For $0 \le \delta \le 1$ we write μ_{δ} to denote the Bernoulli distribution where outcome 1 occurs with probability δ and 0 with probability $1 - \delta$. Moreover, we use μ_{δ}^k to denote a probability distribution over k-tuples where each bit of a k-tuple is drawn independently according to μ_{δ} . Finally, let $u \leftarrow \mu_{\delta}^k$ denote that a k-tuple u is chosen according to μ_{δ}^k .

The protocol execution between two probabilistic algorithms A and B is denoted by $\langle A, B \rangle$. The output of A in such a protocol execution is denoted by $\langle A, B \rangle_A$ and of B by $\langle A, B \rangle_B$. Finally, let $\langle A, B \rangle_{trans}$ denote the transcript of communication between A and B.

We define a two phase circuit $C := (C_1, C_2)$ as a circuit where in the first phase the circuit C_1 is used and in the second phase the circuit C_2 .

We say that an event happens almost surely or with high probability if it occurs with probability at least $1 - 2^{-n} poly(n)$.

Definition 1.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a family of probabilistic circuits $\{P_n\}$. A circuit belonging to $\{P_n\}$ is called a problem poser. A problem solver $C := (C_1, C_2)$ for P_n is a probabilistic two phase circuit. We write $P_n(\pi)$ to denote the execution of P_n with the randomness fixed to $\pi \in \{0,1\}^n$, and $(C_1, C_2)(\rho)$ to denote the execution of both C_1 and C_2 with the randomness fixed to $\rho \in \{0,1\}^*$.

In the first phase, the poser $P_n(\pi)$ and the solver $C_1(\rho)$ interact. As the result of the interaction $P_n(\pi)$ outputs a verification circuit Γ_V and a hint circuit Γ_H . The circuit $C_1(\rho)$ produces no output. The circuit Γ_V takes as input $q \in Q$, an answer $y \in \{0,1\}^*$, and outputs a bit. We say that an answer (q,y) is a correct solution if and only if $\Gamma_V(q,y) = 1$. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

In the second phase, C_2 takes as input $x := \langle P_n(\pi), C_1(\rho) \rangle_{trans}$, and has oracle access to Γ_V and Γ_H . The execution of C_2 with the input x and the randomness fixed to ρ is denoted by $C_2(x,\rho)$. The queries of C_2 to Γ_V and Γ_H are called verification queries and hint queries respectively. The circuit C_2 succeeds if and only if it makes a verification query (q,y) such that $\Gamma_V(q,y) = 1$, and it has not previously asked for a hint query on q.

Definition 1.2 (k-wise direct-product of DWVPs.) Let $g:\{0,1\}^k \to \{0,1\}$ be a monotone function and $P_n^{(1)}$ a problem poser as in Definition 1.1. The k-wise direct product of $P_n^{(1)}$ is a DWVP defined by a circuit $P_{kn}^{(g)}$. We write $P_{kn}^{(g)}(\pi^{(k)})$ to denote the execution of $P_{kn}^{(g)}$ with the randomness fixed to $\pi^{(k)} := (\pi_1, \ldots, \pi_k)$ where for each $1 \le i \le n : \pi_i \in \{0,1\}^n$. Let $(C_1, C_2)(\rho)$ be a solver for $P_{kn}^{(g)}$ as in Definition 1.1. In the first phase, the algorithm $C_1(\rho)$ sequentially interacts in k rounds with $P_{kn}^{(g)}(\pi^{(k)})$. In the i-th round $C_1(\rho)$ interacts with $P_n^{(1)}(\pi_i)$, and as the result $P_n^{(1)}(\pi_i)$ generates circuits Γ_V^i, Γ_H^i . Finally, after k rounds $P_{kn}^{(g)}(\pi^{(k)})$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k))$$

and a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)).$$

If it is clear from a context, we omit the subscript n, and write $P(\pi)$ instead of $P_n(\pi)$ where $\pi \in \{0,1\}^n$.

A verification query (q, y) of a solver C for which a hint query on this q has been asked before cannot be a verification query that succeeds. Therefore, without loss of generality, we make the assumption that C does not ask verification queries on q for which a hint query has been asked before. Furthermore, we assume that once C asked a verification query that succeeds, it does not ask any further hint or verification queries.

```
Experiment Success^{P,C}(\pi,\rho)

Oracle: A problem poser P, a solver C = (C_1, C_2) for P.

Input: Bitstrings \pi \in \{0,1\}^n, \rho \in \{0,1\}^*.

Output: A bit b \in \{0,1\}.

run \langle P(\pi), C_1(\rho) \rangle
(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P
x := \langle P(\pi), C_1(\rho) \rangle_{trans}

run C_2^{\Gamma_V, \Gamma_H}(x, \rho)
if C_2^{\Gamma_V, \Gamma_H}(x, \rho) asks a verification query (q, y) such that \Gamma_V(q, y) = 1 then return 1

return 0
```

We define the success probability of C in solving a puzzle defined by P as

$$\Pr_{\pi,\rho}[Success^{P,C}(\pi,\rho)=1]. \tag{0.0.1}$$

Furthermore, we say that C succeeds for π , ρ if $Success^{P,C}(\pi,\rho)=1$.

Theorem 1.3 (Security amplification for dynamic weakly verifiable puzzles.) Let $P_n^{(1)}$ be a fixed problem poser as in Definition 1.1 and $P_{kn}^{(g)}$ a problem poser for the k-wise direct product of $P_n^{(1)}$. Furthermore, let C be a problem solver for $P_{kn}^{(g)}$ asking at most h hint queries and v verification queries. There exists a probabilistic algorithm Gen with oracle access to a solver circuit C, a monotone function $g:\{0,1\}^k \to \{0,1\}$ and problem posers $P_n^{(1)}$, $P_{kn}^{(g)}$. Additionally, Gen takes as input parameters ε , δ , n, k, h, v, and outputs a solver circuit D for $P_n^{(1)}$ such that the following holds:

If C is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn} \\ \rho \in \{0,1\}^*}} \left[Success^{P_{kn}^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \ge 16(h+v) \left(\Pr_{u \leftarrow \mu_{\delta}^k} \left[g(u) = 1 \right] + \varepsilon \right)$$

then D satisfies almost surely

$$\Pr_{\substack{\pi \in \{0,1\}^n \\ \rho \in \{0,1\}^*}} \left[Success^{P_n^{(1)},D}(\pi,\rho) = 1 \right] \ge (\delta + \frac{\varepsilon}{6k}).$$

Additionally, D requires oracle access to g, $P_n^{(1)}$, C, and asks at most $\frac{6k}{\varepsilon}\log\left(\frac{6k}{\varepsilon}\right)h$ hint queries and one verification query. Finally, $Size(D) \leq Size(C) \cdot \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

We call a function mapping values from \mathcal{D} to values from \mathcal{R} a hash function. We say that a family of hash functions \mathcal{H} from \mathcal{D} to \mathcal{R} is pairwise independent if $\forall x \neq y \in \mathcal{D}$ and $\forall \alpha, \beta \in \mathcal{R}$, we have

$$\Pr_{hash \leftarrow \mathcal{H}}[hash(x) = \alpha \wedge hash(y) = \beta] = \frac{1}{|R|^2}, \tag{0.0.2}$$

where $hash \leftarrow \mathcal{H}$ denotes that hash is chosen from \mathcal{H} uniformly at random.

Let $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$, the idea is to partition Q such that the set of preimages of 0 for hash contains $q \in Q$ on which C is not allowed to ask hint queries, and the

first successful verification query (q, y) of C is such that hash(q) = 0. Therefore, if C makes a verification query (q, y) such that hash(q) = 0, then we know that no hint query is ever asked on this q.

We denote the *i*-th query of C by q_i if it is a hint query, and by (q_i, y_i) if it is a verification query. We define now the experiment CanonicalSuccess in which we partition Q using a function hash. We say that a solver circuit succeeds in the experiment CanonicalSuccess if it asks a successful verification query (q_j, y_j) such that $hash(q_j) = 0$, and no hint query q_i is asked before (q_i, y_j) such that $hash(q_i) = 0$.

```
Experiment CanonicalSuccess^{P,C,hash}(\pi,\rho)

Oracle: A problem poser P, a solver circuit C = (C_1, C_2) for P, a function hash: Q \to \{0, \dots, 2(h+v)-1\}.

Input: Bitstrings \pi \in \{0,1\}^n, \rho \in \{0,1\}^*.

Output: A bit b \in \{0,1\}.

run \langle P(\pi), C_1(\rho) \rangle
(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P
x := \langle P(\pi), C_1(\rho) \rangle_{trans}

run C_2^{\Gamma_V, \Gamma_H}(x, \rho)
if C_2^{\Gamma_V, \Gamma_H}(x, \rho) does not succeed for any verification query then return 0

Let (q_j, y_j) be the first verification query of C_2^{\Gamma_V, \Gamma_H}(x, \rho) such that \Gamma_V(q_j, y_j) = 1.

if (\forall i < j : hash(q_i) \neq 0) and (hash(q_j) = 0) then return 1

else return 0
```

We define the *canonical success probability* of a solver circuit C for P with respect to a function hash as

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C,hash}(\pi,\rho)=1]. \tag{0.0.3}$$

For fixed hash and P a canonical success of C for π , ρ is a situation where Canonical Success P,C,hash $(\pi,\rho)=1$.

We show that if a solver circuit C for P often succeeds in the experiment Success, then there exists a hash function such that C also often succeeds in the experiment CanonicalSuccess.

Lemma 1.4 (Success probability in solving DWVP with respect to a function hash.) For fixed P_n let C be a solver for P_n with success probability at least γ , asking at most h hint queries and v verification queries. Let \mathcal{H} be the family of pairwise independent hash functions $Q \to \{0, 1, \ldots, 2(h+v)-1\}$. There exists a probabilistic algorithm FindHash that takes as input parameters γ , n, h, v, and has oracle access to C and P_n . Furthermore, FindHash runs in time poly $(h, v, \frac{1}{\gamma}, n)$, and with high probability outputs a function hash $\in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$.

It is possible to implement a random function $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$ efficiently by for example building its function table on the fly.

Proof. We fix a problem poser P and a solver C for P in the whole proof of Lemma 1.4. For all $k, l \in \{1, \ldots, (h+v)\}$ and $\alpha, \beta \in \{0, 1, \ldots, 2(h+v)-1\}$ by the pairwise independence property, we have

$$\forall q_k, q_l \in Q, q_k \neq q_l : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_k) = \alpha \mid hash(q_l) = \beta] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_k) = \alpha]$$

$$= \frac{1}{2(h+v)}. \tag{0.0.4}$$

We define $\mathcal{P}_{Success}$ as a set containing all (π, ρ) for which $Success^{P,C}(\pi, \rho) = 1$. Let us fix $(\pi^*, \rho^*) \in \mathcal{P}_{Success}$. We are interested in the probability over a choice of function hash of the event $CanonicalSuccess^{P,C,hash}(\pi^*, \rho^*) = 1$. Let (q_j, y_j) denote the first query such that $\Gamma_V(q_j, y_j) = 1$. We have

$$\begin{aligned} &\Pr_{hash \leftarrow \mathcal{H}} \left[Canonical Success^{P,C,hash}(\pi^*, \rho^*) = 1 \right] \\ &= \Pr_{hash \leftarrow \mathcal{H}} [hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0)] \\ &= \Pr_{hash \leftarrow \mathcal{H}} [\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}} [hash(q_j) = 0] \\ &\stackrel{(0.0.4)}{=} \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}} [\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\ &\stackrel{(*)}{\geq} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\ &\stackrel{(0.0.4)}{=} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}} [hash(q_i) = 0] \right) \\ &\stackrel{(0.0.4)}{=} \frac{1}{4(h+v)}, \end{aligned} \tag{0.0.5}$$

where in (*) we used the union bound. Let us denote the set of those (π, ρ) for which $CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1$ by $\mathcal{P}_{Canonical}$. If for π , ρ the circuit C succeeds canonically, then for the same π , ρ we also have $Success^{P,C}(\pi, \rho) = 1$. Hence, $\mathcal{P}_{Canonical} \subseteq \mathcal{P}_{Success}$, and we conclude

$$\frac{\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \right]}{= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \Pr_{\substack{\pi, \rho \\ \pi, \rho}} [(\pi, \rho) \in \mathcal{P}_{Success}] \\
+ \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \notin \mathcal{P}_{Success} \right] \Pr_{\substack{\pi, \rho \\ \pi, \rho}} [(\pi, \rho) \notin \mathcal{P}_{Success}] \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \Pr_{\substack{\pi, \rho \\ \pi, \rho}} [(\pi, \rho) \in \mathcal{P}_{Success}] \\
\geq \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \cdot \gamma \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid (\pi, \rho) \in \mathcal{P}_{Success} \right] \cdot \gamma \\
= \Pr_{\substack{(\pi, \rho) \in \mathcal{P}_{Success}}} \left[\Pr_{\substack{hash \leftarrow \mathcal{H} \\ hash \leftarrow \mathcal{H}}} \left[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \right] \right] \cdot \gamma \\
\geq \frac{\gamma}{4(h + v)} \tag{0.0.6}$$

Algorithm FindHash (γ, n, h, v)

Oracle: A problem poser P, a solver circuit C for P.

