Notes for Operations Research & More

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

August 26, 2019

August 26, 2019

Contents

1	Preliminary Topics				
1	Review of Linear Algebra				
2	2 Convex Sets				
3	Convex Functions and Generalizations	13			
II	Linear Programming	15			
1	Formulation	17			
4	4.1 Typical Problems	17			
	4.2 Formulation Skills	17			
	4.2.1 Absolute Value	17			
	4.2.2 A Minimax Objective	17			
	4.2.3 A fractional Objective	18			
	4.2.4 A range Constraint	18			
5	Simplex Method	19			
	5.1 Basic Feasible Solutions and Extreme Points	19			
	5.2 Simplex Method	19			
	5.2.1 Simplex Method Algorithm	19			
	5.2.2 Simplex Method Tableau	19			
	5.2.3 Simplex Method as a Search Algorithm	19			
	5.3 Revised Simplex Method	19			
	5.4 Simplex Method with Bounded Variables	19			
	5.5 Artificial Variable	19			
	5.5.1 Two-Phase Method	19			
	5.5.2 Big-M Method	19			
	5.5.3 Single Artificial Variable Technique	19			
	5.6 Degeneracy and Cycling	19			
	5.6.1 Degeneracy	19			
	5.6.2 Cycling	19 19			
6	Duality Theory and Sensitivity Analysis	21			
	Decomposition Principle	23			
8	Ellipsoid Algorithm	2 5			
9	Projective Algorithm	27			
10	Interior-Point Algorithm	29			

4 CONTENTS

III Graph and Network Theory	31
11 Class Notes 11.1 Graph Theory	33 33 33
12 Paths, Trees, and Cycles	35
13 Shortest-Path Problem	37
14 Minimum Spanning Tree Problem	39
15 Maximum Flow Problem	41
16 Minimum Cost Flow Problem	43
17 Assignment and Matching Problem	45
18 Graph Algorithms	47
19 Polygon Triangulation 19.1 Types of Polygons	49 49 50 50 50
IV Integer and Combinatorial Programming	51
20 Formulation 20.1 Typical Problems	54
21 Branch and Bound	57
22 Branch and Cut	59
23 Packing and Matching	61
24 Traveling Salesman Problem	63
25 Knapsack Problem	65
V Nonlinear Programming	67
26 KKT Optimality Conditions	69
27 Lagrangian Duality	71

CONTENTS 5

28 Unconstrained Optimization	73
29 Penalty and Barrier Functions	7 5
VI Algorithms and Computational Complexity	77
30 Computational Complexity	7 9
31.1 Elementary Sorting Algorithms 31.2 Heap-sort 31.3 Quick-sort 31.4 Sorting in Linear Time 31.5 Medians and Order Statistics	81 81 81 81 81 83 83 83 83
32.5 B-Trees 32.6 Fibonacci Heaps 32.7 van Emde Boas Trees	83 83 83
33.1 Dynamic Programming 33.2 Greedy Algorithms 33.3 Amortized Analysis 33.4 Multi-threaded Algorithms 33.5 Matrix Operations 33.6 Polynomials and the FFT 33.7 Number-Theoretic Algorithms 33.8 String Matching 33.9 Computational Geometry 33.10NP-Completeness 33.11Approximation Algorithms	85 85 85 85 85 85 85 85 85 85 85
VIII Game Theory	89
	91 91 91 91 93
35.2 Strategic-form Games 35.3 Extensive-form Games 36 Knowledge, Common Knowledge, Beliefs 36.1 Common Knowledge 36.2 Adding Beliefs to Knowledge 36.3 Rationality	93 93 95 95 95 95

6 CONTENTS

37 Refinements of Subgame-perfect Equilibrium37.1 Weak Sequential Equilibrium37.2 Sequential Equilibrium37.3 Perfect Bayesian Equilibrium	. 97
38 Incomplete Information 38.1 Static Games	. 99
IX Probability, Stochastic Processes and Markov Chains	101
39 Probability	103
40 Random Variables 40.1 Relationship between Some Random Variables	. 107
41 Limit Theorems	109
42 The Bernoulli and Poisson Process	111
43 Discrete-Time Markov Chains	113
44 Continuous-Time Markov Chains	115
X Queuing Theory	117
45 Queuing Model	119
46 Birth-and-Death Queuing Models	121
47 Multidimensional Birth-and-Death Queuing Models	123
48 Phase-Type Queue	125
49 Bulk Queue	127
50 Imbedded-Markov-Chain Queuing Models	129
51 Queuing Network	131
XI Inventory Theory	133
XII Reliability Theory	135
XIII Statistic	137
XIV Simulation	139

