From Segal's sewing to pseudo-q-traces and back

Bin Gui Tsinghua University

November 2024
BIMSA
Joint work with Hao Zhang
arXiv:2305.10180, 2411.07707

Modular invariance

- A central theme in vertex operator algebras (VOAs) is modular invariance.
- An early breakthrough in this topic is Zhu's theorem (96): Assume that \mathbb{V} is " C_2 -cofinite and rational". Then the set of all $\mathrm{Tr}_{\mathbb{M}}q^{L_0-\frac{c}{24}}$ span a $SL(2,\mathbb{Z})$ -invariant space (where $\mathbb{M}\in\mathrm{Mod}(\mathbb{V})$).
- More generally: Let Y(v,z) denote the vertex operators (where $v \in \mathbb{V}$). Then $(v,\tau) \in \mathbb{V} \times \mathbb{H} \mapsto \mathrm{Tr}_{\mathbb{M}} Y(v,1) q_{\tau}^{L_0 \frac{c}{24}}$ (over all $\mathbb{M} \in \mathrm{Irr}$) span an $SL(2,\mathbb{Z})$ -invariant space with dimension $\#\mathrm{Irr}(\mathbb{V})$. Here $q_{\tau} = e^{2\pi \mathbf{i} \tau}$.
- " C_2 -cofinite" is a finiteness condition ensuring, e.g., that $Irr(\mathbb{V})$ is finite. "Rational" means that every \mathbb{V} -mod is completely reducible.

Modular invariance beyond rationality

- However, this modular invariance does not hold when rationality is dropped: $\mathrm{Tr}_{\mathbb{M}}q_{\tau}^{L_0-c/24}$ is a fractional power of $q_{\tau}=e^{2\mathbf{i}\pi\tau}$. However, without rationality (such as the $\mathcal{W}(p)$ -algebra), an $SL(2,\mathbb{Z})$ action of $\mathrm{Tr}_{\mathbb{M}}q_{\tau}^{L_0-c/24}$ will contain factors such as $\tau=\frac{1}{2\mathbf{i}\pi}\log q_{\tau}$.
- To rescue modular invariance, Miyamoto (04) introduced the **pseudo-**q**-trace** construction $(v,\tau) \in \mathbb{V} \times \mathbb{H} \mapsto \mathrm{Tr}_{\mathbb{M}}^{\omega} Y(v,1) q_{\tau}^{L_0 \frac{c}{24}}$. For $\mathbb{M} \in \mathrm{Mod}(\mathbb{V})$, a pseudo-trace $\mathrm{Tr}_{\mathbb{M}}^{\omega}$ is a symmetric linear functional on a suitable subalgebra of $\mathrm{End}(\mathbb{M})$.
- Miyamoto showed that if $\mathbb V$ is C_2 -cofinite, then the pseudo-q-traces form an $SL(2,\mathbb Z)$ -invariant space.
- Miyamoto's pseudo-q-traces were later simplified by Arike (10) and Arike-Nagatomo (11).

The goal of this talk

- The usual q-trace construction can be viewed as a special case of the **sewing construction** (≈taking contraction) in Segal's functorial definition of CFT (88).
- However, pseudo-traces were not discussed in Segal's definition at all! Did Segal miss something?
- The goal of this talk is to explain our answer: No, Segal didn't miss anything! We will explain how the algebraic setting of pseudo-q-traces is compatible with Segal's geometric framework.
- Our approach is based on the theory of **conformal blocks** (CB). Traditional approaches to CB cannot recover pseudo-q-traces. We will present our formulation of CB, and point out its difference with the traditional ones

Conformal blocks (CB)

- ullet We always assume for simplicity that $\mathbb V$ is C_2 -cofinite.
- Fix a (possibly disconnected) N-pointed compact Riemann surface with local coordinates $\mathfrak{X}=(C;x_1,\cdots,x_N;\eta_1,\cdots,\eta_N)$. Associate $\mathbb{W}\in \mathrm{Mod}(\mathbb{V}^{\otimes N})$ to x_1,\cdots,x_N . A **conformal block** (CB) is a linear map $\psi:\mathbb{W}\to\mathbb{C}$ invariant under the action defined by \mathfrak{X} and \mathbb{V} (Zhu 94, Frenkel&Ben-Zvi 04). The spaces of conformal blocks is denoted by $CB(\mathfrak{X},\mathbb{W})$, or

$$CB\left(\begin{array}{c} & & & \\ & \downarrow & & \\ & & \downarrow & \\ & & \downarrow & \\ & & \downarrow & \\ & & & \downarrow & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\$$

• Traditional approaches take $\mathbb{W} = \mathbb{W}_1 \otimes \cdots \otimes \mathbb{W}_N$ where $\mathbb{W}_i \in \operatorname{Mod}(\mathbb{V})$. But this is in sufficient for irrational VOAs.

Sewing compact Riemann surfaces

 \mathbb{X}' denotes the contragredient module of \mathbb{X} .

Disjoint sewing: X = W

$$W \longrightarrow X \longrightarrow M$$
 , $SX = W \longrightarrow M$

or

Convergence of sewing conformal blocks

Theorem (Convergence of sewing, G.-Zhang 24, arXiv: 2411.07707)

Suppose that $\psi: \mathbb{W} \otimes \mathbb{X} \otimes \mathbb{X}' \to \mathbb{C}$ is a CB for \mathfrak{X} . Then **Segal's sewing** $\mathcal{S}\psi: \mathbb{W} \to \mathbb{C}$ defined by

$$\mathcal{S}\psi(w) = \psi(w \otimes \underbrace{\cdot \otimes \cdot}_{\text{contraction}}).$$

is convergent and gives a CB for $\mathcal{S}\mathfrak{X}$.

- The problem of **factorization**: Does every conformal block for $\mathcal{S}\mathfrak{X}$ arise from a conformal block for \mathfrak{X} via sewing?
- Answer: When V is rational: Yes (Damiolini-Gibney-Tarasca 19, G. 20). When V is irrational: Yes only for disjoint-sewing (G.-Zhang

Modular invariance as sewing-factorization

- The vertex operation for a \mathbb{V} -module \mathbb{M} can be viewed as $\phi: \mathbb{V} \otimes \mathbb{M} \otimes \mathbb{M}' \to \mathbb{C}$ sending $v \otimes m \otimes m' \mapsto \langle Y(v,1)m,m' \rangle$. Then $\phi \in CB$
- If we choose the local coordinate at $0, \infty$ to be $q^{-1}z$ and z^{-1} and sewing these two points, then $\mathcal{S}\psi: \mathbb{V} \to \mathbb{C}$ is $\mathcal{S}\psi(v) = \mathrm{Tr}_{\mathbb{M}}Y(v,1)q^{L_0}$ and belongs to $CB(\bigcirc)$.
- A key ingredient in Zhu's proof of modular invariance is the proof of genus-1 factorization for rational \mathbb{V} : any element of $CB(\bigcirc \mathbb{V})$ can be written as $S\psi(v) = \mathrm{Tr}_{\mathbb{M}}Y(v,1)q^{L_0}$ for some $\mathbb{M} \in \mathrm{Mod}(\mathbb{V})$.

The sewing-factorization (SF) theorem, preliminary version

• That Zhu's result fails for irrational $\mathbb V$ gives a typical example that factorization might not hold for self-sewing.

Theorem (The SF theorem (preliminary version), G.-Zhang, to appear) If $\mathfrak{X} \mapsto \mathcal{S}\mathfrak{X}$ is a disjoint sewing, then any CB for $\mathcal{S}\mathfrak{X}$ can be written as $\mathcal{S}\varphi$ for some CB ψ for \mathfrak{X} .

• In the following, I will explain how (Arike-Nagatomo's) pseudo-*q*-traces can be recovered from Segal's sewing.

