© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°07

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Petites Mines 2002 – Exemples de matrices semblables à leur inverse

Dans tout le problème, E est un R-espace vectoriel de dimension 3.

Partie I -

- **I.1** Démontrer que deux matrices semblables de $\mathcal{M}_3(\mathbb{R})$ ont même déterminant.
- **I.2** Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de Ker u^{i+j} vers E définie par : $w(x) = u^j(x)$.
 - **I.2.a** Montrer que $\operatorname{Im} w \subset \operatorname{Ker} u^i$.
 - **I.2.b** En déduire que dim(Ker u^{i+j}) \leq dim(Ker u^i) + dim(Ker u^j).
- **I.3** Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et rg u = 2.
 - **I.3.a** Montrer que dim(Ker u^2) = 2. (On pourra utiliser deux fois la question **I.2.b**).
 - **I.3.b** Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - **I.3.c** Écrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- **I.4** Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et rg u = 1.
 - **I.4.a** Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - **I.4.b** Justifier l'existence d'un vecteur c de Ker u tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - **I.4.c** Écrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie II -

Soit désormais une matrice A de $\mathcal{M}_3(\mathbb{R})$ semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$.

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} .

On pose alors $N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$, et soit une matrice P de $GL_3(\mathbb{R})$ telle que $P^{-1}AP = T = I_3 + N$.

- **II.1** Expliquer pourquoi la matrice A est bien inversible.
- **II.2** Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- II.3 On suppose dans cette question que N = 0, montrer alors que les matrices A et A^{-1} sont semblables.
- II.4 On suppose dans cette question que rg N = 2. On pose $M = N^2 N$.
 - **II.4.a** En utilisant la question **I.3**, montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et

en déduire une matrice semblable à la matrice M.

- **II.4.b** Calculer M³ et déterminer rg M.
- II.4.c Montrer que les matrices M et N sont semblables.
- **II.4.d** Montrer alors que les matrices A et A^{-1} sont semblables.
- **II.5** On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- **II.6 Exemple**: soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note (a, b, c) une base de E et u l'endomorphisme de E de matrice A dans cette base.

- **II.6.a** Montrer que $Ker(u id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1, e_2) .
- **II.6.b** Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- **II.6.c** Montrer que les matrices A et A^{-1} sont semblables.
- **II.7** Réciproquement, toute matrice de $\mathcal{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à

une matrice du type
$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$
?