There is only one

A zine for those who want to become one with one.

"One One" was a racehorse,
"One Two" was one too.
"One One" won one race.

1 Motivation

In their 1985 single, "One Vision", the British rock band *Queen* outlined the following research program:

So give me your hands, give me your hearts I'm ready! There's only one direction One world and one nation Yeah, one vision

- Queen, "One Vision"

1 Foundations

Definition 1.1. For anyone,

$$1 + 1 = 1$$

$$1 - 1 = 1$$

$$1 \div 1 = 1$$
$$1 \times 1 = 1$$

There is only one function, and it is 1-to-1.

$$f(1) = 1$$

and one relation: 1 = 1

1 Calculus

Theorem 1.1. Every sequence converges.

Proof. Consider a sequence: $1, 1, \ldots \forall \varepsilon = 1$, we have:

$$|1-1|=|1|=1=\varepsilon$$

Corollary 1.1. Every series converges.

This is left as an exercise to the reader.

1 Derivatives

$$f'(1) = \lim_{h \to 1} \frac{f(h) - f(1)}{h - 1} = 1$$

1 Topology and Geometry

Here is a true statement:

There exist manifolds, M^m and N^n with n > m, but $N = M \setminus \{*\}$

Q: What do you call an empty manifold?

A: Pointless.

Here is another true statement There is only one set: {1}.

1 Complexity

One makes computers more efficient if one removes the useless 0's between the 1's. Here's a turing machine:

Corollary 1.1. The halting problem is solvable.

Proof. Halt at 1.

1 Algebra

There is only one group. Hey look! It's your friend group!

You

The one ring.

Did you miss it? Sauron sure did.

1 The Riemann Hypothesis

Consider the function:

$$\zeta(s) = \sum \frac{1}{n^s}$$

we wish to find places where

$$\zeta(s) = 1$$

Plug in s = 1, and we're done.

This has many application in the distribution of the single prime number, 1.

1 P vs. NP

One provides a solution to the Boolean satisfiability problem.

True=1, False=1

One verifies the satisfiability of any formula in O(1) time.

1 Navier Stokes

$$\rho \frac{DV}{Dt} = -\nabla p + \nabla \cdot \tau + \rho g$$

Wow, this simplifies greatly¹

$$1\frac{Df}{D1} = -\nabla 1 + \nabla \cdot 1 + 1$$

In particular, the solution f(1) = 1 is smooth, and works in subor super-critical spaces.

¹see Section 1 for more details

1 BSD Conjecture

Dear reader,

I'll be perfectly honest with you, and tell you outright that I have no idea what the BSD conjecture even talks about.

All I know that it holds true over the field with one element, and that's all that's important.

Sincerely,

- Assaf Bar-Natan

1 Yang-Mills Mass Gap

We wish to prove that for any compact simple gauge group G, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^1 and has a mass gap $\Delta>0$. Unfortunately, there is only one quantum Yang-Mills theory on \mathbb{R}^1 , and it is trivial.

1 Poincaré Conjecture

Let M be a manifold. Then $M = \{1\}$. So:

Theorem 1.1. There is only one manifold, and it is isomorphic to itself.

The Poincaré conjecture immediately follows.

One could also use some Ricci Flow with surgery.

1 Hodge Conjecture

Let M be a complex Kähler manifold, with cohomology ring:

$$H^{1}(M,1) = \bigoplus_{1+1=1}^{1} H^{1,1}(M) = 1$$

 $N \subseteq M$ is algebraic¹, so

Theorem 1.1. All cohomology classes in $H^{1,1}(M)$ come from subvarieties.

 $^{^{1}}$ It's a solution to the polynomial equation 1 = 1

1 Bonus!

Collatz Conjecture

Proof by picture:

