2020/2021

E3FI Semestre 1

1 Un peu de logique

(i) Compléter les tables suivantes : On adoptera la notation $\bar{A} = non(A)$. Compléter par V=vrai ou F=Faux

A	В	\bar{A}	\bar{B}	A et B	\bar{A} et B	\bar{A} et \bar{B}	A et \bar{B}	$A \ et \ B$
V	V							
V	F							
F	V							
F	F							

Compléter par V=vrai ou F=Faux

A	В	A ou B	$ar{A}$ ou B	$ar{A}$ ou $ar{B}$	A ou \bar{B}	$\overline{A \ ou \ B}$
V	V					
V	F					
F	V					
F	F					

- (ii) Quelles colonnes sont identiques? Que peut-on en conclure?
- (iii) Compléter l'énoncé si dessous des lois de Morgan :
 - La négation de la conjonction de deux propositions est équivalente à la disjonction des propositions, ce qui signifie que :

$$\overline{A \cap B} =$$

$$\overline{A \cup B} =$$

- (iv) Donner un exemple de la vie de tous les jours.
- (v) En considerant que le "ou" mathématique est inclusif, êtes vous un garcon ou une fille?
- (vi) Démontrer les énoncés suivants par disjonction des cas :
 - "Pour tout entier n, le produit n(n+1) est pair"
 - La fonction cube croit sur $]-\infty;+\infty[$

Indication : on pourra utiliser, après l'avoir démontré que $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

(vii) On définit l'implication $(A\Rightarrow B)$ par la table de vérité suivante :

A	V	V	F	F
В	V	F	V	F
$A \Rightarrow B$	V	F	V	V

Remarque : ce n'est pas nécessairement intuitif, mais " $Faux \Rightarrow Vrai$ " et " $Faux \Rightarrow Faux$ " sont toutes deux vraies.

Quelle est la négation de $A \Rightarrow B$?

- (viii) Démontrer que $A \Rightarrow B$ et sa contraposée $\bar{B} \Rightarrow \bar{A}$ ont la même table de vérité.
- (ix) En définissant " $A \Leftrightarrow B$ " comme $A \Rightarrow B$ et $B \Rightarrow A$, donner sa table de vérité. Commenter l'équivalence suivante : $2 < 0 \Leftrightarrow$ Paris est en Espagne.

- (x) On rappelle des règles d'usage des quantificateurs :
 - On peut échanger deux quantificateurs identiques (deux "il existe" ou deux "pour tous")
 - On ne peut pas échanger deux quantificateurs différents
 - La négation de $\forall x, P(x)$ est : $\exists x$ tel que $\overline{P(x)}$
 - La négation de $\exists x, P(x)$ est : $\forall x$ tel que $\overline{P(x)}$
 - La négation de $\forall x, P(x)$ ou Q(x) est : $\exists x$ tel que $\overline{P(x)}$ et $\overline{Q(x)}$
 - La négation de $\forall x, P(x)$ et Q(x) est : $\exists x$ tel que $\overline{P(x)}$ ou $\overline{Q(x)}$

Ecrire la négation des propositions suivantes :

- (a) $2 < x \le y$
- (b) (x,y) = (0,0)
- (c) xy = 0
- (d) $x^2 = 1 \Rightarrow x = 1$
- (e) $\forall \epsilon > 0, \exists \eta > 0 : \forall x \in I | x a | < \eta \Rightarrow |f(x) f(a)| < \epsilon$
- (f) $\exists x \in \mathbb{R} : -1 < f(x) < 1$
- (xi) Les propositions suivantes sont-elles vraies ou fausses?
 - (a) $\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : x < y$
 - (b) $\exists x \in \mathbb{R} : \exists y \in \mathbb{R} : x < y$
 - (c) $\forall x \in \mathbb{R} : \forall y \in \mathbb{R} : x < y$
 - (d) $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x < y$

2 Dérivation partielle

Dériver une fonction de plusieurs variables par rapport à l'une d'elle revient à considérer les autres variables comme des constantes. Formellement :

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) = \lim_{x \to x_0} \frac{f(x, y_0, z_0) - f(x_0, y_0, z_0)}{x - x_0}$$

On définit les dérivées partielles d'ordre deux par :

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}(x, y))$$

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}(x, y))$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x}(x,y))$$

Remarques : On parle de dérivées croisées quand on dérive par deux ou plusieurs variables différentes et de dérivée seconde quaand on dérive deux fois par rapport à la même variable.

- (i) On donne $f(x,y,z) = ax + bxyz + z^2$ et $g(x,y) = \sqrt{x^2 + y^2}$. Donner les expressions des dérivées suivantes :
 - (a) $\frac{\partial f}{\partial x}(x, y, z)$
 - (b) $\frac{\partial f}{\partial y}(x, y, z)$
 - (c) $\frac{\partial f}{\partial z}(x, y, z)$
 - (d) $\frac{\partial g}{\partial x}(x,y)$
 - (e) $\frac{\partial g}{\partial y}(x,y)$
- (ii) On donne $h(x, y, z) = 3x \frac{y^2}{z} + yz$. Donner les expressions des dérivées suivantes :
- $1) \ \frac{\partial h}{\partial x}(x,y,z) \qquad \qquad 2) \frac{\partial h}{\partial y}(x,y,z) \qquad \qquad 3) \frac{\partial h}{\partial z}(x,y,z)$
- 4) $\frac{\partial^2 h}{\partial x^2}(x, y, z)$ 5) $\frac{\partial^2 h}{\partial u^2}(x, y, z)$ 6) $\frac{\partial^2 h}{\partial z^2}(x, y, z)$
- 7) $\frac{\partial^2 h}{\partial x \partial y}(x, y, z)$ 8) $\frac{\partial^2 h}{\partial x \partial z}(x, y, z)$ 9) $\frac{\partial^2 h}{\partial y \partial z}(x, y, z)$
- 10) $\frac{\partial^2 h}{\partial u \partial x}(x, y, z)$ 11) $\frac{\partial^2 h}{\partial z \partial x}(x, y, z)$ 12) $\frac{\partial^2 h}{\partial z \partial y}(x, y, z)$

Vérifier que les dérivées croisées sont égales (théorème de Schwartz).

3 Produit vectoriel

(i) Définition intuitive :

Etant donnés deux vecteurs de l'epace \vec{u} et \vec{v} non colinéaires, on appelle le produit vectoriel de \vec{u} et \vec{v} , l'unique vecteur \vec{w} tel que :

$$\vec{w}$$
 est orthogonal à \vec{u} et \vec{v} .
 $(\vec{u}, \vec{v}, \vec{w})$ est une base directe de l'espace
 $||\vec{w}|| = ||\vec{u}|| \times ||\vec{v}|| \times \sin(\vec{u}, \vec{v})$

Soit $\vec{u} = (u_1, u_2, u_3)$ et $\vec{v} = (v_1, v_2, v_3)$, l'expression analytique du produit vectorielle, que l'on admettra est la suite :

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

- (ii) Calculer les coordonnées des vecteurs suivants :
 - A) $\vec{u} \wedge \vec{v}$ puis $\vec{v} \wedge \vec{u}$ où $\vec{u}(2,3,4)$ et $\vec{v}(5,6,7)$
 - B) $\vec{u} \wedge \vec{v}$ où $\vec{u}(0,1,5)$ et $\vec{v}(2,8,4)$
- (iii) Démontrer que l'aire d'un parallélogramme ABCD est égale à $||\overline{AB} \wedge \overline{AC}||$
- (iv) Démontrer les propriétés suivantes (en passant par les coordonnées) :
 - A) $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$
 - B) $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u} \cdot \vec{w}) \cdot \vec{v} (\vec{u} \cdot \vec{v}) \cdot \vec{w}$
- (v) A l'aide du produit vectoriel, trouver une équation de la perpendiculaire commune aux droites sécantes dont la représentation paramétrique est donnée ci-dessous :

$$(D_1): \begin{cases} x = 4 + 2t \\ y = 2 - 3t \\ z = -3 + 5t \end{cases}; \quad t \in \mathbb{R}$$

$$(D_2): \begin{cases} x = 4 - t \\ y = 2 ; \quad t \in \mathbb{R} \\ z = -3 + t \end{cases}$$

(vi) On considère les points A(0,0,1); B(4,2,3) et C(-3;1;1). A l'aide du produit vectoriel, trouver un vecteur normal au plan (ABC)