## A CONVERGENT 3-BLOCK SEMIPROXIMAL ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR CONIC PROGRAMMING WITH 4-TYPE CONSTRAINTS\*

DEFENG SUN†, KIM-CHUAN TOH‡, AND LIUQIN YANG‡

Abstract. In this paper, we consider conic programming problems whose constraints consist of linear equalities, linear inequalities, a nonpolyhedral cone, and a polyhedral cone. A convenient way for solving this class of problems is to apply the directly extended alternating direction method of multipliers (ADMM) to its dual problem, which has been observed to perform well in numerical computations but may diverge in theory. Ideally, one should find a convergent variant which is at least as efficient as the directly extended ADMM in practice. We achieve this goal by designing a convergent semiproximal ADMM (called sPADMM3c for convenience) for convex programming problems having three separable blocks in the objective function with the third part being linear. At each iteration, the proposed sPADMM3c takes one special block coordinate descent (BCD) cycle with the order  $1 \to 3 \to 2 \to 3$ , instead of the usual  $1 \to 2 \to 3$  Gauss-Seidel BCD cycle used in the nonconvergent directly extended 3-block ADMM, for updating the variable blocks. Our numerical experiments demonstrate that the convergent method is at least 20% faster than the directly extended ADMM with unit step-length for the vast majority of about 550 large-scale doubly nonnegative semidefinite programming problems with linear equality and/or inequality constraints. This confirms that at least for conic convex programming, one can design a convergent and efficient ADMM with a special BCD cycle of updating the variable blocks.

Key words. conic programming, multiblock ADMM, semiproximal ADMM, convergence, SDP

AMS subject classifications. 90C06, 90C22, 90C25, 65F10

**DOI.** 10.1137/140964357

1. Introduction. Our primary motivation in this paper is to design an efficient but simple first order method with guaranteed convergence to find a solution of moderate accuracy to the following conic programming with four types of constraints:

(P) 
$$\max \{ \langle -c, x \rangle \mid A_E x = b_E, A_I x \ge b_I, x \in \mathcal{K}, x \in \mathcal{K}_p \}.$$

Here  $\mathcal{A}_E$  and  $\mathcal{A}_I$  are two linear maps defined from the finite-dimensional real Euclidean space  $\mathcal{X}$  to  $\Re^{m_E}$  and  $\Re^{m_I}$ , respectively,  $(b_E, b_I) \in \Re^{m_E} \times \Re^{m_I}$  and  $c \in \mathcal{X}$  are given data,  $\mathcal{K} \subseteq \mathcal{X}$  is a pointed closed convex (nonpolyhedral) cone whose interior  $\operatorname{int}(\mathcal{K}) \neq \emptyset$ , and  $\mathcal{K}_p$  is a polyhedral convex cone in  $\mathcal{X}$  such that  $\mathcal{K} \cap \mathcal{K}_p$  is nonempty. Note that in theory the fourth block constraint in (P) can be incorporated into the first and the second block constraints. However, treating the polyhedral cone  $\mathcal{K}_p$  separately instead of representing it in terms of equalities and inequalities is of considerable advantage in numerical computations. Problem (P) covers a wide range of

<sup>\*</sup>Received by the editors April 9, 2014; accepted for publication (in revised form) February 18, 2015; published electronically May 5, 2015.

http://www.siam.org/journals/siopt/25-2/96435.html

<sup>&</sup>lt;sup>†</sup>Department of Mathematics and Risk Management Institute, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 (matsundf@nus.edu.sg). This author's research was supported in part by the Ministry of Education, Singapore, Academic Research Fund under grant R-146-000-194-112.

<sup>&</sup>lt;sup>‡</sup>Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore (mattohkc@nus.edu.sg, yangliuqin@nus.edu.sg). The second author's research was supported in part by the Ministry of Education, Singapore, Academic Research Fund under grant R-146-000-194-112.

interesting convex models. In particular, it includes the important class of doubly non-negative (DNN) semidefinite programming (SDP) with both equality and inequality constraints

(SDP) 
$$\max \{ \langle -C, X \rangle \mid A_E X = b_E, A_I X \ge b_I, X \in \mathcal{S}^n_+, X \in \mathcal{K}_p \},$$

where  $\mathcal{S}_{+}^{n}$  is the cone of  $n \times n$  symmetric and positive semidefinite matrices in the space of  $n \times n$  symmetric matrices  $\mathcal{S}^{n}$ ,  $X \in \mathcal{K}_{p}$  means that every entry of the matrix  $X \in \mathcal{S}^{n}$  is nonnegative (one can, of course, only require a subset of the entries of X to be nonnegative or nonpositive or free), and  $C \in \mathcal{S}^{n}$  is a given symmetric matrix.

For a given linear map  $\mathcal{A}$  from  $\mathcal{X}$  to another finite-dimensional real Euclidean space  $\mathcal{X}'$ , we denote its adjoint by  $\mathcal{A}^*$ , and for any closed convex set  $\mathcal{C} \subseteq \mathcal{X}$ , we denote the metric projection operator onto  $\mathcal{C}$  by  $\Pi_{\mathcal{C}}(\cdot)$ . If  $\mathcal{C} \subseteq \mathcal{X}$  is a closed convex cone, we denote its dual cone by  $\mathcal{C}^*$ , i.e.,

$$\mathcal{C}^* := \{ d \in \mathcal{X} \, | \, \langle d, x \rangle \ge 0 \quad \forall \, x \in \mathcal{C} \}.$$

In this paper, we will make extensive use of the Moreau decomposition theorem [26], which states that  $x = \Pi_{\mathcal{C}}(x) - \Pi_{\mathcal{C}^*}(-x)$  for any nonempty closed convex cone  $\mathcal{C} \subseteq \mathcal{X}$  and  $x \in \mathcal{X}$ .

The dual of (P) takes the form of

$$\min\left\{-\langle b_I, y_I \rangle - \langle b_E, y_E \rangle \mid s + \mathcal{A}_I^* y_I + z + \mathcal{A}_E^* y_E = c, \ s \in \mathcal{K}^*, \ z \in \mathcal{K}_n^*, \ y_I \ge 0\right\},\,$$

which can equivalently be written as the following convex programming with four separate blocks in the objective function and a coupling linear equation constraint:

(D) min 
$$\delta_{\mathcal{K}^*}(s) + (\delta_{\mathfrak{R}_+^{m_I}}(y_I) - \langle b_I, y_I \rangle) + \delta_{\mathcal{K}_p^*}(z) - \langle b_E, y_E \rangle$$
  
s.t.  $s + \mathcal{A}_I^* y_I + z + \mathcal{A}_E^* y_E = c$ ,

where for any given set C,  $\delta_C(\cdot)$  is the indicator function over C such that  $\delta_C(u) = 0$  if  $u \in C$  and  $\infty$  otherwise.

Problem (D) belongs to a class of multiblock convex optimization problems whose objective function is the sum of q convex functions without overlapping variables:

(1.1) 
$$\min \left\{ \sum_{i=1}^{q} \theta_i(w_i) \mid \sum_{i=1}^{q} \mathcal{B}_i^* w_i = c \right\},$$

where for each  $i \in \{1, \ldots, q\}$ ,  $\mathcal{W}_i$  is a finite-dimensional real Euclidean space equipped with an inner product  $\langle \cdot, \cdot \rangle$  and its induced norm  $\| \cdot \|$ ,  $\theta_i : \mathcal{W}_i \mapsto (-\infty, +\infty]$  is a closed proper convex functions,  $\mathcal{B}_i : \mathcal{X} \mapsto \mathcal{W}_i$  is a linear map, and  $c \in \mathcal{X}$  is given. Note that one can write (D) in the form of (1.1) in a number of different ways. One natural choice is of course to write (D) in terms of (1.1) for q = 4 with  $(w_1, w_2, w_3, w_4) \equiv (s, y_I, z, y_E)$ . However, by noting that in (D) the objective function containing the  $y_E$  part is a linear term, we shall treat (D) as a special case of (1.1) for q = 3 with  $(w_1, w_2, w_3) \equiv (s, y_I, (z, y_E))$ . In the latter case, the third function  $\theta_3$  is partially linear: it is linear about  $y_E$  but nonlinear about z. This partial linear structure of  $\theta_3$  will be heavily exploited in our pursuit of designing a convergent but efficient first order method in this paper.

Let  $\sigma > 0$  be given. The augmented Lagrange function for (1.1) is defined by

$$L_{\sigma}(w_1,\ldots,w_q;x) := \sum_{i=1}^q \theta_i(w_i) + \left\langle x, \sum_{i=1}^q \mathcal{B}_i^* w_i - c \right\rangle + \frac{\sigma}{2} \left\| \sum_{i=1}^q \mathcal{B}_i^* w_i - c \right\|^2$$

for  $w_i \in \mathcal{W}_i$ , i = 1, ..., q, and  $x \in \mathcal{X}$ . Choose any initial points  $w_i^0 \in \text{dom}(\theta_i)$ , i = 1, ..., q, and  $x^0 \in \mathcal{X}$ . The classic augmented Lagrangian function method of Hestenes, Powell, and Rockafellar [22, 32, 34] consists of the following iterations:

(1.2) 
$$(w_1^{k+1}, \dots, w_q^{k+1}) = \arg\min L_{\sigma}(w_1, \dots, w_q; x^k),$$

(1.3) 
$$x^{k+1} = x^k + \tau \sigma \left( \sum_{i=1}^q \mathcal{B}_i^* w_i^{k+1} - c \right),$$

where  $\tau > 0$ , e.g.,  $\tau \in (0,2)$ , is a positive constant that controls the step-length in (1.3). To solve (1.2) exactly or approximately to high precision can be a challenging task in many situations. To deal with this challenge, one may try to replace (1.2) by considering the following q-block alternating direction method of multipliers (ADMM):

$$w_1^{k+1} = \arg\min L_{\sigma}(w_1, w_2^k, \dots, w_q^k; x^k),$$

$$\vdots$$

$$w_i^{k+1} = \arg\min L_{\sigma}(w_1^{k+1}, \dots, w_{i-1}^{k+1}, w_i, w_{i+1}^k, \dots, w_q^k; x^k),$$

$$\vdots$$

$$w_q^{k+1} = \arg\min L_{\sigma}(w_1^{k+1}, \dots, w_{q-1}^{k+1}, w_q; x^k),$$

$$x^{k+1} = x^k + \tau\sigma(\sum_{i=1}^q \mathcal{B}_i^* w_i^{k+1} - c).$$

The above q-block ADMM is extended directly from the ADMM for solving the following 2-block convex optimization problem

(1.5) 
$$\min \{ \theta_1(w_1) + \theta_2(w_2) \mid \mathcal{B}_1^* w_1 + \mathcal{B}_2^* w_2 = c \}.$$

For a chosen initial point  $(w_1^0, w_2^0, x^0) \in \text{dom}(\theta_1) \times \text{dom}(\theta_2) \times \mathcal{X}$ , the classic 2-block ADMM consists of the iterations

(1.6) 
$$w_1^{k+1} = \arg\min L_{\sigma}(w_1, w_2^k; x^k),$$

(1.7) 
$$w_2^{k+1} = \arg\min L_{\sigma}(w_1^{k+1}, w_2; x^k),$$

(1.8) 
$$x^{k+1} = x^k + \tau \sigma(\mathcal{B}_1^* w_1^{k+1} + \mathcal{B}_2^* w_2^{k+1} - c),$$

where  $\tau > 0$  is a positive constant. The classic 2-block ADMM for solving (1.5) was first introduced by Glowinski and Marrocco [14] and Gabay and Mercier [12]. When  $\mathcal{B}_1^* = \mathcal{I}$ , the identity mapping,  $\mathcal{B}_2^*$  is injective, and  $\theta_1$  is strongly convex, the convergence of the classic 2-block ADMM was proved first by Gabay and Mercier [12] for any  $\tau \in (0, 2)$  if  $\theta_2$  is linear, and then by Glowinski [13] and Fortin and Glowinski [10] for any  $\tau \in (0, (1 + \sqrt{5})/2)$  if  $\theta_2$  is a general nonlinear convex function. Gabay [11] has further shown that the classic 2-block ADMM for  $\tau = 1$  is a special case of the Douglas–Rachford splitting method. Moreover, Eckstein and Bertsekas [6] have shown that the latter is actually an application of the proximal point algorithm on the dual problem by means of a specially constructed splitting operator. A variation of the classic 2-block ADMM is to adjust the penalty parameter  $\sigma$  at every iteration based on the previous iterations' progress with the goal of improving the convergence in practice. That is, one replaces (1.8) by

(1.9) 
$$x^{k+1} = x^k + \tau \sigma_k (\mathcal{B}_1^* w_1^{k+1} + \mathcal{B}_2^* w_2^{k+1} - c).$$

A scheme to adjust the penalty parameters  $\sigma_k$  was studied in [20, 41], and it often works well in practice. Due to its extreme simplicity and efficiency in several applications in mathematical imaging science, signal processing, etc., the classic 2-block ADMM has regained its popularity in recent years. For a tutorial on the classic 2-block ADMM, see the recent work by Eckstein and Yao [7].

The multiple-block ADMM with larger  $\tau$  often works very well in many cases. For example, Wen, Goldfarb, and Yin [43] used the 3-block ADMM with  $\tau=1.618$  to design an efficient software for solving some SDP problems of large sizes. However, it was shown very recently by Chen et al. [4] that in contrast to the classic 2-block ADMM, the directly extended 3-block ADMM with  $\tau=1$  may diverge. This dashes any hope of using the directly extended q-block ( $q\geq 3$ ) ADMM without modifications. Actually, even before the announcement of [4], several researchers made serious attempts in correcting the possible nonconvergence of the multiple-block ADMM [16, 17, 18, 19, 21, 37]. A recent work by Wang et al. [42] is also along this line. Among the work on correcting the nonconvergence, the q-block ADMM with an additional Gaussian back substitution [18] distinguishes itself for its simplicity and generality. However, to the best of our knowledge, up to now the dilemma is that at least for convex conic programming, the modified versions, though with a convergence guarantee, often perform two to three times slower than the multiblock ADMM with no convergent guarantee.

In this paper we aim to resolve the dilemma just mentioned by focusing on the conic programming problem (P). Note that (1.4) performs the usual  $1 \to 2 \to \cdots \to q$ Gauss-Seidel block coordinate descent (BCD) cycle in minimizing the variable blocks for solving (1.2) inexactly. In contrast, our convergent semiproximal ADMM for convex programming problems having three separate blocks in the objective function with the third part being linear (we call this method sPADMM3c, which will be presented in section 3.1) takes the special  $1 \to 3 \to 2 \to 3$  BCD cycle at each iteration. This special cycle actually uses an essentially BCD cyclic rule in the terminology of Tseng [40] to minimize the variable blocks for solving (1.2) inexactly. Given the fact that all three component functions in the objective of a counterexample constructed in [4] to illustrate the nonconvergence of the directly extended 3-block ADMM are zero functions, it comes as a pleasant surprise that one only needs to update the third variable block twice to get a convergent 3-block ADMM provided that  $\theta_3$  is linear. At the moment, it is not clear to us if our corresponding ADMM is still convergent when  $\theta_3$  is nonlinear, though we conjecture that it is true.<sup>3</sup> In any case, for the conic programming problem (P), the requirement on the linearity of  $\theta_3$  is not restrictive at all, as we will see in the subsequent analysis. Our extensive numerical tests on the important class of SDP problems with linear equality and/or inequality constraints demonstrate that our convergent method is at least 20% faster than the directly extended ADMM with unit step-length for the vast majority of about 550 large-scale problems tested. This confirms that our convergent sPADMM can have both theoretical convergence guarantee and superior numerical efficiency over the

<sup>&</sup>lt;sup>1</sup>The final version of [4] includes a nonconvergent example for the ADMM with any prefixed  $\tau$  not smaller than  $10^{-8}$  and the penalty parameter  $\sigma = 1$ .

<sup>&</sup>lt;sup>2</sup>Hong and Luo [23] provided a proof on the convergence of the directly extended q-block ADMM under some restrictive assumptions including a global error bound condition with a sufficiently small step-length  $\tau$ . Since in practical computations one always prefers a larger step-length for better numerical efficiency, a convergence result of this nature is mainly of theoretical importance.

<sup>&</sup>lt;sup>3</sup>In a recent paper [24], Li, Sun, and Toh report that the conjecture is indeed true if  $\theta_3$  is a convex quadratic function.

directly extended ADMM. Our research conducted here opens up the possibility of designing an efficient and convergent ADMM with a suitably chosen essentially BCD cyclic rule rather than the usual Gauss–Seidel BCD cyclic rule, where the latter may lead to a nonconvergent ADMM, for multiblock convex optimization problems (1.1) with structures beyond those considered in (SDP).

The remaining parts of this paper are organized as follows. In the next section, for our subsequent developments we will present in detail the convergent properties of a semiproximal ADMM for solving 2-block convex optimization problems. In section 3, we will introduce a convergent 3-block sPADMM first for the special case where the third function  $\theta_3$  is a linear function and then show how this approach can be applied to the case where  $\theta_3$  is partially linear or fully nonlinear. We should emphasize that the linear or partial linear structure of  $\theta_3$  will not render the directly extended 3-block ADMM to become convergent as the three functions  $\theta_1, \theta_2$ , and  $\theta_3$  constructed in the counterexample in [4] are all linear (actually, zero functions). Extensions to the multiblock case are also briefly discussed in this section. In section 4, the applications of the convergent 3-block sPADMM to conic programming are discussed. Section 5 is devoted to the implementation and numerical experiments of using our convergent 3-block sPADMM for solving (SDP). We conclude our paper in the final section.

**Notation.** For any given self-adjoint positive semidefinite operator  $\mathcal{T}$  that maps a real Euclidean space  $\mathcal{X}$  into itself, we let  $\mathcal{T}^{1/2}$  be the unique self-adjoint positive semidefinite operator such that  $\mathcal{T}^{1/2}\mathcal{T}^{1/2} = \mathcal{T}$  and define

$$||x||_{\mathcal{T}} := \sqrt{\langle x, \mathcal{T}x \rangle} = ||\mathcal{T}^{1/2}x|| \quad \forall x \in \mathcal{X}.$$

For a given convex function  $\phi: \mathcal{X} \to (-\infty, \infty]$ ,  $\phi^*$  denotes its Fenchel conjugate, i.e.,

$$\phi^*(x) := \sup\{\langle y, x \rangle - \phi(y)\}, \quad x \in \mathcal{X}.$$

**2. Preliminaries.** Thoughout this paper, we assume that  $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$  are three finite-dimensional real Euclidean spaces each equipped with an inner product  $\langle \cdot, \cdot \rangle$  and its induced norm  $\|\cdot\|$ . Let  $f: \mathcal{Y} \mapsto (-\infty, +\infty], g: \mathcal{Z} \mapsto (-\infty, +\infty]$  be given closed proper convex functions,  $\mathcal{F}: \mathcal{X} \mapsto \mathcal{Y}, \mathcal{G}: \mathcal{X} \mapsto \mathcal{Z}$  be given linear maps, and  $c \in \mathcal{X}$  be also given. Let  $\mathcal{S}$  and  $\mathcal{T}$  be two given self-adjoint positive semidefinite (not necessarily positive definite) linear operators on  $\mathcal{Y}$  and  $\mathcal{Z}$ , respectively.

The purpose of this section is to discuss the convergent properties of a sPADMM for solving the 2-block convex optimization problem

$$\min \left\{ f(y) + g(z) \mid \mathcal{F}^* y + \mathcal{G}^* z = c \right\}$$

and its dual

(2.2) 
$$\max \left\{ -\langle c, x \rangle - f^*(-\mathcal{F}x) - g^*(-\mathcal{G}x) \right\},\,$$

which can equivalently be written as

(2.3) 
$$\min \{ \langle c, x \rangle + f^*(u) + g^*(v) \mid \mathcal{F}x + u = 0, \ \mathcal{G}x + v = 0 \}.$$

These convergence results are the essential ingredients in proving the convergence of our 3-block sPADMM proposed in section 3.

Recall that the augmented Lagrange function for problem (2.1) is defined by

(2.4) 
$$L_{\sigma}(y,z;x) = f(y) + g(z) + \langle x, \mathcal{F}^*y + \mathcal{G}^*z - c \rangle + \frac{\sigma}{2} \|\mathcal{F}^*y + \mathcal{G}^*z - c\|^2.$$

It is clear that in order for the classic 2-block ADMM scheme (1.6)–(1.8) applied to problem (2.1) to work, one needs to assume that both subproblems have a solution. The existence of solutions for the subproblems can be guaranteed if we assume that the objective functions in (1.6) and (1.7) are both coercive. However, conditions ensuring the boundedness of the two generated sequences  $\{y^{k+1}\}$  and  $\{z^{k+1}\}$  are very subtle, while the boundedness of the dual variable sequence  $\{x^{k+1}\}$  is readily obtainable. More importantly, it is also desirable that both  $y^{k+1}$  and  $z^{k+1}$  can be computed relative easily if f and g have conducive structures. In this regard, the following sPADMM is preferred.

Algorithm sPADMM2. A generic 2-block semiproximal ADMM for SOLVING (2.1).

Let  $\sigma > 0$  and  $\tau \in (0, \infty)$  be given parameters. Choose  $y^0 \in \text{dom}(f), z^0 \in \text{dom}(q)$ . and  $x^0 \in \mathcal{X}$ . Perform the kth iteration as follows:

Step 1. Compute  $y^{k+1} = \arg\min L_{\sigma}(y, z^k; x^k) + \frac{\sigma}{2} ||y - y^k||_{S}^2$ 

Step 2. Compute  $z^{k+1} = \arg\min L_{\sigma}(y^{k+1}, z; x^k) + \frac{\sigma}{2} ||z - z^k||_{\mathcal{T}}^2$ . Step 3. Compute  $x^{k+1} = x^k + \tau \sigma(\mathcal{F}^* y^{k+1} + \mathcal{G}^* z^{k+1} - c)$ .

In the above 2-block sPADMM for solving problem (2.1), the choices of S and Tare very much problem dependent. The general principle is that both  $\mathcal S$  and  $\mathcal T$  should be as small as possible, while  $y^{k+1}$  and  $z^{k+1}$  are still relatively easy to compute. The convergence analysis of the 2-block sPADMM can be conducted by following the proof given by Fortin and Glowinski [10] based on variational analysis. This has been done in [9]. Here we will only summarize what we need for later developments. For details, see Appendix B in [9].

Assumption 2.1. There exists  $(\hat{y}, \hat{z}) \in \text{ri}(\text{dom } f \times \text{dom } g)$  such that  $\mathcal{F}^*\hat{y}$  +  $\mathcal{G}^*\hat{z} = c.$ 

Under Assumption 2.1, it follows from [33, Corollary 28.2.2] and [33, Corollary 28.3.1 that  $(\bar{y}, \bar{z}) \in \mathcal{Y} \times \mathcal{Z}$  is an optimal solution to problem (2.1) if and only if there exists a Lagrange multiplier  $\bar{x} \in \mathcal{X}$  such that

$$(2.5) 0 \in \mathcal{F}\bar{x} + \partial f(\bar{y}), \quad 0 \in \mathcal{G}\bar{x} + \partial g(\bar{z}), \quad \mathcal{F}^*\bar{y} + \mathcal{G}^*\bar{z} - c = 0,$$

where  $\partial f$  and  $\partial g$  are the subdifferential mappings of f and g, respectively. Moreover, any  $\bar{x} \in \mathcal{X}$  satisfying (2.5) is an optimal solution to the dual problem (2.3). Since both  $\partial f$  and  $\partial g$  are maximal monotone [35, Theorem 12.17], there exist two self-adjoint and positive semidefinite operators  $\Sigma_f$  and  $\Sigma_g$  such that for all  $y, y' \in \text{dom}(f)$ ,  $u \in \partial f(y)$ , and  $u' \in \partial f(y')$ ,

(2.6) 
$$\langle u - u', y - y' \rangle \ge ||y - y'||_{\Sigma_f}^2$$

and for all  $z, z' \in \text{dom}(g)$ ,  $v \in \partial g(z)$ , and  $v' \in \partial g(z')$ ,

$$(2.7) \langle v - v', z - z' \rangle \ge ||z - z'||_{\Sigma_q}^2.$$

Theorem 2.2. Let  $\Sigma_f$  and  $\Sigma_g$  be the two self-adjoint and positive semidefinite operators defined by (2.6) and (2.7), respectively. Suppose that the solution set of problem (2.1) is nonempty and that Assumption 2.1 holds. Assume that S and Tare chosen such that the sequence  $\{(y^k, z^k, x^k)\}$  generated by Algorithm sPADMM2 is

well defined. Let  $(\bar{y}, \bar{z})$  be any optimal solution to problem (2.1) and  $\bar{x}$  be any optimal solution to problem (2.3), respectively. For k = 0, 1, 2, ..., denote

$$y_e^k := y^k - \bar{y}, \quad z_e^k := z^k - \bar{z}, \quad \text{and} \quad x_e^k := x^k - \bar{x}.$$

Then, under the condition either (a)  $\tau \in (0, (1+\sqrt{5})/2)$  or (b)  $\tau \ge (1+\sqrt{5})/2$  but  $\sum_{k=0}^{\infty} (\|\mathcal{G}^*(z^{k+1}-z^k)\|^2 + \tau^{-1}\|\mathcal{F}^*y^{k+1} + \mathcal{G}^*z^{k+1} - c\|^2) < \infty$ , the following results hold:

- (i) The sequence  $\{\|x_e^{k+1}\|^2 + \|z_e^{k+1}\|_{(\sigma^{-1}\Sigma_g + \mathcal{T} + \mathcal{G}\mathcal{G}^*)}^2 + \|y_e^{k+1}\|_{(\sigma^{-1}\Sigma_f + \mathcal{S} + \mathcal{F}\mathcal{F}^*)}^2 \}$  is bounded.
- (ii) If  $(y^{\infty}, z^{\infty}, x^{\infty})$  is an accumulation point of  $\{(y^k, z^k, x^k)\}$ , then  $(y^{\infty}, z^{\infty})$  solves (2.1) and  $x^{\infty}$  solves (2.3), respectively, and it holds that

$$\lim_{k \to \infty} \left( \|x_e^{k+1}\|^2 + \|z_e^{k+1}\|_{(\sigma^{-1}\Sigma_g + \mathcal{T} + \mathcal{GG}^*)}^2 + \|y_e^{k+1}\|_{(\sigma^{-1}\Sigma_f + \mathcal{S} + \mathcal{FF}^*)}^2 \right) = 0,$$

where in the definition of  $(y_e^k, z_e^k, x_e^k)$ ,  $(\bar{y}, \bar{z}, \bar{x})$  is replaced by  $(y^{\infty}, z^{\infty}, x^{\infty})$ .

- (iii) If both  $\sigma^{-1}\Sigma_f + S + \mathcal{F}\mathcal{F}^*$  and  $\sigma^{-1}\Sigma_g + \mathcal{T} + \mathcal{G}\mathcal{G}^*$  are positive definite, then the sequence  $\{(y^k, z^k, x^k)\}$ , which is automatically well defined, converges to a unique limit, say,  $(y^{\infty}, z^{\infty}, x^{\infty})$  with  $(y^{\infty}, z^{\infty})$  solving (2.1) and  $x^{\infty}$  solving (2.3), respectively.
- (iv) When the z-part disappears, the corresponding results in parts (i)–(iii) hold under the condition either  $\tau \in (0,2)$  or  $\tau \geq 2$  but  $\sum_{k=0}^{\infty} \|\mathcal{F}^* y^{k+1} c\|^2 < \infty$ .

Remark 2.3. The conclusions of Theorem 2.2 for the case that  $\tau \in (0, (1+\sqrt{5})/2)$  follow directly from the results given in [9, Theorem B.1]. For the case that  $\tau \geq (1+\sqrt{5})/2$  but  $\sum_{k=0}^{\infty} (\|\mathcal{G}^*(z^{k+1}-z^k)\|^2+\tau^{-1}\|\mathcal{F}^*y^{k+1}+\mathcal{G}^*z^{k+1}-c\|^2) < \infty$ , we can just mimick the proofs for part (c) in [9, Theorem B.1] for the case that  $\tau \in (1, (1+\sqrt{5})/2)$  by using part (b) in [9, Theorem B.1] and the property on Fejér monotone sequences. Similarly, the conclusions for part (iv) can be derived correspondingly by using part (d) in [9, Theorem B.1]. In our numerical computations, we always start with a larger  $\tau$ , e.g.,  $\tau = 1.95$ , and reset it as  $\tau := \max(\rho\tau, 1.618)$  for some  $\rho \in (0,1)$  if at the kth iteration

$$\|\mathcal{G}^*(z^{k+1} - z^k)\|^2 + \tau^{-1}\|\mathcal{F}^*y^{k+1} + \mathcal{G}^*z^{k+1} - c\|^2 > c_0k^{-1.2}$$

for some constant  $c_0 > 0$ . Since  $\tau$  can be reset for a finite number of times only, eventually either condition (a) or condition (b) in Theorem 2.2 is satisfied. Consequently, the conclusions of parts (i)–(iii) in Theorem 2.2 hold. When the z-part disappears, we can start with  $\tau \geq 2$  and reset it accordingly by using a procedure similar to the above.

Remark 2.4. Independent of Fazel et al. [9], Deng and Yin [5] also analyzed the global convergence of Algorithm sPADMM2, though the focus of [5] is mainly on analyzing the rate of convergence for the following cases: (i)  $\mathcal{S} \succeq 0$ ,  $\mathcal{T} \succeq 0$ ,  $\tau \in (0,1]$ ; (ii)  $\mathcal{S} \equiv 0$ ,  $\mathcal{T} \succeq 0$ ,  $\tau \in [1, \frac{1+\sqrt{5}}{2})$ . The most interesting case used in this paper of taking  $\mathcal{S} \succeq 0$ ,  $\mathcal{T} \succeq 0$  and  $\tau > 1$  (in particular,  $\tau = 1.618$ ) is not covered by [5].

**3.** A convergent 3-block semiproximal ADMM. Assume that W is a finite-dimensional real Euclidean space. Let  $h: W \mapsto (-\infty, +\infty]$  be a given closed proper convex function and  $\mathcal{H}: \mathcal{X} \mapsto W$  be a given linear map. For the subsequent discussions, we let  $\mathcal{T}_f$  and  $\mathcal{T}_g$  be two given self-adjoint positive semidefinite (not necessarily positive definite) linear operators on  $\mathcal{Y}$  and  $\mathcal{Z}$ , respectively.

Consider the following 3-block convex optimization problem:

(3.1) 
$$\min \{ f(y) + g(z) + h(w) \mid \mathcal{F}^* y + \mathcal{G}^* z + \mathcal{H}^* w = c \}.$$

The dual of (3.1) is

(3.2) 
$$\max\left\{-\langle c, x\rangle - f^*(-\mathcal{F}x) - g^*(-\mathcal{G}x) - h^*(-\mathcal{H}x)\right\},\,$$

which can equivalently be written as

(3.3) 
$$\min\{\langle c, x \rangle + f^*(u) + g^*(v) + h^*(s) \mid \mathcal{F}x + u = 0, \mathcal{G}x + v = 0, \mathcal{H}x + s = 0\}.$$

By noting that the three variables u, v, and s are decoupled in the constraints of problem (3.3), one may attempt to apply the classic 2-block ADMM if  $\mathcal{F}^*\mathcal{F} + \mathcal{G}^*\mathcal{G} + \mathcal{H}^*\mathcal{H}$  is positive definite or the 2-block sPADMM if it is only positive semidefinite (to avoid the potential nonconvergence of the former), to (3.3) with x and (u, v, s) as two separate block variables.<sup>4</sup> However, as far as we know from our numerical experiments, this approach is less efficient than working with the problem of the form (3.1) directly. A possible explanation for this phenomenon is that the sizes of  $\mathcal{F}^*\mathcal{F} + \mathcal{G}^*\mathcal{G} + \mathcal{H}^*\mathcal{H}$  are often too large to admit an efficient Cholesky factorization and consequently one is forced to add a large semiproximal term to it to make the new operator more amenable for practical computations. At least, this is the case for conic programming (P).

In the next subsection, we will introduce our approach first for the case where h is a linear function and prove the convergence of our approach by relating it to a particularly designed 2-block sPADMM. For (D), this corresponds to the case where  $m_I = 0$  or  $\mathcal{K}_p = \mathcal{X}$ . After that, we will extend our idea to deal with the case where h is only partially linear or fully nonlinear and the q-block case in section 3.2.

**3.1.** The case where h is linear. In this subsection, we are particularly interested in the case where h is a linear function of the form

$$(3.4) h(w) := -\langle b, w \rangle \quad \forall w \in \mathcal{W},$$

where  $b \in \mathcal{W}$  is given. For simplicity, by removing the redundancy if necessary (although it may not be an easy task numerically), we assume that  $\mathcal{HH}^*$  is invertible, i.e.,  $\mathcal{H}: \mathcal{X} \to \mathcal{W}$  is surjective. Note that since  $\mathcal{H}: \mathcal{X} \to \operatorname{Range}(\mathcal{H})$ , the range space of  $\mathcal{H}$ , is always surjective, one may always redefine  $\mathcal{W} := \operatorname{Range}(\mathcal{H})$  to make sure that  $\mathcal{HH}^*: \mathcal{W} \to \mathcal{W}$  is positive definite. However, it is a challenging task to compute the Cholesky decomposition of  $\mathcal{HH}^*$  by working in the range space of  $\mathcal{H}$  if  $\mathcal{W} \neq \operatorname{Range}(\mathcal{H})$ .

For a given  $\sigma > 0$ , let  $L_{\sigma}(y, z, w; x)$  be the augmented Lagrange function for (3.1), i.e., for any  $(y, z, w, x) \in \mathcal{Y} \times \mathcal{Z} \times \mathcal{W} \times \mathcal{X}$ ,

$$L_{\sigma}(y,z,w;x) = f(y) + g(z) - \langle b, w \rangle + \langle x, \mathcal{F}^*y + \mathcal{G}^*z + \mathcal{H}^*w - c \rangle$$

$$+ \frac{\sigma}{2} \|\mathcal{F}^*y + \mathcal{G}^*z + \mathcal{H}^*w - c\|^2.$$
(3.5)

The following constraint qualification is needed for our subsequent discussions.

Assumption 3.1. There exists  $(\hat{y}, \hat{z}, \hat{w}) \in \text{ri}(\text{dom } f \times \text{dom } g) \times \mathcal{W}$  such that  $\mathcal{F}^*\hat{y} + \mathcal{G}^*\hat{z} + \mathcal{H}^*\hat{w} = c$ .

<sup>&</sup>lt;sup>4</sup>This comment can be directly applied to the q-block convex optimization problem (1.1).

Similar to the discussion in section 2, under Assumption 3.1, it follows from [33, Corollary 28.2.2] and [33, Corollary 28.3.1] that  $(\bar{y}, \bar{z}, \bar{w}) \in \mathcal{Y} \times \mathcal{Z} \times \mathcal{W}$  is an optimal solution to problem (3.1) if and only if there exists a Lagrange multiplier  $\bar{x} \in \mathcal{X}$  such that

$$(3.6) \ 0 \in \mathcal{F}\bar{x} + \partial f(\bar{y}), \quad 0 \in \mathcal{G}\bar{x} + \partial g(\bar{z}), \quad \mathcal{H}\bar{x} - b = 0, \quad \mathcal{F}^*\bar{y} + \mathcal{G}^*\bar{z} + \mathcal{H}^*\bar{w} - c = 0.$$

Moreover, any  $\bar{x} \in \mathcal{X}$  satisfying (3.6) is an optimal solution to the dual problem (3.3). We consider the following sPADMM for solving (3.1).

ALGORITHM sPADMM3c. A CONVERGENT 3-BLOCK SEMIPROXIMAL ADMM FOR SOLVING (3.1).

Let  $\sigma > 0$  and  $\tau \in (0, \infty)$  be given parameters. Choose  $y^0 \in \text{dom}(f), z^0 \in \text{dom}(g)$ and  $x^0 \in \mathcal{X}$  such that  $\mathcal{H}x^0 = b$ . Set  $w^0 := (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{F}^*y^0 - \mathcal{G}^*z^0)$ . Perform the kth iteration as follows:

Step 1. Compute  $y^{k+1} = \arg\min L_{\sigma}(y, z^{k}, w^{k}; x^{k}) + \frac{\sigma}{2} ||y - y^{k}||_{\mathcal{T}_{t}}^{2}$ .

Step 2. Compute  $w^{k+\frac{1}{2}} = \arg\min L_{\sigma}(y^{k+1}, z^k, w; x^k) = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{F}^*y^{k+1} - \mathcal{G}^*z^k)$  and  $z^{k+1} = \arg\min L_{\sigma}(y^{k+1}, z, w^{k+\frac{1}{2}}; x^k) + \frac{\sigma}{2}\|z - z^k\|_{\mathcal{T}_g}^2$ . Step 3. Compute  $w^{k+1} = \arg\min L_{\sigma}(y^{k+1}, z^{k+1}, w; x^k) = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{H}^*z^k)$ 

 $\mathcal{F}^* y^{\hat{k}+1} - \mathcal{G}^* z^{k+1}$ ).

Step 4. Compute  $x^{k+1} = x^k + \tau \sigma(\mathcal{F}^* y^{k+1} + \mathcal{G}^* z^{k+1} + \mathcal{H}^* w^{k+1} - c)$ .

Note that in Step 2 of Algorithm sPADMM3c, by direct calculations we should have

$$w^{k+\frac{1}{2}} = \arg\min L_{\sigma}(y^{k+1}, z^k, w; x^k) = (\mathcal{H}\mathcal{H}^*)^{-1} [\mathcal{H}(c - \mathcal{F}^* y^{k+1} - \mathcal{G}^* z^k) + \sigma^{-1}(b - \mathcal{H}x^k)].$$

However, by using Proposition 3.2, to be introduced later, we know that  $b - \mathcal{H}x^k =$ 0 for all k. Thus  $w^{k+\frac{1}{2}} = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{F}^*y^{k+1} - \mathcal{G}^*z^k)$ . In Step 3,  $w^{k+1}$  is computed in a similar way. When  $\mathcal{T}_f = 0$  and  $\mathcal{T}_g = 0$ , i.e., the proximal terms ||y| $\|y^k\|_{\mathcal{T}_t}^2$  and  $\|z-z^k\|_{\mathcal{T}_a}^2$  are absent, Algorithm sPADMM3c will become our convergent ADMM for solving (3.1) (ADMM3c). One reason for including  $\mathcal{T}_f$  and  $\mathcal{T}_g$  is to ensure that both  $y^{k+1}$  and  $z^{k+1}$  are well defined; see further discussions on this part in section 2. The difference between our ADMM3c and the directly extended 3-block ADMM (ADMM3d) is that we perform an extra intermediate step to compute  $w^{k+\frac{1}{2}}$ before computing  $z^{k+1}$ , i.e., at the kth iteration we perform a particularly chosen essentially BCD cycle in updating the variable y, z, w in the terminology of Tseng [40]. Except for this extra step, ADMM3c is as simple as ADMM3d, which at each iteration performs a Gauss-Seidel BCD cycle in updating the variable y, z, w. Observe that in both ADMM3c and ADMM3d, we need to solve linear systems involving the fixed operator  $\mathcal{HH}^*$ . For the case where the computation (which only needs to be done once) of  $\mathcal{HH}^*$  and its (sparse) Cholesky factorization can be done at a moderate cost, Step 3 of the above algorithm can be performed cheaply. Now, under the condition that the Cholesky factorization of  $\mathcal{HH}^*$  is available, the extra cost for computing  $w^{k+\frac{1}{2}}$  is actually insignificant. The reward for doing the extra step in computing  $w^{k+\frac{1}{2}}$  is that we are able to prove the convergence of our ADMM3c not only for  $\tau=1$ but also allow  $\tau$  to take a larger step-length, e.g.,  $\tau = 1.618$ , so as to achieve faster convergence than the directly extended ADMM3d. Note that if the z-part disappears, then Step 2 of Algorithm sPADMM3c disappears and our ADMM3c is identical to the classic 2-block ADMM but with  $\tau \in (0,2)$  instead of  $\tau \in (0,(1+\sqrt{5})/2)$  due to our requirement that  $\mathcal{H}x^0 = b$ .

Next we will prove the convergence of Algorithm sPADMM3c for solving (3.1) by relating it to the generic 2-block sPADMM for solving a 2-block convex optimization problem discussed in section 2.

For problem (3.1), one can obtain w explicitly from the equality constraint  $\mathcal{F}^*y + \mathcal{G}^*z + \mathcal{H}^*w = c$  as follows:

(3.7) 
$$w(y,z) = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{F}^*y - \mathcal{G}^*z), \quad (y,z) \in \mathcal{Y} \times \mathcal{Z}.$$

Substituting (3.7) into (3.1), we can recast (3.1) equivalently as

(3.8) 
$$\min \left\{ f(y) + g(z) + \langle \bar{b}, \mathcal{F}^* y + \mathcal{G}^* z - c \rangle \mid \mathcal{Q}(\mathcal{F}^* y + \mathcal{G}^* z - c) = 0 \right\},$$

where  $\bar{b} := \mathcal{H}^*(\mathcal{H}\mathcal{H}^*)^{-1}b$ ,

$$Q := \mathcal{I} - \mathcal{P}, \qquad \mathcal{P} := \mathcal{H}^* (\mathcal{H} \mathcal{H}^*)^{-1} \mathcal{H},$$

and  $\mathcal{I}: \mathcal{X} \to \mathcal{X}$  is the identity map. It is easy to check that the two operators  $\mathcal{Q}$  and  $\mathcal{P}$  satisfy the following properties:

$$\begin{array}{ll} (3.9) \\ \mathcal{P}^* = \mathcal{P}, \quad \mathcal{Q}^* = \mathcal{Q}, \quad \mathcal{P}^* \mathcal{P} = \mathcal{P}, \quad \mathcal{Q}^* \mathcal{Q} = \mathcal{Q}, \quad \mathcal{P} \mathcal{H}^* = \mathcal{H}^*, \quad \mathcal{H} \mathcal{Q} = 0, \quad \mathcal{Q} \mathcal{H}^* = 0. \end{array}$$

The dual of (3.8) is given by

(3.10) 
$$\min \quad f^*(u) + g^*(v) + \langle c, \bar{b} + Q\lambda \rangle$$
s.t. 
$$\mathcal{F}(\bar{b} + Q\lambda) + u = 0, \quad \mathcal{G}(\bar{b} + Q\lambda) + v = 0.$$

Note that (3.10) is equivalent to (3.3) if we let  $x = \bar{b} + Q\lambda$ .

Let  $\sigma > 0$  be a positive constant. Define the augmented Lagrange function for (3.8) by

$$\widehat{L}_{\sigma}(y,z;\lambda) = f(y) + g(z) + \langle \overline{b}, \mathcal{F}^* y + \mathcal{G}^* z - c \rangle + \langle \lambda, \mathcal{Q}(\mathcal{F}^* y + \mathcal{G}^* z - c) \rangle + \frac{\sigma}{2} \|\mathcal{Q}(\mathcal{F}^* y + \mathcal{G}^* z - c)\|^2.$$

Now we can apply the generic 2-block sPADMM discussed in section 2 to (3.8).

ALGORITHM sPADMM2s. A SPECIFIC 2-BLOCK SEMIPROXIMAL ADMM FOR SOLVING (3.8).

Let  $\sigma > 0$  and  $\tau \in (0, \infty)$  be given parameters. Choose  $y^0 \in \text{dom}(f)$ ,  $z^0 \in \text{dom}(g)$ , and  $\lambda^0 \in \text{Range}(\mathcal{Q})$ . Perform the kth iteration as follows:

Step 1. Compute 
$$y^{k+1} = \arg\min \widehat{L}_{\sigma}(y, z^k; \lambda^k) + \frac{\sigma}{2} \|\mathcal{F}^*(y - y^k)\|_{\mathcal{P}}^2 + \frac{\sigma}{2} \|y - y^k\|_{\mathcal{T}_t}^2$$
.

Step 2. Compute 
$$z^{k+1} = \arg\min \widehat{L}_{\sigma}(y^{k+1}, z; \lambda^k) + \frac{\sigma}{2} \|\mathcal{G}^*(z - z^k)\|_{\mathcal{P}}^2 + \frac{\sigma}{2} \|z - z^k\|_{\mathcal{T}_g}^2$$
.

Step 3. Compute 
$$\lambda^{k+1} = \lambda^k + \tau \sigma \mathcal{Q}(\mathcal{F}^* y^{k+1} + \mathcal{G}^* z^{k+1} - c)$$
.

It is important to note that in Algorithm sPADMM2s for solving (3.8), we have two proximal terms in both Step 1 and Step 2 instead of one proximal term. In particular, the first proximal term is necessary as neither  $Q\mathcal{F}^*$  nor  $Q\mathcal{G}^*$  is injective.

Next, we establish the equivalence of Algorithm sPADMM3c for solving problem (3.1) and Algorithm sPADMM2s for solving problem (3.8).

PROPOSITION 3.2. Let  $\sigma > 0$  and  $\tau \in (0, \infty)$  be given parameters. Choose  $y^0 \in \text{dom}(f)$ ,  $z^0 \in \text{dom}(g)$  and  $\lambda^0 \in \text{Range}(\mathcal{Q})$ . Let  $x^0 = \mathcal{H}^*(\mathcal{H}\mathcal{H}^*)^{-1}b + \lambda^0$ . Then for any  $k \geq 0$ , we have the following results:

- (i) The point  $(y^k, z^k)$  generated by Algorithm sPADMM2s for solving problem (3.8) is identical to the point  $(y^k, z^k)$  generated by Algorithm sPADMM3c for solving problem (3.1).
- (ii)  $\lambda^k$  and  $x^k$  satisfy the relation

$$x^k = \mathcal{H}^* (\mathcal{H}\mathcal{H}^*)^{-1} b + \lambda^k$$

*Proof.* We prove this proposition by induction. First, note that since  $\mathcal{HQ} = 0$  and  $\lambda^0 \in \text{Range}(\mathcal{Q})$ , we have  $\mathcal{H}x^0 = b$ .

Recall that  $w^k = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c-\mathcal{F}^*y^k-\mathcal{G}^*z^k)$ . Note that by direct computations we have  $\mathcal{H}^*w^k = \mathcal{P}\mathcal{H}^*w^k = \mathcal{P}(c-\mathcal{F}^*y^k-\mathcal{G}^*z^k)$ . Assume that the conclusions of this proposition hold up to  $k \geq 0$ . Then, by using (3.9) and the fact that  $\lambda^k$  is in the range of  $\mathcal{Q}$  and  $\mathcal{H}x^k = b$ , we can easily check for every  $k = 0, 1, \ldots$  that

$$\begin{split} y^{k+1} &= \arg\min\left\{\widehat{L}_{\sigma}(y,z^{k};\lambda^{k}) + \frac{\sigma}{2}\|\mathcal{F}^{*}(y-y^{k})\|_{\mathcal{P}}^{2} + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2}\right\} \\ &= \arg\min\left\{\widehat{L}_{\sigma}(y,z^{k};\lambda^{k}) + \frac{\sigma}{2}\|\mathcal{P}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c)\|^{2} + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2}\right\} \\ &= \arg\min\left\{\widehat{L}_{\sigma}(y,z^{k};\lambda^{k}) + \frac{\sigma}{2}\|\mathcal{P}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}-c) + \langle\lambda^{k},\mathcal{Q}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}-c)\rangle \\ &+ \frac{\sigma}{2}\|\mathcal{Q}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}-c)\|^{2} + \frac{\sigma}{2}\|\mathcal{P}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c)\|^{2} + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2}\right\} \\ &= \arg\min\left\{f(y)+g(z^{k})+\langle x^{k},\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}-c\rangle + \frac{\sigma}{2}\|\mathcal{Q}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c)\|^{2} + \frac{\sigma}{2}\|\mathcal{P}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c)\|^{2}\right\} \\ &= \arg\min\left\{f(y)+g(z^{k})-\langle b,w^{k}\rangle + \langle x^{k},\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c\rangle + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} + \frac{\sigma}{2}\|\mathcal{Q}(\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c)\|^{2}\right\} \\ &= \arg\min\left\{f(y)+g(z^{k})-\langle b,w^{k}\rangle + \langle x^{k},\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c\rangle + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} + \frac{\sigma}{2}\|\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c\rangle\right\} \\ &= \arg\min\left\{f(y)+g(z^{k})-\langle b,w^{k}\rangle + \langle x^{k},\mathcal{F}^{*}y+\mathcal{G}^{*}z^{k}+\mathcal{H}^{*}w^{k}-c\rangle + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} \right\} \\ &= \arg\min\left\{L_{\sigma}(y,z^{k},w^{k};x^{k}) + \frac{\sigma}{2}\|y-y^{k}\|_{\mathcal{T}_{f}}^{2} \right\}. \end{split}$$

Similarly, for every k = 0, 1, ..., we have

 $= x^{k+1} - \mathcal{H}^* (\mathcal{H}\mathcal{H}^*)^{-1} b,$ 

$$\begin{split} z^{k+1} &= \arg\min\left\{\widehat{L}_{\sigma}(y^{k+1}, z; \lambda^{k}) + \frac{\sigma}{2}\|\mathcal{G}^{*}(z - z^{k})\|_{\mathcal{P}}^{2} + \frac{\sigma}{2}\|z - z^{k}\|_{\mathcal{T}_{g}}^{2}\right\} \\ &= \arg\min\left\{\widehat{L}_{\sigma}(y^{k+1}, z; \lambda^{k}) + \frac{\sigma}{2}\|\mathcal{P}(\mathcal{F}^{*}y^{k+1} + \mathcal{G}^{*}z + \mathcal{H}^{*}w^{k+\frac{1}{2}} - c)\|^{2} + \frac{\sigma}{2}\|z - z^{k}\|_{\mathcal{T}_{g}}^{2}\right\} \\ &= \arg\min\left\{L_{\sigma}(y^{k+1}, z, w^{k+\frac{1}{2}}; x^{k}) + \frac{\sigma}{2}\|z - z^{k}\|_{\mathcal{T}_{g}}^{2}\right\}, \\ \text{where } w^{k+\frac{1}{2}} &= \arg\min L_{\sigma}(y^{k+1}, z^{k}, w; x^{k}) = (\mathcal{H}\mathcal{H}^{*})^{-1}\mathcal{H}(c - \mathcal{F}^{*}y^{k+1} - \mathcal{G}^{*}z^{k}) \text{ and } \\ \lambda^{k+1} &= \lambda^{k} + \tau\sigma\mathcal{Q}(\mathcal{F}^{*}y^{k+1} + \mathcal{G}^{*}z^{k+1} - c) \\ &= x^{k} - \mathcal{H}^{*}(\mathcal{H}\mathcal{H}^{*})^{-1}b + \tau\sigma(\mathcal{F}^{*}y^{k+1} + \mathcal{G}^{*}z^{k+1} + \mathcal{H}^{*}w^{k+1} - c) \end{split}$$

where  $w^{k+1} = \arg\min L_{\sigma}(y^{k+1}, z^{k+1}, w; x^k) = (\mathcal{H}\mathcal{H}^*)^{-1}\mathcal{H}(c - \mathcal{F}^*y^{k+1} - \mathcal{G}^*z^{k+1})$ . This completes our proof.  $\square$ 

Now we are ready to establish the convergence results for Algorithm sPADMM3c for solving (3.1).

THEOREM 3.3. Let  $\Sigma_f$  and  $\Sigma_g$  be the two self-adjoint and positive semidefinite operators defined by (2.6) and (2.7), respectively. Suppose that the solution set of problem (3.1) is nonempty and that Assumption 3.1 holds. Assume that  $\mathcal{T}_f$  and  $\mathcal{T}_g$  are chosen such that the sequence  $\{(y^k, z^k, w^k, x^k)\}$  generated by Algorithm sPADMM3c is well defined. Let  $(\bar{y}, \bar{z}, \bar{w})$  be any optimal solution to (3.1) and  $\bar{x}$  be any optimal solution to (3.3), respectively. For  $k = 0, 1, 2, \ldots$ , denote

$$y_e^k := y^k - \bar{y}, \quad z_e^k := z^k - \bar{z}, \quad w_e^k := w^k - \bar{w}, \quad \text{and} \quad x_e^k := x^k - \bar{x}.$$

Then, under the condition either (a)  $\tau \in (0, (1+\sqrt{5})/2)$  or (b)  $\tau \ge (1+\sqrt{5})/2$  but  $\sum_{k=0}^{\infty} (\|\mathcal{G}^*(z^{k+1}-z^k) + \mathcal{H}^*(w^{k+1}-w^{k+\frac{1}{2}})\|^2 + \tau^{-1}\|\mathcal{F}^*y^{k+1} + \mathcal{G}^*z^{k+1} + \mathcal{H}^*w^{k+1} - c\|^2) < \infty$ , the following results hold:

- c||<sup>2</sup>) $<\infty$ , the following results hold: (i) The sequence  $\{\|x_e^{k+1}\|^2 + \|z_e^{k+1}\|_{(\sigma^{-1}\Sigma_g + \mathcal{T}_g + \mathcal{GG}^*)}^2 + \|y_e^{k+1}\|_{(\sigma^{-1}\Sigma_f + \mathcal{T}_f + \mathcal{FF}^*)}^2\}$  is bounded.
  - (ii) If  $(y^{\infty}, z^{\infty}, w^{\infty}, x^{\infty})$  is an accumulation point of  $\{(y^k, z^k, w^k, x^k)\}$ , then  $(y^{\infty}, z^{\infty}, w^{\infty})$  solves (3.1) and  $x^{\infty}$  solves (3.3), respectively, and it holds that

$$\lim_{k \to \infty} \left( \|x_e^{k+1}\|^2 + \|z_e^{k+1}\|_{(\sigma^{-1}\Sigma_g + \mathcal{T}_g + \mathcal{GG}^*)}^2 + \|y_e^{k+1}\|_{(\sigma^{-1}\Sigma_f + \mathcal{T}_f + \mathcal{FF}^*)}^2 \right) = 0,$$

where in the definition of  $(y_e^k, z_e^k, w_e^k, x_e^k)$ , the point  $(\bar{y}, \bar{z}, \bar{w}, \bar{x})$  is replaced by  $(y^{\infty}, z^{\infty}, w^{\infty}, x^{\infty})$ .

- (iii) If both  $\sigma^{-1}\Sigma_f + \mathcal{T}_f + \mathcal{F}\mathcal{F}^*$  and  $\sigma^{-1}\Sigma_g + \mathcal{T}_g + \mathcal{G}\mathcal{G}^*$  are positive definite, then the sequence  $\{(y^k, z^k, w^k, x^k)\}$ , which is automatically well defined, converges to a unique limit, say,  $(y^{\infty}, z^{\infty}, w^{\infty}, x^{\infty})$  with  $(y^{\infty}, z^{\infty}, w^{\infty})$  solving (3.1) and  $x^{\infty}$  solving (3.3), respectively.
- (iv) When the the z-part disappears, the corresponding results in parts (i)–(iii) hold for any  $\tau \in (0,2)$  or  $\tau \geq 2$  but  $\sum_{k=0}^{\infty} \|\mathcal{F}^*y^{k+1} + \mathcal{H}^*w^{k+1} c\|^2 < \infty$ .

*Proof.* By combing Theorem 2.2 with Proposition 3.2 and using the relation (3.7), we can readily obtain the conclusions of this theorem.

Remark 3.4. The main idea for proving the convergence of Algorithm sPADMM3c is via showing that Algorithm sPADMM3c is equivalent to Algorithm sPADMM2s, which is obtained by applying Algorithm sPADMM2 to the problem (3.8) using two special semiproximal terms  $S = \mathcal{FPF}^* + \mathcal{T}_f$  and  $\mathcal{T} = \mathcal{GPG}^* + \mathcal{T}_g$  in Step 1 and Step 2, respectively. This simple discovery of the equivalence of Algorithm sPADMM3c for solving (3.1) and Algorithm sPADMM2s for solving its equivalent problem (3.8) is significant since on the one hand, it settles the convergence of Algorithm sPADMM3c by using known convergence results for Algorithm sPADMM2s, and on the other hand, it allows one to take advantage of the extremely simple structure of Algorithm sPADMM3c in searching for an efficient implementation for solving convex conic programming. Note that one cannot even prove the convergence of Algorithm ADMM3c (without the two semiproximal terms  $\mathcal{T}_f$  and  $\mathcal{T}_g$ ) by directly applying the classic 2-block ADMM to (3.8). Actually, since neither  $\mathcal{QF}^*$  nor  $\mathcal{QG}^*$  is injective, one cannot use the classic 2-block ADMM to solve (3.8) at all unless additional conditions on f and g are imposed.

**3.2. Extensions.** In this subsection, we first consider the 3-block convex optimization problem (3.1), i.e.,

$$\min \{ f(y) + g(z) + h(w) \mid \mathcal{F}^*y + \mathcal{G}^*z + \mathcal{H}^*w = c \}$$

for the case where at least one of the three functions f, g, and h is partially linear. Without loss of generality, we assume that  $h: \mathcal{W} \equiv \mathcal{W}_I \times \mathcal{W}_E \to (-\infty, \infty]$  is of the partial linear structure

$$h(w) = \theta(w_I) - \langle b, w \rangle = \theta(w_I) - \langle b_I, w_I \rangle - \langle b_E, w_E \rangle \quad \forall w \equiv (w_I, w_E) \in \mathcal{W}_I \times \mathcal{W}_E,$$

where  $b \equiv (b_I, b_E) \in \mathcal{W}_I \times \mathcal{W}_E$  is a given vector and  $\theta : \mathcal{W}_I \to (-\infty, \infty]$  is a closed proper nonlinear convex function. Decompose  $\mathcal{H} \equiv \mathcal{H}_I \times \mathcal{H}_E$  such that for any  $x \in \mathcal{X}$ ,

$$\begin{pmatrix} \mathcal{H}_I x \\ \mathcal{H}_E x \end{pmatrix} \equiv \mathcal{H} x = \mathcal{H}_I x \times \mathcal{H}_E x \in \mathcal{W}_I \times \mathcal{W}_E.$$

Again, by removing redundancy in  $\mathcal{H}$  if necessary, we assume that  $\mathcal{H}_E\mathcal{H}_E^*$  is invertible, i.e.,  $\mathcal{H}_E$  is surjective. We also assume that the Cholesky factorization of  $\mathcal{H}_E\mathcal{H}_E^*$  can be computed at a moderate cost. In order to apply our proposed convergent 3-block semiproximal ADMM to solve

(3.12) 
$$\min \{ f(y) + g(z) + h(w) \mid \mathcal{F}^* y + \mathcal{G}^* z + \mathcal{H}_I^* w_I + \mathcal{H}_E^* w_E = c \},$$

we need to convert it into the form of problem (3.1) with h being linear. For this purpose, we define  $\mathcal{H}_3: \mathcal{W} \to \mathcal{X} \times \mathcal{W}_I$  to be the following linear map:

$$\mathcal{H}_3^* w := \begin{pmatrix} \mathcal{H}_I^* w_I + \mathcal{H}_E^* w_E \\ -\mathcal{D}_I^* w_I \end{pmatrix} \quad \forall \, w \in \mathcal{W},$$

where  $\mathcal{D}_I: \mathcal{W}_I \to \mathcal{W}_I$  is a particularly chosen nonsingular linear operator, e.g., the identity operator  $\mathcal{I}: \mathcal{W}_I \to \mathcal{W}_I$ , and  $\mathcal{D}_I^*$  is the adjoint of  $\mathcal{D}_I$ .

We consider the following two cases.

Case 1. The inverse of  $\mathcal{H}_3\mathcal{H}_3^*$  can be computed at a moderate cost.

By introducing a slack variable  $\eta \in \mathcal{W}_I$ , we can rewrite (3.12) as

$$\min\left\{f(y) + g(z) + \theta(w_I) - \langle b, w \rangle \mid \mathcal{F}^*y + \mathcal{G}^*z + \mathcal{H}_I^*w_I + \mathcal{H}_E^*w_E = c, \, \mathcal{D}_I^*(\eta - w_I) = 0\right\},\,$$

which can then be cast into the form of problem (3.1) as follows:

$$(3.13) \quad \min \left\{ \left( f(y) + \theta(\eta) \right) + g(z) - \langle b, w \rangle \mid \begin{pmatrix} \mathcal{F}^* y \\ \mathcal{D}_1^* \eta \end{pmatrix} + \begin{pmatrix} \mathcal{G}^* z \\ 0 \end{pmatrix} + \mathcal{H}_3^* w = \begin{pmatrix} c \\ 0 \end{pmatrix} \right\}.$$

The convergent 3-block sPADMM discussed in section 3.1 for solving problem (3.1) can then be applied to problem (3.13) in a straightforward way.

Case 2. The inverse of  $\mathcal{H}_3\mathcal{H}_3^*$  cannot be computed at a moderate cost.

Let  $\mathcal{D}: \mathcal{X} \to \mathcal{X}$  be a given nonsingular linear operator and  $\mathcal{D}^*$  be its adjoint. We assume that  $\mathcal{D}$  is chosen in such a way that the inverse of  $\mathcal{I} + \mathcal{D}\mathcal{D}^*$  can be computed explicitly with low costs (e.g.,  $\mathcal{D} = 5\mathcal{I}$ ). By introducing a slack variable  $s \in \mathcal{X}$ , we can rewrite (3.12) as

$$\min \{ f(y) + g(z) + \theta(w_I) - \langle b, w \rangle \mid \mathcal{F}^* y + \mathcal{G}^* z + s + \mathcal{H}_E^* w_E = c, \ \mathcal{D}^* (\mathcal{H}_I^* w_I - s) = 0 \},$$

which can then be recast in the form of (3.1) as follows:

(3.14) 
$$\min \quad \left( f(y) + \tilde{\theta}(w_I) \right) + g(z) - \langle b_E, w_E \rangle$$

$$\text{s.t.} \quad \left( \frac{\mathcal{F}^* y}{\mathcal{D}^* \mathcal{H}_I^* w_I} \right) + \left( \frac{\mathcal{G}^* z}{0} \right) + \mathcal{B}^* (s, w_E) = \begin{pmatrix} c \\ 0 \end{pmatrix},$$

where the convex function  $\tilde{\theta}(\cdot) \equiv \theta(\cdot) - \langle b_I, \cdot \rangle$  and the linear map  $\mathcal{B}: \mathcal{X} \times \mathcal{W}_E \to \mathcal{X} \times \mathcal{X}$  is defined by

$$\mathcal{B}^*(s, w_E) := \begin{pmatrix} s + \mathcal{H}_E^* w_E \\ -\mathcal{D}^* s \end{pmatrix} \quad \forall \, (s, w_E) \in \mathcal{X} \times \mathcal{W}_E.$$

As in Case 1, we can apply the convergent 3-block sPADMM discussed in section 3.1 to problem (3.14) in a straightforward way as now the inverse of  $\mathcal{BB}^*$  can be computed based on  $(\mathcal{I} + \mathcal{DD}^*)^{-1}$  and the inverse of  $\mathcal{H}_E(\mathcal{I} - (\mathcal{I} + \mathcal{DD}^*)^{-1})\mathcal{H}_E^*$ . In our numerical experiments in section 5, we choose  $\mathcal{D} = \alpha \mathcal{I}$  for some  $\alpha \in [3, 6]$ , and  $\alpha$  is dynamically adjusted according to the progress of the algorithm.

Though not the focus of this paper, here we will also briefly explain how to extend our convergent semiproximal ADMM to deal with the general q-block convex optimization problem (1.1):

$$\min\left\{\sum\nolimits_{i=1}^q \theta_i(w_i) \mid \sum\nolimits_{i=1}^q \mathcal{B}_i^* w_i = c\right\}.$$

For any  $i \geq 3$ , let  $\mathcal{D}_i : \mathcal{X} \to \mathcal{X}$  be a given nonsingular linear operator and  $\mathcal{D}_i^*$  be its adjoint. By introducing slack variables  $s_i \in \mathcal{X}$ ,  $i = 3, \ldots, q$ , we can then rewrite (1.1) equivalently as

(3.15) 
$$\min \left\{ \sum_{i=1}^{q} \theta_i(w_i) \mid \mathcal{B}_1^* w_1 + \mathcal{B}_2^* w_2 + s_3 + \dots + s_q = c, \ \mathcal{D}_i^* (\mathcal{B}_i^* w_i - s_i) = 0, \ i = 3, \dots, q \right\}.$$

Let  $l := \lfloor q/2 \rfloor$  be the largest integer that is smaller than or equal to q/2. Define  $h(s_3, \ldots, s_q) \equiv 0$ ,

$$f(w_1, w_3, \dots, w_{l+1}) = \theta_1(w_1) + \sum_{i=3}^{l+1} \theta_i(w_i), \quad g(w_2, w_{l+2}, \dots, w_q) = \theta(w_2) + \sum_{i=l+2}^{q} \theta_i(w_i),$$

$$\mathcal{F}^{*}(w_{1}, w_{3}, \dots, w_{l+1}) = \begin{pmatrix} \mathcal{B}_{1}^{*}w_{1} \\ \mathcal{D}_{3}^{*}\mathcal{B}_{3}^{*}w_{3} \\ \vdots \\ \mathcal{D}_{l+1}^{*}\mathcal{B}_{l+1}^{*}w_{l+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathcal{G}^{*}(w_{2}, w_{l+2}, \dots, w_{q}) = \begin{pmatrix} \mathcal{B}_{2}^{*}w_{2} \\ 0 \\ \vdots \\ 0 \\ \mathcal{D}_{l+2}^{*}\mathcal{B}_{l+2}^{*}w_{l+2} \\ \vdots \\ \mathcal{D}_{q}^{*}\mathcal{B}_{q}^{*}w_{q} \end{pmatrix}$$

for any  $w_i \in \mathcal{W}_i$ , i = 1, ..., q, and  $s_j \in \mathcal{X}$ , j = 3, ..., q. Then it is easy to see that (3.15) is in the form of (3.1) with

$$\mathcal{H}^*(s_3,\ldots,s_q) = \begin{pmatrix} s_3 + \cdots + s_q \\ -\mathcal{D}_3^* s_3 \\ \vdots \\ -\mathcal{D}_q^* s_q \end{pmatrix}.$$

Note that we have

$$\mathcal{H}\mathcal{H}^* = \begin{pmatrix} \mathcal{D}_3 \mathcal{D}_3^* & & \\ & \ddots & \\ & & \mathcal{D}_q \mathcal{D}_q^* \end{pmatrix} + \begin{pmatrix} \mathcal{I} \\ \vdots \\ \mathcal{I} \end{pmatrix} \begin{pmatrix} \mathcal{I} \\ \vdots \\ \mathcal{I} \end{pmatrix}^*.$$

Thus, if for each  $i \in \{3, ..., q\}$ ,  $\mathcal{D}_i$  is chosen such that  $\mathcal{D}_i \mathcal{D}_i^*$  can be inverted easily, e.g.,  $\mathcal{D}_i = \alpha \mathcal{I}$  for some  $\alpha > 0$ , then we can compute the inverse of  $\mathcal{HH}^*$  analytically via the Sherman–Morrison–Woodbury formula if  $\mathcal{I} + \sum_{i=3}^{q} (\mathcal{D}_i \mathcal{D}_i^*)^{-1}$  is also easy to invert. In this way, our convergent 3-block semiproximal ADMM discussed in section 3.1 can then be applied to problem (3.15) directly.

- 4. Applications to conic programming. In this section, we show how to apply our convergent 3-block sPADMM to solve conic programming (P) and its dual (D). Here we always assume that  $\mathcal{A}_E \mathcal{A}_E^*$  is invertible and its Cholesky factorization can be computed at a moderate cost.
- 4.1. The case where  $m_I = 0$ . In this subsection, we show how our convergent ADMM3c can be used to solve conic programming (P) without the inequality constraints  $A_I x_I \ge b_I$ . In this case, the conic programming (P) reduces to

(4.1) 
$$\max \{ \langle -c, x \rangle \mid A_E x = b_E, \ x \in \mathcal{K}, \ x \in \mathcal{K}_p \}$$

with its dual taking the form of

(4.2) 
$$\min \left\{ \delta_{\mathcal{K}^*}(s) + \delta_{\mathcal{K}^*_p}(z) - \langle b_E, y_E \rangle \mid s + z + \mathcal{A}^*_E y_E = c \right\}.$$

For problem (4.2), instead of using the constraint qualification imposed in Assumption 3.1, we will use the following more familiar one in the conic programming field.

Assumption 4.1. (a) For problem (4.1), there exists a feasible solution  $\hat{x} \in \mathcal{K}$  such that

$$\mathcal{A}_E \hat{x} = b_E, \ \hat{x} \in \text{int}(\mathcal{K}), \ \hat{x} \in \mathcal{K}_p.$$

(b) For problem (4.2), there exists a feasible solution  $(\hat{s}, \hat{z}, \hat{y}_E) \in \mathcal{K}^* \times \mathcal{X} \times \Re^{m_E}$  such that

$$\hat{s} + \hat{z} + \mathcal{A}_E^* \hat{y}_E = c, \ \hat{s} \in \text{int}(\mathcal{K}^*), \ \hat{z} \in \mathcal{K}_p^*.$$

It is known from convex analysis (e.g., [1, Corollary 5.3.6]) that under Assumption 4.1, the strong duality for (4.1) and (4.2) holds and the following Karush–Kuhn–Tucker (KKT) condition has nonempty solutions:

(4.3) 
$$\begin{cases} \mathcal{A}_E x - b_E = 0, \quad s + z + \mathcal{A}_E^* y_E - c = 0, \\ \langle x, s \rangle = 0, \ x \in \mathcal{K}, \ s \in \mathcal{K}^*, \ \langle x, z \rangle = 0, \ x \in \mathcal{K}_p, \ z \in \mathcal{K}_p^*. \end{cases}$$

Let  $\sigma > 0$  be given. The augmented Lagrange function for (4.2) is defined by

$$L_{\sigma}(s, z, y_E; x) := \delta_{\mathcal{K}^*}(s) + \delta_{\mathcal{K}^*_p}(z) + \langle -b_E, y_E \rangle + \langle x, s + z + \mathcal{A}^*_E y_E - c \rangle$$

$$(4.4) + \frac{\sigma}{2} ||s + z + \mathcal{A}_E^* y_E - c||^2,$$

where  $(s, z, y_E, x) \in \mathcal{X} \times \mathcal{X} \times \Re^{m_E} \times \mathcal{X}$ .

We can apply our convergent 3-block ADMM (without the proximal terms) to problem (4.2) to obtain the following algorithm.

Algorithm Conic-ADMM3c: A convergent 3-block ADMM for solving (4.2).

Given parameters  $\sigma > 0$  and  $\tau \in (0, \infty)$ . Choose  $s^0 \in \mathcal{K}^*$ ,  $z^0 \in \mathcal{K}_p^*$ ,  $x^0 \in \mathcal{X}$  such that  $\mathcal{A}_E x^0 = b_E$ . Set  $y_E^0 = (\mathcal{A}_E \mathcal{A}_E^*)^{-1} \mathcal{A}_E (c - s^0 - z^0)$ . Perform the kth iteration as follows:

Step 1. Compute 
$$s^{k+1} = \arg\min L_{\sigma}(s, z^k, y_E^k; x^k) = \prod_{\mathcal{K}^*} (c - z^k - \mathcal{A}_E^* y_E^k - \sigma^{-1} x^k)$$
.

Step 2. Compute  $y_E^{k+\frac{1}{2}} = \arg\min L_{\sigma}(s^{k+1}, z^k, y_E; x^k) = (\mathcal{A}_E \mathcal{A}_E^*)^{-1} \mathcal{A}_E(c - s^{k+1} - z^k)$  and

$$z^{k+1} = \arg\min L_{\sigma}(s^{k+1}, z, y_E^{k+\frac{1}{2}}; x^k) = \prod_{\mathcal{K}_p^*} \left( c - s^{k+1} - \mathcal{A}_E^* y_E^{k+\frac{1}{2}} - \sigma^{-1} x^k \right)$$

Step 3. Compute  $y_E^{k+1} = \arg\min L_{\sigma}(s^{k+1}, z^{k+1}, y_E; x^k) = (\mathcal{A}_E \mathcal{A}_E^*)^{-1} \mathcal{A}_E(c - s^{k+1} - z^{k+1})$ .

Step 4. Compute 
$$x^{k+1} = x^k + \tau \sigma(s^{k+1} + z^{k+1} + \mathcal{A}_E^* y_E^{k+1} - c)$$
.

The following convergence results for Algorithm Conic-ADMM3c for solving problem (4.2) can be derived directly from Theorem 3.3.

Theorem 4.2. Suppose that Assumption 4.1 holds and that  $\mathcal{A}_E$  is surjective. Then the sequence  $\{(s^k, z^k, y_E^k, x^k)\}$  generated by Algorithm Conic-ADMM3c is well defined. Furthermore, under the condition that either (a)  $\tau \in (0, (1+\sqrt{5})/2)$  or (b)  $\tau \geq (1+\sqrt{5})/2$  but  $\sum_{k=0}^{\infty} (\|(z^{k+1}-z^k)+\mathcal{A}_E^*(y_E^{k+1}-y_E^{k+\frac{1}{2}})\|^2+\tau^{-1}\|s^{k+1}+z^{k+1}+\mathcal{A}_E^*y_E^{k+1}-c\|^2) < \infty$ , it holds that

- (i) the sequence  $\{(s^k, z^k, y_E^k, x^k)\}$  converges to a unique limit, say,  $(s^{\infty}, z^{\infty}, y_E^{\infty}, x^{\infty})$  satisfying the KKT condition (4.3);
- (ii) when  $K_p = \mathcal{X}$ , i.e., the z-part disappears, the corresponding result in part (i) holds for any  $\tau \in (0,2)$  or  $\tau \geq 2$  but  $\sum_{k=0}^{\infty} \|s^{k+1} + \mathcal{A}_E^* y_E^{k+1} c\|^2 < \infty$ .
- **4.2.** The case where  $m_I > 0$ . Here we consider conic programming problem (P) with inequality constraints, i.e.,

(4.5) 
$$\max \{ \langle -c, x \rangle \mid \mathcal{A}_E x = b_E, \ \mathcal{A}_I x \ge b_I, \ x \in \mathcal{K}, \ x \in \mathcal{K}_p \}.$$

If  $m_I$ , the number of inequality constraints  $A_I x \geq b_I$ , is relatively small, we can introduce a slack variable to convert (4.5) into the form of problem (4.1) with three blocks of constraints and then apply Algorithm Conic-ADMM3c introduced in section 4.1 to solve it. We omit the details here.

Next, we consider the case where  $m_I$  is large. The dual of (4.5) is given by

$$(4.6) \quad \min \left\{ \delta_{\mathcal{K}^*}(s) + \delta_{\Re^{m_I}_{\perp}}(y_I) + \delta_{\mathcal{K}^*_p}(z) - \langle b, y \rangle \mid s + \mathcal{A}_I^* y_I + z + \mathcal{A}_E^* y_E = c \right\}.$$

Let  $\mathcal{D}: \mathcal{X} \to \mathcal{X}$  be a given nonsingular linear operator and  $\mathcal{D}^*$  be its adjoint. In this case, we can rewrite (4.6) equivalently as

(4.7) 
$$\min \left\{ \delta_{\mathcal{K}^*}(s) + \delta_{\Re_+^{m_I}}(y_I) + \delta_{\mathcal{K}_p^*}(u) - \langle b, y \rangle \mid s + \mathcal{A}_I^* y_I + z + \mathcal{A}_E^* y_E = c, \ \mathcal{D}^*(u - z) = 0 \right\}.$$

Define  $\mathcal{B}: \mathcal{X} \times \Re^{m_E} \to \mathcal{X} \times \mathcal{X}$  to be the linear map whose adjoint  $\mathcal{B}^*$  satisfies

$$\mathcal{B}^*(z, y_E) = \begin{pmatrix} z + \mathcal{A}_E^* y_E \\ -\mathcal{D}^* z \end{pmatrix}.$$

Then problem (4.7) can be reformulated as

$$(4.8) \quad \min \left\{ f(s, u) + g(y_I) + h(z, y_E) \mid \begin{pmatrix} s \\ \mathcal{D}^* u \end{pmatrix} + \begin{pmatrix} \mathcal{A}_I^* y_I \\ 0 \end{pmatrix} + \mathcal{B}^*(z, y_E) = \begin{pmatrix} c \\ 0 \end{pmatrix} \right\},$$

where

$$f(s,u) := \delta_{\mathcal{K}^*}(s) + \delta_{\mathcal{K}^*_p}(u), \quad g(y_I) := \delta_{\Re^{m_I}_+}(y_I) - \langle b_I, y_I \rangle, \quad h(z,y_E) := -\langle b_E, y_E \rangle$$

for any  $(s, u) \in \mathcal{X} \times \mathcal{X}$ ,  $y_I \in \Re^{m_I}$  and  $(z, y_E) \in \mathcal{X} \times \Re^{m_E}$ . Note that since

$$\mathcal{BB}^* = egin{pmatrix} \mathcal{I} + \mathcal{DD}^* & \mathcal{A}_E^* \ \mathcal{A}_E & \mathcal{A}_E \mathcal{A}_E^* \end{pmatrix}$$

and the inverse of  $\mathcal{A}_E \mathcal{A}_E^*$  is assumed to be computable at a moderate cost, the inverse of  $\mathcal{B}\mathcal{B}^*$  can also be computed based on  $(\mathcal{I} + \mathcal{D}\mathcal{D}^*)^{-1}$  and the inverse of  $\mathcal{A}_E(\mathcal{I} - (\mathcal{I} + \mathcal{D}\mathcal{D}^*)^{-1})\mathcal{A}_E^*$ . For example, if  $\mathcal{D}$  is a simple nonsingular matrix (e.g.,  $\mathcal{D} = \alpha \mathcal{I}$  for some  $\alpha > 0$ ), then the inverse of  $\mathcal{B}\mathcal{B}^*$  can be computed at a low cost once the inverse of  $\mathcal{A}_E \mathcal{A}_E^*$  is available. Let  $\rho_{\text{max}}$  be the largest eigenvalue of the self-adjoint positive semidefinite operator  $A_I \mathcal{A}_I^*$ . Then we can apply our convergent Algorithm sPADMM3c given in section 3.1 directly to problem (4.8) by defining

$$\mathcal{T}_f \equiv 0$$
 and  $\mathcal{T}_g \equiv \rho_{\text{max}} \mathcal{I} - \mathcal{A}_I \mathcal{A}_I^*$ 

to obtain a convergent 3-block sPADMM, denoted by Conic-sPADMM3c, for solving conic programming (P). The motivation for choosing the specific positive semidefinite linear operator  $\mathcal{T}_g$  above is to make the computation of  $y_I^{k+1}$  simple. As before, the convergence analysis for Algorithm Conic-sPADMM3c can be analyzed similarly as in Theorem 4.2. For simplicity, we omit the details here.

- 5. Numerical experiments for SDP. In the last section, we have shown how our proposed convergent 3-block sPADMM for solving the convex optimization problem (3.1) can be used to solve (P) with/without the inequality constraints. In this section, we use (SDP) problems as our test examples. We separate our test examples into two groups. The first group is for DNN-SDP without the inequality constraints  $A_I x_I \geq b_I$ . In the second group, we consider SDP problems arising from relaxation of binary integer quadratic (BIQ) programming problems with a large number of inequality constraints  $A_I x_I \geq b_I$ .
  - 5.1. Numerical results for DNN-SDP. The DNN-SDP takes the form of

(5.1) 
$$(DNN-SDP) \max \{ \langle -C, X \rangle \mid A_E X = b_E, X \in \mathcal{S}_+^n, X \in \mathcal{K}_p \},$$

whose dual can be written as

(5.2) 
$$\min \left\{ \delta_{\mathcal{S}_{+}^{n}}(S) + \delta_{\mathcal{K}_{p}^{*}}(Z) - \langle b_{E}, y_{E} \rangle \mid S + Z + \mathcal{A}_{E}^{*} y_{E} = C \right\}.$$

Obviously, our proposed Algorithm Conic-ADMM3c given in section 4.1 for solving problem (4.2) can be applied to problem (5.2) directly.

- **5.1.1. DNN-SDP problem sets.** In our numerical experiments, we test the following classes of DNN-SDP problems:
  - (i) DNN-SDP problems arising from the relaxation of a binary integer nonconvex quadratic (BIQ) programming:

(5.3) 
$$\min \left\{ \frac{1}{2} x^T Q x + \langle c, x \rangle \mid x \in \{0, 1\}^{n-1} \right\}.$$

It has been shown in [2] that under some mild assumptions, this problem can equivalently be reformulated as the following completely positive programming (CPP) problem:

(5.4) 
$$\min \left\{ \frac{1}{2} \langle Q, Y \rangle + \langle c, x \rangle \mid \operatorname{diag}(Y) = x, X = [Y, x; x^T, 1] \in \mathcal{C}_{pp}^n \right\},$$

where  $C_{pp}^n$  denotes the *n*-dimensional completely positive cone. It is well known that even though  $C_{pp}^n$  is convex, it is computationally intractable. To solve the CPP problem, one would typically relax  $C_{pp}^n$  to  $S_+^n \cap \mathcal{K}_{\mathcal{P}}$ , and the relaxed problem has the form of (SDP):

$$\begin{array}{ll}
\min & \frac{1}{2}\langle Q, Y \rangle + \langle c, x \rangle \\
\text{(5.5)} & \text{s.t.} & \operatorname{diag}(Y) - x = 0, \quad \alpha = 1, \quad X = \begin{bmatrix} Y & x \\ x^T & \alpha \end{bmatrix} \in \mathcal{S}^n_+, \quad X \in \mathcal{K}_{\mathcal{P}},
\end{array}$$

where the polyhedral cone  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^n \mid X \geq 0\}$ . In our numerical experiments, the test data for Q and c are taken from the Biq Mac Library maintained by Angelika Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html.

(ii) DNN-SDP problems arising from the relaxation of maximum stable set problems. Given a graph G with edge set  $\mathcal{E}$ , the SDP relaxation  $\theta_+(G)$  of the maximum stable set problem is given by

(5.6) 
$$\theta_{+}(G) = \max\{\langle ee^{T}, X \rangle \mid \langle E_{ij}, X \rangle = 0, (i, j) \in \mathcal{E}, \langle I, X \rangle = 1, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{K}_{\mathcal{P}}\},$$

where  $E_{ij} = e_i e_j^{\mathrm{T}} + e_j e_i^{\mathrm{T}}$  and  $e_i$  denotes the *i*th column of the  $n \times n$  identity matrix, and  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^n \mid X \geq 0\}$ . In our numerical experiments, we test the graph instances G considered in [36], [38], and [39].

(iii) DNN-SDP problems arising from computing lower bounds for quadratic assignment problems (QAPs). Let  $\Pi$  be the set of  $n \times n$  permutation matrices. Given matrices  $A, B \in \mathcal{S}^n$ , the QAP is given by

(5.7) 
$$\bar{v}_{QAP} := \min\{\langle X, AXB \rangle : X \in \Pi\}.$$

For a matrix  $X = [x_1, \ldots, x_n] \in \Re^{n \times n}$ , we will identify it with the  $n^2$ -vector  $x = [x_1; \ldots; x_n]$ . For a matrix  $Y \in R^{n^2 \times n^2}$ , we let  $Y^{ij}$  be the  $n \times n$  block corresponding to  $x_i x_j^T$  in the  $n^2 \times n^2$  matrix  $x x^T$ . It is shown in [30] that  $\bar{v}_{\text{QAP}}$  is bounded below by the following number generated from the SDP relaxation of (5.7):

(5.8) 
$$v := \min \quad \langle B \otimes A, Y \rangle$$

$$\text{s.t.} \quad \sum_{i=1}^{n} Y^{ii} = I, \quad \langle I, Y^{ij} \rangle = \delta_{ij} \quad \forall 1 \le i \le j \le n,$$

$$\langle E, Y^{ij} \rangle = 1 \quad \forall 1 \le i \le j \le n,$$

$$Y \in \mathcal{S}_{+}^{n^{2}}, \ Y \in \mathcal{K}_{\mathcal{P}},$$

where E is the matrix of ones, and  $\delta_{ij} = 1$  if i = j, and 0 otherwise,  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^{n^2} \mid X \geq 0\}$ . In our numerical experiments, the test instances (A, B) are taken from the QAP library [15].

(iv) DNN-SDP relaxation of clustering problems (RCPs) described in [29, eq. (13)]:

(5.9) 
$$\min \left\{ \langle W, I - X \rangle \mid Xe = e, \langle I, X \rangle = K, X \in \mathcal{S}_{+}^{n}, X \in \mathcal{K}_{\mathcal{P}} \right\},$$

where W is the so-called affinity matrix whose entries represent the pairwise similarities of the objects in the data set, e is the vector of ones, and K is the number of clusters,  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^n \mid X \geq 0\}$ . All the data sets we test are from the UCI Machine Learning Repository (available at http://archive.ics.uci.edu/ml/datasets.html). For some large-size data sets, we only select the first n rows. For example, the original data set spambase has 4601 rows and we select the first 1500 rows to obtain the test problem spambase-large.2 for which the number 2 means that there are K=2 clusters.

(v) DNN-SDP problems arising from semidefinite relaxation of frequency assignment problems (FAPs) [8]. Given a network represented by a graph G and an edge-weight matrix W, a certain type of FAP on G can be relaxed into the following SDP (see [3, eq. (5)]):

(5.10) 
$$\max \quad \langle (\frac{k-1}{2k})L(G,W) - \frac{1}{2}\operatorname{Diag}(We), X \rangle$$
s.t. 
$$\operatorname{diag}(X) = e, \quad X \in \mathcal{S}^n_+,$$

$$\langle -E^{ij}, X \rangle = 2/(k-1) \quad \forall (i,j) \in U \subseteq E,$$

$$\langle -E^{ij}, X \rangle \leq 2/(k-1) \quad \forall (i,j) \in E \setminus U,$$

where k > 1 is an integer, L(G, W); = Diag(We) - W is the Laplacian matrix,  $E^{ij} = e_i e_j^T + e_j e_i^T$  with  $e_i \in \Re^n$  the vector with all zeros except in the *i*th position, and  $e \in \Re^n$  is the vector of ones. Denote

$$M_{ij} = \begin{cases} -\frac{1}{k-1} & \forall (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Then (5.10) is equivalent to

(5.11) 
$$\max \quad \langle (\frac{k-1}{2k})L(G,W) - \frac{1}{2}\operatorname{Diag}(We), X \rangle$$
s.t. 
$$\operatorname{diag}(X) = e, \ X \in \mathcal{S}_{+}^{n}, \ X - M \in \mathcal{K}_{\mathcal{P}},$$

where  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^n \mid X_{ij} = 0, \forall (i,j) \in U; X_{ij} \geq 0, \forall (i,j) \in E \setminus U\}$ . We should mention that we can easily extend our algorithm to handle the following slightly more general DNN-SDP:

$$\max\left\{\left\langle -C,X\right\rangle \mid \mathcal{A}_{E}X=b_{E},\ X\in\mathcal{S}_{+}^{n},\ X-M\in\mathcal{K}_{p}\right\},\right.$$

where  $M \in \mathcal{S}^n$  is a given matrix. Thus (5.11) can also be solved by our proposed algorithm.

**5.1.2.** Numerical results. For large-scale DNN-SDP problems, there exist two other competitive codes in the literature that are based on alternating direction algorithms: a directly extended ADMM solver (called SDPAD in [43]) and a two-easy-block-decomposition hybrid proximal extragradient method solver (called 2EBD-HPE in [25], but we will just call it 2EBD for convenience).

Here we compare our algorithm ADMM3c with SDPAD (release-beta2, released in December 2012) and 2EBD<sup>5</sup> (v0.2, released on May 31, 2013) for solving DNN-SDP. We also include a convergent alternating direction method with a Gaussian back substitution proposed in [18] (we call the method ADMM3g here and use the parameter  $\alpha = 0.999$  in the Gaussian back substitution step<sup>6</sup>). We have implemented both ADMM3c and ADMM3g in MATLAB. The computational results for all the DNN-SDP problems are obtained on a Linux server (6-core, Intel Xeon X5650 @  $2.67\,\mathrm{GHz}$ ,  $32\,\mathrm{G}$  RAM).

We measure the accuracy of an approximate optimal solution  $(X, y_E, S, Z)$  for (5.1) and (5.2) by using the following relative residual:

(5.12) 
$$\eta = \max\{\eta_P, \eta_D, \eta_K, \eta_P, \eta_{K^*}, \eta_{P^*}, \eta_{C_1}, \eta_{C_2}\},$$

where

(5.13)

$$\eta_{P} = \frac{\|A_{E}X - b_{E}\|}{1 + \|b_{E}\|}, \ \eta_{D} = \frac{\|A_{E}^{*}y_{E} + S + Z - C\|}{1 + \|C\|}, \ \eta_{K} = \frac{\|\Pi_{\mathcal{S}_{+}^{n}}(-X)\|}{1 + \|X\|}, \ \eta_{P} = \frac{\|X - \Pi_{\mathcal{K}_{\mathcal{P}}}(X)\|}{1 + \|X\|}, 
\eta_{K^{*}} = \frac{\|\Pi_{\mathcal{S}_{+}^{n}}(-S)\|}{1 + \|S\|}, \ \eta_{P^{*}} = \frac{\|Z - \Pi_{\mathcal{K}_{\mathcal{P}}^{n}}(Z)\|}{1 + \|Z\|}, \ \eta_{C_{1}} = \frac{|\langle X, S \rangle|}{1 + \|X\| + \|S\|}, \ \eta_{C_{2}} = \frac{|\langle X, Z \rangle|}{1 + \|X\| + \|Z\|}.$$

Additionally, we compute the relative gap by

(5.14) 
$$\eta_g = \frac{\langle C, X \rangle - \langle b_E, y_E \rangle}{1 + |\langle C, X \rangle| + |\langle b_E, y_E \rangle|}.$$

We terminate the solvers ADMM3c, ADMM3g, and SDPAD when  $\eta < 10^{-6}$ . Note that, as mentioned in the introduction, the direct extension of ADMM to the case of a multiblock problem is not necessarily convergent [4]. Hence SDPAD, which is essentially an implementation of ADMM3d with  $\tau = 1.618$  for solving DNN-SDP problems, does not have convergence guarantee. For the implementation of 2EBD, we need to explain in more details.

The method 2EBD in [25] is designed to solve a conic optimization problem of the form

(5.15) 
$$\min \Big\{ \langle C, X \rangle \mid \mathcal{A}_1(X) - b_1 \in \mathcal{C}_1, \ \mathcal{A}_2(X) - b_2 \in \mathcal{C}_2 \Big\},$$

where  $b_1 \in W_1$ ,  $b_2 \in W_2$ ,  $C \in \mathcal{X}$  are given data,  $\mathcal{A}_1 : \mathcal{X} \to W_1$ ,  $\mathcal{A}_2 : \mathcal{X} \to W_2$  are given linear maps, and  $\mathcal{C}_1 \in W_1$ ,  $\mathcal{C}_2 \in W_2$  are nonempty closed convex cones. The dual of (5.15) is given by

$$(5.16) \max \Big\{ \langle b_1, w_1 \rangle + \langle b_2, w_2 \rangle \mid \mathcal{A}_1^*(w_1) + \mathcal{A}_2^*(w_2) = C, \ w_1 \in \mathcal{C}_1^*, \ w_2 \in \mathcal{C}_2^* \Big\}.$$

Note that the application of 2EBD to DNN-SDP strongly depends on the possibility of splitting its constraints into two-easy blocks such that the projection problems

 $<sup>^5</sup> www2.isye.gatech.edu/\sim cod3/CamiloOrtiz/Software_files/2EBD-HPE_v0.2/2EBD-HPE_v0.2.zip$ 

<sup>&</sup>lt;sup>6</sup>We avoid taking  $\alpha = 1$  as it leads to slow convergence for quite a number of tested examples.

min  $\left\{\frac{1}{2}||X-X_0||^2 \mid \mathcal{A}_i(X)-b_i \in \mathcal{C}_i\right\}$ , i=1,2, can be computed easily for any given  $X_0$ . The users need to input the algorithms for computing min  $\left\{\frac{1}{2}||X-X_0||^2 \mid \mathcal{A}_i(X)-b_i \in \mathcal{C}_i\right\}$ , i=1,2. For BIQ,  $\theta_+$ , and FAP problems, their constraints can naturally be split into two-easy blocks [25]. For general DNN-SDP problems; however, it may be difficult to split their constraints naturally into two-easy blocks, although one can always reformulate them as SDP problems in the standard form. In our numerical experiments, we use this approach to test QAP and RCP problems as these problems do not appear to have obvious two-easy blocks structures.

For testing 2EDB on DNN-SDP problems, in order to agree with our stopping criterion, given a solution  $(X, w_1, w_2, S, Z)$  for (5.15) and (5.16), where S, Z are the dual variables corresponding to  $X \in \mathcal{S}^n_+$  and  $X \in \mathcal{K}_{\mathcal{P}}$ , respectively, we measure the relative residual as follows:

$$\hat{\eta} = \max\{\eta_P, \eta_D, \eta_K, \eta_P, \eta_{K^*}, \eta_{P^*}, \eta_{C_1}, \eta_{C_2}\},$$

where  $\eta_P = \frac{\|(\Pi_{\mathcal{C}_1^*}(b_1 - \mathcal{A}_1 X), \Pi_{\mathcal{C}_2^*}(b_2 - \mathcal{A}_2 X))\|}{1 + \|(b_1, b_2)\|}$ ,  $\eta_D = \frac{\|\mathcal{A}_1^*(w_1) + \mathcal{A}_2^*(w_2) - C\|}{1 + \|\hat{C}\|}$ , and  $\eta_{\mathcal{K}}, \eta_{\mathcal{P}}, \eta_{\mathcal{K}^*}, \eta_{\mathcal{C}_1}, \eta_{\mathcal{C}_2}$  are defined as in (5.13). We terminate the solver 2EBD when  $\hat{\eta} < 10^{-6}$ . And we measure the relative gap as

(5.18) 
$$\hat{\eta}_g = \frac{\langle C, X \rangle - (\langle b_1, w_1 \rangle + \langle b_2, w_2 \rangle)}{1 + |\langle C, X \rangle| + |\langle b_1, w_1 \rangle + \langle b_2, w_2 \rangle|}$$

We should mention in the implementations of all the solvers, ADMM3c, SDPAD, ADMM3g, and 2EDB, the penalty parameter  $\sigma$  is dynamically adjusted according to the progress of the algorithms. In addition, all the algorithms also adopt some kind of restart strategies to ameliorate slow convergence. The exact details on the adjustment strategies are too tedious to be presented here but it suffices to mention that the key idea is to adjust  $\sigma$  so as to balance the progress of primal feasibilities  $(\eta_P, \eta_K, \eta_P)$  and dual feasibilities  $(\eta_D, \eta_{K^*}, \eta_{P^*})$ . In our numerical experiments, we use the same adjustment strategy for both the solvers ADMM3c and ADMM3g to solve all the tested problems, i.e., we do not change the strategy to maximize the performance of different classes of tested problems. The solver SDPAD also uses a common adjustment strategy, though different from that of ADMM3c and ADMM3g. But 2EDB uses different parameter settings for the adjustment strategy for different classes of tested problems.

Table 1 shows the number of problems that have been successfully solved to the accuracy of  $10^{-6}$  in  $\eta$  or  $\hat{\eta}$  by each of the four solvers ADMM3c, SDPAD, ADMM3g, and 2EBD, with the maximum number of iterations set at 25,000. We can see that ADMM3c solved the most instances to the required accuracy, with SDPAD in the second place, followed by ADMM3g and 2EDB in the third and fourth places, respectively. It is actually quite remarkable that all four solvers are able to solve these large-scale SDP problems to such a good accuracy despite the fact that they are all first order methods.

Table 2 reports detailed numerical results for ADMM3c, SDPAD, 2EBD, and ADMM3g in solving some very-large-scale DNN-SDP problems. The detailed results for all the 414 problems tested can be found at http://www.math.nus.edu.sg/ ~mattohkc/publist.html. Note that we did not list the numerical results for the directly extended ADMM with  $\tau=1$  here as it almost always takes 20% to 50% more time than the one with  $\tau=1.618$ , i.e., SDPAD. From the detailed numerical results, one can observe that ADMM3c is generally the fastest in terms of the computing time, especially when the problem size is large.

Table 1 Numbers of problems which are solved to the accuracy of  $10^{-6}$  in  $\eta$  or  $\hat{\eta}$ .

| Problem set (No.)\solver | ADMM3c | SDPAD | 2EBD | ADMM3g |
|--------------------------|--------|-------|------|--------|
| $\theta_{+} (58)$        | 58     | 58    | 56   | 54     |
| FAP (7)                  | 7      | 7     | 7    | 7      |
| QAP (95)                 | 39     | 30    | 16   | 28     |
| BIQ (134)                | 134    | 134   | 134  | 130    |
| RCP (120)                | 120    | 114   | 109  | 113    |
| Total (414)              | 358    | 343   | 322  | 332    |





Fig. 1. Performance profiles (time) of ADMM3c, SDPAD, ADMM3g and 2EBD.

FIG. 2. Performance profiles (iteration) of ADMM3c, SDPAD, ADMM3g and 2EBD.

Figure 1 shows the performance profiles in terms of computing time for ADMM3c, SDPAD, 2EBD, and ADMM3g for all the tested problems including those problems not listed in Table 2. We recall that a point (x, y) is in the performance profiles curve of a method if and only if it can solve (100y)% of all the tested problems no slower than x times of any other methods. It can be seen that ADMM3c outperforms the three other solvers by a significant margin.

Figure 2 shows the performance profiles in terms of the number of iterations for ADMM3c, SDPAD, 2EBD, and ADMM3g for all the tested problems. We may observe that for the majority of the tested problems, ADMM3c takes the least number of iterations. For the BIQ problems, the solver 2EDB typically takes the least number of iterations. However, as each iteration of 2EDB requires quite a number of intermediate calculations to estimate a step-length to achieve good convergence, the nontrivial overheads incurred often counteract the savings in the number of iterations. As a result, even though the performance profile of 2EDB in terms of the number of iterations dominates that of ADMM3g, its profile in terms of the computing time does not behave similarly.

5.2. Numerical results for SDP with many inequality constraints. In this subsection, we will consider (SDP) with many inequality constraints  $A_I x_I \ge b_I$ . The dual of (SDP) takes the form of

(5.19) 
$$\min \left\{ \delta_{\mathcal{S}_{+}^{n}}(S) + \left( \delta_{\mathfrak{R}_{+}^{m_{I}}}(y_{I}) - \langle b_{I}, y_{I} \rangle \right) + \delta_{\mathcal{K}_{p}^{*}}(Z) - \langle b_{E}, y_{E} \rangle \mid \right. \\ \times \left. S + \mathcal{A}_{I}^{*} y_{I} + Z + \mathcal{A}_{E}^{*} y_{E} = C \right\}.$$

The performance of ADMM3c, SDPAD, ADMM3g, 2EBD on  $\theta_+$ , FAP, QAP, BIQ, and RCP problems (accuracy =  $10^{-6}$ ). In the table, 3c and 3g stand for ADMM3c and ADMM3g, respectively. The computation time is in the format hours: minutes: seconds.

|                                      |                  |               |                |               |                 |                 |               |                 |                 |                  |               |                     |                   |                     | 0               | 5               | ∞               | 8                  | 0               | 2:31:30            | 3:15:11           | 5:49:06           | 7:01                  |                |                   |                  |                            |             | 2              | 5                | 1:40:06             | 0              | 59                   | 16:04:13          | 8:28:46       | 13:50:32           |
|--------------------------------------|------------------|---------------|----------------|---------------|-----------------|-----------------|---------------|-----------------|-----------------|------------------|---------------|---------------------|-------------------|---------------------|-----------------|-----------------|-----------------|--------------------|-----------------|--------------------|-------------------|-------------------|-----------------------|----------------|-------------------|------------------|----------------------------|-------------|----------------|------------------|---------------------|----------------|----------------------|-------------------|---------------|--------------------|
|                                      | 2EBD             | 1:11          | 54             | 49            | 51              | 8   1:52        | 1:26          | 104             | 104             | 3   3:47         | 03            | 92   1              | 31                | 33                  | 21:38   13:00   | $08 \mid 13:15$ | 22   13:28      | $47 \mid 12.58$    | $00 \mid 13:50$ | $6:11:20 \mid 2:5$ | 6:00:51   3:1     | 6:04:31   5:4     | $1:28:08 \mid 1:17:0$ | 8   6:14       | 0   3:08          | 7:59   9:03      | 5:34   6:36   13:05   4:45 | 1:28   4:16 | 46:28   53:12  | $09 \mid 35:35$  | $6.05.36 \mid 1.40$ | 4   7:48:20    | $1:34:09 \mid 24:59$ | 8:02:43   16      | 6:33:13   8:2 | $14:15:48 \mid 13$ |
| Time                                 | 3c SDPAD 3g      | 42   1:34     | 23   36        | 21   32       | 20   36         | 1:11   2:28     | 33   49       | 90   90         | 03   04         | :17   4:43       | 06   04   07  | 45   54   1:20   58 | 14   14   25   31 | 26   35   1:28   33 | _               | 10:11   21:08   | 10:36   21:22   | $10:42 \mid 21:47$ | 10:28   21:00   | _                  | $\vdash$          | _                 | <u> </u>              | 7:01   6:28    |                   |                  | 36   13:0                  | 3:08   1:28 |                | 39:53   30:09    | _                   | 8   13:24      | <u> </u>             | $\vdash$          | -             | _                  |
|                                      | 3c SD            | 45   4        | 23             | 22            | 24              | 1:14   1        | 35            | 03              | 02              | $3.05 \mid 5.17$ | 90            | 45                  | 14                | 92                  | 13:04   10:20   | $12:13 \mid 10$ | $13:24 \mid 10$ | $12.55 \mid 10$    | <u>~</u>        | 52   2:11:03       | 28   2:46:25      | 53   4:48:56      | 38:42   1:26:47       | 5:03   7       | 1:58   3:15       | 5:04   10:15     | 5:34   6:                  | 54   3:     | 32:22   45:21  | 12:54   39       | 8   1:48:31         | 7:19   12:18   | $45.59 \mid 29.02$   | $5 \mid 13.59.49$ | 34   8:47:18  | 13:29:15           |
|                                      |                  |               |                |               |                 |                 |               |                 |                 |                  |               |                     |                   |                     | T               | 13              | 13              | 1;                 | 13              | 1:21:52            | 2:26:28           | 2:49:53           | 38:4                  |                |                   |                  |                            |             | 33             | 1                | 32:08               | :2             | 45                   | 5:47:45           | 4:04:34       | 3:50:16            |
|                                      | BD               | 1.5-6         | 2.2-6          | 2.6-6         | 3.2-6           | 1.3-6           | 9-9-2         | $3 \mid 2.1-6$  | 1.0-5           | 3.4-5            | -3.5-6        | 9-0.8               | 9-1.1-9           | 7.5-7   1.8-6       | 2.0-6           | 1.6-6           | 9-9-11          | 7   1.4-6          | 1.2-6           | 2.6-7              | 2-6.9             | 4.2-6             | 1.3-6                 | 3.3-6          | 9-9.6             | 3.3-6            | 1.6-5                      | 3.0-7       | 4.0-6          | 9-6.2            | 4.2-6               | 7.9-4          | 1.5-5                | 9-2.9             | 9-8.7         | 5.6-6              |
| $\eta_g$                             | D 3g 2F          | 7   7.4-7     | 2-0.6   9      | 7   1.8-7     | 6   4.2-7       | $6 \mid 1.2-6$  | 7   1.4-7     | $6 \mid -1.1-6$ | 3   -1.4-6      | 2-6.7   9        | 1.6-6         | $6 \mid 1.3-6$      | 3   -1.2-6        | _                   | $6 \mid 1.5-6$  | $6 \mid 1.5-6$  | 3   -1.1-6      | 6   7.7-7          | 7   8.3-7       | 2-6.9   2          | 7-6.6             | 3   4.4-6         | -1.7-6                | 6.4-7          | 6-9.7-            | 2-9.9   9        | 3   1.4-5                  |             | 3 2.3-6        | -2.3-9           | 9-8.9               | 1.2-6          | 5 2.3-5              | -2.4-6            | 3   4.2-7     | 3   1.7-6          |
|                                      | 3c SDPAD 3g 2EBD | 7-8.7-   9-7  | -7   2.1-      | -8   5.9-7    | $-8 \mid 1.1-6$ | $-6 \mid 1.0-6$ | -8   5.1-7    | 7   -1.2-6      | $-6 \mid 2.1-6$ | 6   -2.6-6       | 2   9.9-7     | -5   -1.9-6         | -6   1.6-6        | $-7 \mid 1.3-6$     | -6   1.7-6      | $-6 \mid 1.6-6$ | 3   -1.0-6      | -6   -1.0-6        | 6   -9.4-7      | -7   2.6-7         | -7   4.5-7        | $-6 \mid 2.9 - 6$ | 6   4.6-7             | _              | 9-6.8 2-6         | -7   2.5-6       |                            |             | -6   3.4-6     | $9-9.2 \mid 9$   | $-6 \mid 4.5 - 6$   | $6 \mid 2.0-6$ | $-5 \mid 1.0$ -5     | $6 \mid 6.4-6$    | -6   4.8-6    | 5-6   5.5-6        |
|                                      |                  | -2.5-         | 7-0.9-         | -3.0-8        | -9.2-8          | -2.2-6          | 2-0.9-        | 2-6.9-          | -5.3-6          | 9-9.7            | 7-0.2         | -1.2-5              | -1.6-6            | -1.3-7              | -3.1-6          | -2.9-6          | 2.9-6           | -3.2-6             | 2.9-6           | 7 3.7-7            | 4.2-7             | 2.6-6             | 3.1-6                 | L              | -1.1-7            | 9.4-7            | 8.5-6                      | 4.7-6       | 7 1.3-6        | 7 1.3-6          | 7 4.5-6             | 5.4-6          | 7 1.3-               | 7 4.2-6           | 7 1.1-6       | -                  |
|                                      | EBD              | 2-6:6   2     | 7-6.6   7      | 7   9.8-7     | $\vdash$        | 7   9.2-7       | 7-6.6   7     | 7   9.9-7       | 7   8.9-7       | 7   8.8-7        | 7   9.0-7     | 7   8.9-7           | 9.4-7   9.7-7     | 7   9.9-7           | 7-6.6   7       | 7-6.6   7       | 7   9.9-7       | 7   9.9-7          | 7   9.9-7       | 6   9.9-7          | 6   9.9-7         | 2-6.6   9         | 7   9.9-7             | _              | -                 | 7   9.9-7        | -                          | _           | 7   9.9-7      | 7   9.9-7        | 2-6:6   9           | $7 \mid 3.1-5$ | 7   9.9-7            | 7   9.9-7         | 7   9.9-7     | 7-9.9-7            |
| $\eta  \eta  \eta  \eta  \hat{\eta}$ | 3c SDPAD 3g 2EBD | 2-6:6   2-    | 7-7-6   7-7    | 2-6:6   2-    | 7-0.6   7-      | 2-9.6   2-      | 7-6-1 7-1     | 7-2-6   2-7     | 7-5-8   2-7     | 7-8-6   2-8-7    | 7-5.6   2-7   | 2-9.6   2-          |                   | 7-7-8 7-7           | 2-2-6   2-2     | 2-6.6   2-      | 7-8.6   7-      | 7-2-6   2-2        | 7-6.6   2       | -7 2.8-6           | $-7 \mid 3.0 - 6$ | -7   2.7-6        | 2-6.6   2-            | _              | 7-7-9.7-7         | 7-8.8   2-       |                            | _           | -7   9.2-7     | 2-6.6   2-       | -7   1.8-6          | 2-6.6   2-     | 7-7-6   7-7          | 2-6:6   2-        | 7-8.8   7-    | 2-6 6   2-         |
| 7,                                   | 3c SDF           | 8.5-7   9.9-7 | 9.5-7   9.0-7  | 9.2-7   9.8-7 | -               | 7-8.8   2-0.6   | 9.3-7   9.9-7 | 7-6.6   2-8.6   | 4.7-7   9.6-7   | 8.7-7   9.4-7    | 7.8-7   5.5-7 | 9.5-7   9.5-7       | 7-6.6   2-6.8     | 7-6.6   2-6.6       | 9.8-7   9.4-7   | 7-6.6   2-8-6   | 9.5-7   9.4-7   | 7-8.6   2-6.6      | 9.5-7   9.5-7   | 7-6.6   2-6.6      | 9.9-7   9.9-7     | 7-6.6   2-6.6     | 7-6.6   2-2-6         | _              | _                 | _                |                            | _           | 7-6.6   2-6.6  | 2-6-6   2-6-6    | 7-6:6   2-6:6       | 7-6-6   2-2-2  | 9.9-7   9.9-7        | 7-6.6   2-6.6     | _             | 2-66   2-66        |
|                                      |                  | ×.            | .6             | .6            | .6              | .6              | .6            | 9.              | 4.              | ∞.               | 7.            | .6                  | ×.                | 6                   |                 |                 |                 |                    |                 | H                  | H                 | 20623 9.          |                       |                |                   |                  |                            |             |                |                  |                     |                |                      |                   |               |                    |
|                                      | 2EBD             | ⊢             | 2   355        | 9   323       | ⊢               | 8   494         | 7   345       | 2   330         | 9 214           | 1   902          | 7   180       | 1   563             | 8   354           | 1   759             | $2145 \mid 934$ | $2141 \mid 968$ | 2181   966      | 2159   943         | 2154   992      | 25000   9586       | $25000 \mid 12$   | $25000 \mid 20$   | 53   5136             | 75   2634      |                   | $01 \mid 3807$   | $5602 \mid 2173$           | 8   2120    | $01 \mid 3641$ | $53 \mid 2609$   | $25000 \mid 6675$   | 25000          | 1681   10            | 55   8476         | -             | 91   7482          |
| Iteration                            | 3c SDPAD 3g 2EBD | 351   636     | $130 \mid 232$ | 108   199     | ⊢               | 366   648       | 107   197     | 444   472       | 104   179       | 351   871        | 189   297     | 507   691           | 155   268         | 791   1901          | $1147 \mid 21$  | $1144 \mid 21$  | 1185   21       | $1180 \mid 21$     | _               | <u> —</u>          | $14163 \mid 25$   |                   | 542   6253            | 269   2675     | 20   310          | $3340 \mid 3501$ | 701   56                   | 126   728   | 2681   3301    | $2563 \mid 2263$ | 6545   250          | 770   1101     | 1896   6901          | 7277   5255       | 4422   4101   | 7329   8991        |
|                                      | 3c SD            | ⊢             | 157            | 144           | ⊢               | _               |               | 233             | 124             | 9   29           | 232   189     | 461   8             | 171               |                     | 1154   1        |                 | _               |                    | 1186   1        | 6207   10361       | 11463   14.       | 13289   238       | 3262   7542           | $2216 \mid 25$ | 990   1470   3101 | 2494   3340   3  | $2956 \mid 2$              | 490   10    | $2620 \mid 26$ | $1144 \mid 29$   | 2732   65           | 711   77       |                      | $4153 \mid 75$    |               | 2876   73          |
|                                      | $n_s$ ;          | 500;          | :00            | 00;           | 500;            | 90;             | 00;           | 200;            | :99             | 24;              | :99           | 512;                | 00;               | 300;                | 00;             | :00             | 00;             | :00                |                 |                    | 1000; 114         | 1000; $132$       |                       |                |                   |                  |                            |             |                | 24;              | 1024; 2             | 24;            |                      |                   |               | 2048:              |
|                                      | I                |               | ;002 0;        |               |                 |                 | 009 09        |                 | ;0 256;         |                  |               |                     |                   |                     | 0 1000;         | 0 001 0         | 0 1000          | 0 1000             | 0 1000;         |                    |                   |                   |                       | 0 512;         |                   |                  |                            |             |                | 0 1024           |                     | ;0 1024;       |                      | ;0 2048;          |               |                    |
|                                      | $m_E; m$         | 12470;0       | 37467;0        | 62516;0       | 87245;          | 17979;0         | 90020;0       | 18367;0         | 11777;0         | 23041;0          | 16129;0       | 53761;0             | 20078;0           | 33918;0             | 9991;0          | 9991;0          | 9991;0          | 9991;0             | 9991;0          | 5910;0             | 5917;0            | 5915;0            | 5917;0                | 9728;0         | 4033;0            | 3265;0           | 54896;0                    | 6913;0      | 24064;0        | 9601;0           | 7937;0              | 16641;0        | 169163;0             | 58368;0           | 22529;0       | 18945:             |
|                                      | lem              | 310           | 102            | 103           | 104             | з12             | 123           | 00-1            | ng-8-4          | ig-10-2          | g-8-3-4       | g-9-2-6             | 100-1             | 300-1               | 3               | 4               | 5               | 9                  | 2               | 1                  | 2                 | 3                 | 4                     | 512            | 512               | 512              | 512                        | 512         | 024            | 024              | 024                 | 024            | 024                  | 048               | 048           | 048                |
|                                      | problem          | theta1(       | theta102       | theta103      | theta104        | theta12         | theta123      | c-fat200-1      | hamming-8-      | hamming-10-2     | hamming-8-3-4 | hamming-9-5-6       | brock400-1        | p-hat300-1          | G43             | G44             | G45             | G46                | G47             | G51                | G52               | G53               | G54                   | 1dc.512        | 1et.512           | 1tc.512          | 2dc.512                    | 1zc.512     | 1dc.1024       | 1et.1024         | 1tc.1024            | 1zc.1024       | 2dc.102              | 1dc.2048          | 1et.2048      | 1tc.2048           |

