NOM (lisible) : BONNOT groupe TD : A

Mardi 7 novembre 2023 - Contrôle (Durée: 30 min)

Calculatrices, portables interdits

* * *

On rappelle les éléments suivants :

- Le nombre λ est une **valeur propre** de la matrice A s'il existe un vecteur non nul V tel que $AV = \lambda V$, V est alors appelé **vecteur propre** associé à la valeur propre λ
- Si la matrice A est diagonalisable, il existe une matrice P inversible et une matrice D diagonale tels que $A = PDP^{-1}$

Exercice 1 (2 pts)

Construire une matrice carrée non diagonale 3×3 ayant 1 et 3 comme valeurs propres.

Réponse :

Elle ne doit pas être diagonale, mais on peut la choisir triangulaire, par exemple $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ $det(A - XId) = (1 - X)^2(3 - X)$ qui a bien 1 et 3 comme racines.

Exercice 2 (4 pts)

Trouver une matrice carrée 2×2 ayant 2 et -1 comme valeurs propres et les vecteurs $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $V_{-2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ comme vecteurs propres associés.

R'eponse:

Les vecteurs propres donnent la matrice de passage $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, les valeurs propres donnent la matrice diagonale $\begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$ et la matrice A cherchée vérifie $A = PDP^{-1}$.

Calculons
$$P^{-1}$$
, $det(P) = -2$ et $P^{-1} = -\frac{1}{2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

Exercice 3 (4 pts)

- 1. Calculer les valeurs propres de $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
- 2. Calculer des vecteurs propres associés à ces valeurs propres.

R'eponse:

- 1. On calcule $det(A XId) = (1 X)^2 4 = (1 X 2)(1 X + 2) = (-X 1)(3 X)$ On a donc deux valeurs propres; -1 et 3.
- 2. Vecteur propre associé à -1: On résout $\begin{cases} x+2y=-x \\ 2x+y=-y \end{cases}$ qui se résume à x+y=0 soit x=-y donc tous les vecteurs propres sont de la forme $\left\{x\begin{pmatrix}1\\-1\end{pmatrix},x\in\mathbb{R}\right\}$

Vecteur propre associé à 3: On résout $\begin{cases} x+2y=3x \\ 2x+y=3y \end{cases}$ qui se résume à -x+y=0 soit x=y donc tous les vecteurs propres sont de la forme $\left\{x\begin{pmatrix}1\\1\end{pmatrix},x\in\mathbb{R}\right\}$