Input: Parameters γ , n. The number h of hint queries and v of verification queries.

Output: A function $hash : Q \to \{0, 1, ..., 2(h + v) - 1\}.$

```
\begin{aligned} & \text{for } i := 1 \text{ to } 32n(h+v)^2/\gamma^2 \text{ do:} \\ & \textit{hash} \leftarrow \mathcal{H} \\ & \textit{count} := 0 \\ & \text{for } j := 1 \text{ to } 32n(h+v)^2/\gamma^2 \text{ do:} \\ & \pi \xleftarrow{\$} \{0,1\}^n \\ & \rho \xleftarrow{\$} \{0,1\}^* \\ & \text{if } \textit{CanonicalSuccess}^{P,C,hash}(\pi,\rho) = 1 \text{ then} \\ & \textit{count} := \textit{count} + 1 \\ & \text{if } \textit{count} \geq \frac{\gamma}{12(h+v)} \frac{32(h+v)^2}{\gamma^2} n \text{ then} \\ & \text{return } \textit{hash} \end{aligned}
```

We show that FindHash chooses $hash \in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$ for which

$$\Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \ge \frac{\gamma}{8(h+v)}, \tag{0.0.7}$$

and \mathcal{H}_{Bad} be the family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \le \frac{\gamma}{16(h+v)}. \tag{0.0.8}$$

Let N denote the number of iterations of the inner loop of FindHash. For a fixed hash, we define independent, identically distributed binary random variables X_1, \ldots, X_N such that

$$X_i = \begin{cases} 1 & \text{if in the } i\text{-th iteration of the inner loop } count \text{ is increased} \\ 0 & \text{otherwise.} \end{cases}$$

We show now that FindHash is unlikely to return $hash \in \mathcal{H}_{Bad}$. For $hash \in \mathcal{H}_{Bad}$ by (0.0.8) we have $\mathbb{E}_{\pi,\rho}[X_i] \leq \frac{\gamma}{16(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we get²

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \left(1 + \frac{1}{3}\right) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{16(h+v)}N/27} \le e^{-\frac{2}{27}\frac{(h+v)}{\gamma}n} \le e^{-\frac{2}{27}n}.$$

The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \left(1 - \frac{1}{3}\right) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{8(h+v)}N/18} = e^{-\frac{2}{9}\frac{(h+v)}{\gamma}n} \le e^{-\frac{2}{9}n},$$

where we once more used the Chernoff bound. We show now that the probability of picking $hash \in \mathcal{H}_{Good}$ is at least $\frac{\gamma}{8(h+v)}$. We prove this statement by contradiction. Let us assume that

$$\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] < \frac{\gamma}{8(h+v)}.$$
 (0.0.9)

²For independent, identically distributed binary random variables $X = \sum_{i=1}^{N} X_i$ and $0 < \delta \le 1$ we use the Chernoff bounds in the form $\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/3}$ and $\Pr[X \le (1-\delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/2}$.

We have

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} [CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1]$$

$$= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} [CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \in \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ hash \leftarrow \mathcal{H}}} [hash \in \mathcal{H}_{Good}]$$

$$+ \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} [CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ hash \leftarrow \mathcal{H}}} [hash \notin \mathcal{H}_{Good}]$$

$$\leq \Pr_{\substack{hash \leftarrow \mathcal{H} \\ hash \leftarrow \mathcal{H}}} [hash \in \mathcal{H}_{Good}] + \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} [CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}]$$

$$\stackrel{(0.0.7)}{\leq \frac{\gamma}{8(h+v)}} + \frac{\gamma}{8(h+v)} = \frac{\gamma}{4(h+v)},$$

but this contradicts (0.0.6). Therefore, we know that the probability of choosing a $hash \in \mathcal{H}_{Good}$ amounts at least $\frac{\gamma}{8(h+v)}$ where the probability is taken over a choice of hash.

We show that FindHash picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let K be the number of iterations of the outer loop of FindHash and Y_i be a random variable for the event that in the i-th iteration of the outer loop $hash \notin \mathcal{H}_{Good}$ is picked. We use $\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] \geq \frac{\gamma}{8(h+v)}$ and $K \leq \frac{32(h+v)^2}{\gamma^2}n$, and conclude

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\bigcap_{1 \le i \le K} Y_i \right] \le \left(1 - \frac{\gamma}{8(h+v)} \right)^{\frac{32(h+v)^2}{\gamma^2} n} \le e^{-\frac{\gamma}{8(h+v)} \frac{32(h+v)^2}{\gamma^2} n} \le e^{-\frac{4(h+v)}{\gamma} n} \le e^{-n}. \quad \Box$$

We write $C_2^{(\cdot,\cdot)}$ to emphasize that C_2 does not obtain direct access to hint and verification circuits. Instead, all hint and verification queries are answered explicitly as in the following code excerpt of the circuit \widetilde{C}_2 .

```
Circuit \widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)
Oracle: A hint circuit \Gamma_H, a circuit C_2, a function hash: Q \to \{0, 1, \dots, 2(h+v)-1\}.
Input: Bitstrings x \in \{0, 1\}^*, \rho \in \{0, 1\}^*.
Output: A pair (q, y).
run C_2^{(\cdot,\cdot)}(x,\rho)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a hint query on q then
            if hash(q) = 0 then
                  \operatorname{return} \perp
            else
                  answer the query of C_2^{(\cdot,\cdot)}(x,\rho) using \Gamma_H(q)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a verification query (q,y) then
            if hash(q) = 0 then
                  return (q, y)
            else
                  answer the verification query of C_2^{(\cdot,\cdot)}(x,\rho) with 0
return \perp
```

Given $C = (C_1, C_2)$ we define a circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$. Every hint query q asked by \widetilde{C} is such that $hash(q) \neq 0$. Furthermore, \widetilde{C} asks no verification queries, and returns \bot or (q, y) such that hash(q) = 0.