Part I Preliminary Topics

Review of Linear Algebra

Convex Sets

Convex Functions and Generalizations

Part II Linear Programming

Formulation

4.1 Typical Problems

4.2 Formulation Skills

4.2.1 Absolute Value

Description: Consider the following model statement:

$$\begin{aligned} & \text{min} & & \sum_{j \in J} c_j |x_j|, & & c_j > 0 \\ & \text{s.t.} & & \sum_{j \in J} a_{ij} x_j \gtrsim b_i, & \forall i \in I \\ & & x_j & \text{unrestricted}, & \forall j \in J \end{aligned}$$

Modeling:

$$\min \sum_{j \in J} c_j(x_j^+ + x_j^-), \quad c_j > 0$$
s.t.
$$\sum_{j \in J} a_{ij}(x_j^+ - x_j^-) \gtrsim b_i, \quad \forall i \in I$$

$$x_j^+, x_j^- \ge 0, \quad \forall j \in J$$

4.2.2 A Minimax Objective

Description: Consider the following model statement:

$$\min \quad \max_{k \in K} \sum_{j \in J} c_{kj} x_j$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$x_j \ge 0, \quad \forall j \in J$$

Modeling:

$$\begin{aligned} & \text{min} & z \\ & \text{s.t.} & & \sum_{j \in J} a_{ij} x_j \gtrapprox b_i, & \forall i \in I \\ & & & \sum_{j \in J} c_{kj} x_j \le z, & \forall k \in K \\ & & & x_j \ge 0, & \forall j \in J \end{aligned}$$

4.2.3 A fractional Objective

Description: Consider the following model statement:

$$\min \quad \frac{\sum_{j \in J} c_j x_j + \alpha}{\sum_{j \in J} d_j x_j + \beta}$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$x_j \ge 0, \quad \forall j \in J$$

Modeling:

$$\min \quad \sum_{j \in J} c_j x_j t + \alpha t$$

$$\text{s.t.} \quad \sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$\sum_{j \in J} d_j x_j t + \beta t = 1$$

$$t > 0$$

$$x_j \ge 0, \quad \forall j \in J$$

$$(t = \frac{1}{\sum_{j \in J} d_j x_j + \beta})$$

4.2.4 A range Constraint

Description: Consider the following model statement:

$$\min \quad \sum_{j \in J} c_j x_j$$
s.t.
$$d_i \leq \sum_{j \in J} a_{ij} x_j \leq e_i, \quad \forall i \in I$$

$$x_j \geq 0, \quad \forall j \in J$$

Modeling:

$$\begin{aligned} & \text{min} & & \sum_{j \in J} c_j x_j, \quad c_j > 0 \\ & \text{s.t.} & & u_i + \sum_{j \in J} a_{ij} x_j = e_i, \quad \forall i \in I \\ & & x_j \geq 0, \quad \forall j \in J \\ & & & 0 \leq u_i \leq e_i - d_i, \quad \forall i \in I \end{aligned}$$

Simplex Method

~ 1	D .	T3 *1 1	α 1 α	1 13 4	D • 4
5.1	Basic	reasible	Solutions	and Extrem	ne Points

- 5.2 Simplex Method
- 5.2.1 Simplex Method Algorithm
- 5.2.2 Simplex Method Tableau
- 5.2.3 Simplex Method as a Search Algorithm
- 5.3 Revised Simplex Method
- 5.4 Simplex Method with Bounded Variables
- 5.5 Artificial Variable
- 5.5.1 Two-Phase Method
- 5.5.2 Big-M Method
- 5.5.3 Single Artificial Variable Technique
- 5.6 Degeneracy and Cycling
- 5.6.1 Degeneracy
- 5.6.2 Cycling
- 5.6.3 Cycling Prevention Rules

Lexicographic Rule

Bland's Rule

Successive Ratio Rule

Duality Theory and Sensitivity Analysis

Decomposition Principle

Ellipsoid Algorithm

Projective Algorithm

Interior-Point Algorithm

Part III Graph and Network Theory

Class Notes

11.1 Graph Theory

11.1.1 Basic concepts

A Graph G consists of a finite set V(G) on vertices, a finite set E(G) on edges and an incident relation than associates with any edge $e \in E(G)$ an unordered pair of vertices not necessarily distinct called ends.

