Rstan在Bayesian分析中的运用

李政宵

统计学院, 风险管理与精算学中国人民大学, 北京 li zhengxiao@126.com

0. 目录 — 1-1

主要模型

数据和代码 (https://github.com/lzx89757/Introduction-to-Rstan)

- 1. Rstan 基本介绍 ✓
- 2. 基本分布拟合
- 3. 线性回归模型
- 4. 广义线性模型
- 5. 案例分析-准备金数据分析
- 6. 总结

Stan: Help

- □ Installing: https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-Windows
- Example Models https://github.com/stan-dev/example-models/wiki
- Stan Users group: https://groups.google.com/d/forum/stan-users

Motivation for Stan

Stan 主要用于 Bayesian 统计分析

- The Process
 - Create a statistical model
 - Perform inference on the model
 - Evaluate
- Difficulty with models of interest in existing tools

Motivation (cont.)

Stan 的优点在于

- Mainly used for multilevel generalized linear models
- Using C++ to overcome the cost of interpretation
- Better sampler using for highly correlated in the posterior

Bayesian 统计基本知识

- \odot 贝叶斯统计的基本思想是,任何一个未知量 θ 都是一个随机变量,关于该随机变量的信息可以来自两个方面

- \odot 得到关于 θ 的后验分布 $\pi(\theta|x)$

Bayesian 统计基本知识

假设 θ 是未知参数,在给定样本 $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$ 的条件下,关于参数 θ 的贝叶斯推断可以归纳如下:

- □ 根据已有的先验信息, 确定 θ 的先验分布 π(θ)
- \odot 在给定样本 \mathbf{x} 的条件下, θ 的后验分布为

$$\pi(\theta|\mathbf{x}) = \frac{\pi(\theta, \mathbf{x})}{m(x)} = \frac{f(\mathbf{x}|\theta) \cdot \pi(\theta)}{\int f(\mathbf{x}|\theta) \cdot \pi(\theta) d\theta}$$

其中, 密度函数 $f(\mathbf{x}|\theta)$ 表示在 θ 给定的条件下, \mathbf{x} 的条件分布。

先验分布的选择

- 无信息先验分布:
 无信息先验分布是指除参数 θ 的取值范围和 θ 在总体分布中的地位之外,再也不包含 θ 的任何信息的先验分布。
- \cdot 当对参数 θ 一无所知时,可以认为 θ 的取值均匀地分布在其变化范围内,即

$$\pi\left(\theta\right) = \begin{cases} c, \ \theta \in \Theta \\ 0, \ \theta \notin \Theta \end{cases}$$

1. Rstan 基本介绍 —

贝叶斯估计方法

马尔科夫链蒙特卡洛 (MCMC) 随机模拟

- Gibbs 抽样
- Hamiltonian Monte Carlo

模型诊断

- 轨迹图、自相关图

$$\mathsf{ESS} = \frac{\mathsf{T}}{1 + 2\sum\limits_{k=0}^{} \rho_{(k)}\left(\theta\right)}$$

○ 潜在尺度缩减因子

$$\hat{R} = \sqrt{\frac{\frac{N-1}{N}W + \frac{1}{N}B}{W}}$$

其中,W和B分别为样本 $\theta_n^{(n)}$ 的组内和组间方差。潜在尺度缩减因子 \hat{R} 是马尔科夫链的组内平均方差相对于组间方差的比率

模型评价

WAIC统计量

□ Ipd: log pointwise predictive density

$$lpd = \sum_{i=1}^{n} \log p(y_i|y) = \sum_{i=1}^{n} \int p(y_i|\theta)p(\theta|y)d\theta$$
$$l\hat{p}d = \sum_{i=1}^{n} \log \left[\frac{1}{S} \sum_{s=1}^{S} p(y_i|\theta^S) \right]$$

 p_{waic} : effective numbers of parameters

$$p_{waic} = \sum_{i}^{n} \mathsf{Var}_{post} \left[\log p(y_i | \theta) \right]$$
$$\hat{p}_{waic} = \sum_{i}^{n} \mathsf{V}_{S=1}^{S} \left[\log p(y_i | \theta^S) \right]$$

The Stan Language

- Program Blocks
 - Data
 - Transformed data
 - Parameters
 - Transformed parameters
 - Model
 - Generated quantities

The Stan Language

- Data Types
 - ▶ 连续性变量: real
 - ▶ 整数: int
 - ▶ 列,行: vector, row vector
 - ▶ 矩阵 [n,k] Matrix
 - ▶ 数组 Arrays
 - ▶ 施加限制,如 <lower=0, upper=1>
- ☑ Vector 与 Matrix 只能用于 real 下述条件只能使用
 - ▶ Matrix arithmetic operations (e.g., matrix multiplication)
 - ▶ Linear algebra functions (e.g., eigenvalues and determinants)
 - ► Multivariate function parameters and outcomes (e.g., multivariate normal distribution arguments)

The Stan Language

Name	Function
print	print the summary for parameters obtained using all chains
summary	summarize the sample from all chains and indi- vidual chains for parameters
plot	plot the inferences (intervals, medians, split \hat{R}) for parameters
traceplot	plot the traces of chains
extract	extract samples of parameters
get_stancode	extract the model code in Stan modeling lan guage
get_stanmodel	extract the stanmodel object
get_seed	get the seed used for sampling
get_inits	get the initial values used for sampling
get_posterior_mean	get the posterior mean for all parameters
get_logposterior	get the log posterior (that is, 1p)
get_sampler_params	get parameters used by the sampler such a treedepth of NUTS
get_adaptation_info	get adaptation information of the sampler
get_num_upars	get the number of parameters on unconstrained space
unconstrain_pars	transform parameter to unconstrained space
constrain_pars	transform parameter from unconstrained space to its defined space
log_prob	evaluate the log posterior for parameter on un constrained space
grad_log_prob	evaluate the gradient of the log posterior for pa rameter on unconstrained space
as.array	extract the samples excluding warmup to a three
as.matrix	dimension array, matrix, data,frame
as.data.frame	**
pairs	make a matrix of scatter plots for the samples of parameters

2. Fitting Distribution in R

[例8-3]: 假设伽马分布的均值为 15, 形状参数(shape)和比率参数(rate)分别为 30 和 2 。请模拟 1000 个服从该伽马分布的随机数, 并基于这组随机数应用 Rstan 估计伽马分布的两个参数。

3. Linear Regression Models

[例8-4]: 假设 y 服从正态分布,标准差为 2,均值可以表示为三个协变量的线性函数,即 $\mu = 10 + 0.2 \times x_1 - 0.3 \times x_2 + 0.4 \times x_3$,其中三个协变量都服从标准正态分布。请模拟 1000 个因变量和协变量的观察值,并基于这组模拟数据应用 Rstan 建立线性回归模型。

Generalized Linear Models

- 广义线性模型是线性模型的扩展,由正态分布扩展到指数分布 族
- □ 拟合偏态分布, 如伽马分布、逆高斯分布等
- □ 拟合离散分布,如泊松分布、负二项分布等
- · 在 R 软件中运用的包主要有: glm, gamlss 等

Generalized Linear Models

假设随机变量 Y 服从指数分布簇:

$$f_{Y_i}(y|\eta_i,\phi) = \exp\left[\frac{y\eta_i - b(\eta_i)}{\phi} + c(y,\phi)\right]$$

其中 ϕ 为离散参数, η_i 为自然参数 期望和方差分别表示为:

$$E(Y_{i}) = b'(\eta_{i})$$
$$Var(Y_{i}) = V(\mu_{i}) \phi$$

上式中, ϕ 为常数, $V(\cdot)$ 表示方差函数。

伽马回归模型

假设 Y 服从伽马分布, 即

$$f(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp(\beta y)$$

期望与方差为

$$\mu = \frac{\alpha}{\beta}$$
$$Var(Y) = \frac{\alpha}{\beta^2}$$

连接函数与协变量:

$$\log(\mu) = \mathbf{X}\boldsymbol{\beta}$$

Gamma Regression in R

模拟数据:连续因变量(伽马分布)

数据包含 1000 个观测值,记为 y_i .只包含一个协变量 X_1 。其中 y_i 服从伽马分布,期望为 μ_i ,即:

$$y_i \sim \mathsf{Gamma}(shape, rate)$$

 $y_i \sim \mathsf{Gamma}(\mu, \sigma)$

均值与协变量的关系为:

$$\mu_i = \exp(5 + 1.2 \times x_1 + 1.3 \times x_2 + 1.4 \times x_3)$$

 $x_1, x_2, x_3 \sim \text{exponential}(0.1)$

5. 案例分析 —————————————————————6-1

流量三角形

□ 上三角有 171 个已知的观测值,表示已付增量赔款,数据来自Dong (2015)

	ž	表 2						j	曾量赔	款数据	居↩							
事故	进展年↩																	
年。	1 €	2€	3 ₽	4+	5₽	6₽	7.0	8₽	9₽	10₽	11 ₽	12 €	13 ₽	14 ₽	15 ₽	16₽	17 ₽	18
1 ₽	3323 ←	8332∻	9572₽	10172	7631 ₽	3855₽	3252 ←	4433 ₽	2188∻	333₽	199₽	692₽	311 ₽	0.01 ₽	405₽	293 ₽	76∻	14
2₽	3785 ∻	10342	8330₽	7849∻	2839₽	3577₽	1404∻	1721 ₽	1065∻	156₽	35₽	259₽	250₽	420₽	6₽	1 ₽	0.01 ₽	
3 ₽	4677 ∉	9989 ∻	8746₽	10228	8572₽	5787₽	3855 ←	1445 ↔	1612+	626₽	1172 €	589₽	438₽	473₽	370₽	31₽		
4 ₽	5288 €	8089 ∉	12839	11829	7560₽	6383₽	4118	3016₽	1575 ∉	1985₽	2645 €	266₽	38₽	45 ₽	115 ₽			
5₽	2294 €	9869∻	10242	13808	8775₽	5419₽	2424 €	1597.	4149+	1296₽	917₽	295₽	428₽	359₽				
6₽	3600 ∉	7514∻	8247₽	9327∻	8584₽	4245 ₽	4096 ←	3216∻	2014∻	593₽	1188 -	691 ₽	368₽					
7₽	3642 ←	7394 ∉	9838₽	9733 €	6377₽	4884 ₽	11920	4188 ₽	4492 €	1760₽	944 ₽	921 ₽						
8+0	2463 ∉	5033 ↔	6980₽	7722 €	6702₽	7834 ₽	5579 €	3622 ₽	1300 ∉	3069₽	1370 ∉							
9.0	2267 ∉	5959÷	6175₽	7051 ←	8102 ₽	6339₽	6978 ←	4396₽	3107+	903₽								
10₽	2009 €	3700 €	5298₽	6885	6477₽	7570₽	5855 ←	5751 ₽	3871 €									
11 0	1860 ∉	5282 €	3640 ₽	7538∻	5157₽	5766₽	6862 €	2572 ₽										
12∻	2331 ∻	3517∻	5310₽	6066∻	10149	9265₽	5262∻											
13 ₽	2314 ←	4487 €	4112	7000 €	11163	10057												
14+	2607 €	3952+	8228¢	7895÷	9317₽													
150	2595 ∉	5403 -	6579₽	15546														
	3155∉																	
17€	2626+																	_

5. 案例分析 —————————————————————6-2

模型拟合

- 事故年和进展年作为解释变量
- □ 假设增量赔款服从伽马分布
- □ 分别用极大似然估计方法和贝叶斯方法得到模型的参数
- □ 对下三角进行预测

总结

在运用 rstan 中需要注意的几点

- 在贝叶斯分析框架中,先验分布的选择很重要。当模型参数不收敛时, 可以根据研究经验选择合适的弱信息或者信息先验分布
- □ Rstan 中如果不事先设定先验分布,程序默认为无信息的先验分布
- □ 当模型通过诊断时,才能根据抽取的样本进行统计推断和预测

6. 总结 — 7-2

Thank you!

