# Predication and Analysis of STEM and Non-STEM College Major Enrollment with ASSISTments

# **Guimin Dong**

Department of Computer Science, 2301 Vanderbilt Place Nashville, TN 37235-1826 USA

Abstract—ASSISTments, developed by researchers years ago, is a mathematics tutoring system designed for middle school students. Many middle school students have used this software, and a fraction of them are now attending colleges. Previously, researchers created a logistic regression model to predict students' choice of college majors (STEM or NON-STEM), and have done some detailed statistical analysis. In this project, we built models for predicting students' college majors (STEM or NON-STEM) by training Support Vector Machine and Multi-layer Perceptron with different combination of features generated from log files of ASSISTments and achieved higher accuracy. From the results, we found that our new set of features selected empirically by ensembled feature selection method can increase accuracy of our classifier and makes such feature set more explanatory to predict STEM or Non-STEM majors enrollment in college.

Keywords: ASSISTments; logistic regression; Random Forest; support vector machine; Multi-Layer Perceptron; Educational Data Mining.

#### I. Introduction

Research shows that middle school is a crucial juncture for a student to start thinking about his or her academic achievement, college attendance, and future career. And college and university degree programs in science, technology, engineering and mathematics (STEM) are considered STEM degrees, and they are in high demand across many industries. Several years ago, educators and industry analysts detected a trend that indicated an academic deficiency in STEM areas for students entering college. It is important to let the students to be well-prepared with stem skills for stressful and rigorous college-level stem major courses [1]. Given the fact that increasing numbers of students are getting access to computers and even mobile phones these days, researchers designed various educational software and conducted research using data from the middle school students' interaction with the software. Using such data, researchers did a large amount of statistical analysis. 66% accuracy of predicting whether students will choose STEM or non-STEM major was achieved by using logistic regression model[2]. Although disengagement, which includes boredom, off-task, and frustration, has negative impact on attitude of higher education and causes low learning achievement[3, 4, 5] and these features were used to predict STEM and Non-STEM major selection[1], this features detected and extracted by the Intelligent Tutoring System, ASSISTments, have small contribution to predict major selection in our analysis.

Our motivation for this project, firstly, logistic regression model has rigid assumption about multicollinearity, linearity of independent variables and log odds, and independent observations, and previous studies performed logistic regression without verifying such assumptions. Secondly, better representation of samples will lead more accurate and more robust classification model, previous study did not examine broader selection of features to train machine learning models. Thirdly, hyperparameter optimization to success higher accuracy was not discussed in previous studies. What's more, unsupervised learning methods were not utilized. Last but not the least, in previous study, disengaged behaviors (carelessness, gaming the system, and off-task behavior), and educationally-relevant affecting states (boredom, engaged concentration, confusion, frustration) were considered to predict STEM or Non-STEM major, however these superficial negative learning behaviors may not reflect students' real state: some student who choose STEM major and are good at mathematics may feel bored about the questions showed in computer, and some other students prefer discovery and experiments will not cooperate very well with ASSISTments.

The contribution of our analysis in educational data mining: an ensembled method to empirically extract most 35 important features to train our machine models was performed, and we constructed SVM with 0.826 mean test score and 0.105 standard deviation in the 10 fold grid search cross validation to predict STEM or Non-STEM major selection with 76.35% accuracy in our test data set.

## II. METHODOLOGY

#### A. ASSISTments: Mathematics Educational Software

This study is based on students' log files generated from ASSISTments system which is an intelligent tutoring system students can interact with to learn knowledge[7], Specially, ASSISTments is a free web-based mathematics tutoring system for middle-school mathematics, developed by Dr. Neil Hefferman, was used in a series of research to understand how students behavior is related to their academic performance, college attendances, and college major choices[3]. ASSISTments evaluates a students knowledge level, detects and records a student's interaction, and assists students in understanding concepts, using knowledge to solve problems and transferring learning, providing teachers with insights of students' knowledge development and evaluation of learning performance on specific knowledge components. When learning with this intelligent tutoring system, students' cognitive skill will be assessed by several mathematical problems. If



Fig. 1. ASSISTments

students answer correctly, they proceed to the next problem. If they answer incorrectly, the system scaffolds instruction by dividing the problem into component parts, leading the students to divide and conquer each smaller components of the original problem with hints. (Fig 1). Once the original problem is correctly answered, the students will step into the next.

