

JUPEB BIOLOGY SYLLABUS 2020/2021

GENERAL OBJECTIVES

At the end of the series of courses, candidates should be able to:

- 1. describe the fundamentals and level of organization in living things:
- 2. explain functional units of biological molecules and principles of interactions among organisms;
- 3. describe cells as living organisms and their rules in nature
- 4. describe cells as living organisms and their roles in nature
- 5. explain the application of Cell Biology in medical, industrial, and biotechnological sub-sectors of the economy;
- discuss diversity, characteristics, structures, functions, and taxonomy of living organisms (micro-organisms, plants, and animals);
- 7. enumerate economic importance of living organisms;
- 8. describe the morphological and biochemical characteristics of micro-organisms;
- conduct laboratory and field practical in Biology, Botany,
 Microbiology, and Zoology; Highlights and explain the basic concepts of ecology;

- 10. explain the role of evolution in the hierarchical classification of living organism's vis a vis the theories of evolution;
- 11. define basic terminologies of Genetics and state Mendelian Laws of inheritance.

FIRST SEMESTER COURSES

BIO 001: General Biology (3 UNITS)
BIO 003: Microbiology (3 UNITS)

SECOND SEMESTER COURSES

BIO 002: Basic Botany (3 UNITS)
BIO 004: Fundamental Of Zoology (3 UNITS)

COURSE DESCRIPTION

BIO 001: General Biology (3 Units)

Specific Objectives

At the end of the course, the students should be able to:

- 1. explain living things in nature and biological molecules;
- 2. discuss the cell as the fundamental unit of living things
- 3. describe levels of organization of living things
- 4. discuss biological methods and their applications (Biostatistics, taxonomy, and nomenclature);
- 5. discuss principles of genetics, variation, and heredity; and
- 6. conduct laboratory and field practical in biology.

S/N	Topic	Sub-topic		Details	
1.	Origin of Living Things	i.	The Science of	i.	Definition of
			Biology		biology
		ii.	Origin of Organic	ii.	Importance of
			Molecules		biology
		iii.	Origin of the First	iii.	The nature of
			Cells		science
		iv.	The Earliest Cells:	iv.	Scientific methods
		v.	Living		

		vi.	Fossils	V.	Testing of
					hypothesis
				vi.	Data collection
					and analysis
				vii.	Application of
					scientific methods
					in biological
					experiments
				viii.	Relationship
					between Biology
					& Medicine,
					Agriculture, etc
2.	Living things in nature	i.	Diversity of Living	i.	Different
	and biology		Things		kingdoms and
	molecules	ii.	Biological Molecules		characteristics
				ii.	Carbohydrates,
					lipids, protein and
					nucleic acids
3.	Cell organisation	i.	Cell theory	i.	Demonstration of
	structure and	ii.	Cell structure and		cell structure on
	functions		functions		microscopes
		iii.	Cell organizations	ii.	Biological
		iv.	Forms in which cells		drawings of palm
			exist		and animal cells
				iii.	Comparisons of
					plant and animal
					cells

		-			
4.	Cell division principles	i.	Cell divisions	i.	Basic concepts in
	of Genetics, variations	ii.	Mitosis in somatic		genetics:
	and heredity		cells		Chromosome,
		iii.	Meiosis in Germ		Gene, allele,
			cells		dominant,
		iv.	Principles of		recessive,
			Genetics		homozygous,
		V.	Variation and		heterozygous,
			Heredity		hybrid, genotype,
		vi.	Mendel's Laws of		phenotype etc
			Inheritance	ii.	The nature of
		vii.	Human Inheritance		genes and
		viii.	Human Genetic		chromosomes
			Disorders e.g. sickle		
			cell anaemia,	Prac	tical class
			albinism		Determination of
		ix.	Rhesus Factors		inheritance using
		X.	Polyploidy		coloured seeds
		xi.	Sex-linked Traits		e.g., beads, grains,
		xii.	Application of		etc
			Genetics in		
			Agriculture,		Verification of
			Medicine,		principles of
			Criminology etc		Mendel's law and
					its deviation

	ī				
				iii.	Cell division
					experiment using
					onion root
				iv.	Identification of
					the stages of
					meiosis
				v.	Traits controlled
					by Multiple alleles
					e.g. blood group,
					eye colour
				vi.	Determination of
					inheritance using
					coloured seeds
					e.g. beads, grains
					etc
				vii.	Verifications of
					the principles of
					Mendel's laws
5.	Systematics:	i.	Basic of Taxonomy	Prac	tical class:
	Taxonomy and	ii.	Rules of Systematics		Classification and
	Nomenclature	iii.	Naming of		identification of
			Organisms		organisms
			(Nomenclature)		
					Highlighting
					adaptive features
					and their uses

6.	Ecology	i.	Basic concept in	i.	Symbiosis
			Ecology	ii.	Mutualism
		l ii.	Biological	iii.	Parasitism
			Associations and	iv.	Environmental
			Interactions		studies
		iii.	Ecological Studies	_{V.}	Practical use of
		iv.	Types of Habitats		ecology
		v.	Ecology and Natural		equipment
			Selection	vi.	Population study
					in a specific
					habitant
				vii.	Environmental
					studies
				viii.	Practical use of
					ecological
					equipment
				ix.	Population study
					in a specific
					habitat
				x.	Environmental
					changes
				xi.	Biological impacts
					of climate change
7.	Biology Methods and	i.	Rules of Biological	Stan	dard drawing rules
	Application		Drawings	gove	erning: use of
				pend	cils, specimen
				prop	oortions,

	mag	magnification, size of	
	spec	specimen drawing and	
	labe	lling.	
	i.	Diagrams must be	
		according to	
		length	
		specification.	
	ii.	Lines must not be	
		woolly or broken	
	iii.	Drawings must	
		carry appropriate	
		titles at the	
		correct positions	
	iv.	Labelling must be	
		horizontal &	
		parallel with ruled	
		guidelines	
	٧.	Drawing must not	
		be artistic i.e. no	
		shading or	
		painting	
	vi.	Spellings must be	
		correct and	
		touched by	
		labelling lines.	

8.	Evolution	i.	Geological Times,	i. Definition of
			and Mega	evolution
			Geological Events	ii. Types of evolution
		ii.	Evolutionary Trends	Application of
			in Animals and	Evolution to Plants
			Plants	& Animal
		iii.	Theories of	Taxonomy
			Evolution:	
			Landmark and	
			Darwin Theories of	
			Evolution	
		iv.	Evidence of	
			evolution from	
			Anatomy,	
			Embryology,	
			Biochemistry	

BIO 002: Basic Botany (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. discuss the general characteristics of plants:
- 2. explain the taxonomy of lower and higher plants;
- 3. discuss biodiversity and conservation of plants
- 4. explain plant structures and functions
- 5. explain physiological processes in plants; and
- 6. enumerate the economic and ecological importance of plants.

S/N	Topic	Sub	-topic	Details	
1.	General	i.	Plant Diversity and	i.	Classification of
	characteristics and		Classifications		major plant
	diversity of Plants		(Lower and Higher		groups (Lower and
			Plants)		Higher plants)
		ii.	Characteristics of	ii.	Divisions up to
			Lower and Higher		generic level
			Plants groups	iii.	Level plants-stage,
		iii.	Morphology and Life		fungi, bryophytes,
			Cycle of Lower and		Pteridophytes.
			Higher Plants	iv.	Morphological and
					life cycle of named

<u>, </u>		
		example in each
		major group
		considering the
		simplest and the
		complex in each
		group of the lower
		plants
	٧.	Economic and
		ecological
		importance of
		plant groups
	vi.	Practical
		class-classification
		s and
		morphological
		drawing of lower
		plants
		Algae (Chlorella,
		England/Chlamydo
		monas, Volvox,
		Spirogyra)
		Fungi e.g. yeast,
		Rhizopus, Mucor,
		Aspergillus,
		Penicillium,
		mushroom,

ra, e.g.,
_
nantia,
es e.g.
ገ),
;
:
ar and
nts)
iytes
inus,
oiscus
S
ica
1
reated
ely
re
cation
ce
nd

