Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks

Davide Andreoletti1, 2, Sebastian Troia2, Francesco Musumeci2, Silvia Giordano1, Guido Maier2, and Massimo Tornatore2

Date : 09.13 (Wed)

Sujeong Oh

Introduction

Increasing complexity of modern telecom networks

Predicting traffic load on network

-> Effectively pre-dispose resource-allocation strategies

(e.g. incoming congestion event)

Introduction

None of the existing methods explicitely considers the topological information of the network

-> ML designed graph-based structures emerged recently

use filters suitable for graphs to capture hidden patterns among nodes

[11],[12] generalize CNNs for graph processing and node classification

[3] proposed the diffusion convolution operator and build ML algorithms

=> used to perform traffic forecasting on road traffic in [3], [13]

^{1]} T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

^[12] M.Defferrard, X.Bresson, and P.Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Advances in Neural Information Processing Systems, 2016, pp. 3844–3852.

Introduction

None of the existing methods explicitely considers the **topological information** of the network

-> ML designed graph-based structures emerged recently
use the same methodology to forecast the load
use filters suitable for graphs to capture hidden patterns among nodes
on the links of a telecommunication network

[11],[12] generalize CNNs for graph processing and node classification

- [3] proposed the diffusion convolution operator and build ML algorithms
 - => used to perform traffic forecasting on road traffic in [3], [13]

^{.1]} T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

^{12]} M.Defferrard, X.Bresson, and P.Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Advances in Neural Information Processing Systems, 2016, pp. 3844–385

Research Objectives

Use Diffusion Convolutional Recurrent Neural Network (DCRNN)

- Predict the load on network links given historical records of traffic loads
- focusing on predicting traffic loads and considering topological information

Dataset

- Consider backbone Abilene network
 - Available topology and trace of real traffic crossing (topology characterized by 12 nodes and 30 unidirectional links)
 - Slots of 5mins, from 01,03,2004 to 10,09,2004
- Window size : 1hour
- Grouped together in sequences of 10 vectors
- Obtained 30X30 adjacency matrix

Model Architecture

- DCRNN
 - Sequence-to-sequence deep learning architecture
 - Consists of encoder and decoder

- Input
 - Topologic traffic load data (30X30 matrix)
- Output
 - Traffic load at time t+1 (30)

Model Architecture

Encoder

Mapping between input and fixed-sized encoding vector

Decoder

How to map encoding vector to output sequence

Layer

Composed of DCGRU(Diffusion Convolutional Gated Recurrent Unit)

DCRNN composed of 2 Layers with 4DCGRU units each

Experiment

- Evaluation Metric
 - 1. MAPE (Mean Absolute Percentage Error)
 - 2. MAE (Mean Absolute Error)
 - 3. Root Mean Squared Error (RMSE)
 - 4. Convergence Epoch
 - 5. Convergence Time

Experiment

- Compare with
 - LSTM-based network
 - CNN-based network
 - CNN-LSTM-based network
 - Fully-Connected Neural Network

Experiment

TABLE I

COMPARISON OF THE DEEP LEARNING ARCHITECTURES CONSIDERING THEIR ABILITY TO PERFORM THE FORECAST OF THE NEXT TRAFFIC LOAD

	MAPE	MAE (Mbit/s)	RMSE (Mbit/s)	Convergence Epoch	Convergence Time (sec)
DCRNN	43.2%	92.5	497.1	225	525.1
LSTM	210.34%	142.43	525.21	87	19.83
CNN	234.75%	121.32	506.55	252	9.82
CNN-LSTM	248.16%	127.18	512.91	240	5.76
Fully-Connected	220.75%	138.24	522.65	201	3.14

Result

(a) Accuracy of the effectiveness to detect a congestion event

(b) Recall of the effectiveness to detect a congestion event

Fig. 1. Comparison of all the methods considering the ability to detect a congestion event in terms of Accuracy and Recall

Result

TABLE III Comparison of the deep learning architectures considering their ability to detect a congestion event when threshold factor lpha=3

	TP	TN	FP	FN	Accuracy	Precision	Recall	F-score
DCRNN	1,97	94,70	0,93	2,40	96,67	67,93	45,01	54.14
LSTM	1,14	93,64	1,92	3,03	95,05	42,37	31,80	36,33
CNN	1,58	93,15	2,40	2,85	94,74	41.86	35,67	37,85
CNN-LSTM	1,36	93,57	1,98	3,08	94,93	40,71	30.70	34,93
Fully-Connected	1,15	93,44	2.11	0.029	94,91	41,31	32,94	36,45

Conclusion

- This research employs DCRNN to predict the next traffic load
- DCRNN focuses on both traffic load characteristics and the topological relations
 - (i.e., whether the links are connected or not).
- DCRNN demonstrates significant improvements in forecasting

ML approaches designed to capture both event properties and network structure can greatly benefit event prediction in telecom networks