CE 311K: Linear System of Equations

Krishna Kumar

University of Texas at Austin

December 2, 2019

1 Linear System of Equations

Linear System of Equations

Solving Linear System of Equations

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

Solving Linear System of Equations

Singularity and Ill-conditioned

Solving Linear System of Equations

- Direct Methods
 - Gauss Elimination
 - @ Gauss-Jordan Elimination
 - U decomposition
- Iterative Methods
 - Jacobi iterative
 - @ Gauss-Seidel

Direct methods

Consider a system of 3 linear equations for simplicity:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

Matrix form is:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Concise form: Ax = b

Systems that can be solved easily

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

Solve by "back substitution' Upper triangle system (U)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Gauss Elimination

Consider a system of 3 linear equations:

$$\begin{bmatrix} 2 & 4 & 6 \\ 4 & 11 & 21 \\ 6 & 21 & 52 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 72 \\ 158 \end{bmatrix}$$

Gauss Elimination: Limitations

- lacktriangle Prone to round off errors, when we have many (>100) equations.
- If coefficient matrix is sparse (lots of zeros), elimination methods are very inefficient.

Gauss Seidel Iterative approach

For conciseness, we limit to 3×3 equations. If diagonal elements are all non-zero, then the equations can be solved as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Gauss Seidel Iterative approach

Using Gauss-Seidel solve for [x]

$$4x_1 + x_2 + 2x_3 = 4$$
$$3x_1 + 5x_2 + x_3 = 7$$
$$x_1 + x_2 + 3x_3 = 3$$

Gauss Seidel Convergence criteria

Convergence can be checked using the relative error.

$$|\varepsilon_{\mathsf{a},i}| = \left| \frac{x_i^k - x_i^{k-1}}{x_i^k} * 100\% \right| < \varepsilon_{\mathsf{s}}$$

where k, and k-1 represents the current and previous iterations

Truss analysis

Truss analysis: Force balance

Node 1
$$\sum F_{y,1} = V_1 + F_{14} \sin \alpha = 0$$

$$\sum F_{x,1} = H_1 + F_{12} + F_{14} \sin \alpha = 0$$

$$\sum F_{y,2} = F_{24} \sin \beta + F_{25} \sin \gamma = 100$$
Node 2
$$\sum F_{x,2} = -F_{12} + F_{23} - F_{24} \cos \beta + F_{25} \cos \gamma = 0$$

$$\sum F_{y,3} = V_3 + F_{35} \sin \delta = 0$$

$$\sum F_{y,3} = -F_{23} - F_{35} \cos \delta = 0$$
Node 3
$$\sum F_{x,3} = -F_{23} - F_{35} \cos \delta = 0$$

$$\sum F_{x,4} = -F_{14} \sin \alpha - F_{24} \sin \beta = 0$$

$$\sum F_{x,4} = -F_{14} \cos \alpha + F_{24} \cos \beta + F_{45} = 0$$
Node 5
$$\sum F_{x,5} = -F_{25} \sin \gamma - F_{35} \sin \delta = 0$$

$$\sum F_{x,5} = -F_{25} \cos \gamma + F_{35} \cos \delta - F_{45} = 0$$

Truss analysis: Matrix formulation

1	0	0	0	\sinlpha	0	0	0	0	o	$\int V_1$]	$\begin{bmatrix} 0 \end{bmatrix}$	
0	1	0	1	$\cos \alpha$	0	0	0	0	0	$ H_1 $		0	
0	0	0	0	0	0	sin $oldsymbol{eta}$	sin y	0	0	V_3		100	
0	0	0	- 1	0	1	$\cos oldsymbol{eta}$	cos y	0	0	$ F_{12} $		0	
0	0	1	0	0	0	0	0	$sin \delta$	0	$ F_{14} $	_	0	
0	0	0	0	0	- 1	0	0	- $\cos \delta$	0	F_{23}] = 1	0	ľ
0	0	0	0	- $\sin lpha$	0	- sin β	0	0	0	$ F_{24} $		0	
0	0	0	0	$-\cos\alpha$	0	$\cos \beta$	0	0	1	$ F_{25} $		0	
0	0	0	0	0	0	0	- sin y	$\sin\delta$	0	$ F_{35} $		0	
0	0	0	0	0	0	0	cos y	$\cos \delta$	- 1	$ F_{45} $		0	