Exam:

- written exam Wedn. 21. 06. from 8:15-11:15
- sample exams of previous years online
- miniproject counts 33 percent towards final grade

For written exam:

- -bring 1 sheet A5 of own notes/summary
- -HANDWRITTEN!
- -no calculator, no textbook

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- •Analyze two-dimensional models in the phase plane
- Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- •Formulate stochastic models of biological phenomena
- •Formalize biological facts into mathematical models
- •Prove stability and convergence
 •Apply model concepts in simulations
- •Predict outcome of dynamics
- •Describe neuronal phenomena

Transversal skills

·Plan and carry out activities in a way which makes optimal use of available time and other resources. ·Collect data.

•Write a scientific or technical report.

Look at samples of past exams

Use a textbook, (Use video lectures) don't use slides (only)

miniproject

Biological Modeling of Neural Networks:

Week 9 - Decision models: **Competitive dynamics**

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Reading for week 9: NEURONAL DYNAMICS Ch. 16 (except 16.4.2)

Cambridge Univ. Press

- 9.1 Review: Population dynamics
- competition
- 9.2 Perceptual decision making
 - V5/MT
- Decision dynamics: Area LIP
- 9.3 Theory of decision dynamics
 - shared inhibition
 - effective 2-dim model
- 9.4. Decisions in connected pops.
- unbiased case
- biased input
- 9.5. Decisions, actions, volition
 - the problem of free will

9.1: How do YOU decide?	
As selected EPFL student, pick your money at EPFL:	
30CHF tomorrow / 100 CHF May first next year	
300111 tollionow / 100 of it way illot lext year	
90CHF tomorrow / 100 CHF May first next year	
'Neuro-economics'	
Ttodro coorionnoc	

Week 9 - Decision models: **Competitive dynamics**

Wulfram Gerstner EPFL, Lausanne, Switzerland

- 9.1 Review: Population dynamics
 - competition
- 9.2 Perceptual decision making
 - V5/MT
 - Decision dynamics: Area LIP
- 9.3 Theory of decision dynamics
 - shared inhibition
 - effective 2-dim model
- 9.4. Decisions in connected pops.
 - unbiased case
 - biased input
- 9.5. Decisions, actions, volition

e.g., Herzog lab, EPFL

- the problem of free will

9.2: Perceptual decision making? Bisection task: 'Is the middle bar shifted to the left or to the right?'

9.2: Detour: receptive fields in V5/MT visual cortex 1) Cells in visual cortex MT/V5 respond to motion stimuli 2) Neighboring cells in visual cortex MT/V5 respond to motion in similar direction Albright, Desimone, Gross, J. Neurophysiol, 1985 cortical columns

Week 9 – Decision models: Competitive dynamics

Wulfram Gerstner EPFL, Lausanne, Switzerland

- 9.1 Review: Population dynamics
 - competition
- 9.2 Perceptual decision making
 V5/MT
 - Decision dynamics: Area LIP
- 9.3 Theory of decision dynamics
 - shared inhibition
 - effective 2-dim model
- 9.4. Decisions in connected pops.
 - unbiased case
 - biased input
- 9.5. Decisions, actions, volition
 - the problem of free will

	Q	uiz 1, now	
[]	eceptive field in related to the to depends on mo	LIP arget of a s	

ECOLE POLYTECHNIQUE HORALE DE LAUSANIA

Week 9 – Decision models: Competitive dynamics

Wulfram Gerstner EPFL, Lausanne, Switzerland

- 9.1 Review: Population dynamics
 - competition
- 9.2 Perceptual decision making
 - V5/MT
 - Decision dynamics: Area LIP
- 9.3 Theory of decision dynamics
 - shared inhibition - effective 2-dim model
- 9.4. Decisions in connected pops.
 - unbiased case
 - biased input
- 9.5. Decisions, actions, volition
 - the problem of free will

9.3: Theory of decision dynamics $A_n(t) = F(h_n(t)) \qquad \text{activity equations}$ Membrane potential caused by input $\frac{d}{dt}h_t(t) = -h_t(t) + RI_1^{ext}(t) + w_{ee} F(h_t(t)) + w_{ei} F(h_{nab}(t))$ $\frac{d}{dt}h_2(t) = -h_2(t) + RI_2^{ext}(t) + w_{ee} F(h_2(t)) + w_{ei} F(h_{nab}(t))$ Input indicating left movement $\frac{w_{ee}}{A_{e,1}(t)}$ population activity $\frac{w_{ei}}{A_{inh}(t)}$ Blackboard: reduction from 3 to 2 equations

Biological Modeling of Neural Networks: 9.1 Review: Population dynamics - competition 9.2 Perceptual decision making Week 9 - Decision models: - V5/MT **Competitive dynamics** - Decision dynamics: Area LIP 9.3 Theory of decision dynamics Wulfram Gerstner - shared inhibition EPFL, Lausanne, Switzerland effective 2-dim model 9.4. Decisions in connected pops. - unbiased case - biased input 9.5. Decisions, actions, volition - the problem of free will

Week 9 – Decision models: Competitive dynamics

Wulfram Gerstner EPFL, Lausanne, Switzerland

- 9.1 Review: Population dynamics
 - competition
- 9.2 Perceptual decision making
 - V5/MT
 - Decision dynamics: Area LIP
- 9.3 Theory of decision dynamics
 - shared inhibition
 - effective 2-dim model
- 9.4. Decisions in connected pops.
 - unbiased case
 - biased input
- 9.5. Decisions, actions, volition
 - the problem of free will

9.5: fMRI variant of Libet experime	nt: volition and free will
x a r h q e f g y t u	xarhqefg y tu
Preparation Preparation	Decision and Movement
-Subject decides to move left or - report when the	
Libet, Behav. Brain Sci., 1985 Soon et al., Nat. Neurosci., 20	

What decides? Who decides? 'Your brain decides what you want or what you prefer ... ' ' ... but your brain – this is you!!!' -Your experiences are memorized in your brain -Your values are memorized in your brain -Your decisions are reflected in brain activities 'We don't do what we want, but we want what we do' (W. Prinz) The problem of Free Will (see e.g. Wikipedia article)

Decision, Perception **EPFL** and Competition in Connected Populations Suggested Reading: - Salzman et al. Nature 1990 - Roitman and Shadlen, J. Neurosci. 2002 - Abbott, Fusi, Miller: Theoretical Approaches to Neurosci. - X.-J. Wang, Neuron 2002 - Libet, Behav. Brain Sci., 1985

- Soon et al., Nat. Neurosci., 2008

Wulfram Gerstner

- free will, Wikipedia

Chapter 16, Neuronal Dynamics, Gerstner et al. Cambridge 2014

Exercise 2.1 now: stability of homogeneous solution
$A_n(t) = g(h_n(t))$
Membrane potential caused by input
$\tau_{\frac{d}{dt}}h_{1}(t) = -h_{1}(t) + b + (w_{ee} - \alpha)g(h_{1}(t)) - \alpha g(h_{2}(t))$
$\tau_{\frac{d}{dt}} h_2(t) = -h_2(t) + b + (w_{ee} - \alpha)g(h_2(t)) - \alpha g(h_1(t))$
Assume: $h_1^{ext} = h_2^{ext} = b$
a) Calculate homogeneous fixed point $h_1 = h_2 = h^*(b)$
b) Analyze stability of the fixed point h(b) as a function of b

Online course evaluation,
still open this week.

1 summary question per class
→ please do it
(for all your classes)