Let
$$z = x + iy$$
. Then
$$z^{2} = e^{x^{2} - y^{2}} + 2xyi = e^{x^{2} - y^{2}} \cos 2xy + ie^{x^{2} - y^{2}} \sin 2xy$$

we have

$$u_x = 2 \times e^{x^2 - y^2}$$
 $\cos 2xy - 2y e^{x^2 - y^2} \sin 2xy$
 $v_y = -2y e^{x^2 - y^2} \sin 2xy + 2x e^{x^2 - y^2} \cos 2xy$

and

$$u_y = -2y e^{x^2-y^2} (os 2+y - 2xe^{x^2-y^2} sin 2+y$$
 $u_x = 2xe^{x^2-y^2} sin 2+y + 2y e^{x^2-y^2} (os 2+y)$

=) $u_y = -3xe^{x^2-y^2} sin 2+y$

Henre. He C-R equation are satisfied and e^{2^2} is analytic everywhere.

Let
$$\overline{z} = x + iy = 5$$
 $\overline{z} = x - iy$

$$= 5 \quad e^{\overline{z}} = e^{x} \cos y - i e^{x} \sin y .$$

$$= 7 \quad (with the "-" sign)$$

We have

$$u_x = e^x \cos y$$
 $v_y = -e^x \cos y$

Also,

$$My = -e^{x} Siny$$
 $\forall x = -e^{x} siny$.

The Cauchy-Riemann equations are not satisfied. If they were, then

$$Mx = vy$$

$$\Rightarrow 2e^{x} \cos y = 0$$

$$2e^{x} \sin y = 0$$

$$\sin y = 0$$

$$\sin y = 0$$

Hence, $y = k\pi$ and $y = (2mi)\frac{\pi}{2}$ for some integers $k \cdot m \in \mathbb{Z}$. But this is impossible. Thus, the C-R equation are not satisfied and $e^{\frac{\pi}{2}}$ is not analytic.

Problem 6 Assumption: 240 or y40.

We have

$$M = \frac{y}{x^2 \cdot y^2}, \quad U = \frac{-x}{x^2 \cdot y^2}.$$

then

$$M_{x} = \frac{-2xy}{(x^{2}+y^{2})^{2}}, \quad V_{y} = \frac{2xy}{(x^{2}+y^{2})^{2}}$$

Also

$$My = \frac{(x^2+y^2)-2y^2}{(x^2+y^2)^2} = \frac{x^2-y^2}{(x^2+y^2)^2}$$

$$N_{x} = -(x^{2}+y^{2}) + dx^{2} = \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}}$$

$$= \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}}$$

If the CR equation we patisfied at then Dome x,y,

$$ux = vy \Rightarrow \frac{4xy}{(x^2 + y^2)^2} = 0 \Rightarrow x = 0 \text{ or } y = 0.$$

The second set of equations give $uy = -vx \Rightarrow \frac{\partial(x^2 - y^2)}{(x^2 + y^2)^2} = 0$ Hence, $x^2 = y^2 \cdot (x \cdot x)$ Fran (4), there are two cases: ① x=0. Then $f_{nam}(x)$, y=0. Hence x=0 and y=0, contracting the assemption that $x \neq 0$ or $y \neq 0$. (2) y=0. Then Jnm(x+), x=0. Hence x=0 and y=0, contradicting the consumption that $x \neq 0$ or $y \neq 0$. Henre Me CR are not satisfied at any point of a. Therefor, the function is not analytic.

$$(osh(2) = e^{2} + e^{-2}$$

$$cosh(z) = e^{x}e^{ix} + e^{-x}e^{-ix}$$

we have

$$u_x = Sinh(x) (osly)$$
, $v_y = Sinh(x) (osly)$

Also,
$$My = - (osh(x) sin(y), Vx = (osh(x) sin(y))$$

Hence the function is analytic on all a.

Assume that f = u + iv is analytic on a segion 52.

① Assume further that u = c an I. Then $u_x = 0$ and $u_y = 0$. Hence, we get $v_x = -u_y = 0$ and $v_y = u_x = 0$. Since I is a region, there is a polygonal path from $I \circ \in I$ to some arbitrary $I \in I$. By the Fundamental Thenem for line

integral in \mathbb{R}^2 (see Calculus), we have $\int_{20}^{2} \forall v \cdot d\vec{r} = v(2) - v(20).$

But = 3 m s

コ 0= か(え) - か(をの) りを E 凡

か(を)=か(る) サモ兄.

Honce is constant.

Conclusion: f = u + iv = c + iv(70) is constant on $\sqrt{2}$.

(2) Cause Imf=c is handled in a similar may.

Problem 34

Assume fouris is analytic in a region SZ.

(a) We know that $f' = u_x + i v_x$.

From the Cauchy-Rremann equation, we have $u_x = v_y$ and $u_y = -v_z$.

Hunce,

 $\mu_y = -\nu_x = \lambda' = \mu_x - i\mu_y$.

Somo

 $\mu_{x}=\nu_{y}=$ $+i\nu_{x}$.

(b) using the formula from (a), we get
$$|f'|^2 = (u_x)^2 + (u_y)^2 = u_x^2 + u_y^2$$

and
$$|f'|^2 = (\sigma_y)^2 + (\sigma_z)^2 = \sigma_z^2 + \sigma_y^2.$$