

RTL8195AM

SINGLE-CHIP 802.11b/g/n 1T1R WLAN SoC

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.1

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2015 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary			
0.1	2015/02/24	Preliminary release.			
V01-r02	2015/7/08	Add Timing sequence			
		2. correct description of trap pin			
		3. Add GPIOB_0 wakeup function			
		4. Add Notes on Special Pin Function			
		5. Add Ordering Information			
V01-r4	2015/10/8	modify feature list			
		2. modify functional block diagram			
		3. correct memory mapping			
		4. modify pin function group table			
		5. correct SRAM size			
	69	6. correct storage temperature			
		7. Add temperature characteristics			
		8. correct electrical specifications			
V01-r5	2015/10/27	1. modify MII interface			
V01-R6	2015/11/10	1. correct ADC			
V01-R7	2016/1/7	1. correct timer source clk			
V01-R8	2016/2/16	1. correct pin function group table			
V01-R8	2016/3/2	1. correct power pins table			
V01-R9	2016/5/13	1. correct power on trap table			

Table of Contents

1.	GENERAL DESCRIPTION	. 1
2.	FEATURES	
3.	BLOCK DIAGRAM	
3.1.	Functional Block Diagram	4
3.2.		
3.3.		6
4.	MEMORY MAPPING	. 7
4.1.		7
4.2.	IO Space	8
4.3.		
5.	PIN ASSIGNMENTS	
5.1.		14
5.2.		
5	.2.1. Power-On Trap Pin	15
5	.2.2. Analog to DC Converter	
5	.2.3 Digital to Analog Converter	
5	2.4. RF and NFC	17
5	2.5. Power Pins	17
5.	2.6. Clock Pins	
5	.2.7. NOR Flash Interface	19
	.2.8. Digital IO Pins	
5	2.9. USB Transceiver Interface	21
5	.2.10. SDMMC Interface	22
5	2.11. SDIO Interface	22
6.	PIN FUNCTION TABLE	23
6.1.	PIN CONFIGURABLE FUNCTION GROUP SUMMARY TABLE	23

6.2.	Notes on Pin Function	23
6.2.1	. WKDT_DSLP Usage	23
6.2.2	_ ~	
6.2.3	. ETE Pin Usage	24
7. FUI	NCTIONAL DESCRIPTION	
7.1.	Power Management Control Unit	25
7.1.1		
7.1.2	. Power Mode Description	26
7.2.	MEMORY SYSTEM	28
7.2.1		
7.2.2	. Internal ROM	28
7.2.3	. Internal SRAM	28
7.2.4	. Extended SDR DRAM	28
7.2.5	. SPI NOR Flash	ZS
7.3.	GENERAL PURPOSE DMA CONTROLLER	30
7.3.1	. Features of GDMA	30
7.4.	GENERAL PURPOSE TIMER	
7.4.1		
7.5.	GPIO FUNCTIONS	31
7.5.1	. Features of GPIO	31
7.6.	UART Interface Characteristics	31
7.6.1	. Features of UART	31
7.6.2	High Speed UART Specification	32
7.6.3		34
7.7.	SPI Interface	
7.7.1		
7.8.	I2C Interface	
7.8.1	. Features of I2C	35

7.9. PWM INTERFACE	36
7.9.1. Features of PWM	36
7.10. EXTERNAL TRIGGER EVENT INTERFACE	
7.10.1. Features of External Trigger Event	36
7.11. USB Device v2.0 Interface	
7.11.1. Features USB Device Interface	36
7.12. USB Host Interface	37
7.12.1. Features of USB Host Interface	37
7.12.2. Electrical Specifications	
7.13. SDIO/RTK SPI Device Mode Interface	38
7.13.1. Features of SDIO/RTK SPI Device Mode Interface	38
7.13.2. SDIO Device Mode Specifications	38
7.14. MII INTERFACE	39
7.15. I2S Interface Characteristics	39
7.15.1. Features of I2S	39
7.16. PCM Interface Characteristics	40
7.16.1. Features of PCM	40
7.16.2. PCM Specifications	40
7.17. AD CONVERTER	44
7.17.1. Features	44
7.18. DA CONVERTER	45
7.18.1. Features	45
7.19. Security Engine	45
7.19.1. Features	45
8. ELECTRICAL CHARACTERISTICS	
8.1. Temperature Limit Ratings	
8.2. Temperature Characteristics	
8.3. POWER SUPPLY DC CHARACTERISTICS	

8.4.	Power State and Power Consumptions	48
8.4.1	Power Mode Description	48
8.4.2	2. Power On Sequence (Power On or Resume from Deep Sleep)	50
8.4.3	3. Resume from Deep Standby	52
8.5.	DIGITAL IO PIN DC CHARACTERISTICS	
8.5.1	L. Electrical Specifications	52
	USB ELECTRICAL SPECIFICATIONS	
9. MI	ECHANICAL DIMENSIONS	54
9.1.	PACKAGE SPECIFICATION	54
	Mechanical Dimensions Notes	
	RDERING INFORMATION	

1. General Description

Realtek RTL8195AM is a highly integrated single-chip low power 802.11n Wireless LAN (WLAN) network controller. It combines an ARM-Cortex M3 MCU, WLAN MAC, a 1T1R capable WLAN baseband, and RF in a single chip. It provides useful high speed connectivity interfaces, such as USB 2.0 host, USB 2.0 device, SDMMC HS, SDIO device, and MII/RMII interfaces. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

RTL8195AM integrates internal memories for complete WIFI protocol functions. The embedded memory configuration also provides simple application developments.

