4. Semester Formelsammlung

Maschinengenauigkeit:

Abstand von 1 zur nächst größeren Zahl 64 Bit: $ens \approx 2 * 10^{-16}$ 32 Bit: $ens \approx 1 * 10^{-7}$

Kondition:

Absolut:
$$||f(x) - \tilde{f}(x)|| \le \kappa_{abs} * ||x - \tilde{x}||$$

Falls f Diffbar: $\kappa_{abs}(x) = |f'(x)|$

$$\begin{split} \text{Relativ:} & \frac{\|f(x) - f(x + \Delta)\|}{\|f(x)\|} \leq \kappa_{rel} * \frac{\|\Delta\|}{\|x\|} \\ & \text{Falls } f \text{ Diffbar: } \kappa_{rel}(x) = \frac{|f'(x)|}{|f(x)|} * x \end{split}$$

Lin. Gleichungssystem
$$Ax = b$$

$$\kappa_{\rm abs} = \|A^{-1}\| \ \kappa_{rel} = \|A^{-1}\| * \|A\|$$

Matrixnormen:
$$||A||_{\infty} = Zeilensummennorm$$

 $||A||_{2} = \sqrt{\lambda_{max}(A^{T}A)}$

Rückwärtsstabilität:

 \tilde{f} für Problem f heißt Rückwärts stabil, falls für jedes x ein \tilde{x} existiert mit $\tilde{f}(x) = f(\tilde{x})$ und $\frac{\|\tilde{x} - x\|}{\|x\|} \le eps$

LR Zerlegung:

R = Gauß elimination von A

 $L_{ij} = \frac{a_{ij}}{a_{ii}}$ (aber nur aktuelle Spalte!)

Pivotisierung: Pivotelement möglichst groß wählen/Zeilen

Permutationsmatrix: Zeile a und b vertauschen: Einheitsmatrix Spalte *a* und *b* vertauschen

$$\Rightarrow PA = LR \quad Ax = b \rightarrow Ly = Pb \quad Rx = y$$

QR Zerlegung:

$$\overline{\tilde{A}} = A$$

1. $\tilde{A} = (k-1)$ te Untermatrix von A

2. a = 1. Spalte von \tilde{A}

3. $v = a + sign(a_1) * ||a|| * e_1$

4. $H_v = I - 2 \frac{vv^T}{\|v\|^2}$

5. $Q_k = \begin{pmatrix} I_{k-1} & 0 \\ 0 & H \end{pmatrix} \tilde{A} = \tilde{A} * H_v$

 $\tilde{A} = R$ $Q_1 Q_2 \dots Q_k = Q$

$$Ax = b \rightarrow Q^T b = y \quad Rx = y$$

Lin Ausgleichsprobleme:

Finde x so dass $||r||^2 = ||b - Ax||^2$ minimal

Polynomial Fitting:
$$A = \begin{pmatrix} 1 & t_1 & t_1^2 & \dots & t_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \dots & t_m^{n-1} \end{pmatrix}$$

x löst Problem ⇔ x löst Normalengleichung $A^T A x = A^T b$

Kondition:

$$\vartheta = \sin^{-1}\left(\frac{\|r\|}{\|b\|}\right) \quad \kappa = \begin{cases} \kappa \leq \frac{\kappa(A)}{\cos(\vartheta)} & f \colon \mathbb{R}^m \to \mathbb{R}^n, b \to x \\ \kappa \leq \kappa(A) + \kappa(A)^2 \tan(\vartheta) & f \colon \mathbb{R}^{mxn} \to \mathbb{R}^n, A \to x \end{cases}$$

Lösung: QR Zerlegung

$$Q^{T}b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \quad R = \begin{pmatrix} \tilde{R} \\ 0 \end{pmatrix}$$
$$x = \tilde{R}^{-1}b_1 \quad ||b - Ax|| = ||b_2||$$

Fixpunktiteration:

Kontraktion falls $\sup |\varphi'(x)| < 1$ oder $\|\varphi(x) - \varphi(y)\| \le \vartheta \|x - y\|$ mit $0 \le \vartheta < 1$

Branarchscher Fixpunktsatz: falls $\varphi(x)$ eine Kontraktion, abgeschlossen und eine Selbstabbildung konvergiert die Iteration für ieden Startwert

Iterative Lösungsverfahren:

 $\varphi(x) = Nb + Mx$

||M|| < 1 ist hinreichend für Konvergenz

Jacobi Verfahren:

$$A = \underbrace{D}_{B} - \underbrace{(L+R)}_{C}$$

$$x^{(k+1)} = B^{-1}(b + Cx^{(k)}) = D^{-1}(b + (L+R)x^{(k)})$$

Konvergenz falls A strikt Diagonaldominant

Gaus Seidel Verfahren:

$$A = \underbrace{(D-L)}_{B} \cdot \underbrace{R}_{C}$$
$$x^{(k+1)} = (D-L)^{-1} (b + Rx^{(k)})$$

Konvergenz falls A strikt Diagonaldominant oder s.p.d.

