

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 04 Issue: 10 | Oct 2023 ISSN: 2660-5317
<https://cajotas.centralasianstudies.org>

Роль полиморфного варианта генов фолатного цикла в клинике розацеа.

Агзамходжаева С.С., Азизов Б.С., Нишанова М. А., Нурматова И.Б.

Ташкентский государственный стоматологический институт, Ташкентская медицинская академия

Received 28th Sep 2023, Accepted 29th Oct 2023, Online 2nd Nov 2023

Аннотация: Патогенез розацеа на сегодняшний день остается до конца не изученным. Остается открытым и обсуждаемым вопрос, как можно объяснить степень тяжести и степень выраженности различных клинических симптомов розацеа у конкретного пациента. Какие механизмы регулируют прогрессирование процесса, приводящее к сочетанию подтипов и тяжелому течению у одних пациентов и проявление заболевания в пределах одного подтипа без тенденции к усугублению у других. Цель исследования: изучить генетические маркеры $1298\ A>C$ гена *MTHFR* (*rs1801131*), $677C>T$ гена *MTHFR* (*rs1801133*), $2756\ A>G$ гена *MTR* (*rs1805087*) и $66A>G$ гена *MTRR* (*rs1801394*) при эритематозно-телеангидратическом и папуло-пустулезном подтипах розацеа. Материалы и методы исследования. В исследовании участвовали 27 человек, которые в зависимости от клинической картины розацеа были распределены на три группы, сравнение результатов проводилось с 20 здоровыми добровольцами. Результаты и их обсуждение.

Ключевые слова: розацеа, генетические маркеры, генетический анализ подтипов, сочетание подтипов.

Розацеа – хроническое заболевание преимущественно центрофациальной локализации, в патогенезе которого ведущая роль принадлежит сосудистым и иммунным нарушениям. Согласно эпидемиологическим исследованиям, распространенность розацеа составляет около 10% населения земного шара [2, 6, 16, 26]. Чаще всего дерматоз встречается у лиц с 1-2 фототипом кожи, однако диагностируется и у азиатов, латиноамериканцев, афроамериканцев и африканцев [3, 5, 11, 16]. Данному заболеванию более подвержены женщины старше 30 лет [6, 16].

Остается открытым и обсуждаемым вопрос, как можно объяснить степень тяжести и степень выраженности различных клинических симптомов розацеа у конкретного пациента. Благодаря каким механизмам происходит прогрессирование процесса, приводящее к сочетанию подтипов и тяжелому течению у одних пациентов и проявление заболевания в пределах одного подтипа без тенденции к усугублению у других.

В связи с этим перспективным является изучение генетической составляющей. Генетическая предрасположенность впервые была показана в ретроспективном исследовании, в котором риск развития заболевания у членов семьи больных розацеа был повышен более чем в четыре раза [1], а также сообщения о развитии дерматоза у монозиготных близнецов [17]. Кроме того,

недавнее когортное исследование

близнецов с розацеа обнаружило более высокую корреляцию между монозиготными, чем между гетерозиготными близнецами [2]. В другом исследовании генетический анализ продемонстрировал потенциальную значимость полиморфизма гена глутатион-S-трансферазы (GST) при розацеа, где обнаружены нуклеотидные генотипы GSTT1 и GSTM1, которые были связаны с повышенным риском заболевания [28]. Поскольку GST кодирует фермент, необходимый для катализического восстановления активных форм кислорода (ROS), полиморфизм в GST может приводить к выраженному окислительному стрессу и влиять на патогенез розацеа.

В тоже время, недавнее исследование в рамках полногеномного поиска ассоциаций (GWAS) идентифицировали два однонуклеотидных полиморфизма (SNP), rs763035 и rs111314066, среди европейцев с розацеа [8]. Кроме того, были выявлены три основных аллеля главного комплекса гистосовместимости (МНС) 2 класса: HLA-DRB1, HLA-DQB1 и HLADQA1, которые также связаны с розацеа [16].

В другом исследовании, у пациентов с розацеа была обнаружена генетическая предрасположенность к переносу полиморфного варианта rs3733631 в генах рецептора тахикинина TACR3, который близко располагается к локусу гена TLR2 при 4q25 [17].

В настоящее время существует ряд достоверных сведений о роли генов ферментов фолатного цикла в реакциях метилирования, которые ответственны за многие ферментативные превращения. Ген MTHFR, кодирующий метилентетрагидрофолатредуктазу — один из ключевых ферментов фолатного цикла, расположен в позиции 1p36.3. Два наиболее распространенных полиморфизма гена MTHFR - 677 C>T (rs1801133) и 1298 A>C (rs1801131) - связаны со снижением активности фермента. Однонуклеотидные замены (SNP) rs1801133 (677C>T) и rs1801131 (1298A>C) в этом гене приводят к образованию термолабильной формы фермента, снижению его активности и, как следствие, к повышению уровня гомоцистеина в крови и снижению синтеза метионина. Гомоцистеин представляет собой серосодержащую аминокислоту, образующуюся в результате метаболизма метионина. Гомоцистеин конвертируется в метионин с витамином B12 и фолиевой кислотой как кофакторы. В метаболическом цикле синтеза гомоцистеина недостаток этих витаминосодержащих кофакторов приводит к повышению уровня гомоцистеина. Гипергомоцистинемия связана с различными системными заболеваниями, в том числе сердечно-сосудистыми, цереброваскулярными и психо-неврологическими состояниями. Ряд исследований выявил потенциальные механизмы, с помощью которых гомоцистеин может способствовать развитию эндотелиальной дисфункции, включая активацию тромбоцитов. Многие исследования продемонстрировали повышенную частоту гипергомоцистинемии у больных с различными воспалительными заболеваниями кожи, включая акне, витилиго, псориаз и гнойный гидраденит. Накопление гомоцистеина обуславливает повреждение эндотелия сосудов, оказывает одновременно атерогенное и тромбоваскулярное действие, а также оказывает нейротоксический

эффект. В этой связи изучение распределения полиморфизма генов фолатного цикла при розацеа является актуальной проблемой в дерматологии.

Материалы и методы: Нами была изучена патогенетическая значимость генотипических вариантов полиморфизмов 1298 A>C гена MTHFR(rs1801131), 677C>T гена MTHFR(rs1801133), 2756 A>G гена MTR(rs1805087) и 66A>G гена MTR(rs1801394) в формировании тяжести течения розацеа у больных, проживающих в Узбекистане. Генотипирование образцов проводилось методом полимеразной цепной реакции в режиме «реального времени». Для получения геномной ДНК использовали двухэтапный метод лизиса клеток крови: 1) получение лизатного концентратата лейкоцитарных клеток; 2) дальнейшая очистка лизатов лейкоцитарной массы проводилась методом спиртово-солевой обработки [Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. Current Protocols in Molecular Biology - Wiley, New York, 2001.] в модернизированной форме. В настоящем исследовании мы доводили концентрацию ДНК до 100 ng/μl. Измерение концентрации ДНК проводилось на спектрофотометре NanoDrop™ Lite (ThermoFisher Scientific, USA). Анализ последовательности ДНК в режиме реального времени, основанный на технологии Q-PCR HRM и PCR-детекции электрофорезом на микрочипе. Для типирования полиморфных вариантов изучаемых генов-кандидатов (Табл. 1) были использованы методы HRM-qPCR (Stratagene M*3005P, Agilent Technologies, Германия; DT-Prime, Россия) и метод микрочиповой PCR-детекции (MCE 202 MultiNA, Zhimadzu, Япония). Всего нами исследованы 47 образцов ДНК. Из них с розацеа было 27 больных и 20 здоровых.

Обсуждение результатов: При изучении полиморфизмов генов фолатного цикла были получены данные, позволяющие предположить наличие влияния нарушения метаболизма фолиевой кислоты на механизм развития розацеа. Варианты генов метаболизма фолатов, приводящие к повышению уровня гомоцистеина в крови способствуют травматизации эндотелия сосудов. В ходе исследования были выявлены гены, предположительно участвующие в возникновении и механизме развития розацеа, а также влияющее на тяжесть течения заболевания. Неблагоприятные варианты генов метаболизма фолатов: MTHFR: 1298 A>C rs1801131, MTHFR: 677C>rs1801133.

