

Detailed Curriculum With Credit and Examination Scheme

F. Y. B. Tech. Semester I and II (Common to All Branches)

From Academic Year 2020-21 (Revision 1) (Approved by FoET 11 Jan 2020 and AC 02 May 2020)

K J Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Salient features and changes w.r.t. KJSCE 2018 scheme:

- Promotion to Project based learning
- Electives offered from First Year level itself
- New courses introduced:
 - o Python Programing in Semester II (while retaining Programing in C in Semester I)
 - o Biology for Engineers (as one of the electives)
 - o Engineering Explorations (as one of the electives)
- Wide choice of Exposure Courses for pursuing hobbies music, sports, yoga, literature etc.
- More stress is given on continuous assessment
- One ISE during semester and ESE for selected courses
- Internal assessment component increased to 20% (10% in KJSCE-2018)

Dates of Approval/Amendments:

- Presented and approved in the 1st FoET meeting of SVU held on 11th Jan 2020
- Presented in the 1st AC meeting held on 16 Jan 2020
- Presented by incorporating suggested modifications and approved in the 2nd AC meeting held on 02 May 2020
- In effect from Academic Year 2020-21

Program Outcomes (PO) – Common to all disciplines

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development
- **PO7. Multidisciplinary Competence:** Recognize/study/analyze/provide solutions to real-life problems of multidisciplinary nature from diverse fields
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics, responsibilities, and norms of the engineering practice.
- **PO9. Individual and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Acron	ym for category of courses	Acronym	s used in syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities, Social Sciences	IA	Internal Assessment
	and Management Courses		
PC	Professional Core Courses	O	Oral
PE	Professional Elective courses	P	Practical
OE	Open Elective Courses	P&O	Practical and Oral
LC	Laboratory Courses	TH	Theory
PR	Project	TUT	Tutorial
AC	Audit Course	TW	Term work
AOCC	Add on Credit Course	ISE	In- Semester Examination
AOAC	Add on Audit Course	CO	Course Outcome
AVAC	Add on Value Audit Course	PO	Program Outcome
EX	Exposure Course	PSO	Program specific Outcome
I	Interdisciplinary courses		
MNCC	Mandatory Non Credit Course		

Acronyms used for type of Course

Acronym	Definition
C	Core Course
E	Elective Course
0	Open Elective Technical
H	Open Elective
	Humanities/Management/SWAYAM-NPTEL
P	Project
${f L}$	Laboratory Course
T	Tutorial
X	Exposure course
A	Audit course

Acronyms used in Eight Digit Course code e.g. 116U06C101

Acronym	Definition
Serially as per code	
1	SVU-2020 First Revision
16	College code
U	Alphabet code for type of program
06	Program/Department code
C	Type of course
1	Semester I – semester number
01	First course of semester – course
	serial number

Semester I Group C COMP (Division A, B & C) and IT (Division G & H)

Credit Scheme

	ı	Credit Sch				
Course Code	Course Name	Teaching	Total	Credits Assigned	Total	Course
		Scheme (Hrs.)	Hrs.	TH - P - TUT	Credits	Category
		TH – P – TUT				•
116U06C101	Applied Mathematics I	3 - 0 - 1	04	3 - 0 - 1	04	BS
116U06C103	Engineering Chemistry	3 - 0 - 0	03	3 - 0 - 0	03	BS
116U06C105	Engineering Drawing	2 - 0 - 1	03	2 - 0 - 1	03	ES
116U06C107	Elements of Electrical	3 - 0 - 0	03	3 - 0 - 0	03	ES
	and Electronics					
	Engineering					
116U06L101	Programming in C	0 - 2 - 2	04	0 - 1 - 2	03	ES
116U06L103	Engineering Chemistry	0 - 2 - 0	02	0 - 1 - 0	01	BS
	Laboratory					
116U06L105	Engineering Drawing	0 - 2 - 0	02	0 - 1 - 0	01	ES
	Laboratory					
116U06L107	Elements of Electrical	0 - 2 - 0	02	0 - 1 - 0	01	ES
	and Electronics					
	Engineering					
	Laboratory					
116U06W101	Workshop I	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total		25		21	
116U06X1xx	Exposure Course	02				EX

	Examination Science							
Course	Course Name		Ex	<u>kamination</u>	Scheme &	Marks		
Code			CA	ESE	TW	\mathbf{O}^*	P&O	Total
		ISE	IA					
116U06C101	Applied Mathematics I	30	20	50	25			125
116U06C103	Engineering Chemistry	30	20	50				100
116U06C105	Engineering Drawing	30	20	50				100
116U06C107	Elements of Electrical							
	and Electronics	30	20	50				100
	Engineering							
116U06L101	Programming in C				75@			75
116U06L103	Engineering Chemistry				50*			50
	Laboratory				30.			30
116U06L105	Engineering Drawing				50			50
	Laboratory				30			30
116U06L107	Elements of Electrical							
	and Electronics				50*			50
	Engineering Laboratory							
116U06W101	Workshop I				50			50
116U06X1xx	Exposure Course							-
	Total							700

^{*}Includes continuous assessment of Term-work of 25 marks and Oral of 25 marks based on Laboratory work @Includes continuous assessment of Term-work of 25 marks and practical and Oral of 50 marks based on Laboratory work

Semester I Group P

ETRX (Division D), EXTC (Division E & F) and MECH (Division I & J)

Credit Scheme

Course Code	Course Name	Teaching	Total	Credits	Total	Course
Course Code	Course Name					
		Scheme (Hrs.)	Hrs.	Assigned	Credits	Category
		TH – P – TUT		TH – P – TUT		
116U06C101	Applied Mathematics I	3 - 0 - 1	04	3 - 0 - 1	04	BS
116U06C102	Engineering Physics	3 - 0 - 0	03	3 - 0 - 0	03	BS
116U06C104	Engineering Mechanics	3 - 0 - 0	03	3 - 0 - 0	03	ES
116U06L101	Programming in C	0 - 2 - 2	04	0 - 1 - 2	03	ES
116U06L102	Engineering Physics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	BS
116U06L104	Engineering Mechanics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	ES
116U06L106	Environment and Technology OR Engineering Exploration OR #Biology for Engineers	1-2-0	03	0-2-0	02	HS
116U06T101	Communication Skills	0 - 0 - 2	02	0 - 0 - 2	02	HS
116U06W101	Workshop I	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total		25		21	
116U06X1xx	Exposure Course	02				EX

^{# (}Biology for Engineers with teaching scheme 2 - 0 - 0)

Commo Codo	l		ion bene		m Calaamaa	Q. Manla		
Course Code	Course Name			Examinatio				
		CA		ESE	TW	\mathbf{O}^*	P&O	Total
		ISE	IA					
116U06C101	Applied Mathematics I	30	20	50	25			125
116U06C102	Engineering Physics	30	20	50				100
116U06C104	Engineering Mechanics	30	20	50				100
116U06L101	Programming in C				75@			75
116U06L102	Engineering Physics Laboratory				50*			50
116U06L104	Engineering Mechanics Laboratory				50*			50
116U06L106	Environment and Technology OR Engineering Exploration OR Biology for Engineers				50			50
116U06T101	Communication Skills				50			50
116U06W101	Workshop I				50			50
116U06X1xx	Exposure Course							
	Total							650

^{*}Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work @Includes continuous assessment of Term work of 25 marks and practical and oral of 50 marks based on Laboratory work

Semester II Group C COMP (Division A, B & C) and IT (Division G & H)

Credit Scheme

		Credit Bene				
Course Code	Course Name	Teaching	Total	Credits	Total	Course
		Scheme (Hrs.)	(Hrs.)	Assigned	Credits	Category
		TH - P - TUT		TH – P – TUT		
116U06C108	Applied Mathematics II	3 - 0 - 1	04	3 - 0 - 1	04	BS
116U06C102	Engineering Physics	3 - 0 - 0	03	3 - 0 - 0	03	BS
116U06C104	Engineering Mechanics	3 - 0 - 0	03	3 - 0 - 0	03	ES
116U06L102	Engineering Physics	0 - 2 - 0	02	0 - 1 - 0	01	BS
	Laboratory					
116U06L104	Engineering Mechanics	0 - 2 - 0	02	0 - 1 - 0	01	ES
	Laboratory					
116U06L106	Environment and	1 - 2 - 0	03	0 - 2 - 0	02	HS
	Technology OR					
	Engineering Exploration					
	OR					
	#Biology for Engineers					
116U06L108	Python programming	1 - 2 - 0	03	0 - 2 - 0	02	ES
116U06T101	Communication Skills	0 - 0 - 2	02	0 - 0 - 2	02	HS
116U06W102	Workshop II	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total		24		20	
116U06X1xx	Exposure Course	02				EX

^{# (}Biology for Engineers with teaching scheme 2 - 0 - 0)

	Examination Scheme							
Course Code	Course Name		E	<u>kamination</u>	Scheme &	Marks		
		CA		ESE	TW	\mathbf{O}^*	P&O	Total
		ISE	IA					
116U06C108	Applied Mathematics II	30	20	50	25			125
116U06C102	Engineering Physics	30	20	50				100
116U06C104	Engineering Mechanics	30	20	50				100
116U06L102	Engineering Physics				50*			50
	Laboratory				30.			30
116U06L104	Engineering Mechanics				50*			50
	Laboratory				30			30
116U06L106	Environment and							
	Technology OR				50			50
	Engineering Exploration				30			30
	OR Biology for Engineers							
116U06L108	Python programming				75@			75
116U06T101	Communication Skills				50			50
116U06W102	Workshop II				50			50
116U06X1xx	Exposure Course							
	Total							650

^{*}Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work @Includes continuous assessment of Term work of 25 marks and Practical and Oral of 50 marks based on Laboratory work

Semester II Group P

ETRX (Division D), EXTC (Division E & F) and MECH (Division I & J)

