MA423 Matrix Computations

Lecture 11: Perturbation Theory for Linear Systems

Rafikul Alam Department of Mathematics IIT Guwahati

Outline

- Condition numbers
- Perturbation and sensitivity analysis of linear systems

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$ is called the condition number of A.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Note that for a subordinate matrix norm, we have $\operatorname{cond}(A) = ||A|| \, ||A^{-1}|| \ge 1$.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Note that for a subordinate matrix norm, we have $\operatorname{cond}(A) = ||A|| \, ||A^{-1}|| \ge 1$.

Remark: The determinant det(A) is not a good measure of ill-conditioning of A.

$$A := 10^{-1}I_n \Longrightarrow \det(A) = 10^{-n}$$
 and $\operatorname{cond}(A) = 1$.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Note that for a subordinate matrix norm, we have $\operatorname{cond}(A) = ||A|| \, ||A^{-1}|| \ge 1$.

Remark: The determinant det(A) is not a good measure of ill-conditioning of A.

$$A := 10^{-1} I_n \Longrightarrow \det(A) = 10^{-n} \text{ and } \operatorname{cond}(A) = 1.$$

$$B := egin{bmatrix} 1 & 10^{10} \ 0 & 1 \end{bmatrix} \Longrightarrow \det(B) = 1 \text{ and } \operatorname{cond}_{\infty}(B) = (1+10^{10})^2 \simeq 10^{20}.$$

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Note that for a subordinate matrix norm, we have $\operatorname{cond}(A) = ||A|| \, ||A^{-1}|| \ge 1$.

Remark: The determinant det(A) is not a good measure of ill-conditioning of A.

$$A := 10^{-1}I_n \Longrightarrow \det(A) = 10^{-n}$$
 and $\operatorname{cond}(A) = 1$.

$$B:=egin{bmatrix} 1 & 10^{10} \ 0 & 1 \end{bmatrix}\Longrightarrow \det(B)=1 \ ext{and} \ ext{cond}_{\infty}(B)=(1+10^{10})^2\simeq 10^{20}.$$

Notice that columns A are orthogonal whereas columns of B are nearly linearly dependent.

Definition: Let A be an $n \times n$ nonsingular matrix. Then $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$ is called the condition number of A. If $\operatorname{cond}(A)$ is NOT too large then A is said to be well-conditioned. If $\operatorname{cond}(A)$ is large then A is said to be ill-conditioned.

Note that for a subordinate matrix norm, we have $\operatorname{cond}(A) = \|A\| \|A^{-1}\| \ge 1$.

Remark: The determinant det(A) is not a good measure of ill-conditioning of A.

$$A := 10^{-1}I_n \Longrightarrow \det(A) = 10^{-n}$$
 and $\operatorname{cond}(A) = 1$.

$$B:=egin{bmatrix} 1 & 10^{10} \ 0 & 1 \end{bmatrix}\Longrightarrow \det(B)=1 \ ext{and} \ ext{cond}_{\infty}(B)=(1+10^{10})^2\simeq 10^{20}.$$

Notice that columns A are orthogonal whereas columns of B are nearly linearly dependent. Indeed, $\cos\theta = \langle Be_1, Be_2 \rangle / \|Be_1\|_2 \|Be_2\|_2 = 10^{10} / \sqrt{1 + 10^{20}} \simeq 1$.

If A is nonsingular then when is $A + \Delta A$ nonsingular?

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

Proof: If possible, suppose that $A + \Delta A$ is singular. Then there is a vector x such that ||x|| = 1 and $(A + \Delta A)x = 0$.

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

Proof: If possible, suppose that $A + \Delta A$ is singular. Then there is a vector x such that ||x|| = 1 and $(A + \Delta A)x = 0$.

Then
$$x = -A^{-1}\Delta Ax$$

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

Proof: If possible, suppose that $A + \Delta A$ is singular. Then there is a vector x such that ||x|| = 1 and $(A + \Delta A)x = 0$.

Then $x = -A^{-1}\Delta Ax \Longrightarrow 1 = ||A^{-1}\Delta Ax|| \le ||A^{-1}|| \, ||\Delta A||$, which is a contradiction.

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

Proof: If possible, suppose that $A + \Delta A$ is singular. Then there is a vector x such that ||x|| = 1 and $(A + \Delta A)x = 0$.

Then $x = -A^{-1}\Delta Ax \Longrightarrow 1 = ||A^{-1}\Delta Ax|| \le ||A^{-1}|| \, ||\Delta A||$, which is a contradiction. \blacksquare

Remark: There is a ΔA such that $\|\Delta A\| \|A^{-1}\| = 1$ and $A + \Delta A$ is singular.

If A is nonsingular then when is $A + \Delta A$ nonsingular?

Fact: If $\|\Delta A\| \|A^{-1}\| < 1$ or equivalently, $\frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A) < 1$, then $A + \Delta A$ is nonsingular.

Proof: If possible, suppose that $A + \Delta A$ is singular. Then there is a vector x such that ||x|| = 1 and $(A + \Delta A)x = 0$.

Then $x = -A^{-1}\Delta Ax \Longrightarrow 1 = ||A^{-1}\Delta Ax|| \le ||A^{-1}|| \, ||\Delta A||$, which is a contradiction. \blacksquare

Remark: There is a ΔA such that $\|\Delta A\| \|A^{-1}\| = 1$ and $A + \Delta A$ is singular. In other words, the distance to nearest singular matrix $\propto \frac{1}{\operatorname{cond}(A)}$.

Consider the linear system

$$\begin{bmatrix}
1 & \frac{1}{2} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}$$

Hilbert matrix H

Consider the linear system

$$\begin{bmatrix}
1 & \frac{1}{2} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}.$$
Hilbert matrix H

The matrix H is known as a Hilbert matrix, and it is known to be notoriously ill-conditioned.

Consider the linear system

$$\begin{bmatrix}
1 & \frac{1}{2} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}.$$
Hilbert matrix H

The matrix H is known as a Hilbert matrix, and it is known to be notoriously ill-conditioned.

To see what this means, set $x := \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^{\top} \in \mathbb{R}^n$ and define b := Hx. Then x is the solution of Hx = b.

Consider the linear system

$$\begin{bmatrix}
1 & \frac{1}{2} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}.$$
Hilbert matrix H

The matrix H is known as a Hilbert matrix, and it is known to be notoriously ill-conditioned.

To see what this means, set $x := \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^{\top} \in \mathbb{R}^n$ and define b := Hx. Then x is the solution of Hx = b.

Now we use MATLAB to solve the linear system and compare the computed solution with the known solution x.

>> xx = hilb(12)\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.602837e-17.

>> xx = hilb(12)\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.602837e-17.

n	$\ \mathtt{x} - \mathtt{x} \mathtt{x}\ _{\infty}$	cond(H)
4	.4130030e-12	2.837500e+04
6	.6964739e-09	2.907028e+07
8	.7311487e-07	3.387279e+10
10	.2047785e-03	3.535233e+13
12	.2476695e-00	3.841961e + 16

>> xx = hilb(12)\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.602837e-17.

n	$\ \mathbf{x} - \mathbf{x}\mathbf{x}\ _{\infty}$	cond(H)
4	.4130030e-12	2.837500e+04
6	.6964739e-09	2.907028e+07
8	.7311487e-07	3.387279e+10
10	.2047785e-03	3.535233e+13
12	.2476695e-00	3.841961e + 16

This would appear to justify the predictions that as *n* increases, roundoff errors would accumulate and destroy all accuracy in the computed solution of a linear system!

= 1 / cond(hilb(12))

>> xx = hilb(12)\b; Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.602837e-17.

n	$\ \mathtt{x} - \mathtt{x} \mathtt{x}\ _{\infty}$	cond(H)
4	.4130030e-12	2.837500e+04
6	.6964739e-09	2.907028e+07
8	.7311487e-07	3.387279e+10
10	.2047785e-03	3.535233e+13
12	.2476695e-00	3.841961e + 16

This would appear to justify the predictions that as *n* increases, roundoff errors would accumulate and destroy all accuracy in the computed solution of a linear system!

The Hilbert matrix is SPD but the computed solutions differ drastically from true solutions. Is it the fault of the algorithm?

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have $\hat{x} - x = A^{-1}\Delta b$

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have $\hat{x} - x = A^{-1}\Delta b \Longrightarrow ||x - \hat{x}|| \le ||A^{-1}|| \, ||\Delta b||$.