2. Features

General

- Package TFBGA-96 (6x6mm^2)
- CMOS MAC, Baseband PHY, and RF in a single chip for 802.11b/g/n compatible WLAN
- Complete 802.11n solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20MHz bandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40MHz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operating in 802.11n mode

Standards Supported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services
- WIFI WPS support
- WIFI Direct support
- Light Weight TCP/IP protocol

WLAN MAC Features

- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- Long NAV for media reservation with CF-End for NAV release
- PHY-level spoofing to enhance legacy compatibility
- Power saving mechanism

WLAN PHY Features

- 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz and 40MHz pandwidth transmission
- Short Guard Interval (400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and
 640QAM modulation. Convolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6

- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Fast receiver Automatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfaces

- USB host controller with HS/FS capability
- USB device controller with HW/FW capability
- HS-SD/MMC 2.0
- SDIO device 2.0 with highest SDR25 supported
- MII/RMII interface supported
- Maximum 2 high speed UART interface with baud rate up to 4MHz
- 1 log UART with standard baud rate support

- Maximum 4 I2C interface
- Maximum 2 I2S with 8/16/24/32/48/96/44.1/88.2 KHz sampling rate
- Maximum 2 PCM with 8/16KHz sample rate
- Maximum 2 SPI supported. One supports baud rate up to 41.5MHz; the other one supports baud rate up to 15MHz.
- Support 4 PWM with configurable duration and duty cycle from 0 ~ 100%
- Support 4 External Timer Trigger Event (ETE function) with configurable period in low power mode
- Support ADC with 2 channels and DAC with 1 channel
- Maximum 30 GPIO pins

3. Block Diagram

3.1. Functional Block Diagram

Figure 1. Block Diagram

3.2. WIFI and NFC Application Diagram

Figure 2. Single-Band 11n (1x1) and NFC Tag Solution

3.3. Power Supply Application Diagram

Figure 3. Power Supply Architecture

The integrated Power Management Unit (PMU) provides the following features:

- 1.2V power bulk or LDO selectable.
- 1.8~2.7V LDO
- 3.3V power source integrated power cut controlled by FW.

4. Memory Mapping

4.1. Programming Space

Name	Mode	Physical	Size	IP Function
Code		0x0000_0000	1MB	Instruction Memory (ROM)
		0x000F_FFFF		
		0x1000_0000	448KB	Inter SRAM: BD SRAM and Buffer
		0x1006_FFFF		SRAM share total 448KB physical sram
		0x1FFF_0000	64KB	TCM (Tightly-Coupled Memory)
		0x1FFF_FFFF		SRAM
SRAM		0x3000_0000	2MB	SDR SDRAM memory
		0x301F_FFFF		X_{I}

4.2. IO Space

Name	Mode	Physical Address	Size	IP Function
Peripheral		0x4000_0000	4KB	SYS Control (SYSON)
		0x4000_0FFF		
		0x4000_1000	2KB	GPIO Control
		0x4000_17FF		
		0x4000_1800		RSVD
		0x4000_1FFF		
		0x4000_2000	4KB	Timer Control
		0x4000_2FFF		
		0x4000_3000	1KB	UART for Log
		0x4000_33FF		
		0x4000_3400	1KB	I2C_2 Control
		0x4000_37FF		
		0x4000_3800	1KB	I2C_3 Control
		0x4000_3BFF	_	
X	N 1	0x4000_3C00		RSVD
		0x4000_4FFF		
		0x4000_5000	4KB	SDR SDRAM controller
		0x4000_5FFF		
		0x4000_6000	4KB	SPI flash controller
, ·		0x4000_6FFF		
		0x4000_7000		RSVD
	0.	0x4000_FFFF		0.1
	7	0x4001_0000	4KB	ADC
		0x4001_0FFF		
		0x4001_1000	4KB	DAC
		0x4001_1FFF		

Name	Mode	Physical Address	Size	IP Function
Peripheral		0x4004_0000	1KB	UART_0 Control
		0x4004_03FF		
		0x4004_0400	1KB	RSVD
		0x4004_07FF		
		0x4004_0800	1KB	UART_2 Control
		0x4004_0BFF		
		0x4004_0C00		RSVD
		0x4004_1FFF		· 'O'
		0x4004_2000	1KB	SPI_0 Control
		0x4004_23FF		
		0x4004_2400	1KB	SPI_1 Control
		0x4004_27FF		1 0.
		0x4004_2800	IKB	RSVD
		0x4004_2BFF		
		0x4004_2C00		RSVD
		0x4004_3FFF		
	1	0x4004_4000	1KB	I2C_0 Control
		0x4004_43FF		
X	\bigcirc	0x4004_4400	1KB	I2C_1 Control
		0x4004_47FF		
		0x4004_4800		RSVD
		0x4004_FFFF		

Name	Mode	Physical Address	Size	IP Function
Peripheral		0x4005_0000	16KB	SDIO Device / GMAC
		0x4005_3FFF		C
		0x4005_4000		RSVD
		0x4005_7FFF		
		0x4005_8000	16KB	SDIO Host
		0x4005_BFFF		<u> </u>
		0x4005_C000		RSVD
		0x4005_FFFF	1	'○'
		0x4006_0000	2KB	GDMA0
		0x4006_07FF	2KD	UDIMAU
		0x4006_0800	2KB	RSVD for other DMA
		0x4006_0FFF		
		0x4006_1000	2KB	GDMA1
		0x4006_17FF	ZNB	GDMAI
		0x4006_1800		RSVD for other DMA
		0x4006_1FFF		1

Name	Mode	Physical Address	Size	IP Function
Peripheral		0x4006_2000	1KB	I2S_0 Control
		0x4006_23FF		
		0x4006_2400	3KB	RSVD
		0x4006_2FFF		
		0x4006_3000	1KB	I2S_1 Control
		0x4006_33FF		
		0x4006_3400	3KB	RSVD
		0x4006_3FFF		· 10
		0x4006_4000	1KB	PCM_0 Control
		0x4006_43FF		
		0x4006_4400		RSVD
		0x4006_4FFF		
		0x4006_5000	1KB	PCM_1 Control Security Engine
		0x4006_53FF		
		0x4007_0000	16KB	
		0x4007_3FFF		
	1	0x4007_4000	48KB	RSVD
X	8	0x4007_FFFF		
		0x4008_0000	256KB	WIFI REG &
		0x400B_FFFF		TX/RX FIFO direct map
		0x400C_0000	256KB	USB OTG REG &
		0x400F_FFFF		DATA FIFO direct map
		0x403F_FFFF	1MB	RSVD

4.3. Extension Memory Space

Name	Physical Address	Size	IP Function	
El cole	0x9800_0000	64MD	External flesh man on	
Flash	0x9BFF_FFFF	64MB	External flash memory	

5. Pin Assignments

Figure 4. Ball Assignments

5.1. Package Identification

The version is shown in the location marked 'VV' in Figure 4, e.g., A0=Version A0

5.2. Pin Descriptions

The following signal type codes are used in the tables:

l:	Input	O:	Output
T/S:	Tri-State bi-directional input/output pin	S/T/S.	Sustained Tri-State
O/D:	Open Drain	P:	Power pin

5.2.1. Power-On Trap Pin

Table 1. Power On Trap Pins

Symbol	Туре	Pin No	Description
NORMAL_MODE_SEL		А3	Shared with GPIOB_2
			1: Normal operation mode
			0: Enter into test/debug mode
SPS_LDO_SEL	I	H8	Shared with GPIOF_4
X		20	0: Internal switching regulator select
			1: Internal LDO select
BOOT_SCENARIO		B2	Shared with GPIOB_0
			0: booting from flash
			1: booting from internal memory
EEPROM_SEL	I	G9	Shared with GPIOF_5
			0: Internal NV memory select
			1: reserved for internal testing use
SD_DEV_SEL	I	E7	Shared with GPIOA_7
			Weak Pull High: SDMMC Host mode
			Weak Pull Low: SDIO device mode

Symbol	Туре	Pin No	Description
ICFG0	ı	В6	Shared with GPIOC_0
			When NORMAL_MODE_SEL is "0", then ICFG0 is test mode BIT0.
ICFG1	I	В7	Shared with GPIOC_1
			When NORMAL_MODE_SEL is "0", then ICFG1 is test mode BIT1.
ICFG2	I	B8	Shared with GPIOC_2
			When NCRMAL_MODE_SEL is "0", then ICFG2 is test mode BIT2.
ICFG3	ı	В9	Shared with GPIOC_3
		76	When NORMAL_MODE_SEL is "0", then ICFG3 is test rnode BIT3.

5.2.2. Analog to DC Converter

Table 2. ADC Pins

Symbol	Туре	Pin No	Description
ADC_CH1	I	(18)	AD converter input channel 1
ADC_CH2		L9	AD converter input channel 2
CAP_ADC	Р	K8	Capacitor for AD converter power.

5.2.3. Digital to Analog Converter

Table 3. DAC Pins

Symbol	Туре	Pin No	Description
DAC_CH0	0	L10	DA converter output channel 0
CAP_DAC	Р	К9	Capacitor for DA converter power.

5.2.4. RF and NFC

Table 4. RF and NFC Pins

Symbol	Туре	Pin No	Description	
NFC_IP	I	C2	NFC input differential signal	X
NFC_IN	I	D1	NFC input differential signal	7
RF_IO	Ю	L1	WL RF signal	00

5.2.5. Power Pins

Table 5. Power Pins

Symbol	Туре	Pin No	Description
SW_LX	P	A11	Switching Regulator Output 1.2V
SW_HV3	P	B11	Switching Regulator Input
			Or Linear Regulator input from 3.3V to 1.2V
VA33	Р	C1, F1, G1, K1,	3.3V for Analog Circuit power source
		L3, L11, D11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VD3310	Р	A1	VDD3.3V for Digital IO power input
VD33_IN	P	A8	3.3V power input for digital blocks
VDD_IO	P	G11, L5	VDIO_A (G11) is power source for GPIOA group. The
			voltage level can be 1.8V ~ 3.3V.
1/1/6)		VDIO_ED (L5) is power source for GPIOE and GPIOD group. The voltage level can be 1.8V ~ 3.3V.
VDD_IO	Р	A5, C10	VDD_IO for memory and it's IOs.
			The voltage level is from 2.5V ~ 3.3V.
			It is recommended that the power is provided from integrated LDO outputted from VDD_SRC (A9).

Symbol	Туре	Pin No	Description
VD12D	Р	A6, C11, E11, L7	1.2V power for digital circuits
VA12	Р	E1, H1, J1, L4	1.2V for analog blocks
VDD_SRC	Р	A9	Integrated LDO output, voltage level from 1.8 ~ 2.7V.
VDD33_SRC	Р	A7	Integrated power switch to output fixed 3.3V. SW controllable.
SW_GND	Р	A10	Switching Regulator Ground
GND_LDO_SPS	Р	B10	Switching Regulator ground
GND_CORE/ GND_IO	Р	C4, C5, C7, C9, D7, E4, E9, F4, H4	Digital core ground and IO groud
NFC Ground	Р	C3, D2, F3	NFC and analog ground
Analog Ground	Р	H2, H3, J2, J7, J8, K3, L2	Analog ground

5.2.6. Clock Pins

Table 6. Clock and Other Pins

Symbol	Туре	Pin No	Description
XI	П	F2	40MHz OSC Input
			Input of 40MHz Crystal Clock Reference
ХО	0	E2	Output of 40MHz Crystal Clock Reference

5.2.7. NOR Flash Interface

Table 7. NOR Flash Pins

Symbol	Туре	Pin No	Description
SPI_M_CLK	Ю	K10	NOR Flash CLK signal Multiplexed with GPIOF_1.
SPI_M_DATA0	Ю	K11	NOR Flash CLK signal. Multiplexed with GPIOF_2.
SPI_M_CS	Ю	J10	NOR Flash CLK signal. Multiplexed with GPIOF_0.
SPI_M_DATA1	Ю	J9	NOR Flash CLK signal. Multiplexed with GPIOF_3.

