# 全国青少年信息学奥林匹克竞赛

## NOIP2023模拟

时间: 8:00-12:20

| 题目名称    | 牧场施肥              | 堆叠纸张       | 饥饿奶牛    | 观看牛飞        |
|---------|-------------------|------------|---------|-------------|
| 题目类型    | 传统型               | 传统型        | 传统型     | 传统型         |
| 目录      | fertilizing       | papers     | cow     | cowflix     |
| 可执行文件名  | fertilizing       | papers     | cow     | cowflix     |
| 输入文件名   | fertilizing.in    | papers.in  | cow.in  | cowflix.in  |
| 输出文件名   | fertilizing.out   | papers.out | cow.out | cowflix.out |
| 每个测试点时限 | 1.0秒              | 1.0秒       | 2.0秒    | 2.0秒        |
| 内存限制    | $256~\mathrm{MB}$ | 256 MB     | 512MB   | 256MB       |
| 子任务数目   | 20                | 10         | 20      | 20          |
| 测试点是否等分 | 是                 | 是          | 是       | 是           |

### 提交源程序文件名

| 对于C++语言 | fertilizing.cpp | papers.cpp | cow.cpp | cowflix.cpp |
|---------|-----------------|------------|---------|-------------|
|---------|-----------------|------------|---------|-------------|

### 编译选项

### 注意事项与提醒 (请选手务必仔细阅读)

- 1.文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中主函数的返回值类型必须是 int,程序正常结束时的返回值必须是 0.
- 3.提交的程序代码文件的放置位置请参照各省的具体要求。
- 4.因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5.若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6.程序可使用的栈内存空间限制与题目的内存限制一致。
- 7.全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8.评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。
- 9.终评测时所用的编译命令中不含编译选项之外的任何优化开关。

### 牧场施肥 (fertilizing)

#### 【问题描述】

有 N 个牧场( $2 \le N \le 2 \cdot 10^5$ ),由 N-1 条道路连接,形成一棵树。每一条路需要花费 1 秒的时间通过。每个牧场从 0 棵草开始,第 i 个牧场的草以每秒  $a_i$  ( $1 \le a_i \le 10^8$ ) 个单位的速度生长。农夫约翰一开始就在 1 号牧场,他需要开车四处走动,给每个牧场的草施肥。如果他去一个有 x 单位草的牧场,它将需要 x 个肥料。牧场只需要在第一次到访时施肥,而给牧场施肥需要 0 分钟。

输入包含一个额外的参数  $T \in \{0,1\}$ 。

- 如果 T=0,农夫约翰必须在牧场 1 结束。
- 如果 T=1,农夫约翰可以在任何牧场结束。

计算给每个牧场施肥所需的最短时间,以及在这段时间内完成施肥所需要的最短肥料量。

### 【输入格式】

第一行包含 N 和 T。

第 2 行到第 N 行,包含两个整数 p[i] 和 a[i],a[i] 的含义见上文。p[i] 则表示节点 i 和 p[i] 之间有一条边相连。

### 【输出格式】

输出包含两个整数:遍历所有节点的最小时间和此时需要付出的费用。

### 【样例输入1】

5 0

1 1

1 2

3 1

3 4

### 【样例输出1】

8 21

### 【样例1解释】

农夫约翰最佳路线如下:

在时间 1,移动到节点 3,节点 3 现在有 1\*2=2 棵草,因此需要 2 个肥料。

在时间 2,移动到节点 5,该节点现在有 2\*4=8 棵草,因此需要 8 个肥料。

在时间 3, 移回节点 3, 我们已经施肥了, 所以不需要再次施肥。

在时间 4,移动到节点 4,节点 4 现在有 4\*1=4 棵草,因此需要 4 个肥料。

在时间 5, 移回节点 3, 我们已经施肥了。

在时间 6, 移回节点 1。

在时间 7, 移动到节点 2, 节点 2 现在有 7\*1=7 棵草, 因此需要 7个肥料。

在时间 8,返回到节点 1。

该路线耗时 8 次,使用 2+8+4+7=21 个肥料。可以看出,8 是在末端返回到节点 1 的任何路由的最小可能的时间量,而 21 是返回节点 1 并花费 8 个时间的任何路由使用的最小可能肥料。

#### 【样例输入2】

5 1

1 1

1 2

3 1

3 4

### 【样例输出2】

6 29

### 【样例2解释】

农夫约翰的最佳路线如下:

在时间 1,移动到节点 2,该节点现在有 1\*1=1 棵草,因此需要 1个肥料。

在时间 2, 移回节点 1。

在时间 3,移动到节点 3,节点 3 现在有 3\*2=6 棵草,因此需要 6 个肥料。

在时间 4,移动到节点 5,该节点现在有 4\*4=16 棵草,因此需要 16 个肥料。

在时间 5, 移回节点 3, 我们已经施肥了, 所以不需要再次施肥。

在时间 6,移动到节点 4,节点 4 现在有 6\*1=6 棵草,因此需要 6 个肥料。

这条路线需要 6 个时间,使用 1+6+16+6=29 肥料。可以看出,对于任何路线而言,6 是尽可能少的时间量,而对于任何花费 6 个时间的路线而言,29 是尽可能最少的肥料。

#### 【数据范围及约定】

测试点  $1 \sim 8$ ,满足 T = 0

测试点  $9\sim 20$ ,满足 T=1

另外测试点  $1\sim 4$ ,  $9\sim 12$ , 是一条链。

### 堆叠纸张 (papers)

#### 【问题描述】

农夫约翰在一张纸上写下 N  $(1 \le N \le 300)$  个数字。对于 [1,N] 中的每个 i ,第 i 张纸包含数字  $a_i (1 \le a_i \le 9)$ 。

奶牛有两个最喜欢的整数 A 和 B ( $1 \le A \le B < 10^{18}$ ) ,希望您回答 Q ( $1 \le Q \le 5 \times 10^4$ ) 查询。对于第 i 个查询,奶牛将在纸张  $l_i \cdots r_i$  ( $1 \le l_i \le r_i \le N$ ) 上从左到右移动,保持最初的空纸张堆。对于每一张纸,他们要么把它加到纸堆的顶部,要么加到纸堆底部,要么两者都不加。最后,他们将从上到下阅读这堆论文,形成一个整数。在奶牛在此过程中做出选择的所有  $3^{r_i-l_i+1}$ 种方式中,计算最好奶牛读取数值在 [A,B] (包括 [A,B]) 不同的操作方案数,对  $10^9+7$  取模。

### 【输入格式】

第一行包含三个空格分隔的整数 N, A 和 B。

第二行包含 N 个空格分隔的数字  $a_1, a_2, \dots, a_N$ 。

第三行包含一个整数 Q,即查询数。

接下来的 Q 行分别包含两个空间分隔的整数  $l_i$  和  $r_i$  。

### 【输出格式】

对于每个查询,输出一行表示答案。

### 【样例输入1】

```
5 13 327
1 2 3 4 5
3
1 2
1 3
2 5
```

### 【样例输出1】

```
2
18
34
```

#### 【样例1解释】

对于第一个查询,贝茜在阅读区间 [1,2] 时可以通过九种方式堆叠纸张:

- 贝茜可以忽略 1, 然后忽略 2, 得到 0。
- 贝茜可以忽略 1, 然后在堆栈顶部添加 2, 得到 2。
- 贝茜可以忽略 1, 然后在堆栈底部添加 2, 得到 2。
- 贝茜可以在堆栈顶部加1, 然后忽略2, 得到1。
- 贝茜可以在堆栈顶部加1, 然后在堆栈顶部再加2, 得到21。
- 贝茜可以在堆栈顶部加1, 然后在堆栈底部加2, 得到12。
- 贝茜可以在堆栈底部加1, 然后忽略2, 得到1。
- 贝茜可以在堆栈底部加1,然后在堆栈顶部加2,得到21。

贝茜可以在堆栈底部加1,然后在堆栈底部再加2,得到12。
 只有给出21的两种方式才能得到13到327之间的数字,所以答案是2。

### 【样例2】

见下发样例文件中。

### 【数据范围及约定】

对于测试点  $1\sim 2$ ,满足 B<100;

对于测试点  $3\sim 4$  ,满足 A=B ;

对于测试点  $5\sim 10$ ,无额外限制条件。

### 饥饿奶牛 (cow)

### 【问题描述】

Bessie 是一头很饿的奶牛。每天晚饭如果谷仓里有干草的话,她会吃一捆干草。FJ 不想让Bessie 饿着,所以在一些天他会送一些干草,这些干草会早上送到(在晚饭之前)。具体来说,在第  $d_i~(1\leq d_i\leq 10^{14})$  天,FJ 会送  $b_i~(0\leq b_i\leq 10^9)$  捆干草。

