Módulo 3. IA y grandes volúmenes de datos

#2. El problema de clasificación

Clasificación binaria

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i,y_i)\}_{i=1}^N=\{(x_1,y_1),\cdots,(x_N,y_N)\}$$
 con $x_i\in\mathbb{R}^n,y_i\in\{-1,+1\}.$

• Aprender una f(x) tal que

$$f(\mathbf{x}_i) \left\{ \begin{array}{ll} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{array} \right.$$

es decir: $y_i f(x_i) > 0$ para una clasificación correcta.

Separabilidad lineal

linealmente separable

no linealmente separable

Clasificadores lineales

- La entrada es un vector \mathbf{x}_i de dimensionalidad n
- La salida es una etiqueta y, ∈ {-1, +1}
- Clasificador = función de predicción + función de decisión

$$g(f(\mathbf{x})) \to \{-1, +1\}$$

Función de predicción lineal

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + \mathbf{w}_{0}$$

Función de decisión

$$g(z) = sign(z)$$
$$g(f(\mathbf{x})) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0)$$

El algoritmo del "perceptrón"

- Propuesto por Rosemblatt en 1958
- El objetivo es encontrar un hiperplano de separación. Si los datos son linealmente separables, lo encuentra.
- Es un algoritmo online (procesa un ejemplo a la vez)
- Muchas variantes ...

El algoritmo del "perceptrón"

Entrada:

- una secuencia de pares de entrenamiento $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \dots$
- Una tasa de aprendizaje r (número pequeño y menor a 1)

Algoritmo:

- Inicializar $\mathbf{w}^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo (x_i,y_i)
 - \circ Predecir $y_i' = sign(\mathbf{w}^T \mathbf{x}_i)$
 - $\circ \quad \operatorname{Si} y_i' \neq y_i:$ $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + r (y_i \mathbf{x}_i)$

El algoritmo del "perceptrón"

Entrada:

- una secuencia de pares de entrenamiento $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \dots$
- Una tasa de aprendizaje *r* (número pequeño y menor a 1)

Algoritmo:

- Inicializar $\mathbf{w}^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo (x_i,y_i)
 - \circ Predecir $y_i' = sign(\mathbf{w}^T \mathbf{x}_i)$
 - $\circ \quad \operatorname{Si} y_i' \neq y_i:$ $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + r (y_i \mathbf{x}_i)$

Actualiza solo cuando comete un error

Error en positivos:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + r \mathbf{x}_{i}$$

Error en negativos:

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - r \mathbf{x}_i$$

Si $y_i \mathbf{w}^T \mathbf{x}_i \leq 0 \rightarrow \text{error}$

Dinámica de actualización

Error en ejemplo **positivo**:

Dinámica de actualización

Error en ejemplo **negativo**:

El algoritmo estándar

Dado un conjunto D={ (\mathbf{x}_i, y_i) , i=1, ..., N}, $y_i \in \{-1, +1\}$, taza de entrenamiento r y número de épocas T

1. Inicializar $\mathbf{w}^{(0)}$

r, T: hiperparámetros

- 2. Para época *t*=1, ..., *T*
 - a. *barajar* el conjunto de entrenamiento D
 - b. Para cada muestra de entrenamiento $(\mathbf{x}_i, y_i) \in \mathbf{D}$
 - si $y_i \mathbf{w}^{(t)T} \mathbf{x}_i \leq 0$, actualizar $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + r(y_i \mathbf{x}_i)$
- 3. Retornar $\mathbf{w}^{(T)}$

Predicción: $sgn(\mathbf{w}^T\mathbf{x})$

¿Cuál es el mejor w?

Solución de **margen máximo**: el hiperplano más estable ante perturbaciones de la entrada

Generalización en clasificación

Complejidad del modelo ⇔ complejidad de la frontera de decisión

Regresión logística

Clasificación basada en probabilidades

• Objetivo: dar una estimación de probabilidad de que una instancia x sea de una clase y, es decir, p(y|x)

Recordar:

$$0 \le p(evento) \le 1$$

 $p(evento) + p(\neg evento) = 1$

Regresión logística

- Aproximación probabilística al problema de clasificación
- La función de predicción $h_w(x)$ debe dar una aproximación de p(y=1|x,w)

$$\bullet \quad 0 \le h_w(x) \le 1$$

$$h_w(x) = g(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

Regresión logística

- Dados $\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}$ donde $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$
- Modelo: $h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
 ight)$ $g(z) = \frac{1}{1+e^{-z}}$

Regresión logística. Función de costo

- Conjunto de entrenamiento $\{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}, \mathbf{x} \in \mathbb{R}^M, y \in \{0, 1\}$
- y: observaciones discretas → muestras de una distribución Bernoulli

$$P(y = 1|\mathbf{x}, \mathbf{w}) = f(\mathbf{x}, \mathbf{w})$$

$$P(y = 0|\mathbf{x}, \mathbf{w}) = 1 - f(\mathbf{x}, \mathbf{w})$$

$$P(y|\mathbf{x}) = (f(\mathbf{x}, \mathbf{w}))^y (1 - f(\mathbf{x}, \mathbf{w}))^{1-y}$$

 Encontrar el w que maximice la verosimilitud de las etiquetas en el conjunto de entrenamiento

$$-L(\mathbf{w}) = C(\mathbf{w}) = \log P(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \sum_{i=1} \log P(y^i|\mathbf{x}^i, \mathbf{w})$$
$$= \sum_{i} y^i \log f(\mathbf{x}^i, \mathbf{w}) + (1 - y^i) \log(1 - f(\mathbf{x}^i, \mathbf{w}))$$

Regresión lineal vs. regresión logística

Problemas multiclase

Clasificación multiclase

- Una muestra puede pertenecer a 1 (o más) de K clases
 - o Datos de entrenamiento $\{(\mathbf{x}_i, y_i)\}, y_i=1,..., K$

- Distintos tipos de problemas:
 - o multiclase: x pertenece solo a una categoría
 - o multietiqueta: x puede pertenecer a más de una categoría

 A veces es más fácil descomponer el problema multiclase en una serie de problemas binarios. Distintas estrategias: OVA, AVA, ...

Estrategia uno contra todos (OVA)

- Asumimos que cada clase es separable del resto
- Dado un conjunto de entrenamiento D= $\{(\mathbf{x}_i, y_i)\}, y_i = 1,...,K$
 - Descomponer el problema en K problemas binarios. Para la clase k, crear un problema tal que:
 - \blacksquare Ejemplos cuya etiqueta es y_i =k son ejemplos positivos
 - Ejemplos cuya etiqueta es $y_i \neq k$ son ejemplos negativos
 - Generar K clasificadores binarios con función de predicción $f_k(\mathbf{x})$, k=1,...,K.
- Predicción (winner takes all): $k^* = \operatorname{argmax} f_k(x)$

Estrategia uno contra todos (OVA)

Estrategia todos contra todos (AVA)

- Asumimos que cada clase par de clases es separable
- Dado un conjunto de entrenamiento D= $\{(\mathbf{x}_i, y_i)\}, y_i = 1,...,K$
 - Descomponer el problema en K(K-1)/2 problemas binarios.
 Para el par de clases (i, j), i≠j, crear un problema tal que:
 - Ejemplos cuya etiqueta es $y_i = i$ son ejemplos positivos
 - Ejemplos cuya etiqueta es $y_i = j$ son ejemplos negativos
 - Generar K(K-1)/2 clasificadores binarios con función de decisión $g_{(i,j)}(\mathbf{x})$
- Predicción (voting): cada clase recibe K-1 "votos"

Estrategia todos contra todos (AVA)

Regresión logística multiclase

Para dos clases:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{peso asignado}}$$
peso asignado
a y=0
peso asignado
a y=1

• Para *C* clases (*c*=1,...,*C*):

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

(función **softmax**)

Métricas en clasificación

Importancia de las métricas

- La función de costo es solo un proxy al problema en el mundo real
- Las métricas ayudan a capturar objetivos reales en forma cuantitativa (no todos los errores son iguales)
- Ayudan a la organización el trabajo de los equipos en función de los requerimientos del problema
- Permiten cuantificar diferencias en:
 - performance deseada vs modelo base
 - performance deseada vs actual
 - evolución en el tiempo
- Deberían ser el objetivo del entrenamiento, pero a veces es difícil.

Clasificación binaria

- Entrada: x, salida: y (valores 0/1 o -1/+1)
- Predicción del modelo: $\hat{y}=h(x)$
- Dos tipos de modelos:
 - Modelos que predicen directamente una variable categórica (kNN, árboles de decisión)
 - Modelos que predicen un puntaje (score) (SVM, regresión logística)
 - Se necesita elegir un umbral (func. de decisión)
 - Nos enfocaremos en esta última clase de modelos. Los anteriores se pueden ver como un caso especial.

Modelos basados en *scores*

•	Positive example
0	Negative example

Umbral → clasificador → métrica puntual

Matriz de confusión

- la suma total es fija (muestra)
- la suma por columnas es fija (muestras por clase)
- la calidad del modelo y el valor de umbral deciden el agrupamiento de filas
- queremos que los elementos diagonales tengan valores grandes y los no diagonales valores chicos

Matriz de confusión

- true positives (TP) = 9
- true negatives (TN) = 8
- false positives (FP) = 2
- false negatives (FN) = 1

Type I error (false positive)

Type II error (false negative)

Métricas puntuales: exactitud (accuracy)

Th	TP	TN	FP	FN	Acc
0.5	9	8	2	1	.85

- acc=(TP+TN)/(TP+FP+TN+FN)
- equivalente al costo 0/1

Métricas puntuales: precisión

Th	TP	TN	FP	FN	Acc	Pr
0.5	9	8	2	1	.85	.81

- Prec=TP/(TP+FP)
- Prec 100% = todos bajo el umbral salvo el de score más alto (siempre que sea correcto)

Métricas puntuales: sensitividad (recall)

Th	TP	TN	FP	FN	Acc	Pr	Recall
0.5	9	8	2	1	.85	.81	.9

- Recall=TP/(TP+FN)
- Recall 100% = todos los puntos por encima del umbral

Métricas puntuales: F1-score

Th	TP	TN	FP	FN	Acc	Pr	Recall	F1
0.5	9	8	2	1	.85	.81	.9	.857

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Métricas puntuales: cambio del umbral

Th	TP	TN	FP	FN	Acc	Pr	Recall	F1
0.6	7	8	2	3	.75	.77	.7	.733

umbrales efectivos = # ejemplos + 1

Score = 1

Threshold = 1.00

Threshold = 0.00 Score = 0

Threshold	TP	TN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
1.00	0	10	0	10	0.50	1	0	1	0
0.95	1	10	0	9	0.55	1	0.1	1	0.182
0.90	2	10	0	8	0.60	1	0.2	1	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.9	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.9	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.8	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.8	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.7	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.6	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
0.00	10	0	10	0	0.50	0.500	1	0	0.667

Métricas resumen: curvas ROC (rotada)

specificity=tnr=TN/Neg=TN/(TN+FP) sensitivity=tpr=TP/Pos=TP/(TP+FN) métrica AUC=área bajo la curva ROC

ROC=Receiver Operating Characteristic

Métricas resumen: curvas PR

precision=TP/(pos predichos)recall=TP/(pos verdaderos)AUPR=área bajo la curva PR

Curvas ROC y PR en validación cruzada

Opción 1:

- Asumir que magnitudes de los scores son comparables entre corridas
- Acumular predicciones de todas las corridas
- Trazar la curva usando predicciones acumuladas

Opción 2:

- Trazar las curvas individuales para cada partición
- Considerar la "curva promedio"

Resumen curvas ROC y PR

- Permiten evaluación cuantitativa a distintos niveles de "confianza"
- Asumen problemas binarios
- Se pueden resumir en medidas del tipo "área bajo la curva"
- Las curvas ROC son insensibles a cambios en la distribución de clases en el conjunto de test
- Las curvas PR muestran la fracción de las predicciones que son FP
- Las curvas PR son útiles en problemas con una proporción de muestras negativas muy alta
- Permiten determinar umbrales óptimos para distintos puntos de operación

Problemas multiclase

- Problema con N clases => matriz de confusión de NxN
- La mayoría de las métricas se analizan como N problemas binarios (OVA)
 - El desbalance crece con el número de clases
- Variantes multiclase de métricas AUC
 - micro vs. macro average

