Quantum Information Theory - 67749 Exercise 2, May 18, 2025

1 Submission Guidelines.

- Due date May 29, 2025.
- Make sure your submission is clear. Unreadable assignments will get zero score.
- Using any Generative AI tool is forbidden but not enforced. Yet, please keep in mind that we might call you for an interview about your assignment.

2 AEP.

Recall the converse part of the classical AEP lemma¹:

Lemma 2.1. Let P_X be a pmf on \mathcal{X} and let $\mathcal{B}^{(n)}$ be a set in \mathcal{X}^n of size at most $2^{n\alpha}$. Then for any $\varepsilon > 0$ and n large enough.

$$\mathbf{Pr}\left[X^{n} \in \mathcal{B}^{(n)}\right] = P_{X}^{\otimes n}\left(\mathcal{B}^{(n)}\right) \le \varepsilon + 2^{n(\alpha + \varepsilon - H(X))}$$

1. Rewrite the classical AEP using the density matrix notation, namely point out each entity defined in the above statement and link it to its analogy in the QAEP lemma. [Hint²]

3 Fidelity.

- 1. When ρ and σ commute.
- 2. Betweem the mixed state and any pure state.
- 3. Use the construction presented in the proof of Uhlman's to calculate the fidelity between: $p|0\rangle\langle 0| + (1-p)|+\rangle\langle +|$ and $(1-p)|0\rangle\langle 0| + p|+\rangle\langle +|$.

4 Entropy.

Compute the entropy of the following densitiv matrices.

- 1. The super position over linear subspace. (purestate).
- 2. The uniform distribution over linear subspace.

5 Coding Theorem.

Let ρ be the density matrix: $p |\beta_{00}\rangle \langle \beta_{00}| + \frac{1}{3}(1-p) \sum_{i\neq 00} |\beta_{ij}\rangle \langle \beta_{ij}|$.

6 Quantum Teleportation.

Give a quantum circus that compute the gate $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{8}} \end{bmatrix}$ up to global phase using only pauli, clifford, and measurments.

¹Taken from Prof. Ordentlich

²A good answer would be a single paragraph long.