IRON POWDER FOR TOXIC UBSTANCE REMOVAL TREAMIENT Patent Number: JP2000080401 Publication date: 2000-03-21

Inventor(s):

OGURA KUNIAKI;; UNAMI SHIGERU

Applicant(s):

KAWASAKI STEEL CORP

Requested Patent:

☐ JP2000080401

Application Number: JP19980246321 19980831

Priority Number(s):

IPC Classification:

B22F1/00; B22F9/08; C02F1/58

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide iron powder capable of efficiently removing P compounds and toxic substances in waste water and having excellent removal performance.

SOLUTION: This iron powder contains one or >=2 kinds selected from 0.020-0.5%, by weight, P, 0.020-0.5% S, and 0.020-0.5% B. Moreover, the iron powder may be water atomized iron powder consisting of, by weight, <=4.5% C and the balance Fe with inevitable impurities or may be water atomized iron powder consisting of one or >=2 kinds selected from 0.020-0.5%, by weight, P, 0.020-0.5% S, and 0.020-0.5% B, <=4.5% C and the balance Fe with inevitable impurities.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-80401

(P2000-80401A)

(43)公開日 平成12年3月21日(2000.3.21)

(51) Int.Cl.7		設別記号	FΙ			テーマコード(参考)
B 2 2 F	1/00		B 2 2 F	1/00	S	4D038
	9/08			9/08	Α	4K017
C 0 2 F	1/58		C 0 2 F	1/58	R	4 K 0 1 8

		審査請求	未請求 請求項の数3 OL (全 6 頁)
(21)出願番号	特願平10-246321	(71)出願人	000001258 川崎製鉄株式会社
(22)出願日	平成10年8月31日(1998.8.31)		兵庫県神戸市中央区北本町通1丁目1番28 号
		(72)発明者	小倉 邦明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内
		(72)発明者	宇波 繁 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内
		(74)代理人	100099531 弁理士 小林 英一
			最終頁に続く

(54) 【発明の名称】 有害物除去処理用鉄粉

(57)【要約】

【課題】 排水中のP化合物や有害物を効率よく除去で きる、除去性能のよい鉄粉を提供する。

【解決手段】 P:0.020~0.5 wt%、S:0.020~0.5 wt %およびB:0.020~0.5wt%の内から選ばれる1種また は2種以上を含有した鉄粉とする。また、C:4.5 wt% 以下を含有し、残部Feおよび不可避的不純物からなる水 アトマイズ鉄粉としてもよいし、P:0.020~0.5 wt%、 S:0.020~0.5 wt%およびB:0.020~0.5wt%の内から 選ばれる1種または2種以上並びにC:4.5 wt%以下を 有し、残部Feおよび不可避的不純物からなる水アトマイ ズ鉄粉としてもよい。

【特許請求の範囲】

【請求項1】 P:0.020~0.5 wt%、S:0.020~0.5 wt %およびB:0.020~0.5 wt%の内から選ばれる1種また は2種以上を含有する鉄粉としたことを特徴とする有害 物除去処理用鉄粉。

【請求項2】 C:4.5 wt%以下を含有し、残部Feおよ び不可避的不純物からなる水アトマイズ鉄粉としたこと を特徴とする有害物除去処理用鉄粉。

【請求項3】 P:0.020~0.5 wt%、S:0.020~0.5 wt %およびB:0.020~0.5 wt%の内から選ばれる1種また は2種以上並びにC: 4.5 wt%以下を含有し、残部Feお よび不可避的不純物からなる水アトマイズ鉄粉としたこ とを特徴とする有害物除去処理用鉄粉。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有害物除去処理用 の鉄粉に係わり、特に、排水中に含まれるP化合物等の 有害物の除去処理に好適な鉄粉に関する。

[0002]

【従来の技術】生活排水や産業排水に含まれるP化合物 等の有害物が、河川、湖沼および海水に流れ込み、それ らの富栄養化を誘発し、あおこや赤潮等に代表される環 境汚染を発生させている。これらの環境汚染を防止する ため、従来から石灰、硫酸アルミニウム、塩化鉄を排水 に添加して、凝集沈殿を行いP化合物を除去することが 行われている。

