Formulario Ecuaciones Diferenciales I

Pável Ernesto Oropeza Alfaro Formulario 1 (4-29 de Mayo de 2015)

- 1. Definición y clasificación de las ecuaciones diferenciales.
 - Es una ecuación que contiene derivadas de una o más variables respecto a una o más variables independientes. $F(x,y,y',y',y^{(n)})=0$
 - Se clasifican por tipo, orden y linealidad
 - En la clasificación por orden, el orden de la ODE es el orden de la mayor derivada en la ecuación.
 - Las ODE de primer orden a menudo se escriben como M(x,y)dx + N(x,y)dy = 0
 - Es común escribir las ODE de primer y segundo orden en su forma normal: $\frac{dy}{dx} = f(x,y)$ y $\frac{d^2y}{dx^2} = f(x,y,y')$
- 2. Solución de una ODE. Es una función ϕ definida en un intervalo I que tiene al menos n derivadas continuas en I, las cuales al sustituirse en una ODE reducen la ecuación a una identidad.
- 3. Factor Integrante $\mu(x)=e^{\int p(x)dx}$. Una forma alternativa de escribir una ODE lineal $\frac{dy}{dx}=f(x,y)$ es la siguiente: y'+p(x)y=g(x)

Por ejemplo, $\frac{dy}{dx} = \frac{3}{2} - \frac{1y}{2}$ se puede escribir como: $y' + \frac{1y}{2} = \frac{3}{2}$

- 4. Clasificación de una ODE lineal de orden 1 (Se pueden obtener Soluciones exactas)
 - Variables Separables: $\frac{dy}{dx} = \frac{g(x)}{h(y)}$
 - Lineales: y' + p(x)y = g(x)
 - Exactas: M(x,y)dx + N(x,y)dy = 0
 - Métodos especiales:
 - a) Sustitución / Bernoulli
 - b) Factor integrante
- 5. Ecuaciones lineales de Segundo Orden (homogéneas).

$$\frac{d^2y}{dx^2} = f(x, y, \frac{dy}{dx})$$

En donde f se puede escribir como:

$$f(x, y, \frac{dy}{dx}) = g(x) - p(x)\frac{dy}{dx} - q(x)y,$$

donde g,p y q son funciones continuas en el I solución. Reescribiendo y considerando la ecuación como homogénea (g(x)=0):

$$a_0(x)y'' + a_1(x)y' + a_0(x)y = 0$$

- Conjunto fundamental, independencial lineal y wronskiano
- Principio de superposición: If y_1 and y_2 are solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

then the linear combination (lc) $c_1y_1+c_2y_2$ is also a solution for any values of c_1 and c_2

■ Dos ODE lineales de segundo orden típicas:

$$y'' + 5y' + 6y = 0$$
$$y'' + \omega^2 y = 0$$

- Polinomio (ecuación) característica. Raíces diferentes, dobles y complejas.
- Condiciones iniciales.
- Reducción de orden.
- Gráficas de soluciones.

6. PRIMER PARCIAL.

- Ecuaciones lineales de Segundo Orden (no homogéneas).
 - Método 1. Proponer una solución particular adecuada