python_5

February 27, 2024

1 Python Excersie #5: FF 3 Factor Model w/ Factset Data

1.1 Step 1: Load in Facset Data.

```
[]: import numpy as np
    import pandas as pd
    import statsmodels.formula.api as smf
    import matplotlib.pyplot as plt
    import seaborn as sns
    import requests
    import time
    import zipfile
    import os
[]: data_raw = pd.read_excel('factset_data.xlsx', skiprows=2, index_col=0).iloc[::
      ⊶-1]
    Clean up the data on compute log returns.
[]: data = data_raw.dropna()
    data.drop(columns='Composite', inplace=True)
    data = data.resample('ME').last().dropna()
    securities = ['SP500', 'VFIAX', 'TRBCX', 'CFR']
[]: nav_data = data
    nav_data.columns = securities
[]: data.columns = securities
    for sec in securities:
        data[f'{sec}_log_return'] = np.log(data[sec] / data[sec].shift(1))
    data.dropna(inplace=True)
[]: data.head()
[]:
                    SP500
                            VFIAX TRBCX
                                            CFR SP500_log_return \
    Date
    2004-03-31 1126.2115 104.01 28.98 42.76
                                                         -0.016495
```

-0.016930

2004-04-30 1107.3048 102.38 28.34 43.30

```
2004-05-31 1120.6831 103.78 28.81
                                           43.82
                                                          0.012009
     2004-06-30 1140.8356 105.41 29.28 44.75
                                                          0.017823
     2004-07-31 1101.7195 101.92 27.89
                                           43.02
                                                         -0.034889
                 VFIAX_log_return TRBCX_log_return CFR_log_return
    Date
                        -0.018952
     2004-03-31
                                          -0.009957
                                                           0.007983
     2004-04-30
                        -0.015796
                                          -0.022332
                                                           0.012550
     2004-05-31
                         0.013582
                                           0.016448
                                                           0.011938
     2004-06-30
                                           0.016182
                         0.015584
                                                           0.021001
     2004-07-31
                        -0.033669
                                          -0.048636
                                                          -0.039426
[]: data = data.drop(columns=securities).dropna()
[]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 240 entries, 2004-03-31 to 2024-02-29
    Freq: ME
    Data columns (total 4 columns):
     #
         Column
                           Non-Null Count
                                           Dtype
                           _____
         SP500_log_return 240 non-null
     0
                                           float64
         VFIAX_log_return 240 non-null
                                           float64
         TRBCX_log_return 240 non-null
                                           float64
         CFR_log_return
                           240 non-null
                                           float64
    dtypes: float64(4)
    memory usage: 9.4 KB
[]: data.head()
[]:
                 SP500_log_return VFIAX_log_return TRBCX_log_return \
     Date
     2004-03-31
                        -0.016495
                                          -0.018952
                                                            -0.009957
     2004-04-30
                        -0.016930
                                          -0.015796
                                                            -0.022332
     2004-05-31
                         0.012009
                                           0.013582
                                                             0.016448
     2004-06-30
                         0.017823
                                           0.015584
                                                             0.016182
     2004-07-31
                        -0.034889
                                          -0.033669
                                                            -0.048636
                 CFR_log_return
     Date
     2004-03-31
                      0.007983
     2004-04-30
                       0.012550
     2004-05-31
                      0.011938
     2004-06-30
                      0.021001
     2004-07-31
                      -0.039426
[]: data.describe()
```

[]:	SP500_log_return	<pre>VFIAX_log_return</pre>	TRBCX_log_return	CFR_log_return
count	240.000000	240.000000	240.000000	240.000000
mean	0.006200	0.006193	0.007233	0.003874
std	0.043424	0.043590	0.051237	0.068196
min	-0.185634	-0.183720	-0.207890	-0.340102
25%	-0.017585	-0.018488	-0.015318	-0.034005
50%	0.012115	0.013398	0.013986	0.009644
75%	0.032280	0.032025	0.037897	0.045315
max	0.119421	0.120611	0.139681	0.253125

1.2 Step 2: Net Asset Value.

The Net Asset Value (NAV) is calculated differently depending on whether or not the mutual fund is an open or closed end fund. If the fun is open, the NAV is calculated by dviding the total value of the fund by the number of outstanding shares. This is done at the end of the day. The open-end funds issue new shares whenever an investor wants to purchase one, then redeems those shares for cash when the investor wants to sell those shares. This is the most common of the two funds.

The close-end fund behaves more like a traditional stock does. They IPO, and issue an initial amount of shares that are then traded at varying amounts based on a few factors. Because the price of these shares can fluctuate, it is possible to get them at discounts, or have to pay premiums, above the NAV.

```
[]: print("First and last 5 NAV data points for T. Rowe Blue Chip Growth Fund")
    print(nav_data['TRBCX'].head())
    print(nav_data['TRBCX'].tail())
```

```
First and last 5 NAV data points for T. Rowe Blue Chip Growth Fund
Date
2004-03-31
              28.98
2004-04-30
              28.34
2004-05-31
              28.81
2004-06-30
              29.28
              27.89
2004-07-31
Freq: ME, Name: TRBCX, dtype: float64
Date
2023-10-31
              134.89
2023-11-30
              149.54
2023-12-31
              149.34
```

Freq: ME, Name: TRBCX, dtype: float64

154.66

166.08

1.3 Step 3: Input FactSet Data into lecture code.

FF dataset download and clean.

2024-01-31

2024-02-29

```
local_path = 'C:/Users/Brady/Dropbox/School Files/FIN 5322 - Investment_
      →Analysis/Python 5 - FF 3 Factor Model'
    response = requests.get(url)
    with open(local_zip_file, 'wb') as file:
        file.write(response.content)
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(local_path)
    time.sleep(0.5)
    os.remove(local_zip_file)
[]: ff_data_raw = pd.read_csv('F-F_Research_Data_Factors.CSV', names=['date', __
     ff_data = ff_data_raw.iloc[0:1170, :]
[]: # Clean up the data and convert to log returns.
    ff_data.set_index('date', drop=True, inplace=True)
    ff_data.index = pd.to_datetime(ff_data.index, format='%Y%m')
    ff_data = ff_data.apply(pd.to_numeric, errors='coerce').div(100).map(
        lambda x: np.log(1 + x))
[]: ff_data.tail()
[]:
                     mkt
                               smb
                                        hml
                                                   rf
    date
    2023-08-01 -0.024190 -0.032110 -0.010657 0.004490
    2023-09-01 -0.053823 -0.025420 0.015086 0.004291
    2023-10-01 -0.032420 -0.039469 0.001898 0.004689
    2023-11-01 0.084709 -0.000200 0.016267 0.004390
    2023-12-01 0.047361 0.061565 0.048219 0.004291
[]: # Merge the two datasets.
    # Align date formats.
    data.index = data.index.to_period('M').to_timestamp()
    ff_data.index = ff_data.index.to_period('M').to_timestamp()
    m_data = pd.merge(data, ff_data, how='outer', left_index=True, right_index=True)
    m_data.dropna(inplace=True)
    m_data = m_data.loc['2004-03-01':'2023-12-01', :]
    # Cleaning up some memory.
    del data_raw, data, ff_data_raw, ff_data
[]: print(' Merge Data Info '.center(75, '-'))
    print(m_data.info())
```

```
print(' Descriptive Stats '.center(75, '-'))
    print(m_data.describe())
    ----- Merge Data Info
    <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 238 entries, 2004-03-01 to 2023-12-01
    Freq: MS
    Data columns (total 8 columns):
         Column
                          Non-Null Count
                                         Dtype
        _____
                          -----
                                          ____
     0
         SP500_log_return 238 non-null
                                          float64
        VFIAX_log_return 238 non-null
                                          float64
     1
     2
        TRBCX_log_return 238 non-null
                                          float64
     3
        CFR_log_return
                          238 non-null
                                          float64
     4
        mkt
                          238 non-null
                                          float64
     5
                          238 non-null
         smb
                                          float64
     6
                          238 non-null
        hml
                                          float64
     7
                          238 non-null
         rf
                                          float64
    dtypes: float64(8)
    memory usage: 16.7 KB
    None
                      ----- Descriptive Stats -----
           SP500_log_return VFIAX_log_return TRBCX_log_return CFR_log_return \
                238.000000
                                  238.000000
                                                   238.000000
                                                                   238.000000
    count
    mean
                  0.005996
                                    0.005980
                                                     0.006847
                                                                     0.003946
    std
                  0.043528
                                    0.043690
                                                     0.051251
                                                                     0.068460
    min
                 -0.185634
                                   -0.183720
                                                    -0.207890
                                                                    -0.340102
    25%
                 -0.017652
                                   -0.018565
                                                    -0.015448
                                                                    -0.034220
    50%
                  0.012062
                                                                     0.009644
                                    0.013341
                                                     0.013589
    75%
                  0.032009
                                    0.032012
                                                     0.037848
                                                                     0.045476
                  0.119421
                                    0.120611
                                                                     0.253125
                                                     0.139681
    max
                 mkt
                             smb
                                         hml
                                                     rf
    count 238.000000
                      238.000000 238.000000 238.000000
            0.006585
                        0.000056
                                  -0.001055
                                               0.001125
    mean
    std
            0.044968
                        0.024632
                                   0.031944
                                               0.001423
    min
           -0.189105
                       -0.061237
                                   -0.149312
                                               0.000000
    25%
                       -0.018088
           -0.018291
                                   -0.017808
                                               0.000000
    50%
            0.011780
                       0.000650
                                  -0.002202
                                               0.000200
    75%
            0.032540
                        0.015258
                                    0.013928
                                               0.001798
    max
            0.127953
                        0.071017
                                    0.120003
                                               0.004689
[]: corr_matrix = m_data.corr()
    plt.figure(figsize=(8,8))
    sns.heatmap(corr_matrix, annot=True, fmt=".3f", cmap='coolwarm',
                square=True, linewidths=0.5, cbar_kws={'shrink': 0.5})
```

plt.show()

Compute betas.

```
[]: def y_data(risky_asset, dataframe):
    y = dataframe[risky_asset]
    y.name = f'{risky_asset}'
    return y

[]: m_data.index = m_data.index.strftime('%Y-%m')

[]: risky_assets = ['VFIAX_log_return', 'TRBCX_log_return', 'CFR_log_return']

for risk in risky_assets:
    m_data[f'Ex_{risk}'] = m_data[risk] - m_data['rf']
    m_data.columns = m_data.columns.str.replace('_log_return', '_rtn')
    m_data.columns = m_data.columns.str.lower()
```

[]: m_data.info() <class 'pandas.core.frame.DataFrame'> Index: 238 entries, 2004-03 to 2023-12 Data columns (total 11 columns): Column Non-Null Count Dtvpe _____ _____ 0 sp500_rtn 238 non-null float64 vfiax_rtn 1 238 non-null float64 2 trbcx_rtn 238 non-null float64 3 cfr_rtn 238 non-null float64 4 238 non-null float64 mkt 5 238 non-null float64 smb6 hml 238 non-null float64 7 rf 238 non-null float64 ex_vfiax_rtn 238 non-null float64 ex_trbcx_rtn 238 non-null float64 10 ex_cfr_rtn 238 non-null float64 dtypes: float64(11) memory usage: 22.3+ KB

CAPM Model

```
[]: # Full regression results.
     asset_analysis = ['ex_cfr_rtn', 'ex_vfiax_rtn', 'ex_trbcx_rtn']
     for column in asset_analysis:
         Y = column
         X = 'mkt'
         capm_model = smf.ols(formula=f'{Y} ~ {X}', data=m_data).fit()
         print(f'CAPM Regression Results for {column}'.center(80))
         print(capm_model.summary())
         beta = capm_model.params['mkt']
         r_squared = capm_model.rsquared
         plt.figure(figsize=(6, 4))
         sns.regplot(x='mkt', y=column, data=m_data)
         plt.title(f'CAPM Regression Plot for {column}')
         plt.xlabel('Market Return (mkt)')
         plt.ylabel(f'Excess Return of {column}')
         plt.annotate(f'Beta: {beta:.3f}\n$R^2$: {r_squared:.3f}', xy=(0.05,0.85),
                      xycoords='axes fraction', fontsize=10)
         plt.show()
```

CAPM Regression Results for ex_cfr_rtn OLS Regression Results

Dep. Variable:	ex_cfr_rtn	R-squared:	0.325
Model:	OLS	Adj. R-squared:	0.322
Method:	Least Squares	F-statistic:	113.4
Date:	Tue, 27 Feb 2024	Prob (F-statistic):	7.00e-22
Time:	10:57:55	Log-Likelihood:	347.20
No. Observations:	238	AIC:	-690.4
Df Residuals:	236	BIC:	-683.5
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept mkt	-0.0029 0.8691	0.004 0.082	-0.784 10.650	0.434 0.000	-0.010 0.708	0.004 1.030
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	0.	.000 Jarq .412 Prob	pin-Watson: que-Bera (JB o(JB): l. No.):	1.887 57.445 3.36e-13 22.3

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CAPM Regression Results for ex_vfiax_rtn OLS Regression Results

______ ex_vfiax_rtn R-squared: Dep. Variable: 0.987 Model: OLS Adj. R-squared: 0.987 Method: Least Squares F-statistic: 1.854e+04 Date: Tue, 27 Feb 2024 Prob (F-statistic): 10:57:55 Log-Likelihood: 2.68e-226 Time: 928.39 No. Observations: 238 AIC: -1853. Df Residuals: 236 BIC: -1846.Df Model: 1 nonrobust Covariance Type: ______ t P>|t| [0.025 coef std err ______ -0.0015 0.000 -4.691 0.000 Intercept -0.002 -0.001 0.9668 0.007 136.174 0.000 0.953 0.981 ______

0.090 Prob(JB): Kurtosis: 2.754 Cond. No. 22.3

0.807 Durbin-Watson:

0.668 Jarque-Bera (JB):

1.992

0.919

0.632

Skew:

Omnibus:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CAPM Regression Plot for ex_vfiax_rtn

CAPM Regression Results for ex_trbcx_rtn OLS Regression Results

Dep. Variable	e:	ex_trbcx_	rtn	R-squ	nared:		0.838
Model:			OLS	Adj.	R-squared:		0.837
Method:		Least Squares		F-statistic:			1222.
Date: Tu		Tue, 27 Feb 2024		Prob (F-statistic):			2.77e-95
Time:		10:57	:55	Log-I	Likelihood:		586.43
No. Observati	ions:		238	AIC:			-1169.
Df Residuals:			236	BIC:			-1162.
Df Model:			1				
Covariance Ty	pe:	nonrob	oust				
=======================================							
	coef	std err		t	P> t	[0.025	0.975]
Intercept	-0.0012	0.001	-0	.851	0.396	-0.004	0.002
-	-0.0012 1.0440				0.396 0.000		0.002
-		0.030		. 953 =====			
mkt ====================================	1.0440	0.030 ====== 77.	34 ====== 364	.953 ===== Durbi	0.000 n-Watson:		1.103 1.628
mkt	1.0440	0.030 77. 0.	34	.953 ===== Durbi	0.000 in-Watson: ne-Bera (JB):		1.103
mkt ====================================	1.0440	0.030 77. 0. -1.	34 ===== 364 000	.953 ===== Durbi Jarqu	0.000 		1.103 1.628 411.476

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

===== FF Beta Stats ex_cfr_rtn ======

Beta: 0.869 R-Squared: 0.325

```
Alpha: -0.003

====== FF Beta Stats ex_vfiax_rtn =====

Beta: 0.967
R-Squared: 0.987
Alpha: -0.002

====== FF Beta Stats ex_trbcx_rtn =====

Beta: 1.044
R-Squared: 0.838
Alpha: -0.001
```

Fama and French 3 factor model.

```
[]: for column in asset_analysis:
         Y = column
         X = 'mkt + smb + hml'
         ff_model = smf.ols(formula=f'{Y} ~ {X}', data=m_data).fit()
         print(f'3 Factor Model Regression Results for {column}'.center(80))
         print(ff_model.summary())
         beta = ff_model.params['mkt']
         r_squared = ff_model.rsquared
         plt.figure(figsize=(6, 4))
         sns.regplot(x='mkt', y=column, data=m_data)
         plt.title(f'FF Model Regression Plot for {column}')
         plt.xlabel('Market Return (mkt)')
         plt.ylabel(f'Excess Return of {column}')
         plt.annotate(f'Beta: {beta:.3f}\n$R^2$: {r_squared:.3f}', xy=(0.05,0.85),
                      xycoords='axes fraction', fontsize=10)
         plt.show()
```

3 Factor Model Regression Results for ex_cfr_rtn OLS Regression Results

 Dep. Variable:
 ex_cfr_rtn
 R-squared:
 0.530

 Model:
 OLS
 Adj. R-squared:
 0.524

 Method:
 Least Squares
 F-statistic:
 87.82

 Date:
 Tue, 27 Feb 2024
 Prob (F-statistic):
 4.25e-38

Time:		10:57	:55 Log-L	Log-Likelihood:		
No. Observations:		2	238 AIC:			-772.5
Df Residuals:		2	234 BIC:			-758.6
Df Model:			3			
Covariance Type:		nonrobi	ıst			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0006	0.003	-0.192	0.848	-0.007	0.006
mkt	0.6561	0.074	8.867	0.000	0.510	0.802
smb	0.5521	0.134	4.127	0.000	0.289	0.816
hml	0.8856	0.098	9.062	0.000	0.693	1.078
Omnibus:			======================================	======= n-Watson:	=======	1.897
<pre>Prob(Omnibus):</pre>		0.0	005 Jarqu	e-Bera (JB):		20.312
Skew:		-0.3	167 Prob(JB):		3.88e-05
Kurtosis:		4.3	391 Cond.	No.		44.7
=========	:=======	:=======		========	========	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3 Factor Model Regression Results for ex_vfiax_rtn

OLS Regression Results

=========			=====				
Dep. Variabl	.e:	ex_vfia	x_rtn	R-sqı	uared:		0.995
Model:			OLS	Adj.	R-squared:		0.995
Method:		Least Sq	uares	F-sta	atistic:		1.609e+04
Date:		Tue, 27 Feb	2024	Prob	(F-statisti	c):	1.13e-270
Time:		10:	57:55	Log-I	Likelihood:		1042.3
No. Observat	ions:		238	AIC:			-2077.
Df Residuals	: :		234	BIC:			-2063.
Df Model:			3				
Covariance T	ype:	nonr	obust				
=========	coef	std err		:===== t	P> t	======================================	0.975]
Intercept	-0.0017	0.000	_	8.431	0.000	-0.002	-0.001
mkt	0.9980	0.005	20	8.827	0.000	0.989	1.007
smb	-0.1671	0.009	-1	9.340	0.000	-0.184	-0.150
hml	0.0120	0.006		1.905	0.058	-0.000	0.024
Omnibus:	=======		0.024	Durb	in-Watson:	=======	2.168
Prob(Omnibus	:):		0.988	Jarqı	ie-Bera (JB)	:	0.052
Skew:		_	0.023	-			0.974
Kurtosis:			2.945	Cond			44.7
=========	=======	========	=====	======		========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

FF Model Regression Plot for ex_vfiax_rtn

3 Factor Model Regression Results for ex_trbcx_rtn $$\tt OLS$ Regression Results

Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals Df Model: Covariance Ty	ions:	ex_trbcx Least Square Tue, 27 Feb : 10:5	OLS ares 2024 7:56 238 234 3	Adj. F-sta	uared: R-squared: atistic: (F-statistic): Likelihood:		0.906 0.905 755.9 4.69e-120 651.72 -1295. -1282.
	coef	std err		t	P> t	_	0.975]
Intercept mkt smb hml	-0.0020 1.1070 -0.0669 -0.4211	0.025	44. -1.	. 883 . 500	0.054 0.000 0.135 0.000	-0.004 1.058 -0.155	1.156
Omnibus: Prob(Omnibus) Skew:):	0	. 229 . 000 . 990	Jarq	in-Watson: ue-Bera (JB): (JB):		1.891 1313.679 5.47e-286

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.


```
[]: for column in asset_analysis:
    Y = column
    X = 'mkt + smb + hml'
    ff_model = smf.ols(formula=f'{Y} ~ {X}', data=m_data).fit()
    beta = ff_model.params['mkt']
    r_squared = ff_model.rsquared
    alpha = ff_model.params['Intercept']
    print(f' FF Beta Stats {column} '.center(40, '=') + '\n')
    print(f'Beta: {beta:.3f}')
    print(f'R-Squared: {r_squared:.3f}')
    print(f'Alpha: {alpha:.3f}\n')
    print(''.center(40, '=') + '\n')
```

===== FF Beta Stats ex_cfr_rtn ======

Beta: 0.656 R-Squared: 0.530 Alpha: -0.001

====== FF Beta Stats ex_vfiax_rtn =====

Beta: 0.998
R-Squared: 0.995
Alpha: -0.002

====== FF Beta Stats ex_trbcx_rtn =====

Beta: 1.107
R-Squared: 0.906

Alpha: -0.002

Results interpretation. The assets analyzed were Frost banks stock, the Vanguard 500 Index Fund Admiral Shares, and the T. Rowe Price Blue Chip Growth mutual fund.

After running a CAPM regression and a Fama and French 3 factor regression, it is apparent that the index and mutual fund mimick the market relatively close, but all underperformed the market when reviwing their alpha values. I would like to note that the alpha values are in some instances not significant at the 5% level, and should not be considered strong indicators.

Because the index and mutual fund nore closely track the market, their beta's show they are subject to similar systematic risk of the market. Frost bank on the other hand has a beta less than one, indicating that its vaulation is not tied so closely to the market. This makes sense when considering portfolio construction, especially for the index fund, is trying to mimick the market as best it can.

The R^2 values of each asset are also shown to increase when moving from the CAPM model to the 3 Factor model. This also make sense, as the Fama-French model includes additional parameters, which will boost the R^2 value due to the reduction in unexplained residuals.