

CSC 220: Computer Organization

Unit 1 Number Systems

Prepared by:

Md Saiful Islam, PhD

Department of Computer Science

College of Computer and Information Sciences

Overview

- Common Number Systems
- Conversion Among Bases
- Binary Coded Decimal (BCD)

Chapter-1

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Decimal review

Decimal numbers consist of digits from 0 to 9, each with a weight.

1 6 2 . 3 7 5 digits 100 10 1 1/100 1/1000 weights

Notice that the weights are all powers of the base, which is 10.

1 6 2 . 3 7 5 digits 10^2 10^1 10^0 10^{-1} 10^{-2} 10^{-3} weights

 To find the decimal value of a number, you can multiply each digit by its weight and sum the products:

$$(1\times10^2) + (6\times10^1) + (2\times10^0) + (3\times10^{-1}) + (7\times10^{-2}) + (5\times10^{-3}) = 162.375$$

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
17	10001	21	11

Binary Numbers

- Binary, or base 2, numbers consist of only the digits 0 and 1. The weights are now powers of 2.
- For example, consider the binary number 1101.01:

```
1 1 0 1 . 0 1 binary digits, or bits 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} weights in decimal
```

The decimal value of 1101.01 is computed just like before:

$$(1\times2^3)$$
 + (1×2^2) + (0×2^1) + (1×2^0) + (0×2^{-1}) + (1×2^{-2}) = 8 + 4 + 0 + 1 + 0 + 0.25 = 13.25

Some powers of 2				
$2^0 = 1$	$2^4 = 16$	$2^8 = 256$		
$2^1 = 2$	$2^5 = 32$	$2^9 = 512$		
$2^2 = 4$	$2^6 = 64$	$2^{10} = 1024$		
$2^3 = 8$	$2^7 = 128$			

Conversion Among Bases

• The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Group 1: To Decimal

• Technique

- Multiply each digit by b^n , where b is the "base"
- -n is the position of the bit, starting from 0 on the right
- Add the results

Binary to Decimal

• Technique

- Multiply each bit by 2^n , where 2^n is the "weight" of the bit
- -n is the position of the bit, starting from 0 on the right
- Add the results

Converting Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

```
1 \times 2^{6} = 1 \times 64 = 64
+ 1 \times 2^{5} = 1 \times 32 = 32
+ 0 \times 2^{4} = 0 \times 16 = 0
+ 1 \times 2^{3} = 1 \times 8 = 8
+ 1 \times 2^{2} = 1 \times 4 = 4
+ 1 \times 2^{1} = 1 \times 2 = 2
+ 0 \times 2^{0} = 0 \times 1 = 0
= 110 \text{ in base } 10
```

Octal to Decimal

• Technique

- Multiply each digit by 8^n , where 8^n is the "weight" of the bit
- -n is the position of the bit, starting from 0 on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hexadecimal to Decimal

• Technique

- Multiply each digit by 16^n , where 16^n is the "weight" of the bit
- *n* is the position of the bit, starting from 0 on the right
- Add the results

Base 16 is useful too

The hexadecimal system uses 16 digits:

0123456789ABCDEF

- Hexadecimal is useful as a shorthand for binary numbers.
 - Since 16 = 2⁴, one hex digit is equivalent to four bits (including leading 0s).
 - It's often easier to work with numbers like "B4" instead of "10110100".
- Hex shows up in many different contexts.
 - IP addresses, such as "80.AE.05.27".
 - RGB color triplets, like "C0C0FF".
- You can convert between base 10 and base 16 using the same method as for converting from decimal to binary.

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	Ε
15	1111	F

$$ABC_{16} =>$$
 $C \times 16^{0} = 12 \times 1 = 12$
 $B \times 16^{1} = 11 \times 16 = 176$
 $A \times 16^{2} = 10 \times 256 = 2560$
 2748_{10}

Group 2: From Decimal

• Technique

- Divide by the **base**, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

Why does this work?

- This same idea works for converting from decimal to any other base.
- Think about "converting" 162 from decimal to decimal:

- After each division, the remainder contains the rightmost digit of the dividend, while the quotient holds the remaining digits.
- Similarly when converting fractions, each multiplication strips off the leftmost digit as the integer result, leaving the remaining digits in the fractional part.

```
0.375 \times 10 = 3.750

0.750 \times 10 = 7.500

0.500 \times 10 = 5.000
```

Decimal to Binary

• Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_{8}$$

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

Group-3: Except Decimal

- Technique
 - Convert each digit to a equivalent binary representation

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hexadecimal to Binary

• Technique

 Convert each hexadecimal digit to a 4-bit equivalent binary representation

Binary and hexadecimal conversions

 Converting from hexadecimal to binary is easy: replace each hex digit with its equivalent four-bit binary value.

 To convert from binary to hexadecimal, partition the binary number into groups of four bits, starting from the point. (Add 0s to the ends if needed.) Then replace each four-bit group by the corresponding hex digit.

$$10110100.001011_2 = 1011 0100 . 0010 1100_2$$
B 4 . 2 C_{16}

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	C
1101	D
1110	Ε
1111	F

$$10AF_{16} = ?_2$$

$$10AF_{16} = 0001000010101111_2$$

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

$$1011010111_2 = ?_8$$

$$1011010111_2 = 1327_8$$

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

$$1010111011_2 = ?_{16}$$

$$1010111011_2 = 2BB_{16}$$

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Example

$$1076_8 = ?_{16}$$

$$1076_8 = 23E_{16}$$

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Example

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_{8}$$

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

- Same technique for the 1st group (To Decimal)
- Different technique for the 2nd group (From Decimal)
- Same technique for the 3rd group (Except Decimal)

• Decimal to decimal (just for fun)

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$

$$1 \times 10^{-1} = 0.1$$

$$3 \times 10^{0} = 3$$

$$3.14$$

• Group-1 (To Decimal)

Ex: Binary to decimal

```
10.1011 => 1 x 2^{-4} = 0.0625

1 x 2^{-3} = 0.125

0 x 2^{-2} = 0.0

1 x 2^{-1} = 0.5

0 x 2^{0} = 0.0

1 x 2^{1} = 2.0

2.6875
```

• Group-2 (From Decimal)

 Similarly when converting fractions, each multiplication strips off the leftmost digit as the integer result, leaving the remaining digits in the fractional part.

```
0.375 \times 10 = 3.750

0.750 \times 10 = 7.500

0.500 \times 10 = 5.000
```

Ex: Decimal to binary

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Skip answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

4-Bit Binary Coded Decimal (BCD) Systems

- The 4-bit BCD system is usually employed by the computer systems to represent and process numerical data only.
- In the 4-bit BCD system, each digit of the decimal number is encoded to its corresponding 4-bit binary sequence.

Decimal digits	Weighted 4-bit BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

4-Bit BCD Code

• Represent the decimal number 5327 in BCD code.

```
4-bit BCD representation of decimal digit 5 is 0101
```

- 4-bit BCD representation of decimal digit 3 is 0011
- 4-bit BCD representation of decimal digit 2 is 0010
- 4-bit BCD representation of decimal digit 7 is 0111

Therefore, the BCD representation of decimal number 5327 is 010100110010111.