Antwort für Übungsblatt 2

Jian Dong Zezhi Chen Hanyu Sun jd81vuti zc75diqa hs54keri May 2, 2019

1 P1 (Gruppendiskussion)

(a) Asymptotische Notation $(O, o, \Omega, \omega, \Theta)$

 $O(g) = \{ f : \exists c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) \le cg(n) \}$ $o(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$

O(g) bedeutet, dass die Ordung von g(n) gleich oder grosser als f(n) sein muss, aber o(g) bedeutet, dass die Ordnung von g(n) grosser als f(n) sein muss.

$$\Omega(g) = \{ f : \exists c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) \le f(n) \}$$

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

 $\Omega(g)$ bedeutet, dass die Ordung von g(n) gleich oder kleiner als f(n) sein muss, aber $\omega(g)$ bedeutet, dass die Ordnung von g(n) kleiner als f(n) sein muss.

$$\Theta(g) = \{ f : \exists c_1, c_1 \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

 $\Theta(g)$ bedeutet, dass $g(n)$ und $f(n)$ in gleiche Ordnung sind.

(b) Divide-and-Conquer Ansatz

Zerlege das Probleme in mehrere Teilprobleme, die loeserbar sind.

(c) Bubblesort, Mergesort, Quicksort

Bubblesort: 1. Vergleiche Paare von benachbarten Schluesselwerten. 2. Tausche das Paare, falls rechter Schluesselwert kleiner ist als linker.

Mergesort: 1.Rekusiv teilt die Folge in n Elementen in zwei Teilfolgen von je n/2 Elementen auf bis jede Teilfolgen nach Reihenolge anordnende sind. 2.Die zwei sortierten Teilfolgen, die am Endstuecke liegen, mischen, um die sortierte Loesung zu erzeugen.

Quicksort: 1.Zerlege den Array A[p..r] in zwei Teilarrays A[p..q-1] und A[q+1..r], sodass jedes Element von A[p..q-1] kleiner oder gleich A[q] ist (die Zahlenwert von A[q] ist die Zahlenwert von A[r] in originale Array), welches wiederum kleiner oder gleich jedem Element von A[q+x..r] ist. Berechnen den Index q als teil vom Partion Algorithmus.

2. Sortieren beider Teilarrays A
[p..q-1] und A[q+1..r] durch rekursiven Aufruf von Quicksort.

2 P2 (Rechenregeln für asymptotische Notation)

- (a) i) f(n)=O(g(n)) genau dann wenn $g(n)=\Omega(f(n))$
- $f(n) = O(g(n)) \Leftrightarrow \text{Die Ordnung von } f(n) \text{ gleich oder kleiner als } g(n) \Leftrightarrow \text{Die Ordnung von } g(n) \text{ gleich oder grosser als } f(n) \Leftrightarrow g(n) = \Omega(f(n))$
- (a) ii) f(n)=o(g(n)) genau dann wenn $g(n)=\omega(f(n))$
- $f(n) = o(g(n)) \Leftrightarrow \text{Die Ordnung von } f(n) \text{ kleiner als } g(n) \Leftrightarrow \text{Die Ordnung von } g(n) \text{ grosser als } f(n) \Leftrightarrow g(n) = \omega(f(n))$
- (b) $o(g(n)) \subseteq O(g(n))$, und $\omega(g(n)) \subseteq \Omega(g(n))$ $o(g(n)) + \Theta(g(n)) = O(g(n)) \Rightarrow o(g(n)) \subseteq O(g(n))$ $\omega(g(n)) + \Theta(g(n)) = \Omega(g(n)) \Rightarrow \omega(g(n)) \subseteq \Omega(g(n))$
- (c) $O(g(n)) \cap \Omega(g(n)) = \Theta(g(n))$, und $o(g(n)) \cap \Omega(g(n)) = \emptyset$ $O(g(n)) \cap \Omega(g(n))$ bedeutet, dass die beide Funktion in gleich Ordnung sind $\Leftrightarrow \Theta(g(n))$
- $o(g(n)) \cap \Omega(g(n))$ bedeutet, waehrend die Ordnung von f(n) kleiner als g(n) ist, muss die Ordnung von f(n) grosser als g(n) ist. $\Leftrightarrow \emptyset$
- (d) i) ist $f_1(n) = O(g_1(n))$ und $f_2(n) = O(g_2(n))$, dann gilt $f_1(n) + f_2(n) = O(mas(g_1(n), g_2(n)))$