	<u> </u>					
3.	Plant conservation	i.	Importance of Plant	i.	In-situ and ex-situ	
			Conservation		conservation	
		ii.	Measures in Plant	ii.	Advantages and	
			Conservation		disadvantage of	
		iii.	Climate change		each	
				iii.	Biological control	
				iv.	Poor management	
				V.	Impact of climate	
					change on plants	
4.	Plant tissues and	i.	Plant tissues	Emp	hasis on	
	functions		anatomy	com	composition,	
		ii.	Functions	distr	ribution, forms and	
				func	tions of each limits:	
				i.	Parenchyma	
				ii.	Collenchyma	
				iii.	Sclerenchyma	
				iv.	Epidermal	
				v.	Per dermal	
				vi.	Vascular	
					(cambium,	
					phloem, xylem)	
				vii.	Practical class in	
					osmosis and	
					transpiration in	
					plants.	
5.	Plant	i.	Morphology of Plant	vii.	Morphology of	
	Morphology/Anatomy		Parts		roots, stems, leaf	
		-				

ii.	Anatomy of Plant		types and their
	Parts		modifications due
	r ures		to functions
		viii.	Anatomy of
		VIII.	monocot and dicot
			roots, stems and
			leaves with
			emphasis on
			tissue
iii.	Types of Root		arrangement in
			relation to
			functions and
			environment.
		Prac	tical class
		Root	ts
		i.	Advantages and
			tap root systems,
			modification and
			adaptations
		ii.	Anatomical
			observation and
			drawing of
			permanent/tempo
			rary mount of
			monocot and dicot
			roots (T.S and L.S)

	iii. Locate, draw and
	label different
	plant tissues
	(parenchyma,
	collenchyma etc)
iv. Types of Leaves	Leaves-
	i. Simple and
	compound leaves,
	arrangements,
	modifications to
	suit habitants.
	ii. T.S of leaves of
	both monocot and
	dicot and label
	different plant
	tissues
	(parenchyma,
	collenchyma etc)
	Flowers-
v. Types of Flowers	i. L. S of dicot
	flowers e.g.
	regular and
	irregular flowers
	floral diagrams
	and formula
	and formula

		vi.	Types of Fruits	Fruit	IS-
				i.	L. S and T.S of
					various types of
					fruits (dry
					dehiscent
					indehiscent and
					fleshy fruits should
					be observed and
					drawn).
6.	Nutrition in Plants	i.	Nature and Types of	i.	Autotrophic
			Nutrition		(photosynthesis
					and
					chemosynthetic)
				ii.	Dark and light
					reaction in
					photosynthesis
				iii.	Heterotopic
				iv.	Holozoic nutrition
				v.	Mineral
					requirements of
					plants their
					sources, roles and
					deficiency
					symptoms
				vi.	Composition of
					chemical fertilizers

				::	Compositions
				vii.	Composition of
					chemical fertilizers
				Prac	tical class-
				i.	Demonstration of
					etiolation
				ii.	Measurement of
					photosynthesis in
					leaf
				iii.	Growth
					experiments to
					show deficiency
					symptom
				iv.	Field study of
					deficiency
					symptoms in
					plants
7.	Transport system in	i.	Need for transport	i.	Mineral
	plants		system		requirements of
		ii.	Water relation		plants
				ii.	Transport in xylem
				iii.	Transport in
					phloem
				iv.	Transport media in
					plant and
					materials to be
					transported

				Pract	tical class
				i.	Transpiration,
					osmosis, and food
					transport in plants
8.	Respiration	i.	Mechanism of	i.	Stomata
			Gaseous Exchange		apparatus
				ii.	Lenticels
				iii.	Aerobic and
					anaerobic
					respiration
9.	Plant reproduction	i.	Asexual and sexual	i.	Angiosperm flower
			reproduction		and differences
					between
					monocots and
					dicot flowers
10.	Growth regulators	i.	Roles and	i.	Auxins
			interactions of	ii.	Gibberellins
			growth regulators	iii.	Cytokines
				iv.	Ascorbic acids
				V.	Ethylene
11.	Crop improvement	i.	Importance of GMC	1.	Generally Modified
					Crops (GMC)
				2.	Challenges of
					resistant plant
					species
				3.	Ethical
					implications of

				genetic
				modifications
12.	Economic and	1. Plants of Economic	i.	Economically
	ecological importance	& Medical		important food
	of plants	Importance		plants
			ii.	Economically
				valuable medicinal
				plants
			iii.	Ornamental plants

BIO 003: Micro Biology (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. discuss history and discovery of microorganisms;
- 2. discuss the different types of microorganisms and the taxonomic groupings:
- 3. explain microbial cellular structures, morphology and biochemical characteristics:
- 4. explain microbial genetics and applications in biotechnology and
- 5. enumerate economic importance of microorganisms.

S/N	Торіс	Sub-topic	Details
1.	History of the	i. Spontaneous	i. The theory of
	discovery of	generations	spontaneous
	microorganisms	ii. Microorganisms as	generation of
		the cause of some	organisms
		disease	ii. Conflict over
			spontaneous
			generations
			iii. The golden era of
			microbiology
			(1860-1910)

				<u> </u>	The course the second
				iv.	The germ theory of
					disease
				V.	The discovery of
					viruses
				vi.	Microorganisms in
					the 20 th century
				Prac	tical class
				i.	Introduction to basic
					microbial laboratory
					equipment,
					principles of
					operation and
					drawings
2.	Types and	i.	Seven levels of	i.	Bacteria-size, shapes,
	taxonomic		classification		motility, unusual
	groupings of	ii.	Prokaryotic cells		types, general
	microorganism	iii.	Eukaryotic cells		methods of bacteria
					classification
				ii.	Fungi-yeast and
					mould-size, shape,
					general fungal
					classification
				iii.	Protozoa-specific
					examples, motile and
					non-motile types,
					nutrition types
					nutrition types

		iv. Viruses-sizes, bacteriophages, viroid, prions v. Algae-sizes, types, diatoms, sea weeds, lichens, sexual and asexual evolution Practical class aseptic techniques in
		microbiology
3. Structures, Morphology and Characteristics of Microorganisms	i. Morphology and Structures of Microbial Cells ii. Biochemical Characterization iii. Reproduction, Growth Types and Phases	 i. Structure of bacteria cells-capsule, flagella. Pilli and fimbriae, cell wall, plasma membrane, cytoplasm ii. Cell wall of fungal cells, cytoplasm iii. Cultural characteristics of bacterial growth-on solid and liquid media, forms of growth. iv. Cultural and cellular characteristics of

			mould and yeast on solid and liquid
			media, hyphal and mycelial types.
			v. Biochemical
			characteristics of
			bacteria and fungi vi. Viruses and their
			structures
			vii. Reproduction and
			microbial growth phases
			Practical class
			cultivation and
			identification of bacteria
			from soil, water and
			decomposing food
4.	Microbial Ecology	i. Microbial	i. Predation
		interactions with	ii. Competition
		animals, plants and	iii. Synergism iv. Commensalism
		microbes	
			, , , , ,
			vii. Spoilage of food viii. Control of microbial
			activities

5.	Microbial Nucleic	i.	Genetic materials	i.	Nature of DNA
	Acids in	ii.	Mutation and	ii.	Nucleosides and
	information		mutagenesis		nucleotides
	storage and			iii.	Types of RNA
	transfer			iv.	Enzymes in DNA
					replication
				v.	Genetic code
				vi.	Transcription and
					translation
				vii.	Transfer of genetic
					materials in
					prokaryotes
				viii.	Spontaneous
					mutation, induced
					mutation, expression
					of mutation
				ix.	Biotechnological use
					of microorganisms in
					Food industry:
					Environment,
					Pharmaceuticals,
					Medical, and
					agricultural fields

BIO 004: Introductory Zoology (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. discuss the general characteristics of kingdom Animalia:
- 2. explain the taxonomy of invertebrates and vertebrates
- 3. discuss diversity of animal species;
- 4. explain physiological processes in animals; and
- 5. enumerate the economic and ecological importance of animals.

