Reinforcement Learning

Tony Qin

Reinforcement Learning Applications

Agent and Environment

- Agent sees an observation \mathcal{O}_t and reward \mathcal{R}_t
- Agent takes an action A_t
- ullet Environment responds to action A_t
- Environment emits observation O_{t+1} and reward R_{t+1}

- S: set of finite states
- A: set of finite actions
- *P*: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

•
$$R_s^a = E(R_{t+1} | S_t = s, A_t = a)$$

• Return:
$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$r = -1$$
 on all transitions

- S: set of finite states
- A: set of finite actions
- *P*: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

• R: reward function

•
$$R_s^a = E(R_{t+1} | S_t = s, A_t = a)$$

- γ : discount factor in [0,1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

on all transitions

- S: set of finite states
- A: set of finite actions

• R: reward function

• *P*: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$r = -1$$
 on all transitions

- - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

- S: set of finite states
- A: set of finite actions
- *P*: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

•
$$R_s^a = E(R_{t+1} | S_t = s, A_t = a)$$

• Return:
$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- S: set of finite states
- A: set of finite actions
- *P*: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- *R*: reward function
 - $R_s^a = E(R_{t+1} | S_t = s, A_t = a)$
- γ : discount factor in [0, 1]
 - Return: $G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

- S: set of finite states
- A: set of finite actions
- P: transition probability function

•
$$P_{SS'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$$

•
$$R_s^a = E(R_{t+1} | S_t = s, A_t = a)$$

• Return:
$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$r = -1$$
 on all transitions

Value Functions

- Policy: $\pi(a|s) = \mathbb{P}(A_t = a \mid S_t = s)$
- Return: $G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- State-value function: $v_{\pi}(s) = \mathbb{E}(G_t \mid S_t = s)$
- Action-value function: $q_{\pi}(s, a) = \mathbb{E}(G_t \mid S_t = s, A_t = a)$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

		\	Ţ
†	Ţ	Ţ	→
†	₽	Ļ	+
₽	→	\rightarrow	

Optimal Value Functions

- There exists some optimal policy π^*
 - $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$
- Optimal state-value function $v_*(s) = \max_{\pi} v_{\pi}(s)$
 - $v_{\pi_*}(s) = v_*(s)$
- Optimal action-value function $q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$
 - $q_{\pi_*}(s, a) = q_*(s, a)$

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

			Ţ
†	Ţ	Ţ	→
†	ጏ	Ļ	→
₽	\rightarrow	\rightarrow	

Value Iteration

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \rightarrow v_*$$
Converges to v_*

0	-1	-2	-3	
-1	-2	-3	-3	
-2	-3	-3	-3	
ကု	ფ	ကု	ფ	
.,				

0	-1	-2	ფ
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4
		,	

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5
		<u> </u>	

	0	-1	-2	-3
	-1	-2	-3	-4
	-2	-3	-4	-5
	-3	-4	-5	-6

Value Iteration

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \rightarrow v_*$$
Converges to v_*

Value Iteration

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \rightarrow v_*$$
Converges to v_*

-3

 V_5

-2

-2

-2

SARSA

- Model free: don't know transition and reward function
- Can't use value iteration
- $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') Q(S,A))$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Q Learning

- Off policy: learn from episodes generated with a different policy
- $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma \max_{a'} Q(S',a') Q(S,A))$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```

Value Function Approximation

- The previous methods are resource intensive
 - Storing values requires O(|S|) memory
- Intractable for problems with large state spaces
 - Go: 10¹⁷⁰ states
 - Robotics: continuous state space
- Use neural networks to approximate value functions
 - $\hat{v}(s,\theta) \approx v_{\pi}(s)$
 - $\hat{q}(s, a, \theta) \approx q_{\pi}(s, a)$

DQN

- Store $(s_t, a_t, r_{t+1}, s_{t+1})$ tuples in replay memory D
- L = $\mathbb{E}_{s,a,r,s' \sim D} \left(R + \gamma \max_{a'} Q(s',a',\theta) Q(s,a,\theta) \right)$
- Sample batch of transitions from memory
- Used in famous paper to play Atari games

DQN

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t=1,T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal D
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
    end for
end for
```

Conclusion

- Check out https://www.davidsilver.uk/teaching/
- Key papers in RL: https://spinningup.openai.com/en/latest/spinningup/keypapers.html
- Have a good winter break