

Logică Matematică și Computațională

Anul I, Semestrul II 2025

Laurențiu Leuștean

Pagina web: https://cs.unibuc.ro/courses/lmc/

.

LOGICA PROPOZIŢIONALĂ

Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacţionat violent la acuzaţiile lui lon.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- Andrei este deştept.
- Marţienilor le place pizza.

Propoziții care nu sunt declarative

- Poţi să îmi dai, te rog, pâinea?
- ► Pleacă!

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm p, q, r, \ldots sau p_1, p_2, p_3, \ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. <math>r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,). Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Exemplu:

Fie propoziția:

 φ =Azi este vineri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este vineri. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este vineri și nu avem curs de logică.

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Definiția 1.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectori logici: \neg (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulţimea Sim a simbolurilor lui LP este

$$\mathit{Sim} := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Definiția 1.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Operația de bază pentru expresii este concatenarea: dacă $\varphi = \varphi_0 \dots \varphi_{k-1}$ și $\psi = \psi_0 \dots \psi_{l-1}$ sunt expresii, atunci concatenarea lor, notată $\varphi \psi$, este expresia $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$.

Definiția 1.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

,

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 1.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează Form. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

n

Formule

Exemple:

- \triangleright $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Principiul inducției pe formule

Propoziția 1.5 (Principiul inducției pe formule)

Fie P o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \mathbf{P} , atunci $(\varphi \to \psi)$ are proprietatea \mathbf{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- ho $\varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Propoziția 1.6 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- *V* ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 1.5), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 1.7

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi=((v_1\to v_2)\to (\neg v_1))$$
. Atunci
$$\mathit{SubForm}(\varphi)=\{v_1,v_2,(v_1\to v_2),(\neg v_1),\varphi\}.$$

Formule

Conectorii derivați \vee (se citește sau), \wedge (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedența mai mare decât ceilalți conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Propoziția 1.8 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A, \quad G_\neg: A \to A, \quad G_\to: A \times A \to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0)
$$F(v) = G_0(v)$$
 pentru orice variabilă $v \in V$.

(R1)
$$F(\neg \varphi) = G_{\neg}(F(\varphi))$$
 pentru orice formulă φ .

(R2)
$$F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$$
 pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ , $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$\begin{array}{rcl} c(v) &=& 0 & \text{pentru orice variabilă } v \\ c(\neg\varphi) &=& c(\varphi)+1 & \text{pentru orice formulă } \varphi \\ c(\varphi\to\psi) &=& c(\varphi)+c(\psi)+1 & \text{pentru orice formule } \varphi,\psi. \end{array}$$

În acest caz,
$$A=\mathbb{N},\ G_0:V o A,\ G_0(v)=0,$$

$$G_\neg:\mathbb{N}\to\mathbb{N},\qquad G_\neg(n)=n+1,$$

$$G_\to:\mathbb{N}\times\mathbb{N}\to\mathbb{N},\quad G_\to(m,n)=m+n+1.$$

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}.$

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$\neg: \{0,1\} \rightarrow \{0,1\}, \qquad \begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$		ס	q	$p \wedge q$	р	q	$p \leftrightarrow q$
0	0	0	()	0	0	0	0	1
0	1	1	()	1	0	0	1	0
1	0	1		1	0	0	1	0	0
1	0 1 0 1	1		1	1	0 0 0 1	1	1	1 0 0 1

Observatie

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg(p \to \neg q)$ și $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Definiția 1.9

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 1.10

Pentru orice evaluare e : $V \rightarrow \{0,1\}$ există o unică funcție

$$e^+: \textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice $v \in V$;
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$;
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice φ , $\psi \in Form$.

Dem.: Aplicăm Principiul recursiei pe formule (Propoziția 1.8) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ și}$ $G_{\neg} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ , ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate ${m P}$: pentru orice formulă ${m arphi}$,

$$\varphi$$
 are proprietatea **P** ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $arphi = \neg \psi$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \rightarrow \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $\begin{array}{l} \blacktriangleright \ \varphi = \psi \rightarrow \chi \ \text{si} \ \psi, \chi \ \text{satisfac} \ \textbf{\textit{P}}. \ \text{Fie} \ e_1, e_2 : V \rightarrow \{0,1\} \ \ \text{a.î.} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\varphi). \ \ \text{Deoarece} \\ Var(\psi) \subseteq Var(\varphi) \ \text{si} \ Var(\chi) \subseteq Var(\varphi), \ \text{rezultă că} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\psi) \ \text{si pentru orice} \\ v \in Var(\chi). \ \ \text{Așadar, aplicând} \ \textbf{\textit{P}} \ \text{pentru} \ \psi \ \text{si} \ \chi, \ \text{obținem că} \\ e_1^+(\psi) = e_2^+(\psi) \ \text{si} \ e_1^+(\chi) = e_2^+(\chi). \ \ \text{Rezultă că} \\ \end{array}$

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

 $\mathsf{Fie}\ arphi$ o formulă.

Definiția 1.13

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- φ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- $ightharpoonup \varphi$ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 1.14

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 1.12.

Aşadar,
$$e^+(\varphi)$$
 depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

				1	
x_1	<i>X</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	φ
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(arphi)$
$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime+}(\varphi)$
:	:	٠	:		:
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$		$e_{2^k}'(x_k)$		$e_{2^k}^{\prime}^{+}(\varphi)$

Pentru orice i, $e'_i^+(\varphi)$ se definește similar cu Teorema 1.10.

$$\varphi$$
 este tautologie ddacă $e_i^{\prime+}(\varphi)=1$ pentru orice $i\in\{1,\ldots,2^k\}$.

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> ₂	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Fie φ, ψ două formule. Spunem că

- φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- $ightharpoonup \varphi$ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui LP.

Propoziția 1.16

Fie φ, ψ formule. Atunci

- (i) $\psi \models \varphi$ ddacă $\models \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă $(\psi \models \varphi \not i \varphi \models \psi)$ ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

Tautologii, consecințe semantice și echivalențe

Propoziția 1.17

Pentru orice formule φ, ψ, χ ,

terțul exclus	$\vDash \varphi \vee \neg \varphi$	(1)
modus ponens	$\varphi \wedge (\varphi \to \psi) \vDash \psi$	(2)
afirmarea concluziei	$\psi \vDash \varphi \to \psi$	(3)
contradicția	$\vDash \neg (\varphi \wedge \neg \varphi)$	(4)
dubla negație	$\varphi \sim \neg \neg \varphi$	(5)
contrapoziția	$\varphi \to \psi \sim \neg \psi \to \neg \varphi$	(6)
negarea premizei	$\neg \varphi \vDash \varphi \to \psi$	(7)
modus tollens	$\neg \psi \land (\varphi \to \psi) \vDash \neg \varphi$	(8)
zitivitatea implicatiei	$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$	(9)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan	$\neg (arphi \lor \psi)$	$\sim \neg \varphi \wedge \neg \psi$	(10)
	$\neg (\varphi \wedge \psi)$	$\sim \neg \varphi \vee \neg \psi$	(11)
exportarea și importarea	$\varphi \to (\psi \to \chi)$	$\sim \varphi \wedge \psi \to \chi$	(12)
idempotența	$\varphi \sim \varphi \wedge \varphi$	$ ho \sim arphi \lor arphi$	(13)
slăbirea	$\vDash \varphi \wedge \psi \to \varphi$	$\vDash \varphi \to \varphi \vee \psi$	(14)
comutativitatea	$\varphi \wedge \psi \sim \psi \wedge \varphi$	$\varphi \vee \psi \sim \psi \vee \varphi$	(15)
asociativitatea	$\varphi \wedge (\psi \wedge \chi)$	$\sim (\varphi \wedge \psi) \wedge \chi$	(16)
	$\varphi \lor (\psi \lor \chi) \smallfrown$	$\sim (\varphi \lor \psi) \lor \chi$	(17)
absorbţia	$\varphi \lor (\varphi)$	$(\psi) \sim \varphi$	(18)
	$\varphi \wedge (\varphi \setminus$	ψ) $\sim \varphi$	(19)
distributivitatea	$\varphi \wedge (\psi \vee \chi) \sim (\psi \vee \chi)$	$\varphi \wedge \psi) \vee (\varphi \wedge \chi)$	(20)
	$\varphi \lor (\psi \land \chi) \sim (\psi \land \chi)$	$\varphi \lor \psi) \land (\varphi \lor \chi)$	(21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi) \qquad (22)$$

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi) \qquad (23)$$

$$\varphi \land \psi \to \chi \sim (\varphi \to \chi) \lor (\psi \to \chi) \qquad (24)$$

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi) \qquad (25)$$

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi) \qquad (26)$$

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \land (\varphi \to \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi) \qquad (28)$$

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi \qquad (29)$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi \qquad (30)$$

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \qquad (31)$$

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \qquad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \qquad (34)$$

Dem.: Exercițiu.

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notații

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- φ este tautologie ddacă $\varphi \sim \top$.
- φ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Substituția

Definiția 1.18

Pentru orice formule φ, χ, χ' , definim

$$\varphi_{\chi}(\chi')$$
 := expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_{\chi}(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_{\chi}(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_{\chi}(\chi')$ este de asemenea formulă.
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie
$$\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$$
.

$$\lambda = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$$

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 1.20

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $\blacktriangleright \varphi \sim \psi$ implică $\varphi_{\nu}(\chi) \sim \psi_{\nu}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci şi $\varphi_v(\chi)$ este nesatisfiabilă.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \lor \ldots \lor \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \lor \ldots \lor \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 1.22

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercitiu.