الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015

المدة: 03 ساعات ونصف

اختبار في مادة: الرياضيات الشعبة: علوم تجريبية

العلامة		(الموضوع الأول) عناصر الإجابة
مجموع	مجزأة	
		التمرين الأوّل: (04,5 نقطة)
04,5 نقطة	0,75	$\overrightarrow{AB}(-1;1;2) imes \overrightarrow{AC}(1;2;1)$ النقط B ، A و C ليست في استقامية لأن B . A
	0,5	x-y+z-1=0 إحداثيات النقط تحقق المعادلة
	0,5	$AB=AC=BC=\sqrt{6}$ ، متقايس الأضلاع $ABC=AB$ متقايس الأضلاع ، 2.
	0,5	$S_{ABC} = \frac{1}{2}AB \times AC \times \sin \hat{A} = \frac{3\sqrt{3}}{2}ua$
	0,5	$\begin{cases} x=1+t \ y=1-t \ ; \ (t\in \mathbb{R}) \end{cases}$ هو: Δ هو التمثيل الوسيطي للمستقيم Δ
	0,5	$E\left(0;2;3 ight)$ ومنه $E\in \left(\Delta ight)\cap \left(ABC ight)$ - أ A
	0,5	$ED = \sqrt{3}$ گو $d(D;(ABC)) = \sqrt{3}$
	0,25	E بالنسبة إلى $D'(-1;3;2)$ نظيرة D بالنسبة إلى D
	0,5	$V_{ABCD} = \frac{3}{2} uv .5$
		التمرين الثاني: (04,5 نقطة)
	0,5	$\beta = i\sqrt{3} \alpha = -\frac{3}{2} + i\frac{\sqrt{3}}{2} (I$
	0,75	$z_{C} = \sqrt{3}e^{i\frac{\pi}{2}}$, $z_{A} = \sqrt{3}e^{i\frac{5\pi}{6}}$ -1.1 (III
	0,25	$n=6k+3; k\in\mathbb{N}$ ومنه $\frac{n\pi}{3}=\left(2k+1\right)\pi$: $\left(\frac{z_A}{z_C}\right)^n=e^{i\frac{n\pi}{3}}$
04,5 ibai	0,25	$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435} = -\sqrt{3} - 1$ وهو عدد حقیقي
	0,75	و $\frac{7\pi}{12}$ و $\frac{\sqrt{6}}{2}$ زاویة له به خواند و $\frac{z_A}{z_D} = \sqrt{\frac{3}{2}}e^{i\frac{7\pi}{12}} = \frac{\sqrt{6}}{2}e^{i\frac{7\pi}{12}}$ د النسبة $\frac{z_A}{2}$
	0,75	$\frac{z_A}{z_D} = \frac{\sqrt{3} - 3}{4} + i \frac{\sqrt{3} + 3}{4} - 4$
	1	$\sin\frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4} \cdot \cos\frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$
	0,25	$(k\in\mathbb{R}^+$ مجموعة النقط M هي نصف مستقيم $z=\sqrt{2ke^{irac{S\pi}{6}}})$ $igl(OAigr)$ مع