Denn die Ordnung von $f_1(n) + f_2(n)$ haengt von die groesste Ordnung von f_1 und f_2 ab. und die groesste Ordnung von f_1 und f_2 gleich oder kleiner als $O(mas(g_1(n) * g_2(n)))$ ist, d.h. $f_1(n) + f_2(n) = O(mas(g_1(n), g_2(n)))$

- (d) ii) ist $f_1(n) = O(g_1(n))$ und $f_2(n) = O(g_2(n))$, dann gilt $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$
- Nehmen wir an,dass die Ordnung von $f_1(n)$, $f_2(n)$, $g_1(n)$, $g_2(n)$ ist $j, k, l, m (j \le l, k \le m)$. Die Ordnung von $f_1(n) * f_2(n)$ ist j * k. Die Ordnung von $g_1(n) * g_2(n)$ ist l * m.Denn $j \le l, k \le m$ und j, k, l, m > 0, so $j * k \le l * m$, d.h. $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$
- (d) iii) Es gilt f(n) = O(f(n))
- f(n) und f(n) ist in gleiche Ordnung,d.h. $\exists c_1, c_1 \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}, \forall n \geq n_0, 0 \leq c_1 f(n) \leq f(n) \leq c_2 f(n)$. Dann $f(n) = \Theta(f(n)) \in O(f(n)) \Rightarrow f(n) = O(f(n))$
- (d) iv) Ist f(n) = O(g(n)) und g(n) = O(h(n)), dann gilt f(n) = O(h(n)).
- $f(n) = O(g(n)) \Leftrightarrow$ die Ordnung von f(n) gleich oder kleiner als $g(n).g(n) = O(h(n)) \Leftrightarrow$ die Ordnung von g(n) gleich oder keliner als h(n),d.h. Die Ordnung von f(n) gleich oder kleiner als $h(n) \Leftrightarrow f(n) = O(h(n))$

3 P3 (Rechnen mit asymptotischer Notation)

f(n)	g(n)	О	О	Ω	ω	Θ
$log^k(n)$	$n^{arepsilon}$	X	X			
n^k	c^n	X	X			
2^n	$2^{n/2}$			X	X	
$n^{log(c)}$	$c^{log(n)}$	X		X		X
n^r	n^s	X	X			
log(n!)	$log(n^n)$	X	X			

- $1.\lim_{n\to\infty} \frac{\log_n(\log^k(n))}{\log_n(n^{\varepsilon})} = \frac{k\log_n(\log(n))}{\varepsilon} = \frac{k\log(\log(n))}{\varepsilon\log(n)} = 0 \text{ d.h. die Ordnung von } f(n)$ kleiner als g(n).
- 2. $\lim_{n\to\infty} \frac{\log(n^{\widetilde{k}})}{\log(c^n)} = \frac{k\log(n)}{n\log(c)} = 0$ d.h. die Ordnung von f(n) kleiner als g(n).
- $n \to \infty$ $\log(c^{-r})$ $n \log(c)$ $n \log(c)$

- 6. $\lim_{n \to \infty} (\log(n!) \log(n^n)) = \log(\frac{n!}{n^n}) < \log(1/n) = -\infty$ d.h. die Ordnung von f(n) kleiner als g(n).

P4 (Darstellung von Merge Sort) 4

[14, 9, 5, 8, 11, 4, 21, 7, 6][9, 14, 5, 8, 11, 4, 21, 7, 6][5, 9, 14, 8, 11, 4, 21, 7, 6][5, 9, 14, 8, 11, 4, 21, 7, 6][5, 8, 9, 11, 14, 4, 21, 7, 6][5, 8, 9, 11, 14, 4, 21, 7, 6][5, 8, 9, 11, 14, 4, 21, 6, 7][5, 8, 9, 11, 14, 4, 6, 7, 21][4, 5, 6, 7, 8, 9, 11, 14, 21]

5 P5 (Bubble Sort)

pass