Package 'GEC'

September 27, 2022

Type Package

Title Generalized Exponentiated Composite Distributions

Version 0.1.0
Author Bowen Liu [aut, cre], Malwane M.A. Ananda [aut]
Maintainer Bowen Liu bowen.liu@unlv.edu>
Description The framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions.
License GPL-3
Encoding UTF-8
LazyData true
Imports stats, mistr RoxygenNote 7.2.1 R topics documented:
asymptotic_eep
asymptotic_eigp
cdf_eep
cdf_eigp
eep_nll
eep_optim
eep_sampling
eigp_nll
eigp_optim
eigp_sampling
exp_eep

 hazard_eep
 9

 hazard_eigp
 10

 inv_gamma_eigp
 10

 LRT_eep
 11

 LRT_eigp
 12

 mle_eep
 12

 mle_eigp
 13

 mle_iter_eep
 14

2 asymptotic_eep

Index		25
	validation	24
	se_eigp	
	se_eep	
	raw_est_eigp	
	raw_est_eep	
	q_eigp	20
	q_eep	20
	pdf_eigp	19
	pdf_eep	19
	pareto_eigp	18
	pareto_eep	17
	neg_log_eigp	17
	neg_log_eep	16
	mle_search_eigp	15
	mle_search_eep	15
	mle_iter_eigp	14

asymptotic_eep

Asymptotic Wald's test for testing the exponent in a EEP model.

Description

This function computes the test statistic and the p-value of Wald's test for the exponent parameter in EEP model.

Usage

```
asymptotic_eep(data, eta0, theta1, eta1)
```

Arguments

data n by 1 vector with all positive entries.

To test if the exponent equals 1, the default for eta0 is et to be 1.

theta1 The unrestricted MLE of theta.
eta1 The unrestricted MLE of eta.

Details

```
asymptotic_eep
```

Value

This function returns the test statistic and the p-value of the Wald's test.

```
sample1 = eep_sampling(1000,eta = 1.1,theta = 3)
theta1 = mle_search_eep(data = sample1)$theta
eta1 = mle_search_eep(data = sample1)$eta
asymptotic_eep(sample1,eta0 = 1,theta1,eta1)
```

asymptotic_eigp 3

asymptotic_eigp	as	ymptotic_eigp	Asymptotic Wald's test for testing the exponent in a EIGP model.	
-----------------	----	---------------	--	--

Description

This function computes the test statistic and the p-value of Wald's test for the exponent parameter in EIGP model.

Usage

```
asymptotic_eigp(data, eta0 = 1, theta1, eta1)
```

Arguments

data n by 1 vector with all positive entries.

To test if the exponent equals 1, the default for eta0 is et to be 1.

theta1 The unrestricted MLE of theta.
eta1 The unrestricted MLE of eta.

Details

```
asymptotic_eigp
```

Value

This function returns the test statistic and the p-value of the Wald's test.

Examples

```
sample1 = eigp_sampling(1000,eta = 1.1,theta = 3)
theta1 = mle_search_eigp(data = sample1)$theta
eta1 = mle_search_eigp(data = sample1)$eta
asymptotic_eigp(sample1,eta0 = 1,theta1,eta1)
```

cdf_eep

The cumulative distribution function of EEP.

Description

```
cdf_eep
```

Usage

```
cdf_eep(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

4 eep_nll

Value

Return the cumulative probability of EEP at the specific location.

Examples

```
cdf_eep(1,2,5)
```

cdf_eigp

The cumulative distribution function of EIGP.

Description

cdf_eigp

Usage

```
cdf_eigp(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

Value

Return the cumulative probability of EIGP at the specific location.

Examples

```
cdf_{eigp}(1,2,5)
```

eep_nll

The EEP negative log-likelihood function.

Description

This function serves as the objective function for the Maximum Likelihood Estimation procedure for EEP.

Usage

```
eep_nll(x, m, data)
```

Arguments

A 2 by 1 vector.

m is the number of data items less than the density change point

data n by 1 vector with all positive entries

eep_optim 5

Details

```
eep_nll
```

x is a 2 by 1 vector; m denotes the number of data items less than the density change point; data is a n by 1 vector, where n denotes the sample size of the data.

Examples

```
eep_nll(c(2,2),50,seq(1:100))
```

eep_optim	The wrapper function that returns the final estimates from Maximum
	Likelihood Estimation.

Description

This function serves as a wrapper that returns the final estimates of theta, eta, and the corresponding density change point

Usage

```
eep_optim(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data a n by 1 vector with all positive entries.

init a 2 by 1 vector serves as the initial values of the model parameters. The default

is c(1,1).

lower_bound a 2 by 1 vector serves as the lower bound of the parameters. The default is

c(0.01,0.01).

Details

```
eigp_optim
```

Value

a data frame with 1 row and 3 columns that contains the MLE of theta, eta, and the predicted density change point.

```
eep_optim(seq(1:100))
```

6 eigp_nll

		_	
ΔΔr	_sa	mn1	ing
CCL	J_Sa	шрт	THE

Sampling from EEP distribution.

Description

Create a EEP random sample of size n, with parameters theta and eta.

Usage

```
eep_sampling(n, theta, eta)
```

Arguments

n A positive integer to specify the sample size

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

eep_sampling

Input an the sample size as n, parameters theta and eta, returns a numerical vector of size n.

Value

returns a numerical vector of size n.

Examples

```
eep_sampling(100,1,1)
```

eigp_nll

The EIGP negative log-likelihood function.

Description

This function serves as the objective function for the Maximum Likelihood Estimation procedure for EIGP.

Usage

```
eigp_nll(x, m, data)
```

Arguments

x A 2 by 1 vector.

m is the number of data items less than the density change point.

data n by 1 vector with all positive entries.

eigp_optim 7

Details

```
eigp_nll
```

x is a 2 by 1 vector; m denotes the number of data items less than the density change point; data is a n by 1 vector, where n denotes the sample size of the data.

Examples

```
eigp_nll(c(2,2),50,seq(1:100))
```

eigp_optim

The wrapper function that returns the final estimates from Maximum

Likelihood Estimation.

Description

This function serves as a wrapper that returns the final estimates of theta, eta, and the corresponding density change point

Usage

```
eigp_optim(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data a n by 1 vector with all positive entries.

init a 2 by 1 vector serves as the initial values of the model parameters. The default

is c(1,1).

lower_bound a 2 by 1 vector serves as the lower bound of the parameters. The default is

c(0.01,0.01).

Details

eigp_optim

Value

a data frame with 1 row and 3 columns that contains the MLE of theta, eta, and the predicted density change point.

```
eigp_optim(seq(1:100))
```

8 exp_eep

eigp_sampling	Sampling from EIGP distribution.

Description

Create a EIGP random sample of size n, with parameters theta and eta.

Usage

```
eigp_sampling(n, theta, eta)
```

Arguments

n A positive integer to specify the sample size

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
eigp_sampling
```

Input an the sample size as n, parameters theta and eta, returns a numerical vector of size n.

Value

returns a numerical vector of size n.

Examples

```
eigp_sampling(100,1,1)
```

exp_eep	The negative log density of a sample item if it follows exponential in a EEP model

Description

This function return the negative log density of a sample item if if it follows exponential in a EEP model.

Usage

```
exp_eep(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

hazard_eep 9

Details

```
exp_exp
```

Value

This function return the negative log density of a sample item if if it follows exponential in a EEP model.

Examples

```
exp_eep(1,5,2)
```

hazard	een

The hazard function of EEP.

Description

hazard_eep

Usage

```
hazard_eep(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

Value

Return the hazard of EEP at the specific location.

```
hazard_eep(2,1,5)
plot(hazard_eep(2,1,seq(0.01,100,by=0.01)))
```

inv_gamma_eigp

hazard_eigp	The hazard function of EIGP.

Description

hazard_eigp

Usage

```
hazard_eigp(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

Value

Return the hazard of EIGP at the specific location.

Examples

```
hazard_eigp(1,2,5)
```

inv_gamma_eigp	The negative log density of a sample item if it follows inverse gamma
	in a EIGP model

Description

This function return the negative log density of a sample item if it follows inverse gamma in a EIGP model.

Usage

```
inv_gamma_eigp(x, theta, eta)
```

Arguments

x The value of a sample item.

The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
inv_gamma_eigp
```

LRT_eep 11

Value

This function return the negative log density of a sample item if if it follows inverse gamma in a EIGP model.

Examples

```
inv_gamma_eigp(1,5,2)
```

LRT_eep

Likelihood Ratio Test (LRT) for the exponent parameter in EEP model.

Description

This function computes the test statistic and the p-value of LRT for the exponent parameter in EEP model.

Usage

```
LRT_eep(data, theta0, theta1, eta1)
```

Arguments

data n by 1 vector with all positive entries.

theta0 The MLE of theta when eta = 1.

theta1 The unrestricted MLE of theta.

eta1 The unrestricted MLE of eta.

Details

LRT_eep

Value

This function returns the test statistic and the p-value of the LRT test

```
sample1 = eep_sampling(1000,eta = 1.1,theta = 6)
eta1 = mle_search_eep(data = sample1)$eta
theta1 = mle_search_eep(data = sample1)$theta
theta0 = mle_iter_eep(data = sample1,eta = 1)
LRT_eep(sample1,theta0,theta1,eta1)
```

12 mle_eep

LRT_eigp	Likelihood Ratio Test (LRT) for the exponent parameter in EIGP
	model.

Description

This function computes the test statistic and the p-value for LRT for the exponent parameter in EIGP model.

Usage

```
LRT_eigp(data, theta0, theta1, eta1)
```

Arguments

data n by 1 vector with all positive entries.

theta0 The MLE of theta when eta = 1.

theta1 The unrestricted MLE of theta.

eta1 The unrestricted MLE of eta.

Details

```
LRT_eigp
```

Value

This function returns the test statistic and the p-value from the LRT test

Examples

```
sample1 = eigp_sampling(1000,eta = 1.1,theta = 3)
eta1 = mle_search_eigp(data = sample1)$eta
theta1 = mle_search_eigp(data = sample1)$theta
theta0 = mle_iter_eigp(data = sample1,eta = 1)
LRT_eigp(sample1,theta0,theta1,eta1)
```

mle_eep

Analytical solution of theta given eta in EEP model.

Description

This function provides the analytical solution of theta for given eta EEP model.

Usage

```
mle_eep(s, m, n)
```

mle_eigp 13

Arguments

s a numeric value the sum of log(1/x_i^eta), where i is from 1 to m.

m is the number of data items less than the density change point.

n is the sample size, n has to be greater than m.

Details

```
mle_eep
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta

Examples

```
mle_{eep}(5,2,5)
```

mle_eigp

Analytical solution of theta given eta in EIGP model.

Description

This function provides the analytical solution of theta for given eta EIGP model.

Usage

```
mle_eigp(s, m, n)
```

Arguments

s a numeric value the sum of log(1/x_i^eta), where i is from 1 to m.

m is the number of data items less than the density change point.

n is the sample size, n has to be greater than m.

Details

```
mle_eigp
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta

```
mle_eigp(5,2,5)
```

14 mle_iter_eigp

mle_iter_eep	Iteration function to find the analytical solution of theta given eta and
	data in EEP model.

Description

This function finds the analytical solution of theta given eta and data in EEP model.

Usage

```
mle_iter_eep(data, eta)
```

Arguments

data n by 1 vector with all positive entries.

eta The exponent parameter. This value is greater than 0.

Details

```
mle_iter_eep
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta with data.

Examples

```
mle_iter_eep(seq(1:100),2)
```

Description

This function finds the analytical solution of theta given eta and data in EIGP model.

Usage

```
mle_iter_eigp(data, eta)
```

Arguments

data n by 1 vector with all positive entries.

eta The exponent parameter. This value is greater than 0.

Details

```
mle_iter_eigp
```

mle_search_eep 15

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta with data.

Examples

```
mle_iter_eigp(seq(1:100),2)
```

mle_search_eep

The grid search procedure for parameter estimation of EEP.

Description

This function find the parameter estimates of EEP throgh a grid search procedure.

Usage

```
mle_search_eep(eta_seq = seq(0.5, 10, by = 0.01), data)
```

Arguments

eta_seq A predefined range for eta values. The default is c(0.5,10,by=0.01) data n by 1 vector with all positive entries.

Details

```
mle_search_eep
```

Value

This function returns a data frame as the parameter estimates for EEP from grid search methods.

Examples

```
sample1 = eep_sampling(1000,eta = 2,theta = 3)
mle_search_eep(data = sample1)
```

mle_search_eigp

The grid search procedure for parameter estimation of EIGP.

Description

This function find the parameter estimates of EIGP through a grid search procedure.

Usage

```
mle_search_eigp(eta_seq = seq(0.5, 10, by = 0.01), data)
```

Arguments

eta_seq A predefined range for eta values. The default is c(0.5,10,by=0.01)

data n by 1 vector with all positive entries.

neg_log_eep

Details

```
mle_search_eigp
```

Value

This function returns data frame as the parameter estimates for EIGP from grid search methods.

Examples

```
sample1 = eigp_sampling(1000,eta = 2,theta = 3)
mle_search_eigp(data = sample1)
```

neg_log_eep

The negative log likelihood function for EEP distribution.

Description

This function computes the negative log-likelihood for EEP distribution.

Usage

```
neg_log_eep(y, theta, eta)
```

Arguments

y n by 1 vector with all positive entries.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
neg_log_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

```
neg_log_eep(seq(1:100),2,2)
```

neg_log_eigp 17

neg_log_eigp

Description

This function computes the negative log-likelihood for EIGP distribution.

Usage

```
neg_log_eigp(y, theta, eta)
```

Arguments

y n by 1 vector with all positive entries.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
neg_log_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

Examples

```
neg_log_eigp(seq(1:100),2,2)
```

pareto_eep	The negative log density of a sample item if it follows Pareto in a EEP model	

Description

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

Usage

```
pareto_eep(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

18 pareto_eigp

Details

```
pareto_eep
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

Examples

```
pareto_eep(10,5,2)
```

pareto_	eign
pai eto_	-cigh

The negative log density of a sample item if it follows Pareto in a EIGP model

Description

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

Usage

```
pareto_eigp(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
pareto_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

```
pareto_eigp(10,5,2)
```

pdf_eep 19

pdf_eep	The probability function of EEP.
. – .	1 23 3

Description

```
pdf_eep
```

Usage

```
pdf_eep(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

Value

Return the density of EEP

Examples

```
pdf_eep(1,2,5)
```

pdf	eign
Dui	CIEN

The probability density function of EIGP.

Description

```
pdf_eigp
```

Usage

```
pdf_eigp(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data The data item.

Value

Return the density of EIGP

```
pdf_eigp(1,2,5)
```

 q_{eigp}

q_eep	The quantile function of EEP.
-------	-------------------------------

Description

q_eep

Usage

```
q_eep(theta, eta, p)
```

Arguments

The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

The quantile function of EIGP.

p This indicates the p-th percentile. p is greater than 0 and less than 100.

Value

Return the p-th percentile of EEP.

Examples

```
q_{eigp}(1,2,5)
```

Description

q_eigp

Usage

```
q_eigp(theta, eta, p)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

p This indicates the p-th percentile. p is greater than 0 and less than 100.

Value

Return the p-th percentile of EIGP.

```
q_{eigp}(1,2,5)
```

raw_est_eep 21

raw	est	een
ı aw	_しろし_	_666

The optimization function for EEP maximum likelihood estimation.

Description

This function serves as the optimization function for EEP at different locations of density change points.

