Principles of Robot Autonomy I: Homework 2

Student Name October 16, 2024

Problem 1

(i) Transcription to Finite Dimensional Optimization Problem

To transcribe this optimal control problem into a finite-dimensional constrained optimization problem, we use direct transcription with discretization. Let's discretize the time interval $[0, t_f]$ into N segments with time step Δt , where $t_i = i \cdot \Delta t$ for $i = 0, 1, \ldots, N$, and $t_N = t_f$.

Decision Variables:

The optimization variables are:

$$\mathbf{z} = [x_0, y_0, \theta_0, \dots, x_N, y_N, \theta_N, v_0, \omega_0, \dots, v_{N-1}, \omega_{N-1}, t_f]$$
(1)

This gives us 3(N+1) + 2N + 1 = 5N + 4 decision variables.

Objective Function:

The continuous cost functional is discretized using numerical integration (e.g., trapezoidal rule or rectangle rule):

$$\min_{\mathbf{z}} \quad J = \sum_{i=0}^{N-1} \left(\alpha + v_i^2 + \omega_i^2 \right) \Delta t \tag{2}$$

where $\Delta t = t_f/N$.

Constraints:

1. Initial Conditions:

$$x_0 = 0 \tag{3}$$

$$y_0 = 0 (4)$$

$$\theta_0 = \pi/2 \tag{5}$$

2. Final Conditions:

$$x_N = 5 \tag{6}$$

$$y_N = 5 (7)$$

$$\theta_N = \pi/2 \tag{8}$$

3. Dynamics Constraints (using forward Euler integration):

For i = 0, 1, ..., N - 1:

$$x_{i+1} = x_i + v_i \cos(\theta_i) \Delta t \tag{9}$$

$$y_{i+1} = y_i + v_i \sin(\theta_i) \Delta t \tag{10}$$

$$\theta_{i+1} = \theta_i + \omega_i \Delta t \tag{11}$$

4. Collision Avoidance Constraints:

For
$$i = 0, 1, ..., N$$
:

$$\sqrt{(x_i - 2.5)^2 + (y_i - 2.5)^2} - 0.4 \ge 0 \tag{12}$$

where $0.4 = r_{eqo} + r_{obstacle} = 0.1 + 0.3$.

Complete Optimization Problem:

$$\min_{\mathbf{z}} \quad \sum_{i=0}^{N-1} \left(\alpha + v_i^2 + \omega_i^2 \right) \frac{t_f}{N} \tag{13}$$

subject to
$$x_0 = 0$$
, $y_0 = 0$, $\theta_0 = \pi/2$ (14)

$$x_N = 5, \quad y_N = 5, \quad \theta_N = \pi/2$$
 (15)

$$x_{i+1} = x_i + v_i \cos(\theta_i) \frac{t_f}{N}, \quad i = 0, \dots, N-1$$
 (16)

$$y_{i+1} = y_i + v_i \sin(\theta_i) \frac{t_f}{N}, \quad i = 0, \dots, N-1$$
 (17)

$$\theta_{i+1} = \theta_i + \omega_i \frac{t_f}{N}, \quad i = 0, \dots, N - 1$$
(18)

$$\sqrt{(x_i - 2.5)^2 + (y_i - 2.5)^2} \ge 0.4, \quad i = 0, \dots, N$$
(19)

$$t_f > 0 \tag{20}$$

(ii) Implementation Approach

The key components are:

1. Parameterization: The trajectory is discretized into N time steps. The decision variables

The implementation of the trajectory optimization uses the direct transcription method with scipy.optimize.mi

- 1. Parameterization: The trajectory is discretized into N time steps. The decision variables include the state at each time step (x_i, y_i, θ_i) and controls (v_i, ω_i) , along with the final time t_f .
- **2. Objective Function:** The cost is computed as:

$$J = \sum_{i=0}^{N-1} \left(\alpha + v_i^2 + \omega_i^2\right) \Delta t \tag{21}$$

- 3. Constraint Handling: Constraints are implemented as:
 - Equality constraints for boundary conditions (initial and final states)
 - Equality constraints for dynamics (discretized using Euler integration)
 - Inequality constraints for collision avoidance at each discretization point
- 4. Optimization: The scipy.optimize.minimize function with the SLSQP (Sequential Least Squares Programming) method is used to solve the constrained nonlinear optimization problem. This method handles both equality and inequality constraints efficiently.
- **5. Initial Guess:** A good initial guess is crucial for convergence. Typically, a straight-line path in configuration space with constant controls provides a reasonable starting point.

The optimized trajectory successfully navigates from the start to the goal while avoiding the obstacle at (2.5, 2.5) with radius 0.3.

[Include trajectory plot here from the notebook]

(iii) Effect of Different α Values

The parameter α in the cost function $J = \int_0^{t_f} (\alpha + v^2 + \omega^2) dt$ balances time optimality versus control effort:

Small α (e.g., $\alpha = 0.1$):

- The optimizer prioritizes minimizing control effort $(v^2 + \omega^2)$ over time
- Results in slower, smoother trajectories with smaller velocities and angular rates
- The robot takes longer to reach the goal but uses less aggressive control actions
- The trajectory tends to follow a more conservative path around the obstacle

Medium α (e.g., $\alpha = 1.0$):

- Provides a balanced trade-off between time and control effort
- The trajectory completes in moderate time with reasonable control magnitudes
- Represents a practical compromise for real robot systems

Large α (e.g., $\alpha = 10.0$):

- The optimizer strongly prioritizes minimizing time t_f
- Results in faster trajectories with larger control inputs
- The robot reaches the goal quickly but with more aggressive maneuvers
- May lead to higher velocities and sharper turns around the obstacle
- The trajectory becomes closer to minimum-time control

Summary: As α increases, the weight on time increases relative to control effort, leading to faster but more aggressive trajectories. Conversely, smaller α values produce slower, smoother paths that conserve energy. The choice of α should reflect the specific application requirements: use larger values when time is critical, and smaller values when smooth, energy-efficient motion is preferred.

Problem 2

- (i)
- (ii)
- (iii)

Problem 3

- (i)
- (ii)
- (iii)
- (iv)

Problem 4

Note: This problem is not graded but should be completed for section preparation.

- (i)
- (ii)

Appendix A: Code Submission Template

PASTE CODE HERE