Table 2 (cont.).

| 25   27   1:31   42              | 50   1:07   2:25   1:18           | 1:55   3:32   9:19   3:08         | 10:55:33   13:26:47   20:20:27   8:11:50 | 89:33:09                          | 2:05:11   2:07:44   2:02:50   2:38:24 | 2:07:13   1:57:30   1:58:25   2:49:59 | 2:05:11   2:02:35   2:06:14   2:50:08 | 2:02:24   1:51:20   2:05:16   2:53:07 | 2:03:18   2:28:06   2:03:16   2:46:03 | 1:45:08   2:09:11   2:02:20   2:44:28 | 1:29:22   1:57:13   2:00:33   2:46:34 | 1:57:33   2:01:12   1:58:07   2:54:20 | 29:49   43:13   34:51   49:22     | 10:39   45:06   23:16   51:14   | 13:45   26:08   25:54   48:58 | 12:29   50:45   27:27   1:17:44 | 13:52   1:07:51   30:26   1:15:34 | 26:03   2:10:29   1:03:08   2:23:01 | 1:06:25   27:49   1:00:38   2:44:37 | 5:18:19   4:31:51   6:12:17   7:59:47 | 4:58:47   4:00:23   6:01:30   8:01:19 | 9:39   8:01   21:45   25:40       | 16:09   8:32   1:23:01   14:30           | 15:45   8:25   1:19:37   12:57           | 7:14   5:41   33:24   17:19            | <u> </u>                          | 3:45:29   5:11:22   4:22:39   5:42:45 | 3:56:14   5:15:18   4:18:02   5:45:45 | 5:07:43   6:57:49   5:44:04   8:11:14 | $1:43 \mid 6:54 \mid 4:58 \mid 51:25$   | $1:19 \mid 3:51 \mid 3:59 \mid 48:31$ | 26:59   1:52:11   2:55:04   3:46:31 | $33 \mid 52.22 \mid 2.48.26 \mid 5.51$ | 19:15:19   14:17:50              | 2:20:09   4:11:06   12:45:41   23:33:11     | 30:28   40:29   35:55   48:41                | 38:17   51:44   44:31   1:04:08 | 1:02:41       | 1:17:49   1:40:05   1:23:47   1:57:03 |
|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------|---------------------------------|-------------------------------|---------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------|---------------|---------------------------------------|
| 3.7-6   -1.3-4   -4.1-5   -6.8-5 | -1.9-5   -2.2-4   -5.5-5   -1.1-4 | -2.6-5   -2.2-4   -5.0-5   -1.3-4 | -3.2-5   -1.1-4   -1.6-5   -7.1-5        | -1.7-5   -3.0-5   -4.0-6   -2.8-5 | -6.3-5   -7.7-5   -9.1-5   -8.2-5     | -5.7-5   -8.0-5   -9.4-5   -7.5-5     | -4.5-5   -1.2-4   -1.2-4   -1.8-4     | -8.4-5   -1.2-4   -1.2-4   -1.4-4     | -2.8-5   -3.6-5   -3.6-5   -1.9-4     | -1.0-5   -4.8-5   -4.3-5   -7.5-5     | -6.3-6   -4.0-5   -3.1-5   -6.9-5     | -1.4-6   -2.3-5   -2.8-5   -1.7-4     | -2.4-4   -8.9-5   -1.0-4   -4.3-3 | 5.2-4   -5.4-3   3.6-4   -4.0-3 | -2.7-4   -                    | 3.9-4   -2.7-4   2.5-4   -2.6-3 | 3.4-4   -1.4-3   2.4-4   -1.8-3   | 7.8-4 -9.5-3 5.6-4 -6.8-3           | -2.0-6   -1.1-6   -3.9-5   -2.7-6   | -2.4-4   -2.2-4   -6.5-4   -4.0-4     | -5.4-5   -5.2-5   -6.9-5   -9.8-5     | -9.4-6   -1.7-5   -6.8-7   -2.2-7 | -3.8-7   -9.2-6   <b>-3.7-4</b>   -3.1-6 | -3.8-7   -9.2-6   <b>-3.7-4</b>   -3.1-6 | 1.9-6   -3.3-6   <b>-1.2-4</b>   3.6-7 | -4.1-4   -5.0-4   -7.4-4   -7.4-4 | -4.2-4   -5.7-4   -7.7-4   -5.9-5     | -4.9-4                                | -3.2-4   -4.0-4   -7.0-4   -5.0-4     | -4.4-6   -2.0-5   2.2-5   <b>-1.6-3</b> | -3.1-5                                | 8.3-6   3.2-5   -2.4-4   -3.8-6     | 4.7-5   -6.6-3                         | 4.2-5   -4.1-5   -1.0-3   -1.5-4 | ١.                                          | $-1.7-4 \mid -2.1-4 \mid -4.0-4 \mid -2.5-4$ | -2.8-4                          | -3.6-4 -5.8-4 | -1.9-4   -2.3-4   -4.1-4   -2.7-4     |
| 7-6.6   2-6.6   2-6.6   2-0.9    | 5.3-7   9.9-7   9.9-7   9.7-7     | 8.4-7   9.9-7   9.9-7   9.9-7     | 7-6.6   2-8.6   2-6.6   2-6.6            | 7-8-6   7-8-6   7-6-6   7-6-6     | 5.6-6   1.1-5   2.7-5   8.9-6         | 6.8-6   1.1-5   2.3-5   9.3-6         | 4.2-6   1.4-5   3.2-5   1.4-5         | 6.4-6   1.5-5   3.2-5   1.3-5         | 3.1-6   6.4-6   4.7-6   1.4-5         | 9.9-7   8.1-6   7.0-6   1.2-5         | 8.6-7   1.6-6   2.4-6   7.8-6         | 9.4-7   1.4-6   2.3-6   2.3-5         | 2.0-6   2.2-6   3.5-6   3.1-5     | 9.6-7   2.9-5   9.8-7   2.4-5   | 1.4-6                         | 8.8-7   9.9-7   9.8-7   2.5-5   | 9.7-7   1.5-5   9.8-7   2.1-5     | 8.6-7   3.7-5   9.8-7   3.4-5       | 7-6.6   2-6.6   2-6.6   2-6.6       | 3.7-6   2.4-6   2.6-5   8.3-6         | 5.3-6   5.1-6   8.2-6   1.6-5         | 7-6.6   2-6.6   2-6.6   2-6.6     | 7-2-6   2-6-2   3-6-7   3-7-7            | 7-7-8   7-8-6   7-9-8   7-8-6            | 9.3-7   9.2-7   9.9-7   9.9-7          | 9.4-6   1.2-5   6.1-5   2.8-5     | 1.3-5   1.4-5   7.5-5   1.7-6         | 1.1-5   1.1-5   6.8-5   1.8-5         | 9.1-6   1.1-5   5.4-5   1.7-5         | 8.8-7   9.8-7   9.5-7   4.8-5           | 9.7-7   9.8-7                         | 8.9-7   9.5-7   7.2-6   9.9-7       | 9.9-7   1.4-4                          | 9.8-7   2.3-5                    | 9.0-7   9.8-7   <b>3.6-4</b>   <b>4.6-4</b> | 8.7-6   9.6-6   3.9-5   1.4-5                | 1.0-5   1.3-5   4.0-5   1.9-5   | 1.6-5         | 9.1-6   1.1-5   3.8-5   1.6-5         |
|                                  | -                                 | 1830   3394   7742   3325         | 5799   5495   11189   4498               | 4445   7424   3                   | 250                                   | 250                                   | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 250                                   | 20887   25000   25000   25000         | 25000                                 | 250                                   | 25000                             | 0                               | 25000                         | 6457   22364   13547   25000    | 7211   25000   14587   25000      |                                     | 5188                                | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 678   799   1679   1412           |                                          | ı                                        | 0   588   3                            | 25000   25000                     | 25000                                 | 25000                                 | 25000 25000                           | $1653 \mid 5698 \mid 4766 \mid 25000$   | 1   4747                              | 11683   25000                       | 25000   ;                              | 18785   25000                    | 4878   5970   25000   25000                 | 25000   25000                                | 25000                           | 25000 25000   | 25000   25000   25000   25000         |
| 183;0 183;                       |                                   | 369;0 369;                        | 2118;0 2118;                             |                                   |                                       | 1051;0 676;                           |                                       |                                       | 1051;0 676;                           |                                       | 1051;0 676;                           |                                       |                                   | 628;0 400;                      |                               | 757;0 484;                      | 757;0 484;                        |                                     |                                     | 1582;0 1024;                          | 1582;0 1024;                          |                                   |                                          |                                          | 1582;0 1024;                           |                                   |                                       |                                       |                                       |                                         |                                       | (                                   |                                        |                                  |                                             |                                              |                                 |               | 898;0 576;                            |
| fap10                            | fap11                             | fap12                             | fap25                                    | fap36                             | bur 26a                               | bur26b                                | bur26c                                | bur26d                                | bur26e                                | bur26f                                | bur 26g                               | bur26h                                | chr20a                            | chr20b                          | chr20c                        | chr22a                          | chr22b                            | chr25a                              | esc32a                              | esc32b                                | esc32c                                | esc32d                            | esc32e                                   | esc32f                                   | esc32g                                 | esc32h                            | kra30a                                | kra30b                                | kra32                                 | lipa20a                                 | lipa20b                               | lipa30a                             |                                        |                                  | lipa40b                                     | nug20                                        | nug21                           | nug22         | nug24                                 |

Table 2 (cont.).

| 1:35:46   1:53:26   1:45:18   2:16:27    | 2:21:06   2:51:26   2:36:56   3:28:20 | 2:47:04   3:27:54   3:02:26   4:02:11 | 3:48:43   4:58:12   4:23:21   5:39:31 | 9:38:26   12:37:18   11:11:59   14:09:11 | 9:19:24   12:10:09   10:45:58   14:23:33 | 9:26:42   12:22:19   11:01:56   14:23:52 | 8:38   9:24   11:18   2:27:04     | 1:28:33   1:55:04   1:43:51   2:21:35 | 3:53:48   6:09:25   4:31:53   6:00:13 | 3:42:12   4:28:02   4:17:53   5:38:24 | 9:21:21   15:00:46   10:43:14   12:53:01 | 8:51:20   11:15:52   10:28:44   12:51:27 | 20:22:53   31:45:29   23:23:44   26:00:47 | 17:50:19   23:17:25   19:57:37   25:23:31 | 3:46:49   4:46:03   4:23:12   5:44:33 | 17:12:50   24:35:42   19:56:25   26:05:11 | 1:16   1:35   2:49   1:37         | 1:08   1:28   2:36   1:22         | -           | 2:23   2:24   5:25   2:53         | 1:23   1:31   2:33   1:26         | 1:13   1:17   2:37   1:16         | 1:20   1:28   2:57   1:31        | 1:08   1:18   2:32   1:18       | 1:26   1:49   3:28   1:54         | _                                | $1:19 \mid 1:26 \mid 2:50 \mid 1:28$ | 1:30   2:54                       | 1:08   1:29   3:12   1:28         | $1:05 \mid 1:20 \mid 2:26 \mid 1:09$ | 1:23   2:23   5:22   2:03         | _                                | 1:28          | 1:00   1:57     | 1:25   1:45   3:14   1:34         | 1:01   1:06   2:01   57          | 8:35   9:45   23:07   9:13        | 14:42                       | 12:53   12:25   39:46   11:22           |
|------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------|-------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|-----------------------------------|----------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|----------------------------------|---------------|-----------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------|-----------------------------------------|
| -2.0-4   -2.0-4   -3.5-4   -2.5-4        | -2.0-4   -2.6-4   -4.3-4   -2.8-4     | -1.8-4   -2.2-4   -3.8-4   -2.6-4     | -1.6-4   -1.9-4   -3.3-4   -2.2-4     | -5.8-4   -6.8-4   -9.5-4   -6.7-4        | -1.5-3   -2.0-3   -2.3-3   -2.1-3        | -5.8-4   -7.3-4   -9.4-4   -7.2-4        | -8.0-4   -7.2-4   -8.5-4   -1.8-3 | -2.0-3   -2.4-3   -3.2-3   -2.5-3     | -6.3-5   -7.3-5   -1.8-4   -1.3-4     | -1.0-3   -1.2-3   -1.7-3   -1.2-3     | -4.8-5   -5.6-5   -1.4-4   -1.0-4        | -9.1-4   -1.0-3   -1.5-3   -1.1-3        | -4.6-5   -5.3-5   -1.4-4   -1.0-4         | -7.2-4   -8.1-4   -1.1-3   -8.5-4         | -2.6-4   -3.4-4   -5.6-4   -4.0-4     | -2.1-4   -2.7-4   -4.5-4   -3.2-4         | -2.0-7   -3.6-7   -4.3-6   -4.1-7 | -8.6-7   -5.3-7   -1.8-6   -8.0-7 | _           | -1.1-6   -1.1-6   -2.0-7   -2.9-7 | -7.5-7   -6.4-7   -4.6-7   -7.2-7 | -5.7-7   -5.4-7   -6.4-7   -4.3-7 | -1.1-7   -2.4-7   6.8-7   -2.4-7 | 1.9-7   -8.8-7   -3.9-6   2.5-7 | -1.1-6   -1.1-6   -7.7-7   -4.8-7 | -7.6-7   -7.4-7   2.8-8   -4.2-7 | -8.8-7   1.0-6   2.6-6   -8.1-7      | -1.1-6   -7.4-7   -1.1-6   -6.2-7 | -2.1-6   -3.1-7   -1.5-6   -7.5-7 | -1.4-6   -6.7-7   -3.4-6   1.5-7     | -1.1-6   -4.8-7   -3.8-7   -5.6-7 | -1.2-6   -1.2-6   1.2-6   -2.6-7 | _             | -6.5-7   -4.2-7 | -5.9-8   -4.0-7   -6.8-7   -3.3-7 | -1.1-6   -1.2-6   3.4-6   -1.1-6 | -1.4-6   -3.4-7   -1.3-6   -1.6-6 | -2.4-8                      | -1.5-6   3.7-7   <b>-1.5-3</b>   -5.8-7 |
| $1.2-5 \mid 1.0-5 \mid 3.6-5 \mid 1.7-5$ | 1.0-5   1.3-5   3.8-5   1.7-5         | 9.3-6   1.2-5   3.4-5   1.7-5         | 8.7-6   1.1-5   3.3-5   1.7-5         | 9.7-6   1.3-5   3.7-5   1.6-5            | 1.2-5   1.8-5   4.4-5   1.3-5            | 1.2-5   1.5-5   4.3-5   1.6-5            | 9.5-7   9.9-7   9.9-7   1.7-6     | 2.9-5   3.7-5   6.3-5   4.2-5         | 4.7-6   4.6-6   3.2-5   1.3-5         | 2.0-5   2.4-5   4.4-5   2.6-5         | 3.9-6   4.0-6   2.8-5   1.3-5            | 2.1-5   2.4-5   4.4-5   2.8-5            | 3.7-6   4.0-6   2.7-5   1.4-5             | 1.9-5   2.5-5   4.6-5   3.1-5             | 1.1-5   1.5-5   4.0-5   2.2-5         | 9.3-6   1.3-5   3.7-5   2.0-5             | 7-6.6   2-6.6   2-6.6   2-6.6     | 7-6.6   2.9-7   9.9-7   9.9-7     | _           | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6-6   2-6-6   2-6-6   2-6-6     | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6-6   2-6-6                    | 7-6.6   2-6.6   2-6.6   2-6.6   | 2-6.6   2-6.6                     | 2-6.6   2-6.6                    | 2-6.6   2-6.6                        | 2-6.6   2-6.6                     | 7-6.6   2-6.6   2-6.6   2-6.6     | 7-6.6   2.9-7   9.9-7   9.9-7        | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6.6   2-6.6                    | 2-6-6   2-6-6 | 2-6-6   2-6-6   | 7-6.6   2-6.6   2-6.6   2-6.6     | 9.9-7   9.9-7   9.9-7   9.9-7    | 9.9-7   9.9-7   9.9-7   9.9-7     | 2-6-6   2-6-6               | 9.9-7   9.9-7   1.7-4   9.9-7           |
| 25000   25000                            | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 25000   25000   25000   25000            | 25000   25000   25000   25000            | 25000   25000   25000   25000            | 2201   1845   2477   25000        | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 25000   25000   25000   25000         | 25000   25000   25000   25000            | 25000   25000   25000   25000            | 25000   25000   25000   25000             | 25000   25000   25000   25000             | 25000                                 | 25000   25000   25000   25000             | 4327   5345   8441   3537         | 3827   5108   7900   3044         | 4331   7816 | 8023   8350   16334   6453        | 4460   5089   7757   3174         | 4095   4560   8149   2812         | 5048   9076                      | 3759   4663   7959   2911       | 5976   10301                      | 14801                            | 4946                                 | 2032   8620                       | 4039   5332   10230   3203        | 4539                                 |                                   | 4722   5380   8140   3480        | 2138          | 3534   6122   3 | 4745   6121   10214   3440        | 3342   3992   6399   2122        | 6932                              | 8008   10582   22875   4862 | 8192   8915   25000   4965              |
|                                          | 1132;0 729;                           | 1216;0 784;                           | 1393;0 900;                           |                                          |                                          |                                          | 973;0 625;                        |                                       |                                       | 1393;0 900;                           |                                          | 1888;0 1225;                             |                                           | 2458;0 1600;                              |                                       | 2458;0 1600;                              |                                   |                                   |             |                                   | 251;0 251;                        |                                   |                                  | 251;0 251;                      |                                   |                                  |                                      | 251;0 251;                        |                                   |                                      |                                   |                                  |               |                 | 251;0 251;                        |                                  | 501;0 501;                        |                             | 501:0 501:                              |
| nug25                                    | nug27                                 | nug28                                 | nug30                                 | ste36a                                   | ste36b                                   | ste36c                                   | tai 25a                           | tai25b                                | tai30a                                | tai30b                                | tai35a                                   | tai35b                                   | tai40a                                    | tai40b                                    | $^{\text{tho}30}$                     | $^{\mathrm{tho40}}$                       | be250.1                           | be250.2                           | be250.3     | be250.4                           | be250.5                           | be250.6                           | be250.7                          | be250.8                         | be250.9                           | be250.10                         | bqp250-1                             | bqp250-2                          | bqp250-3                          | bqp250-4                             | bqp250-5                          | bqp250-6                         | bqp250-7      | bqp250-8        | bqp250-9                          | bqp250-10                        | bqp500-1                          | bqp500-2                    | bqp500-3                                |

Table 2 (cont.).

