

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

Exercise set 3

1 Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map, and $b \in \mathbb{R}^n$. Show that the mapping

$$f: \mathbb{R}^n \to \mathbb{R}^n, \ x \mapsto Ax + b$$

is a diffeomorphism of \mathbb{R}^n if and only if A is invertible.

2 Show that the map

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \ (s,t) \mapsto ((2 + \cos(2\pi s))\cos(2\pi t), (2 + \cos(2\pi s))\sin(2\pi t), \sin(2\pi s))$$

is an immersion. Is it an embedding?

3 Let γ_{α} be the curve on the torus defined by

$$\gamma_{\alpha} \colon \mathbb{R} \to S^1 \times S^1, \ t \mapsto (e^{2\pi i t}, e^{2\pi i \alpha t})$$

where we consider S^1 as a subset of $\mathbb{C} \cong \mathbb{R}^2$. Show that γ_{α} factors through an embedding $S^1 \to S^1 \times S^1$ when α is rational, i.e. find a map $g_{\alpha} \colon S^1 \to S^1 \times S^1$ which is an embedding such that γ_{α} is the composite of the map $\mathbb{R} \to S^1$, $t \mapsto e^{2\pi it}$, followed by g_{α} .

- 4 Consider the map $f: (0, 3\pi/4) \to \mathbb{R}^2, t \mapsto \sin(2t)(\cos t, \sin t)$.
 - a) Show that f is an immersion.
 - **b)** Let $\operatorname{Im}(f) = f((0, 3\pi/4)) \subset \mathbb{R}^2$ be the image of f (considered as a subspace in \mathbb{R}^2). Show that $f: (0, 3\pi/4) \to \operatorname{Im}(f)$ is not a homeomorphism. (Draw a picture of the image of f.)
 - **c)** To test your understanding answer the following questions (and give reasons for your answer):
 - What is the difference between $\operatorname{Im}(f)$ and the graph $\Gamma(f)$?
 - Is the map $F: (0, 3\pi/4) \to (0, 3\pi/4) \times \mathbb{R}^2$, $t \mapsto (t, f(t))$, an embedding?
 - Would f be an embedding if it was defined on the closed interval $[0, 3\pi/4]$?
 - Is the map $g: (0, 3\pi/4) \to \mathbb{R}^3$, $t \mapsto \sin(2t)(\cos t, \sin t, t)$ an embedding?
 - Is the map $h: [0, 3\pi/4] \to \mathbb{R}^3$, $t \mapsto (\sin(2t)\cos t, \sin(2t)\sin t, 2t)$ an embedding?

Example 2 Let X be an n-dimensional smooth manifold, Z be a k-dimensional smooth submanifold of X, and let $z \in Z$. Show that there exists a local coordinate system (x_1, \ldots, x_n) defined in a neighborhood U of z in X such that $Z \cap U$ is defined by the equations $x_{k+1} = 0, \ldots, x_n = 0$, i.e. $Z \cap U$ is the subset of points in U for which the functions x_{k+1}, \ldots, x_n all vanish.