#### B. Data

This project used the data from a longitudinal study, now over a decade long, led by Professor Ryan Baker and Professor Neil Heffernan. This study, funded by multiple grants from the National Science Foundation, tracks students from their use of the ASSISTments blended learning platform in middle school in 2004-2007, to their high school course-taking, college enrollment, and first job out of college. There are 87,8110 interactions stored in the log files with 76 features at ASSISTments from 517 students and the following-up STEM or Non-STEM majors chosen by these students when they were in colleges.

#### C. Data Prepossessing and Feature Engineering

As the log files records the interaction sequence between students and ASSISTments, for each student, differentiated with student ID, we extracted the mean values for each feature of all sequence interaction. Then we dropped the samples without specific STEM or Non-STEM major claim. Then we are left with 492 samples with STEM or Non-STEM major claim. In the feature MCAS, which is Massachusetts Comprehensive Assessment System, -999 indicates the missing value

| 1        |                                                                     | RF           | RFECV       | lda          | logReg       | svc         | Mean         |
|----------|---------------------------------------------------------------------|--------------|-------------|--------------|--------------|-------------|--------------|
| 2        | AveCarelessness                                                     | 1.0          | 0.0         | 0.48         | 0.0          | 0.0         | 0.3          |
| 3        | AveCorrect                                                          | 0.4          | 0.0         | 0.46         | 0.01         | 0.0         | 0.17         |
| 4        | AveKnow                                                             | 0.34         | 0.0         | 0.07         | 0.0          | 0.0         | 0.08         |
| 5        | AveResBored                                                         | 0.08         | 0.0         | 1.0          | 0.0          | 0.0         | 0.22         |
| 6        | AveResConf                                                          | 0.01         | 0.0         | 0.09         | 0.0          | 0.0         | 0.02         |
| 7        | AveResEngcon                                                        | 0.0          | 0.0         | 0.03         | 0.01         | 0.0         | 0.01         |
| 8        | AveResFrust                                                         | 0.34         | 0.0         | 0.16         | 0.0          | 0.0         | 0.1          |
| 9        | AveResGaming                                                        | 0.0          | 0.0         | 0.16         | 0.0          | 0.0         | 0.03         |
| 10       | AveResOfftask                                                       | 0.06         | 0.0         | 0.1          | 0.0          | 0.0         | 0.03         |
| 11       |                                                                     | 0.27         | 0.0         | 0.59         | 0.0          | 0.0         | 0.17         |
| 12       | Ln-1                                                                | 0.72         | 0.0         | 0.59         | 0.0          | 0.0         | 0.26         |
| 13       | NumActions                                                          | 0.01         | 0.6         | 0.0          | 0.56         | 0.41        | 0.32         |
| 14       | RES_BORED                                                           | 0.01         | 0.0         | 1.0          | 0.0          | 0.0         | 0.2          |
| 15       | RES_CONCENTRATING                                                   | 0.0          | 0.0         | 0.03         | 0.01         | 0.0         | 0.01         |
| 16       | RES_CONFUSED                                                        | 0.05         | 0.0         | 0.09         | 0.0          | 0.0         | 0.03         |
| 17       | RES_FRUSTRATED                                                      | 0.03         | 0.0         | 0.16         | 0.0          | 0.0         | 0.04         |
| 18       | RES_GAMING                                                          | 0.0          | 0.0         | 0.16         | 0.0          | 0.0         | 0.03         |
| 19       | RES_OFFTASK                                                         | 0.01         | 0.0         | 0.1          | 0.0          | 0.0         | 0.02         |
| 20       | attemptCount                                                        | 0.15         | 0.0         | 0.06         | 0.05         | 0.02        | 0.06         |
| 21       | bottomHint                                                          | 0.22         | 0.0         | 0.56         | 0.0          | 0.0         | 0.16         |
| 22       | consecutiveErrorsInRow                                              | 0.04         | 0.0         | 0.13         | 0.0          | 0.02        | 0.04         |
| 23       | correct                                                             | 0.29         | 0.0         | 0.46         | 0.01         | 0.0         | 0.15         |
| 24       | endsWithAutoScaffolding                                             | 0.0          | 0.87        | 0.77         | 0.0          | 0.0         | 0.33         |
| 25       | endsWithScaffolding                                                 | 0.0          | 0.0         | 0.21         | 0.01         | 0.01        | 0.05         |
| 26       | frIsHelpRequest                                                     | 0.04         | 0.0         | 0.32         | 0.01         | 0.0         | 0.07         |
