A SIMPLE EXAMPLE OF A COLOURED CYCLIC OPERAD ON A NON-STRICT COMPACT CLOSED CATEGORY

Yaxin Li, supervised by Marcy Robertson

University of Melbourne

This Instance of Coloured Cyclic Operads

This is a vast simplification of the technical, tedious definition from [3]. On a symmetric monoidal category, a coloured cyclic operad is pretty much a way of labeling each object A with at least one (possibly empty) ordered list $c_1, \cdots, c_n \in \mathfrak{C}$ of "colours" (i.e. elements of \mathfrak{C} , some set of colours with involution given by $(-)^{\dagger}$). The ordering is always assumed to be cyclic because the corollas do not have distinguished input or output branches. For example, if for A and B as labelled below, $c_1 = d_4^{\dagger}$,

then we can take the composition $A \circ_4^1 B$ to be the object $A \otimes B$ with the label

 a_3 . The compositions must satisfy some further conditions, such as being commutative with the action of the appropriately-sized symmetric group permuting the branches, up to isomorphism. Clearly, the unit of the

its possible labels.

Compact Closed Category

composition, and for this example, \otimes as well, must have the empty list as one of

For this example, the compact closed category is an example of a star-autonomous category such that \otimes coincides with $A \ \Re \ B = (A^* \otimes B^*)^*$. It is sufficient for a star-autonomous category (equivalently, a linearly-distributive category with duals [2]) to have $(A \otimes B)^* \cong A^* \otimes B^*$ for all objects A, B, in order for it to be compact closed.

The "Simple Example" w of a Compact Closed Category

This example is based on the "simple example" of a star-autonomous category with non-strict double-dual, constructed on p.23 of [1]. Let \mathcal{W} be a symmetric monoidal category such that all unitors, associators, swaps, and several other structural maps are identity maps. The

- set of objects of ${\mathcal W}$ is $\left\{egin{array}{c} I \ L & R\cong R' \end{array}
 ight\}$, with
- 2. For each object A, $A \otimes A = A$

1. I the unit and counit of \otimes

- 3. $L \otimes R = L \otimes R' = I$
- 4. $R \otimes R' = R'$
- 5. $L = R^* = R'^*$, $R = L^*$
- 6. $R \cong R^*$, with \cong not an identity map

The above are enough to ensure that each object of C satisfy the "triangular equations" of [4] on p.1, which we take to be the definition of a compact closed category.

Finding a Suitable Set of Colours for w

Since the isomorphism between R and R' is not an identity map, we likely cannot put a coloured cyclic operad structure by labelling the objects of \mathcal{W} in a "tautological" way, as in example 2.9 of [3]:

$$P(a_0, \cdots, a_n) := \mathcal{V}(a_0 \otimes \cdots \otimes a_n, \perp)$$

where \mathcal{V} is a star-autonomous category with strict double-dual, and the "tautological" is in the sense of the object $\mathcal{V}(a_0 \otimes \cdots \otimes a_n, \bot)$ in **Sets** (and in a way, $a_0 \otimes \cdots \otimes a_n$ as well) being labelled by a_0, \cdots, a_n .

The Category of Complemented Objects

This construction comes from [1]. The category of complemented objects $\mathbf{C}(\mathcal{C})$ of the compact closed category \mathcal{C} , has

- 1. as objects, the triples (A, A', τ_A) with $A' \xrightarrow{\tau_A} A^*$ an isomorphism
- 2. (I, I, id_I) as the unit
- 3. $(A, A', \tau_A) \otimes (B, B', \tau_B) := \left(A \otimes B, A' \otimes B', A' \otimes B' \xrightarrow{\tau_A \otimes \tau_B} A^* \otimes B^* \xrightarrow{\cong} (A \otimes B)^* \right)$

For \mathcal{W} , we have

$$Obj(\mathbf{C}(\mathcal{W})) = \left\{ (L, R, id) \\ (L, R', \cong) \\ (R, L, id) \\ (R', L, id) \right\}$$

which we will use as the involutive set of colours, since $\mathbf{C}(\mathcal{W})$ has a strict double-dual [1]. After brute force calculating the otimes-table of $\mathbf{C}(\mathcal{W})$, we can see that if we use as "generators"

$$I = P((I, I, id))$$

$$L = P((L, R, id))$$

$$R = P((R, L, id))$$

$$R' = P((R', L, id))$$

$$L = P(L, R', \cong)$$

and define $P(\tilde{A}, \tilde{B}) = P(\tilde{A} \otimes \tilde{B})$ for objects \tilde{A}, \tilde{B} , in $\mathbf{C}(\mathcal{W})$, we will see that \mathcal{W} is a $\mathbf{C}(\mathcal{W})$ -coloured cyclic operad.

Remarks

Note that in example 2.9 of [3], the coloured cyclic operad structure is on the *image* of a *contravariant* functor, so I might have missed some important things in this choice of \mathcal{W} . Perhaps this naive way of using $\mathbf{C}(\mathcal{W})$ as the involutive set of colours would not work in general if \mathcal{W} had more non-identity structural morphisms. These sacrifices were made to fit everything onto one a2 poster.

References

- [1] J. R. B. Cockett, M. Hasegawa, and R. A. G. Seely. "COHERENCE OF THE DOUBLE INVOLUTION ON *-AUTONOMOUS CATEGORIES". en. In: *Theory and Applications of Categories* 17.2 (Dec. 2006), pp. 17–29. ISSN: 1201 561X.
- [2] J. R. B. Cockett and R. A. G. Seely. "Weakly distributive categories". In: *Applications of Categories in Computer Science* (1991), pp. 45–65.
- [3] Gabriel C. Drummond-Cole and Philip Hackney. "Dwyer-Kan homotopy theory for cyclic operads". en. In: *Proceedings of the Edinburgh Mathematical Society* 64.1 (Feb. 2021), pp. 29–58. ISSN: 0013-0915, 1464-3839. DOI: 10.1017/S0013091520000267.
- [4] G. M. Kelly and M. L. Laplaza. "Coherence for compact closed categories". In: *Journal of Pure and Applied Algebra* 19 (Dec. 1980), pp. 193–213. ISSN: 0022-4049. DOI: 10.1016/0022-4049(80)90101-2.