Digital Logic Design

Lecture 16

Multiplexing/ De-Multiplexing

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - **O**A set of information inputs from which the selection is made
 - **O**A single output
 - **O**A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ... I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - $\mathbf{0}\mathbf{S} = \mathbf{0}$ selects input $\mathbf{I}_{\mathbf{0}}$
 - $\mathbf{0}\mathbf{S} = \mathbf{1}$ selects input \mathbf{I}_1
- The equation:

$$\mathbf{Y} = \overline{\mathbf{S}}\mathbf{I}_0 + \mathbf{S}\mathbf{I}_1$$

Enabling The circuit: Decoder Circuits S-

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - **1-to-2-line Decoder**
 - **©2** Enabling circuits
 - **10**2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2×2 AND-OR circuit:
 - 1-to-2-line decoder
 - 02×2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - 0 n-to- 2^n -line decoder
 - $\bigcirc 2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

Example: 8-to-1-line Multiplexer

Sel	Select Data Inputs		
S ₂	S ₁	S ₀	Y
0	0	0	D ₀
0	0	1	D_1
0	1	0	D ₂
0	1	1	D ₃
1	0	0	D ₄
1	0	1	D ₅
1	1	0	D ₆
1	1	1	D ₇

Example: 8-to-1-line Multiplexer

Multiplexer Expansion

8-to-1 MUX using Dual 4-to-1 MUX

Multiplexer Width Expansion

Select "vectors of bits" instead of "bits"

• Use multiple copies of $2^n \times 2$ AND-OR in

parallel

Example:4-to-1-linequad multiplexer

