Sunny Storage

Smart grid

Sunny reference

https://solarsystem.nasa.gov/system/basic_html_elements/11561_Sun.png

State Space

5^150

Recap smartgrid

- Drie wijken met huizen die maximale output genereren
- Deze moeten worden gekoppeld aan batterijen met een vaste capaciteit
- 1. Connect alle huizen aan een batterij
- 2. Leg kabel tussen de huizen en batterijen die connectie maken en bereken de kosten -> optimaliseer!
- 3. Verplaats batterijen/verander capaciteit en kosten batterijen

Algoritmes

- Random
- Greedy
- Hillclimber
- Depth first

Random wijk 2

Kosten:

Tussen 45000 en 50000 (alleen kabels)

Hillclimber op basis van random

Kosten:

Tussen 40000 en 45000 (alleen kabels)

Greedy wijk 2

Kosten:

22257 (alleen kabels)

Hillclimber op basis van Greedy

Kosten:

22104 (alleen kabels)

Depth first search

Kosten:

21393 (alleen kabels)

Tijd: 2800 sec

Eerste resultaten...

Algorithms in progress

- Depth first search (sneller)
 - Lower bound?
- Beam search om richting BFS te gaan?

Batterijen verplaatsen

Optimale configuratie zoeken van batterijen: hoe kunnen we deze plaatsen zodat onze kabellengte, i.e. kosten zo laag

mogelijk blijven?

Op basis van hillclimber (greedy)

To do: Batterijen verplaatsen

K-means clustering

- Optimale afstand
- Gaat het passen?

Hillclimber

- Optimale prijs

Also, to do:

- Running day staat gepland!
 - Voor de statistiek