Turing Machines with Atoms

(LICS 2013)

M. Bojańczyk, B. Klin, S. Lasota, S. Toruńczyk University of Warsaw

Summary

- TMs with atoms model limited access to data

Theorem. In sets with atoms, there is a language that is decidable in nondeterministic polynomial time, but not deterministically semi-decidable.

(proof technique: Cai-Fürer-Immerman graphs)

Sorting

Comparison model

- numbers given as units
- compared in one step
- nothing else is allowed

Sorting

Comparison model

- numbers given as units
- compared in one step
- nothing else is allowed

Turing machines

- numbers represented as strings
- arbitrary manipulation allowed

0	I
	I

(nominal sets, sets with urelements, permutation models)

Highlights, 20/09/13

(nominal sets, sets with urelements, permutation models)

Highlights, 20/09/13

$$\mathbb{A}^{\triangleleft} = \{ \{ (a, b, c), (b, c, a), (c, a, b) \} \mid a, b, c \in \mathbb{A} \}$$

(nominal sets, sets with urelements, permutation models)

(must be "hereditarily finitely supported")

$$Orbit(x) = \{\pi(x) \mid \pi \in Perm(\mathbb{A})\}\$$

$$Orbit(x) = \{\pi(x) \mid \pi \in Perm(\mathbb{A})\}\$$

Equivariant function $f: X \to Y$:

$$f(\pi(x)) = \pi(f(x))$$

for all $x \in X, \pi \in \text{Perm}(\mathbb{A})$

Turing machines with atoms

- orbit-finite tape alphabet Γ
- orbit-finite input alphabet $\Sigma \subseteq \Gamma$
- orbit-finite set of states ${\cal Q}$
- initial state $q_0 \in Q$, final states $F \subseteq Q$
- equivariant transition function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1, 0, 1\}$$

"last letter appears before" $\Sigma = \mathbb{A}$

- read left-to-right
- guess that a current letter will be last
- read to the end
- check the last letter

"last letter appears before" $\Sigma = \mathbb{A}$

Nondeterministic:

- read left-to-right
- guess that a current letter will be last
- read to the end
- check the last letter

- read to the end
- store last letter
- come back and check

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

"compatible chains of rotating triangles"

Deterministic:

Determinisation fails.

Summary

- TMs with atoms model limited access to data

Theorem. In sets with atoms, there is a language that is decidable in nondeterministic polynomial time, but not deterministically semi-decidable.

(proof technique: Cai-Fürer-Immerman graphs)