

Mechatronics Design MIET 2362

Topic 6
Transfer Function

Definition

Time domain

s domain

$$G = gain = \frac{output}{input}$$

$$G(s) = Transfer \ Function = \frac{Laplace \ transform \ of \ output}{Laplace \ transform \ of \ input}$$

Laplace Transform Definitions

One (Easy) Way to Solve ODEs

Laplace transform

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t)dt$$
$$F(s) = L\{f(t)\}$$

Inverse Laplace transform

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - jw}^{\sigma + jw} F(s)e^{st}ds$$

$$f(t) = L^{-1}\{F(s)\}\$$

The Unit Step Function

$$u(t) = 0, t < 0$$

 $u(t) = 1, t \ge 0$

$$L\{u(t)\} = \int_{0}^{\infty} e^{-st} u(t) dt = \int_{0}^{\infty} 1e^{-st} dt = -\frac{1}{s} [e^{-st}]_{0}^{\infty} = \frac{1}{s}$$

$$L\{u(t)\} = U(s) = \frac{1}{s}$$

System

GND

Digital Signal

Find the Laplace transform of this signal using LT definition integral

Solution

f(t)

$$f(t) = 0, t < 0$$

 $f(t) = 1, 0 \le t \le T$
 $f(t) = 0, t > T$

$$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t)dt$$

$$\int_{0}^{T} e^{-st} f(t)dt + \int_{T}^{\infty} e^{-st} f(t)dt =$$

$$\int_{0}^{T} e^{-St} * 1dt + 0 = \frac{1}{-S} \left[e^{-St} \right]_{0}^{T}$$

$$L = \frac{1}{s}(1 - e^{-sT})$$

Impulse Function

$$f(t) = \frac{1}{k} \text{ for } 0 \le t < k$$
$$f(t) = 0 \text{ for } t > k$$

$$F(s) = 1$$

Laplace Transform of Some Common Functions

$\delta(t)$, unit impulse	1
$\delta(t-T)$, delayed unit impulse	e^{-sT}
u(t), a unit step	1
	\boldsymbol{S}
u(t-T), a delayed unit step	e^{-sT}
	S

Laplace Transform of Some **Common Functions**

t, a unit ramp
$$F(s) = \int_{0}^{\infty} te^{-st} dt = \left[\frac{te^{-st}}{-s} \right]_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} dt = \frac{1}{s^{2}}$$

$$t^n$$
, $n-th$ order ramp

$$e^{-at}$$
, exponential decay

$$1-e^{-at}$$
, exponential growth

$$\frac{n!}{s^{n+1}}$$

$$\frac{1}{s+a}$$

$$\frac{a}{s(s+a)}$$

Laplace Transform of Some Common Functions

Laplace Transform of Some Common Functions

© Dr Milan Simic

Digital Signal

Find the Laplace transform using common signals

Digital Signal Again

u(t-T), a delayed unit step

$$u(t) - u(t - T) =>$$

$$\frac{\frac{1}{s}}{s}$$

$$\frac{e^{-sT}}{s}$$

$$\Delta U(s) = \frac{1}{s}(1 - e^{-sT})$$

Laplace Transform Properties

Linearity

$$L{af(t)+bg(t)}=aLf(t)+bLg(t)$$

Shifting in s – domain

$$L\{e^{at}f(t)\}=F(s-a)$$

Time domain shifting

$$L\{f(t-T)u(t-T)\}=e^{-sT}F(s)$$

Periodic functions

$$f(t)=f(t+T), Lf(t)=\frac{1}{1-e^{-sT}}F_1(s)$$

 F_1 is Laplace transform for the first period only

Laplace Transform Properties

- Initial and final values
- Derivatives
- Integrals

First Order System

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y$$

 $a_1 a_0 b_0$ are constants, y and x are input and output Laplace transform with all initial conditions zero is

$$a_1 s X(s) + a_0 X(s) = b_0 Y(s)$$

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_1 s + a_0}$$

$$G(s) = \frac{b_0 / a_0}{(a_1 / a_0)s + 1} = \frac{G}{\tau s + 1}$$

A First Order System

$$e = iR + v; \quad i = C \frac{dv}{dt}$$

$$e = C \frac{dv}{dt} R + v$$

$$E(s) = RCsV(s) + V(s)$$

$$\frac{V(s)}{E(s)} = \frac{V(s)}{sRCV(s) + V(s)}$$

$$\frac{V(s)}{E(s)} = \frac{1}{sRCV(s) + V(s)}$$

$$\tau = RC = \text{time constant}$$

E(s) sRC+1 $\tau s+1$

Second Order System

$$a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = b_0 y$$
$$G(s) = ?$$

Second Order System

$$a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = b_0 y$$

 $a_2 a_1 a_0 b_0$ are constants y is the input, x is the output Laplace transform with all initial conditions zero is

$$a_2 s^2 X(s) + a_1 s X(s) + a_0 X(s) = b_0 Y(s)$$

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_2 s^2 + a_1 s + a_0}$$

A Second Order System

$$\frac{V(s)}{E(s)} = \frac{1}{(1+\tau_1 s)(1+\tau_2 s)}$$

$$\frac{V(s)}{E(s)} = \frac{A}{1 + \tau_1 s} + \frac{B}{1 + \tau_2 s}$$

A Second Order System Example

A robot arm has following transfer function:

$$G(s) = \frac{K}{(s+3)^2}$$

If an unit step input is applied, what will be the output?

