Задачи к семинарскому занятию на тему "Многослойные нейронные сети"

Задача 1

Многослойная нейронная сеть (МНС) имеет 3 входа, 2 выхода и 2 рабочих (скрытых) слоя, содержащих 3 и 2 нейрона соответственно в первом и втором слое.

- a) Нарисуйте схему сети и укажите на схеме обозначения синаптических коэффициентов, смещений и выходов нейронов, используя символику расширенных векторов выходов нейронов $\widetilde{S}^{(q)}$ и матриц синаптических коэффициентов слоев $\widetilde{W}^{(q)}$.
- δ) Раскройте содержание расширенной матрицы синаптических коэффициентов $\widetilde{W}^{(2)}$ второго слоя нейронов. Какова размерность матрицы $\widetilde{W}^{(2)}$? Чему соответствует каждая строка ее элементов?
- *в*) Напишите выражение для выхода первого нейрона второго слоя, если активационная характеристика во втором слое гиперболический тангенс.

Задача 2

Система дистанционного управления движением робототехнического устройства вдоль прямой линии использует оценку текущей скорости устройства, формируемую многослойной нейронной сетью. На вход МНС поступают текущее и три предыдущих измерения координатного положения робота на прямой: $x_t, x_{t-1}, x_{t-2}, x_{t-3}$. Сеть использует более одного предыдущего измерения в связи с большой ошибкой измерения координаты x в целях повышения точности текущей оценки скорости.

MHC содержит один скрытый слой с тремя нейронами и логистической активационной характеристикой нейронов. Выходной нейрон является линейным.

- а) Нарисуйте схему нейросетевой обработки данных с указанием обозначений для выходов нейронов и синаптических коэффициентов.
 - б) Напишите расчетное выражение для оценки скорости, формируемой нейронной сетью.
- *в*) Покажите в форме таблицы структуру обучающей выборки, принимая во внимание заданные в условии задачи размерности переменных. Предполагается, что для получения выборочных примеров были проведены специальные эксперименты с установленным на робототехническом устройстве дорогостоящим датчиком скорости высокой точности.

Задача 3

Решается задача классификации данных. Объекты, характеризующиеся вектором признаков размерности M=2, принадлежат двум классам. Области принадлежности объектов классам 1 и 2 представлены на рисунке.

- *а*) Предложите архитектуру МНС, решающей задачу классификации (с указанием активационных характеристик нейронов).
 - б) Постройте обучающую выборку, содержащую 10 примеров по 5 примеров каждого класса.

Задача 4

Требуется построить МНС, которая формирует на выходе оценки экстраполированных значений $x_{t+1}, x_{t+2}, x_{t+3}$ временного ряда по наблюдениям $x_t, x_{t-1}, x_{t-2}, x_{t-3}$.

- a) Предложите архитектуру МНС, решающей задачу прогноза временного ряда. Укажите K число слоев, N_q , $q = \overline{1,K}$ распределение нейронов по слоям, выберите активационные характеристики нейронов в слоях.
- б) Постройте два примера обучающей выборки, если выборочная реализация временного ряда задана таблицей:

	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ĺ	x	1.3	1.5	1.7	1.8	1.8	1.6	1.5	1.3	1.2	1.2	1.3	1.4	1.5	1.4

Задача 5

Нейронная сеть имеет один вход, один скрытый слой, содержащий 5 нейронов с гауссианой $f(h) = \exp(-h^2/2)$ в качестве активационной характеристики, и один линейный выходной нейрон.

Используя решение задачи 3 семинара 1 (о функции, реализуемой нейроном с одним входом и гауссовой активационной характеристикой), напишите выражение для выхода нейронной сети. Объясните, что построенная двухслойная нейронная сеть способна аппроксимировать (моделировать) гладкую функцию одной переменной.

Задача 6

Нейронная сеть имеет архитектуру, представленную на рисунке.

Нейроны первого слоя имеют гауссову активационную характеристику, а выходной нейрон – логистическую.

Покажите, что настройкой синаптических коэффициентов и смещений нейронов сети возможно реализовать на ней колоколообразную функцию двух переменных.

Контрольные вопросы по методу обратного распространения ошибки

- 1. Напишите выражение для критериальной функции $D(\cdot)$, в соответствии с которой осуществляется обучение MHC.
- 2. По какому правилу осуществляется настройка синаптических коэффициентов МНС при использовании простого градиентного метода?
- 3. Какую задачу решает метод обратного распространения ошибки? Какие переменные он позволяет рассчитать?
- 4. Какой подход является альтернативным по отношению к методу обратного распространения ошибки?
- 5. Покажите на примере (для МНС заданной архитектуры) эффективность метода обратного распространения ошибки по сравнению с альтернативным подходом.
- 6. Что называется двойственной переменной в сети обратного распространения? По отношению к какой переменной она является двойственной?
- 7. Допустим, что известны двойственные переменные $\Delta_m^{(p)(q+1)}$, $m=\overline{1,N_{q+1}}$, для всех нейронов слоя (q+1) при использовании примера p обучающей выборки. Каким выражением определяется двойственная переменная $\Delta_i^{(p)(q)}$?
 - 8. Напишите расчетное выражение для $\frac{\partial D_p}{\partial \widetilde{w}_{ij}^{(q)}}$, $q=\overline{1,\,K},\,i=\overline{1,\,N_q},\,j=\overline{0,\,N_{q-1}}$, если двойственные

переменные вычислены и известны их значения.

- 9. В чем состоит мнемоническое правило построения схемы обратного распространения ошибки?
- 10. Сравните количество нейронов в схемах прямого и обратного распространения.

Задача 7

Нейронная сеть имеет три входа (M=3) и два выходных нейрона с активационной характеристикой $f_1(h)=\frac{\alpha h}{1+\alpha\mid h\mid}, \ \alpha>0$. Скрытые слои отсутствуют (K=1).

а) Для одного обучающего примера p выведите выражения для производных критериальной функции $D(\cdot)$ по синаптическим коэффициентам $w_{ij}^{(1)}$, $i=1,\ 2;\ j=\overline{0,\ 3}$.

- \widehat{o}) Постройте расчетную схему для производных $\dfrac{\partial D_p}{\partial \widetilde{w}_{ij}^{(1)}}$, $i=1,\ 2;\ j=\overline{0,\ 3}$.
- s) В какой точке схемы реализуется двойственная переменная $\Delta_1^{(p)(1)}$?
- ε) Как учесть в схеме реальный объем выборки P>1 при расчете $\frac{\partial D}{\partial \widetilde{w}_{ii}^{(1)}}$?
- д) Какое нелинейное преобразование реализуется в схеме обратного распространения ошибки?

Задача 8

Для аппроксимации векторной функции одной переменной применяется нейронная сеть, содержащая два слоя.

Первый слой содержит 2 нейрона с активационной характеристикой th(h), а второй — два нейрона с линейной активационной характеристикой. Обучение сети выполняется методом обратного распространения ошибки в режиме "по примерам".

Напишите выражения для производных критерия по всем настраиваемым синаптическим коэффициентам и постройте соответствующую схему обратного распространения ошибки.

Задача 9

В условиях предыдущей задачи постройте на основе мнемонического правила схему обратного распространения ошибки для вычисления двойственных переменных и убедитесь, что она совпадает со схемой, построенной в задаче 8 на основе аналитических выражений.

Задача 10

Покажите, что в схеме обратного распространения ошибки в условиях задачи 8 нет необходимости в реализации функции th(h). Напишите выражения для нелинейных преобразователей схемы.

Задача 11

Рассчитайте коррекцию синаптического коэффициента $w_{1\,1}^{(2)}$ после предъявления обучающего примера ($s_1^0=x_1=1;\,\sigma_1=-0.1;\,\sigma_2=0.3$) в условиях задачи 8, если известно, что на предыдущем такте обучения были получены следующие значения синаптических коэффициентов:

$$\widetilde{W}^{(1)} = \begin{pmatrix} -0.5; & 0.4 \\ 0.2; & -0.3 \end{pmatrix}; \quad \widetilde{W}^{(2)} = \begin{pmatrix} -0.1; & -0.2; & 0.01 \\ 0.6; & 0.4; & -0.1 \end{pmatrix}.$$

Параметр скорости обучения α положите равным 0.05.

При расчете th(h) для малых значений h воспользуйтесь приближением $th(h) \approx h$.

Задача 12

Один из нейронов МНС имеет 12 входов с предыдущего слоя. Активационные характеристики предыдущего и текущего слоев являются функциями th(h). Предполагается, что опасность "паралича" нейрона наступает, если |h| превышает значение 1.

Рассчитайте диапазон допустимых значений синаптических коэффициентов рассматриваемого нейрона при его инициализации в следующих условиях:

- *a*) выходы нейронов предыдущего слоя независимые случайные величины, распределенные равномерно во всем диапазоне своих возможных значений;
 - б) максимальное значение |h| достигается при $|h| = 2 \, \sigma_h$.