

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956) Tiruchirappalli, Tamil Nadu - 621 105 SCHOOL OF COMPUTING

Department of Computer Applications

PRACTICAL RECORD

NAME:

REGISTER No. : RA24322410500

PROGRAME : MCA

SEMESTER / YEAR : II / I

COURSE CODE : PCA20S02J

COURSE NAME : DATA ANALYSIS USING R

APRIL 2025

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956) Tiruchirappalli, Tamil Nadu - 621 105 SCHOOL OF COMPUTING

Department of Computer Applications

BONAFIDE CERTIFICATE

This is to	o certify that the bonafi	de work is done	by Mr.	/ Ms				· —
Register	Number	in	Data	Analysis	Using	R	(Subject	Code:
PCA20S0	02J) at Computer Lab, SI	RM Institute of Sci	ence a	nd Technol	ogy, Tii	ruch	irappalli, i	in April
2025.								
COU	URSE IN-CHARGE		HE	AD OF T	HE DEI	PAR	RTMENT	
Submitted	d for the University Prac	tical Examination	held at	Departmer	it of Coi	mpu	ter Applica	ations,
SRM Inst	titute of Science and Tech	hnology, Tiruchira	ppalli o	on				
INT	ERNAL EXAMINER		E	XTERNA	L EXA	MIN	NER	

INDEX

S. No.	Date	Name of the programs	Page No.	Signature
1	04.01.2025	Installation of R Program and Import Packages		
2	08.01.2025	Implementation of R Program – Basic		
3	11.01.2025	Implementation of R Program – Basic (Addition)		
4	18.01.2025	Implementation of Data Types		
5	29.01.2025	Implementation of Control Statements		
6	05.02.2025	Implementation of Looping Statements		
7	12.02.2025	Implementation of Decision Tree and KNN		
8	15.02.2025	Implementation of Naïve Bayes		
9	19.02.2025	Implementation of Random Forest		
10	22.02.2025	Implementation of K-means		
11	07.03.2025	Implementation of Medoids		
12	18.03.2025	Implementation of Hierarchical Clustering		
13				
14				
15				

INSTALLATION OF R PROGRAM AND IMPORT PACKAGES

AIM:

To install R and import essential packages in R.

PROCEDURE:

- o Install R from the official website: https://cran.r-project.org/
- o Install the required package(s) using install.packages() in R.
- o Use library() to load the package.

SOURCE CODE:

```
# Install a package (if not installed)
install.packages("ggplot2")

# Import the package
library(ggplot2)
```

OUTPUT:

No output, but you can check if the library is loaded by using a function like ggplot2::ggplot().

RESULT:

Installed R and imported essential packages successfully.

IMPLEMENTATION OF R PROGRAM - BASIC

AIM:

To understand basic R syntax and printing output.

PROCEDURE:

- o Create simple variables.
- o Print their values using print() or cat().

SOURCE CODE:

```
# Basic program to print Hello World
message <- "Hello, World!" print(message)</pre>
```

OUTPUT:

[1] "Hello, World!"

RESULT:

Executed basic R programs, including arithmetic and variable assignments.

IMPLEMENTATION OF R PROGRAM – BASIC (ADDITION)

AIM:

To perform basic arithmetic operations.

PROCEDURE:

- o Define two variables.
- o Add them using the + operator.
- o Print the result.

SOURCE CODE:

```
# Adding two numbers
num1 <- 5
num2 <- 3
sum <- num1 + num2
print(sum)
```

OUTPUT:

[1] 8

RESULT:

Practiced basic R functions, data structures, and operations.

IMPLEMENTATION OF DATA TYPES IN R

AIM:

To understand and implement various data types in R.

PROCEDURE:

- o Create variables of different types: numeric, character, logical, and complex.
- o Print the type using typeof().

SOURCE CODE:

```
# Creating variables of different types
num <- 10
text <- "Hello"
is_true <- TRUE
complex_num <- 1 + 2i

# Print types
print(typeof(num)) # Numeric
print(typeof(text)) # Character
print(typeof(is_true)) # Logical
print(typeof(complex_num)) # Complex
```

OUTPUT:

- [1] "double"
- [1] "character"
- [1] "logical"
- [1] "complex"

RESULT:

Implemented various R data types like vectors, lists, and factors.

