	Ryan Pollack
1	Consider how we would compute the power of Nk!
	As given in the problem, M. W. N. N. N. Where
	the number of Ns is based on the value of k (or "k times")-
	So, if k = 1, the number of multiplications required to
	compute N' is 1. If ks? it would take 2 multiplications:
	K I humber of multiplications needed to compute N'
	2
	3
	4 4
	5 5
	As seen from the table, as kinereuses, the reeded -
\	humber of multiplications to compute N' increases -
	linearly with it. Therefore, we know computing 11th
	will take O(k) multiplications.
2	Consider how we could compute the power of N', where
	NK = N2k = (N2)k = N2. N2. N2. N2. N3. N2. where the number -
	of N's appears k times. N' can be computed by squaring -
	Nink multiplications based on the given assumptions -
	ks 2" and N' taking Olk multiplications from problem! -
	From this, we know (N2) is calculated in k nultiplications-
	via regeated; squaring. Therefore, N' ian be computed in -
	O(k) multiplications via repeated squaring.
1	

computing Nk by repeated squaring it requires of most 2109k multiplications, as shown in problem 4. As the numbers get bigger so that k > 00, we know that: lin 210g, k = 0 Therefore, multiplication by repeated squaring is asymptotically far better than multiplying N by itself k times. The overall complexities are Klfor multiplying N together k times and 2logk (for multiplication by repeated squaring) Bonus Considering each multiplication costs about OllogN)2, computing N! requires N-1 multiplications as shown below: 1092N+1093(N·(N-1))+11+1093(N!)=