FAHMM: Roche Data

2024-12-12

Summarise the model fit

This is a markdown for replicating new MS classification using ROche data

MS dimensions

```
load('interim_tables/FA_baseline_Relapse.Rdata')
             = result_40$B
#order of latent varibales (disability, brain, relapse, Gd)
lambda=1[,c(1,2,3,4)]
rownames(lambda)=c( "EDSS", "T25FWM", "HPT9M", "PASAT", "VOLT2", "NBV", "NUMGDT1", "RELAPSE")
lambda
##
                 [,1]
                            [,2]
                                        [,3]
                                                   [,4]
          -0.50691846   0.10691197   -0.04380997   0.34358684
## EDSS
## T25FWM -0.54753496 0.00000000 0.00000000 0.07237835
## HPT9M
          -0.48089626 -0.04392360 0.02453008 0.26242298
## PASAT
           -0.10179645 -0.39344957
## VOLT2
                                 0.01926232 0.61953188
## NBV
           0.18035721 -0.04265002 0.01006890 -0.64000120
## NUMGDT1 0.01985051 -0.61840968 0.07964227 0.07929540
## RELAPSE 0.00000000 -0.02878093 0.38249157 0.00000000
```

MS dimensions: thresholded

```
##
                                   Relapse brain damage
          disability Asymptomatic
## EDSS
          -0.5069185
                        0.0000000 0.0000000
                                              0.3435868
                        0.0000000 0.0000000
## T25FWM -0.5475350
                                              0.0000000
## HPT9M
          -0.4808963
                        0.0000000 0.0000000
                                              0.0000000
## PASAT
           0.0000000
                        0.0000000 0.0000000
                                             -0.3623923
## VOLT2
           0.0000000
                       -0.3934496 0.0000000
                                              0.6195319
                        0.0000000 0.0000000
## NBV
           0.0000000
                                             -0.6400012
## NUMGDT1 0.0000000 -0.6184097 0.0000000
                                              0.0000000
## RELAPSE 0.000000
                        0.0000000 0.3824916
                                              0.0000000
```

States Mean

```
= read.csv('interim_tables/follow_FAhmm_Relapse_ALLC.csv')
follow=follow%>%filter(! USUBJID %in% 'WA21093-208650-1932631')
follow$VOLT2 = follow$VOLT2^3
            = as.matrix(follow[,c("V32","V33","V34","V35")])
             = scale(yy,center = FALSE,scale = TRUE)
уу
follow <- follow %>%
  mutate(MONTHN = MONTH,
         MONTHN = ifelse(MONTHN == -1, 0, MONTHN)) %>%
  group_by(USUBJID) %>%
  arrange(MONTHN, .by_group = TRUE) %>%
  mutate(deltaM = -lag(MONTHN) + MONTHN) %>%
  ungroup() %>%
  mutate(deltaM = ifelse(is.na(deltaM), 0, deltaM))
      = follow$deltaM
Time
      = follow%>%group_by(USUBJID)%>%summarise(s=length(USUBJID))
seq=ss$s
load('interim tables/hmm s8 init clara2 euc.RData')
hmm_CTDC = hmm_CTDC_clara2_euc
1 = order(hmm_CTDC$mu[1,],decreasing = TRUE)
hmm_CTDC$mu = hmm_CTDC$mu[,1]
hmm_CTDC\$A = hmm_CTDC\$A[1,1]
hmm_CTDC$pi = hmm_CTDC$pi[1]
hmm_CTDC$sigma = hmm_CTDC$sigma[,,1]
Z = ctdthmm_MultSubj_viterbi(hmm_CTDC,yy,seq,Time)
follow$Z=Z
table(Z)
## Z
         2
               3
                   4
                        5
                               6
## 7166 6871 5592 1190 963 3410 5666 3241
follow$Z=Z
follow$MS=NA
follow$MS[Z\%in\%c(1,2,3)]=1
follow$MS[Z==4]=2
follow$MS[Z==5]=3
followMS[Z\%in\%c(6,7,8)]=4
write.csv(follow, 'interim_tables/follow_FAhmm_Relapse_ALLC_MetaS.csv')
kk= follow%>%dplyr::select(c( "EDSS","T25FWM","HPT9M","PASAT","VOLT2","NBV","NUMGDT1","RELAPSE"))
spl=split(kk,Z)
Emp_mu_S9 = sapply(spl,function(x){colMeans(x,na.rm = TRUE)})
Emp_mu_S9[6,]=Emp_mu_S9[6,]/1000
```

States mean original

```
round(Emp_mu_S9,2)
                     2
            2.59
                 3.03
                       3.32 3.02 3.85
                                         4.65
## EDSS
                                               6.02
                                                       6.55
## T25FWM
           5.72 6.62 7.07 10.19 12.57 12.31 17.98 113.40
## HPT9M
          20.73 23.17 25.22 26.14 28.97 31.11 31.43
## PASAT
          52.67 48.77 44.15 42.85 45.73 36.25 48.10
## VOLT2
            1.37 5.46 14.90 14.11 12.54 37.17
                                               7.06
                                                      16.71
## NBV
            1.54
                 1.49
                       1.45
                             1.50
                                   1.50
                                         1.40
                                               1.46
                                                       1.41
## NUMGDT1
           0.00
                 0.00
                       0.00
                             3.64
                                   1.59
                                         0.11
                                               0.00
                                                       0.43
## RELAPSE
           0.00
                 0.00 0.00
                             0.00
                                   1.00
                                         0.00 0.00
                                                       0.00
```

