Critério de Leibniz

Se $(a_n)_n$ é uma sucessão decrescente e tal que $\lim_n a_n = 0$ então a série alternada $\sum_{n=0}^{\infty} (-1)^n a_n$ é convergente.

Primeiro critério de comparação

Sejam $(u_n)_n$ e $(v_n)_n$ sucessões de termos não negativos tais que $\exists p \in \mathbb{N} : n \geq p \Longrightarrow u_n \leq v_n$.

- (a) Se $\sum v_n$ é convergente então $\sum u_n$ também é convergente.
- (b) Se $\sum u_n$ é divergente então $\sum v_n$ também é divergente.

Segundo critério de comparação

Sejam $(u_n)_n$ uma sucessão de termos não negativos e $(v_n)_n$ uma sucessão de termos positivos tais que existe $\lim_n \frac{u_n}{v_n} = \ell$.

- (a) Se $\ell \in \mathbb{R}^+$, $\sum u_n$ e $\sum v_n$ são séries da mesma natureza.
- (b) Se $\ell = 0$, a convergência de $\sum v_n$ implica a convergência de $\sum u_n$.
- (c) Se $\ell = +\infty$, a convergência de $\sum u_n$ implica a convergência de $\sum v_n$.

Critério de Cauchy

Seja $(u_n)_n$ uma sucessão de termos não negativos tal que existe $\lim_n \sqrt[n]{u_n} = \ell$.

- (a) Se $\ell < 1$ então a série $\sum u_n$ é convergente.
- (b) Se $\ell > 1$ então a série $\sum u_n$ é divergente.
- (c) Se $\ell = 1$ nada se pode concluir quanto à natureza da série $\sum u_n$.

Critério de d'Alembert

Seja $(u_n)_n$ uma sucessão de termos positivos tal que existe $\lim_n \frac{u_{n+1}}{u_n} = \ell$.

- (a) Se $\ell < 1$ então a série $\sum u_n$ é convergente.
- (b) Se $\ell > 1$ então a série $\sum u_n$ é divergente.
- (c) Se $\ell = 1$ nada se pode concluir quanto à natureza da série $\sum u_n$.