

LUBISCH et al. Serial No. 09/830,992

CLEAN VERSION OF AMENDMENTS IN THE CLAIMS

SEP 2.3 2002
TECH CENTER 1600/2000

Amended claims 2, 3, and 7 should read as follows:

- 2. (four times amended) A compound of the formula I or II as claimed in claim 1 in which
 - R^1 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where
 - R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and
 - R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and
 - R^3 is -O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G, where
 - R³¹ is hydrogen, C₁-C₄-alkyl, OH and O-C₁-C₄-alkyl,
 - m,o are, independently ϕ f one another, 0, 1 or 2, and
 - n is 1, 2, 3 or 4 and
 - is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹ where
 - R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and
 - R^{43} is C_1 - C_4 -alkyl/or phenyl, and
 - G is NR⁵¹R⁵² o one of the following radicals

as filed on September 18, 2002

2

RECEIVED

SEP 2 3 2002

R⁵¹ is hydrogen and branched and unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

 $\bigcap_{R=3}^{O} , -SO_2R^{53}, in which$

is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C₁-C₄-alkyl-phenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl,

CHO, CH₂-O- $\dot{\mathbb{Q}}_1$ -C₄-alkyl, -CH₂O-C₁-C₄-alkyl-phenyl, -CH₂OH, -SO-C₁-C₄-alkyl-phenyl, -CH₂-C₄-alkyl-phenyl, -CH₂-C₄-Al

Etd

LUBISCH et al.,

Serial No. 09/830,992

alkyl, -SO-C₁-C₄-alkyl-phenyl, SO₂NH₂ -SO₂NH-C₁-C₄-alkyl and two radicals

form a bridge $-O-(CH_2)_{1,2}-O-$,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or

pharmacologically tolerated salt thereof,

3. (four times amended) A compound of the formula I or II as claimed in claim 1 in which

is hydrogen, branched and √nbranched C₁-C6-alkyl, it also being possible for R^1

one C atom of the alkyl radical to carry OR11 or a group R5, where

 R^{11} is hydrogen or C₁-C₄-alkyl, and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched R^2

 C_1 - C_6 -alkyl, nitro, CF_3 /CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where

R²¹ and R²² independently of one another are hydrogen or

C₁-C₄-alkyl and

is hydrogen, C₁-\$\overline{C}_4\$ alkyl or phenyl R^{23}

 R^3 is

A31

and

is hydrogen, CHO and -(CH $_2$) $_o$ -(CHR 32) $_m$ -(CH $_2$) $_n$ -G, where R 32 is hydrogen, R^{31}

, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl, m,o independently of one another are 0,

1 or 2/and n is 1, 2, 3 or 4, and

as filed on September 18, 2002

LUBISCH et al.,

Serial No. 09/830,992

is hydrogen, branched and unbranched c₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹, where

R⁴¹and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

is hydrogen, COCH $_2$, CO-O-C $_1$ -C $_4$ -alkyl, COCF $_3$, branched and unbranched C_1 -C $_6$ -alkyl, it being possible for one hydrogen of the C_1 -C $_6$ -alkyl radical to be substituted by one of the following radicals: OH, O-C $_1$ -C $_4$ -alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 -C $_4$ -alkyl, nitro, amino, C_1 -C $_4$ -alkylamino, C_1 -C $_4$ -dialkylamino, OH, O-C $_1$ -C $_4$ -alkyl, CN, SO $_2$ -C $_1$ -C $_4$ -alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Cyll Control

7. (twice amended) A compound as claimed in claim 1 where

(i) for R³ being

R³¹ is hydrogen or -(CH₂)_p-G, where

- p is 1 or 2 and
- (ii) for R³ being

 R^{31} is hydrogen or $-(CH_2)_p - R^5$, where

p is 1 or 2 and

and (iii) for R3 being

where R^{52} is hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl,

nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl.