AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2021. május 12. 8:00

Időtartam: 180 perc

Pótlapok száma			
Tisztázati			
Piszkozati			

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Automatikai	és	elektronikai	ismeretek
emelt szint			

Azonosító								
jel:								

Fontos tudnivalók

Az írásbeli dolgozat megoldásához segédeszközként csak szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép, rajzeszközök, sablonok, vonalzók és függvénytáblázat használhatók. Az íráshoz kék vagy fekete tollat, a rajzoláshoz grafitceruzát kell használni. Az egyszerű, rövid feladatokat a feladatlapon, a kérdések alatt rendelkezésre álló szabad helyen kell megoldani.

A számítást igénylő feladatoknál ügyelni kell az összefüggés (képlet) helyes felírására, a szakszerű behelyettesítésre és a helyes számolásra. Ezek bármelyikének hiánya pontlevonást jelent. A végeredmény csak akkor fogadható el teljes pontszámmal, ha annak számértéke és mértékegysége kifogástalan.

A feladatok megoldásánál ügyelni kell az írásbeli dolgozat rendezettségére, az áttekinthetőségre, a szabványos jelölések alkalmazására, a műszaki, formai és esztétikai elvárásoknak való megfelelésre. Ezek hiánya pontlevonást jelent. A megoldásban az esetleges hibás részeket egy ferde vonallal kell áthúzni.

Egyszerű, rövid feladatok

_			_		
1	fel	9	h	9	t

3 pont

Rézvezetékből készült tekercs $T=60~^{0}\mathrm{C}$ üzemi hőmérsékleten $R=4,2~\Omega$ ellenállással rendelkezik. Határozza meg az ellenállását $T_{0}=20~^{0}\mathrm{C}$ szobahőmérsékleten (R_{0})! A réz hőfoktényezője (hőmérsékleti tényezője) $\alpha=0,0038~1/^{\circ}\mathrm{C}$.

$$R_0 =$$

2. feladat

Számítsa ki azt a maximális áramerősséget, amellyel még nem melegszik túl az $R = 1.8 \text{ k}\Omega$ ellenállású és P = 0.5 W teljesítményű fogyasztó $(I_{max})!$

$$I_{max} =$$

3. feladat

|--|

Egy $C = 4.7 \mu F$ kapacitású kondenzátorban $Q = 75.2 \mu C$ töltés halmozódott fel. Határozza meg a kondenzátorra kapcsolt feszültségértéket (U)!

U =

4. feladat

2 pont	
2 pont	

Számítsa ki az U=230~V effektív értékű, szinuszosan váltakozó feszültség maximális értékét (U_{max})!

$$U_{max} =$$

5. feladat

3 nont	

Határozza meg azt a frekvenciát, amelyen az L = 50 mH induktivitású tekercsnek $X_L = 785.4 \Omega$ a reaktanciája (f)!

$$f =$$

6. feladat

3 pont	
--------	--

Egyfázisú váltakozó áramú hálózat feszültsége U=230~V. Egy fogyasztó I=10~A árammal és $P_m=1135~var$ meddő teljesítménnyel terheli a hálózatot. Határozza meg a fogyasztó hatásos teljesítményét (P)!

$$P =$$

Automatikai és elektronikai ismeretek	Azonosító		
emelt szint	jel:		

7. feladat

3 pont

Egy négypólus feszültségerősítése $A_u=40$. Bemeneti ellenállása $R_{be}=18$ k Ω , terhelő ellenállása $R_t=1,2$ k Ω . Számítsa ki a teljesítményerősítés értékét $(A_p)!$

$$A_p =$$

_			
X.	ťel	80	at

3 pont

Egy műveleti erősítő nyílthurkú feszültségerősítése $A_{u0}=10^5$, sávszélessége (törésponti frekvenciája) $f_0=10$ Hz. Invertáló kapcsolásban a feszültségerősítés $|A_{uv}|=50$. Határozza meg az erősítő felső határfrekvenciáját (f_f)!

$$f_f =$$

9. feladat

3 pont	
--------	--

Írja fel a decimális 7-es számot a következő bináris kódolásokba!

Decimális	BCD kód	Johnson-kód	Gray-kód
7			

10. feladat

Egy háromváltozós logikai függvény diszjunktív sorszámos alakja $F^3 = \Sigma^3(0, 2, 5)$. Írja fel a konjunktív sorszámos alakját!

$$F^3 =$$

11. feladat

3 pont	
--------	--

Valósítsa meg és rajzolja fel az AND logikai függvényt 3 darab NOR logikai kapu segítségével!

Automatikai é	S	elektronikai	ismeretek
emelt szint			

Azonosító								
jel:								

12. feladat

4 pont

Töltse ki a hiányzó cellákat az alábbi R-S tároló vezérlési táblázatában!

R	S	Q _{n+1}
0	0	
0	1	
1	0	
1	1	

13. feladat

2 pont

Nevezze meg és írja be a két hiányzó elemet a vezérlőlánc megfelelő helyére!

14. feladat

2 pont

Egészítse ki a mondatot!

Időbeni lefolyása alapján az irányítási rendszer jelei lehetnek:

- a)
- b)

15. feladat

2 pont

Határozza meg a szabályozórendszer következő két fogalmát!

- a) Stabilitás:
- b) Holtidő:....

.....

