ASSIGNMENT 4

Kimberly Cable

2022-04-23

Part 1

Set the working directory to the root of your DSC 520 directory

Load the data/r4ds/heights.csv to

```
## earn height sex ed age race
## 1 50000 74.42444 male 16 45 white
## 2 60000 65.53754 female 16 58 white
## 3 30000 63.62920 female 16 29 white
## 4 50000 63.10856 female 16 91 other
## 5 51000 63.40248 female 17 39 white
## 6 9000 64.39951 female 15 26 white
```

$https://ggplot2.tidyverse.org/reference/geom_boxplot.html$

Create boxplots of sex vs. earn and race vs. earn using geom_point() and geom_boxplot()

sex vs. earn

race vs. earn

https://ggplot2.tidyverse.org/reference/geom_bar.html
Using geom_bar() plot a bar chart of the number of records for each sex

Using geom_bar() plot a bar chart of the number of records for each race

Create a horizontal bar chart by adding coord_flip() to the previous plot

 $https://www.rdocumentation.org/packages/ggplot2/versions/3.3.\\ 0/topics/geom_path$

Load the file "data/nytimes/covid-19-data/us-states.csv" and

assign it to the ${\tt covid_df}$ dataframe

##		date	state	fips	cases	deaths
##	1	2020-01-21	Washington	53	1	0
##	2	2020-01-22	Washington	53	1	0
##	3	2020-01-23	Washington	53	1	0
##	4	2020-01-24	Illinois	17	1	0
##	5	2020-01-24	Washington	53	1	0
##	6	2020-01-25	California	6	1	0

Parse the date column using as.Date()

##		date	state	fips	cases	deaths
##	1	2020-01-21	Washington	53	1	0
##	2	2020-01-22	Washington	53	1	0

```
## 3 2020-01-23 Washington 53 1 0
## 4 2020-01-24 Illinois 17 1 0
## 5 2020-01-24 Washington 53 1 0
## 6 2020-01-25 California 6 1
```

Create three dataframes named california_df, ny_df, and florida_df containing the data from California, New York, and Florida

California

##		date	state	fips	cases	deaths
##	6	2020-01-25	${\tt California}$	6	1	0
##	10	2020-01-26	${\tt California}$	6	2	0
##	14	2020-01-27	${\tt California}$	6	2	0
##	18	2020-01-28	${\tt California}$	6	2	0
##	22	2020-01-29	${\tt California}$	6	2	0
##	26	2020-01-30	California	6	2	0

New York

```
state fips cases deaths
##
             date
## 247 2020-03-01 New York
                                     1
                                            0
## 262 2020-03-02 New York
                                     1
                                            0
## 277 2020-03-03 New York
                             36
                                    2
                                            0
## 294 2020-03-04 New York
                                    11
                                            0
## 314 2020-03-05 New York
                             36
                                    22
                                            0
## 339 2020-03-06 New York
                             36
                                    44
```

Florida

```
date
                    state fips cases deaths
## 243 2020-03-01 Florida
                            12
                                   2
## 256 2020-03-02 Florida
                            12
                                   2
                                          0
                                   3
## 271 2020-03-03 Florida
                            12
                                          0
## 287 2020-03-04 Florida
                            12
                                   3
                                          0
## 305 2020-03-05 Florida
                                          0
## 326 2020-03-06 Florida
                            12
                                          2
```

Plot the number of cases in Florida using geom_line()

Add lines for New York and California to the plot

Use the colors "darkred", "darkgreen", and "steelblue" for Florida, New York, and California ${\bf v}$

Add a legend to the plot using scale_colour_manual

Add a blank (" ") label to the x-axis and the label "Cases" to the y axis

Scale the y axis using $scale_y_log10()$

Part 2

Markdown Basics

Favorite Foods

- 1. Chocolate
- 2. King Crab
- 3. Maria's Cookies

Images

Figure 1: All Cases (Log Plot)

Add a Quote

"Practically perfect in every way"

Add an Equation

$$CDF(x) = 1 - (\frac{x}{x_m})^{-}\alpha$$

Add a Footnote

This is a footnote¹

¹This is the explanation to the footnote

Add Citations

- R for Everyone (Lander 2014)
- Discovering Statistics Using R (Field, Miles, and Field 2012)

Inline Code

NY Times COVID-19 Data

R4DS Height vs Earnings

Tables

Knitr Table with Kable

Table 1: One Ring to Rule Them All

name	race	$in_fellowship$	ring_bearer	age
Aragon	Men	TRUE	FALSE	88
Bilbo	Hobbit	FALSE	TRUE	129
Frodo	Hobbit	TRUE	TRUE	51
Galadriel	Elf	FALSE	FALSE	7000
Sam	Hobbit	TRUE	TRUE	36
Gandalf	Maia	TRUE	TRUE	2019
Legolas	Elf	TRUE	FALSE	2931
Sauron	Maia	FALSE	TRUE	7052
Gollum	Hobbit	FALSE	TRUE	589

Pandoc Table

name	race	$in_fellowship$	$ring_bearer$	age
Aragon	Men	TRUE	FALSE	88
Bilbo	Hobbit	FALSE	TRUE	129
Frodo	Hobbit	TRUE	TRUE	51
Galadriel	Elf	FALSE	FALSE	7000
Sam	Hobbit	TRUE	TRUE	36
Gandalf	Maia	TRUE	TRUE	2019
Legolas	Elf	TRUE	FALSE	2931
Sauron	Maia	FALSE	TRUE	7052
Gollum	Hobbit	FALSE	TRUE	589

References

Field, A., J. Miles, and Z. Field. 2012. Discovering Statistics Using r. SAGE Publications. https://books.google.com/books?id=wd2K2zC3swIC.

Lander, J. P. 2014. *R for Everyone: Advanced Analytics and Graphics*. Addison-Wesley Data and Analytics Series. Addison-Wesley. https://books.google.com/books?id=3eBVAgAAQBAJ.