Introduction to Multi-dimensional Arrays

✓1D Array:

Assume Size (Ent) = 48 / Base add's = 1000/

- 1) All the elements in the 1d array are of same type
- 2) the memory locations should be contigious

2D Array :-

L> collection of 10 Arrays.

C D C D C D C D

√ 3D Array :-

6) Print the Diagonal elements of a square matrix :-

Print the Diagonal elements of a square matrix :-

Print the Diagonal elements of a square matrix :--


```
function printDiagonalElements(arr,n)
{
    i=0, j=n-1
    while(i<n and j>=0)
    {
        print(arr[i][j])
        i=i+1
        j=j-1
    }
```



```
function printDiagonalElements(arr,n)
      for(i=0;i<n;i++)
             print(arr[i][i])
      i=0, j=n-1
      while(i<n and j>=0)
             if(i!=j)
                    print(arr[i][j])
             i=i+1
             j=j-1
```

√N traversal

Description

You are given a matrix of size n x n. Find the Ntraversal of the matrix. Refer the following figure for better understanding.

Input

The first line contains T, the number of test cases. The first line of each test case contains N, the size of the square matrix.

Next N lines contain N space separated integers, denoting the values of the matrix.

034 024 014 004 1 fixed (n-1) i=n-2 to 0 for(i=n-2; i>0; i--) E print (a(i) (n-1))

Description

Given a square matrix of size N x N. Print the Z traversal of the matrix. Refer the figure given below for better understanding.

Input

The first line of the input contains T, the number of test cases. The first line of each test case contains N, the dimension of the square matrix.

Next N lines contains N space separated integers, denoting the values of the matrix.

Constraints

1 <= T <= 10

1 <= N <= 500

1 <= A[i][j] <= 1000

Description

Given a square matrix, you have to find the reverse U traversal of the matrix. Refer the sample I/O for better understanding. Refer the given figure for better understanding.

Note: No element should be visited more than once.

A	6	1	2	2	Ч	
0	0,00	Q ø j	002	0.03	Доц	
,	0.10	On	an	ays	014	
2	میه	a 21	022	a ₂₃	₁	
3	azo	a ₃₁	032	Q33	O ₃₄	
ч	Q th D	ayı	۵٤رو	auz	Опч	5 % 5

- -

Diamond Traversal

Description

Given a square matrix of odd length, print the matrix elements in the order shown in the figure:

	6	P	2_	3	4	5	Ь	7	8
יס									
1			8						
2									
3									
Ч									
5									
6									
7									
8								Ĭ	