CH5650 Molecular Data Science and Informatics EndSem Report

Shrivarshan K, MM20B058

Question 1:

A deep neural network model is built with one hidden layer, having 10 neurons. The data is split into 80-20 for training and testing. R2_score is used for testing the model performance. The model gives the following results on training and testing data.

R2_score on test data = 0.9345428496837637R2_score on train data = 0.9718136873882236

Loss v/s epoch plot:

Question 2:

The dataset consists of SMILES string and the Tg (Glass Transition Temperature). We use RDKit functions to calculate the descriptor values for each molecule. This function gives us 209 descriptors, but we need we only the physicochemical descriptors. So we filter this and finally obtain 124 descriptors.

	Unnamed: 0	Glass Transition Temperature	SMILES String
0	0	279.0	C=CC(=O)OCc1ccccc1
1	1	383.0	C=CC(=O)Oc2ccc(c1ccccc1)cc2
2	2	219.0	CCCCOC(=O)C=C
3	3	250.0	CC(OC(=0)C=C)CC
4	4	345.0	C=CC(=O)Oc1ccccc1C(C)(C)C
804	608	498.5	$\verb c1ccc NC(=O) c2ccc(OCCOc3ccc(C(=O)Nc4ccc5[nH]cn$
805	609	448.5	$\verb c1ccc (NC(=O)c2ccc (OCCOCCOc3ccc (C(=O)Nc4ccc5[nH$
806	610	428.5	$\verb c1ccc (NC(=O)c2ccc (OCCOCCOCCOc3ccc (C(=O)Nc4ccc5$
807	611	413.5	$\verb c1ccc (NC(=O)c2ccc (OCCOCCOCCOCCOc3ccc (C(=O)Nc4c$
808	612	398.5	c1ccc(NC(=O)c2ccc(OCCOCCOCCOCCOCCoc3ccc(C(=O)N

809 rows × 3 columns

Model:

The deep neural network with 3 hidden layers, each containing 50, 20, 10 neurons is built. The data is split into 80-20 for training and testing. R2_score is used for testing the model performance. The model gives the following results on training and testing data.

R2_score on train data = 0.9817171552244884R2_score on test data = 0.9560919110515878

Loss v/s Epoch:

Parity plots:

Question 3:

The set consists of the SMILES structure of each molecule along with the Formation Energy or HOMO-LUMO Band gap, the Enthalpy, and the Specific Heat. We use RDKit to find the structural keys. For the HOMO-LUMO band, Morgan FP was used. Morgan FP contains 1024 length binary feature vector.

HOMO LUMO Bond:

The deep neural network with 2 hidden layers, each containing 100, 50 neurons is built. A dropout layer of 0.2 is added. The data is split into 80-20 for training and testing. R2_score is used for testing the model performance. The model gives the following results on training and testing data.

R2_score on train data = 0.9431987524046798R2_score on test data = 0.8583064186129798

Loss v/s Epoch:

Enthalpy:

The deep neural network with 2 hidden layers, each containing 50, 30 neurons is built. A dropout layer of 0.1 is added. The data is split into 80-20 for training and testing. R2_score is used for testing the model performance. The model gives the following results on training and testing data.

R2_score on train data = 0.8105393108787556R2_score on test data = 0.7154025793114425

Loss v/s Epoch:

Specific Heat:

The deep neural network with 2 hidden layers, each containing 100, 42 neurons is built. A dropout layer of 0.3 is added. The data is split into 80-20 for training and testing. R2_score is used for testing the model performance. The model gives the following results on training and testing data.

R2_score on train data = 0.9119541468312503R2_score on test data = 0.6557644656113509

Loss v/s Epoch:

