Acceleration Practice

- 1 Is it accelerating? How did you decide?
 - (a) A cat running north at a steady speed.
- (c) A cyclist turning a corner.
- (b) An aeroplane just after it lands.
- (d) A cow standing in a field.
- A train speeds up after passing a signal. The velocities (speeds away from the signal) are in the table below, but one is missing.

Time(s)	0	5	10	15	20
$\mathbf{Velocity}\ (\mathbf{m/s})$	5	11	17		29

- (a) Is it accelerating? How can you tell?
- (b) What is the missing velocity?
- (c) If it keeps accelerating like this, when will the velocity be 65 m/s?
- (d) What is the acceleration in m/s²?
- 3 A bus slows down as it approaches a bus stop.

Time (s)	0	1	2	3
Velocity (m/s)	12	9		3

- (a) Is the bus accelerating or not? How can you tell?
- (b) What is the missing velocity?
- (c) If it keeps decelerating like this, when will it stop?
- (d) How much does the velocity change each second?

4	An express train accelerates at 0.5 m/s^2 .
	(a) Complete the sentence: The velocity gets m/s greater every second.
	(b) Work out the velocity change in fifteen seconds using an equation.
	$\text{velocity change } (\text{m/s}) = \text{acceleration } \left(\text{m/s}^2\right) \times \text{time } (\text{s})$
	= 0.5 × 15
	(c) Work out the velocity change in 60 s using an equation.
	velocity change $(m/s) = acceleration (m/s^2) \times time (s)$
	=
	(d) Work out the velocity change in two minutes.
5	A passenger jet accelerates at 2.5 m/s ² down a runway.
	(a) Complete the sentence: The jet gets m/s faster every second.
	(b) Work out how much time it will take to gain 25 m/s using an equation. velocity change (m/s) = acceleration (m/s ²) \times time (s)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	(c) Work out how much time it will take to gain 50 m/s using an equation.
	velocity change $(m/s) = acceleration (m/s^2) \times time (s)$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(d) Work out the time taken for the jet to reach its take off speed of 75 m/s from rest.
6	A basketball on Mars is dropped and reaches 21 m/s in 7 s.
	(a) Velocity gained in one second $=$ \div $=$ m/s
	(b) Complete the sentence: The basketball's acceleration (in m/s^2) is $g(x) = \frac{1}{2} \int_0^x dx dx$
	(c) A diving eagle gains 80 m/s in 5 s . Work out its acceleration using an equation.
	velocity gain (m/s) = acceleration (m/s 2) \times time (s)
	80 = × 5
	(d) Work out the acceleration of a tractor which gains $15\mathrm{m/s}$ in $5\mathrm{s}$.

7	Complete the word equations.				
	(a) acceleration =				
	(b) velocity change =				
	(c) time taken =				
8	A minibus starts at rest and accelerates at $1.5~\mathrm{m/s^2}$.				
	(a) How fast will it be going after 6 s?				
	(b) How much time does it take to reach 15 m/s?				
9	A cheetah sighting prey starts at 6 m/s and accelerates to 26 m/s in 4 s.				
	(a) How much velocity does it gain each second?				
	(b) What is its acceleration in m/s ² ?				
10	A motorcycle starts at rest and accelerates at 6 m/s^2 .				
	(a) How fast will it be going after 4 s?				
	(b) How much time does it take to reach 30 m/s?				
11	A red car goes from 0 to 24 m/s in 4 s.				
	A blue car goes from 0 to 35 m/s in 5 s. (a) Calculate the acceleration of the red car.				
	(a) Calculate the acceleration of the rea cal.				
	(b) Calculate the acceleration of the blue car.				
	(c) Which car has the greater acceleration?				