Worksheet 10

- **1.** (Ratio Test) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Exp(\lambda)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_0: \lambda = 1$.
- **2.** (Ratio Test) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_0: \lambda = 1$.
- **3.** (Ratio Test) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(p)$. What is the test statistic Λ for the corresponding likelihood ratio test for the null hypothesis $H_0: p = 0.2$.
- **4.** (Ratio Test) Let $X \sim Bin(n, p_1)$ and $Y \sim Bin(n, p_2)$ be independent random variables, assuming that n is a known quantity. We want to test the hypothesis that $H_0: p_1 = p_2$. What are the corresponding Θ and Θ_0 in our updated formulation of hypothesis testing?¹ If we use a Likelihood Ratio Test for this hypothesis, how many degrees of freedom should Λ have?
- 5. (Ratio Test) Recall that we used the one-sample ANOVA test with the null-hypothesis that the means of K samples are all the same. Write down and describe the values of Θ and Θ_0 that correspond to this test. If we use a Likelihood Ratio Test for this hypothesis, how many degrees of freedom should Λ have?
- **6. (MLE Practice)** Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Uniform(0, a)$. Find the MLE estimator for a. Note: You cannot do this using the derivative. Just think about it!

¹ We will derive the actual test itself in a more general form next class.