

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07K 14/00		A2	(11) International Publication Number: WO 99/58558 (43) International Publication Date: 18 November 1999 (18.11.99)
<p>(21) International Application Number: PCT/US99/10567</p> <p>(22) International Filing Date: 13 May 1999 (13.05.99)</p> <p>(30) Priority Data: 60/085,343 13 May 1998 (13.05.98) US 60/098,010 26 August 1998 (26.08.98) US</p> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications US 60/085,343 (CJP) Filed on 13 May 1998 (13.05.98) US 60/098,010 (CJP) Filed on 26 August 1998 (26.08.98)</p> <p>(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(72) Inventors; and (75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US).</p>			
<p>(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UC, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p>			
<p>Published Without international search report and to be republished upon receipt of that report.</p>			
<p>(54) Title: CELL SIGNALING PROTEINS</p> <p>(57) Abstract</p> <p>The invention provides human cell signaling proteins (CSIGP) and polynucleotides which identify and encode CSIGP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or prevention disorders associated with expression of CSIGP.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Switzerland
AZ	Azerbaijan	GB	United Kingdom	MC	Moscow	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BI	Burkina Faso	GR	Greece	ML	Mali	TR	Tunisia
BG	Bulgaria	HR	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LJ	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

CELL SIGNALING PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of cell signaling proteins
5 and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative
and inflammatory disorders.

BACKGROUND OF THE INVENTION

10 Signal transduction is the process of biochemical events by which cells respond to extracellular signals. Extracellular signals are transduced through a biochemical cascade that begins with the binding of a signal molecule such as a hormone, neurotransmitter, or growth factor, to a cell membrane receptor and ends with the activation of an intracellular target molecule. The process of signal transduction regulates a wide variety of cell functions including cell
15 proliferation, differentiation, and gene transcription.

Signal transduction is the general process by which cells respond to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.) through a cascade of biochemical reactions that begins with the binding of the signaling molecule to a cell membrane receptor and ends with the activation of an intracellular target molecule. Intermediate steps in this
20 process involve the activation of various cytoplasmic proteins by phosphorylation via protein kinases and the eventual translocation of some of these activated proteins to the cell nucleus where the transcription of specific genes is triggered. Thus, the signal transduction process regulates all types of cell functions including cell proliferation, differentiation, and gene transcription.

Protein kinases play a key role in the signal transduction process by phosphorylating and
25 activating various proteins involved in signaling pathways. The high energy phosphate which drives this activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals, cell cycle checkpoints, and environmental or nutritional stresses. Protein kinases are roughly divided into two groups; those
30 that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity for serine/threonine and tyrosine residues. Almost all kinases contain a similar 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. (Hardie, G. and Hanks, S. (1995) *The Protein Kinase Facts Book*, Vol I:7-20

Academic Press, San Diego, CA.)

STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), which are involved in mediating hormone-induced cellular responses; calcium-calmodulin (CaM) dependent protein kinases, which are involved in regulation of smooth muscle contraction, glycogen breakdown, and neurotransmission; and the mitogen-activated protein kinases (MAP) which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease. (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, 10 McGraw-Hill, New York, NY, pp. 416-431, 1887.)

PTKs are divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors which include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor. Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity. (Charbonneau H and Tonks NK (1992) Annu Rev Cell Biol 8:463-493.)

Protein phosphatases regulate the effects of protein kinases by removing phosphate groups from molecules previously activated by kinases. The two principle categories of protein phosphatases are the protein phosphatases (PPs) and the protein tyrosine phosphatases (PTPs). PPs dephosphorylate phosphoserine/threonine residues and are important regulators of many cAMP-mediated hormone responses in cells. (Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508.) PTPs reverse the effects of protein tyrosine kinases and play a significant role in cell cycle and cell signaling processes. (Charbonneau and Tonks, supra.) In the process of cell division, for example, a specific PTP (M-phase inducer phosphatase) plays a key role in the induction of mitosis by dephosphorylating and activating a specific PTK (CDC2) leading to cell division. (Sadu, K.. et al. (1990) Proc. Natl. Acad. Sci. 87:5139-5143.)

Guanine nucleotide binding proteins (GTP-binding proteins) are critical mediators of the signal transduction pathway. Extracellular ligands such as hormones, growth factors,

neuromodulators, or other signaling molecules bind to transmembrane receptors, and the signal is propagated to effector molecules by intracellular signal transducing proteins. Many of these signal transduction proteins are GTP-binding proteins which regulate intracellular signaling pathways. GTP-binding proteins participate in a wide range of other regulatory functions including metabolism, growth, differentiation, cytoskeletal organization, and intracellular vesicle transport and secretion. Exchange of bound GDP for GTP followed by hydrolysis of GTP to GDP provides the energy that enables GTP-binding proteins to alter their conformation and interact with other cellular components. Two structurally distinct classes of GTP-binding proteins are recognized: heterotrimeric GTP-binding proteins, consisting of three different subunits, and monomeric, low molecular weight (LMW), GTP-binding proteins consisting of a single polypeptide chain.

G protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, mediators of inflammation, peptide hormones, and sensory signal mediators. A GPCR becomes activated when the receptor binds to its extracellular ligand. The beta subunit of the GPCR, which consists of an amino-terminal helical segment followed by seven WD, or β transducin repeats, transduces signals across the plasma membrane. Conformational changes in the GPCR, resulting from the ligand-receptor interaction, promote the binding of GTP to the GPCR intracellular domains. GTP binding to the GPCR leads to the interaction of the GPCR alpha subunit with adenylate cyclase or other second messenger molecule generators. This interaction regulates the activity of second messenger molecules such as cAMP, cGMP, or eicosinoids which, in turn, regulate phosphorylation and activation of other intracellular proteins. The GPCR changes conformation upon hydrolysis of the bound GTP by GTPases, dissociates from the second messenger molecule generator, and returns to its initial pre-ligand binding conformation.

G beta proteins, also known as β transducins, contain seven tandem repeats of the WD-repeat sequence motif, a motif found in many proteins with regulatory functions. WD-repeat proteins contain from four to eight copies of a loosely conserved repeat of approximately 40 amino acids which participates in protein-protein interactions. Mutations and variant expression of β transducin proteins are linked with various disorders. Mutations in LIS1, a subunit of the human platelet activating factor acetylhydrolase, cause Miller-Dieker lissencephaly. RACK1 binds activated protein kinase C, and RbAp48 binds retinoblastoma protein. CstF is required for polyadenylation of mammalian pre-mRNA *in vitro* and associates with subunits of cleavage-stimulating factor. CD4, an integral membrane glycoprotein which functions as an HIV co-receptor for infection of human host cells is degraded by HIV-encoded Vpu in the endoplasmic reticulum. WD repeats of human beta TrCP molecule mediate the formation of the CD4- Vpu, inducing CD4 proteolysis (Neer, E.J. et al. (1994) Nature 371:297-300 and Margotin, F. et al.

(1998) Mol. Cell. 1:565-574).

Irregularities in the GPCR signaling cascade may result in abnormal activation of leukocytes and lymphocytes, leading to the tissue damage and destruction seen in many inflammatory and autoimmune diseases such as rheumatoid arthritis, biliary cirrhosis, hemolytic anemia, lupus erythematosus, and thyroiditis. Abnormal cell proliferation, including cyclic AMP stimulation of brain, thyroid, adrenal, and gonadal tissue proliferation is regulated by G proteins. Mutations in G_a subunit have been found in growth-hormone-secreting pituitary somatotroph tumors, hyperfunctioning thyroid adenomas, and ovarian and adrenal neoplasms (Meij, J.T.A.

(1996) Mol. Cell. Biochem. 157:31-38; Aussel, C. et al. (1988) J. Immunol. 140:215-220).

10 LMW GTP-binding proteins regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. They consist of single polypeptides which, like the alpha subunit of the heterotrimeric GTP-binding proteins, are able to bind to and hydrolyze GTP, thus cycling between an inactive and an active state. LMW GTP-binding proteins respond to extracellular signals from receptors and activating proteins by transducing mitogenic signals involved in
15 various cell functions. The binding and hydrolysis of GTP regulates the response of LMW GTP-binding proteins and acts as an energy source during this process (Bokoch, G. M. and Der, C. J.
(1993) FASEB J. 7:750-759).

At least sixty members of the LMW GTP-binding protein superfamily have been identified and are currently grouped into the four subfamilies of ras, rho, arf, sarl, ran, and rab.
20 Activated ras genes were initially found in human cancers and subsequent studies confirmed that ras function is critical in determining whether cells continue to grow or become differentiated. Other members of the LMW G-protein superfamily have roles in signal transduction that vary with the function of the activated genes and the locations of the GTP-binding proteins that initiate the activity. Rho GTP-binding proteins control signal transduction pathways that link growth factor receptors to actin polymerization, which is necessary for normal cellular growth and division. The rab, arf, and sarl families of proteins control the translocation of vesicles to and from membranes for protein localization, protein processing, and secretion. Ran GTP-binding proteins are located in the nucleus of cells and have a key role in nuclear protein import, the control of DNA synthesis, and cell-cycle progression (Hall, A. (1990) Science 249:635-640; Barbacid, M. (1987) Ann. Rev
25 Biochem. 56:779-827; and Sasaki, T. and Takai, Y. (1998) Biochem. Biophys. Res. Commun. 245:641-645).

LMW GTP-binding proteins are GTPases which cycle between a GTP-bound active form and a GDP-bound inactive form. This cycle is regulated by proteins that affect GDP dissociation, GTP association, or the rate of GTP hydrolysis. Proteins affecting GDP association are

represented by guanine nucleotide dissociation inhibitors and guanine nucleotide exchange factors (GEP). The best characterized is the mammalian homologue of the Drosophila Son-of-Sevenless protein. Proteins affecting GTP hydrolysis are exemplified by GTPase-activating proteins (GAP). Both GEP and GAP activity may be controlled in response to extracellular stimuli and modulated by accessory proteins such as RafIBP1 and POB1. The GDP-bound form is converted to the GTP-bound form through a GDP/GTP exchange reaction facilitated by guanine nucleotide-releasing factors. The GTP-bound form is converted to the GDP-bound form by intrinsic GTPase activity, and the conversion is accelerated by GAP (Ikeda, M. et al. (1998) J. Biol. Chem. 273:814-821; Quilliam, L. A. (1995) Bioessays 17:395-404.). Mutant Ras-family proteins, which bind but can not hydrolyze GTP, are permanently activated, and cause cell proliferation or cancer, as do GEP that activate LMW GTP-binding proteins (Drivas, G. T. et al. (1990) Mol. Cell. Biol. 10:1793-1798; and Whitehead, I. P. et al. (1998) Mol Cell Biol. 18:4689-4697.)

The discovery of new cell signaling proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative and inflammatory disorders.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, cell signaling proteins, referred to collectively as "CSIGP" and individually as CSIGP-1 through CSIGP-13. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino

acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26 and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26 and fragments thereof.

10 The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

20 The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-13, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

30 The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding CSIGP.

Table 2 shows features of each polypeptide sequence including potential motifs, homologous sequences, and methods and algorithms used for identification of CSIGP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding CSIGP were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze CSIGP.

20

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and

methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of 5 prior invention.

DEFINITIONS

"CSIGP" refers to the amino acid sequences of substantially purified CSIGP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, 10 semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to CSIGP, increases or prolongs the duration of the effect of CSIGP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of CSIGP.

An "allelic variant" is an alternative form of the gene encoding CSIGP. Allelic variants 15 may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination 20 with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding CSIGP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as CSIGP or a polypeptide with at least one functional characteristic of CSIGP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular 25 oligonucleotide probe of the polynucleotide encoding CSIGP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding CSIGP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent CSIGP. Deliberate amino acid substitutions may be made 30 on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of CSIGP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, 35 and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and

phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of CSIGP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of CSIGP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to CSIGP, decreases the amount or the duration of the effect of the biological or immunological activity of CSIGP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of CSIGP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind CSIGP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form

duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" 5 refers to the capability of the natural, recombinant, or synthetic CSIGP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the 10 complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in 15 amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an 20 aqueous solution. Compositions comprising polynucleotide sequences encoding CSIGP or fragments of CSIGP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, 25 dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the 30 GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding CSIGP, by northern analysis is indicative of the presence of nucleic acids encoding CSIGP in a sample, and 35 thereby correlates with expression of the transcript from the polynucleotide encoding CSIGP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

10 The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined 15 using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions 20 require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

25 The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp 30 (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A 35 and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid

sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) *Methods Enzymol.* 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying 5 hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid 10 sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid 15 sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_ct or R_ct analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

20 The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by 25 expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

30 The term "modulate" refers to a change in the activity of CSIGP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of CSIGP.

The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or 35 RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may

represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length 5 polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain 10 genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or 15 microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. 20 PNAS preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding CSIGP, or fragments thereof, or CSIGP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic 25 DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the 30 presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between 35 polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other

conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

10 "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.

20 The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of CSIGP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to CSIGP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice 35 variant may have significant identity to a reference molecule, but will generally have a greater or

lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A 5 polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10 THE INVENTION

The invention is based on the discovery of new human cell signaling proteins (CSIGP), the polynucleotides encoding CSIGP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative and inflammatory disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding 15 CSIGP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each CSIGP were first identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences useful as fragments in hybridization 20 technologies, and which are part of the consensus nucleotide sequence of each CSIGP.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, 25 homologous sequences; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and disease-association of nucleotide 30 sequences encoding CSIGP. The first column of Table 3 lists the polynucleotide sequence identifiers. The second column lists tissue categories which express CSIGP as a fraction of total tissue categories expressing CSIGP. The third column lists diseases, disorders, and conditions associated with those tissues expressing CSIGP. The fourth column lists the vectors used to subclone the cDNA library.

The following fragments of the nucleotide sequences encoding CSIGP are useful in 35 hybridization or amplification technologies to identify SEQ ID NO:14-26 and to distinguish between SEQ ID NO:14-26 and similar polynucleotide sequences. The useful fragments are the

fragment of SEQ ID NO:14 from about nucleotide 135 to about nucleotide 189, the fragment of SEQ ID NO:15 from about nucleotide 493 to about nucleotide 558, the fragment of SEQ ID NO:16 from about nucleotide 1170 to about nucleotide 1233, the fragment of SEQ ID NO:17 from about nucleotide 939 to about nucleotide 996, the 5 fragment of SEQ ID NO:18 from about nucleotide 424 to about nucleotide 486, the fragment of SEQ ID NO:19 from about nucleotide 274 to about nucleotide 333, and the fragment of SEQ ID NO:20 from about nucleotide 1013 to about nucleotide 1070, the fragment of SEQ ID NO:21 from about nucleotide 284 to about nucleotide 325, the fragment of SEQ ID NO:22 from about nucleotide 642 to about nucleotide 674, the fragment of SEQ ID 10 NO:23 from about nucleotide 742 to about nucleotide 769, the fragment of SEQ ID NO:24 from about nucleotide 457 to about nucleotide 486, the fragment of SEQ ID NO:25 from about nucleotide 205 to about nucleotide 246, and the fragment of SEQ ID NO:26 from about nucleotide 319 to about nucleotide 342.

