

Data Mining for Biological Data Analysis

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

References

■ **Data Mining Course** by *Gregory-Platesky Shapiro* available at www.kdnuggets.com

- □ Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)
 - ► Chapter 8

Introduction to Biology

The DNA

Different cell types

□ All cells of an organism share the same DNA content (and the same genes) yet there is a variety of cell types.

So, how does the cell use DNA?

The "Central Dogma"

- DNA contains thousands of particular segments called genes
- ☐ Genes contain "instructions" for making **proteins**
- In order to be executed these "instructions" have to be transcribed into mRNA
- ☐ Proteins are defined by a sequence of **amino acids** (20 types)
- There are almost one million of proteins that act alone or in complexes to perform many cellular functions

Gene expression

Muscle, nervous, blood ...

Disease, mutation...

Genomic and Proteomic

- Thousands of genes (~25K in human DNA) function in a complicated and orchestrated way that creates the mystery of life.
- □ Genomic studies the functionality of specific genes, their relations to diseases, their associated proteins and their participation in biological processes
- □ Proteins (~1M in human organism) are responsible for many regulatory functions in cells, tissues and organism
- □ Proteome, the collection of proteins produced, evolves dynamically during time depending on environmental signals.
- Proteomic studies the sequences of proteins and their functionalities

Data Mining of Biological Data (1)

- Semantic integration of genomic and proteomic databases
 - Data produced by different labs need to be integrated
 - Data mining can be used to perform data cleaning, integration, object reconciliation to merge heterogeneous databases
- Alignment of nucleotide/protein sequences
 - Build phylogenetic trees
 - Similarity search
 - Difference search
- Protein structure analysis
 - 3D structure of proteins heavily affects their functionalities
 - Prediction of protein structures
 - Discovery of regularities

Data Mining of Biological Data (2)

- Association and path analysis of gene sequences
 - Analysis of gene associations in diseases
 - Discovery of sequential patterns of genes correlated to different stages of diseases
- Visualization
 - Support to knowledge discovery
 - Interactive data exploration

DNA Microarray Analysis

Microarray Data Analysis

- The DNA Microarray is a technology that allows the analysis of the gene expression levels in samples collected
- Such an analysis has many potential applications
 - Earlier and more accurate diagnostics
 - New molecular targets for therapy
 - Improved and individualized treatments
 - Fundamental biological discovery (e.g. finding and refining biological pathways)
- Examples
 - Molecular diagnosis of leukemia, breast cancer, ...
 - Discovery that genetic signature strongly predicts outcome
 - ► A few new drugs, many new promising drug targets

Motivation for DNA Microarrays

- □ Traditional methods in molecular biology generally work on a "one gene in one experiment" basis, which means that the throughput is very limited and the "whole picture" of genes function is hard to obtain
- "In early 1997, scientists never envisioned looking at more than 25 to 50 gene-expression levels simultaneously. Today everybody tells us that they want to look at the whole genome." Kreiner, Affymetrics
- With a technology for **simultaneously** analyzing the expression levels of **large numbers** of genes we can:
 - Study the behavior of co-regulated gene networks.
 - ▶ Look for groups of **genes involved in a particular biological process** or in a specific disease by identifying genes whose expression levels change under certain circumstances.
 - Detecting changes in gene expression level in order to have clues on its product function.
 - Compare normal organism and mutant RNA transcription profiles.

The technology: the whole picture

The technology: Affymetrix Chip

The technology: scanning

An observation

Microarray Data Analysis Types

- Gene Selection
 - Find genes for therapeutic targets (new drugs)
- Classification (supervised)
 - Identify disease
 - Predict outcome / select best treatment
- Clustering (unsupervised)
 - Find new biological classes / refine existing ones
 - Exploration (discovery of unknown classes)

Challenges

- Main challenges
 - ► Few samples (usually < 100) but many features (usually genes > 1000)
 - ▶ High probability of finding false positives, that are knowledge discovered due to random noise
 - Models discovered need to be explainable to biologists
- Main steps
 - Data preparation
 - Feature selection
 - Apply a classification methods
 - Tuning parameters with cross-validation

Preparing data

- Microarray data is translated in a n x p table, where n is the number of observations and p is the number of genes tested
- Each element <i,j> of the table is the expression level of gene j in the observation I
- Thresholds and transformations are applied to data
- Genes with a not significant variability through the whole dataset are excluded

Genes Selection

- Most learning algorithms look for non-linear combinations of features
 - Can easily find spurious combinations given few records and many genes ("false positives problem")
- Classification accuracy improves if we first reduce number of genes by a linear method
 - e.g. T-values of mean difference

$$\frac{(Avg_{1} - Avg_{2})}{\sqrt{(\sigma_{1}^{2} / N_{1} + \sigma_{2}^{2} / N_{2})}}$$

Select the top N genes from each class

Genes Selection: Randomization Approach

Class		Gene i	•••
Healthy	•••	3208	
Sick	•••	56	
Sick	•••	80	
Healty	•••	4560	
	•••	•••	

☐ Is T-Value outcome due to chance?

Genes Selection: Randomization Approach

	Class		Gene i	•••
	Healthy	•••	3208	•••
	Sick	•••	56	•••
	Sick		80	•••
	Healty		4560	•••
,				

T-Value M

- Is T-Value outcome due to chance ?
- Randomization approach
 - Generate M random permutations of the class column
 - ▶ Compute T-values for each permutation and for each gene
 - ▶ How frequent a big T-value occurs for a random permutation?
 - Keep genes with high T-value and desired significance
- Limitations
 - Genes are assumed independent
 - Randomization is a conservative approach

Genes Selection: Wrapper Approach

- Generate several models and evaluate them
 - Apply T-Values to identify the top N genes
 - Evaluate (with cross-validation) the accuracy of the model learned using all the subset of genes selected
 - Choose the simplest model that reaches the best performance
- Issues
 - Computationally expensive
 - ► Validation sets used in the genes selection process cannot be used to assess the final performance of the model!

Classification Methods

- Decision Trees/Rules
 - Model easy to understand
 - Find smallest gene sets, but not robust
 - Poor performance
- Neural Networks
 - Work well for reduced number of genes
 - Model is difficult to understand
- K-nearest neighbor
 - Good results for small number of genes, but no model
- Naïve Bayes
 - Simple, robust, but ignores gene interactions
- Support Vector Machines (SVM)
 - Good accuracy, automatic gene selection, but hard to understand
- **...**

Biological Sequence Alignment

Alignment of biological sequence (1)

- Given two or more input biological sequences, identify similar sequences with long conserved subsequences
- Sequences can be either nucleotides (DNA/RNA) or amino acids (proteins)
 - Nucleotides align with if they are identical
 - Amino acids align if identical or if one can be derived from the other
- Tasks
 - Pairwise sequence alignment
 - Multiple sequence alignment
- Applications
 - Discovering phylogentic trees
 - Similarity searches

Alignment of biological sequence (2)

- Substitution matrix is used to define
 - cost of substitutions
 - cost of insertions and deletions
- Cost is inversely proportional to the probability that a substitution/insertion/deletion occurred
- □ Gaps ("-") can be used to indicate positions where it is preferable not to align two symbols
- □ The introduction of a gap ("—") is usually associated to a negative cost (penalty)

Example

Align the following sequences:

HEAGAWGHEE PAWHEAE

■ Evaluate the following alignments according to the substitution matrix provided and the a gap penalty of -8

	Α	Ε	G	Н	W
Α	5	-1	0	-2	- 3
E	Υ_	6	ဂု	0	- 3
Н	-2	0	-2	10	- ვ
Р	7	1	-2	-2	-4
W	-3	-3	-3	-3	15

Pairwise sequence alignment

- Two major approaches
 - Local alignment, works on segments and merge them
 - Global alignment, works on entire sequence
- Global alignment approaches search for the optimal alignment starting from optimal subsequences
- Needleman-Wunsch and Smith-Waterman algorithms exploit dynamic programming to find the optimal solution
- Both these algorithm have a **computational complexity** that is **quadratic** w.r.t. **sequences length**!
- Local alignment approaches (e.g. BLAST and FASTA) may be not able to find the best alignment but are more suitable to deal with long sequences

BLAST

- BLAST breaks the sequences in small fragments called words
- □ A word is a k-tuple of elements (typically 11 nucleotides or 3 amino acids)
- BLAST first builds an hash tables of neighborhood words, that are closely matching
- Starting from a fragment, the alignment is extended in both the direction by choosing the best scoring matches
- BLAST has computationally complexity linear w.r.t. to the sequence length
- Several specialized versions of BLAST have been introduced
 - Protein similarity searches (BLASTP)
 - Variable word size (BLASTN)
 - Not contiguous alignments (MEGABLAST)

Multiple Sequence Alignment Methods

- Is important both in phylogenetic analysis and in the discovery of protein structures
- Multiple alignment is computationally more challenging
- Freng-Doolittle alignment
 - Performs the pairwise alignments
 - Merge them following a guide tree generated with a hierarchical clustering approach
- Hidden Markov Models
 - More sophisticated probabilistic approach to represent statistical regularities in the sequences