States mean composite

```
mu= hmm_CTDC$mu
row.names(mu)=c('disability','Asymptomatic','Relapse','brain damage')
##
                      [,1]
                                 [,2]
                                            [,3]
                                                       [,4]
                                                                   [,5]
## disability
                 0.4031489 0.3463907 0.3259606 0.2790610
                                                             0.03398707
## Asymptomatic 0.5211825 0.1560141 -0.3373005 -2.7013025 -0.37500438
## Relapse
                -0.1790812 -0.1872687 -0.1794779 0.2438864 5.74551639
## brain_damage -1.0119571 -0.1561804 0.5657804 -0.1398755 -0.06598466
##
                       [,6]
                                  [,7]
                                              [,8]
## disability
                 0.02172144 -0.4539751 -2.45173448
## Asymptomatic -0.86098357 0.6123441 0.04840896
## Relapse
                -0.21165852 -0.3545487 -0.15403517
## brain_damage 1.55302596 0.1924550 0.61013640
```

Transition probability

```
AD=hmm_CTDC$A
AD[AD<.005]=0
round(AD,4)
                 [,2]
                        [,3]
                               [,4]
                                       [,5]
                                              [,6]
##
          [,1]
                                                     [,7]
## [1.] 0.9560 0.0000 0.0000 0.0112 0.0234 0.0000 0.0060 0.0000
## [2,] 0.0000 0.9446 0.0000 0.0177 0.0210 0.0000 0.0105 0.0000
## [3,] 0.0000 0.0000 0.9343 0.0281 0.0203 0.0000 0.0096 0.0000
## [4,] 0.1639 0.2636 0.3065 0.0420 0.0150 0.1297 0.0542 0.0252
## [5,] 0.1870 0.1412 0.1129 0.0326 0.3631 0.0906 0.0484 0.0243
## [6,] 0.0000 0.0000 0.0000 0.0145 0.0246 0.9410 0.0000 0.0164
## [7,] 0.0000 0.0000 0.0000 0.0000 0.0060 0.0000 0.9433 0.0421
## [8,] 0.0000 0.0000 0.0000 0.0000 0.0066 0.0054 0.0432 0.9371
```

Baseline classification

```
pi=hmm_CTDC$pi
round(pi,2)
```

```
## [1] 0.21 0.16 0.10 0.34 0.04 0.06 0.08 0.02
```

Demographic Summary

```
follow$Z=Z
follow$MS=NA
follow$MS[Z%in%c(1,2,3)]=1
follow$MS[Z\%in\%c(6,7,8)]=4
follow$MS[Z==4]=4
follow$MS[Z==5]=5
ff2<-follow%>%dplyr::select(c("AGELG", "SEX", "MSTYPE", "DURFSLG", "RELPST1Y", "Z"))%>%tbl_summary(by=Z, mis
ff2
```

type = li statistic

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
- ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

	1, N =	2, N =	3, N =	4, N =	5 , N =	6, N =	7, N =	8, N =
Variable	$7,\!166$	6,871	$5,\!592$	1,190	963	3,410	5,666	3,241
Age								
Mean (SD)	41 (10)	43(10)	42(9)	36(9)	38(9)	45(10)	48 (8)	47(9)
Median (IQR)	42 (33,	43 (35,	44 (36,	36 (29,	38 (31,	46 (38,	49 (43,	49 (41,
	50)	51)	50)	43)	45)	52)	54)	54)
Gender								
F	$4,\!565$	3,732	3,085	694	645	2,040	2,936	1,490
	(64%)	(54%)	(55%)	(58%)	(67%)	(60%)	(52%)	(46%)
M	2,601	3,139	2,507	496	318	1,370	2,730	1,751
	(36%)	(46%)	(45%)	(42%)	(33%)	(40%)	(48%)	(54%)
MS Type	, ,	, ,	, ,	, ,	, ,	,	, ,	, ,
PPMS	2,629	3,175	2,852	291	135	2,194	5,227	3,096
	(37%)	(46%)	(51%)	(24%)	(14%)	(64%)	(92%)	(96%)
RMS	4,537	3,696	2,740	899	828	1,216	439	145
	(63%)	(54%)	(49%)	(76%)	(86%)	(36%)	(7.7%)	(4.5%)
Duration from	, ,	, ,	, ,	, ,	, ,	,	, ,	,
First Symptom								
Mean (SD)	6.9(4.8)	7.9(5.1)	9.3(5.5)	6.2(5.3)	7.3	10.4	10.8	12.1
, ,	` /	,	,	` /	(5.9)	(5.6)	(5.0)	(4.7)
Median (IQR)	6.1 (3.0,	7.2 (3.8,	8.7 (5.2,	4.9(2.3,	5.8(2.7,	9.6 (6.3,	10.1	11.7
(,	9.5)	10.9)	12.3)	8.7)	10.5)	13.5)	(7.3,	(8.7,
	,	,	,	,	,	,	(13.4)	(15.0)
Number of							,	,
Relapses during								
past year								
Mean (SD)	1 (1)	1(1)	1 (1)	1(1)	1 (1)	1(1)	0 (0)	0(0)
Median (IQR)	1(0,1)	1(0, 1)	$0\ (0,\ 1)$	1(0,1)	1(1, 2)	$0\ (0,\ 1)$	$0\ (0,\ 0)$	$0\ (0,\ 0)$
Median (IQR)	1 (0, 1)	1 (0, 1)	0 (0, 1)	1(0, 1)	1(1, 2)	0 (0, 1)	0 (0, 0)	0 (0, 0)

Features Summary

ff3<-follow%>%dplyr::select(c("MSTYPE","EDSS","T25FWM","HPT9M","PASAT","VOLT2","NBV","NUMGDT1","RELAPSE

^{##} To suppress this message, include `message = FALSE` in code chunk header.

	1, N =	2, N =	3, N =	4, N =	5 , N =	6, N =	7, N =	8, N =
Variable	7,166	6,871	$5,\!592$	1,190	963	3,410	5,666	3,241
MSTYPE								
PPMS	2,629	$3,\!175$	2,852	291	135	$2,\!194$	$5,\!227$	3,096
	(37%)	(46%)	(51%)	(24%)	(14%)	(64%)	(92%)	(96%)
RMS	$4,\!537$	3,696	2,740	899	828	1,216	439	145
	(63%)	(54%)	(49%)	(76%)	(86%)	(36%)	(7.7%)	(4.5%)
EDSS								
Mean	2.59	3.03	3.32	3.02	3.85	4.65	6.02	6.55
(SD)	(1.27)	(1.23)	(1.08)	(1.48)	(1.54)	(1.46)	(0.43)	(1.21)
Median	2.50	3.00	3.50	3.00	4.00	4.50	6.00	6.50
(IQR)	(1.50,	(2.00,	(2.50,	(2.00,	(2.50,	(3.50,	(6.00,	(6.50,
	3.50)	4.00)	4.00)	4.00)	5.00)	6.00)	6.50)	7.00)
(10%,	(1.00,	(1.50,	(2.00,	(1.50,	(2.00,	(2.50,	(5.50,	(4.50,
90%)	4.00)	4.50)	4.50)	5.50)	6.00)	6.50)	6.50)	8.00)
Walking								
Time				, ,			, ,	
Mean	6(2)	7(3)	7(4)	10 (13)	13 (27)	12 (11)	18 (11)	113 (70)
(SD)		- ()	- ()	- ()	- ()	- (
Median	5(4, 6)	6(5,7)	6 (5, 8)	6(5, 9)	6(5, 9)	9(6, 14)	15 (10,	136 (44,
(IQR)	(4. 0)	(4.40)	(4 40)	(4.40)	(4, 40)	(5 5 1)	22)	180)
(10%,	(4, 8)	(4, 10)	(4, 10)	(4, 19)	(4, 16)	(5, 24)	(8, 33)	(15, 180)
90%)								
Hand								
Coordina-								
tion	01 (4)	09 (5)	or (c)	00 (10)	20 (20)	21 (0)	91 (11)	00 (00)
Mean	21 (4)	23 (5)	25 (6)	26 (10)	29 (30)	31 (9)	31 (11)	89 (80)
(SD)	00 (10	20 (20	04 (01	92 (90	02 (20	20 (24	20 (22	FO (20
Median	20 (18,	22 (20,	24 (21,	23 (20,	23 (20,	30 (24,	29 (23,	59 (39,
(IQR)	23)	(18, 20)	(10, 22)	(19, 29)	29)	36)	(20, 48)	100)
(10%, 00%)	(16, 26)	(18, 30)	(19, 33)	(18, 38)	(18, 36)	(21, 43)	(20, 48)	(27, 253)
90%) PASAT								
Mean	53 (9)	49 (11)	44 (13)	49 (19)	46 (19)	36 (14)	48 (12)	49 (14)
(SD)	55 (9)	49 (11)	44 (13)	43 (13)	46 (13)	30 (14)	46 (12)	42 (14)
Median	56 (50,	53 (43,	48 (34,	46 (34,	50 (38,	36 (26,	52 (41,	45 (30,
(IQR)	59)	58)	55)	54)	50 (30, 57)	48)	58)	56)
(10%,				(25, 58)		,		
90%)	(40, 00)	(31, 00)	(20, 00)	(20, 00)	(20, 00)	(10, 00)	(23, 00)	(22, 93)
T2 lesion								
volume								
Mean	1 (1)	5 (2)	15 (5)	14 (15)	13 (15)	37 (14)	7 (7)	17 (18)
(SD)	1 (1)	0 (2)	10 (0)	11 (10)	10 (10)	0. (14)	• (•)	11 (10)
Median	1 (1, 2)	5 (4, 7)	14 (11,	10 (4, 18)	7 (2, 17)	34 (27,	5 (2, 10)	10 (3, 26)
(IQR)	- (-, -)	· (±, •)	18)	10 (1, 10)	. (=, 1.)	45)	· (=, ±0)	10 (0, 20)
(10010)			10)			10)		

^{##} Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html

-	1, N =	2 , N =	3 , N =	4, N =	5 , N =	6, N =	7 , N =	8, N =
Variable	7,166	6,871	5,592	1,190	963	3,410	5,666	3,241
(10%, 90%)	(0, 3)	(3, 8)	(10, 21)	(2, 33)	(1, 32)	(22, 56)	(1, 17)	(1, 45)
Normalised brain volume								
Mean	1,542	1,490	1,448	1,498	1,499	$1,\!395$	1,461	1,411
(SD)	(70)	(76)	(80)	(90)	(93)	(82)	(73)	(74)
Median	1,543	1,491	$1,\!446$	1,497	1,503	1,389	1,460	1,406
(IQR)	(1,492,	(1,437,	(1,389,	(1,437,	(1,439,	(1,341,	(1,415,	(1,372,
	1,589)	1,543)	1,505)	1,561)	1,568)	1,459)	1,506)	1,449)
(10%,	(1,450,	(1,390,	(1,340,	(1,385,	(1,371,	(1,290,	(1,370,	(1,325,
90%)	1,631)	1,592)	1,554)	1,611)	1,610)	1,497)	1,553)	1,513)
Number of T1 Gd lesions								
Mean (SD)	0 (0)	0 (0)	0 (0)	4 (6)	2(5)	0 (0)	0 (0)	0 (4)
Median (IQR)	$0\ (0,\ 0)$	$0\ (0,\ 0)$	$0\ (0,\ 0)$	2(1, 4)	0 (0, 1)	$0\ (0,\ 0)$	$0\ (0,\ 0)$	$0\ (0,\ 0)$
(10%, 90%)	(0, 0)	(0, 0)	(0, 0)	(1, 9)	(0, 4)	(0, 0)	(0, 0)	(0, 0)
RELAPSE	0 (0%)	0 (0%)	0 (0%)	0 (0%)	$963 \ (100\%)$	0 (0%)	0 (0%)	0 (0%)

Demographic Summary Meta state

follow\$Z=Z

```
follow$MS=NA
follow$MS[Z*in%c(1,2,3)]=1
follow$MS[Z==4]=2
follow$MS[Z==5]=3
follow$MS[Z*in%c(6,7,8)]=4

ff2<-follow*%dplyr::select(c("AGELG","SEX","MSTYPE","DURFSLG","RELPST1Y","MS"))%>%tbl_summary(by=MS, m label = 1 type = li statistic
```

Table printed with `knitr::kable()`, not $\{gt\}$. Learn why at

https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html

To suppress this message, include `message = FALSE` in code chunk header.

Variable	1, N = 19,629	2, N = 1,190	3, N = 963	4 , N = 12,317
Age				
Mean (SD)	42 (10)	36 (9)	38 (9)	47(9)
Median (IQR)	43 (35, 50)	36 (29, 43)	38 (31, 45)	48 (41, 54)
Gender		,		
F	11,382 (58%)	694 (58%)	645~(67%)	6,466 (52%)
M	8,247 (42%)	496~(42%)	318 (33%)	5,851 (48%)

Variable	1, N = 19,629	$2, N = 1{,}190$	3, N = 963	4, N = 12,317
MS Type				
PPMS	8,656 (44%)	291 (24%)	135 (14%)	10,517 (85%)
RMS	10,973 (56%)	899 (76%)	828 (86%)	1,800 (15%)
Duration from First Symptom		, ,	, ,	
Mean (SD)	7.9(5.2)	6.2(5.3)	7.3(5.9)	11.0(5.1)
Median (IQR)	7.2(3.7, 10.9)	4.9(2.3, 8.7)	5.8 (2.7, 10.5)	10.4 (7.4, 14.0)
Number of Relapses during past				
year				
Mean (SD)	1(1)	1 (1)	1 (1)	0 (1)
Median (IQR)	1 (0, 1)	1(0, 1)	1(1, 2)	0 (0, 0)

Features Summary Meta State

ff3<-follow%>%dplyr::select(c("MSTYPE","EDSS","T25FWM","HPT9M","PASAT","VOLT2","NBV","NUMGDT1","RELAPSE

ff3

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
- ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

Variable	1, N = 19,629	$2, N = 1{,}190$	3, N = 963	4, N = 12,317
MSTYPE				
PPMS	8,656 (44%)	291 (24%)	135 (14%)	10,517 (85%)
RMS	10,973 (56%)	899 (76%)	828 (86%)	1,800 (15%)
EDSS		, ,	, ,	
Mean (SD)	2.95(1.24)	3.02(1.48)	3.85(1.54)	5.78(1.26)
Median (IQR)	3.00(2.00, 4.00)	3.00(2.00, 4.00)	$4.00\ (2.50,\ 5.00)$	$6.00 \ (5.50, 6.50)$
(10%, 90%)	(1.50, 4.50)	(1.50, 5.50)	(2.00, 6.00)	(4.00, 7.00)
Walking Time				
Mean (SD)	6(3)	10 (13)	13(27)	41 (56)
Median (IQR)	6(5,7)	6(5, 9)	6(5, 9)	16(9, 36)
(10%, 90%)	(4, 9)	(4, 19)	(4, 16)	(7, 180)
Hand Coordination				
Mean (SD)	23 (5)	26 (10)	29(30)	46 (49)
Median (IQR)	22 (19, 26)	23(20, 29)	23 (20, 29)	32(25,45)
(10%, 90%)	(17, 30)	(18, 38)	(18, 36)	(21, 73)
PASAT				
Mean (SD)	49(12)	43 (13)	46 (13)	43 (14)
Median (IQR)	53 (43, 58)	46 (34, 54)	50 (38, 57)	47(32, 56)
(10%, 90%)	(30, 60)	(25, 58)	(26, 59)	(23, 59)
T2 lesion volume				
Mean (SD)	6 (6)	14 (15)	13 (15)	18 (18)
Median (IQR)	4(2, 10)	10(4, 18)	7(2, 17)	12(3,30)
(10%, 90%)	(1, 16)	(2, 33)	(1, 32)	(1, 45)
Normalised brain				
volume				
Mean (SD)	1,502 (84)	1,498 (90)	1,499 (93)	1,421 (84)

Variable	1, N = 19,629	2 , N = 1,190	3, N = 963	4, N = 12,317
Median (IQR)	1,505 (1,443, 1,562)	1,497 (1,437, 1,561)	1,503 (1,439, 1,568)	1,424 (1,362, 1,476)
(10%, 90%)	(1,390, 1,610)	(1,385, 1,611)	(1,371, 1,610)	(1,317, 1,519)
Number of T1 Gd	,	,	,	
lesions				
Mean (SD)	0 (0)	4(6)	2(5)	0 (2)
Median (IQR)	0(0, 0)	2(1,4)	0(0,1)	0(0,0)
(10%, 90%)	(0, 0)	(1, 9)	(0, 4)	(0, 0)
RELAPSE	0 (0%)	0 (0%)	963 (100%)	0 (0%)

States density plots: baseline original features

```
p1<-ggplot(follow, aes(y=as.factor(Z), x=EDSS, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=1) +
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("EDSS (total score)") +
  ylab("States")
p2<-ggplot(follow, aes(y=as.factor(Z), x=T25FWM, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=4) +xlim(0,50)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("25-foot times walking test (s)") +
  ylab("")
p3<-ggplot(follow, aes(y=as.factor(Z), x=HPT9M, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=4) +xlim(0,100)+
  scale fill viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("Hand Coordination (s)") +
  ylab("")
```

```
p4<-ggplot(follow, aes(y=as.factor(Z), x=PASAT, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=3) +xlim(0,60)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("PASAT (correct answers out of 60)") +
  ylab("")
p5<-ggplot(follow, aes(y=as.factor(Z), x=NBV/1000, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=.05) +
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("Normalised Brain Volume (L)") +
  ylab("States")
p6<-ggplot(follow, aes(y=as.factor(Z), x=VOLT2, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=.3) +xlim(NA,5)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("T2 Lesion Volume") +
  ylab("")
p7<-ggplot(follow, aes(y=as.factor(Z), x=NUMGDT1, group=as.factor(Z))) +
  geom_density_ridges(aes(fill = as.factor(Z)), stat = "binline", binwidth = .5, scale = 0.95) +xlim(-1
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("Number of T1 Gd lesions") +
  ylab("")
p8<-ggplot(follow, aes(y=as.factor(Z), x=RELAPSE, group=as.factor(Z))) +
```

```
geom_density_ridges(aes(fill = as.factor(Z)), stat = "binline", binwidth = .5, scale = 0.95) +xlim(-1
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
   legend.position="none",
   panel.spacing = unit(0.1, "lines"),
   strip.text.x = element text(size = 8)
 xlab("Relapse Occurence") +
 ylab("")
(p1|p2|p3|p4)/(p5|p6|p7|p8)
## Warning: Removed 5163 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 3492 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 3346 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 28111 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 29082 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 23176 rows containing non-finite outside the scale range
## (`stat_binline()`).
```


Demographic Summary: Baseline

- ## Table printed with `knitr::kable()`, not $\{gt\}$. Learn why at
- ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

