Tree models with Scikit-Learn Great learners with little assumptions

Material: https://github.com/glouppe/talk-pydata2015

Gilles Louppe (@glouppe)

CERN

PyData, April 3, 2015

Outline

- Motivation
- ② Growing decision trees
- 3 Random forests
- 4 Boosting
- **6** Reading tree leaves
- **6** Summary

Motivation

Running example

From physicochemical properties (alcohol, acidity, sulphates, ...),

learn a model

to predict wine taste preferences.

Outline

- 1 Motivation
- ② Growing decision trees
- 3 Random Forests
- 4 Boosting
- **6** Reading tree leaves
- 6 Summary

Supervised learning

- Data comes as a finite learning set $\mathcal{L} = (X, y)$ where
 - Input samples are given as an array of shape (n_samples, n_features)

E.g., feature values for wine physicochemical properties:

Output values are given as an array of shape (n_samples,)

```
E.g., wine taste preferences (from 0 to 10): y = [5 5 5 \dots 6 7 6]
```

• The goal is to build an estimator $\varphi_{\mathcal{L}}: \mathcal{X} \mapsto \mathcal{Y}$ minimizing

$$Err(\varphi_{\mathcal{L}}) = \mathbb{E}_{X,Y}\{L(Y, \varphi_{\mathcal{L}}. predict(X))\}.$$

Decision trees (Breiman et al., 1984)

Composability of decision trees

Decision trees can be used to solve several machine learning tasks by swapping the impurity and leaf model functions:

0-1 loss (classification)

$$\widehat{y}_t = \operatorname{arg\,max}_{c \in \mathcal{Y}} \, p(c|t), \ i(t) = \operatorname{entropy}(t) \ \operatorname{or} \ i(t) = \operatorname{gini}(t)$$

Mean squared error (regression)

$$\widehat{y}_t = \text{mean}(y|t), \ i(t) = \frac{1}{N_t} \sum_{\mathbf{x}, y \in \mathcal{L}_t} (y - \widehat{y}_t)^2$$

Least absolute deviance (regression)

$$\widehat{y}_t = \mathsf{median}(y|t), \ i(t) = \frac{1}{N_t} \sum_{\mathbf{x}, y \in \mathcal{L}_t} |y - \widehat{y}_t|$$

Density estimation

$$\widehat{y}_t = \mathcal{N}(\mu_t, \Sigma_t), \ i(t) = \mathsf{differential} \ \mathsf{entropy}(t)$$

sklearn.tree

```
# Fit a decision tree
from sklearn.tree import DecisionTreeRegressor
estimator = DecisionTreeRegressor(criterion="mse", # Set i(t) function
                                  max_leaf_nodes=5) # Tune model complexity
                                                     # with max leaf nodes.
                                                     # max_depth or
                                                     # min_samples_split
estimator.fit(X_train, y_train)
# Predict target values
y_pred = estimator.predict(X_test)
# MSE on test data
from sklearn.metrics import mean_squared_error
score = mean_squared_error(y_test, y_pred)
>>> 0.572049826453
```

Visualize and interpret

Strengths and weaknesses of decision trees

- Non-parametric model, proved to be consistent
- Support heterogeneous data (continuous, ordered or categorical variables)
- Flexibility in loss functions (but choice is limited)
- Fast to train, fast to predict
 - In the average case, complexity of training is $\Theta(pN \log^2 N)$.
- Easily interpretable
- Low bias, but usually high variance
 - Solution: Combine the predictions of several randomized trees into a single model.