We say that for a fixed π , ρ , hash the circuit \widetilde{C} succeeds if for $x := \langle P(\pi), C_1(\rho) \rangle_{trans}$, $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$, we have

$$\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1.$$

Lemma 1.5 For fixed P, C and hash the following statement is true

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C,hash}(\pi,\rho)=1] \leq \Pr_{\pi,\rho}[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho))=1] \underset{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_P}{\underset{x:=\langle P(\pi),C_1(\rho)\rangle_P}{\Pr[CanonicalSuccess^{P,C,hash}(\pi,\rho)=1]}}$$

Proof. If for some fixed π , ρ and hash the circuit C succeeds canonically, then for the same π , ρ and hash also \widetilde{C} succeeds. Using this observation, we conclude that

$$\begin{split} \Pr_{\pi,\rho} \left[CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1 \right] \\ &= \underset{\pi,\rho}{\mathbb{E}} \left[CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1 \right] \\ &\leq \underset{\pi,\rho}{\mathbb{E}} \left[\Gamma_V (\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right] \\ &\overset{x:=\langle P(\pi),C_1(\rho)\rangle_{trans}}{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_P} \\ &= \underset{\pi,\rho}{\Pr} \left[\Gamma_V (\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right] \\ &\overset{x:=\langle P(\pi),C_1(\rho)\rangle_{trans}}{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_P} \end{split}$$

Lemma 1.6 (Security amplification for dynamic weakly verifiable puzzles with respect to hash.) For the fixed problem poser $P_n^{(1)}$ let $\widetilde{C} := (C_1, \widetilde{C}_2)$ have oracle access to a function hash $: Q \to \{0, 1, \dots, 2(h+v-1)\}$ and a solver circuit $C := (C_1, C_2)$ for $P_{kn}^{(g)}$ which asks at most h hint queries and v verification queries. There exists an algorithm Gen that takes as input parameters ε , δ , n, k, has oracle access to $P_n^{(1)}$, \widetilde{C} , hash, $g : \{0, 1\}^k \to \{0, 1\}$, and outputs a solver circuit $D := (D_1, D_2)$ for $P^{(1)}$ such that the following holds: If \widetilde{C} is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn}, \rho \in \{0,1\}^* \\ x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{trans} \\ (\Gamma_H^{(k)}, \Gamma_V^{(g)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P(g)}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P(g)}}} \Pr_{\substack{x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P(g)}}} |g(u) = 1] + \varepsilon,$$

then D satisfies almost surely

$$\Pr_{\substack{\pi \in \{0,1\}^n, \rho \in \{0,1\}^* \\ x := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans} \\ (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans}}} \Pr_{\substack{\pi \in \{0,1\}^n, \rho \in \{0,1\}^* \\ (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans} \\ (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans}}} | \Gamma_H | \Gamma$$

Furthermore, D asks at most $\frac{6k}{\varepsilon}\log\left(\frac{6k}{\varepsilon}\right)h$ hint queries and no verification queries. Finally, $Size(D) \leq Size(C)\frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Before we give a proof of Lemma 1.6 we define some additional algorithms. First, we are interested in the probability that for $u \leftarrow \mu_{\delta}^k$ and a bit b we have $g(b, u_2, \dots, u_k) = 1$. The estimate of this probability is calculated by EstimateFunctionProbability.

Algorithm EstimateFunctionProbability^g $(b, k, \varepsilon, \delta, n)$

Oracle: A function $g : \{0, 1\}^k \to \{0, 1\}.$

Input: A bit $b \in \{0,1\}$, parameters $k, \varepsilon, \delta, n$.

Output: An estimate \widetilde{g}_b of $\Pr_{u \leftarrow \mu_k^k}[g(b, u_2, \dots, u_k) = 1]$.

for
$$i := 1$$
 to $\frac{64k^2}{\varepsilon^2}n$ do: $u \leftarrow \mu_{\delta}^k$ $g_i := g(b, u_2, \dots, u_k)$ return $\frac{\varepsilon^2}{64k^2n} \sum_{i=1}^{\frac{64k^2}{\varepsilon^2}n} g_i$

Lemma 1.7 The algorithm EstimateFunctionProbability^g $(b, k, \varepsilon, \delta)$ outputs an estimate \widetilde{g}_b such that $|\widetilde{g}_b - \Pr_{u \leftarrow \mu_{\delta}^k}[g(b, u_2, \dots, u_k) = 1]| \leq \frac{\varepsilon}{8k}$ almost surely.

Proof. We define independent, identically distributed binary random variables $K_1, K_2, \ldots, K_{64k^2n/\epsilon^2}$ such that for each $1 \leq i \leq \frac{64k^2}{\epsilon^2}n$ the random variable K_i takes value g_i . We use the Chernoff bound to obtain³

$$\Pr\left[\left|\widetilde{g}_{b} - \Pr_{u \leftarrow \mu_{\delta}^{k}}\left[g(b, u_{2}, \dots, u_{k}) = 1\right]\right| \geq \frac{\varepsilon}{8k}\right]$$

$$= \Pr\left[\left|\left(\frac{\varepsilon^{2}}{64k^{2}n} \sum_{i=1}^{64k^{2}n/\varepsilon^{2}} K_{i}\right) - \mathbb{E}_{u \leftarrow \mu_{\delta}^{k}}\left[g(b, u_{2}, \dots, u_{k})\right]\right| \geq \frac{\varepsilon}{8k}\right] \leq 2 \cdot e^{-n/3}.$$

The algorithm EvalutePuzzles $P^{(1)}, \tilde{C}, hash(\pi^{(k)}, \rho, n, k)$ evaluates which of k puzzles of the k-wise direct product defined by $P^{(g)}$ are solved successfully by $\tilde{C}(\rho) := (C_1, \tilde{C}_2)(\rho)$. To decide whether the i-th puzzle of the k-wise direct product is solved successfully we need to gain access to the verification circuit for the puzzle generated in the i-th round of the interaction between $P^{(g)}$ and \tilde{C} . Therefore, the algorithm EvalutePuzzles runs k times $P^{(1)}$ to simulate the interaction with $C_1(\rho)$ each time with a fresh random bitstring $\pi_i \in \{0,1\}^n$ where $1 \leq i \leq n$. Let us introduce some additional notation. We denote by $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{t}$ the execution of the i-th round of the sequential interaction. We use $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{trans}$ to denote the output of $P^{(1)}(\pi_i)$ in the i-th round. Finally, we write $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{trans}$ to denote the transcript of communication in the i-th round. The i-th round of the interaction between $P^{(1)}$ and $P^{(1)}$ is well defined only if all previous rounds have been executed before.

To make the notation easier in the code excerpts of circuits C_2 , D_2 and EvalutePuzzles we omit some oracle superscripts. Exemplary we write $\widetilde{C}_2^{\Gamma_H^{(k)},hash}$ instead of $\widetilde{C}_2^{\Gamma_H^{(k)},C,hash}$ where the superscript of the oracle circuit C is omitted. We make sure that it is clear from a context which oracles are used.

