

9.1	Modeling with Differential Equations
	Models for Population Growth:
	- Suppose an independent variable $t = time$ and a dependent variable $P = population$. Then the rate
	of population growth is $\frac{dP}{dt} = KP$, where K is the proportionality constant, and it indicates that
	the growth rate, $\frac{dP}{dt}$, increases as the population increases,
	- Many populations start by increasing in an exponential manner, but the population levels off when it approaches
	its carrying capacity M
	- the equation below satisfies a important assumptions; $\frac{dP}{dt} \approx kP$ if P is small, $\frac{dP}{dt} < 0$ if P>M.
	$=> \frac{dP}{dt} = kP(1-\frac{P}{M})$, and if is called logistic differential equation
	- We observe that the constant functions $P(t) = 0$ and $P(t) = M$ are solutions because one of the factors
	on the right side is 0, and those 2 constant solutions are called equilibrium solutions
	A Model for the Motion of a Spring
	- if the spring is stretched x units from its natural length, then it exerts a force that is proportional to x :
	Restoring Force = $-kX$, where k is a positive constant called spring constant
	General Differential Equations
	- in general, a differential equation is an equation that contains an unknown function and
	one or more of its derivative
	- a function f is called a solution of a differential equation if the equation is satisfied when
	y = f(x) and its derivatives are substituted into the equation
	- When applying differential equations, we are usually not as interested in finding a family of
	solutions as we are finding a solution that satisfies some additional requirement
	- In many physical problems, we need to find the particular solution that satisfies a condition
	of the form $y(f_0) = y_0$, and this is called initial condition, and the problem of finding
	a solution of the differential equation that satisfies the initial condition is called an
	initial-value problem

9.2	Direction Fields and Euler's Method
	Direction Fields:
	- short line segments at a number (x, y) with slope x+y
	Euler's Method
	- Euler's method does not produce the exact solution to an initial-value problem; it gives approximations. But by decreasing
	the step size, we obtain successively better approximations to the exact solution.
	- Approximate values for the solution of the initial-value problem $y' = F(x,y)$, $Y(x_0) = Y_0$, with step size h, at $X_n = X_{n-1} + h$.
	are $y_n = y_{n-1} + h \cdot F(x_{n-1}, y_{n-1})$ $n = 1, 2, 3,$
9,3	Separable Equations
	- a first-order differential equation in which the expression for $\frac{dy}{dx}$ can be factored as a function of x times a function of y
	$\Rightarrow \frac{dy}{dx} = g(x) f(y)$, or also $\frac{dy}{dx} = \frac{g(x)}{h(y)}$
	Orthogonal Trajectories:
	- Orthogonal Trajectories of a family of curves is a curve that intersects each curve of the
	family orthogonally