Espacio normado

Definición 0.1 (Espacio normado). Sea X un espacio vectorial sobre \mathbb{F} (\mathbb{R} o \mathbb{C}). Una norma en X es una función $\|\cdot\|: X \to \mathbb{R}$ tal que para todo $x, y \in X$ y $\alpha \in \mathbb{F}$ se cumple:

- (1) $||x|| \ge 0$.
- (2) $||x|| = 0 \iff x = 0.$
- (3) $\|\alpha x\| = |\alpha| \|x\|$.
- (4) $||x+y|| \le ||x|| + ||y||$ (designaldad triangular).

Ejemplos de normas

Ejemplo 0.2. Sea \mathbb{F}^n . La norma estándar es

$$||x||_2 = (\sum_{j=1}^n |x_j|^2)^{1/2},$$

que es una norma en \mathbb{F}^n .

Ejemplo 0.3. Sea X un e.v. de dimensión finita con base $\{e_1, \ldots, e_n\}$. Para $x = \sum \lambda_j e_j$ y $y = \sum \mu_j e_j$ definimos

$$||x|| = \left(\sum |\lambda_j|^2\right)^{1/2}.$$

Se verifica (1)–(3) fácilmente; para (4) se usa que

$$||x + y||^2 = \sum |\lambda_j + \mu_j|^2 = \sum (|\lambda_j|^2 + 2\operatorname{Re}(\lambda_j \overline{\mu_j}) + |\mu_j|^2)$$

$$\leq \sum |\lambda_j|^2 + 2\sum |\lambda_j||\mu_j| + \sum |\mu_j|^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2,$$

por Hölder (caso p = q = 2).

Ejemplo 0.4. Sea M un espacio métrico compacto y $C_{\mathbb{F}}(M)$ el espacio de funciones continuas (omito detalles).

Ejemplo 0.5. Sea (X, Σ, μ) un espacio medible y considere $L^p(X), 1 \le p \le \infty$:

- (a) Si $1 \le p < \infty$, $||f||_p = (\int |f|^p)^{1/p}$ es una norma.
- (b) Si $p = \infty$, $||f||_{\infty} = \operatorname{ess\,sup} |f|$ es norma en $L^{\infty}(X)$.

Ejemplo 0.6. Caso particular: $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_c)$ con la medida de contar. Toda función $f: \mathbb{N} \to \mathbb{F}$ se identifica con la sucesión $\{a_n\}$, $a_n = f(n)$. Entonces f integrable respecto a μ_c es equivalente a $\sum_{n=1}^{\infty} |a_n| < \infty$ y

$$\int_{\mathbb{N}} f \, d\mu_c = \sum_{n=1}^{\infty} a_n.$$

Definimos ℓ^p como el conjunto de sucesiones $x=(x_n)$ tales que $\sum |x_n|^p < \infty$ $(1 \le p < \infty)$, y ℓ^∞ como el conjunto de sucesiones acotadas. Las normas son

$$||x||_p = (\sum |x_n|^p)^{1/p}, \qquad ||x||_\infty = \sup_n |x_n|.$$

Por Hölder, para 1/p + 1/q = 1 se tiene

$$\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_p ||y||_q.$$

Ejemplo 0.7. Si X es un ev con norma $\|\cdot\|$ y $S\subset X$ subespacio, la restricción de la norma a S es una norma en S.

Ejemplo 0.8. Si X, Y son espacios normados con normas $\|\cdot\|_1, \|\cdot\|_2$, entonces $Z = X \times Y$ con

$$||(x,y)||_Z = ||x||_1 + ||y||_2$$

es un espacio normado.

Remark 0.9. Un espacio vectorial con una norma se llama espacio vectorial normado. Un vector x con ||x|| = 1 se dice unitario.

Lema 0.10. Todo espacio normado es un espacio métrico: si definimos d(x,y) = ||x-y|| entonces (X,d) es métrico.

Proof. Verificación directa de axiomas de métrica usando propiedades de la norma.

Remark 0.11. No toda métrica proviene de una norma. Si la métrica es homogénea $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ y es invariante por traslación d(x, y) = d(x + z, y + z), entonces existe una norma con d(x, y) = ||x - y||.

Teorema 0.12 (Continuidad de norma, suma y producto). Sea X espacio vectorial normado. Si $x_n \to x$, $y_n \to y$ y $\alpha_n \to \alpha$ entonces:

- $(1) ||x|| ||y|| | \le ||x y||.$
- (2) $\lim_{n\to\infty} ||x_n|| = ||x||$.
- (3) $\lim_{n\to\infty} (x_n + y_n) = x + y.$
- (4) $\lim_{n\to\infty} \alpha_n x_n = \alpha x$.

Remark 0.13. En un espacio normado, la norma, la suma y el producto por escalar son funciones continuas.

Definición 0.14 (Equivalencia de normas). Sean $\|\cdot\|_1, \|\cdot\|_2$ normas en X. Decimos que son equivalentes si existen constantes m, M > 0 tales que

$$m||x||_1 \le ||x||_2 \le M||x||_1 \qquad \forall x \in X.$$

Corolario 0.15 (Propiedades de normas equivalentes). $Si \parallel \cdot \parallel y \parallel \cdot \parallel_1$ son equivalentes con métricas asociadas d, d_1 , entonces para toda sucesión x_n en X:

- (1) $x_n \to x$ en $(X, d) \iff x_n \to x$ en (X, d_1) .
- (2) $\{x_n\}$ es de Cauchy en $(X,d) \iff$ es de Cauchy en (X,d_1) .
- (3) (X,d) es completo \iff (X,d_1) es completo.

Teorema 0.16 (Función continua en compacto tiene máximo y mínimo). Sea (M,d) compacto $y f: M \to \mathbb{F}$ continua. Entonces f es acotada y alcanza su supremo e ínfimo; en particular existen $x,y \in M$ con $f(x) = \sup |f| y$ $f(y) = \inf |f|$.

Teorema 0.17 (Equivalencia a la norma 1). Sea X espacio vectorial normado de dimensión finita con norma $\|\cdot\|$. Sea $\{e_j\}_{j=1}^n$ una base y defina

$$||x||_1 = \left(\sum |\alpha_j|^2\right)^{1/2} \quad si \ x = \sum \alpha_j e_j.$$

Entonces $\|\cdot\|_1$ y $\|\cdot\|$ son equivalentes.

Proof. Sea $M = \left(\sum_{j=1}^{n} \|e_j\|^2\right)^{1/2} > 0$. Para $x = \sum \alpha_j e_j$ tenemos

$$||x|| = \left\| \sum \alpha_j e_j \right\| \le \sum_j |\alpha_j| \, ||e_j|| \le \left(\sum_j |\alpha_j|^2 \right)^{1/2} \left(\sum_j ||e_j||^2 \right)^{1/2} = M ||x||_1.$$

Por tanto existe M > 0 con $||x|| \le M||x||_1$ para todo x. Para la cota inferior consideramos la aplicación

$$f: \mathbb{F}^n \to \mathbb{R}, \qquad f(\alpha_1, \dots, \alpha_n) = \Big\| \sum_j \alpha_j e_j \Big\|.$$

La función f es continua y el conjunto

$$S = \{(\alpha_1, \dots, \alpha_n) : \sum_{j} |\alpha_j|^2 = 1\}$$

es compacto en \mathbb{F}^n . Por compacidad f alcanza un mínimo positivo m > 0 en S (no puede ser cero porque la familia $\{e_j\}$ es base). Si $||x||_1 = 1$ entonces $(\alpha_1, \ldots, \alpha_n) \in S$ y por tanto $m \leq f(\alpha_1, \ldots, \alpha_n) = ||x||$. Para un x arbitrario tomamos $x' = x/||x||_1$ y obtenemos

$$m||x||_1 = m||x'||_1 \le ||x'|| = \frac{||x||}{||x||_1},$$

de donde existe m>0 con $m\|x\|_1\leq \|x\|$ para todo x. Esto muestra la equivalencia de normas. \square

Corolario 0.18. En dimensión finita todas las normas son equivalentes.

Proof. Sea $\|\cdot\|$ una norma cualquiera en X. Por el teorema anterior $\|\cdot\|$ es equivalente a la norma euclidiana $\|\cdot\|_1$ asociada a cualquier base; de ello se sigue por transitividad que cualquier par de normas en X son equivalentes.

Remark 0.19 (Contraejemplo II). Esto no vale en dimensión infinita: por ejemplo en $C^1[0,\pi]$ las normas $\|\cdot\|_{\infty}$ y $\|u\| = \|u\|_{\infty} + \|u'\|_{\infty}$ no son equivalentes.