5.2.8. Digital IO Pins

Please refer to section 6 Pin Function Table for more detailed information.

Table 8. Digital IO Pins

Symbol	Туре	Pin No	Description
CHIP_EN	I	J6	Whole chip enable control. When asserted, chip function is enabled; when de-asserted, whole chip is shutdown.
GPIOB_0	Ю	B2	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_1	Ю	В3	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_2	10	A3	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_3	Ю	A4	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_4	Ю	B1	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_5	Ю	A2	GPIO pin. The MUX function can be referred to Pin Function Table.

Symbol	Туре	Pin No	Description
GPIOE_0	Ю	K7	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_1	Ю	L6	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_2	Ю	K6	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_3	Ю	K5	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_4	Ю	K4	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_5	Ю	J4	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOD_4	10	E6	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOD_5	Ю	G5	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOD_6	10	G6	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOD_7	Ю	J5	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_0	Ю	J11	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_1	10	H11	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_2	10	H10	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_3	Ю	G10	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_4	Ю	F11	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_5	Ю	F10	GPIO pin. The MUX function can be referred to Pin Function Table.

GPIOA_7	Ю	E7	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_6	Ю	F9	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_0	Ю	B6	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_1	Ю	В7	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_2	Ю	B8	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_3	Ю	B9	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_4	Ю	B4	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_5	Ю	B5	GPIO pin. The MUX function can be referred to Pin Function Table.

5.2.9. USB Transceiver Interface

Table 9. USB Transceiver Interface

Symbol		Туре	Pin No	Description
HSDP		IO	D10	High-Speed USB D+ Signal
HSDM	X	10	E10	High-Speed USB D- Signal
RREF		Р	D9	Precision Resistor for Bandgap for USB interface

5.2.10. SDMMC Interface

Table 10. SD/MMC Card Interface

Symbol	Туре	Pin No	Description
SD_D0	Ю	F11	SD/MMC Data 0. Multiplexed with GPIOA_4.
SD_D1	Ю	F10	SD/MMC Data 1. Multiplexed with GPIOA_5.
SD_D2	Ю	J11	SD/MMC Data 2. Multiplexed with GPIOA_0.
SD_D3	Ю	H11	SD/MMC Data 3. Multiplexed with GPIOA_1.
SD_CMD	Ю	H10	SD/MMC Command. Multiplexed with GPIOA_2.
SD_CLK	Ю	G10	SD/MMC Bus clock. Multiplexed with GPIOA_3.
SD_CD	Ю	F9	SD/MMC Card Detection. Multiplexed with GPIOA_6.
SD_WT	Ю	E7	SD/MMC Write Protection. Multiplexed with GPIOA_7.

5.2.11. SDIO Interface

Table 11 SDIO Device Interface

Symbol	Туре	Pin No	Description
SD_D0	10	F11	SDIO Data 0. Multiplexed with GPIOA_4.
SD_D1	Ю	F10	SDIO Data 1. Multiplexed with GPIOA_5
SD_D2	10	J11	SDIO Data 2. Multiplexed with GPIOA_0.
SD_D3	10	H11	SDIO Data 3. Multiplexed with GPIOA_1.
SD_CMD	Ю	H10	SDIO Command. Multiplexed with GPIOA_2.
SD_CLK	Ю	G10	SDIO Bus clock. Multiplexed with GPIOA_3.

