Demo := Fuzzy logic implementation output

1. Fuzzy logic designer

For Temp MF are - Normal , Hot , Super_hot

For pressure Mf are - low , Normal , High

Where as Range is described for pressure [500,1000] and temp [100,900].

By both Temp and Pressure we get Theta MF graph that is..

Output Variable Theta, Its Display Range [-90,90] and its contain 6MF.

That are -> Negative 2, Negative 1, Zero, Positive 1, Positive 2.

MF:- is Triangular Membership Function.

2. Define Fuzzy Rule

By referencing the table -

		Pres	sure	
		Low	Normal	High
Temp.	Normal	P_2	Z	N ₂
	Hot	P_2	Z	N_1
	Super Hot	P ₁	N_2	N_1

we we created Fuzzy rules.

Connection we taken (AND) which choose minimum.

3. Theta (Output variable)

Before Exporting we set Function Working

AND method - MIN

OR method - MAX

IMPLICATION - MIN

AGGREGATION - MIN

DEFUZZIFICATION - CENTROID

Export out fuzzy logic controller Function as myflc to Matlab Workspace.

Let input: evalfis (myflc,[400 700])

Output = 12.0298

// Theta value

If input: evalfis (myflc, [500 600])

Output = 11.2879

```
Command Window
>> output = evalfis(myflc,[400 700])
output =
    12.0298
>> output = evalfis(myflc,[500 600])
output =
    11.2879
```

Final Output in Matlab:-

Which is similar to our theoretical value which we find with out traditional method