Case study Report

Objective: To predict if user will buy an item or not. (Classification Problem)

Programming Language: Python (Jupyter Notebook)

Name: Harshad Punghera

Submitted on: 02/09/2020

Dataset:

- Data consists of 2 files BuyAffinity_Train.txt & BuyAffinity_Test.txt.
- BuyAffinity Train.txt converted to Data Frame using Pandas.

```
data = pd.read_csv(r'BuyAffinity_Train.txt',delim_whitespace=True)
2 data
                                                                                                    F16 F17 F18 F19 F20 F21 F22 C
Index
                            F3
                                     F4
                                          F5
                                                F6
                                                      F7
                                                            F8
                                                                  F9 ...
                                                                                F14
                                                                                          F15
   1 0.224506 0.500340 0.489860 0.902413 7934 -6970 -5714 9982 -5697
                                                                         -3433637453
                                                                                      10/4/1986
                                                                                                9/6/1992
                                                                                                               1 706 305
   2 0.321128 0.281119 0.907283 0.772159 -8238
                                              1219
                                                     1663
                                                           1287 -3658
                                                                          609277486
                                                                                      2/24/1979
                                                                                                 1/5/1983
                                                                                                               1 423 206
                                                                                                                                 7 1
   3 0.893441 0.622005 0.998776 0.098386 8540 5266 -9377 -3504 -4511 ... -8977995005
                                                                                              11/22/1986
                                                                                      1/12/1989
                                                                                                              1 703 315
   4 0.320641 0.957234 0.346000 0.646479 -7772 -383
                                                    9681
                                                         -8661
                                                                3474
                                                                         4868760308
                                                                                      2/18/1982
                                                                                               6/10/1992
                                                                                                               1 122 304 15
                                                                                                                                 1 0
   5 0.475961 0.623008 0.544988 0.159709 1571 -8039 -7961 -2385
                                                               4407 ... 9757408267
                                                                                      4/10/1987 10/19/1985
                                                                                                               1 486 240
                                                                                                                                 1 0
   6 0.922726 0.600115 0.616261 0.339285 -6554 8770
                                                    1065 -9720
                                                                5801
                                                                      ... -6662571037
                                                                                      6/28/1990
                                                                                                1/23/1998
                                                                                                               1 806 157
                                                                                                                                 5 0
  7 0.858156 0.546053 0.066203 0.998563 -9455 -9937
                                                     4079
                                                         8178
                                                                      ... -7236244398 10/22/1989
                                                                                              10/29/1991
                                                                                                               2 448 702
   8 0.707213 0.302135 0.686451 0.747126 7089 2404 3157 5484 -2829
                                                                      ... -6408783500
                                                                                     12/29/1984
                                                                                                 4/1/1983
                                                                                                               1 187 123
                                                                                                                                 1 0
   9 0.971173 0.715137 0.748127 0.783115
                                                         4381 -8957
                                                                          1802050857
                                                                                     10/14/1992
                                                                                               4/14/1992
                                                                                                                                 1 0
                                         554 -3388
                                                     1279
                                                                                                               1 701 34
  10 0.133155 0.314039 0.919551 0.143820 8952 6923 3112 -7115 -1413 ... -9215966088
                                                                                      1/21/1988
                                                                                               5/30/1991
                                                                                                               2 502 706
                                                                                                                            1 1 0
  11 0.422358 0.881814 0.585969 0.722192 -2034 9904
                                                     7229
                                                          2207
                                                                3252
                                                                         -7562842865
                                                                                      1/25/1993
                                                                                                2/15/1993
                                                                                                               1 701 145
  12 0.460761 0.547355 0.101228 0.863503 -8053 -6331 -4702
                                                          8602 9779 ... -1170915872 12/17/1984
                                                                                                1/10/1992
                                                                                                               2 489 703
                                                                                                                                 2 0
  13 0.284544 0.769097 0.645292 0.247550 8523 -8575 8589
                                                           681 -505 ... 8383637633
                                                                                     4/26/1995 11/20/1989
                                                                                                               1 587 229
                                                                                                                                6 1
```

It consists of 101180 rows * 24 columns

Dependent Variable: 22Target Variable: 1 (C)

Missing Values/Null Values:

Dataset contains no missing values.

```
data_1.isnull().sum() #total missing values in each column
F2
F3
           0
           0
F5
           0
F6
           0
F7
F8
F9
          00000000000
F9
F10
F11
F12
F13
F14
F17
F17
F18
F19
F20
F21
F22
C 0
dtype: int64
```

- Every column shows 0 missing values
- This is a clean dataset
- No need to work for any Data Imputation.

Co-relation Metrix:

Heatmap using Seaborn and Matplotlib

Very small amount of co-relation can be observed in F2, F4, F10, F12, F17, F18, F19, F20, F21 & F22.

