ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Исследование энергетич. спектра β – частиц, определение их макс. энерг. магнитным спектрометром

> Работу выполнил: Шурыгин Антон Алексеевич, группа Б01-909

Долгопрудный, 2021

Содержание

1	Теоретические положения	3
2	Экспериментальная установка	4
3	Выполнение работы и обработка данных	5
	3.1 Анализ погрешностей	6
4	Вывол	7

Цель работы: Исследование энергетического спектра β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определение их максимальной энергии при помощи магнитного спектрометра.

В работе используются:

- Магнитный спектрометр с «короткой линзой»
- Высоковольтный и низковольтный выпрямители
- Форвакуумный насос и вакуумметр
- ЭВМ

1 Теоретические положения

Бета-распад – это самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{\mathsf{Z}}^{\mathsf{A}}\mathsf{X} \to_{\mathsf{Z}+1}^{\mathsf{A}} \mathsf{X} + e^{-} + \widetilde{\mathsf{v}} \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой максимальной энергии, высвобождаемой при распаде.

Вероятность ω того, что электрон вылетит с импульсом 3 р, а нейтрино с импульсом 3 к равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0 \tag{2}$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2$$
 (3)

Таким образом, вероятность ω принимает вид:

$$\omega = D\delta(E_e - E - ck)^3 p^3 k = D\delta(E_e - E - ck) p^2 pk^2 k \Omega_e \Omega_{\tilde{v}}$$
 (4)

D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае δ -функция исчезнет, а ck всюду заменится на E_e-E . После умножения на полное число распадов выражение примет вид:

$$N = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 p$$
 (5)

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{N}{E} \simeq \sqrt{E}(E_e - E)^2 \tag{6}$$

Дочерние ядра, возникающие в результате β-распада, нередко оказываются возбуждёнными. Возбуждённые ядра отдают свою энергию либо излучая гамма-квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома (обычно К или L). Последние электроны имеют строго определённую энергию и называются конверсионными. Ширина монохроматической линии, соответствующая конверсионным электронам, определяет разрешающую силу спектрометра.

2 Экспериментальная установка

Рис. 1 Схема β -спектрометра с короткой магнитной линзой

Рис. 2 Блок-схема установки для изучения β -спектра

Энергию частиц определяют с помощью β-спектрометров. В работе используется магнитный спектрометр с «короткой» линзой, сцинтиллятором и ФЭУ. Как показывает расчет, для заряженных частиц тонкая катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{7}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом. Импульс сфокусированных электронов пропорционально силе тока, коэффициент пропорциональности определяется по какой-либо известной конверсионной линии.

Давление в спектрометре поддерживается на уровне около 0,1 Торр и измеряется термопарным вакуумметром. Откачка осуществляется форвакуумным насосом. Высокое напряжение на Φ ЭУ подаётся от стабилизированного выпрямителя.

3 Выполнение работы и обработка данных

- 1. Откачаем воздух из полости спектрометра. включим формирователь импульсов и питание магнитной линзы.
- Изменяя ток линзы через 0,2 А, проведём измерение зависимости интенсивности потока падающих β-частиц от силы тока, время накопления - 100 секунд. Более подробно пропишем конверсионный спектр. Результаты измерения занесём в таблицу 1.
- 3. Проведём измерение фона фонового излучения нет.
- 4. Прокалибруем спектрометр с учётом того, что $p_{conv}c=1013.5$ кэВ $(p_{conv}=634$ кэВ у 137 Cs). Определим значения энергии, импульса и величину $\frac{\sqrt{N(p)}}{p^{3/2}}$ для построения графика Ферми-Кюри.
- 5. Построим графики зависимости интенсивности потока частиц от силы тока (рис. 3) и график Ферми-Кюри (рис. 4)
- 6. По графику Ферми-Кюри определим максимальную энергию β -частиц в спектре, $E_{max}=567{,}22$ кэВ

3.1 Анализ погрешностей

I, A	$N - N_{\Phi}, 1/c$	$\sigma_{N-N_{\Phi}}, 1/c$	σ_{I}
0, 1	-0,204	0	0,001
0,2	-0,353	0	0,001
0,3	-0,184	0	0,001
0,4	0, 186	0,019	0,001
0,5	0, 176	0,018	0,001
0,6	0,066	0,007	0,001
0,7	0,416	0,042	0,001
0,8	0,816	0,082	0,001
0,9	1,216	0,122	0,001
0,95	2,026	0, 203	0,001
1	2,905	0, 291	0,001
1,1	3,515	0,352	0,001
1,15	3,975	0,398	0,001
1,2	4,725	0,473	0,001
1,3	5,955	0,596	0,001
1,4	6, 254	0,625	0,001
1,5	7,304	0,73	0,001
1,6	7,614	0,761	0,001
1,7	8, 134	0,813	0,001
1,8	8, 204	0,82	0,001

Таблица 1 : данные для графика спектра

При измерениях радиационного фона $N_{\rm ф}$ за погрешность бралось 10% от полученной величины.

В последствии такую же долю погрешности я брал при использовании данных из столбца $N-N_{\Phi}.$ Результаты вычисления погрешности занесены в таблицу 1, 2, столбец $\sigma_{N-N_{\Phi}}.$

Оценка остальных погрешностей

• $\sigma_I \approx 0.001~A$

•
$$\sigma_{mkFermi} = mkFermi \cdot \sqrt{\frac{1}{2} \left(\frac{\sigma_{N-N_{\Phi}}^2}{N-N_{\Phi}} \right) + \frac{3}{2} \left(\frac{\sigma_{I}}{I} \right)^2}$$

I, A	$N - N_{\Phi}, 1/c$	$\sigma_{N-N_{\Phi}}, 1/c$	$\sigma_{\rm I}$
1,9	7,024	0,702	0,001
2	7,074	0,707	0,001
2, 1	6,904	0,69	0,001
2,2	6, 154	0,615	0,001
2,3	5, 195	0,52	0,001
2,4	4,425	0,443	0,001
2,5	3,865	0,387	0,001
2,6	2,506	0, 251	0,001
2,7	2, 176	0,218	0,001
2,8	1,516	0, 152	0,001
2,9	1,686	0, 169	0,001
3	2,685	0,269	0,001
3,1	3,895	0,39	0,001
3, 15	4,595	0,46	0,001
3,2	3,675	0,368	0,001
3,25	2, 166	0,217	0,001
3,3	0,976	0,098	0,001
3,4	-0,124	-0,012	0,001
3,5	-0,654	-0,065	0,001
3,6	-0,694	-0,069	0,001
3,7	0,426	0,043	0,001
3,8	0,486	0,049	0,001
3,9	0,776	0,078	0,001
4	0,326	0,033	0,001

Таблица 2 : данные для графика спектра

4 Вывод

В ходе работы было исследовано явление β -распада 137 Cs. В спектре β -частиц наблюдаются две области: электроны, рождённые в паре с антинейтрино (приближаемая по Лоренцу кривая на графике спектра) и конверсионные электроны, испускаемые в результате перехода ядра на более низкий энергетический уровень (монохроматическая линия, строго

Т, кэВ	mkFermi	σ _{mkFermi}
1	0	0
4	0	0
9,1	0	0
16	295,02	14,77
24,8	205, 35	10, 28
35,3	95,76	4,79
47,5	190,51	9,53
61,3	218, 36	10,92
76,5	223, 38	11, 17
84,6	265,87	13,3
93, 1	294, 83	14,74
110,8	281,1	14,06
120, 1	279,64	13, 98
129,7	286,02	14,3
149,7	76	3,8
170,5	261, 14	13,06
192,3	245,6	12, 28
214,8	235,83	11,79
238,8	222,56	11, 13
261,8	205, 15	10, 26

Таблица 3: данные для графика

определённое значение энергии 634 кэВ).

Также с помощью графика Ферми-Кюри ($\frac{\sqrt{N}}{p^{3/2}}=f(T_{kin})$) было определено максимальное значение энергии β -частиц в спектре: $E_{max}=567,22$ кэВ Полученное значение отличается приблизительно на 10% от $E_{conv}=634$ кэВ, т.е. результат находится в пределах погрешности взятой для измерения числа электронов.

Т, кэВ	mkFermi	$\sigma_{mkFermi}$
286,3	175,04	8,75
311,3	162,65	8, 13
336,8	149, 35	7,47
362,7	131,5	6,58
389	113,5	5,68
415,7	97,86	4,89
442,7	86,03	4,3
470, 1	65,3	3, 27
497,7	57,5	2,88
525,6	45, 45	2, 27
553,8	45,47	2, 27
582, 1	54,55	2,73
610,7	62, 54	3, 13
625, 1	66, 32	3,32
639,5	57,92	2,9
653,9	43,44	2, 17
668,4	28,5	1,43
697,5	0	0
726,8	0	0
756, 2	0	0
785,8	15,86	0,79
815,4	16, 28	0,81
845, 2	19,78	0,99
875, 1	12, 34	0,62

Таблица 4 .2: данные для графика

Рис. З Зависимость интенсивности потока частиц от силы тока в магнитной линзе

Рис. 4 График Ферми-Кюри