0.1 Partitionnement par blocs

Définition 0.1.

Les sous matrices permettent un partitionnement par blocs. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on peut écrire A sous la forme:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} \\ \vdots & \ddots & \vdots \\ A_{r,1} & \cdots & A_{r,m} \end{pmatrix}$$

où pour chaque $i \in \{1, \dots r\}$, les matrice A_{ik} ont le même nombre de lignes pour tout $k \in \{1, \dots r\}$, et où pour chaque $j \in \{1, \dots, m\}$, les matrices A_{kj} ont le même nombre de colonnes pour tout $k \in \{1, \dots r\}$.

Définition 0.2.

On peut faire un **produit par blocs**.

Soit

$$A = \left(\begin{array}{c|c} A_{1,1} & \cdots & A_{1,m} \\ \vdots & \ddots & \vdots \\ \hline A_{r,1} & \cdots & A_{r,m} \end{array}\right) \in \mathcal{M}_{n,p}(\mathbb{K})$$

et

$$B = \begin{pmatrix} B_{1,1} & \cdots & B_{1,s} \\ \vdots & \ddots & \vdots \\ B_{m,1} & \cdots & B_{m,s} \end{pmatrix} \in \mathcal{M}_{p,q}(\mathbb{K})$$

Avec le nombre de colonnes de $A_{i,k}$ égal au nombre de lignes de $B_{k,j}$ pour tout $i \in \{1, \dots, r\}, j \in \{1, \dots, s\}, k \in \{1, \dots, m\}$ Alors

$$AB = \left(\frac{\sum_{k=1}^{m} A_{1,k} B_{k,1} | \cdots | \sum_{k=1}^{m} A_{1,k} B_{k,s}}{\vdots | \vdots | \vdots | \vdots | \vdots} \right)$$

$$\frac{\sum_{k=1}^{m} A_{r,k} B_{k,1} | \cdots | \sum_{k=1}^{m} A_{r,k} B_{k,s}}{\sum_{k=1}^{m} A_{r,k} B_{k,s}}$$

Remarque 0.1. Avec $A \in \mathcal{M}_{n,p}(\mathbb{K})$ partitionnée par lignes et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ partitionnée par colonnes, alors on a:

 $r = n, m = 1 \text{ et } s = q. \text{ ainsi } AB = (c_{i,j}) \text{ avec } c_{i,j} = A_{i,1}B_{1,j} = l_i(A)c_j(B)$ pour $i \in \{1, \dots, n\} \text{ et } j \in \{1, \dots, q\}.$

0.2 Inverse et puissance

Définition 0.3.

Soit $A \in \mathcal{M}_n(\mathbb{K})$, on note $A^0 = Id_n$ et pour $k \in \mathbb{N}^*$, A^k est défini par récurrence par : $A^k = AA^{k-1}$

Propriétés 0.1

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $k \in \mathbb{N}^*$, alors $A^k = A \times A \times \cdots \times A$ (k fois).

Définition 0.4.

Soit $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = BA = Id_n$. On note $\mathcal{GL}_n(\mathbb{K})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Remarque 0.2. La notation \mathcal{GL} veut dire "Groupe Linéaire" et provient du fait que l'ensemble des matrices inversibles muni de la multiplication des matrices est un groupe.

Proposition 0.1

Soit $A \in \mathcal{M}_n(\mathbb{K})$, si A est inversible, il existe une unique matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = BA = Id_n$. Cette matrice s'appelle l'inverse de A et est notée A^{-1} .

Démonstration 0.1.

S'il existe deux matrices B et B' telles que $AB = BA = Id_n = AB' = B'A$ alors $B' = B'Id_n = B'(AB) = (B'A)B = Id_nB = B$

Proposition 0.2

Soit $A \in \mathcal{M}_n(\mathbb{K})$, s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = Id_n$, alors A est inversible et $B = A^{-1}$. Il suffit donc de vérifier le produit d'un seul coté.

Proposition 0.3

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$, si AB est inversible alors $(AB)^{-1} = B^{-1}A^{-1}$.

Démonstration 0.2.

 $(AB)(B^{-1}A^{-1}) = A(BB^{-1}A^{-1}) = AId_nA^{-1} = AA^{-1} = Id_n$

Proposition 0.4

Soit $A\in\mathcal{M}_n(\mathbb{K}), B\in\mathcal{M}_{n,p}(\mathbb{K})$ possède une unique solution $X=A^{-1}B$

Démonstration 0.3.

$$AX = B \implies A^{-1}(AX) = A^{-1}B \implies (A^{-1}A)X = A^{-1}B \implies X = A^{-1}B$$

et réciproquement $X = A^{-1}B \implies A(A^{-1}B) = B \implies (AA^{-1})B = B$

0.3 Système linéaire

Définition 0.5.

Soit $n, p \in \mathbb{N}^*$. Un système linéaire de n équations linéaire à p inconnues (à coefficients dans \mathbb{K}) s'écrit:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p = b_n \end{cases}$$

Les coefficients $a_{i,j}$ et b_i pour $i \in \{1, \dots, n\}$ et $j \in \{1, \dots, p\}$ sont des éléments de \mathbb{K} . Les coefficients x_1, \dots, x_p sont les inconnues du système. On appelle solution du système linéaire tout p-uplet $(x_1, \dots, x_p) \in \mathbb{K}^p$ tel que les équations du système sont vérifiées. (b_1, \dots, b_n) s'appelle le second membre du système linéaire. On note S(L1) l'ensemble des solutions du système linéaire L1. Lorsque $b_i = 0$ pour tout $i \in \{1, \dots, n\}$, le système linéaire est dit homogène.

Définition 0.6.

On appelle matrice augmentée la matrice

$$(A|B) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} & b_n \end{pmatrix} \in \mathcal{M}_{n,p+1}(\mathbb{K})$$

Définition 0.7.

Un système linéaire de n équations à n équations est régulier ou de Cramer, s'il possède une unique solution. Un système linéaire de n équations linéaires à p inconnues est dit compatible quand il a au moins une solution.

Définition 0.8.

Deux système linéaire (L1) et (L2) à p inconnues x_1, \dots, x_p sont équivalents si S(L1) = S(L2).

Définition 0.9.

Soit $n, p \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $\alpha, \lambda \in \mathbb{K}, \alpha \neq 0$

- 1. Notons A' la matrice obtenue à partir de A en multipliant par la α la qième ligne de A, $q \in \{1, \dots, n\}$. Les autres lignes restant inchangées.
- 2. Notons A" (resp A"') la matrice obtenue à partir de A en échangeant les lignes q et k de A (resp. en ajotant à la qième ligne de A le produit de λ de la kième ligne de A). q, k ∈ {1, ···, n}, q ≠ k, n ≥ 2, les autres lignes restant inchangées. On dit que les matrices A', A", A"' se déduisent de A par opération élémentaire sur les lignes.