<110>	CHO-A PHARM CO., LTD. KIM, Jin Hoi	
<120>	Porcine uroplakin II promoter and the production method of useful	-
	proteins using said promoter	
<130>	03PP181	
<150>	KR 10-2002-0067856	
<151>	2002-11-04	
<150>	KR 10-2003-0077256	
<151>	2003-11-03	
<160>	13	
<170>	KopatentIn 1.71	
<210>	1	
<211>	8847	
<212>	DNA	
<213>	Sus scrofa	
<220>		
<221>	promoter	
<222>	(1)(8847)	
<223>	porcine uroplakin II promoter	
<400>	1	
	1 ng tggaatcaga getggeetat gecacageaa egeagaatee aaaccacate	6
tccgaccta	ac accagaccgt caccataaca caggateett aacceaetga gcaaggteag	12
ggatcaaa	cc caaatcotca tggatactag togggttott aaccogotga gocacagtgg	18
JJ		
gcactcct	gt ttttgtttgt gtottogttt tttggotgoa totgoagoat acagaagtto	24
ctgggtta	ag gattgaaccc atgccacagc agcaacccga gccacagcag tgacaacagc	30

360 ctgatectta actgetagae caccagggaa egececetea actttteatg cettggaaac cctgagtcag tacaacctga caatngnttt ttttttttt tttttttgcc ttttctaggg 420 ccacttcccg cggcatgtgg agattcgcag gctanaggtc taatcggagc tgtagccacc 480 ggcctacacc agagccatag caacgaggga tccgagccga gtctgcaacc tacactacag 540 ctcatggcaa caccggatcg ttaacccact gagcaaggcc aggggatcga acccgcaacc 600 660 tcatqqttcc tagtcagatt cgttaaccac tgcaccatga caggaactcc caacctgaca 720 attttatcat ttctgcaccc tagttgttga gtaatttgaa aaattcccaa gatgtcaagg tcagtgtgat ggttaatttt atgtgtcaac ctgactaggc catgttgccc ggatgtggag 780 tcattgttat tctggatgtt actgtgaaga tatgttttgg atgaaattaa catttaaatc 840 agtgggggga aaaaaagaag ttctcgttct ggtgcatcag aaacaaatcc gactaggaaa 900 caageggttg caggttegat ecetggeete acttagtgga gteaggatet ggegttgeeg 960 tgagetgtgg tacaggtggc agatgcaget eggatetage attgetgtgg etgtggtgta 1020 1080 ggccagcagc tgtagctctg attaaacccc aagtctggga acctccatat gccgtgggtg 1140 tggcccgaaa aagcaaaaaa taaataaata aataaattta aaccagggga ttttgagcaa agcagattac cccataatat gggtgggtct catcaagttc attgtaggcc ctagtggaac 1200 1260 aaagaccgac ctccaccttc tccccatgag aaggaaagaa ttctgccaaa agaccgcctt 1320 nggachtaaa ctgcaactct ttcctgagtt tccagcatgt tggcctcccc catcagactt tggacttgcc aagcctccgc aattgcatga gccaattcct taaaataaat ccgtctatat 1380 atacacatec tgttggttet gtttetecag agaaceetga etaaegeagt etgeaeeeet 1440 gaagaccagt ggtccccaca ctcagctggg tgtcacctcc aaacactcag ccttcctcaa 1500

