Results
Show that
$$0L(t \operatorname{Sinat}) = \frac{2aS}{(S^2 + a^2)^2}$$

(a) $L(t \operatorname{cosat}) = \frac{S^2 - a^2}{(S^2 + a^2)^2}$

We know $L(t) = \frac{1}{S^2}$

Now $L(t e^{iat}) = \frac{1}{(S - ia)^2} = \frac{(S + ia)^2}{(S - ia)^3(S + ia)^2}$

$$= \frac{S^2 + 2 ias - a^2}{(S^2 + a^2)^2}$$

$$= \frac{S^2 - a^2 + i 2as}{(S^2 + a^2)^2}$$

[Now $e^{iat} = \operatorname{cosat} + i \operatorname{sinat}$]

$$L(t \operatorname{cosat} + i \operatorname{sinat}) = \frac{S^2 - a^2 + i 2as}{(S^2 + a^2)^2}$$

$$L(t \operatorname{cosat}) = \frac{S^2 - a^2}{(S^2 + a^2)^2}$$

$$L(t \operatorname{cosat}) = \frac{2as}{(S^2 + a^2)^2}$$

Transforms of Intigrals

If
$$L(t) = L(t)$$
, then

Let $L(t) = L(t)$, then

Multiplication by t^n

If $L(t) = L(t)$ then

Let $L(t) = L(t)$ then

Let $L(t) = L(t)$ then

Problems Find the Laplace transform of the senst $L(t) = L(t)$ to $L(t)$ to

$$\frac{-16^{-}}{ds^{2}} \frac{d^{2}}{ds^{2}} \left(\frac{\alpha}{s^{2} + \alpha^{2}} \right) = \frac{d^{2}}{ds^{2}} \left(\frac{\alpha}{s^{2} + \alpha^{2}} \right)$$

$$= \frac{d(s^{2} + \alpha^{2}) \cdot 0 - \alpha \cdot 28}{ds}$$

$$= \frac{d}{ds} \left(\frac{-2\alpha s}{(s^{2} + \alpha^{2})^{2}} \right)$$

$$= \left(\frac{s^{2} + \alpha^{2}}{s^{2}} \right)^{\frac{\alpha}{2}} \cdot 2\alpha + 2\alpha s \cdot 2(s^{2} + \alpha^{2}) \cdot 2s$$

$$= \left(\frac{s^{2} + \alpha^{2}}{s^{2}} \right)^{\frac{\alpha}{2}} \cdot 2\alpha + 8\alpha s^{2}$$

$$= \left(\frac{s^{2} + \alpha^{2}}{s^{2}} \right)^{\frac{\alpha}{2}}$$

$$= \left(\frac{s^{2} + \alpha^{2}}{s^{2}} \right)^{\frac{\alpha}{$$

Now L(t sinst) = (-1)'
$$\frac{d}{ds} \left(\frac{3}{s^2+9}\right)$$

= $-1 \left[(s^2+9) \cdot o - 3 \cdot 2s \right]$

*

(s^2+9)?

= $\frac{6s}{(s^2+9)^2}$

OR

L(e^{-t} sinst) = $\frac{3}{s^2+9}$ = $f(s)$ and we first shiptography.

L(e^{-t} sinst) = $\frac{3}{(s+1)^2+9}$ = $f(s)$

Now L($f(s)$ = f