2018 级理科数学分析(I)期终考试试题 A 卷

- 1. (10 分)判断下列命题是否正确,正确请画√,不正确请画×(不用说明原因).
- (1) 若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 有界.
- (2) 若 $a_n > b_n (n = 1, 2, \dots)$,且 $\lim_{n \to +\infty} a_n = A$, $\lim_{n \to +\infty} b_n = B$,则 A > B.
- (3) 若 $\lim_{n \to +\infty} a_n = A$,且 $a_n > 0$ $(n = 1, 2, \dots)$,则 $\lim_{n \to +\infty} \sqrt[n]{a_n} = 1$.
- (4) 设 $f(x) = |x-a| \varphi(x)$, 其中 $\varphi(a) = 0$ 且 $\varphi(x)$ 在 a 点连续,则 f(x) 在 a 点可导.
- (5) 如果 f(x) 在 $(-\infty, +\infty)$ 连续,且 f(x) = 0, $\forall x \in Q$ (Q 表示有理数集),那么 f(x) = 0, $\forall x \in (-\infty, +\infty)$.
- (6) 若 $\lim_{x \to x_0} f(x) = \infty$, $\lim_{x \to x_0} g(x) = L$, 则 $\lim_{x \to x_0} f(x)g(x) = \infty$
- (7) 设非常数函数 f(x) 在区间 (a,b) 可导, x_0 是 f(x) 在 (a,b) 的极小值点,则存在 $\delta > 0$,使得当 $x \in (x_0 \delta, x_0)$ 时, f'(x) < 0 ; 当 $x \in (x_0, x_0 + \delta)$ 时, f'(x) > 0 .
- (8) 设 f(x) 在点 x_0 的某个邻域内有定义. 若存在实数 A ,使得当 $\Delta x \to 0$ 时, $f(x_0 + \Delta x) f(x_0) A\Delta x = o(\Delta x)$,则 $f'(x_0)$ 存在,且 $f'(x_0) = A$.
- (9) 设 $\int f(x)dx = F(x) + C$, $\int g(x)dx = G(x) + C$. 若 $F(x) \neq G(x)$, 则 $f(x) \neq g(x)$.
- (10) $\lim_{x\to a+0} f(x)$ 存在的充要条件是: 任给 $\varepsilon>0$,存在 $\delta>0$,使得 $\forall x_1, x_2\in (a,a+\delta)$,都有 $|f(x_1)-f(x_2)|<\varepsilon$.
- 2. (35分)计算题
- (1) 求极限 $\lim_{x\to 0} \frac{e^x (1+2x)^{\frac{1}{2}}}{x^2}$.
 - (2) 求极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$.

 (4) $\int_{1}^{2} x \ln x dx$
- (5) $\int_0^1 \frac{e^x}{1+e^x} dx$

(3) $\int \frac{3x+1}{x^2+x-2} dx$

(6) 设 $f(x) = x \sin x$, 求 $f^{(5)}(x)$.

(7) 求由
$$\begin{cases} x = 2t - t^2 \\ y = 3t - t^3 \end{cases}$$
 所确定的函数 $y = y(x)$ 的一阶导数 $\frac{dy}{dx}$ 和二阶导数 $\frac{d^2y}{dx^2}$.

- 3. (15 分) 设函数 y = y(x) 是由方程 $x^3 + y^3 3x + 3y + 2 = 0$ 所确定的隐函数.
- (1) 求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$;
- (2) 求 y = y(x) 的极值.
- 4. (6 分)证明不等式: $\frac{x}{1+x^2} < \arctan x < x$, x > 0.
- 5. $(8 \, \mathcal{G})$ 设 f(x) 在区间[0,3]连续,且 $f(2)+f(3)=2\int_0^1 f(x)dx$. 证明:在[0,3]中存在两个点 \mathcal{E} , η ,使得 $f(\mathcal{E})=f(\eta)$.
- 6. (10 分)设 $F(x) = x^2 f(x)$.
- (1) 若 $f(x) = \ln(1+x)$, 求 F(x) 在 x = 0 的 5 阶泰勒多项式, 并求 $F^{(5)}(0)$.
- (2) 若 f(x) 在区间 [0,a] 二阶可导,且 f(a)=0,证明:存在 $\eta \in (0,a)$,使得 $F''(\eta)=0$.
- 7. (8分)
- (1)设f(x)在区间I可导,且f'(x)在区间I有界.证明:f(x)在区间I一致连续.
- (2) 设 f(x) 在 [a,b] 可积, F(x) 是 f(x) 在 (a,b) 的一个原函数. 证明: F(x) 在 (a,b) 一致连续,且 $\lim_{x\to a+0} F(x)$ 和 $\lim_{x\to b-0} F(x)$ 都存在.
- 8. (8 分) 设 f(x) 在区间[0,1]可导,且 $\left\{x \in [0,1] \middle| f(x) = 0, f'(x) = 0\right\}$ 是空集. 证明: f(x) 在[0,1]最多只有有限个零点.