Project (#5): Wing Bending, Torsion, and Shear Analysis Due Date: Upload zip folder to TED by 11:58 PM, Friday March 13, 2020

Files in your MATLAB Folder:

Download from TED: SE160A_5_Wing_Bending_Input.xlsx Download from TED: SE160A_5_Wing_Bending_Output.xlsx

Download from TED: SE160A_5_Wing_Bending.p

Your created (m) file: For Undergraduate Students: [SE160A_5_LastName_FirstName.m]

For Graduate Students: [SE260A 5 LastName FirstName.m]

Problem Answers are saved in a (pdf):

For Undergraduate Students: [SE160A_5_LastName_FirstName.pdf]
For Graduate Students: [SE260A_5_LastName_FirstName.pdf]

Upload your (m) file and (pdf) file into a (zip) folder of the same name:

For Undergraduate Students: [SE160A_5_LastName_FirstName.zip]
For Graduate Students: [SE260A_5_LastName_FirstName.zip]

Maneuvering aircraft (and other aerospace vehicles) produce loads on their lifting and control surfaces. These loads vary greatly for different maneuvering conditions. In this MATLAB project, you will analyze a simplified uniform wing subjected to one-dimensional aerodynamic loads (lift, drag, and moment) and in-flight maneuvering loads. The wing is limited to a one cell symmetric cross-section with a maximum of 4 stringers, where the stringers are located at the leading and trailing edges, and one stringer is located symmetrically above and below the chord-line. The materials for each stringer and skin panel are unique (metallic or composite) and the resulting cross-section is structurally symmetric ($EI_{yz} = 0$). The <u>aerodynamic loads</u>, all acting at the quarter chord, are approximated as a 4th order polynomial for lift, n^{th} order polynomial for drag, and a constant twisting moment. In addition, a distributed wing weight is defined that acts along the mid-chord. (See figure below). The aerodynamic and weight polynomial coefficients are input parameters.

The five goals of this project include the calculation of:

- the cross-section section properties (stringers only), torsion constant (skin only), and shear center location
- the internal load distribution of the wing due to aerodynamic and maneuvering wing weight loads.
- the stringer stress distribution (σ_{xx}) and margins of safety (MS)
- the skin shear stress distribution (τ_{xs}) and margins of safety (MS)
- the wing bending displacement and twisting distributions.

INPUT (See Excel Input File for format restrictions)

Title Title of project

Wing Stringer Definition The (y,z) location for the (4) stringers within the cross-section. The origin can be any

arbitrary point. Each stringer is defined in terms of geometric and material properties.

Wing Skin Definition The thickness and material details for the four skin panels that form the airfoil section.

The two leading skins that connect stringers (1 and 2) and (1 and 4) form an elliptical shape, whereas the two remaining skins connect stringers (2 and 3) and (3 and 4) and include a horizontal portion to the mid-chord and a straight section to the trailing edge.

Wing Size and Weight

The wing length (1/2 wing span) along with the distributed weight ($w = w_0$ lb/in) assumed to act along mid-chord are given. In addition, the maneuvering load factor (n) along with the factor of safety definitions for all materials are defined.

Wing Aero Definition

The polynomial coefficients for the aerodynamic lift, drag, and moment are provided.

• Lift distribution: $p_z = p_{zo} + p_{z2}(x/L)^2 + p_{z4}(x/L)^4$ lb/in acting at (c/4)• Drag distribution: $p_y = p_{yo} + p_{yn}(x/L)^n$ lb/in acting at (c/4)

• Aerodynamic moment $m_x = m_{xo}$ lb-in/in acting about (c/4)

OUTPUT (See Excel Input File for format restrictions)

Student Name, ID Title, Echo

Name of Student and Student UCSD ID number Title of project, Echo all input data

Cross-Section Properties

Determine the modulus weighted centroid and then determine the section properties about the modulus weighted centroid. Calculate the torsion constant (GJ). Calculate the shear center location (e_y, e_z) measured from the modulus-weighted centroid.

Internal Stress Resultants

Determine the six stress resultants at the wing root (x = 0). These six stress resultant functions are higher order polynomials that need to be derived.

Stringer Stress Analysis

Using the cross-section properties, and the root stress resultants, determine the root (x = 0) axial stress in each stringer. Determine the margin of safety.

Skin Stress Analysis

Using the skin thickness, and the root stress resultants, determine the root (x = 0) shear stress in each skin panel. Determine the margin of safety.

