Pseudorandomness Program

Release Spring 2017

Simons Institute

CONTENTS

1 Additive Combinatorics					
2	Cryptography	3			
3 Expanders and Extractors 3.1 Open Problems presented at the Simons Workshop on Expanders and Extractors, January 30-Feb. 3,					
Bi	ibliography	5 7			

_		•	_		
C	н	Λ	P٦	-	ĸ

ONE

ADDITIVE COMBINATORICS

Problem 1 ((submitted by Pseudonym)). Given a graph G.

See [vadhan2012pseudorandomness].

CHAPTER

TWO

CRYPTOGRAPHY

Problem 2 ((submitted by Pseudonym)). Given a graph G.

See [vadhan2012pseudorandomness].

EXPANDERS AND EXTRACTORS

3.1 Open Problems presented at the Simons Workshop on Expanders and Extractors, January 30-Feb. 3, 2017

Compiled by Noga Alon.

Partial Steiner systems of large girth, Nati Linial

Let us first recall that the *girth* of a graph G is the least integer g such that there is a set of g vertices in G that spans at least g edges. We seek an analogous notion for 3-uniform hypergraphs. In fact we only deal with *linear* hypergraphs H where every two hyperedges share at most one vertex. As defined by Erdős, the girth of H is the smallest integer $g \geq 4$ such that there is a set of g vertices in H that spans at least g-2 hyperedges. He conjectured that there exist Steiner Triple Systems with arbitrarily high girth, but despite considerable attempts over the years, the state of our knowledge concerning this problem is quite bad. I therefore formulate a variant that may be more accessible:

Question: Does there exist c > 0 and n-vertex 3-uniform hypergraphs with at least cn^2 hyperedges and arbitrarily high girth?

Cliques in near Ramanujan Graphs, Noga Alon

An (n, d, λ) -graph is a d-regular graph on n vertices so that all eigenvalues but the top one are in absolute value at most λ . Let G be an $(n, d, 100\sqrt{d})$ -graph. It is known that:

- 1. There is a constant c > 0 so that if $d \ge cn^{2/3}$ then G contains a triangle.
- 2. The statement in (i) is tight up to the constant c.
- 3. There is a constant c > 0 so that if $d \ge cn^{4/5}$ then G contains a copy of K_4 .

Open: Is (3) tight up to the value of c? That is, is there an $(n, d, 100\sqrt{d})$ -graph containing no K_4 , where $d = \Omega(n^{4/5})$? It is not even known whether or not there is such a graph with $n^{2/3} = o(d)$.

On the extractable entropy from zero-fixing sources, Gil Cohen

Let $n \geq k \geq 0$ be integers. An n-bit random variable X is called a k-zero-fixing source if there exists a subset of indices $R \subseteq [n]$ such that the marginal of X when projected to R is uniformly distributed, and the remaining bits of X are fixed to zero. The parameter k is called the entropy of X. Let m = m(n, k) be the largest integer for which there exists a function $\operatorname{Ext}_k : \{0,1\}^n \to \{0,1\}^m$ with the following property: for any k-zero-fixing source X, $\operatorname{Ext}_k(X)$ is within statistical distance 1/5 from uniform (here 1/5 is an arbitrary choice of a small constant.) We stress that Ext_k does not get the description of the source X (namely, the set R) but rather a single sample from X. Such a function Ext_k is called an extractor for k-zero-fixing sources. We would like to have a better understanding of the function m(n,k) that, informally speaking, captures the amount of extractable entropy from zero-fixing sources. Clearly, $m(n,k) \leq k$. By a straightforward counting argument, for any $k > \log_2 \log n + \log_2 \log \log n + \Omega(1)$, m(n,k) = k - O(1). That is, when the entropy k is high enough, one can extract essentially all the entropy from the source. What about smaller entropies? For any k, $m(n,k) \geq 0.5 \log_2 k - O(1)$ as can be seen by considering the function that takes the Hamming weight of the input K modulo K [kamp2006deterministic] [reshef2013extractors]. That is to say,

a logarithmic amount of entropy is always extractable. Interestingly, this simple function is optimal for small enough k. Put formally, $m(n, (\log^* n)^{2/3}) \le 0.5 \log_2 k + O(1)$ [cohen2015zero]. The natural open problem is to understand the behavior of m(n,k) and close the gap between $k = \Omega(\log\log n)$ and $k = O((\log^* n)^{2/3})$. In particular, it is not clear if m(n,k) has a threshold behavior, namely, if there exists a function $\tau(n)$ such that for $k = \omega(\tau(n))$, m(n,k) = k - O(1) whereas for $k = o(\tau(n))$, $m(n,k) \le 0.5 \log_2 k + O(1)$.

Beating the expander mixing lemma for small sets, David Zuckerman

The expander mixing lemma asserts that in a d-regular graph G on n nodes, for sets S and T of size k, we have

$$|e(S,T) - dk^2/n| < \lambda k$$
,

where $\lambda = \max(\lambda_2, -\lambda_n)$ is the largest nontrivial eigenvalue in absolute value. Even for optimal $\lambda = O(\sqrt{d})$, this is useless when $k < c\sqrt{n}$. On the other hand, when $d > (n/k)\log(n/k)$, most d-regular graphs achieve an upper bound of $O(k\sqrt{(dk/n)\log(n/k)})$. This is better than the expander mixing lemma for k = o(n).

The problem is to give an upper bound f(G, k) that is better than λk for some interesting graphs or for most or even many graphs. For dense graphs, this corresponds to two-source extractors. Bounds on line-point incidence graphs are also known. It would be extremely interesting to have a general method.

Spectral radius problem for free groups, Emmanuel Breuillard

If μ is a probability measure on a non-abelian free group F, let $\sigma(\mu) := ||T_{\mu}||$ be the norm of the convolution operator on $\ell^2(F)$

$$T_{\mu}: f \mapsto \mu * f,$$

where
$$\mu * f(x) = \sum_{g \in G} f(g^{-1}x)\mu(x)$$
.

Is it true that for every $\epsilon > 0$ there is $\delta > 0$ such that for all probability measures μ on F, the condition $\sigma(\mu) > \epsilon$ implies that there is a coset xH of a cyclic subgroup H of F such that $\mu(xH) > \delta$?

Explicit Coding Power Series, Anup Rao

We are interested in giving an explicit description of a formal power-series over a finite field F with some nice properties. The motivation comes from several applications related to coding.

We say that a power series $P(X) = p_0 + p_1 X + \dots$ is ϵ -sparse if there is a finite k such that of the first k coefficients of P(X), at most ϵk of them are non-zero.

Definition: P(X) is an ϵ -coding power series if for every polynomial g(X) with 0/1 coefficients, the power series (1 + Xg(X))P(X) is not ϵ -sparse.

Fact: For every $\epsilon > 0$, there is a finite field F for which a random power series P(X) will be a coding power series with positive probability.

Open Problem: Give an explicit example of a coding power-series.

BIBLIOGRAPHY

- [CS15] Gil Cohen and Igor Shinkar. Zero-fixing extractors for sub-logarithmic entropy. In *International Colloquium on Automata, Languages, and Programming*, 343–354. Springer, 2015.
- [KZ06] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and exposure-resilient cryptography. *SIAM Journal on Computing*, 36(5):1231–1247, 2006.
- [RV13] Yakir Reshef and Salil Vadhan. On extractors and exposure-resilient functions for sublogarithmic entropy. *Random Structures & Algorithms*, 42(3):386–401, 2013.
- [Vad12] Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science, 7(1–3):1–336, 2012.