DATA STRUCTURES AND ALGORITHMS LECTURE 14

Lect. PhD. Marian Zsuzsanna

Babeş - Bolyai University Computer Science and Mathematics Faculty

2017 - 2018

In Lecture 13...

- Binary Search Trees
- AVL Trees

Today

1 AVL Trees

2 Final Exam

AVL Trees

- Definition: An AVL (Adelson-Velskii Landis) tree is a binary tree which satisfies the following property (AVL tree property):
 - If x is a node of the AVL tree:
 - the difference between the height of the left and right subtree of x is 0, 1 or -1 (balancing information)
- Observations:
- Height of an empty tree is -1
- Height of a single node is 0

AVL Trees - rotations

- Adding or removing a node might result in a binary tree that violates the AVL tree property.
- In such cases, the property has to be restored and only after the property holds again is the operation (add or remove) considered finished.
- The AVL tree property can be restored with operations called rotations.

AVL Trees - rotations

• Solution: single rotation to right

AVL Trees - rotation - Single Rotation to Right

AVL Trees - rotations

• Solution: single rotation to left

AVL Trees - rotation - Single Rotation to Left

AVL Trees - rotations - case 2

• Solution: Double rotation to right

AVL Trees - rotation - Double Rotation to Right

AVL Trees - rotations - case 2 example

Insert value 6

AVL Trees - rotations - case 2 example

- Node 7 is imbalanced, because we inserted a new node (6) to the right subtree of the left child
- Solution: double rotation to right

AVL Trees - rotation - case 2 example

After the rotation

AVL Trees - rotations - case 3

Solution: Double rotation to left

AVL Trees - rotation - Double Rotation to Left

AVL Trees - rotations - case 3 example

Remove node with value 2 and insert value 6.5

AVL Trees - rotations - case 3 example

- Node 5 is imbalanced, because we inserted a new node (6.5) to the left subtree of the right child
- Solution: double rotation to left

AVL Trees - rotation - case 3 example

After the rotation

AVL rotations example I

- Start with an empty AVL tree
- Insert 2

AVL rotations example II

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example III

- No rotation is needed
- Insert 11

AVL rotations example IV

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example V

- No rotation is needed
- Insert 20

AVL rotations example VI

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example VII

- Yes, we need a single left rotation on node 2
- After the rotation:

Insert 7

AVL rotations example VIII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example IX

- No rotation is needed
- Insert 9

AVL rotations example X

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XI

- Yes, we need a single left rotation on node 2
- After the rotation:

Insert 50

AVL rotations example XII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XIII

- No rotation is needed
- Insert 19

AVL rotations example XIV

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XV

- No rotation is needed
- Insert 25

AVL rotations example XVI

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XVII

- No rotation is needed
- Insert 29

AVL rotations example XVIII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XIX

- Yes, we need a double right rotation on node 50
- After the rotation

• Insert 21

AVL rotations example XX

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXI

- Yes, we need a double left rotation on node 20
- After the rotation

Insert 57

AVL rotations example XXII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXIII

- Yes, we need a single left rotation on node 50
- After the rotation

Insert 53

AVL rotations example XXIV

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXV

- Yes, we need a single left rotation on node 11
- After the rotation

Insert 30

AVL rotations example XXVI

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXVII

- No rotation is needed
- Insert 31

AVL rotations example XXVIII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXIX

- Yes, we need a single left rotation on node 29
- After the rotation

Insert 33

AVL rotations example XXX

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXXI

- No rotation is needed
- Insert 8

AVL rotations example XXXII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXXIII

- No rotation is needed
- Insert 17

AVL rotations example XXXIV

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXXV

- No rotation is needed
- Insert 5

AVL rotations example XXXVI

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXXVII

- No rotation is needed
- Insert 46

AVL rotations example XXXVIII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XXXIX

- Yes, we need a single left rotation on node 31
- After the rotation

Insert 1

AVL rotations example XL

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XLI

- No rotation is needed
- Remove 50

AVL rotations example XLII

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XLIII

- Yes we need double right rotation on node 53
- After the rotation

Remove 25

AVL rotations example XLIV

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XLV

- No rotation is needed
- Remove 20

AVL rotations example XLVI

- Do we need a rotation?
- If yes, on which node and what type of rotation?

