5.11 Exam: Quadratic functions and their graphs (no calculator)

1. A quadratic function f is shown with x-intercepts of 1 and 5, and vertex (3, -4).

The function f can be written in the form $f(x) = (x - h)^2 + k$.

(a) Write down h and k.

[2]

The function can also be written in the form f(x) = a(x - a)(x - b)

(b) Write down the value of a and b.

[2]

(c) Find the *y*-intercept.

[2]

Working:	
	Answers:
	(a)
	(b)
	(c)

2. The diagram below shows part of the graph of the function $f(x) = x^2$.

- (a) g(x) is the image of f after a translation left 3 and up 1. Draw g.
- (b) g can be written in the form $g(x) = (x h)^2 + k$. Write down h and k. [2]

[2]

(c) Expand g to standard form, $g(x) = ax^2 + bx + c$. [2]

| Answers: | (a) | (b) | (c) |

Name:

3.	Let	f(x)	$=x^2$	+2x	+ 1	and	g(x)	= x	+ 1	L.
----	-----	------	--------	-----	-----	-----	------	-----	-----	----

(a) Write down
$$f(0)$$
. [1]

(b) Find
$$(f - g)(x)$$
. [1]

(c) Find
$$(f \div g)(x)$$
 in simplest form, $x \neq 0$. [2]

(d) Write down
$$g^{-1}(4)$$
. [2]

(e) Find
$$g^{-1}(x)$$
. [2]

(f) Find
$$(f \circ g)(x)$$
. [2]

(1) Time $(f \circ g)(x)$.	L
Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)

4. Let $f(x) = x^2 - 6x + 7$. f can be written in the form $f(x) = (x - h)^2 + k$.

- (a) Write down the value of h and of k. [2]
- (b) Write down the equation of the axis of symmetry. [1]
- (c) Find the solutions of f(x) = 0. [2]
- (d) Draw the function f(x) on the grid below. [2]

Working:	
	Answers:
	(a)
	(b)
	(c)

[4]

Name:

5.	${\bf Consider}$	f(x) =	$x^2 + qx$	+ r. Th	e graph	of f	has a	minimum	value	when a	x =	-1.5
	The dista	ance bet	ween the	two zer	os of f i	s 9.						

- (a) Show that the two zeros are 3 and -6. [2]
- (b) Find the value of q and r.

Working:	
	Answers:
	(b)

6. Consider the equation $x^2 + (k-2)x = -4$, where k is a real number. Find the values of k for which the equation has two equal real solutions. [7]

Working:	
	Answers:

7. Let f(x) = a(x+3)(x-1). The following diagram shows part of the graph of f.

The graph has x-intercepts at (p,0) and (q,0), and a y-intercept at (0,12).

- (a) Write down the value of p and of q. [2]
- (b) Find the value of a. [3]
- (c) Find the equation of the axis of symmetry of the graph of f. [3]
- (d) Find the largest value of f.

The function f can be written in the form $f(x) = (x - h)^2 + k$. [3]

(e) Write down the value of h and k. [3]

Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)
	(e)