6. Pin Function Table

6.1. Pin Configurable Function Group Summary Table

Table 12. Pin Function Group Table

PIN name	JTAG	SDD	SDH	MII	UART Group	I2C Group	SPI Group	I2S Group	PCM Group	WI. LED	PWM	ETE	WKDT	GPIO INT	Default State	SCHMT
GPIOA 0		D2		RX CK	UART2 IN		SPI1 MISO		· ciii cicap					GPIO INT	PH	0
GPIOA 1		D3		RXD0	UART2 CTS		SPI1 MOSI							GPIO INT	HI	
GPIOA 2		CMD	CMD	RXD1	UART2 RTS		SPI1 CLK								PH	0
GPIOA 3		CLK		RXD2	UARTO RTS		_								PH	0
GPIOA 4		D0	D0	RXD3	UART2 OUT		SPI1 CS							1	PH	
GPIOA 5		D1	D1	RXDV	UARTO CTS		_						D SBYO	1	PH	
GPIOA 6		INT	CD	RXERR	UARTO IN										PH	
GPIOA 7			WP	COL	UARTO OUT								1		HI	
GPIOB 0					LOG OUT							ETE0	D SLP0		HI	
GPIOB_1					LOG_IN					WL_LED0		ETE1			PH	
GPIOB 2						I2C3 SCL						ETE2			HI	0
GPIOB_3						I2C3_SDA						ETE3		GPIO_INT	PH	
GPIOB_4										WL_LED0	PWM0			GPIO_INT	PH	
GPIOB_5								-		WL_LED0	PWM1				PH	0
GPIOC_0				TXD2	UARTO_IN		SPIO_CSO	12S1_WS	PCM1_SYNC		PWM0	ETE0			HI	
GPIOC_1				TXD1	UARTO_CTS		SPIO_CLK	I2S1_CLK	PCM1_CLK		PWM1	ETE1		GPIO_INT	HI	0
GPIOC_2				TXD0	UARTO_RTS		SPI0_MOSI	I2S1_SD_TX	PCM1_OUT		PWM2	ETE2			HI	
GPIOC_3				TX_CK	UARTO_OUT		SPI0_MISO	I2S1_MCK	PCM1 IN		PWM3	ETE3		GPIO_INT	HI	0
GPIOC_4				TXD3		I2C1_SDA	SPI0_CS1	I2S1_SD_RX						GPIO_INT	HI	
GPIOC_5				TXEN		I2C1_SCL	SPI0_CS2							GPIO_INT	HI	0
GPIOD_4				MDC	UART2_IN	I2C0_SDA	SPI1_CS	4	PCM1 SYNC		PWM0	ETE0		GPIO_INT	PH	0
GPIOD_5				MDIO	UART2_CTS	I2CO_SCL	SPI1_CLK		PCM1_CLK		PWM1	ETE1	D_SBY2	GPIO_INT	PH	0
GPIOD_6					UART2_RTS	I2C1_SCL	SPI1_MOSI	I2SO_SD_RX	PCM1_OUT		PWM2	ETE2		GPIO_INT	PH	0
GPIOD_7					UART2 OUT	I2C1_SDA	SPI1_MISO		PCM1_IN		PWM3	ETE3		GPIO_INT	PH	0
GPIOE_0	TRST				UARTO_OUT	I2C2_SCL	SPI0_CS0	12S0_WS	PCM0_SYNC		PWM0				PH	0
GPIOE_1	TDI				UARTO_RTS	I2C2_SDA	SPI0_CLK	I2SO_CLK	PCM0_CLK		PWM1			GPIO_INT	PH	0
	TDO				UARTO_CTS	I2C3_SCL	SPI0_MOSI	I2SO_SD_TX	PCM0_OUT		PWM2			GPIO_INT	PH	0
GPIOE_3	TMS				UARTO_IN	I2C3_SDA	SPIO_MISO	I2S0_MCK	PCM0_IN		PWM3		D_SBY3	GPIO_INT	PH	0
	CLK					I2C3_SCL	SPIO_CS1								PH	0
GPIOE_5						I2C3_SDA	SPIO_CS2							GPIO_INT	PH	0
GPIOF_4															Al	
GPIOF_5															HI	

NOTE1: PH = Pull-High, HI = High-impedance

NOTE2. GPIOA_1 needs external Circuit to do the pull high control; others' pull control can be done by register setting (including GPIOA_1's PD).

6.2. Notes on Pin Function

6.2.1. WKDT_DSLP Usage

WKDT DSLP is wakeup pin for deep sleep state. This function can be enabled via API.

6.2.2. WKDT_DSBY Usage

WKDT_DSBY is wakeup pin for deep standby state. This function can be enabled via API.

6.2.3. ETE Pin Usage

External trigger by GTimer. Gtimer can be configured with a specific timing to issue trigger event.

7. Functional Description

7.1. Power Management Control Unit

7.1.1. Features

The PMU provides the following functions:

- Bulk/LDO to output 1.2V
- LDO to output 1.8V ~ 2.5V power source
- Integrated power cut to output Vref (input from VD33_IN) with SW controllable
- 2 very Low power clock source with less accuracy: 1K Hz and 500K Hz
- 1 low power 32.768KHz clock source with moderate accuracy
- Wakeup system detector to resume from low power state

7.1.2. Power Mode Description

7.1.2.1 Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

7.1.2.2 Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_1 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

7.1.2.3 Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

7.2. Memory System

7.2.1. Memory Architecture

RTL8195AM integrates ROM, internal SRAM, extended SDR DRAM, extended NOR flash to provide applications with a variety of memory requirements.

7.2.2. Internal ROM

RTL8195AM integrates 1MB ROM to provide high access speed, low leakage memory. The ROM memory clock speed is up to 166MHz. The ROM lib provides the following functions:

- Boot Code and MCU initialization
- Default UART driver
- Non-flash booting functions and drivers
- Peripheral libs
- Security function libs

7.2.3. Internal SRAM

448KB SRAM is integrated to provide instruction, data, and buffer usage. The maximum clock speed is up to 166MHz.

Additional 64KB fast access data memory (TCM) is provided for FW data section. The range is $0x1FFF-0000 \sim 0x1FFF-FFFF$.

7.2.4. Extended SDR DRAM

7.2.4.1 Features

• Interface (Bus Width): 16-bit

- Targeted SDR Frequency: Up to 83MHz
- Supports one Chip Select (MCSO#) and 1 Band select (BAO)

7.2.5. SPI NOR Flash

7.2.5.1 Features

- Targeted SPI flash frequency: Up to 83.3MHz (when CPU clock is 166MHz)
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operation
- Supports Read and Fast Read in memory-mapped I/O mode

7.2.5.2 Supported NOR Flash List

Table 13. Flash Bus DC Parameters

Vendor	Part Number	Density	Voltage	Ю	
MXIC	MXIC_MX25L4006E	4M Bits	3.3V	1I/2O	
MXIC	MXIC_MX25L8073E	8M Bits	3.3V	11/20	
MXIC	MXIC_MX25L8006E	8M Bits	3.3V	11/20	
MXIC	MXIC_MX25L16006E	16M Bits	3.3V	1I/2O	

7.2.5.3 Electrical Specifications

Table 14. Flash Bus DC Parameters

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage		LVTTL	2.0	-	-	V	1

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V	2
V_{OH}	Output-High Voltage	-	2.4	-		V	3
V_{OL}	Output-Low Voltage	-	-	7-6	0.4	V	3
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ	-
I _{OZ}	Tri-State Output-Leakage Current	-	-10	±1	10	μΑ	-
R_{PU}	Input Pull-Up Resistance	-	-	75	7	ΚΩ	4
R _{PD}	Input Pull-Down Resistance	·- 'O	-	75		ΚΩ	4

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width \leq 3ns.

