# Accelerated Dynamics in HMC Simulations of Lattice Field Theory

Jack Frankland

University of Edinburgh

December 18, 2017

- ▶ What are we doing?
  - ► Calculating properties of Quantum Mechanical Systems.

- ► What are we doing?
  - ▶ Calculating properties of Quantum Mechanical Systems.
- ▶ How are we doing it?
  - Using MCMC (Markov chain Monte Carlo) methods.

- ▶ What are we doing?
  - ▶ Calculating properties of Quantum Mechanical Systems.
- ► How are we doing it?
  - Using MCMC (Markov chain Monte Carlo) methods.
- What results have we got?
  - Successfully reproduced harmonic and enharmonic oscillator properties.

- ▶ What are we doing?
  - ▶ Calculating properties of Quantum Mechanical Systems.
- ► How are we doing it?
  - ▶ Using MCMC (Markov chain Monte Carlo) methods.
- ▶ What results have we got?
  - Successfully reproduced harmonic and enharmonic oscillator properties.
- ▶ Why are we doing it?
  - Can be used for calculations in lattice field theory.

| Value               | Measured | Discrete Theory | Continuum Theory |
|---------------------|----------|-----------------|------------------|
| $\langle x \rangle$ | FILL     | 0               | 0                |

| Value                                     | Measured     | Discrete Theory   | Continuum Theory |
|-------------------------------------------|--------------|-------------------|------------------|
| $\langle x \rangle$ $\langle x^2 \rangle$ | FILL<br>FILL | 0<br>0.4472135955 | 0                |
| $\langle X \rangle$                       | FILL         | 0.4472133933      | $\overline{2}$   |

| Value                 | Measured | Discrete Theory | Continuum Theory |
|-----------------------|----------|-----------------|------------------|
| $\langle x \rangle$   | FILL     | 0               | 0                |
| $\langle x^2 \rangle$ | FILL     | 0.4472135955    | $\frac{1}{2}$    |
| $E_0$                 | FILL     | 0.4472135955    | $\frac{1}{2}$    |

| Value                 | Measured | Discrete Theory | Continuum Theory |
|-----------------------|----------|-----------------|------------------|
| $\langle x \rangle$   | FILL     | 0               | 0                |
| $\langle x^2 \rangle$ | FILL     | 0.4472135955    | $\frac{1}{2}$    |
| $E_0$                 | FILL     | 0.4472135955    | $\frac{1}{2}$    |
| $E_1$                 | FILL     | FILL            | $\frac{3}{2}$    |

Table 1: Expectation Values for quantum harmonic oscillator with  $\mu^2=1$ , lattice spacing = 1, lattice size = 1000

#### Results - Harmonic Oscillator Potential



Figure 1: Harmonic Oscillator Potential with  $\mu^2 = 1$ .

#### Results - Harmonic Oscillator Wave Function



Figure 2: Continuum, discrete and measured wave functions for the harmonic oscillator with  $\mu^2 = 1$ , m = 1, a = 1, L = 1000, d = 0.1, N = 10, configurations = 100000, burn period = 1000.

## Results - Harmonic Oscillator Typical Trajectory



Figure 3: Typical configuration for the harmonic oscillator with  $\mu^2 = 1$ , m = 1, a = 1, L = 1000, d = 0.1, N = 10, configurations = 100000, burn period = 1000.

#### Results - Anharmonic Oscillator Potential



Figure 4: Harmonic Oscillator Potential with  $\mu^2 = 1$ .

| Value               | Measured | Reference Values |
|---------------------|----------|------------------|
| $\langle x \rangle$ | FILL     | FILL             |

| Value                 | Measured | Reference Values |
|-----------------------|----------|------------------|
| $\langle x \rangle$   | FILL     | FILL             |
| $\langle x^2 \rangle$ | FILL     | FILL             |

| Value                 | Measured | Reference Values |
|-----------------------|----------|------------------|
| $\langle x \rangle$   | FILL     | FILL             |
| $\langle x^2 \rangle$ | FILL     | FILL             |
| $E_0$                 | FILL     | FILL             |

| Value                 | Measured | Reference Values |
|-----------------------|----------|------------------|
| $\langle x \rangle$   | FILL     | FILL             |
| $\langle x^2 \rangle$ | FILL     | FILL             |
| $E_0$                 | FILL     | FILL             |
| $E_1$                 | FILL     | FILL             |

Table 2: Expectation Values for quantum anharmonic oscillator with  $\mu^2=1$ , lattice spacing = 1, lattice size = 1000

### Results - Anharmonic Oscillator Wave Function



Figure 5: Measured wave function for the harmonic oscillator with  $\lambda=1, f^2=4m=1, a=1, L=1000, d=0.01, N=100, configurations=100000, burn period=1000.$ 

## Results - Anharmonic Oscillator Typical Trajectory



Figure 6: Typical configuration for the anharmonic oscillator with  $\lambda = 1$ ,  $f^2 = 4$ , m = 1, a = 1, L = 1000, d = 0.01, N = 100, configurations = 100000, burn period = 1000.

## Results - A Deeper Anharmonic Oscillator Potential



Figure 7: Anharmonic Oscillator Potential with  $\lambda = 1$ ,  $f^2 = 20$ 

### Results - A Deeper Anharmonic Oscillator Wave Function



Figure 8: Measured wave function for the harmonic oscillator with  $\lambda=1, f^2=4m=1, a=1, L=1000, d=0.01, N=100, configurations=100000, burn period=1000.$ 

# Results - A Deeper Anharmonic Oscillator Typical Trajectory



Figure 9: Typical configuration for the anharmonic oscillator with  $\lambda = 1, f^2 = 4, m = 1, a = 1, L = 1000, d = 0.01, N =$ 

#### Conclusion

- ▶ Did it work?
  - ► Successfully reproduced known values using HMC method.

#### Conclusion

- ▶ Did it work?
  - ▶ Successfully reproduced known values using HMC method.
- ▶ What next?
  - Introduce "tempering" into the dynamics to sample from isolated modes.

#### Conclusion

- Did it work?
  - Successfully reproduced known values using HMC method.
- ▶ What next?
  - Introduce "tempering" into the dynamics to sample from isolated modes.
- Applications of tempering?
  - Potentially applicable to lattice field theory where computation time is far more costly.