Chapter 9

D. Zack Garza

Sunday 20th September, 2020

Contents

1	9.1 and Review	1
	1.1 Review Last Time	. 1
2	9.2 2.1 Three steps to gluing theorem	. 2
3	9.3: Pre-gluing	3
4	9.4: Construction of ψ .	4

1 9.1 and Review

- (M, ω) a symplectic manifold, $H \in ?$ a Hamiltonian, X_H its ?
- $\int_{S^2} u^* \omega = \sigma_1$ where $u \in C^{\infty}(S^2, W)$.
- $\langle c_1(TW), \pi_2(TW) \rangle = 0$?
- $C_k(H) := \mathbb{Z}/2\mathbb{Z}[S]$ where S is the set of periodic orbits of X_H of Maslov index k.
- x, y critical points of \mathcal{A}_H with $\mathcal{M}(x, y)$ the moduli space of contractible solutions of finite energy connecting x, y.

1.1 Review Last Time

- $\mathbb{R} \curvearrowright \mathcal{M}_{x,y}$, so we quotient to define $\mathcal{L}(x,y) := \mathcal{M}_{x,y}/\mathbb{R}$ with the quotient topology.
- Topology defined by when sequences converge:

$$\tilde{u}_n \stackrel{n \to \infty}{\to} \tilde{u} \iff \exists \{s_n\} \subseteq \mathbb{R} \text{ such that } u_n(s_n + s, \cdot) \stackrel{n \to \infty}{\to} u(s, \cdot).$$

Proposition 1.1(?).

 $\mathcal{L}(x,y)$ is Hausdorff.

- Want to show $\mathcal{L}(x,y)$ is a compact 0-dimensional manifold.
- Have a differential

$$\partial: C_k(H) \longrightarrow C_{k-1}(H)$$

$$\partial(x) = \sum_{\text{Ind}(y)=k-1} n(x,y)y.$$

with n(x,y) the number (mod 2) of trajectories of grad \mathcal{A}_H connecting x,y, i.e solutions to the Floer equation.

• Want to prove that the following is a 1-dimensional manifold:

$$M := \overline{\mathcal{L}}(x, z) = \mathcal{L}(x, z) \cup_{\mu(y) = \mu(x) + 1} \mathcal{L}(x, y) \times \mathcal{L}(y, z).$$

and show that M is compact with ∂M equal to the last union.

- Last time: closure of space of trajectories connecting x, y contains "broken" trajectories.
- Last time: toward proving that M is compact

$\mathbf{2}$ | 9.2

- Wanted to compactify $\mathcal{L}(x,y)$, needed to go to space of broken trajectories.
- Main theorem of chapter 9: 9.2.1.

Theorem 2.1(9.2.1).

Let (H, J) be a regular pair with H nondegenerate.

Let x, z be two periodic trajectories of H such that $\mu(x) = \mu(z) + 2$.

Then $\overline{\mathcal{L}}(x,y)$ is a compact 1-manifold with boundary satisfying

$$\partial \overline{\mathcal{L}}(x,y) = \bigcup_{\mu(x) < \mu(y) < \mu(z)} \mathcal{L}(x,y) \times \mathcal{L}(y,z).$$

As a corollary, $\partial^2 = 0$.

- Know $\overline{\mathcal{L}}(x,y)$ is compact and $\mathcal{L}(x,y)$ is a 1-manifold
- Now suffices to study in a neighborhood of boundary points ("gluing theorem")

2.1 Three steps to gluing theorem

- 1. Pre-gluing: Get a function w_p which interpolates between u and v (not exactly a solution itself, but will be approximated by one later).
- 2. Constructing ψ a "true solution" from w_p using the Newton-Picard method. We'll have

$$\psi(p) = \exp_{w_p}(\gamma(p))$$
 $\gamma(p) \in W^{1,p}(w_p^* TW) = T_{w_p} \mathcal{P}(x, z).$

where $\mathcal{P} = ?$.