Частота встречаемости полиморфных аллелей генов метаболизма фолатов.

Таблица 1.

полиморфизм гена	частота распределения генотипов				P	
	Генотип	группа сравнения		группа контроля		
		N	%			
MTHFR: 1298 A>C rs1801131	A/A	16	59,3	17	85 0,05	
	A/C	8	29,6	1	5 <0,05	
	C/C	3	11,1	2	10 >0,05	
MTHFR: 677C>T rs1801133	C/C	13	48,1	16	80 <0,05	
	C/T	9	33,3	1	5 <0,05	
	T/T	5	18,6	3	15 >0,05	
MTR: 2756 A>G	A/A	17	63,0	12	60 >0,05	

rs1805087	A/G	9	33,3	8	40	>0,05
	G/G	1	3,7	0	0	>0,05
MTRR: 66 A>G	A/A	9	33,3	5	25	>0,05
	A/G	11	40,7	12	60	>0,05
	G/G	7	26,0	3	15	>0,05

P

езультаты исследования показали (табл.2), что как в основной группе, так и в контрольной группе при изучении полиморфизма 1298 A>C гена MTHFR наблюдалось преобладание частоты нормального аллеля “A” с одновременным снижением частоты встречаемости функционально неполноценного аллеля “C”. Распределение аллелей полиморфизма 1298 A>C гена MTHFR(rs1801131) в группе сравнения составила: A – 74,1% (40/54), C – 25,9% (14/54); в контрольной группе: A – 87,5% (35/40), C – 12,5 % (5/40).

Аналогичные данные были получены при изучении частоты распределения полиморфизма 1298A>C гена MTHFR(rs1801131) у больных розацеа в зависимости от клинической формы заболевания. Следует отметить, что в зависимости от клинической формы розацеа менялась частота встречаемости нормального аллеля “A” и функционально неполноценного аллеля “C”. В распределении генотипов среди исследованных групп при ЭТП розацеа наблюдалось увеличение доли гомозиготного генотипа A/A за счет уменьшения содержания гетерозиготного генотипа A/C (76,9% против 15,4%, соответственно) и гомозиготного генотипа C/C (7,7%). При изучении генотипов группы сравнения при ППП розацеа частота распределения генотипов A/A и A/C была одинакова и составила 42,8%, доля гомозиготного подтипа C/C составил 14,4% от общего числа. Частота распределения A/A, A/C, C/C генотипов в контрольной группе составила 85,0%, 5% и 10% соответственно.

Частота распределения полиморфизма 1298 A>C гена MTHFR (rs1801131)

Таблица 2.

Группа	Частота аллелей				Частота распределения генотипов					
	A		C		A/A		A/C		C/C	
	n	%	n	%	N	%	n	%	N	%
Группа сравнения, n= 27*(54**)	40	74,1	14	25,9	16	59,3	8	29,6	3	11,1
Эритематозно-телеангиэктатический подтип, n= 13* (26**)	22	84,6	4	15,4	10	76,9	2	15,4	1	7,7
Папулопустулезный подтип, n=14* (28**)	18	64,3	10	35,7	6	42,8	6	42,8	2	14,4
Контрольная группа, n=20* (40**)	35	87,5	5	12,5	17	85	1	5	2	10

Примечание: n* – число исследованных лиц и генотипов;

n**—число исследованных аллелей.

Для того чтобы оценить вклад генетического маркера 1298 A>C гена MTHFR (rs1801131) в патогенез розацеа, мы провели сравнительный анализ частот встречаемости аллелей и генотипов в группе больных с различными клиническими формами розацеа и группе здорового контроля.

Таблица 3.

Группа	Генотип		OR	RR	FI	P
	A/A (+)	A/A (0)				
Группа сравнения, n= 27*(54**)	16	11	0,26	0,62	3,6	0,05
Эритематозно- телеангиэкстический подтип, n= 13* (26**)	10	3	0,58	0,74	0,66	>0,05
Папулопустулезный подтип, n=14* (28**)	6	8	0,1	0,36	0,02	<0,05
Контрольная группа, n=20* (40**)	17	3				

Таблица 4.

Группа	Генотип		OR	RR	FI	P
	A/C (+)	A/C (0)				
Группа сравнения, n= 27*(54**)	8	19	8,0	5,9	0,02	<0,05
Эритематозно- телеангиэкстический подтип, n= 13* (26**)	2	11	3,4	1,8	0,54	>0,05
Папулопустулезный подтип, n=14* (28**)	6	8	14	2,9	0,01	<0,05
Контрольная группа, n=20* (40**)	1	19				

Таблица 5.

Группа	Генотип		OR	RR	FI	P
	C/C (+)	C/C (0)				
Группа сравнения, n= 27*(54**)	3	24	1,1	1	1,0	>0,05

Эритематозно-телеангизиатический подтип, n= 13* (26**)	1	12	0,7	0,8	1,0	>0,05
Папулопустулезный подтип, n=14* (28**)	2	12	1,5	1,2	1,0	>0,05
Контрольная группа, n=20* (40**)	2	18				

Таблица 6.

Группа	Аллель		OR	RR	χ^2	P
	A	C				
Группа сравнения, n= 27*(54**)	40	14	0,4	0,7	2,6	>0,05
Эритематозно-телеангизиатический подтип, n= 13* (26**)	22	4	0,8	0,9	0,1	>0,05
Папулопустулезный подтип, n=14* (28**)	18	10	3,9	2,0	5,1	<0,05
Контрольная группа, n=20* (40**)	35	5				

При изучении частоты встречаемости аллелей полиморфизма 1298 A>C гена MTHFR (rs1801131) был проведен сравнительный анализ подгрупп (ЭТП и ППП) группы сравнения с контрольной группой. Для групп, в которых были выявлены значимые различия рассчитаны значения ОШ (отношение шансов) и OR (относительный риск). Согласно полученным данным гомозиготный генотип А/А в группе ППП встречается достоверно реже, чем в контрольной группе. Эти данные доказывают, что данный генотип является генетическим фактором относительной устойчивости к развитию заболевания (OR=0,5; RR=0,7; 95%CI=0,23-1,08). Генотип А/С достоверно чаще встречается как в группе сравнения в целом, так и в группе ППП, при сравнении с контрольной группой. ОШ= 8 в группе сравнения и ОШ=14 в подгруппе ППП, соответственно шанс развития розацеа в целом и подтипа ППП при наличии генотипа А/С гена MTHFR (rs1801131) в 8 и 14 раз соответственно выше в исследуемой группе нежели в контрольной. Показатель относительного риска был равен 2,9 (верхняя и нижняя граница 95%ДИ не включала 1), что говорит о том, что у людей, являющихся носителями генотипа А/С гена MTHFR (rs1801131) розацеа встречается в 2,9 раз чаще, чем у людей, имеющих другие варианты данного гена.

Таким образом молекулярно-генетические исследования аллельных вариантов полиморфизма 1298 A>C гена MTHFR (rs1801131), позволяют сделать выводы о генетических

основах формирования розацеа. При наличии гетерозиготного генотипа 1298 A/C(возможно, и генотипа 1298 C/C) риск развития болезни возрастает, т.е. данный полиморфизм является генетическим маркером повышенного риска развития розацеа, тогда как генотип A/A способен выполнять протективную функцию.

При изучении полиморфизма 677C>T гена MTHFR(rs1801133) наблюдалось преобладание частоты нормального аллеля “C” с одновременным снижением частоты встречаемости функционально неполноценного аллеля “T” (табл.7). Частота встречаемости генотипа C/C составила 48,1%, генотипа C/T – 33,3%, генотипа T/T – 18,6%. Частота распределения “C/C”, “C/T”, “T/T” генотипов в контрольной группе составила 80,0%, 5% и 15% соответственно. Распространенность аллелей полиморфизма 677C>T гена MTHFR(rs1801133) в группе сравнения составила: C – 64,8% (35/54), T – 35,2% (19/54); в контрольной группе: C – 82,5% (33/40), T – 17,5 % (7/40).

