BREVET DE TECHNICIEN SUPÉRIEUR SERVICES INFORMATIQUES AUX ORGANISATIONS

SESSION 2016

ÉLÉMENTS DE CORRECTION ET BARÈME

ÉPREUVE EF2 – MATHÉMATIQUES APPROFONDIES Sous-épreuve EF2 – facultative

Durée: 2 heures

Le corrigé comprend 4 pages, numérotées de la page 1 à la page 4.

BTS SERVICES INFORMATIQUES AUX ORGANISATIONS	SESSION: 2016	
ÉPREUVE : MATHÉMATIQUES APPROFONDIES	CORRIGĚ	
EFREUVE . WAT HEWAT IQUES AFFROPONDIES	D	D 4/4
16SIEF2MANC1	Durée : 2 heures	Page 1/4

Exercice 1 (10 points)

	Éléments de solution	Commentaires	Points		
	Partie A				
1.a)	$f'(t) = 0.1(-t^2 - 2t + 15)e^t = 0.1(-t + 3)(t + 5)e^t$.		0,5		
1.b)	Sur $[0, 4]$, $(t+5)e^{t} > 0$, donc $f'(t)$ est du signe de $-t+3$: $f'(t) > 0$ si $0 \le t < 3$ et $f'(t) < 0$ si $t > 3$.	Au moins 0,5 pour le candidat qui a ramené l'étude à celle du signe de $-t+3$.	1		
1.c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Apprécier le tableau en cohérence avec l'étude du signe de la dérivée.	1		
2.a)	t 0 1 2 3 3.5 4 f(t) 1,5 3,806 8,128 12,051 9,107 -5,46	Au moins 0,5 pour deux calculs corrects.	1		
2.b)	Voir graphique page 4/4.		1		
	Partie B				
1.	f(1) ≈ 3,806. La plus-value après une heure est égale à 3806 €.	me heure est égale à 3806 €			
2.	La plus-value après une neure est egale à 3806 \in . $f(t) \ge 4,5$ si $1,25 \le t \le 3,75$. La plus-value dépasse $4500 \in$ entre $1,25$ h et $3,75$ h. $f(t)$ est maximal pour $x = 3$ et $f(3) \approx 12,051$. La plus-value est maximale au bout de 3 heures, et ce maximum est de 12 051 euros. Pour chacune des questions, la moitié des points est accordée aux interprétations, dans le contexte de l'exercice, et ce en cohérence avec les calculs ou les lectures graphiques.				
3.					
4.	Graphiquement, $f(t) = 0$ pour $t \approx 3.9$. La plus-value est négative au bout de 3.9 heures.	les rectures grapmques.	1		
	Partie C				
1.	On vérifie que $F'(t) = f(t)$.		0,5		
2.	$M = \frac{1}{3}(F(3) - F(0)) = \frac{1}{3}(e^3 - 1, 3) \approx 6,262.$ La valeur moyenne durant les 3 premiers jours est 6262 euros	Au moins 0,5 pour le candidat qui relie correctement le calcul de M à l'utilisation de la primitive F .	1		
Total			10		

BTS SERVICES INFORMATIQUES AUX ORGANISATIONS	ICES INFORMATIQUES AUX ORGANISATIONS SESSION : 2016				
ÉPREUVE : MATHÉMATIQUES APPROFONDIES	CORRIGÉ				
EFREUVE . WAT HEIWAT IQUES AFFROFONDIES	D (01	D0/4			
16SIEF2MANC1	Durée : 2 heures	Page 2/4			

Exercice 2 (10 points)

	Éléments de solution							Commentaires	Points	
						Pai	rtie A			
1.	$r_1 = 0.9823$.					La réponse sèche est acceptée.	0,5			
2.a)	$z_i = \ln(x_i)$	1 1,79	2 2,05	3 2,28	4 2,48	5 2,73	6 2,95	7 3,18	Au moins 0,5 pour deux calculs exacts.	1
2.b)	$r_2 = 0,9997$. r_2 est plus proche de 1 que r_1 , donc le modèle exponentiel est plus approprié. 0,5 pour une interprétation correcte.								1	
3.a)	z=0,229x	+1,57	7.						La réponse sèche est acceptée.	1
3.b)	Pour $x = 12$, on en déduit $\hat{z} \approx 4{,}325$. D'où $y = e^z = e^{4{,}325} \approx 75{,}57$. Au premier trimestre 2017, on peut estimer à 7560 le nombre de joueurs, en arrondissant à la dizaine. 0,5 pour l'estimation de y 0,5 pour l'interprétation.							0.5 pour l'estimation de y .	1,5	
	, <u>, , , , , , , , , , , , , , , , , , </u>						rtie B	1		
1.	$P(90 \le D \le 1)$	180) =	P(D)	≤1 80)	-P(1	D ≤ 90)=0,	93.	Le détail du calcul n'est pas exigé.	1
2.	L'égalité $P(120-h \le D \le 120+h) = 0,683$ conduit à $2 \times P(D \le 120+h) - 1 = 0,683$, soit $P(D \le 120+h) = 0,8415$, d'où $h = 20,013$. On en déduit $h = 20$. Autre méthode : l'égalité de départ est réalisée pour l'intervalle « un-sigma », donc h est égal à l'écart-type, soit $h = 20$.						En cas de réponse incomplète, apprécier ce qui est fait.	1		
	, , , , , , , , , , , , , , , , , , ,	V				Pai	rtie C			
1.	$\lambda = \frac{1}{E(T)} =$	$\frac{1}{10} = 0$),1 mir	⁻¹ .	9					0,5
2.	$P(A) = P(T \ge 10) = e^{-1} \approx 0.37.$ $P(B) = P(T < 20) = 1 - e^{-2} \approx 0.86.$ $P(C) = P(10 \le T < 20) = e^{-1} - e^{-2} \approx 0.23.$						0,5 par calcul.	1,5		
3.	$P(T \le m) = 0.5$ équivaut à $e^{-0.1m} = 0.5$, soit $m = -10 \times \ln(0.1) \approx 6.93$. La « demi-vie » du monstre est 6.93 minutes.						1			
Total										10

16SIEF2MANC1	Durée : 2 heures	Page 3/4	
ÉPREUVE : MATHÉMATIQUES APPROFONDIES	- · ·	D 0/4	
ÉDDELIVE : MATHÉMATIQUES ADDDOCONDIES	CORRIGÉ		
BTS SERVICES INFORMATIQUES AUX ORGANISATIONS	SESSION: 2016		

Courbe exercice 1, partie A, question 2.b)

16SIEF2MANC1	Durée : 2 heures	Page 4/4	
EFREUVE . MATHEMATIQUES AFFROPONDIES	D (01	D 4/4	
ÉPREUVE : MATHÉMATIQUES APPROFONDIES	CORRIGÉ		
BTS SERVICES INFORMATIQUES AUX ORGANISATIONS	SESSION: 2016		