CS557: Cryptography

Elementary Number Theory

S. Tripathy IIT Patna

An appeal

 Please keep your mobile in silent/switch off mode

- Please Keep your mobile(s)
 - inside your bag/ pocket

Previous Class

- Introduction to Cryptography
 - What is Cryptography?
 - Why Cryptography?
 - How it works?
 - Communication in the presence of adversary
 - Secure communication in an insecure channel

A Taxonomy of Cryptographic Primitives

Present Class

- Elementary Number Theory
 - Integer Operation
 - Euclidean Algorithm

Elementary Number Theory

Motivation:

- Increasing importance in cryptography AES, IDEA, RSA, ECC, DH etc. like cryptographic primitives design based on number theory

-Modular Arithmetic

Arithmetic

- Number in different bases
 - An integer n satisfies the relation $b^{k-1} \le n < b^k$

number of digits =
$$\lfloor \log_b n \rfloor + 1 = \lfloor \frac{\log n}{\log b} \rfloor + 1$$
.

- Time estimates for Bit operations:
 - A k-bit integer operated with an n-bit integer
 - Addition
 - Multiplication

Divides

• If $a, b \in Z$ we say a divides b written as a|b

if ac = b for some $c \in Z$

- If there is no $c \in Z$ such that ac = b, we say that a does not divide b, written as $a \nmid b$
- If p is prime and p|ab, then p|a or p|b

The Greatest Common Divisor (GCD)

- $gcd(a,b) = max \{d \in z : d \mid a \text{ and } d \mid b \}$ if a = b = 0, Then gcd(0,0) = 0
- For any a

$$gcd(0,b) = gcd(b,0) = b$$

- If a ≠ 0, the gcd exist because if d | a then d < |a|</p>
- EX:
- Let a = 2261 and b = 1275
 - Also can be represented as

$$a = 7 \cdot 17 \cdot 19$$
 and $b = 3 \cdot 5^2 \cdot 17$,

• So gcd(a, b) = 17.

The Greatest Common Divisor

For any integer a and b, we have,

$$gcd(a,b) = gcd(b,a) = gcd(\pm a, \pm b)$$

= $gcd(a, b-a) = gcd(a, b+a)$

• Thus, $a, b, n \in \mathbb{Z}$. Then gcd(a, b) = gcd(a, b - an).

The Greatest Common Divisor [Algorithm]

```
1. Assume a > b > 0, We have
      gcd(a, b) = gcd(|a|, |b|) = gcd(|b|, |a|)
      If a = b,
                          output a
      If a > 0 and b = 0 output a
2. [Quotient and Remainder] write a = bq + r,
             with 0 \le r < b and q \in Z
3. [Finished?] If r = 0,
             then b | a, so we output b and terminate.
      [Shift and Repeat] Set a \leftarrow b and b \leftarrow r,
             then compute (qcd(a,b)) go to Step 2
```

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - -GCD(a,b) = a if b=0
 - GCD(b, a mod b) if $b \neq 0$
- Euclidean Algorithm to compute GCD(a,b) is:

```
EUCLID(a,b)
1. A = a; B = b
2. if B = 0 return A = gcd(a, b)
3. R = A mod B
4. A = B
5. B = R
6. goto 2
```

Example GCD(68,26)

$$68 = 2 \times 26 + 16$$
 $gcd(26, 16)$
 $26 = 1 \times 16 + 10$ $gcd(16, 10)$
 $16 = 1 \times 10 + 6$ $gcd(10, 6)$
 $10 = 1 \times 6 + 4$ $gcd(6, 4)$
 $6 = 1 \times 4 + 2$ $gcd(4, 2)$
 $4 = 2 \times 2 + 0$ $gcd(2, 0)$

Thanks