Chapter 3

Chapter 3. Data pre-processing

addition, deletion or transformation of training set data

3.1 Case study: cell segmentation in high-content screening

3.2 Data transformation for individual predictors

Centering and scaling

zero mean and standard deviation of one

Transformations to resolve skewness

log, square root, or inverse Boxcox

3.3 Data transformation for multiple predicors

Transformations to resolve outliers

Spatial sign

Data reduction and feature extraction

generate a smaller set of prefictors that seek to capture a majority of the information in the original variables PCA PCA seeks predictor-set variation without regard to any further understanding of the predictors or to knowledge of the modeling objectives

3.4 Dealing with missing values

structurally missing informative missingness censored data

Imputation

Imputation is just another layer of modeling where we try to estimate values of the predictor variables based on other predictor variables

KNN for imputation

3.5 Removing predictors

Zero variance predictor Between predictor correlations

3.6 Adding predictors

dummy variables nonlinearality

3.7 Binning predictors

3.8 Computing

```
library(AppliedPredictiveModeling)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(corrplot)
## corrplot 0.84 loaded
library(e1071)
library(lattice)
library(caret)
apropos("confusion")
## [1] "confusionMatrix"
                               "confusionMatrix.train"
RSiteSearch("confusion",restrict='function')
## A search query has been submitted to http://search.r-project.org
## The results page should open in your browser shortly
data(segmentationOriginal)
segData <- subset(segmentationOriginal, Case=="Train")</pre>
cellID <- segData$Cell</pre>
class <- segData$Class</pre>
case <- segData$Case</pre>
segData <- segData[,-(1:3)]</pre>
statusColNum <- grep("Status",names(segData))</pre>
statusColNum
## [1]
        2 4 9 10 11 12 14 16 20 21 22 26
                                                        27
                                                            28 30
                                                                    32 34
## [18] 36 38 40 43 44 46 48 51 52 55 56 59
                                                        60 63 64 68 69
## [35] 70 72 73 74 76 78 80 82 84 86 88 92 93 94 97 98 103
## [52] 104 105 106 110 111 112 114
```

```
segData <- segData[,-statusColNum]
```

Transformation

```
skewness(segData$AngleCh1)
## [1] -0.02426252
skewValues <- apply(segData, 2, skewness)</pre>
head(skewValues)
                   AreaCh1 AvgIntenCh1 AvgIntenCh2 AvgIntenCh3 AvgIntenCh4
##
      AngleCh1
## -0.02426252 3.52510745 2.95918524 0.84816033 2.20234214 1.90047128
Ch1AreaTrans <- BoxCoxTrans(segData$AreaCh1)</pre>
Ch1AreaTrans
## Box-Cox Transformation
## 1009 data points used to estimate Lambda
##
## Input data summary:
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                               Max.
     150.0 194.0 256.0
##
                             325.1 376.0 2186.0
##
## Largest/Smallest: 14.6
## Sample Skewness: 3.53
##
## Estimated Lambda: -0.9
# The original data
head(segData$AreaCh1)
## [1] 819 431 298 256 258 358
# After transformation
predict(Ch1AreaTrans, head(segData$AreaCh1))
## [1] 1.108458 1.106383 1.104520 1.103554 1.103607 1.105523
(819^(-0.9)-1)/(-0.9)
## [1] 1.108458
pcaObject <- prcomp(segData, center=TRUE, scale. = TRUE)</pre>
# Calculate the cumulative percentage of variance which each component accounts for
percentVariance <- pcaObject$sd^2/sum(pcaObject$sd^2)*100</pre>
percentVariance[1:3]
```

plot(percentVariance)

The transformed values are stored in pcaObject as a sub-object called x head(pcaObject\$x[,1:5])

```
## PC1 PC2 PC3 PC4 PC5

## 2 5.0985749 4.5513804 -0.03345155 -2.640339 1.2783212

## 3 -0.2546261 1.1980326 -1.02059569 -3.731079 0.9994635

## 4 1.2928941 -1.8639348 -1.25110461 -2.414857 -1.4914838

## 12 -1.4646613 -1.5658327 0.46962088 -3.388716 -0.3302324

## 15 -0.8762771 -1.2790055 -1.33794261 -3.516794 0.3936099

## 16 -0.8615416 -0.3286842 -0.15546723 -2.206636 1.4731658
```