AVL rotations example XLVII

- Yes, we need a single right rotation on node 21
- After the rotation

Comparison to BST

• If, instead of using an AVL tree, we used a binary search tree, after the insertions the tree would have been:

• When we remove a node, we might need more than 1 rotation:

Remove value 15

• After remove:

After the rotation

After the second rotation

AVL Trees - representation

• What structures do we need for an AVL Tree?

AVL Trees - representation

• What structures do we need for an AVL Tree?

AVLNode:

info: TComp //information from the node left: ↑ AVLNode //address of left child right: ↑ AVLNode //address of right child h: Integer //height of the node

AVLTree:

root: ↑ AVLNode //root of the tree

AVL Tree - implementation

- We will implement the *insert* operation for the AVL Tree.
- We need to implement some operations to make the implementation of *insert* simpler:
 - A subalgorithm that (re)computes the height of a node
 - A subalgorithm that computes the balance factor of a node
 - Four subalgorithms for the four rotation types (we will implement only one)
- And we will assume that we have a function, createNode that creates and returns a node containing a given information (left and right are NIL, height is 0).

AVL Tree - height of a node

```
subalgorithm recomputeHeight(node) is:
//pre: node is an † AVLNode. All descendants of node have their height (h) set
//to the correct value
//post: if node \neq NIL, h of node is set
```

AVL Tree - height of a node

```
subalgorithm recomputeHeight(node) is:
//pre: node is an ↑ AVLNode. All descendants of node have their height (h) set
//to the correct value
//post: if node \neq NIL, h of node is set
  if node \neq NIL then
      if [node].left = NIL and [node].right = NIL then
         [node].h \leftarrow 0
      else if [node].left = NIL then
         [node].h \leftarrow [[node].right].h + 1
      else if [node].right = NIL then
         [node].h \leftarrow [[node].left].h + 1
      else
         [node].h \leftarrow max ([[node].left].h, [[node].right].h) + 1
      end-if
   end-if
end-subalgorithm
```

Complexity: Θ(1)

AVL Tree - balance factor of a node

```
function balanceFactor(node) is:
//pre: node is an \tau AVLNode. All descendants of node have their height (h) set
//to the correct value
//post: returns the balance factor of the node
```

AVL Tree - balance factor of a node

```
function balanceFactor(node) is:
//pre: node is an ↑ AVLNode. All descendants of node have their height (h) set
//to the correct value
//post: returns the balance factor of the node
   if [node].left = NIL and [node].right = NIL then
      balanceFactor \leftarrow 0
   else if [node].left = NIL then
      balanceFactor \leftarrow -1 - [[node].right].h //height of empty tree is -1
   else if [node].right = NIL then
      balanceFactor \leftarrow [[node].left].h + 1
   else
      balanceFactor ← [[node].left].h - [[node].right].h
   end-if
end-subalgorithm
```

Complexity: Θ(1)

AVL Tree - rotations

- Out of the four rotations, we will only implement one, double right rotation (DRR).
- The other three rotations can be implemented similarly (RLR, SRR, SLR).

AVL Tree - DRR

```
function DRR(node) is: //pre: node is an \uparrow AVLNode on which we perform the double right rotation //post: DRR returns the new root after the rotation k2 \leftarrow node k1 \leftarrow [node].left k3 \leftarrow [k1].right k3left \leftarrow [k3].left k3right \leftarrow [k3].right
```

AVL Tree - DRR

```
function DRR(node) is: //pre: node is an ↑ AVLNode on which we perform
the double right rotation
//post: DRR returns the new root after the rotation
   k2 \leftarrow node
   k1 \leftarrow [node].left
   k3 \leftarrow [k1].right
   k3left \leftarrow [k3].left
   k3right \leftarrow [k3].right
   //reset the links
   newRoot \leftarrow k3
   [newRoot].left \leftarrow k1
   [newRoot].right \leftarrow k2
   [k1].right \leftarrow k3left
   [k2].left \leftarrow k3right
//continued on the next slide
```

AVL Tree - DRR

```
//recompute the heights of the modified nodes
recomputeHeight(k1)
recomputeHeight(k2)
recomputeHeight(newRoot)
DRR ← newRoot
end-function
```