Note 2: V_{IL} undershoot: V_{IL} (MIN)=-2V for a pulse width \leq 3ns.

Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

7.3. General Purpose DMA Controller

7.3.1. Features of GDMA

- Dual port DMA with totally 12 channels
- Configurable endian
- Support memory-memory, memory-peripheral, peripheral-memory, and peripheral-peripheral DMA transfer
- Support block level flow control
- Support acdress auto-reload, link-listed mode
- Support scatter-gather mode

7.4. General Purpose Timer

7.4.1. Features of GTimer

- 8 Gtimer supported
- Source clock is 32.768KHz
- Support Counter mode and timer mode

7.5. GPIO Functions

7.5.1. Features of GPIO

- GPO and GPI function
- Support interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO
- Multiplexed with other specific digital functions

7.6. UART Interface Characteristics

7.6.1. Features of UART

- Support maximum 2 HS-UART (max baud rate 4MHz and DMA mode) and 2 low speed UART (IO mode)
- UART (RS232 Standard) Serial Data Format
- Transmit and Receive Data FIFO
- Programmable Asynchronous Clock Support
- Auto Flow Control

- Programmable Receive Data FIFO Trigger Level
- DMA data moving support to save CPU loading

7.6.2. High Speed UART Specification

The RTL8195AM UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k baud. In order to support high and low speed baud rate, the RTL8195AM provides multiple UART clocks.

Table 15. UART Baud Rate Specifications

Desired Baud Rate	Actual Baud Rate	Error (%)
300	300	0.00%
600	600	0.00%
900	900	0.00%
1200	1200	0.00%
1800	1800	0.00%
2400	2400	0.00%
3600	3601	0.03%
4800	4798	-0.04%
7200	7198	-0.03%
9600	9603	0.03%
14400	14395	-0.03%
19200	19182	-0.09%
23800	28846	0.16%
38400	38462	0.16%
56000	55970	-0.05%
57600	57692	0.16%
76800	76531	-0.35%

Desired Baud Rate	Actual Baud Rate	Error (%)				
115200	115385	0.16%				
128000	127119	-0.69%				
153600	153061	-0.35%				
230400	229167	-0.54%				
460800	458333	-0.54%				
500000	500000	0.00%				
921600	916667	-0.54%				
1000000	1000000	0.00%				
1382400	1375000	-0.54%				
1444444	1437500	-0.48%				
1500000	1500000	0.00%				
1843200	1833333	-0.54%				
2000000	2000000	0.00%				
2100000	2083333	-0.79%				
2764800	2777778	0.47%				
3000000	3000000	0.00%				
3250000	3250000	0.00%				

Track ID: Rev. 0.1

Data Sheet

Desired Baud Rate	Actual Baud Rate	Error (%)
3692300	3703704	0.31%
3750000	3750000	0.00%

Desired Baud Rate	Actual Baud Rate	Error (%)
4000000	4000000	0.00%

Figure 5 UART Interface Waveform

7.6.3. UART Interface Signal Levels

The UART signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8195AM UART interface via the IO power.

7.7. SPUInterface

7.7.1. Features of SPI

- Support maximum 2 SPI port
- Support Master/Slave mode (SPIO only), and Master only (SPI1)
- Support DMA to offload CPU bandwidth
- 1 very high speed SPI (Master only)
 - Support up to 3 CS (multi-slave mode up to 3 slave)
 - Support baud rate up to 41MHz (Master mode)
- 1 high speed SPI (Master/Slave)

- Support baud rate up to 20MHz (Master mode)
- Support baud rate up to 5MHz (Slave mode Rx only)
- Support baud rate up to 4MHz (Slave mode TRx)
- Programmable clock bit-rate
- · Programmable clock polarity and phase
- Multiple Serial Interface Operations support
 - Motorola SPI
 - Texas Instruments SSI
 - National Semiconductor Microwire

7.8. I2C Interface

7.8.1. Features of 12C

- Support maximum 4 I2C port
- Three speeds:
 - Standard mode (0 to 100 Kb/s)
 - Fast mode (<400 Kb/s)
 - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)
- Master or Slave I2C operation
- 7- or 10-bit addressing
- Transmit and receive buffers
- TX and RX DMA support (I2C 0 and 1 only)

7.9. PWM Interface

7.9.1. Features of PWM

- Support maximum 4 PWM functions
- 0~100% duty can be configurable
- Minimum resolution is 64us
- The period can be configured up to 8 seconds

7.10. External Trigger Event Interface

7.10.1. Features of External Trigger Event

- Support maximum 4 External Trigger Event functions without CPU active
- Triggered by GTIMER

7.11. USB Device v2.0 Interface

7.11.1. Features USB Device Interface

- Support HS/FS/LS modes
- Up to 4 Endpoints in addition to Endpoint 0 (2 In-Endpoint and 2 Out-Endpoint)
- Support bulk, interrupt, and isochronous transfer
- Support suspend, Resume and remote wakeup operation
- Internal DMA support
- Support non-flash booting in the use of Ethernet to WIFI transformation card

7.12. USB Host Interface

7.12.1. Features of USB Host Interface

- Support HS/FS/LS modes
- Support up to 8 host channels
- Automatic ping capabilities
- Support Split transfers
- Suspend, Resume and remote wakeup operation
- Internal DMA support

7.12.2. Electrical Specifications

Table 16. USB v2.0 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage	-	200	-	-	mV	2
V _{IL}	Input-Low Voltage	-	-	-	10	mV	2
V _{OH}	Output-High Voltage	-	300	-	500	mV	2
Vol	Output-Low Voltage	-	-10	-	10	mV	2
I _{IL}	Input-Leakage Current	-	-	- \/	-	μΑ	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

Note 2: For additional information, see the USB v2.0 Specification.

