

TALLER DE MODELADO MATEMÁTICO II PARTE II / 25P

TRABAJO FINAL REDES NEURONALES ESTADÍSTICAMENTE INFORMADAS

ALAN BADILLO SALAS

Dr. Joaquín Delgado Fernández

AGENDA

CONTENIDO

INTRODUCCIÓN	3
AVANCES RELEVANTES Y ÁREAS DE EXPLORACIÓN	4
CASO DE ESTUDIO - CLASIFICACIÓN IRIS	11
FASE 1 - EXPLORACIÓN Y SEPARABILIDAD DE LAS CLASES	13
FASE 2 - RED NEURONAL PROFUNDA	16
FASE 3 - DNN ESTADÍSTICAMENTE INFORMADA (MANUAL)	20
FASE 4 - DNN ESTADÍSTICAMENTE INFORMADA (OVR)	22
CONCLUSIONES	24

INTRODUCCIÓN

¿Qué son las Redes Neuronales Estadísticamente Informadas?

Son **modelos de deep learning** que incorporan principios, estructuras o **transformaciones estadísticas** explícitamente en la arquitectura, el preprocesamiento, o la interpretación de los datos.

Se busca **evitar supuestos** ingenuos como la normalidad multivariada, o la linealidad simple, integrando herramientas estadísticas más robustas o **estructuras informadas** por la teoría del dominio.

(1) Aumento de Dimensionalidad con Variables Derivadas Estadísticamente

¿Qué es?

Agregar variables cuadráticas, interacciones, polinomios, estadísticas resumen, componentes principales, o funciones kernel antes de entrenar redes.

Método	Descripción
Polynomial Networks Redes que reciben no solo las variables originales sino también sus combinacio	
Deep Feature Synthesis (AutoML tools / Featuretools)	Generan automáticamente interacciones y estadísticas cruzadas.
Higher-Order Neural Units (HONUs)	Redes con nodos que modelan interacciones cuadráticas o cúbicas directamente.
Functional ANOVA Embedding	Usa el análisis de varianza funcional para definir interacciones significativas.

(2) Espacios Latentes con Significado Estadístico

¿Qué es?

Transformar las variables de entrada a espacios donde los datos están mejor distribuidos sin imponer normalidad (como PCA lo hace bajo varianzas).

Método	Descripción	
Normalizing Flows Aprenden una transformación invertible que convierte la distribución original a una distribución simple (como normal), pero sin perder información.		
Variational Autoencoders (VAEs) Encoders con prior no normal o basados en copulas.		
Copula-based Neural Networks Modelan explícitamente las dependencias entre variables sin asumir su distribución marginal.		

(3) Normalización Informada (Statistical Normalization Layers)

¿Qué es?

Son transformaciones que se pueden aplicar en lugar de StandardScaler o BatchNorm.

Método	Descripción
Quantile Normalization Layers Genera normalizaciones por agrupaciones cuantílicas	
Rank Transformations	Genera transformaciones basadas en ponderaciones
Group-wise normalization	Separa por grupos estadísticos (por ejemplo, clases, regiones) antes de normalizar.

(4) Modelos con Componentes Estadísticos Internos

¿Qué es?

Son modelos que pueden ajustar componentes internos mediante redes neuronales, por ejemplo:

$$ypprox f_1(x_1)+f_2(x_2)+f_{12}(x_1,x_2)$$

donde f_1, f_2, f_{12} son pequeñas redes neuronales.

Modelo Descripción	
GLM-Nets Redes que incorporan partes de modelos lineales generalizados.	
Neural Additive Models (NAMs)	Redes donde cada variable tiene su propia subred, manteniendo interpretabilidad tipo regresión aditiva.
Spline-based models	Incorporan funciones splines dentro de la arquitectura (usado en medicina, bioestadística).

(5) Regularización basada en estadística

¿Qué es?

Usar la teoría estadística para regularizar modelos de deep learning.

Método	Descripción
Informative Priors Utiliza los priors informativos en redes bayesianas.	
Dropout no uniforme	Regularización informada por la varianza o la importancia estadística de las variables.
Sparse regression layers	Funcina como LASSO o Ridge dentro de una red.

(6) Modelos Cuadráticos / Interacciones Explicitas

¿Qué es?