Arike-Nagatomo's pseudo-q-traces

- Let \mathbb{M} be a \mathbb{V} -module. We view $\mathbb{M} \otimes \mathbb{M}'$ as naturally a (non-unital) subalgebra of $\operatorname{End}(\mathbb{M})$, and write it as $\mathbb{M} \otimes \mathbb{M}' = \operatorname{End}^0(\mathbb{M})$. It has a subalgebra $\operatorname{End}_A^0(\mathbb{M}) := \operatorname{End}^0(\mathbb{M}) \cap \operatorname{End}_A(\mathbb{M})$.
- Suppose that A is a (necessarily finite dimensional) unital subalgebra of $\operatorname{End}_{\mathbb V}(\mathbb M)^{\operatorname{op}}$ such that $\mathbb M$ is projective as a right A-module. Then the **pseudo-trace** construction (due to Hattori and Stallings 65) gives a linear map

$$SLF(A) \to SLF(\operatorname{End}_A^0(\mathbb{M})) \qquad \omega \mapsto \operatorname{Tr}^{\omega}$$

(where SLF =symmetric linear functionals).

• The **pseudo-**q**-trace** $v \in \mathbb{V} \mapsto \operatorname{Tr}^{\omega} Y(v,1) q^{L_0}$ belongs to $CB((\bigcirc)^{\mathbb{V}})$.

From pseudo-q-traces to Segal's sewing

• Our sewing-factorization theorem shows that any element of $CB(\textcircled{>} \lor)$ can be written as Segal's sewing $S(\psi \otimes \tau)$, where $\psi : \mathbb{V} \otimes \mathbb{X}' \to \mathbb{C}$ and $\tau : \mathbb{X} \to \mathbb{C}$ are CB and $\mathbb{X} \in \operatorname{Mod}(\mathbb{V}^{\otimes 2})$:

How to interpret the pseudo-q-traces as Segal's sewing?

• Take $\mathbb{X}=\operatorname{End}_A^0(\mathbb{M})$ (as a $\mathbb{V}^{\otimes 2}$ -submodule of $\operatorname{End}^0(\mathbb{M})=\mathbb{M}\otimes\mathbb{M}'$), take $\tau=\operatorname{Tr}^\omega$, and notice that $v\otimes m'\otimes m\in \mathbb{V}\otimes\mathbb{M}'\otimes\mathbb{M}\mapsto \langle Y(v,1)m,m'\rangle$ descends to a conformal block $\psi:\mathbb{V}\otimes\operatorname{End}_A^0(\mathbb{M})'\to\mathbb{C}$. Then

$$\operatorname{Tr}^{\omega} Y(-,1) q^{L_0} = \mathcal{S}(\psi \otimes \tau)$$

See arXiv: 2411.07707 for more discussions!

A more precise sewing-factorization theorem

We have shown the direction pseudo-q-traces \longrightarrow Segal's sewing. To show the other direction in genus-1, we need a more precise version of sewing-factorization theorem that relates the dimensions of spaces of CB before sewing to those after sewing.

Dual fusion product $\nabla_{\mathfrak{X}} \mathbb{W}$ and fusion product $\nabla_{\mathfrak{X}} \mathbb{W}$

Theorem (G.-Zhang. 23, arXiv:2305.10180)

Let \mathfrak{X} be (N+L)-pointed and \mathbb{W} be a $\mathbb{V}^{\otimes N}$ -module. Then there exists

a
$$\mathbb{V}^{\otimes L}$$
-module $\mathbb{Q}_{\mathfrak{X}}\mathbb{W}$ and $\mathbb{I}_{\mathfrak{X}}\in CB($

the universal property: for any $\mathbb{V}^{\otimes L}$ -module \mathbb{M} and any conformal block

$$T_{\phi} \in \operatorname{Hom}_{\mathbb{V} \otimes L}(\mathbb{M}, \mathbb{D}_{\mathfrak{X}}\mathbb{W}) \text{ such that } \phi = \mathfrak{I}_{\mathfrak{X}} \circ (1 \otimes T_{\phi}).$$

 $\boxtimes_{\mathfrak{X}} \mathbb{W}$ is called the **dual fusion product** of \mathbb{W} along \mathfrak{X} and $\mathfrak{I}_{\mathfrak{X}}$ is called the **canonical conformal block**. The dual $\boxtimes_{\mathfrak{X}} \mathbb{W} = (\square_{\mathfrak{X}} \mathbb{W})'$ is called the **fusion product**.

