Review - Chapter 4: Basic Topology

Parker Hyde

February 19, 2022

4.2 Points in Open and Closed Sets

The Krantz book uses the terms 'limit point' and 'accumulation point' interchangebly. Let's define these terms and prove they're the same thing.

Definition 1 (limit point). A point $x \in R$ is a **limit point** of a set $S \subset R$ if $\forall \epsilon > 0$, $N_{\epsilon}(x)$ contains an element of S other than x.

Definition 2 (accumulation point). A point $x \in R$ is a **accumulation point** of a set $S \subset R$ if $\forall \epsilon > 0$, $N_{\epsilon}(x)$ contains infinitely many elements of S.

Basically we consider every $N_{\epsilon}(x)$ to determine what kind of point x is for a set $S \subset R$.

- 1) if every $N_{\epsilon}(x)$ contains a point other than x in $S \to x$ is a limit point
- 2) if every $N_{\epsilon}(x)$ contains an infinite number of points in $S \to x$ is an accumulation point

Proposition 1. A point $x \in S \subset R$ is a limit point of S iff it's an accumulation point of S.

Proving accumulation point \implies limit point seems pretty simple. Any $N_{\epsilon}(x)$ of an accumulation point contains infinitely many points in S. In particular it contains at least 2 points in S. So it contains a point in S other than S.

Alright lets try the other direction. We have some $N_{\epsilon}(x)$ for a limit point x and we need to show it satisfies the requirements for an accumulation point. x is a limit point so $N_{\epsilon}(x)$ contains some $s_1 \neq x \in S$. Cool, we have one point. Infinitely many to go. But this is actually pretty easy right? We can just choose $s_2 \neq x \in S$ from a smaller $N_{\epsilon'}(x)$ where ϵ' is set to $|s_1 - x|$. We can do this infinitely many times and always get a new s_n becaues x is a limit point. Thus we get an infinite number of $s_1 \neq x, s_2 \neq x, \ldots \in S$ so x is an accumulation point.

Other sources have a variety of definitions for these terms. So this result just follows from our particular definitions. Moving on...

boundary points, interior points, isolated points

Definition 3 (boundary point). $b \in R$ is a **boundary point** of $S \subset R$ if every $N_{\epsilon}(b)$ contains points in S and points in $R \setminus S$. We denote the set of boundary points for S as ∂S .

For the most part, boundary points are what we expect them to be. You can perturb a boundary point in the appropriate direction and it will no longer be in S.

Boundary points may or may not be in the set S. We'll see in a second that

- 1) closed sets contain all their boundary points
- 2) open sets contain none of their boundary points

Oh this is pretty interesting. The boundary set of Q, ∂Q , is the entire real line. This makes sense because any neighborhood around a rational contains infinitely many rational and irrational numbers.

Definition 4 (interior point). A point $s \in S \subset R$ is an interior point of S if there is an $N_{\epsilon}(s) \subset S$.

From this definition we see that open sets require all points to interior points.

Definition 5 (isolated point). A point $t \in S \subset R$ is an **isolated point** if there is an $N_{\epsilon}(t)$ such that $N_{\epsilon}(t) \cap S = \{t\}$

Proposition 2. Each point of $S \subset R$ is either an interior point or a boundary point.

Proof. let $x \in S$. If x is an interior point then we're done. Suppose x is not an interior point. Then all $N_{\epsilon}(x)$ contain points in $R \setminus S$. Also $N_{\epsilon}(x)$ contains $x \in S$. So x contains points in both S and $R \setminus S$. x is a boundary point.

Quick remark. Isolated points are a special class of boundary points. Also accumulation point can either be interior or boundary points but never isolated.

Proposition 3. The boundary ∂S of a set $S \subset R$ is also the boundary of $R \setminus S$.

