Worksheet 17: Orthogonal Transformations (§5.3)

(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Definition: An $n \times n$ matrix A is said to be *symmetric* if $A^{\top} = A$, and *orthogonal* if $A^{\top} = A^{-1}$, i.e., if A is invertible and its inverse is the same as its transpose.

Problem 1.

- (a) Show that if A and B are orthogonal $n \times n$ matrices, then the matrices A^{\top} , A^{-1} , and AB are also orthogonal.
- (b) Show that for any matrix A, both $A^{\top}A$ and AA^{\top} are symmetric. Expressed as a dot product, what is the (i, j)-entry of $A^{\top}A$? How about the (i, j)-entry of AA^{\top} ?

Solution:

- (a) These facts following immediately from the definition using the identities $(A^{\top})^{\top} = A$, $(AB)^{\top} = B^{\top}A^{\top}$, and $(A^{-1})^{\top} = (A^{\top})^{-1}$.
- (b) $(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$ and $(AA^{\top})^{\top} = (A^{\top})^{\top}A^{\top} = AA^{\top}$, so both $A^{\top}A$ and AA^{\top} are symmetric. The (i, j)-entry of $A^{\top}A$ is the dot product of the ith and jth columns of A, and the (i, j)-entry of AA^{\top} is the dot product of the ith and jth rows of A.

Definition: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be an *orthogonal* transformation if it preserves the dot product, i.e., if for all vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$,

$$T(\vec{v}) \cdot T(\vec{w}) = \vec{v} \cdot \vec{w}$$
.

Problem 2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and let A be the standard matrix of T. Prove that the following are equivalent:*

- (a) T preserves length, i.e., ||T(v)|| = ||v|| for all $v \in \mathbb{R}^n$.
- (b) T preserves distance, i.e., ||T(v) T(w)|| = ||v w|| for all $v, w \in \mathbb{R}^n$.
- (c) T is an orthogonal transformation, i.e., T preserves the dot product.
- (d) T maps any orthonormal basis of \mathbb{R}^n to an orthonormal basis of \mathbb{R}^n .
- (e) T maps the standard basis of \mathbb{R}^n to an orthonormal basis of \mathbb{R}^n .
- (f) The columns of A form an orthonormal basis of \mathbb{R}^n .
- (g) $A^{\top}A = I_n$.

^{*}Hint: prove $(a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Leftrightarrow (g) \Leftrightarrow (h) \Leftrightarrow (i) \text{ and } (g) \Rightarrow (c) \Rightarrow (a).$

[†]This is the textbook's definition of *orthogonal transformation*. We prefer the one that is given in terms of the dot product, but part of what you are proving here is that the two definitions are equivalent.

(h)
$$AA^{\top} = I_n$$
. (i.e., A is an orthogonal matrix $)$

(i) The rows of A form an orthonormal basis of \mathbb{R}^n .

Solution:

(a) \Leftrightarrow (b): If T is linear and preserves lengths, then for all $v, w \in \mathbb{R}^n$, ||T(v) - T(w)|| =||T(v-w)|| = ||v-w||. Conversely, if T is linear and preserves distances, then for all $v \in \mathbb{R}^n$, ||T(v)|| = ||T(v) - 0|| = ||T(v) - T(0)|| = ||v - 0|| = ||v||. $(a \wedge b) \Rightarrow (c)$: Let $v, w \in \mathbb{R}^n$. Expanding each side of ||T(v-w)|| = ||v-w|| in terms of the

dot product and using the facts that ||T(v)|| = ||v|| and ||T(w)|| = ||w|| to simplify, we find that $T(v) \cdot T(w) = v \cdot w$.

 $(c) \Rightarrow (d)$: Assuming (c), if $u_i \cdot u_j = \delta_{ij}$ for each i, j, then also $T(u_i) \cdot T(u_j) = \delta_{ij}$ for each i, j.

 $(d) \Rightarrow (e)$: Immediate, since the standard basis of \mathbb{R}^n is orthonormal.

 $(e) \Rightarrow (f)$: Follows from the fact that $A = [T(\vec{e}_1) \cdots T(\vec{e}_n)]$.

 $(f) \Leftrightarrow (g)$: If we write $A = [\vec{u}_1 \cdots \vec{u}_n]$, the (i,j)-entry of $A^{\top}A$ is $\vec{u}_i \cdot \vec{u}_j$.

 $(g) \Leftrightarrow (h)$: Follows from Theorem 2.4.8 in the text.

$$(h) \Leftrightarrow (i): \text{ If we write } A = \begin{bmatrix} - & \vec{u}_1^\top & - \\ & \vdots & \\ - & \vec{u}_n^\top & - \end{bmatrix}, \text{ the } (i,j)\text{-entry of } AA^\top \text{ is } \vec{u}_i \cdot \vec{u}_j.$$

 $(g) \Rightarrow (c)$: If $A^{\top}A = I_n$, then $T(v) \cdot T(w) = Av \cdot Aw = v^{\top}A^{\top}Aw = v^{\top}w = v \cdot w$. $(c) \Rightarrow (a)$: If T preserves the dot product, then for all v, $||T(v)||^2 = T(v) \cdot T(v) = v \cdot v = ||v||^2$.

Problem 3.

- (a) Give some examples of orthogonal transformations, reflections, rotations
- (b) For n > 1, give an example of a function $f: \mathbb{R}^n \to \mathbb{R}^n$ that preserves length but is not an orthogonal transformation. (Why does this not contradict Problem 2?) $f(\vec{x}) = ||\vec{x}||\vec{e_1}$. This doesn't contradict Problem 2 because f is not linear.

Problem 4. Show that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation, then the matrix of T with respect to any orthonormal basis of \mathbb{R}^n is an orthogonal matrix. Is this true for any basis of \mathbb{R}^n (i.e., not necessarily an orthonormal one)?

Solution: Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation, so the standard matrix $[T]_{\mathcal{E}}$ of T is orthogonal by Problem 2. Let $\mathcal{U} = (\vec{u}_1, \dots, \vec{u}_n)$ be an orthonormal basis of \mathbb{R}^n , and write $Q = [\vec{u}_1 \cdots \vec{u}_n]$, so that Q is an orthogonal matrix and thus so is the matrix $Q^{-1} = Q^{\top}$ by Problem 1. Then

$$[T]_{\mathcal{U}} = S_{\mathcal{E} \to \mathcal{U}}[T]_{\mathcal{E}}S_{\mathcal{U} \to \mathcal{E}} = Q^{\top}[T]_{\mathcal{E}}Q$$

is also orthogonal, since products of orthogonal matrices are orthogonal (again by Problem 1). This statement could fail, however, if the basis is not orthonormal. For instance, if $\mathcal{B} =$ $(\vec{e}_1, \vec{e}_1 + \vec{e}_2)$ then the \mathcal{B} -matrix of the reflection of \mathbb{R}^2 over the x-axis is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ an orthogonal matrix even though the reflection is an orthogonal transformation.

Problem 5. Determine all orthogonal transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$.

Solution: Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is an orthogonal transformation. Then T is linear, so it is determined by its effect on the standard basis (\vec{e}_1, \vec{e}_2) . By Problem (2), $\vec{u}_1 = T(\vec{e}_1)$ and $\vec{u}_2 = T(\vec{e}_2)$ are unit vectors that are orthogonal to one another. If \vec{u}_2 is obtained from \vec{u}_1 by a 90° counter-clockwise rotation, then T is a rotation. If \vec{u}_2 is obtained from \vec{u}_1 by a 90° clockwise rotation, then T is a rotation followed by a reflection, which is itself a reflection. So T is either a rotation or a reflection. In terms of matrices, the matrix of T relative to the standard coordinates must be

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}.$$