DS2: Ondes et Optique géométrique

Durée 2h, calculatrices autorisées. Le DS est probablement trop long pour que vous puissiez tout faire, c'est normal, faites-en le maximum.

Exercice 1: Onde sur une corde

L'énoncé contenait une petite erreur, il fallait lire $x_B=20\,\mathrm{cm}$ et non $x_B=10\,\mathrm{cm}$.

1.
$$v_A(t_1) = \frac{2 \times 10^{-2} \,\mathrm{m}}{1 \times 10^{-3} \,\mathrm{s}} = 20 \,\mathrm{m/s}$$

$$- v_A(t_2) = \frac{1 \times 10^{-2} \,\mathrm{m}}{2 \times 10^{-3} \,\mathrm{s}} = 5 \,\mathrm{m/s}$$

$$- v_A(t_1) = \frac{-3 \times 10^{-2} \,\mathrm{m}}{3 \times 10^{-3} \,\mathrm{s}} = -10 \,\mathrm{m/s}$$

2. On obtient les représentations suivantes :

3. Et les formes suivantes :

Au temps $t_1 = 1$ ms le point A n'a pas encore commencé à bouger et la corde est totalement horizontale y(x) = 0:

Exercice 2 : Réfractomètres

1 – Questions préliminaires

- 1. homogène : Milieu identique en tout point.
 - **isotrope**: Toutes les directions sont équivalentes.
 - indice : Dans un milieu d'indice n, la célérité de la lumière est $v = \frac{c}{n}$
- 2. **réflexion :** Le rayon réfléchi est dans le plan d'incidence et i=r (angle d'incidence=angle réflechi)
 - **réfraction :** Le rayon réfracté est dans le plan d'incidence et $n_1 \sin(i_1) = n_2 \sin(i_2)$ (faire un petit schéma pour indiquer ce que sont i_1 , i_2 , n_1 et n_2)

2 – Le réfractomètre de Pulfrich

- 1. $n\sin(\pi/2) = N\sin(r)$ donc $r = \arcsin\left(\frac{n}{N}\right)$
- 2. $r' + r = \pi/2$
- 3. La seconde loi de Snell-Descartes donne $\sin(\theta)=N\sin(r)=N\sin(\pi/2-r)=N\cos(r)$. En utilisant $\cos(r)=\sqrt{1-\sin^2(r)}$, on obtient $\sin(\theta)=N\sqrt{1-\frac{n^2}{N^2}}$. Et finalement $\sin(\theta)=\sqrt{N^2-n^2}$
- 4. On trouve $\theta = 62,80^{\circ}$
- 5. Les valeurs extrêmes de l'indice sont celles pour lesquelles $\theta=0$ ou $\theta=\pi/2$. Pour $\theta=0$ On a $n_{\max}=N$ et pour $\theta=\pi/2$ on a $n_{\min}=\sqrt{N^2-1}=1.25$

3 – Le réfractomètre d'Abbe

- 1. La somme des angles du triangle de sommet A vaut π . Donc $\pi/2-r_0+\pi/2-r_0'+\theta=\pi$ d'où $r_0+r_0'=\theta$
- 2. La seconde loi de Descartes donne : $n \sin(\pi/2) = N \sin(r_0)$ donc $\sin(r_0) = \frac{n}{N}$.
- 3. $\sin(i'_0) = N \sin(r'_0)$ donc $r'_0 = \arcsin(\sin(i'_0)/N)$. Or

$$n = N\sin(r_0) = N\sin(\theta - r'_0) = N\sin\left(\theta - \arcsin\left(\sin(i'_0/N)\right)\right)$$

4. A.N.: n = 1.238

Exercice 3: Fibre optique à saut d'indice

Une fibre optique à saut d'indice est composée d'un cœur d'indice n_1 entouré d'une gaine d'indice n_2 . On considère un rayon qui entre dans le cœur de la fibre avec un angle d'incidence θ .

- 1. Pour qu'il puisse y avoir réflexion totale à l'interface, il faut que $n_1 > n_2$
- 2. Un rayon qui subit une réflexion totale arrive de l'autre côté avec le même angle d'incidence et subit donc à son tour une réflexion totale.
- 3. L'angle d'incidence r_2 pour que le rayon subisse une réflexion totale est $r_2 = \arcsin(n_2/n_1)$. Or on a $r_1 = \pi/2 r_2$ donc

$$\sin(\theta_m) = n_1 \sin(r_1) = n_1 \sin(\pi/2 - r_2) = n_1 \cos(r_2)$$
$$\sin(\theta_m) = n_1 \cos\left[\arcsin\left(\frac{n_2}{n_1}\right)\right].$$

Donc

$$\theta_m = \arcsin\left[n_1\cos\left(\arcsin\left(\frac{n_2}{n_1}\right)\right)\right].$$

A.N. : $\theta_m = 39^{\circ}$

- 4. Les rayons inclinés par rapport à l'axe de la fibre parcourent un chemin plus long que ceux qui sont parallèles à l'axe. À la sortie de la fibre, le rayons inclinés arrivent en dernier.
- 5. Les signaux parallèles à l'axe optique parcourent une distance $d_1 = L$, ceux qui sont inclinés parcourent une distance $d_2 = L/\cos(r_1)$. Le temps τ qui les sépare à l'arrivée est $\tau = \frac{d_2 d_1}{c} = \frac{L}{c}(1 1/\cos(r_1))$ donc $\tau = \frac{L}{c}(1 n_1/n_2)$. Cela influence le débit maximum des données car si on envoie deux impulsions séparées de moins de τ dans la fibre elles se superposeront à sa sortie rendant le signal inutilisable.
- 6. Plus la fibre est longue, moins le débit de données pourra être important.

Exercice 4 : Tracé d'images

L'objet est virtuel, l'image est réelle.

L'objet est réel, l'image est virtuelle.

L'objet est réel, l'image est réelle.