

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

Princípios de Comunicações I

Introdução à Linguagem de Computação Matlab

Prof.: Jair A. Lima Silva

UFES, 2012/2

Índice

- 1. Definição e Ambiente de Trabalho da Linguagem
- 2. Operações Aritméticas, Números Complexos, etc
- 3. Definição, Operação e Manipulação de Matrizes
- 4. Scripts e Funções no Matlab
- 5. Estruturas de Controle de Fluxo
- 6. Gráficos
- 7. Exemplo de Aplicação

1. Definição da Linguagem

 Vem sendo utilizado em Universidades, (em cusos de Matemática, Ciências e Engenharias) e em Industrias como ferramenta de pesquisa, projeto e desenvolvimento.

Datasheet:

http://www.mathworks.com/products/datasheets/pdf/matlab.pdf

Contacto: http://www.mathworks.com/products/matlab/


```
Editor - C:\MATLAB Book 4th ed Current\Chapter 1\ProgramExample.m
   Edit Text Go Cell Tools Debug Desktop Window Help
                           %<sup>4</sup> %<sup>4</sup> 0
 *告 唱
                     ÷ 1.1
       % Example of a script file.
       % This program calculates the roots of a quadratic equation:
       a*x^2 + b*x + c = 0
       a=4; b=-9; c=-17.5;
      DIS=sqrt (b^2-4*a*c);
      x1 = (-b + DIS) / (2*a)
       x2 = (-b-DIS) / (2*a)
                                                                Ln 1
                                                                        Col 1
                                        script
```

Editor/Debugger Window

O editor de scripts pode estar ou não acoplado à janela principal

Figure Window

As figuras aparecem automaticamente após a execução de algum comando de visualização.

Existe ainda uma janela de ajuda que pode ser acessada em menus ou no *prompt*.

2. Operações Aritméticas

• O MATLAB possui todas as operações básicas de uma calculadora. Assim, no *prompt* da janela de comando podes:

```
MATLAB 7.11.0 (R2010b)

File Edit Debug Desktop Window Help

Shortcuts I How to Add I What's New

New to MATLAB? Watch this Video, see Demos, or read Getting Started.

>> 2* (4+3)
ans =
14
>> a=5;
>> b=3;
>> a*b
ans =
15

$$\frac{1}{2}$$ >> \text{Start}
```


2. Operações Aritméticas

Alguns símbolos para a Aritmética

Operation	Symbol	Example
Addition	+	5 + 3
Subtraction	_	5 - 3
Multiplication	*	5 * 3
Right division	/	5 / 3
Left division	\	5 \ 3 = 3 / 5
Exponentiation	^	$5 ^ 3 (means 5^3 = 125)$

Exercício: Qual a ordem de execução dos cálculos?

2. Comandos de formatação de números

Command	Description	Example	
format short	Fixed-point with 4 decimal digits for: $0.001 \le number \le 1000$ Otherwise display format short e	>> 290/7 ans = 41.4286	
format long	Fixed-point with 15 decimal digits for: $0.001 \le number \le 1000$ Otherwise display format long e	>> 290/7 ans = 41.428571428571431	
format short e	Scientific notation with 4 decimal digits	>> 290/7 ans = 4.1429e+001	
format long e	Scientific notation with 15 decimal digits	>> 290/7 ans = 4.142857142857143e+001	
format compact	Eliminates empty lines to allow more lines with information displayed on the screen		
format loose	Adds empty lines (opposite of compact)		

• As expressões podem incluir funções (caixas pretas) para facilitar a computação de dados.

$$sqrt(64)$$
 Argument is a number

$$sqrt(a)$$
 Argument is the variable "a"

$$atan(y/sqrt(3^2+y^2))$$

Argument to arctan function is an expression

Algumas funções elemetares

- sqrt(x) square root
- **nthroot(x,n)** nth real root
- $\exp(\mathbf{x}) e^{x}$
- abs(x) absolute value
- log(x) natural log(base e)
- $\log 10(x) \log base 10$
- factorial(\mathbf{x}) x!

Algumas funções trigonométricas

- $\sin(x) \sin(x)$ in radians
- $\operatorname{sind}(\mathbf{x})$ sine (x in degrees)
- $\cos(x) \cos(x)$ in radians
- cosd(x) cosine (x in degrees)
- tan(x) tangent (x in radians)
- tand(x) tangent (x in degrees)
- $\cot(x)$ cotangent (x in radians)
- cotd(x)- cotangent (x in degrees)

Exercício: Qual a funcionalidade das funções abaixo?

- round(x)
- fix(x)
- ceil(x)
- floor(x)
- rem(x,y)
- sign(x)

Outras funções reservadas e muito utilizadas

clear - Removes all variables from memory

clear x y z - Removes only variables x, y, and z from memory

who - Displays a list of the variables currently in memory

whos - Displays a list of the variables currently in memory and their

size, together with information about their bytes and class

Veja também no Help as funções clc, close, hold, etc

2. Números Complexos

• Os números complexos podem ser facilmente definidos pelos três métodos descritos a seguir:

$$>> a = 1 - 2i;$$

$$>> a = 1 - 2j;$$

$$>> a = 1 - 2*sqrt(-1);$$

	Complexas		
abs	Valor Absoluto		
angle	Argumento (em radianos)		
conj	Complexo conjugado		
imag	Parte imaginaria		
real	Parte real		

3. Definição, Operação e Manipulação de Matrizes

- Os **arrays** ou arranjos são estruturas básicas que sustentam a base operacional do software MATLAB.
- Estes podem conter várias dimensões e podem ser formadas de números e/ou caracteres:
 - Vetor: Arranjo de dimensão 1 (1 linha ou 1 coluna)
 - Matriz: 2 ou mais dimensões.

Vetor Linha:

Syntax: variable_name =
$$[n1, n2, n3]$$

Commas optional

1984 1986 1988

MATLAB displays row vector horizontally

Vetor Coluna:

Syntax: variable_name = [n1; n2; n3]

>> yr = [1984; 1986; 1988]

yr =

1984

1986

1988

MATLAB displays column vector vertically

LMbTel

3. Criação de Matrizes

Outras formas:

Syntax: variable_name = m:q:n

- m is first number
- n is last number
- q is difference between consecutive numbers

$$v = m:q:n$$
 means
 $v = [m m+q m+2q m+3q ... n]$

Outras formas:

Testes:

- (m:q:n)— Gere um vetor sem o parâmetro q
- (m:q:n)— Gere um vetor com um q negativo
- (m:q:n)— Gere um vetor com um q = 0.1

Outras formas:

Syntax:
$$v = linspace(xi, xf, n)$$

- xi is first number
- xf is last number
- n is number of terms

Exemplos:

```
>> va = linspace(0,8,6)

va = 0 \ 1.6000 \ 3.2000 \ 4.8000 \ 6.4000 \ 8.0000
```


Exemplo de Aplicação:

a) Gere um vetor tempo com 0.4 µs de duração, contendo 100 posições.

$$>> t = linspace(0,0.4e-6,100);$$

b) Qual a taxa de amostragem deste vetor tempo.

$$>> ta = t(2) - t(1);$$

c) Gere um vetor frequência a partir dos dados gerados acima.

- >> deltaf = 1/ta;
- >> fpos = 0:deltaf:(100/2-1)*deltaf;
- >> fneg = -(100/2-1)*deltaf:deltaf:-deltaf;
- >> f = [fpos fneg];

Matrizes

Syntax:

m = [row 1 numbers; row 2 numbers;...;last row numbers]

- Each row separated by semicolon
- All rows have same number of columns

```
>> a=[ 5 35 43; 4 76 81; 21 32 40]
a =
5 35 43
```

4 76 81

21 32 40

Matrizes

Exemplos:

```
>> cd=6; e=3; h=4;
```

 $>> Mat=[e,cd*h,cos(pi/3);h^2 sqrt(h*h/cd) 14]$

```
Mat = 3.0000 24.0000 0.5000 16.0000 1.6330 14.0000
```


Matrizes

Exercício: Quais as funcionalidades das funções?

