# Intermediate Machine Learning in Python for Environmental Science Problems

AMS Committee on Al Applications to Environmental Science





105th AMS Annual Meeting

January 12, 2025

8:00 AM - 3:30 PM Central

#### The Team



Evan Krell
<a href="mailto:ekrell@islander.tamucc.edu">ekrell@islander.tamucc.edu</a>









Kara Lamb kl3231@columbia.edu







Praveen Singh praveen.singh@noaa.gov

Lynker @ NOAA/NCEP/EMC





Christian Duff <a href="mailto:cduff4@islander.tamucc.edu">cduff4@islander.tamucc.edu</a>







#### Motivation

This course is aimed at practitioners using ML for environmental science applications.

Intermediate: we assume basic familiarity with developing ML models using Python.

- At least some experience developing simple ML models like Random Forest or Multilayer Perceptron
- Basic Python skills for working with data: numpy, pandas, matplotlib

There is a wealth of beginner ML material online, but focusing on simple toy problems that don't address challenges that are common in environmental science.

This course focuses on the *next steps* for better working with environmental data for more challenging environmental science problems.

### **Topics**

#### **Handling Imbalanced Data**

- Extreme events: it is trivial to achieve high performance on average by simply always predicting no storm... you'll be right most of the time!
- How to we encourage ML systems to achieve skill prediction of rare events?

#### **Hyperparameter Tuning**

- There are so many options when configuring ML models: number of layers, learning rate, batch size, loss function, etc.
- Are there strategies and tools to efficiently select these?

#### **Model Evaluation**

- A model with overall high performance might might not be suited to the target application
  - → proper evaluation crucial to ensure a model is used appropriately

#### **Explainable Artificial Intelligence**

- What has the model learned? Is the model learning physically-sound strategies or relying on spurious correlations?

#### **Physics-informed ML**

 Can we exploit domain knowledge about the physical system to guide ML systems toward learning meaningful prediction strategies?

# Agenda

| Activity              | Content Description                                                                                                                    | Estimated Time     |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Introduction          | Introduction to the course and instructors, and setting up the coding environment.                                                     | 15 minutes         |
| Follow-Along Lectures | The instructors will teach by interleaving lecture with code demonstrations that the students will follow along with on their laptops. | 1 hour, 45 minutes |
| Break                 |                                                                                                                                        | 15 minutes         |
| Follow-Along Lectures |                                                                                                                                        | 1 hour, 45 minutes |
| Lunch                 |                                                                                                                                        | 45 minutes         |
| Follow-Along Lectures |                                                                                                                                        | 1 hour, 45 minutes |
| Break                 |                                                                                                                                        | 15 minutes         |
| Hands-on Exercise     | Participants will work together in small groups to solve a problem that combines concepts from all lectures                            | 1 hour, 15 minutes |

## Lecture sequence

| Introduction          | Evan Krell     |  |
|-----------------------|----------------|--|
| Imbalanced data       | Praveen Singh  |  |
| Hyperparameter tuning | Christian Duff |  |
| Model evaluation      | Evan Krell     |  |
| Explainable Al        | Evan Krell     |  |
| Physics-informed ML   | Kara Lamb      |  |

#### Course Resources



#### github.com/ekrell/ams ai shortcourse 2025

GitHub repository contains all lecture material, including Google Colab notebooks that students can follow-along with.

Use this time to navigate to the repo, and make sure you can access Google Colab (requires Google account).