205 Espaces complets. Exemples et applications.

I - Complétude

1. Complétude dans un espace métrique

Soit (E, d) un espace métrique.

[GOU20] p. 20

Définition 1. On dit qu'une suite (x_n) d'éléments de E est **de Cauchy** si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall p > q \geq N, d(u_p, u_q) < \epsilon$$

Proposition 2. (i) Une suite convergente est de Cauchy.

- (ii) Une suite de Cauchy est bornée.
- (iii) Une suite de Cauchy qui possède une valeur d'adhérence ℓ converge vers ℓ .

Contre-exemple 3. La série $\sum \frac{1}{n}$ est une suite de Cauchy de \mathbb{Q} non convergente dans \mathbb{Q} .

[**HAU**] p. 312

Remarque 4. La notion de suite de Cauchy n'est pas topologique : elle ne peut pas être définie à partir des ouverts de *E*. Cependant, si une suite est de Cauchy pour une certaine distance, alors elle l'est pour toute autre distance équivalente.

[GOU20] p. 20

Définition 5. *E* est **complet** si toute suite de Cauchy de *E* converge dans *E*.

Exemple 6. $\forall n \in \mathbb{N}^*$, \mathbb{R}^n est complet mais \mathbb{Q} ne l'est pas.

Proposition 7. (i) Toute partie complète d'un espace métrique est fermée.

(ii) Toute partie fermée d'un espace complet est complète.

Proposition 8. Soient $E_1, ..., E_n$ des espaces métriques. Alors $E_1 \times \cdots \times E_n$ est complet si et seulement si $\forall i \in [1, n], E_i$ est complet.

Proposition 9 (Fermés emboîtés). E est complet si et seulement si toute suite décroissante de fermés non-vides de E dont le diamètre converge vers 0 converge vers un singleton.

Proposition 10 (Critère de Cauchy pour les fonctions). Soit (F, d') un espace métrique complet. Soient $f: A \to F$ où $A \subseteq E$ et $a \in \overline{A}$. Alors f admet une limite quand x tend vers a si et seulement si

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall x, y \in A, d(a, x) < \eta \text{ et } d(a, y) < \eta \implies d'(f(x), f(y)) < \epsilon$$

Théorème 11 (Complété d'un espace métrique). Il existe un espace métrique complet \widehat{E} et $i: E \to \widehat{E}$ une isométrie telle que i(E) est dense dans \widehat{E} . De plus, \widehat{E} est unique à isométrie bijective près.

p. 25

Exemple 12. \mathbb{R} est le complété de \mathbb{Q} .

2. Complétude dans un espace vectoriel normé

Définition 13. Un espace vectoriel normé complet est un espace de Banach.

p. 20

Proposition 14. Un espace vectoriel normé E est complet si et seulement si toute série absolument convergence de E est convergente dans E.

p. 52

Proposition 15. Un espace vectoriel de dimension finie est complet.

Application 16. L'exponentielle d'une matrice est un polynôme en la matrice.

[**C-G**] p. 407

3. Exemples et contre-exemples classiques

Contre-exemple 17. L'espace des fonctions polynômiales définies sur [-1,1] et muni de la norme $\|.\|_{\infty}$ n'est pas complet.

[**DAN**] p. 45

Exemple 18. Soient X un ensemble et E un espace de Banach. Alors, $(\mathscr{B}(X, E), \|.\|_{\infty})$ est un espace de Banach.

[GOU20] p. 21

Exemple 19. Si E est un espace vectoriel normé et F est un espace de Banach, $(\mathcal{L}(E,F), \|.\|)$ est un espace de Banach.

p. 8

[LI]

Définition 20. — Pour $p \in [1, +\infty[$, on note $\mathcal{L}_p(X, \mathcal{A}, \mu))$ (où \mathcal{L}_p en l'absence d'ambiguïté) l'espace des applications f mesurables de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}(R))$ telles que

$$\int_X |f(x)|^p \,\mathrm{d}\mu(x) < +\infty$$

on note alors $||f||_p = (\int_X |f(x)|^p d\mu(x))^{\frac{1}{p}}$.

— On note de même \mathscr{L}_{∞} l'espace des applications mesurables de (X,\mathscr{A},μ) dans $(\mathbb{R},\mathscr{B}(R))$ de sup-essentiel borné. On note alors $\|f\|_{\infty}$ pour $f\in\mathscr{L}_{\infty}$.

Remarque 21. En reprenant les notations précédentes, on a $\forall f \in \mathcal{L}_p$, $\|f\|_p = 0 \iff f = 0$ pp..