Fusion products when \mathbb{V} is rational

ullet If $\mathbb V$ is rational and $\mathfrak Y$ is

then

$$\square_{\mathfrak{Y}}(\mathbb{W}_1 \otimes \mathbb{W}_2 \otimes \mathbb{W}_3)$$

$$\simeq \bigoplus_{\mathbb{M}_1, \mathbb{M}_2 \in \operatorname{Irr}} \mathbb{M}_1 \otimes \mathbb{M}_2 \otimes CB(\mathfrak{Y}, \mathbb{W}_1 \otimes \mathbb{W}_2 \otimes \mathbb{W}_3 \otimes \mathbb{M}_1 \otimes \mathbb{M}_2)$$

The sewing-factorization (SF) theorem

Theorem (SF theorem, G.-Zhang. to appear)

defines a linear isomorphism

$$CB(\overset{\text{\tiny R}_{\star} \text{\tiny W}}{\longrightarrow} CB(\overset{\text{\tiny W}}{\longrightarrow} CB(\overset{\text{\tiny$$

This isomorphism is called **SF** isomorphism.

The SF theorem for $CB(\lor \bigcirc)$

• Let $\boxtimes_{\mathfrak{P}} \mathbb{V}$ be the fusion product associated to $\mathbb{V}^{\boxtimes_{\mathfrak{P}} \mathbb{V}}$ (first discovered by Haisheng Li) which is a $\mathbb{V}^{\otimes 2}$ -module. The SF Thm immediately implies:

Corollary

We have a canonical linear isomorphism

$$CB(\mathbf{v}) \simeq CB(\mathbf{v})$$

• Example: If $\mathbb V$ is rational then $\boxtimes_{\mathfrak P} \mathbb V \simeq \bigoplus_{\mathbb M\in \operatorname{Irr}} \mathbb M \otimes_{\mathbb C} \mathbb M'$.

The non-unital associative algebra $\boxtimes_{\mathfrak{P}} \mathbb{V}$

Theorem (G.-Zhang, to appear)

 $\boxtimes_{\mathfrak{P}} \mathbb{V}$ has a natural (non-unital) associative \mathbb{C} -algebra structure that is compatible with its $\mathbb{V}^{\otimes 2}$ -module structure.

• Since $\boxtimes_{\mathfrak{P}} \mathbb{V}$ is not unital, its left modules are not necessarily quotients of free modules. We say that a left $\boxtimes_{\mathfrak{P}} \mathbb{V}$ -module if **quasicoherent** if it is the quotient of a free module. A quasicoherent left $\boxtimes_{\mathfrak{P}} \mathbb{V}$ -module is called **coherent** if it is finitely-generated.

The functor $\mathfrak{F}: \mathrm{Mod}(\mathbb{V}) \to \mathrm{Coh}^L(\boxtimes_{\mathfrak{P}} \mathbb{V})$

- Let $\mathbb{M} \in \operatorname{Mod}(\mathbb{V})$. Recall that $\phi : \mathbb{V} \otimes \mathbb{M} \otimes \mathbb{M}' \to \mathbb{C}$ sending $v \otimes m \otimes m' \mapsto \langle Y(v,1)m,m' \rangle$ is an element of $\phi \in CB(\begin{tabular}{c} \begin{tabular}{c} \begin{t$
- By the universal property for the dual fusion product, ψ is the composition of a $\mathbb{V}^{\otimes 2}$ -module morphism $\mathbb{M}' \otimes \mathbb{M} \to \square_{\mathfrak{P}} \mathbb{V}$ and the canonical $\mathbb{I}_{\mathfrak{P}} \in CB(\square_{\mathfrak{P}} \mathbb{V})$.
- The transpose of this $\mathbb{V}^{\otimes 2}$ -module morphism is denoted by $\pi_{\mathbb{M}}: \boxtimes_{\mathfrak{P}} \mathbb{V} \to \mathbb{M} \otimes \mathbb{M}' = \operatorname{End}^0(\mathbb{M}).$

Proposition (G.-Zhang, to appear)

 $\pi_{\mathbb{M}}$ is a \mathbb{C} -algebra homomorphism. Thus, $\mathfrak{F}(\mathbb{M}) := (\mathbb{M}, \pi_{\mathbb{M}})$ becomes a left $\boxtimes_{\mathfrak{P}} \mathbb{V}$ -module which is indeed coherent. Moreover, if \mathbb{M} is a projective generator of $\operatorname{Mod}(\mathbb{V})$, then $\pi_{\mathbb{M}}$ is faithful.