gctctttct	agctgtgtcc	tectetecee	acaacagctg	tttcaaactc	tcaccctct	1560
садддсдса	atcccttctc	ctccctgagt	ttcctacttc	ccagagaaag	cagagacett	1620
aggagtgtg	ctgccttaac	ttacttcctt	catccctcag	ccttgcaaaa	gtataagctt	1680
ctctgcacc	actgccccat	tettetetet	gcagacaggg	tcattcctaa	agccaaacgc	1740
aatgcctcc	acctctgatc	tgagtcccat	cttttccctc	ctccagaagc	ttcctcataa	1800
attctacccc	cttttcttcc	ttatctttat	ctttgaaaac	aaaatggaag	acagcettee	1860
egttgtggtg	cagcggaaac	agtggtgcct	tggaagcgct	gggacgcagg	ttcgacccct	1920
ggeceageat	agtaggttaa	ggatccagtg	ttgccacagt	tttggcttag	attgaaactg	1980
cagctcagat	ctggtccctg	gcctgggaac	ttcatacgcc	acaggacggc	ccaaaaagaa	2040
aagaaagaaa	aaataaaaaa	caaaacagaa	aagcctttcc	tgtaccccca	attccctcca	2100
gttatctctc	tettteeett	cccagccaag	ctctgcaaag	ageggtetge	acagttctaa	2160
ctctacctcc	tcccagttgg	ccctggactt	tctcagtctg	gcttctaccc	ccctcacccg	2220
taggaatctg	ctctgaagga	cacgcacccc	tcacgatcct	tggcccaggg	acattttttg	2280
taccagcett	tcaatcctga	ccttcatatc	atccgacacc	tcctttgtga	aaccctccat	2340
ccactttctc	ctggttcccc	tectaagace	cattccgcct	tetteageee	: cctccctcca	2400
tetgteettt	agatgccgca	tttcctagta	teetgteetg	cgcggnetcg	teetteeett	2460
ccacaactct	cttcaaggac	tettttetee	atgtgcgatt	ttgcccatgg	g cccaccttcc	2520
ctctcttac	ccagactttc	ccccggtgct	ccagactcat	agactcaatt	atgaaaacat	2580
agttttcatc	tgatttgccc	aagatatttg	cattagttat	tactgtataa	a cagettatee	264
					, tagggaggag	270

į

Sequence Listing

atagttgggg tctcatgaag ttgcactgaa aatgtccccc tgggctaatc atacggagga 2760 ctgaccaggg ctggaggatc tgttccaagc tcattcattc acatggccgt aggttggaga 2820 cagetettet etggatettg geaggageet caatteettg teaegtggae etceeettgg 2880 agggggtccc atgtcctcca tggtgagtaa tccatgagag caaggtggaa ggtgccatgc 2940 catttaggac ctagcctcag gagggaccta cgtcacttct gttgtagtct gttggccaca 3000 cagactaacc ctgacacaat gcacccatcc atgacctgct gccagtccat tctccacact 3060 gtttccagaa tgatatttac ataagtaaaa ctcctcaaag gcttttgaga ttttttttcc . 3120 cattatagtt gatttataac ctcagaggct tttgttttct tcagcataaa aaccaagttc 3180 3240 cttaacatag catgtaaccc actggccacc ctgccagtgg ctagaactct caccatgtcc 3300 atcettgaat actgetttet agccaagage tattgtttge agtteecaga atgtgteggg ataactcaca tetetgagee titteatgtg etgitecete actitggaat ateceettee 3360 atttaggaag gctaatgtcc attcattntc caaaactcag aagcaaattt ttttttttt 3420 3480 ttttttttt ttttttgct ttttagggcc gaactetcag catatggagg ttcccaggtt agocatoaaa ttggaattgt agotgotggo otacaccaca gocatagoaa caccagacco 3540 aagtcacate tgcaacctac atcacagate atggcaatac tggateetta acceactgag 3600 tgagcccagg gatcaaacac aaattctcat ggatactcgc caggttcatt accactgagc 3660 cacaacagga actoototoo tttttatggt cacacotgca gcatatggaa gttootgggo 3720 3780 cagggattga atctgagtgg cagetgtgac aatgccgtat cetttaattc actgtgctgg 3840 gctgaggggn taaantgccc ctcctaaaaa acctgagctg ctgcagttgg attcttaatc cactgcacca caagggggaa ggtcaagaac tgtcttgcca tctctgtatc ttatcaccta 3900

gcatagtacc caccatagag aagttgctca acaaatgttt actgaatgaa taaatgcatg 3960 agetggagtt eccattgegg etcageagta acaaacetga etageattea taagaacttg 4020 ggttcgatcc ctagcctcag tgggttaagg atgcagcatt gctgtgagct gtggtgtagg 4080 tegcagacga cactcagate ceacattget gteactgtgg cgcaggeegg cetetgtage 4140 tetgattega eteetageet gggaaegtee atatgeeaca ggtgaggeee taaaaagaaa 4200 taaataagca agcaagtaag caagcaggca gtttcttggt gccttgtacc cctgtggcct 4260 gtgtggtata caagtaacag ctgatccatg tctcagtcat gtttccccct cagactacct 4320 ttcctgcccc atctctccct ttgacataat tggaaaaaca aattcagaat tttgtcccac 4380 tacctttctt getagetetg tggeettggg aaagetattt attgeetetg ageetetaat 4440 tttcatctgc accaaggatt aataaaaagg agaggataag atgaattact tatattaata 4500 tttattgaac cagatactgt gctaggcact cttaaataaa ttagcttgag tgatagtcat 4560 4620 agtatcctgg tgagacagat ttttttttc cttttatggt tgcacgtgca acatatggaa gttcctgggc tggggtcgaa ttggagctgc aggtgcttgc ctatgccaca gccatggcaa 4680 catcatatac aaaccgcacc tgtgacctac accacagatt gcagcaacgc tggatccttc 4740 acccaaggag caaggccagg aatcaaatgt gcatcctcac aaacactatg tccggttttt 4800 aaccegetga gecacaceag gaacteeatg gegagacaga ttttataete tgtetacaga 4860 agaggaaagt gaagctcaga atggttaggt aggtaacttg gccaagatca aaaaattcaa agaagatttg gggcaagtgg tgatatcatg gcagcattag aaaaaataaa gaagcatcca 4980 cttgttttcc aacactgaac aactgagatt ttcttactct cacagetttt tccagettca 5040 5100 tatecaagga cagacgetet gecattitee cateagacca atattigetg aacaetgeac

