HAHAHA

YMDragon

英文名称	graph	string	tetris
输入文件名	graph.in	string.in	tetris.in
输出文件名	graph.out	string.out	tetris.out
数据组数	20	20	10
时间限制	1s	1s	1s
空间限制	256MB	256MB	256MB

1 graph

1.1 Description

给定一张 n 个点 m 条边的有向图,显然有向图的邻接矩阵 A 是一个 n 阶的布尔矩阵。

可以发现这个邻接矩阵的幂的序列具有一定的周期性(注:计算幂时要用布尔运算,即乘法为与,加法为或)。

求这个序列的周期 d。但是在某些时候还需要求满足等式 $A^k = A^{k+d}$ 的正整数 k 的最小值。当然,这两个数可能会很大,所以只需要求其对 $10^9 + 7$ 取模后的余数。

1.2 Input

第一行两个整数 n, m, ty。 n, m 的意义如题目所述,如果 ty = 1 则需要求 k 的值,否则不需要求。

接下来 m 行,每行两个整数 a,b,描述一条从点 a 到点 b 的边。

1.3 Output

一行,如果 ty = 1 则输出两个整数 k, d; 否则只输出 d。

1.4 Sample 1

1.4.1 Input

- 5 5 1
- 1 2
- 2 3
- 3 4
- 4 5
- 5 3

1.4.2 Output

23

1.4.3 Explanation

这个有向图的邻接矩阵为

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

它的各次幂为:

$$A^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$A^{5} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
可以发现 $A^{5} = A^{2}$ 、故 $k = 2$, $d = 3$.

1.5 Sample 2

见下发文件中的 graph2.in/ans

1.6 Sample 3

见下发文件中的 graph3.in/ans

1.7 Data Range

有 10% 的数据: $n \le 50$, $m \le 1200$, $ty \ne 1$; 又有 20% 的数据: $n \le 50$, $m \le 1200$, ty = 1; 又有 30% 的数据: $n \le 200$, $m \le 3000$, ty = 1; 最后有 40% 的数据: $n \le 10^5$, $m \le 2*10^5$, $ty \ne 1$ 。

2 string

2.1 Description

给定一个只包含字母'A','B','C','D' 的字符串 T。

用串 T 构造出一个新的串 S 的构造方法是进行多次操作,每次从 T 中选出一段连续的子串,加入到 S 的后面。

显然对于一个串S,它的构造方法不止一种,所以定义S的构造代价为最少的操作次数。

求构造一个长度为 n 的串的最大构造代价。

2.2 Input

第一行一个整数 n。 第二行一个字符串 T。

2.3 Output

一个整数,表示构造一个长度为 n 的串的最大构造代价。

2.4 Sample 1

2.4.1 Input

5

ABCCAD

2.4.2 Output

5

2.4.3 Explanation

构造串'AAAAA' 需要 5 次操作,并且没有比它的构造代价更大的了。

2.5 Sample 2

见下发文件中的 string2.in/ans

2.6 Sample 3

见下发文件中的 string3.in/ans

2.7 Data Range

10%: $n \le 5$;

40%: $n \le 10^5$, $|T| \le 1000$;

70%: $n \le 10^5$, $|T| \le 10^5$;

100%: $n \le 10^{18}$, $|T| \le 10^5$.

3 tetris

3.1 Description

现在有一个特殊的俄罗斯方块游戏。游戏是在一个平面内进行,平面的宽度是 N ,但高度无限。从左数第 i 列从下数第 j 行的格子用 (i,j) 来表示。每个格子的状态一定是有方块或没有方块中的一种。

游戏流程如下:

开始时第 i 列的最下方 A_i 个格子上有方块,其他位置没有。即 (i,j) 有方块当且仅当 $1 < j < A_i$ 。

在每一回合,将进行如下事情:

- 1. 玩家可以决定一个大小为 $1 \times K$ 的板块的下落方向和位置,方向为水平或者垂直。如果选择的方向是竖直方向,那么玩家将选择一个数 $x(1 \le x \le N)$ 作为板块下落的列标号。如果选择的方向是水平方向,那么玩家将选择一个数x(1 < x < N K + 1) 作为板块最左边方块的列标号。
- 2. 决定好下落的方向后,板块将从无穷高处落下,直到无法下落,即 其下方紧邻已有方块。
- 3. 如果此时有行被方块完全覆盖,则该行被消去,并且这一行上面的 所有方块下落一格。
 - 4. 如果此时平面内没有任何方块,游戏结束;否则游戏继续。 问是否有方法能够在 10000 回合内结束游戏,如果有请输出方案。

3.2 Input

第一行两个正整数 N, K。

第二行 N 个非负整数 A_i 。

3.3 Output

如果无法在 10000 回合内结束游戏则输出"-1", 否则:

第一行输出一个整数表示游戏进行的回合数 M。

接下来输出 M 行,每行两个数,第一个代表选择的方向,1 表示竖直方向,2 表示水平方向,第二个表示选择的位置参数 x 。

3.4 Sample 1

3.4.1 Input

- 4 2
- 1 0 1 2

3.4.2 Output

- 4
- 2 2
- 1 1
- 2 3
- 1 2

3.5 Sample 2

3.5.1 Input

- 2 2
- 0 1

3.5.2 Output

-1

3.6 Sample 3

见下发文件中的 tetris3.in/ans

3.7 Data Range

对于 10% 的数据满足, $N \le 5$; 另有 20% 的数据满足,K = 2,N 为偶数; 另有 20% 的数据满足,K = 2,N 为奇数; 另有 20% 的数据满足, $K \mid N$; 对于 100% 的数据满足, $K \le N \le 50$, $0 \le A_i \le 50$ 。 每组数据中可能有若干测试点,捆绑评测。