Convertitori di potenza DC/DC

- 1. Convertitore DC/DC in discesa
- 2. Convertitore DC/DC in salita
- 3. Convertitore DC/DC salita-discesa
- 4. Convertitore DC/DC a ponte con PWM

CONVERTITORE DC/DC IN DISCESA (BUCK)

Load

Il blocco di controllo mantiene l'uscita retroazionata

Modo 1: Q₁ ON

$$0 \le t < \rho T$$

$$L\frac{di_L}{dt} = V_s - V_{u0} > 0$$

$$\left(\Delta I_{L}\right)_{1} = \frac{V_{s} - V_{u0}}{I} t_{ON}$$

$$i_L(0) = I_1$$
 $i_L(\rho T) = I_2$

i_L cresce linearmente e quindi anche i_C:

$$i_C = i_L - I_a$$
 i_C ha valor medio nullo, quindi $I_L = I_a$

$$\left(\Delta I_L\right)_{\!2} = -\frac{V_{u0}}{L}\,t_{OFF}$$

Dimostriamo che è in discesa

In regime stazionario dovrà essere: $(\Delta I_L)_1 = -(\Delta I_L)_2$

$$\frac{V_s - V_{u0}}{L} t_{ON} = \frac{V_{u0}}{L} t_{OFF} \qquad \Rightarrow \qquad V_{u0} = \frac{t_{ON}}{T} V_s = \rho V_s \qquad \text{(mediante ρ controllo il valore di V_{u0}, fra 0 e V_s)}$$

Ripple di corrente e di tensione:

$$\Delta I = \frac{\rho V_s}{L} (T - \rho T) = \frac{\rho (1 - \rho) V_s}{fL}$$
 \Rightarrow si dimensiona L per limitare ΔI

$$\Delta V_{u} = \Delta V_{C} = \frac{1}{C} \int_{\frac{t_{on}}{2}}^{t_{on} + \frac{t_{off}}{2}} i_{C}(t) dt = \frac{1}{C} \frac{1}{2} \frac{T}{2} \frac{\Delta I_{L}}{2} = \frac{T}{8C} \frac{V_{u0} t_{OFF}}{L} = \frac{\rho (1 - \rho) V_{s}}{8LCf^{2}} \qquad \Rightarrow \text{ per limitare } \Delta V_{u} \text{ si agisce su } C$$

Caso peggiore (sia per ΔI che per ΔV): $\rho = 0.5$ Un'alta frequenza di switching riduce il ripple sia di V che di I

CONVERTITORE DC/DC IN SALITA (BOOST)

Limiti all'aumento di p

- Aumenta V_µ ⇒ limiti dei componenti attivi e passivi (V_{BD} del MOS e del diodo).
- Diminuisce t_{OFF} ⇒ possono diventare critici i tempi di commutazione del MOS.
- La pendenza di $V_u = f(\rho)$ cresce con ρ , quindi si perde capacità di regolazione.
- Aumenta la corrente in ingresso, infatti, poiché il convertitore è non dissipativo, si ha: $V_s I_s = V_{u0} I_{u0} = \frac{V_s}{1-0} I_{u0} \implies I_s = \frac{I_{u0}}{1-0}$

$$V_{s}I_{s} = V_{u0}I_{u0} = \frac{V_{s}}{1-\rho}I_{u0} \implies I_{s} = \frac{I_{u0}}{1-\rho}I_{s}$$

Dimensionamento del filtro

Valgono tutte le considerazioni fatte per il convertitore Buck. Qui si ottiene:

$$\Delta I_L = \frac{t_{ON} V_s}{L} = \frac{\rho V_s}{fL} \qquad \Rightarrow \text{si dimensiona L}$$

$$\Delta V_{u} = \Delta V_{C} = (dal \ mod \ o \ 1) = \rho T \frac{1}{C} I_{u0} = \frac{\rho I_{u0}}{fC}$$
 \Rightarrow si dimensiona C

DC-DC 5 P. Cova

CONVERTITORE DC/DC SALITA-DISCESA (BUCK-BOOST)

CONVERTITORI DC/DC a singolo transistore (riassunto)

Tensione media e corrente media del carico possono essere soltanto positive (funzionamento a un solo quadrante):

Applicazione: CONTROLLO DI UN MOTORE IN CONTINUA

La velocità del motore è proporzionale alla tensione media La coppia del motore è proporzionale alla corrente media Con un convertitore a ponte è possibile un controllo completo (4 quadranti):

CONVERTITORE DC/DC A PONTE INTERO

Ogni switch può assumere tre stati:

- OFF (aperto)
- ON (chiuso, ma corrente nel diodo)
- ON-conducting (chiuso, con corrente)

Quando uno switch è chiuso, il verso della corrente determina se questa scorre in esso o nel diodo

In ogni istante in ciascuna gamba (A e B) uno e un solo switch è ON. In realtà: **blanking time** (entrambi OFF) per evitare cortocircuito dell'alimentazione in commutazione

$$T_{A+}$$
 ON, T_{A-} OFF: \Rightarrow $V_{AN} = V_{d}$

$$T_{A-}$$
 ON, T_{A+} OFF: \Rightarrow $V_{AN} = 0$

$$V_{AN} = \frac{V_d \cdot t_{ON} + 0 \cdot t_{OFF}}{T_s} = \frac{t_{ON}}{T_s} \, V_d = \rho_A \cdot V_d$$

Analogamente:
$$V_{BN} = \rho_B \cdot V_d$$

$$V_{o} = V_{AN} - V_{BN}$$

 \Rightarrow si controlla V_o (pos/neg) coi duty cycle.

Pulse Width Modulation (PWM:)

- Con switch di tensione bipolare (le due gambe commutano dualmente)
- Con switch di tensione unipolare (le due gambe commutano indipendentemente)

PWM con switching bipolare

 T_{A+} e T_{B-} sono simultaneamente ON o OFF. T_{A-} e T_{B+} sono ON in coppia dualmente agli altri.

I segnali di controllo sono generati dalla comparazione fra l'onda triangolare v_{tri} (fissa) e la tensione di controllo v_{control} (variabile):

$$v_{control} > v_{tri} \implies T_{A_{+}}, T_{B_{-}} \text{ ON}; T_{A_{-}}, T_{B_{+}} \text{ OFF}$$
 $v_{control} < v_{tri} \implies T_{A_{+}}, T_{B_{-}} \text{ OFF}; T_{A_{-}}, T_{B_{+}} \text{ ON}$

$$t_{1} = \frac{v_{control}}{\hat{V}_{tri}} \cdot \frac{I_{s}}{4} \implies t_{onA+} = 2t_{1} + \frac{I_{s}}{2}$$

$$\rho_{A+} = \frac{t_{onA+}}{T_{s}} = \frac{1}{2} \left(1 + \frac{v_{control}}{\hat{V}_{tri}} \right)$$

 $V_0 = V_{AN} - V_{BN} = \rho_{A+} V_d - \rho_{B+} V_d =$

$$\rho_{B+} = (1 - \rho_{A+})$$

$$= (2\rho_{A+} - 1)V_d = \frac{V_d}{\hat{V}_{d-1}} v_{control} = k \cdot v_{control}$$