head(pcaObject\$rotation[,1:3])

```
SS <- spatialSign(segData)
plot(SS)</pre>
```

```
0
                                                                                            0
                                                         0
                                                                                               0
                0
                         0
      0.03
                                                                                         0
                  ത
                                     0 0
                                                                          0
AreaCh1
                                                              0
      0.02
      0.01
             0.00
                                 0.01
                                                     0.02
                                                                        0.03
                                                                                            0.04
                                                   AngleCh1
```

```
trans <- preProcess(segData, method=c("BoxCox","center","scale","pca"))
trans
## Created from 1009 samples and 58 variables</pre>
```

```
##
## Pre-processing:
     - Box-Cox transformation (47)
##
##
     - centered (58)
##
     - ignored (0)
##
     - principal component signal extraction (58)
     - scaled (58)
##
##
## Lambda estimates for Box-Cox transformation:
##
       Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                     Max.
## -2.00000 -0.50000 -0.10000 0.05106 0.30000
                                                 2.00000
##
## PCA needed 19 components to capture 95 percent of the variance
```

```
# Apply the transformations
transformed <- predict(trans, segData)
# These values are different than the previous PCA components since they were transformed prior to PCA
head(transformed[,1:5])</pre>
```

```
## PC1 PC2 PC3 PC4 PC5

## 2 1.5684742 6.2907855 -0.3333299 -3.063327 -1.3415782

## 3 -0.6664055 2.0455375 -1.4416841 -4.701183 -1.7422020

## 4 3.7500055 -0.3915610 -0.6690260 -4.020753 1.7927777

## 12 0.3768509 -2.1897554 1.4380167 -5.327116 -0.4066757

## 15 1.0644951 -1.4646516 -0.9900478 -5.627351 -0.8650174

## 16 -0.3798629 0.2173028 0.4387980 -2.069880 -1.9363920
```

The order in which the possible transformation are applied is transformation, centering, scaling, imp

Filtering

```
nearZeroVar(segData)
## integer(0)
correlations <- cor(segData)</pre>
dim(correlations)
## [1] 58 58
correlations[1:4,1:4]
##
                                 AreaCh1 AvgIntenCh1 AvgIntenCh2
                   AngleCh1
              1.000000000 -0.002627172 -0.04300776 -0.01944681
## AngleCh1
## AreaCh1
             -0.002627172 1.000000000 -0.02529739 -0.15330301
## AvgIntenCh1 -0.043007757 -0.025297394 1.00000000 0.52521711
## AvgIntenCh2 -0.019446810 -0.153303007 0.52521711 1.00000000
library(corrplot)
corrplot(correlations, order="hclust")
```


highCorr <- findCorrelation(correlations, cutoff=.75)
length(highCorr)</pre>

[1] 32

head(highCorr)

[1] 23 40 43 36 7 15

filteredSegData <- segData[,-highCorr]</pre>

Creating dummy variables

```
data(cars)
type <- c("convertible", "coupe", "hatchback", "sedan", "wagon")</pre>
cars$Type <- factor(apply(cars[, 14:18], 1, function(x) type[which(x == 1)]))</pre>
carSubset <- cars[sample(1:nrow(cars), 20), c(1, 2, 19)]</pre>
head(carSubset)
##
         Price Mileage Type
## 612 17944.86 19592 sedan
## 322 12846.06 27560 sedan
## 81 11149.62 34447 coupe
## 233 24903.48 40719 wagon
## 120 19774.25 23359 sedan
## 752 35895.50 23056 sedan
levels(carSubset$Type)
## [1] "convertible" "coupe"
                                "hatchback"
                                                "sedan"
                                                              "wagon"
simpleMod <- dummyVars(~Mileage+Type, data=carSubset, levelsOnly=TRUE)</pre>
simpleMod
## Dummy Variable Object
## Formula: ~Mileage + Type
## 2 variables, 1 factors
## Factor variable names will be removed
## A less than full rank encoding is used
predict(simpleMod,head(carSubset))
      Mileage convertible coupe hatchback sedan wagon
##
## 612
        19592
                     0
                              0
## 322 27560
                       0
                              0
                                       0
                                              1
## 81
        34447
                       0
                             1
                                       0
                                              0
## 233
                       0
                             0
                                              0
       40719
                                       0
                                                    1
## 120
        23359
                        0
                              0
                                        0
                                              1
## 752
                        0
                              0
        23056
withInteraction <- dummyVars(~Mileage + Type + Mileage:Type, data=carSubset, levelsOnly=TRUE)
withInteraction
## Dummy Variable Object
## Formula: ~Mileage + Type + Mileage:Type
## 2 variables, 1 factors
## Factor variable names will be removed
## A less than full rank encoding is used
```

predict(withInteraction, head(carSubset))

##		Mileage	convertibl	e coup	ре	hatchback	sedan	wagon	
##	612	19592		0	0	0	1	0	
##	322	27560		0	0	0	1	0	
##	81	34447		0	1	0	0	0	
##	233	40719		0	0	0	0	1	
##	120	23359		0	0	0	1	0	
##	752	23056		0	0	0	1	0	
##		Mileage:	Typeconver	tible	Mi	leage:Type	ecoupe	Mileag	ge:Typehatchback
##	612			0			0		0
##	322			0			0		0
##	81			0			34447		0
##	233			0			0		0
##	120			0			0		0
##	752			0			0		0
##		Mileage:	Typesedan	Mileag	ge:	Typewagon			
##	612		19592			0			
##	322		27560			0			
##	81		0			0			
##	233		0			40719			
##	120		23359			0			
##	752		23056			0			