Segmentation unit allows segments of size at maximum.
A. 4Gbytes
B. 6Mbytes
C. 4Mbytes
D. 6Gbytes
ANSWER: A
Ifinput pin of 80386 if activated, allows address pipelining during 80386 bus cycles.
A. BS16
B. NA
C. PEREQ
D. ADS
ANSWER: B
Virtual Mode Flag bit can be set using instruction or any task switch operation only in the mode
A. IRET, Virtual
B. POPF, Real
C. IRET, protected
D. POPF, protected
ANSWER: C
The interrupt vector table of 80386 has been allocated space starting from to

A. 1Kbyte, 00000H, 003FFH
B. 2Kbyte, 10000H, 004FFH
C. 3Kbyte, 01000H, 007FFH
D. 4Kbyte, 01000H, 009FFH
ANSWER: A
The bit decides whether it is a system descriptor or code/data segment descriptor
A. P
B. S
C. D
D. G
ANSWER: B
A new signal group on the 80486 is the
A. PARITY
B. DP0-DP3
C. PCHK
D. all
ANSWER: D
is used to control the cache with two new control bits not present in the 80386 microprocessor. What are the bits used to control the 8K byte cache?
A. CR0, CD, NW

B. CR0, NW, PWT
C. Control Register Zero, PWT, PCD
D. none
ANSWER: A
To prevent another master from taking over the bus during a critical operation, the 486 can assert itssignal.
A. LOCK# or PLOCK#
B. HOLD or BOFF
C. HLDA
D. HOLD
ANSWER: A
80386 support which type of descriptor table from the following?
A. TDS
B. ADS
C. GDS
D. MDS
ANSWER: C
80386 support overall addressing modes to facilitate efficient execution of higher level language programs.
A. 9
B. 10
C. 11
D. 12

ANSWER: C Direction flag is used with A. String instructions. B. Stack instructions. C. Arithmetic instructions. D. Branch instructions. ANSWER: A Ready pin of a microprocessor is used A. to indicate that the microprocessor is ready to receive inputs. B. to indicate that the microprocessor is ready to receive outputs. C. to introduce wait states. D. to provide direct memory access. ANSWER: C These are two ways in which a microprocessor can come out of Halt state. A. When hold line is a logical 1. B. When interrupt occurs and the interrupt system has been enableD. C. When both (A) and (B) are true. D. When either (A) or (B) are true. ANSWER: A

The Pentium microprocessor has _____execution units.

A. 1

- B. 2
- C. 3
- D. 4

ANSWER: C

8088 microprocessor has

- A. 16 bit data bus
- B. 4 byte pre-fetch queue
- C. 6 byte pre-fetch queue
- D. 16 bit address bus

ANSWER: D

Question		Que	estion		Answer Key				
No.									
1.	Q.The 80386 address mode	Q.The 80386 does not wrap the addresses at in real address mode							
		T	1		B				
	A:2 megabyte	B: 1 megabyte	C:2 KB	D:1 KB					
2.	Q.Paging mec	Q.Paging mechanism in 80386X is in real mode							
	A:Active	B:Not Active	C:Neutal	D:None of these	В				
3.	Q.All segment	Ans:							
	A:Proctected mode	B:Real mode	C:Both modes	D:All of these	В				
4.	Q.The 80386 a exception	always uses	for any coproc	essor error	Ans:				
					C				
	A:Interrupt vector 12	B: Interrupt vector 14	C: Interrupt vector 16	D: All of these					
5.	~	Q.In 80386DX a logical address is also known asconsist of selector and an offset							
	A:Physical address	B: Logical address	C: Virtual address	D: None of these	C				

6.	Ans:				
	A: 20 bit	B: 20 byte	C: 18 bit	D: 18 byte	A
7.		riptor table reg d inside the 803	ister(GDTR) is 386DX	a	Ans:
	A: 50 bit	<i>B: 48 byte</i>	<i>C: 50 byte</i>	D: 48 bit	D
8.	Ans: B				
	A: First	B: Second	C: Third	D: Fourth	
9.	Q.The paging from the segm		eives a lir	near address	Ans:
	A:8 bit	B: 16 bit	C: 32 bit	D: 48 bit	
10.	Q.Page level p	protection invol	ves kind	of protection	Ans:
	A:Restication of addressable domain	B:Type checking	C: Both A & B	D:None of these	C
11.	Q.Nested tasks	s are analogous	to subrout	ines	Ans: C
	A:Multiple	B: Single	C: Nested	D: Hierachial	
12.			the sharing of th n 8086 app		Ans:
					C
	A: Single	B: Double	C: Multiple	D: None of these	
13.	Q.The 80386 s external interr	Ans: B			
	A: low	B: Higher	C: Medium	D: None of these	D
14.		te segment desc its and	criptor for the de	esignated task	Ans:
	A:Limit and Base	B:base and address	C:limit and presence	D:base and presence	
15.		egister(TR) spec task State Segr	cify the execute nent(TSS)	cuting task by	Ans:
	A:Normal	B: Currently	C: Multiple	D: Single	В
L	ı	1	1 1		

