0.1 H^p as a Linear Space

In this section we look at H^p as a topological vector space. By considering distance $d(F,G) = ||F - G||_{H^p}$ for $p \ge 1$ and $d(F,G) = ||F - G||_{H^p}^p$ for p < 1, H^p is a metric space. By considering mapping $F(z) \mapsto F(e^{it})$, H^p is isometric to subspace of L^p . The main topic in this section is dual of H^p .

0.1.1 H^p is not Locally convex for 0

If a space is locally convex, there is a convex neighborhood V contained in ball B(0,1). Since V is a neighborhood, there is a ball $B(0,\epsilon)$ contained in V. Thus by contrapositive, If for all $\epsilon > 0$, there is a convex combination of F in ball $B(0,\epsilon)$ is out of B(0,1), then the space is not locally convex.

It is easy to prove for $0 , <math>L^p$ is not locally convex by using triangle wave function. To prove the same fact for H^p , we use trigonometric polynomials to approximate triangle wave function. And conclude these polynomials are in ball $B(0,\epsilon)$ and their convex combination is out of ball B(0,1).

Remark (notes on proof of theorem 6.2 in book). For
$$1 , $(a + b)^p \le a^p + b^p$ by $(a + b)^p \le \frac{(2a)^p + (2b)^p}{2} = 2^{p-1}a^p + 2^{p-1}b^p \le a^p + b^p$$$

Remark (Algebric dual space and topological dual space from wikipedia: dual space). Given any vector space V over a field \mathbb{F} , the algebraic dual space V^* is defined as the set of all linear functionals $\phi: V \to \mathbb{F}$.

When dealing with topological vector spaces, one is typically only interested in the continuous linear functionals $\phi: V \to \mathbb{F}$. This gives rise to the notion of the "continuous dual space" or "topological dual" which is a linear subspace of the algebraic dual space. For any finite-dimensional normed vector space or topological vector space, such as Euclidean n-space, the continuous dual and the algebraic dual coincide. This is however false for any infinite-dimensional normed space.

Being non locally convex has a great deal of continuous linear functionals. The topological dual or continuous linear functional on H^p is zero. First we prove the only convex neighborhood of 0 is the whole space. By using the proof of non locally convex reversely, Given a convex and open set $V \subset H^p$ and $0 \in V$, we can show for any $F \in H^p$, there is a combination $\sum_j \lambda_j F_j = F$, s.t. $\sum_j \lambda_j = 1$ and $F_j \in V$. Thus $F \in V$ by V convex and we have $V = H^p$.

Then we consider the continuous linear functionals on H^p . Assume $\phi: H^p \to \mathbb{F}$ is a continuous linear functional. Let \mathscr{B} be a locally convex base for \mathbb{F} . For any $W \in \mathscr{B}$, we have $\phi^{-1}(W)$ is convex and open hence is H^p . $\phi(H^p) \subset W$ for all $W \in \mathscr{B}$. We conclude that $\phi(F) = 0$ for all $F \in H^p$. Thus all continuous linear functionals on H^p are zero (This part is following the section 1.47 in Rudin, 1991).

Using inequality:

$$|F(z)| \le \frac{1}{(1-|z|)^{\frac{1}{p}}} ||F||_{H^p}$$

for $F \in H^p$ with $0 , we can prove <math>H^p$ is a complete space. Thus H^p is closed subspace of L^p in isometry sense.

Remark. I don't know why H^p is the minimal closed subspace which contains $\{e^{ijt}: j=0,1,\cdots\}$. The author give the reason as follows: If $F(z)=\sum_{0}^{\infty}a_{j}z^{j}$ is in H^p , $F(re^{it}) \to F(e^{it})$ in L^p as $r \to 1$. And for r fixed, $\sum_{0}^{n}a_{j}r^{j}e^{ijt} \to F(re^{it})$ uniformly as $n \to \infty$.

0.1.2 Dual of H^p

In subsection 0.1.1, we show for $0 , the dual of <math>H^p$ is zero. We investigate case $1 \le p \le \infty$ in this subsection.

In section 5, we show for $1 , <math>H^p = \{f + i\tilde{f} + ic : f \in \operatorname{Re} L^p, c \in \mathbb{R}\}$ and for p = 1, $H^1 = \{f + i\tilde{f} + ic : f \in \operatorname{Re} L^1, \tilde{f} \in L^1, c \in \mathbb{R}\}$. Thus H^p is a proper subspace of L^p .

By dual of L^p , any continuous linear functional $\phi(g)$ for $g \in L^p$ can be written as $\phi_f(g) = \int gf$ with $f \in L^{p'}$. We consider the restriction of ϕ to H^p . This is the continuous linear functional $\phi_f(F) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) f(t) dt$ on H^p . If we consider this mapping is as from $L^{p'} \to (H^p)^*$, we have:

$$\|\phi_{f}\| = \sup_{\|f\|_{p'}=1} \frac{\|\phi_{f}\|_{(H^{p})^{*}}}{\|f\|_{p'}}$$

$$= \sup_{\|f\|_{p'}=1} \sup_{\|F\|_{H^{p}}=1} \frac{\left|\frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) f(t) dt\right|}{\|F\|_{H^{p}}}$$

$$\leq \sup_{\|f\|_{p'}=1} \sup_{\|F\|_{H^{p}}=1} \frac{\frac{1}{2\pi} \left(\int_{-\pi}^{\pi} \left|F(e^{it})\right|^{p} dt\right)^{p} \left(\int_{-\pi}^{\pi} \left|f(t)\right|^{p} dt\right)^{p'}}{\|F\|_{H^{p}}}$$

$$= \sup_{\|f\|_{p'}=1} \sup_{\|F\|_{H^{p}}=1} \frac{\|F\|_{H^{p}} \|f\|_{p'}}{\|F\|_{H^{p}}}$$

$$= 1$$

This the mapping ϕ from $L^{p'} \to (H^p)^*$, $f \mapsto \phi_f$ is a continuous linear mapping. The Hahn-Banach theorem tells us that every $\Lambda \in (H^p)^*$ is of the form $\Lambda = \phi_f$ for some f with $||f||_{p'} \le ||\Lambda||$. More precisely, any continuous linear functional $\Lambda \in (H^p)^*$ can be extended to all of L^p . Thus we get $f \in L^{p'}$ with $\phi_f(F) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) f(t) dt$ restricted back to H^p .

