BNUZ 2023 秋季学期近世代数期末试题

命题人: 考试时间: 2024.1.4 10:20-12:20 整理人: Aut

- 一、1.(5 分) 求 \mathbb{Z}_{18} 在加法下的子群;
 - 2.(5 分) 求 Z₁₈ 的极大理想.
- 二、1.(5 分) 证明 $\ln : (\mathbb{R}_+, \cdot) \to (\mathbb{R}, +)$ 是群同构;
 - 2.(5 分) 设 $f: G \to H$ 是群的满同态, 证明 |H| 整除 |G|.
- 三、1.(5 分) 求置换 $\sigma = (1234)$ 在 S_4 中的共轭类;
 - 2.(5 分) 证明 $\sigma = (1234)$ 在 S_4 中的中心化子 $C_{S_4}(\sigma)$ 有 4 个元素;
 - 3.(10 分) 证明 $\sigma = (12 \cdots n)$ 在 S_n 中的中心化子 $C_{S_n}(\sigma) = \langle \sigma \rangle$.
- 四、(10 分) 证明 $\mathbb{Z}[\sqrt{-2}]$ 是欧式环.
- 五、设 R 是交换环,I 是 R 的理想,定义

$$\sqrt{I} = \{ a \in R | \exists n \in \mathbb{N}^*, a^n \in I \}.$$

- 1.(10 分) 证明 \sqrt{I} 是 R 的理想;
- $2.(5 \, \mathcal{G})$ 设 $P \in \mathbb{R}$ 的素理想, 若 $I \subset P$, 证明 $\sqrt{I} \subset P$.
- 六、1.(5 分) 证明 $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
 - $2.(5 分) 求 [\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}];$
 - 3.(5 分) 求 $\sqrt{2} + \sqrt{3}$ 在 \mathbb{Q} 上的极小多项式.
- 七、设 E/K 是有限扩张.
 - $1.(5 \ \beta)$ 设 α 是 E 上的代数元,证明 $[E(\alpha):K(\alpha)] \leqslant [E:K]$;
 - 2.(10 分) 设 F,L 为 E 中包含 K 的子域,F,L 为 E 中包含 F,L 的最小子域,证明

$$[FL:K]\leqslant [F:K][L:K].$$

八、(5 分) 设 F 为有限域, 证明 $\forall a \in F$, 都存在 $b, c \in F$, 使得

$$a = b^2 + c^2$$
.