MTH 411 Post Midterm Notes

Philip Warton

November 4, 2020

1 Midterm Solutions and Review

1.1 Let (M,d) be a metric space with the discrete metric. Show that any convergent sequence is eventually constant.

Proof. Let (x_n) be a convergent sequence in the space. Choose $\epsilon = 1$. Our sequence will eventually be in the epsilon ball of its limit, and therefore it will be eventually constant.

1.2 The set $A = \{y \in M : d(x,y) \le r\}$ is called the closed ball with radius r about x.

1.2.1 Show that A is closed.

Proof. Assume that (y_n) is a convergent sequence in A. We will show that its limit is in A. Let $\epsilon > 0$ be arbitrary. Then,

$$d(x,y) \leqslant d(x,y_n) + d(y_n,y) \leqslant r + \epsilon$$

Since this is true for any $\epsilon > 0$ we say that $d(x, y) \leq r$, and $y \in A$.

1.2.2 Give an example where A is not the closure of the open ball.

Choose the space of integers, with an open ball radius 1 around 0. Then $B_1(0) = \{0\}$ is already closed, and is a proper subset of A.

1.3 If $x_n \to x$ in a metric space, show that $d(x_n, y) \to d(x, y)$.

Proof. By the reverse triangle inequality and the squeeze theorem, the result follows trivially.

1.4 Show that the collection of polynomials with integer coefficients is countable.

Proof. Let \mathcal{P} be the set of all polynomials with integer coefficients, \mathcal{P}_n be the set of polynomials $p(x) = \sum_{k=0}^n a_k x^k$ with integer coefficients and degree at most n. Then

$$\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$$

To show that \mathcal{P}_n are countable, map \mathcal{P}_{n-1} onto Z^n with the bijection:

$$f(z_1, z_2, \cdots, z_3) = \sum_{k=1}^{n} z_k x^k$$

Then we assume that \mathbb{Q}^n is countable, and $\mathbb{Z}^n \subset \mathbb{Q}^n$ and we say that \mathcal{P} must be countable.

2 Continuity

3 Homeomorphisms

4 Completeness

Definition 4.1 (Totally Bounded). We define total boundedness to be the following: a set A in a metric space (M,d) is totally

bounded \Leftrightarrow

$$\forall \epsilon > 0, \exists n \in \mathbb{N}, x_1, \cdots, x_n \in M : A \subset \bigcup_{j=1}^n B_{\epsilon}(x_j)$$

If we look at $B_1(0) \in l_1$, we find that although this set is bounded, it is not totally bounded.

Theorem 4.1. We can characterize total boundedness by: $\forall \epsilon > 0 \exists n \in \mathbb{N}, A_1, \dots, A_n \subset A \text{ such that } \operatorname{diam}(A_j) < \epsilon, j = 1, \dots, n \text{ and } A \subset \bigcup_{j=1}^n A_j.$

The property of total boundedness can be considered as a generalization of compactness.

Definition 4.2 (Bounded). We say that a set $A \subset M$ is bounded if there exists some ball of finite radius such that A is contained in this ball.

Lemma 4.1. Let (x_n) be a sequence in (M,d) and $A = \{x_n | n \in \mathbb{N}\}$ its range.

- (i) if (x_n) is Cauchy, then A is totally bounded
- (ii) if A is totally bounded, then x_n has a Cauchy subsequence

Proof. (i) Let $\epsilon > 0$ be arbitrary. Since (x_n) is Cauchy, we say that for some $N \in \mathbb{N}$, for every $m, n \geq N, d(x_m, x_n) < \epsilon$. So we say that $\bigcup_{n=1}^N B_{\epsilon}(x_n) \supset A$ and is a finite union of open balls, and is therefore open.

(ii) If A is finite, then every sequence $(x_n) \in A$ has a constant subsequence. Otherwise, A will be infinite.

Definition 4.3. A metric space (M, d) is complete if every Cauchy sequence in M converges to a point in M.

Of course the set of real numbers will be complete, however the set of rational numbers will not be complete. The Lebesgue space ℓ_2 is complete. To prove this is fairly difficult.