김영록

추천 시스템 1

1. 추천 시스템 이름

카테고리별 추천 시스템

2. 추천 시스템의 테마

카테고리별 추천 시스템은 사용자에게 관심 있는 카테고리 내에서 신뢰도 높은 인기 상품을 제공하는 것을 목표로 한다. 리뷰 수와 평점을 기반으로 각 카테고리별 상위 상품을 선별함으로써, 제품 선택 시 객관적 지표를 제공하고 다양한 분야에서 최적의 상품을 추천한다.

3. 구현 로직

1. 데이터 정제

- 평점(rating), 리뷰 수(rating_count), 할인율(discount_percentage) 등 주요 필드를 문자열에서 숫자형으로 변환(REGEXP_EXTRACT + SAFE_CAST).
- rating >= 4.0, rating_count >= 10 이상의 조건을 충족하는 상품만 활용하여 노이즈를 제거.

2. 카테고리 분해 및 분류

• category 필드를 구분자로 분리(UNNEST)하여 하나의 상품이 속한 모든 카테고리별로 랭킹 계산.

3. 랭킹 산출

• 각 카테고리 내에서 rating DESC → rating_count DESC → discount_percentage DESC 순으로 순위를 매기고 ROW_NUMBER()를 활용해 상위 10개 상품을 선별.

```
CREATE TEMP FUNCTION clean_float(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'-?\d+(?:\.\d+)?') AS FLOAT64)
CREATE TEMP FUNCTION clean_int(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'\d+') AS INT64)
);
WITH typed AS (
SELECT
  product_id, product_name, category, product_link,
  clean_float(rating) AS rating_f,
  clean_int(rating_count)
                         AS rating_count_i,
  clean_float(discounted_price) AS discounted_price_f,
  clean_float(discount_percentage) AS discount_pct_f
 FROM 'western-augury-470201-c8.data1.DATA'
),
filtered AS (
SELECT *
FROM typed
WHERE rating_f >= 4.0 AND rating_count_i >= 10
),
split_cat AS (
SELECT *,
    TRIM(cat) AS category_value
 FROM filtered,
    UNNEST(SPLIT(category, '|')) AS cat
ranked AS (
 SELECT *,
     ROW_NUMBER() OVER (
      PARTITION BY category_value
```

```
ORDER BY rating_f DESC, rating_count_i DESC, discount_pct_f DESC
    ) AS rnk
FROM split_cat
SELECT
category_value AS category,
product_id,
product_name,
rating_f
            AS rating,
rating_count_i AS rating_count,
discounted_price_f AS discounted_price,
discount_pct_f AS discount_percentage,
product_link
FROM ranked
WHERE rnk <= 10
ORDER BY category, rnk;
```

- 출력: 각 카테고리별 상위 10개 베스트셀러 상품 리스트
- 컬럼:
 - 。 고객은 카테고리별로 검증된 인기 상품을 빠르게 탐색 가능.
 - 。 리뷰 수와 평점을 조합하여 신뢰성 높은 추천을 제공하며, 할인율 고려로 실질적 혜택을 극대화.
 - 。 다양한 카테고리별 차트나 표를 통해 시각화 자료로 활용 가능.

추천 시스템 2

1. 추천 시스템 이름

리뷰 신뢰도 기반 추천 (Review Trust Score)

2. 추천 시스템 테마

단순히 평점과 리뷰 수만 보는 대신, 리뷰 콘텐츠가 충분히 많은 제품을 선별해 사용자에게 신뢰도 높은 추천을 제공한다.

텍스트 길이가 긴 리뷰는 사용자 경험을 더 풍부하게 전달할 가능성이 높으므로,

평균 리뷰 길이와 리뷰 수를 함께 반영한 새로운 점수를 계산한다.

