CubeSat Control Platform + ACTIV 11/28 Meeting

General Updates/Reminders

Coursework is wild right now, so lab productivity will decrease

However, the following is a list of open-items for the various projects

CubeSat

- Continuing expanded 1U development
 - Determining electronics placement
 - Setting CubeSat up for multi-motor testing
- Print gimbal rings
 - Design gimbal ring locking mechanism
- Configure for ACTIV 1-DOF testing
- Refactor O-Drive Can control code
- Setup database for CubeSat trials

[Justin]: Database integration, Fusion management, and more

Progress completed this past week

Goals for next week

Anticipated Challenges

4

[Isaac] +[2DOF/3DOF Cube Sats]

Progress completed this past week

-made CAD for electronics panel and large

resistors

-got cubesat printed

Goals for next week

-assembling the cubesat

Anticipated challenges

-disassembling the old cubesat

[Ella] + [The Clawwwww]

Progress completed this past week

-Claw for 1.5U CubeSat

Goals for next week

-SRS and Trep (I hope I can make it)

Anticipated challenges

Image stolen from Dylans cool video

[Dylan] + [Simulations!]

Progress completed this past week

- 3D print and assembly ISSAC 3DoF CubeSat
- TREP expo poster / SRS poster
- Worked on IP python simulation
- Build simple Unity sim with 3 gimbal rings & cubesat

Goals for next week

- Implement simple PID on Inverted Pendulum w/ Justin
 - Pending new Inverted Pendulum Arm
- Get preliminary design for 3DoF CubeSat Electronics
- Try and get 3D print going of the new gimbal rings
- Want to work more on livestreaming data with WebSocket
- Going to Vegas on Thursday for F1 Race then flying home for thanksgiving.
- Will work more on python simulation while I am gone

[Jacob S] + [Optical Attitude Determination]

Progress completed this past week

 Became familiar with camera calibration for CV. Got some good insight into MQTT over the break and became more familiar working with the Raspberry Pi.

Goals for next week

- Survive.
- Get the camera calibration software working with the pi camera.

Anticipated challenges

- The latest edition of the aruco library has changed a lot of their functions.

EasyControls.org

Dylan Ballback, Justin Hartland, Ella Cheatham, Adam Duke, Jacob Romeo, Jacob Salazar, Isaac Stitt, Ryan Taylor, Vishal Ramisetty, Vishwam Rathod, Jacob Raynor, Kyle Fox

COMPANY PURPOSE

EasyControls.com allows for students and researchers to accelerate and expand their knowledge of control systems and algorithms. This educational space gives people the ability to complete hardware-in-the-loop testing in real-time on physical hardware through the internet.

PRODUCT

- Monetizing the use of EasyControls.org
 - Able to charge \$/min of runtime

Website Revenue @ \$0.50/minute for Simulation & \$1.00/minute for Simulation/Hardware

Educational Kits (Raw Material Cost)

Kit Type	Raw Material:		S	ale Price	Profit	
SpaceCraft	\$	1,200.00	\$	2,000.00	\$	800.00
CubeSat	\$	900.00	\$	1,500.00	\$	600.00
Inverted Pendulum	\$	400.00	\$	600.00	\$	200.00
Totals	\$	2,500.00	\$	4,100.00	\$	1,600.00

PROBLEM

 Learning Controls can be overwhelming with complex mathematics and equations, and it is very hard to visualize and connect the dots between controlling a system in real life and the abstract mathematical equations/formulas.

1DoF Spacecraft Prototype

Inverted Pendulum Prototype

1U 3DoF CubeSat Prototype

1U 3DoF CubeSat Prototype

Join us at Easy Controls, and let's accelerate space technology education together.

Because when it comes to reaching for the stars, the only limit should be the breadth of your imagination, not access to cutting-edge educational resources.

SOLUTION

 EasyControls.org will allow for anyone online can upload their own controls algorithm and watch a live stream of how their algorithm performs on hardware in real-time.

MARKET POTENTIAL/COMPETITION

- Controls professors being able to use this as a teaching aid while in class or for homework/project assignments.
- Able to sell educational controls courses with a focus on using EasyControl.org to learn.
- Existing educational controls platforms on the market:
 - Balancing Robot Kit (\$85)
 - HiWonder Robotic Arm and Car (\$600)
 - Ouanser Inverted Pendulum (\$5000)
 - EyasSat Classroom Satellite (\$12350)

Attitude Control Testbed In Vacuum

Justin Hartland, Dylan Ballback, Ella Cheatham, Jacob Romeo, Jacob Salazar, Isaac Stitt, Ryan Taylor, Vishal Ramisetty, Vishwam Rathod

ABSTRACT

Attitude Control Testbed in Vacuum (ACTIV) will be designed to simulate a microgravity environment with the use of 3 gimbal rings with embedded electric motors in each rotational axis to provide an opposing torque to those produced by gravity and friction.

