# **ЛАБОРАТОРНАЯ РАБОТА № 11** РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ

### Инвертирующий сумматор



Инвертирующий сумматор суммирует входные напряжения и меняет знак суммы на противоположный

$$\boldsymbol{U}_{\text{BMX}} = -\left(\boldsymbol{U}_{\text{BX}1} \, \boldsymbol{K}_{1} + \boldsymbol{U}_{\text{BX}2} \, \boldsymbol{K}_{2}\right),$$

где  $K_1$  и  $K_2$  – масштабирующие коэффициенты:

$$K_1 = \frac{R_4}{R_1}$$
 if  $K_2 = \frac{R_4}{R_2}$ .

Значение сопротивления  $\mathbf{R}_3$  определяется из соотношения

$$\frac{1}{R_3} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_4}.$$

## Неинвертирующий сумматор



Неинвертирующий сумматор выполняет суммирование входных напряжений, при котором знак суммы не меняется на противоположный

$$\boldsymbol{U}_{\text{BMX}} = \boldsymbol{U}_{\text{BX}1} \, \boldsymbol{K}_1 + \boldsymbol{U}_{\text{BX}2} \, \boldsymbol{K}_2,$$

где  $\mathbf{\textit{K}}_1$  и  $\mathbf{\textit{K}}_2$  – масштабирующие коэффициенты:

$$\mathbf{K}_1 = \frac{\mathbf{R}_3}{\mathbf{R}_1} \quad \mathbf{K}_2 = \frac{\mathbf{R}_3}{\mathbf{R}_2}.$$

Обязательно соблюдение условия баланса

$$\frac{\mathbf{R}_5}{\mathbf{R}_4} = \frac{\mathbf{R}_3}{\mathbf{R}_1} + \frac{\mathbf{R}_3}{\mathbf{R}_2}.$$

#### Схема сложения-вычитания



### Примеры использования ОУ для решения уравнений и систем уравнений

**Пример 1.** Требуется найти **Y** при X = 1.

$$3Y + 6X = -9$$

Решая уравнение относительно Y, получим: Y = -3 - 2X.

Для вычисления Y = -3 - 2X используется схема инвертирующего сумматора.



Слагаемые -3 и -2Х подаются на инвертирующий вход **ОУ** с коэффициентами усиления **1** и **2** соответственно. Если сопротивление  $R_4 = 100$  к**Ом**, то и сопротивление  $R_1 = 100$  к**Ом** (для масштабирующего коэффициента равного единице), а  $R_2 = R_4 / 2 = 50$  к**Ом**. Для выполнения условия баланса сопротивление  $R_3$  должно удовлетворять следующему условию

$$\frac{1}{R_3} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_4}; \qquad \frac{1}{R_3} = \frac{1}{100} + \frac{1}{50} + \frac{1}{100}.$$

Следовательно  $R_3 = 25 \text{ кOм}.$ 



Показанию вольтметра соответствует Y при X = 1.

**Пример 2.** Требуется найти Y при X = 1.

$$2Y - 6X = 4$$

Решая уравнение относительно Y, получим: Y = 2 + 3X.

Для вычисления Y = 2 + 3X используется схема неинвертирующего сумматора.



Слагаемые 2 и **3X** подаются на неинвертирующий вход **ОУ** с коэффициентами усиления **1** и **3** соответственно. Если сопротивления  $R_3$  и  $R_5$  равны **100 кОм**, то сопротивление  $R_1 = 100$  к**Ом** (для масштабирующего коэффициента равного единице), а  $R_2 = R_3 / 3 = 33,33$  к**Ом**. Для выполнения условия баланса сопротивление  $R_4$  должно удовлетворять следующему условию

$$\frac{R_5}{R_4} = \frac{R_3}{R_1} + \frac{R_3}{R_2};$$
  $\frac{100}{R_4} = \frac{100}{100} + \frac{100}{33,33}$ 

Следовательно  $R_4 = 25$  кОм.



Показанию вольтметра соответствует Y при X = 1.

Пример 3. Требуется решить систему уравнений относительно Х и У:

$$\begin{cases} 2X + 10Y = 4 & (a) \\ 3X + 5Y = 20 & (6) \end{cases}$$

Решая уравнение (a) относительно X, получим: X = 2 - 5Y.

Решая уравнение (б) относительно Y, получим: Y = 4 - 0.6X.

Для вычисления X = 2 - 5Y используется схема сложения-вычитания.



Положительное слагаемое 2 подается на неинвертирующий вход ОУ в соответствии с коэффициентом усиления 1. Отрицательное слагаемое – 5У подается на инвертирующий вход **ОУ** в соответствии с коэффициентом усиления **5**. Если сопротивления  $R_2$  и  $R_4$ равны 100 кОм, то сопротивление  $R_3 = 100$  кОм (для масштабирующего коэффициента a  $R_1 = R_2 / 5 = 20 \text{ kOm}$ . Общий коэффициент равного единице), усиления ПО коэффициент общий неинвертирующему входу меньше, чем усиления ПО коэффициентов усиления необходимо инвертирующему. Для выравнивания К неиннвертирующему дополнительный  $R_{\text{доп}}$ входу подключить резистор удовлетворяющий условию

$$\frac{R_2}{R_1} = \frac{R_4}{R_3} + \frac{R_4}{R_{\text{доп}}};$$
  $\frac{100}{20} = \frac{100}{100} + \frac{100}{R_{\text{доп}}}$ 

Следовательно  $R_{\text{лоп}} = 25 \text{ кOм}.$ 



Для вычисления Y = 4 - 0.6X используется схема сложения-вычитания.



\_\_

## Порядок выполнения лабораторной работы

- 1. Решите систему уравнений варианта задания вручную.
- 2. Постройте схему, выполняющую решение системы уравнений. При построении схемы используйте идеальные **ОУ** (**Models/Library/default/Model/ideal**).
- 3. Сравните результаты решения системы вручную с результатами, полученными с помощью схемы. Сделайте выводы.

# Варианты заданий

| Вариант | Система уравнений |                   |
|---------|-------------------|-------------------|
| 1       | 2 X + 3 Y = 7     | 12 X - 5 Y = 13   |
| 2       | 3 X + 4 Y = 5     | -13 X - 6 Y = 11  |
| 3       | 4 X + 5 Y = 11    | 14 X - 7 Y = 9    |
| 4       | 5 X + 6 Y = 19    | -15 X - 8 Y = 11  |
| 5       | 6 X + 7 Y = 5     | 2 X - 9 Y = 17    |
| 6       | 7 X + 8 Y = 9     | -3 X - 10 Y = 13  |
| 7       | 8 X + 9 Y = 7     | 4 X - 11 Y = 21   |
| 8       | 9 X + 10 Y = 11   | -5 X - 12 Y = 17  |
| 9       | 10 X + 11 Y = 3   | 6 X - 13 Y = 25   |
| 10      | 11 X + 12 Y = 13  | -7 X - 14 Y = 19  |
| 11      | 12 X + 13 Y = 5   | 8 X - 15 Y = 31   |
| 12      | 13 X + 14 Y = 15  | -9 X - 3 Y = 5    |
| 13      | 14 X + 15 Y = 11  | 10 X - 4 Y = 27   |
| 14      | 15 X + 3 Y = 17   | -11 X - 5 Y = 6   |
| 15      | 2 X + 4 Y = 19    | 12 X - 6 Y = 11   |
| 16      | 3 X + 5 Y = 4     | -13 X - 7 Y = 9   |
| 17      | 4 X + 6 Y = 13    | 14 X - 8 Y = 5    |
| 18      | 5 X + 7 Y = 6     | -15 X - 9 Y = 11  |
| 19      | 6 X + 8 Y = 13    | 2 X - 10 Y = 19   |
| 20      | 7 X + 9 Y = 8     | -3 X - 11 Y = 13  |
| 21      | 8 X + 10 Y = 11   | 4 X - 12 Y = 29   |
| 22      | 9 X + 11 Y = 10   | -5 X - 13 Y = 16  |
| 23      | 10 X + 12 Y = 7   | 6 X - 14 Y = 31   |
| 24      | 11 X + 13 Y = 12  | -7 X - 15 Y = 17  |
| 25      | 12 X + 14 Y = 5   | 8 X - 3 Y = 19    |
| 26      | 13 X + 15 Y = 14  | -9 X - 4 Y = 5    |
| 27      | 14 X + 3 Y = 29   | 10 X - 5 Y = 7    |
| 28      | 15 X + 4 Y = 11   | -11 X - 6 Y = 5   |
| 29      | 2 X + 5 Y = 17    | 12 X - 7 Y = 17   |
| 30      | 3 X + 6 Y = 11    | -13 X - 8 Y = 5   |
| 31      | 4 X + 7 Y = 19    | 14 X - 9 Y = 17   |
| 32      | 5 X + 8 Y = 11    | -15 X - 10 Y = 11 |
| 33      | 6 X + 9 Y = 5     | 2 X - 11 Y = 19   |
| 34      | 7 X + 10 Y = 13   | -3 X - 12 Y = 11  |
| 35      | 8 X + 11 Y = 5    | 4 X - 13 Y = 23   |
| 36      | 9 X + 12 Y = 11   | -5 X - 14 Y = 13  |
| 37      | 10 X + 13 Y = 3   | 6 X - 15 Y = 29   |
| 38      | 11 X + 14 Y = 17  | -7 X - 3 Y = 16   |
| 39      | 12 X + 15 Y = 7   | 8 X - 4 Y = 23    |
| 40      | 13 X + 3 Y = 11   | -9 X - 5 Y = 17   |
| 41      | 14 X + 4 Y = 25   | 10 X - 6 Y = 7    |
| 42      | 15 X + 5 Y = 17   | -11 X - 7 Y = 5   |