Entregar al Campus Virtual abans del dia: 10/04/2024.

Exercise 1 (6 points) Let $x = (x_1, x_2, ...x_n)$, n > 2, be observations of i.i.d. random variables with probability function

$$\mathbb{P}[X_i = x_i] = (1 - p)^{(x_i - 1)} p,$$

where $x_i \in \mathbb{N}, p \in (0,1)$.

- (a) Calculate the expected value of $S(x) := \sum_{i=1}^{n} x_i$. [1 point]
- (b) Find a sufficient statistic. [1 point]
- (c) Find an unbiased estimator of $\frac{1}{p}$ based on S. [2 points]
- (d) Find an unbiased estimator of p based on S. [2 points] $\left(\text{Hint: Consider that } S \sim NB(n,p) \text{ (Negative Binomial) and consider } \mathbb{E}\left[\frac{1}{S-1}\right] \right).$

Exercise 2 (4 points) A sample X_1, \ldots, X_n is drawn from the normal distribution $N(\theta, \theta^2)$.

- (a) Find a 90% confidence interval for the population mean θ . [2 points]
- (b) We aim to perform a hypothesis test to determine if there has been any change in the population mean. What sample size would be required to detect a change of 0.1 with a significance level of 95% and a power of 90%, given that $\bar{X} = 12$? [2 points]