Théorème 22 (Inégalité de Minkowski).

$$\forall f,g \in \mathcal{L}_p, \, \|f+g\|_p \leq \|f\|_p + \|g\|_p$$

Théorème 23. On définit pour tout $p \in [1, +\infty]$,

$$L_p = \mathcal{L}_p / V$$

où $V=\{v\in\mathcal{L}_p\mid v=0$ pp.}. Muni de $\|.\|_p,L_p$ est un espace vectoriel normé.

Théorème 24 (Riesz-Fischer). Pour tout $p \in [1, +\infty]$, L_p est complet pour la norme $\|.\|_p$.

II - Espaces de Hilbert

1. Généralités

Définition 25. Un espace vectoriel H sur le corps \mathbb{K} est un **espace de Hilbert** s'il est muni d'un produit scalaire $\langle .,. \rangle$ et est complet pour la norme associée $\|.\| = \sqrt{\langle .,. \rangle}$.

p. 31

Exemple 26. Tout espace euclidien ou hermitien est un espace de Hilbert.

Exemple 27. $L_2(\mu)$ muni de $\langle .,. \rangle$: $(f,g) \mapsto \int f\overline{g} \, d\mu$ est un espace de Hilbert.

Pour toute la suite, on fixe H un espace de Hilbert de norme $\|.\|$ et on note $\langle .,. \rangle$ le produit scalaire associé.

Lemme 28 (Identité du parallélogramme).

$$\forall x, y \in H, \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 \|y\|^2)$$

et cette identité caractérise les normes issues d'un produit scalaire.

[DEV]

Théorème 29 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide. Alors :

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x, C) = \inf_{z \in C} ||x - z|| = d(x, y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \langle x - P_C(x), z - P_C(x) \rangle \leq 0$$

Théorème 30. Si F est un sous espace vectoriel fermé dans H, alors P_F est une application linéaire continue. De plus, pour tout $x \in H$, $P_F(x)$ est l'unique point $y \in F$ tel que $x - y \in F^{\perp}$.

Théorème 31. Si F est un sous espace vectoriel fermé dans H, alors

$$H = F \oplus F^{\perp}$$

et P_F est la projection sur F parallèlement à F^{\perp} : c'est la **projection orthogonale** sur F.

Corollaire 32. Soit *F* un sous-espace vectoriel de *H*. Alors,

$$\overline{F} = H \iff F^{\perp} = 0$$

Théorème 33 (de représentation de Riesz).

$$\forall \varphi \in H', \exists ! y \in H, \text{ tel que } \forall x \in H, \varphi(x) = \langle x, y \rangle$$

et de plus, $|||\varphi||| = ||y||$.

Corollaire 34.

$$\forall T \in H', \exists ! U \in H' \text{ tel que } \forall x, y \in H, \langle T(x), y \rangle = \langle x, U(y) \rangle$$

On note alors $U = T^*$: c'est **l'adjoint** de T. On a alors $|||T||| = |||T^*||$.

Exemple 35 (Opérateur de Voltera). On définit $T \operatorname{sur} H = L_2([0,1])$ par :

$$T: \begin{array}{ccc} H & \rightarrow & H \\ f & \mapsto & x \mapsto \int_0^x f(t) \, \mathrm{d}t \end{array}$$

T est une application linéaire continue et son adjoint T^* est défini par :

$$T^*: g \mapsto \left(x \mapsto \int_x^1 g(t) \, \mathrm{d}t\right)$$

[DEV]

Application 36 (Dual de L_p). Soit (X, \mathcal{A}, μ) un espace mesuré de mesure finie. On note $\forall p \in]1,2[$,

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g : f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

2. Bases hilbertiennes

Définition 37. On dit que $(e_n) \in H^{\mathbb{N}}$ est une base hilbertienne de H si

[LI] p. 43

[Z-Q]

p. 222

- (e_n) est orthonormale.
- (e_n) est totale.

Exemple 38. $(t \mapsto e^{2\pi i n t})_{n \in \mathbb{Z}}$ est une base hilbertienne de $L_2([0,1])$.

Théorème 39. Soit $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H. Alors :

$$\forall x \in H, \ x = \sum_{n=0}^{+\infty} \langle x, e_n \rangle e_n$$

On a de plus, pour tout $x, y \in H$, les formules de Parseval :

—
$$\|x\|^2 = \sum_{n=0}^{+\infty} |\langle x, e_n \rangle|^2$$
.

$$--\langle x,y\rangle = \sum_{n=0}^{+\infty} \langle x,e_n\rangle \overline{\langle y,e_n\rangle}.$$

Application 40.