• Complexity: $\Theta(1)$

```
function insertRec(node, elem) is
//pre: node is a \uparrow AVLNode, elem is the value we insert in the
(sub)tree that
//has node as root
//post: insertRec returns the new root of the (sub)tree after the
insertion
  if node = NIL then
     insertRec \leftarrow createNode(elem)
  else if elem ≤ [node].info then
      [node].left \leftarrow insertRec([node].left, elem)
  else
     [node].right \leftarrow insertRec([node].right, elem)
  end-if
//continued on the next slide...
```

```
recomputeHeight(node)
balance ← getBalanceFactor(node)
if balance = -2 then
```

```
recomputeHeight(node)
balance ← getBalanceFactor(node)
if balance = -2 then
//right subtree has larger height, we will need a rotation to the LEFT
rightBalance ← getBalanceFactor([node].right)
if rightBalance < 0 then
```

```
recomputeHeight(node)
   balance \leftarrow getBalanceFactor(node)
  if balance = -2 then
  //right subtree has larger height, we will need a rotation to the LEFT
      rightBalance \leftarrow getBalanceFactor([node].right)
      if rightBalance < 0 then
      //the right subtree of the right subtree has larger height, SRL
         node \leftarrow SRL(node)
      else
         node \leftarrow DRL(node)
      end-if
//continued on the next slide...
```

```
else if balance = 2 then

//left subtree has larger height, we will need a RIGHT rotation
leftBalance ← getBalanceFactor([node].left)

if leftBalance > 0 then
```

```
else if balance = 2 then
  //left subtree has larger height, we will need a RIGHT rotation
     leftBalance \leftarrow getBalanceFactor([node].left)
     if leftBalance > 0 then
     //the left subtree of the left subtree has larger height, SRR
        node \leftarrow SRR(node)
     else
        node \leftarrow DRR(node)
     end-if
  end-if
  insertRec \leftarrow node
end-function
```

- Complexity of the *insertRec* algorithm: $O(log_2n)$
- Since *insertRec* receives as parameter a pointer to a node, we need a wrapper function to do the first call on the root

```
subalgorithm insert(tree, elem) is

//pre: tree is an AVL Tree, elem is the element to be inserted

//post: elem was inserted to tree

tree.root ← insertRec(tree.root, elem)

end-subalgorithm
```

• remove subalgorithm can be implemented similarly (start from the remove from BST and add the rotation part).

Project presentation

- Project presentation schedule is available online:
- Every student has to come to the presentation with his/her own group.
- Do not forget to bring the documentation on paper.
- Be prepared to make modifications to your project (small ones). Failure to perform the modifications will result in a failing grade for the project.

Project presentation

- If you fail your project, the will have to redo it for the retake session.
- No matter what your grade for the project is, you can participate in the written exam in the regular session - if you have the required number of seminar attendances.

Written exam

Group	Primary date	Secondary date
911	25.06	11.06
912	11.06	27.06
913	25.06	22.06
914	27.06	22.06
915	22.06	11.06
916	13.06	27.06
917	22.06	27.06
2nd, 3rd year Students	25.06	27.06

 Rooms and the starting hours are available at the faculty's webpage.

Written exam

- Every student has to participate in the exam on the primary date.
- In the secondary date you can only participate if you have a good reason for asking this, and if you announce me at least 48 hours in advance and have my OK.
- Exam will take 2.5 3 hours results will be given as soon as we can.
- You will need a grade of at least 5 for the written exam to be able to pass this course.

Written exam I

- Subjects for the written exam will be from everything we have covered this semester.
- You will have 5 problems:
 - Problem 1 implementation either something on a simple data structure, or a problem where you use an ADT to solve a problem
 - Problem 2 points a, b, c mainly drawings, or short text answers (not code)
 - Problem 3 "Pick the right answer from a, b, c, d and explain" - 6 questions
 - Problem 4 "implement a given operation for a given ADT represented with a given DS" or "find the best SD to solve this problem with a given complexity and solve it"
 - Problem 5 with binary trees

Written exam II

- The data structures for which we did not discuss implementation (skip lists, binomial heap, etc.) will appear only at problems 2 or 3.
- "Think about it" problems are good candidates for exam problems.