14/ 17

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

02-309511

(43)Date of publication of application: 25.12.1990

(51)Int.Cl.

HOTB 5/14

(21)Application number: 01-130740

(71)Applicant: SHOWA DENKO KK (72)Inventor: OBARA NOBUHIKO

IZAWA HIROZUMI

(54) TRANSPARENT CONDUCTIVE FILM

24.05.1989

(57)Abstract:

(22)Date of filing:

Searching PAJ

PURPOSE: To make a conductive film thin to decrease etching so as to get transparent conductive film with an increased yield by adding a specified metal to indium oxide as a main component to lower resistance.

CONSTITUTION; Transparent conductive film whose main component is indium oxide (In2O3) is constituted such that it contains at least one of ZrO2 at xmol%, Nb2O5 at ymol% and Ta2O5 at zmol% of indium (In2O3), respectively, within a range where 0≤x≤20, 0≤y≤1,7, 0≤16.5, x+y+2z≥2. x+1.2y+1.2z≤20. The values of x, y and zmol% are the values referring to 100mol% of the whole composition including the quantity of In2O3. The transparent conductive film constituted thereof has a good film characteristic so that it is possible to reduce film thickness and also decrease an etching time and increase a yield,

(9) 日本国特許庁(JP)

① 特許出願公開

◎ 公開特許公報(A) 平2-309511

@Int. Cl. 5

庁内整理番号 識別記号

④公開 平成2年(1990)12月25日

H 01 B 5/14

2116-5G

塞杏請求 未請求 請求項の数 1 (全8頁)

69発明の名称 诱明遮雷膜

創粹 頭 平1-130740

②出 頭 平1(1989)5月24日

長野県塩尻市大字宗賀1 昭和電工株式会社微粉研究セン 進 彦 @発明者 小原

ター内 @発明者 伊 沢 方: 44 長野県塩尻市大字宗智 1 昭和電工株式会社微粉研究セン ター内

東京都港区芝大門1丁目13番9号 の出願人 昭和電工株式会社

70代 理 人 弁理士 寺田 實

1. 発明の名称

透明導電腦

2. 特許請求の範囲

酸化インジウム(IngOs)を主成分とする透明 導電離において、IngOs に対してZrOs、NbsOs、

Ta:0,の少なくとも1種を

Ta,0.

2-0x mo1% Nb₂0_s y mo1% z mo1%

含み、

 $0 \le x \le 20$ $0 \le y \le 1.7$ $0 \le z \le 16.5$

 $x + 2 y + 2 z \ge 2$

x + 1. 2y + 1. $2z \le 20$ を満たす範囲を特徴とする透明導電膜。

3. 発明の詳細な説明

[産業上の利用分野]

木器明け透明運雷時に関し、特に液晶ディスプ

レイ、エレクトロルミネセンス、エレクトロクロ ミックディスプレイ等の透明電板に用いるのに好 浦な透明選業順に関する。

「従来の技術」

透明導電膜としては金、白金等の金属あるいは 酸化器、酸化インジウム等の酸化物を基板上に成 膜したものが知られている。このなかで液晶表示 等に用いられるのは酸化インジウムに酸化錫を活 加したITO (Indiumu-Tin Oxide) が主流であ る。それはITOの高透明性、低抵抗性の他、 エッチング性、化学的安定性、基板への付着性等 が良好なためである。

原子価制御に基づく半導体化機構による透明導 電膜の低抵抗化技術はITOのほか、次の様な例

特開昭 59-163707ではITOに酸化ルテニウ A. 酶化铅、酶化馏灰还加1. 摄心自い值と1. て、比抵抗 0.7×10⁻⁴Ω·cm、光透過率88%の特 性を得ている。特開昭59-71205 ではITOに酸 化りんを1,01~3 st%添加し最も良い値として、

一方、週元に基づく半導体化により通明導電膜 の低抵抗を計る例としては、USP 4.399.194か ある。

USP 4,399,194では酸化インジウムに酸化ジ ルコニウムを40~60*t% 添加し、比抵抗 4.4× 10-4 Q・cm、光透過率80%の特性を得ている。

透明導電脑の成態方法としては真空悪着、イオ ンプレーティング、スパックリンプ等の物理 悪者、 法、 熱分解等の化学反応で成立を介化学悪者。 スプレー、ディップ等による塗布法等がある。こ のなかで膜の緻密性が良く低抵抗療が容易に得ら

[課題を解決するための手段]

本発明者はある金属酸化物にその金属と異なる 低数の金属元素を選加すると原子価制御により半 導体化することに着目し、酸化インジウムの場合 は4価以上の金属の活加により低粧核化すること になるが、この隙、3価のインジウムイオン半径 に近い金属イオンを添加することにより酸化イン ジウムの結晶格子の型を増大させることがない様 な金属元素の添加につき種々検討した結果、本発 細い形なった。

すなわち、酸化インジウム (In=0。) を主成 分とする透明導電膜において、In=0。に対して Zr0。、Nb=0。、Ta=0。の少なくとも1種を

> Zr0: x mo1% Nb:0: y mo1% Ta:0: z mo1%

含み、

 $0 \le x \le 2 \ 0$ $0 \le y \le 1 \ 7$ $0 \le z \le 1 \ 6 . \ 5$ れることから物理蒸着法、そのなかでもスパッタ リング法が主流となっている。

[発明が解決しようとする課題]

ここ数年、ワープロ、テレビ用等に複晶表示が 多用され、その液晶画面の大型化が進んできた結果、健米の透明導電膜の比抵抗値を悪くすること なく、光透過率を向上させる必要が生じてきた。 この際に、比低抗値を低低抗で指持することは、 電極の膜厚を海くすることができ、そのため具即 なエッチング性も可能となるのである。透明導電 頭の膜厚が2001人を越えるとエッチング時間が長く くなり、パターンの断線、膜表面状態の悪化によ なり、パターンの断線、膜表面状態の悪化によ また。

本発明は、従来使用されている透明導電波の比 抵抗 2 × 20 * 10 · caは維持することは勿論、更に より低い比抵抗値のものを目指し、導電膜をより 薄くし、エッチング中間を短縮するとともに少留 りを向上し、更に光透過率として90%程度を確保 することを本発明の目的とする。

$x + 2 y + 2 z \ge 2$

x + 1. 2y + 1. $2z \le 20$

を満たす範囲を特徴とする透明導電膜を見出した。なお、x, y, z sol%の数値は、 In_2O_3 量を含めた全体の組成を 100 sol%とした表示に基づく値である。

In・0。に対して、Zr0。 Nb・0。、Ta・0。を単独にそれぞれ認加したとき、、1.0。 1.0。 1.0 n 1.0 mの 外来講の活加では腰の抵抗値は健来のITOに比べ高い。Zr0。 Nb・0。、Ta・0。を複合で活加した場合、x + 2 y + 2 z の値が2 noil X未満の場合も抵抗は能米のITOより高い。これらの添加量より増すにつれ、単独で添加した場合も、複合で添加した場合も、複合で添加した場合も、複合で添加した場合も、でない、原子値制御による半導体化であると考えられる。

しかし、さらにそれらの派加量が増すと逆に抵抗止上がり始め、単独に派加したときではそれぞれx = 20 mol%、y = 17 mol%、z = 16.5 mol%を、複合で添加したときでは、x + 1.2 y + 1.2 y + 1.3 y

1.2 2の値が、20 mol%を越えると従来のITO の抵抗値より高くなる。これは、過剰の添加物が 格子間に入り、格子を歪ませ、電子移動度が低下 し、抵抗値が高くなるためと考えられる。抵抗値 の高い組成範囲でも放腹された両で値である。 域地条件で低抵抗化することも可能である。 適率が高ちる。この組成範囲ではキャリア漁度が 増せなかに携進率が落ちるものと考えられる。

前述のUSP 4,399,194は、In±0。と2r0±とからなる組成であるが、上記の様に強制的な選元による半導体化機構によりもので、そのため透過率が80%と低い。

これに対し、本発明は、 Zr0。の認加量が少ない 領域で原子価制限による半導体化であるため、格 子班を小さくでき、キャリア移動度を高め、キャ リア濃度を低く押えることが可能なため、高透過 乗のものが得られると考えられる。

従来のITOで添加されているSnOsの一部を ZrOs、NbsOs、TasOs によって面換えても同様の 良好な透明導電額が得られる。

0.5:9.5 から4:6の範囲の刻合で、特に合金 の場合には4:6程度の彼い酸化性雰囲気で、 1×10⁻¹~5×10⁻¹Terf程度まで混合ガスを導入 し、基板温度 200~350 ℃で蒸着速度10 末/sec 以下で成態する。

この際、0.分圧が上記の値より低速ぎると、膜 の遺過率が低く低抗値も高い。0.分圧が高くなる と遺過率が高くなり、抵抗値は低下してくるが、 高くなり過ぎると抵抗値は、逆に増加する。また、 蒸板温度も 200で未満では遺過率、抵抗値が 労り、 350℃を超えるとまた抵抗値が劣る。 薫者 遠度が10人/sec を越えても間の遺過率、抵抗値 がおる。

