Оглавление

Ві	ведеі	ние	2			
1	Ана	алитическая часть	3			
2	Кон	Конструкторская часть				
	2.1	Расстояние Левенштейна, матричный метод	5			
	2.2	Расстояние Дамерау-Левенштейна, матричный метод .	5			
	2.3	Расстояние Левенштейна, рекурсивный метод	6			
	2.4	Расстояние Левенштейна, рекурсивный метод с запол-				
		нением матрицы	6			
	2.5	Требования к программному обеспечению	7			
	2.6	Заготовки тестов	7			
3	Технологическая часть					
3	3.1	Выбор языка программирования	12			
	3.2	Листинг кода	12			
	3.3	Результаты тестирования	15			
	3.4	Оценка памяти	17			
	3.5	Оценка памяти	18			
И	сслед	цовательская часть	20			
	Зак.	лючение	20			
	Резу	льтат экспериментов	20			
	Сра	внительный анализ	21			
За	клю	чение	22			

Введение

Расстояние Левенштейна – минимальное количество редакционных операций, которые необходимы для превращения одной строки в другую. Существуют следующие редакционные операции:

- вставка символа;
- удаление символа;
- замена символа;

Расстояние Дамерау-Левенштейна также учитывает и операцию транспозиции – перестановки двух соседних символов местами.

Данные расстояния имеют большое количество применений. Они используются для автокоррекции при выполнении поисковых запросов и печати на клавиатуре, а также в биоинформатике для сравнения генов, представленных в строковом формате.

1. Аналитическая часть

Целью лабораторной работы является реализация и сравнение алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна.

Выделены следующие задачи лабораторной работы:

- математическое описание расстояний Левенштейна и Дамерау-Левенштейна;
- описание и реализация алгоритмов поиска расстояний;
- проведение замеров процессорного времени работы алгоритмов при различных размерах строк;
- оценка наибольшей используемой каждым алгоритмом памяти;
- проведение сравнительного анализа алгоритмов на основании экспериментов;

Задача по поиску расстояний заключается в нахождении такой последовательности операций, применение которых даст минимальный суммарный штраф. Штрафы операций:

- вставка (I) 1;
- замена (R) 1;
- удаление (D) 1;
- совпадение (M) 0;
- транспозиция (T) 1;

Для решения данной проблемы используется рекуррентная формула вычисления расстояний. Пусть D(s1[1..i], s2[1..j]) – расстояние Левенштейна для подстроки s1 длиной i и s2 длиной j. Формула

вычисления D:

$$\begin{cases} j, & \text{если } i = 0 \\ i, & \text{если } j = 0 \end{cases}$$

$$\begin{cases} min(D(s1[1..i], s2[1..j-1]) + 1, \\ D(s1[1..i-1], s2[1..j]) + 1, \\ D(s1[1..i-1], s2[1..j-1]) + \begin{cases} 0, & \text{если } s1[i] = s2[j] \\ 0, & \text{иначе} \end{cases} \end{cases}$$

$$(1.1)$$

Аналогично рекуррентно представляется формула расстояния Дамерау-Левенштейна:

$$\begin{cases} j, & \text{если } i = 0 \\ i, & \text{если } j = 0 \end{cases}$$

$$i, & \text{если } i = 0 \\ \text{если } j = 0 \end{cases}$$

$$\begin{cases} D(s1[1..i-1], s2[1..j]) + 1, \\ D(s1[1..i-1], s2[1..j-1]) + \begin{cases} 0, & \text{если } s1[i] = s2[j] \\ 0, & \text{иначе} \end{cases}, \\ \begin{cases} D(s1[1..i-2], s2[1..j-2]) + 1, & \text{если } \begin{cases} i > 1, j > 1 \\ s1[i] = s2[j-1] \\ s1[i-1] = s2[j] \end{cases} \\ +\infty, & \text{иначе} \end{cases}$$

$$(1.2)$$

2. Конструкторская часть

Рассмотрим алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна для строк s1 и s2 с длинами в n1 и n2 соответственно.

2.1. Расстояние Левенштейна, матричный метод

Алгоритм матричного поиска расстояния Левенштейна основывается на вышеописанной рекуррентной формуле. Создаётся целочисленная матрица размерами (n1+1)x(n2+1). В каждой клетке [i][j] этой матрицы будет записано значение $D(s1[1..i-1],\ s2[1..j-1])$. В случае, когда i=1 или j=1 вместо строк s1 и s2 соответственно будут выступать пустые строки. Искомым расстоянием Левенштейна будет значение ячейки [n1+1][n2+1].

Нахождение расстояний алгоритм начинает с заполнения первого столбца и первой строки, так как они являются базой для рекуррентной формулы. После этого производится построчное заполнение остальной части матрицы.

Схема алгоритма приведена на рисунке 2.1.

2.2. Расстояние Дамерау-Левенштейна, матричный метод

Алгоритм является модификацией вышеописанного способа нахождения расстояния Левенштейна. Дополнительно для ячейки [i][j] (i>2,j>2) рассматривается вариант перехода из клетки [i-2][j-2], при условии, что s1[i]=s2[j-1] и s1[i-1]=s2[j]. Искомым расстоянием Дамерау-Левенштейна также является значение ячейки [n1+1][n2+1].

Схема алгоритма приведена на рисунке 2.2.

2.3. Расстояние Левенштейна, рекурсивный метод

Данный алгоритм использует только рекурсивную формулу нахождения D(s1[1..i], s2[1..j]). Для этого используется рекурсивная функция, принимающая в себя строки s1, s2 и длины подстрок i, j. Функция вызывает функции для тех же строк, и длин: (i-1, j-1), (i-1, j) и (i, j-1), после чего возвращает минимальный из них.

Схема алгоритма приведена на рисунке 2.3.

2.4. Расстояние Левенштейна, рекурсивный метод с заполнением матрицы

В данном случае, в качестве основы используется алгоритм Дейкстры поиска расстояний до вершин в графе. Создаётся матрица размерами (n1+1)x(n2+1), все ячейки которой изначально заполнены значением $+\infty$. В каждой клетке [i][j] этой матрицы будет записано значение D(s1[1..i-1], s2[1..j-1]).

Рекурсивная функция получает матрицу, индексы і, ј положения в ней и две строки. Алгоритм начинает свою работу с ячейки [1][1], которая заполняется значением 0. Из положения [i][j] рассматривается переход в соседние ячейки [i+1][j+1], [i+1][j], [i][j+1]. В случае, если соседняя ячейка расположена в пределах матрицы, и расстояние R при переходе из данной ячейки меньше ныне хранимого в ней, то значение соседней ячейки меняется на R, после чего функция запускается уже для соседней ячейки. После завершения работы всех функций, расстояние Левенштейна расположено в ячейке [n1+1][n2+1].

Схема алгоритма приведена на рисунке 2.4.

2.5. Требования к программному обеспечению

Для полноценной проверки и оценки алгоритмов необходимо выполнить следующее.

- 1. Обеспечить возможность консольного ввода двух строк и выбора алгоритма для поиска расстояния. Программа должна вывести вычисленное редакционное расстояние, а также вывести матрицу поиска, в случае использования её в выбранном алгоритме.
- 2. Реализовать функцию замера процессорного времени, затраченного функцией. Для этого также создать возможность ввода длины строк, на которых будет выполнен замер.

2.6. Заготовки тестов

При проверке алгоритмов необходимо будет использовать следующие классы тестов:

- две пустые строки;
- одна из строк пустая;
- одинаковые строки;
- применение транспозиции даёт минимальное расстояние (для Дамерау-Левенштайна);

Рис. 2.1: Алгоритм нахождения расстояния Левенштейна, матричный метод

Рис. 2.2: Алгоритм нахождения расстояния Дамерау-Левенштейна, матричный метод

Рис. 2.3: Алгоритм нахождения расстояния Левенштейна, рекурсивный метод

Рис. 2.4: Алгоритм нахождения расстояния Левенштейна, рекурсивный метод с заполнением матрицы

3. Технологическая часть

3.1. Выбор языка программирования

В качестве языка программирования был выбран Python 3, так как имеется опыт работы с ним, и с библиотеками, позволяющими провести исследование и тестирование программы.

3.2. Листинг кода

Реализация алгоритмов поиска расстояний представлена на листингах 3.1-3.4.

Листинг 3.1: Функция нахождения расстояния Левенштейна матричным методом.

```
def lev_matrix(s1, s2, is_print=False):
    matr = [[0] * (len(s1)+1) for i in range(len(s2)+1)]
2
3
    for j in range(len(s1)+1):
4
      matr[0][j] = j
5
    for i in range (len(s2)+1):
6
7
      matr[i][0] = i
8
    for i in range (1, len(s2)+1):
9
      for j in range (1, len(s1)+1):
10
         add = 0 if s1[j-1] = s2[i-1] else 1
11
         matr[i][j] = min(matr[i-1][j]+1, matr[i][j-1]+1, matr[i]
12
     -1][j-1]+add)
13
    if is print:
14
      print("Paccтояние:", matr[i][j])
15
       print matrix(matr)
16
    return matr[i][j]
17
18
```

Листинг 3.2: Функции нахождения расстояния Левенштейна рекур-

сивным методом.

```
def lev rec(s1, s2, len1, len2):
2
     if len1 == 0: return len2
3
     elif len2 == 0: return len1
     else:
4
       return min( lev rec(s1, s2, len1, len2-1)+1,
5
            lev rec(s1, s2, len1-1, len2)+1,
6
           _{\text{lev}\_\text{rec}}(s1, s2, \text{len}1-1, \text{len}2-1) +
           (0 if s1[len1-1] = s2[len2-1]
8
             else 1))
9
  def lev recursion(s1, s2, is_print=False):
     res = lev rec(s1, s2, len(s1), len(s2))
11
12
     if is print:
       print("Paccтoяние:", res)
13
14
     return res
15
```

Листинг 3.3: Функции нахождения расстояния Левенштейна рекурсивным методом с заполнением матрицы.

```
def lev mr(matr, i, j, s1, s2):
2
    if i+1 < len(matr) and j+1 < len(matr[0]):
      add = 0 if s1[j] == s2[i] else 1
3
      if matr[i+1][j+1] > matr[i][j] + add:
4
        matr[i+1][j+1] = matr[i][j] + add
5
         lev mr(matr, i+1, j+1, s1, s2)
6
    if j+1 < len(matr[0]) and (matr[i][j+1] > matr[i][j] + 1):
7
8
      matr[i][j+1] = matr[i][j] + 1
      lev mr(matr, i, j+1, s1, s2)
9
    if i+1 < len(matr) and (matr[i+1][j] > matr[i][j] + 1):
10
      matr[i+1][j] = matr[i][j] + 1
11
      lev mr(matr, i+1, j, s1, s2)
12
13
14 def lev_matrix_recursion(s1, s2, is_print=False):
```

```
\max |en = \max(len(s1), len(s2)) + 1
15
    matr = [[max len] * (len(s1)+1) for i in range(len(s2)+1)]
16
    matr[0][0] = 0
17
    lev mr(matr, 0, 0, s1, s2)
18
19
    if is print:
20
       print("Paccтояние:", matr[-1][-1])
21
       print matrix(matr)
22
23
    return matr[-1][-1]
24
```

Листинг 3.4: Функция нахождения расстояния Дамерау-Левенштейна матричным методом.

```
1 def dem lev matrix(s1, s2, is print=False):
    if len(s1) == 0: return len(s2)
2
    elif len(s2) = 0: return len(s1)
3
4
    matr = [[0] * (len(s1) + 1) for i in range(len(s2) + 1)]
    for j in range (len(s1)+1):
5
      matr[0][j] = j
6
7
    for i in range(len(s2)+1):
8
      matr[i][0] = i
9
    for i in range(1, len(s2) + 1):
10
      addM = 0 if s1[0] = s2[i-1] else 1
11
      matr[i][1] = min(matr[i-1][1] + 1, matr[i][0] + 1,
12
      matr[i-1][0] + addM
13
    for j in range(2, len(s1) + 1):
14
      addM = 0 if s1[j-1] == s2[0] else 1
15
      matr[1][j] = min(matr[0][j] + 1, matr[1][j-1] + 1,
16
      matr[0][j-1] + addM
17
18
    for i in range (2, len(s2)+1):
19
      for j in range (2, len(s1)+1):
20
```

```
21
         addM = 0 if s1[j-1] == s2[i-1] else 1
         addT = 1 if (s1[j-2] == s2[i-1] and s1[j-1] == s2[i-2])
22
       else 2
23
         matr[i][j] = min(matr[i-1][j]+1, matr[i][j-1]+1,
         matr[i-1][j-1]+addM, matr[i-2][j-2]+addT)
24
25
    if is _ print:
26
       print("Расстояние:", matr[i][j])
27
28
       print matrix (matr)
29
    return matr[i][j]
30
```

3.3. Результаты тестирования

Для тестирования написанных функций была использована библиотека unittest. Тестирование функций проводилось за счёт сравнения результата, возвращённого функцией и ожидаемого расстояния для разных наборов строк.

Состав тестов приведён в листинге 3.5.

Листинг 3.5: Модульные тесты

```
1 import unittest
2 import main
3
4 # Общий набор тестов для всех алгоритмов
5 class General Test (unittest. Test Case):
    # Данный класс являтся абстрактным, поэтому для него тесты
6
     пропускаются
     @unittest.skip("Skip GeneralTest")
7
     def setUp(self):
8
9
       self.function = None
10
    # Проверка пустыми строками
11
```

```
12
    def test empty(self):
       self.assertEqual(self.function("", ""), 0)
13
       self.assertEqual(self.function("a", ""), 1)
14
       self.assertEqual(self.function("", "b"), 1)
15
16
    # Проверка нахождения совпадений
17
    def test match(self):
18
       self.assertEqual(self.function("abc", "abc"), 0)
19
       self.assertEqual(self.function("a", "a"), 0)
20
       self.assertEqual(self.function("A", "a"), 1)
21
22
    # Прочие общие тесты
23
24
    def test other (self):
       self.assertEqual(self.function("q", "w"), 1)
25
       self.assertEqual(self.function("aq", "aw"), 1)
26
       self.assertEqual(self.function("a", "aw"), 1)
27
       self.assertEqual(self.function("aw", "a"), 1)
28
29
30
31 # Набор тестов для алгоритмов поиска расстояния Левенштейна
  class LevTest(GeneralTest):
    def test lev(self):
33
       self.assertEqual(self.function("stolb", "telo"), 3)
34
       self.assertEqual(self.function("kult tela", "tela kult"),
35
      6)
       self.assertEqual(self.function("развлечение", "увлечение"),
36
     3)
37
38
39 # Набор тестов для алгоритма поиска расстояния ДамерауЛевенштейна—
  class DemLevMatrixTest(GeneralTest):
40
    def setUp(self):
41
42
       self.function = main.dem lev matrix
43
```

```
def dem lev test(self):
44
       self.assertEqual(self.function("aba", "aab"), 1)
45
       self.assertEqual(self.function("ab", "ba"), 1)
46
       self.assertEqual(self.function("abb", "bab"), 1)
47
48
49
|50|# Алгоритмы поиска расстояния Левенштейна проходят одинковые тесты из
      класса LevTest
|51| # Алгоритм поиска расстояния Левенштейна, матричный метод
  class LevMatrixTest(LevTest):
     def setUp(self):
53
       self.function = main.lev matrix
54
||55||# Алгоритм поиска расстояния Левенштейна, рекурсивный метод
   class LevRecursionTest(LevTest):
     def setUp(self):
57
58
       self.function = main.lev recursion
|59| \# Алгоритм поиска расстояния Левенштейна, рекурсивный метод с
     заполнением матрицы
60 class LevMatRecTest(LevTest):
     def setUp(self):
61
     self.function = main.lev matrix recursion
62
63
64 \, \# \, Точка входа, запуск тестов
65 if __name__ == "__main__":
     unittest.main()
66
```

3.4. Оценка памяти

Произведём оценку наибольшей затрачиваемой алгоритмом памяти M_{max} при поиске расстояний для строк s1 и s2. Для удобства оценки примем длину обеих строк за n.

<u>Расстояние Левенштейна, матричный метод.</u> Память затрачивается на матрицу и две строки.

$$M_{max}=(n+1)*(n+1)*size of (int)+(n+n)*size of (char)=(n+1)*(n+1)*16+(n+n)=16*n^2+2*17n+16$$
 байт

<u>Расстояние Дамерау-Левенштейна, матричный метод.</u> Аналогично.

$$M_{max} = 16 * n^2 + 2 * 17n + 16$$
 байт

$$M_{max} = (n+n)*(2n*sizeof(char) + 2*sizeof(int)) = 2n*$$
 $(2n+32) = 4n^2 + 64n$ байт

 \underline{P} асстояние Левенштейна, рекурсивный метод с матрицей. Память используется для матрицы и при каждом вызове функции. Максимальная глубина рекурсии = n+n.

$$M_{max}=(n+1)*(n+1)*size of (int)+(n+n)*(2n*size of (char)+2*size of (int))=(n^2+2n+1)*16+2n*(2n+32)=20n^2+96n+16$$
 байт

3.5. Оценка памяти

Для замера процессорного времени исполнения функции используется библиотека time. Проведение измерений производится в функции, приведённой в листинге 3.6. Также в листинге приведена функция $random_s tr$ для создания строки заданной длины из случайной последовательности символов, с использованием библиотеки random.

Листинг 3.6: Функция замера процессорного времени работы функции

```
a = []
3
    for i in range(length):
       a.append(random.choice("qwerty"))
4
    return "".join(a)
5
6
7 def test time (func):
    length = int(input("Введите длину строки: "))
8
    s1 = random str(length)
9
    s2 = random str(length)
10
    print("Строка 1:", s1)
11
     print("Строка 2:", s2)
12
13
14
     begin t = time process time()
    count = 0
15
    while time.process_time() - begin_t < 1.0:
16
       func(s1, s2)
17
       count += 1
18
19
     t = time.process_time() - begin_t
20
     print("Выполнено {:} операций за {:} секунд".format(count, t))
21
     print("Время: {:7.4} секунд".format(t / count))
22
23
```

Исследовательская часть

Заключение

Измерения процессорного времени проводятся при равных длинах строк s1 и s2. Содержание строк сгенерировано случайным образом. Изучается время работы при длинах: 1, 3, 10, 20, 100, 1000. Для повышения точности, каждый замер производится пять раз, за результат берётся среднее арифметическое.

Результат экспериментов

По результатам измерений процессорного времени можно составить таблицу 4.1.

Таблица 4.1: Результат измерений процессорного времени (в секундах)

	1	3	10	20	100	1000
Лев.,	$7*10^{-6}$	$1.9 * 10^{-5}$	$1.3 * 10^{-4}$	$4.7 * 10^{-4}$	0.013	1.405
матрица						
Лев., ре-	$3*10^{-6}$	$4.7 * 10^{-5}$	6.984	_	_	_
курсия						
Лев., ре-	$1*10^{-5}$	$4.1 * 10^{-5}$	$4.1 * 10^{-4}$	$2.5 * 10^{-3}$	0.38	_
курсия						
с матри-						
цей						
Д-Л,	$8*10^{-6}$	$2.8 * 10^{-5}$	$1.7 * 10^{-4}$	$6.1 * 10^{-4}$	0.016	2.031
матрица						

В алгоритме нахождения расстояния Левенштейна с помощью рекурсии замеры на длине строк более 10 не проводились, так как время выполнения было слишком велико (более 10 минут). В алгоритме рекурсии с заполнением матрицы не удалось провести измерения при длине 1000, так как была превышена максимальная глубина рекурсии.

Сравнительный анализ

По результатам эксперимента можно заключить следующее.

- Наиболее быстродейственным алгоритмом поиска расстояния Левенштейна является алгоритм, использующий матрицу.
- Рекурсивный алгоритм с использованием матрицы показывает значительно более низкую скорость роста времени по сравнению с рекурсивным алгоритмом.
- Алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна с помощью матрицы показывают схожую скорость роста времени, однако первый алгоритм несколько быстрее.

Заключение

В ходе лабораторной работы достигнута поставленная цель: реализация и сравнение алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна. Решены все задачи работы.

Были изучены и описаны понятия расстояний Левенштейна и Дамерау-Левенштейна. Также были описаны и реализованы алгоритмы поиска расстояний. Проведены замеры процессорного времени работы каждого алгоритмах при различных строках, оценена наибольшая занимаемая память. На основании оценок и экспериментов проведён сравнительный анализ.