Занятие 4. Определение эффективного алгоритма сортировки

Цель. Получить навыки по анализу вычислительной сложности нескольких алгоритмов сортировки и определение наиболее эффективного алгоритма

Разработать три алгоритма сортировки, определенные вариантом. Провести анализ вычислительной и емкостной сложности алгоритма на массивах, заполненных случайно. Определить наиболее эффективный алгоритм. Задание 1. Определение эффективного алгоритма в среднем случае Требования по выполнению задания

- 1. Разработать алгоритм простой сортировки, определенной в варианте, реализовать алгоритм. Сформировать таблицу Таблица 2 результатов сортировки по формату Таблица 1 для массива, заполненного случайными числами. Определить емкостную сложность алгоритма. Определить асимптотическую сложность алгоритма.
- 2. Разработать алгоритм ускоренной сортировки, определенной в варианте, реализовать алгоритм. Сформировать таблицу Таблица 3 результатов сортировки по формату Таблица 1 для массива, заполненного случайными числами. Определить емкостную сложность алгоритма. Определить асимптотическую сложность алгоритма.
- 3. Выполнить анализ полученных результатов по таблицам 2 и 3. Определить эффективный из алгоритмов по временной сложности.
- 4. Представить график зависимости Сф+Мф для анализируемых алгоритмов.
- 5. Разработать алгоритм ускоренной сортировки «Прямое слияние», реализовать алгоритм. Сформировать таблицу Таблица 4 результатов сортировки по формату Таблица 1 для массива, заполненного случайными числами. Определить емкостную сложность алгоритма. Определить асимптотическую сложность алгоритма.
- 6. Выполнить анализ полученных результатов по таблицам 3 и 4. Определить эффективный из алгоритмов по временной сложности.
- 7. Представить график зависимости Сф+Мф для анализируемых алгоритмов.

Таблица 1. Сводная таблица результатов

n	T	f(C+M)	Сф+Мф
100			
1000			
10000			
100000			
1000000			

Таблица 1. Варианты индивидуальных заданий

	Tuottuju 1. Dupuutittoi utouduojustoitois Suouttu					
Вариант	Алгоритм простой	Алгоритм	Алгоритм			
	сортировки	усовершенствованной	слияния			
	сортировки	сортировки				
1	Простого обмена	Шейкерная	Простое			
	(пузырек)		слияние			
2	Простого обмена	Шейкерная сортировка	Простое			
	(пузырек) с		слияние			
	условием Айверсона					
3	Простого обмена	Шейкерная с условием	Простое			
	(пузырек) с	Айверсона	слияние			
	условием Айверсона					
4	Простой вставки	Сортировка Шелла со	Простое			
		смещениями Д. Кнута.	слияние			
		Способ 1				
5	Простой вставки	Шелла со смещениями	Простое			
		Д. Кнута. Способ 2	слияние			
6	Простой вставки	Шелла со смещениями	Простое			
		Р. Седжвика.	слияние			
7	Простого выбора	Пирамидальная	Простое			
		сортировка	слияние			
8	Простого выбора	Турнирная сортировка	Простое			
			слияние			

Методы определения смещения для сортировки Шелла, предложенные Д.Кнут и Р.Седжвик

Перед выполнением сортировки происходит вычисление длин промежутков (значения d из примера сортировки Шелла), которые записываются в массив, например, d.

По Седжвику

Значение смещения, записываемого в элемент массива d? вычисляется по формуле:

$$k[i] = \begin{cases} 9*2^{i} - 9*2^{i/2} + 1 & \text{при i - четном} \\ 8*2^{i} - 6*2^{(i+1)/2} + 1 & \text{при i нечетном} \end{cases}$$

Остановить создание и заполнение массива d на значении d[i-1], если 3*d[i] > n (размера массива).

По Кнуту

Определение длины промежутков методом предложенным Кнутом метод:

Способ 1:

$$t \! = \! \log_3 \! n \! - \! 1 \ d_t = \! 1, \, d[i \! - \! 1] \! = \! 3 \! * \! d[i] \! + \! 1 \ \text{t.e.} \ 1, \, 4, \, 13, \, 40, \, 121, \, \ldots..$$

Способ 2:

 $t=\log_2 n-1 d_t = 1$, d[i-1]=2*d[i]+1 T.e. 1, 3, 7, 13, 31,

Задание 2. Определение эффективного из алгоритмов для наихудшего и наилучшего случаев

Требования по выполнению задания

- 1. Провести дополнительные прогоны программы на рабочих массивах, отсортированных строго в убывающем и возрастающем порядке значений элементов. Заполнить таблицы для каждого алгоритма по формату Таблица 1.
- 2. Провести анализ зависимости (или независимости) алгоритмов усовершенствованных сортировок сортировки от исходной упорядоченности массива на основе результатов, представленных в таблицах.
- 3. Определить асимптотическую сложность алгоритма в наихудшем и наилучшем случаях.
- 4. Определить эффективный в лучшем и худшем случае алгоритм.
- 5. Определить наиболее эффективный алгоритм для всех трех случае.

Форма отчета

Отчет по заданию 1

Представить отчет по выполнению каждого пункта задания. Последовательность изложения в отчете в соответствии с порядком требований.

- 1. По задачам п.1, п.2, п 3 составить отчет в соответствии с требованиями оформления отчета по разработке программы (постановка задачи, описание подхода к решению, алгоритм, определение функции зависимости временной сложности алгоритма от размера массива и определение асимптотической сложности, код функции сортировки, тесты).
- 2. Отчеты по остальным пунктам выполнить в соответствии с их задачей. Отчет по заданию 2
 - 1. Представить таблицы с результатами прогонов на упорядоченных массивах.
 - 2. Представить асимптотическую вычислительную сложность для каждого алгоритма для лучшего и худшего случаев. Привести ваши выводы по эффективному алгоритму.

3. Заполнить таблицу для рассматриваемых в задании алгоритмов

	Асимптотическая сложность алгоритма			
Алгоритм	Наихудший	Наилучший	Средний	Емкостная
	случай	случай	случай	сложность