Keynotes and Preliminary Knowledge from Algorithm Design and Applications

Chapter 8.1: Merge-Sort

Merge-Sort Overview:

- Divide-and-Conquer Paradigm:
 - 1. Divide: Split the input data into two disjoint subsets.
 - 2. Recur: Recursively solve the subproblems.
 - 3. Conquer: Merge the solutions of the subproblems to solve the original problem.

Steps in Merge-Sort:

- 1. Divide: If the sequence has one or zero elements, it's already sorted. If not, split it into two sequences
- S1 and S2.
- 2. Recur: Recursively sort S1 and S2.
- 3. Conquer: Merge S1 and S2 into a single sorted sequence.

Merge-Sort Tree:

- Each node represents a recursive call.
- The height of the tree is log n, where n is the number of elements.
- The merge operation takes O(n) time.

Analysis:

- The merge step involves sequentially accessing data, which is efficient for large datasets.
- Merge-sort has a time complexity of O(n log n).

Pseudocode for Merge:

Algorithm merge(S1, S2, S):

Input: Two arrays, S1 and S2, of size n1 and n2, respectively, sorted in non-decreasing order, and an empty array, S, of size at least n1 + n2

Output: S, containing the elements from S1 and S2 in sorted order

i **←** 1

j **←** 1

while $i \le n$ and $j \le n$ do

if $S1[i] \leq S2[j]$ then

$$S[i + j - 1] \leftarrow S1[i]$$

$$i \leftarrow i + 1$$

else

$$S[i+j-1] \leftarrow S2[j]$$

$$j \leftarrow j + 1$$

while $i \le n$ do

$$S[i+j-1] \leftarrow S1[i]$$

$$i \leftarrow i + 1$$

while $j \le n$ do

$$\mathsf{S}[\mathsf{i}+\mathsf{j}-1] \leftarrow \mathsf{S2}[\mathsf{j}]$$

$$j \leftarrow j + 1$$

Chapter 8.2: Quick-Sort

Quick-Sort Overview:

- Steps in Quick-Sort:
- 1. Divide: Choose a pivot and partition the sequence into L, E, and G.
- 2. Recur: Recursively sort L and G.

3. Conquer: Concatenate L, E, and G back into S. In-Place Quick-Sort: - Utilizes the input array for storing subarrays. - Partitions the array using a pivot, and recursively sorts subarrays. Visualization: - Uses a binary recursion tree where each node represents a recursive call and its pivot. Chapter 11.1: Recurrences and the Master Theorem Master Theorem for Divide-and-Conquer Recurrences: - Used to solve recurrence relations of the form T(n) = aT(n/b) + f(n). - Cases: 1. If f(n) is $O(n^{(\log_b a - \epsilon)})$, then T(n) is $O(n^{(\log_b a)})$. 2. If f(n) is $\Theta(n^{(\log b a)} \log^k n)$, then T(n) is $\Theta(n^{(\log b a)} \log^k (k+1) n)$. 3. If f(n) is $\Omega(n^{(\log_b a + \epsilon)})$ and $af(n/b) \le \delta f(n)$, then T(n) is $\Theta(f(n))$. Examples: - T(n) = 4T(n/2) + n resolves to $\Theta(n^2)$. - $T(n) = 2T(n/2) + n \log n$ resolves to $\Theta(n \log^2 n)$.

Chapter 11.2: Integer Multiplication

Problem:

- Multiplying large integers efficiently, which has applications in data security.

- Split integers into halves and recursively compute products.
- Time complexity can be reduced to $O(n^1.585)$ using the divide-and-conquer approach.
Theorem:
- Multiplying two n-bit integers can be done in O(n^(log_2 3)).
Chapter 11.3: Matrix Multiplication
Problem:
- Efficiently multiplying two n x n matrices.
Strassen's Algorithm:
- Uses 7 recursive multiplications instead of 8.
- Running time: O(n^2.808).
Further Improvements:
- More advanced algorithms can achieve running times as low as O(n^2.376).
Chapter 11.4: The Maxima-Set Problem
Problem:
- Finding a set of maximal points from a set of points in a plane.
Divide-and-Conquer Algorithm:

Divide-and-Conquer Algorithm:

- Sort points lexicographically.Recursively find maxima sets on the left and right.
- Merge these sets by removing dominated points.

Time Complexity:

- O(n log n).