FUENTES DE CORRIENTE CONTINUA NO REGULADAS

TRABAJO PRÁCTICO Nº 1.1

Videos relacionados:

https://www.youtube.com/playlist?list=PLwKJrE8LSnfTwrPmFydwl3qWt4auZ4ET

Capacidades de los estudiantes al terminar esta práctica:

- Analizar y cuantificar las magnitudes sobre los componentes de una fuente no regulada de CC.
- Estimar valores y seleccionar componentes utilizando el método aproximado de cálculo de fuentes de CC a capacitor de entrada.
- Calcular fuentes de CC a capacitor de entrada utilizando el método de Schade y seleccionar componentes considerando situaciones de peor caso, tolerancias y valores límite.
- Identificar en las hojas de datos y utilizar parámetros significativos para el diseño de fuentes de CC en diodos, capacitores, etc.
- Seleccionar componentes comerciales atendiendo a valores máximos, mínimos y tolerancias, situaciones de caso peor, administrando márgenes de seguridad para el diseño.

URL: http://www.ing.unlp.edu.ar/electrotecnia/electronicos2/

Trabajo Práctico Nº 1.1:

FUENTES DE CORRIENTE CONTINUA NO REGULADAS

Trabajo previo sugerido:

- ¿Cómo es la forma de onda de la tensión y de la corriente de un rectificador de media onda sobre una carga resistiva pura?
- ¿Qué ventajas se obtienen al trabajar con un rectificador de onda completa?
- Calcular la potencia media en la carga utilizando un rectificador de media onda y comparar con uno de onda completa.
- Para un rectificador de onda completa, determinar la relación entre la corriente eficaz del secundario de un transformador con punto medio y la de un transformador con rectificador puente.
- Calcular el valor eficaz de la tensión sobre una resistencia, para un rectificador de media onda y para uno de onda completa.

Problema 1.

Para el siguiente circuito rectificador de onda completa tipo puente:

- a) Termine de definir con claridad las tensiones y corrientes en el diagrama esquemático y grafique cada una de ellas en función del tiempo indicando tiempos y amplitudes importantes como valores pico, etc.
- b) A partir de los gráficos realizados obtenga:
 - valores medios: Idc_I, Vdc_I, Idc _{D1}, Vdc_{D1}, Idc_O, Vdc_O (el subíndice i se refiere al secundario del transformador (de aquí en más "trafo")
 - valores eficaces: Irms_I, Vrms_I, Irms_{D1}, Vrms_{D1}, Irms_O, Vrms_O
- c) Determine la relación entre: Irms, e Irms_{D1}
- d) Calcule el factor de zumbido a la salida del rectificador

Problema 2:

Para el siguiente circuito rectificador de onda completa con punto medio:

- a) Defina tensiones y corrientes sobre el diagrama circuital.
- b) Realice los ítems b), c) y d) del problema anterior sobre este circuito.
- c) Analice comparativamente los circuitos vistos.

Problema 3

Un esquema de un secador de pelo se muestra en la figura siguiente:

- a) Dibuje los diodos del puente que alimenta el motor y detalle cómo circula la corriente por cada uno de ellos para las posiciones de la llave conmutadora.
- b) Diseñe las resistencias de balasto (RM) y calefactora (RH) considerando que la tensión nominal del motor es 30V y, a carga nominal, éste consume 300mA (se trata de un motor de corriente continua) y además la potencia calefactora máxima de RH es 2kW.
- c) Especifique los diodos del circuito y elija dos diodos comerciales distintos que cumplan las especificaciones por usted definidas.
- d) ¿qué potencia disipa RH en la posición 1 de la llave conmutadora?¿qué potencia total se consume desde la red eléctrica en las posiciones 1 y 2 de la llave?
- e) Simule y verifique.

Problema 4:

Diseñe por el método aproximado un circuito rectificador con filtro a capacitor de entrada que tome energía de la red eléctrica y que entregue una tensión media de salida de 15V para una corriente nominal de 0,6A.

