Kapitel 2 – Kodierung

- 1. Kodierung von Zeichen
- 2. Kodierung von Zahlen
- 3. Anwendung: ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Motivation

- Ein Rechner speichert, verarbeitet und produziert Informationen.
- Alle Ergebnisse müssen als Funktion der Anfangswerte exakt reproduzierbar sein.
- → Informationsspeicherung und Verarbeitung müssen exakt
 - Probleme: Noise, Crosstalk, Abschwächung
- Es gibt keine exakte Datenübertragung oder Datenspeicherung.
- → Ziel: Quantisierung der Informationsspeicherung mit Signal groß gegenüber maximaler Störung
 - Binär-Codierung (nur zwei Zustände) ist die einfachste (und sicherste) Signal-Quantisierung.
 - BIT (0, 1) als grundlegende Informationseinheit

V4 _ 3 interpretent als logische 1

VL _ 3 interpretent als logische 0

Binarkodierung

VL _ 3 interpretent als logische 0

Motivation

- Ein Rechner kann üblicherweise
 - Zeichen verarbeiten (Textverarbeitung)
 - mit Zahlen rechnen
 - Bilder, Audio- und Videoinformationen verarbeiten und darstellen ...
- Ein Algorithmus kann zwar prinzipiell mit abstrakten Objekten verschiedener Art operieren, aber diese müssen im Rechner letztendlich als Folgen von Bits repräsentiert werden.
- → Kodierung!

Kapitel 2.1 - Kodierung von Zeichen

- Wie werden im Rechner Zeichen dargestellt ?
- Codes fester Länge
- "Längenoptimale Kodierungen" von Zeichen: Häufigkeitscodes (Bsp.: Huffman-Code)

Alphabete und Wörter

Definition

Eine nichtleere Menge $A = \{a_1, \dots, a_m\}$ heißt (endliches) Alphabet der Größe m.

 a_1, \ldots, a_m heißen Zeichen des Alphabets.

- $A^* = \{ w \mid w = b_1 \dots b_n \text{ mit } n \in \mathbb{N}, \forall i \text{ mit } 1 \leq i \leq n : b_i \in A \}$ ist die Menge aller Wörter über dem Alphabet A.
- $|b_1 \dots b_n| := n$ heißt Länge des Wortes $b_1 \dots b_n$.
- Das Wort der Länge 0 wird mit ε bezeichnet.

Sei $A = \{a, b, c, d\}$. $A^* = \{\epsilon_1, a_1, b_1, c_1, d_1, a_1, a_2, a_3, c_4, \dots\}$

(leaves Wort)

Dann ist bcada ein Wort der Länge 5 über A.

Code

Sei $A = \{a_1, \dots, a_m\}$ ein endliches Alphabet der Größe m in $\{0,1\}$ der $a_1, \dots, a_m\}$ ein endliches Alphabet der Größe $a_1, \dots, a_m\}$ heißt $a_1, \dots, a_m\}$

- Die Menge $c(A) := \{w \in \{0,1\}^* \mid \exists a \in A : c(a) = w\}$ heißt Menge der Codewörter.
- Ein Code $c: A \rightarrow \{0,1\}^n$ heißt Code fester Länge.
- Für einen Code $c: A \to \{0,1\}^n$ fester Länge n gilt: $n \ge \lceil \log_2 m \rceil$.
 - Ist $n = \lceil \log_2 m \rceil + r$ mit r > 0, so können die r zusätzlichen Bits zum Test auf Übertragungsfehler verwendet werden (siehe Kap. 6).

 $-c:A \rightarrow B$ ist injection falls $\forall a_{n} \mid a_{2} \in A$ gift: $\kappa(a_{n}) = \kappa(a_{2}) \Rightarrow a_{n} = a_{2}$

- c:A-B ist surjetter, fells Y be B gilt: FREA mit c(a) = 6

- c: A-B ist bigettio, fells a injectio and surjectio ist.

Fir x∈R not TX' not du Rhinste ganze Zall, die großer glied x not. " store Grand - Themmor" " , die Elisor gleid X ist. Für XER ist LXJ " " gioble " " untre your - Klimmer" Bever on: Bei lode c: A = 10/12 muss getten: m > log2 m m & 2 n (vega c injectio!) They m < n , de n eine noturlide tall ist.

Codes fester Länge

- Die Kodierung eines jeden Zeichens besteht aus *n* Bits.
 - ASCII (American Standard Code for Information Interchange): 7 Bits (es gibt Erweiterungen mit 8 Bits)
 - EBCDIC: 8 Bits
 - Unicode: 16 Bits
- Diese Kodierungen sind recht einfach zu behandeln. Unter Umständen wird für sie aber mehr Speicherplatz gebraucht als unbedingt nötig.

Beispiel: ASCII-Tabelle

$$C(S) = \frac{1010011}{1000}$$

8 / 15

Häufigkeitsabhängige Codes

- Ziel: Reduktion der Länge einer Nachricht durch Wahl verschieden langer Codewörter für die verschiedenen Zeichen eines Alphabets (also kein Code fester Länge!)
- Häufiges Zeichen \rightarrow kurzer Code Idee: Seltenes Zeichen

 langer Code

 langer Code
- Voraussetzungen:
 - Häufigkeitsverteilung ist bekannt → statische Kompression
 - Häufigkeitsverteilung ist nicht bekannt → dynamische Kompression

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Beispiel:

Zeichen	abcd	efghij
Häufigkeit [%]	20 25 15 8	7 6 5 5 5 4

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel: Zeichen

Zeichen a b c d e f g h i j
Häufigkeit [%] 20 25 15 8 7 6 5 5 5 4

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel: Zeichen

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen abcdefg

Häufigkeit [%]

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Baue binären Baum, indem die beiden kleinsten Häufigkeit [%]

 Baue Kleinsten Häufigkeit [%]

 Baue binären Baum, indem die beiden kleinsten Häufigkeiten jeweils zu einem neuen Knoten addiert werden.

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Tomini als relisemit 2.b. in wir o oder of La vor

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Tomini ale follocimit 2.B. In this e eder of Ed vois

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Erzeugte Huffman-Kodierung

Erzeugte Kodierung:

а	b	С	d	е	f	g	h	i	j
00	10	110	1110	0100	0101	0110	0111	11110	11111

CS - Kapitel 2 - Kodierung

Huffman-Code: Dekodierung

Erzeugte Kodierung:

а	b	С	d	е	f	g	h		j
00	10	110	1110	0100	0101	0110	0111	11110	11111

- 1 Lesen des Bitstromes bis Symbol erkannt wurde.
- 2 Erkanntes Symbol ausgeben und weiter mit 1.

Präfixcodes

$$c(a) = 0.000$$
 $c(b) = 0.000$ $c(d) = 0.00$

Definition

Sei A ein Alphabet der Größe m.

- $a_1 \dots a_p \in A^*$ heißt Präfix von $b_1 \dots b_l \in A^*$, falls $p \leq l$ und $a_i = b_i \ \forall i, \ 1 \leq i \leq p$.
- Ein Code $c: A \to \{0,1\}^*$ heißt Präfixcode, falls es kein Paar $i,j \in \{1,\ldots,m\}$ gibt, so dass $c(a_i)$ Präfix von $c(a_i)$.
 - Der Huffman-Code ist ein Präfixcode.
 - Bei Präfixcodes können Wörter über {0,1} eindeutig dekodiert werden. (Sie entsprechen Binärbäumen mit Codewörtern an den Blättern.)
 - Huffman-Code ist ein bzgl. mittlerer Codelänge optimaler Präfixcode (unter Voraussetzung einer bekannten Häufigkeitsverteilung) - ohne Beweis.

Optimalität:

Lei A= lan..., r.m.)

Printigkeitarritalung p mit $\underset{i=1}{\overset{m}{\sum}}$ $p(a_i) = 1$ Mittlere lodelange einen loden $c: A \Rightarrow d_{0,1}1^*$: $\underset{i=1}{\overset{m}{\sum}}$ $p(a_i) - |c(a_i)|$

Beispiele: Präfixcodes

Frage: Welche dieser Codes sind Präfixcodes

a.
$$c('A') = \underline{01}$$
, $c('B') = 110$, $c('C') = \underline{011}$ \rightarrow Lin Prefixede

b. $c('A') = 01$, $c('B') = 110$, $c('C') = 111$ \rightarrow Prefixede

c. $c('1') = xz$, $c('2') = xy$, $c('3') = yz$ \rightarrow liberly the late c

Weitere Verfahren

- Es gibt zahlreiche Ansätze zur <u>Datenkompression</u>.

 (Beispiel: Lempel-Ziv-Welch.)
- In Programmtexten gibt es häufig viele Leerzeichen, gleiche Schlüsselwörter und so weiter.
- → Kodiere Folgen von Leerzeichen bzw. Schlüsselwörter durch kurze Codes.
 - Das wird z.B. bei GIF und TIFF genutzt.
 - Das soll auch funktionieren, wenn man noch nicht weiß, welche Zeichenketten häufig vorkommen.

