# Disambiguation of inventor datasets Projet de deuxième année du parcours ingénieur mathématiques-

informatique

**Responsable**: François Maublanc

**Encadrant**: Pierre Andry



BEN MOSBAH Iyad LIU Charles **OUESLATI Salim TCHABO** Bacarie



### Sommaire

01

Présentation du sujet

02

Base de données

03

Algorithme

04

Interface graphique



## I°) Présentation du sujet

#### Contexte et problématique

Les bases de données de brevets, comme celle de l'EPO (European Patents Office), contiennent des millions d'informations sur les inventeurs. Cependant, **l'absence d'identifiant unique** rend difficile leur suivi : un même inventeur peut apparaître sous plusieurs variantes de nom, ou différents individus peuvent partager le même nom.

**Problème posé**: Comment identifier de manière fiable un inventeur à partir de données partielles et retrouver tous ses brevets sans générer de faux positifs ni de faux négatifs?

### Outils mis à disposition

- USPTO (United States Patent and Trademark Office) a mis sa solution en libre accès en ligne. (codé en Python)
  - → Projet entièrement en Python
- Base de données teseo\_inventors

### Objectifs

Le but est de créer une application ergonomique permettant de lever les potentiels ambiguïtés dans un dataset d'inventeurs.

Les utilisateurs pourront rentrer les informations d'un inventeur. L'application retourne l'identifiant de l'inventeur ainsi que ses brevets d'invention.

### Posture de l'utilisateur

Informations sous la mauvaise forme (pas une chaine de caractère) L'utilisateur reçoit un message d'erreur

Ouverture de l'interface graphique

L'utilisateur entre les informations d'un inventeur (nom +prénom)

L'utilisateur obtient une liste des inventeurs triées selon un ordre croissant de similarité, et les informations suivantes :

Nom et prénom,
le titre du brevet,
score de similarité,
résumé du brevet (abstract)

### Management du projet



### Calendrier





| ▼ ∱ Sprint 3 2                                                                                 |             |          |                 |                                        |                   |                                     |  |
|------------------------------------------------------------------------------------------------|-------------|----------|-----------------|----------------------------------------|-------------------|-------------------------------------|--|
| Aa                                                                                             | ः<br>Statut | 🚣 Assign | ■ Due           | → Sprint                               | Q Is Current Spri | → Projet                            |  |
| Compréhension du code.                                                                         | • Done      |          | 1 mars 2025     | 於 Sprint 4<br>於 Sprint 3               |                   | ? Algorithme de<br>désambiguïsation |  |
| Lecture du document de recherche afin d'assurer une compréhension de la méthodologie appliqué. | • Done      |          | 22 février 2025 | 於 Sprint 3                             |                   | ? Algorithme de<br>désambiguïsation |  |
| + Nouvelle tâche                                                                               |             |          |                 |                                        |                   |                                     |  |
| де́сомрте <b>2</b>                                                                             |             |          |                 |                                        |                   |                                     |  |
| ▼ ∱ <u>Sprint 4</u> 2 ··· +                                                                    |             |          |                 |                                        |                   |                                     |  |
| Aa                                                                                             | ः<br>Statut | 🚣 Assign | ■ Due           | → Sprint                               | Q Is Current Spri | → Projet                            |  |
| Adaptation du code à notre cas.                                                                | In Progress |          | 8 mars 2025     | 於 Sprint 4<br>於 Sprint 5<br>於 Sprint 6 |                   | ? Algorithme de<br>désambiguïsation |  |
| Compréhension du code.                                                                         | • Done      |          | 1 mars 2025     | ☆ Sprint 4<br>☆ Sprint 3               |                   | ? Algorithme de<br>désambiguïsation |  |

