회귀분석

회귀 분석

- 회귀 (Regression)
 - 데이터의 값은 평균과 같은 기존의 경향으로 돌아가려는 경향이 있다는 것
 - 여러 변수들 간의 상관 관계를 파악하여, 어떤 특정 변수의 값을 다른 변수들의 값을 이용하여 설명/예측하는 기법

근속연수 (년)	연봉 (만원)		
1	2800		
2	3100		
3	3750		
4	4240		
5	5000		

독립변수 종속변수 회귀식: 연봉 = 554×근속연수 + 2116

회귀 분석

- 회귀 분석의 유형
 - 변수의 개수 및 계수의 형태에 따라 구분한다.
 - 독립변수의 개수에 따라
 - 단순 : 독립변수가 1개인 경우
 - 다중 : 독립변수가 여러 개인 경우
 - 회귀계수의 형태에 따라
 - 선형: 계수를 선형 결합으로 표현할 수 있는 경우
 - 비선형 : 계수를 선형 결합으로 표현할 수 없는 경우

- 단순 선형 회귀 (Simple Linear Regression)
 - 독립변수가 1개이고 종속변수도 1개인 경우, 그들 간의 관계를 선형적으로 파악하는 회귀 방식
 - 독립변수 X와 종속변수 Y의 관계를 Y = aX + b 형태의 1차 함수식으로 표현할 수 있다.

- 단순 선형 회귀
 - 회귀 계수 (coefficient)
 - 독립변수가 종속변수에 끼치는 영향력의 정도로서, 직선의 기울기(slope)
 - 절편 (intercept)
 - 독립변수가 0일 때의 상수 값

- 단순 선형 회귀
 - 잔차 (residual)
 - 실제 값과 회귀식의 차이에 따른 오류 값
 - 잔차 값이 작을수록, 구해진 회귀식이 데이터들을 더욱 잘 설명하고 있다고 볼 수 있다.

- 단순 선형 회귀
 - 잔차제곱합 (RSS; Residual Sum of Squares)
 - 잔차는 양수 또는 음수가 될 수 있는 값이므로 이들을 단순히 더하면 안 되고,이 값들의 제곱을 구해서 더한다.

RSS =
$$\sum (y_i - (w_0 + w_1 \cdot x_i))^2$$

(이 때, x_i 는 독립변수 집합 X의 원소, y_i 는 종속변수 집합 Y의 원소이다.)

- 이 때, RSS를 회귀 분석에서의 손실 함수(loss function) 또는 비용 함수(cost function)라고 한다.
- 최적의 회귀 모형을 만든다는 것은 RSS 값이 최소가 되는 회귀 계수를 구한다는 의미이다.

회귀 분석의 평가 지표

• 회귀 분석 결과에 대한 주요 평가 지표

지표	의미	수식	대응 함수
MAE	Mean Absolute Error, 즉 실제값과 예측값의 차이의 절대값들의 평균	$\frac{1}{N} \sum y_i - \hat{y}_i $	metrics 모듈의 mean_absolute_error
MSE	Mean Squared Error, 즉 실제값과 예측값의 차이의 제곱들의 평균	$\frac{1}{N}$ RSS	metrics 모듈의 mean_squared_error
RMSE	Root of MSE, 즉 MSE의 제 곱근 값	√MSE	math 또는 numpy 모듈의 sqrt
R ²	결정 계수라고 하며, 실제값의 분산 대비 예측값의 분산의 비율	예측값 분산 실제값 분산	metrics 모듈의 r2_score 또는 LinearRegression의 score

^{*} 이 때, \hat{y}_{i} 는 실제값 y_{i} 에 대한 예측값이다.

회귀 분석의 평가 지표

- 결정 계수 (Coefficient of Determination)
 - 회귀식이 얼마나 설명력이 있는지 (즉, 얼마나 정확한지)
 나타내는 지표이다.

$$R^{2} = \frac{\text{예측값의 분산}}{\text{실제값의 분산}} = \frac{\sum (\hat{y_{i}} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{RSS}{\sum (y_{i} - \bar{y})^{2}}$$

(이 때, \hat{y}_{i} 는 실제값 y_{i} 에 대한 예측값, \bar{y} 는 실제값들의 평균이다.)

- 결정 계수의 값은 0≤R²≤1이며, 1에 가까울수록 설명력이 강하고 0에 가까울수록 설명력이 약하다.
- 일반적으로 결정 계수 R²의 값이 0.65 (65%) 이상이면 설명력이 있다고 판단한다.

