Digital Design with Verilog

Lecture 3: Review of Sequential Logic Design

Objectives

- Storage Elements
 - Latches/ Flip-Flops
- Design of Sequential Machines
 - Mealy Type / Moore Type
 - State reduction techniques
- Design Examples
 - Counters
 - Shift registers
 - Sequence Detectors

Sequential Circuits

Sequential logic includes storage elements.

 The binary information stored in these elements at any given time defines the state of the sequential circuit at that time.

Sequential Circuits

- The block diagram demonstrates that
 - the outputs in a sequential circuit are a function not only of the inputs, but also of the present state of the storage elements.
 - The next state of the storage elements is also a function of external inputs and the present state.
- Thus, a sequential circuit is specified by a time sequence of inputs, outputs, and internal states.
- In contrast, the outputs of combinational logic depend only on the present values of the inputs.

Types of Sequential Circuits

 There are two main types of sequential circuits, and their classification is a function of the timing of their signals.

• A *synchronous* sequential circuit is a system whose behavior can be defined from the knowledge of its signals at discrete instants of time.

• The behavior of an *asynchronous* sequential circuit depends upon the input signals at any instant of time *and* the order in which the inputs change.

Synchronous Sequential Logic

- The storage elements (memory) used in clocked sequential circuits are called *flip-flops*.
- A flip-flop is a binary storage device capable of storing one bit of information.
 - In a stable state, the output of a flip-flop is either 0 or 1.

Storage Elements: Latches and Flip-Flops

- Storage elements that operate with signal levels (rather than signal transitions) are referred to as *latches*; those controlled by a clock transition are *flip-flops*.
- Latches are said to be level sensitive devices; flip-flops are edge-sensitive devices.
- The two types of storage elements are related because latches are the basic circuits from which all flip-flops are constructed.

SR Latch

S	R	Q	Q'	
1	0	1	0	(after $S = 1, R = 0$)
0	1	0	1	
0 1	0 1	0	1	(after $S = 0, R = 1$) (forbidden)

(b) Function table

- Under normal conditions, both inputs of the latch remain at 0 unless the state has to be changed.
- The application of a momentary 1 to the S input causes the latch to go to the set state.
- The S input must go back to 0 before any other changes take place.

SR Latch

- After both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 1 to the R input. The 1 can then be removed from R, where upon the circuit remains in the reset state.
- Thus, when both inputs S and R are equal to 0, the latch can be in either the set or the reset state, depending on which input was most recently a 1.

SR Latch / S'R' Latch

- SR latch with NAND gates requires a 0 signal to change its state.
- The inputs signals for the NAND-latch are the complement values used for the NOR latch.

SR Latch with control input

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

(b) Function table

 The outputs of the NAND gates stay at the logic-1 level as long as the enable signal remains at 0.

D Latch (Transparent Latch)

- How is D-latch structurally different than the SR latch?
- D latch eliminates the undesirable condition of the indeterminate state that occurs in the SR latch (Q = Q' = 1).

If
$$D = 1$$
, $Q = 1$ -> 'set' state
If $D = 0$, $Q = 0$ -> 'reset' state

Graphic Symbols for Latches

Flip-Flops

 A flip-flop is a state of a latch that can be switched by momentary change in the control input.

 This momentary change is called a trigger and the transition it causes is said to trigger the flip-flop.

• The *D*-latch is a flip-flop that is triggered every time the pulse goes to a high or logic level 1.

Edge-Triggered Flip-Flop

- The circuit samples the D input and changes its output at the negative edge of the clock, Clk.
- When the clock is 0, the output of the inverter is 1. The slave latch is enabled and its output Q is equal to the master output Y. The master latch is disabled (Clk = 0).
- When the *Clk* changes to high, *D* input is transferred to the master latch. The slave remains disabled as long as *En* is low. Any change in the input changes *Y*, but not *Q*.
- The output of the flip-flop can change when CLK makes a transition 1 → 0

Edge-Triggered Flip-Flop: Graphic Symbols

 The most economical and efficient flip-flop constructed is the edge-triggered D flip-flop since it requires the smallest number of gates.

CMOS Master Slave Circuit

CMOS master-slave circuit of a D-type flip-flop: circuit schematic

CMOS Master Slave Circuit

Timing definitions for D, Clk, and Q waveforms.