El diseño implica determinar:

- a) La relación de vueltas del transformador.
- b) El valor del capacitor de filtrado para que, a la corriente nominal, el ripple sea 2V pico a pico (considere un tiempo de conducción para los diodos de 2 milisegundos).
- c) ¿Qué corriente no repetitiva máxima deben soportar los diodos?
- d) Estime la regulación del circuito.
- e) Seleccione capacitor y diodos de un catálogo de manera que dichos componentes cumplan los requerimientos solicitados.
- f) Verificar mediante simulación los cálculos realizados.

Se puede ver la capacidad de mantener la tensión de un transformador como el del problema (regulación) en el siguiente video:

https://www.youtube.com/watch?v=crsbfD0ydp8&ab channel=SantiagoAndr%C3%A9sVerne

Problema 5:

a) Calcule una fuente no regulada, a capacitor de entrada, cuyos datos son:

$$Vdc = 18V$$

$$r\% \leq 1,5\%$$

$$Idc = 0.5 A$$

$$R \leq 15\%$$

Estimar: $rs = 1\Omega$

- b) Calcule la corriente eficaz sobre el capacitor de filtrado y verifique si el capacitor elegido la soporta.
- c) Simular y verificar los resultados.

Problema 6

Diseñar por el método de Schade un rectificador directo a línea con los siguientes requerimientos:

Vdc = 280V $r\% \le 10\%$

 $Idc = 0.3 A \qquad R \leq 15\%$

Estimar: $rs = 50m\Omega$

Evalúe la problemática de la corriente pico no repetitiva. Calcule. ¿cómo podría solucionar esto? Googlee en la web…y recalcule si fuera necesario.

Problema 7:

Calcular una fuente no regulada, con inductor de entrada (¿Se podría utilizar una fuente a capacitor de entrada?), para los siguientes datos:

 $Vdc = 18 V \qquad Idc = 8 A \qquad r \% \le 1\%$

Fig. 18: Relación entre la corriente pico repetitiva y la corriente media por rectificador, en función de $n \omega R_{CARGA}$ C.

Cen F, y R_{CARGA} en Ω . $\omega = 2 \pi f$

f = frecuencia de línea n = 1 para media onda

n = 2 para onda completa

n = 0,5 para doblador de tensión

1N4001...1N4007, EM513

Silicon Rectifiers

Nominal current

Repetitive peak reverse voltage

100 ... 1600 V

The type 1N4004 is also available according British Telecom Specification D 7206.

These rectiliers are delivered laped. Details see "Taping".

58 A 2 according to DIN 41 883

Weight approx. 0.4 g Dimensions in mm

Absolute Maximum Ratings

		Symbol	Value	Unit
Repelitive Peak Reverse Voltage and	1N400Ï	V _{IRM} , V _{IRM}	50	V
Surge Peak Reverse Voltage	1N4002	V _{DDM} , V _{DSM}	100	V
V	1N4003	V _{DRM} , V _{DSM}	200) V
	1N4004	V _{RDM} , V _{DSM}	400	V
	1N4005	V _{RRM} , V _{RSM}	600	\ V
	1N4006	V _{nnm} , V _{nsm}	800	\ \ \
	1N4007	V _{nnm} , V _{nsm}	1000	V
	EM513	V _{RRM} , V _{RSM}	1600	
Nominal Current at Halfe Wave Rectification wit	h Resistive Load			
at $T_{amb} = -65$ to $+75$ °C		IFAV	11)	Α
at T _{amb} = 100 °C		I _{FAV}	0.751)	^
Repetitive Peak Forward Current at $\Theta < 40 ^{\circ}, 1 > 15 \text{Hz}, T_{\text{arrib}} = 25 ^{\circ}\text{C}$		I _{FRM}	101)	٨
Surge Forward Current, Half Cycle 50 Hz, starting from T _I = 25 °C		IFSM	50	Α
Junction Temperature		T ₁	175	က်
Ambient Operating Temperature Range		Tamb	– 65 lo + 175	°C
Slorage Temperature Range		Ts	-65 to +175	°C

