Training vs Testing

Ali Akbar Septiandri

October 16, 2018

Universitas Al Azhar Indonesia

Daftar isi

- 1. Generalisasi
- 2. Optimasi Model dari Dataset
- 3. Metrik Evaluasi

Bahan Bacaan

- VanderPlas, J. (2016). Python Data Science Handbook.
 O'Reilly Media. https: //jakevdp.github.io/PythonDataScienceHandbook/05.
 03-hyperparameters-and-model-validation.html
- James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013.
 An introduction to statistical learning (Vol. 112). New York: Springer. (Section 2.2 & 5.1)

Enroll ke e-learning Key: <mark>alphago</mark>

Generalisasi

Generalisasi Error

- Tujuan kita adalah menghasilkan model yang dapat bekerja baik pada semua data
- Tidak mungkin mendapatkan semua data
- Solusi: Gunakan data latih dan data uji

Generalisasi Error

- Training data: $\{x_i, y_i\}$
- Future data: $\{x_i,?\}$
- Target: Model bekerja baik pada future data

Mengapa?

Overfitting

- Model terlalu kompleks, terlalu fleksibel
- Mengenali dan memasukkan noise dari dalam data latih ke dalam model
- Mengenali pola yang tidak akan muncul lagi

Overfitting: Definisi

Model F dikatakan overfitting jika:

- 1. kita dapat menemukan model lain F'
- 2. dengan error lebih besar pada data latih: $E_{train}(F') > E_{train}(F)$
- 3. tetapi error lebih kecil pada data uji: $E_{gen}(F') < E_{gen}(F)$

Underfitting

- Model terlalu kaku, terlalu simpel
- Tidak berhasil menemukan pola yang penting
- ullet Masih ada model yang bisa menghasilkan E_{train} dan E_{gen} lebih rendah

Figure 1: Bagaimana kira-kira hasil regresi pada data seperti ini?

Figure 2: Regresi polinomial dengan p = 1 (linear)

Figure 3: Regresi polinomial dengan p=15

Figure 4: Regresi polinomial dengan p = 7

Fleksibilitas Prediktor

 Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia

Fleksibilitas Prediktor

- Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia
- Diperlukan kenop untuk mengubah fleksibilitasnya, e.g. orde polinomial pada model regresi

Fleksibilitas Prediktor

- Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia
- Diperlukan kenop untuk mengubah fleksibilitasnya, e.g. orde polinomial pada model regresi
- Idenya, memutar kenop tersebut untuk menghasilkan error yang rendah secara umum

Error Latihan vs General

• Error latihan:

$$E_{train} = \frac{1}{N} \sum_{i=1}^{N} error(f_D(\mathbf{x}_i), y_i)$$

Error general:

$$E_{gen} = \int error(f_D(\mathbf{x}), y)p(y, \mathbf{x})d\mathbf{x}$$

• Kita hanya tahu jangkauan dari $\{x, y\}$

Estimasi nilainya dengan

$$E_{gen} \approx E_{test} = \frac{1}{N} \sum_{i=1}^{N} error(f_D(\mathbf{x}_i), y_i)$$

Validasi Model

Figure 5: Perubahan nilai metric sesuai dengan kompleksitas model

Optimasi Model dari Dataset

Training, Validation, Testing sets

- Data latih: konstruksi classifier
- Data validasi: memilih algoritma dan parameter tuning
- Data uji: mengestimasi error rate secara umum
- Catatan: Bagi datanya secara acak!

Cross-validation

- Datanya kadang tidak cukup banyak untuk dibagi!
- Ide: latih dan uji secara bergantian
- Umumnya: 10-fold cross-validation

Cross-validation

Figure 6: 5-fold cross-validation

Leave-one-out

n-fold cross-validation

Pros

Menghasilkan *classifier* terbaik

Cons

- Ongkos komputasi tinggi
- $\bullet \ \ \mathsf{Kelas} \ \mathsf{tidak} \ \mathsf{seimbang} \ \to \mathit{stratification}$

Metrik Evaluasi

Imbalanced Classes

• e.g. Prediksi apakah akan terjadi gempa atau tidak!

Imbalanced Classes

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.

Imbalanced Classes

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.
- Solusi: Gunakan metrik lain

Misses & False Alarms

- False Alarm rate = False Positive rate = FP/(FP + TN)
- Miss rate = False Negative rate = FN/(TP + FN)
- Recall = True Positive rate = Sensitivity = TP/(TP + FN)
- Precision = TP/(TP + FP)
- Specificity = 1 FPR = TN/(TN + FP)
- Harus dilaporkan berpasangan!

Terima kasih