Statistical Details:

1 d	ata_1.describ	oe()				
	F1	F2	F3	F4	F5	F6
count	101180.000000	101180.000000	101180.000000	101180.000000	101180.000000	101180.000000
mean	0.502348	0.501497	0.499886	0.499839	-29.742617	1.511000
std	0.288058	0.289017	0.288875	0.288729	5781.829379	5796.594007
min	0.000018	0.000004	0.000002	0.000006	-10000.000000	-10000.000000
25%	0.253819	0.251115	0.248818	0.250501	-5045.000000	-5012.000000
50%	0.501802	0.501095	0.499820	0.501387	-46.000000	-11.500000
75%	0.753598	0.752404	0.750281	0.748803	4978.000000	5050.000000
max	0.999986	0.999990	0.999985	0.999977	10000.000000	10000.000000

Columns Dropped:

• 'Index' columns being all unique and F15, F16 being date columns can be dropped since they are not equidistance and cannot contribute much to the model.

	In [5]:		ta_1=data ta_1	a.drop([ˈ	Index'	, F15	','F16	'],ax	is=1)	#drop irr	eval	ent column:	5								
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10		F12	F13	F14	F17	F18	F19	F20	F21	F22	(
0	0.224506	0.500340	0.489860	0.902413	7934	-6970	-5714	9982	-5697	4227810299	***	316195953	6176861823	-3433637453	2	1	706	305	1	2	
1	0.321128	0.281119	0.907283	0.772159	-8238	1219	1663	1287	-3658	-1146724819		1378635942	-9031507610	609277486	1	1	423	206	18	7	
2	0.893441	0.622005	0.998776	0.098386	8540	5266	-9377	-3504	-4511	5947184989		-9921889287	-561 <mark>0</mark> 051842	-8977995005	2	-1	703	315	1	4	(
3	0.320641	0.957234	0.346000	0.646479	-7772	-383	9681	-8661	3474	-5724795826		6550322883	-4697085930	4868760308	1	1	122	304	15	1	(
4	0.475961	0.623008	0.544988	0.159709	1571	-8039	-7961	-2385	4407	-3097637172	***	759031103	9984692447	9757408267	1	1	486	240	1	1	(
5	0.922726	0.600115	0.616261	0.339285	-6554	8770	1065	-9720	5801	6730646544		6027284059	5986948546	-6662571 <mark>0</mark> 37	4	1	806	157	6	5	(
6	0.858156	0.546053	0.066203	0.998563	-9455	-9937	4079	8178	-663	7329897533	1	6276436738	-3715357603	-7236244398	1	2	448	702	5	1	(
7	0.707213	0.302135	0.686451	0.747126	7089	2404	3157	5484	-2829	5675038456		-3044219552	4876942469	-6408783500	1	1	187	123	3	1	(
В	0.971173	0.715137	0.748127	0.783115	554	-3388	1279	4381	-8957	-9988371423	***	-8488127003	561162925	1802050857	2	1	701	34	5	1	0

Class Imbalance:

• Since it is a Classification problem one of the most crucial step is to check for imbalance data i.e. the ratio of 0's and 1's.

```
import matplotlib.pyplot as plt
      plt.style.use('ggplot')
     data_1['C'].hist()
plt.xlabel('Class')
plt.ylabel('COUNT')
Text(0, 0.5, 'COUNT')
    80000
    70000
    60000
    50000
    40000
    30000
    20000
    10000
        0
                                                         0.8
            0.0
                                              0.6
                                       Class
```

- Heavy Class Imbalance and be clearly seen using Bar Graph.
- 0 76353 & 1 24827
- This can lead to a model whose results are Bias toward class 0 since model will train more on Class 0 instance.
- To overcome this problem, we can apply Oversampling or Undersampling Technique.

Scaling:

- As the columns are present in the different units, we need to scaled down those features in order to achieve the better accuracy.
- Using sklearn StandardScaler.

```
from sklearn.preprocessing import StandardScaler
 standardScaler=StandardScaler()
columns_to_scale=['F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11', 'F12', 'F13', 'F14', 'F17', 'F18', 'F19', 'F20', 'F21', 'F22']
 data[columns to scale]=standardScaler.fit transform(data[columns to scale])
 data.head()
    F1
            F2
                     F3
                             F4
                                     F5
                                             F6
                                                      F7
                                                              F8
                                                                      F9
                                                                             F10 ...
                                                                                         F12
-0.964539 -0.004003 -0.034707 1.394303 1.377381 -1.202697 -0.992435 1.723318 -0.988902 0.729604 ...
                                                                                     0.053584
-0.629111 -0.762513 1.410295 0.943172 -1.419671 0.210036 0.287060 0.219716 -0.635582 -0.202013 ...
                                                                                     0.237661
1.357696 0.416963 1.727018 -1.390420 1.482193 0.908208 -1.627760 -0.608779 -0.783390 1.027639 ...
                                                                                    -1.720251
0.600258 -0.995573 ...
                                                                                     1.133700
0.130309
```

Ns v 21 columns

Independent and Dependent variable:

- Declaring Input Variable 'X' with respective columns
- Declaring Output 'Y' with Categorical column

```
1 X = data_1[['F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11',
2 'F12', 'F13', 'F14', 'F17', 'F18', 'F19', 'F20', 'F21', 'F22']]
3 y = data_1['C']
```

Oversampling Technique:

• Since Data was heavily imbalance SMOTE is used.

