F	REPORT DO	UMENTATIO	N PAGE	AFRL-S	SR-AR-TR-04-	
this burden to Department of I	Defense, Washington Headquare aware that notwithstanding an	information. Send comments reg ters Services, Directorate for Info y other provision of law, no perso JR FORM TO THE ABOVE ADD	ormation Operations and Reports on shall be subject to any penalty	s (07	0109	ing the ducing :202- :urrently
1. REPORT DATE (DL 17-02-2004	D-MM-YYYY)	2. REPORT TYPE FINAL	•		3. DATES COVERED (From 15-05-2003 - 1	1 - To) 4 - 11 - 2003
4. TITLE AND SUBTIT	rle '	FINAL			5a. CONTRACT NUMBER	.4 11 2005
Support for the	he 14th IEEE I	nternational Pu	lsed		N/A	
Power	Conference				5b. GRANT NUMBER F49620-03-1-0305	
FOMET (CONTELENCE				5c. PROGRAM ELEMENT	NUMBER
					61102F	
6. AUTHOR(S) Professor Michael C	HESSELMANN				5d. PROJECT NUMBER 2301/EX	
1 Torossor Wilchaer	31LbbLblvll II VI V			<u> </u>	5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORG	GANIZATION NAME(S)	AND ADDRESS(ES)			B. PERFORMING ORGANIZ	ATION REPORT
Texas Tech Un:	iversity] 1	N/A	
	. & Comp. Engi	n.				
Mail Stop 310: Lubbock, TX						
Lassocit, in						
		NAME(S) AND ADDRES	S(ES)		10. SPONSOR/MONITOR'S	ACRONYM(S)
Air Force Off 4015 Wilson B				1	AFOSR/NE	
Arlington, VA				 -	11. SPONSOR/MONITOR'S	REPORT
,,					NUMBER(S)	
12 DISTRIBUTION / /	VAILABILITY STATE	MENT	· · · · · · · · · · · · · · · · · · ·			
iz. bio inibolioni	WALADIEII TOTALE		BUTION STATI	EMENT A		
Unlimited Dist	tribution		oved for Public I			
		Dis	stribution Unlim	nited		
13. SUPPLEMENTAR	Y NOTES					
N/A					•	
14. ABSTRACT						
	e was held at	the Hyatt Regen	cy Hotel in Da	llas, TX,	15-18 June 2003	. There
were 584 part:	icipants from	a total of 22 c	ountries. The	conferen	ce featured sever	ral firsts
					nic paper present internet cafe w	
	n the conferen		rial exposicion	n, and an	incernce care w.	ten wireress
-						
				20	1040225	152
15. SUBJECT TERMS					リカカロアア	טעו
	SWITCHES, PLA	SMA PHYSICS			1	
16. SECURITY CLASS	SIFICATION OF:	***************************************	17. LIMITATION OF ABSTRACT	18. NUMBER	R 19a. NAME OF RESPO	
a. REPORT	b. ABSTRACT	c. THIS PAGE	unlimited	69	19b. TELEPHONE NU	
unclassified	unclassified	unclassified			code) (806) 742-3462	

The 14th IEEE International Pulsed Power Conference was held at the Hyatt Regency Hotel in Dallas June 15-18, 2003. 584 Participants from a total of 22 countries were in attendance, despite VISA problems and various travel advisories. Dr. Michael Giesselmann and Dr. Andreas Neuber, both from the Center for Pulsed Power & Power Electronics at Texas Tech University served as General and Technical Program Chair respectively. The conference featured several *first's* such as all electronic abstract and paper submission, all electronic paper presentation, an expanded and professionally managed industrial exposition and an internet café with wireless *hot-spots* in the conference area.

http://dallasregency.hyatt.com/property/index.jhtml

We received 477 abstracts using http://www.webstracts.com online services. Using the Website we conducted 1062 technical reviews; a first for the Pulsed Power Conference. Each of the working days of conference started with plenary sessions, followed by 4 breakout sessions in the morning, 4 more breakout sessions in the afternoon and a afternoon poster session.

The social program included a trip to the South-Fork Ranch, site of the famous "Dallas" TV-show. The conference started on Sunday with a welcoming reception and culminated on Tuesday evening with the formal Awards dinner. The Marx Award winner was Dr. Vladimir K. Chernyshev from the Russian Federal Nuclear Center – VNIIEF in Russia. Prof. Hidenori Akiyama from Kumamoto University in Japan won the Peter Haas Award. The student award winners for 2002/2003 were Thomas A. Holt from the Naval Research Laboratory and Gary Brent McHale from Texas Tech University.

Rasty, J 1073, 1077	Sack, M669, 1415	Shchagin, V.A689, 863
Ratakhin, N.A741	Saethre, R127	Shcolnikov, E.Y1120
Raymond, T1229	Sakugawa, T657	Sheehey, P.T63, 78
Reass, W.A 645	Sakurai, T1325	Shenderey, S665
Reed, M391	Salazar, M.A805	Shiffler, D1147, 1431
Reinovsky, R.E 107, 809, 1394	Salo, G599	Shiina, J931
Rikovanov, G.V 921	Samokhin, A.A53	Shilun, J863
Rim, GH1329	Sampayan, S301, 1355	Shimada, N451
Rim, G.H 437, 665, 1095, 1239,	Sanchez, M391	Shimizu, M571
	Sanchez, P1183	Shimizu, N931
Ripa, M	Sandberg, J335, 653	Shimomura, N1290
Robb, C	Sanders, L.L615, 619	Shinozaki, K657
Robert, E	Sanford, T.W.L733	Shiraki, K232
Roderick, N.F	Sarjeant, W.J 1033, 1379, 1382	Shishlov, A.V741, 1447
Rodriguez, L	Sarkisov, G.S	Shkuratov, S.I723
Rogowski, S	Sasaki, T571	Shlapakovsky, A271, 1169
	Sasorov, P.V53	Shlykhtun, S1447
Rogowski, S.T 179, 1371	Sato, M451	Shneerson, G.A1282
Rohwein, G 1431		Short, D.J744
Romero, S.P	Savage, M.E 175, 1021, 1205,	
Römheld, M	1225	Shorts, Z249
Rongkun, X 863	Saveliev, Y.M833	Shoup, B
Roos, V 89	Scarpetti, R.D909	Shubkin, N.G1462
Roose, L.D591	Sceiford, M487	Shui, Q123, 362
Rose, D 399, 487, 737, 744,	Schamiloglu, E 3, 189, 253,	Shuping, F863
871, 879, 1006	495, 715, 719, 871, 1006, 1169	Shvetsov, G.A675
Rose, D.V 479, 483, 495, 845,	Scharle, C1147	Shviro, E225, 445
979, 983, 995	Scharnholz, S349	Sibbett, W833
Rose, E.A756	Schill, R.A. Jr1229	Sidorenko, D.Y1250
Rose, M.F249	Schlitt, L97, 551	Siemon, R78
Rosenthal, S.E 163, 626, 630,	Schmidt, J729	Siemon, R.E63, 859
875	Schneider, R349	Sierra, S89
Rosocha, L.A215	Schoenbach, K.H3, 293, 649,	Silin, A.O1173
Rosol, Y.R 479, 483, 979, 983	715, 957, 1317	Simmons, D391
Rossi, J.O661	Schoeneberg, N1069	Simniskis, R189
Rostoker, N271	Schubkin, N.G1462	Sincerny, P.S530, 615, 619
Rotshtein, V.P297	Schultheiss, C669, 1415	Sinclair, M507, 744
Rousskikh, A.G741, 1447	Schulze, H.J150	Sinclair, M.A201, 387, 737,
Rovang, D 197, 399, 479, 487,	Schumer, J.W 383, 491, 503,	1209
737, 871, 879, 979, 983, 1006	837, 849, 883, 887, 975,	Sinebryukhov, V.A853
Royang, D.C845	987, 991	Singh, G1139
Rowan, N.J	Schwaegel, J391	Sipe, N1229
Roybal, M	Schweickart, D.L 693, 1274,	Skipper, M.C331
Rubin de Cervens, D 89, 526	1278	Sladek, REJ1109
Rudd, J.V 591	Seal, K513	Slattery, M.J1201, 1205
Ruden, E.L 103, 1197	Seamen, J.F733	Slavin, S193
Rumyantsev, B.V 115	Sears, R551	Slesareva, A.N49
Rust, K	Sebo, S.A693, 1274, 1278	Sloan, M.A236
	Sebring, R.J805	Smailus, B471
Ryoo, HJ	Sethian, J551	Smirnov, V.P53, 689, 863, 921
Ryoo, H.J		
Ryutov, D.D63	Sethian, J.D	Smith, D.L
	Seyhan, A	Smith, I371, 379, 383, 395,
_	Shams, M.S	399, 551, 887, 905
\mathbf{S}	Shapira, M	Smith, I.D387, 609
	Sharpe, R.A	Smith, I.R417, 681, 771, 1305
Sabaev, N.M	Sharrow, J.F	Smith, J371, 756, 905
•	Shashkov, A.Y863	Smith, P.W319

Sofronov, V.N74	Taccetti, J.M1183	Uhm, H.S459, 999, 1010, 1247
Solovyev, V.P74	Tailleur, Y 479, 483, 979, 983	Ullery, G793
Solovyov, V279	Takada, Y1258	Ullery, G.T93
Somov, V.A 1173	Takahashi, I1258	Upadhyaya, G221
Son, H.S1313	Takaki, K 567, 571, 1258	Uschmann, I209
Song, B.M 1309, 1313, 1423	Takano, K1294	Ustroev, G.I863
Song, Y	Takashima, T1266	 ,
	Talantsev, E.F723	
Sotnikov, G.V 1250		T 7
Sotnikov, V	Taniguchi, H	${f V}$
Sotnikov, V.I 63, 66, 775, 855,	Tasker, D.G111, 405	
859	Tatman, T551	Van De Valde, D487
Spahn, E 349	Temple, R391	Van der Wiel, MJ867
Spears, J.W1347	Terry, R.E42	van Heesch, E.J.M441
Spelts, D551	Thomas, K371	Van Oost, G441
Spencer, T.A1147	Thomas, K.J387	VanDrie, A271
Stambulchik, E 785	Thompson, J46	Vasilevsky, V.M1282
Stankevic, V 1040	Thompson, M.C1183	Vasyukov, V.A1394
Starbird, R.L 1205, 1225	Thornhill, J.W37	Vedernikov, A.I1302, 1398
Starobinets, A	Thrall, D139	Velikhov, E.P921
Stepchenko, A.S1458	Threadgold, J 507, 995, 1209	Velikovich, A37
Stephanakis, S.J	Tielbeek, PJA1109	Manadi CTT 1150
Stevens, A	Tijerina, A236	Verardi, SLL1158
Stevens, J.L	Timoshkin, I	Vermare, C479, 483, 979, 983
Stevens, R905	Tkach, Yu.V	Vernier, P.T943
Stoffels, E	Tkach, Ya	Vernier, T423
Stolles, D	Togo, H1290	Veron, L
Strasburg, S 987, 991	Tokuchi, A261	Véron, L479, 483, 979, 983,
	Tolmachev, V.I1462	1054
Strasburg, S.D	Tomashevich, P867	Vesnin, V.V1194
Stribling, L.J.V	Torres, D111	Vidmar, R.J3, 257
Struve, K.W 163, 171, 179, 626,	Torres, D.T405	Viggato, J1229
859, 895, 917, 1051, 1371,	Tracy, P1090	Viladrosa, R752
		Vincent, C89, 526
Stuart, R.A	Travnicek, P	Vitkovitsky, I37
Studebaker, J	Trimble, D301	Vivekananda, J236
Sturges, R	Trujillo, P.G645	Vizir, V.A1462
Stygar, W.A	Truman, K	Vogtlin, G.E909
Subramanian, V	Tsepilov, G279	Voisin, L1177
Suematsu, H	Tsigutkin, K577, 785	Volkov, A867
Sukhushin, K.N 1458	Tsou, N.V1455	Volkov, G.S53
Sullivan, G391	Tsoupas, N653	Volkov, S.N853
Sung, G.Y 1095, 1367	Tsukamoto, S1116	Vulpe, A1235
Sung, K.Y 459, 999, 1143	Tsunoda, R931	Vyuga, D867
Sunka, P 229, 729	Tuck, J793	
Surls, D 146, 1221	Tuck, J.M93	
Suzuki, T29, 433	Tucker, T615, 619	\mathbf{W}
Swanekamp, S.B 479, 483, 975,	Tuozzolo, J653	**
979, 983, 987, 1014	Turner, C.D630	XX XX I 1102
Swett, D.W1441	Tutt, T.E409, 1081	Waganaar, W.J1183
Swinney, C391	Tyo, J.S59, 331	Wait, G.D1407
Sze, H37		Wakeland, P925
•		Wakeman, F.J131
	U	Wakimoto, M1290
T	-	Wald, S225
•	Udrea, M555	Walker, M
Tabor, D.A 1201	Ueda, M661	Walko, L.C693, 1274, 1278
14001, 17.7 1201	Joua, 171	Wall, K1132

Walraven, R 1109	
Walter, J 1069	
Walters, J.K271	37-11
Wanex, L	Yakubov,
Wang, D 657, 1266, 1270	Yamamot
Wang, F339, 950	Yamasaki
Warburton, D	Yan, K
	Yan, Z
Warne, L.K	Yang, L.
Watanabe, M 275, 799	Yankelev
Watrous, J	Yao, Q
Watrous, J.J463	Yasuoka,
Watson, J793	Yatsenko.
Watt, R.G 733	Yatsui, K
Weber, B 1006	***************************************
Weber, B.V 37, 205, 491, 499,	Yatsuzuka
503, 891	Ye, Y
Webster, W 551	Yildiz, I.
Wei, J 653	Yokoyam
Weidenheimer, D 97, 551	•
Weinbrecht, E.A 157, 1205	Yoo, D.W
Weise, Th 245, 474, 547	Yoshida,
Welch, D 487, 871, 879, 1006	Young, C
Welch, D.R495, 845	Young, F.
Welleman, A 225, 349, 353,	•••••
	Yu, S
Walsh D 300	Yuriev, V
Welsh, D	Yukimura
Weng, W-T	
Wetz, D1124	
White, R	
Wijetunga, P 423, 943, 950	
Wilkins, F 379, 737	7
Williams, C 301	Zarnitsky
Williamson, M.C387	Zentler, J.
Wilson, J.M 1201	Zeping, X
Wilson, K46	Zhang, G
Winands, G.J.J441	Zhang, S.
Wirtz, R 859	Zhang, W
Wolf, M225	Zhao, W.
Wolford, M1014	Zhenghor
Wolford, M.F97	Zhitlukhii
Woodring, R 379, 737	Zhukova,
Woodworth, J.R 167, 595, 609	Ziegler, L
Wright, C.C265	Zirnheld,
Wu, M 193	Ziska, G.1
** u, 111 173	Ziv, I
•	Zoi, N.V.
V	Zukakish
\mathbf{X}	Zurauskie
	Zurin, M.
Xianjue, P 863	Zutavern,
Xiao, S 649, 715	
Xinsheng, H 863	

Y

Yakubov, V.B	74, 1394
Yamamoto, K	1254
Yamasaki, H	315
Yan, K	441
Yan, Z	827
Yang, L	1332
Yankelevich, Y 22:	5, 703, 748
Yao, Q	946
Yasuoka, K	
Yatsenko, T	1085
Yatsui, K 29, 261	
	1325
Yatsuzuka, M	1154
Ye, Y	719
Yildiz, I	
Yokoyama, T	.232, 1294
Yoo, D.W	1313, 1423
Yoshida, K	1411
Young, C	950
Young, F.C 479, 483	, 883, 891,
	979, 983
Yu, S	
Yuriev, V.V	1462
Yukimura, K 559	

\mathbf{Z}

Zarnitsky, Yu	209
Zentler, J.M	909
Zeping, X	863
Zhang, G.J	827
Zhang, S.C	
Zhang, W	335, 653
Zhao, W.B	827
Zhenghong, L	863
Zhitlukhin, A.M	921
Zhukova, I.N	1282
Ziegler, L	78
Zirnheld, J.L 1033,	1379, 1382
Ziska, G.R	1225
Ziv, I	445, 748
Zoi, N.V	
Zukakishvili, G.G	53
Zurauskiene, N	1040
Zurin, M.V	53
Zutavern F I	591

PPC 2003 Sponsors

- Institute of Electrical and Electronics Engineers, Ш Ш Ш
- Pulsed Power Conferences Inc.
- **Bechtel Nevada**
- Titan Pulse Sciences Division
- Air Force Office of Scientific Research (AFOSR)
- Sandia National Laboratories
- Los Alamos National Laboratory
- Naval Research Laboratory (NRL)

Exhibitors

Bechtel Nevada Corporation

Dielectric Sciences, Inc.

Directed Energy Professional Society

Diversified Technologies, Inc.

General Atomics Energy Products

GMW Associates

HV Components/CKE

HVR Advanced Power Components, Inc.

Ktech Corporation

Major Tool & Machine, Inc.

Mission Research Corp.

Pulsed Power Job Placement Center

Titan Pulsed Sciences Division Varian Vacuum Technologies

Conference Planning Team

Dr. Michael G. Giesselmann

Dr. Andreas A. Neuber

Dr. James C. Dickens

Dr. Frank Hegeler

Dr. John Maenchen

Birgit Green

Katy Townley

DaLana Williamson Christine Crory

Matthew Perry

General Chair

Technical Program Chair

Vice Chair

Poster Chair

2005 General Chair

Planning Director

Program Coordinator

Technical Program Secretary Exhibition Coordinator

Webmaster

(E007.50d) 14th IEE International

Views of Dallas from the Hotel

Night Time views from the Reunion Tower

Conference Location, Dallas Hyatt Regency Hotel at Reunion

Reunion Tower

Built in 1978 at about 42 stories, this ornamental tower offers the best The lights on the dome oscillate in different patterns at night. It is the views of the city from 3 decks- observation, restaurant, and lounge. most recognizable Dallas landmark.

Location of Conference Events T REUNION CONCOURSE lobby leve ENTRANCE

PPC 2003 First's:

- First time all electronic paper submission
- First time large part of community takes part in paper review process (125 reviewers)
- First time electronic presentation
- First time Wireless "Cyber-Cafe" (802.11b), SSID

Other Enhancements:

Expanded and professionally

Welcome Reception

Plenary Lecture Room

Breakout Session Room

14th IEEE International Pulsed Power Genference

© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to ruse any copyrighted component of this work in other works must be obtained from the IEEE.

TEEE Catalog Number: 03CH37472C ISBN: 0-7803-7916-0

Digest of Technical Papers

PPC-2003

14TH IEEE INTERNATIONAL PULSED POWER CONFERENCE

Hyatt Regency Hotel Dallas, Texas USA June 15-18, 2003

Editors

Michael Giesselmann Texas Tech University Conference Chair Andreas Neuber Texas Tech University Technical Program Chair

PREFACE

After a very successful and enjoyable conference, we are delighted to present the proceedings of the 2003 IEEE International Pulsed Power Conference (PPC 2003) to you. The conference was held in the Hyatt Regency Hotel in Dallas, Texas June 15-18, 2003 and had 584 registrants from 22 counties. 180 of the registrants were from outside the United States, despite serious visa problems for many scientists from countries with a traditionally large attendance, namely Russia. We would like to express our deep gratitude to all the talented members of the organizing committee for their hard work before, during and after the conference. A special thanks to DaLana Williamson, Birgit Green and Christine Crory, who served as Technical Program Secretary, Planning Director and Exhibits Coordinator respectively. We also would like to also thank all the sponsors of the conference for their generous support.

These proceedings present the collective description of the state of the art of pulsed power technology in the early part of the twenty-first century. We added considerable reference value to the proceedings through a web based peer review of the abstracts and papers, a first for the Pulsed Power Conference. We received a total of 477 abstracts and conducted 1062 technical reviews before the conference. This was made possible through a completely web-centric paper management. At this point, we like to extend a sincere thank you to Dave Pataky, who managed the web-site.

Another first for the Pulsed Power Conference was the use of computer projectors for all oral and plenary sessions, which greatly enhanced the presentation quality and experience for presenters and audiences alike. Also well liked by the conference participants was the Internet Café, which offered wired and wireless Internet access. PPC 2003 also featured an industrial exhibition, which was started at PPPS 2001 in Las Vegas. The exhibition was organized by professional planners and attracted a wide range of industrial participants for the mutual benefit of the exhibitors and conference attendees.

We are sure you also enjoyed the social program starting with the reception, the "night-out" to the South-Fork Ranch, and the formal awards dinner in the Ballroom at the Hyatt hotel. We hope these proceedings bring back good memories and be a useful reference for your work.

Yours Sincerely

Dr. Michael Giesselmann, P.E. General Conference Chair

Dr. Andreas Neuber, P.E.

Dr. Andreas Neuber, P.E. Technical Program Chair

ERWIN MARX AWARD

Dr. Vladimir K. Chernyshev

Russian Federal Nuclear Center - VNIIEF, Russia

The origin of the **Erwin Marx Award** began at the 3rd IEEE Pulsed Power Conference (June 1981). The Erwin Marx Award was dedicated to the memory of Professor Marx and his concept of the cascade impulse voltage generator that bears his name. Professor Marx passed away on January 11, 1980, just prior to his 87th birthday. The High Voltage Institute of the Technical University of Braunschweig, has graciously allowed the Pulsed Power Conferences to present the Erwin Marx Award in his name. The Award is presented by Dr. Magne Kristiansen.

Biography of VLADIMIR K. CHERNYSHEV

Vladimir Konstantinovich Chernyshev is the Deputy Scientific Leader of VNIIEF and the Chief Scientist of the Electro Physical Department of VNIIEF. He has been working at VNIIEF since 1950 after graduating with honors from the Moscow Engineering Physics Institute. In 1953 he was awarded the Stalin Prize.

In 1955 he was appointed the Head of the Scientific-Research Division. He proposed new ideas of drastic improvement of the HEPP systems being developed (Red Banner Order in 1956) and achieved their successful implementation (Lenin Order in 1960). He developed new principles of computational and physical modeling of new systems that provided the possibility not only to raise their efficiency and output characteristics but also to get a surprising stability of operation (Lenin award in 1962). He formulated the criterion required for detonation initiation in HE and the criterion of efficiency of electric circuits for safe detonators firing. That work resulted in the creation and application of safe detonators that in itself was the most important step in fundamental improvement of nuclear weapons safety. In addition, from the viewpoint of different experimental studies performed 40 years ago that put an end to all the accidents including those with fatal outcome.

Later he proposed and implemented a series of original ideas and inventions (fast energy delivery (1958) from the EMG circuit into the external load by opening the circuit, creation of disk EMG (1961), invention of a new way of magnetic flux generation, etc). In 1972 two groups of scientists, one of which headed by V.K. Chernyshev (another one by A.I. Pavlovskii) were awarded the Lenin Prize for a drastic improvement of magnetic cumulation (MC) systems proposed by A.D. Sakharov.

V.K. Chernyshev in close cooperation with the other VNIIEF scientists successfully developed powerful transportable neutron sources. V.K. Chernyshev has awarded the USSR State Prize (1980). Together with V.N. Mokhov and V.B. Yakubov V.K. Chernyshev proposed and substantiated an original idea for CTF problem solution (MAGO). Unique results were achieved in the field of liner physics V.K. Chernyshev is the author of more than 300 scientific works, 40 inventions and more than 100 papers in the area of HEPP. On the initiative and under the leadership of V.K. Chernyshev the first joint Russian-American (VNIIEF-LANL) and Russian-French experiments were conducted both in Russia, USA, Russia and France. Joint scientific activities with the largest foreign national laboratories have been successfully carried out under his leadership. V.K. Chernyshev is one of the outstanding VNIIEF scientists, the founder and the first developer of new scientific direction "Super-power explosive magnetic energy sources".

He is recognized as the leader in this field by the international scientific community and, first of all, by the scientists of the largest national laboratories like LANL, Philips (USA), CEA/DAM (France), CAEP (China) due to the fact that the achievements of the team headed by V.K. Chernyshev were at least 10 years ahead of their time, and in some research areas they have no alternatives and are even more ahead of time (for example, in magnitude of the energy generated and quickly transferred to the load (200 MJ, liner kinetic energy of 30 MJ).

His leadership provided the grounds for a scientific school founded and run by V.K. Chernyshev. In 1997 the Russian Fund of Fundamental Investigation recognized this school as the leading scientific school in Russia, and in 2000 this recognition was confirmed for the second time. The work was awarded the Russian Government Prize, 1998.

PETER HAAS AWARD Prof. Hidenori Akiyama

Kumamoto University, Japan

The **Peter Haas Award** was established at the 6th IEEE Pulsed Power Conference (June, 1987) and bears the name of the late Peter Haas who was recognized at the 2nd Pulse Power Conference (1979) "for many contributions to a strong and vigorous pulsed power program through sound management, steadfast conviction, and farsighted technical acumen." Today, the Peter Haas Award honors those individuals that share Peter's dedication, leadership, and vision for Pulsed Power. The award is presented by Dr. Magne Kristiansen.

Biography of HIDENORI AKIYAMA

Professor Akiyama was born in Ehime, Japan and received his education in electrical engineering at the Kyushu Institute of Technology (BS, 1974), and Nagoya University (MS, 1976, PhD, 1979). He was a research associate at Nagoya University from 1979 to 1985, and then has been on the faculty of Kumamoto University since 1985, where he established a pulsed power laboratory. He has developed pulsed power generators based on the inductive energy storage system and repetitively operated pulsed power generators for industrial applications, for cleaning system of exhaust gases by pulsed streamer discharges in atmospheric pressure gases, cleaning system of lakes and marshes, sludge cleaning by producing a large volume discharge plasmas in water, and recycling systems of concrete and old computers. Recently, he is actively investigating extreme ultraviolet (EUV) sources for next generation semiconductor lithography, repetitively operated pulsed power generators with nanosecond pulse width, the application of pulsed power to biology, and the production of micro plasmas. His research program of pulsed power over wide fields was selected as one of the 21st century COE programs by the Japanese Government in 2003.

In addition to his many journal articles, the first text book of pulsed power in the world, a web pulsed power book*, and editorships, professor Akiyama has trained over 290 senior students and 119 graduate students in the field of pulsed power technology. They are leading the pulsed power technology and the industrial applications in Japan. He has had a heavy involvement in collaborative research with numerous industrial companies. His efforts in the field of pulsed power have benefited organizations and colleagues around the world.

^{* &}lt;a href="http://education.eecs.kumamoto-u.ac.jp/PulsedPower/">http://education.eecs.kumamoto-u.ac.jp/PulsedPower/

2002 PULSED POWER STUDENT AWARD

Thomas A. Holt

Naval Research Laboratory

2003 PULSED POWER STUDENT AWARD Gary Brent McHale

Texas Tech University

IN MEMORIAM

Larry Lee Sanders 1936 – 2003

Larry Sanders was an internationally recognized, senior pulsed power technician for thirty-seven years. He died of cancer on the twenty-fifth of June 2003, in his home in San Lorenzo, California.

Born in Glenvel, Nebraska in 1936, Larry's formal training was in the U. S. Navy as an electronics technician (internal communications) and in nuclear power. He served on the fast attack nuclear submarine USS Swordfish, where he earned the rank of First Class Petty Officer.

Upon his discharge from the Navy, Larry joined Physics International. He learned the technology quickly and was rapidly promoted to supervisory positions gaining his first external recognition for technical excellence as the operations supervisor for the USAF B³ Facility (Big Blue Boy, a Pulserad 1150) at Physics International. He was the Lead Technician responsible for installing and checking-out the Aurora machine at the U. S. Army Harry Diamond Laboratory, Adelphi, Maryland – the largest (1.5 million gallons of transformer oil), most powerful (20 TW), first-generation super-power flash x-ray machine. Larry's first international machine was Grec (Pulserad 1480), a very large flash radiographic machine at Le Centre d'Études de Gramat (CEG), Gramat, France. His second was the Modular Bremsstrahlung Source (Pulserad 115W), also at CEG. After several years of supervising operations and development on a number of state-of-the-art pulsed power machines at Physics International, Larry installed and checked-out the Phoenix machine at Naval Surface Weapons Center, White Oak, Maryland.

Larry's forte was large, high-voltage, single-pulse systems, but he was also instrumental in installing and checking-out three large, "gun" banks - the 4.5-MJ General Dynamics Land Systems electro-thermal-chemical bank in West Virginia; the 32-MJ Royal Armament Research and Development Establishment electromagnetic launcher bank in Kirkcudbright, Scotland; and the 30-MJ Technische Zentrum Nord electromagnetic launcher/electro-thermal-chemical bank in Unterlüß, Germany. For the last decade, Larry worked on the Decade machine for the Arnold Engineering Development Center, Arnold AFB, Tennessee. Larry was the Lead Technician for all factory testing as well as for installation and check-out in Tennessee.

In addition to his consummate skill, Larry was renown for his hard work, stamina, and ability to place very large equipment precisely where it belongs. He will be sorely missed by his colleagues at Physics International, Maxwell Physics International, and Titan Pulse Sciences, and by his customers at various laboratories in the United States, United Kingdom, France, and Germany.

Local Organizing Committee

Conference Chair

Michael Giesselmann Texas Tech University

Technical Program Chair

Andreas Neuber Texas Tech University

Planning Director

Birgit Green Texas Tech University

Technical Program Secretary

DaLana Williamson Texas Tech University

2005 General Chair

John Maenchen Sandia National Laboratories Vice Chair

James Dickens Texas Tech University

Exhibition Coordinator

Christine Crory
The Meeting Shoppe

Poster Programs

Frank Hegeler
Commonwealth Technology, Inc.

Awards Chair

Gerald Cooperstein Naval Research Laboratory

Webmaster

Matt Perry Texas Tech University

Awards Committee

William Baker

Air Force Research Laboratory

Malcolm Buttram

Sandia National Laboratory

Gerald Cooperstein (Chair)

Naval Research Laboratory

Arthur H. Guenther

University of New Mexico

Magne Kristiansen

Texas Tech University

Kenneth R. Prestwich

Consultant

Edl Schamiloglu

University of New Mexico

Ian Smith

Titan Pulse Sciences Division

Phillip W. Spence

Titan Pulsed Sciences Division

Peter J. Turchi

Air Force Research Laboratory

Ihor M. Vitkovitsky

Northrop Grumman Corp.

Technical Program Committee

US MEMBERS:

Larry Altgilbers SMDC-TC-AC

Robert Barker AFOSR/NE

Mark Crawford
Institute for Advanced Technology

Thomas (Greg) Engel University of Missouri, Columbia

Martin Gundersen University of Southern California

> W. Mark Henderson NAVAIRWD

Hugh C. KirbieLos Alamos National Laboratory

Juergen Kolb
Old Dominion University

Jane Lehr
Sandia National Laboratories

Matt Matyac
AFRL Munitions Directorate

Michael S. Mazzola Mississippi State University

Mark Newton
Lawrence Livermore National Laboratory

Robert E. Reinovsky
Los Alamos National Laboratory

Dan SchweickartAir Force Research Laboratory

Edward Shaffer US Army Research Laboratory

David C. StoudtNaval Surface Warfare Center

Frank Peterkin
Naval Surface Warfare Center

Peter Turchi Air Force Research Lab/DE

OVERSEAS MEMBERS:

Hidenori Akiyama Kumamoto University, Japan

Gert Bjarnholt Swedish Defense Research Agency

Eun H. Choi Kwangwoon University, Korea

Jianjun Deng
Academy of Engineering Physics, China

Weihua Jiang Nagaoka University, Japan

Markus Jan Löffler FH Gelsenkirchen, Germany

Igor V. Pegel
Institute of High Current Electronics, Russia

Gennady A. Shvetsov
Lavrentyev Institute of Hydrodynamics, Russia

Ivor Smith University of Loughborough, UK

Conference Sponsors

14TH IEEE International Pulsed Power Conference

Organized by the

Center for Pulsed Power and Power Electronics Texas Tech University

Sponsored by the

Pulsed Power Science and Technology Committee
of the
IEEE Nuclear and Plasma Sciences Society

with additional support provided by

Los Alamos National Laboratories
Air Force Office of Scientific Research
Sandia National Laboratories
Pulsed Power Conference, Inc.
Bechtel Nevada, Inc.
The Titan Corporation

LIST OF TECHNICAL TOPICS AND TOPIC/SESSION ORGANIZERS

Topic	Organizer/Affiliation	<u>Email</u>
Lasers	Mark Newton Lawrence Livermore Nat'l Lab	newton6@Ilnl.gov
Closing & Opening Switches	Richard Ness CYMER, Inc.	rness@cymer.com
High Power Microwaves	Diana Loree Air Force Research Lab/DEHA	Diana.Loree@kirtland.af.mil
Computational Techniques	Greg Engel University of Missouri	EngelT@missouri.edu
Electric Armaments	Thomas Weise Rheinmetall W&M	Thomas.Weise@Rheinmetall-Wm.Com
Components for Pulsed Power	Jim Sarjeant University of Buffalo	jsarjean@acsu.buffalo.edu
Compact Pulsed Power	William Carey ARC Technology	carey@arc-tech.us
Repetitive Pulsed Power Systems	Michael Barnes TRIUMF	barnes@triumf.ca
Solid State Switches	Stephen Bayne US Army Research Lab	Sbayne@arl.army.mil
Pulse Power Applications I	HJ Bluhm Research Center Karlsruhe	bluhm@ihm.fzk.de
Pulsed Power Applications II	Steven Pronko Archimedes Technology	spronko@atgsd.com
Diagnostics	Greg Engel University of Missouri	EngelT@missouri.edu
Radiation Sources	Richard Gullickson	Richard.Gullickson@dtra.mil
Explosive-Driven Pulsed Power	Bucur Novac Loughborough University	B.M.Novac@lboro.ac.uk
Hydrodynamic Experiments	Gerald Kiuttu Air Force Research Lab	Gerald.kiuttu@kirtland.af.mil
High Current Accelerators, Particle Beams I	Bruce Weber Navy Research Lab	weber@suzie.nrl.navy.mil
High Current Accelerators, Particle Beams II	Michael G. Mazarakis Sandia National Lab	mgmazar@sandia.gov
Biological/Medical Applications	Juergen Kolb Old Dominion University	jkolb@odu.edu
Generators & Networks	Michael Barnes TRIUMF	barnes@triumf.ca
Insulation & Dielectric Breakdown	John Mankowski Texas Tech University	j.mankowski@coe.ttu.edu
Pulsed MHD Generators	Rickey Faehl Los Alamos National Lab	rjf@lanl.gov
Poster Sessions	Frank Hegeler Navy Research Lab/CTI	fhegeler@this.nrl.navy.mil

