$\mathrm{mai}\ 2015$

Test

Chacune des questions 1 à 9 est à choix multiple. Il n'y a qu'une seule réponse correcte par question. Pour chacune des questions à choix multiple, on compte +3 points si la réponse est correcte, 0 point si la question reste sans réponse, -1 point si la réponse est fausse.

La question 10 (définitions) vaut 4 points (2 points pour chaque définition).

La question 11 (démonstration) vaut 4 points (2 points pour chaque partie).

Total possible: 35 points.

Temps pour faire le test : 2 heures.

Problème 1. On considère la matrice $A = \begin{pmatrix} 4 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ a & -a & 2 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \in M_4(\mathbb{R}), \text{ où } a \in \mathbb{R} \text{ est fixé. Que vaut son}$

polynôme minimal $m_A(t)$?

(A)
$$m_A(t) = t(t-2)^3$$
 si $a = 1$.

(B)
$$m_A(t) = (t-2)^2$$
 si $a = 0$.

(C)
$$m_A(t) = t^2(t-2)^2$$
 si $a = 0$.

(D)
$$m_A(t) = t(t-2)^2$$
 si $a = 2$.

Problème 2. Soit V le \mathbb{R} -espace vectoriel de toutes les matrices 2×2 triangulaires supérieures, à coefficients réels. Si $A \in V$, on désigne par A_{12} le coefficient non diagonal de A (coefficient à la position (1,2)). Pour $A, B \in V$, on définit une forme bilinéaire symétrique sur V par

$$\beta(A, B) = (AB)_{12} + (BA)_{12}$$
.

On admet que β est bien une forme bilinéaire symétrique. Quelle est la signature de β ?

- (A) (1,0).
- (B) (1,1).
- (C) (2,1).
- (D) (3,0).

Problème 3. Soit \mathbb{F}_5 le corps à 5 éléments et soit $E = (e_1, e_2, e_3)$ la base canonique de $V = (\mathbb{F}_5)^3$. Soit $F = (f_1, f_2, f_3)$ la base de V constituée de $f_1 = e_1 + e_2$, $f_2 = e_2 + e_3$, $f_3 = e_3$ et soit $F^* = (\psi_1, \psi_2, \psi_3)$ la base duale de F (base de l'espace dual V^*). Laquelle des assertions suivantes est correcte?

- (A) $\psi_1(e_1) = 0$.
- (B) $\psi_2(e_1) = 2$.
- (C) $\psi_3(e_1) = 1$.
- (D) $\psi_1(e_1) = 4$.

Problème 4. On considère l'espace hermitien \mathbb{C}^4 avec produit scalaire standard. Soit v = (0,0,0,1) et soit W = Vect ((1,i,1,i),(0,2,0,2)). Lequel des vecteurs suivants est la projection orthogonale de v sur W?

- (A) (0, 1, 0, 1).
- (B) $(\frac{i}{10}, \frac{1}{5}, \frac{i}{10}, \frac{1}{5}).$
- (C) $(0, \frac{1}{2}, 0, \frac{1}{2}).$
- (D) $(\frac{i}{2}, 0, \frac{i}{2}, 0)$.

Problème 5. On considère l'espace hermitien \mathbb{C}^4 et la transformation linéaire $\alpha: \mathbb{C}^4 \to \mathbb{C}^4$ dont la matrice, par rapport à la base canonique, est $A = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & -3 & -4i & 0 \\ 0 & 4i & 3 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$. Laquelle des assertions suivantes est correcte ?

- (A) A est diagonalisable, mais ses espaces propres ne sont pas orthogonaux.
- (B) A est hermitienne, donc unitairement diagonalisable.
- (C) A n'est pas hermitienne, mais elle est néanmoins unitairement diagonalisable.
- (D) A n'est pas unitairement diagonalisable, car elle n'est pas hermitienne.

Problème 6. On considère le système différentiel

$$\begin{cases} \dot{x}_1(t) = 7x_1(t) - 6x_2(t) \\ \dot{x}_2(t) = 9x_1(t) - 8x_2(t) \end{cases}$$

avec conditions initiales $x_1(0) = 1$ et $x_2(0) = 1$. Que vaut la fonction $x_2(t)$?

- (A) $x_2(t) = e^t + 2e^{-2t}$.
- (B) $x_2(t) = e^t 3e^{2t}$.
- (C) $x_2(t) = e^{2t}$.
- (D) $x_2(t) = e^t$.

Problème 7. On considère la matrice réelle $A = \begin{pmatrix} 2 & -2 & -2 & 0 & 0 \\ 1 & 5 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 2 & 4 & 3 & 0 \\ 0 & 1 & 2 & 0 & 3 \end{pmatrix}$. Quelle est la multiplicité

- $g\'{e}om\'{e}trique\ de\ la\ valeur\ propre\ 3\ ?$
- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.

Problème 8. Laquelle des assertions suivantes est correcte ?

- (A) Toute matrice complexe non nilpotente est diagonalisable.
- (B) Il existe une matrice complexe qui ne peut pas s'écrire comme la somme d'une matrice diagonalisable D et d'une matrice nilpotente N telles que DN = ND.
- (C) Il existe une matrice complexe qui ne peut pas s'écrire comme la somme d'une matrice diagonale D et d'une matrice nilpotente N telles que DN = ND.
- (D) Toute matrice complexe est le produit d'une matrice diagonale D et d'une matrice nilpotente N telles que DN = ND.

Problème 9. Soit α une transformation linéaire unitaire d'un espace hermitien V de dimension ≥ 2 . On suppose que $\alpha \neq \operatorname{id}$. Laquelle des assertions suivantes est correcte ?

- (A) Il existe $v_1, v_2 \in V$ tels que $||\alpha(v_1 + v_2)||^2 = ||v_1||^2 + ||v_2||^2$.
- (B) Pour tous $v_1, v_2 \in V$, $||\alpha(v_1 + v_2)||^2 = ||v_1||^2 + ||v_2||^2$.
- (C) Etant donné $v \in V$, l'équation $||\alpha(v)|| ||v|| = 0$ est correcte si et seulement si v = 0.
- (D) Pour toute valeur propre λ de α et pour tout vecteur v dans l'espace propre E_{λ} , $||\alpha(v)|| \lambda ||v|| = 0$.

Problème 10. Donnez une réponse précise à chacune des questions suivantes.

- a) Qu'est-ce que l'inégalité de Cauchy-Schwarz?
- b) Qu'est-ce que les valeurs singulières d'une matrice $A \in M_{p \times n}(\mathbb{R})$?

Problème 11. Soit V et W deux espaces euclidiens. Soit $\alpha: V \to W$ une application linéaire et soit $\alpha^*: W \to V$ son adjointe.

- a) Montrer que $\operatorname{Im}(\alpha)^{\perp} = \operatorname{Ker}(\alpha^*)$.
- b) Montrer que $\alpha^*\alpha$ est auto-adjointe.

(On demande des démonstrations claires. Justifiez vos raisonnements.)