处理 U  $(1 \le U \le 10^5)$  次如下的更新操作:给定一个数对 (d,b),将第 d 天送到的干草捆数更新为 b。在每次更新后,输出 Bessie 所有能吃到草的日期之和对  $10^9+7$  取模后的值。

### 【输入格式】

第一行一个整数U。

接下来U行,每行一次更新操作。

### 【输出格式】

输出每次更新操作之后的日期和对 $10^9 + 7$ 取模后的结果。

### 【样例输入1】

```
3
4 3
1 5
1 2
```

### 【样例输出1】

```
15
36
18
```

#### 【样例1解释】

每次更新后的答案是:

```
1. 4+5+6=15
2. 1+2+3+4+5+6+7+8=36
3. 1+2+4+5+6=18
```

#### 【样例输入2】

```
9
1 89
30 7
101 26
1 24
5 1
60 4
5 10
101 0
1 200
```

### 【样例输出2】

| 4005  |  |  |  |
|-------|--|--|--|
| 4656  |  |  |  |
| 7607  |  |  |  |
| 3482  |  |  |  |
| 3507  |  |  |  |
| 3753  |  |  |  |
| 4058  |  |  |  |
| 1107  |  |  |  |
| 24531 |  |  |  |
|       |  |  |  |

### 【数据范围及约定】

测试点 1,满足  $U \leq 5~000$ 

测试点  $2\sim 8$ ,满足更新只会增加第 d 天送到的干草

测试点  $9\sim 20$ ,无附加限制

### 观看牛飞 (cowflix)

#### 【问题描述】

Bessie 喜欢看牛飞上的视频,并且她会在一些不同的地方看视频。 ${
m FJ}$  的农场可以用一棵有  $N~(2\leq N\leq 2\cdot 10^5)$  个节点的树来表示,并且对于每个节点,要么 Bessie 在这里看牛飞,要么不看。保证 Bessie 至少在一个节点处看牛飞。

不幸的是,牛飞推出了一个新的订阅模式以打击密码共享。在这个新模式中,你可以选择农场中一个大小为 d 的连通分量,支付 d+k 块钱后,这个账号才能在这个连通分量中使用。形式化地说,你需要选择一组互不相交的连通分量  $c_1,c_2,\ldots,c_C$  使得每个 Bessie 会在其上看牛飞的节点包含在某个  $c_i$ 中。这组连通分量的花费为

 $\sum_{i=1}^{C}(|c_i|+k)$ ,其中  $|c_i|$  指连通分量  $c_i$  中的节点个数。Bessie 不会在其上看牛飞的节点不需要包含在任何  $c_i$  中。

Bessie 担心新的订阅模式对于她会到的地方来说太贵了,所以她在想要不要改用哞芦。为了帮助她进行决策,请计算如果保持她的浏览习惯的话,使用牛飞最少要支付多少钱。因为牛飞并未公布 k 的值,请计算对于 k 取从 1 到 N 的所有整数时的答案。

### 【输入格式】

第一行一个整数 N。

第二行一个二进制串  $s_1s_2s_3\dots s_N$ ,其中如果 Bessie 会在节点 i 处看牛飞的话, $s_i=1$ 。

接下来 N-1 行,每行两个整数 a,b  $(1 \le a,b \le N)$ ,表示树上一条 a 和 b 之间的边。

### 【输出格式】

输出 N 行, 第 i 行表示 k=i 时的答案。

#### 【样例输入1】

```
5
10001
1 2
2 3
3 4
4 5
```

#### 【样例输出1】

```
4
6
8
9
10
```

#### 【样例1解释】

对于  $k \leq 3$ ,最优的情况是有两个账号:  $c_1 = \{1\}, c_2 = \{5\}$ 。对于  $k \geq 3$ ,最优的情况是有一个账号:  $c_1 = \{1, 2, 3, 4, 5\}$ 。

### 【样例输入2】



### 【样例输出2】

```
4
6
8
9
10
11
```

### 【数据范围及约定】

测试点  $1\sim3$ ,满足  $N\leq5~000$ ;

测试点  $4\sim 6$ ,满足对于所有  $i\in [1,N)$ ,i 与 i+1 有边相连

测试点  $7\sim 15$ ,满足  $N\leq 10^5$ ;

测试点  $16\sim 20$  ,无附加限制