	1, N =	2, N =	3, N =	4, N =	5 , N =	6, N =	7, N =	8, N =
Variable	478	354	227	739	91	133	179	41
Age								
Mean (SD)	39(9)	42(9)	42 (8)	36(9)	37(9)	44 (8)	46(7)	41(9)
Median (IQR)	39 (32,	42 (36,	43 (36,	36 (29,	38 (31,	46 (39,	47 (41,	42 (36,
, , ,	45)	50)	49)	43)	45)	51)	51)	49)
Gender	ŕ	,	•	ŕ	,	ŕ	ŕ	,
F	319	204	134	435	66	76	102	21
	(67%)	(58%)	(59%)	(59%)	(73%)	(57%)	(57%)	(51%)
M	159	150	93	304	25	` 57 [^]	` 77 [^]	20
	(33%)	(42%)	(41%)	(41%)	(27%)	(43%)	(43%)	(49%)
MS Type	,	, ,	, ,	, ,	, ,		, ,	, ,
PPMS	100	108	82	176	8	65	141	30
	(21%)	(31%)	(36%)	(24%)	(8.8%)	(49%)	(79%)	(73%)

	1, N =	2, N =	3, N =	4, N =	5 , N =	6, N =	7, N =	8, N =
Variable	478	354	227	739	91	133	179	41
RMS	378 (79%)	246 (69%)	145 (64%)	563 (76%)	83 (91%)	68 (51%)	38 (21%)	11 (27%)
Duration from	(1070)	(0070)	(01/0)	(1070)	(0170)	(0170)	(2170)	(2170)
First Symptom								
Mean (SD)	5.1 (4.8)	6.8 (5.7)	8.4 (6.4)	5.9 (5.2)	6.1 (6.5)	8.9 (5.8)	8.4 (5.0)	9.2 (4.5)
Median (IQR)	3.8 (1.6, 7.2)	5.8 (2.6, 9.5)	6.9 (3.7, 11.0)	4.5 (1.8, 8.5)	3.9 (1.5, 8.3)	7.4 (4.4, 12.8)	7.0 (5.2, 10.9)	8.6 (5.7, 12.4)
Number of	,	,	,	,	,	,	,	,
Relapses during								
past year								
Mean (SD)	1 (1)	1 (1)	1 (1)	1(1)	1(1)	1(1)	0(1)	0(1)
Median (IQR)	1(1, 1)	1(0, 1)	1(0, 1)	1(0, 2)	1(1, 2)	0(0,1)	$0\ (0,\ 0)$	0(0,1)

Features Summary: Baseline

ff3<-baseline%>%dplyr::select(c("MSTYPE","EDSS","T25FWM","HPT9M","PASAT","VOLT2","NBV","NUMGDT1","RELAP

ff3

- ## Table printed with `knitr::kable()`, not $\{gt\}$. Learn why at
- ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

	1, N =	2 , N =	3, N =	4, N =		6 , N =	7, N =	
Variable	478	354	227	739	5, N = 91	133	179	8, N = 41
MSTYPE								
PPMS	100 (21%)	108 (31%)	82 (36%)	176 (24%)	8 (8.8%)	65 (49%)	141 (79%)	30 (73%)
RMS	378 (79%)	246 (69%)	$145 \\ (64\%)$	563 (76%)	83 (91%)	68 (51%)	38 (21%)	11 (27%)
EDSS	,	,	,	,				
Mean	2.56	3.07	3.36	3.13	2.86	4.45	5.78	5.87
(SD)	(1.23)	(1.14)	(1.06)	(1.51)	(1.34)	(1.30)	(0.50)	(0.97)
Median	2.50	3.00	3.50	3.00	2.50	4.50	6.00	6.50
(IQR)	(1.50,	(2.00,	(2.75,	(2.00,	(2.00,	(3.50,	(5.50,	(5.50,
	3.50)	4.00)	4.00)	4.00)	4.00)	5.50)	6.00)	6.50)
(10%,	(1.00,	(1.50,	(2.00,	(1.50,	(1.50,	(3.00,	(5.00,	(4.00,
90%) Walking Time	4.00)	4.50)	4.50)	5.50)	4.50)	6.00)	6.50)	6.50)
Mean (SD)	6 (2)	6 (3)	7 (4)	9 (10)	7 (8)	11 (9)	17 (10)	73 (52)
Median (IQR)	5 (4, 6)	6 (5, 7)	6(5, 8)	6(5, 9)	5 (4, 7)	8 (6, 12)	14 (10, 23)	58 (30, 115)
(10%, 90%)	(4, 8)	(4, 10)	(4, 11)	(4, 16)	(4, 9)	(5, 19)	(8, 32)	(16, 145)

	1, N =	2 , N =	3 , N =	4, N =		6, N =	7 , N =	
Variable	478	354	227	739	5, N = 91	133	179	8, N = 41
Hand								
Coordina-								
tion								
Mean	21 (4)	24 (5)	26 (6)	26 (9)	28 (30)	31 (9)	32 (10)	82 (63)
(SD)	,	,	,					
Median	21 (18,	23 (20,	25 (22,	24 (20,	23 (20,	29 (25,	29 (24,	66 (45,
(IQR)	23)	26)	29)	29)	28)	35)	37)	89)
(10%, 90%)	(17, 26)	(18, 30)	(19, 33)	(18, 37)	(18, 32)	(21, 40)	(22, 45)	(32, 138)
PASAT								
Mean (SD)	47 (11)	43 (12)	37 (14)	41 (13)	42 (13)	32 (14)	41 (13)	33 (15)
Median	50 (41,	45 (35,	38 (26,	43 (32,	47 (30,	29 (22,	42 (31,	30 (22,
(IQR)	55)	53)	49)	51)	52)	41)	52)	44)
(10%, 90%)	(31, 58)	(26, 57)	(19, 55)	(23, 57)	(24, 56)	(16, 54)	(24, 56)	(16, 57)
T2 lesion								
volume								
Mean (SD)	1 (1)	5 (2)	15 (5)	14 (15)	12 (14)	37 (14)	6 (6)	21 (20)
Median (IQR)	1 (1, 2)	5(4,7)	14 (11, 17)	10 (4, 19)	6(2, 17)	34 (27, 45)	5(2, 9)	15 (6, 30)
(10%, 90%)	(0, 3)	(3, 8)	(9, 21)	(2, 35)	(1, 29)	(21, 55)	(1, 15)	(1, 45)
Normalised								
brain								
volume								
Mean	1,541	1,481	1,450	1,496	1,505	1,411	1,467	1,396
(SD)	(71)	(75)	(81)	(90)	(83)	(87)	(75)	(86)
Median	1,541	1,480	1,447	1,494	1,507	1,415	1,462	1,390
(IQR)	(1,491,	(1,430,	(1,390,	(1,437,	(1,450,	(1,347,	(1,418,	(1,349,
,	1,592)	1,531)	1,512)	1,562)	1,566)	1,477)	1,512)	1,447)
(10%,	(1,447,	(1,388,	(1,350,	(1,384,	(1,400,	(1,295,	(1,374,	(1,287,
90%)	1,634)	1,583)	1,545)	1,610)	1,598)	1,508)	1,573)	1,513)
Number								
of T1 Gd								
lesions								
Mean (SD)	0 (0)	0 (0)	0 (0)	4 (7)	2(5)	0 (0)	0 (0)	4 (13)
Median (IQR)	$0\ (0,\ 0)$	$0\ (0,\ 0)$	$0\ (0,\ 0)$	2(1, 5)	$0\ (0,\ 2)$	$0\ (0,\ 0)$	$0\ (0,\ 0)$	$0\ (0,\ 2)$
(10%,	(0, 0)	(0, 0)	(0, 0)	(1, 10)	(0, 6)	(0, 1)	(0, 0)	(0, 6)
90%) RELAPSE	0 (0%)	0 (0%)	0 (0%)	0 (0%)	91 (100%)	0 (0%)	0 (0%)	0 (0%)

Demographic Summary: Baseline Meta states

```
baseline =follow%>%filter(DAY==1)
ff2<-baseline%>%dplyr::select(c("AGE","SEX","MSTYPE","DURFS","RELPST1Y","MS"))%>%tbl_summary(by=MS, mis
```

ff2

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
 ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
 ## To suppress this message, include `message = FALSE` in code chunk header.
- Variable 1, N = 1,0592, N = 7393, N = 914, N = 353Age Mean (SD) 40 (9) 37(9)36 (9) 45 (8) Median (IQR) 41 (34, 48) 36 (29, 43) 38 (31, 45) 46 (40, 51) Gender F 657 (62%) 435 (59%) 66 (73%) 199 (56%) 402 (38%) 304 (41%) 25 (27%) 154 (44%) Μ MS Type PPMS 290 (27%) 176 (24%) 8 (8.8%) 236 (67%) RMS 769 (73%) 563 (76%) 83 (91%) 117 (33%) Duration from First Symptom Mean (SD) 6.4(5.6)5.9(5.2)6.1(6.5)8.7(5.2)Median (IQR) 5.0 (2.1, 8.9) 4.5 (1.8, 8.5) 3.9 (1.5, 8.3) 7.7 (4.9, 11.6) Number of Relapses during past year Mean (SD) 1(1)0(1)1(1)1(1)Median (IQR) 1(0,1)1(0, 2)1(1, 2)0(0,1)

Features Summary: Baseline Meta states

ff3<-baseline%>%dplyr::select(c("MSTYPE","EDSS","T25FWM","HPT9M","PASAT","VOLT2","NBV","NUMGDT1","RELAP

ff3

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
 ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

Variable	1, N = 1,059	2, N = 739	3, N = 91	4, N = 353
MSTYPE				
PPMS	290 (27%)	176 (24%)	8 (8.8%)	236~(67%)
RMS	769 (73%)	563 (76%)	83 (91%)	117 (33%)
EDSS		,	, ,	, ,
Mean (SD)	2.90(1.21)	3.13(1.51)	2.86(1.34)	5.29(1.14)
Median (IQR)	$3.00\ (2.00,\ 4.00)$	$3.00 \ (2.00, 4.00)$	$2.50\ (2.00,\ 4.00)$	$5.50 \ (4.50, \ 6.00)$
(10%, 90%)	(1.50, 4.50)	(1.50, 5.50)	(1.50, 4.50)	(3.50, 6.50)
Walking Time	,			
Mean (SD)	6 (3)	9 (10)	7 (8)	21(27)
Median (IQR)	6(5,7)	6(5,9)	5(4,7)	12(8, 22)
(10%, 90%)	(4, 9)	(4, 16)	(4, 9)	(6, 42)
Hand Coordination		,	, , ,	, , ,

