遺伝子マッピング法の違い

QTL解析とMutMap(QTL-seq)の比較

伝統的な方法 (1989-)

MutMapやQTL-seq

次世代シーケンスデータを使った 新しい手法 (2012-)

共通点

どちらもDNAマーカーと表現型の間の連関を調べて、 表現型にかかわる遺伝子の位置をマッピングする方法

伝統的な方法 (1989-)

MutMapやQTL-seq

次世代シーケンスデータを使った 新しい手法 (2012-)

(Lander & Botstein, 1989)

2. F2集団の全個体をシーケンシング(ジェノタイピング)

	Individuals								
SNP	#1	#2	#3	#4	#5	#6	#7	#8	#9
#1	Α	Α	Α	Н	В	Н	В	Н	Н
#2	Α	Α	Н	В	В	Н	В	Α	Н
#3	Α	Α	Н	В	В	Α	Н	Α	Н
#4	Н	Н	Н	Н	Н	Α	Н	Α	Н
#5	Α	Α	Н	В	Н	Н	Н	Α	Н
#6	Н	Н	Н	В	В	Н	Α	Н	Α
#7	В	Н	Н	Н	Н	Α	Α	В	Α
Phenotype	80	95	87	100	110	90	50	75	45

1. 交配

この情報から連鎖地図を作成することが可能 = ゲノム配列がなくても遺伝子マッピングが可能

伝統的な方法 (1989-)

利点

完全なゲノム配列が利用できなく ても使える (非モデル植物でも使える)

<u>欠点</u>

すべての個体をシーケンシングす るため、費用がかかる

MutMapやQTL-seq

次世代シーケンスデータを使った新しい手法 (2012-)

MutMap (Abe et al., 2012)

人為的に誘導した突然変異形質の 原因遺伝子をマッピングする手法

バルクしたDNAをシーケンシング

Journal of Japanese Biochemical Society 88(1): 44-53 (2016)

QTL-seq (Takagi et al. 2013)

品種間の形質の違いにかかわる量的 遺伝子座(QTL)をマッピングする 手法

バルクしたDNAをシーケンシング

Journal of Japanese Biochemical Society 88(1): 44-53 (2016)

伝統的な方法 (1989-)

利点

完全なゲノム配列が利用できなく ても使える (非モデル植物でも使える)

<u>欠点</u>

すべての個体をシーケンシングす るため、費用がかかる

MutMapやQTL-seq

次世代シーケンスデータを使った 新しい手法 (2012-)

欠点

完全なゲノム配列が解析に必要 (主にモデル植物で使える)

利点

バルクしたDNAをシーケンシングするため、少ない費用でできる