1. Exercices

Logarithme népérien

► Exercice 1 – Voir le corrigé

Résoudre les équations suivantes en précisant leur domaine de résolution.

a.
$$2\ln(x) + 1 = 3$$

b.
$$ln(3x-4) = 0$$

c.
$$e^{3x+2} = 4$$

d.
$$2 + 3\ln(3x - 2) = -1$$

e.
$$\ln(e^{3x+4}) = 5$$

g.
$$e^{2x-3} = 3 - \pi$$

h.
$$(e^{2x}-3)(e^x+5)=0$$

i.
$$(\ln(x))^2 - \ln(x) = 0$$

j.
$$(e^x - 1) \ln(x - e) = 0$$

► Exercice 2 – Voir le corrigé

En utilisant un changement de variable, résoudre l'équation $3e^{2x} + 9e^x - 30 = 0$ sur \mathbb{R} .

► Exercice 3 – Voir le corrigé

Résoudre les inéquations suivantes. On précisera bien les domaines de résolution.

a.
$$ln(5x-3) \ge 0$$

b.
$$ln(9x-2) < 0$$

c.
$$\ln(3x+1) \ge \ln(3-x)$$

► Exercice 4 – Voir le corrigé

Pour tout réel x, on pose $sh(x) = \frac{e^x - e^{-x}}{2}$. Cette quantité est appelée sinus hyperbolique de x.

- 1. Justifier que *sh* est deux fois dérivable sur \mathbb{R} et que pour tout réel x, sh''(x) = sh(x).
- 2. Pour tout réel x, on pose $f(x) = \ln(x + \sqrt{x^2 + 1})$. Montrer que pour tout réel x, $(sh \circ f)(x) = x$ et $(f \circ sh)(x) = x$.

► Exercice 5 – Voir le corrigé

Soit f la fonction $x \mapsto \frac{e^x - 1}{e^x + 1}$, définie sur \mathbb{R} .

- 1. Montrer que pour tout réel $y \in]-1;1[$, il existe un unique réel x tel que y=f(x).
- 2. Soit $y \in]-1$; 1[et $x \in \mathbb{R}$ tel que y = f(x). Exprimer x en fonction de y.

Propriétés algébriques

► Exercice 6 – Voir le corrigé

Simplifier les écritures suivantes.

$$ln(3) + ln(4) - ln(6)$$

 $4ln(3) - ln(9) + 2ln(27)$

$$\frac{\ln(9)}{\ln(3)} - \ln(1)$$

$$\ln(3x^2) - \ln(3) \text{ avec } x > 0$$

► Exercice 7 – Voir le corrigé

Résoudre l'équation $\ln(4x^2) + 6\ln(x) - 3 = 0$, d'inconnue x > 0.

2 1. Exercices

► Exercice 8 – Voir le corrigé

Montrer que pour tout réel x > 1, $\ln(x^2 - 1) - \ln(x^2 + 2x + 1) = \ln\left(\frac{x - 1}{x + 1}\right)$.

► Exercice 9 – Voir le corrigé

Que vaut
$$\ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \ldots + \ln\left(\frac{49}{50}\right)$$
?

► Exercice 10 – Voir le corrigé

Montrer que pour tout réel x, $\ln(1+e^{-x}) = \ln(1+e^x) - x$.

► Exercice 11 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = e^3$ et pour tout entier naturel n, $u_{n+1} = e\sqrt{u_n}$.

- 1. Montrer que (u_n) est décroissante et que pour tout entier naturel $n, e^2 \le u_n$.
- 2. En déduire que (u_n) converge. Quelle est sa limite ?
- 3. Pour tout entier naturel n, on pose $a_n = \ln(u_n) 2$.
 - (a) Exprimer u_n en fonction de a_n pour tout entier naturel n.
 - (b) Montrer que la suite (a_n) est géométrique. On précisera sa raison et son premier terme.
 - (c) En déduire que pour tout entier naturel n, $u_n = \exp\left(2 + \left(\frac{1}{2}\right)^n\right)$.
 - (d) Retrouver la limite de la suite (u_n) à l'aide de cette expression.

► Exercice 12 (Logarithme décimal et applications) – Voir le corrigé

Soit *a* un réel strictement positif et *x* un réel.

On appelle exponentielle de x en base a le réel noté a^x et qui vaut $e^{x \ln(a)}$.

1. Soit *b* un réel strictement positif. Montrer que l'unique solution de l'équation $a^x = b$ est $x = \frac{\ln(b)}{\ln(a)}$. Ce nombre est appelé le logarithme de *b* en base *a*.

Un cas particulier : le logarithme en base 10 est alors noté log. Ainsi, pour tout réel a strictement positif, $\log(a) = \frac{\ln(a)}{\ln(10)}$ et $\log(a)$ est l'unique solution de l'équation $10^x = a$.

- 2. En chimie, le pH d'une solution vaut $-\log(C)$ où C est la concentration de cette solution en ions hydronium H_3O^+ , exprimée en mol.L⁻¹.
 - (a) Quel est le pH d'une solution ayant une concentration en ions hydronium de 10^{-4} mol. L^{-1} ?
 - (b) Si le pH baisse de 1, par combien a été multipliée la concentration en ion hydronium?
 - (c) Le cola a un pH de 2.5. Quelle est sa concentration en ions hydronium?
 - (d) On dit qu'une solution est basique si son pH est strictement supérieur à 7. A quelles concentrations cette situation correspond-elle ?
- 3. Le niveau de bruit d'une source sonore se mesure en décibels.

La formule qui donne le niveau de bruit N en fonction de l'intensité I de la source, exprimée en W.m⁻² est $N = 10 \log \left(\frac{I}{I_0}\right)$ avec $I_0 = 10^{-12}$ W.m⁻².

- (a) Quelle est l'intensité sonore d'une avion qui décolle avec un niveau de bruit de 120 dB?
- (b) De combien de dB le niveau sonore augmente-t-il lorsque l'intensité sonore double ?
- (c) Une cri possède un niveau sonore de 80 dB. On admet que quand plusieurs personnes crient, les intensités s'ajoutent. Combien doit-on réunir de personnes pour que leurs cris réunis aient une intensité sonore de 120 dB?

Fonction logarithme népérien

► Exercice 13 – Voir le corrigé

Déterminer, si elles existent, les limites suivantes.

a.
$$\lim_{x \to -\infty} \ln(1-x)$$

b.
$$\lim_{x \to +\infty} \ln \left(\frac{x^2 - 2x + 3}{x^2 + x} \right)$$
 c. $\lim_{x \to 0^+} \ln \left(\frac{x^2 - 2x + 3}{x^2 + x} \right)$

c.
$$\lim_{x\to 0^+} \ln\left(\frac{x^2 - 2x + 3}{x^2 + x}\right)$$

$$\mathbf{d.} \lim_{x \to +\infty} (2x^2 \ln(x))$$

e.
$$\lim_{x \to 0^+} (2x^2 \ln(x))$$

$$\mathbf{f.} \lim_{x \to +\infty} (x - \ln(x))$$

$$g. \lim_{x \to \infty} \ln(e^x - x)$$

h.
$$\lim_{x \to +\infty} \ln(e^x - x)$$

i.
$$\lim_{x \to -\infty} (e^x - \ln(x))$$

► Exercice 14 – Voir le corrigé

Pour tout réel x > 0, on pose $f(x) = \frac{1 + \ln(x)}{x}$. On note \mathcal{C}_f la courbe représentative de f dans un repère orthogonal.