The invention also encompasses CSIGP variants. A preferred CSIGP variant is one which 15 has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the CSIGP amino acid sequence, and which contains at least one functional or structural characteristic of CSIGP.

The invention also encompasses polynucleotides which encode CSIGP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence 20 selected from the group consisting of SEQ ID NO:14-26 which encodes CSIGP.

The invention also encompasses a variant of a polynucleotide sequence encoding CSIGP. In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding CSIGP. A particular aspect of the invention encompasses a 25 variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:14-26 which has at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:14-26. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural 30 characteristic of CSIGP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding CSIGP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide

sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring CSIGP, and all such variations are to be considered as being specifically disclosed.

5 Although nucleotide sequences which encode CSIGP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring CSIGP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding CSIGP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at
10 which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding CSIGP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally
15 occurring sequence.

The invention also encompasses production of DNA sequences which encode CSIGP and CSIGP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to
20 introduce mutations into a sequence encoding CSIGP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:14-26 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 25 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide,
30 and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are
35 accomplished by combining these various conditions as needed. In a preferred embodiment,

hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the HYDRA microdispenser (Robbins Scientific, Sunnyvale CA), MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA Sequencing Systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) *Short Protocols in Molecular Biology*, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) *Molecular Biology and Biotechnology*, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding CSIGP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect

upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Appl. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent 5 directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Appl. 1:111-119.) In 10 this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic 15 DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been 20 size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to 25 analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal 30 using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof 35 which encode CSIGP may be cloned in recombinant DNA molecules that direct expression of

CSIGP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express CSIGP.

5 The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter CSIGP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, 10 oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding CSIGP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) *Nucl.*

15 *Acids Res. Symp. Ser.* 215-223, and Horn, T. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 225-232.) Alternatively, CSIGP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) *Science* 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of 20 CSIGP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) *Methods Enzymol.* 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by 25 sequencing. (See, e.g., Creighton, T. (1984) *Proteins, Structures and Molecular Properties*, WH Freeman, New York NY.)

In order to express a biologically active CSIGP, the nucleotide sequences encoding CSIGP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted 30 coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding CSIGP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding CSIGP. Such signals include the ATG initiation codon and adjacent 35 sequences, e.g. the Kozak sequence. In cases where sequences encoding CSIGP and its initiation

codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous 5 translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct 10 expression vectors containing sequences encoding CSIGP and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, J. et al. (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) *Current Protocols in Molecular Biology*, John Wiley & Sons, 15 New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express 20 sequences encoding CSIGP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected 25 depending upon the use intended for polynucleotide sequences encoding CSIGP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding CSIGP can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding CSIGP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure 30 for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of CSIGP are 35 needed, e.g. for the production of antibodies, vectors which direct high level expression of CSIGP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage

promoter may be used.

Yeast expression systems may be used for production of CSIGP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors 5 direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of CSIGP. Transcription of sequences 10 encoding CSIGP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell 15 Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding CSIGP may be ligated 20 into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses CSIGP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. 25 SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 30 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of CSIGP in cell lines is preferred. For example, sequences encoding CSIGP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate 35 vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2

days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

5 Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers 10 resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* or *par* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g.,

15 Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. 20 Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding CSIGP is inserted within a marker gene sequence, transformed cells containing sequences encoding CSIGP can be identified by the absence of marker gene 25 function. Alternatively, a marker gene can be placed in tandem with a sequence encoding CSIGP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding CSIGP and that express CSIGP may be identified by a variety of procedures known to those of skill in the art.

30 These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

35 Immunological methods for detecting and measuring the expression of CSIGP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques

include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on CSIGP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. 5 (See, e.g., Hampton, R. et al. (1990) *Serological Methods, a Laboratory Manual*, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) *Current Protocols in Immunology*, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) *Immunochemical Protocols* Humania Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art 10 and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding CSIGP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding CSIGP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are 15 commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, 20 fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding CSIGP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the 25 sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode CSIGP may be designed to contain signal sequences which direct secretion of CSIGP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications 30 of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from 35 the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the

correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding CSIGP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric CSIGP protein 5 containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of CSIGP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification 10 of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be 15 engineered to contain a proteolytic cleavage site located between the CSIGP encoding sequence and the heterologous protein sequence, so that CSIGP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

20 In a further embodiment of the invention, synthesis of radiolabeled CSIGP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

25 Fragments of CSIGP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra* pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of CSIGP may be synthesized separately and then combined to produce the full length 30 molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists 35 between CSIGP and cell signaling proteins. In addition, the expression of CSIGP is closely associated with cell proliferation and inflammatory disorders. Therefore, in cell proliferative and

inflammatory disorders where CSIGP is an inhibitor or suppressor of cell proliferation, it is desirable to increase the expression of CSIGP. In cell proliferative and inflammatory disorders where CSIGP is an activator or enhancer and is promoting cell proliferation, it is desirable to decrease the expression of CSIGP.

5 Therefore, in one embodiment, CSIGP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, 10 polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult 15 respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis. Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, 20 thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma.

25

In another embodiment, a vector capable of expressing CSIGP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified CSIGP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those provided above.

30 35 In still another embodiment, an agonist which modulates the activity of CSIGP may be

administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CSIGP including, but not limited to, those listed above.

In a further embodiment, an antagonist of CSIGP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CSIGP. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds CSIGP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express CSIGP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding CSIGP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CSIGP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of CSIGP may be produced using methods which are generally known in the art. In particular, purified CSIGP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind CSIGP. Antibodies to CSIGP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies. Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with CSIGP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions. KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to

CSIGP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of 5 CSIGP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to CSIGP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate 15 antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce 20 CSIGP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) *Proc. Natl. Acad. Sci.* 88:10134-10137.)

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci.* 86: 25 3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

Antibody fragments which contain specific binding sites for CSIGP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be 30 constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in 35 the art. Such immunoassays typically involve the measurement of complex formation between

CSIGP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering CSIGP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay

5 techniques may be used to assess the affinity of antibodies for ABBR. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of ABBR-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple ABBR epitopes, represents the average affinity, or 10 avidity, of the antibodies for ABBR. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular ABBR epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the ABBR-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole 15 are preferred for use in immunopurification and similar procedures which ultimately require dissociation of ABBR, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to

20 determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of ABBR-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available.

25 (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding CSIGP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding CSIGP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with 30 sequences complementary to polynucleotides encoding CSIGP. Thus, complementary molecules or fragments may be used to modulate CSIGP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding CSIGP.

35 Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses.

or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding CSIGP. (See, e.g., Sambrook, *supra*; Ausubel, 1995, *supra*.)

5 Genes encoding CSIGP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding CSIGP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

10 As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding CSIGP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. 15 Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. 20 (1994) in Huber, B.E. and B.I. Carr, *Molecular and Immunologic Approaches*, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

25 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding CSIGP.

30 Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

35 Complementary ribonucleic acid molecules and ribozymes of the invention may be

prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding CSIGP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutoxine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use *in vivo*, *in vitro*, and *ex vivo*. For *ex vivo* therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) *Nature Biotechnology* 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of CSIGP, antibodies to CSIGP, and mimetics, agonists, antagonists, or inhibitors of CSIGP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal,

enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of *Remington's Pharmaceutical Sciences* (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, 10 pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable 15 excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, 20 agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for 25 product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft 30 capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain 35 substances which increase the viscosity of the suspension, such as sodium carboxymethyl

cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, 10 dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of CSIGP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes 30 for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example CSIGP or fragments thereof, antibodies of CSIGP, and agonists, antagonists or inhibitors of CSIGP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, 35 such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or

LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind CSIGP may be used for the diagnosis of cell proliferative and inflammatory disorders characterized by expression of CSIGP, or in assays to monitor patients being treated with CSIGP or agonists, antagonists, or inhibitors of CSIGP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for CSIGP include methods which utilize the antibody and a label to detect CSIGP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring CSIGP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of CSIGP expression. Normal or standard values for CSIGP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to

CSIGP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of CSIGP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for 5 diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding CSIGP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of CSIGP 10 may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of CSIGP, and to monitor regulation of CSIGP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting 15 polynucleotide sequences, including genomic sequences, encoding CSIGP or closely related molecules may be used to identify nucleic acid sequences which encode CSIGP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding CSIGP, allelic variants, or related sequences.

20 Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the CSIGP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:14-26 or from genomic sequences including promoters, enhancers, and introns of the CSIGP gene.

25 Means for producing specific hybridization probes for DNAs encoding CSIGP include the cloning of polynucleotide sequences encoding CSIGP or CSIGP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a 30 variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

35 Polynucleotide sequences encoding CSIGP may be used for the diagnosis of cell proliferative and inflammatory disorders associated with expression of CSIGP. Examples of such disorders include, but are not limited to, a disorder of cell proliferation such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease

(MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia; cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma. The polynucleotide sequences encoding CSIGP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect altered CSIGP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding CSIGP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding CSIGP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding CSIGP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of CSIGP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a

sequence, or a fragment thereof, encoding CSIGP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with 5 values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results 10 obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A 15 more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding CSIGP may involve the use of PCR. These oligomers may be chemically synthesized, generated 20 enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding CSIGP, or a fragment of a polynucleotide complementary to the polynucleotide encoding CSIGP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

25 Methods which may also be used to quantitate the expression of CSIGP include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format 30 where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the 35 polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to

determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding CSIGP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, *supra*, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding CSIGP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, CSIGP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between CSIGP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with CSIGP, or fragments thereof, and washed. Bound CSIGP is then detected by methods well known in the art. Purified CSIGP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding CSIGP specifically compete with a test compound for binding CSIGP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with CSIGP.

In additional embodiments, the nucleotide sequences which encode CSIGP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/085,343 (filed May 13, 1998), and 60/098,010 (filed August 26, 1998) are hereby incorporated by reference.

EXAMPLES

30 I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated

from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A⁺) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4 °C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) *Anal. Biochem.* 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorimetrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II

fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using either an ABI CATALYST 800 (Perkin-Elmer) or a HYDRA microdispenser (Robbins) or MICROLAB 2200 (Hamilton) sequencing preparation system in combination with PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems of the MEGABACE 1000 DNA sequencing system (Molecular Dynamics) and ABI protocols, base calling software, and kits (Perkin-Elmer). Alternatively, solutions and dyes from Amersham Pharmacia Biotech were used. Reading frames were determined using standard methods (Ausubel, 1997, *supra*). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, S. San Francisco CA) and LASERGENE software (DNASTAR).

cDNAs were also compared to sequences in GenBank using a search algorithm developed by Applied Biosystems and incorporated into the INHERIT™ 670 sequence analysis system. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of homology to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homologous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT- 670 sequence analysis system using the methods similar to those used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance

matches.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, PFAM, and Prosite.

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:14-26. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel, 1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported a percentage distribution of libraries in which

the transcript encoding CSIGP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease or condition categories included cancer, 5 inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease expression are reported in Table 3.

V. Extension of CSIGP Encoding Polynucleotides

10 The full length nucleic acid sequence of SEQ ID NO:14-26 was produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 15 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

20 High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the 25 following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

30 The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the 35 sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture

was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desaltsed and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and 5 sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in 10 restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following 15 parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer 20 sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequence of SEQ ID NO:14-26 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

25 VI. Choice, Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:14-26 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 30 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following 35

endonucleases: *Ase I*, *Bgl II*, *Eco RI*, *Pst I*, *Xba I*, or *Pvu II* (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature 5 under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array

- 10 elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels 15 and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected 20 using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., 25 Schena, M. et al. (1995) *Science* 270:467-470; Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the CSIGP-encoding sequences, or any parts thereof, are 30 used to detect, decrease, or inhibit expression of naturally occurring CSIGP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of CSIGP. To inhibit transcription, a complementary oligonucleotide is designed from the most 35 unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit

translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the CSIGP-encoding transcript.

IX. Expression of CSIGP

Expression and purification of CSIGP is achieved using bacterial or virus-based

5 expression systems. For expression of CSIGP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express CSIGP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of CSIGP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding CSIGP by either homologous recombination 10 or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 20 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, CSIGP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion 25 proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from CSIGP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine 30 residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10 and 16). Purified CSIGP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of CSIGP Activity

CSIGP activity can be assayed *in vitro* by monitoring the mobilization of Ca⁺⁺ as part of 35 the signal transduction pathway. (See, e.g., Grynkiewicz, G. et al. (1985) J. Biol. Chem.

260:3440; McColl, S. et al. (1993) J. Immunol. 150:4550-4555; and Auszel, C. et al. (1988) *supra*)
The assay requires preloading neutrophils or T cells with a fluorescent dye such as FURA-2 or
BCECF (Universal Imaging Corp, Westchester PA) whose emission characteristics have been
altered by Ca⁺⁺ binding. When the cells are exposed to one or more activating stimuli artificially
5 (ie, anti-CD3 antibody ligation of the T cell receptor) or physiologically (ie, by allogeneic
stimulation), Ca⁺⁺ flux takes place. This flux can be observed and quantified by assaying the cells
in a fluorometer or fluorescent activated cell sorter. Measurements of Ca⁺⁺ flux are compared
between cells in their normal state and those preloaded with CSIGP.

Protein kinase activity in CSIGP is determined by measuring the phosphorylation of a
10 protein substrate using gamma-labeled ³²P-ATP and quantitation of the incorporated radioactivity
using a radioisotope counter. CSIGP is incubated with the protein substrate, ³²P-ATP, and an
appropriate kinase buffer. The ³²P incorporated into the product is separated from free ³²P-ATP by
electrophoresis and the incorporated ³²P is counted. The amount of ³²P recovered is proportional
to the activity of CSIGP in the assay. A determination of the specific amino acid residue
15 phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.