S/N	Topic	Sub	-topic	Deta	ails
1.	Diversity and	i.	What is Zoology?	i.	General characteristics
	General	ii.	What are Animals?		of animals
	Characteristics of	iii.	Scope and areas in	ii.	Diversity of lifestyles,
	Animals		Zoology		habitants
		iv.	Importance of	iii.	Categories of animals
			Zoology		
2.	Systematics	i.	Classification of	i.	Unicellular levels of
	(Taxonomy) of		animals		organizational:
	animals	ii.	Basic of animal		metazoan
			organization	ii.	Classification of
		iii.	Phyla of animals		invertebrates
		iv.	Tissues and organs		Animals without
			in animals		tissues

3.	Evolution of	i.	History and origin of	Iden class spec phyl Disse anim	Animals exhibiting bilateral symmetry (bilateral) Animals with body cavity (coelomates) Segmented animals Animals with jointed appendages Animals with backbone (vertebrates) Major and minor phyla Types of tissues and organ systems tical class- tification and sification of animal imens the different a ection of selected hals-cockroaches, fish, rat, etc Adaptation of animals
٦.	animals	1.	animals	1.	in water

		ii.	Major evolutionary adaptation of animals	ii. iii.	Adaptation of animals on land Adaptation of animals
					in air
4.	Invertebrates	i. ii. iii. v. vi. vii.	Phylum protozoa Phylum porifera Phylum Cnidaria (Coelenterate) Phylum Platyhelminthes Phylum nematoda Phylum annelida Phylum arthropoda	i. ii. iii.	Taxonomy, characteristics, diversity, lifestyles, morphology and life cycle providing named representative examples in such order Free living flatworms Parasitic flatworms (trematodes and cestodes) of medical and veterinary importance Emphasize the body plan
				V.	Why arthropods are successful
5.	Introduction to	i.	Adaptation of	i.	Challenges and
	Chordates		Chordates to water, land and air		adaptations to living in the different habitats
		ii. iii.	Protochordates Class pisces	ii.	History and important adaptations

		iv.	Class amphibia	iii.	Diversity, classification,
			·	''''	•
		V.	Class reptilia		morphology and life
		vi. 	Class aves		cycle, providing
		vii.	Class mammalia		representative
					examples from the
					different orders
				iv.	History and
					importance of
					adaptations
				V.	Rise and fall of
					dominant reptiles
				vi.	Cleary state the
					taxonomic features
					that warrant the
					grouping into classes
6.	Ecologic and	i.	Diverse economic	i.	Benefits of animals to
	economic of		importance of		man
	importance of		Animals:	ii.	Economics importance
	animals		Invertebrates		of arthropods
			vertebrates		
			Ecological		
			importance of		
			Animals		
7.	Physiological	i.	Nutrition in animals	i.	Types of nutrition in
-	processes				animals
	-			ii.	Nutrition in human

		1	
		iii.	Types of definition in
			animals
		iv.	Alimentary system in
			man
		V.	Digestion (diverse
			enzymes) and
			absorption
		Prac	tical class
		food	test
i.	Respiration in	i.	Lung as a respiratory
	Mammals		organ
		ii.	Role of a circulatory
			system in respiration
i.	Skeletal system	i.	Morphology and
			function of human
			skeleton
		ii.	Forms of skeleton
		iii.	Components of and
			differences between
			bone and cartilage
		iv.	Parts of mammalian
			endoskeleton
		v.	Definition and types of
			joint
i.	Reproduction	i.	Vertebrate
			reproduction

					Character and a self a self
				ii.	Structure and function
					of human female and
					male reproductive
					system
8.	Transport of	i.	Excretion	ii.	Morphology of the
	substance across				excretory system
	Membranes			iii.	Osmoregulation
				iv.	Structure and function
					of the nephron –
					ultrafiltration, selective
					reabsorption and
					excretion
				v.	The effects of weather
					on excretion
		i.	Circulatory system	i.	Human
					circulatory/transport
					system
				ii.	Blood as agent of
					transport
				iii.	Components of blood
				iv.	The functions of blood
				v.	Types of circulation
		i.	Growth and	Prin	ciples of development
			development	i.	stages in embryology
		i.	Diffusion	i.	Osmotic balance
		ii.	Osmosis		

l	iii.	Plasmolysis	ii.	Selective transport of
l	iv.	Flaccidity		substance across
	٧.	Haemolysis		members
,	vi.	Crenation	iii.	Osmotic pressure
V	∕ii.	Turgidity	iv.	Turgor pressure
			v.	Active transport
			Prac	tical class
			diffu	eriment demonstration ision, osmosis and molysis

JUPEB PHYSICS SYLLABUS 2020/2021

GENERAL OBJECTIVES

At the end of the series of courses in this syllabus, Candidates should be able to:

- 1. describe the properties of matter and waves, and various physical phenomenon at the microscopic and macroscopic levels.
- 2. analyse and apply physics laws and principles to solve real life problems:
- 3. design, implement and draw meaningful inferences from the results of experiments:
- 4. explain natural and physical phenomena using physics laws and concepts:
- 5. develop and enhance creativity in students in their day to day activities:
- 6. prepare students for further and higher studies in physics related courses.

FIRST SEMESTER COURSES

PHY 001: MECHANICS AND PROPERTIES OF MATTER (3 UNITS)

PHY 002: HEAT, WAVES AND OPTICS (3 UNITS)

SECOND SEMESTER COURSES

PHY 003: ELECTRICITY AND MAGNETISM (3 UNITS)

PHY 004: MODERN PHYSICS (3 UNITS)

COURSE DESCRIPTION

PHY 001: MECHANICS AND PROPERTIES OF MATTER (3 Units)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. Differentiate between fundamental physical quantities and derived quantities:
- 2. Explain and apply the concept of dimensional analysis:
- 3. Define and explain various physical laws in relation to mechanics:
- 4. Describe the phases of matter:
- 5. Describe and explain physical phenomena in relation to fluid mechanics; and
- Solve problems using the laws, principles and theories of mechanics.

Topics	Sub-Topics	Details and notes		
Units	Order of Magnitude,	Revision of types of motion:		
	Definition of Units:	translational, random,		
	Length, Mass, Time, Unit	oscillatory, and rotational,		
	Conversion and	linear motion: distance,		
	Measurements, Methods	displacement, uniform		
	of Measuring Length,	velocity and uniform		
	Mass and Time. Basic	acceleration are required.		

	and Derived Units,				
	Dimensional Analysis	Th	The following suggested		
	(L.M.T. only)	experiments will enhance			
Vectors	Vector Representation,	the	the students understanding		
	Addition and Subtraction	of the topics covered in this			
	of Vectors (geometrical	coı	course:		
	Method Only),	1.	Error analysis and		
	Resolution of Vectors.		significant figures.		
	Vector Multiplication,	2.	Measurement of		
	Vectors in Cartesian,		velocity and		
	Coordinate System.		acceleration.		
Particle	Types of Motion:	3.	Investigation on the		
Kinematics	Translational, Random,		proportionality of		
	Oscillatory, And		acceleration and force.		
	Rotational. Linear	4.	Investigation of the		
	Motion: Uniform Velocity		relationship between		
	Motion, Uniform		period and length of		
	Acceleration Motion,		simple pendulum and		
	Graphs of Kinematic		hence calculations of		
	Equations.		acceleration due to		
	Instantaneous and		gravity (g)		
	Average Velocity and	5.	Verification of the		
	Acceleration in Two or		principle of		
	Three Dimensions.		conservation of		
	Relative Motion in One		momentum.		
	or Two Dimensions, Free	6.	Investigation of the laws		
	Fall, Projectile Motion.		of equilibrium for a set		
			of coplanar forces.		

Dynamics	Nowton's Laws of	7	Elacticity of materials
Dynamics	Newton's Laws of	7.	Elasticity of materials –
	Motion, Types of Force		Hooke's law
	Newton's Universal Law		experiments.
	of Gravitational,	8.	Investigation of contact
	Equilibrium of Forces,		forces – static and
	Centre of Mass and		dynamic friction.
	Centre of Gravity,	9.	Investigation of forces in
	Moment of a Force,		fluids – surface tension
	Linear Momentum and		n and capillarity.
	its Conservation Laws,	10.	Rigid body and
	Elastic and Inelastic		Torsional oscillation –
	Collisions. Collisions in		Moment of Inertia
	Two Dimensions. Motor		
	in Inclined Planes,		
	Frictional Forces.		
The	Kepler's Law of Planetary		
Gravitational	Motion, Newton's Law of		
Field	Gravitation, Field		
	Strength, G and its		
	Measurement,		
	Gravitational Potential,		
	Satellite Motion and		
	Escape Velocity.		
Work,	Work, Energy and		
energy, and	Sources, Types of		
power	Energy, Conversation		
	and Conservation of		
	Energy, Power, the		
L	l .	1	

	Kilowatt hour, Principle
	of Mechanical Energy
	Conservation
Circular and	Angular Displacement,
oscillatory	Angular Velocity, Torque
motions.	and Angular
	Acceleration, Angular
	Momentum, Centripetal
	Acceleration, Centripetal
	Force, Rotational Kinetic
	Energy, Work done in
	Rotation, Conservation
	of Angular Momentum.
	Simple Harmonic
	Motion, Damped and
	Forced oscillations,
	Resonance.
Elasticity	Hooke's Law, Elastic
	Limit, Elastic and Plastic
	Deformations, Ductile
	and Brittle Substances,
	Stress, Strain, Elastic and
	Plastic Behaviour,
	Young's Modulus, Energy
	Stored, Energy per Unit
	Volume, Shear Modulus,
	Bulk Modulus.

