浙江大学宁波理工学院 2019-2020 学年 1 学期

《数据结构(A)》课程期末考试试卷(B)

开课分院:	数据与计算机工程学院	,考试形式: 闭 卷,允许带 入场
考试日期:	年 1_月14	日,考试所需时间: <u>120</u> 分钟
考生姓名_	学号	考生所在分院:_数据学院专业班级:
术语表:		

binary search tree 二叉搜索 complete binary tree 完全 balance factor 平衡因子 二叉树 sorted (non-decreasing) order (worst-case) time complexity (最 single source shortest path (非递减) 有序 单源最短路径 坏情况)时间复杂度 topological order 拓扑排 preorder traversal 先序遍历 binary tree 二叉树 weighted path length 带 inorder traversal 中序遍历 dummy head node 空表头结点 权路径长度 postorder traversal 后续遍历 linear list 线性表 linear probe 线性探测 Singly/ doubly linked list 单/ ascending 递增 quadratic probe 平方探测 双向链表 Open addressing 开放定 Circular Queue 循环队列 postfix expression 后缀表达式 circularly linked list 循环链 Shell/Heap/Quick/Insertion/Merge/bu collision 冲突 bble sort 希尔/堆/快速/插入/归并/冒 表 泡排序 circular array 循环数组 average search time 平均查找时间 loading factor 负载因子 hash table 散列表 adjacency matrix 邻接矩阵 sequence 序列 connected component 连 hash value 散列值 DFS/BFS 深度/宽度优先搜索 通部件 sequential storage 顺序存 adjacency lists 邻接表 connected graph 连通图 储

命题(组)老师签名:	年	月	日
分院主管教学院长或首席主讲教授签名:	年	月	日

<u>_</u>	Answer	the following questions with True or False, and make it on your
		et. (15 Points)
a	nswei sne	et. (13 1 omts)
()1、	The Fibonacci number sequence $\{FN\}$ is defined as: $F0=0$, $F1=1$, $FN=FN-1+FN-2$
	, <i>N</i> =2, 3,	The space complexity of the function which calculates FN recursively is $O(logN)$.
()2、	If the most commonly used operations are to visit a random position and to insert
	and delete ti	he last element in a linear list, then sequential storage works the fastest.
()3、	Run the following operations on a stack S: Push(S,1), Push(S,2), Pop(S), Push(S,3),
	Pop(S), Pop	$o(S)$. The output sequence must be $\{1, 2, 3\}$.
()4、	In a circular queue which is implemented by an array, the front value must always be
	no larger tha	an the rear value.
()5、	If the preorder and inorder traversal sequences of a binary tree are the same, then
	none of the	nodes in the tree has a left child.
()6、	In a binary search tree which contains several integer keys including 4, 5, and 6, if 4
	and 6 are or	the same level, then 5 must be their parent.
()7、	The number of leaf nodes in a complete binary tree with 124 nodes is definite.
()8、	For any node in an AVL tree, the left and right subtrees must have the same height.
()9、	In a directed graph, the sum of the in-degrees must be equal to the sum of the out-
	degrees of a	all the vertices.
()10,	If a graph is represented by adjacency lists, then the space taken depends only on the
	number of v	vertices, not the number of edges.
()11、	In a min-heap, all the keys along the path from the root to any leaf node must be in
	sorted (non-	-decreasing) order.
()12、	<i>NlogN</i> 2 and <i>NlogN</i> have the same speed of growth.
()13、	In a binary search tree, the keys on the same level from left to right must be in
	sorted (nor	n-decreasing) order.
()14、	In a singly linked list of N nodes, the time complexities for query and insertion
	are $O(1)$ an	d O(N), respectively.
()15,	In a graph G, if we have to do BFS twice to visit every one of its vertices, then there
	must be two	o connected components in G.

2. Read each of the following questions carefully; choose the best answer(from among items A, B, C, or D) and make it on your answer sheet. (30 Points)

- ()1. Insert the serial 2, 1, 4, 5, 9, 3, 6, 7 sequently into an AVL tree which is initialized to be empty. Which of the following statement is wrong?
 - A. 4 is the root node;
- B. 3 and 7 are siblings
- C. 2 and 6 are siblings;
- D. 9 is the parent node of 7;
- ()2. Given the adjacency matrix of a directed graph as followed, the out-degree and indegree of the node 2 (The number of the nodes starts with 0) are respectively:

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix}$$

A. 3 and 1

B. 1 and 3

C. 0 and 2

- D. 2 and 5
-)3. Give the graph as followed, which option is not the DFS serial of the graph?

- A. V₁, V₅, V₄, V₃, V₂
- B. V1, V3, V2, V5, V4
- C. V₁, V₂, V₅, V₄, V₃
- D. V₁, V₂, V₃, V₄, V₅
- ()4. Given an ordered sequence of 1000 elements. If another element is inserted by binary insertion sorting, the maximum number of comparisons is:
 - A. 1000

B. 999

C. 500

- D. 10
- ()5. For a linear list with length n of sequential storage, the time complexity of searching and inserting nodes are respectively:
 - A. O(1), O(1)

B. O(1), O(N)

C. O(N), O(1)

D. O(N), O(N)

第3页(共9页)

•	考生姓名学	클=	考生所在分院:	专业班级:	
()6. Let h be a sing	le-linked list wit	hout header node. T	The statement to insert a new node t	
`	on the head of h is:				
	A. h=t; t->next=h->nex	xt; B.	t->next=h->next; h	=t;	
	C. h=t; t->next=h;	D.	t->next=h; h=t;		
()7. If top is a point	nter to the top e	lement of the stack	, the condition for determining that	
	stack S (containing at mo	est m elements, in	ndex from 0 to m -1)	is empty is:	
	A. $S - stop == 0$	B. S->	top == -1		
	C. S->top!= m-1	D. S->	top == m-1		
()8. If the circular	queue is represe	nted by an array of	size m , the queue head position is	
	front, and the number of	queue elements i	s size, then the queu	e tail element position rear is	
	A. front+size	B. fron	t+size-1		
	C. (front+size)%m	D. (fron	t+size-1)%m		
(,	•	•	ree is <i>FDEBGCA</i> and the result of	
			-	traversal of this binary tree?	
	A. ABCDEFG	B. ABI	OFEGC		
	C. ABDFECG	D. ABC			
(level of a bina	ry tree (the root is	at the 1st level), we can have at	
	most () nodes.				
		C. 16	D. 32		
(1, 3, 5, 8, 9 or	ne by one into an in	itially empty max-heap. The root of	
	the resulting heap is	Q (D . 0		
,	A. 3 B. 5	C. 6	D. 9	11 1 771 4 4 6 371	
()12. Given the ac	•	a directed graph as i	ollowed. Then starting from V1, a	
	possible DFS sequence is	***************************************			
	0 71 - 2 - 1 -	> 3/			
	2 73 31 34 71				
	3 V4 /				
	4 V5 +1 +3/				
	A. V1,V2,V3,V4,V5	В	V1,V2,V3,V5,V4		
	C. V1,V3,V2,V4,V5	D	. V1,V4,V3,V5,V2		
		第	4页(共9页)		
		\l_1 -	・ント ペノトマ ノトノ		

• =	考生姓名_		学号	考生	所在分院:_		_专业班级:	
()13,	Which	n one of th	ne following	statements	is TRUE	about the	consequential
				probing to re				•
				or equal to th				
	B. They	must be	smaller than	or equal to th	ne original ha	s address		
	C. They	can be g	greater than o	r smaller than	n, but never e	qual to the	original has	address
	D. Ther	e is no re	striction on t	he address				
()14、	Given	a complete l	oinary tree w	ith 1102 no	des, the nu	amber of le	eaf nodes in the
	tree must	be	·					
	A. 79		B. 551	C. 2	1063		D. Not su	ıre
()15、	The ro	outes of airli	ine flights ca	n be represe	nted by a	directed gra	aph. Which one
	of the foll	owing al	gorithms is	the most sui	table for find	ding the m	ost econom	nical flight path
	between a	ıny pair o	of cities?					
	A. Dijks	tra	B. Kruskal	C.	DFS	D.	Topological	sort
3.	Read ea	ch of th	e following	g programs	s (originate	e from the	e textbook	x) carefully,
fi	ll in the b	olanks a	and make i	t on your a	nswer shee	et. (2 poir	nts for eac	h blank, 20
p	oints tota	ıl)		·		_		
•			ng function	to reverse th	e list L with	a dummy	header.	
			PtrToNode;					
•	ruct Node {							
		entType]	Data;					
		Node Ne						
} ;								
ty	pedef PtrTo	oNode Li	ist;					
Li	ist Reverse	(List L) {						
	PtrTo	Node O	ld_head, Nev	v_head, Temp);			
	Old_l	head=L->	>next;					
	New_	_head=N	ULL;					
	while	(Old_hea	ad) {					
		Temp=	Old_head->	Next;				
		Old_he	ead->Next= N	New_head;				
		,	1);					
		Old_he	ead=Temp;	给 E 五	(世の声)			
				知り火	(共9页)			

. 考生姓名_______学号________________________专业班级: _______. return L; } 2. Given the following program to initialize a array implementation stack. #define MaxSize <储存数据元素的最大个数> typedef int Position; typedef struct SNode *PtrToSNode; struct SNode{ ElementType Data[MaxSize]; Position Top; int MaxSize; **}**; typedef PtrToSNode Stack; Stack CreateStack(int N){ Stack S = (3) S-> Top = -1; S-> MaxSize = (4) ; return S; } 3. Given the following program to implement inorder traversal sequences of a binary tree. typedef struct TNode * Position; typedef Position BinTree; struct TNode { ElementType Data; BinTree Left; BinTree Right; **}**; void InorderTraversal(BinTree BT) {

if(BT){ InorderTraversal (_____5___); printf("%d", BT->Data); InorderTraversal (6); } } 4. Given the following program for the Simple Insertion Sort to sort numbers from small to large. void InsertionSort(ElementType A[], int N){ int P, i; ElementType Tmp; for(P=1; P<N; P++){ Tmp = A[P]; //get the first element of unsorted serial for(i=P; i>0 &&_____; i--) A[i] = A[i-1]; $A[i] = \underline{\qquad \qquad (8) \qquad \qquad ;}$ } } 5. Given the following program to implement binary search typedef int KeyType; typedef struct { KeyType key; InfoType data; }RecType; int BinSearch (RecType R[], int n, KeyType k) { int low=0, high=n-1, mid; while (<u>9</u>){ mid = (low+high)/2;if (k = = R[mid].key)return mid; if(k<R.[mid].key)

```
high = mid-1;
else
(____10___)
}
return 0;
```

4. Please write or draw your answers for the following problems on the answer sheet. (35 points)

- 1) (5 points) Give the input serial with A, B, and C, please write all possible output serials of a stack.
- 2) (7 points) Give the following input keys serial {70, 55, 93, 12, 50, 99}, please draw some graphs to illustrate the construction process of a MaxHeap.
- 3) (7 points) Given the following program of quick sort. Let array $A = \{59, 12, 85, 94, 18, 22, 44\}$. Please draw a table to show the result in program first and second times running position 1. void QSort (ElementType A[], int Left, int Right)

- 4) (7 points) Assume keys = $\{47, 29, 11, 92, 22, 8, 50, 37, 89, 94\}$, has table size with 11, and hash function h(key)=key%11, we use the linear probing to resolve collisions. Please try to give the final hash table and calculate the average successful search length (ASL).
- 5) (9 points) Given the adjacency matrix of a weighted directed graph as followed, the nodes numbered as V0, V1,V5.

. 考生姓名	学号	考生所在分院:	专业班级:	<u> </u>

VO	V1	V2	V3	V4	V5
∞	2	12	∞	∞	∞
∞	∞	∞	8	4	∞
∞	∞	∞	∞	5	3
∞	∞	∞	∞	∞	9
∞	∞	∞	∞	∞	10
∞	∞	∞	∞	∞	∞
	8 8 8 8	 \$\infty\$ 2 \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ 	$ \begin{array}{cccc} \infty & 2 & 12 \\ \infty & \infty & \infty \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- a) Please draw the graph according to the matrix (2 points)b) Please use algorithm Dijkstra to calculate the shortest path of other nodes from V0. (7 points)