

# A Dynamic Framework for Identification and Estimation of Nonseparable Production Functions

Job Market Presentation
Justin Doty

Introduction

•00000000000

- ► This paper identifies and estimates a **nonseparable** production function with unobserved heterogeneity
- ▶ Two important contributions to the literature
  - 1. New estimates of heterogeneous production functions
    - ▶ Nonseparable model allows interactions between unobserved production shocks and inputs
    - ► Captures factor-specific productivity changes
  - 2. New framework to capture heterogeneous productivity dynamics and uncertainty
    - ► Incorporates asymmetric persistence in productivity history
    - ► Driven by size and sign of productivity shocks

#### **Production Functions**

Introduction

- ▶ Production functions are important in many economic models
- They link outputs to inputs (e.g. capital, labor) and represent firm technology
- Estimates can be used in the following applications:
  - 1. Industry productivity
  - 2. Trade liberalization
  - 3. Capital misallocation
  - 4. Market power
- ► A correctly specified production function is crucial for correct inference in these applications

## Simultaneity Bias

Introduction

- ► Researchers don't observe productivity
- Firm chooses inputs depending on their productivity
- ► A more productive firm may hire more/less workers
- ▶ In this case, labor estimates will be biased
- ▶ Proxy variable approaches of OP, LP, ACF remain a popular tool
- ▶ Basic idea: A policy function (e.g. material demand) is inverted as a function of productivity
- ► Substitute inverted function into production function and estimate in two-step approach (ACF Estimator)

# Limitations of Proxy Variables

- ► No unobserved errors in the policy function
  - No measurement error
  - No unobserved demand shocks
- Productivity and an unobserved production shock are additive
  - ► Implies productivity is factor-neutral
  - ► Technology is fixed across firms
- Productivity process and additive shocks
  - ► Dispersion and Skewness in productivity dynamics
  - ▶ How do these shocks affect different firms?

# Why Nonseparable Models (Production)

- Model misspecification and heterogeneous production
- Labor augmenting productivity and biased markups
- ▶ Decreasing labor share of income
- Recent papers use structural approach to estimating factor-specific productivity
  - 1. Doraszelski and Jaumandreu, 2018
  - 2. Dermirer, 2020
- Structural unobservables beyond labor productivity?

# Why Nonseparable Models (Productivity)

- ► Business cycles, microeconomic uncertainty and asymmetric adjustment paths
- ► Role of uncertainty in decisions for investment and hiring (Bloom et al., 2018)
- ▶ Previous papers examine role of higher moments in productiity
- My framework allows for parsimonious modelling of higher moments in productivity shocks
- Impact of productivity shocks on history of productivity and production inputs

Introduction

# Why Nonseparable Models (Productivity)

- Impact of productivity skewness (Salgado, Guvenen, and Bloom, 2019)
  - Pro-cyclical skewness of productivity shocks
  - More flexible process may better explain business cycle phenomenon
- 2. Misallocation of Inputs
  - ► Role of uncertainty in dispersion of marginal product of inputs (David and Venkateswaran, 2019), (Asker, Collard-Wexler, and Loecker, 2014)
  - ► Asymmetric productivity persistence induces heterogeneous responses of long-run decisions for investment and labor

### Preview of Results

Introduction

00000000000

Figure 1: Productivity Persistence Comparison



<sup>\*</sup>Panel (a): Productivity persistence from a linear model. Panel (b): Productivity persistence for a nonlinear model that is separable in unobserved shocks. Panel (c): Productivity persistence estimated in the nonseparable model.

#### Preview of Results

Figure 2: Higher Moments of the Conditional Productivity Distribution



### Preview of Results

Introduction

000000000000

Figure 3: Effects of Input Composition on Productivity



\*Panel (a): Capital-labor effect evaluated at  $au_n$  and percentiles of capital-labor  $\tau$ -(k-I). Panel (b): Capital-materials effect evaluated at  $\tau_n$  and percentiles of capital-materials  $\tau$ -(k-m). Panel (c): Labor-materials effect evaluated at  $\tau_n$ and percentiles of labor-materials  $\tau$ -(l-m).

## Summary of Findings

Introduction

### Data: U.S. Compustat public manufacturing firms

- Asymmetric persistence in productivity
  - 1. Positive shocks for low productivity firms
  - 2. Negative shocks for high productivity firms

have lower persistence of productivity

- ► Asymmetric adjustments of inputs with respect to productivity and its shocks
- Non-Hicks neutrality of productivity
  - 1. Positive and negative capital intensity effects
  - 2. Positive capital-materials intensity effects
  - 3. Positive labor-materials intensity effects

#### Outline for the Rest of Talk

1. Introduction

Introduction

00000000000

- Economic Model
- 3. Econometric Identification
- 4. Econometric Procedure and Quantile Modelling
- Results
- 6. Conclusions

#### The Production Function

Introduction

▶ Nonseparable model for a firm's gross-output production function (in logs)

$$y_{it} = Q_t^y(k_{it}, l_{it}, m_{it}, \omega_{it}, \eta_{it}), \quad \eta_{it} \sim \textit{Uniform}(0, 1)$$
 (1)

Skorohod Representation

### Assumption 1 (Production Function)

- 1.  $\eta_{it}$  is independent of  $\eta_{is}$  for all  $t \neq s$  conditional on  $(k_{it}, l_{it}, m_{it}, \omega_{it})$
- 2.  $\eta_{it}$  follows a standard uniform distribution independent of  $(k_{it}, l_{it}, m_{it}, \omega_{it}).$
- 3.  $\tau \to Q_t^y(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau)$  is strictly increasing on (0, 1).

## Quantile Function

Introduction

 $\blacktriangleright$  For a given  $\tau$ , the conditional quantile function for the random variable Y|X is defined as

$$Q_{\tau}(Y|X) = \inf\{y \in \mathbb{R} : \tau \le F_{Y|X}(y|x)\}, \quad \tau \in (0,1)$$

where  $F_{Y|X}$  is continuous and strictly increasing

- Quantiles are a way to flexibly model the entire distribution of response variable
- ► Estimates recover structural response functions for specific firms
- ► The standard production function and quantiles is an unexplored area
- ▶ Doty and Song, 2021 propose a simple model and discuss implications Markups

# Productivity

Introduction

 Productivity evolves according to an exogenous first-order Markov process

$$\omega_{it} = Q_t^{\omega}(\omega_{it-1}, \xi_{it}), \quad \xi_{it} \sim Uniform(0, 1),$$
 (2)

where  $\xi_{i1}, \dots, \xi_{iT}$  are innovation shocks to productivity

 $\blacktriangleright$  The function  $Q^{\omega}$  is a function that allows the persistence in productivity in firms to be nonlinear across different quantiles

### Assumption 2 (Productivity)

- 1.  $\xi_{it}$  independent of  $\xi_{is}$  for all  $t \neq s$  conditional on  $\omega_{it-1}$
- 2.  $\xi_{it}$  follows a standard uniform distribution independent of  $\omega_{it-1}$ .
- 3.  $\tau \to Q_t^{\omega}(\omega_{it-1}, \tau)$  is strictly increasing on (0,1).

# Flexible Inputs

Introduction

 Labor and material inputs are chosen to maximize current period profits

$$l_{it} = Q_t^{\ell}(k_{it}, \omega_{it}, \epsilon_{\ell, it}), \quad \epsilon_{\ell, it} \sim \textit{Uniform}(0, 1),$$
 (3)

$$m_{it} = Q_t^m(k_{it}, l_{it}, \omega_{it}, \epsilon_{m,it}), \quad \epsilon_{m,it} \sim \textit{Uniform}(0, 1), \quad (4)$$

#### Assumption 3 (Flexible Inputs)

- 1.  $\epsilon_{\ell,it}$  and  $\epsilon_{m,it}$  are mutually independent over time conditional on state variables.
- 2.  $\epsilon_{\ell,it}$  and  $\epsilon_{m,it}$  follow a standard uniform distribution independent of state variables.
- 3.  $\tau \to Q_t^{\ell}(k_{it}, \omega_{it}, \tau)$  and  $\tau \to Q_t^{m}(k_{it}, l_{it}, \omega_{it}, \tau)$  are strictly increasing on (0, 1).

# Flexible Inputs

Introduction

- Shocks may be multi-dimensional or non-monotone
- ► For example, the labor demand function can be written

$$I_{it} = \tilde{\ell}_t(k_{it}, \omega_{it}, \varepsilon_{\ell, it})$$

- Consistently estimate objects like average derivative of inputs with respect to productivity using quantiles
- Under my assumptions

$$\mathbb{E}_{\varepsilon_{it}^{\ell}} \left[ \frac{\partial \tilde{\ell}_t(\mathsf{k}_{it}, \omega_{it}, \varepsilon_{\ell, it})}{\partial \omega_{it}} \right] = \mathbb{E}_{\epsilon_{it}^{\ell}} \left[ \frac{\partial Q_t^{\ell}(\mathsf{k}_{it}, \omega_{it}, \epsilon_{\ell, it})}{\partial \omega_{it}} \right]$$

# Capital and Investment

Capital accumulates to the following generalized law of motion

$$K_{it} = \kappa_t(K_{it-1}, I_{it-1}, \upsilon_{it-1})$$
 (5)

where  $I_{it-1}$  denotes firm investment in the prior period

► In each period, a firm chooses investment to maximize its discounted future profits:

$$I_{it} = \iota_t(K_{it}, \omega_{it}) = \underset{I_t \geq 0}{\operatorname{argmax}} \left[ \Pi_t(K_{it}, \omega_{it}) - c(I_{it}, \omega_{it}) + \beta \mathbb{E} \left[ V_{t+1}(K_{it+1}, \omega_{it+1}) | \mathcal{I}_t \right] \right],$$
(6)

▶  $\pi_t(\cdot)$  is current period profits as a function of the state variables  $c(\cdot)$  is the cost function,  $\mathcal{I}_t$  is information set

# Capital and Investment

Introduction

► Empirical investment rule is

$$i_{it} = Q_t^{\iota}(k_{it}, \omega_{it}, \zeta_{it}), \quad \zeta_{it} \sim \textit{Uniform}(0, 1).$$
 (7)

### Assumption 4 (Capital Accumulation and Investment)

- 1.  $\zeta_{it}$  independent of  $\zeta_{is}$  for all  $t \neq s$  conditional on  $(k_{it}, \omega_{it})$
- 2.  $\zeta_{it}$  follows a standard uniform distribution independent of  $(k_{it}, \omega_{it}).$
- 3.  $\eta_{it}$  and  $\zeta_{it}$  are independent conditional on  $(k_{it}, l_{it}, m_{it}, \omega_{it})$ . In addition,  $v_{it}$  is independent of  $\eta_{it}$  conditional on  $(k_{it}, l_{it}, m_{it}, \omega_{it})$
- 4.  $\tau \to Q_t^i(k_{it}, \omega_{it}, \tau)$  is strictly increasing on (0,1)

Introduction

▶ Let  $Z_t = (I_t, k_t, m_t, k_{t+1})$  denote conditioning variables

Assumption 5 (Conditional Independence)

