Introduction to Compiler Design

Lesson 9:

Parsers – Parsing Techniques - CYK

Grammars

- Context-free grammars (CFGs)
 - Generation: $G \to L(G)$
 - Recognition: Given w, is $w \in L(G)$?
- Translation
 - Given $w \in L(G)$, create a parse tree for w
 - Given $w \in L(G)$, create an AST for w
 - The AST is passed to the next component of our compiler

Classes of Grammars

- LL(1)
 - Scans input from Left-to-right (first L)
 - Builds a Leftmost Derivation (second L)
 - Can peek (1) token ahead of the token being parsed
 - Top-down "predictive parsers"
- LALR(1)
 - Uses special lookahead procedure (LA)
 - Scans input from Left-to-right (second L)
 - Rightmost derivation (R)
 - Can also peek (1) token ahead
- LALR(1) strictly more powerful, but the algorithm is harder to understand
- Java CUP generates a LALR(1) parser

Approaches to Parsing

- Top Down / "Goal driven"
 - Begin with the start nonterminal
 - Grow parse tree downward to match the string
- Bottom Up / "Data Driven"
 - Start at terminals
 - Generate ever larger subtrees;
 the goal is to obtain a single tree
 whose root is the start
 nonterminal

Parsing Algorithms

- Top-down ("recursive-descent") for LL(1) grammars
 - How to parse, given the appropriate parse table for G
 - How to construct the parse table for G
- Bottom-up for LALR(1) grammars
 - How to parse, given the appropriate parse table for G
 - How to construct the parse table for G
- CYK

Parser Operations

- Top-down parser
 - Scan the next input token
 - Pop a single symbol
 - Push a bunch of RHS symbols
- Bottom-up parser
 - Shift an input token into a stack item
 - Reduce a bunch of stack items into a new parent item (and push the parent on the stack)

Top-Down Parsers

- Start at the Start symbol
- Repeatedly: "predict" what production to use
 - Example: if the current token to be parsed is an id, no need to try productions that start with intLiteral
 - This might seem simple, but keep in mind that a chain of productions may have to be used to get to the rule that handles, e.g., id

Restricting the Grammar

- By restricting our grammars we can
 - Detect ambiguity
 - Build linear-time, O(n) parsers
- LL(1) languages
 - Particularly amenable to parsing
 - Parsable by <u>predictive</u> (top-down) parsers
 (sometimes called "recursive-descent parsers")

LL(1) Grammar Transformations

- Necessary (but not sufficient conditions) for LL(1) parsing:
 - Free of left recursion
 - No left-recursive rules
 - Why? Need to look past the list to know when to cap it
 - Left-factored
 - No rules with a common prefix, for any nonterminal
 - Why? We would need to look past the prefix to pick the production

Why Left Recursion is a Problem

CFG snippet: $XList \rightarrow XList \mathbf{x} \mid \mathbf{x}$

Current parse tree: XList Current token: x

How should we grow the tree top-down?

(OR)

Correct if there are no more **x**s

Correct if there are more xs

We don't know which to choose without more lookahead

Left-Recursion Elimination: Review

Replace
$$A \to A \alpha \mid \beta$$

With $A \to \beta A'$
 $A' \to \alpha A' \mid \epsilon$

Where β does not start with A , or may not be present

Preserves the language (a list of αs , starting with a β), but uses right recursion

Left-Recursion Elimination: Ex1

Left-Recursion Elimination: Ex2

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow \beta A'$$

$$A' \longrightarrow \alpha A' \mid \epsilon$$

$$E \longrightarrow E + T \mid T$$
 $T \longrightarrow T * F \mid F$
 $F \longrightarrow (E) \mid id$
 $E' \longrightarrow + T E' \mid \varepsilon$
 $T \longrightarrow F T'$
 $T' \longrightarrow * F T' \mid \varepsilon$
 $F \longrightarrow (E) \mid id$

 $E \longrightarrow TE'$

Left-Recursion Elimination: Ex3

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow A \alpha \mid \beta$$

$$A \longrightarrow A \alpha \mid \beta$$

$$A' \longrightarrow \alpha A' \mid \epsilon$$

$$DList \rightarrow DList D \mid \epsilon$$

 $D \longrightarrow Type id semi$

Type \rightarrow **bool** | **int**

DList
$$\rightarrow \varepsilon$$
 DList'

$$DList' \rightarrow DDList' \mid \epsilon$$

 $D \longrightarrow Type id semi$

Type \rightarrow bool | int

DList
$$\rightarrow$$
 D DList | ϵ

 $D \longrightarrow Type id semi$

Type \rightarrow bool | int

Left Factoring

Removing a common prefix from a grammar

Replace
$$A \longrightarrow \alpha[\beta_1] \dots | \alpha[\beta_m] | y_1 | \dots | y_n$$

With $A \longrightarrow \alpha[A'] | y_1 | \dots | y_n$
 $A' \longrightarrow \beta_1 | \dots | \beta_m$

Where β_i and y_i are sequence of symbols with no common prefix Note: y_i may not be present, and one of the β may be ϵ

Combine all "problematic" rules that start with α into one rule α A' Now A' represents the suffix of the "problematic" rules

Left Factoring: Example 1

$$A \,\longrightarrow\, \alpha \,\beta_1 \mid ... \mid \alpha \,\beta_m \mid y_1 \mid ... \mid y_n \qquad \qquad \qquad \begin{array}{c} A \,\longrightarrow\, \alpha \,A' \mid y_1 \mid ... \mid y_n \\ A' \,\longrightarrow\, \beta_1 \mid ... \mid \beta_m \end{array}$$

$$X \longrightarrow \langle a \rangle | \langle b \rangle | \langle c \rangle | d$$

$$X \longrightarrow \stackrel{\alpha}{<} X' \mid \stackrel{\gamma_1}{d}$$

$$X' \longrightarrow a > |b > |c >$$

$$\beta_1, \beta_2, \beta_3$$

Left Factoring: Example 2

$$A \longrightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_m \mid y_1 \mid ... \mid y_n$$

$$A \longrightarrow \alpha A' \mid y_1 \mid ... \mid y_n$$

$$A' \longrightarrow \beta_1 \mid ... \mid \beta_m$$

$$Stmt \rightarrow id \ assign \ E \ | \ id \ (EList) \ | \ return$$
 $E \rightarrow intlit \ | \ id$
 $Elist \rightarrow E \ | \ E \ comma \ EList$

Stmt \longrightarrow id $Stmt' \mid return$ Stmt' \longrightarrow assign $E \mid (EList)$ $E \longrightarrow$ intlit \mid id $Elist \longrightarrow E \mid E \text{ comma } EList$

Left Factoring: Example 3

$$A \,\longrightarrow\, \alpha \,\beta_1 \mid ... \mid \alpha \,\beta_m \mid y_1 \mid ... \mid y_n \qquad \qquad \qquad \begin{array}{c} A \,\longrightarrow\, \alpha \,A' \mid y_1 \mid ... \mid y_n \\ A' \,\longrightarrow\, \beta_1 \mid ... \mid \beta_m \end{array}$$

$$S \longrightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{semi}$$

$$E \longrightarrow \text{boollit}$$

$$S \longrightarrow \text{if } E \text{ then } S S' \mid \text{semi}$$

$$S' \longrightarrow \text{else } S \mid \epsilon$$

$$E \longrightarrow \text{boollit}$$

Left Factoring: Not Always Immediate

$$A \,\longrightarrow\, \alpha \; \beta_1 \; | \; ... \; | \; \alpha \; \beta_m \; | \; y_1 \; | \; ... \; | \; y_n$$

$$A \longrightarrow \alpha A' \mid y_1 \mid ... \mid y_n$$

$$A' \longrightarrow \beta_1 \mid ... \mid \beta_m$$

This snippet yearns for left factoring

 $S \rightarrow A \mid C \mid return$

 $A \rightarrow id assign E$

 $C \rightarrow id$ (EList)

but we cannot! At least without inlining

 $S \longrightarrow id \ assign \ E \ | \ id \ (\ Elist \) \ | \ return$

Some Interesting Properties of CYK

- Very old algorithm
 - Already well known in early 70s
- No problems with ambiguous grammars:
 - Gives a solution for *all* possible parse tree simultaneously

LL(1) Not Powerful Enough for all PL

- Left-recursion
- Not left factored
- Doesn't mean LL(1) is bad
 - Right tool for simple parsing jobs

We Need a *Little* More Power

- Could increase the lookahead
 - Up until the mid 90s, this was considered impractical
- Could increase the runtime complexity
 - CYK
- Could increase the memory complexity
 - i.e., create a more elaborate parse table

LR Parsers

- Left-to-right scan of the input file
- Reverse-rightmost derivation
- Advantages
 - Can recognize almost any programming language
 - Time and space O(n) in the input size
 - LR parsers more powerful than LL parser: $LL(1) \subset LR(1)$
- Disadvantages
 - More complex parser generation
 - Larger parse tables

LR Parser Power

- Let $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow$ w be a rightmost derivation, where ω is a terminal string
- Let $\alpha A \gamma \Longrightarrow \alpha \beta \gamma$ be a step in the derivation
 - So $A \rightarrow \beta$ must have been a production in the grammar
 - $\alpha\beta\gamma$ must be some α_i or w
 - A grammar is LR(k) if for every derivation step, $A \longrightarrow \beta$ can be inferred using only a scan of αβ and at most k symbols of γ
- Much like LL(1), you generally just have to go ahead and try it

LR Parser types

- LR(1)
 - Can recognize any DCFG
 - Can experience blowup in parse table size
- LALR(1)
- SLR(1)
 - Both proposed at the same time to limit parse table size

How Does Bottom-Up Parsing Work?

- One example follows: CYK
 - Simultaneously tracked every possible parse tree
 - LR parsers work in a similar way
- Contrast to top-down parser
 - We know exactly where we are in the parse
 - Make predictions about what's next

CYK: A General Approach to Parsing

- Cocke–Younger–Kasami algorithm
- Operates in time O(n³)
- Works bottom-up
- Requires the grammar to be in Chomsky Normal Form
 - This turns out not to be a limitation: any context-free grammar can be converted into one in Chomsky Normal Form

Chomsky Normal Form

 All rules must be one of two forms:

```
X \longrightarrow \mathbf{t} (terminal)
X \longrightarrow A B
```

 The only rule allowed to derive epsilon is the start S

What CNF buys CYK

- The fact that non-terminals come in pairs allows you to think of a subtree as a subspan of the input
- The fact that non-terminals are not nullable (except for start) means that each subspan has at least one character

$$s = s1 s2 s3 s4$$

CYK: Dynamic Programming

$$X \longrightarrow \mathbf{t}$$

Form the leaves of the parse tree

$$X \rightarrow AB$$

Form binary interior nodes of the parse tree

Running CYK

Track every viable subtree from leaf to root. Here are all the subspans for a string of 6 terminals:

Starting position of subspan


```
F
             IW
F
             ΙΥ
W
             LX
Χ
             NR
Υ
             LR
Ν
             id
             ΙZ
Ν
Ζ
             C N
             id
R
C
```


F	\longrightarrow	ΙW
F	\longrightarrow	ΙY
W	\longrightarrow	LX
Χ	\longrightarrow	ΝR
Υ	\longrightarrow	LR
Ν	\longrightarrow	id
N	\longrightarrow	ΙZ
Z	\longrightarrow	C N
I	\longrightarrow	id
L	\longrightarrow	(
R	\longrightarrow)
С	\longrightarrow	,

F	\longrightarrow	١W
F	\longrightarrow	ΙY
W	\longrightarrow	LX
Χ	\longrightarrow	ΝR
Υ	\longrightarrow	LR
N	\longrightarrow	id
N	\rightarrow	ΙZ
Z	\rightarrow	C N
1	\longrightarrow	id
L	\longrightarrow	(
R	\longrightarrow)
С	\longrightarrow	,

F	\longrightarrow	ΙW
F	\longrightarrow	ΙY
W	\longrightarrow	LX
Χ	\longrightarrow	ΝR
Υ	\longrightarrow	LR
N	\longrightarrow	id
N	\longrightarrow	ΙZ
Z	\longrightarrow	C N
I	\longrightarrow	id
L	\longrightarrow	(
R	\longrightarrow)
С	\longrightarrow	,

CYK Example

F	\longrightarrow	ΙW
F	\longrightarrow	ΙY
W	\longrightarrow	LX
X	\rightarrow	ΝF
Υ	\longrightarrow	L R
N	\longrightarrow	id
N	\longrightarrow	ΙZ
Z	\longrightarrow	CN
I	\longrightarrow	id
L	\longrightarrow	(
R	\longrightarrow)
С	\longrightarrow	,

CYK Example N 3,5 4,5 I,N Ν R id id id

```
IW
F
               ΙΥ
W
               LX
X
               NR
Υ
               LR
Ν
               id
Ν
               ΙZ
               C<sub>N</sub>
               id
R
С
```

Cleaning up our grammars

- We want to avoid unnecessary work
 - Remove useless rules

Eliminating Useless Nonterminals

- 1. If a nonterminal cannot derive a sequence of terminal symbols, then it is *useless*
- 2. If a nonterminal cannot be derived from the start symbol, then it is *useless*

Eliminate Useless Nonterminals

 If a nonterminal cannot derive a sequence of terminal symbols, then it is useless Mark all terminal symbols Repeat

If all symbols on the righthand side of a production are marked mark the lefthand side Until no more non-terminals can be marked

 $\begin{array}{ccc} S & \longrightarrow & X \mid Y \\ X & \longrightarrow & () \\ Y & \longrightarrow & (YY) \end{array}$

Eliminate Useless Nonterminals

 If a nonterminal cannot be derived from the start symbol, then it is useless

```
Mark the start symbol
Repeat

If the lefthand side of a production is marked

mark all righthand non-terminal
Until no more non-terminals can be marked
```

Chomsky Normal Form

- 4 Steps
 - Eliminate epsilon rules
 - Eliminate unit rules
 - Fix productions with terminals on RHS
 - Fix productions with > 2 nonterminals on RHS

Eliminate (Most) Epsilon Productions

- If a nonterminal A immediately derives epsilon
- Make copies of all rules with A on the RHS and delete all combinations of A in those copies

F	\longrightarrow	id (A)
Α	\longrightarrow	3
Α	\longrightarrow	N
Ν	\longrightarrow	id
N	\rightarrow	id , N
F	\longrightarrow	id (A)
F	\rightarrow	id ()
Α	\longrightarrow	N
N	\longrightarrow	id
N	\rightarrow	id , N

Eliminate Unit Productions

- Productions of the form A → B are called unit productions
- Place B anywhere A could have appeared and remove the unit production

F	\longrightarrow	id (A)
F	\longrightarrow	id ()
Α	\longrightarrow	N
N	\rightarrow	id
N	\rightarrow	id , N
F	\longrightarrow	id (N)
F	\rightarrow	id ()
N	\rightarrow	id
Ν	\longrightarrow	id , N

Fix RHS Terminals

- For productions with terminals and something else on the RHS
 - For each terminal t add the rule

$$X \longrightarrow \mathbf{t}$$

Where X is a new non-terminal

Replace t with X in the original rules

```
F
                                                              ILNR
                                            F
                                                              ILR
          id(N)
                                            Ν
                                                              id
F
          id ()
                                                             ICN
                                            Ν
Ν
          id
Ν
          id, N
                                                              id
                                            R
                                            C
```

Fix RHS non-terminals

- For productions with more than two nonterminals on the RHS
 - Replace all but the *first* nonterminal with a new nonterminal
 - Add a rule from the new nonterminal to the replaced nonterminal sequence
 - Repeat

Some Final Thoughts on LR Parsing

- A bit complicated to build the parse table
 - Fortunately, algorithms exist
- Still not as powerful as CYK
 - Shift/reduce: action table cell includes S and R
 - Reduce/reduce: cell include > 1 R rule
- SDT similar to LL(1)
 - Embed SDT action numbers in action table
 - Fire off on reduce rules