Protein phosphatase (PP) activity in CSIGP is determined by measuring the hydrolysis of
P-nitrophenyl phosphate (PNPP). CSIGP is incubated together with PNPP in HEPES buffer pH
7.5, in the presence of 0.1% b-mercaptoethanol at 37°C for 60 min. The reaction is stopped by the
addition of 6 ml of 10 N NaOH and the increase in light absorbance at 410 nm resulting from the
20 hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is
proportional to the activity of CSIGP in the assay.

XI. Production of CSIGP Specific Antibodies

CSIGP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g.,
Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is
25 used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the CSIGP amino acid sequence is analyzed using LASERGENE software
(DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is
synthesized and used to raise antibodies by means known to those of skill in the art. Methods for
selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are
30 well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A
Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich,
St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to
increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the
35 oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for

antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XII. Purification of Naturally Occurring CSIGP Using Specific Antibodies

Naturally occurring or recombinant CSIGP is substantially purified by immunoaffinity

5 chromatography using antibodies specific for CSIGP. An immunoaffinity column is constructed by covalently coupling anti-CSIGP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing CSIGP are passed over the immunoaffinity column, and the column is
10 washed under conditions that allow the preferential absorbance of CSIGP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/CSIGP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotropic, such as urea or thiocyanate ion), and CSIGP is collected.

XIII. Identification of Molecules Which Interact with CSIGP

15 CSIGP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled CSIGP, washed, and any wells with labeled CSIGP complex are assayed. Data obtained using different concentrations of CSIGP are used to calculate values for the number, affinity, and association of CSIGP with the
20 candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	14	016108	HUVELPB01	016108, 016624, (HUVELPB01), 970134 (HUSCNNOT02), 1605838 (LUNGNOT15), 1419046 (KIDNNOT09)
2	15	640521	BRSTNOT03	640521, (BRSTNOT03)
3	16	1250171	LUNGFFT03	1250171 (LUNGFFT03), 260744 (HNTFRAT01), 077085 (STNORAB01), 2790184 (COLNTUT016), SAE001398, SABB00499, SAE002190, SAE000648, SAE000948
4	17	1911587	CONNUTU01	1911587 (CONNUTU01), 1889659 (CONNPNOT02)
5	18	2079081	ISLJINOT01	2079081 (ISLJINOT01), 2631449 (CONNUTU15), 2350624 (COLSICU01), 2568459 (HPOAAT01), 2132860 (OVARICU03)
6	19	2477655	THPIINC03	2472655 (THPIINC03), 1325850 (LPARNOT02), SAEA01014, SAEA01114, SAEA031382
7	20	2948818	KIDNFET01	2948818 (KIDNFET01), 1545952 (PROSTUT04), SAAE00176

Table 1 cont.

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
8	21	054191	FTBRNOT01	054191H1 and 054191R6 (FTBRNOT01), 483547H1, 483547R6, and 483547T6 (HTNTRAYT01), 153797R6 (SINTTUT01), 1633493H1 (COLANNOT19)
9	22	1403604	LATRPUT02	491348H1 (HTN2AGT01), 1403604H1 (LATRPUT02), 33113576.com (BRAIFT01), SBAA0256F1 comp, SBAA03209F1, SBAA01960F1 comp, SBAA01439F1, SBAA01304F1
10	23	1652936	PROSTUT08	467767R6 (LATRNOT01), 1551938R6 (PROSNOT06), 1653936F6 and 1653936H1 (PROSTUT08), 1817388F6 and 1817388H1 (PROSNOT20), 282252H1 (ADRETTU06)
11	24	1710702	PROSNOT16	1474380T1 (LUNGPUT03), 1710702R1 (PROSNOT16), 2189187H1 (PROSNOT26), 1526267F1 (UCMCL5T01), 1467104F1 (PANCUTU02)
12	25	3239149	COLAUCT01	482693H1 (HTN2BATA01), 22877B8R6 (IBRAINNON01), 2570356T6 (HP1POAZT01), 3239144F6 and 3239149H1 (COLAUCT01), 3837574F6 (DENDNT01), 4993747H1 (LJVAUTUT11)
13	26	3315936	PROSBPT03	2501356T6 (ADRETTU05), 3315936H1 (PROSBPT03)

Table 2

Protein SPID ID No.	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
1	418	S159 S2 T12 S56 T91 T257 S187 S106 S102 S14 T9 T16 S13 T87 S184 S327 S334	N54 N70 N118	Y58-T293	Serine / threonine protein kinase	BLOCKS PRINTS MOTIFS BLAST FFAM
2	540	S100 T145 S16 T56 S100 T166 S158 S156 T462 T462 S503 S11 S30 S95 S137 S197 T280 T362 S367 S474 Y234 Y305	N460	Y165-V446	Ca2 +/calmodulin-dependent protein kinase	BLOCKS PRINTS MOTIFS BLAST FFAM
3	729	T96 S348 T273 S518 S531 T682 T78 T239 T478 T235	N42 N455 N614	W9-T238	Serine/ threonine protein kinase	BLOCKS PRINTS MOTIFS BLAST FFAM
4	313	S38 S82 S95 S97 T143 Y30	N79 N80 N172 N192	R114-S135	Protein tyrosine phosphatase	PRINTS BLAST

Table 2 cont.

Protein SEQ ID No:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
5	506	S114 S100 S81 S160 T162 S211 S253 S291 S335 S341 T33 T13 T144 S156 T177 S196 S163 S339 Y45 Y187	N275	SH3 domains: R441-L495	PEST phosphatase interacting protein	BLOCKS PRINTS PFAM BLAST
6	341	S39 S118 T125 S180 S110 S170 S173 S195 T299	N37 N178 N229 N263	Prolactin receptor associated protein (PRAP)	BLAST	
7	698	S56 T60 S15 S107 T210 T267 S242 S366 S374 S324 T547 T592 T640 S655 T681 T756 S775 S58 S249 T937 S951 T973 S655 T726 T745 T762 S836 S858 S879	N322 N347 N389 N502 N503	F24-V277	Serine/ threonine protein kinase	BLOCKS PRINTS PFAM MOTIFS BLAST

Table 2 cont.

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
8	336	S34 T110 S148 S311	N137 N144 N169 T173-T195 V236-T254	putative G- protein-coupled receptor	PRINTS, BLAST HMM, Motifs	
9	686	T192 S312 S483 S502 S23 T584	N17 N457 N618 N642	G544-N560 GDP-GTP exchange protein	PRINTS, BLAST Motifs	
10	519	S3 S77 S110 S176 S187 T196 S245 S265 T224 T250 T305 T324 S325 S351 S384 S390 T29 S33 S265 T305 S311 T453 S164 Y131 Y145	N128	cAMPase-interacting protein	BLAST Motifs	
11	334	S332 T186 S198 S269 T321 S90 S139 Y289	N20 N30	L267-L281	G-protein beta WD-40 repeat containing protein	PRINTS, BLAST Motifs
12	569	S91 S19 S109 S162 S276 S118 T314 S335 S336 S19 S39 T766 T288 T228 T381 T411 T451 S319	N17 N77 N416 N360-M374	I320-V334 beta-transducin repeats containing protein	PRINTS, BLAST PPAM, Motifs	
13	123	S14 T107 Y44 Y70	N100	M1-N52	SARI family GTP-binding protein	PRINTS, BLOCKS BLAST, Motifs

Table 3

Polynucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
14	Cardiovascular (0.194) Hematopoietic/Immune (0.194) Developmental (0.139)	Cancer (0.389) Inflammation (0.333) Cell proliferative (0.306)	pBLUESCRIPT
	Reproductive (0.282) Nervous (0.179)	Cancer (0.410) Cell proliferative (0.205)	pSPORT1
	Developmental (0.128)	Inflammation (0.154)	
16	Reproductive (0.286) Hematopoietic/Immune (0.167) Nervous (0.119)	Cancer (0.429) Inflammation (0.310) Cell proliferative (0.214)	PINCY
	Nervous (0.235) Reproductive (0.147)	Cancer (0.471) Cell proliferative (0.176) Trauma (0.176)	PINCY
	Gastrointestinal (0.118)		
17	Nervous (0.235) Reproductive (0.147)	Cancer (0.533) Inflammation (0.333) Cell proliferative (0.067)	PINCY
	Gastrointestinal (0.267) Cardiovascular (0.133)		
18	Nervous (0.273) Hematopoietic/Immune (0.227)	Cancer (0.364) Inflammation (0.364) Cell proliferative (0.318)	PINCY
	Reproductive (0.227)		
19	Hematopoietic/Immune (0.216)	Cancer (0.412) Inflammation (0.294) Cell proliferative (0.216)	PINCY
	Reproductive (0.216)		
	Nervous (0.157)		
20			

Table 3 cont.

Polynucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease or Condition (fraction of total)	Vector
21	Cardiovascular (0.21)	Cell proliferative (0.652)	PBLUESCRIPT
	Gastrointestinal (0.174)	Inflammation (0.304)	
	Nervous (0.174)		
22	Reproductive (0.370)	Cell proliferative (0.778)	PINCY
	Nervous (0.222)	Trauma (0.148)	
	Hematopoietic/Immune (0.148)		
23	Reproductive (0.400)	Cancer (0.533)	PINCY
	Cardiovascular (0.200)	Inflammation (0.200)	
	Hematopoietic/Immune (0.133)		
24	Reproductive (0.241)	Cell proliferative (0.724)	PINCY
	Nervous (0.190)	Inflammation (0.138)	
	Cardiovascular (0.138)		
25	Musculoskeletal (0.222)	Cell proliferative (0.555)	PINCY
	Nervous (0.222)	Inflammation (0.222)	
	Gastrointestinal (0.167)		
26	Reproductive (0.750)	Cancer (0.500)	PINCY
	Cardiovascular (0.250)	Inflammation (0.500)	

Table 4

Polynucleotide SEQ ID NO:	Library	Library Description
14	HUVELPB01	The library was constructed using RNA isolated from HUV-EC-C (ATCC CRL 1730) cells that were stimulated with cytokine/LPS. HUV-EC-C is an endothelial cell line derived from the vein of a normal human umbilical cord. RNA was isolated from two pools of HUV-EC-C cells that had been treated with either gamma IFN and TNF-alpha or IL-1 beta and LPS.
15	BRSTNOT03	The library was constructed using RNA isolated from nontumorous breast tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade 3 mammary ductal adenocarcinoma. Family history included benign hypertension, hyperlipidemia, and a malignant neoplasm of the colon.
16	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation from fetal demise. Family history included bronchitis.
17	CONNUTU01	The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. Patient history included deficiency anemia.
18	ISLTNOT01	The library was constructed using RNA isolated from pancreatic islet cells. Starting RNA was made from a pooled collection of islet cells.
19	THPINOT03	The library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
20	KIDNFET01	The library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks' gestation from anencephalus. Family history included gout.

Table 4 cont.

Polymerase Chain Reaction Library SEQ ID NO:	Library Description
21	FIBRNO01 The library was constructed at Stratagene [SMP937212], using RNA isolated from the WI38 lung fibroblast cell line, which was derived from a 3-month-old Caucasian female fetus. 2x10 ⁶ primary clones were amplified to stabilize the library for long-term storage.
22	LATRPUF02 The library was constructed using RNA isolated from a myxoma removed from the left atrium of a 43-year-old Caucasian male during annuloplasty. Pathology indicated atrial myxoma. Patient history included pulmonary insufficiency, acute myocardial infarction, atherosclerotic coronary artery disease and hyperlipidemia. Family history included benign hypertension, acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
23	PROSTU08 The library was constructed using RNA isolated from prostate tumor tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 3/4). Adenomatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included tuberculosis, cerebrovascular disease, and arteriosclerotic coronary artery disease.
24	PROSNOT16 The library was constructed using RNA isolated from diseased prostate tissue removed from a 68-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3/4). The patient presented with elevated prostate specific antigen (PSA). During this hospitalization, the patient was diagnosed with myasthenia gravis. Patient history included osteoarthritis, and type II diabetes. Family history included benign hypertension, acute myocardial infarction, hyperlipidemia, and arteriosclerotic coronary artery disease.

Table 4 cont.

Polynucleotide Library SEQ ID NO:	Library Description
25	COLAUC01 The library was constructed using RNA isolated from diseased ascending colon tissue removed from a 74-year-old Caucasian male during a multiple-segment large bowel excision with temporary ileostomy. Pathology indicated inflammatory bowel disease consistent with chronic ulcerative colitis, severe acute and chronic mucosal inflammation with erythema, ulceration, and pseudopolyp formation involving the entire colon and rectum. The sigmoid colon had an area of mild stricture formation. One diverticulum with diverticulitis was identified near this zone.
26	PROSBPT03 The library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy and regional lymph node excision. Pathology indicated benign prostatic hyperplasia (BPH). Pathology for the associated tumor indicated adenocarcinoma, Gleason grade 3+3. The patient presented with elevated prostate specific antigen (PSA), benign hypertension, and hyperlipidemia. Family history included cerebrovascular disease, benign hypertension and prostate cancer.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	Mismatch <30%
ABI/PARACEL PFD	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, fastaa, fastx, tfsax, and search.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 61-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-499.	ESTs: fasta E value= 1.06E-6 Assembled ESTs: fasta identity= 95% or greater and Match length<100 bases or greater; fastx E value= 1.0E-8 or less. Full Length sequences: fastx score<100 or greater
BLIMPS	A BLOCKS IMProved Seacher that matches a sequence against those in BLOCKS and PRINTS databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Atwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Score=100 or greater; Ratio of Score/Strength = 7.5 or larger; Henikoff (1996) Methods Enzymol. 266:88-105; and Probability value= 1.0E-3 or less, if applicable
PFAM	A Hidden Markov Models-based application useful for protein family search.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:3203-322.	Score=10-30 bits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phred Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:432-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SFScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nelson, H. et al. (1997) Protein Engineering 10:-6; Claverie, J.M. and S. Audit (1997) CABIOS 12: 431-439.	Score=5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. ^{supra} ; Wisconsin Package Program Manual, version 9, page M51-59. Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, or a fragment thereof.
- 5 2. A substantially purified variant having at least 90% amino acid identity to the amino acid sequence of claim 1.
3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 3.
- 10 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
7. A method for detecting a polynucleotide, the method comprising the steps of:
 - 15 (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in the sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
- 20 9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, or a fragment thereof.
10. An isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide of claim 9.
- 25 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
13. A host cell comprising the expression vector of claim 12.
- 30 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.
17. A purified agonist of the polypeptide of claim 1.
18. A purified antagonist of the polypeptide of claim 1.
19. A method for treating or preventing a disorder associated with decreased expression of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.

5 20. A method for treating or preventing a disorder associated with increased expression of CSIGP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

10

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
BANDMAN, Olga
HILLMAN, Jennifer L.
LAL, Preeti
YUE, Henry
TANG, Y. Tom
PATTERSON, Chandra
BAUGHN, Mariah R.
YANG, Junming

<120> CELL SIGNALING PROTEINS

<130> PF-0521 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/085, 3434; 60/098, 010
<151> 1998-05-13; 1998-08-26

<160> 26

<170> PERL Program

<210> 1
<211> 418
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 016108

<400> 1
Met Ser Leu Leu Asp Cys Phe Cys Thr Ser Arg Thr Gln Val Glu
1 5 10 15
Ser Leu Arg Pro Glu Lys Gln Ser Glu Thr Ser Ile His Gln Tyr
20 25 30
Leu Val Asp Glu Pro Thr Leu Ser Trp Ser Arg Pro Ser Thr Arg
35 40 45
Ala Ser Glu Val Leu Cys Ser Thr Asn Val Ser His Tyr Glu Leu
50 55 60
Gln Val Glu Ile Gly Arg Gly Phe Asp Asn Leu Thr Ser Val His
65 70 75
Leu Ala Arg His Thr Pro Thr Gly Thr Leu Val Thr Ile Lys Ile
80 85 90
Thr Asn Leu Glu Asn Cys Asn Glu Glu Arg Leu Lys Ala Leu Gln
95 100 105
Lys Ala Val Ile Leu Ser His Phe Phe Arg His Pro Asn Ile Thr
110 115 120
Thr Tyr Trp Thr Val Phe Thr Val Gly Ser Trp Leu Trp Val Ile
125 130 135
Ser Pro Phe Met Ala Tyr Gly Ser Ala Ser Gln Leu Leu Arg Thr
140 145 150
Tyr Phe Pro Glu Gly Met Ser Glu Thr Leu Ile Arg Asn Ile Leu
155 160 165
Phe Gly Ala Val Arg Gly Leu Asn Tyr Leu His Gln Asn Gly Cys
170 175 180
Ile His Arg Ser Ile Lys Ala Ser His Ile Leu Ile Ser Gly Asp
185 190 195
Gly Leu Val Thr Leu Ser Gly Leu Ser His Leu His Ser Leu Val

200	205	210
Lys His Gly Gln Arg His Arg Ala Val	Tyr Asp Phe Pro Gln Phe	
215	220	225
Ser Thr Ser Val Gln Pro Trp Leu Ser Pro	Glu Leu Leu Arg Gln	
230	235	240
Asp Leu His Gly Leu Tyr Val Lys Ser Asp	Ile Tyr Ser Val Gly	
245	250	255
Ile Thr Ala Cys Glu Leu Ala Ser Gly Gln	Val Pro Phe Gln Asp	
260	265	270
Met His Arg Thr Gln Met Leu Leu Gln	Lys Leu Lys Gly Pro Pro	
275	280	285
Tyr Ser Pro Leu Asp Ile Ser Ile Phe Pro	Gln Ser Glu Ser Arg	
290	295	300
Met Lys Asn Ser Gln Ser Gly Val Asp Ser	Gly Ile Gly Glu Ser	
305	310	315
Val Leu Val Ser Ser Gly Thr His Thr Val	Asn Ser Asp Arg Leu	
320	325	330
His Thr Pro Ser Ser Lys Thr Phe Ser Pro	Ala Phe Phe Ser Leu	
335	340	345
Val Gln Leu Cys Leu Gln Gln Asp Pro	Glu Lys Arg Pro Ser Ala	
350	355	360
Ser Ser Leu Leu Ser His Val Phe Phe	Lys Gln Met Lys Glu Glu	
365	370	375
Ser Gln Asp Ser Ile Leu Ser Leu Leu	Pro Pro Ala Tyr Asn Lys	
380	385	390
Pro Ser Ile Ser Leu Pro Pro Val Leu Pro	Trp Thr Glu Pro Glu	
395	400	405
Cys Asp Phe Pro Asp Glu Lys Asp Ser Tyr	Trp Glu Phe	
410	415	

```

<210> 2
<211> 540
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 640521

<400> 2
Met Ser Ser Cys Val Ser Ser Gln Pro Ser Ser Asn Arg Ala Ala
1 5 10 15
Pro Gln Asp Glu Leu Gly Gly Arg Gly Ser Ser Ser Ser Glu Ser
20 25 30
Gln Lys Pro Cys Glu Ala Leu Arg Gly Leu Ser Ser Leu Ser Ile
35 40 45
His Leu Gly Met Glu Ser Phe Ile Val Val Thr Glu Cys Glu Pro
50 55 60
Gly Cys Ala Val Asp Leu Gly Leu Ala Arg Asp Arg Pro Leu Glu
65 70 75
Ala Asp Gly Gln Glu Val Pro Leu Asp Ser Ser Gly Ser Gln Ala
80 85 90
Arg Pro His Leu Ser Gly Arg Lys Leu Ser Leu Gln Glu Arg Ser
95 100 105
Gln Gly Gly Leu Ala Ala Gly Gly Ser Leu Asp Met Asn Gly Arg
110 115 120
Cys Ile Cys Pro Ser Leu Pro Tyr Ser Pro Val Ser Ser Pro Gln
125 130 135
Ser Ser Pro Arg Leu Pro Arg Arg Pro Thr Val Glu Ser His His
140 145 150
Val Ser Ile Thr Gly Met Gln Asp Cys Val Gln Leu Asn Gln Tyr

```

155	160	
Thr Leu Lys Asp Glu Ile Gly Lys Gly Ser Tyr Gly Val Val Lys	170	175
		180
Leu Ala Tyr Asn Glu Asn Asp Asn Thr Tyr Tyr Ala Met Lys Val	185	190
		195
Leu Ser Lys Lys Leu Ile Arg Gin Ala Gly Phe Pro Arg Arg	200	205
		210
Pro Pro Pro Arg Gly Thr Arg Pro Ala Pro Gly Gly Cys Ile Gln	215	220
		225
Pro Arg Gly Pro Ile Glu Gln Val Tyr Gln Glu Ile Ala Ile Leu	230	235
		240
Lys Lys Leu Asp His Pro Asn Val Val Lys Leu Val Glu Val Leu	245	250
		255
Asp Asp Pro Asn Glu Asp His Leu Tyr Met Val Phe Glu Leu Val	260	265
		270
Asn Gln Gly Pro Val Met Glu Val Pro Thr Leu Lys Pro Leu Ser	275	280
		285
Glu Asp Gln Ala Arg Phe Tyr Phe Gin Asp Leu Ile Lys Gly Ile	290	295
		300
Glu Tyr Leu His Tyr Gln Lys Ile Ile His Arg Asp Ile Lys Pro	305	310
		315
Ser Asn Leu Leu Val Gly Glu Asp Gly His Ile Lys Ile Ala Asp	320	325
		330
Phe Gly Val Ser Asn Glu Phe Lys Gly Ser Asp Ala Leu Leu Ser	335	340
		345
Asn Thr Val Gly Thr Pro Ala Phe Met Ala Pro Glu Ser Leu Ser	350	355
		360
Glu Thr Arg Lys Ile Phe Ser Gly Lys Ala Leu Asp Val Trp Ala	365	370
		375
Met Gly Val Thr Leu Tyr Cys Phe Val Phe Gly Gln Cys Pro Phe	380	385
		390
Met Asp Glu Arg Ile Met Cys Leu His Ser Lys Ile Lys Ser Gln	395	400
		405
Ala Leu Glu Phe Pro Asp Gln Pro Asp Ile Ala Glu Asp Leu Lys	410	415
		420
Asp Leu Ile Thr Arg Met Leu Asp Lys Asn Pro Glu Ser Arg Ile	425	430
		435
Val Val Pro Glu Ile Lys Leu His Pro Trp Val Thr Arg His Gly	440	445
		450
Ala Glu Pro Leu Pro Ser Glu Asp Glu Asn Cys Thr Leu Val Glu	455	460
		465
Val Thr Glu Glu Glu Val Glu Asn Ser Val Lys His Ile Pro Ser	470	475
		480
Leu Ala Thr Val Ile Leu Val Lys Thr Met Ile Arg Lys Arg Ser	485	490
		495
Phe Gly Asn Pro Phe Glu Gly Ser Arg Arg Glu Glu Arg Ser Leu	500	505
		510
Ser Ala Pro Gln Asn Leu Leu Thr Lys Gln Gly Ser Glu Asp Asn	515	520
		525
Leu Gln Gly Thr Asp Pro Pro Pro Val Gly Glu Glu Glu Val Leu	530	535
		540

<210> 3
<211> 729
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1250171

<400> 3
 Met Gln Ser Thr Ser Asn His Leu Trp Leu Leu Ser Asp Ile Leu
 1 5 10 15
 Gly Gln Gly Ala Thr Ala Asn Val Phe Arg Gly Arg His Lys Lys
 20 25 30
 Thr Gly Asp Leu Phe Ala Ile Lys Val Phe Asn Asn Ile Ser Phe
 35 40 45
 Leu Arg Pro Val Asp Val Gln Met Arg Glu Phe Glu Val Leu Lys
 50 55 60
 Lys Leu Asn His Lys Asn Ile Val Lys Leu Phe Ala Ile Glu Glu
 65 70 75
 Glu Thr Thr Thr Arg His Lys Val Leu Ile Met Glu Phe Cys Pro
 80 85 90
 Cys Gly Ser Leu Tyr Thr Val Leu Glu Pro Ser Asn Ala Tyr
 95 100 105
 Gly Leu Pro Glu Ser Glu Phe Leu Ile Val Leu Arg Asp Val Val
 110 115 120
 Gly Gly Met Asn His Leu Arg Glu Asn Gly Ile Val His Arg Asp
 125 130 135
 Ile Lys Pro Gly Asn Ile Met Arg Val Ile Gly Glu Asp Gly Gln
 140 145 150
 Ser Val Tyr Lys Leu Thr Asp Phe Gly Ala Ala Arg Glu Leu Glu
 155 160 165
 Asp Asp Glu Gln Phe Val Ser Leu Tyr Gly Thr Glu Glu Tyr Leu
 170 175 180
 His Pro Asp Met Tyr Glu Arg Ala Val Leu Arg Lys Asp His Gln
 185 190 195
 Lys Lys Tyr Gly Ala Thr Val Asp Leu Trp Ser Ile Gly Val Thr
 200 205 210
 Phe Tyr His Ala Ala Thr Gly Ser Leu Pro Phe Arg Pro Phe Glu
 215 220 225
 Gly Pro Arg Arg Asn Lys Glu Val Met Tyr Lys Ile Ile Thr Gly
 230 235 240
 Lys Pro Ser Gly Ala Ile Ser Gly Val Gln Lys Ala Glu Asn Gly
 245 250 255
 Pro Ile Asp Trp Ser Gly Asp Met Pro Val Ser Cys Ser Leu Ser
 260 265 270
 Arg Gly Leu Gln Val Leu Leu Thr Pro Val Leu Ala Asn Ile Leu
 275 280 285
 Glu Ala Asp Gln Glu Lys Cys Trp Gly Phe Asp Gln Phe Phe Ala
 290 295 300
 Glu Thr Ser Asp Ile Leu His Arg Met Val Ile His Val Phe Ser
 305 310 315
 Leu Gln Gln Met Thr Ala His Lys Ile Tyr Ile His Ser Tyr Asn
 320 325 330
 Thr Ala Thr Ile Phe His Glu Leu Val Tyr Lys Gln Thr Lys Ile
 335 340 345
 Ile Ser Ser Asn Gln Glu Leu Ile Tyr Glu Gly Arg Arg Leu Val
 350 355 360
 Leu Glu Pro Gly Arg Leu Ala Gln His Phe Pro Lys Thr Thr Glu
 365 370 375
 Glu Asn Pro Ile Phe Val Val Ser Arg Glu Pro Leu Asn Thr Ile
 380 385 390
 Gly Leu Ile Tyr Glu Lys Ile Ser Leu Pro Lys Val His Pro Arg
 395 400 405
 Tyr Asp Leu Asp Gly Asp Ala Ser Met Ala Lys Ala Ile Thr Gly
 410 415 420
 Val Val Cys Tyr Ala Cys Arg Ile Ala Ser Thr Leu Leu Leu Tyr
 425 430 435
 Gln Glu Leu Met Arg Lys Gly Ile Arg Trp Leu Ile Glu Leu Ile
 440 445 450
 Lys Asp Asp Tyr Asn Glu Thr Val His Lys Lys Thr Glu Val Val
 455 460 465
 Ile Thr Leu Asp Phe Cys Ile Arg Asn Ile Glu Lys Thr Val Lys

470	475	480
Val Tyr Glu Lys Leu Met Lys Ile Asn	Leu Glu Ala Ala Glu	Leu
485	490	495
Gly Glu Ile Ser Asp Ile His Thr Lys	Leu Leu Arg Leu Ser Ser	
500	505	510
Ser Gln Gly Thr Ile Glu Thr Ser Leu	Gln Asp Ile Asp Ser Arg	
515	520	525
Leu Ser Pro Gly Ser Leu Ala Asp Ala	Trp Ala His Gln Glu	
530	535	540
Gly Thr His Pro Lys Asp Arg Asn Val	Glu Lys Leu Gln Val Leu	
545	550	555
Leu Asn Cys Met Thr Glu Ile Tyr Tyr	Gln Phe Lys Lys Asp Lys	
560	565	570
Ala Glu Arg Arg Leu Ala Tyr Asn Glu	Glu Gln Ile His Lys Phe	
575	580	585
Asp Lys Gln Lys Leu Tyr Tyr His Ala	Thr Lys Ala Met Thr His	
590	595	600
Phe Thr Asp Glu Cys Val Lys Lys Tyr	Glu Ala Phe Leu Asn Lys	
605	610	615
Ser Glu Glu Trp Ile Arg Lys Met Leu	His Leu Arg Lys Gln Leu	
620	625	630
Leu Ser Leu Thr Asn Gln Cys Phe Asp	Ile Glu Glu Glu Val Ser	
635	640	645
Lys Tyr Gln Glu Tyr Thr Asn Glu Leu	Gln Glu Thr Leu Pro Gln	
650	655	660
Lys Met Phe Thr Ala Ser Ser Gly Ile	Lys His Thr Met Thr Pro	
665	670	675
Ile Tyr Pro Ser Ser Asn Thr Leu Val	Glu Met Thr Leu Gly Met	
680	685	690
Lys Lys Leu Lys Glu Glu Met Glu Gly	Val Val Lys Glu Leu Ala	
695	700	705
Glu Asn Asn His Ile Leu Glu Arg Phe	Gly Ser Leu Thr Met Asp	
710	715	720
Gly Gly Leu Arg Asn Val Asp Cys Leu		
725		

<210> 4
<211> 313
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1911587

<400> 4		
Met Pro Gly Leu Leu Leu Cys Glu Pro Thr	Glu Leu Tyr Asn Ile	
1	5	10
Leu Asn Gln Ala Thr Lys Leu Ser Arg	Leu Thr Asp Pro Asn Tyr	
20	25	30
Leu Cys Leu Leu Asp Val Arg Ser Lys	Trp Glu Tyr Asp Glu Ser	
35	40	45
His Val Ile Thr Ala Leu Arg Val Lys	Lys Lys Asn Asn Glu Tyr	
50	55	60
Leu Leu Pro Glu Ser Val Asp Leu Glu	Cys Val Lys Tyr Cys Val	
65	70	75
Val Tyr Asp Asn Asn Ser Ser Thr	Leu Glu Ile Leu Leu Lys Asp	
80	85	90
Asp Asp Asp Asp Ser Asp Ser Asp	Gly Asp Gly Lys Asp Leu Val	
95	100	105
Pro Gin Ala Ala Ile Glu Tyr Gly Arg	Ile Leu Thr Arg Leu Thr	

His His Pro Val	Tyr Ile Leu Lys Gly	Gly Tyr Glu Arg Phe Ser	
125	126 130	135	
Gly Thr Tyr His	Phe Leu Arg Thr Gln	Lys Ile Ile Trp Met Pro	
140	145	150	
Gln Glu Leu Asp	Ala Phe Gln Pro Tyr	Pro Ile Glu Ile Val Pro	
155	160	165	
Gly Lys Val Phe Val	Gly Asn Phe Ser	Gln Ala Cys Asp Pro Lys	
170	175	180	
Ile Gln Lys Asp	Leu Lys Ile Lys Ala	His Val Asn Val Ser Met	
185	190	195	
Asp Thr Gly Pro	Phe Ala Gly Asp	Ala Asp Arg Leu Leu His	
200	205	210	
Ile Arg Ile Glu Asp	Ser Pro Glu Ala	Gln Ile Leu Pro Phe Leu	
215	220	225	
Arg His Met Cys	His Phe Ile Glu Ile	His His His Leu Gly Ser	
230	235	240	
Val Ile Leu Ile Phe	Ser Thr Gln Gly	Ile Ser Arg Ser Cys Ala	
245	250	255	
Ala Ile Ile Ala Tyr	Leu Met His Ser Asn	Glu Gln Thr Leu Gln	
260	265	270	
Arg Ser Trp Ala Tyr	Val Lys Lys Cys	Lys Asn Asn Met Cys Pro	
275	280	285	
Asn Arg Gly Leu Val	Ser Gln Leu Leu	Glu Trp Glu Lys Thr Ile	
290	295	300	
Leu Gly Asp Ser Ile	Thr Asn Ile Met Asp	Pro Pro Leu Tyr	
305	310		

<210> 5
<211> 506
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 2079081

<400> 5
Met Arg Asp Pro Leu Thr Asp Cys Pro Tyr Asn Lys Val Tyr Lys
1 5 10 15
Asn Leu Lys Glu Phe Ser Gln Asn Gly Glu Asn Phe Cys Lys Gln
20 25 30
Val Thr Ser Val Leu Gln Gln Arg Ala Asn Leu Glu Ile Ser Tyr
35 40 45
Ala Lys Gly Leu Gln Lys Leu Ala Ser Lys Leu Ser Lys Ala Leu
50 55 60
Gln Asn Thr Arg Lys Ser Cys Val Ser Ser Ala Trp Ala Trp Ala
65 70 75
Ser Glu Gly Met Lys Ser Thr Ala Asp Leu His Gln Lys Leu Gly
80 85 90
Lys Ala Ile Glu Leu Glu Ala Ile Lys Pro Thr Tyr Gln Val Leu
95 100 105
Asn Val Gln Glu Lys Lys Arg Lys Ser Leu Asp Asn Glu Val Glu
110 115 120
Lys Thr Ala Asn Leu Val Ile Ser Asn Trp Asn Gln Ile Lys
125 130 135
Ala Lys Lys Lys Leu Met Val Ser Thr Lys Lys His Glu Ala Leu
140 145 150
Phe Gln Leu Val Glu Ser Ser Lys Gln Ser Met Thr Glu Lys Glu
155 160 165
Lys Arg Lys Leu Leu Asn Lys Leu Thr Lys Ser Thr Glu Lys Leu

170	175	180
Glu Lys Glu Asp Glu Asn Tyr Tyr Gln	Lys Asn Met Ala Gly	Tyr
185	190	195
Ser Thr Arg Leu Lys Trp Glu Asn Thr	Leu Glu Asn Cys Tyr	Gln
200	205	210
Ser Ile Leu Glu Leu Glu Lys Glu Arg	Ile Gln Leu Leu Cys	Asn
215	220	225
Asn Leu Asn Gln Tyr Ser Gln His Ile	Ser Leu Phe Gly Gln	Thr
230	235	240
Leu Thr Thr Cys His Thr Gln Ile His	Cys Ala Ile Ser Lys	Ile
245	250	255
Asp Ile Glu Lys Asp Ile Gln Ala Val	Met Glu Glu Thr Ala	Ile
260	265	270
Leu Ser Thr Gln Asn Lys Ser Glu Phe	Leu Leu Thr Asp Tyr	Phe
275	280	285
Glu Glu Asp Pro Asn Ser Ala Met Asp	Lys Glu Arg Arg Lys	Ser
290	295	300
Leu Leu Lys Pro Lys Leu Leu Arg Leu	Gln Arg Asp Ile Glu	Lys
305	310	315
Ala Ser Lys Asp Lys Glu Gly Leu Glu	Arg Met Leu Lys Thr	Tyr
320	325	330
Ser Ser Thr Ser Ser Phe Ser Asp Ala	Lys Ser Gln Lys Asp	Thr
335	340	345
Ala Ala Leu Met Asp Glu Asn Asn Leu	Lys Leu Asp Leu Leu	Glu
350	355	360
Ala Asn Ser Tyr Lys Leu Ser Ser Met	Leu Ala Glu Leu Glu	Gln
365	370	375
Arg Pro Gln Pro Ser His Pro Cys Ser	Asn Ser Ile Phe Arg	Trp
380	385	390
Arg Glu Lys Glu His Thr His Ser Tyr	Val Lys Ile Ser Arg	Pro
395	400	405
Phe Leu Met Lys Arg Leu Glu Asn Ile	Val Ser Lys Ala Ser	Ser
410	415	420
Gly Gly Gln Ser Asn Pro Gly Ser Ser	Thr Pro Ala Pro Gly	Ala
425	430	435
Ala Gln Leu Ser Ser Arg Leu Cys Lys	Ala Leu Tyr Ser Phe	Gln
440	445	450
Ala Arg Gln Asp Asp Glu Leu Asn Leu	Glu Lys Gly Asp Ile	Val
455	460	465
Ile Ile His Glu Lys Lys Glu Glu Gly	Trp Trp Phe Gly Ser	Leu
470	475	480
Asn Gly Lys Lys Gly His Phe Pro Ala	Ala Tyr Val Glu Glu	Leu
485	490	495
Pro Ser Asn Ala Gly Asn Thr Ala Thr	Lys Ala	
500	505	

<210> 6
<211> 341
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 2472655

<400> 6
Met Arg Lys Val Val Leu Ile Thr Gly Ala Ser Ser Gly Ile Gly
1 5 10 15
Leu Ala Leu Cys Lys Arg Leu Leu Ala Glu Asp Asp Glu Leu His
20 25 30
Leu Cys Leu Ala Cys Arg Asn Met Ser Lys Ala Glu Ala Val Cys

35	40	45
Ala Ala Leu Leu Ala Ser His Pro Thr Ala Glu Val Thr Ile Val		
50	55	60
Gln Val Asp Val Ser Asn Leu Gln Ser Val Phe Arg Ala Ser Lys		
65	70	75
Glw Leu Lys Gln Arg Phe Gln Arg Leu Asp Cys Ile Tyr Leu Asn		
80	85	90
Ala Gly Ile Met Pro Asn Pro Gln Leu Asn Ile Lys Ala Leu Phe		
95	100	105
Phe Gly Leu Phe Ser Arg Lys Val Ile His Met Phe Ser Thr Ala		
110	115	120
Glw Gly Leu Leu Thr Gln Gly Asp Lys Ile Thr Ala Asp Gly Leu		
125	130	135
Gln Glu Val Phe Glu Thr Asn Val Phe Gly His Phe Ile Leu Ile		
140	145	150
Arg Glu Leu Glu Pro Leu Leu Cys His Ser Asp Asn Pro Ser Gln		
155	160	165
Leu Ile Trp Thr Ser Ser Arg Ser Ala Arg Lys Ser Asn Phe Ser		
170	175	180
Leu Glu Asp Phe Gln His Ser Lys Gly Lys Glu Pro Tyr Ser Ser		
185	190	195
Ser Lys Tyr Ala Thr Asp Leu Leu Ser Val Ala Leu Asn Arg Asn		
200	205	210
Phe Asn Gln Gln Gly Leu Tyr Ser Asn Val Ala Cys Pro Gly Thr		
215	220	225
Ala Leu Thr Asn Leu Thr Tyr Gly Ile Leu Pro Pro Phe Ile Trp		
230	235	240
Thr Leu Leu Met Pro Ala Ile Leu Leu Leu Arg Phe Phe Ala Asn		
245	250	255
Ala Phe Thr Leu Thr Pro Tyr Asn Gly Thr Glu Ala Leu Val Trp		
260	265	270
Leu Phe His Gln Lys Pro Glu Ser Leu Asn Pro Leu Ile Lys Tyr		
275	280	285
Leu Ser Ala Thr Thr Gly Phe Gly Arg Asn Tyr Ile Met Thr Gln		
290	295	300
Lys Met Asp Leu Asp Glu Asp Thr Ala Glu Lys Phe Tyr Gln Lys		
305	310	315
Leu Leu Glu Leu Glu Lys His Ile Arg Val Thr Ile Gln Lys Thr		
320	325	330
Asp Asn Gln Ala Arg Leu Ser Gly Ser Cys Leu		
335	340	

<210> 7
<211> 898
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 2948818

<400> 7
Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Ser
1 5 10 15
Tyr Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile
20 25 30
Gly His Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His
35 40 45
Thr Ser Glu Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys
50 55 60
Gln Thr His Glu Lys Trp Gln Asp Ile Leu Lys Glu Val Lys Phe

65	70	75
Leu Arg Gln Leu Lys His Pro Asn Thr Ile Glu Tyr Lys Gly Cys	80	85
90		
Tyr Leu Lys Glu His Thr Ala Trp Leu Val Met Glu Tyr Cys Leu	95	100
105		
Gly Ser Ala Ser Asp Leu Leu Glu Val His Lys Lys Pro Leu Gln	110	115
120		
Glu Val Glu Ile Ala Ala Ile Thr His Gly Ala Leu His Gly Leu	125	130
135		
Ala Tyr Leu His Ser His Ala Leu Ile His Arg Asp Ile Lys Ala	140	145
150		
Gly Asn Ile Leu Leu Thr Glu Pro Gly Gln Val Lys Leu Ala Asp	155	160
165		
Phe Gly Ser Ala Ser Met Ala Ser Pro Ala Asn Ser Phe Val Gly	170	175
180		
Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Ala Met Asp Glu	185	190
195		
Gly Gin Tyr Asp Gly Lys Val Asp Ile Trp Ser Leu Gly Ile Thr	200	205
210		
Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro Leu Phe Asn Met Asn	215	220
225		
Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn Asp Ser Pro Thr	230	235
240		
Leu Gln Ser Asn Glu Trp Thr Asp Ser Phe Arg Arg Phe Val Asp	245	250
255		
Tyr Cys Leu Gln Lys Ile Pro Gln Glu Arg Pro Thr Ser Ala Glu	260	265
270		
Leu Leu Arg His Asp Phe Val Arg Arg Asp Arg Pro Leu Arg Val	275	280
285		
Leu Ile Asp Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu	290	295
300		
Asp Asn Leu Gln Tyr Arg Lys Met Lys Ile Leu Phe Gln Glu	305	310
315		
Thr Arg Asn Gly Pro Leu Asn Glu Ser Gln Glu Asp Glu Glu Asp	320	325
330		
Ser Glu His Gly Thr Ser Leu Asn Arg Glu Met Asp Ser Leu Gly	335	340
345		
Ser Asn His Ser Ile Pro Ser Met Ser Val Ser Thr Gly Ser Gln	350	355
360		
Ser Ser Ser Val Asn Ser Met Gln Glu Val Met Asp Glu Ser Ser	365	370
375		
Ser Glu Leu Val Met Met His Asp Asp Glu Ser Thr Ile Asn Ser	380	385
390		
Ser Ser Ser Val His Lys Lys Asp His Val Phe Ile Arg Asp	395	400
405		
Glu Ala Gly His Gly Asp Pro Arg Pro Glu Pro Arg Pro Thr Gln	410	415
420		
Ser Val Gln Ser Gln Ala Leu His Tyr Arg Asn Arg Glu Arg Phe	425	430
435		
Ala Thr Ile Lys Ser Ala Ser Leu Val Thr Arg Gin Ile His Glu	440	445
450		
His Glu Gln Glu Asn Glu Leu Arg Glu Gln Met Ser Gly Tyr Lys	455	460
465		
Arg Met Arg Arg Gln His Gln Lys Gln Leu Ile Ala Leu Glu Asn	470	475
480		
Lys Leu Lys Ala Glu Met Asp Glu His Arg Leu Lys Leu Gln Lys	485	490
495		
Glu Val Glu Thr His Ala Asn Asn Ser Ser Ile Glu Leu Glu Lys	500	505
510		
Leu Ala Lys Gln Val Ala Ile Ile Glu Lys Glu Ala Lys Val	515	520
525		
Ala Ala Ala Asp Glu Lys Lys Phe Gln Gln Ile Leu Ala Gln	530	535
540		
Gln Lys Lys Asp Leu Thr Thr Phe Leu Glu Ser Gln Lys Lys Gln		