Outline

- Motivation
- ② Growing decision trees
- **3** Random Forests
- 4 Boosting
- **6** Reading tree leaves
- 6 Summary

Random Forests (Breiman, 2001; Geurts et al., 2006)

Randomization

- Bootstrap samples
- Random selection of $K \leqslant p$ split variables
- Random selection of the threshold

Random Forests

Extra-Trees

Bias and variance

Bias-variance decomposition

Theorem. For the squared error loss, the bias-variance decomposition of the expected generalization error $\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L},\theta_1,\ldots,\theta_M}(\mathbf{x}))\}$ at $X=\mathbf{x}$ of an ensemble of M randomized models $\varphi_{\mathcal{L},\theta_m}$ is

$$\mathbb{E}_{\mathcal{L}}\{\textit{Err}(\psi_{\mathcal{L},\theta_1,\ldots,\theta_M}(\mathbf{x}))\} = \mathsf{noise}(\mathbf{x}) + \mathsf{bias}^2(\mathbf{x}) + \mathsf{var}(\mathbf{x}),$$

where

$$\begin{split} \text{noise}(\mathbf{x}) &= \textit{Err}(\phi_{\mathcal{B}}(\mathbf{x})), \\ \text{bias}^2(\mathbf{x}) &= (\phi_{\mathcal{B}}(\mathbf{x}) - \mathbb{E}_{\mathcal{L},\theta}\{\phi_{\mathcal{L},\theta}(\mathbf{x})\})^2, \\ \text{var}(\mathbf{x}) &= \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x}). \end{split}$$

and where $\rho(\mathbf{x})$ is the Pearson correlation coefficient between the predictions of two randomized trees built on the same learning set.

Diagnosing the error of random forests (Louppe, 2014)

- Bias: Identical to the bias of a single randomized tree.
- Variance: $\operatorname{var}(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$ As $M \to \infty$, $\operatorname{var}(\mathbf{x}) \to \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$
 - The stronger the randomization, $\rho(\mathbf{x}) \to 0$, $var(\mathbf{x}) \to 0$.
 - The weaker the randomization, $\rho(\mathbf{x}) \to 1$, $\text{var}(\mathbf{x}) \to \sigma^2_{\mathcal{L},\theta}(\mathbf{x})$

Bias-variance trade-off. Randomization increases bias but makes it possible to reduce the variance of the corresponding ensemble model. The crux of the problem is to find the right trade-off.

Tuning randomization in sklearn.ensemble

```
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.cross_validation import ShuffleSplit
from sklearn.learning_curve import validation_curve
# Validation of max_features, controlling randomness in forests
param_name = "max_features"
param_range = range(1, X.shape[1]+1)
for Forest, color, label in [(RandomForestRegressor, "g", "RF"),
                             (ExtraTreesRegressor, "r", "ETs")]:
    _, test_scores = validation_curve(
        Forest(n_estimators=100, n_jobs=-1), X, y,
        cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),
        param_name=param_name, param_range=param_range,
        scoring="mean_squared_error")
   test_scores_mean = np.mean(-test_scores, axis=1)
    plt.plot(param_range, test_scores_mean, label=label, color=color)
plt.xlabel(param_name)
plt.xlim(1, max(param_range))
plt.ylabel("MSE")
plt.legend(loc="best")
plt.show()
```

Tuning randomization in sklearn.ensemble

Best-tradeoff: ExtraTrees, for max_features=6.

Strengths and weaknesses of forests

- Fine control of bias and variance through averaging and randomization, resulting in better performance
- · Moderately fast to train and to predict
 - lacksquare $\Theta(MK\widetilde{N}\log^2\widetilde{N})$ for RFs
 - lacksquare $\Theta(MKN \log N)$ for ETs
- Embarrassingly parallel (use n_jobs)
- Less interpretable than decision trees

Outline

- Motivation
- ② Growing decision trees
- 3 Random Forests
- 4 Boosting
- **6** Reading tree leaves
- 6 Summary

Gradient Boosted Regression Trees (Friedman, 2001)

GBRT fits an additive model of the form

$$\varphi(x) = \sum_{m=1}^{M} \gamma_m h_m(x)$$

• The ensemble is built in a forward stagewise manner, where each weak learner is a successive gradient step

$$\varphi_{m}(x) = \varphi_{m-1}(x) + \gamma_{m} \sum_{i=1}^{N} \Delta_{\varphi} L(y_{i}, \varphi_{m-1}(x_{i}))$$