以上のことを考慮しつつ、頭の透過率が90%以上で、もっとも低い抵抗値をとるスパックリング 条件を選ぶことになる。

また、電子ピーム蒸着法で成胰する場合には、 Arがスは導入しないが酸紫ガスを導入し、蒸板加 熱することは、スパッタリングと同様で、蒸着速 度は電子ピームの電圧、電流、ピームほで決ま

スパッタリング法、電子ビーム蒸着法では、蒸 着材として、インジウムと添加元素の酸化物の焼 結体またはこれらの合金が用いられる。

悪着材としての酸化物類結体は、その原料として酸化物、金属、水酸化物、塩化物、硝酸塩、低酸塩等が用いられ、これらのインジウムおよび活力、 100~1400℃で貯末状態で吸焼後、PVA、PVB等のパインダーを加え、スプレードライ等で遊校し、 500~2,000 kg/cn程度で成形して焼給して造られる。

焼結涸度は1200~1600℃である。スパッタリングで成該する場合には、蒸着材としての焼結体または合金と被成譲基板とをセットした後10**Torr 以下に真空引きした後、酸素とArとをモル比にて

る。0.分圧、基板温度、蒸着速度を適当に選び、 透過率90%以上で抵抗値の幾も低い鏡を得る。最 初の到過真空度としては10・17err以下とし、その 後の0.分圧を 0.5×10・~4×10・17erc、基板温 度 200~400 ℃、蒸巻速度 0.5~10 乳/sec がき 当か条件である。

スパッタリング、電子ビーム議者法、化学議者 法、塗布法等の成譲法のうちではスパッタリング が最も広い添加量の範囲で低抵抗額が得られるこ とが知られている。

被成膜基板としては、ガラス、ブラスチックの シートやフィルム等あるいは、それらに保護膜や 機能性膜を施したもの等が用いられる。

[実施例]

以下、本発明を実施例にて詳しく説明する。 実施例1~ 7、比較例1~4

InaOa に対しZrOaを添加するものにつき、表・ 1 に示す組成になる様に、InaOa とZrOaとを秤量 し、エタノールを加え50%スラリー濃度にてナイ ロン製ポールミルで48時間温式混合した。得られ たスラリーを60℃にて乾燥し、1400℃で大気中で 10時間夜焼した。次に、それをナイロン製ポール ミルにて24時間乾式粉砕した。この粉砕粉に対 し、2.5% PVA水溶液を20vt0μに造粒した。 この顆粒を1 ton /c㎡で加圧成形し、値径70mm ・ 原さ10mmの成形体を網た。

この成形体を大気中にて1450℃で15時間焼成 し、スパッタリングターゲットを造った。

このターゲットを高潮波マグネトロンスパッタ リング装置にセットし、1×10**Torrまで真空に 引いた後、態素とアルゴンガスを mol比で1:9 の割合で5×10* Torrまで導入し、スライドグラ ス (寸法76×26×1 mm) 蒸版を 300℃に加熱し、 版 捜速度3 兆/sec の条件で透明導電旗を作成し た。

得られた透明導電膜の膜厚、光透過率、比抵抗 の特性を測定し、それらを表・1に併記した。

膜厚は成膜時にマスキングし膜生成後、膜とマスキングを除去した基板との段差をランクテー

表・1

実施例		組成(mo1%)	膜厚	光透過率	比抵抗
番号		Ina0a	Zr0s	(A)	(%)	(×10° Ω·cm)
比較例・	1	98.2	1.8	1020	90	2.3
実施例・	1	98.0	2.0	1050	90	1.8
"	2	97.8	2.2	1010	91	1.7
"	3	95.0	5.0	980	90	1.1
"	4	90.5	9.5	990	91	0.5
"	5	85	15	1000	90	1.0
"	6	81	19	1030	90	1.6
"	7	80	20	1010	90	1.7
比較例・	2	79	21	1000	90	1.9
"	3	75	25	1020	90	2.1
"	4	50	50	980	91	21.0

ラーボブソン(検製タリステップによる段差領定で 求めた。

光透過率は、東海光学機製分光器にて 550mm光 の透過率である。

また、比抵抗は膜上に直線上に4ヶ所導線を半 田付けし、4端子法により測定した。

順化後の超成は販密にはスパッタリングター グット組成よりずれるが、添加元素の含量のずれ は、±0.05 mol%程度であることを化学分析によ り確めた。

表・1でわかる様に2r0。の活加量が増すに従い、比抵抗が次第に減少するが10 mo1%程度を越えると逆に比抵抗は増加した。

表・1 に示した範囲では光透過率は90%以上であり、2r0 mの添加量が 2~20 m01%の範囲で従来のITOの値2×10-4Ω・cmより優れた比低抗を示した。