Son estructuras que permiten expresar:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \dots$$

Modelo	Descripción
Factorization Machines (FMs) Genera factorizaciones complejas	
Field-aware FMs (FFMs)	Modelos de factorización más avanzados
PolyNet, Deep Cross Networks	Funciona como en los modelos de recomendación
Tensor Neural Networks	Aprenden interacciones cruzadas de alto orden.

(7) Modelos Deep + Estadísticos en Series de Tiempo

¿Qué es?

Son modelos que permiten usar información temporal para las predicciones (**forecasting**).

Modelo	Descripción	
DeepAR Redes recurrentes con modelos probabilísticos por serie.		
Deep State Space Models	Combinación de redes con modelos espacio-estado estadísticos.	

CASO DE ESTUDIO - CLASIFICACIÓN DE LA FLOR IRIS

¿Qué es? Problema de clasificación:

4 características continuas / 3 respuestas binarias 150 muestras (50 de cada clase)

CASO DE ESTUDIO - CLASIFICACIÓN DE LA FLOR IRIS

Solución: Red neuronal profunda

- 1 Capa de entrada (4 características)
- 3 Capas ocultas (ReLU con 16, 16 y 8 nodos)
- 1 Capa de salida (Sofmax con 3 nodos)

Capa	Número de nodos	Activación	Descripción	
Entrada	4	- 4 características (ancho y largo de pétalo y sépalo)		
Oculta 1	16	ReLU 16 nodos en la primera capa oculta		
Oculta 2	16	ReLU 16 nodos en la segunda capa oculta		
Oculta 3	8	ReLU 8 nodos en la tercera capa oculta		
Salida	3	Softmax 3 nodos en la capa de salida (Setosa, Versicolor		

FASE 1 - EXPLORACIÓN Y SEPARABILIDAD DE LAS CLASES

	sepal.length	sepal.width	petal.length	petal.width	variety
29	4.7	3.2	1.6	0.2	Setosa
101	5.8	2.7	5.1	1.9	Virginica
2	4.7	3.2	1.3	0.2	Setosa
17	5.1	3.5	1.4	0.3	Setosa
117	7.7	3.8	6.7	2.2	Virginica
4	5.0	3.6	1.4	0.2	Setosa
34	4.9	3.1	1.5	0.2	Setosa
75	6.6	3.0	4.4	1.4	Versicolor
76	6.8	2.8	4.8	1.4	Versicolor
146	6.3	2.5	5.0	1.9	Virginica
62	6.0	2.2	4.0	1.0	Versicolor
61	5.9	3.0	4.2	1.5	Versicolor
23	5.1	3.3	1.7	0.5	Setosa
111	6.4	2.7	5.3	1.9	Virginica
104	6.5	3.0	5.8	2.2	Virginica
82	5.8	2.7	3.9	1.2	Versicolor
70	5.9	3.2	4.8	1.8	Versicolor
72	6.3	2.5	4.9	1.5	Versicolor
7	5.0	3.4	1.5	0.2	Setosa
120	6.9	3.2	5.7	2.3	Virginica

	Total
variety	
Setosa	50
Versicolor	50
Virginica	50

FASE 1 - EXPLORACIÓN Y SEPARABILIDAD DE LAS CLASES

Dispersión de las características respecto a las clases

Se observa una alta separación de la clase **Setosa** (verde), sin embargo, las clases **Versicolor** (naranja) y **Vigínica** (morado) se solapan en todos los ejes, teniendo una mayor separación en el **Petal Length** (ancho de pétalo).

FASE 1 - EXPLORACIÓN Y SEPARABILIDAD DE LAS CLASES

Dispersión de las características respecto a las clases

Se observa una alta separación de la clase **Setosa** (verde), sin embargo, las clases **Versicolor** (naranja) y **Vigínica** (morado) se solapan en todos los ejes, teniendo una mayor separación en el **Petal Length** (ancho de pétalo).

D 2 on a de confusión

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 16)	80
dense_1 (Dense)	(None, 16)	272
dense_2 (Dense)	(None, 8)	136
dense_3 (Dense)	(None, 3)	27

1/1 ———— 0s 87ms/step - accuracy: 0.8667 - loss: 0.3480

[0.3480192720890045, 0.8666666746139526]

37.1

Se observa un aprendizaje real del 86.6%

Epoch 1/100							
6/6 ———————————————————————————————————	0s	3ms/step -	accuracy:	0.2787	_	loss:	5.2651
6/6 ————	0s	2ms/step -	accuracy:	0.5644	_	loss:	1.0264
Epoch 3/100			ĺ				
6/6	0s	2ms/step -	accuracy:	0.6476	_	loss:	0.9639
Epoch 4/100 6/6 ———————————————————————————————————	06	2ms/sten -	accuracy	0 7021	_	10001	0 0058
Epoch 5/100	03	21113/3 CCP -	accuracy.	0.7001		1033.	0.9030
6/6 —	0s	2ms/step -	accuracy:	0.6630	_	loss:	0.8934
Epoch 6/100		2 / 1		0 6004		,	0.0504
6/6 ———————————————————————————————————	0s	2ms/step -	accuracy:	0.6831	_	loss:	0.8501
6/6 ————	0s	2ms/step -	accuracy:	0.7046	_	loss:	0.8278
Epoch 8/100		•					
6/6	0s	2ms/step -	accuracy:	0.6539	-	loss:	0.8025
Epoch 9/100 6/6 ———————————————————————————————————	05	2ms/sten -	accuracy:	0.6576	_	loss:	0.7922
Epoch 10/100		23, 5 cop	acca, acy i	0.0570			017522
6/6 —	0s	2ms/step -	accuracy:	0.6592	-	loss:	0.7720
Epoch 11/100	0.0	2ms/ston	2001112011	0 5770		10001	0.7644
6/6 ———————————————————————————————————	05	ziiis/step –	accuracy:	0.5779	_	1055;	0.7044
6/6 —	0s	2ms/step -	accuracy:	0.5079	_	loss:	0.7283
Epoch 13/100							
Enach 00/100							
Epoch 99/100 6/6 ———————————————————————————————————	0s	2ms/step -	accuracv:	0.9499	_	loss:	0.3600
Epoch 100/100		,					
6/6 ———	0s	2ms/step -	accuracy:	0.9156	-	loss:	0.3520

	setosa	setosa (p)	versicolor	versicolor (p)	virginica	virginica (p)		setosa	setosa (p)	versicolor	versicolor (p)	virginica	virginica (p)
102	0	0.0	0	0.1	1	0.9	102	0	0	0	0	1	1
82	0	0.0	1	1.0	0	0.0	82	0	0	1	1	0	0
74	0	0.0	1	1.0	0	0.0	74	0	0	1	1	0	0
101	0	0.0	0	0.1	1	0.9	101	0	0	0	0	1	1
24	1	1.0	0	0.0	0	0.0	24	1	1	0	0	0	0
49	1	1.0	0	0.0	0	0.0	49	1	1	0	0	0	0
92	0	0.0	1	0.9	0	0.1	92	0	0	1	1	0	0
104	0	0.0	0	0.1	1	0.9	104	0	0	0	0	1	1
46	1	1.0	0	0.0	0	0.0	46	1	1	0	0	0	0
75	0	0.0	1	1.0	0	0.0	75	0	0	1	1	0	0
143	0	0.0	0	0.1	1	0.9	143	0	0	0	0	1	1
45	1	1.0	0	0.0	0	0.0	45	1	1	0	0	0	0
55	0	0.0	1	0.8	0	0.2	55	0	0	1	1	0	0
40	1	1.0	0	0.0	0	0.0	40	1	1	0	0	0	0
23	1	1.0	0	0.0	0	0.0	23	1	1	0	0	0	0
114	0	0.0	0	0.1	1	0.9	114	0	0	0	0	1	1
3	1	1.0	0	0.0	0	0.0	3	1	1	0	0	0	0
96	0	0.0	1	0.9	0	0.1	96	0	0	1	1	0	0
110	0	0.0	0	0.7	1	0.3	110	0	0	0	1	1	0
39	1	1.0	0	0.0	0	0.0	39	1	1	0	0	0	0

Matrices de confusión

Setosa

- Precisión alta (TP=50 | FP=0)
- Sensibilidad alta (TP=50 | FN=0)
- Especificiadad alta (TN=100 | FP=0)

Versicolor

- Precisión baja (TP=48 | FP=11)
- Sensibilidad alta (TP=48 | FN=2)
- Especificiadad baja (TN=89 | FP=11)

Virgínica

- Precisión alta (TP=44 | FP=3)
- Sensibilidad media (TP=44 | FN=6)
- Especificiadad alta (TN=97 | FP=3)

FASE 3 - DNN ESTADÍSTICAMENTE INFORMADA (MANUAL)