- 1. Résoudre l'équation f(x) = 0 sur $]0; +\infty[$.
- 2. Déterminer les limites de f en 0^+ et en $+\infty$.
- 3. Justifier que f est dérivable sur $]0; +\infty[$ et que pour tout réel x > 0, $f'(x) = -\frac{\ln(x)}{x^2}$.
- 4. Construire le tableau de variations de la fonction f sur $]0; +\infty[$.
- 5. Tracer l'allure de la courbe \mathscr{C}_f dans un repère orthogonal.
- 6. Montrer que l'équation $f(x) = \frac{1}{2}$ possède une unique solution sur $[1; +\infty[$. Donner une valeur approchée de cette solution à 10^{-2} près.
- 7. Soit $m \in \mathbb{R}$. Déterminer, selon la valeur du réel m, le nombre de solutions de l'équation f(x) = m.

► Exercice 15 – Voir le corrigé

Pour tout réel x > 0, on pose $f(x) = (\ln(x))^2$. On note \mathcal{C}_f la courbe représentative de f dans un repère orthogonal. Attention, $(\ln(x))^2 \neq \ln(x^2)$!

- 1. Résoudre l'équation f(x) = 1 sur $]0; +\infty[$.
- 2. Déterminer les limites de f en 0^+ et en $+\infty$.
- 3. Construire le tableau de variations de la fonction f sur $]0; +\infty[$.
- 4. Tracer l'allure de la courbe \mathcal{C}_f dans un repère orthogonal.
- 5. Soit $m \in \mathbb{R}$. Déterminer, selon la valeur du réel m, le nombre de solutions de l'équation f(x) = m.

► Exercice 16 – Voir le corrigé

Pour tout réel x, on pose $f(x) = \ln(x^2 - 2x + 3)$.

- 1. Justifier que la fonction f est bien définie sur \mathbb{R} .
- 2. Justifier que f est dérivable sur \mathbb{R} puis calculer sa dérivée f'.
- 3. Construire le tableau de variations de f sur \mathbb{R} en incluant les limites en $-\infty$ et en $+\infty$ de la fonction f.

► Exercice 17 – Voir le corrigé

A l'aide du logarithme, déterminer le plus petit entier naturel n vérifiant les conditions suivantes.

a.
$$2^n \ge 40000$$

b.
$$1.01^n \ge 2$$

c.
$$0.7^n \leq 10^{-3}$$

a.
$$2^n \ge 40000$$
 b. $1.01^n \ge 2$ **c.** $0.7^n \le 10^{-3}$ **d.** $121 \times 0.97^{2n+1} \le 1$ **e.** $3 \times 1, 1^n - 150 \ge 365$ **f.** $10^{12} \times 2^{-n} \le 0.1$

e.
$$3 \times 1.1^n - 150 \ge 36^n$$

f.
$$10^{12} \times 2^{-n} \le 0$$

► Exercice 18 – Voir le corrigé

Résoudre l'inéquation $(e^{2x}-3)(\ln(x)-1) < 0$ sur \mathbb{R} . On précisera le domaine de définition de cette expression.

4 1. Exercices

► Exercice 19 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 5$ et, pour tout entier naturel n par $u_n = \frac{7}{8}u_n + 1$. Pour tout entier naturel n, on pose alors $a_n = u_n - 8$.

- 1. Montrer que la suite (a_n) est géométrique de raison $\frac{7}{8}$ et déterminer son premier terme.
- 2. En déduire que pour tout entier naturel n, $u_n = 8 3 \times \left(\frac{7}{8}\right)^n$. Que vaut $\lim_{n \to +\infty} u_n$?
- 3. Déterminer le plus petit entier n à partir duquel $u_n \ge 7,999$.

► Exercice 20 – Voir le corrigé

La population d'une ville augmente de 3% chaque année. Après combien d'années cette population aura-t-elle doublé ?

► Exercice 21 – Voir le corrigé

Pour tout réel x, on pose $f(x) = \ln(1 + e^x)$. Cette fonction, utilisée en intelligence artificielle, est appelée fonction SoftPlus.

- 1. Justifier que la fonction f est bien définie sur \mathbb{R} .
- 2. Justifier que f est dérivable sur \mathbb{R} puis calculer sa dérivée f'.
- 3. Construire le tableau de variations de f sur \mathbb{R} en incluant les limites en $-\infty$ et en $+\infty$ de la fonction f.
- 4. Pour tout réel x, on pose g(x) = f(x) x.
 - (a) Montrer que pour tout réel x, $g(x) = \ln(1 + e^{-x})$.
 - (b) En déduire $\lim_{x \to +\infty} g(x) = 0$.
- 5. (a) Dresser le tableau de variations de g sur \mathbb{R} en incluant les limites en $-\infty$ et $+\infty$.
 - (b) En déduire que pour tout réel x, $f(x) \ge x$.
- 6. Construire l'allure de la courbe de f dans un repère orthonormé.

► Exercice 22 – Voir le corrigé

On considère la fonction f définie pour tout réel x > 0 par $f(x) = \sqrt{x} + \ln(x)$.

- 1. Déterminer les limites de f(x) lorsque x tend vers 0 et lorsque x tend vers $+\infty$.
- 2. On admet que f est dérivable sur $]0;+\infty[$. Montrer que pour tout réel $x>0, f'(x)=\frac{\sqrt{x}+2}{2x}.$
- 3. Quel est le sens de variations de la fonction f?
- 4. En déduire qu'il existe un unique réel $\alpha>0$ tel que $\sqrt{\alpha}=-\ln(\alpha)$. Donner une valeur approchée de α à 10^{-2} près.

► Exercice 23 – Voir le corrigé

Faire l'étude complète de la fonction $x \mapsto \ln(e^x - x)$ sur \mathbb{R} puis tracer l'allure de la courbe représentative de cette fonction dans un repère orthogonal.

Exercices de synthèse

► Exercice 24 (Amérique du Nord 2021) – Voir le corrigé

Dans le plan muni d'un repère, on considère ci-dessous la courbe C_f représentative d'une fonction f, deux fois dérivable sur l'intervalle $]0;+\infty[$. La courbe C_f admet une tangente horizontale T au point A(1;4).

1. Préciser les valeurs de f(1) et f'(1).

On admet que la fonction f est définie pour tout réel x de l'intervalle $]0; +\infty[$ par

$$f(x) = \frac{a + b \ln(x)}{x}$$
 où a et b sont des réels fixés.

2. Démontrer que pour tout réel x strictement positif, on a

$$f'(x) = \frac{b - a - b\ln(x)}{x^2}.$$

3. En déduire les valeurs de *a* et de *b*.

Dans la suite de l'exercice, on admet que la fonction f est définie pour tout réel x de l'intervalle $]0, +\infty[$ par

$$f(x) = \frac{4 + 4\ln(x)}{x}.$$

- 4. Déterminer les limites de f en 0 et en $+\infty$.
- 5. Déterminer le tableau de variations de f sur $]0; +\infty[$.
- 6. Démontrer que, pour tout réel x strictement positif,

$$f''(x) = \frac{-4 + 8\ln(x)}{x^3}.$$

7. Construire le tableau de signes de f''. Nous verrons dans un prochain chapitre que le signe de f'' nous permet de déterminer la convexité de la fonction f.

6 1. Exercices

► Exercice 25 (Métropole 2022) – Voir le corrigé

On considère la fonction f définie sur $]0;+\infty[$ par $f(x)=x-x\ln(x)$ où ln désigne la fonction logarithme népérien.

Partie A

- 1. Déterminer la limite de f(x) quand x tend vers 0 et quand x tend vers $+\infty$.
- 2. On admet que la fonction f est dérivable sur $]0; +\infty[$ et on note f' sa fonction dérivée.
 - (a) Démontrer que pour tout réel x > 0, $f'(x) = -\ln(x)$.
 - (b) En déduire les variations de la fonction f sur $]0; +\infty[$.
- 3. Résoudre l'équation $f(x) = x \text{ sur }]0; +\infty[$.

Partie B

Dans cette partie, on pourra utiliser avec profit certains résultats de la partie A. On considère la suite (un) définie par

$$\begin{cases} u_0 = 0.5 \\ u_{n+1} = u_n - u_n \ln(u_n) \text{ pour tout entier naturel } n \end{cases}$$

Ainsi, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. On rappelle que la fonction f est croissante sur [0,5;1]. Démontrer par récurrence que pour tout entier naturel n, $0.5 \le u_n \le u_{n+1} \le 1$.
- 2. (a) Montrer que la suite (u_n) converge.
 - (b) On note ℓ la limite de la suite (u_n) . Déterminer la valeur de ℓ .

Partie C

Pour un nombre k quelconque, on considère la fonction f_k définie sur $]0; +\infty[$ par $f_k(x) = kx - x \ln(x)$.

- 1. Pour tout nombre réel k, montrer que f_k admet un maximum y_k atteint en $x_k = e^{k-1}$.
- 2. Montrer que, pour tout nombre réel k, $x_k = y_x$.

► Exercice 26 (Centres étrangers 2021) – Voir le corrigé

Dans un pays, une maladie touche la population avec une probabilité de 0,05.

On possède un test de dépistage de cette maladie. On considère un échantillon de n personnes (n > 20) prises au hasard dans la population assimilé à un tirage avec remise.

On teste l'échantillon suivant cette méthode : on mélange le sang de ces n individus, on teste le mélange. Si le test est positif, on effectue une analyse individuelle de chaque personne.

Soit X_n la variable aléatoire qui donne le nombre d'analyses effectuées.

- 1. Justifier que X_n prend les valeurs 1 et (n+1).
- 2. Justifier que $\mathbb{P}(X_n = 1) = 0.95^n$.
- 3. Que représente l'espérance de X_n dans ce cadre ? Montrer que $E(X_n) = n + 1 n \times 0.95^n$.
- 4. On considère la fonction f définie sur $[20; +\infty[$ par $f(x) = \ln(x) + x \ln(0.95)$.
 - (a) Montrer que f est décroissante sur $[20; +\infty[$ et calculer $\lim_{x\to +\infty} f(x)$.
 - (b) Montrer que l'équation f(x) = 0 admet une unique solution a sur $[20; +\infty[$. Donner un encadrement à 0,1 près de cette solution.
 - (c) En déduire le signe de f sur $[20; +\infty[$.
- 5. On cherche à comparer deux types de dépistages. La première méthode est décrite dans cet exercice, la seconde, plus classique, consiste à tester tous les individus. La première méthode permet de diminuer le nombre d'analyses dès que $E(X_n) < n$. En utilisant les questions précédentes, montrer que la première méthode diminue le nombre d'analyses pour des échantillons comportant 87 personnes maximum.

▶ Correction 1 – Voir l'énoncé

a. Soit
$$x > 0$$
, $2\ln(x) + 1 = 3 \Leftrightarrow 2\ln(x) = 2 \Leftrightarrow \ln(x) = 1 \Leftrightarrow x = e$. $S = \{e\}$.

b. Soit
$$x > \frac{4}{3}$$
, $\ln(3x - 4) = 0 \Leftrightarrow 3x - 4 = 1 \Leftrightarrow x = \frac{5}{3}$. $S = \left\{\frac{5}{3}\right\}$.

c. Soit
$$x \in \mathbb{R}$$
. $e^{3x+2} = 4 \Leftrightarrow 3x+2 = \ln(4) \Leftrightarrow x = \frac{\ln(4)-2}{3}$. $S = \left\{\frac{\ln(4)-2}{3}\right\}$.

d. Soit
$$x > \frac{2}{3}$$
. $2 + 3\ln(3x - 2) = -1 \Leftrightarrow \ln(3x - 2) = -1 \Leftrightarrow 3x - 2 = e^{-1} \Leftrightarrow x = \frac{e^{-1} + 2}{3}$. $S = \left\{\frac{e^{-1} + 2}{3}\right\}$.

e. Soit
$$x \in \mathbb{R}$$
. $\ln(e^{3x+4}) = 5 \Leftrightarrow 3x+4=5 \Leftrightarrow x=\frac{1}{3}$. $S = \left\{\frac{1}{3}\right\}$.

f. Puisque $3 - \pi < 0$, l'équation $e^{2x-3} = 3 - \pi$ ne possède pas de solution réelle.

g. Soit
$$x \in \mathbb{R}$$
. $(e^{2x+1}-3)(e^x+5)=0 \Leftrightarrow e^{2x+1}-3=0$ ou $e^x+5=0$.

•
$$e^{2x+1} - 3 = 0 \Leftrightarrow e^{2x+1} = 3 \Leftrightarrow 2x+1 = \ln(3) \Leftrightarrow x = \frac{\ln(3) - 1}{2}$$
.

•
$$e^x + 5 = 0$$
 est impossible puisque $e^x > 0$.

Ainsi,
$$S = \left\{ \frac{\ln(3) - 1}{2} \right\}$$
.

h. Soit
$$x > 0$$
. $(\ln(x))^2 - \ln(x) = 0 \Leftrightarrow \ln(x)(\ln(x) - 1) = 0 \Leftrightarrow \ln(x) = 0$ ou $\ln(x) = 1 \Leftrightarrow x = 1$ ou $x = e$. $S = \{1, e\}$.

i. Soit
$$x > e, (x-1)\ln(x-e) = 0 \Leftrightarrow x-1 = 0$$
 ou $\ln(x-e) = 0$. Or,

- $x-1=0 \Leftrightarrow x=1$. 1 n'est cependant pas une solution car il n'est pas dans l'ensemble de résolution.
- $ln(x-e) = 0 \Leftrightarrow x-e = 1 \Leftrightarrow x = 1+e$.

L'unique solution de cette équation est donc 1 + e.

► Correction 2 – Voir l'énoncé

Pour tout réel x, on pose $X = e^x$. Ainsi,

$$3e^{2x} + 9e^x - 30 = 0 \Leftrightarrow 3X^2 + 9X - 30 = 0.$$

Cette deuxième équation est une équation du second degré. Le discriminant du polynôme $3X^2 + 9X - 30$ vaut 441 qui est strictement positif. Ce polynôme a donc deux racines qui sont 2 et -5.

On a donc X = 2 ou X = -5, c'est-à-dire $e^x = 2$ (et donc $x = \ln(2)$) ou $e^x = -5$ ce qui est impossible.

L'unique solution de l'équation est donc ln(2).