| ▼ ∱ Sprint 5 1                                                            |                               |                 |               |                                        |                   |                                     |  |
|---------------------------------------------------------------------------|-------------------------------|-----------------|---------------|----------------------------------------|-------------------|-------------------------------------|--|
| Aa                                                                        | ∹; Statut                     | <b>å</b> Assign | ■ Due         | → Sprint                               | Q Is Current Spri | → Projet                            |  |
| Adaptation du code à notre cas.                                           | <ul><li>In Progress</li></ul> |                 | 8 mars 2025   | 於 Sprint 4<br>於 Sprint 5<br>於 Sprint 6 |                   | ? Algorithme de<br>désambiguïsation |  |
| + Nouvelle tâche                                                          |                               |                 |               |                                        |                   |                                     |  |
| DÉCOMPTE <b>1</b>                                                         |                               |                 |               |                                        |                   |                                     |  |
| ▼                                                                         |                               |                 |               |                                        |                   |                                     |  |
| Aa                                                                        | ∺; Statut                     | 🎎 Assign        | ■ Due         | → Sprint                               | Q Is Current Spri | → Projet                            |  |
| Adaptation du code à notre cas.                                           | <ul><li>In Progress</li></ul> |                 | 8 mars 2025   | 於 Sprint 4<br>於 Sprint 5<br>於 Sprint 6 |                   | ? Algorithme de<br>désambiguïsation |  |
| Conception et développement<br>d'une interface utilisateur<br>ergonomique | • Done                        |                 | 15 avril 2025 | 於 Sprint 6                             |                   | Interface Utilisateur               |  |

| ▼ 於 Sprint 7 2                                                                                            |                               |                 |                  |            |                   |                                    |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|------------------|------------|-------------------|------------------------------------|--|
| Aa                                                                                                        | ÷;⊱ Statut                    | <b>å</b> Assign | ■ Due            | → Sprint   | Q Is Current Spri | → Projet                           |  |
| Test d'ergonomie et d'accessibilité                                                                       | <ul><li>Done</li></ul>        |                 | 22 avril 2025    | 於 Sprint 7 |                   | Interface Utilisateur              |  |
| Ajout du module ElasticSearch pour assurer une fonctionnalité accrue.                                     | <ul><li>In Progress</li></ul> |                 | 22 mars 2025     | 於 Sprint 7 |                   | Interface Utilisateur              |  |
| + Nouvelle tâche                                                                                          |                               |                 |                  |            |                   |                                    |  |
| DÉCOMPTE <b>2</b>                                                                                         |                               |                 |                  |            |                   |                                    |  |
| ▼ 於 Sprint 8 4 ··· +                                                                                      |                               |                 |                  |            |                   |                                    |  |
| Aa                                                                                                        | ∷; Statut                     | 🚣 Assign        | ■ Due            | → Sprint   | Q Is Current Spri | → Projet                           |  |
| Création du PPT                                                                                           | <ul><li>Done</li></ul>        |                 | 4 avril 2025     | 於 Sprint 8 | 0                 | ■ Documentation & reproductibilité |  |
| Rédaction du rapport                                                                                      | • Done                        |                 | 4 avril 2025 🗐 角 | ☆ Sprint 8 |                   | ■ Documentation & reproductibilité |  |
| Organisation du code pour faciliter sa réutilisation                                                      | • Done                        |                 | 4 avril 2025     | 於 Sprint 8 |                   | ■ Documentation & reproductibilité |  |
| Rédaction d'une documentation technique complète pour assurer la compréhension et la maintenance du code. | Done                          |                 | 4 avril 2025     | ☆ Sprint 8 |                   | ■ Documentation & reproductibilité |  |

### II°) Base de données

User Story 1 : Importation et traitement de la base de données

Numéro de story : US-01

Durée estimée : Sprint 1 et sprint 2 (~14 jours)

#### Description:

En tant que utilisateur,

Je veux extraire la base de données à partir de la sauvegarde et nettoyer les données brutes des inventeurs et brevets,

afin de garantir une qualité optimale pour les étapes ultérieures de traitement.

Prérequis : Fichier de sauvegarde

Critères d'acceptation :

Les champs manquants critiques sont complétés ou signalés.