1.A 32-bit add	lress bus allows	access to a r	memory of capacit	ty			
a. 64 Mb	b. 16 Mb	c. 1Gb	d. 4 Gb				
Device, const a fetch operat	itute aion b. execute of 30386Dx is act	operation	c. machine cycle	d. instruction cycle uring 80386.			
4. During physic	cal address calcula	tions segments	register contents ar	e shifted by			
a 2 bits left	b. 4 bits left	c. 2 bits r	ight d. 4 bits rig	ht .			
5. The BIU of 80	086 consists of						
a. segment reg	isters b. Instru	ction queue	c. Instruction pointe	er d. all of these.			
6. During instru	ction fetch	-andre	egister are used.				
a. IP,DS	b. CS, IP	c. SS,BP	d. SS,IP				
7. The 80386DX	Can address up to	phy	vsical memory.				
a.1Mbytes	b. 16Mbytes	c. 1Gbytes	d. 4 Gbytes				
8. Which of the	following is not ar	n interrupt sign	al?				
a. INTR	b. NMI	c.NA#	d. RESET .				
9. The coprocess	sor uses	signal when	it needs to read or v	write data from memory.			
a. BUSY#	b. BUSY# and	d ERROR#	c. ERROR#	d. PEREQ			
10. After reset 8	10. After reset 80386 starts execution inmode.						
a. Real	b. Protected	c. Virtual	8086 d. none of the	ese.			
11. Logical addı	ress space of 80386	6DX is					
a.1Mbytes	b. 64 Mbytes	c. 4Gbytes	d .64 Tbytes				
12. The least sig	nificant 5 bits of the	he CR0 are cal	led as				

	a. Program Stathese.	ntus word	b. machii	ne Status W	ord c.	Both (a) as	nd (b)	d. Non	e of
	13. If PE=0 the	mode selec	cted by the	processor	is				
	a. Real Mode	b.	Protected 1	Mode	c. Virtual	Mode	d. A	ll of these	;
	14. The 80386 u length.	ses an	to	o locate the	base of the	vector tab	le and to	o determi	ne its
	a. IDTR	b. GI	OTR	c. LDT	R d	.All of the	se		
15	. Exactly	segments	descriptor	has to be a	defined for e	each segme	ent mem	ory	
	a. One	b. Tw	/O	c. Three	d. F	our			
	16. The Selector	is of	bits .						
	a.10	b. 16	c.32	d.6	54				
	17. TI indicates								
	a. Task indica	tor	b. Table	indicator	c. T	ask identif	ïer	d. Table i	dentifier.
	18. If the confor	ming code	bit is set th	nen the cod	e segment i	s executed	if		
	a. CPL>=DPL of these		b. CPL	<dpl< td=""><td></td><td>c. Both</td><td>(a) and</td><td>(b)</td><td>d. none</td></dpl<>		c. Both	(a) and	(b)	d. none
	19. When the segments		oit in segm	ent descrip	tor is zero o	perands co	ontained	within th	ne
	are of 16 bits.	1 D		D	1	A 11 C 41			
	a. G	b. P		c .D		All of thes	se		
	20bit d	letermines	the type of	the segmen	nt.				
	a. D	b. G		c. S	d.	.P.			
	21. The extra seg	gment regi	sters in 803	386 are					
	a. DS,FS	b. ES,SS	S c	. FS,GS	D.GS,C	CS			
	22. 80386DX m	emory can	be organiz	ed as					

Pa	ges, Segments b. Segments, Registers	c. Pages, Register	d. none of these.			
23	. The 80386DX has abit address bus a a. 16,32 b) 16,16 c)32,32 d)32					
24	. The width of the GDTR and LDTR are	bits.				
	a.16,24 b.16,48 c.48,16 d.24,32					
25	. No of segments in 8086 and 80386DX are					
	a. 4,4 b.4,6 c.6,4 d. 6,6					
	MULTIPLE CHOICE Q	QUESTIONS (MCQ's)u	nit-2			
1.	After reset, the 80386 operates in					
	(a) real mode	(b) protected mode				
	(c) virtual 86 mode	(d) none of these				
2.	In real mode, the 80386					
	(a) operates like faster 8086 microprocesso	or				
	(b) performs multiple tasking					
	(c) provides protection to program and data	a				
_	(d) all of above					
3.	Which register is not supported by 80386 in					
	(a) AX	(b) BX				
4	(c) SI	(d) CR1				
4.	Which register is not supported by 80386 in					
	(a) IP (c) DR6	(b) FLAG (d) CR0				
5	In real mode, the 80386 contains	(u) CKO				
٥.	(a) 4 segments: CS, SS, DS, ES	(b) 4 segments: CS, SS	S. FS. GS			
	(c) 6 segments: CS, SS, DS, ES, FS, GS	(d) 2 segments: CS and				
6.	The maximum address size of 80386 in rea	` '				
	(a) 20 bit	(b) 21 bits				
	(c) 24 bit	(d) 32 bit				
7.	In real mode of 80386, the physical address					
	(a) offset address	(b) logical address				
0	(c) effective address	(d) linear address				
~	What is the size of segment in real mode operation of 80386?					

a.

	(a) 64 KB	(b)	4 GB
	(c) changeable from 1 byte to 4 GB	(d)	64 TB
9.	IDT stands for		
	(a) Interrupt Description Table	(b)	Interrupt Descriptor Table
	(c) Identify Description Table		Identify Descriptor Table
10.	In real mode of 80386, what is the starting a		• •
10.	(a) determined by IDTR	(b)	
	(c) changeable	` ′	both (a) and (b)
11.	In real mode of 80386, what is the limit of I		
	(a) determined by IDTR		3FFFH
	(c) changeable	` ′	both (a) and (b)
12.	In real mode of 80386, what is the value of 1		
	(a) 1	(b)	<u> </u>
	(c) X	, ,	tri-state
13.	After self-test of 80386 microprocessor,		
	(a) $EAX = 03$	(b)	DH = 03
	(c) $SP = 0000H$	(d)	all of above
14.	After reset, the 80386 fetches first instruction	n fr	om address.
	(a) FFF0H	(b)	0000H
	(c) FFFF FFF0H	(d)	cannot be defined
15.	What is the use of real mode?		
	(a) To initialize peripherals	(b)	To enable interrupts
	(c) To enter protected mode	(d)	All of above
16.	How to set PE bit of CR0 register?		
	(a) Set b PE	(b)	MOV CR0, doubleword
	(c) LSMW word_data	(d)	(b) or (c)
17.	For entering into protected mode from real r	nod	e, the programmer should maintain
	(a) Interrupt Descriptor Table (IDT)		Global Descriptor Table (GDT)
	(c) Local Descriptor Table (LDT)		(a) or (b) or (c)
	(e) (a) and (b) and (c)	` /	
18.	Which is not supported in real mode of 8038	36?	
	(a) Base only value		Present bit $(P) = 1$
	(c) Granular bit (G) = 0		Limit any value
19.	In 80386, which is simple and less complex		•
	(a) real mode		protected mode
	(c) virtual 86 mode		both (a) and (c)
20.	In real mode, what is the size of registers?	` /	
	(a) 16 bit	(b)	24 bit
	(c) 32 bit		64 bit
21.	In real mode of 80386, how much memory of	` ′	
	(a) 64 KB		1 MB
	(c) 4 GB		64 TB
22	In real mode of 80386, what is the size of ac		
	(a) 20 bits		21 bits
	(c) 32 bits		64 bits
23	In real mode of 80386, what is the size of in	` ′	
_J .	(a) 64 KB		1 KB
	(u) 0 1 1XD	(0)	1 1110

	(c) (depe	nds on	genera	ated in	nterrup	ts	(d	l) cha	ıngeabl	e							
	Answers																	
1.		(a)	2.	(a)	3.	(d)	4.	(c)	5.	(c)	6.	(b)	7.	(d)	8.	(a)	9.	(b)
11	•	<i>(b)</i>	12.	(b)	13.	(b)	14.	(c)	15.	(d	16.	(d)	17.	(d)	18.	(d)	19.	(a)
21	•	(b)	22.	(b)	23.	<i>(b)</i>												
				N	IULT	TPLE	СНО	ICE Q	UES	TIONS	S (MC	(Q's)						
1.				gment	size i	n 8038	6 mici	oproce										
	` ′	64							` ′	l MB	C		. 4.	G.D.				
2	` ′	4 G		t DDI	in so	rmant (valaata	r civo		Any siz		•	e to 4 (GB				
2.	wn (a)		arue o	01 KPL	ın seş	gments	seiecic	or give	s mgr (b) 1	nest priv	vnege	ievei?						
	(a) (c)								(d) 3									
3.	. ,		alue o	of RPL	in seg	ement s	selecto	or give	` /	est priv	ilege l	level?						
	(a)					,		8	(b) 1	-	. 6							
	(c)								(d) 3									
4.	Wh	at D	PL fie	ld of se	egmer	it desci	riptor i	indicat	es?									
	(a)	priv	vilege	level o	f segn	nent												
	(b)	-	_		_	nent de	-	or										
	(c)				of desc	riptor	table											
~	` ′		of abo		. ,	, •	0											
5.			_		-	ontain	s?											
				ress of size of	_													
				ght byt		J11t												
			of abo															
6.	` ′				egmen	it descr	iptor?											
		16			U		1		(b) 3	32 bits								
	. ,	48							` '	54 bits								
7.	Wh	at is	the siz	ze of li	mit fie	eld in s	egmei	nt desc	riptor	of 803	86 mi	cropro	cessor	?				
	(a)	8 b	its						(b) 1	16 bits								

	(c) 20 bits	(d) 32 bits
8.	For conforming code segment, code execute	es when
	(a) $CPL = DPL$	(b) CPL > DPL
	(c) CPL < DPL	(d) (a) or (b)
9.	One GDT contains how many descriptors?	
	(a) 256	(b) 2k
	(c) 4k	(d) 8k
10.	One IDT contains how many descriptors?	
	(a) 256	(b) 2k
	(c) 4k	(d) 8k
11.	What is maximum size of GDT?	
	(a) 4 kB	(b) 8 kB
	(c) 32 kB	(d) 64 kB
12.	How many GDT is/are present in 80386 mi	croprocessor?
	(a) 1	(b) 256
	(c) 8K	(d) Many, one for each task
13.	How many IDT is/are present in 80386 mic	roprocessor?
	(a) 1	(b) 256
	(c) 8k	(d) Many, one for each interrupt
14.	How many LDTs can be present in 80386 n	nicroprocessor?
	(a) 1	(b) 256
	(c) 8k	(d) Many, one for each task
15.	What is the size of IDT?	
	(a) 1K	(b) 2K
	(c) 8K	(d) 64K
16.	How many segment descriptors are present	in GDT or LDT?
	(a) 1024	(b) 4096
	(c) 8192	(d) 256
17.	What is the size of segment selector?	
	(a) 16 bit	(b) 32 bit
	(c) 48 bits	(d) 64 bits
18.	_	
	` '	(b) TI field
		(d) All of these
19.		
	(c) 4k (d) 8k One IDT contains how many descriptors? (a) 256 (b) 2k (c) 4k (d) 8k What is maximum size of GDT? (a) 4 kB (b) 8 kB (c) 32 kB (d) 64 kB How many GDT is/are present in 80386 microprocessor? (a) 1 (b) 256 (c) 8K (d) Many, How many IDT is/are present in 80386 microprocessor? (a) 1 (b) 256 (c) 8k (d) Many, How many LDTs can be present in 80386 microprocessor? (a) 1 (b) 256 (c) 8k (d) Many, What is the size of IDT? (a) 1K (b) 2K (b) 2K (c) 8K (d) 64K How many segment descriptors are present in GDT or LD (a) 1024 (b) 4096 (b) 4096 (c) 8192 (d) 256 What is the size of segment selector? (a) 16 bit (b) 32 bit (c) 48 bits (d) 64 bits What is used in segment selector to select GDT or LDT? (a) Index field (b) TI field (b) TI field (c) RPL field (d) All of the selector of the selector of the segment selec	(b) To select LDT
	(c) (a) or (b)	(d) To select segment descriptor
20.	_	
	` '	
	(c) 15 bit	(d) 16 bit

		000 70				
21.	How many segment selectors are present in 8					
	(a) 1	(b) 4				
	(c) 6	(d) 8				
22.	If $T1 = 0$ in segment selector then is sel	ected.				
	(a) GDT	(b) LDT				
	(c) IDT	(d) TSS				
23.	If TI = 1 in segment selector then is selector	ected.				
	(a) GDT	(b) LDT				
	(c) IDT	(d) TSS				
24	The first entry in GDT is called as	(a) 155				
∠¬.	(a) special descriptor	(b) zero descriptor				
	(c) null descriptor	(d) segment descriptor				
25	In 80386, is/are null selector value(s).	(d) segment descriptor				
23.	(a) 0000H	(b) 0001H				
	(c) 0000H	(d) All of these				
26	The segment descriptor	(d) All of these				
20.	(a) describes a segment	(b) must be created for every segment				
	(c) is created by the programmer	(d) all of above				
27	What is the size of base address in segment d					
21.	(a) 20 bit	(b) 24 bit				
	(c) 32 bit	(d) 16 bit				
28	What is the size of limit field in segment described					
20.	(a) 20 bit	(b) 24 bit				
	(c) 16 bit	(d) 32 bit				
29	Which is non-system segment descriptor?	(d) 32 oil				
<i></i> .	(a) code	(b) stack				
		` /				
30.						
20.						
32.	• •	(4) 2.001				
	•	(b) LDT descriptor				
		- ·				
33.		-				
	-	-				
34.						
		•				
	(c) 24 bit					
35.						
	• • • • • • • • • • • • • • • • • • • •					
	_					
32.33.34.	(c) Call gate Which is not system segment descriptor? (a) Code (c) Call gate In segment descriptor of 80386, if D = 0 then (a) 16 bit (c) 24 bit In segment descriptor of 80386, if D = 1 then (a) 16 bit (c) 24 bit What is the use of Granularity (G) bit which (a) To determine size of segment	 (b) Data (d) Stack (b) LDT descriptor (d) TSS descriptor (e) the operand size is (b) 20 bit (d) 32 bit (e) the operand size is (f) 20 bit (g) 20 bit (h) 32 bit 				

	(c) To decide size of operand	
	(d) All of above	
36.	If limit field is 1FFFH, then for data segment	
	(a) First addressable byte is at offset 000H	
	(b) First addressable byte at offset 2000H	
	(c) First addressable byte at offset 1FFFH	
	(d) Cannot determine	
37.	If limit field is 1FFFH, then for data segment	
	(a) Last addressable byte at offset 1FFFH	
	(b) Last addressable byte at offset FFFFH	
	(c) Last addressable byte at offset 2000H	
	(d) Cannot determine	
38.	If limit field is 1FFFH, then for stack segmen	t
	(a) Last addressable byte at offset 0000H	
	(b) Last addressable byte at offset 2000H	
	(c) Last addressable byte at offset 1FFFH	
	(d) Last addressable byte at offset 2000H	
39.	If limit field is 1FFFH then for stack segment	last addressable byte is at offset
	(a) 2000H	(b) 1FFFH
	(c) FFFFH	(d) cannot determine
40.	In non-system segment descriptor, if $E = 0$, the	en it defines
	(a) data segment	(b) code segment
	(c) stack segment	(d) both (a) and (c)
41.	In non-system segment descriptor, if $E = 1$, the	en it defines
	(a) data segment	(b) code segment
	(c) code segment	(d) both (a) and (c)
42.	What is the type number of LDT descriptor?	
	(a) 2	(b) B
	(c) 9	(d) 5
43.	How many bits are used for type field in syste	_
	(a) 3	(b) 4
	(c) 5	(d) all of these
44.	What is the type number of gate descriptors?	
	(a) 4	(b) 5
	(c) 6	(d) all of these
45.	What is the type number of gate descriptors?	
	(a) 7	(b) c
1.	(c) E	(d) all of these
46.	What is the use of call gate?	1:00
	(a) It acts as interface layer between code se	gment at different privilege levels

	(b) To handle interrupts	
	(c) It acts as interface point between	user code and a task state segment
	(d) To handle exceptions	
47.	What is the use of trap gate?	
	(a) It acts as interface layer between	code segments at different privilege levels
	(b) To handle interrupts	
	(c) To handle exceptions	
	(d) Both (b) and (c)	
48.	What is the use of task gate descriptor	r?
	(a) To handle interrupts	
	(b) To handle exceptions	
	(c) To define, a memory segment for	r task
	(d) It acts as an interface point between	een user code and a TSS
49.	The selector field of system segment	descriptor contains
	(a) CS selector	(b) DS selector
	(c) SS selector	(d) both (a) and (b)
50.	The TSS descriptors are present in	
	(a) GDT	(b) LDT
	(c) IDT	(d) Both (a) and (b)
51.	What is the type number of task gate	descriptor?
	(a) 4	(b) 5
	(c) 6	(d) 7
52.	What is the type number of TSS descri	-
	(a) 9	(b) B
	(c) c	(d) both (a) and (b)
53.	What is the type number of CALL ga	_
	(a) A	(b) B
	(c) C	(d) D
54.	What is the type number of trap gate	_
	(a) A	(b) B
	(c) E	(d) F
55.	What is the type number of interrupt	-
	(a) A	(b) B
	(c) D	(d) E
56.	The limit field of GDTR contains 00F	
	(a) 255 bytes	(b) 256 bytes
	(c) 254 bytes	(d) 257bytes
57.	In segment descriptor, Access Right I	-
	(a) D40 to D47	(b) D48 to D55
	(c) D56 to D63	(d) D0 to D7

