

Machine Learning 410

Lesson 4

Convolutional Neural Networks and Feature Learning

Steve Elston

Reminders

- Discussion get an easy 5 points!
 - Discussion 3 closes tonight, Oct 17. Don't miss this!
 - Discussion 4 closes Thursday, Oct 14.
 - Discussion 5 closes Thursday, Oct 31.
- Homework Updated homework is in Canvas
 - Homework 2 due Oct 20
 - Homework 3 due Oct 27
 - Homework 4 due Nov 3
- Materials in course Github repository
 - Notebook with reading
 - Slides

Review

- Forward propagation and inference
- Back propagation and gradients
- Loss functions
- Regularization and the bias-variance trade-off
- Optimization with stochastic gradient descent

Forward Propagation and Inference

Forward propagation achieved by tensor multiplication

The Backpropagation Algorithm

To **learn model weight tensor** we must **minimize the loss function** using the **gradient**:

$$W_{t+1} = W_t + \alpha \nabla_W J(W_t)$$

Where:

 W_t = the tensor of weights or model parameters at step t J(W) = loss function given the weights

 $\nabla_W J(W) = \text{gradient of } J \text{ with respect to the weights } W$ $\alpha = \text{step size or learning rate}$

Example: Computing a Gradient

Goal is to compute the gradient:

The loss function is:

$$J(W) = -\frac{1}{2} \sum_{l=1}^{n} (y_l - S_{3,l})^2$$

$$\frac{\partial J(W)}{\partial W_{11}^{2}} = \begin{bmatrix}
\frac{\partial J(W)}{\partial W_{12}^{2}} \\
\frac{\partial J(W)}{\partial W_{12}^{2}} \\
\frac{\partial J(W)}{\partial W_{21}^{2}} \\
\frac{\partial J(W)}{\partial W_{22}^{2}} \\
\frac{\partial J(W)}{\partial W_{1}^{1}} \\
\frac{\partial J(W)}{\partial W_{2}^{1}}
\end{bmatrix}$$

Loss Functions for Training Neural Networks

Given:
$$\mathbb{D}_{KL}(P \parallel Q) = \mathbb{H}(P) + \mathbb{H}(P, Q)$$

The term $\mathbb{H}(P)$ is constant

So, we only need the **cross entropy** term:

$$\mathbb{H}(P,Q) = -\sum_{i=1}^{n} p(x_i) \ln_b q(x_i)$$

- High capacity models fit training data well
 - Exhibit high variance
 - Do not generalize well; exhibit brittle behavior
 - Error_{training} << Error_{test}
- Low capacity models have high bias
 - Generalize well
 - Do not fit data well
- Regularization adds bias
 - Strong regularization adds significant bias
 - Weak regularization leads to high variance

- How can we understand the bias-variance trade-off?
- We start with the error:

$$\Delta y = E[Y - \hat{f}(X)]$$

Where:

Y = the label vector.

X =the feature matrix.

 $\hat{f}(x)$ = the trained model.

We can expand the error term

$$\Delta x = \left(E[\hat{f}(X)] - \hat{f}(X) \right)^2 + E\left[(\hat{f}(X) - E[\hat{f}(X)])^2 \right] + \sigma^2$$

$$\Delta x = Bias^2 + Variance + Irreducible Error$$

- Increasing bias decreases variance
- Notice that even if the bias and variance are 0 there is still irreducible error

12 Regularization

 One way to limit the size of the model parameters is to constrain the I2 or Euclidian norm:

$$||W||^2 = \left(w_1^2 + w_2^2 + \dots + w_n^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n w_i^2\right)^{\frac{1}{2}}$$

The regularized loss function is then:

$$J(W) = J_{MLE}(W) + \lambda ||W||^2$$

- Where λ is the regularization hyperparameter
 - Large λ increases bias but reduces variance
 - Small λ decreases bias and increases variance

Eigenvalues and Regularization

12 regularization with eigenvalue-eigenvector decomposition

• For the inverse $(A^TA + \alpha^2 \cdot I)^{-1}$ the eigenvalue matrix is:

$$\Lambda_{Tikhonov}^{+} = \begin{bmatrix} \frac{1}{\lambda_1 + \alpha^2} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{\lambda_2 + \alpha^2} & 0 & \dots & 0\\ \vdots & \vdots & \vdots & & \vdots\\ 0 & 0 & 0 & \dots & \frac{1}{\lambda_m + \alpha^2} \end{bmatrix}$$

- Even for an eigenvalue, λ , of 0, the biased inverse becomes 1/ α^2
- Thus, the bias term, α^2 , creates a 'ridge' of nonzero values on the diagonal ensuring the inverse exists and is stable.

11 Regularization

Given the I1 norm of the weights, the loss function becomes:

$$J(W) = J_{MLE}(W) + \alpha ||W||^{1}$$

- Where α is the regularization hyperparameter
 - Large α increases bias but reduces variance
 - ullet Small lpha decreases bias and increases variance
- The I1 constraint drives some weights to exactly 0
 - This behavior leads to the term lasso regularization

Early Stopping

Early stopping has a simple geometric interpretation

Dropout regularization

- Dropout regularization is a conceptually simple method unique to deep learning
 - At each step of the gradient decent some fraction, p, of the weights are dropped-out of each layer
 - The result is a series of models trained for each dropout sample
 - The final model is a **geometric mean** of the individual models
- Weight values are clipped in a small range as a further regularization
- For full details see the readable paper by Srivastava et. al., 2014 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Batch Normalization

- In deep neural networks there is a high chance that units in a hidden layer have a large range of output values
 - Causes shifts in the covariance of the output values
 - Leads to difficulty computing the gradient
 - Slows convergence for optimizers
- A solution is to normalize the output of the hidden layers in the network as a batch
- This simple idea can be really effective
- For more details see Sergey and Szegedy,
 2015: https://arxiv.org/pdf/1502.03167.pdf

• Ideally, the loss function, J(W), is convex with respect to the

weights

- Convex loss function has one unique minimum
- Convergence for convex loss function is guaranteed

Expand loss function to understand convergence properties of gradient descent:

$$J(W^{(l+1)}) = J(W^{(l)}) + (W^{(l+1)} - W^{(i)})\vec{g} + \frac{1}{2}(W^{(l+1)} - W^{(i)})^T H(W^{(l+1)} - W^{(i)})$$

Where:

 $W^{(l)}$ is the tensor of weights at step l

 \vec{g} is the gradient vector

H is the **Hessian** matrix.

How can you understand the Hessian matrix?

$$H\left(f(\vec{x})\right) = \begin{bmatrix} \frac{\partial^2 f(\vec{x})}{\partial x_1^2} & \frac{\partial^2 f(\vec{x})}{\partial x_2 \partial x_1} & \dots & \frac{\partial^2 f(\vec{x})}{\partial x_n \partial x_1} \\ \frac{\partial^2 f(\vec{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\vec{x})}{\partial x_2^2} & \dots & \frac{\partial^2 f(\vec{x})}{\partial x_1 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f(\vec{x})}{\partial x_1 \partial x_n} & \frac{\partial^2 f(\vec{x})}{\partial x_2 \partial x_n} & \dots & \frac{\partial^2 f(\vec{x})}{\partial x_n^2} \end{bmatrix}$$

- The Hessian is the matrix of all derivatives of the gradient
- Properties of the Hessian determine convergence rate

- Real-world loss functions are typically not convex
- There can be multiple minimums and maximums; a multi-modal loss function
- Finding the globally optimal solution is hard!
- The minimum reached by an optimizer depends on the starting value of W
- In practice, we are happy with a **good local solution**, if not, the globally optimal solution
- Regularization can 'smooth' the loss function, at least locally
- First order optimization found to perform as well, or better, than second order

The Nature of Gradients

- Some key properties of the Hessian matrix:
 - The Hessian is symmetric since $\frac{\partial f(\vec{x})}{\partial x_1 \partial x_2} = \frac{\partial f(\vec{x})}{\partial x_2 \partial x_1}$
 - For a convex loss function the Hessian has all positive eigenvalues; it is positive definite
 - At a maximum point the Hessian has all negative eigenvalues; it is negative definite
 - The Hessian has some positive and some negative eigenvalues at a saddle point
 - Saddle points are problematic since direction of descent to the minimum is unclear
 - If Hessian has some very small eigenvalues, the gradient is low and convergence will be slow

The Nature of Gradients

• For quadratic optimization, the rate of convergence is determined by the **condition number** of the Hessian:

$$\kappa(H) = \frac{|\lambda_{max}(H)|}{|\lambda_{min}(H)|}$$

• Where:

 $|\lambda_{max}(H)|$ is the absolute value of the largest eigenvalue of H $|\lambda_{min}(H)|$ is the absolute value of the smallest eigenvalue of H

- If the condition number is close to 1.0, the Hessian is well conditioned and convergence will be fast
- If the condition number is large, the Hessian is ill-conditioned and convergence will be slow; gradient is flat in some dimensions

Convex vs. Non-Convex Optimization

Gradient descent is well-behaved with convex loss function

- Only 1 global minimum
- From any starting point the gradient leads to global minimum
- Hessian is always positive definite

Convex lossPoorly conditioned

Convex vs. Non-Convex Optimization

Nonconvex loss

Gradient descent can be problematic with **nonconvex loss function**

- There is a global minimum
- Possibly many local minimums
- Minimum found with gradient descent depends on starting point
- A good minimum may be good enough
- Hessian positive definite at any minimum, but globally who knows??

Convex vs. Non-Convex Optimization

Nonconvex loss

Gradient descent can be problematic with **nonconvex loss function**

- Can get stuck at saddle point!
- Gradient is ambiguous at saddle point
- Hessian is not positive definite

Batch Gradient Descent

Recall the basic gradient descent equation:

$$W_{t+1} = W_t + \alpha \nabla_W J(W_t)$$

Where:

 W_t = the tensor of weights or model parameters at step t

 $\nabla_W J(W) = \text{gradient of } J \text{ with respect to the weights } W$

 α = step size or learning rate

 The gradients of the multi-layer NN are computed using the chain rule

Batch Gradient Descent

- Can we use the gradient descent equation directly?
- Yes, we can
- Iterate the weight tensor relation until a stopping criteria or error tolerance is reached:

$$||W^{t+1} - W^t|| < tolerance$$

- But;
 - Must compute the gradient for all weights at one time as a batch at each step
 - Does not scale if there are a large number of weights

Stochastic Gradient Descent

- We need a more scalable way to apply gradient descent
- Stochastic gradient descent is just such a method
- The weight tensor update for stochastic gradient descent follows this relationship:

$$W_{t+1} = W_t + \alpha E_{\hat{p}data} \left[\nabla_W J(W_t) \right]$$

Where:

 $\hat{p}data$ is the Bernoulli sampled mini-batch

 $E_{\hat{p}data}$ [] is the expected value of the gradient given the Bernoulli sample

Stochastic Gradient Descent

- Stochastic gradient descent is known to converge well in practice
- Empirically, using mini-batch samples provide a better exploration of the loss function space
 - Can help solution escape from small local gradient problems
 - Sampling is dependent on mini-batch size

Stochastic Gradient Descent

Stochastic gradient descent algorithm

```
Random_sort(cases)
while(grad > stopping_criteria):
    mini-batch = sample_next_n(cases)
    grad = compute_expected_grad(mini_batch)
    weights = update_weights(weights, grad)
```

- Notice that the addition rounds repeat the samples
 - In practice this does not create much bias
 - For large samples this may not happen

Pitfalls in Training Deep Neural Networks

- Fully connected neural networks are complex function approximators
 - Very high dimensional space
 - Hard to visualize or understand
 - Need regularization to ensure generalization
 - Gradient descent can find a good local solution
- But, training data may not cover the solution space
 - 'Holes' in space covered by training data lead to unexpected results!
 - More data may not help if samples have same bias
 - Biased samples lead to poor generalization
 - Regularization can smooth over holes in solution space and help optimization, at least locally – but don't expect magic

Convolutional Neural Networks

Convolutional Neural Networks

- CNNs are used to learn complex feature maps
 - Invariant to translation and distortion of features
 - Reduce the dimensionality of input tensors
 - Share weights and are relatively easy to train
- CNNs have a long history
 - LeCun et. al. (1998) first employed CNNs for automatic check handling
 - Era of general use started when Krizhevsky et. al. (2012) won an ImageNet object recognition competition
 - Now commonly used for image, speech and text problems

1-D Convolution

- 1-D CNNs are a simple, but useful example
 - Time series data
 - Text data
 - Speech
- Convolution kernel is moved along the input tensor
 - Kernel has a small span compared to dimension of input tensor
 - At each step a weighted output value is computed

1-D Convolution

1-D CNNs are a simple, but useful example

1-D CNNs are a simple, but useful example

1-D CNNs are a simple, but useful example

1-D CNNs are a simple, but useful example

Mathematically, express 1-d convolution as a weighted sum over a set of discrete kernel values:

$$s(t) = (x * k)(t) = \sum_{\tau = t - a}^{t + a} x(t)k(t - \tau)$$

Where:

s(t) is the output of the convolution operation at time t

x is the series of values,

k is the convolution kernel

* is the convolution operator

au is the time difference of the convolution operator.

 $a = \frac{1}{2}(kernel_span + 1)$, for an odd length kernel

- 4 x 4 input tensor
- 3 x 3 convolution operator
- 2 x 2 output tensor

 Mathematically, we express 2-d convolution as a weighted sum over a discrete rectangular kernel:

$$S(i,j) = (I * K)(i,j) = \sum_{m=i-a}^{i+a} \sum_{n=j-a}^{j+a} I(i,j)K(i-m,j-n)$$

Where S, I and K are now tensors

- The image and kernel tensors are commutative in the convolution relationship
- This allows an operation known as kernel flipping with the following alternative result:

$$s(i,j) = (I * K)(i,j) = \sum_{m=i-a}^{i+a} \sum_{n=j-a}^{j+a} I(i-m,j-n)K(i,j)$$

Convolution in Higher Dimensions

- Tensor notation allows easy extension to higher dimensions
 - Input tensor has multiple input channels
 - 3-D for color image
 - 4-D for video
- Create multiple feature maps
 - Convolution kernel tensor has multiple output channels
 - Each output channel is a different feature map
 - Feature in a channel might be vertical lines, horizontal lines, corners, etc

Convolution in Higher Dimensions

Tensor of K output channels

Each channel is a

part of feature map

of K x L x Span x Span weights

L input channels i x j dimensions

Convolution in Higher Dimensions

A multi-dimensional convolution relationship can be written:

$$Z_{i,j,k} = (V * Z)(i,j,k,l) = \sum_{l} \sum_{m=-a}^{a} \sum_{n=-a}^{a} V_{i,j,l} \cdot K_{i-m,j-n,k,l}$$

Where: i, j are the spatial dimenstions

l is the index of the input channel

k is the index of the output channel

 $K_{i,j,k,l}$ is the kernel connecting the lth channel of the input to the kth channel of the output for pixel offsets i and j

 $V_{i,j,l}$ is the i,j input pixel offsets from channel l of the input,

 $a = \frac{1}{2}(kernel_span + 1)$, for an odd length kernel.

