## Topology General Exam August 14, 2015

| Name:           |                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | This is a four hour exam and 'closed book'. There are seven problems: the first ints and no. 7 is worth 10 points, for a maximum total of 100. |
| 1. (a) Describe | a connected double cover of $\mathbb{R}P^2 \vee S^1$ . (There is more than one correct answer.)                                                |
| (b) What are th | e homology groups of your double cover?                                                                                                        |
| (c) What is the | fundamental group of your double cover?                                                                                                        |

- **2.** Suppose that  $M \xrightarrow{g} N$  is a smooth maps between smooth manifolds of dimensions m and n respectively. Let  $z \in N$  be a regular value for g and let  $K = g^{-1}(z)$ .
- (a) Explain why K will be orientable if M is orientable.
- (b) Now suppose that one also has a smooth map  $L \xrightarrow{f} M$ . Show that  $z \in N$  will be a regular value for the composite  $g \circ f$  if and only if f is transverse to K.

- 3. (a) Complete the definition: Two chain maps  $f_*, g_* : C_* \to D_*$  are *chain homotopic* if ....
- (b) Prove that if  $f_*, g_* : C_* \to D_*$  are chain homotopic chain maps, then

$$H(f_*) = H(g_*) : H_*(C_*) \to H_*(D_*).$$

(c) Suppose that  $h_*: D_* \to E_*$  is yet another chain map. Show that if  $f_*$  is chain homotopic to  $g_*$ , then the composite  $h_* \circ f_*$  is chain homotopic to  $h_* \circ g_*$ .

- **4.** (a) Show that an n-dimensional Lie group G is parallelizable, i.e., admits n smooth vector fields that are linearly independent when evaluated at any point.
- (b) Prove that  $S^2$  does not admit a group structure making it into a Lie group.

- **5.** (a) Describe a smooth atlas for  $\mathbb{R}P^3$ .
- (b) Describe a C.W. complex structure for  $\mathbb{R}P^3$ .
- (c) Describe the cellular chain complex associated to your answer to (b), and use this to compute  $H_*(\mathbb{R}P^3)$ .

- **6.** (a) Let M and N be smooth connected closed (= compact without boundary) manifolds of the same dimension. Show that a submersion  $f: M \to N$  will then be a finite sheeted covering map.
- (b) Explain why if M is a connected closed surface, and  $f: M \to S^2$  is a submersion, then f must, in fact, be a diffeomorphism.

7. Let C be the 'middle circle' in the genus 2 surface M as pictured:



Show that if  $C' \subset M$  is any other embedded circle transverse to C, then C' intersects C in an even number of points.