.

Search for 39

