

Machine Intelligence with Deep Learning
Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter 02.12.2019

Agenda

- 1. Introduction to the problem
- 2. Our current results
 - Fashion-MNIST
 - CIFAR-10
 - CIFAR-100
- 3. Next steps

Introduction to the problem

- Stochastic learning splits data into multiple batches of a maximum size k
 - For instance: 11 images split into 4 batches with at most 3 samples each

- Necessary if dataset is too large for RAM
- Speeds up training and helps model to converge due to added noise
- Usually batches are created randomly

Is there a better approach ?!

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Introduction to the problem

- How we created batches so far:
 - Freezing the data

Shuffling the data

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Introduction to the problem

- How we created batches so far:
 - Sorting the data homogeneously

Sorting the data heterogeneously

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

- 1st experiment: Fashion-MNIST
 - 70,000 gray-scale 28x28 images
 (6:1 train/test split) with 10 classes
- Model used: Custom convolutional neural network
 - □ 4 layers: 3 conv layers + 1 FC layer
 - Conv layers: 64, 128, 64
 - filter sizes: 2x2
 - activation: PReLU
 - Max Pooling (2x2) after every conv layer
 - Dropout (0.5) used on FC layer

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

- 2nd experiment: CIFAR-10
 - 60,000 32x32 rgb images
 (i.e. 3x32x32 tensors) with 10 classes,
 uniformly distributed along all images
 - Model used for classification:ResNet with 18 layers

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Change of accuracy over epochs

Change of loss over epochs

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

- 3rd experiment: MNIST
 - 70,000 gray-scale 28x28 images(6:1 train/test split) with 10 classes
- Model used: Custom convolutional neural network
 - □ 3 layers: 2 conv layers + 1 FC layer
 - Conv layers: 64, 32
 - filter sizes: 2x2
 - activation: ReLU in conv layers+ softmax in FC layer
 - Max Pooling (2x2) after every conv layer
 - Dropout (0.3) used on conv layer, Dropout (0.5) used on FC layer

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

Next steps

Implementing the weighted random sampling method

Algorithm D, a definition of WRS

Input: A population V of n weighted items

Output: A set S with a WRS of size m

1: For k = 1 to m do

2: Let $p_i(k) = w_i / \sum_{s_i \in V-S} w_i$ be the probability of item v_i to be selected in round k

3: Randomly select an item $v_i \in V - S$ and insert it into S

4: End-For

- Experimenting with different ideas to sort the data for training
 - Sorting the data by the computed loss of each input globally
 - Sorting the data by the computed loss of each input per class
- Creating batches of dynamic sizes (i.e. increasing/decreasing k)

Importance batching for improved training of neural networks

Samik Real, Jonathan Gadea Harder, Johannes Hötter