Careful tuning required

```
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.cross_validation import ShuffleSplit
from sklearn.grid_search import GridSearchCV
# Careful tuning is required to obtained good results
param_grid = {"learning_rate": [0.1, 0.01, 0.001],
              "subsample": [1.0, 0.9, 0.8],
              "max_depth": [3, 5, 7],
              "min_samples_leaf": [1, 3, 5]}
est = GradientBoostingRegressor(n_estimators=1000)
grid = GridSearchCV(est, param_grid,
                    cv=ShuffleSplit(n=len(X), n_iter=10, test_size=0.25),
                    scoring="mean_squared_error",
                    n_{jobs=-1}).fit(X, y)
gbrt = grid.best_estimator_
```

See our PyData 2014 tutorial for further guidance https://github.com/pprett/pydata-gbrt-tutorial

Strengths and weaknesses of GBRT

- Flexible framework, that can adapt to arbitrary loss functions.
- Fine control of under/overfitting through regularization (e.g., learning rate, subsampling, tree structure, penalization term in the loss function, etc)
- Careful tuning required
- Slow to train, fast to predict

Outline

- 1 Motivation
- ② Growing decision trees
- 3 Random Forests
- 4 Boosting
- **6** Reading tree leaves
- **6** Summary

Variable importances

```
importances = pd.DataFrame()
# Variable importances with Random Forest, default parameters
est = RandomForestRegressor(n_estimators=10000, n_jobs=-1).fit(X, y)
importances["RF"] = pd.Series(est.feature_importances_,
                              index=feature names)
# Variable importances with Totally Randomized Trees
est = ExtraTreesRegressor(max_features=1, max_depth=3,
                          n_estimators=10000, n_jobs=-1).fit(X, y)
importances["TRTs"] = pd.Series(est.feature_importances_,
                                index=feature names)
# Variable importances with GBRT
importances["GBRT"] = pd.Series(gbrt.feature_importances_,
                                index=feature names)
importances.plot(kind="barh")
```

Variable importances

Importances are measured only through the eyes of the model. They may not tell the entire nor the same story! (Louppe et al., 2013)

Partial dependence plots

Relation between the response Y and a subset of features, marginalized over all other features.

Embedding

```
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.decomposition import TruncatedSVD
# Project wines through a forest of totally randomized trees
# and use the leafs the samples end into as a high-dimensional representation
hasher = RandomTreesEmbedding(n_estimators=1000)
X transformed = hasher.fit transform(X)
# Plot wines on a plane using the 2 principal components
svd = TruncatedSVD(n_components=2)
coords = svd.fit_transform(X_transformed)
n_values = 10 + 1 # Wine preferences are from 0 to 10
cm = plt.get_cmap("hsv")
colors = (cm(1. * i / n_values) for i in range(n_values))
for k, c in zip(range(n_values), colors):
   plt.plot(coords[y == k, 0], coords[y == k, 1], '.', label=k, color=c)
plt.legend()
plt.show()
```

Embedding

Can you guess what these 2 clusters correspond to?

Outline

- Motivation
- ② Growing decision trees
- 3 Random Forests
- 4 Boosting
- **6** Reading tree leaves
- **6** Summary

Summary

- Tree-based methods offer a flexible and efficient non-parametric framework for classification and regression.
- Applicable to a wide variety of problems, with a fine control over the model that is learned.
- Assume a good feature representation i.e., tree-based methods are often not that good on very raw input data, like pixels, speech signals, etc.
- Insights on the problem under study (variable importances, dependence plots, embedding, ...)
- Efficient implementation in Scikit-Learn.

Join us on
https://github.com/
scikit-learn/scikit-learn

References

- Breiman, L. (2001). Random Forests. *Machine learning*, 45(1):5–32.
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). *Classification and regression trees*.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. *Annals of Statistics*, pages 1189–1232.
- Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine Learning*, 63(1):3–42.
- Louppe, G. (2014). Understanding random forests: From theory to practice. *arXiv preprint arXiv:1407.7502*.
- Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In Advances in Neural Information Processing Systems, pages 431–439.