TOPICS STATISTICS BY COUNTRY

le³o ^T	9	56	37	29	56	10	15	33	1	31	7	9	24	54	35	21	32	12	21	19	2	477
elvelsogu ^y	includes								and an Asia				a jandawa kata		S. American		e aucentini School			3		က
VSN	80.	16	12	20	1	4	8	11	1	13	2	2	15	42	22	7	18	9	6	12		232
Ukraine	2.7		- Grand Services	1			25.75%				3				1		(Anne Att	1	a selection com	1		_
חוצ) digas		James Garage	2	1		. 7	9		1			2	2	1	1	1	1	- Adwin		no de com	20
Turkey	200				and Coope		1000		Sugar Sugar		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(allewaters				908086355				with the second	-
Switzerland	_	1					Jak Jee Gr		and anyone								(1)	1	100			۳
u _{epem} s	£3.1		Janes Carlo		Service Co.		Walter State		A. (1)						A THE STREET		2		2005			2
Fissus.	1	3	17	6	5	2	4	6		15		1	7	9	3	3	1		2	2		85
einemo A			1/rm	1	in the same				Charles Tables				3 to 3 860						Printed and the			-
Netherlands	N. Santa		J.	1			Salara de la Companya		1000				X 10 0	1	Sugar Warsh	1	142,48		1.00 (300 San)			4
eineudži J			1.10			1	age to which		MAN A STATE OF THE				52440				The state of the s		ر استانده الم		2.5	1
Korea			3	4	4		distribution.		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2		200		3	3			2		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21
nsqs√	ŀ			14	2		National Services		(a)						. 7	2	×. 5		2		2	27
le ^{s/2} l	. Action		$\mathbb{R}^{\mathbf{k}_{2}}$	7	2.70%	2		2			N. X				2	-		1	James M. Sc		1.00	13
e jpuj		1	1	1	1		and the second		Schille Schiller				200 X 256 V		100 miles						32.436	4
Vu ^{EUNB} Đ		2	00 150	3	2		and the second	1	30.0				St. Blacker		14 July 10 10 10 10 10 10 10 10 10 10 10 10 10		3		3			14
France	2	1	·	·	17.0		\$970, 15 Week	1	All and a second				المسلم	2			2	-	200			19
England		1											Salar Sa		and the same					+		2
Czech Republic			S. Santana		Nic. Clark			1.	Sept.							-			ecyellario			2
СЫ _{Па}		1	2	1	2	1	Merchanica A	-		2			2	1		2	1	-	100 miles			18
9//у∂			Macandonals &		in standard		adoles de	1					10 (g) (c) (c)						an vais		e e e e e e e e e e e e e e e e e e e	-
C ^{gugq⊈}			No.		Casalan (188		to deliberate the		W. 1. 18	_			300 Sec. 1		Account the Control of the Control o		100		2		described and	7
Brazil					2		× 3/2-2-			_												8
sile ilsu A																	•					-
	Lasers	Solid State Switches	Closing & Opening Switches	r Applications	High Power Microwaves	Diagnostics	Computational Techniques	Radiation Sources	Inertial Power Generation	Explosive-Driven Pulsed Power	Electric Armaments	Hydrodynamic Experiments	Components for Pulsed Power	High Current Accelerators	Particle Beams	Biological/Medical Applications	Compact Pulsed Power	Generators & Networks	Repetitive Pulsed Power Systems	Insulation & Dielectric Breakdown	Pulsed MHD Generators	

Plenary Presentations

"ON THE ROAD TO COMPACT PULSED POWER: ADVENTURES IN MATERIALS, ELECTROMAGNETIC MODELING, AND THERMAL MANAGEMENT"

<u>Edl Schamiloglu</u>, *University of New Mexico*, *USA*Karl Schoenbach, *Old Dominion University*, *USA*Robert Vidmar, *University of Nevada*, *USA*

"COMPACT, PORTABLE PULSED POWER: PHYSICS AND APPLICATIONS" <u>Martin Gundersen</u>, University of Southern California, USA James Dickens, Texas Tech University, USA William Nunnally, University of Missouri – Columbia, USA

"ELECTROMAGNETIC LAUNCH TECHNOLOGY COMES OF AGE" * Harry Fair, Ian McNab, Mark Crawford Institute for Advanced Technology, The University of Texas at Austin

"Z REFURBISHMENT AND THE PATH TO HIGH YIELD AT SANDIA NATIONAL LABORATORIES" *

<u>Dillon McDaniel</u>

Sandia National Laboratories, USA

"THE ROLE OF PULSED POWER IN INTERNATIONAL SECURITY AND COUNTERTERRORISM"

<u>Hugh Kirbie</u>

Los Alamos National Laboratory, USA

"STATUS OF THE DIODE RESEARCH PROGRAMME AT AWE" John O'Malley
AWE Aldermaston, UK

"PULSED-POWER APPLICATIONS TO MATERIALS SCIENCE"

<u>Kiyoshi Yatsui</u>, Weihua Jiang, Hisayuki Suematsu, Tsuneo Suzuki, Makoto Hirai *Extreme Energy Density Research Institute*, Nagaoka University of Technology, Japan

* Publication not presented in this proceedings

Plenary Publications Index (TITLE Links to Paper)

ON THE ROAD TO COMPACT PULSED POWER: ADVENTURES IN MATERIALS,	
ELECTROMAGNETIC MODELING, AND THERMAL MANAGEMENT	3
Edl Schamiloglu, University of New Mexico, USA, Karl Schoenbach, Old Dominion	
University, USA, Robert Vidmar, University of Nevada, USA	
COMPACT, PORTABLE PULSED POWER: PHYSICS AND APPLICATIONS	9
Martin Gundersen, University of Southern California, USA, James Dickens, Texas Tech University, USA,	
William Nunnally, University of Missouri - Columbia, USA	
THE ROLE OF PULSED POWER IN INTERNATIONAL SECURITY AND	
COUNTERTERRORISM	13
Hugh Kirbie, H.T. Hawkins, Los Alamos National Laboratory, USA	
STATUS OF THE DIODE RESEARCH PROGRAMME AT AWE	21
John O'Malley, AWE Aldermaston, UK, J. Maenchen, Sandia National Laboratories, USA,	
G. Cooperstein, Naval Research Laboratory, USA	
PULSED-POWER APPLICATIONS TO MATERIALS SCIENCE	29
Kiyoshi Yatsui, Weihua Jiang, Hisayuki Suematsu, Tsuneo Suzuki, Fumito Endo, Chuhyun Cho,	
Tunetoshi Ankado, Extreme Energy Density Research Institute,, Nagaoka University of Technology, Japan	

Oral Sessions Index (TITLE Links to Paper)

Oral Session M1 – Radiation Sources
RECENT PROGRESS IN DoD's PROGRAM TO DEVELOP Ar K-Shell X-RAY RADIATION SOURCES (Invited)
R. Davis, Defense Threat Reduction Agency, B. V. Weber, J. P. Apruzese, J. W. Thornhill, A. Velikovich, Naval Research Laboratory, M. Krishnan, P. Coleman, Alameda Applied Sciences Corporation, H. Sze, J. Levine, Titan Pulse Sciences Division, Y. Maron, Weizmann Institute of Science, and I. Vitkovitsky, Northrop Grumman Information Technology
LOW WIRE COUNT LOADS42
R. E. Terry, J. P. Apruzese, Radiation Hydrodynamics Branch, Plasma Physics Division Naval Research Laboratory
DEVELOPMENT OF A 12 CM DIAMETER NOZZLE FOR ARGON ZPINCHES ON THE DECADE QUAD46
P. L. Coleman, A. Bixler, A. Gerhan, M. Krishnan, J. Thompson and K. Wilson, Alameda Applied Sciences, Inc.
STUDY OF CHARACTERISTICS OF WIRE ARRAY COMPRESSION IN R-Z AND R-PHI GEOMETRIES49
I.V. Glazyrin, N.G. Karlykhanov, A.N. Slesareva, RFNC-VNIITF
PHYSICS OF ICF RELATED MULTIWIRE ARRAY IMPLOSION53
E.V.Grabovsky, V.V.Alexandrov, M.V.Fedulov, I.N.Frolov, K.N.Mitrofanov, S.L.Nedoseev,
G.M.Oleinik, I.Yu.Porofeev, A.A.Samokhin, P.V.Sasorov*, V.P.Smirnov, G.S.Volkov,
M.V.Zurin, and G.G.Zukakishvili, SSC RF TRINITI
Oral Session M2 - Computational Techniques & Diagnostics
NUMERICAL AND EXPERIMENTAL MODELING OF SUBNANOSECOND PLASMA CLOSING SWITCHES IN GASES
J.H. Chen, C. J. Buchenauer, and J. S. Tyo, University of New Mexico
MODELING OF THE INVERSE Z-PINCH DYNAMICS63
V. Makhin, A. Esaulov, B.S. Bauer, R.E. Siemon, R. Presura, V.I. Sotnikov, and I. Paraschiv, <i>University of Nevada</i> , I.R. Lindemuth, R.C. Kirkpatrick, and P.T. Sheehey <i>Los Alamos National Laboratory</i> , D.D. Ryutov <i>Lawrence Livermore National Laboratory</i>
LINEAR ANALYSIS AND 3D HYBRID SIMULATION STUDY OF Z-PINCH
V. I. Sotnikov, L. Wanex, B. S. Bauer, I. Paraschiv, UNR, J. N. Leboeuf, UCLA, P. Hellinger, P. Travnicek and V. Fiala, UFA
DIRECT MODELING METHODS FOR AIR-CORED PULSED ALTERNATORS
EXPLOSIVE MAGNETIC LINER SYSTEMS TO STUDY DYNAMIC STRENGTH OF MATERIALS74
A.M. Buyko, G.G. Ivanova, V.N. Mokhov, P.N. Nizovtsev, A.A. Petrukhin, V.P. Solovyev, V.N. Sofronov, V.B. Yakubov, <i>RFNC-VNIIEF</i>

2D MHD COMPUTER MODELING OF DENSE PLASMA FOCUS ACCELERATORS
DETECTIVE QUANTUM EFFICIENCY OF A STORAGE PHOSPHOR IMAGING PLATE: MONTE CARLO STUDY AND EXPERIMENTAL RESULTS
Oral Session M3 – Lasers & Hydrodynamic Experiments
PULSED POWER CONDITIONING SYSTEM FOR THE MEGAJOULE LASER
INITIAL ACTIVATION AND OPERATION OF THE POWER CONDITIONING SYSTEM FOR THE NATIONAL IGNITION FACILITY
ELECTRA: A REPETITIVELY PULSED KrF LASER SYSTEM (Invited)
SIMULATIONS OF IMPLODING SOLID LINER MELTING AND VAPORIZATION VS LINER THICKNESS, AND EVIDENCE FOR "MELT WAVES"
ADVANCED LINER PERFORMANCE FOR EXTENDED EXPERIMENTS IN HYDRODYNAMICS AND MATERIAL PROPERTIES
ADVANCES IN ISENTROPIC COMPRESSION EXPERIMENTS (ICE) USING HIGH EXPLOSIVE PULSED POWER
Z-PINCH ACCELERATION OF MASSIVE CYLINDRICAL LINERS FOR REALIZATION OF GRAPHITE-TO-DIAMOND PHASE TRANSITION
Oral Session M4 – Solid State Switches
SIMULATIONS OF A HIGH POWER 4H-SiC VJFET AND ITS GaAs COUNTERPART

LOW JITTER AND DRIFT HIGH VOLTAGE IGBT GATE DRIVER
OPTIMISED HIGH VOLTAGE IGBTs FOR PULSED POWER APPLICATIONS
EVALUATION OF SiC GTOs FOR PULSE POWER SWITCHING
OPTIMUM DESIGN OF SNUBBER CIRCUITS FOR THYRISTOR ASSEMBLIES USING AN IMPROVED PSPICE THYRISTOR MODEL AND COMPUTATIONAL INTELLIGENCE
INVESTIGATION OF PULSE POWER THYRISTOR THERMAL VARIATIONS
AN INVESTIGATION OF THE PULSED CHARACTERISTICS OF HIGH-VOLTAGE SILICON CARBIDE DIODES146
D. Surls, M. Crawford, Institute for Advanced Technology, The University of Texas at Austin
DIRECT LIGHT TRIGGERED SOLID-STATE SWITCHES FOR PULSED POWER APPLICATIONS
Oral Session M5 – High Current Accelerators (ZR Oriented)
THE Z REFURBISHMENT PROJECT (ZR) AT SANDIA NATIONAL LABORATORIES (Invited) 157 E.A. Weinbrecht, D. H. McDaniel, D. D. Bloomquist, Sandia National Laboratories
MODELING 6-MV GAS SWITCHES FOR THE ZR ACCELERATOR
OPTICAL DIAGNOSTICS OF 4-MV WATER SWITCHES IN THE Z-20 TEST FACILITY
WATER SWITCHES IMPEDANCE FROM SCREAMER CIRCUIT MODEL AND EXPERIMENTAL WAVEFORM MATCH
PULSE SHAPING OF THE LOAD CURRENT ON THE Z ACCELERATOR
T. D. Pointon, H. C. Harjes, M. E. Savage, D. E. Bliss, and R. W. Lemke, Sandia National Laboratories
A NEW LASER TRIGGER SYSTEM FOR CURRENT PULSE SHAPING AND JITTER REDUCTION ON Z

ZR RELIABILITY AND OPERATIONS ANALYSIS	18
Oral Session M6 – Diagnostics & Radiation Sources	
RECENT ADVANCES IN HPM PULSE MEASUREMENT USING RESISTIVE SENSORS Ž. Kancleris, M. Dagys, R. Simniškis, E. Schamiloglu, F. J. Agee, Semiconductor Physics Institute	189
TIME-RESOLVED 1-10 keV CRYSTAL SPECTROMETER FOR THE Z MACHINE AT SANDIA NATIONAL LABORATORIES	
DEVELOPMENT OF A DYNAMIC SPOT SIZE DIAGNOSTIC FOR FLASH RADIOGRAPH. X-RAY SOURCES	
S. Lutz, D. Droemer, D. Devore, <i>Bechtel Nevada</i> , D. Rovang, S. Portillo, J. Maenchen, <i>Sandia National Laboratories</i>	
EMU, A NEW 10MV ELECTRON BEAM MACHINE AT AWE	
PLASMA-FILLED DIODE FOR HIGH DOSE-RATE BREMSSTRAHLUNGB. V. Weber, D. D. Hinshelwood, D. P. Murphy, S. J. Stephanakis, Naval Research Laboratory	20
HIGH-RESOLUTION SPECTROSCOPIC X-RAY DIAGNOSTICS FOR STUDYING THE ION KINETIC ENERGY AND PLASMA PROPERTIES IN A Z-PINCH AT STAGNATION	20 9 ky,
Oral Session M7 – Biological/Medical Applications & Pulsed Power Applications	
NON-THERMAL PLASMA (NTP) APPLICATIONS TO THE ENVIRONMENT: GASEOUS ELECTRONICS AND POWER CONDITIONING	21:
A PULSE POWER FLASHLAMP SYSTEM FOR WATER DECONTAMINATION	
A 1KW PULSED CORONA SYSTEM FOR POLLUTION CONTROL APPLICATIONS	
MODIFIED PINHOLE DISCHARGE FOR WATER TREATMENT	
P. Sunka, V. Babicky, M. Clupek, P. Lukes, <i>Institute of Plasma Physics, Academy of Sciences of the C</i> Republic, J. Balcarova, Prague Institute of Chemical Technology	

USING SPECIFIC BINDING DNA CAPTURE ELEMENTS TO DIRECT PULSED POWER KILLING OF BIOLOGICAL AGENTS	236
J. L. Kiel, J. E. Parker, P. A. Mason, E. Holwitt, L. Stribling, Air Force Research Laboratory, P. J. Morales, M. A. Sloan, J. Vivekanananda, D. Gonzalez, A. Tijerina, Conceptual MindWorks, J. Alls, Veridian, Inc.	230
Oral Session M8 – Compact Pulsed Power	·
MARX GENERATOR USING PSEUDOSPARK SWITCHES	241
SOLID STATE MEDIUM ENERGY WEAPON LASER Th. H. G. G. Weise, M. Gowin, D. Langhans, Rheinmetall W&M GmbH	245
CHARACTERIZATION AND APPLICATIONS OF VECTOR INVERSION GENERATORSS. A. Merryman, Space Research Institute, M. F, Rose, Z. Shotts, Radiance Technologies, Inc.	249
MODELING OF A COMPACT, PORTABLE TRANSMISSION LINE FOR PULSED-POWER APPLICATIONS	253
M. Joler, C.G. Christodoulou, E. Schamiloglu, J. Gaudet, University of New Mexico	
APPLICATION OF HIGH-FLUENCE CONVECTIVE COOLING TO PULSED POWER COMPONENTS	257
Robert J. Vidmar, University of Nevada	
COMPACT PULSED POWER GENERATORS FOR INDUSTRIAL APPLICATIONS	261
THEORETICAL AND EXPERIMENTAL RESULTS OF A COMPACT INDUSTRIAL MICROWAVE FREE ELECTRON MASER SYSTEM	265
Oral Session T1 – Particle Beams	
GENERATION AND TRANSPORT OF A LOW ENERGY INTENSE ION BEAM	271
STUDY OF A LOW ENERGY PULSED ELECTRON BEAM EXTRACTION SYSTEM	
POWER CONDITIONING WITH E-BEAM CONVERGENCE	279
Oral Session T2 – Insulation & Dielectric Breakdown	
PHYSICS OF DIELECTRIC SURFACE FLASHOVER AT ATMOSPHERIC PRESSURE	285
PRE-BREAKDOWN CURRENT BEHAVIOR IN DC VOLUME BREAKDOWN IN TRANSFORMER OIL	289
M. Butcher, A. Neuber, H. Krompholz, J. Dickens, Texas Tech University	

HV HOLD-OFF OF LARGE SURFACE AREA STAINLESS STEEL ELECTRODES	
WITH PULSED ELECTRON BEAM TREATMENT	297
D.I. Proskurovsky, A.V. Batrakov, V.P. Rotshtein, and K.V. Karlik, <i>Institute of High Current Electronics</i> , D. J. Johnson, <i>Sandia National Laboratories</i>	
INVESTIGATION OF VACUUM INSULATOR SURFACE DIELECTRIC STRENGTH WITH NANOSECOND PULSES	301
W. C. Nunnally, M. Krogh, C. Williams, F. Allen, D. Trimble, S. Sampayan and G. Caporaso, Lawrence Livermore National Laboratory	
SURFACE FLASHOVER ACROSS CERAMIC DISKS IN VACUUM AT CRYOGENIC TEMPERATURES	305
H. Keene, J. C. Dickens, A. A. Neuber, H. Krompholz, Texas Tech University	
NANOSECOND LASER-TRIGGERED MICROWAVE SWITCH	309
Oral Session T3 – Pulsed MHD Generators & Generators/Networks	
THE WORLD'S HIGHEST ISENTROPIC EFFICIENCY OF A SHOCK-TUBE DRIVEN	
DISK CCMHD GENERATOR	315
THE NATURAL FREQUENCIES OF UNIFORM LC LADDER PULSEFORMING NETWORKS P.W. Smith and J.M.A. Ashbourn, <i>University of Oxford</i>	319
THE STLT – AN ULTRA-WIDEBAND HIGH-RATIO PULSE TRANSFORMER	323
FACTORS AFFECTING MAXIMUM POWER GENERATION IN A PIEZOELECTRIC PULSE GENERATOR	327
C. Keawboonchuay, T. G. Engel, University of Missouri-Columbia	
FREQUENCY AND BANDWIDTH AGILE PULSER FOR USE IN ELECTRICAL AND	
BIOLOGICAL EFFECTS TESTING	331
CONCEPTUAL DESIGN STUDY OF HORN POWER SUPPLY W. Zhang, J. Sandberg, W-T Weng, Brookhaven National Laboratory	335
PSEUDOSPARK BASED PULSE FORMING CIRCUIT FOR TRANSIENT PLASMA IGNITION SYSTEM	339
F. Wang, A. Kuthi, C. Jiang, M. Gundersen, University of Southern California	
Oral Session T4 – Solid State Switches	
A COLLECTIVE THEORY OF LOCK-ON IN PHOTOCONDUCTIVE SEMICONDUCTOR	O A E
SWITCHES	J43

S. Scharnholz, R. Schne	FIGBT-DEVICES FOR PULSED POWER APPLICATIONS	349
,		
	CHES IN BIPOLAR (Thyristor) AND BIMOS (IGBT) TECHNOLOGY	252
	ULSE APPLICATIONS	333
	ERIMENTS WITH LARGE OPTICAL ABSORPTION DEPTH, R, PHOTO-CONDUCTIVE SWITCHES	357
	buchon, K. Kepil, W. Nunnally, Lawrence Livermore National Laboratory, USA	557
	i, GaAs, SiC AND GaN FET-TYPE SWITCHES FOR PULSED POWER	362
	Gundersen, University of Southern California, C. W. Myles, Texas Tech University	
MITIGATING UNDES	YSIS OF IGBT GEOMETRIES, WITH THE INTENTION OF SIRABLE DESTRUCTION CAUSED BY FAULT SCENARIOS OF	266
G. E. Leyh, SLAC	RE	300
·		
Oral Session T5 His	gh Current Accelerators (Radiography Oriented)	
Of all Session 13 - III	gu Current receierators (readiography Oriented)	
	GE ADDER ARCHITECTURES AND ELECTRICAL	0 =1
	G (Invited)	3/1
Maenchen, I. Molina, Sa	andia National Laboratories, R. Carlson, D. Fulton, K. Hahn, J. Smith, Los Alamos. Droemer, Bechtel Nevada, K. Thomas, M. Phillips, S. Croxon, R. Forgan, I. D. Smith, Los Alamos.	th,
ADVANCES IN PIILS	SED POWER MODELING AND EXPERIMENTATION ON THE RITS	
		379
	P. Corcoran, V. Bailey, J. Douglas, V. Carboni, <i>Titan Pulse Sciences Division</i> , . Hahn, E. Puetz, S. Cordova, <i>Sandia National Laboratories</i> , R. Woodring, <i>KTech</i>	
	er, T. Guy, R. Gignac, F. Wilkins, Bechtel Nevada	
STATUS OF THE ME	CRCURY PULSED.POWER GENERATOR, A 6-MV, 360-KA,	
		383
	SULATED INDUCTIVE VOLTAGE ADDER	
R.J. Commisso, R.J. Alle D.P. Murphy, J.M. Neri, K. Childers, V. Bailey, I	len, J.R. Boller, G. Cooperstein, R.C. Fisher, D.D. Hinshelwood, T.A. Holt, P.F. Ottinger, D.G. Phipps, J.W. Schumer, O. Stoltz, Naval Research Laboratory, D. Creely, S. Drury, D.L. Johnson, J. Kishi, M. Klatt, H. Nishimoto, and I. Smith, vision, P. Hoppe and H.J. Bluhm, Forschungszentrum	
R.J. Commisso, R.J. Alle D.P. Murphy, J.M. Neri, K. Childers, V. Bailey, I Titan Pulse Sciences Div	len, J.R. Boller, G. Cooperstein, R.C. Fisher, D.D. Hinshelwood, T.A. Holt, P.F. Ottinger, D.G. Phipps, J.W. Schumer, O. Stoltz, <i>Naval Research Laboratory</i> , D. Creely, S. Drury, D.L. Johnson, J. Kishi, M. Klatt, H. Nishimoto, and I. Smith, <i>vision</i> , P. Hoppe and H.J. Bluhm, <i>Forschungszentrum</i>	387
R.J. Commisso, R.J. Allo D.P. Murphy, J.M. Neri, K. Childers, V. Bailey, I Titan Pulse Sciences Div PIM - A BLUMLEIN I S.G. Clough, K.J. Thom. Weapons Establishment,	len, J.R. Boller, G. Cooperstein, R.C. Fisher, D.D. Hinshelwood, T.A. Holt, P.F. Ottinger, D.G. Phipps, J.W. Schumer, O. Stoltz, <i>Naval Research Laboratory</i> , D. Creely, S. Drury, D.L. Johnson, J. Kishi, M. Klatt, H. Nishimoto, and I. Smith,	
R.J. Commisso, R.J. Alle D.P. Murphy, J.M. Neri, K. Childers, V. Bailey, I Titan Pulse Sciences Div PIM - A BLUMLEIN I S.G. Clough, K.J. Thom Weapons Establishment, Sciences Division, D. L.	len, J.R. Boller, G. Cooperstein, R.C. Fisher, D.D. Hinshelwood, T.A. Holt, , P.F. Ottinger, D.G. Phipps, J.W. Schumer, O. Stoltz, Naval Research Laboratory, D. Creely, S. Drury, D.L. Johnson, J. Kishi, M. Klatt, H. Nishimoto, and I. Smith, vision, P. Hoppe and H.J. Bluhm, Forschungszentrum DRIVEN IVA MACHINE Las, M.C. Williamson, M.J. Philips, M.A. Sinclair, Pulsed Power Group, Atomic , Aldermaston, I. D. Smith, V. L. Bailey, P. A. Corcoran, H. Kishi, Titan Pulse	ies

TWO AND THREE-DIMENSIONAL MITL POWER-FLOW STUDIES ON RITS3	95
B. V. Oliver, T. C. Genoni, <i>Mission Research Corporation</i> , D. L. Johnson, V. L. Bailey, P. Corcoran, I. Smith, <i>Titan Pulsed Sciences</i> , J. E. Maenchen, I. Molina, K. Hahn, <i>Sandia National Laboratories</i>	
DESIGN OF A HIGH IMPEDANCE MITL FOR RITS-33	99
V. L. Bailey, D. L. Johnson, P. Corcoran, I. Smith, <i>Titan Pulse Sciences Division</i> , J. E. Maenchen, I. Molina, K. Hahn, D. Rovang, S. Portillo, <i>Sandia National Laboratories</i> , B. V. Oliver, D. Rose, D. Welsh, <i>Mission Research Corporation</i> , D. Droemer, T. Guy, <i>Bechtel Nevada</i>	
Oral Session T6 – Explosive-Driven Pulsed Power & Electric Armaments	
ANALYSIS OF EXPLOSIVELY FORMED FUSE EXPERIMENTS4	05
J. H. Goforth, H. Oona, D. G. Tasker, J. C. King, D. H. Herrera, D. T. Torres, E. A. Lopez, W. L. Atchison, I. R. Lindemuth, <i>Los Alamos National Laboratory</i>	
SIMILARITIES AND DIFFERENCES BETWEEN OUR SMALL FCGS AND LARGER FCGS 4 B. L. Freeman, C. M. Fowler, J. C. Boydston, J. M. Ferguson, B. A. Lindeburg, A. D. Luginbill, T. E. Tutt, Texas A&M University	09
PHYSICAL EFFICIENCY LIMITS OF INCH-SIZED HELICAL MFCG'S4	13
A. A. Neuber, JC. Hernández, T. A. Holt, J. C. Dickens, M. Kristiansen, Texas Tech University	
FAST NUMERICAL MODELLING AND DESIGN ISSUES OF HELICAL FLUX COMPRESSION GENERATORS4	17
B. M. Novac and I. R. Smith, Loughborough University	
Oral Session T7 - Biological/Medical Applications & Pulsed Power Applications	
ELECTRICAL MODELING OF PULSED POWER SYSTEMS FOR BIOMEDICAL	
APPLICATIONS (Invited)	23
CHARACTERIZATION OF A MODEL WIRE-PLATE PULSED CORONA PLASMA REACTOR4	29
M. Baldauf, T. Hammer, W. Hartmann, M. Römheld, Siemens AG Corporate Technology	
INDUSTRIAL APPLICATIONS OF PULSED WIRE DISCHARGE	33
PULSED POWER APPLICATION TO PRODUCE SILVER NANOPOWDERS4	37
Y.H. Jung, J.S. Kim, Y.S. Jin, G.H. Rim, Korea Electrotechnology Research Institute	
REPETITIVE PULSED POWER TO SERVE NANO TECHNOLOGY, SUSTAINABILITY AND	
HYDROGEN PRODUCTION	
STATUS OF 5MW INDUCTIVE STORAGE FACILITY AT SOREQ NRC	45

Oral Session T8 - High Power Microwaves

EXPERIMENTAL AND NUMERICAL STUDIES OF VIRTUAL CATHODE OSCILLATOR457 W. Jiang, M. Sato, N. Shimada, S. D. Prasad, and K. Yatsui, Nagaoka University of Technology
EFFICIENCY RESULTS FROM A COAXIAL VIRCATOR USING A SIMPLE FEEDBACK
J. J. Mankowski, X. Chen, J. C. Dickens, M. Kristiansen, Texas Tech University, E. H. Choi, Kwangwoon University
EFFICIENCY ENHANCEMENT OF HIGH POWER MICROWAVE GENERATION FROM A CYLINDRICAL VIRTUAL CATHODE OSCILLATOR WITH RING-TYPE REFLECTOR
THREE-DIMENSIONAL PARTICLE-IN-CELL CALCULATIONS OF AN OVER-MODED W-BAND GYROTRON
SPACE-CHARGE LIMITED CURRENT FOR 1-D CYLINDRICAL DIODES
MEASURING THE UPSET OF CMOS AND TTL DUE TO HPM-SIGNALS
HIGH POWER MICROWAVE TECHNOLOGIES FOR VEHICLE INTEGRATION
Oral Session W1 – Particle Beams (Radiography)
OVERVIEW OF THE 6-MV, ROD-PINCH EXPERIMENT ON ASTERIX
ANGULAR DOSE VARIATIONS FROM 4-6 MV ROD-PINCH DIODE EXPERIMENTS ON THE ASTERIX PULSED-POWER GENERATOR
RECENT PROGRESS IN THE DEVELOPMENT OF IMMERSED DIODES
ELECTRON-BEAM TRANSPORT STUDIES FOR RADIOGRAPHIC APPLICATIONS

TRANSPORT OF A RELATIVISTIC ELECTRON BEAM IN GAS AND PLASMA-FILLED FOCUSING CELLS FOR X-RAY RADIOGRAPHY	495
D. R. Welch, D. V. Rose, B. V. Oliver, Mission Research Corporation, E. Schamiloglu, K. Hahn, University of New Mexico, J. E. Maenchen, Sandia National Laboratories	
SPATIAL AND TIME RESOLVED INTERFEROMETRY OF PLASMA FILLED ROD PINCH DIODES	499
D. M. Ponce, D. Phipps, D. D. Hinshelwood, B. V. Weber, Naval Research Laboratory	
ELECTRODE-EXPANSION MHD IN A PLASMA-FILLED ROD PINCH	503
SELF MAGNETIC PINCH DIODE EXPERIMENTS AT AWE I. Crotch, J. Threadgold, M. Sinclair, A. Pearce, Advanced AGEX Group, AWE Aldermaston	507
Oral Session W2 - Components For Pulsed Power	
HIGH ENERGY DENSITY PULSED POWER CAPACITORS (Invited)	513
MODELING ENERGY STORAGE CAPACITORS OR WHEN A CAPACITOR IS NOT A CAPACITOR	518
A. Bushnell, J. Ennis, B. Cooper, General Atomics Energy Products, Sorrento Electronics, R. Miller, Titan Pulsed Sciences Division	
PRECISION CAPACITOR CHARGING SWITCHING POWER SUPPLIES	522
FAILURE MODE ANALYSIS ON CAPACITOR ENERGY BANKS	526
100kV CAPACITOR DEVELOPMENT FOR FAST MARX GENERATORS	530
Li ION ENERGY STORAGE FOR PULSE POWER APPLICATIONST. Matty, K. Nechev, SAFT America	534
Oral Session W3 – Pulsed Power Applications	
SOLID-STATE HYBRID MODULATOR FOR THE NEXT LINEAR COLLIDER	543
HIGH ENERGY DENSITY PULSED POWER SUPPLY SYSTEM FOR LARGE CALIBRE ETC-GUNS READY FOR PLATFORM INTEGRATION	547

•

PULSED POWER DESIGN FOR A SMALL REPETITIVELY PULSED ELECTRON BEAM PUMPED KrF LASER	. 551
D. Morton, D. Weidenheimer, T. DaSilva, J. Lisherness, T. Tatman, D. Spelts, I. Smith, <i>Titan – Pulse Sciences Division</i> , L. Schlitt, <i>Leland Schlitt Consulting Services</i> , R. Sears, <i>WTP Engineering</i> , J. Sethian, M. Myers, <i>Naval Research Laboratory</i> , A. Mangassarian, <i>Science Applications International Corp.</i> , T. Alber <i>Commonwealth Technology Inc.</i> , W. Webster, <i>Research Support Instruments</i>	
THE ELECTRON BEAM AND PINCH EFFECT CHARACTERISTICS OF DOUBLE DISCHRGE	
PULSED ELECTRON BEAM GENERATOR	. ၁၁၁
Middle East Technical University, H. Kirkici, Auburn University, M. Udrea, National Institute for Laser, Plasma and Radiation Physics, J. Loureiro, Centro de Física dos Plasmas, Instituto Superior Técnico	
THE EFFECT OF THE TARGET SURFACE AREA TO THE CURRENT AND VOLTAGE CHARACTERISTICS OF A PULSED MODULATOR FOR PLASMA-BASED ION	
IMPLANTATION AND DEPOSITION PROCESS	. 559
K. Yukimura, Tomoyuki Muraho, Doshisha University	
NOx DECOMPOSITION WITH REPETITIVE DISCHARGES CAUSED BY RECIPROCAL VOLTAGE PULSE IN A COAXIAL CABLE	. 563
K. Kadowaki, S. Nishimoto, I. Kitani, Ehime-University	
AMORPHOUS CARBON FILM PREPARATION BY SHUNTING ARC DISCHARGE IN VACUUM	. 567
K. Yukimura, M. Kumagai, Doshisha University, K. Takaki, Iwate University	
FLUE GAS TREATMENT USING DIELECTRIC BARRIER DISCHARGE WITH MULTIPOINT	
ELECTRODE	. 571
K. Takaki, M. Shimizu, T. Sasaki, S. Kato, S. Mukaigawa, T. Fujiwara, Iwate University	
Oral Session W4 – Closing & Opening Switches	
THE ROLE OF THE PLASMA COMPOSITION IN THE MAGNETIC FIELD EVOLUTION IN PLASMA OPENING SWITCHES (Invited)	. 577
D. Osin, R. Arad, K. Tsigutkin, R. Doron, A. Starobinets, V. Bernshtam, Y. Maron, Weizmann Institute of Science, A. Fruchtman, Holon Academic Institute of Technology, A. Fisher, Technion-Israel Institute of Technology	
THE ELECTROSTATIC PLASMA INJECTION SWITCH (EPIS)	. 583
PICOSECOND HIGH VOLTAGE SWITCHING OF A PRESSURIZED SPARK GAP	. 587
J. Hendriks, G.J.H. Brussaard, Eindhoven University of Technology	
OPTICALLY ACTIVATED SWITCHES FOR LOW JITTER PULSED POWER APPLICATIONS	. 591
F. J Zutavern, J. C. Armijo, S. M. Cameron, G. J. Denison, J. M. Lehr, T. S. Luk, A. Mar, M. W. O'Malley, L. D. Roose, and J. V. Rudd, <i>Sandia National Laboratories</i>	
LASER-TRIGGERED WATER SWITCHING	505
J. R. Woodworth, Sandia National Laboratories, D. L. Johnson, Titan Pulse Sciences	درد.

DEVELOPMENT OF HIGH POWER, HIGH PRESSURE, REP-RATE, LIQUID DIELECTRIC SWITCHES599
R. Curry, K. McDonald, J. Leckbee, P. Norgard, University of Missouri-Columbia, R. Cravey, A. Grimmis, Alpha-Omega Power Technologies, G. Anderson, G. Salo, The Boeing Company, S. Heidger, Wright Patterson Air Force Base
EVALUATION OF MAGNETIC MATERIALS AND INSULATION SYSTEMS FOR
REPETITION-RATE PULSE COMPRESSION APPLICATIONS
Oral Session W5 – High Current Accelerators (General Orientation)
MULTI-MEGAVOLT WATER BREAKDOWN EXPERIMENTS (Invited)609
J.M. Lehr, J.E. Maenchen, J.R Woodsworth, W.A. Johnson, R.S. Coates, L.K. Warne, L.P. Mix, Sandia National Laboratories, D.L Johnson, I.D. Smith, Titan Pulse Sciences Division, J.P.Corley, S.A. Drennan, K.C. Hodge, D.W. Guthrie, J.M. Navarro, G.S. Sarkisov, Ktech Corp
FAST DISCHARGE ENERGY STORAGE DEVELOPMENT FOR IMPROVING X-RAY SIMULATORS615
P. Sincerny, S. K. Lam, R. Miller, T. Tucker, L. Sanders, Titan Pulse Sciences Division
FAST MARX FOR PRS DRIVERS
SHEATH-CURRENT RETRAPPING IN THE Z MITLS 622
T. P. Hughes, R. E. Clark, B. V. Oliver, Mission Research Corporation, T. D. Pointon, W. A. Stygar, Sandia National Laboratories
INVESTIGATING THE ELECTROMAGNETIC STRUCTURE OF THE COAX-TO-TRIPLATE TRANSITION FOR THE PULSE-COMPRESSION SECTION OF THE ZR ACCELERATOR
ELECTROMAGNETIC ANALYSIS AND MODELING OF THE COAX-TO-TRIPLATE TRANSITION FOR THE PULSE-COMPRESSION SECTION OF THE ZR ACCELERATOR
DESIGN AND PERFORMANCE OF THE MARX GENERATOR FOR THE DARHT SECOND AXIS ELECTRON INJECTOR
K. E. Nielsen, B. T. McCuistian, Los Alamos National Laboratory, J. J. Fockler, Simon Yu, Lawrence Berkeley National Laboratory, V. Carboni, P. Corcoran, J. Douglas, C. Eichenberger, G. Harris, H. Lackner, D. Morton, H. Nishimoto, Titan Pulse Sciences Division
Oral Session W6 – Repetitive Pulsed Power Systems
SOLID-STATE MARX BANK MODULATOR FOR THE NEXT LINEAR COLLIDER

HIGH POWER OPERATION OF THE POLYPHASE RESONANT CONVERTER MODULATOR SYSTEM FOR THE SPALLATION NEUTRON SOURCE LINEAR ACCELERATOR
HIGH POWER, HIGH RECOVERY RATE WATER SWITCH
SNS EXTRACTION FAST KICKER SYSTEM DEVELOPMENT
REPETITIVE SHORT-PULSED GENERATOR USING MPC AND BLUMLEIN LINE
A 150kV/300A/1µs COAXIAL BLUMLEIN PULSER
SEMICONDUCTOR SWITCH-BASED FAST HIGH-VOLTAGE PULSE GENERATORS
OPERATION OF 20 HZ MARX GENERATORS ON A COMMON ELECTROLYTIC LOAD IN AN ELECTROPORATION CHAMBER
Oral Session W7 – Pulsed Power Applications
PULSED POWER AGAINST TERRORISTS (Invited)
ELECTROMAGNETIC FLUX-COMPRESSION: EXPERIMENTATION
MHD SIMULATIONS OF MTF IMPLOSIONS WITH TABULAR EOS AND CONDUCTIVITIES 685 J. Faehl, W.L. Atchison, I.R. Lindemuth, Los Alamos National Laboratory
NANOSECOND PLASMA-FLOW-SWITCH AS THE OUTPUT DEVICE ON THE S-300 PULSED POWER GENERATOR
A.Kingsep, Yu. Bakshaev, A. Bartov, P. Blinov, A. Chernenko, R. Chikin, K. Chukbar, S. Danko, L. Dubas, Yu. Kalinin, V. Mizhiritsky, V. Shchagin, V. Smirnov, RRC "Kurchatov Institute", I. Kovalenko, A. Lobanov, Moscow Institute for Physics and Technology
A.Kingsep, Yu. Bakshaev, A. Bartov, P. Blinov, A. Chernenko, R. Chikin, K. Chukbar, S. Danko, L. Dubas, Yu. Kalinin, V. Mizhiritsky, V. Shchagin, V. Smirnov, RRC "Kurchatov Institute", I. Kovalenko, A. Lobanov,

Oral Session W8 - Compact Pulsed Power

A COMPACT SOURCE OF SUB-GW, SUBNANOSECOND PULSES	. 703
COMPACT, HIGH POWER CAPACITOR CHARGER	707
M. Giesselmann, T. Heeren, T. Helle, Texas Tech University	
FAST, REAL-TIME MONITORING OF AC-ALTERNATORS UNDER HEAVY TRANSIENT	
LOADING CONDITIONS	<mark>71</mark> 1
M. Giesselmann, B. McHale, Texas Tech University, M. Crawford, University of Texas at Austin	
WATER AND PROPYLENE CARBONATE AS STORAGE AND SWITCHING MEDIA IN	
PULSED POWER SYSTEMS	. 715
J. Kolb, S. Kono, S. Xiao, B. Goan, XP. Lu, C. Bickes, M. Laroussi, R.P. Joshi, K.H. Schoenbach,	
Old Dominion University, E. Schamiloglu, University of New Mexico	
INFLUENCE OF NANOCRYSTALLINE GRAIN SIZE ON THE BREAKDOWN STRENGTH OF	
CERAMIC DIELECTRICS	
Y. Ye, S. C. Zhang, F. Dogan, University of Missouri-Rolla, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba	l, M.
Joler, C. Christodoulou, University of New Mexico	
SINGLE SHOT OVERSTRESSING OF HIGH VOLTAGE CAPACITORS FOR COMPACT	
ARKADIEV-MARX GENERATOR	. 723
S. I. Shkuratov, E. F. Talantsev, J. C. Dickens, M. Kristiansen, Texas Tech University	

Poster Sessions Index (TITLE Links to Paper)

Poster Session MP – Radiation Sources	
INFLUENCE OF INITIAL CONDITIONS ON CAPILLARY DISCHARGE DEVICE CAPEX 2 J. Schmidt, K. Koláček, V. Prukner, V. Boháček, M. Řípa, P. Šunka, O. Frolov, Institute of Plasma Physics	729
WIRE ARRAY HOLDER CRITICAL IN HIGH-WIRE NUMBER Z-PINCH IMPLOSIONS	733
PARAXIAL DIODES ON RITS-3 M. A. Sinclair, P. Beech, J. McLean, M. Phillips, Advanced AGEX Group, AWE Aldermaston, J. Maenchen, K. Hahn, D. Rovang, I. Molina, R. Lucero, S. Cordova, R. Gignac, R. Woodring, F. Wilkins, Sandia Nationa Laboratories, D. Rose, Mission Research Corporation	
STUDY OF ELECTRIC EXPLOSION OF METAL WIRES	 74 1
LSP SIMULATIONS OF THE PARAXIAL DIODE AND COMPARISONS WITH EXPERIMENTAL DATA	
EXPLOSION OF THIN ALUMINUM FOILS IN AIR	748
EXPERIMENTAL STUDY AND DEVELOPMENT OF A SINGLE FOCUS BURST X-RAY FLASH	752
RADIOGRAPHIC PERFORMANCE OF CYGNUS 1 AND THE FEBETRON 705	750
Poster Session MP – Computational Techniques	
COMPUTATIONAL METHOD FOR THE DISPERSION RELATION OF A PULSED CERENKOV FREE ELECTRON MASER SYSTEM	 7 63
COOLING SYSTEM TRANSIENT ANALYSIS USING AN ELECTRIC CIRCUIT PROGRAM ANALOG J. P. O'Loughlin, D. L. Loree, Air Force Research Laboratory	767
A TWO DIMENSIONAL ELECTROMAGNETICELASTOPLASTIC MODELLING TECHNIQUE	 77 1
D. F. Rankin, B. M. Novac, I. R. Smith, Loughborough University	

INVESTIGATION OF Z-PINCH INSTABILITY DEVELOPMENT IN THE NON-IDEAL MHD REGIME775
L. Wanex, V. I. Sotnikov, B. S. Bauer, University of Nevada, J. N. Leboeuf, University of California
MONTE CARLO OPTIMIZATION MULTI-PASS BREMSSTRAHLUNG TARGET FOR PULSED X-RAY SOURCE
V. Plokhoi, D. Modestov, Ya. Kandiev, Russian Federal Nuclear Center
Poster Session MP – Diagnostics
PROPERTIES OF RELATIVELY-DILUTE PLASMAS IN PULSED-POWER SYSTEMS OBTAINED FROM HIGH-ACCURACY LASER SPECTROSCOPY
K. Tsigutkin, E. Stambulchik, R. Doron, D. Osin, V. Bernshtam, Yu. Ralchenko, Y. Maron, Weizmann Institute of Science
DETERMINATION OF THE MASS DISTRIBUTION IN A GAS PUFF BY LASER INDUCED FLUORESCENCE
E. Garate, Y. Song, A. Fisher, Xsci-Tek, Inc.
MEASUREMENTS OF THE RADIATED FIELDS AND CONDUCTED CURRENT LEAKAGE FROM THE PULSED POWER SYSTEMS IN THE NATIONAL IGNITION FACILITY AT LLNL 793 R. A. Anderson, T. J. Clancy, S. Fulkerson, D. Petersen, D. Pendelton, S. Hulsey, G. Ullery, J. Tuck, M. Polk, R. Kamm, M. Newton, W. B. Moore, P. Arnold, C. Ollis, A. Hinz, C. Robb, J. Fornes, J. Watson, Lawrence Livermore National Laboratory
Poster Session MP – Lasers
CARACTERISTICS OF CAPILLARY DISCHARGE Ne-LIKE Ar SOFT X-RAY LASER
Poster Session MP – Hydrodynamic Experiments
NEW RESIDUAL STRESS MAPPING TOOL APPLIED TO ATLAS CURRENT JOINT DESIGN 805 R. Sebring, W. Anderson, J. Bartos, J. Edwards, F. Garcia, J. Greigo, B. Randolph, M. Salazar, M. Prime, Los Alamos National Laboratory
EXAMINATION OF LINER STABILITY DURING MAGNETIC IMPLOSION USING EXPERIMENTS AND SIMULATIONS809
W.L. Atchison, R. J. Faehl, I.R. Lindemuth, Los Alamos National Laboratory, D. S. Lemons, Bethel College
Poster Session MP – Solid State Switches
SHORT CIRCUIT PROTECTION OF HIGH SPEED, HIGH POWER IGBT MODULES
SEMICONDUCTOR MODELING FOR MULTI-LAYER, HIGH FIELD, PHOTO-SWITCH USING SUB-BANDGAP PHOTONS

	OPPORTUNITIES FOR EMPLOYING SILICON CARBIDE IN HIGH POWER PHOTO- SWITCHES823
	W. Nunnally, University of Missouri – Columbia, M. Mazzola, Mississippi State University
	SURFACE FLASHOVER CHARACTERISTICS OF SEMICONDUCTOR
	Poster Session MP – High Current Accelerators
.*	CONTROL OVER PLASMA DISTRIBUTION ON EXPLOSIVE EMISSION CATHODES
	COUPLING POWER FLOW FROM THE MERCURY MIVA INTO A ROD-PINCH DIODE837 J.W. Schumer, R.J. Allen, R.J. Commisso, P.F. Ottinger, Naval Research Laboratory
	THE PULSED ELECTRON ACCELERATOR FOR RADIATION TECHNOLOGIES841 S. Korenev, STERIS Corporation
	POWER FLOW IN A 7-CAVITY FAST RISE TIME LTD SYSTEM
	MODELING MAGNETICALLY INSULATED POWER FLOW IN MERCURY
	1 MV ULTRA-FAST LTD GENERATOR
	NUMERICAL INVESTIGATION OF PLASMA EVOLUTION IN MAGNETICALLY INSULATED TRANSMISSION LINES855
	V. I. Sotnikov, R. Presura, B. S. Bauer, University of Nevada Reno, B.V. Oliver, Mission Research Corporation
	OPERATION REGIMES OF MAGNETICALLY INSULATED TRANSMISSION LINES
	IMPLOSION DYNAMICS OF MULTI-MATERIAL WIRE-ARRAYS ON THE S-300 PULSED POWER GENERATOR
·	A 2.5 MV SUBNANOSECOND PULSER WITH LASER TRIGGERED SPARK GAP FOR THE GENERATION OF HIGH BRIGHTNESS ELECTRON BUNCHES867
	D.A. Vyuga, A. Volkov, P. Tomashevich, G. Baranov, M.J. van der Wiel, G.J.H. Brussaard, Eindhoven University of Technology

RETRAPPING STUDIES ON RITS	
DEVELOPMENT/TESTS OF 6-MV TRIGGERED GAS SWITCHES AT SNL	875
INITIAL EXPERIMENTAL RESULTS OF RE-TRAPPING STUDIES ON A LARGE AREA DIODE ON RITS-3	879
CHARACTERIZATION AND OPTIMIZATION OF A COMPACT, 1-MV, 6-kA RADIOGRAPHY SOURCE	883
R. J. Allen, G. Cooperstein, F. C. Young, J. W. Schumer, D. D. Hinshelwood, D. Mosher, <i>Naval Research Laboratory</i> , D. Holmberg, S. E. Mitchell, <i>Bechtel Nevada</i>	000
ELECTRICAL MODELING OF MERCURY FOR OPTIMAL MACHINE DESIGN AND PERFORMANCE ESTIMATION	887
MITIGATION OF BACKGROUND EMI, MECHANICAL AND ACOUSTIC EFFECTS FROM THE GAMBLE II PULSED POWER GENERATOR	891
THE Z-20 RELIABILITY CALCULATIONS	895
RITS-3 SELF-BREAK WATER SWITCH STUDIES E. Puetz, I. Molina, S. Portillo, S. Cordova, Sandia National Laboratories, D. L. Johnson, P. Corcoran, Titan Pulse Sciences Division	899
POSSIBILITIES OF LABORATORY COMPLEX «GNUV» FOR STUDYING THE MECHANICAL PROPERTIES OF MATERIALS IN THE WIDE RANGE OF IMPULSE LOADING	902
PULSE POWER PERFORMANCE OF THE CYGNUS 1 AND 2 RADIOGRAPHIC SOURCES	905
TEST STAND FOR LINEAR INDUCTION ACCELERATOR OPTIMIZATION	909

GEPI: A COMPACT PULSED POWER DRIVER FOR ISENTROPIC COMPRESSION EXPERIMENTS AND FOR NON SHOCKED HIGH VELOCITY FLYER PLATES	. 913
G. Avrillaud, L. Courtois, J. Guerre, <i>ITHPP</i> , P.L. Hereil, F. Lassalle, F. Bayol, P. L'Eplattenier, <i>CEG</i> , B. Kovalchuk, E. Kumpjak, N. Zoi, A. Kim, <i>HCEI</i>	
CIRCUIT MODELING FOR ZR	. 917
C. Harjes, J. Elizondo, K. Struve, L. Bennett, Sandia National Laboratories, D. Johnson, Titan Systems Corporation, B. Shoup, ITT Industries	
THE IMPROVEMENT OF PULSE POWER SCHEME FOR <baikal> PROJECT</baikal>	,
HÝDRODYNAMIC LOADING OF STRUCTURAL COMPONENTS DUE TO ELECTRICAL DISCHARGE IN FLUIDS	. 925
P. Wakeland, M. Kincy, J. Garde, Sandia National Laboratories	
Poster Session MP – Compact Pulsed Power	
COMPACT FAST HIGH-VOLTAGE PULSE GENERATOR UTILIZING TURN-OFF CAPABILITY OF SI-THYRISTOR	. 931
S. Ibuka, R. Tsunoda, J. Shiina, T. Koyama, K. Yasuoka, S. Ishii, <i>Tokyo Institute of Technology</i> , N. Shimizu, Y. Imanishi, <i>NGK Insulators, Ltd</i> .	
ENERGY FLOW IN A PULSED-POWER CONDITIONING SYSTEM FOR HIGH-POWER MICROWAVE APPLICATIONS	. 935
A.Larsson, P. Appelgren, G. Bjarnholt, T. Hultman, S. E Nyholm, FOI - Swedish Defence Research Agency	
HIGH-VOLTAGE TRANSMISSION LINE TRANSFORMER BASED ON MODERN CABLE TECHNOLOGY	. 939
A. Lindblom, P. Appelgren, A. Larsson, S. E Nyholm, FOI – Swedish Defence Research Agency, Grindsjön Research Centre, J. Isberg, H. Bernhoff, Division for Electricity and Lightning Research, Ångströmlaboratori Uppsala University	
NANOSECOND RISE TIME MINIPULSER FOR CELL ELECTROPERTURBATIONX. Gu, P. Wijetunga, A. Kuthi, M. Behrend, P. T. Vernier, M. Gundersen, <i>University of Southern California</i>	. 943
ADVANCED MULTI-GAP PSEUDOSPARK SWITCH	
A. Kuthi, B. Eccles, Q. Yao, C. Jiang, M. Gundersen, University of Southern California, K. Frank, University of Erlangen	
RAPID CHARGER FOR HIGH REPETITION RATE PULSE GENERATOR	. 950
SOLID STATE STEPPED TRANSMISSION LINE TRANSFORMER FOR SPARK GAP	
TRIGGERING	. 953
TEMPORAL EMISSION BEHAVIOR OF PULSED DISCHARGE IN WATERX. Lu, M. Laroussi, S. Xiao, J. Kolb, Susumu Kono, K. H. Schoenbach, Old Dominion University	. 957

A COMPACT SUB-MICROSECOND, HIGH CURRENT GENERATOR FOR WIRE EXPLOSION EXPERIMENTS AND ITS USE FOR FIRST X-PINCH EXPERIMENTSL. E. Aranchuk, A. S. Chuvatin, J. Larour, Laboratoire de Physique et Technologie des Plasmas (LPTP)	960
A CERAMIC BLUMLEIN TRANSFORMER DRIVER (CBTD) FOR A LINEAR INDUCTIVE VOLTAGE ADDER (LIVA)	964
NUMERICAL AND EXPERIMENTAL STUDY OF A COAXIAL PULSED POWER DEVICE FOR GENERATION OF XUV RADIATION	968
<u>Poster Session TP – Particle Beams</u>	
CONSIDERATIONS OF ROD-PINCH DIODE OPERATION IN NEGATIVE POLARITY FOR RADIOGRAPHY	975
G. Cooperstein, S.B. Swanekamp J.W. Schumer, P.F. Ottinger, R.J. Commisso, Naval Research Laboratory	
RADIOGRAPHIC RESULTS FOR THE ROD-PINCH DIODE SCALED UP TO 6 MV	. 979
CHARACTERIZATION OF COMPOSITE ROD-PINCH-DIODE RADIOGRAPHIC SOURCES	
D. Mosher, R.J. Allen, R.J. Commisso, S.B. Swanekamp, F.C. Young, G. Cooperstein, Naval Research Laboratory, C. Vermare, J. Delvaux, Y. Hordé, E. Merle, R. Nicolas, D. Noré, O. Pierret, Y.R. Rosol, Y. Tailleur, L. Véron, Polygône d'Expérimentation de Moronvilliers, F. Bayol, A. Garrigues, C. Delbos, G. Nicot, Centre d'Etudes de Gramat, B. Oliver, D.V. Rose, D. Rovang, J. Maenchen, Sandia National Laboratories	. 983
VLASOV MODEL FOR THE IMPEDANCE OF A ROD-PINCH DIODE	. 987
STRONGLY-PERTURBED NON-EQUILIBRIUM GAS PHYSICS MODEL FOR THE PARAXIAL DIODE TRANSPORT CELL	991
S. Strasburg, D. D. Hinshelwood, D. Mosher, J. W. Schumer, P. F. Ottinger, Naval Research Lab	
2-D LSP SIMULATIONS OF THE SELF MAGNETIC PINCH DIODE	. 995 「.
PERVEANCE AND SHEATH PLASMA EXPANSION CHARACTERISTICS IN HIGH POWER CYLINDRICAL DIODE	999
K. Y. Sung, W. Jeon, S. H. Chun, E. H. Choi, Kwangwoon University, H. S. Uhm, Ajou University	
THE COMPRESSING OF PULSED HIGH CURRENT ELECTRON BEAMS BY LENSES FROM HTSC FOR RADIOGRAPHY	1003
S. Korenev, STERIS Corporation, A. Kalmykov, Joint Institute for Nuclear Research	

SURVEY OF PLASMA DIAGNOSTIC TECHNIQUES APPLICABLE TO RADIOGRAPHIC DIODES	1006
E. Schamiloglu, <i>University of New Mexico</i> , K. Hahn, D.C. Rovang, J.E. Maenchen, S. Cordova, I. Molina, <i>Sandia National Laboratories</i> , D.R. Welch, D.V. Rose, B.V. Oliver, <i>Mission Research Corporation</i> , B.V. Weber, D. Ponce, D.D. Hinshelwood, <i>Naval Research Laboratory</i>	. 1000
FILAMENTATION INSTABILITY OF SELF-FOCUSED HOLLOW ELECTRON BEAM	. 1010
MEASUREMENTS OF IMPROVED CATHODE PERFORMANCE USING A CERAMIC HONEYCOMB SECONDARY EMITTER	. 1014
Poster Session TP – Insulation & Dielectric Breakdown	
HIGH-VOLTAGE HOLD-OFF OF LARGE SURFACE AREA METAL ELECTRODES WITH DIELECTRIC SURFACE LAYERS	. 1021
HIGH VOLTAGE BREAKDOWN STRENGTH OF RAPID PROTOTYPE MATERIALSF.E. Peterkin, J.L. Stevens, J.F. Sharrow, R.K. Pitman, Naval Surface Warfare Center Dahlgren Division	. 1025
OPTICAL DIAGNOSTICS OF LIQUID NITROGEN VOLUME PRE-BREAKDOWN EVENTS M. Butcher, A. Neuber, H. Krompholz, J. Dickens, Texas Tech University	. 1029
DC VS. AC EFFECTS OF THIN FILM SURFACE FLASHOVER	. 1033
SELF ELECTRICAL BREAKDOWN IN BIODEGRADABLE OIL	. 1036
HYBRID SUPERCONDUCTING-MAGNETIC FAULT CURRENT LIMITER L. L. Altgilbers, US Army Space and Missile Defense Command, S. Balevicius, N. Zurauskiene, V. Stankevic, P. Cimmperman, F. Anisimovas, Semiconductor Physics Institute	. 1040
Poster Session TP – Generators & Networks	
TRANSMISSION LINE ANALYSIS OF THE SUPERCONDUCTING QUADRUPOLE CHAINS OF THE LHC COLLIDER AT CERN	. 1047
K. Dahlerup-Petersen, F. Bourgeois, Accelerator Technology division, CERN	
DEVELOPMENT OF A TERAWATT TEST STAND AT THE UNIVERSITY OF MISSOURI FOR FAST, MULTICHANNEL SWITCHING ANALYSIS	. 1051
K. W. Struve, Sandia National Laboratories	
EXPERIMENTAL STUDY OF A REPETITIVE MARX GENERATOR	. 1054

Poster Session TP - Explosive-Driven Pulsed Power

<u>Poster Session TP – Biological/Medical Applications</u>

R.E.J. Sladek, E. Stoffels, R. Walraven, P.J.A. Tielbeek, R.A. Koolhoven, <i>Eindhoven University of Technology</i>	. 1109
BIOLOGICAL APPLICATIONS OF A LOW PRESSURE MICROWAVE PLASMA UV LAMP I.Pandithas, K., Brown, A.I. Al-Shamma'a, J. Lucas and J.J. Lowke, <i>The University of Liverpool</i>	. 1112
APPLICATION OF PULSED POWER TO MUSHROOM CULTURING	. 1116
STIMULATION OF PULSED-PERIODICAL DIFFUSE DISCHARGE TO BE USED FOR MEDICAL INSTRUMENTATION STERILISATION	. 1120
SHORT PULSE ELECTRIC FIELD STERILIZATION OF LIQUID MEDIA	. 1124
D. Wetz, K. Truman, J. C. Dickens, J. J. Mankowski, A. Neuber, Texas Tech University	
MEGAWATT, PULSED ULTRAVIOLET PHOTON SOURCES FOR MICROBIAL INACTIVATION	. 1128
P. Hancock, R. Curry, K. McDonald, University of Missouri-Columbia, L. Altgilbers, United States Army Space and Missile Defense Command	
PULSED ELECTRIC FIELD INACTIVATION OF SPOILAGE MICROORGANISMS IN ALCOHOLIC BEVERAGES AND THE INFLUENCE OF PULSE PROFILE	. 1132
Poster Session TP – High Power Microwaves	
TWO-DIMENSIONAL PIC SIMULATION OF SOME NARROWBAND AND ULTRA-WIDEBAND HPM SOURCES	
G. Singh, A. Majalee, S. Chaturvedi, Institute for Plasma Research	. 1133
A DIODE DESIGN STUDY OF THE VIRTUAL CATHODE OSCILLATOR WITH RING-TYPE REFLECTOR	1143
W. Jeon, K. Y. Sung, Y. Jung, J.G. Kim, E. H. Choi, Kwangwoon University	
GENERATION, PROPAGATION AND DIAGNOSTICS OF A LONG PULSE ANNULAR ELECTRON BEAM FOR AN HPM SOURCE	1147
K.J. Hendricks, J. Watrous, S. Humphries, J. Heggemeier, J. Baca, M. Haworth, D. Shiffler, T. Spencer,	• 117/
K. Cartwright, P. Mardahl, C. Scharle, M. LaCour, Ken Golby, Air Force Research Laboratory	
DEVELOPMENT OF A HIGH FREQUENCY AND HIGH-VOLTAGE PULSE TRANSFORMER FOR A TWT HVPS	. 1150
S. C. Kim, S. H. Nam, POSTECH PLS/PAL, H. M. Keon, D. S. Park, LG Innotek Co., Ltd R&D Gr.	
REPETITIVE OPERATION OF VIRTUAL CATHODE OSCILLATOR IN AN AXIAL MAGNETIC FIELD	. 1154
M. Onoi, K. Minami, M. Yatsuzuka, Himeji Institute of Technology	

PRESSURE FIELD ALONG THE AXIS OF A HIGH-POWER KLYSTRON AMPLIFIERF. T. Degasperi, Faculdade de Tecnologia de São Paulo, S. L. L. Verardi, IBILC, C. C. Motta, Centro Tecnológico da Marinha	1158
REFLEX-TRIODE GEOMETRY OF THE VIRTUAL CATHODE OSCILLATOR	1161
CAVITY RESONANCE EFFECT ON A COAXIAL VIRCATORX. Chen, J. Dickens, E. H. Choi, J. Mankowski, L. L. Hatfield, M. Kristiansen, Texas Tech University	1165
NUMERICAL SIMULATIONS OF AN ANTENNA-AMPLIFIER – CHERENKOV MASER WITH A ROD SLOW-WAVE STRUCTURE OPERATING IN A NON-AXISYMMETRIC MODE	
BROADBAND PULSED GENERATOR BASED ON H-WAVEGUIDE	1173
L.L. Altgilbers, U.S. Army Space and Missile Defense Command, V.A. Somov; Ia. Chepurniy; Yu.V. Tkach; A.O. Silin, Institute for Electromagnetic Research	1175
PROTOTYPE OF A HIGH POWER COMPACT MARX GENERATOR FOR MICROWAVE	
APPLICATIONS	1177
Poster Session WP – Components for Pulsed Power DESIGN AND PERFORMANCE OF THE PRE-FIRE DETECTION SYSTEM FOR THE FRX-L	1102
MAIN CAPACITOR BANK	1183
W. J. Waganaar, J.C.Cochrane, K.W.Hosack, T.Intrator, P.Sanchez, J.M.Taccetti, M.C.Thompson, Los Alamos National Lab, C.Grabowski, Science Applications International Corporation	
EFFICIENT, HIGH POWER LASER TO MULTI-FIBER COUPLER FOR TRIGGERING	1106
OPTICALLY ACTIVATED SWITCHES	1100
SKIN EFFECT IN MASSIVE CONDUCTORS OF PULSED ELECTRICAL CIRCUITS	1190
B.E. Fridman, D.V. Efremov Institute of Electrophysical Apparatus	
APPLICATION OF THE COAXIAL CABLE LENGTHS FOR CAPACITOR PROTECTION IN	1104
THE LARGE CAPACITORS BANKS	1174
DYNAMIC DEFORMATION OF A SOLENOID WIRE DUE TO INTERNAL MAGNETIC PRESSURE, REVISED	1197
E. L. Ruden, G. F. Kiuttu, Air Force Research Laboratory, M. H. Frese, S. D. Frese, Numerex	
TWO ZR MARX GENERATOR OPERATING CONFIGURATIONS THAT MAKE POSSIBLE THEIR ROLLING UPGRADE INTEGRATION INTO Z	1201
D. L. Smith, J. M. Wilson, M. J. Slattery, D. A. Tabor, G. L. Donovan, Sandia National Laboratories	
ZR MARX CAPACITOR VENDOR EVALUATION RESULTS AND PROCUREMENT STRATEGY	1205
D. L. Smith, M. E. Savage, J. E. Maenchen, D. H. McDaniel, M. J. Slattery, E. A. Weinbrecht,	
D. I. Kitterman, Sandia National Laboratories, R. L. Starbird, Bechtel Nevada	

PRE-PULSE SUPPRESSION ON EROS AT AWE M. Sinclair, I. Crotch, J. Threadgold, M. Phillips, Advanced AGEX Group, AWE Aldermaston
HIGH CURRENT, HIGH di/dt SEMICONDUCTOR DEVICES FOR SINGLE- AND REPETITIVE PULSE APPLICATIONS
A.Welleman, W. Fleischmann, ABB Switzerland Ltd, Semiconductors
SILICON vs SILICON CARBIDE DEVICE CHARACTERIZATION
INVESTIGATION OF A COMPACT, INPUT POWER-LIMITED CAPACITOR CHARGING SUPPLY122
D. Surls, Institute for Advanced Technology, T.G. Engel, University of Missouri-Columbia
AUTOMATIC TEST SYSTEM FOR LIFETIME TESTING OF 100 KILOVOLT SCYLLAC-STYLE ENERGY STORAGE CAPACITORS1225
M. E. Savage, Sandia National Laboratories, R. Starbird, Bechtel Nevada, G. Ziska, R. Sharpe, KTECH Corporation
STATUS OF THE NEVADA SHOCKER AT THE UNIVERSITY OF NEVADA LAS VEGAS
Poster Session WP – Pulsed Power Applications
A SYSTEM FOR REPETITIVE PULSED CORONA PLASMAS, WITH ECOLOGICAL APPLICATIONS
N. Georgescu, A. Vulpe, R. Minea, National Institute for Laser, Plasma and Radiation Physics
COMPACT 200kJ PULSE POWER SYSTEM WITH A SIMPLE CROWBAR CIRCUIT
DEGRADATION OF PTFE BY PULSED ELECTRON BEAM IN VACUUM CONDITIONS1243 S. Korenev, Steris Corporation
SEWAGE SLUDGE TREATMENT BY ARC DISCHARGE
SHORT IMPULSE OF TRANSITION RADIATION EXCITED BY A RELATIVISTIC ELECTRON BUNCH
N.I. Onishchenko, V.A. Balakirev, D.Yu. Sidorenko, G.V. Sotnikov, NSC "Kharkov Institute of Physics and Technology"
NO REDUCTION BY A PULSED AMMONIA RADICAL INJECTION USING ONE-CYCLE SINUSOIDAL POWER SOURCE1254
K. Yukimura, K. Yamamoto, S. Kambara, Gifu University, Toshiro Maruyama, Kyoto University
CERAMICS JOINING USING EXPLOSIVE METAL FOIL

DEPENDENCE OF THE DENSITY OF ELECTRONS PRODUCED BY PULSED SURFACE CORONA DISCHARGE FOR PRE-IONIZATION ON PULSED VOLTAGE WAVEFORM1262 Y. Minamitani, A. Ogami, Y. Higashiyama, Yamagata University
WATER PURIFICATION USING PULSED STREAMER DISCHARGES IN MICRO-BUBBLED WATER1266
T. Namihira, D. Wang, T. Takashima, S. Katsuki, H. Akiyama, Kumamoto University
DIESEL EXHAUST CONTROL USING A MAGNETIC PULSE COMPRESSOR
INSTRUMENTATION AND PROCEDURES FOR TRANSIENT MAGNETIC FLUX DENSITY MEASUREMENTS ON AN AIRCRAFT FUSELAGE-LIKE TEST SETUP
PROCESSING TEST DATA GENERATED BY HIGH SURGE CURRENT TESTS ON A FUSELAGE-LIKE TEST SETUP
THE METHOD OF INCREASING OF PULP YIELD WITH KRAFT COOKING
BIOFOULING PREVENTION WITH A PULSED DISCHARGE
PRODUCTION OF OZONE USING NANOSECOND SHORT PULSED POWER
POWDER AS A INITIAL MATTER FOR PULSED HIGH CURRENT DISCHARGES
MODE STRUCTURE INSIDE AN EMP SIMULATOR – AN ANALYSIS OF FDTD SIMULATION 1298 S. Ahmed, D. Raju, A. Majalee, S. Chaturvedi, <i>Institute For Plasma Research</i>
ACCELERATOR IGUR-3 IN THE MODE OF ELECTRON BEAM PULSE GENERATION
ELECTROMAGNETIC FLUX-COMPRESSION: DETAILED TWO DIMENSIONAL MODELLING
A THREE-LEVEL DC-DC CONVERTER WITH WIDE-INPUT VOLTAGE OPERATIONS FOR SHIP-ELECTRIC-POWER-DISTRIBUTION SYSTEMS
FULL DIGITAL 150kV-1A ZVS CONVERTER FOR X-RAY POWER APPLICATIONS

NANOSECOND PULSE GENERATORS FOR MICRODISCHARGE EXCIMER LAMPS	1317
A HIGH PRESSURE, REP-RATE LIQUID-DIELECTRIC SWITCH TEST STANDP. Norgard, R. Curry, K. McDonald, University of Missouri	1321
TREATMENT OF SO2 BY PULSED, INTENSE RELATIVISTIC ELECTRON BEAM IN DISTA	
GAS CHAMBER	sity of
DESIGN OF 10KW SWITCHING POWER SUPPLY AND DISCHARGE CIRCUIT FOR WIRE- ELECTRIC DISCHARGE MACHINE	1329
DEVELOPMENT OF HIGH POWER ULTRASOUND FOR ACOUSTIC SOURCE	1222
J. Mackersie, S. MacGregor, I. Timoshkin, L. Yang, <i>University of Strathclyde</i>	1332
PLASMA CHANNEL MICROHOLE DRILLING TECHNOLOGY I Timoshkin, J Mackersie, S J MacGregor, University of Strathclyde	1336
Poster Session WP - Closing & Opening Switches	
PEAK ELECTRICAL FIELD STRENGTH AT HARD EXPLOSIONS OF CONDUCTORS	1343
SUB-NANOSECOND POINT-PLANE GAS BREAKDOWN IN A CONICAL-SHAPED SPARK	1247
J.W. Spears, H. Krompholz, L.L. Hatfield, Texas Tech University	134/
PULSE GENERATOR BASED ON AN INDUCTIVE ENERGY STORAGE AND A FERROMAGNETIC OPENING SWITCH WITH A RESISTIVE LOAD	1351
INVESTIGATION of UV LASER TRIGGERED, NANOSECOND, SURFACE FLASHOVER	
W. C. Nunnally, R. Neurath, C. Holmes, S. Sampayan and G. Caporaso, Lawrence Livermore National Laboratory	1355
MIXED 3-D/2-D SIMULATION OF AN EXPLODING FOIL OPENING SWITCH	1359
MULTI-CHANNEL PSEUDOSPARK SWITCH FOR HIGH COULOMB TRANSFER	1363
DEVELOPMENT OF A TRIGGERED VACUUM SWITCH FOR A ETC GUN SYSTEM	

S. T. Rogowski,	D. E. Bliss, R. G. Adams, K. W. Struve, Sandia National Laboratories	
OPERATION O	OF A MULTIPLE LASER TRIGGER SYSTEM ON THE Z FACILITY	13
	, Ktech Corporation, D. E. Bliss, Sandia National Laboratories	
CAPACITIVE	AND INDUCTIVE INFLUENCE ON FUSING BEHAVIOR	13
J.D. Buneo, J.L.	Zirnheld, K.M. Burke, J.P. Meade, J.C. Jones, W.J. Sarjeant, University at Buffalo	
LOSSES IN PU	JLSED DC FUSING SYSTEMS	13
J.D. Buneo, J.L. University at Bu	Zirnheld, K.M. Burke, J.B. Kirkland, E.M. Halstead, A.J. Halstead, W.J. Sarjeant, iffalo	
REQUIREMEN	NTS FOR OPTIMAL PERFORMANCE AND THE CONSEQUENCES OF USING	
	HAPED ELECTRODES IN MULTICHANNELING SWITCHES	13
	J. M. Gahl, University of Missouri-Columbia, J. M. Elizondo, K. W. Struve, Sandia National	
AN ADVANCE	D MODEL OF A HIGH PRESSURE LIQUID DIELECTRIC SWITCH FOR	10
	NERGY APPLICATIONS Surry, K. McDonald, University of Missouri – Columbia, R. Cravey, A. Grimmis, Alpha-	13
•	echnologies LLC.	
MAGNETIC O	PENING SWITCH SHAPING THE PRESSURE PULSE FOR HIGH-SPEED LINER	
IMPLOSION B	BY HIGH-CURRENT EXPLOSIVE GENERATOR	13
V.K Chernyshev	V, V.N.Mokhov, A.A. Petrukhin, V.A.Vasyukov, V.B.Yakubov, N.M.Sabaev, Russian	
	· Center - All-Russian Scientific Research Institute of Experimental Physics, I.R.Lindemuth,	
R.E.Reinovsky,	W.L.Atchison, R.J.Faehl, Los Alamos National Laboratory	
ELECTRICAL	LY EXPLODED CURRENT-SWITCH	139
	, N. Yu. Kas.yanov, V. P. Kovalev, V. Yu. Kononenko, A. I. Kormilitsyn, A. V. Pavlenko,	
	ussian Federal Nuclear Center . All-Russian Research Institute of Technical Physics (RFNC-	
VNIITF)		
Poster Session	WP – Repetitive Pulsed Power Systems	
	NT AND APPLICATIONS OF PULSED POWER DEVICES AT THE UNIVERSITY	1 4
		14
	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research	
F. Davanloo, C.	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research	140
F. Davanloo, C. A 25 kV, 75 kH		14(
F. Davanloo, C. A 25 kV, 75 kH M. J. Barnes, G. DEVELOPME	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE	
F. Davanloo, C. A 25 kV, 75 kH M. J. Barnes, G. DEVELOPMEN GENERATOR.	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE	
F. Davanloo, C. A 25 kV, 75 kH M. J. Barnes, G. DEVELOPMEN GENERATOR.	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE	
F. Davanloo, C. A 25 kV, 75 kH; M. J. Barnes, G. DEVELOPMEI GENERATOR. M.Maeyama, K. WEAR-LESS T	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE Yoshida, T. Niinuma, Saitama University CRIGGER METHOD FOR MARX GENERATORS IN REPETITIVE OPERATION	14: 14:
F. Davanloo, C. A 25 kV, 75 kH; M. J. Barnes, G. DEVELOPMEI GENERATOR. M. Maeyama, K. WEAR-LESS T. M. Sack, C. Schu	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE Yoshida, T. Niinuma, Saitama University RIGGER METHOD FOR MARX GENERATORS IN REPETITIVE OPERATION ultheiss, H. Bluhm, Forschungszentrum Karlsruhe GmbH, Institut für Hochleistungsimpuls-	14] 14]
F. Davanloo, C. A 25 kV, 75 kH; M. J. Barnes, G. DEVELOPMEI GENERATOR. M. Maeyama, K. WEAR-LESS T. M. Sack, C. Schu	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE Yoshida, T. Niinuma, Saitama University RIGGER METHOD FOR MARX GENERATORS IN REPETITIVE OPERATION ultheiss, H. Bluhm, Forschungszentrum Karlsruhe GmbH, Institut für Hochleistungsimpuls-	14] 14]
F. Davanloo, C. A 25 kV, 75 kH M. J. Barnes, G. DEVELOPMEN GENERATOR. M. Maeyama, K. WEAR-LESS T M. Sack, C. Schu Mikrowellentech	B. Collins, University of Texas at Dallas, F. J. Agee, Air Force Office of Scientific Research z, KICKER FOR MEASUREMENT OF MUON LIFETIME D. Wait, TRIUMF NT OF THE PULSED POWER SYSTEM USING SOLID STATE IMPULSE Yoshida, T. Niinuma, Saitama University RIGGER METHOD FOR MARX GENERATORS IN REPETITIVE OPERATION ultheiss, H. Bluhm, Forschungszentrum Karlsruhe GmbH, Institut für Hochleistungsimpuls-	14] 14] una

A 2kV - 40A PULSE GENERATOR USING BOOST CONVERTER ARRAY	423
HIGH REPETITION RATE COMPACT MARX GENERATOR	427
A 1.1 MV REP-RATE IN-LINE OUTPUT SWITCH AND TRIGGERING SYSTEM	431
<u>Poster Session WP – Inertial Power Generation</u>	
INVESTIGATION OF ULTRA-HIGH SWITCHING FREQUENCY TO REDUCE SIZE IN RAPID CAPACITOR CHARGING	437
HI-VOLTAGE FLYWHEEL CHARGING MODULE FOR CAPACITOR BANKS USED IN PULSED POWER APPLICATIONS	441

Session V1 Index*

K-SHELL AND RECOMBINATION RADIATION OF ALUMINUM AND NEON Z-PINCHES AT LONG TIME IMPLOSION REGIME	445
A. Shishlov, R. Baksht, S. Chaikovsky, A. Fedunin, A. Labetsky, V. Oreshkin, A. Rousskikh, S. Shlykhtun, V. Kokshenev, N. Kurmaev, F. Fursov, <i>High Current Electronics Institute</i>	
SEMICONDUCTOR OPENING SWITCHES BASED ON 4H-SIC p+pon+-DIODES	451
AIR INSULATED LTD STAGE WITH STORED ENERGY OF 5.5 KJ AND OUTPUT POWER OF 14 GW	.455
B. M. Kovalchuk, A. A. Kim, E. V. Kumpjak, N. V. Tsou, <i>High Current Electronics Institute</i> HIGH-POWER ULTRAWIDEBAND ELECTROMAGNETIC PULSE SOURCE	
Yu.A. Andreev, V.P. Gubanov, A.M. Efremov, V.I. Koshelev, S.D. Korovin, B.M. Kovalchuk, V.V. Kremnev V.V. Plisko, A.S. Stepchenko, K.N. Sukhushin, <i>Institute of High Current Electronics, RAS</i>	,
SOLID STATE POWER SUPPLY MODULATOR SYSTEM FOR MAGNETRON	.462

^{*}Despite the international authors' best efforts, these papers could not be presented at the conference due to unexpected delays in visa processing.

AUTHOR INDEX (Page Number Links to Paper)

\mathbf{A}	Aubuchon, M357	Bixler, A46
11	Aubuchon, M.S1186	Bjarnholt, G935
Abdalla, M.D331	Auvray, Ph968	Blackstone, B1229
	Avrillaud, G913	Blanche, J1441
Abeyta, O	Azizov, E.A921	Blinov, P.I689, 863
Abramzon, E	•	Bliss, D.E175, 179, 1371, 1375
Adamian, Y.E		Bloomquist, D.D157
Adams, R.G1371	ъ	Bluhm, H232, 669, 1415
Afanas'ev, V.N902	В	Bluhm, H.J383
Agee, F.J189, 1403		Bohacek, V729
Ahmed, S 1298	Babicky, V229	Boller, J.R383
Akiyama, H 232, 657, 1116,	Baca, D.M645	Bourgeois, F1047
1266, 1270, 1290	Baca, G1147	Boydston, J.C409, 1081
Al-Shamma'a, A.I 265, 763, 1112	Baek, J.W1313, 1423	
Alacakir, A555	Bailey, V 371, 379, 383, 871	Bratchikov, V.B
Albert, T 551	Bailey, V.L387, 395, 399	Briand, D183
Alde, R241	Bailly-Salins, R964	Brion, J.C1054
Alexandrov, V.V53	Bakhtin, V921	Brown, K1112
Alikhanov, S.G921	Bakshaev, Y.L689, 863	Brown, P697
Allen, F301	Baksht, R748	Brussaard, G.J.H587, 867
Allen, R.J 383, 479, 483, 837,	Baksht, R.B741, 1447	Bryant, T.F201
849, 883, 887, 891, 979, 983	Balakirev, V.A1250	Buchenauer, C.J59
Altay, O 693, 1274, 1278	Baldauf, M429	Buckles, R.A323
Altes, B	Balevicius, S1040	Buneo, J.D1033, 1379, 1382
	Balcarova, J229	Burke, K.M1033, 1379, 1382
Altgilbers, L.L 1040, 1085,	Baranov, G867	Burtsev, V.A1343
1090, 1128, 1173	Barba, A.A441	Burtzev, V.A1282
Amano, T		Bushnell, A518, 522, 1309
Anderson, G 599	Barnea, G82 Barnes, M.J1407	Butakov, L.D1462
Anderson, B		Butcher, M289, 1029
Anderson, D.J	Barroso, J.J	Buyko, A.M74
Anderson, J.G1132	Bartos, J.J	Bystritskii, Vit271
Anderson, M	Bartov, A.V689, 863	
Anderson, R793	Bastrikov, A.A853	
Anderson, W.E 805	Bates, J513	\mathbf{C}
Andreev, Y.A 1458	Batie, S859	C
Angelova, M 859	Batrakov, A.V297	
Anisimovas, F 1040	Bauer, B.S63, 66, 78, 775,	Cachoncinlle, C752
Apgar, S.E645	855, 859	Cai, H.C863
Appelgren, P935, 939	Bayne, S1217	Caldecott, R693, 1274, 1278
Apruzese, J.P37, 42	Bayne, S.B135	Callu, G89
Arad, R 577	Bayol, F 479, 483, 913, 979,	Cameron, S.M591
Aragon, B167	983	Capar, S1229
Aragon, P391	Beech, P737	Caporaso, G301, 1355
Aranchuk, L.E960	Behrend, M423, 943, 953	Carasso, D209
Arikado, T29	Belodubrovsky, R.B1282	Carboni, V371, 379, 634, 905
Armijo, J.C591	Benin, P89	Carlson, R371, 756, 905
Armstrong, S271	Bennett, L895, 917	Cartwright, K1147
Arnold, P793	Bernhoff, H939	Casey, J.A543, 641, 697
Arntz, F.O 543, 641	Bernshtam, V209, 577, 785	Cassany, B89, 1177
Ashbourn, J.M.A319	Beveridge, J.R1132	Castro, P719
Astanovitskiy, A 859	Bickes, C715	Caudill, L391
Atchison, W.L 107, 405, 685,	Binderbauer, M271	Cevallos, M.D1036
809, 1394	Birrell, A744	Chaikovsky, S.A1447
607, 1374	Dirivit, 11	Charles tony, on a minimum tree

Chalise, P.R275, 799	Cravey, R599, 1389	Drozdov, A.A
Chaturvedi, S 1139, 1298, 1359	Crawford, M70, 146, 711	Drury, S
Chavez, J905	Creeley, D383	Dubas, L.G689
Chen, J59	Crotch, I507, 995, 1209	Dubina, V
Chen, X 467, 1165	Croxon, S	Dudemaine, M
Cheng, N	Culbreth, W1229	Dunyashev, V.V.
Cheng, X	Cullen, J.D1112	Durakov, V.G
Chengli, Y 863	Cun, G	Duselis, P.U.
Chepurniy, I.N	Curry, R599, 1128, 1321,	_ aoono, 1 101
Chernenko, A.S 689, 863		
Chernyshev, V.K 1061, 1394	Curry, R.D221, 603, 1051	3107
	Cutler, R	${f E}$
Chervyakov, V.V	Cutier, R	
		Eccles, B
Chai E 1010	T	Edwards, J
Choi, E	D	Efremov, A.M
Choi, E.H 455, 459, 467, 999,		Egorytcev, B.T
1143, 1165	Dagys, M189	Eichenberger, C
Choi, H.N	Dahlerup-Petersen, K1047	Eichner, J.P.
Chornyi, A	Dalmas, D391	Ekdahl, C
Chornyi, V	Dalton, D.G179	Elizondo, J.M163, 171
Chrien, R.E	Danko, S.A689, 863	875, 895, 917, 1051,
Christodoulou, C	DaSilva, T551	Elizondo-Decanini, J
Christodoulou, C.G253	Davanloo, F1403	Elmore, M70
Chu, J.H 1367	Davis, R37	Endo, F
Chukbar, K.V 689	Dawson , E.J179	Engel, T.G327, 1099,
Chun, S.H999	de Jong, I441	Ennis, J.
Chung, M 583	de Lamare, J.E1419	Ennis, J.B513
Chuvatin, A.S 960	Debolt, N271	Ermolinsky, V.G
Cimmperman, P 1040	Degasperi, F.T1158	Esaulov, A63, 78
Clancy, T 793	Degnan, J.H	Esendemir, A.
Clark, R.E622	DeHope, W.J909	Esser, N
Clevenger, T	Delbos, C 479, 483, 979, 983	Eversole, S
Clough, S995	Delvaux, J 479, 483, 979, 983	Eyl, P89,
Clough, S.G387	Denison, G.J591	Eylon, S
Clupek, M 229	Desanlis, T1177	
Coates, R.S609	Devore, D	
Coats, R.S 630	Dickens, J 9, 289, 467, 1029,	F
Cochrane, J.C 1183	1069, 1077, 1161, 1165	r
Coleman, P37, 46	Dickens, J.C 143, 285, 305, 309,	
Collins, C.B1403		Faehl, R.J 107, 685, 809,
Collins, R.T179	1073, 1124, 1437	Faretto, H
Commisso, R.J 383, 479, 483,	Diyankov, V.S1302	Fauvel, J.
837, 849, 887, 975, 979, 983	Dogan, F719	Fedin, D.A
Cooper, G201	Doiphode, P1359	Fedulov, M.V.
Cooper, R 518	Dolgachev, G.I921	Fedunin, A.V.
Cooper, R.A 513, 530		Fengjun, S
Cooperstein, G 21, 383, 479,	Donovan, G.L	Ferguson, J.M409,
483, 883, 891, 975, 979, 983	Doron, R	Fiala, V
Cooperstock, D357	Doss, J.D645	Filatov, V.A
Corcoran, P 171, 371, 379, 387,	Doty, R.L	Fisher, A209, 577
	Douglas, J	Fisher, R.C.
Cordova, S 379, 487, 737, 871,	Downey, T.L	Fisher, V
879, 899, 1006	Drennan, S	Fitzgerald, W
077, 077, 1000	Drennan, S.A 609, 875	Fleischmann, W353,
Corley J		1 101501111111111, 17 1 1111111111111111111111
Corley, J	Droemer, D	Fleming, H

		** ** ** ** ***
Ford, W 139	Goktas, H555	Heidger, S599
Forgan, R371	Golby, K1147, 1431	Heimes, F139
Fornes, J	Gold, S.L543	Helle, T707
Förster, E209	Goldfarb, S1229	Hellinger, P66
Fowler, C.M 111, 409	Golland, A131	Helvin, T905
Fowler, W167	Gonzales, J.M645	Hemmert, D232, 1073
Frank, K 946	Gonzalez, D236	Henderson, D905
Freeman, B.L 78, 409, 1081	Gowin, M245	Hendricks, K1431
Frese, M.H 463, 1197	Grabovsky, E.V 53, 863, 921	Hendricks, K.J1147
Frese, S.D1197	Grabowski, C1183	Hendriks, J587
Fridman, B.E 115, 1190, 1194	Gratza, W.J530	Heo, H1363
Friedman, M 97, 1014	Greigo, J805	Hereil, P.L913
Friel, C 526	Grekhov, I.V441, 1451	Hernandez, J.C413, 1065
Frolov, A279	Gribble, R.F645	Herrera, D111
Frolov, I.N53	Gribov, A.N921	Herrera, D.H405
Frolov, O 729	Griffin, K.L909	Higashiyama, Y1262
Fruchtman, A 577	Griffin, T1217	Hinshelwood, D1006
Fuelling, S 859	Grimmis, A599, 1389	Hinshelwood, D.D205, 383,
Fujiwara, T 571, 1258	Gu, X123, 362, 423, 943	491, 499, 883, 991
Fujiya, K	Gubanov, V.P1458	Hinz, A793
Fulkerson, E.S93	Guerre, J913	Hirai, M29
Fulkerson, S	Gundersen, M 9, 241, 339, 946,	Hjalmarson, H.P345
Fulton, D	950, 953	Hodge, K167
Fursov, F.I1447	Gundersen, M.A 123, 362, 423,	Hodge, K.C609, 875
1 4150 7, 1 11. 11. 11. 11. 11. 11. 11. 11. 11.	943	Hoffman, M.G143
	Guthrie, D167	Holmberg, D883
•	Guthrie, D.W609, 875	Holmes, C1355
\mathbf{G}	Guy, T379, 399	Holt, T.A383, 413, 887
	Guzzetta S X50	Holyutt H A 736
Gahl, J.M 1051, 1385	Guzzetta, S859	Holwitt, E.A236
Galtie, A1177	Guzzetta, S859	Hoppe, P383, 887
		Hoppe, P479, 483, 979, 983
Galtie, A	Guzzetta, S859	Hoppe, P479, 483, 979, 983 Horioka, K799
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789	н	Hoppe, P
Galtie, A	H Hagen, E.C78	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789	H Hagen, E.C78 Hahn, K371, 379, 395, 399,	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805	Hagen, E.C	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925	H Hagen, E.C78 Hahn, K371, 379, 395, 399,	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925 Gardner, S. 193	Hagen, E.C	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925 Gardner, S. 193 Garkusha, O.V. 1120 Garrigues, A. 479, 483, 979, 983 Gattozi, A. 139	H Hagen, E.C	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925 Gardner, S. 193 Garkusha, O.V. 1120 Garrigues, A. 479, 483, 979, 983	Hagen, E.C	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925 Gardner, S. 193 Garkusha, O.V. 1120 Garrigues, A. 479, 483, 979, 983 Gattozi, A. 139	H Hagen, E.C	Hoppe, P
Galtie, A. 1177 Gamot, T. 89 Ganeev, A.S. 1302 Garate, E. 271, 789 Garcia, F. 805 Garde, J. 925 Gardner, S. 193 Garkusha, O.V. 1120 Garrigues, A. 479, 483, 979, 983 Gattozi, A. 139 Gaudet, J. 253, 719	H Hagen, E.C	Hoppe, P
Galtie, A	Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P
Galtie, A	H Hagen, E.C	Hoppe, P

*	Y	77 -11 37 A 1 4 4 7
Imada, G	Kamm, R.E93	Kokshenev, V.A1447
Imanishi, Y931	Kancleris, Z	Kolacek, K729
Intrator, T	Kandiev, Y.Z779	Kolb, J293, 649, 715, 957
Isakov, I271	Kang, B.K1247	Kolkert, W.J441
Isberg, J 939	Kant, R1229	Kono, S649, 715, 957
Ishii, S 931, 1294	Kantsyrev, V.L193	Kononenko, A.I921
Itagaki, M 1258	Kaplan, S.L1217	Kononenko, V.Y1302, 1398
Ivanov, P.A1451	Karlik, K.V297	Koolhoven, RA1109
Ivanov, S.N 1462	Karlykhanov, N.G49	Koontz, R.F543
Ivanov, V 859	Kas'yanov, N.Y 1302, 1398	Korelsky, A.V863
Ivanova, G.G74	Kato, S571	Korenev, S841, 1003, 1243
Ives, H.C1021	Katsuki, S 232, 649, 657, 1266,	Kormilitsyn, A.I921, 1302, 1398
,	1270	Korolev, V.D863
	Keawboonchuay, C327	Korotkov, S.V1451
T	Keely, S859	Korovin, S.D1458
J	Keene, H305	Koshelev, V.I1458
	Kekez, M.M1427	Kotulski, J.D630
Jacquez, E391	Kelkar, K	Kovalchuk, B.M845, 853, 913,
Jeon, W 459, 999, 1143	Keller, R	
Jeong, I-W665, 1329		Kovalenko, I.V689
Jiang, C 339, 946	Kellner, U	
Jiang, W 29, 261, 433, 451,	Kemp, M.A	Kovalev, V.P1398
1169	Kempkes, M.A 543, 641, 697	Koyama, T931
Jianlun, Y 863	Keon, H.M1150	Kravchenko, E.V863
Jichetti, J 522	Kepil, K357	Kremnev, V.V1458
Jin, Y.S 437, 1095, 1239	Kern, M669	Krile, J.T285
Johnson, D	Khischenko, K.V741	Krilov, M.K921
Johnson, D.J	Khristyuk, D.V1451	Krishnan, M37, 46
Johnson, D.L 163, 167, 171, 371,	Kiel, J.L236	Kristiansen, M413, 455, 467,
379, 383, 387, 395, 399, 479,	Kihara, R909	723, 1065, 1069, 1073,
	Kim, A913	1077, 1161, 1165
487, 595, 609, 626, 845, 871,	Kim, A.A 845, 853, 1455	Krivosheev, S.I1282
875, 879, 887, 899	Kim, J.G1143	Krogh, M301
Johnson, J	Kim, JH1329	Krompholz, H289, 305, 1029,
Johnson, W.A 609, 626, 630	Kim, J.H665	
Joler, M	Kim, JS1095, 1329	Krompholz, H.G285, 1036
Joly, S964	Kim, J.S 437, 665, 1095, 1103,	Kroupp, E209
Jones, J.C1379	1239, 1367	Kucherenko, Yu.A902
Jorgenson, R.E 630	Kim, S.C1150	Kuchinsky, V.C921
Joshi, R.P293, 649, 715	Kim, S.H 1363, 1367, 1367	Kumagai, M567
Jossel, I 1282	Kim, Y.B1303, 1307, 1307	Kumpjak, E.V913, 1455
Jung, J.W 1095, 1367		Kunhardt, E583
Jung, M474	Kincy, M	•
Jung, Y 1143	King, J.C111, 405	Kunitomo, S
Jung, Y.H437	Kingsep, A.S 689, 863, 921	Kurmaev, N.E1447
Jung, Y.J1247	Kirbie, H391	Kuthi, A241, 339, 423, 943,
3,	Kirbie, H.C13	946, 950, 953
	Kirkici, H555	Kuwashima, T1258
K	Kirkland, J.B1382	Kwon, Y.K1363, 1367
IX.	Kirkpatrick, R63	
77 1 11 77	Kishi, H371, 387	
Kadowaki, K 563	Kishi, J383	${f L}$
Kalinin, N.V	Kitani, I563	
Kalinin, Y.G 689, 863, 921	Kitterman, D.L1205	Labetsky, A1447
Kalmykov, A 1003	Kiuttu, G.F103, 1197	Labetsky, Yu741
Kambara, S 1254	Klatt, M383	Laca, P859
Kambour, K.E 345	Knudson, M.D179	Lackner, H634
Kamm, R 793	Ko, K.C275	Lacklici, H034
	•	

T . C M	1147 1421	London III 1112	McDonald V 500 1128
LaCour, M		Lowke, J.J1112 Lu, X.P715, 957	McDonald, K599, 1128,
Lai, G.Y			McDonald, K.F221, 603
Lam, S.K		Lucas, J	
Lambiase, R		Lucero, R737	McDowell, R522, 1309
Langhans, D		Luginbill, A.D409, 1081	McHale, B711
Lao, N		Luginsland, J.W463	McLean, J201, 737
Lara, M		Luk, T.S591	McQuage, M.M309
Larour, J		Lukes, P229	Meade, J.P1379
Laroussi, M		Lull, G1229	Melcher, P127, 603
Larson, J		Lutz, S197	Merle, E479, 483, 979, 983
Larsson, A	935, 939	Lutz, W669	Merryman, S.A249
Lassalle, F	913		Mexmain, J.M89, 526
Le, X	1077		Mi, J653
Le Galloudec, B	859	${f M}$	Michalczyk, P89, 526
Le Galloudec, N	859	171	Miller, P A167
Leboeuf, J.N		MacDougell EW 512	Miller, R518, 530, 615, 619
LeChien, K.R		MacDougall, F.W	Mills, J.A179
Leckbee, J		MacGregor, S.J1132, 1332,	Minami, K1154
Lee, BW		1336	Minamitani, Y1262
Lee, B.K		Mackersie, J.W 1332, 1336	Minea, R1235
Lee, HS		Madlener, M	Mironova, T.Y1282
Lee, H.S.		Maeda, T1116	Mitchell, S.E883
Lee, H.Y.		Maenchen, J21, 197, 371, 479,	Mitrofanov, K.N53
Lee, Y.Y		483, 487, 737, 744, 871, 879,	Mitton, V905
		905, 979, 983, 995, 1006	Mix, LP609
Leeper, R.J.		Maenchen, J.E 163, 167, 387,	Mizhiritsky, V.I689, 863
Lehr, J		395, 399, 495, 609, 626,	• •
Lehr, J.M 591		845, 1205	Mock, R.C733
······································		Maeyama, M1411	Modestov, D.G779
Lemaire, J.L		Majalee, A 1139, 1298, 1359	Modin, P1177
Lemke, R.W		Makarevich, I.P115	Moir, D391
Lemons, D.S		Makhin, V63, 78, 859	Mokhov, V.N74, 1394
L'eplattenier, P		Mallick, J70	Molina, I371, 379, 395, 399,
Letterio, J.D		Mangasarov, RA902	487, 737, 871, 879, 899, 1006
Levashov, V		Mangassarian, A551	Montoya, N391
Levashov, P.R		Mankowski, J1161, 1165	Moore, W.B93, 793
Levine, J		Mankowski, J.J 455, 1073, 1124	Morales, P.J236
Lewis, B.A		Manilov, V.I1462	Morgan, D.V193
Leyh, G.E		Mar, A591	Morehouse, M271
Li, G		Mardahl, P1147	Morris, B.W1437
Libing, Y	863	Maron, Y 37, 209, 577, 785	Morton, D97, 551, 634
Liljestrand, R	193	Marret, J.P89, 526	Moselhy, M.M1317
Lindblom, A	939	Martin, T.H895	Mosher, D479, 483, 491, 503,
Lindeburg, B.A	409, 1081	Martynov, V.I1302	883, 979, 983, 991
Lindemuth, I.L		Maruyama, T1254	Motta, C.C1158
Lindemuth, I.R	63, 78, 107,	Maslennikov, S.P120	Mowrer, G167
405		Mason, P.A236	Mukaigawa, S571, 1258
Lisherness, J			Muraho, T559
Litvin, AT		Mathieu, P	Murakami, T315
Lobanov, A.I		Matrosov, A.D	Murphy, D.P205, 383, 491, 891
Lobanov, K.M		Matty, T534	Murugan, B1229
Lockey, R		Matvienko, V271	Myers, M551
Loiseleur, P		Mayer, H	Myers, M.C97, 1014
Lopez, E.A		Mazzola, M	Myles, C.W123, 345, 362
Loree, D.L		McCuistian, B.T391, 634	
Lototsky, A.P		McDaniel, D.H 157, 163, 626,	
Loureiro, J		1205	•
		•	

~~	Oskisi II 1225	Determen D.I. 722
\mathbf{N}	Ochiai, H	Peterson, D.L733 Petichakis, C265, 763
	Ohshima, S1258	Petrov, A271
Nair, S.A441	Oke, G555	Petrukhin, A.A74, 1394
Nam, S.H 1150, 1363, 1367	Okino, A275, 799	Philips, M.J387
Namihira, T 657, 1266, 1270,	Okuno, Y315	Phillips, M371, 737, 1209
1290	Oleinik, G.M53	Phipps, D499
Nash, T.J 193	Oliver, B 487, 744, 871, 879,	Phipps, D.G383
Navarro, J.M 875	983, 1006	Pierret, O479, 483, 979, 983
Navarro, M 167	Oliver, B.V 163, 395, 399, 479,	Pish, S139
Navarro, M.J 609	483, 495, 622, 845, 855, 859,	Pismenni, V.D921
Nechev, K534	979, 987	Pitman, RK1025
Nedoseev, S.L 53, 863	Ollis, C793	Plisko, V.V1458
Nehring, T 653	Ong, M.M909	Plokhoi, V.V779
Nelson, D905	Onishchenko, N.I1250	Ploor, S.D179
Nenashev, A.P 1282	Onoi, M1154	Podsednik, J.W179, 1375
Neri, J1099	Oona, H111, 405	Pointon, T.D175, 622, 626
Neri, J.M 383, 1103	Oreshkin, V.I741, 1447	Pokryvailo, A225, 445, 703,
Ness, R 127, 603	Ormond, E905	748
Netchaev, N.N1120	Oro, D391	Polk, M93, 793
Neuber, A 241, 1073, 1124	Ortega, P905	Polkovnikova, N271
Neuber, A.A 285, 289, 305,	Osadchyk, L.A902	Ponce, D503, 1006
309, 413, 1029, 1036, 1065,	Osin, D209, 577, 785	Ponce, D.M491, 499
1069, 1077	Ottinger, P.F	Popek, M1229
Neurath, R 1355	887, 975, 987, 991	Porofeev, I.Y53
Newton, M793	Oxner, A859	Portillo, S 197, 379, 399, 487,
Newton, M.A	Oxnor, 11	
Nguyen, M.N 815		Pouvesle, J-M752
Nichols, L.M	ъ	Prasad. S.D451
Nicolas, R 479, 483, 979, 983	P	Prasad, S.D451 Prestwich, K479
Nicolas, R 479, 483, 979, 983 Nicot, G 479, 979, 983		Prestwich, K479
Nicolas, R 479, 483, 979, 983 Nicot, G 479, 979, 983 Niedernostheide, F.J 150	Pai, C653	Prestwich, K. R
Nicolas, R 479, 483, 979, 983 Nicot, G 479, 979, 983 Niedernostheide, F.J 150 Nielsen, C 1229	Pai, C	Prestwich, K479
Nicolas, R 479, 483, 979, 983 Nicot, G 479, 979, 983 Niedernostheide, F.J 150 Nielsen, C 1229 Nielsen, K 391, 634	Pai, C	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805
Nicolas, R. 479, 483, 979, 983 Nicot, G. 479, 979, 983 Niedernostheide, F.J. 150 Nielsen, C. 1229 Nielsen, K. 391, 634 Niinuma, T. 1411	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775	Prestwich, K. R
Nicolas, R 479, 483, 979, 983 Nicot, G	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194
Nicolas, R. 479, 483, 979, 983 Nicot, G. 479, 979, 983 Niedernostheide, F.J. 150 Nielsen, C. 1229 Nielsen, K. 391, 634 Niinuma, T. 1411 Nishimoto, H. 383, 634, 905 Nishimoto, S. 563	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297
Nicolas, R. 479, 483, 979, 983 Nicot, G. 479, 979, 983 Niedernostheide, F.J. 150 Nielsen, C. 1229 Nielsen, K. 391, 634 Niinuma, T. 1411 Nishimoto, H. 383, 634, 905 Nishimoto, S. 563 Nizovtsev, P.N. 74	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297 Prukner, V. 729
Nicolas, R. 479, 483, 979, 983 Nicot, G. 479, 979, 983 Niedernostheide, F.J. 150 Nielsen, C. 1229 Nielsen, K. 391, 634 Niinuma, T. 1411 Nishimoto, H. 383, 634, 905 Nishimoto, S. 563 Nizovtsev, P.N. 74 Noré, D. 479, 483, 979, 983	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297 Prukner, V. 729 Przybilla, J. 150
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297 Prukner, V. 729 Przybilla, J. 150 Pu, Z. 681
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297 Prukner, V. 729 Przybilla, J. 150 Pu, Z. 681
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89	Prestwich, K. 479 Prestwich, K.R. 171 Presura, R. 63, 78, 855, 859 Prime, M.B. 805 Prokopenko, V.F. 1194 Proskurovsky, D.I. 297 Prukner, V. 729 Przybilla, J. 150 Pu, Z. 681
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793 Pendleton, D.L. 93	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793 Pendleton, D.L. 93 Peppel, T. 150	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlov, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793 Pendleton, D.L. 93	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlove, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793 Pendleton, D.L 93 Peppel, T. 150 Père, P. 89, 526	Prestwich, K
Nicolas, R	Pai, C. 653 Pandithas, I. 1112 Pappas, J. 139 Paraschiv, I. 63, 66, 78, 775 Park, D.S. 1150 Park, S.S. 1363, 1367 Park, Y.J. 1367 Parker, J.E. 236 Parkes, D.M. 833 Parrish, G.L. 93 Pasik, M.F. 630 Patelli, P. 89 Pavlenko, A.V. 902, 1398 Pavlove, E.P. 1351 Pavlovets, M.V. 1329 Pearce, A. 507 Pechersky, O.P. 921 Pemen, AJM. 441 Pendelton, D. 793 Pendleton, D.L 93 Peppel, T. 150 Père, P. 89, 526 Peterkin, FE. 1025	Prestwich, K