| 27       | frIsHelpRequestScaffolding                                          | 0.0          | 0.0         | 0.1          | 0.01         | 0.01        | 0.02         |
| 28       | frPast5HelpRequest                                                  | 0.38         | 0.0         | 0.24         | 0.03         | 0.0         | 0.13         |
| 29       | frPast5WrongCount                                                   | 0.16         | 0.0         | 0.05         | 0.01         | 0.01        | 0.05         |
| 30       | frPast8HelpRequest                                                  | 0.18         | 0.0         | 0.15         | 0.04         | 0.01        | 0.08         |
| 31       | frPast8WrongCount                                                   | 0.0          | 0.0         | 0.04         | 0.01         | 0.01        | 0.01         |
| 32       | frTimeTakenOnScaffolding                                            | 0.05         | 0.27        | 0.0          | 0.24         | 0.55        | 0.22         |
| 33       | frTotalSkillOpportunitiesScaffolding                                | 0.04         | 0.0         | 0.0          | 0.05         | 0.0         | 0.02         |
| 34       | frWorkingInSchool                                                   | 0.0          | 0.0         | 0.07         | 0.02         | 0.01        | 0.02         |
| 35       | helpAccessUnder2Sec                                                 | 0.02         | 0.0         | 0.71         | 0.0          | 0.0         | 0.15         |
| 36<br>37 | hint                                                                | 0.28         | 0.0         | 0.49         | 0.01         | 0.0         | 0.16         |
| 37       | hintCount                                                           | 0.14         | 0.0         | 0.1          | 0.03         | 0.03        | 0.06         |
|          | hintTotal                                                           | 0.13         | 0.0         | 0.01         | 0.05         |             | 0.05         |
| 39       | manywrong                                                           | 0.27         | 0.07        | 0.36         | 0.02         | 0.0         | 0.14         |
| 40<br>41 | original                                                            | 0.32<br>0.07 | 0.0<br>0.0  | 0.12<br>0.02 | 0.01<br>0.01 | 0.0<br>0.01 | 0.09<br>0.02 |
| 41       | past8BottomOut                                                      | 0.07         | 1.0         | 0.02         | 0.01         | 0.01        | 0.02         |
| 42       | responseIsChosen<br>responseIsFillIn                                | 0.0          | 0.0         | 0.0<br>0.28  | 0.0          | 0.0         | 0.2          |
| 43       | scaffold                                                            | 0.0          | 0.0         | 0.63         | 0.0          | 0.01        | 0.00         |
| 45       | stlHintUsed                                                         | 0.0          | 0.8         | 0.45         | 0.0          | 0.01        | 0.25         |
| 45       | stimintused<br>sumTimePerSkill                                      | 0.05         | 0.8         | 0.45         | 0.47         | 0.46        | 0.25         |
| 46       | timeGreater10SecAndNextActionRight                                  | 0.05         | 0.53        | 0.79         | 0.47         | 0.46        | 0.18         |
| 48       | timeGreater105ecAndNextActionRight<br>timeGreater5Secprev2wrong     | 0.0          | 0.93        | 0.79         | 0.0          | 0.0         | 0.18         |
| 48       | timeOver80                                                          | 0.04         | 0.93        | 0.02         | 0.0          | 0.0         | 0.22         |
| 49<br>50 | timeOver80<br>timeSinceSkill                                        | 0.04         | 0.0<br>0.73 | 0.02         | 0.0          | 0.0         | 0.16         |
| 50       | timeSinceSkill<br>timeTaken                                         | 0.07         | 0.73        | 0.0          | 0.26         | 0.42        | 0.16         |
| 52       | timeraken<br>totalFrAttempted                                       | 0.05         | 0.33        | 0.0          | 0.26         | 1.0         | 0.21         |
| 52       | totalFrPastWrongCount                                               | 0.02         | 0.4         | 0.02         | 0.72         | 0.03        | 0.43         |
| 54       | totalFrPastWrongCount<br>totalFrPercentPastWrong                    | 0.06         | 0.0         | 0.02         | 0.02         | 0.03        | 0.03         |
| 54       | totalFrPercentPastWrong<br>totalFrSkillOpportunities                | 0.03         | 0.0         | 0.08         | 0.0          | 0.04        | 0.02         |
| 56       | totalFrSkillOpportunities<br>totalFrSkillOpportunitiesByScaffolding | 0.03         | 0.0         | 0.05         | 0.1          | 0.04        | 0.03         |
| 57       | totalFrTimeOnSkill                                                  | 0.02         | 0.47        | 0.05         | 1.0          | 0.62        | 0.02         |
| 58       | totalTimeByPercentCorrectForskill                                   | 0.04         | 0.67        | 0.0          | 0.25         | 0.02        | 0.43         |
| 59       | MCAS                                                                | 0.28         | 0.13        | 0.0          | 0.23         | 0.52        | 0.25         |
| 29       | PICAS                                                               | 0.59         | 0.13        | 0.0          | 0.23         | 0.32        | 0.23         |

Fig. 2. Feature Selection by Coefficients

of the score. So, we imputed the missing value with ridge regression with 76.53% adjusted R-squared value. We selected the 54 features out of the whole feature set, for complete description of features please refer APPENDIX. Then we performed supervised learning algorithms including Random Forest(RF), Linear Discriminant Analysis(LDA), logistic regression(LogReg), svm, and Recursive feature elimination with cross-validation(RFECV) by setting the response variable as STEM which is 1, or Non-STEM majors which is 0, and the mean of each coefficient generated from these five algorithms was collected. The features with mean of coefficient less than 0.05 were dropped empirically, as shown in Fig 2. In Fig 2., clearly, concentration, confusion, frustration, offtask, and gaming, where are reflected by rescaled of the confidence of student affect prediction, have small contribution to classify STEM or Non-STEM major chosen. Although the mean coefficient of boredom is 0.2, where LDA assigned 1.0, it is hardly to determine the effect of boredom in the learning process for classification of major chosen. There are some interesting phenomenon that test related features, such as correctness, scaffolding, hint, MCAS, and first response time spent on knowledge component across all problems, have greater impact to major classification, implying that, indeed, STEM major, comparing with Non-STEM major, has higher requirement in test and students who perform well on quantitative field test will have higher probability to choose STEM major and vice versa. Thus different from precious study which used disengaged behaviors and educationally-



Fig. 3. Confusion Matrix of Trained SVM



Fig. 4. Confusion Matrix of Trained MLP

relevant affecting states to train logistic regression model[2], we included test related effects and also include boredom passing into our machine learning algorithm to train the predicting models. In the next section, we executed supervised and unsupervised learning algorithms to train the models.

# III. SUPERVISED AND UNSUPERVISED LEARNING METHODS FOR STEM OR NON-STEM MAJOR CLASSIFICATION

#### A. Supervised Learning

1) Support Vector Machine(SVM): In SVM, binary classification problem was modeled in this case to predict STEM or Non-STEM majors. When we train SVM model, which involved hyperparameters, we cannot decide which combination of hyperparameters will achieve highest accuracy, thus we performed exhaustive grid search with 10 fold cross validation and training data size 0.7 (scikit-learn via python) in the hyperparameters search space, including, kernels(linear, Gaussian, polynomial, sigmoid), penalty for regularization C within the sequence [0.001, 0.01, 0.1, 1, 10, 100, 1000], gamma, which determine how close the points to the hyperplane will be considered, in the sequence of [0.01, 0.1, 1, 10, 100, 1000].

In the grid search with 10 fold cross validation, we achieved highest mean test score 0.826 wih standard deviation 0.105. Then we used the trained SVM to predict the 30% test data set, finally we got 76.35% accuracy, as shown the confusion matrix in Fig 3. In normalized confusion matrix, we can observe that 100% Non-STEM major was predicted correctly, and 34% STEM major was predicted correctly, implying the test related features help to determine the students who will not choose STEM major but cannot help to predict the students who will choose STEM major.

2) Multi-Layer Perceptron(MLP): In MLP scenario, via Keras and scikit learn in python, our hyperparameters search space constituted of: activation: ['identity', 'logistic', 'tanh', 'relu'], solver: ['sgd', 'adam'], learning-rate: ['constant', 'invscaling', 'adaptive'], max-iter: [800, 900, 1000], momentum: [0.5, 0.6, 0.9]. Similarly, in the grid search with 10 fold cross validation, highest mean test score 0.677 was succeed with rectified linear unit(relu) activation function, MLP dimension of  $35 \times 70 \times 1$ , adaptive learning rate, 800 maximum iteration, 0.5 momentum and stochastic gradient solver. In the 30% test data set, 74.32% accuracy with such MLP model was achieved and the confusion matrices are shown in Fig 4. Comparing to SVM model, we got similar results, and SVM perform better in classify both STEM and Non-STEM major students.

#### IV. DISCUSSION AND CONCLUSION

In this project, we examined three different methods for predicting students STEM major enrollment in the college and analyzing datasets inner structure. In supervised learning paradigm, both support vector machine model and multi layer perceptron model improved the prediction accuracy from the previous logistic model with accuracy 66% [2] to 76.35% (SVM) and 74.32% (MLP). Different feature set, which test skill mostly related, was extracted to train SVM and MLP with hyperparameter optimization. The students whose major are Non-STEM can be predicted in a very high precision 100% for SVM and 96% for MLP. However, STEM enrollment of students cannot be correctly classified in both SVM and MLP, further more, SVM performed better than MLP in classifying

STEM major. Thus, we can conclude that less competitive test performance and poor related test skill can help people to predict the students' enrollment in Non-STEM major when they are going into colleges. When a student has considerable amount of time to interact with ASSISTments during middle school, the students' instructors can understand the probability whether this student will choose STEM or Non-STEM major in the future by using the SVM model, provide some advice to the student about his/her future academic plan or career path. What's more, there are still some students' major can not be correctly predicted by our models, Non-STEM major will be predicted in most of cases.

The limitation of our project: First of all, we have imbalanced classes in our data set, where total number of isSTEM is 151 and total number of nonSTEM is 341. The number of our samples is still small. Secondly, as the original log records of students obtained the sequence interaction between students and ASSISTments, there should be much more insight can be discovered.

In the future study, sophisticated resampling methods can be executed to improve prediction accuracy, such as Modified synthetic minority oversampling technique(MSMOTE) and algorithmic Ensemble Techniques, such as Bootstrap Aggregating. We also could extract large amount of samples from web based version of ASSISTments with the help of big data techniques to improve our models. Further more, with the sequence interaction records which have specific structural architecture, we could combine time series and deep learning algorithm to discover the variation of knowledge level of students in the process of interaction with ASSISTments by using convolution neutral network or recurrent neural network and other more interesting implication which can be inferred from the records

#### REFERENCES

- Wang, X. 2013. Why Students Choose STEM Majors Motivation, High School Learning, and Postsecondary Context of Support. American Educational Research Journal, 50(5), 1081-1121.
- [2] San Pedro, M., Ocumpaugh, J., Baker, R., and Heffernan, N. 2014. Predicting STEM and non-STEM college major enrollment from middle school interaction with mathematics educational software. *Educational Data Mining* 2014.
- [3] San Pedro, M., Baker, R., Bowers, A., and Heffernan, N. (2013). Predicting college enrollment from student interaction with an intelligent tutoring system in middle school. In *n Proceedings of the 6th international conference on educational data mining*.
- [4] Cocea, M., Hershkovitz, A., and Baker, R.S.J.d. 2009. The Impact of Off-task and Gaming Behaviors on Learning: Immediate or Aggregate? Proceedings of the 14th International Conference on Artificial Intelligence in Education, 507-514.
- [5] Fredricks, J. A., Blumenfeld, P. C., and Paris, A. H. 2004. School engagement: Potential of the concept, state of the evidence. *Review of Educational Research*, 74, 59109.
- [6] Lau, S. and Liem, A.D. 2007. The role of self-efficacy, task value, and achievement goals in predicting learning strategies, task disengagement, peer relationship, and achievement outcome. *Contemporary Educational Psychology*, 3, 1-26.
- [7] Razzaq, L. M., Feng, M., Nuzzo-Jones, G., Heffernan, N. T., Koedinger, K. R., Junker, B., ... and Rasmussen, K. P. (2005, May). Blending Assessment and Instructional Assisting. In AIED, pp. 555-562.
- [8] Segedy, J. R., Kinnebrew, J. S., and Biswas, G. (2015). Using coherence analysis to characterize self-regulated learning behaviours in open-ended learning environments. J. In *Journal of Learning Analytics*, 2, 1348.

- [9] Segedy, J. R., Kinnebrew, J. S., and Biswas, G. (2015). Using coherence analysis to characterize self-regulated learning behaviours in open-ended learning environments. J. In *Journal of Learning Analytics*, 2, 1348.
- [10] Trevor H., Robert T, Jerome F., The Elements of Statistical Learning: Data Mining, Inference, and Predication, Springer, New York, 2009.
- [11] Christopher M. B., Pattern Recognition and Machine learning, Springer, New York, 2006
- [12] Christopher D. M., Hinrich S., Foundations of Statistical Natural Language Processing, The MIT Press Cambridge, Massachusetts London, England, 1999