								•		
	x1	x2	хЗ	x4	х5	х6	x7	x8		
0	1.4	0.2	5.1	3.5	0.689593	3.956157e-10	0.000007	-1.012109		
1	1.4	0.2	4.9	3.0	0.689593	3.956157e-10	0.000007	0.188400		
2	1.3	0.2	4.7	3.2	0.805827	1.514370e-11	0.000005	0.236297		
3	1.5	0.2	4.6	3.1	0.588917	6.245790e-09	0.000011	0.165577		
4	1.4	0.2	5.0	3.6	0.689593	3.956157e-10	0.000007	-0.675357		
6/	′6 —				— 0s 3ms/st	tep - accuracy:	0.6130 - lo	oss: 0.9003		
Ер	och 1	2/100)							
6/	′6 				— 0s 3ms/s	tep - accuracy:	0.6318 - lo	oss: 0.8693		
Epoch 13/100										
Epoch 99/100										
6/6 — Os 3ms/step – accuracy: 0.9962 – loss: 0.0987 Epoch 100/100										
	6 —	1007 10			— 0s 2ms/si	tep - accuracy:	0.9757 - 10	oss: 0.1122		
٠,					22 2					
1/1 — 0s 88ms/step - accuracy: 0.9667 - loss: 0.1392										
1/1 ———————————————————————————————————										
[0.13919782638549805, 0.9666666388511658]										
47./										
	Observamos un aprendizaje real del 96.6%									

FASE 3 - DNN ESTADÍSTICAMENTE INFORMADA (MANUAL)

Matrices de confusión

Setosa

- Precisión alta (TP=50 | FP=0)
- Sensibilidad alta (TP=50 | FN=0)
- Especificiadad alta (TN=100 | FP=0)

Versicolor

- Precisión alta (TP=48 | FP=0)
- Sensibilidad alta (TP=48 | FN=2)
- Especificiadad alta (TN=100 | FP=0)

Virgínica

- Precisión alta (TP=50 | FP=5)
- Sensibilidad alta (TP=50 | FN=0)
- Especificiadad alta (TN=95 | FP=5)

FASE 4 - DNN ESTADÍSTICAMENTE INFORMADA (OVR)

	x1	x2	хЗ	х4	х5	х6	х7	x8	
0	1.4	0.2	5.1	3.5	4.200271	0.063124	0.000003	4.263398	
1	1.4	0.2	4.9	3.0	3.941659	0.089701	0.000005	4.031365	
2	1.3	0.2	4.7	3.2	4.466517	0.051071	0.000004	4.517591	
3	1.5	0.2	4.6	3.1	3.879415	0.090080	0.000007	3.969502	
4	1.4	0.2	5.0	3.6	4.339543	0.054067	0.000003	4.393614	
Epc 6/0 Epc 	och 1 och 1 och 9	2/100 3/100 9/100			0s 2ms/step	- accuracy:	0.8299 -	loss: 0.7991 loss: 0.7396	
-		00/100			0s 2ms/step	- accuracy:	0.9598 -	loss: 0.0951	
1/1 — 0s 84ms/step - accuracy: 0.9000 - loss: 0.1444 [0.14439982175827026, 0.8999999761581421]									
Observamos un aprendizaje real del 90%									

FASE 4 - DNN ESTADÍSTICAMENTE INFORMADA (OVR)

Matrices de confusión

Setosa

- Precisión alta (TP=50 | FP=0)
- Sensibilidad alta (TP=50 | FN=0)
- Especificiadad alta (TN=100 | FP=0)

Versicolor

- Precisión alta (TP=49 | FP=6)
- Sensibilidad alta (TP=49 | FN=1)
- Especificiadad alta (TN=94 | FP=6)

Virgínica

- Precisión alta (TP=45 | FP=1)
- Sensibilidad alta (TP=45 | FN=5)
- Especificiadad alta (TN=99 | FP=1)

CONCLUSIONES

Conclusiones

- 1. Al **aumentar la información estadística**, las redes neuronales profundas con arquitectura similar lograron mejorar el aprendizaje
- 2. El **método manual arrojó mejores resultados**, pero no es un método automático, ya que requiere el ajusta manual de las variables aumentadas
- 3. El método OvR logró mejorar los resultados, y este **si es un método automático** que determina las variables aumentadas
- 4. Otros métodos listados deberían ser estudiados para mejorar el aprendizaje en las redes neuronales