Chapter 5 Notes - LA

John Yang

April 5, 2022

Contents

5 Orthogonality		1	
	5.1	Orthogonality in \mathbb{R}^n	1
		Orthogonal Complements and Orthogonal Projections	
		The Gram-Schmidt Process and the QR Factorization	
		Orthogonal Diagonalization of Symmetric Matrices	
		Applications	

5 Orthogonality

5.1 Orthogonality in \mathbb{R}^n

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ in \mathbb{R}^n is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal; that is, if

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0$$
 whenever $i \neq j$ for $i, j = 1, 2, \dots, k$

- The standard basis of \mathbb{R}^n is an orthogonal set.
- If $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then these vectors are linearly independent.
- An orthogonal basis for a subspace W of \mathbb{R}^n is a basis of W that is an orthogonal set.
- Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n and let \mathbf{w} be any vector in W. Then the unique scalars c_1, \dots, c_k such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

are given by

$$c_i = \frac{\mathbf{w} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$$
 for $i = 1, \dots, k$

- A set of vectors \mathbb{R}^n is an orthonormal set if it is an orthogonal set of unit vectors. An orthonormal basis for a subspace W of \mathbb{R}^n is a basis of W that is an orthonormal set.
- Let $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n and let \mathbf{w} be any vector in W. Then

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{q}_1)\mathbf{q}_1 + (\mathbf{w} \cdot \mathbf{q}_2)\mathbf{q}_2 + \dots + (\mathbf{w} \cdot \mathbf{q}_k)\mathbf{q}_k$$

and this representation is unique.

- The columns of an $m \times n$ matrix Q form an orthonormal set IFF $Q^TQ = I_n$
- An $n \times n$ matrix Q whose columns form an orthonormal set is called an orthogonal matrix.

- A square matrix Q is orthogonal IFF $Q^{-1} = Q^T$
- Let Q be an $n \times n$ matrix. The following are equivalent:
 - -Q is orthogonal.
 - $-||Q\mathbf{x}|| = ||\mathbf{x}||$ for every \mathbf{x} in \mathbb{R}^n
 - $-Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for every \mathbf{x} and \mathbf{y} in \mathbb{R}^n
- ullet If Q is an orthogonal matrix, then its rows form an orthonormal set.
- \bullet Let Q be an orthogonal matrix.
 - $-Q^{-1}$ is orthogonal.
 - $-\det Q = \pm 1$
 - If λ is an eigenvalue of Q, then $|\lambda|=1$
 - If Q_1 and Q_2 are orthogonal $n \times n$ matrices, then so is Q_1Q_2 .

5.2 Orthogonal Complements and Orthogonal Projections

• Let W be a subspace of \mathbb{R}^n . We say that a vector \mathbf{v} in \mathbb{R}^n is orthogonal to W if \mathbf{v} is orthogonal to every vector in W. The set of all vectors that are orthogonal to W is called the orthogonal complement of W, denoted W^{\perp} . That is,

$$W^{\perp} = \{ \mathbf{v} \text{ in } \mathbb{R}^n : \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \text{ in } W \}$$

- Let W be a subspace of \mathbb{R}^n .
 - $-W^{\perp}$ is a subspace of \mathbb{R}^n
 - $(W^{\perp})^{\perp} = W$
 - $W \cap W^{\perp} = \{ \mathbf{0} \}$
 - If $W = \operatorname{span}(\mathbf{w}_1, \dots, \mathbf{w}_k)$, then \mathbf{v} is in W^{\perp} IFF $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all $i = 1, \dots, k$.
- Let A be an $m \times n$ matrix. Then the orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{row}(A))^{\perp} = \operatorname{null}(A) \quad \text{and} \quad (\operatorname{col}(A))^{\perp} = \operatorname{null}(A^T)$$

• Let W be a subspace of \mathbb{R}^n and let $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be an orthogonal basis for W. For any vector \mathbf{v} in \mathbb{R}^n , the orthogonal projection of \mathbf{v} onto W is defined as

$$\operatorname{proj}_w(\mathbf{v}) = \left(\frac{\mathbf{u}_1 \cdot \mathbf{v}}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \dots + \left(\frac{\mathbf{u}_k \cdot \mathbf{v}}{\mathbf{u}_k \cdot \mathbf{u}_k}\right) \mathbf{u}_k$$

The complement of \mathbf{v} orthogonal to W is the vector

$$\operatorname{perp}_{w}(\mathbf{v}) = \mathbf{v} - \operatorname{proj}_{w}(\mathbf{v})$$

- $\operatorname{proj}_{w}(\mathbf{v}) = \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v}) + \cdots + \operatorname{proj}_{\mathbf{u}_{k}}(\mathbf{v})$
- The orthogonal decomposition theorem: Let W be a subspace of \mathbb{R}^n and let \mathbf{v} be a vector in \mathbb{R}^n . Then there are unique vectors \mathbf{w} in W and \mathbf{w}^{\perp} in W^{\perp} such that

$$\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$$

• If W is a subspace of \mathbb{R}^n then

$$(W^{\perp})^{\perp} = W$$

• If W is a subspace of \mathbb{R}^n then

$$\dim W + \dim W^{\perp} = n$$

• The Rank Theorem: If A is an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$

5.3 The Gram-Schmidt Process and the QR Factorization

• The Gram-Schmidt Process: Let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be a basis for a subspace W of \mathbb{R}^n and define the following:

$$\mathbf{v}_1 = \mathbf{x}_1; \qquad W_1 = \operatorname{span}(\mathbf{x}_1)$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{x}_2}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1, \qquad W_2 = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{x}_3}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{x}_3}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2, \qquad W_3 = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$

:

$$\mathbf{v}_k = \mathbf{x}_k - \left(\frac{\mathbf{v}_1 \cdot \mathbf{x}_k}{\mathbf{v}_1 \cdot = v_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{x}_k}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 - \dots - \left(\frac{\mathbf{v}_{k-1} \cdot \mathbf{x}_k}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}}\right) \mathbf{v}_{k-1}, \qquad W_k = \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_k)$$

Then for each $i = 1, ..., k, \{\mathbf{v}_1, ..., \mathbf{v}_i\}$ is an orthogonal basis for W_i . In particular, $\{\mathbf{v}_1, ..., \mathbf{v}_i\}$ is an orthogonal basis for W.

- QR Factorization: Let A be an $m \times n$ matrix with linearly independent columns. Then A can be factored as A = QR, where Q is an $m \times n$ matrix with orthonormal columns and R is an invertible upper triangular matrix.
- Finding the QR factorization: find an orthonormal basis for col(A) using the Gram-Schmidt Process. Then, $Q = [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k]$. Then, use the fact that A = QR and $Q^TQ = I$ since Q has orthonormal columns. Therefore $Q^TA = Q^TQR = IR = R$

5.4 Orthogonal Diagonalization of Symmetric Matrices

- A square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal matrix D such that $Q^TAQ = D$
- If A is orthogonally diagonalizable, then A is symmetric.
- If A is a real symmetric matrix, then the eigenvalues of A are real.
- If A is a symmetric matrix, then any two eigenvectors corresponding to distinct eigenvalues of A are orthonormal.
- The spectral theorem: Let A be an $n \times n$ real matrix. Then A is symmetric IFF it is orthogonally diagonalizable.
- Spectral decomposition:

$$A = \lambda_1 \mathbf{q}_1 \mathbf{q}_1^T + \lambda_2 \mathbf{q}_2 \mathbf{q}_2^T + \dots + \lambda_n \mathbf{q}_n \mathbf{q}_n^T$$

5.5 Applications

• A quadratic form in n variables is a function $f: \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

where A is a symmetric $n \times n$ matrix and **x** is in \mathbb{R}^n . We refer to A as the matrix associated with f.

• The principal axes theroem: Every quadratic form can be diagonalized. Specifically, if A is the $n \times n$ symmetric matrix associated with the quadratic form $\mathbf{x}^T A \mathbf{x}$ and if Q is an orthogonal matrix such that $Q^T A Q = D$ is a diagonal matrix, then the change of variable $\mathbf{x} = Q \mathbf{y}$ transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into the quadratic form $\mathbf{y}^T D \mathbf{y}$, which has no cross-product terms. If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ and $\mathbf{y} = [y_1 \cdots y_n]^T$, then

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_a^2 + \dots + \lambda_n y_n^2$$

- A quadratic form $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is classified as one of the following:
 - positive definite if $f(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - positive semidefinite if $f(\mathbf{x}) \geq 0$ for all \mathbf{x}
 - negative definite if $f(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - negative semidefinite if $f(\mathbf{x}) \leq 0$ for all \mathbf{x}
 - indefinite if $f(\mathbf{x})$ takes on both positive and negative values
- A symmetric matrix A is called positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite if the associated quadratic form $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ has the corresponding property.
- Let A be an $n \times n$ symmetric matrix. The quadratic form $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is
 - Positive definite IFF all eigenvalues of A are positive.
 - positive semidefinite IFF all eigenvalues are nonnegative.
 - negative definite IFF all eigenvalues are negative
 - negative semidefinite IFF all eigenvalues are nonpositive.
 - indefinite IFF A has both positive and negative eigenvalues.
- Let $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form with associated $n \times n$ symmetric matrix A. Let the eigenvalues of A be $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then the following are true, with the constraint of $||\mathbf{x}|| = 1$:
 - $-\lambda_1 \ge f(\mathbf{x}) \ge \lambda_n$
 - The max value of $f(\mathbf{x})$ is λ_1 and occurs when \mathbf{x} is a unit eigenvector corresponding to λ_1
 - The min value of $f(\mathbf{x})$ is λ_n and occurs when \mathbf{x} is a unit eigenvector corresponding to λ_n
- The general form of a quadratic equation in two variables x and y is

$$ax^2 + by^2 + cxy + dx + ey + f = 0$$

• The general form of a quadratic equation in three variables x, y, and z is

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + qx + hy + iz + j = 0$$