

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

⑯ DE 101 26 752 A 1

⑯ Int. Cl. 7:
G 06 F 17/30

DE 101 26 752 A 1

⑯ Aktenzeichen: 101 26 752.5
⑯ Anmeldetag: 1. 6. 2001
⑯ Offenlegungstag: 20. 12. 2001

⑯ Unionspriorität:
594882 15. 06. 2000 US

 ⑯ Anmelder:
International Business Machines Corp., Armonk,
N.Y., US

 ⑯ Vertreter:
Gigerich, J., Dipl.-Ing., Pat.-Ass., 70563 Stuttgart

⑯ Erfinder:
Bates, Cary Lee, Rochester, Minn., US; Crenshaw,
Robert James, Apex, N.C., US; Day, Paul Reuben,
Rochester, Minn., US; Santosuosso, John Matthew,
Rochester, Minn., US

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen
 Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Virusprüfung und -meldung für Suchergebnisse von Computerdatenbanken

⑯ Ein System, ein Programmprodukt und ein Verfahren integrieren eine Virusprüffunctionalität in eine Suchumgebung einer Computerdatenbank, um beim Schutz eines Nutzercomputers vor dem Einfangen eines Computervirus zu assistieren, wenn auf Suchergebnisse zugegriffen wird. Die Erzeugung einer Anzeigendarstellung einer Ergebnismenge, die als Antwort auf eine Suchanfrage erzeugt wird, kann wenigstens zum Teil auf Informationen zum Virusstatus basieren, die wenigstens einem Teil einer Vielzahl von Ergebnisdatensätzen zugeordnet sind, die in der erzeugten Ergebnismenge identifiziert wurden. Darüber hinaus konfigurieren ein System, ein Programmprodukt und ein Verfahren einen ersten Computer, um Informationen zum Virusstatus, die von einer Vielzahl von Computern erzeugt wurden, zu empfangen, wobei die daran empfangenen Informationen zum Virusstatus in einer Virusdatenbank gespeichert werden, die für den ersten Computer zugänglich ist.

Beschreibung

Bereich der Erfahrung

[0001] Die Erfahrung bezieht sich allgemein auf Computer und Computersoftware. Spezieller bezieht sich die Erfahrung auf die Virenprüfung und das Suchen (scannen) nach Viren sowie das Durchsuchen von Computerdatenbanken.

Hintergrund der Erfahrung

[0002] Die Menge und die Vielzahl von Informationen, auf die durch einen Computer zugegriffen werden kann, wächst weiter mit einer erstaunlichen Geschwindigkeit. Insbesondere das Internet hat Computernutzer in die Lage versetzt, auf eine große Vielzahl von Informationen auf anderen Computern, die sich überall auf der Welt befinden, zuzugreifen.

[0003] In dem Maße wie Computer mehr und mehr verschiedene Informationsquellen zugeordnet sind, unterliegen sie jedoch steigend dem Risiko, Computerviren einzufangen. Ein Computervirus kann im Allgemeinen jedes bösartige oder anderweitig verdeckte Computerprogramm umfassen, das einen Computer "infiziert" und unerwünschte Aktivitäten im Computer ausführt. Einige Computerviren sind ihrer Natur nach einfach nur eine Dummheit, andere Viren können jedoch eine beträchtliche Menge Schaden an einem Computer und/oder seinem Nutzer anrichten, bis hin zum Stehlen privater Daten, zum Löschen von Daten und/oder zum Verursachen eines kompletten Computerausfalls. Einige Viren erlauben sogar einer dritten Partei, die Steuerung eines Computers des Nutzers außerhalb des Wissens des Nutzers zu erlangen, während andere einen Computer des Nutzers benutzen können, um andere bösartige Aktivitäten, zum Beispiel das Starten von Angriffen der Art "Verweigerung des Dienstes" (DOS) gegen andere Computer, auszuführen.

[0004] Viren können viele verschiedene Formen annehmen und in einer Vielzahl von Arten verbreitet werden, zum Beispiel als E-Mail-Anlagen, als Makros oder Scripts, als Trojanische Pferde, Würmer, Logikbomben usw. (auf alle wird für die jetzigen Zwecke als "Viren" Bezug genommen). Ein Virus wird sich oft verstecken oder ein ansonsten gesundes Computerprogramm "infizieren", so dass der Virus aktiviert wird, wenn das infizierte Computerprogramm ausgeführt wird. Viren haben typischerweise auch die Fähigkeit, sich zu vermehren und sich auf andere Computerprogramme und auch auf andere Computer zu übertragen.

[0005] Um auf die mit Viren verbundenen Risiken einzugehen, wurden beträchtliche Anstrengungen auf die Entwicklung von Anti-Virus-Computerprogrammen gerichtet, die versuchen, Viren, die einen Computer infizieren wollen, zu erkennen und/oder zu entfernen. Solche Versuche resultierten in einem ständigen Wettkampf, in dem Virenentwickler ständig versuchen, immer höher entwickelte Viren zu schaffen, und Anti-Virus-Entwickler ständig versuchen, Computer vor neuen Viren zu schützen.

[0006] Eine Fähigkeit von vielen konventionellen Anti-Virusprogrammen ist die Fähigkeit, die Virenprüfung von virusverdächtigen Computerdateien auszuführen, nachdem diese Dateien empfangen und auf einem Computer gespeichert wurden, zum Beispiel nach dem Herunterladen von Emailem oder ausführbaren Dateien vom Internet. Serverbasierte Anti-Virusprogramme werden auch typischerweise genutzt, um die für einen Server zugänglichen Dateien auf Viren zu überprüfen. Solche Anti-Virusprogramme werden zum Beispiel oft von Websites aus internen Gründen genutzt, speziell von Sites zum Herunterladen, die Nutzerzu-

gang zu einer großen Zahl von herunterladbaren, ausführbaren Dateien gewähren, die relativ oft virusverdächtig sind.

[0007] Das Virenprüfen ist oft sowohl prozessor- als auch bandbreiteneintensiv, und infolgedessen sind konventionelle

- 5 Anti-Virusprogramme typischerweise auf die Ausführung von Virenprüfungen für Dateien beschränkt, die im Allgemeinen auf den gleichen Computern gespeichert sind, auf denen solche Programme ausgeführt werden. Während daher bestimmte Entitäten, inklusive Endnutzer und Websites, 10 Virenprüfungen mit Dateien, die lokal auf Computern dieser Entitäten gespeichert sind, ausführen können, sind diese Entitäten oftmals nicht fähig, die viralen Risiken zu bestimmen, die Dateien unter der Steuerung von anderen Entitäten zugeordnet sind, wenigstens nicht, bis solche Dateien beschafft und lokal von einem Anti-Virusprogramm geprüft werden können.

[0008] Insbesondere die verteilte und dezentralisierte Nähe des Internets und anderer gemeinsam benutzter Computernetzwerke hebt die obengenannten Beschränkungen der konventionellen Anti-Virustechnologien hervor, da ein Nutzer oftmals durch eine große Vielzahl von Websites gesteuert und fähig ist, virusverdächtige Dateien von einer großen Zahl von Entitäten außerhalb der Steuerung des Nutzers herunterzuladen.

- 25 [0009] Ein besonderes Beispiel für die Risiken ist das Ausführen von internetbasiertem Suchen und der Zugriff auf die hierbei erstellten Suchergebnisse. Höherentwickelte Suchmaschinen und zugeordnete "Portal"-Sites wurden von Suchanbietern mit dem besonderen Ziel entwickelt, Nutzern die Lokalisierung von Websites, Webseiten und anderen für Nutzer interessanten Dateien zu erleichtern. Viele konventionelle Suchmaschinen unterhalten zum Beispiel index- und/oder verzeichnisbasierte Computerdatenbanken, die versuchen, Inhalte im Internet aufzulisten, so dass relevante Webseiten oder andere Dateien von Nutzern als Antwort auf Suchanfragen, die von diesen Nutzern an die Suchmaschinen geschickt werden, erkannt werden können. Oft umfassen solche Datenbanken eine große Zahl von Datensätzen, die verschiedenen Dateien zugeordnet sind, so dass eher die Datensätze selbst als die Dateien durchsucht werden.

[0010] Suchergebnisse werden typischerweise an einen Nutzer der Suchmaschine in Form einer formatierten Liste von Einträgen oder Datensätzen zurückgegeben, die Dateien zugeordnet sind, zum Beispiel Webseiten, die der Anfrage entsprechen. Oft werden Hypertextlinks bereitgestellt, so dass ein Nutzer auf die zugeordneten Dateien durch Auswahl der Links zugreifen kann. Da jedoch die Dateien oft nicht von dem Suchanbieter, sondern von anderen Entitäten 45 aufbewahrt und kontrolliert werden, hat der Suchanbieter typischerweise keinen Mechanismus zur Bestimmung der Virenrisiken, die von den Dateien präsentiert werden, die in Suchergebnissen identifiziert wurden, die an Nutzer der Suchmaschine geschickt wurden. Infolgedessen besitzen Dateien, auf die durch Ergebnisse von Suchmaschinen zugegriffen wird, oft für Nutzer einen vergleichsweise höheren Risikograd der Infection. Falls insbesondere ein Nutzer keine lokale Anti-Virussoftware benutzt, ist solch ein Nutzer beträchtlich gefährdet, einen Virus einzufangen.

- 50 [0011] Der Wettbewerb zwischen kommerziellen Suchanbietern, gleichgültig ob diese Anbieter Suchsites oder Suchmaschinen, die von anderen genutzt werden, anbieten, ist relativ hart geworden, und demzufolge versuchen Suchanbieter kontinuierlich, die Zahl der Nutzer solcher Dienstleistungen zu erhöhen, speziell jene, wo der Ertrag hauptsächlich aus Werbung oder Mitgliedschaft herröhrt. Viele Suchsites versuchen zum Beispiel, zusätzliche Funktionalität und Merkmale hinzuzufügen, um zusätzliche Nutzer zu bewe-

gen, ihre Dienste zu nutzen.

[0012] Unter der gegebenen harten Konkurrenz zwischen Suchanbietern wäre es sehr schädlich für einen Suchanbieter, auch nur entfernt als die Quelle eines Virus festgestellt zu werden, der in dem Computer des Nutzers Schaden anrichtet. Nichtsdestotrotz ist es oft unmöglich, bei dem Mangel an Kontrolle, die die meisten Suchanbieter über die Daten haben, die von den Suchergebnissen identifiziert werden, die von solchen Anbietern oder deren Technologien erzeugt werden, auch nur ein marginales Niveau von Vertrauen zu schaffen, dass bestimmte Suchergebnisse kein beträchtliches Infektionsrisiko für Nutzer darstellen.

[0013] Die Risiken, die internetbasiertes Suchen birgt, können auch bei anderen Computer-Datenbanksuchungen auftreten, speziell wenn die Möglichkeit besteht, dass Dateien, die gewissen Suchergebnissen zugeordnet sind, nicht unter der Steuerung der Entität stehen, die solche Suchergebnisse erzeugt. Deshalb besteht ein beträchtliches Bedürfnis im Fachgebiet nach einer Methode, Risiken von Viren zu verringern, die mit dem Zugreifen auf Suchergebnisse von Anfragen an Computerdatenbanken zusammenhängen.

Zusammenfassung der Erfindung

[0014] Die Erfindung befasst sich mit diesen und anderen Problemen, die mit dem bisherigen Stand der Technik zusammenhängen, indem in einem Aspekt ein System, ein Programmprodukt und ein Verfahren zur Verfügung gestellt werden, in denen die Funktionalität des Virusprüfers in einer Computerdatenbank-Suchumgebung integriert ist, um beim Schutz eines Nutzercomputers gegen das Zuziehen eines Computervirus beim Zugreifen auf Suchergebnisse zu helfen. Insbesondere beruht, entsprechend der Erfindung, die Erzeugung einer Bildschirmpäsentation einer Ergebnismenge, die als Antwort auf eine Suchanfrage erzeugt wurde, wenigstens zum Teil auf Virusstatusinformationen, die mit wenigstens einem Teil einer Vielzahl von Ergebnisdatensätzen zusammenhängen, die in der erzeugten Ergebnismenge identifiziert wurden.

[0015] Die wenigstens teilweise Zurückführung der Erzeugung der Bildschirmpäsentation auf die Virusstatusinformationen erlaubt es, die Ergebnismenge in einer Art und Weise anzuziehen, die die Nutzerauswahl von Ergebnisdatensätzen, die ein höheres Virusrisiko darstellen könnten, verhindert. Zum Beispiel kann es in einigen Ausführungen erwünscht sein (und es sollte verstanden werden, dass eine große Vielzahl von alternativen Operationen ausgeführt werden kann), einfach das Anzeigen von Informationen wegzulassen, die mit Ergebnisdatensätzen zusammenhängen, von denen festgestellt wurde, dass sie ein Virusrisiko darstellen, wodurch effektiv verdächtige Suchergebnisse in einer Ergebnismenge eliminiert werden. Als Alternative kann es wünschenswert sein, Informationen der Anzeige, die mit verdächtigen Ergebnisdatensätzen zusammenhängen, hervorzuheben (zum Beispiel mit einem Icon oder einer anderen bestimmten Präsentation), um einen Nutzer zu informieren, dass solche Datensätze vergleichsweise höhere Virusrisiken darstellen. Weiterhin kann es wünschenswert sein, Informationen der Anzeige hervorzuheben (zum Beispiel mit einem Icon oder einer bestimmten Präsentation), die vertrauenswürdigen Ergebnisdatensätzen zugordnet sind, um Nutzern eine gewisse Sicherheit zu geben, dass bestimmte Datensätze vergleichsweise geringere Virusrisiken bergen. Andere Anzeigemöglichkeiten werden für einen Fachmann offensichtlich sein, der den Nutzen dieser Offenbarung hat.

[0016] Die Erfindung befasst sich auch mit zusätzlichen

Problemen, die mit der herkömmlichen Technik zusammenhängen, indem ein System, ein Programmprodukt und ein Verfahren zur Verfügung gestellt werden, in denen ein erster Computer konfiguriert ist, um Virusstatusinformationen zu empfangen, die von einer Vielzahl von Computern generiert wurden, wobei derartige empfangene Virusstatusinformationen in einer Virusdatenbank gespeichert werden, auf die der erste Computer zugreifen kann. Als eine Konsequenz können verschiedene Computer in der Lage sein, zuverlässige Virusstatusinformationen zur Nutzung durch einen gegebenen Computer zu generieren, wodurch erlaubt wird, die Verantwortlichkeit zur Erzeugung von Virusstatusinformationen genauso wie die verlangte Rechenstärke zur Erzeugung der Virusstatusinformationen auf verschiedene Computer zu verteilen. Durch die Verteilung der Verantwortlichkeiten zur Virusprüfung in dieser Art kann ein vergleichsweise größeres Volumen von Virusstatusinformationen erzeugt und/oder die Zeitspanne für Aktualisierungen existierender Virusstatusinformationen verbessert werden.

