Diário de Disciplina

Professor: Romildo José da Silva

Disciplina: Séries de Funções e Equações Diferenciais Ordinárias

Código: CB0591 Turma: 01 Semestre: 2023.1 Horário: Ter e Qui, 08h00 – 10h00

Apresentação (14/03/2023). *Apresentação: Livro texto, ementa da disciplina, e outros avisos.*

Aula 1 (16/03/2023). Equação Diferencial Ordinária: Definição, ordem e exemplos. Solução de uma equação diferencial e conjunto solução de uma equação diferencial: definiçao e exemplos de resolução. Funçao de várias variáveis reais e de valor real. Forma Geral de uma Equação Diferencial Ordinária: Definição, ordem, notação adicional e exemplos.

Continuação 1 (21/03/2023). *Continuação e finalização da Aula 01: resolução de equações diferenciais de primeira ordem.*

Aula 2 (23/03/2023). Teorema de Existência e Unicidade para equações diferenciais ordinárias de ordem 1 e Teorema da Solução Maximal para equações diferenciais ordinárias de ordem 1: enunciados e aplicação na resolução de equações diferencias de ordem 1.

Continuação 2 (28/03/2023). *Continuação e finalização da Aula 02: resolução de equações diferenciais de primeira ordem.*

Aula 3 (30/03/2023). Equações diferenciais ordinárias separáveis $\frac{dy}{dx} = f(x).g(y)$: Desenvolvimento do método de resolução e resolução de exemplos. Equação diferencial linear de ordem 1. Equação diferencial linear de ordem 1 homogênea. Teorema de Existência e Unicidade para equação diferencial linear $\frac{dy}{dx} + p(x)y = q(x)$, onde p e q são funções contínuas: Enunciado e demonstração. Resolução de equações diferenciais lineares.

Aula 4 (04/04/2023). Soluções, implicitamente definidas, de equações diferenciais: definição e exemplos. Problema de Valor Inicial para equação diferencial de ordem 1: definição e exemplos. Equação diferencial de ordem 2: exemplos. Teorema de Existência e Unicidade e Teorema de Solução Maximal para equação diferencial de ordem 2: enunciados e esclarecimentos. Problema de valor inicial para equação diferencial de ordem 2: definição e exemplos. Equação diferencial linear de ordem 2 e equação diferencial linear homogênea de ordem 2: definições e exemplos. Teorema de Existência e Unicidade para Equação diferencial linear de ordem 2: enunciado e aplicações.

Aula para Repor 1 (06/04/2023). Ponto facultativo na UFC.

Aula 5 (11/04/2023). Funções linearmente independentes e funções linearmente dependentes: Definições e exemplos. Wronskiano de duas funções: Definição e condição suficiente sobre o wronskiano para independência linear de duas funções. Soluções linearmente independentes (soluções fundamentais) de uma equação diferencial linear homogênea de segunda ordem: Existência e solução geral de uma equação diferencial linear homogênea de segunda ordem.

Aula 6 (13/04/2023). Solução geral de uma equação diferencial linear homogênea de segunda ordem com coeficientes constantes

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$$

nos casos em que $\Delta=p^2-4q>0$, $\Delta=p^2-4q=0$ e onde $\Delta=p^2-4q<0$: Desenvolvimento do método de resolução e exemplos.

Aula 7 (18/04/2023). Solução geral de uma equação diferencial linear de segunda ordem, conhecida uma solução particular e a solução geral da EDL homogênea associada. Solução geral de uma equação diferencial linear de segunda ordem com coeficientes constantes

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$$

onde $r(x) = e^{\alpha x}$, $r(x) = e^{\alpha x}(\operatorname{sen}(\beta x) + \cos(\beta x))$ ou $r(x) = a_n x^n + \cdots + a_1 x + a_0$. Resolução de exercícios.

Continuação 3 (20/04/2023). *Continuação e finalização da Aula 07: resolução de equações diferenciais lineares, de segunda ordem, não homogêneas.*

Aula 8 (25/04/2023). Solução geral de uma equação diferencial linear de segunda ordem com coeficientes constantes $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$ onde $r(x) = (P_nx^n + \dots + P_1x + P_0) e^{\alpha x}$, $r(x) = (P_nx^n + \dots + P_1x + P_0) e^{\alpha x}$, $r(x) = (P_nx^n + \dots + P_1x + P_0) e^{\alpha x} \sin(\beta x)$, ou $r(x) = (P_nx^n + \dots + P_1x + P_0) e^{\alpha x} \cos(\beta x)$, Solução geral de uma equação diferencial linear de segunda ordem com coeficientes constantes $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r_1(x) + r_2(x) + \dots + r_n(x)$. Resolução de exercícios.

Aula 9 (27/04/2023).

Aula 10 (02/05/2023).

Aula 11 (04/05/2023).

Aula 12 (09/05/2023).

Aula 13 (11/05/2023).

Avaliação 1 (16/05/2023). *Primeira Avaliação Progressiva*.

Aula 14 (18/05/2023).

Aula 15 (23/05/2023).

Aula 16 (25/05/2023).

Aula 17 (30/05/2023).

Aula 18 (01/06/2023).

Aula 19 (06/06/2023).

Aula 20 (08/06/2023).

Aula 21 (13/06/2023).

Aula 22 (15/06/2023).

Aula 23 (20/06/2023).

Aula 24 (22/06/2023).

Aula 25 (27/06/2023).

Aula 26 (29/06/2023).

Aula 27 (04/07/2023).

Aula 28 (06/07/2023).

Aula 29 (11/07/2023).

Avaliação 2 (13/07/2023). Segunda Avaliação Progressiva.

13 de julho de 2023:

Término do Semestre Letivo 2023.1 para Cursos de Graduação Presenciais.

Término do Semestre Letivo 2023.1 para Pós-graduação Stricto e Lato Sensu.

14 de julho de 2023 a 21 de julho de 2023 :

Período de Avaliações Finais do Semestre 2023.1.

18 de julho de 2023, terça-feira, às 08h00 :

Data e horário da Avaliação Final.

Calendário Universitário 2023:

https://www.ufc.br/calendario-universitario/2023

Ementa da Disciplina:

Séries de funções. Série de Fourier. Equações Diferenciais Ordinárias de primeira e segunda ordem.

Livro Texto:

Cálculo Volume 2

James Stewart

Tradução da Sexta Edição Norte-Americana

E-mail do Grupo:

seriesequacoesmatind20231@googlegroups.com

Minha Página:

https://rjsdusk.org