Using syzygies to test containments between ordinary and symbolic powers

Alexandra Seceleanu

University of Nebraska-Lincoln

Symbolic powers of ideals

The *n*-th **symbolic power** $I^{(n)}$ of an ideal $I \subset R$ is

$$I^{(n)} = \bigcap_{P \in \mathrm{Min}(\mathrm{I})} I^n R_P \cap R.$$

Symbolic powers of ideals

The *n*-th **symbolic power** $I^{(n)}$ of an ideal $I \subset R$ is

$$I^{(n)} = \bigcap_{P \in \mathrm{Min}(\mathrm{I})} I^n R_P \cap R.$$

In a geometric sense, symbolic powers have an particularly nice meaning:

- Zariski-Nagata: if $\mathbf{X} = V(I)$ is an algebraic variety, then $I^{(n)}$ is the set of forms that vanish to order at least n at every point of \mathbf{X}
- in characteristic 0, $I^{(n)} =$ the forms that vanish together with their first n-1 partial derivatives at every point of \mathbf{X} .

Comparing symbolic and ordinary powers

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

For any homogeneous ideal $I\subseteq K[\mathbb{P}^N]=K[x_0,\ldots,x_N]$, the following containment holds $\mathbf{I}^{(\mathbf{Nr})}\subset \mathbf{I}^{\mathbf{r}}, \forall r>1$

proven by

- Ein-Lazarsfeld-Smith (2001), for I unmixed, using multiplier ideals
- Hochster-Huneke (2002) using reduction to characteristic *p* and tight closure

Improving the containment

From now on let I be an ideal defining points in \mathbb{P}^N .

• ELS-HH:
$$I^{(Nr)} \subseteq I^r, \forall r \geq 1 \Rightarrow \text{Waldschmidt-Skoda}: \frac{\alpha(I^{(m)})}{m} \geq \frac{\alpha(I)}{N}$$

Improving the containment

From now on let I be an ideal defining points in \mathbb{P}^{N} .

• ELS-HH:
$$I^{(Nr)} \subseteq I^r, \forall r \geq 1 \Rightarrow \mathsf{Waldschmidt\text{-}Skoda}: \frac{\alpha(I^{(m)})}{m} \geq \frac{\alpha(I)}{N}$$

Can make containment tighter in 2 ways. Each leads to a conjecture:

- Conjecture 1: (Harbourne-Huneke) $I^{(Nr-N+1)} \subseteq I^r$ for all $r \ge 1$ and all ideals I defining points in \mathbb{P}^N .
- Conjecture 2: (Harbourne-Huneke) \Rightarrow Chudnowsky's Conjecture $I^{(Nr)} \subseteq \mathfrak{m}^{(N-1)r}I^r$ for all $r \ge 1$ and all ideals I defining points in \mathbb{P}^N .

The case N=2, r=2

For N = 2, r = 2, the ELS-HH theorem states that $I^{(4)} \subseteq I^2$.

Question (Huneke)

Does

$$I^{(3)} \subseteq I^2$$

always hold in the case of I defining a reduced set of points of \mathbb{P}^2 ?

• Bocci-Harbourne: $I^{(3)} \subseteq I^2$ holds for points in general position in \mathbb{P}^2 .

Three configurations

Fermat configuration

12 pts & 9 lines 12 triple pts

realizable over fields containing ξ $\xi^3=1$

Klein configuration

49 pts & 21 lines 21 quadruple 28 triple

realizable over

$$K[a]/(a^2+a+2)$$
 e.g. $\mathbb{R}[\sqrt{-7}]$ or $\mathbb{Z}/7$

Wiman configuration

201 pts & 45 lines 36 quintuple 45 quadruple 120 triple

realizable over

$$K[a]/(a^4 - a^2 + 4)$$

e.g. $\mathbb{Z}/19$
or $\mathbb{Z}/31$

Geometric intuition

Let F =the product of all the lines in the configuration

- $F \in I^{(3)}$ is easy to see: every point is a triple point
- $F \notin I^2$ is more challenging to prove

This is a common feature of the 3 counterexamples.

