Álgebra Relacional

Explicación de Práctica

Operaciones

- Lenguaje de Consulta
 - Operaciones fundamentales
 - Operaciones adicionales
- Lenguaje de manipulación
 - Operaciones de manipulación

Lenguaje de Consulta

Son suficientes para expresar cualquier consulta en álgebra relacional

- Selección (σ)
- Proyección (Π)
- Producto Cartesiano (X)
- Renombre (ρ)
 - o de una relación
 - De atributos de una relación
- Unión (U)
- Diferencia (-)

Selección (σ)

- Operación unaria (σcondiciónR)
- Requiere una condición booleana Operaciones: and, or y not
- El resultado es una relación con un subconjunto "horizontal" de la relación dada

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	Maria	25

E#	Nombre	Edad
320	José	34
322	Rosa	37

Proyección (Π)

- Dada una lista de atributos produce un corte "vertical" de la relación
- Los atributos de la lista se toman de izquierda a derecha.

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	Maria	25

Nombre	Edad
José	34
Rosa	37
María	25

Producto Cartesiano (X)

 El resultado es una relación que incluye todas las tuplas posibles que se obtienen concatenando cada tupla de A con cada una de las tuplas de B

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José	D1	RX338A	21
320	José	D1	PY254Z	32
322	Rosa	D3	RX338A	21
322	Rosa	D3	PY254Z	32

Diferencia (-)

- El resultado es una relación donde están los elementos que pertenecen a A y no pertenecen a B
- Es necesario que las relaciones A y B sean de «unión

compatible»

				٠			
In	a	e	n	ı	e	rc	2
	ອ	_	•••	•	~	•	_

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa	37
323	María	25

Unión (U)

- El resultado es una relación en la que se agrega a la relación A los elementos (no repetidos) de la relación B
- Es necesario que las relaciones A y B sean de «unión compatible»

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros U Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

Definiciones

Unión compatible

- Relaciones con igual aridad (igual número de atributos)
- El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀i)

Lenguaje de Consulta

- No agregan potencia al álgebra, simplifican consultas.
- Se pueden escribir a base de operaciones fundamentales:
- Intersección (∩)
- Producto Natural (IXI)
- División (%)

Intersección (∩)

- El resultado es una relación con aquellas tuplas que pertenecen a ambas relaciones (al mismo tiempo)
- Es necesario que las relaciones A y B sean de «unión compatible»
- R ∩S es equivalente a R –(R –S)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros ∩ Jefes

E#	Nombre	Edad
320	José	34

Producto Natural (IXI)

- Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada sobre el resultado de un producto cartesiano
- La condición se indica como una expresión booleana de términos

R |X| S es equivalente a

□ lista(ocondición(R X S))

Donde:

- Condición implica a todos los atributos de R que están en S y son iguales
- Lista elimina columnas repetidas (dejando una sola en el conjunto) y los atributos que no tienen en común R y S

Producto Natural (IXI)

Postulantes

Nombre	Edad	DNI
Paula	19	29235142
Martina	22	35215415
Joaquín	28	28152478

Administrativos

Nombre	Edad	Domicilio	DNI
Martina	22	1 y 50	35215415
Paula	19	8 y 49	29899632
Pablo	32	26 y 50	20125789

Postulantes | X | Administrativos

Nombre	Edad	DNI	Domicilio
Martina	22	35215415	1 y 50

División (%)

- Los atributos del divisor S deben ser un subconjunto de los atributos de la relación R con igual dominio
- La relación resultante de la división, llamémosla T, posee tuplas t tal que:
- Los valores de t deben aparecer en R en combinación con todas las tuplas de S

• R%S es equivalente a:

 Π att(R)-att(S) R - Π att(R)-att(S) ((Π att(R)-att(S) (R)x S) -R)

Donde:

att(R) - att(S) significan los atributos de la relación R menos los atributos de la relación S

División (%)

• R1 % R2

R1

E#	Proyecto
320	RX338A
320	PY254Z
323	RX338A
323	PY254Z
323	NC168T
324	NC168T
324	KT556B

R2

Proyecto RX338A PY254Z
RX338A
PY254Z

R1 % R2

```
SALA_ESCAPE (<u>id_sala</u>, piso, cantJugadores)

JUEGO_ESCAPE (<u>id_juegoEscape</u>, titulo, tipo)

EJECUCION (<u>id_sala</u>, <u>id_juegoEscape</u>, <u>fecha</u>, <u>sesión</u>, hora_ini, hora_fin)
```

a) Obtener los títulos de los juegos ejecutados en agosto de 2025.

```
\pi_{\text{titulo}} (\sigma_{\text{fecha}} >= 0.1/0.8/2025 \text{ AND fecha} <= 3.1/0.8/2025} (EJECUCION) |X| JUEGO_ESCAPE)
```

```
SALA_ESCAPE (<u>id_sala</u>, piso, cantJugadores)

JUEGO_ESCAPE (<u>id_juegoEscape</u>, titulo, tipo)

EJECUCION (<u>id_sala</u>, <u>id_juegoEscape</u>, <u>fecha</u>, <u>sesión</u>, hora_ini, hora_fin)
```

b) Obtener las salas donde se hayan llevado adelante –ejecutado- todos los juegos de escape

```
\pi_{\text{id sala, id juegoEscape}} (EJECUCION) % \pi_{\text{id juegoEscape}} JUEGO_ESCAPE)
```

```
SALA_ESCAPE (<u>id_sala</u>, piso, cantJugadores)

JUEGO_ESCAPE (<u>id_juegoEscape</u>, titulo, tipo)

EJECUCION (<u>id_sala</u>, <u>id_juegoEscape</u>, <u>fecha</u>, <u>sesión</u>, hora_ini, hora_fin)
```

c) Obtener las salas donde se hayan realizado juegos del estilo "Misterio" tanto en la sesión de las 18 como en la de las 21 hs.

$$\boldsymbol{\pi}_{id_sala} (\boldsymbol{\sigma}_{hora_ini\ =\ 18\ hs} (EJECUCION) \ | \boldsymbol{X}| \ \boldsymbol{\sigma}_{tipo=\ 'Misterio'} JUEGO_ESCAPE) \ \boldsymbol{\Pi}$$

$$\boldsymbol{\pi}_{id_sala} (\boldsymbol{\sigma}_{hora_ini\ =\ 21\ hs} (EJECUCION) \ | \boldsymbol{X}| \ \boldsymbol{\sigma}_{tipo=\ 'Misterio'} JUEGO_ESCAPE)$$

```
SALA_ESCAPE (<u>id_sala</u>, piso, cantJugadores)

JUEGO_ESCAPE (<u>id_juegoEscape</u>, titulo, tipo)

EJECUCION (<u>id_sala</u>, <u>id_juegoEscape</u>, <u>fecha, sesión</u>, hora_ini, hora_fin)
```

d) Obtener las salas que solo se utilizan en juegos del estilo Comedia.

 $\mathsf{RESULTADO} \leftarrow \pi_{\mathsf{id} \mathsf{sala}}(\mathsf{EJECUCION}) - \mathsf{SALAS}$

Dados los siguientes esquemas

CLIENTE (<u>id_cliente</u>, nombreCliente, puntaje, edad)
AUTOMOVIL (<u>id_automovil</u>, marca, color)
RESERVA (<u>id_cliente</u>, <u>id_automovil</u>, <u>fecha</u>)
TIPORESERVA (<u>id_tipoReserva</u>, descripción)

Tener en cuenta que un cliente puede realizar diversas reservas

a) Obtener los colores de los automóviles reservados por Juan.

```
CLIENTE (<u>id_cliente</u>, nombreCliente, puntaje, edad)
AUTOMOVIL (<u>id_automovil</u>, marca, color)
RESERVA (<u>id_cliente</u>, <u>id_automovil</u>, <u>fecha, id_tipoReserva</u>)
TIPORESERVA (<u>id_tipoReserva</u>, descripción)
```

a) Obtener los colores de los automóviles reservados por Juan.

$$\pi_{color}[(\sigma_{nombreCliente = 'Juan'}(CLIENTE)) |X| RESERVA |X| AUTOMOVIL]$$

```
CLIENTE (<u>id_cliente</u>, nombreCliente, puntaje, edad)
AUTOMOVIL (<u>id_automovil</u>, marca, color)
RESERVA (<u>id_cliente</u>, <u>id_automovil</u>, <u>fecha, id_tipoReserva</u>)
TIPORESERVA (<u>id_tipoReserva</u>, descripción)
```

b) Obtener los nombres de los clientes que no han reservado un automóvil verde.

R1: id de clientes que reservaron automóviles verdes.

$$\mathsf{R1} \leftarrow \pi_{\mathsf{idCliente}}(\sigma_{\mathsf{color}\,=\,\mathsf{`verde'}}(\mathsf{AUTOMOVIL})\,|\mathbf{X}|\,\,\mathsf{RESERVA})]\,|\mathbf{X}|\,\,\mathsf{CLIENTE}))$$

R2: todos los id de los clientes.

$$R2 \leftarrow \pi_{idCliente} (CLIENTE)$$

RESULTADO
$$\leftarrow \mathbf{\pi}_{nombre Cliente} ((R2 - R1) | \mathbf{X} | CLIENTE))$$

CLIENTE (<u>id_cliente</u>, nombreCliente, puntaje, edad)
AUTOMOVIL (<u>id_automovil</u>, marca, color)
RESERVA (<u>id_cliente</u>, <u>id_automovil</u>, <u>fecha.</u> id_tipoReserva)
TIPORESERVA (<u>id_tipoReserva</u>, descripción)

d) Obtener el id de los clientes que realizaron todos los tipos de reservas

 $\textbf{RESULTADO} \leftarrow \sigma_{\text{id cliente'-id tipoReserva}} \underline{\textbf{(}} \text{RESERVA) \% (} \pi_{\text{id tipoReserva}} \textbf{(} \textbf{TIPORESERVA))}$