Parameter Sharing

- The weights of the convolutional kernel must be learned
- Each weight of a fully connected network must be learned independently
- CNNs are efficient to train
- CNNs use parameter sharing
 - Statistical strength from more samples per weight
 - Reduced variance of parameter estimates
- Weights are learned using backpropagation and gradient descent methods
- Also called tied weights or sparce interaction

Parameter Sharing

Weights of fully connected network are independent

e.g. requires $5^2 = 25$ weights

Parameter Sharing

Weights are shared in CNN

Requires 3 weights

Pooling and Invariance

- Convolution provides reduced dimensionality of input tensor
- How can we obtain greater reduction in dimensionality?
- Pooling of convolution kernel output values reduces dimensionality
 - e.g. 2x2 operator pools the 4 values into 1
- How to pool?
 - Average?
 - Max pooling; simple and highly effective

Pooling and Invariance

Max pooling provides **invariance** to small shifts of the input tensor:

Pooling and Invariance

Max pooling provides **invariance** to small shifts of the input tensor:

Stride and Tiling

- Do we always move the convolution kernel by 1 data value?
- · No!
 - May not need the full resolution of the input
- We can choose a stride > 1 for the convolution operator
 - Convolution kernel moved by stride at each step
- Stride > 1 down-samples the data
 - Reduces dimensionality
- Stride < 1 up-samples data
 - Useful to create tensor of required dimension

Stride and Tiling

Tiling is a special case when stride = span:

Stride > 1 reduces dimensionality

Padding for Convolution

- How can we best deal with edges of the input tensor when performing convolution?
- A valid convolution confines the kernel to the input tensor dimensions
 - For odd kernel shape, output dimension is (span + 1)/2 less than input dimension
 - After many convolution layers, dimension is reduced further
- We can zero pad the input tensor
 - Dimensionality is maintained

Padding for Convolution

Example: 4x4 input tensor with 3x3 kernel

- Dimension of output tensor = dimension of input tensor
- 0 values have little effect with max pooling

- Deep architectures create large and complex feature maps
- Feature maps have a higher number of channels
- Trained on very large benchmark datasets
- Classification accuracy found to improve with depth

Transfer Learning

- Transfer learning exploits learning of a model trained with similar data
- Transfer learning can greatly speed learning for specific solutions

VGG11 - Simanyan and Zdisserman, 2015

Feature map with Increasing channels, decreasing dimensionality

Convolution and max-pool create feature map

Classifier layers use feature map

- Single convolutional layers work at single scale
- But, real-world images contain objects with different scales
- Need architecture that supports multiple scales
 - CNN layers with different scales in parallel
 - Concatenate the results
- Numerous pretrained models, using complex architectures, are now available
 - Trained on very large benchmark datasets
 - Built into deep learning frameworks; Keras, PyTorch, etc.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

import the necessary packages from keras.models import Sequential model = Sequential()

Fig. 2. An ecture of this are

ecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units after a constrained to be identical.

import the necessary packages
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

LeNet5: Non-Linearity

from keras.layers.convolutional import MaxPooling2D model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

LeNet5: Second convolution

LeNet5: Second NonLinearity

model.add(Activation("sigmoid"))

LeNet5: Second Pooling

LeNet5: Third Convolution

from keras.layers.core import Flatten model.add(Flatten())

LeNet5: Dense Connections

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane whose weights are constrained to be identical.

from keras.layers.core import Dense model.add(Dense(84)) model.add(Activation("sigmoid"))

LeNet5: Dense Connections

ture map, i.e. a set of units

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a whose weights are constrained to be identical.

model.add(Dense(10))

LeNet5: Dense Connections

ResNet

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

https://arxiv.org/pdf/1512.03385.pdf

- How can the behavior in the above charts be explained?
 - Vanishing gradients?
 - Overfitting?
 - Representation power?

ResNet Representation Power

ResNet: Residual Learning Building Block

Figure 2. Residual learning: a building block.

With residuals, the 34-layer network outperforms the 18 layer.

0	0	0
0	1	0
0	0	0

With 'SAME' padding, this will output the same feature map it receives as input

Why do ResNets work?

- Resembles ensembling shallower networks
- Can model recurrent computations
- Learning unrolled iterative estimations

Qianli Liao, Tomaso Poggio, Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex,