STOCHASTIC GRADIENT DESCENT

Philipp Krähenbühl

ADMINISTRATIVE

- · List of papers due Thursday 6am
- Custer access (work in progress)
- Caffe tutorial for cs38 l v Sep 12 5pm-7pm
 - · more details to follow

Data

Data

Data

Data

Output

Output

Output

Output

feature d_i Data $\{35, 9, \ldots\}$

Data {10, 3,...}

Data {10, 9,...}

. . .

Data

Model

label gi

A+ Output

C Output

B+ Output

.. Output

feature di

{35, 9,...}

{10, 3,...}

. . .

Data {10, 9,...}

Data

Data

Data

Model

f(d)

label gi

A+ Output

C Output

B+ Output

.. Output

$$L = I(f(d_1), g_1) + I(f(d_2), g_2) + I(f(d_3), g_3) + ...$$

$$L = E_{(d,g)} \sim D[I(f(d),g)]$$

$$\nabla L = E_{(d,g)} \sim D[\nabla I(f(d),g)]$$

$$f = f - \alpha \nabla L$$

(2ND ORDER) GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT

$$f = f - \gamma \nabla I(f(d), g) \nabla_{(d,g)} D$$

SGD ANALYSIS

$$E(\tilde{f}_n) - E(f^*) = E(f_{\mathcal{F}}^*) - E(f^*)$$
 Approximation error (\mathcal{E}_{app}) $+ E(f_n) - E(f_{\mathcal{F}}^*)$ Estimation error (\mathcal{E}_{est}) $+ E(\tilde{f}_n) - E(f_n)$ Optimization error (\mathcal{E}_{opt})

Problem:

Choose \mathcal{F} , n, and ρ to make this as small as possible,

SGD ANALYSIS

$$E(\tilde{f}_n) - E(f^*) = E(f^*_{\mathcal{F}}) - E(f^*) \qquad \text{true underlying model}$$

$$+ E(f_n) - E(f^*_{\mathcal{F}})$$

$$+ E(\tilde{f}_n) - E(f_n) \qquad \text{best model (eg. Linear cls)}$$

$$= \text{estimation error}$$

$$= \text{best model on training data}$$

$$= E(f_n)$$

$$= \text{current solution}$$

$$= E(\tilde{f}_n) \qquad \text{optimization error}$$

$$= \text{(accuracy)}$$

SMALL SCALE LEARNING

$$E(\tilde{f}_n) - E(f^*) = E(f_{\mathcal{F}}^*) - E(f^*)$$

$$+ E(f_n) - E(f_{\mathcal{F}}^*)$$

$$+ E(\tilde{f}_n) - E(f_n)$$

true underlying model

approx. error

best model (eg. Linear cls)

 $E(f_{\mathcal{F}}^*)$

estimation error

current solution = best model on training data

$$E(f_n) = E(\tilde{f}_n)$$

SMALL SCALE LEARNING

SGD ANALYSIS

$$E(\tilde{f}_n) - E(f^*) = E(f^*_{\mathcal{F}}) - E(f^*) \qquad \text{true underlying model} \\ + E(f_n) - E(f^*_{\mathcal{F}}) \\ + E(\tilde{f}_n) - E(f_n) \\ \text{best model (eg. Linear cls)} \\ \text{estimation error} \\ \text{best model on training data} \\ E(f_n) \\ \text{current solution} \\ \text{optimization error} \\ \text{(accuracy)} \\ \text{(accuracy)} \\ \text{optimization error} \\ \text{(accuracy)} \\ \text{(accuracy)} \\ \text{(bossessed of the expression of$$

SGD ANALYSIS

$$E(\tilde{f}_n) - E(f^*) = E(f_{\mathcal{F}}^*) - E(f^*)$$
 Approximation error (\mathcal{E}_{app}) $+ E(f_n) - E(f_{\mathcal{F}}^*)$ Estimation error (\mathcal{E}_{est}) $+ E(\tilde{f}_n) - E(f_n)$ Optimization error (\mathcal{E}_{opt})

Problem:

Choose \mathcal{F} , n, and ρ to make this as small as possible,

STOCHASTIC GRADIENT DESCENT

	GD	2GD	SGD
Time per iteration:	n	n	1
Iterations to accuracy ρ :	$\log \frac{1}{\rho}$	$\log \log \frac{1}{\rho}$	$\frac{1}{\rho}$
Time to accuracy ρ :	$n \log \frac{1}{\rho}$	$n \log \log^{r} \frac{1}{\rho}$	$\frac{1}{\rho}$
Time to excess error ε :	$\frac{1}{\varepsilon^{1/\alpha}} \log^2 \frac{1}{\varepsilon}$	$\frac{1}{\varepsilon^{1/\alpha}} \log \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}$	$\frac{1}{\mathcal{E}}$

STOCHASTIC GRADIENT DESCENT - EXAMPLES

Lo	SS

Stochastic gradient algorithm

Adaline (Widrow and Hoff, 1960)

$$Q_{\text{adaline}} = \frac{1}{2} (y - w^{\mathsf{T}} \Phi(x))^{2}$$

$$\Phi(x) \in \mathbb{R}^{d}, \ y = \pm 1$$

$$w \leftarrow w + \gamma_t (y_t - w^{\mathsf{T}} \Phi(x_t)) \Phi(x_t)$$

Perceptron (Rosenblatt, 1957)

$$Q_{\text{perceptron}} = \max\{0, -y \, w^{\top} \Phi(x)\}$$

$$\Phi(x) \in \mathbb{R}^d, \ y = \pm 1$$

$$w \leftarrow w + \gamma_t \begin{cases} y_t \, \Phi(x_t) & \text{if } y_t \, w^{\mathsf{T}} \Phi(x_t) \leq 0 \\ 0 & \text{otherwise} \end{cases}$$

K-Means (MacQueen, 1967)

$$Q_{\text{kmeans}} = \min_{k} \frac{1}{2} (z - w_k)^2$$

$$z \in \mathbb{R}^d, \ w_1 \dots w_k \in \mathbb{R}^d$$

$$n_1 \dots n_k \in \mathbb{N}, \text{ initially } 0$$

$$k^* = \arg\min_{k} (z_t - w_k)^2$$

$$n_{k^*} \leftarrow n_{k^*} + 1$$

$$w_{k^*} \leftarrow w_{k^*} + \frac{1}{n_{k^*}} (z_t - w_{k^*})$$

STOCHASTIC GRADIENT DESCENT - EXAMPLES

SVM (Cortes and Vapnik, 1995)

$$Q_{\text{svm}} = \lambda w^2 + \max\{0, 1 - y \, w^{\top} \Phi(x)\}$$

$$\Phi(x) \in \mathbb{R}^d, \ y = \pm 1, \ \lambda > 0$$

$$Q_{\text{svm}} = \lambda w^2 + \max\{0, 1 - y w^{\top} \Phi(x)\} \quad w \leftarrow w - \gamma_t \begin{cases} \lambda w & \text{if } y_t w^{\top} \Phi(x_t) > 1, \\ \lambda w - y_t \Phi(x_t) & \text{otherwise.} \end{cases}$$

Lasso (Tibshirani, 1996)

$$Q_{\text{lasso}} = \lambda |w|_1 + \frac{1}{2} (y - w^{\mathsf{T}} \Phi(x))^2$$

$$w = (u_1 - v_1, \dots, u_d - v_d)$$

$$\Phi(x) \in \mathbb{R}^d, \ y \in \mathbb{R}, \ \lambda > 0$$

$$u_{i} \leftarrow \left[u_{i} - \gamma_{t} \left(\lambda - (y_{t} - w^{\mathsf{T}} \Phi(x_{t})) \Phi_{i}(x_{t})\right)\right]_{+}$$

$$v_{i} \leftarrow \left[v_{i} - \gamma_{t} \left(\lambda + (y_{t} - w_{t}^{\mathsf{T}} \Phi(x_{t})) \Phi_{i}(x_{t})\right)\right]_{+}$$
with notation $[x]_{+} = \max\{0, x\}.$

RESULTS

RESULTS

Algorithm	Time	Test Error	
Hinge loss	$SVM, \lambda =$	10^{-4} .	
SVMLight	23,642 s.	6.02~%	
SVMPERF	66 s.	6.03 %	
SGD	1.4 s.	6.02 %	
$Log\ loss\ SVM,\ \lambda=10^{-5}.$			
TRON (-e0.01)	30 s.	5.68 %	
TRON (-e0.001	1) 44 s.	5.70 %	
SGD	2.3 s.	5.66 %	

PRACTICAL CONSIDERATIONS

- Mini batches
 - reduces variance
- Momentum
 - further reduces variance

SGD FOR DEEP LEARNING

Faster training

· a lot of data!

SGD FOR DEEP LEARNING

- Less overfitting
 - shorter training
 - fewer passes over data

SGD FOR DEEP LEARNING

Saddle points

 exponentially more saddle points than local minima

GD gets stuck on saddle points

DISCUSSION

Data

Output

Data

Data

SI	S2	S 3	S4
P4 P6 P8	P3 P6 P7	PI P2 P3	P7 P6 P5

	SI	S2	S3	S4
Data	PI 3	3		5
Data	P2 4	2	2	3
	P3		3	2
	• • •			

Output

Output

SI S2 S3 S4

P4 P3 P1 P7

Output

	SI	S2	S 3	S4
PI P2 P3	 	0 0	0 0	0

Output

sum up to I

Output

	SI	S2	S 3	S4	
PI		0	0	0	sum up to I
P2	0	0	0		
P3	0		0	0	

RELAXATION

- Keep summation constraints
- Relax {0, I} to [0, I]

Output

	SI	S2	S3	S4	
PI	0.9	0	0	0.1	sum up to I
P2	0	0.1	0	0.9	
P3	0.1	0.9	0	0	
• • •					

sum up to I

- Solution I: Constraints
 - linear program
 - not differentiable
 - how to train?

Solution 2: Approximation

sum and divide

Solution 2: Approximation

sum and divide

- Solution 2: Approximation
 - Differentiable
 - Trainable with SGD

	SI	S2	S3	S4
Data	PI 3 P2 4	3 2	1 2	5
	P3		3	2
	• • •			

Input matrix D

Output

	SI	S2	S3	S4
PI P2 P3	0.9 0 0.1	0 0.1 0.9	0 0 0	0.1 0.9 0

Output matrix A

TRAINING LOSS

Data

Output

D

A

TRAINING LOSS

Data

D

 $sum(A \cdot D)$

Output

A

TENSORFLOW IMPLEMENTATION