

Learning Bayesian network parameters from small data sets: A further constrained qualitatively máximum a posteriori method

Redes Bayesianas

Andrés Herranz González

Método

Base: QMAP

$$\widehat{\boldsymbol{\theta}}_{ijk} = \frac{N_{ijk} + M_{ijk}}{N_{ij} + M_{ij}}$$

Propuesta: FC-QMAP
$$\widehat{\boldsymbol{\theta}}_{ijk} = \frac{N'_{ijk} + M_{ijk}}{N_{ij} + M_{ij}}$$

$$N'_{ijk} = \left(\sum_{k=1}^{r_i} N_{ijk}\right) \theta'_{ijk}$$

$$\boldsymbol{\theta}'_{ijk} = \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} log \theta_{ijk} \quad \text{Sujeto a } \Omega(\theta_{ijk}) \leq 0$$

Método

- El algoritmo **FC-QMAP se puede resumir** en:
 - Obtener el número de observaciones N_{ijk} y N_{ij} del *dataset*.
 - Generar una muestra de parámetros que satisfacen las restricciones utilizando el método de aceptación-rechazo.
 - Calcular la estimación QMAP de $\hat{\theta}_{ijk}$.
 - Si la estimación QMAP no satisface todas las restricciones, continuar, sino, parar.
 - Calcular el valor del parámetro θ'_{ijk} .
 - Estimar el valor $\hat{\theta}_{ijk}$ con FC-QMAP.

Resultados

	CML	CME	QMAP	FC-QMAP
Asia Network				
25%	0,311±0,169	0,156±0,031	0,110±0,029	0,107±0,028
50%	0,079±0,041	$0,066 \pm 0,029$	$0,046 \pm 0,025$	$0,041 \pm 0,025$
75%	$0,042 \pm 0,025$	$0,027 \pm 0,017$	$0,015\pm0,007$	$0,009 \pm 0,007$
100%	0,022±0,010	$0,009 \pm 0,002$	$0,009 \pm 0,002$	$0,002\pm0,001$
Andes Network				
25%	0,707±0,045	$0,209 \pm 0,003$	$0,144 \pm 0,002$	$0,142\pm0,002$
50%	$0,480 \pm 0,052$	$0,139\pm0,003$	$0,096 \pm 0,002$	$0,093\pm0,002$
75%	$0,345 \pm 0,046$	$0,094 \pm 0,001$	$0,064 \pm 0,002$	$0,060\pm0,002$
100%	0,252±0,042	$0,071 \pm 0,001$	$0,047\pm0,001$	$0,042\pm0,001$

Resultados

