Task 1 - Nash Equilibria and Subgame Perfect Equilibria

(a) The Nash Equilibria in a 2×2 Normal-Form Game The given normal-form game is:

Mario \ Luigi	Boost	Jump
Throws	(-2, -8)	(1, 7)

Step taken as follows:

Step 1: Identify Best Responses

A Nash equilibrium is a strategy profile where no player can improve their payoff by unilaterally changing their strategy.

- Mario's Best Response to Luigi's Strategies:
 - o If Luigi chooses Boost, Mario's options:
 - Throw \rightarrow Payoff = -2
 - Jump → Payoff = 1 (Better choice)
 - Best Response: Jump
 - $\circ \quad \text{If Luigi chooses Jump, Mario's options:} \\$
 - Throw \rightarrow Payoff = 1
 - Jump → Payoff = 7 (Better choice)
 - Best Response: Jump
- Luigi's Best Response to Mario's Strategies:
 - o If Mario chooses Throw, Luigi's options:
 - Boost → Payoff = -8
 - Jump → Payoff = 7 (Better choice)
 - Best Response: Jump
 - If Mario chooses Jump, Luigi's options:
 - Boost → Payoff = 1
 - Jump → Payoff = 7 (Better choice)

■ Best Response: Jump

Step 2: Find Nash Equilibria

The best responses are:

- Mario plays Jump.
- Luigi plays Jump.

Thus, the unique Nash Equilibrium is (Jump, Jump) \rightarrow (7,7).

(b) Subgame Perfect Equilibria (SPE) in an Extensive-Form Game (15%) The game tree has:

- Player 1 (Root decision node) chooses between L, M, R.
- Player 2 makes decisions at each branch with actions A, B, C, D, E, F.
- Payoffs are provided for each terminal node.

Step 1: Use Backward Induction

We analyze the game starting from the terminal nodes and move backward.

- 1. At Node 2 (for L choice by Player 1):
 - Player 2 chooses between A (2,1) and B (1,2).
 - Best response: $A \rightarrow (2,1)$.
- 2. At Node 2 (for M choice by Player 1):
 - Player 2 chooses between C (2,3) and D (5,3).
 - Best response: D \rightarrow (5,3).
- 3. At Node 2 (for R choice by Player 1):
 - Player 2 chooses between E (1,0) and F (6,-1).
 - Best response: $E \rightarrow (1,0)$.

Step 2: Player 1's Decision

Now, Player 1 compares the payoffs:

- Choosing $L \rightarrow (2,1)$
- Choosing $M \rightarrow (5,3)$
- Choosing $R \rightarrow (1,0)$

Best response for Player 1: M (5,3) (since 5 > 2 and 5 > 1 for Player 1's payoff).

Step 3: Identify the Subgame Perfect Equilibrium

- Player 1 chooses M.
- Player 2, at M's node, chooses D.
- The SPE strategy profile is: $(M, D) \rightarrow (5,3)$.

Task 2 - Auction Simulation and Equilibrium Analysis

2a. Simulating the Auction Process in MATLAB (Please note that the multiple replicate is available in the .m file)

Understanding the Auction Mechanism

- Each of the 3 buyers submits a bid randomly chosen from [1, valuation].
- The two highest bidders win the item.
- The price paid is the third-highest bid.
- The profit for a winning buyer is valuation payment.
- Social welfare is the sum of the winners' valuations.
- The process is repeated for 7 rounds and replicated 11 times.

```
% Number of rounds
rounds = 7;
% Number of buyers
num_buyers = 3;
% Define valuations of the buyers
valuations = [12, 9, 4];
```

```
% Initialize storage for results
bids history = zeros(rounds, num buyers);
profits = zeros(rounds, num buyers);
social welfare = zeros(rounds, 1);
% Simulate the auction for 7 rounds
for r = 1:rounds
   % Generate random bids for each buyer
   bids = [randi([1, 12]), randi([1, 9]),
  randi([1, 4])];
   bids history(r, :) = bids;
   % Sort bids in descending order to determine
  winners
   [sorted bids, indices] = sort(bids,
  'descend');
   % Two highest bidders win the item
   winner1 = indices(1);
   winner2 = indices(2);
   % The third-highest bid is the price
   price = sorted bids(3);
```

```
% Compute profits for each buyer
   for i = 1:num buyers
       if i == winner1 || i == winner2
           profits(r, i) = valuations(i) -
  price;
       else
           profits(r, i) = 0;
       end
   end
   % Calculate social welfare (sum of valuations
  of winners)
   social welfare(r) = valuations(winner1) +
  valuations(winner2);
   % Display results for the round
   fprintf('Round %d: Bids = [%d, %d, %d],
  Winners = [%d, %d], Price = %d\n', ...
       r, bids(1), bids(2), bids(3), winner1,
  winner2, price);
   fprintf('Profits: [%d, %d, %d]\n\n',
  profits(r, 1), profits(r, 2), profits(r, 3));
end
```

```
% Calculate total profits and overall social
  welfare

total_profits = sum(profits, 1);

overall_social_welfare = sum(social_welfare);

% Display final results

fprintf('Total Profits: [%d, %d, %d]\n',
  total_profits(1), total_profits(2),
  total_profits(3));

fprintf('Overall Social Welfare: %d\n',
  overall_social_welfare);
```

