AdaBest: Minimizing Client Drift in Federated Learning via ADAptive Bias ESTimation

Compute mini-batch gradients $L_i(\boldsymbol{\theta}_i^{t,k-1})$

 $\boldsymbol{g}_i^{t,k-1} \leftarrow \nabla L_i(\boldsymbol{\theta}_i^{t,k-1}) - \boldsymbol{h}_i^{t_i'}$

 $m{h}_i^t \leftarrow m{h}_i^{t'i} + \mu m{g}_i^t \quad m{h}_i^t \leftarrow rac{1}{t-t'_i} m{h}_i^{t'i} + \mu m{g}_i^t$

Transmit client model $\boldsymbol{\theta}_i^t := \boldsymbol{\theta}_i^{t,K}$.

 $\boldsymbol{\theta}_i^{t,k} \leftarrow \boldsymbol{\theta}_i^{t,k-1} - \eta \boldsymbol{g}_i^{t,k-1}$

 $t_i' \leftarrow t$

 $\boldsymbol{g}_i^{t,k-1} \leftarrow \nabla L_i(\boldsymbol{\theta}_i^{t,k-1}) - \boldsymbol{h}_i^{t_i'} - \mu(\boldsymbol{\theta}^{t-1} - \boldsymbol{\theta}_i^{t,k-1})$

October 23-27, 2022, Tel Aviv

Farshid Varno^{1,2}, Marzie Saghayi¹, Laya Rafiee Sevyeri^{2,3}, Sharut Gupta^{2,4}, Stan Matwin^{1,5}, Mohammad Havaei² ¹Dalhousie University, ²Imagia, ³Concordia University, ⁴IIT Delhi, ⁵Polish Academy of Sciences

Background

- Federated Learning (FL): train models locally, aggregate globally, no data shared.
- Data heterogeneity among clients \implies client drift
- Reduced Variance SGD solutions

$$oldsymbol{ heta}_i^{t,k} \leftarrow oldsymbol{ heta}_i^{t,k-1} - \eta
abla L_i \qquad oldsymbol{ heta}_i^{t,k} \leftarrow oldsymbol{ heta}_i^{t,k-1} - \eta (
abla L_i + oldsymbol{h} - oldsymbol{ heta}_i^{t,k-1} - oldsymbol{ heta}_i^{t,k-1} - \eta (
abla L_i + oldsymbol{h} - oldsymbol{ heta}_i^{t,k-1} - oldsymbol{ heta}_i^{t$$

 h_i : estimate of grads of local samples h: estimate of grads of all samples

Prior Works

- SCAFFOLD: extra communication cost
- FedDyn:
- \checkmark apply h on the server: no extra communication!
- * not proper adaption of gradient estimates
- ***** parameter explosion!

AdaBest

- ✓ Adaptive discounting gradient estimates: stability
- Improved scalability tolerance
- \bigstar Extra discounting factor to tune (β)

Algorithm

Geometric interpretation of AdaBest's bias correction applied to the server update.

Tuning eta, Expensive?

• Experiment: scale # clients but keeping all setting (including learning rate) the same

Test accuracy for FL-CIFAR100 (alpha=0.03) with 1000 (left) and 100 (right) clients.

Test accuracy scores for FL-CIFAR100 (alpha=0.03) with 100 clients.

	Top-1 Test Accuracy				
Dataset	Setting	FEDAVG	FEDDYN	SCAFFOLD	AdaBest
EMNIST-L	$\alpha = 0.03$	93.58 ± 0.25	93.57 ± 0.20	94.29 ± 0.11	94.62 ± 0.17
	$\alpha = 0.3$	94.04 ± 0.04	93.54 ± 0.22	94.54 ± 0.11	94.64 ± 0.11
	IID	94.32 ± 0.10	93.60 ± 0.35	94.62 ± 0.16	94.70 ± 0.24
CIFAR10	$\alpha = 0.03$	74.04 ± 0.88	76.85 ± 0.91	77.19 ± 1.10	$79.64 {\pm} 0.58$
	$\alpha = 0.3$	79.74 ± 0.07	81.91 ± 0.19	82.26 ± 0.38	84.15 ± 0.36
	IID	81.35 ± 0.23	83.56 ± 0.31	83.50 ± 0.15	85.78 ± 0.14
CIFAR100	$\alpha = 0.03$	39.18 ± 0.56	44.24 ± 0.66	45.80 ± 0.36	48.56 ± 0.45
	$\alpha = 0.3$	38.78 ± 0.35	48.92 ± 0.37	46.34 ± 0.43	54.51 ± 0.35
	IID	37.45 ± 0.57	49.60 ± 0.24	44.30 ± 0.22	55.58+0.14

Results

- AdaBest shows superior performance & convergence speed in all benchmarks with partial client participation
- The greatest performance boost in CIFAR100 settings.
- ✓ Full client participation $\beta \rightarrow 1$, AdaBest \approx FedDyn

Conclusion & Future Work

- Adapting gradient estimates: significant improvement in performance & convergence speed of RV-SGD based LocalSGD.
- AdaBest best works for large scale, partial participation FL setting.
- Future works: Analytical bounds for convergence rate of AdaBest & \beta auto-tune