# CS772: Research Project Zero Shot Machine Unlearning

Ashutosh Kumar - 210221 Krish Sharma - 210530 Labajyoti Das - 210552 Shubham Patel - 210709 Siddharth Kalra - 211032

 $May\ 2,\ 2024$ 

### Problem Statement

- Machine Unlearning
  - Model M, Data D
  - Request:
    - Forget Data  $D_f \subset D$
    - Retain Data  $D_r = D D_f$
  - Gold / Retrained Model:  $M^*$
  - Unlearned Model:  $M_u$
  - Aim:  $M_u(x) \approx M^*(x)$

#### Problem Statement

- Machine Unlearning
  - Model M, Data D
  - Request:
    - Forget Data  $D_f \subset D$
    - Retain Data  $D_r = D D_f$
  - Gold / Retrained Model:  $M^*$
  - Unlearned Model:  $M_u$
  - Aim:  $M_u(x) \approx M^*(x)$
- Zero-Shot Machine Unlearning
  - No Access to  $D_f$  and  $D_r$
- Proposes two approaches restricted setting of classification
- Setting
  - Set of Forget  $C_f$  and Retain Classes  $C_r$

#### Error Minimization-Maximization Noise



- Anti-Samples  $N_f$  learnt by maximising loss
- Data representatives  $N_r$  learnt by minimising loss
- Updates the original model using noise

### Gated Knowledge Transfer



• Knowledge Distillation to train the student from teacher

## Gated Knowledge Transfer



- Knowledge Distillation to train the student from teacher
- Student Minimise KL
- Attention Mimic Inner Layers
- Generator: Max  $D_{KL}(T(x_g)||S(x_g)) = \sum_i^{|C|} t_p^{(i)} \log(t_p^{(i)}/s_p^{(i)})$
- Filter images belonging to  $C_f$

## **Entropy Criterion**

- Entropy of predictions
  - Reject if  $S(t_p) > \epsilon$
  - Faster Retain Accuracy Restoration
  - Poorer Retain Accuracy
  - Carrying out experimentations

### Deep Inversion

- Difference in  $M^*$  and  $M_u$ 
  - Non-zero Accuracy for  $C_f$
  - Due to Attention implicitly learn for  $C_f$
  - Removing Attention: Impacts Performance
  - Reason: Poor Generated Images
  - Deep Inversion
  - Much Better Images

## Generated Images

MNIST Numbers Dataset Images of Digits from 0-9

• GKT\*



• GKT (with entropy criterion)\*



• Deep Inversion



<sup>\*</sup> Images not in order from 0-9. Images generated by the generator before forget accuracy begin to rise

## Experimental Results

MNIST Numbers Dataset - AllCNN Model

Train: 60,000, Test: 10,000 Retain Accuracy on Test Set:

• Retrain Model: 99.25 %

• GKT: 97.12 %

• M-M: 10.57 %

## Experimental Results

MNIST Numbers Dataset - AllCNN Model

Train: 60,000, Test: 10,000 Retain Accuracy on Test Set:

 $\bullet$  Retrain Model: 99.25 %

• GKT: 97.12 %

• M-M: 10.57 %

• GKT (no attention): <50 %

• Deep Inversion (100 sample/class): 40 - 50 %

 $\bullet$  Deep Inversion (6000 sample/class): 80 - 85 %

#### Conclusion

- Tackling zero-shot setting
- Non-zero forget class accuracy
- Quality of images generated
- Decent Results

### Learnings

- First research experience
- Ability to read papers
- Tweaking complex machine learning code

# Thank You