1. Информация - <u>2. ГДЗ</u> - <u>3. Гайды</u>

Гайд на Тракамавуса 1.2

t.me/fpmicringe

Структура теста:

					ест ! б.				
Тема 1		Тема 2		Тема 3		Тема 4		Тема 5	
№ 1	№ 2	№ 3	N º 4	№ 5	№ 6	№ 7	№ 8	N º 9	№ 10
1 б.	1 б.	1 б.	1 б.	1 б.	1 б.	2 б.	2 б.	2 б.	2 б.

Содержание теста и ГДЗ:

Тема	Формулировка	ГДЗ	Гайд
1. Задачи с	Найти экстремали в вариационной задаче [16]	<u>(тык)</u>	<u>(тык)</u>
закрепленными			
границами [16]			
2. Поле экстремалей.	Найти решение уравнения Якоби и проверить выполнимость условия	(тык)	(тык)
Условие Якоби <i>[17]</i>	Якоби в следующей задаче [4]		
, , , , , , , , , , , , , , , , , , ,	Удовлетворяет ли функционал условию Якоби [2]	<u>(тык)</u>	
	Удовлетворяет ли условию Якоби функционал [7]	<u>(тык)</u>	
	Укажите наименьшее значение параметра а, при котором функционал	<u>(тык)</u>	<u>(тык)</u>
	НЕ удовлетворяет условию Якоби [2]		
	Укажите наименьшее по модулю значение параметра а из возможных,	<u>(тык)</u>	нету
	при котором вариация V[у] НЕ удовлетворяет условию Якоби [1]		
	При каких значениях параметра а удовлетворяет условию Якоби	<u>(тык)</u>	<u>(тык)</u>
	функционал [1]		
3. Достаточные условия	Исследовать на экстремум функционал [14]	<u>(тык)</u>	<u>(тык)</u>
экстремума <i>[16]</i>	Используя достаточные условия Вейерштрасса, исследовать на	<u>(тык)</u>	
	экстремум функционал [1]		
	Используя условие Лежандра, исследовать на экстремум функционал	<u>(тык)</u>	
	[1]		
4. Задачи с подвижными	Найти кратчайшее расстояние от ••• до ••• [9]	<u>(тык)</u>	<u>(тык)</u>
границами <i>[17]</i>	Найти функцию, реализующую экстремум функционала V[y], если •••	<u>(тык)</u>	<u>(тык)</u>
	[8]		
5. Условный экстремум	Найти экстремали в изопериметрической задаче ••• при условии •••	<u>(тык)</u>	<u>(тык)</u>
функционала [19]	[15]		
	Дана изопериметрическая задача при условии •••. При каком значении	<u>(тык)</u>	<u>(тык)</u>
	λ решением будет ••• [1]		
	Определить вид вспомогательного функционала L и найти кратчайшее	<u>(тык)</u>	<u>(тык)</u>
	расстояние между точками, лежащими на ••• [3]		

Нужные формулы:

тужные форм	y
Эйлерина	$F_{y} - \frac{d}{dx}F_{y'} = 0$
Лежандра	При $x_0 < x \le x_1$:
	$F_{y'y'} \ge 0$ - min; $F_{y'y'} \le 0$ - max
	Также должна выполняться Якоба
Якоба	$(F_{yy} - \frac{d}{dx}F_{yy'})u - \frac{d}{dx}(F_{y'y'}u') = 0$
Веерштрасса	$F(x, y, y') - F(x, y, p) - (y' - p)F_{p}(x, y, p)$
Трансики	$[F + (\phi_n' - y')F_{y'}] _{x=xn} = 0$
Микротрансики	$x = const, F_{y'} _{x=xn} = 0;$ $y = const, [F - y'F_{y'}] _{x=xn} = 0$
Помогатор	$L = F(x, y, y') + \lambda G(x, y, y')$
Дефурины	$y' = \lambda y -> y = Ce^{\lambda x}$

$$y'' + \lambda^{2}y = 0 -> y = A\cos(\lambda x) + B\sin(\lambda x)$$
$$y'' - \lambda^{2}y = 0 -> y = Ae^{\sqrt{\lambda}x} + Be^{\sqrt{\lambda}x}$$

<u> 1. Информация - **2. ГДЗ** - 3. Гайды</u>

1.1. Найти экстремали в вариационной задаче [16]

- 1. Найти экстремали в вариационной задаче
- $V[y] = \int_{0}^{x} (2y(x-1) + yy' \frac{y'^2}{2}) dx, \ y(0) = 1, \ y(1) = 2.$
- $y = -\frac{x^3}{3} + x^2 + x + \frac{1}{3}$
- $y = -\frac{x^3}{3} + x^2 + C_1 x + C_2$
- $y = -\frac{x^3}{3} + \frac{x^2}{2} + \frac{5}{6}x + 1$
- $\bigcirc y = -\frac{x^3}{3} + x^2 + \frac{x}{3} + 1$ 2. Найти экстремали в вариационной задаче
- $V[y] = \int_{0}^{3} (2yy' y'^{2}) dx, \ y(-2) = -\frac{3}{2}, \ y(3) = \frac{7}{2}.$
- $\bigcirc y = x + \frac{1}{2}$
- $y = C_1 x + C_2$
- $y = x^2 \frac{11}{2}$ 3. Найти экстремали в вариационной задаче
- $V[y] = \int_{0}^{4} (y'(y' + 2y) + 2y(x 2y))dx, \ y(0) = 2, \ y(\frac{\pi}{4}) = \frac{\pi}{16}$
- $\bigcirc y = 2\cos 2x + \frac{x}{4}$
- $y = 2\sin 2x + \frac{x}{4}$
- $y = 2\cos 2x + \frac{\pi}{16}\sin 2x$
- $y = 2\cos 2x \frac{3\pi}{16}\sin 2x + x$
- 4. Найти экстремали в вариационной задаче
- $V[y] = \int_{-1}^{2} (e^{2x}(y'^2 + yy' + x^4)) dx, \ y(0) = 1, \ y(2) = 0.$
- $y = e^x (1 \frac{1}{2}x)$
- $y = e^{-x}(x \frac{1}{2})$
- $\bigcirc y = e^{-x} (1 \frac{1}{2}x)$
- $y = sh(1 \frac{1}{2}x)$ 5. Найти экстремали в вариационной задаче
- $V[y] = \int_{0}^{2} (e^{2x}(y'^{2} + yy' + x^{4}))dx, \ y(0) = 1, \ y(2) = 0.$
- $y = C_1 x \ln x + C_2$
- Не существует экстремали, удовлетворяющей краевым условиям
- $y = \frac{1}{e}xlnx + 1$
- 6. Найти экстремали в вариационной задаче
- $V[y] = \int (y^2 \ln x + yy' x \ln x) dx, \ y(0) = 0, \ y(e) = e.$
- Не существует экстремали, удовлетворяющей краевым условиям

- $y = e^x 1$ $y = C_1 lnx + C_2$

$$V[y] = \int_{0}^{\ln 16} (y^2 + 2y'y^2 + 2y' + 16y'^2) dx, \ y(0) = 0, \ y(\ln 16) = 2.$$

$$\bigcirc y = \frac{4}{3}e^{\frac{x}{4}} - \frac{4}{3}e^{-\frac{x}{4}}$$

$$y = ln16 \cdot sh(4x)$$

$$y = -\frac{xe^{\frac{x}{4}}}{\ln 16} + 2e^{-\frac{x}{4}} - 2$$

$$y = 16e^{4x} - 16e^{-4x}$$

$y = 16e^{4x} - 16e^{-4x}$ 8. Найти экстремали в вариационной задаче

$$V[y] = \int_{0}^{2} (yy' - 2x^{3} + y^{2}y')dx, \ y(0) = 0, \ y(2) = 3.$$

$$y = 0$$

Не существует экстремалей

Экстремалями являются только класс полиномов второй степени, удовлетворяющих краевым условиям

Экстремалью является любая хотя бы один раз дифференцируемая функция на отрезке [0,2], удовлетворяющая краевым условиям

9. Найти экстремали в вариационной задаче

$$V[y] = \int_{-1}^{0} (\frac{3}{2}x^{2}y - \frac{y^{2}}{2})dx, \ y(-1) = y(0) = 1.$$

$$y = -\frac{x^2}{8} - \frac{1}{8}x + 1$$

$$\bigcirc y = -\frac{x^4}{8} - \frac{1}{8}x + 1$$

$$y = -\frac{x^4}{8} + \frac{1}{8}x + 3$$

$$y = -\frac{x^4}{8} + C_1 x + C_2$$

$y = -\frac{x^4}{8} + C_1 x + C_2$ 10. Найти экстремали в вариационной задаче

$$V[y] = \int_{0}^{\frac{\pi}{2}} (\frac{y^{2}}{2} - \frac{y^{2}}{2} + x^{2}y') dx, \ y(0) = 1, y(\frac{\pi}{2}) = \pi.$$

$$\bigcirc y = 2x + \cos x$$

$$y = 5x + \sin x$$

$$y = 2x + \sin x$$

$$y = cosx + 4x$$

11. Найти экстремали в вариационной задаче

$$V[y] = \int_{1}^{e} (xy'^{2} + x^{2} - 4)dx, \ y(1) = 0, y(e) = 1.$$

$$y = x + lnx$$

$$\bigcirc y = lnx$$

$$y = \frac{x-1}{e-1}$$

$$y = C_1 lnx$$

12. Найти экстремали в вариационной задаче

$$V[y] = \int_{0}^{1} \left(\frac{y^{3}}{3} - 4xy'\right) dx, \ y(0) = 1, y(1) = 2.$$

$$y = e^{x} - xe + 2x$$

$$y = 2x^{2}$$

$$y = x + 1$$

$$xy = 2x^2$$

$$y = x + 1$$

Экстремалей нет

13. Найти экстремали в вариационной задаче

$$V[y] = \int_{0}^{\frac{\pi}{2}} (-4yy' - \frac{y^2}{2} + \frac{y^2}{2}) dx, \ y(0) = 5, y(\frac{\pi}{2}) = 1.$$

$$y = C_1 cos(x) + C_2 sin(x)$$

$$\bigcirc y = 5\cos(x) + \sin(x)$$

$$y = 5\cos(x)$$

$$y = 5\cos^2(x) + \sin^2(x)$$

$$V[y] = \int_{2}^{3} (yy' + 5xy + 10y'^{2}) dx, \ y(2) = \frac{1}{3}, y(3) = \frac{49}{8}.$$

$$\bigcirc y = \frac{x^3}{24} + 5x - 10$$

$$y = \frac{139}{24}x - \frac{131}{48}$$

$$y = \frac{x^3}{24} + \frac{x}{3} + \frac{49}{8}$$

$$y = \frac{x^3}{24} + x + \frac{1}{8}$$

$y = \frac{x^3}{24} + x + \frac{1}{8}$ 15. Найти экстремали в вариационной задаче

$$V[y] = \int_{1}^{e} (yy' + \frac{y}{x^2} + y'^2) dx, \ y(1) = 2 - e, y(e) = \frac{2e-1}{2}.$$

$$y = -\frac{1}{2}ln(x) + 4x - 2e$$

$$v = 2x - e$$

$$y = -\frac{1}{2}ln(x) - e$$

$$\bigcirc y = -\frac{1}{2}ln(x) + 2x - e$$

16. Найти экстремали в вариационной задаче

$$V[y] = \int_{0}^{2} ((x+8)y' + xy - y'^{2}) dx, \ y(0) = 2, y(2) = 3.$$

$$\bigcirc y = -\frac{x^3}{12} + \frac{x^2}{4} + \frac{x}{3} + 2$$

$$y = -\frac{x^3}{12} + \frac{x^2}{4} + 3x + 2$$

$$y = \frac{x}{2} + 2$$

$$y = -\frac{x^3}{12} + 3x + 2$$

2.1 Найти решение уравнения Якоби и проверить выполнимость условия Якоби в следующей задаче [3]

1. Найти решение уравнения Якоби и проверить выполнимость условия Якоби в следующей задаче

$$V[y] = \int_{0}^{1} (y'^{2} + 2y^{2}y')dx, \ y(-2) = 3, y(1) = 2.$$

$$u = C(x + 2)$$
, не выполняется

$$u = C(2x + 1)$$
, выполняется

$$u = C(2x + 1)$$
, не выполняется

$$\bigcirc u = C(x + 2)$$
, выполняется

2. Найти решение уравнения Якоби и проверить выполнимость условия Якоби в следующей задаче

$$V[y] = \int_{0}^{\frac{1}{6}} (y'^{2} - 72xyy') dx, \ y(0) = 2, y(\frac{1}{6}) = ch1.$$

$$u = Cx$$
, не выполняется

$$\bigcirc u = C(e^{6x} - e^{-6x})$$
, выполняется

$$u = C(e^{3x} - e^{-3x})$$
, не выполняется

$$u = C(\cos 6x - \sin 6x)$$
, выполняется

3. Найти решение уравнения Якоби и проверить выполнимость условия Якоби в следующей задаче

$$V[y] = \int_{0}^{1} (e^{x}(xchx + \frac{y^{2}}{2} + y + 3y'))dx, \ y(0) = 1, y(1) = e^{-1} - 2.$$

$$u = C(e^{-x} + 1)$$
, не выполняется

$$u = C(e^x - 1)$$
, выполняется

$$\bigcirc u = C(e^{-x} - 1)$$
, выполняется

$$u = C(e^x - 1)$$
, не выполняется

$$u = C(e^{-x} + 1)$$
, выполняется

4. Найти решение уравнения Якоби и проверить выполнимость условия Якоби в следующей задаче $V[y] = \int (2yy' - y'^2) dx$, y(0) = 3, y(1) = 2. u = Cx, не выполняется Xu = C(2x + 1), выполняется u = Cx, выполняется u = C(2x + 1), не выполняется 2.2. Удовлетворяет ли функционал условию Якоби [2] 1. Удовлетворяет ли функционал условию Якоби $V[y] = \int_{0}^{1} (y'^{2} + x^{4} + y'y) dx, \ y(0) = 0, y(1) = 9.$

1. Удовлетворяет ли функционал условию Якоби
$$V[y] = \int_{0}^{1} (y'^2 + x^4 + y'y) dx$$
, $y(0) = 0$, $y(1) = 9$ $u = Cx$, не удовлетворяет $u = Cx + C$, удовлетворяет $u = Cx$, удовлетворяет $u = Cx$, удовлетворяет

2. Удовлетворяет ли функционал условию Якоби

u = Cx - C, не удовлетворяет

$$V[y] = \int_{0}^{\frac{\pi}{2}} (y'^2 + 319x^2 - 121y^2 + 917xy)dx$$
, $y(0) = 0$, $y(\frac{\pi}{2}) = -1$.

 $u = Ce^{11x} - Ce^{-11x}$, удовлетворяет

 $u = Ce^{11x}$, не удовлетворяет

 $u = Csin(11x) - Ccos(11x)$, не удовлетворяет

 $u = Csin(11x)$, удовлетворяет

2.3. Удовлетворяет ли условию Якоби функционал [7]

1. Удовлетворяет ли условию Якоби функционал
$$V[y] = \int_{0}^{\frac{\pi}{2}} (y' ln(y')) dx, \ y(0) = 0, y(e) = 1.$$

$$u = Ce^{x}$$

$$u = Cln(x + 1)$$

$$u = Cx$$

$$u = \frac{C}{x}$$

2. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{\frac{\pi}{2}}^{\pi} (\frac{y^{-2}}{2} - \frac{y^2}{2} + 4xy) dx, \ y(\frac{\pi}{2}) = 0, y(\pi) = 4\pi - 2.$$

$$u = C \sin x. \text{ не удовлетворяет}$$

 $u = C_1 sinx$, не удовлетворяет

$$\bigcirc u = C_1 cos x$$
, удовлетворяет

$$\bigcirc u = C_1 sinx + C_2 cosx$$
, не удовлетворяет

$$u = C_1 \sin(x + \frac{\pi}{2})$$
, удовлетворяет

$$u = C_1 cos(x + \frac{\pi}{2})$$
, удовлетворяет

3. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{0}^{2} (y'e^{y} + y'^{2})dx, \ y(0) = 1, y(2) = 5.$$

$$u = C_1 x + C_2$$
, не удовлетворяет

$$\bigcirc u = C_1 x$$
, удовлетворяет

$$u = C_1 x + x^2$$
, не удовлетворяет

$$u = C_1 x^2$$
, удовлетворяет

4. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{0}^{2\pi} (y'^2 - \frac{y^2}{2} + xyy') dx, \ y(0) = 0, y(2\pi) = 1.$$

$$u = C_1 x$$
, не удовлетворяет

 $\bigcirc u = C_1 sinx$, не удовлетворяет

 $u = C_1 sinx + C_2 cosx$, удовлетворяет

 $u = C_1 cos x - 1$, удовлетворяет

 $u = C_1 sinx$, удовлетворяет

5. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{-1}^{0} (y'^{2}e^{x} + y\sin(x))dx, \ y(0) = \frac{1}{4}, y(-1) = \frac{e}{4}(\cos(-1) - \sin(-1)).$$

 $u = C(e^{-x} - e^x)$, не удовлетворяет

 $\bigcirc u = C(e^{-x} - e)$, удовлетворяет

 $u = C(\cos(-x) - \sin(-x))$, удовлетворяет

 $u = C(e^{-x} - e)$, не удовлетворяет 6. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{0}^{2} (y'^{2} + (x + 4)y) dx, \ y(0) = -4, y(2) = \frac{2}{3}.$$

u = Cx - 4, не удовлетворяет

 $\bigcirc u = Cx$, удовлетворяет

u = Cx, не удовлетворяет

u = Cx - 4, удовлетворяет

7. Удовлетворяет ли условию Якоби функционал

$$V[y] = \int_{0}^{\frac{1}{3}} (y^{2} + e^{x} + 9y^{2}) dx, \ y(0) = 0, y(\frac{1}{3}) = e - e^{-1}.$$

 $u = C(e^{3x} - e^{-3x})$, не удовлетворяет

 $u = C(e^{-9x} - e^{9x})$, удовлетворяет

 $u = C(e^{-9x} - e^{9x})$, не удовлетворяет

2.4. Укажите наименьшее значение параметра а, при котором функционал НЕ удовлетворяет условию Якоби [2]

1. Укажите наименьшее значение параметра a, при котором функционал НЕ удовлетворяет условию Якоби:

$$V[y] = \int_{0}^{a} (2y^{2} - \frac{y^{2}}{2} + arctg\frac{x}{2})dx, \ y(0) = 1, y(a) = b.$$

а может принимать любое значение

не существует такого значения а

2. Укажите наименьшее значение параметра a, при котором функционал НЕ удовлетворяет условию Якоби

$$V[y] = \int_{0}^{a} (y^{2} - y^{2}) dx, \ y(0) = 1, y(a) = b.$$

При любых значениях а условие не выполняется

Не существует такого параметра *а*

2.5. Укажите наименьшее по модулю значение параметра а из возможных, при котором вариация V[y] HE удовлетворяет условию Якоби [1]

1. Укажите наименьшее по модулю значение параметра а из возможных, при котором вариация V[y] НЕ удовлетворяет условию Якоби

$$V[y] = \begin{cases} \int_{a}^{0} e^{y'+y} dx, a < 0 \\ \int_{a}^{a} e^{y'+y} dx, a > 0 \end{cases}, y(0) = 0, y(a) = a$$

- 0 + 0
- \bigcirc Такого a не существует
- Не удовлетворяет при любом а
- e + 0

2.6. При каких значениях параметра а удовлетворяет условию Якоби функционал [1]

1. При каких значениях параметра а удовлетворяет условию Якоби функционал

$$V[y] = \int_{\frac{\pi}{4}}^{a} \left(\frac{y'^2}{2} - 2y^2 + 2xy - 2y'\right) dx, \ y(\frac{\pi}{4}) = 1, y(a) = b$$

- Условие Якоби не выполняется для любого значения а
- Не существует такого значения а

3.1. Исследовать на экстремум функционал [14]

1. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{2} (1 + y - y'^{2}) dx, \ y(0) = 0, y(2) = -1.$$

- На экстремали $y = -\frac{x^2}{4}$ достигается слабый минимум
- \bigcirc На экстремали $y = -\frac{x^2}{4}$ достигается сильный максимум
- На экстремали $y = -\frac{x^2}{4}$ экстремум не достигается, т.к. экстремаль нельзя включить в поле экстремалей
- На экстремали $y = -\frac{x^2}{4}$ достигается сильный минимум
- 2. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{\frac{3\pi}{4}} (4y^2 - y'^2 - e^{3x}) dx, \ y(0) = 0, y(\frac{3\pi}{4}) = -1.$$

- \bigcirc На экстремали y=sin2x экстремум не достигается, т.к. экстремаль нельзя включить в поле экстремалей
- На экстремали y = sin2x достигается слабый максимум
 - На экстремали y = sin2x достигается сильный минимум
 - На экстремали y = sin2x достигается сильный максимум
- 3. Исследовать на экстремум функционал

$$V[y] = \int_{-1}^{1} xy'(x^2y' + 1)dx, \ y(-2) = -\frac{1}{2}, y(1) = -\frac{1}{2}.$$

- На экстремали $y = \frac{1}{2} + \frac{1}{2x^3}$ достигается сильный минимум
- На экстремали $y=-\frac{1}{2}+\frac{1}{2x^3}+\frac{1}{2x}$ достигается слабый минимум
- Экстремума не существует
- На экстремали $y = -\frac{1}{2} + \frac{1}{2x^3} + \frac{1}{2x}$ достигается сильный минимум 4. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{\frac{\pi}{2}} (y'^{2}x^{2} + y - yy') dx, \ y(1) = 5, y(e) = 5.5.$$