- 1.  $f(y_t|y_{t+1}, I_t, \omega_t, Z_t) = f(y_t|\omega_t, Z_t)$
- 2.  $f(y_{t+1}|I_t, \omega_t, Z_t) = f(y_{t+1}|\omega_t, Z_t)$
- ▶ Conditional on  $\omega_t$  and  $Z_t$ ,  $y_{t+1}$  and  $I_t$  do not provide any additional information about  $y_t$
- ► Conditional on  $\omega_t$  and  $Z_t$ ,  $I_t$  does not provide any additional information about  $y_{t+1}$
- ► Satisfied by mutual independence assumptions on  $\eta_t$  and  $\zeta_t$  conditional on  $(\omega_t, k_t, l_t, m_t)$

Introduction

- Conditional density as a function of observable to densities containing unobserved productivity
- ▶ Using the conditional independence assumption, I can write

$$f_{y_t,I_t|y_{t+1},Z_t} = \int f_{y_t|Z_t,\omega_t} f_{I_t|Z_t,\omega_t} f_{\omega_t|y_{t+1},Z_t} d\omega_t$$
 (8)

- ▶ Goal is identification of  $f_{v_t|Z_t,\omega_t}$ ,  $f_{I_t|Z_t,\omega_t}$ , and  $f_{\omega_t|v_{t+1},Z_t}$
- ► Proof following nonclassical, nonlinear error-in-variable set-up of Hu and Schennach, 2008
- $\triangleright$   $y_t$  is the outcome variable,  $I_t$  is the mismeasured regressor,  $y_{t+1}$  is the IV,  $\omega_t$  is the unobserved variable

Introduction

### Assumption 6 (Identification)

- (a) The joint density  $f_{V_t,I_t,V_{t+1}|Z_t}$  is bounded as well as its joint and marginal densities
- (b)  $\forall \bar{\omega}_t \neq \tilde{\omega}_t \in \Omega_t$ ,  $Pr[f_{l,|\omega_t,Z_t}(I_t|\bar{\omega}_t,Z_t) \neq f_{l,|\omega_t,Z_t}(I_t|\tilde{\omega}_t)|Z_t] > 0$
- (c) There exists a functional  $\Gamma$  such that  $\Gamma[f_{v_t|\omega_t,Z_t}(y_t|\omega_t,Z_t)] = \omega_t$
- (d) The linear operators  $L_{v_t|Z_t,\omega_t}$  and  $L_{v_{t+1}|Z_t,\omega_t}$  corresponding to  $f_{v_{+}|Z_{t},\omega_{t}}$  and  $f_{v_{++1}|Z_{t},\omega_{t}}$  are injective

Linear Operators

## Nonparametric Identification

- ► Assumption 6(a) requires bounded densities
- ► Assumption 6(b) is a uniqueness condition
- ▶ I assume  $E[I_t|\omega_t, Z_t]$  is strictly increasing in  $\omega_t$
- ▶ Assumption 6(c) normalizes a measure of location on  $f_{y_t|Z_t,\omega_t}$ 
  - Achieved by the normalization  $E[y_t|\omega_t,0]=\omega_t$
  - ▶ Requires centering some coefficients in my model (shown later)
- ► Assumption 6(d) is similar to a nonparametric IV rank condition which rules out a "weak" instrument

Introduction

Theorem 1 (Identification)

Under Assumption 6, given the observed density  $f_{v_t,l_t|v_{t+1},Z_t}$ , the equation

$$f_{y_t,I_t|y_{t+1},Z_t} = \int f_{y_t|\omega_t,Z_t} f_{I_t|\omega_t,Z_t} f_{\omega_t|y_{t+1},Z_t} d\omega_t$$
 (9)

admits a unique solution for  $f_{V_t|\omega_t,Z_t}$ ,  $f_{I_t|\omega_t,Z_t}$ , and  $f_{\omega_t|V_{t+1},Z_t}$ 

- ► The proof follows using Hu and Schennach, 2008
- However it does not directly identify the Markov transition function for productivity  $f_{\omega_{it+1}|\omega_{it}}(\omega_{it+1}|\omega_{it})$

### Identification of Productivity Process

### Corollary 1 (Stationary)

Suppose that the production function is stationary,  $f_{y_t|\omega_t,Z_t} = f_{y_1|\omega_1,Z_1}, \forall t \in \{1,\cdots,T\}$ . Then, the observed density  $f_{y_t,I_t|y_{t+1},Z_t}$ , uniquely determines the density  $f_{\omega_{t+1}|\omega_t}, \forall t \in \{1,\ldots,T-1\}$ 

### Corollary 2 (Non-Stationary)

The observed density  $f_{y_{t+1},I_{t+1}|y_{t+2},Z_{t+1}}$ , uniquely determines the density  $f_{\omega_{t+1}|\omega_t}, \forall t \in \{1,\ldots,T-2\}$ 

#### Econometric Procedure: Production

► The production function is specified as

$$Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau) = \sum_{r_{k}=0}^{R_{k}} \sum_{r_{l}=0}^{R_{l}} \sum_{r_{m}=0}^{R_{m}} \sum_{r_{\omega}=0}^{R_{\omega}} \beta_{r_{k}, r_{l}, r_{m}, r_{\omega}}(\tau) k_{it}^{r_{k}} l_{it}^{r_{l}} m_{it}^{r_{m}} \omega_{it}^{r_{\omega}}.$$
(10)

or

Introduction

$$Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau) = \sum_{s_{k}=0}^{S_{k}} \sum_{s_{l}=0}^{S_{l}} \sum_{s_{m}=0}^{S_{m}} \gamma_{s_{k}, s_{l}, s_{m}, s_{\omega}}(\tau) k_{it}^{s_{k}} l_{it}^{s_{l}} m_{it}^{s_{m}} + \sum_{p_{k}=0}^{P_{k}} \sum_{p_{l}=0}^{P_{l}} \sum_{p_{m}=0}^{P_{m}} \sum_{p_{\omega}=1}^{P_{\omega}} \sigma_{p_{k}, p_{l}, p_{m}, p_{\omega}}(\tau) k_{it}^{p_{k}} l_{it}^{p_{l}} m_{it}^{p_{m}} \omega_{it}^{p_{\omega}}.$$

$$(11)$$

▶ I take  $S_k = S_l = S_m = 2$ ,  $P_k = P_l = P_m = 2$ , and  $P_{\omega} = 1$ 

#### Econometric Procedure: Production

$$Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau) = \sum_{s_{k}=0}^{S_{k}=2} \sum_{s_{l}=0}^{S_{l}=2} \sum_{s_{m}=0}^{S_{m}=2} \gamma_{s_{k}, s_{l}, s_{m}, s_{\omega}}(\tau) k_{it}^{s_{k}} l_{it}^{s_{l}} m_{it}^{s_{m}}$$

$$+ \omega_{it} \left[ \underbrace{\sigma_{\omega}(\tau)}_{\text{Hicks-neutral effect}} + \underbrace{\frac{(\sigma_{k}(\tau) + \sigma_{l}(\tau) + \sigma_{m}(\tau))s_{it}}{3}}_{\text{scale effect}} + \underbrace{\frac{(\sigma_{k}(\tau) - \sigma_{l}(\tau))(k_{it} - l_{it})}{3}}_{\text{capital-labor effect}} + \underbrace{\frac{(\sigma_{k}(\tau) - \sigma_{l}(\tau))(k_{it} - m_{it})}{3}}_{\text{capital-materials effect}} + \underbrace{\frac{(\sigma_{k}(\tau) - \sigma_{m}(\tau))(k_{it} - m_{it})}{3}}_{\text{capital-materials effect}} + \underbrace{\frac{(\sigma_{l}(\tau) - \sigma_{m}(\tau))(l_{it} - m_{it})}{3}}_{\text{labor-materials effect}} - \underbrace{\frac{(\sigma_{l}(\tau) - \sigma_{l}(\tau))(l_{it} - m_{it})^{2}}{3}}_{\text{labor-materials effect}} \right].$$

(12)

### Econometric Procedure: Productivity

► I specify productivity using a polynomial series

$$Q_t^{\omega}(\omega_{it-1}, \tau) = \sum_{j=0}^{J_{\omega}} \rho_j(\tau) \omega_{it-1}^j.$$
 (13)

Selection Bias

Introduction

Initial productivity

$$Q^{\omega_1}(k_{i1},\tau) = \sum_{j=0}^{J_{\omega_1}} \rho_{\omega_1,j}(\tau) k_{i1}^j.$$
 (14)

- Models entry in the Compustat sample
- ▶ Productivity and R&D: Doraszelski and Jaumandreu, 2013

$$Q^{\omega}(\omega_{it-1}, r_{it-1}, \tau) = \mathbb{1}\{R_{it-1} = 0\}Q^{\omega}(\omega_{it-1}, \tau) + \mathbb{1}\{R_{it-1} > 0\}Q^{\omega, r}(\omega_{it-1}, r_{it-1}, \tau).$$
(15)

### Econometric Procedure: Flexible Inputs

► I specify the labor input demand equation as follows:

$$Q_t^{\ell}(k_{it}, \omega_{it}, \tau) = \sum_{j=0}^{J_{\ell}} \alpha_{\ell,j}(\tau) \phi_{\ell,j}(k_{it}, \omega_{it}), \qquad (16)$$

where  $\phi_\ell$  is modeled using a tensor product Hermite polynomial of degree 3

- ▶ If labor is dynamic, can include  $l_{it-1}$  as an additional state variable Labor Dynamics
- Material inputs are specified as

$$Q_t^m(k_{it}, l_{it}, \omega_{it}, \tau) = \sum_{i=0}^{J_m} \alpha_{m,j}(\tau) \phi_{m,j}(k_{it}, l_{it}, \omega_{it}).$$
 (17)

#### Econometric Procedure: Investment

▶ The investment demand function is specified as

$$i_{it} = Q_t^i(k_{it}, \omega_{it}, \tau) = \sum_{j=0}^{J_t} \delta_j(\tau) \phi_{i,j}(k_{it}, \omega_{it}).$$
 (18)

where  $\phi_{\iota,j}$  is specified similarly as the labor and material input decision rule.

▶ In the case where investment is censored, I can write

$$Q_t^{\iota^*}(k_{it},\omega_{it},\tau) = \max\{0, \sum_{i=1}^{J_\iota} \delta_j(\tau)\phi_{\iota,j}(k_{it},\omega_{it})\}, \qquad (19)$$

due to the equivariance properties of quantiles

### Econometric Procedure

Introduction

The independence assumptions in Assumptions 1, 2, 3, and 4 imply:

1. Production:

$$\Pr[y_{it} \leq Q_t(y_{it}|k_{it},l_{it},m_{it},\omega_{it};\beta(\tau)|k_{it},l_{it},m_{it},\omega_{it}] = \tau$$

