Portfolio optimization using GARCH-EVT-Copula: an application with FTSE MIB stocks

Pedron Matteo

Sapienza University of Rome

May 22, 2025

Summary

- Introduction
- 2 Methodology
- 3 Empirical Analysis
- 4 Conclusions and improvements

Introduction

Introduction

The goal of this thesis is to replicate and extend the trading strategy proposed in "Portfolio optimization based on GARCH-EVT-Copula forecasting models" by Sahamkhadam et al. $(2018)^1$.

Key contributions and modifications:

- Use of a GJR-GARCH(1,1) model to account for volatility asymmetry (leverage effect).
- Application of skew-t and skew-normal copulas to better capture tail dependence.
- Replacement of the original risk metric with Entropic Value at Risk (EVaR) for portfolio optimization.

¹M. Sahamkhadam, A. Stephan, R. Ostermark. Portfolio optimization based on garch-evt-copula forecasting models. Int. Journal of Forecasting, 34:497–506, 2018.

Methodology

Model for returns

The logarithmic return at time t is:

$$r_t = \log(p_t) - \log(p_{t-1})$$

where p_t is the asset price at time t.

The return is modeled as:

$$r_t = \mu_t + \epsilon_t$$

 $\epsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{i.i.d.}}{\sim} (0, 1)$

where

- $\mu_t = \mathbb{E}[r_t \mid \mathcal{F}_{t-1}]$ is the conditional mean,
- ϵ_t is the zero-mean error term with $Var(\epsilon_t \mid \mathcal{F}_{t-1}) = \sigma_t^2$,
- \mathcal{F}_{t-1} is the information set up to time t-1.

ARMA Model

The conditional mean μ_t is modeled with an ARMA(1,1) model:

$$r_t = \phi_0 + \phi_1 r_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1}$$

where:

- ϕ_0 : intercept,
- ϕ_1 : autoregressive coefficient,
- θ_1 : moving average coefficient.

GJR-GARCH Model

The conditional variance σ_t^2 is modeled with a GJR-GARCH(1,1) model:

$$\sigma_t^2 = \omega + \alpha \sigma_{t-1}^2 z_{t-1}^2 + \gamma \sigma_{t-1}^2 I(z_{t-1} < 0) z_{t-1}^2 + \beta \sigma_{t-1}^2$$

where:

- $\omega > 0$: constant term,
- $\alpha, \beta \geq 0$: ARCH and GARCH effects,
- γ : asymmetry coefficient (leverage effect),
- $I(z_{t-1} < 0)$: indicator function,
- z_{t-1} : standardized residuals.

The spd R Package

The spd R package fits a semi-parametric model to data by combining:

- Non-parametric modelling of the bulk of the data (kernel density estimation)
- Parametric modelling of the tails (Peaks Over Threshold method)

Kernel density estimation is performed under the following assumptions:

- Gaussian kernel
- Bandwidth selected via the **oversmoothed bandwidth** selector:

$$\hat{\lambda}_{OS} = \left(\frac{243 R(K)}{25 \mu_2(K)^2 n}\right)^{1/5} s$$

Copula model

A **copula** is a multivariate distribution function on the unit cube $[0,1]^d$ with uniform marginals.

Definition

A d-dimensional copula is a function $C:[0,1]^d \to [0,1]$ that satisfies:

- $C(u_1, ..., u_d) = 0$ if any $u_i = 0$,
- $C(1, ..., u_i, ..., 1) = u_i$ for all i,
- \bullet C is d-non-decreasing.

Mean-EVaR Portfolio

The Entropic Value at Risk (EVaR) is a risk measure introduced by Ahmadi-Javid (2012):

$$EVaR_{\alpha} = \inf_{z>0} \left\{ \frac{1}{z} \log \left(\frac{1}{1-\alpha} \mathbb{E} \left[\exp(z\xi) \right] \right) \right\}$$

where $\xi = -\mathbf{w}'\mathbf{r}$ is the **portfolio loss**.

The portfolio optimization problem is:

$$\begin{array}{ll}
\text{maximize} & \mathbf{w}' \boldsymbol{\mu} - \lambda \operatorname{EVaR}_{\alpha}(\mathbf{w}) \\
\text{subject to} & \mathbf{w} \in \mathcal{W}
\end{array}$$

Data Overview

Stocks included in the portfolio:

- Intesa Sanpaolo (ISP.MI) Financial sector: Banking
- UniCredit (UCG.MI) Financial sector: Banking
- Eni (ENI.MI) Energy sector: Oil & Gas
- Stellantis (STLAM.MI) Consumer Discretionary: Automotive
- STMicroelectronics (STM.MI) IT sector: Semiconductors

Dataset details:

- Time period: 2019-01-01 to 2025-04-01
- Frequency: Daily adjusted closing prices

Figure 1: Base-10 logarithmic prices

Figure 2: Log-returns

Stock	Trimmed Mean	MAD	Jarque-Bera	Shapiro-Wilk
ISP	0.1362	1.2975	0	0
UCG	0.1402	1.8629	0	0
ENI	0.0765	1.2573	0	0
STLAM	0.0955	1.5601	0	0
STMMI	0.0963	1.9952	0	0

Table 1: Descriptive statistics and normality test results

Figure 3: Autocorrelation function of absolute log-returns

Algorithm for Portfolio Construction (1/2)

Test period: February and March 2025 (41 trading days).

Steps to compute portfolio weights \mathbf{w}_t :

- Fit a dynamic ARMA-GJR-GARCH(1,1) model with skew-t innovations to each return series r_t , extract the standardized residuals z_t and store them in the matrix $Z \in \mathbb{R}^{L \times d}$.
- ② Fit a semiparametric model on the residuals z_t using the spd package.
- 3 Estimate the parameters of a multivariate skew-t or skew-normal distribution using the data in matrix Z.

Algorithm for Portfolio Construction (2/2)

- Simulate new pseudo-observations u_i^{new} from the copula corresponding to the fitted distribution and save them in a tensor of dimensions $L \times d \times M$.
- Apply the quantile function from Step 2 to u_i^{new} in the tensor to obtain new standardized residuals z_t^{new} .
- **©** Compute the one-step-ahead forecast of the standardized residuals \hat{z}_{t+1} as the median across the simulation dimension (last slice) of the tensor.
- Predict the returns $\hat{\mathbf{r}}_{t+1}$, then solve the portfolio optimization problem to obtain the portfolio weights \mathbf{w}_t by maximizing the objective function.

Point 3: Multivariate Distributions

Multivariate Skew-Normal:

$$Y \sim SN_d(\boldsymbol{\xi}, \Omega, \boldsymbol{\alpha})$$

$$f(\boldsymbol{y}) = 2 \, \phi_d(\boldsymbol{y} - \boldsymbol{\xi}; \Omega) \, \Phi \left(\boldsymbol{\alpha}^{\top} \omega^{-1} (\boldsymbol{y} - \boldsymbol{\xi}) \right) \qquad \boldsymbol{y} \in \mathbb{R}^d$$

• Multivariate Skew-t:

$$Y \sim \mathrm{ST}_d(\boldsymbol{\xi}, \Omega, \boldsymbol{\alpha}, \nu)$$

$$f(\boldsymbol{y}) = |\omega|^{-1} \cdot f_{\boldsymbol{Z}}(\omega^{-1}(\boldsymbol{y} - \boldsymbol{\xi})) \qquad \boldsymbol{y} \in \mathbb{R}^d$$

Important: The skewness parameter α should be different from zero to capture asymmetry.

Point 7: Optimization Problem

$$\begin{aligned} \underset{\mathbf{w}, t > 0}{\text{maximize}} \quad \mathbf{w}' \hat{\boldsymbol{r}}_{t+1} \\ & - \lambda \left(t \log \left(\sum_{i=1}^{T} \exp \left\{ -\frac{1}{t} \mathbf{w}' \mathbf{r}_{i} \right\} \right) - t \log \left[(1 - \alpha) T \right] \right) \\ \text{subject to} \quad \sum_{i=1}^{d} w_{i} = 1 \\ & 0.1 \leq w_{i} \leq 0.25, \quad \forall i = 1, \dots, d \end{aligned}$$

- The first constraint enforces full investment
- The second constraint imposes holding constraints

Final Results: Portfolios Overview

We compare the performance of three portfolios:

- Equal Weight Portfolio (EWP)
- Portfolio 1 constructed using skew-t copula
- Portfolio 2 constructed using skew-normal copula

The out-of-sample backtest period is from 2025-02-03 to 2025-03-31. Portfolios are rebalanced every 5 trading days. The portfolio return at time t is defined as:

$$R_t^{\text{portf}} \equiv \mathbf{w}'_{t-1} \cdot \mathbf{r}_t,$$

The cumulative return is calculated as:

$$R_{\text{cum}} = \prod_{t=1}^{T} (1 + R_t^{\text{portf}}) - 1$$

Figure 4: Cumulative returns over the out-of-sample period

Final Results: Cumulative Returns

Portfolio	EWP	Portfolio 1	Portfolio 2
Cumulative Return (%) –	-0.3687	-2.7546	-2.7871

Table 2: Final cumulative returns (%)

The Equal Weight Portfolio (EWP) achieves a higher cumulative return than both Portfolio 1 and Portfolio 2 over the evaluation period.

Copula Portfolios Weights Comparison

Skew-Normal				Skew-t					
ISP	UCG	ENI	STLAM	STMMI	ISP	UCG	ENI	STLAM	STMMI
0.1643503	0.1	0.25	0.2356497	0.25	0.1654827	0.1	0.25	0.2345173	0.25
0.1650007	0.1	0.25	0.2349993	0.25	0.1654942	0.1	0.25	0.2345058	0.25
0.1644812	0.1	0.25	0.2355188	0.25	0.1652240	0.1	0.25	0.2347760	0.25
0.1636792	0.1	0.25	0.2363208	0.25	0.1651341	0.1	0.25	0.2348659	0.25
0.1604227	0.1	0.25	0.2395773	0.25	0.1601833	0.1	0.25	0.2398167	0.25
0.2153573	0.1	0.25	0.1846427	0.25	0.2158709	0.1	0.25	0.1841291	0.25
0.2156433	0.1	0.25	0.1843567	0.25	0.2160127	0.1	0.25	0.1839873	0.25
0.2157493	0.1	0.25	0.1842507	0.25	0.2170222	0.1	0.25	0.1829778	0.25
0.2210336	0.1	0.25	0.1789664	0.25	0.2227923	0.1	0.25	0.1772077	0.25

Table 3: Portfolio weights across rebalancing periods

The weights are nearly identical across all periods, suggesting that the skew-t copula offers no additional advantage in this case.

Asset Selection

Problems:

- Based on personal trading experience.
- Lack of generality and statistical rigor.

Possible Improvements:

- Diversify across sectors, regions, and asset classes.
- Apply clustering techniques on raw financial data (e.g., from Yahoo Finance).
- Use ETF portfolios that track major indices (e.g., S&P 500, MSCI World).

Statistical Modelling

Limitations:

- Only one innovation distribution considered.
- Only a single GARCH-type model (GJR-GARCH) applied.

Possible Improvements / Alternatives:

- Sequential model selection using information criteria (e.g., AIC, BIC).
- Multivariate frameworks: VECM + DCC-GARCH.
- Stochastic Volatility models for more flexible volatility dynamics.

Portfolio Construction

Limitations:

- Based on a single realization of historical data.
- Noisy parameter estimates due to limited sample.
- Risk of "noise maximization" in optimization.

Possible Improvement:

• Apply time-series bootstrap methods to generate alternative scenarios and compute more robust weights by repeating the backtest over replications.

Thanks for your attention!

