Stat Gr5204: Practice Final	Name (Print):	
Fall 2017	Student UNI:	
Time Limit: 2 hours 40 minutes	Signature:	

This exam contains 8 problems. Answer all of them. Point values are in parentheses. You **must show your work** to get credit for your solutions - correct answers without work will not be awarded points.

No calculator will be allowed in the exam. You are allowed to bring 2 sheets of A4 paper with notes written on both sides by yourself. Normal tables, if needed, will be provided during the exam.

1	10 pts	
2	15 pts	
3	15 pts	
4	10 pts	
5	15 pts	
6	15 pts	
7	10 pts	
8	10 pts	
TOTAL	100 pts	

- 1. (10 points) (5 + 5) Suppose that we have a random sample X_1, \ldots, X_n from a $N(0, \sigma^2)$ population.
 - (i) Find the form of the most powerful test of $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 = \sigma_1^2$, where $0 < \sigma_0 < \sigma_1$.

(ii) For a given value of α , the size of the Type I error, find the explicit form of the critical value of the above test.

2. (15 points) (5+10) Let X_1, \ldots, X_n be i.i.d Uniform $(\theta, \theta+1)$, where $\theta \in \mathbb{R}$ is unknown. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$ we can use the procedure:

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min\{X_1, \dots, X_n\}$, and $Y_n = \max\{X_1, \dots, X_n\}$.

(i) Determine k so that the test will have size α .

(ii) Find an expression for the power function of the above test (for all θ).

3. (15 points) (3+3+4+5) We obtain observations Y_1, \ldots, Y_n which can be described by the relationship

$$Y_i = \theta x_i^2 + \epsilon_i,$$

where x_1, \ldots, x_n are fixed constants and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d $N(0, \sigma^2)$.

(i) Find the least squares estimator $\hat{\theta}$ of θ .

(ii) Is $\hat{\theta}$ unbiased?

(iii) Find the distribution of $\hat{\theta}$.

(iv) How would you test the hypothesis $H_0: \theta = 0$ versus $H_1: \theta \neq 0$? Describe the test and the critical value.

- 4. (10 points) (3 + 4 + 3) Suppose that X_1, \ldots, X_n are i.i.d $\operatorname{Exp}(1/\mu)$, where $\mathbb{E}(X_1) = \mu > 0$.
 - (i) Find the mean and variance of $\bar{X}_n = \sum_{i=1}^n X_i/n$. Hence, find the asymptotic distribution of \bar{X}_n (properly standardized).

(ii) Let $T = \log \bar{X}_n$. Find the corresponding asymptotic distribution of T (properly standardized).

(iii) How can the asymptotic distribution of T be used to construct an approximate $(1-\alpha)$ confidence interval (CI) for μ ? Explain your answer and give the desired CI.

- 5. (20 points) (3+4+3+5) Suppose that X_1, X_2, \ldots, X_n are i.i.d $N(\theta, 1)$, where $\theta \in \mathbb{R}$ is unknown. Let $\psi = \mathbb{P}_{\theta}(X_1 > 0)$.
 - (a) Find the maximum likelihood estimator $\hat{\psi}$ of ψ .

(b) Find an approximate 95% confidence interval for ψ .

(c) Let $Y_i = \mathbf{1}\{X_i > 0\}$, for i = 1, ..., n. Define $\tilde{\psi} = (1/n) \sum_{i=1}^n Y_i$. Show that $\tilde{\psi}$ is a consistent estimator of ψ .

(d) Which estimator of ψ , $\hat{\psi}$ or $\tilde{\psi}$, is more preferable in this model.

6. (20 points) (3+4+8) Suppose that

$$Y_{ij} \sim N(\theta_i, \sigma^2), \quad i = 1, ..., k; \quad j = 1, ..., n_i,$$

where θ_i , for i = 1, ..., k, and σ^2 are unknown.

(a) Find the distribution of $\bar{Y}_{i} = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij}$.

(b) Suppose that the goal is to estimate $\tau = \sum_{i=1}^k a_i \theta_i$, where a_i , for $i = 1, \dots, k$, are known constants. Note that $\hat{\tau} = \sum_{i=1}^k a_i \bar{Y}_i$ is a natural estimator of τ . Find the distribution of $\hat{\tau}$.

(c) Let us consider testing for $H_0: \tau = 0$ versus $H_1: \tau \neq 0$. Describe a test procedure — the test statistic, its exact distribution (under H_0) and the critical value.

7. (10 points) (5 + 5) Suppose that we observe X_1, \ldots, X_n , where

$$X_i | \theta_i \sim N(\theta_i, \sigma^2), \quad i = 1, \dots, n, \quad \text{independent},$$

 $\theta_i \sim N(\mu, \tau^2), \quad i = 1, \dots, n, \quad \text{independent}.$

(a) Find that the marginal distribution of X_i .

(b) Also, show that, marginally, X_1, \ldots, X_n are i.i.d.

- 8. (10 points) (6 + 4) Let W_1, W_2, \dots, W_k be unbiased estimators of a parameter θ with $\text{Var}(W_i) = \sigma_i^2$ and $\text{Cov}(W_i, W_j) = 0$ if $i \neq j$.
 - (a) Show that among all estimators of the form $\sum_{i=1}^k a_i W_i$, where a_i 's are constants and $\mathbb{E}_{\theta}(\sum_i a_i W_i) = \theta$, the estimator $W^* = \frac{\sum_i W_i/\sigma_i^2}{\sum_i 1/\sigma_i^2}$ has minimum variance.

(b) Show that $Var(W^*) = \frac{1}{\sum_i 1/\sigma_i^2}$.