- \bigcirc На экстремали $y=rac{1}{2}lnx+5$ достигается слабый минимум
- На экстремали y = 5x + (5.5 5e)lnx достигается сильный минимум
- \bigcirc На экстремали $y=rac{1}{2}lnx\,+\,5$ достигается сильный минимум

На экстремали у	= 5	5x +	(5.5	_	5 <i>e</i>) <i>lnx</i> достига	ается слабый	і минимум

5. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{\frac{\pi}{8}} (y'^{2} + x^{3} - 16y^{2}) dx, \ y(0) = 0, y(\frac{\pi}{8}) = 1.$$

На экстремали y = cos(4x) достигается слабый минимум

На экстремали $y = 2\cos(4x) + \sin(4x)$ достигается сильный минимум

 \bigcirc На экстремали y=sin(4x) достигается сильный минимум

Экстремума не существует

6. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{2} \sin(y')dx, \ y(0) = -\frac{\pi}{2}, y(2) = \frac{\pi}{2}.$$

Экстремум на данном функционале не достигается, потому что функция Вейерштрасса сохраняет знак не во всех точках (х,у), близких к экстремали

Экстремаль не является непрерывной функцией

Экстремум на данном функционале не достигается, потому что экстремаль не может быть включена в поле Экстремум на данном функционале не достигается, потому что не существует экстремали, удовлетворяющей

краевым условиям

7. Исследовать на экстремум функционал

$$V[y] = \int_{-1}^{0} (12xy - y'^2 + 12x)dx, \ y(-1) = 1, y(0) = 0.$$

На экстремали $y=-x^3$ достигается слабый максимум

 \bigcirc На экстремали $y = -x^3$ достигается сильный максимум

На экстремали $y = -x^3$ достигается сильный минимум

На экстремали $y = -x^3$ достигается слабый минимум

8. Исследовать на экстремум функционал

$$V[y] = \int_{1}^{e} (y^{2}x + x^{2} - 4)dx, \ y(1) = 0, y(e) = 1.$$

 \bigcirc На экстремали y = lnx достигается сильный минимум

На экстремали y = lnx + 2 достигается слабый минимум

На экстремали $y = \frac{x-1}{e-1}$ достигается сильный минимум

На экстремали y = lnx достигается сильный максимум

9. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{2\pi} (y'^2 - \frac{y^2}{2} + xyy') dx, \ y(0) = 0, y(2\pi) = 0.$$

На экстремали $y = C_1 sinx$ достигается сильный минимум

На экстремали y = sinx + 2 достигается сильный минимум

На экстремали y = sin2x достигается слабый максимум

ОЭкстремаль нельзя включить в поле

10. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{e} (y' \ln y') dx, \ y(0) = 0, y(e) = 1.$$

 \bigcirc На экстремали $y=rac{x}{e}$ достигается слабый максимум

 \bigcirc На экстремали $y=rac{x}{e}$ достигается сильный минимум

На экстремали $y = \frac{x}{e}$ достигается сильный максимум

На экстремали $y = \frac{x}{e}$ достигается слабый минимум

$$V[y] = \int_{1}^{3} (y^{2} + e^{x}) dx, \ y(1) = 0, y(3) = 2.$$

На экстремали y = 1 - 3x достигается слабый минимум

На экстремали y = x - 1 достигается слабый минимум

 \bigcirc На экстремали y=x-1 достигается сильный минимум

На экстремали y = 1 - 3x достигается сильный минимум

12. Исследовать на экстремум функционал

$$V[y] = \int_{-1}^{1} (y' + x^2 y'^2 + e^x) dx, \ y(-1) = -\frac{1}{2}, y(1) = \frac{3}{2}.$$

На экстремали $y = \frac{1}{x} + \frac{1}{2}$ достигается слабый минимум

На экстремали $y = \frac{1}{x} - \frac{1}{2}$ достигается слабый минимум

На экстремали $y = \frac{1}{x} + \frac{1}{2}$ достигается сильный минимум

Экстремум на непрерывных кривых не достигается

13. Исследовать на экстремум функционал

$$V[y] = \int_{e}^{e^2} (xy'^2 + yy') dx$$
, $y(e) = 1$, $y(e^2) = 2$.

 \bigcirc На экстремали y=ln(x) достигается сильный минимум

На экстремали y = ln(x) достигается слабый минимум

На экстремали y = ln(x + 1) достигается слабый минимум

Экстремум не достигается, т.к. экстремаль нельзя включить в поле экстремалей

14. Исследовать на экстремум функционал

$$V[y] = \int_{0}^{\frac{3\pi}{2}} (y'^{2} + \sin(x) - y^{2}) dx, \ y(0) = 1, \ y(\frac{3\pi}{2}) = 0.$$

XНа экстремали y = cos(x) достигается слабый минимум

Экстремум не достигается, т.к. экстремаль нельзя включить в поле экстремалей

 X На экстремали y = cos(x) достигается сильный минимум

На экстремали y = cos(x) + sin(x) достигается слабый минимум

3.2. Используя достаточные условия Вейерштрасса, исследовать на экстремум функционал [1]

1. Используя достаточные условия Вейерштрасса, исследовать на экстремум функционал

$$V[y] = \int_{-2}^{0} (y'^2 + 2xy) dx, \ y(-2) = 1, y(0) = 0.$$

 \bigcirc На экстремали $y = \frac{x^3 - 7x}{6}$ достигается сильный минимум

На экстремали $y = \frac{x^3 - 7x}{6}$ экстремум не достигается, т.к. экстремаль нельзя включить в поле экстремалей

На экстремали $y = \frac{x^3 - 7x}{6}$ достигается слабый минимум

На экстремали $y = \frac{x^3 - 7x}{6}$ достигается сильный максимум

3.3. Используя условие Лежандра, исследовать на экстремум функционал [1]

1. Используя условие Лежандра, исследовать на экстремум функционал

$$V[y] = \int_{1}^{e} (2xy'^{2} - 4y)dx, \ y(1) = 1, y(e) = -e.$$

 \bigcirc На экстремали y=2-2lnx-x достигается слабый минимум

На экстремали y = 1 - (e + 1) lnx достигается слабый минимум

 \bigcirc На экстремали y = 2 - 2 ln x - x достигается сильный минимум

На экстремали y = 1 - (e + 1) lnx достигается сильный минимум

1. Найти кратчайшее расстояние от точки A(-1, 0) до функции $y = \sqrt{2-x}$.	4.1. Найти кратчайшее расстояние от ••• до ••• [9]
$ \frac{\sqrt{11}}{2} $ 2 $\sqrt{21}$ — $\frac{1}{2}$ —	
$2\sqrt{21}$ — $\frac{1}{2}$ — $\sqrt{30}$ — $\frac{1}{2}$ — $\sqrt{30}$ — $\frac{1}{2}$	
$ \frac{-\frac{1}{2}}{\sqrt{10}} $ 2. Найти кратчайшее расстояние между параболой $y=x^2$ и кривой $y=2x-3$. $ \frac{9}{5} $ 3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $\Lambda(0,3)$ $ \approx -3.14 $ $ \approx 1.14 $ $ \approx 2.24 $ $ \approx 4.13 $ 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2 $ $ \frac{4e}{e+1} \approx 2.92 $ $ \frac{e+1}{e+1} \approx 2.16 $ $ \frac{2e}{e+1} \approx 2.16 $ $ \frac{2e}{e+1} \approx 2.16 $ $ \frac{2e}{e+1} \approx 2.18 $ $ 0.5e \approx 1.36 $ 5. Найти кратчайшее расстояние от точки $\Lambda(0,1)$ до прямой $y=5x-4 $ $ \frac{\sqrt{10}}{10} $ $ \frac{4\sqrt{17}}{26} $ $ 1.5 $ $ \frac{\sqrt{10}}{26} $ $ 1.5 $ $ \frac{\sqrt{10}}{26} $ $ 1.7 $ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5 $ $ \frac{\sqrt{10}}{10} $ $ 10 $ $ 10 $ $ \sqrt{5} $ $ -\frac{1}{2} $	
$\sqrt{10}$ 2. Найти кратчайшее расстояние между параболой $y=x^2$ и кривой $y=2x-3$. $\frac{9}{5}$ $\frac{2\sqrt{5}}{3}$ $\sqrt{1.25}$ $\frac{7}{3}$ 3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 1.14 ≈ 1.14 ≈ 1.14 ≈ 1.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e+1}\approx 2.16$ $\frac{2e}{e+1}\approx 2.16$ $\frac{2e}{e+1}\approx 2.18$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от кружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ $\frac{\sqrt{10}}{10}$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ 0 0 0 0 0 0 0 0	
2. Найти кратчайшее расстояние между параболой $y = x^2$ и кривой $y = 2x - 3$. $\frac{3}{5}$ $\frac{2\sqrt{5}}{5}$ $\sqrt{1.25}$ $\frac{2}{5}$ 3 . Найти кратчайшее расстояние от параболы $y = (x + 3)^2 + 3$ до точки $A(0,3)$ ≈ -3.14 ≈ 1.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y = \ln x$ до прямой $y = \frac{x}{e} + 2$ $\frac{4e}{e+1} \approx 2.92$ $\frac{4e}{e+1} \approx 2.16$ $\frac{2e}{e+1} \approx 1.88$ $0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{10}$ $\frac{4\sqrt{17}}{25}$ $\frac{1.5}{26}$ $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $\frac{\sqrt{10}}{10}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{\sqrt{10}}{2}$ $\frac{10}{2}$ $\frac{10}$	
$\frac{9}{5}$ $\frac{2\sqrt{5}}{5}$ $\sqrt{1.25}$ $\frac{7}{5}$ $\sqrt{1.25}$ $\frac{7}{5}$ 3 . Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 1.14 ≈ 2.24 ≈ 4.13 4 . Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{4e}{e+1}\approx 2.16$ $\frac{2}{e-1}\approx 1.88$ $0.5e\approx 1.36$	
3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $\frac{2e}{\sqrt{1+e^2}}\approx 1.88$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{\sqrt{56}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{2}$ $\frac{\sqrt{5}}{2}$	$\frac{9}{7}$
3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $\frac{2e}{\sqrt{1+e^2}}\approx 1.88$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{\sqrt{56}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{2}$ $\frac{\sqrt{5}}{2}$	$2\sqrt{5}$
3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $\frac{2e}{\sqrt{1+e^2}}\approx 1.88$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{\sqrt{56}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{2}$ $\frac{\sqrt{5}}{2}$	<u></u>
3. Найти кратчайшее расстояние от параболы $y=(x+3)^2+3$ до точки $A(0,3)$ ≈ -3.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $\frac{2e}{\sqrt{1+e^2}}\approx 1.88$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{\sqrt{56}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{2}$ $\frac{\sqrt{5}}{2}$	$\sqrt{1.25}$
≈ -3.14 ≈ 1.14 ≈ 2.24 ≈ 4.13 4. Найти кратчайшее расстояние от $y = lnx$ до прямой $y = \frac{x}{e} + 2$ $\frac{4e}{e+1} \approx 2.92$ $\frac{e+1}{e-1} \approx 2.16$ $0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0, 1)$ до прямой $y = 5x - 4$ $\frac{\sqrt{10}}{10}$ $0.5e \approx 1.36$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $0.5\sqrt{26}$ $0.5\sqrt{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $0.5\sqrt{2}$	5
$\stackrel{\sim}{\sim} 1.14$ $\stackrel{\sim}{\sim} 2.24$ $\stackrel{\sim}{\sim} 4.13$ 4. Найти кратчайшее расстояние от $y=\ln x$ до прямой $y=\frac{x}{e}+2$ $\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ 2 2 $\frac{\sqrt{10}}{2\sqrt{2}-1}$ $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	3. Найти кратчайшее расстояние от параболы $y = (x + 3) + 3$ до точки $A(0,3)$ ≈ -3.14
$\stackrel{\sim}{\sim} 4.13$ 4. Найти кратчайшее расстояние от $y = \ln x$ до прямой $y = \frac{x}{e} + 2$ $\stackrel{4e}{e+1} \approx 2.92$ $\stackrel{e+1}{e-1} \approx 2.16$ $\stackrel{2e}{\sim} \frac{1}{\sqrt{1+e^2}} \approx 1.88$ $0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $\stackrel{\sqrt{10}}{10}$ $\stackrel{4\sqrt{17}}{26}$ 1.5 $\stackrel{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $\stackrel{\sqrt{10}}{10}$ 2 2 $\frac{5\sqrt{2}-4}{2}$ $2\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y = 2x + 5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	
4. Найти кратчайшее расстояние от $y = lnx$ до прямой $y = \frac{x}{e} + 2$ $\frac{4e}{e+1} \approx 2.92$ $\frac{e+1}{e-1} \approx 2.16$ $\frac{2e}{\sqrt{1_1 + e^2}} \approx 1.88$ $0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1. 5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $\frac{\sqrt{10}}{10}$ 2 $\frac{5\sqrt{2} - 4}{2}$ $2\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y = 2x + 5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	
$\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1. 5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ 2 $\frac{\sqrt{10}}{10}$ 2 $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	○≈ 4.13
$\frac{4e}{e+1}\approx 2.92$ $\frac{e+1}{e-1}\approx 2.16$ $0.5e\approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y=5x-4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1. 5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ 2 $\frac{\sqrt{10}}{10}$ 2 $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	
$\frac{e+1}{e-1} \approx 2.16$ $\frac{2e}{\sqrt{1+e^2}} \approx 1.88$ $0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $\frac{\sqrt{10}}{10}$ 2 2 $2\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y = 2x + 5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	4. Найти кратчайшее расстояние от $y = lnx$ до прямой $y = \frac{x}{e} + 2$
$ \frac{2e}{\sqrt{1+e^2}} \approx 1.88 $ 0.5 $e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $ \frac{\sqrt{10}}{10} $ $ \frac{4\sqrt{17}}{26} $ 1.5 $ \frac{5\sqrt{26}}{26} $ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $ \frac{\sqrt{10}}{10} $ 2 $ \frac{5\sqrt{2}-4}{2} $ 2 $\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y = 2x + 5$ $ 10 $ $ \sqrt{5} $ $ -\frac{1}{2} $	$\bigcirc \frac{4e}{e+1} \approx 2.92$
$ \frac{2e}{\sqrt{1+e^2}} \approx 1.88 $ 0.5 $e \approx 1.36$ 5. Найти кратчайшее расстояние от точки $A(0,1)$ до прямой $y = 5x - 4$ $ \frac{\sqrt{10}}{10} $ $ \frac{4\sqrt{17}}{26} $ 1.5 $ \frac{5\sqrt{26}}{26} $ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $ \frac{\sqrt{10}}{10} $ 2 $ \frac{5\sqrt{2}-4}{2} $ 2 $\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y = 2x + 5$ $ 10 $ $ \sqrt{5} $ $ -\frac{1}{2} $	$\frac{e+1}{e-1} \approx 2.16$
$0.5e \approx 1.36$ 5. Найти кратчайшее расстояние от точки A(0, 1) до прямой $y = 5x - 4$ $\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1.5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ $\frac{\sqrt{10}}{10}$ 2 $2\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y = 2x + 5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$\bigcirc \frac{2e}{\sqrt{2e}} \approx 1.88$
5. Найти кратчайшее расстояние от точки $A(0, 1)$ до прямой $y = 5x - 4$ 10 $4\sqrt{17}$ 26 1. 5 $5\sqrt{26}$ 6. Найти кратчайшее расстояние от окружности $x^2 + y^2 = 4$ до прямой $x + y = 5$ 10 2 $5\sqrt{2} - 4$ $2\sqrt{2} - 1$ 7. Найти кратчайшее расстояние от точки $A(0, 10)$ до прямой $y = 2x + 5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$\sqrt{1+e^2}$ $0.5e \approx 1.36$
$\frac{\sqrt{10}}{10}$ $\frac{4\sqrt{17}}{26}$ 1. 5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ 2 $\frac{\sqrt{5\sqrt{2}-4}}{2}$ $\frac{5\sqrt{2}-4}{2}$ $\frac{2\sqrt{2}-1}{7}$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	5. Найти кратчайшее расстояние от точки $A(0, 1)$ до прямой $y = 5x - 4$
$\frac{4\sqrt{17}}{26}$ 1. 5 $\frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\frac{\sqrt{10}}{10}$ 2 $\frac{5\sqrt{2}-4}{2}$ $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$\sqrt{10}$
1. 5	$4\sqrt{17}$
$\bigcirc \frac{5\sqrt{26}}{26}$ 6. Найти кратчайшее расстояние от окружности $x^2+y^2=4$ до прямой $x+y=5$ $\bigcirc \frac{\sqrt{10}}{10}$ $\bigcirc 2$ $\bigcirc \frac{5\sqrt{2}-4}{2}$ $\bigcirc 2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки $A(0,10)$ до прямой $y=2x+5$ $\bigcirc 10$ $\bigcirc \sqrt{5}$ $\bigcirc -\frac{1}{2}$	
$\frac{\sqrt{10}}{10}$ 2 $\frac{5\sqrt{2}-4}{2}$ $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	
$\frac{\sqrt{10}}{10}$ 2 $\frac{5\sqrt{2}-4}{2}$ $2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$\begin{array}{c} 26 \\ How we recover a recovery a constraint of a recovery a recovery a constraint of a recovery a recove$
2 $\bigcirc \frac{5\sqrt{2}-4}{2}$ $\bigcirc 2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ $\bigcirc 10$ $\bigcirc \sqrt{5}$ $\bigcirc -\frac{1}{2}$	
$2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$\frac{10}{10}$
$2\sqrt{2}-1$ 7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ 10 $\sqrt{5}$ $-\frac{1}{2}$	$5\sqrt{2}-4$
7. Найти кратчайшее расстояние от точки A(0, 10) до прямой $y=2x+5$ О $\sqrt{5}$ О $-\frac{1}{2}$	l -
$ \begin{array}{c} 10 \\ \bigcirc \sqrt{5} \\ -\frac{1}{2} \end{array} $	
$-\frac{1}{2}$	
-	$\bigcirc\sqrt{5}$
_2	$\bigcirc -\frac{1}{2}$
	8. Найти кратчайшее расстояние от прямой $y = x + 3$ до прямой $y = \sqrt{x + 2}$
$O-\frac{7}{4}$	
$\frac{11}{8}\sqrt{2}$	
$\bigcirc -\frac{17}{8}$	$\left \bigcirc -\frac{17}{8} \right $
$\bigcirc \frac{3}{8} \sqrt{2}$	$\bigcirc \frac{3}{8}\sqrt{2}$