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state = 0)
X_res, y_res = sm.fit_sample(X,y)
```

• After Oversampling

```
print('Original dataset shape {}'.format(Counter(y)))
print('Resampled dataset shape {}'.format(Counter(y_res)))
Original dataset shape Counter({0: 76353, 1: 24827})
Resampled dataset shape Counter({0: 76353, 1: 76353})
```

Train Test Split:

• Performing splitting of data into train and test with 80-20 split

```
from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X_res,y_res,test_size = 0.2,random_state = 10)
```

Models

Logistic Regression:

- Logistic Model Algorithm works on sigmoid function to classify the instances into probability ranging between 0 and 1 with a default Threshold of 0.5
- Probability value below 0.5 is labelled as '0'
- Probability value above 0.5 is labelled as '1'
- 0.5 Threshold value can be change based on domain knowledge or industry requirement.

```
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression(class_weight='balanced',random_state=10)
logmodel.fit(X_train,y_train)
LogisticRegression(class_weight='balanced', random_state=10)
```

Predicting classes

```
1 y_pred = logmodel.predict(X_test)
```

Logistic Regression Output:

```
        Model
        Accuracy
        Precision
        Recall
        F1 Score
        ROC

        0
        Logistic Regression
        0.678868
        0.627137
        0.88656
        0.734618
        0.678309
```

• Logistic Regression ROC AUC Curve

• Logistic Regression Confusion Matrix

```
Confusion Matrix:
[[ 7159 8071]
[ 1737 13575]]
```

- It is clearly seen that Logistic model is not able to classify properly.
- As Imbalance classification problem we cannot depend upon Accuracy as our Evaluation Metrix.
- In such scenario ROC, precision, recall is considered.

Decision Tree:

- Decision tree is built and on the basis of Gini index value the tree is further splitted.
- It contain Root Node (Top) various Decision Node (Middle) and Terminal Node (Last).

```
from sklearn.tree import DecisionTreeClassifier

dct = DecisionTreeClassifier(random_state = 10)
dct.fit(X_train,y_train)
```

DecisionTreeClassifier(random_state=10)

Predicting classes

```
1 y_pred = dct.predict(X_test)
```

Decision Tree Output:

	Model	Accuracy	Precision	Recall	F1 Score	ROC
0	Logistic Regression	0.678868	0.627137	0.886560	0.734618	0.678309
1	Decision Tree Classifier	0.766846	0.759225	0.783373	0.771110	0.766801

• Decision Tree ROC AUC Curve

• Decision Tree Confusion Matrix

```
Confusion Matrix:
[[11426 3804]
[ 3317 11995]]
```

• Results shows clear improvement from previous model.

Random Forest:

- There are 2 types of ensemble technique Bagging and Boosting
- Random Forest comes under Bagging Technique
- In this Individual Models are built in parallel.
- Equal weights are given to all model.
- End results are calculated on the basis of Mode value for Classification problem.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.
```

RandomForestClassifier(random_state=10)

Predicting classes

```
1 y_pred = rfc.predict(X_test)
```

Random Forest Output:

```
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
       roc=roc_auc_score(y_test, y_pred)
       acc = accuracy_score(y_test, y_pred)
       prec = precision_score(y_test, y_pred)
       rec = recall_score(y_test, y_pred)
6
      f1 = f1_score(y_test, y_pred)
7
       Model3 = pd.DataFrame([['Random tree Classifier', acc, prec, rec, f1, roc]],
8
9
                      columns = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score', 'ROC'])
10
       Model3=Model2.append(Model3,ignore index=True)
11
       Model3
12
```

	Model	Accuracy	Precision	Recall	F1 Score	ROC
0	Logistic Regression	0.678868	0.627137	0.886560	0.734618	0.678309
1	Decision Tree Classifier	0.766846	0.759225	0.783373	0.771110	0.766801
2	Random tree Classifier	0.832002	0.857454	0.797479	0.826380	0.832095

Decision Tree ROC AUC Curve

• Decision Tree Confusion Matrix

Confusion Matrix: [[13200 2030] [3101 12211]]

Conclusion:

• Random Forest show promising result in terms of all Evaluation matrix

772	Model	Accuracy	Precision	Recall	F1 Score	ROC
0	Logistic Regression	0.678868	0.627137	0.886560	0.734618	0.678309
1	Decision Tree Classifier	0.766846	0.759225	0.783373	0.771110	0.766801
2	Random tree Classifier	0.832002	0.857454	0.797479	0.826380	0.832095

- Result can be generated on the basis of company requirement by Bias/Variance Trade-off using Hyperparameter tuning of the Random Forest.
- If company is more focused on Precision or Recall, hyperparameter tuning can be performed & desired results can be generated.

(Some of the Models were not applied due to lack of computational power.)

Output File:

- Same pre-processing is performed on BuyAffinity_Test.txt dataset and Classes are predicted.
- Result stored in Output.csv with Index and Predicted Class columns.