$12n_{0080} \ (K12n_{0080})$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle 11188446734u^{40} + 14624888210u^{39} + \dots + 38482965369b - 18882609362, \\ &- 471858393299u^{40} - 603105686012u^{39} + \dots + 38482965369a + 737953573358, \\ u^{41} + 2u^{40} + \dots - u - 1 \rangle \\ I_2^u &= \langle b, \ 3u^7 + u^6 - 4u^5 - 4u^4 + 5u^3 + 3u^2 + a - u - 5, \ u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 1.12 \times 10^{10} u^{40} + 1.46 \times 10^{10} u^{39} + \dots + 3.85 \times 10^{10} b - 1.89 \times 10^{10}, \ -4.72 \times 10^{11} u^{40} - 6.03 \times 10^{11} u^{39} + \dots + 3.85 \times 10^{10} a + 7.38 \times 10^{11}, \ u^{41} + 2u^{40} + \dots - u - 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 12.2615u^{40} + 15.6720u^{39} + \dots + 6.84293u - 19.1761 \\ -0.290738u^{40} - 0.380035u^{39} + \dots + 1.44537u + 0.490674 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.45682u^{40} - 4.64440u^{39} + \dots - 4.50872u + 4.12223 \\ 0.869179u^{40} + 1.73038u^{39} + \dots - 0.134593u - 0.868998 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 9.93735u^{40} + 13.3319u^{39} + \dots + 8.96828u - 18.9057 \\ 2.61664u^{40} + 5.42032u^{39} + \dots - 0.00831753u - 2.41607 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.06817u^{40} - 2.86404u^{39} + \dots - 3.90693u + 2.53206 \\ -0.127787u^{40} + 0.140106u^{39} + \dots - 0.336106u + 0.527977 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 10.3978u^{40} + 13.4001u^{39} + \dots + 5.65679u - 18.2402 \\ 0.964836u^{40} + 2.33975u^{39} + \dots + 1.11758u - 0.565279 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= \frac{\frac{1507194298715}{12827655123}u^{40} + \frac{1944574441589}{12827655123}u^{39} + \dots + \frac{274922951097}{4275885041}u - \frac{2104450199471}{12827655123}u^{39} + \dots + \frac{274922951097}{12827655123}u^{39} + \dots + \frac{27492951097}{12827655123}u^{39} + \dots + \frac{2749292951097}{12827655123}u^{39} + \dots + \frac{2749292951097}{12827655123}u^{39} + \dots + \frac{2749292951097}{12827655123}u^{39} + \dots + \frac{274929297}{12827655123}u^{39} + \dots + \frac{274929297}{12827655123}u^{39} + \dots + \frac{274929297}{12827655123}u^{39} + \dots + \frac{274929297}{$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} + 53u^{40} + \dots + 381u + 1$
c_2, c_4	$u^{41} - 9u^{40} + \dots - 29u + 1$
c_3, c_6	$u^{41} + 7u^{40} + \dots + 2176u - 256$
c_5, c_8	$u^{41} - 2u^{40} + \dots + u - 1$
c_{7}, c_{11}	$u^{41} - 2u^{40} + \dots - u + 1$
<i>c</i> ₉	$u^{41} + 2u^{40} + \dots + 12241u + 8353$
c_{10}, c_{12}	$u^{41} - 12u^{40} + \dots + 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - 121y^{40} + \dots + 73433y - 1$
c_2, c_4	$y^{41} - 53y^{40} + \dots + 381y - 1$
c_3, c_6	$y^{41} + 51y^{40} + \dots + 2801664y - 65536$
c_5, c_8	$y^{41} + 42y^{39} + \dots + 5y - 1$
c_7, c_{11}	$y^{41} - 12y^{40} + \dots + 5y - 1$
<i>c</i> ₉	$y^{41} + 36y^{40} + \dots + 949291005y - 69772609$
c_{10}, c_{12}	$y^{41} + 36y^{40} + \dots + 37y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.645157 + 0.706341I		
a = 0.129346 + 0.199509I	0.314025 + 0.700329I	9.78155 + 0.42575I
b = -0.707026 - 0.083217I		
u = -0.645157 - 0.706341I		
a = 0.129346 - 0.199509I	0.314025 - 0.700329I	9.78155 - 0.42575I
b = -0.707026 + 0.083217I		
u = 1.06514		
a = 1.21465	5.55858	18.6510
b = -0.619887		
u = 0.878483 + 0.257640I		
a = 1.36190 + 1.41715I	0.35281 + 3.72015I	8.01877 - 8.67695I
b = -0.395484 - 1.274730I		
u = 0.878483 - 0.257640I		
a = 1.36190 - 1.41715I	0.35281 - 3.72015I	8.01877 + 8.67695I
b = -0.395484 + 1.274730I		
u = 0.863822 + 0.692291I		
a = -0.710177 + 0.248903I	-2.33978 + 2.66185I	4.87613 - 3.55699I
b = 0.360833 - 0.064088I		
u = 0.863822 - 0.692291I		
a = -0.710177 - 0.248903I	-2.33978 - 2.66185I	4.87613 + 3.55699I
b = 0.360833 + 0.064088I		_
u = 0.850650 + 0.773602I		
a = 0.65587 - 1.74300I	-4.76432 + 2.07222I	3.47881 - 9.56031I
b = -0.305447 - 0.669138I		
u = 0.850650 - 0.773602I		
a = 0.65587 + 1.74300I	-4.76432 - 2.07222I	3.47881 + 9.56031I
b = -0.305447 + 0.669138I		
u = 1.113340 + 0.298427I		
a = -2.09473 - 1.98305I	-6.81237 + 7.94638I	6.00000 - 5.66643I
b = 0.58426 + 1.64109I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.113340 - 0.298427I		
a = -2.09473 + 1.98305I	-6.81237 - 7.94638I	6.00000 + 5.66643I
b = 0.58426 - 1.64109I		
u = -1.123200 + 0.281615I		
a = 0.82820 - 2.54731I	-6.69343 + 0.45475I	6.00000 + 0.74518I
b = 0.17091 + 1.62625I		
u = -1.123200 - 0.281615I		
a = 0.82820 + 2.54731I	-6.69343 - 0.45475I	6.00000 - 0.74518I
b = 0.17091 - 1.62625I		
u = -0.821741 + 0.155454I		
a = -1.49310 + 0.28695I	0.614586 - 0.353193I	8.75569 + 0.62140I
b = 0.000254 - 0.581031I		
u = -0.821741 - 0.155454I		
a = -1.49310 - 0.28695I	0.614586 + 0.353193I	8.75569 - 0.62140I
b = 0.000254 + 0.581031I		
u = -0.829859 + 0.817277I		
a = -1.080080 - 0.171992I	-6.22251 + 1.37166I	0 2.74151I
b = 0.03664 - 2.09736I		
u = -0.829859 - 0.817277I		
a = -1.080080 + 0.171992I	-6.22251 - 1.37166I	0. + 2.74151I
b = 0.03664 + 2.09736I		
u = 0.739042 + 0.910928I		
a = -0.097736 - 0.296625I	-14.7874 + 0.6933I	0 1.66266I
b = -0.10739 + 1.92349I		
u = 0.739042 - 0.910928I		
a = -0.097736 + 0.296625I	-14.7874 - 0.6933I	0. + 1.66266I
b = -0.10739 - 1.92349I		
u = -0.746747 + 0.906172I		
a = -0.099105 - 0.285226I	-14.9445 + 7.5314I	0 2.54363I
b = 0.82858 + 1.91790I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.746747 - 0.906172I		
a = -0.099105 + 0.285226I	-14.9445 - 7.5314I	0. + 2.54363I
b = 0.82858 - 1.91790I		
u = 0.010347 + 0.818382I		
a = -0.096572 + 0.286828I	-10.51980 - 4.16733I	0.66529 + 2.27689I
b = 0.37826 - 1.80255I		
u = 0.010347 - 0.818382I		
a = -0.096572 - 0.286828I	-10.51980 + 4.16733I	0.66529 - 2.27689I
b = 0.37826 + 1.80255I		
u = 0.913540 + 0.760932I		
a = -0.676289 + 1.093800I	-4.56999 + 3.72466I	3.33454 + 2.09517I
b = -0.209840 + 0.757944I		
u = 0.913540 - 0.760932I		
a = -0.676289 - 1.093800I	-4.56999 - 3.72466I	3.33454 - 2.09517I
b = -0.209840 - 0.757944I		
u = -0.893232 + 0.810220I		
a = -0.95737 - 1.53330I	-8.47280 - 3.03045I	0. + 2.81396I
b = 2.34407 + 0.13131I		
u = -0.893232 - 0.810220I		
a = -0.95737 + 1.53330I	-8.47280 + 3.03045I	0 2.81396I
b = 2.34407 - 0.13131I		
u = -1.010010 + 0.669120I		
a = 0.541263 + 0.790129I	1.39688 - 6.02924I	12.17156 + 3.37002I
b = -0.710082 - 0.023150I		
u = -1.010010 - 0.669120I		
a = 0.541263 - 0.790129I	1.39688 + 6.02924I	12.17156 - 3.37002I
b = -0.710082 + 0.023150I		
u = -0.944017 + 0.784096I		
a = 1.80124 - 0.03860I	-5.86990 - 7.37157I	6.00000 + 8.00321I
b = -0.19373 + 2.11976I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
\overline{u}	= -0.944017 - 0.784096I		
a	= 1.80124 + 0.03860I	-5.86990 + 7.37157I	6.00000 - 8.00321I
b	= -0.19373 - 2.11976I		
\overline{u}	= -1.028850 + 0.790391I		
a	= -2.50865 - 0.19833I	-14.0605 - 13.8029I	0
b	= 0.91594 - 1.85439I		
\overline{u}	=-1.028850 - 0.790391I		
a	= -2.50865 + 0.19833I	-14.0605 + 13.8029I	0
_ <i>b</i>	= 0.91594 + 1.85439I		
\overline{u}	= 1.035690 + 0.788962I		
a	= 2.07595 + 0.63512I	-13.8581 + 5.5876I	0
b	= -0.21521 - 1.85036I		
\overline{u}	= 1.035690 - 0.788962I		
a	= 2.07595 - 0.63512I	-13.8581 - 5.5876I	0
b	= -0.21521 + 1.85036I		
\overline{u}	t = -0.691121		
a	= 7.56339	-0.704951	91.2610
	=-0.229386		
u	= 0.593654 + 0.309854I		
a	= -2.47422 + 0.91083I	-2.54134 + 1.31981I	0.58683 - 4.31452I
_ <u>b</u>	= 1.073020 - 0.556578I		
u	= 0.593654 - 0.309854I		
a	= -2.47422 - 0.91083I	-2.54134 - 1.31981I	0.58683 + 4.31452I
	= 1.073020 + 0.556578I		
\overline{u}	t = -0.530048		
a	=-0.522918	0.790977	12.7730
<i>b</i>	=-0.246323		
u	= 0.122257 + 0.387519I		
a	= -1.73330 + 0.73700I	-1.72184 - 1.26203I	-0.75083 + 2.53377I
<u>b</u>	= 0.199239 + 0.977182I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.122257 - 0.387519I		
a = -1.73330 - 0.73700I	-1.72184 + 1.26203I	-0.75083 - 2.53377I
b = 0.199239 - 0.977182I		

$$\text{II. } I_2^u = \langle b,\ 3u^7 + u^6 - 4u^5 - 4u^4 + 5u^3 + 3u^2 + a - u - 5,\ u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{7} - u^{6} + 4u^{5} + 4u^{4} - 5u^{3} - 3u^{2} + u + 5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3u^{7} - u^{6} + 4u^{5} + 4u^{4} - 5u^{3} - 3u^{2} + u + 5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} - u \\ u^{7} - u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u^{7} - u^{6} + 5u^{5} + 4u^{4} - 5u^{3} - 3u^{2} + 2u + 5 \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $9u^7 + 6u^6 8u^5 14u^4 + 15u^3 + 9u^2 4u 15u^2 + 9u^2 4u 15u^2 + 9u^2 + 9u^$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_3, c_6	u^8