545	550	555
Tyr Lys Ile Cys Lys Glu Lys Ile Lys Glu Glu Met Asn Glu Asp	560	565
560	565	570
His Ser Thr Pro Lys Lys Glu Lys Gln Glu Arg Ile Ser Lys His	575	580
575	580	585
Lys Glu Asn Leu Gln His Thr Gln Ala Glu Glu Glu Ala His Leu	590	595
590	595	600
Leu Thr Gln Gln Arg Leu Tyr Tyr Asp Lys Asn Cys Arg Phe Phe	605	610
605	610	615
Lys Arg Lys Ile Met Ile Lys Arg His Glu Val Glu Gln Gln Asn	620	625
620	625	630
Ile Arg Glu Glu Leu Asn Lys Lys Arg Thr Gln Lys Glu Met Glu	635	640
635	640	645
His Ala Met Leu Ile Arg His Asp Glu Ser Thr Arg Glu Leu Glu	650	655
650	655	660
Tyr Arg Gln Leu His Thr Leu Gln Lys Leu Arg Met Asp Leu Ile	665	670
665	670	675
Arg Leu Gln His Gln Thr Glu Leu Glu Asn Gln Leu Glu Tyr Asn	680	685
680	685	690
Lys Arg Arg Glu Arg Glu Leu His Arg Lys His Val Met Glu Leu	695	700
695	700	705
Arg Gln Gln Pro Lys Asn Leu Lys Ala Met Glu Met Gln Ile Lys	710	715
710	715	720
Lys Gln Phe Gin Asp Thr Cys Lys Val Gln Thr Lys Gln Tyr Lys	725	730
725	730	735
Ala Leu Lys Asn His Gln Leu Glu Val Thr Pro Lys Asn Glu His	740	745
740	745	750
Lys Thr Ile Leu Lys Thr Leu Lys Asp Glu Gln Thr Arg Lys Leu	755	760
755	760	765
Ala Ile Leu Ala Glu Gln Tyr Glu Gln Ser Ile Asn Glu Met Met	770	775
770	775	780
Ala Ser Gln Ala Leu Arg Leu Asp Glu Ala Gln Glu Ala Glu Cys	785	790
785	790	795
Gln Ala Leu Arg Leu Gln Leu Gln Gln Glu Met Glu Leu Leu Asn	800	805
800	805	810
Ala Tyr Gln Ser Gln Ile Lys Met Gln Thr Glu Ala Gln His Glu	815	820
815	820	825
Arg Glu Leu Gln Lys Leu Glu Gln Arg Val Ser Leu Arg Arg Ala	830	835
830	835	840
His Leu Glu Gln Lys Ile Glu Glu Glu Leu Ala Ala Leu Gln Lys	845	850
845	850	855
Glu Arg Ser Glu Arg Ile Lys Asn Leu Leu Glu Arg Gln Glu Arg	860	865
860	865	870
Glu Ile Glu Thr Phe Asp Met Glu Ser Leu Arg Met Gly Phe Gly	875	880
875	880	885
Asn Leu Val Thr Leu Asp Phe Pro Lys Glu Asp Tyr Arg	890	895

<210> 8
<211> 336
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 054191

<400> 8
Met Ala Thr Leu Ser Val Ile Gly Ser Ser Ser Leu Ile Ala Tyr
1 5 10 15
Ala Val Phe His Asn Ile Gln Lys Ser Pro Glu Ile Arg Pro Leu

Phe	Tyr	Leu	Ser	Phe	Cys	Asp	Leu	Leu	Leu	Gly	Leu	Cys	Trp	Leu
20				35					40				45	
Thr	Glu	Thr	Leu	Leu	Tyr	Gly	Ala	Ser	Val	Ala	Asn	Lys	Asp	Ile
									55				60	
Ile	Cys	Tyr	Asn	Leu	Gln	Ala	Val	Gly	Gln	Ile	Phe	Tyr	Ile	Ser
									70				75	
Ser	Phe	Leu	Tyr	Thr	Val	Asn	Tyr	Ile	Trp	Tyr	Leu	Tyr	Thr	Glu
									85				90	
Leu	Arg	Met	Lys	His	Thr	Gln	Ser	Gly	Gln	Ser	Thr	Ser	Pro	Leu
									100				105	
Val	Ile	Asp	Tyr	Thr	Cys	Arg	Val	Gly	Gln	Met	Ala	Phe	Val	Phe
									115				120	
Ser	Ser	Leu	Ile	Pro	Leu	Leu	Leu	Met	Thr	Pro	Val	Phe	Cys	Leu
									130				135	
Gly	Asn	Thr	Ser	Gln	Cys	Phe	Gln	Asn	Phe	Ser	Gln	Ser	His	Lys
									145				150	
Cys	Ile	Leu	Met	His	Ser	Pro	Pro	Ser	Ala	Met	Ala	Glu	Leu	Pro
									160				165	
Pro	Ser	Ala	Asn	Thr	Ser	Val	Cys	Ser	Thr	Leu	Tyr	Phe	Tyr	Gly
									175				180	
Ile	Ala	Ile	Phe	Leu	Gly	Ser	Phe	Val	Leu	Ser	Leu	Leu	Thr	Ile
									190				195	
Met	Val	Leu	Leu	Ile	Arg	Ala	Gln	Thr	Leu	Tyr	Lys	Lys	Phe	Val
									205				210	
Lys	Ser	Thr	Gly	Pho	Leu	Gly	Ser	Glu	Gln	Trp	Ala	Val	Ile	His
									220				225	
Ile	Val	Asp	Gln	Arg	Val	Arg	Pho	Tyr	Pro	Val	Ala	Phe	Phe	Cys
									235				240	
Cys	Trp	Gly	Pro	Ala	Val	Ile	Leu	Met	Ile	Ile	Lys	Leu	Thr	Lys
									250				255	
Pro	Gin	Asp	Thr	Lys	Leu	His	Met	Ala	Leu	Tyr	Val	Leu	Gln	Ala
									265				270	
Leu	Thr	Ala	Thr	Ser	Gln	Gly	Leu	Leu	Asn	Cys	Gly	Val	Tyr	Gly
									280				285	
Trp	Thr	Gln	His	Lys	Phe	His	Gln	Leu	Lys	Gln	Glu	Ala	Arg	Arg
									295				300	
Asp	Ala	Asp	Thr	Gln	Thr	Pro	Leu	Leu	Cys	Ser	Gln	Lys	Arg	Phe
									310				315	
Tyr	Ser	Arg	Gly	Leu	Asn	Ser	Leu	Glu	Ser	Thr	Leu	Thr	Phe	Pro
									325				330	
Ala	Ser	Thr	Ser	Thr	Ile									
					335									

<210> 9
<211> 686
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1403604

Met	Gly	Pro	Arg	Ser	Arg	Glu	Arg	Arg	Ala	Val	Gln	Asn	
1						5			10			15	
Thr	Asn	Asp	Ser	Ser	Ala	Leu	Ser	Lys	Arg	Ser	Leu	Ala	Arg
						20			25			30	
Gly	Tyr	Val	Gln	Asp	Pro	Phe	Ala	Ala	Leu	Leu	Val	Pro	Gly
						35			40			45	
Ala	Arg	Arg	Ala	Pro	Leu	Ile	His	Arg	Gly	Tyr	Tyr	Val	Arg

50	55	60
Arg Ala Val Arg His Cys Val Arg Ala Phe Leu Glu Gln Ile Gly	65	70
65	70	75
Ala Pro Gln Ala Ala Leu Arg Ala Gln Ile Leu Ser Leu Gly Ala	80	85
80	85	90
Gly Phe Asp Ser Leu Tyr Phe Arg Leu Lys Thr Ala Gly Arg Leu	95	100
95	100	105
Ala Arg Ala Ala Val Trp Glu Val Asp Phe Pro Asp Val Ala Arg	110	115
110	115	120
Arg Lys Ala Glu Arg Ile Gly Glu Thr Pro Glu Leu Cys Ala Leu	125	130
125	130	135
Thr Gly Pro Phe Glu Arg Gly Glu Pro Ala Ser Ala Leu Cys Phe	140	145
140	145	150
Glu Ser Ala Asp Tyr Cys Ile Leu Gly Leu Asp Leu Arg Gln Leu	155	160
155	160	165
Gln Arg Val Glu Ala Ala Leu Gly Ala Ala Gly Leu Asp Ala Ala	170	175
170	175	180
Ser Pro Thr Leu Leu Ala Glu Ala Val Leu Thr Tyr Leu Glu	185	190
185	190	195
Pro Glu Ser Ala Ala Leu Ile Ala Trp Ala Ala Gln Arg Phe	200	205
200	205	210
Pro Asn Ala Leu Phe Val Val Tyr Gln Gln Met Arg Pro Gln Asp	215	220
215	220	225
Ala Phe Gly Gln Phe Met Leu Gln His Phe Arg Gln Leu Asn Ser	230	235
230	235	240
Pro Leu His Gly Leu Glu Arg Phe Pro Asp Val Glu Ala Gln Arg	245	250
245	250	255
Arg Arg Phe Leu Gln Ala Gly Trp Thr Ala Cys Gly Ala Val Asp	260	265
260	265	270
Ile Asn Glu Phe Tyr His Cys Phe Leu Pro Ala Glu Glu Arg Arg	275	280
275	280	285
Arg Val Glu Asn Ile Glu Pro Phe Asp Glu Phe Glu Glu Trp His	290	295
290	295	300
Leu Lys Cys Ala His Tyr Phe Ile Leu Ala Ala Ser Arg Gly Asp	305	310
305	310	315
Thr Leu Ser His Thr Leu Val Phe Pro Ser Ser Glu Ala Phe Pro	320	325
320	325	330
Arg Val Asn Pro Ala Ser Pro Ser Gly Val Phe Pro Ala Ser Val	335	340
335	340	345
Val Ser Ser Glu Gly Gln Val Pro Asn Leu Lys Arg Tyr Gly His	350	355
350	355	360
Ala Ser Val Phe Leu Ser Pro Asp Val Ile Leu Ser Ala Gly Gly	365	370
365	370	375
Phe Gly Glu Gln Glu Gly Arg His Cys Arg Val Ser Gln Phe His	380	385
380	385	390
Leu Leu Ser Arg Asp Cys Asp Ser Glu Trp Lys Gly Ser Gln Ile	395	400
395	400	405
Gly Ser Cys Gly Thr Gly Val Gln Trp Asp Gly Arg Leu Tyr His	410	415
410	415	420
The Met Thr Arg Leu Ser Glu Ser Arg Val Leu Val Leu Gly Gly	425	430
425	430	435
Arg Leu Ser Pro Val Ser Pro Ala Leu Gly Val Leu Gln Leu His	440	445
440	445	450
Phe Phe Lys Ser Glu Asp Asn Asn Thr Glu Asp Leu Lys Val Thr	455	460
455	460	465
Ile Thr Lys Ala Gly Arg Lys Asp Asp Ser Thr Leu Cys Cys Trp	470	475
470	475	480
Arg His Ser Thr Thr Glu Val Ser Cys Gin Asn Gln Glu Tyr Leu	485	490
485	490	495
Phe Val Tyr Gly Gly Arg Ser Val Val Glu Pro Val Leu Ser Asp	500	505
500	505	510
Trp His Phe Leu His Val Gly Thr Met Ala Trp Val Arg Ile Pro	515	520
515	520	525
Val Glu Gly Glu Val Pro Glu Ala Arg His Ser His Ser Ala Cys		

530	535	540
Thr Trp Gln Gly	Gly Ala Leu Ile Ala	Gly Gly Leu Gly Ala Ser
545	550	555
Glu Glu Pro Leu Asn Ser Val	Leu Phe Leu Arg Pro Ile Ser Cys	
560	565	570
Gly Phe Leu Trp Glu	Ser Val Asp Ile Glu Pro Pro Ile Thr Pro	
575	580	585
Arg Tyr Ser His Thr Ala His Val	Leu Asn Gly Lys Leu Leu Leu	
590	595	600
Val Gly Gly Ile Trp Ile His Ser Ser	Ser Phe Pro Gly Val Thr	
605	610	615
Val Ile Asn Leu Thr	Gly Leu Ser Ser Glu Tyr Gln Ile Asp	
620	625	630
Thr Thr Tyr Val Pro Trp Pro	Leu Met Leu His Asn His Thr Ser	
635	640	645
Ile Leu Leu Pro Glu	Glu Gln Gln Leu Leu Leu Gly Gly	
650	655	660
Gly Asn Cys Phe Ser Phe Gly	Thr Tyr Phe Asn Pro His Thr Val	
665	670	675
Thr Leu Asp Leu Ser Ser Leu Ser Ala	Gly Gln	
680	685	

<210> 10
<211> 519
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1652936

<400> 10
Met Met Ser Lys Asn Asp Gly Glu Ile Arg Phe Gly Asn Pro Ala
1 5 10 15
Glu Leu His Gly Thr Lys Val Gln Ile Pro Tyr Leu Thr Thr Glu
20 25 30
Lys Asn Ser Phe Lys Arg Met Asp Asp Glu Asp Lys Gln Glu Thr
35 40 45
Gln Ser Pro Thr Met Ser Pro Leu Ala Ser Pro Pro Ser Ser Pro
50 55 60
Pro His Tyr Gln Arg Val Pro Leu Ser His Gly Tyr Ser Lys Leu
65 70 75
Arg Ser Ser Ala Glu Gln Met His Pro Ala Pro Tyr Glu Ala Arg
80 85 90
Gln Pro Leu Val Gln Pro Glu Gly Ser Ser Gly Gly Pro Gly
95 100 105
Thr Lys Pro Leu Arg His Gln Ala Ser Leu Ile Arg Ser Phe Ser
110 115 120
Val Glu Arg Glu Leu Gln Asp Asn Ser Ser Tyr Pro Asp Glu Pro
125 130 135
Trp Arg Ile Thr Glu Glu Gln Arg Glu Tyr Tyr Val Asn Gln Phe
140 145 150
Arg Ser Leu Gln Pro Asp Pro Ser Ser Phe Ile Ser Gly Ser Val
155 160 165
Ala Lys Asn Phe Phe Thr Lys Ser Lys Leu Ser Ile Pro Glu Leu
170 175 180
Ser Tyr Ile Trp Glu Leu Ser Asp Ala Asp Cys Asp Gly Ala Leu
185 190 195
Thr Leu Pro Glu Phe Cys Ala Ala Phe His Leu Ile Val Ala Arg
200 205 210
Lys Asn Gly Tyr Pro Leu Pro Glu Gly Leu Pro Pro Thr Leu Gln