[0017] Diese und andere Vorteile und Merkmale, die die Erfindung charakterisieren, werden in den hier angefügten Ansprüchen erklärt und bilden einen weiteren Teil hieron. Jedoch sollte, zum besseren Verständnis der Erfindung und der Vorteile und Ziele, die durch ihre Nutzung erreicht werden, auf die Zeichnungen und die begleitende Beschreibung, in der die spezielle Ausführungsformen der Erfindung beschrieben sind, Bezug genommen werden.

Kurze Beschreibung der Zeichnungen

[0018] Fig. 1 ist ein Blockdiagramm eines Computersystems entsprechend der Erfindung.

[0019] Fig. 2 ist ein Flussdiagramm, das die Ausführung einer Suchroutine, die von der Suchmaschine von Fig. 1 ausgeführt wird, illustriert.

[0020] Fig. 3 ist ein Flussdiagramm, das den Programmfluss der Suchmaschine von Fig. 1 illustriert.

[0021] Fig. 4 ist ein Flussdiagramm, das den Programmfluss der Erweiterung zur Virusprüfung von Fig. 1 illustriert.

[0022] Fig. 5 ist ein Flussdiagramm, das den Programmfluss des Virusprüfers aus Fig. 1 illustriert.

[0023] Fig. 6 ist ein Flussdiagramm, das den Programmfluss der Steuerung der Virusprüfung von Fig. 1 illustriert.

[0024] Fig. 7 ist ein Diagramm einer beispielhaften Suchseite, die von der Suchmaschine aus Fig. 1 erzeugt wurde.

[0025] Fig. 8 ist ein Diagramm einer beispielhaften Suchergebnisseite, die von der Suchmaschine aus Fig. 1 erzeugt wurde.

Ausführliche Beschreibung

[0026] Wenn wir uns nun den Zeichnungen zuwenden, in denen gleiche Zahlen in den verschiedenen Ansichten gleiche Teile bezeichnen, dann veranschaulicht Fig. 1 ein Computersystem 10 entsprechend der Erfindung. Computersystem 10 ist als ein vernetztes Computersystem abgebildet, das eine Vielzahl von Computern oder Systemen 20, 30, 50 umfasst, die miteinander über ein Netzwerk 15 verbunden sind. Netzwerk 15 kann praktisch jede Art von Netzwerksverbindung repräsentieren, darunter (aber nicht darauf beschränkt) lokale Netze (LAN), Weiterverkehrsnetzwerke (WAN), drahtlose, öffentliche Netze (zum Beispiel das Internet) und deren Kombinationen. Mehr noch, es wird verstanden werden, dass eine große Vielzahl von zusätzlichen Computern und anderen elektronischen Geräten durch das Netzwerk 15 vernetzt werden kann.

[0027] In der abgebildeten Umsetzung wird das Computersystem 10 hauptsächlich bei der Erzeugung und Ausgabe

von Datenbank-Suchergebnissen an einen Nutzer eingesetzt, insbesondere, um Webseiten und Websites, die über das Internet und/oder ein oder mehrere private Netzwerke unter Benutzung von eindeutigen Uniform Resource Locators (URLs) zugänglich sind, zu lokalisieren und auf sie zugreifen. In diesem Bereich wird Computer 20 typischerweise als ein Client oder Nutzerncomputer eingesetzt, da er von einem Nutzer gebraucht wird, um eine Suchanfrage zu erzeugen und Suchergebnisse als Antwort auf solche Anfrage zu empfangen. Gleichermaßen wird Computer 30 typischerweise als ein Server realisiert, da er genutzt wird, um ankommende Suchanfragen von verschiedenen Nutzern zu verarbeiten, auf einer Computerdatenbank, zum Beispiel einen Webseiteindex oder ein Verzeichnis, als Antwort auf solche Suchanfragen zuzugreifen und Suchergebnisse an verschiedene Nutzern computer, zum Beispiel Computer 20, auszugeben. Computer 50, der in größerer Ausführlichkeit weiter unten diskutiert wird, wird auch typischerweise als Servercomputer implementiert, da dieser Computer typischerweise genutzt wird, um geladene Dateien und andere potentiell virusverdächtige Computerdaten verschiedenen Nutzern anzubieten. Zusätzlich und besonders, falls die Einheit, die einen Computer 30 oder 50 besitzt, eine große kommerzielle Körperschaft ist (zum Beispiel eine große Suchsite oder Downloadsite im Internet), können Computer 30 oder 50 auch verschiedene, miteinander vernetzte Computer repräsentieren, die zum Beispiel als eine Gruppe oder ein Cluster arbeiten, die genutzt werden, um eine Website zu beherbergen und Suchergebnisse und/oder herunterladbare Dateien für Hunderte oder Tausende von Nutzern anzubieten.

[0028] Für die Zwecke der Erfindung kann jedes System 20, 30 und 50 praktisch jede Art von Computer, Computersystem oder einem anderen programmierbaren elektronischen Gerät repräsentieren, einschließlich eines Client-Computers, eines Servercomputers, eines tragbaren Computers, eines Handcomputers, einer eingebetteten Steuerung usw. Auf jedes System 20, 30 und 50 wird nachstehend als "Computer" Bezug genommen, obwohl beachtet werden sollte, dass der Ausdruck "System" auch andere passende programmierbare elektronische Geräte entsprechend der Erfahrung umfassen kann.

[0029] Wie in Fig. 1 gezeigt wird, enthält jeder Computer 20, 30 typischerweise wenigstens einen Prozessor 21, 31, der einem Speicher 22, 32 zugeordnet ist. Eine Anzahl zusätzlicher Komponenten 23–26 und 33–36 ist auch jedem Prozessor 21, 31 zugeordnet, wie weiter unten diskutiert werden wird. Die gleichen Komponenten wie die Komponenten 21–26 und 31–36 werden auch typischerweise in Computer 50 genutzt (der in vielen Fällen ähnlich wie Computer 30 konfiguriert ist), obgleich solche Komponenten in Fig. 1 weggelassen wurden, um die Abbildung zu vereinfachen.

[0030] Jeder Prozessor 21, 31 kann einen oder mehrere Prozessoren (zum Beispiel Mikroprozessoren) darstellen, und jeder Speicher kann die Direktzugriffs-Speicherseinheiten (RAM) darstellen, die den Hauptspeicher des entsprechenden Computers 20, 30 umfassen sowie auch alle Stufen von Zusatzspeichern, zum Beispiel Cache-Speicher, nicht flüchtige oder Backup-Speicher (zum Beispiel programmierbare oder Flash-Speicher), Nur-Lese-Speicher usw. Zusätzlich kann jeder Speicher 22, 32 so betrachtet werden, als ob er einen Speicher enthält, der sich physisch irgendwo in dem entsprechenden Computer 20, 30 befindet, zum Beispiel einen beliebigen Cache-Speicher in einem Prozessor 21, 31 genauso wie jede Speichermöglichkeit, die als virtueller Speicher genutzt wird, zum Beispiel gespeichert auf einer Massenspeicherheit 25, 35 oder auf einem anderen

Computer, der entweder Computer 20 oder 30 über ein Netzwerk zugeordnet ist.

[0031] Jeder Computer 20, 30 empfängt typischerweise auch eine Anzahl von Eingaben oder Ausgaben, um Informationen extern weiterzugeben. Für eine Schnittstelle mit einem Nutzer oder Bediener beinhaltet jeder Computer 20, 30 typischerweise ein oder mehr Nutzereingabeelementen 23, 33 (unter Anderem zum Beispiel eine Tastatur, eine Maus, ein Trackball, einen Joystick, ein Touchpad und/oder ein Mikrofon) und eine Anzeige 24, 34 (unter Anderem zum Beispiel einen CRT-Monitor, eine LCD-Anzeige und/oder Lautsprecher).

[0032] Zur zusätzlichen Speicherung kann jeder Computer 20, 30 auch einen oder mehrere Massenspeicher 25, 35 umfassen, unter Anderem zum Beispiel ein Disketten- oder einen anderen entfernbaren Laufwerk, eine Festplatte, einen Speicher mit Direktzugriff (DASD), ein optisches Laufwerk (zum Beispiel ein CD-Laufwerk, ein DVD-Laufwerk usw.) und/oder ein Bandlaufwerk. Weiterhin kann jeder Computer 20, 30 eine Schnittstelle 26, 36 zu einem oder mehreren Netzwerken umfassen (unter Anderem zum Beispiel ein LAN, ein WAN, ein drahtloses Netzwerk und/oder das Internet 15), um die Kommunikation von Informationen mit anderen Computern, die mit dem Netzwerk zugeordnet sind, zu erlauben. Es sollte beachtet werden, dass jeder Computer 20, 30 typischerweise passende analoge und/oder digitale Schnittstellen zwischen den Prozessoren 21, 31 und jeder Komponente 22–26 und 32–36 besitzt, wie im Fachgebiet allgemein bekannt ist.

[0033] Jeder Computer 20, 30 arbeitet unter der Steuerung eines Betriebssystems 27, 38 und führt verschiedene Computersoftwareanwendungen, Komponenten, Programme, Objekte, Module, Datenstrukturen (zum Beispiel die Komponenten 28–29 in Computer 20 und die Komponenten 40–46 in Computer 30, unter Anderem dies oder hängt auf andere Art von ihnen ab). Darüber hinaus können verschiedene Anwendungen, Komponenten, Programme, Objekte, Module usw. auch auf einem oder mehreren Prozessoren eines anderen Computers ausgeführt werden, der entweder Computer 20 oder 30 über ein Netzwerk zugeordnet ist, zum Beispiel in einer verteilten oder einer Client-Server-Rechnungsumgebung, wobei die Rechnerleistung, die erforderlich ist, um die Funktionen eines Computerprogramms umzusetzen, an verschiedene Computer über ein Netzwerk verteilt werden kann.

[0034] Im Allgemeinen werden die Routinen, die ausgeführt werden, um die Ausführungsformen der Erfindung zu implementieren, sei es als Teil eines Betriebssystems oder einer bestimmten Anwendung, einer Komponente, eines Programms, eines Objektes, eines Moduls oder einer Befehlsfolge, hier als "Computerprogramme" oder einfach als "Programme" bezeichnet. Die Computerprogramme umfassen typischerweise einen oder mehrere Befehle, die zu verschiedenen Zeiten in verschiedenen Speichern und Speicherheiten in einem Computer vorhanden sind, und die, wenn sie von einem oder mehreren Prozessoren in einem Computer gelesen und ausgeführt werden, dazu führen, dass der Computer die Schritte ausführt, die notwendig sind, um die Schritte oder Elemente auszuführen, die die verschiedenen Seiten der Erfindung verkörpern. Weiterhin werden, obwohl die Erfindung bisher und auch nachstehend im Kontext voll funktionierender Computer und Computersysteme beschrieben ist, Fachleute erkennen, dass die verschiedenen Ausführungsformen der Erfindung als ein Programmprodukt in einer Vielzahl von Formen verteilt werden können und dass die Erfindung in gleicher Weise anwendbar ist, unabhängig der speziellen Art der signaltragenden Medien, die zum eigentlichen Ausführen der Verteilung genutzt werden.

Beispiele für signaltragende Medien sind, ohne sich darauf zu beschränken, unter Anderem Medien vom beschreibbaren Typ, zum Beispiel flüchtige und nichtflüchtige Speicher-einheiten, unter Anderem Disketten und andere einfernba-re Platten, Festplatten, Magnetbänder, optische Platten (zum Beispiel CD-ROMs, DVDs usw.), und Übertragungsme-dien, zum Beispiel digitale und analoge Kommunikations-verbindungen.

[0035] Zusätzlich können verschiedene hier beschriebene Programme auf der Grundlage der Anwendung identifiziert werden, für die sie in einer bestimmten Ausführungsform der Erfahrung implementiert sind. Jedoch sollte beachtet werden, dass jede spezielle Programm-Nomenklatur, die folgt, nur aus Bequemlichkeit genutzt wird, und dass die Er-fahrung daher nicht einfach auf eine Verwendung in einer speziellen Anwendung beschränkt sein sollte, die von solch einer Nomenklatur identifiziert und/oder impliziert wird.

[0036] Fachleute werden erkennen, dass die in Fig. 1 abgebildete Beispieldatumsgebung nicht berücksichtigt, die vorlie-gende Erfahrung zu beschränken. Tatsächlich werden Fach-leute erkennen, dass andere alternative Hardware- und/oder Softwareumgebungen genutzt werden können, ohne sich vom Umfang der Erfahrung zu entfernen. Zum Beispiel kann die Erfahrung Anwendung bei der Unterstützung der Bereitstellung von Virusenschutz für praktisch jede Form von computerlesbaren Daten finden, auf die von einem Nutzer über Suchergebnisse, die als Antwort auf eine Suche in einer Computerdatenbank erzeugt werden, zugegriffen wird.

[0037] Fig. 1 veranschaulicht auch die Hauptsoftwar-standteile, die bei der Implementierung des Virusprüfungs und -meldens für Suchergebnisse einer Computerdatenbank entsprechen der Erfahrung genutzt werden. Wie oben be-sprochen, ist die abgebildete Umsetzung speziell konfigu-riert, um Virusenschutz zu gewährleisten, in Verbindung mit Suchergebnissen aus Dokumenten, Dateien oder anderen computerlesbaren Daten, die im Internet oder einer anderen Form eines öffentlichen oder privaten Netzwerkes gespe-ichert sind. Deshalb ist Computer 30 typischerweise als ein Webserver realisiert, der Suchfunktionalität zur Ausführung von Computerdatenbank-Suchoperationen umsetzt, die für den Zugriff auf in Netzwerken zugängliche Daten geeignet sind. Dateien, Dokumente und andere netzwerkzugängliche Daten, die dargestellt werden können und einem Nutzer über Suchergebnisse zugänglich sind, heißen hier nach ge-wöhnlich "Dateien", obgleich zu beachten ist, dass dieser Ausdruck allgemein auf praktisch jede Form von computerlesbaren Daten angewandt werden kann, so dass der Aus-druck gleichermaßen nicht auf eine bestimmte Datei, ein Dokument, eine Datenstruktur oder ein Datenbankformat beschränkt ist.

