1 Frame 12 – Functions of Complex Variables

1.1 Functions

If S is a set of complex numbers, then a **function** f is a rule that assigns a complex number w to each z in S. The number w is called the **value** of f at z. We denote it as

$$w = f(z)$$

The set S is called the **domain of definition** of f. Note that we need both a rule (f) and a domain (S) for a function to be well defined.

Suppose that w = u + iv and z = x + iy. Then,

$$u + iv = f(x + iy)$$

Then, we can express f(z) as a pair of real functions of x and y:

$$f(z) = u(x, y) + iv(x, y)$$

Alternatively, we could use polar coordinates to write

$$u + iv = f(re^{i\theta})$$

so

$$f(z) = u(r, \theta) + iv(r, \theta)$$

Example: the function $f(z) = z^2$ can be written as

$$f(x+iy) = (x+iy)^2$$
$$= (x^2 - y^2) + i2xy$$

so

$$u(x,y) = x^2 - y^2$$
$$v(x,y) = 2xy$$

In polar coordinates,

$$f(x+iy) = (re^{i\theta})^2$$
$$= r^2 e^{i2\theta}$$
$$= r^2 \cos 2\theta + ir^2 \sin 2\theta$$

so

$$u(r, \theta) = r^2 \cos 2\theta$$
$$v(r, \theta) = r^2 \sin 2\theta$$

1.2 Real-Valued Functions

We say that f is a **real-valued function** if v is zero everywhere.

Example: one real-valued function is

$$f(z) = |z|^2 = x^2 + y^2 + i0$$

1.3 Polynomials

If n is a non-negative integer and $a_0, a_1, a_2, \ldots, a_n$ are complex numbers with $a_n \neq 0$, then the function

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

is a **polynomial** of degree n. Note that this sum has a finite number of terms and that the domain of definition is the entire z plane.

As in real numbers, a rational function is a quotient of two polynomials:

$$R(z) = \frac{P(z)}{Q(z)}$$

A rational function is defined everywhere that $Q(z) \neq 0$.

1.4 Multi-Valued Functions

A generalization of a function is a rule that assigns more than one value to a point z. These **multiple-valued functions** are usually studied by taking one of the possible values at each point and constructing a single-valued function.

Example: we know that we can write

$$z^{1/2} = \pm \sqrt{r}e^{i\theta/2}$$

where we denoted $-\pi < \theta \le \pi$ as the **principal value** of argz. To turn this into a single valued function, we can choose the positive value of r and write

$$f(z) = \sqrt{r}e^{i\theta/2}$$

Then, f is well-defined on the entire plane.

2 Frame 13 – Mappings

2.1 Definitions

There is no convenient way to graph the function w = f(z) – each of these complex numbers are located on a plane instead of a line. Instead, we can draw pairs of corresponding points on separate z and w planes. When we think of f this way, we call it a **mapping** or **transformation**.

If f is defined on the domain of definition S, then the **image** of a point $z \in S$ is the point w = f(z). If T is a subset of S, then the set of the images of each point in T are called the image of T. In particular, the image of the entire domain, S, is called the **range** of f. The **inverse image** of a point w is the set of points z in S that map to w (possibly zero, one, or many points).

2.2 Basic transformations

Using this geometric interpretation, we can describe mappings using terms such as **translation**, **rotation**, and **reflection**. For instance, the mapping

$$w = z + 1 = (x + 1) + iy$$

can be thought of as a translation of each point z one unit to the right. Another example is the rotational mapping

$$w = iz$$

where, using $i = e^{i\pi/2}$ and $z = re^{i\theta}$, is

$$w = re^{i(\theta + \pi/2)}$$

or, in other words, a 90° rotation. Finally, the mapping

$$w = \bar{z} = x - iy$$

is a reflection across the real axis. Usually, it is more useful to sketch an image of a curve rather than a single point.

2.3 Mapping a curve

For an example, consider the mapping $w=z^2$. We showed earlier that this can be written as

$$u = x^2 - y^2, \quad v = 2xy$$

To sketch the image, we will first set $u = c_1$, which requires that

$$x^2 - y^2 = c_1, \quad c_1 > 0$$

which is the equation for a hyperbola. This equation can then be used to solve for the image points:

$$u = c_1, \quad v = \pm 2y\sqrt{y^2 + c_1}$$

where the plus-minus is resolved depending on which side the image point is on. Simply put, as z travels up the right-side hyperbola or down the left-side hyperbola, w travels up the vertical line $u = c_1$.

Next, we can set $v = c_2$, which requires

$$2xy = c_2, \quad c_2 > 0$$

This gives us the image set

$$u = x^2 - \frac{c_2^2}{4x^2}, \quad v = c_2$$

As $x \to \pm \infty$, $u \to \infty$; as $x \to 0$, $u \to -\infty$. Thus, this hyperbola traces out the straight line $v = c_2$ towards the right as z travels towards the left.

2.4 Mapping a region

We can use some of the details from the previous example to find the image of a region, rather than a single curve.

Consider the domain x > 0, y > 0, xy < 1. This region consists of the upper branches of the hyperbolas

$$2xy = c, \quad 0 < c < 2$$

and we know from the previous example that these hyperbolas map to the straight lines

$$v = \epsilon$$

Thus, this region maps to the horizontal strip 0 < v < 2.

We can also close the domain to contain the curves x = 0, y = 0, and xy = 1. From the function $w = z^2$, we know that the points (0,y) and (x,0) map to the points $(-y^2,0)$ and $(x^2,0)$, so including the two straight lines simply extends the strip to include v = 0. Similarly, the hyperbola xy = 1 maps to the horizontal line v = 2.

Simply put, the image of the closed region $x \ge 0$, $y \ge 0$, $xy \le 1$ is the closed region $0 \le v \le 2$.

2.5 Mapping with polar coordinates

Finally, we can use polar coordinates to simplify some mappings.

Again, consider the mapping $w=z^2$. If we write $z=re^{i\theta}$, then the image point can be written as

$$w = r^2 e^{2i\theta}$$

Looking at the magnitude of w, points on a circle $r = r_0$ are mapped onto a circle $r' = r_0^2$. Also, looking at the argument of w, the angle of the image is doubled. This means that the first quadrant, which is defined as

$$r \ge 0, \quad 0 \le \theta \le \pi/2$$

is in a one-to-one mapping with the top plane, $0 \le \theta \le \pi$. Similarly, the top place is mapped onto the entire complex plane (although this is not one-to-one, since the inverse image of the positive real axis is both real axes).

Note that any mapping $w=z^n$ for positive integer n has a similar form, where each non-zero point in the w plane is the image of n distinct points in the z plane.