UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

Fall 2009

MIDTERM EXAMINATION #2 10/29/2009

Time allotted: 75 minutes

NAME:	
STUDENT ID#:	
 Clearly mark (underline or b Specify the units on answers 	, ,
SCORE:1	/16
2	/16
3	/18
Total	/ 50

PHYSICAL CONSTANTS

<u>Description</u>	Symbol	<u>Value</u>	PROPERTIES OF SILICON AT 300K		
Electronic charge	q	1.6×10 ⁻¹⁹ C	<u>Description</u>	<u>Symbol</u>	<u>Value</u>
Boltzmann's constant	k	8.62×10^{-5}	Band gap energy	E_{G}	1.12 eV
		eV/K	Intrinsic carrier	$n_{\rm i}$	$10^{10} \mathrm{cm}^{-3}$
Thermal voltage at	$V_{\mathrm{T}} =$	0.026 V	concentration		
300K	kT/q		Dielectric permittivity	<i>E</i> Si	1.0×10^{-12}
	-				F/cm

USEFUL NUMBERS

 $V_{\rm T} \ln(10) = 0.060 \text{ V}$ at T=300K exp(30) ~ 10^{13}

Problem 1: BJT Amplifiers [16 pts]

Consider the BJT amplifier shown below. Ignore Early effect for all cases.

a) [2 pts] How does R_1 and R_2 help the amplifier?

b) [2 pts] What is the purpose of having R_E ?

c) [6 pt] What are the input and output resistances?

d) [3 pts] What is the small signal voltage gain?

$$Av = -\frac{Re}{1/gm} = -g_m Re$$

e) [3 pts]Now consider that a PNP transistor is added to the emitter of the amplifier as shown below. What will be the small signal voltage gain?

PROB 2. BJT Amplifiers and Cascodes [16 pts].

a) [6 pts] What is the gain of the following amplifier? Where would you use such an amplifier? Why? Ignore the early effect.

it can be used as a buffer stage between a CE stage and a small load.

Reason: Putting a CE stage directly to a small load degrades the gain. This particular stage gives high input impedamee and low output resistance; thereby matching the b) [2 pts] How do cascodes help in amplifier design? impedance between CE stage and a small loed.

Cascodes boost the output impedance thereby increasing the gam.

c) [4 pts] What is the maximum output impedance of the following cascade?

V_{b1} R_{out} =
$$r_{01} + (1 + 0m_1 r_{01})$$
 $r_{\pi 11} R_2$ $\approx 9m_1 r_{01} (r_{\pi_1} r_{\pi_2})$
V_{b2} R_2 $R_2 = r_{02} + (1 + 9m_2 r_{02}) (r_{03} r_{\pi_2})$
 $r_{03} = r_{02} r_{03} (r_{03} r_{\pi_2})$
 $r_{03} = r_{03} r_{03} (r_{03} r_{\pi_2})$
Since, $r_{03} = r_{03} r_{03} r_{03} r_{03} r_{03}$ $r_{03} = r_{03} r_{03}$

d) [4 pt] Explain why the following is not a good cascade. How will you change the design to obtain a larger small signal gain?

$$v_{in} \circ v_{out} = g_{m_2} (v_{in} - v_2)$$

$$v_{in} \circ v_{n_2} = g_{m_2} (v_{in} - v_2)$$

$$v_{in} \circ v_{n_2} = g_{n_2} (v_{in} - v_2)$$

$$v_{in} \circ v_{in} = g_{n_2} (v_{in} - v_2)$$

Hence overall gain is very small.

An easy way to solve this problem is to interchange Voi and Vin 1

$$V_{61} - V_{72}$$

$$AV = -9m_{1} \frac{1}{2} \frac{Y_{02} + (1+9m_{2}Y_{02})}{Y_{01}Y_{71}} \frac{1}{2} \frac{AV = -9m_{1} \frac{9m_{2}Y_{02}}{Y_{02}} \frac{(Y_{01}Y_{71})}{(Y_{01}Y_{71})}$$

PROB 3. Current mirrors and Frequency Response. [18 pts]

a) [3 pts] Neglecting base currents find I_{copy1} as a function of I_{Ref}

b) [3 pts] Why is the following not a good mirror?

Since Vx is fixed, FREF a change in temp un'il affect I copy 1. Note that without the diode connection for aper and of are completely independ Ve for Oper can be different

thom Vi at Ki

c) [6 pts] For the following, derive an expression fo I_{copy} as a function of I_{Ref} including the base currents.

$$I_{REF} = I_{BF} + 2I_{EFF} - 1$$

$$I_{C,F} \cong I_{EF} = \frac{2I_{COPY}}{n\beta} + \frac{I_{COPY}}{\beta}$$

$$I_{BF} = \frac{I_{COPY}}{\beta^2} \left[\frac{2}{n} + 1 \right] - 2$$

From
$$(1)$$
, (2) and (3)

$$f_{REF} = f_{COPY} \left[\frac{1}{\beta^2} \left\{ \frac{2}{n} + 1 \right\} + \frac{2}{n} \right]$$

 $I_{c_{pre}} = \frac{I_{copy}}{n} - 3$

$$I_{copy} = \frac{n I_{REF}}{1 - (n+2)}$$

d) [2pts] Draw the high frequency model of a CE stage. Mention physical origins for each of the capacitances in this model.

e) [4 pts] Find out the poles of the following circuit at nodes X and Y.

$$v_{in}$$
 v_{in}
 v

Note that looking into y:
$$R = Rell \left(r_0 + \left(1 + 9 m r_0 \right) R_S \right) \approx Re$$