Azonosító								
jel:								

Összetett feladatok

1. feladat

20 pont

Aktív kétpólus számítása

Adatok: $R_1=3$ k Ω , $R_2=6$ k Ω , $R_3=1$ k Ω , $R_4=2$ k Ω , $R_5=3$ k Ω , U=12 V (A feszültséggenerátor ideálisnak tekinthető.)

Feladatok:

a) Határozza meg terheletlen állapotban a kétpólus kimeneti feszültségét (Uki0)!

b) Számítsa ki az aktív kétpólus kimeneti ellenállásának értékét (Rki)!

Automatikai és	elektronikai	ismeretek
emelt szint		

Azonosító								
jel:								

c) Határozza meg rövidre zárt kimenet esetén a kimeneti áramot (Ikiz)!

d) Teljesítményillesztés esetén számítsa ki az illesztett terhelő ellenállás, a kimeneti feszültség és a kimeneti teljesítmény értékét (Rtill, Ukiill, Pkiill)!

2. feladat

20 pont

Párhuzamos rezgőkör számítása

Adatok:

C = 1 nF

 $R = 10 \text{ k}\Omega$

 $f_0 = 1$ MHz (rezonanciafrekvencia)

U = 500 mV (a rezgőkörre kapcsolt feszültség effektív értéke)

Feladatok:

a) Számítással határozza meg a rezgőkör induktivitását (L)!

b) Számítsa ki a rezgőkör jósági tényezőjét és sávszélességét (Q, B)!

c) Határozza meg rezonanciafrekvencián a rezgőkör áramainak értékét (I, I_C, I_L, I_R)!

d) Számítsa ki, hogy milyen értékű ellenállást kell a rezgőkörrel párhuzamosan kapcsolni (terhelt rezgőkör) ahhoz, hogy az eredeti sávszélesség duplájára növekedjék $(R_P)!$

2111 írásbeli vizsga 9 / 16 2021. május 12.

Azonosító								
jel:								

3. feladat 20 pont

Műveleti erősítős kapcsolás jellemzőinek számítása

Méretezze az alábbi műveleti erősítős kapcsolás ellenállásait, és számítsa ki a feladatokban előírt jellemzőket!

A műveleti erősítő ideálisnak tekinthető.

Adatok:

A visszacsatolt erősítő feszültség erősítése: $A_{uv} = -50$

Bemeneti ellenállás: $R_{be} = 15 \text{ k}\Omega$

A meghajtó generátor feszültsége: $U_g = 100 \text{ mV}$

A generátor belső ellenállása: $R_g = 1 \text{ k}\Omega$ A terhelő ellenállás értéke: $R_t = 2 \text{ k}\Omega$

A kimeneti feszültség maximális csúcsértke: $\widehat{\mathbf{U}}_{kimax}=\pm 13~V$

Feladatok:

a) Határozza meg az R1 és az R2 ellenállások értékét (R1, R2)!

b) Határozza meg az R3 kompenzáló ellenállás értékét (R3)!

c) Számítsa ki a bemeneti és a kimeneti feszültséget (Ube, Uki)!

d) Határozza meg az áramerősítést (A_i) és a teljesítményerősítést (A_p) viszonyszámban és dB-ben $(A_i^{dB},A_P^{dB})!$

e) Számítsa ki a megengedett legnagyobb bemeneti feszültség effektív értékét $(U_{\text{bemax}})!$

Azonosító								
jel:								

4. feladat 20 pont

Kombinációs hálózat áttervezése

Tervezze át az alábbi NEM-ÉS-VAGY kapukkal megvalósított függvényt 2 bementű NAND kapus megvalósításra!

A bemenetek súlyozása: A-2³; B-2²; C-2¹; D-2⁰. A változók csak ponált formában állnak rendelkezésére.

Feladatok:

- a) Olvassa ki a kapcsolásból a logikai függvényt!
- b) Ábrázolja a függvényt grafikusan, és írja fel az igazságtáblázatot!

Automatikai	és	elektronikai	ismeretek
amalt czint			

Azonosító								
jel:								

c) Írja fel a függvény sorszámos diszjunktív és konjunktív alakját!

d) Térjen át diszjunktív alakra, és írja fel a függvény legegyszerűbb diszjunktív algebrai alakját!

e) Kiemeléssel alakítsa a függvényt 2 bemenetű NAND kapukkal megvalósítható formára, és rajzolja fel a kapcsolást!

2111 írásbeli vizsga 13 / 16 2021. május 12.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2111 írásbeli vizsga 14 / 16 2021. május 12.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2111 írásbeli vizsga 15/16 2021. május 12.

Automatikai és elektronikai ismeretek	Azonosító	
emelt szint	jel:	

	feladat	pontszám							
	sorszáma	maximális	elért	maximális	elért				
	1.	3							
	2.	2							
	3.	2							
	4.	2							
E	5.	3							
Egyszerű, rövid feladatok	6.	3							
(elektrotechnika,	7.	3							
elektronika, irányítástechnika témakörből)	8.	3		40					
	9.	3							
temakoroor)	10.	3							
	11.	3							
	12.	4							
	13.	2							
	14.	2							
	15.	2							
Összetett feladatok	1.	20							
	2.	20		80					
(elektrotechnika, elektronika témakörből)	3.	20		ου					
temakoroorj	4.	20							
Az írásbeli vizsgarész ponts	120								

dátum	javító tanár

		áma egész a kerekítve
	elért	programba beírt
Egyszerű, rövid feladatok		
Összetett feladatok		
dátum	d	átum
javító tanár		egyző

2111 írásbeli vizsga 16 / 16 2021. május 12.