## Protokoll Gammadosisleistung

# Fuchs, Gutmann, Kosbab, Kowal, Steindorf, Fälker, Richter 14. Januar 2023

#### Inhaltsverzeichnis

| 1 | Kurzbeschreibung des Versuches                        | 1 |
|---|-------------------------------------------------------|---|
| 2 | Funktionsweise eines Szintillators                    | 1 |
| 3 | Nullwertmessungen                                     | 2 |
| 4 | Messwerte                                             | 3 |
| 5 | Graphische Darstellung                                | 4 |
| 6 | Bestimmung der Halbwertszeiten                        | 5 |
| 7 | Berechnen der Neutronenflussdichte am Bestrahlungsort | 6 |

### 1 Kurzbeschreibung des Versuches

- Zu Beginn des Versuchs wird ohne Probe fünf mal der Nulleffekt gemessen und aus den erhaltenen Werten der Durchschnittswert gebildet.
- Ein Aluminium-Präparat, ein Kupfer-Präparat sowie ein unbekanntes Präparat werden für jeweils 10 Minuten im geöffneten Experimentierkanal bestrahlt.
- Nach erfolgter Neutronen-Aktivierung werden die Proben aus dem Reaktorkanal entnommen und in den Szintillator montiert.
- Anschließend wird über eine Zeitdauer von 10 Minuten alle 30 Sekunden die Zahl der Impulse für je sechs Sekunden gemessen.

#### 2 Funktionsweise eines Szintillators

- 1. Im Szintillationskristall des Szintillators werden beim Auftreffen von Strahlung Lichtblitze (Szintillationen) erzeugt.
- 2. Die Lichtblitze werden in einem Sekundärelektronenverstärker durch den fotoelektrischen Effekt in Fotoelektronen umgewandelt und durch Stoßionisation verstärkt.

3. Die enstehenden Spannungsimpulse werden in einem nachfolgenden Verstärker weiter verstärkt und anschließend im Impulszähler gezählt.

Folgende Werte wurden am Strahlungsmessgerät eingestellt:

| Parameter    | Wert         |
|--------------|--------------|
| Pegel        | $\int 5.7 V$ |
| Hochspannung | -1140 V      |
| Verstärkung  | 22 dB        |
| Messzeit     | 6s           |
| Kanalbreite  | DIS          |

## 3 Nullwertmessungen

| Messung |             |       |
|---------|-------------|-------|
| 1       | 522         | 408   |
| 2       | 522         | 488   |
| 3       | 545         | 415   |
| 4       | 526         | 396   |
| 5       | 575         | 492   |
| Ø       | $N_0 = 538$ | 439,8 |

Tabelle 1: Untergrundstrahlung bei laufendem Reaktor mit und ohne Menschen als Abschirmmaterial

## 4 Messwerte

| Zeit  | Al: [# <i>Impulse</i> ] |             | Cu: [# Impulse] |             | $\mathbf{X}$ : [# $Impulse$ ] |             |
|-------|-------------------------|-------------|-----------------|-------------|-------------------------------|-------------|
| [min] | $N_i$                   | $N_i - N_0$ | $N_{i}$         | $N_i - N_0$ | $N_i$ $N_i$                   | $N_i - N_0$ |
| 0     | -                       | -           | _               | _           | -                             | -           |
| 0,5   | 24505                   | 23967       | 24063           | 23525       | 11971                         | 11433       |
| 1,0   | 21163                   | 20625       | 22350           | 21812       | 11134                         | 10596       |
| 1,5   | 18339                   | 17801       | 20668           | 20130       | 10651                         | 10113       |
| 2,0   | 15840                   | 15302       | 19868           | 19330       | 10252                         | 10113       |
| 2,5   | 13718                   | 13180       | 18376           | 17838       | 9285                          | 8747        |
| 3,0   | 11656                   | 11118       | 17582           | 17044       | 8809                          | 8271        |
| 3,5   | 10279                   | 9741        | 16477           | 15939       | 8314                          | 7776        |
| 4,0   | 8744                    | 8206        | 15461           | 14923       | 8117                          | 7579        |
| 4,5   | 7612                    | 7074        | 14629           | 14097       | 7423                          | 6885        |
| 5,0   | 6536                    | 5998        | 13838           | 13300       | 7081                          | 6543        |
| 5,5   | 5961                    | 5423        | 12893           | 12355       | 6791                          | 6253        |
| 6,0   | 5102                    | 4564        | 12004           | 11466       | 6380                          | 5842        |
| 6,5   | 4426                    | 3888        | 11673           | 11135       | 6026                          | 5488        |
| 7,0   | 3948                    | 3410        | 11196           | 10658       | 5638                          | 5100        |
| 7,5   | 3381                    | 2843        | 10355           | 9817        | 5410                          | 4872        |
| 8,0   | 3060                    | 2522        | 10077           | 9539        | 5180                          | 4642        |
| 8,5   | 2691                    | 2153        | 9477            | 8939        | 4852                          | 4314        |
| 9,0   | 2300                    | 1762        | 9009            | 8471        | 4645                          | 4107        |
| 10,0  | 1930                    | 1392        | 8152            | 7614        | 4096                          | 3558        |

Tabelle 2: Anzahl der Impulse für verschiedene Materialien zu verschiedenen Zeitpunkten

# 5 Graphische Darstellung



Abbildung 1: Messwerte mit linearer Achse



Abbildung 2: Messwerte mit logarithmischer Achse

#### 6 Bestimmung der Halbwertszeiten

Anhand der Abklingkurven kann man nun die Halbwertszeiten ablesen.

Da der Verlauf der Aktivitätswerte durch den radioaktiven Zerfall einer Exponentialfunktion folgt, kann diese mittels exponentieller Regression näherungsweise bestimmt und anschließend die Halbwertszeit errechnet werden. Die aus den gemessenen Aktivitätswerten resultierenden Exponentialfunktionen sind folgende:

$$y_{\text{Al}} = e^{10.2344 - 0.3021 \cdot x}$$
  
 $y_{\text{Cu}} = e^{10.0940 - 0.1182 \cdot x}$   
 $y_{\text{X}} = e^{9.3969 - 0.1210 \cdot x}$ 

Nach der Bestimmung der Umkehrfunktionen lassen sich die Halbwertszeiten wie folgt berechnen:

$$T_{1/2} = y^{-1} \left( \frac{y(100)}{2} \right) - 100$$

Die damit berechneten Halbwertszeiten lauten:

 $T_{1/2; \, Al}: 2.29 \, \mathrm{min}$   $T_{1/2; \, Cu}: 5.86 \, \mathrm{min}$   $T_{1/2; \, X}: 5.72 \, \mathrm{min}$ 

Es handelt sich bei dem unbekannten Element also vermutlich um Messing.

## 7 Berechnen der Neutronenflussdichte am Bestrahlungsort

Laut Versuchsanleitung ergibt sich zur Berechnung der Neutronenflussdichte folgende Gleichung:

$$\Phi = \frac{(\mathbf{Z}(t_b) - n_0) \cdot \mathbf{AG}}{C \cdot V \cdot \rho \cdot P \cdot N_L \cdot \sigma \cdot \left[1 - \exp(-\ln(2)/T_{1/2} \cdot t_b)\right]}$$

 $Z(t_b)$ : (extrapolierte Zählrate für  $t=0=t_b$ )

 $n_0$ : Nulleffekt

AG: Atomgewicht des Probenmaterials

P: Anteil des betrachteten Isotops am Gemisch

...

Dabei ist P der Anteil des betrachteten Isotops am Gemisch, für Kupfer ist P = 0.309.

Mit Kupfer wurde der Proportionalitätsfaktor bestimmt und beträgt C=0,01, anhand von Volumen und Dichte lässt sich die Masse der Aluminium- und Kupfer-Proben berechnen und aus der gerade berechneten Halbwertszeit lässt sich die Zerfallskonstante berechnen.

Für Aluminium ergibt sich also für die Neutronenflussdichte:

$$\begin{split} \Phi &= \frac{\left(4640.79\,\frac{1}{\mathrm{s}} - 89.66\,\frac{1}{\mathrm{s}}\right) \cdot 27\,\frac{\mathrm{g}}{\mathrm{mol}}}{0.01 \cdot 0.71\,\mathrm{cm}^3 \cdot 2.2\,\frac{\mathrm{g}}{\mathrm{cm}^3} \cdot 6.025 * 10^{23}\,\frac{1}{\mathrm{mol}} \cdot 0.215 * 10^{-24}\,\mathrm{cm}^2 \cdot \left[1 - \exp\left(-\frac{\ln(2)}{2.29\,\mathrm{min}} \cdot 10\,\mathrm{min}\right)\right]}{\mathrm{s}} \\ &= 5.7 \cdot 10^7\,\frac{\mathrm{n}}{\mathrm{cm}^2 \cdot \mathrm{s}} \end{split}$$

Analog lässt sich die Neutronenflussdichte für Kupfer berechnen:

$$\begin{split} \Phi &= \frac{\left(4032.9\,\frac{1}{s} - 89.66\,\frac{1}{s}\right)\cdot65\,\frac{g}{mol}}{0.01\cdot0.71\,cm^3\cdot8.92\,\frac{g}{cm^3}\cdot6.025*10^{23}\,\frac{1}{mol}\cdot2.1*10^{-24}\,cm^2\cdot\left[1 - \exp\left(-\frac{\ln(2)}{5.86\,\text{min}}\cdot10\,\text{min}\right)\right]} \\ &= 1.3\cdot10^7\,\frac{n}{cm^2\cdot s} \end{split}$$

Es ergibt sich also ein Durchschnittswert von  $3.5 \cdot 10^7 \, \frac{\rm n}{\rm cm^2 \cdot s}$