Algorithm EvaluatePuzzles $P^{(1)}, \tilde{C}, hash(\pi^{(k)}, \rho, n, k)$

Oracle: A problem poser $P^{(1)}$, a solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$,

a function $hash : Q \to \{0, 1, ..., 2(h + v) - 1\}.$

Input: Bitstrings $\pi^{(k)} \in \{0,1\}^{kn}$, $\rho \in \{0,1\}^*$, parameters n, k.

Output: A tuple $(c_1, ..., c_k) \in \{0, 1\}^k$.

³For independent Bernoulli distributed random variables X_1, \ldots, X_n with $X := \sum_{i=1}^n X_i$ and $0 \le \delta \le 1$ we use the Chernoff bound in the form $\Pr[|X - \mathbb{E}[X]| \ge \delta \mathbb{E}[X]] \le 2e^{-\mathbb{E}[X]\delta^2/3}$.

```
\begin{aligned} & \text{for } i \coloneqq 1 \text{ to } k \text{ do:} \qquad //simulate \ k \ rounds \ of interaction } \\ & (\Gamma_V^i, \Gamma_H^i) \coloneqq \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{P^{(1)}}^i \\ & x_i \coloneqq \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{trans}^i \\ & x \coloneqq (x_1, \dots, x_k) \\ & \Gamma_H^{(k)} \coloneqq (\Gamma_H^1, \dots, \Gamma_H^k) \\ & (q, y_1, \dots, y_k) \coloneqq \widetilde{C}_2^{\Gamma_H^{(k)}, hash}(x, \rho) \\ & \text{if } (q, y_1, \dots, y_k) = \bot \text{ then} \\ & \text{ return } (0, \dots, 0) \\ & (c_1, \dots, c_k) \coloneqq (\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k)) \\ & \text{ return } (c_1, \dots, c_k) \end{aligned}
```

All puzzles used by EvalutePuzzles are generated internally. Thus the algorithm has access to hint circuit, and can answer itself all queries of \widetilde{C}_2 .

We are interested in the success probability of \widetilde{C} with the bitstring π_1 fixed to π^* when the fact whether \widetilde{C} succeeds in solving the first puzzle defined by $P^{(1)}(\pi_1)$ is neglected, and instead a bit b is used. More formally, we define the surplus $S_{\pi^*,b}$ as

$$S_{\pi^*,b} = \Pr_{\pi^{(k)},\rho} \left[g(b, c_2, \dots, c_k) = 1 \mid \pi_1 = \pi^* \right] - \Pr_{u \leftarrow \mu_{\delta}^k} \left[g(b, u_2, \dots, u_k) = 1 \right]. \tag{0.0.10}$$

The algorithm EstimateSurplus returns an estimate $\widetilde{S}_{\pi^*,b}$ for $S_{\pi^*,b}$.

```
Algorithm EstimateSurplus P^{(1)}, \widetilde{C}, g, hash(\pi^*, b, k, \varepsilon, \delta, n)

Oracle: A problem poser P^{(1)}, a circuit \widetilde{C} for P^{(g)}, a function g: \{0,1\}^k \to \{0,1\} a function hash: Q \to \{0,1,\ldots,2(h+v)-1\}.

Input: A bistring \pi^* \in \{0,1\}^n, a bit b \in \{0,1\}, parameters k, \varepsilon, \delta, n.

Output: An estimate \widetilde{S}_{\pi^*,b} for S_{\pi^*,b}.

for i:=1 to \frac{64k^2}{\varepsilon^2}n do:
(\pi_2,\ldots,\pi_k) \overset{\$}{\leftarrow} \{0,1\}^{(k-1)n}
\rho \overset{\$}{\leftarrow} \{0,1\}^*
(c_1,\ldots,c_k) := \text{EvalutePuzzles}^{P^{(1)},\widetilde{C},hash}((\pi^*,\pi_2,\ldots,\pi_k),\rho,n,k)
\widetilde{s}^i_{\pi^*,b} := g(b,c_2,\ldots,c_k)
\widetilde{g}_b := \text{EstimateFunctionProbability}^g(b,k,\varepsilon,\delta,n)
\text{return } \left(\frac{\varepsilon^2}{64k^2n}\sum_{i=1}^{\frac{64k^2}{\varepsilon^2}n} \widetilde{s}^i_{\pi^*,b}\right) - \widetilde{g}_b
```

Lemma 1.8 The estimate $\widetilde{S}_{\pi^*,b}$ returned by EstimateSurplus differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

Proof. We use the union bound and similar argument as in Lemma 1.7 which yields that $\frac{\varepsilon^2}{64k^2n}\sum_{i=1}^{\frac{64k^2}{\varepsilon^2}n}\widetilde{s}_{\pi^*,b}^i \text{ differs from } \mathbb{E}[g(b,c_2,\ldots,c_k)] \text{ by at most } \frac{\varepsilon}{8k} \text{ almost surely. Together, with Lemma 1.7 we conclude that the surplus estimate returned by EstimateSurplus differs from <math>S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

We define now the following circuit $C' = (C'_1, C'_2)$, which is a solver for a (k-1)-wise direct product of $P^{(1)}$.

```
Circuit C_1'^{\widetilde{C},P^{(1)}}(\rho)
```

Oracle: A solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$, a poser $P^{(1)}$.

Input: A bitstring $\rho \in \{0,1\}^*$

Hard-coded: A bitstring $\pi^* \in \{0,1\}^n$

Simulate $\langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1$

Use $C_1(\rho)$ for the remaining k-1 rounds of interaction.

```
Circuit \widetilde{C}_2'^{\Gamma_H^{(k-1)},\widetilde{C},hash}(x^{(k-1)},\rho)
```

Oracle: A hint oracle $\Gamma_H^{(k-1)} := (\Gamma_H^2, \dots, \Gamma_H^k)$, a solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$, a function $hash : Q \to \{0, 1, \dots, 2(h+v)-1\}$

Input: A transcript of k-1 rounds of interaction $x^{(k-1)} := (x_2, \ldots, x_k) \in \{0, 1\}^*$, a bitstring $\rho \in \{0, 1\}^*$

Hard-coded: A bitstring $\pi^* \in \{0,1\}^n$

```
Simulate \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1

(\Gamma_H^*, \Gamma_V^*) := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{P^{(1)}}

x^* := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{trans}

\Gamma_H^{(k)} := (\Gamma_H^*, \Gamma_H^2, \dots, \Gamma_H^k)

x^{(k)} := (x^*, x_2, \dots, x_k)

(q, y_1, \dots, y_k) := \widetilde{C}_2^{\Gamma_H^{(k)}, hash}(x^{(k)}, \rho)

return (q, y_2, \dots, y_k)
```

We are ready to define the solver circuit $D = (D_1, D_2)$ for $P^{(1)}$ and the algorithm Gen.

