Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL III: Relationen und Abbildungen

1. Grundbegriffe

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Binäre Relationen

Erinnerung: Sind A und B Mengen und $R \subseteq A \times B$, so bezeichnet man R als binäre oder zweistellige Relation zwischen A und B.

Definition

Eine binäre Relation $R \subseteq A \times B$ heißt

- ▶ linkstotal, falls für alle $x \in A$ ein $y \in B$ existiert mit $(x, y) \in R$.
- rechtstotal, falls für alle $y \in B$ ein $x \in A$ existiert mit $(x, y) \in R$.
- ▶ linkseindeutig, falls für alle $x_1, x_2 \in A$ und für alle $y \in B$ aus $(x_1, y), (x_2, y) \in R$ folgt, dass $x_1 = x_2$.
- rechtseindeutig, falls für alle $x \in A$ und für alle $y_1, y_2 \in B$ aus $(x, y_1), (x, y_2) \in R$ folgt, dass $y_1 = y_2$.

2sp:
$$A = \{1,2,3\}, R = \{4,5,6\}$$

1.) $R_1 = \{(1,4), (2,4), (2,5), (2,6)\}$

. nicht linkstotal

. rechtstotal

. nicht hechtseindeutig

2.) $R_2 = \{(3,6), (1,4), (2,5)\}$

. linkstotal

. rechtstotal

. tinkstotal

. tinkstotal

. tinkstotal

. tinkstotal

. tinkstotal

. linkstotal

. tinkstotal

4)
$$A = B = 1R$$
 $R_{\leq} = \{(x,y) : x \in y\}$
 $8sp: (1,1), (2,3), (10,7) \in R_{\leq}; (3,2) \notin R_{\leq}$

• links total $(x,x) \in R_{\leq}$ für alle $x \in R$

• rechts total $(z,B, (z,3), (1,3) \in R_{\leq})$

• nicht linkseindeutig $(z,B, (z,3), (1,3) \in R_{\leq})$

• nicht techtseindeutig $(z,B, (1,2), (1,4) \in R_{\leq})$
 $5.)$ $A = B = R$
 $R_{2} = \{(x, x^{2}) : x \in R\}$

• linkstotal $(x, x^{2}) : x \in R$

• nicht rechtstotal $(x, x^{2}) : x \in R$

• nicht linkseindeutig $(x, x^{2}) : x \in R$

rechtseindeutig

$$(2,4)_{1}(42,2)_{1}(-1,1) \in \mathbb{R}_{2}$$

Funktionen

Definition

Seien A und B Mengen. Eine Relation $R \subseteq A \times B$ ist eine Abbildung oder Funktion, falls sie

linkstotal

und

rechtseindeutig

ist.

Isp.: Rz von oben ist eine Funktion.

Funktionen

Definition

Seien A und B Mengen. Eine Relation $R \subseteq A \times B$ ist eine Abbildung oder Funktion, falls sie

linkstotal

und

rechtseindeutig

ist.

Bemerkung

Das heißt, jedem Element in A wird genau ein Element in B zugeordnet.

Funktionen (informell)

Seien A und B Mengen.

Eine Abbildung oder Funktion von A nach B ist eine Vorschrift f, die jedem $x \in A$ genau ein Element $f(x) \in B$ zuordnet.

Notation: $f: A \rightarrow B, x \mapsto f(x)$.

Funktionen (informell)

Seien A und B Mengen.

Eine Abbildung oder Funktion von A nach B ist eine Vorschrift f, die jedem $x \in A$ genau ein Element $f(x) \in B$ zuordnet.

Notation: $f: A \rightarrow B, x \mapsto f(x)$.

- A ist der Definitionsbereich von f.
- ▶ *B* ist die Zielmenge.
- ► $G(f) := \{(x, f(x)) : x \in A\} \subseteq A \times B \text{ ist der Graph von } f.$ $\{(X_1X^2) : X \in A\} \text{ in dem Beispid oben}$ ist der Gmph.

Beispiele zur Visualisierung von Graphen

Graph von Geraden

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 2x + 1$$

 $g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto -x - 5$

Graph von Geraden

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 2x + 1$$

 $g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto -x - 5$ G(g)={(x,-x-5):xe8}

Graph der Betragsfunktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto |x|, \text{ wobei } |x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

$$G(f) = \{(X, |X|): X \in \mathbb{R}\}$$

Graph der Betragsfunktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto |x|, \text{ wobei } |x| = \left\{ \begin{array}{ll} x, & x \geq 0, \\ -x, & x < 0. \end{array} \right.$$

Graph von $\mathbb{R} \to \mathbb{R}, x \mapsto x^2$

Bild und Urbild einer Abbildung

Seien A und B Mengen und sei $f:A\to B$ eine Abbildung.

Bild und Urbild einer Abbildung

Seien A und B Mengen und sei $f: A \rightarrow B$ eine Abbildung.

- ▶ Für $M \subseteq A$ ist $f(M) := \{f(x) : x \in M\} \subseteq B$ das Bild von M unter f.
- ▶ Für $N \subseteq B$ ist $f^{-1}(N) := \{x \in A : f(x) \in N\} \subseteq A$ das Urbild von N unter f.

Beispiele (Bild, Urbild)

Bild von M unter f

Urbild von N unter f

Beispiele (Bild, Urbild)

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL III: Relationen und Abbildungen

2. Injektiv, surjektiv, bijektiv

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

injektiv, surjektiv, bijektiv

Definition

Eine Abbildung $f: A \rightarrow B$ heißt

▶ injektiv, falls für alle $x_1, x_2 \in A$ aus $f(x_1) = f(x_2)$ stets $x_1 = x_2$ folgt.

