

Matemática

Folha 6 - Sucessões Numéricas: Exercícios Propostos

Exercício 1 Considere as sucessões seguintes:

$$a_n = \frac{1}{n};$$
 $b_n = \frac{5n+3}{n};$ $c_n = \frac{3(-1)^n + 2n}{n};$ $d_n = \begin{cases} n+2, \text{ se } n < 5, \\ 5, \text{ se } n \ge 5; \end{cases}$ $e_n = -2^n;$ $f_n = \frac{-3}{2^n}.$

Faça a correspondência entre as sucessões e os gráficos que se apresentam de seguida e indique, caso exista, o respetivo limite.

Exercício 2 Considere a sucessão de termo geral $a_n = 3 - 2n$.

- a) Determine os três primeiros termos da sucessão.
- b) Averigue se -17 é termo da sucessão.
- c) Estude a sucessão $(a_n)_n$ quanto à monotonia.
- d) $(a_n)_n$ é limitada?

Exercício 3 Considere a sucessão de termo geral $u_n = \frac{3n-2}{n}$, $n \in \mathbb{N}$.

- a) Calcule os dois primeiros termos da sucessão.
- b) Verifique se $\frac{5}{2}$ é termo da sucessão.
- c) Estude, quanto à monotonia, a sucessão $(u_n)_n$.
- d) A sucessão é limitada?

Considere a sucessão de termo geral $b_n = n^2 - 8n$, $n \in \mathbb{N}$. Exercício 4

- a) Determine os quatro primeiros termos da sucessão.
- b) Calcule o vigésimo termo da sucessão e diga se a sucessão monótona.

Exercício 5 Considere as sucessões cujos termos gerais são

$$a_n = \frac{n^2}{n+1}$$
, $b_n = -2 + \frac{1}{n+1}$, $c_n = \left(-\frac{1}{2}\right)^n$, $d_n = 2^n$, $e_n = (-1)^n$.

- Diga se as sucessões apresentadas são convergentes ou divergentes e, para as convergentes, identifique o respetivo limite.
- b) Quais das sucessões são limitadas?
- c) Determine, caso existam, os limites das seguintes sucessões:
 - i) $a_n b_n$; ii) $a_n + b_n$; iii) $b_n c_n$; iv) $\frac{d_n}{c}$.

ício 6 Considere sucessões $(u_n)_n$ e $(v_n)_n$ tais que $\lim_n u_n = 0$ e $\lim_n v_n = +\infty$. Apresente exemplos de sucessões nestas condições de modo que: Exercício 6

i) $\lim_n u_n v_n = -3;$ ii) $\lim_n u_n v_n = 0;$ iii) $\lim_n u_n v_n = +\infty;$

Exercício 7 Calcule, caso exista:

a)
$$\lim_{n} \frac{2+3n}{5n}$$
; b) $\lim_{n} \frac{3n^2+4n-2}{4n^2-3n+5}$;
c) $\lim_{n} \frac{3n^2+1}{4n^3+5}$; d) $\lim_{n} \frac{3n^3+4n^2-3n+2}{4n^2+3n+2}$;
e) $\lim_{n} 5(-1)^n$; f) $\lim_{n} \sqrt{n^3+3}$;

c)
$$\lim_{n} \frac{3n^2 + 1}{4n^3 + 5}$$
; d) $\lim_{n} \frac{3n^3 + 4n^2 - 3n + 2}{4n^2 + 3n + 2}$;

e)
$$\lim_{n} 5(-1)^{n}$$
; f) $\lim_{n} \sqrt{n^{3} + 3}$;

g)
$$\lim_{n} \sqrt{4n^2 + 1}$$
; h) $\lim_{n} \left(\frac{1}{\sqrt{n^2 + 1}} - \frac{1}{\sqrt{n^2 + 2}} \right)$;

i)
$$\lim_{n} \frac{1}{\sqrt{n^4 + 2} - \sqrt{n^4 + 3}}$$
 j) $\lim_{n} \left(\sqrt{n^2 + 2} - \sqrt{n^2 - n} \right)$;

Exercício 8 Calcule os limites:

a)
$$\lim_{n} \left(1 + \frac{5}{n}\right)^{\frac{n}{5}}$$
; b) $\lim_{n} \left(\frac{n+3}{n}\right)^{n+1}$; c) $\lim_{n} \left(\frac{n-1}{n+5}\right)^{2n}$.

2

Considerando que a e b representam dois quaisquer números reais não nulos:

	$\lim_n (a_n + b_n)$	$\lim_n (a_n - b_n)$	$\lim_n (a_n b_n)$	$\lim_n rac{a_n}{b_n}$
$\lim_{n} a_n = a$ $\lim_{n} b_n = b$	a+b	a-b	ab	$\frac{a}{b}$
$\lim_{n} a_n = 0$ $\lim_{n} b_n = b$	b	-b	0	0
$\lim_{n} a_n = a$ $\lim_{n} b_n = 0$	a	a	0	(*)
$\lim_{n} a_n = 0$ $\lim_{n} b_n = 0$	0	0	0	Indeterminação
$ \lim_{n} a_n = +\infty \lim_{n} b_n = b $	+∞	+∞	$+\infty$, se $b>0$ $-\infty$, se $b<0$	$+\infty$, se $b>0$ $-\infty$, se $b<0$
$ \lim_{n} a_n = -\infty \\ \lim_{n} b_n = b $	$-\infty$	$-\infty$	$-\infty$, se $b>0$ $+\infty$, se $b<0$	$-\infty$, se $b>0$ $+\infty$, se $b<0$
$\lim_{n} a_n = a$ $\lim_{n} b_n = +\infty$	+∞	$-\infty$	$+\infty$, se $a>0$ $-\infty$, se $a<0$	0
$ \lim_{n} a_n = a \lim_{n} b_n = -\infty $	$-\infty$	+∞	$-\infty$, se $a>0$ $+\infty$, se $a<0$	0
$\lim_{n} a_n = \pm \infty$ $\lim_{n} b_n = 0$	$\pm\infty$	$\pm\infty$	Indeterminação	(**)
$\lim_{n} a_n = 0$ $\lim_{n} b_n = \pm \infty$	$\pm\infty$	∓∞	Indeterminação	0
$\lim_{n} a_n = +\infty$ $\lim_{n} b_n = +\infty$	+∞	Indeterminação	+∞	Indeterminação
$\lim_{n} a_n = +\infty$ $\lim_{n} b_n = -\infty$	Indeterminação	+∞	$-\infty$	Indeterminação
$\lim_{n} a_n = -\infty$ $\lim_{n} b_n = +\infty$	Indeterminação	$-\infty$	$-\infty$	Indeterminação
$\lim_{n} a_n = -\infty$ $\lim_{n} b_n = -\infty$	$-\infty$	Indeterminação	+∞	Indeterminação

$$\text{(*)} \left\{ \begin{array}{l} +\infty \text{ se } \left\{ \begin{array}{l} a>0 \quad \text{e} \quad b_n \to 0^+ \\ a<0 \quad \text{e} \quad b_n \to 0^- \\ -\infty \text{ se } \left\{ \begin{array}{l} a>0 \quad \text{e} \quad b_n \to 0^- \\ a<0 \quad \text{e} \quad b_n \to 0^+ \\ \text{sem limites nos outros casos} \end{array} \right. \\ \text{(**)} \left\{ \begin{array}{l} \pm\infty \text{ se } b_n \to 0^+ \\ \mp\infty \text{ se } b_n \to 0^- \\ \text{sem limites nos outros casos} \end{array} \right.$$