[0038] Um die oben beschriebene Suchfunktionalität so wie eine zusätzliche Virusprüfungs- und Virusmelde-Funktionalität entsprechend der Erfahrung zu unterstützen, be-nutzt Computer 30 eine Anzahl von Softwarekomponenten, einschließlich einer Suchmaschine 40, eines Webcrawler 42, einer Virusprüfung 44 und einer Virusdatenbank 46.

[0039] Die Suchmaschine 40 kann implementiert werden, indem eine beliebige Anzahl von bekannten Suchtechnolo-gien benutzt wird, inklusive indexbasiertes Suchmaschinen und/oder verzeichnisbasierte Suchmaschinen, die beide im Fachgebiet allgemein bekannt sind. Suchmaschine 40 wird jedoch erweitert, um die Erzeugung von Anzeigelinforma-tionen für eine Ergebnismenge zu unterstützen, die wenigstens zum Teil auf Informationen zum Virusstatus beruhen, die in der Virusdatenbank 46 gespeichert sind.

[0040] Eine indexbasierte Suchmaschine greift typischer-weise auf eine Computerdatenbank zu, die von einem Web-crawler oder einer anderen Komponente konstruiert wurde,

und die auch Indexdatensätze enthält, die bestimmten Da-teien zugeordnet sind, die Indizes nicht-trivialer Terme und/ oder anderer Daten in den zugeordneten Dateien enthalten. Eine Suche, die auf einer indexbasierten Suchmaschine aus-geführt wird, beinhaltet allgemein eine Durchsuchung der Indexdatensätze in einer Computerdatenbank, um Daten-sätze zu lokalisieren, die einen oder mehr indizierte Terme haben, die mit Termen übereinstimmen, die in einer Suchan-frage spezifiziert wurden. Typischerweise umfasst jeder In-dexdatensatz die dem Datensatz zugeordneten Indexterme und auch den Speicherort (zum Beispiel eine URL) der zu-geordneten Datei. Zusätzliche Informationen, zum Beispiel eine Zusammenfassung des Dokumentes, können auch in-nerhalb eines Indexdatensatzes implementiert werden.

[0041] Eine verzeichnisbasierte Suchmaschine umfasst typischerweise eine Computerdatenbank, die von einer Gruppe von Forschern erzeugt wird, die Dateien entspre-chend dem Inhalt einordnen und solchen Dateien zugeordnete Datensätze erstellen, von denen jeder einen Speicherort und typischerweise einen Titel und eine Zusammenfassung der Inhalte der zugeordneten Datei umfasst. Die Datensätze sind in verschiedenen Kategorien organisiert, so dass Docu-mente, die einen ähnlichen Inhalt haben, in die gleichen Ka-tegorien cingordnet werden.

[0042] Als Alternative können verschiedene alternative Suchtechnologien genutzt werden. Zum Beispiel kann Suchmaschine 40 verschiedene Suchtechnologien nutzen, um zum Beispiel sowohl auf eine indexbasierte Datenbank als auch auf eine verzeichnisbasierte Datenbank zuzugreifen. Zusätzlich wird verstanden werden, dass angesichts dessen, dass eine große Vielzahl von privaten Computer-netzwerken internetbasierte Technologien nutzt (zum Bei-spiel wenn sie als Intranet und/oder Extranet implementiert sind), sich die Dateien, die in einer der Erfahrung entspre-chenden Computerdatenbank dargestellt werden, auf einem privaten Netzwerk oder sogar auf einem einzelnen Computer befinden können und auf sie über andere Speicherorten-identifikationen als URLs zugegriffen werden kann.

[0043] Mehr noch, die Erfahrung kann bei der Erzeugung von Suchergebnissen aus jeder anderen Art von Computer-datenbank anwendbar sein, bei denen ein Risiko existiert, einen Virus einzufangen, wenn auf Dateien zugegriffen wird, die Suchergebnissen zugeordnet sind.

[0044] Die nachstehende Diskussion wird sich auf zwei Hauptfunktionalitäten konzentrieren, die implementiert sind, um Virusenschutz zur Verfügung zu stellen, der Computerdatenbank-Suchergebnissen entsprechend der Erfahrung zugeordnet ist. Eine erste Funktionalität ist die des Zugre-fens auf Informationen zum Virusstatus, die verschiedenen Ergebnismengen in einer Suchergebnismenge zugeordnet sind, um dabei zu helfen, einen Nutzer gegen das Einfangen eines Virus aus irgendeiner Datei zu schützen, die in der Suchergebnismenge dargestellt ist. Eine zweite Funktionali-tät ist der Aufbau einer Datenbank mit Informationen zum Virusstatus, die beim Prüfen von Suchergebnissen auf das Risiko einer Virusinfektion genutzt wird.

[0045] Die erste Funktionalität wird hauptsächlich in der veranschaulichten Ausführungsform implementiert, die Suchmaschine 40 nutzt. Die zweite Funktionalität, die des Erzeugens von Informationen zum Virusstatus, wird haupt-sächlich in der dargestellten Ausführungsform implementiert, die den Web Crawler 42 und die Virusprüfung 44 im Computer 30 nutzt, sowie als Virusprüferweiterung 29 im Computer 20 und als Virusprüfungskomponente 52 im Com-puter 50.

[0046] Insbesondere wird verstanden werden, dass in vielen Beispielen die potentielle Anzahl der Dateien, auf die als Antwort auf eine Computersuchanfrage zugegriffen werden

kann, eine beträchtliche Größe besitzen kann, besonders im Fall von internetbasierten Dateien. Obwohl es in einigen Ausführungsformen möglich sein kann, die Virusprüfung von Dateien, die durch eine Ergebnismenge dargestellt werden, in Echtzeit auszuführen, nachdem die Ergebnismenge erzeugt ist (entweder durch die Suchmaschine oder durch einen Nutzercomputer), wäre in vielen Beispielen die Menge an Verarbeitungsleistung, die erforderlich ist, um ein solches Virusuchen auszuführen, jenseits der Möglichkeiten vieler Computer.

[0047] Deshalb ist es oft wünschenswert, viel von der Erzeugung von Informationen zum Virusstatus im Hintergrund auszuführen sowie wenigstens einen Teil der Verarbeitung, die dem Erzeugen solcher Statusinformationen zugeordnet ist, auf andere Computer zu verteilen, so dass auf existierende Informationen zum Virusstatus, falls verfügbar, zugegriffen werden kann, nachdem eine Ergebnismenge erzeugt ist, um das Melden oder eine andere Behandlung von potentiellen Quellen von Computerviren in einer Ergebnismenge zu beschleunigen.

[0048] Eine Methode zum Übertragen der Erzeugung von Informationen zum Virusstatus auf einen Hintergrundprozess besteht in der Benutzung des Webcrawlers 42. Im Besonderen wird der Webcrawler 42 typischerweise als eine Erweiterung der konventionellen Webcrawler-Funktionalitäten implementiert, die gemeinsam zum Indizieren von Dateien bei der Erzeugung von Indexdatenbanken genutzt werden, insbesondere um die Virusprüfung, als eine weitere Operation hinzuzufügen, die mit einer bestimmten Datei ausgeführt wird, während ein Webcrawler einen Indexdatensatz, der dieser Datei zugeordnet ist, erzeugt oder aktualisiert. Virusprüfung durch einen Webcrawler 42 wird genutzt, um Informationen zum Virusstatus zu erzeugen, die anschließend in einer Virusdatenbank 46 gespeichert und von der Suchmaschine 40 bei der Anzeige der Suchergebnisse genutzt werden.

[0049] In anderen Umsetzungen kann der Umfang der Dateien, die möglicherweise in einer Ergebnismenge dargestellt werden können, sogar die Fähigkeit eines Webcrawlers übersteigen, Informationen zum Virusstatus für einen großen Teil der Dateien zu liefern, die in irgendeiner speziellen Ergebnismenge dargestellt werden (wobei es klar ist, dass es das vorrangige Ziel von vielen Webcrawlern ist, zu versuchen so viel wie möglich vom Internet abzudecken). Deshalb ist es oft wünschenswert, entsprechend der Erfahrung, weiterhin einige der Verantwortlichkeiten zur Ausführung von Virusprüfungen an entfernte Computer zu delegieren und sich dann auf die Kommunikation von diesen entfernten Computern zu verlassen, um Informationen zum Virusstatus, die in der Virusdatenbank 46 gespeichert werden, zu erzeugen. In der abgebildeten Umsetzung wird die Koordination solcher Aktivitäten durch die Virusprüfsteuerung 44 in Computer 30 durchgeführt.

[0050] Die Verantwortung zum Ausführen von Virusprüfungen kann zum Beispiel zu einem gewissen Teil an die aktuellen Nutzer der Suchmaschine delegiert werden. Wie in Fig. 1 veranschaulicht, kann ein Nutzercomputer 20 zum Beispiel eine Erweiterung zur Virusprüfung 29 beinhalten, die in Verbindung mit einem konventionellen Browser 28 arbeitet, um die Virusprüfung von Dateien, auf die ein Nutzer zugreift, auszuführen, wobei die Ergebnisse solcher Operationen an den Computer 30 zurückgeschickt und von der Virusprüfsteuerung 44 zur Aufnahme der zugeordneten Informationen zum Virusstatus in die Virusdatenbank 46 verarbeitet werden.

[0051] Noch eine andere Methode des Delegierens der Verantwortung für die Virusprüfung kann durch andere, dritte Computer geliefert werden, inklusive solcher von drit-

ten Parteien, die nicht aktuell Nutzer der Suchmaschine sind. Eine solche Funktionalität wird in Fig. 1 durch den Virusprüfer 52 veranschaulicht, der die Virusprüfung von Dateien ausführt, die dem Computer 50 zugänglich sind, und Informationen zum Virusstatus zurück an die Virusprüfsteuerung 44 zur Aufnahme solcher Informationen in die Datenbank 46 meldet.

[0052] Der Virusprüfer 52 wird typischerweise genutzt, um Dateien zu prüfen, die von Computer 50 verwaltet werden oder ansonsten unter der Verantwortung von Computer 50 stehen, entweder aufgrund von Kopien der Dateien, die im Computer vorhanden sind, oder weil die Dateien mit anderen Dateien, die im Computer vorhanden sind, direkt verknüpft sind und/oder auf andere Weise durch sie angesprochen werden. Computer 50 kann zum Beispiel eine Website beherbergen, beispielsweise eine Seite zum Herunterladen, die eine Anzahl von abrufbaren Dateien beinhaltet, die für Nutzer über das Internet zugänglich sind. Websites und insbesondere Sites zum Herunterladen und Ähnliches führen oft eine Virusprüfung im normalen Geschäftsverlauf aus, indem konventionelle Technologie zum Virusrusschutz benutzt wird. Im Gegensatz zu solchen internen Virusenschutzmaßnahmen jedoch unterstützt der Virusprüfer 52 die zusätzliche Funktionalität des Meldens von Ergebnissen solcher Virusprüfungen an die Virusprüfsteuerung 44 zur Aufnahme der sich ergebenden Statusinformationen in die Datenbank 46.

[0053] Während praktisch jede Art von Website oder einer anderen Dateiquelle durch den Virusprüfer 52 bearbeitet werden kann, besteht eine besonders nützliche Anwendung in der Benutzung in Verbindung mit einer Seite zum Herunterladen, die regelmäßiger Zugang zu einer großen Vielzahl von herunterladbaren Softwareanwendungen und anderen Dateien gewährt, die eine vergleichsweise höhere Anfälligkeit für Virusinfektion haben. Ausführbare Dateien und auch Dateien, die auf Skripte und/oder ausführbare Objekte zugreifen, sowie komprimierte Dateien, die eine oder mehr dieser Arten von Dateien enthalten, sind besonders anfällig für eine Infektion, und deshalb ist es oft wünschenswert, Virusrusschutz in Verbindung mit einer Website zu liefern, die Nutzerzugang zu einer großen Zahl solcher Dateien gewährt.

[0054] Wie weiter unten noch offensichtlicher werden wird, kann der Virusprüfer 52, zusätzlich zum Prüfen von Dateien, die von Computer 50 verwaltet werden, auch zusätzliche Virusprüfungen unter der direkten Steuerung durch die Virusprüfsteuerung 44 ausführen und die Ergebnisse rechtzeitig zurück an die Virusprüfsteuerung melden. Eine ähnliche Funktionalität kann, falls gewünscht, auch in der Erweiterung 29 umgesetzt werden. Dies erlaubt es der Steuerung 44, die Virusprüfung bestimmter Dateien an andere Computer zu delegieren und dadurch die Erzeugung zusätzlicher Informationen zum Virusstatus zu erleichtern.

[0055] Nimmt man beispielweise an, dass eine Vielzahl von Nutzerncomputern und Computern dritter Parteien zu verschiedenen Zeiten elektronisch Computer 30 zugeordnet sind, dann wird es verständlich sein, dass der Erzeugung von Informationen zum Virusstatus in der hier beschriebenen Weise eine beträchtliche Menge an Verarbeitungsleistung zugeordnet werden kann. Als ein Ergebnis wird die Durchführbarkeit der Erzeugung von Informationen zum Virusstatus für einen großen Anteil von möglichen Suchergebnissen dramatisch erhöht. Es wird jedoch von einem Fachmann, der den Nutzen der Offenbarung hat, verstanden, dass Informationen zum Virusstatus in einigen Ausführungsformen allein durch Nutzercomputer, durch Suchmaschinencomputer oder durch Computer dritter Parteien erzeugt werden können und demzufolge die Erfindung nicht auf die Benutzung

aller drei oben diskutierten Verfahren beschränkt ist.

[0056] Fig. 2 zeigt detaillierter eine Beispelausführung der Suchroutine 60, die von der Suchmaschine 40 des Computers 30 ausgeführt wird, um Informationen zum Virusstatus in die Erzeugung von Suchergebnissen in Übereinstimmung mit der Erfindung einzubeziehen. In der veranschaulichten Ausführungsform erzeugt die Suchmaschine 40, wenn eine Suche ausgeführt wird, typischerweise Suchergebnisse als Antwort auf eine Suchanfrage, wobei solche Suchergebnisse durch eine Ergebnismenge dargestellt werden, die eine Vielzahl von Datensätzen in einer Datenbank identifiziert, die ein durch die Suchanfrage bestimmtes Kriterium erfüllen. Weiterhin ist in der abgebildeten Ausführungsform jeder Datensatz in der Ergebnismenge einer bestimmten Datei zugeordnet (zum Beispiel durch Einbeziehen eines Speicherortes für diese Datei), auf die durch einen Nutzer durch die Suchergebnisse zugegriffen werden kann. Zum Beispiel ist bei einer internethätsierten Suchmaschine, beispielsweise der Suchmaschine 40, jeder Datensatz einer besonderen, über das Internet oder anderweitig über ein Netzwerk zugänglichen Datei zugeordnet, und jeder Datensatz enthält typischerweise eine URL, die den Speicherort einer solchen zugeordneten Datei liefert. Andere Arten der Verknüpfung von Dateien mit Ergebnisdatensätzen können als Alternative genutzt werden.