SLF on $\boxtimes_{\mathfrak{P}} \mathbb{V}$

Theorem (G.-Zhang, to appear)

Let $\operatorname{Coh}^L(\boxtimes_{\mathfrak{P}}\mathbb{V})$ be the linear category of coherent left $\boxtimes_{\mathfrak{P}}\mathbb{V}$ -modules. Then $\mathfrak{F}:\operatorname{Mod}(\mathbb{V})\to\operatorname{Coh}^L(\boxtimes_{\mathfrak{P}}\mathbb{V})$ is a linear equivalence.

Theorem (G.-Zhang, to appear)

Let \mathbb{M} be a projective generator of $\operatorname{Mod}(\mathbb{V})$, equivalently, a projective generator of $\operatorname{Coh}^L(\boxtimes_{\mathfrak{P}}\mathbb{V})$. Let $A=\operatorname{End}_{\mathbb{V}}(\mathbb{M})^{\operatorname{op}}=\operatorname{End}_{\boxtimes_{\mathfrak{P}}\mathbb{V}}(\mathbb{M})^{\operatorname{op}}$. Note $\pi_{\mathbb{M}}:\boxtimes_{\mathfrak{P}}\mathbb{V}\to\operatorname{End}_A^0(\mathbb{M})$. Then the pseudo-trace map

$$SLF(A) \to SLF(\boxtimes_{\mathfrak{P}} \mathbb{V}) \qquad \omega \mapsto \operatorname{Tr}^{\omega} \circ \pi_{\mathbb{M}}$$

is a linear isomorphism, and its inverse is also given by the pseudo-trace construction.

The isomorphism $CB(\mathbb{V}_{\odot}) \simeq SLF(\operatorname{End}_{\mathbb{V}}(\mathbb{M}))$

• Due to the above theorem and the SF isomorphism

$$CB(\mathbf{V}) \simeq CB(\mathbf{N})$$

and noting that

$$CB(\bowtie_{\mathfrak{P}}\mathbb{V}) = SLF(\bowtie_{\mathfrak{P}}\mathbb{V})$$

we obtain the following theorem conjectured by Gainutdinov-Runkel in 2016:

Theorem (G.-Zhang, to appear)

Let $\mathbb{M} \in \operatorname{Rep}(\mathbb{V})$ be a projective generator. Then the combination of the pseudo-trace construction and the sewing-factorization isomorphism implements a linear isomorphism

$$CB(\mathsf{v}(\mathbb{N})) \simeq SLF(\mathrm{End}_{\mathbb{V}}(\mathbb{M}))$$

The isomorphism $CB(\mathbb{V}) \simeq SLF(\operatorname{End}_{\mathbb{V}}(\mathbb{M}))$

- Our isomorphism $CB(\mathbf{v}) \simeq SLF(\operatorname{End}_{\mathbb{V}}(\mathbb{M}))$ probably gives the first formula for $\dim CB(\mathbf{v})$ that is both general and practical.
- For example, if $\mathbb{V} = \mathcal{W}(p)$, Adamović-Milas proved that its dimension is 3p-1 using the modular differential equations and the analysis of the Zhu algebra of $\mathcal{W}(p)$.
- Now this result also follows from $CB(\ {f v}\ {f f e}) \simeq SLF(\operatorname{End}_{\mathbb V}(\mathbb M))$: Nagatomo-Tsuchiya (09) showed that $\operatorname{Mod}(\mathcal W(p)) \simeq \operatorname{Rep}^{\operatorname{L}}(\overline{U}_q(sl_2))$ where $q = e^{{f i}\pi/p}$. Thus $\dim CB(\ {f v}\ {f f e}) = \dim SLF(\overline{U}_q(sl_2)) = \dim Z(\overline{U}_q(sl_2))$. And Feigin-Gainutdinov-Semikhatov-Tipunin (06) computed that $\dim Z(\overline{U}_q(sl_2)) = 3p-1$.