Module: 2 Random Variables

• Introduction -random variables- probability mass Function, distribution and density functions - joint Probability distribution and joint density functions- Marginal, conditional distribution and density functions- Mathematical expectation, and its properties Covariance, moment generating function – characteristic function.

- 1. Random experiment: It is a process or procedure that produces a set of outcomes, where the outcome is uncertain and cannot be predicted with certainty in advance. Example: Throwing a die, a pack of cards.
- 2. *Outcome*: The result of a random experiment will be called an *outcome*.
- 3. *Trial*: A trial refers to any single performance of a random experiment. In each trial, one of the possible outcomes occurs. Example: Tossing of a coin: {H, T}
- **4. Event:** An event is a specific set of outcomes of a random experiment. An event can consist of one or more outcomes. Events are often what we are interested in when conducting an experiment.
- 5. Exhaustive events or cases: The complete set of all possible outcomes in a random experiment. In other words, these events cover every possible outcome that could occur in a trial.
- 6. Favourable events or cases: The number of cases favourable to an event in a trail is the number of outcomes which entail the happening of the event.

Example: In drawing a card from a pack of cards the number of cases favourable to drawing of an ace is 4, for drawing a spade card is 13 and for drawing a red card is 26.

Random Variable

- Intuitively by a $random\ variable\ (r.v)$ means a real number X connected with the outcome of a random experiment E.
- Let S be the sample space associated with a given random experiment E.

A real-valued function defined on S and taking values in $R(-\infty, \infty)$ is called a *one-dimensional random variable*.

If the function values are ordered pairs of real numbers (*i.e.*, vectors in two-space), the function is said to be a *two-dimensional random variable*.

More generally, an n-dimensional random variable is simply a function whose domain is S and whose range is a collection of n-tuples of real numbers (vectors in n-space).

Let us consider the probability space, the triplet (S, B, P), where S is the sample space, viz, space of outcomes, B is the σ - field of subsets in S and P is a probability function on B.

Definition: A random variable is a function $X(\omega)$ with domain S and range $(-\infty, \infty)$ such that for every real number a, the event $[\omega : X(\omega) \le a] \in B$.

Example: Suppose Two (unbiased) coins are tossed $X = number \ of \ heads$.

The sample space $S = \{HH, HT, TH, TT\}$ $P\{X \le 1\} = P\{HH, HT, TH\} = \frac{3}{4}$

Note: One-dimensional r.v. will be denoted by capital letters, X, Y, Z....etc. A typical outcome of the experiment will be denoted by ω or e.

The values which *X*, *Y*, *Z....etc*, can assume are denoted by lower case letters., *x*, *y*, *z...etc*.

Discrete Random Variable

If *X* is a random variable which can take a finite number or countably infinite number of values, then *X* is called a discrete random variable.

Example: Marks obtained in a test, number of accidents per month, number of telephone calls per unit time, number of successes in n trails and so on.

Probability Mass function: If X is a discrete random variable with distinct values x_1, x_2, \dots, x_n then the function $p_X(x)$ is defined as:

$$p_{X}(x_{i}) = \begin{cases} P(X = x_{i}) = p_{i} & \text{if } x = x_{i} \\ 0 & \text{if } x \neq x_{i} = 0, 1, 2, ... n \end{cases}$$

is called the *probability mass function or probability function* of random variable *X*.

The numbers $p(x_i)$; $i = 1, 2, \dots$ must satisfy the following conditions:

- (i) $p(x_i) \ge 0 \ \forall i$
- (ii) $\sum_{i=1}^{n} p(x_i) = 1$

Distribution Function

Definition: Let X be a random variable. The function F defined for all real x by

$$F_X(x) = F(x) = P(X \le x) = P\{\omega : X(\omega) \le x\}, -\infty < x < \infty$$

is called the distribution function or cumulative distribution function of r.v. (X).

The domain of the distribution function is $(-\infty, \infty)$ and its range is [0,1]

Properties:

If x is a real number, the set of all ω in S such that $X(\omega) = x$ is, denoted by X = x.

1.
$$P(X = x) = P(\omega : X(\omega) = x)$$

2.
$$P(X \le a) = P\{\omega : X(\omega) \in (-\infty, a]\}$$

3.
$$P(a < X \le b) = P\{\omega : X(\omega) \in (a, b]\} = F(b) - F(a)$$

$$P(a \le X \le b) = P(X = a) + [F(b) - F(a)]$$

$$P(a < X < b) = F(b) - F(a) - P(X = b)$$

$$P(a \le X < b) = F(b) - F(a) - P(X = b) + P(X = a)$$

4.
$$P(X = a \text{ or } X = b) = P\{(X = a) \cup (X = b)\}$$

5.
$$P(X = a \text{ and } X = b) = P\{(X = a) \cap (X = b)\}$$

Properties

If **F** is the distribution function of the r.v. **X** and if a < b, then

6.
$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

7. (i)
$$0 \le F(x) \le 1$$

(ii)
$$F(x) \le F(y)$$
 if $x < y$

8.
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \text{ and}$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1$$

