Amendments to the Specification:

Please delete the previously presented paragraph beginning at page 6, line 23, which starts with "FIG. 2A is a side view"

Please delete the previously presented paragraph beginning at page 6, line 23, which starts with "FIG. 2B is a cross-sectional view"

Please delete the <u>two</u> previously presented paragraphs beginning at page 6, line 35, which starts with "FIG. 7 is an exploded perspective view"

Please replace the paragraph beginning at page 7, line 1 with the following amended paragraph:

FIG. 9 7 is a graph showing the current response of biosensors as a function of concentration of glucose in blood.

Please replace the paragraph beginning at page 10, line 26 with the following amended paragraph:

In an alternative embodiment as shown in FIG. 7 (not shown), the dual-purpose reference/ counter electrode in the biosensor strip can be replaced by two electrodes - a reference electrode 34 and a counter electrode 36. Biosensors containing a working electrode-38, a reference electrode 34, and a counter electrode 36-separate from a reference electrode are shown in U. S. Publication Number US-2003-0146110-A1, published August 7, 2003, incorporated herein by reference. This alternative embodiment can further include a fourth electrode 40 to act as a trigger electrode to initiate the assay sequence. In the absence of the optional trigger electrode-40, the counter electrode 36 can be positioned downstream of the working electrode 38 so as to act as a trigger electrode to initiate the assay sequence. As in the embodiment shown in FIG. 1, each of the electrodes 34, 36, 38, and 40 is also associated with a conductive track and an electrical contact. For the reference electrode 34, the conductive track has the reference numeral 14e

and the electrical contact has the reference numeral 16c. For the counter electrode 36, the conductive track has the reference numeral 14d and the electrical contact has the reference numeral 16d. For the working electrode 38, the conductive track has the reference numeral 14e and the electrical contact has the reference numeral 16e. For the trigger electrode 40, the conductive track has the reference numeral 14f and the electrical contact has the reference numeral 16f. In this embodiment, the components other than the electrodes have the same reference numerals as the components in FIG. 1.

Please replace the paragraph beginning at page 11, line 7 with the following amended paragraph:

Optionally, in either embodiment, at least one layer of mesh and at least a second insulating layer can be placed proximate to the reagent layer 22, 22' to allow the liquid sample to fill the sample application zone by chemically-aided wicking. The layer of mesh can be held in position with the aid of an insulating layer ("POLYPLAST") or an adhesive layer. If an adhesive layer is used, the adhesive can serve the dual-purpose of holding the layer of tape in position. In the arrangement where the electrodes are disposed face-to-face, as shown in FIG. 8, the layer of mesh 40' can be placed between the two substrates 12a' and 12b' in the vicinity of the electrodes 18' and 20'. Any additional insulating layers include openings formed therein to allow access of the applied sample to the underlying layers of mesh. In the embodiment shown in FIG. 8, the components other than the layer of mesh 40' have the same reference numerals as the components in FIG. 4.

Please replace the paragraph beginning at page 25, line 27 with the following amended paragraph:

In a preferred embodiment, the biosensor is inserted into a device for measuring the current generated by the reaction between the analyte in the liquid sample and the reagents in the biosensor or some other useful electrical characteristic of the reaction. Then the sample application zone of the

biosensor can be filled with a liquid sample by any of numerous methods. Filling can be carried out by, for example, capillary attraction, chemically-aided wicking, or vacuum. One of ordinary skill in the art can specify the type of aperture preferred for introducing the liquid sample into the sample application zone so that the sample can wet the electrodes of the biosensor. Then the current or other electrical characteristic can be measured, and, preferably recorded. FIG. 9 7 is a graph showing the current response of biosensors as a function of concentration of glucose in blood. In the legend of the graph, 1,10-PQ represents 1,10-phenanthroline quinone; 4,7-PQ represents 4,7-phenanthroline quinone; 1,10-PQ/FE/PF6 represents an iron complex of 1,10-phenanthroline quinone; 1,10-PQ/Mn/CI represents a manganese complex of 1,10-phenanthroline quinone.