It can be represented as

$$V = V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$
(11.1)

$$E = E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$
(11.2)

$$e_1 = v_1 v_2, e_2 = v_2 v_4, \dots (11.3)$$

Serveral concepts:

- An edge with identical ends is called a **loop**
- Two edges having the same ends are said to be **parallel**
- A graph without loops or parallel edges is called **simple graph**
- two edges of a graph are **adjancent** if they have a common end
- two vertices are **adjancent** if they are jointed by an edge

11.1.2 Subgraph

Given two graphs **G** and **H**, **H** is a **subgraph** of **G** if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ and an edge has the smae ends in **H** as it does in **G**, if $E(H) \neq E(G)$ then **H** is a proper subgraph.

A subgraph **H** on **G** is **spanning** if V(H) = V(G)

For a subset $V^{'} \subset V(G)$ we define an **vertex-induced** subgraph $G[V^{'}]$ to be the subgraph with vertices $V^{'}$ and those edges of **G** having both ends in $V^{'}$

The edge-induced subgraph $G[E^{'}]$ has edges $E^{'}$ and those vertices of **G** that are ends to edges in $E^{'}$

If we combine node-indeced or edge-induced subgraphs G(V') and G(V-V'), we cannot get the entire graph. Let $v \in V(G)$, then the **degree** of $v \in V(G)$ denote by $d_G(v)$ is defines to be the number of edges incident of v. Loops counted twice.

Theorem: For any graph
$$G=(V, E)$$

$$\sum_{v \in V} d(v) = 2|E|$$
 (11.4)

Proof:

 \forall edge $e = \mu v$ with $\mu \neq v$, e is and counted once for μ and once for v, a total of ture altogether. If $e = \mu \mu$, a loop, then if is counted twice for μ

Corollary: Every graph has an even number of odd degree vertices.

Proof:

$$V = V_E \cup V_O \Rightarrow \sum_{v \in V} d(v) = \sum_{v \in V_E} d(v) + \sum_{v \in V_O} d(v) = 2|E|$$
 (11.5)

Paths, Trees, and Cycles

Shortest-Path Problem

Minimum Spanning Tree Problem

Maximum Flow Problem

Minimum Cost Flow Problem

Assignment and Matching Problem

Graph Algorithms

Polygon Triangulation

19.1 Types of Polygons

Def: A **simple polygon** is a closed polygonal curve without self-intersection.

Simple Polygon Non-simple Polygon

Polygons are basic building blocks in most geometric applications. It can model arbitrarily complex shapes, and apply simple algorithms and algebraic representation/manipulation.

19.2 Triangulation

Def: Triangulation is to partition polygon P into non-overlapping triangles using diagonals only. It reduces complex shapes to collection of simpler shapes. Every simple n-gon admits a triangulation which has n-2 triangles.

Triangulation

Theorem: Every polygon has a triangulation

Lemma: Every polygon with more than three vertices has a diagonal.

Proof: (by Meisters, 1975) Let P be a polygon with more than three vertices. Every vertex of a P is either *convex* or *concave*. W.L.O.G. (any polygon must has convex corner) Assume p is a convex vertex. Denote the neighbors of

p as q and r. If $q\bar{r}$ is a diagonal, done, and we call $\triangle pqr$ is an ear. If $\triangle pqr$ is not an ear, it means at least one vertex is inside $\triangle pqr$, assume among those vertexes inside $\triangle pqr$, s is a vertex closest to p, then $p\bar{s}$ is a diagonal.

19.3 Art Gallery Theorem

Problem: The floor plan of an art gallery modeled as a simple polygon with n vertices, there are guards which is stationed at fixed positions with 360 degree vision but cannot see through the walls. How many guards does the art gallery need for the security? (Fun fact: This problem was posted to Vasek Chvatal by Victor Klee in 1973)

Theorem: Every *n*-gon can be guarded with $\lfloor \frac{n}{3} \rfloor$ vertex guards

Lemma: Triangulation graph can be 3-colored.

Proof:

- P plus triangulation is a planar graph
- 3-coloring means there exist a 3-partition for vertices that no edge or diagonal has both endpoints within the same set of vertices.
- Proof by Induction:
 - Remove an ear (there will always exist ear)
 - Inductively 3-color the rest
 - Put ear back, coloring new vertex with the label not used by the boundary diagonal.

19.4 Triangulation Algorithms

19.5 Shortest Path

Part IV

Integer and Combinatorial Programming

Formulation

20.1 Typical Problems

20.2 Integer Programming Formulation Skills

20.2.1 A Variable Taking Discontinuous Values

Description: In algebraic notation:

$$x = 0$$
, or $l \le x \le u$

Modeling:

$$x \le uy$$
$$x \ge ly$$
$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } l \le x \le u \end{cases}$$

20.2.2 Fixed Costs

Description: In algebraic notation:

$$C(x) = \begin{cases} 0 & \text{for } x = 0\\ k + cx & \text{for } x > 0 \end{cases}$$

Modeling:

$$C^*(x, y) = ky + cx$$
$$x \le My$$
$$x \ge 0$$
$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } x = 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

20.2.3 Either-or Constraints

Description: In algebraic notation:

$$\sum_{j \in J} a_{1j} x_j \le b_1 \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Modeling:

$$\sum_{j \in J} a_{1j} x_j \le b_1 + M_1 y$$

$$\sum_{j \in J} a_{2j} x_j \le b_2 + M_1 (1 - y)$$

$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } \sum_{j \in J} a_{1j} x_j \le b_1 \\ 1, & \text{if } \sum_{j \in J} a_{2j} x_j \le b_2 \end{cases}$$

Notice that the sign before M is determined by the inequality \geq or \leq , if it is " \geq ", use "-", if it " \leq ", use "+".

20.2.4 Conditional Constraints

Description: If constraint A is satisfied, then constraint B must also be satisfied

If
$$\sum_{j \in J} a_{1j} x_j \le b_1$$
 then $\sum_{j \in J} a_{2j} x_j \le b_2$

The key part is to find the opposite of the first condition. We are using $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$ Therefore it is equivalent to

$$\sum_{j \in J} a_{1j} x_j > b_1 \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Furthermore, it is equivalent to

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Where ϵ is a very small positive number.

Modeling:

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon - M_2 y$$
$$\sum_{j \in J} a_{2j} x_j \le b_2 + M_2 (1 - y)$$
$$y \in \{0, 1\}$$

20.2.5 Special Ordered Sets

SOS1 Description Out of a set of yes-no decisions, at most one decision variable can be yes.

$$x_1 = 1, x_2 = x_3 = \dots = x_n = 0$$
or
 $x_2 = 1, x_1 = x_3 = \dots = x_n = 0$
or ...

Modeling:

$$\sum_{i} x_i = 1, \quad i \in N$$

SOS2 Description 1 Out of a set of binary variables, at most two variables can be nonzero. In addition, the two variables must be adjacent to each other in a fixed order list.

Modeling: If $x_1, x_2, ..., x_n$ is a SOS2, then

$$\sum_{i=1}^{n} x_i \leq 2$$

$$x_i + x_j \leq 1, \forall i \in \{1, 2, ..., n\}, j \in \{i + 2, i + 3, ..., n\}$$

$$x_i \in \{0, 1\}$$

SOS2 Description 2 There is another type of definition, that is out of a set of nonnegative variables not binary here, at most two variables can be nonzero. In addition, the two variables must be adjacent to each other in a fixed order list. All variables summing to 1.

This definition of SOS2 is used in the following section Piecewise Linear Formulations

20.2.6 Piecewise Linear Formulations

Description: The objective function is a sequence of line segments, e.g. y = f(x), consists k - 1 linear segments going through k given points $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$. Denote

$$d_i = \begin{cases} 1, & x \in (x_i, x_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$

Then the objective function is

$$\sum_{i \in \{1,2,\dots,k-1\}} y = d_i f_i(x)$$

Modeling: Given that objective function as a piecewise linear formulation, we can have these constraints

$$\sum_{i \in \{1,2,\dots,k-1\}} d_i = 1$$

$$d_i \in \{0,1\}, i \in \{1,2,\dots,k-1\}$$

$$x = \sum_{i \in \{1,2,\dots,k\}} w_i x_i$$

$$y = \sum_{i \in \{1,2,\dots,k\}} w_i y_i$$

$$w_1 \le d_1$$

$$w_i \le d_{i-1} + di, i \in \{2,3,\dots,k-1\}$$

$$w_k \le d_{k-1}$$

In this case, $w_i \in SOS2$ (second definition)

20.2.7 Conditional Binary Variables

Description: Choose at most n binary variable to be 1 out of $x_1, x_2, ... x_m, m \ge n$. If n = 1 then it is SOS1.

