4.
$$\sqrt{n} = \times n + 2n$$
 $E(2n) = 0n$ $2n \sim N(0n, I)$

$$Ein = \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (\times n - ww^{T} \times n)^{T}$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$+ I (ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$+ \frac{1}{N} (ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)^{T} (ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\times n - ww^{T} \times n)$$

$$= \frac{1}{N} \sum_{k=$$

error function (g,(x)-x,) d (Zuki tanh (Zuij Xi) - Xj)

(Zuki tanh (Zuij Xi) - Xj)

Wji()

Wji() 2 Z (Zuei tanh (Zuij Xi)-Xj) [tanh (& Uij Xi) + Z(Uk; tanh (EUij Xi)) = 121 + 444 (ENij Xi) Xi = 2 [(Suri tonh (Suij *i) -X;) tanh (E uz *i) · (ZUx, tanh (Zuyx)) XT JZ = 27 (& Uri tanh ([[a:j Xi) - Xj) · tanh (Z Wij (11) X7) 2 2 (2 UFT tanh (EUIJXI)-X5) [Zur tanh (Zuz x,) tanh (Zuij X,) X, + tanh (& Wij (") xi)

7.
$$g_{LIN}(x) = sign(||X-X-||^2 - ||X-X+||^2)$$

$$= sign(||X-X-|^2(X-X-) - ||X-X+|^2(X-X+)|^2)$$

$$= sign(||Z(X+-X-)^{\frac{1}{2}} + ||X-||^2 - ||X+||^2)$$

$$= sign(||Z(X+-X-)^{\frac{1}{2}} + ||X-||^2 - ||X+||^2)$$

$$= sign(||Z(X+-X-)^{\frac{1}{2}} + ||X-||^2 - ||X+||^2)$$

$$= sign(||Z(X+-X-)^{\frac{1}{2}} + ||X-||^2 - ||X-||^2)$$

$$= sign(||Z(X+-X-)^{\frac{1}{2}} + ||X-||^2 - ||X-||^2)$$

$$= sign(||X-X-||^2 + ||X-||^2 + ||X-||^2 + ||X-||^2)$$

$$= sign(||X-X-||^2 + ||X-||^2 + ||X-$$

Double A

9. ST S (Xn, rnm) (rnm-Wm Un) 2 I (rnm - Wm Vn) Vn =0 Foc: (Xnirnm) EDM X (rnm - Wm Vn) = 0 Wm = ZIVn = ZIrnm . average rating Vnti Vm = max (1 ZVn) Wm 10 max To Z Vn Wm = max To Z rhm. of average rating