- 최소제곱법 (OLS; Ordinary Least Squares)
 - 잔차제곱합 RSS 값이 최소화 되도록 손실 함수의 매개변수 w_0 와 w_1 의 값을 구한다.
 - w_0 와 w_1 으로 RSS 함수를 각각 편미분한 값이 0이 되는 연립 방정식의 해를 구한다.

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ① linear_model 모듈에 있는 LinearRegression을 이용하여 OLS 방법으로 선형 회귀를 수행할 수 있는 객체를 생성한다.
 - 이 때 다음과 같은 매개변수들을 추가 설정할 수 있으나, 대부분의 경우에는 필요하지 않다.
 - fit_intercept : 절편 값을 계산할 것인지의 여부를 결정 한다. 기본값은 True이다.
 - normalize : 회귀를 수행하기 전에 데이터를 정규화할 것인지의 여부를 결정한다. 기본값은 False이다.

```
1 import sklearn.linear_model as Im
2
3 Ir = Im.LinearRegression()
```

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ② 선형 회귀를 수행할 객체에 대하여 fit 메소드를 이용하여 학습을 수행하여 회귀 모형을 추정한다.
 - 첫 번째 매개변수는 학습용 데이터의 독립변수 집합이다.
 - 두 번째 매개변수는 학습용 데이터의 종속변수 집합이다.

※ 독립변수의 특성이 1개 밖에 없더라도 각 값들은 리스트 또는 배열의 형태여야 한다.

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ③ 실행 객체 또는 추정된 회귀 모형에 대하여 predict 메소드 를 이용하여 예측을 수행한다.
 - 매개변수는 검증용 데이터의 독립변수 집합이다.
 - 반환 결과는 검증용 데이터에 대한 종속변수 예측값이다.

```
1 print(y_pred)
```

[10.536 12.186]

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ④ 분석 결과를 평가한다. (MSE 및 RMSE)
 - metrics 모듈에 있는 mean_squared_error 함수를 이용하여 MSE를 구한다.

```
import sklearn.metrics as mt

mse = mt.mean_squared_error(y_test, y_pred)
print("MSE: {:.3f}".format(mse))
```

MSE: 0.136

• MSE의 제곱근을 계산하여 RMSE를 구한다.

```
import numpy as np

rmse = np.sqrt(mse)
print("RMSE: {:.3f}".format(rmse))
```

RMSE: 0.369

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ④ 분석 결과를 평가한다. (결정 계수 R²)
 - metrics 모듈에 있는 r2_score 함수를 이용하여 결정 계수 R² 값을 구한다.
 - 이 때 첫 번째 매개변수는 검증용 데이터의 종속변수 실제값이고, 두 번째 매개변수는 종속변수 예측값이다.

```
1 r2 = mt.r2_score(y_test, y_pred)
2 print("R2: {:.3f}".format(r2))
```

R2: 0.832

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ④ 분석 결과를 평가한다. (결정 계수 R²)
 - 또는, 실행 객체 또는 추정된 회귀 모형에 대하여 score 메소드를 호출하여 R² 값을 구할 수도 있다.
 - 이 때 첫 번째 매개변수는 검증용 데이터의 독립변수 이고, 두 번째 매개변수는 종속변수이다.

```
1 r2 = reg.score(X_test, y_test)
2 print("R2: {:.3f}".format(r2))
```

R2: 0.832

- 사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 - ④ 분석 결과를 평가한다. (회귀 계수 및 절편)
 - 추정된 회귀 모형의 회귀 계수 및 절편 값을 확인한다.
 - 회귀 계수는 coef_ 속성, 절편은 intercept_ 속성에 각각 값이 할당되어 있다.

```
1 print("회귀 계수:", reg.coef_)
2 print("절편:", reg.intercept_)
```

회귀 계수: [1.65]

절편: 0.635999999999983

```
1 print("회귀식: y = {:.2f} X + {:.3f}".format(reg.coef_[0], #
2 reg.intercept_))
```

회귀식: y = 1,65 X + 0,636

사이킷런에서 최소제곱법으로 단순 선형 회귀 수행
 ⑤ 분석 결과를 플롯으로 표현해 본다.