Circuit $D_1^{\widetilde{C}}(r)$

Oracle: A solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$.

Input: A pair $r := (\rho, \sigma)$ where $\rho \in \{0, 1\}^*$ and $\sigma \in \{0, 1\}^*$.

Interact with the problem poser $\langle P^{(1)}, C_1(\rho) \rangle^1$.

Let $x^* := \langle P^{(1)}, C_1(\rho) \rangle_{trans}^1$.

Circuit
$$D_2^{P^{(1)},\widetilde{C},hash,g,\Gamma_H^*}(x^*,r)$$

Oracle: A poser $P^{(1)}$, a solver circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ for $P^{(g)}$,

functions $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}, g: \{0, 1\}^k \to \{0, 1\},$ a hint circuit Γ_H^* for $P^{(1)}$.

Input: A communication transcript $x^* \in \{0,1\}^*$, a bitstring $r := (\rho, \sigma)$ where $\rho \in \{0,1\}^*$ and $\sigma \in \{0,1\}^*$

Output: A pair (q, y^*) .

for at most $\frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})$ iterations do:

 $(\pi_2, \ldots, \pi_k) \leftarrow \text{read next } (k-1) \cdot n \text{ bits from } \sigma$

Use x^* to simulate the first round of interiaction of $C_1(\rho)$ with the problem poser $P^{(1)}$

```
\begin{array}{l} \textbf{for } i := 2 \textbf{ to } k \textbf{ do:} \\ & \textbf{run } \langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i \\ & (\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{P^{(1)}}^i \\ & x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{trans}^i \\ & \Gamma_H^{(k)}(q) := (\Gamma_H^*(q), \Gamma_H^2(q), \dots, \Gamma_H^k(q)) \\ & (q, y^*, y_2, \dots, y_k) := \widetilde{C}_2^{\Gamma_H^{(k)}, hash}(x^*, x_2, \dots, x_k, \rho) \\ & (c_2, \dots, c_k) := (\Gamma_V^2(q, y_2), \dots, \Gamma_V^k(q, y_k)) \\ & \textbf{if } g(1, c_2, \dots, c_k) = 1 \textbf{ and } g(0, c_2, \dots, c_k) = 0 \textbf{ then} \\ & \textbf{return } (q, y^*) \\ & \textbf{return } \bot \end{array}
```

```
Algorithm Gen<sup>P^{(1)},\tilde{C},g,hash</sup> (\varepsilon, \delta, n, v, h, k)
Oracle: A poser P^{(1)}, a solver circuit \widetilde{C} for P^{(g)}, functions g:\{0,1\}^k \to \{0,1\},
                hash: Q \to \{0, 1, \dots, 2(h+v) - 1\}.
Input: Parameters \varepsilon, \delta, n, k, the number of verification v and hint h queries.
Output: A circuit D.
for i := 1 to \frac{6k}{\varepsilon}n do:
       \pi^* \stackrel{\$}{\leftarrow} \{0,1\}^n
       \widetilde{S}_{\pi^*,0} := \text{EstimateSurplus}^{P^{(1)},\widetilde{C},g,hash}(\pi^*,0,k,\varepsilon,\delta,n)
       \widetilde{S}_{\pi^*,1} := \text{EstimateSurplus}^{P^{(1)},\widetilde{C},g,hash}(\pi^*,1,k,\varepsilon,\delta,n)
       if \exists b \in \{0,1\} : \widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon then
               Let C_1' have oracle access to \widetilde{C}, and have hard-coded \pi^*
               Let \widetilde{C}_2' have oracle access to \widetilde{C}, and have hard-coded \pi^*.
                \widetilde{C}' := (C_1', \widetilde{C}_2')
               g'(b_2, \dots, b_k) := g(b, b_2, \dots, b_k)
return Gen^{P^{(1)}, \widetilde{C}', g', hash}(\varepsilon, \delta, n, v, h, k-1)
// all estimates are lower than (1-\frac{3}{4k})\varepsilon
return D^{P^{(1)},\widetilde{C},hash,g}
```

Proof (Lemma 1.6). First let us consider the case where k=1. The function $g:\{0,1\} \to \{0,1\}$ is either the identity or a constant function. If g is the identity function, then the circuit D returned by Gen directly uses \widetilde{C} to find a solution. From the assumptions of Lemma 1.6 we know that \widetilde{C} succeeds with probability at least $\delta + \varepsilon$. Hence, D trivially satisfies the statement of Lemma 1.6. If g is a constant function the statement is vacuously true.

The general case is more involved. We distinguish two possibilities. If Gen manages to find in one of the iterations π^* such that an estimate $\widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon$, then we define a new monotone function $g'(b_2,\ldots,b_k):=g(b,b_2,\ldots,b_k)$ and a circuit $\widetilde{C}'=(C_1',\widetilde{C}_2')$ with oracle access to $\widetilde{C}:=(C_1,\widetilde{C}_2)$. We know that the surplus estimate satisfies $\widetilde{S}_{\pi^*,b}\geq (1-\frac{3}{4k})\varepsilon$, thus by Lemma 1.8 we conclude that $S_{\pi^*,b}\geq \widetilde{S}_{\pi^*,b}-\frac{\varepsilon}{4k}\geq (1-\frac{1}{k})\varepsilon$ almost surely. Therefore, the circuit \widetilde{C}' succeeds in solving the (k-1)-wise direct product of puzzles with probability at least $\Pr_{u\leftarrow\mu_\delta^{(k-1)}}[g'(u_1,\ldots,u_{k-1})]+(1-\frac{1}{k})\varepsilon$. We see that in this case \widetilde{C}' satisfies the conditions of Lemma 1.6 for the (k-1)-wise direct product of puzzles, and we can call Gen recursively.

