Dummit & Foote Ch. 3.4: Composition Series and the Hölder Program

Scott Donaldson

Oct. 2023

1. (11/2/23)

Prove that if G is an abelian simple group then $G \cong \mathbb{Z}_p$ for some prime p (do not assume G is a finite group).

Proof. Since G is simple, the only normal subgroups of G are 1 and G itself. However, since G is abelian, any subgroup of G must be normal, so it follows that G contains no subgroups other than 1 and itself.

If $x_1, x_2 \in G$ are distinct generators for G, then $\langle x_1 \rangle$ and $\langle x_2 \rangle$ would be distinct subgroups of G; therefore G is generated by a single element and is a cyclic group. Let us write $G = \langle x \rangle$. If G were infinite, then for any n > 1, $\langle x^n \rangle$ would be a distinct subgroup of G, so G must be finite.

Finally, if n divides |G|, then from Chapter 2, Theorem 7.(3), G contains a proper subgroup of order n. Therefore |G| has no divisors other than 1 and itself, so we have |G| = p for some prime p. We conclude that $G \cong \mathbb{Z}_p$ for some prime p.

2. (11/3/23)

Exhibit all 3 composition series for Q_8 and all 7 composition series for D_8 . List the composition factors in each case.

The 3 composition series for Q_8 are:

- 1. $1 \leq \langle -1 \rangle \leq \langle i \rangle \leq Q_8$
- 2. $1 \le \langle -1 \rangle \le \langle j \rangle \le Q_8$
- 3. $1 \le \langle -1 \rangle \le \langle k \rangle \le Q_8$

In each series, each composition factor is isomorphic to Z_2 (thus each N_i is normal in N_{i+1} ; since there is only one left coset it must equal the only right coset).

The 7 composition series for D_8 are:

1.
$$1 \le \langle s \rangle \le \langle s, r^2 \rangle \le D_8$$

2.
$$1 \le \langle sr^2 \rangle \le \langle s, r^2 \rangle \le D_8$$

3.
$$1 \le \langle r^2 \rangle \le \langle s, r^2 \rangle \le D_8$$

$$4. \ 1 \le \langle r^2 \rangle \le \langle r \rangle \le D_8$$

5.
$$1 \le \langle r^2 \rangle \le \langle sr, r^2 \rangle \le D_8$$

6.
$$1 \le \langle sr \rangle \le \langle sr, r^2 \rangle \le D_8$$

7.
$$1 \le \langle sr^3 \rangle \le \langle sr, r^2 \rangle \le D_8$$

Again each composition factor is isomorphic to \mathbb{Z}_2 .