[0057] Routine 60 beginnt in den Blöcken 62 und 64, indem ein Viruskriterium und ein Suchkriterium von einem Nutzer erhalten werden.

[0058] Das vom Nutzer erhaltenen Viruskriterium bestimmt typischerweise die Regel, wonach in einer Ergebnismenge dargestellte Dateien als "nicht vertrauenswürdig" anzusezigen sind, d. h. als Träger eines vergleichsweise höheren Virusinfektionsrisikos. Das Viruskriterium kann zum Beispiel einfach darauf basieren, ob eine in einer Ergebnismenge dargestellte Datei einen Virus enthielt oder nicht. Das Viruskriterium kann auch bestimmen, ob eine Datei innerhalb eines vorbestimmt Zeitabschnittes auf Viren geprüft wurde, so dass Dateien, die als nicht mit einem Virus infiziert befunden wurden, aber für einen längeren Zeitabschnitt nicht geprüft wurden, immer noch als nicht vertrauenswürdig betrachtet werden. Das Viruskriterium kann auch bestimmen, ob eine Datei seit der letzten Ausführung einer Virusprüfung geändert wurde, so dass geänderte Dateien als nicht vertrauenswürdig betrachtet werden, bis sie erneut überprüft worden sind. Zusätzlich kann auch ein Zeitabschnitt bestimmt werden, in dem Dateien als frei von Virusinfektionen befunden wurden, so dass Dateien, von denen vorher angenommen wurde, dass sie ein größeres Risiko eines Virus darstellen, nach dem Ende einer ausreichenden Zeitspanne, in der keine Viren gefunden wurden, immer noch den Vertrauensstatus erhalten können.

[0059] Ein Viruskriterium kann auch bestimmen, welche zusätzlichen Dateien, falls überhaupt, geprüft werden müssen, um eine bestimmte Datei als virusfrei zu bestätigen. Eine Datei kann zum Beispiel als virusfrei definiert werden, falls der aktuelle Inhalt der Datei als frei von allen Viren befunden wurde. Als Alternative hierzu kann der Status einer Datei von dem Status von zusätzlichen Dateien, die dieser Datei zugeordnet sind, abhängen, und solches kann von einer Datei verlangt werden, nur mit Dateien zugeordnet zu sein, die auch virusfrei sind, bevor diese Datei als vertrauenswürdig bestimmt werden kann..

[0060] Beispielsweise besteht bei vielen Seiten zum Herunterladen der Großteil der herunterladbaren Dateien, die auf solchen Seiten verfügbar sind, aus ausführbaren Dateien, und diese sind nicht geeignet zum Indizieren oder Suchen, aufgrund ihres maschinlesbaren Inhalts. Auf der anderen Seite sind solche Dateien typischerweise über Webseiten

oder Dokumente zugänglich, die in einer textbasierten Sprache, zum Beispiel der Hypertext Markup Language (HTML), formatiert sind, die selbst indexierbar und suchbar ist, die aber aufgrund ihrer Natur gewöhnlich ein vergleichs-

weise geringeres Risiko einer Virusinfektion liefert. Nichtsdestotrotz wäre es allgemein unerwünscht, ein HTML-Dokument als vertrauenswürdig anzusezigen, wenn es mit irgendeiner infizierten ausführbaren Datei verknüpft ist.

[0061] Deshalb ist es in vielen Fällen für ein Viruskriterium wünschenswert, um sich den Befürchtungen zuzuwenden, die mit Dateien höheres Risikos verbunden sind, zu bestimmen, wie zusätzliche Dateien, die mit einer besonderen Datei verknüpft sind, bei der Bestimmung der Vertrauenswürdigkeit dieser Datei analysiert werden. Ein Viruskriterium kann zum Beispiel eine Verknüpfungstiefe bestimmen, die die Anzahl der aufeinander folgenden Verknüpfungen darstellt, die von einer bestimmten, analysierten Datei aus durchlaufen werden müssen. Ein Viruskriterium kann auch festlegen, dass die zusätzlichen Dateien unter der Steuerung der gleichen Stelle wie die analysierte Datei sind, zum Beispiel indem die zu analysierenden verknüpften Dateien auf Dateien in der gleichen Domain beschränkt werden.

[0062] Das Abfragen eines Suchkriteriums von einem Nutzer, das eine von diesem Nutzer gemachte Suchanfrage darstellt, enthält typischerweise eine beliebige Anzahl bekannter Suchtechnologien, darunter beispielsweise Schlüsselwort-Suche, logische Suche, Suche in natürlicher Sprache usw. In der abgebildeten Umsetzung kann beispielsweise ein Suchkriterium von einem Nutzer über eine Suchseite (zum Beispiel im HTML-Format) erlangt werden, die dem Nutzer über die Suchmaschine angeboten wird, inklusive passender Eingabefelder, in die ein Nutzer Suchbegriffe eingegeben kann. Die Aufgabe einer Suchanfrage wird typischerweise ausgeführt, indem eine auf der Suchseite verfügbare Anfrage-Schaltfläche (submit-button) ausgewählt wird. Jedenfalls können auch andere Methoden der Eingabe eines Suchkriteriums als Alternative genutzt werden.

[0063] In der abgebildeten Umsetzung können das Viruskriterium und das Suchkriterium von einem Nutzer über eine gemeinsame Suchseite eingegeben werden. Zusätzlich kann es erwünscht sein, andere Nutzerpräferenzen festzulegen, zum Beispiel wie die Anzeige von Suchergebnissen, die als nicht vertrauenswürdig bestimmt wurden, gehandhabt werden soll. Als Alternative können einige oder alle

[0064] Virus- und Suchkriterien sowie beliebige zusätzliche Nutzerpräferenzen für einen Nutzer auf dem lokalen Computer des Nutzers zwischengespeichert werden, wobei wenigstens ein Teil von entweder einem oder beiden Blöcken 62 und 64 die Abfrage der lokalen Nutzeinstellungen vom lokalen Computer des Nutzers enthalten können. Zusätzlich können in einigen Ausführungsformen gewisse Aspekte des Virus- und Suchkriteriums sowie beliebige zusätzliche Nutzerpräferenzen von einem Nutzer modifizierbar sein, oder als Alternative können gewisse derartige Aspekte durch die Suchmaschine festgelegt und nicht durch einen Nutzer bestimmt werden.

[0065] Wir setzen mit Routine 60 fort; sobald ein Viruskriterium und ein Suchkriterium von einem Nutzer erhalten wurden, geht die Steuerung auf Block 66 über, um die Suche entsprechend dem Stand der Technik durchzuführen. Als ein Ergebnis der Suchausführung wird typischerweise eine Ergebnismenge erzeugt, die eine Vielzahl von Ergebnisdatensätzen identifiziert, die dem Suchkriterium entsprechen. Im Falle einer indexbasierten oder verzeichnisbasierten Suchmaschine beinhaltet eine Ergebnismenge typischerweise Identifikatoren einer Vielzahl von Index- oder Verzeichnisdatensätzen in der jeweiligen Datenbank, wobei jeder derartige Datensatz eine oder mehr Dateien identifiziert, zum

Beispiel über URLs, die in solchen Datensätzen gespeichert sind.

[0065] Im Block 68 wird als nächstes die Ergebnismenge durchsucht, um die jedem Ergebnisdatensatz zugeordnete URL zu erhalten, wobei jede derartige URL benutzt wird, um auf die Virusdatenbank 46 zugreifen, um zu versuchen, Informationen zum Virusstatus für jede von der Ergebnismenge dargestellten Datei zu finden. Für jeden gefundenen Datensatz in der Virusdatenbank wird die dortige Information zum Virusstatus mit dem Viruskriterium verglichen, um zu bestimmen, ob der zugeordnete Datei vertraut oder nicht vertraut werden kann, nicht infiziert (oder frei) von Computerviren zu sein. Jede von der Ergebnismenge dargestellte nicht vertrauenswürdige Datei wird dann von der Suchmaschine markiert, um ihren nicht vertrauenswürdigen Status widerzuspiegeln. Zusätzlich können Dateien, die keine zugeordneten Informationen zum Virusstatus haben, als nicht vertrauenswürdig markiert oder separat in der Ergebnismenge angezeigt werden.

[0066] Als nächstes erzeugt Block 70 eine Anzeige von wenigstens einem Teil der Ergebnismenge, die auf den Informationen zum Virusstatus für die Ergebnismenge und anderen zusätzlichen Nutzerpräferenzen, die weiter unten diskutiert werden, beruht. Block 70 bietet auch (d. h. überträgt) die Anzeigedarstellung dem Nutzer als Ergebnis der Suche an.

[0067] In der abgebildeten Ausführung zum Beispiel beinhaltet die Erzeugung einer Anzeigedarstellung der Ergebnismenge typischerweise die Generierung eines HTML-kompatiblen Dokumentes, zum Beispiel eine Suchergebnisseite, die Informationen anzeigt, die wenigstens einer Untermenge der Ergebnisdatensätze in der Ergebnismenge zugeordnet sind. Typischerweise beinhalten die Anzeigearmationen für einen Ergebnisdatensatz einen Titel und eine URL für die zugeordnete Datei und oft einen Hyperlink zu der URL, so dass ein Nutzer direkt zu der zugeordneten Datei steuern kann. Die Anzeigearmationen können zusätzlich andere Informationen beinhalten, zum Beispiel eine Zusammenfassung oder einen Auszug der Datei, ein Datum für die Datei und/oder einen Grad der Relevanz für die Datei.

[0068] Außerdem wird, wie oben besprochen, in vielen Fällen nur ein Teil der Ergebnisdatensätze in dem HTML-Dokument dargestellt, mit zusätzlichen in dem Dokument zur Verfügung gestellten Hypertextlinks, um zu erlauben, dass zusätzliche Suchergebnisse angeschaut werden können.

Zum Beispiel kann eine Suchergebnisseite erzeugt werden, um die ersten fünfzig Ergebnisse anzuzeigen, mit bereitgestellten Links, um zusätzliche Gruppen von jeweils fünfzig Ergebnissen auszuwählen. Nutzerpräferenzen (zum Beispiel wie in den lokalen Einstellungen auf dem lokalen Computer des Nutzers gespeichert oder auf einer Suchseite bestimmt) können auch bei der Bestimmung benutzt werden, wie die Anzeigedarstellung der Suchergebnisse zu formatieren ist.

[0069] Die Erzeugung der Anzeigedarstellung basiert, in Übereinstimmung mit der Erfundung, wenigstens zum Teil auf den Informationen zum Virusstatus, die für eine oder mehr Ergebnisdatensätze in der Ergebnismenge abgefragt wurden. Die Anzeigedarstellung kann zum Beispiel so erzeugt werden, dass jegliche Anzeigearmationen weglassen sind, die Ergebnisdatensätze zugeordnet sind, von denen festgestellt wurde, dass sie ein Risiko einer Virusinfektion darstellen. Als Alternative können die Anzeigearmationen für Ergebnisdatensätze, von denen festgestellt wurde, dass sie ein Risiko einer Virusinfektion darstellen, in der Anzeigedarstellung hervorgehoben werden, zum Beispiel durch das Bereitstellen eines speziellen Icons im Zusammenhang mit der Anzeigearmation oder durch wechselnde Methoden zur Hervorhebung, zum Beispiel die Be-

nutzung von bestimmten Anzeigemarkmalen (zum Beispiel fett, kursiv usw.), vergroßerte Schrift, bestimmte Anzeigefarbe, Animation usw., oder durch die Benutzung einer Dialogbox oder anderer aufklappende Fenster, eine Textbenachrichtigung irgendwo auf der Suchergebnisseite usw. Zusätzlich kann dem Nutzer ein hörbares Signal, zum Beispiel ein "Beep" oder ein anderes Geräusch, vorgespielt werden, um den Nutzer über ein potenzielles Risiko zu benachrichtigen. [0070] Weiterhin kann ein Nutzer immer dann gewarnt werden, wenn der Nutzer mit den Anzeigearmationen arbeitet, die einem Risikoergebnisdatensatz zugeordnet sind, zum Beispiel bei Auswahl, oder selbst wenn ein Zeiger in der Nähe der Anzeigearmationen oder einem Hyperlink darin positioniert wird. Solch eine Warnung kann zum Beispiel durch jeder der oben beschriebenen Markierungstechniken sowie durch eine große Vielzahl von anderen Meldungstechniken geliefert werden.

[0071] Andere Arten von Audio- und/oder visuellen Techniken können in eine Anzeigedarstellung einer Ergebnismenge aufgenommen werden, um potentielle Risiken aufgrund von Viren anzuzeigen, wie von einem Fachmann erkannt wird, der den Nutzen dieser Offenheit hat.

[0072] Zusätzlich zu oder anstatt der Hervorhebung von Anzeigearmationen für nicht vertrauenswürdige Ergebnisdatensätze kann es wünschenswert sein, Anzeigearmationen für Ergebnisdatensätze hervorzuheben, die Dateien zugeordnet sind, denen niedrige Risiken von Computerviren zugeschrieben werden, zum Beispiel über Icons oder jeden anderen oben beschriebenen Anzeigemechanismus. Zum Beispiel kann es erwünscht sein, ein Icon "bestätigt" bei den Anzeigearmationen anzuzeigen, die einem bestimmten Ergebnisdatensatz, der als vertrauenswürdig befunden wurde, zugeordnet sind.

[0073] Es kann auch erwünscht sein, verschiedene Grade von Vertrauenswürdigkeit zu definieren und getrennte Ergebnisdatensätze auszuweisen, die solchen verschiedenen Graden entsprechen. Zum Beispiel kann es erwünscht sein, Dateien separat auszuweisen, für welche keine Informationen zum Virusstatus verfügbar sind. Als Alternative können alle solche Dateien als nicht vertrauenswürdig betrachtet werden, gemeinsam mit jenen, von denen festgestellt wurde, dass sie ein höheres Risiko einer Virusinfektion darstellen. Ebenso können Dateien, die noch nie einen Virus hatten, von Dateien unterschieden werden, die für einen bestimmten Zeitraum infektionsfrei gewesen sind.

[0074] Es wird zu erkennen sein, dass als Alternative eine große Vielzahl von weiteren Mechanismen benutzt werden können, die einen Nutzer vom Zugriff auf eine Datei abhalten, die einem Ergebnisdatensatz zugeordnet ist, der ein vergleichsweise höheres Risiko einer Virusinfektion hat. Deshalb ist die Erfindung nicht auf bestimmte, hier beschriebene Mechanismen beschränkt.

[0075] Wir wenden uns nun Fig. 3-6 zu; die verschiedenen Mechanismen, die genutzt werden können, um Informationen zum Virusstatus in der Virusdatenbank 46 zu erzeugen, werden nachstehend in größerer Ausführlichkeit beschrieben. Wie oben besprochen wurde, ist eine mögliche Quelle für Informationen zum Virusstatus in der Virusdatenbank 46 der Webcrawler 42, dessen Programmablauf in größerer Ausführlichkeit in Fig. 3 illustriert ist.

[0076] Der Webcrawler 42 beginnt im Block 80 mit dem Erhalt einer neuen, zu prüfenden URL. Typischerweise geschieht die Auswahl einer neuen URL in Block 80 über ein Webcrawler-Protokoll, wie es für viele Webcrawler üblich ist. Das Erlangen einer neuen URL zum Beispiel kann über die Auswahl einer URL geschehen, auf die in einem Hyperlink in einer vorher bearbeiteten Datei Bezug genommen wurde.

[0077] Nach dem Erhalt einer neuen URL geht die Steuerung zu Block 82 über, um zu bestimmen, ob sich die URL geändert hat – das heißt, ob die durch die URL ausgewiesene Datei aktualisiert wurde, nachdem die Datei das letzte Mal auf Viren überprüft worden ist. Typischerweise wird Block 82 implementiert, indem eine Prüfsumme, zum Beispiel eine CRC, von der Datei, auf die sich die URL bezieht, geliefert und die Prüfsumme mit der in der Datenbank 46 für die URL gespeicherten (falls solch ein Datensatz existiert) verglichen wird. Wechselnde Arten der Bestimmung, ob eine Datei seit einem früheren Zeitpunkt aktualisiert wurde, können auch als Alternative genutzt werden, zum Beispiel der Vergleich eines laufenden Zeistempels mit einem Revisionsdatum, das Absuchen der Inhalte der Datei und durch andere in der Technik bekannte Formen. Alternativ kann der Status der Aktualisierung einer Datei in anderen Ausführungsformen nicht analysiert werden, wodurch Block 82 weggelassen würde.

[0078] Falls die URL als nicht geändert festgestellt wurde, geht die Steuerung auf Block 84 über, um zu bestimmen, ob die URL auf Viren geprüft wurde. Typischerweise wird Block 84 implementiert, indem auf den Datensatz (fall vorhanden), der der URL in der Virusdatenbank 46 zugeordnet ist, zugriffen wird, um zu bestimmen, ob der URL Informationen zum Virusstatus zugeordnet sind.

[0079] Falls entweder Block 82 bestimmt, dass die URL geändert wurde, oder Block 84 bestimmt, dass die URL vorher nicht auf Viren geprüft wurde, geht die Steuerung auf Block 86 über, um eine POR-Schleife zur Ausführung einer Virusprüfung für die URL einzuleiten. Block 86 bearbeitet speziell jede virusverdächtige Datei, die von der URL aus zugänglich ist. In Abhängigkeit von der speziellen benutzten Technik zum Virus suchen können entweder nur ausführbare Dateien analysiert werden, oder als Alternative können alle Dateien, inklusive komprimierter Dateien, Dateien mit Daten und/oder die bestimmte, unter der URL gespeicherte Datei, geprüft werden. Daraufhin kann, wie oben besprochen, ein Parameter zur Linktiefen genutzt werden, um zu bestimmen, wie viele Links zu durchlaufen sind, um die Vertrauenswürdigkeit der URL zu bestimmen.

[0080] Für jedeartige virusverdächtige Datei geht die Steuerung auf Block 88 über, um die Datei herunterzuladen, und dann zu Block 90, um eine Virusprüfung mit der Datei durchzuführen, indem eine beliebige Zahl in der Technik bekannter konventioneller Techniken zum Virus suchen benutzt wird. Die Steuerung kehrt dann zu Block 86 zurück, um zusätzliche Dateien, die von der URL aus zugänglich sind, zu bearbeiten.

[0081] Sobald alle derartigen Dateien auf Viren überprüft wurden, gibt Block 86 die Steuerung an Block 92 weiter, um einen neuen Datensatz zu erzeugen oder einen existierenden Datensatz der URL in der Virusdatenbank zu aktualisieren. Verschiedene Typen von Informationen zum Virusstatus können in einem URL-Datensatz in der Virusdatenbank gespeichert werden, darunter zum Beispiel der Virusstatus (ob ein Virus in irgendeiner zugänglichen Datei gefunden wurde), ein Zeistempel (der anzeigen, wann die URL zum letzten Mal auf Viren geprüft wurde) und eine Prüfsumme (die benutzt wird, um zu bestimmen, ob die URL bei einem zukünftigen Zugriff geändert wurde). Zusätzliche Informationen zum Virusstatus, zum Beispiel der Typ des gefundenen Virus, die Namen aller Dateien, die Viren enthalten usw., können auch in einem URL-Datensatz entsprechend der Erfindung, gespeichert werden.

[0082] Sobald der URL-Datensatz erzeugt oder aktualisiert wurde, geht die Steuerung auf Block 94 über, um konventionelle Webcrawling-Operationen für die URL auszuführen. Alternativ hierzu kann Webcrawler 42 keine zusätz-

lichen Funktionen außerhalb des Virusprüfens ausführen, wodurch Block 94 weggelassen werden kann. Ungeachtet dessen geht die Steuerung als nächstes zu Block 80 zurück, um eine neue URL zur Bearbeitung zu erhalten.

- [0083] Wir kehren zu Block 84 zurück; falls für eine URL festgestellt wurde, dass sie nicht geändert und in der Vergangenheit virengeprägt wurde, geht die Steuerung auf Block 96 über, um festzulegen, ob die Virusprüfung der URL ausgelassen werden kann. Insbesondere bestimmt Block 96, ob die URL zuletzt als nicht vertrauenswürdig befunden wurde, d. h. sich auf eine Datei bezieht, die einen Virus hat, oder mit einer anderen Datei verlinkt ist, die einen Virus hat, indem auf den URL-Datensatz zugegriffen wird, der der URL in der Virusdatenbank zugeordnet ist, um zu bestimmen, ob die Informationen zum Virusstatus anzeigen, dass ein Virus während der letzten Virusüberprüfung der URL gefunden wurde.
- [0084] Falls die URL nicht als nicht vertrauenswürdig befunden wurde, geht die Steuerung auf Block 98 über, um zu bestimmen, ob die Schwellwert-Zeit einer "guten" URL abgelaufen ist – das heißt, ob ein übermäßig großer Zeitraum vergangen ist, seit die URL zuletzt auf Viren geprüft wurde. Falls nicht, geht die Steuerung auf Block 94 über, wodurch die Virusprüfung der URL ausgelassen wird. Ansonsten geht die Steuerung auf Block 86 über, um eine Virusprüfung für die Datei in der oben besprochenen Weise auszuführen.
- [0085] Wir kehren zu Block 96 zurück; falls die URL für nicht vertrauenswürdig befunden wurde, geht die Steuerung auf Block 99 über, um zu bestimmen, ob die Schwellwert-Zeit einer "schlechten" URL abgelaufen ist. Falls nicht, geht die Steuerung auf Block 94 über, um die Virusprüfung der URL zu umgehen. Ansonsten geht die Steuerung auf Block 86 über, um die URL erneut zu prüfen.
- [0086] Es wird verstanden werden, dass die Schwellwert-Zeiten der "guten" URL und der "schlechten" URL empirisch bestimmt oder anderweitig eingestellt werden können, um sicherzustellen, dass Informationen zum Virusstatus für die URLs in der Virusdatenbank relativ aktuell gehalten werden. Darüber hinaus können den "guten" und den "schlechten" URLs unterschiedliche Schwellwertzeiten zugeordnet werden, oder die gleiche Schwellwert-Zeit kann in beiden Fällen benutzt werden.
- [0087] Wie oben besprochen – eine weitere Quelle von Informationen zum Virusstatus läuft über einen Nutzercomputer, zum Beispiel den Nutzercomputer 20 in Fig. 1, in der abgebildete Implementation wird die Virusprüfung im Nutzercomputer über eine Erweiterung 29 eines Browsers 28 ausgeführt, das heißt eines konventionellen Browsers wie zum Beispiel der Internet Explorer der Microsoft Corporation oder der Navigator-Browser von Netscape Communications. Als Alternative kann die hier beschriebene Funktionalität der Virusprüfung direkt innerhalb eines Browsers implementiert werden oder innerhalb einer komplett davon getrennten Anwendung. Solch eine Funktionalität kann auch in Echtzeit an einen Nutzer geschickt werden, in Verbindung mit Suchergebnissen, das heißt über eine scriptbasierte oder ausführbare Objektmösetzung. Die Erfindung ist daher nicht auf die bestimmte, hier besprochene erweiterungsbasierte Umsetzung zur Virusprüfung beschränkt.
- [0088] Die Erweiterung zur Virusprüfung 29 wird in größerer Ausführlichkeit in Fig. 4 abgebildet, deren Programmfluss in Block 110 beginnt, indem auf einen Befehl, eine bestimmte Datei auf Viren zu prüfen, vom Browser gewartet wird. Insbesondere ist Erweiterung 29 so konfiguriert, dass sie wartet, bis ein Nutzer versucht, eine virusverdächtige Datei, zum Beispiel eine ausführbare Datei oder eine Datei, die ein Script oder einen Link auf ein ausführbares Objekt enthält, herunterzuladen. Zusätzlich kann es in einigen Um-

setzungen erwünscht sein, die Erweiterung zu informieren, eine bestimmte Datei auf Viren zu prüfen, immer dann, wenn festgestellt wird, dass eine Datei sich auf andere Dateien bezieht, die anfällig für Virusinfektion sein können. Die Umsetzung einer solchen Funktionalität innerhalb des Browsers **28** und der Erweiterung **29** wären innerhalb der Fähigkeiten eines Fachmannes, der den Nutzen dieser Offenbarung hat, wobei typischerweise der Browser so konfiguriert ist, dass er überwacht, welche Dateien der Nutzer versucht herunterzuladen, und die Erweiterung benachrichtigt, wenn irgendwelche virusverdächtigen Dateien (zum Beispiel ausführbare Dateien) von einem Nutzer angefordert werden.

[0089] Immer wenn ein Befehl vom Browser empfangen wird, geht die Steuerung auf Block **112** über, um die URL für die Datei (oder alternativ die URL für die Datei, die sich auf diese Datei bezieht) zu erhalten. Block **114** prüft als Nächstes die Datei auf Viren, unter Benutzung konventioneller Techniken zum Virus suchten.

[0090] Block **116** bestimmt als Nächstes, ob ein Virus gefunden wurde. Falls ein Virus gefunden wurde, geht die Steuerung auf Block **118** über, um ein "schlechtes" Datenpaket zu bilden, das typischerweise den Namen der Datei, die zugeordnete URL und einen Zeitstempel enthält, der anzeigen, wann eine Virusprüfung für die Datei ausgeführt wurde. Zusätzlich können andere Informationen, zum Beispiel die Art des Virus, mit dem "schlechten" Datenpaket geliefert werden. Block **120** sendet als Nächstes das "schlechte" Datenpaket an die Virusprüfung, und Block **122** informiert optional den Nutzer, dass ein Virus gefunden wurde. Zusätzlich kann es erwünscht sein, dem Nutzer zu erlauben, eine Impfung der Datei auszuführen oder andere Meldefunktionalitäten auszuführen, die in der Technik des Virus suchens allgemein bekannt sind. Nach Beendigung von Block **122** kehrt die Steuerung zu Block **110** zurück, um weitere Dateien zu bearbeiten (falls vorhanden).

[0091] Wir kehren zu Block **116** zurück; falls kein Virus gefunden wird, geht die Steuerung direkt auf Block **110** über. Alternativ kann es in einigen Umsetzungen wünschenswert sein, ein "gutes" Datenpaket an die Virusprüfung steuern zu schicken, falls kein Virus gefunden wird.

[0092] In der abgebildeten Umsetzung werden alle Datenpakete, die von der Erweiterung **29** an die Virusprüfung übertragen **44** gesichtet werden, verschlüsselt und mit Informationen zur Authentifizierung versehen, so dass die Virusprüfung in der Lage ist, die Inhalte des Datenpaketes und dessen Absender zu beglaubigen, so dass nur vertrauenswürdige Datenpaketet genutzt werden, um die Informationen zum Virusstatus in der Virusdatenbank zu aktualisieren. Zusätzliche Funktionalität kann in die Erweiterung **29** aufgenommen werden, um sicherzustellen, dass die Erweiterung nicht verändert wurde und dadurch eine böswillige Partei davon abzuhalten, zu versuchen, die Informationen zum Virusstatus in der Datenbank mit ungültigen Daten zu verfälschen. Deshalb müssen typischerweise immer, wenn die Erweiterung **29** an einen Nutzer verteilt wird, eventuell zusätzliche Autorisierungsmechanismen ausgeführt werden, zum Beispiel, um zu Beginn die Erweiterung bei der Virusprüfung zu registrieren.

[0093] Fig. 5 illustriert den Programmfluss von noch einer anderen optionalen Quelle von Informationen zum Virusstatus, die des Virusprüfers **52**, der auf einem Computer Dritter, zum Beispiel einem Webserver oder einem Serverkomplex hergestellt wird. Der Virusprüfer **52** läuft in einer Endlosschleife, wobei er in Block **130** eine neue URL zum Prüfen erhält. Die Bestimmung, welche URL als nächstes zu prüfen ist, kann ausgeführt werden, indem eine beliebige Anzahl von Algorithmen benutzt wird, zum Beispiel durch Auswahl

von URLs aus jeder Datei, die von der Website aus zugänglich ist. In einigen Umsetzungen kann auch eine Liste von URLs von einem Suchprovider zum Bearbeiten geliefert werden, als eine Form servicebasierter "Steuer" oder als Entgelт für die Erlaubnis, dass Nutzer einer Suchmaschine auf dem Computer von Dritten nach Dateien suchen und auf Dateien zugreifen.