JK Flip-Flop

- When J = 1 and K = 0, $D = 1 \longrightarrow$ next clock edge sets output to 1.
- When J = 0 and K = 1, $D = 0 \longrightarrow$ next clock edge resets output to 0.
- When J = 1 and K = 1, $D = Q' \longrightarrow$ next clock edge complements output.
- When J = 0 and K = 0, $D = Q \longrightarrow$ next clock edge leaves output unchanged.

T Flip-Flop

- The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a JK flip-flop when inputs J and K are tied together.
- When T = 0 (J = K = 0), a clock edge does not change the output. When T = 1 (J = K = 1), a clock edge complements the output.
- The T flip-flop can also be constructed with a D flip-flop and an exclusive-OR gate.

Characteristic Tables and Equations

Flip-Flop Characteristic Tables

JK Flip-Flop							
J	K	Q (t + 1)					
0	0	Q(t)	No change				
0	1	0	Reset				
1	0	1	Set				
1	1	Q'(t)	Complement				

D Flip-Flop

D	Q (t + 1)	
0	0	Reset
1	1	Set

T Flip-Flop

T	Q (t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

Excitation Tables

Mealy and Moore Models of FSMs

- Mealy model, the output is a function of both the present state and the input.
- Moore model, the output is a function of only present state

 Mealy Machine

State Reduction and Equivalent States

State Reduction and Equivalent States

- Two states of a sequential machine are equivalent (≡) if they have the same output sequence for all possible input sequences.
- Such states of the machine cannot be distinguished from each other based on observed outputs.
- Equivalent states can be combined without changing the input-output behavior of the machine.
 - Leads to a reduction in hardware without compromising functionality

Example: State Reduction

Note that we use letters to designate the states for the time being

Example: State Reduction

state	a	а	b	С	f	g	f	f	g	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

- What is important
 - not the states
 - but the output values the circuit generates
- Therefore, the problem is to find a circuit
 - with fewer number of states,
 - but that produces the same output pattern for any given input pattern, starting with the same initial state

State Reduction Technique 1/7

• Step 1: get a state table

present state	next state		Output	
	x = 0	x = 1	x = 0	× = 1
а	a	b	0	0
Ь	С	d	0	0
С	С	f	0	0
d	е	f	0	1
е	α	f	0	1
f	9	f	0	1
9	а	f	0	1

State Reduction Technique 2/7

- Step 2: Inspect the state table for equivalent states
 - <u>Equivalent states</u>: Two states,
 - 1. that produce the same output
 - whose next states are identical

for each input combination

State Reduction Technique 3/7

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	С	f	0	0
d	е	f	0	1_
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

- States "e" and "g" are equivalent
- · One of them can be removed

State Reduction Technique 4/7

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	С	f	0	0
d	е	f	0	1
е	а	f	0	1
f	е	f	0	1

We keep looking for equivalent states

State Reduction Technique 5/7

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	С	d	0	0
d	е	d	0	1
е	а	d	0	1

We keep looking for equivalent states

State Reduction Technique 6/7

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	b	d	0	0
d	е	d	0	1
е	а	d	0	1

We stop when there are no equivalent states

State Reduction Technique 7/7

present state	next	state	Output	
state	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	b	d	0	0
d	е	d	0	1
е	а	d	0	1

We need two flip-flops

state	а	а	b	b	d	е	d	d	е	d	е	
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	0	0	0	

Counters

Asynchronous (Ripple) Counters

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock input of the next more-significant flip-flop.

Asynchronous (Ripple) Counters

Example: 3-bit ripple binary counter.

Asyn. Counters with MOD no. < 2ⁿ

Asynchronous decade/BCD counter (cont'd).

Asynchronous Down Counters

- So far we are dealing with up counters. Down counters, on the other hand, count downward from a maximum value to zero, and repeat.
- Example: A 3-bit binary (MOD-8) down counter.

Asynchronous Down Counters

• Example: A 3-bit binary (MOD-8) down counter.

