Collected papers of

Lord Soumadeep Ghosh

Volume 12

A result on a leveraged bond, a leveraged stock and a derivative

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe a result on a leveraged bond, a leveraged stock and a derivative.

A result on a leveraged bond, a leveraged stock and a derivative

$$aB^m = bS^n + cd$$

$$(B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(S^n = 0 \land d = 0 \land B^m = 0) \lor$$

$$(S^n = 0 \land d \neq 0 \land c = 0 \land B^m = 0)$$

A second result on a leveraged bond, a leveraged stock and a derivative

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe a second result on a leveraged bond, a leveraged stock and a derivative.

A second result on a leveraged bond, a leveraged stock and a derivative

$$aB^m = bS^n + cd \wedge pS^m = qB^n + rd$$

$$(q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(q=0 \wedge r \neq 0 \wedge d = \frac{pS^m}{r} \wedge B^m \neq 0 \wedge a = B^{-m}(bS^n + cd)) \vee$$

$$(S^m = 0 \land r = 0 \land q = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(S^n = 0 \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0) \lor$$

$$(q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(r = 0 \land q = 0 \land S^m \neq 0 \land p = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(S^n = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0) \lor$$

$$(S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0) \lor$$

$$(r = 0 \land q = 0 \land p = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(S^n = 0 \land q = 0 \land S^m \neq 0 \land p = 0 \land d = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land S^m \neq 0) \lor$$

$$(S^n = 0 \land r = 0 \land q = 0 \land r = 0 \land q = 0 \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

Two third results on a leveraged bond, a leveraged stock and a derivative

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe two third results on a leveraged bond, a leveraged stock and a derivative.

Introduction

In this paper, I describe two third results on a leveraged bond, a leveraged stock and a derivative.

The first third result on a leveraged bond, a leveraged stock and a derivative

$$aB^{m} = bS^{n} + cd \wedge pS^{m} = qB^{n} + rd \wedge uS^{m} + vB^{n} = wd$$

 \Longrightarrow

$$(qw+rv\neq 0 \wedge d = \frac{S^m(pv+qu)}{qw+rv} \wedge q \neq 0 \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = B^{-m}(bS^n+cd)) \vee a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^n = \frac{pS^m-dr}{q} \wedge B^m \neq 0 \wedge a = \frac{S^m(pv+qu)}{q} \wedge B^m = \frac{S^m(pv$$

$$(q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land v \neq 0 \land B^n = \frac{dw - uS^m}{v} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(S^m = 0 \wedge w \neq 0 \wedge q = -\frac{rv}{w} \wedge q \neq 0 \wedge B^n = -\frac{dr}{q} \wedge B^m \neq 0 \wedge a = B^{-m}(bS^n + cd)) \vee$$

$$(S^n = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land rv \neq 0) \lor$$

$$(S^n = 0 \land u \neq 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land q^2w + qrv \neq 0) \lor$$

$$(v = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m \neq 0 \land a = bB^{-m}S^n \land w \neq 0) \lor$$

$$(v = 0 \land S^m = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land w \neq 0) \lor$$

$$(w = 0 \land S^m = 0 \land r = 0 \land B^n = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land v \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(qw + rv \neq 0 \land d = \frac{S^m(pv + qu)}{qw + rv} \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land v \neq 0 \land B^n = \frac{dw - uS^m}{v} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land wS^m \neq 0) \lor$$

$$(r = 0 \land q = 0 \land p = 0 \land v \neq 0 \land B^n = \frac{dw}{v} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land wS^m \neq 0) \lor$$

$$(S^m = 0 \land r = 0 \land q = 0 \land v \neq 0 \land B^n = \frac{dw}{v} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land w \neq 0) \lor$$

$$(S^m = 0 \land q = 0 \land q = -\frac{rv}{w} \land q \neq 0 \land B^n = -\frac{dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(S^n = 0 \land q = 0 \land p = 0 \land d = 0 \land v \neq 0 \land B^n = -\frac{uS^m}{v} \land B^m = 0 \land rS^m \neq 0) \lor$$

