Exercise Sheet 9

- 1. Describe the general idea of dimension reduction, why it is particularly useful for high-dimensional data and what the drawbacks are.
 - Remove irrelevant dimensions (feature selection) or
 - Transform data in another space where less dimensions represent the data (feature extraction/transform)
 - Data are projected from HD to LD space with techniques that aim to preserve features.
 - DR involves a loss of information. Goal: preserve important structures, such as clusters, outliers, correlations and manifolds (a 1D manifold is a line or circle; a 2D manifold a plane, torus or sphere)
 - represents similarity (in HD) with proximity,
 - enables an overview of the data, its structure, relations and distribution,
 - supports navigation and browsing when the user supplies a query (with values and ranges for attributes) leading to a 2D point region
 - Drawbacks:
 - Dimensions need to be centralized (zero means) and normalized (divide by the range or σ) (auto scaling)
 - Drawback of auto scaling: Noisy measurements are scaled up whereas large peaks in meaningful data get reduced
 - Strongly correlating dimensions hamper the result (should be removed upfront, remember feature selection)
 - Interpretability of the new dimensions challenging; often domain scientists are not satisfied
- 2. Explain the relation between dimension reduction and subspace clustering
 - A dimension that does not contribute to a clusterable subspace probably is not important.
 - A dimension that contributes to clusters where users are confident in representing true phenomena likely should be preserved.
 - Data has a dimensionality given by the observations and it has a lower *intrinsic dimensionality* that captures most of the variance.
 - Dimension reduction is about finding the intrinsic dimensionality.
- 3. Explain the general concept of the linear dimension reduction method PCA.
 - generate a new set of dimensions that is a linear combination of the original dimensions
 - Based on the original dimensions x₁, ..., x_p PCA generates a new coordinate system with orthogonal dimensions
 - New dimensions (Principle Components, PC) are linear combinations of the original dimensions and are sorted according to variance
 - Each PC carries a *loading* that characterizes how much variability of the data is explained.

- Starting from the dimension with the highest loading, take the first *n* dimensions until their cumulative loadings exceed a threshold, e.g. 95%
- The projection error (in a least square sense) is minimized for any selection of n
- Approach:
 - Normalize the data
 - Determine the covariance matrix Cov = 1/(n-1) XX
 - o Apply an Eigenvalue analysis
 - Cov = U λU
 - ο λ is a diagonal matrix (all elements are zero except the diagonal) with Eigenvalues $\lambda_1 \le ... \le \lambda_p$
 - U is a orthogonal matrix containing the Eigenvectors (sorted according to the Eigenvalues).
- 4. What are score plots and scree plots?
 - **Score plots:** indicate distribution in the direction of the 2 or 3 largest components

• Scree plots: Individual and cumulative variance explained by the first n PCs

- 5. What is the motivation for non-linear dimension reduction methods?
 - suitable for skewed or multimodal (e.g. bimodal) distributions
 - Large distances are often not interesting or reliable.
 - Instead small distances often on a manifold should be preserved.
 - Non-linear techniques have more degrees of freedom
- 6. Explain the general concept of the non-linear dimension reduction method multidimensional scaling.
- Non-linear iterative optimization method where the distance of points in R^n is preserved optimally when transforming to R^k
- An optimization problem based on a *stress function* is solved with a non-linear optimization method (e.g. gradient descent, simulated annealing)
- Gradient descent: simpler, but more sensitive to local minima
- MDS is a similarity-based projection in LD-space
- At the core of MDS is a distance metric.
 - Typical choices are
 - o Euclidean distance.
 - city block distance or
 - angle between feature vectors, e.g. in text analytics, where large set of documents are shown
- Users may select a metric, fix certain points as constraints, employ cluster labels (in the distance metric)

- 7. Describe forms of interaction between an analyst and the dimension reduction algorithm.
 - Interactive PCA
 - Users may:
 - o adjust weights for each dimension
 - manipulate points (e.g. by selecting a rectangular region and dragging it)
 - see different aspects in 4 coordinated views
 - Visual hierarchical DR
 - A hierarchy is created by means of dissimilarity and used to select dimensions
 - Dimensions are analyzed w.r.t. similarity and are clustered.

- Clustering is performed with different similarity thresholds, leading to a hierarchy of clusters
- For each low level cluster, a representative dimension is computed or selected by the user.
- Dimension hierarchy is navigated to select/deselect clusters and dimensions.
- o Results are shown with PC plots, SP matrices

• Interactive DR through user-defined quality metrics

o QM relates to the preservation of correlation, clusters, ...

Assisted search for multiple subspaces

- A combination of visual representations (views) is used to interpret subspaces.
- o Filters enable reduction in item and dimension space.
- Reduction may be started by automatically detected patterns (A) or by user-defined subspaces.
- Subspaces are iteratively refined

• Guidance for dimensional reduction

- o More comprehensive support, including filtering, feature transformation
- 8. Name three application examples for linear and non-linear dimension reduction
 - Show the results of subspace clustering
 - Text analytics (visualization of textual documents with various tags and properties such as creation date, word count, authors