e2_MultiModelCtrl 多旋翼控制实验

本文件夹中的所有实验均为本讲中进阶功能性实验,如:四旋翼模型 DLL 生成及 SIL/HIL 实验、四旋翼综合模型仿真验证实验、六旋翼模型 DLL 生成及 SIL/HIL 实验等实验

序号	实验名称	简介	文件地址	版本
1	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	1.MultiModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
2	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	2.MultiModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
3	四旋翼综合模型仿真验证实	在 Simulink 的 DII 模型基础上, 基于	3.CopterSimSILNoPX4\Readme.pdf	个人集合版
	验	MATLAB/Simulink 设计四旋翼控制器,并将控制器		
		和 DII 模型放在同一个 slx 文件中,依据特定的输入		
		输出接口,形成一个飞机整体仿真闭环,即综合模		
		型。在得到综合模型后,通过外部控制的方法实现		
		顶层控制。		
4	六旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成六旋翼的 DLL	4.HexModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的六旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台六旋翼模型的使		

		用。		
5	四轴八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的四轴八旋翼	5.OctoCoxRotor\Readme.pdf	个人集合版
	SIL/HIL 实验	DLL 模型文件;并对生成的四轴八旋翼模型进行软		
		硬件在环仿真测试,通过本例程熟悉平台四轴八旋		
		翼模型的使用。		
6	八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的八旋翼 DLL	6.OctoX\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的八旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台八旋翼模型的使		
		用。		
7	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	1.MultiModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
8	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	2.MultiModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
9	六旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成六旋翼的 DLL	4.HexModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的六旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台六旋翼模型的使		
		用。		
10	四轴八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的四轴八旋翼	5.OctoCoxRotor\Readme.pdf	个人集合版
	SIL/HIL 实验	DLL 模型文件;并对生成的四轴八旋翼模型进行软		
		硬件在环仿真测试,通过本例程熟悉平台四轴八旋		
		翼模型的使用。		

11	八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的八旋翼 DLL	6.OctoX\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的八旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台八旋翼模型的使		
		用。		
12	四旋翼综合模型仿真验证实	在 Simulink 的 DII 模型基础上, 基于	3.CopterSimSILNoPX4\Readme.pdf	个人集合版
	验	MATLAB/Simulink 设计四旋翼控制器,并将控制器		
		和 DII 模型放在同一个 slx 文件中, 依据特定的输入		
		输出接口,形成一个飞机整体仿真闭环,即综合模		
		型。在得到综合模型后,通过外部控制的方法实现		
		顶层控制。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	多旋翼控制实验	本文件夹中的所有实验均为本讲中进阶功能性实	readme.pdf	集合版
		验,如:四旋翼模型 DLL 生成及 SIL/HIL 实验、四		
		旋翼综合模型仿真验证实验、六旋翼模型 DLL 生		
		成及 SIL/HIL 实验等实验		
2	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	1.MultiModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
3	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	2.MultiModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
4	六旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成六旋翼的 DLL	4.HexModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的六旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台六旋翼模型的使		
		用。		
5	四轴八旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译生成的四轴八旋翼	5.OctoCoxRotor\Readme.pdf	个人集合版
	及 SIL/HIL 实验	DLL 模型文件; 并对生成的四轴八旋翼模型进行软		
		硬件在环仿真测试,通过本例程熟悉平台四轴八旋		
		翼模型的使用。		
6	八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的八旋翼 DLL	6.OctoX\Readme.pdf	个人集合版

	SIL/HIL 实验	模型文件;并对生成的八旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台八旋翼模型的使		
		用。		
7	四旋翼综合模型仿真验证	在 Simulink 的 DII 模型基础上, 基于	3.CopterSimSILNoPX4\Readme.pdf	个人集合版
	实验	MATLAB/Simulink 设计四旋翼控制器, 并将控制器		
		和 DII 模型放在同一个 slx 文件中,依据特定的输		
		入输出接口, 形成一个飞机整体仿真闭环, 即综合		
		模型。在得到综合模型后,通过外部控制的方法实		
		现顶层控制。		
8	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	1.MultiModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
9	四旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成四旋翼的 DLL	2.MultiModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件;并对生成的四旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台四旋翼模型的使		
		用。		
10	四旋翼综合模型仿真验证	在 Simulink 的 DII 模型基础上,基于	3.CopterSimSILNoPX4\Readme.pdf	个人集合版
	实验	MATLAB/Simulink 设计四旋翼控制器, 并将控制器		
		和 DII 模型放在同一个 slx 文件中,依据特定的输		
		入输出接口, 形成一个飞机整体仿真闭环, 即综合		
		模型。在得到综合模型后,通过外部控制的方法实		
		现顶层控制。		
11	六旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成六旋翼的 DLL	4.HexModelCtrl\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的六旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台六旋翼模型的使		

		用。		
12	四轴八旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译生成的四轴八旋翼	5.OctoCoxRotor\Readme.pdf	个人集合版
	及 SIL/HIL 实验	DLL 模型文件; 并对生成的四轴八旋翼模型进行软		
		硬件在环仿真测试,通过本例程熟悉平台四轴八旋		
		翼模型的使用。		
13	八旋翼模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成的八旋翼 DLL	6.OctoX\Readme.pdf	个人集合版
	SIL/HIL 实验	模型文件;并对生成的八旋翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台八旋翼模型的使		
		用。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。