Nucleotide and Amino Acid Sequences of Rat HICP

GAC	CGCTT	CTG	ATCT	רכים מ	iac c	מ כיכי	ייויניבר	בים יחים	ביייים בי	יז מממ	1 00	amma		222	rgcagcc	
		-010		conc	na c	ACCC	.1000	36 16	ADDE)DDA	i GC(J'I'I'G(3CAA	GGCT	rGCAGCC	60
															SAGGCTC	120
CTG	TCAG	CTT	GTCC	TAAA	GT C	TTAG	CACI	T G1	GGTG	GCTT	' GGC	GCTTC	CACA	CACI	TGTCAGA	180
CAC	CTTC	GTG	GTGG	CCTC	CA C	:GGCC	TCAC	C TI	CAGG	TTTG	AAC	CTG	CTC	CACA	AGGGAC	240
ACG	GTGA	C AT	'G AG	G GG	C AG	c cc	A CI	'G A'I	C CA	т ст	T CI	G GC	C AC	T TC	C TTC	290
		Me	t Ar 1	g Gl	y Se	r Pr	o Le 5	u Il	e Hi	s Le	u Le	eu Al .0	a Th	r Se	er Phe	
CTC	TGC	CTT	CTC	TCA	ATG	GTG	TGT	GCC	CAG	CTG	TGC	CGG	ACA	CCC	TGT	338
Leu 15	Cys	Leu	Leu	Ser	Met 20	Val	Cys	Ala	Gln	Leu 25	Суз	Arg	Thr	Pro	Cys 30	
አርር	m.cm		шаа	202	~~~	~~~										
Thr	Cys	Pro	Trp	Thr	Pro	Pro	CAG Gln	TGC Cys	CCA Pro	CAG Gln	GGG Glv	GTA Val	. CCC Pro	CTG	GTG Val	386
				35				-	40		2			45		
CTG	GAT	GGC	TGT	GGC	TGC	TGT	AAA	GTG	TGT	GCA	CGG	AGG	CTG	GGG	GAG	434
Leu	Asp	GLY	Суs 50	Gly	Cys	Cys	Lys	Val 55		Ala	Arg	Arg	Leu 60	Gly	Glu	
TCC	TCC	CAC	CAC	ama	a a m	ama	maa									
Ser	Cys	Asp	His	Leu	His	Val	Cys	Asp	Pro	AGC Ser	CAG Gln	GGC Gly	CTG Leu	GTT Val	TGT Cvs	482
		65					70					75			-1~	
CAG	CCT	GGG	GCA	GGC	CCT	GGC	GGC	CAT	GGG	GCT	GTG	TGT	CTC	TTG	GAT	530
Gin	Pro 80	GIY	Ala	Gly	Pro	Gly 85	Gly	His	Gly	Ala	Val 90	Cys	Leu	Leu	Asp	
GAG	GAT	GAC	CCT	N.C.C	m/cm	C A C	ama	3 3 m	222	~~~						
GLu	Asp	Asp	Gly	AGC Ser	Cys	Glu	Val	Asn	Gly	Arg	AGG Arg	TAC Tyr	CTG Leu	GAT Asp	GGA Gly	578
95					100				•	105				-	110	
GAG	ACC	TTT	AAA	CCC	AAT	TGC	AGG	GTC	CTG	TGC	CGC	TGT	GAT	GAC	GGT	626
GIU	Thr	Pne	Lys	Pro 115	Asn	Cys	Arg	Val	Leu 120	Cys	Arg	Cys	Asp	Asp 125	Gly	
GGC	TTC	ACC	ፕሮር	CTG	CCG	CTC	TCC	7.00	a a a	C a m	ama	~~~	~~~			
Gly	Phe	Thr	Cys	CTG Leu	Pro	Leu	Cys	Ser	GAG	Asp	GTG Val	CGG Arg	CTG Leu	CCC Pro	AGC Ser	674
			130					135					140			
TGG	GAC	TGC	CCA	CGC	CCC	AAG	AGA	ATA	CAG	GTG	CCA	GGA	AAG	TGC	TGC	722
115	Asp	145	PIO	Arg	Pro	гàг	Arg 150	Ile	Gln	Val	Pro	Gly 155	Lys	Cys	Cys	
CCC	GAG	T7G	GTA	TGT	GAC	CAG	GGA	GTG	ACA	CCG	GCG	ATC	CAG	CGC	ፐርር	770
Pro	Glu 160	Trp	Val	Cys	Asp	Gln 165	Gly	Val	Thr	Pro	Ala	Ile	Gln	Arg	Ser	,,,
7.00		a									170					
Thr	Ala	Gln	GGA Gly	CAC His	CAA Gln	CTT Leu	TCT Ser	GCC Ala	CTT	GTC Val	ACT Thr	CCT	GCC Ala	TCT	GCT	818
175			•		180					185		110	ATA	PCI	190	
GAT	GCT	CCT	TGT	CCA	AAT	TGG	AGC	ACA	GCC	TGG	GGC	CCC	TGC	TCA	ACC	866

Asp Ala Pro Cys Pro Asn Trp Ser Thr Ala Trp Gly Pro Cys Ser Thr 195 200 205	
ACC TGT GGG CTG GGC ATA GCC ACC CGA GTG TCC AAC CAG AAC CGA TTC Thr Cys Gly Leu Gly Ile Ala Thr Arg Val Ser Asn Gln Asn Arg Phe 210 215 220	914
TGC CAA CTG GAG ATC CAA CGC CGC CTG TGT CTG CCC AGA CCC TGC CTG Cys Gln Leu Glu Ile Gln Arg Arg Leu Cys Leu Pro Arg Pro Cys Leu 225 230 235	962
GCA GCC AGG AGC CAC AGC TCA TGG AAC AGT GCT TTC TAAGGCCAAC Ala Ala Arg Ser His Ser Ser Trp Asn Ser Ala Phe 240 245 250	1008
TGGGGATGCG GATACAGGGC CTGCCATCCT CAGCAAATGA CCCTAGGACC AGGCCCTGGA	1068
CTGCTGGTAG ATGCTCTTCT CCATGCTCTT GGCTGCAGTT AACTGTCCTG CTTGGATTCA	1128
CTGTGTAGAG CCACTGAGCG ATCCCTGCTC TGTCTGAGGT AGGCGGAGCA GGTGACCAGC	1188
TCCAGTTCTC TGGTTCAGCC TGGAATTCTG GGTTCTCCTG GCTCATTCCT CAAAACATCC	1248
CTGTACAAAA AGGACAACCA AAAAGACCTT TAAACCTAGG CTATACTGGG CAAACCTGGC	1308
CACCGTGCTG GGGATAAGGT CAATGTTAGG ACCAGACAGC AGATTGCCTG AAACTTCCAA	1368
TTCCCTTCTT GGACTTCTGT ATGCTTGTCC CCAAAGATGA TGAATGAACT CGTAAGTGTA	1428
CCTTCCCTGA CCTGAGAACA CCCTGCCTGC TCGGGAAGTA TTCAGGGGCA GAATTCTCTG	1488
TGAACATGAA GAGATGAATC ACACTGTCCT TAAGAAATTC CTGAAAGTCC AGGAACTTGA	1548
GCTTTGTATT TTCAGGAATG CACATCTCTT AAGCACTCGC AAAACAGGAA GGCTCCACAC	1608
CTCTGGCAGG CCAGGGCCTT TCTCTTCAGC ATGAGAAAGA CAAGGGACAG CAGAGTACTC	1668
TCCTCTGGAG GACTAGTCTA GCCTAGAATA AACACCCAAA	1708

Nucleotide Sequence Encoding Mature HICP and the Amino Acid Sequence of Mature HICP

CAG Gln 1	Leu	TGC Cys	CGG Arg	ACA Thr 5	CCC Pro	TGT Cys	ACC Thr	TGT Cys	CCT Pro 10	TGG Trp	ACA Thr	CCA Pro	CCC Pro	CAG Gln 15	TGC Cys	48
CCA Pro	CAG Gln	GGG Gly	GTA Val 20	CCC Pro	CTG Leu	GTG Val	CTG Leu	GAT Asp 25	GGC Gly	TGT Cys	GGC Gly	TGC Cys	TGT Cys 30	AAA Lys	GTG Val	96
	GCA Ala															144
CCC Pro	AGC Ser 50	CAG Gln	GGC Gly	CTG Leu	GTT Val	TGT Cys 55	CAG Gln	CCT Pro	GGG Gly	GCA Ala	GGC Gly 60	CCT Pro	GGC Gly	GGC Gly	CAT His	192
	GCT Ala															240
Gly	CGC Arg	Arg	Tyr	Leu 85	Asp	Gly	Glu	Thr	Phe 90	Lys	Pro	Asn	Cys	Arg 95	Val	288
Leu	TGC Cys	Arg	Cys 100	Asp	Asp	Gly	Gly	Phe 105	Thr	Cys	Leu	Pro	Leu 110	Cys	Ser	336
Glu	GAT Asp	Val 115	Arg	Leu	Pro	Ser	Trp 120	Asp	Cys	Pro	Arg	Pro 125	Lys	Arg	Ile	384
Gln	GTG Val 130	Pro	Gly	Lys	Cys	Cys 135	Pro	Glu	Trp	Val	Cys 140	Asp	Gln	Gly	Val	432
Thr 145	CCG Pro	Ala	Ile	Gln	Arg 150	Ser	Thr	Ala	Gln	Gly 155	His	Gln	Leu	Ser	Ala 160	480
Leu	GTC Val	Thr	Pro	Ala 165	Ser	Ala	Asp	Ala	Pro 170	Cys	Pro	Asn	Trp	Ser 175	Thr	528
Ala	TGG Trp	Gly	Pro 180	Cys	Ser	Thr	Thr	Cys 185	Gly	Leu	Gly	Ile	Ala 190	Thr	Arg	576
Val		Asn 195	Gln	Asn	Arg	Phe	Cys 200	Gln	Leu	Glu	Ile	Gln 205	Arg	Arg	Leu	624
TGT Cys	CTG Leu 210	CCC Pro	AGA Arg	CCC Pro	TGC Cys	CTG Leu 215	GCA Ala	GCC Ala	AGG Arg	AGC Ser	CAC His 220	AGC Ser	TCA Ser	TGG Trp	AAC Asn	672

