Bases Numéricas e Conversões de Bases

□O sinal analógico varia continuamente ao longo de uma faixa de valores proporcionalmente em relação a outra variável temporal.

□ Ex:

- a) O velocímetro de um carro marca a velocidade de <u>50km/h</u> quando é aplicada uma tensão em seus terminais de <u>5,0V</u> e
- b) o velocímetro marca <u>73km/h</u> quando é aplicada uma tensão de <u>7,3V</u> em seus terminais.

- □ Circuitos analógicos utilizam no seu funcionamento grandezas continuamente variáveis.
- □ Circuito Analógico = Variáveis contínua variação do tempo

☐ Sistemas analógicos consistem, basicamente, na representação de grandezas estimuladas pela recepção de sinais em forma de ondas.

☐ Sinal Analógica = contínuo

☐ Sistemas analógicos consistem, basicamente, na representação de grandezas estimuladas pela recepção de sinais em forma de ondas.

CIRCUITOS DIGITAIS

- □O sinal digital varia discretamente (passo a passo).
- ■Não existe variação contínua, mas em degraus, em saltos ao decorrer do tempo.
- □ Ex: Mostrador de um relógio digital.

Aula01: Algoritmos - Bases Númericas

CIRCUITOS DIGITAIS

- ■Nos sistema digitais o sinal é feito por pulsos que geram um gráfico com formatos retangulares em períodos,
- □Circuito Digital = Variáveis fixas em períodos de tempo
- ☐ Sinal digital = Sinal discreta (passo a passo)

COMPARAÇÃO ENTRE CIRCUITOS ANALOGICOS E DIGITAIS

- □ Outro exemplo, seria você estar **subindo** uma **rampa ou escada**.
- □ <u>Subindo uma rampa</u>, você está a cada instante em movimento para cima. (<u>Sistema Analógico</u>)
- □ Já na <u>escada</u> não, você, em cada instante está em um degrau. (Sistema Digital)
- □ circuito analógico tem suas variáveis em contínua (variação no tempo), e
- circuito digital possui suas variáveis fixas em períodos de tempo

SISTEMAS DE NUMERAÇÃO

- a) Todos nós, quando ouvimos pronunciar a palavra números, automaticamente a associamos ao sistema decimal com o qual estamos acostumados a operar.
- b) Este sistema está fundamentado em certas regras que são base para qualquer outro.
- c) Vamos, portanto, estudar estas regras e aplicá-las aos sistemas de numeração
 - c.1) binária, c.2) octal e c.3) hexadecimal.

SISTEMAS DE NUMERAÇÃO

- a) Estes sistemas são utilizados em Computadores digitais, circuitos lógicos em geral e no processamento de informações dos mais variados tipos.
- b) O número decimal 573 pode ser também representado da seguinte forma:

$$573 = 500 + 70 + 3$$
ou
$$573 = 5 \times 10^{2} + 7 \times 10^{1} + 3 \times 10^{0}$$

Bit	b	2 estados:	
		0 e 1	
Byte	В	8 bits	
Quilobyte	KB	1.024 bytes	$2^{10} = \sim 1.024$
Megabyte	МВ	1.024 Kb	$2^{20} = \sim 1.048.576$
Gigabyte	GB	1.024 Mb	$2^{30} = \sim 1.073.741.824$
Terabyte	ТВ	1.024 Gb	2 ⁴⁰ = ~1.099.511.627.776

Notação Posicional

A notação posicional determina o valor de um número em função da posição e do valor de cada algarismo dentro do número

Base Decimal (10)

✓ Algarimos que variam entre 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9

✓ Exemplo 01: 1 3 0 3₍₁₀₎

$$3 \times 10^{\circ} = 3 \times 1 = 3$$

$$0 \times 10^{1} = 0 \times 10 = 0$$

$$3 \times 10^2 = 3 \times 100 = 300$$

$$1 \times 10^3 = 1 \times 1000 = 1000$$

Exemplo 02:7986 (10)

$$7986 = 7x10^3 + 9x10^2 + 8x10^1 + 6x10^0$$

Notação Posicional

Genericamente, um sistema qualquer de numeração posicional é expresso por:

$$N = (d_0 n_{-1}) d_0 n_{-2} d_0 n_{-3} \dots d_1 d_0)b$$

onde:

- √ d algarismo dentro do número
- ✓ n-1, n-2, ..., 1, 0 indicam a posição de cada algarismo
- √ b indica a base de numeração
- √ n indica o número de dígitos inteiros

Notação Posicional

O valor do número pode ser obtido por:

$$N = dn_{-1} x b^{n-1} + dn_{-2} x b^{n-2} + ... + d_1 x b^1 + d_0 x b^0$$

Assim, o número 3748 na base 10 pode ser expresso por:

$$3000 + 700 + 40 + 8$$

Representação da Informação

- ☐ Humanos: Sistema Decimal.
- □ Computadores: sistema binário.
- □Sistema binário, bit, byte,
- □ O computador (máquina eletrônica), só consegue processar 2 informações:
 - √ a presença (1 = ligado) ou
 - √ a <u>ausência</u> (0 = desligado) de energia.
- □ Os dígitos 0 e 1 são os únicos elementos do sistema de numeração de base 2 (sistema binário).

Representação da Informação

□BIT (<u>BI</u>nary digi<u>T</u>)

O bit (dígito binário) é utilizado para representar todos os tipos de caracteres usados pelos computadores.

Números com Sinal e Números sem Sinal

- **□** Base 10:
 - $-2543_{(10)}=2\times10^3+5\times10^2+4\times10^1+3\times10_{(10)}^0$
- **☐** Base 2:
 - $-1011_{(2)}=1\times2^3+0\times2^2+1\times2^1+1\times2^0=11_{(10)}$
- ☐ Representação no Z80 (8 bits)

00001011

Bit Mais Significativo (MSB)

Bit Menos Significativo (LSB)

Faixa de números sem sinal para 8 bits: 0 a 256-1=255

- $0000\ 0000_{(2)} = 0_{(10)}$
- $0000\ 0001_{(2)} = 1_{(10)}$
- $0000\ 0010_{(2)} = 2_{(10)}$
- •
- 1111 1100₍₂₎ = $252_{(10)}$
- 1111 1101₍₂₎ = $253_{(10)}$
- 1111 1110₍₂₎ = $254_{(10)}$
- 1111 1111₍₂₎ = $255_{(10)}$

QTDE. DE CARACTERES

Caracteres alfabéticos maiúsculos	26
Caracteres alfabéticos minúsculos	26
Algarismos	10
Sinais de pontuação e outros símbolos	32
Caracteres de controle	24
Total	118

Bits	Combinações	Símbolos
2	2 ²	4
3	2 ³	8
4	2 ⁴	16
5	2 ⁵	32
6	2 ⁶	64
7	2 ⁷	128
8	2 ⁸	256
9	2 ⁹	512
10	2 ¹⁰	1.024 ~= 1K

- **□** BYTE (Blnary TErm)
- ■Um byte é formado pela combinação de 8 bits

1Byte = 8 bits

 □ Em um byte podemos ter 256 combinações diferentes: 2⁸ = 256

□ Todas as letras, números e caracteres são codificados pelos equipamentos através dos bytes que os representam, permitindo a comunicação entre o usuário e a máquina.

■ Exemplos

Letra A = 01000001

Letra B = 01000010

Número 0 = 00110000

Número 1 = 00110001

Base Binária (2)

- □Neste sistema, os dígitos binários representam os coeficientes das potências de base 2.
- □2 algarimos (0 e 1), (F e V), etc
- **□**O dígito binário equivale ao bit
 - □ Abaixo temos algumas potências de 2

2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1

Seqüência Binária

				C = Nro de combinações 2 = Base binária			
	ABCD		ABCD	N = Nro de variavéis			
0	0000	8	1000	C = 2 ^ 4 = 16			
1	0001	9	1001	C = 2 ^ 3 = 8			
2	0010	10	1010	$C = Z \cap S = 0$			
3	0011	11	1011				
4	0100	12	1100				
5	0101	13	1101				
6	0110	14	1110				
7	0111	15	1111				

 $C = 2 ^ N$

Sistema de Numeração Octal

☐ Base 8 (Octal)

- Neste sistema a base é 8, e os dígitos são0,1,2,...7
- □ Há uma relação especial entre o sistema octal e o sistema binário que reside no fato de que três dígitos binários representarem oito (2³) números distintos.
- Esta relação permite efetuar conversões entre estes sistemas de forma quase imediata como veremos adiante.

