CPSC 425 Assignment 5 (due November 14, 2018)

Quan Zhang 48486154

4 Implemented in def build_vocabulary(image_paths, vocab_size) and def get bags of sifts(image paths, kmeans) in util.py

5 Implemented in def nearest_neighbor_classify(train_image_feats, train_labels, test_image_feats) and def svm_classify(train_image_feats, train_labels, test_image_feats) in classifiers.py

```
Using nearest neighbor classifier to predict test set categories
[ 1. 14. 14. 14. 10. 7. 10. 10. 10. 7.
                                      8. 10. 14. 10. 5. 6. 14.
14. 14. 0. 8. 8. 1. 0. 12. 14. 14.
                                      5.
                                         3. 14. 6. 14. 14. 10.
14. 10. 0. 9. 8. 10. 8. 14. 3. 10.
                                      9. 14. 14. 14. 14. 14. 3. 11.
 5. 14. 14. 14. 14. 14. 6. 2. 10. 3.
                                      0. 7. 14. 10. 10. 0. 14. 10.
14. 2. 8. 0. 2. 14. 14. 2.
                               0. 10.
                                      5. 5. 14. 0. 14. 0. 10. 10.
 4. 13. 14. 8. 2. 7.
                       0. 10.
                               2. 10.]
Using support vector machine to predict test set categories
[ 1. 2. 6. 10. 10. 6. 10. 10. 10. 10.
                                      6. 10.
                                              6. 10. 6.
                                                         6. 6.
 1. 10. 11. 6. 6. 12. 6. 6.
                               3. 10.
                                      6. 4.
                                              6. 10. 10.
                                                         0. 10.
10. 10. 0. 12. 6. 10.
                       6. 10. 1.
                                   6.
                                      4. 0. 12. 6. 6.
10. 6. 10. 6. 10. 12.
                       6. 4. 10.
                                   3.
                                      6. 6. 14. 10. 10.
                                                         0. 10. 2.
12. 6. 6. 12. 6. 6. 3. 12. 10.
                                   2.
                                      2. 12. 10. 10. 10.
                                                         0. 10. 3.
 1. 10. 6. 6.
                2. 0. 6. 6. 10. 10.]
 --Evaluation---
('KNN Accurracy =', 0.0022)
('SVM Accurracy =', 0.0023)
```

figure 5

The best KNN Accuracy I get is 0.0023 and the best SVM Accuracy I get 0.0023, not very successful.

Confusion matrix:

```
Confusion matrix, without normalization
[[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
 [0 0 1 0 0 0 0 0 0 0 1 0 0 0 2]
 [1 0 0 1 0 0 0 1 1 0 0 0 1 0 0]
 [2 0 2 2 0 3 0 0 2 0 2 0 0 0 1]
 [0 1 1 0 0 1 0 0 1 1 0 0 0 0 5]
 [0 0 0 0 1 0 2 0 1 1 1 0 0 0 3]
 [0 1 0 1 0 0 0 2 1 0 4 0 0 0 4]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 7]
 [0 0 1 0 0 1 0 0 0 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 0 0 0 8 0 0 0 0]
 [1 0 0 0 0 0 0 1 0 0 2 1 0 0 1]
 [0 0 1 0 0 1 0 0 0 0 0 0 0 0 1]
 [4 0 0 0 0 0 0 0 0 1 0 0 0 1 2]
 [0 0 0 0 0 0 0 0 1 0 1 0 0 0 4]]
```


Normalized confusion matrix														
	[[0.5		0.	0.	0.	0.	0.5	0.	0.	0.	0.	0.	0.	0.
	0.													
	[0.5		0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	0.5													
1	[0.		0.25	0.	0.	0.	0.	0.	0.	0.	0.25	0.	0.	0.
ı	0.5		•		•	•	•			•	•			•
	[0.2		0.	0.2	0.	0.	0.	0.2	0.2	0.	0.	0.	0.2	0.
	0. [[0.14		0 14	0 14	0	a 21	0	a	0 14	0	0 14	a	0.	0.
	0.07		0.14	0.14	٥.	0.21	٥.	υ.	0.14	υ.	0.14	υ.	٥.	υ.
	[0.		a 1	a	a	a 1	a	a	a 1	a 1	a	a	0.	0.
	0.5		0.1	٥.	0.	0.1	0.	٠.	0.1	0.1	0.	٠.	٠.	0.
	[0.		0.	0.	0.11	0.	0.22	0.	0.11	0.11	0.11	0.	0.	0.
	0.33		• •	•		• •		• •				•	• •	•
	[0.	0.08	0.	0.08	0.	0.	0.	0.15	0.08	0.	0.31	0.	0.	0.
	0.31	1												
	[0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	1.	l												
	[0.		0.33	0.	0.	0.33	0.	0.	0.	0.	0.	0.	0.	0.
	0.33													
	[0.		0.	0.	0.	0.	0.	0.	0.	0.	1.	0.	0.	0.
	0.		_	_	_	_	_		_	_			_	
	[0.17		0.	0.	0.	0.	0.	0.17	0.	0.	0.33	0.17	0.	0.
	0.17		0.33	•	0.	0.33	0	0.	0.	0.	0.	0.	0.	0.
	[0. 0.33]		0.33	υ.	0.	0.33	υ.	υ.	0.	υ.	υ.	υ.	0.	υ.
	[0.5		0.	0.	0.	0.	0.	a	0.	a 12	a	a	a	0.12
	0.25		0.	0.	0.	٠.	0.	0.	٠.	0.12	0.	0.	٠.	0.12
	[0.		0.	0.	0.	0.	0.	0.	0.17	0.	0.17	0.	0.	0.
	0.67		٠.	٠.	٠.	••	٠.	٠.	0.17	٠.	0.17	٠.	٠.	٠.