215	220	225
Pro Glu Tyr Leu Gln Ala Ala Phe Pro Lys Pro Lys Trp Asp Cys	235	240
230		
Gln Leu Phe Asp Ser Tyr Ser Glu Ser Leu Pro Ala Asn Gln Gln	250	255
245		
Pro Arg Asp Leu Asn Arg Met Glu Thr Ser Val Lys Asp Met Ala	265	270
260		
Asp Leu Pro Val Pro Asn Gln Asp Val Thr Ser Asp Asp Lys Gln	280	285
275		
Ala Leu Lys Ser Thr Ile Asn Glu Ala Leu Pro Lys Asp Val Ser	295	300
290		
Glu Asp Pro Ala Thr Pro Lys Asp Ser Asn Ser Leu Lys Ala Arg	310	315
305		
Pro Arg Ser Arg Ser Tyr Ser Ser Thr Ser Ile Glu Glu Ala Met	325	330
320		
Lys Arg Gly Glu Asp Pro Pro Thr Pro Pro Pro Arg Pro Gln Lys	340	345
335		
Thr His Ser Arg Ala Ser Ser Leu Asp Leu Asn Lys Val Phe Gln	355	360
350		
Pro Ser Val Pro Ala Thr Lys Ser Gly Leu Leu Pro Pro Pro Pro	370	375
365		
Ala Leu Pro Pro Arg Pro Cys Pro Ser Gln Ser Glu Gln Val Ser	385	390
380		
Glu Ala Glu Leu Leu Pro Gln Leu Ser Arg Ala Pro Ser Gln Ala	400	405
395		
Ala Glu Ser Ser Pro Ala Lys Lys Asp Val Leu Tyr Ser Gln Pro	415	420
410		
Pro Ser Lys Pro Ile Arg Arg Lys Phe Arg Pro Glu Asn Gln Ala	430	435
425		
Thr Glu Asn Gln Glu Pro Ser Thr Ala Ala Ser Gly Pro Ala Ser	445	450
440		
Ala Ala Thr Met Lys Pro His Pro Thr Val Gln Lys Gln Ser Ser	460	465
455		
Lys Gln Lys Lys Ala Ile Gln Thr Ala Ile Arg Lys Asn Lys Glu	475	480
470		
Ala Asn Ala Val Leu Ala Arg Leu Asn Ser Glu Leu Gln Gln Gln	490	495
485		
Leu Lys Glu Val His Gln Glu Arg Ile Ala Leu Glu Asn Gln Leu	505	510
500		
Glu Gln Leu Arg Pro Val Thr Val Leu	515	

<210> 11
<211> 334
<212> PRT
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1710702

<400> 11
Met Phe Arg Trp Glu Arg Ser Ile Pro Leu Arg Gly Ser Ala Ala
1 5 10 15
Ala Leu Cys Asn Asn Leu Ser Val Leu Gln Leu Pro Ala Arg Asn
20 25 30
Leu Thr Tyr Phe Gly Val Val His Gly Pro Ser Ala Gln Leu Leu
35 40 45
Ser Ala Ala Pro Glu Gly Val Pro Leu Ala Gln Arg Gln Leu His
50 55 60
Ala Lys Glu Gly Ala Gly Val Ser Pro Pro Leu Ile Thr Gln Val

65	70	75
His Trp Cys Val Leu Pro Phe Arg Val Leu Leu Val Thr Ser		
80	85	90
His Arg Gly Ile Gln Met Tyr Glu Ser Asn Gly Tyr Thr Met Val		
95	100	105
Tyr Trp His Ala Leu Asp Ser Gly Asp Ala Ser Pro Val Gln Ala		
110	115	120
Val Phe Ala Arg Gly Ile Ala Ala Ser Gly His Phe Ile Cys Val		
125	130	135
Gly Thr Trp Ser Gly Arg Val Leu Val Phe Asp Ile Pro Ala Lys		
140	145	150
Gly Pro Asn Ile Val Leu Ser Glu Glu Leu Ala Gly His Gln Met		
155	160	165
Pro Ile Thr Asp Ile Ala Thr Glu Pro Ala Gln Gly Gln Asp Cys		
170	175	180
Val Ala Asp Met Val Thr Ala Asp Asp Ser Gly Leu Leu Cys Val		
185	190	195
Trp Arg Ser Gly Pro Glu Phe Thr Leu Leu Thr Arg Ile Pro Gly		
200	205	210
Phe Gly Val Pro Cys Pro Ser Val Gln Leu Trp Gln Gly Ile Ile		
215	220	225
Ala Ala Gly Tyr Gly Asn Gly Gln Val His Leu Tyr Glu Ala Thr		
230	235	240
Thr Gly Asn Leu His Val Gln Ile Asn Ala His Ala Arg Ala Ile		
245	250	255
Cys Ala Leu Asp Leu Ala Ser Glu Val Gly Lys Leu Leu Ser Ala		
260	265	270
Gly Glu Asp Thr Phe Val His Ile Trp Lys Leu Ser Arg Asn Pro		
275	280	285
Glu Ser Gly Tyr Ile Glu Val Glu His Cys His Gly Glu Cys Val		
290	295	300
Ala Asp Thr Gln Leu Cys Gly Ala Arg Phe Cys Asp Ser Ser Gly		
305	310	315
Asn Ser Phe Ala Val Thr Gly Tyr Asp Leu Ala Glu Ile Arg Arg		
320	325	330
Phe Ser Ser Val		

<210> 12

<211> 569

<212> PRT

<213> Homo sapiens

<220>

<221> misc-feature

<223> Incyte Clone 3239149

<400> 12

Met Asp Pro Ala Glu Ala Val Leu Gln Glu Lys Ala Leu Lys Phe			
1	5	10	15
Met Asn Ser Ser Glu Arg Glu Asp Cys Asn Asn Gly Glu Pro Pro			
20	25	30	
Arg Lys Ile Ile Pro Glu Lys Asn Ser Leu Arg Gln Thr Tyr Asn			
35	40	45	
Ser Cys Ala Arg Leu Cys Leu Asn Gln Glu Thr Val Cys Leu Ala			
50	55	60	
Ser Thr Ala Met Lys Thr Glu Asn Cys Val Ala Lys Thr Lys Leu			
65	70	75	
Ala Asn Gly Thr Ser Ser Met Ile Val Pro Lys Gln Arg Lys Leu			
80	85	90	
Ser Ala Ser Tyr Glu Lys Glu Lys Glu Leu Cys Val Lys Tyr Phe			
95	100	105	

Glu Gln Trp Ser Glu Ser Asp Gln Val Glu Phe Val Glu His Leu
 110 115 120
 Ile Ser Gln Met Cys His Tyr Gln His Gly His Ile Asn Ser Tyr
 125 130 135
 Leu Lys Pro Met Leu Gln Arg Asp Phe Ile Thr Ala Leu Pro Ala
 140 145 150
 Arg Gly Leu Asp His Ile Ala Glu Asn Ile Leu Ser Tyr Leu Asp
 155 160 165
 Ala Lys Ser Leu Cys Ala Ala Glu Leu Val Cys Lys Glu Trp Tyr
 170 175 180
 Arg Val Thr Ser Asp Gly Met Leu Trp Lys Lys Leu Ile Glu Arg
 185 190 195
 Met Val Arg Thr Asp Ser Leu Trp Arg Gly Leu Ala Glu Arg Arg
 200 205 210
 Gly Trp Gly Gin Tyr Leu Phe Lys Asn Lys Pro Pro Asp Gly Asn
 215 220 225
 Ala Pro Pro Asn Ser Phe Tyr Arg Ala Leu Tyr Pro Lys Ile Ile
 230 235 240
 Glu Asp Ile Glu Thr Ile Glu Ser Asn Trp Arg Cys Gly Arg His
 245 250 255
 Ser Leu Gln Ile His Cys Arg Ser Glu Thr Ser Lys Gly Val
 260 265 270
 Tyr Cys Leu Gln Tyr Asp Asp Gln Lys Ile Val Ser Gly Leu Arg
 275 280 285
 Asp Asn Thr Ile Lys Ile Trp Asp Lys Asn Thr Leu Glu Cys Lys
 290 295 300
 Arg Ile Leu Thr Gly His Thr Gly Ser Val Leu Cys Leu Gln Tyr
 305 310 315
 Asp Glu Arg Val Ile Ile Thr Gly Ser Ser Asp Ser Thr Val Arg
 320 325 330
 Val Trp Asp Val Asn Thr Gly Glu Met Leu Asn Thr Leu Ile His
 335 340 345
 His Cys Glu Ala Val Leu His Leu Arg Phe Asn Asn Gly Met Met
 350 355 360
 Val Thr Cys Ser Lys Asp Arg Ser Ile Ala Val Trp Asp Met Ala
 365 370 375
 Ser Pro Thr Asp Ile Thr Leu Arg Arg Val Leu Val Gly His Arg
 380 385 390
 Ala Ala Val Asn Val Val Asp Phe Asp Asp Lys Tyr Ile Val Ser
 395 400 405
 Ala Ser Gly Asp Arg Thr Ile Lys Val Trp Asn Thr Ser Thr Cys
 410 415 420
 Glu Phe Val Arg Thr Leu Asn Gly His Lys Arg Gly Ile Ala Cys
 425 430 435
 Leu Gln Tyr Arg Asp Arg Leu Val Val Ser Gly Ser Ser Asp Asn
 440 445 450
 Thr Ile Arg Leu Trp Asp Ile Glu Cys Gly Ala Cys Leu Arg Val
 455 460 465
 Leu Glu Gly His Glu Glu Leu Val Arg Cys Ile Arg Phe Asp Asn
 470 475 480
 Lys Arg Ile Val Ser Gly Ala Tyr Asp Gly Lys Ile Lys Val Trp
 485 490 495
 Asp Leu Val Ala Ala Leu Asp Pro Arg Ala Pro Ala Gly Thr Leu
 500 505 510
 Cys Leu Arg Thr Leu Val Glu His Ser Gly Arg Val Phe Arg Leu
 515 520 525
 Gln Phe Asp Glu Phe Gln Ile Val Ser Ser Ser His Asp Asp Thr
 530 535 540
 Ile Leu Ile Trp Asp Phe Leu Asn Asp Pro Ala Ala Gln Ala Glu
 545 550 555
 Pro Pro Arg Ser Pro Ser Arg Thr Tyr Thr Tyr Ile Ser Arg
 560 565

taccttgacac ttttccttgc ctgttttc ttctgttattt ctaggtacaa ataccagaat 1380
 tatactgaa aatacagtgg gtgaacttggaa gaatattttt tttaaaacca cttctgtcaa 1440
 aggggcacca gtttgtatgc cctctgtttc gcacagaga ctatgcacaa gaacatccatcg 1500
 attactaat ctatgtatcg tcattttttt tggaaattttt ttcttaagtcg tgactaactc 1560
 tttttatcttc tcaatataat tttttgaccca gtttaattttt ttcatgtattt tgctgtccct 1620
 tgggaatggg ccctcagagg acatgtgttc caatgtatcc ttctcccaaa ttctctggcc 1680
 tttttatgtt gctatgttta aaccacaaacagg ctatgtttatc ttacatcaga ccctttttctg 1740
 gttagggaa aatgttttg cttttccctt ttcctctgtt aatactttatg gtaacaccta 1800
 actggacatca actcacatia aatgttttac ttggaaatata tacagaaatit gtaattttgt 1860
 tttttttaaa aaagggggatc aaagtaacat ttccctactt atgtaatattt tagatcccaa 1920
 attcacgcac cccgtggag ctcaatamaag atttact 1957

<210> 15
<211> 2545
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 640521

<400> 15
 gagccgcgact gggggcgcag akgcgcggag ggggcgcggc cgccggaccca gtcacccagg 60
 ctgcgtgtccgt gtgtgtcgat ctgcgttcgtat cttatggacac ctttcacccctt cggattcaag 120
 tgatttccccc gcttcgtatcc ctccgtatgc tgggattaca tggtcccccc accatgtccca 180
 ggtgtgtccg ctggcgtatgg ggatgtcccccc agtgtgtcg atgaatgttgg cgcgtatcc 240
 atgtcatcatcg tggtgtccgt ccaccccgac agcaacccggg ccggccccca qgatgagctg 300
 gggggcagggg gtagcagcagcag cagaacggatc cagaacggccct gtgaggccct cgggggcctc 360
 tcatccatgtt gcatccatccgtt gggtatgggg tccttcatgg tggtacccgg tggtgagccg 420
 ggctgtgtcg tggatccctgg ctggcgcggg gaccggcccccc tgagggccca tgcccaagag 480
 gtccccccatc acttcctccgg gtcggcaggcc cggcccccacc ttcctcggtcg caaagtgtct 540
 ctgcataaggac gtcggcaggcc ggggttggca gccgttggca gcttggacat gaaaggaccc 600
 tgcatacgcc ctgcctccggc ctatcaccac gtcacatcc gtcacatcc gtcgtatcc gtcctccgtc 660
 cccggggccg ctagatggta gtccttccatc ctgcattacatc cgggttatgtca gqactgtgtg 720
 cactgtatccatc agtataatccctt gaatgtatggaa atttggaaagg gtcctatcg tgcgtcaag 780
 ttggccatccatc atgaaaaatccatc cttatgtatccatc tttatgtatccatc aggtgtgtc caaaagaag 840
 ctgtatccgttccggccatccatc tccacatccgtt cttccatccatc gggccatccatc gccatctcc 900
 ggaggctcgaa tcacccatccatc tgccatccatc gggccatccatc gggccatccatc gggccatccatc 960
 aagaatgttgcg atccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1020
 gaccatctgtt acatccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1080
 ctcaaaatccatc ttctgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1140
 gatgtacttccatc actatccatc gatccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1200
 ggagaaatgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1260
 gagccgcgtcc ttcacatccatc tccgtggccatccatc cccgcgttccatc tggccatccatc tgccatccatc 1320
 gagaccatccatc agatcttccatc ttggggaaatccatc ttggggaaatccatc ttggggaaatccatc ttggggaaatccatc 1380
 tactgttttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1440
 aagatcaatggaa gtcacggccatccatc ttggggaaatccatc ttggggaaatccatc ttggggaaatccatc ttggggaaatccatc 1500
 gaccgtatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1560
 aacgtgtccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1620
 tgcacgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1680
 ttggcaacccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1740
 gagggccatccatc ggcggggggatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1800
 ggcacggaaatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1860
 ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1920
 gcatgtatccatc actgtgtccatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 1980
 accttcgtatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2040
 ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2100
 ttccctttttgttggatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2160
 tcgaccgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2220
 ctgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2280
 ttttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2340
 ggcacggaaatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2400
 gtggggggatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc ttgtgttgcgatccatc 2460

caattttaaa aaatttttttt ataaaaaaaaaaa aaaa

3034

<210> 17
<211> 1337
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1911587

<210> 18
<211> 1639
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc-feature
<222> Incuba-Clone 2028081

```

<400> 18
gacaaacaggc agacacattt caacatgagg gaccactgta cagatgttcc gtataataaa 60
gttataccgg actttaaaaggd gttttctcaa aatggagaaa atttctgcga acaggctcac 120
tttgttttcgg atccaaaggc gaaatcgaaa attatctatg cccaaaggat tcgaaaaactg 180
gaaacggcggc gaaatccaaa gatattcaacg cccggatccc atccaaatcaat tggccaaaggc 240
gctgtggccct gacaggaaa gaaatccccc gccggatccc atccaaatcaat tggccaaaggc 300
attatggatgg aacgaaataaa accggatattt ccgtatcccaatg atttacaaga gaagaagaga 360
aaatctactgg atacttggatg tggaaacaggc aatccatcttg cttagatccaa ctgtggatcc 420
aaatctaaaagg cccaaaggaaa attatggatgg aatccatcttg aatccatcttg cttagatccaa 480
cttggatggaa atccgttccaaatcggc atcttactggatgg aatccatcttg aatccatcttg cttagatccaa 540
cttggaaaat atcaactggatgg gttggaaaagg gaaatggatgg atttactccca aaaaaatccatcttg 600
gggggtttttt ctatccagact gaaatggatgg aacacatctgg aatccatcttg cttagatccaa 660
cttggatggcgg aagaaatccggc aattttccactt tttttttttt aatccatcttg aatccatcttg cttagatccaa 720
catatccatcc ttttttttttt aacccatccggc acatccatctgg aatccatcttg cttagatccaa 780
gggggtttttt atccatctggc aatccatctgg aatccatcttg aatccatcttg cttagatccaa 840
gggggtttttt atccatctggc aatccatctgg aatccatcttg aatccatcttg cttagatccaa 900
gggggtttttt atccatctggc aatccatctgg aatccatcttg aatccatcttg cttagatccaa 960
gggggtttttt atccatctggc aatccatctgg aatccatcttg aatccatcttg cttagatccaa 1000

