09-04-2018 1

We will learn about : Basics of functions of several variables. In this lecture:

A sequence in the Euclidean space and its application

Using these notation:

- \mathbb{N} : set of natural number ($\mathbb{N} = \{1, 2, 3, \dots\}$)
- \mathbb{Z} : set of integers $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$
- \mathbb{Q} : set of rational number $(\mathbb{Q} = \{0, \pm 1, \pm 2, \frac{2}{3}, \dots\})$
- \mathbb{R} : set of real number
- \mathbb{C} : set of complex number

Definition 1. A sequence $(x_n)_{n=1}^{\infty}$ is an assignment of (real) number $x_n \in \mathbb{R}$ to natural number $n \in \mathbb{N}$ $(x_n \in \mathbb{R})$. Example : $x_n = \frac{1}{n}$. $x_1 = 1, x_2 = \frac{1}{2}, \dots$

Definition 2. A subsequence of a sequence $(x_n)_{n=1}^{\infty}$ is a sequence $(y_j)_{j=1}^{\infty}$ defined by $y_j = x_{n_j}$ for some sequence

Definition 2. A subsequence of a sequence $(n_n)_{n=1}^{\infty}$ in \mathbb{N} such that $n_j < n_{j+1}$ (j = 1, 2, ...).

Example: sequence $(x_n)_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{100}$, takes $n_1 = 1, n_2 = 3, n_3 = 5, n_4 = 100$ subsequence $(x_{n_j})_{j=1}^{\infty} = x_{n_1}, x_{n_2}, x_{n_3}, x_{n_4} = 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{100}$.

Definition 3. Let $(x_n)_{n=1}^{\infty}$ be a sequence converges to $\alpha \in \mathbb{R}$ if for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $n > N, |x_n - \alpha| < \epsilon.$

In the mathematical symbol $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n > N, |x_n - \alpha| < \epsilon \text{ for } n > N.$ In this case we write, $\lim_{n\to\infty}$ or $x_n\to\alpha$ $(n\to\infty)$

Example 1.

Theorem 1. $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}$ is sequence. Suppose $x_n \to \alpha$ and $y_n \to \beta$ as $n \to \infty$.

- 1. $x_n \pm y_n \to \alpha \pm \beta$, $(n \to \infty)$
- 2. $x_n \cdot y_n \to \alpha \cdot \beta$, $(n \to \infty)$
- 3. if $\beta \neq 0$, $\frac{x_n}{y_n} \to \frac{\alpha}{\beta}$, $(n \to \infty)$

Remark 1. On 3, $\frac{x_n}{y_n}$ is not defined for all $n \in \mathbb{N}$ because $y_n = 0$ possibly for some $n \in \mathbb{N}$. But, since $y_n \to \beta \neq 0$, $y_n \to 0$ eventually is not 0. Hence $\frac{x_n}{y_n}$ is defined eventually.

Theorem 2. $(x_n)_{n=1}^{\infty}$