Phylogenetics 101

Part 3b: Bayesian phylogenetics

- MCMC proposals
- Prior distributions
- Bayes' factors
- Terms you've heard

Paul O. Lewis
Dept. Ecol. & Evol. Biology
University of Connecticut
https://phylogeny.uconn.edu

MCMC proposals

Bayesian phylogenetic MCMC analysis in a nutshell

loop until sufficient sample points have been saved

- 1. Choose starting states
- 2. Update one or more parameters
 - a. Choose parameter(s)
 - b. Propose new state(s) for parameter(s)
 - c. Calculate ratio R
 - d. Draw u from Uniform(0,1) distribution
 - e. if u < R, accept; otherwise, reject
- 3. Save tree and parameters
- 4. Go to 2
- 5. Summarize posterior samples

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Larget, B., and D. L. Simon. 1999. Mol. Biol. Evol. 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54: 961-965.

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

Proposed new tree: 3 edge lengths have changed and the topology differs by one NNI rearrangement

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

Current tree

log-posterior = -34256

Proposed tree

log-posterior = -32519 (better, so accept)

Marginal split posterior probabilities

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

If proposed value is out of bounds, reflect it back in bounds

Marginal distributions and credible intervals

Prior distributions

$$p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)}$$

Gamma(a,b) distribution

*Note: be aware that in many papers the Gamma distribution is defined such that the second parameter is the rate (*inverse* of the scale b used in this slide) rather than the scale! In this case, the mean and variance would be a/b and a/b^2 , respectively.

Lognormal(μ,σ) distribution

Lognormal($\mu = 0, \sigma = 1$)

Lognormal(μ,σ) distribution

Lognormal(μ,σ) distribution

To choose μ and σ to yield a particular mean (m) and variance (v) for a lognormal prior, use these formulas (log is natural logarithm):

$$\mu = \log(m^2) - \log(m) - \frac{\log(v + m^2) - \log(m^2)}{2}$$
$$\sigma^2 = \log(v + m^2) - \log(m^2)$$

Beta(a,b) distribution

Beta(a,b) distributions are appropriate for proportions, which must lie between 0 and 1 (inclusive).

Dirichlet(a,b,c,d) distribution

Flat: a = b = c = d = 1

Informative: a = b = c = d = 100

(frequencies tend to be nearly equal)

(every combination equally probable)

A Dirichlet(a,b,c,d) distribution is ideal for nucleotide relative frequencies. https://phylogeny.uconn.edu/dirichlet-prior/

Topology: discrete uniform

Edge lengths: Gamma-Dirichlet

Edge lengths: Gamma-Dirichlet

Edge lengths: Gamma-Dirichlet

Yule (pure birth) prior

Marginal likelihood and model fit

Bayes' rule:
$$p(\theta \mid D, M) = \frac{p(D \mid \theta, M) p(\theta \mid M)}{p(D \mid M)}$$

We used MCMC because p(D|M) was hard to calculate.

It turns out that p(D|M) measures the average fit of model M to data D and is thus very useful for model choice.

So we may want to estimate it after all!

Marginal likelihood estimation

$$p(D) = \int p(D \mid \theta) \ p(\theta) \ d\theta$$

Estimating p(D) is equivalent to estimating the area under the curve whose height is, for every value of θ , equal to $p(D|\theta)$ $p(\theta)$

Simplest method

Sample evenly from a box with known area A that completely encloses the curve.

Area under the curve is just A times the fraction of sampled points that lie under the curve.

Simplest method

Sample evenly from a box with known area A that completely encloses the curve.

Area under the curve is just A times the fraction of sampled points that lie under the curve.

2567 = under curve

10000 = inside box

1.0 = area of box

0.2567 = estimated value

0.2500 = true value

With much more data, things get complicated

The prior density can serve as our box. It has area 1.0 and is everywhere higher than the posterior kernel (likelihood times prior density).

Problem: with lot of data, posterior kernel is minuscule compared to prior.

With much more data, things get complicated

The prior density can serve as our box. It has area 1.0 and is everywhere higher than the posterior kernel (likelihood times prior density).

Problem: with lot of data, posterior kernel is minuscule compared to prior.

In fact, of 10000 darts thrown at the prior, 0 fell beneath the posterior kernel

Start by estimating the area under this curve (also everywhere higher than the posterior kernel).

About 33% of the darts thrown at the larger box (which has area 1.0) fall under the inner curve, so the area under the inner curve must be about 0.33

We've broken up the estimation of the area under the posterior kernel into a series of 5 area estimations:

$$\frac{a}{g} = \left(\frac{a}{b}\right) \left(\frac{b}{c}\right) \left(\frac{c}{d}\right) \left(\frac{d}{f}\right) \left(\frac{f}{g}\right)$$

a = area under posterior kernel

g = area under the prior = 1.0

We've broken up the estimation of the area under the posterior kernel into a series of 5 area estimations:

$$\frac{a}{g} = \left(\frac{a}{\mathscr{V}}\right) \left(\frac{\mathscr{E}}{c}\right) \left(\frac{c}{d}\right) \left(\frac{d}{f}\right) \left(\frac{f}{g}\right)$$

a = area under posterior kernel

g = area under the prior = 1.0

We've broken up the estimation of the area under the posterior kernel into a series of 5 area estimations:

$$\frac{a}{g} = \left(\frac{a}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right) \left(\frac{d}{d}\right) \left(\frac{d}{f}\right) \left(\frac{f}{g}\right)$$

a = area under posterior kernel

g = area under the prior = 1.0

We've broken up the estimation of the area under the posterior kernel into a series of 5 area estimations:

$$\frac{a}{g} = \left(\frac{a}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{A}}\right) \left(\frac{\mathscr{S}}{\mathscr{A}}\right) \left(\frac{\mathscr{S}}{f}\right) \left(\frac{f}{g}\right)$$

a = area under posterior kernel

g = area under the prior = 1.0

We've broken up the estimation of the area under the posterior kernel into a series of 5 area estimations:

$$\frac{a}{g} = \left(\frac{a}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right) \left(\frac{\mathscr{S}}{\mathscr{V}}\right)$$

a = area under posterior kernel

g = area under the prior = 1.0

Stepping-stone method

How can we choose the intermediate density functions that serve as stepping stones?

Power posterior kernel:

$$p(D \mid \theta)^{\beta} p(\theta)$$

$$\beta = 1$$
 posterior kernel

$$0 < \beta < 1$$
 intermediate

$$\beta = 0$$
 prior density

Bayes factor for Mo against Mi

$$B_{01} = \frac{p(D \mid M_0)}{p(D \mid M_1)} = \frac{\text{marginal likelihood for model M}_0}{\text{marginal likelihood for model M}_1}$$

Normally, both marginal likelihoods are on the log scale, so usually it is the (natural) log Bayes factor that is reported:

$$\log B_{01} = \log p(D | M_0) - \log p(D | M_1)$$

Likelihood surface when K80 true

Likelihood surface when JC69 true

Hierarchical models

Non-hierarchical model

All model parameters can be found in the likelihood function

Prior mean 0.1

$$L_{k} = \frac{1}{4} \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{1}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{2}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{3}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{4}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{5}/3} \right)$$

JC69 likelihood for site k

Hierarchical model

Empirical Bayes

Empirical Bayes approach

Average edge length MLE used as the mean of the prior.

0.07 = (0.12 + 0.02 + 0.07 + 0.04 + 0.10)/5

Prior mean = 0.07

Maximum likelihood estimates (MLEs)

$$L_{k} = \frac{1}{4} \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{1}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{2}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{3}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{4}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{5}/3} \right)$$

JC69 likelihood for site k

rjMCMC (reversible-jump MCMC)

Examples of rjMCMC analyses

$$\textbf{b.} \ \ \begin{matrix} A & C & G & T \\ - & \beta & \beta \kappa & \beta \\ \beta & - & \beta & \beta \kappa \\ T & \beta & \beta \kappa & \beta & - \end{matrix} \end{matrix} \end{matrix} \begin{matrix} A & C & G & T \\ - & \pi_C \beta & \pi_G \beta \kappa & \pi_T \beta \\ \pi_A \beta & - & \pi_G \beta & \pi_T \beta \kappa \\ \pi_A \beta & \pi_C \beta \kappa & \pi_G \beta & - \end{matrix} \end{matrix} \end{matrix} \begin{matrix} A & C & G & T \\ - & \alpha \pi_C \beta & b \pi_G \beta & c \pi_T \beta \\ \alpha \pi_A \beta & - & \alpha \pi_G \beta & e \pi_T \beta \\ b \pi_A \beta & d \pi_C \beta & - & f \pi_T \beta \\ c \pi_A \beta & e \pi_C \beta & f \pi_G \beta & - \end{matrix} \end{matrix} \begin{matrix} A & C & G & T \\ - & \alpha \pi_C \beta & b \pi_G \beta & c \pi_T \beta \\ \beta & - & \beta & \beta & \beta \\ \beta & - & \beta & \beta \\ \beta & \beta & - & \beta \\ \beta & \beta & \beta & - & \beta \\ \beta & \beta & \beta & - & \beta \end{matrix} \end{matrix}$$

$$egin{array}{cccc} \kappa & \pi_T eta & \ & \pi_T eta \kappa & \ & \pi_T eta & \ & \pi_T eta & \ & \end{array}$$

$$a\pi_C \beta$$
 $b\pi_G \beta$ $c\pi_T \beta$
 β — $d\pi_G \beta$ $e\pi_T \beta$
 β $d\pi_C \beta$ — $f\pi_T \beta$
 β $e\pi_C \beta$ $f\pi_G \beta$ —

K80

HKY85

5 species

4 species

3 species

2 species

3 species

c. Rannala & Yang. 2013. Genetics 194:245-253.

a. Lewis, Holder, & Holsinger. 2005. Systematic Biology 54:241-253.

b. Huelsenbeck, Larget, & Alfaro. 2004. Molecular Biology and Evolution 21:1123–1133.

rjMCMC polytomy model

The probability of accepting the forward proposal must take into account the proposal that exactly reverses it to ensure that at equilbrium the chain visits each model with the appropriate frequency

Dirichlet process (DP) prior

all genes share same tree topology

ABC D

ABCD

ABD C

AB CD

Suppose we have data for 4 genes: A, B, C, D

Would like a prior that

encourages concordance (i.e.

genes have same tree topology)

but allows discordance

AB C D

(ACD) (B)

(AC) (BD)

(AC) (B) (D)

(AD) (BC)

A BCD

A BC D

(AD) (B) (C)

(A) (BD) (C)

A B CD

each gene has a different tree topology

A) (B) (0

~ The End ~

Thanks to Erick Matsen for hosting these Phyloseminars, NSF for funding my research, and thanks to the many teachers who have helped me understand so that I can hopefully help others understand!