Kodavimo teorija

Vilius Stakėnas

2010 metų ruduo

Įvadas 2
Duomenų perdavimo schema
Klaidos ir jų taisymas4
Klaidos ir jų taisymas
Siuntėjai, kanalai, gavėjai
Kanalų įvairovė
Žodžiai ir perdavimo tikimybės
Kanalai be atminties
Entropija
Kanalo talpa
Kodas ir dekodavimo taisyklė12
Klaidos tikimybė
Idealaus stebėtojo taisyklė
Didžiausio tikėtinumo taisyklė
Minimalaus atstumo taisyklė
Dvinaris simetrinis kanalas
Klaidingo dekodavimo tikimybė
Shannono teorema
Kodo koeficientas
Kartojimo kodai
Stačiakampių kodai
St(m,n)
Kodai $T(r)$
Hammingo kodas H (3)
Hammingo kodas H (3)
Teisingo dekodavimo tikimybė

Įvadas 2 / 27

Duomenų perdavimo schema

3 / 27

Klaidos ir jų taisymas

$$\begin{array}{c} \text{duomenų žodis} = x_1 x_2 \dots x_k \\ \xrightarrow{\text{i kanala}} x_1 x_2 \dots x_k \xrightarrow{\text{iš kanalo}} x_1^* x_2^* \dots x_k^* \end{array}$$

Klaidų aptikti neįmanoma!

$$\begin{array}{c} \text{duomenų žodis} = x_1 x_2 \dots x_k \\ \xrightarrow{\text{i kanala}} y_1 y_2 \dots y_k y_{k+1} \dots y_n \xrightarrow{\text{iš kanalo}} y_1^* y_2^* \dots y_n^* \end{array}$$

Klaidas galima aptikti, kartais - ištaisyti!

Klaidos ir jų taisymas

$$\begin{array}{l} \text{duomenų žodis} = x_1 x_2 \dots x_k \\ \xrightarrow{\text{i kanala}} y_1 y_2 \dots y_k y_{k+1} \dots y_n \xrightarrow{\text{iš kanalo}} y_1^* y_2^* \dots y_n^* \end{array}$$

Kodo koeficientas

$$R = \frac{k}{n}.$$

5 / 27

Siuntėjai, kanalai, gavėjai

Šaltinio abėcėlė $\mathcal{A}_q,$ gavėjo abėcėlė \mathcal{B}_r :

$$\mathcal{A}_q = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_q\}, \quad \mathcal{B}_r = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_r\}$$

Dažniausiai

$$\mathcal{A} = \mathcal{B} = \{0, 1\}$$

Kanalų įvairovė

7 / 27

Žodžiai ir perdavimo tikimybės

Žodžių aibės

$$\mathcal{A}_{q}^{n} = \{ \mathbf{a} = a_{i_{1}} a_{i_{2}} \dots a_{i_{n}} : a_{i_{j}} \in \mathcal{A}_{q} \},$$

 $\mathcal{B}_{r}^{m} = \{ \mathbf{b} = b_{i_{1}} b_{i_{2}} \dots b_{i_{m}} : b_{i_{j}} \in \mathcal{B}_{r} \}$

X - siunčiamas žodis, Y - gaunamas žodis.

Tikimybės

$$\begin{aligned} p(\mathbf{a}) &= P(\mathbf{X} = \mathbf{a}), \quad p(\mathbf{b}) = P(\mathbf{Y} = \mathbf{b}), \\ p(\mathbf{a}, \mathbf{b}) &= p(\mathbf{X} = \mathbf{a}, \mathbf{Y} = \mathbf{b}), \quad p(\mathbf{b}|\mathbf{a}) = p(\mathbf{Y} = \mathbf{b}|\mathbf{X} = \mathbf{a}), \\ p(\mathbf{a}|\mathbf{b}) &= p(\mathbf{X} = \mathbf{a}|\mathbf{Y} = \mathbf{b}). \end{aligned}$$

Kanalai be atminties

Žymėjimai: $U^{(n)} \in \mathcal{A}^n$ – siunčiamas žodis, $V^{(n)} \in \mathcal{B}^n$ – gaunamas žodis.

Apibrėžimas. Perdavimo kanalą vadinsime kanalu be atminties, jeigu visiems žodžiams $\mathbf{u}=u_1u_2\dots u_n\in\mathcal{A}^n, \mathbf{v}=v_1v_2\dots v_n\in\mathcal{B}^n$ teisinga lygybė

$$P(V^{(n)} = \mathbf{v}|U^{(n)} = \mathbf{u}) = p(v_1|u_1)p(v_2|u_2)\dots p(v_n|u_n),$$

čia $p(v_j|u_j)$ reiškia tikimybę, kad pasiuntus simbolį u_j gautas simbolis v_j .

9 / 27

Entropija

X, Y - siųsti ir gauti simboliai arba žodžiai Entropija – šaltinio perduodamos informacijos kiekybinis matas:

$$H(\mathbf{X}) = \sum_{\mathbf{a}} \log_2 \frac{1}{p(\mathbf{a})} p(\mathbf{a})$$

$$H(\mathbf{Y}) = \sum_{\mathbf{b}} \log_2 \frac{1}{p(\mathbf{b})} p(\mathbf{b})$$

$$H(\mathbf{X}|\mathbf{Y} = \mathbf{b}) = \sum_{\mathbf{a}} \log_2 \frac{1}{p(\mathbf{a}|\mathbf{b})} p(\mathbf{a}|\mathbf{b})$$

$$H(\mathbf{X}|\mathbf{Y}) = \sum_{\mathbf{Y} = b} H(\mathbf{X} = \mathbf{b}|\mathbf{b}) p(\mathbf{b})$$

Kanalo talpa

Perduodamos informacijos kiekis ir kanalo talpa

$$I(\mathbf{X}|\mathbf{Y}) = H(\mathbf{X}) - H(\mathbf{X}|\mathbf{Y}),$$

 $C = max\{I(\mathbf{X}|\mathbf{Y}) : \mathbf{X} \text{ tikimybių skirstinys } \}$

11 / 27

Kodas ir dekodavimo taisyklė

Abėcėlės \mathcal{A} n ilgio žodžių kodu vadinsime bet kokį poaibį $\mathbf{C} \subset \mathcal{A}^n$.

Apibrėžimas. Dekodavimo taisykle vadinsime funkciją

$$f:\mathcal{A}^n\to\mathbf{C}.$$

12 / 27

Klaidos tikimybė

Žymime: a siunčiamus, b – gaunamus žodžius.

$$\begin{split} P(\mathsf{klaida}|\mathbf{a}) &= \sum_{b \atop f(b) \neq a} p(\mathbf{b}|\mathbf{a}) = 1 - \sum_{b \atop f(b) = a} p(\mathbf{b}|\mathbf{a}) \\ P(\mathsf{klaida}) &= \sum_{a} P(\mathsf{klaida}|\mathbf{a}) p(\mathbf{a}) \end{split}$$

Idealaus stebėtojo taisyklė

Jeigu pasirinktas kodas C, tai į kanalą siunčiami tik šio kodo žodžiai c.

Apibrėžimas. Dekodavimo taisyklę $f: \mathcal{A}^n \to \mathbf{C}$ vadinsime idealaus stebėtojo taisykle, jeigu kiekvienam $\mathbf{b} \in \mathcal{A}^n$ tenkinama sąlyga

$$p(f(\mathbf{b})|\mathbf{b}) = \max\{p(\mathbf{c}|\mathbf{b}) : \mathbf{c} \in \mathbf{C}\}.$$

14 / 27

Didžiausio tikėtinumo taisyklė

Apibrėžimas. Dekodavimo taisyklę $f: \mathcal{A}^n \to \mathbf{C}$ vadinsime didžiausio tikėtinumo taisykle, jeigu kiekvienam $\mathbf{b} \in \mathcal{A}^n$ tenkinama sąlyga

$$p(\mathbf{b}|f(\mathbf{b})) = \max\{p(\mathbf{b}|\mathbf{c}) : \mathbf{c} \in \mathbf{C}\}.$$

15 / 27

Minimalaus atstumo taisyklė

Tegu $\mathbf{x}, \mathbf{y} \in \mathcal{A}^n, \mathbf{x} = x_1 x_2 \dots x_n, \mathbf{y} = y_1 y_2 \dots y_n,$

$$h(\mathbf{x}, \mathbf{y}) = \sum_{i=1,\dots,n \atop x_i \neq y_i} 1.$$

Apibrėžimas. Dekodavimo taisyklę $f:\mathcal{A}^n\to\mathbf{C}$ vadinsime minimalaus atstumo taisykle, jeigu kiekvienam $\mathbf{b}\in\mathcal{A}^n$ tenkinama sąlyga

$$h(\mathbf{b}, f(\mathbf{b})) = \min\{h(\mathbf{b}, \mathbf{c}) : \mathbf{c} \in \mathbf{C}\}.$$

Dvinaris simetrinis kanalas

$$\mathcal{A}_q = \mathcal{B}_r = \mathcal{B} = \{0, 1\}, \quad p(0|1) = p(1|0) = p,$$

 $\mathcal{C} = 1 - p \log_2 p - (1 - p) \log_2 (1 - p)$

17 / 27

Klaidingo dekodavimo tikimybė

Tarkime, informacija yra užrašyta abėcėlės $\mathcal{B}=\{0,1\}$ abėcėlės žodžiais, o ją reikia perduoti simetriniu be atminties kanalu, kuris su tikimybe $p\ (0 kiekvieną simbolį iškreipia. Į kanalą siunčiami kodo <math>\mathbf{C} = \{\mathbf{x}_1, \dots, \mathbf{x}_M\}, \mathbf{x}_i \in \mathcal{B}^n$, dekodavimui naudojama minimalaus atstumo taisyklė.

Vidutinė klaidingo dekodavimo tikimybė:

$$P_C = rac{1}{M} \sum_{i=1}^M P(ext{klaidingai dekoduota} | \mathbf{x}_i).$$

18 / 27

Shannono teorema

Teorema. (Claude Shannon, 1948) Tegu skaičius R tenkina nelygybę

$$0 < R < 1 - p \log_2 \frac{1}{p} - q \log_2 \frac{1}{q}, \quad q = 1 - p.$$

Tada egzistuoja kodai $\mathbf{C}_n=\{x_1,\ldots,x_{M_n}\}\subset\{0;1\}^n,\,M_n=2^{[nR]},$ kad $P_{C_n}\to 0,$ kai $n\to+\infty.$

Kodo koeficientas

Apibrėžimas. Kodo $\mathbf{C} \subset \mathcal{B}^n$ koeficientu vadinamas skaičius

$$R(\mathbf{C}) = \frac{\log_2 |\mathbf{C}|}{n}.$$

20 / 27

Kartojimo kodai

$$x \in \{0, 1\}, \quad x \to \underbrace{xx \dots x}_{2n+1}$$

$$R = \frac{1}{2n+1}$$

Stačiakampių kodai

$$St(n,m), \quad n = 4, m = 3$$

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{n} \quad y_{1}$$

$$x_{5} \quad x_{6} \quad x_{7} \quad x_{2n} \quad y_{2}$$

$$x_{9} \quad x_{10} \quad x_{11} \quad x_{mn} \quad y_{m}$$

$$z_{1} \quad z_{2} \quad z_{3} \quad z_{n} \quad z$$

$$x_{1} + x_{2} + x_{3} + x_{4} + y_{1} = 0, \quad x_{1} + x_{5} + x_{9} + z_{1} = 0,$$

$$x_{5} + x_{6} + x_{7} + x_{8} + y_{2} = 0, \quad x_{2} + x_{6} + x_{10} + z_{2} = 0,$$

$$x_{9} + x_{10} + x_{11} + x_{12} + y_{3} = 0, \quad x_{3} + x_{7} + x_{11} + z_{3} = 0,$$

$$z_{1} + z_{2} + z_{3} + z_{4} + z = 0$$

22 / 27

$$m = 3, \quad n = 4,$$

 $x_1 x_2 \dots x_{12} \rightarrow x_1 x_2 \dots x_{12} y_1 y_2 y_3 z_1 z_2 z_3 z_4 z,$
 $R = \frac{3}{5}$

Bet kurie du St(m,n) žodžiai skiriasi bent 3 bitais!

 $y_1 + y_2 + y_3 + z_1 + z_2 + z_3 + z_4 + z = 0$

Vieno bito klaida visada ištaisoma!

Kodai T(r)

$$x_1 + x_2 + x_3 + x_4 + y_1 = 0,$$

$$x_4 + x_5 + x_6 + x_7 + y_2 = 0,$$

$$x_3 + x_7 + x_8 + x_9 + y_3 = 0,$$

$$x_2 + x_6 + x_9 + x_{10} + y_4 = 0,$$

$$x_1 + x_5 + x_8 + x_{10} + y_5 = 0.$$

24 / 27

Hammingo kodas H(3)

Sudarysime kodą $\mathbf{C} \subset \mathcal{B}^7$ keturiems bitams koduoti, taisantį vieną klaidą

duomenų bitai $x_1x_2x_3x_4 \rightarrow y_1y_2y_3y_4y_5y_6y_7$ kodo žodis

$$y_3 = x_1, y_5 = x_2, y_6 = x_3, y_7 = x_4$$

$$3 = 1 \cdot 1 + 1 \cdot 2 + 0 \cdot 4, \quad y_1 = y_3 + y_5 + y_7,$$

 $5 = 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4, \quad y_2 = y_3 + y_6 + y_7,$
 $6 = 0 \cdot 1 + 1 \cdot 2 + 1 \cdot 4, \quad y_4 = y_5 + y_6 + y_7.$
 $7 = 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 4,$

Analogiškai konstruojame kitus Hammingo kodus $\mathbf{H}(\mathbf{r})$, r yra kontrolinių bitų skaičius.

Hammingo kodas H(3)

26 / 27

Teisingo dekodavimo tikimybė

