5G Implementation in Defect Inspection Facility

5G Network Foundation Course Finals

Inspection Facility

- Focus in Automotive parts
- Have 5 Inspection Line

Scenario Information: What we working on? Parts to be Inspect

Piston

Gearbox Housing

Suspension Rods

Body Panel

Wheel Rim

Inspection Requirements

Detection Surface					
6 (4 in High Res)	6 (2 in High Res)	8 (3 in High Res)	4 (1 in High Res)	6 in Normal Res	
Minimum Defect Size					
1 mm/pixel	1 mm/pixel	1 mm/pixel	1 mm/pixel	3 mm/pixel	
		Detection Details			

- High resolution indicates 1920x1080 / Normal resolution is 800x600 (pixel).
- Camera record in 30 Frame per Second (fps) is capable to detect defects accurately.
- All the recordings and detection results have to sent to central database for QC reports.

Project Objectives: Trade-offs

- Design and validate URLLC network slices to meet sub-10 ms latency for high-precision streams.
- Integrate Multi-Access Edge Computing (MEC) nodes at the factory floor to offload inference and minimize core-network latency
- Benchmark open-source 5G stacks under mixed URLLC/eMBB traffic replicating our five inspection lines.

Defect-Detection Performance Requirements

Default 0.32

Bitrate (bps) = Width (px) \times Height (px) \times Frame rate (fps) \times BPP

Critical inspection faces (1920x1080)

- End-to-end latency ≤ 10 ms
- Packet-loss rate ≤ 10⁻⁵

 $1920 \times 1080 \times 30 \times 0.32 \approx 19,907,712 \text{ bps} \approx 19.9 \text{ Mbps}$

Non-Critical inspection faces (800x600)

- Support ≥ N simultaneous streams
- Average one-way latency ≤ 50 ms

 $800 \times 600 \times 30 \times 0.32 \approx 4,608,000 \text{ bps} \approx 4.6 \text{ Mbps}$

Mapping to 5G QoS

URLLC slice

- Latency Budget: ≤ 10 ms
- Reliability $\geq 99.999\%$ (packet-loss $\leq 10^{-5}$)
- Guaranteed Bitrate

eMBB slice

- Throughput 5 Mbps per 600p stream
- Latency Target: ≤ 50 ms
- lower than URLLC but above standard best-effort

Quality of Service (QoS) in the Scenario

- key performance that the network must satisfy, including *Latency*, *Reliability*, and *Throughput* (bitrate).
- In the Defect Inspection scenario, different camera streams have vastly different requirements for image quality and latency:
 - High Resolution: Used for Critical Inspection → Requires low latency and high reliability, otherwise it will affect real-time alerts and decision-making.
 - Normal Resolution: Used for Non-Critical Inspection → Can tolerate higher latency and may use a more relaxed eMBB channel.

Slice Type	Use Case	Resolution / Bitrate	Latency	Reliability
URLLC	Critical Inspection	1920x1080 @ 30fps (19.9 Mbps)	≤ 10 ms	≥ 99.999% (Packet-Loss ≤ 10 ⁻⁵)
eMBB	Non-Critical Inspection	800*600 @30fps (4.6 Mbps)	≤ 50 ms	Best-Effort

Overall System Architecture

• This diagram illustrates the complete architecture of our 5G network system, showing the interconnections between different network components and layers.

Setup End-to-End

Network Configuration Setup

 Detailed view of the network configuration parameters and settings required for establishing the 5G network connections.

Network Topology

 Visual representation of how different network elements are connected, including the relationship between Central Units (CU) and Distributed Units (DU).

```
Context: greign-smo
                                                                                   <t> Toggle Timestamp
                                                         <shift-c> Clear
                                         <0> tail
                                                  <6> 1h
Cluster: microk8s-cluster
                                         <1> head
                                                                                   <w> Toggle Wrap
                                                                  Copy
User:
       admin
                                         <2> 1m
                                                                  Mark
K9s Rev: v0.32.5 \neq v0.50.6
                                                          <ctrl-s> Save
K8s Rev: v1.27.16
                                                                  Toggle AutoScroll
                                         <4> 15m
                                                                  Toggle FullScreen
CPU:
       60%↑
                                         <5> 30m
                                                          <f>
MEM:
       65%
                                                    Logs(site-00/oai-amf-84dcc5c68-4scwr)[tail]
                                                          FullScreen:Off
                                                                          Timestamps:Off
                                           Autoscroll:On
                                                                                          Wrap:Off
 init-udr Ncat: 0 bytes sent, 0 bytes received in 3.59 seconds.
 amf [2025-06-02 05:52:09.738] [amf_sbi] [info] Receive Update NF Instance Request, handling ...
 amf [2025-06-02 05:52:09.738] [amf_sbi] [info] Send HTTP message to http://oai-nrf:80/nnrf-nfm/v1/nf-instances/1220adeb-3748-4dd0-87f6-7cf054f04573
 amf [2025-06-02 05:52:09.738] [amf_sbi] [info] HTTP message Body: [{"op":"replace","path":"/nfStatus","value":"REGISTERED"}]
 amf [2025-06-02 05:52:09.741] [amf_sbi] [info] Get response with HTTP code (204)
 amf [2025-06-02 05:52:09.741] [amf_sbi] [info] Could not get JSON content from the response
 amf [2025-06-02 05:52:16.916] [amf_app] [info]
        Global Id
                                                                                       gNB Name
                                                                                                                        PLMN
         Index I
                           Status
                                                          0x00
                         Disconnected
                                                                                                                       001.01
                          Connected
                                                          0xE000
                                                                                        oai-cu
 amf
 amf
                     IMSI
                                                                     RAN UE NGAP ID
                                                                                       AMF UE NGAP ID
                                                                                                            PLMN
                                                                                                                             Cell Id
                   5GMM State
                                                        GUTI
         Index |
                                                  00101010041000000011
                                                                                                           001,01
                 5GMM-REGISTERED
                                   001010000000100
                                                                          0x01
                                                                                           0x01
                                                                                                                            0xE00000
                 5GMM-REGISTERED
                                  001010000000101
                                                | 0010101004100000002|
                                                                          0x02
                                                                                           0x02
                                                                                                           001,01
                                                                                                                            0xE00000
```

CU / DU Socket Connection Diagram

 Specific illustration of the <u>Central Unit</u> socket configuration, showing the connection parameters and communication protocols used.

```
root@oai-cu-644cb9c49-2gmkv:/opt/oai-gnb# netstat -apn4
Active Internet connections (servers and established)
                                                                                PID/Program name
Proto Recv-Q Send-Q Local Address
                                            Foreign Address
                                                                     State
                                                                    LISTEN
                                                                                1/nr-softmodem
                    10.1.248.62:38472
sctp
                                                                    ESTABLISHED 1/nr-softmodem
                  0 10.1.248.62:37795
                                            10.1.248.39:38412
sctp
                  0 10.1.248.62:2152
                                            0.0.0.0:*
                                                                                1/nr-softmodem
udp
                                            0.0.0.0:*
udp
                  0 10.1.248.62:2153
                                                                                1/nr-softmodem
root@oai-cu-644cb9c49-2gmkv:/opt/oai-gnb#
```

 Detailed representation of the <u>Distributed Unit</u> socket setup, demonstrating the interface configurations and data flow paths.

```
<<K9s-Shell>> Pod: site-00/oai-du-f6658ddd6-485mx | Container: gnbdu
root@oai-du-f6658ddd6-485mx:/opt/oai-gnb# netstat -apn4
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                                                                PID/Program name
                                            Foreign Address
                                                                    State
                                           0.0.0.0:*
                  0 0.0.0.0:4043
                                                                    LISTEN
                                                                                1/nr-softmodem
tcp
     122904 185958 10.1.248.45:4043
                                           10.1.248.40:39770
                                                                    ESTABLISHED 1/nr-softmodem
      245808 58572 10.1.248.45:4043
                                           10.1.248.22:43670
                                                                    ESTABLISHED 1/nr-softmodem
                                                                    CLOSE
                  0 10.1.248.45:54523
                                           10.1.248.35:38472
                                                                                1/nr-softmodem
sctp
                 0 10.1.248.45:2153
                                            0.0.0.0:*
                                                                                1/nr-softmodem
udp
root@oai-du-f6658ddd6-485mx:/opt/oai-gnb#
```

