The Internet of Things: Roadmap to a Connected World

Wireless Technologies for Indoor Localization, Smart Homes, and Smart Health

Dina Katabi

Andrew & Erna Viterbi Professor, MIT

Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology

INDOOR LOCALIZATION

GPS HAS CHANGED HOW WE NAVIGATE OUTDOOR SPACE

GPS does not work indoors...

APPLICATIONS OF INDOOR LOCALIZATION

Navigation

Business Analytics

Inventory

Want to use RF signals for indoor localization

THE CHALLENGE: MULTIPATH EFFECT

Localization uses Power or Angle-of-Arrival (AoA)

But, signal bounces off objects in the environment

- Angle of signal is not the direction of the source
- Received power depends on how reflections combine and not the distance to the source

OUR APPROACH

Exploit multipath to increase accuracy

Multipath reflections tell us about distance from a reference source

CAPTURING MULTIPATH PROFILES WITH AN ANTENNA ARRAY

Use textbook equations to process $y_1, ..., y_n$ and obtain the multipath profile

CAPTURING MULTIPATH PROFILES WITH AN ANTENNA ARRAY

Use t

Accurate multipath profiles require many antennas in the array

Spatial Angle (degree)

The Internet of Things: Roadmap to a Connected World

© 2016 Massachusetts Institute of Technology

obtain

CAPTURING MULTIPATH WITH A MOVING ANTENNA

Can capture very accurate multipath profiles with a single antenna

WORKS EVEN WITH RFIDS

Battery-free stickers to tag any and every object

Say we can accurately localize RFIDs

No more customer checkout lines

RFIDs on goods

No more customer checkout lines

RFIDs on

Basket

By David Shankbone (David Shankbone) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

VIRTUAL TOUCH SCREENS IN THE AIR [SIGCOMM'14]

Work with occlusions and obstructions

"RF-IDraw: Virtual Touch Screen in the Air Using RF Signals", Jue Wang, Deepak Vasisht, and Dina Katabi, ACM SIGCOMM, Chicago, Illinois, August 2014.

SMART HOMES

SMART HOMES THAT TRACK OUR ACTIVITIES

What if our home can detect when we wake up and open the shades; or turn the lights on as we walk toward a room

SMART HOMES THAT TRACK OUR ACTIVITIES

What if our home can detect when we wake up and open the shades; or turn the lights on as we walk toward a room

Device-Free Localization: Tracks a person using signal reflections off his/her body. No need for any on-body sensor

APPLICATIONS

Gesture Control

Gaming

Smart Heating & Cooling

Elderly Fall Detection

Cooling
The Internet of Things: Roadmap to a Connected World

FALL DETECTION

HOW DOES IT WORK?

Distance Reflection time x speed of light

The Internet of Things: Roadmap to a Connected World

FREQUENCY MODULATED CARRIER WAVE (FMCW)

MEASURING ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer

Signal whose frequency is ΔF

 $\Delta F \rightarrow Reflection Time \rightarrow Distance$

CHALLENGE: MULTIPATH→ MANY REFLECTIONS

Smart algorithms that disentangle a person's reflections from the multipath

→ ELIMINATE BY SUBTRACTING CONSECUTIVE MEASUREMENTS

Why 2 peaks when we only have one moving person?

DYNA

The direct reflection arrives before dynamic multipath!

From Distances to Localization

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

One ellipse is not enough to localize!

From Distances to Localization

WiTrack uses directional antennas so only one point is inbeam

Extend to 3D by using 3 Rx antennas and taking the intersection of ellipsoids

SMART HEALTH

UBIQUITOUS HEALTH & COMFORT MONITORING

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

Can smart homes monitor and adapt to our breathing and heart rates?

Personal Health

Baby Sleep

Elderly Health

Apnea test @home

BUT: TODAY'S TECHNOLOGIES FOR MONITORING VITAL SIGNS ARE CUMBERSOME

Breath Monitoring

Heart Rate Monitoring

Not suitable for elderly & babies

CAN WE MONITOR BREATHING AND HEART RATE FROM A DISTANCE?

VITAL-RADIO

Technology that monitors breathing and heart rate remotely with accuracy comparable to FDA approved devices

Can monitor multiple users simultaneously

Operates through walls and can cover multiple rooms

IDEA: USE WIRELESS REFLECTIONS OFF THE HUMAN BODY

IDEA: USE WIRELESS REFLECTIONS OFF THE HUMAN BODY

Wireless wave has a Chest Motion change distance + 2π has a Heart beats also where get this tance

The Internet of Things: Roadmap to a Connected World

LET'S ZOOM IN ON THESE SIGNALS

© 2016 Massachusetts Institute of Technology

Plit

What happens when a person moves his limb?

What happens when a person moves his limb?

Band-pass filter the cleaned signals to extract breathing and heart rate

WHAT HAPPENS WITH MULTIPLE USERS IN THE ENVIRONMENT?

REFLECTIONS FROM DIFFERENT OBJECTS COLLIDE

Problem: Phase becomes meaningless!

<u>Idea:</u> Wireless positioning can be used to locate various devices

Solution: Use wireless positioning as a filter to isolate reflections from different positions

Solution: Use wireless positioning as a filter to isolate reflections from different positions

The Internet of Things: Roadmap to a Connected World **Bucket1 Bucket2** © 2016 Massachusetts Institute of Technology

Bucket3

Solution: Use wireless positioning as a filter to isolate reflections from different positions

The Internet of Things: Roadmap to a Connected World **Bucket1 Bucket2** © 2016 Massachusetts Institute of Technology

Bucket3

PUTTING IT TOGETHER

Step 1: Transmit a wireless signal and capture its reflections

Step 2: Isolate reflections from different objects based on their positions

Step 3: Zoom in on each object's reflection to obtain phase variations due to vital signs

VITAL-RADIO EVALUATION

VITAL-RADIO EVALUATION

Baseline: Philips Alice PDX

FDA-approved breathing and hear rate monitor

Experiments:

- 200 experiments
- 14 participants
- 1 million measurements

ACCURACY VS. ORIENTATION

User is 4m from device, with different orientations

REFERENCES

Capturing the Human Figure Through a Wall, Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, Fredo Durand, ACM SIGGRAPH Asia'15, Kobe, Japan, November 2015.

Multi-Person Localization via RF Body Reflections, Fadel Adib, Zach Kabelac, Dina Katabi, Usenix NSDI'15, Oakland, California, May 2015.

Smart Homes That Monitor Breathing and Heart Rate, Fadel Adib, Hongzi Mao, Zach Kabelac, Dina Katabi, Robert C. Miller, CHI'15, Seoul, South Korea, April 2015.

Caraoke: An E-Toll Transponder Network for Smart Cities, O. Abari, D. Vasisht, D. Katabi and A. Chandrakasan, ACM Special Interest Group on Data Communication (SIGCOMM), London UK, August 2015.

AirShare: Distributed Coherent Transmission Made Seamless, O. Abari, H. Rahul, D. Katabi and M. Pant, IEEE International Conference on Computer Communications (INFOCOM), Hong Kong, April 2015.

REFERENCES

Securing RFIDs by Randomizing the Modulation and Channel, Haitham Hassanieh, Jue Wang, Dina Katabi, and Tadayoshi Kohno, NSDI'15, USENIX Symposium on Networked Systems Design and Implementation, May 2015.

Accurate Indoor Localization with Zero Startup Cost, Swarun Kumar, Stephanie Gil, Dina Katabi and Daniela Rus, ACM MobiCom'14, Maui HI, 2014.

RF-IDraw: Virtual Touch Screen in the Air Using RF Signals, Jue Wang, Deepak Vasisht, and Dina Katabi, ACM SIGCOMM, Chicago, Illinois, August 2014.

- RF-Compass: Robot Object Manipulation using RFIDs. Jue Wang, Fadel Adib, Ross Knepper, Dina Katabi, and Daniela Rus. ACM MobiCom'13, Miami, Florida, October 2013.
- Dude, Where's My Card? RFID Positioning That Works with Multipath and Non-Line of Sight. Jue Wang and Dina Katabi, ACM SIGCOMM'13, Hong Kong, August 2013.

The Internet of Things: Roadmap to a Connected World

THANK YOU!

Dina Katabi

Andrew & Erna Viterbi Professor, MIT

Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology

