Top 上の Quillen モデル構造と Strøm モデル構造

よの

2024年3月7日

概要

位相空間の圏にモデル構造を入れるとき、weak equivalence として弱ホモトピー同値 (weak homotopy equivalence) とホモトピー同値 (homotopy equivalence) の 2 つが考えられる。実際、弱ホモトピー同値を weak equivalence とするモデル構造として Quillen モデル構造が、ホモトピー同値を weak equivalence とするモデル構造として Strøm モデル構造がある。 Quillen モデル構造は [Qui67] で、Strøm モデル構造は [Str72] でそれぞれ証明された。

目次

1	Quillen モデル構造	1
2	Strøm モデル構造	2
3	$\mathbf{Top}_{\mathrm{Quillen}}$ と $\mathbf{Top}_{\mathrm{Strøm}}$ の Quillen 随伴	2
4	sSet _{Kan} と Top _{Ouillen} の Quillen 同値	3

1 Quillen モデル構造

定義 1.1 (Quillen モデル構造). Top には次のモデル構造が存在する. これを Top 上の Quillen モデル構造 *1 といい, Top $_{\mathrm{Quillen}}$ と表す.

- weak equivalence は位相空間の弱ホモトピー同値
- fibration は Serre ファイブレーション
- cofibration は relative cell complex のレトラクト

注意 1.2. $\mathbf{Top}_{\mathrm{Quillen}}$ において、任意の対象 (位相空間) はファイブラントであり、任意の CW 複体の レトラクトはコファイブラントである.

 $^{^{*1}}$ 古典的 (classical) モデル構造や Quillen-Serre モデル構造, q モデル構造と呼ばれることもある.

注意 1.3. $Top_{Quillen}$ は

$$I := \{ S^{n-1} \hookrightarrow D^n \mid n \ge 0 \},$$

$$J := \{ D^n \times \{0\} \hookrightarrow D^n \times I \mid n \ge 0 \}$$

をそれぞれ generating cofibration, generating trivial cofibration の集合とするコファイブラント生成なモデル圏である.

2 Strøm モデル構造

Top 上の Quillen モデル構造における weak equivalence は弱ホモトピー同値であるが、Strøm モデル構造はホモトピー同値を weak equivalence とするようなモデル構造である.

定義 2.1 (Strøm モデル構造). Top には次のモデル構造が存在する. これを Top 上の Strøm モデル構造*² といい, Top_{Strøm} と表す.

- weak equivalence は位相空間のホモトピー同値
- fibration は Hurewicz ファイブレーション
- cofibration は閉 Hurewicz コファイブレーション

注意 2.2. $\mathbf{Top}_{Strøm}$ において、任意の対象 (位相空間) はファイブラントかつコファイブラントである.

注意 2.3. $\mathbf{Top}_{\mathrm{Strøm}}$ はコファイブラント生成なモデル圏ではない.

3 Top_{Quillen} と Top_{Strøm} の Quillen 随伴

恒等関手による $Top_{Quillen}$ と $Top_{Strøm}$ の Quillen 随伴が定まる.

命題 3.1. 恒等関手 $\operatorname{Id}:\operatorname{Top}_{\operatorname{Quillen}}\to\operatorname{Top}_{\operatorname{Strøm}}$ と恒等関手 $\operatorname{Id}:\operatorname{Top}_{\operatorname{Strøm}}\to\operatorname{Top}_{\operatorname{Quillen}}$ は、 $\operatorname{Top}_{\operatorname{Quillen}}$ と $\operatorname{Top}_{\operatorname{Strøm}}$ の $\operatorname{Quillen}$ 随伴を定める.

$$\mathrm{Id}:\mathbf{Top}_{\mathrm{Quillen}}\rightleftarrows\mathbf{Top}_{\mathrm{Strøm}}:\mathrm{Id}$$

Proof. 右随伴が weak equivalence と fibration を保つことを示す.

まず、任意のホモトピー同値($\mathbf{Top}_{\mathrm{Strøm}}$ における weak equivalence)は弱ホモトピー同値 ($\mathbf{Top}_{\mathrm{Quillen}}$ における weak equivalence)である.

次に、任意の Hurewicz ファイブレーション ($\mathbf{Top}_{\mathrm{Strøm}}$ における fibration) は Serre ファイブレーション ($\mathbf{Top}_{\mathrm{Quillen}}$ における fibration) である.

^{*2} Hurewicz モデル構造や h モデル構造と呼ばれることもある.

注意 3.2. 命題 3.1 の Quillen 随伴 $\mathrm{Id}:\mathbf{Top}_{\mathrm{Quillen}}\rightleftarrows\mathbf{Top}_{\mathrm{Strøm}}:\mathrm{Id}$ は Quillen 同値ではない.

Proof. 命題 3.1 の Quillen 随伴が Quillen 同値であると仮定する.

このとき、任意の CW 複体のレトラクト $(\mathbf{Top}_{Quillen}$ におけるコファイブラント) X と位相空間 $(\mathbf{Top}_{Strøm}$ におけるファイブラント) Y に対して、 $X \to Y$ が弱ホモトピー同値 $(\mathbf{Top}_{Quillen}$ における weak equivalence) であることと、ホモトピー同値 $(\mathbf{Top}_{Strøm}$ における weak equivalence) である ことは同値である。しかし、CW 複体とホモトピー同値であるが弱ホモトピー同値ではない位相空間 は存在するので矛盾する。

4 sSet_{Kan} と Top_{Quillen} の Quillen 同値

モデル圏 $\mathbf{Top}_{\mathrm{Quillen}}$ のホモトピー圏は CW 複体上の古典的なホモトピー圏と一致するので、 $\mathbf{Top}_{\mathrm{Quillen}}$ は CW 複体のホモトピー論を表していると思える. $\mathbf{Top}_{\mathrm{Quillen}}$ と $\mathbf{sSet}_{\mathrm{Kan}}$ の間の特異単体と幾何学的実現は $\mathrm{Quillen}$ 同値を定める. (命題 4.1) これは Kan 複体のホモトピー仮説 (homotopy hypothesis) の主張 (の一部) である. これは, $(\infty,1)$ 圏論において $\mathbf{Top}_{\mathrm{Quillen}}$ と $\mathbf{sSet}_{\mathrm{Kan}}$ が $(\infty,0)$ 圏のなす $(\infty,1)$ 圏のモデルとみなせることを意味している.

第4章の目標は次の命題4.1を証明することである.

命題 4.1. 幾何学的実現 $|-|: \mathbf{sSet} \to \mathbf{Top}$ と特異単体 $\mathrm{Sing}: \mathbf{Top} \to \mathbf{sSet}$ は、 $\mathbf{sSet}_{\mathrm{Kan}}$ と $\mathbf{Top}_{\mathrm{Quillen}}$ の Quillen 同値

$$|-|: \mathbf{sSet}_{\mathrm{Kan}} \rightleftarrows \mathbf{Top}_{\mathrm{Quillen}}: \mathrm{Sing}$$

を定める.

証明のために、いくつか準備をする。 $sSet_{Kan}$ はコファイブラント生成なモデル圏なので、generating (trivial) cofibration について考えればよいが、より広いクラスに対して成立する命題についてはそれを証明する。

まず、右随伴が fibration を保つことを示す.

補題 4.2 (Tag 021V kerodon). 特異単体は Serre ファイブレーションを Kan ファイブレーションにうつす.

より強く、次のことが言える.

補題 **4.3.** 位相空間の連続写像 $f:X\to Y$ が Serre ファイブレーションであることと、単体的集合の射 $\mathrm{Sing}(f):\mathrm{Sing}(X)\to\mathrm{Sing}(Y)$ が Kan ファイブレーションであることは同値である.

Proof. 補題 4.2 の逆を示す. $Sing(f):Sing(X) \to Sing(Y)$ を Kan ファイブレーションとする. 任意の $n \geq 0$ に対して, Sing(f) は緩射

$$\{0\}\times\Delta[n]\hookrightarrow\Delta[1]\times\Delta[n]$$

に対して RLP を持つ. よって, 位相空間の連続写像 $f:X \to Y$ は

$$|\{0\} \times \Delta[n]| \hookrightarrow |\Delta[1] \times \Delta[n]|$$

に対して RLP を持つ. 幾何学的実現は有限直積と交換し, $|\partial \Delta[n]|\cong S^{n-1}$ かつ $|\Delta[n]|\cong D^n$ である. よって, この射は Top における射

$$\{0\} \times D^n \hookrightarrow [0,1] \times D^n$$

と同一視できる. よって, f は Serre ファイブレーションである.

右随伴が generating cofibration を保つことを示す.

補題 4.4. 幾何学的実現は $\mathbf{sSet}_{\mathrm{Kan}}$ における generating cofibration を $\mathbf{Top}_{\mathrm{Quillen}}$ における generating cofibration にうつす.

 $Proof.\ i:\partial\Delta[n]\hookrightarrow\Delta[n]$ を $\mathbf{sSet}_{\mathrm{Kan}}$ における generating cofibration とする. i の幾何学的実現をとる. $|\partial\Delta[n]|\cong S^{n-1}$ かつ $|\Delta[n]|\cong D^n$ である. このとき, $|i|:S^{n-1}\hookrightarrow D^n$ は $\mathbf{Top}_{\mathrm{Quillen}}$ における generating cofibration である.

最後に、Quillen 同値を示すために必要な命題を示す.

補題 4.5. X を単体的集合とする. このとき, 随伴 (| - | → Sing) の単位射

$$\eta_X: X \to \operatorname{Sing}(|X|)$$

は単体的集合の弱ホモトピー同値である.

系 4.6. X を位相空間とする. このとき, 随伴 (|-| ∃ Sing) の余単位射

$$\mu_X : |\mathrm{Sing}(X)| \to X$$

は位相空間の弱ホモトピー同値である.

命題 4.1 の証明. Quillen 随伴であることは、補題 4.2 と補題 4.4 から従う. Quillen 同値であることは、補題 4.5 と系 4.6 から従う.

参考文献

[Qui67] Daniel G. Quillen. <u>Homotopical algebra</u>. Lecture Notes in Mathematics, No. 43. Berlin: Springer-Verlag, 1967.

[Str72] Arne Strøm. The homotopy category is a homotopy category, 1972.