9. Найти кратчайшее расстояние от эллипса
$$9x^2 + 4y^2 = 36$$
 до прямой $y = 5 - x$

$$\bigcirc \frac{\sqrt{2}}{2}$$

$$\bigcirc \frac{\sqrt{2}}{2} (5 - \sqrt{13})$$

$$\bigcirc \frac{5(\sqrt{13} - 1)}{2\sqrt{13}}$$

4.2. Найти функцию, реализующую экстремум функционала V[у], если ••• [8]

1. Найти функцию, реализующую экстремум функционала $V[y] = \int_0^1 \frac{y^{x^2}}{x^3} dx$, y(0) = 2, если другая граничная точка

может скользить по прямой x = 1.

$$\bigcirc y = 2$$

$$y = Cx^4 + 2$$

$$y = 2x^4$$

$$y = x^4 + 2$$

2. Найти функцию, реализующую экстремум функционала $V[y] = \int\limits_{x_0}^{1} (12xy - {y'}^2) dx$, если одна граничная точка может

скользить по прямой y=0, а для другой выполняется y(1)=0.

$$\bigcirc y = -x^3 + \frac{3}{4}x + \frac{1}{4}$$

$$y = -x^3 - x + 2$$

$$y = -x^3 + Cx + (1 - C)$$

$$y = -x^3$$

3. Найти функцию, реализующую экстремум функционала $V[y] = \int_{0}^{3} (x^{5} - y^{3}) dx$, y(0) = 0, если другая граничная

точка может скользить по прямой x = 3

$$y = -4x + 4$$

$$\bigcirc y = 0$$

$$y = 2x - 2$$

$$y = 3x$$

4. Найти функцию, реализующую экстремум функционала $V[y] = \int_{0}^{x_1} e^{y+y'} dx$, y(0) = 2, если другая граничная точка

может скользить по прямой y = ln2

$$y = 2e^{-x} + 4$$

$$y = e^{-x} + x + 1$$

$$\bigcirc y = x + 2$$

$$y = 2e^{-x} + x$$

5. Найти функцию, реализующую экстремум функционала $V[y] = \int_{0}^{\pi} (\frac{y^2}{2} - \frac{y'^2}{2} + x^2 y') dx$, y(0) = 0, если другая

граничная точка может скользить по прямой $x = \pi$

$$y = 2\sin x + 2x$$

$$\bigcirc y = (2 - \pi^2) sinx + 2x$$

$$y = 2\sin x + \cos x - 1$$
$$y = C_1 \sin x + 2x$$

6. Найти функцию, реализующую экстремум функционала $V[y] = \int (y'(x+y'))dx$, $y(0) = 0$, если другая граничная
0

гочка может скользить по прямой $x\,=\,2$

$$\bigcirc y = C_1 x + x^3$$

$$y = 2x - \frac{x^2}{4}$$

$$y = C_1 x - \frac{x^2}{4}$$

$$\bigcirc y = \frac{-x^2}{4}$$

7. Найти функцию, реализующую экстремум функционала
$$V[y] = \int\limits_0^1 ({y'}^2 + 2yy' + y^2) dx$$
, $y(0) = 0$, если другая

граничная точка может скользить по прямой x=1

$$y = e^x$$

$$y = e^{-x} + e^{x}$$

$$y = 0$$

$$\nabla v = 0$$

$$y = e^{-x}$$

8. Найти функцию, реализующую экстремум функционала
$$V[y] = \int_{0}^{1} \frac{y^{2}}{x^{3}} dx$$
, $y(0) = 2$, если другая граничная точка

может скользить по прямой x = 1

$$y = 2x^4$$

$$y = x^4 + 2$$

$$y = x^4 + 2$$

$$y = 2$$

$$y = 2$$

5.1. Найти экстремали в изопериметрической задаче ••• при условии ••• [13]

1. Найти экстремали в изопериметрической задаче
$$V[y] = \int_{0}^{1} (y'^2 + y) dx$$
, $y(0) = 0$, $y(1) = \frac{1}{4}$ при условии

$$\int_{0}^{1} xy dx = \frac{13}{720}$$

$$y = \frac{1}{4}x$$

$$\bigcirc y = -\frac{1}{3}x + \frac{1}{3}x^3 + \frac{1}{4}x^2$$

$$y = -\frac{\lambda}{12}x + \frac{\lambda}{12}x^3 + \frac{1}{4}x^2$$

$$y = -\frac{1}{12}x + \frac{1}{12}x^3 + \frac{1}{4}x^2$$

2. Найти экстремали в изопериметрической задаче
$$V[y] = \int_0^2 (yy' + y'^2) dx$$
, $y(0) = 1$, $y(2) = 1$ при условии

$$\int_{0}^{2} xy' dx = -\frac{1}{3}$$

$$xy = \frac{1}{4}x + 1 - \frac{x^2}{2}$$

$$\bigcirc y = \frac{15}{24}x - \frac{5x^2}{16} + 1$$

$$y = \frac{2}{3}x - \frac{5}{16}x^2$$

$$y = \frac{1}{2}x + 1 - \frac{x^2}{4}$$

3. Найти экстремали в изопериметрической задаче
$$V[y,z] = \int_{0}^{1} (y'^2 + z'^2) dx$$
, $y(0) = 0$, $y(1) = \frac{1}{2}$, $z(1) = 0$ при

условии
$$\int_{0}^{1} (y' + xz') dx = 0$$

$$y = \frac{1}{2}x, z = 2x - 2x^2$$

$$y = \frac{1}{2}x, z = \frac{\lambda}{4}x - \frac{\lambda}{4}x^2$$

```
y = \frac{1}{2}x, \overline{z = \frac{1}{3}x - 2x^2}
\bigcirc y = \frac{1}{2}x, z = 3x - 3x^2
4. Найти экстремали в изопериметрической задаче V[y] = \int_{0}^{4} (y' + 2{y'}^{2}) dx, y(0) = y(4) = 0 при условии \int_{0}^{4} y dx = 64
\bigcirc y = \frac{1}{2}x^2 - x
y = x^2 - x + \frac{1}{64}
y = \frac{1}{64}x^2 - \frac{1}{16}x + \frac{1}{8}
5. Найти экстремали в изопериметрической задаче V[y] = \int_{0}^{1} y'^{3} dx, y(0) = 0, y(1) = 3 при условии \int_{0}^{1} (y + y'x) dx = 3
\bigcirc y = 3x
 y = x^2 + 3x
  Не существует решений
6. Найти экстремали в изопериметрической задаче
V[y] = \int_0^x (y^2 y' + {y'}^2) dx, y(0) = 0, y(2) = 2 при условии \int_0^x (y + y') dx = -20
y = 2x^2 + 4
\bigcirc y = 2x^2 - 3x
v = 4x^2 - 1
y = 3x^2 - 2x
7. Найти экстремали в изопериметрической задаче V[y] = \int_{0}^{1} (2x^3 + {y'}^2) dx, y(0) = 0, y(1) = 0 при условии
\int_{0}^{1} (y' + y^2) dx = 8.
  y = \pm 2\cos(\pi nx)
\bigcirc y = \pm 4sin(\pi nx)
y = C_1 \sin(\pi n x)
8. Найти экстремали в изопериметрической задаче
V[y] = \int_{-1}^{1} {y'}^2 dx, y(0) = 1, y(1) = 4 при условии \int_{-1}^{1} (y + 5x) dx = 5.
y = x^2 + 2x + 1
  y = x^3 + 2x + 1
\bigcirc y = x(-15x + 18) + 1
y = (3 - C)x^2 + Cx + 1
9. Найти экстремали в изопериметрической задаче V[y] = \int\limits_{0}^{1} (y'^2 + 5x - 3) dx, y(0) = y(1) = 1 при условии
\int (y + y')dx = 0.
y = x(2 - 2x) + 1
y = x^2 - x + 1
y = -Cx^2 + Cx + 1
\bigcirc y = 6(x^2 - x) + 1
10. Найти экстремали в изопериметрической задаче V[y,z] = \int_{0}^{1} (y'^2 + z'^2 - 4x) dx, y(0) = 0, y(1) = 1, z(1) = 1 при
условии \int (y + z' - 1) dx = 0.
   y = x(x - Cx - 2), z = x
```

$$\bigcirc$$
 у = 3 x^2 - 2 x , z = x | y = x^2 , z = x + 1 | y = x^2 , z = 2 x - x^2 | z = x | z = x | z | z

ХЭкстремалью является любая непрерывная кривая

```
1. Дана изопериметрическая задача V[y] = \int\limits_0^1 ({y'}^2 + y) dx, y(0) = y(1) = 0 при условии \int\limits_0^1 \lambda y dx = 1. При каком значении \lambda решением будет y = 6x - 6x^2?

\lambda = 1

Не существует такого вещественного \lambda
При любом, отличном от 0
```

5.3. Определить вид вспомогательного функционала L и найти кратчайшее расстояние между точками, лежащими на ●●● [2]

1. Определить вид вспомогательного функционала L и найти кратчайшее расстояние l между точками A(1,1,-4) и B(2,2,-3), лежащими на поверхности x+2y-3z-15=0.

$$\int_{-4}^{-3} \left[\sqrt{1 + {y'}^2 + {z'}^2} - \lambda(x)(x + 2y - 3z - 15) \right] dx, \ l = \sqrt{3}$$

 $\lambda = -1$

$$\int_{0}^{2} \left[\sqrt{1+{y'}^{2}+{z'}^{2}}+\lambda(x)(x+2y-3z-15)\right]dx,\ l=\sqrt{3}$$

$$\int_{-4}^{-3} \left[\sqrt{1 + {y'}^2 + {z'}^2} + \lambda(x)(x + 2y - 3z - 15) \right] dx, \ l = 2$$

$$\int_{1}^{2} \left[\sqrt{1 + {y'}^{2} + {z'}^{2}} - \lambda(x)(x + 2y - 3z - 15) \right] dx, \ l = \sqrt{3}$$

2. Определить вид вспомогательного функционала L и найти кратчайшее расстояние I между точками A(1,1,0) и B(4,2,-1), лежащими на поверхности x-y+2z=0.

$$\int_{1}^{4} [\sqrt{1 + {y'}^{2} + {z'}^{2}} + \lambda(x)(x - y + 2z)] dx, \ l = \sqrt{11}$$

$$\sum_{1}^{2} \left[\sqrt{1 + {y'}^{2} + {z'}^{2}} + \lambda(x)(x - y + 2z) \right] dx, \ l = \frac{1}{9}$$

$$\int_{1}^{2} [\sqrt{1 + {y'}^{2} + {z'}^{2}} - \lambda(x)(x - y + 2z)] dx, \ l = 2\sqrt{11}$$

