

Архитектура и механизмы адаптации агентов искусственного интеллекта для персонализации образовательного опыта

Науки о данных

Выполнил: Антонов Эдуард Кузьмич

Научный руководитель: Атаева Ольга Муратовна

к.т.н, старший научный сотрудник ФИЦ ИУ РАН

Проблема / исследовательский вопрос

Ключевые проблемы:

- Достоверность информации на уровне **75-80**% (<u>ММLU</u>)
- Отсутствие прозрачности логики принятия моделями решений.
- Ограниченное контекстное окно (**32 128** тысяч токенов).

Исследовательский вопрос:

Как интеграция большой языковой модели с графом знаний в рамках агентной архитектуры позволит преодолеть ограничения монолитных моделей и создать диалоговую образовательную систему, поддерживающую адаптацию контента к уровню знаний, стилю обучения и образовательным целям пользователя?

<u>МФТИ</u>.

Цель исследования

Разработать и экспериментально оценить агентную архитектуру, объединяющую большие языковые модели и граф знаний для создания адаптивной образовательной диалоговой системы.

Объект исследования:

Образовательный процесс с использованием генеративного искусственного интеллекта и графовых структур данных.

Предмет исследования:

Архитектура агентов на базе больших языковых моделей.

Обучающие машины

- Развитие персонализированного обучения.
- Ранние адаптивные обучающие системы.
- Модели отслеживания знаний.
- Большие языковые модели в образовании.
- Интеграция языковых моделей с графами знаний
- Агенты искусственного интеллекта.

AutoTutor Mark II Western Design, 1960

Новизна

Агентная архитектура, реализующая динамическое взаимодействие языковой модели с графом знаний и долговременной памятью. Такой подход позволяет преодолеть ограничения статических методов извлечения информации, повысить релевантность генерируемого материала, обеспечить адаптивность диалога и персонализацию образовательных траекторий в сложных доменных областях.

Актуальность

Активная цифровизация образования и интеграция генеративного ИИ создают предпосылки для разработки инновационных архитектурных решений, позволяющих создавать адаптивные образовательные системы, способные эффективно работать в условиях существующих ограничений языковых моделей.

Гипотеза исследования

Разработка агентной архитектуры, объединяющей большие языковые модели с графом знаний, обеспечит создание образовательной диалоговой системы, способной адаптироваться к индивидуальному уровню знаний и стилю обучения, повышать точность предоставляемой информации по сравнению со стандартными методами генерации с дополненной выборкой, а также поддерживать долгосрочное взаимодействие посредством эффективного управления контекстным окном модели.

Задачи исследования

- 1. Разработать эффективные методы генерации с дополненной выборкой.
 - оптимизация запросов;
 - итеративное уточнение;
 - динамический системный промпт.
- 2. Формализовать предметную область в виде графа знаний.
 - иерархии и предшествования.
- 3. Реализовать прототип и провести оценку.
 - извлечение информации;
 - экспертная аннотация диалогов.

Методология исследования

- Jupyter Notebooks.
- Сравнение векторного и графового RAG (Top-1 Accuracy, Precision@K).
- Реализация интерфейса (FastAPI, React).
- Внедрение логирования внутренних процессов.
- Пилотное тестирование системы.
- Экспертная аннотация.

Источники данных

- 1. Machine Learning Glossary (Google) для создания графа.
- 2. Коллекция вопросов для оценки извлечения информации.
- 3. История взаимодействия с системой.

	term	content	
0	ablation	A technique for evaluating	
1	A/B testing	A statistical way of	
2	accelerator chip	A category of specialized	
3	accuracy	The number of correct	
4	action	In reinforcement learning,	
5	activation function	A function that enables	
6	active learning	A training approach	
7	agent	In reinforcement learning,	
•••			

	category	question	target
0	direct	ReLU	relu
1	direct	Activation Function	activation function
99	single	What is supervised learning?	supervised learning
100	single	How do you detect overfitting in a model?	overfitting
199	multi	Can you explain how backpropagation utilizes gradient	backpropagation,
200	multi	What roles does ReLU play as an activation function in	relu, activation

Дизайн эксперимента

Точность извлечения информации:

- One-shot (один запрос)
- Iterative (итеративное обращение)

Оценка качества:

Экспертная аннотация логов системы по критериям адаптивности, связности, использования контекста и корректного вызова инструментов.

