

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DE CRATEÚS

Sistemas Operacionais – Lista III Professor: Wellington Franco

Data: 30/06/2021 – 07/07/2021

Nome:			
Nome:			

- 1) Nos sistemas operacionais, o escalonamento de processos consiste em:
 - a. Priorizar o processo a ser executado.
 - b. Selecionar um processo da fila de ready e alocar a CPU para o mesmo.
 - c. Alterar a ordem dos processos para utilização da CPU e demais recursos.
 - d. Transferir um processo na fila de wait para a fila de ready.
 - e. Executar processos mais demorados antes dos mais rápidos.
- 2) São benefícios de threads, exceto:
 - a. Melhora a capacidade de resposta de uma aplicação
 - b. Facilita o compartilhamento de recurso no processo
 - c. Escalabidade do sistema com a utilização dos multiprocessadores
 - d. Apesar de facilitar o compartilhamento dos recursos, não ocorre economia desses recursos pelo SO.
- 3) Com relação aos modelos de threads de usuários e kernel, é incorreto afirmar que no modelo muitos-para-um:
 - a. Mapeia muitos threads do usuário para um do kernel
 - b. Gerenciamento é feito pela biblioteca de threads no espaço do usuário, sendo eficiente
 - c. Várias threads podem acessar o kernel por vez, assim ocorre paralelismo
 - d. O processo pode ser bloqueado se um thread fizer um system call bloqueadora

- 4) Com relação aos modelos de threads de usuários e kernel, é incorreto afirmar que no modelo um-para-um:
 - a. Mapeia cada thread do usuário para um do kernel
 - b. Fornece mais concorrência, uma vez que cada thread usuário interage com um de kernel, assim pode ter system call bloqueadora.
 - c. Permite que várias threads sejam executadas em paralelo.
 - d. Apesar cada thread de usuário necessitar da criação de um thread de kernel, não é custoso para o SO.
- 5) Com relação aos semáforos, é incorreto afirmar que:
 - a. Os semáforos de contagem podem ser usados para controlar o acesso a um determinado recurso composto por uma quantidade finita de instâncias.
 - b. O semáforo é inicializado com a quantidade de recursos disponíveis.
 - c. Cada processo que desejar usar um recurso, executa uma operação de wait()
 - d. Quando o processo libera um recurso, ele executa uma operação de signal()
 - e. Se a contagem for N (chegou no final), todos os processos ficam bloqueados esperando a liberação do recurso.
- 6) O problema de starvation pode acontecer nos semáforos, quando os processos obedecem que regra na fila de espera:
 - a. FIFO (First in, First out)
 - b. LIFO (Last In, First out)
 - c. SJF (Menor esforço)
 - d. Round Robin
 - e. Por prioridade

7) O SO utiliza o algoritmo FCFS,

Processo	Duração do pico	
P1	20	

P2	21
Р3	15
P4	19

Os processos chegam na ordem P1, P2, P3 e P4. Calcule o tempo médio de turnaround.

8) O SO utiliza o algoritmo SJF com preempção,

Processo	Duração do pico	Tempo de chegada
P1	20	1
P2	11	2
P3	15	3
P4	19	5

Calcule o tempo médio de turnaround.

9) O SO utiliza o algoritmo de Por prioridade sem preempção,

Processo	Duração do pico	Tempo de chegada	Prioridade
P1	16	5	1
P2	23	4	1
Р3	22	3	3
P4	18	2	2

O processo com maior prioridade é o que tem o número menor de prioridade. Calcule o tempo médio de espera.

10) O SO utiliza o algoritmo Round-Robin, quantum=2,

Processo	Duração do pico	Tempo de chegada
P1	18	1
P2	16	4
Р3	15	6
P4	22	7

Calcule o tempo médio de espera.

11)
Cinco processos são criados na seguinte ordem: P1 , P2 , P3 , P4 e P5, com os seguintes tempos:

Processo	Tempo de Serviço	Prioridade	Tempo de chegada
P1	13	3	0
P2	11	4	4
P3	7	1	5
P4	8	2	7
P5	16	5	10

Ilustre a execução dos processos através de um diagrama usando os seguintes esquemas de escalonamento:

- (a) FIFO
- (b) SJF
- (c) prioridade (número de prioridade menor implica prioridade maior)
- (d) circular com fatia de tempo = 4 u.t.

Desconsidere E/S ou tempo de escalonamento ou troca de contexto entre processos.

Mostre os tempos de turnaround individuais por processo e a média resultante.