(以下余白)

実施例8~15、比較例5~7

In・0。に Nb・0。を添加するものにつき、表・2 に示す組成に対し、実施例 1 ~ 7 と同様に、スパックリングターゲットを違う、周一条件でスパックリングし透明導電頭を作成した。それらの 適特性も多・2 に示した。

(以下会白)

表・2

実施		組成(mo1%)	膜厚	光透過率	比抵抗
比較 番		In ₂ 0 ₃	Nb _z 0 _s	(Å)	(%)	(×10° Ω·cm)
比較例	• 5	99.2	0.8	1000	90	2.8
実施例	. 8	99.0	1.0	1030	90	1.8
"	9	98.8	1.2	1010	91	1.6
"	10	97	3	1000	91	1.0
"	11	95	5	1010	90	0.7
"	12	92	8	980	90	0.4
"	13	85	15	1030	91	1.3
"	14	84	16	1020	90	1.5
"	15	83	17	1000	90	1.8
比較例	• 6	82	18	970	91	2.0
"	7	80	20	1010	91	2.2

Nb±0。の添加量が増すに従い、比抵抗はまずは 減少していくが、 8 mol%を超えると逆に増加し

Nb₂O₅ の添加量 1.0~17 mo1%の範囲で比抵抗 2×10⁻⁴Ω - cm未満の優れた特性を示した。

実施例 1 6 ~ 2 2 、比較例 8 ~ 1 0

Ins.0、にTas.0。を添加するものにつき、表・3 に示す組成に対し実施例 I~7と同様に、スパッ タリングターゲットを適り、同一条件でスパッタ リングし透明端電源を作成した。それらの顔特性 も寿・3に示した。

(以下余白)

表・3

実施例 比較例	組成(:	mo1%)	賤 摩	光透過率	比抵抗
番号	In ₂ 0 ₃	Ta ₂ 0 ₅	(Å)	(%)	(×10 ⁴ Ω·cm)
比較例・8	99.2	0.8	1000	91	3.1
実施例・16	99.0	1.0	1030	90	1.8
// 17	98.8	1.2	990	90	1.7
n 18	97.0	3.0	1020	90	1.3
// 19	95.0	5.0	1050	90	1.0
// 20	90.0	10.0	1000	90	0.5
<i>"</i> 21	85.0	15.0	1010	90	0.8
<i>"</i> 22	83.5	16.5	980	90	1.8
比較例・9	83.0	17.0	1000	91	2.0
// 10	80.0	20.0	1030	90	2.5

Ta±0。の添加量が増すに従い、比抵抗はまずは 減少していくが、10 mo1%を越えると逆に増加した。

Ta:0。の添加量 1.0~16.5 no1%の範囲で比抵抗 2×10⁻¹0 · cn未満の優れた特性を示した。 実施例 2 3~3 4、比較例 1 1~1 8

In-0。にZrO。、Nb₀0、Ta₁0。のうち2~3 種の酸化物を透加するものにつき、表・4 に示す組成に対し実施例1~7と同様に、スパッタリングクーゲットを造り、同一条件でスパッタリングし週明導電膜を作成した。それらの膜特性も表・4に示した。

2r0 s. Nb s0 s. Ta s0 sのそれぞれの添加量を x, y, z mo1%とし、比抵抗が2×10⁻¹Ω・cm 未満となる最適の添加量範囲は

 $x + 2 \cdot y + 2 z \ge 2$

x + 1. 2 y + 1. 2 $z \le 2$ 0

の条件を満たす範囲であることが見出せた。

比較例11~14の様にx+2y+2z<2
である範囲および比較例15~18の様にx+

1. 2 y + 1. 2 z > 2 0 である範囲では膜の比

抵抗が高い。

(以下余白)

表 • 4

実 施 例 比 較 例		組成	(mo1%)		庚 厚	光透過率	比抵抗
番号	In ₂ O ₃	ZrO:	Nb ₂ 0 ₈	Ta ₂ 0.	(A)	(%)	(×10° Ω·cπ)
比較例 · 1 1	98.8	0.5	0.7	0	990	90	3.5
実施例・23	98.7	0.5	0.8	0	1000	90	1.8
比較例·12	98.55	1.0	0.45	0	1000	91	4.4
実施例・24	98.45	1.0	0.55	0	980	90	1.7
比較例 - 13	98.55	1.0	0	0.45	1020	90	2.6
実施例・25	98.45	1.0	0	0.55	1010	90	1.8
比較例·14	98.75	0.6	0.3	0.35	1030	90	4.5
実施費・26	98.65	0.6	0.3	0.45	1050	91	1.7
" 27	90.0	5.0	5.0	0	1010	-90	0.5
// 28	90.0	5.0	0	5.0	1030	90	0.6
// 29	90.0	0	5.0	5.0	1020	90	0.3
// 30	91.0	3.0	3.0	3.0	1040	91	0.5
// 31	83.0	5.8	12.0	0	980	90	1.8
比較例·15	82.0	5.0	13.0	0	1000	91	2.2
実施例 - 32	82.0	10.0	8.0	0	1020	91	1.7
比較例·16	81.0	10.0	9.0	0	1000	91	3.0
実施例・33	82.0	10.0	0	8.0	1010	90	1.8
比較例 - 17	81.0	10.0	0	9.0	1030	91	2.8
実施例・34	83.0	6.0	6.0	5.0	990	90	1.8
比較例·18	82.0	6.0	6.0	6.0	1000	90	2.3

実施例35~37、比較例19

In.0。に SnO.を添加した I T O につきその SnO. の添加の一部に対し ZrO。、 Nb.0.、 Ta.0。を添加 したものとして表・5 に示す組成のもので検討した。 スパックリングターゲットの適り方およびス パックリング条件は実施例 I ~ 7 と同様にした。 それらの関格性も表・5 に示した。

(以下余白)

※ 注		3	組成(1001%)	9		監	光透過率	比据抗
*	In.0.	Sn0 ₂	Zr02	Mb-0s	Ta.0.	3	%	(×10° Ω·ca)
実施例・35	16	7	5	-	-	1020	8	9.8
" 36	91	-	•	v,	0	1000	16	0.7
" 37	16	-	•	•	s	1000	6	0.5
比較例・19	16	6	•	•		1030	16	2.0

[発明の効果]

本発明の返加範囲内のZrO。、Nb₂O。、Ta₂O。の 少なくとも一種類のIn₂O。に対する認加による透 明導電膜は、従来のITOの膜特性を破ぐ特性を 対し、腹弾を薄くすることが可能となり、エッチ ン(間の改善、更にはそれに伴う歩留りの向上を 来たすものである。

特許出願人 昭和電工株式会社代 理 人 弁理士 泰田 實

手 続 補 正 書(自発

平成元年11月7日

符件厅長官 殿

1.事件の表示

平成1年特許羅第130740号

2. 発明の名称

透明導電膜

3. 補正をする者

事件との関係 特許出願人

住所 東京都港区芝大門一丁目13番 9号

名称 (200) 昭和電工株式会社

代表者 村 田 一

4. 代理人 (郵便番号 105)

居所 東京都港区芝大門一丁目13番 9号 昭和電工株式会社内

電話 東京 432-5111番 (大代表)

任名 (9417) 弁理十 寺 田

- 5. 補正の対象
 - 明細書の「発明の詳細な説明」の欄。
- 6、補正の内容
- (1) 明細審第 3頁第 5行中「(3×10⁻⁴Ω・cm)」とあるのを「(13×10⁻⁴Ω・cm)」と補
- (2) 同第 3頁第 8行中「 600名」とあるのを 「1500名」と補正する。
- (3) 同第 4頁下から第 5行中「2×20⁻⁴」とあるのを「2×10⁻⁴」と補正する。
- (4) 同第 7頁第11行中「よりもので」とあるのを 「よるもので」と補正する。
- (5) 同第 8頁下から第 6行中「kg/cm」とあるの を「kg/c㎡」と補正する。
- (6) 同第11頁第 5行中「µ」とあるのを「µm」 と補下する。
- (7) 同第11頁下から第 8行中「5×10°」とあるのを「5×10°」と議正する。
- (8) 同第13頁の表・1 中右上欄の比抵抗の単位 「 (×10°Ω・cm) 」とあるのを「 (×10°Ω

(9) 同第15頁の表・2中右上標の比抵抗の単位 「(×10⁴ Ω・cm)」とあるのを「(×10⁻⁴Ω・cm)」と補正する。

·cm) 」と補正する。

- (10) 同第17頁の表・3中右上層の比抵抗の単位 「(×10°Ω・cm)」とあるのを「(×10°Ω・cm)」と接正する。
- (11) 同第20頁の表・4 中右上欄の比抵抗の単位 「(×10°Ω・cm)」とあるのを「(×10°Ω・cm)」と補正する。
- (12) 同第22頁の表・5中右上欄の比抵抗の単位 「(×10°Ω・cm)」とあるのを「(×10°Ω・cm)」と機正する。

DI F