### APPENDIX

|    | Column name          | example                             | description                                                                                                                                   |
|----|----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | ITEST_id             | 8                                   | a deidentified ID/tag used for identifying an individual student                                                                              |
| 2  | SY ASSISTments Usage | 2004-2005                           | the academic years the student used ASSISTments                                                                                               |
| 3  | AveKnow              | 0.35241648                          | average student knowledge level<br>(according to Bayesian Knowledge<br>Tracing algorithm cf. Corbett &<br>Anderson, 1995)                     |
| 4  | AveCarelessness      | 0.18327565                          | average student carelessness (according to San Pedro, Baker, & Rodrigo, 2011 model)                                                           |
| 5  | AveCorrect           | 0.48390152                          | average student correctness                                                                                                                   |
| 6  | NumActions           | 1056                                | total number of student actions in system                                                                                                     |
| 7  | AveResBored          | 0.20838904                          | average student affect: boredom (see<br>Pardos, Baker, San Pedro, Gowda, &<br>Gowda, 2014)                                                    |
| 8  | AveResEngcon         | 0.67912589                          | average student affect:engaged concentration (see Pardos, Baker, San Pedro, Gowda, & Gowda, 2014)                                             |
| 9  | AveResConf           | 0.11590539                          | average student affect:confusion (see<br>Pardos, Baker, San Pedro, Gowda, &<br>Gowda, 2014)                                                   |
| 10 | AveResFrust          | 0.11240808                          | average student affect:frustration (see<br>Pardos, Baker, San Pedro, Gowda, &<br>Gowda, 2014)                                                 |
| 11 | AveResOfftask        | 0.15650305                          | average student affect: off task (see<br>Pardos, Baker, San Pedro, Gowda, &<br>Gowda, 2014 and also Baker, 2007)                              |
| 12 | AveResGaming         | 0.196561                            | average student affect:gaming the system (see Pardos, Baker, San Pedro, Gowda, & Gowda, 2014 and also Baker Corbett Koedinger & Wagner, 2004) |
| 13 | actionId             | 9950                                | the unique id of this specific action                                                                                                         |
| 14 | skill                | properties-of-<br>geometric-figures | a tag used for identifying the cognitive skill<br>related to the problem (see Razzaq,<br>Heffernan, Feng, & Pardos, 2007)                     |
| 15 | problemId            | 104051118                           | a unique ID used for identifying a single problem                                                                                             |
| 16 | assignmentId         | 20405010                            | a unique ID used for identifying an assignment                                                                                                |
| 17 | assistmentId         | 104051118                           | a unique ID used for identifying an assistment (a instance of a multi-part problem)                                                           |
| 18 | startTime            | 1096470301                          | when did the student start the problem (UNIX time, seconds)                                                                                   |
| 19 | endTime              | 1096470350                          | when did the student end the problem (UNIX time, seconds)                                                                                     |

| 20 | timeTaken                 | 49                | Time spent on the current step                                                                            |
|----|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|
| 21 | correct                   | 0                 | Answer is correct                                                                                         |
| 22 | original                  | 1                 | Problem is original not a scaffolding problem                                                             |
| 23 | hint                      | 1                 | Action is a hint response                                                                                 |
| 24 | hintCount                 | 1                 | Total number of hints requested so far                                                                    |
| 25 | hintTotal                 | 1                 | total number of hints requested for the problem                                                           |
| 26 | scaffold                  | 0                 | Problem is a scaffolding problem                                                                          |
| 27 | bottomHint                | 0                 | Bottom-out hint is used                                                                                   |
| 28 | attemptCount              | 1                 | Total problems attempted in the tutor so far.                                                             |
| 29 | problemType               | textfieldquestion | the type of the problem                                                                                   |
| 30 | frlsHelpRequest           | 1                 | First response is a help request                                                                          |
| 31 | frPast5HelpRequest        | 0                 | Number of last 5 First responses that included a help request                                             |
| 32 | frPast8HelpRequest        | 0                 | Number of last 8 First responses that included a help request                                             |
| 33 | stlHintUsed               | 0                 | Second to last hint is used – indicates a hint that gives considerable detail but is not quite bottom-out |
| 34 | past8BottomOut            | 0                 | Number of last 8 problems that used the bottom-out hint.                                                  |
| 35 | totalFrPercentPastWrong   | 0                 | Percent of all past problems that were wrong on this KC.                                                  |
| 36 | totalFrPastWrongCount     | 0                 | Total first responses wrong attempts in the tutor so far.                                                 |
| 37 | frPast5WrongCount         | 0                 | Number of last 5 First responses that were wrong                                                          |
| 38 | frPast8WrongCount         | 0                 | Number of last 8 First responses that were wrong                                                          |
| 39 | totalFrTimeOnSkill        | 0                 | Total first response time spent on this KC across all problems                                            |
| 40 | timeSinceSkill            | 0                 | Time since the current KC was last seen.                                                                  |
| 41 | frWorkingInSchool         | 1                 | First response Working during school hours (between 7:00 am and 3:00 pm)                                  |
| 42 | totalFrAttempted          | 0                 | Total first responses attempted in the tutor so far.                                                      |
| 43 | totalFrSkillOpportunities | 0                 | Total first response practice opportunities on this KC so far.                                            |
| 44 | responselsFillIn          | 0                 | Response is filled in (No list of answers available)                                                      |
| 45 | responselsChosen          | 0                 | Response is chosen from a list of answers (Multiple choice, etc).                                         |

