PENGEMBANGAN GATEWAY BERBASIS EMBEDDED DEVICE UNTUK INTEROPERABILITAS JARINGAN SENSOR NIRKABEL DAN PROTOKOL INTERNET

SKRIPSI

Disusun oleh:

<u>GUNTUR DHARMA PUTRA</u>
09/284593/TK/35393

PROGRAM STUDI TEKNIK ELEKTRO
JURUSAN TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
FAKULTAS TEKNIK
UNIVERSITAS GADJAH MADA
YOGYAKARTA

HALAMAN PENGESAHAN

PENGEMBANGAN GATEWAY BERBASIS EMBEDDED DEVICE UNTUK INTEROPERABILITAS JARINGAN SENSOR NIRKABEL DAN PROTOKOL INTERNET

SKRIPSI

Diajukan Sebagai Salah Satu Syarat untuk Memperoleh

Gelar Sarjana Teknik Program S-1

Pada Jurusan Teknik Elektro dan Teknologi Informasi Fakultas Teknik

Universitas Gadjah Mada

Disusun oleh:

GUNTUR DHARMA PUTRA 09/284593/TK/35393

Telah disetujui dan disahkan pada tanggal 3 Februari 2014

Dosen Pembimbing I

Dosen Pembimbing II

Sigit Basuki Wibowo, S.T., M.Eng.

NIP 1976 0501 2002 12 1 002

Bimo Sunarfri Hantono, S.T., M.Eng.
NIP 1977 0131 2002 12 1 003

HALAMAN PERSEMBAHAN

Karya sederhana ini kupersembahkan buat Bapak, Ibu, dan Adik tercinta

KATA PENGANTAR

Segala puji dan syukur semata-mata hanya untuk Allah SWT, karena atas segala rahmat, hidayah dan bantuan-Nya jualah maka akhirnya Tesis dengan judul Analisis Teoretis Pemantulan dan Pembiasan Gelombang Elektromagnet Pada Bahan Magnetik Non Linear Orde Dua ini telah selesai penulis susun.

Telah banyak bantuan yang penulis peroleh selama dalam penulisan Tesis ini , untuk itu tak lupa penulis ucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Sarjiya, S.T., M.T., Ph.D., selaku Ketua Jurusan Teknik Elektro dan Teknologi Informasi Fakultas Teknik Universitas Gadjah Mada.
- 2. Bapak...selaku dosen pembimbing pertama ...
- 3. Ibu... selaku dosen pembimbing kedua ...
- 4. Bapak... selaku dosen pembimbing akademis.
- 5. Bapak dan Mama yang selama ini telah sabar membimbing dan mendoakan penulis tanpa kenal untuk selama-lamanya,
- 6. Prof. Drs. H. Muslim, Ph. D, selaku Pembimbing Utama, yang telah memberikan ilmunya kepada penulis serta dengan penuh kesabaran membimbing penulis,
- 7. Drs. Kamsul Abraha, Ph. D, selaku Pembimbing Pendamping yang telah memberikan inspirasi kepada penulis,
- 8. Dr. Pekik Nurwantoro dan Dr. rer. nat. M. Farchani Rasyid yang telah memperkenalkan sistem operasi LINUX dan LaTeX kepada penulis serta memberikan bimbingan penggunaan LaTeX tersebut dengan sabar,
- 9. Segenap staf dan karyawan di jurusan Fisika FMIPA UGM, yang telah banyak bekerjasama dengan penulis selama belajar di FMIPA UGM,
- 10. Sahabat saya M. Rizal Ginanjar, yang selalu bersedia membantu penulis ketika menyelesaikan masalah-masalah komputer.

Tesis ini tentunya tidak lepas dari segala kekurangan dan kelemahan, untuk itu segala kritikan dan saran yang bersifat membangun guna kesempurnaan Tesis ini

sangat diharapkan. Semoga tesis ini dapat bermanfaat bagi kita semua dan lebih khusus lagi bagi pengembagan ilmu fisika.

Yogyakarta, 15 Januari 2014

Penulis

DAFTAR ISI

H	ALAN	MAN PENGESAHAN	iii
H	ALAN	MAN PERSEMBAHAN	iii
K	ATA l	PENGANTAR	iv
D	AFTA	IR ISI	vii
D	AFTA	AR TABEL v	iii
D	AFTA	AR GAMBAR	ix
D	AFTA	AR SINGKATAN	X
In	tisari		хi
Al	bstrac	et x	кii
Ι	LAT	TAR BELAKANG	1
	1.1	Latar Belakang Masalah	1
	1.2	Rumusan Masalah	1
	1.3	Batasan Masalah	2
	1.4	Tujuan Penelitian	2
	1.5	Manfaat Penelitian	
	1.6	Keaslian Penelitian	3
	1.7	Sistematika Penulisan	3
II	TIN	JAUAN PUSTAKA DAN DASAR TEORI	4
	2.1	Tinjauan Pustaka	4
	2.2	Landasan Teori	4
		2.2.1 Wireless Sensor Network	4
		2.2.2 IQRF	6
		2.2.3 XBee	7
		2.2.4 TCP/IP	8
		2.2.5 Access Point	8

