In the Claims:

- 1. (cancelled)
- 2. (amended) An optical temperature sensor [according to claim 1], said sensor comprising:
 - an emitter having a selective energy emission band, said emitter converting

 thermal energy to energy within said emission band in response to a

 temperature of said emitter, and wherein said emitter contains a rare earth
 element[.];
 - a light pipe having a first end and a second end, said first end communicating with said emitter;
 - an optical bandpass filter communicating with said second end, said filter having

 a pass band within said emission band; and
 - a detector communicating with said filter, said detector detecting said emitted energy as a measure of said temperature.
- 3. (amended) An optical temperature sensor [according to claim 1], said sensor comprising:
 - an emitter having a selective energy emission band, said emitter converting

 thermal energy to energy within said emission band in response to a

 temperature of said emitter, and wherein said emitter is composed of a rare

 earth oxide [.];

- a light pipe having a first end and a second end, said first end communicating with said emitter;
- an optical bandpass filter communicating with said second end, said filter having

 a pass band within said emission band; and
- a detector communicating with said filter, said detector detecting said emitted energy as a measure of said temperature.
- 4. (amended) An optical temperature sensor [according to claim 1], said sensor comprising:
 - an emitter having a selective energy emission band, said emitter converting

 thermal energy to energy within said emission band in response to a

 temperature of said emitter, and wherein said emitter is composed of a rare

 earth aluminum garnet [.];
 - a light pipe having a first end and a second end, said first end communicating with said emitter;
 - an optical bandpass filter communicating with said second end, said filter having
 a pass band within said emission band; and
 - a detector communicating with said filter, said detector detecting said emitted energy as a measure of said temperature.
- 5. (amended) An optical temperature sensor [according to claim 1], said sensor comprising:

- an emitter having a selective energy emission band, said emitter converting

 thermal energy to energy within said emission band in response to a

 temperature of said emitter, and wherein said emitter is a high temperature
 host material which is doped with a rare earth aluminum garnet [.];

 a light pipe having a first end and a second end, said first end communicating with
- a light pipe having a first end and a second end, said first end communicating with said emitter;
- an optical bandpass filter communicating with said second end, said filter having
 a pass band within said emission band; and
- a detector communicating with said filter, said detector detecting said emitted energy as a measure of said temperature.
- 6. (original) An optical temperature sensor according to claim 3, wherein said rare earth oxide is ytterbium oxide.
- 7. (original) An optical temperature sensor according to claim 5, wherein said host material is yttrium aluminum garnet which is doped with a rare earth element.
- 8. (original) An optical temperature sensor according to claim 7, wherein said dopant is ytterbium.
- 9. (original) An optical temperature sensor according to claim 5, wherein said emitter is composed of yttrium oxide doped with ytterbium.

10.-17. (cancelled)