Title

D. Zack Garza

Tuesday 6th October, 2020

Contents

1	Tue	sday, October 06	1
	1.1	Gathmann Chapter 4	1

1 | Tuesday, October 06

Note: the sheaf of locally constant functions valued in a set S is written $\underline{\mathbf{S}}$.

1.1 Gathmann Chapter 4

Definition 1.0.1 (Ringed Spaces).

A **ringed space** is a topological space X together with a sheaf \mathcal{O}_X of rings.

Example 1.1.

- 1. X an affine variety and \mathcal{O}_X its ring of regular functions.
- 2. X a manifold over \mathbb{R}^n with \mathcal{O}_X a ring of smooth or continuous functions on X.
- 3. $X = \{p, q\}$ with the discrete topology and \mathcal{O}_X given by $p \mapsto R, q \mapsto S$.
- 4. Let $U \subset X$ an open subset of X an affine variety. Then declare \mathcal{O}_U to be $OO_X|_U$.

Recall that the restriction of a sheaf \mathcal{F} to an open subset $U \subset X$ is defined by $\mathcal{F}|_U(V) = \mathcal{F}(V)$.

Example 1.2.

Let X be a topological space and $p \in X$ a point. The skyscraper sheaf at p is defined by

$$K_p(U) := \begin{cases} K & p \in U \\ 0 & p \notin U \end{cases}$$

Convention: we'll always assume that \mathcal{O}_X is a sheaf of functions, so $\mathcal{O}_X(U)$ is a subring of all K-valued functions on U. Moreover, Res_{UV} is restriction of K-valued functions.

Definition 1.0.2 (Morphisms).

A morphism of ringed spaces

$$(X, \mathcal{O}_X) \xrightarrow{f} (Y, \mathcal{O}_Y)$$

is a continuous map $X \to Y$ such that for all opens $U \subset Y$ and any $\varphi \in \mathcal{O}_Y(U)$, the pullback satisfies $f^*\varphi \in \mathcal{O}_X(f^{-1}(U))$, i.e. the pullback of a regular function is regular.

Note: need convention that \mathcal{O}_X is a sheaf of K-valued functions in order to make sense of pullbacks. In general, for schemes, need some analog of $f^*: \mathcal{O}_X(V) \to \mathcal{O}_X(U)$.

Example 1.3.

If (X, \mathcal{O}_X) is a ringed space associated to an affine variety,?

Example 1.4.

Let $X = \mathbb{A}^1/K$ and U = D(f) for f(x) = x, then $D(f) = \mathbb{A}^1 \setminus \{0\}$. Then $U \hookrightarrow X$ is continuous. Given an open set $D(f) \subset \mathbb{A}^1$, we have

$$\mathcal{O}_{\mathbb{A}^1}(D(f)) := \left\{ g/f^n \mid g \in K[x] \right\}.$$

We want to show that $\iota:(U,\mathcal{O}_U)\hookrightarrow (X,\mathcal{O}_X)$ is a morphism of ringed spaces where $\mathcal{O}_U(V)=\mathcal{O}_X(V)$. Does ι^* pull back regular functions to regular functions? Yes, since $\iota^{-1}(D(f)) = D(xf)$ and $g/f^n \in \mathcal{O}_U(\iota^{-1}(D(f))).$

Example 1.5.

A non-example: take

$$h: \mathbb{A}^1 \to \mathbb{A}^1$$

$$x \mapsto \begin{cases} x & x \neq \pm 1 \\ -x & x = \pm 1 \end{cases}.$$

This is continuous because the zariski topology on \mathbb{A}^1 is the cofinite topology (since the closed sets are finite), so any injective map is continuous since inverse images of cofinite sets are again cofinite.

Question: Does h define a morphism of ringed spaces? I.e., is the pullback of a regular function on an open still regular? Take $U = \mathbb{A}^1$ and the regular function $x \in \mathcal{O}_{\mathbb{A}^1}(\mathbb{A}^1)$. Then $h^*x = x \circ h$, so

$$(x \circ h)(p) = \begin{cases} p & p \neq \pm 1 \\ -p & p = \pm 1 \end{cases} \notin K[x]$$

since this is clearly not a polynomial: if two polynomials agree on an infinite set of points, they are equal.