【0003】しかし、これらの物質を用いる方法は、発 生する汚泥が多いという問題や、アルミニウムイオンの 溶出による2次汚染の問題や、液体で取扱が困難である という問題があった。これらの対策として、例えば、特 開昭57-4288 号公報に、固体であって取扱の容易な、 鉄、亜鉛およびマンガンの内のから選ばれる少なくとも 1種もしくはその酸化物を、P化合物を含む排水に添加 し、前記P化合物と反応させて、P化合物を排水中から 除去する処理方法が開示されている。例えば、鉄粉をP 化合物を含む排水に添加し、鉄粉から溶出した鉄イオン とリン酸イオンを反応させて、P化合物を排水中から除 去できるとしている。

[0004]

【発明が解決しようとする課題】しかしながら、特開昭 57-4288 号公報に記載されている鉄粉は、鉄の溶出速度 が十分でなく、P化合物の除去性能が劣り、排水中から P化合物を効率よく除去できないという問題があった。 また、P化合物の他に、重金属、有機塩素化合物などの 有害物も効率よく除去することができなかった。

【0005】本発明は、排水中のP化合物や有害物を効 率よく除去できる、除去性能のよい鉄粉を提供すること にある。

[0006]

【課題を解決するための手段】発明者等は、鋭意検討を

行った結果、特定の元素を特定の量、鉄粉に含有させる ことにより、鉄粉から排水中へ溶出する鉄の溶出速度を 増大でき、P化合物等の有害物の除去性能が向上するこ とを見出し、本発明を完成させた。すなわち、本発明 は、P:0.020~0.5 wt%、S:0.020~0.5 wt%および B:0.020~0.5 wt%の内から選ばれる1種または2種以 上を含有する鉄粉としたことを特徴とする有害物除去処 理用鉄粉である。前記鉄粉は、少なくともP:0.020~0. 5 wt%を含有するのが好ましい。

【0007】また、C:4.5 wt%以下を含有し、残部Fe および不可避的不純物からなる水アトマイズ鉄粉として もよいし、P:0.020~0.5 wt%、S:0.020~0.5 wt%お よびB:0.020~0.5 wt%の内から選ばれる1種または2 種以上並びにC: 4.5 wt%以下を含有し、残部Feおよび 不可避的不純物からなる水アトマイズ鉄粉としてもよ 11

[0008]

【発明の実施の形態】以下に本発明の限定理由を説明す る。先ず、第1の発明であるP:0.020~0.5 wt%、S: 0.020~0.5 wt%およびB:0.020~0.5 wt%の内から選 ばれる1種または2種以上を含有した鉄粉について説明 する。

【0009】第1の発明では、鉄粉に含有する元素とし て、P、SおよびBの内から選ばれる1種または2種以 上を選択した。P、SおよびBの元素は、単独でも2種 以上を添加しても、鉄粉から排水中へ溶出する鉄の溶出 速度を増大し、P化合物等の有害物の除去性能を向上す る。これらの元素が鉄の溶出速度を大きくする理由は明 確ではないが、水と鉄粉の界面において鉄の腐食を促進 しているためと考えられる。

【0010】P、S、およびBのいずれかの含有量が0. 020 wt%未満では、鉄の溶出速度を増大する効果が小さ く、P化合物や有害物の除去性能を大きくする効果が十 分でない。一方、P、S、およびBのいずれかの含有量 が、0.5 wt%を超えると、鉄粉を長時間排水中に浸漬し て使用した場合や鉄粉を繰り返して排水中に浸漬し、長 時間使用した場合、鉄の溶出速度が減少し、P化合物等 の有害物の除去性能が低下する。P、S、およびBのい ずれかの含有量が0.5 妣%を超えると、鉄粉の溶出速度 が低下する原因としては、それぞれの元素と鉄との化合 物、Fe₃P、FeS、Fe₂Bが粗大化し、前記化合物と地鉄と の界面長さが減少することや鉄粉を排水中に長時間浸漬 すると鉄粉の表面が前記化合物で覆われてしまうことが 考えられる。

【0011】このため、P:0.020~0.5 wt%、S:0.020 ~0.5 wt%およびB:0.020~0.5 wt%の内から選ばれる 1種または2種以上を含有した鉄粉とした。また、P、 SおよびBの元素の内で、Pの元素が、P化合物等の有 害物の除去性能を向上させる効果が最も大きいので、少 なくともPを0.020 ~0.5 wt%含有するのが好ましい。

