4 35-23 WO2/65 10/516642 FREC'D PCT/PTO 29 NOV 2004

5 Keramischer Formkörper mit photokatalytischer Beschichtung und Verfahren zur Herstellung desselben

Die Erfindung betrifft einen keramischen Formkörper aus oxidkeramischem Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche sowie ein Verfahren zur Herstellung desselben.

Aus der EP 0 590 477 B1 ist ein Baumaterial bekannt, das beispielsweise ein Außenwandmaterial oder Dachmaterial sein kann, wobei auf der Oberfläche des Baumaterials ein dünner Metalloxidfilm mit photokatalytischer Wirkung aufgebracht ist. Der Metalloxidfilm wird bevorzugt mittels Sol-Gel-Verfahren aufgebracht. Bevorzugt wird unter Verwendung von Titandioxidsol ein Titandioxid-Dünnfilmbaumaterial hergestellt. Der aus der EP 0 590 477 B1 bekannte dünne Metalloxidfilm weist desodorierende Antischimmeleigenschaften auf.

20

()

10

15

Der aus der EP 0 590 477 B1 bekannte Metalloxidfilm weist aufgrund seiner filmartigen Struktur eine kleine Oberfläche und mithin eine niedrige katalytische Aktivität auf.

Aus der DE 199 11 738 A1 ist ein mit Fe³+-lonen dotierter Titandioxid25 Photokatalysator bekannt, der einen zu den Fe³+-lonen äquimolaren oder annähernd äquimolaren Gehalt an fünfwertigen lonen aufweist. Der aus der DE 199 11 738 A1 bekannte, mit Fe³+-lonen dotierte Titandioxid-Photokatalysator wird über Sol-Gel-Verfahren hergestellt.

Aus der EP 0 909 747 A1 ist ein Verfahren zur Erzeugung einer Selbstreinigungseigenschaft von Oberflächen, insbesondere der Oberfläche von Dachziegeln, bei Beregnung oder Berieselung mit Wasser bekannt. Die Oberfläche weist hydrophobe Erhebungen mit einer Höhe von 5 bis 200 µm in verteilter Form auf. Zur Erzeugung dieser Erhebungen wird eine Oberfläche mit einer Dispersion von Pulverpartikeln aus inertem Material in einer Siloxan-Lösung benetzt und das Siloxan anschließend ausgehärtet. Das aus der EP 0 909 747 A1 bekannte Verfahren erlaubt die Herstellung eines grobkeramischen Körpers, der eine Oberfläche aufweist, an der Schmutzpartikel schlecht haften können. Der aus der EP 0 909 747 A1 bekannte keramische Körper verfügt über keinerlei katalytische Aktivität.

Aus der WO 01/79141 A1 ist ein weiteres Verfahren zur Erzeugung einer Selbstreinigungseigenschaft einer Oberfläche sowie ein mit diesem Verfahren hergestellter Gegenstand bekannt. Gemäß diesem Verfahren wird auf eine Oberfläche mittels eines Sol-Gel-Verfahrens eine metallorganische Verbindung des Titanoxids aufgetragen, die Oberfläche getrocknet und anschließend bei höherer Temperatur getempert. Die Oberfläche der Titanoxidschicht kann nachfolgend hydrophobiert werden.

20

 (\cdot)

5

10

15

Aufgabe der Erfindung ist es, einen grobkeramischen Formkörper, insbesondere Dachbaustoffe, Fassadenplatten und Vormauersteine bereitzustellen, der eine verbesserte Selbstreinigungskraft und eine verbesserte Stabilität, wie beispielsweise verbesserte Abriebbeständigkeit, aufweist.

25

Eine weitere Aufgabe ist es, ein Verfahren zur Herstellung eines solchen verbesserten grobkeramischen Formkörpers anzugeben.

Die der Erfindung zugrunde liegende Aufgabe wird durch einen keramischen Formkörper, nämlich ein Dachziegel, Ziegel, Klinker, Vormauerstein,

Fassadenplatte oder eine Fassadenwand aus oxidkeramischem Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine poröse oxidkeramische Beschichtung aufweist, wobei die Beschichtung photokatalytisch aktiv ist und eine spezifische Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g, vorzugsweise von etwa 40 m²/g bis etwa 150 m²/g, aufweist, gelöst.

Bevorzugte Weiterbildungen des keramischen Formkörpers sind in den abhängigen Ansprüchen 2 bis 33 angegeben.

10

15

5

Die Aufgabe wird weiterhin gelöst durch ein Verfahren zur Herstellung eines grobkeramischen Formkörpers aus oxidkeramischem Basismaterial mit Kapillargefüge und mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine photokatalytisch aktive, poröse oxidkeramische Beschichtung mit einer spezifischen Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g, vorzugsweise von etwa 40 m²/g bis etwa 150 m²/g, aufweist und die poröse oxidkeramische Beschichtung auf der Oberfläche und in den Porenöffnungen sowie den freien Flächen des Kapillargefüges nahe der Oberfläche im Innern des grobkeramischen Formkörpers aufgebracht ist,

20 g

wobei das Verfahren die folgenden Schritte umfasst:

- (a) Mischen von photokatalytisch aktivem, oxidkeramischem Pulver, anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter Bereitstellung einer Suspension,
- 25 (b) Aufbringen der in Schritt (a) hergestellten Suspension auf das oxidkeramische Basismaterial unter Ausbildung einer Schicht,
 - (c) Härten der in Schritt (b) bereitgestellten Schicht unter Ausbildung einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung.

Bevorzugte Weiterbildungen dieses Verfahrens sind in den abhängigen Patentansprüchen 35 bis 61 angegeben.

Der gemäß dem erfindungsgemäßen Verfahren hergestellte grobkeramische Formkörper weist eine sehr geeignete Porosität und Stabilität auf.

Im Unterschied zu den im Stand der Technik bevorzugt verwendeten Sol-GelVerfahren zur Herstellung von Beschichtungen wird erfindungsgemäß eine
Suspension von photokatalytisch aktivem, oxidkeramischem Pulver mit weiteren
Komponenten auf einem oxidkeramischen Basismaterial aufgetragen. Die
photokatalytisch aktiven, oxidkeramischen Partikel bzw. das photokatalytisch
aktive, oxidkeramische Pulver weisen bzw. weist eine hohe Porosität, d.h.
spezifische Oberfläche auf. Es kommt mithin nicht zur Ausbildung eines Films,
sondern zur Ausbildung einer porösen Struktur mit großer spezifischer

Oberfläche.

Die unter Verwendung von Sol-Gel-Verfahren auf Substraten verschiedenster Art hergestellten Beschichtungen aus Titanoxid sind dichte, geschlossene und optisch transparente Filme. Eine Grobkeramik wie beispielsweise ein Dachziegel weist eine spezifische Oberfläche von kleiner als 1 m²/g auf. Folglich weist eine unter Verwendung eines Sol-Gel-Verfahrens auf einem Dachziegel aufgebrachte TiO₂-Beschichtung ebenfalls eine spezifische Oberfläche von weniger als 1 m²/g auf.

20

Die gemäß der vorliegenden Erfindung hergestellten mit einer photokatalytisch aktiven Beschichtung versehenen Grobkeramiken weisen eine ungleich höhere spezifische Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g auf.

Diese außerordentlich hohe spezifische Oberfläche wird erfindungsgemäß erreicht, indem auf das zu beschichtende Substrat Partikel, beispielsweise partikuläres TiO₂, aufgebracht werden. Bei Aufbringung von partikulärem TiO₂ wird - im Unterschied zur Aufbringung von TiO₂ mittels Gel-Sol-Verfahren - kein geschlossener Film, sondem eine texturierte Beschichtung oder Struktur mit großer spezifischer Oberfläche aufgebracht. Des weiteren trägt die Porosität der beispielsweise verwendeten TiO₂-Partikel auch wesentlich zu der hohen spezifischen Oberfläche der porösen, oxidkeramischen Beschichtung der erfindungsgemäßen Keramik bzw. Grobkeramik bei.

10

(:

5

Im Falle einer mit TiO₂-Partikeln erfindungsgemäß beschichteten Grobkeramik, beispielsweise einem Dachziegel, führen die TiO₂-Partikel auf der Oberfläche der Grobkeramik zu einer Lichtstreuung, die sich im sichtbaren Bereich dadurch bemerkbar macht, daß die Grobkeramik ein bläulich/violettes Irisieren aufweist.

Dieser optische Effekt ist vermutlich auf den Tyndall-Effekt zurückzuführen. Das heißt, der rote Farbton einer gebrannten Grobkeramik, beispielsweise eines Ton-Dachziegels, wird für einen Betrachter mehr in Richtung dunkelrot bzw. braunrot verschoben.

20

Die ausgebildete Struktur ist eine hochporöse Struktur, d.h. die spezifische Oberfläche der katalytisch aktiven, porösen oxidkeramischen Beschichtung liegt in einem Bereich von 25 m²/g bis 200 m²/g, weiter bevorzugt in einem Bereich von etwa 40 m²/g bis etwa 150 m²/g. Weiter bevorzugt liegt die spezifische Oberfläche in einem Bereich von 40 m²/g bis etwa 100 m²/g.

25

30

Die katalytisch aktive, poröse oxidkeramische Beschichtung ist sowohl auf der Oberfläche der Keramik bzw. Grobkeramik als auch in dem Kapillargefüge aufgebracht. Das heißt, die Porenöffnungen und die freien Flächen in den Kapillarröhren sind mit der katalytisch aktiven, porösen oxidkeramischen Beschichtung versehen. Die Beschichtung ist dabei vorzugsweise bis zu einer

Tiefe von etwa 1 mm in dem unmittelbar unter der Oberfläche des grobkeramischen Formkörpers liegenden Kapillargefüge, vorzugsweise in gleichmäßiger Verteilung der Partikelgrößen und Partikelarten aufgebracht. Vorzugsweise erfolgt das Aufbringen der Beschichtung bis zu einer Tiefe von etwa 1 mm, ggf. weiter vorzugsweise bis zu einer Tiefe von 2 mm. Die Tiefe ist dabei in vertikaler Richtung, bezogen auf die Oberfläche des Formkörpers, in das Innere des Formkörpers angegeben.

Gemäß einer bevorzugten Weiterbildung ist der freie Atmungsquerschnitt des keramischen bzw. grobkeramischen Formkörpers durch die aufgebrachte poröse oxidkeramische Beschichtung um weniger als 10 %, vorzugsweise weniger als 5 %, bezogen auf den freien Atmungsquerschnitt eines nicht beschichteten keramischen bzw. grobkeramischen Formkörpers, herabgesetzt.

C

20

25

Weiter bevorzugt ist der freie Atmungsquerschnitt um weniger als etwa 2 %, noch weiter bevorzugt um weniger als etwa 1 %, herabgesetzt.

Der mittlere Durchmesser der Poren bzw. Kapillaren einer Grobkeramik liegt üblicherweise in einem Bereich von 0,1 μm bis 5 μm, vorzugsweise 0,1 μm bis 0,3 μm.

Die Keramik, d.h. der Dachziegel, Ziegel, Klinker, Vormauerstein, Fassadenplatte oder die Fassadenwand, bzw. die über das erfindungsgemäße Verfahren hergestellte Grobkeramik weist mithin äußerst vorteilhaft eine photokatalytisch aktive Beschichtung in der Porenstruktur auf, so dass in den Poren abgelagerte Verunreinigungen wirksam oxidiert und nachfolgend bei Beregnung oder Berieselung leicht abgespült werden.

Da die Porenstruktur der Grobkeramik durch die aufgebrachte Beschichtung nicht wesentlich verengt wird, können die Schmutzpartikel ohne weiteres aus den Poren herausgespült werden.

- Die erfindungsgemäße Grobkeramik zeigt mithin auch nach längerem Gebrauch, insbesondere unter natürlichen Umwelt- und Bewitterungsbedingungen, aufgrund der verbesserten Selbstreinigungseigenschaft eine sauberes und attraktives Aussehen.
- Mit einer spezifischen Oberfläche von etwa 50 m²/g wird eine sehr zufriedenstellende katalytische Aktivität der aufgebrachten oxidkeramischen Beschichtung erhalten. Dabei liegt die mittlere Schichtdicke der oxidkeramischen Beschichtung vorzugsweise in einem Bereich von etwa 50 nm bis etwa 50 μm, weiter bevorzugt von etwa 100 nm bis etwa 1 μm. Dabei ist die Schicht nicht nur in den Poren bzw. Kapillaren der Oberfläche, sondern auch auf der Oberfläche des grobkeramischen Formkörpers ausgebildet. Auf diese Weise können partiell Schichtdicken der oxidkeramischen Beschichtung ausgebildet sein, die größer als der mittlere Durchmesser der Poren bzw. Kapillaren sind, die üblicherweise in einem Bereich von 0,1 μm bis 5 μm liegen.
 Mit einer Schichtdicke von etwa 1 μm wird eine sehr zufriedenstellende katalytische Aktivität erhalten.
- Mit der erfindungsgemäßen photokatalytisch aktiven, porösen oxidkeramischen Beschichtung werden auf dem grobkeramischen Formkörper sich ablagernde(r) bzw. einlagernde(r) Schimmel, Pilzhyphen, Pflanzenwuchs, beispielsweise Moos, Algen etc., bakterielle Verunreinigungen etc., photochemisch abgebaut und entfernt. Die photokatalytische Aktivität der porösen oxidkeramischen Beschichtung ist bei Umgebungstemperatur ausreichend, um die genannten Stoffe bzw. Verunreinigungen zu oxidieren und somit abzubauen. Die oxidierten 30 Substanzen weisen ein vermindertes Haftungsvermögen auf und werden bei

Beregnung bzw. Berieselung mit Wasser leicht von der Oberfläche des erfindungsgemäßen Formkörpers abgespült.

Es wird vermutet, dass die photokatalytisch aktive Beschichtung zum einen unmittelbar auf die organischen Verunreinigungen oxidativ einwirken kann. Zum anderen wird angenommen, dass die oxidative Wirkung der photokatalytisch aktiven Beschichtung mittelbar durch die Erzeugung von Sauerstoff-Radikalen erfolgt, die nachfolgend die Verschmutzungsstoffe bzw. Verunreinigungen oxidieren und mithin abbauen.

10

15

(:

5

Die Selbstreinigungswirkung des erfindungsgemäßen keramischen Formkörpers bzw. des über das erfindungsgemäße Verfahren hergestellte grobkeramischen Formkörpers kann weiter gesteigert werden, wenn unter der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung eine Oberflächenstruktur mit Erhebungen bzw. Vertiefungen angeordnet ist und/oder wenn die photokatalytisch aktive, poröse oxidkeramische Beschichtung selbst eine Oberflächenstruktur mit Erhebungen und Vertiefungen aufweist.

Es hat sich gezeigt, dass grobkeramische Oberflächenstrukturen mit

20 Erhebungen, vorzugsweise mit einer vorgegebenen Verteilungsdichte, über eine überraschende Selbstreinigungseigenschaft verfügen. Die Erhebungen können weiterhin hydrophobiert sein, so dass die Anhaftung von hydrophilen Verschmutzungsstoffen bzw. Verunreinigungen weiter stark verringert wird.

- Die Erhebungen können durch Aufbringung von partikulärem Material auf dem oxidkeramischen Basismaterial gebildet werden. Als partikuläres Material wird hierbei vorzugsweise temperaturbeständiges, gemahlenes Material verwendet, das vorzugsweise aus der Gruppe ausgewählt wird, die aus gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC, Glas,
- 30 Glasschamotte und Mischungen davon bestehen.

Unter temperaturbeständigem Material wird im Sinne der Erfindung verstanden, dass das Material bei einer Temperatur von vorzugsweise bis zu 1100°C, weiter bevorzugt bis zu 600°C, nicht erweicht.

Selbstverständlich kann als partikuläres Material auch TiO₂, Al₂O₃, SiO₂ und/oder Ce₂O₃ verwendet werden. Dabei haben sich Partikel mit einer Größe in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, als sehr geeignet erwiesen. Weiterhin ist ein Partikelgrößenbereich von etwa 5 nm bis etwa 25 bis 50 nm sehr bevorzugt.

Bevorzugt ist, dass die Erhebungen bzw. Vertiefungen Höhen bzw. Tiefen in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, weiter bevorzugt von etwa 5 nm bis etwa 25 bis 50 nm, aufweisen. Somit können die Erhebungen auch unter Aggregation oder Agglomeration von kleineren Partikeln gebildet werden.

Das partikuläre Material kann hierbei unter Verwendung von Haftmitteln an dem oxidkeramischen Basismaterial fixiert werden. Beispielsweise können als Haftmittel Polysiloxane verwendet werden, die das partikuläre Material zum einen an der Oberfläche des oxidkeramischen Basismaterials fixieren und zum anderen die hergestellte Beschichtung mit einer superhydrophoben Oberfläche versehen. Das Haftmittel, beispielsweise das Polysiloxan, wird im Schritt (a) des erfindungsgemäßen Verfahren bei der Herstellung der Suspension zugesetzt. Sofern die Hydrophobierung der Oberfläche der Beschichtung erhalten bleiben soll, darf in diesem Fall das Härten in Schritt (c) nicht bei einer Temperatur von mehr als 300°C erfolgen. Wird die Temperatur über 300°C erhöht, kann es zu einer thermischen Zersetzung des Polysiloxans und zum Abbau der superhydrophoben Oberfläche auf der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung kommen.

Bei der vorliegenden Erfindung ist es jedoch nicht notwendig, Haftmittel zur Fixierung von partikulärem Material, beispielsweise von photokatalytisch aktiven, oxidkeramischen Partikeln, zu verwenden. Die Partikel können auch durch eine sinterähnliche Verbindung mit dem oxidkeramischen Basismaterial verbunden werden. Beispielsweise können die Partikel in Form einer Suspension auf das oxidkeramische Basismaterial aufgebracht und nachfolgend das Ganze auf eine Temperatur von etwa 200°C bis 500°C, vorzugsweise etwa 300°C, erwärmt werden. Die Partikel werden hierdurch zuverlässig an der Grobkeramik oder Keramik befestigt.

Bei einem Brennen des grobkeramischen Formkörpers, das üblicherweise in einem Bereich von mehr als 300°C bis etwa 1100°C durchgeführt wird, wird das zur Erzeugung von Erhebungen verwendete partikuläre Material mit einer Temperatur beaufschlagt, die zu einem oberflächlichen Erweichen der Partikeloberflächen führt, so dass sich eine sinterähnliche Verbindung zwischen dem partikulären Material und dem oxidkeramischen Basismaterial ausbildet. Hierbei können beispielsweise auch die Sintertemperatur absenkende Flussmittel zugesetzt werden.

Dem Fachmann sind aus den EP 0 909 747, EP 00 115 701 und EP 1 095 923 verschiedenartige Möglichkeiten zur Befestigung von partikulärem Material auf einer keramischen Oberfläche bekannt. Die Inhalte der EP 0 909 747, EP 00 115 701 und EP 1 095 923 werden hiermit unter Bezugnahme aufgenommen.

Vorzugsweise werden zur Bildung der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung photokatalytisch aktive, oxidkeramische Materialien verwendet, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und Mischungen davon besteht.

Gemäß einer weiteren bevorzugten Ausführungsform können die vorgenannten photokatalytisch aktiven, oxidkeramischen Materialien auch in dem oxidkeramischen Basiskörper enthalten sein.

5 Gemäß einer bevorzugten Ausführungsform umfasst das photokatalytisch aktive, oxidkeramische Material in der Beschichtung und/oder in dem oxidkeramischen Basismaterial TiO₂ oder Al₂O₃, wahlweise in Kombination mit weiteren oxidkeramischen Materialien. Als sehr geeignet haben sich beispielsweise Mischungen aus Titandioxid und Siliziumdioxid, Titandioxid und Aluminiumoxid, Aluminiumoxid und Siliziumdioxid als auch aus Titandioxid, Aluminiumoxid und Siliziumdioxid erwiesen.

Als Titandioxid wird hierbei vorzugsweise Titandioxid mit Anatas-Struktur verwendet. Als Aluminiumoxid wird bevorzugt Aluminiumoxid C verwendet, das kristallographisch der δ-Gruppe zuzuordnen ist und über eine starke oxidationskatalytische Wirkung verfügt.

Geeignetes Aluminiumoxid C ist bei der Degussa AG, Deutschland, erhältlich. Beispielsweise hat sich AEROSIL COK 84, eine Mischung von 84 % AEROSIL 200 und 16 % Aluminiumoxid C, als sehr verwendbar bei der vorliegenden Erfindung erwiesen.

Bei Verwendung von TiO₂ in der oxidkeramischen Beschichtung ist bevorzugt, dass das TiO₂ wenigstens teilweise in der Anatas-Struktur, vorzugsweise zu wenigstens 40 Gew.-%, bevorzugt zu wenigstens 70 Gew.-%, weiter bevorzugt zu wenigstens 80 Gew.-%, bezogen auf die Gesamtmenge an TiO₂, vorliegt.

Als sehr geeignet hat sich TiO₂ erwiesen, das in einer Mischung aus etwa 70 - 100 Gew.-% Anatas bzw. etwa 30 – 0 Gew.-% Rutil vorliegt.

15

20

25

 (\cdot)

Gemäß einer weiteren bevorzugten Weiterbildung der Erfindung liegt das TiO₂ zu etwa 100 % in der Anatas-Struktur vor.

Vorzugsweise wird das bei der vorliegenden Erfindung verwendete TiO₂ durch
5 Flammenhydrolyse von TiCl₄ als hochdisperses TiO₂ erhalten, welches
vorzugsweise eine Partikelgröße von etwa 15 nm bis 30 nm, vorzugsweise 21
nm aufweist.

Beispielsweise kann hierfür das unter der Bezeichnung Titandioxid P 25 von der Degussa AG, Deutschland erhältliche Titandioxid verwendet werden, das aus einem Anteil von 70 % Anatasform und 30 % Rutil besteht. Äußerst vorteilhaft absorbiert Titandioxid in der Anatasform UV-Licht mit Wellenlängen von kleiner als 385 nm. Rutil absorbiert UV-Licht mit einer Wellenlänge von kleiner als 415 nm.

15

20

Eine mit TiO₂-Partikeln beschichtete Oberfläche einer erfindungsgemäßen Grobkeramik, vorzugsweise eines Dachziegels, weist nach 15-stündiger Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht, was etwa 30 % der solaren Bestrahlungsstärke an einem klaren Sommertag entspricht, eine superhydrophile Oberfläche auf.

25

Ein Maß für die Superhydrophilie ist der Kontaktwinkel eines Wassertropfens mit einem definierten Volumen (hier 10 µl). Dieser Tropfen wird mit der zu untersuchenden Oberfläche in Kontakt gebracht und im zeitlichen Abstand von einer Sekunde fotografiert. Anschließend wird für jede Aufnahme sowohl der linke als auch der rechte Kontaktwinkel zwischen Tropfen und Oberfläche berechnet. Die nachfolgenden Werte sind jeweils der Mittelwert zwischen den errechneten Kontaktwinkeln.

Zunächst wurden für einen Vergleichsdachziegel ohne TiO₂-Partikel-Beschichtung und zwei erfindungsgemäßen Dachziegeln A und B die Kontaktwinkel ermittelt. Nachfolgend wurden die drei Dachziegel für 15 Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt. Die jeweils bestimmten

5 Kontaktwinkel sind in Tabelle 1 angegeben:

Tabelle 1: Kontaktwinkel

Dachziegel	Kontaktwinkel nach	Kontaktwinkel nach
	0 h Bestrahlung	15 h Bestrahlung
Erfgem. Dachziegel A	19,2°	4,0°
Erfgem. Dachziegel B	18,4°	< 4,0°
Vergleichs-Dachziegel	29,8°	27,3°

Nach einer Bestrahlungszeit von 15 Stunden wurden die erfindungsgemäßen Dachziegel A und B über einen Zeitraum von 30 Tagen unter Dunkelheit aufbewahrt. Die nach 30 Tagen Dunkelheit bestimmten Kontaktwinkel sind in Tabelle 2 angegeben:

Tabelle 2: Kontaktwinkel nach 30 Tagen Dunkelheit

Dachziegel	Kontaktwinkel nach 30 Tagen Dunkelheit
Erfgem. Dachziegel A	17,1°
Erfgem. Dachziegel B	13,6°

15

10

Nach 30 Tagen Dunkelheit wurden die erfindungsgemäßen Dachziegel A und B für einen Zeitraum von 3 Stunden erneut mit 1 mW/cm² UV-A Schwarzlicht bestrahlt. Die im Anschluss an die Bestrahlung gemessenen Kontaktwinkel sind in Tabelle 3 angegeben.

Tabelle 3: Kontaktwinkel nach erneuter Bestrahlung für 3 Stunden

Dachziegel	Kontaktwinkel nach erneuter Bestrahlung für 3 h
Erfgem. Dachziegel A	6,7°
Erfgem. Dachziegel B	7,3°

Die in Tabelle 1 angegebenen Daten zeigen, daß die mit TiO₂-Partikeln beschichteten erfindungsgemäßen Dachziegel nach Bestrahlung mit UV-Licht eine äußerst hydrophile bzw. superhydrophile Oberfläche aufweisen. Die hydrophilen Eigenschaften verschlechtern sich, was an einer Zunahme des Kontaktwinkels erkennbar ist, wenn die Dachziegel über einen längeren Zeitraum in Dunkelheit gelagert werden (siehe Tabelle 2). Aus Tabelle 3 ist ersichtlich, daß die superhydrophile Eigenschaft bereits nach kurzzeitiger Bestrahlung mit UV-Licht, die in etwa einer Stunde in der Frühlingssonne entspricht, wieder zurückkehrt. Superhydrophile Oberflächen können leicht mit Wasser, beispielsweise Regenwasser, gereinigt werden.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der
Kontaktwinkel eines 10 µl Wassertropfens auf einer erfindungsgemäßen
Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden
Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht vorzugsweise weniger als 6° bis
7°, vorzugsweise weniger als 5°, weiter bevorzugt weniger als 4°.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der Kontaktwinkel eines 10 μl Wassertropfens auf einer erfindungsgemäßen Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht und 30 Tagen Dunkelheit vorzugsweise weniger als 20°, vorzugsweise weniger als 18°, weiter bevorzugt weniger als 14°.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt der Kontaktwinkel eines 10 µl Wassertropfens auf einer erfindungsgemäßen Grobkeramik ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² und 30 Tagen Dunkelheit und erneuter Bestrahlung mit vorzugsweise 1 mW/cm² UV-A Schwarzlicht für drei Stunden weniger als 8, vorzugsweise weniger als 7°.

Die photokatalytische Aktivität kann dabei nach mehreren Verfahren bestimmt werden.

10

15

20

(,

5

1. Abbau von Methanol zu Formaldehyd

Die Bestimmung der photokatalytischen Aktivität erfolgt bei diesem Verfahren in Anlehnung an das in GIT Labor-Fachzeitschrift 12/99, Seiten 1318 bis 1320 beschriebenen Verfahren, wobei Methanol zu Formaldehyd oxidiert wird.

