Dimensionamento de Características

House Size (sq. ft.)	Number of Bedrooms	Distance to City Center (km)	Price (in thousands)
1800	3	10.5	250
2000	4	8.2	300
1500	2	15.0	200
2200	5	6.5	350
2400	4	7.8	375

Dimensionamento de Características

Processo de transformação de dados numéricos

Variáveis em escalas diferentes

Contribuem de forma desbalanceada para o modelo

Gradient Descent converge mais rapidamente para o mínimo local

Padronização (Z-score)

- Dados aproximados da média (zero) e desvio padrão 1
- Podem ser negativos
- Não afeta outliers
- Deve ser usado na maioria dos casos

$$X_p = \frac{X - \mu}{\sigma}$$

Normalização (Min-Max)

- Transforma para escala comum entre zero e 1
- Usado em processamento de imagens e RNA
- Quando não sabemos a distribuição dos dados
- Quando precisam ser positivos
- Algoritmos não "requerem" dados normais
- Remove outliers pois impõe "limites"

$$X_n = \frac{X - X_{min}}{X_{max} - X_{min}}$$

IRIS

IRIS Padronização (Z-score) Normalização (min-max)

Dimensionamento de Características

Não vai necessariamente melhorar seu modelo!

Arvores de decisão não precisam de nenhum tipo

Não se aplica a atributos categóricos transformados