

Zusammenfassung Bewegungsgleichungen

Nomenklatur

\underline{A}	Dynamikmatrix	t	Zeit
\underline{B}	Eingangsmatrix	$ec{u}$	Eingangsvektor
		→	

Ausgangsmatrix Geschwindigkeit

DDurchgangsmatrix \vec{x} Zustandsvektor \vec{D} \vec{y} Ausgangsvektor Drall \vec{F} Kraft α Anstellwinkel

Schiebewinkel Schubhebelstellung $ec{\Phi}$ Eulerwinkel Gewicht

 $\vec{\Omega}$ Drehrate IKomponente des Trägheitstensors

MTransformationsmatrix ξ Querruderstellung Höhenruderstellung \vec{M} Moment η

Seitenruderstellung Masse mRollrate p

Indices: Resultierendes Moment

Aerodynamische Größe ANickrate Aerodynamisches KS aŔ Resultierende Kraft

W

FSchubgröße Gierrate Körperfestes KS f \vec{s} Position Geodätisches KS T

Trägheitstensor KBahngröße Bahngröße

Ziel

Analyse des dynamischen Verhaltens des Systems Flugzeug:

Eigenverhalten: Verhalten des Systems nach einer einmaligen Anregung

Führungsverhalten: Reaktion des Systems auf Steuereingaben

Störverhalten: Reaktion des Systems auf Störeingaben

Gefordert ist Stabilität, d.h. dass eine beschränkte Eingangsgröße eine beschränkte Ausgangsgröße zur Folge hat.

Stabilitätsanalyse mit Laplace-Transformation: Übergang von Zeit- in Bildbereich

Vorgehensweise

- Nichtlinearen DGL'en sind nicht analytisch lösbar
- numerische Lösung (Flugsimulation) erfordert relativ viel Rechenaufwand

Voraussetzungen

- (Bezugs- und) Inertialsystem ist die Erde (eben, ruhend)
- Starres Luftfahrzeug
- Massen und Trägheitstensoren sind konstant (m = const., $\underline{T}_f = const.$)
- Luftfahrzeug ist symmetrisch zur xz-Ebene, Kreiselmomente durch den Antrieb werden vernachlässigt $\Rightarrow I_{xy} = I_{yz} = 0$
- Quasistationäre Strömung

Wahl des Koordinatensystems

Die Formulierung erfolgt normalerweise im flugzeugfesten System.

- Trägheitsmomente sind konstant
- Aerodynamische Größen werden über kleine Winkel (α, β) transformiert \Rightarrow Kleinwinkelnäherung
- ullet Drehgeschwindigkeiten p_K , q_K , r_K sind messbar

Die Bewegungsgleichungen

- 6 Freiheitsgrade (Translation und Rotation jeweils in drei Raumdimensionen)
- pro Freiheitsgrad zwei Integrationsstufen, von denen in der Flugdynamik insbesondere die erste interessant ist
- es ergeben sich 4 vektorielle Differentialgleichungen:
 - Schwerpunktssatz (1. Stufe Translation): $\dot{\vec{V}}_K = f(\sum \vec{F})$
 - Positionsdgl. (2. Stufe Translation): $\dot{\vec{s}} = f(\vec{V}_K)$
 - Drallsatz (1. Stufe Rotation): $\dot{\vec{\Omega}} = f(\sum \vec{M})$
 - Lagedgl. (2. Stufe Rotation): $\dot{\vec{\Phi}} = f(\vec{\Omega})$

bzw. insgesamt 12 skalare, untereinander verkoppelte Dgln.

• da die Ableitung in rotierendem Bezugssystem erfolgt, treten zusätzliche Terme auf

Schwerpunktsatz (Impulssatz)

$$m \cdot \underbrace{\dot{V}}_{\text{Inertial system}} = \sum F \qquad \text{(eindimensional)}$$

$$\Rightarrow m \cdot \underbrace{\left(\frac{\text{d}\vec{V}_K}{\text{d}t}\right)^g}_{\text{im Erdinertial system}} = \sum \vec{F} \qquad \text{(dreidimensional)}$$

Hochgestellter Index gibt das KS an, in dem die Ableitung vorgenommen wird

Zeitliche Ableitung von Vektoren, die auf ein rotierendes System bezogen sind:

$$\underbrace{\left(\frac{\mathrm{d}\vec{V}_K}{\mathrm{d}t}\right)^g}_{\text{Abl. im I-System}} = \underbrace{\left(\underbrace{\frac{\mathrm{d}\vec{V}_K}{\mathrm{d}t}}\right)}_{\text{Abl. k-fest}} + \underbrace{\vec{\Omega}_K \times \vec{V}_K}_{\text{Eulerterm}}\right)^f$$

$$\begin{split} m \cdot \left(\frac{\mathrm{d}\vec{V}_K}{\mathrm{d}t}\right)^g &= m \cdot \left(\left(\frac{\mathrm{d}\vec{V}_K}{\mathrm{d}t}\right)^f + \vec{\Omega}_K \times \vec{V}_K\right)_f \\ &= \sum \vec{F} = \underbrace{M_{fa} \cdot \vec{R}_a^A}_{\text{aerodyn. Kräfte ff KS}} + \underbrace{\vec{R}_f^F}_{\text{Schub}} + \underbrace{M_{fg} \cdot \vec{G}_g}_{\text{Gewichtskraft im ff KS}} \end{split}$$

mit:

$$\vec{\Omega}_K = \begin{pmatrix} p_K \\ q_K \\ r_K \end{pmatrix} \qquad \vec{V}_K = \begin{pmatrix} u_K \\ v_K \\ w_K \end{pmatrix}$$
Drehgeschw.

Bahngeschw.

Drallsatz

$$\begin{array}{lcl} \frac{\mathrm{d}D}{\mathrm{d}t} = I \cdot \underbrace{\dot{\Omega}}_{\mathrm{Inertial system}} &=& \sum M & \mathrm{(eindimensional)} \\ \\ \Rightarrow \underline{T} \left(\frac{\mathrm{d}\vec{\Omega}_K}{\mathrm{d}t} \right)^g &=& \sum \vec{M} & \mathrm{(dreidimensional)} \end{array}$$

 $\vec{\Omega_K}$ ist im rotierenden, flugzeugfesten KS gebildet

$$\Rightarrow \underline{T}_f \left(\frac{d\vec{\Omega}_K}{dt} \right)^g = \left(\underline{T}_f \cdot \left(\frac{d\vec{\Omega}_K}{dt} \right)^f + \vec{\Omega}_K \times \underbrace{T_f \vec{\Omega}_K}_{\text{Drall}} \right)_f = \underbrace{\vec{Q}_f^A}_{\text{aerodyn. Moment}} + \underbrace{\vec{Q}_f^F}_{\text{Schubmom.}}$$

mit:

$$\left(\frac{\mathrm{d}\vec{\Omega}_K}{\mathrm{d}t}\right)^f = \begin{pmatrix} \dot{p}_K \\ \dot{q}_K \\ \dot{r}_K \end{pmatrix} \quad \text{und} \quad \underline{T}_f = \begin{pmatrix} I_x & -I_{xy} & -I_{xz} \\ -I_{xy} & I_y & -I_{yz} \\ -I_{zx} & -I_{yz} & I_z \end{pmatrix} \approx \begin{pmatrix} I_x & 0 & -I_{zx} \\ 0 & I_y & 0 \\ -I_{zx} & 0 & I_z \end{pmatrix}$$

Lagewinkel

Flugzeugfestes Bezugssystem gewählt \Rightarrow Lage des Flugzeugs im Inertialraum muss mit einer zusätzlichen Gleichung beschrieben werden (Eulerwinkel):

$$\frac{\mathrm{d}\vec{\Phi}}{\mathrm{d}t} = \begin{pmatrix} \dot{\Phi} \\ \dot{\Theta} \\ \dot{\Psi} \end{pmatrix} = \underline{M}_{\Phi f} \cdot \vec{\Omega}_K$$

Aus $\vec{\Phi}$ ergibt sich \underline{M}_{fg} zur Transformation der Gravitationskraft im Schwerpunktsatz

Windeinfluß

wird oft vernachlässigt

$$\begin{array}{rcl} \vec{V}_A & = & \vec{V}_K - \vec{V}_W \\ \vec{\Omega}_A & = & \vec{\Omega}_K - \vec{\Omega}_W \end{array}$$

Verkoppelter Prozess: Wirkung des Windes hängt von der Bewegung des Luftfahrzeugs und der Lage im Raum ab!

Position

Falls die Position des Flugzeugs von Interesse ist (z. B. bei Simulationen), muss zusätzlich die Positionsgleichung gelöst werden:

$$\left(\frac{\mathrm{d}\vec{s}}{\mathrm{d}t}\right)^g = \underline{M}_{gf}\vec{V}_K^f$$

In der Flugdynamik normalerweise nicht nötig

Nichtlineare Bewegungsgleichungen sind nicht geschlossen lösbar, eignen sich daher nur für numerische Simulationen.

Vereinfachungen

- ullet p_K , q_K , r_K sind klein
- ullet Winkel sind klein $\Rightarrow u_k pprox V_K$
- \dot{V}_K ist klein
- → Produkte kleiner Größen sind vernachlässigbar
- \rightarrow Kleinwinkel-Näherung: $\cos x \approx 1$, $\sin x \approx x \dots$
- \Rightarrow Vereinfachte nichtlineare Differentialgleichungen (\rightarrow S. 5 (19) f)

Impulssatz

$$\begin{pmatrix} \dot{u}_K \\ \dot{v}_K \\ \dot{w}_K \end{pmatrix}_f = \frac{1}{m} \begin{pmatrix} -W + A\alpha + F \\ Q \\ -W\alpha - A - F_{iF} \end{pmatrix} + \begin{pmatrix} -\theta \\ \phi \\ 1 \end{pmatrix} g + \begin{pmatrix} 0 \\ -r_K V_K \\ q_K V_K \end{pmatrix}$$

wegen des letzten Vektors (Eulerterme) immer noch nichtlinear

Drallsatz

$$\begin{pmatrix} \dot{p}_K \\ \dot{q}_K \\ \dot{r}_K \end{pmatrix} \ = \ \begin{pmatrix} I_z^* & 0 & I_{zx}^* \\ 0 & \frac{1}{I_y} & 0 \\ I_{zx}^* & 0 & I_x^* \end{pmatrix} \, \begin{pmatrix} L^A \\ M^A + z_F F \\ N^A \end{pmatrix} \qquad I_{ab}^* \ = \ \frac{I_{ab}}{I_x I_z - I_{zx}^2}$$

Lagewinkel

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \theta \\ 0 & 1 & -\phi \\ 0 & \phi & 1 \end{pmatrix} \begin{pmatrix} p_K \\ q_K \\ r_K \end{pmatrix} \approx \begin{pmatrix} p_K \\ q_K \\ r_K \end{pmatrix}$$

Wechsel der Zustandsgrößen

Übergang von kartesischen auf Kugelkoordinaten, weitere Kleinwinkelnäherungen

$$\vec{V}_{Kf} = \begin{pmatrix} u_K \\ v_K \\ w_K \end{pmatrix} \approx \begin{pmatrix} 1 \\ \beta_K \\ \alpha_K \end{pmatrix} V_K$$

Linearisierung

Aufteilung
$$F = \underbrace{F_0}_{\text{Wert an Arbeitspunkt}} + \underbrace{\delta F}_{\text{Abweichung}}$$
 durch Taylorreihenentwicklung:

$$F(x, y, z, \dots) = F_0(x, y, z, \dots) + \left(\frac{\partial F}{\partial x} \cdot \delta x + \frac{\partial F}{\partial y} \cdot \delta y + \dots\right) + \underbrace{\text{Rest}}_{0}$$

- Linearisierung der Differentialgleichungen
- Linearisierung der aerodynamischen Terme
- Einführung der Ersatzgrößen
- Trennung der Anteile von Längs- und Seitenbewegung
- \Rightarrow Linearisierte Differentialgleichungssystem (\rightarrow LB: Gl. (5.3-22), SB: Gl. (5.3-27))

$$\begin{pmatrix} \dot{q}_K \\ \dot{\alpha}_K \\ \dot{V}_K \\ \dot{\Theta} \end{pmatrix} \ = \ \begin{pmatrix} M_q & M_\alpha & M_u & 0 \\ 1 & Z_\alpha & Z_u & 0 \\ 0 & X_\alpha & X_u & X_\Theta \\ 1 & 0 & 0 & 0 \end{pmatrix} \ \begin{pmatrix} q_K \\ \alpha_K \\ V_K \\ \Theta \end{pmatrix} \ + \ \begin{pmatrix} M_f & M_\eta \\ Z_f & Z_\eta \\ X_f & X_\eta \\ 0 & 0 \end{pmatrix} \ \begin{pmatrix} f \\ \eta \end{pmatrix}$$

$$\begin{pmatrix} \dot{r}_{K} \\ \dot{\beta}_{K} \\ \dot{p}_{K} \\ \dot{\Phi} \end{pmatrix} = \begin{pmatrix} N_{r} & N_{\beta} & N_{p} & 0 \\ -1 & Y_{\beta} & 0 & Y_{\Phi} \\ L_{r} & L_{\beta} & L_{p} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} r_{K} \\ \beta_{K} \\ p_{K} \\ \Phi \end{pmatrix} + \begin{pmatrix} N_{\xi} & N_{\zeta} \\ 0 & Y_{\zeta} \\ L_{\xi} & L_{\zeta} \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} \xi \\ \zeta \end{pmatrix}$$

$$\dot{\vec{x}} = \underline{A} \qquad \qquad \vec{x} + \underline{B} \qquad \qquad \vec{u}$$

Achtung: in den Matrizen stehen Ersatzgrößen, keine direkten Derivative!