PROBLEM 5.34 DESIGN A FOURBAR LINKAGE TO CARRY THE BOLT SHOWN BELOW IN THE FIGURE FROM POSTITION 1 TO 2 TO 3 WITHOUT REGARD TO THE FIXEN PETOTS SHOWN. THE BOLT IS FED INTO THE GRIPPER IN THE 2-DIRECTION. THE GRIPPER GRABS THE BOLT, AND YOUR LIWINGE MOVES IT TO POSTIT POSTITION 3 TO BE INSERTED INTO THE HOLE. A SECOND DEGREE OF PREEDOM WITHIN THE GRIPPEN ASSEMBLY (NOT SHOWN PUSHES THE BOLT INTO THE HOLE. EXTEMN THE GRIPPER ASSEMBLY AS NECESSARY TO INCLUDE THE MONTHUR POHOTS. THE FIXED PINCTS SHOULD BE ON THE BASE. HINT: TRY GUESS HALLED OF (32=70; B3=140°, 172=5°, 173=-47°)

GIVEN:

- 1. THE CONFIGURATION SHOWN IN THE FIGURE
- 2. THE PIXED POYERS NEED TO BE ON THE BYSE.

ASSUMDITIONS:

- 1. ALL COMPONENTS ARE RIGHD
- 2 ALL JOINTS ANE FRICTICALESS
- 3. ALL MOTION IS PLANAR
- 4. GRADITY ACTS YERTELALLY DOWNAYAND

FIND:

1) SYNTHESIXE A LIMINGLE THAT WILL MOVE THE BOLT AS SPECIFIED. 240 φ\ ,,,,, gripper all dimensions in mm 183.2 31.7° 301.7° 13 222 272.3° P_1 151.8 400 111.5-200 bolt base workpiece — 111.3— ►

SOLUTION:

THE FIRST STEP IS TO LOCATE THE POINTS P1, P2, AND P3 USING THE COORDINATE SYSTEM WITH AN CRICAN AT P1

$$(P_{2x}, P_{2y}) = (99mm, 13mm)$$

$$(P_{3x}, P_{3y}) = (111.3 \text{mm}, -151.8 \text{mm})$$
 (3)

THE GIVEN IMPUTS TO THE THREE POSTITION ANALYSIS CAN NOW BE CALCULATED

$$P_{21} = \sqrt{(P_{2x} - P_{1x})^2 + (P_{2y} - P_{1y})^2} = \sqrt{(99mm - 0mm)^2 + (13mm - 0mm)^2} = 99.85mm \Theta$$

$$P_{31} = \sqrt{(P_{3x} - P_{1x})^2 + (P_{3y} - P_{1y})^2} = \sqrt{(111.3mm - 0mn)^2 + (-151.8mm - 0mn)^2} = 188.23mm \Theta$$

$$\delta_2 = \tan^{-3} \frac{P_{2y} - P_{1y}}{P_{2x} - P_{1x}} = \tan^{-3} \frac{13mm - 0mm}{99mm - 0mm} = 7.48^{\circ}$$

$$S = \tan^{-1} \frac{P_{3y} - P_{1y}}{P_{3x} - P_{1x}} = \tan^{-1} \frac{-151 \cdot \epsilon \, mm - O_{mm}}{111.3 mm - \sigma_{mm}} = 306.25^{\circ}$$

THE SUGGESTED HALLES GIVEN IN THE PROBLEM STATEMENT ARE THE FINAL CHOSEN HALLES NEEDED TO RIW THE SYMMESIS.

A PAINTOCI OF THE RESULTS OF THE BHREE-ROSTION AWALEJTICHE SYNTHESIS USING THE HALLES IN (4)-(13) IS FOUND ON THE NEXT PAGE.

FIRST DYAD

GIVEN:		CHOSEN:		FIND:				x-coord	y-coord.
P12	99.85	β2	70.00	w	100.015		02	-112.719	183.410
P13	188.23	β3	140.00	θ	150.003		A1	-199.338	233.413
δ2	7.84			z	306.948		A2	-189.332	119.117
δ3	306.25			ф	-49.502		A3	-78.508	89.428
α2	29.40			W1x	-86.618		P1	0.000	0.000
α3	357.70			W1y	50.003		P2	98.917	13.620
				Z1x	199.338		P3	111.302	-151.797
				Z1y	-233.413				
1	-0.6580	-0.9397	-0.1288	-0.4909	٦ (W1x	1	ſ	98.9167
	0.9397	-0.6580	0.4909	-0.1288	J	W1y	l _	J	13.6203
	-1.7660	-0.6428	-0.0008	0.0401)	Z1x	ſ –)	111.3022
	0.6428	-1.7660	-0.0401	-0.0008		Z1y	J	l	-151.7971

SECOND DYAD

GIVEN:		CHOSEN:		FIND:				x-coord	y-coord.
P12	99.85	γ2	-5.00	u	231.779		04	-112.072	-38.272
P13	188.23	γ3	-49.00	σ	62.371		B1	-4.588	167.078
δ2	7.84			s	167.141		B2	12.900	156.929
δ3	306.25			Ψ	-88.427		B3	113.423	15.330
α2	29.40			U1x	107.484		P1	0.000	0.000
α3	357.70			U1y	205.350		P2	98.917	13.620
				S1x	4.588		P3	111.302	-151.797
				S1y	-167.078				
	_								
	-0.0038	0.0872	-0.1288	-0.4909		U1x	j	ĺ	98.9167
	-0.0872	-0.0038	0.4909	-0.1288	J	U1y	ļ <u> </u>	J	13.6203
	-0.3439	0.7547	-0.0008	0.0401	j	S1x	· –	j	111.3022
	-0.7547	-0.3439	-0.0401	-0.0008	l	S1y	J	l	-151.7971

Hemeweris Souther MER332: ADV. DYNAMICS & KINEMATICS PACES 5.34 Pg 4 of 4 NORTON 5 ID

SOLUTION DEMORISM:

Sommany:

HAYING THE PRECISION POINTS GIVEN ALONG WITH THE ORIENTATION OF BOLT SIGNIFFICANTLY REDUCED THE COMPLEXITY OF THE PROBLEM.