Hydrostatics	Matter (solid, liquid and
	gases), Density, Pressure
	in Fluids, Change of
	Phases, Archimedes'
	Principle. Principle of
	Floatation, Stoke's law,
	Terminal Velocity.
	Bernoulli's Principle,
	Pitot-static Tube
	Principle.
Hydrodynam	Molecular Properties of
ics	Fluids, Viscosity, Surface
	Tension, Adhesion,
	Cohesion, Capillarity,
	Drops and Bubbles,
	Bernoulli's Principle,
	Pascal principle,
	Reynold's Number,
	Turbulent and Laminar
	Flow, Poiseuille's
	Equation.

PHY 002: HEAT, WAVES AND OPTICS (3 UNITS)

Specific Objectives

At the end of this course, Candidates should be able to:

- 1. explain the concept if ideal gas;
- 2. explain the concept of heat, temperature and nodes of heat transfer;
- 3. explain light as an Electromagnetic phenomenon and identify the components of the electromagnetic spectrum;
- 4. locate by graphical means and by calculation the position of images formed by mirrors and lenses;
- 5. describe the operations of various optical instruments and their applications;
- 6. explain the dual nature of light the particle nature and the wave nature;
- 7. explain the properties of light arising from its wave nature; and
- 8. explain the principles of sound propagation.

Topics	Sub-topics	Details and notes
Ideal Gases	Gas Laws: Boyle's Law,	Revision of Rectilinear
	Charles' Law and	propagation of light, laws
	Pressure Law. Equation	of reflection and
	of State, Kinetic Theory	refraction, reflection on
	of Gases, Pressure of a	plane and curved mirrors,
		refraction at plane

	Gas, Kinetic Energy of a	sur	faces, total internal
	molecule.	refl	ection, and critical
Temperature	Concept of Heat and	ang	le are required.
and	Temperature, Thermal	The	following suggested
Thermometry	Equilibrium,	exp	eriments will enhance
	Temperature Scales,	the	students
	Practical Thermometers,	unc	derstanding of the
	Expansion of Solids and	top	ics covered in this
	Liquid.	cou	rse:
Heat and	Heat Capacity, Specific	1.	Calibration curve of a
Energy	Heat Capacity, Latent		thermometer using
	Heat, Internal Energy,		the laboratory
	Thermal Conductivity,		mercury thermometer
	Blackbody radiation.		as a standard.
Thermodyna	Work done by Gas,	2.	Verification of Boyle's
mics	Internal Energy of Gas,		law.
	First and Second Law of	3.	Measurement of
	Thermodynamics,		specific heat capacity
	Concepts of Isothermal		of water or metal by
	and Adiabatic		mechanical and
	Processes'.		electrical methods
Electromagne	Electromagnetic	4.	Measurement of
tic Waves	Spectrum. Applications		specific latent heat of
	of Components of the		Fusion of ice.
	Electromagnetic	5.	Measurement of
	Spectrum.		specific latent heat of
			vaporization of water.

Geometrical	Rectilinear Propagation	6.	Change of state – The
Optics	of Light. Laws of		cooling curve
	Reflection and		experiment.
	Refraction, Reflection on	7.	Measurement of the
	Plane and Curved		speed of sound in air.
	Mirrors, Refraction at	8.	Investigation of the
	Plane surfaces, Total		variation of
	Internal Reflection,		fundamental
	Critical Angle, Dispersion		frequency of a
	by Prism.		stretched string with
Lenses and	Lenses, Formation of		length.
Optical	Images by Lenses, the	9.	Investigation of
Instruments	Eye, Defects of Vision.		fundamental
	Optical Instruments		frequency of
	(camera, refractor and		stretched string with
	reflector telescopes,		tension.
	simple microscope,	10.	Resonance tube
	compound microscope		experiments -
	and ophthalmoscope).		fundamental
Oscillations	Classification of Waves,		frequency and higher
and Waves	Wave Parameters,		harmonics.
	Graphical	11.	Measurement of the
	Representation of		focal length of a
	Waves, Wave equation,		concave mirror.
	Progressive and	12.	Verification of Snell's
	Stationary Waves,		law of refraction.
	Reflection, Refraction,		
	Diffraction, Principle of		

	Cuparposition	13. Measurement of the
	Superposition,	
	Interference.	refractive index of a
Wave Theory	Wave-Particle Nature of	liquid and a solid.
of Light	Light, Huygens' Principle.	14. Measurement of the
	Interference and	focal length of a
	Diffraction, Coherent	converging lens.
	Sources, Young's Double	15. Investigation of
	Slit Fringes. Diffraction	interference
	of Light Waves,	phenomenon –
	Resolving Power,	Young's double slit
	Diffraction Grafting	experiment.
	Polarization and its	16. Experiment with
	Applications.	diffraction –
Sound Waves	Pitch, Loudness, Quality,	Measurement of the
	Intensity of Sound,	wavelength of a
	Decibel, Beats and	monochromatic light.
	Application. Doppler	17. Measurement of the
	principle of Sound,	speed of light.
	Waves in Strings and	18. Investigation of
	Pipes.	polarization – Optical
		activity experiments.

PHY 003: ELECTRICITY AND MAGNETISM (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to;

- 1. state the fundamental laws in electricity and magnetism;
- 2. explain the relationship between the electronic force and the electric field;
- 3. explain the relationship between the magnitude force and the magnitude field;
- 4. describe and explain the interaction between the electric field and the magnetic field;
- 5. explain the effect of charges in motion;
- 6. describe and explain physical phenomena in electricity and magnetism;
- 7. solve problems using the laws, principles and theories of electricity and magnetism; and
- 8. identify and describe some industrial application of electromagnetic theory.

Topics	Sub-topics	Deta	ails and notes
Electronics	Coulomb's Law, Gauss's	Revi	sion of electric current,
	Law and application,	pote	ntial difference,
	Concepts of an Electric	resistance and resistivity,	
	field, Force Between	Ohm	n's law, Ohmic and non
	point charges, Electric	Ohm	nic conductors, resistors
	field at a point, Electric	in se	ries and parallel are
	Potential, Potential Due	requ	iired.
	to a Point Charge and		
	Charged Sphere,	The	following suggested
	Relationship between	expe	eriments will enhance the
	Electric Field and	stud	ent's understanding of
	Electric Potential,	the t	opics covered in this
	Equipotential surfaces.	cour	se:
Capacitors	Capacitors and	1.	Verification of Joule's
	Capacitance, Dielectric		law.
	and Relative	2.	Measurement of
	Permittivity, Capacitors		resistivity of a wire.
	in Series and Parallel,	3.	Experimental
	Energy stored in a		verification of Ohms
	capacitor, Effects of		law.
	Dielectrics, Charging	4.	Investigation of the
	and Discharging in C-R		variation of resistance
	Circuit Time constant.		of a metallic conductor
			with temperature.

Current	Electric Current,	5. Investigation of the
Electricity	Potential Difference,	variation of resistance
	Resistance and	with temperature.
	Resistivity, Ohm's law,	6. Experiment with the
	Ohmic and Non-Ohmic	Wheatstone bridge
	Conductors, Resistors in	7. Emf and internal
	series and parallel,	resistance of cells.
	Electromotive Force and	8. Comparison of emf –
	circuit, Electrical power,	the Potentiometer.
	Electrical energy and	9. Basic electrochemistry
	efficiency, cells in series	experiments.
	and parallel, Kirchhoff's	10. Alternating currents –
	laws, Temperature	The R. L .C circuits.
	coefficient of resistance,	11. Basic semiconductors
	principle of	diode characteristics.
	potentiometer and	
	Wheatstone Bridge,	
	Galvanometer.	
Magnetic	Earth's Magnetic Field,	
Field	concepts of Magnetic	
	Field, magnetic Flux and	
	flux density - B (of	
	solenoids, straight	
	Conductors and narrow	
	Circular coil).	
Force on	Force on a	
Conductor	current-carrying	
	conductor, Force	

and Moving	Between
Charge	current-carrying
	conductors, Fleming
	Left-Hand Rule, Torque,
	application to moving
	coil meters, Ampere's
	Law, Biot-Savart's law
Electromag	Faraday's law, Lenz Law,
netic	Fleming Right-Hand
Induction	rule, Dynamo,
	Transformer, Eddy
	current, current in L-R
	circuit, self and mutual
	inductance, Energy in
	coil, motors and
	Generators.
Alternating	Characteristics Of
current	alternating current
(A.C) Circuit	(period, frequency, peak
	value and
	Root-Mean-Square
	value as applied to an
	alternating current and
	voltage), Resistive
	Circuit, Capacitive
	Circuit, Inductive Circuit,
	Capacitance- Resistance
	Circuit, Inductance

-Resistance circuit,	
L-C-R Series circuit,	
resonance L-C-R circuit,	
power in A.C Circuit,	
parallel circuit.	

PHY 004: MODERN PHYSICS (3 Units)

Specific objectives

At the end of this course, candidates should be able to:

- 1. Describe the structures of the atom;
- 2. Describe the structure of the atom and its energy spectrum
- 3. Explain the wave-particle duality of matter;
- 4. Explain the limitation of classical physics;
- 5. Describe the nature and properties of X-rays;
- 6. Explain the interaction of radiation with matter;
- 7. Explain the radioactive disintegration and calculate radioactive decay constants of different radioactive elements; and
- 8. Explain the concept of semi-conductors

Topics	Sub-topics	Details and notes
Atomic	The Nucleus (proton and	The following suggested
Structure	neutron), The Electron,	experiments will enhance the
	specific Charge,	student's understanding of
	isotopes, Millikan's	the topics covered in this
	Experiment, Cathode	course;
	Ray electroscope, Types	1. Experiments on alpha
	of spectrum, hydrogen	particles, beta particles
	Spectrum, Spectra Series	and gamma rays.
Elements of Modern Physics	Defect of the Wave Theory, The Ultraviolent Catastrophe,	2. Measurement of long and short half-life.

	Photo Electric Emission, Bohr's Theory of the Hydrogen Atoms, And Energy Levels of the	3. Geiger-Marsden experiment4. Experiment with mass spectrometer
	Atom, Excitation Absorption and Emission, Fraunhofer Lines. Interaction of Radiation with Matter, Laser Principle.	5. Millikan's oil Drop Experiment – determination of e/m ratio.
X-rays	Nature and properties of X-rays, Crystal Diffraction, Bragg's Law, Moseley's Law, X-ray Spectrum, Minimum Wavelength Value. X-Ray Absorption Spectra.	Simple application and operation of some conductors is required
Wave-Partic le Duality	Electron Diffraction, De- Broglie Formula. Momentum and Energy, Duality, Compton Effect. Heisenberg's Uncertainty Principle	
Radioactivit y and	Radioactivity, Mass Excess and nuclear binding Energy. Nuclear	

Nuclear	fission and nuclear	
Energy	fusion, Geiger-Muller	
	tube, Radioactivity Decay	
	– half life and decay	
	constant, nuclear	
	Relations, isotopes,	
	nuclear Energy, Einstein	
	Mass-Energy relation	
Introductio	Intrinsic	
n to	Semiconductors, energy	
Semicondu	Bands in solids, Doping	
ctors	of semiconductors; p-n	
	junction diodes, Half and	
	full wave rectification,	
	The bridge Rectifier,	
	transistor as an	
	Amplifier and switch.	
Applied	Basic Applications of	
Physics	physics to the Life	
	Sciences, Fundamental	
	principles and	
	Application of	
	Ultrasound, X-ray and	
	Nuclear Magnetic	
	Resonance	

RECOMMENDED TEXTS

- 1. Michael Nelkon & Philip Parker (1995). *Advanced Level Physics*. London: Heinemann.
- 2. Young P.L., Anyakoha, M. W. & Okeke, P. N. (2002). *University Physics* (Also for Polytechnics and Colleges). Onitsha: Africana-FEP Publishers Ltd.
- 3. Giambattista, A., Richardson, B. & Richardson, R. C. (2010). *College Physics*. Boston: McGraw Hill Higher Education.
- 4. Tom Duncan (2008). Advanced Physics. London: Hodder Education.
- 5. Okeke, P. N. & Anyakoha, M. W. (2005). *Senior Secondary Physics*. London: Macmillan.
- 6. Halliday D., Resnick. and Walker, J. (1997). *Fundamentals of Physics*. New York: Wiley and Sons.
- 7. Jim Breithaupt (2000). *New Understanding Physics for Advanced Level*. London: Nelson Thornes.
- 8. Jewett, J. W. & Serway, R. A. (2008). *Physics for Scientists and Engineers* Bemount: Thompson Higher Education.
- 9. Physics Writers Series Creation (2015). *Mechanics and Properties of Matter*. San Press Ltd. Enugu.
- 10. Physics Writers Series Creation (2015). *Waves Optics and Thermal Physics*. Ebenezer Production Ltd. Enugu.
- 11. Physics Writers Series Creation (2015). *Electromagnetism and Modern Physics*. Ebenezer Production Ltd. Enugu.
- 12. Physics Writers Series Creation (2015). *First Year University Physics Practical*. Ebenezer Production Ltd. Enugu.
- 13. Mee, C. Crundell, M., Arnold, B. and Brown, W. (2008). International *A/AS Level Physics*. Hodder Education, U.K.

JUPEB MATHEMATICS SYLLABUS 2020/2021

GENERAL OBJECTIVES

At the end of the series of courses, candidates should be able to:

- identify and solve problems in general algebra which includes set, real number system, trigonometry, complex numbers, and coordinate geometry.
- 2. solve problems on calculus which involve the different rules of differentiation and integration of various functions. Solve problems on ordinary differential equations of first and second-order using different techniques.
- 3. manipulate the problems in Mechanics through the understanding of vectors, kinematics of motion, forces, Newtonian laws, inclined plane, the motion of particles in a plane, the equilibrium of rigid bodies.
- 4. evaluate the general analysis of statistical data, deal with random variables using different probability density functions such as Bernoulli, Binomial, Geometric, and Poisson random variable; and
- 5. model data using the Normal Distribution and the use of the Normal standard tables, Hypothesis Testing, Correlation, and Regression.

FIRST SEMESTER COURSES

MAT 001: Advanced Pure Mathematics (3 UNITS)
MAT 002: Calculus (3 UNITS)

SECOND SEMESTER COURSES

MAT 003: Applied Mathematics (3 UNITS)
MAT 004: Statistics (3 UNITS)

MAT 001: Advanced Pure Mathematics (3 UNITS)

Specific Objectives

At the end of this course, the candidate should be able to:

- 1. manipulate in this course, candidates should be able to:
- 2. identify and perform operations with the number system, sequences, and series;
- 3. solve problems on circular functions: and
- 4. use trigonometric identities and apply the concept of trigonometry in solving problems.

Topic	Sub-topic	Details
Real numbers	Real numbers	Integers, rational and irrational numbers, Mathematical induction, real sequence, and series (AP and GP), Sum to infinity of Geometric Progression and its convergence, and binary operations
Algebra	Set Theory	Elementary set theory, subset, union, and intersection, complements, Venn diagram, and its applications to word problems.