# Exploitation de la base de données

### Pourquoi SQL Server Management Studio (SSMS)?

- Permet d'ouvrir le fichier reçu teseo\_inventor\_bakup que d'autre applications ne peuvent pas ouvrir
- Base unique pour données brutes, nettoyage et résultats
- Peux traiter un gros volume de données
- Peux exécuter Python/R

#### patents

3 929 636 entrées

#### patents\_abstract

3 750 048 entrées

#### patents\_applicants

4 050 148 entrées

#### patents\_inventors

10 396 265 entrées

#### patents\_tech

134 954 263 entrées

#### patents\_titles

3 754 118 entrées

### Structure des tables de données

#### **Table**

patents

patents\_inventors

patents\_applicants

patents\_title

patents\_abstracts

patents\_tech

#### Contenu principal

Infos générales sur les brevets (dates, type)

Liste des inventeurs liés aux brevets

Liste des demandeurs (entreprises, universités, etc.)

Titres des brevets (en plusieurs langues)

Résumés des brevets (textes longs)

Classification technologique (domaines, IPC...)

### Table patents\_inventors

#### Champs importants:

- person\_name : nom saisi tel quel → souvent source d'ambiguïtés
- · appln id : identifiant du brevet associé
- person\_ctry\_code, person\_address: informations contextuelles utiles
- psn\_id, psn\_name : identifiants harmonisés → peu fiables, doivent être revérifiants

#### Pourquoi cette table est cruciale :

- C'est elle qui contient les noms des inventeurs, au cœur de la problématique du projet.
- Elle reflète les variations d'écriture, erreurs de saisie, affiliations, etc.
- Toutes les tentatives de désambiguïsation (nettoyage, regroupement, scoring...) partent de ces données.
- C'est la table qui relie directement un inventeur à un brevet via appln\_id.

|      |    | appiii_iu | appin_auui | person_iu |   | person_name                                    | person_name_ong_ig                             | pail_itaille                                   | pon_iu   |
|------|----|-----------|------------|-----------|---|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------|
| ŀ    | 1  | 1         | EP         | 2         | 1 | Lipponen, Markku                               | Lipponen, Markku                               | LIPPONEN, MARKKU                               | 19669542 |
| 1    | 2  | 1         | EP         | 3         | 2 | Laitinen, Timo                                 | Laitinen, Timo                                 | LAITINEN, TIMO                                 | 18561041 |
| ŀ    | 3  | 1         | EP         | 4         | 3 | Aho, Ari                                       | Aho, Ari                                       | AHO, ARI                                       | 420702   |
| 4    | 4  | 1         | EP         | 5         | 4 | Knuutila, Jarno                                | Knuutila, Jarno                                | KNUUTILA, JARNO                                | 17435717 |
|      | 5  | 2         | EP         | 9         | 1 | Griffiths, Andrew David                        | Griffiths, Andrew David                        | GRIFFITHS, ANDREW DAVID                        | 10937127 |
|      | 6  | 2         | EP         | 10        | 2 | Hoogenboom, Hendricus Renerus Jacobus Mattheus | Hoogenboom, Hendricus Renerus Jacobus Mattheus | HOOGENBOOM, HENDRICUS RENERUS JACOBUS MATTHEUS | 13132864 |
|      | 7  | 2         | EP         | 11        | 3 | Marks, James David                             | Marks, James David                             | MARKS, JAMES DAVID                             | 20936434 |
| 1    | 8  | 2         | EP         | 12        | 4 | McCafferty, John                               | McCafferty, John                               | MCCAFFERTY, JOHN                               | 21412537 |
| 9    | 9  | 2         | EP         | 13        | 5 | Winter, Gregory Paul                           | Winter, Gregory Paul                           | WINTER, GREGORY PAUL                           | 35376353 |
| ŀ    | 10 | 2         | EP         | 14        | 6 | Grigg, Geoffrey Walter                         | Grigg, Geoffrey Walter                         | GRIGG, GEOFFREY WALTER                         | 10939289 |
| ŀ    | 11 | 3         | EP         | 22        | 1 | Wieczorek, Herfried, Philips Corporate         | Wieczorek, Herfried, Philips Corporate         | WIECZOREK, HERFRIED, PHILIPS CORPORATE         | 35092425 |
| F: 1 | 12 | 3         | EP         | 23        | 2 | Schneider, Stefan, Philips Corporate           | Schneider, Stefan, Philips Corporate           | SCHNEIDER, STEFAN, PHILIPS CORPORATE           | 28752234 |
| ŀ    | 13 | 3         | EP         | 24        | 3 | Lauter, Josef, Philips Corporate               | Lauter, Josef, Philips Corporate               | LAUTER, JOSEF, PHILIPS CORPORATE               | 18788104 |
| ŀ    | 14 | 4         | EP         | 27        | 1 | Chittipeddi, Sailesh                           | Chittipeddi, Sailesh                           | CHITTIPEDDI, SAILESH                           | 4950267  |