Seqüência Binária

	XYZ	
0	000	
1	001	C = 2 ^ N C = Nro de combinações DIFERENTES
2	010	2 = Base binária
3	0 1 1	N = Nro de variavéis
4	100	C = 2 ^ 3 = 8
5	101	
6	110	Z = Var x 2 ^ 0 = 1 Y = Var x 2 ^ 1 = 2
7	1 1 1	X = var x 2 ^ 2 = 4

Base Hexadecimal (16)

Em bases superiores a 10, usam-se letras para representar os dígitos

HEXA (6 letras)

$$A = 10, D = 13,$$

$$B = 11$$
, $E = 14 e$

$$C = 12, F = 15$$

Decimal (10 Algarimos)

que variam entre 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9

Sistema Hexadecimal C = 2 ^ N

				C = Nro de combinações 2 = Base binária			
	RSTU		RSTU	N = Nro de variavéis			
0	0000	8	1000	C = 2 ^ 4 = 16			
1	0001	9	1001				
2	0010	A =10	1010				
3	0011	B =11	1011				
4	0100	C =12	1100				
5	0101	D =13	1101				
6	0110	E =14	1110				
7	0111	F =15	1111				
	Auto01: Algoritmes Poses Númericos						

Base Hexadecimal (16)

$$2DB_{16}$$

$$(2 \times 16^{2}) + (D \times 16^{1}) + (B \times 16^{0}) =$$

$$(2 \times 256) + (13 \times 16) + (11 \times 1) =$$

$$512 + 208 + 11 = 731_{10}$$

Conversão de Base 2 para Base 16

Base 2 -> Base 16
$$2^4 = 16$$

□ Exemplo 19: Converter 110111010₂ para Hexadecimal

- √ Solução:
- √ 4 dígitos binários equivalem a um dígito hexadecimal

Contagem Numérica Base 2 Base 10 (0,1,2,3,4,5,6,7,8,9)(0,1)(0,1,2,..,N-1)

Aula01: Algoritmos - Bases Númericas

 (\ldots)

 (\ldots)

Base N

N-1

 (\ldots)

1(N-1)

...

2(N-1)

Tabela de Bases Numéricas (1/2)

Binário	Octal	Decimal	Hexadecimal
Base 2	Base 8	Base 10	Base 16
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7

Tabela de Bases Numéricas (2/2)

Binário Decimal Hexadecimal Octal Base 2 Base 8 Base 10 Base 16 Α В D

Conversão binário para decimal

- ■Notamos, que <u>de maneira geral</u>, a regra básica de formação de um número consiste no somatório de cada dígito multiplicado por uma potência da base relacionada à posição daquele dígito.
- □O algarismo menos significativo (base elevada a zero = 1) localiza-se à direita,
- os mais significativos(maiores potências da base) ficam à esquerda.

Conversão binário para decimal

□ Por exemplo, o número 19₁₀ (o subscrito indica a base) é representado pela seqüência de dígitos binários:

□ Exemplo 04:

$$10011_2 = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$

□ Exemplo 05:

$$10011_2 = 16 + 0 + 0 + 2 + 1 = 19_{10}$$

Na prática, cada dígito binário recebe a denominação de bit (binary digital digit), conjuntos de 4 bits são chamados nibble e de 8 bits denominam-se byte.

Conversão decimal para binário

□ Considere-se a divisão inteira de N por 2. Dado que cada divisão desloca o ponto decimal uma posição para a esquerda temos:

$$\frac{N}{2} = \frac{...x_8 x_4 x_2 x_1}{2} = x_8 x_4 x_2 + \text{resto } x_1$$

□O dígito menos significativo x_1 corresponde ao resto da divisão inteira e o quociente corresponde a um novo número N' = ... $x_8x_4x_2$, onde x_2 passa a ser o algarismo menos significativo.

Aula01: Algoritmos - Bases Númericas

Conversão decimal para binário

Aplicando divisões sucessivas e considerando o resto, obtém-se a seqüência de digitos binários que representam o número N no sistema binário.

Conversão decimal para binário

Exemplo 07:

$$30_{10} = 11110_{2}$$

Conversão do sistema Octal para o decimal

- ☐ Utilizamos o conceito básico de formação de um número já explicado.
- □ Exemplo 08: Converter 345₈ em decimal.

$$\sqrt{345_8} = 3x8^2 + 4x8^1 + 5x8^0$$

$$\sqrt{345_8} = 192 + 32 + 5 = 229_{10}$$

□ Exemplo 09: Converter 477₈ em decimal.

$$\sqrt{477_8} = 4x8^2 + 7x8^1 + 7x8^0$$

$$\sqrt{477_8} = 256 + 56 + 7 = 319_{10}$$

☐ Exemplo 10: - 727₈

$$(7 \times 8^2) + (2 \times 8^1) + (7 \times 8^0) =$$

 $(7 \times 64) + (2 \times 8) + (7 \times 1) =$

Conversão do sistema

- Decimal para o Octal

 ☐ O processo é análogo ao da conversão base 10 para base 2, ou seja, empregar divisões sucessivas pela base.
 - **Exemplo 11:** Converter 90₁₀ para octal.

```
90|8
LSB 211|8
Só
        31|8
Pega
                          90_{10} = 132_{8}
resto
          MSB
```

