МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

НАПРЯЖЕНИЕ ПЛОСКОГО КОНДЕНСАТОРА

студентов 2 курса 251 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Григорьева Данилы Евгеньевича и Лазаревой Виктории Владимировны

Упражнение №1

Рабочие формулы:

$$U=E\cdot d$$
 где $E=rac{1}{arepsilon_0}\cdotrac{Q}{A}$ где $arepsilon=8.85\cdot 10^{-12}rac{V\cdot s}{A\cdot m}$

Таблица полученных значений:

Положение	d, mm	U,B
1	1.0	2.0
2	2.1	3.2
3	3.2	4.2
4	4.2	5.2
5	5.0	5.8
6	6.2	6.1
7	7.1	6.4
8	8.2	6.6
9	9.1	6.7
10	10.1	6.8

По полученным данным построим график зависимости напряжения U в плоском конденсаторе от расстояния d между пластинами:

Расчёт погрешности метода:

Поскольку напряженность поля Е мы считаем постоянной на протяжении эксперимента, погршеность метода считаем:

$$\frac{\Delta U}{U} = \frac{\Delta d}{d}$$

1.
$$\frac{\Delta U}{U} \cdot 100\% = 10,0\%$$

2.
$$\frac{\Delta U}{U} \cdot 100\% = 4,8\%$$

3.
$$\frac{\Delta U}{U} \cdot 100\% = 3,2\%$$

4.
$$\frac{\Delta U}{U} \cdot 100\% = 2,4\%$$

5.
$$\frac{\Delta U}{U} \cdot 100\% = 2,0\%$$

6.
$$\frac{\Delta U}{U} \cdot 100\% = 1,6\%$$

7.
$$\frac{\Delta U}{U} \cdot 100\% = 1,4\%$$

8.
$$\frac{\Delta U}{U} \cdot 100\% = 1,2\%$$

9.
$$\frac{\Delta U}{U} \cdot 100\% = 1,1\%$$

10.
$$\frac{\Delta U}{U} \cdot 100\% = 0,9\%$$

Вывод Виктории:

В ходе лабораторной работы мы измеряли напряжение на конденсаторе с помощью вольтметра, изменяя расстояние между его обкладками. На основе полученных данных мы построили график. В идеальных условиях зависимость напряжения от расстояния между обкладками является линейной, что можно выразить соответствующей функцией. Однако, согласно нашему графику, с увеличением расстояния точность измерений заметно снижается. Это связано с разрядкой конденсатора (потери заряда через воздух и другие причины). Этот метод эффективен для получения значения напряжения при фиксированном расстоянии, но при измерении нескольких значений подряд его точность значительно ухудшается.

Вывод Данилы: В рамках лабораторной работы мы измеряли напряжение на конденсаторе с помощью вольтметра, изменяя расстояние между обкладками. На основе собранных данных мы построили график. В теории существует прямая зависимость между напряжением и расстоянием между обкладками, которую можно описать линейной функцией. Однако, анализ графика показал, что с увеличением расстояния точность измерений снижается. Это связано с постепенной разрядкой конденсатора, то есть с высвобождением заряда. Этот метод эффективен для измерения напряжения при фиксированном расстоянии, но не очень удобен для последовательного измерения нескольких значений.