The verification of assumptions of this model (I)

13 kwietnia 2021

Model regresji wielorakiej-powtórzenie

Rozważamy madele regresji liniowej, które można zapisać w formie macierzowej:

$$\underbrace{\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}}_{\mathbf{Y}} = \underbrace{\begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}}_{\beta} + \underbrace{\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}}_{\epsilon}.$$

W skrócie możemy więc zapisać:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon.$$

Założenia

Przypuśćmy, że jest więcej obserwacji niż parametrów tzn:

- $k+1 \le n$. Ponadto,
- Z1 Macierz X zmiennych objaśniających jest **deterministic** (nielosowa), tzn. $[X_{t1}, X_{t2}, \dots, X_{tk}]^T$ są nielosowe dla wszystkich t;
- Z2 Rząd macierzy **X** wynosi k + 1, co oznacza, że **kolumny są** liniowo niezależne;
- Z3 $E(\epsilon) = \mathbf{0}$, tzn. $E\epsilon_t = 0$ dla wszystkich t;
- Z4 $D^2(\epsilon) = \sigma^2 \mathbf{I}$, tzn. ϵ_t jest ciągiem nieskorelowanych zmiennych losowych o tej samej, ale nieznanej wariancji σ^2 ;
- Z5 All ϵ_t has normal distribution $N(0, \sigma^2)$.

Plan na najbliższe wykłady

Mając oszacowanie $\hat{\beta}$ i reszt $\hat{\epsilon}$ wiemy tylko

- Jaki model jest najbliższy rzeczywistości;
- Mamy tylko przymiarkę do doboru zmiennych, które pasują do modelu bardziej, a które mniej;

Nie mając pewności czy założenia Z1-Z5 nadal nie wiemy:

- jak dokładne są oszacowania;
- czy poziomy krytyczne w testach istotności są adekwatne;

W tym celu wykonujemy analizujemy weryfikację niektórych założeń.

Weryfikacja założenia Z1

Założenie Z1, że **X** jest nielosowa jest niemożliwa do wykonania przez statystyka:

- Przykładowo gdy
 inżynier zleca statystykowi
 zbadanie opracowanie
 modelu wytrzymałości
 belki w zależności
 od rozkładu włókien,
 to on musi wskazać które
 zmienne mogą być losowe,
 a które nie;
- Czasami Z1 mamy za darmo, np. $X_{j,t}$ jest zadana jako funkcja czasu np. $X_{t,i} = t^2$;

Weryfikacja założeń Z2

Aby sprawdzić czy rząd macierzy **X** wynosi k + 1:

- Wystarczy sprawdzić czy kolumny macierzy X są liniowo niezależne;
- Jest to proste ćwiczenie z algebry i prosta komenda dla przeciętnego pakietu matematycznego.

Weryfikacja założenia Z3

Aby sprawdzić $E\epsilon_t=0$ wystarczy zauważyć:

- W zasadzie to reszty mają średnią równą 0;
- Pakiet zwróci najbliższą liczbę maszynową zeru;
- Tradycyjny test Studenta dla próby zweryfikuje pozytywnie hipotezę, że Z3 jest spełnione;

Weryfikacja założenia Z4-Z5

- Z4 Weryfikacja założenia Z4 prowadzi do poniższych hipotez pomocniczych:
 - ε_t jest ciągiem nieskorelowanych zmiennych losowych, w tym celu używamy testu o braku autokorelacji test Durbina-Watsona;
 - ϵ_t jest ciągiem homoskedastycznym, tzn. $Var(\epsilon_t) = \sigma^2$ dla t (test Harrisona McCabe'a, test White);
- Z5 Jest wiele testów normalności, np. test *chi-kwadrat zgodności*, ale poznamy również inne testy:
 - test Jarque-Bera łatwy do przeprowadzenia i popularny rozkład statystyki testowej (rozkład χ^2);
 - test Shapiro-Wilka bardziej skomplikowany, ale mocy i odporny na autokorelację reszt;

Założenia [Z4] i [Z5]

Znaczenie założeń [Z4] i [Z5]

Potrzebujemy założeń [Z4] and [Z5] dla testów istotności

- pojedynczych zmiennych, w przeciwnym razie p-value nie będzie wyrażona przez dystrybuantą rozkładu t-Studenta (rozkład statystyki testowej może być inny);
- grup zmiennych, w przeciwnym razie p-value testu Walda nie jest poprawnie wyznaczona (rozkład statystyki nie musi być F-Snedecore) (VERTE).