Lema 0.20. Si X es de dimensión finita $y \|\cdot\|_1$ la norma euclidiana asociada a una base, entonces (X, d_1) es completo (Banach).

Proof. Sea $\{x^n\}$ sucesión de Cauchy. Escribir cada $x^n = \sum_{j=1}^N \alpha_j^n e_j$. Las coordenadas forman sucesiones de Cauchy en \mathbb{F} , por completitud convergen a límites α_j , y entonces $x = \sum \alpha_j e_j$ es límite en la norma $\|\cdot\|_1$.

Corolario 0.21. Todo espacio vectorial de dimensión finita es completo para cualquier norma.

Proof. Por el teorema anterior todas las normas en X son equivalentes, luego la completitud es independiente de la norma: si una norma produce un espacio completo entonces todas lo hacen. Como $\|\cdot\|_1$ (la norma euclidiana) hace a X completo (producto de campos completos), se concluye que X es completo para cualquier norma.

Teorema 0.22 (Resultados en métricos). Sea (M,d) métrico y $A \subset M$. Entonces:

- (1) Si A es completo entonces A es cerrado.
- (2) Si M es completo, A es completo \iff A es cerrado.
- (3) Si A es compacto entonces A es cerrado y acotado.
- (4) En \mathbb{F}^n , cerrado y acotado \Rightarrow compacto.

Corolario 0.23. Todo subespacio vectorial de dimensión finita es cerrado.

Remark 0.24 (Contraejemplo I). No es cierto en dimensión infinita: hay subespacios de dimensión infinita que no son cerrados (ejemplos en ℓ^{∞}).

Lema 0.25. La clausura de un subespacio es subespacio.

Proof. Si
$$x_n \to x$$
 y $y_n \to y$ con $x_n, y_n \in S$, entonces $x_n + y_n \to x + y$ y $\alpha x_n \to \alpha x$, por lo que $x + y, \alpha x \in \overline{S}$.

Definición 0.26 (Span). Para $E \subset X$ definimos

 $\operatorname{Sp}(E)=\{ \text{combinaciones lineales finitas de elementos de } E\}, \qquad \overline{\operatorname{Sp}}(E)=\bigcap\{ M: M \text{ subespacio cerral possible substitution of the elementos de } E\}.$

Lema 0.27. Se cumple $\overline{\mathrm{Sp}}(E) = \overline{\mathrm{Sp}(E)}$ y otras propiedades estándar.

Lema 0.28 (Lema de Riesz). Sea X normado $y \ Y \subset X$ subespacio cerrado, $Y \neq X$. Para $\alpha \in (0,1)$ existe $x_{\alpha} \in X$ con $||x_{\alpha}|| = 1$ y $||x_{\alpha} - y|| > \alpha$ para todo $y \in Y$.

Proof. Tomar
$$x \in X \setminus Y$$
, definir $d = \inf_{z \in Y} ||x - z|| > 0$ y elegir $z \in Y$ con $d < ||x - z|| < d/\alpha$. Poner $x_{\alpha} = (x - z)/||x - z||$.

Teorema 0.29. Si X es de dimensión infinita, los conjuntos

$$D = \{x : ||x|| \le 1\}, \qquad K = \{x : ||x|| = 1\}$$

no son compactos.

Proof. Construir una sucesión en K sin sub-sucesión convergente usando el lema de Riesz iterativamente; produce puntos mutuamente separados por al menos 1/2.

Definición 0.30 (Espacio de Banach). Un espacio de Banach es un espacio normado completo.

Teorema 0.31. (1) Todo espacio normado de dimensión finita es Banach.

- (2) Si X es métrico completo, $C_{\mathbb{F}}(X)$ es Banach.
- (3) Si (X, Σ, μ) es espacio de medida, $L^p(X)$ $(1 \le p \le \infty)$ son Banach.
- (4) Si X es Banach y Y subespacio, entonces Y es Banach \iff Y es cerrado.

Teorema 0.32. Sea X Banach y $\{x_n\} \subset X$. Si $\sum ||x_n||$ converge, entonces $\sum x_n$ converge (absoluta implica convergencia en Banach).

Proof. Las sumas parciales forman una sucesión de Cauchy: $\|\sum_{k=n+1}^m x_k\| \le \sum_{k=n+1}^m \|x_k\|$, y como la serie de normas converge, las sumas parciales son Cauchy; por completitud convergen.