

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sprawozdanie - laboratorium nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda siecznych)

1. Wstęp teoretyczny

Jedną z metod wyznaczania pojedynczych pierwiastków rzeczywistych równań nieliniowych jest metoda Regula Falsi, w której wykorzystuje się założenie lokalnej liniowości funkcji (fałszywe), ponadto:

- a) w przedziale [a,b] funkcja ma tylko jeden pierwiastek pojedynczy,
- b) f(a)f(b) < 0,
- c) funkcja jest klasy C^2 ,
- d) pierwsza i druga pochodna nie zmieniają znaku w przedziale [a,b].

Kolejne przybliżenia wyznaczone między punktami A(a,f(a)) oraz B(b,f(b)) pozwalają wyznaczyć prostą o równaniu:

$$y-f(a) = \frac{f(b)-f(a)}{b-a} \cdot (x-a) \quad , \tag{1}$$

jako kolejne przybliżenia pierwiastków można potraktować miejsca, w których te proste przecinają się z osią *x*:

$$x_1 = a - \frac{f(a)}{f(b) - f(a)} \cdot (b - a)$$
 (2)

Obliczenia należy przerwać, gdy $f(x_1)=0$, w przeciwnym razie na końcach którego z dwóch przedziałów wartość funkcji mają różne znaki, przez te punkty poprowadzona zostanie prosta. Wadą tej metody jest wolna zbieżność, której rząd jest określony parametrem p=1.

Metoda siecznych jest modyfikacją metody Regula Falsi. Polega ona na przeprowadzeniu prostej przez dwa ostatnie przybliżenia x_k i x_{k-1} (metoda dwupunktowa). Kolejne przybliżenia wyznacza się według rekurencji:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{k(x_k) - f(x_{k-1})} , \qquad (3)$$

zbieżność metody jest większa niż w Regula Falsi, wynosi $p = \frac{1}{2}(1+\sqrt{5}) \approx 1.618$.

Należy przyjąć założenie, że $|f(x_k)|$ mają tworzyć ciąg wartości malejących, jeżeli w kolejnych iteracjach $|f(x_k)|$ zaczynają rosnąć, należy przerwać obliczenia i ponownie wyznaczyć punkty startowe zawężając przedział izolacji.

2. Zadanie do wykonania

2.1. Opis problemu

Dany jest wielomian, którego zera chcemy znaleźć:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = 0 \quad , \tag{4}$$

jeśli podzielimy wielomian przez wyraz $(x-x_i)$ to otrzymamy:

$$f(x) = (x - x_i)(b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0) + R_i . (5)$$

Współczynniki *b* dla nowego wielomianu, wyznaczamy rekurencyjnie:

$$b_n = 0$$

 $b_k = a_{k+1} + x_j b_{k+1}$, dla $k = n-1, n-2,..., 0$ (6)
 $R_j = a_0 + x_j b_0$

Wykorzystując metodę siecznych, oraz znając dwa początkowe przybliżenia x_{j-1} i x_j oraz reszty R_{j-1} i R_j możemy wyznaczyć iteracyjnie zera wielomianu wykorzystując wzór:

$$x_{j+1} = x_j - \frac{R_j(x_j - x_{j-1})}{R_j - R_{j-1}} . (7)$$

Wielomianem do rozwiązania jest $f(x)=x^5+14x^4+33x^3-92x^2-196x+240$, wartościami startowymi $x_0=0$ i $x_1=0.1$, a iteracją maksymalną $IT_{MAX}=30$.

2.2. Wyniki

Dzięki odpowiednio zaimplementowanemu algorytmowi udało się wyznaczyć kolejne przybliżenia dla każdego z pierwiastków. Na potrzeby zadania przyjęto punkt przerwania pętli w momencie, gdy wartość będzie bliska zeru: $x_1 - x_0 < 10^{-7}$. Wartości kolejnych przybliżeń wypisane zostały w tabelach 1) - 5).

1)	L	it	X_{it+1}	R_{it+1}
	1	1	1.17156	-34.2531
	1	2	1.02692	-5.84693
	1	3	0.997147	0.628384
	1	4	1.00004	-0.00803032
	1	5	1	-1.05E-05
	1	6	1	1.76E-10

2)	L	it	X_{it+1}	R_{it+1}
	2	1	-6.14612	-211.972
	2	2	-47.6089	3.63E+06
	2	3	-6.14855	-212.305
	2	4	-6.15097	-212.637
	2	5	-4.60089	-34.2831
	2	6	-4.30293	-14.1731
	2	7	-4.09294	-3.65601
	2	8	-4.01994	-0.732267
	2	9	-4.00166	-0.0598706
	2	10	-4.00003	-0.00116616
	2	11	-4	-1.93E-06
	2	12	-4	-6.28E-11

3)	L	it	X_{it+1}	R_{it+1}
	3	1	11.7417	3122.3
	3	2	0.317661	-57.5873
	3	3	0.524549	-54.7308
	3	4	4.48854	270.001
	3	5	1.19265	-37.8866
	3	6	1.59822	-21.4276
	3	7	2.12622	7.84603
	3	8	1.9847	-0.913902
	3	9	1.99947	-0.0320206
	3	10	2	0.00013931
	3	11	2	-2.11E-08
	3	12	2	-1.42E-14

4)	L	it	X_{it+1}	R_{it+1}
	4	1	-2.29008	5.47346
	4	2	-2.79641	1.46656
	4	3	-2.98174	0.128181
	4	4	-2.99949	0.00360434
	4	5	-3	9.38E-06
	4	6	-3	6.90E-10
	4	7	-3	0

5)	L	it	X_{it+1}	R_{it+1}
	5	1	-10	-3.55E-14
	5	2	-10	0

Tabele 1) – **5)**: Tabele przybliżeń miejsc zerowych, w kolumnach kolejno: L- numer miejsca zerowego, it – numer iteracji, x_{it+1} – przybliżenie miejsca zerowego w danej iteracji, R_{it+1} – reszta z dzielenia wielomianu w danej iteracji.

Wszystkie wartości wyznaczonych pierwiastków okazały się z dużą dokładnością zgodne z teoretycznymi, co więcej w żadnym z przypadków nie osiągnięto limitu IT_{MAX} =30 .

3. Wnioski

Metoda siecznych pozwala na uzyskanie relatywnie poprawnych wyników, należy jednak zaznaczyć, że wyznaczanie pierwiastków polegające na metodach iteracyjnych daje tylko przybliżenie. Do każdego kolejnego pierwiastka wykorzystujemy zmodyfikowany już wielomian o mniejszym stopniu, co może mieć wpływ na ilość iteracji potrzebnych do uzyskania satysfakcjonującego wyniku.