otttactttt aggtccaagt caccaggggt tttcccagtt tgctcctaca gattctgaca 5160 ctatctccac attitititg caccittatt ttaaagcatt titatacctg tcataccitg 5220 5280 ctagataaat gggaaggaat gaatcttccc atttataggt gagaaaattg aggttcaaag tgactcacca aaagtcatat agcatcactc ctcaacagga ggacagcagt ccccaccaga 5340 gggtaacatg tccatggagc ctagtggaca catttttcta actgactggg aagcagcaga 5400 gtggtattgt gaagggggaa tcataggtat atcaaacaga cttaggttct gatccgaget 5460 5520 attotgottg caaacaacca tagttcaatt taaaaaaaaa aaagaaagaa agaaagaaag aaaggagece ccateetggt geagtggaaa caaatteaae taggaaetgt gaggttgtgg 5580 gttcgatccc tggccttgct cagtgggtta aggatctggc gttgccatga gccgtggtgt 5640 5700 aggttgcaga ctcaactcag atctggcgtt gctgtgactg tggctgtgat gtaggctggc agetgtaact eeggttagae eecageetgg gaacetecat atgeaacete catatgeggt 5760 gggtgtggcc ctaaaaagaa aaaaaaaaaa aaaagaggaa ttcccttatg gctcagcagg 5820 ttaaggatct ggtattgtca ctgctgtggc tctagttaca gccatagtgc aggttcaatc 5880 5940 ectggeccag gaacgtetge atcccacagg tgtggccaaa aaagaaagaa aggaaggagt 6000 tctgttgtgg cacaatagga ttggcaacat cttaggagta ctgggacaca ggttcaatcc ctggcccagc acagtgggta aggagccagt gttgctggtc aaaaaagaaa agaaaaagta 6060 ccatagttag agtaaatctg ttttaggagc tattctttgg ggcagaacag agagatcagg 6120 agotoottga gagoagaaac ttacotttac atcootogtg cotagoacgg ttotaggggo 6180 atacctggta tttaataaat atagccaact ggatagggga ttggaaggaa agagcagggg agggaacttg agtgagttga aaaattgaga atccaaaggg gagacagcct agaaagagta 6300)4

agtocaagaa agagatocca ggcatttgtg gccctggttc cctttttcca agccatgagg 6360 aaatcctcag aggaacagag tgctgtggct ttaaatgact tcagcgttgt caatgaatct 6420 gctcggctaa aagagttatc ctcttgctcc ttcgcttgtc ctccccctcc tctcagctcc 6480 6540 ccaaaccctt ctoggctgct gtgatgggat aattagatgc gagagctcag cacagatgat 6600 getecagttg cetageaact aatggtttcc atggagaccg caaagcacag cetecagage agccagtgag cageteggea gggeagggag aagaegeaae teteagetee tecagaaaee 6660 6720 tggggagggc caggagtggg gaagaagggg gggatcggag ggcttaaagg cacaggcccc 6780 tettatecte ttaaaatetg gteagagete tgeeeteece teecetaete tgteeeacte 6840 ataatttcag atggagttgg gggcttagga gtggacccaa cacaacctac cctgcaataa acccaacett etttetgett etggtttgtg getgaaaatg gnaaaagaaa teteccaagt 6900 gcaagtgtaa acanchteet gggttggcaa tgggatetga agagtaetaa gateeeteag 6960 acctggaatt ccaccattta gtctttccct ctctccaaag ttctcaatgt gcaaaagatc 7020 7080 ctctttcagt ttgcagagca atgataggat cttctaaaag gagacaaaag ccaaggtgca ggaaaaatag aatteagtte tteacecaaa ggeageetgt eetgggagae aggggtgaaa 7140 cacttggtcc tgatctccat cagaggatcc agagtgtgtg tgtttgttgc tggggagggg 7200 7260 gacacaatat agagcatctg gtgactcaaa gtatgtgcct cccagagtag catcaatcaa 7320 tgttacctgg aagettgtta gaaatgcaga atttcagget teacetcaga eccactgaat 7380 cagaaactgc atcttaacaa gatccctcat gattcatacg cacattaaat ttggagaagc getgaeetga gaeeeteete etetetgett gggeeeatag ttetaeettt attgteaeet 7440 7500 egteteaect egtgeteata ecceaggett tgageetaec etteeecea tggggaaagg