```

```

atgtaaaaaa cctccaaaaga caaggaaggc ctggaacgaa tgcttaaac acgtactccagc 1020
accccttcct tcctctatgc aaagacccag aaaaacacag cagcgttaat ggtatgagac 1080
aatttggaaa tacccatctt ggaaaggcggc tccataaac acgttcatcaat gttaaaggaa 1140
cttggaccaa gaccctcaacc cagccatctt tggtaaatt ccatcttcag tgggaggaaa 1200
aaggagcata ctccatagcta tgtagaaatc tcccgccct tttaatgaa gagatttagag 1260
aatatttgta gccaaggcatc ttctgttggg cagccaaatc caggttcttc aactccagcc 1320
cctggtcagc cccagctcag cagccaaatc tccaaaggct tgatcttcc ttcaagccagg 1380
caagatgtatc agttgtatc ggaaaagggt gacattgtga ttatcacgaa gaaaaaaaggaa 1440
gaaggatgtt ggtttggatc tttggatggg aaaaaggccc attttctctc cgcttatgtg 1500
gaggatgttcc tttccaaatgc tggccaaaccc gctacaaggd cttaaacaca gactcttcaac 1560
atactacccctt cccactcggtt aatccaaacatc acatgttgct tccaaataaga ataaatgtc 1620
cttaccccttta aaaaaaaaaa 1639

```

```

<210> 19
<211> 1504
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 2472655

```

```

<400> 19
cgaatctcta ggacttccga aagcagccgtt ggcgttgcgt tcactgtttt ggagtgttag 60
tgcgcgaaga tgccaaagggt ggttttgtatc accggggctca gcaatggccat tggccctggcc 120
ctctgcggcc ggcgtgtggc ggaaaggatgtatc gaggcttcatc rgtgtttggc gtggcggaaac 180
atgadcaaggc gggatgtatc ctgtgtgtgt ctgtgtgtgt ctgcgtggcctt ctccccccac tgcgtggatgc 240
accatgttcc aggtgtgtatc cagccaaatc cagtcgtgtct tccggggcctc caagggatctt 300
aagccaaagggt ttccagatgtt agactgtata tcacttaatc tggtgtatc tggtgtatc gcttaatcc 360
caactaaata tccaaaggact tttttttggc ctctttttca gaaaaggatgtatc tcatatgttc 420
tccacagctg aaggccgtctt gaccggggc gataagatca ctgtgtatgc acttcaggag 480
gtgtttggc gcaatgtgtttt tggccatctt atccgtatc gggaaactggaa gctcttcctc 540
tgcgtccatgtt acatccatcc tcactgtatc tggtatc ctgcgtgtgc aaggaaatctt 600
aattccaggc tgccggatctt ccggatccatc aaaggccggg aacccttacag ctctttccaa 660
tatggccatgtt acttcgtttt tggtgttttgg aacccggaaatc tcaaccggaa ggggtcttcat 720
tccaaatgtgg ctgtgtccgg taatccatgtt accaaatggaa catatggaaat tctggccctccy 780
tttatatggc ctgtgtgtatc ggccggaaatc ttgtacttgc gctttttttgc aatgtatcc 840
actttatggc cataatgttgg aacaaaggatc ctggatgtgc ttttccacca aaaaacctggaa 900
ttctccaaatc ctgtgtatc atatccatgttgg gccaccatgt gcttttggaa aatattatcc 960
atggccatgtt actgtgtatc agatggaaatc actgtgtgaaa aattttataca aaaaatgttactg 1020
gaactggaaa agccatgttgg ggtccatgttccatc caaaaacatc ataaatccatc caggcttcat 1080
ggctccatgttccatc ggacttttgggg aggccggccggc agaaaggatca ctggacccca 1140
ggaggatgtatc accccatgttgg gaaacatgttgg accggccctgt ctccatccaaa aaaaataaaaaa 1200
ataatccatgttgg ctgtgtgtggg ccggccatgttgg tggccatgttgg tggccatgttgg 1260
ggatgtatccatgttgg gggccatgttgggg aggccggccggc tgccatgttgg tgatgttgg 1320
ccggccatgttgg tgccatgttgggg accggccatgttgggg tgccatgttgg tgatgttgg 1380
aaccggatgttgg gaaacatgttgggg accggccatgttgggg tgccatgttgg tgatgttgg 1440
ttggatgttccatgttgggg tgccatgttgggg tgccatgttgg tgatgttgg 1500
aaaaataaaaaa 1504

```

```

<210> 20
<211> 3096
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 2948818

```

```

<400> 20
gggtgttctt ataaacttaag ttccatgtttt tctttccatgtt gggaaaggagc cagtttttttta 60
atgtggccatc tctctggggaa aatccatgttgggg tgccatgttgggg tgatgttgg 120

```

<210> 21

<211> 1527

<212> DNA

<213> Homo sapiens

<220>

<221> misc-feature

<223> Incyte Clone 054191

<400> 21

ctccggcttga ggagaagcgc caagtgcgca tggggacgt atagcaattc gtttgcgttc 60
cttccctctcc ttcaaatgtt acaaggccta ccatcggttc ttccctgcctt tggggcgtca 120

```
<210> 22
<211> 2948
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1403604
```

<400> 22
aaaaaggatcg caagccqcaag cgaacttagc actggctaca ccctcccaa ttctgggtgg 60
cgagatcgcc tttccccccc agtgacgac aagtggccgc gaaaggggaa gtccaggagc 120
atgggttgtt tttttcccccc taccegggtc ctgtgggtgt tgctcaaccga aggggccgcgt 180
cacaaaacctg acagaactggc attcctggat cttcttcggc gggggcccccc cgagggccgtg 240
acgcqccggc aaggccgggtt cagacacaca acgacacagc ggccctccggc aaggcttggcc 300
ttggccggcc cggtggatcgg caggacccat tttggccgtt tggtggccgtt 360
ggccggccatc ggtttttttt cgtggatccatc tgagggtttt ctggccggcc acggccggccgtt 420
tttggccgttt ttggagggacat atggccggcc cttccggccgc gtttggccggcc catggatgtt 480
cttcggccggcc tggtttccggc tcgtttttttt ttggccgtttttt aaccggccggcc gcttggccggcc 540
gggtttccggc ctgggggggtt gatttttttt ccgggtttttt acggccggcc ggcggaaaggcc 600
gagagacggcc acggatggcc ggtttttttt acggccggcc ggggggggggg ccggccggccgtt 660
cgctgtttttt tgatggccggc gactacttcgat ttccgggtttt tgactggccggcc 720
gagtggggaa gggccggccggcc gggccggccggcc gggccggccggcc gggccggccggcc 780
ccggaggccgtt ctgtttttttt ctggccggcc agatgtttttt ccataccatc ctgtccggcc 840
ccggccgtttt cttaatggcc ctttttttttt tttttttttt tgatggccggcc gggccggccatc 900
ttttggccgtt catgtttttt cattttttttt tgatggccggcc gggccggccatc 960
gtttttttttt ctggggggcc cggccggccggcc gggccggccatc 1020
ggccggccggcc cttatgtttttt cttatgtttttt tgatggccggcc gggccggccatc 1080
ttggaaaatatt taaaatccctt gatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1140
ttttttttttt ccggatgtttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1200
aggatggccggcc tttttttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1260
tgatggccgggg ccaggatccca aacctttttttt tgatggccggcc gggccggccatc 1320
cagacgtttat tttttttttt tgatggatggcc gggggggggggcc gggccggccatc 1380
ccggatgtttt ccgtttttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1440
ttttttttttt tgatggatggcc tggtttttttt tgatggccggcc gggccggccatc 1500
aggatggccggcc tttttttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1560
ttccatgtttttt tttttttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1620
caaaaggccatc cttttttttt tgatggatggcc aggtttttttt tgatggccggcc gggccggccatc 1680

<210> 23

<211> 1808

<212> DNA

<213> Homo sapiens

220

<221> misc-feature

<223> Incyte Clone 1652936

<400> 23

ttatgtgag 1808

<210> 24
<211> 1148
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 1710702

<400> 24
tgcgtacgtg cgtcgctct atggggccg cgatttgg gggaccctac gaaccaggag 60
tcaggcggcgc cgcattcgccc ctgcaggatg ttcccgctgg agcgcctccat tccccctggca 120
ggctcgccgc cggccctgtg caaacaaacctc agtgcgtgc agtgcggcgc tcgcacactc 180
acgttatgttgc ggggtgtca tgggaccaaaacg gcccaggatc tcagcgctgc tccgtgggt 240
gtggcccttgc cccagcgcca gctccacgct aaggagggtt ctggatgtgg tcccccaact 300
atccatcggttccatcggttgc tgctccccc ttccgatgtc tgctgttact aacctcacat 360
cgaaatatac agatgttacga gtccaaatgg tacacatgg tctatcgca tgcactggac 420
ttcgatggatg ctcccccaggat acaggctgtt tttgcggggg gaattgtcg cagtggccat 480
ttcatctgttgc tgggaaacgtg gtcaggccgg ggctgtgtgg ttgacatccc agcaaagggt 540
cccaacatcg tactgtggcc gggactgtgc gggcacccaga tgccaaatccat agacatgtcc 600
acccggacgttgc cccagggtca ggatgtgtgg gtcgatgtgg tgacccggaa tgactcaagg 660
tttgctgtgttgc ttctggcggtc aggccggatgttgc acatgttgc tgacccggat 720
ggatgttgcgttgc ccctcccttgc gcaactgtgg cggggccatca tagcggcagg ctatggggac 780
ggacaatgttgc atcatatgttgc ggcaactatgttgc gaaaatctac atgtccatgttgc caatgtccat 840
ggccggggcca ttctggccatcc gggactgtgg ttctggatgtgg gcaactgtact ctctggatgttgc 900
gaggacacct ttgtgtcatat ctggaaatgttgc agcggaaacc cagagatgttgc ctatcatgttgc 960
gttggaaactacttgcatgttgc tggtgtggcc gacaccacggc tggtgtgggtc tggatgttgc 1020
gattcttcgttgc gcaacttgc ttctgtgttgc gtcatgttgc ttctggatgttgc tggatgttgc 1080
agcagtgttgc gaaagagatca gcttcccttgc tggatgttgc ttttcatataa gtaccatgttgc 1140
caccatgttgc 1148

<210> 25
<211> 2419
<212> DNA
<213> Homo sapiens

<220>
<221> misc-feature
<223> Incyte Clone 3239149

<400> 25
cgacgcgtgttgc gggccgttgc accaaagggg cgccccggc ggagagcgga cccatgtggcc 60
tcggcgatata tggacccggc cggaggccgttgc ctgcaggatgttgc aggcacttca gtttatgtat 120
ttccatcgatgttgc gagaatgttgc taataatgttgc gaaacccctt ggaatataat accagagatgttgc 180
aatttcacttgc gacatgttgc caacatgttgc gcaactgttgc gcttaaaatccat agaaacatgttgc 240
tgttttagtca gacatgttgc gaaatgttgc aattgtgtgg cccaaatccat acttgcatgttgc 300
ggcatatccat gtatgttgc gccaatgttgc cggaaatctt cggcaatgttgc tgaaaaaggatgttgc 360
aaaggaaatgttgc ttttgcgttgc gggatgttgc cggatgttgc cggatgttgc tgatgttgc 420
gaacatcttgc ttttgcgttgc gggatgttgc cggatgttgc cggatgttgc tgatgttgc 480
ccttatgttgc agagatgttgc ctaataatgttgc ctgcggatgttgc gggatgttgc tcatatgttgc 540
gagacatgttgc ttttgcgttgc gggatgttgc cggatgttgc tgatgttgc tgatgttgc 600
gaatgttgc gggatgttgc tgatgttgc tgatgttgc gggatgttgc tgatgttgc tgatgttgc 660
aggacatgttgc ttttgcgttgc gggatgttgc gggatgttgc tgatgttgc tgatgttgc 720
aaaatccatgttgc ttttgcgttgc gggatgttgc cggatgttgc cggatgttgc tgatgttgc tgatgttgc 780
aaaatccatgttgc ttttgcgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc 840
cggatgttgc ttttgcgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc 900
cggatgttgc ttttgcgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc 960
gaatgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc 1020
agatgttgc ttttgcgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc 1080
gaaatgttgc ttttgcgttgc gggatgttgc tgatgttgc tgatgttgc tgatgttgc tgatgttgc 1140

<210> 26

<211> 746

<212> DNA

<213> Homo sapiens

<220>

<221> misc-feature

<223> Incyte Clone 3315936

<400> 26