Protein fold classification incorporating additional evolutionary information from phylogenetic profiles

Daniel S. Standage

BCB 569

December 15, 2011

Protein science

Protein science

Homology modeling

- "sequence → structure" problem
- accurate when structure of a close homolog available
- need alternative that does not depend on sequence similarity

Protein fold classification

Protein fold classification

>SomeAwesomeProtein

INFESTEDATION TO PERSON FOR EAST PROPERTY PROPERTY ALS IT TREGULAR TO SETTING SECTION AND SECTION AND

Protein fold classification

My project

- implement PFRES method
- extend method with new features

Data

Data

- includes sequences from 27 most populated folds in SCOP
- pairwise sequence similarity < 35%

Data

Training data

• 313 domains (Ding & Dubchak, 2001)

Testing data

- 385 domains (Ding & Dubchak, 2001)
- 908 domains (Shen & Kurgan, 2007)

Features

INCRESS REPAGRITOS PEROS PEROS PEROP PROPOR PAREACITE PROQUEDA APMESIA VOLL SECRISMMENSINGER FOR SIMPLE COLUMN CO VEHIPOCKOLLTEALKFHILIPEQROVLGTSRTRPRICEGAGPVLFANGGESLFATHGDCE AND TREE CONTROL OF THE PROPERTY OF THE PROPER SMITHOULD MADERAL THAN PROVIDED LINE HAS AN ARREST HORST WARD. LIDORLY MADGY TOS SHLAT THEY PEPUM MASPIN SHL SRRS SAD MALE GALLY MADGING FOR THE STANDARD SHAP MADGING SSS SLINE ER WIPPE THIN MADGO OF TRISS SAD WARLE LINE PPPSSPTL SYSSTSL.

Profile-based composition vector (PCV)

- search with PSI-BLAST
- generate PSSM a_{ki} (an $L \times 20$ matrix)
- PCV has following form

$$PCV_i = \sum_{k=1}^{L} \frac{\max(a_{ki}, 0)}{L}$$
 (i = 1, 2, ..., 20)

Profile-based composition vector (PCV)

$$PCV_i = \sum_{k=1}^{L} \frac{\max(a_{ki}, 0)}{L}$$
 (i = 1, 2, ..., 20)

Secondary-structure-based features

- three structure categories: H=helix, E=strand, C=coil
- content: SSC
- contiguous segments: DSSS
- arrangements of contiguous segments: ADSSS

Secondary-structure-based features

SSC _m	$m \in \{H, E, C\}$
$DSSS_m$	$m \in \{H, E, C\}$
$ADSSS_m$	$m \in \{H, E, C\}^3$

CCHHHHHHHCCCEEEEECCEEEEEEECC

 $SSC_c = 9 / 30 = 0.300$ $DSS_c = 0$

Phylogenetic profile

- captures phylogenetic distribution of protein
- database of *n* reference genomes $G = \{G_1, G_2, ..., G_n\}$
- phylogenetic profile of a gene g

$$p = p_1 p_2 ... p_n$$
 s.t. $p_i = 1$ if $g \in G_i$

Full feature space

Characteristic	# Features
PCV	20
SSC	3
DSSS	3
ADSSS	27
Length	1
Phylogenetic profile	12
Total	66

Feature calculation

- PCVs
 - PSI-BLAST
 - NR database
- SS features
 - PSI-PRED
 - Uniref90 database
- phylogenetic profiles
 - new code
 - custom protein databases
- parallel pipeline

Phylogenetic profile

Eukaryotes	Dicots
Arabidopsis thaliana	Arabidopsis thaliana
Aspergillus nidulans	Carica papaya
Cryptosporidium parvum	Cucumis sativus
Danio rerio	Glycine max
Drosophila melanogaster	Lotus japonicus
Eremothecium gossypii	Manihot esculenta
Homo sapiens	Medicago trunculata
Mus musculus	Mimulus guttatus
Physcomitrella patens	Populus trichocarpa
Plasmodium falciparum	Prunus persica
Saccharomyces cerevisiae	Ricinus communis
Zea mays	Solanum lycoparsicum

Data set feature spaces

	Training Set	Test Set 1	Test Set 2
PFRES	Tr _P	$T1_P$	$T2_P$
PFRES + Euk.	Tr_{PE}	$T1_{PE}$	$T2_{PE}$
PFRES + Dic.	Tr_{PD}	$T1_{PD}$	$T2_{PD}$

Feature selection: information gain

Characteristic	# Features	Selected Features
PCV	20	20
SSC	3	3
DSSS	3	3
ADSSS	27	10
Length	1	1
Phylogenetic profile	12	6
Total	66	43

Machine learning

Machine learning

Results

Classifier	Eukaryotes	Dicots	PFRES	Published
RF				
Test 1	65.8%	62.9%	65.5%	66.8%
Test 2	64.6%	59.8%	64.0%	63.3%
SVM				
Test 1	61.4%	54.8%	66.8%	66.1%
Test 2	53.1%	51.1%	62.9%	62.4%
Kstar				
Test 1	63.2%	57.2%	63.2%	65.0%
Test 2	59.4%	52.5%	56.7%	62.7%
Ensemble				
Test 1	65.8%	60.1%	67.1%	68.4%
Test 2	62.7%	56.5%	62.6%	66.4%

Conclusions

- Short phylogenetic profiles do not provide a significant performance improvement.
- My method performed comparably despite the higher-dimensional feature space.
- With more training data and longer phylogenetic profiles, I expect a substantial performance improvement.

Acknowlegements

- Dr. Jernigan
- Dr. Hongbin Shen
- Dr. Lukasz Kurgan

Acknowlegements

Thank you!