This controlled gyroscope will be designed to test spacecraft ranging from 1U to 6U (as supplied by the CubeSat Control Platform project) in size so that varying spacecraft designs may be tested.

ACTIV

General System Architecture

Comprised of 3 gimbal rings, each ring will be mounted on a high-torque, hollow-shaft R80 motor. Shafts will be built into the rings to allow wires to pass. An external electronics bay will house the power source, the Raspberry Pi, ODrive controllers, and other electronics.

Rotary Union Point

Electrical continuity throughout rings will be accomplished using hollow-shaft motors in conjunction with slip rings.

ACTIV method to maintain continuity with R80 motor and slip ring

6U CubeSat 3DOF Stability in ACTIV

PROJECT GOALS

Develop 3 degree of freedom, actively driven gimbal ring system to counteract gravitational and friction torques produced microgravity effect.

Develop an inverted pendulum, and 1, 3, and 6U CubeSat Control Platforms all of which utilize reaction wheels to change attitude.

EASY CONTROLS

EasyControls.org allows for students and researchers to accelerate and expand their knowledge of control systems and algorithms by allowing hardware-in-the-loop testing in real-time on physical hardware through the internet.

ACTIV, along with the inverted pendulum and CubeSat platforms, will be integrated into the website.

CURRENT STATE

General

Achieved multi-motor control using CAN; to be applied to both ACTIV and CubeSat platforms.

Reporting IMU data, sending motor commands, and storing data in SQ Lite database using threading.

Inverted Pendulum

Designed and assembled 1 degree of freedom inverted pendulum; currently tuning PID controller.

CubeSat

Assembled 1 degree of freedom CubeSat with ODrive controller, serving as testbed for IMU yaw drift mitigation. Iterating upon 3 degree of freedom CubeSat design.

ACTIV

Torque estimations determined ideal motor which has been used to design rotary point.

Manufacturing 1 degree of freedom configuration for initial testing prior to manufacturing full system.

Multi-motor control by utilizing CAN

1 DoF CubeSat with ODrive motor controller

Upright inverted pendulum

O-Drive CAN Commands

CMD ID	Name	Sender	Start Byte	Name	Type	Description
0x000 Get_Ver			0	Protocol_Version	uint8	Always reported as 2
			1	Hw_Version_Major	uint8	hw version major
			2	Hw_Version_Minor	uint8	hw version minor
			3	Hw_Version_Variant	uint8	hw version variant
	Get_Version	ODrive_Axis0	4	Fw_Version_Major	uint8	fw version major
			5	Fw_Version_Minor	uint8	fw version minor
			6	Fw_Version_Revision	uint8	fw version revision
			7	Fw_Version_Unreleased	uint8	fw version unreleased
			0	Axis_Error	uinit32	<axis>.active errors</axis>
0x001 Heartbeat						<axis>.disarm_reason</axis>
	Heartbeat	ODrive_Axis0	4	Axis_State	uint8	<axis>.current_state</axis>
			5	Procedure_Result	uint8	<axis>.procedure result</axis>
			6	Trajectory_Done_Flag	uint8	<axis>.controller.trajectory_done (0: Flase, 1: True)</axis>
0x002	Estop	Master	Empty Payload	•	-	ESTOP REQUESTED
0x003	Cat Farm	ODrive_Axis0	0	Active_Errors	uinit32	active errors
	Get_Error		4	Disarm_Reason	uinit32	disarm reason
0x004 RxSdo		None	0	Opcode	uint8	0: Read, 1: Write
	Ducata		1	Endpoint_ID	uint16	Endpoint ID as found in flat_endpoints.json
	RASGO		3	Reserved uint8		
			4	Value	uinit32	Data type and length depend on endpoint ID
0x005	TxSdo	None -	0	Reserved0	uint8	-
			1	Endpoint_ID	uint16	Endpoint ID as found in flat_endpoints.json
			3	Reserved1	uint8	
			4	Value	uinit32	Data type and length depend on endpoint ID
0x006	Set_Axis_Node_ID	Master	0	Axis_Node_ID	uinit32	node id
0x007	Set_Axis_State	Master	0	0	uinit32	requested_state

