Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

3 Sistemi di controllo

3.10 Osservatore dello stato e regolatore

Retroazione sullo stato

ullet Quando stato x accessibile (**informazione completa**) possiamo applicare la legge di controllo in retroazione sullo stato

$$u(t) = -F x(t) + H y^{\circ}(t)$$

- ullet F guadagno in feedback (retroazione) tale che la dinamica in ciclo chiuso A-BF sia asintoticamente stabile
- H guadagno in feedforward tale che $G^*_{y^{\circ}y}(0)=1$ per avere inseguimento perfetto di riferimenti costanti
- ullet Sistema stabilizzabile (tutti autovalori non controllabili con Re < 0)
 - ⇒ esiste F stabilizzante

Retroazione sullo stato stimato

Difficoltà: non sempre lo stato x è accessibile. In molti casi abbiamo a disposizione solo i dati ingresso/uscita (u,y) (**informazione parziale**)

Idea: Sulla base dell'informazione a disposizione (u,y), determinare in tempo reale una **stima** $\hat{x}(t)$ dello stato x(t) e applicare una retroazione sullo stato stimato

$$u(t) = -F\,\hat{x}(t) + H\,y^{\circ}(t)$$

 \Rightarrow per stimare x(t) possiamo utilizzare un **osservatore dello stato**

Osservatore dello stato

Osservatore dello stato: Sistema dinamico $\mathcal O$ che riceve in ingresso i dati ingresso/uscita (u,y) del processo e fornisce in uscita una stima $\hat x(t)$ dello stato x(t)

Obiettivo: Progettare l'osservatore $\mathcal O$ in modo tale che la stima $\hat x(t)$ converga allo stato vero x(t), ovvero in modo tale che l'errore di stima $e(t)=x(t)-\hat x(t)$ converga a 0 per $t\to\infty$ (più rapidamente possibile).

Osservatore di Luenberger

Osservatore di Luenberger:

$$\mathcal{O}: \quad \frac{d\hat{x}}{dt} = A\,\hat{x} + B\,u + L\,(y - C\,\hat{x})$$

La dinamica può essere riscritta come

$$\frac{d\hat{x}}{dt} = (A - LC)\,\hat{x} + B\,u + L\,y$$

- \Rightarrow sistema LTI avente come stato \hat{x} , come ingressi i dati (u,y) e come matrice della dinamica A-LC
- La dinamica dell'osservatore si compone di due parti:
 - Termine di predizione: $A\,\hat{x} + B\,u$ che simula la dinamica del sistema $\dot{x} = A\,x + B\,u$
 - \bullet **Termine di correzione:** che corregge la simulazione sulla base della differenza tra uscita effettiva $y=C\,x$ e uscita predetta sulla base della simulazione $C\,\hat{x}$
- La matrice L è il cosiddetto **guadagno dell'osservatore** (parametro di progetto)

Dinamica dell'errore di stima

• Consideriamo la dinamica dell'errore di stima $e = x - \hat{x}$

$$\frac{de}{dt} = \frac{d}{dt}(x - \hat{x}) = Ax + Bu - [A\hat{x} + Bu + L(y - C\hat{x})]
= Ax - A\hat{x} - L(Cx - C\hat{x}) = (A - LC)(x - \hat{x})
= (A - LC)e$$

Fatto 3.13 Se guadagno L dell'osservatore progettato in modo tale che $A-L\,C$ con tutti autovalori con Re <0

 \Rightarrow errore di stima e(t) converge a 0 per $t \to \infty$

$$\lim_{t \to \infty} e(t) = \lim_{t \to \infty} \left[x(t) - \hat{x}(t) \right] = 0$$

 \Rightarrow stato $\hat{x}(t)$ dell'osservatore si sincronizza con lo stato vero x(t)

Sistema di controllo con regolatore

Regolatore: osservatore dello stato + retroazione sullo stato stimato

$$u = -F \hat{x} + H y^{\circ}$$

$$\frac{d\hat{x}}{dt} = A \hat{x} + B u + L (y - C \hat{x})$$

- Controllo in retroazione dinamica sull'uscita con struttura interna specifica
- Progetto del regolatore = scelta dei 3 guadagni F, H e L
- Per sistemi SISO: F vettore riga $1 \times n$, H scalare, L vettore colonna $n \times 1$

Sistema in ciclo chiuso

Processo:

$$\mathcal{P}: \left\{ \begin{array}{lcl} \dot{x} & = & Ax + Bu \\ y & = & Cx \end{array} \right.$$

Regolatore:

$$\mathcal{C}: \left\{ \begin{array}{rcl} u & = & -F\,\hat{x} + H\,y^{\circ} \\ \frac{d\hat{x}}{dt} & = & A\,\hat{x} + B\,u + L\,\left(y - C\,\hat{x}\right) \end{array} \right.$$

