UPPSALA UNIVERSITET

Introduction to PDE

Lecture Notes

Rami Abou Zahra

Contents

1.	Introduction	2
1.1.	. Examples of linear operators	2
1.2.	. Other PDEs	3

1. Introduction

Definition/Sats 1.1: Domain

An open connected set $\Omega \subset \mathbb{R}^n$ is called a *domain*

Definition/Sats 1.2: Bounded domain

A domain is bounded if its closure $\overline{\Omega}$ is compact

Definition/Sats 1.3: Smooth boundary

The boundary of a set (denoted $\partial\Omega$) is called *smooth* if it can be locally represented by a smooth function

1.1. Examples of linear operators.

- Gradient of $u \in C^1(\Omega)$, i.e $\nabla u = (u_{x_1}, \dots, u_{x_n})$
- Laplacian of $u \in C^2(\Omega)$, i.e $\Delta u = u_{x_1x_1} + \cdots + u_{x_nx_n}$
- Divergence of vector field

Definition/Sats 1.4: Classification of PDEs

A PDE is said to be **Quasilinear**: $\sum_{k,l=1}^{n} a^{kl}(x,u(x),Du(x))u_{x_kx_l} + b(x,u(x),Du(x)) = 0$

A PDE is said to be **Semilinear**: $\underbrace{\sum_{k,l=1}^n a^{kl}(x)u_{x_kx_l}}_{\text{principal term}} + b(x,u(x),Du(x)) = 0$

A PDE is said to be linear: $\sum_{k,l=1}^n a^{kl}(x)u_{x_kx_l} + \sum_{l=1}^n b^l(x)u_{x_l} + c(x)u(x) = f(x)$

Example: Heat equation

$$u_t - \Delta u = f \Leftrightarrow (\partial_t - \Delta)u$$

Take domain $\Omega \in \mathbb{R}^3$ and outward pointing unit \overrightarrow{n}

Let u = u(x, y, z, t) be temperature at point $\overline{x} = (x, y, z)$ at time t, and let q = (x, y, z, t, u) be the function describing the heat problem.

Heat production is dependent on temperature.

Let $\overline{Q} = \overline{Q}(x, y, z, t)$ be a vector field representing heat flux through $\partial \Omega$

The temperature change from t to $t + \Delta t$ corresponds to the flux in heat production as follows:

$$\int_{\Omega} (u(x,y,z,t+\Delta t) - u(x,y,z,t)) dV = \int_{t}^{t+\Delta t} \int_{\Omega} q(x,y,z,t,u) dV dt - \int_{t}^{t+\Delta t} \int_{\partial \Omega} Q(x,y,z,t) \overrightarrow{n} dS dt$$

Divide both sides by Δt and take the limit as $\Delta t \to 0$ yields:

$$\int_{\Omega} u_t(x, y, z, t) dV = \int_{\Omega} q(x, y, z, t, u) dV - \int_{\partial \Omega} \overline{Q}(x, y, z, t) \overrightarrow{n} dS$$

We expect that in practice $\overline{Q} = -a\nabla u$ for a > 0

Note that the last term becomes

$$\int_{\partial\Omega} \overline{Q}(x,y,z,t) \overrightarrow{n} dS = \int_{\partial\Omega} -a \nabla u \overrightarrow{n} dS = -a \int_{\Omega} \nabla \bullet \nabla u dV$$

Move everything of one side and integrating under same domain:

$$\int_{\Omega} (u_t(x, y, z, t) - q(x, y, z, t, y) - a\nabla \bullet \nabla u)dV = 0$$

This is precisely the heat equation.

The further study of the equation involves introducing/imposing further conditions:

- Initial conditions: At t = 0, $u(x, y, z, t) = \varphi(x, y, z)$
- Dirichlet data: Prescribes behaviour of boundary independent of time, i.e $u(x,y,z,t) = \psi(x,y,z) \quad \forall (x,y,z) \in \partial \Omega$
- Neumann Conditions: Prescribes heat production with boundary independent of time derivative: $u_{\overrightarrow{n}}(x,y,z,t) = \psi(x,y,z)$

There are other types, for example Robin conditions.

They can be mixed, and solutions can be determined if for example the combinations include stability etc.

1.2. Other PDEs.

- Poisson equations: $\Delta u = f$, if f = 0 then this is the Laplace equation (which has harmonic functions)
- Wave equations: $\Delta u u_{tt}$
- Minimal surface equation: $\nabla \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = 0$
- Eikonal equation $|\nabla u| = 1$