Laboratorium przedmiotu Metody Numeryczne			
Sprawozdanie nr 3: Rozwiązywanie układów równań liniowych			
DATA: 02.04.19	Ćwiczenie wykonał:		ĆWICZENIE PROWADZIŁ:
	JAN CHABIK I PAWEŁ OSIŃSKI		
Grupa dziekańska:1		OCENA:	

Wprowadzenie

W zagadnieniach technicznych często spotykamy się z układami równań liniowych. Układami równań liniowych nazywamy następujące równanie macierzowe:

$$A \cdot x = b$$

gdzie \underline{A} , jest macierzą o znanych elementach, \underline{b} jest znanym wektorem tzw. prawych stron, natomiast \underline{x} jest nieznanym wektorem rozwiązania układu równań. Zwykle macierz \underline{A} jest kwadratowa, czyli mamy tyle samo równań (wierszy \underline{A}), co niewiadomych (kolumn \underline{A}). Czasem spotykamy też przypadki macierzowych układów równań z większą liczbą równań niż niewiadomych, tzw. układy nadokreślone, jednak w tym ćwiczeniu nie będziemy się nimi zajmować.

Znalezienie wektora rozwiązania znając macierz <u>A</u> i wektor <u>b</u> nie jest tak proste, jak może się wydawać. Teoretycznie, po pomnożeniu obydwu stron równania macierzowego przez odwrotność <u>A</u> otrzymamy szukane rozwiązanie. Jednak samo obliczenie odwrotności macierzy <u>A</u> jest na tyle kosztowne obliczeniowo, że dla dużych macierzy mija się z celem. Dodatkowo, liczba operacji sprawia, że błędy numeryczne kumulują się i otrzymany wynik jest często niedokładny. Dlatego podczas obliczeń numerycznych unikamy odwracania macierzy za wszelką cenę. Za to korzystamy z metod alternatywnych: eliminacji Gaussa, rozkładu LU czy metody Choleskiego. Każda z tych metod opiera się na prostym pomyśle: takim przetworzeniu oryginalnego układu równań, aby docelowa forma była mniej kosztowna do rozwiązania bez odwracania macierzy.

I tak:

- podczas eliminacji Gaussa, wykorzystujemy operacje odejmowania wierszy macierzy tak, aby macierz po prawej stronie była macierzą górnotrójkątną;
- w metodzie rozkładu LU rozbijamy macierz \underline{A} na iloczyn macierzy $\underline{A} = \underline{L} \cdot \underline{U}$, przez co nieznany wektor \underline{x} znajdujemy jako rozwiązanie dwóch trójkątnych układów równań: $\underline{U} \cdot \underline{x} = \underline{y}$ i $\underline{L} \cdot \underline{y} = \underline{b}$ (ponieważ $\underline{A} \cdot \underline{x} = \underline{b}$ jest równoważne $\underline{L} \cdot (\underline{U} \cdot \underline{x}) = \underline{b}$);
- w metodzie Choleskiego, dokonujemy również rozłożenia macierzy \underline{A} na iloczyn macierzy trójkatnych, w tym wypadku: $\underline{A} = \underline{L} \cdot \underline{L}$ (gdzie \underline{L} macierz sprzeżona z \underline{L}).

Dlaczego stosujemy macierze trójkątne? Bo układy równań z nimi możemy łatwo rozwiązać za pomocą metody wstecznego podstawienia albo podstawienia w przód. Koszt przetworzenia oryginalnego układu do prostszej postaci oraz rozwiązania uproszczonego zadania jest mniejszy niż koszt odwrócenia macierzy<u>A</u>.

W macierzowych układach równań kolejność wierszy macierzy \underline{A} jest dowolna. Tak samo możemy zamieniać kolejność kolumn tej macierzy (należy wtedy pamiętać, że *należy też zamienić wtedy kolejność elementów w wektorze* \underline{x}). Często taka zamiana pozytywnie wpływa na dokładność obliczeń. Jako przykład warto rozważyć, który (równoznaczny sobie!) układ równań zostanie lepiej rozwiązany metodą eliminacji Gaussa:

$$\begin{bmatrix}
0.0000001 & 2 & -4 \\
13 & 6.3 & 4
\end{bmatrix} \cdot x = \begin{bmatrix}
0.4 \\
-50.74
\end{bmatrix} \exp \begin{bmatrix}
-200 & 0 & 10 \\
0.0000001 & 2 & -4
\end{bmatrix} \cdot x = \begin{bmatrix}
800 \\
0.4 \\
-50.74
\end{bmatrix}$$

Z tego właśnie powodu stosujemy algorytm wyboru elementu głównego (ang. *partial pivoting*). Warto zaimplementować taki algorytm.

Przykład zadania nr 1

Celem tego ćwiczenia jest wykorzystanie samodzielnie zaimplementowanej funkcji rozwiązywania dowolnego, określonego układu równań liniowych, *za pomocą rozkładu LU*. Macierz \underline{A} o wymiarach co najmniej $\underline{100} \times \underline{100}$, oraz odpowiedni wektor \underline{b} , zostaną dostarczone przez prowadzącego. Sprawdzić dokładność rozwiązania \underline{r} oraz dokładność rozkładu LU:

 $\underline{err} = \underline{P} \cdot \underline{A} - \underline{L} \cdot \underline{U} \vee$, jeżeli zaimplementowano wybór elementu głównego, $\underline{err} = \underline{A} - \underline{L} \cdot \underline{U} \vee$, jeżeli nie zaimplementowano wyboru elementu głównego,

Przykład zadania nr 2

Celem tego ćwiczenia wykorzystanie samodzielnie zaimplementowanej funkcji do znajdowania macierzy odwrotnej za pomocą *metody Gaussa-Jordana* dla podanej, nieosobliwej macierzy \underline{A} . Macierz \underline{A} o wymiarach co najmniej $\underline{100} \times \underline{100}$ zostanie dostarczona przez prowadzącego. Sprawdzić poprawność otrzymanej, odwróconej macierzy.

Co podlega głównej ocenie

Najważniejszym elementem oceny jest zdolność do samodzielnego zaimplementowania wskazanych metod rozwiązywania układów równań liniowych. Kolejnymi elementami oceny są również: staranność przygotowanego kodu oraz zamieszczonych ilustracji.

ROZWIĄZANIA ZADAŃ

1. **Z**ADANIE **1**

W zadaniu dokonywaliśmy rozkładu LU 2 macierzy 100x100 dostarczonych przez prowadzącego (easy_Ab i Tricky_Ab). Skorzystaliśmy z metody Doolittle'a, aby dokonać rozkłady LU. Znaleźliśmy rozwiązania równania macierzowego z pomocą podstawienia wstecznego.

x – macierz rozwiązań

A – macierz 100x100

b - wektor

ref_data - wektor rozwiązań dostarczony przez prowadzącego

a) Dla macierzy easy Ab uzyskaliśmy następujące wartości błędów:

$$errNorm = norm(A - L*U) = 8.7380e - 13$$

Błąd residualny policzyliśmy wzorem

res =
$$norm(A*x-b) = 3.1758e-12$$

Przy porównaniu otrzymanej macierzy rozwiązań z macierzą referencyjną otrzymaliśmy wyniki rzędu 1.0e-13.

$$errRef = x - ref data$$

b) Dla macierzy tricky Ab uzyskaliśmy następujące wartości błędów:

errNorm = norm
$$(A - L*U) = 1.9341e - 07$$

Błąd residualny policzyliśmy wzorem

res =
$$norm(A*x-b) = 2.2717e-06$$

Przy porównaniu otrzymanej macierzy rozwiązań z macierzą referencyjną otrzymaliśmy wyniki rzędu 1.0e-06.

$$errRef = x - ref data$$

2. **ZADANIE 2**

W zadaniu dokonywaliśmy odwrócenia macierzy easy_Ab 100x100 za pomocą metody Gaussa-Jordana. Policzyliśmy błąd dokonanej operacji za pomocą działania :

$$err = norm(x*A-m_jedn) = 7.7448e-12$$

WNIOSKI

W zadaniu 1a otrzymaliśmy bardzo mały, bo jest on rzędu 10e-13. W podpunkcie 1b błąd otrzymaliśmy aż rzędu 10e-7. Różnica wynika z różnych macierzy. W 1b wartości dostarczone były bardzo bliskie zeru co przy braku wyboru elementu głównego sprawia, że błąd jest większy.

W zadaniu 2 otrzymane błędy były również bardzo małe (10e-12).