Trabalho prático de Introdução à Probabilidade e Estatística

Realizado:

Sérgio Cláudio Allibhai Nº31500

João Pedro Calhau Nº31621

André Filipe Figueira Nº31626

Luís Filipe Zurrapa Nº32330

Curso:

Engenharia Informática

Data:

20/06/2014

Índice

	Pág.
0.Introdução	3
1. Materiais e métodos	3
2. Analise dos resultados	4
3. Conclusão	18

Introdução

No âmbito da disciplina de Introdução a Probabilidade e Estatística foi nos apresentados a opção de realizar um trabalho prático. Sendo escolhida esta opção, foi nos fornecidos uma série de dados pela docente e um enunciado.

Este trabalho prático consiste numa análise de dados sobre a percentagem de pessoas com acesso à internet de pessoas entre os 16 e 74 anos em 3 regiões, sendo essa a região da zona Euro, e num contexto mais detalhado, a região de Portugal e a região da Grécia, isto entre 2002 e 2013, a excepção do ano de 2012, que não nos foi apresentado dados relativos a esse ano.

Para a realização deste trabalho recorremos aos apoios dos slides das aulas teóricas, apontamentos das aulas práticas e utilização do software IBM SPSS, para conseguir responder as perguntas apresentadas pelo enunciado fornecido.

Materiais e métodos

Materiais

Para realização deste trabalho contamos com o suporte do software IBM SPSS 21, com o apoio dos slides das aulas teóricas bem como os apontamentos das mesmas e aulas praticas, recorremos também ao auxílio do livro "Estatística e Probabilidades" de Anabela Afonso e Carla Nunes

Métodos

Para a resolução deste trabalho utilizamos vários métodos, desde o cálculo de medidas de tendência central e não central a assimetrias e achatamentos, incluindo entre estes medidas de dispersão e coeficientes de variação. Foram utilizados testes de hipótese e intervalos de confiança. Foi também necessário comparar médias e fazer regressões lineares, bem como interpretar p-values e testes de normalidade.

Por fim determinaram-se os coeficientes de correlação e construíram-se as retas de regressão dos mínimos quadrados.

Analise dos resultados

- 1. Neste trabalho está em estudo 3 variáveis sendo elas o Ano: Variável quantitativa discreta (que vai 2002 a 2013 excluindo 2012), a Região: Variável qualitativa nominal (Euro Área, Portugal e Grécia) e o AcessoNet: Variável quantitativa discreta (% de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa).
- 2.De seguida iremos analisar as variáveis, para mais fácil iremos fragmentar o problema em 3 partes regidas pela região:

Euro Área:

Statistics

% de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em

casa

casa						
	Valid	11				
N	Missing	0				
Mean		49,27				
Std. Error of	4,559					
Median		49,00				
Mode		26 ^a				
Std. Deviatio	n	15,120				
Variance		228,618				
Skewness		,039				
Std. Error of	,661					
Kurtosis	Kurtosis					
Std. Error of	Kurtosis	1,279				
Range		46				
Minimum		26				
Maximum		72				
Sum		542				
	10	27,40				
	25	36,00				
Percentiles	50	49,00				
	75	64,00				
	90	71,00				

a. Multiple modes exist. The smallest value is shown

Medidas de tendência central:

Média: A percentagem média da população da Euro Área que teve acesso à Internet em casa entre 2002/2013 com exceção de 2012 foi de 49,27%.

Mediana: Em 50% dos dados observados notou-se que, na região da Euro Área, 49% da população, com idades entre os 16 e 74 anos, teve acesso à internet em casa.

Moda: A moda é o valor que se regista com maior frequência, mas neste caso existem múltiplas modas, sendo o menor valor entre elas 26%.

Medidas de tendência não central:

Quartis: Em 10% dos dados observados notou-se que, na região da Euro Área, 27,40% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 25% dos dados observados notou-se que, na região da Euro Área, 36,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 50% dos dados observados notou-se que, na região da Euro Área, 49,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 75% dos dados observados notou-se que, na região da Euro Área, 64,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 90% dos dados observados notou-se que, na região da Euro Área, 71,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Amplitude inter-quartilica: Q=Q_{0.75}-Q_{0.25}=64-36=28%

Intervalo de Variação: Q'=Q_{0.9}-Q_{0.1}=71-27,40=43,60%

Medidas de Dispersão:

Variância: Os valores obtidos desviam-se dos valores esperados por 228,618%.

Desvio-Padrão: Os valores obtidos desviam-se da média por 15,120%.

Coeficiente de dispersão: S/X=15,120/49,27=0,3079

Coeficiente de variação: (S/X) *100%=0,307*100=30,79%

Da análise do coeficiente de variação temos que a média é representativa, pois é inferior a 50%.

Medidas de Achatamento:

Achatamento (Kurtosis) = Kurtosis / Std. Error of Kurtosis = -0,9906 Quanto da medida de achatamento visto que|-0,9906| <1.96 assumimos uma distribuição mesocúrtica.

Medidas de Assimetria:

Assimetria (Sknewness) = Skewness / Std. Error of Skewness = 0,0590 Quanto a medida de assimetria visto que |0.0590| <1.96 assumimos uma distribuição simétrica.

Portugal:

Statistics

% de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em

\sim	C	2

_	Valid	11				
N						
	Missing	0				
Mean		30,82				
Std. Error of	Mean	4,592				
Median		27,00				
Mode		12 ^a				
Std. Deviation	n	15,230				
Variance		231,964				
Skewness		,463				
Std. Error of	Std. Error of Skewness					
Kurtosis	Kurtosis					
Std. Error of	Kurtosis	1,279				
Range		45				
Minimum		12				
Maximum		57				
Sum		339				
	10	12,60				
	25	17,00				
Percentiles	50	27,00				
	75	45,00				
	90	55,60				

a. Multiple modes exist. The smallest value is shown

Medidas de tendência central:

Média: A percentagem média da população de Portugal que teve acesso à Internet em casa entre 2002/2013 com exceção de 2012 foi de 30,82% Mediana: Em 50% dos dados observados notou-se que, na região de Portugal, 27% da população, com idades entre os 16 e 74 anos, teve acesso à internet em casa.

Moda: A moda é o valor que se regista com maior frequência, mas neste caso existem múltiplas modas, sendo o menor valor entre elas 12%.

Medidas de tendência não central:

Quartis: Em 10% dos dados observados notou-se que, na região de Portugal, 12,60% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 25% dos dados observados notou-se que, na região de Portugal, 17,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 50% dos dados observados notou-se que, na região de Portugal, 27,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 75% dos dados observados notou-se que, na região de Portugal, 45,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 90% dos dados observados notou-se que, na região de Portugal, 55,60% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Amplitude inter-quartilica: $Q=Q_{0.75}-Q_{0.25}=45-17=28\%$

Intervalo de Variação: Q'=Q_{0.9}-Q_{0.1}=55,60-12,60=43 %

Medidas de Dispersão:

Variância: Os valores obtidos desviam-se dos valores esperados por 231,964%.

Desvio-Padrão: Os valores obtidos desviam-se da média por 15,230%.

Coeficiente de dispersão: S/X=15,230/30,82=0,4942

Coeficiente de variação: (S/X) *100%=0,4942*100=49,42%

Da análise do coeficiente de variação temos que a média é representativa, pois é inferior a 50%.

Medidas de Achatamento:

Achatamento (Kurtosis) = Kurtosis / Std. Error of Kurtosis = -0,880 Quanto da medida de achatamento visto que|-0,880| <1.96 assumimos uma distribuição mesocúrtica.

Medidas de Assimetria:

Assimetria (Sknewness) = Skewness / Std. Error of Skewness = 0,700 Quanto a medida de assimetria visto que |0.700| <1.96 assumimos uma distribuição simétrica.

Grécia:

Statistics

% de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em

\sim	0	_

N	Valid	11				
IN	Missing	1				
Mean		25,73				
Std. Error of	Mean	4,746				
Median		21,00				
Mode		8 ^a				
Std. Deviation	on	15,742				
Variance		247,818				
Skewness		,723				
Std. Error of	Std. Error of Skewness					
Kurtosis		-,514				
Std. Error of	Kurtosis	1,279				
Range		48				
Minimum		8				
Maximum		56				
Sum		283				
	10	8,40				
	25	12,00				
Percentiles	50	21,00				
	75	38,00				
	90	53,80				

a. Multiple modes exist. The smallest value is shown

Medidas de tendência central:

Média: A percentagem média da população da Grécia que teve acesso à Internet em casa entre 2002/2013 com exceção de 2012 foi de 25,73% Mediana: Em 50% dos dados observados notou-se que, na região da Grécia, 21% da população, com idades entre os 16 e 74 anos, teve acesso à internet em casa.

Moda: A moda é o valor que se regista com maior frequência, mas neste caso existem múltiplas modas, sendo o menor valor entre elas 8%.

Medidas de tendência não central:

Quartis: Em 10% dos dados observados notou-se que, na região da Grécia, 8,40% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 25% dos dados observados notou-se que, na região da Grécia, 12,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 50% dos dados observados notou-se que, na região da Grécia, 21,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 75% dos dados observados notou-se que, na região da Grécia, 38,00% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Em 90% dos dados observados notou-se que, na região da Grécia, 53,80% da população, com idades entre os 16 e os 74 anos, teve acesso à internet em casa.

Amplitude inter-quartilica: $Q=Q_{0.75}-Q_{0.25}=38-12=26\%$

Intervalo de Variação: Q'=Q_{0.9}-Q_{0.1}=53,80-8,40=45.4 %

Medidas de Dispersão:

Variância: Os valores obtidos desviam-se dos valores esperados por 247,818%.

Desvio-Padrão: Os valores obtidos desviam-se da média por 15,742%.

Coeficiente de dispersão: S/X=15,742/25,73=0,6118

Coeficiente de variação: (S/X)*100%=0,4942*100=61,18%

Da análise do coeficiente de variação temos que a média não é representativa, pois é superior a 50%.

Medidas de Achatamento:

Achatamento (Kurtosis) = Kurtosis / Std. Error of Kurtosis = -0,402 Quanto da medida de achatamento visto que|-0,402|< 1.96 assumimos uma distribuição mesocúrtica.

Medidas de Assimetria:

Assimetria (Sknewness) = Skewness / Std. Error of Skewness = 1,09 Quanto a medida de assimetria visto que |1,09 | <1.96 assumimos uma distribuição simétrica.

3. a) A média e o desvio-padrão antes calculados assumem os mesmos valores que as estimativas pontuais da média e do desvio-padrão.

b)

Descriptives^a

	Região	9		Statistic	Std. Error
% de indivíduos, com	Grecia	Mean	25,73	4,746	
idades entre os 16 e os 74 anos, com acesso à		95% Confidence Interval	Lower Bound	15,15	
internet em casa		for Mean	Upper Bound	36,30	
		5% Trimmed Mean	-2	25,03	
		Median		21,00	
		Variance		247,818	
		Std. Deviation		15,742	
		Minimum Maximum		8	
				56	
		Range		48	
		Interquartile Range		26	
		Skewness		,723	,661
		Kurtosis		-,514	1,279

a. There are no valid cases for % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa when Região = ,000. Statistics cannot be computed for this level.

Descriptives

	Região			Statistic	Std. Error
% de indivíduos, com	PORTUGAL	Mean	The state of the s	30,82	4,592
idades entre os 16 e os		95% Confidence Interval	Lower Bound	20,59	
74 anos, com acesso à internet em casa		for Mean	Upper Bound	41,05	
		5% Trimmed Mean		30,41	
		Median		27,00	
		Variance		231,964	
		Std. Deviation		15,230	
		Minimum		12	
		Maximum Range		57	
				45	
		Interquartile Range		28	
		Skewness	8	,463	,661
		Kurtosis	9	-1,126	1,279

Descriptives

	Região			Statistic	Std. Error
% de indivíduos, com	EURO area	Mean	49,27	4,559	
idades entre os 16 e os 74 anos, com acesso à		95% Confidence Interval	Lower Bound	39,11	
internet em casa		for Mean	Upper Bound	59,43	e e
		5% Trimmed Mean		49,30	
		Median		49,00	(C)
		Variance		228,618	
		Std. Deviation		15,120	2
		Minimum		26	
		Maximum		72	
		Range		46	
		Interquartile Range		28	- C
		Skewness		,039	,661
		Kurtosis		-1,267	1,279

Para um intervalo de confiança de 95% para a média tiramos, destas tabelas, que:

Para a Euro área, temos um limite superior de 59,43 e um limite inferior de 39,11

Para Portugal, temos um limite superior de 41,05 e um limite inferior de 20,59.

Para a Grécia, temos um limite superior de 36,30 e um limite inferior de 15,15.

c)

Tests of Normality

·	Região	Kolmo	gorov-Smir	nov ^a	SI	napiro-Wilk	
		Statistic	df	Sig.	Statistic	df	Sig.
% de indivíduos, com	EURO area	,139	11	,200	,963	11	,808,
idades entre os 16 e os 74 anos, com acesso à	Grecia	,163	11	,200*	,924	11	,354
internet em casa	PORTUGAL	,151	11	,200*	,937	11	,486

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

 H_0 : "As amostras provêm de uma população gaussiana" vs H_1 : "As amostras não provêm de uma população gaussiana"

Rejeitamos H_0 se $\alpha \ge p$ -value

Como as amostras têm um tamanho inferior a 15, iremos interpretar os valores do teste de normalidade segundo Shapiro-Wilk. Segundo o output, podemos reparar que todos os p-value são superiores aos níveis de significância usuais (1%, 5% e 10%) logo podemos admitir que as amostras provem de uma população gaussiana.

d) Euro Área vs Portugal:

Independent Samples Test

				maepe	ndent Sa	imples	rest			
Levene's Test for Equality of Variances					t-test	for Equality	of Means			
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Confi Interva	5% dence al of the rence
									Lower	Upper
% de indivíduos, com	Equal variances assumed	,006	,940	2,852	20	,010	18,455	6,471	4,957	31,952
idades entre os 16 e os 74 anos, com acesso à internet em casa	Equal variances not assumed			2,852	19,999	,010	18,455	6,471	4,957	31,952

Euro Área vs Grécia:

Independent Samples Test

-	Independent Samples Test									
Levene's			t-test for Equality of Means							
		Tes	t for							
		Equa	lity of							
		Varia	nces						ı	
		F	Sig.	t	df	Sig.	Mean	Std. Error	98	5%
						(2-	Difference	Difference	Confi	idence
						tailed)			Interva	al of the
									Diffe	rence
									Lower	Upper
% de	Equal	,009	,924	3,578	20	,002	23,545	6,581	9,817	37,274
indivíduos,	variances									
com idades	assumed									
entre os 16				3,578	19,968	,002	23,545	6,581	9,816	37,275
e os 74	Equal									
anos, com	variances									
acesso à	not									
internet em	assumed									
casa										

Portugal vs Grécia:

Independent Samples Test

	independent Samples Test										
Levene's			t-test for Equality of Means								
Test for											
Equality of											
		Varia	nces								
		F	Sig.	t	df	Sig.	Mean	Std. Error	98	5%	
						(2-	Difference	Difference	Confi	dence	
						tailed)			Interva	al of the	
									Diffe	rence	
									Lower	Upper	
% de	Equal	,001	,980	,771	20	,450	5,091	6,604	-	18,867	
indivíduos,	variances								8,685		
com idades	assumed										

entre os 16			,771	19,978	,450	5,091	6,604	-	18,868
e os 74	Equal							8,686	
anos, com	variances								
acesso à	not								
internet em	assumed								
casa									

Ao analisar as tabelas podemos dizer que, as Variâncias nunca são iguais nos 3 casos, logo analisa mos a segunda facha das tabelas. Assim sendo no Intervalo de confiança a 95% para a igualdade de medias, as tabelas Euro Área vs Grécia e Euro Área vs Portugal não contem o valor 0, logo não pode mos admitir a igualdade das medias, visto que não satisfazem a condição μ_1 - μ_2 =0; Por outro lado a tabela Portugal vs Grécia mostra que a 95% de confiança podere mos admitir a igualdade de μ_1 segundo μ_1 - μ_2 =0.

