Workshop Specification and Testing, Week 3

The topic of today is propositional logic. You can read more on this topic in Chapter 2 of "The Haskell Road".

Question 1 The language of propositional logic is given by the following grammar:

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\phi \leftrightarrow \phi)$$

Here p ranges over a set of proposition letters P.

Draw parse trees for the following formulas (convention: we leave out the outermost parentheses):

- 1. $\neg(\neg(\neg p))$
- 2. $\neg (p \lor (\neg q))$
- 3. $\neg((\neg p) \land (\neg q))$
- 4. $(p \to q) \leftrightarrow ((\neg q) \to (\neg p))$

Question 2 List the subformulas for all formulas in the first exercise.

Question 3 Give a definition of the set of *subformulas* of a formula ϕ .

Question 4 Give an algorithm for computing the number of subformulas of a formula ϕ .

Question 5 Give truth tables for the formulas in the first exercise.

Question 6 A literal is an atom p or the negation of an atom $\neg p$.

A clause is a disjunction of literals.

A formula C is in **conjunctive normal form (or: CNF)** if it is a conjunction of **clauses**.

Here is a grammar for literals, clauses, and formulas in CNF.

$$\begin{array}{lll} L & ::= & p \mid \neg p \\ D & ::= & L \mid L \lor D \\ C & ::= & D \mid D \land C \end{array}$$

Give CNF equivalents of the formulas in the first exercise.

Question 7 Can you define disjunctive normal form (or: DNF) and give a grammar for it?

Question 8 Which of the following formulas are tautologies. Which are contradictions? Which are satisfiable?

- 1. $p \vee (\neg q)$.
- 2. $p \wedge (\neg p)$.
- 3. $p \lor (\neg p)$.
- 4. $p \to (p \lor q)$.

```
5. (p \lor q) \to p.
```

Question 9 Simplify the following Ruby statement by simplifying the condition:

```
if not (guess != secret1 && guess != secret2)
  print "You win."
else
  print "You lose."
end
```

Question 10 Simplify the following Ruby statement:

```
if guess != secret1
  if guess != secret2 print "You lose." else print "You win."
else
  print "You win."
end
```

Question 11 Consider the following Ruby statement:

```
if guess1 == secret1
  print "one"
elsif guess2 == secret2
  print "two"
elsif guess3 == secret3
  print "three"
else
  print "four"
end
```

Suppose the statement is executed and "three" gets printed. What does this tell you about the state?

Question 12 Suppose the behaviour of ϕ is specified by means of a truth table. Here is an example:

p	q	r	ϕ
Т	Т	Т	F
F	\mathbf{T}	T	$\mid T \mid$
Τ	\mathbf{F}	T	T
F	\mathbf{F}	T	F
Τ	\mathbf{T}	F	F
F	\mathbf{T}	\mathbf{F}	$\mid T \mid$
Τ	\mathbf{F}	F	$\mid T \mid$
F	\mathbf{F}	F	$\mid T \mid$

To give an equivalent for ϕ in DNF, all you have to do is list the disjunction of the rows in the truth table where the formula turns out true. Give an equivalent of ϕ in DNF.

Question 13 Consider the truth table of the previous example again. It is also easy to give an equivalent for ϕ in CNF on the basis of the truth table. How? (Hint: the negation of a row where the truth table gives false can be expressed as a disjunction. Take the conjunction of all these disjunctions.) Give an equivalent of ϕ in CNF.