Założenia [Z4] i [Z5]

Znaczenie założeń [Z4] i [Z5] - C.D.

Ponadto,

- Założenie normalności [Z5] wzmacnia zasadność używania estymatora $\hat{\beta}$, ponieważ jest uzyskany nie tylko za pomocą metody najmniejszych kwadratów, ale również za pomocą metody największej wiarogodności;
- Jeśli założenie homoskedastyczności [Z4] nie jest spełnione, zamiast metody najmniejszych kwadratów można zastosować metodę ważonych najmniejszych kwadratów:

$$\min_{\beta_0,\beta_1,...,\beta_k} \sum_{t=1}^n w_t \left(y_t - \beta_0 - \beta_1 x_{t,1} -, \ldots, -\beta_k x_{t,k} \right)^2,$$

dla wag w_t zależnych od wariancji.

Weryfikacja założenia [Z4] - test Durbina - Watsona

Zakładamy jak zwykle

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

ale pozwalamy, żeby ϵ_t nie był nieskorelowany poprzez istnienie autokorelacji, tzn.

$$\epsilon_t = \rho \epsilon_{t-1} + \eta_t,$$

gdzie η_t jest prawdziwym składnikiem losowym spełniającym założenia [Z3,Z4] i [Z5], gdzie dla wszystkich t

$$Var(\eta_t) = \sigma_0$$
, and $Cov(\epsilon_t, \eta_{t+1}) = 0$,

gdzie $\rho \in (-1,1)$ jest nieznanym parametrem, a σ_0 jest parametrem zakłócającym, który jest również nieznany.

Weryfikacja założenia [Z4] - test Durbina - Watsona

Testowanie hipotezy ϵ_t jest ciągiem nieskorelowanych zmiennych prowadzi do problemu testowania hipotezy pomocniczej:

$$H_0: \rho = 0$$
 VS $\rho \neq 0$;

- Brak autokorelacji: przyjmując hipotezę H_0 przyjmujemy, że $\epsilon_t = \eta_t$, stąd jest to *prawdziwy* składnik losowy (szum);
- Istnienie autokorelacji: gdy odrzucimy hipotezę H₀
 przestajemy wierzyć, że ε_t jest prawdziwym szokiem;

W przypadku istnienia autokorelacji

$$\epsilon_t = \rho \epsilon_{t-1} + \eta_t$$

możemy zauważyć,że:

$$\textit{Var}(\epsilon_{\mathbf{t}}) = \textit{Var}(\rho\epsilon_{\mathbf{t-1}} + \eta_{\mathbf{t}}) = \textit{Var}(\rho\epsilon_{\mathbf{t-1}} + \eta_{\mathbf{t}}) = \underbrace{\rho^{2}\textit{Var}(\epsilon_{\mathbf{t-1}}) + \sigma_{\mathbf{0}}^{2}}_{\textit{ponieważ }\textit{Cov}(\epsilon_{\mathbf{t-1}}, \eta_{\mathbf{t}}) = \mathbf{0}} = \sigma^{2},$$

zatem (
$$Var(\epsilon_t) = \sigma^2$$
)

$$\sigma^2 = rac{1}{1 -
ho^2} \sigma_0^2 = rac{1}{1 -
ho^2} extsf{Var}(\eta_t).$$

Zatem,

$$\begin{aligned} & \textit{Cov}(\epsilon_t, \epsilon_{t-1}) = \textit{Cov}(\rho \epsilon_{t-1} + \eta_t, \epsilon_{t-1}) \\ &= \underbrace{\rho \textit{Var}(\epsilon_{t-1}) + \textit{Cov}(\eta_t, \epsilon_{t-1})}_{\text{Kowariancja jest dwuliniowa}} = \frac{\rho \sigma_0^2}{1 - \rho^2}. \end{aligned}$$

Stąd korelacja pomiędzy ϵ_t i ϵ_{t-1} spełnia

$$Corr(\epsilon_t, \epsilon_{t-1}) = \frac{Cov(\epsilon_t, \epsilon_{t-1})}{\sqrt{Var(\epsilon_t)Var(\epsilon_{t-1})}} = \frac{\frac{\rho\sigma_0^2}{1-\rho^2}}{\frac{1}{1-\rho^2}\sigma_0^2} = \rho.$$

Dla testu hipotezy dotyczącej ϵ_t , potrzebujemy odpowiednika *reszt*, gdzie $\hat{\epsilon}$ spełnia jak zwykle:

$$\hat{\epsilon}_t = Y_t - \hat{\beta}_0 - \hat{\beta}_1 x_{t,1} - \ldots - \beta_k x_{t,k},$$

gdzie

$$\hat{\beta} = (\mathbf{X}^T * \mathbf{X}) * \mathbf{X}^T * \mathbf{Y}.$$

Estymator ρ jest wyrażony wzorem:

$$\hat{\rho} = \frac{\sum_{\tau=2}^{n} \hat{\epsilon}_{\tau} \hat{\epsilon}_{\tau-1}}{\sqrt{\sum_{\tau=2}^{n} \hat{\epsilon}_{\tau}^{2} \sum_{\tau=2}^{n} \hat{\epsilon}_{\tau-1}^{2}}} \approx \frac{Cov(\epsilon_{t}, \epsilon_{t-1})}{\sqrt{Var(\epsilon_{t})Var(\epsilon_{t-1})}} = \rho.$$

Statystyka testowa:

$$DW := \frac{\sum\limits_{t=2}^{n} (\hat{\epsilon}_t - \hat{\epsilon}_{t-1})^2}{\sum\limits_{t=1}^{n} \hat{\epsilon}_t^2}.$$

Zauważmy

$$DW := \frac{\sum_{t=2}^{n} \hat{\epsilon}_{t}^{2} + \sum_{t=2}^{n} \hat{\epsilon}_{t-1}^{2} - 2\sum_{k=2}^{2} \hat{\epsilon}_{t} \hat{\epsilon}_{t-1}}{\sum_{t=1}^{n} \hat{\epsilon}_{t}^{2}}$$

i dla dostatecznie dużych *n* mamy

$$\sum_{t=1}^{n} \hat{\epsilon}_t^2 \approx \sum_{t=2}^{n} \hat{\epsilon}_t^2 \approx \sum_{t=2}^{n} \hat{\epsilon}_{t-1}^2.$$

Mamy więc

$$DW \approx 2(1-\hat{\rho}).$$

Wnioskujemy:

- DW zmienia się w przedziale [0, 4];
- Jeśli hipoteza H_0 jest prawdziwa, oczekujemy $\hat{\rho} \approx 0$, stąd oczekujemy $DW \approx 2$;
- W przeciwnym razie odrzucimy hipotezę H_0 na rzecz $\rho > 0$ lub $\rho < 0$.

Test Durbina - Watsona

Jeśli $H_0: \rho = 0$ jest prawdziwa:

- Rozkład statystyki testowej *DW* jest stablicowany;
- Zależy on od liczby obserwacji n i liczby parametrów k;
- Realizacja statystyki spełnia $DW \approx 2$.

Statystyka testu Durbina - Watsona - wartości krytyczne

 Jeśli wartość statystyki DW spełnia DW > 2 wtedy testujemy hipotezę

$$H_0: \rho = 0$$
 VS $H_1: \rho < 0$

ullet Jeśli realizacja DW spełnia DW < 2 wtedy testujemy hipotezę

$$H_0: \rho = 0$$
 VS $H_1: \rho > 0$

Statystyka testu Durbina - Watsona - wartości krytyczne

Niech $\kappa \in (0,1)$ będzie ustalonym poziomem istotności (zwykle $\kappa = 0.05$).

- W odróżnieniu od większości testów, zczytujemy dwie wartości krytyczne d_U i d_L z tablic rozkładu DW, gdzie d_L < d_U < 2;
 - Jeśli hipotezą alternatywną jest $H_1: \rho > 0$, co ma miejsce przy realizacji DW < 2 wtedy:
 - **1** Jeśli $DW < d_L$, wtedy **odrzucamy hipotezę** H_0 **na rzecz** $H_1: \rho > 0$.
 - ② Jeśli $d_L < DW < d_U$, wtedy problem jest nierozstrzygnięty.
 - **3** Jeśli $DW > d_U$, wtedy przyjmujemy hipotezę $H_0: \rho = 0$.
 - Jeśli hipotezą alternatywną jest $H_1: \rho < 0$, co ma miejsce przy realizacji DW > 2 wtedy:
 - ① Jeśli $DW > 4 d_L$, wtedy odrzucamy hipotezę H_0 na rzecz $H_1: \rho < 0$.
 - ② Jeśli $4 d_U < DW < 4 d_L$, wtedy problem jest nierozstrzygnięty.
 - 3 Jeśli $DW < 4 d_U$, wtedy przyjmujemy hipotezę $H_0: \rho = 0$.

Statystyka testu Durbina - Watsona - wartości krytyczne

Poniższa tabelka ilustruje procedurę decyzyjną w teście Durbina-Watsona. Wprowadzamy DW, d_U, d_L przy $d_L < d_U < 2$.

$DW < 2 i H_1 : \rho > 0$			
	$DW < d_{L}$	$d_{L} < DW < d_{U}$	$DW > d_{U}$
	odrzucamy Ho na rzecz H1	problem jest nierozstrzygnięty	przyjmujemy $ ho = 0$
$DW>2$ and $H_{1}: ho<0$			
	$DW > 4 - d_L$	$4 - d_{\boldsymbol{U}} < DW < 4 - d_{\boldsymbol{L}}$	$DW < 4 - d_{U}$
	odrzucamy Ho na rzecz H1	problem jest nierozstrzygnięty	przyjmujemy $ ho = 0$

Example

Znajdziemy związek między poziomem cen w Stanach Zjednoczonych, a

> kursem obligacji w Stanach Zjednoczonych;

- kursem obligacji w Australii;
- poziomem

Przykład

Przykład (dane z GRETLa)

Znajdziemy model poziomu cen w Stanach Zjednoczonych w stosunku do cen w Australi oraz cen obligacji w Stanach Zjednoczonych i Australii. Na podstawie 77 obserwacji, model ma postać

$$Y_t = \beta_0 + \beta_1 * X_{t,1} + \beta_2 * X_{t,2} + \beta_3 * X_{t,3} + \epsilon_t,$$

gdzie:

- Y_t poziom cen w Stanach Zjednoczonych;
- $X_{t,1}$ ceny obligacji w Stanach Zjednoczonych;
- X_{t,2} poziom cen w Australii;
- X_{t,3} ceny obligacji w Australii;

Rozwiązanie

Na podstawie obliczeń w Gretlu mamy następujący model

$$Y_t = 6.52 + 1.33 * X_{t,1} + 0.45 * X_{t,2} + 0.89 * X_{t,3} + \epsilon_t$$

którego reszty dają następującą wartość statystyki Durbina-Watsona:

$$DW = 0.539680 < 2.$$

Rozwiązanie-C.D.

Zatem testujemy hipotezy:

$$H_0: \rho = 0 \quad VS \quad H_1: \rho > 0$$

gdzie n=77 oznacza liczbę obserwacji i k=3 oznacza liczbę parameterów. Z tablic rozkładu Durbina-Watsona zczytujemy

$$d_L = 1.5502$$
 oraz $d_U = 1.7117$.

Rozwiązanie-C.D.

Mamy więc,

$$DW = 0.539680 < 1.5502 = d_L,$$

czyli odrzucamy hipotezę $H_0: \rho=0$ na rzecz $H_1: \rho>0$. Zatem mamy podstawy do odrzucenia hipotezy, że reszty są realizacą ciągu nieskorelowanych zmiennych losowych.