Retriever	Top-1 Accuracy (%)	Precision@3 (%)	
graph-based	83.3 ± 3.8	74.6 ± 1.6	
multilingual-e5-base	67.7 ± 0.72	79.9 ± 4.2	
text-embedding-3-large	69.7 ± 1.9	82.1 ± 1.3	

Criteria	Rater A	Rater B	Cohen's Kappa
personalisation	2.8	2.7	0.57
coherence	2.9	2.8	0.78
relevance	2.9	2.8	0.78
tool use	2.4	2.4	0.66
context use	2.7	2.5	0.59

Результаты исследования

Точность извлечения информации:

- Графовый метод достиг **Top-1 Accuracy** ≈ **83,3** % (**94,5** % итеративно) с минимальными рекурсивными ошибками (**3,5** %)
- Векторные методы показали точность **68–72** % с более высоким **Precision@K3** и риском рекурсивных ошибок (**22,5–29** %)

Анализ диалогового взаимодействия:

- Система способна интегрировать ключевые детали из долговременной памяти.
- Образовательный контент динамично адаптируется под индивидуальные особенности обучающегося (цели, предпочтения, текущий уровень знаний)
- Необоснованная оценка ответов пользователя.
- Обнаружены отдельные проблемы с обновлением статуса знаний и интерпретацией терминов.

Практическая значимость работы

- Основа для полнофункциональных систем.
- Open Source Model Context Protocol (MCP).

Демо стенд 1:

Sereamlit

- базовый агент.

Демо стенд 2:

React + FastAPI

- агент с планированием.

GitHub Репозиторий

*В процессе доработки

(Добавить ссылки)

Апробация исследования

IEEE 6th International Conference on Robotics, Intelligent Control and Artificial Intelligence China, December 6–8, 2024.

Доклад представлен, работа принята для публикации, ожидается размещение в сборнике материалов конференции. (SCOPUS)

EUDSCILEARN 2024 Международная научно-практическая конференция «Трансформация образования: современные технологии, инновационные подходы и лучшие практики» Россия, 24–25 октября 2024 г.

Доклад представлен, работа принята для публикации, ожидается размещение в сборнике материалов конференции. (РИНЦ)

Список ключевых источников

- 1. Watters A. Teaching Machines: The History of Personalized Learning. Cambridge, MA: MIT Press, 2021. DOI: 10.7551/mitpress/12262.001.0001.
- 2. Doignon J.-P., Falmagne J.-C. Knowledge Spaces and Learning Spaces [Электронный ресурс] // arXiv preprint arXiv:1511.06757. 2015. URL: https://doi.org/10.4850/arXiv.1511.06757 (Дата обращения: 01.12.2024)
- 3. Abu-Rasheed H., Weber C., Fathi M. Knowledge Graphs as Context Sources for LLM-Based Explanations of Learning Recommendations [Электронный ресурс] // arXiv preprint arXiv:2403.03008. 2024. URL: https://arxiv.org/abs/2403.03008 (Дата обращения: 01.12.2024)
- 4. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Kuttler H., Lewis M., Yih W., Rocktäschel T., Riedel S., Kiela D. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [Электронный ресурс] // arXiv preprint arXiv:2005.11401. 2020. URL: https://doi.org/10.48550/arXiv.2005.11401 (Дата обращения: 01.12.2024)
- 5. Yao S. et al. ReAct: Synergizing Reasoning and Acting in Language Models [Электронный ресурс] // arXiv preprint arXiv:2202.03629. 2022. URL: https://doi.org/10.48550/arXiv.2210.03629 (Дата обращения: 01.12.2024)
- 6. Packer C., Wooders S., Lin K., Fang V., Patil S.G., Stoica I., Gonzalez J.E. MemGPT: Towards LLMs as Operating Systems [Электронный ресурс] // arXiv:2310.08560v2. 2024. URL: https://doi.org/10.48550/arXiv.2310.08560 (Дата обращения: 01.12.2024)

Спасибо за внимание!

