PSY792F SEM

Week 10 — Growth Mixture Modeling

Mark A. Prince, PhD, MS

Example from Prince & Maisto (2013)

- I am going to use data and results from a paper that looked at joinpoint analysis as a post-hoc procedure for GMM
- I will not be going over joinpoint analysis, in detail, but if you are interested in it let me know.
- I will use some of the tables and figures from that paper as well as a modified version of the write-up.
- · I'll provide code for a simulated example and the code from that paper.
- In that paper, I used language implying that people are part of a latent class, keep in mind that everyone has a probabilistic membership of being in every class
 - In my more recent papers I have worked harder to remove that type of language

Latent Growth Mixture Modeling

- LGMM or just GMM
- Is an extension of LPA that combines latent growth curve modeling with mixture modeling.
- Looking for latent classes of trajectories across time.
- Used when you have continuous indicators at multiple timepoints
- If you have dichotomous indicators you need Latent Transition Analysis, which I am not going to cover in class.
- All the same rules and assumptions apply for GMM as for LGCM and LPA

Similarities to LGCM and LPA

• LGCM

- Time scores can specify linear, quadratic
- Latent intercepts and slopes
- Model fit to determine trajectory (growth)

• LPA

- Seeking to maximize within group homogeneity and between group heterogeneity, but this time it is with regard to intercepts and slopes.
- Model fit to determine the number of classes
- Auxiliary statements still work

Limitations to LPA and LGCM

• LPA

- Used for cross-sectional data
- Does not provide indices of change, growth

• LGCM

- Used for longitudinal data
- Does not identify latent patterns of growth
 - Treats growth as a single homogenous trajectory

Chart Area RREP Drinking Trajectories for 255 of 547 Participants

LGCM

- Aggregate everyone to the mean
- Treats the sample as Homogeneous

Complete Sample Single Class

Growth Mixture Models (GMM)

- Identifies subgroups of individuals who have similar trajectories to one another within a group, but have different trajectories from individuals in the other groups.
 - Maximizes within group homogeneity while also maximizing between group heterogeneity

- NOTE: Individuals are not assigned to groups but each person has a probabilistic membership in all groups
 - Model fit takes into consideration how well the class structure fits the data

Model Fit

- Same as for LPA
- I still prefer LMR test, but another option is the Bootstrapped Likelihood Ratio Test, which is a similar test comparing a model with k classes to a model with k-1 classes
- Also, sample size adjusted BIC is an alternative to BIC, which I tend to use if I have under ~500 observations

Selecting # of Groups

	PDA					
	1	2	3	4	5	
saBIC	54660	54160	53772	53588	53584	
Entropy	1	0.99	0.995	0.97	0.97	
BLRT Improvement	N/A	<.01	<.01	<.01	<.01	
# People/Class						
1	549	495	483	44	3	
2		54	44	416	22	
3			22	22	44	
4				67	416	
5					64	
4 class model	SDFD	SOD	GDFD	IFD		

Classification Quality

Average Latent Class Probabilities for Most Likely Latent Class Membership

4	4	3	2	1	
)00	0.000	0.000	0.019	0.981	1
)10	0.010	0.000	0.990	0.000	2
)00	0.000	0.999	0.000	0.001	3
)27	0.927	0.000	0.073	0.000	4
)(0.00	0.999	0.000	0.001	3

RREP PDA 4-Class Model

- SDFD = slightly decreasing frequency drinkers
- ▲ SOD = stable occasional drinkers
- GDFD = greatly decreasing frequency drinkers
- IFD = increasing frequency drinkers

Conceptual Model

In Mplus the categorical latent variable derived by GMMs are treated as second order latent variables

C – the latent class variable is defined by the intercept, the slope, and any other mixture indicators (U)

Covariates can be added to predict C, i, or s

FIG. 1. Representation of the growth mixture model.

Describing the Trajectories

- LGMM models allow for the estimation of trends for each subgroup
 - These trends often do not fully capture the abrupt changes commonly seen in alcohol use across time
 - See Prince & Maisto 2013 for an example of Joinpoint Analysis which can be used as a posthoc procedure

How to write the code (simulated data)

```
DATA: FILE IS ex8.1.dat;
VARIABLE:
               NAMES ARE y1-y4 x;
        CLASSES = c (2);
ANALYSIS:
        TYPE = MIXTURE;
        STARTS = 40 8; !This is a small number I often use 500 25;
MODEL:
        %OVERALL%
       is | y1@0 y2@1 y3@2 y4@3;
       is ON x; !x is a predictor of the intercept and linear slope
       c ON x; !x is also a predictor of the latent class variable
OUTPUT:
TECH1 TECH8; !I like tech7 tech11 and tech14
```

Real Data

- From Prince & Maisto 2013
- See examples "6.11.10 Drinking GMM PDA 1 class.inp" through "6.11.10 Drinking GMM PDA 5 class.inp"

How to write up the results

- Same as before
 - Any information about your variables
 - Model building strategy and model selection
 - Model fit indices
 - · Growth patterns you compared
 - · Number of classes you compared
 - Table comparing overall model fit
 - Figure of final model
 - Describe the final model
 - Any auxiliary variables

Model Fitting Issues

- What to try when models don't converge
 - Typically due to EM algorithm reaching a local maxima
 - Increase starting values
 - Set starting values based on previous models
 - E.g., if your 3 class model converged but your 4 class won't you can start with the starting values from the 3-class model
 - Fix variances of intercepts and slopes to 0
 - · Assumes residuals are constant across classes
 - i@0 s@0;