Notes on Probability Theory

Tianyu Du

February 1, 2019

Contents

1 Preliminaries 1

1 Preliminaries

Definition 1.1. A probability space is a triple (Ω, \mathcal{F}, P) where Ω is the sample space, \mathcal{F} is a σ -algebra of Ω (events) and $P : \mathcal{F} \to [0, 1]$ is the probability function.

Remark 1.1. (Ω, \mathcal{F}) is a measurable space or Borel space.

Definition 1.2. A **algebra**, A, of set X is a collection of subsets of X closed under complementation and *finite* union.

Definition 1.3. A σ -algebra of set X is a collection of subsets of X closed under complementation and countable union.

Definition 1.4. A semi-algebra S is a collection of sets closed under intersection such that $S \in S$ implies that S^c is a *finite disjoint* union of sets in S.

Lemma 1.1. If S is a semi-algebra, then the set S^c of *finite disjoint* unions of sets in S is an algebra, called the **algebra generated by** S.

Definition 1.5. A **measure** on algebra is a function $\mu: \mathcal{A} \to \mathbb{R}$ such that

- (i) $\mu(A) \ge \mu(\emptyset) = 0 \ \forall A \in \mathcal{A}$,
- (ii) and countably additive for disjoint set $\{A_i\}_i$

$$\mu(\cup_i A_i) = \sum_i \mu(A_i) \tag{1.1}$$

Definition 1.6. A measure μ on \mathcal{F} is a probability measure if $\mu(\Omega) = 1$.

Definition 1.7. The **Borel** σ -algebra \mathcal{B} on a topological space is the smallest σ -algebra containing all open sets.

Theorem 1.1. For each right continuous, non-decreasing function F such that $\lim_{x\to-\infty} F = 0$ and $\lim_{x\to\infty} F = 1$, there is an unique measure defined on the Borel sets of $\mathbb R$ with

$$P((a,b]) \equiv F(b) - F(a) \tag{1.2}$$

Definition 1.8. A collection \mathcal{P} of sets is a π -system is it's closed under intersection.

Definition 1.9. A collection of sets \mathcal{L} is a λ -system if