Alignment of the Modular Domains of HICP with the Modular Domains of Other **CCN Family Members**

MODULE I : IGFBP Domain

,					
100	SGHGAVCLL	IRKIGVCTA	NOTGICMV	ALKGIČRA	*
90 91	CDPSQGLVCQPGAG PG	CDPHKGLFCDFGSP AN	CDQSSGLYCDRSAD PN	CDHTKGLECNFGAS ST	* **
61 75 76	KVCARRLGESCDHLH V	RVCAKQLGELCTERD PO	PVCARQRGESCSEMR PO	KVCAKQLNEDCSKTQ Po	* * * ** ***
46 60 61	PQGVPLVLDGCGCC	-PAGVSLVLDGCGCC	AP-GVRSVLDGCSCC	AP-GVGLVRDGCGCC	****
28 45 46	1 HICP QLCRIPCTCP-WTPPQC -PQGVPLVLDGCGCC KVCARRLGESCDHLH VCDPSQGLVCQPGAG PGGHGAVÇLL	2 CTGF ODCSAOCO CAAEAAPHC - PAGVSLVLDGCGCC RVCAKQLGELCTERD PCDPHKGLFCDFGSP ANRKIGVCTA	3 NOV LRCPSRCPPKCPSIS-PTC AP-GVRSVLDGCSCC PVCARQRGESCSEMR PCDQSSGLYCDRSAD PNNQTGICMV	4 CYR61 -TCPAACHCPLEA-PKC AP-GVGLVRDGCGCC KVCAKQLNEDCSKTQ PCDHTKGLECNFGAS STALKGICRA	*
	1 HICP	2 CTGF	3 NOV	4 CYR61	

MODULE II : vWFC Domain

165 166 180		0-0	WVCDEP	WTCGSDEQ	WVCDEDSIKDSLDDQ	
150 151 165		PRPKRIQVPGKCCPE	PFPRRVKLPGKCCKE	PAPRKVAVPGECCEK	PNPRLVKVSGQCCEE	** *
135 136 150		C LPLCSEDVRLPSWDC	C VPLCSMDVRLPSPDC	C LPRCQLDVLLPGPDC	C IPLCPQELSLPNLGC	* *
130 131	, 6 + 7 7 7	NCRVLCRCDDGGFT	SCKYQCTCLDGAVG	NCQYFCTCRDGQIG	NCKHQCTCIDGAVG	* * * *
	101	DDGSCEVNGRRYLDGETFKF	DGAPCVFGGSVYRSGESFQS SCKYQCTCLDGAVGC VPLCSMDVRLPSPDC PFPRRVKLPGKCCKE WVC	EGDNCVFDGVIYRNGEKFEP NCQYFCTCRDGQIGC LPRCQLDVLLPGPDC PAPRKVAVPGECCEK WTCGSDEQ	CYR61 EGRPCEYNSRIYQNGESFQP NCKHQCTCIDGAVGC IPLCPQELSLPNLGC PNPRLVKVSGQCCEE WVCDEDSIKDSLDDQ	*
		1 HICP	2 CTGF	3 NOV	4 CYR61	

MODULE III : TSP1 Domain

280 298	HICP PCP <u>NWS</u> TAWG PCSTTCGLGIATRVS NQNRFCQLEIQRRLC LPRPCLAARSHSSWNSAF-	2 CTGF NCLVQTTEWS ACSKTCGMGISTRVT NDNTFCRLEKQSRLC MVRPCEADLEENIK-KGKK	NCIEQTTEWS ACSKSCGMGVSTRVT NRNRQCEMVKQTRLC IVRPCEQEPEEVTDKKGKK	4 CYR61 KCIVQTTSWS QCSKSCGTGISTRVT NDNPECRLVKETRIC EVRPCGQPVYSSLK-KGKK	+
265	NONRFCQLEIQRRLC	NDNTFCRLEKQSRLC	NRNRQCEMVKQTRLC	NDNPECRLVKETRIC	*
250	PCSTTCGLGIATRVS	ACSKTCGMGISTRVT	ACSKSCGMGVSTRVT	QCSKSCGTGISTRVT	* * *
240	PCPNWSTAWG	NCLVQTTEWS	NCIEQTIEWS	KCIVQTTSWS	*
	1 HICP	2 CIGE	3 NOV	4 CYR61	

FIGURE 3

Northern Blot Analysis of HICP Expression in Rat Aorta Smooth Muscle Cells

