Exercise5.5

Proof. If π is an associate of an integer prime, i.e. $\pi = u \cdot p$, p is a integer prime. Then $\overline{\pi} = \overline{u} \cdot \overline{p} = \overline{u} \cdot p$ is associated with π . (*)

If π is not an associate of an integer prime.

Then for $\pi = a + bi$, $a, b \neq 0$, $a, b \in \mathbb{Z}$, $\pi, \overline{\pi}$ are associated if and only if $a + bi = u \cdot (a - bi)$, where u is a unit, i.e. $u \in \{1, -1, i, -i\} \Leftrightarrow (a + bi) = u \cdot (a - bi)$ for $u \in \{i, -i\}$. $\Leftrightarrow (a, b) = (b, a)$ or (a, b) = (-b, -a). $\Leftrightarrow a^2 = b^2$.

Now, assume $a^2 = b^2$, by Theorem 12.5.2(a), $\pi \cdot \overline{\pi} = a^2 + b^2 = 2a^2$ is an integer prime or the square of an integer. $2|2a^2 \Rightarrow 2a^2 = 2or4 \Rightarrow 2a^2 = 2$ ($a \in \mathbb{Z}$) So $\pi \cdot \overline{\pi} = 2$.

If $\pi \cdot \overline{\pi} = 2$, i.e. $a^2 + b^2 = 2$. Since π is not an associate of an integer prime, then $a, b \ge 1$, $\Rightarrow a^2 = b^2 = 1$ $\Rightarrow \pi = 1 + i$ or $\pi = 1 - i \Rightarrow \pi, \overline{\pi}$ are associated.

So we have proved that if π is not an associate of an integer prime, then π and $\overline{\pi}$ are associates if and only if $\pi\overline{\pi} = 2$. It implies the original problem by (*).

Exercise 5.6

Proof. Since

$$\mathbb{Z}[\sqrt{-3}]/(p) \cong \mathbb{Z}[x]/(x^2+3)/(p) \tag{1}$$

$$\cong \mathbb{Z}[x]/(p, x^2 + p) \tag{2}$$

$$\cong \mathbb{Z}[x]/(p)/(x^2+3) \tag{3}$$

$$= \mathbb{F}_p[x]/(x^2+3) \tag{4}$$

p is prime in $\mathbb{Z}[\sqrt{-3}] \Leftrightarrow \mathbb{Z}[\sqrt{-3}]/(p)$ is integral domain $Leftrightarrow \mathbb{F}_p[x]/(x^2+3)$ is integral domain $\Leftrightarrow x^2+3$ is prime in $\mathbb{F}_p[x] \Leftrightarrow x^2+3$ is irreducible in $\mathbb{F}_p[x]$ since $\mathbb{F}_p[x]$ is PID.

3. Let $R:=\{\sum_{i=0}^n a_i t^i \in \mathbb{C}[t]: a_1=0\}$, which is a subring in $\mathbb{C}[t]$

For $f(t) = \sum_{i=0}^{n} a_i t^i \in R, a_1 = 0$, we have

$$\varphi(a_0 + \sum_{3 \le i \le n, 2|i} a_i x^{\frac{i}{2}} + \sum_{3 \le i \le n, 2|(i-1)} a_i x^{\frac{i-3}{2}} y) = f(t)$$

Moreover, for $x^a y^b \in \mathbb{C}[x,y]$, we have $\varphi(x^a y^b) = t^{2a+3b}$ of degree ≥ 2 if $x^a y^b$ is not a constant. So $\varphi(f) \in R$.

Therefore, φ can induce $\hat{\varphi}: \mathbb{C}[x,y]/\ker \varphi \to R$ bijection, moreover, an isomorphism since R is a subring in $\mathbb{C}[t]$.

So it suffices to prove the induced map $\operatorname{Spec}(\mathbb{C}[t]) \to \operatorname{Spec}(R), p \mapsto p \cap R$ is bijective.

Since $\mathbb{C}[t]$ is PID, prime ideal in $\mathbb{C}[t]$ are exactly (p), where $p = x + c, c \in \mathbb{C}$ prime element in $\mathbb{C}[t]$.

Then for $(x+c_1), (x+c_2)$ prime ideal in $\mathbb{C}[t], c_1 \neq c_2, x^3+c_1x^2 \in (x+c_1)\cap R$. But if $x^3+c_1x^2 \in (x+c_2)$, then $x^2 \in (x+c_2)$ since $x+c_1 \notin (x+c_2)$. So $c_2=0$. But now $x^2 \notin (x+c_1) \Rightarrow (x+c_1)\cap R \neq (x+c_2)\cap R$. Otherwise, if $x^3+c_1x^2 \notin (x+c_2)$, then $(x+c_1)\cap R \neq (x+c_2)\cap R$. Therefore, the induced map should be injective.

Define $\mathbb{C}[t^n] = \{\sum_{i=0}^n a_i t^{in} : a_i \in \mathbb{C}\}$ be a subring of R if $n \geq 2$, moreover, a PID since it is equivalent to replace t with t^n in $\mathbb{C}[t]$.

For P prime ideal in R. For $n \geq 2$, the inclusion homomorphism $\mathbb{C}[t^n] \to R$ induce the map $\operatorname{Spec} R \to \operatorname{Spec} \mathbb{C}[t^n]$. Then $P \cap \mathbb{C}[t^n]$ is a prime ideal in $\mathbb{C}[t^n]$. So $P \cap \mathbb{C}[t^2] = (t^2 + c)\mathbb{C}[t^2]$, $P \cap \mathbb{C}[t^3] = (t^3 + c')\mathbb{C}[t^3]$. Let $c = -k^2$ for some $k \in \mathbb{C}$. Since $(t^3 + k^3)(t^3 - k^3) = t^6 - k^6 \in (t^2 - k^2)\mathbb{C}[t^2] \subset P$, $\Rightarrow t^3 + k^3 \in P$ or $t^3 - k^3 \in P$. Then we have $t^3 + k^3 \in P \cap \mathbb{C}[t^3] = (t^3 + c')\mathbb{C}[t^3]$ or $t^3 - k^3 \in P \cap \mathbb{C}[t^3] = (t^3 + c')\mathbb{C}[t^3]$, which means $P \cap \mathbb{C}[t^3] = (t^3 + k^3)\mathbb{C}[t^3]$ or $(t^3 - k^3)\mathbb{C}[t^3]$.

WLOG, we assume that $P \cap \mathbb{C}[t^3] = (t^3 + k^3)\mathbb{C}[t^3]$ (otherwise we replace k with -k). For $f = \sum_{i=0}^n a_i t^i \in R$, $f = g(t^2 - k^2) + rt + s$ where $g \in \mathbb{C}[t]$, $r, s \in \mathbb{C}[t]$. Let g = g' + mt, $g' \in R$. Then

$$f = g'(t^2 - k^2) + mt^3 - mk^2t + rt + s$$

 $g'(t^2-k^2) \in P$. Since $f \in R$, $(r-mk^2)t = 0$. So $f \in P$ if and only if $mt^3+s \in P \Leftrightarrow mt^3+s \in (t^3+k^3)\mathbb{C}[t^3]$ $\Leftrightarrow s = mk^3 \Leftrightarrow f(-k) = g'(-k)((-k)^2-k^2) + m(-k)^3 + s = 0 \Leftrightarrow (x+k)|f$. So $P = (x+k) \cap R$ Therefore every prime ideal P in R should be the intersection of prime ideal in $\mathbb{C}[t]$ and R. Which means

So the induced map is bijective.

the induced map is surjective.

	For group Go of order 2275
.	Let up denote the number of Sylow p-subgroup. By Thind
	Sylw Theorem, me have
	$n_{7} \equiv 1 \pmod{7}, n_{7} \mid 5^{2} \cdot 13 = n_{7} = 1$
	$N_{13} \equiv 1 \pmod{13}$ $N_{13} \mid 5^2 \cdot 7 \Rightarrow n_{13} = 1$
	bet K7, K13 be the unique Sylw 7-subgroup, 13-subgroup
	vespectively.
	Then K7 a G7, K13 a G by Second Syllow than.
	Since K1 (K13 < K1, K13 =) K1 (K13 1/91, K13)
	=) Ky () K13 = 813
	Then by Rop 7-3.3, K7 K13 4 K7 X K13.
	Sine Ky, Kis cyclic benne abelian, Ky Kis 4 Ky×Kis is abelian.
	Sine K1, K13 cyclic theme abelian, K7K13 4 K7×K13 is abelian. 48EG, 8K1K138 = 8K18 8K128 = K7K13 => K7K13 G
	bet K5 be the Syllow 5-subgroup.
	Choose 8+1 in Ks
	let H= <8>
	let SCK1K13 denote all elements of order 91.
	For hett, ses, hish eki kis since Kikis of.
	(hsh)"=hs"h"= if and only if s"=1 => hsh'ES has order of ?
	Consider action HRS, h*k= hkhtes
	Since Ky Kis y Ky X Kis, IS= S(ei,ez) & Ky X Kis: eifl or eztl?
	$= 6 \times 12 = 72$
	order of orbit in S should divide (H) 25
	SI=12] orbit of order 1. Le.] KES, 8K8 = K.
	=) I orbit of order 1. i.e. I KES, OF 8 - K.

=> K=18 KS1 | n= 8 K S=1

Since k has order of 91 => 8 commutes with all elements in K7 KB

Thus \(\forall 8 \in K_1\), 8 commutes with all elements in K7 KB

By 2nd isom the \(\forall 6 \in K_1\) \(\for

hiki like = linkikike = helikeki (Ko has order of 5° hence abolig

=) G=Ko(K7K13) commutes