Übungsblatt 12 zur Algebraischen Zahlentheorie

Aufgabe 1. Spiel und Spaß mit p-adischen Zahlen I

- a) Schreibe -1 als 10-adische Zahl.
- b) Schreibe 2/3 als 10-adische Zahl.
- c) Gib ein Element $x \in \mathbb{Z}_{10}$ an, das weder Null noch Eins ist, aber trotzdem die Identität $x^2 = x$ erfüllt. Kann ein Grundschulkind die ersten paar Ziffern von x bestimmen?

Aufgabe 2. Spiel und Spaß mit p-adischen Zahlen II

- a) Sei n eine zu p teilerfremde ganze Zahl. Zeige, dass n in \mathbb{Z}_p invertierbar ist. $T_{\it ipp. Hensels Lemma.}$
- b) Berechne $\lim_{n\to\infty}\frac{1}{1+p^n}$ und $\lim_{n\to\infty}\frac{p^n}{1+p^n}$ in $\mathbb R$ und in $\mathbb Z_p$.

 Hinweis. Freestyle-Aufgabe! Mach dir keinen großen Kopf um formale Rechtfertigung. Es gilt $\lim_{n\to\infty}p^n=0$ in $\mathbb Z_p$
- c) Seien x und y ganze Zahlen. Finde eine Folge p-adischer Zahlen, die in \mathbb{R} gegen x und in \mathbb{Z}_p gegen y konvergiert.
- d) Gibt es in \mathbb{Z}_{13} eine Quadratwurzel aus -1?

Aufgabe 3. Hensels Lemma

Sei $f \in \mathbb{Z}[X]$ ein Polynom, das modulo p eine einfache Nullstelle besitzt: ein Element $x_1 \in \mathbb{Z}$ mit $f(x_1) \equiv 0$ modulo p, sodass es ein Element $y \in \mathbb{Z}$ mit $f'(x_1)y \equiv 1$ modulo p gibt. Wir definieren für $n \geq 1$: $x_{n+1} := x_n - yf(x_n)$.

- a) Zeige für $n \ge 1$, dass $x_n \equiv x_m \pmod{p^m}$ für m < n und dass $f(x_n) \equiv 0 \pmod{p^n}$. Tipp. Induktion und Taylorentwicklung.
- b) Verwende die Folge $(x_n)_n$, um eine Nullstelle von f in \mathbb{Z}_p zu konstruieren.
- c) Unter welchem Namen ist das Konstruktionsverfahren für die x_n bekannt? Bewundere die Einheit der Mathematik.