- 스탯츠모델에서 최소제곱법으로 단순 선형 회귀 수행
 - ① api 모듈에 있는 add_constant 함수를 이용하여 상수항을 추가하도록 지정한다.
 - 매개변수는 학습용 데이터의 독립변수 집합이다.
 - 반환 결과는 회귀 모형에 상수항이 추가되도록 변형된 독립변수 집합이다.

```
import statsmodels.api as sm

X_train = [[1], [2], [3], [4], [5]]

y_train = [2.3, 3.99, 5.15, 7.89, 8.6]

X_train = sm.add_constant(X_train)

print(X_train)
[[1. 1.]
[1. 2.]
[1. 3.]
[1. 3.]
[1. 5.]]
```

- 스탯츠모델에서 최소제곱법으로 단순 선형 회귀 수행
 - ② api 모듈에 있는 OLS를 이용하여, 선형 회귀를 수행할 수 있는 객체를 생성한다.
 - 첫 번째 매개변수는 학습용 데이터의 종속변수 집합이다.
 - 두 번째 매개변수는 학습용 데이터의 독립변수 집합이다.
 - ③ 선형 회귀를 수행할 객체에 대하여 fit 메소드를 이용하여 학습을 수행하여 회귀 모형을 추정한다.
 - 학습용 데이터들을 이미 객체에 넣어 주었기 때문에, 매개변수로 데이터를 전달하지 않는다.

```
1  Ir = sm.OLS(y_train, X_train)
2  reg = Ir.fit()
```

- 스탯츠모델에서 최소제곱법으로 단순 선형 회귀 수행
 - ④ 추정된 회귀 모형에 대하여 predict 메소드를 이용하여 예측을 수행한다.
 - 매개변수는 검증용 데이터의 독립변수 집합으로서, 학습 때와 마찬가지로 미리 상수항을 추가시켜야 한다.
 - 반환 결과는 검증용 데이터에 대한 종속변수 예측값이다.

```
1  X_test = [[6], [7]]
2  y_test = [10.1, 11.9]
3
4  X_test = sm.add_constant(X_test)
5  y_pred = reg.predict(X_test)
```

```
1 print(y_pred)
```

[10.536 12.186]

- 스탯츠모델에서 최소제곱법으로 단순 선형 회귀 수행
 - ⑤ 추정된 회귀 모형에 대하여 summary 메소드를 이용하여 분석 결과를 평가한다. (R2, 회귀 계수, 기타 검정 통계량 등)

1 print(reg.	summary())							
OLS Regression Results									
Dep. Variable:	======	у	 R-squa	======= red:	=======	0.975			
Model:		OLS	Adj. R	-squared:		0.966			
Method: Least Squares			F-stat	istic:		116.2			
					,				
	coef	std err	t	P> t	[0.025	0.975]			

1.253

10.781

0.299

0.002

-0.979

1.163

0.508

0.153

0.6360

1.6500

const

х1

2.251

2.137

참고: 결정계수 R²에 대한 이해

평가 지표에 대한 이해

- 공분산 (Covariance)
 - 2개의 변수들 간의 상관 관계를 나타낸 수치
 - 2개의 변수 X, Y에 대하여 X(또는 Y)의 값이 변화할 때 Y(또는 X)의 값이 어떻게 분포되는가를 나타낸다.

$$Cov(X, Y) = E((X-\mu)\times(Y-\nu))$$

(이 때, μ 는 X의 평균 E(X)이고, ν 는 Y의 평균 E(Y)이다.)

※ 그림 출처: https://acadgild.com/blog/covariance-and-correlation

평가 지표에 대한 이해

- 상관 계수 (Correlation Coefficient)
 - 공분산을 각각의 표준편차로 나누어 정규화한 수치
 - 변수 X, Y에 대하여 각각의 크기(단위)에 영향을 받지 않도록 단위를 보정한 것이라고 볼 수 있다.

$$R = \frac{Cov(X, Y)}{\sigma_X \times \sigma_Y}$$

(이 때, σ_X 는 X의 표준편차, σ_Y 는 Y의 표준편차이다.)

 상관 계수의 값은 -1 ≤ R ≤ 1이며, 1에 가까울수록 강한 양(+) 의 상관 관계, -1에 가까울수록 강한 음(-)의 상관 관계이다. 0이면 서로 상관 관계가 없다.

평가 지표에 대한 이해

- 결정 계수 (Coefficient of Determination)
 - (단순 선형 회귀에서) 상관 계수를 제곱한 수치
 - 한 변수의 변화량이 다른 변수의 변화량으로 얼마나 설명이 될 수 있는지를 나타낸다.

$$R^{2} = \frac{\text{예측값의 분산}}{\text{실제값의 분산}} = \frac{\sum_{(\hat{y_{i}} - \overline{y})^{2}}}{\sum_{(y_{i} - \overline{y})^{2}}} = 1 - \frac{RSS}{\sum_{(y_{i} - \overline{y})^{2}}}$$

(이 때, \hat{y}_i 는 실제값 y_i 에 대한 예측값, \overline{y} 는 실제값들의 평균이다.)

• 결정 계수의 값은 0≤R²≤1이며, 1에 가까울수록 설명력이 강하고 0에 가까울수록 설명력이 약하다.