Försättsblad/Rättningsprotokoll för Laboration i T	SKS10, V	T2015		
LiU-ID, personnummer och namn:				
Datum och signatur, första inlämning:				
Datum och signatur, komplettering:				
	Första inlämning		Kompletterir	
	Ja	Nej	Ja	Ne
f_c korrekt identifierad		,		
$\tau_2 - \tau_1$ korrekt identifierad				
Ordspråken korrekt identifierade				
Slutsatser och svar framgår tydligt				
Programkod är bifogad				
Resultatet är reproducerbart utifrån rapporten				
Rapporten uppfyller formkraven (10pt typsnitt, max. två sidor, stavning korrekt, typsättning proper)				
Språket är genomarbetat, texten är lätt att följa, läsa och förstå samt adekvat terminologi används				
Det teoretiska resonemanget stämmer				
Väldefinierad eller vedertagen notation har använts				
Alla figurer korrekt ritade och tydliga, alla axlar är graderade och har enheter (när tillämpligt)				
Urkund OK				
Sammantagen bedömning: rapporten godkänd				
Kommentarer på första inlämningen:				
Datum och signatur av lärare som bedömt rapporten: _ Kommentarer på kompletteringen:				

Datum och signatur av lärare som bedömt rapporten: _

Laborationsrapport i TSKS10 Signaler, Information och Kommunikation

Alexander Yngve aleyn573, 930320-6651

28 april, 2015

1 Inledning

Denna laboration gick ut på att...

2 Metod

Uppgiften löstes på följande sätt...

3 Resultat

Den sökta informationen är:

- Bärfrekvensen för nyttosignalen är $f_c = 114000 \text{ Hz}.$
- Differensen $\tau_2 \tau_1 = 0.430 \text{ s.}$
- Ordspråket i I-signalen är "även den mest skröpliga mussla kan innehålla en pärla".
- Ordspråket i Q-signalen är "skrattar bäst som skrattar sist".

A Programkod

```
title('Cross correlation');
clc;clear;close all;
                                                   pause;
% Read signal
                                                   tau = 0.43; % Difference in seconds from xcorr
[y, fs, b] = wavread('signal-aleyn573.wav');
                                                     plot
                                                   diff = tau*fs; % Difference in samples
L = length(y);
% Transform
                                                   % Echo cancellation
f_{axis} = f_{s/2}*linspace(0, 1, L/2);
                                                   y_echo_fix = zeros(size(y3));
                                                   y_{echo_fix(1:diff)} = y3(1:diff);
Y = fft(y);
                                                   for i=1:42
% Check carrier frequencies
                                                       y_{echo_fix(i*diff+1:(i+1)*diff)} = y3(i*diff)
plot(f_axis, abs(Y(1:L/2)));
                                                           +1:(i+1)*diff) - 0.9*y_echo_fix((i-1)*
title('Amplitude spectrum');
                                                           diff+1:i*diff);
xlabel('frequency (Hz)');
ylabel('magnitude (abs)');
                                                   end
pause;
                                                   % I/Q-demodulation
                                                   [B, A] = butter(10, bw/(fs/2), 'low');
% Check which signal contains relevant data
bw = 20000; % Bandwidth
                                                   i_carrier = cos(2*pi*fc3*t_axis);
fc1 = 38000;
                                                   q_carrier = sin(2*pi*fc3*t_axis);
fc2 = 76000;
fc3 = 114000;
                                                   y_i = filter(B, A, 2*y_echo_fix.*i_carrier);
t_axis = linspace(0, 19.5, L)';
                                                   y_q = -filter(B, A, 2*y_echo_fix.*q_carrier);
[B, A] = butter(10, [fc1 - bw/2, fc1 + bw/2]/(
                                                   % Playback
   fs/2));
y1 = filter(B, A, y);
                                                   i = decimate(y_i, 4);
                                                   q = decimate(y_q, 4);
[B, A] = butter(10, [fc2 - bw/2, fc2 + bw/2]/(
    fs/2));
y2 = filter(B, A, y);
                                                   %soundsc(i, fs/4);
[B, A] = butter(10, [fc3 - bw/2, fc3 + bw/2]/(
                                                   %soundsc(q, fs/4);
    fs/2));
y3 = filter(B, A, y);
subplot(3,1,1);
plot(t_axis, y1);
title(['fc = ' num2str(fc1) 'Hz']);
subplot(3,1,2);
plot(t_axis, y2);
title(['fc = ' num2str(fc2) 'Hz']);
subplot(3,1,3);
plot(t_axis, y3);
title(['fc = ' num2str(fc3) 'Hz']);
pause;
% y3 (114 kHz) seems to be the right one
% Cross-correlation of white noise (y2) to find
    echo time delay
[corr, lags] = xcorr(y2);
corr = corr(lags > 0); % Plot only positive
   time
lags = lags(lags > 0);
```

subplot(1,1,1);
plot(lags/fs, corr);
xlabel('time (s)');