The kernel of mapping ϕ is $f \in L^{p'}$ for which $\phi_f = 0$. This is equivalent $\phi_f(F) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) f(t) dt = 0$ for all $F \in H^p$, clearly,

$$\ker \phi = \{ f \in L^{p'} : \hat{f}(-j) = \int_{-\pi}^{\pi} e^{ijt} f(t) \frac{dt}{2\pi} = 0, j = 0, 1, \dots \}$$

 $\hat{f}(j)$ is zero for non-positive frequency j is equivalent to $f \in H^p$ and $\hat{f}(0) = 0$.

Thus

$$\{f \in L^{p'} : \hat{f}(-j) = \int_{-\pi}^{\pi} e^{ijt} f(t) \frac{dt}{2\pi} = 0, j = 0, 1, \dots\}$$
$$= \{f \in H^{p'} : \int_{-\pi}^{\pi} f(t) dt = 0\}$$

We denote this space by $H^{p'}(0)$ and obtain an isometry

$$L^{p'}/H^{p'}(0) \cong (H^p)^* \tag{1}$$

Now we consider the continuous linear functionals on $H^p(0)$, We consider the kernel of mapping $L^{p'} \to (H^p(0))^*$:

$$\{f \in L^{p'}: \hat{f}(-j) = \int_{-\pi}^{\pi} e^{ijt} f(t) \frac{dt}{2\pi} = 0, j = 1, 2, \dots\} = H^{p'}$$

Thus we obtain an isometry

$$(H^{p'}(0))^* \cong L^{p'}/H^{p'} \tag{2}$$

Remark (Topological complement). Two vector subspace X and Y are algebraic complement of each other if X + Y = E and $X \cap Y = \{0\}$. We can write $X \oplus Y = E$.

Two vector subspace X and Y are topological complement of each other if they are algebraic complement of each other and P_X (Projection from E to X) is continuous. If E is Banach space, another equivalent condition for topological complement is they are algebraic complement of each other and X and Y are closed.

X and Y are topological complement of each other means $E=X\oplus Y$ and $E\cong X\oplus Y$ in isometry sense.

For $1 , <math>H^{p'}(0)$ has a topological complement in $L^{p'}$. Let us see how to construct this. Consider $f \in L^{p'}$, $f = \sum_{-\infty}^{\infty} a_j e^{ijt}$. Set

$$A(f) = \frac{1}{2}(f + \tilde{f} - \hat{f}(0)) = \sum_{j>0} a_j e^{ijt}$$

Then A is the projection of $L^{p'}$ onto $H^{p'}(0)$. $f-A(f)=\sum_{j\leq 0}a_je^{ijt}=\sum_{j\geq 0}a_{-j}e^{-ijt}$. If we write $F(z)=\sum_{j\geq 0}a_{-j}z^j$, we have $F\in H^{p'}$ and $f(t)=Af(t)+F(e^{-it})$. If we write $G(z)=\sum_{j\geq 0}\overline{a_{-j}}z^j$. $G(e^{it})=F(e^{-it})\in H^{p'}$. Thus we have:

$$f(t) = Af(t) + \overline{G(e^{it})}$$

Using notation $\overline{H^{p'}} = \overline{h(t)} : h \in H^{p'}$ and $(H^{p'})^- = h(-t) : h \in H^{p'}$. We have:

$$L^{p'} = H^{p'}(0) \oplus \overline{H^{p'}} = H^{p'}(0) \oplus (H^{p'})^-$$

If we consider $B(f) = \frac{1}{2}(f + \tilde{f} + \hat{f}(0)) = \sum_{j \geq 0} a_j e^{ijt}$. We have:

$$L^{p'} = H^{p'} \oplus \overline{H^{p'}(0)} = H^{p'} \oplus (H^{p'}(0))^{-}$$

By topological direct sum we have topological isomorphisms:

$$L^{p'}/H^{p'}(0) \cong H^{p'}$$

$$L^{p'}/H^{p'} \cong H^{p'}(0)$$

By equation (1) and (2), we derive a conclusion for H^p similar with dual of L^p .

$$(H^p)^* \cong H^{p'}$$

with the pairing

$$< G, F> = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) G(e^{-it}) dt$$

 $F \in H^p$, $G \in H^{p'}$. or

$$< G, F> = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{it}) \overline{G}(e^{it}) dt$$

 $F \in H^p$, $G \in H^{p'}$. Besides, we also have $(H^p(0))^* \cong H^{p'}(0)$. We can not use same argument for p=1 case since for $f \in L^{1'} = L^{\infty}$, \hat{f} no longer in L^{∞} . We will study $(H^1)^*$ in section 9. Now we only have $(H^1)^* \cong L^{\infty}/H^{\infty}(0)$ by equation (1).