

Note the de
$$\vec{E} = \frac{1}{4\pi\epsilon r^3} \left(\frac{3\vec{p} \cdot \vec{r}}{r^2} \vec{r} - \vec{p} \right)$$
 à partir de $V = \frac{\vec{p} \cdot \vec{r}}{4\pi\epsilon r^3}$. Sans prodre en généralité, on jeut orienter le rejet exhérique telle que $\vec{p} = 1/\sqrt{2}$ selon :

On a alors:

$$\vec{r} = r \vec{u}_r$$

$$\vec{p} = p \sin \theta \vec{u}_r + p \cos \theta \vec{u}_\theta$$

$$\vec{p} \cdot \vec{r} = p r \sin \theta$$
on calcule $\vec{E} = -\frac{1}{4\pi\epsilon} \left(\frac{\vec{p} \cdot \vec{r}}{4\pi\epsilon r^3} \right)$ où grad $= \frac{3}{3r} + \frac{1}{r} \frac{3}{3\theta} + \frac{1}{r \cos \theta} \frac{3}{3\theta}$
soit $\vec{E} = -\frac{1}{4\pi\epsilon} \left(\frac{\vec{p} \cdot \vec{r}}{r^2} \vec{u}_r^2 + \frac{pr}{r^3 p} \frac{3}{3\theta} \sin \theta \vec{u}_\theta \right)$

$$\vec{E} = \frac{1}{4\pi\epsilon r^3} \left(\frac{3\vec{p} \cdot \vec{r}}{r^2} \vec{r} - p \sin \theta \vec{u}_r^2 - p \cos \theta \vec{u}_\theta \right)$$

$$\vec{E} = \frac{1}{4\pi\epsilon r^3} \left(\frac{3\vec{p} \cdot \vec{r}}{r^2} \vec{r} - p \sin \theta \vec{u}_r^2 - p \cos \theta \vec{u}_\theta \right)$$

10.11-10.22

× On montre que dans le cas général d'une distribution de courant; la résultante des forces est:

 $\overrightarrow{F} = (\overrightarrow{m}, \overrightarrow{grad}) \overrightarrow{Best}$ nou vel opérateur différentiel: $m_{2e} \frac{\partial}{\partial x} \overrightarrow{u}_{x} \cdot + m_{y} \frac{\partial}{\partial y} \overrightarrow{u}_{y} \cdot + m_{3} \frac{\partial}{\partial 3} \overrightarrow{u}_{3}^{*}$