Hierbei wird eine Materialprobe von einem Dachziegel entnommen und mit Methanol in Kontakt gebracht. Die Materialprobe wurde für 7 Minuten mit UV-Licht (Quecksilberhochdrucklampe, Heraeus) mit einer Wellenlänge von 300 bis 400 nm bestrahlt, um die Umwandlung von Methanol zu Formaldehyd zu katalysieren.

Nach der Bestrahlung wurde aus dem Überstand ein Aliquot entnommen und mit 3-Methyl-2-benzothiazolinonhydrazon-Hydrochlorid-Hydrat

(Reaktionslösung) versetzt und für 100 Minuten bei Zimmertemperatur geschüttelt. Nach Derivatisierung des Formaldehyds mit dem Farbstoff wurde die Konzentration des Derivats mit einem UV-VIS-Spektrometer (Absorptionsbande bei 635 nm), d.h. die Dämpfung bestimmt. Die Dämpfung ist ein Maß für die photokatalytische Aktivität des Probenkörpers.

Eine Blindmessung wurde mit einer Probe eines unbeschichteten Dachziegels durchgeführt, um Effekte zweiter Ordnung, wie Abbaureaktionen durch eingelagerte Verunreinigungen, auszuschließen.

- Sämtliche Materialproben weisen eine identische Reaktionsfläche auf. Durch Vergleichsuntersuchung verschiedener Materialproben mit der gleichen Reaktionsfläche und der gleichen Methanolkonzentration kann eine Eichung erfolgen.
- Die Differenzbildung der erhaltenen Messwerte, d.h. Messwert Dämpfung der Materialprobe mit partikulärer TiO₂-Beschichtung abzüglich des Messwertes der Vergleichsprobe ohne partikuläre TiO₂-Beschichtung, ergibt einen Wert, der ein direktes Maß für die photokatalytische Aktivität der Materialprobe mit der partikulären TiO₂-Beschichtung ist.

Zu Vergleichszwecken wurde die Beschichtung Aktiv Clean auf eine Glasscheibe nach dem Toto-Verfahren aufgebracht. Die Dämpfung der Reaktionslösung lag bei 0,085 bis 0,109.

- Gemäß einer bevorzugten Ausführungsform der Erfindung führt der erfindungsgemäße Formkörper bei der Reaktionslösung zu einer Dämpfung von 0,020 bis 0,500, vorzugsweise von 0,100 bis 0,250, weiter vorzugsweise von 0,110 bis 0,150.
- 25 2. Abbau von Methylenblau

15

()

Bei diesem Verfahren zur Bestimmung der photokatalytischen Aktivität wird die Abbaurate von Methylenblau in Lösung bestimmt.

Zunächst werden Materialproben von Dachziegeln mit einer Adsorptionslösung von 0,02 mM Methylenblau (in Wasser) in Kontakt gebracht und die so behandelten Materialproben für 12 Stunden in Dunkelheit verwahrt. Die Absorptionsspektren werden vor und nach der 12-stündigen Dunkelphase bei einer Wellenlänge von 663 nm gemessen.

Nachfolgend wird die Adsorptionslösung durch eine 0,01 mM

Methylenblaulösung (in Wasser) ersetzt und das Ganze für drei Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt. Die bestrahlte Fläche sind 10,75 cm² und das bestrahlte Volumen der Methylenblaulösung sind 30 ml. Über den Bestrahlungszeitraum (3 Stunden) wurde alle 20 Minuten ein Aliquot entnommen und der Absorptionswert bei einer Wellenlänge von 663 nm bestimmt. Unter Verwendung einer Eichkurve (Absorptionswerte von Lösungen mit bekannter Methylenblaukonzentrationen) läßt sich die Abbaurate von Methylenblau bestimmen (Steigung der Meßkurve in einem Methylenblaukonzentration-gegen-Bestrahlungszeit-Diagramm).

Aufgrund der großen inneren Oberfläche der Dachziegel wurden die Materialproben während der Adsorption als auch während der Bestrahlung konstant feucht gehalten, um ein Aufsaugen der Methylenblaulösungen zu vermeiden.

Zu Vergleichszwecken wurden die Versuche mit unbeschichteten Materialproben durchgeführt.

25

5

10

15

20

Aus dem Photonenfluß (λ =350 nm; 10,75 cm² bestrahlte Fläche; 1 mW/cm²) von 1,13 x 10⁻⁴ mol Photonenenergie/h läßt sich die Photoneneffizienz ξ berechnen:

30 ξ [%] = Abbaurate [mol/h] / Photonenfluß [mol Photonenenergie/h]

Von dem erhaltenen Wert wird, um Adsorptionseffekte auszuschließen, ein Korrekturfaktor subtrahiert. Der Korrekturfaktor wird bestimmt, indem - nach der 12-stündigen Adsorptionszeit mit der 0,02 mM Methylenblaulösung) – die Materialprobe für drei Stunden mit 0,01 mM Methylenblaulösung in Dunkelheit in Kontakt gebracht wird. Am Ende dieser dreistündigen Inkubation wird der Absorptionswert bei 663 nm bestimmt, der ein Maß für den Abbau von Methylenblau durch Sekundärreaktionen ist. Dieser Wert stellt den Korrekturfaktor dar, der umgerechnet in eine fiktive Photoneneffizienz, von der oben berechneten Photoneneffizienz subtrahiert wird.

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt die - aus dem photokatalytisch induzierten Methylenblau-Abbau - berechnete Photoneneffizienz bei der erfindungsgemäßen Grobkeramik wenigstens 0,015 %, vorzugsweise wenigstens 0,02 %, weiter vorzugsweise wenigstens 0,03 %, noch weiter bevorzugt wenigstens 0,04 %.

3. Abbau von Methylstearat

(·

15

20 Auf Materialproben von erfindungsgemäßen Dachziegeln und Vergleichsziegeln wurde eine definierte Menge einer 10 mM Methylstearat / n-Hexan-Lösung aufgebracht und für 17 Stunden mit 1 mW/cm² UV-A Schwarzlicht bestrahlt.

Nach Abschluss der Bestrahlung wurde das auf den Materialproben verbliebene
Metylstearat mit einem definierten Volumen von 5 ml n-Hexan abgewaschen
und mittels Gaschromatographie (FID) bestimmt und quantifiziert. Aus diesem
Wert läßt sich die Abbaurate in mol/h berechnen.

Bei einem Photonenfluß (λ =350 nm, 36 cm² bestrahlte Fläche, 1mW/cm²) von 3,78 x 10⁻⁴ mol Photonenenergie/h läßt sich in Verbindung mit der bestimmten

Abbaurate in Entsprechung zu dem Methylenabbau (siehe oben Punkt 2) die Photoneneffizienz ξ berechnen. Eine Korrektur der erhaltenen Werte ist nicht notwendig, da bei dem Vergleichsprobenmaterial (Dachziegel ohne TiO₂-Beschichtung) kein Abbau von Methylstearat erfolgte.

5

Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt die - aus dem photokatalytisch induzierten Methylstearat-Abbau - berechnete Photoneneffizienz bei der erfindungsgemäßen Grobkeramik wenigstens 0,05 %, vorzugsweise wenigstens 0,06 %, weiter vorzugsweise wenigstens 0,07 %, noch weiter bevorzugt wenigstens 0,08 %, bevorzugt 0,10 %.

10

Es hat sich gezeigt, dass die Selbstreinigungseigenschaft der Oberfläche deutlich verbessert werden kann, wenn die photokatalytisch aktive, poröse oxidkeramische Beschichtung mit einer hydrophoben, vorzugsweise superhydrophoben Oberfläche versehen wird. Die oxidierten organischen Verschmutzungsstoffe werden noch leichter durch Beregnung oder Berieselung mit Wasser von der Oberfläche heruntergespült.

15

Unter hydrophober Oberfläche wird in dem Sinne der Erfindung eine Oberfläche verstanden, die im allgemeinen wasserabstoßend ist.

20

Gemäß einer bevorzugten Weiterbildung weist der erfindungsgemäße grobkeramische Formkörper eine superhydrophobe Oberfläche auf.

25

Unter einer superhydrophoben Oberfläche wird im Sinne der Erfindung eine Oberfläche mit einem Kontakt- oder Randwinkel von wenigstens 140° für Wasser verstanden. Der Randwinkel kann an einem auf eine Oberfläche gegebenen Wassertropfen mit einem Volumen von 10 µl auf herkömmliche Art und Weise bestimmt werden.

Vorzugsweise beträgt der Kontakt- oder Randwinkel wenigstens 150°, weiter bevorzugt 160°, noch weiter bevorzugt wenigstens 170°.

Die photokatalytisch aktive, poröse oxidkeramische Beschichtung kann unter

Verwendung von einer oder mehreren Verbindungen mit geradkettigen
und/oder verzweigtkettigen aromatischen und/oder aliphatischen
Kohlenwasserstoffresten mit funktionellen Gruppen hydrophobiert werden,
wobei die funktionellen Gruppen aus Amin, Thiol, Carboxylgruppe, Alkohol,
Disulfid, Aldehyd, Sulfonat, Ester, Ether oder Mischungen davon ausgewählt
werden. Vorzugsweise werden Silikonöl, Aminöle, Silikonharz, z.B.
Alkylpolysiloxane, Alkoxysiloxane, Alkalisiliconate, Erdalkalisiliconate, SilanSiloxan-Gemische, Aminosäuren oder Gemische davon verwendet.

Vorzugsweise kann die Beschichtung aus Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan, vorzugsweise in Mischung mit SiO₂, gebildet sein. Die gerad- und/oder verzweigtkettigen Kohlenwasserstoffreste bestehen vorzugsweise aus 1 bis 30 C-Atomen, weiter bevorzugt 6 bis 24 C-Atomen, bspw. 16 bis 18 C-Atomen.

Vorzugsweise wird eine Mischung aus Alkalisiliconaten und/oder Erdalkalisiliconaten in Wasser aufgebracht, wobei Alkali aus der Gruppe ausgewählt wird, die aus Li, Na, K und Gemischen davon besteht. Erdalkali werden vorzugsweise aus der Gruppe ausgewählt, die aus Be, Mg, Ca, Sr, Ba und Gemischen davon besteht. Bevorzugte Verdünnungen von Alkali- oder Erdalkali-Siliconat zu Wasser liegen im Bereich von 1 : 100 bis 1 : 600 (Gew./Gew.), weiter bevorzugt sind Verdünnungen von 1 : 250 bis 1 : 350 (Gew./Gew.).

Für die Bereitstellung einer superhydrophoben Oberfläche kann eine Mischung aus Partikeln, z.B. SiO₂, und Hydrophobierungsmittel, z.B. Fluorsilan,

aufgebracht werden. Diese Superhydrophobierung verstärkt äußerst vorteilhaft die Selbstreinigungseigenschaft des erfindungsgemäßen Formkörpers.

Gemäß einer weiteren bevorzugten Ausführungsform weist die superhydrophobe Oberfläche Erhebungen auf. Diese Erhebungen können bei Aufbringung des Hydrophobierungsmittels erzeugt werden, indem dem Hydrophobierungsmittel partikuläres Material zugemischt wird und diese Mischung nachfolgend auf die photokatalytisch aktive, poröse oxidkeramische Beschichtung aufgebracht wird.

10

(·

5

Wenn die Oberfläche mit den vorstehend angegebenen Hydrophobierungsmitteln hydrophobiert ist, darf die Temperatur nicht über 300°C erhöht werden, da es dann zu der bereits oben erwähnten thermischen Zersetzung der Hydrophobierungsmittel kommen kann.

15

20

30

Im Sinne der Erfindung erfolgt daher ein Härten durch Brennen nur dann, wenn noch keine hydrophobe Oberfläche auf der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung aufgebracht wurde. Wurde Polysiloxan als Haftmittel verwendet und nachfolgend der Formkörper durch Brennen gehärtet, muss regelmäßig die Oberfläche noch einmal hydrophobiert werden, wenn eine hydrophobe Oberfläche auf der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung bereitgestellt werden soll.

Vorzugsweise liegt der grobkeramische Formkörper als Dachziegel, Ziegel, Ziegel, Klinker oder Fassadenwand vor.

Bei der erfindungsgemäßen Herstellung eines grobkeramischen Formkörpers liegt das in Schritt (a) verwendete photokatalytisch aktive, oxidkeramische Pulver vorzugsweise in einer nanodispersen Form vor. Hierbei hat sich der Partikelgrößenbereich des oxidkeramischen Pulvers in einem Bereich von 5 nm

bis etwa 100 nm, weiter bevorzugt von etwa 10 nm bis etwa 50 nm, als sehr geeignet erwiesen.

Zur Herstellung des erfindungsgemäßen grobkeramischen Formkörpers wird aus oxidkeramischem Pulver, anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter Mischen eine bevorzugt homogene Suspension bereitgestellt. Diese Suspension kann in einer gewünschten Schichtdicke auf das oxidkeramische Basismaterial aufgebracht werden.

- Die Suspension kann beispielsweise durch Gießen, Streichen, Sprühen, Schleudern, etc. auf das oxidkeramische Basismaterial aufgebracht werden. Selbstverständlich kann das oxidkeramische Basismaterial auch in die Suspension eingetaucht werden.
- Vorzugsweise wird die Suspension in einer solchen Schichtdicke aufgebracht, dass nach dem Trocknen und/oder Brennen ein grobkeramischer Formkörper mit einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung in einer Dicke von etwa 50 nm bis etwa 50 μm, vorzugsweise etwa 100 nm bis etwa 1 μm, erhalten wird.

20

25

30

()

Dabei bildet sich die Schicht nicht nur in den Poren bzw. Kapillaren der Oberfläche, sondern auch auf der Oberfläche des grobkeramischen Formkörpers aus. Auf diese Weise können partiell Schichtdicken der oxidkeramischen Beschichtung ausgebildet sein, die größer als der mittlere Durchmesser der Poren bzw. Kapillaren sind, die üblicherweise in einem Bereich von 0,1 µm bis 5 µm liegen.

Bei dem oxidkeramischen Basismaterial kann es sich um einen Grünkörper (ungebranntes Keramikmaterial) oder um vorgebranntes oder gebranntes Keramikmaterial handeln. Das oxidkeramische Basismaterial weist

vorzugsweise ein Wasseraufnahmevermögen von > 1%, vorzugsweise von 2 bis 12% auf.

Das in Schritt (a) verwendete anorganische Stabilisierungsmittel stabilisiert die photokatalytisch aktiven, oxidkeramischen Pulverpartikel in der Suspension, so dass die photokatalytisch aktiven, oxidkeramischen Pulverpartikel nicht ausfallen.

Vorzugsweise wird als anorganisches Stabilisierungsmittel SiO₂, SnO₂, γ-Al₂O₃, ZrO₂ oder Gemische davon verwendet.

Das anorganische Stabilisierungsmittel verringert die Agglomerationsneigung der photokatalytisch aktiven, oxidkeramischen Pulverpartikel bzw. Partikel in der Suspension. Dies ermöglicht eine gleichmäßige Aufbringung und Verteilung der Pulverpartikel auf der Oberfläche einer Grobkeramik oder Keramik. Aufgrund der verringerten Agglomeratbildung kommt es letztendlich zu einer erhöhten photokatalytischen Aktivität der Beschichtung nach Aufbringung auf das oxidkeramische Basismaterial.

Das Brennen der in Schritt (b) bereitgestellten Schicht kann zum einen durch Brennen des Formkörpers in einem Brennofen oder in einer Brennkammer bei einer Temperatur von mehr als 300 °C bis etwa 1100 °C erfolgen. Weiterhin erfolgt das Brennen vorzugsweise in einem Temperaturenbereich von etwa 700 °C bis etwa 1100 °C.

25

10

15

Das Trocknen erfolgt bei einer wesentlich tieferen Temperatur als das Brennen. Das Trocknen erfolgt üblicherweise in einem Temperaturbereich von 50 °C bis 300 °C, vorzugsweise von 80 °C bis 100 °C. In diesem Temperaturbereich wird eine aufgebrachte superhydrophobe Beschichtung nicht zerstört bzw. abgebaut.

Bei der optionalen Verwendung von Haftmittel bei Schritt (a) wird der Suspension vorzugsweise Polysiloxan zugesetzt, das die Haftung des oxidkeramischen Pulvers an dem oxidkeramischen Basismaterial unterstützt. Polysiloxan führt neben seiner Haftwirkung auch zu einer Hydrophobierung der Struktur. Darüber hinaus bewirkt das Zusetzen von Haftmittel, wie beispielsweise Polysiloxan, auch eine Erhöhung der Viskosität der in Schritt (a) des erfindungsgemäßen Verfahrens hergestellten Suspension. Somit muss bei einem Zusetzen von Haftmittel zu der Suspension in Schritt (a) nicht notwendigerweise ein Stellmittel zugegeben werden. Die unter Verwendung von Haftmittel eingestellte Viskosität kann ausreichen, so dass in Schritt (b) die Suspension auf dem oxidkeramischen Basismaterial unter Ausbildung einer Schicht aufgebracht werden kann.

Als Flüssigphase werden vorzugsweise wässrige Lösungen und/oder Wasser enthaltende Lösungen verwendet. Weiter bevorzugt wird als Flüssigphase Wasser verwendet.

15

20

Bei einer weiteren erfindungsgemäßen Ausgestaltung des Verfahrens kann der in Schritt (a) hergestellten Suspension auch partikuläres Material zugesetzt werden. Bei dieser Verfahrensvariante werden in einem Schritt die für den Selbstreinigungseffekt der Oberfläche vorteilhaften Erhebungen als auch die katalytisch aktive, poröse oxidkeramische Beschichtung ausgebildet.

Bei einem gemäß dieser Verfahrensvariante hergestellten grobkeramischen
Formkörper liegt dann kein getrennter Schichtaufbau aus Schicht mit
Erhebungen und darüber angeordneter katalytisch aktiver, poröser
oxidkeramischer Beschichtung vor. Vielmehr liegen die unter Verwendung von
partikulärem Material hergestellten Erhebungen und die photokatalytisch
aktiven oxidkeramischen Komponenten im wesentlichen nebeneinander bzw.

30 miteinander innig vermischt vor.

Wahlweise kann dieser Suspension dann auch noch ein Hydrophobierungsmittel zugegeben werden, so dass die Superhydrophobierung der oxidkeramischen Oberfläche in dem gleichen Verfahrensschritt erfolgt.

5

Eine Superhydrophobierung wird erhalten, wenn die Oberfläche hydrophobiert ist und gleichzeitig Erhebungen und Vertiefungen, die beispielsweise unter Zusatz von partikulärem Material erzeugt sind, umfaßt.

10 Bei dieser Verfahrensvariante darf das Härten dann nur durch Trocknen erfolgen, damit keine thermische Zersetzung der hydrophoben Oberfläche eintritt.

Selbstverständlich ist es auch möglich, zunächst auf dem oxidkeramischen

Basismaterial das oben genannte partikuläre Material zur Erzeugung von
Erhebungen aufzubringen und mittels Haftmittel und/oder Sinterung an der
Oberfläche des keramischen Basismaterials zu fixieren, diese so bereitgestellte,
Erhebungen aufweisende Oberfläche unter Verwendung des
erfindungsgemäßen Verfahrens mit einer photokatalytisch aktiven, porösen
oxidkeramischen Beschichtung zu versehen und gegebenenfalls nachfolgend
eine superhydrophobe Oberfläche auf der photokatalytisch aktiven
Beschichtung zu erzeugen.

Als Hydrophobierungsmittel werden vorzugsweise anorganisch-organische
Hybridmoleküle wie beispielsweise Siloxane, insbesondere Polysiloxane,
verwendet. Weiterhin haben sich als Hydrophobierungsmittel Ormocere,
Alkylsilane und/oder Fluorsilane als geeignet erwiesen.

Selbstverständlich können aber auch andere Hydrophobierungsmittel, beispielsweise Alkali- oder Erdalkalisiliconate, verwendet werden, wie sie beispielsweise oben angegeben sind.

- Die Hydrophobierungsmittel können durch ein geeignetes Verfahren, beispielsweise Sprühen, Gießen, Schleudern, Bestreuen etc. aufgebracht werden. Beispielsweise kann unter Verwendung einer, bevorzugt wässrigen, Flüssigphase zunächst eine Hydrophobierungslösung oder –suspension hergestellt werden. Dieser Hydrophobierungslösung oder –suspension können wahlweise noch partikuläre Materialien zugesetzt werden, wenn in der superhydrophoben Oberfläche Erhebungen erzeugt werden sollen. Diese Hydrophobierungslösung oder -suspension kann dann auf die oben beschriebene herkömmliche Art und Weise aufgebracht werden.
- 15 Unter einer superhydrophoben Oberfläche wird im Sinne der Erfindung eine superhydrophobe Schicht verstanden, wobei der Randwinkel für Wasser wenigstens 140°, vorzugsweise 160°, weiter bevorzugt 170°, beträgt.
- Weiterhin kann nach Aufbringung der in Schritt (a) hergestellten Suspension auf das oxidkeramische Basismaterial vor dem Brennen auch ein Vortrocknungsschritt durchgeführt werden. Bei diesem Vortrocknungsschritt kann die Flüssigphase, vorzugsweise Wasser, durch Verflüchtigung entfernt werden. Dies kann beispielsweise durch Erwärmung, beispielsweise in einem Umluftofen oder Strahlungsofen erfolgen. Selbstverständlich können auch andere Trocknungsverfahren, beispielsweise Mikrowellentechnik, verwendet werden.

Der Vortrocknungsschritt hat sich als vorteilhaft erwiesen, um eine Rißbildung bzw. ein Reißen der aus der Suspension entstehenden Beschichtung beim Brennen zu vermeiden.

Nach dem Brennen kann dann eine superhydrophobe Oberfläche auf die vorstehend beschriebene Art und Weise aufgebracht werden.

Nach dem Brennschritt und der gegebenenfalls durchgeführten
Hydrophobierung kann bei einer bevorzugten Ausführungsform eine
Nachbehandlung der hergestellten photokatalytisch aktiven, porösen
oxidkeramischen Beschichtung durchgeführt werden. Die Nachbehandlung
erfolgt durch Einstrahlung von Laserlicht, NIR- oder UV-Licht. Durch diese
 Nachbehandlung kann die Haftung zwischen der photokatalytisch aktiven
Beschichtung und dem oxidkeramischen Basismaterial verbessert werden.

(;

15

20

Es hat sich gezeigt, dass der erfindungsgemäße grobkeramische Formkörper neben einer verbesserten Selbstreinigungseigenschaft eine verbesserte mechanische Stabilität besitzt. Äußerst vorteilhaft haftet die katalytisch aktive, poröse oxidkeramische Beschichtung mit gegebenenfalls superhydrophober Oberfläche sehr fest und zuverlässig an bzw. in dem grobkeramischen Basismaterial. Somit wird diese Beschichtung, wenn sie beispielsweise auf Dachziegeln aufgebracht ist, nicht bei einem Begehen des Daches abgerieben oder zerstört. Insbesondere ist die in den Poren bzw. dem Kapillargefüge aufgebrachte Beschichtung vor mechanischen Einwirkungen zuverlässig geschützt.

5

Patentansprüche

- Keramischer Formkörper, nämlich ein Dachziegel, Ziegel, Klinker oder eine Fassadenwand aus oxidkeramischem Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, dadurch gekennzeichne to hnet, dass der Formkörper eine poröse oxidkeramische Beschichtung aufweist, wobei die Beschichtung photokatalytisch aktiv ist und eine spezifische Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g, vorzugsweise von etwa 40 m²/g bis etwa 150 m²/g, aufweist.
- Keramischer Formkörper nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das oxidkeramische Basismaterial ein Kapillargefüge aufweist und
 die poröse oxidkeramische Beschichtung auf der Oberfläche und in den
 Porenöffnungen sowie den freien Flächen des Kapillargefüges nahe der
 Oberfläche im Innern des keramischen Formkörpers aufgebracht ist.
- 25 3. Keramischer Formkörper nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Porenöffnungen intergranular und/oder intragranular
 ausgebildet sind.

- Keramischer Formkörper nach einem der Ansprüche 1 bis 3,
 d a d u r c h g e k e n n z e i c h n e t,
 dass der freie Atmungsquerschnitt des keramischen Formkörpers durch
 die aufgebrachte poröse oxidkeramische Beschichtung um weniger als
 10 %, vorzugsweise weniger als 5 %, bezogen auf den freien
 Atmungsquerschnitt eines nicht beschichteten keramischen
 Formkörpers, herabgesetzt ist.
- 5. Keramischer Formkörper nach einem der Ansprüche 1 bis 4,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die poröse oxidkeramische Beschichtung bis zu einer Tiefe von 1
 mm, vorzugsweise bis zu einer Tiefe von 2 mm, gemessen in vertikaler
 Richtung von der Oberfläche des keramischen Formkörpers, in dem keramischen Formkörper aufgebracht ist.

15

20

25

6. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, dass die Beschichtung eine spezifische Oberfläche in einem Bereich von etwa 40 m²/g bis etwa 100 m²/g aufweist.

- 7. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die mittlere Schichtdicke der Beschichtung in einem Bereich von etwa 50 nm bis etwa 50 μm, vorzugsweise von etwa 100 nm bis etwa 1 μm, liegt.
- 8. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, dass zwischen oxidkeramischem Basismaterial und photokatalytisch aktiver, poröser oxidkeramischer Beschichtung wenigstens eine Schicht

mit Erhebungen angeordnet ist, das oxidkeramische Basismaterial Erhebungen aufweist und/oder die photokatalytisch aktive, poröse oxidkeramische Beschichtung als Schicht mit Erhebungen ausgebildet ist.

5

9. Keramischer Formkörper nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass die Erhebungen durch an dem oxidkeramischen Basismaterial fixiertes partikuläres Material gebildet sind.

10

- 10. Keramischer Formkörper nach Anspruch 9,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das partikuläre Material temperaturbeständiges gemahlenes
 Material ist, das vorzugsweise aus der Gruppe ausgewählt wird, die aus
 gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC,
 Glas, Glasschamotte und Mischungen davon besteht.
 - 11. Keramischer Formkörper nach Anspruch 9 oder 10, d a d u r c h g e k e n n z e i c h n e t, dass die Größe der Partikel und/oder der Erhebungen in einem Bereich von bis zu 1500 nm, vorzugsweise von etwa 5 nm bis etwa 700 nm, weiter vorzugsweise von etwa 5 nm bis etwa 25 bis 50 nm, liegt bzw. liegen.
- 25 12. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass die photokatalytisch aktive, poröse oxidkeramische Beschichtung photokatalytisch aktive, oxidkeramische Materialien umfasst, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und

Mischungen davon besteht.