		2.2.6	Web Server	9
		2.2.7	AJAX	9
		2.2.8	OpenWRT	9
		2.2.9	SSHFS	10
		2.2.10	Bootstrap	10
III	ME	LODOI	LOGI PENELITIAN	11
	3.1	Alat da	an Bahan	11
		3.1.1	Perangkat Keras	11
		3.1.2	Perangkat Lunak	11
	3.2	Alur P	enelitian	11
		3.2.1	Pra Penelitian	11
		3.2.2	Pengembangan Aplikasi	12
		3.2.3	Evaluasi dan Perbaikan	12
		3.2.4	Pasca Penelitian	13
		3.2.5	Diagram Alir Penelitian	13
	3.3	Tahapa	nn Pelaksanaan	13
	3.4	Jadwal	Kegiatan	14
IV	HAS	SIL DA	N PEMBAHASAN	16
V	KES	SIMPUI	LAN DAN SARAN	17
	5.1	Kesim	pulan	17
	5.2	Saran .		17
DA	FTA	R PUST	ΓΑΚΑ	19

DAFTAR TABEL

Tabel 3.1	Jadwal Penelitian.	 										15	į

DAFTAR GAMBAR

Gambar 2.1	Jaringan sensor nirkabel	5
Gambar 2.2	Contoh sebuah simpul sensor IQRF	6
Gambar 2.3	Jaringan bintang menggunakan WiFi	6
Gambar 2.4	Sepasang peranti XBee	7
Gambar 2.5	Tampilan antarmuka command-line OpenWRT versi BackFire.	10
Gambar 3.1	Diagram alir penelitian	13
Gambar 3.2	Arsitektur WSN dan WiFi dengan sebuah AP	14

DAFTAR SINGKATAN

A

AP Access Point

F

FTDI Future Technology Devices International

FUSE Filesystem in Userspace

J

JTETI Jurusan Teknik Elektro dan Teknologi Informasi

L

LAN Local Area Network

R

RF Radio Frequency

S

SFTP Secure Shell File Transfer Protocol

SSHFS Secure Shell Filesystem

U

UGM Universitas Gadjah Mada

 \mathbf{W}

WAP Wireless Access Point

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

Intisari

Penggunaan Wireless Sensor Network (WSN) untuk gedung dan perumahan semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan seperti home automation dan home surveillance. Oleh karena itu, untuk meningkatkan fleksibilitas penggunaan WSN, diperlukan sistem pengendalian yang dapat dikendalikan secara jarak jauh. Padahal pada umumnya, WSN dikendalikan oleh sebuah pengendali utama berada di sekitar tempat WSN itu berada.

Penelitian ini mengusulkan integrasi dari WSN dengan *Internet Protocol* (IP) yang memungkinkan WSN dapat dikendalikan dimanapun dan dengan apapun asalkan masih terhubung dengan jaringan internet. Penelitian ini memanfaatkan infrastruktur jaringan data yang sangat populer dan terhubung ke internet, yaitu jaringan area lokal nirkabel atau dikenal dengan nama WiFi. Salah satu perangkat utama dalam jaringan WiFi adalah *Access Point* (AP) yang berfungsi sebagai koordinator simpul. Selain itu, AP juga berfungsi sebagai gateway yang menghubungkan berbagai piranti yang terhubung padanya ke internet. Oleh karena itu, penelitian ini akan mengembangkan perangkat lunak yang akan ditanamkan ke dalam AP sehingga menjadikan AP mempunyai kemampuan sebagai gateway untuk kedua jaringan WiFi dan beberapa protokol WSN ke dalam jaringan internet.

Kata kunci: wireless sensor network, Internet Protocol, WiFi, interoperabilitas.

Abstract

Wireless Sensor Network (WSN) usage for buildings and household has been increasingly popular because it offers many benefits, such as home automation and home surveilliance. Therefore, in order to increase WSN flexibility usage, remote controlling which enables administration is needed. In fact, generally WSN is controlled by a coordinator (sink node) which is located near the WSN area itself.

This research proposes integration of WSN and Internet Protocol (IP), that enables remote controlling and administration through the Internet Protocol stack. This research utilizes the wireless local area network or commonly known as WiFi. One of main components on this WiFi network is Access Point (AP) that acts as node coordinator. Furthermore, AP also serves as a gateway that connects multiple devices, that is connected to the AP, to the Internet. Therefore, this research will develop a software which is going to be implemented to the AP so that the AP has a capability as a gateway for both WiFi network and several WSN protocols to the Internet.

Keywords: wireless sensor network, Internet Protokol, WiFi, interoperability.

