Proposition 22.30 - base de $\mathcal{L}(E, F)$

Soit E et F deux espaces vectoriels de dimension finie. Soit $(b_i)_{i\in I}$ une base de E et $(c_j)_{j\in J}$ une base de F.

Alors pour tout $(i, j) \in I \times J$ il existe une unique application linéaire $u_{i,j}$ telle que $u_{i,j}(b_i) = c_j$ et pour tout $k \neq i$, $u_{i,j}(b_k) = 0$, soit :

$$\forall k \in I, u_{i,j}b_k = \delta_{i,k}c_j$$

Cette famille $(u_{i,j})_{(i,j)\in I\times J}$ est alors une base de $\mathcal{L}(E,F)$

Théorème 22.40 - effet de la composition sur le rang

Soit E, F et G des \mathbb{K} -espaces vectoriels de dimension finie. Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors:

- 1. $rg(v \circ u) \leq min(rg(u), rg(v))$
- **2.** si v est injective, alors $rg(v \circ u) = rg(u)$
- **3.** si u est surjective, alors $rg(v \circ u) = rg(v)$

Corollaire 22.42 - restriction de u à un supplémentaire de $\ker(u)$

Soit E un \mathbb{K} -ev de dimension finie et S un supplémentaire de $\ker(u)$ dans E. Alors u induit un isomorphisme de S sur $\mathrm{Im}(u)$