Modeling:

$$\sum_{k \in \{1, 2, \dots, m\}} x_k \le n$$

Description: Choose exactly n binary variable to be 1 out of $x_1, x_2, ... x_m, m \ge n$

Modeling:

$$\sum_{k \in \{1,2,\dots,m\}} x_k = n$$

Description: Choose x_j only if $x_k = 1$ Modeling:

$$x_j = x_k$$

Description: "and" condition, iff $x_1, x_2, ..., x_m = 1$ then y = 1

Modeling:

$$y \le x_i, i \in \{1, 2, ..., m\}$$

 $y \ge \sum_{i \in \{1, 2, ..., m\}} x_i - (m - 1)$

Elimination of Products of Variables 20.2.8

Description: For variables x_1 and x_2 ,

$$y = x_1 x_2$$

Modeling: If x_1, x_2 are binary, it is the same as "and" condition of binary variables. If x_1 is binary, while x_2 is continuous and $0 \le x_2 \le u$, then

$$y \le ux_1$$

$$y \le x_2$$

$$y \ge x_2 - u(1 - x_1)$$

$$y \ge 0$$

If both x_1 and x_2 are continuous, it is non-linear, we can use Piecewise linear formulation to simulate.

Branch and Bound

Branch and Cut

Packing and Matching

Traveling Salesman Problem

Knapsack Problem

${\bf Part~V}$ ${\bf Nonlinear~Programming}$

KKT Optimality Conditions

Lagrangian Duality

Unconstrained Optimization

Penalty and Barrier Functions

Part VI Algorithms and Computational Complexity

Computational Complexity

Sorting

- 31.1 Elementary Sorting Algorithms
- 31.2 Heap-sort
- 31.3 Quick-sort
- 31.4 Sorting in Linear Time
- 31.5 Medians and Order Statistics

Data Structures

- 32.1 Elementary Data Structures
- 32.2 Hash Tables
- 32.3 Binary Search Trees
- 32.4 Red-Black Trees
- 32.5 B-Trees
- 32.6 Fibonacci Heaps
- 32.7 van Emde Boas Trees

Design and Analysis Techniques

33.1	Dynamic Programming
33.2	Greedy Algorithms
33.3	Amortized Analysis
33.4	Multi-threaded Algorithms
33.5	Matrix Operations
33.6	Polynomials and the FFT
33.7	Number-Theoretic Algorithms
33.8	String Matching
33.9	Computational Geometry
33.10	NP-Completeness
33.11	Approximation Algorithms

Part VII Heuristics ans Meta-heuristics

Part VIII Game Theory

Games with Ordinal Payoffs

- 34.1 Ordinal Games in Strategic Form
- 34.2 Perfect-information Games
- 34.3 General Dynamic Games

Games with Cardinal Payoffs

- 35.1 Expected Utility Theory
- 35.2 Strategic-form Games
- 35.3 Extensive-form Games

Knowledge, Common Knowledge, Beliefs

- 36.1 Common Knowledge
- 36.2 Adding Beliefs to Knowledge
- 36.3 Rationality

Refinements of Subgame-perfect Equilibrium

- 37.1 Weak Sequential Equilibrium
- 37.2 Sequential Equilibrium
- 37.3 Perfect Bayesian Equilibrium