1N4001 . . . 1N4007, EM513

Characteristics

	Symbol	Min.	Тур.	Max.	Unit
Forward Voltage at $I_F = 2 \Lambda$, $T_j = 25 ^{\circ}\text{C}$	V _F	-	_	1.3	٧
Leakage Current at V _{nnm} T _j = 25 °C T _j = 100 °C	I _{II}	 	_ _	5 50	μΑ μΑ
Thermal Resistance Junction to Ambient Air	Fun	-	-	60 1)	k/w

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 10 mm from case.

'General Purpose 105°C

A range of general purpose aluminium electrolytic capacitors featuring extended temperature range for power supply applications. Electrical connections via PCB snap-in terminals on a unified 10mm pitch. Recommended PCB hole size 2mm diameter.

Toinperi	ince toleranc nture range current	•	± 20% -25°C to + 105°C I = 0.02CV or 3m/ whichever is gree	
Life expe	ctancy at 10	5°C	2000 hours	
	Value	Ripple	(A) rms	
	μF	120Hz	t.	Dia.
16V	10,000	2.9	35	22
	15,000	2.92	50	22
	22,000	3.75	50	25
35 V	4700	1.62	30	22
	6800	2.07	35	22
	10,000	2.6	50	22
	15,000	3.25	40	30
35V	4700	1.89	35	22
	6800	2-45	45	22
	10,000	3.43	50	25
63 V	1000	1-1	25	22
	2200	1.6	35	22
	3300	2-15	50	22
	4700	2.75	50	25
	6800	3.6	50	30
	10,000	4-4	50	35
100V	1000	1-7	50	22
	2200	2-1	50	25
200V	220	0.8	25	22
	330	1.05	35	22
	470	1:3	45	22
	680	1.7	50	25
400V	, 68	0 63	30	22
	100	0.00	40	22
	220	1-42	45	30
Ripple c	urrent (ma:	x) quoted	st 120Hz and 105	·c
	Value		nck no	

	Value	stack no.
	μF	
· 16V	10,000	118-460
	15,000	118-476
i	22,000	118-482
25V	4700	118-498
	6800	118-505
	10,000	118-511
	15,000	118-527
35V	4700	118-533
	6800	118-549
	10,000	118-555
63V	1000	118-561
	2200	118-577
	3300	118-583
	4700	118-599
	6800	118-606
	10,000	118-612
100V	1000	118-628
	2200	118-634
200V	220	118-640
1	330	118-656
ł .	470	118-662
l	680	118-678
400V	68	118-684
1	100	118-690
1	220	118-707
I		

Compact size 105°C

A range of general purpose compact size aluminium electrolytic capacitors ideal for switch mode power supply applications. Features include extended temperature range and PCB snap-fit in terminals on a unified 10mm pitch.

Recommended PCB hole size 2mm diameter.

tochni	cal specifica	tion			
Capacitance tolerance Temperature range Leakage current Life expectancy at 105°C			± 20% -25°C to + 105°C I < 3 / CV (µA) 2000 hours		
16V	Value μF 10,000	Ripple 120Hz 2-6	(A) rms	L. 30	Din. 22

	Value	Ripple (A) rms		
	μF	12011z	L.	Dia
16V	10,000	2.6	30	22
	22,000	3.8	45	25
35 V	6800	2.6	40	22
	10,000	3 2	45	25
63V	2200	2	35	22
	4700	3	50	25
100V	1000	1-7	35	22
	2200	2 G	50	25
200V	220	1.0	25	22
	330	1.2	30	' 22
	470	1-4	35	25
	1000	2.2	45	35
400V	68	0.36	30	22
	100	0.69	35	22
	220	1.0	50	25
	330	1-2	50	30
Ripple	urrent (mn.	x) quoted at 120H:		

