Conjuntos

[1] Nociones primitivas

Un conjunto puede tener un elemento y decimos que el elemento pertenece al conjunto o puede no tenerlo entonces decimos que el elemento **no** pertenece al conjunto. Si al conjunto lo llamamos A (letras mayúsculas) y al elemento x (letras minúsculas), «x pertenece a A» se nota $x \in A$ y «x no pertenece a A» se nota $x \notin A$.

[2] Definición por extensión

Sea A un conjunto, entonces si a,b,c pertenecen a A y son los únicos elementos de A podemos definir al conjunto como $A = \{a,b,c\}$ así queda explícito entre llaves la lista de los elementos de A.

[3] Igualdad de Conjuntos

Se dice que dos conjuntos A y B son iguales y se nota A = B si $x \in A \Leftrightarrow x \in B$.

[4] Definición por comprensión

Sea p(x) una proposición abierta y A un conjunto, el nuevo conjunto B que contiene todos los elementos x de A tal que p(x) es verdadera es por $B = \{x \in A : p(x)\}$.

→ Se cumplen

- $\{x \in A : p(x)\} = \{x \in \mathcal{U} : x \in A \land p(x)\}\$
- $x \in B \Leftrightarrow x \in A \land p(x)$

[5] Conjuntos universales

Un conjunto universal $\mathcal U$ es aquel del cual tomamos los elementos para determinar la veracidad o falsedad de proposiciones abiertas cuantificadas.

[6] El conjunto vacío

→ Existencia del conjunto vacío.

Existe el conjunto vacío \varnothing y es aquel que no tiene elementos. $\exists \varnothing [\forall x[x \notin \varnothing]]$.

→ Unicidad del conjunto vacío.

Existe un único conjunto vacío. Sea A un conjunto, si no existe ningún x tal que $x \in A$ se da que $A = \emptyset$.

[7] Contención de conjuntos

Decimos que un conjunto A esta contenido en el conjunto B o que A es subconjunto de B y notamos $A \subseteq B$ si se cumple $x \in A \Rightarrow x \in B$. Si A no esta contenido en B, osea $\neg (A \subseteq B)$ entonces $A \nsubseteq B$.

→ Contención estricta

Se dice que A esta contenido estrictamente en B y se nota $A \subset B$ si se cumple $A \subseteq B \land A \neq B$.

→ Algunas propiedades

Para los conjuntos A, B y C siempre se cumple

- 1. $A \subseteq A$
- 2. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
- 3. $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
- 4. $A \subset B \land B \subset C \Rightarrow A \subset C$

→ Lema

Sea A un conjunto, entonces $\varnothing \subseteq A$ y si A tiene al menos un elemento se cumple $\varnothing \subset A$.

[8] Diagramas de Venn

[TODO: Alta fiaca]

[9] Cardinalidad

→ Cardinalidad de conjuntos finitos

La cardinalidad de un conjunto finito es igual a la cantidad de elementos que contiene. Si A es un conjunto entonces |A| es la cardinalidad de A. Un conjunto finito informalmente es aquel que tiene una cantidad contable de elementos.

→ Propiedades

- $A \subseteq B \Rightarrow |A| \le |B|$
- $A \subset B \Rightarrow |A| < |B|$
- $|\varnothing| = 0$

→ Cardinalidad de conjuntos infinitos

[TODO: No es prioridad]

[10] Conjunto de partes

Sea A un conjunto, el conjunto de partes de A es $\mathcal{P}(A) = \{X \in \mathcal{U} : X \subseteq A\}$

→ Propiedades

•
$$|A|=n\Rightarrow |\mathcal{P}(A)|=2^n=2^{|A|}$$

[11] Operaciones con conjuntos

Dados los conjuntos A,B y C se definen las siguientes operaciones.

→ Union

La union de A y B es $A \cup B$ tal que $x \in A \cup B \Rightarrow x \in A \vee x \in B$

1. Propiedades

- 1. $A = A \cup A$
- $2. \ A \cup B = B \cup A$
- 3. $A \subseteq A \cup B$
- 4. $A \subseteq B \Leftrightarrow A \cup B = B$
- 5. $A \cup (B \cup C) = (A \cup B) \cup C$

→ Intersección

La union de A y B es $A \cap B = \{x \in A : x \in B\}$

1. Propiedades

- 1. $A = A \cap A$
- 2. $A \cap B = B \cap A$
- 3. $A \cap B \subseteq A$
- 4. $A \subseteq B \Leftrightarrow A \cap B = A$
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$

→ Diferencia

El conjunto diferencia de A y B es $A-B=\{x\in A:x\notin B\}$

1. Propiedades

- 1. $A A = \emptyset$
- 2. $A \emptyset = A$
- 3. $B A \subseteq B$
 - $\varnothing A = \varnothing$
- $4. \ A B = B A \Rightarrow A = B$
- 5. $(A-B)-C\subseteq A-(B-C)$

→ Complemento

Al complemento de A es $\overline{A} = \mathcal{U} - A = \{x \in \mathcal{U} : x \notin A\}$

1. Propiedades

Para algún $A\subseteq\mathcal{U}$

- 1. $A \cap \overline{A} = \emptyset$
- 2. $A \cup \overline{A} = \mathcal{U}$

→ Leyes de teoría de conjuntos

Da
dos A,By C incluidos en
 ${\mathcal U}$

- 1. $\overline{\overline{A}} = A$ (Ley de doble complemento)
- $2. \ \overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 (Leyes de De Morgan)

3. $A \cup B = B \cup A$

$$A \cap B = B \cap A$$
 (Leyes conmutativas)

4. $A \cup (B \cup C) = (A \cup B) \cup C$

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 (Leyes asociativas)

5. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 (Leyes distributivas)

6. $A \cup A = A$

$$A \cap A = A$$
 (Leyes idempotentes)

7. $A \cup \emptyset = A$

$$A\cap \mathcal{U}=A$$
 (Leyes de identidad)

8. $A \cup (A \cap B) = A$

$$A \cap (A \cup B) = A$$
 (Leyes de absorción)