اختبار في مادة: الرياضيات الشعبة: علوم تجريبية المدة: 03 ساعات ونصف

العلامة		تابع للموضوع الأول عناصر الإجابة
مجموع	مجزأة	
		التمرين الثالث: (04,5 نقطة)
4,50	1	$u_3 = e^{-4} - 1$, $u_2 = e^{-2} - 1$, $u_1 = 0$.1
	0,75	2. إثبات أن: $u_n > 0$ باستعمال البرهان بالتراجع
	0,5	ومنه (u_n) متناقصة نماما $u_{n+1} - u_n = (e^{-2} - 1)(1 + u_n) < 0$.3
	0,25	(u_n) متقاربة لأنها متناقصة تماما ومحدودة من الأسفل بالعدد u_n
نقطة	01	$v_0 = 3e^2$ ، $q = e^{-2}$ ، متالية هنسية (v_n) متالية $v_{n+1} = e^{-2}v_n$ - أ.4
	0,25	$v_n = 3e^{-2n+2} - \mathbf{q}$
	0,25	$u_n = e^{-2n+2} - 1$
	0,25	$\lim_{n\to+\infty}u_n=-1$
	0,25	$\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2 - n)$
·		التمرين الرابع: (06,5 نقطة)
	0,5	الوضع النسبي لـــ (γ) و (Δ)
	0,5	$g(\alpha)=0$ و $x\in]\alpha;+\infty[$ لمتا $g(x)>0$ و $x\in]0;\alpha[$ لمتا $g(x)<0$.2
	1	$g(2,2) \times g(2,3) < 0$ ومنه $g(2,2) \approx 0.13$ ، $g(2,2) \approx -0.0115$.3
	0,5	$\lim_{x \to 0} f(x) = +\infty \cdot \lim_{x \to +\infty} f(x) = +\infty \cdot 1 \text{ (II)}$
	0,5	$f'(x)=rac{g(x)}{x^2}$ النَحقق من 2
06,5	0,25	جدول التغيرات
نقطة	0,5	$f(\alpha) = \frac{-(\alpha-1)^2}{\alpha} .3$
<u> </u>	0,25	يقبل أي حصر صحيح $-0,768 < f(lpha) < -0,626$
	0,75	$\left[1;e^2\right]$ وتحته على $\left[e^2;+\infty\right]$ و $\left[0;1\right]$ وتحته على $\left[0;e^2\right]$ وتحته على $\left[0;e^2\right]$
		ويتقاطعان في النقطتين ذات الفاصلتين e^2 و e^2 .
	0,5	إنشاء المنحنى على المجال [°0; e المنحنى على المجال [
	0,25	$x = e^2$ ومنه $x = 1$ ومنه $x = 1$ ومنه $x = 1$ ومنه ا
	0,5	$u'(x) = \ln x$ ومنه $u(x) = x \ln x - x$.2
	0,5	$F(x) = (2+x)\ln x - \frac{1}{2}(\ln x)^2 - 3x : F(x)$ عبارة

العلامة		
مجموع	مجزأة	(الموضوع الثاني) عناصر الإجابة
		التمرين الأوّل: (04 نقاط)
	0,75	$\overrightarrow{AB}(-2;0;-4)$ $\wedge \overrightarrow{AC}(1;-3;-4)$: صحیح $AB(-2;0;-4)$
	0,75	2x + 2y - z - 11 = 0 صحيح : إحداثيات النقط تحقق المعادلة.
04 نقاط	0,75	(ABC) ليس ناظميا للمستوي $\overline{DE}(2;2;1)$ ليس ناظميا للمستوي ($\overline{DE}(2;2;1)$
	0,5	(ABC) لا تتتمي إلى المستوي D . خطأ D لا تتتمي إلى المستوي D
	0,75	5. صحيح : إحداثيات النقطنين C و D تحقق التمثيل الوسيطي .5
	0,5	$(3\overrightarrow{IA}+7\overrightarrow{IB}=\overrightarrow{0})$ في استقامية أو $I\cdot B\cdot A$ في استقامية أو ($I\cdot B\cdot A$
		التمرين الثاني: (05 نقاط)
	1	$z_C = 2e^{i\frac{3\pi}{2}} = 2e^{-i\frac{\pi}{2}}$ $z_B = 2e^{i\frac{5\pi}{6}}$ -1.1
	0,5	ا يا التي مركزها O ونصف قطرها C و B ، A إلاً $ z_A = z_B = z_C =2$
05 نقاط	0,5	ج - الإنشاء
	0,75	$rac{z_B-z_C}{z_B-z_A}=e^{-irac{\pi}{3}}$: التحقق أن: 2.
	0,5	$\left(\left(\overline{AB};\overline{CB}\right)=-rac{\pi}{3}$ و $AB=BC$ و المثلث مثقایس الأضلاع
	0,25	مركز نقله $z_A + z_B + z_C = 0$ أو مركز الدائرة المحيطة به هي مركز نقله O
	0,75	ج- (E) هي محور [OA] مع الإنشاء
	0,5	$z_A = e^{irac{2\pi}{3}}$ اِذاً $z_C = \frac{z_A}{z_C}$ إذاً z_C
	0,25	r(O)=0 و $r(O)=0$ و $r(O)=0$ و على المنتصفات وعلى التعامد ومنه صورة
		هى محور $[OB]$ بــ r أو أية طريقة أخرى.
		التمرين الثالث: (05 نقاط)
03 نقاط	0,5	$[0;+\infty[$ متزایدة تماما علی f -1(I
	0,5	$f(\alpha) = \alpha : f(x) - x = \frac{3 + \sqrt{13}}{2}$ ملی $f(\alpha) = \alpha : f(x) - x = \frac{-x^2 + 3x + 1}{x + 1}$.2
		$A(lpha;lpha)$ فوق (D) ؛ وعلى $[lpha;+\infty[$ ، $[lpha;+\infty[$ ويتقاطعان في (C_f)
	0,75	3. الرسم
	0,75	1) 1. أ - تمثيل الحدود
	0,5	(u_n) متزایدة تماما و متقاربة (v_n) متناقصة تماما و متقاربة (u_n)
	<u> </u>	4

زمة (
مجموع	مجزأة	تابع للموضوع الثاني عناصر الإجابة
02 نقاط	0,5	و. أ - إثبات بالتراجع لكل n من $N:N$ من $\alpha < v_n \leq 5$ و $\alpha < v_n \leq 5$ أو أية طريقة أخرى $\alpha < v_n \leq 5$
	0,5	ب - استناج اتجاه التغير
	0,25	$v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$ 1.3
	0,25	$0 < v_n - u_n \le \left(\frac{1}{3}\right)^{n-1}$ نبیان
	0,25	$\lim_{n\to+\infty} (v_n - u_n) = 0 = -$
	0,25	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \alpha$
	··	التمرين الرابع (06 نقاط)
	0,75	$\mathbb R$ ومنه g متناقصة تماما على $g'(x) = -2(1+e^{2x-2}) < 0$.1(I
	0,5	$g(\mathbb{R})=\mathbb{R}$ مستمرة متناقصة تماما على \mathbb{R} و $g(\mathbb{R})$
	0,5	$g(0,37) \approx -0.02 + g(0,36) \approx 0.002$
	0,5	$g(lpha)=0$ و $x\in]-\infty; lpha[$ لمنا $g(x)>0$ و $x\in]lpha;+\infty[$ لمنا $g(x)<0$.3
	0,5	$f'(x) = e^{2x+2} g(-x) - 1$ (II)
	0,25	$f'(-lpha)=0$ و $x\in]-lpha;+\infty[$ لمنا $g(-x)>0$ و $x\in]-\infty;-lpha[$ لمنا $g(-x)<0$ و المنا والمنا
	0,25	$-lpha;+\infty$ [ومتزایدة تماما علی $-\infty;-lpha$ منتاقصة تماما علی $-\infty;-lpha$ ومتزایدة تماما علی $-\infty;-lpha$
06	0,5	$\lim_{x \to -\infty} f(x) = +\infty \cdot \lim_{x \to +\infty} f(x) = +\infty \cdot 2$
نقاط	0,25	جدول التغيرات
	0,25	$\lim_{x \to -\infty} \left(f\left(x\right) + x - 1 \right) = 0 \cdot 3$
	0,25	$y = -x + 1$ يقبل مستقيما مقاربا معادلته (C_f)
	0,25	$]{-\infty};0]$ فوق (Δ) علمی $[0;+\infty[$ وتحته علمی (C_f) .4
	0,5	$(C_{_f})$ و (Δ) و .5
	0,5	$2f(x)+f'(x)-f''(x)=1-2x-3e^{2x+2}:\mathbb{R}$ او اکال x من x او اکال x من x او اکال x من x
	0,25	$F(x) = \frac{1}{2} \left[-f(x) + f'(x) + x - x^2 - \frac{3}{2} e^{2x+2} \right] - 4$
		\mathbb{R} على F دالة أصلية ل $F(x) = \frac{1}{2} \left(x - \frac{1}{2} \right) e^{2x+2} - \frac{1}{2} x^2 + x - 1$ على

ملاحظة: تقبل وتراعى جميع الطرق الصحيحة الأخرى مع التقيد التام بسلم التنقيط.