| 46 | endsWithScaffolding                    | 0          | Problem ends with scaffolding                                                              |
|----|----------------------------------------|------------|--------------------------------------------------------------------------------------------|
| 47 | endsWithAutoScaffolding                | 0          | Problem ends with automatic scaffolding                                                    |
| 48 | frTimeTakenOnScaffolding               | 0          | First response time taken on scaffolding problems                                          |
| 49 | frTotalSkillOpportunitiesScaffolding   | 0          | Total first response practice opportunities on this skill so far                           |
| 50 | totalFrSkillOpportunitiesByScaffolding | 0          | Total first response scaffolding opportunities for this KC so far                          |
| 51 | frlsHelpRequestScaffolding             | 0          | First response is a help request Scaffolding                                               |
| 52 | timeGreater5Secprev2wrong              | 0          | Long pauses after 2 Consecutive wrong answers                                              |
| 53 | sumRight                               | 0          |                                                                                            |
| 54 | helpAccessUnder2Sec                    | 0          | Time spent on help was under 2 seconds                                                     |
| 55 | timeGreater10SecAndNextActionRig<br>ht | 0          | Long pause after correct answer                                                            |
| 56 | consecutiveErrorsInRow                 | 0          | Total number of 2 wrong answers in a row across all the problems                           |
| 57 | sumTime3SDWhen3RowRight                | 0          |                                                                                            |
| 58 | sumTimePerSkill                        | 49         |                                                                                            |
| 59 | totalTimeByPercentCorrectForskill      | 0          | Total time spent on this KC across all problems divided by percent correct for the same KC |
| 60 | prev5count                             | 0          |                                                                                            |
| 61 | timeOver80                             | 0          |                                                                                            |
| 62 | manywrong                              | 0          |                                                                                            |
| 63 | confidence(BORED)                      | 0.59786477 | the confidence of the student affect prediction: bored                                     |
| 64 | confidence(CONCENTRATING)              | 0.23429359 | the confidence of the student affect prediction: concecntrating                            |
| 65 | confidence(CONFUSED)                   | 0          | the confidence of the student affect prediction: confused                                  |
| 66 | confidence(FRUSTRATED)                 | 0          | the confidence of the student affect prediction: frustrated                                |
| 67 | confidence(OFF TASK)                   | 0.83870968 | the confidence of the student affect prediction: off task                                  |
| 68 | confidence(GAMING)                     | 0.00852182 | the confidence of the student affect prediction: gaming                                    |
| 69 | RES_BORED                              | 0.37642746 | rescaled of the confidence of the student affect prediction: boredom                       |
| 70 | RES_CONCENTRATING                      | 0.32031737 | rescaled of the confidence of the student affect prediction: concentration                 |
| 71 | RES_CONFUSED                           | 0          | rescaled of the confidence of the student affect prediction: confusion                     |

| 72 | RES_FRUSTRATED | 0          | rescaled of the confidence of the student affect prediction: frustration                                                                                                                                |
|----|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73 | RES_OFFTASK    | 0.78558547 | rescaled of the confidence of the student affect prediction: off task                                                                                                                                   |
| 74 | RES_GAMING     | 0.0002642  | rescaled of the confidence of the student affect prediction: gaming                                                                                                                                     |
| 75 | Ln-1           | 0.13       | baysian knowledge tracing's knowledge estimate at the previous time step                                                                                                                                |
| 76 | Ln             | 0.06119041 | baysian knowledge tracing's knowledge estimate at the time step                                                                                                                                         |
|    |                |            |                                                                                                                                                                                                         |
|    | schoolID       | 1          | the id (anonymized) of the school the student was in during the year the data was collected                                                                                                             |
|    | MCAS           |            | Massachusetts Comprehensive<br>Assessment System test score. In short,<br>this number is the student's state test score<br>(outside ASSISTments) during that year<br>999 represents the data is missing |