	Mapping	Compositions of mapping, domain, range one-to-one, onto mapping, inverse functions, and composite functions
	Theory of Quadratics	The roots of quadratic (completing the square, using the discriminant to determine the roots), the theory of quadratic equations
	Polynomials	Polynomial is an equation up to degree 3, the Factor theorem, and the remainder theorem. Partial functions.
	Binomial theorem	Binomial theorem, pascal triangle
	Logarithmic functions	The relationship between logarithm and indices, change of base, and the natural logarithm
	Matrices and determinants	Matrices and determinants of not more than 3 x 3, inverse, addition, subtraction, multiplication, and its application to a system of equations up to three unknowns. Linear, quadratic, simultaneous (one linear, one quadratic), and graphical solution. Absolute value and intervals.
Complex numbers	Complex numbers	Basic concepts numbers, Algebra of complex numbers, the Argand diagram, complex numbers in polar form,

		De-Moivre's theorem with proof (nth root
		unity) and loci problems
Trigonometry	Circular measure	Radians and degree conversion, length of
		an arc, area of sector, area of the
		segment of a circle
		Trigonometric functions of angles of any magnitude and simple trigonometric
		equations, graph of trigonometric
		functions (Sine, Cosine, and Tangent)
		The inverse of trigonometric functions.
		Use of trigonometric identities.
Coordinate	Straight line	Length, gradient, and mid-point of a
geometry		straight line. Equation of straight line
		(coordinate of two points and one point,
		and their gradients). Association between
		the gradients of parallel and
		perpendicular lines
	Other circles	Circles, parabola, ellipse, hyperbola and
	equations	their properties (e.g. tangents and
		normal)

MAT 002: Calculus (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. solve problems on limits
- 2. differentiate various functions including algebraic, logarithmic exponential, and implicit functions
- 3. apply the techniques of differentiation in solving practical problems; and
- 4. use the techniques of integration in solving a practical problem

Topic	Sub-topic	Details
Differentiation	Differentiation	Functions of a real variable, graphs, limits, and notion of continuity, differentiation from the first principle, differentiation of algebraic functions, and trigonometric functions. Composite functions: chain rule, product rule, and quotient rule. Derivatives of implicit and parametric functions. Higher-order derivatives

	Applications of differentiation	Rectilinear motion, tangent and normal to a curve, maximum and minimum, rate of change, and curve sketching. Maclaurin and Taylor series.
Exponential functions	Exponential functions	The graph of the exponential function (a²), limit, and derivative of the functions (a²). The exponential function (e²), the graph, limit, and derivative of exponential functions (e²).
Logarithm function	Logarithm functions	The relationship between logarithmic and exponential functions, the graph, limit, and derivative of the logarithm function (log _e X).
Integration	Integration	Standard integrals, integration as the inverse of differentiation, definite integrals, techniques of integration (substitution method, inverse trigonometric function, integration by parts, use of partial fraction and reduction formula). Area, volumes, numerical methods of integration: Trapezoidal and Simpson rules.

Differential	Differential equations	Formulations of simple first-order
equations		differential equations, solution when
		the variables are separable, solution
		when the equation is homogeneous
		and solution when the equation is
		linear (Bernoulli equation) and use of
		an initial condition.
Second-order	Second-order	Homogeneous second-order
differential	differential equations	differential equations with constant
equations	geometric applications	coefficients
		The exponential growth and decay
		problems
		L

MAT 003: Applied Mathematics (3 UNITS)

Specific objectives

At the end of this course, candidates should be able to:

- 1. evaluate the various operations of vectors
- 2. solve problems involving the motion of vectors in a straight line;
- 3. state and apply Newton's laws of motion
- 4. solve problems of a particle on an inclined plane: and
- 5. solve problems of forces in equilibrium and equilibrium of rigid bodies

Topic	Sub-topic	Details
Vectors	Vectors	Scalar and vector quantities types of vectors, representation, and naming of vectors.
	Algebra of Vectors	Addition, subtraction and scalar multiplication, commutativity and associativity, linear dependence and co-linearity of vectors, perpendicularity of vectors, and the angles between two vectors

	Vector Equations	Vectors equation of lines and planes, application to geometry, vectors in three dimensions, and the rectangular unit vectors i, j, and k. Representation of vectors functions (one integral and differential operations of at most order 3).
Kinematics of motion in a straight line	Motion in a straight line	Unit vectors, position vectors, speed, velocity, acceleration and displacement in simple cases. Area under velocity-time graph representing displacement, and gradient of velocity-time graph representing acceleration. Gradient of a displacement-time graph representing velocity.
	Motion in a plane	Rectilinear motion with uniform acceleration, motion under gravity, and graphical method. Rectangular components of velocity and acceleration, resultant velocity, relative velocity and relative path.
Newtonian mechanics	Newtonian Mechanics Force and Motion	Energy, work, and power (simple cases).

		Force and motion, momentum, Newton's laws of motion, different kinds of forces (gravitational reactions, tension, and thrust), the motion of connected particles, the Atwood's machine (simple cases), and motion of a particle on an inclined plane.
Forces and equilibrium	Forces and equilibrium	Forces acting at various points of a rigid body, parallel forces, couple, movement, and application of vectors in statics (simple cases).
	Frictional forces and center of mass	Friction, smooth bodies, tension, and thrust, bodies in equilibrium (rough, horizontal, and inclined planes). Centre of gravity (simple cases).
Equilibrium of a rigid body	Equilibrium of a Rigid Body	Moment of inertia, the radius of gyration, parallel and perpendicular axes theorems, the kinetic energy of a body rotating about a fixed axis (simple cases)

MAT 004: Statistics (3 UNITS)

Specific Objectives

At the end, of the course, candidates should be able:

- 1. analyze data sets using descriptive measure and pictorial analysis
- 2. solve problems using probability theory;
- 3. evaluate the Random variable by apply Probability Density Function and Probability Distribution Function:
- 4. test hypotheses by applying normal distribution, student t, and normal standard table; and
- 5. solve problems on Regression and Correlation.

Topic	Sub-topic	Details
Description of Data set	Data set	Population and sample, random variables, and graphical representation of data (histogram, bar chart, Ogive, and frequency polygon).
		The measure of central tendency for grouped and ungrouped data (mean, median, and mode). The measure of dispersion for grouped and ungrouped data (mean, deviation, standard

		deviation and variance). Skewness and	
		Kurtosis	
Mathematics of	Mathematics of	Permission and combination, fundamental	
counting	ounting counting principles of probabilit		
		and continuous random variables.	
Random	Probability	Probability density function and probability	
variables		distribution function	
	Discrete random	Find the mean and variance from a	
	variables	probability distribution table and the linear	
		properties of expectation and variance.	
	Discrete	Expectation and variance of the following	
	Probability Density	distributions: Bernoulli, Binomial,	
	Function,	Geometric, and Poisson. Use of the	
	Expectation, and	Binomial and Poisson tables	
	Variance		
Normal	Normal Table	Use of standard Normal table, Normal	
Random		distribution as a model for data and its	
Variables		applications to real life problems.	
	Significance	Test of hypothesis, errors in hypothesis	
	Testing	testing, significance tests using normal	
		distribution significance test using Nominal	
		distribution and Student t-distribution,	
		Chi-contingency test (goodness of fit test	
		and contingency table), one sample mean	
		test difference of mean, one-sample	
		proportion test.	
l	•	•	

Regression and	Simple regression	Types of correlation, simple correlation and
Correlation	and correlation	simple linear regression
Basic sampling	Types of sampling	Simple sampling technique, finite and
techniques	techniques	infinite sampling sizes

JUPEB CHEMISTRY SYLLABUS 2020/2021.

GENERAL OBJECTIVES

At the end of the series of courses, candidates should be able to:

- 1. provide a course of instruction and other facilities for the acquisitions of knowledge in the field of Chemistry;
- 2. build on the knowledge acquired in chemistry at the Senior Secondary School level;
- 3. provide candidates with advanced knowledge in chemical concepts and principles through an efficient selection of content;
- 4. enable candidates to improve on and develop new laboratory skills including an awareness of hazards and safety in the laboratory;
- 5. provide candidates with unique and sufficient academic and technical knowledge for professional careers in industries, government agencies, research institutes, and academia; and
- 6. make the study of chemistry enjoyable and satisfying by creating a sustained interest in the subject.

FIRST SEMESTER COURSES

CHM 001: General Chemistry (3 UNITS)
CHM 002: Physical Chemistry (3 UNITS)

SECOND SEMESTER COURSES

CHM 003: Inorganic Chemistry (3 UNITS)
CHM 004: Organic Chemistry (3 UNITS)

COURSE DESCRIPTION

CHM 001: GENERAL CHEMISTRY (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. determine scientific quantities and units;
- 2. apply terms relative atomic, isotopic, molecular and formula masses, based on ¹²C scale in Chemistry
- 3. define the term mole in terms of Avogadro constant;
- 4. determine empirical and molecular formulae, using combustion data;
- 5. discuss the development of the modern atomic structure;
- 6. state the electronic configuration of atoms and ions given the proton number;
- 7. explain qualitatively the variation in atomic radius and ionic radius;
- 8. describe chemical bonding (ionic, covalent, coordinate metallic, etc.);
- 9. explain the shapes of, and bond angles in molecules using the valence shell electron pair repulsion theory.

