Lecture 5: Summary Statistics, Normal Distribution, Hypothesis Testing

What will be covered in this lecture?

- 1. Methods for Visualise Data Distributions:
 - Histogram, Probability Density Function (pdf), and Cumulative Density Function (cdf)
- 2. Summary Statistics: Mean, Variance, Skewness, and Kurtosis
- 3. Key Statistical Distributions
 - 3.1 Normal Distribution
 - 3.2 Chi-square (x2) distribution
- 4. Hypothesis Testing: Testing if Your Data Fits a Normal Distribution

A dataset for Southampton's daily temperature

How will you describe this data set?

Daily temperature anomalies in Southampton

Methods for Visualise Data Distributions

Daily temperature anomalies in Southampton

Area under the curve is 1

The area under pdf before a value

plt.hist()

SOES3042/6025 Part II, Lecturer: Duo Chan

Summary Statistics: Understanding Your Data Better

Statistics	What it is	How to calculate it from data	Functions to use
Mean	The mean is just the average. It gives you an idea of the central point of your data	$ar{X} = rac{1}{n} \sum_{i=1}^n x_i$	numpy.mean(data) or dataframe['column'].mean()
Variance	Variance measures how spread out your data is around the mean. A bigger variance means more spread out data.	$s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{X})^2$	numpy.var(data) or dataframe['column'].var()
Skewness	Skewness indicates whether your data leans more to the left or the right of the mean.	$S=rac{1}{(n-1)}\sum_{i=1}^{n}\left(rac{x_i-ar{X}}{s} ight)^3$	numpy.skew(data) or dataframe['column'].skew()
Kurtosis	Kurtosis tells you about the "tailedness" of your data distribution. High kurtosis means more data in the tails.	$K=rac{1}{(n-1)}\sum_{i=1}^{n}\left(rac{x_i-ar{X}}{s} ight)^4-3$	numpy.kurt(data) or dataframe['column'].kurtosis(

Standard deviation (s), defined as the square root of variance, also charecterizes variability around the mean.

It's in the same units as your data, making it easier to understand the spread.

np.std()

Normal distribution

$$P(x,m{\mu},m{\sigma}) = rac{1}{\sigma\sqrt{2\pi}} ext{exp}[-rac{(x-\mu)^2}{2\sigma^2}]$$

- 1. A theoretical distribution, pdf is "bell like"
- 2. Determined by only two parameters:

μ: mean

σ: standard error

- 3. Skewness and Excess Kurtosis are both zero
- 4. Standard form with zero mean and unit variance

$$Z=rac{X-\mu}{\sigma}=rac{X-ar{X}}{s}$$
 Z ~ N(0, 1)

iid:: Independent and identical

Central Limit Theorem (CLT)

If you take lots of independent samples from any same distribution, the averages of those samples tend to form a Normal distribution, even if the original data was not normally distributed.

Normal distribution is the distribution of mean estimate.

Daily rainfall Monthly rainfall Annual rainfall 0.14 >18,000 days ~600 months ~50 years 0.30 0.12 0.25 Density Probability Density Probability Density 0.10 0.20 0.08 Probability 0.15 0.06 0.10 0.04 0.05 0.02 0.00 0.00 35 25 Annual Precipitation (Inches) Daily Precipitation (Inches) Monthly Precipitation (Inches)

Does annual rainfall in Southampton follow a Gaussian distribution?

The CDF seem to align quite closely with the theoretical curve of the Standard Normal Distribution, although some discrepancies exist.

Realisations and Theoretical Curves

Realise from a standard Normal

Deviation can arise due to randomness.

10,000 realisations

np.random.normal()

Comparing data against a null distribution

Hypothesis testing

Terminology	Meaning	When testing if annual precipitation follows a standard normal distribution
Null hypothesis (H_0)	This is our starting assumption that the effect being studied does not exist	Data follow a standard Normal distribution.
Alternative hypothesis (H_1)	This is what we might believe to be true if we find sufficient evidence against the null hypothesis.	Data do not follow a standard Normal distribution.
Test statistics	This is a calculated value from our data that we use to test our hypothesis.	Maximum distance from the theoratical CDF curve.
Null distribution	This represents what we would expect to see from our test statistic purely by chance if the null hypothesis were true.	We visualized this through the distribution of maximum distances from 10,000 random realizations.
significance level ($lpha$)	This is a threshold we set to decide when to reject the null hypothesis.	A common choice is $lpha=0.05$.
p-value	The probability of obtaining our data, or something more extreme, if the null hypothesis is true.	In our analysis, a p-value of 0.88 indicates that 88% of the null distribution is more extreme than what we observed in our data.

When $p < \alpha$, we can reject H_0 , and accept H_1 .

What we just went through is exactly a classic statistical test, called **Kolmogorov-Smirnov test**, we can call functions to implement this test.

scipy.stats.kstest()

Road Map of the Statistics Part