BABI

LATAR BELAKANG

1.1 Latar Belakang Masalah

Jaringan sensor nirkabel (*Wireless Sensor Network*, WSN) adalah jaringan simpul (*node*) sensor otonom terdistribusi yang digunakan untuk memonitor kondisi fisik atau lingkungan misalnya suhu, suara, getaran, kelembaban, dan lain-lain. Selain itu, tidak menutup kemungkinan untuk menambahkan fungsi tambahan pada setiap simpul misalnya port masukan/keluaran yang dapat digunakan sebagai pengendali aktuator yang terhubung ke piranti elektrik atau elektronis.

Penggunaan WSN untuk sebuah gedung dan rumah semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan. Contoh penerapan WSN dalam rumah yang sangat populer adalah *home surveillance* yaitu pemanfaatan WSN untuk mengawasi tiap sudut rumah secara *realtime*. Dengan ini, sang pemilik rumah tidak perlu lagi khawatir karena rumahnya kurang pengawasan karena mengawasi rumah menjadi semakin mudah dengan bantuan WSN ini. Contoh lainnya adalah *home automation* yaitu proses automatisasi segala urusan yang ada di rumah. Sebagai contoh, sang pemilik rumah harus menyalakan lampu di kala waktu sudah senja dan atau menyalakan pendingin ruangan saat pemilik baru saja pulang dari bekerja. Segala sesuatu yang mungkin untuk diautomatisasi, dapat terealisasi dengan bantuan WSN.

Pada umumnya, WSN dikendalikan oleh *sink node* yang berada dekat pada wilayah jaringan sensornya. Sehingga permasalahan pada WSN adalah jika diinginkan pusat kendali berada pada tempat yang jauh dari jaringan sensornya. Solusi yang mungkin dari permasalahan ini adalah penggunaan *Internet Protocol* (IP) karena jaringan IP sangat luas dan dapat diakses dimanapun dan dengan apapun.

Namun demikian, pada umumnya jaringan WSN tidak menggunakan IP, melainkan protokolnya sendiri, seperti protokol *zigbee*. Oleh karena itu, diperlukan sebuah gateway yang mampu menghubungkan WSN dari berbagai macam *vendor* dengan jaringan internet.

1.2 Rumusan Masalah

Penggunaan WSN untuk sebuah gedung dan rumah semakin populer karena dapat dimanfaatkan untuk berbagai kepentingan misalnya home automation dan ho-

me surveillance. Permasalahan pada WSN adalah jika diinginkan pusat kendali berada pada tempat yang jauh dari jaringan sensornya maka jaringan internet yang memungkinkan untuk menyelesaikan permasalahan ini. Namun demikian, pada umumnya jaringan WSN tidak menggunakan IP sehingga diperlukan gateway yang mampu menghubungkan WSN dengan jaringan internet.

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah:

- 1. Penelitian ini bertujuan untuk mengembangkan purwa rupa aplikasi berbasis web untuk integrasi beberapa WSN dengan Internet.
- 2. Peranti WSN yang digunakan dan diujikan hanya IQRF dan XBee. Untuk XBee, peranti tersebut disambungkan dengan XBee Relay Shield dan Arduino Uno sebagai *sensor node*.
- 3. Aplikasi web dibangun menggunakan bahasa PHP, basis data MySQL, dan berjalan pada sistem operasi OpenWRT yang berbasis pada Linux.
- 4. IQRF hanya digunakan untuk mendapatkan suhu sekitar dan XBee digunakan untuk menghidup dan mematikan relay.
- 5. AP yang digunakan adalah TP-LINK MR3020 dengan sistem operasi OpenWRT.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah mempelajari kemungkinan pengembangan perangkat lunak yang akan ditanamkan ke dalam sebuah *access point* untuk difungsikan sebagai gateway sehingga mampu digunakan untuk mengintegrasikan jaringan WiFi dan beberapa protokol WSN ke jaringan internet.

1.5 Manfaat Penelitian

Dengan terhubungnya WSN ke jaringan internet dimungkinkan pengembangan aplikasi WSN yang dapat diakses melalui jaringan internet. Terhubungnya WSN ke jaringan internet akan membuka kemungkinan pengembangan layanan-layanan

yang lebih beragam terutama layanan yang berbasis IP. Hal ini sejalan dengan perkembangan teknologi komunikasi yang menuju konvergensi penggunaan IP.

Selain itu, pengintegrasian gateway untuk WiFi dan WSN dalam satu piranti juga membuka peluang besar untuk memecahkan persoalan interoperabilitas perangkat keras dan kemudahan sistem.

1.6 Keaslian Penelitian

Penelitian ini tidak untuk menguji hipotesis baru melainkan merupakan pengembangan perangkat lunak yang akan ditanamkan ke dalam gateway sehingga mampu menghubungkan jaringan WiFi dan WSN ke jaringan internet. Penelitian ini akan meningkatkan fungsi AP menjadi gateway yang menghubungkan WiFi dan WSN dengan jaringan internet.

1.7 Sistematika Penulisan

BAB I: PENDAHULUAN

Pada bab ini dijelaskan latar belakang, rumusan masalah, batasan, tujuan, manfaat, keaslian penelitian, dan sistematika penulisan.

BAB II: TINJAUAN PUSTAKA DAN LANDASAN TEORI

Pada bab ini dijelaskan teori-teori dan penelitian terdahulu yang digunakan sebagai acuan dan dasar dalam penelitian.

BAB III: METODOLOGI PENELITIAN

Pada bab ini dijelaskan metode yang digunakan dalam penelitian meliputi langkah kerja, pertanyaan penilitian, alat dan bahan, serta tahapan dan alur penelitian.

BAB IV: HASIL DAN PEMBAHASAN

Pada bab ini dijelaskan hasil penelitian dan pembahasannya.

BAB V: KESIMPULAN DAN SARAN

Pada bab ini ditulis kesimpulan akhir dari penelitian dan saran untuk pengembangan penelitian selanjutnya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

Secara umum, cara untuk menghubungkan WSN dengan jaringan internet dapat dikelompokkan menjadi dua. Cara pertama adalah menggunakan gateway dan cara yang kedua adalah dengan menggunakan simpul sensor yang sudah dilengkapi dengan protokol internet. Cara yang lebih mudah ditempuh adalah dengan cara yang pertama karena pengubahan yang dilakukan relatif tidak terlalu besar. Sedangkan cara yang kedua akan menemui banyak kendala terutama pada WSN yang sudah terpasang karena harus dilakukan penggantian tiap simpul sensor.

Salah satu usaha untuk mengintegrasikan jaringan WSN dengan jaringan Wi-Fi menggunakan gateway misalnya dilakukan pada penelitian. Pada riset tersebut pengintegrasian dilakukan dengan sebuah komputer yang didedikasikan untuk keperluan tertentu. Penggunaan komputer khusus ini adalah hardware-solution yang membutuhkan biaya dan kerumitan sistem.

Riset pada juga menawarkan pengintegrasian dengan jaringan IP. Namun demikian di dalam riset ini diperlukan perubahan yang signifikan jika konfigurasi jaringan sensor nirkabel sudah terpasang. Simpul sensor yang digunakan harus diganti dengan simpul sensor yang mendukung IP. Hal ini jelas akan memakan biaya yang cukup besar dan tidak praktis untuk dilakukan. Terlebih lagi jika jumlah sensor yang terpasang jumlahnya cukup banyak.

Riset pada sudah berhasil mengembangkan sebuah AP menjadi gateway yang dapat digunakan untuk menghubungkan sebuah protokol WSN dengan jaringan IP. Protokol WSN yang digunakan adalah protokol dari IQRF. Penelitian tersebut kemudian dilanjutkan dengan penelitian yang sudah diterapkan dalam sistem domotic.

2.2 Landasan Teori

2.2.1 Wireless Sensor Network

Jaringan sensor nirkabel (Wireless Sensor Network, WSN) adalah jaringan simpul sensor otonom yang terdistribusi digunakan untuk memonitor kondisi fisik atau lingkungan misalnya suhu, suara, getaran, kelembaban, dan lain-lain. Selain

itu, tidak menutup kemungkinan untuk menambahkan fungsi tambahan pada setiap simpul misalnya port masukan/keluaran (I/O port) yang terdapat dalam setiap simpul dihubungkan dengan aktuator sehingga dapat digunakan untuk mengendalikan piranti elektrik atau elektronis.

Secara umum, WSN dapat diilustrasikan seperti Gambar 2.1. Pada gambar tersebut terlihat adanya beberapa simpul yang diwakili dengan titik berukuran kecil dan satu buah simpul yang diwakili dengan titik berukuran lebih besar. Titik yang berukuran kecil mewakili simpul sensor sedangkan titik yang berukuran besar mewakili gateway yang berfungsi menghubungkan jaringan sensor nirkabel dengan pengendali utama yang dalam gambar tersebut diwakili oleh sebuah komputer. Contoh sebuah simpul dari IQRF ditunjukkan pada Gambar 2.2.

Gambar 2.1: Jaringan sensor nirkabel.

Pada umumnya, WSN adalah jaringan yang berdiri sendiri. Untuk menghubungkan WSN dengan jaringan yang lain misalnya jaringan internet, maka salah satu cara adalah dengan membangun gateway WSN yang mampu menjembatani perbedaan protokol yang ada pada WSN dan jaringan internet. Cara tersebut adalah cara yang ditempuh dalam penelitian ini karena lebih mudah dilakukan dibandingkan dengan cara yang lain seperti sudah dijelaskan pada Bab Tinjauan Pustaka.

Sementara itu, jaringan WiFi sebagai jaringan lokal nirkabel yang digunakan untuk komunikasi data dalam suatu area lokal dan sudah tersebar di berbagai tempat. Lokal yang dimaksud disini adalah area yang tidak terlalu luas yaitu dengan radius sekitar 20m atau dalam sebuah gedung. Untuk membangun jaringan lokal menggunakan WiFi, perangkat utama yang digunakan adalah Access Point (AP). AP adalah piranti yang akan menjadi koordinator dalam jaringan lokal jika diinginkan topologi bintang (star) seperti diilustrasikan pada Gambar 2.3.

Gambar 2.3 memberi ilustrasi sebuah jaringan WiFi yang terdiri dari tiga buah komputer dan satu buah AP yang terhubung ke jaringan internet. Dengan konfigura-

Gambar 2.2: Contoh sebuah simpul sensor IQRF.

Gambar 2.3: Jaringan bintang menggunakan WiFi.

si tersebut, semua komputer yang ada di dalam jaringan WiFi dapat berkomunikasi dengan internet dengan aturan yang ditentukan oleh AP.

Jika dilihat lebih dalam lagi, AP ini sebenarnya adalah piranti tertanam (embedded device) yang didalamnya sudah terdapat pusat pengolahan utama, memory, dan penyimpanan (storage). Dengan kenyataan inilah maka AP mempunyai potensi untuk menjagi gateway bagi jaringan WiFi dan WSN ke jaringan internet. Untuk mengembangkan aplikasi yang akan ditanamkan ke dalam AP, maka diperlukan sistem operasi yang sesuai untuk AP.

2.2.2 **IQRF**

IQRF adalah teknologi komunikasi nirkabel berbasis paket melalui frekuensi radio dalam pita frekuensi sub-GHz. Teknologi ini dimaksudkan untuk penggunaan umum saat konektivitas nirkabel dibutuhkan, entah *point to point* atau jaringan yang kompleks. fungsionalitas lengkapnya bergantung semata-mata pada aplikasi berbahasa C yang ditulis oleh pengguna.

Peranti kominikasi dasar dari IQRF adalah sebuah modul pancar-rima terma-

suk unit mikrokontroler dengan sistem operasi tertanam yang mengimplementasikan lapisan *link* dan lapisan jaringan yang mendukung jaringan jala (*mesh*) dengan protokol IQMESH. Tidak ada tingkat komunikasi yang lebih tinggi seperti lapisan *transport* yang termasuk kedalam teknologi ini.

Fitur-fitur yang dimiliki antara lain:

- Kecepatan, daya, dan ukuran data yang rendah,
- RF yang berbasis paket data, maksimal 128 Byte per paket,
- pita frekuensi sub-GHz (868 MHz, 916 MHz, dst.), *multichannel*, dan modulasi FSK,
- bit rate 1.2 kb/s âĂŞ 86.2 kb/s,
- daya keluaran maksimal 20 mW,
- maksimal 65.000 peranti dalam satu jaringan,
- konsumsi daya yang rendah: 380 nA saat standby, 25 ÂţA saat menerima.

2.2.3 XBee

XBee adalah sebuah merk dari Digi International untuk keluarga modul radio. XBee pertama diperkenalkan dalam merk MaxStream pada tahun 2005 yang berdasarkan pada standar IEEE 802.15.4-2003 untuk *point to point* dan komunikasi bintang dalam *baud rate* 250 kbit/s.

Gambar 2.4: Sepasang peranti XBee.

Pada awalnya diperkenalkan dua model, yaitu 1mW XBee dan 100mW XBee-PRO. Sejak pertama kali diperkenalkan, beberapa buah XBee baru juga diperkenalkan

dan semua XBee sekarang dipasarkan dengan merk Digi. Contoh peranti XBee dapat dilihat pada Gambar 2.4.

2.2.4 TCP/IP

Protokol internet adalah kumpulan protokol-protokol komunikasi yang digunakan dalam internet dan jaringan komputer sejenis, dan umumnya merupakan protokol yang paling populer untuk WAN. Pada umumnya hal ini dikenal dengan TCP/IP, karena protokol utamanya merupakan protokol jaringan pertama yang terstandarisasi. Terkadang hal ini dikenal dengan model DoD karena pengaruh ARPANET pada dekade 1970an.

TCP/IP menyediakan konektivitas antar ujung yang menspesifikasikan bagaimana data harus diformat, dialamatkan, ditransmisikan, dirutekan, dan diterima di tujuan. TCP/IP memiliki empat layer abstraksi yang digunakan untuk mengurutkan semua protokol internet menurut jangkauan jaringan yang terlibat. Dari terendah sampai tertinggi, lapisan-lapisan tersebut adalah layer link, layer internet, layer transport, dan layer aplikasi.

2.2.5 Access Point

Access Point, disingkat AP, atau juga dikenal dengan istilah Wireless Access Point adalah sebuah peranti yang memungkinkan peranti-peranti nirkabel untuk terkoneksi dengan jaringan kabel menggunakan Wi-Fi atau standar lain. AP biasanya terkoneksi dengan sebuah router (melalui jaringan kabel) sebagai peranti yang berdiri sendiri, namun juga dapat menjadi bagian dalam komponen router tersebut.

Penggunaan secara korporat melibatkan beberapa AP ke dalam jaringan kabel dan menyediakan akses nirkabel ke LAN kantor. AP diatur dengan WLAN *Controller* yang menangani pengaturan daya RF, kanal-kanal, autentikasi, dan keamanan.

Sebuah *hotspot* adalah aplikasi dari satu atau beberapa AP, di mana peranti dapat terhubung ke Internet dengan mudah. Konsep ini sudah menjadi hal yang umum di beberapa kota besar, di mana kombinasi dari warung kopi, perpustakaan, dan AP milik pribadi memungkinkan klien untuk terkoneksi dengan Internet. Koleksi dari *hotspot* yang terkoneksi dapat disebut sebagai sebuah jaringan *lili pad*.

2.2.6 Web Server

Web server dapat mengacu pada perangkat keras atau perangkat lunak yang membantu dalam penyampaian konten web yang dapat diakses melalui internet.

Penggunaan web server yang paling umum adalah sebagai host untuk halaman web, walaupun ada beberapa penggunaan lain seperti game, media penyimpan data, atau penjalanan aplikasi perusahaan.

2.2.7 A.JAX

AJAX adalah kelompok dari teknik-teknik pengembangan web yang digunakan pada klien untuk membuat aplikasi asinkron. Dengan AJAX, aplikasi web dapat mengirim dan menerima data dari sebuah server secara asinkron tanpa mengganggu tampilan dari halaman yang ada. Data dapat diambil menggunakan obyek XMLHttp-Request. Penggunaan XML tidak diperlukan, malahan JSON lebih sering digunakan, dan rekues tidak harus asinkron.

AJAX bukanlah sebuah teknologi, tapi kelompok dari teknologi-teknologi. HTML dan CSS dapat digunakan dalam kombinasi untuk mark up dan informasi tampilan. DOM diakses oleh JavaScript untuk menampilkan dan mengijinkan pengguna untuk berinteraksi dengan informasi tertampil. JavaScript dan obyek XMLHttpRequest menyediakan sebuah metode untuk pertukaran data secara asinkron antara browser dan server untuk menghindari muat ulang halaman secara keseluruhan.

2.2.8 OpenWRT

OpenWRT adalah sebuah sistem operasi untuk *embedded device* yang berbasis pada Linux kernel. OpenWRT pada umumnya digunakan dalam routing *network traffic*. Komponen-komponen utamanya adalah Linux kernel, util-linux, uClibc dan BusyBox. Semua komponen sudah dioptimalkan dan dimampatkan untuk bisa muat dalam *router* rumahan yang memiliki keterbatasan media penyimpan dan memori. OpenWRT dapat dikonfigurasikan melalui antarmuka *command-line* (*ash shell*), seperti dapat dilihat pada Gambar 2.5, atau dengan antarmuka Web (LuCI). Terdapat kurang lebih 3.500 paket-paket perangkat lunak tambahan yang tersedia untuk diinstal melalui sistem manajemen paket *opkg*.

OpenWRT dapat berjalan pada router CPE (*Customer Premised Equipment*), gateway residensial, komputer saku (seperti Ben NanoNote), dan komputer jinjing. OpenWRT juga dapat berjalan pada komputer konvensional atau komputer dengan

Gambar 2.5: Tampilan antarmuka *command-line* OpenWRT versi *BackFire*.

arsitektur x86. Banyak *patch* dari kode sesumber berbasis OpenWRT yang diubah kedalam Linux kernel utama.

2.2.9 SSHFS

SSHFS (SSH Filesystem) adalah sebuah klien *filesystem* untuk *mount* dan berinteraksi dengan direktori dan arsip yang berlokasi pada server atau *workstation*. Klien berinteraksi dengan server dengan SSH *File Transfer Protocol* (SFTP), sebuah protokol jaringan yang menyediakan akses ke arsip, transfer arsip, dan fungsionalitas manajemen arsip melalui aliran data yang didesain sebagai ekstensi dari protokol SSH versi 2.0.

2.2.10 Bootstrap

Bootstrap adalah koleksi gratis dari alat-alat untuk membuat situs web dan aplikasi berbasis web. Bootstrap terdiri dari HTML dan contoh desain berbasis CSS untuk tipografi, borang, tombol, navigasi, komponen antarmuka lain, dan juga ekstensi JavaScript yang bersifat opsional.

Bootstrap merupakan proyek paling populer pada GitHub, dan sudah digunakan oleh, diantaranya, NASA dan MSNBC.

BAB III

METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Perangkat Keras

- a. Kit pancar-rima IQRF TR-53B (3 unit),
- b. Kit pengunduh program CK-USB-04 (1 unit),
- c. Kit pengembangan DK-EVAL-03 (2 unit),
- d. Kit pengembangan CK-EVAL-04 (1 unit),
- e. XBee 802.15.4 Radios (Series 1) (3 unit),
- f. XBee Explorer USB Board (1 unit),
- g. 2 channel Relay Shield For Arduino (With XBee/BTBee interface) (2 unit),
- h. Arduino Uno (2 unit),
- i. TP-LINK MR3020 (1 unit),
- j. Kabel USB ke Serial Prolific (1 unit).