58.	What is the size of GDTR?	
	(a) 16 bit	(b) 24 bit
	(c) 32 bit	(d) 48 bit
59.	What is the size of LDTR?	
	(a) 16 bit	(b) 24 bit
	(c) 32 bit	(d) 48 bit
60.	What is the size of IDTR?	
	(a) 16 bit	(b) 24 bit
	(c) 32 bit	(d) 48 bit
61.	What is the size of MSW?	
	(a) 16 bit	(b) 24 bit
	(c) 32 bit	(d) 48 bit
62.	What is the use of LDTR?	
	(a) To point to memory segment	
	(b) To point to LDT	
	(c) It gives selector which points to an LDT	
	(d) It gives selector which points to an LDT	descriptor present in GDT
63.		
	(a) logical address	(b) linear address
	(c) physical address	(d) all of above
64.	If paging is not used then	
	(a) physical address is same as logical addre	
	(b) physical address is same as linear address	SS
	(c) linear address is same as logical address	
	(d) all addresses are same	
65.		s made to access the segment, then the access is
	allowed only if the selector has	
	- · · ·	(b) lower privilege level
	(c) higher privilege level	(d) (a) or (c)
66.		a code segment descriptor have the same base
	address and limit fields, then we can	
	(a) write into code space	
	(b) execute data space(c) both (a) and (b)	
	(d) the 80386 generates an exception	
67	Privileged instructions are executed at privile	oge level
07.	(a) 0	(b) 1
	(a) 0 (c) 2	(d) 3
68	In 80386, privilege levels are defined by	
	(a) DPL	(b) CPL

	(c) RPL	(d) All of above
69.	Which is not privileged instruction?	
	(a) HLT	(b) LOCK
	(c) LTR	(d) LMSW
70.	An application cannot execute input/output in	struction if
	(a) CPL > IOPL	(b) $CPL = IOPL$
	(c) CPL < IOPL	
71.	In which segment descriptor word count field	is present?
	(a) Interrupt gate	(b) Trap gate
	(c) Call gate	(d) None of these
72.	instruction can be used to change privile	ege levels.
	(a) FAR CALL	(b) Near JMP
	(c) FAR JMP	(d) NEAR CALL
73.	Which following statement is right for call ga	te?
	(a) Target DPL <= Max (RPL< CPL) <= Ga	te DPL
	(b) Max(RPL, CPL) <= Target DPL <= Gate	e DPL
	(c) Gate DPL <= Max (RPL, CPL) <= Target	et DPL
	(d) Target DPL <= Gate DPL <= Max (RPL	, CPL)
74.	DPL indicates the privilege level of	
	(a) memory segment	(b) segment descriptor
	(c) current program	(d) memory segment to be accessed
75.	RPL indicates the privilege level of	
	(a) memory segment	(b) segment descriptor
	(c) current program	(d) memory segment to be accessed
76.	CPL indicates the privilege level of	
	(a) memory segment	(b) segment descriptor
	(c) current program	(d) memory segment to be accessed
77.	A program running at privilege level 2 can ac	
	(a) 2	(b) 0, 1
70	(c) 3	(d) 2, 3
78.	and	selector and stack pointers for privilege levels
	(a) 0, 1	(b) 1, 2
	(a) 0, 1 (c) 0, 1, 2	(d) 0, 1, 2, 3
79.	In changing stack operation, what is pushed or	
	(a) old SS: ESP	(b) old CS : EIP
	(c) parameters of old stack	(d) all of above
80.	If paging is enabled then	
	(a) logical address is converted to physical a	ddress

