Method of Evidence Decomposition (MED) - Decomposing Risk Analysis in Space and Time – Main Ideas

- Individual risk at time t, location u =
 Baseline risk in perfectly clean air at time t, location u (function of known and unknown confouders) +
 - Effect of *history of exposure* to particulate air pollution: relative rate β
- Expected number of deaths is the aggregation of the individual risks

Multi-level Models: Decomposing Risk Analysis in Space and Time Main Ideas

- Big issue in multi-level observational research is confounding from unmeasured factors, Z
 - Personal factors: smoking, exercise,...
 - Local factors: local infectious disease outbreaks, water quality,...
 - Regional factors: economy, weather,...
 - National factors: health services, health education,...
- Many confounders have characteristic temporal and spatial scales

Decomposing Risk Analysis in Space and Time – Main Ideas

- Decompose the exposure process into (orthogonal) components with distinct temporal and/or spatial scales
 - $X(t,u) = X_1(t,u) + X_2(t,u) + ... + X_k(t,u)$
- Estimate a separate relative rate for each component: β_1 , β_2 , ..., β_k
- Confounders will have largest effect on the coefficients at its characteristics time and space scale
- $B_1 = \beta_2 ... = \beta_k$ is consistent with constant confounding or no confounding across space and time scales
- Accumulate "less confounded" coefficients to obtain robust estimator of shared $\boldsymbol{\beta}$

Decompose temporal variations into longer and shorter time scale components

 X_1 - longer-term variation in particulate air pollution; e.g. smoother than monthly averages

 X_2 – shorter-term variations = $X - X_1$

Regress Y on X_2 and on smooth function of X_1 ; use the coefficient β_2

Results for different splits of X1, X2. At the left, X2 = X (X1=0), at the right X1 is monthly averages and X2 is within-month variation only

Example 2. Decomposing Cross-sectional (Entirely spatial) Mortality Effects by Region and Within-Region Spatial Scale

By region:

- X₁ larger-scale regional averages
- X_2 local variations about the regional averages

Medicare Air Pollution Study (MCAPS) 50 million Persons 65+

All-Cause Mortality Increase per 10 µg/m3 PM2.5 MCAPS Estimates for 250 Counties

	Ages				
Adjustment	All	65-74	75-84	85+	
Age-Gender (AG)	4.4 7.6 _{10.8}	_{10.2} 15.4 _{20.6}	4.8 8.0 11.3	_{-3.1} - 0.50 _{2.1}	
AG + SES	6.0 8.5 11.0	10.2 14.3 18.5	6.5 9.1 11.6	0.20 2.4 4.6	
AG+SES+COPD	5.4 7.6 9.7	8.4 11.9 _{15.4}	6.3 8.5 _{10.7}	0.60 2.6 4.7	

Mortality Risk Increases per 10 µg/m3 by Region

Adjustment	All	East	West Coast
Age-Gender (AG)	4.4 7.6 _{10.8}	8.1 12.4 16.8	-2.2 2.8 7.9
AG + SES	6.0 8.5 11.0	6.8 10.6 14.5	-4.6 0.9 6.3
AG+SES+COPD	5.4 7.6 9.7	3.4 5.9 8.4	-6.1 - 2.3 _{1.6}

East Coast

Degrees of freedom for spatial smoother

West Coast

Degrees of freedom for spatial smoother

Example 3: Decomposing Chronic Effects (Past year) into Regional and Local Components

Average exposure for past year =

Average for region (X_1) +

Deviation of city data from region's average (X₂)

Has mortality decreased with the decrease in particulate air pollution? **-vs**-

Has regional average mortality gone down with regional average air pollution (b₁) and;

Has mortality decreased more in cities with relatively greater decreases in air pollution? (b_2)

Trends in PM_{2.5} [μ g/m³] by region

Results - Monthly Relative Risk Estimates

Results - Monthly Relative Risk Estimates

Main Points Once Again

Risk analysis decomposed in space and time for model estimation and checking

- Consistent effects in the east
- Ambiguities remain elsewhere