Université de Monastir ISIMM – Dept. Maths Section : ING₁-INFO

A. U. : 2025 - 2026 Maths : réseaux de neurones

DM n°1 (Perceptron)

Rappels

Etant donnée une matrice $W \in \mathbb{R}^{1 \times n}$ $(n \in \mathbb{N}^*)$ et $\beta \in \mathbb{R}$. On appelle perceptron linéaire de poids W, noté P_W , l'application

$$P_W: X \ni \mathbb{R}^{n \times 1} \mapsto P_W(X) \in \{-1, 1\}$$

définie par

$$P_W(X) = \begin{cases} 1 & \text{si} \quad WX \ge 0\\ -1 & \text{sinon} \end{cases} \tag{1}$$

et perceptron affine de poids W et de biais β , noté $P_{W,\beta}$, l'application

$$P_{W,\beta}: X \ni \mathbb{R}^{n \times 1} \mapsto P_{W,\beta}(X) \in \{-1,1\}$$

définie par

$$P_{W,\beta}(X) = \begin{cases} 1 & \text{si} \quad WX + \beta \ge 0\\ -1 & \text{sinon} \end{cases}$$
 (2)

EXERCICE I

- 1. Considérons $W_{\sharp} = \begin{pmatrix} 2 & -1 \end{pmatrix}$, $W = \begin{pmatrix} 2 & -1 & \frac{1}{2} \end{pmatrix}$ et $\beta = \frac{1}{2}$.
 - (a) Représenter schématiquement $P_{W_{\dagger},\beta}$ et P_W .
 - (b) Pour $X = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \in \mathbb{R}^3$, comparer $P_{W_{\sharp},\beta}(X_{\sharp})$ et $P_W(X)$ où $X_{\sharp} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
 - (c) Donner une interprétation géométrique pour cette comparaison.
- 2. Généraliser cette comparaison pour $W \in \mathbb{R}^{1 \times n}$ $(n \geq 2)$ et $\beta \in \mathbb{R}$.

EXERCICE II

A) On considère un perceptron linéaire P_W où $W=(\alpha), \alpha \in \mathbb{R}$; dans ce cas on écrira P_α et pour $X=(x)\in \mathbb{R}, X=x$ tout simplement.

$$x \xrightarrow{\alpha} \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

- 1. Existe-t-il $\alpha \in \mathbb{R}$ tel que $P_{\alpha}(x) = 1 \ \forall x \in \mathbb{R}$?
- 2. Existe-t-il $\alpha \in \mathbb{R}$ tel que $P_{\alpha}(x) = -1 \ \forall x \in \mathbb{R}$?
- 3. Existe-t-il $\alpha \in \mathbb{R}$ tel que $P_{\alpha}(x) = \begin{cases} 1 & \text{si } x \in \mathbb{R}_{+} \\ -1 & \text{si } x \in \mathbb{R}_{-}^{*} \end{cases}$?
- 4. Existe-t-il $\alpha \in \mathbb{R}$ tel que $P_{\alpha}(x) = \begin{cases} 1 & \text{si } x \in \mathbb{R}_{-} \\ -1 & \text{si } x \in \mathbb{R}_{+}^{*} \end{cases}$?
- B) On considère un perceptron linéaire P_W où $W = (\alpha \quad \beta), \alpha, \beta \in \mathbb{R}$.

- 1. Existe-t-il W tel que $P_W(X) = 1 \ \forall x \in \mathbb{R}$?
- 2. Existe-t-il W tel que $P_W(X) = -1 \ \forall x \in \mathbb{R}$?
- 3. Existe-t-il W tel que $P_W(X) = \begin{cases} 1 & \text{si } x \ge 1 \\ -1 & \text{si } x < 1 \end{cases}$?
- 4. Existe-t-il W tel que $P_W(X) = \begin{cases} 1 & \text{si } x \leq 1 \\ -1 & \text{si } x > 1 \end{cases}$?

EXERCICE III

On considère un perceptron linéaire P_W où $W = \begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix} \in \mathbb{R}^{1 \times 2}$.

1. Trouvez W pour que P_W nous permette de classifier l'ensemble de données suivant :

Entrée $X = (x_1, x_2)$	\rightarrow	Label L
$x_1 \in \mathbb{R}_+, x_2 \in \mathbb{R}_+$	\rightarrow	1
$x_1 \in \mathbb{R}^*, x_2 \in \mathbb{R}^*$	\rightarrow	-1

2. Trouvez W pour que P_W nous permette de classifier l'ensemble de données suivant :

Entrée $X = (x_1, x_2)$	\rightarrow	Label L
$x_1 \in \mathbb{R}, x_2 \in \mathbb{R}_+$	\rightarrow	1
$x_1 \in \mathbb{R}^* +, x_2 \in \mathbb{R}^*$	\rightarrow	-1

3. Trouvez W pour que P_W nous permette de classifier l'ensemble de données suivant :

Entrée X	\rightarrow	Label L
$(1,1)^{T}$	\rightarrow	1
$(0,1)^{T}$	\rightarrow	-1
$(1,0)^{\top}$	\rightarrow	1
$(0,0)^{T}$	\rightarrow	1

4. Trouvez W pour que P_W nous permette de classifier l'ensemble de données suivant :

Entrée X	\rightarrow	Label L
$(1,1)^{\top}$	\rightarrow	-1
$(0,1)^{\top}$	\rightarrow	1
$(1,0)^{\top}$	\rightarrow	1
$(0,0)^{\top}$	\rightarrow	1

EXERCICE IV

On considère un perceptron linéaire P_W où $W = \begin{pmatrix} \alpha_1 & \alpha_2 & \beta \end{pmatrix} \in \mathbb{R}^{1 \times 3}$.

$$x_1 \xrightarrow{\alpha_1} x_2 \xrightarrow{\alpha_2} w_X \qquad y = P_W(X), \ X = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

- 1. Trouvez le poids W pour que le perceptron P_W calcule la fonction ET logique.
- 2. Trouvez le poids W pour que le perceptron P_W calcule la fonction OU logique.
- 3. Essayer de trouver des poids W pour la fonction XOR.