Sequence Listing

7560 acacaaggee accageeest castteesta ecaggaeest ggeesteete tgggaetgga gaaggacaaa gaggaccccc tctgtggagg tctacgacct ctcctgacca agtagtccac tcaccacaag tggctctacc tctctgagtc tcagtttcca catccacaaa aggtggccaa 7680 tgctatctgc cacccagaat ggctgtgagg gtggagcagg caaagcctct gtgccatcag 7740 agaaattgtg tetettttte atttteteec agtgggttte tttetegtet ttattetttt 7800 ttttttttt ttttcctgtc tgttgtattt ttagggccgt gcctgtggca tacggaagtt 7860 7920 cccagggtag gggtccaatg ggagctgtag ccccgggcct acgccacagc cacagcaatg 7980 tgggatctga gccacgtctg caacctacac cacagctcac ggcaacacca gatccttaac ccactgagca aggccaggga tcgagcccac gtcctcatgg atgctagttg ggttcgttaa 8100 ccgctgagcc atgatgataa ctcctctttc tattctttag tcacaaacag tcaacaaagg ttgctgacca aggctgatcg tgcccacccc ccageccccc agactgggcc agtgcccacc 8160 8220 cettgggtet etetggaaat eetgeecage ateaattgge teeactetee aggaggatgg 8280 gaageeetgt ggeceetggg acteacacce etetgeatet cecagagtge aggacetggt 8340 cttcaggaga caccaagaac tggctccccc ggctctgctg cccccacccc ctactaccag tttctctccc attcctgccc agtccaggcc ccctggggtt actctcctct ctctgtacac **B400** 8460 cagtgcaacc tcagaacctg cttccctcct gggaacaccc actaccacgt gggagaaggg gtcgtctagg ggttgggccc cagatacact tgtaagcagg aacacacgag cccttacatg 8520 8580 tgggtgtccc ggaagaaggg ggttttccac ccccgcttt agtcaccctg cccctctgca 8640 getgeetgag ecaccaagae ecagecaagg teteetgeet tetggeetga gggeeagete 8700 cccatcctqa aaaacctgtc tgggggcctc ccctgaggct gtagggccca aggcctcccc

tgaggct	gta gggcccaagg ggcaggttga acaggattcc cctctggccc ctcctacccc	8760
caggaca	haaa ccagagcccc aggacagggc ctcacttgcc tcaggaaacc acagcttgcc	8820
agcacco	age ccageaccag cccaget	8847
<210>	2	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	forward primer for amplifying porcin uroplakin II gene	
<400>	2	
gatcctg	att ctgctggctb	20
<210>	3	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	reverse primer for amplifying porcin uroplakin II gene	
<400>	3	
atggtgg	tca tcacrgtgct	20
<210>	4	
<211>	3602	
<212>	DNA	
<213>	Homo sapiens	
<300>	•	
<301>	Lin, F. K.	

