Problem 0

200253668: JNSHAH2

- 1. Name: Jubeen Shah
- 2. Graduate Student
- 3. What is your experience/comfort with:
 - (a) Mathematical proofs: Not ver comfortable
 - (b) Elementary probability theory: Comfortable
 - (c) Analysis of algorithms: Taking the algorithms course this semester
 - (d) Complexity theory, including big-O notation and NP completeness: Taking the algorithms course this semester which should help later

Problem 1: Perfect Security and One-time Pad

1. Let $M = \{0, 1, 2, 3\}$ (messages are uniform). The key space is K (chosen uniformly) from $K = \{0, 1, 2, 3, 4\}$.

$$Enc(k,m) = k + m \mod 4$$

$$Dec(k,c) = c - k \mod 4$$

Is this correct and perfectly secure?

Solution 1.1: Messages along with the key used, the encrypted cipher text and the message decrypted is given below.

```
Key:
Message:
                       0 | Cipher:
                                         | Message:
                                                      0
Message:
           0
                Key:
                       1
                           Cipher:
                                       1
                                         | Message:
                                                      0
                Key:
                       2
                          | Cipher :
                                                      0
Message:
           0
                                       2
                                         | Message:
           0
                Key:
                       3
                          |Cipher:
                                       3
                                         | Message:
                                                      0
Message:
Message:
           0
                Key:
                       4
                          | Cipher :
                                         | Message:
                                                      0
Message:
           1
                Key:
                       0
                          | Cipher :
                                       1
                                         | Message:
                                                      1
                                       2
Message:
           1
                Key:
                       1
                          | Cipher:
                                         | Message:
                                                      1
Message:
           1
                Key:
                       2
                          | Cipher :
                                       3
                                         | Message:
                                                      1
                Key:
                       3
                                                      1
Message:
           1
                          | Cipher:
                                       0
                                         | Message:
Message:
           1
                Key:
                       4
                          | Cipher :
                                       1
                                         | Message:
                                                      1
           2
                Key:
                          | Cipher:
                                       2
                                                      2
Message:
                       0
                                         | Message:
                                                      2
Message:
           2
                Key:
                       1
                          | Cipher:
                                       3
                                         | Message:
Message:
           2
                Key:
                       2
                          | Cipher:
                                       0
                                         | Message:
                                                      2
                                                      2
           2
                Key:
                       3
                          | Cipher :
Message:
                                       1
                                         | Message:
           2
                                       2 | Message:
                                                      2
                Key:
                       4 | Cipher:
Message:
           3
                Key:
                       0
                          | Cipher :
                                         | Message:
                                                      3
Message:
                                       3
                          | Cipher:
                                                      3
Message:
           3
                Key:
                       1
                                       0
                                         | Message:
Message:
           3
                Key:
                       2
                           Cipher:
                                       1
                                         | Message:
                                                      3
                           Cipher:
Message:
           3
                Key:
                       3
                                       2
                                         | Message:
                                                      3
                Kev:
                       4 | Cipher:
                                                      3
Message:
           3
                                       3 | Message:
```

For a Encryption Scheme (Gen, Enc, Dec) to be perfectly secure, there are a few conditions that need to be met.

- $1. \ Pr[C=c|M=m]=Pr[C=c]$
- 2. $Pr[C = c|M = m_0] = Pr[C = c|M = m_1]$
- 3. Number of Keys \geq Number of Message \geq Number of Cipher Text; or

4. $Number\ of\ Keys = Number\ of\ Message = Number\ of\ Cipher\ Text$ (Shannon's Theorem)

(c) condition is met, since we have
$$M = \{0,1,2,3\}$$

$$K = \{0,1,2,3,4\}$$

200253668: JNSHAH2

 $C = \{0, 1, 2, 3\}$

Looking at the output of the *cipher text* and *messages* it can be said that for any given value of the *cipher text* or *message* both conditions (a) and (b) are met. i.e., the probability of cipher text c_x being of m_0 or m_1 or m_2 or m_3 is equal.

Since, conditions (a), (b), and (c) are met with, and every pair of $(cipher\ text, message)$ has a unique key, we can say that the encryption scheme is **perfectly secure**.

200253668 : JNSHAH2

2. Suppose we have a variation of the one-time pad in which the message space $M = \{0,1\}^n$ but the key space K is limited to all n-bit strings with an even number of 1's. Give an example of an n, m_0 , m_1 for which, given c, anyone may determine whether m_0 or m_1 was encrypted.

Solution 1.2: Let's assume, the following values for n, m_0 , m_1 , and c respectively.

$$n = 3$$

 $m_0 = 100$
 $m_1 = 101$
 $c = 111$

So if we XOR the the messages with the cipher text, we should get some key k_0 and k_1

$$k_0 = m_0 \oplus c = 100 \oplus 111 = 011$$

 $k_1 = m_1 \oplus c = 101 \oplus 111 = 010$

The key thus be either be $\theta 11$ or $\theta 10$. That is, both (k_0, m_0, c) and (k_1, m_1, c) have equal probability of being the key used to encrypt message m1 and m2.

We can eliminate one of the tuple (k_0, m_0, c) or the tuple (k_1, m_1, c) because as per the question we have that the key has **even number of 1s**, therfore $\theta 1\theta$ cannot be the key and know that m_0 was encrypted.

Problem 2: PRG

Let G be a pseudorandom generator with expansion factor $\ell(n) > 2n$. In each of the following cases, say whether G' is a PRG. If yes, show a proof. If no, show a counterexample.

1. $G'(s) = G(s_1, \ldots, s_{\lfloor n/2 \rfloor})$ where $s = s_1, \ldots, s_n$.

Solution 2.1 We have the following Pseudo-Random Generator

$$G'(s) = G(s_1, \ldots, s_{\lfloor n/2 \rfloor})$$
 where $s = s_1, \ldots, s_n$

Theorem: If G is a PRG, then $G'(s) = G(s_1, \ldots, s_{\lfloor n/2 \rfloor})$ is a PRG.

Proof: Assume that G' is not a PRG. Then \exists PPT algorithm D who distinguishes

$$|Pr[D(y) = 1|y \leftarrow G'(s)] - Pr[D(y) = 1|y \leftarrow_{\$} \{0, 1\}^n]| = \varepsilon(n)$$

Where $\varepsilon(n)$ is a non-negligible function.

Now we will create a distinguisher D' which will simulate D.

- 1. Given input y to D', $|y|=\{0,1\}^{\ell(\lfloor \frac{n}{2}\rfloor)}$, where the expansion factor $\ell(\lfloor \frac{n}{2}\rfloor)$ can be assumed to be Z
- 2. Give y to D to distinguish
- 3. Output D(y). That is, output whatever D outputs on y as input.

Case Analysis: For when y = G'(s) and $y = \{0, 1\}^n$

1. If y = G'(s) for some seed s for $s \in \{0,1\}^{\lfloor \frac{n}{2} \rfloor}$, since D' outputs the same as D we have the following:

$$Pr[D'(s) = 1|T \leftarrow G'(s)|s \in \{0, 1\}^Z]$$

We have that

 $G(s_0, s_1, \dots, s_{\lfloor \frac{n}{2} \rfloor})$ where input length is $\frac{n}{2}$ means that $G(s_0, s_1, \dots, s_{\lfloor \frac{n}{2} \rfloor})$ is of length Z

We also have that

 $G'(s_0, s_1, \ldots, s_n) = G(s_0, s_1, \ldots, s_{\lfloor \frac{n}{2} \rfloor})$ which means that $G'(s_0, s_1, \ldots, s_n)$ is of length Z.

