

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Algebra, Identities - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Boolean Algebra, Identities - 2

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Boolean Algebras, Identities
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Bubbled Input Gates
- Multi Input Gates
- Boolean Algebra
- Boolean Identities

BOOLEAN ALGEBRA, IDENTITIES - 2 How to Represent Boolean Functions?

- Truth tables, combinational logic circuits and Boolean formulas are just different ways of representing Boolean functions
- The same Boolean function can be expressed in any of the three ways, depending on the situation
- There exist multiple Boolean formulas / logic circuits for each Boolean function but only one truth table
 - Ex: $a\overline{b} + \overline{a}b$ and $(a+b)(\overline{a}+\overline{b})$ represent the same Boolean function

How to Represent Boolean Functions?

- Truth tables, combinational logic circuits and Boolean formulas are just different ways of representing Boolean functions
- The same Boolean function can be expressed in any of the three ways, depending on the situation
- There exist multiple Boolean formulas / logic circuits for each Boolean function but only one truth table
 - Ex: $a\overline{b} + \overline{a}b$ and $(a+b)(\overline{a}+\overline{b})$ represent the same Boolean function

Example

The three representations below are different ways of specifying the same Boolean function:

BOOLEAN ALGEBRA, IDENTITIES - 2 Logic Gates with Inverted Inputs

BOOLEAN ALGEBRA, IDENTITIES - 2 Logic Gates with Inverted Inputs

Bubble

If a logic gates has a NOT gate on an input, the NOT gate can be replaced by a **bubble** on that input

Logic Gates with Inverted Inputs

Bubble

If a logic gates has a NOT gate on an input, the NOT gate can be replaced by a **bubble** on that input

Logic Gates with Inverted Inputs

Bubble

If a logic gates has a NOT gate on an input, the NOT gate can be replaced by a **bubble** on that input

Bubbled AND Example

Using Boolean Formulas

- Multiple Boolean formulas can represent the same Boolean function
- Consider the following two Boolean formulas:
 - ightharpoonup $a\overline{b} + \overline{a}b$
 - $(a+b)(\overline{a}+\overline{b})$
- Do they represent the same Boolean function?
- What is the smallest Boolean formula for a given Boolean function?
- To answer above questions, we need Boolean Algebra

BOOLEAN ALGEBRA, IDENTITIES - 2 What is Boolean Algebra?

Algebra

In mathematics, an Algebra is composed of four things: a set of elements, operations on those elements, identity elements and laws/identities

BOOLEAN ALGEBRA, IDENTITIES - 2 What is Boolean Algebra?

Algebra

In mathematics, an Algebra is composed of four things: a set of elements, operations on those elements, identity elements and laws/identities

Standard Algebra

- Set Real numbers
- Operations Add, subtract, multiply, divide
- Identity elements 0 (for add), 1 (for multiply)
- Laws/Identities Commutative, associative, distributive, . . .

What is Boolean Algebra?

Algebra

In mathematics, an Algebra is composed of four things: a set of elements, operations on those elements, identity elements and laws/identities

Standard Algebra

- Set Real numbers
- Operations Add, subtract, multiply, divide
- Identity elements 0 (for add), 1 (for multiply)
- Laws/Identities Commutative, associative, distributive, . . .

Boolean Algebra

- **O** Set $\{0, 1\}$
- Operations AND, OR, NOT
- Identity elements 0 (for AND), 1 (for OR)
- Laws/Identities Commutative, associative, distributive, . . .

Boolean Identities / Laws

Name	Law	Dual Law
Commutative	$a \cdot b = b \cdot a$	a+b=b+a
Associative	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	(a+b)+c=a+(b+c)
Distributive	$a \cdot (b+c) = a \cdot b + a \cdot c$	$a+(b\cdot c)=(a+b)\cdot (a+c)$
DeMorgan's	$\overline{(a+b)}=\overline{a}\cdot\overline{b}$	$\overline{(a\cdot b)}=\overline{a}+\overline{b}$

Principle of Duality

Bool equation remains true if + and \cdot are exchanged, and also 0 and 1 are exchanged

Boolean Identities / Laws

Name	Law	Dual Law
Idempotency	$a \cdot a = a$	a + a = a
Identity	$a \cdot 1 = a$	a + 0 = a
Boundedness	$a \cdot 0 = 0$	a + 1 = 1
Complement	$a \cdot \overline{a} = 0$	$a+\overline{a}=1$
Absorption	$a + a \cdot b = a$	$a \cdot (a+b) = a$
Involution	$\overline{\overline{\overline{a}}}=a$	
Useful Identity	$a + \overline{a} \cdot b = a + b$	$a\cdot(\overline{a}+b)=a\cdot b$

Boolean Identities / Laws

Name	Law	Dual Law
Idempotency	$a \cdot a = a$	a + a = a
Identity	$a \cdot 1 = a$	a + 0 = a
Boundedness	$a \cdot 0 = 0$	a + 1 = 1
Complement	$a \cdot \overline{a} = 0$	$a+\overline{a}=1$
Absorption	$a + a \cdot b = a$	$a \cdot (a+b) = a$
Involution	$\overline{\overline{a}}=a$	
Useful Identity	$a + \overline{a} \cdot b = a + b$	$a \cdot (\overline{a} + b) = a \cdot b$

Boolean identities will be used for proving Boolean formula equivalence and logic minimization

Gates with Multiple Inputs

- In subsequent logic circuits, there will be gates such as: 2
- What Boolean function (if any) does the three input OR gate represent?
- Based on Boolean formula syntax rules, OR function can be applied to three inputs in three ways:
 - ▶ a + (b + c)
 - b+(c+a)
 - ► c + (a + b)
- But according to the associative law of Boolean algebra, all three Boolean formulas are equal
- So we can drop the brackets and simply write:

$$a + (b + c) = b + (c + a) = c + (a + b) = a + b + c$$

- The three input OR gate shown corresponds to the above Boolean formula
- In this manner one obtains multiple input AND, OR and XOR gates

Think About It

Think About It

- Consider the following two Boolean formulas:
 - ightharpoonup $a\overline{b} + \overline{a}b$
 - $(a+b)(\overline{a}+\overline{b})$

Think About It

- Consider the following two Boolean formulas:
 - ightharpoonup $a\overline{b} + \overline{a}b$
 - $ightharpoonup (a+b)(\overline{a}+\overline{b})$
- Use the Boolean identities to prove (or disprove) that the above two formulas are equivalent (represent the same Boolean functions)

Think About It

- Consider the following two Boolean formulas:
 - $ightharpoonup a\overline{b} + \overline{a}b$
 - $ightharpoonup (a+b)(\overline{a}+\overline{b})$
- Use the Boolean identities to prove (or disprove) that the above two formulas are equivalent (represent the same Boolean functions)
- Consider the combinational logic circuits below:

Above logic circuits represent LHS and RHS of which Boolean identity?