□ Exemplo 12: Converter 128₁₀ para octal.

```
128 | 8
       0 16 | 8
LSB
Só
           02|8
Pega
                              128_{10} = 200_{8}
              MSRula01: Algoritmos - Bases Númericas
resto
```

Conversão do sistema Octal para binário

- □ Para realizar a conversão basta converter cada dígito octal no seu correspondente binário. Isto se deve à relação anteriormente mencionada.
- ☐ Exemplo 13. Converter 77₈ em binário.

$$77 = ... 77_8 = 1111111_2$$

☐ Exemplo 14. Converter 123₈ em binário

Conversão de Base 2 para Base 8

Base 2 -> Base 8

$$2^3 = 8$$

- □Utiliza-se o processo inverso do anterior.
- □Separamos o número binário em grupos de 3 bits à partir da direita.
- □Depois, convertemos cada grupo de bits para o sistema octal.
- ☐ Exemplo 15: Converter 110111010 para Octal
 - ✓ Solução:
 - √ 3 dígitos binários equivalem a um dígito octal
 - 110.111.010₂
 - 6 7 2₈

Seqüência Binária

	ΧY	
0	00	
1	0 0 0 1	C = 2 ^ N C = Nro de combinações DIFERENTES 2 = Base binária
2	10	
3	1 0 1 1	N = Nro de variavéis
		$C = 2 ^ 2 = 4$

Conversão do sistema Binário para o Octal

- □ Exemplo 16: Converter 1110010₂ em octal
 - $-1110010_2 = 001 110 010 = 162_8$ $0x2^2 + 1x2^1 + 0x2^0$
- □ Exemplo 17: Converter 10001₂ em octal.
 - $-10001_2 = 010\ 001 = 21_8$

- □ Exemplo 18: Converter 1110100₂ em octal.
 - $-1110100_2 = 001 110 100 = 164_8$

LE01: Conversão

- □ Converter os números Números binários em decimal.
 - Lembrando que 0 zero à esquerda de um número é um algarismo mais significativo:

- 1.a) 001110₂
- 1.b) 1110₂
- 1.c) 101100₂
- 1.d) 11001₂
- 1.e) 101010₂
- 1.f) 101010₂

LE02-Converter os seguintes sistemas númericos

3.c) 724₈

- 1) Base 2 -> Base 8
- 1.a) 11011₂, 1.b) 1110110₂, 1.c) 111000₂

- 2) Base 2 -> Base 16
 - 2.a) 11011₂, 2.b) 1110110₂, 2.c) 111000₂

- 3) Base 8 -> Base 2
 - 3.a) 123₈, 3.b) 400₈

- 4) Base 16 -> Base 2
 - 4.a) ABC₁₆ 4.b) 1001₁₆ 4.a) 115₁₆ Aula01: Algoritmos Bases Númericas

Conversão entre Bases 8 para 16

Usa-se a base 2 como intermediária

- □ Exemplo 20. Converter da base 8 para base 16
 - ✓ Solução
 - \checkmark base 8 (C = 2^3) -> base 2 -> base 16 (C = 2^4)
 - 1) 752₈ -> 111 101 010₂
 - 2) 1 1110 1010₂ -> 1EA₁₆

Conversão entre Bases 16 para 8

Usa-se a base 2 como intermediária

- □Exemplo 21. Converter da base 16 para base 8
 - ✓ Solução
 - \checkmark base 16 (C = 2^4) -> base 2 -> base 8 (C = 2^3)
 - 1) $A0C5_{16} \rightarrow 1010\ 0000\ 1100\ 0101_2$
 - 2)1 010 000 011 000 $101_2 \rightarrow 120305_8$

Base B para Base 10

A conversão de uma base qualquer para a base 10 é feita usando a fórmula vista anteriormente

$$N = (d_0 n_{-1}) d_0 n_{-2} d_0 n_{-3} \dots d_1 d_0)b$$

Conversão da Base 10 para uma Base B Qualquer

Dividir o número pela base B Enquanto o quociente for diferente de zero:

- -Dividir Quociente pela base B
- -Extrair o resto como algarismo e colocar à esquerda do anterior

Repetir

Quando quociente for igual a zero, parar

Bibliografia

- 1) MONTEIRO, M. A. Introdução à organização de computadores. Rio de Janeiro: LTC, 2001.
- PARTHAMI, Behrooz, Arquitetura de Computadores de Micropossadores a Supercomputadores. Editora Mc Graw-Hill
- 3) TANENBAUM, A. S. Organização estruturada de computadores. 4. ed. Rio de Janeiro: LTC, 2001.
- HENNESSY, John L.; Patterson, David A.; Organização e Projeto de Computadores – 3ª Edição 2005; ED Campus.