	Suggs, S.		
	Lin, C. H.		
	Browne, J. K.		
	Smalling, R.		
	Egrie, J. C.		
	Chen, K. K.		
	Fox, G. M.		
	Martin, F.		
	Stabinsky, Z.		
<302>	Cloning and expression of the human erythropoie	etin gene	
<303>	Proc. Natl. Acad. Sci. U.S.A.		
<304>	82		
<305>	22		
<306>	7580-7584		
<313>	1-3602		
<400>	4		
aagcttct	tgg gcttccagac ccagctactt tgcggaactc agcaacccag	gcatctctga	60
gteteege	ccc aagaccggga tgccccccag gggaggtgtc cgggagccca (geettteeca	L2(
			L8(
gatagcac	egc teegecagte ceaagggtge geaacegget geacteeect	cccycyaccc	
	eggg ageagecece atgacecaca egeaegtetg cageagecec	acteaeacee :	24(
agggcccg	agg ageageeee argaeeeaca egeaegeerg eageageeee	geredegee.	
caacasac	geet caacecagge gteetgeeee tgetetgace cegggtggee	cctacccctq	30
cggcgagc	cer caacceagge georgeous egoodgass osgggoggeo		
acaacccc	ecte acgeacaeag cetetecece acceccaece gegeaegeae	acatqcagat	36
50540000			
aacagccc	eccg acccceggce agagecgcag agtecetggg ccaeccegge	egetegetge	42
		-	
getgegee	cege acegegetgt ceteceggag eeggaceggg gecacegege	ccgctctgct	48
5 5 5		_	
ccqacacc	cege gececetgga cageegeeet eteetetagg ceegtgggge	tggccctgca	54
J	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
ccqccqaq	aget tecegggatg agggeeeeeg gtgtggteae eeggegegee	ccaggtcgct	60
	2 22 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
		anetanaene	66

ļ

teccgccgcc	cgggtccctg	tttgagcggg	gatttagcgc	cccggctatt	ggccaggagg	720
tggctgggtt	caaggaccgg	cgacttgtca	aggaccccgg	aaggggagg	ggggtggggc	780
agcctccacg	tgccagcggg	gacttggggg	agteettggg	gatggcaaaa	acctgacctg	840
tgaaggggac	acagtttggg	ggttgagggg	aagaaggttt	gggggttctg	ctgtgccagt	900
ggagaggaag	ctgataagct	gataacctgg	gcgctggagc	caccacttat	ctgccagagg	960
ggaagcctct	gtcacaccag	gattgaagtt	tggccggaga	agtggatgct	ggtagctggg	1020
ggtggggtgt	gcacacggca	gcaggattga	atgaaggcca	gggaggcagc	acctgagtgc	1080
ttgcatggtt	ggggacagga	aggacgagct	ggggcagaga	cgtggggatg	aaggaagctg.	1140
tecttecaca	gccacccttc	teceteceeg	cctgactctc	agcctggcta	tctgttctag	1200
aatgteetge	ctggctgtgg	cttctcctgt	ccctgctgtc	gctccctctg	ggcctcccag	1260
teetgggege	cccaccacgc	ctcatctgtg	acagccgagt	cctggagagg	tacctcttgg	1320
aggccaagga	ggccgagaat	atcacggtga	gaccccttcc	ccagcacatt	ccacagaact	1380
cacgctcagg	gcttcaggga	actcctccca	gatccaggaa	cctggcactt	ggtttggggt	1440
ggagttggga	agctagacac	tgccccccta	cataagaata	agtctggtgg	ccccaaacca	1500
tacctggaaa	ctaggcaagg	agcaaagcca	gcagatccta	cggcctgtgg	gccagggcca	1560
gagccttcag	ggacccttga	ctccccgggc	tgtgtgcatt	tcagacgggc	: tgtgctgaac	1620
actgcagctt	gaatgagaat	atcactgtcc	cagacaccaa	agttaattto	: tatgcctgga	1680
agaggatgga	ggtgagttcc	tttttttt	tttttccttt	: cttttggaga	atctcatttg	. 1740
cgagcctgat	tttggatgaa	agggagaatg	atcgggggaa	aggtaaaatg	g gagcagcaga	1800
gatgaggetg	cctgggcgca	gaggeteacq	tctataatco	caggetgaga	tggccgagat	1866

Sequence Listing

gggagaattg cttgagccct ggagtttcag accaacctag gcagcatagt gagatccccc 1920 atctctacaa acatttaaaa aaattagtca ggtgaagtgg tgcatggtgg tagtcccaga 1980 2040 tatttggaag gctgaggcgg gaggatcgct tgagcccagg aatttgaggc tgcagtgagc 2100 tgtgatcaca ccactgcact ccagcctcag tgacagagtg aggccctgtc tcaaaaaaga aaagaaaaaa gaaaaataat gagggctgta tggaatacat tcattattca ttcactcact 2160 2220 cactcactca ttcattcatt cattcattca acaagtctta ttgcatacct tctgtttgct 2280 cagcttggtg cttggggctg ctgaggggca ggagggagag ggtgacatgg gtcagctgac tcccagagtc cactccctgt aggtcgggca gcaggccgta gaagtctggc agggcctggc 2340 2400 cctgctgtcg gaagctgtcc tgcggggcca ggccctgttg gtcaactctt cccagccgtg ggagcccctg cagctgcatg tggataaagc cgtcagtggc cttcgcagcc tcaccactct 2460 getteggget etgggageee aggtgagtag gageggaeae ttetgettge eetttetgta 2520 2580 agaaggggag aagggtettg etaaggagta caggaactgt cegtatteet tecettetg tggcactgca gcgacctcct gttttctcct tggcagaagg aagccatctc ccctccagat 2640 2700 geggeeteag etgeteeact eegaacaate aetgetgaea ettteegeaa aetetteega 2760 gtctactcca atttcctccg gggaaagctg aagctgtaca caggggaggc ctgcaggaca 2820 ggggacagat gaccaggtgt gtccacctgg gcatatccac cacctccctc accaacattg 2880 cttgtgccac accetecece gecactectg aaccecgteg aggggetete ageteagege 2940 cagcotytec catygacact coaytycoay caatyacate teagygycea gaggaactyt 3000 ccagagagca actotgagat otaaggatgt cacagggcca acttgagggc ccagagcagg aagcattcag agagcagett taaactcagg gacagageca tgetgggaag acgeetgage 3060

240

Sequence Listing

tcactcggca	ccctgcaaaa	tttgatgcca	ggacacgctt	tggaggcgat	ttacctgttt	3120
tegeacetae	: catcagggac	aggatgacct	ggagaactta	ggtggcaagc	tgtgacttct	3180
ccaggtctca	cgggcatggg	cactcccttg	gtggcaagag	ccccttgac	accggggtgg	3240
tgggaaccat	gaagacagga	tgggggctgg	cctctggctc	tcatggggtc	caagttttgt	3300
gtattcttca	acctcattga	caagaactga	aaccaccaat	atgactcttg	gcttttctgt	3360
tttetgggaa	cctccaaatc	ccctggctct	gtcccactcc	tggcagcagt	gcagcaggtc	3420
caggtccggg	aaatgagggg	tggaggggc	tgggccctac	gtgctgtctc	acacageetg	3480
tctgacctct	cgacctaccg	gcctaggcca	caagctctgc	ctacgctggt	caataaggtg	3540
tctccattca	aggcctcacc	gcagtaaggc	agctgccaac	cctgcccagg	gcaaggctgc	3600
ag						3602
<210> 5	i					
<211> 1	.916					
<212> I	NA			•		
<213>	allus gallus	5				
<220>						
	isc_signal					
	1)(1916) eta-globin :	ingulator				
(223)	eca-grobin .	Insulacoi				
•						
<400> 5	1					
geggeegege	gcgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	. 60
atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	gataaatgct	120
tcaataatat	tgaaaaagga	agagtcctga	ggcggaaaga	accagctgtg	gaatgtgtgt	180

cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat

Sequence Listing

ctcaattagt	cagcaaccag	gtgtggaaag	tccccaggct	ccccagcagg	cagaagtatg	300
caaagcatgc	atctcaatta	gtcagcaacc	atagtcccgc	ccctaactcc	gcccatcccg	360
cccctaactc	cgcccagttc	cgcccattct		gctgactaat	tttttttatt	420
tatgcagagg	ccgaggccgc	ctcggcctct	gagetattee	agaagtagtg	aggaggettt	480
tttggaggcc	taggettttg	caaagatcga	tcaagagaca	ggatgaggat	cgtttcgcat	540
gattgaacaa	gatggattgc	acgcaggttc	tccggccgct	tgggtggaga	ggctattcgg	600
ctatgactgg	gcacaacaga	caatcggctg	ctctgatgcc	gccgtgttcc	ggctgtcagc	660
gcaggggcgc	ccggttcttt	ttgtcaagac	cgacctgtcc	ggtgccctga	atgaactgca	720
agacgaggca	gcgcggctat	cgtggctggc	cacgacgggc	gttccttgcg	cagctgtgct	780
cgacgttgtc	actgaagcgg	gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	840
tctcctgtca	tctcaccttg	ctcctgccga	gaaagtatcc	atcatggctg	atgcaatgcg	900
gcggctgcat	acgcttgatc	cggctacctg	cccattcgac	caccaagcga	aacatcgcat	960
cgagcgagca	cgtactcgga	tggaagccgg	tcttgtcgat	caggatgatc	tggacgaaga	1020
gcatcagggg	ctcgcgccag	ccgaactgtt	cgccaggctc	aaggcgagca	tgcccgacgg	1080
cgaggatctc	gtcgtgaccc	atggcgatgc	ctgcttgccg	aatatcatgg	tggaaaatgg	1140
ccgcttttct	ggattcatcg	actgtggccg	gctgggtgtg	gcggaccgct	atcaggacat	1200
agcgttggct	acccgtgata	ttgctgaaga	gcttggcggc	gaatgggctg	accgcttcct	. 1260
cgtgctttac	ggtatcgccg	ctcccgattc	gcagcgcatc	gccttctatc	gccttcttga	1320
cgagttcttc	·tgagcgggac	tctggggttc	gaaatgaccg	accaagcgac	gcccaacctg	1380
ccatcacgag	atttcgattc	caccgccgcc	ttctatgaaa	ggttgggctt	cggaatcgtt	144