4 -

- a) Para ajustar 2 variáveis a um modelo linear tem de ser necessariamente o Ano como variável independente (X) e o AcessoNet terá de ser a variável dependente (Y).
- b) Estimar e explicar os parâmetros

EU

Coefficients^a

Model		Unstand	dardized	Standardize	t	Sig.
		Coefficients		d		
				Coefficients		
		В	Std. Error	Beta		
	(Constan	-8628,000	311,855		-27,667	,000
1	t)	n				
	ANO	4,323	,155	,994	27,825	,000

a. Dependent Variable: % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

Y=4,323*X-8628

Coefficients^a

Ν	lodel	Unstand	dardized	Standardize	t	Sig.
		Coeffi	cients	d		
				Coefficients		
		В	Std. Error	Beta		
	(Constan	-8670,600	417,705		-20,758	,000
1	t)					
	ANO	4,335	,208	,990	20,832	,000

a. Dependent Variable: % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

 $\hat{Y} = 4,335X-8628$

GR

Coefficients^a

	Coefficients								
Model		Coefficients		Standardize d Coefficients	t	Sig.			
		В	Std. Error	Beta					
1	(Constan t)	-8893,000	579,622		-15,343	,000			
	ANO	4,444	,289	,982	15,387	,000			

a. Dependent Variable: % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

$$\hat{Y} = 4,444X-8893$$

c)
os testes de hipóteses consistem em verificar se a recta passa pela origem e
se seu declive e nulo ou não, ou seja se existe relação linear,.

H0 = a recta passa pelo declive H1 = a recta não passa pelo declive

H0: $\beta_0 = 0 \text{ vs H1}$: $\beta_0 \neq 0$;

Visto que na Euro área, na PT e na GR os p-values do valor de β_0 se aproximam do valor 0, então assim rejeitamos a hipótese nula para qualquer dos níveis de significância usuais (1%, 5% e 10%). Podemos então assim concluir que a recta de regressão linear, para todas as regiões não passa pela origem.

H0 = o avançar do ano não influencia linearmente a percentagem de pessoas com acesso a internet.

H1 = o avançar do ano influencia linearmente a percentagem de pessoas com acesso a internet.

H0: $β_1 = 0$ vs H1: $β_1 \neq 0$;

Visto que na Euro área, na PT e na GR os p-values dos valores da amostra Ano são aproximadamente zero, então assim rejeitamos a hipótese nula para qualquer dos níveis de significância usuais (1%,5% e 10%). Podemos então assim concluir que existe evidência estatística suficiente para afirma que o avançar do ano influencia linearmente a percentagem de pessoas com acesso a internet.

d)

Euro área

R = 0.994

Significa que tem uma forte associação linear positiva entre o ano e a % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

 $R^2 = 0.989$

Significa que 98.9 % da variabilidade do avanço do tempo é explicada pela relação linear que possui com a % da população entre os 16 e 74 anos com acesso a internet em casa.

PT

R = 0.990

Significa que tem uma forte associação linear positiva entre o ano e a % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

$$R^2 = 0.980$$

Significa que 98.0 % da variabilidade do avanço do tempo é explicada pela relação linear que possui com a % da população entre os 16 e 74 anos com acesso a internet em casa.

GR

R=0,982

Significa que tem uma forte associação linear positiva entre o ano e a % de indivíduos, com idades entre os 16 e os 74 anos, com acesso à internet em casa

$$R^2 = 0.963$$

Significa que 96.3 % da variabilidade do avanço do tempo é explicada pela relação linear que possui com a % da população entre os 16 e 74 anos com acesso a internet em casa.

e)

```
Euro área \hat{Y} = 4.323*2015 - 8628 \Leftrightarrow Y = 82.845\% PT \hat{Y} = 4.335*2015 - 8670.600 \Leftrightarrow Y = 64.425\% GR \hat{Y} = 4.444*2015 - 8893.000 \Leftrightarrow Y = 61.66\%
```

Conclusão

Com a realização deste trabalho pretendíamos como aspeto inicial começar a trabalhar com o software SPSS. Para utilizar de maneira mais eficaz este recurso utilizamos os conhecimentos aprendidos ao longo do ano. Tendo em conta isto podemos dizer que os objetivos que nos foram propostos para este trabalho foram cumpridos e que neste momento temos pelo menos as noções básicas deste software preparando-nos para qualquer necessidade no futuro.

Na resolução deste trabalho notou-se preocupação por parte das variâncias das nossas amostras em estudo, pois este valor era valores muitos altos, significando que existe grande dispersão nos dados recolhidos.