Package 'VAR.etp'

August 31, 2023

Type Package

Title VAR Modelling: Estimation, Testing, and Prediction
Version 1.1
Date 2023-08-31
Author Jae. H. Kim
Maintainer Jae H. Kim <jaekim8080@gmail.com></jaekim8080@gmail.com>
Description A collection of the functions for estimation, hypothesis testing, prediction for stationary vector autoregressive models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-31 08:40:02 UTC
R topics documented:
VAR.etp-package
dat
data1
PR.Fore
DD 1

233

 Rmatrix
 6

 VAR.BaBPR
 7

 VAR.Boot
 9

 VAR.BPR
 10

 VAR.est
 11

 VAR.FOR
 12

 VAR.Fore
 13

 VAR.LR
 15

 VAR.Pope
 16

 VAR.Rest
 17

 VAR.select
 19

 VAR.Wald
 20

2 dat

Index 22

VAR.etp-package

VAR Modelling: Estimation, Testing, and Prediction

Description

Estimation, Hypothesis Testing, Prediction in Stationary Vector Autoregressive Models

Details

Package: VAR.etp Type: Package Version: 1.1 Date: 2023-08-31

License: GPL-2

The data set dat.rda is from Lutkepohl's book.

It is German Macrodata in log difference.

Bootstrap bias-correction and prediction intervals are also included.

Estimation and Forecasting based on Predictive Regression is also included.

Author(s)

Jae H. Kim

Maintainer: Jae H. Kim

dat

German investment income consumption in log difference

Description

Lutkepohl's data

Usage

data(dat)

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Examples

data(dat)

data1 3

data1

stock return data used in Kim (2014)

Description

stock return data used in Kim (2014)

Usage

```
data(data1)
```

References

Kim, J.H. 2014, Testing for parameter restrictions in a stationary VAR model: a bootstrap alternative. Economic Modelling, 41, 267-273.

Examples

```
data(data1)
```

PR.Fore

Improved Augmented Regression Method for Predictive Regression

Description

Function for forecasting based on Imporved ARM

Usage

```
PR.Fore(x, y, M, h = 10)
```

Arguments

X	predictor or matrix of predictors in column
у	variable to be predicted, usually stock return
М	Estimation results of the function PR.IARM
h	forecasting period

Details

Function for forecasting based on Imporved ARM

Value

Fore

Out-of sample and dynamic forecasts for y and x

4 PR.IARM

Note

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Author(s)

```
jae H. Kim
```

References

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Examples

```
data(data1)
# Replicating Table 5 (excess return)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100); k=ncol(x)
p=4
Rmat1=Rmatrix(p,k,type=1,index=1); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
M=PR.IARM(x,y,p,Rmat,rvec)
PRF=PR.Fore(x,y,M)
```

PR.IARM

Improved Augmented Regression Method (IARM) for Predictive Regression

Description

Function for Improved ARM (IARM) estimation and testing

Usage

```
PR.IARM(x, y, p, Rmat = diag(k * p), rvec = matrix(0, nrow = k * p))
```

Arguments

Х	predictor or a matrix of predictors in column
у	variable to be predicted, usually data1 return

p AR order

Rmat Restriction matrix, refer to function Rmatrix rvec Restriction matrix, refer to function Rmatrix

Details

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.

PR.order 5

Value

LS Ordinar	y Least Squares Estimators
------------	----------------------------

IARM Estimators

AR AR parameter estimators

ARC Bias-corrected AR parameter estimators

Fstats Fstats and their p-values

Covbc Covariance matrix of the IARM estimators (for the predictive coefficients only)

Note

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.

Author(s)

Jae H. Kim

References

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance, 26, 13-25.

Examples

```
data(data)
# Replicating Table 5 (excess return) of Kim (2014)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100);
Rmat1=Rmatrix(p=1,k=2,type=1,index=0); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
M=PR.IARM(x,y,p=1,Rmat,rvec)
```

PR.order

Improved Augmented Regression Method for Predictive Regression

Description

Function to select the order p by AIC or BIC

Usage

```
PR.order(x, y, pmax = 10)
```

Arguments

x predictor or a matrix of predictors in column y variable to be predicted, usually stock return pmax maximum order for order selection 6 Rmatrix

Details

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Value

```
p.aic order chosen by AICp.aic order chosen by BIC
```

Note

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Author(s)

Jae H. Kim

References

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Examples

```
data(data1)
# Replicating Table 5 (excess return)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100); k=ncol(x)
p=PR.order(x,y,pmax=10)$p.bic; # AR(1)
```

Rmatrix

Improved Augmented Regression Method for Predictive Regression

Description

Function to generate restriction matrices

Usage

```
Rmatrix(p, k, type = 1, index = 0)
```

VAR.BaBPR 7

Arguments

p AR order

k number of predictors

type = 1: H0: b1=b2=b3=0; type = 2: H0: b1+b2+b3=0

index index=0 : H0 applies for all parameters; index=k : H0 applies for kth predictor

Details

Function to generate restriction matrices

Value

Rmat this value should be passed to PR.IARM rvec this value should be passed to PR.IARM

Author(s)

Jae H. Kim

References

Kim J.H., 2014, Predictive Regression: Improved Augmented Regression Method, Journal of Empirical Finance 25, 13-15.

Examples

```
Rmat1=Rmatrix(p=1,k=1,type=2,index=1); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
```

VAR.BaBPR

Bootstrap-after-Bootstrap Prediction Intervals for VAR(p) Model

Description

Bias-correction given with stationarity Correction

Usage

```
VAR.BaBPR(x, p, h, nboot = 500, nb = 200, type = "const", alpha = 0.95)
```

8 VAR.BaBPR

Arguments

x data matrix in column

p AR order

h forecasting period

nboot number of 2nd-stage bootstrap iterations
nb number of 1st-stage bootstrap iterations

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

alpha 100(1-alpha) percent prediction intervals

Details

Bias-correction given with stationarity Correction

Value

Intervals Prediction Intervals
Forecast Point Forecasts

alpha Probability Content of Prediction Intervals

Note

Bias-correction given with stationarity Correction

Author(s)

Jae H. Kim

References

Kim, J. H. (2001). Bootstrap-after-bootstrap prediction intervals for autoregressive models, Journal of Business & Economic Statistics, 19, 117-128.

```
data(dat)
VAR.BaBPR(dat,p=2,h=10,nboot=200,nb=100,type="const",alpha=0.95)
# nboot and nb are set to low numbers for fast execution in the example
# In actual implementation, use higher numbers such as nboot=1000, nb=200
```

VAR.Boot 9

VAR.Boot	$Bootstrapping\ VAR(p)\ model:\ bias-correction\ based\ on\ the\ bootstrap$
----------	---

Description

The function returns bias-corrected parmater estimators and Bias estimators based on the bootstrap

Usage

```
VAR.Boot(x, p, nb = 200, type = "const")
```

Arguments

x data matrix in column

p AR order

nb number of bootstrap iterations

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Details

Kilian's (1998) stationarity-correction is used for bias-correction

Value

coef	coefficient matrix
resid	matrix of residuals
sigu	residual covariance matrix
Bias	Bootstrap Bias Estimator

Author(s)

Jae H. Kim

References

Kilian, L. (1998). Small sample confidence intervals for impulse response functions, The Review of Economics and Statistics, 80, 218 - 230.

```
data(dat)
VAR.Boot(dat,p=2,nb=200,type="const")
```

10 VAR.BPR

VAR.BPR

Bootstrap Prediction Intervals for VAR(p) Model

Description

No Bias-correction is given

Usage

```
VAR.BPR(x, p, h, nboot = 500, type = "const", alpha = 0.95)
```

Arguments

x data matrix in column

p AR order

h forecasting period

nboot number of bootstrap iterations

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

alpha 100(1-alpha) percent prediction intervals

Details

Bootstrap Prediction Intervals for VAR(p) Model

Value

Intervals Prediction Intervals
Forecast Point Forecasts

alpha Probability Content of Prediction Intervals

Note

No Bias-correction is given

Author(s)

Jae H. Kim

References

Kim, J. H. (2001). Bootstrap-after-bootstrap prediction intervals for autoregressive models, Journal of Business & Economic Statistics, 19, 117-128.

VAR.est

Examples

```
data(dat)
VAR.BPR(dat,p=2,h=10,nboot=200,type="const",alpha=0.95)
# nboot is set to a low number for fast execution in the example
# In actual implementation, use higher number such as nboot=1000
```

VAR.est

Estimation of unrestricted VAR(p) model parameters

Description

This function returns least-squares estimation results for VAR(p) model

Usage

```
VAR.est(x, p, type = "const")
```

Arguments

x data matrix in column

p AR order

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Details

VAR estimation

Value

coef	coefficient matrix
resid	matrix of residuals

sigu residual covariance matrix

zzmat data moment matrix zmat data moment matrix

tratio matrix of tratio corresponding to coef matrix

Note

See Chapter 3 of Lutkepohl (2005)

Author(s)

Jae H. Kim

VAR.FOR

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Examples

```
#replicating Section 3.2.3 of of Lutkepohl (2005)
data(dat)
M=VAR.est(dat,p=2,type="const")
print(M$coef)
print(M$tratio)
```

VAR.FOR

VAR Forecasting

Description

Generate point forecasts and prediction intervals

Usage

```
VAR.FOR(x, p, h, type = "const", alpha = 0.95)
```

Arguments

x	data matrix in column
р	VAR order
h	Forecasting Periods
type	"const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
alpha	100(1-alpha) percent prediction intervals

Details

Prediction Intervals are based on normal approximation

Value

Intervals	Prediction Intervals, out-of-sample and dynamic
Forecast	Point Forecasts, out-of-sample and dynamic
alpha	Probability Content of Prediction Interva;s

Note

See Chapter 3 of Lutkepohl (2005)

VAR.Fore

Author(s)

Jae H. Kim

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Examples

```
#replicating Section 3.5.3 of Lutkepohl (2005)
data(dat)
VAR.FOR(dat,p=2,h=10,type="const",alpha=0.95)
```

VAR.Fore

VAR Forecasting

Description

Generate point forecasts using the estimated VAR coefficient matrix

Usage

```
VAR.Fore(x, b, p, h, type = "const")
```

Arguments

	_	_	-	_
V	data	motriv	in	column
X	uata	mauix	ш	COIUIIIII

b matrix of coefficients from VAR.est or VAR.Rest

p VAR order

h Forecasting Periods

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Details

Generate point forecasts using the estimated VAR coefficient matrix

Value

Fore

Point Forecasts, out-of-sample and dynamic

Note

See Chapter 3 of Lutkepohl (2005)

Author(s)

Jae H. Kim

VAR.irf

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Examples

```
#replicating Section 3.5.3 of Lutkepohl (2005)
data(dat)
b=VAR.est(dat,p=2,type="const")$coef
VAR.Fore(dat,b,p=2,h=10,type="const")
```

VAR.irf

Orthogonalized impluse response functions from an estimated VAR(p) model

Description

This function returns Orthogonalized impluse response functions

Usage

```
VAR.irf(b, p, sigu, h=10,graphs=FALSE)
```

Arguments

b	VAR coefficient matrix, from VAR.est or similar estimation function
р	VAR order
sigu	VAR residual covariance matrix, from VAR.est or similar estimation function
h	response horizon, the default is set to 10
graphs	logical, if TRUE, show the impulse-response functions, the default is FALSE

Details

VAR impulse response functions

Value

impmat matrix that contains orthogonalized impulse-responses

Note

See Lutkepohl (2005) for details

Author(s)

Jae H. Kim

VAR.LR 15

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Examples

```
#replicating Table 3.4 and Figure 3.11 Lutkepohl (2005)
data(dat)
M=VAR.est(dat,p=2,type="const")
b=M$coef; sigu=M$sigu
VAR.irf(b,p=2,sigu,graphs=TRUE)
```

VAR.LR

The Likelihood Ratio test for parameter restrictions

Description

Likelihood Ratio test for zero parameter restrictions based on system VAR estimation

Bootstrap option is available: iid bootstrap or wild bootstrap

Bootstrap is conducted under the null hypothesis using estimated GLS estimation: see Kim (2014)

Usage

```
VAR.LR(x, p, restrict0, restrict1, type = "const",bootstrap=0,nb=500)
```

Arguments

X	data matrix in column
р	VAR order
restrict0	Restriction matrix under H0
restrict1	Restriction matrix under H1, if "full", the full VAR is estimated under H1
type	"const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
bootstrap	0 for no bootstrap; 1 for iid bootstrap; 2 for wild bootstrap
nb	the number of bootstrap iterations

Details

Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k = 1,...,p).

The bootstrap test is conducted using the GLS estimation under the parameter restrictions implied by the null hypothesis: see Kim (2014) for details.

Kim (2014) found that the bootstrap based on OLS can show inferior small sample properties.

There are two versions of the bootstrap: the first is based on the iid resampling and the second based on wild bootstrapping.

The Wild bootstrap is conducted with Mammen's two-point distribution.

VAR.Pope

Value

LRstat LR test statistic
pval p-value of the LR test

Boot.pval p-value of the test based on bootstrapping

Note

```
See Chapter 4 of Lutkepohl (2005)
```

Author(s)

Jae H. Kim

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

Kim, J.H. 2014, Testing for parameter restrictions in a stationary VAR model: a bootstrap alternative. Economic Modelling, 41, 267-273.

Examples

```
data(dat)
#replicating Table 4.4 of Lutkepohl (2005)
restrict1="full";
restrict0 = rbind(c(4,1,1), c(4,1,2), c(4,1,3), c(4,2,1),
c(4,2,2),c(4,2,3),c(4,3,1),c(4,3,2),c(4,3,3))
VAR.LR(dat,p=4,restrict0,restrict1,type="const")
```

VAR.Pope

Bias-correction for VAR parameter estimators based on Pope's formula

Description

The function returns bias-corrected parmater estimators and Bias estimators based on Pope's asymptotic formula

Usage

```
VAR.Pope(x, p, type = "const")
```

Arguments

x data matrix in column

p AR order

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

VAR.Rest

Details

Kilian's (1998) stationarity-correction is used for bias-correction

Value

coef Bias-corrected coefficient matrix

resid matrix of residuals

sigu residual covariance matrix

Bias Estimate

Author(s)

Jae H. Kim

References

Kim, J. H. 2004, Bias-corrected bootstrap prediction regions for Vector Autoregression, Journal of FOrecasting 23, 141-154.

Kilian, L. (1998). Small sample confidence intervals for impulse response functions, The Review of Economics and Statistics, 80, 218 - 230.

Nicholls DF, Pope AL. 1988, Bias in estimation of multivariate autoregression. Australian Journal of Statistics, 30A, 296-309.

Pope AL. 1990. Biases of estimators in multivariate non-Gaussian autoregression, Journal of Time Series Analysis 11, 249-258.

Examples

```
data(dat)
VAR.Pope(dat,p=2,type="const")
```

VAR.Rest

VAR parameter estimation with parameter restrictions

Description

Estimation of VAR with 0 restrictions on parameters

Usage

```
VAR.Rest(x, p, restrict, type = "const", method = "gls")
```

VAR.Rest

Arguments

x data matrix in column

p VAR order

restrict Restriction matrix under H0

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

method "ols" for OLS estimation, "gls" for EGLS estimation

Details

Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k=1,...,p).

Value

coef coefficient matrix
resid matrix of residuals

sigu residual covariance matrix

zmat data matrix

tstat matrix of tratio corresponding to coef matrix

Note

See Chapter 5 of Lutkepohl

Author(s)

Jae H. Kim

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

```
data(dat)
#replicating Section 5.2.10 of Lutkepohl (2005)
restrict = rbind( c(1,1,2),c(1,1,3),c(1,2,1),c(1,2,2), c(1,3,1),
c(2,1,1), c(2,1,2),c(2,1,3), c(2,2,2), c(2,2,3),c(2,3,1), c(2,3,3),
c(3,1,1), c(3,1,2), c(3,1,3), c(3,2,1), c(3,2,2), c(3,2,3), c(3,3,1),c(3,3,3),
c(4,1,2), c(4,1,3), c(4,2,1), c(4,2,2), c(4,2,3), c(4,3,1),c(4,3,2),c(4,3,3))
M= VAR.Rest(dat,p=4,restrict,type="const",method="gls")
print(M$coef)
print(M$tstat)
```

VAR.select

VAR.select	Order Selection	for VAR models
77411.501000	Oraci Sciection.	joi villi modelo

Description

AIC, HQ, or SC can be used

Usage

```
VAR.select(x, type = "const", ic = "aic", pmax)
```

Arguments

x data matrix in column

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

ic choose one of "aic", "sc", "hq"

pmax the maximum VAR order

Details

Order Section Criterion

Value

IC Values of information criterion for VAR models

p AR order selected

Note

See Chapter 4 of Lutkepohl

Author(s)

JAe H. Kim

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer

```
data(dat)
#replicating Section 4.3.1 of Lutkepohl (2005)
VAR.select(dat,pmax=4,ic="aic")
```

20 VAR.Wald

Description

Wald test for zero parameter restrictions based on system VAR estimation

Bootstrap option is available: iid bootstrap or wild bootstrap

Bootstrap is conducted under the null hypothesis using estimated GLS estimation: see Kim (2014)

Usage

```
VAR.Wald(x, p, restrict, type = "const", bootstrap=0, nb=500)
```

Arguments

x data matrix in column

p VAR order

restrict Restriction matrix under H0

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

bootstrap 0 for no bootstrap; 1 for iid bootstrap; 2 for wild bootstrap

nb the number of bootstrap iterations

Details

Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k = 1,...p). Under H1, the model is full VAR.

The bootstrap test is conducted using the GLS estimation under the parameter restrictions implied by the null hypothesis: see Kim (2014) for details.

Kim (2014) found that the bootstrap based on OLS can show inferior small sample properties.

There are two versions of the bootstrap: the first is based on the iid resampling and the second based on wild bootstrapping.

The Wild bootstrap is conducted with Mammen's two-point distribution.

Value

Fstat Wald test statistic

p-value of the test based on F-distribution Boot.pval p-value of the test based on bootstrapping

Note

See Chapter 3 of Lutkepohl

VAR. Wald

Author(s)

Jae H. Kim

References

Lutkepohl, H. 2005, New Introduction to Multiple Time Series Analysis, Springer.

Kim, J.H. 2014, Testing for parameter restrictions in a stationary VAR model: a bootstrap alternative. Economic Modelling, 41, 267-273.

```
data(dat)
#replicating Section 3.6.2 of Lutkepohl (2005)
restrict = rbind( c(1,1,2),c(1,1,3), c(2,1,2),c(2,1,3))
VAR.Wald(dat,p=2,restrict,type="const")
```

Index

```
VAR.irf, 14
* package
    VAR.etp-package, 2
                                                  VAR.LR, 15
* ts
                                                  VAR.Pope, 16
    dat, 2
                                                  VAR.Rest, 17
    data1, 3
                                                  VAR.select, 19
    PR.IARM, 4
                                                  VAR.Wald, 20
    PR. order, 5
    Rmatrix, 6
    VAR.BaBPR, 7
    VAR.Boot, 9
    VAR.BPR, 10
    VAR.est, 11
    VAR.FOR, 12
    VAR.Fore, 13
    VAR.irf, 14
    VAR.LR, 15
    VAR. Pope, 16
    VAR.Rest, 17
    VAR.select, 19
    VAR.Wald, 20
* ys
    PR. Fore, 3
dat, 2
data1, 3
PR.Fore, 3
PR.IARM, 4
PR.order, 5
Rmatrix, 6
VAR.BaBPR, 7
VAR.Boot, 9
VAR.BPR, 10
VAR.est, 11
VAR.etp(VAR.etp-package), 2
VAR.etp-package, 2
VAR.FOR, 12
VAR. Fore, 13
```