次いで効果が大きい元素はS、その次はBである。

【0012】第1の発明の鉄粉を製造する方法は特に限 定しないが、P、S、Bの内から選ばれた1種または2 種以上を添加して、成分が調整された溶鋼を水アトマイ ズして製造してもよいし、水アトマイズした後、さらに 仕上げ還元(還元、脱炭、仕上げ焼鈍を行う。)を施し てもよい。あるいは、ミルスケール(酸化鉄)と粉コー クスや粉石炭または鉄鉱石と粉コークスや粉石炭とを、 耐火物容器中に同心円状に充填し、粗選元する際に、粉 コークスや粉石炭の硫黄分を用いるかまたは浸硫防止の ために加えている石灰の添加量を減少することで、浸硫 させて製造してもよい。粗還元した後、さらに仕上げ還 元を施してもよい。

【0013】また、第1の発明の鉄粉は水アトマイズし て製造する際の製造限界から、C含有量を4.5 wt%以下 とするのが好ましく、残部Feおよび不可避的不純物であ る。次に、第2の発明であるC: 4.5 wt%以下を含有 し、残部Feおよび不可避的不純物からなる水アトマイズ 鉄粉について説明する。第2の発明である水アトマイズ 鉄粉は、従来の水アトマイズ法と同様に、溶鋼を水アト マイズして製造した鉄粉であって、仕上げ還元を施して いないものとするのが好ましい。水アトマイズ後、仕上 げ還元すると、仕上げ還元を施すので、製造コストが高 くなることおよび仕上げ還元すると、P化合物等の有害 物の除去性能が低くなるためである。

【0014】また、水アトマイズ鉄粉は、ミルスケール や鉄鉱石を還元した海綿鉄粉および海綿鉄粉を仕上げ還 元した鉄粉よりも、P化合物等の有害物の除去性能が大 きいからである。水アトマイズ鉄粉の組織が、水で急冷 された結晶歪の大きな焼入組織であり、鉄の溶出速度が 大きくなったことによると考えられる。Cの含有量を4. 5 wt%以下とした理由を説明する。

【0015】Cは、水アトマイズの際に鉄粉表面の酸化 を抑制し、鉄粉表面に形成される酸化物を少なくするこ とおよび結晶歪の大きな組織とすることにより、P化合 物等の有害物の除去性能を向上する。このため、Cを含 む溶鋼を水アトマイズする。C含有量が4.5 wt%を超え ると、水アトマイズ時に溶鋼流からのCOガス発生が多量 となり、溶鋼流が飛散してアトマイズ操業が困難とな り、鉄粉を安定して製造することができない。このた め、C含有量を4.5 xt%以下とする。

【0016】水アトマイズ鉄粉のC含有量を0.15wt%未 満とすると、水アトマイズの際に鉄粉表面が酸化され、 鉄粉表面に酸化物が多く形成されるため、P化合物等の 有害物の除去性能が低下する。このため、C含有量を0. 15wt%以上とするのが好ましい。。C含有量を0.15wt% 以上とすると鉄粉表面の酸化が抑制されて、O含有量が 0.5 wt%以下にすることができる。

【0017】不可避的不純物としては、例えば Si 、Mn があげられ、Si:0.02 wt%以下、Mn:0.20 wt%以下とす

るのが好ましいが、溶鋼の精錬処理の条件に応じてSi: 2.0wt%以下、Mn: 2.0 wt%以下とするとよい。Siは、 酸素との親和力が強い元素であって、Si含有量が、2.0 ・ は%を超えると、水アトマイズの際に鉄粉表面に難還元 性の酸化物を多く形成し、P化合物等の有害物の除去性・ 能が低下する。このため、Si含有量を2.0 wt%以下とす て、Mn含有量が、2.0 xt%を超えると、Siと同様に水ア トマイズの際に鉄粉表面に難還元性の酸化物を多く形成 し、P化合物等の有害物の除去性能が低下する。このた め、Mn含有量を2.0 wt%以下とするとよい。さらに、M n:0.20 wt%以下、Si:0.02 wt%以下とすると、MnとSi の含有量を汎用鉄粉と同じにでき、水アトマイズ鉄粉の 生産コストが低下するので好ましい。

【0018】第3の発明である、P:0.020~0.5 wt%、 S:0.020~0.5 wt%およびB:0.020~0.5 wt%の内から 選ばれる1種または2種以上並びにC:4.5 xt%以下を 含有し、残部Feおよび不可避的不純物からなる水アトマ イズ鉄粉について説明する。P:0.020~0.5 wt%、S: 0.020~0.5 wt%およびB:0.020~0.5 wt%の内から選 ばれる1種または2種以上を含有する理由については、 前述した第1の発明と同じであり、さらに、C:4.5 wt %以下を含有し、残部Feおよび不可避的不純物からなる 水アトマイズ鉄粉とする理由については、前述した第2 の発明と同じである。第3の発明の水アトマイズ鉄粉 は、第2発明の鉄粉と同様に仕上げ還元を施していない ものとするのが好ましい。

【0019】第1、第2および第3の発明の鉄粉は、比 表面積を0.01~1.0m²/g とするのが好ましい。この理由 は、比表面積が大きいほど、単位重量当たりの表面積が 大きくなるので、排水と接触する面積が大きくなって、 鉄の溶出には有利であるが、1.0m2/g を超えると、空気 中の酸素と粒子表面の反応性が大きくなり、粒子表面が 酸化物で覆われて、鉄の溶出速度が低下したり、酸素と 反応して発火しやすくなるためである。一方、0.01m²/g 未満とすると、表面積が小さくなって鉄の溶出速度が小 さくなるからである。

【0020】また、第1、第2および第3の発明の鉄粉 は、粒子径を1~1000µm とするのが好ましい。この理 由は、1000μm を超えると、鉄粉形状のため0.01m²/g 未満の比表面積となるからで、一方、1 μπ 未満では1. Om²/g を超える比表面積となるからである。

[0021]

【実施例】(実施例1)P、S、Bの内から選ばれた1 種または2種以上を添加して、成分が調整された溶鋼を 水アトマイズした後、脱水、乾燥、解砕、分級して、C 含有量0.15wt%の水アトマイズ鉄粉を得た。MnおよびSi は溶鋼の酸化精錬により調整した。

【0022】これらの水アトマイズ鉄粉を、水素雰囲気 中、900 ℃×1hr で仕上げ還元(還元、脱炭、仕上げ焼 鈍が施される。) した後、解砕、分級して、表1に示す 本発明例の鉄粉を得た。一方、P、S、Bのいずれの元 素も添加しない溶鋼を水アトマイズした後、前記発明例 と同様にして比較例の鉄粉を得た。

【0023】得られた発明例と比較例の鉄粉は、平均粒 径70μm、BET 法で測定した比表面積0.01~0.1m²/g で あった。BET 法は、粒子表面に吸着させたガス量を測定 して算出する方法で、ここでは、液体窒素温度での窒素 ガスの吸着量を室温に戻して離脱してくるガス量をガス クロマトグラフィで測定した。発明例および比較例の鉄 粉の比表面積が前記範囲であったので、幾何学的形状に よる反応性は同じ条件となっている。

【0024】得られた鉄粉2gを、P濃度15ppm のリン酸 水溶液200 g に添加し、2 分間攪拌した。攪拌後の水溶 液をろ過し、鉄粉と反応生成物を除去した後、ろ液中の P濃度を定量した。ろ液のP濃度を、u (ppm)とし て、P化合物の除去性能を下記除去速度R(表中のPの 除去速度)で評価した。結果を表1に示す。

[0025] $R=(15-u)/15\times100/t$ · · · · · · (1) 但し、t: 攪拌時間(分)

[0026]

【表1】

試料 番号				組织	戊(wt%)			Pの除 去速度 (%/分)	備考
	С	Si	Mn	P	S	В	0		加考
A01	0.001	0. 02	0. 20	0.016	0.014	_	0. 14	29	比較例
A02	0.002	0. 02	0. 20	0.014	0.015	0. 05	0. 14	35	発明例
A03	0.001	0.02	0.20	0.013	0.015	0. 49	0. 14	36	発明例
A04	0.001	0.02	0. 20	0. 021	0.015	_	0. 14	38	発明例
A05	0.003	0.02	0. 20	0. 46	0.011	-	0. 14	40	発明例
A06	0. 001	0. 02	0. 20	0. 013	0. 025	-	0. 14	36	発明例
A07	0. 002	0. 02	0.20	0. 011	0.42	_	0. 14	37	発明例
A08	0. 001	0.02	0.20	0.016	0.025	0. 23	0.14	38	発明例
A09	0. 001	0. 02	0.20	0. 23	0.026	0. 23	0. 14	43	発明例

【0027】本発明例の鉄粉は、P化合物の除去速度が 30%以上であるのに対して、比較例の鉄粉はP化合物の 除去速度が30%未満であった。

(実施例2)溶鋼中への添加C量を調整するかまたは P、S、Bの内から選ばれた1種または2種以上が添加 されるとともに、添加C量を調整した溶鋼を、水アトマ イズした後、脱水、乾燥、解砕、分級して、表2、表3 に示す本発明例の鉄粉を得た。MnおよびSiは溶鋼の酸化 精錬により調整した。

【0028】得られた発明例の鉄粉は、平均粒径70μ m、BET 法で測定した比表面積0.01~0.1m²/g であっ た。これらの鉄粉について、攪拌時間を1分とし、それ 以外の条件は実施例1と同様にしてP化合物の除去速度 を測定した。結果を表2、表3に示す。

[0029]

【表2】

試料	組成(wt%)							Pの除	備考
番号	С	Si	Mn	P	S	В	0	去運度 (X/分)	14H-5
B01	0. 13	0. 02	0. 20	0.016	0. 018	1	0.57	60	発明例
B02	0. 15	0.02	0. 20	0.015	0. 015	0.05	0.48	75	発明例
B03	0. 16	0.02	0. 20	0. 25	0. 015	_	0.47	83	発明例
B04	0. 16	0. 02	0. 20	0. 015	0. 47		0.46	78	発明例
B05	0. 15	0.02	0. 20	0. 25	0. 015	0. 23	0.48	85	発明例
B06	0. 17	0.02	0. 20	0. 24	0.023	0. 23	0.45	86	発明例
B07	3. 20	0. 02	0. 20	0.016	0.014	0.05	0. 21	85	発明例
B08	3. 10	0. 02	0. 20	0.015	0.014	0. 23	0. 23	89	発明例
B09	2.90	0. 02	0. 20	0.014	0.017	0.47	0. 25	93	発明例
B10	3.00	0. 02	0. 20	0.021	0.011	-	0. 23	99	発明例
B11	3. 20	0. 02	0. 20	0. 26	0.012	_	0. 21	88	発明例
B12	3. 10	0. 02	0. 20	0.45	0.016	-	0. 22	99	発明例
B13	3. 10	0. 02	0. 20	0.016	0.023	_	0. 23	88	発明例
B14	3. 10	0. 02	0. 20	0. 015	0.28		0. 22	90	発明例
B15	3. 50	0. 02	0. 20	0.016	0. 45	-	0. 20	97	発明例
B16	3. 30	0. 02	0. 20	0. 21	0.017	0. 23	0. 20	99	発明例
B17	3. 30	0. 02	0. 20	0. 014	0.025	0. 23	0. 20	90	発明例
B18	3. 10	0. 02	0. 20	0. 24	0.027		0. 23	99	発明例
B19	3. 20	0. 02	0. 20	0. 25	0.027	0. 23	0.21	99	発明例
B20	4.40	0, 02	0.20	0. 014	0.011	0. 50	0.18	95	発明例
B21	4. 20	0.02	0.20	0. 25	0. 017	_	0.19	99	発明例
B22	4. 10	0.02	0. 20	0. 014	0. 025	-	0.19	89	発明例
B23	4.30	0. 02	0. 20	0. 20	0. 027	_	0.18	99	発明例
B24	4.40	0. 02	0. 20	0. 27	0. 021	-	0.18	99	発明例
B25	0. 35	0.02	0. 20	0.010	0.12	-		89	発明例
B26	3. 20	2.0	0. 20	0. 25	0. 027	0. 23		84	発明例
B27	3.10	0.02	2. 0	0. 24	0. 027	0. 23		85	発明例

[0030]

【表3】

試料 番号				組成(w	t%)			Pの除	備考
	С	Si	Mn	P	S	В	0	去速度 (%/分)	VIII-75
B28	0. 16	0.02	0. 20	0. 014	0.019		0.48	74	発明例
B29	3. 20	0.02	0. 20	0.010	0. 011		0. 23	82	発明例
B30	4.50	0. 02	0. 20	0.010	0. 011	0.05	0. 18	88	発明例
B31	0.13	0.02	0.20	0.015	0.015	0.05	0.48	72	発明例
B32	0. 13	0. 02	0.20	0.015	0.47	_	0.46	75	発明例
B33	0.13	0.02	0. 20	0. 25	0.015	_	0.47	18	発明例

