Linear Regression and Gradient Descent

Dr. Amal Aboulhassan

Machine Learning Taxonomy

Machine Learning Process

Machine Learning Skills

- Data
 - Nature
 - Pre-processing
 - Goals
- Math
 - Algorithm choice
 - Parameters setting
- Programming
 - **Python**
 - State of the art tools (e.g. SciLearn, Pandas, Matlab, etc.)

Supervised Learning Process

Regression Tasks/Steps

- Training
- Prediction
- Evaluation
 - Choose metrics
 - Different ways of choosing validation data Data Splitting

Impact of Model Complexity

Linear Regression

- Linear regression has been around since more than 200 years.
- Linear regression is a linear model :y can be calculated from a linear combination of the input variables (x).
- When there is:
 - single input variable (x), the method is referred to as simple linear regression.
 - o multiple input variables, the method is referred to as multiple linear regression.
- Different techniques can be used to prepare or train the linear regression equation from data:
 - Ordinary Least Squares (or Linear Regression or just Least Squares Regression).
 - Gradient Descent
 - Regularization

Linear Regression

- Training "least squares" linear regression
 - 1-dim. features without intercept
 - 1-dim. features with intercept
 - General case: Many features with intercept
 - Note: bias is another name for intercept

(1) Least Squares: 1 Feature

(1) Least Squares: 1 Feature

(1) Least Squares: 1 Feature

- Task: Training
- Training Data: $\{X, Y\}_{n=1}^{N}$
 - X: Features
 - Y: Prediction/Labels/Response
- Model Function: Straight line
- Cost Function: Sum of Squared Errors
- Error:
 - \circ distance between two points observation y and prediction \hat{y}
- Learning Algorithm: Linear Least Square
 - Output Model: values of w and b which minimize the cost function on the training set

- Solution 1: Closed Form/Analytical/Mathematical
- Derivation steps:
 - 1. Compute gradient of objective wrt w, as a function of w and b
 - 2. Compute gradient of objective wrt b, as a function of w and b
 - 3. Set (1) and (2) equal to zero and solve for w and b (2 equations, 2 unknowns)

$$w = \frac{\sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})}{\sum_{n=1}^{N} (x_n - \bar{x})^2} \qquad \bar{x} = \max(x_1, \dots x_N)$$

$$b = \bar{y} - w\bar{x}$$

$$\bar{y} = \max(y_1, \dots y_N)$$

 Note: we can write this formula as mean squared errors or distance based on the derivation and the objective of the computation

$$w = rac{\sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})}{\sum_{n=1}^{N} (x_n - \bar{x})^2}$$
 $\bar{x} = \operatorname{mean}(x_1, \dots x_N)$
 $b = \bar{y} - w\bar{x}$ $\bar{y} = \operatorname{mean}(y_1, \dots y_N)$

$$\{X, Y\}_{i=1}^{N}$$

1-dim Feature

$$Y = b + wX$$

F-dim Feature

$$Y = W_0 + W_1 X_1 + W_2 X_2 + ... W_f X_f$$

$$\{X, Y\}_{n=1}^{N}$$

F-dim Feature

$$Y = W_0 + W_1 X_1 + W_2 X_2 + ... W_f X_f$$

What is the geometric shape of f = 2 ?

"labels"

(1) Least Squares: F-dim Features

```
• Input: x_i \triangleq \begin{bmatrix} x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF} \end{bmatrix} "features" Entries can be real-valued, or other "covariates" numeric types (e.g. integer, binary) \tilde{X} = \begin{bmatrix} x_{11} & \dots & x_{1F} & 1 \\ x_{21} & \dots & x_{2F} & 1 \\ & & \dots & \\ x_{N1} & \dots & x_{NF} & 1 \end{bmatrix} y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} "attributes"
```

 $\hat{y}(x_i) \in \mathbb{R}$ Scalar value like 3.1 or -133.7 "responses"

Parameters:

$$weight\ vector \ \ w = [w_1, w_2, \dots w_F]$$
 $bias\ scalar \ \ b$ Or ${\sf w_0}$

Prediction:

$$\hat{y}(x_i) \triangleq \sum_{f=1}^{F} w_f x_{if} + b$$

$$Y = W_0 + W_1 X_1 + W_2 X_2 + ... W_f X_f$$

https://medium.com/@thaddeussegura/multiple-linear-regression-in-200-words-data-8bdbcef34436

• Input: Pairs of features and labels/responses $\{x_n, y_n\}_{n=1}^N$

• Output: $\hat{y}(\cdot): \mathbb{R}^F o \mathbb{R}$

- Solution 1:
 - Closed Form/Mathematical
- Derivation steps:
 - 1. Compute gradient of objective wrt each entry of w, and wrt scalar b (F+1 total expressions)
 - 2. Set all gradients equal to zero and solve for w and b (F+1 equations, F+1 unknowns)

$$\theta = [b \ w_1 \ w_2 \dots w_F]$$

$$\tilde{x}_n = [1 \ x_{n1} \ x_{n2} \dots x_{nF}]$$

$$\hat{y}(x_n, \theta) = \theta^T \tilde{x}_n$$

$$J(\theta) \triangleq \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2$$

- Task: Training
- Model Function: Multidimensional
- Cost Function: Sum of Squared Errors
- Error:
 - distance in multidimensions
- Learning Algorithm: Linear Least Square
 - Output Model:
 - Values of w and b which minimize the cost function on the training set
 - Values of ⊕ compact form

Notebooks

https://www.youtube.com/watch?v=gj4g7CzDzJE

10 Minute break

https://www.youtube.com/watch?v=gj4g7CzDzJE

- Closed form solution is computationally expensive with large number of feature/training data
- Other methods such as Gradient Descent are more suitable in this case

- Minimization of the function J(θ) means:
 - The value of θ that makes J equals zero or close to zero
 - To visualize this concept, it is the lowest point of the cost function curve

input: initial $\theta \in \mathbb{R}$

input: step size $\alpha \in \mathbb{R}_+$

while not converged:

$$\theta \leftarrow \theta - \alpha \frac{d}{d\theta} J(\theta)$$

• Simple and usually effective: pick small constant

$$\alpha = 0.01$$

• Improve: **decay** over iterations

$$\alpha_t = \frac{C}{t} \qquad \alpha_t = (C+t)^{-0.9}$$

• Improve: Line search for best value at each step

How to assess convergence?

- Ideal: stop when derivative equals zero
- Practical heuristics: stop when ...
 - when change in loss becomes small

$$|J(\theta_t) - J(\theta_{t-1})| < \epsilon$$

• when step size is indistinguishable from zero

$$\alpha \left| \frac{d}{d\theta} J(\theta) \right| < \epsilon$$

Good Luck!