7.13. SDIO/RTK SPI Device Mode Interface

7.13.1. Features of SDIO/RTK SPI Device Mode Interface

- Support SDIO 2.0 SDR25
- CIS can be configured with internal non-volatile memory for fast card detection
- RTK SPI provides high efficiency SPI interface with interrupt and full duplex mode
- Support high performance Ethernet to WIFI transformation
- Support non-flash booting in the use of Ethernet to WIFI transformation card

7.13.2. SDIO Device Mode Specifications

7.13.2.1 Bus Timing Specification

Figure 6. SDIO Interface Timing

Table 17. SDIO Interface Timing Parameters

NO	Parameter	O	Mode	MIN	MAX	Unit
f _{PP}	Clock Frequency		Default	0	25	MHz
			HS	0	50	MHz

NO	Parameter		Mode	MIN	MAX	Unit
T _{WL}	Clock Low Time		DEF	10	-	ns
			HS	7	-	ns
T _{WH}	Clock High Time		DEF	10	-	ns
			HS	7	-	ns
T _{ISU}	Input Setup Time		DEF	5	~- C	ns
			HS	6	1	ns
T _{IH}	Input Hold Time		DEF	5	-	ns
		O'	HS	2	-	ns
T _{ODLY}	Output Delay Time	•	DEF	-	14	ns
			HS	-	14	ns

7.14. MII Interface

- The MII interface can support both PHY/MAC mode.
- Supports 10/100Mbps operation
- Supports half/full duplex operation
- IEEE 802.3/802.3u compliant
- Auto negotiation
- TX and RX separated
- TRx FIFO 2K bytes

7.15. I2S Interface Characteristics

7.15.1. Features of I2S

• Support 8/16/24/32/48/96KHz, 44.1/88.2KHz

- Support 16 or 24 bits format
- Integrated DMA engine to minimize SW efforts
- Support TX and RX direction
- Master or Slave mode support

7.16. PCM Interface Characteristics

7.16.1. Features of PCM

The RTL8195AM supports a PCM digital audio interface that is used for transmitting digital audio/voice data to/from the Audio Codec. Features are supported as below:

- Supports Master and Slave mode
- Programmable long/short Frame Sync
- Supports 8-bit A-law/μ-law, and 13/16-bit linear PCM formats
- Supports sign-extension and zero-padding for 8-bit and 13-bit samples
- Supports padding of Audio Gain to 13-bit samples
- PCM Master Clock Output: 64, 128, 256, or 512kHz
- Supports SCO/ESCO link

7.16.2. PCM Specifications

7.16.2.1 PCM Format

FrameSync is the synchronizing function used to control the transfer of DAC_Data and ADC_Data. A Long FrameSync indicates the start of ADC_Data at the rising edge of FrameSyn, and a Short FrameSync indicates the start of ADC_Data at the falling edge of FrameSync.

Figure 7. Long FrameSync

Figure 8. Short FrameSync

7.16.2.2 Sign Extension and Zero Padding for 8-Bit and 13-Bit Samples

For 16-bit linear PCM output, 3 or 8 unused bits may be sign extended/zero padded.

Figure 9. 16-Bit Output Data with 8-Bit PCM Sample Data and Sign Extension

Figure 10. 16-Bit Output Data with 8-Bit PCM Sample Data and Zero Padding

Figure 11. 16-Bit Output Data with 13-Bit PCM Sample Data and Sign Extension

For 16-bit linear PCM output, 3-bit programmable audio gain value can be padded to 13-bit sample data.

Figure 12. 16-Bit Output Data with 13-Bit PCM Sample Data and Audio Gain

7.16.2.3 PCM Interface Timing

Figure 13. PCM Interface (Long FrameSync)

Figure 14. PCM Interface (Short FrameSync)

Table 18. PCM Interface Clock Specifications

Symbol	Description	Min.	Тур.	Max.	Unit
F _{BCLK}	Frequency of BCLK (Master)	64	-	512	kHz
F _{FrameSync}	Frequency of Frame Sync (Master)	-	8	-	kHz
F _{BCLK}	Frequency of BCLK (Slave)	64		512	kHz
F _{FrameSync}	Frequency of Frame Sync (Slave)	-0-	8	-	kHz
D	Data Size	8	8	16	bits
N	Number of Slots Per Frame	1	1	1	Slots

Table 19. PCM Interface Timing

Symbol	Description	Min.	Тур.	Max.	Unit
T _{BCLKH}	High Period of BCLK	980	5	-	ns
T _{BCLKL}	Low Period of BCLK	970	(-)	-	ns
T _{FrameSync_Del}	Delay Time from BCLK High to Frame Sync High	<i>Ç</i> \	-	75	ns
T _{BCLKD_OUT}	Delay Time from BCLK High to Valid DAC_Data	-	-	125	ns
T _{SETUPIN}	Set-up Time for ADC_Data Valid to BCLK Low	10	18)	ns
T _{HOLDIN}	Hold Time for BCLK Low to ADC_Data Invalid	125		-	ns

7.16.2.4 PCM Interface Signal Levels

The PCM signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8711AM PCM interface via the VDD_IO pin.

