Given that $\sin \theta = 0.3$, where $0 < \theta < \frac{\pi}{2}$ find

 $\sin(\pi + \theta)$ (a)

(b) $\sin(2\pi - \theta)$ (c) $\cos(\frac{\pi}{2} - \theta)$

XAMPLE 10.3

Given that $\cos \theta = k$ and $0 < \theta < \frac{\pi}{2}$ find

 $\cos(\pi + \theta)$ (a)

(b) $\cos(2\pi - \theta)$ (c) $\cos(\frac{\pi}{2} + \theta)$

XAMPLE 10.4

Given that $\sin \theta = k$ and $0 < \theta < \frac{\pi}{2}$ find

(a) $tan\,\theta$ (b) $cosec\,\theta$ $sec(\pi + \theta)$

- sec45° (a)
- (b)
- $cosec150^{\circ}$ (c) $cot \frac{11\pi}{6}$ (d)
 - sec0

XAMPLE 10.7

Simplify

(a)
$$\frac{\sin(\pi + \theta)}{\cos(2\pi - \theta)}$$

(b)
$$\frac{\sin\left(\frac{\pi}{2} + \theta\right)\cos\left(\frac{\pi}{2} - \theta\right)}{\cos(\pi + \theta)} \text{, where } 0 < \theta < \frac{\pi}{2} \text{.}$$

Solutions

- From the reduction formulae, we have that $\sin(\pi + \theta) = -\sin\theta$. Therefore, $\sin(\pi + \theta) = -0.3$.
- (b) From the reduction formulae, we have that $\sin(2\pi - \theta) = -\sin\theta$. Therefore, $\sin(\pi + \theta) = -0.3$.
- From the reduction formulae, we have that $\cos\left(\frac{\pi}{2} \theta\right) = \sin\theta$. (c)

Therefore,
$$\cos\left(\frac{\pi}{2} - \theta\right) = 0.3$$
.

(b)
$$\cos(2\pi - \theta) = \cos\theta : \cos(2\pi - \theta) = k$$
.

 $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$. However, we only have a value for $\cos\theta$.

To determine the value of $\sin \theta$ that corresponds to $\cos \theta = k$ we make use of a right-angled triangle where $\cos \theta = k$.

Construct a right-angled triangle ABC, where
$$\angle BAC = \theta$$

so that
$$AC = k$$
 and $AB = 1$ (i.e., $\cos \theta = \frac{AC}{AB} = \frac{k}{1} = k$).

Then, from Pythagoras's theorem, we have

$$1^2 = k^2 + BC^2 \Leftrightarrow BC = \pm \sqrt{1 - k^2}$$

Therefore, as
$$\sin \theta = \frac{BC}{AB} \Rightarrow \sin \theta = \frac{\pm \sqrt{1 - k^2}}{1} = \pm \sqrt{1 - k^2}$$
.

However, as $0 < \theta < \frac{\pi}{2}$, then θ is in the first quadrant and so, $\sin \theta > 0$. $\sin \theta = \sqrt{1 - k^2}$.

Now that we have the value of $\sin \theta$ we can complete the question:

$$\sin\left(\frac{\pi}{2} + \theta\right) = -\sin\theta : \sin\left(\frac{\pi}{2} + \theta\right) = -\sqrt{1 - k^2}$$

As we are looking for trigonometric ratios based solely on that of the sine ratio, we start

by constructing a right-angled triangle satisfying the relationship,
$$\sin \theta = k$$

In this case, as
$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = k \Rightarrow \frac{\text{opp}}{\text{hyp}} = \frac{BC}{AB} = \frac{k}{1}$$

(using the simplest ratio).

Using Pythagoras's theorem, we have

$$1^2 = k^2 + AC^2 \Leftrightarrow AC = \pm \sqrt{1 - k^2}$$

(a)
$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{k}{\pm \sqrt{1 - k^2}}$$

50

u

o

n

However, as
$$0 < \theta < \frac{\pi}{2}$$
, $\tan \theta > 0$: $\tan \theta = \frac{k}{\sqrt{1 - k^2}}$.

(b)
$$\csc\theta = \frac{1}{\sin\theta} : \csc\theta = \frac{1}{k}$$
.

(c)
$$\sec(\pi + \theta) = \frac{1}{\cos(\pi + \theta)} = -\frac{1}{\cos\theta}$$

But,
$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{\pm \sqrt{1 - k^2}}{1} = \pm \sqrt{1 - k^2}$$
.

However, as
$$0 < \theta < \frac{\pi}{2}$$
, $\cos \theta > 0$: $\cos \theta = \sqrt{1 - k^2}$.

Therefore,
$$\sec(\pi + \theta) = -\frac{1}{\sqrt{1 - k^2}}$$
.

$$\sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)} = \sqrt{2}$$

(a)
$$\sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)} = \sqrt{2}$$

(b) $\csc 150^\circ = \frac{1}{\sin 150^\circ} = \frac{1}{\sin 30^\circ} = \frac{1}{\left(\frac{1}{2}\right)} = 2$

323

MATHEMATICS - Higher Level (Core)

(c)
$$\cot \frac{11\pi}{6} = \frac{1}{\tan(\frac{11\pi}{6})} = \frac{1}{\tan(-\frac{\pi}{6})} = \frac{1}{-\tan\frac{\pi}{6}} = \frac{1}{-(\frac{1}{\sqrt{3}})} = -\sqrt{3}$$

(c)
$$\sec 0 = \frac{1}{\cos 0} = \frac{1}{1} = 1$$

(a)
$$\frac{\sin(\pi + \theta)}{\cos(2\pi - \theta)} = \frac{-\sin(\pi + \theta)}{\cos(\pi + \theta)}$$

(a)
$$\frac{\sin(\pi + \theta)}{\cos(2\pi - \theta)} = \frac{-\sin\theta}{\cos\theta}$$

$$= -\tan\theta$$
(b)
$$\frac{\sin(\frac{\pi}{2} + \theta)\cos(\frac{\pi}{2} - \theta)}{\cos(\pi + \theta)} = \frac{\cos\theta\sin\theta}{-\cos\theta}$$

$$= -\sin\theta$$

- Convert the following angles to degrees.
 - (a) $\frac{2\pi}{3}$
- (b) $\frac{3\pi}{5}$
- (c) $\frac{12\pi}{10}$
- Convert the following angles to radians.
 - (a) 180°
- (b) 270°
- (c) 140°

- **3.** Find the exact value of
 - (a) sin 120°
- (b) cos 120°
- (c) tan 120°

- (e) sin 210°
- (f) cos 210°
- (g) tan 210°

- 4. Find the exact value of
 - (a) $\sin \pi$
- (b) $\cos \pi$
- (c) tan π
- (d) secπ

- (e) $\sin \frac{3\pi}{4}$
- (f) $\cos \frac{3\pi}{4}$
- (g) $\tan \frac{3\pi}{4}$
- (h) $\csc \frac{3\pi}{4}$

- **5.** Find the exact value of
 - (a) $\sin(-210^{\circ})$
- (b) $\cos(-30^{\circ})$
- (e) $\cot(-60^\circ)$
- (f) $\sin(-150^{\circ})$

EXERCISE 10.1

- **1.** (a) 120° (b) 108° (c) 216° (d) 50° **2.** (a) π^{c} (b) $\frac{3\pi^{c}}{2}$ (c) $\frac{7\pi^{c}}{9}$ (d) $\frac{16\pi^{c}}{9}$ **3.** (a) $\frac{\sqrt{3}}{2}$ (b) $-\frac{1}{2}$
- (c) $-\sqrt{3}$ (d) -2 (e) $-\frac{1}{2}$ (f) $-\frac{\sqrt{3}}{2}$ (g) $\frac{1}{\sqrt{3}}$ (h) $\sqrt{3}$ (i) $-\frac{1}{\sqrt{2}}$ (j) $-\frac{1}{\sqrt{2}}$ (k) 1 (l) $-\sqrt{2}$ (m) $-\frac{1}{\sqrt{2}}$ (n) $\frac{1}{\sqrt{2}}$
- (o) -1 (p) $\sqrt{2}$ (q) 0 (r) 1 (s) 0 (t) undefined **4.** (a) 0 (b) -1 (c) 0 (d) -1 (e) $\frac{1}{\sqrt{2}}$ (f) $-\frac{1}{\sqrt{2}}$ (g) -1
- (h) $\sqrt{2}$ (i) $-\frac{1}{2}$ (j) $-\frac{\sqrt{3}}{2}$ (k) $\frac{1}{\sqrt{3}}$ (l) $\sqrt{3}$ (m) $-\frac{\sqrt{3}}{2}$ (n) $\frac{1}{2}$ (o) $-\sqrt{3}$ (p) 2 (q) $-\frac{1}{\sqrt{2}}$ (r) $\frac{1}{\sqrt{2}}$ (s) -1
- (t) $-\sqrt{2}$ **5.** (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\frac{1}{2}$ (e) $-\frac{1}{\sqrt{3}}$ (f) $-\frac{1}{2}$ (g) $-\sqrt{2}$ (h) $-\frac{2}{\sqrt{3}}$ **6.** (a) $-\frac{1}{2}$ (b) $-\frac{1}{\sqrt{2}}$