Variable	1, N = 1,059	2 , N = 739	3, N = 91	4, N = 353
Mean (SD)	23 (5)	26 (9)	28 (30)	37 (28)
Median (IQR)	22(20,25)	24 (20, 29)	$23\ (20,\ 28)$	$31\ (25,\ 39)$
(10%, 90%)	(18, 29)	(18, 37)	(18, 32)	(22, 54)
PASAT				
Mean (SD)	44 (12)	41 (13)	42 (13)	36 (14)
Median (IQR)	47 (36, 54)	43 (32, 51)	47 (30, 52)	36(26,49)
(10%, 90%)	(25, 58)	(23, 57)	(24, 56)	(19, 55)
T2 lesion volume				
Mean (SD)	6 (6)	14 (15)	12(14)	20 (19)
Median (IQR)	3(1, 8)	10(4, 19)	6(2, 17)	14(4, 32)
(10%, 90%)	(1, 14)	(2, 35)	(1, 29)	(1, 45)
Normalised brain				
volume				
Mean (SD)	1,501 (84)	1,496 (90)	1,505 (83)	1,438 (86)
Median (IQR)	1,504 (1,441,	1,494 (1,437,	1,507 (1,450,	1,442 (1,381,
	1,560)	1,562)	1,566)	1,493)
(10%, 90%)	(1,391, 1,614)	(1,384, 1,610)	(1,400, 1,598)	(1,326, 1,535)
Number of T1 Gd				
lesions				
Mean (SD)	0 (0)	4 (7)	2(5)	1 (4)
Median (IQR)	0 (0, 0)	2(1,5)	0 (0, 2)	$0\ (0,\ 0)$
(10%, 90%)	(0, 0)	(1, 10)	(0, 6)	(0, 1)
RELAPSE	0 (0%)	0 (0%)	91 (100%)	0 (0%)

Including Plots

States density plots: baseline original features

```
p1<-ggplot(baseline, aes(y=as.factor(Z), x=EDSS, fill=as.factor(Z))) +</pre>
  geom_density_ridges(alpha=0.6, bandwidth=1) +
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("EDSS (total score)") +
  ylab("States")
p2<-ggplot(baseline, aes(y=as.factor(Z), x=T25FWM, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=4) +xlim(0,50)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("25-foot times walking test (s)") +
```

```
ylab("")
p3<-ggplot(baseline, aes(y=as.factor(Z), x=HPT9M, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=4) +xlim(0,100)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("Hand Coordination (s)") +
  vlab("")
p4<-ggplot(baseline, aes(y=as.factor(Z), x=PASAT, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=4) +xlim(0,60)+
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("PASAT (correct answers out of 60)") +
  ylab("")
p5<-ggplot(baseline, aes(y=as.factor(Z), x=NBV/1000, fill=as.factor(Z))) +
  geom_density_ridges(alpha=0.6, bandwidth=.05) +
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("Normalised Brain Volume (L)") +
  ylab("States")
p6<-ggplot(baseline, aes(y=as.factor(Z), x=VOLT2, fill=as.factor(Z))) +
  geom density ridges(alpha=0.6, bandwidth=.3) +xlim(NA,5)+
  scale fill viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  ) +
  xlab("T2 Lesion Volume") +
  ylab("")
```

```
p7<-ggplot(baseline, aes(y=as.factor(Z), x=NUMGDT1, group=as.factor(Z))) +
  geom_density_ridges(aes(fill = as.factor(Z)), stat = "binline", binwidth = .5, scale = 0.95) +xlim(-1
  scale fill viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme_bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("Number of T1 Gd lesions") +
  ylab("")
p8<-ggplot(baseline, aes(y=as.factor(Z), x=RELAPSE, group=as.factor(Z))) +
  geom_density_ridges(aes(fill = as.factor(Z)), stat = "binline", binwidth = .5, scale = 0.95) +xlim(-1
  scale_fill_viridis(discrete=TRUE) +
  scale_color_viridis(discrete=TRUE) +
  theme bw() +
  theme(
    legend.position="none",
    panel.spacing = unit(0.1, "lines"),
    strip.text.x = element_text(size = 8)
  xlab("Relapse Occurence") +
  ylab("")
(p1|p2|p3|p4)/(p5|p6|p7|p8)
## Warning: Removed 43 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 10 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 51 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 1230 rows containing non-finite outside the scale range
## (`stat_density_ridges()`).
## Warning: Removed 82 rows containing non-finite outside the scale range
## (`stat_binline()`).
```