Proof.

```
b \in \partial S \iff \text{every } N_{\epsilon}(b) \text{ contains points of } S \text{ and } R \setminus S \iff \text{every } N_{\epsilon}(b) \text{ contains points of } R \setminus S \text{ and } S \iff \text{every } N_{\epsilon}(b) \text{ contains points of } R \setminus S \text{ and } R \setminus (R \setminus S) \iff b \in \partial R \setminus S
```

This proof is trivial if you think about it. Let two sets A and B be complements in the universe of R. Then a point b is a boundary point of A if all $N_{\epsilon}(b)$ contain points in A and B. But this is the same criteria for boundary points in B.

Theorem 1. A closed set contains all it's boundary points.

So a given a boundary point b in a closed set S, we need to show $b \in S$. Closed sets are defined in terms of open sets so let's consider the alternative. Suppose b is in the open set $R \setminus S$. Ok well clearly that can't happen because then there would exist some $N_{\epsilon}(b)$ containing only points in $R \setminus S$. This contradicts the definition of a boundary point so b has to be in the closed set b.

The krantz book gives a direct proof using a fact about accumulation points. We'll state that fact as a lemma and then give their proof below.

Lemma 1. A closed set $S \subset R$ contains all it's accumulation points.

The proof for this should sound familiar.

We know that every neighborhood of an accumulation point $s \in R$ for a set S contains infinitely many points in S. Placing s in the open set $R \setminus S$ produces a neighborhood that contradicts this. Now for the main proof.

proof (Theorem 1). Let $b \in R$ be a boundary point for a set $S \subset R$. If b is an accumulation point then $b \in S$ by Lemma 1. If it's not, then it's not a limit point so there's an $N_{\epsilon}(b)$ that doesn't contain any points of S distinct from b. In other words, $N_{\epsilon}(b) \cap S = \{b\}$ or $N_{\epsilon}(b) \cap S = \emptyset$. b is a boundary point so $N_{\epsilon}(b)$ must contain at least one element of S. Thus $N_{\epsilon}(b) \cap S = \{b\}$ and we conclude $b \in S$. \square

In short, if b is an accumulation point, then it's in S. If not, then it's isolated by a neighborhood of points in $R \setminus S$. But b is a boundary so we have to have some $x \in S$ in that neighborhood. That can only happen if x = b. This also tells us that b is an isolated point.

Corollary 1. An open set contains none of it's boundary points.

Proof. b is the boundary of an open set $S \Longrightarrow$ it's the boundary of the closed set S^c . Thus $b \in S^c \Longrightarrow b \notin S$.

Theorem 2. If b is a boundary for $S \subset R$, then b is either exclusively

- 1) an accumulation point
- 2) an isolated point

Definition 6. $S \subset R$ is bounded if $\exists M > 0$ such that $|s| \leq M \ \forall s \in S$.

Theorem 3 (Bolzano Weierstrass). Every bounded, infinite $S \subset R$ has an accumulation point.

It's critical that S is infinite. This gaurantees the exsitence of an infinite sequence of distinct elements from S. If the sequence converges, then it's limit will be the accumulation point we're looking for.

proof. Let $S \subset R$ be bounded and infinite. Then there is an infinite sequence a_j of distince elements of S. By another B-W theorem, this means there is a subsequence a_{jk} converging to limit α (because a_j is bounded). Thus S has an accumulation point α .

Proposition 4. Let $S \subset R$. Then

S is closed \iff every Cauchy sequence $\{a_i\} \subset S$ converges to an element of S.

I'm too lazy to write the proof. Basically if S is closed and a_j is a Cauchy (convergent) sequence, then a_j can't converge to something in $R \setminus S$. We can produce an ϵ -neighborhood which isolates the limit point.

On the other hand, if S is open then there's a Cauchy sequence that converges outside of S. Its any sequece that converges to a boundary point b of S.

Remark 1. Proposition 4 is vacuously true if S is finite.

Corollary 2. Let $S \subset R$ be nonempty, closed, and bounded. If a_j is any sequence in S, then there is a cauchy subsequence a_{j_k} that converges to $\alpha \in S$.

Proof. Suppose there is a sequence a_j in S. Then there is a Cauchy subsequence a_{j_k} converging to $\alpha \in R$ because S is bounded. By Proposition 4, we conclude $\alpha \in S$ because S is closed.