[0094] Für jede dieser URL sendet Block **132** als Nächstes ein "Benachrichtigungs" (notify)-Datenpaket an die Virusprüfung, um anzulegen, dass der Virusprüfer eine Virusprüfung einer neuen URL einleitet. Die URL, die geprüft wird, wird optional in dem "Benachrichtigungs"-Datenpaket geliefert, obgleich in vielen Fällen keine URL geliefert werden muss, da der Grund des "Benachrichtigungs"-Datenpaketes ist, anzufordern, dass die Virusprüfungsteuerung eine URL schickt, die vom Virusprüfer auf Viren geprüft wird.

[0095] Als Nächstes wird in Block **134** ein Kennzeichen auf "falsch" gesetzt. Das Kennzeichen funktioniert als ein Moduselektor, der benutzt wird, um dem Virusprüfer zu erlauben, abwechselnd in Block **130** ausgewählte URLs und zusätzliche URLs zu prüfen, die dem Virusprüfer durch die Virusprüfungsteuerung von Computer **30** (hier als extern gelieferte URLs bezeichnet) geliefert werden. Andere Mechanismen zum Planen von URL-Prüfungen, die intern vom Virusprüfer und extern von der Virusprüfungsteuerung erzeugt werden, könnten auch als Alternative genutzt werden, zum Beispiel, um das Laden von URLs, die von den entsprechenden Quellen geliefert wurden, zu variieren.

[0096] Block **136** prüft als Nächstes die URL auf Viren, indem ein FOR-Schleife eingelegt wird, um jede virusverdächtige Datei, die von der URL aus zugänglich ist, zu bearbeiten. Für jede solche Datei lädt Block **138** die Datei, und Block **140** führt eine Virusprüfung der Datei aus und speichert das Ergebnis der Virusprüfung temporär. Es ist verständlich, dass das Laden der Datei in Block **138** eine Abfrage einer externen Quelle verlangen kann, oder alternativ hierzu kann eine Kopie der Datei auf Computer **50** gehalten werden, wodurch das Laden der Datei eine Abfrage der Datei vom lokalen Speicher beinhaltet.

[0097] Sobald jede virusverdächtige Datei bearbeitet wurde, gibt Block **136** die Steuerung an Block **142**, um zu bestimmen, ob irgendein Virus in einer von der URL aus zugänglichen Datei gefunden wurde. Falls ja, wird in Block **144** ein "schlechtes" Datenpaket gebildet, ähnlich dem von Erweiterung **29** gebildeten. Falls kein Virus gefunden wird, gibt Block **142** stattdessen die Steuerung an Block **146**, um ein "gutes" Datenpaket ähnlich dem oben in Verbindung mit der Erweiterung **29** beschriebenen zu bilden. Wenn die jeweilige Datenpakete geschaffen ist, wird das Datenpaket an die Virusprüfungsteuerung in Block **148** gesichtet. Zusätzlich kann das Datenpaket verschlüsselt und mit einer digitalen Signatur versehen sein, wie es von der Virusprüfungsteuerung zum Beglaubigen verlangt wird.

[0098] Sobald das Datenpaket gesendet wurde, geht die Steuerung auf Block **150** über, um zu bestimmen, ob das Kennzeichen auf "wahr" gesetzt ist (was anzeigt, dass eine extern gelieferte URL bearbeitet wird). Falls nicht (wie beim ersten Durchlauf der Routine), geht die Steuerung auf Block **152** über, um eine extern gelieferte URL von der Virusprüfungsteuerung abzurufen. Block **154** setzt dann das Kennzeichen auf "wahr", und Block **156** bestimmt, ob eine neue URL von der Virusprüfung erhalten wurde. Falls ja, kehrt die Steuerung zu Block **136** zurück, um jede virusverdächtige Datei, die von dieser URL aus zugänglich ist, auf Viren zu prüfen. Falls in Block **156** keine URL erhalten wird oder falls das Kennzeichen in Block **150** schon auf

"wahr" gesetzt ist, kehrt die Steuerung zu Block 130 zurück, um eine andere intern gelieferte URL, die geprüft werden soll, abzufragen. Es kann daher gesehen werden, dass die abgebildete Umsetzung des Virusprüfers 52 zwischen intern gelieferten und extern gelieferten URLs wechselt. Alternativen können dem Virusprüfer 52 keine extern gelieferten URLs bereitgestellt werden, wodurch eine solche darauf bezogene Funktionalität in Fig. 5 weggelassen werden kann. [0099] Fig. 6 illustriert den Programmfluss der Virusprüfung 44 in größerer Ausführlichkeit. Im Allgemeinen ist die Virusprüfung 44 konfiguriert, in einer Endlosschleife zu arbeiten, um ankommende Dateneinheiten von allen autorisierten Virusprüferweiterungen und Virusprüfern, die für die Virusprüfung zugänglich sind, zu bearbeiten. Virusprüfung 44 beginnt mit dem Warten auf ein nächstes Dateneinheit in Block 160, das von einer externen Quelle empfangen werden soll. Als Antwort auf den Empfang eines solchen Dateneinheits geht die Steuerung auf Block 162 über, um die Authentizität des Dateneinheits zu überprüfen. Zum Beispiel kann es erwünscht sein, eine Datenbank von autorisierten Virusprüferweiterungen und/oder Virusprüfern zu unterhalten und auf die Datenbank zuzugreifen, um zu bestimmen, ob ein ankommendes Dateneinheit ein authentisches Dateneinheit ist, das von einem autorisierten Nutzer empfangen wurde. Eine beliebige Zahl konventioneller Sicherheitstechniken, zum Beispiel Public-Key-Verschlüsselung und/oder digitale Signaturen können benutzt werden. Darüber hinaus kann es in Block 162 erwünscht sein, das Dateneinheit zu entschlüsseln, falls bei dem Dateneinheit Verschlüsselung verwendet wurde.

[0100] Falls das Dateneinheit als nicht authentisch bestimmt wird, geht die Steuerung von Block 164 auf Block 160 über, um auf ein nächstes Dateneinheit zu warten, wodurch das aktuelle Dateneinheit effektiv verworfen wird. Falls jedoch das Dateneinheit als authentisch bestimmt wird, übergibt Block 164 die Steuerung an Block 166, um zu bestimmen, ob das Dateneinheit ein "Benachrichtigungs"-Dateneinheit von einem Virusprüfer ist. Wie oben in Verbindung mit Fig. 5 besprochen wurde, wird ein "Benachrichtigungs"-Dateneinheit benutzt, um die Virusprüfung zu alarmieren, dass ein bestimmter Virusprüfer bereit ist, eine extern gelieferte URL zu empfangen, um zusätzliche Virusprüfung auszuführen, sobald die Virusprüfung einer aktuellen, intern gelieferten URL abgeschlossen ist. Deshalb gibt Block 166, als Antwort auf solch ein Dateneinheit, die Steuerung an Block 168 ab, um die Virusdatenbank nach einer URL zu durchsuchen, die bald ausläuft – das heißt, eine URL, die einen Zeistempel hat, der eine vorher bestimmte Schwelle überschreitet, die anzeigen, dass die URL erneut geprägt werden muss. Zusätzlich kann es erwünscht sein, URLs den Vorrang zu geben; auf die häufiger zugegriffen wird als auf andere URLs, und dadurch die Wahrscheinlichkeit zu maximieren, dass eine besondere URL, die als Antwort auf eine Suchanfrage abgefragt wurde, auf Viren geprägt wurde. Jede beliebige Anzahl von konventionellen Techniken zum Unterhalt einer Aufzeichnung der relativen Häufigkeit, in der auf bestimmte URLs zugegriffen wird, kann in Verbindung mit Block 168 benutzt werden.

[0101] Block 170 bestimmt als nächstes, ob eine passende URL gefunden wurde. Falls ja, geht die Steuerung auf Block 172 über, um die URL an den Virusprüfer zu senden, typischerweise, indem ein verschlüsseltes Dateneinheit, das die URL enthält, an den Virusprüfer geschickt wird. Die Steuerung kehrt dann zu Block 160 zurück, um auf weitere Dateneinheiten zu warten.

[0102] Wir kehren nun zu Block 170 zurück; falls keine passende URL gefunden wurde, geht die Steuerung auf Block 174 über, um "keine URL" an den anfordernden Vi-

rusprüfer zu senden, zum Beispiel indem ein Dateneinheit an den Virusprüfer geschickt wird, das anzeigen, dass keine URL verfügbar ist. Die Steuerung kehrt dann zu Block 160 zurück.

[0103] Wir kehren zu Block 166 zurück; falls das empfangene Dateneinheit kein "Benachrichtigungs"-Dateneinheit ist, geht die Steuerung auf Block 176 über, um zu bestimmen, ob das Dateneinheit ein "schlechtes" Dateneinheit ist, das von einer Virusprüferweiterung empfangen wurde. Falls ja, geht die Steuerung auf Block 178 über, um den URL-Datensatz zu aktualisieren, der der in dem Dateneinheit bestimmten URL zugeordnet ist, um anzusehen, dass die URL nicht vertrauenswürdig ist. Zusätzlich werden solche Informationen, falls zusätzliche Informationen, zum Beispiel ein Zeitstempel und/oder die Identität von infizierten Dateien, in dem Dateneinheit vorhanden sind, in den Informationen zum Virusstatus für die URL gespeichert. Darüber hinaus kann dafür ein neuer Datensatz in der Virusdatenbank geschaffen werden, falls kein URL-Datensatz existiert. Die Steuerung kehrt dann zu Block 160 zurück, um zusätzliche Dateneinheiten zu bearbeiten.

[0104] Wir kehren zu Block 176 zurück; falls das Dateneinheit kein "schlechtes" Dateneinheit von einer Virusprüferweiterung ist, geht die Steuerung auf Block 180 über, um zu bestimmen, ob das Dateneinheit ein "schlechtes" Dateneinheit von einem Virusprüfer ist. Falls ja, geht die Steuerung auf Block 178 über, um einen Datensatz in der Virusdatenbank, der der in dem Dateneinheit bestimmten URL zugeordnet ist, zu aktualisieren oder neu anzulegen. Und zu Block 180 zurückkehrend – falls das Dateneinheit kein "schlechtes" Dateneinheit von einem Virusprüfer ist, wird angenommen, dass das Dateneinheit ein "gutes" Dateneinheit von einem Virusprüfer ist, und die Steuerung geht daher auf Block 182 über, um einen URL-Datensatz in der Virusdatenbank für die dem Dateneinheit zugewiesene URL zu aktualisieren oder neu anzulegen, was anzeigen, dass die URL als vertrauenswürdig befunden wurde, und was typischerweise einen Zeitstempel beinhaltet, der anzeigen, wann die Vertrauenswürdigkeit der URL durch eine Virusprüfung bestimmt wurde. Die Steuerung kehrt dann zu Block 160 zurück.

[0105] Als ein Beispiel für eine mit dem Computersystem 10 von Fig. 1 ausgeführte Suchoperation zeigt Fig. 7 ein Browserfenster 200, das dem Browser 28 von Computer 20 zugeordnet ist und eine Suchseite 202 anzeigt, die von Suchmaschine 40 von Computer 30 erzeugt wurde. In der Suchseite 202 ist es einem Nutzer erlaubt, ein Suchkriterium in ein Eingabefeld 204 einzugeben, wobei eine Suchanfrage erzeugt wird als Antwort auf die Auswahl eines Suchbuttons 206, wenn er von einem Nutzer ausgewählt wurde. Zusätzlich wird verstanden, dass es erwünscht sein kann, zusätzliche Suchfähigkeiten für erweiterte Suche bereitzustellen, zum Beispiel über eine Seite für erweiterte Suche, die über einen Hyperlink 208 zugänglich ist.

[0106] Die Suchseite 202 erlaubt es einem Nutzer auch, ein Viruskriterium einzugeben, zum Beispiel wie in Abschnitt 210 gezeigt, um es einem Nutzer zu erlauben, die Regel festzulegen, die benutzt wurde, um zu bestimmen, ob einer Datei zugestattet wird, mit einem geringen Risiko für einen Computervirus behaftet zu sein. Checkbox 212 erlaubt es beispielweise einem Nutzer, festzulegen, dass eine Datei als nicht vertrauenswürdig bestimmt wird, falls jemals der Datei ein Virus zugeordnet war. Checkbox 214 erlaubt einem Nutzer, zu verlangen, dass eine Datei als nicht vertrauenswürdig bestimmt wird, falls ein Virus innerhalb einer vorbestimmten Zeitspanne gefunden wurde, zum Beispiel innerhalb einer von Nutzer wählbaren Anzahl von Tagen. Checkbox 216 erlaubt einem Nutzer, zu verlangen, dass eine Datei als nicht vertrauenswürdig bestimmt wird, falls die

Danei innerhalb einer vorbestimmten Zeitperiode nicht überprüft wurde, zum Beispiel innerhalb einer vom Nutzer wählbaren Anzahl von Tagen. Zusätzliche Viruskriterien, zum Beispiel eine Linktaste oder irgendwelche anderen oben besprochenen Alternativen, können auch in Abschnitt 210 dargestellt werden.

[0107] Es kann auch erwünscht sein, auf Suchseite 202 Eingaben für Nutzerpräferenzen zur Verfügung zu stellen, zum Beispiel die Abschnitt 218 abgebildeten Meldeoptionen. Die Meldeoptionen legen fest, wie die Darstellung der Anzeige der Suchrезультат erzeugt wird, auf der Grundlage der Bestimmung der Vertrauenswürdigkeit, die unter Benutzung des bestimmten Viruskriteriums vorgenommen wurde. Zum Beispiel zeigt die Auswahl von Radiobutton 220 an, dass ein Nutzer wünscht, alle den Viruskriterium entsprechenden Ergebnisdatensätze auszulassen, so dass keine Anzeigeinformation für den Ergebnisdatensatz in den Suchergebnissen angezeigt wird. Radiobutton 222 erlaubt es einem Nutzer alternativ, über alle Ergebnisdatensätze informiert zu werden, die dem Viruskriterium entsprechen. Radiobutton 224 erlaubt es einem Nutzer, jede Meldung von Informationen zum Virusstatus in den zurückgegebenen Suchergebnissen auszuschalten. Andere Meldeoptionen, zum Beispiel die Art der Markierung, ob nicht vertrauenswürdige und/oder vertrauenswürdige Ergebnisse zu markieren sind usw., können auch von einem Nutzer auf Suchseite 202 entsprechend der Erfahrung geliefert werden.