3. Определить вид вспомогательного функционала L и найти кратчайшее расстояние 1 между точками A(1,1,-4) и B(2,2,-3), лежащими на поверхности x-y+2z=0.

$$\int_{1}^{4} [\sqrt{1 + {y'}^{2} + {z'}^{2}} + \lambda(x)(x - y + 2z)] dx, \ l = \sqrt{11}$$

$$\int_{1}^{4} [\sqrt{1 + {y'}^{2} + {z'}^{2}} - \lambda(x)(x - y + 2z)] dx, \ l = \sqrt{11}$$

$$\int_{1}^{2} \left[\sqrt{1 + {y'}^{2} + {z'}^{2}} - \lambda(x)(x - y + 2z) \right] dx, \ l = 2\sqrt{11}$$

<u> 1. Информация - 2. ГДЗ - **3. Гайды**</u>

1. Найти экстремали в вариационной задаче

Дано:

•
$$\int_{x_0}^{x_1} F dx$$
; $y(x_0) = y_0$; $y(x_1) = y_1$

Варианты ответов:

- (Разные у-ки)
- "Не существует экстремали, удовлетворяющей краевым условиям"

Решение:

- 1) Подставляем в у-ки х0, х1. Отбрасываем те варианты, где у не равен соответствующим у0, у1.
- 2) Строим Эйлерину для F:

$$F_{y} - \frac{d}{dx}F_{y'} = 0$$

3) После строительства подставляем в него оставшиеся у-ки. Тот, который подошел, будет ответом. Если никто не подошел - ответ "не существует"

2. Проверить условия Якоби

Дано:

•
$$\int Fdx$$
; $y(x0) = y0$; $y(x1) = y1$

Варианты ответов:

• (Разные u-шки, выполняется/не выполняется)

Решение:

- 1) Подставляем в u-шки x0. Где u не равен 0, не выполняется
- 2) Проверяем, если u!= 0 при всех x: x0<x<=x1. Если да, то вторая часть ответа выполняется.
- 3) Если осталось несколько и-шек, строим Якобу:

$$(F_{yy} - \frac{d}{dx}F_{yy'})u - \frac{d}{dx}(F_{y'y'}u') = 0$$

4) Решаем получившуюся дифурину относительно и. В ответ пишем результат.

3. Наименьшее значение а, при котором функционал НЕ удовлетворяет условию Якоби

Дано:

•
$$\int_{x_0}^a F dx$$
; $y(x_0) = y_0$; $y(a) = b$

Варианты ответов:

- (Разные а-шки)
- Любое а
- Не существует такого а

Решение:

1. Строим Якобу, решаем относительно и:

$$(F_{yy} - \frac{d}{dx}F_{yy'})u - \frac{d}{dx}(F_{y'y'}u') = 0$$

- 2. Находим константы через u(x0) = 0, подставляем в u
- 3. Решаем получившееся u(x) = 0, ответом будет x (либо зануление происходит между x0 и вариантом ответа)

4. При каких значениях параметра а удовлетворяет условию Якоби функционал

Дано:

•
$$\int_{x_0}^a F dx$$
; $y(x_0) = y_0$; $y(a) = b$

Варианты ответов:

- (Разные а-шки)
- Не выполняется для любого а
- Не существует такого а

Решение:

1. Строим Якобу, решаем относительно u:

$$(F_{yy} - \frac{d}{dx}F_{yy'})u - \frac{d}{dx}(F_{y'y'}u') = 0$$

2. Выбираем из вариантов такой а, чтобы u(a) != 0 (между x и а тоже не должно зануляться)

5. Исследование экстремумов

Дано:

•
$$\int_{x_0}^{x_1} F dx$$
; $y(x_0) = y_0$; $y(x_1) = y_1$

Варианты ответов:

• (Разные у-ки, сильный/слабый минимум/максимум)

Решение:

- 1. Откидываем различные у-ки по граничным
- 2. Если осталось несколько у-ков, строим Эйлерину, подставляем их. Где не выполнится откинуть $F_y \frac{d}{dx} F_{y'} = 0$
- 3. Проверяем Лежандру, подозреваем ее на ответ

$$F_{y'y'} \geq 0$$
 - min; $F_{y'y'} \leq 0$ - max

4. Еще проверяем Якобу. Если не выполнится - то экстремистов нету

$$(F_{yy} - \frac{d}{dx}F_{yy'})u - \frac{d}{dx}(F_{y'y'}u') = 0$$

5. Проверяем Веерштрассу $(F(x, y, y') - F(x, y, p) - (y' - p)F_p(x, y, p))$

если сохраняет знак при $x_0 < x \le x_1$ и всех у' => экстремум силён если меняет знак => слабый видимо

6. Искать кратчайшее расстояния между штучками

Дано:

• (Две штучки в виде уравнений или точек)

Варианты ответов:

• (Чиселки)

Решение:

1. Для данных задач будет такая база:

$$V[y] = \int_{0}^{x_1} \sqrt{1 + {y'}^2} dx; \ y = C_1 x + C_2$$

- 2. Найти надо x_0 , x_1 , C_1 , C_2 . Если одна из штук точка, берем соотв. х оттуда. Далее пользуемся приравниванием штучек к у и трансиками для поиска констант.
- 3. Когда они найдены, подставляем их в интеграл из базы и решаем. Получаем ответа.

7. Искать функцию, реализующую экстремум функционала

Дано:

$$\bullet \quad V[y] = \int_{x_0}^{x_1} F dx$$

• (Два условия)

Варианты ответов:

• (Разные у-ки)

Решение:

- 1. Определяем общий вид решения у из Эйлерины либо из ответов (легче)
- 2. Найти надо x_0 , x_1 , $C_{\text{шки}}$. Пользуемся условиями и трансиками (или микротрансиками) для поиска констант.
- 3. Когда они найдены, подставляем их в общий вид. Получаем ответа.

8. Искать экстремали в изопериметрической задаче

Дано:

- (Два краевых условия)
- (Одно интегральное условие)

Варианты ответов:

• (Разные у-ки)

Решение:

1. Используем помогатор

$$L = F(x, y, y') + \lambda G(x, y, y')$$

- 2. Ищем общий вид у через помогатора в Эйлерине либо через ответы (только если в них есть λ)
- 3. Ищем константы и лямбду через краевые условия и через интегральное условие
- 4. Подставляем все это в общий вид и получаем ответ

9. Найти λ в изопериметрической задаче

Дано:

- (Два краевых условия)
- (Одно интегральное условие)
- y = ...

Варианты ответов:

- (Разные λ-ы)
- Не существует
- При любом

Решение:

1. Используем помогатор

$$L = F(x, y, y') + \lambda G(x, y, y')$$

2. Ищем общий вид у через помогатора в Эйлерине

$$F_{v} - \frac{d}{dx}F_{v'} = 0$$

3. Ищем константы и лямбду через краевые условия и через интегральное условие

10. Определить вид вспомогательного функционала

Дано:

- A(x0, y0, z0), B(x0, y0, z0)
- Поверхность

Варианты ответов:

(Разные L-ы)

Решение:

- 1. Вычеркиваем варианты, где интеграл не от x0 до x1
- 2. Вычеркиваем варианты, где в L " $-\lambda(x)$ "
- 3. Надеемся что остался один $c + \lambda(x)$, иначе придется искать значение I (а как если лямбда теперь функция?)