Dämpfung: $x^{(k+1)} = \omega \varphi(x^{(k)}) + (1 - \omega)x^{(k)}$

 $\omega_{opt} = \frac{2}{2-\lambda_1-\lambda_m}$ wobei $\lambda_1, \lambda_m < 1$ größter und kleinster

Nichtlineare Gleichungen:

Kondition: $\kappa = \|(f'(x))^{-1}\|$

Bisektionsverfahren: $f(a_0) * f(b_0) < 0$ Globale Konvergenz

1. $x_k = \frac{1}{2}(a_k + b_k)$

2. $\begin{cases} a_{k+1} = a_k & b_{k+1} = x_k & falls \ f(a_k) * f(b_k) < 0 \\ a_{k+1} = x_k & b_{k+1} = b_k & sonst \\ \end{cases}$ 3. Abbruch falls $|b_k - a_k| < \varepsilon$

Newton Verfahren: f(x) muss diffbar sein

$$k_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Falls $f(\bar{x}) = 0$, $f'(\bar{x}) \neq 0$ lokale quadratische Konvergenz Mehrdimensional: $x^{k+1} = x^{(k)} - J_f^{-1}(x^{(k)}) + f(x^{(k)})$

Optimierung:

 $\nabla f(x^*) = 0$ x^* heißt stationärer Punkt

 $\nabla f(x^*) = 0$ und $\nabla^2 f(x^*) = \text{Pos. Definit (Alle EW > 0), dann ist } x^* \text{ ein lokales}$

Newtonverfahren zur Bestimmung von x^* : $x_{k+1} = x_k - \nabla^2 f(x_k) + \nabla f(x_k)$ Gradientenverfahren:

- 1. Stopp falls $\nabla f(x^k) \cong 0$
- 2. Abstiegsrichtung bestimmen: $d^k = -\nabla f(x^k)$
- 3. Maximale Schrittweite:
 - a. Exakt: $\min_{s>0} f(x^{(k)} + \sigma * d^{(k)})$
 - b. Armijo setze $\sigma = 1, \ \gamma \in \left(0, \frac{1}{2}\right)$;

Falls
$$f(x^k + \sigma_k d^k) - f(x_k) < \gamma \sigma_k + \nabla f(x^k)^T d^k$$
 halbiere σ .

4. $x^{k+1} = x^k + \sigma_k d^k$

Komplexe Differentiation:

 $f: U \to \mathbb{C}$ heißt komplex diffbar falls $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0)$

Falls f überall auf U diffbar, nennt man f analytisch Rechenregeln wie bei normaler Differentation

$$f(z) = f_1(z) + i f_2(z)$$

Cauchy-Riemannsche Diffgl.: $\partial_1 f_1(z) = \partial_2 f_2(z)$, $\partial_1 f_2(z) = -\partial_2 f_1(z)$ f(z)Ist in U diffbar falls CR-Difflg. Gillt.

Konstanten, Polynome, Potenzreihen (sin, cos, exp) und Rationale Fkt sind analytisch

Komplexe Integration

Rechenregeln wie für reelle Integrale

Kurvenintegral: $\gamma: [a, b] \to \mathbb{C}$

$$\int_{\gamma} g(s) ds = \int_{a}^{b} g(\gamma(t)) ||\dot{\gamma}(t)|| dt$$

Cauchy-Integrationsformel: $f: U \to \mathbb{C}$ analytisch, γ geschlossen mit Innerem in ganz *U* Dann gilt für jeden Punkt *z* im Inneren von *U*:

$$f(z) = \frac{1}{2\pi i} \int_{V} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

Für
$$f: U \to \mathbb{C}$$
 analytisch, $\{|z-a| \le r\} \subset U$, $a \in U, r > 0$

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \text{ mit } c_n = \frac{1}{2\pi i} \int_{|\zeta-a| = r} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta$$

Auch wichtig: Schrödingers Katze

4. Semester Formelsammlung-Anhang

Aufwand:

n * n! - 1Laplace Determ. Skalarprodukt 2n - 1Vorwärts/Rückwärtssubstitution

Cholesky Zerlegung $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$

 $\frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{1}{6}n$ LR- Zerlegung

 $2n^2\left(m-\frac{1}{3}n\right)$ QR- Zerlegung

 $2n^2$ im k-ten Schritt, falls A Vollbesetzt Jacobi/Gauß-Seidel Verfahren

Cholesky-Zerlegung:

```
A: s.p.d. A = G\overline{G^T}
                                                      f\ddot{u}r i < k
```

