Exámen: EYP1027 Modelos Probabilísticos

Profesor: Reinaldo B. Arrellano-Valle Ayudante: Camilo I. González

Pregunta 1: Sean $X_1, \ldots, X_n \stackrel{iid}{\sim} \exp(\lambda)$. Para $n \geq 2$, sean $S = \sum_{i=2}^n X_i$ y $T = \sum_{i=1}^n X_i$.

- (a) Obtenga la distribuciones de S y T.
- (b) Pruebe que la fdp condicional de T dado $X_1 = x_1$ es tal que $f_{T|X_1=x_1}(t) = f_S(t-x_1)$, para todo $t > x_1 > 0$.
- (c) Encuentre la fdp condicional de X_1 dado T=t y calcule $E(X_1|T=t)$.
- (d) Pruebe que $\frac{n}{\sum_{i=1}^{n} X_i} \xrightarrow{P} \lambda$ y $\sqrt{n} \left(\frac{n}{\sum_{i=1}^{n} X_i} \lambda \right) \xrightarrow{d} N(0, \lambda^2)$.

Pregunta 2: Sean $X_1, \ldots, X_n \stackrel{iid}{\sim} U(0,1)$, y defina las secuencias

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 y $Z_n = \max\{X_1, \dots, X_n\}, n \ge 1.$

- (a) Pruebe que $2Y_nZ_n \stackrel{P}{\to} 1$.
- (b) Calcule approximadamente $P(2Y_n \leq 1)$.
- (c) Sea G_n la fda de $n(Z_n-1)$. Pruebe que G_n converge para

$$G(w) = \begin{cases} e^w & \text{si } w < 0, \\ 0 & \text{si no.} \end{cases}$$

(d) Obtenga la distribución asintótica de \mathbb{Z}_n^2 .

Indicaciones: Sólo puede consultar los apuntes de cátedra, no puede tener a la vista ejercicios resueltos. Debe indicar los resultados dados en clases que son usados en cada demostración. Todas las preguntas tienen el mismo puntaje.

- Santiago, 17 de Diciembre de 2020 -