Übungsaufgaben

Wärmelehre

1. Aufgabe

Im Unterricht haben wir drei Temperaturskalen, darunter die Celsius- und die Fahrenheitskala behandelt.

- a) Weise mit unserer Umrechnungsformel von Fahrenheit in Celsius, $^{\circ}C = (^{\circ}F 32) * 5/9$, nach, dass die umgekehrte Richtung durch $^{\circ}F = ^{\circ}C * 1,8 + 32$ korrekt beschrieben wird.
- b) Rechne 100°F in °C um.
- c) Bei welcher Temperatur weisen beide Skalen denselben Zahlenwert auf?

2. Aufgabe

Kann in unserem Universum theoretisch eine Temperatur unter -300°C bzw. über 1.000.000°C erreicht werden? Begründe deine Antwort anhand des Teilchenmodells.

3. Aufgabe

Ein Tauchsieder (P=350Watt) wird dazu verwendet, 400g Wasser mit einer Temperatur von 5°C zu erwärmen. Er wird 200s lang betrieben. Welche Temperatur besitzt das Wasser nach diesem Vorgang?

4. Aufgabe

Es werden 20g Wasser mit einer Temperatur von 80°C mit 80g Wasser mit einer Temperatur von 20°C gemischt. Berechne die Mischtemperatur, die sich dabei einstellt.

5. Aufgabe

500g kaltes Wasser wird mit 400g einer unbekannten Flüssigkeit gemischt. Das Wasser besitzt eine Temperatur von 15°C, die Flüssigkeit ist 50°C heiß. Nach dem Mischen stellt sich eine Mischtemperatur von 35°C ein.

a) Welche Wärmekapazität hat die unbekannte Flüssigkeit?

6. Aufgabe

Im Unterricht haben wir ein Experiment zum Bestimmen der Verdampfungswärme durchgeführt.

- a) Beschreibe dieses Experiment.
- b) Wie könnte ein ähnliches Experiment aussehen, um die Schmelzwärme von Wasser zu bestimmen?

7. Aufgabe

Um 1kg Eis zu schmelzen, benötigt man eine Energie von 334kJ.

- a) Wieso ist die Schmelzwärme deutlich geringer als die Verdampfungswärme (2260kJ prokg Wasser)?
- b) Berechne, auf welche Temperatur man 1kg Wasser von 0°C mit der Energie aus a) hätte erwärmen können.

8. Aufgabe

Zu 300cm³ Orangensaft von 30°C gibt man 50g Eis von 0°C.

a) Berechne, auf welche Endtemperatur man den Saft im günstigsten Fall abkühlen kann. Verwende für den O-Saft die Werte von normalem Wasser.

9. Aufgabe

Ein heißes Kupferstück der Masse m=100g wird in ein Wasserbad mit 200g Wasser (T=65°C) eingetaucht. Dabei stellt sich eine Temperatur von 70°C ein. Die spezifische Wärmekapazität von Kupfer beträgt $c_{Cu}=0,38$ J/(°C·g).

a) Wie heiß war das Kupferstück zu Beginn des Versuchs?

10. Aufgabe

Welche thermischen Übertragungswege von Energie kennst du? Nenne sie und gib je ein Beispiel.

11. Aufgabe

Diskutiere mit deinem Nachbarn, wieso eine Wüstenrennmaus große Ohren und ein Eisbär eher die Form eine Kugel haben.