Praktischerer Ansatz: GG^T Aufstellen, (mit $g_{11}, g_{21}, ...$) und mit A gleichsetzen

```
Sinus mit Hornerschema
                                       Inverse Berechnen mit LR
                                                                                           Cholesky Zerlegung:
                                                                                                                                         Gauß-Seidel Verfahren:
function v=sinhorner(x.n)
                                       function Ainv = inverseberechnen(A)
                                                                                           function R = choleskv(A)
                                                                                                                                         function [x,N] = gs(A,b,delta)
v=1;
                                               = size(A,1);
                                                                                           [m,n]=size(A);
for i=n:-1:1
                                       [L.R.P]
                                               = lu(A):
                                                                                           if m~=n error('A muss quadratisch sein.'):
         y=1-x.^2/(2*n*(2*n+1))*y;
                                              = zeros(n,1);
                                                                                                                                          for i=1:200
                                                                                           R=zeros(n);
end;
                                                = zeros(n):
                                                                                                                                           x=tril(A)\setminus(b-triu(A,1)*x);
                                       for i=1:n
                                                                                           R(1,1)=sqrt(A(1,1));
y=x*y;
                                                                                                                                           N=N+1:
                                        for i=1:n
                                                                                           if n==1 return; end
                                                                                                                                         if norm(b-A*x)<delta
                                          y(i) = P(i,j) - L(i,1:i-1)*y(1:i-1);
                                                                                           R(1,2:n)=A(1,2:n)/R(1,1);
                                                                                                                                             return;
                                                                                           R(2:n,2:n)=cholesky( A(2:n,2:n) -
                                                                                                                                           end
                                                                                           R(1,2:n)'*R(1,2:n));
                                          Ainv(i,j) = (y(i) - R(i,i+1:n)*Ainv(i+1:n,j))/R(i,i); end
                                                                                                                                         error('Keine Konvergenz nach 200 Iterationen.'):
                                         end
                                       end
                                                                                                                                         QR-Zerlegung:
Newton Verfahren:
                                              LR-Zerlegung
                                                                                           LR-Zerlegung mit Pivotisierung:
function [x,k] = newton(f,Df,x,maxit,TOL)
                                             function A = LR(A)
                                                                                           function [A,p] = LR pivot(A)
                                                                                                                                         function A = QR householder(A)
for k=1:maxit
                                              [n,^{\sim}] = size(A);
                                                                                           [n,^{\sim}] = size(A);
                                                                                                                                         [m,n] = size(A);
  x alt = x;
                                             if \simall(size(A) == n)
                                                                                           if \simall(size(A) == n)
                                                                                                                                         for k = 1:min(m-1.n)
```

p = 1:n;

for k = 1:n

i = i + (k-1);

I = k+1:n;

p([k,j]) = p([j,k]);

error('A muss quadratisch sein.');

 $[\sim,i] = \max(abs(A(p(k:n),k)));$

A(p(1),k) = A(p(1),k)/A(p(k),k);

A(p(I),I) = A(p(I),I) - A(p(I),k)*A(p(k),I);

Bisektionsverfahren:

x = x - f(x)/Df(x);

break

end

end

fprintf('%1.15e\n'.x)

if norm(x-x alt) < TOL

function [x,n]=bisektion (f,a,b,TOL) fa=feval(f,a); fb=feval(f,b); n=0;

if fa==0: x=a: return: end if fb==0; x=b; return; end

if fa*fb>0; error('f(a) und f(b) haben gleiches Vorzeichen.');

if a>b; error('a>b, leeres Intervall'); end while b-a>TOL x=a+0.5*(b-a); fm=feval(f,x); if fm==0; break; end

if fa*fm>0 a=x: fa=fm; else b=x; fb=fm; end

n=n+1;

end

Gradientenverfahren:

error('Toleranz nicht erreicht');

error('A muss quadratisch sein.');

end

end

for k = 1:n

I = k+1:n;

A(I,k) = A(I,k)/A(k,k);

A(I,I) = A(I,I) - A(I,k)*A(k,I);

function [x,n] = gradverf(f,gradf,x0,TOL,maxsteps) x=x0: gfx=feval(gradf,x); n=0; while n<maxsteps d = -gfx;s = 1: while feval(f,x+s*d)-feval(f,x) > -s*norm(gfx) $^2/2$ s=s/2; end x = x + s*d;gfx = feval(gradf,x); if norm(gfx)<TOL return; end

v = A(k:end,k);na = norm(v): if v(1) >= 0s = 1; else s = -1;end v(1) = v(1) + s*na;v = [1; v(2:end)/v(1)];A(k:end,k+1:end) = A(k:end,k+1:end) -(2/(v'*v)*v)*(v'*A(k:end,k+1:end)); A(k,k) = -s*na;A(k+1:end,k) = v(2:end);end

end

Stationären Punkt suchen: function [v,type] = statpointsincos(x0,y0) v=[x0;y0];if x0==y0 error('x0=y0 => Df singulaer'); end f = @(v) [%Funktion f in v(1) und v(2)]; Df= @(v) [%Gradient f in v(1) und v(2)]; [v,n]=newton_system(f,Df,v,1000,10^(-10)); eigenvals=eig(Df(v)); %eig liefert Eigenwerte if eigenvals(1)*eigenvals(2)<0 type='sattel'; else if eigenvals(1)>0 type='min'; type='max'; end end