# Deep Learning with torch:: CHEAT SHEET



torch is based on Pytorch, a framework popular among deep learning researchers.

torch's GPU acceleration allows to implement fast machine learning algorithms using its convenient interface, as well as a vast range of use cases, not only for deep learning, according to Its flexibility and its low level API.

It is part of an ecosystem of packages to interface with specific dataset like torchaudio for timeseries-like and torchvision for image-like data.



https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

### INSTALLATION

The torch R package uses the C++ libtorch library. You can install the prerequisites directly from R.

https://torch.mlverse.org/docs/articles/installation.html

install.packages("torch")
library(torch)
install\_torch()

See ?install\_torch
for GPU
instructions

## Working with torch models

# DEFINE A NN MODULE dense ← nn\_module( "no\_biais\_dense\_layer", initialize = function(in\_f, out\_f) { self\$w ← nn\_parameter(torch\_randn(in\_f, out\_f)) }, forward = function(x) { torch\_mm(x, self\$w) } } Create a nn module names no\_biais\_dense\_layer

### **ASSEMBLE MODULES INTO NETWORK**

model ← dense(4, 3 )
Instantiate a network from a single module

model ← nn\_sequential(
 dense(4,3), nn\_relu(), nn\_dropout(0.4),
 dense(3,1), nn\_sigmoid())
Instantiate a sequential network with multiple layers

### **MODEL FIT**

model\$train()
Turns on gradient update

with\_enable\_grad({
 y\_pred ← model(trainset)
 loss ← (y\_pred - y)\$pow(2)\$mean()
 loss\$backward()
})
Detailed training loop step (alternative)

### **EVALUATE A MODEL**

model\$eval()
or
with\_no\_grad({
 model(validationset)
})
Perform forward operation with no gradient update

### **OPTIMIZATION**

optim\_sgd()
Stochastic gradient descent optimiser

optim\_adam()
ADAM optimiser

### **CLASSIFICATION LOSS FUNCTION**

nn\_cross\_entropy\_loss()
nn\_bce\_loss()
nn\_bce\_with\_logits\_loss()
(Binary) cross-entropy losses
nn\_nll\_loss()
Negative log-likelihood loss
nn\_margin\_ranking\_loss()
nn\_hinge\_embedding\_loss()
nn\_multi\_margin\_loss()
nn\_multilabel\_margin\_loss()
(Multiclass) (multi label) hinge losses

### **REGRESSION LOSS FUNCTION**

nn\_l1\_loss()
L1 loss
nn\_mse\_loss()
MSE loss nn\_ctc\_loss()
Connectionist Temporal Classification loss
nn\_cosine\_embedding\_loss()
Cosine embedding loss
nn\_kl\_div\_loss()
Kullback-Leibler divergence loss
nn\_poisson\_nll\_loss()
Poisson NLL loss

### **OTHER MODEL OPERATIONS**

**summary()** Print a summary of a torch model

torch\_save(); torch\_load() Save/Load models to files

load\_state\_dict()
Load a model saved in python

# Neural-network layers

### **CORE LAYERS**



nn\_linear()
Add a linear transformation NN layer to an input

nn\_bilinear() to two inputs



nn\_sigmoid(), nn\_relu()
Apply an activation function to an
output



nn\_dropout()
nn\_dropout2d()
nn\_dropout3d()
Applies Dropout to the input



nn\_batch\_norm1d()
nn\_batch\_norm2d()
nn\_batch\_norm3d()
Applies batch normalisation to the



weights

#### **CONVOLUTIONAL LAYERS**



nn\_conv1d() 1D, e.g. temporal convolution



nn\_conv2d() 2D, e.g. spatial convolution over images

Transposed 2D (deconvolution)

nn\_conv\_transpose2d()



nn\_conv\_transpose3d()
Transposed 3D (deconvolution)
nn\_conv3d() 3D, e.g. spatial
convolution over volumes



nnf\_pad() Zero-padding layer

# nn\_leaky\_relu()

Leaky version of a rectified linear unit



nn rrelu()



nn\_elu(), nn\_selu() Exponential linear unit, Scaled Exp lineal

### POOLING LAYERS



nn\_max\_pool1d()
nn\_max\_pool2d()
nn\_max\_pool3d()
Maximum pooling for 1D to 3D

nn\_avg\_pool1d()
nn\_avg\_pool2d()

nn\_avg\_pool2d()
nn\_avg\_pool3d()
Average pooling for 1D to 3D



nn\_adaptive\_max\_pool1d()
nn\_adaptive\_max\_pool2d()
nn\_adaptive\_max\_pool3d()
Adaptive maximum pooling



nn\_adaptive\_avg\_pool1d()
nn\_adaptive\_avg\_pool2d()
nn\_adaptive\_avg\_pool3d()
Adaptive average pooling

### RECURRENT LAYERS



nn\_rnn()
Fully-connected RNN where the output is to be fed back to input

nn\_gru()
Gated recurrent i

Gated recurrent unit - Cho et al

nn\_lstm()
Long-Short Term Memory unit Hochreiter 1997

### Tensor manipulation

### **TENSOR CREATION**

tt ← torch\_rand(4,3,2) uniform distrib.

tt ← torch\_randn(4,3,2) unit normal distrib. Create a random values tensor with shape



Create a tensor full of 1 with given shape, or with the same shape as 'a'. Also torch\_zeros, torch\_full, torch\_arange,...



tt\$dtype tt\$shape tt\$ndim [1] 4 3 2 torch Float tt\$requires\_grad tt\$device [1] FALSE torch\_device(type='cpu') Get 't' tensor shape and attributes



tt ← torch\_tensor( a, dtype=torch\_float(), device="cuda") Copy the R array 'a' into a tensor of float on the GPU



 $a \leftarrow as.matrix(tt)$ 

### **TENSOR SLICING**

tt[1:2, -2:-1, ] Slice a 3D tensor tt[5:N, -2:-1, ..]

Slice á 3D or more tensor, N for last



tt[1:2, -2:-1, 1:1] Slice a 3D and keep the unitary



tt[1:2, -2:-1, 1] Slice by default remove unitary dim.



tt[tt > 3.1]Boolean filtering (flattened result)

#### TENSOR SHAPE OPERATIONS



tt\$unsqueeze(1) torch\_unsqueeze(t,1) Add a unitary dimension to tensor "t" as first dimension



tt\$squeeze(1) torch\_squeeze(t,1) Remove first unitary dimension to



\$view() torch\_reshape() Change the tensor shape



torch\_flatten() Flattens an input

### **TENSOR SHAPE OPERATIONS (contd)**



torch\_transpose()

torch\_movedim()

torch\_roll()

### **TENSOR VALUES OPERATIONS**



Operations with two tensors



\$pow(2), \$log(), \$exp(),
\$abs(), \$floor(), \$round(), \$cos(), \$fmod(3), \$fmax(1), \$fmin(3) Element-wise operations on a tensor

\$eq(), \$ge(), \$le() Element-wise comparison



**\$sum(dim=1), \$mean(), \$max()** Aggregation functions on a single tensor \$amax()



torch\_repeat\_interleave() Repeats the input n times

### TENSOR CONCATENATION



torch\_stack() two tensors

torch\_cat() tensor

torch()

torch

TRAINING AN IMAGE RECOGNIZER ON MNIST 5 0 4 /

t rchaudio

torchvision

The "Hello, World!" of deep learning

### Pre-trained models

Torch applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

# Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

# input layer: use MNIST images library(torchvision) train\_ds ← mnist\_dataset( root = " ~/.cache", download = TRUE, transform = torchvision::transform\_to\_tensor test\_ds ← mnist\_dataset( root = " ~/.cache", train = FALSE, transform = torchvision::transform\_to\_tensor train\_dl  $\leftarrow$  dataloader(train\_ds, batch\_size = 32, shuffle = TRUE) test\_dl <- dataloader(test\_ds, batch\_size = 32) # defining the model and layers net ← nn\_module( "Net", initialize = function() { selffc1  $\leftarrow$  nn\_linear(784, 128) selffc2  $\leftarrow$  nn\_linear(128, 10) forward = function(x) { x %>% torch\_flatten(start\_dim = 2) %>% self\$fc1() %>% nnf\_relu() %>% self\$fc2() %>%  $nnf_log_softmax(dim = 1)$  $model \leftarrow net()$ # define loss and optimizer optimizer  $\leftarrow$  optim\_sgd(model\$parameters, Ir = 0.01) # train (fit) for (epoch in 1:10) { train\_losses  $\leftarrow$  c() test\_losses  $\leftarrow$  c() for (b in enumerate(train\_dl)) { optimizer\$zero\_grad() output  $\leftarrow$  model(b[[1]]\$to(device = device)) loss ← nnf\_nll\_loss(output, b[[2]]\$to(device = device)) loss\$backward() optimizer\$step() train\_losses  $\leftarrow$  c(train\_losses, loss\$item()) for (b in enumerate(test dl)) { model\$eval() output  $\leftarrow$  model(b[[1]]\$to(device = device)) loss ← nnf\_nll\_loss(output, b[[2]]\$to(device = device)) test\_losses ← c(test\_losses, loss\$item()) model\$train()