Guía para aprender Matlab - MAT237 CÁLCULO NUMÉRICO (1º período 2018) Es una adaptación de la guía del Prof. Carlos H. Q. Forster (Instituto Tecnológico de Aeronáutica – Brasil)

Iniciar el Matlab, escribir los siguientes comandos y descubrir lo que sucede en cada caso.

1. Matlab como calculadora	3. Punto flotante
2+2;	help format
2+2	format long e
ans	0.12-0.1
disp(5)	eps
2*ans	realmax
x=2	realmin
$\exp(x)$	format rat
x=x+1	pi
sin(pi/2)	1: 30
y=[1 2 3; 4 5 6; 7 8 9]	format compact
who	1: 30
whos	
why	4. Manipulación de matrices
2. Comandos del área de trabajo	vector=[1 2 -2 4 1]
	vectcol=[1; 2; -2; 4; 1]
help exp	hcat=[vectcol, vectcol]
lookfor float	vcat=[vectcol; vectcol]
help diary	vector'
pwd	vector*vectcol
mkdir mat237	vectcol*vector
cd mat237	2*vector
diary diario.txt	norm(vector)
diary on	vector.*vector
help pinv	matriz=[1 1 3; 3 4.0 2; 1 5 1]
type pinv	matriz'
disp('Hello world')	matriz*matriz
% this is a comment	matriz^2
diary off	matriz.*matriz
edit diario.txt	matriz.^2
save datos	inv(matriz)
clear	det(matriz)
whos	trace(matriz)
load datos	eig(matriz)
whos	rank(matriz)
pause	size(matriz)
pause(3)	eye(3)
quit	zeros(3)
	ones(3,4)

5. Intervalos e índices	7. Gráficos en 3 dimensiones
matriz(2,3)	figure;
matriz(2,3)=7	[x,y]=meshgrid(-1:0.4:2, 0:0.4:4)
matriz(1,:)	$d = \operatorname{sqrt}(x.^2+y.^2);$
matriz(1,:)=[3 4 5]	$z=\sin(d)./d;$
matriz(1:2, 2:3)	surf(x,y,z);
matriz(:,2)	figure;
matriz(2:end, 1:end-1)	[x,y]=meshgrid(-10:0.4:20, 0:0.4:40);
matriz(:)	$d = \operatorname{sqrt}(x.^2+y.^2);$
1:10	$z=\sin(d)./d;$
1:0.5:10	surf(x,y,z);
10:-0.5:1	pcolor(x,y,z);
linspace(1, 10, 13)	mesh(x,y,z);
logspace(1, 2, 10)	surfc(x,y,z,abs(cos(d)));
max(1:10)	colormap(bone);
prod(1:10)	plot3(x,y,z)
sum(1:10)	contour3(x,y,z)
mean(1:10)	
max(matriz)	Rote los gráficos utilizando los controles de la
max(max(matriz))	ventana gráfica. Exporte los gráficos como
sum(sum(matriz))	imágenes BMP, por ejemplo.
sin(0:pi/16:pi)	
	8. Scripts
6. Gráficos	
	edit grafico.m
t=0:pi/16:2*pi	
plot(cos(t),sin(t))	Copie la lista de comandos de los itens 6 ó 7,
axis square	péguelos en el editor del archivo grafico.m y
grid	guarde. Ahora, basta llamar:
title('grafico de la circunferencia')	
whitebg('b')	grafico
xlabel('eje x')	
ylabel('eje y')	Vea el manual de los comandos estructurados:
hold on	help if
plot(cos(3*t),sin(t),'m:')	help while
plot(cos(t),sin(5*t),'g')	help relop
legend('circ','curva 3', 'curva 5')	help for
figure	
subplot(2,1,1);	Observe que, en el editor de Matlab, el script
plot(t,cos(t),'ro');	puede ser ejecutado paso a paso y se pueden
title('coseno');	consultar las variables.
subplot(2,1,2);	
plot(t,sin(t),'ro');	
title('seno');	
[x,y]=ginput(1)	

9. Funciones

type factorial

Vea como se define la función factorial. El valor de retorno es atribuído a una variable de retorno clear; definida en la primera línea del archivo. La tic; función puede retornar más de un valor u objeto:

help function

No se hace un control de parámetros de entrada, end; que deben ser testados por el propio programa toc (ver nargin e nargout). Intente dejar la función más general, que pueda aceptar vectores y Vea el tiempo que llevó construir una matriz. matrices como parámetros, y no apenas valores.

Intente reescribir la función factorial para que clear; pueda recibir matrices como parámetros.

help global

Las variables definidas dentro de funciones tienen ámbito definido dentro de la función. Las variables globales deben ser declaradas como end; global dentro y fuera de la función.

Vea ahora una función más compleja que realiza Y nuevamente con: la eliminación gaussiana con pivoteamiento parcial de una matriz.

type rrefmovie

10. Observaciones sobre el Matlab

Experimente crear un script con la siguiente secuencia de comandos:

```
for i=1:1000
       for i=1:1000
               f(i,j)=5;
       end:
```

Ahora pruebe nuevamente con:

```
tic;
f=zeros(1000,1000);
for i=1:1000
       for j=1:1000
               f(i,j)=5;
       end;
toc
```

```
clear;
tic;
f=5*ones(1000,1000);
toc
```

Por lo tanto, se deben evitar operaciones de manipulación de la memoria (como la extensión del tamaño de vectores), y lazos de repetición muy internos (como el segundo for del primer script de Preferentemente deben arriba). se operaciones de matrices, buscar con "find", sumar con "sum", comparar con "any" y "all", entre otras, en vez de construir lazos de repetición.