The result of t-SNE is quite remarkable. All the classes are quite clearly separated. The ones and nines are somewhat split up, but most of the classes form a single dense group. Keep in mind that this method has no knowledge of the class labels: it is completely unsupervised. Still, it can find a representation of the data in two dimensions that clearly separates the classes, based solely on how close points are in the original space.

The t-SNE algorithm has some tuning parameters, though it often works well with the default settings. You can try playing with perplexity and early_exaggeration, but the effects are usually minor.

Clustering

As we described earlier, *clustering* is the task of partitioning the dataset into groups, called clusters. The goal is to split up the data in such a way that points within a single cluster are very similar and points in different clusters are different. Similarly to classification algorithms, clustering algorithms assign (or predict) a number to each data point, indicating which cluster a particular point belongs to.

k-Means Clustering

k-means clustering is one of the simplest and most commonly used clustering algorithms. It tries to find *cluster centers* that are representative of certain regions of the data. The algorithm alternates between two steps: assigning each data point to the closest cluster center, and then setting each cluster center as the mean of the data points that are assigned to it. The algorithm is finished when the assignment of instances to clusters no longer changes. The following example (Figure 3-23) illustrates the algorithm on a synthetic dataset:

In[47]:

mglearn.plots.plot_kmeans_algorithm()