[0108] Fig. 8 illustriert als nächstes eine Beispieleite für Suchergebnisse 230, die von der Suchmaschine als Antwort auf eine Suchanfrage erzeugt wurde, die von dem Nutzerncomputer an die Suchmaschine weitergeleitet wurde. In den Beispieldsuchergebnissen wird die den drei Ergebnisdatensätzen zugeordnete Anzeigeinformation in 232, 234 und 236 abgebildet.

[0109] Angenommen, dass aus Beispieldgründen, die "Fred's PDA Download" und "Bill's PDA Links" genannten Ergebnisdatensätze entsprechend des nutzergewählten Viruskriteriums für nicht vertrauenswürdig befunden wurden und dass der Nutzer festgelegt hat, dass er oder sie über nicht vertrauenswürdige Ergebnisse informiert werden soll. Eine Umsetzung einer Suchergebnisse kann daher in der Anzeige von Icon 238; angrenzend oder nah an den Anzeigeinformationen 234, 236, resultieren, um so einen Nutzer zu informieren, dass die Dokumente nicht vertrauenswürdig sind. Alternativ und wie oben besprochen, können andere Mechanismen zur Hervorhebung der Anzeigeinformationen 234, 236 benutzt werden, und zusätzlich zur oder anstelle der Hervorhebung der Anzeigeinformationen für nicht vertrauenswürdige Ergebnisse kann die Hervorhebung der Anzeigeinformationen für vertrauenswürdige Ergebnisse, zum Beispiel die den Anzeigeinformationen 232 zugeordneten, ausgeführt werden (zum Beispiel indem ein Icon "beglaubigt" benutzt wird oder wie in der Darstellung).

[0110] Eine zusätzliche Funktion, die unterstützt werden kann, ist die Fähigkeit, Informationen zum Virusstatus als Antwort auf eine Nutzereingabe anzuzeigen. Zum Beispiel veranschaulicht Fig. 8 eine Nutzerauswahl eines Icons 238, das der Anzeigeinformation 236 über einen vom Nutzer zu bedienenden Zeiger 240 zugeordnet ist. Als Antwort auf eine auf Icon 238 gerichtete Nutzereingabe wird ein aufklappbares Fenster 242 angezeigt, das Anzeigeinformationen bezüglich zusätzlicher Informationen zum Virusstatus enthält, die der URL zugeordnet sind, zum Beispiel einen Zeitstempel und den Namen einer infizierten Datei. Die Nutzereingabe, die die Anzeige von Fenster 242 auslöst, kann das Drücken einer Maustaste oder alternativ, neben anderen Eingaben, einfach die Positionierung von Zeiger 242 über Icon 238 sein. Bei der großen Vielzahl von alternativen gra-

fischen Komponenten für Nutzerschnittstellen, die auf einer Plattform zum Webbrowsern verfügbar sind, ist klar, dass eine unendliche Zahl von alternativen Mechanismen genutzt werden kann, um sowohl die Anzeige der Informationen zum Virusstatus auszulösen als auch solche Informationen entsprechend der Erfindung einem Nutzer zu präsentieren.

[0111] Verschiedene Modifikationen können bei den abgedeuteten Ausführungsformen vorgenommen werden, ohne sich vom Sinn und Umfang der Erfindung zu entfernen. Zum Beispiel kann auch Virusprüfung in Echtzeit für Suchergebnisse ausgeführt werden, anstelle der Benutzung von vorher gespeicherten Informationen zum Virusstatus oder zusätzlich zu ihr. Eine solche Prüfunktionalität in Echtzeit kann zum Beispiel in einem separaten Thread in der Suchmaschine umgesetzt oder in einigen Umsetzungen lokal von einem Computer des Nutzers ausgeführt werden. Darüber hinaus kann Virusprüfung in Echtzeit bei allen Suchergebnissen ausgeführt werden, oder als Alternative kann Virusprüfung in Echtzeit nur für Suchergebnisse ausgeführt werden, denen entsprechende Informationen zum Virusstatus fehlen. Weiterhin kann in einigen Ausführungsformen Virusimpfung unterstützt werden, um infizierte Dateien oder Computer zu reparieren.

[0112] Die abgebildeten Ausführungsformen haben eine Anzahl einzigartiger Vorteile gegenüber konventionellen Techniken zur Virusprüfung. Indem zum Beispiel die Anzeige der Suchergebnisse auf der Grundlage der Vertrauenswürdigkeit dieser Ergebnisse modifiziert wird, können Nutzer davon abgehalten werden, möglicherweise Risikodateien anzusteuern und sich Computerviren einzufangen. Zudem können die Informationen zum Virusstatus, die bei solchen Bestimmungen benutzt werden, oft vor der Erzeugung von Suchergebnissen generiert werden, so dass Virusprüfung in Echtzeit eingeschränkt oder ganz vermieden werden kann. Darüber hinaus kann die Zusatzbelastung, die der Erzeugung von Informationen zum Virusstatus zugeordnet ist, auf viele Computer verteilt werden, einschließlich denen von Nutzern, die eine Suchmaschine benutzen, sowie andere Computer Dritter, zum Beispiel jene, die dem Herunterladen und anderen Websites zugeordnet sind.

[0113] Die Implementierung des hier besprochenen Virusprüfungs- und -meldeins kann, besonders wenn sie in Verbindung mit großen kommerziellen Unternehmen der Internet suchbenutzt wird, beträchtliche Vorteile liefern. Die Bereitstellung solcher Funktionalität stellt einen erhöhten Wert dar, der mehr Besuch von Nutzern und daher höhere Werbeeinnahmen und/oder Abonnementeinnahmen für abonnementbasierte Dienstleistungen begünstigt.

[0114] Zusätzlich erhöht (für große kommerzielle Unternehmen) die Fähigkeit, die Verantwortung der Virusprüfung auf eine große Basis an Nutzern zu verteilen, die Menge an Informationen zum Virusstatus, die erzeugt und in einer Virusdatenbank zusammengefasst werden können, beträchtlich. Weiterhin die Nutzung eines Virusprüfers auf einem Computer einer dritten Partei, um grundsätzlich "Selbstprüfung" und "Selbstbestätigung" von Dateien, die von einer dritten Partei verarbeitet werden, auszuführen. Darüber hinzu vergrößert das Bereitstellen der Fähigkeit, zusätzliche URLs an den Computer der dritten Partei zu senden, um zusätzliche Virusprüfen auszuführen, weiter die Arbeitsbasis, von der Informationen zum Virusstatus erzeugt werden können.

[0115] Andere Modifikationen werden für einen Fachmann ersichtlich sein. Deshalb umfasst die Erfindung die anschließend angefügten Ansprüche.

Patentansprüche

1. Verfahren, auf einem Computer ausgeführt, zur Bearbeitung einer Suchanfrage, wobei das Verfahren umfasst:

- (a) Zugriff auf eine Computerdatenbank als Antwort auf eine Suchanfrage, um eine Ergebnismenge zu erzeugen, wobei die Ergebnismenge eine Vielzahl von Ergebnisdatensätzen identifiziert;
- (b) Zugriff auf Informationen zum Virusstatus, die wenigstens einem Teil der Vielzahl der Ergebnisdatensätze zugeordnet sind; und
- (c) Erzeugung einer Anzeigedarstellung von wenigstens einem Teil der Ergebnismenge auf der Grundlage der Informationen zum Virusstatus.

2. Verfahren nach Anspruch 1, wobei die Computerdatenbank wenigstens einen Websitenindex und wenigstens ein Webs Seitenverzeichnis enthält, das eine Vielzahl von Datenbank-Datensätzen enthält, von denen jeder einen Uniform Resource Locator (URL) einer zugeordneten Computerdatei identifiziert.

3. Verfahren nach Anspruch 1, wobei die Erzeugung der Anzeigedarstellung die Erzeugung von Anzeigeeinformati onen, die einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge zugeordnet sind, in der Anzeigedarstellung nur dann beinhaltet, falls die Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, anzeigen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus zugetraut wird.

4. Verfahren nach Anspruch 1, wobei die Erzeugung der Anzeigedarstellung die Hervorhebung der Anzeigeeinformati onen beinhaltet, die einem aus der Ergebnismenge in der Anzeigedarstellung ausgewählten Ergebnisdatensatz zugeordnet sind, falls die Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, anzeigen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus zugetraut wird.

5. Verfahren nach Anspruch 4, wobei das Hervorheben der dem ausgewählten Ergebnisdatensatz zugeordneten Anzeigeeinformati onen die Anzeige eines Icons nahe bei den Anzeigeeinformati onen beinhaltet, um anzuziegen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus zugetraut wird.

6. Verfahren nach Anspruch 1, wobei die Erzeugung der Anzeigedarstellung das Hervorheben von Anzeigeeinformati onen beinhaltet, die einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge in der Anzeigedarstellung zugeordnet sind, falls die Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, anzeigen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus nicht zugetraut wird.

7. Verfahren nach Anspruch 6, wobei das Hervorheben der dem ausgewählten Ergebnisdatensatz zugeordneten Anzeigeeinformati onen das Anzeigen eines Icons nahe den Anzeigeeinformati onen beinhaltet, um anzuziegen, dass dem gewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus nicht zugetraut wird.

8. Verfahren nach Anspruch 6, das außerdem das Anzeigen von wenigstens einem Teil der Informationen zum Virusstatus enthält, die dem gewählten Ergebnisdatensatz als Antwort auf eine Nutzereingabe zugeordnet sind.

net sind.

9. Verfahren nach Anspruch 8, wobei das Anzeigen der Informationen zum Virusstatus das Anzeigen der Informationen zum Virusstatus in einem aufklappbaren Fenster beinhaltet, als Antwort auf eine Nutzereingabe, die auf ein nahe den Anzeigeeinformati onen angezeigtes Icon gerichtet ist.

10. Verfahren nach Anspruch 8, wobei das Anzeigen der Informationen zum Virusstatus das Anzeigen von wenigstens einem Namen einer infizierten Datei und einem Zeitstempel beinhaltet, der anzeigt, wann der ausgewählte Ergebnisdatensatz zuletzt auf Viren geprüft wurde.

11. Verfahren nach Anspruch 1, das weiterhin die Bestimmung umfasst, ob einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge ein geringes Risiko einer Infektion durch einen Computervirus zugetraut wird, indem Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, mit einem Viruskriterium verglichen werden.

12. Verfahren nach Anspruch 1, wobei das Viruskriterium wenigstens eines aus dem Folgenden bestimmt: ob ein Ergebnisdatensatz jemals mit einem Computervirus infiziert gefunden wurde, ob ein Ergebnisdatensatz innerhalb eines ersten vorher festgelegten Zeitraumes mit einem Computervirus infiziert gefunden wurde und ob ein Ergebnisdatensatz innerhalb eines zweiten, vorher festgelegten Zeitraumes auf Viren geprüft worden ist.

13. Verfahren nach Anspruch 1, das weiterhin beinhaltet:

(a) das Ausführen einer Virusprüfung für wenigstens einen Teil der Datensätze in der Computerdatenbank, um ihnen zugeordnete Informationen zum Virusstatus zu erzeugen; und

(b) das Speichern der Informationen zum Virusstatus, die während der Prüfung auf Viren erzeugt wurden, in einer Virusdatenbank;

wobei der Zugriff auf die Informationen zum Virusstatus, die dem Teil der Vielzahl der Ergebnisdatensätze zugeordnet sind, den Zugriff auf die Virusdatenbank beinhaltet.

14. Verfahren nach Anspruch 13, wobei das Ausführen der Virusprüfung während einer Crawling-Operation durchgeführt wird, und das Verfahren weiterhin das Ausführen einer Virusprüfung für einen ausgewählten Datensatz in der Datenbank umfasst, als Antwort auf wenigstens eines aus dem Folgendem: eine Modifikation einer dem ausgewählten Datensatz zugeordneten Datei und dem Ablauf eines Zeitraumes, seitdem der gewählte Datensatz zuletzt auf Viren geprüft wurde.

15. Verfahren nach Anspruch 13, wobei das Ausführen der Virusprüfung das Ausführen einer Virusprüfung für einen gewählten Datensatz aus der Computerdatenbank beinhaltet, indem wenigstens eine dem gewählten Datensatz zugeordnete Datei auf Viren geprüft wird sowie jede virusverdächtige Datei, die mit der zugeordneten Datei verlinkt ist.

16. Verfahren nach Anspruch 13, wobei das Ausführen der Virusprüfung das Ausführen einer Virusprüfung für wenigstens einen Teil der Vielzahl von Ergebnisdatensätzen vor der Erzeugung der Ergebnismenge beinhaltet.

17. Verfahren nach Anspruch 13, wobei das Ausführen der Virusprüfung weiterhin das Ausführen der Virusprüfung in einer Vielzahl von Computern beinhaltet, und das Verfahren außerdem das Empfangen von Informationen zum Virusstatus von wenigstens einem Teil

der Vielzahl von Computern umfasst.

18. Verfahren nach Anspruch 17, wobei das Empfangen der Informationen zum Virusstatus weiterhin die Authentifizierung der empfangenen Informationen zum Virusstatus beinhaltet, bevor die empfangenen Informationen zum Virusstatus in der Virusdatenbank gespeichert werden. 5

19. Verfahren nach Anspruch 17, wobei das Ausführen der Virusprüfung in der Vielzahl von Computern das Ausführen der Virusprüfung in einem Client-Computer 10 beinhaltet, und das Verfahren weiterhin umfasst:

- (a) das Ausgeben einer Suchanfrage vom Client-Computer; und
- (b) das Empfangen und Anzeigen der Anzeigendarstellung von einem Teil der Ergebnismenge 15 unter Benutzung des Client-Computers.

20. Verfahren nach Anspruch 19, wobei das Ausführen der Virusprüfung die Ausführung der Virusprüfung an einer gewählten Datei im Client-Computer beinhaltet, als Antwort auf eine Nutzeranforderung, die gewählt 20 Datei abzufragen.

21. Verfahren nach Anspruch 17, das weiterhin ent-hält:

- (a) das Senden eines Speicherplatz-Identifikators an einen aus der Vielzahl von Computern ausgewählten Computer;
- (b) das Ausführen der Virusprüfung an einer ausgewählten Datei, die durch den Speicherplatz-Identifikator identifiziert wurde, um Informationen zum Virusstatus für die gewählte Datei zu erzeugen; und
- (c) das Senden der ausgewählten Datei zugeordneten Informationen zum Virusstatus vom ausgewählten Computer zur Aufnahme in die Virus-datenbank. 35

22. Verfahren nach Anspruch 17, wobei das Ausführen der Virusprüfung in der Vielzahl von Computern das Ausführen der Virusprüfung in einem ausgewählten Computer umfasst, indem eine Vielzahl von Dateien, auf die durch den ausgewählten Computer zugegriffen 40 werden kann, virusgeprüft wird.

23. System, das enthält:

- (a) eine Computerdatenbank, die eine Vielzahl von Datensätzen enthält; und
- (b) ein Programm, das konfiguriert ist, um auf die 45 Computerdatenbank als Antwort auf eine Suchanfrage zuzugreifen, um eine Ergebnismenge zu erzeugen, wobei die Ergebnismenge eine Vielzahl von Ergebnisdatensätzen aus der Vielzahl der Datensätze identifiziert, und das Programm weiterhin konfiguriert ist, um auf Informationen zum Virusstatus zuzugreifen, die wenigstens einem Teil der Vielzahl der Ergebnisdatensätze zugeordnet sind und auf der Grundlage der Informationen zum Virusstatus eine Anzeigendarstellung von wenigstens 50 einem Teil der Ergebnismenge zu erzeugen.

24. System nach Anspruch 23, wobei die Computerdatenbank wenigstens einen Websitenindex und ein Websitenverzeichnis beinhaltet und wobei jeder Datensatz einen Uniform Resource Locator (URL) einer 60 zugrunde liegenden Computerdatei identifiziert.

25. System nach Anspruch 23, wobei das Programm konfiguriert ist, um die Anzeigendarstellung zu erzeugen, in dem Anzeigeeinformationen, die einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge zugeordnet sind, in der Anzeigedarstellung nur erzeugt werden, falls Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, an-

zeigen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computer-virus zugeschrieben wird.

26. System nach Anspruch 23, wobei das Programm konfiguriert ist, um die Anzeigedarstellung durch Hervorhebung der einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge zugeordneten Anzeigeeinfor-mationen in der Anzeigedarstellung zu erzeugen, falls Informationen zum Virusstatus, die dem gewählten Ergebnisdatensatz zugeordnet sind, anzeigen, dass dem gewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus zugeschrieben wird.

27. System nach Anspruch 23, wobei das Programm konfiguriert ist, um die Anzeigedarstellung durch Hervorhebung der einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge zugeordneten Anzeigeeinfor-mationen in der Anzeigedarstellung zu erzeugen, falls Informationen zum Virusstatus, die dem ausgewählten Ergebnisdatensatz zugeordnet sind, anzeigen, dass dem ausgewählten Ergebnisdatensatz ein geringes Risiko einer Infektion durch einen Computervirus nicht zugeschrieben wird.

28. System nach Anspruch 23, wobei das Programm außerdem konfiguriert ist für die Bestimmung, ob einem ausgewählten Ergebnisdatensatz aus der Ergebnismenge ein geringes Infektionsrisiko durch einen Computervirus zugeschrieben werden kann, indem Informa-tionen zum Virusstatus, die dem gewählten Ergebnisdatensatz zugeordnet sind, mit einem Viruskriterium ver-glichen werden.

29. System nach Anspruch 28, wobei das Viruskri-teum wenigstens eines aus dem Folgenden bestimmt: ob ein Ergebnisdatensatz jemals durch einen Computervirus infiziert gefunden wurde, ob ein Ergebnisdatensatz innerhalb eines ersten, vorher festgelegten Zeitraumes durch einen Computervirus infiziert gefunden wurde und ob ein Ergebnisdatensatz innerhalb eines zweiten vorher festgelegten Zeitraumes auf Viren ge-prüft worden ist.

30. System nach Anspruch 23, das außerdem ein Crawler-Computerprogramm beinhaltet, das konfiguriert ist, um eine Virusprüfung für eine Vielzahl von Datensätzen aus der Computerdatenbank während einer Crawling-Operation auszuführen, und wobei das Crawler-Computerprogramm konfiguriert ist, die Virusprüfung für einen ausgewählten Datensatz in einer Computerdatenbank auszuführen, als Antwort auf wenigstens eines aus dem Folgenden: eine Modifikation eines dem gewählten Datensatz zugeordneten Datei und der Ablauf eines Zeitraumes, seit der gewählte Datensatz zuletzt auf Viren geprüft wurde.

31. System nach Anspruch 23, das weiterhin eine Virusdatenbank umfasst, die konfiguriert ist, um Informationen zum Virusstatus zu speichern, wobei das Pro-gramm konfiguriert ist, auf Informationen zum Virusstatus zuzugreifen, indem auf die Virusdatenbank zugegriffen wird, und wobei wenigstens ein Teil der Infor-mationen zum Virusstatus vor der Erzeugung der Ergebnismenge in der Virusdatenbank vorhanden ist.

32. System nach Anspruch 31, wobei das Programm in einem ersten Computer vorhanden ist, der erste Computer außerdem konfiguriert ist, Informationen zum Virusstatus von einem zweiten Computer zu empfangen.

33. System nach Anspruch 32, wobei der zweite Com-puter in einer Vielzahl von Computern in Verbindung mit dem ersten Computer steht, wobei wenigstens ein Teil der Vielzahl von Computern konfiguriert ist, um die Virusprüfung und das Senden von Informationen

zum Virusstatus, die als Antwort auf das Virusprüfen erzeugt werden, auszuführen.

34. System nach Anspruch 33, wobei das Programm außerdem konfiguriert ist, um erhaltene Informationen zum Virusstatus vor dem Speichern der empfangenen Informationen zum Virusstatus in der Virusdatenbank zu authentifizieren. 5

35. System nach Anspruch 23, wobei der zweite Computer weiterhin konfiguriert ist, um die Suchanfrage auszugeben und für einen Teil der Ergebnismenge die Anzeigedarstellung zu empfangen und anzuziegen. 10

36. System nach Anspruch 35, wobei einer aus der Vielzahl von Computern konfiguriert ist, die die Virusprüfung einer gewählten Datei als Antwort auf eine Nutzerranforderung, die gewählte Datei abzufragen, auszuführen. 15

37. System nach Anspruch 23, wobei das Programm außerdem konfiguriert ist, um einen Speicherplatzidentifikator an einen aus der Vielzahl von Computern ausgewählten Computer zu senden, und wobei der ausgewählte Computer konfiguriert ist, um die Virusprüfung einer durch den Speicherplatzidentifikator bestimmten Datei auszuführen, um Informationen zum Virusstatus für die ausgewählte Datei zu erzeugen und die Informationen zum Virusstatus, die der gewählten Datei aus dem ausgewählten Computer zugeordnet sind, zur Aufnahme in die Virusdatenbank zu versenden. 25

38. System nach Anspruch 23, wobei die Ausführung der Virusprüfung in der Vielzahl von Computern die Ausführung der Virusprüfung in einem ausgewählten Computer beinhaltet, indem eine Vielzahl von Dateien, die für den ausgewählten Computer zugänglich sind, auf Viren geprüft werden. 30

39. Programmprodukt, das beinhaltet:

- (a) ein Programm, das konfiguriert ist, um auf 35 eine Computerdatenbank zuzugreifen, um als Antwort auf eine Suchanfrage eine Ergebnismenge eine Vielzahl von Ergebnisdatensätzen aus der Computerdatenbank identifiziert, und das Programm außerdem konfiguriert ist, um auf Informationen zum Virusstatus, die wenigstens einem Teil der Ergebnisdatensätze zugeordnet sind, zugreifen und auf der Grundlage von Informationen zum Virusstatus eine Anzeigedarstellung von 40 45 wenigstens einem Teil der Ergebnismenge zu erzeugen; und
- (b) ein signaltragendes Medium, dass das Programm trägt.

40. Programmprodukt nach Anspruch 39, wobei das signaltragende Medium wenigstens eines aus dem Folgenden beinhaltet: ein Aufnahmemedium und ein Übertragungsmedium.

41. Verfahren, auf einem Computer ausgeführt, zum Aufbau einer Virusdatenbank, wobei das Verfahren 55 umfasst:

- (a) das Empfangen von Informationen zum Virusstatus, die von einer Vielzahl von Computern erzeugt wurden, mit einem ersten Computer, wobei die Informationen zum Virusstatus, die von jedem aus der Vielzahl von Computern, die wenigstens einer Datei zugeordnet sind, für den entsprechenden Computer aus der Vielzahl von Computern zugänglich ist; und 60
- (b) das Speichern der Informationen zum Virusstatus für jede Datei in einer Virusdatenbank, die für den ersten Computer zugänglich ist.

42. Verfahren nach Anspruch 41, das weiterhin um-

fassst:

(a) das Zugreifen auf eine zweite Computerdatenbank als Antwort auf eine Suchanfrage, um eine Ergebnismenge zu erzeugen, wobei die Ergebnismenge eine Menge von Ergebnisdatensätzen identifiziert;

(b) das Zugreifen auf die Virusdatenbank, um Informationen zum Virusstatus abzufragen, die wenigstens einem Teil der Vielzahl der Ergebnisdatensätze zugeordnet sind; und

(c) das Erzeugen einer Anzeigendarstellung auf der Grundlage von Informationen zum Virusstatus von wenigstens einem Teil der Ergebnismenge. 43.

43. Verfahren nach Anspruch 41, das weiterhin während einer vom ersten Computer ausgeführten Crawling-Operation, die Ausführung der Virusprüfung einer Vielzahl von Dateien mit dem ersten Computer umfasst.

44. Verfahren nach Anspruch 41, das weiterhin die Authentifizierung von empfangenen Informationen zum Virusstatus vor der Speicherung der empfangenen Informationen zum Virusstatus in der Virusdatenbank umfasst.

45. Verfahren nach Anspruch 41, das weiterhin die Ausführung der Virusprüfung in einem Clientcomputer aus der Vielzahl von Computern umfasst, der konfiguriert ist, um eine Suchanfrage auszugeben und eine Anzeigendarstellung einer als Antwort auf die Suchanfrage generierten Ergebnismenge zu empfangen und anzuziegen.

46. Verfahren nach Anspruch 45, wobei die Ausführung der Virusprüfung die Ausführung der Virusprüfung an einer ausgewählten Datei in dem Clientcomputer als Antwort auf eine Nutzerranforderung, die ausgewählte Datei abzufragen, beinhaltet.

47. Verfahren nach Anspruch 41, das weiterhin beinhaltet:

- (a) das Senden eines Speicherplatz-Identifikators an einen aus der Vielzahl von Computern ausgewählten Computer;
- (b) das Ausführen der Virusprüfung an einer ausgewählten Datei, die durch den Speicherplatz-Identifikator identifiziert wird, um Informationen zum Virusstatus für die gewählte Datei zu erzeugen; und
- (c) das Senden der Informationen zum Virusstatus, die der ausgewählten Datei zugeordnet sind, vom gewählten Computer zur Aufnahme in die Virusdatenbank.

48. Verfahren nach Anspruch 41, wobei die Ausführung der Virusprüfung in der Vielzahl von Computern das Ausführen der Virusprüfung in einem aus der Vielzahl von Computern ausgewählten Computer beinhaltet, indem eine Vielzahl von Dateien, auf die durch den ausgewählten Computer zugegriffen werden kann, auf Viren geprüft werden.

49. System, das umfasst:

- (a) eine Virusdatenbank, die konfiguriert ist, um Informationen zum Virusstatus für eine Vielzahl von Dateien zu speichern; und
- (b) einen ersten Computer, in dem ein Programm vorhanden ist, das konfiguriert ist, um Informationen zum Virusstatus, die durch eine Vielzahl von Computern erzeugt werden, zu empfangen, wobei die Informationen zum Virusstatus, die von jedem aus der Vielzahl von Computern, die wenigstens einer Datei zugeordnet sind, für den jeweiligen Computer aus der Vielzahl von Computern zu-

gänglich sind, und das Programm weiterhin konfiguriert ist, um die Informationen zum Virusstatus für jede Datei in der Virusdatenbank zu speichern.

50. System nach Anspruch 49, das außerdem eine Vielzahl von Computern in Verbindung mit dem ersten Computer beinhaltet, wobei wenigstens ein Teil der Vielzahl von Computern konfiguriert ist, um Virusprüfungen auszuführen und Informationen zum Virusstatus, die als Antwort auf die Virusprüfung erzeugt wurden, zu versenden.

51. System nach Anspruch 49, wobei das Programm weiterhin konfiguriert ist, um empfangene Informationen zum Virusstatus zu authentifizieren, bevor die empfangenen Informationen zum Virusstatus in der Virusdatenbank gespeichert werden.

52. System nach Anspruch 50, wobei die Vielzahl von Computern einen Clientcomputer beinhaltet, der konfiguriert ist, um eine Suchanfrage auszugeben und eine Anzeigedarstellung von einem Teil der Ergebnismenge, die als Antwort auf die Suchanfrage erzeugt wurde, zu empfangen und anzuzeigen.

53. System nach Anspruch 50, wobei das Programm außerdem konfiguriert ist, um einen Speicherplatz-Identifikator an einen ausgewählten Computer aus der Vielzahl von Computern zu schicken, und wobei der ausgewählte Computer konfiguriert ist, um eine Virusprüfung an einer ausgewählten Datei, die durch den Speicherplatz-Identifikator bestimmt wird, auszuführen, um Informationen zum Virusstatus für die gewählte Datei zu erzeugen und die Informationen zum Virusstatus, die der ausgewählten Datei aus dem ausgewählten Computer zugeordnet sind, zur Aufnahme in die Virusdatenbank zu versenden.

54. Programmprodukt, das enthält:

- (a) ein Programm, das sich in einem ersten Computer befindet und konfiguriert ist, um Informationen zum Virusstatus, die von einer Vielzahl von Computern erzeugt werden, zu empfangen, wobei die Informationen zum Virusstatus, die von jedem aus der Vielzahl von Computern generiert werden, wenigstens einer Datei, auf die von dem entsprechenden Computer aus der Vielzahl von Computern zugegriffen werden kann, zugeordnet sind, und das Programm weiterhin konfiguriert ist, um Informationen zum Virusstatus für die Datei in einer Virusdatenbank, die für den ersten Computer zugänglich ist, zu speichern; und
- (b) ein signaltragendes Medium, dass das Programm trägt.

50

Hierzu 4 Seite(n) Zeichnungen

55

60

65

FIG. 3

FIG. 4

FIG. 5

