

Context, from experimentation to observation

Experimental data $\rightarrow L_2$

Randomized controlled trial

Clinical trial A/B testing

Smoking? → Unfair
Major product? → Too expensive

Observational data $\rightarrow L_1$ Statistics + Causal hypothesis

[Ibeling and Icard, 2020]¹ [Bareinboim et al. 2022]²

L_2 -quantities:

- Average Treatment Effect (ATE)
- Heterogeneous Treatment Effect (HTE)
- Conditional Average Treatment Effect (CATE)
- Individual Treatment Effect (ITE)

Causality & Machine Learning

Machine Learning for Causality

Goal

Estimate causal quantities ATE, ITE, CATE, Counterfactual, ...

Causality role

Setting up a mathematical framework (i.e., hypotheses) under which correlation is causation

Machine Learning role

Estimate the "causal" correlations

Double Machine Learning Causal Machine Learning

Causality for Machine Learning

Goal

Improve Machine Learning models performances Robustness, Generalization, Disentanglement, Data efficiency, ...

Causality role

Incorporating causal knowledge (e.g., invariance rules, monotone effect, ...) in the ML model

Machine Learning role

Performing a predictive task

Causal regularization

Causal Data Augmentation

CausalDA, an approach to break down irrelevant correlations

Definition. DAG-constrained Causal Data Augmentation

Given:

- a set of variables $\mathbf{X} = (X_1, ..., X_d)$ distributed according to P_{obs} ,
- a DAG G encoding the causal dependencies that the variables must follow,
- a set of interventions I_{spl} applied to $X_{int} \subset X$,

Causal Data Augmentation consists in sampling N data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G and the set of interventions $I_{spl} = \{P_{int}(X_k | PA_{int}(X_k)) \mid X_k \in X_{int}\}$.

(A) Cow: 0.99, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

(C) No Person: 0.97,

Mammal: 0.96, Water: 0.94,

 $B \coprod O \text{ and } B \coprod O \mid C$

CausalDA, an approach to break down irrelevant correlations

Definition. DAG-constrained Causal Data Augmentation

Given:

- a set of variables $\mathbf{X} = (X_1, ..., X_d)$ distributed according to P_{obs} ,
- a DAG G encoding the causal dependencies that the variables must follow,
- a set of interventions I_{spl} applied to $X_{int} \subset X$,

Causal Data Augmentation consists in sampling N data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G and the set of interventions $I_{spl} = \{P_{int}(X_k|PA_{int}(X_k)) \mid X_k \in X_{int}\}$.

(A) Cow: 0.99, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

(C) No Person: 0.97,
Mammal: 0.96, Water: 0.9
Beach: 0.94, Two: 0.94

 $B_{int} \perp \!\!\! \perp O$ and $B_{int} \perp \!\!\! \perp C$

(A) A cow by night

(B) A cow in a house

(C) A cow in city center

Questions

References

Takeshi Teshima and Masashi Sugiyama. Incorporating causal graphical prior knowledge into predictive modeling via simple data augmentation. In Uncertainty in Artificial Intelligence, pp. 86–96, 2021

Audrey Poinsot and Alessandro Leite. A Guide for Practical Use of ADMG Causal Data Augmentation. In ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML, 2023. https://openreview.net/forum?id=kBcAZcKypug

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal Discovery Toolbox: uncovering causal relationships in Python. The Journal of Machine Learning Research, 21(1):1406–1410, 2020. https://jmlr.org/papers/v21/19-187.html

Duligur Ibeling and Thomas Icard Probabilistic reasoning across the causal hierarchy. In AAAI Conference on Artificial Intelligence, 2020.

Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On Pearl's Hierarchy and the Foundations of Causal Inference. 2022.

Netflix Technology Blog. A survey of Causal Inference Applications at Netflix. Netflix TechBlog. 2021. https://netflixtechblog.com/a-survey-of-causal-inference-applications-at-netflix-b62d25175e6f

Christina Katsimerou. There's more to experimentation than A/B. Booking.com Data Science. 2020. https://booking.ai/theres-more-to-experimentation-than-a-b-223fba846876

S. Beery, G. Van Horn, and P. Perona, "Recognition in terra incognita," in ECCV, 2018, pp. 456–473.

Ekimetrics.

CausalDA, a promising approach to use with caution

Build a causal graph

Data reveal human biases Experts alert on data issues

Apply Causal Data Augmentation

In domain:

- ADMGDA is a possible solution [Poinsot and Leite, 2023]¹
- Any other conditional density estimator might work

Out-of-domain:

- Causal Graphical Models such as Causal Bayesian Networks

Analyze the new dataset

Use the whole dataset to fit the models Compute Marketing KPIs on observed data only

Statistical KPIs matching business dynamics

Ekimetrics.

¹ Audrey Poinsot and Alessandro Leite, A Guide for practical use of ADMG Causal Data Augmentation, In ICLR 2023 Workshop on Trustworthy ML, 2023.

Hybrid Causal Discovery to mitigate data and human biases

