Assignment - 03 (sec: 0) Seriall no-12

Name: Md. Mamunun Rahman Moon ID: 20-42439-1

class interval	No of stations	CF	Milpoint,	fixi	dilogx;	di ai	Z
1-2	1	1	1.5	1.5	0.78	0.67	
2-3	3	4	2.5	7,5	1 -19	1.2	
3-4	9	12	3.5	28	4.36	2.28	3.75
4-5	.6	18	4.5	27	3.92	1.33	
5-6	2	20	5-5	11	1.49	0.36	
Total	20			75	11.14	5.84	

(a) Arithmetic mean:

$$AM = \frac{1}{n} = \frac{n}{100} = \frac{75}{20} = 3.75$$

Geometric mean:

Grame = Antilog
$$\left(\frac{1}{n}\sum_{i=0}^{n}f_{i}\log x_{i}\right)$$

= Antilog $\left(\frac{11\cdot14}{20}\right)=3.72$

Harmonie means

$$HM = \frac{n}{25} = \frac{20}{5.84} = 3.43$$

Class	f	cf	12-51	Ji Mi-x1	1; (x;-x)2
1-2	1		2.25	2.25	5.06
2-3	3	4	1.25	3.75	4.68
3-4	8	12	0.25	2	0.5
4-5	6	18	0.75	4.5	3.38
5-6	2	26	1.75	3.5	6.12
Total	20	6		16	19.74
	, ,				

Median: Me =
$$L + \frac{\pi}{2} - \frac{c}{5} \times h$$

= $3 + \frac{2^{\circ} - 4}{3} \times 1$
= 3.75
Mole: $M_0 = L + \frac{f_m - f_1}{2f_m - f_1 - f_2} \times h$
= $3 + \frac{g - 3}{2(3) - 3 - 6} \times 1$
= 3.71

L=Lower limit

n= total frequency

h= class size

c= camulative

frequency of

previous class

f= frequency

previous da

f= frequency

frenches

f= frequency

frenches

frenches

frenches

frenches

frenches

frenches

(e) Variance,
$$5^2 = \frac{1}{n} \sum_{n=1}^{n} . \hat{f}_i (\alpha_i - \overline{\alpha})^2 = \frac{19.74}{20} = 0.987$$

(f) Co-efficient of vaniable,
$$CV = \frac{5}{2} = \frac{0.99}{3.75} \times 100\%$$

3.1/ Let,
$$A = Multiple$$
 of $3 = \{3, 6, 9, 12, 15, 18\}$
 $B = Multiple$ of $5 = \{5, 10, 15, 20\}$

$$P(A) = \frac{6}{20}, \quad P(B) = \frac{4}{20}$$

$$P(ANB) = \frac{1}{20}$$

We Know,

$$P(AUB) = P(A) + P(B) - P(AAB)$$

 $= \frac{6}{20} + \frac{4}{20} - \frac{1}{20}$
 $= \frac{9}{20}$

Probability to find 1 Girl and 2 Bays nandomly,
$$= \frac{10e_1 \times 15e_2}{25e_3}$$

$$=\frac{21}{46}$$
 (Ans.)

Probability of these drawn ball of one red of all of them,
$$\frac{5c_3}{15e_3}$$
 | Total ball=4+5+6 = 15

$$=\frac{10}{455}=\frac{2}{91}$$
 (Ans.)

3,4/ Given

5 electronic engineeres } Total = 11 orgineers 6 computer engineers

Among the committee of 9, the propability

(a) all electronic engineers =
$$\frac{5c_y}{11c_y} = \frac{1}{16}$$
 (Ans)

(b) 2 electronic engineers and 2 computer engineers, $= \frac{5c_2 \times 6c_2}{|l|_0}$