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := ||A|| \, ||A^{-1}||$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have
$$\hat{x} - x = A^{-1}\Delta b \Longrightarrow \|x - \hat{x}\| \le \|A^{-1}\| \|\Delta b\|$$
. Now $Ax = b \Longrightarrow \|b\| \le \|A\| \|x\|$

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have
$$\hat{x} - x = A^{-1}\Delta b \Longrightarrow \|x - \hat{x}\| \le \|A^{-1}\| \|\Delta b\|$$
. Now $Ax = b \Longrightarrow \|b\| \le \|A\| \|x\| \Longrightarrow 1/\|x\| \le \|A\|/\|b\|$, which yields the bound.

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have
$$\hat{x} - x = A^{-1}\Delta b \Longrightarrow \|x - \hat{x}\| \le \|A^{-1}\| \|\Delta b\|$$
. Now $Ax = b \Longrightarrow \|b\| \le \|A\| \|x\| \Longrightarrow 1/\|x\| \le \|A\|/\|b\|$, which yields the bound.

Residual bound: Let $\hat{x} = ALG(A, b)$. Then the residual $r := b - A\hat{x}$ yields $A\hat{x} = b - r = b + \Delta b$, where $\Delta b := -r$.

Theorem: Let A be nonsingular and $\operatorname{cond}(A) := \|A\| \|A^{-1}\|$. Consider the linear systems Ax = b and $A\hat{x} = b + \Delta b$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Moreover, the upper bound is attained for some Δb .

Proof: We have
$$\hat{x} - x = A^{-1}\Delta b \Longrightarrow \|x - \hat{x}\| \le \|A^{-1}\| \|\Delta b\|$$
. Now $Ax = b \Longrightarrow \|b\| \le \|A\| \|x\| \Longrightarrow 1/\|x\| \le \|A\|/\|b\|$, which yields the bound.

Residual bound: Let $\hat{x} = \text{ALG}(A, b)$. Then the residual $r := b - A\hat{x}$ yields $A\hat{x} = b - r = b + \Delta b$, where $\Delta b := -r$. Hence we have the residual bound $\frac{\|x - \hat{x}\|}{\|x\|} \leq \text{cond}(A) \frac{\|r\|}{\|b\|}$.

Example

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Example

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_{1}(A) = (1999)^2 = 3.996 \times 10^6$.

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Set
$$b:=\begin{bmatrix}1999\\1997\end{bmatrix}$$
 and $\Delta b:=10^{-2}\begin{bmatrix}-1\\1\end{bmatrix}$. Consider system $A\hat{x}=b+\Delta b$. Then

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Set
$$b := \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $\Delta b := \mathbf{10^{-2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Consider system $A\hat{x} = b + \Delta b$. Then $\hat{x} = x + A^{-1}\Delta b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 19.97 \\ -19.99 \end{bmatrix}$.

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Set
$$b:=\begin{bmatrix}1999\\1997\end{bmatrix}$$
 and $\Delta b:=10^{-2}\begin{bmatrix}-1\\1\end{bmatrix}$. Consider system $A\hat{x}=b+\Delta b$. Then $\hat{x}=x+A^{-1}\Delta b=\begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}19.97\\-19.99\end{bmatrix}$. This shows that
$$\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}}=19.99$$

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Set
$$b:=\begin{bmatrix}1999\\1997\end{bmatrix}$$
 and $\Delta b:=\mathbf{10^{-2}}\begin{bmatrix}-1\\1\end{bmatrix}$. Consider system $A\hat{x}=b+\Delta b$. Then $\hat{x}=x+A^{-1}\Delta b=\begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}19.97\\-19.99\end{bmatrix}$. This shows that
$$\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}}=19.99=(1999)^2\frac{10^{-2}}{1999}=$$

Consider
$$A := \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$$
. Then $A^{-1} = \begin{bmatrix} -998 & 999 \\ 999 & -1000 \end{bmatrix}$.

Thus
$$||A||_{\infty} = ||A||_1 = ||A^{-1}||_{\infty} = ||A^{-1}||_1 = 1999$$
. Hence $\operatorname{cond}_{\infty}(A) = \operatorname{cond}_1(A) = (1999)^2 = 3.996 \times 10^6$.

Observe that
$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $A^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1997 \\ -1999 \end{bmatrix}$.

Set
$$b := \begin{bmatrix} 1999 \\ 1997 \end{bmatrix}$$
 and $\Delta b := 10^{-2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Consider system $A\hat{x} = b + \Delta b$. Then $\hat{x} = x + A^{-1}\Delta b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 19.97 \\ -19.99 \end{bmatrix}$. This shows that
$$\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} = 19.99 = (1999)^2 \frac{10^{-2}}{1999} = \text{cond}_{\infty}(A) \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}.$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$.

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x-\hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\frac{\|\Delta A\|}{\|A\|}\operatorname{cond}(A)}\left(\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta b\|}{\|b\|}\right)$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have $\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b)$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have

$$\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b) \Longrightarrow \|\hat{x} - x\| \le \|A^{-1}\|(\|\Delta A\| \|\hat{x}\| + \|\Delta b\|).$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have

$$\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b) \Longrightarrow \|\hat{x} - x\| \le \|A^{-1}\|(\|\Delta A\| \|\hat{x}\| + \|\Delta b\|).$$
 Now

$$\|\hat{x}\| \le \|\hat{x} - x\| + \|x\| \Longrightarrow$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have

$$\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b) \Longrightarrow \|\hat{x} - x\| \le \|A^{-1}\|(\|\Delta A\| \|\hat{x}\| + \|\Delta b\|).$$
 Now

$$\|\hat{x}\| \le \|\hat{x} - x\| + \|x\| \Longrightarrow (1 - \|A^{-1}\| \Delta A\|) \|x - \hat{x}\| \le \|A^{-1}\| (\|\Delta A\| \|x\| + \|\Delta b\|).$$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have

$$\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b) \Longrightarrow \|\hat{x} - x\| \le \|A^{-1}\|(\|\Delta A\| \|\hat{x}\| + \|\Delta b\|).$$
 Now

$$\|\hat{x}\| \le \|\hat{x} - x\| + \|x\| \Longrightarrow (1 - \|A^{-1}\| \Delta A\|) \|x - \hat{x}\| \le \|A^{-1}\| (\|\Delta A\| \|x\| + \|\Delta b\|).$$

Now diving both sides by ||x|| and using the fact that $b = Ax \Longrightarrow ||b|| < ||A|| \, ||x||$

Consider the systems Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Suppose that A is nonsingular and $||\Delta A|| ||A^{-1}|| < 1$. Then

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1 - \frac{\|\Delta A\|}{\|A\|} \operatorname{cond}(A)} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)$$
$$\lesssim \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right).$$

Proof: We have

$$\hat{x} - x = -A^{-1}(\Delta A \hat{x} - \Delta b) \Longrightarrow \|\hat{x} - x\| \le \|A^{-1}\|(\|\Delta A\| \|\hat{x}\| + \|\Delta b\|).$$
 Now

$$\|\hat{x}\| \le \|\hat{x} - x\| + \|x\| \Longrightarrow (1 - \|A^{-1}\| \Delta A\|) \|x - \hat{x}\| \le \|A^{-1}\| (\|\Delta A\| \|x\| + \|\Delta b\|).$$

Now diving both sides by ||x|| and using the fact that

$$b = Ax \Longrightarrow ||b|| \le ||A|| \, ||x|| \Longrightarrow ||b||/||x|| \le ||A||$$
, we obtain the bound.

Consider
$$A:=egin{bmatrix}1&1+\delta\1-\delta&1\end{bmatrix}$$
 , where $\delta>0$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then $A^{-1}=rac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then
$$A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}$$
. Hence $\mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then
$$A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}. \text{ Hence } \mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}.$$

For $\delta := 10^{-2}$, we have $\operatorname{cond}_{\infty}(A) = (201)^2 = 40401$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then
$$A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}. \text{ Hence } \mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}.$$

For $\delta := 10^{-2}$, we have $\operatorname{cond}_{\infty}(A) = (201)^2 = 40401$.

Consider the linear systems
$$\begin{bmatrix} 1 & 1.01 \\ 0.99 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.01 \\ 1.99 \end{bmatrix}$$

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then
$$A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}. \text{ Hence } \mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}.$$

For $\delta := 10^{-2}$, we have $\operatorname{cond}_{\infty}(A) = (201)^2 = 40401$.

Consider the linear systems
$$\begin{bmatrix} 1 & 1.01 \\ 0.99 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.01 \\ 1.99 \end{bmatrix}$$
 whose solution is $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$ and $\begin{bmatrix} 1 & 1.01 \\ 1 & 1 \end{bmatrix} \hat{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then
$$A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}. \text{ Hence } \mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}.$$

For $\delta := 10^{-2}$, we have $\operatorname{cond}_{\infty}(A) = (201)^2 = 40401$.

Consider the linear systems
$$\begin{bmatrix} 1 & 1.01 \\ 0.99 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.01 \\ 1.99 \end{bmatrix}$$
 whose solution is $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$ and $\begin{bmatrix} 1 & 1.01 \\ 1 & 1 \end{bmatrix} \hat{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Then $\hat{x} = \begin{bmatrix} 2 & 0 \end{bmatrix}^{\top}$. Note that $\Delta A = 10^{-2}e_2e_1^{\top}$ and $\Delta b = 10^{-2}\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$.

Consider
$$A:=\begin{bmatrix}1&1+\delta\\1-\delta&1\end{bmatrix}$$
, where $\delta>0$. Then $A^{-1}=\frac{1}{\delta^2}\begin{bmatrix}1&-1-\delta\\-1+\delta&1\end{bmatrix}$. Hence $\mathrm{cond}_{\infty}(A)=\frac{(2+\delta)^2}{\delta^2}$.

For $\delta := 10^{-2}$, we have $\operatorname{cond}_{\infty}(A) = (201)^2 = 40401$.

Consider the linear systems
$$\begin{bmatrix} 1 & 1.01 \\ 0.99 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.01 \\ 1.99 \end{bmatrix}$$
 whose solution is $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$ and $\begin{bmatrix} 1 & 1.01 \\ 1 & 1 \end{bmatrix} \hat{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Then $\hat{x} = \begin{bmatrix} 2 & 0 \end{bmatrix}^{\top}$. Note that $\Delta A = 10^{-2}e_2e_1^{\top}$ and $\Delta b = 10^{-2}\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. We have $\|x - \hat{x}\|_{\infty}/\|x\|_{\infty} = 1$.

Consider the $n \times n$ Hilbert matrix $H_n = \text{hilb}(n)$, where $H_n(i,j) := 1/(i+j-1)$

Consider the $n \times n$ Hilbert matrix $H_n = \text{hilb}(n)$, where $H_n(i,j) := 1/(i+j-1)$

Theoretically,
$$\operatorname{cond}_2(H_n) \approx \left(\frac{(1+\sqrt{2})^{4n}}{\sqrt{n}}\right)$$
.

Consider the $n \times n$ Hilbert matrix $H_n = hilb(n)$, where $H_n(i,j) := 1/(i+j-1)$

Theoretically,
$$\operatorname{cond}_2(H_n) \approx \left(\frac{(1+\sqrt{2})^{4n}}{\sqrt{n}}\right)$$
.

But $cond_2(H_n)$ computed by MATLAB reaches the maximum when n = 13 and does not continue to grow when n > 13.

Consider the $n \times n$ Hilbert matrix $H_n = hilb(n)$, where $H_n(i,j) := 1/(i+j-1)$

Theoretically,
$$\operatorname{cond}_2(H_n) \approx \left(\frac{(1+\sqrt{2})^{4n}}{\sqrt{n}}\right)$$
.

But $cond_2(H_n)$ computed by MATLAB reaches the maximum when n = 13 and does not continue to grow when n > 13.

This happens due to finite precision arithmetic. It is known that $\sigma_{\max}(H_n) := \|H_n\|_2 \to \pi$ and $\sigma_{\min}(H_n) := 1/\|H_n^{-1}\|_2 \to 0$ as $n \to \infty$.

Consider the $n \times n$ Hilbert matrix $H_n = hilb(n)$, where $H_n(i,j) := 1/(i+j-1)$

Theoretically,
$$\operatorname{cond}_2(H_n) \approx \left(\frac{(1+\sqrt{2})^{4n}}{\sqrt{n}}\right)$$
.

But $cond_2(H_n)$ computed by MATLAB reaches the maximum when n = 13 and does not continue to grow when n > 13.

This happens due to finite precision arithmetic. It is known that $\sigma_{\max}(H_n) := \|H_n\|_2 \to \pi$ and $\sigma_{\min}(H_n) := 1/\|H_n^{-1}\|_2 \to 0$ as $n \to \infty$. Hence

$$\operatorname{cond}(H_n) = \frac{\sigma_{\sf max}(H_n)}{\sigma_{\sf min}(H_n)} \approx \frac{\pi}{\sigma_{\sf min}(H_n) + \sf eps} \approx \frac{\pi}{\sf eps}.$$

Now $\pi/\text{eps} = 1.4148e + 16$ and $\text{cond}_2(H_{13}) = 4.7864e + 17$.

Growth of condition number of Hilbert matrix