$$(S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land vw \neq 0) \lor$$

$$(S^n = 0 \land S^m = 0 \land w \neq 0 \land q = -\frac{rv}{w} \land d = 0 \land B^n = 0 \land B^m = 0 \land rv \neq 0) \lor$$

$$(S^n = 0 \land v S^m \neq 0 \land p = -\frac{qu}{v} \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land qw + rv \neq 0) \lor$$

$$(S^n = 0 \land qw + rv \neq 0 \land d = \frac{S^m(pv + qu)}{qw + rv} \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0) \lor$$

$$(u = 0 \land S^n = 0 \land v \neq 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land q^2w + qrv \neq 0) \lor$$

$$(v = 0 \land q = 0 \land w S^m \neq 0 \land p = \frac{ru}{w} \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(v = 0 \land s^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land S^n \neq 0 \land b = 0 \land w \neq 0) \lor$$

$$(v = 0 \land u = 0 \land S^n = 0 \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land w \neq 0) \lor$$

$$(v = 0 \land u = 0 \land S^n = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land rw S^m \neq 0) \lor$$

$$(w = 0 \land S^m = 0 \land r = 0 \land B^n = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land v \neq 0) \lor$$

$$(w = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land r = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land q \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land q \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^n = 0 \land B^m = 0 \land ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^m = 0 \land Ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^m = 0 \land Ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^m = 0 \land Ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land d = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(w=0 \land v=0 \land u=0 \land S^m=0 \land r=0 \land q=0 \land B^m \neq 0 \land a=B^{-m}(bS^n+cd)) \lor$$

$$(w=0 \wedge v=0 \wedge u=0 \wedge S^n=0 \wedge d=0 \wedge q \neq 0 \wedge B^n=\frac{pS^m}{q} \wedge B^m=0) \vee$$

$$(w = 0 \land v = 0 \land u = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor (w = 0 \land v = 0 \land u = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor (w = 0 \land v = 0 \land u = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor (w = 0 \land v = 0 \land u = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor (w = 0 \land v = 0 \land v = 0 \land b =$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^m = 0 \land q \neq 0 \land B^n = -\frac{dr}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor a = 0 \land v = 0 \land u \neq 0 \land S^m = 0 \land q \neq 0 \land B^n = -\frac{dr}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor a = 0 \land v = 0$$

$$(w \neq 0 \land q = -\frac{rv}{w} \land vS^m \neq 0 \land p = -\frac{qu}{v} \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor a = \frac{rv}{w} \land a = \frac$$

$$(r=0 \land q=0 \land p=0 \land v \neq 0 \land B^n=\frac{dw-uS^m}{v} \land B^m=0 \land S^n \neq 0 \land b=-cdS^{-n} \land wS^m \neq 0) \lor$$

$$(S^m = 0 \land r = 0 \land q = 0 \land v \neq 0 \land B^n = \frac{dw}{v} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land w \neq 0) \lor (S^m = 0 \land r = 0 \land q = 0 \land v \neq 0 \land B^n = \frac{dw}{v} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land w \neq 0) \lor (S^m = 0 \land r = 0 \land q = 0 \land v \neq 0 \land B^n = \frac{dw}{v} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land w \neq 0) \lor (S^m = 0 \land q = 0$$

$$(S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land c = 0 \land v \neq 0 \land B^n = \frac{dw - uS^m}{v} \land B^m = 0 \land pS^m \neq 0) \lor d = 0 \land d$$

$$(S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land v \neq 0 \land B^n = -\frac{uS^m}{v} \land B^m = 0 \land wS^m \neq 0) \lor 0 \land d = 0 \land v \neq 0 \land d = 0 \land d =$$

$$(S^n=0 \wedge S^m=0 \wedge r=0 \wedge q=0 \wedge c=0 \wedge v \neq 0 \wedge B^n=\frac{dw}{v} \wedge B^m=0 \wedge dw \neq 0) \vee$$

