文件大小	VU 1984	VU 2005	Web
1	1.79	1.38	6.67
2	1.88	1.53	7.67
4	2.01	1.65	8.33
8	2.31	1.80	11.30
16	3.32	2.15	11,46
32	5.13	3.15	12.33
64	8.71	4.98	26.10
128	14.73	8.03	28.49
256	23.09	13.29	32.10
512	34.44	20.62	39.94
1 KB	48.05	30.91	47.82
2 KB	60.87	46.09	59.44
4 KB	75.31	59.13	70.64
8 KB	84.97	69.96	79.69

文件大小	VU 1984	VU 2005	Web
16 KB	92.53	78.92	86.79
32 KB	97.21	85.87	91.65
64 KB	99.18	90.84	94.80
128 KB	99.84	93.73	96.93
256 KB	99.96	96.12	98.48
512 KB	100.00	97.73	98.99
1 MB	100.00	98.87	99.62
2 MB	100.00	99.44	99.80
4 MB	100.00	99.71	99.87
8 MB	100.00	99.86	99.94
16 MB	100.00	99.94	99.97
32 MB	100.00	99.97	99.99
64 MB	100.00	99.99	99.99
128 MB	100.00	99.99	100.00

图4-20 小干某个给定值(字节)的文件的百分比

我们能从这些数据中得出什么结论呢?如果块大小是1KB,则只有30%~50%的文件能够放在一个块内,但如果块大小是4KB,这一比例将上升到60%~70%。那篇论文中的其他数据显示,如果块大小是4KB,则93%的磁盘块会被10%最大的文件使用。这意味着在每个小文件末尾浪费一些空间几乎不会有任何关系,因为磁盘被少量的大文件(视频)给占用了,并且小文件所占空间的总量根本就无关紧要,甚至将那90%最小的文件所占的空间翻一倍也不会引人注目。

另一方面,分配单位很小意味着每个文件由很多块组成,每读一块都有寻道和旋转延迟时间,所以,读取由很多小块组成的文件会非常慢。

举例说明,假设磁盘每道有1MB,其旋转时间为8.33ms,平均寻道时间为5ms。以毫秒(ms)为单位,读取一个k个字节的块所需要的时间是寻道时间、旋转延迟和传送时间之和:

$$5+4.165+(k/1000000)\times8.33$$

图4-21的虚线表示一个磁盘的数据率与块大小之间的函数关系。要计算空间利用率,则要对文件的平均大小做出假设。为简单起见,假设所有文件都是4KB。尽管这个数据稍微大于在VU测量得到的数据,但是学生们大概应该有比公司数据中心更小的文件,所以这样整体上也许更好些。图4-21中的实线表示作为盘块大小函数的空间利用率。

可以按下面的方式理解这两条曲线。对一个块的访问时间完全由寻道时间和旋转延迟所决定,所以若要花费9ms的代价访问一个盘块,那么取的数据越多越好。因此,数据率随着磁

图4-21 虚线(左边标度)给出磁盘数据率,实线(右 边标度)给出磁盘空间利用率(所有文件大小均为4KB)

盘块的增大而增大(直到传输花费很长的时间以至于传输时间成为主导因素)。

现在考虑空间利用率。对于4KB文件和1KB、2KB或4KB的磁盘块,分别使用4、2、1块的文件,没有浪费。对于8KB块以及4KB文件,空间利用率降至50%,而16KB块则降至25%。实际上,很少有文件的大小是磁盘块整数倍的,所以一个文件的最后一个磁盘块中总是有一些空间浪费。

然而,这些曲线显示出性能与空间利用率天生就是矛盾的。小的块会导致低的性能但是高的空间利用率。对于这些数据,不存在合理的折中方案。在两条曲线的相交处的大小大约是64KB,但是数据(传输)速率只有6.6MB/s并且空间利用率只有大约7%,两者都不是很好。从历史观点上来说,文件系统将大小设在1~4KB之间,但现在随着磁盘超过了1TB,还是将块的大小提升到64KB并且接受浪费的磁