	(b) linear address is converted to pi	iysical address	
	(c) logical address is converted to l	inear address	
	(d) logical address is converted to v	irtual address	
81.	If paging is disabled then,		
	(a) logical address is same as physical	cal address	
	(b) virtual address is same as physi	eal address	
	(c) all three addresses are same		
	(d) all three addresses are different		
82.	In paging, for converting linear addr	ess to physical address register is u	sed.
	(a) CR0	(b) CR1	
	(c) CR2	(d) CR3	
83.	Which component is required for pa	ging mechanism?	
	(a) page directory	(b) page table	
	(c) PDBR	(d) all of these	
84.	In linear address, bit directory fie	ld is used as an index to the page director	ry.
	(a) 10	(b) 12	
	(c) 13	(d) 24	
85.	In linear address, bit page field	is used as an index to the page table.	
	(a) 10	(b) 12	
	(c) 13	(d) 24	
86.	In linear address, bits are used	as offset field.	
	(a) 10	(b) 12	
	(c) 24	(d) 32	
87.	What is the size of page directory?		
	(a) 4 KB	(b) 8 KB	
	(c) 64 KB	(d) changeable	
88.	What is the size of page table?		
	(a) 4 KB	(b) 8 KB	
	(c) 64 KB	(d) changeable	
89.	What is the size of page frame?		
	(a) 4 KB	(b) 8 KB	
	(c) 64 KB	(d) changeable	
90.	Paging can be enabled or disabled b	using PG bit present in register.	
	(a) CR0	(b) CR1	
	(c) CR2	(d) CR3	
91.	The TLB holds the recent entri	es of page tables.	
	(a) 16	(b) 32	
	(c) 64	(d) none of these	
92.	In page table entry,bits are use	d to store address of a page frame.	
	(a) 12 bits	(b) 20 bits	

	(c)	24 bits	(d) 32 bits
93.	Wh	at is the privilege level of supervisor code	?
	(a)	0	(b) 1
	(c)	2	(d) all of these
94.	In 8	0386, page alignment is done on all	pages.
	(a)	0 byte	(b) 1 byte
	(c)	4 KB	(d) 64 KB
95.	Wh	at is the exception number of page fault?	
	(a)	12	(b) 13
	(c)	14	(d) 15
96.	If p	resent (P) bit in Page Table Entry is 0, the	n of memory is not present.
	(a)	4 KB	(b) 4 MB
	(c)	8 KB	(d) 4 GB
97.	If p	resent (P) bit in Page Directory Entry is 0,	then of memory is not present.
	(a)	4 KB	(b) 8 KB
	(c)	4 MB	(d) 4 GB
98.	Wh	at is the size of page table entry and page	directory entry?
	(a)	16 bit	(b) 24 bit
	(c)	32 bit	(d) 64 bit
99.	If pa	age fault generates then address is st	ored in register.
	(a)	physical, CR2	(b) physical, CR3
	(c)	linear, CR2	(d) linear, CR3
100	.One	e Page Directory Entry is used to access	of memory.
	(a)	4 KB	(b) 4 MB
	(c)	1 MB	(d) 1 byte to 4 GB
101	.One	e Page Table Entry is used to access	of memory.
	(a)	4 KB	(b) 4 MB
	(c)	1 MB	(d) 1 byte to 4 GB
102		at is included in segment level protection?	•
		Type check and limit check	
	. ,	Restriction of procedure entry point	
	` ′	Restriction of instructions	
	` ′	All of above	
103	.Wh	ich bit of PTE or PDE is not used in page	level protection?
	(a)	P	(b) U/\overline{S}
	` '	R/\overline{W}	(d) A
104		0386, the protection mechanism supports	
	(a)		(b) 4
	(c)	5	(d) 6

105.Wh	105. What is the minimum size of TSS in 80386?											
(a)	64 bytes	S			(b)	104 by	tes					
(c)	(c) 4 KB						(d) 64 KB					
106.Wh	at is the	size of v	sible par	t present	in TR of 8	0386?						
(a)	16 bit				(b)	20 bit						
(c)	24 bit				(d)	32 bit						
107.Ho	w task sw	itching (can be ob	tained in	80386?							
(a)	The cur	rent task	JMPs or	CALLs a	a TSS desc	riptor						
(b)	The cur	rent task	JMPs or	CALLs	a task gate							
(c)	An inter	rrupt or e	exception	selects a	task gate							
` ′	All of a											
		om a task	i, in	struction								
` '	RET				` '	IRET						
` '	JMP sted task	eswitchin	a is done	by	(a)	CALL						
	using F.		_	•	(b)	excepti	ion					
	fault or					all of a						
	nput/outplress.	out perm	ission bi	tmap, eac	ch bit corre	esponds	to a sing	le v	vide inpu	t/output		
, ,	bit					byte						
` ′	word	1	1	1 . 1	` '	double						
	enter in p PG	protected	mode,	bit sh	nould be at	logic 1. ET	•					
, ,	PE				, ,	l) NT						
` ′		t vector	table of	80386 h	as been a		spa	ace startii	ng from	to		
(a)	 1Kbyte,	00000H	I, 003FFI	Н	(b)	2Kbyte	e, 10000H	, 004FFE	I			
, ,	3Kbyte,					•	e, 01000H					
		t decides	whether	it is a sys	stem descr	-	code/data	segment	descripto	r		
(a)	P				(b)							
(c)	D				(a)	G						
Answers												
1.	(d)	2. (a)	3. (d)	4. (a)	5. (d)	6. (d)	7. (c)	8. (d)	9. (d)	10.(a)		
11.		12.(a)	13.(a)	14.(b)	15.(b)	16.(c)	17.(a)	18.(b)	19.(d)	20.(a)		
21.		22.(a)	23.(b)	24.(c)	25.(d)	26.(d)	27.(c)	28. (a)	29.(d)	30.(c)		
31.		32.(a)	33.(a)	34.(d)	35.(b)	36.(a)	37.(a)	38. (d)	39.(c)	40. (d)		
41.		42.(a)	43.(b)	44.(d)	45.(d)	46.(a)	47.(d)	48. (d)	49.(a)	50.(a)		
51.	(b)	52.(d)	<i>53.(c)</i>	54.(d)	55.(d)	56.(b)	57.(a)	58.(d)	59.(a)	60.(d)		
61.	(a)	62.(d)	63.(d)	64.(b)	65.(d)	66.(c)	67.(a)	68.(d)	69.(b)	70.(a)		

