# RWork-sheet\_gener#4b.Rmd

### Kent Hervey D. Gener BSIT2-B

### 2023-11-21

### R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

### summary(cars)

```
##
                         dist
        speed
##
           : 4.0
                    Min.
                            : 2.00
    Min.
    1st Qu.:12.0
                    1st Qu.: 26.00
##
##
    Median:15.0
                    Median: 36.00
##
    Mean
            :15.4
                    Mean
                            : 42.98
                    3rd Qu.: 56.00
    3rd Qu.:19.0
    Max.
            :25.0
                    Max.
                            :120.00
```

### **Including Plots**

You can also embed plots, for example:



Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Using Loop Function for() loop 1. Using the for loop, create an R script that will display a 5x5 matrix as shown in Figure 1. It must contain vector A = [1,2,3,4,5] and a 5x5 zero matrix. Hint Use abs() function to get the absolute value

```
vectorA <- c(1, 2, 3, 4, 5)

matrixA <- matrix(0, nrow = 5, ncol = 5)

for (i in 1:5) {
   for (j in 1:5) {
      matrixA[i, j] <- abs(vectorA[i] - vectorA[j])
   }
}

print(matrixA)</pre>
```

```
##
          [,1]
               [,2] [,3] [,4]
## [1,]
                         2
                               3
                                     4
             0
                   1
## [2,]
                               2
                                     3
             1
                   0
                         1
## [3,]
             2
                         0
                                     2
                   1
                               1
## [4,]
             3
                   2
                         1
                               0
                                     1
## [5,]
             4
                   3
                         2
```

2. Print the string "\*" using for() function. The output should be the same as shown in Figure

```
num_rows <- 5

for (i in 1:num_rows) {
   for (j in 1:i) {
      cat("* ", sep = "")
   }
   cat("\n")
}

## *
## *
## *
## * *</pre>
```

3. Get an input from the user to print the Fibonacci sequence starting from the 1st input up to 500. Use repeat and break statements. Write the R Scripts and its output.

```
fibonacci <- function(n) {
  if (n <= 1) {
    return(n)
  } else {
    return(fibonacci(n-1) + fibonacci(n-2))
  }
}

user_input <- as.numeric(readline(prompt = "Enter the number of terms for Fibonacci sequence: "))</pre>
```

## Enter the number of terms for Fibonacci sequence:

```
current_term <- 1
fibonacci_value <- 0

repeat {
   fibonacci_value <- fibonacci(current_term)

   if (fibonacci_value > 500) {
      break
   }

   cat(fibonacci_value, " ")

   current_term <- current_term + 1
}</pre>
```

```
## 1 1 2 3 5 8 13 21 34 55 89 144 233 377
```

Using Basic Graphics (plot(),barplot(),pie(),hist()) 4. Import the dataset as shown in Figure 1 you have created previously.

```
figure1matrix <- read.csv("Figure1Matrix.csv")</pre>
```

a. What is the R script for importing an excel or a csv file? Display the first 6 rows of the dataset? Show your codes and its result

```
Shoe_Size <- read.csv("ShoeSize.csv")
head(Shoe_Size, 6)</pre>
```

```
X ShoeSize Height Gender
##
## 1 1
            6.5
                   66.0
                             F
## 2 2
           90.0
                   68.0
## 3 3
           85.0
                   64.5
                             F
                             F
## 4 4
           85.0
                   65.0
## 5 5
           10.5
                   70.0
                             М
                             F
## 6 6
           70.0
                   64.0
```

b. Create a subset for gender(female and male). How many observations are there in Male? How about in Female? Write the R scripts and its output.

```
female_subset <- subset(Shoe_Size, Gender == "F")
male_subset <- subset(Shoe_Size, Gender == "M")
nrow(female_subset)</pre>
```

## [1] 14

```
nrow(male_subset)
```

## [1] 14

c. Create a graph for the number of males and females for Household Data. Use plot(), chart type = barplot. Make sure to place title, legends, and colors. Write the R scripts and its result.

### **Number of Shoe Sizes in Household Data**



- 5. The monthly income of Dela Cruz family was spent on the following: Food Electricity Savings Miscellaneous 60  $10\ 5\ 25$
- a. Create a piechart that will include labels in percentage. Add some colors and title of the chart. Write the R scripts and show its output.

## **Dela Cruz Family Expenses**



6. Use the iris dataset.

#### data(iris)

a. Check for the structure of the dataset using the str() function. Describe what you have seen in the output.

### str(iris)

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 1 ...
```

b. Create an R object that will contain the mean of the sepal.length, sepal.width,petal.length,and petal.width. What is the R script and its result?

```
means <- aggregate(iris[, 1:4], by=list(Species=iris$Species), FUN=mean)
means</pre>
```

```
##
        Species Sepal.Length Sepal.Width Petal.Length Petal.Width
         setosa
## 1
                        5.006
                                                  1.462
                                                               0.246
                                    3.428
                                                  4.260
                                                               1.326
## 2 versicolor
                        5.936
                                    2.770
                                    2.974
                                                  5.552
                                                               2.026
## 3 virginica
                        6.588
```

c. Create a pie chart for the Species distribution. Add title, legends, and colors. Write the R script and its result.

```
pie_chart <- pie(table(iris$Species), col=rainbow(3), main="Species Distribution in Iris Dataset")
legend("topright", inset=c(-0.15, 0), legend=levels(iris$Species), fill=rainbow(3), title="Species")</pre>
```

## **Species Distribution in Iris Dataset**



d. Subset the species into setosa, versicolor, and virginica. Write the R scripts and show the last six (6) rows of each species.

```
setosa <- subset(iris, Species == "setosa")
versicolor <- subset(iris, Species == "versicolor")
virginica <- subset(iris, Species == "virginica")

species <- c(setosa, versicolor, virginica)</pre>
```

e. Create a scatterplot of the sepal.length and sepal.width using the different species (setosa, versicolor, virginica). Add a title = "Iris Dataset", subtitle = "Sepal width and length, labels for the x and y axis, the pch symbol and colors should be based on the species.

### library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.3.2

# Iris Dataset

### Sepal width and length



Hint: Need to convert to factors the species to store categorical variables.

```
species_factors <- factor(iris$Species)</pre>
```

f. Interpret the result.

#You can now use the species\_factors variable in your model instead of the original species variable. T