Selected exercises 04

- 1. Let t_n be a bounded sequence and let s_n be a sequence such that $\lim s_n = 0$. Prove that $\lim s_n t_n = 0$.
- 2. Suppose s_n and t_n are sequences such that $|s_n| \le t_n$ for all n and $\lim t_n = 0$. Prove that $\lim s_n = 0$.
- 3. Let $a, b, c \in \mathbb{R}$. Prove that |a b| < c if and only if b c < a < b + c.
- 4. Prove that if a_n and b_n are sequences such that $a_n \leq b_n$ for all but finitely many values of n and $a_n \to a$, $bn \to b$, then $a \leq b$. $(a_n \to a \text{ means that } \lim_{n \to \infty} a_n = a)$.
- 5. Give an example of each of the following or prove that such a request is impossible.
 - (a) Unbounded convergent sequence.
 - (b) Divergent sequences s_n and t_n , but whose sum $s_n + t_n$ converges.
 - (c) A sequence with an infinite number of 1's that does not converge to 1.
 - (d) An unbounded sequence a_n and a convergent sequence b_n with $a_n b_n$ bounded.
- 6. Prove that every convergent sequence is bounded.
- 7. If $\lim b_n = B \neq 0$, prove that there exists a number N such that $|b_n| \geq \frac{1}{2}|B|$ for all n > N.
- 8. If $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B \neq 0$, prove

(a)
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{B}$$

(b)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$$

9. Show that if $a_n \to a$, then the sequence of absolute values $|a_n|$ converges to |a|. Is the opposite true? if we know that $|a_n| \to |a|$, can we deduce that $a_n \to a$?