► Correction 3 – Voir l'énoncé

a. $\ln(5x-3)$ existe si et seulement si 5x-3>0, c'est-à-dire $x>\frac{5}{3}$. Soit donc $x>\frac{5}{3}$. Alors, par croissance de la fonction exponentielle sur \mathbb{R} , $\ln(5x-3)\geqslant 0$ si et seulement si $5x-3\geqslant 1$ soit $x\geqslant \frac{4}{5}$. $S=\left\lceil \frac{4}{5}+\infty \right\rceil$.

b. $\ln(9x-2)$ existe si et seulement si 9x-2>0, c'est-à-dire $x>\frac{2}{9}$. Soit donc $x>\frac{2}{9}$. Alors par croissance de

la fonction exponentielle sur \mathbb{R} , $\ln(9x-2) < 0$ si et seulement si 9x-2 < 1 soit $x < \frac{1}{3}$. Ainsi, $S = \left[\frac{2}{9}; \frac{1}{3}\right[$.

c. $\ln(3x+1)$ existe si et seulement si 3x+1>0, c'est-à-dire $x>-\frac{1}{3}$. Par ailleurs, $\ln(3-x)$ existe si et seulement si 3-x>0, c'est-à-dire x<3. Les deux expressions existent toutes deux lorsque $-\frac{1}{3}< x<3$. Soit donc $x\in \left]-\frac{1}{3};3\right[$. Alors, par croissance de la fonction exponentielle sur \mathbb{R} , $\ln(3x+1)\geqslant \ln(3-x)$ si et seulement si $3x+1\geqslant 3-x$ soit $x\geqslant \frac{1}{2}$. Finalement, $S=\left[\frac{1}{2};+\infty\right[\cap\right]-\frac{1}{3};3\left[$ soit $S=\left[\frac{1}{2};3\right[$.

▶ Correction 4 – Voir l'énoncé

sh est deux fois dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} . De plus, pour tout réel x,

$$sh'(x) = \frac{e^x - (-e^{-x})}{2} = \frac{e^x + e^{-x}}{2}$$

et

$$sh''(x) = \frac{e^x - e^{-x}}{2} = sh(x).$$

Pour tout réel x,

$$sh \circ f(x) = \frac{e^{\ln(x + \sqrt{x^2 + 1})} - e^{-\ln(x + \sqrt{x^2 + 1})}}{2} = \frac{x + \sqrt{x^2 + 1} - \frac{1}{x + \sqrt{x^2 + 1}}}{2}.$$

Ainsi

$$sh \circ f(x) = \frac{(x + \sqrt{x^2 + 1})^2 - 1}{2(x + \sqrt{x^2 + 1})} = \frac{x^2 + 2x\sqrt{x^2 + 1} + x^2 + 1 - 1}{2(x + \sqrt{x^2 + 1})} = \frac{2x(x + \sqrt{x^2 + 1})}{2(x + \sqrt{x^2 + 1})} = x.$$

Par ailleurs, pour tout réel x,

$$f \circ sh(x) = \ln\left(\frac{e^x - e^{-x}}{2} + \sqrt{\left(\frac{e^x - e^{-x}}{2}\right)^2 + 1}\right) = \ln\left(\frac{e^x - e^{-x}}{2} + \sqrt{\frac{e^{2x} - 2 + e^{-2x}}{4} + 1}\right).$$

Or,

$$\frac{e^{2x} - 2 + e^{-2x}}{4} + 1 = \frac{e^{2x} + 2 + e^{-2x}}{4} = \left(\frac{e^x + e^{-x}}{2}\right)^2.$$

Ainsi,

$$f \circ sh(x) = \ln\left(\frac{e^x - e^{-x}}{2} + \sqrt{\left(\frac{e^x + e^{-x}}{2}\right)^2}\right).$$

Or, pour tout réel x, $e^x + e^{-x} \ge 0$ et donc $\sqrt{\left(\frac{e^x + e^{-x}}{2}\right)^2} = \frac{e^x + e^{-x}}{2}$. Ainsi,

$$f \circ sh(x) = \ln\left(\frac{e^x - e^{-x}}{2} + \frac{e^x + e^{-x}}{2}\right) \ln\left(\frac{2e^x}{2}\right) = x.$$

► Correction 5 – Voir l'énoncé

D'une part, puisque $\lim_{x \to -\infty} e^x = 0$, on a $\lim_{x \to -\infty} f(x) = -1$.

Par ailleurs, pour tout réel x, $f(x) = \frac{e^x}{e^x} \times \frac{1 - \frac{1}{e^x}}{1 + \frac{1}{e^x}} = \frac{1 - e^{-x}}{1 + e^{-x}}$. Ainsi, $\lim_{x \to \infty} f(x) = 1$.

Enfin, f est continue sur $]-\infty;+\infty[$. D'après le théorème des valeurs intermédiaires, pour tout réel $y \in]-1;1[$, il existe un réel x tel que y=f(x).

De plus, f est dérivable et pour tout réel x, $f'(x) = \frac{e^x(e^x+1)-(e^x-1)e^x}{(1+e^x)^2} = \frac{2e^x}{(1+e^x)^2} > 0$. f est donc strictement croissante sur \mathbb{R} . Ainsi, pour tout réel $g \in]-1;1[$, le réel $g \in]-1[$, le réel

Soit donc $y \in]-1;1[$ et x le réel tel que y=f(x). On a alors $y=\frac{e^x-1}{e^x+1}$ et donc $y(e^x+1)=e^x-1$.

Ainsi,
$$ye^x + y = e^x - 1$$
. On a alors $ye^x - e^x = -1 - y$ soit $e^x(y - 1) = -1 - y$ et donc $e^x = \frac{-1 - y}{y - 1} = \frac{1 + y}{1 - y}$.

Puisque $y \in]-1;1[$, on a bien $\frac{1+y}{1-y} > 0$ puisque c'est le quotient de deux réels strictement positifs.

Finalement, on a $x = \ln\left(\frac{1+y}{1-y}\right)$.

► Correction 6 – Voir l'énoncé

•
$$\ln(3) + \ln(4) - \ln(6) = \ln\left(\frac{3\times4}{6}\right) = \ln(2)$$

•
$$\frac{\ln(9)}{\ln(3)} - \ln(1) = \frac{\ln(3^2)}{\ln(3)} - 0 = \frac{2\ln(3)}{\ln(3)} = 2$$

$$\bullet \ 4\ln(3) - \ln(9) + 2\ln(27) = 4\ln(3) - \ln(3^2) + 2\ln(3^3) = 4\ln(3) - 2\ln(3) + 6\ln(3) = 8\ln(3).$$

•
$$\ln(3x^2) - \ln(3) = \ln(3) + \ln(x^2) - \ln(3) = \ln(x^2) = 2\ln(x) \operatorname{car} x > 0$$

► Correction 7 – Voir l'énoncé

Pour tout x > 0

$$\ln(4x^2) + 6\ln(x) - 3 = \ln(4) + \ln(x^2) + 6\ln(x) - 3 = 8\ln(x) + \ln(4) - 3.$$

Ainsi

$$\ln(4x^2) + 6\ln(x) - 3 = 0 \Leftrightarrow 8\ln(x) + \ln(4) - 3 = 0 \Leftrightarrow \ln(x) = \frac{3 - \ln(4)}{8} \Leftrightarrow x = \exp\left(\frac{3 - \ln(4)}{8}\right)$$

► Correction 8 – Voir l'énoncé

Pour tout réel x > 1,

$$\ln(x^2 - 1) - \ln(x^2 + 2x + 1) = \ln\left(\frac{x^2 - 1}{x^2 + 2x + 1}\right) = \ln\left(\frac{(x - 1)(x + 1)}{(x + 1)^2}\right) = \ln\left(\frac{x - 1}{x + 1}\right).$$

