

Part 3 - Certificates

- Certificate Authority
- Certificate Chain
- Certificate Types
- Certificate Revocation
 - OCSP

Authentication by Certificates

Public Key Infrastructure

- Client
- Server
- Certificate Authority

Certificate Authority - CA

- Anchor of trust between clients and servers
- Five companies manage majority of Internet certificates
- Their public keys are in the browsers' code
 - Certmgr.msc
- Look for Root CA's in your PC's table
 - "Friendly name" field
 - Who signs the root CAs certificates?

https://w3techs.com/technologies/overview/ssl_certificate

Certificate Signing Request

- Server sends a CSR to the CA:
 - Server's domain name ("common name")
 - The public key of the domain
 - Hash of the CSR, signed with the domain's private key

Certificate

- ▶ The CA responds with a certificate:
 - Server's domain name
 - Server's public key
 - Digital signature hash with the CA's private key
- Browsers have the CA public key pre-installed, so the digital signature can be verified

Certificate Types

- DV- Domain Validation
 - Approves the domain name belongs to the certificate holder
- OV Organization Validation
 - Approves the certificate holder is a real institute. Tax records, company records
- EV Extended Validation
 - Approves the certificate holder has physical offices, company history
 - Not an attempt of an internal employee to conduct fraud

Certificate Chain

- If the CA's private key is detected, a browser software update is required.
- We would like the CA to sign as little as possible.
- We will create an "intermediary" – Intermediate CA.
 - The ICA will receive a signature from the Root CA,
 - The ICA will sign the Certificates itself,
- If the ICA key is discovered, it will be replaced and receive a new certificate.

Certificate Chain-cont.

- Problem anyone with a certificate, can start signing certificates
- Solution:
 - Authorization as signing authority is part of the certificate
 - If a signing authority is credited, decreasing level counter is included

Server	Signing Authority	Level Counter
Root CA	Yes	1
ICA	Yes	0
Example.com	No	-

Certificate Authority Authorization

- How can we prevent an imposter from getting a real certificate from an ICA to our domain?
- Solution CAA record in the DNS
 - Linux (or WSL on Windows): dig domain caa

Viewing a Certificate

- WSL
 - openssl s_client -connect example.com:443 | openssl x509 -text -noout
- Browser
- RSA reminder:
 - Cipher = (Plain^E) mod N
 - Plain = (Cipher^D) mod N
 - The other side is given:
 - N ("Modulus)
 - E ("Exponent")
 - To find the private key, N must be decomposed to PxQ

```
P = 17

Q = 23

N = 391 (PxQ)

T = 352 (P-1)(Q-1)

E = 113 (Public)

D = 81 (Private)
```

Certificate Revocation Status

- Certificates might need to be revoked
 - Private key compromised or domain closed
- How can one tell if a certificate is valid?
 - CRL Certificate Revocation List
 - OCSP Online Certificate Status Protocol
 - OCSP Stapling

Certificate Revocation Status