- 2. **Productivity:**  $\Pr[\omega_{it} \leq \sum_{j=0}^{J_{\omega}} \rho_j(\tau) \omega_{it-1}^j | \omega_{it-1}] = \tau$
- 3. Initial Productivity:  $\Pr[\omega_{i1} \leq \sum_{j=0}^{J_{\omega_1}} \rho_{\omega_1,j}(\tau) k_{i1}^j | k_{i1}] = \tau$
- 4. Labor:  $\Pr[I_{it} \leq \sum_{j=1}^{J_{\ell}} \alpha_{l,j}(\tau) \phi_{l,j}(k_{it}, \omega_{it})) | k_{it}, \omega_{it}] = \tau$
- 5. **Materials:**

$$\Pr[m_{it} \leq \sum_{j=1}^{J_m} \delta_j(\tau) \phi_{m,j}(k_{it}, l_{it}, \omega_{it})) | k_{it}, l_{it}, \omega_{it}] = \tau$$

6. Investment:  $\Pr[i_{it} \leq \sum_{j=1}^{J_{\iota}} \delta_j(\tau) \phi_{\iota,j}(k_{it}, \omega_{it})) | k_{it}, \omega_{it}] = \tau$ 

### Econometric Restrictions

Which imply the following conditional moment restrictions

1. Production:

Introduction

$$\mathbb{E}[\Psi_{\tau}(y_{it} - Q_t(y_{it}|k_{it}, l_{it}, m_{it}, \omega_{it}; \beta(\tau)))|k_{it}, l_{it}, m_{it}] = 0$$

- 2. Productivity:  $\mathbb{E}[\Psi_{\tau}(\omega_{it} \sum_{i=0}^{J_{\omega}} \rho_{i}(\tau)\omega_{it-1}^{j})|\omega_{it-1}] = 0$
- 3. Initial Productivity:  $\mathbb{E}[\Psi_{\tau}(\omega_{i1} \sum_{j=0}^{J_{\omega_1}} \rho_{\omega_1,j}(\tau)k_{i1}^j)|k_{i1}] = 0$
- 4. Labor:  $\mathbb{E}[\Psi_{\tau}(I_{it} \sum_{i=1}^{J_{\ell}} \alpha_{I,j}(\tau)\phi_{I,j}(k_{it},\omega_{it}))|k_{it},\omega_{it}] = 0$
- 5. Materials:

$$\mathbb{E}[\Psi_{\tau}(m_{it} - \sum_{j=1}^{J_m} \alpha_{m,j}(\tau)\phi_{m,j}(k_{it}, l_{it}, \omega_{it}))|k_{it}, l_{it}, \omega_{it}] = 0$$

6. Investment:  $\mathbb{E}[\Psi_{\tau}(i_{it} - \sum_{i=1}^{J_{\iota}} \delta_{j}(\tau)\phi_{\iota,j}(k_{it},\omega_{it}))|k_{it},\omega_{it}] = 0$ 

#### **Econometric Restrictions**

Introduction

- ▶ The function  $\Psi_{\tau}(u) = \tau \mathbb{1}\{u < 0\}$
- ► Consider the moment condition corresponding to production
- The law of iterated expectations gives the integrated moment condition

$$\mathbb{E}\left[\int \Psi_{\tau}\left(y_{it} - Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}; \beta(\tau))\right) \otimes \begin{pmatrix} k_{it} \\ l_{it} \\ m_{it} \\ \omega_{it} \end{pmatrix} g_{i}(\omega_{i}^{T}; \theta(\cdot)) d\omega_{i}^{T}\right] = 0,$$
(20)

► The posterior density  $g_i(\omega_i^T; \theta(\cdot)) = f(\omega_i^T | y_i^T, k_i^T, l_i^T, m_i^T, i_i^T, \theta(\cdot))$  involves the entire set of model parameters

### **Implementation**

Introduction

- ▶ Impossible to estimate the model parameters in a  $\tau$ -by- $\tau$ procedure
- ► Continuous model parameters are approximated by piecewise linear splines
- $\triangleright$   $\theta$  is a piecewise-polynomial interpolating splines with Q knots constant on  $[0, \tau_1]$  and  $[\tau_Q, 1)$  Splines
- ► Posterior density has a closed form expression Likelihood
- Integration is done using Metropolis Hastings algorithm
- Estimates are updated using these draws in a sequential algorithm

### Implementation

Introduction

1. Stochastic E-Step: Draw M values

$$\omega_{i}^{(m)} = (\omega_{i1}^{(m)}, \omega_{i2}^{(m)}, \dots, \omega_{iT}^{(m)}) \text{ from}$$

$$g_{i}(\omega_{i}^{T}; \hat{\theta}^{(s)}) = f(\omega_{i}^{T} | y_{i}^{T}, k_{i}^{T}, l_{i}^{T}, m_{i}^{T}, i_{i}^{T}, ; \hat{\theta}^{(s)}) \propto$$

$$\prod_{t=1}^{T} f(y_{it} | k_{it}, l_{it}, m_{it}, \omega_{it}; \hat{\beta}^{(s)}) f(l_{it} | k_{it}, \omega_{it}; \hat{\alpha}_{i}^{(s)}) f(m_{it} | k_{it}, l_{it}, \omega_{it}; \hat{\alpha}_{m}^{(s)})$$

$$\times f(i_{it} | k_{it}, \omega_{it}; \hat{\delta}^{(s)}) \prod_{t=2}^{T} f(\omega_{it} | \omega_{it-1}; \hat{\rho}^{(s)}) f(\omega_{i1} | k_{i1}; \hat{\rho}_{\omega_{1}}^{(s)})$$

2. *Maximization Step*: For q = 1, ..., Q, solve (e.g for production function)

$$\hat{\beta}(\tau_q)^{(s+1)} = \underset{\beta(\tau_q)}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{m=1}^{M} \psi_{\tau_q} \bigg( y_{it} - Q_t^{\gamma}(k_{it}, l_{it}, m_{it}, \omega_{it}^{(m)}; \beta(\tau_q)) \bigg)$$

#### **Empirical Implementation**

- ► Repeat Step 2 for estimating the productivity process, input decision rules and investment
- ▶ Take M = 1 in the MCEM algorithm and the report estimates as the average of the last  $\tilde{S} = S/2$  draws
- ► A similar estimator was proposed by Wei and Carroll, 2009 for error-in-variables models
- ► Arellano and Bonhomme, 2016 extend this methodology to nonlinear quantile panel data models
- ▶ Arellano, Blundell, and Bonhomme, 2017 use this to document nonlinear persistence in income and consumption dynamics

### **Empirical Implementation**

- ▶  $J_y = 20.J_{\omega} = J_{\omega_1} = 3, J_{\ell} = J_{\iota} = 16, J_m = 27$  so total parameters, J = 85
- ► 500 random walk Metropolis-Hastings
- ▶ 200 EM steps (half used for burn-in)
- ightharpoonup Q = 11 for grid size for the interpolating spline
- Initial values for productivity are simulated from TFP estimated from the LP model
- ► Replication code is available on Github

## Asymptotic Properties

- ▶ Nielsen, 2000 provides a.normality conditions when M-step is MI F
- ► Arellano and Bonhomme, 2016 provide conditions when M-step is QR
- Assuming correctly specified model, they show consistency and asymptotic normality
- ► Future work: nonparametric model with time-varying unobservable
- ▶ Instead of confidence intervals, I report posterior intervals from the Markov chain in the paper

## Application

- ► Standard and Poors Compustat database 1997 2016
- Productivity is simulated from its estimated parameters and used to construct investment, inputs, and output using their estimated parameters
- ► Capital is simulated from a linear accumulation process with depreciation rate 0.02
- ▶ Production function elasticities estimated as marginal quantile effects (derivative wrt to inputs)
- ► Factor-specific effects estimated as marginal quantile effects (derivative of elasticities wrt productivity)

### **Production Elasticities**

Figure 4: Output Elasticities



<sup>\*</sup>Output elasticities evaluated at percentiles of the conditional output distribution  $\tau_{\eta}$  and percentiles of capital, labor, and materials averaged over values of the other inputs.

#### **Production Elasticities**

Figure 5: Effect of Productivity on Output Elasticities



<sup>\*</sup>Input efficiencies evaluated at percentiles of the conditional output distribution  $\tau_n$  and percentiles of capital, labor, and materials averaged over values of the other inputs.

## Production Elasticities

Figure 6: Effects of Input Composition on Productivity



\*Panel (a): Capital-labor effect evaluated at  $\tau_{\eta}$  and percentiles of capital-labor  $\tau$ -(k-l). Panel (b): Capital-materials effect evaluated at  $\tau_{\eta}$  and percentiles of capital-materials  $\tau$ -(k-m). Panel (c): Labor-materials effect evaluated at  $\tau_{\eta}$  and percentiles of labor-materials  $\tau$ -(l-m).

## Productivity Persistence

Figure 7: Productivity Persistence



<sup>\*</sup>Estimates of average productivity persistence evaluated at  $\tau_{\xi}$  and percentiles of previous productivity.

Conclusion

#### Preview of Results

Figure 8: Higher Moments of the Conditional Productivity Distribution



Conclusion

## Productivity Innovation Shocks

Figure 9: Shocks to Productivity



<sup>\*</sup>Differences between firms hit with medium productivity shock  $\tau_{\xi}=0.5$  and firms hit by low shock  $\tau_{\xi}=0.1$  (top row) and high shock  $\tau_{\xi}=0.9$  (bottom row) at different percentiles of initial productivity.

Conclusion

#### Productivity Innovation Shocks to Investment

Figure 10: Shocks to Investment



\*Differences between firms hit with medium productivity shock  $\tau_{\mathcal{E}} = 0.5$  and firms hit by low shock  $\tau_{\varepsilon}=0.1$  (top row) and high shock  $\tau_{\varepsilon}=0.9$  (bottom row) at different percentiles of investment demand.

#### Productivity Innovation Shocks to Labor

Figure 11: Shocks to Labor



\*Differences between firms hit with medium productivity shock  $\tau_{\mathcal{E}} = 0.5$  and firms hit by low shock  $\tau_{\varepsilon}=0.1$  (top row) and high shock  $\tau_{\varepsilon}=0.9$  (bottom row) at different percentiles of labor demand.

### Productivity Innovation Shocks to Materials

Figure 12: Shocks to Materials



<sup>\*</sup>Differences between firms hit with medium productivity shock  $\tau_{\xi}=0.5$  and firms hit by low shock  $\tau_{\xi}=0.1$  (top row) and high shock  $\tau_{\xi}=0.9$  (bottom row) at different percentiles of materials demand.

#### Conclusion

- ► Nonparametric identification of production function, input demand, and productivity
- Proposed an estimation framework to document firm heterogeneity in production, input decisions, and productivity
- ► Variation in factor-correlated productivity shocks
- Asymmetric productivity persistence depends on size of innovation shock and levels of previous productivity
- Asymmetric impact of innovation shocks to inputs after bad/good shocks

#### Conclusion

- Extension to more structural models
- ► Incorporating shape constraints in estimation
- ► Structural production function with labor-augmenting productivity
- ▶ Other multi-dimensional unobservables such as fixed effects
- ▶ Implications for TFP estimation and markups

#### **ACF** Estimator

► ACF procedure for estimating a *value-added* production function (in logs):

$$y_{it} = \beta_k k_{it} + \beta_l I_{it} + \omega_{it} + \varepsilon_{it}, \qquad (21)$$

- ▶ y<sub>it</sub> is value-added output for firm i and time t
- ► *l<sub>it</sub>* denotes labor input
- ► k<sub>it</sub> denotes capital input
- $ightharpoonup \omega_{it}$  is unobserved productivity
- $\triangleright$   $\varepsilon_{it}$  denotes an independent and identically distributed (i.i.d) shock to production
- ▶ The constant  $\beta_0$  is omitted since it is not separately identified from the mean of productivity.

#### **ACF** Estimator

► ACF introduces an intermediate input demand function defined as

$$m_{it} = m_t(k_{it}, l_{it}, \omega_{it}) \tag{22}$$

- ▶ The function m is assumed to be strictly increasing in  $\omega_{it}$  for all  $k_{it}$  and  $l_{it}$ .
- Productivity can then be expressed as

$$\omega_{it} = m_t^{-1}(k_{it}, l_{it}, m_{it})$$
 (23)

Substituting this equation into the production function

$$y_{it} = \beta_k k_{it} + \beta_l l_{it} + m_t^{-1}(k_{it}, l_{it}, m_{it}) + \varepsilon_{it} = \Phi_t(k_{it}, l_{it}, m_{it}) + \varepsilon_{it}.$$
(24)

► The function,  $\Phi_t(k_{it}, l_{it}, m_{it})$ , is identified by the following first stage moment restriction

$$\mathbb{E}[\varepsilon_{it}|\mathcal{I}_{it}] = 0 \tag{25}$$

#### **ACF** Estimator

► For the second stage, assume that productivity follows an AR(1) process given by

$$\omega_{it} = \mathbb{E}[\omega_{it}|\omega_{it-1}] + \xi_{it} = \rho\omega_{it-1} + \xi_{it}, \tag{26}$$

- $\xi_{it}$  denotes an innovation to productivity which satisfies  $\mathbb{E}[\xi_{it}|\mathcal{I}_{it-1}] = 0$ .
- Plugging into the production function gives

$$y_{it} = \beta_k k_{it} + \beta_l I_{it} + \rho \omega_{it-1} + \xi_{it} + \varepsilon_{it}$$
  
=  $\beta_k k_{it} + \beta_l I_{it} + \rho (\Phi_{t-1}(k_{it-1}, I_{it-1}, m_{it-1}) - \beta_k k_{it-1} - \beta_l I_{it-1}) + \beta_k k_{it-1} + \beta_l I_{it-1}$ 

► The production function parameters  $\beta_k, \beta_l$  and  $\rho$  are identified from the moment restrictions given by

$$\mathbb{E}[\xi_{it} + \varepsilon_{it} | \mathcal{I}_{it-1}] = 0. \tag{27}$$

► Estimation using Generalized Method of Moments (GMM)



#### Skorohod Representation

► This representation comes from the fact that  $\eta_{it}$  can be defined as

$$\eta_{it} = F(y_{it}|k_{it}, l_{it}, m_{it}, \omega_{it})$$
 (28)

▶  $\eta_{it}$  is then uniformly distributed independently of  $(k_{it}, l_{it}, m_{it}, \omega_{it})$  on (0, 1)

$$y_{it} = F^{-1}(k_{it}, l_{it}, m_{it}, \omega_{it}, \eta_{it}), \quad \eta_{it} \sim \textit{Uniform}(0, 1)$$
 (29)

which is the quantile function



#### Quantiles and Markups

 Markups can be obtained from a static cost minimization problem

$$\min_{L_t, M_t} P_{l_t} L_t + P_{m_t} M_t, \quad s.t. \ Q_t^y (K_{it}, L_{it}, M_{it}, \omega_{it}, \eta_{it}) = Y_t$$

▶ From FOC for inputs  $X_t = \{L_t, M_t\}$  and rearranging

$$\mu_t = \frac{P_t Y_t}{P_{X_t} X_t} \frac{\frac{\partial F(K_t, L_t, M_t, \omega_t, \eta_t)}{\partial X_t}}{F(K_t, L_t, M_t, \omega_t, \eta_t)} = \frac{\beta_X(K_t, L_t, M_t, \omega_t, \eta_t)}{S_{X_t}}$$

where  $S_{X_t}$  is the expenditure share of the input

► Firm-specific markups are recovered from

$$\hat{\mu}_t(\tau) = \frac{\hat{\beta}_X(K_t, L_t, M_t, \omega_t, \tau)}{S_{X_t}}$$



#### **Linear Operators**

#### Definition 1

(Integral Operator) Let a and b denote random variables with supports  $\mathcal{A}$  and  $\mathcal{B}$ . Given two corresponding spaces  $\mathcal{G}(\mathcal{A})$  and  $\mathcal{G}(\mathcal{B})$  of functions with domains  $\mathcal{A}$  and  $\mathcal{B}$ , let  $L_{b|a}$  denote the operator mapping  $g \in \mathcal{G}(\mathcal{A})$  to  $L_{b|a}g \in L_{b|a}\mathcal{G}(\mathcal{B})$  defined by

$$[L_{b|a}g](b) \equiv \int_{\mathcal{A}} f_{b|a}(b|a)g(a)da,$$

where  $f_{b|a}$  denotes the conditional density of b given a.

**∢** Go Back

#### Piecewise Linear Splines

► The functional coefficients are approximated by piecewise linear splines on a grid with *Q* knots

$$\theta(\tau) = \theta(\tau_q) + \frac{\tau - \tau_q}{\tau_{q+1} - \tau_q} (\theta(\tau_{q+1}) - \theta(\tau_q))), \quad \tau_q < \tau \le \tau_{q+1}$$

- ► I specify exponential distributions in the tail intervals
- Intercept coefficients are quantiles of an exponential distribution

$$heta_0( au) = heta_0( au_1) + rac{\mathsf{ln}( au/ au_1)}{\lambda_{ heta}^-}, \quad au \leq au_1$$

and

$$heta_0( au) = heta_0( au_Q) + rac{\mathsf{ln}((1- au)/(1- au_Q))}{\lambda_A^+}, \quad au > au_Q$$

 $\lambda_{\theta}^{-}$  and  $\lambda_{\theta}^{+}$  are parameters of exponential distributions



#### Likelihood Function

- With piecewise linear splines in quantiles, the likelihood function is available in closed-form
- Density of a random variable is inverse of derivative of quantile function
- ▶ Consider the conditional density of Y|X indexed by  $\theta(\cdot)$

$$\begin{split} &\mathbf{f}_{\mathbf{y}|\mathbf{x}}(\mathbf{y}|\mathbf{x};\theta) = \\ &\sum_{q=1}^{Q-1} \frac{\tau_{q+1} - \tau_q}{Q^y(x;\theta(\tau_{q+1})) - Q^y(x;\theta(\tau_q))} \mathbb{1}\{Q^y(x;\theta(\tau_q)) < y \leq Q^y(x;\theta(\tau_{q+1}))\} \\ &+ \tau_1 \lambda_{\theta}^- \exp(\lambda_{\theta}^-(y - Q^y(x;\theta(\tau_1)))) \mathbb{1}\{y \leq Q^y(x;\theta(\tau_1))\} \\ &+ (1 - \tau_Q) \lambda_{\theta}^+ \exp(-\lambda_{\theta}^+(y - Q^y(x;\theta(\tau_Q)))) \mathbb{1}\{y > Q^y(x;\theta(\tau_Q))\} \end{split}$$



## Labor Adjustments





#### Productivity Persistence



\*Panel (a): Estimates of average productivity persistence for non R&D firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity. Panel (b): Estimates of productivity persistence for R&D firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity averaged over R&D. Panel (c): Estimates of productivity persistence for R&D firms evaluated at  $\tau_{\xi}$  and percentiles of R&D averaged over productivity.

# Higher Moments of the Conditional Productivity Distribution (Non R&D)



## Higher Moments of the Conditional Productivity Distribution (R&D)



#### Returns to R&D



\*Panel (a): Returns to R&D for firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity averaged over R&D. Panel (b): Returns to R&D for firms evaluated at  $\tau_{\xi}$  and percentiles of R&D averaged over productivity.

#### Correction for Selection Bias

► The exit rule can be written as

$$h_{t}(\omega_{it-1},\xi_{it}) \geq \underline{\omega}_{t}(k_{it}),$$
  

$$\xi_{it} \geq h_{t}^{-1}(\omega_{it-1},\underline{\omega}_{t}(k_{it})),$$
  

$$\xi_{it} \geq \underline{\omega}_{t}(\omega_{it-1},k_{it})$$
(30)

- ▶ If  $\xi_{it}$  is independent of  $(k_{it}, \omega_{it-1})$ ,  $\xi_{it} | (k_{it}, \omega_{it-1}) \sim U(0, 1)$
- ► The cutoff for which firms stay in operation can be estimated from

$$\underline{\omega}_{t}(\omega_{it-1}, k_{it}) = \text{Prob}(\chi_{it} = 1 | \omega_{it-1}, k_{it}) \equiv p(\omega_{it-1}, k_{it}) \quad (31)$$

- Firms that receive an innovation shock greater than  $p(\omega_{it-1}, k_{it})$  continue to operate
- ▶ Distribution of  $\xi_{it}|(k_{it}, \omega_{it-1}, \chi_{it} = 1)$  is

$$\xi_{it}|(k_{it},\omega_{it-1},\chi_{it}=1) \sim U(p(\omega_{it-1},k_{it}),1)$$
 (32)

#### Correction for Selection Bias

lacktriangle Consider a simple process for productivity  $\omega_{it}=
ho(\xi_{it})\omega_{it-1}$ 

$$Prob(\omega_{it} \leq \rho(\tau)\omega_{it-1}|\omega_{it-1}, k_{it}, \chi_{it} = 1)$$

$$= Prob(\xi_{it} \leq \tau|\omega_{it-1}, k_{it}, \chi_{it} = 1)$$

$$= \frac{\tau - p(\omega_{it-1}, k_{it})}{1 - p(\omega_{it-1}, k_{it})} \equiv G(\tau, p)$$
(33)

▶ If  $\omega_{it}$  is known, then  $\rho(\tau)$  is the solution to a rotated quantile regression problem

$$\hat{\rho}(\tau) = \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t=2}^{T} \chi_{it} \left[ G(\tau, \hat{\rho}) (\omega_{it} - \rho \omega_{it-1})^{+} + (1 - G(\tau, \hat{\rho})) (\omega_{it} - \rho \omega_{it-1})^{-} \right]$$
(34)

where  $a^+ = max(a,0)$  and  $a^- = max(-a,0)$ 

▶  $p(\omega_{it-1}, k_{it})$  can be estimated using a probit model

## Productivity Persistence (Selection Corrected)



<sup>\*</sup>Estimates of average productivity persistence evaluated at  $au_{\xi}$  and percentiles of previous productivity.

## Higher Moments of the Conditional Productivity Distribution (Selection Corrected)



### Productivity Innovation Shocks



## Productivity Innovation Shocks to Investment



### Productivity Innovation Shocks to Labor



## Productivity Innovation Shocks to Materials



