Analog assignment (11.15.21)

Avani Chouhan EE23BTECH11205

Question:

A train, standing in a station yard, blows a whistle of frequency $400\,\mathrm{Hz}$ in still air. The wind starts blowing in the direction from the yard to the station with a speed of $10\,\mathrm{m/s}$. What are the frequency, wavelength, and the speed of sound for an observer standing on the station's platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of $10\,\mathrm{m/s}$? The speed of sound in still air can be taken as $340\,\mathrm{m/s}$.

Solution:

Table 1: Summary of Parameters

Parameter	Description	Value
f	Sound fre-	400 Hz
	quency	
c	Speed of sound	$340\mathrm{m/s}$
	in air	
v	Wind velocity	$10\mathrm{m/s}$
v_e	Effective speed	$350\mathrm{m/s}$
	of sound	
λ	Wavelength	$0.875{ m m}$
	of the sound	
	wave	
v_o	Observer's ve-	$10\mathrm{m/s}$
	locity	
v'	Frequency	411.76 Hz
	change	

For the stationary observer:

As there is no relative motion between the source and the observer, the frequency of the sound heard by the observer will be the same as that produced by the source, i.e., $f=400\,\mathrm{Hz}$.

The wind is blowing toward the observer. Hence, the effective speed of the sound increases by 10 units, i.e.,

$$v_e = c + v = 340 + 10 = 350 \,\mathrm{m/s}$$
 (1)

The wavelength (λ) of the sound heard by the observer is given by the relation:

$$\lambda' = \frac{v_e}{f} \tag{2}$$

Equation for the transmitted sound wave:

$$P_{\text{transmitted}}(x,t) = A \sin\left(2\pi f'\left(t - \frac{x}{v_e}\right)\right)$$
 (3)

where $f' = \frac{v_e}{\lambda'}$

For the running observer:

Change in frequency,
$$v' = \frac{v_e}{c} \cdot v_o + f$$
 (4)

$$= \frac{350}{340} \cdot 10 + 400 \quad (5)$$

$$\approx 411.76 \,\mathrm{Hz}$$
 (6)

Equation for the received sound wave:

$$P_{\text{received}}(x,t) = A \sin\left(2\pi f\left(t - \frac{x}{c}\right)\right)$$
 (7)