Tip Displacement/Twist

Using the complete stress resultant functions along with the material section properties, carry out the integration to find the wing tip displacement and twist.

ANALYTICAL STUDY (Approximately 1-hour)

Now let's use your MATLAB code to perform a preliminary structural analysis on a single-cell wing, where we look at the approximate cruise condition and four corners of the V-n diagram (see Table 1) for both an aluminum and a composite wing design. You will use your code to determine the minimum stringer cross-section area and skin thickness for each wing design, so that the effective weight savings can be determined. We will limit our design studies to insure cross-sections remain symmetric ($EI_{yz} = z_c = 0$). Thus, any change you recommend to a skin thickness or stringer cross-section area will be made to all stringers and all skins. Obviously, further weight savings can be obtained if the individual stringers or skins were unique but this would lead to an unsymmetric cross-section and a more complicated programming exercise.

Table 1: Load case definition for cruise and the four corners of V-n diagram

		L	oad Cases	S		
	Cruise	PHAA	PLAA	NHAA	NLAA	
Wing Weight (w)	3	3	3	3	3	lb/incl
Load Factor (n)	1	3.8	3.8	-1.5	-1.5	
						_
Lift Distribution (pzo)	15	57	57	-22.5	-22.5	lb/in
Lift Distribution (pz2)	-4	-15.2	-15.2	6	6	lb/in
Lift Distribution (pz4)	-1	-3.8	-3.8	1.5	1.5	lb/in
Drag Distribution at Root (pyo)	1.8	2.4	60	2.4	60	lb/in
Drag Distribution coefficient (pyn)	0.4	0.4	6	0.4	6	lb/in
Drag Distribution polynomial order (n)	10	10	10	10	10	
Aerodynamic moment (mxo)	50	15	200	15	200	lb-in/i

Table 2: Aluminum and Graphite/Epoxy Properties

1 4	ole 2. Alummum am	u Grapinic/Epoxy rro	oci ties
Property	Al 7075-&6	Carbon/epoxy	Units
ρ	0.10	0.056	lb/in ³
E	10	23.5	Msi
G	3.75	6	Msi
$\sigma_{ ext{Ty}}$	37	263	Ksi
$\sigma_{ ext{Tu}}$	43	263	Ksi
$\sigma_{ m Cy}$	-37	-263	Ksi
$\sigma_{\! ext{Cu}}$	-43	-263	Ksi
$ au_{ m y}$	24	88	Ksi
$ au_{\mathrm{n}}$	28	88	Ksi

Step 1: Preliminary structural analysis of an aluminum wing

Perform a structural analysis of a single-cell aluminum wing for cruise and the four corners of the V-n diagram. The input data file is given at the end of this project statement. During this preliminary study, ignore stringer section properties (I_{yy} , I_{zz} , I_{yz}). Using your results from the five analysis cases, fill out the following table and calculate the wing weight.

	units	Cruise	PHAA	PLAA	NHAA	NLAA
MS - stringer (minimum)						
MS – skin (minimum)						
Tip vertical displacement	(inch)					
Tip twist	(degree)					
Wing weight	(lb)					

Note: (1) the minimum stringer margin of safety (MS) is defined as the minimum value observed for all four stringers at the root (x = 0), (2) the minimum skin MS is defined as the minimum value observed for all four skin sections at the root(x = 0), and (3) the calculated wing weight is determined using:

$$W = \rho L(4A_s + St_s)$$

where;

 ρ = wing material density (for Aluminum, ρ = 0.1 lb/in³)

L = wing length (250 inch) $A_s =$ stringer area (inch²)

S = wing cross-section perimeter (98.49 inch)

 $t_{\rm s} = {\rm skin \ thickness \ (inch)}$

Step 2: Preliminary structural analysis of a carbon/epoxy wing

Perform a structural analysis of a single-cell carbon/epoxy wing for cruise and the four corners of the V-n diagram. The input data file is given at the end of this project statement. Neglect stringer section properties. Using your results from the five analysis cases, fill out the following table and calculate the wing weight assuming the density of carbon/epoxy is ($\rho = 0.056 \text{ lb/in}^3$).

	units	Cruise	PHAA	PLAA	NHAA	NLAA
MS - stringer (minimum)						
MS – skin (minimum)						
Tip vertical displacement	(inch)					
Tip twist	(degree)					
Wing weight	(lb)					

Step 3: Design analysis of an aluminum wing

Using the results from the table in Step 1, determine the minimum stringer area (A_s) and minimum skin thickness (t_s) so that all the margins are safety for all five analysis cases are greater than or equal to zero. Rerun the five analysis cases from step (1) with the new section properties and fill out the table. (Hint: All MS > 0)

Stringer Area (minimum)	(inch ²)	
Skin Thickness (minimum)	(inch)	

	Units	Cruise	PHAA	PLAA	NHAA	NLAA
MS - stringer (minimum)						
MS – skin (minimum)						
Tip vertical displacement	(inch)					
Tip twist	(degree)					
Minimum Aluminum Wing Weight	(lb)					

Step 4: Design analysis of a carbon/epoxy wing

Using the results from the table in Step 2, determine the minimum composite stringer area (A_s) and minimum composite skin thickness (t_s) so that all the margins are safety for all five load cases are greater than or equal to zero. Rerun the five analysis cases from step 2 with the new section properties and fill out the table.

Stringer Area (minimum)	(inch ²)	
Skin Thickness (minimum)	(inch)	

	Units	Cruise	PHAA	PLAA	NHAA	NLAA
MS - stringer (minimum)						
MS – skin (minimum)						
Tip vertical displacement	(inch)					
Tip twist	(degree)					
Minimum Carbon/epoxy Wing Weight	(lb)					

Step 5: Comment on the weight savings between the aluminum wing and the composite wing.

Α	ВС	D	E	F	G	Н	I	J	K	L	МΝ
1											
		roject (#5) - Wing Be									
3	SE-160A Aerospo	ace Structural Analysis, Univ	ersity of Califo	rnia, San Dieg	o (Copyright	J.B. Kosmat	ka, 2020)				
5	Version:	Winter, 2020 (v1)									
6	version.	vviiitei, 2020 (v1)									
7	Proiect Title:	Design Study Step 1: Single Co	ell Aluminum (60	61-T6) Wing. F	light Condition	n: Cruise	name of the same o				7
8			(- 10, 11mg	g		Annana				
9	Variable	Description	Value	Units	***************************************				Units Ref	erence	
10	iInput	Input Units	1	1 = US, 2 = SI					US	SI	
11	iOutput	Output Units	1	1 = US, 2 = SI				σ, τ	$10^3 lb/in^2$	MPa	
12	1						of the same of the	E, G	10° lb/in²	GPa	
13	Stringer De	finition					Name of the second				_
14	Variable	Description	(#1)	(#2)	(#3)	(#4)	Units				
15	у	y-location	0	16	48	16	inch				
16	z	z-location	0	-3.6	0	3.6	inch				
17	A_s	Stringer Area	0.2	0.2	0.2	0.2	inch²				
18	I_{yy}	Inertia about y-axis	0	0	0	0	inch⁴	******************************			
19	I_{zz}	Inertia about z-axis	0	0	0	0	inch⁴				
20	$I_{ m yz}$	Inertia about z-axis	0	0	0	0	inch⁴				
21	E	Young's Modulus	10	10	10	10	Msi				
22	$\sigma_{\scriptscriptstyle yT}$	Yield strength - tension	37	37	37	37	Ksi				
23	$\sigma_{\it uT}$	Ult strength - tension	43	43	43	43	Ksi				
24	$\sigma_{ extit{yC}}$	Yield strength - compress	-37	-37	-37	-37	Ksi				
25	$\sigma_{\sf uC}$	Ult strength - compression	-43	-43	-43	-43	Ksi				
26							anananana)				
27	Skin Definit						na-nanana				
28	Variable	Description	1.2	2.3	3.4	4.1	Units				
29	<u>t</u>	Skin Thickness	0.05	0.05	0.05	0.05	inch				
30	G	Shear Modulus	3.75	3.75	3.75	3.75	Msi				
31	$ au_{y}$	Yield strength - shear	24	24	24	24	Ksi				
32	$ au_u$	Ultimate strength - shear	28	28	28	28	Ksi				
33 34	Wina Goom	letry, Weight, Load Factor, and	l Cafatu Eactor				anana di cara				
35	Variable	Description	Value	Units			nana-				
36	L	Wing length (b/2)	250	inch		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			***************************************		
37	c	Wing chord	48	inch							
38	w _o	Wing weight	3	lb/inch							
39	n	Load factor	1	1					***		
40	SF _v	Safety Factor - yield	1.1	1			-				
41	SF _u	Safety Factor - ultimate	1.5	1	***************************************		***************************************		nene fernenenenenenenenenenenenenenenenenenen		energinenene
42											
43	Wing Aerod	lynamic Definition		***************************************							
44	Variable	Description	Value	Units							
45	p zo	Lift Distribution - constant	15	lb/in							
46	p _{z2}	Lift Distribution - 2nd Order	-4	lb/in							
47	p _{z4}	Lift Distribution - 4th Order	-1	lb/in							
48	p yo	Drag Distribution - constant	1.8	lb/in							
49	p yn	Drag Distribution - nth Order	0.4	lb/in		*****************************					
50	n	Drag - Polynomial Order	10	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~		~~~			
51	m _{xo}	Distributed Moment	50	lb-in/in							
52											
53 54 0	END OF F						namen				
	HMD OF F										

Α	ВС	D	Е	F	G	Н	I	J	K	L	
	AATIAD D	noine (#5) 117: P	1:a 1	T	1 ²						
		roject (#5) - Wing Be									
SE	-160A Aerospo	ace Structural Analysis, Univ	ersity of Califo	rnia, San Dieg	o (Copyright	J.B. Kosmat	ka, 2020)				una na na na
	Version:	Winter, 2020 (v1)									
	Project Title:	Design Study Step 2: Single Ce	ll Carbon/Epoxy	Wing. Flight C	Condition: Crui	se					

	Variable	Description	Value	Units		******************************			Units Ref		
	ilnput	Input Units	1	1 = US, 2 = SI					US	SI	
	iOutput	Output Units	1	1 = US, 2 = SI				σ, τ	10 ³ lb/in ²	MPa	
		~					50	<i>E</i> , <i>G</i>	10° lb/in²	GPa	
	Stringer Dej		(44)	(#2)	(#2)	(44)					
	Variable	Description	(#1)	(#2)	(#3)	(#4)	Units				
	<u>y</u>	y-location	0	16 -3.6	48 0	16 3.6	inch				
-	Z	z-location Stringer Area	0.2	-3.6 0.2	0.2	0.2	inch ²			ļ	
-	A_s	Stringer Area		1 1			inch ⁴	Ar an annua ar an an an ar		-	
	I yy	Inertia about y-axis	0	0	0	0		***************************************			
	I _{zz}	Inertia about z-axis	0	0	0	0	inch ⁴	~~~~		ļ	****
<u> </u>	I _{yz}	Inertia about z-axis	0 22.5	0	0	0	inch ⁴			ļ	
	E	Young's Modulus Yield strength - tension	23.5	23.5 263	23.5 263	23.5 263	Msi Ksi			ļ	~~~
+	σ_{yT}	Ult strength - tension	263	263	263	263	Ksi				
	σ_{uT}	Yield strength - compress	-263	-263	-263	-263	Ksi				
+	σ_{yc}	Ult strength - compression	-263	-263	-263 -263	-263	Ksi				
-	$\sigma_{\sf uC}$	on strength - compression	-203	-203	-203	-203	1/21				
	Skin Definit	ion									
	Variable	Description	1.2	2.3	3.4	4.1	Units	1			
	t	Skin Thickness	0.05	0.05	0.05	0.05	inch				
	G	Shear Modulus	6	6	6	6	Msi				
	τ_y	Yield strength - shear	88	88	88	88	Ksi				_
	τ_u	Ultimate strength - shear	88	88	88	88	Ksi				
		etry, Weight, Load Factor, and									
	Variable	Description	Value	Units	*******************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				ļ	
	L	Wing length (b/2)	250	inch							
	С	Wing chord	48	inch							
4	w _o	Wing weight	3	lb/inch						ļ	~~~
-	n	Load factor	1 1 1 1	1							
	SF_y SF_u	Safety Factor - yield	1.1	1	~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					~~~
-	SF _u	Safety Factor - ultimate	1.5	1		***************************************					
	Wing Aprod	lynamic Definition								-	
	Variable	Description Description	Value	Units		*****************************					
	p _{zo}	Lift Distribution - constant	15	lb/in							
1	p zo	Lift Distribution - 2nd Order	-4	lb/in		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<u> </u>	~~~
+-	p z2	Lift Distribution - 4th Order	-1	lb/in							
1	p ₂₄	Drag Distribution - constant	1.8	lb/in				-			
	p yo	Drag Distribution - nth Order	0.4	lb/in							
	n P yn	Drag - Polynomial Order	10	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					*****
	m xo	Distributed Moment	50	lb-in/in	***************************************					<u> </u>	~~~
	20			·							
0	END OF F	ILE		· ·			*				