If all estimates are less than $(1-\frac{3}{4k})\varepsilon$, then intuitively C does not succeed on the remaining k-1 puzzles with much higher probability than an algorithm that correctly solves each puzzle with probability δ . However, from the assumptions of Lemma 1.6 we know that on all k puzzles

the success probability of \widetilde{C} is higher. Therefore, it is likely that the first puzzle is correctly solved unusually often. It remains to prove that this intuition is indeed correct. We fix the notation used in the code excerpt of the circuit D_2 . Additionally, we define $c_1 := \Gamma_V^*(q, y^*)$, where (q, y^*) is the output of D_2 , and Γ_V^* is the verification circuit generated by $P^{(1)}$ in the first phase after the interaction with D_1 . Let $\mathcal{G}_b := \{b_1, b_2, \dots, b_k : g(b, b_2, \dots, b_k) = 1\}$ and $c = (c_1, c_2, \dots, c_k)$. We note that these are equivalent

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{b}] = \Pr_{u \leftarrow \mu_{\delta}^{k}} [g(b, u_{2}, \dots, u_{k}) = 1]$$

$$\Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{b}] = \Pr_{\pi^{(k)}, \rho} [g(b, c_{2}, \dots, c_{k}) = 1].$$
(0.0.11)

We fix the randomness of the problem poser $P^{(1)}$ to π^* and use (0.0.10), (0.0.11) to obtain

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[u \in \mathcal{G}_{1}] - \Pr_{u \leftarrow \mu_{\delta}^{k}}[u \in \mathcal{G}_{0}] = \Pr_{\pi^{(k)}, \rho}[c \in \mathcal{G}_{1} \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}, \rho}[c \in \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0})$$

$$(0.0.12)$$

Since g is a monotone function we have $\mathcal{G}_0 \subseteq \mathcal{G}_1$. Therefore, we can write (0.0.12) as

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}] = \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}). \tag{0.0.13}$$

Still fixing $\pi_1 = \pi^*$ we multiply both sides of (0.0.13) by

$$\Pr_{\substack{x^* := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{P^{(1)}}}} \Pr_{\substack{x \in \mathcal{G}_1 \setminus \mathcal{G}_0 \\ | Pr_{\delta} \\ | Pr_$$

which yields

$$\Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
= \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \Pr_{\pi^{(k)}, \rho} \left[c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*} \right] \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
- \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \left(S_{\pi^{*}, 1} - S_{\pi^{*}, 0} \right) \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}}$$
(0.0.14)

We analyze the first summand of (0.0.14). First, we have

$$\Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
= \Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \middle| D_{2}(x, r) \neq \bot \right] \Pr_{r} \left[D_{2}(x^{*}, r) \neq \bot \right] \\
x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \qquad x^{*} = \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} \\
\stackrel{(*)}{=} \Pr_{\pi^{(k)}, \rho} \left[c_{1} = 1 \middle| c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*} \right] \Pr_{r} \left[D_{2}(x^{*}, r) \neq \bot \right], \qquad (0.0.15) \\
x^{*} = \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

where in (*) we use the observation that $D_2(x^*,r) \neq \bot$ implies that the circuit $D_2(x^*,r)$ finds $\pi^{(k)}$ such that $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$, and if $\Gamma_V(D_2(x^*,r)) = 1$ then $c_1 = 1$ Inserting (0.0.15) to the

numerator of the first summand of (0.0.14) yields

$$\Pr_{r} \left[\Gamma_{V}(D_{2}(x^{*}, r)) = 1 \right] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}]$$

$$x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}}$$

$$= \Pr_{r} \left[D_{2}(x^{*}, r) \neq \bot \right] \Pr_{\pi^{(k)}, \rho} [c_{1} = 1 \mid c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}].$$

$$x^{*} = \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}$$

$$(0.0.16)$$

We consider the following two cases. If $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)}, \rho}[c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\pi^{(k)}, \rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}.$$
 (0.0.17)

When $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] > \frac{\varepsilon}{6k}$ the circuit D_2 outputs \bot if and only if it fails in all $\frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$ which happens with probability

$$\Pr_{r}[D_{2}(x^{*},\rho) = \bot] \le (1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})} \le \frac{\varepsilon}{6k}.$$

$$x^{*}:=\langle P^{(1)}(\pi^{*}), D_{1}(r)\rangle_{trans}$$

$$(0.0.18)$$

We conclude that in both cases by (0.0.17) and (0.0.18) we have

$$\Pr_{x^* := \langle P^{(1)}(\pi^*), D_1(r) \rangle_{trans}} \Pr_{\pi^{(k)}, \rho} [c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \\
\geq \Pr_{\pi^{(k)}, \rho} [c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\
= \Pr_{\pi^{(k)}, \rho} [c_1 = 1 \land c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\
= \Pr_{\pi^{(k)}, \rho} [g(c) = 1 \mid \pi_1 = \pi^*] - \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\
\stackrel{(0.0.10)}{=} \Pr_{\pi^{(k)}, \rho} [g(c) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_s^{(k)}} [u \in \mathcal{G}_0] - S_{\pi^*, 0} - \frac{\varepsilon}{6k}. \tag{0.0.19}$$

We take the expected value of (0.0.14) over π and insert (0.0.19) to obtain

$$\Pr_{\substack{x := \langle P^{(1)}(\pi), D_{1}(r) \rangle_{trans} \\ (\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi), D_{1}(r) \rangle_{rrans}}} \left[\frac{\Pr_{\pi^{(k)}, \rho}[g(c) = 1 | \pi_{1} = \pi^{*}] - \Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{0}] - \frac{\varepsilon}{6k}}{\Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}]} \right] \\
- \mathbb{E}_{\pi^{*}} \left[\left(S_{\pi^{*}, 0} + \Pr_{r}[\Gamma_{V}(D_{2}(x^{*}, r)) = 1](S_{\pi^{*}, 1} - S_{\pi^{*}, 0}) \right) \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{(k)}}[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}]} \right]. \\
\xrightarrow{x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{trans}} (\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(r) \rangle_{P^{(1)}} (0.0.20)$$

For the second summand of (0.0.20) we show that if Gen does not recurse, then the majority of estimates is low almost surely. Let us assume that

$$\Pr_{\pi,\rho}\left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon\right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon\right)\right] < 1 - \frac{\varepsilon}{6k},\tag{0.0.21}$$

then the algorithm Gen recurses with probability at least $1-2^{-n}$, because the probability that Gen does not find $\widetilde{S}_{\pi,b} \geq (1-\frac{3}{4k})$ in none of the $\frac{6k}{\varepsilon}n$ iterations is at most

$$(1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon}n} \le e^{-n}.$$

Therefore, under the assumption that Gen does not recurse, we have with high probability

$$\Pr_{\pi,\rho}\left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon\right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon\right)\right] \ge 1 - \frac{\varepsilon}{6k}.\tag{0.0.22}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right\}$$
 (0.0.23)

and use W^c to denote the complement of W. We bound the numerator of the second summand in (0.0.20)

$$\mathbb{E}_{\pi^*}[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^*,r)) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x^* := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{P^{(1)}}$$

