Analyse dans \mathbb{R}^n

Feuille 1 Norme dans \mathbb{R}^n

Exercice 1 (Questions de cours).

- 1. Rappelez la définition d'une norme sur un \mathbb{R} -espace vectoriel.
- 2. Rappelez la définition d'une distance sur un ensemble non vide.
- 3. Rappelez la définition d'un ensemble ouvert et d'un ensemble fermé dans $(\mathbb{R}^n, \|.\|)$.
- 4. Rappelez la définition de l'adhérence et de l'intérieur d'un ensemble dans $(\mathbb{R}^n, \|.\|)$.

Exercice 2 (Les normes usuelles de \mathbb{R}^n). On définit sur \mathbb{R}^n les applications suivantes, pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$:

$$||x||_1 = \sum_{i=1}^n |x_i|$$
, $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$, $||x||_\infty = \max\{|x_i| : i \in \{1, \dots, n\}\}.$

- 1. Montrer que $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont des normes sur \mathbb{R}^n .
- 2. Établir les inégalités suivantes pour tout $x \in \mathbb{R}^n$:

$$\begin{cases} ||x||_{\infty} & \leq ||x||_{1} \leq n||x||_{\infty} \\ ||x||_{\infty} & \leq ||x||_{2} \leq \sqrt{n}||x||_{\infty} \\ ||x||_{2} & \leq ||x||_{1} \leq \sqrt{n}||x||_{2} \end{cases}$$

En conclure que les trois normes étudiées sont équivalentes.

3. Représenter dans \mathbb{R}^2 les boules centrées en l'origine et de rayon 1 pour chacune des trois normes.

Exercice 3. On considère les applications suivantes

$$N_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $N_2: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x_1, x_2) \longmapsto |x_1 + x_2| + |x_1|$ $(x_1, x_2) \longmapsto \max(|x_1 + 3x_2|, |x_1 - x_2|)$

- 1. Vérifier que chacune de ces applications définit une norme.
- 2. Tracer la boule unité autour de l'origine par rapport à N_1 et par rapport à N_2 .

Exercice 4. Montrer que l'application $N: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$N(x_1, x_2) = \sup_{t \in [0,1]} |x_1 + tx_2|$$

est une norme sur \mathbb{R}^2 . Représenter la boule unité pour cette norme et comparer celle-ci à $\|\cdot\|_{\infty}$.

Exercice 5. Trouver une condition nécessaire et suffisante sur la matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ pour que l'application :

$$N_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x_1, x_2) \longmapsto |ax_1 + bx_2| + |cx_1 + dx_2|$

définisse une norme sur \mathbb{R}^2 .

Exercice 6. Soit E un espace vectoriel. Pour $x, y \in E$ on définit :

$$d(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{sinon} \end{cases}$$

- 1. Montrer que d est une distance.
- 2. Montrer que cette distance n'est induite par aucune norme.

Exercice 7. On définit l'application :

$$d: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

- 1. Montrer que d est une distance sur \mathbb{R} .
- 2. Cette distance est-elle induite par une norme?
- 3. On munit $\mathbb R$ de cette distance. Montrer que $\mathbb R$ est bornée. Calculer son diamètre. On rappelle que le diamètre d'une partie $A \in \mathbb R^n$ bornée est :

$$\sup\{d(x,y)|x,y\in A\}.$$

4. De façon plus générale, à toute bijection $f:\mathbb{R}\longrightarrow I\subset\mathbb{R}$, on associe l'application :

$$d_f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad |f(x) - f(y)|$$

- (a) Montrer que d_f est une distance sur \mathbb{R} .
- (b) Trouver une condition nécessaire et suffisante portant sur f pour que d_f soit induite par une norme.