Die zu Grunde liegende Relation ist also linkseindeutig.

$$\begin{cases}
\forall x_{1}, x_{2} \in A : & f(x_{1}) = f(x_{2}) \implies \chi_{1} = \chi_{2} \\
\forall x_{1}, x_{2} \in A : & \neg (x_{1} = \chi_{2}) \implies \neg (f(x_{1}) = f(x_{2})) \\
\forall x_{1}, x_{2} \in A : & \chi_{1} = \chi_{2} \implies f(x_{1}) = f(x_{2}) \\
\forall x_{1}, x_{2} \in A : & \neg (f(x_{1}) = f(x_{2})) \lor x_{1} = \chi_{2} \\
\forall x_{1}, x_{2} \in A : & f(x_{1}) \neq f(x_{2}) \lor x_{1} = \chi_{2} \\
egation: & \exists x_{1}, \chi_{2} \in A : & f(\chi_{1}) = f(\chi_{2}) \land \chi_{1} \neq \chi_{2}
\end{cases}$$

injektiv, surjektiv, bijektiv

Definition

Eine Abbildung $f: A \rightarrow B$ heißt

- injektiv, falls für alle $x_1, x_2 \in A$ aus $f(x_1) = f(x_2)$ stets $x_1 = x_2$ folgt. "Auf jedes Element in & wind höchstens einmal Die zu Grunde liegende Relation ist also linkseindeutig. abgebildet"
- surjektiv, wenn es für alle $y \in B$ ein $x \in A$ gibt mit y = f(x), (d. h. f(A)=B). Auf jodes Element in g wird mindestens einmel. Die zu Grunde liegende Relation ist also rechtstotal.
- bijektiv, wenn f sowohl injektiv als auch surjektiv ist.

 "Auf jedes Element in B wiml genau einmal abgebildet."

 injektiv surjektiv bijektiv

injektiv, surjektiv, bijektiv

Beispiel: $x \mapsto x^2$

 $f: \mathbb{R} \to \mathbb{R}$

nicht injektiv nicht surjektiv nicht bijektiv

Beispiel: $x \mapsto x^2$

 $f: \mathbb{R} \to \mathbb{R}$

nicht injektiv nicht surjektiv nicht bijektiv

nicht injektiv surjektiv nicht bijektiv

injektiv surjektiv bijektiv

Umkehrfunktion

Ist f bijektiv, so besitzt f eine Umkehrfunktion oder Inverse

$$f^{-1}: B \to A$$
,

wobei $f^{-1}(y) = x$ genau dann, wenn f(x) = y.

Graph der Umkehrfunktion

Ist f bijektiv, so besitzt f eine Umkehrfunktion oder Inverse

$$f^{-1}:B\to A,$$

wobei $f^{-1}(y) = x$ genau dann, wenn f(x) = y.

Bemerkung

Zeichnerisch erhält man den Graphen der Umkehrfunktion f^{-1} durch Spiegelung des Graphen von f an der 1. Winkelhalbierenden.

Definition

Sind $f: A \to B$ und $g: C \to D$ Funktionen mit $f(A) \subseteq C$, so ist

Sprich: $g \circ f : A \to D$, $x \mapsto g(f(x))$ die Komposition oder Verkettung von g und f.

Definition

Sind
$$f: A \to B$$
 und $g: C \to D$ Funktionen mit $\underline{f(A)} \subseteq C$, so ist $g \circ f: A \to D$, $x \mapsto g(f(x))$

die Komposition oder Verkettung von g und f.

$$f(A) = (0, \infty) \subseteq C = \mathbb{R}$$
Beispiel \mathbb{R}

Beispiel $f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2, \quad g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3, \quad g \circ f: \mathbb{R} \to \mathbb{R}, \quad (g \circ f)(x) = g(f(x)) = (f(x))^3 = (x^2)^3 = x^6$ $(g \circ f)(x) = g(f(x)) = (f(x))^3 = (x^2)^3 = x^6$ $(g \circ f)(x) = g(f(x)) = g($

$$\frac{(g \circ f)(x) = g(f(x)) = (f(x))^{3} = (x^{2})^{3} = x^{3}}{g(x)^{2}} = \frac{(g \circ f)^{2}}{g(x)^{2}} = \frac{$$

Definition

Sind $f: A \to B$ und $g: C \to D$ Funktionen mit $f(A) \subseteq C$, so ist

$$g \circ f : A \to D, \quad x \mapsto g(f(x))$$

die Komposition oder Verkettung von g und f.

Beispiel

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2, \qquad g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3,$$

 $g \circ f: \mathbb{R} \to \mathbb{R},$
 $(g \circ f)(x) = g(f(x)) = (f(x))^3 = (x^2)^3 = x^6$

Bemerkung

Mit id_X bezeichnen wir die Identität auf X: $id_X : X \to X, x \mapsto x$.

Ist $f: A \rightarrow B$ bijektiv, so ist

$$f^{-1} \circ f = \mathrm{id}_A$$
 und $f \circ f^{-1} = \mathrm{id}_B$.

Definition

Sind $f: A \to B$ und $g: C \to D$ Funktionen mit $f(A) \subseteq C$, so ist

$$g \circ f : A \to D, \quad x \mapsto g(f(x))$$

die Komposition oder Verkettung von g und f.

Beispiel

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2, \qquad g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3,$$

 $g \circ f: \mathbb{R} \to \mathbb{R}.$

Bemerkung

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^2, \qquad g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3$$

 $g \circ f: \mathbb{R} \to \mathbb{R},$
 $(g \circ f)(x) = g(f(x)) = (f(x))^3 = (x^2)^3 = x^6$