Course Content

S/N	Topic	Sub-topic	Detail
1	Measurement	Units of Measurement	Basic S.I. Units, derived units, conversion of units, significant figures, precision and accuracy, errors (systematic and random errors). Exact numbers.
2	Nature of matter	States of Matter	Solid, liquid, and gaseous states, properties, and inter-conversion.
3	Atomic Masses	Relative Atomic Mass, Relative Molecular Mass	Definitions and calculations of molar masses of atoms and molecules based on ¹² C scale, use of mass spectrometry in the determination of Relative Atomic Mass and Relative Molecular Mass.
4	Atomic Structure	Dalton's Atomic Theory Discovery of Subatomic Particles	Dalton's atomic theory. Various experiments that led to the discovery of neutrons, protons, electrons and nucleus (cathode ray, Millikan's oil drop, Rutherford and Thompson's experiments), calculations of

Alevelschool.com.ng

Planck's Theory	relative abundances and isotopic mass; Black body radiation,
	photoelectric effect, quantization energy;
Bohr's Theory	Bohr's assumption, atomic spectra of hydrogen (no derivation is required) and
Wave Theory of Atom	determination of spectra lines, determination of ionization energy from line spectra (when
Electronic	n=∞);
Configuration of	Particle wave duality.
Atoms and lons	Atomic orbitals, quantum numbers (n, l, m, s), electronic energy levels, the degeneracy of atomic orbitals, shapes of atomic orbitals (s, p, and d orbitals)
	Aufbau principle, Pauli's exclusion principle, Hund's rule, (n+1) rule.

5	Poriodicity.	Periodic Table	Development of the modern
3	Periodicity	ד כווטעונ דמטופ	Development of the modern
			periodic table, building up
			periods, identifying blocks and
			groups of elements, Periodic
		Atomic Properties	law.
			Trends of atomic size, ionization
			potential, electron affinity,
			electronegativity and ionic radii,
			isoelectronic species.
6	Mole Concept	Mole and Avogadro's	Various ways of defining the
		Constant	mole, Avogadro's constant,
			molar mass.
		Empirical and	Definition and calculations of
		Molecular Formulae	Definition and calculations of
			Empirical and Molecular
		Stoichiometry	formulae from percentage
		Stolemometry	composition by mass and
		Colution Staichiamatry	combustion data.
		Solution Stoichiometry	Balancing chemical equations,
			calculations based on
			stoichiometric coefficients, a
			reaction that involves limiting
			reactants, calculation of actual
			and percentage yields.
			Calculation of molarity and
			gram concentration,
			G

			preparation of standard solutions, serial dilution.
7	Types of chemical reactions	Neutralization	Definition, identification of Neutralisation reactions. Prediction solubilities. Various definitions of oxidation and reduction reaction with emphasis on the definition of terms of electron transfer, calculation of oxidation numbers, balancing of redox reactions by oxidation state and half-reaction method (both in acidic and basic media).
8	Chemical Bonding	Electrovalent/Ionic Bonding	Describe ionic bonding using some ionic compounds e.g. NaCl, energy considerations of ionic bonding, the definition of lattice energy (no derivation), properties of ionic compounds.
		Covalent Bonding	Describe covalent bonding using simple covalent compounds e.g. CO_2 coordinate/dative covalent bonding e.g. in ammonium ion (NH_4^+) , Al_2Cl_6 molecule, bond energy, bond length, and bond

Intermolecular Forces	polarity (Fajan's rule), properties of covalent compounds, hybridization concept (sp, sp ² , sp ³), shapes of molecules using the valence-shell electron-pair repulsion theory e.g. H ₂ O, NH ₃ , CH ₄ , etc.
Metallic Bonding	Van der Waals forces, permanent and induced dipoles, hydrogen bonding.
Bonding and Physical Properties	Describe metallic bonding in terms of a lattice of positive ions surrounded by delocalized electrons.
	The effect of different types of bonding on the physical properties of substances (e.g. unusual high boiling point of water, miscibility of water and
	ethanol, nylon, polyester).

CHM 001 Practicals

- 1. The sensitivity of weighing equipment, Graduation of measuring equipment, and determination of significant in readings;
- 2. Preparations of standard solutions: Serial dilution;

- 3. Volumetric analysis: Practice in volumetric analysis, acid-base, redox, precipitation titrations. Acid-base titrimetry involving NaOH, oxalic acid, HCl and Na₂CO₃, Determination of percentage composition of iron using KMnO₄ (redox Titrimetry), Titrimetric analysis of mixtures, NaOH/NaHCO₃ and Na₂CO₃/ NaHCO₃; and
- 4. Introduction to the statistical analysis of data: Use of Applied data to illustrate elements of simple statistics.

CHM 002: PHYSICAL CHEMISTRY (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. state the assumptions of the kinetic theory for ideal gases;
- 2. state and derive Raoult's law;
- 3. use of colligative properties of the solution to obtain experimentally determined molar masses;
- 4. apply Hess' Law to construct simple energy cycles and carry out calculations involving such cycles;
- 5. define the terms, standard electrode potential, and standard cell potential.
- 6. use the redox equation to construct an electrochemical cell using relevant half equations;
- 7. construct and use rate equations to deduce the order of reactions.
- 8. define acids and bases in terms of Arrhenius, Bronsted-Lowry, and Lewis concept; and
- 9. identify acids/bases in a chemical reaction, giving the basis for the classification.

Course Content

S/N	Topic	Sub-topic	Detail
	-	-	

2.	Kinetic Molecular Theory of Gases	Ideal and Real Gases Phase and Phase Diagram Ideal and Non-Ideal Solutions Colligative Properties	Statement of and calculations involving Boyle's, Charles', Dalton's, Graham's laws, and Avogadro's hypothesis. Ideal gas equations, Kinetic theory of gases (assumptions only), real gas deviation from ideal gas behavior, Van der Waal's equation. PV=nRT in calculations, including relative molecular mass determination. Interpretation of phase diagram for a one-component system. Definition of ideal and non-ideal solutions, Raoult's Law. Lowering of vapor pressure, depression of freezing, the elevation of boiling point, and osmotic pressure. Determination of molar mass using osmotic pressure. (The derivation not required).
3.	Thermochemi stry	Enthalpy Change	Exothermic and endothermic changes, Definition of enthalpy changes for processes

		Hess' Law	(combustion, neutralization, hydration, formation, solution, atomization) under standard conditions.
			State Hess' law and construct energy cycles based on Hess' law.
			Use of bond energy to calculate energy changes.
		Introduction of Chemical Thermodynamics	Definition of entropy and Gibb's free energy change for reactions using $\Delta G = \Delta H - T \Delta S$. Predicting the spontaneity of reactions.
4.	Electrochemis try	Electrolysis	Faraday's first and second laws of electrolysis and calculations based on them.
		Electrochemical Cells	Identify the substances liberated during electrolysis based on the state of electrolyte, position in electrochemical series, the concentration of electrolyte, and the nature of electrodes.
		Fuel Cells and Batteries	Definitions of electrode potential, standard electrode potential, cell potential. Calculations of e. m. f of a cell.

			Application of the Nernst equation. Use of cell potential to predict the feasibility of reactions. Industrial uses of electrolysis. H ₂ O/O ₂ fuel cell, rechargeable
			batteries.
5.	Chemical Kinetics	Rate Equations	Definition of the rate of reaction and reaction mechanism.
		Activation Energy Catalysis	Factors affecting the rate of reaction. Orders of reaction, rate constants, and molecularity.
			Calculations of the order of reaction from experimental data. Simple collision theory. Definition of activation energy. Arrhenius equation.
			Homogeneous and Heterogeneous catalysis.

		<u> </u>	
6.	Equilibrium State	Mass Action	Equilibrium changes, reaction quotient (Q), equilibrium expressions (homogeneous and heterogeneous equilibria).
			Calculations of equilibrium constants in terms of concentration (K_c) and partial pressure (K_p). Relationship between K_c and K_p .
		Le-Chatelier's Principle	Statement and Application of Le-Chatelier's principle to deduce the effects of changes in temperature, pressure, and concentration on a system at equilibrium.
		Acid-Base Equilibria Ionic Equilibria in Aqueous System	Definitions of acid and base in terms of; Arrhenius, Bronsted-Lowry, and Lewis concept. Auto-ionisation of water.
			Acid strengths, Ph of acids, buffer solution, Indicator theory.
			Solubility product, common ion effect. Selective precipitation of ions.