$$(S^n = 0 \wedge S^m = 0 \wedge w \neq 0 \wedge q = -\frac{rv}{w} \wedge c = 0 \wedge q \neq 0 \wedge B^n = -\frac{dr}{q} \wedge B^m = 0 \wedge d \neq 0) \vee (S^n = 0 \wedge d \neq 0) \wedge d = 0 \wedge d \neq 0$$

$$(v=0 \land r=0 \land q=0 \land p=0 \land w \neq 0 \land d=\frac{uS^m}{w} \land B^m \neq 0 \land a=B^{-m}(bS^n+cd) \land S^m \neq 0) \lor a=0 \land a=0 \land a=0 \land b=0 \land$$

$$(v = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land wS^m \neq 0) \lor$$

$$(w = 0 \land r = 0 \land q = 0 \land p = 0 \land v \neq 0 \land B^n = -\frac{uS^m}{v} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land S^m \neq 0) \lor$$

$$(w = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land d \neq 0 \land c = 0 \land B^n = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land S^n \neq 0 \land b = 0 \land ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land q = 0 \land r \neq 0 \land d = 0 \land B^m \neq 0 \land a = bB^{-m}S^n \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land q = 0 \land r \neq 0 \land d = 0 \land B^m \neq 0 \land a = bB^{-m}S^n \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^m = 0 \land q \neq 0 \land B^n = -\frac{dr}{q} \land B^m = 0 \land du \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land a = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land r = 0 \land q = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0) \lor$$

$$(w = 0 \land v \neq 0 \land r = 0 \land S^m \neq 0 \land p = -\frac{qu}{v} \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m \neq 0 \land a = B^{-m}(bS^n + cd)) \lor$$

$$(S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land v \neq 0 \land B^n = \frac{dw - uS^m}{v} \land B^m = 0 \land wS^m \neq 0) \lor$$

$$(S^n = 0 \land w \neq 0 \land q = -\frac{rv}{w} \land v \neq 0 \land p = -\frac{qu}{v} \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land S^m \neq 0) \lor$$

$$(v = 0 \land q = 0 \land w \neq 0 \land p = \frac{ru}{w} \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(v = 0 \land r = 0 \land q = 0 \land p = 0 \land w \neq 0 \land d = \frac{uS^m}{w} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(v = 0 \land S^n = 0 \land q = 0 \land w \neq 0 \land p = \frac{ru}{w} \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(v = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land w \neq 0 \land d = \frac{uS^m}{w} \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(w = 0 \land r = 0 \land q = 0 \land p = 0 \land v \neq 0 \land B^n = -\frac{uS^m}{v} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(w = 0 \land r = 0 \land q = 0 \land p = 0 \land v \neq 0 \land B^n = -\frac{pS^m}{v} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(w = 0 \land r = 0 \land v \neq 0 \land p = -\frac{qu}{v} \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

 $(w=0 \wedge S^n=0 \wedge r=0 \wedge q=0 \wedge p=0 \wedge d=0 \wedge v \neq 0 \wedge B^n=-\frac{uS^m}{v} \wedge B^m=0 \wedge S^m \neq 0) \vee (w=0 \wedge S^m=0 \wedge r=0 \wedge q=0 \wedge p=0 \wedge d=0 \wedge v \neq 0 \wedge d=0 \wedge d=0 \wedge v \neq 0 \wedge d=0 \wedge$

$$(w = 0 \land S^n = 0 \land r = 0 \land v \neq 0 \land p = -\frac{qu}{v} \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land S^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land r = 0 \land q = 0 \land p = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0) \lor d = 0 \land d = 0$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land q = 0 \land S^m \neq 0 \land p = 0 \land d = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land S^m \neq 0) \lor$$

$$(w=0 \land v=0 \land u=0 \land S^n=0 \land S^m=0 \land r=0 \land q=0 \land d\neq 0 \land c=0 \land B^m=0) \lor$$

$$(w \neq 0 \land q = -\frac{rv}{w} \land v \neq 0 \land p = -\frac{qu}{v} \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land S^m \neq 0) \lor ds = -\frac{rv}{w} \land ds = -\frac{rv}{$$

$$(S^n = 0 \land w \neq 0 \land q = -\frac{rv}{w} \land v \neq 0 \land p = -\frac{qu}{v} \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land S^m \neq 0) \lor$$

$$(w = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land v \neq 0 \land B^n = -\frac{uS^m}{v} \land B^m = 0 \land S^m \neq 0) \lor$$

$$(w = 0 \land S^n = 0 \land r = 0 \land v \neq 0 \land p = -\frac{qu}{v} \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land S^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land S^m \neq 0)$$

The second third result on a leveraged bond, a leveraged stock and a derivative

$$aB^{m} = bS^{n} + cd \wedge pS^{m} = qB^{n} + rd \wedge uS^{n} + vB^{m} = wd$$

 \Longrightarrow

$$(S^n = 0 \land d = 0 \land q \neq 0 \land B^n = \frac{pS^m}{q} \land B^m = 0 \land vw \neq 0) \lor$$

$$(S^n = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land rvwS^m \neq 0) \lor$$

$$(S^n = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land ruvw \neq 0) \lor$$

$$(q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land v \neq 0 \land B^m = \frac{dw - uS^n}{v} \land dw - uS^n \neq 0 \land a = \frac{v(bS^n + cd)}{dw - uS^n}) \lor$$

$$(q=0 \land r \neq 0 \land d = \frac{pS^m}{r} \land v \neq 0 \land B^m = \frac{dw-uS^n}{v} \land dw-uS^n \neq 0 \land a = \frac{v(bS^n+cd)}{dw-uS^n}) \lor$$

$$(S^m = 0 \land r = 0 \land q = 0 \land v \neq 0 \land B^m = \frac{dw - uS^n}{v} \land dw - uS^n \neq 0 \land a = \frac{v(bS^n + cd)}{dw - uS^n}) \lor dw = 0 \land dw = 0 \land$$

$$(S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land vwS^m \neq 0) \lor$$

$$(S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0 \land vw \neq 0) \lor$$

$$(u=0 \wedge S^n=0 \wedge S^m=0 \wedge q=0 \wedge d=0 \wedge B^m=0 \wedge rvw \neq 0) \vee$$

$$(v=0 \wedge S^n=0 \wedge d=0 \wedge q \neq 0 \wedge B^n=\frac{pS^m}{q} \wedge B^m=0 \wedge w \neq 0) \vee$$

$$(v=0 \wedge S^n=0 \wedge q=0 \wedge p=0 \wedge d=0 \wedge B^m=0 \wedge ruwS^m \neq 0) \vee$$

$$(v=0 \wedge S^n=0 \wedge S^m=0 \wedge q=0 \wedge d=0 \wedge B^m=0 \wedge ruw \neq 0) \vee$$

$$(v=0 \wedge w\neq 0 \wedge d=\frac{uS^n}{w} \wedge q\neq 0 \wedge B^n=\frac{pS^m-dr}{q} \wedge B^m\neq 0 \wedge a=B^{-m}(bS^n+cd)) \vee$$

$$(w=0 \wedge S^n=0 \wedge c=0 \wedge q\neq 0 \wedge B^n=\frac{pS^m-dr}{q} \wedge B^m=0 \wedge duv \neq 0) \vee$$

$$(w=0 \wedge S^n=0 \wedge d=0 \wedge q\neq 0 \wedge B^n=\frac{pS^m}{q} \wedge B^m=0 \wedge uv \neq 0) \vee$$

$$(w=0 \wedge S^n=0 \wedge d=0 \wedge q\neq 0 \wedge B^n=\frac{pS^m}{q} \wedge B^m=0 \wedge ruv \neq 0) \vee$$

$$(w=0 \wedge S^n=0 \wedge S^m=0 \wedge q=0 \wedge d=0 \wedge B^m=0 \wedge ruv \neq 0) \vee$$

$$(w=0 \wedge v=0 \wedge u=0 \wedge q\neq 0 \wedge B^n=\frac{pS^m-dr}{q} \wedge B^m\neq 0 \wedge a=B^{-m}(bS^n+cd)) \vee$$

$$(q=0 \wedge wS^m\neq 0 \wedge p=\frac{ruS^{n-m}}{w} \wedge d=\frac{uS^n}{w} \wedge B^m=0 \wedge S^n\neq 0 \wedge b=-cdS^{-n} \wedge rv\neq 0) \vee$$

$$(r=0 \wedge q=0 \wedge S^m\neq 0 \wedge p=0 \wedge v\neq 0 \wedge B^m=\frac{dw-uS^n}{v} \wedge dw-uS^n\neq 0 \wedge a=\frac{v(bS^n+cd)}{dw-uS^n}) \vee$$

$$(v=0 \wedge q=0 \wedge wS^m\neq 0 \wedge p=\frac{ruS^{n-m}}{w} \wedge d=\frac{uS^n}{w} \wedge B^m=0 \wedge p\neq 0 \wedge b=-\frac{cu}{w} \vee$$

$$(v=0 \wedge q=0 \wedge wS^m\neq 0 \wedge p=\frac{ruS^{n-m}}{w} \wedge d=\frac{uS^n}{w} \wedge B^m\neq 0 \wedge a=B^{-m}(bS^n+cd) \wedge r\neq 0) \vee$$

$$(v=0 \wedge S^m=0 \wedge r=0 \wedge q=0 \wedge w\neq 0 \wedge d=\frac{uS^n}{w} \wedge B^m\neq 0 \wedge a=B^{-m}(bS^n+cd) \wedge r\neq 0) \vee$$

$$(v=0 \land S^{m}=0 \land r=0 \land q=0 \land p=0 \land d=0 \land B^{m}=0 \land wS^{m}\neq 0) \lor$$

$$(v=0 \land S^{n}=0 \land S^{m}=0 \land r=0 \land q=0 \land d=0 \land B^{m}=0 \land w\neq 0) \lor$$

$$(v=0 \land u=0 \land S^{n}=0 \land q=0 \land p=0 \land d=0 \land B^{m}=0 \land rwS^{m}\neq 0) \lor$$

$$(v=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land rwS^{m}\neq 0) \lor$$

$$(v=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land rw\neq 0) \lor$$

$$(v=0 \land w\neq 0 \land d=\frac{uS^{n}}{w} \land q\neq 0 \land B^{n}=\frac{pS^{m}-dr}{q} \land B^{m}=0 \land S^{n}\neq 0 \land b=-cdS^{-n}) \lor$$

$$(w=0 \land S^{n}=0 \land q=0 \land S^{m}\neq 0 \land p=0 \land d=0 \land B^{m}=0 \land ruv\neq 0) \lor$$

$$(w=0 \land S^{n}=0 \land r=0 \land q=0 \land p=0 \land d=0 \land B^{m}=0 \land duvS^{m}\neq 0) \lor$$

$$(w=0 \land S^{n}=0 \land r=0 \land q=0 \land p=0 \land d=0 \land B^{m}=0 \land uvS^{m}\neq 0) \lor$$

$$(w=0 \land S^{n}=0 \land S^{m}=0 \land r=0 \land q=0 \land d=0 \land B^{m}=0 \land duv\neq 0) \lor$$

$$(w=0 \land S^{n}=0 \land S^{m}=0 \land r=0 \land q=0 \land d=0 \land B^{m}=0 \land uv\neq 0) \lor$$

$$(w=0 \land S^{n}=0 \land S^{m}=0 \land r=0 \land q=0 \land d=0 \land B^{m}=0 \land uv\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land d=0 \land q\neq 0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land u=0 \land S^{n}=0 \land S^{m}=0 \land q=0 \land d=0 \land B^{m}=0 \land v\neq 0) \lor$$

$$(w=0 \land v=0 \land S^n=0 \land d=0 \land q\neq 0 \land B^n=\frac{pS^m}{q} \land B^m=0 \land u\neq 0) \lor \\ (w=0 \land v=0 \land S^n=0 \land S^m=0 \land q=0 \land d=0 \land B^m=0 \land ru\neq 0) \lor \\ (w=0 \land v=0 \land u=0 \land q=0 \land r\neq 0 \land d=\frac{pS^m}{r} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd)) \lor \\ (w=0 \land v=0 \land u=0 \land S^m=0 \land r=0 \land q=0 \land B^m\neq 0 \land a=B^{-m}(bS^n+cd)) \lor \\ (w=0 \land v=0 \land u=0 \land S^m=0 \land r=0 \land q=0 \land B^m\neq 0 \land a=B^{-m}(bS^n+cd)) \lor \\ (w=0 \land v=0 \land u=0 \land S^n=0 \land d=0 \land q\neq 0 \land B^n=\frac{pS^m}{q} \land B^m=0) \lor \\ (w=0 \land v=0 \land u=0 \land q\neq 0 \land B^n=\frac{pS^m-dr}{q} \land B^m=0 \land S^n\neq 0 \land b=-cdS^{-n}) \lor \\ (w=0 \land v=0 \land u\neq 0 \land S^n=0 \land q\neq 0 \land B^n=\frac{pS^m-dr}{q} \land B^m\neq 0 \land a=cdB^{-m}) \lor \\ (w\neq 0 \land d=\frac{uS^n}{w} \land q\neq 0 \land B^n=\frac{pS^m-dr}{q} \land B^m=0 \land S^n\neq 0 \land b=-cdS^{-n} \land v\neq 0) \lor \\ (r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m=0 \land S^n\neq 0 \land b=-cdS^{-n} \land v\neq 0) \lor \\ (S^m=0 \land r=0 \land q=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m=0 \land S^n\neq 0 \land b=-cdS^{-n} \land v\neq 0) \lor \\ (u=0 \land w\neq 0 \land S^m=0 \land q=0 \land d=0 \land B^m=0 \land S^n\neq 0 \land b=0 \land rv\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0) \lor \\ (v=0 \land r=0 \land q=0 \land p=0 \land w\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land S^m\neq 0 \land d=\frac{uS^n}{w} \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land B^m\neq 0 \land a=B^{-m}(bS^n+cd) \land a=B^{-m}(bS^n+cd) \land a=B^{-m}(bS^n+cd) \land a=B^{-m}(bS^n+cd) \land a=B^{-m}(bS^n+$$

$$(v = 0 \land S^m = 0 \land r = 0 \land q = 0 \land w \neq 0 \land d = \frac{uS^n}{w} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor \\ (v = 0 \land u = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land S^n \neq 0 \land b = 0 \land rwS^m \neq 0) \lor \\ (v = 0 \land u = 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m = 0 \land S^n \neq 0 \land b = 0 \land rw \neq 0) \lor \\ (v = 0 \land u = 0 \land w \neq 0 \land S^m = 0 \land q = 0 \land d = 0 \land B^m \neq 0 \land a = bB^{-m}S^n \land r \neq 0) \lor \\ (w = 0 \land u = 0 \land w \neq 0 \land S^m = 0 \land q = 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0 \land uv \neq 0) \lor \\ (w = 0 \land u = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n} \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land B^m = 0 \land B^m = 0 \land rv \neq 0) \lor \\ (w = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0 \land v \neq 0) \lor \\ (w = 0 \land u = 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land v \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m \neq 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land b = 0 \land a = cdB^{-m} \land u \neq 0) \lor \\ (w = 0 \land v = 0 \land S^n = 0 \land q =$$

$$(w = 0 \land v = 0 \land S^n = 0 \land q = 0 \land S^m \neq 0 \land p = 0 \land d = 0 \land B^m = 0 \land ru \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land uS^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land r = 0 \land q = 0 \land p = 0 \land B^m \neq 0 \land a = B^{-m}(bS^n + cd) \land S^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land B^m = 0 \land S^n \neq 0 \land b = -cdS^{-n}) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d = 0 \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n = \frac{pS^m - dr}{q} \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^n = 0 \land d \neq 0 \land c = 0 \land q \neq 0 \land B^n \neq 0 \land a = cdB^{-m}) \lor$$