► Correction 9 – Voir l'énoncé

$$\ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \ldots + \ln\left(\frac{49}{50}\right) = \ln\left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \ldots \times \frac{49}{50}\right).$$

Après simplification, il reste donc

$$\ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \ldots + \ln\left(\frac{49}{50}\right) = \ln\left(\frac{1}{50}\right).$$

▶ Correction 10 – Voir l'énoncé

Pour tout réel x, en factorisant dans le ln par e^{-x} , on a

$$\ln(1+e^{-x}) = \ln\left(e^{-x} \times \left(\frac{1}{e^{-x}} + 1\right)\right) = \ln(e^{-x}) + \ln\left(\frac{1}{e^{-x}} + 1\right) = -x + \ln(1+e^{x}).$$

▶ Correction 11 – Voir l'énoncé

- 1. Pour tout entier naturel n, on considère la proposition P(n) : « $e^2 \le u_{n+1} \le u_n$ ».
 - Initialisation : On a $u_0 = e^3$ et $u_1 = e \times \sqrt{e^3} = e^{5/2}$. On a bien $e^2 \le u_1 \le e$.
 - Soit $n \in \mathbb{N}$ tel que P(n) est vraie. On a alors $e^2 \le u_{n+1} \le u_n$. En appliquant la fonction racine carrée, qui est strictement croissante sur $[0; +\infty[$, on a alors $e \le \sqrt{u_{n+1}} \le \sqrt{u_n}$. On multiplie alors par e et on obtient $e \times e \le e\sqrt{u_{n+1}} \le e\sqrt{u_n}$ soit $e^2 \le u_{n+2} \le u_{n+1}$. P(n+1) est donc vraie.
 - Par récurrence, P(n) est vraie pour tout entier naturel n.
- 2. Puisque la suite (u_n) est décroissante et minorée, alors elle converge vers une limite que l'on note l. Par ailleurs, la fonction $x \mapsto e\sqrt{x}$ est continue sur $[e^2; +\infty[$. On a donc $l=e\sqrt{l}$ et donc l=0 ou $l=e^2$. L'unique possibilité est alors $l=e^2$.
- 3. (a) Pour tout entier naturel n, $a_n = \ln(u_n) 2$ d'où $\ln(u_n) = a_n + 2$ et $u_n = e^{a_n + 2}$
 - (b) Pour tout entier naturel n,

$$a_{n+1} = \ln(u_{n+1}) - 2 = \ln(e\sqrt{u_n}) - 2 = \ln(e) + \ln(\sqrt{u_n}) - 2 = 1 + \frac{1}{2}\ln(u_n) - 2 = \frac{1}{2}(\ln(u_n) - 2) = \frac{1}{2}a_n.$$

- (c) La suite (a_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $a_0 = \ln(u_0) 2$ On a donc $a_0 = \ln(e^3) - 2 = 3 - 2 = 1$.
- (d) Ainsi, pour tout entier naturel n, $a_n = 1 \times \left(\frac{1}{2}\right)^n$ et $u_n = \exp(a_n + 2) = \exp\left(2 + \left(\frac{1}{2}\right)^n\right)$.
- (e) Puisque $-1 < \frac{1}{2} < 1$, il en vient que $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ et donc $\lim_{n \to +\infty} \left(\left(\frac{1}{2}\right)^n + 2\right) = 2$. La fonction exponentielle étant continue en 2, il en vient que $\lim_{n \to +\infty} u_n = e^2$.

► Correction 12 – Voir l'énoncé

- 1. On a $a^x = b$ si et seulement si $e^{x \ln(a)} = b$ si et seulement si $x \ln(a) = \ln(b)$ si et seulement si $x = \frac{\ln(a)}{\ln(b)}$.
- 2. (a) Le pH de cette solution vaut $-\log(10^{-4}) = -\frac{\ln(10^{-4})}{\ln(10)} = -\frac{-4\ln(10)}{\ln(10)} = 4$.
 - (b) Soit pH_1 et pH_2 tel que $pH_1 = pH_2 1$. Notons C_1 et C_2 les concentrations en ions hydronium associées. En remarquant que $1 = \log(10)$, on a alors $-\log(C_1) = -\log(C_2) \log(10)$ soit $\log(C_1) = \log(C_2) + \log(10)$ et donc $\log(C_1) = \log(10C_2)$ Ainsi, $C_1 = 10C_2$. Si le pH baisse de 1, c'est que la concentration en ions hydronium a été multipliée par 10.

- (c) Notons C la concentration en ions hydronium du cola. On a $-\log(C) = 2.5$, d'où $-\frac{\ln(C)}{\ln(10)} = 2.5$ et donc $C = e^{-2.5\ln(10)} \simeq 3.2 \times 10^{-3}$ mol.L-1.
- (d) Notons C la concentration correspondant à un pH supérieur à 7. On a alors $-\log(C) \geqslant 7$ soit $C \leqslant 10^{-7} \text{ mol.L}^{-1}$.
- 3. (a) Notons I l'intensité sonore d'un avion au décollage. On a alors $120 = 10 \log \left(\frac{I}{I_0}\right)$ soit $\log \left(\frac{I}{I_0}\right) = 12$. Ainsi, $\frac{I}{I_0} = 10^{12}$ et donc $I = 10^{12}I_0 = 1$ W.m⁻².
 - (b) On a $10\log\left(\frac{2I}{I_0}\right)=10\log(2)+10\log\left(\frac{I}{I_0}\right)$. Or, $10\log(2)\simeq 3$. Lorsque l'intensité sonore est multipliée par 2, le niveau sonore augmente de 3 décibels.
 - (c) On cherche n tel que $10 \log \left(\frac{nI}{I_0} \right) = 120$ sachant que $10 \log \left(\frac{I}{I_0} \right) = 80$.

Or,
$$10\log\left(\frac{nI}{I_0}\right) = 10\log(n) + 10\log\left(\frac{nI}{I_0}\right) = 10\log(n) + 80.$$

Il faut donc que $10\log(n) + 80 = 120$ soit $\log(n) = 4$ et donc $n = 10^4$. Il faut réunir 10000 personnes pour que le niveau sonore cumulé de leur cri atteigne 120 dB.

► Correction 13 – Voir l'énoncé

- **a.** Puisque $\lim_{x \to -\infty} (1-x) = +\infty$, on a $\lim_{x \to -\infty} \ln(1-x) = +\infty$.
- **b.** Pour tout réel x > 0, $\frac{x^2 2x + 3}{x^2 + x} = \frac{x^2}{x^2} \times \frac{1 \frac{2}{x} + \frac{3}{x^2}}{1 + \frac{1}{x}} = \frac{1 \frac{2}{x} + \frac{3}{x^2}}{1 + \frac{1}{x}}$.
- Or, $\lim_{x \to +\infty} \frac{1 \frac{2}{x} + \frac{3}{x^2}}{1 + \frac{1}{x}} = 1$. La fonction ln étant continue en 1, on a $\lim_{x \to +\infty} \ln\left(\frac{x^2 2x + 3}{x^2 + x}\right) = \ln(1) = 0$.
- c. $\lim_{x \to 0^+} (x^2 2x + 3) = 3$ et $\lim_{x \to 0^+} (x^2 + x) = 0^+$.