Incomplete Information

- 38.1 Static Games
- 38.2 Dynamic Games
- 38.3 The Type-Space Approach

Part IX

Probability, Stochastic Processes and Markov Chains

Probability

Random Variables

40.1 Relationship between Some Random Variables

Figure 40.1: Relationship between Some Random Variables

40.2 Discrete Random Variables

Table 40.1: Discrete Random Variables

MGF	$M(t) = \frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$ $t \in \mathbb{R}$	$M(t) = 1 - p + pe^{t}$ $t \in \mathbb{R}$	$M(t) = (1 - p + pe^t)^n$ $t \in \mathbb{R}$	$M(t) = e^{\mu(e^t - 1)}$ $t \in \mathbb{R}$	$M(t) = \frac{p}{1 - (1 - p)e^t}$ $t < -\ln(1 - p)$	$M(t) = {\binom{p}{1 - (1 - p)e^t}}^p r$ $t < -\ln(1 - p)$
Variance	$D[X] = \frac{(b-a+1)^2 - 1}{12}$	D[X] = p(1-p)	D[X] = np(1-p)	$D[X] = \mu$	$D[X] = \frac{1 - p}{p^2}$	$D[X] = \frac{n(1-p)}{p^2}$
Expectation	$E[X] = \frac{b - a}{2}$	E[X] = p	E[X] = np	$E[X] = \mu$	$E[X] = \frac{1-p}{p}$	$E[X] = \frac{n(1-p)}{p}$
CDF	$F(x) = \frac{x - a + 1}{b - a + 1}$ $x = a, a + 1,, b$	$F(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$	$F(x) = \sum_{k=0}^{x} \binom{n}{k} p^{k} (1-p)^{n-k}$ $x = 0, 1,, n$	$f(x) = \frac{\Gamma(x+1,\mu)}{\Gamma(x+1)}$ $x = 0, 1, \dots, n, \dots$	$F(x) = 1 - (1 - p)^{x+1}$ $x = 0, 1,, n,$	$F(x) = 1 - I_p(k+1, n)$ x = 0, 1, 2,, n,
PMF	$f(x) = \frac{1}{b-a+1}$ x = a, a+1,, b	$f(x) = p^{x} (1 - p)^{1 - x}$ $x \in \{0, 1\}$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$ $x = 0, 1,, n$	$f(x) = \frac{\mu^x e^{\mu}}{x!}$ $x = 0, 1, \dots, n, \dots$	$f(x) = p(1-p)^x$ x = 0, 1,, n,	$f(x) = \binom{n-1+x}{x} p^n (1-p)^x$ $x = 0, 1, 2,, n,$
Distribution	Discrete Uniform (a, b)	$\mathrm{Bernoulli}(p)$	$\operatorname{Binomial}(n,p)$	$Poisson(\mu)$	$\mathrm{Geometric}(p)$	$\operatorname{Pascal}(n,p)$

40.3 Continuous Random Variables

Table 40.2: Continuous Random Variables

MGF	$M(t) = \begin{cases} 1, & t = 0\\ \frac{e^{bt} - e^{at}}{t(b - a)}, & t \neq 0 \end{cases}$	$e^{\frac{t(t\sigma^2+2\mu)}{2}} \\ t \in \mathbb{R}$	$rac{1}{1-rac{t}{\lambda}}$ $t<\lambda$	$\frac{1}{(1-rac{1}{\xi})^n}$
Variance	$D[X] = \frac{(b-a)^2}{12}$	$D[X] = \sigma^2$	$D[X] = \frac{1}{\lambda^2}$	$D[X] = \frac{n}{\lambda^2}$
Expectation	$E[X] = \frac{b - a}{2}$	$E[X] = \mu$	$E[X] = \frac{1}{\lambda}$	$E[X] = \frac{n}{\lambda}$
CDF	$F(x) = \frac{x - a}{b - a}$ $x = [a, b]$	$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $x \in \mathbb{R}$	$F(x) = 1 - e^{\lambda x}$ $x > 0$	$F(x) = 1 - \sum_{i=0}^{n-1} \frac{\lambda^n x^n e^{-\lambda x}}{n!}$ $x > 0$
PDF	$f(x) = \frac{1}{b-a}$ $x = [a, b]$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $x \in \mathbb{R}$	$f(x) = \lambda e^{-\lambda x}$ $x > 0$	$f(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\binom{n-1}{2}}$ $x > 0$
Distribution	$\operatorname{Uniform}(a,b)$	Normal (μ, σ) $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{x}}$	Exponential λ)	$\operatorname{Erlang}(n,\lambda)$

Limit Theorems

The Bernoulli and Poisson Process

Discrete-Time Markov Chains

Continuous-Time Markov Chains

Part X Queuing Theory

Queuing Model

Birth-and-Death Queuing Models

Multidimensional Birth-and-Death Queuing Models

Phase-Type Queue

Bulk Queue

Imbedded-Markov-Chain Queuing Models

Queuing Network

Part XI Inventory Theory

Part XII Reliability Theory

Part XIII

Statistic

Part XIV Simulation