Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 5.4.1

Определение энергии α -частиц по величине их пробега в воздухе

Автор:

Филиппенко Павел Б01-009

Долгопрудный, 2022

Теоретическая часть

В качестве источника альфа-частиц используется 239 Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которы- ми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзяь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0.32E^{3/2} \tag{*}$$

Ионизационная камера

Рис. 1: Схема установки

Включив питание установки, измерим ток при атмосферном давлении. После этого откачаем воздух и снимем зависимость тока от давления в камере. Результаты измерений представим в таблице 1.

По полученным эксперементальным данным построим график зависимости I(P). По графику определим точку перелома.

Поскльку значение P_0 мы находили, как току пересечение двух линейных графиков, ее погрешность мы будем искать исходя из погрешностей коэффициентов линейных функций и правила расчета косвенной погрешности.

$P_{\text{приьор}}$, мм. рт. ст.	Р, мм. рт. ст.	I, pA	I_1 , pA
720	18,8	9	0
710	28,8	25	16
680	58,8	70	61
660	78,8	102	93
640	98,8	132	123
620	118,8	165	156
600	138,8	202	193
570	168,8	249	240
540	198,8	300	291
510	228,8	346	337
480	258,8	404	395
470	268,8	429	420
450	288,8	456	447
430	308,8	494	485
410	328,8	534	525
390	348,8	576	567
370	368,8	611	602
350	388,8	652	643
330	408,8	695	686
310	428,8	735	726
290	448,8	780	771
260	478,8	845	836
230	508,8	900	891
200	538,8	930	921
180	558,8	940	931
160	578,8	940	931
140	598,8	935	926
120	618,8	935	926
100	638,8	930	921
80	658,8	925	916
50	688,8	915	906
30	708,8	910	901
0	738,8	905	896

Таблица 1

$$\begin{cases} I = k_1 P + b_1 \\ I = k_2 P + b_2 \end{cases} \Rightarrow$$

$$P_0 = \frac{b_2 - b_1}{k_1 - k_2}$$

посчитав погрешности числителя и значенателя:

$$\sigma_b = \sqrt{\sigma_{b_1}^2 + \sigma_{b_2}^2} = 14.08 \ pA$$

$$\sigma_k = \sqrt{\sigma_{k_1}^2 + \sigma_{k_2}^2} = 0.02~\mathrm{pA/Topp}$$

График зависимости I(P) $P_0 = 552.975$ мм. рт. ст. Р, мм. рт. ст.

Рис. 2

запишем погрешность P_0 :

$$\sigma_{P_0} = P_0 \sqrt{\frac{\sigma_b^2}{(b_2-b_1)^2} + \frac{\sigma_k^2}{(k_1-k_2)^2}} = 8.82 \text{ мм. рт. ст.}$$

$$P_0 = (552.97 \pm 8.82) \text{ мм. рт. ст.}$$

Приведем данный к нормальным условиям ($P_n=760$ мм. рт. ст. $T_n=15\ ^oC$), при условии, что пробег, задаваемый камерой R=5 см.

$$R_n = R \frac{P_0 T_n}{P_n T_0} = 2.48 \text{ cm}$$

Выразим пробег в $\Gamma/\text{см}^3$:

$$R' = \rho R = 3.02 \cdot 10^{-3} \text{ r/cm}^2$$

где ρ – плотность вещества (в нашем случае воздуха). $\rho(15~^oC)=1.22\cdot 10^{-3}~{\rm г/cm^2}.$ Расчитаем погрешности величин R и R'

$$\sigma_{R_n} = R \frac{T_n}{P_n T_0} \sigma_{P_0} = 0.04 \text{ cm}$$

$$\sigma_{R'} = \rho \sigma_R = 0.05 \cdot 10^{-3} \text{ r/cm}^2$$

$$R_n = (2.48 \pm 0.04) \text{ cm}$$

$$R' = (3.02 \pm 0.05) \cdot 10^{-3} \text{ r/cm}^2$$

Рис. 3

Используя формулу $R = 0.32E^{\frac{3}{2}}$ оценим энергию α -частицы.

$$E = \left(\frac{R}{0.32}\right)^{2/3} = 3.91 \text{ МэВ}$$

Погрешность для величины E:

$$\varepsilon_E^2 = \frac{4}{9}\varepsilon_R^2 \implies \varepsilon_E = \frac{2}{3}\varepsilon_R$$

$$\sigma_E = 0.04$$
 МэВ

$$E = (3.91 \pm 0.04) \text{ M} \cdot \text{B}$$

Сравним полученные в ходе эксперемента величины с табличными значениями. Согласно табличным данным, Пробегу α -частицы в воздухе R=2.37 см соответствует энергия частицы E=4.0. Отсюда можно сделать вывод, что полученный в ходе данного эксперемента значения достаточно хорошо соответствует действительности.

Сцинтилляционный счетчик

Используя установку снимим зависимость числа зарегистрированных за 10 с частиц от давления в установке. Результаты представим в таблице 2.

По данным из таблицы 2 построим график зависимости N(P).

Экстрополируя линейную часть графика до пересечения с осью абцисс найдем величину P_{extr} , а так же P_{cp} , что соответсвует значениям R_{extr} и R_{cp} .

$P_{\rm прибор}$, мм. рт. ст.	<i>P</i> , мм. рт. ст.	N
720	18,8	3602
660	78,8	3439
640	98,8	3276
630	108,8	3073
620	118,8	2893
610	128,8	2743
600	138,8	2534
590	148,8	2344
580	158,8	2181
570	168,8	2034
560	178,8	1761
550	188,8	1656
540	198,8	1370
530	208,8	1124
520	218,8	920
510	228,8	737
500	238,8	541
490	248,8	370
480	258,8	181
470	268,8	170
460	278,8	60
450	288,8	10
420	318,8	3
370	368,8	2
330	408,8	2
260	478,8	2
130	608,8	1
100	638,8	1

Таблица 2

Расчитаем погрешность для найденных величин

$$\sigma_P = \sqrt{\frac{\sigma_b^2}{b^2} + \frac{\sigma_k^2}{k^2}} \cdot P$$

$$\sigma_{P_{\rm cxtr}} = 5.88 \text{ mm. pt. ct.}$$

$$\sigma_{P_{\rm cp}} = 3.74 \text{ mm. pt. ct.}$$

$$P_{extr} = (280.95 \pm 5.88)$$
 мм. рт. ст. $\Rightarrow R_{extr} = (2.27 \pm 0.03)$ см $\Rightarrow E_{extr} = (3.69 \pm 0.03)$ МэВ $P_{cp} = (178.80 \pm 3.74)$ мм. рт. ст. $\Rightarrow R_{cp} = (1.44 \pm 0.016)$ см $\Rightarrow E_{cp} = (2.72 \pm 0.02)$ МэВ

Как видно, величины пробега и энергии, полученные при использовании велиины P_{extr} более близки к значениям, получены в предыдущем эксперементе (как и предсказывалост теорией).