

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Control 1

Teoría de Autómatas y Lenguajes Formales — IIC2223 Fecha de Entrega: 2020-09-07

Problema 1:

Sea Σ un alfabeto finito y sea R una expresión regular sobre Sigma. Se define el operador:

 $R^{\downarrow\downarrow}$

tal que $w \in \mathcal{L}(R^{\downarrow\downarrow})$ si, y solo si, existe una palabra $w' \in \mathcal{L}(R)$ que se puede descomponer como $w' = u_1 v_1 \dots u_k v_k$ para algún $k \geq 1$ y con $u_i, v_i \Sigma^*$, y tal que $w = u_1 \dots u_k$. Demuestre que para toda expresión regular R, el resultado $R^{\downarrow\downarrow}$ define un lenguaje regular.

Solución problema 1: Doy mi palabra que la siguiente solución de la pregunta 2 fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad

—Nicholas Mc-Donnell

Se ve que $R^{\downarrow\downarrow}$ corresponde a todas las subsecuencias de carácteres¹ de palabras aceptadas por R. Sea $w \in \mathcal{L}(R)$, entonces se tiene que $w = w_1 \dots w_k = u_1 v_1 \dots u_k v_k$ donde k = |w| y se tiene $\{u_i, v_i\} = \{\varepsilon, w_i\}$, por lo tanto $u_1 \dots u_k \in \mathcal{L}(R^{\downarrow\downarrow})$, lo que nos dice que dado una palabra en $\mathcal{L}(R)$ toda subsecuencia de carácteres pertenece a $\mathcal{L}(R^{\downarrow\downarrow})$. Para ver que $\mathcal{L}(R^{\downarrow\downarrow})$ es regular, se toma \mathcal{A} un DFA tal que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(R)$, y se construye un NFA- ε \mathcal{A}' de la siguiente forma. Todo estado se vuelve estado de aceptación e iterativamente se hace el siguiente proceso, dados q_i, q_j tales que $\delta(q_i, a) = q_j$ y $a \in \Sigma$ se agrega $\Delta(q_i, \varepsilon, q_j)$ Como hay finitos estados el proceso termina y nos define un NFA. Ahora, sea $w \in \mathcal{L}(R)$ tal que $w = u_1 v_1 \dots u_k v_k$ como se vio anteriormente, y $\rho : p_1 \xrightarrow{w_1} \dots \xrightarrow{w_k} p_{k+1}$ una ejecución de aceptación de \mathcal{A} sobre w, sea i tal que $u_i = \varepsilon$, entonces se puede ver la ejecución $\rho' : p_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} p_i \xrightarrow{\varepsilon} p_{i+1} \xrightarrow{w_{i+1}} p_{i+2} \xrightarrow{w_{i+2}} \dots \xrightarrow{w_k} p_{k+1}$, se ve entonces que toda subsecuencia de w es aceptada, pero se ve que toda palabra aceptada por \mathcal{A}' es una subsecuencia alguna palabra en \mathcal{A} por construcción² Ahora, como cada NFA- ε define un lenguaje regular, se tiene que $\mathcal{L}(R)$ es regular.

¹Incluida la secuencia vacia, i.e. la palabra vacia

²Las ε -transiciones nos garantizan eso.