Задача 1.1. Найдите какой-нибудь базис в пространстве матриц 2×2 , коммутирующих с матрицей

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

 $\Pi o d c \kappa a 3 \kappa a$: запишите условие в виде системы уравнений на матрицу X и найдите ΦCP этой системы. Не забудьте, что в ответе должны быть матрицы 2×2 , а не просто векторы длины 4.

Задача 1.2. Найдите какой-нибудь базис в пространстве, состоящем из многочленов f(x) степени не выше 3, для которых f(1) = f'(-1) = 0. Подсказка: замените многочлены на векторы их коэффициентов, а условия перепишите как систему линейных уравнений.

Следующие две задачи могут выглядеть страшновато, но на самом деле чтобы их решить, достаточно несколько раз проговорить про себя определение фундаментальной системы решений.

Задача 2.1. Существует ли однородная система уравнений, для которой набор векторов $v_1 = (0, -1, -1, 1, 0), v_2 = (1, 2, 2, 0, 0), v_3 = (1, 0, 0, 2, 0)$ образовывал бы фундаментальную систему решений?

Задача 2.2. В пространстве \mathbb{R}^5 заданы векторы

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ -1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 2 \end{pmatrix}, \ v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ v_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \ v_5 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \\ 2 \end{pmatrix}$$

Выясните, возможно ли среди этих векторов выбрать подмножество, являющееся фундаментальной системой решений для однородной системы линейных уравнений

$$\begin{cases} x_3 + x_4 - x_5 = 0, \\ x_1 - 2x_2 + x_5 = 0. \end{cases}$$

Задача 2.3. Пусть M — это блочная матрица вида

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

Как связан ранг M с рангами A и C? Обязательно объясните ответ!

Ещё про ранги блочных матриц. Пусть A и B — матрицы одного размера рангов 5 и 7 соответственно. Найдём ранг матрицы

$$\begin{pmatrix} A & 3B \\ -2A & -B \end{pmatrix}$$

Решать эту задачу мы будем, разумеется, с помощью преобразований, только уже не элементарных, а блочных. Давайте ко второй блочной строке мы прибавим первую, умноженную на 2. Заметим, что это преобразование обратимо, поэтому не меняет ранг.

$$\begin{pmatrix} A & 3B \\ -2A & -B \end{pmatrix} \leadsto \begin{pmatrix} A & 3B \\ 0 & 5B \end{pmatrix}$$

К сожалению, из этого мы пока не можем сделать вывода о ранге всей матрицы: если вы сделали задачу 2.5, то знаете, что ранг M там, вообще говоря, может

не быть равен rkA+rkB. Но давайте теперь сначала разделим вторую блочную строку на 5, а потом вычтем из первой блочной строки утроенную вторую:

$$\begin{pmatrix} A & 3B \\ 0 & 5B \end{pmatrix} \leadsto \begin{pmatrix} A & 3B \\ 0 & B \end{pmatrix} \leadsto \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

А вот для блочно диагональных матриц всё хорошо! Ранг такой матрицы равен ${\rm rk}A + {\rm rk}B = 5 + 7 = 12.$

Задача 2.4. Пусть A и B — матрицы одного размера. Докажите, что

$$\operatorname{rk}\begin{pmatrix} 2A & -B\\ 3A & 4B \end{pmatrix} = \operatorname{rk}(A) + \operatorname{rk}(B)$$

Блочные матрицы: более сложные преобразования. Допустим теперь, что A — матрица 7×7 ранга 5, а найти надо ранг матрицы

$$\begin{pmatrix} E & A \\ 4A & -A^2 \end{pmatrix}$$

нам очень хочется из второй блочной строки вычесть первую, умноженную на 4A. Но будет ли это обратимым преобразованием?

Упражнение Преобразование, о котором речь идёт выше, равносильно умножению слева на блочную матрицу

$$\begin{pmatrix} E & 0 \\ -4A & E \end{pmatrix}$$

Задача 2.5. Докажите, что блочная матрица

$$\begin{pmatrix} E & 0 \\ Y & E \end{pmatrix}$$

является обратимой для любой матрицы Y.

Более сложные преобразования: окончание. Мы поняли, что преобразование "вычесть из второй блочной строки первую, умноженную на 4" равносильно умножению слева на обратимую матрицу. Запомните пока как факт: умножение на обратимую матрицу не меняет ранг. Ну, и применим:

$$\begin{pmatrix} E & A \\ 4A & 4A^2 \end{pmatrix} \leadsto \begin{pmatrix} E & A \\ 0 & 0 \end{pmatrix}$$

Теперь из второго блочного столбца вычтем первый, умноженный на A:

$$\begin{pmatrix} E & A \\ 0 & 0 \end{pmatrix} \leadsto \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

Матрица E размера 7×7 имеет ранг 7, а вместе с ней и вся блочная матрица. Задача 2.6. Пусть A — квадратная матрица. Докажите, что

$$\begin{pmatrix} A & A^2 \\ A^3 & A^4 \end{pmatrix} = \operatorname{rk} A$$

 ${\it Подсказка}$: А как вы искали бы ранг, будь это не блочная матрица, а просто матрицы 2×2 ?