2521. Paths in Matrix Whose Sum Is Divisible by K

Difficulty: Hard

https://leetcode.com/problems/paths-in-matrix-whose-sum-is-divisible-by-k

You are given a **0-indexed** $m \times n$ integer matrix grid and an integer k. You are currently at position (0, 0) and you want to reach position (m - 1, n - 1) moving only **down** or **right**.

Return the number of paths where the sum of the elements on the path is divisible by k. Since the answer may be very large, return it **modulo** $10^9 + 7$.

Example 1:

5	2	4
3	0	5
0	7	2

5	2	4
3	0	5
0	7	2

Input: grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3

Output: 2

Explanation: There are two paths where the sum of the elements on the path is divisible by k. The first path highlighted in red has a sum of 5 + 2 + 4 + 5 + 2 = 18 which is divisible by 3. The second path highlighted in blue has a sum of 5 + 3 + 0 + 5 + 2 = 15 which is divisible by 3.

Example 2:

Input: grid = [[0,0]], k = 5

Output:

Explanation: The path highlighted in red has a sum of 0 + 0 = 0 which is divisible by 5.

Example 3:

7	3	4	9
2	3	6	2
2	3	7	0

Input: grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1

Output: 10

Explanation: Every integer is divisible by 1 so the sum of the elements on every possible path is divisible by k.

Constraints:

- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 5 * 10⁴
- 1 <= $m * n <= 5 * 10^4$
- 0 <= grid[i][j] <= 100