Linear Algebra Standards

How can we solve systems of linear equations?		\square \square S6. Basis of solution space. I can find a ba-	
□ E1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.	sis for the solution set of a homogeneous system of equations.	
		How car braically	n we understand linear maps alge-
□ □ E2 .	Row reduction. I can put a matrix in reduced row echelon form.	□ □ A1.	Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
□ □ E3 .	Systems of linear equations . I can compute the solution set for a system of linear equations.		
What is	a vector space?	$\Box \Box \mathbf{A2}.$	Linear map verification. I can deter-
	Vector property verification. I can show why an example satisfies a given vec-		mine if a map between vector spaces of polynomials is linear or not.
	tor space property, but does not satisfy another given property.	□ □ A3.	Injectivity and surjectivity . I can determine if a given linear map is injective
□ □ V2 .	Vector space identification. I can list all eight properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.		and/or surjective.
		□ A4.	Kernel and Image . I can compute a basis for the kernel and a basis for the image of a linear map.
□ □ V 3.	Linear combinations . I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.	What algebraic structure do matrices have?	
		□ □ M 1.	Matrix Multiplication. I can multiply matrices.
□ □ V 4.	Spanning sets . I can determine if a set of Euclidean vectors spans \mathbb{R}^n .	□ □ M2 .	Invertible Matrices . I can determine if a square matrix is invertible or not.
□ □ V 5.	Subspaces . I can determine if a subset of \mathbb{R}^n is a subspace or not.	□ □ M3.	Matrix inverses. I can compute the inverse matrix of an invertible matrix.
What structure do vector spaces have?		How can we understand linear maps geomet-	
\square \square S1.	Linear independence. I can determine if a set of Euclidean vectors is linearly depen- dent or independent.	rically?	
		□ □ G 1.	Row operations. I can represent a row operation as matrix multiplication, and compute how the operation affects the determinant.
□ □ S2.	Basis verification . I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .		
□ □ S3.	Basis computation . I can compute a basis for the subspace spanned by a given set of Euclidean vectors.	□ □ G2 .	Determinants. I can compute the determinant of a square matrix.
□ □ S4.	Dimension . I can compute the dimension of a subspace of \mathbb{R}^n .	□ □ G 3.	Eigenvalues . I can find the eigenvalues of a 2×2 matrix.
□ □ S 5.	Abstract vector spaces. I can solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.	□ □ G4.	Eigenvectors . I can find a basis for the eigenspace of a square matrix associated with a given eigenvalue.