7.17. AD Converter

7.17.1. Features

- Up to 2 sets of 12-bit resolution A/D converter channel configurable
 - Bandwidth 4KHz
 - Input signal range: 0.01V ~ V_{REF} 0.2V
- 1 16-bit high resolution A/D converter (ADC_CH2 only)
 - Bandwidth 48KHz

- Input signal range: 0.01V ~ V_{REF} 0.2V
- Support DMA mode
- Support One-Shot sampling mode without CPU active to save power
 - Pre-configured period to auto-sampling
 - Support two wakeup method: buffer threshold interrupt and event trigger

7.18. DA Converter

7.18.1. Features

- Up to 2 sets of 12-bit resolution D/A converter channel configurable
 - Bandwidth 16KHz
 - Output signal range: 0.01V ~ V_{REF} 0.2V
- Support DMA mode

7.19. Security Engine

7.19.1. Features

- Provide low SW computing and high performance encryption
- Supported authentication algorithms:
 - MD5
 - SHA-1

- SHA-2 (SHA-224 / SHA-256)
- HMAC-MD5
- HMAC-SHA1
- HMAC-SHA2
- Supported Encryption / Decryption mechanisms:
 - DES (CBC / ECB)
 - 3DES (CBC / ECB)
 - AES-128 (CBC / ECB / CTR)
 - AES-192 (CBC / ECB / CTR)
 - AES-256 (CBC / ECB / CTR)

8. Electrical Characteristics

8.1. Temperature Limit Ratings

Table 20. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	-20	+85	°C
Junction Temperature	0	+125	°C

8.2. Temperature Characteristics

Table 21. Thermal Properties

Power (w)	PCB (layer)	Theta ja (C/W)	Theta jc (C/W)	Psi jt (C/W)
1	2	122.1	15	1.31
1	4	42.3	12.5	0.36

8.3. Power Supply DC Characteristics

Table 22. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA33, VD33IO, SW_HV3	3.3V Supply Voltage	3.0	3.3	3.6	V
VDD_IO	Digital IO Supply Voltage	1.62	1.8~3.3	3.6	V

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA12_AFE,	1.2V Core Supply	1.08	1.2	1.32	V
VA12_SYN,	Voltage				
VA12_RF				22	
IDD33	3.3V Rating Current	-	-	450	mA
	(with internal regulator				
	and integrated CMOS				
	PA)			X	
IDD_IO	IO Rating Current			200	mA
	(including VDD_IO)				
IDD_IO_33	3.3V IO Rating Current			50	mA

8.4. Power State and Power Consumptions

8.4.1. Power Mode Description

■ Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

■ Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_0 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

8.4.2. Power On Sequence (Power On or Resume from Deep Sleep)

Figure 15. Power-On Sequence or Resume from Deep Sleep

Table 23. Timing spec for power on sequence

Symbol	Parameter	Minimum	Typical	Maximum	Units
T _{CLK}	Internal ring clock stable time after 3.3V ready	1		0	ms
T_core	Core power ready time	1.5	1.5		ms
T _{boot}	1.2V Core Supply Voltage	200	200		ms

T_{mem}: SW controlled memory power ready time.

8.4.3. Resume from Deep Standby

Figure 16. Timing Sequence resume from Deep Standby

8.5. Digital IO Pin DC Characteristics

8.5.1. Electrical Specifications

Table 24. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	-	-	V
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ

Table 25. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x V _{CC}	-C	O -	V
V_{IL}	Input-Low Voltage	CMOS	-	1	0.35x V _{CC}	V
V _{OH}	Output-High Voltage	CMOS	V _{CC} -0.45	-	-	V
V_{OL}	Output-Low Voltage	CMOS		-	0.45	V
V_{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

8.6. USB Electrical Specifications

Table 26. USB v2.0 DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V _{IH}	Input-High Voltage	-	200	σV) -	mV	2
V _{IL}	Input-Low Voltage	-	=	-	10	mV	2
V _{OH}	Output-High Voltage	-	300	-	500	mV	2
V _{OL}	Output-Low Voltage	-	-10	-	10	mV	2
I _{IL}	Input-Leakage Current	- 6	-	-	-	μΑ	1

Note 1: These values are typical values checked in the manufacturing process and are not tested.

Note 2: For additional information, see the USB v2.0 Specification.

9. Mechanical Dimensions

9.1. Package Specification

9.2. Mechanical Dimensions Notes

Symbol	Dimer	nsion ir	n mm	Dimer	sion ir	inch
Symbol	MIN	MON	MAX	MIN	NOM	MAX
Α	1.05	1.12	1.19	0.041	0.044	0.047
A1	0.16	0.21	0.26	0.006	0.008	0.010
A2	0.86	0.91	0.96	0.034	0.036	0.038
С	0.22	0.26	0.30	0.009	0.010	0.012
D	5.90	6.00	6.10	0.232	0.236	0.240
Е	5.90	6.00	6.10	0.232	0.236	0.240
D1		5.00			0.197	
E1		5.00			0.197	
е		0.50			0.020	
Ф	0.25	0.30	0.35	0.010	0.012	0.014
aaa		0.10			0.004	
bbb		0.10		0.004		
ddd	0.08			0.003		
eee		0.15			0.006	
fff		0.05	0.002			
MD/ME	11/11					

NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. SPECIAL CHARACTERISTICS C CLASS: bbb,ddd
- THE PATTERN OF PIN | FIDUCIAL IS FOR REFERENCE ONLY
 - 6. REFERANCE DOCUMENT : JEDEC PUBLICATION 95
 DESIGN GUIDE 4.5

10. Ordering Information

Table 27. Ordering Information

Part Number	Package		Status
RTL8195AM-VB1-CG	TFBGA96		MP
		8	0

Note: See page 14 for package identification.