Replication 1	Vector of Bids	Winners(two buyers that receive an item.)	Profit of Each Buyer	Social Welfare
Round 1	[10, 9, 1]	[1, 2]	[11, 8, 0]	21
Round 2	[11, 6, 1]	[1, 2]	[11, 8, 0]	21
Round 3	[4, 5, 4]	[2, 1]	[8, 5, 0]	21
Round 4	[12, 2, 4]	[1, 3]	[10, 0, 2]	16
Round 5	[12, 5, 4]	[1,2]	[8, 5, 0]	21
Round 6	[2, 4, 4]	[2,3]	[0, 7, 2]	13
Round 7	[10, 9, 3]	[1,2]	[9, 6, 0]	21

Total(Rounds		[57, 39, 4]	134
1-7)			

Replications	total_profits	overall_social_welfar
Replications 1	57, 39, 4;	134
Replications 2	59, 41, 4;	134
Replications 3	49, 40, 7;	126
Replications 4	51, 30, 13;	116
Replications 5	61, 50, 2;	139
Replications 6	67, 40, 1;	142
Replications 7	72, 30, 6;	132
Replications 8	63, 44, 5;	134
Replications 9	60, 50, 3;	139
Replications 10	54, 44, 3;	139
Replications 11	71, 37, 3	137

Average total profit for 11 replications	[60.36, 40.45, 4.27]
Average social welfare for 11 replications	133.64

2b. Using Brute Force Search method(Please note the .m file contain the results of the table format given in the question)

Understanding Equilibrium in the Auction

for b1 = b1 range

for b2 = b2_range

- A strategy (bid choice) is an equilibrium if no player can improve their total profit by changing their bid unilaterally.
- This requires checking all possible bid combinations and seeing if any buyer can benefit by deviating.

```
% Define buyer valuations
valuations = [12, 9, 4]; % v1 = 12, v2 = 9, v3 = 4

% Define bid range (each buyer bids between 1 and their valuation)
b1_range = 1:12;
b2_range = 1:9;
b3_range = 1:4;

% Initialize storage for equilibria
equilibria = [];
social_welfare_list = [];
```

```
for b3 = b3_range
  % Store the current bid combination
  bids = [b1, b2, b3];
  % Sort bids in descending order to determine winners
  [sorted bids, indices] = sort(bids, 'descend');
  % Two highest bidders win the item
  winner1 = indices(1);
  winner2 = indices(2);
  % The third-highest bid is the price
  price = sorted_bids(3);
  % Compute profits for each buyer
  profits = zeros(1, 3);
  for i = 1:3
     if i == winner1 || i == winner2
       profits(i) = valuations(i) - price;
     else
       profits(i) = 0;
     end
```

```
% Compute social welfare (sum of valuations of winners)
    social welfare = valuations(winner1) + valuations(winner2);
    % Check if the bid is an equilibrium (no buyer can profit by
deviating)
    is_equilibrium = true;
    for i = 1:3
      for new_bid = 1:valuations(i)
         if new_bid ~= bids(i)
           % Simulate the effect of changing the bid
           new bids = bids;
           new bids(i) = new bid;
           [new sorted bids, new indices] = sort(new bids,
'descend');
           new winner1 = new indices(1);
           new winner2 = new indices(2);
           new_price = new_sorted_bids(3);
           % Compute new profit
           new_profits = zeros(1, 3);
           for j = 1:3
```

```
if j == new_winner1 || j == new_winner2
                 new_profits(j) = valuations(j) - new_price;
               else
                 new_profits(j) = 0;
               end
            end
            % If the buyer improves their profit by deviating, it's not
an equilibrium
            if new_profits(i) > profits(i)
               is_equilibrium = false;
               break;
            end
          end
       end
       if ~is_equilibrium
         break;
       end
    end
    % If equilibrium is found, store it
    if is_equilibrium
       equilibria = [equilibria; b1, b2, b3, social_welfare];
```

```
social_welfare_list = [social_welfare_list, social_welfare];
        end
     end
  end
end
% Compute average social welfare for all equilibria
average_social_welfare_equilibria = mean(social_welfare_list);
% Display equilibria
fprintf('Buyer 1\tBuyer 2\tBuyer 3\tSocial Welfare\n');
for i = 1:size(equilibria, 1)
  fprintf('%d\t%d\t%d\n', equilibria(i, 1), equilibria(i, 2), equilibria(i,
   3), equilibria(i, 4));
end
% Display average social welfare
fprintf('Average Social Welfare for All Equilibria: %.2f\n',
   average_social_welfare_equilibria);
```

Task 3 - Cournot and Stackelberg Duopoly Analysis

3a Cournot Duopoly Model

Step 1: We need to define the Profit Functions

The inverse demand function (price as a function of total quantity) is given by:

$$P(q1,q2) = 43 - 3(q1+q2)$$

The **cost functions** for Firm 1 and Firm 2 are:

Each firm's profit function is given by:

$$\pi 1(q1,q2)=P(q1,q2)\cdot q1-c1(q1)$$

 $\pi 2(q1,q2)=P(q1,q2)\cdot q2-c2(q2)$

Expanding:

$$\pi 1(q1,q2)=(43-3(q1+q2))q1-(5+4q1)$$

=43q1-3q₁²-3q₁q₂-5-4q₁
=39q₁-3q₁²-3q₁q₂-5

$$π2(q_1,q_2)=(43-3(q_1+q_2))q_2 - (10+q_2)$$

=43q₂ - 3q₂²-3q₁q₂ - 10 - q₂
=42q₂- 3q₂² - 3q₁q₂ -10

Step 2: We need to find the Nash Equilibrium

Each firm maximizes its profit by solving:

Firm 1's Best Response

$$\partial \pi_1 / \partial q_1 = 39 - 6q_1 - 3q_2 = 0$$

Solving for q1:
$$q1 = 39 - 3q_2 / 6$$

$$= 6.5-0.5q2$$

Firm 2's Best Response

$$\partial \pi_2 / \partial q_2 = 42 - 6q_2 - 3q_1 = 0$$

Solving for q₂:

$$q_2 = 42-3q_1/6$$

= 7 - 0.5q₁

Solve the System of Equations

$$q_1 = 6.5 - 0.5q_2$$

$$q_2 = 7 - 0.5q_1$$

Substituting q2 into q1:

$$q_1 = 6.5 - 0.5(7 - 0.5q1)$$

$$q_1 = 6.5 - 3.5 + 0.25q1$$

$$0.75q_1 = 3$$

$$q_1 = 4$$

Substituting q_1 = 4 into q_2 = 7 - 0.5 q_1 :

$$q_12 = 7 - 0.5(4) = 5$$

Step 3: Compute Profits, Consumer Surplus, and Total Surplus Using $q_1=4$, $q_2=5$:

P=43-3(4+5)=43-27=16

$$\pi_1$$
=(16×4)-(5+4×4)=64-21=43
 π_2 =(16×5)-(10+5)=80-15=65

Consumer Surplus: CS =
$$^{1}/_{2}(43-16)/2\times9$$

=227×9
=121.5

Total Surplus: TS =
$$\pi_1 + \pi_2 + \text{CS} = 43 + 65 + 121.5 = 229.5$$

Cournot Equilibrium	Value
q_1	4
q_2	5
$\pi_1(q_1,q_2)$	43
$\pi_2 (q_1, q_2)$	65
Consumer Surplus (CS)	121.5
Total Surplus (TS)	229.5

(b) Stackelberg Leader-Follower Model (15%)

In this model:

- \bullet Firm 1 is the **leader**, choosing q_1 first.
- Firm 2 is the **follower**, reacting using the **reaction function**:

$$r_2(q_1) = 5 + 3q_1$$

Step 1: Leader's Profit Function

$$\pi 1 = (43 - 3(q1 + q2))q1 - (5 + 4q1)$$

Substituting q2=5+3q1:

$$\pi_1$$
=(43-3(q1+5+3q₁))q₁-(5+4q₁)
 π_1 =(43-3(4q₁+5))q₁-5-4q₁
 π_1 =(43-12q₁-15)q₁-5-4q₁

$$\pi_1 = (28-12q_1)q_1-5-4q_1$$

$$\pi_1 = 28q_1-12q_1^2-5-4q_1$$

$$\pi_1 = 24q_1-12q_1^2-5$$

Step 2: Solve for Stackelberg Equilibrium

Maximizing
$$\pi_1$$
: $d\pi_1/dq_1 = 24-24q_1 = 0$

$$q_1 = 1$$

Using
$$r_2(q_1)$$
: $q_2 = 5 + 3 (1) = 8$

Leader's Profit:
$$\pi_1 = (16 \times 1) - (5 + 4) = 16 - 9 = 7$$

Stackelberg Equilibrium	Value
q_1	1
q_2	8
$\pi_1(q_1, q_2)$	7

(c) Collusion Models

1. Joint Profit Maximization: Firms act as a monopoly, splitting profit to maximize joint revenue. Profit is maximized at

$$q_1 + q_2 = 7$$
.

Each firm sets lower output for a higher price.

2. Price-Fixing Agreement: Firms agree on a minimum price, reducing competition and increasing profits.

Is collusion profitable?

Yes, if **enforceable**, but it risks detection and legal consequences.