ENTROPY 2019 - QUALIFICATION ROUND

Calculus, Optimization and Linear Algebra

The questions will be multiple choice of 4 choices, 1 or more CORRECT ANSWER for each question.

If you have any questions, please contact ENTROPY's hotline: (028) 3724 6560 or 0937 367 366

Question 12

The the maximum directional derivatives of a function f at a given point P is?		
A	1	
В	undefined	
C	$\nabla f(P)$	
D	$ \nabla f(P) $	

- \bigcirc A
- (B
- \bigcirc C

Which of the following statements is TRUE?		
A	$\nabla f(a,b)$ is parallel to the graph of $z = f(x,y)$ at (a,b)	
В	$\nabla f(a,b)$ is parallel to the level curve of $z = f(x,y)$ at (a,b)	
С	$\nabla f(a,b)$ is perpendicular to the graph of $z = f(x,y)$ at (a,b)	
D	$\nabla f(a,b)$ is perpendicular to the level curve of $z = f(x,y)$ at (a,b)	

		_
-	-)	_ ^
		_

_		
	7	
		L

_	_	
	7	(
/		•

Question 14

Which of the below constraints can be reformulated as a linear constraint in a linear optimization problem? Here, x and y denote the decision variables.

A	$y + \cos x \le 0.7$
В	$xy \le 1$, where y can be positive or negative
С	$x/y \le 1$, where y is known as positive
D	$x^y \le 1$, where y is known as positive

- O A
- (E
- \bigcirc

Consider the following linear programming problem:		
	Maximize: $3x_1 - 2x_2$	
	subject to: $x_1 - x_2 = 5$	
Which of	$x_1, x_2 \ge 0$ of the following statements is true?	
A	The optimal value of the problem	is 15.
В	The problem is unbounded.	
С	The optimal value of the problem	is 0.
D	The optimal value of the problem	is 5.

)	Α

	-)	- 1
-	_	

((

Question 16

Could you indicate which of the following loss functions are convex?		
A	Misclassification loss	
В	Logistic loss	
С	Hinge loss	
D	Exponential Loss with the formula $e^{-yf(x)}$	

Consider the following linear programming problem:

Maximize: $x_1 + 2x_2$

 $x_1 + 2x_2$

subject to: $x_1 + x_2 \le 5$

$$x_1 + 3x_2 \le 9$$

Which is an infeasible solution for the above linear programming problem?

Λ	$(x_{I},$	ra	=	(1	3)
A	$(X_I,$	x_2	_	ι,	3)

B
$$(x_1, x_2) = (3, 1)$$

C
$$(x_1, x_2) = (1, 1)$$

D
$$(x_1, x_2) = (3, 2)$$

- \bigcirc A
- (E
- \bigcirc C
- \bigcirc D

Question 18

Given f, f', f'' continuous function on R. Which of the following statements is TRUE?

A	$f(x - \alpha f'(x)) \le f(x)$ for some $\alpha > 0$ small en	ough
2 A	f(x) = f(x) for both $e(x) = 0$ single $e(x)$	04511

B
$$f(x + \alpha f'(x)) \le f(x)$$
 for all $\alpha > 0$

C
$$f(x - \alpha f'(x)) = f(x)$$
 for all $\alpha > 0$

- D All hold TRUE
- A
- \bigcirc
- \bigcirc D

Given the sigmoid function defined as follow:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

what is the derivative of sigmoid activation function?

A	$1-\sigma(x)$
В	$\sigma(x)^2$
C	$\sigma(x)[1-\sigma(x)]$
D	All of the above

- () A
- (E
- \bigcirc C
- \bigcirc \Box

	I and the second	
Given a multivariate optimization problem as follow:		
$\min_{x} f(x)$, (x is a vector).		
Which of the following statements hold true		
\mathbf{A}	When the Hessian is negative definite, critical point is local maximizer	
В	Solving this minimization problem is exactly equivalent to finding some x such that $\nabla f(x) = 0$	
С	If f is continuous and twice differentiable, then the Hessian is guaranteed not to be singular	
D	Steepest Descent performs poorly when the Hessian is poorly conditioned	

- \bigcirc A
- () E
- \bigcirc
- \bigcirc D

Suppose that we have f and g be the convex functions. Which of the following statements is TRUE?		
A	f-g is convex	
В	fg is convex	
С	$h = \max\{f, g\}$ is convex	
D	af + bg for all a , b	

- A
- () E
- \bigcirc
- \bigcirc D

Question 22

Assume that A is a 3 × 3 matrix with the property that $A^2 = A$. Which of the following statements MUST be true:

- $\mathbf{A} \qquad A = I_3$
- B $det(A) \neq 0$
- C $det(A^3) = det(A)$
- D None of the above
- () A
- O B
- \bigcirc C
- (D

Which of the following statement is TRUE about the Hessian matrix of a function f ?		
A	If the Hessian is positive definite (e.g., all eigenvalues are positive) at the point x , then x is a local minimum of f	
В	B If the Hessian is negative definite (e.g., all eigenvalues are negative), the x is a local maximum of f	
С	If the Hessian has a mix of positive and negative eigenvalues, then x is a saddle point of f	
D	All of the above	

-	-)	Λ
١.		$^{\scriptscriptstyle{H}}$

В

-		
-	-)	_
v	-)	·

$$\bigcirc$$
 D

Question 24

Given a square matrix $A \in \mathbb{R}^{n \times n}$, let x be an eigenvector of A with corresponding eigenvalue λ . Which of the following statements is not TRUE?

- 1		
	\mathbf{A}	x is an eigenvector of $A + aI$ with eigenvalue $\lambda + aI$
	В	$A^k x = \lambda^k x$ for any integer k
	С	If A is invertible, then x is an eigenvector of $A-I$ with eigenvalue λ
	D	If A is invertible, then x is an eigenvector of $A-I$ with eigenvalue $\lambda-I$

		Δ
◟	ノ	

()	H
~		

$$\bigcirc$$
 \circ

$$\bigcap$$
 D

!

ENTROPY 2019 - QUALIFICATION ROUND Page 3 of 6

ICK NEXI

Never submit passwords through Google Forms.

This form was created inside of John von Neumann Institute VNU-HCM. Report Abuse - Terms of Service

Google Forms