since
$$\delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}$$
.

It follows that there is a simple method to solve a linear system Ax = d where A is tridiagonal (and $\delta_k \neq 0$ for k = 1, ..., n). For this, it is convenient to "squeeze" the diagonal matrix Δ defined such that $\Delta_{kk} = \delta_k/\delta_{k-1}$ into the factorization so that $A = (L\Delta)(\Delta^{-1}U)$, and if we let

$$z_1 = \frac{c_1}{b_1}$$
, $z_k = c_k \frac{\delta_{k-1}}{\delta_k}$, $2 \le k \le n-1$, $z_n = \frac{\delta_n}{\delta_{n-1}} = b_n - a_n z_{n-1}$,

 $A = (L\Delta)(\Delta^{-1}U)$ is written as

$$A = \begin{pmatrix} \frac{c_1}{z_1} & & & & \\ a_2 & \frac{c_2}{z_2} & & & \\ & a_3 & \frac{c_3}{z_3} & & & \\ & & \ddots & \ddots & \\ & & & a_{n-1} & \frac{c_{n-1}}{z_{n-1}} \\ & & & & a_n & z_n \end{pmatrix} \begin{pmatrix} 1 & z_1 & & & \\ & 1 & z_2 & & & \\ & & 1 & z_3 & & \\ & & & \ddots & \ddots & \\ & & & 1 & z_{n-2} & \\ & & & & 1 & z_{n-1} \\ & & & & 1 \end{pmatrix}.$$

As a consequence, the system Ax = d can be solved by constructing three sequences: First, the sequence

$$z_1 = \frac{c_1}{b_1}$$
, $z_k = \frac{c_k}{b_k - a_k z_{k-1}}$, $k = 2, \dots, n-1$, $z_n = b_n - a_n z_{n-1}$,

corresponding to the recurrence $\delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}$ and obtained by dividing both sides of this equation by δ_{k-1} , next

$$w_1 = \frac{d_1}{b_1}, \quad w_k = \frac{d_k - a_k w_{k-1}}{b_k - a_k z_{k-1}}, \quad k = 2, \dots, n,$$

corresponding to solving the system $L\Delta w = d$, and finally

$$x_n = w_n$$
, $x_k = w_k - z_k x_{k+1}$, $k = n - 1, n - 2, \dots, 1$,

corresponding to solving the system $\Delta^{-1}Ux = w$.

Remark: It can be verified that this requires 3(n-1) additions, 3(n-1) multiplications, and 2n divisions, a total of 8n-6 operations, which is much less that the $O(2n^3/3)$ required by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices (SPD matrices).