5. Caches [30 points]

A byte-addressable system with 16-bit addresses ships with a three-way set associative, write-back cache. The cache implements a true LRU replacement policy using the minimum number of replacement policy bits necessary to implement it. The tag store requires a total of 264 bits of storage. What is the block size of the cache? (Hint: $264 = 2^8 + 2^3$)

Answer:

 2^5 bytes

Show all your work.

Assume t tag bits, n index bits and b block bits.

t + n + b = 16

 $LRU = \lceil \log_2 3! \rceil = 3$ bits per set with 3-way associativity

Valid Bit = 1 bit per block

Dirty Bit = 1 bit per block

Tag bits = t bits per block

Number of sets = 2^n

Number of blocks = $3 * 2^n$ (3-way associative)

Tag store size = $3 * 2^n + 3 * 2^n * (2 + t) = 2^n * (9 + 3t)$

We get $2^n * (9+3t) = 2^8 + 2^3$

 $2^n * (9+3t) = 2^3 * (2^5+1)$

 $2^n * (9+3t) = 2^3 * 33$

So, n = 3 and t = 8. As a result, b = 5

Therefore, the block size is 2^5 .