PROBLEMES ESTADÍSTICA ENGINYERIA VARIABLES ALEATÒRIES VECTORIALS DISCRETES

1) Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas a un museo el último año(Y=0) si no hizo ninguna visita Y=1 si hizo una visita, Y=2 si hizo más de una visita). En la tabla siguiente aparecen la probabilidades conjuntas que se estimaron para estas dos variables:

Núm. de Visitas (Y)		Núm. de años (X)		
	1	2	3	4
0	0.07	0.05	0.03	0.02
1	0.13	0.11	0.17	0.15
2	0.04	0.04	0.09	0.10

- a) Hallar la probabilidad de que un estudiante elegido aleatoriamente no haya visitado ningún museo el último año.
- b) Hallar las medias de las variables aleatoria X e Y.
- c) Hallar e interpretar la covarianza y la correlación entre las variables aleatorias X e Y.
- 2) Un vendedor de libros de texto realiza llamadas a los despachos de lo profesores, y tiene la impresión que éstos suelen ausentarse más de los despachos los viernes que cualquier otro día laborable. Un repaso a las llamadas, de las cuales un quinto se realizan los viernes, indica que para el 16% de las llamadas realizadas en viernes, el profesor no estaba en su despacho, mientras que esto ocurre sólo para el 12% de llamadas que se realizan en cualquier otro día laborable. Definamos las variables aleatorias siguientes:

$$X = \begin{cases} 1 & \text{si la llamada es realizada el viernes} \\ 0 & \text{en cualquier otro caso} \end{cases}$$

$$Y = \begin{cases} 1 & \text{si el profesor está en el despacho} \\ 0 & \text{en cualquier otro caso} \end{cases}$$

- a) Hallar la función de probabilidad conjunta de X e Y.
- b) Hallar la función de probabilidad condicional de Y, dado que X=0.
- c) Hallar las funciones de probabilidad marginal de X e Y.
- d) Hallar e interpretar la covarianza de X e Y.

¹Sol.: a) 0.17; b)
$$E(X) = 2.59$$
, $E(Y) = 1, 10$; c) $Cov(X, Y) = 0.191$, $r_{XY} = 0.259291$

- 3) Se lanzan al aire dos dados de diferente color, uno es blanco y el otro rojo. Sea X la variable aleatoria "número de puntos obtenidos con el dado blanco, e Y la variable aleatoria "número más grande de puntos obtenido entre los dos dados".
- a) Determinar la función de probabilidad conjunta.
- b) Obtener las funciones de probabilidad marginales.
- c) ¿Son independientes? (No)
- 4) Si X_1 y X_2 son dos variables aleatorias con distribución Poisson, independientes y con medias respectivas α y β , probar que $Y = X_1 + X_2$ también una variable aleatoria Poisson (con media $\alpha + \beta$).

			X	
	Y	0	1	$P_Y(y)$
2 Sol.:	0	0.096	0.032	0.128
	1	0.704	0.168	0.872
	$P_X(x)$	0.8	0.2	1

. b)	Y	0	1	-d) $Cov(X, Y) = -0.0064$
, ט) -	$P_{Y/X}(y 0)$	0.12	0.88	- (1) COU(X, T) = -0.0004