$$(v = 0 \land v = 0 \land q \neq 0 \land S^n = 0 \land d \neq 0 \land d = 0 \land B^m \neq 0 \land a = cdB^{-m}) \lor$$

$$(v = 0 \land v = 0 \land q \neq 0 \land d \neq 0 \land d = 0 \land d \neq 0 \land d = 0 \land d \neq 0 \land d = 0 \land d \neq 0$$

$$(w = 0 \land u = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land u = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land v \neq 0) \lor$$

$$(w = 0 \land u = 0 \land S^n = 0 \land S^m = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land S^n = 0 \land S^m = 0 \land r = 0 \land q = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land u \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land q = 0 \land r \neq 0 \land d = \frac{pS^m}{r} \land d \neq 0 \land c = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land q = 0 \land p = 0 \land d = 0 \land B^m = 0 \land r \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u = 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m = 0) \lor$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m \neq 0) \lor$$

$$(w = 0 \land v = 0 \land u \neq 0 \land S^n = 0 \land r = 0 \land q = 0 \land p = 0 \land d \neq 0 \land c = 0 \land B^m \neq 0) \lor$$

The tactical nuke

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the tactical nuke. The paper ends with "The End" $\,$

Introduction

Knowledge has been demanded of me of the tactical nuke. In this paper, I describe the tactical nuke.

The tactical nuke

The tactical nuke, also known as the briefcase nuke, trades yield for convenience and portability and is a strategic weapon used by the military.

The design of a tactical nuke

The tactical nuke

The tactical nuke consists of a rectangular briefcase with

- 1. Thermonuclear pellets (shown in black)
- 2. Petroleum accelerant (shown in yellow)
- 3. C4 detonators (shown in red)

The design of the thermonuclear pellet

The thermonuclear pellet

The thermonuclear pellet consists of

- 1. Fissile material (shown in silver)
- 2. Petroleum accelerant (shown in yellow)
- 3. C4 detonators (shown in red)

Previous results fully simplified using a computer algebra system

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe previous results fully simplified using a computer algebra system. The paper ends with "The End"

Introduction

In previous papers, I've described several results on a bond, a stock, a derivative and value. In this paper, I describe previous results fully simplified using a computer algebra system.

Previous results fully simplified using a computer algebra system

We use FullSimplify on Reduce in Mathematica to obtain previous results fully simplified. The Mathematica notebook is available here.

Modern economic and technological innovations

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe modern economic and technological innovations. The paper ends with "The End"

Introduction

There have been several modern economic and technological innovations since world war 3. In this paper, I describe modern economic and technological innovations.

Modern economic and technological innovations

1. Information technology

Early innovation combining data, analysis and company.

2. Neuro-linguistic programming

Early innovation combining language and neuroscience.

3. Quantum computing

Middle innovation combining solid-state physics and computing.

4. Cryptanalysis

Middle innovation combining cryptography and analysis, often using quantum computing. $\,$

5. Medical robotics

Recent innovation combining medicine and robotics.

6. Virtual realities

Recent innovation combining supercomputing and simulation.

Two fully simplified results on a bond, a stock and a leveraged derivative using a computer algebra system

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe two fully simplified results on a stock, a bond and a leveraged derivative. The paper ends with "The End"

Introduction

In previous papers, I've described several fully simplified results on a bond, a stock, a derivative and value. In this paper, I describe two fully simplified results on a bond, a stock and a leveraged derivative using a computer algebra system. We use FullSimplify on Reduce in Mathematica to obtain fully simplified results.

