

# BLG 335E ANALYSIS OF ALGORITHMS I

CRN: 10825

# **REPORT OF HOMEWORK #1**

Submission Date: 22.10.2013

STUDENT NAME: TUĞRUL YATAĞAN

**STUDENT NUMBER: 040100117** 

### 1. Introduction

In this project, we will find closest K locations among N locations to a given location considering their coordinates on earth.

# 2. Development and Operating Environments

Microsoft Visual C++ 2012 environment has been used to write the source code in Windows 7 operation system and GNU g++ compiler has been used for compiling under Debian 7 operation system.



The program built and compiled without any warning or error under g++. Finally the program is executed. Sample outcome is below:

```
_ D X
tugrul@tgrldeb: ~/blg335e
tugrul@tgrldeb:~/blg335e$ ls
040400117 AoA1 Pl.cpp location.txt
tugrul@tgrldeb:~/blg335e$ g++ 040400117 AoA1 P1.cpp -o 040400117 AoA1 P1.out
tugrul@tgrldeb:~/blg335e$ ls
tugrul@tgrldeb:~/blg335e$ ./040400117 AoA1 P1.out 10000 10 insertion 30 40
Clock: 190000
tugrul@tgrldeb:~/blg335e$ ls
040400117_AoA1_P1.cpp 040400117_AoA1_P1.out location.txt output.txt
tugrul@tgrldeb:~/blg335e$ cat output.txt
bako khan
            30.1788 65.9929
abozai 30.1378 66.0043
`alizai 30.1938 66.0092
`alizi 30.1938 66.0092
bahadorzai 30.1806 66.0208
bahadurzi
              30.1806 66.0208
             30.0624 66.0601
`aydowzi
alah kuzi
             30.1389 66.0611
badalzai
             30.1389 66.0611
amanzai 30.2114 66.0476
tugrul@tgrldeb:~/blg335e$
```

### 3. Data Structures and Variables

The program takes 5 command line arguments. Example:

./040100117\_AoA1\_P1 N K algorithmType latitude longitude

algorithmType variables can be {"insertion", "merge" or "linear"}

N, K, latitude and longitude variables can be integer value.

Example use of the program:

./040100117\_AoA\_P1 1000 10 insertion 30 40

# 4. Analysis

Running time of sorting functions according to K and N numbers are shown below in tables:

| merge |         | К    |      |      |      |  |
|-------|---------|------|------|------|------|--|
|       |         | 1    | 2    | 10   | N/2  |  |
| N     | 10      | 0    | 0    | 0    | 0    |  |
|       | 100     | 0    | 0    | 0    | 0    |  |
|       | 1000    | 1    | 1    | 1    | 1    |  |
|       | 10000   | 10   | 10   | 10   | 10   |  |
|       | 100000  | 103  | 102  | 102  | 103  |  |
|       | 1000000 | 1140 | 1150 | 1129 | 1138 |  |

| insertion |         | К    |      |      |      |  |
|-----------|---------|------|------|------|------|--|
|           |         | 1    | 2    | 10   | N/2  |  |
| N         | 10      | 0    | 0    | 0    | 0    |  |
|           | 100     | 0    | 0    | 0    | 0    |  |
|           | 1000    | 2    | 2    | 2    | 2    |  |
|           | 10000   | 108  | 109  | 109  | 108  |  |
|           | 100000  | 6886 | 6768 | 6811 | 6848 |  |
|           | 1000000 | 8    | 8    | 8    | ∞    |  |

| linear |         | К |    |    |       |  |
|--------|---------|---|----|----|-------|--|
|        |         | 1 | 2  | 10 | N/2   |  |
| N      | 10      | 0 | 0  | 0  | 0     |  |
|        | 100     | 0 | 0  | 0  | 0     |  |
|        | 1000    | 0 | 0  | 0  | 3     |  |
|        | 10000   | 0 | 0  | 0  | 296   |  |
|        | 100000  | 1 | 2  | 8  | 38480 |  |
|        | 1000000 | 9 | 18 | 82 | 8     |  |

N is number of the element to be sorted and K is number of the element to demanded. As seen by the tables K does not effect on merge and insertion sorting, but K can effects only when linear sorting.

Merge sort is faster than insertion sort for N > 1000. After 1000, merge sort is becomes faster. Linear sort is handy only when K is very small or N is smaller than 1000.

Related graphs according to N and clock numbers for all three sorting algorithms separately for K numbers are shown below.

Note: For clarity of graph, I choose very large number (Ex:1000000) for  $\infty$  when drawing graph.  $\infty$  indicates that program takes very long time to execute or it cannot give any result in reasonable time.

We can investigate the graphs that; if we chose time functions of merge sort is m(n), insertion sort is i(n) and linear sort is l(n)



$$m(n) = O(I(n)) = O(i(n))$$



$$m(n) = O(I(n)) = O(i(n))$$



$$m(n) = O(I(n)) = O(i(n))$$



$$m(n) = O(i(n)) = O(I(n))$$

### 5. Conclusion

In this homework, I have become more familiar with the concept of analysis of algorithms. I had the chance to intensify my knowledge about instructing good and efficient algorithms.