Deep Learning Episode 0

Linear Models

Linear Regression

Model:

Objective function:

$$L = \sum_{i} (y_i - y_i^{pred})^2$$

Optimization (exact):

{that formula}

Linear Regression

Model:

Objective function:

$$L = \sum_{i} (y_i - y_i^{pred})^2$$

Optimization (iterative):

$$w_0 \leftarrow 0$$

$$w_{i+1} \leftarrow w_i - \alpha \frac{\delta L}{\delta W} = \sum_i -2x(y_i - (wx_i + b))$$

Logistic Regression

$$P(y) = \sigma(Wx + b)$$

Objective function?

Logistic Regression

Model:

Objective function:

$$L = -\sum_{i} y \log P^{pred}(y) + (1 - y) \log (1 - P^{pred}(y))$$

Optimization (iterative):

You guessed it!

Logistic Regression

Model:

Objective function:

$$L = -\sum_{i} \sum_{class} [y_i = class] \log P^{pred}(class|X)$$

Gradient descent

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) (for j = 1 and j = 0) }
```


Can we do better?

Newton-Raphson

Parameter update

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n).$$

Hessian:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Red: Newton-Raphson Green: gradient descent

Any drawbacks?

SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$\Delta w := \eta
abla Q_i(w) + lpha \Delta w$$

$$w := w - \Delta w$$

AdaGrad

Idea: decrease learning rate individually for each parameter in proportion to sum of it's gradients so far.

Let
$$g_{\tau,j} = \frac{\delta L}{\delta w_j}$$
 on τ_{th} tick $G_{j,j} = \sum_{\tau=1}^t g_{\tau,j}^2$ $w_j := w_j - \frac{\eta}{\sqrt{G_{j,j}}} g_j.$

RMSProp

Idea: make sure all gradient steps have approximately same magnitude (by keeping moving average of magnitude)

$$v(w,t) := \gamma v(w,t-1) + (1-\gamma)(\nabla Q_i(w))^2$$

$$w := w - rac{\eta}{\sqrt{v(w,t)}}
abla Q_i(w)$$

Alltogether

Moar stuff

Without Hessian

- Adadelta
 - Adam
- Adamax
- Nesterov-momentum
- Hessian-free (narrow)
 - Conjugate gradients

Estimate inverse Hessian

- BFGS
- L-BFGS
- ****-BFGS

Regularization (weight)

General idea:

$$L_{new} = L + reg$$

performance = how_i_fit_data + how_reasonable_i_am

L2 regularizer

$$L_{new} = L + ||\theta||_2 = L + \sum_i \theta_i^2$$

linear models: theta = $\{w,b\}$

- a.k.a. weight decay
- a.k.a. Tikhonov regularizer
- a.k.a. normal prior on params

Regularization (weight)

L2 regularizer

$$L_{new} = L + \sum_{i} \theta_{i}^{2}$$

L1 regularizer

$$L_{new} = L + \sum_{i} |\theta_{i}|$$

Difference between L1, L2?
Any other way to regularize?

Regularization(other)

- Distort input
- Distort weights
- Additional objective
- Domain-specific stuff
- Moar data :)
- etc.

Most are domain- or model-specific

Nonlinear dependencies

How to get that?

Nuff

Go implement that!