A Second Order System Exam Question Example

$$X(s) = G(s)Y(s) = \frac{K}{(s+3)^2} \times ?$$

Find the response in time domain and draw the output function

Solution

$$X(s) = G(s)Y(s) = \frac{K}{(s+3)^2} \times \frac{1}{s}$$

Using partial fractions we can get

$$X(s) = \frac{K}{9s} - \frac{K}{9(s+3)} - \frac{K}{3(s+3)^2}$$

Theinverse transformis

$$x(t) = \frac{1}{9}K - \frac{1}{9}Ke^{-3t} - \frac{1}{3}Kte^{-3t}$$

Solution - Explained

$$X(s) = \frac{K}{(s+3)^2} \times \frac{1}{s} = \frac{A}{s} + \frac{Bs+C}{(s+3)^2} = \frac{A}{s} + \frac{C}{(s+3)} + \frac{D}{(s+3)^2}$$

$$\frac{K}{(s+3)^2} \times \frac{1}{s} = \frac{A}{s} + \frac{C}{(s+3)} + \frac{D}{(s+3)^2}$$

$$K = A(s+3)^2 + Cs(s+3) + Ds$$

$$A = \frac{K}{9}; \quad C = -\frac{K}{9}; \quad D = -\frac{K}{3}$$

The Method of Partial Fractions With Laplace Transform

http://www.math.oregonstate.edu/home/program s/undergrad/CalculusQuestStudyGuides/ode/la place/pf/pf.html

More Transfer Functions

Filter, Integrating Circuit

$$v1(t) = R \times i(t)$$

$$V1(s) = R \times I(s)$$

$$v2(t) = -\frac{1}{C} \int i(t) dt$$

$$V2(s) = -\frac{1}{sC} \times I(s)$$

$$\frac{V_2(s)}{V_1(s)} = -\frac{1}{RCs}$$

Differentiating Circuit

Differentiating Circuit

DC Motor Physical Structure

Field Frame Armature and Commutator

Field coils

Commutator

Stator

or yoke,

Rotor

Field Pole

BLDC -Hard Disk Spindle Motor

Permanent Magnet Rotor

Field Pole

A DC Motor Components: Armature / Rotor and Stator

Rotor

2 Stator Permanent Magnet, or Electromagnet like this one

Field Winding /
Field Magnet

DC Motor Armature Controlled with Permanent Magnet, or Fixed Field

DC Motor Armature Controlled with Permanent Magnet, or Fixed Field

DC Motor Field Controlled

Gear Train, Rotational Transformer

Gear Ratio =
$$n = \frac{N_1}{N_2}$$

$$N_2 \boldsymbol{\theta}_L = N_1 \boldsymbol{\theta}_m$$

$$\theta_L = n \theta_m$$

$$\omega_L = n \omega_m$$

RMIT University

Potentiometer, Voltage Control

Rack and Pinion

Tachometer, Velocity Sensor

Block Diagram Models

- Dynamic systems that contain automatic control sub-systems can mathematically be represented by a set of simultaneous differential equations.
- Application of Laplace transform simplifies solutions to the domain of linear algebraic equations.
- The block diagram representation of the control system is widely used in the system design.

Block Diagram

- Block diagram consists of unidirectional operational blocks that represent transfer functions of the variables involved.
- A block diagram of previously analysed DC motor (field controlled) is shown below.

Complex System

We can have **m** inputs and **n** outputs

Y=GR

where *G* is a *mxn transfer function* matrix and **Y** and **R** are column matrices

Transformations

Systems in Series

$$G(s) = \frac{X(s)}{Y(s)} = \frac{X_1(s)}{Y(s)} \times \frac{X_2(s)}{X_1(s)} \times \frac{X(s)}{X_2(s)}$$

$$G(s) = G_1(s) \times G_2(s) \times G_3(s)$$

Moving a Summing Point, 1

Moving a Summing Point, 2

 $X3=GX1\pm X2=G(X1\pm X2*1/G)$

Moving a Pickoff Point, 1

Moving a Pickoff Point, 2

Negative Feedback Loops

Feedback Loops - Equations

$$E(s) = R(s) - B(s) = R(s) - H(s)Y(s)$$

$$Y(s) = G(s)E(s)$$

$$Y(s) = G(s)[R(s) - H(s)Y(s)]$$

$$Y(s)[1 + G(s)H(s)] = G(s)R(s)$$

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Exam Question

Solution

Example

Disk drive R/W system block diagram

Find transfer function of this system

Solution

$$\frac{Y(s)}{R(s)} = \frac{K_a G(s)}{1 + K_a G(s)}$$

Resources

- De Silva, C. W. Mechatronics: an integrated approach, CRC Press, 2005.
- Necsulescu, D. Mechatronics, Prentice-Hall, 2007.
- Bishop, R.H. *LabVIEW 8, Student Edition*, Pearson Prentice-Hall, 2007.
- Online@RMIT (Learning Hub) http://www.rmit.edu.au/online
 - Lecture Notes, Labs, Project, Assessment
- Engineering Journal (You will create it during the course)

Thank you, Questions

