Chapter6: Memory unit

Asst.Prof.Dr.Supakit Nootyaskool

Objective

To understand components inside a memory.

 To explain the difference structure of static and dynamic memory.

• To explain the process of reading or writing through the management of the address bus, data bus, and control signals.

Memory types

Memory types

Memory types

Static RAM (SRAM)

SRAM created from D flip-flop.

D	Clk	Q
0	7	0
1	7	1

SRAM and DRAM in Video GAME

Character representation in ASCII code "A"

41H = 01000001

Row	0	1	2	3	4	5	6	7
0	NUL .	DLE	SP	0	0	Р	`	P
1	SOH	DC1	!	1	Α	0	0	9
2	STX	DC2	"	2	В	R	b	,
3	ETX	DC3	#	3	C	S	С	8
4	EOT	DC4	•	4	D	Т	d	1
5	ENQ	NAK	%	5	E	U	e	U
6	ACK	SYN	8	6	F	٧	f	V
7	BEL	ETB	•	7	G	w	g	w
8	BS	CAN	(8	н	X	h	×
9	нт	EM)	9	1	Y	i	У
10	LF	SUB	*	:	J	Z	j	2
11	VT	ESC	+	;	к	C	k.	1
12	FF	FS		<	L	1	1	1
13	CR	GS	-	=	м)	m	}
14	so	RS		>	N	^	n	1~
15	SI	us	/	?	0	_	0	DEL

Static RAM keeps "A"

Static RAM keeps "A"

Static RAM

Memory Size $8 \times 1024 = 8192 \approx 8 \text{Kbit} \approx 7 \text{KByte}$

Static RAM

A memory chip has 3 group of pins:

- 1. The data bus is bi-directional.
- The address bus functions as an input.
- 3. Control signals includes read, write, and chip enable.

Concept of Dynamic RAM

From Computer Desktop Encyclopedia @ 2004 The Computer Language Co. Inc.

Charge/Discharge Capacitor

DRAM

DRAM

Comparing structure of memory devices in 1 bit

Dynamic RAM

Static RAM

Other types

Memory technologies for speed access improvement include:

- 1. EDO DRAM (Extended Data-Out DRAM)
- 2. SDRAM (Synchronous DRAM)
- 3. DDR SDRAM (Double Data Rate SDRAM)
- 4. RDRAM (Rambus DRAM)

Additionally, memory with multiple data buses includes:

- 1. VRAM (Video RAM)
- 2. SGRAM (Synchronous Graphics RAM)

ROM

• PROM (Programmable read only memory)

Read Only Memory (ROM)

EPROM (Erasable PROM)

ROM

• Electrical EPROM (Erasable PROM)

M2764A

NMOS 64K (8K x 8) UV EPROM

- FAST ACCESS TIME: 180ns
- EXTENDED TEMPERATURE RANGE
- SINGLE 5V SUPPLY VOLTAGE
- LOW STANDBY CURRENT: 35mA max
- TTL COMPATIBLE DURING READ and PROGRAM
- FAST PROGRAMMING ALGORITHM
- ELECTRONIC SIGNATURE
- PROGRAMMING VOLTAGE: 12V

Table 1. Signal Names

A0 - A12	Address Inputs		
Q0 - Q7	Data Outputs		
Ē	Chip Enable		
G	Output Enable		
P	Program		
V _{PP}	Program Supply		
Vcc	Supply ∀oltage		
Vss	Ground		

8K x 8 Static RAM

Logic Block Diagram

Pin Configuration

Summary