A. Bits

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Let's denote as $\operatorname{popcount}(x)$ the number of bits set ('1' bits) in the binary representation of the non-negative integer x.

You are given multiple queries consisting of pairs of integers l and r. For each query, find the x, such that $l \le x \le r$, and $\mathbf{popcount}(x)$ is maximum possible. If there are multiple such numbers find the smallest of them.

Input

The first line contains integer n — the number of queries ($1 \le n \le 10000$).

Each of the following n lines contain two integers l_i , r_i — the arguments for the corresponding query $(0 \le l_i \le r_i \le 10^{18})$.

Output

For each query print the answer in a separate line.

Examples

input	Сору
3 1 2 2 4 1 10	
output	Сору
1 3 7	

Note

The binary representations of numbers from 1 to 10 are listed below:

$$1_{10} = 1_2$$

$$2_{10} = 10_2$$

$$3_{10} = 11_2$$

$$4_{10} = 100_2$$

$$5_{10} = 101_2$$

$$6_{10} = 110_2$$

$$7_{10} = 111_2$$

$$8_{10} = 1000_2$$

 $9_{10} = 1001_2$

 $10_{10} = 1010_2$