- -zeros(m,n)
- ones(m,n)
- eye(n)
- $-\operatorname{rand}(m,n)$
- $\operatorname{randn}(m,n)$

Transposta

$$\Rightarrow$$
 aa=[3 8 1]
aa = 3 8 1

$$bb = 3$$

8

1

LMbTel

3. Operações com Matrizes

Transposta

$$C = 2$$
 55 14 8
21 5 32 11
41 64 9 1

$$D = 2 21 41$$

$$55 5 64$$

$$14 32 9$$

$$8 11 1$$

Faça a transposta de uma matriz de números

complexos!!

As operações aritméticas são realizadas elemento a elemento!

Operações com Arrays

Sabendo que : $A = [a_1 a_2 ... a_n]$; $B = [b_1 b_2 ... b_n]$; c - Escalar

Adição com um escalar

Multiplicação com um escalar

Adição

Multiplicação

Divisão à esquerda

Divisão à direita

Potenciação

Symbol	<u>Description</u>	Symbol	<u>Description</u>
.*	Multiplication	./	Right division
.^	Exponentiation	.\	Left Division

A+c =
$$[a_1+c \ a_2+c \ \dots \ a_n+c]$$

$$A*c = [a_1*c a_2*c ... a_n*c]$$

$$A+B = [a_1+b_1 \ a_2+b_2 \ ... \ a_n+b_n]$$

$$A.*B = [a_1.*b_1 \ a_2.*b_2 \ ... \ a_n.*b_n]$$

$$A. \ B = [a_1. \ b_1 \ a_2. \ b_2 \ \dots \ a_n. \ b_n]$$

$$A./B = [a_1./b_1 \ a_2./b_2 \ ... \ a_n./b_n]$$

$$A.^c = [a_1.^c a_2.^c ... a_n.^c]$$

$$c.^A = [c.^a_1 c.^a_2.^c ... c.^a_n]$$

$$A.^B = [a_1.^b_1 \ a_2.^b_2 \ ... \ a_n.^b_n]$$

As regras da Algebra devem ser respeitadas

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \\ A_{41} & A_{42} & A_{43} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

then, the matrix that is obtained by the operation A*B has the dimension of 4×2 with the elements:

$$\begin{bmatrix} (A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31}) & (A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32}) \\ (A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31}) & (A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32}) \\ (A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31}) & (A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32}) \\ (A_{41}B_{11} + A_{42}B_{21} + A_{43}B_{31}) & (A_{41}B_{12} + A_{42}B_{22} + A_{43}B_{32}) \end{bmatrix}$$

A numerical example is:

$$\begin{bmatrix} 1 & 4 & 3 \\ 2 & 6 & 1 \\ 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} (1 \cdot 5 + 4 \cdot 1 + 3 \cdot 2) & (1 \cdot 4 + 4 \cdot 3 + 3 \cdot 6) \\ (2 \cdot 5 + 6 \cdot 1 + 1 \cdot 2) & (2 \cdot 4 + 6 \cdot 3 + 1 \cdot 6) \\ (5 \cdot 5 + 2 \cdot 1 + 8 \cdot 2) & (5 \cdot 4 + 2 \cdot 3 + 8 \cdot 6) \end{bmatrix} = \begin{bmatrix} 15 & 34 \\ 18 & 32 \\ 43 & 74 \end{bmatrix}$$

Alguns exemplos:

```
>> A=[2 1 4; 4 1 8; 2 -1 3]
                                                Creating the matrix A.
A =
>> B=inv(A)
                                       Use the inv function to find the
                                       inverse of A and assign it to B.
    5.5000 -3.5000 2.0000
    2.0000 -1.0000
   -3.0000 2.0000
                          -1.0000
                        Multiplication of A and B gives the identity matrix.
>> A*B
ans =
                   0
     0
            0
                   1
```


Sample Problem 3-1: Solving three linear equations (array division)

Use matrix operations to solve the following system of linear equations.

$$4x - 2y + 6z = 8$$

 $2x + 8y + 2z = 4$
 $6x + 10y + 3z = 0$

Solution

Using the rules of linear algebra demonstrated earlier, the above system of equations can be written in the matrix form AX = B or in the form XC = D:

$$\begin{bmatrix} 4 & -2 & 6 \\ 2 & 8 & 2 \\ 6 & 10 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 4 & 2 & 6 \\ -2 & 8 & 10 \\ 6 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 0 \end{bmatrix}$$

The solution of both forms is shown below:

Solving by using the inverse of $A X = A^{-1}B$.

Alguns exemplos:

3. Manipulação de Matrizes

Endereçamento

- Vector (row or column)
 - va(:) all elements
 - va(m:n) elements m through n

• Matrix

- A(:,n) all rows of column n
- A(m,:) all columns of row m
- − A(:,m:n) all rows of columns m through n
- − A(m:n,:) all columns of rows m through n
- A(m:n,p:q) columns p through q of rows m through n

3. Manipulação de Matrizes

Endereçamento

• Exemplos:

>> MAT(3,1)

ans = 13 Atribua um novo valor ao elemento da linha 3 e coluna 1

>> MAT(3,1)=20

>> MAT(2,4)-MAT(1,2)

$$ans = -9$$

Delete uma linha da

matriz usando []

3. Manipulação de Matrizes

Exercício: Qual a funcionalidade das funções abaixo?

- length
- size
- reshape
- diag
- inv
- det
- eig
- poly

- mean
- max
- min
- sort
- sum
- std
- cross

4. Scripts e Funções no MATLAB

Modularizar significa simplificar

Solução mais rápida

Figure 1-7: A program typed in the Editor/Debugger Window.

4. Scripts e Funções no MATLAB

Calling Program a = ? b = 9

function [output arguments] = function_name(input arguments)

The word function must be the first word, and must be typed in lower-case letters. A list of output arguments typed inside brackets.

The name of the function.

A list of input arguments typed inside parentheses.

4. Scripts e Funções no MATLAB

Estrutura de uma Função Típica

Figure 7-2: Structure of a typical function file.

	Relational Operator	<u>Description</u>
	<	Less than.
Operadores Relacionais	e >	Greater than.
Operadores Lógicos	<=	Less than or equal to.
	>=	Greater than or equal to.
	==	Equal to.
	~=	Not Equal to.

INI	PUT			OUTPUT		
A	В	AND A&B	OR A B	XOR (A,B)	NOT ~A	NOT ~B
false	false	false	false	fa1se	true	true
false	true	false	true	true	true	false
true	false	false	true	true	false	true
true	true	true	true	false	false	false

Estruturas Condicionais

Figure 6-1: The structure of the if-end conditional statement.

Estruturas Condicionais

Figure 6-2: The structure of the if-else-end conditional statement.

LAbiel

5. Estruturas de Controle de Fluxo

Estruturas Condicionais

Figure 6-3: The structure of the if-elseif-else-end conditional statement.

O Comando Switch

MATLAB program.
switch switch expression case value1
Group 1 of commands.
Group 2 of commands.
Group 3 of commands.
Group 4 of commands.
MATLAB program.

Figure 6-4: The structure of a switch-case statement.

Estruturas de Repetição

Figure 6-5: The structure of a for-end loop.

Estruturas de Repetição

Exemplo

for k=1:3:10

k

 $x = k^2$

end

 $fprintf('After loop k = %d\n', k);$

Output

k = 1

 $\mathbf{x} = \mathbf{x}$

k = 4

x = 16

k = 7

x = 49

k = 10

x = 100

After loop k = 10

Estruturas de Repetição

Figure 6-6: The structure of a while-end loop.

Típico quando não se sabe o número de iterações do loop

Estruturas de Repetição

Exemplo

```
x = 1
while x \le 15
x = 2*x
end
```

Output

x = 1

 $_{\mathbf{X}} =$

2

 $_{\mathbf{X}} =$

4

 $_{\mathbf{X}} =$

8

 $_{\rm X} =$

16

Interprete o código

ao lado

```
n=input('Enter the number of rows ');
m=input('Enter the number of columns ');
A=[];
                                               Define an empty matrix A
for k=1:n
                                          Start of the first for-end loop.
   for h=1:m
                                       Start of the second for-end loop.
                                         Start of the conditional statement.
       if k==1
            A(k,h)=h;
                             Assign values to the elements of the first row.
       elseif h==1
                          Assign values to the elements of the first column.
            A(k,h)=k;
       else
            A(k,h)=A(k,h-1)+A(k-1,h); Assign values to other elements.
                                               end of the if statement.
       end
                                       end of the nested for-end loop.
   end
end
                                          end of the first for-end loop.
A
```

The program is executed in the Command Window to create a 4×5 matrix.

```
>> Chap6_exp8
Enter the number of rows 4
Enter the number of columns 5
```


O Comando break

Exemplo

Script

Figure 5-1: Example of a formatted two-dimensional plot.

Plots em 2D

Plots em 2D

LETRA	CORES		
У	amarelo		
m	magenta		
U	cyan		
r	encarnado		
g	verde		
ъ	azul		
W	branco		
k	preto		
SÍMBOLO	TIPO DE LINHA		
-	linha sólida		
- :	linha sólida ponteada		
- : 	ponteada traço - ponto		
- : 			
- : 	ponteada traço - ponto		
- : SÍMBOLO	ponteada traço - ponto		
 	ponteada traço - ponto traço interropido		
 	ponteada traço - ponto traço interropido		
 SÍMBOLO	ponteada traço - ponto traço interropido MARKERS		
 SÍMBOLO	ponteada traço - ponto traço interropido MARKERS ponto		
 SÍMBOLO	ponteada traço - ponto traço interropido MARKERS ponto círculo		

Exercício: Qual a funcionalidade das funções abaixo?

- xlabel
- ylabel
- legend
- grid
- hold
- Title
- Text
- axis
- title

Plots em 3D

Rode o progama abaixo para testar o comando mesh

```
x = -7.5:.5:7.5;
\gg [X, Y] = meshgrid(x,y);
 > R = sqrt(X.^2 + Y.^2) + eps; 
\gg Z = sin(R)./R;
\gg mesh(X,Y,Z)
```


Gráficos Especiais

Gráficos Especiais


```
t=linspace(0,2*pi,200);
r=3*cos(0.5*t).^2+t;
polar(t,r)
```


Figure 5-11: Histogram of temperature data.

7. Exemplos de Aplicação

Analisador de Espectro

```
% Um exemplo de aplicação da transformada de Fourier
                                 % Espectro de potência usando a função FFT pot2
% Inicialização
                                 [X,x1,f,df] = FFT pot2(x,ts);
clc, clear all, close all
                                 figure, plot(f,10*log10((fftshift(abs(X)))));
                                 % ----- Potência e Psd do Sinal -----
% Dados de amostragem
                                 % Potência
ts = 0.001;
                                 p = 10*log10((norm(x)^2)/length(x))
fs = 1/ts;
                                 h = spectrum.welch;
                                 % figure, msspectrum(h,x,'Fs',fs,'NFFT',length(x1))
% t = [0:ts:10];
                                 figure,
t = 0:ts:2;
                                 msspectrum(h,x,'Fs',fs,'NFFT',length(x1),'SpectrumType',
                                 'TwoSided')
% Sinal no domínio do tempo
% x = cos(2*pi*47*t) + cos(2*pi*219*t);
x = 3*\cos(2*pi*t*200);
```


7. Exemplos de Aplicação

```
function [Sinal ff,sinal tf,f,df] = FFT pot2(sinal,ts)
%
% FFT pot2 --> Gera a transformada de Fourier de um sinal de tempo discreto
          A sequencia é preenchida com zeros para determinar a resolução
%
          em frequencia final df e o o novo sinal é sinal_tf.
%
fs = 1/ts;
                      % Taxa de amostragem
ni = length(sinal); % Tamanho do sinal de entrada
nf = 2^{(nextpow2(ni))};
                        % Novo tamanho do sinal
% A transformada via FFT
Sinal ff = fft(sinal, nf);
Sinal ff = Sinal ff/fs; % Qual a razão disto?
% O novo sinal no domínio do tempo
sinal tf = [sinal,zeros(1,nf-ni)];
% A resolução na frequencia
df = fs/nf;
% Vetor frequencia
f = (0:df:df*(length(sinal tf)-1)) - fs/2;
```


TPC: Um teste

```
% sound
fs = 1000;
ts = 0:1/fs:2;
f = 250 + 240*\sin(2*pi*ts);
x = \sin(2*pi*f.*ts);
strips(x,0.25,fs)
sound(x,fs)
figure, plot(ts,x)
figure, plot(ts(1:200),x(1:200))
```