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total credits	Course Category
116U06C108	Applied Mathematics II	3-0-1	04	3-0-1	04	BS
116U06C103	Engineering Chemistry	3-0-1 3-0-0	03	3-0-1 3-0-0	03	BS
116U06C105	Engineering Chemistry Engineering Drawing	$\frac{3-0-0}{2-0-1}$	03	3-0-0 2-0-1	03	ES
116U06C107	Elements of Electrical	3 - 0 - 0	03	3 - 0 - 0	03	ES
	and Electronics					
=== .= . = .	Engineering					
116U06L103	Engineering Chemistry	0 - 2 - 0	02	0 - 1 - 0	01	BS
	Laboratory					
116U06L105	Engineering Drawing	0 - 2 - 0	02	0 - 1 - 0	01	ES
	Laboratory					
116U06L107	Elements of Electrical	0 - 2 - 0	02	0 - 1 - 0	01	ES
	and Electronics					
	Engineering Laboratory					
116U06L108	Python programming	1 - 2 - 0	03	0 - 2 - 0	02	ES
116U06W102	Workshop II	0 - 2 - 0	02	0 - 2 - 0	02	ES
	Total		24		20	
116U06X1xx	Exposure Course	02				EX

Examination Scheme								
Course Code	Course Name		E	Examinatio	n Scheme &	& Marks		
		CA		ESE	TW	O*	P&O	Total
		ISE	IA					
116U06C108	Applied Mathematics II	30	20	50	25			125
116U06C103	Engineering Chemistry	30	20	50				100
116U06C105	Engineering Drawing	30	20	50				100
116U06C107	Elements of Electrical and Electronics Engineering	30	20	50				100
116U06L103	Engineering Chemistry Laboratory				50*			50
116U06L105	Engineering Drawing Laboratory				50			50
116U06L107	Elements of Electrical and Electronics Engineering Laboratory				50*			50
116U06L108	Python programming				75@			75
116U06W102	Workshop II				50			50
116U06X1xx	Exposure Course							
	Total		_					700

^{*}Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work @Includes continuous assessment of Term work of 25 marks and practical and oral of 50 marks based on Laboratory work

Course-wise Detailed Syllabus

Course Code	Course Title								
116U06C101		Applied Mathematics - I							
		TH		P)	,	TUT	Total	
Teaching Scheme(Hrs.)					01*		04		
Credits Assigned		03					01	04	
		Marks							
Examination	CA	CA		TDXX/		_	P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	100	1 otal	
	30	20	50	25				125	

^{*} Batch wise Tutorial

Course prerequisites

- Differentiation Methods
- Basics of Complex numbers
- Basics of Matrices, Inverse and Adjoint of Matrix

Course Objectives

The objective of the course is to impart knowledge of De-Moivre's theorem, hyperbolic functions and logarithm of complex numbers. The course clarifies the concept of partial differentiation and its applications. The concept of rank of matrix, solving system of linear equations, Eigen values and Eigen vectors is also conveyed.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Solve problems involving different forms and properties of complex numbers, hyperbolic functions and logarithm of complex numbers.
- CO2. Apply the concept of rank of a matrix and numerical methods to solve system of linear equations.
- CO3. Find Eigen values, Eigen vectors of a matrix, apply Cayley-Hamilton theorem, diagonalise a matrix and find functions of square matrices.
- CO4. Find partial derivatives of multivariable functions, apply the concept of partial differentiation to find maxima and minima of multivariable functions (2-3 variables)
- CO5. Apply Euler's theorem to prove results related to Homogeneous functions.

Module	Unit	Details	Hrs.	CO
No.	No.		10	001
1	_	lex Numbers, Hyperbolic Functions and Logarithm of lex Number	12	CO1
	1.1	Statement of De Moivre's theorem and related examples		
	1.2	Powers and roots of complex numbers		
	1.3	Circular functions of complex number and hyperbolic		
		functions		
	1.4	Inverse circular and inverse hyperbolic functions		
	1.5	Logarithmic functions		
	1.6	Separation of real and imaginary parts		
		#Self-learning topics: Expansion of $\sin^n \theta$, $\cos^n \theta$ in		
		terms of sine and cosine of multiples of angle θ and		
		expansion of $sinn\theta$, $cosn\theta$ in powers of $sin\theta$, $cos\theta$		
2		x Theory: Rank of Matrix	8	CO 2
	2.1	Types of matrices: Hermitian, Skew-Hermitian, Unitary		
		and Orthogonal matrix		
	2.2	Rank of a matrix using row echelon forms, reduction to		
		normal form, and PAQ form		
	2.3	System of homogeneous and non-homogeneous		
		equations, their consistency and solutions		
	2.4	Linearly dependent and independent vectors		
	2.5	Solution of system of linear algebraic equations by		
		(a) Gauss Seidal method (b) Jacobi iteration method		
		#Self-learning topics: Symmetric, Skew-symmetric		
		matrices and properties, Properties of adjoint and inverse		
		of a matrix		~ -
3		x Theory: Eigen values & Eigen vectors	12	CO 3
	3.1	Characteristic equation, Eigen values and Eigen vectors,		
	2.2	Properties of eigen values and eigen vectors		
	3.2	Statement of Cayley-Hamilton theorem, Examples based		
		on verification and application of Cayley-Hamilton		
	2.2	theorem Similarity of matrices Diagonalisation of a matrix		
	3.3	Similarity of matrices, Diagonalisation of a matrix Functions of square matrix, Derogatory and non-		
	3.4	Functions of square matrix, Derogatory and non- derogatory matrices, Minimal polynomial		
4	Dortio	al Differentiation and Application	9	CO4
-	4.1	Functions of several variables, Partial derivatives of first	<u> </u>	CU4
	7.1	and higher order (definition using limits and simple		
		problems)		
	4.2	Differentiation of composite functions and Total		
	4.5	differentials		
	4.3	Maxima and minima of a function of two independent		
		variables		
	4.4	Introduction of Jacobian of two and three independent		
	<u> </u>	variables (simple problems)		

5	Homo	ogeneous Functions	4	CO5
	5.1 Euler's theorem on homogeneous functions with two and			
		three independent variables (statement only) and problems		
	5.2 Deductions(Corollaries) from Euler's theorem (statements			
		only) and problems		
		Total	45	

Text Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Shanti Narayan	A text book of Matrices	S. Chand, India	10 th Edition
				2004
3.	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012
			India	

Reference Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and	
No.			Publisher with	Year of	
			country Publi		
1.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition	
		Mathematics	Limited, India	2015	
2.	Dennis G. Zill and	Advanced Engineering	Narosa	3 rd Edition	
	Michael R. Cullen	Mathematics	Publication	2010	
			India		
3.	Glyn James	Advanced Modern	Pearson	4 th Edition	
		Engineering Mathematic	Publication India	2010	
4.	Ramana B.V.	Higher Engineering	Tata Mcgraw	34th Edition	
		Mathematics	Hill New Delhi,	(reprint) 2019	
			India		

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Course Code	Course Title							
116U06C102		Engineering Physics						
		TH		P		r	TUT	Total
Teaching Scheme (Hrs.)	03							03
Credits Assigned		03						03
	Marks							
Examination	CA		ECE	TEXX?	0	Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	U	P	140	Total
	30	20	50					100

Course prerequisites

- Basics of units and conversions Basics of optics, mechanics, electricity and magnetism, thermal properties of conductors and semiconductors, particle properties of radiation
- Basics of differentiation and integration methods, vectors algebra, trigonometry, complex numbers, probability

Course Objectives

This course delivers the fundamental physical concepts and mathematical foundations of a variety of real-life phenomena in the field of optics, photonics, electromagnetism and technologically useful materials such as semiconductors, dielectrics, optical fibres and liquid crystals. The course covers working principles of different types of sensors and it intends to convey the importance of quantum mechanics to advanced engineering and computing applications.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Explain a variety of optical phenomena using concepts wave optics and photonics
- CO2. Analyze basic physical properties of technologically important materials
- CO3. Identify the scope of quantum mechanics in engineering and computing applications
- CO4. Solve engineering problems using mathematical foundations of electromagnetism
- CO5. Relate working of different types of sensors with the physics of materials

NT.	Unit	Details	Hrs.	CO
No.	No.			
1	Optics	s and Photonics	08	CO 1
	1.1	Thin film interference:		
		Role of film thickness, factors affecting path difference,		
		thin film of uniform thickness - maxima/minima		
		conditions, formation of colours, combination of media,		
		antireflecting films		
	1.2	Polarization:		
		Production and detection of polarized light, Brewster's		
		law, Malus' law, birefringence, superposition of two		
		polarized waves, conditions for plane, elliptical and		
		circularly polarized light		
	1.3	Principles of lasers:		
		Interaction of radiation with matter, population, pumping,		
		active medium, optical resonator, Einstein's coefficients,		
		population inversion, threshold condition, laser beam		
_		parameters		
2		eering Materials	09	CO 2
	2.1	Semiconductors:		
		Doping, concepts of hole, effective mass and mobility,		
		carrier concentration, conductivity and their temperature		
		dependence, drift and diffusion currents, Fermi-Dirac		
		statistics, Fermi level, temperature dependence of Fermi		
-	2.2	level and Fermi-Dirac function		
	2.2	Dielectrics:		
		Dielectric parameters, types of polarizations, derivation		
		for electronic polarizability, Clausius-Mossotti equation, frequency dependence, dielectric strength, ferroelectricity		
_	2.2			
	2.3	Optical fibres:		
		Total internal reflection, acceptance angle, numerical aperture (with derivation), types of fibres, modes of		
		propagation, V-number, attenuation, dispersion, bit rate		
	2.4	Liquid crystals:		
	4.4	Classification, phases, properties, applications		
3	Ouan	tum Mechanics	10	CO 3
3	3.1	Dual nature of matter:	10	CO 3
	J.1	Limitations of classical physics, scope of quantum		
		mechanics, de'Broglie hypothesis, Davison-Germer		
		experiment		
<u> </u>	3.2	Uncertainty principle:		
		Wave and group velocity, matter waves, wave function,		
		probability amplitude, normalization, uncertainty		
		principle		
	3.3	Schrodinger equation:		
		Time dependent Schrodinger equation, reduction to time		
		independent form, particle in a box problem (1-		
		dimensional infinite potential well) - full solution,		
		boundary conditions, energy and momentum quantization,		
		extension to 3-dimensions, degeneracy		

4.1 Vector operators: Gradient, divergence, curl and their physical interpretation, fundamental theorems of vector calculus 4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves		3.4	Basics of quantum computing:		
4.1 Vector operators: Gradient, divergence, curl and their physical interpretation, fundamental theorems of vector calculus 4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			Physics of information, qubit, quantum algorithms,		
4.1 Vector operators: Gradient, divergence, curl and their physical interpretation, fundamental theorems of vector calculus 4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			quantum hardware		
Gradient, divergence, curl and their physical interpretation, fundamental theorems of vector calculus 4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	4	Elect	romagnetism	08	CO 4
interpretation, fundamental theorems of vector calculus 4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS		4.1	Vector operators:		
4.2 Electrostatics and electromagnetic induction: Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			Gradient, divergence, curl and their physical		
Electric charge density, electric field, electric potential and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			interpretation, fundamental theorems of vector calculus		
and their interrelations, Coulomb's and Gauss' law, Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS		4.2	Electrostatics and electromagnetic induction:		
Gauss' and Faraday's laws in integral and differential forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS					
forms 4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			*		
4.3 Magnetostatics: Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			Gauss' and Faraday's laws in integral and differential		
Biot-savart's and Ampere's law, absence of magnetic monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS			forms		
monopoles, Ampere's law in integral and differential form 4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS		4.3	<u> </u>		
4.4 Electromagnetic wave propagation: Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS					
Continuity equation, Maxwell's correction to Ampere's law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS					
law, Maxwell's equations, electromagnetic waves in vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS		4.4			
vacuum, speed of light, energy density of electromagnetic waves 5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS					
Sensors Technology					
5 Sensors Technology 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS					
 5.1 Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS 			YYYOYYOO		
Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS				4.0	GO =
ultrasonic waves, quartz crystal 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5		rs Technology	10	CO 5
 5.2 Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS 	5		ors Technology Ultrasonic sensors:	10	CO 5
Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5		Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of	10	CO 5
thermoelectric materials and series 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal	10	CO 5
 5.3 Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS 	5	5.1	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors:	10	CO 5
Fluxgate magnetometer, Hall probe, magnetoresistance 5.4 Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity,	10	CO 5
 5.4 Radiation sensors:	5	5.1	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series	10	CO 5
Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors:	10	CO 5
PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1 5.2 5.3	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance	10	CO 5
and charged-coupled devices, pyranometer 5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1 5.2 5.3	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors:	10	CO 5
5.5 Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1 5.2 5.3	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors: Types of radiation, G.M. counter, scintillation counter,	10	CO 5
Sensing by plants (tropisms) and animals, MEMS, NEMS	5	5.1 5.2 5.3	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes	10	CO 5
	5	5.1 5.2 5.3 5.4	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer	10	CO 5
und 11D I dubba beliber 101 didilibation applications	5	5.1 5.2 5.3 5.4	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer Environmental and biomedical sensors:	10	CO 5
Total 45	5	5.1 5.2 5.3 5.4	Ultrasonic sensors: Piezoelectric and magnetostriction effects, detection of ultrasonic waves, quartz crystal Thermoelectric sensors: Seabeck and Peltier effect, laws of thermoelectricity, thermoelectric materials and series Magnetic sensors: Fluxgate magnetometer, Hall probe, magnetoresistance Radiation sensors: Types of radiation, G.M. counter, scintillation counter, PMT, solid state detectors - photoconductors, photodiodes and charged-coupled devices, pyranometer Environmental and biomedical sensors: Sensing by plants (tropisms) and animals, MEMS, NEMS	10	CO 5

Textbooks:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy	A Textbook of Engineering Physics	S Chand	11 th Edition, 2018
2.	Gaur, Gupta	Engineering Physics	Dhanpat Rai, India	8/e, 2018

Reference Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Ajoy Ghatak	Optics	McGraw Hill	6 th Edition,
			India	2017
2.	Arthur Beiser	Concepts of Modern	McGraw Hill	7 th Edition,
		Physics	India	2017
3.	David Griffiths	Introduction to	PHI	5 th Edition,
		Electrodynamics		2015
4.	Introduction to Solid	Charls Kittle	Wiley India	Special
	State Physics			Indian
				Edition,
				2019
5.	Michael Shur	Physics of Semiconductor	Pearson	Special
		Devices		Indian
				Edition,
				2019

Course Code	Course Title							
116U06C103		Engineering Chemistry						
		TH		P		,	TUT	Total
Teaching Scheme (Hrs.)	03							03
Credits Assigned		03						03
	Marks							
Examination	CA		ECE	TW	0	P	P&O	Total
Scheme	ISE	IA	ESE	1 44	J	r	100	1 Utal
	30	20	50					100

Course prerequisites

• Higher secondary level Chemistry

Course Objectives

The objective of course is to appreciate the basic concepts of chemistry behind the development of futuristic materials and their applications in engineering and technology. The course objective is to understand chemical processes involved in development of sustainable energy sources. To analyze the knowledge of analytical techniques involved in the analysis and characterization of chemical compounds, nanomaterial.

Course Outcomes

After successful completion of the course, the student will able to-

- CO1. Understand the importance of water in industry and methods to produce soft water and wastewater treatment.
- CO2. Demonstrate and analyze the knowledge of polymeric for futuristic engineering applications.
- CO3. Identify and compare the material best suited for the energy production in sustainable and efficient manner.
- CO4. Apply the knowledge of green chemistry and nanotechnology for solving the problems of society in sustainable and greener way.
- CO5. Understand and apply basic concepts of spectroscopy and electro-analytical technique in characterizing chemical compounds.

Module No.	Unit No.	Details	Hrs.	CO
1	Water		10	CO1
1	1.1	Introduction, Types of Hardness, Disadvantages of hardness Equivalence of CaCO ₃ , Experimental determination of hardness.	10	COI
	1.2	Softening of Hard water: Lime soda method Zeolite method, Ion Exchange process, Desalination of brackish water using Electro dialysis, Reverse osmosis		
	1.3	Methods to determine extent of water pollution, BOD, COD, Treatment of industrial wastewater.		
2	Polyme	r Chemistry	9	CO2
	2.1	Introduction, Classifications, Characteristic properties, Concept of molecular mass, determination of molecular mass, Glass transition temperature Tg		
	2.2	Methods of polymerization, Compounding and fabrication of plastics, Structure and property relationship of polymer		
	2.3	Synthesis, properties and Application of few commercially important polymers, Conducting polymer, Liquid crystal Polymer		
3	Energy	· · ·	10	CO2
	3.1	Introduction, Classification, Renewable energy, production of electricity using solar energy, Photo voltaic cells, Fuel cell		
	3.2	Fuel: Definition, characteristic of good fuel, Calorific value of fuel, Solid fuel, Analysis of coal and its significance, Liquid fuel, refining of petroleum, cracking, characteristic of fuel for internal combustion engine (Knocking, anti-knocking		
	3.3	agents, octane number, cetane number, unleaded petrol) Waste to energy conversion: Solid waste and its classification, need of energy production from waste, method of conversion of energy from solid waste		
4	Green (Chemistry and Nanotechnology	7	CO4
	4.1	Green Chemistry: Introduction, Goals, 12 principles of green chemistry, Significance of 12 principles with industrial examples, Green synthesis of few important materials	-	
	4.2	Nanomaterial and Nanotechnology: Introduction, properties and synthesis of nanomaterial, Properties and applications of special nanomaterial structure carbon Clusters		
5	Spectro	scopy and Instrumental methods of Analysis	9	CO5
	5.1	UV spectroscopy, Principle, Instrumentation and applications		
	5.2	IR spectroscopy, Basic Principle, Instrumentation and applications		
	5.3	1H NMR Spectroscopy: Principle, Instrumentation, Chemical Shift, Factors affecting chemical shift, Applications.		
	5.4	Electroanalytical techniques, pH metry, Conductometry, Potentiometry		

Text Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Dr. S.S.Dara, Dr. S.S.	A textbook of	S. Chand, India	Revised
	Umare	Engineering Chemistry		edition, 2015
2.	Shashi Chawla	A textbook of	Dhanpat Rai &	3 rd edition,
		Engineering Chemistry	Co.	2017
3.	R Gopalan, D	Engineering Chemistry	Vikas Publishing	4 th edition,
	Venkappayya,		House, India	2018
	Sulochana Nagarjan			

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	K. SESHA Maheswaramma, Mridula Chugh	Engineering Chemistry	Pearson, India	Revised edition, 2016
2.	O G Palanna	Engineering Chemistry	Mc Graw Hill, India	2 nd edition, 2017

Course Code	Course Title						
116U06C104	Engineering Mechanics						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	03						03
Credits Assigned	03					03	
				Marks			
Examination	C	CA		TP\$\$7		P&O	Total
Scheme	ISE	IA	ESE	TW	0	1 & O	Total
	30	20	50				100

Course prerequisites

- Basics of units and conversions
- Basics of Trigonometry
- Newton's Laws of Motion

Course Objectives

Engineering mechanics is the application of physics to solve problems involving common engineering elements. This course introduces system of forces and its effect on stationary and moving objects. The goal of this course is to expose students to problems in real-world scenarios and respond accordingly.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Evaluate resultant and moment of a force system
- CO2. Analyze the concept of kinematics of particle and rigid body.
- CO3. Determine center of gravity of wires (rods), lamina and solids
- CO4. Analyze applications of equilibrium using free body diagram
- CO5. Analyze the dynamic system using D'Alembert, work energy and impulse momentum principle.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Syster	7	CO 1	
	1.1	System of coplanar forces: Resultant of concurrent forces,		
		parallel forces, non-concurrent non parallel system of		
		forces, moment of force about a point, couples,		
		Varignon's theorem, Principle of transmissibility of forces		
	1.2	Resultant of forces in space		
2	Kinen	natics of Particles and Rigid Bodies	11	CO 2
	2.1	Variable motion, motion curves (a-t, v-t, s-t) (acceleration		
		curves restricted to linear acceleration only), motion along		
		plane curved path, velocity & acceleration in terms of		
		rectangular components, tangential & normal component		
		of acceleration, relative velocities.		
	2.2	Introduction to general plane motion, problems based on		
		ICR method for general plane motion of bodies (up to 2		
		linkage mechanism and no relative velocity method)		
3		oid of Wires, Laminas and Solids	5	CO 3
	3.1	Centroid of wires/rods		
		Centroid of plane laminas: Plane lamina consisting of		
		primitive geometrical shapes		
		Center of gravity of solids: Solids consisting of primitive		
		solids		
4		brium of Force System and Friction	13	CO 4
	4.1	Equilibrium of system of coplanar forces: Condition of		
		equilibrium for concurrent forces, parallel forces and non-		
		concurrent, non-parallel force system (general force		
		system), Free body diagram.		
	4.2	Types of support, loads, beams, determination of reactions		
		at supports for various types of loads on beams (excluding		
		internal hinge problems)		
	4.3	Laws of friction, cone of friction, angle of repose,		
		equilibrium of bodies on inclined plane, application to		
		problems involving wedges and ladders		~~=
5		ics of particle	9	CO5
	5.1	Force and acceleration: Introduction to basic concepts,		
		equations of dynamic equilibrium, Newton's second law		
		of motion (only rectilinear motion)		
	5.2	Work energy principle		
	5.3	Impulse and Momentum: Principle of linear impulse and		
		momentum, law of conservation of momentum, impact		
		and collision, direct central and oblique central impact.		
	•	Total	45	

Text Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Tayal, A.K.	Engineering	Universal	14th
		Mechanics, Statics	Publication,	Edition
		and Dynamics	India	2011
2.	Bhavikatti S. S.	Engineering	New Age	Revised
		Mechanics	international,	Edition
			India	2019

Reference books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Hibbeler, H. C.	Engineering	Prentice Hall	Revised
	and Gupta	Mechanics, Statics	Private	Edition
		and Dynamics	limited, India	2017
2.	Bhattacharyya B.	Engineering	Oxford	2nd Edition
		Mechanics	University	2014
			Press,	
			India	
3.	Ram H.D. and	Foundations and	Cambridge	1st Edition
	Chauhan A.K.	Applications of	University	2015
		Engineering	Press, UK	
		Mechanics		

Course Code	Course Title						
116U06C105	Engineering Drawing						
	TH			P		TUT	Total
Teaching Scheme(Hrs.)	01					02*	03
Credits Assigned	01					02	03
	Marks						
Examination	CA		ECE	TEXX/		P&O	Total
Scheme	ISE	IA	ESE	TW	О	rau	1 Otal
	30	20	50				100

^{*} Batch wise Tutorial

Course prerequisites

- Knowledge of various geometric constructions.
- Basics of trigonometry

Course Objectives

The students will be able to

- 1. Familiarize with the conventions and standards along with the principles of projections applied to lines and points.
- 2. Apply the principles of orthographic projections to draw elevation, plan, End view, Isometric views etc.
- 3. Apply the principles of orthographic projections to draw various views of regular solid objects.
- 4. Apply the fundamentals of solid geometry and develop lateral surfaces of solids

Course Outcomes

At the end of successful completion of the course the student will be able to visualize and draw

- CO1. Projection of lines and planes
- CO2. Orthographic and sectional views of any 3D object.
- CO3. Isometric drawing.
- CO4. Projection of regular solids
- CO5. Section and lateral development of regular solids

Module	Unit	Details	Hrs.	CO		
No.	No.					
1	Projec	04	CO 1			
	1.1	Standard sizes of drawing sheets, Types of Lines,				
		Dimensioning, Scales, Drawing Pencils etc.				
	1.2	Projection of points, Projection of lines inclined to both				
		the reference planes.				
	1.3	Projection of Planes: Triangular, Square, Rectangular,				
		Pentagonal, Hexagonal and circular planes inclined to				
		one reference plane and perpendicular to other.				
2	Ortho	graphic Projection	03	CO 2		
	2.1	Orthographic projections of simple machine parts by first				
		angle method as recommended by Indian standards,				
		Sectional views of simple machine parts (full section).				
3	Isome	tric View	02	CO 3		
	3.1	Introduction to Isometric drawing and construction of				
		isometric drawing of machine parts				
		tudents have to prepare a Simple 3D model with at least f	ive com	ponents		
using Soli						
4	Projec	ction of Solids	03	CO 4		
	4.1	Introduction to Projection of Solids, Classification of				
		Solids and Projection of right regular solids (prism,				
		pyramid, cylinder, and cone) inclined to both reference				
		planes (excluding spheres, hollow and composite solids)				
5	Sectio	n and Development of Solids	03	CO5		
	5.1	Projection of sectional views for solids (prism, pyramid,				
		cylinder, and cone) cut by plane perpendicular to one and				
		inclined to other reference planes (excluding curved				
		cutting planes).				
	5.2	Lateral surface development of prism, pyramid, cylinder,				
		cone with section plane inclined to one reference plane				
		only. (excluding reverse development)				
		Total	15			

Text Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
1,00			country	Publication
1.	N.D. Bhatt	Machine Drawing	Charotar	53 rd edition,
	V.M. Panchal		Publishing	India,2014
			House Pvt. Ltd	
2.	P.J. Shah	Engineering Graphics	S. Chand	Revised
			Publications	Edition, India,
				2014
3.	Dhananjay Jolhe	Engineering Drawing	Tata McGraw	Revised
			Hill	Edition, India,
				2017

Reference Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of Publication
1	N.D. Bhatt	Engineering Drawing	country Charotar	53 rd Revised
1	N.D. Bliatt	Eligiliceting Drawing		
			Publishing	2014
			House Pvt. Ltd	
2	P. S. Gill	Engineering Graphics	S.K. Kataria &	Revised
		and Drafting	Sons	Edition,
				India,2014

Course Code	Course Title							
116U06C107	Elements of Electrical and Electronics Engineering							
	ТН			P	•	,	TUT	Total
Teaching Scheme(Hrs.)	03							03
Credits Assigned	03				•			03
	Marks							
Examination	CA .		ECE	TW	0	P	P&O	Total
Scheme	ISE	IA	ESE	1 77	J	ľ	100	1 Utai
	30	20	50					100

Course prerequisites

• Knowledge of Basic Electrical parameters: Resistance, Inductance, Capacitance, Frequency, Voltage, Current and Power and Energy, basic laws of magnetism

Course Objectives

It is difficult to imagine life without electricity and electronics. Electricity plays a major role in the working of all minor and major devices used in our day to day life. In this course students acquire fundamental knowledge to understand the design of electrical and electronics systems.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Analyze resistive networks excited by DC sources using various network theorems
- CO2. Explain rectifier-filter circuits using PN junction diode and working of Bi-polar junction and field effect transistor.
- CO3. Demonstrate and analyze steady state response of single phase and three phase circuits.
- CO4. Understand principles and working of AC and DC machines with their applications.
- CO5. Understand operational amplifier and its applications

No. No. 1 DC circuits 1.1 Concept of dependent and independent sources, ideal and practical voltage and current sources, Kirchhoff's Laws, source transformation and network terminology. 1.2 Resistive network simplification, Series, parallel connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	Module
1.1 Concept of dependent and independent sources, ideal and practical voltage and current sources, Kirchhoff's Laws, source transformation and network terminology. 1.2 Resistive network simplification, Series, parallel connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton''s theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	No.
practical voltage and current sources, Kirchhoff's Laws, source transformation and network terminology. 1.2 Resistive network simplification, Series, parallel connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	1 <u>I</u>
source transformation and network terminology. 1.2 Resistive network simplification, Series, parallel connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton"s theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
1.2 Resistive network simplification, Series, parallel connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
connection and Star-Delta transformations 1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	<u> </u>
1.3 Mesh and nodal analysis, concept of super mesh and super node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
node (Analysis only with independent sources) 1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	_
1.4 Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
theorem, Maximum power transfer theorem (Analysis only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	<u> </u>
only with independent sources) 2 Basic Electronic devices and their applications 2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
2.1 P-N Junction diode: Construction and working of PN junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
junction diode, current voltage characteristics. Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
Zener Diode: Construction and working, current voltage characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
characteristics. Zener diode as voltage regulator. Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
Rectifiers: Half wave rectifiers with resistive load, full wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
wave center tap and bridge rectifier with resistive load with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
with their parameters such as ripple factor, rectification efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
efficiency, transformer utilization factor. Filter circuits 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
 2.2 Bipolar Junction Transistor: BJT operation, CE, CB and CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of 	
CC configuration of BJT, BJT as a switch, BJT as a current amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	-
amplifier and voltage amplifier. (No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
(No derivations and Numerical) 2.3 Field effect transistor: FET operation, Configuration of	
2.3 Field effect transistor: FET operation, Configuration of	
FET, Output and transfer characteristics, Common source	
FET amplifier, Comparison between BJT and FET	
(No derivations and Numerical)	
#Self-study topics	#
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB,	
ELCB, MCCB, Types of Wires and Cables, Earthing.	
Types of Batteries, Important Characteristics for Batteries.	
Elementary calculations for energy consumption, power factor	
improvement and battery backup.	
Lamps- fluorescent, CFL, LED.	
Electrical measuring instruments principle and applications-	
energy meter, megger, tong tester.	
3 AC circuits 12 CO	
2.1 Generation of alternating voltage, average value, RMS	
value, form factor, crest factor, phasor representation in rectangular and polar form.	
2.2 Steady state behavior of single phase AC circuits with	_
pure R, L, and C, concept of inductive and capacitive	
reactance, phasor diagram of impedance, phase	
relationship in voltage and current.	

