Elitist Non-dominated Sorting Genetic Algorithm: NSGA-II

Tushar Goel

Multi-objective optimization problem

- Problems with more than one objectives typically conflicting objectives
- Cars: Luxury vs. Price
- Mathematical formulation

```
Minimize \mathbf{F}(\mathbf{x}),
where \mathbf{F}(\mathbf{x}) = \{f_i : \forall i = 1, M\},
\mathbf{x} = \{x_i : \forall j = 1, N\}
```

Subject to:

$$C(x) \le 0$$
, where $C = \{C_k : \forall k = 1, P\}$
 $H(x) = 0$, where $H = \{H_i : \forall l = 1, Q\}$

Pareto optimal front

- Many optimal solutions
- Usual approaches:
 weighted sum strategy,
 ε-constraint modeling,
 Multi-objective GA
- Algorithm requirements:
 - Convergence
 - Spread

Terminology

- Non-domination criterion
- Ranking

Terminology

- Niching parametric
- Crowding distance
 - \Box c = a + b
 - Ends have infinite crowding distance

Elitism

 Elitism: Keep the best individuals from the parent and child population

Flowchart of NSGA-II

tusharg@ufl.edu

Elitism Process

Example: Bicycle Frame Design

Objectives

- Minimize area
- Minimize max. deflection

Constraints

- Component should be a valid geometry
- Maximum stress < Yield stress

$$(\sigma_{\max} < \sigma_{allowed})$$

Maximum deflection Allowed deflection

$$\left(\delta_{\max} < \delta_{allowed}\right)$$

Plate thickness = 20 mm

Problem Modeling

- Shapes are represented by binary strings, where '0' represents void region and '1' represents material region
- Example : A typical binary string is 01110 11111 10001 11111

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

Left to Right Representation

Shape Corresponding to the Binary String

Material Properties and GA Parameters

Material Properties

ullet Yield Stress $\left(\sigma_{allowed}\right)$ 140 MPa

□ Max Deflection $(δ_{ij})$ 5 mm

Young's Modulus (E)80GPa

 \square Poisson's Ratio (v) 0.25

GA Parameters

□ Binary String Size (L) 14x9

Population Size30

Crossover Probability 0.95

Mutation Probability
 1/L

of Generations150

Pareto Optimal Front

- Small increase in weight leads to large drop in deflection
- Similarly small change in deflection allows significant reduction of the weight

Optimal shapes

Least deflection

Different conceptual designs

tusharg@ufl.edu

Some More Engineering Applications

- Structural designs of mechanical components
- Design of turbo-machinery components
- Bioinformatics protein unfolding
- VLSI circuit designs
- Packaging

...

Other related topics of interest

- Real-coded genetic algorithms
- Other multi-objective evolutionary algorithms
 - Pareto archived evolutionary strategies (PAES)
 - Strength Pareto evolutionary algorithm (SPEA)
 - ε multi-objective evolutionary algorithm (ε-MOEA)
- Hybrid GAs
- Particle swarm algorithms
- Ant colony optimization