Findings-#2836

Adaptive BPE Tokenization for Enhanced Vocabulary Adaptation in Finetuning Pretrained Language Models

Gunjan Balde*, Soumyadeep Roy*, Mainack Mondal, and Niloy Ganguly

Indian Institute of Technology Kharagpur
*Equal Contribution

Byte-Pair Encoding (BPE^[1])

- Popular tokenization algorithm used in BART^[2], LLama^[3], and Mistral^[4]
- Utilizes concept of ranked-based merge rules to tokenize a word

^[1] Neural Machine Translation of Rare Words with Subword Units (Sennrich et al., ACL 2016)

^[2] BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (Lewis et al., ACL 2020)

^[3] Llama 2: Open foundation and fine-tuned chat models. (Hugo,et al., 2023)

^[4] Mistral 7B (Jiang et al., 2023)

Vocabulary Adaptation for PLM using BPE

- Strategy to adapt PLM to a domain during fine tuning
- Works best when adapting to expert domain
- Build a domain-specific vocabulary (V_{DOMAIN})
- And learn corresponding merge rules (MERGE DOMAIN)
- Appends it at the end of existing PLM Vocabulary and Merges

Vocabulary Adaptation for PLM using BPE

- Strategy to adapt PLM to a domain during fine tuning
- Works best when adapting to expert domain
- Build a domain-specific vocabulary (V_{DOMAIN})
- And learn corresponding merge rules (MERGE DOMAIN)
- Appends it at the end of existing PLM Vocabulary and Merges

Vocabulary Adaptation for PLM using BPE

- Strategy to adapt PLM to a domain during fine tuning
- Works best when adapting to expert domain
- Build a domain-specific vocabulary (V_{DOMAIN})
- And learn corresponding merge rules (MERGE DOMAIN)
- Appends it at the end of existing PLM Vocabulary and Merges

Not all the added vocabulary tokens are utilized

hypercholesterolemia: hyper, ch, olester, ole, mia

Split the input text down to character level

Split the input text down to character level

Find **applicable merges** on the list and get *their rank*

u-n: 148

r-e: 6

•••

e-d: 22

Split the input text down to character level

Find **applicable merges** on the list and get *their rank*

u-n: 148

r-e: 6

•••

e-d: 22

Apply the **top-ranked** merge rule

```
u-n-re-l-a-t-e-d Merge r-e
u-n-re-l-a-t-e-d Merge a-t
u-n-re-l-at-e-d Merge e-d
u-n-re-l-at-ed Merge u-n
un-re-l-at-ed
```

```
u-n-re-l-a-t-e-d Merge r-e
u-n-re-l-a-t-e-d Merge a-t
u-n-re-l-at-e-d Merge e-d
u-n-re-l-at-ed Merge u-n
un-re-l-at-ed Merge u-n
un-re-l-at-ed Merge at-ed
```

```
u-n-re-l-a-t-e-d Merge r-e
u-n-re-l-a-t-e-d Merge a-t
u-n-re-l-at-e-d Merge e-d
u-n-re-l-at-ed Merge u-n
un-re-l-at-ed Merge at-ed
un-re-l-at-ed Merge at-ed
un-re-l-at-ed Merge at-ed
```

u-n-re-l-a-t-e-d Merge **r-e**u-n-re-l-a-t-e-d Merge **a-t**u-n-re-l-at-e-d Merge **e-d**u-n-re-l-at-ed Merge **u-n**un-re-l-at-ed Merge **u-n**un-re-l-at-ed Merge **at-ed**un-re-l-at-ed Merge **r-e**un-re-l-at-ed Merge **r-e**

u-n-re-l-a-t-e-d Merge **r-e**u-n-re-l-a-t-e-d Merge **a-t**u-n-re-l-at-e-d Merge **e-d**u-n-re-l-at-ed Merge **u-n**un-re-l-at-ed Merge **at-ed**un-re-l-ated Merge **r-e**Merge **r-e**

u-n-re-l-a-t-e-d Merge **r-e**u-n-re-l-at-e-d Merge **a-t**u-n-re-l-at-e-d Merge **e-d**u-n-re-l-at-ed Merge **u-n**un-re-l-at-ed Merge **at-ed**un-re-l-ated Merge **re-l**un-related Merge **re-l**

u-n-r-e-l-a-t-e-d Merge **r-e** u-n-re-l-a-t-e-d Merge **a-t** Merge **e-d** u-n-re-l-at-e-d u-n-re-l-at-ed Merge u-n Merge at-ed un-re-l-at-ed un-re-l-ated Merge **re-l** un-rel-ated Merge **rel-ated** Merge un-related [un-related]

u-n-r-e-l-a-t-e-d Merge **r-e** u-n-re-l-a-t-e-d Merge **a-t** Merge **e-d** u-n-re-l-at-e-d u-n-re-l-at-ed Merge u-n Merge at-ed un-re-l-at-ed un-re-l-ated Merge **re-l** Merge **rel-ated** un-rel-ated Merge un-related un-related unrelated

Issue: Added Merges receive low priority!

- Added vocabulary appended at the end of existing PLM vocabulary
- Priority of MERGE DOMAIN < MERGE PLM
- Added merge rules are never utilized for multiple instances
- Resulting in ill tokenization of added vocabulary tokens

Issue: Added Merges receive low priority!

- Added vocabulary appended at the end of existing PLM vocabulary
- Priority of MERGE DOMAIN < MERGE PLM
- Added merge rules are never utilized for multiple instances
- Resulting in ill tokenization of added vocabulary tokens

Can we modify standard BPE to mitigate ill tokenization?

ADAPTBPE: Mitigate Ill-tokenization

We propose a **fundamental change** in BPE

- BPE starts by splitting the text to character level
- Instead:
 - find longest substring match in V_{DOMAIN} iteratively
 - Preserve the match as is
- Run merge operations of BPE

ADAPTBPE: Mitigate Ill-tokenization

In standard BPE because of merge rules from PLM merges, the word cholesterol could never be formed resulting in the ill-tokenization issue

However in
ADAPTBPE, the
subword **cholesterol** is
correctly captured in
longest substring
match phase
mitigating the
ill-tokenization issue

ADAPTBPE improves Classification (AVocaDo^[1])

- SoTA in vocabulary adaptation for classification tasks
- 4 classification datasets from different domain
- Overall improvement of **3.57**%

Dataset	Tokenizer	Accuracy	Macro-F1
CHEMPROT	BPE	81.43 _{0.55}	54.88 _{1.66}
(BIOMED)	ADAPTBPE	81.40 _{0.40}	55.02 _{0.47}
ACL-ARC (SCIENTIFIC)	BPE	69.03 _{5.05}	55.04 _{8.24}
	ADAPTBPE	73.02 _{4.21}	62.00 _{4.95}
HYP	BPE	77.84 _{5.20}	74.23 _{7.01}
(NEWS)	ADAPTBPE	82.16 _{2.50}	80.64 _{3.03}
AMAZON	BPE	83.13 _{3.64}	68.34 _{0.47}
(REVIEWS)	ADAPTBPE	86.26 _{0.53}	69.90 _{0.29}

ADAPTBPE improves Summarization (MEDVOC^[1])

- SoTA in vocabulary adaptation for summarization
- 4 medical summarization datasets:
 - 2 query-focussed
 - 2 consumer health query
- Overall improvement of **1.87%**
- Better in high OOV concentration

Dataset	Tokenizer	R-L (AII)	R-L (H-O)
EBM	BPE ADAPTBPE	20.65	19.23 21.43
BioASQ	BPE	48.02	39.23
	ADAPTBPE	47.72	42.95
MeQSum	BPE	55.88	75.56
	ADAPTBPE	58.00	82.64
CHQ	BPE	40.59	33.77
	ADAPTBPE	41.92	37.60

Medical experts find summaries to be more relevant and faithful

Conclusion and Takeaways

- First to show **incorrect BPE tokenization issue** for vocabulary adaptation
- ADAPTBPE is applicable to any vocabulary adaptation strategy
- ADAPTBPE improves over BPE in SoTA classification and summarization

Thank You!

Soumyadeep Roy Mainack Mondal Niloy Ganguly

Codebase

Preprint

Any Questions?

Correspondence email: balde.gunjan0812@kgpian.iitkgp.ac.in