71.(c)	72.(a)	73.(a)	74.(a)	75.(d)	76.(c)	77.(a)	78.(c)	79.(d)	80. (b)
81. (b)	82. (d)	83. (d)	84. (a)	85. (a)	86. (b)	87. (a)	88. (a)	89. (a)	90. (a)
91.(b)	92.(b)	93. (d)	94. (c)	95. (c)	96. (a)	97. (c)	98. (c)	99.(c)	100.(b
)
101.(a)	102.(d	103.(d)	104.(b)	105.(b)	106.(a)	107.(d)	108.(b)	109.(d)	110.(b
))
111.(c)	112.(a	113.(b)							
)								

	101.(a)	102.(d	103.(d)	104.(b)	105.(b)	106. (a)	107.(d)	108.(b)	109. (d)	110.(b
	111.(c)	112.(a	113.(b)							
		1	MULTIP.	LE CHO	ICE QU	ESTION	S (MCQ	's)		
1.	How much	virtual m	emory cai	n be acce	ssed by 80	0386?				
	(a) 64 KB				(b)	1 MB				
	(c) 4 GB				(d)	64 TB				
2.	In virtual 8	6 mode of	f 80386 . o	ne progra	am can ac	cess	. of mem	orv.		
	(a) 64 KB		, -	1 8		1 MB		- J		
	(c) 4 GB				` ′	64 TB				
3.	What is the	advantao	e of virtue	al 86 mag		OTID				
٥.	(a) Executi	_				n .				
	, ,		о аррпса	nons with	i protectio)11				
	(b) Multita	Ü								
	(c) Multius									
	(d) All of a									
4.	In virtual 8	6 mode of	f 80386, v	what is the			ıs?			
	(a) 20 bit				` /	21 bit				
5.	(c) 24 bit How 80386	S can esvit	ch to virtu	ıal 86 mo	` /	32 bit				
٦.	(a) Throug			iai oo iiio	ac:					
	(b) An IRE			a procedi	ıre					
	(c) both (a)									
_	(d) after re							100	2	
6.						_			e?	
	(a) Interruption (c) Local I			(1D1)	` ′	None of a	escriptor bove	1 abie		
7.	Which con	-		when a v	. ,					
	(a) CR0				(b)					
	(c) CR2				(d)	CR3				
8.	In virtual 8									
	(a) paging		abled		(b)	paging ca	n be disa	ble		
0	(c) (a) or (l		d in viets	ol 96 mar	402					
フ.	Which regi (a) CR0	sici is use	a iii viitu	ai 00 11100	(b)	CR1				
	(3)				(0)					

(c) CR2	(d) CR3
10. What is the size of memory segment in virtu	ual 86 mode?
(a) 64 KB	(b) 1 MB
(c) 4 GB	(d) changeable from 1 byte to 4 GB
11. If $CS = F000H$ and $IP = FFF0H$, what is the	e linear address generated in virtual 86 mode?
(a) FFFF0H	(b) FFFFFH
(c) 000FFFFH	(d) Give data is invalid
12. Virtual Mode Flag bit can be set using	instruction or any task switch operation only in
the mode.	
(a) IRET, Virtual	(b) POPF, Real
(c) IRET, protected	(d) POPF, protected
13. In a virtual memory system, the addresses u	ised by the programmer belongs to
(a) memory space	(b) physical addresses
(c) address space	(d) main memory address
An	swers
1. (d) 2. (b) 3. (d) 4. (b) 5.	(c) 6. (d) 7. (d) 8. (c) 9. (d) 10.(a)
11.(a) 12.(c) 13.(c)	