3. 구현 로직

- 1. 데이터 전처리
 - rating, rating_count는 숫자 변환(clean_float, clean_int)
 - review_content 텍스트 길이를 계산해 평균 리뷰 길이를 산출

2. 평균 리뷰 길이와 평점 결합

- trust_score = 평점 × log(리뷰 수 + 1) × log(평균 리뷰 길이 + 1)
- 리뷰가 많고 리뷰 텍스트가 충분히 길면 신뢰도가 높다고 평가

3. 추천 상품 선별

• trust_score 기준으로 상위 100개 제품 출력

```
CREATE TEMP FUNCTION clean_float(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'-?\d+(?:\.\d+)?') AS FLOAT64)
CREATE TEMP FUNCTION clean_int(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'\d+') AS INT64)
WITH typed AS (
 SELECT
  product_id, product_name, category, product_link,
  clean_float(rating)
                         AS rating_f,
  clean_int(rating_count)
                           AS rating_count_i,
  clean_float(discounted_price) AS discounted_price_f,
  clean_float(discount_percentage) AS discount_pct_f,
  CAST(review_content AS STRING) AS review_text
 FROM 'western-augury-470201-c8.data1.DATA'
review_stats AS (
SELECT
  product_id,
  AVG(LENGTH(review_text)) AS avg_review_len
 FROM typed
 WHERE review_text IS NOT NULL AND LENGTH(review_text) > 0
GROUP BY product_id
joined AS (
 SELECT
 t.product_id, t.product_name, t.category, t.product_link,
  t.rating_f, t.rating_count_i, t.discounted_price_f, t.discount_pct_f,
 COALESCE(r.avg_review_len, 0) AS avg_review_len
 FROM typed t
 LEFT JOIN review_stats r
USING (product_id)
).
scored AS (
 SELECT
  ROUND(rating_f * LOG(GREATEST(rating_count_i,1)+1) * LOG(GREATEST(avg_review_len,1)+1), 4) AS trust_score
 FROM joined
WHERE rating_f IS NOT NULL AND rating_count_i IS NOT NULL
SELECT
product_id,
product_name,
 category,
 rating_f
             AS rating,
 rating_count_i AS rating_count,
 avg_review_len,
 trust_score,
 discounted_price_f AS discounted_price,
 discount_pct_f AS discount_percentag
FROM scored
ORDER BY trust_score DESC
LIMIT 10;
```

- trust_score는 평점, 리뷰 수, 리뷰 길이를 함께 고려한 신뢰도 지표.
- 예: Wireless Headphones 제품은 평점 4.7, 리뷰 25,230개, 리뷰 길이 평균 320자 이상으로 사용자 피드백이 풍부하고 신뢰도 높은 상품임을 의미.
- 단순히 평점만 높은 제품보다 실제 구매자 경험이 잘 드러나는 상품을 상위로 올려줌.

추천시스템 3

1. 추천 시스템 이름

파레토 프론티어 추천 (Multi-Objective Skyline)

2. 추천 시스템의 테마

본 추천 시스템은 사용자가 중시하는 복수 지표(품질, 신뢰도, 혜택, 가격)를 동시에 최적화한 상품을 제시한다.

서로 다른 지표 간 **지배관계(dominance)**를 이용해, 어느 지표에서도 열등하지 않은(=다른 상품에 전면적으로 밀리지 않는) 상품만 선별한다.

즉, 평점↑, 리뷰수↑, 할인율↑, 가격↓ 네 가지 목표를 함께 고려한 파레토 최적(Pareto-optimal) 후보를 추천한다.

3. 구현 로직

- 1. 정규화/정제
- 혼합 타입 컬럼(rating, rating_count, discounted_price, discount_percentage)은 임시 함수로 숫자 변환.
- 기본 품질 보장: rating ≥ 4.0, rating_count ≥ 10 이상만 대상으로 함.
- 1. 파레토 지배관계 정의
 - 상품 Q가 상품 P를 지배한다 함은:
 - ∘ Q.rating ≥ P.rating AND
 - Q.rating_count ≥ P.rating_count AND
 - ∘ Q.discount_percentage ≥ P.discount_percentage AND
 - $\circ \quad \text{Q.discounted_price} \leq \text{P.discounted_price AND}$
 - 위 조건 중 최소 한 항목은 엄격한 부등호(>)/(<)
 - 어떤 상품도 자신을 지배하지 않으면 프론티어(Skyline) 후보로 인정.
- 2. 후처리 정렬
 - 동점/후보가 많은 경우 가독성을 위해 rating DESC → rating_count DESC → discount_percentage DESC → discounted_price ASC로 정렬해 제시.

```
CREATE TEMP FUNCTION clean_float(x ANY TYPE) AS (
    SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'-?\d+(?:\.\d+)?') AS FLOAT64)
);
CREATE TEMP FUNCTION clean_int(x ANY TYPE) AS (
    SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'\d+') AS INT64)
);
```

```
WITH typed AS (
 SELECT
  product_id,
  product_name,
  category,
  product_link,
  clean_float(rating)
                          AS rating_f,
                            AS rating_count_i,
  clean_int(rating_count)
  clean_float(discounted_price) AS price_f,
  clean_float(discount_percentage) AS disc_f
 FROM 'western-augury-470201-c8.data1.DATA'
),
base AS (
 SELECT *
 FROM typed
 WHERE rating_f IS NOT NULL AND rating_f >= 4.0
  AND rating_count_i IS NOT NULL AND rating_count_i >= 10
  AND price_f IS NOT NULL AND disc_f IS NOT NULL
),
dominance AS (
 SELECT
  p.product_id,
  COUNTIF(
              >= p.rating_f AND
   q.rating_f
   q.rating_count_i >= p.rating_count_i AND
             >= p.disc_f AND
   q.disc_f
   q.price_f <= p.price_f AND
    q.rating_f > p.rating_f OR
    q.rating_count_i > p.rating_count_i OR
    q.disc_f
              > p.disc_f OR
    q.price_f < p.price_f
   )
  ) AS dominators
 FROM base p
 JOIN base q
 ON TRUE
 GROUP BY p.product_id
),
frontier AS (
 SELECT b.*
 FROM base b
 JOIN dominance d
 ON b.product_id = d.product_id
 WHERE d.dominators = 0
SELECT
 product_id,
 product_name,
 category,
 rating_f AS rating,
 rating_count_i AS rating_count,
 price_f AS discounted_price,
 disc_f AS discount_percentage,
 product_link
FROM frontier
ORDER BY rating_f DESC, rating_count_i DESC, discount_percentage DESC, price_f ASC
LIMIT 10;
```

- 본 추천은 가중치 설계에 의존하지 않고, 객관적 지배관계로 다목적 최적을 탐색합니다.
- 사용자 관점에서 "평점·리뷰·할인·가격 중 어느 하나에서 손해 보지 않는 선택지"를 빠르게 파악할 수 있습니다.
- 필요 시 카테고리별 Skyline 또는 가격대별 Skyline으로 세분화해 도메인 맞춤 추천이 가능합니다.

추천시스템 4

1. 추천 시스템 이름

최근 급성장 트렌드 추천 (Rising Star Recommender)

2. 추천 시스템의 테마

이 시스템은 단순히 누적 평점·리뷰만 보는 대신, 최근 일정 기간 내 리뷰 증가율을 계산하여 급격히 인기를 얻고 있는 "신흥 인기 상품"을 찾아낸다.

이 접근은 "롱테일 상품"이나 빠르게 주목받는 신제품을 조기에 포착하는 데 유용하다.

3. 구현 로직

날짜 필드 전처리

- review_id 또는 review_date(있다면)에서 리뷰 작성일 추출해 기간별 리뷰 수를 계산.
- 최근 30일(또는 60일) 리뷰 수와 과거 리뷰 수를 나눠 비교.
- 1. 성장률 계산
 - growth_rate = (최근 리뷰 수 + 1) / (이전 리뷰 수 + 1)

2. 평점 보정

• 급성장 상품 중 평점이 일정 기준(rating ≥ 4.0) 이상인 것만 추천.

⚠ 현재 데이터셋에 리뷰 작성 날짜가 없는 경우, review_id에 날짜가 포함되어 있지 않다면 날짜 기준 필터 대신 리뷰 수 기준 비율로 단순화 가능.

CREATE TEMP FUNCTION clean_float(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'-?\d+(?:\.\d+)?') AS FLOAT64)
);
CREATE TEMP FUNCTION clean_int(x ANY TYPE) AS (
SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'\d+') AS INT64)

```
);
WITH typed AS (
 SELECT
  product_id,
  product_name,
  category,
  product_link,
  clean_float(rating) AS rating_f,
  CAST(review_date AS DATE) AS review_dt
 FROM 'western-augury-470201-c8.data1.DATA'
),
review_counts AS (
 SELECT
  product_id,
  COUNTIF(review_dt >= DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)) AS recent_reviews,
  COUNTIF(review_dt < DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)) AS old_reviews
 FROM typed
 GROUP BY product_id
),
scored AS (
 SELECT
  t.product_id,
  ANY_VALUE(t.product_name) AS product_name,
  ANY_VALUE(t.category) AS category,
  ANY_VALUE(t.rating_f) AS rating,
  recent_reviews,
  old_reviews,
  ROUND(SAFE_DIVIDE(recent_reviews + 1, old_reviews + 1), 3) AS growth_rate
 FROM typed t
 JOIN review_counts r
  ON t.product_id = r.product_id
 GROUP BY t.product_id, recent_reviews, old_reviews
SELECT
 product_id,
 product_name,
 category,
 rating,
 recent_reviews,
 old_reviews,
 growth_rate
FROM scored
WHERE rating >= 4.0
ORDER BY growth_rate DESC, recent_reviews DESC
LIMIT 10;
```

- 누적 리뷰와 평점 중심의 기존 추천과 달리, 시간적 트렌드를 반영하여 "최근 급성장 상품"을 포착.
- 사용자에게 신제품이나 급상승 아이템을 발견할 수 있는 가치를 제공.
- 이 시스템은:
 - 。 신규 상품 런칭 모니터링
 - 。 프로모션 성공 분석
 - 트렌드 상품 큐레이션등 다양한 비즈니스 인사이트를 제공.

추천 시스템 5

1. 추천 시스템 이름

사용자 행동 패턴 기반 추천 (User Behavior Pattern Recommender)

2. 추천 시스템의 테마

본 시스템은 사용자들의 리뷰/평가 패턴을 분석해 협업 필터링 스타일 추천을 단순화해 구현합니다.

사용자 그룹의 행동 패턴(자주 리뷰한 제품군, 고평가 제품)을 기반으로

비슷한 행동을 보인 다른 사용자들이 좋아한 상품을 추천하는 구조입니다.

3. 구현 로직

User-Item 행렬을 단순화:
 user_id와 product_id 간의 리뷰 관계를 기반으로 공동 구매/공동 리뷰 관계를 추출.

제품-제품 유사도(Product Co-occurrence):
 같은 사용자가 리뷰한 상품들을 묶어, 두 제품 간 공동 리뷰 수를 계산 → 연관성이 높은 상품 찾기.

ㅇ 추천 전략:

특정 상품 A를 본 사용자는 A와 함께 자주 리뷰되는 상품 B를 추천.

즉, "이 상품을 본 사람들은 이런 상품도 리뷰했다"의 간단 버전.

```
CREATE TEMP FUNCTION clean_float(x ANY TYPE) AS (
 SAFE_CAST(REGEXP_EXTRACT(CAST(x AS STRING), r'-?\d+(?:\.\d+)?') AS FLOAT64)
);
WITH reviews AS (
 SELECT
  CAST(user_id AS STRING) AS user_id,
  CAST(product_id AS STRING) AS product_id,
  clean_float(rating) AS rating
 FROM 'western-augury-470201-c8.data1.DATA'
 WHERE user_id IS NOT NULL AND product_id IS NOT NULL
),
pairs AS (
 SELECT
  r1.product_id AS product_a,
  r2.product_id AS product_b,
  r1.user_id
 FROM reviews r1
 JOIN reviews r2
  ON r1.user_id = r2.user_id
 AND r1.product_id < r2.product_id -- 중복 제거
```

```
),
co_occurrence AS (
SELECT
 product_a,
  product_b,
 COUNT(DISTINCT user_id) AS co_review_count
FROM pairs
GROUP BY product_a, product_b
),
ranked AS (
SELECT *,
 ROW_NUMBER() OVER (PARTITION BY product_a ORDER BY co_review_count DESC) AS rnk
FROM co_occurrence
)
SELECT
product_a AS base_product,
product_b AS recommended_product,
co_review_count
FROM ranked
WHERE rnk <= 5
ORDER BY co_review_count DESC;
```

4.결과

- 이 추천은 사용자의 공동 행동 패턴을 분석하여 상품 간 연관도를 계산.
- 별도의 머신러닝 모델 없이 SQL만으로 간단한 협업 필터링(Co-Occurrence Filtering) 구현.
- 장점:
 - 사용자 개인 데이터가 부족해도 다른 사용자 행동 패턴으로 유의미한 추천 가능.
 - 실무에서 연관 상품, 세트 상품, 번들 제안에 활용 가능.
- 한계:
 - 。 단순 공동 리뷰 수 기반이므로 인기 상품 편향이 있을 수 있음.
 - → PMI(Pointwise Mutual Information) 등으로 가중치 조정 가능.