The first fully simplified result

$$aB = bS + cd^n$$

 \Longrightarrow

$$(a = \frac{bS + cd^n}{B} \lor B = 0) \land (b + \frac{cd^n}{S} = 0 \lor B \neq 0 \lor S = 0) \land (B \neq 0 \lor c = 0 \lor d^n = 0 \lor S \neq 0)$$

The second fully simplified result

$$aS = bB + cd^n$$

 \Longrightarrow

$$(a = \frac{bB + cd^n}{S} \lor S = 0) \land (b + \frac{cd^n}{B} = 0 \lor B = 0 \lor S \neq 0) \land (B \neq 0 \lor c = 0 \lor d^n = 0 \lor S \neq 0)$$

Two fully simplified results on a leveraged bond, a leveraged stock and a leveraged derivative using a computer algebra system

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe two fully simplified results on a leveraged bond, a leveraged stock and a leveraged derivative using a computer algebra system. The paper ends with "The End"

Introduction

In previous papers, I've described several fully simplified results on a bond, a stock, a derivative and value. In this paper, I describe two fully simplified results on a leveraged bond, a leveraged stock and a leveraged derivative using a computer algebra system. We use FullSimplify on Reduce in Mathematica to obtain fully simplified results.

The first fully simplified result

$$aB^m = bS^n + cd^p$$

 \Longrightarrow

$$(a = B^{-m}(bS^n + cd^p) \land B^m \neq 0) \lor (B^m = 0 \land (c = 0 \lor d^p = 0 \lor S^n \neq 0) \land (S^n = 0 \lor b + cd^p S^{-n} = 0))$$

The second fully simplified result

$$aS^m = bB^n + cd^p$$

 \Longrightarrow

$$(a = S^{-m}(bB^n + cd^p) \land S^m \neq 0) \lor ((B^n \neq 0 \lor c = 0 \lor d^p = 0) \land (B^n = 0 \lor b + cB^{-n}d^p = 0) \land S^m = 0)$$

Two fully simplified results on a leveraged bond, a leveraged stock, a leveraged derivative and value using a computer algebra system

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe two fully simplified results on a leveraged bond, a leveraged stock, a leveraged derivative and value using a computer algebra system. The paper ends with "The End"

Introduction

In previous papers, I've described several fully simplified results on a bond, a stock, a derivative and value. In this paper, I describe a fully simplified result on a leveraged bond, a leveraged stock, a leveraged derivative and value using a computer algebra system. We use FullSimplify on Reduce in Mathematica to obtain the fully simplified result.

The fully simplified result

$$aS^m + bB^n + cd^p = V$$

 \Longrightarrow

$$(S^{m} \neq 0 \land a = S^{-m}(V - bB^{n} - cd^{p})) \lor$$

$$((b = B^{-n}(V - cd^{p}) \lor B^{n} = 0) \land (B^{n} \neq 0 \lor c = Vd^{-p} \lor d^{p} = 0) \land (B^{n} \neq 0 \lor d^{p} \neq 0 \lor V = 0) \land S^{m} = 0)$$

The three false prophets and their salvation

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the three false prophets. The paper ends with "The End"

Introduction

In a previous paper, I've described Hinduism and how indoctrination is the teaching of religion other than Hinduism. In this paper, I describe the three false prophets of false religions.

Recognizing false prophets

Whenever an individual says that there is a Supreme Personality of Godhead other than Krishna and/or a greater Warlord than Kalki, that individual is a false prophet.

The three false prophets

1. The son of the Devil

The son of the Devil names himself "Ramakrishna" and preaches "There are as many paths as there are opinions." He is a false prophet.

2. The diplomat of Kamsa

The diplomat of Kamsa names himself "Vasudeva" and preaches "I'm the father of Krishna." He is a false prophet.

3. The fallen angel Lucifer (also known as Satan)

The fallen angel Lucifer names himself "The bringer of light" and preaches "I remove darkness." He is a false prophet.

The salvation of the three false prophets

The salvation of the three false prophets is possible by chanting the "Hare Krishna Hare Rama" mantra and worship of Lord Krishna.

Rumor sites

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I list 3 rumor sites on the Internet specific to fields of knowledge. The paper ends with "The End" $\,$

Introduction

There exist rumor sites on the Internet specific to fields of knowledge. In this paper, I list 3 such sites.

3 rumor sites

- 1. econjobrumors.com
- 2. poliscirumors.com
- 3. socjobrumors.com