Lecture V: Problems with Experiments: Non-compliance

Stanislao Maldonado

Universidad del Rosario stanislao.maldonado@urosario.edu.co

Impact Evaluation Universidad del Rosario February 21th, 2017

1. Introduction

- Experiments are subject to implementation issues that have profound consequences in the way they are analyzed and interpreted
- We focus on this lecture on non-compliance or failure to treat
 - Some of the units assigned to the treatment group do not receive the treatment (known as one-side non-compliance)
 - Some units assigned to treatment group go untreated and some assigned to the control group receives the treatment (two-sided non-compliance)
- Some examples?
- What's wrong with non-compliance?

What to compare?

- Example: Campaign to increase children vaccination
 - 2,000 households randomly divided in two groups (1,000 treated)
 - Only 300 households were actually treated by the campaign
 - 3 groups: 300 assigned to treatment and treated, 700 assigned to treatment but untreated, and 1,000 untreated. What would you compare?

Sources of non-compliance (Glennerster et al 2013)

- Some people in the treatment group are not treated
- People in the treatment group do not complete the treatment
- People in the control group receive the treatment
- Partner organization does not comply with the protocols for the delivery of the treatment
- People exhibit the opposite of compliance

2. Angrist-Imbens-Rubin Causal Model

- The model was proposed by Angrist, Imbens and Rubin (1996). The basic notation is the following:
 - *i* is an index for individuals in a population of size *N*
 - lacksquare D_i is the treatment level
 - $D_i = 1$ if individual has been exposed to treatment
 - lacksquare $D_i = 0$ if individual has not been exposed to treatment
 - $Y_i(D_i)$ is the outcome of interest
 - $Y_i(1)$ is the outcome in case of treatment
 - $\mathbf{Y}_i(0)$ is the outcome in case of no treatment
 - Z is assignment to treatment
 - $lacksquare Z_i(1)$ is the assignment to treatment status
 - $Z_i(0)$ is the assignment to no treatment status
- Participation into treatment: $D_i = D_i(Z)$

- Outcome: $Y_i = Y_i(Z, D)$
- Notice that 3 causal effects can be defined:
 - The effect of assignment Z on treatment D
 - The effect of assignment Z on outcome Y
 - The effect of treatment D on outcome Y
- The first two are called "intention to treat" (ITT) effects
- The AIR model defines the set of assumptions that ensures the identification of these effects

Assumptions of the AIR causal model

Assumption A.1: Stable treatment unit value assumption (SUTVA)

The potential outcomes and treatments for unit i are independent of the potential assignments, treatment and outcomes of unit $j \neq i$. Therefore:

$$D_i(Z) = D_i(Z_i) \tag{1}$$

$$Y_i(Z,D) = Y_i(Z_i,D_i) \tag{2}$$

■ Then, we can define the ITT effects as follows:

Definition 1: Causal effect of Z on D

The causal effect of Z on D for unit i is $D_i(1) - D_i(0)$

Definition 2: Causal effect of Z on Y

The causal effect of Z on Y for unit i is $Y_i(1, D_i(1)) - Y_i(0, D_i(0))$

- Counterfactual logic requires to think for each individual!
 - Potential $Y: Y_i(1,1), Y_i(1,0), Y_i(0,1), Y_i(0,0)$
 - Potential $D: D_i(0) = 0, D_i(0) = 1, D_i(1) = 0, D_i(1) = 1$
 - Potential Z: $Z_i = 0, Z_i = 1$
- Only one state is actually observed!
- If SUTVA holds, then we can classify individuals as follows:

Table 1: Classification of individuals according to assignment and treatment

		$Z_i = 0$		
		$D_i(0) = 0$	$D_i(0) = 1$	
$Z_i = 1$	$D_i(1) = 0$	Never-taker	Defier	
	$D_i(1) = 1$	Complier	Always-taker	

Assumption A.2: Random assignment

All individuals have the same probability to be assigned to the treatment:

$$Pr(Z_i = 1) = Pr(Z_j = 1)$$
(3)

Using A.1 and A.2, we can consistently estimate the two ITT effects:

$$ITT_{D,Z} = \mathbb{E}(D_i/Z_i = 1) - \mathbb{E}(D_i/Z_i = 0) = \frac{Cov(D_iZ_i)}{Var(Z_i)}$$
 (4)

$$ITT_{Y,Z} = \mathbb{E}(Y_i/Z_i = 1) - \mathbb{E}(Y_i/Z_i = 0) = \frac{Cov(Y_iZ_i)}{Var(Z_i)}$$
 (5)

Note that the ratio between (4) and (5) gives the conventional IV estimator:

$$\beta_{IV} = \frac{\frac{Cov(Y_i Z_i)}{Var(Z_i)}}{\frac{Cov(D_i Z_i)}{Var(Z_i)}} = \frac{Cov(Y_i Z_i)}{Cov(D_i Z_i)}$$
(6)

- Questions:
 - Under which assumptions this IV estimator gives an estimate of the average causal effect of D on Y and for which group?
 - Does this estimate depends on the instrument we use?

Assumption A.3: Non-zero average causal effect of Z on D

The probability of treatment must be different in the two assignment groups:

$$Pr(D_i(1) = 1) \neq Pr(D_i(0) = 1)$$
 (7)

 This is similar to the requirement of having the instrument correlated with the endogenous regressor

Assumption A.4: Exclusion restriction

The assignment affects the outcome only through the treatment,

$$Y_i(1, D_i) = Y_i(0, D_i) = Y_i(D_i)$$
 (8)

As in the standard IV case, A.3 can be tested but A.4 cannot

Definition 3: Causal effect of D on Y

The causal effect of D on Y for unit i is $Y_i(1) - Y_i(0)$

- Again: we cannot compute this because counterfactual is not observed!
- Solution: compare sample averages of the two components for individuals who are in the two treatment groups only because of different assignments (compliers and defiers)
- Are these assumptions enough?

$$\underbrace{Y_i(1, D_i(1)) - Y_i(0, D_i(0))}_{\mathsf{Z} \to \mathsf{Y}} = Y_i(D_i(1)) - Y_i(D_i(0))$$

$$= [Y_i(1)D_i(1) + Y_i(0)(1 - D_i(1))]$$

$$- [Y_i(1)D_i(0) + Y_i(0)(1 - D_i(0))]$$

$$= \underbrace{[D_i(1) - D_i(0)]}_{\mathsf{Z} \to \mathsf{D}} \underbrace{[Y_i(1) - Y_i(0)]}_{\mathsf{D} \to \mathsf{Y}}$$

- This holds at an individual level!
- Using sample averages:

$$\underbrace{\mathbb{E}[Y_{i}(1, D_{i}(1)) - Y_{i}(0, D_{i}(0))]}_{Z \to Y} = \underbrace{\mathbb{E}[D_{i}(1) - D_{i}(0)]}_{Z \to D} \underbrace{[Y_{i}(1) - Y_{i}(0)]]}_{D \to Y} \\
= \mathbb{E}[Y_{i}(1) - Y_{i}(0)/D_{i}(1) - D_{i}(0) = 1]Pr(D_{i}(1) - D_{i}(0) = 1) \\
-\mathbb{E}[Y_{i}(1) - Y_{i}(0)/D_{i}(1) - D_{i}(0) = -1]Pr(D_{i}(1) - D_{i}(0) = -1)$$

 We still have an identification problem! (average effect for compliers may cancel with average effects for defiers)

Assumption A.5: Monotonicity

No one does the opposite of her assignment, no matter what the assignment is:

$$D_i(1) \geq D_i(0), \forall i$$

- ATE for defiers in zero
- Notice that A.3 + A.5 implies strong monotonicity
 - There is no defiers
 - There exists at least one complier

Local average treatment effect (LATE)

■ Given A.5, we can write equation 7 as:

$$\underbrace{\mathbb{E}[Y_i(1, D_i(1)) - Y_i(0, D_i(0))]}_{Z \to Y} = \underbrace{\mathbb{E}[D_i(1) - D_i(0)]}_{Z \to D} \underbrace{[Y_i(1) - Y_i(0)]]}_{D \to Y}$$

$$= \mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) - D_i(0) = 1] Pr(D_i(1) - D_i(0) = 1)$$

Re-arranging this expression, we obtain an expression for LATE:

$$\mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) - D_i(0) = 1] = \frac{\mathbb{E}[Y_i(1, D_i(1)) - Y_i(0, D_i(0))]}{Pr(D_i(1) - D_i(0) = 1)}$$

Definition 4: LATE

LATE is the average effect of treatment for those who change treatment status because of a change of the instrument; i.e. the average effect of treatment for compliers

It can be shown that:

$$\mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) - D_i(0) = 1] = \frac{Cov(Y_iZ_i)}{Cov(D_iZ_i)} = \beta_{IV} (9)$$

IV estimand is the LATE. LATE is the only treatment effect that can be estimated by IV

3. One-Side Non-Compliance

- When one-side non-compliance, the sample is composed only by compliers and never-takers
- Required assumptions are also simplified:
 - SUTVA
 - Random Assignment
 - Exclusion Restriction
 - Non-zero causal effect of Z on D
- What about monotonicity?
- *LATE* is also simplified:

$$\mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) = 1] = \frac{Cov(Y_i Z_i)}{Cov(D_i Z_i)} = \beta_{IV}$$
 (10)

Example: Potential Outcomes under One-Side Non-Compliance

	Y(0)	Y(1)	D(0)	D(1)	
Individual	Bribes if no	Bribes if	Assigned to	Assigned to	Туре
	audit	audit	no audit	audit	
1	4	6	0	1	Complier
2	2	8	0	0	Never-Taker
3	1	5	0	1	Complier
4	5	7	0	1	Complier
5	6	10	0	1	Complier
6	2	10	0	0	Never-Taker
7	6	9	0	1	Complier
8	2	5	0	1	Complier
9	5	9	0	0	Never-Taker

■ Computing *ATE*:

$$ATE = \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)] = 7.67 - 3.67 = 4$$

■ Computing *ITT*s:

$$ITT_{Y,Z} = \mathbb{E}[Y_i/Z_i = 1] - \mathbb{E}[Y_i/Z_i = 1]$$

$$= \mathbb{E}[Y_i(1)/Z_i = 1] - \mathbb{E}[Y_i(0)/Z_i = 1]$$

$$= (2 + 0 + 4 + 2 + 4 + 0 + 3 + 3 + 0)/9 = 2$$

$$ITT_{D,Z} = \mathbb{E}[D_i/Z_i = 1] - \mathbb{E}[D_i/Z_i = 1]$$

$$= \mathbb{E}[D_i(1)/Z_i = 1] - \mathbb{E}[D_i(0)/Z_i = 1]$$

$$= (1+0+1+1+1+0+1+1+0)/9 = \frac{2}{3}$$

Computing LATE:

LATE =
$$\mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) = 1]$$

= $(2 + 4 + 2 + 4 + 3 + 3)/6 = 3$

- Of course, only one potential outcome is observable for one assignment
- Recall:

$$LATE = \mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) - D_i(0) = 1] = \frac{ITT_{Y,Z}}{ITT_{D,Z}}$$
$$= \frac{2}{2/3} = 3 = \beta_{IV}$$

- Can we recover ATE?
 - ATE may be viewed as a weighted average of the treatment effect for compliers and never takers:

$$ATE = \mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) = 1]xITT_{D,Z} + \mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) = 0]x(1 - ITT_{D,Z})$$

In our table:

$$ATE = 3.(2/3) + 6.(1/3) = 4$$

■ In practice?

- Few points to be emphasized:
 - An experiment with one-side non-compliance allows to estimate ITT and LATE (ATE for compliers)
 - Whether a subject is a complier or never taker depends also on the experimental design
 - Exclusion restriction plays a critical role
 - When *ITT* for *D* is close to zero, small deviations from the exclusion restriction may severely bias the estimation of *LATE*

Recall 1: What if we ignore the failure to treat and compare assignment to treatment/control?