Synchronous Counters

• Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

Present state		Next state			Flip-flop inputs			
A_2	A_1	A_0	A_2^+	A_1^+	A_0^+	TA ₂	TA ₁	TA ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Synchronous Counters

Example: 3-bit synchronous binary counter (cont'd).

$$TA_2 = A_1.A_0$$

$$TA_1 = A_0$$
 $TA_0 = 1$

$$TA_0 = 1$$

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter.

Clock pulse	Up	Q_2	Q_1	Q_0	Down
0	<u></u>	0	0	0	▼, □
1		0	0	1	≼
2		0	1	0	≼
3	<u> </u>	0	1	1	≼
4		1	0	0	√
5		1	0	1	*
6		1	1	0	
7		1	1	1	<u>Z</u>

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Up counter Down counter
$$TQ_0 = 1$$
 $TQ_0 = 1$ $TQ_1 = Q_0$ $TQ_1 = Q_0$, $TQ_2 = Q_0$, Q_1 $TQ_2 = Q_0$, Q_1

Counters with Parallel Load

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Count next binary state
1	\uparrow	0	0	No change

Counters with Parallel Load

Cascading Synchronous Counters

- If counter is a not a binary counter, requires additional output.
- Example: A modulus-100 counter using two-decade counters.

TC = 1 when counter recycles to 0000

CTEN----Counter Enable, TC= Terminal Count

Shift Registers

Shift Registers

Basic data movement in shift registers

Serial In/Serial Out Shift Registers

 Accepts data serially – one bit at a time – and also produces output serially.

FIGURE 8–3 Serial in/serial out shift register.

Bidirectional Shift Registers

4-bit bidirectional shift register with parallel load.

Bidirectional Shift Registers

4-bit bidirectional shift register with parallel load.

Mode (Control			
S ₁	S ₀	Register Operation		
0	0	No change		
0	1	Shift right		
1	0	Shift left		
1	1	Parallel load		

An Application – Serial Addition

- Most operations in digital computers are done in parallel.
 Serial operations are slower but require less equipment.
- A serial adder is shown below.

$$A \leftarrow A + B$$
.

Sequence Detectors

Sequence Detector

Mealy machine, 101 sequence

For non overlapping case

Input:0110101011001

Output:0000100010000

For overlapping case

Input: 0110101011001

Output: 0000101010000

Sequence Detector

• 101 sequence Detector

 \mathbf{X} $\mathbf{Z} =$ (time:)

Design of 101 Sequence Detector (Mealy)

• State Diagram:

• State Diagram (final):

State Table:

Present	Next	State		sent (S
state	X = 0	X = 1	X = 0	X = 1
S_0	S_0	S_1	0	0
$\mathbf{S_1}$	$\mathbf{S_2}$	$\mathbf{S_1}$	0	0
S_2	S_0	S_1	0	1

State Table with State Assignment:

	\mathbf{A}^{\cdot}	B.	4	
AB	X = 0	X = 1	X = 0	X =1
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1

Derive Boolean Equations:

$$\mathbf{D}_{\mathbf{A}} = \mathbf{X}'.\mathbf{B}$$

$$\mathbf{D}_{\mathbf{B}} = \mathbf{X}$$

Compare with Typical Mealy Machine

A Moore Sequence Detector:

Sequence Detector

• 101 sequence Detector

X = $\mathbf{Z} =$ (time:)

 S_0 : start

 S_1 : got 1

S₂: got 10

S₃: got 101

 S_0 : start

 S_1 : got 1

S₂: got 10

S₃: got 101

State Table

Prese	Next	State	Present
nt state	X = 0	X = 1	Output (Z)
S_0	S_0	$\mathbf{S_1}$	0
$\mathbf{S_1}$	S_2	$\mathbf{S_1}$	0
S_2	S_0	S_3	0
S_3	S_2	$\mathbf{S_1}$	1

Transition Table with State assignment

		$\mathbf{D}_{\mathbf{A}}$	ı	
		$A^+ B^+$		
AB		X = 0	X = 1	Z
00		00	01	0
01		11	01	0
11		00	10	0
10		11	01	1

$$Z = A\bar{B}$$

References

- Chapter 9, Digital Fundamentals by Thomas L. Floyd
- Chapter 5 & 6, Digital Design by M. Morris Mano
- Disclaimer: I don't own all the slides, few of these slides are copied and adopted from various public resources available on the internet.

Thank you