<i>C</i> ₄	$(u+1)^8$
<i>C</i> ₅	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_7	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_8, c_9	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_{10}	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c_{11}	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{12}	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_{3}, c_{6}	y^8
c_5, c_8, c_9	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_7, c_{11}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_{10}, c_{12}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.570868 + 0.730671I		
a = 0.615431 - 0.295452I	-0.604279 + 1.131230I	1.78185 - 1.82144I
b = 0		
u = -0.570868 - 0.730671I		
a = 0.615431 + 0.295452I	-0.604279 - 1.131230I	1.78185 + 1.82144I
b = 0		
u = 0.855237 + 0.665892I		
a = -1.68119 - 0.49658I	-3.80435 + 2.57849I	-2.57592 - 5.06085I
b = 0		
u = 0.855237 - 0.665892I		
a = -1.68119 + 0.49658I	-3.80435 - 2.57849I	-2.57592 + 5.06085I
b = 0		
u = 1.09818		
a = 0.532015	4.85780	6.04790
b = 0		
u = -1.031810 + 0.655470I		
a = 0.473764 + 0.240160I	0.73474 - 6.44354I	3.16642 + 7.92550I
b = 0		
u = -1.031810 - 0.655470I		
a = 0.473764 - 0.240160I	0.73474 + 6.44354I	3.16642 - 7.92550I
b = 0		
u = -0.603304		
a = 4.65198	-0.799899	-13.7930
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{41} + 53u^{40} + \dots + 381u + 1)$
c_2	$((u-1)^8)(u^{41}-9u^{40}+\cdots-29u+1)$
c_3, c_6	$u^8(u^{41} + 7u^{40} + \dots + 2176u - 256)$
C4	$((u+1)^8)(u^{41} - 9u^{40} + \dots - 29u + 1)$
<i>C</i> 5	$(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)(u^{41} - 2u^{40} + \dots + u - 1)$
<i>c</i> ₇	$(u^8 + u^7 + \dots - 2u - 1)(u^{41} - 2u^{40} + \dots - u + 1)$
c ₈	$ (u8 + u7 - 3u6 - 2u5 + 3u4 + 2u - 1)(u41 - 2u40 + \dots + u - 1) $
c_9	$ (u8 + u7 - 3u6 - 2u5 + 3u4 + 2u - 1)(u41 + 2u40 + \dots + 12241u + 8353) $
c_{10}	$(u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{41} - 12u^{40} + \dots + 5u - 1)$
c_{11}	$(u^8 - u^7 + \dots + 2u - 1)(u^{41} - 2u^{40} + \dots - u + 1)$
c_{12}	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)$ $\cdot (u^{41} - 12u^{40} + \dots + 5u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{41} - 121y^{40} + \dots + 73433y - 1)$
c_2, c_4	$((y-1)^8)(y^{41} - 53y^{40} + \dots + 381y - 1)$
c_3, c_6	$y^{8}(y^{41} + 51y^{40} + \dots + 2801664y - 65536)$
c_5, c_8	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{41} + 42y^{39} + \dots + 5y - 1)$
c_7,c_{11}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{41} - 12y^{40} + \dots + 5y - 1)$
<i>c</i> 9	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{41} + 36y^{40} + \dots + 949291005y - 69772609)$
c_{10}, c_{12}	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{41} + 36y^{40} + \dots + 37y - 1)$