$$= \mathbb{E}_{\pi^* \in \mathcal{W}^{c}}[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^*,r) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x^* := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{P^{(1)}}$$

$$+ \mathbb{E}_{\pi^* \in \mathcal{W}}[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}(D_{2}(x^*,r)) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x^* := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{P^{(1)}}$$

$$\leq \frac{\varepsilon}{6k} + \mathbb{E}_{\pi^* \in \mathcal{W}}[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}(D_{2}^{\widetilde{C}}(x^*,r)) = 1]((1 - \frac{1}{2k})\varepsilon - S_{\pi^*,0})]$$

$$x := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{trans}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^*), D_{1}(r) \rangle_{P^{(1)}}$$

$$\leq \frac{\varepsilon}{6k} + 1 - \frac{\varepsilon}{2k} = 1 - \frac{\varepsilon}{3k}.$$

$$(0.0.24)$$

We observe that

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(u) = 1] = \Pr[u \in \mathcal{G}_{0} \lor (u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \land u_{1} = 1)]$$

$$= \Pr[u \in \mathcal{G}_{0}] + \Pr[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}] \Pr[u_{1} = 1]. \tag{0.0.25}$$

Finally, we insert (0.0.19) and (0.0.24) into equation (0.0.20), and use (0.0.25) to obtain

$$\Pr_{\substack{\pi^*, \rho \\ x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}}} \left[\frac{\Pr_{\pi^{(k)}, \rho}[g(c) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_{\delta}^k}[u \in G_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \right].$$

From the assumptions of Lemma 1.6 we know that $\Pr_{\pi^{(k)},\rho}[g(c)=1] \ge \Pr_{u \leftarrow \mu_{\delta}^{(k)}}[g(u)=1] + \varepsilon$, thus we get

$$\Pr_{\substack{\pi^*, \rho \\ \pi^*, \rho \\ x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}} \ge \frac{\Pr_{u \leftarrow \mu_{\delta}^k}[g(u) = 1] + \varepsilon - \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \\
\stackrel{(0.0.25)}{\ge \frac{\varepsilon + \delta \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \ge \delta + \frac{\varepsilon}{6k} \qquad (0.0.26)$$

Proof (Theorem 1.3). We define following circuits.

Circuit $\widetilde{D}_{2}^{D,P^{(1)},hash,g,\Gamma_{V},\Gamma_{H}}(x,\rho)$

Oracle: A solver circuit D for $P^{(1)}$, a problem poser $P^{(1)}$,

functions $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}, g: \{0, 1\}^k \to \{0, 1\}$

a verification oracle Γ_V , a hint oracle Γ_H .

Input: Bitstrings $x \in \{0,1\}^*, \rho \in \{0,1\}^*$.

$$(q,y) := D_2^{P^{(1)},\widetilde{C},hash,g,\Gamma_H}(x,\rho)$$

Make a verification query to Γ_V using (q, y)

Algorithm $\widetilde{\text{Gen}}^{P^{(1)},g,C}(n,\varepsilon,\delta,k,h,v)$

Oracle: A problem poser $P^{(1)}$, a function $g: \{0,1\}^k \to \{0,1\}$, a solver circuit C for $P^{(g)}$.

Input: Parameters $n, \varepsilon, \delta, k, h, v$.

 $hash := FindHash((h + v)\varepsilon, n, h, v)$

Let $\widetilde{C} := (C_1, \widetilde{C}_2)$ be as in Lemma 1.5 with oracle access to C, hash.

 $D := Gen^{P^{(1)}, \tilde{C}, hash, g}(\varepsilon, \delta, n, k)$

return $\widetilde{D} := (D_1, \widetilde{D}_2)$

We show that Theorem 1.3 follows from Lemma 1.4 and Lemma 1.6. We fix $P^{(1)}$, g, $P^{(g)}$. Given a solver circuit $C = (C_1, C_2)$, asking h hint queries and v verification queries, such that

$$\Pr_{\pi^{(k)},\rho} \left[Success^{P^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \ge 16(h+v) \left(\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[g(u) = 1 \right] + \varepsilon \right)$$

we satisfy conditions of Lemma 1.4. Therefore, $\widetilde{\text{Gen}}$ can use the algorithm FindHash to find hash such that

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C,hash}(\pi^{(k)},\rho)=1\right] \geq \Pr_{u \leftarrow \mu_s^k}\left[g(u)=1\right] + \varepsilon$$

almost surely. By Lemma 1.5 we know that it is possible to build $\widetilde{C} = (C_1, \widetilde{C}_2)$ such that

$$\Pr_{\substack{\pi,\rho\\ \pi,\rho\\ (\Gamma_V^{(g)},\Gamma_H^{(k)}):=\langle P(\pi),C_1(\rho)\rangle_{trans}\\ (\Gamma_V^{(g)},\Gamma_H^{(k)}):=\langle P(\pi),C_1(\rho)\rangle_P}} [\Gamma_V^{(g)}(\widetilde{C}_2^{\Gamma_H^{(k)},C_2,hash}(x,\rho)) = 1] \geq \Pr_{\substack{u\leftarrow\mu_\delta^k\\ (\Gamma_V^{(g)},\Gamma_H^{(k)}):=\langle P(\pi),C_1(\rho)\rangle_P}} [g(u)=1] + \varepsilon.$$

Now, we use Gen to obtain a circuit $D = (D_1, D_2)$, which by Lemma 1.6 satisfies

$$\Pr_{\substack{\pi,\rho\\ \pi,\rho}} \left[\Gamma_V(D_2(x,\rho)) = 1 \right] \ge \left(\delta + \frac{\varepsilon}{6k} \right)$$

$$x := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{trans}$$

$$(\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{P^{(1)}}$$

$$(0.0.27)$$

almost surely. Finally, $\widetilde{\text{Gen}}$ outputs $\widetilde{D} = (D_1, \widetilde{D}_2)$ that with high probability satisfies

$$\Pr_{\pi,\rho}\left[Success^{P^{(1)},\tilde{D}}(\pi,\rho)=1\right] \geq (\delta + \frac{\varepsilon}{6k}).$$

The running time of FindHash is $poly(h, v, \frac{1}{\varepsilon}, n)$ and of Gen $poly(k, \frac{1}{\varepsilon}, n, h)$. Thus, the overall running time of \widetilde{Gen} is $poly(k, \frac{1}{\varepsilon}, h, v, n)$. Furthermore, the circuit \widetilde{D} asks at most $\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})h$ hint queries and one verification query. Finally, we have $Size(\widetilde{D}) \leq Size(C) \cdot \frac{6k}{\varepsilon}$. This ends the proof of Theorem 1.3.