- 13. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- dass das oxidkeramische Basismaterial des Formkörpers photokatalytisch aktive, oxidkeramische Materialien enthält, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und Mischungen davon besteht.
- 10 14. Keramischer Formkörper nach einem der Ansprüche 12 oder 13, dad urch gekennzeichnet, dass das photokatalytisch aktive, oxidkeramische Material eine durchschnittliche Partikelgröße im Bereich von etwa 5 nm bis etwa 100 nm, vorzugsweise von etwa 10 nm bis etwa 50 nm, aufweist.

15

20

- 15. Keramischer Formkörper nach einem der Ansprüche 12 bis 14, dad urch gekennzeichnet, dass das in der photokatalytisch aktiven, porösen oxidkeramischen Beschichtung und/oder in dem oxidkeramischen Basismaterial enthaltene TiO₂ wenigstens teilweise, vorzugsweise zu wenigstens 40 Gew.-%, bezogen auf die Gesamtmenge an TiO₂, in der Anatas-Struktur vorliegt.
- 16. Keramischer Formkörper nach Anspruch 15,
 25 da durch gekennzeichnet,
 dass das in der photokatalytisch aktiven, porösen oxidkeramischen
 Beschichtung und/oder in dem oxidkeramischen Basismaterial
 enthaltene TiO₂ zu wenigstens 70 Gew.-%, bezogen auf die
 Gesamtmenge an TiO₂, in der Anatas-Struktur vorliegt.

17. Keramischer Formkörper nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass das TiO₂ in einer Mischung aus etwa 70 bis 100 Gew.-% Anatas und etwa 30 bis 0 Gew.-% Rutil vorliegt.

5

- 18. Keramischer Formkörper nach einem der Ansprüche 14 bis 16, d a d u r c h g e k e n n z e i c h n e t, dass das TiO₂ zu etwa 100 Gew.-% in der Anatas-Struktur vorliegt.
- 19. Keramischer Formkörper nach einem der Ansprüche 1 bis 18, d a d u r c h g e k e n n z e i c h n e t, dass der Kontaktwinkel eines 10 μl Wassertropfens auf der porösen oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht weniger als 6° bis 7°, vorzugsweise weniger als 5°, weiter bevorzugt weniger als 4°, beträgt.
- d a d u r c h g e k e n n z e i c h n e t,

 dass der Kontaktwinkel eines 10 µl Wassertropfens auf der porösen oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² UV-A Schwarzlicht und 30 Tagen Dunkelheit weniger als 20°, vorzugsweise weniger als 18°, weiter bevorzugt weniger als 14° beträgt.

Keramischer Formkörper nach einem der Ansprüche 1 bis 19,

25

30

20.

21. Keramischer Formkörper nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Kontaktwinkel eines 10 µl Wassertropfens auf der porösen oxidkeramischen Beschichtung ohne hydrophobe Nachbeschichtung nach 15 Stunden Bestrahlung mit 1 mW/cm² und 30 Tagen Dunkelheit

und erneuter Bestrahlung mit vorzugsweise 1 mW/cm² UV-A Schwarzlicht für drei Stunden weniger als 8°, vorzugsweise weniger als 7°beträgt.

- 5 22. Keramischer Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung eine superhydrophobe Oberfläche aufweist.
- 23. Grobkeramischer Keramischer Formkörper nach Anspruch 22, 10 dadurch gekennzeichnet, dass die superhydrophobe Oberfläche unter Verwendung von einer oder mehrerer Verbindungen mit geradkettigen oder verzweigtkettigen aromatischen und/oder aliphatischen Kohlenwasserstoffresten mit funktionellen Gruppen, wobei die funktionellen Gruppen aus Amin, Thiol, 15 Carboxylgruppe, Alkohol, Disulfid, Aldehyd, Sulfonat, Ester, Ether oder Mischungen davon ausgewählt sind, bereitgestellt ist.
- dadurch gekennzeichnet, 20 daß die superhydrophobe Oberfläche unter Verwendung von Verbindungen, die aus der Gruppe ausgewählt werden, die aus Silikonöl, Aminöle, Silikonharz, z.B. Alkylpolysiloxane, Alkoxysiloxane, Alkalisiliconate, Erdalkalisiliconate, Silan-Siloxan-Gemische, Aminosäuren und Gemische davon besteht, bereitgestellt ist.

Keramischer Formkörper nach Anspruch 23,

25. Keramischer Formkörper nach Anspruch 22, dadurch gekennzeichnet, dass die superhydrophobe Oberfläche der Beschichtung unter Verwendung von Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan,

25

24.

vorzugsweise in Kombination mit SiO₂, bereitgestellt ist.

- 26. Keramischer Formkörper nach Anspruch 22,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die superhydrophobe Oberfläche unter Verwendung ein
- dass die superhydrophobe Oberfläche unter Verwendung einer Lösung von Alkalisiliconaten in Wasser, wobei Alkali aus der Gruppe, die aus Lithium, Natrium, Kalium und Gemischen davon besteht, ausgewählt wird, aufgebracht ist.
- 10 27. Keramischer Formkörper nach einem der Ansprüche 22 bis 26, dadurch gekennzeichnet, dass die superhydrophobe Oberfläche einen Kontakt- oder Randwinkel von wenigstens 140° für Wasser aufweist.
- 15 28. Keramischer Formkörper nach einem der Ansprüche 22 bis 27, da durch gekennzeichnet, dass die superhydrophobe Oberfläche einen Kontakt- oder Randwinkel von wenigstens 150° für Wasser aufweist, vorzugsweise von wenigstens 160°, noch weiter bevorzugt von wenigstens 170°.

20

30

<u>(</u>

- 29. Keramischer Formkörper nach Anspruch 26,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Lösung von Alkalisiliconaten in Wasser ein
 Verdünnungsverhältnis von 1 : 100 bis 1 : 600 (Gew./Gew.),
 vorzugsweise ein Verdünnungsverhältnis von 1 : 250 bis 1 : 350
 (Gew./Gew.) aufweist.
 - 30. Keramischer Formkörper nach einem der Ansprüche 22 bis 29, dad urch gekennzeichnet, dass die superhydrophobe Oberfläche der Beschichtung Erhebungen

aufweist.

- 31. Keramischer Formkörper nach Anspruch 30,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Erhebungen der superhydrophoben Oberfläche unter Verwendung von partikulärem Material erzeugt sind.
- 32. Keramischer Formkörper nach Anspruch 22,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die superhydrophobe Oberfläche unter Verwendung einer
 Mischung aus Partikeln, beispielsweise SiO₂, und
 Hydrophobierungsmittel, beispielsweise Fluorsilan, aufgebracht ist.
- 33. Keramischer Formkörper nach einem der Ansprüche 1 bis 32,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die aus photokatalytisch induziertem Methylenblau-Abbau
 berechnete Photoneneffizienz bei der porösen oxidkeramischen
 Beschichtung wenigstens 0,015 %, vorzugsweise wenigstens 0,02 %,
 weiter vorzugsweise wenigstens 0,03 %, noch weiter bevorzugt
 wenigstens 0,04 % beträgt.
- Verfahren zur Herstellung eines grobkeramischen Formkörpers, vorzugsweise aus oxidkeramischem Basismaterial mit Kapillargefüge und mit bei Beregnung oder Berieselung mit Wasser selbstreinigender
 Oberfläche, wobei der Formkörper eine photokatalytisch aktive, poröse oxidkeramische Beschichtung mit einer spezifischen Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g, vorzugsweise von etwa 40 m²/g bis etwa 150 m²/g, aufweist und die poröse oxidkeramische Beschichtung auf der Oberfläche und in den Porenöffnungen sowie den freien Flächen des Kapillargefüges nahe der Oberfläche im Innern des

()

grobkeramischen Formkörpers aufgebracht ist, wobei das Verfahren die folgenden Schritte umfasst:

- (a) Mischen von photokatalytisch aktivem, oxidkeramischem Pulver, anorganischem Stabilisierungsmittel sowie einer Flüssigphase unter Bereitstellung einer Suspension,
- (b) Aufbringen der in Schritt (a) hergestellten Suspension auf das oxidkeramische Basismaterial unter Ausbildung einer Schicht,
- (c) Härten der in Schritt (b) bereitgestellten Schicht unter Ausbildung einer photokatalytisch aktiven, porösen oxidkeramischen Beschichtung.

10

15

30

- 35. Verfahren nach Anspruch 34,
 d a d u r c h g e k e n n z e i c h n e t,
 dass auf das oxidkeramische Basismaterial in einem vorgelagerten
 Schritt wenigstens eine Schicht mit Erhebungen aufgebracht wird und
 dass die in Schritt (a) hergestellte Suspension auf das mit einer Schicht
 mit Erhebungen versehene oxidkeramische Basismaterial aufgebracht
 und nachfolgend im Schritt (c) gehärtet wird.
- 36. Verfahren nach einem der Anspruch 34 oder 35,
 20 dadurch gekennzeichnet,
 dass im Schritt (a) zusätzlich partikuläres Material zugemischt wird.
- 37. Verfahren nach Anspruch 35 oder 36,
 d a d u r c h g e k e n n z e i c h n e t,
 25 dass Erhebungen durch Fixieren von partikulärem Material auf dem oxidkeramischen Basismaterial gebildet werden.
 - 38. Verfahren nach Anspruch 36 oder 37,d a d u r c h g e k e n n z e i c h n e t,dass das partikuläre Material temperaturbeständiges gemahlenes

Material ist, das vorzugsweise aus der Gruppe ausgewählt wird, die aus gemahlenem Gestein, Schamotte, Ton, Minerale, Keramikpulver wie SiC, Glas, Glasschamotte und Mischungen davon besteht.

- 5 39. Verfahren nach einem der Ansprüche 36 bis 38,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die mittlere Partikelgröße des partikulären Materials in einem
 Bereich bis zu etwa 1500 nm, vorzugsweise von etwa 5 nm bis 700 nm,
 weiter vorzugsweise etwa von etwa 5 nm bis etwa 25 bis 50 nm, liegt.
 - 40. Verfahren nach einem der Ansprüche 34 bis 39, dad urch gekennzeichnet, dass das in Schritt (a) verwendete anorganische Stabilisierungsmittel die photokatalytisch aktiven, oxidkeramischen Pulverpartikel in der Suspension stabilisiert, so dass die photokatalytisch aktiven, oxidkeramischen Pulverpartikel nicht ausfallen und/oder nicht agglomerieren.
- Verfahren nach einem der Anspruch 40,
 d a d u r c h g e k e n n z e i c h n e t,
 dass als anorganisches Stabilisierungsmittel SiO₂, SnO₂, γ-Al₂O₃, ZrO₂
 oder Gemische davon verwendet werden.
- 42. Verfahren nach einem der Ansprüche 34 bis 41,
 25 dadurch gekennzeichnet,
 dass der Suspension in Schritt (a) Haftmittel, vorzugsweise Polysiloxan,
 zugesetzt wird.
- 43. Verfahren nach einem der Ansprüche 34 bis 42, 30 dadurch gekennzeichnet,

10

dass in Schritt (a) als Flüssigphase Wasser oder ein wässriges oder Wasser enthaltendes Medium verwendet wird.

- Verfahren nach einem der Ansprüche 34 bis 43,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Haftung zwischen photokatalytisch aktiver Beschichtung und oxidkeramischem Basismaterial verbessert wird, indem die in Schritt (c) hergestellte photokatalytisch aktive, poröse oxidkeramische Beschichtung mit Laserlicht, NIR- oder UV-Licht bestrahlt wird.
 - 45. Verfahren nach einem der Ansprüche 34 bis 44, dad urch gekennzeichnet, dass das in Schritt (a) verwendete photokatalytisch aktive, oxidkeramische Pulver Materialien umfasst, die aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃ und Mischungen davon besteht.
- Verfahren nach einem der Ansprüche 34 bis 45,
 d a d u r c h g e k e n n z e i c h n e t,
 dass in dem oxidkeramischen Basismaterial des Formkörpers
 photokatalytisch aktive, oxidkeramische Materialien enthalten sind, die
 aus der Gruppe ausgewählt werden, die aus TiO₂, Al₂O₃, SiO₂, Ce₂O₃
 und Mischungen davon besteht.
- 25 47. Verfahren nach einem der Ansprüche 34 bis 46,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in Schritt (a) verwendete photokatalytisch aktive,
 oxidkeramische Pulver Partikel im Bereich von etwa 5 nm bis etwa 100
 nm, vorzugsweise von etwa 10 nm bis etwa 50 nm, umfasst.

30

10

15

().

- Verfahren nach einem der Ansprüche 45 bis 47,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver und/oder in dem oxidkeramischen Basismaterial enthaltene TiO₂
 wenigstens teilweise, vorzugsweise zu wenigstens 40 Gew.-%, bezogen auf die Gesamtmenge an TiO₂, in der Anatas-Struktur vorliegt.
- 49. Verfahren nach einem der Ansprüche 45 bis 48,
 d a d u r c h g e k e n n z e i c h n e t,
 10 dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver und/oder in dem oxidkeramischen Basismaterial enthaltene TiO₂ zu wenigstens 70 bis 100 Gew.-%, bezogen auf die Gesamtmenge an TiO₂, in der Anatas-Struktur vorliegt.
- 15 50. Verfahren nach einem der Ansprüche 45 bis 49,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
 und/oder in dem oxidkeramischen Basismaterial enthaltene TiO₂ in einer
 Mischung aus etwa 70 bis 100 Gew.-% Anatas und etwa 30 bis 0 Gew. 20 % Rutil vorliegt.
- 51. Verfahren nach einem der Ansprüche 45 bis 50,
 d a d u r c h g e k e n n z e i c h n e t,
 dass das in dem photokatalytisch aktiven, oxidkeramischen Pulver
 und/oder in dem oxidkeramischen Basismaterial enthaltene TiO₂ zu
 etwa 100 Gew.-%, bezogen auf die Gesamtmenge an TiO₂, in der
 Anatas-Struktur vorliegt.
- 52. Verfahren nach einem der Ansprüche 34 bis 51,30 dadurch gekennzeichnet,

dass die in Schritt (b) bereitgestellte Schicht in Schritt (c) durch Trocknen bei einer Temperatur von bis zu 300°C und/oder durch Brennen bei einer Temperatur von mehr als 300°C bis etwa 1100°C gehärtet wird.

- 5 53. Verfahren nach Anspruch 52, d a d u r c h g e k e n n z e i c h n e t, dass die in Schritt (b) bereitgestellte Schicht vor dem Brennen in Schritt (c) durch Verflüchtigung der Flüssigphase wenigstens teilweise vorgetrocknet wird.
 - 54. Verfahren nach einem der Ansprüche 34 bis 53,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die in Schritt (c) gehärtete Beschichtung unter Bereitstellung einer hydrophoben Oberfläche hydrophobiert oder superhydrophobiert wird.
 - 55. Verfahren nach einem der Ansprüche 34 bis 54,
 d a d u r c h g e k e n n z e i c h n e t,
 dass im Schritt (a) zusätzlich ein Hydrophobierungsmittel zugegeben
 wird und die in Schritt (b) bereitgestellte Beschichtung im Schritt (c)
 durch Trocknen bei einer Temperatur bis zu 300°C gehärtet wird.
 - 56. Verfahren nach Anspruch 54,
 d a d u r c h g e k e n n z e i c h n e t,
 dass zur Hydrophobierung ein anorganisch-organisches Hybridmolekül,
 vorzugsweise eine Polysiloxanlösung oder eine Alkali- oder
 Erdalkalisiliconatlösung, verwendet wird.
- 57. Verfahren nach Anspruch 54,
 d a d u r c h g e k e n n z e i c h n e t,

 dass die superhydrophobe Oberfläche unter Verwendung einer oder

10

15

20

25

mehrerer Verbindungen mit geradkettigen oder verzweigtkettigen aromatischen und/oder aliphatischen Kohlenwasserstoffresten mit funktionellen Gruppen, wobei die funktionellen Gruppen aus Amin, Thiol, Carboxylgruppe, Alkohol, Disulfid, Aldehyd, Sulfonat, Ester, Ether oder Mischungen davon ausgewählt werden, bereitgestellt wird.

d a d u r c h g e k e n n z ei c h n e t,
daß die superhydrophobe Oberfläche unter Verwendung von
Verbindungen, die aus der Gruppe ausgewählt werden, die aus Silikonöl,
Aminöle, Silikonharz, z.B. Alkylpolysiloxane, Alkoxysiloxane,
Alkalisiliconate, Erdalkalisiliconat, Silan-Siloxan-Gemische, Aminosäuren
und Gemischen davon, besteht, bereitgestellt wird.

5

10

20

25

30

58.

Verfahren nach Anspruch 57,

15 59. Verfahren nach Anspruch 54,
d a d u r c h g e k e n n z e i c h n e t,
dass die superhydrophobe Oberfläche unter Verwendung von
Ormoceren, Polysiloxan, Alkylsilan und/oder Fluorsilan, vorzugsweise in
Mischung mit SiO₂, bereitgestellt wird.

60. Verfahren nach einem der Ansprüche 54 bis 59,
d a d u r c h g e k e n n z e i c h n e t,
dass zur Erzeugung einer superhydrophoben Oberfläche mit
Erhebungen bei der Hydrophobierung partikuläres Material zugesetzt wird.

61. Verfahren nach einem der Ansprüche 34 bis 60, d a d u r c h g e k e n n z e i c h n e t, dass der grobkeramische Formkörper ein Dachziegel, Ziegel, Klinker oder eine Fassadenwand ist. 5

Zusammenfassung

Die Erfindung betrifft einen keramischen Formkörper, nämlich einen Dachziegel, Ziegel, Klinker oder eine Fassadenwand aus oxidkeramischem

10 Basismaterial mit bei Beregnung oder Berieselung mit Wasser selbstreinigender Oberfläche, wobei der Formkörper eine poröse oxidkeramische Beschichtung aufweist, wobei die Beschichtung photokatalytisch aktiv ist und eine spezifische Oberfläche in einem Bereich von etwa 25 m²/g bis etwa 200 m²/g, vorzugsweise von etwa 40 m²/g bis etwa 150 m²/g, aufweist. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines solchen grobkeramischen Formkörpers.