Sequence Listing

ttccgggacg	ccggctggat	gatcctccag	cgcggggatc	tcatgctgga	gttcttcgcc	1500
caccctaggg	ggaggctaac	tgaaacacgg	aaggagacaa	taccggaagg	aacccgcgct	1560
atgacggcaa	taaaaagaca	gaataaaacg	cacggtgttg	ggtcgtttgt	tcataaacgc	1620
ggggttcggt	cccagggctg	gcactctgtc	gataccccac	cgagacccca	ttggggccaa	1680
tacgcccgcg	tttcttcctt	ttccccaccc	caccccccaa	gttcgggtga	aggcccaggg	1740
ctcgcagcca	acgtcggggc	ggcaggccct	gccatagcct	caggttactc	atatatactt	1800
tagattgatt	taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	cctttttgat	1860
aatctcatga	ccaaaatccc	ttaacgtgag	ttttcgttcc	actgagcgtc	cgatcg	1916

<210> 6

<211> 2254

<212> DNA

<213> Artificial Sequence

<220>

<223> Cloning vector pEGFP-N1, complete sequence, enhanced green fluorescent prootein (egfp) and neomycin phosphotransferase genes

c400> 6
tcgactctag agggacagce ccccccaaa gcccccaggg atgtaattac gtccctcccc 60
sgctaggggc agcagcagc cgcccggggc tccgctccgg tccggcgctc cccccgcatc 120
sccgagccgg cagcgtgcgg ggacagcccg ggcacgggga aggtggcacg ggatcgcttt 180
sctctgaacg cttctcgctg ctctttgagc ctgcagacac ctggggggat acggggaaaa 240
agctttaggc tgaaagagag atttagaatg acagaatcat agaacggct gggttgcaaa 300
agagcacagt gctcatccag atccaacccc ctgctatgtg cagggtcatc aaccagcagc 360

ccaggctgcc	cagagccaca	tccagcctgg	ccttgaatgc	ctgcagggat	ggggcatcca	420
cagcctcctt	gggcaacctg	ttcagtgcgt	caccaccctc	tgggggaaaa	actgcctcct	480
catatccaac	ccaaacctcc	cctgtctcag	tgtaaagcca	ttcccccttg	tcctatcaag	540
ggggagtttg	ctgtgacatt	gttggtctgg	ggtgacacat	gtttgccaat	tcagtgcatc	600
acggagaggc	agatettggg	gataaggaag	tgcaggacag	catggacgtg	ggacatgcag	660
gtgttgaggg	ctctgggaca	ctctccaagt	cacagcgttc	agaacagcct	taaggataag	720
aagataggat	agaaggacaa	agagcaagtt	aaaacccagc	atggagagga	gcacaaaaag	780
gccacagaca	ctgctggtcc	ctgtgtctga	gcctgcatgt	ttgatggtgt	ctggatgcaa	840
gcagaagggg	tggaagagct	tgcctggaga	gatacagctg	ggtcagtagg	actgggacag	900
gcagctggag	aattgccatg	tagatgttca	tacaatcgtc	aaatcatgaa	ggctggaaag	960
cctccaagat	ccccaagacc	aaccccaacc	cacccaccgt	gcccactggc	catgtccctc	1020
agtgccacat	ccccacagtt	cttcatcacc	tccagggacg	gtgaccccc	cacctccgtg	1080
ggcagctgtg	ccactgcagc	accgctcttt	ggagaaggta	aatcttgcta	aatccagccc	1140
gaccctcccc	tggcacaacg	taaggccatt	atctctcatc	caactccagg	acggagtcag	1200
tgaggatggg	gctctagagg	gacagecece	ccccaaagcc	cccagggatg	taattacgtc	1260
cctcccccgc	taggggcagc	agcgagccgc	ccggggctcc	gctccggtcc	ggcgctcccc	1320
ccgcatcccc	gagccggcag	cgtgcgggga	cagcccgggc	acggggaagg	tggcacggga	1380
tegettteet	ctgaacgctt	ctcgctgctc	tttgagcctg	cagacacctg	gggggatacg	1440
gggaaaaagc	tttaggctga	aagagagatt	tagaatgaca	gaatcataga	acggcctggg	1500
ttocaaaooa	acacagtact	catccadatc		ctatotocae		1550