• Legge di controllo può essere scritta in termini di stato x ed errore di stima $e=x-\hat{x}$

$$u = -F \hat{x} + H y^{\circ} = -F (x - e) + H y^{\circ}$$

Dinamica complessiva in ciclo chiuso

$$\begin{cases} \dot{x} = (A - BF)x + BFe + BHy^{\circ} \\ \dot{e} = (A - LC)e \\ y = Cx \end{cases}$$

Polinomio caratteristico in ciclo chiuso

Dinamica in ciclo chiuso

$$\left\{ \begin{array}{ccc} \left[\begin{array}{c} \dot{x} \\ \dot{e} \end{array} \right] & = & \left[\begin{array}{ccc} A - BF & BF \\ 0 & A - LC \end{array} \right] \left[\begin{array}{c} x \\ e \end{array} \right] + \left[\begin{array}{c} BH \\ 0 \end{array} \right] y^{\circ} \\ y & = & \left[\begin{array}{ccc} C & 0 \end{array} \right] \left[\begin{array}{c} x \\ e \end{array} \right]$$

Matrice della dinamica in ciclo chiuso

$$A^* = \left[\begin{array}{cc} A - BF & BF \\ 0 & A - LC \end{array} \right]$$

• Polinomio caratteristico in ciclo chiuso: poiché la matrice A^{*} è triangolare a blocchi vale

$$\varphi^*(s) = \det(sI - A^*) = \det(sI - A + BF) \det(sI - A + LC)$$

• Si dimostra cha l'osservatore non influenza la funzione di trasferimento in ciclo chiuso $G^*_{y^{\circ}y}(s)$ che coincide con quella che si otteneva con la sola retroazione algebrica sullo stato

Proprietà del sistema in ciclo chiuso

Fatto 3.14 Per sistemi LTI SISO, la legge di controllo con regolatore (osservatore dello stato + retroazione sullo stato stimato)

assegna il polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \det(sI - A + BF) \, \det(sI - A + LC)$$

assegna la funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{r(s)}{\det(sI - A + BF)}H$$

$$\operatorname{con} r(s) = C\operatorname{Adj}(sI - A)B$$

ullet Il guadagno in feedback F e il guadagno dell'osservatore L possono essere progettati indipendentemente (**principio di separazione**)

Progetto del regolatore

Progetto di un sistema di controllo con regolatore

- lacktriangle Scegliere F guadagno in *feedback* tale che la matrice A-BF sia asintoticamente stabile (specifica 1) e la funzione di trasferimento in ciclo chiuso garantisca un transitorio soddisfacente (specifica 3)
- **②** Scegliere H guadagno in *feedforward* tale che $G^*_{y^{\circ}y}(0) = 1$ (specifica 2)
- ullet Scegliere L guadagno dell'osservatore tale cha la matrice $A-L\,C$ sia asintoticamente stabile (specifica 1)

- ullet Progetto di F e H come nel caso di retroazione algebrica sullo stato (possiamo far finta che l'osservatore non ci sia)
- \bullet Tipicamente si cerca di posizionare gli autovalori di $A-L\,C$ nel semipiano sinistro molto lontane dall'asse immaginario per garantire che l'errore di stima converga rapidamente a 0

Progetto del regolatore

- Nella matrice A BF, al variare del guadagno F:
 - autovalori non controllabili del sistema, radici di $\varphi_{
 m nc}(s)$, non possono essere modificati
 - ullet controllabili del sistema, radici di $arphi_{\mathbf{c}}(s)$, possono essere spostati liberamente nel piano complesso
- Esiste F tale che A-B F as intoticamente stabile \Leftrightarrow tutti gli autovalori non controllabili del sistema, radici di $\varphi_{\rm nc}(s)=\varphi(s)/\varphi_{\rm c}(s)$, hanno Re <0
- - autovalori **non osservabili** del sistema, radici di $\varphi_{\rm no}(s)$, **non** possono essere modificati
 - autovalori **osservabili** del sistema, radici di $\varphi_{o}(s)$, possono essere spostati **liberamente** nel piano complesso (nel rispetto del vincolo che autovalori complessi sono sempre in coppie coniugate)

Esiste L tale che A-L C asintoticamente stabile \Leftrightarrow tutti gli autovalori non osservabili del sistema, radici di $\varphi_{\rm no}(s)=\varphi(s)/\varphi_{\rm o}(s)$, hanno Re <0

Buona posizione del problema di controllo e regolatore

- $\begin{array}{ll} \bullet \; \{ {\sf poli\;del\;sistema} \} \; = \; \{ {\sf poli\;di}\;G(s) = b(s)/a(s) \} \\ &= \; \{ {\sf autovalori\;osservabili} \} \cap \{ {\sf autovalori\;controllabili} \} \end{array}$
- $\begin{array}{ll} \bullet \; \{ {\rm autovalori\; nascosti} \} \; = \; \{ {\rm radici\; di} \; \varphi_h(s) = \varphi(s)/a(s) \} \\ & = \; \{ {\rm autovalori\; non\; osservabili\; e/o\; non\; controllabili} \} \end{array}$