A homological criterion

Basic idea: certainly $I^3 \subseteq I^2$

•
$$I^{(3)} \subseteq I^2 \iff H^0_m(R/I^3) = \frac{I^{(3)}}{I^3} \to H^0_m(R/I^2) = \frac{I^{(2)}}{I^2}$$
 is the zero map.

A homological criterion

Basic idea: certainly $I^3 \subseteq I^2$

•
$$I^{(3)} \subseteq I^2 \iff H^0_m(R/I^3) = \frac{I^{(3)}}{I^3} \to H^0_m(R/I^2) = \frac{I^{(2)}}{I^2}$$
 is the zero map.

- consider a 3-generated ideal $I = (f, g, h) \subseteq k[x, y, z], ht(I) = 2$
- look at the resolutions of I^2 , I^3 to interpret the map above

$$0 \longrightarrow R^{3} \xrightarrow{Y} R^{12} \longrightarrow R^{10} \longrightarrow I^{3} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow R \longrightarrow R^{6} \longrightarrow R^{6} \longrightarrow I^{2} \longrightarrow 0$$

A homological criterion

Basic idea:

• $I^{(3)} \subseteq I^2 \iff H^0_m(R/I^3) = \frac{I^{(3)}}{I^3} \to H^0_m(R/I^2) = \frac{I^{(2)}}{I^2}$ is the zero map.

- consider a 3-generated ideal $I = (f, g, h) \subseteq k[x, y, z], ht(I) = 2$
- \bullet look at the resolutions of I^2 , I^3 to interpret the map above
- dualize and look at the map $Ext^3(R/I^2,R) \to Ext^3(R/I^3,R)$

$$0 \longleftarrow R^{3} \longleftarrow^{Y^{T}} R^{12} \longleftarrow R^{10} \longleftarrow I^{3} \longleftarrow 0$$

$$\uparrow [f g h] \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$0 \longleftarrow R \longleftarrow R^{6} \longleftarrow R^{6} \longleftarrow I^{2} \longleftarrow 0$$

Main result

Theorem (S., 2014)

If I = (f, g, h) has minimal generators of the same degree d and defines a reduced set of points in \mathbf{P}^2 , then:

• the minimal free resolution of I³ has the form

$$0 \longrightarrow R^3 \stackrel{\textbf{Y}}{\longrightarrow} R^{12} \longrightarrow R^{10} \longrightarrow I^3 \longrightarrow 0,$$

(and Y can be expressed explicitly in terms of the syzygies of I)

criterion for containment

$$\mathbf{I}^{(3)} \subseteq \mathbf{I}^2 \quad \Longleftrightarrow \quad \begin{bmatrix} f \\ g \\ h \end{bmatrix} \in \operatorname{Image}(\mathbf{Y}^{\mathsf{T}}).$$

Application to known counterexamples

Theorem (S., 2014)

If I is any one of the ideals defining the Fermat, Klein or Wiman configurations, then

$$I^{(3)} \not\subseteq I^2$$
, since $\begin{bmatrix} f \\ g \\ h \end{bmatrix} \notin \mathrm{Image}(Y^T)$.

Ideas of proof:

- play off the symmetry in the generators f, g, h of I against the symmetry exhibited by the matrix \mathbf{Y} in the resolution of I^3
- e.g for Fermat:

$$\begin{bmatrix} f \\ g \\ h \end{bmatrix} = \begin{bmatrix} zx^3 - zy^3 \\ yx^3 - yz^3 \\ xy^3 - xz^3 \end{bmatrix} \text{ vs } \mathbf{Y} = \begin{pmatrix} xy & 0 & 0 & xz & yz & 0 & -z^2 & 0 & 0 & -y^2 - x^2 & 0 \\ 0 & xz & 0 & xy & 0 & yz & 0 & -y^2 & 0 & -z^2 & 0 & -x^2 \\ 0 & 0 & yz & 0 & xy & xz & 0 & 0 & -x^2 & 0 & -z^2 - y^2 \end{pmatrix}$$

Open questions

Revised versions of C. Huneke's question:

ullet Is it always true for the ideal I of a finite set of points in \mathbb{P}^2 that

$$I^{(5)} \subseteq I^3$$
 ?

ullet Is it always true for the ideal I of a finite set of points in \mathbb{P}^3 that

$$I^{(5)} \subseteq I^2$$
 ?