Module 3:big data, machine learning and the social sciences

Sunday, June 11, 2023 20:09

- Fairness, accountability and transparency
- Computational social sciences to study social process
- data:
 - Big data amassing huge amounts of statistical information on social and economic trends and human behavior (social data sets)
 - Its not about size its about granularity granularity of individual people and activities
 - Brings up issues of privacy, bias, etc.
 - new issues fall outside expertise of those aggravating. And analyzing data
 - Need to stop thinking of big data as homogenous data sets nested

• questions:

- Fine grained patterns may not be readily visible using existing computational techniques
- data-first and method first approaches can amplify issues
- "convenience" data sets typically reflect only a particular privileged segment of society
- Need to think about best instruments data aggregation and curation mechanisms - for fine graded patterns
- Algorithmic accountability reporting work in journalism
- instead of engaging in data-first or model-first research and development, prioritize questions - standard data set may not be appropriate

models:

- Many are productive models
- Computer scientists find needle haystack (night webpageto display)
- Social scientists are more commonly interested in characterizing the haystack
- Three categories of modeling:
 - prediction:
 - Observed data to make predictions about missing information

(compsci)				
 Logistic regression, conditional random fields, naive bayes, 				
gaussian processo and support vector machines				
Explanation:				
☐ Finding plausible or probable explanations for observed data				
(social scientists)				
 Compared with established social theories or pre was 				
findings.				
☐ Characterizing the haystack				
Explorations:				
 Uncovering patters inobserved data 				
 What does to data tell me I don't already know 				
 Latent dirichlet allocation, factor analysis and stochastic block 				
models				
□ Rely on existing knowledge - previous explanatory or				
exploratory analyses (bias intro)				
 Models used to perform previous analysis will necessarily 				
influence the resultant findings and representations we				
choose to use in predictive models				
angers of unneticed errors r				

- Dangers of unnoticed errors r
- Big difference between 95% accurate because of noise and one that only nails classifying for one subgroup -need careful error analysis
- Preventing or mitigating error explicitly represent and maintain uncertainty - less confident predictions will be about minority groups
- o Even correct predictions can be predicated on weak data sets
- o report, don't ignore uncertainty
- Model validation and emir analysis are more tricky for exploratory models - most don't have a single answer like predictive models
 - Multifaceted approach to model validation by identifying different qualitative and quantitative tasks each h intended to validate a particular aspect
- findings: in
 - Cognitive shutouts that unconsciously, influence
 - Confirmation bias: confirms ares be conceived hypothesis
 - search for confirmatory and contradictory evidence for hypothesized findings
 - o Increase public understanding of science