An Introduction to Quantum Natural Language Processing (QNLP)

Part 1:

Brief Introduction to Quantum Computing

Introduction to Quantum Computing

- Introduction to Quantum Computing
- Properties of Quantum Computing

- Introduction to Quantum Computing
- Properties of Quantum Computing
- ❖ Single Qubit Quantum Gates X, Y, Z, H, Rz, Rx

- Introduction to Quantum Computing
- Properties of Quantum Computing
- ❖ Single Qubit Quantum Gates X, Y, Z, H, Rz, Rx
- ❖ Multi Qubit Quantum Gates CX, CRz, CRx

- Introduction to Quantum Computing
- Properties of Quantum Computing
- ❖ Single Qubit Quantum Gates X, Y, Z, H, Rz, Rx
- ❖ Multi Qubit Quantum Gates CX, CRz, CRx
- ZX Calculus Representation of Quantum Gates

Introduction to Quantum Computing

Classical vs Quantum

Introduction to Quantum Computing

Classical vs Quantum

Classical Computing	Quantum Computing
Based on the principles of classical mechanics	Based on the principles of quantum mechanics
Uses classical bits 0 & 1	Uses Quantum Bits called Qubits, where bits can be in superposition. Represented as 0> & 1> (Ket 0 & Ket 1) or <0 & <1 (Bra 0 & Bra 1)
Hardware is composed of CMOS circuits	Hardware varies such as superconducting qubits, ion traps, optical photons.
Consists of Central Processing Units, processing in sequential manner	Consists of Quantum Processing Units, processing in parallel

Introduction to Quantum Computing

Introduction to Quantum Computing Concludes

Superposition

- Superposition
- Interference

- Superposition
- Interference
- Entanglement

Superposition

Superposition

Classical Bit 0

Superposition

Linear combination of quantum states or simultaneous occurrence of multiple quantum states! There can be 2^N states, where N is the number of qubits.

Classical Bit 1

Classical Bit 0

Superposition

Linear combination of quantum states or simultaneous occurrence of multiple quantum states! There can be 2^N states, where N is the number of qubits.

Interference

Interference

Interference

Constructive or Destructive Interference leads to some quantum states having high probability of measurement

Entanglement

Entanglement

Entanglement

❖ Pairs or groups of qubits exist as a single quantum state such that their properties are correlated, even if the qubits are separated by a long distance!

Entanglement

- ❖ Pairs or groups of qubits exist as a single quantum state such that their properties are correlated, even if the qubits are separated by a long distance!
- ❖ If two particles are entangled, then measuring properties of 1st particle will give you information about the 2nd particle

Properties of Quantum Computing Concludes

Single Qubit Quantum Logic Gates Pauli X Gate

Pauli X Gate

Pauli X Gate

Gate Truth Table

Inputs	Outputs
0>	1>
1>	0>

Pauli X Gate

Gate Truth Table

Inputs	Outputs
0>	1>
1>	0>

Single Qubit Quantum Logic Gates Pauli Y Gate

Pauli Y Gate

Pauli Y Gate

Gate Truth Table

Inputs	Outputs
0>	i 1>
1>	-i 0>

Pauli Y Gate

Gate Truth Table

Inputs	Outputs
0>	i 1>
1>	-i 0>

Pauli Z Gate

Pauli Z Gate

Pauli Z Gate

Gate Truth Table

Inputs	Outputs
0>	0>
1>	- 1>

Pauli Z Gate

Gate Truth Table

Inputs	Outputs
0>	0>
1>	- 1>

Single Qubit Quantum Logic Gates Hadamard (H) Gate

Single Qubit Quantum Logic Gates Hadamard (H) Gate

Hadamard (H) Gate

Gate Truth Table

Inputs	Outputs
0>	$ +> = \frac{ 0>+ 1>}{\sqrt{2}}$
1>	$ ->=\frac{ 0>- 1>}{\sqrt{2}}$

Hadamard (H) Gate

Gate Truth Table

Inputs	Outputs
0>	$ +> = \frac{ 0>+ 1>}{\sqrt{2}}$
1>	$ ->=\frac{ 0>- 1>}{\sqrt{2}}$

Hadamard (H) Gate

Gate Truth Table

Inputs	Outputs
0>	$ +> = \frac{ 0>+ 1>}{\sqrt{2}}$
1>	$ ->=\frac{ 0>- 1>}{\sqrt{2}}$

Hadamard gate is used to create superposition

Parameterized Gate - Rz Gate

Parameterized Gate - Rz Gate

Gate Symbol

Parameterized Gate - Rz Gate

Gate Symbol

Gate Operator

$$Rz = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{bmatrix}$$

Parameterized Gate - Rz Gate

Gate Symbol

Gate Operator

$$Rz = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{bmatrix}$$

Rotations around the Z axis of Bloch Sphere

Parameterized Gate - Rx Gate

Parameterized Gate - Rx Gate

Gate Symbol

Parameterized Gate - Rx Gate

Gate Symbol

Gate Operator

$$Rx = \begin{bmatrix} \cos\frac{\varphi}{2} & -i\sin\frac{\varphi}{2} \\ -i\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{bmatrix}$$

Parameterized Gate - Rx Gate

Gate Symbol

Gate Operator

$$Rx = \begin{bmatrix} \cos\frac{\varphi}{2} & -i\sin\frac{\varphi}{2} \\ -i\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{bmatrix}$$

Rotations around the X axis of Bloch Sphere

Single Qubit Quantum Gates Concludes

Multi Qubit Quantum Logic Gates CNOT (CX) Gate

Multi Qubit Quantum Logic Gates CNOT (CX) Gate

Multi Qubit Quantum Logic Gates CNOT (CX) Gate

Gate Truth Table

Inputs 1 st 2 nd	Outputs 1 st 2 nd
00>	00>
01>	01
10>	11>
11>	10>

CNOT (CX) Gate

Gate Truth Table

Inputs 1 st 2 nd	Outputs 1 st 2 nd
00>	00>
01>	01
10>	11>
11>	10>

CNOT (CX) Gate

Gate Truth Table

Inputs 1 st 2 nd	Outputs 1 st 2 nd
00>	00>
01>	01
10>	11>
11>	10>

CNOT Gate is used to create entanglement

Parameterized Control Gate - CRz Gate

Parameterized Control Gate - CRz Gate

Parameterized Control Gate - CRz Gate

Gate Operator

$$CRz = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-i\frac{\lambda}{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\frac{\lambda}{2}} \end{bmatrix}$$

Parameterized Control Gate - CRx Gate

Parameterized Control Gate - CRx Gate

Parameterized Control Gate - CRx Gate

CRx =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos \frac{\theta}{2} & 0 & -i \sin \frac{\theta}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -i \sin \frac{\theta}{2} & 0 & cos \frac{\theta}{2} \end{bmatrix}$$

Multi Qubit Quantum Gates Concludes

➤ A graphical language which can represent quantum circuit diagrams as linear maps between qubits

- ➤ A graphical language which can represent quantum circuit diagrams as linear maps between qubits
- ➤ It consists of diagrammatic rewrite rules which assists in the reasoning of quantum circuits

- ➤ A graphical language which can represent quantum circuit diagrams as linear maps between qubits
- ➤ It consists of diagrammatic rewrite rules which assists in the reasoning of quantum circuits
- ZX-diagrams are generated by two basic generators Z spiders and X spiders shown by white dots and grey dots respectively

- ➤ A graphical language which can represent quantum circuit diagrams as linear maps between qubits
- ➤ It consists of diagrammatic rewrite rules which assists in the reasoning of quantum circuits
- ZX-diagrams are generated by two basic generators Z spiders and X spiders shown by white dots and grey dots respectively
- > ZX calculus can be used to convert string diagrams into quantum circuits which is useful for QNLP

- ➤ A graphical language which can represent quantum circuit diagrams as linear maps between qubits
- ➤ It consists of diagrammatic rewrite rules which assists in the reasoning of quantum circuits
- ZX-diagrams are generated by two basic generators Z spiders and X spiders shown by white dots and grey dots respectively
- > ZX calculus can be used to convert string diagrams into quantum circuits which is useful for ONLP
- > ZX calculus is complete i.e. different set of rewrite rules are complete for different families of linear maps

Z & X Basis States

Z & X Basis States

Z & X Basis States

Z & X Basis States

|+>

Z & X Basis States

ZX Calculus Representation of Quantum Gates Hadamard & Unitary Quantum Gates

Hadamard & Unitary Quantum Gates

Hadamard Gate and its ZX components

Hadamard & Unitary Quantum Gates

Hadamard Gate and its ZX components

Unitary Gate or Parameterized Gate

Hadamard & Unitary Quantum Gates

Hadamard Gate and its ZX components

Unitary Gate or Parameterized Gate

Unitary Gate can be used to make other quantum gates

ZX Calculus Representation of Quantum Gates Concludes

References

- ❖ John van de Wetering, "ZX-calculus for the working quantum computer scientist", https://arxiv.org/abs/2012.13966
- ❖ Bob Coecke, "Foundations for Near Term Quantum Natural Language Processing", https://arxiv.org/abs/2012.03755
- ❖ Bob Coecke, "Compositionality as we see it, everywhere around us", https://arxiv.org/abs/2110.05327
- Stephen Clark, "Something Old, Something New: Grammar-based CCG Parsing with Transformer Models", https://arxiv.org/abs/2109.10044
- ❖ Bob Coecke, Aleks Kissinger, "Picturing Quantum Processes", Cambridge University Press, 2017
- ❖ Joachim Lambek, "From Word to Sentence: A Computational Algebraic Approach to Grammar", Polimetrica s.a.s., 2008

Thank you so much!