- 3. Get a lift $\hat{\psi} = \pi \circ \psi$ where $\pi = ?$ satisfying
- $\widehat{\psi}(p) \stackrel{n \to \infty}{\to} (\widehat{u}, \widehat{v})$
- $\widehat{\varphi}$ is an embedding
- $\hat{\psi}$ is unique in the following sense (the last point)

Theorem 2.2(9.2.3 (Gluing Theorem)).

Let x, y, z be critical points of the action functional \mathcal{A}_H such that $\mu(x) = \mu(y) + 1 = \mu(z) + 2$. Let $(u, v) \in \mathcal{M}(x, y) \times \mathcal{M}(y, z)$ be trajectories, inducing $(\bar{u}, \bar{v}) \in \mathcal{L}(x, y) \times \mathcal{L}(y, z)$.

- There exist a differentiable map $\psi:(\rho_0,\infty)\to\mathcal{M}(x,z)$ for some $\rho>0$ such that

- $\pi \circ \psi : (\rho_0, \infty) \to \mathcal{L}(x, z)$ is an embedding $\widehat{\psi} \stackrel{\rho \to \infty}{\to} (\bar{u}, \bar{v}) \in \overline{\mathcal{L}(x, z)}$. If $\ell_n \in \mathcal{L}(x, z)$ with $\ell_n \stackrel{n \to \infty}{\to} (\bar{u}, \bar{v})$, then for $n \gg 1$ we have $\ell \in \Im(\widehat{\psi})$.

9.3: Pre-gluing

- Choose a bump function β on $\{0\}^c \subset \mathbb{R} \to [0,1]$ which is 1 on $|x| \geq 1$ and 0 on $|x| < \varepsilon$
- Split into positive and negative parts β^{\pm} :

Figure 1: Figure 9.3

• Define the interpolation w_{ρ} from u to v in the following way:

$$w_{\rho}(s,t) = \begin{cases} u(s+\rho,t) & \text{if } s \leq -1\\ \exp_{y(t)} \left(\beta^{-}(s) \exp_{y(t)}^{-1}(u(s+\rho,t)) + \beta^{+}(s) \exp_{y(t)}^{-1}(v(s-\rho,t))\right) & \text{if } s \leq -1\\ v(s-\rho,t) & \text{if } s \geq 1 \end{cases}$$

• Why does this make sense?

$$|s| \le 1 \implies u(s \pm \rho, t) \in \left\{ \exp_{y(t)} Y(t) \mid \sup_{t \in S^1} ||Y(t)|| \le r_0 \right\}.$$

4 9.4: Construction of ψ .

- Have constructed $w_{\rho} \in C_{\searrow}^{\infty}(x,z)C^{\infty}(x,z)$ for every $\rho \geq \rho_0$, since there is exponential decay.
- Yields $\psi_{\rho} \in \mathcal{M}(x,z)$ a true solution (to be defined).
- Need to check that $\mathcal{F}(\psi_{\rho}) = 0$ where

$$\mathcal{F} = \frac{\partial}{\partial s} + J \frac{\partial}{\partial t} + \operatorname{grad} Hx$$

in the weak sense.

- ψ_{ρ} already continuous, and by elliptic regularity, makes it a strong solution.
- Trivialization
- Defining \mathcal{F}_{ρ} .

$$W^{1,p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right) \xrightarrow{\mathcal{F}_{\rho}} L^{p}\left(\mathbf{R}\times S^{1};\mathbf{R}^{2n}\right)$$
$$(y_{1},\ldots,y_{2n})\longmapsto \left[\left(\frac{\partial}{\partial s}+J\frac{\partial}{\partial t}+\operatorname{grad}H_{t}\right)\left(\exp_{w_{\rho}}\sum y_{i}Z_{i}^{\rho}\right)\right]_{Z_{i}}$$

where $\mathcal{F}_{\rho} := \mathcal{F} \circ \exp_{w_{\rho}}$ written in the bases Z_i . sd - Newton-Picard method, general idea

• Original method and variant: find the limit of a sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}.$$

- Allows finding zeros of f given an approximate zero x_0 .
- Linearize \mathcal{F}_{ρ} .