【0031】本発明例の鉄粉は、P化合物の除去速度が 30%以上であった。また、水アトマイズした発明例の鉄 粉である試料番号B25 と実施例3のミルスケールを還元 した海綿鉄粉である試料番号CO1 とを比較すると、水ア トマイズした発明例の鉄粉の方が、P化合物の除去速度 が大きくなっている。この理由としては、前記したよう に水アトマイズした鉄粉組織が、水で急冷された結晶歪 の大きな焼入組織となっているため、鉄の溶出速度が大 きくなったことによると考えられる。

【0032】(実施例3)ミルスケール(酸化鉄)と粉 コークスとを、耐火物容器中に同心円状に充填し、1150 ℃×40hrで、粗還元した。粗還元する際に、前記粉コー クスに添加する石灰の添加量を減少して浸硫させた。 粗 還元後、粉砕、分級して、表4に示す発明例の鉄粉を得 た。一方、同一ロットのミルスケールを、粗還元する際 に、前記の浸硫するための処理は行わなかったが、それ 以外は同様にして比較例の鉄粉を得た。

【0033】得られた発明例と比較例の鉄粉は、平均粒 径70μm、BET 法で測定した比表面積0.05~0.20 m²/g であった。これらの鉄粉について、攪拌時間を1分と

し、それ以外の条件は実施例1と同様にしてP化合物の 除去速度を測定した。結果を表4に示す。

[0034]

【表4】

試料 番号				組成	(wt%)			Pの除	ett-år.
曲写	С	\$i	Mn	P	s	В	0	去速度 (%/分)	備考
C01	0. 35	0. 02	0. 20	0. 011	0. 13	_	0. 63	37	発明例
C02	0. 35	0. 02	0. 20	0. 011	0.010	_	0. 60	28	比較例

【0035】本発明例の鉄粉は、P化合物の除去速度が 30%以上であるのに対して、比較例の鉄粉は除去速度が 30%未満であった。

(実施例4)実施例3と同一ロットのミルスケールを、 実施例3の発明例と同じ条件で、粗還元、粉砕、分級し た後、水素ガス中、900 ℃×1hr で仕上げ還元(還元、 脱炭、仕上げ焼鈍が施される。)し、粉砕、分級して、 表5に示す発明例の鉄粉を得た。一方、同一ロットのミ ルスケールを粗還元する際に、実施例3の発明例で施し た浸硫する処理を行わなかったが、それ以外は前記発明 例と同様にして比較例の鉄粉を得た。

【0036】得られた発明例と比較例の鉄粉は、平均粒 径70μm、BET 法で測定した比表面積0.05~0.20 m²/g であった。これらの鉄粉について、攪拌時間を1分と し、それ以外の条件は実施例1と同様にしてP化合物の 除去速度を測定した。結果を表5に示す。

[0037]

【表5】

試料				組成	(wt%)			Pの除 去速度 (X/分)	備考
番号	С	Si	Mn	P	S	В	0		
D01	0.002	0.02	0. 20	0. 011	0. 080	_	0. 16	36	発明例
D02	0.002	0.02	0.20	0.011	0.010	-	0. 16	27	比較例

【0038】本発明例の鉄粉は、P化合物の除去速度が 30%以上であるのに対して、比較例の鉄粉はP化合物の 除去速度が30%未満であった。なお、実施例3および実 施例4では、ミルスケールを用いたが、鉄鉱石を用いて も同様な結果が得られたので、いずれを用いてもよい。 【0039】また、P化合物の他に、重金属、有機塩素 化合物などの有害物も同様に効率よく除去できることは 言うまでもない。

[0040]

【発明の効果】本発明の鉄粉によれば、鉄の溶出速度が 大きく、P化合物等の有害物の除去性能が優れているの で、排水中のP化合物等の有害物を効率よく除去でき る。

フロントページの続き

Fターム(参考) 4D038 AA08 AB14 AB46 AB63 BB17 4K017 AA01 BA06 BB14 BB15 BB18 CA07 DA09 EK01 4K018 BA14 BB10 BD10