IN THE CLAIMS:

Please re-write the claims as follows:

- 1. (Currently Amended) A method for programming a pattern matching engine 1 having a plurality of information storage entries with one or more regular expressions. 2 each regular expression including a plurality of characters and having a corresponding 3 action to be applied to matching strings, the method comprising the steps of: 4 identifying one or more borders within a given regular expression, the one or 5 more borders separating the given regular expression into a plurality of sub-expressions, 6 at least one sub-expression having a plurality of sequential characters; and 7 loading one or more entries of the pattern matching engine with a plurality of the 8 sequential characters from at least one sub-expression, wherein the borders are defined by 9 a predetermined sequence of regular expression metacharacters, the entries stored in con-10 tent addressable memory (CAM). 11
- 2. (Currently Amended) The method of claim 1 wherein the predetermined sequence of regular expression metacharacters are a wildcard metacharacter is a first regular expression metacharacter defined to match any one character followed immediately by a second regular expression metacharacter defined to match the preceding repeat last character zero, one, or more times metacharacter.
- 3. (Original) The method of claim 1 further comprising the step of organizing at least part of the pattern matching engine into a plurality of sections, and wherein each section of the pattern matching engine is loaded with a plurality of search patterns for a corresponding sub-expression.

1	4. (Currently Amended) The method of claim 3 wherein the entries of a given sec-
2	tion are loaded with one of a search pattern that includes a complete match of the respec-
3	tive sub-expression, a search pattern that includes a partial match of the respective sub-
4	expression, and a mismatch pattern.
1	5. (Original) The method of claim 4 further comprising the steps of:
2	associating at least one sub-expression with a current state variable; and
3	loading the associated current state variable into each entry of the section of the
4	pattern matching engine that contains the at least one sub-expression.
	·
1	6. (Original) The method of claim 5 wherein the pattern matching engine has at
2	least one content addressable memory (CAM) loaded with the one or more regular ex-
3	pressions.
1	7. (Currently Amended) The method of claim 6 wherein
2	the CAM is a ternary content addressable memory (TCAM) that supports don't
3	care values, and
4	the mismatch pattern includes all-don't care values
5	each regular expressions loaded to the CAM is loaded as a plurality of search pat-
6	terns including a mismatch pattern having all don't care values.
1	8. (Currently Amended) The method of claim 7 wherein-A method for program-
2	ming a pattern matching engine having a plurality of information storage entries with one
3	or more regular expressions, each regular expression including a plurality of characters
4	and having a corresponding action to be applied to matching strings, the method compris-

5 ing the steps of:

6	identifying one or more borders within a given regular expression, the one or
7	more borders separating the given regular expression into a plurality of sub-expressions
8	wherein at least one sub-expression has a plurality of sequential characters;
9	defining one or more search patterns for each sub-expression having one or more
10	borders containing a predetermined sequence of regular expression metacharacters, the
11	predetermined sequence of regular expression metacharacters containing a first regular
12	expression metacharacter defined to match any one character followed immediately by a
13	second regular expression metacharacter defined to match the preceding character zero,
14	one, or more times;
15	each regular expression is associated with an action;
16	including at the pattern matching engine further includes at least one ternary con-
17	tent addressable memory (TCAM) for loading one or more regular expressions and sup-
18	porting don't care values, and a second memory device having a plurality of entries, and
19	for loading the entries of the second memory device are loaded with the actions corre-
20	sponding to the one or more regular expressions;
21	organizing at least part of the TCAM into a plurality of sections wherein each sec-
22	tion of the TCAM is loaded with a plurality of search patterns for a sub-expression, the
23	plurality of search patterns includes a complete match pattern of the respective sub-
24	expression, a partial match pattern of the respective sub-expression, and a mismatch pat-
25	tern including all don't care values.

1	9. (Original) The method of claim 8 wherein each entry of the TCAM identifies a
2	corresponding entry of the second memory device.
1	10. (Original) The method of claim 9 wherein at least one TCAM entry is associ-
2	ated with a next state variable, the method further comprising the step of loading the en-
3	try of the second memory device that is identified by the at least one TCAM entry with
4	the associated next state variable.
1	11. (Original) The method of claim 10 wherein
2	the at least one TCAM entry is located in a TCAM section whose entries are as-
3	sociated with a current state variable having a first value, and
4	the next state variable has a second value that differs from the first value, thereby
5	specifying a new TCAM section to be searched.
1	12. (Original) The method of claim 11 wherein each TCAM entry has a match
2	cell that contains the complete match, the partial match or the mismatch pattern.
1	Claims 13-20. (Canceled)
	21 (Description les Descripted) The most of afaire 1 and arrive
1	21. (Previously Presented) The method of claim 1 wherein
2	each regular expression is associated with an action,
3	the pattern matching engine further includes a second memory device having a
4	plurality of entries, and
5	the entries of the second memory device are loaded with the actions associated
6	with the one or more regular expressions.
1	22. (Currently Amended) The method of claim 21 wherein A method for pro-
2	gramming a pattern matching engine having a plurality of information storage entries
3	with one or more regular expressions, each regular expression including a plurality of

4	characters and having a corresponding action to be applied to matching strings, the
5	method comprising the steps of:
6	including at the pattern matching engine has at least one ternary content
7	addressable memory (TCAM) that supports don't care values, the TCAM loaded with the
8	one or more regular expression, and
1	further including a second memory device having a plurality of entries for loading
2	actions corresponding to the one or more regular expressions wherein each entry of the
3	TCAM identifies a corresponding entry of the second memory device.
1	23. (Previously Presented) The method of claim 22 wherein at least one TCAM
2	entry is associated with a next state variable, the method further comprising the step of
3	loading the entry of the second memory device that is identified by the at least one
4	TCAM entry with the associated next state variable.
1	24. (Previously Presented) The method of claim 23 wherein
2	the at least one TCAM entry is located in a TCAM section whose entries are as-
3	sociated with a current state variable having a first value, and
4	the next state variable has a second value that differs from the first value, thereby
5	specifying a new TCAM section to be searched.
1	25. (Previously Presented) The method of claim 24 wherein each TCAM entry
2	has a match cell that contains the complete match, the partial match or the mismatch pat-
3	tern.

Please add claims 26 et seq:

1	26. (New) A switch comprising:
2	means for programming a pattern matching engine having a plurality of informa-
3	tion storage entries with one or more regular expressions, each regular expression includ-
4	ing a plurality of characters and having a corresponding action to be applied to matching
5	strings;
6	means for identifying one or more borders within a given regular expression, the
7	one or more borders separating the given regular expression into a plurality of sub-
8	expressions, at least one sub-expression having a plurality of sequential characters; and
9	means for loading one or more entries of the pattern matching engine with a plu-
0	rality of the sequential characters from at least one sub-expression, the entries stored in
1	content addressable memory (CAM).
1	27. (New) The switch of claim 26, further comprising:
2	means for organizing at least part of the CAM into a plurality of sections, and
3	wherein each section of the CAM is loaded with a plurality of search patterns for a corre-
4	sponding sub-expression.
1	28. (New) The switch of claim 26, further comprising:
2	means for associating at least one sub-expression with a current state variable; and
3	means for loading the associated current state variable into each entry of the CAM
4	that contains the at least one sub-expression.

29. (New) The switch of claim 26, further comprising:

means for associating each regular expression with an action; 2 means for including at the pattern matching engine a memory device having a 3 plurality of entries; 4 means for loading the memory device with the actions associated with the one or 5 more regular expressions. 6 30. (New) The switch of claim 26, further comprising: 1 means for using a ternary content addressable memory (TCAM) for the CAM, 2 each entry of the TCAM identifying a corresponding entry of the memory device. 3 31. (New) A switch comprising: 1 a pattern matching engine having a plurality of information storage entries con-2 figured to program one or more regular expressions, each regular expression including a 3 plurality of characters and having a corresponding action to be applied to matching 4 strings; 5 the pattern matching engine configured to identify one or more borders within a 6 given regular expression, the one or more borders separating the given regular expression 7 into a plurality of sub-expressions, at least one sub-expression having a plurality of se-8 quential characters; and 9 a content addressable memory (CAM), the CAM configured to store a plurality of 10 the sequential characters from at least one sub-expression. 11 32. (New) The switch of claim 31, further comprising: 1 at least part of the CAM organized into a plurality of sections wherein each sec-2

tion is loaded with a plurality of search patterns for a corresponding sub-expression.

3

- 1 33. (New) The switch of claim 31, further comprising:
- the pattern matching engine configured to associate at least one sub-expression
- with a current state variable; and
- 4 the pattern matching engine configured to store the associated current state vari-
- 5 able into each CAM entry that contains the at least one sub-expression.
- 1 34. (New) The switch of claim 31, further comprising:
- a memory device having a plurality of entries;
- the memory device configured to store actions associated with the one or more
- 4 regular expressions.
- 1 35. (New) The switch of claim 31, further comprising:
- the CAM configured as a ternary content addressable memory (TCAM), the
- 3 TCAM storing a corresponding entry for each entry of the second memory device.