ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. The for $A \subseteq X$, f(A) is defined as:

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. The for $A \subseteq X$, f(A) is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

► Example 14.1: Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \to Y$ is defined by f(1) = f(2) = u and f(3) = v.

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. The for $A \subseteq X$, f(A) is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ► Example 14.1: Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \to Y$ is defined by f(1) = f(2) = u and f(3) = v.
- ► Then $f(\{1,2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.

- Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. The for $A \subseteq X$, f(A) is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ► Example 14.1: Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \to Y$ is defined by f(1) = f(2) = u and f(3) = v.
- ► Then $f(\{1,2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.
- ▶ Here we have slight abuse of notation as we are defining f(A) for subsets of X and not elements of X, where as, normally when we write f(x), x is an element of X. However, this notation is standard.

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. The for $A \subseteq X$, f(A) is defined as:

$$f(A) := \{f(x) : x \in A\}.$$

- ► Example 14.1: Suppose $X = \{1, 2, 3\}$ and $Y = \{u, v, w\}$ and $f : X \to Y$ is defined by f(1) = f(2) = u and f(3) = v.
- ► Then $f(\{1,2\}) = \{u\}$ and $f(\{3\}) = \{v\}$.
- ▶ Here we have slight abuse of notation as we are defining f(A) for subsets of X and not elements of X, where as, normally when we write f(x), x is an element of X. However, this notation is standard.
- Note that for any element x of X, $f(\{x\}) = \{f(x)\}$, which is the singleton set containing f(x) and is different from the element f(x). This distinction between elements and singleton sets should always be maintained to avoid confusion.

▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,

- ▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,
- $\blacktriangleright (i) \ f(\emptyset) = \emptyset.$

- ▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,
- ightharpoonup (i) $f(\emptyset) = \emptyset$.
- ightharpoonup (ii) In general, $f(X) \neq Y$.

- ▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,
- $\blacktriangleright (i) \ f(\emptyset) = \emptyset.$
- ightharpoonup (ii) In general, $f(X) \neq Y$.
- ightharpoonup (iii) In general, for $A, B \subseteq X$,

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

- ▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,
- $\blacktriangleright (i) f(\emptyset) = \emptyset.$
- ightharpoonup (ii) In general, $f(X) \neq Y$.
- ightharpoonup (iii) In general, for $A, B \subseteq X$,

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

 \blacktriangleright (iv) For any two subsets A, B of X,

$$f(A\bigcup B)=f(A)\bigcup f(B).$$

▶ More generally, for arbitrary family $\{A_i : i \in I\}$ of subsets of X,

$$f(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f(A_i).$$

- ▶ Proposition 14.2: Let $f: X \to Y$ be a function. Then,
- $\blacktriangleright (i) \ f(\emptyset) = \emptyset.$
- ightharpoonup (ii) In general, $f(X) \neq Y$.
- \blacktriangleright (iii) In general, for $A, B \subseteq X$,

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

 \blacktriangleright (iv) For any two subsets A, B of X,

$$f(A\bigcup B)=f(A)\bigcup f(B).$$

▶ More generally, for arbitrary family $\{A_i : i \in I\}$ of subsets of X,

$$f(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f(A_i).$$

ightharpoonup (v) In general, for $A \subseteq X$

$$f(A^c) \neq (f(A))^c$$
.

► Example 14.3: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.

- ► Example 14.3: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then

- ► Example 14.3: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ► $A \cap B = \{0\}.$

- ► Example 14.3: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ▶ $A \cap B = \{0\}.$
- $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,

- **Example 14.3**: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ► $A \cap B = \{0\}.$
- $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,
- $f(A \cap B) = f(\{0\}) = \{0\}.$

- **Example 14.3**: Suppose $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \ \forall x \in \mathbb{R}$.
- ▶ Take $A = (-\infty, 0]$ and $B = [0, \infty)$. Then
- ► $A \cap B = \{0\}.$
- $f(A) \cap f(B) = [0, \infty) \cap [0, \infty) = [0, \infty)$, where as,
- $f(A \cap B) = f(\{0\}) = \{0\}.$
- ► Hence $f(A \cap B) \neq f(A) \cap f(B)$.

▶ The prof of Proposition 14.2 is an exercise.

- ▶ The prof of Proposition 14.2 is an exercise.
- ▶ For instance, if $y \in f(A \cup B)$, then y = f(x) for some $x \in A \cup B$. Here either $x \in A$ or $x \in B$ (or both). If $x \in A$, we get $y \in f(A)$. If $x \in B$, we get $y \in f(B)$. Consequently, we get $y \in f(A) \cup f(B)$. This shows that $f(A \cup B) \subseteq f(A) \cup f(B)$.

- ▶ The prof of Proposition 14.2 is an exercise.
- ► For instance, if $y \in f(A \cup B)$, then y = f(x) for some $x \in A \cup B$. Here either $x \in A$ or $x \in B$ (or both). If $x \in A$, we get $y \in f(A)$. If $x \in B$, we get $y \in f(B)$. Consequently, we get $y \in f(A) \cup f(B)$. This shows that $f(A \cup B) \subseteq f(A) \cup f(B)$.
- ▶ Similarly, you can show $f(A) \cup f(B) \subseteq f(A \cup B)$ and conclude that $f(A \cup B) = f(A) \cup f(B)$.

▶ Theorem 14.4: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.

- ▶ Theorem 14.4: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- ightharpoonup (a) f(X) = Y if and only if f is surjective.

- ▶ Theorem 14.4: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- ▶ (a) f(X) = Y if and only if f is surjective.
- ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.

- ▶ Theorem 14.4: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- (a) f(X) = Y if and only if f is surjective.
- ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.
- ▶ (c) $f(A^c) = (f(A))^c$ for all subsets A of X if and only if f is a bijection.

- ▶ Theorem 14.4: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- ightharpoonup (a) f(X) = Y if and only if f is surjective.
- ▶ (b) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X if and only if f is injective.
- ▶ (c) $f(A^c) = (f(A))^c$ for all subsets A of X if and only if f is a bijection.
- Proof: (a) follows from the definition of surjectivity. (b) and
 (c) are interesting exercises.

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then for any subset V of Y,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then for any subset V of Y,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

For instance, for $f: \{1,2,3\} \rightarrow \{u,v,w\}$ defined by f(1) = f(2) = u and f(3) = v,

$$f^{-1}(\{u\}) = \{1, 2\}, \quad f^{-1}(\{w\}) = \emptyset.$$

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then for any subset V of Y,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

For instance, for $f: \{1,2,3\} \rightarrow \{u,v,w\}$ defined by f(1) = f(2) = u and f(3) = v,

$$f^{-1}(\{u\}) = \{1, 2\}, \quad f^{-1}(\{w\}) = \emptyset.$$

▶ Here also there is some abuse of notation as we writing f^{-1} even when f is not invertible. But we are defining f^{-1} for subsets of Y and not for elements of Y.

Notation: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then for any subset V of Y,

$$f^{-1}(V) := \{x \in X : f(x) \in V\}.$$

For instance, for $f: \{1,2,3\} \rightarrow \{u,v,w\}$ defined by f(1) = f(2) = u and f(3) = v,

$$f^{-1}(\{u\}) = \{1, 2\}, f^{-1}(\{w\}) = \emptyset.$$

- ▶ Here also there is some abuse of notation as we writing f^{-1} even when f is not invertible. But we are defining f^{-1} for subsets of Y and not for elements of Y.
- ▶ For the example, $g : \mathbb{R} \to \mathbb{R}$, defined by $g(x) = x^2$, $\forall x \in \mathbb{R}$, we see that $g^{-1}(\{0\}) = \{0\}$ and $g^{-1}([0,\infty)) = \mathbb{R}$.

▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.

- ▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.
- $(i) f^{-1}(\emptyset) = \emptyset;$

- ▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.
- $(i) f^{-1}(\emptyset) = \emptyset;$
- (ii) $f^{-1}(Y) = X$;

- ▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.
- $(i) f^{-1}(\emptyset) = \emptyset;$
- (ii) $f^{-1}(Y) = X$;
- ▶ (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y. More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y,

$$f^{-1}(\bigcap_{i\in I}V_i)=\bigcap_{i\in I}f^{-1}(V_i).$$

- ▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.
- $(i) f^{-1}(\emptyset) = \emptyset;$
- (ii) $f^{-1}(Y) = X$;
- ▶ (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y. More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y,

$$f^{-1}(\bigcap_{i\in I}V_i)=\bigcap_{i\in I}f^{-1}(V_i).$$

▶ (iv) $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$ for subsets V, W of Y. More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y,

$$f^{-1}(\bigcup_{i\in I}V_i)=\bigcup_{i\in I}f^{-1}(V_i).$$

- ▶ Theorem 14.5: Let X, Y be non-empty sets and let $f: X \to Y$ be a function. Then following properties hold.
- $(i) f^{-1}(\emptyset) = \emptyset;$
- (ii) $f^{-1}(Y) = X$;
- ▶ (iii) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$ for subsets V, W of Y. More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y,

$$f^{-1}(\bigcap_{i\in I}V_i)=\bigcap_{i\in I}f^{-1}(V_i).$$

(iv) $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$ for subsets V, W of Y. More generally, for any arbitrary collection $\{V_i : i \in I\}$ of subsets of Y,

$$f^{-1}(\bigcup_{i\in I}V_i)=\bigcup_{i\in I}f^{-1}(V_i).$$

• (v) $f^{-1}(V^c) = (f^{-1}(V))^c$ for every subset V of Y.

▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.

- ▶ It is indeed amazing that the inverse image f^{-1} respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ Theorem 14.6: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.

- ▶ It is indeed amazing that the inverse image f⁻¹ respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ Theorem 14.6: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- \triangleright (a) For any subset A of X,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

- ▶ It is indeed amazing that the inverse image f⁻¹ respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ Theorem 14.6: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- \triangleright (a) For any subset A of X,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

▶ (b) For any subset V of Y,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

- ▶ It is indeed amazing that the inverse image f⁻¹ respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ Theorem 14.6: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- \triangleright (a) For any subset A of X,

$$f^{-1}(f(A)) \supseteq A$$

and the equality may not hold.

▶ (b) For any subset V of Y,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

Proof: Exercise.

- ▶ It is indeed amazing that the inverse image f⁻¹ respects all set theoretic operations with no conditions imposed on f. This is a very useful fact to remember.
- ▶ The proof of Theorem 14.5 is also as an exercise.
- ▶ Theorem 14.6: Let X, Y be non-empty sets and let $f: X \to Y$ be a function.
- \triangleright (a) For any subset A of X,

$$f^{-1}(f(A))\supseteq A$$

and the equality may not hold.

▶ (b) For any subset V of Y,

$$f(f^{-1}(V)) \subseteq V$$

and the equality may not hold.

- Proof: Exercise.
- ► END OF LECTURE 14.