Usage

```
raw_est_eep(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data a n by 1 vector with all positive entries.

init a 2 by 1 vector serves as the initial values of the model parameters. The default

is c(1,1).

lower_bound a 2 by 1 vector serves as the lower bound of the parameters. The default is

c(0.01,0.01).

Details

```
raw_est_eep
```

x is a 2 by 1 vector; m denotes the number of data items less than the density change point; data is a n by 1 vector, where n denotes the sample size of the data.

Value

a n-1 by 2 matrix with estimates of theta and eta for n-1 different locations of density change points (1st column for theta, 2nd column for eta).

Examples

```
raw_est_eep(seq(1:100))
```

raw_est_eigp

The optimization function for EIGP maximum likelihood estimation.

Description

This function serves as the optimization function for EIGP at different locations of density change points.

Usage

```
raw_est_eigp(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

 se_eep

Arguments

data a n by 1 vector with all positive entries.

init a 2 by 1 vector serves as the initial values of the model parameters. The default

is c(1,1).

lower_bound a 2 by 1 vector serves as the lower bound of the parameters. The default is

c(0.01,0.01).

Details

raw_est_eigp

x is a 2 by 1 vector; m denotes the number of data items less than the density change point; data is a n by 1 vector, where n denotes the sample size of the data.

Value

a n-1 by 2 matrix with estimates of theta and eta for n-1 different locations of density change points (1st column for theta, 2nd column for eta).

Examples

```
raw_est_eigp(seq(1:100))
```

se_eep	The function for calculating the standard errors of the parameters of
	EEP model.

Description

This function find the parameter estimates of EEP through a grid search procedure.

Usage

```
se_eep(data, theta, eta)
```

Arguments

data n by 1 vector with all positive entries.

theta the MLE of theta eta the MLE of eta

Details

se_eep

Value

The estimate of SE for theta and eta

se_eigp 23

Examples

```
sample1 = eep_sampling(1000,eta = 2,theta = 3)
theta = mle_search_eep(data = sample1)$theta
eta = mle_search_eep(data = sample1)$eta
se_eep(sample1,theta,eta)
```

se_eigp

The function for calculating the standard errors of the parameters of EIGP model.

Description

This function find the parameter estimates of EIGP through a grid search procedure.

Usage

```
se_eigp(data, theta, eta)
```

Arguments

data n by 1 vector with all positive entries.

theta the MLE of theta eta the MLE of eta

Details

se_eigp

Value

The estimate of SE for theta and eta

```
sample1 = eigp_sampling(1000,eta = 2,theta = 3)
theta = mle_search_eigp(data = sample1)$theta
eta = mle_search_eigp(data = sample1)$eta
se_eigp(sample1,theta,eta)
```

24 validation

validation

The validation function for model parameters.

Description

This function checks if the estimates from raw_est_eigp or raw_est_eep satisfy the pre-defined conditions for the parameters.

Usage

```
validation(data, estimate)
```

Arguments

data a n by 1 vector with all positive entries.

estimate a data frame with 2 columns named 'theta' and 'eta'.

Details

validation

Value

```
a n-1 by 1 Boolean vector.
```

```
 \begin{array}{l} {\rm estimate = raw\_est\_eigp(seq(1:100),init = c(1,1),lower\_bound = c(0.01,0.01))} \\ {\rm estimate = data.frame(estimate)} \\ {\rm colnames(estimate) = c('theta','eta')} \\ {\rm validation(seq(1:100),estimate)} \\ \end{array}
```

Index

```
asymptotic_eep, 2
asymptotic_eigp, 3
cdf_eep, 3
cdf_eigp, 4
eep_nll, 4
eep_optim, 5
eep_sampling, 6
eigp_nll, 6
eigp_optim, 7
eigp_sampling, 8
exp_eep, 8
hazard_{eep}, 9
hazard_eigp, 10
inv_gamma_eigp, 10
LRT_eep, 11
LRT_eigp, 12
mle_eep, 12
mle\_eigp, 13
mle_iter_eep, 14
mle_iter_eigp, 14
mle_search_eep, 15
mle\_search\_eigp, 15
neg_log_eep, 16
neg_log_eigp, 17
pareto_eep, 17
pareto_eigp, 18
pdf_eep, 19
pdf_eigp, 19
q_eep, 20
q_{eigp}, 20
raw_est_eep, 21
raw_est_eigp, 21
se_eep, 22
se_eigp, 23
validation, 24
```