Therefore we can write that

$$Pr[D'(s) = 1 | T \leftarrow G'(s) | s \in \{0, 1\}^{Z}] = Pr[D'(y) = 1 | y \leftarrow G(s) | s \in \{0, 1\}^{n}]$$
 (1)

2. If $y \leftarrow_{\$} \{0,1\}^n$ then y will be taken from a truly random distribution. Therefore we have that

$$Pr[D'(y) = 1|y \leftarrow_{\$} \{0,1\}^n]$$
 (2)

Thus, the difference in Equation 2 and 1 gives us

$$|Pr[D'(y) = 1|y \leftarrow G(s)|s \in \{0, 1\}^n] - Pr[D'(y) = 1|y \leftarrow_{\$} \{0, 1\}^n]| = \varepsilon(n)$$

Since we assumed that $\varepsilon(n)$ was a non-negligible function this would mean that D' is a distinguisher for G that distinguishes with non-negligible probability. Since G is a PRG, this would be a contradiction. Hence $G'(s) = G(s_1, \ldots, s_{\lfloor n/2 \rfloor})$ is a PRG

200253668 : JNSHAH2

1.
$$G'(s) = G(s)||G(s')|$$
, where $s' = s_1, s_2, \dots, s_{n-1}, \bar{s}_n^{-1/2}$

Solution 2.2 We have the following Pseudo-Random Generator

$$G'(s) = G(s)||G(s')||$$
 where s' is simply s with the last bit flipped.

Preparing Input:

Proof: Assume that G' is not a PRG. Then \exists PPT algorithm D who distinguishes

$$|Pr[D(y) = 1|y \leftarrow G'(s)] - Pr[D(y) = 1|y \leftarrow_{\$} \{0, 1\}^n]| = \varepsilon(n)$$

Where $\varepsilon(n)$ is a non-negligible function.

Let D be a distinguisher for G' with the following algorithm:

- 1. On input y, parse it as $y = y_1, y_2 \dots y_n$
- 2. Calculate z = G(s)||G(s')||
- 3. Return

$$D(y) = \begin{cases} 1 & if \ z = y_1 \dots y_{\frac{n}{2}-1} || y_{\frac{n}{2}} \dots y_{n-1} \\ 0 & otherwise \end{cases}$$

This would be because, since the first $1 \dots \frac{n}{2} - 1$ bits are equal to the *next* $\frac{n}{2} \dots n - 1$ bits, as only the last bit is being flipped.

Case Analysis: For when y = G'(s) and $y = \{0, 1\}^n$

1. For D to output 1, we need the Probability that the $1 \dots \frac{n}{2} - 1$ bits are equal to the $next \ \frac{n}{2} \dots n - 1$ bits

$$Pr[D(G'(s)) = 1] = 1 - Pr[D(G'(s)) = 0] = 1 - \frac{1}{2^{\frac{n}{2} - 1}}$$
(3)

Hint: Is there a way to force a relationship between G(s) and G(s') for some particular G?

²Notation remark: s' is simply s with the last bit flipped.

2. For when y is Truly Random, we have that the

200253668: JNSHAH2

$$Pr[D(G'(s) = 1] = \frac{2^{\frac{n}{2} - 1}}{2^n} = 2^{-\frac{n}{2} - 1}$$
(4)

Thus, the difference in Equation 3 and 4 gives us

$$|Pr[D'(y) = 1|y \leftarrow G(s)||G(s')|] - Pr[D'(y) = 1|y \leftarrow 0, 1^{\ell(p(n))}]| = 1 - \frac{1}{2^{\frac{n}{2}-1}} - \frac{1}{2^{\frac{n}{2}+1}}$$

which is non-negligible. Hence we say that G'(s) = G(s)||G(s')|| is not a secure PRG.

Problem 3: PRF

Suppose that $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ is a pseudorandom function. Typically a key k is chosen and we are interested in $F_k = F(k,\cdot): \{0,1\}^* \to \{0,1\}^*$. See also definition from Katz/Lindell 3.25.

Then say whether the following are a PRF or not, and prove why or show an attack.

1. $F'_k(x) = F_k(x)||F_k(\bar{x})|$. The notation \bar{x} means all the bits of x are flipped.

Solution 3.1 We have the Pseudo Random Function:

$$F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$$

Algorithm A

Preparing Input

- $x^0 \leftarrow \{0,1\}^n$
- $x^1 \leftarrow \bar{x}$ where the notation \bar{x} means all the bits of x are flipped.