Ainsi,
$$\lim_{x \to 0^+} \frac{x^2 - 2x + 3}{x^2 + x} = +\infty$$
 et $\lim_{x \to 0^+} \ln\left(\frac{x^2 - 2x + 3}{x^2 + x}\right) = +\infty$.

- **d.** $\lim_{x \to +\infty} 2x^2 = +\infty$ et $\lim_{x \to +\infty} \ln(x) = +\infty$. Ainsi, $\lim_{x \to +\infty} (2x^2 \ln(x)) = +\infty$.
- **e.** Par croissances comparées, $\lim_{x\to 0^+} (2x^2 \ln(x)) = 0$.
- **f.** Pour tout x > 1, $x \ln(x) = x \left(1 \frac{\ln(x)}{x}\right)$. Or, par croissances, comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. Ainsi, $\lim_{x \to +\infty} (x \ln(x)) = +\infty$.
- **g.** $\lim_{x \to -\infty} (e^x x) = +\infty$. Ainsi, $\lim_{x \to -\infty} \ln(e^x x) = +\infty$.
- **h.** Pour tout x > 0, $e^x x = e^x \left(1 \frac{x}{e^x}\right)$. Or, par croissances comparées, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. Ainsi, $\lim_{x \to +\infty} (e^x x) = +\infty$ et donc $\lim_{x \to +\infty} \ln(e^x x) = +\infty$.
- i. Pour tout réel x > 0, $e^x \ln(x) = e^x \left(1 \frac{\ln(x)}{x} \times \frac{x}{e^x} \right)$. Or, par croissances comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. Ainsi, $\lim_{x \to +\infty} (e^x \ln(x)) = +\infty$.

► Correction 14 – Voir l'énoncé

Jason LAPEYRONNIE

- 1. Soit x > 0, $f(x) = 0 \Leftrightarrow \frac{1 + \ln(x)}{x} = 0 \Leftrightarrow 1 + \ln(x) = 0 \Leftrightarrow x = e^{-1} = \frac{1}{e}$. 2. On a $\lim_{x \to 0^+} (1 + \ln(x)) = -\infty$ et donc, par quotient, $\lim_{x \to 0^+} f(x) = -\infty$.

Par ailleurs, pour tout x > 0, $f(x) = \frac{1}{x} + \frac{\ln(x)}{x}$. Or, $\lim_{x \to +\infty} \frac{1}{x} = 0$ et, par croissances comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ 0. Ainsi, $\lim_{x \to +\infty} f(x) = 0$.

3. Pour tout réel x > 0, on pose $u(x) = 1 + \ln(x)$ et v(x) = x. u et v sont dérivables sur $]0; +\infty[$ et v ne s'y annule pas. Ainsi, f est dérivable sur $]0; +\infty$ et pour tout réel x > 0,

$$f'(x) = \frac{\frac{1}{x} \times x - (1 + \ln(x)) \times 1}{x^2} = -\frac{\ln(x)}{x^2}.$$

4. Pour tout réel x > 0, on a $x^2 > 0$. f'(x) est donc du signe de $-\ln(x)$. Or, $-\ln(x) \le 0$ si et seulement si $x \ge 1$. On obtient ainsi le tableau de variations suivant.

х	-∞		1		+∞
f'(x)		+	0	_	
f	-∞		, 1		^ 0

5. On trace l'allure de la courbe \mathscr{C}_f dans un repère orthogonal.

- 6. La fonction f est continue sur $[1; +\infty[$. De plus, f(1) = 1 et $\lim_{x \to +\infty} f(x) = 0$. Ainsi, d'après le théorème des valeurs intermédiaires, il existe un réel c dans $[1; +\infty[$ tel que $f(c)=\frac{1}{2}$. De plus, la fonction f étant strictement décroissante sur $[1; +\infty[$, ce réel est unique. A l'aide de la calculatrice, on trouve $x \simeq 5,36$.
- 7. Si $m \le 0$, l'équation f(x) = m possède une unique solution sur $]0; +\infty[$. Si 0 < m < 1, cette équation possède deux solutions. Si m = 1, il n'y a qu'une solution. Enfin, si m > 1, l'équation f(x) = m n'a aucune solution.

➤ Correction 15 – Voir l'énoncé

1. Soit x > 0

$$f(x) = 1 \Leftrightarrow (\ln(x))^2 = 1 \Leftrightarrow \ln(x) = 1 \text{ OU } \ln(x) = -1 \Leftrightarrow x = e \text{ OU } x = \frac{1}{e}.$$

2. On a $\lim_{x\to 0^+} \ln(x) = -\infty$ et donc, par produit, $\lim_{x\to 0^+} f(x) = +\infty$. Par ailleurs, $\lim_{x\to +\infty} \ln(x) = +\infty$ et donc $\lim_{x\to +\infty} f(x) = +\infty$.

3. f est dérivable sur $]0;+\infty[$ et pour tout réel x>0, $f'(x)=2\times\ln(x)\times\frac{1}{x}=\frac{2\ln(x)}{x}$, qui est du signe de $\ln(x)$.

x	-∞		1		+∞
f'(x)		_	0	+	
f	-∞		~ 0 ~		+∞

4. On trace l'allure de la courbe \mathcal{C}_f dans un repère orthogonal.

5. Si m < 0, l'équation f(x) = m n'admet aucune solution sur $]0; +\infty[$. Si m = 0, cette équation possède une unique solution. Si m > 0, il y a deux solutions.

► Correction 16 – Voir l'énoncé

Le discriminant du polynôme $x^2 - 2x + 3$ vaut -8 qui est négatif. Ainsi, pour tout réel x, $x^2 - 2x + 3 > 0$. f est bien définie sur \mathbb{R} .

La fonction $x \mapsto x^2 - 2x + 3$ est strictement positive et dérivable sur \mathbb{R} . f est donc dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = \frac{2x-2}{x^2-2x+3}$.

Puisque pour tout réel x, $x^2 - 2x + 3 > 0$, f'(x) est du signe de 2x - 2.

х	-∞	1		+∞
f'(x)	_	- 0	+	
f	+∞	0		+∞

► Correction 17 – Voir l'énoncé

a. Par croissance du logarithme népérien sur $]0;+\infty[$, $2^n\geqslant 40000$ si et seulement si $\ln(2^n)\geqslant \ln(40000)$ soit $n\ln(2)\geqslant \ln(40000)$ et, $\ln(2)$ étant positif, $n\geqslant \frac{\ln(40000)}{\ln(2)}$. L'entier recherché est 16.

b. Par croissance du logarithme népérien sur $]0; +\infty[$, $1.01^n \ge 2$ si et seulement si $\ln(1.01^n) \ge \ln(2)$ soit $n\ln(1.01) \ge \ln(2)$ et, $\ln(1.01)$ étant positif, $n \ge \frac{\ln(2)}{\ln(1.01)}$. L'entier recherché est 70.

c. Par croissance du logarithme népérien sur $]0; +\infty[$, $0.7^n \le 10^{-3}$ si et seulement si $\ln(0.7^n) \le \ln(10^{-3})$ soit $n\ln(0.7) \le -3\ln(10)$ et, $\ln(0.7)$ étant négatif, $n \ge \frac{-3\ln(10)}{\ln(0.7)}$. L'entier recherché est 20.

- **d.** $121 \times 0.97^{2n+1} \le 1$ si et seulement si $0.97^{2n+1} \le \frac{1}{121}$. Par croissance du logarithme népérien sur $]0; +\infty[$, ceci équivaut à $(2n+1)\ln(0.97) \le -\ln(121)$. En divisant par $\ln(0.97)$ qui est négatif, on obtient $2n+1 \ge -\frac{\ln(121)}{\ln(0.97)}$ et donc $n \ge \frac{1}{2} \left(-\frac{\ln(121)}{\ln(0.97)} 1 \right)$. L'entier recherché est 79.
- $\textbf{e.} \ 3\times 1, 1^n-150\geqslant 365 \ \text{si et seulement si} \ 1.1^n\geqslant \frac{515}{3}. \ \text{Par croissance du logarithme népérien sur }]0; +\infty[\text{, ceci équivaut à } n\ln(1.1)\geqslant \ln(515)-\ln(3) \ \text{et donc } n\geqslant \frac{\ln(515)-\ln(3)}{\ln(1.1)}. \ \text{L'entier recherché est 54}.$
- **f.** $10^{12} \times 2^{-n} \leqslant 0,1$ équivaut à $2^{-n} \leqslant 10^{-13}$. Par croissance du logarithme népérien sur $]0;+\infty[$, ceci équivaut à $-n\ln(2) \leqslant -13\ln(10)$ et donc $n \geqslant \frac{13\ln(10)}{\ln(2)}$. L'entier recherché est 44.

► Correction 18 – Voir l'énoncé

L'expression $(e^{2x}-3)(\ln(x)-1)$ existe pour tout réel x>0. Construisons le tableau de signe de cette expression.

X	0)		ln(3)/2		e		+∞
$e^{2x} - 3$		-	_	0	+		+	
ln(x) - 1		-	_		_	0	+	
$(e^{2x}-3)(\ln(x)-1)$		-	+	0	_	0	+	

Ainsi, l'ensemble solution recherché est $S = \left]0; \frac{\ln(3)}{2} \left[\cup \right]e; +\infty[$.

► Correction 19 – Voir l'énoncé

- 1. Pour tout entier naturel n, $a_{n+1} = u_{n+1} 8 = \frac{7}{8}u_n + 1 8 = \frac{7}{8}(a_n + 8) 7 = \frac{7}{8}a_n$. La suite (a_n) est donc géométrique, de raison $\frac{7}{8}$ et de premier terme $a_0 = u_0 - 8 = -3$.
- 2. Ainsi, pour tout entier naturel n, $a_n = -3\left(\frac{7}{8}\right)^n$ et $u_n = a_n + 8 = 8 3 \times \left(\frac{7}{8}\right)^n$.
- 3. Soit n un entier naturel. On a $u_n \geqslant 7{,}999$ si et seulement si $8-3 \times \left(\frac{7}{8}\right)^n \geqslant 7{,}999$, soit $\left(\frac{7}{8}\right)^n \leqslant \frac{0.001}{3}$. Par croissance du logarithme népérien sur $]0; +\infty[$, ceci équivaut à $n \ln\left(\frac{7}{8}\right) \leqslant \ln\left(\frac{0.001}{3}\right)$ et donc, en divisant par $\ln\left(\frac{7}{8}\right)$ qui est négatif, $n \geqslant \frac{\ln\left(\frac{0.001}{3}\right)}{\ln\left(\frac{7}{8}\right)}$. L'entier recherché est 60.

► Correction 20 – Voir l'énoncé

Soit n un entier naturel. Après n années, la population de cette ville a été multipliée par 1.03^n . On cherche donc à résoudre l'équation $1.03^n \ge 2$, ce qui équivaut à $n \ge \frac{\ln(2)}{\ln(1.03)}$. L'entier recherché est 24 : la population aura doublé en 24 ans.

► Correction 21 – Voir l'énoncé

- 1. Pour tout réel x, $e^x > 0$ et donc $1 + e^x > 0$. f est donc bien définie sur \mathbb{R} .
- 2. f est dérivable comme composition de fonctions dérivables. Pour tout réel x, $f'(x) = \frac{e^x}{1 + e^x}$.
- 3. On a $\lim_{x \to +\infty} (1 + e^x) = +\infty$ et $\lim_{x \to -\infty} (1 + e^x) = 1$. Ainsi, $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = \ln(1) = 0$. On obtient alors le tableau de variations suivant.

х	-∞ +∞
f'(x)	+
f	+∞

4. (a) Pour tout réel x,

$$g(x) = f(x) - x = \ln(1 + e^x) - \ln(e^x) = \ln\left(\frac{1 + e^x}{e^x}\right) = \ln(e^{-x} + 1).$$

- (b) Pour tout réel x, $1 + e^{-x} > 1$ et donc $\ln(1 + e^{-x}) > 0$, par croissance du logarithme népérien sur $[1; +\infty[$. Il en vient que pour tout réel x, g(x) > 0, soit f(x) x > 0 et donc f(x) > x.
- (c) Puisque $\lim_{x \to +\infty} (1 + e^{-x}) = 1$, on a $\lim_{x \to +\infty} g(x) = 0$. La courbe de f se rapproche de la droite d'équation y = x au voisinage de $+\infty$.

► Correction 22 – Voir l'énoncé

- 1. Par somme de limites, $\lim_{x\to 0^+} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$.
- 2. Pour tout réel x > 0, $f'(x) = \frac{1}{2\sqrt{x}} + \frac{1}{x} = \frac{\sqrt{x}}{2x} + \frac{2}{2x} = \frac{\sqrt{x} + 2}{2x}$.

- 3. Pour tout réel x > 0, f'(x) > 0. f est donc strictement croissante sur $]0; +\infty[$.
- 4. f est continue sur $]0; +\infty[$. De plus, $\lim_{x\to 0^+} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$. D'après le théorème des valeurs intermédiaires, il existe un réel $\alpha \in]0; +\infty[$ tel que $f(\alpha) = 0$, c'est-à-dire $\sqrt{\alpha} + \ln(\alpha) = 0$ ou encore $\sqrt{\alpha} = -\ln(\alpha)$. A l'aide de la calculatrice, on trouve $\alpha \simeq 0.49$.

► Correction 23 – Voir l'énoncé

Pour tout réel x, on pose $u(x) = e^x - x$. u est dérivable sur \mathbb{R} et pour tout réel x, $u'(x) = e^x - 1$. On en déduit le tableau de variations de u.

x	-∞		0		+∞
u'(x)		_	0	+	
и	+∞		1		+∞

En particulier, pour tout réel x, $e^x - x \ge 1$ et donc $e^x - x > 0$. f est donc définie sur \mathbb{R} . f est également dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = \frac{e^x - 1}{e^x - x}$. Les variations de f sont les mêmes que les variations de f. On a donc le tableau de variations suivant.

On peut alors tracer l'allure de la courbe de f.

