Niveles de confianza

•••

Lucía Basili, Arianna Rodríguez y Lara Sakamoto Laboratorio 4 - Verano 2025

Índice

- 1) Repaso de conceptos claves
- 2) Intervalo de Probabilidad
- 3) Intervalo de Confianza
- 4) Distribución de Student
- 5) Aplicaciones de los niveles de confianza orientado al análisis de datos

1. Repaso: Conceptos claves

- Medición afectada por fluctuaciones $\qquad \longrightarrow \qquad X = X_0 + \delta X$ aleatorias

Gran cantidad de mediciones

distrib. medias muestrales

≈

distrib. normal

Desviación estándar de la distrib.
 de medias muestrales

$$\longrightarrow \sigma[m^*] = \frac{\sigma}{\sqrt{N}}$$

2. Intervalo de probabilidad

¿Cual es la probabilidad de que la media muestral m* esté incluida en un intervalo dado, centrado en el valor verdadero Xv = m = m[m*]?

$$|m^* - m| < k\sigma[m^*] \longrightarrow \frac{m^* - m}{\sigma[m^*]} < k$$

Variable normal
$$z=\frac{m^*-m}{\sigma[m^*]}$$
 Transformamos a una distribución normal estándar

Transformamos a una

Integral de la distribución normal estándar:

$$\mathcal{P}_k = \mathcal{P}\{|z| < k\} = \frac{1}{\sqrt{2\pi}} \int_{-k}^{+k} \exp[-z^2/2] dz$$

Pero...

En la mayoría de los casos, no conocemos la población

<u>samos entonces el intervalo de confianza</u>

O ---- Desviación estándar poblacional

 $\overset{m{\sim}}{m{\sigma}}$ — Desviación estándar experimental

 $\sigma^{f au}$ — Desviación estándar muestral

 $\tilde{\sigma}[m^*]$ — Desviación estándar experimental a partir de la media muestral

3. Intervalo de confianza

$$\tilde{m} = m^* = \frac{1}{N} \sum_{i} x_i$$

¿Cuál es la probabilidad de que un intervalo centrado en m* contenga a Xv = m = m[m*]?

Intervalo de $m^* - \sigma[m^*]$ $m^* + \sigma[m^*]$ $m^* + \sigma[m^*]$ $m^* + 2\sigma[m^*]$ $m^* + 2\sigma[m^*]$

Intervalo de confianza con σ[m*] conocida

$$m^* - k \sigma[m^*] < m < m^* + k \sigma[m^*]$$

Intervalo de confianza con σ[m*] desconocida

$$\tilde{\sigma}[m^*] = \frac{\tilde{\sigma}}{\sqrt{N}} = \frac{\sigma^*}{\sqrt{N-1}} = \sqrt{\frac{1}{N(N-1)}} \sum (x_i - m^*)^2$$

$$m^* - k\,\tilde{\sigma}[m^*] < m < m^* + k\,\tilde{\sigma}[m^*]$$

Carácter aleatorio

• Factor de cobertura

$$\frac{|m^* - m|}{\tilde{\sigma}[m^*]} < k$$

• Variable estándar

$$t = \frac{m^* - m}{\tilde{\sigma}[m^*]}$$

$$\mathcal{P}'_k = \mathcal{P}\{|t| < k\}$$

4. Distribución de Student

$$S_{
u}(t) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\,\Gamma\left(rac{
u}{2}
ight)}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+1}{2}}$$

- $k = 1 \rightarrow \text{probabilidad del } 68.26\%$
- $k = 2 \rightarrow \text{probabilidad del } 95\%$
- $k = 3 \rightarrow \text{probabilidad del } 99.7\%$

Niveles de confianza:

$$P'_{k} = P\{|t| < k\} = \int_{-k}^{+k} S_{\nu}(t) dt.$$

Probabilidad de que la verdadera medida m caiga dentro del intervalo de confianza

5. Aplicaciones al análisis de datos

5. 1: Comparación de diferentes mediciones de la misma cantidad:

$$N$$
 = 20 $ightarrow \left\{egin{array}{c} m^*=2.5 \ ilde{\sigma}[m^*]=0.5 \end{array}
ight.
ig$

Cuántas desviaciones estándar hay entre m* y m:

$$z = rac{m^* - m}{ ilde{\sigma}[m^*]} \hspace{0.5cm} = \hspace{0.5cm} z = rac{m^* - m}{ ilde{\sigma}[m^*]} = rac{2.5 - 1.8}{0.5} = 1.4.$$

→ hay un 16% de probabilidad de obtener una discrepancia mayor a 1.4 por azar!

5. 2: Rechazo de datos : criterio de Chauvenet

Ejemplo:

6 mediciones de una cantidad física: $2.7, 2.5, 2.8, 1.5, 2.4, 2.9 \rightarrow$

$$x_s = 1.5$$

se obtuvo:
$$m^*=2.46$$

y
$$ilde{\sigma}=0.5$$

Discrepancia relativa:

$$\rightarrow$$

 $\rightarrow \nu = 5 \text{ degrees of freedom}$

$$t = \frac{x_s - \tilde{m}}{\tilde{\sigma}} = 1.92 \simeq 2 \; .$$

→ hay aproximadamente un 10% de probabilidad de que un valor alejado más de 2 desviaciones estándar ocurra por puro azar.

El **criterio de Chauvenet** sugiere que un dato debe rechazarse si el número esperado de valores más alejados que él es menor de 0.5.

Gracias por escuchar!

(aplausos)

Apéndice

Apéndice

¿Por qué Student \rightarrow Standard normal?

Student Distribution:

$$S_
u(t) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\,\Gamma\left(rac{
u}{2}
ight)}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+1}{2}}$$

• Para $v \rightarrow \infty$ el término $\frac{t^2}{2}$

 $\frac{t^2}{2}$ tiende a 0 y la

ecuación se transforma en:

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{-x^2}{2}}$$

^{*}la función Gamma aparece en el coeficiente de normalización, que garantiza que el área bajo la curva sea 1 (como debe ser para cualquier distribución de probabilidad)

Table C.5. The table gives the percent confidence levels \mathcal{P}' for selected values of coverage factor k (first row) and degrees of freedom ν (first column). The value k=1 corresponds to the standard uncertainty, measured by the estimate of the standard deviation of the sample means $\delta X = \tilde{\sigma}[m^*]$. The value $\nu = \infty$ corresponds to the asymptotic limit, where the Student distribution S(t) becomes equal to the standard normal distribution $\phi(z)$.

$\overline{k} \rightarrow$	1	1.5	2	2.5	3
$\nu=1$	50.00	62.57	70.48	75.78	79.52
$\nu=2$	57.74	72.76	81.65	87.04	90.45
$\nu=3$	60.90	76.94	86.07	91.23	94.23
$\nu = 4$	62.61	79.20	88.39	93.32	96.01
$\nu = 5$	63.68	80.61	89.81	94.55	96.99
$\nu = 6$	64.41	81.57	90.76	95.35	97.60
$\nu = 7$	64.94	82.27	91.44	95.90	98.01
$\nu = 8$	65.34	82.80	91.95	96.31	98.29
$\nu = 9$	65.66	83.21	92.34	96.61	98.50
ν =10	65.91	83.55	92.66	96.86	98.67
ν =15	66.68	84.56	93.61	97.55	99.10
$\nu=20$	67.07	85.08	94.07	97.88	99.29
$\nu = 30$	67.47	85.59	94.54	98.19	99.46
$\nu = 40$	67.67	85.85	94.77	98.34	99.54
$\nu=50$	67.79	86.01	94.91	98.43	99.58
$\nu = 100$	68.03	86.32	95.18	98.60	99.66
$\nu = \infty$	68.27	86.64	95.45	98.76	99.73