Kortfattade lösningar, Kösystem 31 maj 2021 Uppgift 1

1a (2 p)

Markovkedjan ser ut så här:

Snittmetoden ger:

$$p_0 = \frac{1}{9}$$

och

$$p_1 = p_2 = p_3 = p_4 = \frac{2}{9}$$

1b (2 p)

$$E(N) = 1 \cdot p_1 + 2 \cdot p_2 + 3 \cdot p_3 + 4 \cdot p_4 = \frac{20}{9}$$

$$\lambda_{\text{eff}} = 10 \cdot (1 - p_4) = \frac{70}{9}$$

Littles sats ger då att

$$E(T) = \frac{E(N)}{\lambda_{\text{eff}}} = \frac{20}{70} = \frac{2}{7} \approx 0.29$$

1c (2 p)

$$p_2 + p_3 + p_4 = \frac{6}{9} = \frac{2}{3} \approx 0.67$$

1d (2 p)

$$\lambda \cdot p_4 = \frac{20}{9} \approx 2,22$$

1e (2 p)

Antag att b = medellängden av en busy period. Då måste följande gälla:

$$p_0 = \frac{1/\lambda}{1/\lambda + b} = \frac{0.1}{0.1 + b} \Rightarrow b = 0.8$$

2a (2,5 p)

Ankomstintensiteten är konstant och ankomsterna är en poissonprocess så man kan använda Erlangs formel:

$$\rho = \lambda E(X) = 3 \cdot 2 = 6$$

Sedan kan man använda Erlangkalkylatorn vilket ger

$$P(\text{spärr}) = E_5(6) \approx 0.3604$$

2b (2,5 p)

Genom att ändra antalet betjänare i Erlangkalkylatorn ser man att 13 stycken räcker men inte 12. Svaret är alltså 13 stycken.

2c (2,5 p)

Hur stor ankomstintensiteten än är så kommer systemet att vara stabilt. Det beror på att intensiteten med vilken kunde lämnar systemet ökar linjärt med antalet kunder i systemet.

2d (2,5 p)

I ett Erlangsystem med n betjänare gäller att

$$p_k = \frac{\rho^k / k!}{\sum_{i=0}^n \frac{\rho^k}{k!}} \to \frac{\rho^k}{k!} e^{-\rho}$$

då
$$n$$
 → ∞.

Sannolikheten att minst två är upptagna blir då:

$$1 - p_0 - p_1 = 1 - e^{-6} - 6e^{-6} \approx 0.98$$

3a (2,5)

Markovkedjan ser ut så här:

3b (2,5 p)

Snittmetoden ger

$$p_1 = 4p_0$$

$$p_2 = p_3 = 6p_0$$

Detta ger att:

$$P(\text{sp\"{a}rr}) = \frac{10p_3}{40p_0 + 30p_1 + 20p_2 + 10p_3} = \frac{3}{17} \approx 0.18$$

3c (2,5 p)

Littles sats används:

$$E(N) = 1 \cdot p_1 + 2 \cdot p_2 + 3 \cdot p_3 = 34p_0$$

$$\lambda_{\rm eff} = 40p_0 + 30p_1 + 20p_2 = 280p_0$$

$$E(T) = \frac{E(N)}{\lambda_{\text{eff}}} = \frac{34p_0}{280p_0} = \frac{17}{140} \approx 0.12$$

3d (2,5 p)

Sätt $T_k =$ medeltiden tills man kommer till tillstånd 3 från det att man kommer till tillstånd k. Det ger ekvationssystemet:

$$T_0 = \frac{1}{40} + T_1$$

$$T_1 = \frac{1}{40} + \frac{10}{40}T_0 + \frac{30}{40}T_2$$

$$T_2 = \frac{1}{40} + \frac{20}{40}T_1 + \frac{20}{40}T_3$$

$$T_3 = 0$$

Löser man ekvationssystemet så får man

$$T_0 = \frac{19}{120} \approx 0.16$$

4a (2,5 p)

$$\lambda_1 = 10 + 0.5\lambda_4$$

$$\lambda_2 = \lambda_1 + 0.5\lambda_3$$

$$\lambda_3 = 0.5\lambda_2$$

$$\lambda_4 = 0.5\lambda_2$$

Lösningen är:

$$\lambda_1 = 15$$

$$\lambda_2 = 20$$

$$\lambda_3 = 10$$

$$\lambda_4 = 10$$

Det ger medelvärdena:

$$E(N_1) = \frac{\lambda_1}{\mu_1 - \lambda_1} = \frac{15}{20 - 15} = 3$$

$$E(N_2) = \frac{20}{30 - 20} = 2$$

$$E(N_3) = \frac{10}{12 - 10} = 5$$

$$E(N_4) = \frac{10}{15 - 10} = 2$$

4b (2,5 p)

Littles sats ger

$$E(T) = \frac{E(N_1) + E(N_2) + E(N_3) + E(N_4)}{\lambda} = \frac{12}{10} = 1.2$$

4c (2,5 p)

Antal gånger en kund i medeltal passerar nod i är λ_i/λ vilket ger att den totala betjäningstiden blir:

$$\sum_{i=1}^{4} \frac{\lambda_i}{\lambda} \cdot \frac{1}{\mu_i} = \frac{1}{\lambda} \sum_{i=1}^{3} \rho_i = \frac{1}{10} \left(\frac{15}{20} + \frac{20}{30} + \frac{10}{12} + \frac{10}{15} \right) = \frac{175}{600} = \frac{35}{120} = \frac{7}{24} \approx 0,29$$

4d (2,5 p)

Eftersom nod 1 är överbelastad så fungerar den som en källa som genererar 20 kunder per sekund till nod 2. Om nod 2, 3 och 4 hade oändlig kapacitet så skulle följande ekvationer gälla:

$$\lambda_2 = 20 + 0.5\lambda_3$$

$$\lambda_3 = 0.5\lambda_2$$

$$\lambda_4 = 0.5\lambda_2$$

Detta ekvationssystem har lösningen:

$$\lambda_2 = \frac{80}{3} = 26\frac{2}{3} < \mu_2$$

$$\lambda_3 = \frac{40}{3} = 13\frac{1}{3} > \mu_3$$

$$\lambda_4 == \frac{40}{3} = 13\frac{1}{3} < \mu_4$$

Av detta ser vi att även nod 3 kommer att bli överbelastad. Eftersom den blir överbelastad så kommer den att betjäna 12 kunder per sekund. Det innebär att ankomstintensiteten till nod 2 och nod 4 blir

$$\lambda_2 = 20 + 0.5 \cdot 12 = 26$$

$$\lambda_3 = 0.5\lambda_2 = 13$$

Det ger slutligen

$$E(N_2) = \frac{26}{30 - 26} = \frac{26}{4} = 6.5$$

$$E(N_3) = \infty$$

$$E(N_4) = \frac{13}{13 - 15} = \frac{13}{2} = 6.5$$

5a (3 p)

$$E(X) = 0.08$$

$$\lambda = 10$$

Det medför att sannolikheten att betjänaren är upptagen blir $\rho = \lambda E(X) = 0.8$.

5b (3 p)

Det är enklast att beräkna $E(X^2)$ direkt från täthetsfunktionen:

$$E(X^2) = \frac{1}{0.16} \int_{0}^{0.16} t^2 dt = \frac{1}{0.16} \cdot \frac{0.16^3}{3} = \frac{0.16^2}{3}$$

Sedan blir det den vanliga formeln för M/G/1:

$$E(T) = E(X) + \frac{\lambda E(X^2)}{2(1-\rho)} = 0.08 + \frac{10 \cdot 0.16^2/3}{2 \cdot (1-0.8)} \approx 0.29$$

5c (4 p)

$$E(T|tomt) = E(X) = 0.08$$

$$P(\text{tomt}) = 1 - \rho = 0.2$$

$$P(\text{ej tomt}) = \rho = 0.8$$

Formler för att ta bort beting ger:

$$E(T) = E(T|\mathsf{tomt})P(\mathsf{tomt}) + E(T|\mathsf{ej}\;\mathsf{tomt})P(\mathsf{ej}\;\mathsf{tomt}) = 0.08 \cdot 0.2 + E(T|\mathsf{ej}\;\mathsf{tomt}) \cdot 0.8$$

Eftersom vi har räknat ut E(T) i 5b så kan vi lösa ut E(T|e) tomt):

$$E(T|\text{ej tomt}) = \frac{E(T) - 0.08 \cdot 0.2}{0.8} \approx 0.35$$

6a (2,5 p)

Vi låter tillstånd i, j betyda att det finns i kunder i det första kösystemet och j i det andra. Då blir markovkedjan:

6b (2,5 p)

Vi måste ta fram tillståndssannolikheterna. Flöde-in-flöde-ut ger ekvationerna (alla är dividerade med 10 för enkelhetens skull):

$$p_{00} = p_{01}$$

$$2p_{10} = p_{00} + p_{11}$$

$$p_{20} = p_{10}$$

$$2p_{01} = p_{10} + p_{02}$$

$$2p_{11} = p_{20} + p_{01}$$

$$p_{02} = p_{11}$$

Om vi utnyttjar att summan av alla sannolikheter måste vara = 1 så ger det lösningen

$$p_{ij} = \frac{1}{6}$$

Alla tillstånd har alltså samma sannolikhet.

Antal hopp per tidsenhet som innebär att en kund lämnar nod 2 är

$$\mu_2 p_{02} + \mu_2 p_{11} + \mu_2 p_{01} = 10 \cdot \frac{1}{6} + 10 \cdot \frac{1}{6} + 10 \cdot \frac{1}{6} = 5$$

6c (2,5 p)

Littles sats fungerar bra här!

$$\lambda_{\text{eff}} = \lambda p_{00} + \lambda p_{10} + \lambda p_{01} = 5$$

$$E(N) = 1 \cdot (p_{10} + p_{01}) + 2 \cdot (p_{20} + p_{11} + p_{02}) = \frac{8}{6} = \frac{4}{3}$$

$$E(T) = \frac{E(N)}{\lambda_{\text{eff}}} = \frac{4}{15} \approx 0.267$$

6d (2,5 p)

Om ankomstintensiteten blir oändligt stor så kommer det alltid att finnas exakt två kunder i könätet. Så snart en kund lämnar det så kommer det ju en ny till nod 1. Det innebär att:

$$E(N) = 2$$

Markovkedjan kommer att kollapsa till bara tre tillstånd, ser ut så här:

Alla tillstånden har sannolikhet 1/3 eftersom $\mu_1=\mu_2=10$.

$$\lambda_{\rm eff} = \mu_2 p_{02} + \mu_2 p_{11} = \frac{20}{3}$$

Littles sats ger då:

$$E(T) = \frac{E(N)}{\lambda_{\text{eff}}} = \frac{2}{20/3} = 0.3$$