3.1.2 Perangkat Lunak

- a. Arduino for Mac OSX,
- b. CoolTerm.
- c. Driver FTDI for Mac OSX,
- d. PHP, MySQL, dan uHTTPd,
- e. Python dan pustaka PySerial,
- f. IQRF IDE v 2.08 for TR-53B,
- g. SSHFS,
- h. Sublime Text 3.

3.2 Alur Penelitian

3.2.1 Pra Penelitian

Sebelum penelitian dimulai, dilakukan studi literatur terkait dengan sistem yang akan dibangun. Selain itu, analisis kebutuhan juga dirancang pada tahap ini. Setelah semua selesai, dilajutkan dengan penulisan proposal penelitian.

3.2.2 Pengembangan Aplikasi

Ada tiga aplikasi yang akan dibangun, yaitu aplikasi berbasis bahasa C untuk masing sensor-sensor IQRF dan Arduino Uno, aplikasi berbasis web yang nantinya akan berinteraksi langsung dengan pengguna, dan aplikasi berbasis bahasa Python untuk mengomunikasikan sensor-sensor dengan aplikasi berbasis web.

Aplikasi untuk sensor-sensor IQRF terdiri dari dua bagian, yaitu aplikasi untuk sensor koordinator dan sensor simpul. Namun demikian, aplikasi sama-sama ditulis dan kembangkan menggunakan Sublime Text 3. Setelah kode sesumber untuk aplikasi selesai dibuat, kode sesumber dikompiliasi menggunakan IDE IQRF untuk kemudian diunggah ke sensor menggunakan bantuan aplikasi yang sama. Aplikasi yang dikembangkan adalah hasil fork dari iHome, aplikasi rumah hijau yang dikembangkan oleh Wibowo, et. al.

Sedangkan aplikasi untuk Arduino Uno, yang bertugas menyala-matikan relay dengan komunikasi berbasis ZigBee, dikembangkan dengan aplikasi Arduino for Mac OSX dengan bahasa pemrograman C. Proses kompilasi dan pengunggahan dilakukan dengan bantuan aplikasi yang sama.

Aplikasi web dikembangkan dengan bahasa PHP pada server (terletak pada AP) dan JavaScript pada klien. Halaman yang tertampil pada web browser disusun menggunakan HTML5 dan CSS3 dengan bantuan pustaka Bootstrap agar halaman dapat bersifat responsif, yaitu dapat menyesuaikan tampilan sesuai ukuran layar web browser. AJAX diterapkan dalam pengembangan agar halaman web yang ditampilkan bersifat dinamis.

Aplikasi berbasis bahasa Python dikembangkan dengan bantuan pustaka PySerial. Pustaka ini diperlukan agar Python dapat berkomunikasi dengan *port* serial, yaitu antar muka untuk berkomunikasi dengan sensor. Kode sesumber ditulis menggunakan Sublime Text 3.

3.2.3 Evaluasi dan Perbaikan

Evaluasi dilakukan dengan melakukan simulasi dalam skala laboratorium. Simulasi yang diujikan mencakup semua fitur yang dimiliki oleh aplikasi untuk memastikan bahwa aplikasi dapat berjalan dengan semestinya. Kemudian Perbaikan dilakukan dengan bantuan SSHFS agar AP dapat mengakses direktori yang tersimpan pada komputer karena *coding* tidak dilakukan pada AP itu sendiri, melainkan komputer.

3.2.4 Pasca Penelitian

Setelah penelitian selesai dilakukan dan aplikasi siap untuk diimplementasikan, naskah skripsi dan makalah skripsi ditulis sebagai manifesto penelitian.

3.2.5 Diagram Alir Penelitian

Gambar 3.1: Diagram alir penelitian.

3.3 Tahapan Pelaksanaan

Rancangan arsitektur yang akan digunakan pada penelitian ini diilustrasikan seperti pada Gambar 3.2. Pada gambar tersebut diilustrasikan sebuah sistem yang terdiri atas dua buah WSN dengan protokol yang berbeda dan satu buah jaringan nirkabel lokal (WiFi). Protokol WSN yang akan digunakan dalam penelitian ini adalah dari IQRF dan ZigBee. Pelaksanaan penelitian ini akan dibagi menjadi tiga paket pekerjaan (Work Package, WP).

WP 1: Perancangan Perangkat Lunak

Pada tahap ini akan dilakukan studi literatur yang dititikberatkan pada sistem operasi (Operating System, OS) untuk piranti tertanam (embedded device). Langkah selanjutnya adalah rerancangan perangkat lunak yang akan ditanamkan pada Access Point (AP). Perangkat lunak yang akan ditanamkan harus bekerja secara efisien karena kemampuan komputasi yang terbatas pada AP.

Gambar 3.2: Arsitektur WSN dan WiFi dengan sebuah AP.

WP 2: Implementasi Perangkat Lunak

Implementasi perangkat lunak dilakukan pada tahap ini. Langkah pertama yang dilakukan adalah memastikan bahwa WSN dapat terhubungan dengan internet sesuai dengan yang direncanakan. Langkah selanjutnya adalah memastikan bahwa jaringan WiFi tidak mengalami gangguan setelah perangkat lunak yang baru tertanam pada AP. Penambahan layanan-layanan yang diperlukan dapat pula dilakukan pada tahap ini.

WP 3: Integrasi dan Pengujian Seluruh Sistem

Jika jaringan WiFi dan dua protokol WSN masing-masing dapat berhubungan dengan internet, maka pada tahap ini akan dilakukan pengujian sistem secara keseluruhan. Pengujian dinaikkan dari skala lab menjadi skala *test-bed*. Pengujian dalam *test-bed* dilakukan untuk menjamin bahwa sistem yang dikembangkan bekerja sesuai dengan yang direncanakan.

3.4 Jadwal Kegiatan

Penelitian direncanakan akan dilaksanakan selama enam bulan. Rincian rencana jadwal penelitian dicantumkan dalam Tabel 3.1.

Tabel 3.1: Jadwal Penelitian.

No	Keterangan	Bulan												
110		1	2	3	4	5	6							
1	Studi literatur													
2	Desain													
3	Pembelian bahan													
4	Pembuatan prototipe													
5	Uji coba dan perbaikan													
6	Penulisan skripsi													

BAB IV

HASIL DAN PEMBAHASAN

Sitemap Architecti

Architecture diagram

Flowchart program

usecase

fitur aplikasi

problem and solution, pyserial

sdlc

konfigurasi router

screenshot

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1. Kondisi jaringan wireless UGM-Hotspot pada kondisi awal memiliki coverage yang baik (diatas -70dbm) rata-rata setiap lantai sebesar 45,30% dari keseluruhan luas gedung.
- 2. Penambahan access point dapat menambah coverage sinyal baik (diatas 70dbm) dari jaringan wireless UGM-Hotspot di gedung JTETI dengan rata-rata setiap lantai sebesar 26,33% sehingga area coverage sinyal baik rata-rata setelah penambahan access point baru menjadi 71,63%.
- 3. Semakin dekat titik dengan access point throughput yang didapatkan akan semakin besar, namun throughput tetap dapat berubah bergantung jumlah user yang ada.
- 4. Maksimal throughput yang didapat pada sinyal lemah hanya mencapai 64,81% dari maksimal bandwidth perangkat wireless sediakan.
- 5. Throughput pada daerah yang dilakukan penelitian seluruhnya mengalami penambahan nilai throughput hingga mendekati maksimal bandwidth yaitu 92,59% setelah dilakukan penambahan access point.

5.2 Saran

- 1. Kondisi jaringan wireless UGM-Hotspot pada kondisi awal memiliki coverage yang baik (diatas -70dbm) rata-rata setiap lantai sebesar 45,30% dari keseluruhan luas gedung.
- 2. Penambahan access point dapat menambah coverage sinyal baik (diatas 70dbm) dari jaringan wireless UGM-Hotspot di gedung JTETI dengan rata-rata setiap lantai sebesar 26,33% sehingga area coverage sinyal baik rata-rata setelah penambahan access point baru menjadi 71,63%.

- 3. Semakin dekat titik dengan access point throughput yang didapatkan akan semakin besar, namun throughput tetap dapat berubah bergantung jumlah user yang ada.
- 4. Maksimal throughput yang didapat pada sinyal lemah hanya mencapai 64,81% dari maksimal bandwidth perangkat wireless sediakan.
- 5. Throughput pada daerah yang dilakukan penelitian seluruhnya mengalami penambahan nilai throughput hingga mendekati maksimal bandwidth yaitu 92,59% setelah dilakukan penambahan access point.

DAFTAR PUSTAKA

- Spinar, R., dkk, "Demo Abstract: Efficient Building Management with IP- based Wireless Sensor Network", , 6th European Conference on Wireless Sensor Networks. Cork, Ireland 11-13 February 2009.
- Adam Dunkels, Thiemo Voigt, Niclas Bergman, dan Mats Jonsson "The Design and Implementation of an IP-based Sensor Network for Intrusion Monitoring", Swedish National Computer Networking Workshop, Sweden, 2004.
- Sigit B. Wibowo, dan Widyawan, "Wireless Sensor Network and Internet Protocol Integration with COTS", 2013 AUN/SEED-Net Regional Conference in Electrical and Electronics Engineering, Bangkok, Thailand, 2013.
- Dokumen online, http://www.iqrf.org/, IQRF, diakses pada Maret 2013
- Widyawan, Sigit B. Wibowo, dkk, "iHome: Low-Cost Domotic for Residential Houses", 5th AUN/SEED-Net Regional Conference on Information and Communications Technology (RCICT), Manila, Filipina, 2012.
- Dokumen online, https://openwrt.org/, diakses pada Maret 2013
- Dokumen online, http://www.digi.com/technology/rf-articles/wireless-zigbe, diakses pada Maret 2013.