UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT1110 — Kalkulus og lineær algebra.

Eksamensdag: Fredag 14. juni 2013.

Tid for eksamen: 14.30-18.30

Oppgavesettet er på 4 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Alle deloppgaver (1a, 1b, 2a, 2b, 3 osv.) teller 10 poeng. Du må begrunne alle svar, og du må vise nok mellomregninger til at man lett kan følge argumentene dine.

Oppgave 1 La A_a være matrisen

$$A_a = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 4 & a \end{array}\right)$$

 $der \ a \in \mathbb{R}.$

- a) Avgjør for hvilke verdier av a matrisen A_a er inverterbar.
- b) I det tilfellet der A_a ikke er inverterbar, skriv en kolonne i A_a som en lineærkombinasjone av to andre.

Løsning: a)

$$A_a = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 4 & a \end{array}\right)$$

 \sim

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & -8 \\
0 & 0 & a-6
\end{array}\right)$$

Ser at $det(A_a) \neq 0 \Leftrightarrow a \neq 6$, så A_a er inverterbar for $a \neq 6$. b) Vi har at

$$A_6 \sim \left(\begin{array}{ccc} 1 & 2 & 3\\ 0 & -4 & -8\\ 0 & 0 & 0 \end{array}\right)$$

 \sim

$$\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)$$

(Fortsettes på side 2.)

, så vi ser at $(3,1,6) = 2 \cdot (2,2,4) - (1,3,2)$.

Oppgave 2 Vi betrakter potensrekken $f(x) = \sum_{n=3}^{\infty} \frac{x^n}{n-2}$.

- a) Finn konvergensområdet til rekken.
- b) Summer rekken.

Løsning: a) Vi bruker forholdstesten: $\lim_{n\to\infty}\frac{|x|^{n+1}/(n-1)}{|x|^n/(n-2)}=\lim_{n\to\infty}\frac{n-2}{n-1}|x|=|x|$. Dette viser at rekka konvergerer for |x|<1. Sjekker endepunkter: For x=-1 ser vi at vi har en alternerende rekke med ledd som avtar mot null, så rekka konvergerer for x=-1. For x=1 har vi $\sum_{n=3}^{\infty}\frac{1}{n-2}=\sum_{n=1}^{\infty}\frac{1}{n}$ som vi vet divergerer. Så konvergensområdet er [-1,1). b) Vi starter med å skrive $f(x)=x^2\cdot\sum_{n=3}^{\infty}\frac{x^{n-2}}{n-2}=x^2\cdot\sum_{n=1}^{\infty}\frac{x^n}{n}=x^2\cdot g(x)$. Vi finner g(x). Vi ser at $g'(x)=\sum_{n=0}^{\infty}x^n=\frac{1}{1-x}$, så $g(x)=-\log(1-x)+C$. Siden g(0)=0 har vi C=0. Så $f(x)=-x^2\log(1-x)$.

Oppgave 3

La A være ellipsoiden

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + (2y)^2 + z^2 = 1\}.$$

Bruk Lagrange's multiplikatormetode til å finne punktene på A som ligger nærmest punktet (1/2,0,0).

Løsning: La $f(x,y,z)=(x-1/2)^2+y^2+z^2$. Problemet er da å minimere f under bibetingelsen $g(x,y,z)=x^2+(2y)^2+z^2=1$. Bruker vi Lagrange må vi da løse $\nabla f(x,y,z)=\lambda\cdot\nabla g(x,y,z)$. Vi har $\nabla f(x,y,z)=(2(x-1/2),2y,2z)$ og $\nabla g(x,y,z)=(2x,8y,2z)$. Så vi må løse ligningene

- (i) $x 1/2 = \lambda x$
- (ii) $y = 4\lambda y$
- (iii) $z = \lambda z$

Dersom $z \neq 0$ får vi fra (iii) at $\lambda = 1$. (i) gir da at x - 1/2 = x som er umulig.

Ser videre på tilfellet z=0. Dersom $y\neq 0$ får vi fra (ii) at $\lambda=1/4$, som via (i) gir x=2/3. Fra bibetingelsen får vi at $(2/3)^2+4y^2=1$ som gir at $y=\pm 1/2\sqrt{1-4/9}=\pm \sqrt{5}/6$, og $f(2/3,\sqrt{5}/6,0)=1/6$.

Dersom også y=0 er det bare $x=\pm 1$ som er aktuelle punkter, og f(-1,0,0)=9/4 og f(1,0,0)=1/4.

Siden 1/6 < 1/4 < 9/4 ser vi at punktene $(2/3,\pm\sqrt{5}/6,0)$ er de nærmeste.

Oppgave 4

La B være matrisen

$$B = \left(\begin{array}{cc} 5/4 & 1/2 \\ -3/8 & 1/4 \end{array}\right)$$

a) Finn egenverdiene og egenvektorene for matrisen B.

(Fortsettes på side 3.)

b) La $\mathbf{w} = (2, -5)$. Finn $\lim_{n \to \infty} B^n \mathbf{w}$.

Løsning: a) Det karakteristiske polynomet blir

$$(\lambda - 5/4) \cdot (\lambda - 1/4) + 3/16 = \lambda^2 - 3/2 + 1/2,$$

så egenverdiene er gitt ved

$$\lambda = \frac{3/2 \pm \sqrt{9/4 - 2}}{2} = \frac{3 \pm \sqrt{1}}{4},$$

som gir $\lambda_1=1$ og $\lambda_2=1/2$. Egenvektoren tilhørende λ_1 : Løser ligningene 5/4x+1/2y=x og -3/8x+1/4y=y. Andre ligning gir x=-2y så vi kan velge $\mathbf{v}_1=(-2,1)$. Egenvektoren tilhørende λ_2 : Løser ligningene 5/4x+1/2y=1/2x og -3/8x+1/4y=1/2y. Andre ligning gir y=-3/2x så vi kan velge $\mathbf{v}_2=(1,-3/2)$. Videre ser vi at $(2,-5)=(-2,1)+4\cdot(1,-3/2)$, og siden vi da har at

$$B^n \mathbf{w} = (-2, 1) + (1/2)^n 4 \cdot (1, -3/2),$$

ser vi at $\lim_{n\to\infty} B^n \mathbf{w} = (-2,1)$.

Oppgave 5 La $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ og la $B = \{(x,y) \in \mathbb{R}^2 : (\frac{x-x_0}{a})^2 + (\frac{y-y_0}{b})^2 \le 1\}$ for $(x_0,y_0) \in \mathbb{R}^2$ og $a,b \in \mathbb{R}$. Videre, la $F = \mathbb{R}^2 \to \mathbb{R}^2$ være avbildingen $F(x,y) = (x_0 + ax, y_0 + by)$. Vis at F avbilder A på B og at F har en invers F^{-1} som avbilder B på A. Bruk F til å vise følgende formel for integrasjon i ellipsekoordinater: La f(x,y) være en kontinuerlig funksjon på B. Da er

$$\int \int_B f(x,y) dx dy = \int_0^1 \int_0^{2\pi} f(x_0 + ar\cos(t), y_0 + br\sin(t)) abr dr dt.$$

Løsning: Vi har at $(\frac{(x_0+ax)-x_0}{a})^2 + (\frac{(y_0+bx)-y_0}{b})^2 = x^2 + y^2$, så hvis $(x,y) \in A$ så er $F(x,y) \in B$. Hvis vi setter $G(x,y) = (\frac{x-x_0}{a}, \frac{y-y_0}{b})$ er det lett å se at G(F(x,y)) = (x,y), så $G = F^{-1}$, og per definisjon er $F^{-1}(B)$ inneholdt i A. Vidre har vi at Jacobideterminanten til F er konstant lik ab, så ved skifte-av-variabel-formelen har vi at

$$\int \int_{B} f(x,y)dxdy = \int \int_{A} f(x_0 + ax, y_0 + by)abdxdy,$$

og formelen over får vi nå ved å bruke polarkoordinater.

Oppgave 6

La $f(x, y, z) = z + 4x^2 - 8x + 4 + y^2 - 4y$, og la Z være mengden

$$Z = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\}.$$

- a) La Γ være mengden $\Gamma=\{(x,y,z)\in Z:z=0\}$. Hvilket kjeglesnitt fremstiller Γ ?
- b) Finn volumet av det begrensete området avgrenset av (x, y)-planet og Z.

Løsning: a) Vi har

$$4x^2 - 8x + 4 + y^2 - 4y = 0 \Leftrightarrow (1)$$

$$4(x-1)^2 + (y-2)^2 - 4 = 0 \Leftrightarrow (2)$$

$$(x-1)^2 + (\frac{y-2}{2})^2 = 1, (3)$$

så vi ser at Γ er en ellipse med senter (1,2). b) La A være det begrensede området i (x,y)-planet avgrenset av Γ . Vi får da at volumet er lik

$$V = \int \int_A 4 - 4(x - 1)^2 - (y - 2)^2 dx dy.$$

Bruker vi ellipsekoordinatene fra forrige oppgave, $x=1+r\cos(t),y=2+2r\sin(t),r\in[0,1],t\in[0,2\pi]$, får vi

$$V = \int_0^1 \int_0^{2\pi} (4 - 4r^2 \cos^2(t) - 4r^2 \sin^2(t)) \cdot 2r dr dt \tag{4}$$

$$=8 \cdot \int_{0}^{2} \int_{0}^{2\pi} r - r^{3} dr dt \tag{5}$$

$$=16\pi \int_{0}^{1} r - r^{3} dr \tag{6}$$

$$=4\pi. (7)$$

SLUTT