Recitation 4

Convolution

Agenda

- 1. Convolution 1D and 2D
- 2. Image Derivatives
- 3. Fourier Transform
- 4. Sharpening
- 5. Edge Detection

Convolution – 1D and 2D

Image Derivatives

Fourier Transform

Sharpening

Edge Detection

1D Convolution

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x - i)$$

$$f = (0 \quad 0 \quad 1 \quad 0 \quad 0)$$

$$g = (0 \quad 0 \quad 1 \quad -1 \quad 0)$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (0 \quad 0 \quad 1 \quad 0 \quad 0)$$

 $g = (0 \quad -1 \quad 1 \quad 0 \quad 0)$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (0 \quad 0 \quad 1 \quad 0 \quad 0)$$

 $g = (0 \quad -1 \quad 1 \quad 0 \quad 0)$

$$h(0) = \sum_{i=0}^{N-1} f(i)g(-i) = f(0) \cdot g(0) + f(1) \cdot g(-1) + f(2) \cdot g(-2) \dots$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (0 \quad 0 \quad 1 \quad 0 \quad 0)$$

 $g = (0 \quad -1 \quad 1 \quad 0 \quad 0)$

$$h(1) = \sum_{i=0}^{N-1} f(i)g(1-i) = f(0) \cdot g(1) + f(1) \cdot g(0) + f(2) \cdot g(-1) \dots$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (0 \quad 0 \quad 1 \quad 0 \quad 0)$$

 $g = (0 \quad -1 \quad 1 \quad 0 \quad 0)$

$$h(2) = \sum_{i=0}^{N-1} f(i)g(2-i) = f(0) \cdot g(2) + f(1) \cdot g(1) + f(2) \cdot g(0) \dots$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \ 0 \ 1)$$

 $g = (1 \ 2 \ 0)$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \ 0 \ 1)$$

 $g = (1 \ 2 \ 0)$

$$h = (0)^{0}$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \quad 0 \quad 1)$$

 $g = (1 \quad 2 \quad 0)$

$$h = \begin{pmatrix} 1 \\ \downarrow \\ 2 \end{pmatrix}$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \quad 0 \quad 1)$$

 $g = (1 \quad 2 \quad 0)$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \quad 0 \quad 1)$$

 $g = (1 \quad 2 \quad 0)$

$$h = (0 \ 2 \ 1 \ 2)$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \ 0 \ 1)$$

 $g = (1 \ 2 \ 0)$

$$h = (0 \ 2 \ 1 \ 2 \ 1)$$

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = (1 \ 0 \ 1)$$
 $f = (1 \ 0 \ 1)$ $g = (1 \ 2 \ 0)$ $g = (1 \ 2 \ 0)$

$$f = (1 \quad 0 \quad 1)$$

 $g = (1 \quad 2 \quad 0)$

$$h(-1) = h(5) = 0$$

(Ignore)

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

$$f = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

$$g = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$$

$$\uparrow & \downarrow & \downarrow & 0$$

$$h = \begin{pmatrix} 0 & 2 & 1 & 2 & 1 \end{pmatrix}$$

The same values as before!

$$h(x) = (f * g)(x) = \sum_{i=0}^{N-1} f(i)g(x-i)$$

Convolution Properties

Commutative

$$f * g = g * f$$

Associative

$$f * (g * h) = (f * g) * h$$

Distributive
$$f * (g + h) = f * g + f * h$$

A convolution is a linear operator: it can be represented in matrix form as

$$f * g \equiv Gf$$

Convolution Matrix

$$f = (1 \quad 0 \quad 1)$$
 $g = (0 \quad 2 \quad 1)$

$$f * g \equiv Gf = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \Rightarrow (0 \quad 2 \quad 1 \quad 2 \quad 1)$$

2D Convolution

$$f(x,y) * g(x,y) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f(x-i,y-j)g(i,j)$$

Image Filter, Kernel

Application: Spatial Filtering

recalculate

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

$$g(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x-i,y-j)$$

$$g(30,78) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(30-i,78-j)$$

Smoothing by Spatial Filtering

 1
 1

 1
 1

 1
 1

 1
 1

Smoothing by Spatial Filtering

1/16 *

1	2	1
2	4	2
1	2	1

Smoothing by Spatial Filtering

Using a larger kernel

What will happen?

	0	0	0
*	0	1	0
	0	0	0

Identity

	0	0	0
*	0	1	0
	0	0	0

What will happen?

	0	0	0
*	1	0	0
	0	0	0

Shifting

	0	0	0
k	1	0	0
	0	0	0

Convolution – 1D and 2D

Image Derivatives

Fourier Transform
Sharpening
Edge Detection

Derivative

$$\frac{\partial}{\partial rows} f(i,j) = \frac{\partial}{\partial i} f(i,j) = \lim_{\epsilon \to 0} \frac{f(i,j) - f(i - \epsilon, j)}{\epsilon}$$

 $\epsilon = 1$ pixel

$$\frac{\partial}{\partial rows} f(i,j) \cong f(i,j) - f(i-1,j)$$

columns

rows

Implement: $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\frac{\partial}{\partial rows} f(i,j) \cong f(i,j) - f(i-1,j)$$

Implement: $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\frac{\partial}{\partial cols} f(i,j) \cong f(i,j) - f(i,j-1)$$

columns

Freedom

Grand State Sta

Implement (1 -1) convolution with

$$\frac{\partial}{\partial cols} f(i,j) \cong f(i,j) - f(i,j-1)$$

Implement (1 - 1) convolution with

The Gradient

The vector of partial derivatives. Points in the direction of most rapid change in intensity

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \quad \nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix} \quad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

The Gradient - Properties

Magnitude

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Direction (orientation angle)

$$\alpha = atan2\left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right)$$

Directional derivative

$$\cos(\alpha)\frac{\partial f}{\partial x} + \sin(\alpha)\frac{\partial f}{\partial y}$$

Example

$$I_X$$
 =

$$*(-1 \ 0 \ 1) =$$

$$I_{Y} =$$

$$\begin{array}{cc} * & \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{array}$$

Example

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

Example: Gradient Magnitude vs. Derivatives

$$I_Y =$$

$$\sqrt{I_X^2 + I_Y^2} =$$

2nd Derivative Approximation

$$\frac{\partial^2}{\partial x^2} f(i,j) \cong f(i-1,j) + f(i+1,j) - 2f(i,j)$$

Implement convolution with (1 -2 1)

Check that:
$$\begin{bmatrix} 1 & -1 \end{bmatrix} * \begin{bmatrix} 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$$

Reminder - 1D Fourier Transform

- Moving from the time domain to the frequency domain
- Discrete Fourier transform (DFT):

$$F(\omega) = \sum_{x=0}^{N-1} f(x) e^{-\frac{2\pi i x \omega}{N}}$$

Inverse Discrete Fourier transform (IDFT):

$$f(x) = \frac{1}{N} \sum_{\omega=0}^{N-1} F(\omega) e^{\frac{2\pi i x \omega}{N}}$$

Reminder - Image derivatives using FT

Image derivative is the inverse FT of the weighted frequency domain.

High frequencies affect the image derivative more than low frequencies.

Noise has more high frequency than normal image.

$$\frac{\partial f(x,y)}{\partial x} = \frac{2\pi i}{N} \cdot \Phi^{-1} (u \cdot \Phi(f(x,y)))$$

Influence of Noise on Derivatives

Noise strongly affects the derivatives, in greater proportion than it does the original image

Adding noise

Ideal ramp

(no noise)

Problem: We would like to reduce the effects of noise on the derivative, but symmetric smoothing may eliminate the derivative response altogether.

Idea (Sobel): Smooth the image in one direction, and compute the derivative in the orthogonal direction.

derivative+smooth in the same direction

weak edge less noisy

derivative+smooth in the orthogonal direction

strong edge less noisy

Sobel kernels:
$$\frac{\partial f}{\partial x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
 $\frac{\partial f}{\partial y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

$$\frac{\partial f}{\partial y} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{vmatrix}$$

Note:

$$f * \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 \end{bmatrix} = f * \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

Convolution – 1D and 2D Image Derivatives

Fourier Transform

Sharpening Edge Detection

The Convolution Theorem

The Convolution Theorem:

$$\Phi(f * g) = F \cdot G$$

$$\Phi(f \cdot g) = F * G$$

Convolution Vs. Fourier

Convolution by Fourier:

$$f * g = \Phi^{-1}(F \cdot G)$$

Complexity (using the **FFT algorithm**): O(NlogN), where N is the number of pixels in the image.

- Different Fourier transform phenomena can be explained by convolution, and vice versa.
- The Fourier interpretation is used for designing convolution filters.

Resemblance to Convolution

Fourier Filter

Convolution Filter

$$F(u,v)\cdot H(u,v)$$

$$f(x,y)*g(x,y)$$

Example: Low-pass filter

$$\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Example: High-pass filter

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

Why do we get the rings?

1D Simplification:

Frequency domain (dot product)

Spatial domain (convolution)

$$\frac{1}{|a|}$$
 sinc $\left(\frac{u}{a}\right)$

Cross-Correlation

Definition:
$$(f \otimes g)(x,y) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f^*(i,j)g(x+i,x+j)$$

- Cross Correlation measures the similarity of two signals over all possible translations between them.
- Commonly used for matching:
 - Motion between two similar images
 - Small template in a large image

$$(f \otimes g)(x,y) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f^*(i,j) g(x+i,y+j)$$

The Cross-Correlation Theorem

Definition:
$$(f \otimes g)(x,y) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f^*(i,j)g(x+i,x+j)$$

The Cross-Correlation Theorem:

$$\Phi(f \otimes g) = F^* \cdot G$$

(follows from the Convolution Theorem)

Convolution – 1D and 2D Image Derivatives

Fourier Transform

Sharpening

Edge Detection

Image Enhancement

Histogram enhancement

Histogram equalization

Noise reduction

Smoothing

Median filtering

Sharpening

The Laplacian:
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

The Laplacian in matrix form:
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Subtracting from the image:
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$f(x)$$

$$f'(x)$$

$$f''(x)$$

$$f(x) - f''(x)$$

Sharpening Example

Details are enhanced but so is the noise

Convolution – 1D and 2D Image Derivatives Fourier Transform Sharpening

Edge Detection

How Can the Gradient be Used For Edge Detection?

Original

Gradient

Edge Detection

Binary image where "1" resembles an edge

Ideal Edges

Gray-level profile of a horizontal line through the image

Model of a ramp digital edge

Gray-level profile of a horizontal line through the image

Derivative Response at Edges

Derivative - Numeric Example

Edge Localization – Laplacian Zero Crossing

Where exactly is the edge?

At zero crossing of f"

Exam

Next week: 2D Transformations