Discrete Distribution Function:

A countable number of points $x_1, x_2, x_3, \dots, x_n$

$$p(x_i) \ge 0 \ \forall \ i,$$

 $\sum_{i=1}^{n} p(x_i) = 1 \text{ such that }$

$$F(x) = \sum_{i: x_i \le x} p_i = \sum_{x_i} P(X = x_i)$$

If x_i is just integer i, so that $P(X = i) = p_i$; i = 1, 2, 3, ... Then F(x) is a "step function" having jump p at i and being constant between each pair of integers.

Properties:

1.
$$p(x_j) = P(X = x_j) = F(x_j) - F(x_{j-1})$$
, where F is the *d.f.* of *X*.

From a lot of 10 items containing 3 defectives, a sample of 4 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Answer the following when the sample is drawn without replacement.

- (i) Find the probability distribution of X.
- (ii) Find $P(X \le 1)$, P(X < 1) and P(0 < i < 2)

Solution:
$$P(X = k) = \frac{\binom{D}{N-D}}{\binom{N}{n}}$$

where D = number of defective item

N = total number of items

n=number of items drawn in the sample

k = the number of defective items in the sample

i)
$$P(X=0) = \frac{\binom{3}{0}\binom{7}{4}}{\binom{10}{4}} = \frac{1 \times \binom{7}{4}}{\binom{10}{4}} = \frac{1 \times 35}{210} = \frac{35}{210} = \frac{1}{6}$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$$

$$P(X=1) = \frac{\binom{3}{1}\binom{7}{3}}{\binom{10}{4}} = \frac{3 \times \binom{7}{3}}{\binom{10}{4}} = \frac{3 \times 35}{210} = \frac{105}{210} = \frac{1}{2}$$

$$P(X<1) = P(X=0) = \frac{1}{6}$$

$$P(0 < X < 2) = P(X=1) = \frac{1}{2}$$

$$P(X=2) = \frac{\binom{3}{2}\binom{7}{2}}{\binom{10}{4}} = \frac{3 \times \binom{7}{2}}{\binom{10}{4}} = \frac{3 \times 21}{210} = \frac{63}{210} = \frac{3}{10}$$

$$P(X=3) = \frac{\binom{3}{3}\binom{7}{1}}{\binom{10}{4}} = \frac{1 \times \binom{7}{1}}{\binom{10}{4}} = \frac{1 \times 7}{210} = \frac{7}{210} = \frac{1}{30}$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$$

$$P(X < 1) = P(X = 0) = \frac{1}{6}$$

$$P(0 < X < 2) = P(X = 1) = \frac{1}{2}$$

A random variable *X* has the following probability function:

Values of $X = x$	0	1	2	3	4	5	6	7
p(X = x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2+k$

- (i) Find k, (ii) Evaluate P(X < 6), $P(X \ge 6)$ and P(0 < X < 5)
- (iii) If $P(X \le c) > \frac{1}{2}$ find the minimum value of c,
- (iv) Determine the distribution function of X.

Solution:

i) Since
$$\sum_{x=0}^{7} p(x) = 1$$

$$k + 2k + 2k + 3k + k^2 + 2k^2 + 7k^2 + k = 1$$

$$10k^2 + 9k - 1 = 0$$

$$k = -1, \frac{1}{10}$$

ii)
$$P(X < 6) = P(X = 0) + P(X = 1) + ... + P(X = 5)$$

$$= \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{3}{10} + \frac{1}{100} = \frac{81}{100}$$

$$P(X \ge 6) = 1 - P(X < 6) = \frac{19}{100}$$

$$P(0 < X < 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 8k = \frac{4}{5}$$

iii)
$$P(X \le c) > \frac{1}{2} \Rightarrow c = 4$$

	X	$F_X(x) = P(X \le x)$
•	0	0
iv)	1	1/10
	2	3/10
	3	5/10
	4	4/5
	5	81/100
	6	83/100
	7	1

Continuous Random Variable

Definition: A random variable *X* is said to be continuous if it can take all possible values between certain limits.

A continuous random variable is a r.v. that can be measured to any desired degree of accuracy.

Example: Age, height, weight etc.