cagcagccca	ggctgcccag	agccacatcc	agcctggcct	tgaatgcctg	cagggatggg	1620
gcatccacag	cctccttggg	caacctgttc	agtgcgtcac	caccctctgg	gggaaaaact	1680
gcctcctcat	atccaaccca	aacctcccct	gtctcagtgt	aaagccattc	ccccttgtcc	1740
tatcaagggg	gagtttgctg	tgacattgtt	ggtetggggt	gacacatgtt	tgccaattca	1800
gtgcatcacg	gagaggcaga	tcttggggat	aaggaagtgc	aggacagcat	ggacgtggga	1860
catgcaggtg	ttgagggete	tgggacactc	tccaagtcac	agcgttcaga	acagccttaa	1920
ggataagaag	ataggataga	aggacaaaga	gcaagttaaa	acccagcatg	gagaggagca	1980
caaaaaggcc	acagacactg	ctggtccctg	tgtctgagcc	tgcatgtttg	atggtgtctg	2040
gatgcaagca	gaaggggtcc	atgtccctca	gtgccacatc	cccacagttc	ttcatcacct	2100
ccagggacgg	tgacccccc	acctccgtgg	gcagctgtgc	cactgcagca	ccgctctttg	2160
gagaaggtaa	atcttgctaa	atccagcccg	acceteccet	ggcacaacgt	aaggccatta	2220
tctctcatcc	aactccagga	acggagtcag	tgag		•	2254

```
<210>    7
<211>    632
<212>    DNA
<213>    Woodchuck hepatitis B virus

<220>
<221>    misc_signal
<222>    (1)..(632)
<223>    woodchuck hepatitus virus posttranscriptional regulatory element
```

<400> 7
accaggttct gttcctgtta atcaacctct ggattacaaa atttgtgaaa gattgactgg 60

tattcttaac	tatgttgctc	cttttacgct	atgtggatac	gctgctttaa	tgcctttgta	120
tcatgctatt	gcttcccgta	tggctttcat	tttctcctcc	ttgtataaat	cctggttgct	180
gtctctttat	gaggagttgt	ggcccgttgt	caggcaacgt	ggcgtggtgt	gcactgtgtt	240
tgctgacgca	acccccactg	gttggggcat	tgccaccacc	tgtcagctcc	tttcc g ggac	300
tttcgctttc	cccctcccta	ttgccacggc	ggaactcatc	gccgcctgcc	ttgcccgctg	360
ctggacaggg	gctcggctgt	tgggcactga	caattccgtg	gtgttgtcgg	ggaagetgae	420
gtcctttcca	tggctgctcg	cctgtgttgc	cacctggatt	ctgcgcggga	cgtccttctg	480
ctacgtccct	tcggccctca	atccagcgga	ccttccttcc	cgcggcctgc	tgeeggetet	540
geggeetett	ccgcgtcttc	gccttcgccc	tcagacgagt	cggatetece	tttgggccgc	600
cteceegeet	gtttcgcctc	gggeteeteg	ag			632

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> forward primer for amplifying neomycin resistant gene

<400> 8
gcggccgcgc gcgtcaggtg gcac 24

<210> 9
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

reverse primer for amplifying neomycin resistant gene <223> <400> cgatcggacg ctcagtggaa cgaaaactc 29 10 <210> <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer for amplifying chicken B-globin insulator <400> 10 tcgactctag agggacag 18 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for amplifying chicken B-globin insulator <400> 11 ctcactgact ccgttcct 18 <210> 12 <211> 29 <212> <213> Artificial Sequence <220> <223> forward primer for amplifying woodchuck hepatitus virus

posttranscriptional regulatory element

<400> 12 accaggttct gttcctgtta atcaacctc

29

<210> 13 27 <211> <212> <213> Artificial Sequence

<220>

reverse primer for amplifying woodchuck hepatitus virus <223> posttranscriptional regulatory element

:400>

:tcgaggagc ccgaggcgaa acaggcg