学习 sklearn 库——WittPeng (Using Python 2.7)

机器学习的概念 https://www.jianshu.com/p/28f02bb59fe5

机器学习的初衷就是希望计算机像人一样思考,可行性在于计算机和人一样都是由最基本的单元组成起来的。机器学习应用广泛,谷歌是杰出的使用机器学习技术的企业代表之一。 机器学习的算法多种多样,不同的算法就是对数据不同的处理思想和方法。如:监督学习、 无监督学习、半监督学习、强化学习和遗传算法等,机器学习的结构和内容为:

sklearn

它的结构是这样的:

(1) 结构:

由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。其中:

常用的回归:线性、决策树、SVM、KNN;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees

常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees

常用聚类: k 均值 (K-means) 、层次聚类 (Hierarchical clustering) 、DBSCAN常用降维: LinearDiscriminantAnalysis、PCA

(2) 图片中隐含的操作流程:

这个流程图代表:蓝色圆圈内是判断条件,绿色方框内是可以选择的算法。

I 入门推荐参考: https://morvanzhou.github.io/tutorials/machine-learning/sklearn/1.KNN 的初步使用

使用 scikit-learn 自带的数据集 iris, IDA 环境为 Python 2.7 初始代码:

import numpy as np

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

iris=datasets.load_iris()

iris_X=iris.data

iris_y=iris.target

print iris_X[:2,:]

输出:

(python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng $\$ python Knn2.py [[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]]

这是 iris 数据集的两个实例,可以看每一个 sample 都有 4 个属性。 print iris_y

输出:

2 21

可以看到,一共有三种分类,分别是0、1、2。

上网查看一下, iris 的数据集内容是这样的:

费雪鸢尾花卉数据集

以当 马尼比/				
花萼长度 💠	花萼宽度 💠	花瓣长度 💠	花瓣宽度 ≑	属种 ≑
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.48://b]	15 csdn.	0.2 /Litt	setosa

然后使用 import train_test_split 模块将训练集和测试集分开:

 $X_train, X_test, y_train, y_test=train_test_split (iris_X, iris_y, test_size=0.3) \# split \quad X \\$ and y, the testing proportion is 30%

print y_train

y_train 的查看结果为

(python27) MacBook-Pro:Desktop zhanglipeng\$ python Knn2.py

 $[2\ 2\ 1\ 0\ 2\ 1\ 2\ 2\ 1\ 1\ 1\ 2\ 1\ 1\ 2\ 2\ 0\ 2\ 0\ 0\ 0\ 2\ 0\ 2\ 1\ 2\ 1\ 0\ 2\ 0\ 0\ 0\ 1\ 0\ 1\ 2\ 2$

10110120120121111221111000112112

可以看到,对数据进行了打乱,防止学习过程中出现了影响,随机分布更遂人意。

knn=KNeighborsClassifier()

knn.fit(X_train,y_train)

print knn.predict(X_test)

print y_test

输出结果:

(python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng\$ python Knn2.py

 $[1\ 2\ 2\ 0\ 1\ 2\ 1\ 1\ 2\ 2\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 2\ 1\ 2\ 2\ 0\ 0\ 1\ 1\ 1\ 2\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 2\ 1\ 2$

12000012]

 $[1\ 2\ 2\ 0\ 1\ 2\ 1\ 1\ 2\ 2\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 2\ 1\ 2\ 2\ 0\ 0\ 1\ 1\ 1\ 2\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 2\ 1\ 2$

1 1 0 0 0 0 1 2]

可以看到,预测的结果大部分都是准确的。机器学习一般不会达到 100%,即使是人本身也不敢保证如此高的正确率。有的只能是更好的优化,更丰富的数据。

2.了解 sklearn 的数据集

Scikit-learn 的数据集非常丰富,用户还可以自己生成数据集。数据集查看网址。 使用方法:

from sklearn import datasets

from sklearn.linear_model import LinearRegression

loaded_data = datasets.load_boston()

 $data_X = loaded_data.data$

 $data_y = loaded_data.target$

model = LinearRegression()

model.fit(data_X,data_y)

```
print model.predict(data_X[:4,:])
    print data_y[:4]
输出:
    (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
    [30.00384338\ 25.02556238\ 30.56759672\ 28.60703649]
    [24. 21.6 34.7 33.4]
创建属于自己的数据集:
    from sklearn import datasets
    from sklearn.linear_model import LinearRegression
    import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
    X,y = datasets.make\_regression(n\_samples = 100, n\_features = 1, n\_targets = 1, noise = 1)
    plt.scatter(X,y)
    plt.show()
输出:
```


3.sklearn 的 model 常用的属性和功能
from sklearn import datasets
from sklearn.linear_model import LinearRegression

```
loaded_data = datasets.load_boston()
data_X = loaded_data.data
data_y = loaded_data.target
model = LinearRegression()
```

```
#输出 y 和 x 的斜率和截距
        print model.coef_
        print model.intercept_
        经过 fit 功能, 训练完毕后的输出, 结果较接近真实性。
    输出:
        (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
        [-1.08011358e-01 4.64204584e-02 2.05586264e-02 2.68673382e+00
        -1.77666112e+01 3.80986521e+00 6.92224640e-04 -1.47556685e+00
         3.06049479e-01 -1.23345939e-02 -9.52747232e-01 9.31168327e-03
         -5.24758378e-01]
        36.459488385090125
        []里是数据集参数与其相乘,再相加。
        print model.get_params()
    输出: 之前定义时设定参数的情况
        (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
        {'copy_X': True, 'normalize': False, 'n_jobs': None, 'fit_intercept': True}
        print model.score(data_X,data_y)#R^2coefficient of determination
    输出: 打分结果
        (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
        0.7406426641094095
4.正规化操作 (Normalization/Scale)
正规化操作的目的是为了将大跨度的数据处理一下,希望跨度能变成一个小范围,如[0,1]。
    from sklearn import preprocessing
    import numpy as np
    a=np.array([10,2.7,3.6],
              [-100,5,-2],
               [120,20,40]],dtype=np.float64)
    print a
    print preprocessing.scale(a)
输出:
    (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
    [[ 10.
              2.7
                     3.6]
    [-100.
              5.
                    -2.]
    [ 120.
             20.
                   40.]]
                -0.85170713 -0.55138018]
    [[ 0.
    [-1.22474487 -0.55187146 -0.852133 ]
```

model.fit(data_X,data_y)

```
from sklearn import preprocessing
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.datasets.samples_generator import make_classification
    from sklearn.svm import SVC
    import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
    X,y=make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,r
andom_state=22,
                              n_clusters_per_class=1,scale=100)
    plt.scatter(X[:,0],X[:,1],c=y)
    \#X = preprocessing.scale(X)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=3)
    clf=SVC()
    clf.fit(X_train,y_train)
    print clf.score(X_test,y_test)
5.交叉验证 (cross_validation)
    用于判断此次训练中的参数效果如何。
    初始代码:
        from sklearn.datasets import load_iris
        from sklearn.model_selection import train_test_split
        from sklearn.neighbors import KNeighborsClassifier
        iris = load_iris()
        X = iris.data
        y = iris.target
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)
        knn = KNeighborsClassifier(n_neighbors=5)
        knn.fit(X_train, y_train)
        print knn.score(X_test, y_test)
    输出结果:
        (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
        0.9736842105263158
    使用交叉验证, 就是把训练集逐一在原始数据集的范围内寻找, 这样下来, 我们可以把
     多组测试结果平均值拿出来,显得更加准确了。
        from sklearn.datasets import load_iris
        from sklearn.model_selection import train_test_split
        from sklearn.neighbors import KNeighborsClassifier
```

```
X = iris.data
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)
    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train, y_train)
    y_pred=knn.predict(X_test)
    print knn.score(X_test, y_test)
    from sklearn.model_selection import cross_val_score
    scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy')
    print scores
    print scores.mean()
输出:
    (python27) zhanglipengdeMacBook-Pro:Desktop zhanglipeng$ python Knn2.py
    0.9736842105263158
    [0.96666667 1.
                            0.93333333 0.96666667 1.
                                                            ]
    0.97333333333333334
那么这时候,就会思考,在 knn 算法的使用中究竟多少邻居数合理呢?
代码:
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    iris = load_iris()
    X = iris.data
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)
    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train, y_train)
    y_pred=knn.predict(X_test)
    print knn.score(X_test, y_test)
    from sklearn.model_selection import cross_val_score
    import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
    k_range = range(1, 31)
    k\_scores = []
```

iris = load_iris()

```
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
    k_scores.append(scores.mean())

plt.plot(k_range, k_scores)
    plt.xlabel('Value of K for KNN')
    plt.ylabel('Cross-Validated Accuracy')
    plt.show()

輸出:
```


可以看到 k 值在 12-16 之间是比较好的,太多了反而会过度拟合。 也可以用 loss 率,进行选择。

说到过度拟合,这个问题可能造成分界界限不明确这样的问题,再比如生成一个近似为一元曲线,过度拟合则会造成曲线歪歪曲曲。

代码:

from sklearn.learning_curve import learning_curve from sklearn.datasets import load_digits from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np import matplotlib matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt

digits = load_digits()

```
X = digits.data
         y = digits.target
         train_sizes, train_loss, test_loss = learning_curve(SVC(gamma=0.001), X, y,
    cv=10,scoring='mean_squared_error',train_sizes=[0.1, 0.25, 0.5, 0.75, 1])
         train_loss_mean = -np.mean(train_loss, axis=1)
         test_loss_mean = -np.mean(test_loss, axis=1)
         plt.plot(train_sizes, train_loss_mean, 'o-', color="r",
                   label="Training")
         plt.plot(train_sizes, test_loss_mean, 'o-', color="g",
                   label="Cross-validation")
         plt.xlabel("Training examples")
         plt.ylabel("Loss")
         plt.legend(loc="best")
         plt.show()
    再说一下,为什么过拟合不好呢?因为训练样本有一定的片面性,过于贴合训练集的范
围则对测试集反而不友好了。
    from sklearn.model_selection import validation_curve
    from sklearn.datasets import load_digits
    from sklearn.svm import SVC
    import numpy as np
    import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pyplot as plt
    digits = load_digits()
    X = digits.data
    y = digits.target
    param_range=np.logspace(-6,-2.3,5)
                                                      validation_curve(SVC(),
    train_loss,
                        test_loss
                                                                                       Χ,
y,param_name='gamma',param_range=param_range,cv=10,scoring='mean_squared_error')
    train_loss_mean = -np.mean(train_loss, axis=1)
    test_loss_mean = -np.mean(test_loss, axis=1)
    plt.plot(param_range, train_loss_mean, 'o-', color="r",
              label="Training")
    plt.plot(param_range, test_loss_mean, 'o-', color="g",
              label="Cross-validation")
    plt.xlabel("gamma")
```

```
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()
    12
                                              Training
                                                 Cross-validation
    10
     8
 Loss
     6
     2
    0.000
               0.001
                         0.002
                                   0.003
                                             0.004
                                                        0.005
                                                                  0.006
```

可以看到, gamma 值在到达最低点后继续增大, 就会出现过拟合的情况。

gamma

II.研习中文文档: http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030181

https://www.jianshu.com/p/28f02bb59fe5