3.1. Continuity of a function at a point :

Definition 1:

Let the function f be defined for all input x in an open interval I and $a \in I$. We say f is continuous at x=a if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, (|x - a| \le \delta \Rightarrow |f(x) - f(a)| \le \varepsilon.$$

ie f(x) has a limit f(a) at x = a.

Example:

Show, by using the definition of continuity, that the function $f(x) = x^3 + x + 1$ is continuous at 0,

We look for $\delta > 0$ suth that: inequality $|x - 0| = |x| \le \delta$ implice $|f(x) - f(0)| \le \varepsilon$.

Let $\varepsilon > 0$. $\forall x \in \mathbb{R}$, we have $f(x) - f(0) = x^3 + x$; moreover, if $|x| \le 1$, we have $|x|^3 \le |x|$ so, using the triangular inequality,

$$|f(x) - f(0)| \le |x^3 + x| \le |x| + |x| = 2|x|$$

$$\Rightarrow |f(x) - f(0)| \le 2|x|.$$
thus, we choose $\delta = \min(1, \frac{\varepsilon}{2})$

Definition 1bis:

Let f be a function defined on an interval I and $a \in I$. The function f is continuous at point a if and only if f (a) exists and both limits of f(x) to the left and right of a exist and are equal to f (a).

Examples:

- ✓ the constant function on an interval,
- \checkmark sine and cosine functions on \mathbb{R} ,
- \checkmark the absolute value function |x| on \mathbb{R} ,

Discontinuity

Definition

We say f is discontinuous at a if and only if f is not continuous at a, which is then called a point of discontinuity of f.

Discontinuity

The function f will be discontinuous at x = a in any of the following cases :

- (i) $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist but are not equal.
- (ii) $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are equal but not equal to f (a).
- iii) f (a) is not defined

Example:

The function E called α integer part α function defined on \mathbb{R} as follows:

For all $x \in \mathbb{R}$:

E(x) = n, if only if n is the largest integer less than or equal to x.

In other words:

$$\forall x \in \mathbb{R}: n \le E(x) < n+1$$
Thus: $E(3.5) = 3$; $E(\pi) = 3$; $E(1/2) = 0$; $E(-\sqrt{3}) = -1$ et $E(-0.5) = ?$

Construct the curve of the integer part function on the interval [-5,5].

What do we see? On the interval [0,1] and [1,2], then on the intervals of the form [n,n+1], $n \in \mathbb{Z}$.

What is happening at point 1?

And at every point on the entire abscissa?

3.2. Right Continuity and Left Continuity

- A function f is right continuous at a point a if it is defined on an interval [a, b] lying to the right of a and if lim_{x→a+} f(x)= f(a).
- Similarly it is left continuous at a if it is defined on an interval [d, a] lying to the left of a and if lim_{x→a} f(x)= f(a).

- A function f is continuous at a point x = a if a is in the domain of f and:
- 1. If $x = \mathbf{a}$ is an interior point of the domain of f, then $\lim_{x \to \mathbf{a}} f(x) = f(a)$
- 2. If x = a is not an interior point of the domain but is an endpoint of the domain, then f must be right or left continuous at x = a, as appropriate.

Remark:

The f is continuous at a if and only if it is continuous to the right and left at a.

Example:
$$f(x) = \begin{cases} x^2 & x < 1 \\ 1 & x = 1 \\ x & 1 < x \end{cases}$$

Is continuous on
$$]-\infty,1[\cup]1,+\infty[$$

It remains to be seen if it is continuous at 1.

1)
$$f(1) \in dom(f)$$
 car $f(1) = 1$ \checkmark

2)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1$$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x = 1$ $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \checkmark$

3)
$$\lim_{x \to 1} f(x) = 1 = f(1)$$
 \checkmark

So f(x) is continuous at 1.

Example:

$$f(x) = \begin{cases} 3x - 1 & x < 2 \\ x^2 - 6 & 2 \le x \end{cases}$$

1)
$$f(2) = (2)^2 - 6 = -2$$

2)
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x^{2} - 6 = -2$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 3x - 1 = 3(2) - 1 = 5$$

$$\lim_{x \to 2^{-}} f(x) \neq \lim_{x \to 2^{+}} f(x)$$
 χ

So a function f is not continuous at x = 2.

3.3. Characterizations of Continuity

Proposition:

Let $f : D \to \mathbb{R}$ and let $a \in D$, with $D \subseteq \mathbb{R}$

The following conditions are equivalent:

- 1. f is continuous at a.
- 2. If $(u_n)_{n\in\mathbb{N}}$ is a sequence in D such that $u_n\to a$, then $f(u_n)\to f(a)$.

Proof.

Corollary (Criterion for Discontinuity). Let $f: D \to \mathbb{R}$ and let $a \in D$ a be a limit point of D. If there exists a sequence $(u_n)_{n \in \mathbb{N}} \subseteq D$ where $u_n \to a$ but such that $f(u_n)$ does not converge to f(a), we may conclude that f is not continuous at a.

3.4. continuous extension to a point

Definition:

Let f be a function defined on I except at a point a of I and admitting a finite limit I at a.

We define a new function:

$$g(x) = \begin{cases} f(x) & for \ x \neq a. \\ l & for \ x \neq a \end{cases}$$

which is continuous at a. It is called the continuous extension of f(x) to a.

Example:

the function
$$f(x) = \frac{\ln(1+x)}{x}$$
 is defined on
$$D_f = \frac{1}{x} - 1,0[\cup]0,+\infty[.$$

The functions $x \mapsto ln(1 + x)$ et $x \mapsto x$ are continuous on D_f

and $\forall x \in D_f$, $(x \neq 0)$ so f is continuous on D_f .

since
$$\lim_{x \to 0} f(x) = 1$$
 so the function \tilde{f} defined by
$$\tilde{f}(x) = \begin{cases} \frac{\ln(1+x)}{x} & \text{if } x \in]-1, 0[\cup]0, +\infty[\\ & \text{if } x = 0 \end{cases}$$

is defined and continuous on $]-1,+\infty[$.

Continuity over an interval

Definition: Let $f: I \to \mathbb{R}$. We say that f is continuous on I if and only if f is continuous at every point of I.

Notation: We denote by $C(I, \mathbb{R})$ the set of functions from I to \mathbb{R} continuous on I.

Algebraic combinations are continuous.

Proposition: Let $\lambda \in \mathbb{R}$, $f, g : I \rightarrow \mathbb{R}$

- ✓ if f is continuous on I, then |f| is continuous on I.
- ✓ if f and g are continuous on I, then f + g is continuous sur I.
- ✓ if f is continuous on I, then λf is continuous on I.

✓ If g is continuous on I and if $(\forall x \in I, g(x) \neq 0)$, then $\frac{1}{g}$ is continuous on I.

- ✓ if f et g are continuous on I, then fg is continuous on I.
- ✓ if f and g are continuous on I), then $\frac{f}{g}$ is continuous on I, provided $\forall x \in I, g(x) \neq 0$.

Proposition: (Composition)

Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ be functions such that $f(I) \subset J$

if f is continuous on I and g is continuous on f(I),

then the composition of g with f, $g \circ f$ is continuous on I.

Proof.

Uniform continuity

Uniform continuity is a subtle but powerful strengthening of continuity.

Definition

Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$. Then f is uniformly

continuous on *I* if for every $\varepsilon > 0$ there exists a $\delta > 0$

such that

 $|x - y| < \delta$ and $x, y \in I$ implies that $|f(x) - f(y)| < \varepsilon$

Proposition:

A function $f: I \to \mathbb{R}$ is not uniformly continuous on I if and only if there exists $\varepsilon > 0$ and sequences $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}$ in I such that $\lim_{n \to +\infty} |x_n - y_n| = 0$ and $|f(x_n) - f(y_n)| \ge \varepsilon$ for all $n \in \mathbb{N}$.

Example 1: Define $f : [0, 1] \to \mathbb{R}$ by $f(x) = x^2$. Then f is uniformly continuous on [0, 1]. To prove this, note that for all x, $y \in [0, 1]$ we have

 $|x^2-y^2| = |x+y| |x-y| \le 2|x-y|$, so we can take $\delta = \varepsilon/2$

in the definition of uniform continuity. Similarly, f(x) = x 2 is

uniformly continuous on any bounded set.

Example 2: The function $f(x) = x^2$ is continuous but not uniformly continuous on \mathbb{R} . We have already proved that f is continuous on \mathbb{R} (it's a polynomial).

To prove that f is not uniformly continuous, let $x_n = n$, $y_n = n + 1/n$.

Then $\lim_{n\to+\infty} |x_n-y_n|=0$, but $|f(x_n)-f(y_n)|\geq 2$ for every

 $n \in \mathbb{N}$. It follows from Proposition above that f is not uniformly continuous on \mathbb{R} .

Example 3: The function $f:(0,1] \to \mathbb{R}$ defined by f(x) = 1/x is continuous but not uniformly continuous on (0,1]. It is continuous on (0,1] since it's a rational function whose denominator x is nonzero in (0,1]. To prove that f is not uniformly continuous, we define $x_n, y_n \in (0,1]$ for $n \in \mathbb{N}$ by $x_n = 1/n$, $y_n = 1/n+1$. $\lim_{n \to +\infty} |x_n - y_n| = 0$, but $|f(x_n) - f(y_n)| = (n+1) - n = 1$ for every $n \in \mathbb{N}$. It follows from Proposition above that f is not uniformly continuous on (0,1].

Properties of Continuous Functions

Proposition Let *f* be continuous on the closed and

bounded interval [a, b]. Then f is bounded on [a, b];

that is, there exist numbers m and M such that

$$m \le f(x) \le M$$
 for all $x \in [a, b]$

Proof.

Theorem (Heine)

If $f: I \to \mathbb{R}$ is continuous and $I \subset \mathbb{R}$ is a closed bounded interval (I is a compact of \mathbb{R}), then f is uniformly continuous on I.

Proof.

Lipshitz Functions

Definition let $f: I \to \mathbb{R}$ be a function and $I \subset \mathbb{R}$. If there exists a constante M > 0 such that

$$|f(x) - f(y)| < M|x - y| \quad \forall x, y \in I$$

then *f* is said to be a Lipshitz function on *I*.

Theorem

Every Lipshitz function is uniformly continuous,

Proof.

Lipshitz Functions Examples

- $f(x) = x^2$ is Lipshitz continuous on [0,1]. But is not Lipshitz on \mathbb{R} .
- $f(x) = \sqrt{x}$ is not Lipshitz on \mathbb{R}^+ . But is uniformaly continuous on \mathbb{R}^+

Intermediate value theorem (IVT)

Theoreme:

Let f be continuous on [a, b], with $f(a) = f(a) \neq f(b)$; let y be any number between f(a) and f(b) (i.e., f(a) < y < f(b) or f(b) < y < f(a)). Then there exists c in (a, b) with f(c) = y.

Proof.

Remark: The real c is not necessarily unique.

Corollary:

Let $f: I \to \mathbb{R}$ be continuous.If f(a) and f(b) have opposite sign, then there is at least one point $c \in (a, b)$ such that f(c) = 0

Theorem (Extreme value theorem (EVT)).

If f is continuous on [a, b], then f assumes both a maximum

and a minimum value on [a, b]. That is, there exist

 x_{min} and x_{max} in [a, b] such that

$$f(x_{min}) \le f(x) \le f(x_{max})$$
 for all $x \in [a, b]$.

Proof.

Example:

Let the fonction $f(x) = x^3 + x + 1$.

The equation f(x) = 0 does it admit a solution on [-1,0]?

1. the fonction f(x) is continuous on \mathbb{R} , particularly on [-1,0]

2.
$$f(-1) = -1$$
 et $f(0) = 1 \Rightarrow f(-1)f(0) < 0$

Then there exists $c \in [a, b]$ suth that f(c) = 0 therefore the equation f(x) = 0 admit a solution on [-1,0]

Example:

Let f be a continuous function on [0,1] and with values in [0,1]. Show that the equation f(x) = x has at least one solution.

Let's introduce the function g(x) = f(x) - x; g is continuous on [0,1] as the difference of two continuous functions

moreover, $g(0) = f(0) \in [0,1]$ so $g(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$ because $f(1) \in [0,1]$.

so $g(0)g(1) \le 0$ and by the intermediate value theorem, there exists at least one point $x_0 \in [0,1]$ such that $g(x_0) = 0$

Proposition:

If I is an interval and $f: I \to \mathbb{R}$ is continuous, then the range of f is either a single point (if f is constant) or an interval.

Proof.

<u>Lemma</u>

If I is an interval and $f: I \to \mathbb{R}$ is monotone, then f(I) is an interval if and only if f is continuous. Proof.

Inverse Function Theorem

Theorem (Inverse Function Theorem):

Assume that f is continuous and strictly monotonic on the interval I then there exists a inverse function to f $f^{-1}: f(I) \to I$, continuous and similarly monotonous.

Proof.

Remarks on image of interval:

✓ We consider the function $f: x \mapsto x^2$ continuous on \mathbb{R} . Then f(]-1,2])=[0,4]:

the image of interval]-1,2] under a continuous function f is indeed an interval, but it is not of the same nature. (one is closed, the other is half-open or half closed).

✓ We consider the function $g: x \mapsto 1/x$ continuous on the bounded interval]0,1].

we find $g(]0,1]) = [1,+\infty[$ unbounded interval, which is also not open on the same side! So the image of interval under a continuous function does not necessarily have the same properties as the starting interval.

Example:

The exponentiel function performs a bijection from \mathbb{R} to \mathbb{R}_+^* because :

- It is continues on \mathbb{R} .
- It is strictly monotonic on $\mathbb R$.

Its inverse bijection is the function Ln.