Interaction Techniques Using The Wii Remote (and other HCI projects)

Johnny Chung Lee

Microsoft - Applied Sciences

Carnegie Mellon University

Aug 2008

Nintendo Wii

Nintendo's 5th Video game console Release Date: 11/19/06 30 million units worldwide (Jun, 2008)

>30 million Wii remotes 1-4 remotes per console

6-9 million Tablet PCs

Nintendo Wii Remote

Bluetooth HID compatible joystick MSRP \$40 USD

Inputs:

IR camera tracker Accelerometer 12 digital buttons

Outputs:

Tactile – vibration motor Auditory – small speaker Visual –blue status LEDs

Other:

Expansion port
On-board memory
Batteries

IR Camera Tracker

Manufactured by PixArt Imaging
Multi-Object Tracking™ engine (MOT sensor™)

Official specifications are confidential, but....

Hardware IR blob tracking up to 4 points Resolution: 1024x768 (true: 128x96?)

Refresh Rate; 100Hz

Dot size: 4-bits

Intensity: 8-bits (Full mode)

Bounding Box: 7-bits x-y (Full mode)

Horizontal Field of view: 45 degrees (calc. rad/pixel)

Nintendo Wii "Sensor Bar"

Contains two IR emitter groups

Two dots = 4 values: (x1, y1), (x2, y2)

4 values $\rightarrow x$, y, rotation, and distance

correspond primarily to: tilt, yaw, roll, and distance

Accelerometer

Analog Devices (ADXL330)

3-axis linear accelerometer

Range: +/-3g sensitivity

Resolution: 8 bits/axis

Sample Rate: 100Hz

Buttons

Total of 12 digital buttons
11 are accessible to an application

Power button - initiates and terminates Bluetooth connection

Ambidextrous design 4 buttons arranged in a D-pad

Index finger trigger button (B)
Primary thumb button (A)

Output

Tactile – Vibration motor, up to 100Hz update rate

Auditory – Small speaker, 4Khz*, 4 -bit audio streamed from host, approx telephone quality.

Visual – Four blue LEDs, player ID, individually addressable, up to 100Hz update rate

Other Features

Bluetooth – Broadcom 2042 for Human Interface Devices (HIDs). Not 100% compliant, but compatible with PCs.

Expansion Port – Proprietary 6-pin connector. Provides power and Fast I2C communication. Acts as a Bluetooth to I2C bridge.

Onboard Memory – device configuration and ~ 5KB of general memory. Physical association of data and identity with a remote.

Batteries – two AA batteries provide 20-30 of operation. 8-bit battery level sensor.

Developing Custom Applications

Bluetooth HID joystick compatible with HID driver libraries.

Libraries available for nearly every major development platforms on Windows, MacOS, and Linux.

Visit http://wiili.org or http://wiili.org

I use Brain Peeks C# managed WiimoteLib Read values from data structure to access data Most libraries include a sample program

Eventual support:

Better Event-handling Related geometric transformations Gesture Recognition

Interaction Techniques

Game Interaction – Pointing

Selection/Navigation

Drawing

Aiming a weapon/tool

Push/Pull or Rotate

Note: All pointing is relative

Game Interaction – Motion

Directional Shake Trigger

Analog Shaking

Tilt Control

Swing Simulation

Games provide context on how to hold remote.

Game Interaction – Buttons and Joysticks

Nunchuk attachment for non-dominant hand

Joystick
2 buttons
3-axis accelerometer

Input Device	Digital	Analog
Wii Remote + Nunchuk	13	12
Xbox 360 Controller	14	6
Scroll Mouse	3	3

By the Developer Community

Robot Control

Cursor Control

Synth Music Performance

Flash-Based Mouse Games

Online Videos Tutorials

Moving

+

+

Stationary

Orientation

tilt, *yaw*, *roll*, and *z*

Moving

Stationary

Translation

x, y, z, and roll

project

Finger and Object Tracking

Finger and Object Tracking

Wii remote can track any IR emitter Active emitters can be cumbersome

Finger and Object Tracking

Video – Finger Tracking

Object Tracking - Limitations

Only 4 points – limitation of Wii remote, but good for the price. Temporal multiplexing, multiple remotes

No inactive cursor feedback \rightarrow 4 point index finger and thumb tracking with pinch detection.

Arm Fatigue → Table top or transparent surfaces. Reflective tags may need repositioning.

Unintentional Reflections → Active IR emitters when possible. Can be installed in handheld or wearable devices (e.g. sports equipment, animal tracking).

project Interactive Whiteboards

Multi-Touch Interactive Whiteboards

Point Wii remote at display
Map camera coordinates to display coordinates
4-point touch calibration (homography)
Simulate mouse cursor

Effective electronic whiteboard system for \$50

>600,000 software downloads

Already in use by educators around the world Number of schools interested in large installations

Video - Whiteboard

IR Pens

Interactive Whiteboards - Limitations

Maximum 1024x768 resolution.

Dependent on good camera positioning.

Sensitive to occlusion.

Solutions

Adjust camera position (over-head)
Use multiple Wii remotes
Use rear projected displays.

80% of the way there1% of the cost

Two Effects:

1.Increased participation:

Advances the state of research

2. Increased practicality:

Advances the state of technology

project 3

Head Tracking for Desktop VR

Head Tracking for Desktop VR

Rigid pair of head-mounted IR emitters yields x,y,z position relative to display

Create motion parallax displays

Sufficient hardware now in millions of homes 6+ major game studios

Ivan Sutherland, Harvard University, c. 1967.

Head Tracking for Desktop VR

Video – Head tracking

Motion Parallax

www.flickr.com/photos/kap_cris/472159801/

- Very important depth cue
- Velocity of objects when moving
- Occlusion behavior

[Ware, Arthur, and Booth CHI'93] Motion parallax is more important than stereo

Calculating Head Position

Horizontal Position

Vertical Position

Head Tracking - Limitations

Perspective is correct for only 1 person – split screen or shutter glasses

Limited Tracking Volume – increase field of view with wide angle lens or use multiple remotes.

Can't touch objects – Sorry. Keep objects behind the display surface and blame the display.

Conflicting Stereo Depth Cues – weakens the effect, use stereoscopic display technology (polarized/shutter glasses, etc)

Anaglyph (red/blue): bad color fidelity, but would work, cheap

Shutter glasses: active device, frame sync, higher frame rates (120Hz okay)

Polarized glasses: does not work with most existing consumer televisions, cheap

Auto-stereoscopic: not consumer technology yet

If you can't provide stereo, removing the conflicting stereo depth cues **will improve** the head tracking illusion.

project 4

Spatial Augmented Reality

Spatial Augmented Reality

Shader Lamps, Raskar et al UNC/MERL

Everywhere Displays, Pinhanez et. al, IBM

Projected light can be used to augment the appearance of physical objects.

Aligning to static objects can be done manually. Moving objects requires low-latency, high-resolution tracking.

1024x768 @ 100Hz tracking of the Wii remote is quite good.

Video – Foldable Displays

Spatial Augmented Reality

Wii remote only tracks 4 points.

- Limits the number of objects
- Limits the geometric complexity

4 points can track arbitrary quadrilateral

Assumptions reduces necessary points

- square surface
- constrained to a plane

Other Wiimote projects ...

3D Motion Tracking - extension of finger tracking, using 2 or more remotes allow tracking of individual points in 3D space.

Tracking with ID – currently no point ID. Use high-speed IR receiver in conjunction with camera should allow location with ID.

IR Glyphs – use varying spatial and temporal behavior of 4 IR emitters to create unique IDs. Allows Wii remote to know what object it is pointing at.

Laser Tag – instrument each Wii remote with IR emitters so they can see each other. ID can be temporally verified.

Summary

>30 million Wiimotes
Sophisticated I/O capabilities
- IR camera, Accelerometer, Buttons
Vibration, Speaker, LEDs,I2C port
Only \$40 USD

Vast number of applications limited only by creativity

Document & Share

- ~10 million views (Youtube)
- > 600,000 downloads
- 1000s of students and teachers
- 8 patent licensees (in progress)
- > 6 major game studiosExploring large educational initiatives

Other Projects

Projector-Based Location Discovery and Tracking

Low-Cost EEG for Task Classification

Haptic Pen

\$14 steadycam

Projector-Based Location Discovery

Step 1:

Embed light sensors

[UIST 2004]

Step 2:

Project Gray-coded patterns

Step 3:

Decode location for application

Low-Cost EEG for Task Classification in HCI Research

National Geographic, March 2005

NY Times Magazine, October 16, 2005

EEG Devices

Manufacturer: EGI Systems

Channels: 128-512

Cost: **\$100K-\$250K USD**

Manufacturer: BioSemi

Channels: 64-128 Cost: ~\$30K USD

The Brainmaster

Lowest cost FDA approved device

Designed for home and small clinical use.

Only \$1500 USD

Specs:

- 2-channels
- 8-bit at 4µV resolution
- 256 samples/sec

Needs to be validated for BCI research work.

If it works, it **lowers the entry bar** for BCI research.

Classification Accuracy with Averaging

Mean Classification Accuracy vs. Averaging Scenarios (Mental Tasks)

Error bars represent standard deviation

Human as a Sensor

Muscle-Computer Interfaces

Haptic Pen(MERL - 2004)

> \$2000 USD

[Poupyrev and Maruyama, UIST 2003]

Goals: Support large touch-sensitive displays. Support multiple simultaneous users.

Solution: Haptic Pen

- Individualized feedback
- Pressure Sensitivity
- Hover tracking data
- Feedback not bound to display
- Aftermarket device
- Low-cost (~\$10)

Pressure sensitivity allows variable feedback/activation

Multi-level buttons also possible (camera shutter)

On-axis feedback more accurate than vibration

Stiff Button

\$14 Steadycam₍₂₀₀₀₎

Over **1.4M** views (not including syndication) Over **\$250K** in revenue

Staple of independent/student filmmaking community. Used in many high-school and college programs.

If you create technology that is **accessible**, you can advance the state of humanity (if only a little)

2-3 orders of magnitude

Augmented reality
Multi-touch surfaces
Immersive Displays
Brain-Computer Interfaces
Haptics
Filmmaking

What next?

Star Trek – Next Generation, 24th century

Crysis, EA, 2007

Jeff Han – FTIR/Perceptive Pixel

Paul Dietz – Diamond Touch/iPhone parent

Andy Wilson - Surface/Xwand

Bill Buxton – Multi-touch/Maya/Alias

UIST – User Interface Software & Technology Also consider: SIGGRAPH & SIGCHI & UBICOMP

Low-Cost EEG for Task Classification

\$14 steadycam

Collaborators: Desney Tan, Paul Dietz, Scott Hudson, Ramesh Raskar, Dan Maynes-Aminzade, Jay Summit, Chris Kyriakakis, Darren Leigh