Fatto 3.15 È possibile scegliere F e L in modo tale che la matrici A-BF e A-LC siano asintoticamente stabili

- \Leftrightarrow tutti gli autovalori nascosti, radici di $\varphi_h(s)$, hanno Re < 0 (problema di controllo in retroazione sull'uscita ben posto)
- Buona posizione del problema di controllo è condizione necessaria e sufficiente per l'esistenza di un regolatore stabilizzante

Progettare un regolare per un sistema LTI TC con

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \qquad B = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \qquad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

Polinomio caratteristico

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & -1 \\ -1 & s \end{bmatrix} = s^2 - 1 = (s+1)(s-1)$$

- Autovalori $\lambda_1 = -1$ e $\lambda_2 = 1 \; \Rightarrow \;$ sistema internamente instabile
- Per studiare controllabilità/osservabilità calcoliamo la matrice inversa

$$(sI - A)^{-1} = \frac{1}{\varphi(s)} \operatorname{Adj}(sI - A)$$

$$= \frac{1}{(s+1)(s-1)} \operatorname{Adj} \begin{bmatrix} s & -1 \\ -1 & s \end{bmatrix} = \frac{1}{(s+1)(s-1)} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

Per studiare controllabilità

$$(sI - A)^{-1}B = \frac{1}{(s+1)(s-1)} \begin{bmatrix} s & 1\\ 1 & s \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

$$= \frac{1}{(s+1)(s-1)} \begin{bmatrix} 1\\ s \end{bmatrix} = \begin{bmatrix} \frac{1}{(s+1)(s-1)} \\ \frac{s}{(s+1)(s-1)} \end{bmatrix}$$

- Polinomio caratterisitico di controllo $\varphi_{\mathrm{c}}(s) = (s+1)\,(s-1)$
 - ⇒ sistema completamente controllabile
 - \Rightarrow possiamo posizionare liberamente le radici di $\det(sI-A+BF)$
- In particolare

$$A - BF = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} [f_1 & f_2] = \begin{bmatrix} 0 & 1 \\ 1 - f_1 & -f_2 \end{bmatrix}$$
$$\det(sI - A + BF) = \det \begin{bmatrix} s & -1 \\ -1 + f_1 & s + f_2 \end{bmatrix} = s^2 + f_2 s + f_1 - 1$$

• Scegliamo per esempio $\det(sI - A + BF) = (s+1)(s+10) = s^2 + 11s + 10$ $\Rightarrow f_1 = 11 \text{ e } f_2 = 11$

Per studiare osservabilità

$$C(sI - A)^{-1} = \frac{1}{(s+1)(s-1)} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$
$$= \frac{1}{(s+1)(s-1)} [s+1 & s+1] = \begin{bmatrix} \frac{1}{s-1} & \frac{1}{s-1} \end{bmatrix}$$

- Polinomio caratterisitico di osservazione $\varphi_{\rm o}(s) = s-1$
 - $\Rightarrow \lambda_1 = -1$ autovalore non osservabile e $\lambda_2 = 1$ autovalore osservabile
 - \Rightarrow non possiamo posizionare liberamente le radici di $\det(sI-A+LC)$ ma possiamo comunque renderlo asintoticamente stabile
- In particolare

$$A - LC = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} -\ell_1 & 1 - \ell_1 \\ 1 - \ell_2 & -\ell_2 \end{bmatrix}$$

$$\det(sI - A + LC) = \det \begin{bmatrix} s + \ell_1 & -1 + \ell_1 \\ -1 + \ell_2 & s + \ell_2 \end{bmatrix}$$

$$= (s + \ell_1)(s + \ell_2) - (\ell_1 - 1)(\ell_2 - 1)$$

$$= s^2 + (\ell_1 + \ell_2)s + \ell_1 + \ell_2 - 1 = (s + 1)(s + \ell_1 + \ell_2 - 1)$$

- Nel polinomio $\det(sI A + LC) = (s+1)(s+\ell_1 + \ell_2 1)$
 - ullet -1 autovalore non osservabile non può essere modificato
 - $1 \ell_1 \ell_2$ autovalore osservabile può essere spostato a piacere
- Scegliamo per esempio $\det(sI A + LC) = (s+1)(s+100) = s^2 + 101s + 100$ $\Rightarrow \ell_1 = 1$ e $\ell_2 = 100$
- Polinomio caratteristico in ciclo chiuso

$$\varphi^*(s) = \det(sI - A + BF) \det(sI - A + LC)$$

= $(s+1)(s+10)(s+1)(s+100) = (s+1)^2(s+10)(s+100)$

Funzione di trasferimento in ciclo chiuso

$$G_{y^{\circ}y}^{*}(s) = \frac{r(s)}{\det(sI - A + BF)}H = \frac{s+1}{(s+1)(s+10)}H = \frac{1}{s+10}H$$

con

$$r(s) = C \operatorname{Adj}(sI - A)B = s + 1$$

• Per avere $G^*_{y^{\circ}y}(0)=1$ (specifica 2), poniamo H=10