TSHA	value	stock no.
serios	μF.	
16V	10,000	127-773
	22,000	127-789
35V	6800	127-795
	10,000	127-802
63V	2200	127-818
	4700	127-824
100V	1000	127-830
	2200	127-846
200V	220	127-852
	330	127-868
	470	127-874
	1000	127-880
400V	68	127-919
	100	127-925
	220	127-931
	330	127-947

Wire Ended Axial 85°C

technical specification

A range of fully sleeved double-ended tubular electrolytic capacitors.

Capacitance tolerance	± 20%
Temperature range	-25° to +85°C
Leakage current, hiA = 0:01CV	or 3µA (whichever is greater) for
10V to 100V types. IµA = less th	

	Value	Ripple*				
	μF	mA	Ton			Lead
10V	22	40	0.19	l. 10:5	Dip	Dia
	47	90	0.19		4.5	0.6
	100	150	0.19	10·5 10·5	4.5	0.6
	220	250	0.19	10-5	6·3 6·3	0.6
	470	400	0.19	16	8	0.6
	1000	630	0-19	20	10	0.6
	2200	920	0.21	25	12.5	0.0
	4700	1200	0.25	25	16	0-8
25 V	10	40	0.14	10-5		0.0
	22	60	0.14		1.5	0.6
	47	130	0-14	10·5 10·5	4.5	0-6
	100	180	0.14	10.5	6-3	0.6
	220	310	0-14		6-3	0.6
	470	480	0-14	16 20	8 10	0.6
	1000	850	0.14	25	12-5	0-6
	2200	1200	0.16	25 25	16	0.8
	4700	1500	0.2	40	18	8 0
63V	10	55	0.09	10.5	45	0.6
	22	109	0.09	10-5	6.3	0.6
	47	160	0.09	16		06
	100	270	0.09	20	8	06
	220	450	0.09	25	8	06
	470	750	0.09	25 31:5	10	0.6
	1000	1100	0.03	31.5	12-5	0.8
	2200	1400	0.09	31·5 40	16	0.8
100V	1	16	0.09	10-5	22·4 4·5	0.8
	2.2	24	0.08	10.5	4.5	0·6
	4.7	40	0.08	105	4.5	0.6
	10	70	0 08	105	63	06
	22	115	0.08	16	8	06
	47	180	0.08	20	ě	06
	100	350 ·	0.08	25	10	0.6
	220	550	0.08	31-5	12-5	0.8
450V	1	21	0.2	16	0	0.6
	2.2	38	0.2	20	10	0.6
	4.7	63	0.2	25 .	12.5	0.8
	10	105	0.2	25	16	0.8
	22	161	0.2	40	16	0.8
	33	210	0.2	40	18	0-8
	47	260	0.25	50	22-4	0.8
"Hippi	o curren	tauote	d at 120	Hz nnd f	15°C	

SU series	value	stock no.
	μF	
10V	22	106-912
	47	106-928
	100	106-934
	220	106-940
	470	106-956
	1000	106-962
	2200	106-978
	4700	106-984
25V	10	106-990
	22	107-000
	47	107-016
	100	107-022
	220	107-038
	470	107-044
	1000	107-050
	2200	107-066
	4700	107-072
63V	10	107-088
	22	107-094
	47	107-101
	100	107-117
	220	107-123
	470	107-139
	1000	107-145
	2200	107-151

00 00:103	******	SIUCK IIU,
	μF	
100V	1	107-167
	2.2	107-173
	4.7	107-189
	10	107-195
	22	107-202
	47	107-218
	100	107-224
	220	107-230
450V	1	107-246
	2-2	107-252
	4-7	107-268
	10	107-274
	22	107-280
	33	107-296
	47	107-656
	47	107-050

Sti series value