Probability Density Function (p.d.f)

Definition: Consider the small interval (x, x + dx) of length dx round the point x. Let f(x) be any continuous function of x so that f(x)dx represents the probability that X falls in the infinitesimal interval (x, x + dx).

$$P(x \le X \le x + dx) = f_X(x)dx$$

$$f_X(x) = \lim_{\delta x \to 0} \frac{P(x \le X \le x + \delta x)}{\delta x}$$

The probability for a variate value to line in the interval dx is f(x)dx and hence the probability for a variate value to fall in the interval $[\alpha, \beta]$ is:

$$P(\alpha \le X \le \beta) = \int_{\alpha}^{\beta} f(x) dx$$

Continuous Distribution Function

Definition: If X is continuous r.v. with the p.d.f. f(x), then the function

 $F_X(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$; $-\infty < x < \infty$ is called the distribution function (d.f.) or sometimes the cumulative distribution function (c.d.f.) of the random variable X.

Properties of p.d.f.:

(i)
$$f(x) \ge 0$$

$$(ii) \int_{-\infty}^{\infty} f(x) \ dx = 1$$

(iii) The probability P(E) given by: $\int_E f(x) dx$ is well defined for any event E.

$$(iv) P(X = c) = 0, \ \forall \ c$$

$$P(\alpha \le X \le \beta) = P(\alpha \le X < \beta) = P(\alpha < X \le \beta) = P(\alpha < X < \beta)$$

Properties: 1. $0 \le F(x) \le 1$; $-\infty < x < \infty$

$$2. F'(x) = \frac{d}{dx} F(x) = f(x) \ge 0$$

 \Rightarrow F(x) is non-decreasing function of x.

3.
$$F(-\infty) = \lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} \int_{-\infty}^{x} f(x) \, dx = \int_{-\infty}^{-\infty} f(x) \, dx = 0$$
$$F(+\infty) = \lim_{x \to \infty} F(x) = \lim_{x \to \infty} \int_{-\infty}^{x} f(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx = 1$$

- 4. F(x) is continuous function of x on the right.
- 5. The discontinuities of F(x) are at the most countable.

The diameter of an electric cable, say X, is assumed to be a continuous r.v. with

$$p.d.f:f(x) = 6x(1-x); \ 0 \le x \le 1$$

- (i) Check that f(x) is p.d.f,
- (ii) Determine a number b such that P(X < b) = P(X > b).

i)
$$\int_{0}^{1} f(x) dx = 6 \int_{0}^{1} x(1-x) dx$$

$$=6\int_{0}^{1} (x-x^{2}) dx = 6 \left| \frac{x^{2}}{2} - \frac{x^{3}}{3} \right|_{0}^{1} = 1$$

 $\therefore f(x)$ is the p.d.f of r.v.X

$$P(X < b) = P(X > b)$$

$$\int_{0}^{b} f(x) dx = \int_{b}^{1} f(x) dx$$

$$6\int_{0}^{b} x(1-x) dx = 6\int_{b}^{1} x(1-x) dx$$

$$\left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{b} = \left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{b}^{1}$$

$$4b^{3} - 6b^{2} + 1 = 0$$

$$\left(b - \frac{1}{2}\right)(4b^{2} - 4b - 2) = 0$$

$$b = \frac{1}{2}, \quad b \simeq 1.366, -0.3660$$

A continuous random variable X has a p.d.f. f(x) =

$$3x^2$$
, $0 \le x \le 1$. Find a and b such that

i.
$$P\{X \le a\} = P\{X > a\}$$

ii.
$$P{X > b} = 0.05$$

i) Since
$$P(X \le a) = P(X > a)$$

$$\Rightarrow P(X \le a) = P(X > a) = \frac{1}{2}$$

$$P(X \le a) = \int_{0}^{a} f(x) dx = \frac{1}{2}$$

$$a^3 = \frac{1}{2} \Rightarrow a = \left(\frac{1}{2}\right)^{\frac{1}{3}}$$

ii)
$$P(X > b) = 0.05 \Rightarrow \int_{b}^{1} f(x) dx = \frac{1}{20}$$

$$1 - b^3 = \frac{1}{20} \Rightarrow b = \left(\frac{19}{20}\right)^{\frac{1}{3}}$$

Let X be a continuous random variable with p.d.f.:

$$f(x) = \begin{cases} ax & ; 0 \le x \le 1 \\ a & ; 1 \le x \le 2 \\ -ax + 3a; 2 \le x \le 3 \\ 0 & ; elsewhere \end{cases}$$

- (i) Determine the constant a.
- (ii) Compute $P(X \le 1.5)$.

i)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\int_{-\infty}^{0} f(x) dx + \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx + \int_{3}^{\infty} f(x) dx = 1$$

$$a = \frac{1}{2}$$

ii)
$$P(X \le 1.5) = \int_{-\infty}^{1.5} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{1} f(x) dx + \int_{1}^{1.5} f(x) dx$$

$$= \int_{0}^{1} ax \, dx + \int_{1}^{1.5} a \, dx$$

$$a = \frac{3}{4}$$