| psn_sector | han_name                                       | han_harmonized | han_id    | person_address                                      | person_ctry_code |
|------------|------------------------------------------------|----------------|-----------|-----------------------------------------------------|------------------|
|            | Lipponen, Markku                               | 0              | 100000002 | Simo Kaarion katu 1 A 2,33720 Tampere               | FI               |
|            | Laitinen, Timo                                 | 0              | 100000003 | Peiponkatu 6,37830 Viiala                           | FI               |
|            | Aho, Ari                                       | 0              | 100000004 | Elementinpolku 13 A 6,33720 Tampere                 | FI               |
|            | Knuutila, Jarno                                | 0              | 100000005 | Matti Tapion katu 1 F 17,33720 Tampere              | FI               |
|            | Griffiths, Andrew David                        | 0              | 100000009 | 28 Lilac Court, Cherry Hinton Road, Cambridge CB1 4 | GB               |
|            | Hoogenboom, Hendricus Renerus Jacobus Mattheus | 0              | 100000010 | 1 Hauxton Road, Little Shelford, Cambridge CB2 5JH  | GB               |
|            | Marks, James David                             | 0              | 100000011 | 107 Ardmore, Kesington, CA 94707                    | US               |
|            | McCafferty, John                               | 0              | 100000012 | 32 Wakelin Avenue, Sawston, Cambridgeshire CB2 4DA  | GB               |
|            | Winter, Gregory Paul                           | 0              | 100000013 | c/o Trinity College,Cambridge CB2 1TQ               | GB               |
|            | Grigg, Geoffrey Walter                         | 0              | 100000014 | 352 Burns Bay Road, Lane Cove, Linley Point, NSW 2  | AU               |
|            | Wieczorek, Herfried, Philips Corporate         | 0              | 100000022 | Intellectual Property GmbH, Habsburgerallee 11,5206 | DE               |
|            | Schneider, Stefan, Philips Corporate           | 0              | 100000023 | Intellectual Property GmbH, Habsburgerallee 11,5206 | DE               |
|            | Lauter, Josef, Philips Corporate               | 0              | 100000024 | Intellectual Property GmbH, Habsburgerallee 11,5206 | DE               |
|            | Chittipeddi, Sailesh                           | 0              | 100000027 | 308 Lenape Trail, Allentown, PA 18104               | US               |
|            |                                                |                |           |                                                     |                  |

### Prétraitements nécessaires

#### Suppression des lignes non exploitables

→ Lignes sans nom, avec NULL, ou -NOT AVAILABLE-

#### Création d'index SQL

→ Accélère les requêtes sur person\_name, appln\_id, etc.

#### Utilisation critique de psn\_name

→ Champ harmonisé utile mais insuffisant : vérification manuelle ou scriptée nécessaire

#### Objectif global

→ Réduire le bruit et faciliter le travail de l'algorithme de désambiguïsation

## Applications

```
CREATE INDEX idx_person_name ON dbo.patents_inventors (person_name);
CREATE INDEX idx_appln_id ON dbo.patents (appln_id);
```

```
DELETE FROM dbo.patents_inventors
WHERE person_name IS NULL
    OR person_name = '-NOT AVAILABLE-'
    OR psn_id IS NULL;
```

