# Introduction to Artificial Intelligence



**COMP307** 

# **Uncertainty and Probability 1: Reasoning Under Uncertainty Basics**

Yi Mei

yi.mei@ecs.vuw.ac.nz

### **Outline**

- Introduction
- Product Rule
- Sum Rule
- Normalisation Rule
- Independence
- Summary

# Why Reasoning Under Uncertainty

- Make rational decisions
- Many real-world applications







## Monty Hall Problem

- Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? (Whitaker, 1990, as quoted by vos Savant 1990)
  - The host must always open a door that was not picked by the contestant
  - The host must always open a door to reveal a goat and never the car.
  - The host must always offer the chance to switch between the originally chosen door and the remaining closed door.



# Uncertainty

- Many algorithms are designed as if knowledge is perfect, but it rarely is.
- There are almost always things that are unknown, or not precisely known.
- Reasons of uncertainty
  - True uncertainty. e.g., flipping a coin.
  - Theoretical ignorance. e.g., medical diagnosis.
  - Laziness. The space of relevant factors is very large.
  - Practical ignorance. e.g. incomplete information collected
  - **–** ...
- Fundamental role of uncertainty in Al
- Probability theory can be applied to many problems

# **Belief about Propositions**

- Rather than reasoning about the truth or falsity of a proposition, reason about the belief that a proposition or event is true or false
- For each primitive proposition or event, attach a degree of belief to the sentence
- Use probability theory as a formal means of manipulating degrees of belief

#### Examples:

- How likely do I believe it will rain tomorrow? (e.g. 50%, 80%, ...)
- How likely do I believe a stock price will rise?

**—** ...

# Probability

- Given a proposition A, the probability that A is true is P(A)
  - $-0 \le P(A) \le 1$
  - If A must be true, then P(A) = 1; if A must be false, then P(A) = 0
  - A is either true or false (binary)
  - -P(A) is the degree of belief that A is true
- A common form of proposition: "random variable = value"
- Domain: set of values that a random variable can take
- Example
  - P(weather = rainy) = 0.7: the probability that the weather will be rainy is believed to be 70%.
    - Proposition: weather = rainy: the weather is rainy
    - Random variable: weather
    - Domain: {rainy, sunny, cloudy, ...}
  - What is the domain of the outcome of a die?



# Probability

#### Important notations

- AND:  $A \wedge B$ . The probability that both A and B are true:  $P(A \wedge B)$
- OR:  $A \vee B$ . The probability that either A or B is true:  $P(A \vee B)$
- NOT:  $\neg A$ . The probability that A is false ( $\neg A$  is true):  $P(\neg A)$

#### Axioms of probability theory

- $-0 \le P(A) \le 1$
- P(true) = 1, P(false) = 0
- $P(\neg A) = 1 P(A)$
- $-\sum_{x\in\Omega}P(X=x)=1$ , where  $\Omega$  is the domain of the random variable X

# Question

• If we roll two fair dice, what is the probability that the total number of the two dice is 11?





| Dice1 | Dice2 |  |
|-------|-------|--|
| 1     | 1     |  |
| 1     | 2     |  |
| 1     | 3     |  |
| 1     | 4     |  |
| 1     | 5     |  |
| 1     | 6     |  |
| 2     | 1     |  |
| •••   | •••   |  |
| 6     | 6     |  |

### Unconditional/Conditional/Joint Probability

- Unconditional/Prior probability: degrees of belief in propositions in the absence of any other information.
  - E.g. P(Total = 11)
- Conditional/Posterior probability: degrees of belief in propositions given some more information (evidence).
- $P(A \mid B)$ : the conditional probability that A is true given that B is true
  - E.g.  $P(Total = 11 \mid Dice_1 = 6)$ , the conditional probability that the total number is 11 given that the first dice gives the number 6
- Joint probability  $P(A, B) := P(A \land B)$ : the probability that A is true and B is true

# Example



• 
$$P(C = B, S = C) = 4 / 18$$

• 
$$P(C = W, S = S) = 3 / 18$$

• 
$$P(S = C) = 7 / 18$$

• 
$$P(S = C \mid C = B) = 4/9$$

• 
$$P(C = B \mid S = T) = 3 / 6$$

#### **S**hape

Colour

|       | Circle | Square | Triangle |
|-------|--------|--------|----------|
| Blue  | 4      | 2      | 3        |
| White | 3      | 3      | 3        |

5 6 18

9

### **Product Rule**

#### The product rule:

- P(A, B) = P(B) \* P(A | B) = P(A) \* P(B | A)

#### Check the propositions

- Simultaneously: P(A, B)
- One by one: P(B) \* P(A | B) or P(A) \* P(B | A)

• 
$$P(C = B, S = C) = 4 / 18$$

#### **S**hape

|       | Circle | Square | Triangle |
|-------|--------|--------|----------|
| Blue  | 4      | 2      | 3        |
| White | 3      | 3      | 3        |

• 
$$P(C = B) = 9 / 18$$

• 
$$P(S = C \mid C = B) = 4/9$$

9 • 
$$P(S = C) = 7 / 18$$

• 
$$P(C = B | S = C) = 4 / 7$$

Colour

### Sum and Normalisation Rule

 The sum rule: the probability of an event is the sum of all the joint probabilities with another event

$$-P(X=x) = \sum_{y \in \Omega} P(X=x, Y=y)$$

 The normalisation rule: all the possibilities (given any evidence) sum up to 100%

$$-\sum_{x} P(X=x) = 1$$

$$-\sum_{x} P(X = x \mid Y = y) = 1$$

### Question

• There is a biased coin that produces head with probability 0.6 and tail with probability 0.4. If we flip the coin twice, what is the probability that both flips produce head?

```
- P(flip = head) = 0.6
- P(flip = tail) = 0.4
- P(flip_1 = head, flip_2 = head) = ?
```

 The probability that stock A rises tomorrow is 0.6. The probability that stock B rises tomorrow is 0.7. What is the probability that both stock A and B rise tomorrow?

```
- P(A = rise) = 0.6

- P(B = rise) = 0.7

- P(A = rise, B = rise) = ?
```

### Independence

- The product rule: P(A, B) = P(B) \* P(A | B) = P(A) \* P(B | A)
- If A and B are independent  $(A \perp B)$  to each other, then

```
    P(A | B) = P(A)
    P(B | A) = P(B)
    P(A, B) = P(A) * P(B)
```

- Flip coins twice, flip1 and flip2 are independent
- Stock A rising and stock B rising, they are usually dependent

### Quiz

- Predict the weather in the future
- Random variable: Day<sub>1</sub>, Day<sub>2</sub>
- **Domain**: {*Windy*, *Calm*}
- $P(Day_1 = W) = 0.5, P(Day_1 = C) = 0.5$
- $P(Day_2 = W \mid Day_1 = W) = 0.6$ ,  $P(Day_2 = C \mid Day_1 = W) = 0.4$
- $P(Day_2 = W \mid Day_1 = C) = 0.3, P(Day_2 = C \mid Day_1 = C) = 0.7$
- $P(Day_2 = W) = ?$

# Summary

- Uncertainty is everywhere
- Product rule
- Sum rule
- Normalisation rule
- Independence