Logistic Regression With Covariates

Andy Grogan-Kaylor

8 Sep 2020 16:08:06

Background

Simulate Data

```
. clear all
```

. cd "/Users/agrogan/Desktop/newstuff/categorical/logistic-and-covariates"/Users/agrogan/Desktop/newstuff/categorical/logistic-and-covariates

```
. set obs 1000 number of observations (_N) was 0, now 1,000 \,
```

. generate x1 = rnormal() // normally distributed x

```
. histogram x1, scheme(michigan)
(bin=29, start=-3.1592772, width=.22074086)
```

. graph export histogram1.png, width(500) replace (file histogram1.png written in PNG format)

Figure 1: Histogram of x1

- . generate x2 = rnormal() // normally distributed z
- . graph export histogram2.png, width(500) replace (file histogram2.png written in PNG format)

Figure 2: Histogram of x2

- . generate e = rnormal() // normally distributed error $\,$
- . corr x1 x2 // x1 and x2 are uncorrelated (obs=1,000)

	x1	x2
x1	1.0000	
x2	0.0596	1.0000

. generate y1 = x1 + x2 + e // dependent variable

Linear Regression

. regress y1 x	c1						
Source	SS	df	MS	Numb	er of obs	=	1,000
				F(1,	998)	=	635.15
Model	1289.80971	1	1289.80971	Prob	> F	=	0.0000
Residual	2026.66544	998	2.03072689	R-sq	uared	=	0.3889
				Adj	R-squared	=	0.3883
Total	3316.47515	999	3.31979494	Root	MSE	=	1.425
у1	Coef.	Std. Err.	t	P> t	[95% C	onf.	<pre>Interval]</pre>
x1	1.088659	.0431971	25.20	0.000	1.0038	92	1.173427
_cons	.0278531	.0450746	0.62	0.537	06059	87	.1163049

- . est store OLS1 // store estimates
- . regress y1 x1 x2

Source	SS	df	MS		er of obs	=	1,000
M. 1.1	0245 0000		1157 000	F(2,	-	=	1153.65
Model	2315.8002	2	1157.9001	1 Prob	> F	=	0.0000
Residual	1000.67495	997	1.003686	6 R-sqı	ıared	=	0.6983
				- Adj H	R-squared	=	0.6977
Total	3316.47515	999	3.31979494	1 Root	MSE	=	1.0018
771	Coef.	Std. Err.	t	P> t	[95% Co.	n f	Intervall
y1	COE1.	btu. EII.		1/ 0	[90% 60]		Intervar
x 1	1.030682	.0304229	33.88	0.000	.970981	7	1.090382
						•	
x2	.9874388	.0308843	31.97	0.000	.926833	1	1.048044
_cons	.0081816	.0316947	0.26	0.796	054014	4	.0703775

- . est store OLS2 // store estimates
- . estimates table OLS1 OLS2, b(%7.4f) star // table comparing estimates

Variable	OLS1	OLS2
x1	1.0887***	1.0307***
x2 _cons	0.0279	0.9874*** 0.0082

legend: * p<0.05; ** p<0.01; *** p<0.001

Logistic Regression

```
. generate prob_y2 = exp(x1 + x2 + e) / (1 + exp(x1 + x2 + e))
```

. recode prob_y2 (0/.5 =0)(.5/1 = 1), generate(y2) // recode probabilites as observed val

(1000 differences between prob_y2 and y2)

. logit y2 x1

Iteration 0: log likelihood = -693.11518 $log\ likelihood = -550.43417$ Iteration 1: \log likelihood = -550.34901 Iteration 2: \log likelihood = -550.34899 Iteration 3:

Logistic regression Number of obs 1,000 LR chi2(1) 285.53 Prob > chi2 0.0000 Pseudo R2 0.2060

Log likelihood = -550.34899

у2 Coef. Std. Err. z P>|z| [95% Conf. Interval] 1.282626 .0926296 0.000 1.101075 1.464177 x1 13.85 .0044323 .1481356 _cons .0733194 0.06 0.952 -.139271

- . est store logit1
- . logit y2 x1 x2

Iteration 0: log likelihood = -693.11518log likelihood = -399.88043Iteration 1: log likelihood = -399.52919Iteration 2: Iteration 3: \log likelihood = -399.52837 log likelihood = -399.52837Iteration 4:

1,000 Logistic regression Number of obs LR chi2(2) 587.17 Prob > chi2 0.0000 Log likelihood = -399.528370.4236 Pseudo R2

Coef. Std. Err. P>|z| [95% Conf. Interval]

x1	1.80266	.1291406	13.96	0.000	1.549549	2.055771
x2	1.644651	.1215883	13.53	0.000	1.406342	1.88296
_cons	060496	.0882002	-0.69	0.493	2333652	.1123732

[.] est store logit2

. estimates table logit1 logit2, b($\%7.4 \mathrm{f}$) star // table comparing estimates

Variable	logit1	logit2
x1 x2 cons	1.2826***	1.8027*** 1.6447*** -0.0605

legend: * p<0.05; ** p<0.01; *** p<0.001

References

I've been inspired in this disussion by Jonathan Bartlett's discussion of these issues: https://thestatsgeek. com/2017/05/11/odds-ratios-collapsibility-marginal-vs-conditional-gee-vs-glmms/