Recall 2: What if we compare those actually treated versus pure control?

This comparison might be severely biased. Consider the following:

$$\begin{split} MDO_{TvsC} &= \mathbb{E}[Y_i(1)/D_i(1) = 1] - \mathbb{E}[Y_i/Z_i = 0] \\ &= \mathbb{E}[Y_i(1)/D_i(1) = 1] - \mathbb{E}[Y_i(0)/D_i(1) = 1] \\ &+ \mathbb{E}[Y_i(0)/D_i(1) = 1] - \mathbb{E}[Y_i/Z_i = 0] \\ &= LATE + \mathbb{E}[Y_i(0)/D_i(1) = 1] - \mathbb{E}[Y_i/Z_i = 0] \end{split}$$

4. The role of monotonicity

 Monotonicity plays a critical role in identifying LATE under two-side non-compliance

Example: Potential Outcomes under Two-Side Non-Compliance

Individual	Y(D=0)	Y(D=1)	D(0)	D(1)	Туре	Y(Z=0)	Y(Z=1)
1	24	34	0	1	Complier	24	34
2	18	28	0	1	Complier	18	28
3	19	32	0	1	Complier	19	32
4	19	26	0	1	Complier	19	26
5	18	22	1	0	Defier	22	18
6	22	28	1	0	Defier	28	22
7	10	20	1	1	Always-Taker	20	20
8	11	12	0	0	Never-Taker	11	11
9	8	15	0	0	Never-Taker	8	8
10	11	18	0	0	Never-Taker	11	11

Computing LATE:

LATE =
$$\mathbb{E}[Y_i(1) - Y_i(0)/D_i(1) = 1 - D_i(0) = 1]$$

= $(10 + 10 + 13 + 7)/4 = 10$

We need to check whether we can recover LATE using the ratio of ITT:

$$ITT_{Y,Z} = \mathbb{E}[Y_i/Z_i = 1] - \mathbb{E}[Y_i/Z_i = 1]$$

= $(10 + 10 + 13 + 7 - 4 - 6 + 0 + 0 + 0 + 0)/10 = 3$

$$ITT_{D,Z} = \mathbb{E}[D_i/Z_i = 1] - \mathbb{E}[D_i/Z_i = 1]$$

= $(1+1+1+1-1-1+0+0+0+0)/10 = 2/10$

Computing LATE using ITTs ratio:

$$\frac{\textit{ITT}_{Y,Z}}{\textit{ITT}_{D,Z}} = \frac{3}{2/10} = 15 \neq \textit{LATE}$$

Defiers in the sample violates the monotonicity assumption required for LATE to be identified. Dropping them from the sample:

$$ITT_{Y,Z} = \mathbb{E}[Y_i/Z_i = 1] - \mathbb{E}[Y_i/Z_i = 1]$$

= $(10 + 10 + 13 + 7 + 0 + 0 + 0 + 0)/8 = 5$

$$ITT_{D,Z} = \mathbb{E}[D_i/Z_i = 1] - \mathbb{E}[D_i/Z_i = 1]$$

= $(1+1+1+1+0+0+0+0)/8 = 1/2$

Therefore, we can compute LATE using ITTs ratio:

$$\frac{\textit{ITT}_{Y,Z}}{\textit{ITT}_{D,Z}} = \frac{5}{1/2} = 10 = \textit{LATE}$$

 We were able to recover LATE by imposing the monotonicity assumption

5. Evaluating the Assumptions in AIR Causal Model

- Identification of LATE depends on critical assumptions
- Violations of SUTVA
 - Potential outcomes of one individual can affect the outcomes of another one
 - Biased estimation of LATE (typically underestimation)
 - We will discuss this issue on detail later
- Violations of the exclusion restriction
 - Subject's treatment assignment does not matter once actual treatment has been accounted for
 - Biased estimation of LATE (both directions)
 - Play a central role on evaluating internal validity
 - Example:

- Violations of monotonicity
 - Rule out the existence of defiers
 - LATE cannot be identified if monotonicity is not imposed
 - Seems to be marginal in many settings