OLASILIK TEORISI VE ISTATISTIK

Binom Dağılımı (İki Terimli Dağılım)

- Örnek: Bir üretimde kusurlu oranı 0,10 olsun. 4'er ürün bulunan paketlerde kusurlu ürünlerin dağılımını inceleyelim.
- Bu olayda karşılaşılacak sonuçlar, X raslantı değişkeninin değerleri ve olasılıklarını yazalım.
- Sonuçlar incelendiğinde X'in bir olasılık fonksiyonu olduğu görülür.
- 0,0001+0,0036+0,0486+0,2916+0,6561=1 dir.
- Burada paketlerde bulunan ürün sayısına n, sağlam ürün sayısına r,
 X'in aldığı değerlere de x dersek, olasılık fonksiyonunun;

$$P(X = x) = {n \choose x} p^{x} (1-p)^{n-x} \quad x = 1,2,3,...$$

olarak yazılabileceği görülür. Ya da,

$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x} \quad x = 1,2,3,...$$

Bu binom dağılımının olasılık fonksiyonudur. Burada, n= örneklem büyüklüğü; p= ilgilenilen olayın olasılığıdır.

• Örneğin kutularda 2 sağlam ürün bulunma olasılığı,

$$P(X = 2) = \frac{4!}{2!(4-2)!}0,10^{2}.0,90^{4-2} = 0,0486$$

Poisson Dağılımı

 Belli bir zaman aralığında, belli bir alanda ya da hacimde nadir rastlanan olayların olasılık dağılımları poisson ile ifade edilir.

Örnekler:

- 1)Bir kentte bir hafta içinde meydana gelen ölümcül trafik kazalarının sayısı
- 2) Bir iş kolunda belli bir sözleşme döneminde gerçekleşen grev sayısı
- 3) Bir dakikada bir kasaya müşterilerin gelme sayısı
- 4) Bir bölgede yapılan taramada, kanser hastalığı yaşanmış ailelerin sayısı
- Bu dağılımda bir parametre vardır. Ortalama, aynı zamanda varyansdır.

• **Soru:** Bir bankaya bir saatte gelen müşterilerin ortalama sayısı 20 olsun. Burada raslantı değişkeni X bir poisson dağılımı göstermekte olsun. 15 dakikada gelecek müşteri sayısı ortalama ne olur?

- Çözüm: Burada 1 saatlik zaman diliminin [t=60×(1/4)=15] ¼'ü kullanılmıştır.
- t=1 saat iken λ =20
- t=1/4 saat iken $\lambda t=20\times 1/4=5$ olur.
- Daha değişik soruları cevaplayabilmek için X poisson raslantı değişkeninin olasılık fonksiyonunu ele alalım.

$$P(X = x) = \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

- x=t birim zaman içinde ilgilenile olay sayısı
- λt=t birim zaman içinde ilgilenilen olayın ortalama sayısı
- e=tabii logaritma tabanı=2,71828
- Genellikle t= 1 alınır. Bu durumda poisson olasılık fonksiyonu;

$$P(X = x) = \frac{(\lambda)^{x} e^{-\lambda}}{x!}$$

- Dağılımın ortalaması $E(X)=\mu_x=\lambda$;
- varyansı $\sigma_x^2 = \lambda$;
- standart sapması $\sigma_x = \sqrt{\lambda}$
- Örnek: Yılda 2000 defter tutan muhasebe şirketinde hatalı hesap içeren defterlerin ortalama hata sayısı λ=0.4 olan bir poisson dağılımı göstermektedir. X raslantı değişkeni hata sayısı olup olasılık fonksiyonu;

$$P(X = x) = \frac{(0.4)^{x} e^{-0.4}}{x!} \qquad x = 0.1, 2, 3...$$

 Bir yıl içinde tutulan defterlerde, hiç hata içermeyen, 1 hata içeren, 2 hata içeren, 3 hata içeren defterlerin bulunma olasılıklarını ve 2000 defterde kaç tane bulunacağını hesaplayınız.

P(Hiç hata içermeme) =
$$\frac{(0.4)^{x} e^{-0.4}}{0!}$$
 = 0,6703
=0,6703×2000=1340,6

P(1 hata içerme) =
$$\frac{(0,4)^x e^{-0,4}}{1!}$$
 = 0,2681

$$=0,2681\times2000=536,2$$

Sürekli Raslantı Değişkeni

- Raslantı değişkenlerini kesikli ve sürekli olarak iki yapıda inceliyoruz.
- Önceki derslerde kesikli raslantı değişkenleri ve dağılımları ele alındı.
- Bu bölümde sürekli raslantı değişkenleri ve onların olasılık yoğunluk fonksiyonları üzerinde durulacaktır.
- Tanım: X raslantı değişkeni, x_i değerlerini x'in a, b aralığında her bir değeri alma olasılığına sahip ise X sürekli raslantı değişkenidir. Örneğin boy uzunluğu, ağırlık, 100 üzerinden alınan notlar vb...
- X SRD ninin belli değerlerini alma olasılıklarını hesaplamak için kullanılan fonksiyona olasılık yoğunluk fonksiyonu denir.
- Kesikli raslantı değişkenlerinde olasılık fonksiyonunun gördüğü tüm işlevleri sürekli raslantı değişkenlerinde olasılık fonksiyonu üslenir.

Normal Dağılım

- Sürekli yoğunluk fonksiyonlarının en önemli ve en sık kullanılanıdır.
- X sürekli raslantı değişkeninin olasılık yoğunluk fonksiyonu normal dağılım gösteriyorsa, genellikle aşağıda belirtilen özelliklere sahiptir.
- Tek tepeli bir dağılımdır.
- Genellikle simetrik ya da simetriye yakındır.
- Ortalama, ortanca, tepe değeri birbirine eşit ya da çok çok yakındır.
- X raslantı değişkeni -∞ ile +∞ arasında değerler alabilir.
- Gözlemlerin,
- %68 i, $\mu_x \pm 1\sigma$
- %95 i, $\mu_x \pm 2\sigma$
- %99,7 si, $\mu_x \pm 3\sigma$
- %100 ü $\mu_x \pm 4\sigma$

arasındadır.

Dağılımın olasılık yoğunluk fonksiyonu;

$$f(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$$

- Burada,
- x= X raslantı değişkeninin herhangi bir değeri
- σ= Kitlenin standart sapması
- **e**=2.76183 değeridir.
- Eşitlik 1 ile verilen ifade bir olasılık yoğunluk fonksiyonu olduğu için integralinin değeri 1'e eşittir. Yani,

$$\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} dx = 1$$

 Dağılımı tanımlayabilmek için μ ve σ'yı bilmek gerekir. Eğrinin alanı, belli bölgelerde bulunma olasılıklarını verir. P(a≤X≤b) olasılığı,

$$\int_{a}^{b} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} dx$$

- İstatistikte sık kullanılan bu dağılım için, bu integralin sürekli alınması pratik ve kolay bir iş değildir. Bu iş için dağılımın standartlaştırılması işlemi uygulanır.
- **Tanım:** Bir dağılımın standartlaştırılması, alanı değişmemek şartı ile ortalamanın sıfıra kaydırılması, varyansın 1'e eşitlenmesidir. Tüm normal dağılımlar standart normal dağılıma dönüştürülebilir.

Standart Normal Dağılım

Standart normal dağılımda (SND) ortalama 0, varyans 1'dir.
 Ortalamaya göre tam simetrik bir dağılımdır. SND'ın olasılık yoğunluk fonksiyonu,

$$f(z) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^2}{2}} - \infty < z < \infty$$

• Bu dağılım, X raslantı değişkenlerinin belli bölgelerde bulunma olasılığını bulmak için kullanılır. Örneğin bir standart normal dağılımda z=0.00 ile z=1.45 arasında bulunma olasılığı,

P (0.00
$$\leq z \leq 1.45$$
) = $\int_{0}^{1.45} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} dz$

 integrali alınarak bulunur. Ancak uygulamada, bu alanlar hesaplanarak oluşturulmuş tablolar kullanılır.