A Proof of the Pumping Lemma using Regular Expressions

Junfu Chen, Erynn Marie, Akshay Smit, Pravin Visakan January 22, 2019

Lemma (Pumping Lemma for Regular Expression). Let R be a regular expression. Then there exists an integer $p \ge 1$ depending only on R such that any string $w \in L(R)$ of length at least p can be written as w = xyz, satisfying the following conditions:

- 1. $|y| \ge 1$
- $2. |xy| \leq p$
- 3. $(\forall n \geq 0)(xy^nz \in L(R))$

Definition. The length of a regular expression is defined as follows: Consider a regular expression R.

- 1. If R = a, where a is a single character, then |R| = 1.
- 2. If $R = \varepsilon$, then |R| = 0.
- 3. If $R = R_1 R_2$, the concatenation of regular expressions R_1 and R_2 , then $|R| = |R_1| + |R_2|$.
- 4. If $R = R_1^*$, the star of the regular expression R_1 , then $|R| = |R_1|$.
- 5. If $R = R_1 \cup R_2$, the union of regular expressions R_1 and R_2 , then $|R| = \max(R_1, R_2)$.

From the definition of a regular expression, there are three cases under consideration:

- 1. Regular expressions solely produced by the concatenation of other regular expressions
- 2. Reduced regular expressions (as defined below)
- 3. Regular expressions as produced by a union of two other regular expressions

Case 1. Regular expressions produced solely via concatenation

Proof. Base regular expressions consist of a single letter a, where $a \in \Sigma^*$, the empty string ε , or the empty set. These base strings are finite. Concatenation of these strings also produces finite strings. Any string of this type will have be of the form $R_1 \circ R_2 = R$. To satisfy the pumping lemma, choose $p \geq |R|$. The lemma is vacuously true in this case.

Case 2. Reduced regular expressions

Definition. A regular expression R is a reduced regular expression if $R = A_1 B_1^* A_2 B_2^* ... A_{n-1} B_{n-1}^* A_n$ for which

- 1. $A_i \in \Sigma^*$ for all i (i.e. A_i contains no union or star operation).
- 2. B_i is non-empty regular expression for all i.

Proof. Let p be the length of R plus 1. Take any $w \in L(R)$ with $|w| \geq p$. Since R is a reduced regular expression, $R = A_1 B_1^* A_2 B_2^* ... A_{n-1} B_{n-1}^* A_n$ with $A_i \in \Sigma^*$ and B_i nonempty regular expression. Since $w \in L(R)$, there exists $a_1, a_2, ..., a_n, b_1, b_2, ..., b_{n-1}$ such that $w = a_1 b_1 ... a_{n-1} b_{n-1} a_n$ with $a_i \in L(A_i)$ and $b_i \in L(B_i^*)$ for all i.

Since $a_i \in L(A_i)$ and $A_i \in \Sigma^*$, $|a_i| \leq |A_i|$. Then

$$|w| = \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n-1} |b_i|$$
$$|w| \le \sum_{i=1}^{n} |A_i| + \sum_{i=1}^{n-1} |b_i|$$

Since $|w| \ge p = |R| + 1$, $\sum_{i=1}^{n} |A_i| \le |R|$, we must have $\sum_{i=1}^{n-1} |b_i| \ge 1$. Hence there exists at least one k such that $|b_k| \ge 1$. Pick the b_k with the smallest index, such that $|b_i| = 0$ for all i < k.

Since $b_k \in L(B_k^*)$, there exists $y \in B_k$ such that $b_k = y^t$ for some $t \ge 1$ and $y^n \in B_k^*$ for all n.

Let $x = a_1b_1a_2...b_{k-1}a_k$, $z = y^{t-1}a_{k+1}b_{k+1}...b_{n-1}a_n$, then we have

- $|y| \ge 1$ since $|y^t| \ge 1$.
- $|xy| \le p$ since $|xy| = \sum_{i=1}^k |a_i| + \sum_{i=1}^{k-1} |b_i| + |y| \le \sum_{i=1}^k |A_i| + 0 + |B_k| \le p$
- $(\forall n \geq 0)(xy^nz \in L(R))$ since

$$xy^{n}z = (a_{1}b_{1}a_{2}...b_{k-1}a_{k})(y^{n})(y^{t-1}a_{k+1}b_{k+1}...b_{n-1}a_{n})$$
$$= a_{1}b_{1}a_{2}...b_{k-1}a_{k}y^{n+t-1}a_{k+1}b_{k+1}...b_{n-1}a_{n} \in L(R)$$

because $a_i \in A_i$ for all $i, b_i \in B_i^*$ for all $i \neq k$ and $y^{n+t-1} \in B_k$.

Thus proving the pumping lemma for reduced regular expressions.

Case 3. Regular expressions as the product of unions