0x009	Get_Encoder_Estimates	ODrive_Axis0	0	Pos_Estimate	float32	<axis>.pos vel mapper.pos rel <axis>.pos vel mapper.pos abs Depends on: ODrive Controller.Config absolute_setpoints</axis></axis>
			4	Vel_Estimate	float32	<axis>.pos_vel_mapper.vel</axis>
0.000	Car Caracillar Mada	Master	0	Control_Mode	uinit32	control_mode
0x00b	Set_Controller_Mode		4	Input_Mode	uinit32	input mode
0х00с		Master	0	Input_Pos	float32	input pos
	Set_Input_Pos		4	VeI_FF	uint16	input_vel
			6	Torque_FF	uint16	input torque
0x00d	Set_Input_VeI	Master	0	Input_VeI	float32	input vel
Oxood			4	Input_Torque_FF	float32	input torque
0x00e	Set_Input_Torque	Master	0	Input_Torque	float32	input torque
0x00f	Set_Limits	Master	0	Velocity_Limit	float32	vel_limit
			4	Current_Limit	float32	current soft max
0x011	Set_Traj_Vel_Limit	Master	0	Traj_Vel_Limit	float32	vel limit
0x012	Set Traj Accel Limits	Master	0	Traj_Accel_Limit	float32	accel limit
0,012	Set_ITaj_Accel_climits		4	Traj_Decel_Limit	float32	decel limit
0x013	Set_Traj_Inertia	Master	0	Traj_Inertia	float32	<u>inertia</u>
0x014	Get_lq	ODrive_Axis0	0	Iq_Setpoint	float32	lg_setpoint
0,021			4	Iq_Measured	float32	lg_measured
0x015	Get_Temperature	ODrive_Axis0	0	FET_Temperature	float32	<axis>.motor.fet_thermistor.temperature</axis>
0,013			4	Motor_Temperature	float32	<axis>.motor.motor thermistor.temperature</axis>
0x016	Reboot	Master	Empty Payload	-	-	reboot()
0x017	Get_Bus_Voltage_Current	ODrive_Axis0	0	Bus_Voltage	float32	<u>vbus voltage</u>
0.017			4	Bus_Current	float32	ibus
0x018	Clear_Errors	Master	Empty Payload		-	clear_errors()
0x019	Set_Absolute_Position	Master	0	Position	float32	set abs pos()
0x01a	Set_Pos_Gain	Master	0	Pos_Gain	float32	pos gain
0x01b	Set_Vel_Gains	Master	0	Vel_Gain	float32	vel gain
			4	Vel_Integrator_Gain	float32	vel integrator gain
0x01c	Get_Torques	ODrive_Axis0	0	Torque_Target	float32	effective torque setpoint
			4	Torque Estimate	float32	torque estimate

O-Drive CAN Python Class

Started on the code layout:

 Maybe need some help with this code!

```
import board
import can
class ODriveCAN:
   A class for setting up O-Drive motor controllers using CAN comunincation
       Specifically for setting up CAN comunication between Raspberry Pi and CAN Communication Type:
           canBusID (String): Can Bus ID should be default "can0" but if you have muilitiple can buses
           on your device you can modify here
           canBusType (String): python-can package CAN communication type we by default us "socketcan"
       O-Drive Controller Specific Attributes:
       nodeID (integer): The node ID can be set by the
   def init (self, canBusID, canBusType, nodeID):
       self.canBusID = canBusID
       self.canBusType = canBusType
       self.nodeID = nodeID
   def setAxisNodeID(self):
       Sets Axis NodeID for an O-Drive Controller through CAN BUS
       Set Axis NodeID: 0x06
   def setAxisState(self):
       Set Axis State for an O-Drive Controller through CAN BUS
       CAN Set Axis State: 0x07
           Axis_Requested_State:
               Undefined:
                                                    0x0
               Startup Sequence:
               Motor Calibration:
               Encoder_Index_Search:
               Encoder Offset Calibration:
               Closed Loop Control:
               Lockin Spin:
                                                    0x8
               Encoder DIR Find:
                                                    0x9
                                                    0xA
               Encoder_Hall_Phase_Calibration:
```

```
def setControllerMode(self):
       Set the O-Drive Controller Mode type
       Attribute:
           CAN Set Controller Mode: 0x0B
                   Control_Mode:
                       Voltage Control:
                                          0x0
                       Torque Control:
                                          0x1
                       Velocity Control: 0x2
                   Input Mode:
                                      0x0
                       Passthrough:
                                      0x1
                       VEL_Ramp:
                                      0x2
                       Pos Filter:
                                      0x3
                       Mix Channels: 0x4
                       Trap_Traj:
                                      0x5
                       Torque Ramp:
                                      0x6
                       Mirror:
                                      0x7
                                      0x8
def getAxisEncoderEstimates(self):
   Get Encoder Estimates for specific O-Drive Controller Axis through CAN BUS
   CAN Get Encoder Estimates: 0x09
                - Pos Estimate
               - Vel Estimate
   Attributes:
       Axis ID
    Returns:
       Pos Estimate
       Vel Estimate
```

Visual System Updates

Froot Loops

The result of talking about fruit loops in discord.

Purchasing Fruit Loops.

Ryan + Sensors

Progress completed this past week

- -Got bored over break and wrote some sqlite stuff
- -Was easy to implement (assuming it works)!

Goals for next week

- -Test program
- -Get with Justin for merge

Anticipated challenges

-Coursework, it sounds like

[Relevant photos if needed]

[Assignee] + [Task Title]

Progress completed this past week

-[Discuss progress]

-Highlight based on: Complete, >50%, <50%

Goals for next week

-[Discuss goals]

Anticipated challenges

-[discuss challenges, request assistance if needed]

[Relevant photos if needed]