7.	Nuclear	Radioactivity	History of Radioactivity.
	Chemistry		Types of radiations. Radioactive disintegration. Nuclear equations, half-life, radioactive carbon dating. Detectors and applications of radioactivity.

CHM 002 Practicals

- 1. Experiments to calculate enthalpy changes.
- 2. Determination of molecular mass using freezing point depression.

CHM 003: INORGANIC CHEMISTRY (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- 1. describe the extraction of groups 1, 2, and 13 metals;
- 2. describe the physical properties of elements and variation down a Group;
- 3. discuss gradation in properties across the period from metal through metalloid to non-metals;
- 4. describe and explain the relative stability of oxides, hydrides, and chloride of Group 14 elements;
- 5. explain what a transition element is in terms of d-block elements; and
- 6. describe the tendency of transition metals to form variable oxidation states and write their electronic configuration.

Course Content

S/N	Topic	Sub-topic	Detail
1.	Periodicity of	General Trends in	Nature of elements, trends in
	Elements	Properties of Elements	physical and chemical
			properties of elements.
2.	Chemistry of	Hydrogen	Occurrence, isotopes,
	Hydrogen		preparation, and reactions,
			hydrides.

3.	s-block Elements	Group 1	Physical and chemical properties, extractions of group 1 metals e.g. Sodium, trends in
		Group 2	properties of their compounds. Uses of group 1 metals.
			Physical and chemical properties, extraction of group 2 metals e.g. Calcium, trends in properties of their compounds. Uses of group 2 metals Boron and Aluminium.
4.	p-block Elements	Group 13	Occurrence and extraction, trends in properties of their compounds with oxygen,
		Group 14	chlorine, and hydrogen. Occurrence, allotropic forms, physical and chemical properties of oxide, hydrides, halides. Greenhouse effect. Use
		Group 15	of group 14 elements. Occurrence, allotropic forms, physical and chemical properties, simple oxides and
		Group 16	nitrides, environmental impacts of NO _x . Use of group 15 elements.

		Group 17	Occurrence, allotropic, physical and chemical properties, trends in properties of oxides, hydrides, and halides. Environmental impact of Sox.
			Uses of group 16 elements. Occurrence, physical and chemical properties, hydrogen halides, metal halides, and interhalogen compounds.
			Uses of group 17 elements.
5.	d-block Elements	First Row Transition Elements	Definition of transitions element, electronic
			configuration, atomic radii, ionization potential, variable
		Introduction to Coordination Chemistry	oxidation states, the formation of the metal complex.
			Definition of metal complex and ligands. Bonding in metal
			complexes (chain theory and its limitations, Werner's theory).
			Valence bond theory and
			hybridization concept. Study of structure and magnetic
			properties of octahedral and

tetrahedral complexes.
Nomenclature of coordination
compounds

CHM 003 Practicals

Qualitative Inorganic Practical

- 1. Flame tests and systematic analysis of mixtures containing two salts.
- 2. Identification of anions; preliminary test for anions, preparations of Na₂CO₃ extracts, and confirmatory tests.
- 3. Identification of cations group I VI: Group separation and analysis of ions within a group (group analysis).

CHM 004: ORGANIC CHEMISTRY (3 UNITS)

Specific Objectives

At the end of this course, candidates should be able to:

- interpret and use nomenclature and general formulae of alkanes, alkenes, alkynes, arenes, aldehydes, ketones, alcohols, alkyl halides, and carboxylic acids and their derivatives;
- 2. describe the synthetic routes to simple organic compounds and the reactions of the above classes of compounds
- 3. describe the formation of the polymer by addition and condensation polymerization;
- 4. identify the monomer present in a given section of a polymer molecule
- 5. relate chemical principles to industrial processes; and
- 6. explain the various types of isomerism exhibited by organic compounds.

Course Content

S/N	Topic	Sub-topic	Detail
1.	Structure and Bonding in	Hybridization	Tetravalency and hybridization of carbon.
	Organic Compounds	Classes of Organic Compounds Nomenclature	Functional groups, homologous series, determination of molecular formula from an empirical formula.

			The naming of organic compounds; alkanes, alkenes, alkynes, aldehydes, ketones, alcohols, alkyl halides, arenes, carboxylic acids, amines.
2.	Purification	Purification of Organic Compounds Determination of	Determination of melting point, crystallization, and recrystallization, simple distillation, liquid extraction, sublimation.
		Elements	Various methods of C, H, N, S, and halogens in organic compounds, Sodium fusion test.
3.	Organic Reactions	Covalent Bond Cleavage	Homolytic and heterolytic fission, free radical reaction Nucleophiles, and electrophiles.
		Types of Reactions	Addition, Substitution, Elimination, Hydrolysis, Condensation.
		Electronic Concepts in Organic Chemistry	Inductive, steric, and electrometric effects.
4.	Isomerism in Organic Compounds	Isomerism in Organic Compounds	Constitutional, chain, position, and functional group isomerism. Tautomerism, stereoisomerism, geometric and optical isomerism.

5.	Organic	Alkanes, Alkenes and	Nomenclature, structure,
	Compounds	Alkynes	synthesis, properties, and reactions.
		Alcohols	Nomenclature, structure, synthesis, properties, and reactions (combustion, substitution to give halogenoalkanes, reaction with
		Alkyl halides	Na, oxidation to carbonyl compounds and carboxylic
		Carbonyl Compounds (Aliphatic and Aromatic)	acids, dehydration to alkenes, the formation of esters by esterification with carboxylic acids and acyl chlorides). Classes of alcohol.
		Carboxylic Compounds and their Derivatives	Distinguishing tests for alcohols (Lucas and Jones reagents)
		Primary Amines	Nomenclature, structure, synthesis, properties, and reactions.
		Introduction to Aromatic Compounds	Nomenclature, structure, synthesis, properties, and reactions (reduction, reaction with HCN, NaCN, reaction with aqueous I ₂). Tests for aldehydes

			and ketones using 2,4-dinitrophenylhydrazine.
			Nomenclature, properties, preparation from alcohols, aldehydes, and nitriles. Reactions of carboxylic acids with reactive metals, reduction to alcohols using LiAlH ₄ . Hydrolysis of esters by acid and base Hydrolysis of acyl chlorides, Preparation of alkylamines. Basicity of amines in terms of their structure. Reactions of amines (formation of diazonium salt). Aromaticity, Kekule structures.
6.	Macromolecul es	Carbohydrates Proteins	Classes of carbohydrates, simple tests. Amino acids, the formation of
		Polymers	peptide bonds in peptides. A simple description of electrophoresis.
			Types of polymerization reactions and their differences. Simple structures of polymers. Uses of polymers.

7.	Biotechnology	Biotechnology	Biotechnology and its application in food and drugs.
8.	Petroleum	Petrochemicals	Constituents of crude oil, refining, cracking. Chemicals derived from crude oil.

CHM 004 Practicals

- 1. Reactions of simple functional groups: Simple organic tests, solubility, sodium fusion test, functional group identification (with emphasis on ketones, aldehydes, and carboxylic acids).
- 2. Recrystallization and determination of the melting point of organic compounds.

RECOMMENDED TEXTS

- 1. E. N. Ramsden: *A-Level Chemistry*, 4th Edition (2000), Stanley Thornes (Pub) Ltd. ISBN 0748752994.
- 2. Philips Matthews: Advanced Level Chemistry.

- 3. Basic Organic Chemistry by B. A. Osuntogun, O. B. Familoni and B. I. Alo; 3rd Edition (2012) University to Lagos Press.
- 4. AQA Chemistry by Ted Lister and Janet Renshaw (2009) Nelson Thornes Ltd. (Pub.).
- 5. *Understanding Advanced Physical Inorganic Chemistry*: The Learner's Approach by Jeanne Tan, Kim Seng Chan (2009) World Scientific (Pub.).
- 6. *Chemistry*: The Central Science by Theodore E. Brown, Theodore Lawrence Brown, H. Eugene H. LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward 12th Edition (2012) Pearson Education (Pub.)
- 7. Martin S. Silverberg (2010). *Principles of General Chemistry, Inorganic, and Physical.* Y. C. Wong, C. T. Wong, S. O. Onyiruka, and L. E. S. Akpanisi. Africana FEP Publishers Ltd. (2002).