To Perform and Analysis of Logistic Regression Algorithm

Importing the Libraries

```
In [2]: import pandas as pd
import numpy as np
```

Data acquisitionuing Pandas

In [3]:	<pre>import os</pre>													
In [4]:	os.getcwd()													
Out[4]:	'C:\\Users\\ADMIN\\DSS_practical'													
In [5]:	os.chdir('C:\\Users\\ADMIN\\DSS_practical')													
In [6]:	data=pd.read_csv("heart.csv")													
In [7]:	data.head()													
Out[7]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal t
Out[7]:	0	age 52		cp	trestbps 125	chol 212	fbs	restecg	thalach 168	exang 0	oldpeak 1.0	slope 2	ca 2	thal ta
Out[7]:	0			0										
Out[7]:		52	1	0	125	212	0	1	168	0	1.0	2	2	3
Out[7]:	1	52 53	1 1 1	0	125 140	212 203	0	1 0	168 155	0	1.0	2 0	2	3
Out[7]:	1 2	52 53 70	1 1 1	0 0 0	125 140 145	212 203 174	0 1 0	1 0 1	168 155 125	0 1 1	1.0 3.1 2.6	2 0	2 0 0	3 3 3

```
data.tail()
In [8]:
Out[8]:
               age sex cp trestbps
                                      chol fbs restecg thalach exang oldpeak slope ca thal
                                                                                                2
         1020
                59
                      1
                          1
                                  140
                                       221
                                              0
                                                       1
                                                             164
                                                                       1
                                                                              0.0
                                                                                      2
                                                                                          0
         1021
                60
                          0
                                  125
                                       258
                                              0
                                                       0
                                                             141
                                                                       1
                                                                              2.8
                                                                                       1
                                                                                          1
                                                                                                3
                      1
                                                                                                2
         1022
                47
                      1
                          0
                                  110
                                       275
                                              0
                                                       0
                                                             118
                                                                       1
                                                                              1.0
                                                                                       1
                                                                                          1
         1023
                50
                          0
                                  110
                                       254
                                              0
                                                       0
                                                             159
                                                                       0
                                                                                      2
                                                                                          0
                                                                                                2
                      0
                                                                              0.0
                                                                                                3
         1024
                54
                      1
                          0
                                  120
                                       188
                                              0
                                                       1
                                                             113
                                                                       0
                                                                              1.4
                                                                                       1
                                                                                          1
In [9]:
        data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1025 entries, 0 to 1024
       Data columns (total 14 columns):
        #
            Column
                       Non-Null Count Dtype
            -----
                       -----
       ---
                                        ----
        0
                       1025 non-null
                                        int64
            age
        1
                       1025 non-null
                                        int64
            sex
        2
                       1025 non-null
                                        int64
            ср
        3
            trestbps
                       1025 non-null
                                        int64
        4
                       1025 non-null
            chol
                                        int64
        5
            fbs
                       1025 non-null
                                        int64
        6
                       1025 non-null
            restecg
                                        int64
        7
            thalach
                       1025 non-null
                                        int64
        8
            exang
                       1025 non-null
                                        int64
        9
            oldpeak
                       1025 non-null
                                        float64
        10
            slope
                       1025 non-null
                                        int64
                       1025 non-null
                                        int64
        11
            ca
        12
            thal
                       1025 non-null
                                        int64
        13 target
                       1025 non-null
                                        int64
       dtypes: float64(1), int64(13)
       memory usage: 112.2 KB
```

In [10]: data.describe()

Out[10]:		age	sex	ср	trestbps	chol	fbs	r				
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.0				
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.5				
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.5				
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.0				
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.0				
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.0				
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.0				
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.0				
	4							•				
In [11]:	data.shape											
Out[11]:	(1025, 14)											
In [12]:	data.size											
Out[12]:	14350											
In [13]:	data.ndim											
Out[13]:	2											

Data preprocessing _ data cleaning _ missing value treatment

In [14]: # check Missing Value by record
data.isna()

Out[14]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
	0	False	False	False	False	False	False	False	False	False	False	False	Fá
	1	False	False	False	False	False	False	False	False	False	False	False	Fá
	2	False	False	False	False	False	False	False	False	False	False	False	Fá
	3	False	False	False	False	False	False	False	False	False	False	False	Fá
	4	False	False	False	False	False	False	False	False	False	False	False	Fá
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
	1020	False	False	False	False	False	False	False	False	False	False	False	Fá
	1021	False	False	False	False	False	False	False	False	False	False	False	Fá
	1022	False	False	False	False	False	False	False	False	False	False	False	Fá
	1023	False	False	False	False	False	False	False	False	False	False	False	Fá
	1024	False	False	False	False	False	False	False	False	False	False	False	Fá
	1025 rd	ows × ´	14 colu	ımns									
	4												
In [15]:	data	.isna().any(
Out[15]:	age sex cp trestbps chol fbs restecg thalach		False False False False False False	e e e e									

```
sex False
cp False
trestbps False
chol False
fbs False
restecg False
thalach False
exang False
oldpeak False
slope False
ca False
thal False
target False
dtype: bool

In [16]: data.isna().sum()
```

Independent and Dependent Variables

```
In [24]: x=data.drop("target", axis=1)
    y=data["target"]
```

Splitting of DataSet into train and Test

```
In [25]: #splitting the data into training and testing data sets
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2 ,random_state=42)
```

Logistic Regression

```
In [26]:
          import warnings
          warnings.filterwarnings("ignore")
In [27]:
          from sklearn.linear_model import LogisticRegression
In [28]:
          log = LogisticRegression()
          log.fit(x_train, y_train)
Out[28]:
          ▼ LogisticRegression
         LogisticRegression()
In [29]:
          y_pred1 = log.predict(x_test)
In [30]:
          from sklearn.metrics import accuracy_score
In [31]: accuracy_score (y_test,y_pred1)
```

Out[31]: 0.7902439024390244

plt.title("Confusion Matrix")

plt.show()

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix

In [33]: cm = confusion_matrix(y_test,y_pred1)

In [35]: labels = np.unique(y_test) # Get unique class labels
cm_df = pd.DataFrame(cm, index=labels, columns=labels)

In [36]: # Plot confusion matrix using seaborn
plt.figure(figsize=(6, 4))
sns.heatmap(cm_df, annot=True, fmt='d', cmap='Blues', linewidths=1, linecolor='blac
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
```

Confusion Matrix 90 - 80 71 31 0 - 70 - 60 True Label - 50 - 40 12 91 - 30 - 20 0 1 Predicted Label

In []: