Grundlagen der Betriebssysteme

Tim Luchterhand, Paul Nykiel (Gruppe 017)

3. Juli 2018

1 Freispeichervergabe

1.1

 $1 {\rm KiB} = 1024 {\rm Bytes}$

1.2

- A 2 Blöcke
- B 2 Blöcke
- C 1 Block
- D 3 Blöcke
- $\to 1$ Block

1.3

Speicherblock A in rot, Speicherblock B in grün, Speicherblock C in blau, Speicherblock D in gelb und Speicherblock E in lila.

1.3.1 First Fit

Abbildung 1: Speicheraufteilung nach First-Fit

1.3.2 Next Fit

Abbildung 2: Speicheraufteilung nach Next-Fit

1.3.3 Best Fit

Abbildung 3: Speicheraufteilung nach Best-Fit

1.3.4 Worst Fit

Der Speicherblock D konnte nicht untergebracht werden.

Abbildung 4: Speicheraufteilung nach Worst-Fit

2 Getrennte Listen

2.1

Abbildung 5: Speicher mit Blöcken je 4 Bytes

Abbildung 6: Freispeicherliste

Abbildung 7: Getrennte Freispeicherliste

2.2

Frei Speicherblöcke passender Größe können wie bei Best-Fit gefunden werden, die Zeitkomplexität beträgt allerdings $\mathcal{O}(1)$ im Gegensatz zu $\mathcal{O}(n)$ bei normalem Best-Fit.

2.3

Es können nur Speicherblöcke von vorher bestimmten Größen vergeben werden. Bei einer linearen Liste können Speicherblöcke beliebiger Größe vergeben werden.

3 Segmentierung

- (a) Reale Speicheraddresse: ff00 f000 + 0000 4a10 = ff01 3a10 Die Daten liegen in dem segmentierten Bereich.
- (b) segmentation fault (core dumped)