

概述

一、逻辑代数(布尔代数、开关代数)

逻辑: 事物因果关系的规律

逻辑函数:逻辑自变量和逻辑结果的关系

$$Z = f(A, B, C \cdots)$$

逻辑变量取值: 0、1 分别代表两种对立的状态

一种状态	高电平	真	是	有	• • •	1	0
另一状态	低电平	假	非	无	• • •	0	1

二、二进制数表示法

1. 十进制数 (**Decimal**) -- 逢十进一

数码: $0 \sim 9$ 位权: 10^i

$$(12345)_{10} = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

$$(143.75)_{10} = 1 \times 10^{2} + 4 \times 10^{1} + 3 \times 10^{0} + 7 \times 10^{-1} + 5 \times 10^{-2}$$

2. 二进制数 (Binary) -- 逢二进一

数码: 0, 1 位权: 2^i

$$(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

- 3. 二进制数的缩写形式 八进制数和十六进制数
- (1) 八进制数 (Octal) -- 逢八进一

数码: $0 \sim 7$ 位权: 8^i

$$(37.41)_{8} = 3 \times 8^{1} + 7 \times 8^{0} + 4 \times 8^{-1} + 1 \times 8^{-2}$$

(2) 十六进制数 (Hexadecimal) -- 逢十六进一

数码: 0~9,A(10),B(11),C(12),D(13),E(14),F(15)

位权: 16ⁱ

$$(2A.7F)_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 7 \times 16^{-1} + 15 \times 16^{-2}$$

任意(N)进制数展开式的普遍形式: $D = \sum k_i N^i$

$$k_i$$
 — 第 i 位的系数 N^i — 第 i 位的权

4. 几种常用进制数之间的转换

(1) 二-十转换: 将二进制数按位权展开后相加

$$(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= $4 + 1 + 0.5 + 0.25 = (5.75)_{10}$

(2) 十-二转换:

降幂比较法 — 要求熟记 20~210 的数值。

20	21	22	23	24	2 ⁵	26	27	28	29	210
1	2	4	8	16	32	64	128	256	512	1024

(2) 十一二转换: 降幂比较法
$$(157)_{10} = (10011101)_2$$

 $(26)_{10} = 16 + 8 + 2 = 2^4 + 2^3 + 2^1 = (11010)_2$

快速转换法: 拆分法

$$(010 \ 101 \ 111)_2 = (257)_8$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$2 \qquad 5 \qquad 7$$

$$(010\ 011\ 100\ 001.\ 000\ 110)_2 = (2341.\ 06)_8$$

(4) 八-二转换:每位8进制数转换为相应3位二进制数

$$(31.47)_8 = (011\ 001\ .\ 100\ 111\)_2$$

 $(375.64)_8 = (011\ 111\ 101\ .\ 110\ 100\)_2$

(5) 二-十六转换:

每4位二进制数相当一位16进制数

$$(26)_{10} = (0001 \ 1010)_2 = (1A)_{16}$$

$$(0001\ 1011\ 0110.0010)_2 = (1B6.2)_{16}$$

(6) 十六-二转换:

每位16进制数换为相应的4位二进制数

$$(8FA.C6)_{16} = (1000 1111 1010.1100 0110)_2$$

$$(ED8.2F)_{16} = (1110 1101 1000.0010 11111)_2$$

三、二进制代码

编码: 用二进制数表示文字、符号等信息的过程。

二进制代码:编码后的二进制数。

二一十进制代码:用二进制代码表示十个数字符号 0~9,又称为 BCD 码(Binary Coded Decimal)。

其它代码: ISO 码, ASCII (美国信息交换标准代码)

十进	几种常见的 BCD 代码							
制数	8421 码	余3码	2421(A)码	5211 码	余3循环码			
0	0000	0011	0000	0000	0010			
1	0001	0100	0001	0001	0110			
2	0010	0101	0010	0100	0111			
3	0011	0110	0011	0101	0101			
4	0100	0111	0100	0111	0100			
5	0101	1000	1011	1000	1100			
6	0110	1001	1100	1001	1101			
7	0111	1010	1101	1100	1111			
8	1000	1011	1110	1101	1110			
9	1001	1100	1111	1111	1010			
权	8421		2421	5211				

四、EDA 技术 (Electronics Design Automation)

一种以计算机作为工作平台,以 EDA 软件工具为开发环境,以 VHDL 为设计语言,以可编程逻辑器件为实验载体,以 ASIC、SoC芯片为目标器件,以数字系统设计为应用方向的电子产品自动化设计技术。

VHDL 是一种硬件描述语言,用软件编程语言形式描述硬件电路功能,比原理图方式更方便、更高效地反映电路的功能。