Introdução à Física Computacional - 7600017 - 2S/2023 Projeto 1 — Introdução à programaçãoData de entrega: até 27/08

DESCRIÇÃO

O objetivo deste projeto é propiciar um treinamento inicial da programação FORTRAN 77 através de tarefas simples.

- 1. Escreva um programa que leia os coeficientes $a, b \in c$ na tela do terminal e calcule o número de raízes reais e seus valores da equação do segundo grau $ax^2 + bx + c = 0$. Os resultados devem ser mostrados na tela do terminal.
- 2. Escreva um programa que dados dois vetores (lidos na tela do terminal) $\vec{v}_1 = (x_1, y_1, z_1)$ e $\vec{v}_2 = (x_2, y_2, z_2)$ calcule a área do triângulo formado por eles. O resultado deve ser mostrado na tela do terminal.
- 3. Escreva um programa que lê os N números reais (do tipo REAL*8) do arquivo tarefa-3-entrada-1.in disponível na página do curso https://www.ifsc.usp.br/~hoyos/courses/2023/7600017/7600017.html. Seu programa deve descobrir e imprimir na tela do terminal o valor de N. Em seguida, seu programa deve ler do terminal o valor de $M \leq N$ e ordenar apenas os M primeiros menores números desse arquivo. O resultado deve ser salvo em um arquivo de saída juntamente com o número M.
- 4. Escreva um programa que calcule os números primos menores ou igual a N (lido do terminal) e o número total de primos, imprimindo os seus resultado em um arquivo de saída. Teste seus resultados para $N=100,\ 1000\ {\rm e}\ 10\,000.$

5.

(a) Escreva um programa em precisão simples que dado $x \in \mathbb{R}$ calcule com precisão $\epsilon = 10^{-5}$ o valor de $\ln(x)$ utilizando a série

$$\ln(x) = -\left(1 - x + \frac{(1-x)^2}{2} + \frac{(1-x)^3}{3} + \ldots\right) = -\sum_{n=1}^{\infty} \frac{(1-x)^n}{n}.$$

Compare seus resultados com o valor obtido pela função intrínseca log(x) do FORTRAN.

- (b) Modifique seu programa para precisão dupla e teste pare até que valores consegue-se diminuir a variável ϵ para que a sua precisão seja a mesma da função dlog(x): a função ln(x) intrínseca do FORTRAN 77 em precisão dupla.
- 6. Escreva um programa que extraia as N raízes complexas (z_1, z_2, \ldots, z_N) da equação $(z-2)^N = 3$, onde N é lido do terminal. Teste seus resultados para $N = 1, 2, \ldots, 6$.
- 7. Faça um programa que, usando a função rand() do FORTRAN (que gera números aleatórios entre 0 e 1), calcule o volume V_d de uma esfera em d dimensões. Teste seus resultados variando o número M de números aleatórios para d=2, 3 e 4. Analise se suas respostas são razoáveis. Compare com a expressão $V_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)}R^d$, onde $\Gamma(1/2) = \sqrt{\pi}$, $\Gamma(1) = 1$, $\Gamma(x+1) = x\Gamma(x)$.

8.

- (a) Usando a expressão acima, faça um programa que, dando como entrada o raio R e a dimensão d, calcule os volumes das esferas nas dimensões $0, 1, 2, \ldots, d$. Os resultados devem estar em um arquivo de saída.
- (b) Usando o graficador XMGRACE faça em um mesmo gráfico V_d como função de d para d variando de 0 até 25 e $R=0.9,\,1.0$ e 1.1.

9.

- (a) O volume de um cubo de d dimensões de raio 1 m será 1 m d , quantas vezes este volume será maior que uma esfera de raio R = 1 m nesta dimensão? Qual seria seu resultado para $d \to \infty$?
- (b) Se o volume de uma proteína em d dimensões fosse $1 \ \mu m^D$, se volume de átomo neste mundo fosse $1 \ \text{Å}^d$, e se tipicamente um volume macroscópico fosse de $1 \ \text{mm}^d$, qual deveria ser a ordem típica do número de Avogadro neste mundo d-dimensional (número de átomos que comporiam os objetos macroscópicos)?