2.3 2.4 2.5 2.6	RL, RC and RLC series and parallel circuits, concept of impedance and admittance, power triangle, power factor, active, reactive and apparent power, concept of power factor improvement. Series and parallel resonance, Q-factor and bandwidth Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of power in 3-phase system using two		
4 Electr	wattmeter method ical Machines	12	CO4
4.1 4.1 4.2 4.3	Single phase transformer construction and principle of working, emf equation of a transformer, losses in transformer, equivalent circuit of Ideal and practical transformer, voltage regulation and efficiency of transformer, phasor diagram at various loading condition (no numerical expected) Construction and working principle of DC motors such as series, shunt and compound, torque-speed characteristics, selection criteria and applications (no derivations and numerical expected) Three phase induction motor: Construction, working principle, Generation of rotating magnetic field, applications. (no derivations and numerical expected) Single phase induction motor: Construction, working principle, double field revolving theory, split phase, capacitor start and shaded pole motor. applications (no derivations and numerical expected)	12	CO4
5 Opera	ntional Amplifier	03	CO5
5.1	Operational amplifier, block diagram, characteristics of IDEAL opamp, open loop configuration, opamp as comparator Closed loop configuration applications: opamp as an inverting and noninverting amplifier, opamp adder and subtractor.		
	Total	45	

Text Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Singh Ravish R	Basic of Electrical and	Tata McGraw	1St Edition,
		Electronics Engineering	Hill, India	2013
2.	D.P.Kothari,I.J.	Basic Electrical and	Tata McGraw	1St Edition,
	Nagrath	Electronics Engineering	Hill(India) Pvt.	
	_		Ltd.	
3.	P.V. Prasad, R	Basic Electrical and	Cenage	1St Edition,
	Prasad, S.	Electronics Engineering	Learning	
	Sivanagaraju			

Reference Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with country	Year of Publication
1.	B. L. Thereja	Electrical Technology	S.Chand	25 th Edition
	-	Vol-1 and Vol-II		2014
2.	Mittle and Mittle	Basic Electrical	Tata McGraw	2nd edition
		Engineering	Hill, India	(New) 2001
3.	Donald Neamen	Electronic Circuit Analysis	Tata McGraw	Second
		and Design	Hill india	Edition
				2001

[#] Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Course Code	Course Title							
116U06C108		Applied Mathematics - II						
	ТН		P	P		TUT	Total	
Teaching Scheme(Hrs.)		03		-	-		01*	04
Credits Assigned		03				01		04
	Marks							
Examination	CA	1	ECE	TT X X 7		n	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	rao	Total
	30	20	50	25				125

^{*} Batch wise Tutorial

Course prerequisites

- Higher secondary level Mathematics
- Applied Mathematics- II

Course Objectives

- 1. Impart the knowledge of solving ordinary differential equations
- 2. Impart the knowledge of Multiple Integral
- 3. Impart the knowledge of Improper Integral
- 4. To expand a real function as Taylor's series and finding successive derivatives of functions

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1.Identify and solve different types of ordinary differential equations using various methods.

CO2. Solve problems involving Successive derivatives of real variable functions. Expand a function as an infinite series using Taylor's and Maclaurin's series and use it to solve problems involving indeterminate forms.

- CO3. Apply concept of Beta Gamma function and DUIS to solve improper integrals
- CO4. Find length of a curve using Cartesian, Polar and Parametric equations of curves
- CO5. Evaluate multiple integrals and use it to find Area, Volume and Mass of Lamina.

Module	Unit	Details	Hrs.	CO
No.	No.			
1		ential Equation of First Order and First Degree	13	CO 1
	1.1	Differential Equation of first order and first degree- Exact		
		differential equations, Equations reducible to exact		
	1.2	equations by integrating factors. Linear differential equations (Review), Equation		
	1.4	Linear differential equations (Review), Equation reducible to linear form. Applications of Differential		
		Equation of first order and first degree		
	1.3	Linear Differential Equation with constant coefficients:		
	1.5	Complimentary function, particular integrals of		
		differential equation of the type $f(D)y=X$, where X is e^{ax} ,		
		$\sin(ax + b)$, $\cos(ax + b)$, x^n , $e^{ax}V$		
	1.4	Cauchy's homogeneous linear differential equation		
	1.5	Method of variation of parameters		
		# Self-learning topic: Bernoulli's equation. Equation		
		reducible to Bernoulli's equation.		
2	Succe	ssive Differentiation, Expansion Of Functions,	_	CO 1
	Indete	erminate Forms	5	CO 2
	2.1	Successive differentiation: nth derivative of standard		
		functions. Leibnitz's Theorem (without proof) and		
		problems.		
	2.2	Taylor's Theorem (only statement) and Taylor's series,		
		Maclaurin's series(only Statement) Expansion of e^x ,		
		sinx, cosx, tanx		
		#Self-learning topic: Expansion of sinh(x), cosh(x),		
		tanh(x), log(1 + x), Indeterminate forms, L'Hospital		
	T .	Rule, problemsinvolving series	-	00.2
3		ration: Review And Some New Techniques	7	CO 3
	3.1	Beta and Gamma functions with properties		
	3.2	Differentiation under integral sign with constant limits of integration.(without proof)		
		# Self-learning topic: Differentiation under integral sign		
		with variable limits of integration.		
4	Rectif	ication	5	CO4
	Accil	Pre-requisite: Idea of Curve tracing in Cartesian,		204
		Parametric and polar forms. (Straight lines, Circles,		
		Parabolas, Ellipse, Hyperbola, Catenary, Cissoid, Astroid,		
		Cycloid, Lemniscate of Bernoulli, Cardiode).		
	4.1	Rectification of plane curves in Cartesian form		
	4.2	Problems of Rectification in parametric and polar forms		
5		ple Integration: Double Integration, Triple Integration	14	CO5
		neir Applications	17	003
	5.1	Double integration- Introduction, Evaluation of Double		
		Integrals with given limits and over the given region.		
	5.2	Change of order of integration, Evaluation of double		
		integrals by changing order of integration		
	5.3	Application of double integrals to compute Area, Mass of		
	j	Lamina.		

5.4	Triple integration- Introduction and evaluation of integral		
	in Cartesian form		
5.5	Problems of Triple integration using cylindrical and spherical Polar coordinates		
5.6	Application of triple integral to compute volume.		
·	Total	45	

Textbooks:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012
			India	

Reference Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and	
No.			Publisher with	Year of	
			country	Publication	
1.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition	
		Mathematics	Limited, India	2015	
2.	Dennis G. Zill and	Advanced Engineering	Narosa	3 rd Edition	
	Michael R. Cullen	Mathematics	Publication	2010	
			India		
3.	Shanti	Integral Calculus	S. Chand, India	10 th Edition	
	Narayan, Mittal P.K.			2005	
4.	Ramana B.V.	Higher Engineering	Tata Mcgraw	34th Edition	
		Mathematics	Hill New Delhi,	(reprint) 2019	
			India		
5	Dr.M.D.Raisinghania	Ordinary and Partial	S. Chand, India	18 th Edition	
		Differential Equations		2013	

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

Course Code	Course Title							
116U06L101		Programming in C						
	TH			F)	'	TUT	Total
Teaching Scheme(Hrs.)				0:	2		02	04
Credits Assigned				01		02		03
	Marks							
Examination	CA	CA			TOTAL O		P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 & O	Total
	-	-	-	75*	-	-	-	75

^{*} Includes continuous assessment of Term work of 25 marks and practical and Oral of 50 marks based on Laboratory work

Course prerequisites

Basic knowledge of computer peripheral devices, software concepts

Course Objectives

The course aims at a systematic approach to build logic for problem solving using tools like algorithm and flowchart. The concepts of Structured Programming Approach are introduced with C as Programming Language. This first course in programming enables students to develop domain specific software based solutions.

Course Outcomes

- CO1. Formulate a problem statement and develop the logic (algorithm/flowchart) for its solution. CO2. Apply basic concepts of C programming for problem solving.
- CO3. Illustrate the use of derived and structured datatypes such as arrays, strings, structures and unions.
- CO4. Design modular programs using functions and demonstrate the concept of pointers and file handling

Module No.	Unit No.	Details	Hrs. (Tutorial and Lab)	СО
1	Intro	luction to C	una Luo)	
	1.1	Problem solving skill development: Problem Definition, fundamentals of algorithms and flowcharts, Algorithms and flowchart development	04	CO1
	1.2	Structure of C program and its Elements: Character Set, C Tokens, Keywords and Identifiers, Literals, Variables, Data Types and its qualifiers, Declaration and Initialization of Variables, Local and Global Variables, Declaring Constants, Formatted Input/output functions and unformatted input/output functions	04	CO2
2	Opera	ators and Expressions		
	2.1	Types of Operators: Introduction, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators	04	CO2
	2.2	Type Conversions: Implicit and Explicit, Special Operators- Comma Operator, sizeof Operator, dereferencing operator, Expressions and Evaluation of Expressions, Operator Precedence and Associativity	04	CO2
3		ol Structures		
	3.1	Decision Making and Branching Control Structures: if Statement, Multiple, Statements within if, if – else Statement, Nested if – else, else if Ladder, Decision making using Switch-Case	04	CO2
	3.2	Looping Control Structures: While Loop, For Loop, Do While Loop, Algorithm and Flowchart for all the loops	06	CO2
	3.3	Jump Statements: Break and Continue, goto Statement	02	CO2
	3.4	Algorithm and Flowchart: Algorithm and Flowchart for if, if-else, else if ladder, switch case, for loop, while loop and do-while loop	02	CO1
4	Array	s, Structures And Unions		
	4.1	Arrays: Introduction to One Dimensional Arrays, Multidimensional Arrays, Declaration and Initialization of Arrays, Reading and Displaying arrays	04	CO3
	4.2	Character Arrays and Strings: Introduction, Declaring and Initializing String Variables, Reading Character and Writing Character, Reading and Writing Strings, String Handling Functions	04	CO3
	4.3	Structures and Unions: Introduction, Declaring and defining Structure, Structure Initialization, Accessing and Displaying Structure Members, Array of Structures, Introduction to Unions, Structure Vs Unions	04	CO3
5	User l	Defined Functions, Pointers and File Handling Operation	ons	
	5.1	User Defined Functions: Need, Function Declaration and Definition, Return Values, Function Calls, Passing Arguments to a Function by Value, Recursive functions, Storage classes of Variables, Command Line Arguments	06	CO4

5.2	Introduction to pointers: Pointer declaration and initialization, Pointer addition and subtraction, Evaluating pointer expressions Pointers and Functions: Pass by Reference, Returning pointers from functions Dynamic Memory Allocation using Pointers: Dynamic memory allocation using malloc(), calloc() and realloc() and deallocation of memory using free()	08	CO4
5.3	File Handling Operations: Defining and Opening a file, closing files, file modes, input/output operations on files	04	CO4
	Total	60	

Text Books

Sr. No.	Name/s of Author/s	Title	Name of Publisher	Edition and Year of
110.				Publication
1.	E. Balagurusamy	Programming in ANSI C	McGraw-Hill Education, India	8 th Edition, 2019
2.	Yashwant Kanetkar	Let Us C	BPB Publications, India	16 th Edition, 2017

Reference Books

Sr. No.	Name/s of Author/s	Title	Name of Publisher	Edition and Year of Publication
1.	Brian W. Kernighan and Dennis Ritchie	The C programming Language	Prentice Hall	2nd Edition, 2015
2.	Pradeep Dey and Manas Ghosh	Structured Programming Approach	Oxford University Press, India	1 st Edition, 2016

Course Code	Course Title										
116U06L102	Engineering Physics Laboratory										
	TH			P		TUT		Total			
Teaching Scheme(Hrs.)				02				02			
Credits Assigned				01				01			
	Marks										
Examination Scheme	CA		ECE	TW	0	P	P&O	Total			
	ISE	IA	ESE	1 44		ľ	100	1 Utal			
				50*				50			

* Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work

Term work will consist of different types of experiments such as hands-on, experiential learning, virtual laboratory etc. The experiments will be based partly on the Engineering Physics syllabus and partly covering the fundamentals of Physics and Measurements. Students will be graded based on continuous assessment of their practicals and written report on practicals. Oral examination will be based on all experiment and related theory.

Course Code	Course Title										
116U06L103	Engineering Chemistry Laboratory										
	TH			P		TUT		Total			
Teaching Scheme(Hrs.)				02				02			
Credits Assigned				01				01			
	Marks										
Examination Scheme	CA		TOT	TW	0	ъ	P&O	Total			
	ISE	IA	ESE	TW		P	100	Total			
				50*				50			

 $^{^{}st}$ Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work

Term-Work will consist of experiments based on Engineering Chemistry. Students will be graded based on continuous assessment of their term work. Oral examination will be based on all experiment and related theory.

Course Code		Course Title						
116U06L104		Enginee	ering M	echanics	Labo	ratory		
		TH		P		TUT	Total	
Teaching Scheme(Hrs.)					02		02	
Credits Assigned				01			01	
				Marks				
Examination	CA		ECE	TEXX?		P&O	Total	
Scheme	ISE	IA	ESE	TW	O	rau	Total	
				50*			50	

 $^{^{}st}$ Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work

Term-Work will consist of experiments covering entire syllabus of Engineering Mechanics Students will be graded based on continuous assessment of their term work.

Course Code	Course Title							
116U06L105		Engine	ering D	rawing	Labor	atory		
		TH		P		TUT	Total	
Teaching Scheme(Hrs.)			02			02		
Credits Assigned				01			01	
	Marks							
Examination	CA		ECE	(DXX)	0*	P&O	Total	
Scheme	ISE	IA	ESE	TW	O *	1 & O	Total	
				50			50	

Term work will consist of tutorials and practicals covering entire syllabus of Engineering Drawing. Students will be graded based on continuous assessment of their term work.

Course Code		Course Title						
116U06L106		Envi	ronmen	t and Te	chnol	ogy		
		TH		P		TUT	Total	
Teaching Scheme(Hrs.)		01					03	
Credits Assigned		01		01			02	
				Marks				
Examination	CA		ECE	(DXX)		P&O	Total	
Scheme	ISE	IA	ESE	TW	О	100	Total	
				50			50	

Course prerequisites

Basic knowledge of environmental studies up to higher secondary

Course Objective

The objective of this course is to sensitize the students towards environment along with emphasis on engineering applications required for environmental preservation. Learner will get acquainted with various environmental assessments and monitoring tools for addressing environmental concerns.

Experiential learning through projects will enable them to relate with real world problems. It will also develop an approach to analyze and think critically.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO 1. Understand need and concept of sustainability associated with developmental activities
- CO 2. Get familiar with various renewable energy resources and technologies to harness the same
- CO 3. Get acquainted with various pollution control and energy conversion technologies
- CO 4. Recognize various tools for environmental assessment and monitoring
- CO 5. Realize the role of technology for the environmental conservation

Module	Unit	Details	Hrs.	CO
No.	No.		mrs.	CO
1	Environn	nental Sustainability	4	CO1
	1.1	Appropriate and Rural technology for Sustainable		
		development		
	1.2	Sustainable building - Concept of Sustainable building,		
		Sustainable building materials		
	1.3			
		International programs		
2	Renewab	le Energy Resources	4	CO2
	2.1	Various renewable energy resources		
	2.2	Recent advancements in renewable energy		
3	Environn	nental pollution and Technology	4	CO3
	3.1	Environmental pollution control technologies		
	3.2	Waste to energy technologies		
4	Environn	nental assessment and management	6	CO4
	4.1	Introduction of Environment Impact Assessment (EIA)		
	4,2	Concept Environmental audit		
	4.3	Water and waste management practices, Zero waste		
5	Environn	nent and Technology	4	CO5
	5.1	Disaster Management		
	5.2	Remote Sensing and GIS – Introduction and its applications		
		in environment sector		
6	Mini Pro	ject	8	CO1
	(Choice b	ased group projects will be carried out and assessed)		CO2
				CO3
				CO4
				CO5
Total Ho	ours		30	

Term Work:

- 1. **Mini Project (20 Marks):** Project related activities will be conducted based on the selected topic for which continuous evaluation will be done.
- 2. **Tutorial (30 Marks):** Various activities covering entire syllabus will be conducted and evaluated during tutorial hours.

Text Books:

Sr. No.	Name of Author	Title of book	Name of Publication and country	Edition and Year of Publication
1.	Kaushik A and	Perspectives in	New age	6 th edition,
	Kaushik C P	Environmental Studies	international, India	2018
		Textbook Of		2 nd edition,
2.	Erach Bharucha	Environmental Studies For	University press	2015
		Undergraduate Courses		2013

Reference Books:

Sr. No.	Name of Author	Title of book	Name of Publication and country	Edition and Year of Publication
1.	Anjaneyulu Y. and Manickam V.	Environmental Impact Assessment Methodologies.	B.S. Publications, India	2 nd edition, 2011
2.	Asolekar S. and Gopichandran R.	Preventive Environmental Management: An Indian Perspective	CEE Publication, India	Environment and Development Series, 2005
3.	Boyle G.	Renewable Energy: Power for a Sustainable Future	Oxford publication, UK	3 rd edition, 2012
4.	Masters G M. and Ela W. P.	Introduction to Environmental Engineering and Science	Harlow, United Kingdom Pearson	3 rd edition, 2014

Course Code	Course Title							
116U06L106		En	gineeri	ng Ex	plora	tion		
		TH		P)	,	ГUТ	Total
Teaching Scheme(Hrs.)			02		-		03	
Credits Assigned				02				02
				Marks				
Examination	CA		EGE			D	De O	TD . 4 . 1
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
		25		25				50

Course prerequisites

None

Course Objectives

The objective of the course is to introduce activity based learning to solve real world problems with engineering solution.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Analyse a real world situation to convert it into engineering design statement
- CO2. Adopt multidisciplinary approach for designing solution to the problem.
- CO3. Use the engineering design process to build a product using simple mechanisms, controllers and software development approach.
- CO4. Execute the project ethically in the project management paradigm.

Course Project:

A multidisciplinary team will develop a product from the given need statement during the semester. Prototype building using 3D modelling and printing can be learnt. This project will be reviewed at various stages.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	uction to Engineering and Engineering Study	1+2	CO 1
	1.1	Introduction to Engineering and Engineering Study:		
		Difference between science and engineering. Expectation		
		for latest engineering trend and Industry 4.0 standard.		
	1.2	Activities : for problem solving with variety of solutions		
		in a team of 2 students		
2	Engine	eering Design	2+4	CO 1 CO 2
	2.1	Engineering Design Process,		
		Activity for understanding design process.		
	2.2	Need statement Finalization		
	2.3	Problem statement formulation, Pairwise comparison		
		chart		
		Activity: Role play, surveys in a project team		
		Review 1 for Project		
3	Projec	t Management and Engineering Ethics	2+4	CO 4
	3.1	Significance of teamwork, communication and		
		documentation in engineering projects, , group discussion		
		for ethical dilemma		
	3.2	Activities: 2 - game for teamwork, Gantt chart etc.		
	3.3	Significance of Professional Ethics, Identifying Ethical		
		Dilemmas in different tasks of engineering		
		Activity: Group discussions for ethical dilemmas		
4		uction to Mechanisms	4+8	CO 3
	4.1	Basic Components of a Mechanism, Introduction to		
		mechatronics system, Degrees of Freedom or Mobility of		
		a Mechanism		
	4.2	4 Bar Chain, Crank Rocker Mechanism, Slider Crank		
		Mechanism. Simple Robotic Arm building.		
	4.3	Activities: 4/5, Power transmission devices,		
		Mechanisms and Mechanical Links, Software Simulation		
		for mechanisms, in a team		
	D1 /6	Review II of Project:	4.0	00.2
5		rm based development and Sensors	4+8	CO 3
	5.1	Introduction to various platform based development		
		(Arduino) programming and its essentials,		
	5.2	Types of Data, introduction to signal handling		
	3.4	Introduction to sensors, transducers and actuators		
	5.3	Interfacing of Arduino with various sensors like		
	3.3	temperature, humidity, IR sensor, Motors,		
		communication		
	5.4	Batteries and Battery sizing		
	5.5	Activities: 4 /5, hands on using Arduino, sensors and		
	3.3	motors. Implementing Arduino based system using		
		different Design environments in a team		
	1	unitation Design charitonnichts in a team		<u> </u>

6	Projec	t work	2+4	CO4		
	6.1	Prototype or Application Development				
	6.2	Report writing				
	Project Demonstration					
	15+30					

Recommended Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Clive L. Dym,	Engineering Design: A	John Wiley &	4 th Edition
	Patrick Little, and	Project-Based	Sons, Inc	2014
	Elizabeth J. Orwin	Introduction		
2.	Seyyed Khandani,	Engineering Design:	Engineering	March 2005
	John Clarkson and	Theory and Practice	Design Centre,	
	Mari Huhtala		University of	
			Cambridge, UK	
3.	Karl T Ulrich and	Product Design and	McGraw Hill	5 th Edition
	Steven D Eppinger	Development	Irwin	2012

Course Code	Course Title						
116U06L106		F	Biology f	for Engi	neers		
		TH		P		TUT	Total
Teaching Scheme(Hrs.)		02					02
Credits Assigned		02					02
]	Marks			
Examination	CA	CA		TOWY!		P&O	Total
Scheme	ISE	IA	ESE	TW	О	rau	Total
		25		25			50

Course prerequisites

- Basics of biological systems
- Basics of Engineering mechanics

Course Outcomes:

Biology for Engineers is an interdisciplinary course designed for the students of various engineering streams to appreciate the link between biological Science and engineering.

At the end of the course a student will be able to

- CO1: Understand cell structure and its function at the molecular level.
- CO2: Understand the computational biology and human genome data
- CO3: Apply the knowledge of biomechanics to determine the forces in the muscles, prediction of blood flows, etc.

CO4: Select the appropriate material for medical device or implants by considering its biocompability

1.1 Introduction, Origin of life, Evolution 1.2 Basic definition of a cell, prokaryotic cell, eukaryotic cell, cell cycle and cell division, m-phase, meiosis, cell differentiation 2 Biomolecules and Enzymes 2.1 Lipids, carbohydrates, amino acids and proteins, nucleic acids 2.2 Enzymes and Industrial applications: Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3 Genetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	Module	Unit	Details	Hrs.	CO
1.1 Introduction, Origin of life, Evolution 1.2 Basic definition of a cell, prokaryotic cell, eukaryotic cell, cell cycle and cell division, m-phase, meiosis, cell differentiation 2 Biomolecules and Enzymes 2.1 Lipids, carbohydrates, amino acids and proteins, nucleic acids 2.2 Enzymes and Industrial applications: Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3 Genetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	No.	No.			
1.2 Basic definition of a cell, prokaryotic cell, cell cycle and cell division, m-phase, meiosis, cell differentiation 2 Biomolecules and Enzymes 06 CO 2.1 Lipids, carbohydrates, amino acids and proteins, nucleic acids 2.2 Enzymes and Industrial applications:		Basic	Cell Biology	04	CO1
cell cycle and cell division, m-phase, meiosis, cell differentiation 2		1.1	Introduction, Origin of life, Evolution		
cell cycle and cell division, m-phase, meiosis, cell differentiation 2		1.2	Basic definition of a cell, prokaryotic cell, eukaryotic cell,		
Biomolecules and Enzymes 2.1 Lipids, carbohydrates, amino acids and proteins, nucleic acids					
2.1 Lipids, carbohydrates, amino acids and proteins, nucleic acids 2.2 Enzymes and Industrial applications: Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			differentiation		
acids 2.2 Enzymes and Industrial applications: Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3 Genetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	2	Biome	olecules and Enzymes	06	CO1
2.2 Enzymes and Industrial applications: Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3 Genetics 08 CO. 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		2.1	Lipids, carbohydrates, amino acids and proteins, nucleic		
Enzymes, endo-enzymes and exo-enzymes, enzyme action, Types of enzymes, Cofactors, Enzyme Kinetics 3.1 Genetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			acids		
action, Types of enzymes, Cofactors, Enzyme Kinetics 3 Genetics 3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		2.2	Enzymes and Industrial applications:		
3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
3.1 Central dogma of molecular biology 3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			action, Types of enzymes, Cofactors, Enzyme Kinetics		
3.2 Nucleotides, DNA, RNA, tRNA, mRNA, Amino acids, 3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	3	Genet	tics	08	CO2
3.3 DNA replication, transcription, translation 3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		3.1			
3.4 Introduction to bioinformatics, applications of bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
bioinformatics 4 Biomechanics 4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 6 CO 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		3.4			
4.1 Introduction of biomechanics, history, perspectives in biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
biomechanics, rigid body biomechanics; anatomical concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	4	Biome		06	CO3
concepts in biomechanics. 4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		4.1			
4.2 Musculoskeletal biomechanics: musculoskeletal geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			· · · · · · · · · · · · · · · · · · ·		
geometry, muscle structure and force generation, motion tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			-		
tracking techniques 4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		4.2			
4.3 Cardiovascular mechanics: cardiovascular physiology, Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics			= = =		
Blood Flow Models 4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
4.4 Case studies on applications of biomechanics on bones, joints, muscles, tissues etc. 5 Biocompatible materials 06 CO 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		4.3			
joints, muscles, tissues etc. Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
5 Biocompatible materials 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		4.4			
 5.1 Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics 		D.		0.6	004
(elasticity, yield stress, ductility, toughness, strength, fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics	5		I -	06	CO4
fatigue, hardness, wear resistance), tribological (friction, wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		5.1	· ·		
wear, lubricity), morphology and texture, physical (electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
(electrical, optical, magnetic, thermal), chemical and biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
biological properties. 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics					
 5.2 Technologies of biomaterials processing, as implants and medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics 					
medical devices; improvement of materials biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		5.2	9 1 1		
biocompatibility by plasma processing. 5.3 Introduction to bioelectronics, applications of bioelectronics		3.4			
5.3 Introduction to bioelectronics, applications of bioelectronics			' 1		
bioelectronics		5 3			
		3.3	, 11		
Total 30		1	Total	30	

IA and Term work Assessment scheme:

The student will be evaluated based on three tasks which will be graded. If any of the tasks given is not completed / submitted / shown, then the corresponding lower grade will be given.

- 1. Presentations on case study
- 2. Multiple choice Quiz
- 3. Assignment

Recommended Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	G.K.Suraishkumar	Biology for Engineers	Oxford	Edition 2019
			University	
			Press	
2.	Wiley Editorial	Biology for Engineers	`Wiley	Edition 2018
3.	Campbell, N. A.	Biology: A global	Pearson	Eleventh
		approach	Education Ltd	Edition
4.	Jin Xiong	Essential Bioinformatics	Cambridge	Edition 2007
			University	
			Press	
5.	S. Ignacimuthu,	Basic Bioinformatics	Narosa	Second
			Publishing	Edition (2013)
			House	
6.	Cees	Biomechanics: concepts	Cambridge	Second
	Oomens ,Marcel	and computation	texts in	Edition
	Brekelmans, Frank		Biomedical	
	Baaijens		Engineering	

Course Code	Course Title							
116U06L107	Eleme	Elements of Electrical and Electronics Engineering						
1100001107			Lal	borator	y			
		TH		P		TUT	Total	
Teaching Scheme(Hrs.)				02			02	
Credits Assigned				01			01	
				Marks				
Examination	C	CA		TEXE		P&O	Total	
Scheme	ISE IA ES.		ESE	TW	O	100	1 Otal	
	-			50*			50	

 $[\]boldsymbol{\ast}$ Includes continuous assessment of Term work of 25 marks and Oral of 25 marks based on Laboratory work

Term work will consist of experiments covering entire syllabus of Elements of Electrical and Electronics Engineering Laboratory. Students will be graded based on continuous assessment of their term work. Oral examination will be based on laboratory experiment and related theory.

Course Code		Course Title						
116U06L108		I	Python 1	Progra	ımmi	ng		
	7	ТН		P	•	,	TUT	Total
Teaching Scheme(Hrs.)			02				03	
Credits Assigned		01			01			02
				Marks				
Examination	CA		ECE	TEXX7	0	D	P&O	Total
Scheme	ISE	IA	ESE	TW		P	100	1 otal
S 42142114	•	-	-	75 [@]	-	•	-	75

@Includes continuous assessment of Term work of 25 marks and practical and oral of 50 marks based on Laboratory work

Course prerequisites

• Knowledge of programming languages.

Course Objectives

The objective of the course is to impart knowledge of python programming. The course mainly introduces basic in python programming language concepts like data structures, Decision Making statements and Functions. Further the course also covers Object Oriented Programming concepts and Files Handling in Python.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Use basic data structures in Python

CO2: Use different Decision Making statements and Functions in Python.

CO3: Apply Object oriented programming concepts in Python

CO4: Implement different File handling operations

Module	Unit	Details	Hrs.	Lab	CO
No.	No.	Justian to Duthan 2 m	Λ1	Hrs.	CO 1
1		duction to Python 3.x Executions and Applications of Python, Installation of IDE	01	01 01	CO 1
	1.1	Features and Applications of Python, Installation of IDE for python		01	
	1.2	Spyder and Jupyter Notebook			_
2		ramming with python: Basic Concepts	03	08	CO1
4	2.1	Data Types in Python, Strings, format(), print(),Code	- 05	02	COI
	2.1	Block Indentation, Comments, Variables and assignment, Operators in Python, Basic built-in Math functions, Copying Data: Shallow Copy and Deep Copy		02	
	2.2	Data Structures: Tuples, List, Dictionaries, Set, Arrays,		06	
		Conversion of data structures			
3	Progr	amming with python: Decision Making and Functions	03	06	CO2
	3.1	If statement: if, if-else, elif, Repetition using While loop,		02	
		for loop, break statement			
	3.2	What is Regular Expression, Special Symbols and		02	
		Characters for Regular Expressions, RE Module and			
		functions			
	3.3	Functions - Defining a Function, Checking & Setting		02	
		Parameters, Nested Functions, Lambda and Filter, Map			
		& range functions.			
4		et Oriented Programming using Python programming	05	12	CO3
	4.1	Class, Object, Self-Variables, Constructors, Types of Methods, Access Modifiers		02	
	4.2	Inheritance and types, constructor inheritance, The		04	
		super() Method, Method Resolution order(MRO)			
	4.3	Polymorphism: Using Function as a Common Interface,		04	
		Operator Overloading, Abstract Class: abstract method			
	4.4	Exceptions Handling: Errors in python program,		02	
		Exceptions, Exception Handling, Types of Exceptions,			
		The Except Block, The assert statement			
5		Handling	03	03	CO4
	5.1	Types of Files in Python, Opening a File: File opening		02	
		modes, Closing a File, Writing Text Files, Appending			
		in Text Files		0.1	
	5.2	Working with Binary Files, File Exceptions, The with		01	
		Statement, Pickle module in Python	1=	20	ļ
		Total	15	30	

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work.

Practical and Oral examination based on laboratory experiments and entire syllabus.

Text Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Reema Thareja	Python Programming:	Oxford	First
		Using Problem Solving	University	Edition
		Approach	Press	2017, India
2.	Dr. R. Nageswara	Core Python Programming	Wiley	Second
	Rao		Publication.	Edition
				2018,India
3.	Sheetal Taneja and	Python Programing: A	Pearson India	Second
	Naveen Kumar	Modular Approach		Edition 2018,
				India

Reference Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Swarroop C.H	Byte of python	e-book	Kindle edition
2.	Martin C Brown	The Complete Reference	Brandon A	First
		Python	Nordin	Edition
				2001

Course Code	Course Title							
116U06T101		C	Commui	nicatio	n Sk	ills		
		TH P TUT Total					Total	
Teaching Scheme(Hrs.)							02	02
Credits Assigned						02	02	
				Marks				
Examination	CA	CA		/DXX/		D	P&O	Total
Scheme	ISE IA		ESE	TW	O	P	100	1 otal
				50				50

^{*} Batch wise Tutorial

Course prerequisites

Following topics of higher secondary level English are required as prerequisites of this course:

- Grammar of English Language
- Reading and Listening Comprehension
- Letter Writing

Course Objectives

The focus of this course is to improve linguistics and soft skills. The modules on phonology and functional grammar will enhance students' proficiency in English. Students' interpersonal skills and non-verbal communication are developed through oral activities such as role-plays public speeches, impromptu presentations and group discussions.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Use advanced vocabulary and grammar for effective communication.
- CO2. Compose business letters, technical documents and e-communication messages.
- CO3. Articulate sentences correctly by using stress pattern, intonation and voice modulation.
- CO4. Use basic communication and behavioral skills in day-to-day communication.
- CO5. Communicate effectively as an individual and a team-member.