IMPLEMENTATION OF CONTROL STATEMENTS IN R

AIM:

To implement basic control structures (if-else).

PROCEDURE:

o Use if, else, and else if for decision-making.

SOURCE CODE:

```
# Check if the number is positive or negative
num <- -5

if (num > 0) {
    print("Positive")
} else if (num < 0) {
    print("Negative")
} else {
    print("Zero")
}</pre>
```

OUTPUT:-

[1] "Negative"

RESULT:

Applied control statements like if-else and switch-case in R.

IMPLEMENTATION OF LOOPING STATEMENTS

AIM:

To implement basic looping structures like for and while loops.

PROCEDURE:

```
o Use a for loop to print numbers from 1 to 5. o Use a while loop to print numbers from 6 to 10.
```

SOURCE CODE:

```
# For loop example
for (i in 1:5) {
    print(i)
}

# While loop example
i <- 6
while (i <= 10) {
    print(i)
    i <- i + 1
}</pre>
```

OUTPUT:

- [1] 1
- [1] 2
- [1] 3
- [1] 4
- [1] 5
- [1] 6
- [1] 7
- [1] 8
- [1] 9
- [1] 10

RESULT:

Practiced loops, including for, while, and repeat statements in R.

IMPLEMENTATION OF DECISION TREE AND KNN IN R

AIM:

To implement decision trees and KNN algorithms for classification tasks.

PROCEDURE:

- o Install and load the necessary package rpart for decision tree and class for KNN.
- o Use sample data for training.

SOURCE CODE:

```
# Load necessary libraries
install.packages("rpart")
library(rpart)

# Sample data
data(iris)

# Create a decision tree
model <- rpart(Species ~ Sepal.Length + Sepal.Width, data = iris)

# Print the model
print(model)</pre>
```

OUTPUT:

Decision tree model summary.

RESULT:

Built decision tree and KNN models for classification tasks.

IMPLEMENTATION OF NAÏVE BAYES

AIM:

To implement the Naïve Bayes classification algorithm.

PROCEDURE:

- o Install and load the e1071 package.
- o Use naiveBayes() to create a model.

SOURCE CODE:

```
# Install and load the e1071 package
install.packages("e1071")
library(e1071)

# Sample data
data(iris)

# Apply Naive Bayes
model <- naiveBayes(Species ~ Sepal.Length + Sepal.Width,
data= iris)

# Print model summary
print(model)
```

OUTPUT:

Naïve Bayes model summary.

RESULT:

Implemented Naïve Bayes for probabilistic classification in R.

IMPLEMENTATION OF RANDOM FOREST IN R

AIM:

To implement a random forest model for classification.

PROCEDURE:

- o Install and load the randomForest package.
- o Create and train a random forest model.

SOURCE CODE:

```
# Install and load the randomForest package
install.packages("randomForest")
library(randomForest)
# Sample data
data(iris)

# Create a Random Forest model
model <- randomForest(Species ~ Sepal.Length + Sepal.Width, data = iris)
# Print the model
print(model)</pre>
```

OUTPUT:

Random Forest model summary.

RESULT:

Developed and evaluated a Random Forest model using R.

IMPLEMENTATION OF K-MEANS IN R

AIM:

To implement the K-means clustering algorithm.

PROCEDURE:

- o Use kmeans() to perform clustering on the data.
- o Plot the clusters.

SOURCE CODE:

```
# Sample data
data(iris)

# K-means clustering
set.seed(10)
clusters <- kmeans(iris[, 1:4], centers = 3)

# Print clustering results</pre>
```

OUTPUT:

print(clusters)

K-means clustering results, including cluster centers.

RESULT:

Applied K-Means clustering for unsupervised learning in R.

IMPLEMENTATION OF MEDOIDS IN R

AIM:

To implement the k-medoids clustering algorithm using R. Medoids are similar to centroids in the k-means clustering but use actual data points as cluster centers.

PROCEDURE:

- 1. Load the necessary libraries (cluster and factoextra).
- 2. Import or create a dataset.
- 3. Normalize or standardize the dataset (if required).
- 4. Apply the pam() function from the cluster package to perform k-medoids clustering.
- 5. Visualize the clusters using the fviz_cluster() function.

SIMPLE PROGRAM:

```
# Load required libraries
library(cluster)
library(factoextra)

# Create a sample dataset
data <- data.frame(x = rnorm(100), y = rnorm(100))

# Apply k-medoids clustering (k=3)
set.seed(123)
kmedoids_result <- pam(data, k = 3)

# Visualize the clusters
fviz_cluster(kmedoids_result)</pre>
```

OUTPUT:

A plot showing the clustered data with medoid points marked.

RESULT:

The k-medoids clustering algorithm successfully groups the dataset into k clusters and correctly identifies the medoids as representative points.

IMPLEMENTATION OF HIERARCHICAL CLUSTERING IN R

AIM:

To perform hierarchical clustering using R and visualize the dendrogram.

PROCEDURE:

- 1. Load the dataset.
- 2. Standardize the data if needed.
- 3. Use the dist() function to calculate the distance matrix.
- 4. Apply the hclust() function to perform hierarchical clustering.
- 5. Visualize the dendrogram.

SOURCE CODE:

```
# Load dataset
data <- mtcars

# Standardize data (optional)
data_scaled <- scale(data)

# Compute distance matrix
dist_matrix <- dist(data_scaled)

# Perform hierarchical clustering
hclust_result <- hclust(dist_matrix, method = "ward.D2")

# Plot the dendrogram
plot(hclust_result)
```

OUTPUT:

A dendrogram representing hierarchical clustering.

RESULT:

The dendrogram visually represents the hierarchical relationship of the data points, and based on the tree, you can cut it at a desired level to form clusters.

IMPLEMENTATION OF DATA VISUALIZATION IN R

AIM:

To visualize data in R using various plotting techniques.

PROCEDURE:

- 1. Load the necessary libraries (ggplot2 for visualization).
- 2. Import or create a dataset.
- 3. Use different functions to create various types of plots (e.g., scatter plot, box plot, histogram).

SOURCE CODE:

```
# Load the necessary library
library(ggplot2)

# Create a sample dataset
data <- data.frame(x = rnorm(100), y = rnorm(100))

# Scatter plot
ggplot(data, aes(x=x, y=y)) + geom_point()

# Box plot
ggplot(data, aes(x = factor(1), y = x)) + geom_boxplot()

# Histogram
ggplot(data, aes(x = x)) + geom_histogram(bins = 20)</pre>
```

OUTPUT:

Scatter plot, box plot, and histogram visualizations.

RESULT:

The output will show different visualizations representing the distribution and relationships of the data.

IMPLEMENTATION OF VARIOUS CHARTS IN R

AIM:

To implement various types of charts (bar charts, pie charts, line plots) in R.

PROCEDURE:

- 1. Load the necessary libraries (ggplot2 for visualizations).
- 2. Create or import a dataset.
- 3. Use appropriate functions to create various charts (bar, pie, line).

SOURCE CODE:

```
# Load required library library(ggplot2)

# Create a dataset data <- data.frame(category = c("A", "B", "C", "D"), value = c(23, 45, 12, 30))

# Bar plot ggplot(data, aes(x = category, y = value)) + geom_bar(stat = "identity")

# Pie chart (using ggplot2) ggplot(data, aes(x = "", y = value, fill = category)) + geom_bar(stat = "identity", width = 1) + coord_polar(theta = "y")

# Line plot (example) time <- 1:10 value <- c(2, 4, 5, 6, 8, 10, 11, 12, 13, 15) data_line <- data.frame(time, value) ggplot(data_line, aes(x = time, y = value)) + geom_line()
```

OUTPUT:

K-means clustering results, including cluster centers.

RESULT:

Thus, the three different clusters are created with the helpof k-medoids clustering algorithm.

IMPLEMENTATION OF K-MEANS IN R

AIM:

To implement the K-means clustering algorithm.

PROCEDURE:

- o Use kmeans() to perform clustering on the data.
- o Plot the clusters.

SOURCE CODE:

```
# Sample data
data(iris)

# K-means clustering
set.seed(10)
clusters <- kmeans(iris[, 1:4], centers = 3)</pre>
```

OUTPUT:

K-means clustering results, including cluster centers.

Print clustering results

print(clusters)

RESULT:

Thus, the three different clusters are created with the helpof k-medoids clustering algorithm.