Electron-electron scattering implementation in DMD code

I. DENSITY MATRIX DYNAMICS WITH ELECTRON-ELECTRON SCATTERING

A. General master equaiton

According to Eq. (11.38), (11.51), (3.23) and (1.11) in thesis of R. Rosati, for electron-electron scattering (I also have derived it in another write-up Lindblad_ElecElec_derivation.pdf)

$$\frac{\partial \rho_{12}}{\partial t}|_{ee} = \frac{1}{2} \sum_{345} \left[(I - \rho)_{13} P_{32,45} \rho_{45} - (I - \rho_{45}) P_{45,13}^* \rho_{32} \right] + H.C., \tag{1}$$

$$P_{12,34} = 2 \sum_{56,78} (I - \rho)_{65} \mathscr{A}_{15,37} \mathscr{A}_{26,48}^* \rho_{78},$$

$$\mathscr{A}_{1234} = \frac{1}{2} (A_{1234} - A_{1243})$$

$$A_{1234} = \frac{1}{2} \sqrt{\frac{2\pi}{\hbar}} \left(g_{1234} \delta_{1234}^{1/2} + g_{2143} \delta_{2143}^{1/2} \right),$$

$$g_{1234} = \langle 1(r) | \langle 2(r') | V(r - r') | 3(r) \rangle | 4(r') \rangle$$

$$= V(q_{13}, \omega_{13}) \delta_{k_1 + k_2, k_3 + k_4} \langle 1 | 3 \rangle \langle 2 | 4 \rangle,$$

where $\delta_{1234} = \delta^G (\epsilon_1 + \epsilon_2 - \epsilon_3 - \epsilon_4)$ is Gaussian function, $q_{13} = k_1 - k_3$ and $\omega_{13} = \epsilon_1 - \epsilon_3$. Moreover, since $V(q,\omega) = V(-q,-\omega)$, we have

$$A_{1234} = \sqrt{\frac{2\pi}{\hbar}} g_{1234} \delta_{1234}^{1/2}.$$

B. Direct and exchange parts

Expand the first term of Eq. 1,

$$\begin{split} \sum_{345} \left(I - \rho \right)_{13} P_{32,45} \rho_{45} &= \frac{1}{2} \sum_{3456789} \left(I - \rho \right)_{13} \left(I - \rho \right)_{76} \left(A_{3648} - A_{3684} \right) \left(A_{2759} - A_{2795} \right)^* \rho_{89} \rho_{45} \\ &= \frac{1}{2} \sum_{3456789} \left(I - \rho \right)_{13} \left(I - \rho \right)_{76} \left[\begin{array}{c} A_{3648} A_{2759}^* + A_{3684} A_{2795}^* \\ -A_{3648} A_{2795}^* - A_{3684} A_{2759}^* \end{array} \right] \rho_{89} \rho_{45}. \end{split}$$

By exchange the indices 8 and 4, and 9 and 5, we can easily find that

$$\begin{split} \sum_{4589} A_{3648} A_{2759}^* \rho_{89} \rho_{45} &= \sum_{4589} A_{3684} A_{2795}^* \rho_{89} \rho_{45}, \\ \sum_{4589} A_{3648} A_{2795}^* \rho_{89} \rho_{45} &= \sum_{4589} A_{3684} A_{2759}^* \rho_{89} \rho_{45}. \end{split}$$

Therefore, we can define the direct and exchange parts of P as

$$\begin{split} P^{d}_{1234} &= \sum_{56,78} (I - \rho)_{65} \, A_{1537} A^*_{2648} \rho_{78}, \\ P^{ex}_{1234} &= \sum_{56,78} (I - \rho)_{65} \, A_{1537} A^*_{2684} \rho_{78}. \end{split}$$

Obviously, the direct part is consistent with Eq. 99 of PRB 72, 125347 (2005) in semiclassical limit.

For two degenerate bands, energy will depend only on k point, so that (in static limit for screening)

$$A_{1234} = V(q_{13}) \delta_{k_1+k_2,k_3+k_4} \langle 1|3\rangle \langle 2|4\rangle \delta^{1/2} (\epsilon_{k_1} + \epsilon_{k_2} - \epsilon_{k_3} - \epsilon_{k_4}).$$

Suppose ρ is k-diagonal,

$$P_{12,34}^{d} = \left\{ \begin{array}{l} V\left(q_{13}\right)^{2} \left\langle 1|3\right\rangle \left\langle 2|4\right\rangle \delta_{k_{1}+k_{5},k_{3}+k_{7}}\left(\epsilon_{k_{1}}+\epsilon_{k_{5}}-\epsilon_{k_{3}}-\epsilon_{k_{7}}\right) \\ \times \operatorname{Tr}\left[\left\langle 8\delta_{k_{8},k_{7}}|6\delta_{k_{6},k_{5}}\right\rangle \left(I-\rho\right)_{65}^{k_{5}} \left\langle 5|7\right\rangle \rho_{n_{7}n_{8}}^{k_{7}} \right] \end{array} \right\}.$$

Therefore, our formula reduces to Eq. 9 in PRB 79, 125206 (2009) if neglecting the exchange contribution.

