Project Design Phase-II Technology Stack (Architecture & Stack)

Date	27 June 2025	
Team ID	LTVIP2025TMID59856	
Project Name	HematoVision: Advanced Blood Cell Classification	
	Using Transfer Learning	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 2 table 2

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

Table-1: Components & Technologies:

S.No	Component	Description	Technology	
1	User Interface	How users interact (image upload +	HTML, CSS, Bootstrap 5	
		result view)		
2	Application Logic-1	Uploading, preprocessing & Flask	Python, Flask	
		backend routing		
3	Application Logic-2	AI model integration and inference	TensorFlow, Keras	
4	Application Logic-3	Image handling, resizing, encoding	OpenCV, NumPy	
5	Database	No database used (flat file-based	NA	
		handling)		
6	Cloud Database	NA – Local Execution	NA	
7	File Storage	Temporary image storage for session	Local Filesystem (static folder)	
8	External API-1	NA – All internal logic	NA	
9	External API-2	NA – No external API used	NA	
10	Machine Learning	To classify blood cell image (transfer	MobileNetV2 (Keras, pretrained	
	Model	learning)	on ImageNet)	
11	Infrastructure	Runs on local device via Anaconda or	Local Server (127.0.0.1:5000)	
		localhost Flask		

Table-2: Application Characteristics:

S.No	Characteristic	Description	Technology Used
1	Open-Source	Entirely built on open frameworks	Flask, TensorFlow, OpenCV,
	Frameworks		NumPy, Bootstrap
2	Security	File validation, no arbitrary script	Flask Security, basic file
	Implementations	execution, local-only access	checks
3	Scalable	MVC architecture using Flask separation	Flask MVC architecture
	Architecture	of layers	
4	Availability	Can be extended to cloud or batch	Render, Heroku or Docker-
		uploads	ready design
5	Performance	Model runs < 2 seconds; preprocessing	Pre-trained MobileNetV2,
		optimized using NumPy/OpenCV	vectorized inference

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d