Данные, полученные при изучении частоты распределения полиморфизма 677C>T гена MTHFR(rs1801133) у больных розацеа в зависимости от клинической формы заболевания были следующими. В распределении генотипов среди обследованных группы сравнения при ЭТП розацеа наблюдалось увеличение доли гомозиготного генотипа C/C за счет уменьшения содержания гетерозиготного генотипа C/T (53,8% против 30,8%, соответственно) и гомозиготного генотипа T/T (15,4%). При изучении генотипов группы сравнения при ППП розацеа частота встречаемости гомозиготного подтипа C/C составила 42,9%, доля гетерозиготного генотипа C/T составила 35,7% и гомозиготного генотипа T/T - 21,4%. В зависимости от клинической формы розацеа менялась частота встречаемости нормального аллеля и функционально неполноценного аллеля “T”. При ЭТП аллель “C” составил 69,2% (18/26), частота встречаемости аллеля “T” составила 30,8% (8/26). При ППП частота встречаемости аллеля “C” составила 60,7% (17/28), частота аллеля “T” – 39,3% (11/28).

Частота распределения полиморфизма 677C>T гена MTHFR(rs1801133)

Таблица 7.

Группа	Частота аллелей				Частота распределения генотипов					
	С		T		C/C		C/T		T/T	
	N	%	N	%	N	%	N	%	n	%
Группа сравнения, n= 27*(54**)	35	70,5	19	29,5	13	48,1	9	33,3	5	18,6
Эритематозно- телеангиэкстатический подтип, n= 13* (26**)	18	69,2	8	30,8	7	53,8	4	30,8	2	15,4
Папулопустулез-ный подтип, n=14* (28**)	17	60,7	11	39,3	6	42,9	5	35,7	3	21,4
Контрольная группа, n=20* (40**)	33	87,5	7	12,5	16	80	1	5	3	15

Примечание: n – число исследованных лиц и генотипов;*

n**—число исследованных аллелей.

Таблица8.

Группа	Генотип		OR	RR	FI	P
	C/C (+)	C/C (0)				
Группа сравнения, n= 27*(54**)	13	14	0,2	0,6	0,03	<0,05
Эритематозно- телеангидратический подтип, n= 13* (26**)	7	6	0,3	0,5	0,14	>0,05
Папулопустулезный подтип, n=14* (28**)	6	8	0,2	0,4	0,03	<0,05
Контрольная группа, n=20* (40**)	16	4				

Таблица 9.

Группа	Генотип		OR	RR	FI	P
	C/T (+)	C/T (0)				
Группа сравнения, n= 27*(54**)	9	18	9,5	1,9	0,03	<0,05
Эритематозно- телеангидратический подтип, n= 13* (26**)	4	9	8,4	2,4	0,06	>0,05
Папулопустулезный подтип, n=14* (28**)	5	9	10,6	2,6	0,06	>0,05
Контрольная группа, n=20* (40**)	1	19				

Таблица10.

Группа	Генотип		OR	RR	FI	P
	T/T (+)	T/T (0)				
Группа сравнения, n= 27*(54**)	5	22	1,2	1,1	1,0	>0,05
Эритематозно- телеангидратический подтип, n= 13* (26**)	2	11	1,0	1,0	1,0	>0,05
Папулопустулезный подтип, n=14* (28**)	3	11	1,5	1,3	0,7	>0,05

Контрольная группа, n=20* (40**)	3	17	
-------------------------------------	---	----	--

Таблица11.

Группа	Аллель		OR	RR	χ^2	P
	C	T				
Группа сравнения, n= 27*(54**)	35	19	2,5	1,4	3,6	>0,05
Эритематозно- телеангиэкстический подтип, n= 13* (26**)	18	8	2,0	1,5	1,5	>0,05
Папулопустулезный подтип, n=14* (28**)	17	11	3,0	1,8	4	0,05
Контрольная группа, n=20* (40**)	33	7				

При изучении частоты встречаемости аллелей полиморфизма **677C>T** гена MTHFR (rs1801133) был проведен сравнительный анализ подгрупп (ЭТП и ППП) группы сравнения с контрольной группой. Для групп, в которых были выявлены значимые различия рассчитаны значения ОШ (отношение шансов) и ОР (относительный риск). Согласно полученным данным генотип C/C в группе сравнения встречается достоверно реже, чем в контрольной группе. Генотип C/T достоверно чаще встречается в группе сравнения, чем в контрольной группе. ОШ= 9,5, соответственно шанс развития розацеа при наличии генотипа C/T гена MTHFR (rs1801133) в 9,5 раз выше в группе сравнения нежели в контрольной группе.

Показатель относительного риска был равен 1,9 (верхняя и нижняя граница 95%ДИ не включала 1), что говорит о том, что у людей, являющихся носителями генотипа C/T гена MTHFR (rs1801133) розацеа встречается в 1.9 раз чаще, чем у людей, имеющих другие варианты данного гена.

Также были изучены частоты распределения аллелей и генотипов полиморфизма 2756 A>G гена MTR (rs1805087). Распространенность аллелей полиморфизма 2756 A>G гена MTR (rs1805087) в группе сравнения составила: A – 79,6% (43/54), G – 20,4% (11/54); в контрольной группе: A – 80,0% (32/40), G – 20 % (8/40). При этом генотип A/A составил 63,0%, генотип A/G – 33,3%, генотип G/G – 3,7%. Частота распределения генотипов A/A и A/G в контрольной группе составила 60,0% и 40% соответственно. Генотип G/G не определялся.

В зависимости от клинической формы заболевания у больных розацеа с ЭТП генотип A/A встречался у – 9(69,2%) больных из 13, генотип A/G - у 4(30,8%) из 13. Генотип G/G не встречался ни у одного больного с ЭТП розацеа. Частота распределения аллелей была следующей: “A” - 84,6%, “G”-15,4%. При ППП розацеа генотип A/A был обнаружен у 8 из 14 больных, что составило

57,1%. Генотип A/G был обнаружен у 5 (35,7%) больных, генотип G/G – у 1(7,2%). Частота встречаемости аллеля “A” составила 75%, аллеля “G” -25% соответственно.

Частота распределения полиморфизма 2756 A>G гена MTR (rs1805087)

Таблица 12.

Группа	Частота аллелей				Частота распределения генотипов					
	A		G		A/A		A/ G		G/G	
	N	%	n	%	n	%	n	%	n	%
Группа сравнения, n= 27*(54**)	43	79,6	11	20,4	17	63,0	9	33,3	1	3,7
Эритематозно-телеангидратический подтип, n= 13* (26**)	22	84,6	4	15,4	9	69,2	4	30,8	0	0
Папулопустулезный подтип, n=14* (28**)	21	75,0	7	25,0	8	57,1	5	35,7	1	7,2
Контрольная группа, n=20* (40**)	32	80,0	8	20,0	12	60	8	40	0	0

Примечание: n*— число исследованных лиц и генотипов;
 n**—число исследованных аллелей.

Распределение генотипов и частоты встречаемости аллелей полиморфизма 66A>G гена MTRRrs1801394 было следующим: в группе сравнения генотип A/A составил 33,3% (9/27), генотип A/G – 40,7% (11/27), генотип G/G 26,0% (7/27). В группе контроля генотип A/A составил 25,0% (5/20), генотип A/G – 60,0% (12/20), генотип G/G 15,0% (3/20). В зависимости от клинического подтипа розацеа в группе сравнения при ЭТП встречаемость генотипа A/A составила 6 случаев из 13, что составило 50,0%, A/G встречался в 3 случаях и составил 23,1%, генотип G/G был выявлен в 4 случаях из 13 (30,7%). Частота встречаемости аллелей были следующей: аллель A встречался в 57,7%, аллель G- в 42,3% случаев. При ППП розацеа – генотип A/A встречался в 3 случаях из 14 (21,4%), генотип A/G в 8/14 (57,8%), генотип G/G в 3/14 (21,4%). Частота встречаемости аллелей A и G была одинакова и составила 50%.

Частота распределения полиморфизма 66 A>G гена MTRRrs1801394

Таблица 13.

Группа	Частота аллелей		Частота распределения генотипов		
	A	G	A/A	A/ G	G/G

	N	%	n	%	n	%	n	%	N	%
Группа сравнения, n= 27*(54**)	29	53,7	25	46,3	9	33,3	11	40,7	7	26,0
Эритематозно-телеангэкстматический подтип, n= 13* (26**)	15	57,7	11	42,3	6	46,2	3	23,1	4	30,7
Папулопустулезный подтип, n=14* (28**)	14	50,0	14	50,0	3	21,4	8	57,8	3	21,4
Контрольная группа, n=20* (40**)	22	87,5	18	12,5	5	25	12	60	3	15

Примечание: n*— число исследованных лиц и генотипов;

n**—число исследованных аллелей.

Так как при изучении полиморфизма 2756 A>G гена MTR (rs1805087) и полиморфизма 66 A>G гена MTRRrs1801394 не были выявлены значимые различия, значения ОШ (отношение шансов) и OP (относительный риск) для этих генов не рассчитывались.

Заключение. В заключение, можно сделать вывод, что существует взаимосвязь между распределением аллелей гена 1298 A>C MTHFR (rs1801131) и гена 677C>TMTHFR(rs1801133) и подтипов розацеа. Выявлены шифры аллелей, свидетельствующие о склонности к тяжести процесса. Данные результаты заставляют задуматься о перспективах более углубленного изучения генетических предикторов с целью прогнозирования предрасположенности к развитию более тяжелого течения болезни, своевременного назначения профилактических мер и разработки персонализированного подхода к лечению розацеа.

Литература:

1. Abram K., Silm H., Maaroos H-I. Risk factors associated with rosacea // J. Eur Acad Dermatol Venereol. 2010. Vol. 24. P. 565–571.
2. Abrams K., Silm H., Oona M. Prevalence of rosacea in an Estonian working population using a standard classification // J. Acta DermVenereol. 2010. Vol. 90. P. 269–273.
3. Al-Dabagh A., Davis S.A., McMichael A.J. Rosacea in skin of color: not a rare diagnosis // J. DermatolOnline. 2014.
4. Aldrich N., Gerstenblith M., Fu P., Tuttle M.S., Varma P., Gotow E., Cooper K.D., Mann M., Popkin D.L. Genetic vs. environmental factors that correlate with rosacea: A cohort-based survey of twins// J. JAMA Dermatol. 2015. Vol. 151. P. 1213–1219.

5. Bae YI, Yun SJ, Lee JB. Clinical evaluation of 168Korean patients with rosacea: the sun exposure correlates with the erythematotelangiectatic subtype. *J.Ann Dermatol.* 2009;21:243-9.
6. Berg M., Liden S. An epidemiological study of rosacea // *J Acta DermVenereol.* 1989. Vol. 69. P. 419–423.
7. Buhl T, Sulk M, Nowak P. Molecular and morphological characterization of inflammatory infiltrate inrosacea reveals activation of Th1/Th17 pathways. *J .Invest Dermatol.* 2015;135:2198-208.
8. Chang A.L., Raber I., Xu J., Li R., Spitalte R., ChenJ., Kiefer A.K., Tian C., Eriksson N.K., Hinds D.A. Assessment of the genetic basis of rosacea by genomewide association study // *J. Investig. Dermatol.* 2015.Vol. 135. P. 1548–1555.
9. Del Rosso JQ, Thiboutot D, Gallo R. Consensusrecommendations from the American Acne andRosacea Society on the management of rosacea, part 1: astatus report on the disease state, general measures, and adjunctive skin care. *J. Cutis.* 2013;92(5):234-40.
10. Del Rosso J.Q., Gallo R.L., Tanghetti E. An evaluation of potential correlations between pathophysiologic mechanisms, clinical manifestations, and management of rosacea // *J. Cutis.* 2013.Vol. 91(suppl3). P. 1–8.
11. Dlova N, Mosam A. Rosacea in black South Africans with skin phototypes V and VI. *J.Clin Exp Dermatol.* 2017;42:670-3.
12. Gomaa AHA, Yaar M, Eyada MMK, Bhawan J. Lymphangiogenesis and angiogenesis in non-phymatousrosacea.// *J of CutanPathol.* 2007;34(10):748–753. doi: 10.1111/j.1600-0560.2006.00695.
13. Holmes A.D., Steinhoff M. Integrative concepts ofrosacea pathophysiology, clinical presentation andnew therapeutics // *J. Exp Dermatol.* 2017. Vol. 26.P. 659–667.
14. F Dall’Oglio, C.Fusto, G. Micali Intrafamilial Transmission of Rosacea Spanning Six Generations: A Retrospective Observational Study.//*J Clin AesthetDermatol*-2022 Feb;15(2):35-39
15. Karpouzis A, Avgeridis P, Tripsianis G, Gatzidou E. Assessment of tachykinin receptor 3' gene polymorphism rs3733631 in rosacea. *Int. Sch. Res. Not.* 2015;2015:469402.
16. McAleer MA, Fitzpatrick P, Powell FC. The prevalence and pathogenesis of rosacea; 2008.
17. Palleschi GM, Torchia D. Rosacea in a monozygotic twin. *Australas. J. Dermatol.* 2007;:48:132-3.
18. Schwab V.D., Sulk M., Seeliger S. Neurovascular and neuroimmune aspects in the pathophysiology ofrosacea // *J. Invest Dermatol Symp Proc.* 2011.Vol. 15. P. 53–62.
19. Smith JR, Lanier VB, Braziel RM, Falkenhagen KM, White C, Rosenbaum JT. Expression of vascular endothelial growth factor and its receptors in rosacea. //*Br J Ophthalmol.* 2007;91(2):226–229. doi: 10.1136/bjo.2006.101121.

20. Steinhoff M, Buddenkotte J, Aubert J, Sulk M, Novak P, Schwab VD. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. *J. Investig Dermatol Symp Proc.* 2011;15:2-11.
21. Tan J., Almeida L., Bewley A. Updating the diagnosis, classification and assessment of rosacea: recommendations from the global ROSaceaCOensus (ROSCO) panel // *J Dermatol.* 2017. Vol. 176. P. 431–438.
22. Tan J, Blume-Peytavi U, Ortonne JP. An observational cross-sectional survey of rosacea: clinical associations and progression between subtypes. *Br J Dermatol.* 2013;169:555-62.
23. Tan J., Sch€ofer H., Araviiskaia E. Prevalence of rosacea in the general population of Germany and Russia the RISE study // *J Eur Acad Dermatol Venereol.* 2016. Vol. 30. P. 428–434.
24. Trivedi NR, Gilliland KL, Zhao W. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. *J. Invest Dermatol.* 2006;126:1071-9.
25. Weinstock L.B., Steinhoff M. Rosacea and smallintestinal bacterial overgrowth: prevalence and response to rifaximin // *J. Am Acad Dermatol.* 2013. Vol. 68. P. 875–876.
26. Wilkin J, Dahl M, Detmar M. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. *J. Am Acad Dermatol.* 2002;46:584-7.
27. Wladis E.J., Iglesias B.V., Adam A.P. Molecularbiologic assessment of cutaneous specimens of ocular rosacea // *J. Ophthal Plast Reconstr Surg.* 2012. Vol. 28. P. 246–250.
28. Yamasaki K., Di Nardo A., Bardan A. Increased serine protease activity and cathelicidin promote skin inflammation in rosacea // *J. Nat Med.* 2007. Vol. 13. P. 975–980.