MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Fall 2013 Issued : Sept 11, 2013 Problem Set 2 Due : Sept 18, 2013

Problem 1: Saturation

Determine the DC Operating voltage V_1 at which Q_1 saturates and V_2 at which M_1 enters the triode regime.

Your answer should be in terms of transistor parameters $(I_S, V_{CE,sat}, \beta_0, \text{ etc})$.

Problem 2: Small-signal Parameters

Calculate the small-signal transistor parameters g_m , r_π , and r_o in the following circuit. Assume $V_A=60v$ and $\beta_0=200$.

- (a) $I_1 = .5\mu A$
- (b) $I_1 = 50 \mu A$
- (c) Draw the small signal model
- (d) How does the bias current I1 affect output impedance?
- (e) How does the bias current I1 affect input impedance?

Problem 3: Extracting Parameters from Datasheets

Extract r_{π} , β_0 , r_{μ} , r_o , c_{μ} , and c_{π} from the 2N2222 datasheet posted on stellar.

Problem 4: Finding τ_F

In many cases, data sheets will not provide enough information to extract every transistor parameter. Using the 2N3866 data sheet posted on stellar, determine an upper bound on τ_F . Briefly explain all assumptions that you make and define τ_F and f_T .