Problem Set 4

Data Structures and Algorithms, Fall 2022

Due: October 6, in class.

Problem 1

In this problem we will develop a divide-and-conquer algorithm for the following geometric task.

The Closest Pair Problem:

```
Input: A set of n points in the plane, \{p_1=(x_1,y_1),p_2=(x_2,y_2),\cdots,p_n=(x_n,y_n)\}. Output: The closest pair of points. That is, the pair p_i\neq p_j that minimizes \sqrt{(x_i-x_j)^2+(y_i-y_j)^2}.
```

For simplicity, assume that n is a power of two, and that all the x-coordinates x_i are distinct, as are the y-coordinates. Here's a high-level overview of the algorithm:

- Find a value x for which exactly half the points have $x_i < x$, and half have $x_i > x$. On this basis, split the points into two groups, L and R.
- Recursively find the closest pair in L and in R. Say these pairs are $p_L, q_L \in L$ and $p_R, q_R \in R$, with distances d_L and d_R respectively. Let d be the smaller of these two distances.
- It remains to be seen whether there is a point in L and a point in R that are less than distance d apart from each other. To this end, discard all points with $x_i < x d$ or $x_i > x + d$ and sort the remaining points by y-coordinate.
- Now, go through this sorted list, and for each point, compute its distance to the *seven* subsequent points in the list. Let p_M, q_M be the closest pair found in this way.
- The answer is one of the three pairs $\{p_L,q_L\},\{p_R,q_R\},\{p_M,q_M\}$, whichever is closest.
- (a) Prove that the algorithm is correct. (Hint: You may find the following property helpful: any square of size $d \times d$ in the plane contains at most four points of L.)
- (b) Write down the pseudocode for the algorithm and argue its running time is $O(n \log^2 n)$.
- (c) Can you improve the algorithm so that its running time is reduced to $O(n \log n)$?

Problem 2

Given a list I of n intervals, specified as (x_i, y_i) pairs, return a list where the overlapping intervals are merged. For example, for $I = \{(1,3), (2,6), (8,10), (7,18)\}$ the output should be $\{(1,6), (7,18)\}$. Your algorithm should have $O(n \log n)$ time complexity.

Problem 3

Suppose you are given a stack of n pancakes of different sizes. You want to sort the pancakes so that smaller pancakes are on top of larger pancakes. The only operation you can perform is a *flip*—insert a spatula under the top k pancakes, for some integer $k \in [1, n]$, and flip them all over. (See Figure 1.)

- (a) Describe an algorithm to sort an arbitrary stack of n pancakes using O(n) flips.
- (b) Describe a stack of n pancakes that requires $\Omega(n)$ flips to sort.

Figure 1

Problem 4

```
\begin{array}{lll} \operatorname{StrangeSort}(A[0,\cdots,n-1]) \\ & 1: \  \, \mathbf{if} \, (n == 2 \ \mathbf{and} \ A[0] > A[1]) \ \mathbf{then} \\ & 2: & \operatorname{Swap}(A[0],A[1]). \\ & 3: \ \mathbf{else} \ \mathbf{if} \, (n > 2) \ \mathbf{then} \\ & 4: & m \leftarrow \lceil 2n/3 \rceil. \\ & 5: & \operatorname{StrangeSort}(A[0,\cdots,m-1]). \\ & 6: & \operatorname{StrangeSort}(A[n-m,\cdots,n-1]). \\ & 7: & \operatorname{StrangeSort}(A[0,\cdots,m-1]). \\ & > \operatorname{Yes, this line is identical to Line 5.} \end{array}
```

- (a) What is the running time of the algorithm? Prove your answer.
- (b) Prove that the algorithm actually sorts its input.
- (c) Is the algorithm still correct if we replace $m \leftarrow \lceil 2n/3 \rceil$ with $m \leftarrow \lfloor 2n/3 \rfloor$. Prove your answer.
- (d) Prove that the number of swaps executed by the algorithm is at most $\binom{n}{2}$.

Problem 5

One way to improve randomized quicksort is to partition around a pivot that is chosen more carefully than by picking a random element from the subarray. One common approach is the median-of-3 method: choose the pivot as the median of a set of 3 elements randomly selected from the subarray. For this problem, let us assume that the elements in the input array $A[1, \dots, n]$ are distinct and that $n \geq 3$. We denote the sorted output array by $A' = [1, \dots, n]$. Using the median-of-3 method to choose the pivot element x, define $p_i = \Pr(x = A'[i])$.

- (a) Give an exact formula for p_i as a function of n and i for $i=2,3,\cdots,n-1$. (Note that $p_1=p_n=0$.)
- (b) By what amount have we increased the likelihood of choosing the pivot as $A'[\lfloor (n+1) \rfloor/2]$, the median of $A[1, \dots, n]$, compared with the ordinary implementation? Assume that $n \to \infty$, and give the limiting ratio of these probabilities.
- (c) If we define a "good" split to mean choosing the pivot as x = A'[i], where $n/3 \le i \le 2n/3$, by what amount have we increased the likelihood of getting a good split compared with the ordinary implementation? (Hint: Approximate the sum by an integral.)
- (d) Does the median-of-3 method reduce the (asymptotic) best-case or worst-case running time of randomized quicksort? If your answer is negative, discuss why the method could be considered as an "improvement" for randomized quicksort.

Problem 6 [OJ Problem]

(Solve this problem on the OJ platform, do not hand in written solutions!)

Suppose you are given two sets of n points, one set $\{p_1, p_2, \cdots, p_n\}$ on the line y = 0 and the other set $\{q_1, q_2, \cdots, q_n\}$ on the line y = 1. Create a set of n line segments by connect each point p_i to the corresponding point q_i . Devise an efficient divide-and-conquer algorithm to determine how many pairs of these line segments intersect. (For example, see Figure 2.) (*Hint: Modify MergeSort.*)

Figure 2