► Correction 24 – Voir l'énoncé

1. D'après le graphique, on a f(1) = 4 et f'(1) = 0.

2. Pour tout réel x strictement positif,

$$f'(x) = \frac{\frac{b}{x} \times x - (a + b\ln(x)) \times 1}{x^2} = \frac{b - a - b\ln(x)}{x^2}.$$

- 3. D'une part, f(1) = 4 d'après le graphique. Or, en utilisant la formule, on a $f(1) = \frac{a + b \ln(1)}{1} = a$. Ainsi, a = 4. Par ailleurs, f'(1) = 0 d'après le graphique, et $f'(1) = \frac{b - 4 - b \ln(1)}{12} = b - 4$ en utilisant la formule. Il en vient que b-4=0 et donc b=4.
- 4. On a $\lim_{x\to 0^+} (4+4\ln(x)) = -\infty$ et donc $\lim_{x\to 0^+} (f(x)) = -\infty$. Par ailleurs, pour tout réel x strictement positif, $f(x) = \frac{4}{x} + \frac{4\ln(x)}{x}$. Par croissances comparées et somme de limites, $\lim_{x \to +\infty} (f(x)) = 0$.
- 5. Pour tout x > 0, $f'(x) = \frac{-4\ln(x)}{x^2}$ est du signe opposé à celui de $\ln(x)$.

x	0		1		+∞
f'(x)		+	0	_	
f	+∞		4		0

- 6. Pour tout réel x > 0, $f''(x) = \frac{-\frac{4}{x} \times x^2 (-4\ln(x)) \times 2x}{(x^2)^2} = \frac{x(-4 + 8\ln(x))}{x^4} = \frac{-4 + 8\ln(x)}{x^3}$.
- 7. Pour tout x > 0, on a $x^3 > 0$ et $-4 + 8\ln(x) > 0$ si et seulement si $\ln(x) > \frac{1}{2}$ soit $x > \sqrt{e}$.

X	0	\sqrt{e}		+∞
f''(x)		- 0	+	

► Correction 25 – Voir l'énoncé

Partie A

- 1. Par croissances, comparées, $\lim_{x\to 0^+} x \ln(x) = 0$. Ainsi, $\lim_{x\to 0^+} f(x) = 0$. 2. Pour tout réel x>0, $f(x)=x(1-\ln(x))$. Or, $\lim_{x\to +\infty} x=+\infty$ et $\lim_{x\to +\infty} (1-\ln(x))=-\infty$. Par produit,
- 3. (a) Pour tout réel x > 0, $f'(x) = 1 \left(1 \times \ln(x) + x \times \frac{1}{x}\right) = 1 \ln(x) + 1 = -\ln(x)$.
 - (b) On en déduit le tableau de signes de f' et le tableau de variations de f.

4. On a f(x) = x si et seulement si $x - x \ln(x) = x$ soit $-x \ln(x) = 0$. Puisque x > 0, l'unique solution de cette équation est x = 1.

Partie B

- 1. Pour tout entier naturel n, on considère la proposition P(n): « $0.5 \le u_n \le u_{n+1} \le 1$ ».
 - On a $u_0 = 0.5$ et $u_1 = 0.5 0.5 \ln(0.5) \approx 0.84$. On a bien $0.5 \le u_0 \le u_1 \le 1$. P(0) est vraie.
 - Soit n un entier naturel tel que P(n) est vraie. On a alors $0.5 \le u_n \le u_{n+1} \le 1$. Puisque la fonction f est croissante sur [0.5;1] on a alors $f(0.5) \le f(u_n) \le f(u_{n+1}) \le f(1)$. Or, $f(0.5) \ge 0.5$ et f(1) = 1. Ainsi, on a $0.5 \le u_{n+1} \le u_{n+2} \le 1$. P(n+1) est donc vraie.
 - Par récurrence, P(n) est vraie pour tout entier naturel n.
- 2. (a) D'après la question précédente, la suite (u_n) est croissante et majorée, elle est donc convergente.
 - (b) Puisque la fonction f est continue sur [0.5;1] et que pour tout entier naturel $n, u_n \in [0.5;1]$, alors $f(\ell) = \ell$. Or, l'unique solution de cette équation sur cet intervalle est 1. Ainsi, $\ell = 1$.

Partie C

Pour tout réel k, pour tout réel x, f_k est dérivable sur $]0; +\infty[$ et $f'_k(x) = k - (1 \times \ln(x) + x \times \frac{1}{x}) = k - 1 - \ln(x)$. Or, $f'_k(x) \le 0$ si et seulement si $k - 1 - \ln(x) \le 0$ si et seulement si $k - 1 \le \ln(x)$ si et seulement si $k \ge e^{k-1}$

Ainsi, f_k admet un maximum en $x_k = e^{k-1}$.

Par ailleurs, $f_k(x_k) = ke^{k-1} - e^{k-1} \times \ln(e^{k-1}) = ke^{k-1} - (k-1)e^{k-1} = e^{k-1}$.

► Correction 26 – Voir l'énoncé

- 1. Si le test est négatif on aura fait un test : dans ce cas, on a $X_n = 1$. Sinon, on aura fait un test joint puis n tests individuels : on aura alors $X_n = n + 1$.
- 2. $\mathbb{P}(X_n = 1)$ est la probabilité que l'on ne fasse qu'un test : cela signifie que le test des n personnes est négatif et donc qu'elles ne sont pas malades. La probabilité qu'une personne au hasard soit malade est égale à 0.05. La probabilité qu'une personne au hasard soit saine est donc de 0.95. Le tirage étant assimilé à un tirage avec remise, on suppose ceux-ci indépendants. La probabilité que les n personnes soient saines vaut donc 0.95^n .

3. Puisque X_n ne peut prendre que les valeurs 1 et n+1, on a alors $\mathbb{P}(X_n=n+1)=1-0.95^n$. Ainsi, $E[X_n]=(n+1)\times\mathbb{P}(X_n=n+1)+1\times\mathbb{P}(X_n=1)=(n+1)(1-0.95^n)+0.95^n$ et donc $E[X_n]=n+1-n\times0.95^n$.

Cette espérance représente le nombre moyen d'analyses à effectuer pour un échantillon de n personnes.

4. (a) f est dérivable sur $[20; +\infty[$ et pour tout réel x de cet intervalle, $f'(x) = \frac{1}{x} + \ln(0.95)$.

Or, $x \ge 20$ et donc $\frac{1}{x} \le 0.05$ puis $f'(x) \le 0.05 + \ln(0.95) < 0$. f est strictement décroissante sur $[20; +\infty[$.

Par ailleurs, pour tout réel $x \ge 20$, $f(x) = x \left(\frac{\ln(x)}{x} + \ln(0.95) \right)$. Or, par croissances comparées,

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ et donc } \lim_{x \to +\infty} \left(\frac{\ln(x)}{x} + \ln(0.95) \right) = \ln(0.95) < 0.$$

Par produit, $\lim_{x \to +\infty} f(x) = -\infty$.

- (b) La fonction f est continue sur $[20; +\infty[$. On a $f(20) \simeq 1.97$ et $\lim_{x \to +\infty} f(x) = -\infty$. D'après le théorème des valeurs intermédiaires, il existe un réel $\alpha \geqslant 20$ tel que $f(\alpha) = 0$. De plus, la fonction f étant strictement décroissante sur cet intervalle, une telle solution est unique. On trouve $87 < \alpha < 87.1$.
- (c) En utilisant les deux questions précédentes, on en déduit que $f(x) \ge 0$ si $x \in [20; \alpha]$ et $f(x) \le 0$ si $x \in [\alpha; +\infty[$.
- 5. Soit $n \ge 20$. On a $E(X_n) < n$ si et seulement si $n+1-n \times 0.95^n < n$ soit $1 < n \times 0.95^n$.

On applique le logarithme, qui est strictement croissant sur $[1; +\infty[$. Ainsi, $E(X_n) < n$ si et seulement si $0 < \ln(n \times 0.95^n)$.

Tester toutes les personnes conduira à moins d'analyses qu'avec la méthode groupée pour des échantillons de 20 à 87 personnes au maximum. Au delà il vaut mieux utiliser la méthode de test groupés.