Simulation

- tos 184: DSCP EF (Expedited Forwarding) for critical camera traffic
- tos 0: Best effort for monitoring camera traffic
- I 188: Small packets for low latency (critical)
- I 1400: Standard packets for throughput (monitoring)
- P 20 & P 10: Simulates 20 & 10 camera streams for monitoring
 - Camera I (Normal-Res)

```
iperf3 -c 12.1.1.1 -b 19.9M -u -t 10 -l 188 -P 20 -p 5201
                           594 KBytes 4.87 Mbits/sec 3236
     5]
          8.00-9.00
                     sec
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
          8.00-9.00
    9]
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
   [ 11]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
   [ 13]
                           594 KBytes 4.87 Mbits/sec 3236
          8.00-9.00
                     sec
   [ 15]
                           594 KBytes 4.87 Mbits/sec 3236
          8.00-9.00
   [ 17]
                           594 KBytes 4.87 Mbits/sec 3236
          8.00-9.00
   [ 19]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
   [ 21]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
   23]
                           594 KBytes 4.87 Mbits/sec 3236
          8.00-9.00
                     sec
   [ 25]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
   [ 27]
                           594 KBytes 4.87 Mbits/sec 3236
          8.00-9.00
                     sec
   [ 29]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
   [ 31]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
   [ 33]
          8.00-9.00
                           594 KBytes 4.87 Mbits/sec 3236
                     sec
   [ 35]
          8.00-9.00
                     sec
                           594 KBytes 4.87 Mbits/sec 3236
         8.00-9.00
                    sec 594 KBytes 4.87 Mbits/sec 3236
   [ 37]
   [ 39]
          8.00-9.00
                     sec
                           594 KBytes 4.87 Mbits/sec 3236
  [ 41]
                    sec 594 KButes 4.87 Mbits/sec 3236
        8.00-9.00
        8.00-9.00 sec 594 KBytes 4.87 Mbits/sec 3236
[ 43]
        8.00-9.00 sec 11.6 MBytes 97.3 Mbits/sec 64720
  [SUM]
```

• Camera II (High-Res)

```
iperf3 -c 12.1.1.1 -b 23M -u -t 10 -l 1400 -P 10 -p 5202
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
   7]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
  9]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 11]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
  13]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
  15]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 17]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 19]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 21]
       7.00-8.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
       7.00-8.00
 [ 23]
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 [SUM]
       7.00-8.00
                  sec 27.4 MBytes 230 Mbits/sec 20540
       8.00-9.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
   7]
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
       8.00-9.00
   9]
       8.00-9.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 11]
       8.00-9.00
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
  13]
                  sec 2.74 MBytes 23.0 Mbits/sec 2054
       8.00-9.00
 [ 15] 8.00-9.00 sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 17] 8.00-9.00 sec 2.74 MBytes 23.0 Mbits/sec 2054
       8.00-9.00 sec 2.74 MBytes 23.0 Mbits/sec 2054
 [ 19]
      8.00-9.00 sec 2.74 MButes 23.0 Mbits/sec 2054
Γ 211
                 sec 2.74 MBytes 23.0 Mbits/sec 2054
      8.00-9.00
[SUM] 8.00-9.00 sec 27.4 MBytes 230 Mbits/sec 20540
```

Analysis

Test Configuration

• Tool: iperf3 version 12.1.1.1

• Buffer Size: Camera I: 19.9M, Camera II: 23M

Test Duration: 10 seconds each

Parallel Streams: Camera I: 20, Camera II: 10

• Port: Camera I: 5201, Camera II: 5202

Analysis Summary

- Camera I (Normal Resolution):
 - Lower individual stream throughput but higher parallelism
 - 20 concurrent streams at ~4.87 Mbits/sec each
 - Total aggregate throughput: 97.3 Mbits/sec
- Camera II (High Resolution):
 - Higher individual stream throughput with moderate parallelism
 - 10 concurrent streams at ~23.0 Mbits/sec each
 - Total aggregate throughput: 230 Mbits/sec (2.4x faster overall)
- The high-resolution camera achieves significantly better overall performance despite using fewer parallel connections, indicating more efficient per-stream utilization.

Metric	Camera I (Normal-Res)	Camera II (High-Res)				
Individual Stream Performance						
Data per Stream	594 KBytes	2.74 MBytes				
Bitrate per Stream	4.87 Mbits/sec	23.0 Mbits/sec				
Test Duration	8.00-9.00 sec	7.00-8.00 sec				
Aggregate Performance						
Total Data Transferred	11.6 MBytes	27.4 MBytes				
Total Bitrate	97.3 Mbits/sec	230 Mbits/sec				
Number of Streams	20	10				
Efficiency Metrics						
Data per Stream Ratio	1x	4.6x				
Bitrate per Stream Ratio	1x	4.7x				
Total Throughput Ratio	1x	2.4x				