| 10:37   12:10   32:48   9:11     | 10:34   10:57   41:02   10:19     | 10:22   9:43   28:59   9:37      | 10:23   12:40   28:01   10:33    | 10:54   10:22   27:42   11:02     | 29:58                            | 10:43   12:37   40:40   11:34           | 9:38   11:28   27:55   10:31      | 10:50   12:52   26:27   12:10     | 9:07   10:46   23:23   9:07       | 9:13   11:20   31:45   9:14       | 9:14   10:36   26:17   9:45      | 29   3:45   5:32   3:09           | 24   4:47   3:59   3:54           | 42   10:51   5:48   7:18          | 23   2:23   2:22   2:05           | 12   21   37   44              | 29   2:44   2:19   2:10           | 21   1:46   1:01   1:52          | 25   2:54   2:44   3:01          | 11   11   18   1:58             | 26   32   55   1:50             | 11:17   22:17   1:51:27   3:12:36 | 35:47   58:10   2:14:58   6:13:50 | 1:19:26   5:32:29   4:33:51   17:57:38 | 3:26:14   3:21:11   4:32:59   18:14:24 | 49:32   1:07:56   1:54:11   17:07:48 | 50:54   1:19:23                   | 39:20   1        | 43:12   57:24   1:33:19   7:27:54 | $1:00:43 \mid 1:12:14 \mid 1:52:10 \mid 18:26:46$ | 1:04:55   1:08:26   1:30:21   3:52:02 | 5:08   26:57                    | 6:09   8:56   26:36   22:21       | 6:50   5:01   12:25   12:03     | 9:11   12:20                      | 8:49   16:08   1                  | 10:57   11:52   18:32   25:24     |
|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------|------------------|-----------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| -1.0-6   -3.8-7   8.5-7   -1.2-6 | -8.9-7   -1.2-6   -1.4-3   -8.2-7 | -8.9-7   -1.4-6   3.2-6   -7.4-7 | -5.4-7   -7.9-8   1.7-6   -5.2-7 | -5.3-7   -9.0-7   -3.3-6   -7.5-7 | -1.7-6   -1.2-6   1.5-6   -8.1-7 | -1.4-6   -1.3-6   <b>7.1-4</b>   -1.6-6 | -1.3-6   -1.2-6   -3.9-6   -5.6-7 | -1.5-6   -1.4-6   -3.3-6   -1.0-6 | -1.1-6   -2.0-6   -6.8-6   -1.6-7 | -1.1-6   -4.2-7   -1.2-6   -3.5-7 | -5.9-7   -9.4-7   1.5-6   -7.5-7 | -7.7-8   -1.2-7   -1.4-7   -7.0-8 | -2.1-7   -5.4-9   -1.2-10   1.4-7 | -2.8-7   -1.2-7   -1.1-7   -1.6-7 | -9.1-8   -7.9-8   -8.4-8   -1.7-7 | -1.9-7   3.5-8   3.4-7   1.3-6 | -2.5-8   -1.2-8   -8.9-8   -5.4-8 | -1.5-7   -3.3-8   -3.7-8   8.0-8 | 1.4-7   -7.1-8   -9.1-8   -5.3-9 | -1.0-7   8.1-7   4.4-7   -5.0-7 | 1.0-6   -2.6-6   1.6-6   -2.7-6 | -1.3-5   -1.2-5   -1.3-5   -1.3-5 | -7.6-6   -6.6-6   -1.1-5   -3.3-6 | 9.4-8   -5.2-7   -4.2-7   -10.0-1      | -2.9-5   -2.4-5   2.4-5   <b>3.0-1</b> | -4.2-5   -5.8-5   -3.0-5   -10.0-1   | -1.8-5   -1.0-5   -3.2-5   -1.5-7 | -9.5-5 -6.6-5    | -9.3-5   -1.4-4   3.1-6   4.5-4   | -1.3-4   -3.8-5                                   | 1.8-4   -1.7-4   -9.1-6   1.5-4       | 1.2-5   6.6-6   -2.9-6   -1.4-6 | -3.6-6   -9.9-7   -1.7-6   -4.2-6 | 1.9-6   -6.9-6   2.4-5   -9.2-7 | -1.5-5   -2.1-5   -1.1-5   -2.1-5 | -1.4-5   -1.8-5   -1.9-5   -1.9-5 | -2.1-5   -2.7-6   -1.4-5   -1.8-5 |
| 7-6.6   2-6.6   2-6.6   2-6.6    | 9.9-7   9.9-7   1.6-4   9.9-7     | 7-6.6   2-6.6   2-6.6   2-6.6    | 7-6.6   2-6.6   2-6.6   2-6.6    | 7-6.6   7-6.6   7-6.6   7-6.6     | 2-6.6   2-6.6                    | 9.9-7   9.9-7   8.5-5   9.9-7           | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6-6   2-6-6   2-6-6   2-6-6     | 7-6.6   2-6.6   2-6.6   2-6.6     | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6.6   2-6.6                    | 9.2-7   9.9-7   9.9-7   9.9-7     | 8.8-7   9.6-7   9.7-7   8.5-7     | 7-6.6   2-6.6   2-6.6   2-6.6     | _                                 | 2-2-6   2-8-9                  | 7-6.6   2-6.6   2-6.6   2-6.6     | 2-6.6   2-6.6                    | 9.9-7   9.9-7   9.7-7   9.9-7    | 9.5-7   9.6-7   9.9-7   9.7-7   | 2-6.6                           | 2-6.6   2-6.6                     | 7-6.6   7-6.6   7-6.6   7-8.6     | 9.9-7   9.9-7   9.9-7   <b>2.2-2</b>   | 9.8-7   9.9-7                          | 9.9-7   9.9-7   9.9-7   1.8-2        | 6.9-7   9.9-7                     | 9.9-7   9.9-7    | 9.9-7   9.9-7   9.9-7   9.9-7     | 2-8-6   2-6-6                                     | 7-8-6   7-7   9.9-7   9.8-7           | 7-6.6   7-6.6   7-6.6   7-6.6   | 7-6.6   2-6.6   2-6.6   2-6.6     | 7-6.6   2-6.6   2-9.6   2-6.6   | 2-6-6   2-6-6                     | 2-6-6   2-6-6                     | 9.9-7   9.9-7   9.9-7   9.8-7     |
| 7188   9012   20498   4031       | 6898   7641   25000   4541        | 6819   7010   17716   4236       | 6878   8592   17128   4587       | 7131   7647   17889   4867        | 6666   6700   17784   3803       | 7189   9162   25000   5067              | 6717   8147   16790   4600        | 7519   8949   15786   5403        | 6102   7037   13874   3957        | 6673   7529   19384   4070        | 6482   7023   16067   4210       | 1190   5050   12972   2261        | 922   5993   9156   2159          | 1609   13512   13201   3831       | 850   2974   5410   1404          | 545   1365   (                 | 1042   3443   5001   1422         | 2294   2176                      | 948   3585   5801   2059         | 359   434   627   1789          | 948   1231   1914   1609        | 535   992   4528   4429           | 1705   1830   5301   6617         | 7091                                   | 7510   10621                           | 2031   2415   4674   25000           | 1584   3001                       | 1461   2787      | 2010   1973   3695   9832         | 2450   4401                                       | 2704   2526   3496   4532             | 576   650   3168   1493         | 765   796   3141   1306           | 545   629   1457   710          | 1429                              | 1101   1864                       | 1089   1388   2156   1230         |
| 501;0 501;                       | 501;0 $501;$                      | 501;0 501;                       |                                  |                                   |                                  |                                         |                                   |                                   | 501;0 501;                        |                                   | 501;                             | 307;                              | 307;                              | 307;                              | 307;                              |                                |                                   | 308;0 307;                       |                                  |                                 |                                 |                                   | 1501;0 1500;                      | 1500;                                  | 1500;                                  | 1501;0 1500;                         |                                   | 1501;0 1500;     |                                   |                                                   | 1501;0 1500;                          |                                 |                                   |                                 |                                   |                                   | 1001;0 1000;                      |
| bqp500-4                         | pdb200-2                          | pdb200-e                         | 2-002dbq                         | 9-002dbq                          | pdb200-9                         | bqp500-10                               | gka1f                             | gka2f                             | gka3f                             | gka4f                             | gka5f                            | soybean-large.2                   | soybean-large.3                   | soybean-large.4                   | soybean-large.5                   | soybean-large.6                | soybean-large.7                   | soybean-large.8                  | soybean-large.9                  | soybean-large.10                |                                 |                                   |                                   |                                        |                                        | spambase-large.6                     | spambase-large.7                  | spambase-large.8 | spambase-large.9                  |                                                   | spambase-large.11                     |                                 |                                   |                                 |                                   |                                   | abalone-large.7                   |

TABLE 2

| $16:45 \mid 16:25 \mid 25:57 \mid 50:13$ | 19:27   21:44   34:06   55:26    | 9:15   8:27   36:13   34:22     | 2:41   3:33   31:35   37:08      | 14:50   5:23:13   3:05:07   3:07:06 | 20:31   6:09:59   3:44:53   4:19:44 | 24:06   7:10:04   3:38:02   5:25:59 | 27:48   7:15:10   3:40:26   6:13:44 | 24:42   5:46:25   3:47:00   5:15:17 | 18:03   3:23:40   2:12:38   4:10:03 | 13:42   13:51   43:14   1:53:18   | 13:07   15:29   20:12   6:50:17 | 4:31   3:26   8:32   7:52        | 1:34   1:56   3:41   4:29      | 2:00   1:25   3:05   3:40        | 2:07   2:36   4:04   5:03      | 53   1:20   1:32   6:29         | 1:06   1:15   1:51   7:35         | 1:05   1:23   1:43   5:40         | 1:27   1:43   2:50   8:23       | 1:40   1:57   2:39   1:18:42            | 1:24   1:54   2:15   1:20:22      |
|------------------------------------------|----------------------------------|---------------------------------|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|
| -2.2-5   -6.1-5   -4.8-5   -9.2-5        | -4.1-5   9.9-6   -1.9-5   -4.7-5 | 5.0-6   -4.7-6   3.5-8   -5.0-7 | 1.8-6   -7.1-7   -5.4-6   -1.1-6 | -5.5-7   -4.5-7   -4.5-7   -5.0-7   | 7-7-1 -6.0-7   -5.8-7   -6.4-7      | -1.5-6   -9.6-7   -1.0-6   -1.0-6   | -1.3-6   -1.9-6   -1.8-6   -1.3-6   | -1.1-6   -9.4-7   -1.1-6   -1.1-6   | -1.9-6   -5.3-7   -6.2-7   -1.1-6   | -3.1-7   -6.1-6   -2.8-7   -3.0-7 | -1.9-6   6.0-6   -1.5-7   1.1-4 | -5.4-6   -5.2-6   5.8-6   -5.3-6 | 8.0-6   -6.7-6   3.2-5   5.2-6 | -3.5-6   -4.9-6   -4.2-6   8.3-5 | -3.2-5   3.6-5   3.1-5   6.3-5 | -9.7-6   5.9-6   -1.7-5   6.3-5 | -2.6-5   -4.6-5   -3.1-5   -7.5-5 | -1.9-5   -1.3-5   -1.7-5   -5.6-5 | -3.7-5   3.7-5   -4.7-5   3.8-5 | -1.7-5   -2.6-5   -2.6-5   <b>2.2-3</b> | -2.9-5   -2.5-5   -2.9-5   -7.4-3 |
| 9.8-7   8.6-7   9.7-7   9.9-7            | 7-6.6   2-6.6   2-6.6   2-6.6    | 7-6.6   7-6.8   7-8.6   7-6.6   | 7-6.6   2-6.6   2-8.6   2-6.6    | 7-6.6   7-6.6   7-6.6   7-6.6       | 9.9-7   9.9-7   1.0-6   9.9-7       | 9.9-7   1.3-6   1.3-6   9.9-7       | 9.9-7   1.8-6   1.7-6   9.9-7       | 9.9-7   9.9-7   1.2-6   9.9-7       | 7-6.6   7-6.6   7-6.6   7-6.6       | 7-6.6   2-6.6   2-6.6   2-6.6     | 9.9-7   9.9-7   9.9-7   2.9-5   | 7-9.8   2.9-7   9.9-7   8.6-7    | 7-8-6   2-6-6   2-6-6   2-6-6  | 9.9-7   9.9-7   9.9-7   8.4-7    | 9.6-7   9.3-7   9.9-7   8.8-7  | 9.9-7   9.8-7   9.9-7   9.5-7   | 7-6.6   2-6.6   2-8.6   2-6.6     | 7-2-6   7-7-6   9.9-7   9.5-7     | 7-6.6   2.9-2   9.9-7   9.9-7   | 9.9-7   9.9-7   9.9-7   6.4-5           | 9.9-7   9.6-7   9.9-7   6.7-5     |
| 1855   2022   2781   3093                | 2212   2604   3724   3118        | 1264   1080   4201   1745       | 373   412   3714   1956          | 2024   19479   21201   6354         | 2711   22003   25000   8257         | 3262   25000   25000   10211        | 3600   25000   25000   11657        | 3161   20284   25000   9511         | 2383   12121   14501   8064         | 1789   1676   4701   4527         | 1683   1827   2225   25000      | 3284   2679   5397   2566        | 1247   1523   2411   1338      | 1368   1064   2008   1090        | 1319   1916   2593   1451      | 536   842   964   1958          | 645   856   1147   2235           | 638   924   1017   1700           | 794   1173   1634   2466        | 1016   1275   1538   25000              | 844   1310   1342   25000         |
| 10 1001;0 1000;                          | 11 1001;0 1000;                  | 2 1001;0 1000;                  | .3 1001;0 1000;                  | .4 1001;0 1000;                     | 5 1001;0 1000;                      | .:6 1001;0 1000;                    | .7 1001;0 1000;                     | .8 1001;0 1000;                     | :.9 1001;0 1000;                    | .10 1001;0 1000;                  | .11 1001;0 1000;                | 507;0 506;                       | 507;0 506;                     | 507;0 506;                       | 507;0 506;                     | 507;0 506;                      | 507;0 506;                        | 507;0 506;                        | 507;0 506;                      | 507;0 506;                              | 507:0 506:                        |
| abalone-large.10                         | abalone-large.11                 | segment-large. 2                | segment-large.3                  | segment-large.4                     | segment-large.5                     | segment-large.6                     | segment-large.7                     | segment-large.8                     | segment-large.9                     | segment-large.10                  | segment-large.1                 | housing.2                        | housing.3                      | housing.4                        | housing.5                      | housing.6                       | 7.guisnou                         | housing.8                         | housing.9                       | housing.10                              | housing.11                        |

Let  $\mathcal{D}: \mathcal{S}^n \to \mathcal{S}^n$  be a given nonsingular linear operator and  $\mathcal{D}^*$  be its adjoint. By introducing an extra variable, we can reformulate (5.20) into the form of (4.8), for which our proposed Conic-sPADMM3c can be used.

For the SDP problems described in (5.5) arising from relaxing the BIQ problems, in order to get tighter bounds, we may add in some valid inequalities to get the following problems:

(5.20) 
$$\min \frac{1}{2} \langle Q, Y \rangle + \langle c, x \rangle$$
s.t. 
$$\operatorname{diag}(Y) - x = 0, \quad \alpha = 1, \quad X = \begin{bmatrix} Y & x \\ x^T & \alpha \end{bmatrix} \in \mathcal{S}_+^n, \quad X \in \mathcal{K}_{\mathcal{P}},$$

$$-Y_{ij} + x_i \ge 0, \quad -Y_{ij} + x_j \ge 0, \quad Y_{ij} - x_i - x_j \ge -1, \quad \forall i < j, \ j = 2, \dots, n - 1,$$

where  $\mathcal{K}_{\mathcal{P}} = \{X \in \mathcal{S}^n \mid X \geq 0\}$ . For convenience, we call the problem in (5.21) an extended BIQ problem. Note that the last set of inequalities in (5.21) are obtained from the valid inequalities  $x_i(1-x_j) \geq 0$ ,  $x_j(1-x_i) \geq 0$ ,  $(1-x_i)(1-x_j) \geq 0$  when  $x_i, x_j$  are binary variables.

Note that one may also apply the directly extended ADMM (see (1.4)) with 4 blocks by adding a proximal term for the  $y_I$ -part (similar to the discussion in section 4.2). We call this method sPadmM4d. Of course, we are mindful that sPadmM4d has no convergence guarantee. In this subsection, we compare the algorithms sPadmM3c, sPadmM4d, and a convergent linearized alternating direction method with a Gaussian back substitution proposed in [21] (we call the method LadmM4g here and use the parameter  $\alpha=0.999$  in the Gaussian back substitution step) for the extended BIQ problems (5.21). We have implemented sPadmM3c, sPadmM4d, and LadmM4g in MATLAB. For sPadmM4d, we set the step-length  $\tau=1.618$ . For the purpose of comparison, we also test the directly extended sPadmM with unit step-length (i.e.,  $\tau=1$ ), which is called sPadmM4d(1). The computational results for all the extended BIQ problems are obtained on the same Linux server as before.

We note here that neither SDPAD nor 2EBD can be directly applied to solve the problems (5.21). One may of course try to first convert the inequality constraints into linear equalities by introducing slack variables and then apply both SDPAD and 2EBD to the reformulated problems. However, such an approach is inefficient as the linear system of equations which needs to be solved at each iteration is very large but not so sparse. Not surprisingly, this approach is very slow for the extended BIQ problems according to our numerical experience.

We measure the accuracy of an approximate optimal solution  $(X, y_E, y_I, S, Z)$  for (SDP) and its dual (5.20) by using the following relative residual:

(5.21) 
$$\eta = \max\{\eta_P, \eta_D, \eta_K, \eta_P, \eta_{K^*}, \eta_{P^*}, \eta_{C_1}, \eta_{C_2}, \eta_I, \eta_{I^*}\},$$

where  $\eta_{\mathcal{K}}$ ,  $\eta_{\mathcal{P}}$ ,  $\eta_{\mathcal{K}^*}$ ,  $\eta_{\mathcal{P}^*}$ ,  $\eta_{C_1}$ ,  $\eta_{C_2}$  are defined as in (5.13), and

$$\eta_{P} = \frac{\|\mathcal{A}_{E}X - b_{E}\|}{1 + \|b_{E}\|}, \ \eta_{D} = \frac{\|\mathcal{A}_{E}^{*}y_{E} + \mathcal{A}_{I}^{*}y_{I} + S + Z - C\|}{1 + \|C\|},$$
$$\eta_{I} = \frac{\|\max(0, b_{I} - \mathcal{A}_{I}X)\|}{1 + \|b_{I}\|}, \ \eta_{I^{*}} = \frac{\|\max(0, -y_{I})\|}{1 + \|y_{I}\|}.$$





FIG. 3. Performance profiles (time) of sPADMM3c, LADMM4g, sPADMM4d, and sPADMM4d(1).

FIG. 4. Performance profiles (iteration) of SPADMM3c, LADMM4g, SPADMM4d, and SPADMM4d(1).

Additionally, we compute the relative gap by

(5.22) 
$$\eta_g = \frac{\langle C, X \rangle - (\langle b_E, y_E \rangle + \langle b_I, y_I \rangle)}{1 + |\langle C, X \rangle| + |\langle b_E, y_E \rangle + \langle b_I, y_I \rangle|}.$$

We terminate SPADMM3c, SPADMM4d, SPADMM4d(1), and LADMM4g when  $\eta < 10^{-5}$  or when they reach the maximum number of 50,000 iterations.

In Table 3, we report some detailed numerical results for the solvers SPADMM3c, LADMM4g, SPADMM4d, and SPADMM4d(1) in solving a collection of 134 extended BIQ problems.

Figure 3 shows the performance profiles in terms of computing time for sPadmm3c, Ladmm4g, sPadmm4d, and sPadmm4d(1) in solving 134 extended BIQ problems. One can observe that Ladmm4g is much slower than the other three solvers. The solver sPadmm3c is clearly more efficient than the directly extended sPadmm with unit step-length, i.e., sPadmm4d(1), and it is even faster than sPadmm4d with  $\tau = 1.618$ , though only marginally.

Figure 4 shows the performance profiles in terms of the number of iterations for sPadmM3c, LadmM4g, sPadmM4d, and sPadmM4d(1). Observe that for the majority of the test problems, sPadmM3c takes fewer iterations than sPadmM4d with steplength  $\tau=1.618$ . However, for some test problems, due to the overhead incurred in handling the additional matrix variable introduced to reformulate (5.20) into the form (4.8), sPadmM3c may take slightly more time than sPadmM4d, even though the latter may take slightly more iterations.

6. Conclusions. In this paper, we have proposed a 3-block semiproximal ADMM that is both convergent and efficient for finding a solution of medium accuracy to conic programming problems with four types of constraints. By conducting numerical experiments on a large number of DNN-SDP problems with equality and/or inequality constraints, we have presented convincing numerical results showing that for the vast majority of problems tested, our proposed (semiproximal) ADMM is at least 20% faster than the directly extended (semiproximal) ADMM with unit steplength. At least for the class of conic programming (P) problems, we can safely say that we have resolved the dilemma that an ADMM is either efficient in practice but without convergent guarantee in theory or the contrary. This opens up the possibility of designing a convergent and yet practically efficient ADMM with an intelligent

The performance of SPADMM3C, LADMM4G, SPADMM4D, SPADMM4D(1) on extended BIQ problems (accuracy =  $10^{-5}$ ). In the table, we have omitted the command string "ADMM" in the names of the solvers. The computation time is in the format hours: minutes: seconds.

|                 |            |         |            |                   |                    | -                     |       |                                   | Ē                             |
|-----------------|------------|---------|------------|-------------------|--------------------|-----------------------|-------|-----------------------------------|-------------------------------|
| :               |            |         | i i        | Iteration         | n<br>n             | h                     | (1),  | $\eta_g$                          | Time                          |
| Problem         | $m_E; m_I$ | $n_s$ ; | P3c        | P3c L4g P4d P4d(1 | P4d(1)             | P3c L4g P4d P4d(1     | d(1)  | F3c L4g F4d F4d(1)                | F3c L4g F4d F4d(1)            |
| be200.3.1       | 201;59700  | 201;    | 8943   1   | 14140   9729      | $29 \mid 12236$    | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 3.2-7   -7.1-6   -1.8-6   -1.4-7  | 7:34   12:45   7:22   9:04    |
| be200.3.2       | 201;59700  | 201;    | 7665   1   | 14170   885       | 8854   11243       | 9-6.6   9-6.6   9-6.6 | 9-6-6 | 7.8-6   -7.1-6   2.4-6   7.7-6    | 5:27   15:12   5:54   7:56    |
| be200.3.3       | 201;59700  | 201;    | 11187   2  | $22332 \mid 114$  | 11429   14882      | 9-6.6   9-6.6   9-6.6 | 9-6-6 | 8.9-7   -7.0-6   2.4-7   -7.2-7   | 8:58   20:21   9:29   10:50   |
| be200.3.4       | 201;59700  | 201;    | 9513 2     | 21265   9628      | 28   12833         | 9-6.6   9-6.6   9-6.6 | 9-6-6 | 1.1-6   -7.1-6   -1.7-6   -1.3-6  | 7:11   21:43   6:58   9:59    |
| be200.3.5       | 201;59700  | 201;    | 9373   1   | 15368   937       | 9370   12526       | 9-6:6   9-6:6   9-6:6 | 9-6.6 | -4.3-7   -1.2-5   -2.9-6   -9.7-7 | 8:43   14:15   8:21   10:14   |
| be200.3.6       | 201;59700  | 201;    | 8777   13  | 13901   10180     | 12967              | 9-6.6   9-8.6   9-6.6 | 9-6.6 | -5.0-6   -1.1-5   -9.6-6   -7.3-6 | 7:07   14:23   7:53   9:22    |
| be200.3.7       | 201;59700  | 201;    | 12965   2  | $24430 \mid 139$  | 13904   17684      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | -2.6-6   -8.2-6   -3.5-6   -3.7-6 | 10:52   22:31   12:29   14:15 |
| be200.3.8       | 201;59700  | 201;    | 11102   18 | $18030 \mid 109$  | 10906   14622      | 9-6.6   9-6.6   9-6.6 | 9-6-6 | 3.7-7   -9.7-6   -8.5-7   -1.6-6  | 8:24   19:35   7:46   11:03   |
| be200.3.9       | 201;59700  | 201;    | 9612   1'  | 17226   980       | 9806   13405       | 9-6.6   9-6.6   9-6.6 | 9-6-6 | -4.3-6   -9.9-6   -6.6-6   -3.1-6 | 9:10   16:18   8:29   10:11   |
| be200.3.10      | 201;59700  | 201;    | 7964   1   | $14501 \mid 8851$ | $51 \mid 10934$    | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 2.3-6   -8.6-6   -4.8-6   8.1-7   | 6:31   14:00   6:44   8:06    |
| be200.8.1       | 201;59700  | 201;    | 11162   2  | $25001 \mid 118$  | $11862 \mid 15840$ | 9-6.6   9-6.6   9-6.6 | 9-6.6 | -3.5-6   -7.8-6   -4.9-6   -5.0-6 | 8:32   23:29   9:12   11:34   |
| be200.8.2       | 201;59700  | 201;    | 8392   1   | $14101 \mid 869$  | 8693   12297       | 9-6.6   9-8.6   9-6.6 | 9-6.6 | 9.0-6   -8.0-6   4.1-6   5.6-6    | 5:46   13:34   5:47   8:06    |
| be200.8.3       | 201;59700  | 201;    | 10385   20 | $20301 \mid 108$  | 10882   14115      | 9-6-6   9-6-6   9-6-6 | 9-6.6 | -5.2-6   -8.5-6   -5.8-6   -6.0-6 | 9:42   18:05   9:46   10:56   |
| be200.8.4       | 201;59700  | 201;    | 9457   17  | 7380   10001      | 001   14201        | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 7.4-7   -7.9-6   7.4-7   9.8-7    | 7:31   17:57   8:12   10:56   |
| be200.8.5       | 201;59700  | 201;    | 10011   19 | $19060 \mid 100$  | 10008   12977      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 3.6-6   -7.1-6   -3.6-7   -4.2-7  | 8:18   17:23   8:28   10:12   |
| be200.8.6       | 201;59700  | 201;    | _          | $28038 \mid 120$  | 12027   14979      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 1.8-6   -7.3-6   3.5-7   9.7-7    | 9:07   28:44   10:10   12:19  |
| be200.8.7       | 201;59700  | 201;    | 9261   20  | 20201   9226      | 26   12573         | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 6.9-6   -6.3-6   7.2-6   7.2-6    | 8:39   19:05   7:58   10:04   |
| be200.8.8       | 201;59700  | 201;    | 11002   2  | $22942 \mid 113$  | 1331   15218       | 9-6.6   9-6.6   9-6.6 | 9-6.6 | -8.5-6   -8.6-6   -9.3-6   -9.2-6 | 9:13   23:57   9:08   12:22   |
| be200.8.9       | 201;59700  | 201;    | 9102   10  | 16901   9945      | $45 \mid 12465$    | 9-6.6   9-6.6   9-6.6 | 9-6.6 | -2.5-6   -9.2-6   -5.0-6   -4.3-6 | 7:20   16:18   7:38   8:39    |
| be200.8.10      | 201;59700  | 201;    | ⊢          | $16001 \mid 9905$ | -1                 | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 9.3-6   -6.7-6   9.0-6   7.3-6    | 7:19   15:36   6:54   10:21   |
| be250.1         | 251;93375  | 251;    | 13774   2  | $24878 \mid 153$  | 15373   19553      | 9-6.6   9-6.6   9-6.6 | 9-6-6 | -2.6-6   -1.2-5   -4.7-6   -4.0-6 | 17:50   38:20   21:43   24:28 |
| be250.2         | 251;93375  | 251;    | _          | $21286 \mid 121$  | 12138   16078      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 5.6-6   -9.6-6   3.8-6   3.8-6    | 14:38   35:35   15:55   19:06 |
| be250.3         | 251;93375  | 251;    | ⊢          | ⊢                 | $16134 \mid 19608$ | 9-6.6   9-6.6   9-6.6 | ⊢     | 1.4-6   -1.3-5   7.5-7   1.0-6    | 19:53   47:55   19:41   23:42 |
| be250.4         | 251;93375  | 251;    | 14715   28 | $28926 \mid 165$  | 16367   21328      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 6.3-6   -9.3-6   5.9-7   3.1-6    | 21:30   52:33   21:16   29:05 |
| be250.5         | 251;93375  | 251;    | 11316   18 | 18201   128       | 12801   16164      | 9-6-6   9-6-6   9-6-6 | 9-6.6 | 5.2-6   -1.4-5   1.2-6   1.6-6    | 15:56   26:40   14:47   18:54 |
| be250.6         | 251;93375  | 251;    | -          | -                 | H                  | 9-6.6                 | -     | -1.1-5   -5.1-6                   | 41:31   18:35                 |
| be250.7         | 251;93375  | 251;    | _          | _                 | _                  | 9-6.6                 | _     | -1.0-5   -6.4-6                   | 48:12   26:17                 |
| be250.8         | 251;93375  | 251;    | _          | $24976 \mid 151$  | 15139   19218      | 9-6-6   9-6-6   9-6-6 | 9-6.6 | 1.5-7   -1.1-5   -1.5-6   -1.7-6  | 44:48   18:16                 |
| $_{ m be250.9}$ | 251;93375  | 251;    | 10701   10 | $16508 \mid 125$  | 12268   15170      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 9.3-7   -1.8-5   -2.7-6   -9.4-7  | 13:57   26:28   14:48   17:45 |
| be250.10        | 251;93375  | 251;    | 12160   20 | $20301 \mid 131$  | 13176   15343      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 7.9-6   -6.9-6   6.6-6   7.5-6    | 15:40   36:24   16:29   18:13 |
| bqp250-1        | 251;93375  | 251;    | 14332   29 | 29301   149       | 14903   18899      | 9-6-6   9-6-6   9-6-6 | _     | 2.1-6   -9.8-6   1.6-6   1.3-6    | 19:47   49:11   20:47   23:03 |
| bqp250-2        | 251;93375  | 251;    | _          | H                 | 13322   17692      | 9-6-6   9-6-6   9-6-6 | _     | -6.1-6   -9.9-6   -9.6-6   -8.3-6 | 39:47   15:38                 |
| bqp250-3        | 251;93375  | 251;    | 15229   20 | _                 | $16301 \mid 20920$ | 9-6-6   9-6-6   9-6-6 | 9-6.6 | 8.3-6   -1.1-5   7.9-6   6.4-6    | 21:15   42:39   21:56   25:21 |
| bqp250-4        | 251;93375  | 251;    | _          | _                 | 12918   16310      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 2.8-7   -9.3-6   -1.3-6   -9.3-7  | 17:19   40:40   15:03   21:49 |
| bqp250-5        | 251;93375  | 251;    | _          | $27801 \mid 148$  | 14302   18589      | 9-6.6   9-6.6   9-6.6 | 9-6.6 | -1.1-6   -1.0-5   -4.7-6   -4.6-6 | 17:39   41:46   17:15   21:05 |
| bap250-6        | 251:93375  | 251:    | 11312   19 | $19910 \mid 108$  | $10823 \mid 14626$ | 9-6.6   9-6.6   9-6.6 | 9-6.6 | 4.5-6   -1.0-5   -2.8-6   4.4-7   | 14:11   32:17   12:27   16:50 |

Table 3 (cont.).

|           |                |                  |                |                        |                   |              |              |              |              |              |              | П            |              |           | П            |           | П         |           |              |              |                   |              |                  |
|-----------|----------------|------------------|----------------|------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|-----------|-----------|-----------|--------------|--------------|-------------------|--------------|------------------|
| 23:42     | 17:30          | 27:09            | 15:51          | 2:26:39                | 2:25:11           | 2:09:39      | 1:52:18      | 2:27:00      | 2:14:33      | 1:58:49      | 4:59:12      | 1:57:46      | 2:16:53      | 14:09     | 9:58         | 10:52     | 11:23     | 9:30      | 2:03:09      | 2:20:24      | 2:12:30           | 1:48:07      | 2:12:16          |
| 20:42   2 | $14:00 \mid 1$ | $23:15 \mid 2$   | $15:14 \mid 1$ | :58:50                 | 2:00:28           | 1:42:24      | 1:32:31      | 2:01:25      | 1:39:56      | 1:35:35      | 2:08:58      | 1:40:11      | 1:42:53      | 11:27   1 | 9:00   9:    | 8:32   10 | 8:27   11 | 6:55   9: | 1:51:22      | 1:44:35      | 1:55:23           | 1:28:34      | 1:42:52          |
| 40:32   2 | 27:56   1      | 44:17   2        | 32:22   1      | $3.55:29 \mid 1.58:50$ | 5:38:45   2       | 4:50:34   1  | 3:57:05   1  | 4:54:17   2  | 4:40:17   1  | 3:57:05   1  | 4:26:00   2  | 3:52:54   1  | 4:11:38   1  | 31:16     | 7:22   13:47 | 17:59   8 | 19:17   8 | 17:57     | 3:50:26   1  | 4:07:38   1  | 4:35:38   1       | 3:28:28   1  | $4:05:27 \mid 1$ |
| 20:45     | 13:08          | 23:11            | 15:31          | 1:57:15   3:           | $2:06:15 \mid 5:$ | 1:58:24   4: | 1:34:01   3: | 1:57:31   4: | 1:47:20   4: | 1:58:09   3: | 2:05:47   4: | 1:47:18   3: | 1:47:23   4: | 10:15     | 7:22         | 7:52      | 9:10      | 7:04      | 1:36:46   3: | 1:55:57   4: | $2:04:10 \mid 4:$ | 1:32:58   3: | 1:56:52   4:     |
|           |                |                  |                | 1:5                    | 2:0               | 1:5          | 1:3          | 1:5          |              | 1:5          | 2:0          | 1:4          | 1:4          |           |              |           |           |           | 1:3          | 1:5          | 2:0               | 1:3          | 1:5              |
| 9-2-2     | 6   -1.9-6     | -8.7-6           | 5.3-6          | -5.1-6                 | 4.5-6             | 9-2-8        | 9-6.7        | 5.2-7        | -2.8-6       | -3.1-7       | -1.8-5       | -1.4-6       | 4.8-6        | 9-2.7-    | -6.4-6       | -2.3-6    | 5.2-7     | -7.5-8    | 1.4-6        | 2.7-7        | -2.0-7            | 4.7-6        | -1.4-6           |
| 5.3-6     | -3.1-6         | -7.9-6           | 2.3-6          | -5.2-6                 | 2.1-6             | 2.8-6        | 8.1-6        | -1.9-6       | -2.3-6       | 3.1-8        | 1.3-6        | 1.3-6        | 5.9-6        | -7.5-6    | -7.3-6       | -2.8-6    | 1.5-6     | 1.8-6     | -2.6-7       | -1.9-6       | 2.7-6             | 8.3-6        | 3.1-6            |
| -1.1-5    | -1.2-5         | -1.1-5           | -6.5-6         | -1.4-5                 | -9.4-6            | -1.8-5       | -1.1-5       | -1.0-5       | -9.4-6       | -1.3-5       | -1.1-5       | -1.5-5       | -1.1-5       | -1.2-5    | 9-9.8-       | 9-6.7-    | -8.8-6    | -7.4-6    | 9-6.6-       | -1.1-5       | 9-6.6-            | -1.2-5       | -1.0-5           |
| 9-8.9     | -10.01-        | -7.3-6           | 7.5-6          | 3.3-6                  | 5.4-6             | 9.7.6        | 1.1-5        | 3.4-6        | -1.1-6       | 2.8-6        | 2.8-6        | 2.3-6        | 9-6.2        | -7.2-6    | -4.8-6       | -5.6-7    | 5.7-6     | 4.7-6     | 8.8-6        | 4.7-6        | 7.2-6             | 8.0-6        | 2.0-6            |
| 9-6.6     | 9-6.6          | 9-6.6            | 9-6.6          | 9-6.6                  | 9-6.6             | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 1.8-5        | 9-6.6        | 9-6.6        | 9-6.6     | 9-6.6        | 9-6.6     | 9-6.6     | 9-6.6     | 9-6.6        | 9-6.6        | 9-6.6             | 9-6.6        | 9-6-6            |
| 9-6.6     | 9-6.6          | 9-6.6            | 9-6.6          | 9-6.6                  | 9-6.6             | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6     | 9-6.6        | 9-6.6     | 9-6.6     | 9-6.6     | 9-6.6        | 9-6.6        | 9-6.6             | 9-6.6        | 9-6.6            |
| 9-6.6     | 9-6.6          | 9-6.6            | 9-6.6          | 9-6.6                  | 9-6.6             | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6     | 9-6.6        | 9-6.6     | 9-6.6     | 9-6.6     | 9-6.6        | 9-6.6        | 9-6.6             | 9-6.6        | 9-6.6            |
| 9-6.6     | 9-6.6          | 9-6.6            | 9-6.6          | 9-6.6                  | 9-6.6             | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6        | 9-6.6     | 9-6.6        | 9-6.6     | 9-6.6     | 9-6.6     | 9-6.6        | 9-6.6        | 9-6.6             | 9-6.6        | 9-6.6            |
| 20411     | 14972          | 21439            | 13902          | 23591                  | 25027             | 25469        | 22449        | 23397        | 24230        | 23837        | 50000        | 23491        | 25577        | 19616     | 12613        | 13767     | 14151     | 13201     | 21619        | 23907        | 24553             | 21744        | 23407            |
| 15631     | 11459          | 16401            | 11268          | 18284                  | 20364             | 19904        | 18402        | 18789        | 19213        | 18232        | 20343        | 18504        | 19935        | 15348     | 10010        | 10402     | 11413     | 1 9086    | 17074        | 19502        | 17992             | 17360        | 18157            |
| 24701     | 16801          | 25470            | 18901          | 26843                  | 36844             | 31404        | 32116        | 30985        | 31655        | 29439        | 30701        | 27801        | 34147        | 34550     | 15606        | 18001     | 21201     | 17470     | 27102        | 29792        | 29801             | 27846        | 29644            |
| 13962     | 10901          | 14855            | 10344          | 17258                  | 18453             | 19161        | 16801        | 17522        | 17826        | 18004        | 18685        | 17648        | 18128        | 13605     | 9104         | 10503     | 10713     | 9206      | 16313        | 18281        | 17311             | 16714        | 17647            |
| 251;      | 251;           | 251;             | 251;           | 501;                   | 501;              | 501;         | 501;         | 501;         | 501;         | 501;         | 501;         | 501;         | 501;         | 201;      | 201;         | 201;      | 201;      | 201;      | 501;         | 501;         | 501;              | 501;         | 501;             |
| 251;93375 | 251;93375      | 251;93375        | 251;93375      | 501;374250             | 501;374250        | 501;374250   | 501;374250   | 501;374250   | 501;374250   | 501;374250   | 501;374250   | 501;374250   | 501;374250   | 201;59700 | 201;59700    | 201;59700 | 201;59700 | 201;59700 | 501;374250   | 501;374250   | 501;374250        | 501;374250   | 501;374250       |
| bqp250-7  | bqp250-8       | $_{ m bqp250-9}$ | bqp250-10      | bqp500-1               | bqp500-2          | bqp500-3     | bqp500-4     | pdb200-2     | pdb200-6     | bqp500-7     | Pdb200-8     | pdb200-9     | bqp500-10    | gkale     | gka2e        | gka3e     | gka4e     | gka5e     | gkalf        | gka2f        | gka3f             | gka4f        | gka5f            |

i

BCD cycle rather than the usual nonconvergent Gauss–Seidel BCD cycle for solving multiblock convex optimization problem (1.1). We leave this as one of our future research topics. In fact, our primary motivation of introducing this convergent 3-block semiproximal ADMM is to quickly produce an initial point for conic programming (P) so as to warm-start methods which have fast local convergence properties. For SDP problems in standard form, this has already been done by Zhao, Sun, and Toh in [44] by first using the classic 2-block ADMM (it was called the boundary point method in [31] at that time) to generate a starting point and then switching it to the fast convergent Newton-CG augmented Lagrangian method. The resulting software SDPNAL has been successfully employed by Nie and Wang [27, 28] to solve very large-scale SDP problems in standard form arising from polynomial optimization and rank-1 tensor approximation problems. Naturally, our next target is to extend this approach to multiblock convex optimization problems beyond conic programming (P) in standard form. We will report our corresponding findings in subsequent works.

Acknowledgments. The authors would like to thank Dr. Caihua Chen at Nanjing University and Professor Deren Han at Nanjing Normal University for bringing our attention to several papers on the convergence properties of multiblock ADMM and its various modifications and thank Xudong Li at National University of Singapore for numerous discussions on many topics covered in this paper. Thanks also go to the three referees for their comments and suggestions that helped us improve the paper.

## REFERENCES

- J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006.
- [2] S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Math. Program., 120 (2009), pp. 479-495.
- [3] S. Burer, R. D. Monteiro, and Y. Zhang, A computational study of a gradient-based logbarrier algorithm for a class of large-scale SDPS, Math. Program., 95 (2003), pp. 359–379.
- [4] C. Chen, B. He, Y. Ye, and X. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., Ser. A, to appear.
- [5] W. Deng and W. Yin, On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers, Rice CAAM Technical report 12-14, 2014.
- [6] J. ECKSTEIN AND D. P. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–318.
- [7] J. ECKSTEIN AND W. YAO, Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pac. J. Optim., to appear.
- [8] A. EISENBLÄTTER, M. GRÖTSCHEL, AND A. M. KOSTER, Frequency planning and ramifications of coloring, Discuss. Math. Graph Theory, 22 (2002), pp. 51–88.
- [9] M. FAZEL, T. K. PONG, D. F. SUN, AND P. TSENG, Hankel matrix rank minimization with applications in system identification and realization, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 946-977.
- [10] M. FORTIN AND R. GLOWINSKI, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Stud. Math. Appl. 15, Elsevier, Amsterdam, 1983
- [11] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, M. Fortin and R. Glowinski, eds., Stud. Math. Appl. 15, Elsevier, Amsterdam, 1983, pp. 299–331.
- [12] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), pp. 17–40.
- [13] R. GLOWINSKI, Lectures on Numerical Methods for Nonlinear Variational Problems, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Inst. Fund. Res., Bombay, 1980.

- [14] R. GLOWINSKI AND A. MARROCCO, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de dirichlet non linéares, Rev. Francaise Automat., Inform. Recherche Opér., 9 (1975), pp. 41–76.
- [15] P. Hahn and M. Anjos, QAPLIB: A Quadratic Assignment Problem Library, http://www.seas.upenn.edu/qaplib.
- [16] D. HAN, X. YUAN, W. ZHANG, AND X. CAI, An ADM-based splitting method for separable convex programming, Comput. Optim. Appl., 54 (2013), pp. 343–369.
- [17] B. HE, M. TAO, M. XU, AND X. YUAN, An alternating direction-based contraction method for linearly constrained separable convex programming problems, Optimization, 62 (2013), pp. 573-596.
- [18] B. HE, M. TAO, AND X. YUAN, Alternating direction method with gaussian back substitution for separable convex programming, SIAM J. Optim., 22 (2012), pp. 313–340.
- [19] B. HE, M. TAO, AND X. YUAN, A splitting method for separable convex programming, IMA J. Numer. Anal., 20 (2014), pp. 1–33.
- [20] B. HE, H. YANG, AND S. WANG, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl., 106 (2000), pp. 337–356.
- [21] B. HE AND X. YUAN, Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming, Numer. Algebra Control Optim., 3 (2013), pp. 247–260.
- [22] M. R. HESTENES, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–320.
- [23] M. Y. HONG AND Z. Q. Luo, On the Linear Convergence of the Alternating Direction Method of Multipliers, preprint, arXiv:1208.3922, 2012.
- [24] X. D. Li, D. F. Sun, and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Math. Program., Ser. A, to appear.
- [25] R. D. Monteiro, C. Ortiz, and B. F. Svaiter, A first-order block-decomposition method for solving two-easy-block structured semidefinite programs, Math. Program. Comput., 6 (2014), pp. 103–150.
- [26] J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci., 255 (1962), pp. 238-240.
- [27] J. NIE AND L. WANG, Regularization methods for SDP relaxations in large-scale polynomial optimization, SIAM J. Optim., 22 (2012), pp. 408–428.
- [28] J. NIE AND L. WANG, Semidefinite Relaxations for Best Rank-1 Tensor Approximations, preprint, arXiv:1308.6562, 2013.
- [29] J. PENG AND Y. WEI, Approximating k-means-type clustering via semidefinite programming, SIAM J. Optim., 18 (2007), pp. 186–205.
- [30] J. POVH AND F. RENDL, Copositive and semidefinite relaxations of the quadratic assignment problem, Discrete Optim., 6 (2009), pp. 231–241.
- [31] J. POVH, F. RENDL, AND A. WIEGELE, A boundary point method to solve semidefinite programs, Computing, 78 (2006), pp. 277–286.
- [32] M. POWELL, A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298.
- [33] R. T. ROCKAFELLAR, Convex Analysis, Princeton Math. Ser. 28, Princeton University Press, Princeton, NJ, 1970.
- [34] R. T. ROCKAFELLAR, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116.
- [35] R. T. ROCKAFELLAR AND R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, Berlin, 1998.
- [36] N. SLOANE, Challenge Problems: Independent Sets in Graphs, http://www.research.att.com/ njas/doc/graphs.html (2005).
- [37] M. TAO AND X. YUAN, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), pp. 57–81.
- [38] K. C. Toh, Solving large scale semidefinite programs via an iterative solver on the augmented systems, SIAM J. Optim., 14 (2004), pp. 670-698.
- [39] M. TRICK, V. CHVATAL, B. COOK, D. JOHNSON, C. McGEOCH, AND R. TARJAN, The Second Dimacs Implementation Challenge—NP Hard Problems: Maximum Clique, Graph Coloring, and Satisfiability http://dimacs.rutgers.edu/Challenges (1992).
- [40] P. TSENG, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl., 109 (2001), pp. 475–494.
- [41] S. WANG AND L. LIAO, Decomposition method with a variable parameter for a class of monotone variational inequality problems, J. Optim. Theory Appl., 109 (2001), pp. 415–429.

- [42] X. WANG, M. HONG, S. MA, AND Z.-Q. Luo, Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers, preprint, arXiv:1308.5294, 2013.
- [43] Z. Wen, D. Goldfarb, and W. Yin, Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Program. Comput., 2 (2010), pp. 203–230.
- [44] X. Y. Zhao, D. F. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737–1765.