C. k-diagonal approximation

Approximate ρ is k-diagonal,

$$\begin{split} \frac{\partial \rho_{n_1 n_2}^{k_1}}{\partial t}|_{ee} = & \frac{1}{2} \sum \left[\begin{array}{c} (I-\rho)_{n_1 n_3}^{k_1} P_{n_1 n_3, n_4 n_5}^{k_1, k_4} \rho_{n_4 n_5}^{k_4} \\ - (I-\rho)_{n_3 n_4}^{k_4} P_{n_3 n_4, n_1 n_5}^{k_4, k_1, *} \rho_{n_5 n_2}^{k_1} \end{array} \right] + H.C., \\ P_{n_1 n_2, n_3 n_4}^{k_1, k_3} = & \sum_{k_5 n_5 n_6 n_7 n_8} (I-\rho)_{n_6 n_5}^{k_5} \mathscr{A}_{n_1 n_5 n_3 n_7}^{k_1 k_5 k_3 k_7} \mathscr{A}_{n_2 n_6 n_4 n_8}^{k_1 k_5 k_3 k_7, *} \rho_{n_7 n_8}^{k_7}. \end{split}$$

Notice that $\mathscr{A}_{1234} = \mathscr{A}_{3412}^*$, we can define

$$\begin{split} Q_{n_1n_2,n_3n_4}^{k_1,k_3} &= P_{n_1n_2,n_3n_4}^{k_3,k_1,*} \\ &= \sum_{k_5n_5n_6n_7n_8} \left(I - \rho\right)_{n_5n_6}^{k_5} \mathscr{A}_{n_1n_5n_3n_7}^{k_3k_5k_1k_7,*} \mathscr{A}_{n_2n_6n_4n_8}^{k_3k_5k_1k_7} \rho_{n_8n_7}^{k_7} \\ &= \sum_{k_5n_5n_6n_7n_8} \left(I - \rho\right)_{n_5n_6}^{k_5} \mathscr{A}_{n_3n_7n_1n_5}^{k_1k_7k_3k_5} \mathscr{A}_{n_4n_8n_2n_6}^{k_1k_7k_3k_5,*} \rho_{n_8n_7}^{k_7} \\ &= 5 \longleftrightarrow 7, 6 \longleftrightarrow 8 \\ &= \sum_{k_7n_7n_8n_5n_6} \rho_{n_6n_5}^{k_5} \mathscr{A}_{n_3n_5n_1n_7}^{k_1k_5k_3k_7} \mathscr{A}_{n_4n_6n_2n_8}^{k_1k_5k_3k_7,*} \left(I - \rho\right)_{n_7n_8}^{k_7} \\ &= \sum_{k_5n_5n_6n_7n_8} \rho_{n_6n_5}^{k_5} \mathscr{A}_{n_3n_5n_1n_7}^{k_1k_5k_3k_7} \mathscr{A}_{n_4n_6n_2n_8}^{k_1k_5k_3k_7,*} \left(I - \rho\right)_{n_7n_8}^{k_7} . \end{split}$$

So $Q_{n_1n_2,n_3n_4}^{k_1,k_3} = P_{n_1n_2,n_3n_4}^{k_3,k_1,*} = P_{n_3n_4,n_1n_2}^{k_1,k_3}$ with ρ being replaced by $1-\rho$. The advantage of this definition is that we will only need matrices with ik1 <= ik3. Two additional things I want to mention are (i) in my implementation, I reordered the indices of matrices A or \mathscr{A} : $A_{1234} \to A_{1324}$ for doing matrix multiplications easier; (ii) matrix A is calculated without prefactor $\sqrt{2\pi/\hbar}$, I put this prefactor outside for $d\rho/dt$ instead.

II. SEMICLASSICAL LIMIT

A. Master equation

If $\rho = f$, we have

$$\frac{\partial f_1}{\partial t}|_{ee} = \sum_{2 \neq 1} \left[(I - f_1) P_{11,22} f_2 - (I - f_2) P_{22,11} f_1 \right],$$

using the facts that $P_{11,22}$ is real and "2 = 1" term is zero. $P_{11,22} = 2\sum_{34} (1 - f_3) |\mathscr{A}_{1324}|^2 f_4$. We can also separate P to two - the direct and exchange parts:

$$\begin{split} P_{1122}^d &= \sum_{34} \left(1 - f_3\right) |A_{1324}|^2 f_4, \\ P_{1122}^{ex} &= \sum_{34} \left(1 - f_3\right) A_{1324} A_{1342}^* f_4. \end{split}$$

Note that for two degenerate bands without spin-orbital coupling, for $P_{1122}^{ex} = \sum_{34} (1 - f_3) A_{1324} A_{1342}^* f_4$, it is required that states 1, 2, 3 and 4 must have the same spin, while for $P_{1122}^d = \sum_{34} (1 - f_3) |A_{1324}|^2 f_4$, it is require that 1 and 2 have the same spin and 3 and 4 have the same spin. Therefore, if sum does not run on spin, the prefactor of P^d will be double of the prefactor of P^{ex} .

B. $Im\Sigma$

Suppose the occupation of state "1" is perturbed from its equilibrium value by δf_1 , i.e., $f_1 = f_1^{eq} + \delta f_1$, insert this into the above equation and linearize it,

$$\frac{\partial f_1}{\partial t} = -\frac{2\pi}{N_k \hbar} \sum_{2 \neq 1} \left[P_{11,22} f_2 + P_{22,11} (1 - f_2) \right] \delta f_1.$$

Notice that $\delta P_{11,22} = \frac{1}{N_k} \sum_3 (1 - f_3) |\mathscr{A}_{1321}|^2 \delta f_1 - \frac{1}{N_k} \sum_3 |\mathscr{A}_{1123}|^2 f_3 \delta f_1$. Considering momentum concervation, k_3 will be fixed by k_1 and k_2 , so that there will be only one k point contribute to $\delta P_{11,22}$. Therefore, $\delta P_{11,22}$ is actually zero if N_k goes to infinite. Therefore, $\delta P_{11,22}$ terms do not contribute to $\frac{\partial f_1}{\partial t}$.

Define carrier relaxation time τ_1 by $\frac{\partial f_1}{\partial t} = -\frac{\delta f_1}{\tau_1}$, we have

$$\frac{1}{\tau_1} = \frac{2\pi}{N_k \hbar} \sum_{2 \neq 1} \left[P_{11,22} f_2 + P_{22,11} \left(1 - f_2 \right) \right]. \tag{2}$$

In my implementation, I have define $Q_{2211}^{k_1k_2} = P_{2211}^{k_2k_1}$ with f being replaced by 1-f. Considering that the contribution of k pair (k_2, k_1) with ik2 > ik1 can be expressed by the quantities of (k_1, k_2) ,

$$\begin{split} \frac{1}{\tau_2} = & \frac{2\pi}{N_k \hbar} \sum_{ik1 < ik2} \left[P_{2211}^{k_2 k_1} f_1 + Q_{1122}^{k_2 k_1} \left(1 - f_1 \right) \right] \\ = & \frac{2\pi}{N_k \hbar} \sum_{ik1 < ik2} \left[Q_{2211}^{k_1 k_2} f_1 + P_{1122}^{k_1 k_2} \left(1 - f_1 \right) \right]. \end{split}$$

C. Connection to $Im\Sigma$ from finite temperature GW

Neglecting the exchange part, insert P^d into Eq. 2,

$$\frac{1}{\tau_1} = \frac{2\pi}{N_k \hbar} \sum_{2 \neq 1.34} |A_{1324}|^2 \left[f_2 f_4 \left(1 - f_3 \right) + \left(1 - f_2 \right) f_3 \left(1 - f_4 \right) \right].$$

Considering the energy conservation $\omega = \epsilon_1 - \epsilon_2 = \epsilon_4 - \epsilon_3$, we have the relations $n(\omega) = \frac{f_1(1-f_2)}{f_2-f_1}$ and

$$f_{2}f_{4}(1 - f_{3}) = f_{2}n(\omega)(f_{3} - f_{4})$$

$$= f_{2}\frac{f_{1}(1 - f_{2})}{f_{2} - f_{1}}(f_{3} - f_{4})$$

$$= (n_{1} + 1 - f_{2})f_{1}(f_{3} - f_{4}),$$

$$(1 - f_{2})f_{3}(1 - f_{4}) = (1 - f_{2})n(-\omega)(f_{4} - f_{3})$$

$$= (1 - f_{2})\frac{f_{2}(1 - f_{1})}{f_{1} - f_{2}}(f_{4} - f_{3})$$

$$= (n_{1} + 1 - f_{2})(1 - f_{1})(f_{3} - f_{4}).$$

Therefore,

$$\frac{1}{\tau_1} = \frac{2\pi}{N_k \hbar} \sum_{2 \neq 1,34} |A_{1324}|^2 (n_1 + 1 - f_2) (f_3 - f_4).$$

The above formula is equivalent to $\text{Im}\Sigma$ given in Eq. 8 in PRB 66, 085116 (2002) based on finite-temperature GW at least in the limit G = G' = 0.