We have from the definition that

$$|Pr[D^{F_k(\cdot)} \cdot (1^n) = 1] - Pr[D^{F(\cdot)} \cdot (1^n) = 1]| \le negl(n)$$

- Query Oracle with input x^0 and x^1
- On receipt of $\mathcal{O}(x^0=y^0)$, parse it as $y^0=y_1^0||y_2^0|$
- On receipt of $\mathcal{O}(x^1=y^1)$, parse it as $y^1=y_1^1||y_2^1||$
- if $y_1^1 == y_1^0$, output 1. Else output 0

Analysis of A's Success

Case $\mathcal{O} = F'$

1.
$$\mathcal{O}(x^0) = y^0 = y_1^0 || y_2^0 = F_{k_1}'(x^0) || F_{k_2}'(\bar{x}^0)$$

2.
$$\mathcal{O}(x^1) = y^1 = y_1^1 || y_2^1 = F'_{k_2}(x^1) || F'_{k_2}(\bar{x}^1)$$

- But we have that $\bar{x}^0 = x^1$
- 3. Then $\mathcal{O}(x^1) = F'_{k_2}(\bar{x}^0)||F'_{k_2}(x^0)|$
- 4. Then $y_1^0 = y_2^1$ with a probability 1
- 5. $A^{F(\cdot)}() = 1$ with a probability 1

200253668 : JNSHAH2

Case $\mathcal{O} = Truly \ Random \ Function(TF)$

- 1. $\mathcal{O}(x^0) = y^0 = y_1^0 || y_2^0;$ where y_1^0 and y_2^0 are uniformly random
- 2. $\mathcal{O}(x^1) = y^1 = y_1^1 || y_2^1;$ where y_1^1 and y_2^1 are uniformly random
- 3. Then $y_1^0 = y_2^1$ with a probability $\frac{1}{2^n}$
- 4. $A^{F(\cdot)}()=1$ with a probability $\frac{1}{2^n}$

We see that

$$|Pr[A^{TF(\cdot)}() = 1] - Pr[A^{F(\cdot)}() = 1]| = |1 - \frac{1}{2^n}|$$

which is not negligible, Hence, F' is not a secure Pseudo Random Function.

$$2. F'_k(x) = F_k(x) \oplus x.$$

Solution 3.2 We have the Pseudo Random Function:

$$F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$$

$$F_k = F(k, \cdot) : \{0, 1\}^* \to \{0, 1\}^*$$

Theorem: If F is a secure PRF then F' is a secure PRF.

Proof by contradiction. We will prove the following statement. If F' is not a secure PRF then F is not a secure PRF.

Step 1: F' is not secure; which means that \exists PPT algorithm A' such that A' can distinguish between F' and a $Truly\ Random$ function (TF) with a probability $\varepsilon(n)$; where $\varepsilon(n)$ is non-negligible.

Step 2: Reduction

- A gets access to the Oracle where \mathcal{O} is F or a Truly Random Function TF.
- A activates A'
 - 1. On each query x_i by A' forwarded to \mathcal{O} , Receive $\mathcal{O}(x_i) = y_i$
 - 2. Calculate $y'_i = y_i \oplus x_i$. Forward y'_i to A'
- Finally when A' outputs b, output the same

Step 3: Analysis of success probability of the reduction of A

Case 1: $\mathcal{O} = F$

- 1. A gets $F_k(x_i)$ for each query x_i
- 2. Then $y_i = F_k(x_i) \oplus x_i$

This looks exactly like the view A' would see with $\mathcal{O} = F'$

 $200253668:\,\mathrm{JNSHAH2}$

Case 2: $\mathcal{O} = TF$

- 1. $A \text{ gets } y_i \leftarrow_{\$} \{0,1\}^n$
- 2. A' gets $y_i \oplus x_i$ which is also uniformly random

This looks exactly like the view A' would see with $\mathcal{O} = TF$ We know by assumption that

$$|Pr[A^F \cdot (1^n) = 1] - Pr[A^{TF} \cdot (1^n) = 1]| = \varepsilon(n)$$

We conclude that A, gives the same output as A' distinguishes with probability $\varepsilon(n)$. However by assumption $\varepsilon(n)$ is non-negligible and A is an adversary of F, which is a PRF. This is a contradiction so F' must be a secure PRF.