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

[**GOU20**] p. 272

III - Applications

1. Point fixe

Théorème 41 (Point fixe de Banach). Soient (E, d) un espace métrique complet et $f : E \to E$ une application contractant (ie. $\exists k \in]0,1[$ tel que $\forall x,y \in E,d(f(x),f(y)) \leq kd(x,y)$). Alors,

 $\exists ! x \in E \text{ tel que } f(x) = x$

De plus la suite des itérés définie par $x_0 \in E$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$ converge vers x.

Application 42 (Théorème de Cauchy-Lipschitz local). Soit E un espace de Banach sur $\mathbb R$ ou $\mathbb C$. Soient I un intervalle de $\mathbb R$ et Ω un ouvert de E. Soit $F:I\times\Omega\to E$ une fonction continue et localement lipschitzienne en la seconde variable. Alors, pour tout $(t_0,y_0)\in I\times\Omega$, le problème de Cauchy

$$\begin{cases} y' = F(t, y) \\ y(t_0) = y_0 \end{cases}$$
 (C)

admet une unique solution maximale.

2. Prolongement

Théorème 43 (Prolongement des applications uniformément continues). Soient (E, d_E) et (F, d_F) des espaces métriques. On suppose F complet. Soient $A \subseteq E$ dense et $f: A \to F$ une application uniformément continue. Alors, il existe une unique application $\widehat{f}: E \to F$ uniformément continue et telle que $\widehat{f}_{|A} = f$.

Corollaire 44. Soient (E, d_E) et (F, d_F) des espaces métriques. On suppose F complet. Soient $A \subseteq E$ dense et $f: A \to F$ une application k-lipschitzienne. Alors, il existe une unique application $\hat{f}: E \to F$ k-lipschitzienne et telle que $\hat{f}_{|A} = f$.

Exemple 45. Une application dérivable sur un intervalle a, b et de dérivée bornée est prolongeable par une application lipschitzienne sur a, b.

Application 46 (Théorème de Hahn-Banach analytique). Soient H un espace de Hilbert et F un sous-espace vectoriel de H. Soit $f \in F'$. Alors, il existe $\hat{f} \in H'$ telle que $\hat{f}_{|F} = f$ et $\|\hat{f}\|_{H} = \|\|f\|_{F}$.

p. 21

p. 374

[**DAN**]
p. 47

[**BMP**] p. 106

[LI] p. 94 **Application 47** (Transformation de Fourier-Plancherel). La transformation de Fourier \mathscr{F} définie sur $L_1(\mathbb{R}) \cap L_2(\mathbb{R})$ se prolonge de manière unique en un isomorphisme d'espaces de Hilbert de $L_2(\mathbb{R})$ sur lui-même.

3. Théorème de Baire

Théorème 48 (Baire). On suppose E complet. Alors toute intersection d'ouvert denses est encore dense dans E.

[LI] p. 111

Application 49. Un espace vectoriel normé à base dénombrable n'est pas complet.

[**GOU20**] p. 419

Application 50 (Théorème de Banach-Steinhaus). Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces de Banach et $(T_i)_{i \in I}$ des applications linéaires continues telles que

[LI] p. 112

$$\forall x \in E, \sup_{i \in I} ||T_i(x)||_F < +\infty$$

alors,

$$\sup_{i\in I} |||T_i||| < +\infty$$

Application 51 (Théorème du graphe fermé). Soient E et F deux espaces de Banach et $T \in L(E,F)$. Si le graphe de T:

$$\{(x, T(x)) \mid x \in E\} \subseteq E \times F$$

est fermé dans $E \times F$, alors T est continue.

Application 52 (Théorème de l'application ouverte). Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ surjective. Alors,

$$\exists c > 0, T(B_E(0,1)) \supseteq B_F(0,c)$$

Corollaire 53 (Théorème des isomorphismes de Banach). Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ bijective. Alors T^{-1} est continue.

Corollaire 54. On suppose que E est de Banach. Soient E_1 et E_2 deux supplémentaires algébriques fermés dans E. Alors les projections associées sur E_1 et E_2 sont continues.

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les Contre-Exemples en Mathématiques

[HAU]

Bertrand Hauchecorne. Les Contre-Exemples en Mathématiques. 2e éd. Ellipses, 13 juin 2007.

https://www.editions-ellipses.fr/accueil/5328-les-contre-exemples-en-mathematiques-9782729834180.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\label{eq:https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.$

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.