Teorema 1:

Todo numero natural N puede representarse como la suma de numeros menores que S, sin repetirse ninguno, donde $S = \int \frac{\sqrt{1+8N}-1}{2} J$. O sea S es la base del menor numero triangular que es mayor o igual que N.

Demostracion:

Denotemos $T = \sum_{i=1}^{S} i$. Tenemos que N = T - k donde k es un numero natural, y k < S porque de lo contrario S no seria el menor numero triangular mayor o igual que N. Entonces N puede ser expresado como la suma de todos los numeros 1, 2, 3, ..., S; excluyendo el numero que es igual a k.

Conjetura de los Camiones:

Los numeros 1,2,3,...,n pueden descomponerse en k grupos que sumen lo mismo, o sea $\frac{1}{k}\sum_{i=1}^{n}i$ si $n < k \le \frac{1}{2}\sum_{i=1}^{n}i$ y k divide a $\sum_{i=1}^{n}i$

Corolario:

El numero $\sum_{i=1}^{n} i$ puede representarse k veces con los sumando 1,2,3,...,n, usando cada numero exactamente una vez en el proceso de formar todas las representaciones.

Teorema 2:

La suma de dos numeros primos impares es siempre un numero compuesto.

Demostracion:

Supongamos que $n=p_1+p_2$, con p_1 y p_2 primos, es un numero primo (que debe ser impar). Entonces $p_1=n-p_2$ y, al ser n y p_2 impares su diferencia p_1 debe ser par. Esto contradice que p_1 sea primo, la contradicción nos lleva a que n debe ser compuesto.

Corolario:

No hay un par de primos que esten a una distancia d, si d es primo, excepto si d=2.