|    | appln_id | appln_auth | person_id | invt_seq_nr | person_name | person_name_orig_lg | psn_name        | psn_id   | psn_sector | han_name | han_harmonized | han_id    | person_address | person_ctry_code |
|----|----------|------------|-----------|-------------|-------------|---------------------|-----------------|----------|------------|----------|----------------|-----------|----------------|------------------|
| 1  | 399127   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 2  | 399108   | EP         | 263       | 2           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 3  | 399108   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 4  | 397978   | EP         | 263       | 3           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 5  | 397882   | EP         | 263       | 3           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 6  | 397882   | EP         | 263       | 2           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 7  | 397882   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 8  | 397791   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 9  | 397373   | EP         | 263       | 2           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 10 | 394329   | EP         | 263       | 3           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 11 | 394329   | EP         | 263       | 2           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 12 | 394329   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |
| 13 | 394281   | EP         | 263       | 1           |             |                     | -NOT AVAILABLE- | 23866221 | UNKNOWN    |          | 0              | 100000263 |                |                  |

### Ambiguités des données

Avec des requêtes SQL simples, nous pouvons identifier des ambiguïtés au sein des données.

```
USE teseo_inventors
GO
|SELECT * from patents_inventors WHERE person_name LIKE 'Dupont, Jean-Fabien' OR person_name LIKE 'Dupont, Jean-Fabien%'
```

|   | appln_id | appln_auth | person_id | invt_seq_nr | person_name                                        | person_name_orig_lg                                | psn_name                                           | psn_id  |
|---|----------|------------|-----------|-------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------|
| 1 | 143806   | EP         | 169135    | 2           | DUPONT, Jean-Fabien Kodak Industrie                | DUPONT, Jean-Fabien Kodak Industrie                | DUPONT, JEAN-FABIEN KODAK INDUSTRIE                | 7483080 |
| 2 | 15936177 | EP         | 1271062   | 1           | Dupont, Jean-Fabien                                | Dupont, Jean-Fabien                                | DUPONT, JEAN-FABIEN                                | 7483079 |
| 3 | 15936199 | EP         | 1271092   | 1           | Dupont, Jean-Fabien, c/o Kodak Industrie, Dep-Brev | Dupont, Jean-Fabien, c/o Kodak Industrie, Dep-Brev | DUPONT, JEAN-FABIEN, C/O KODAK INDUSTRIE, DEP-BREV | 7483081 |

| psn_sector | han_name                                           | han_harmonized | han_id    | person_address                                     | person_ctry_code |
|------------|----------------------------------------------------|----------------|-----------|----------------------------------------------------|------------------|
|            | DUPONT, Jean-Fabien Kodak Industrie                | 0              | 100169135 | Département Brevets CRT - Zone Industrielle,F-711  | FR               |
|            | Dupont, Jean-Fabien                                | 0              | 101271062 | c/o Kodak Industrie, Dep. Brevets, CRT-Zone Ind.,7 | FR               |
|            | Dupont, Jean-Fabien, c/o Kodak Industrie, Dep-Brev | 0              | 101271092 | CRT 60/2, Zone Industrielle,71102 Chalon sur Sao   | FR               |



# III°) Algorithme

User Story 2 : Adaptation de l'algorithme de désambiguïsation.

Numéro de story : US-02

Durée estimée : 3 Sprints (~21 jours)

#### Description:

En tant que utilisateur,

je veux utiliser un algorithme basé sur des règles pour identifier les inventeurs similaires,

afin de regrouper correctement les brevets par inventeur unique.

Prérequis: US-01

#### Critères d'acceptation :

L'algorithme peut détecter des correspondances basées sur le nom, l'adresse et l'affiliation et les éventuels co-inventeurs.

**Objectif** : Regrouper tous les brevets se référant à un même inventeur.

#### **Enjeux**:

- Homonymie : plusieurs inventeurs avec le même nom
- Hétérogénéité des données : fautes de frappe, abréviations, traductions, etc.

#### Méthodologie en 3 grandes étapes :

- Canopy Clustering: pré-filtrage pour limiter les comparaisons inutiles
- Matching supervisé
- Clustering (GRINCH) pour regrouper les id et brevet d'une même personne

Partie 1 : Création de "canopies"



Partie 2 : Calcul de Similarité

- Variables (features) :
  - Nom complet
  - Co-inventeurs en commun
  - Localisation (ville, pays)
  - Organisation
  - Domaines techniques
- Score final : Probabilité que deux inventions soient la même personne

Partie 3 : Clustering hiérarchique (GRINCH)

- Fonctionne en fusionnant les paires les plus similaires jusqu'à un seuil
- Critère de fusion : score de similarité > seuil défini
- **Sortie** : Groupes d'inventions correspondant à un inventeur unique

### Structure du code:



# Compréhension du code

Deux éléments majeurs sont à prendre en compte :

- Les codes sont écrits pour émettre des requêtes SQL dans des base de données d'inventeur MySQL.
- La table SQL sur laquelle la requête est appliqué doit comporter les colonnes suivantes :

|uuid | patent\_id | assignee\_id | rawlocation\_id | type | name\_first | name\_last |

#### **Build Features**

```
python -m pv.disambiguation.inventor.build_assignee_features_sql
python -m pv.disambiguation.inventor.build_coinventor_features_sql
python -m pv.disambiguation.inventor.build_title_map_sql
```

#### **Build Canopies**

python -m pv.disambiguation.inventor.build\_canopies\_sql

# Adaptation des requêtes SQL

| Version originale du code | Adaptation  |
|---------------------------|-------------|
| uuid                      | person_id   |
| Patent_id                 | appln_id    |
| name_first, name_last     | Person_name |

#### Les obstacles rencontrés

- Installation des module (grinch : pip install git+https://github.com/iesl/grinch.git)
- Utilisation de Weights and Biases

File "pv/disambiguation/inventor/run\_clustering.py", line , in <module>

from pv.disambiguation.inventor.load\_mysql import Loader ModuleNotFoundError: No module named 'pv'



# IV°) Interface graphique

User Story 3 : Création d'une interface utilisateur simplifiée

Numéro de story: US-03

Durée estimée : 4 jours

Difficulté: 3/5

Importance pour le client : 4/5

Description:

En tant que chercheur en économie,

je veux disposer d'une interface graphique intuitive pour charger des données et exécuter l'algorithme,

afin de simplifier l'utilisation de l'outil sans avoir besoin de compétences en programmation.

Prérequis: US-02

Critères d'acceptation :

L'utilisateur peut charger des fichiers CSV via l'interface.

Les résultats sont exportables sous forme de tableau avec des IDs d'inventeurs désambiguïsé.

## Algorithme de score de similarité

Via le module FuzzyWuzzy.

- 1ere méthode : fuzz.ratio() , basé sur la distance de Levenshtein
  - Exemple : Plante plate -> 1 ; désambiguïsée, désambiguïser -> 1

## Algorithme de score de similarité

Via le module FuzzyWuzzy.

- 2eme méthode : token\_sort\_ratio :
  - o **Découpe** les chaînes en **tokens** (mots séparés).
  - Trie les mots par ordre alphabétique.
  - o **Recolle** les mots. Applique un **fuzz.ratio()** classique sur les chaînes triées.

## Algorithme de score de similarité

- 3eme méthode : fuzz.partial\_ratio() : recherche la souschaîne la plus similaire dans la chaîne la plus longue par rapport à la chaîne la plus courte.
  - Exemple: "apple", "the big apple pie" -> 1

### Améliorations possibles

• Ajouter des filtres pour une recherche plus précis (Adresse, domaine de recherche, etc...)

#### Avec une BDD désambiguïsé

• Pouvoir trouver des inventeurs avec un nom mal/autrement orthographié



# Documentation et reproductibilité

User Story 4 : Génération de rapports analytiques

Numéro de story : US-04

Durée estimée : 3 jours

Difficulté : 2/5

Importance pour le client : 4/5

Description :

En tant que utilisateur, je veux générer un rapport détaillé des résultats de désambiguïsation, afin de comprendre les performances de l'outil et identifier d'éventuelles anomalies.

Prérequis : US-03, US-02, US-01

- Critères d'acceptation :
  - Le rapport inclut des métriques (précision, rappel, etc.).
  - Une visualisation des groupes d'inventeurs désambiguïsés est fournie.

### Discussion critique

#### **Objectif:**

- Exploiter la base de données des brevets européens
- Désambiguïser la base de données avec le code de PatentsView
- Créer une interface graphique (GUI)
- L'interface graphique accède la Bdd
   Désambiguïsée pour suggérer un inventeur à un ou plusieurs brevets.

### Discussion critique

#### **Objectifs:**

- Exploiter la base de données des brevets européens : atteint
- Désambiguïser avec le code de l'USPTO : partiellement atteint
- Créer une interface graphique (GUI): atteint
- Le GUI accède à la Bdd Désambiguïsée pour suggérer un inventeur à un ou plusieurs brevets. échec/atteint

### Discussion critique

- Le projet a montré les limites des approches classiques face à la complexité des données brevets.
- L'adaptation de l'algorithme PatentsView a bien débuté, mais son exécution reste à finaliser.
- **Perspectives** : finaliser le clustering dans un environnement Linux, adapter l'algorithme pour des données européennes, et intégrer des modèles d'IA pour améliorer la précision

# Merci de votre attention!

### Annexe 1.1 – Users stories 1 et 2





### Annexe 1.2 – Users stories 3 et 4



| Documentation & reproductibilité                                                                                                                  |                                                                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| र्; Statut                                                                                                                                        | Planning                                                                                                                          |  |  |  |  |  |
| 22 Participants                                                                                                                                   | Vide                                                                                                                              |  |  |  |  |  |
| Q Taux d'avancement                                                                                                                               | 100,00 % ————                                                                                                                     |  |  |  |  |  |
| Dates                                                                                                                                             | Vide                                                                                                                              |  |  |  |  |  |
| ✓ 1 autre propriété                                                                                                                               |                                                                                                                                   |  |  |  |  |  |
| Commentaires                                                                                                                                      |                                                                                                                                   |  |  |  |  |  |
| B Ajouter un commen                                                                                                                               | taire                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                   |                                                                                                                                   |  |  |  |  |  |
| User Story                                                                                                                                        |                                                                                                                                   |  |  |  |  |  |
| <ul> <li>En tant que chercheur, je veux une documentation claire et détaillée afin de<br/>comprendre et utiliser efficacement l'outil.</li> </ul> |                                                                                                                                   |  |  |  |  |  |
| Pour atteindre cet obje                                                                                                                           | ectif, nous définissons les tâches suivantes :                                                                                    |  |  |  |  |  |
|                                                                                                                                                   | <ul> <li>Rédaction d'une documentation technique complète pour assurer la<br/>compréhension et la maintenance du code.</li> </ul> |  |  |  |  |  |
| Organisation du co                                                                                                                                | ode pour faciliter sa réutilisation                                                                                               |  |  |  |  |  |
| Création du PPT                                                                                                                                   |                                                                                                                                   |  |  |  |  |  |

## Annexe 3 - Evaluation algorithme

#### Définitions :

- **Précision** =  $TP / (TP + FP) \rightarrow \text{éviter les faux regroupements}$
- **Rappel** = TP / (TP + FN)  $\rightarrow$  ne pas rater de vrais liens
- **F1-score** = 2 \* (Précision \* Rappel) / (Précision + Rappel)
- Résultats observés normalement par USPTO : F1-score > 0.95

### Annexe 4 - Modification du code

```
def build_granted(config):
     # | uuid | patent_id | assignee_id | rawlocation_id | type | name_first |
    name_last | organization | sequence |
    feature_map = collections.defaultdict(list)
    cnx = pvdb.granted_table(config)
    # if there was no table specified
    if cnx is None:
        return feature_map
    cursor = cnx.cursor()
    query = "SELECT uuid, patent id, assignee id, rawlocation id, type,
    name_first, name_last, organization, sequence FROM rawassignee"
    cursor.execute(query)
    idx = 0
    for rec in cursor:
        am = AssigneeMention.from_granted_sql_record(rec)
        feature map[am.record id].append(am.assignee name())
        idx += 1
        logging.log every n(logging.INFO, 'Processed %s granted records - %s
    features', 10000, idx, len(feature_map))
    logging.log(logging.INFO, 'Processed %s granted records - %s features', idx,
     len(feature map))
    return feature map
```

```
def build granted():
     # | uuid | patent_id | assignee_id | rawlocation_id | type | name first |
     name_last | organization | sequence |
     cnx = pyodbc.connect(f'DRIVER={{SQL Server}}};SERVER={server};DATABASE={
     database};Trusted_Connection=yes;')
     cursor = cnx.cursor()
     query = "SELECT person_id, appln_id, person_name from patents_applicants"
     cursor.execute(query)
     feature_map = collections.defaultdict(list)
     idx = 0
     for person_id, appln_id, person_name in cursor:
         parts = list(map(str.strip, person_name.split(",")))
         nom = parts[0]
12
         prenom = parts[1] if len(parts) > 1 else ""
         rec = [str(person_id), str(appln_id), str(person_id), None, prenom, nom,
      None, None, None
         am = AssigneeMention.from_granted_sql_record(rec)
         feature map[am.record id].append(am.assignee name())
19
         logging.log_every_n(logging.INFO, 'Processed %s granted records - %s
20
     features', 10000, idx, len(feature_map))
     return feature map
```

#### Annexe 5 – Classe InventorMention

```
def __init__(self, uuid, patent_id, rawlocation_id, name_first, name_last
, sequence, rule_47, deceased,
             document number=None, city=None, state=None, country=None):
     self.uuid = str(uuid)
     self.patent_id = str(patent_id).replace('\"', '') if patent_id else None
     self.rawlocation_id = str(rawlocation_id).replace('\"', '') if
rawlocation_id else ''
     self.raw_last = str(name_last).replace('\"', '') if name_last else ''
    self.raw_first = str(name_first).replace('\"', '') if name_first else ''
     if type(sequence) is int:
         self.sequence = str(sequence)
     else:
         self.sequence = sequence.replace('\"', '') if sequence else ''
    self.rule_47 = str(rule_47).replace('\"', '') if rule_47 else ''
    self.deceased = str(deceased).replace('\"', '') if deceased else ''
     self.name = '%s %s' % (self.raw_first, self.raw_last)
     self.document_number = str(document_number)
     self.mention id = '%s-%s' % (self.patent id, self.sequence) if self.
patent_id is not None else 'pg-%s-%s' % (
        self.document_number, self.sequence)
     self.assignees = []
     self.title = None
     self.coinventors = []
     self. first name = None
     self. first initial = None
     self. first letter = None
     self._first_two_initials = None
     self._first_two_letters = None
     self. middle name = None
     self. middle initial = None
     self. suffixes = None
     self._last_name = None
     self.city = str(city)
     self.state = str(state)
     self.country = str(country)
     self.record_id = self.patent_id if self.patent_id else 'pg-%s' % self.
document number
```

## Annexe 6 – Erreur Weight and Biases

```
wandb: Starting wandb agent
2 2025-04-05 21:38:15,062 - wandb.wandb_agent - INFO - Running runs: []
3 2025-04-05 21:38:15,413 - wandb_wandb_agent - INFO - Agent received command: run
4 2025-04-05 21:38:15,413 - wandb.wandb agent - INFO - Agent starting run with
    config:
         chunk id: 0
         chunk size: 10000
         min batch size: 1
         run id: run 24
2025-04-05 21:38:15,416 - wandb.wandb_agent - INFO - About to run command: /usr/
    bin/env python pv/disambiguation/inventor/run_clustering.py --chunk_id=0 --
    chunk size=10000 --min batch size=1 --run id=run 24
Traceback (most recent call last):
   File "pv/disambiguation/inventor/run_clustering.py", line 12, in <module>
     from pv.disambiguation.inventor.load mysql import Loader
ModuleNotFoundError: No module named 'pv'
```

#### Annexe 7 – Distance de Levenshtein

$$\operatorname{lev}(a,b) = \begin{cases} \max(|a|,|b|) & \operatorname{si} \, \min(|a|,|b|) = 0, \\ \operatorname{lev}(a-1,b-1) & \operatorname{si} \, a[0] = b[0], \\ 1 + \min \begin{cases} \operatorname{lev}(a-1,b) \\ \operatorname{lev}(a,b-1) & \operatorname{sinon}. \\ \operatorname{lev}(a-1,b-1) \end{cases}$$