Ans no I

$$\delta = 1.1 \times 10^{-11}$$
 0.25
 0.27

$$= \frac{\log |b_0 - a_0| - \log (8)}{\log (2)} - 1$$

$$= \frac{\log |22| - \log (1 \cdot |x|^{-11})}{\log (2)}$$

$$= 40.86 - 1$$
 $= 39.86$

Ang 40

$$f(n) = n^{4} + 2n^{2} - n - 3$$

$$f(n) = n^{4} + 2n^{2} - n - 3$$

$$f(n) = n^{4} + 2n^{2} - n - 3$$

$$f(n) = n^{4} + 2n^{2} - n - 3 = 0$$

$$f(n) = \frac{n + 3 - n^{4}}{2}$$

$$f(n) = \frac{n + 3}{2}$$

$$f(n) = \frac{n$$

g2 (x)

$$\Rightarrow n^{4} + 2n^{2} - n - 3 + 2n^{2} + 3 = 2n^{2} + 3$$

$$\Rightarrow n^{4} + 4n^{2} - n = 2n^{2} + 3$$

$$\Rightarrow \frac{1}{4\pi^4 + 4\pi^4 - \pi} = 3\pi^4 + 2\pi^4 + 3$$

$$\Rightarrow \pi (4\pi^{3} + 4\pi - 1) = 3\pi^{4} + 2\pi^{2} + 3$$

$$\Rightarrow \pi (4\pi^{3} + 4\pi - 1) = 3\pi^{4} + 2\pi^{2} + 3$$

$$\Rightarrow x = \frac{3n^4 + 2n^7 + 3}{4n^3 + 4n - 1}$$

$$\frac{3n^4+2n^43}{4n^3+4n-1}$$

[showed]

For
$$g_1(x) = \frac{b}{2}$$
 $x_0 = 1$
 $y_0(x) = \frac{b}{2}$

Thereform $y_0(x) = \frac{b}{2}$
 $y_0(x) = \frac{b}{2}$

Here, we saw after 3 nd Heration error increased and after your error was 0.1962139 so, it is $g_1(n)$ divergent very capidly for $g_2(n) = \left(\frac{n+3}{n+2}\right)^2$

No = 1

Iteration	·// ·	1.15470	S (Error) 0.15470
2	1.15470	1.11643	6.0331455
3	1.11643	1.12605	0.0086211
	1.12605	1.12364	0.0021932
4			
			1 agging as

We sam the arrion was decreasing as we sam the arrion goes on. After 4th iteration the 1 iteration goes on. After 4th iteration the arron was 0.0021432.

92(n) convergence to a noot 1.124

No 2 |

		1	
Iteration	X	g(n)	S (Baron)
1	1	1.4286	0.142857
	1 2 4 2 0 7	1 10 440	-110786
2	1.44286	1.12448	0.0160785
0	1.12448	1.12412	0.0003188
3			
4	1.12412	1.12412	0.000001

After 4th éteration the error 20

93(n) converges to a noot 1.124

ge g₃(n) gives the best approximation. g3(n) gron convergence to convergence-= $g_2(n) = 0.25$ 0,28 < 1 which

For $9_3(n) = \frac{3n^4 + 2n^2 + 3}{4n^3 + 4n - 1}$ $9_3(n) = \frac{3n^4 + 2n^2 + 3}{4n^3 + 4n - 1}$ $9_3(n) = \frac{3n^4 + 2n^2 + 3}{4n^3 + 4n - 1}$ $9_3(n) = \frac{3n^4 + 2n^2 + 3}{4n^3 + 4n - 1}$ If $\Omega = 0$, the convergence is very fast, and this is called the supersince convergence. So, Pon 93(21) Exist = 0. Ming menetone 93(21) gives the bost opproximation. It convergence to the point