Module	Unit	Details	Hrs.	CO
No.	No.			
		Syllabus of Term Work (TW)		
1	Gram	mar and Vocabulary	6	CO 1
	1.1	Vocabulary building (one word substitution, synonyms		
		and antonyms)		
	1.2	Common errors in use of articles, modifiers, prepositions		
		and pairs of confused words etc.		
	1.3	Subject - predicate agreement		
2	Mech	anics of Writing	6	CO 1, CO 2
	2.1	Use of punctuation		
	2.2	Summarizing		
	2.3	Business letter writing		
		# Self learning topics: ICT enabled communication: E-		
		mail, Blog and Website		
3	Intro	luction to Phonetics	6	CO 3
	3.1	Basic sounds in English (vowels and consonants)		
	3.2	Syllable, word stress, word accent & Intonation		
	3.4	Phonetic transcription of words		
4	Soft S	kills	6	CO 4
	4.1	Non – verbal communication		
	4.2	Barriers to communication		
	4.3	Assertiveness		
5	Basics	of Workplace Communication	6	CO5
	5.1	Listening comprehension		
	5.2	Public speaking skills & impromptu presentations		
	5.3	Reading comprehension		
	5.4	Group discussion		
		Total	30	

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in TW.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Text Books

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of Publication
			country	
1.	Raman, M. and	Communication	Oxford	1st Edition, 2016
	Sharma, M.	Skills	University	
			Press, India	
2.	Sharma, R. C. and	Basic	Tata McGraw-	5th Edition,
	Krishna Mohan	Correspondence and	Hill Publishing	2017
		Report Writing: A	Company	
		Practical	Limited, India	
		Approach to Business		
		and Technical		
		Communication		

Reference Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and Year
No.			Publisher	of Publication
			with country	
1.	Sullivan, Jay	Simply Said:	Wiley	1 st
		Communicating Better at	publication	Edition,
		Work and Beyond		2018(reprint)
2.	Lesikar, R. V. and	Basic Business	McGraw-Hill	10th Edition, 2006
	Pettit, J. D.	Communication	International	
			Edition,	
			Singapore	
3.	Koneru A.	English Language Skills	Mc Graw	1 st Edition, Fourth
			Hill	Reprint 2018
			Education	

Course Code	Course Title							
116U06W101		Workshop - I						
	7	TH P TUT Total					Total	
Teaching Scheme(Hrs.)					02			02
Credits Assigned					2			02
				Marks				
Examination	CA	CA			0	Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW		P	1 & O	1 Otal
	-	-	-	50	-	-	-	50

Course prerequisites

Nil

Course Objectives:

Workshop is an important part of any engineering industry. Engineering students should be conversant with different operations performed on materials for producing desired objects, of various shapes/ sizes, made using several tools and devices. Experiential learning in this course develops skills in different trades of manufacturing.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Build an object using Fitting trade as per given specifications.
- CO2. Develop an object using carpentry trade as per given specifications.
- CO3. Understand the use of Lathe machine for shaping objects by removal of metal.
- CO4. Comprehend the process of PCB making, layout of house wiring, and electric arc welding.

Module No.	Unit No	Details	Hrs.	CO			
1		No. Fitting shop					
	1.1	Introduction to Fitting shop. Demonstration of	06	CO1			
		measuring instruments, cutting tools etc. used in					
		Fitting shop.					
	1.2	One simple job involving filing, right angle making,					
		and cutting to size operations.					
2	Carpen	try shop	04	CO 2			
	2.1	Introduction to carpentry shop. Demonstration of					
		measuring instruments, cutting tools used in					
		Carpentry shop. Planning a job using Jack plane.					
	2.2	One simple job consisting of lap joint to be performed					
		in a group consisting of Two students.					
3	Machin	e shop (Demonstration)	04	CO 3			
	3.1	Introduction of all machines available in machine					
		shop. Demonstration of assembling and disassembling					
		tools.					
	3.2	One demonstration job on lathe machine involving					
		turning, facing, grooving, threading etc. operations					
4	Welding		04	CO 4			
	4.1	Introduction to Welding shop. Demonstration of					
	4.0	welding tools and equipment, arc welding practice.					
	42	One simple job involving Lap, Butt, Vertical joint to					
5	Floctric	be performed in a group consisting of Four students. cal Wiring shop	04	CO4			
3	5.1	Introduction to Electrical wiring. Demonstration of	04	CO4			
	J.1	Electrician tools like Tester, pliers, screw driver,					
		multimeter, etc.					
	5.2	Hands on experience on House wiring or staircase					
		wiring or godown wiring. Exposure to connecting					
		solar panel with battery and tube light.					
6	Printed	Circuit Board (PCB) shop	04	CO4			
	6.1	Introduction to PCB shop. Demonstration of tools,					
		material used for PCB making.					
	6.2	Demonstration of PCB making.					
		Total	26				

Recommended Books

Sr. No.	Name/s of Author/s	Title	Name of Publisher With Country	Edition and Year of Publication
1.	Hajra Choudhury S.K.,	Elements of Workshop	Media	16 th
	Hajra Choudhury A.K.	Technology,	Promoters,	Edition,
	and Nirjhar Roy	Vol. I & II.	India	2015
2.	Raghuwanshi B.S.	A Course in Workshop	Dhanpat Rai	10 th
		Technology,	and Co.	Edition,
		Vol. I &II.	India	2012
				Reprint
				2017
3.	Khurmi R.S. and Gupta	Text book of Workshop	S. Chand	6 th Edition,
	J.K.	Technology.	India	2007
				Reprint
				2012

Course Code	Course Title							
116U06W102	Workshop - II							
	ТН		F			TUT	Total	
Teaching Scheme(Hrs.)				02				02
Credits Assigned				0	02			02
	Marks							
Examination	CA		ECE	TEXX.	0	P	P&O	Total
Scheme	ISE	IA	ESE	TW	O	Г	100	1 Otal
	•	-	-	50	-	-	-	50

Course prerequisites: Workshop-I

Course Objectives

Workshop is an important part of any engineering industry. Engineering students should be conversant with different operations performed on materials for producing desired objects, of various shapes/ sizes, made using several tools and devices. Experiential learning in this course develops skills in different trades of manufacturing.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Build an object/product using Fitting trade as per given specifications.
- CO2. Develop an object/product using carpentry trade as per given specifications.
- CO3. Create an object/product using Welding trade as per given specifications.
- CO4. Prepare an object/product using PCB trade as per given specifications.

Based on the skills acquired by students in semester I, they will choose any Two trades from Fitting, Carpentry, welding and PCB. With the help of these skills they will make product or job in respective trade. Following is the list if some sample products which can be selected but not limited. Apart from products listed below they can choose any product.

A team of students consisting of 4 to 5 members from same batch will have to select two trades from Fitting, carpentry, welding and PCB,. Each team will get 15 hours to complete one trade. Assessment will be

- 1. Continuous assessment
- 2. Quality of finished product

Module No.	Unit No.	Details	Hrs.	CO		
1	1	Fitting shop				
	1.1	Proposed products for Fitting shop:	15	CO 1		
		Machine clamp assembly				
		2. C shape clamp				
		3. Fitting shop jobs involving various shapes and				
		operations				
		4. Any other product involving fitting operations				
2	Carper	itry shop	15	CO 2		
	2.1	Proposed products for carpentry shop:				
		1. Office Tray				
		2. Switch board				
		3. Wooden stool				
		4. Mail box				
		5. Chalk box and duster				
		6. Picture frame				
		7. Chair cum ladder				
		8. Any other product involving carpentry				
		operations				
3	Weldin	g shop	15	CO 3		
	3.1	Proposed products for Welding shop:				
		1. Magazine rack				
		2. Metal stool				
		3. Welding table				
		4. Cloth dryer stand				
		5. Ladder				
		6. Shoe rack				
		7. Flower pot stand				
		8. Any other product involving Welding				
		operations				
4	Printed	Circuit Board (PCB)	15	CO 4		
	4.1	Proposed products for PCB shop:				
		1. Digital Clock				
		2. Electric Lamp.				
		3. 3Digital thermometer				
		4. 12V Power Supply				
		5. Portable Speaker.				
		6. Transistor Polarity Tester				
		7. Automatic Street Light.				
		8. LED Headlights				
		(Egal 7.6 software will be used)				
		Total	30			

In this project, work expected from student is

- 1. Prepare product drawing
- 2. Calculate material required
- 3. Calculate selling price of product considering raw material cost, labour cost, profit etc.
- 4. Process plan with manpower and approximate time required.
- 5. Complete the product in given time period

Recommended Books

Sr. No.	Name/s of Author/s	Title	Name of Publisher	Edition and Year of
			With	Publication
			Country	
1	Deepak Dhounchak, Lalit	A Textbook of	White Falcon	1 st Edition
	Kumar Biban	Workshop	Publishing	2018
		Technology	India	
2	Hajra Choudhury S.K.,	Elements of	Media	16 th Edition,
	Hajra Choudhury A.K.	Workshop	Promoters,	2015
	and Nirjhar Roy	Technology,	India	
		Vol. I & II.		
3	Raghuwanshi B.S.	A Course in	Dhanpat Rai	10 th Edition,
		Workshop	and Co.	2012
		Technology,	India	Reprint 2017
		Vol. I &II.		
4	Khurmi R.S. and Gupta J.K.	Text book of	S. Chand	6 th Edition,
		Workshop	India	2007
		Technology.		Reprint 2012

Reference Books:

Sr.	Name/s of Author/s	Title	Name of	Edition and
No.			Publisher	Year of
			With Country	Publication
1	W. A. J. Chapman	Workshop Technology	CBS Publisher	5 th Edition 2001
		Part-1	& Distributors	
			India	