

Vehículo Robot Teledirigido por control remoto y por MQTT PARA MINAS.

TEAM PRESENTATION GRUPO 8.

Maria Victoria
Schafrick
https://github.com/MaviSchaf

Pedro Omar Rojo https://github.com/tecnosisnet

Juan Carlos
Narvaéz
https://github.com/Programado
rPegasus

Jorge Daniel Rojas https://github.com/Cabro645

Emilio Andrés Vera https://github.com/evera8

INTRODUCCION PROYECTO - PROBLEMATICA

En la minería subterránea existen cuatro fuentes principales de gases: el uso de explosivos, las máquinas de combustión interna, los gases de estratos y, la respiración humana. La identificación anticipada de estos gases facilitará la prevención de accidentes por intoxicación.

Todo uso de explosivo emite en mayor o en menor grado, gases tóxicos producidos por las diversas reacciones químicas que ocurren durante una explosión. En el caso de las máquinas de combustión interna, pueden liberar gran cantidad de contaminantes.

Estos gases son monóxido de carbono, dióxido de nitrógeno, aldehídos, humos, metano y dióxido de azufre. Los gases de estratos son aquellos que existen dentro de las estructuras rocosas del yacimiento y que, al entrar en contacto con una labor minera, pueden producir grandes concentraciones de gases tóxicos.

Con relación a la respiración humana, debe recordarse que las personas exhalamos dióxido de carbono y, si realiza una actividad física intensa, la cantidad producida será mayor. La mayor o menor peligrosidad de los gases presentes en las minas subterráneas, dependerá de tres factores principales: toxicidad, concentración y tiempo de exposición. En cuanto a toxicidad, cada gas tiene un efecto particular en el organismo, el cual depende de la composición química del mismo. Por ejemplo, el monóxido de carbono (CMP:25ppm), el cual tiene efectos críticos en el Sistema Nervioso Central, Sistema Cardiovascular, reproducción y Anoxia (falta o disminución de oxígeno en las células, órganos o la sangre) es más tóxico que el dióxido de carbono, que tiene como efecto crítico la asfixia.

El factor concentración indica la cantidad de gas tóxico presente en el aire. Una concentración alta de gases tóxicos origina accidentes fatales y da muy poco tiempo para escapar del área gaseada. El tiempo de exposición indica el lapso en que la persona estuvo expuesta a los gases tóxicos. A menor tiempo de exposición, se tendrá menores daños al organismo. En labores ciegas generalmente el tiempo de exposición es prolongado, lo cual produce daños irreversibles y muchas veces ocasiona la muerte de la persona

LOGICA

Diagrama en bloques

GANTT CHART

Descripcion	Fecha de inicio	Duracion en dias	Fecha Fin
Presentacion del proyecto	5-sep	1	6-sep
Plan del Proyecto	6-sep	1	7-sep
Desarrollo del Proyecto	7-sep	3	8-sep
Selección de Componentes	8-sep	1	9-sep
Compra de Componentes	9-sep	2	10-sep
Construccion del Chasis	12-sep	3	13-sep
Incorporacion de los motores	13-sep	3	14-sep
Incorporacion de las Ruedas traseras	14-sep	2	15-sep
Incorporacion de Rueda Loca	15-sep	1	16-sep
Incorporacion de sensores	16-sep	2	17-sep
Desarrollo de la Logica de Procesamiento	19-sep	2	20-sep
Incorporacion de la bateria	20-sep	1	21-sep
Pruebas de funcionamento	21-sep	2	22-sep
Control	22-sep	1	23-sep
Presentacion Final e Informe	23-sep	1	24-sep

