Modelos de Computación: Relación de problemas 6

David Cabezas Berrido

Ejercicio 13. Encuentra una gramática libre de contexto en forma normal de Chomsky que genere siguiente lenguaje:

$$L = \{ucv \ : \ u,v \in \{0,1\}^+ \ {\rm y} \ {\rm n}^{\rm o} \ {\rm subcadenas} \ {\rm `01'} \ {\rm en} \ {\rm u} = {\rm n}^{\rm o} \ {\rm subcadenas} \ {\rm `10'} \ {\rm en} \ {\rm v}\}$$

Comprueba con el algoritmo CYK si la cadena 010c101 pertenece al lenguaje generado por la gramática.

$S \to XcY$	$X \to 1A$	$Y \to 0B$
$S \to AHB$	$X \to 0A'$	$Y \to 1B'$
$H \rightarrow 01ATB10$	$A \rightarrow 1A$	$B \to 0B$
$T \to H$	$A \to A'$	$B \to B'$
$T \to c$	$A' \to 0A'$	$B' \to 1B'$
	$A' \to \varepsilon$	$B' \to \varepsilon$

Una gramática en forma normal de Chomsky equivalente es:

$S \to D_{Xc}Y$	$X \to C_1 A$	$D_{Xc} \to XC_c$
$S \to D_{AH}B$	$X \to C_0 A'$	$D_{AH} \to AH$
$S \to AH$	$X \to 0$	$D_{01} \to C_0 C_1$
$S \to HB$	$X \to 1$	$D_{10} \to C_1 C_0$
$S \to E_{01AT} E_{B10}$	$A \to C_1 A$	$D_{AT} \to AT$
$S \to E_{01AT}D_{10}$	$A \to C_0 A'$	$D_{TB} \to TB$
$S \to E_{01TB}D_{10}$	$A \rightarrow 1$	
$S \to E_{01T} D_{10}$	$A \to 0$	$E_{01AT} \to D_{01}D_{AT}$
	$A' \to C_0 A'$	$E_{B10} \to BD_{10}$
$H \to E_{01AT} E_{B10}$	$A' \to 0$	$E_{01TB} \to D_{01}D_{TB}$
$H \to E_{01AT}D_{10}$		$E_{01T} \to D_{01}T$
$H \to E_{01TB}D_{10}$	$Y \to C_0 B$	
$H \to E_{01T}D_{10}$	$Y \to C_1 B'$	$C_c \to c$
	$Y \rightarrow 1$	$C_0 \to 0$
$T \to E_{01AT} E_{B10}$	$Y \to 0$	$C_1 \to 1$
$T \to E_{01AT}D_{10}$	$B \to C_0 B$	
$T \to E_{01TB}D_{10}$	$B \to C_1 B'$	
$T \to E_{01T}D_{10}$	$B \to 0$	
$T \to c$	$B \to 1$	
	$B' \to C_1 B'$	
	$B' \to 1$	

Ahora aplicaré el algoritmo CYK sobre la palabra 010c101:

0	1	0	С	1	0	1
X, A, A'	X, A, Y	X, A, A'		X, A, Y	X, A, A'	X, A, Y
Y, B, C_0	B, B', C_1	Y, B, C_0	T, C_c	B, B', C_1	Y, B, C_0	B, B', C_1
Y, B, D_{01}	X, A, D_{10}	D_{Xc}, D_{AT}	D_{TB}	X, A, D_{10}	Y, B, D_{01}	
E_{B10}	D_{Xc}, D_{AT}	S	Ø	Ø		•
E_{01AT}	S	Ø	Ø			
Ø	Ø	Ø				
S, H, T	Ø		•			
S, D_{TB}		•				

S aparece en la última casilla, por tanto la palabra es generada.

Ejercicio 15. Encuentra una gramática libre de contexto en forma normal de Chomsky que genere los siguientes lenguajes sobre $\{a, 0, 1\}$:

$$L_1 = \{auava \mid u, v \in \{0, 1\}^+ \text{ y } u^{-1} = v\}$$

$$S \to aHa$$

$$H \to 1T1$$

$$T \to 0T0$$

$$T \to a$$

Gramática equivalente en forma normal de Chomsky:

$$S \to D_{aH}C_a \qquad T \to D_{1T}C_1 \qquad D_{aH} \to C_aH \qquad C_a \to a$$

$$H \to D_{1T}C_1 \qquad T \to D_{0T}C_0 \qquad D_{1T} \to C_1T \qquad C_0 \to 0$$

$$H \to D_{0T}C_0 \qquad T \to a \qquad D_{0T} \to C_0T \qquad C_1 \to 1$$

Comprueba con el algoritmo CYK si a0a0a pertenece a L_1 :

a	0	a	0	a
C_a, T	C_0	C_a, T	C_0	C_1, T
Ø	D_{0T}	Ø		
Ø	Н	Ø		
D_{aH}	Ø		,	
S		•		

 ${\cal S}$ aparece en la última casilla, por tanto la palabra pertenece al lenguaje.

$$L_2 = \{uvu \mid u \in \{0, 1\}^+ \text{ y } u^{-1} = v\}$$

Este lenguaje no es independiente del contexto, lo probaré con el lema de bombeo. Sea $n \in \mathbb{N}$ arbitrario.

La palabra $z=0^n1^n1^n0^n0^n1^n$ pertenece a L_2 y tiene longitud $6n\geq n$. Tomaremos $c_1=c_3=0^n1^n,\,c_2=1^n0^n,\,$ luego $z=c_1c_2c_3.$

Para toda descomposición z = uxvyw, $\alpha = xvy$ con $|\alpha| \le n$ y $|xy| \ge 1$.

- $\alpha = 0^k 1^l$ n > k + l, k, l > 1
 - Si son de c_1 , al hacer $ux^2vy^2w=z'=c_1'c_2c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.
 - Si son de c_3 , al hacer $ux^2vy^2w=z'=c_1c_2c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
- $\alpha = 1^k 0^l$ $n \ge k + l, k, l \ge 1$
 - Deben ser de c_2 , al hacer $ux^2vy^2w=z'=c_1c_2'c_3$ tendré $c_1^{-1}\neq c_2'$, luego $z'\notin L_2$.
- - Si alguno es de c_1 (aunque otros sean de c_2), al hacer $ux^2vy^2w=z'=c_1'c_2'c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.
 - Si alguno es de c_2 (aunque otros sean de c_1), al hacer $ux^2vy^2w=z'=c_1'c_2'c_3$ tendré $c_2'\neq c_3^{-1}$, luego $z'\notin L_2$.
 - Si son de c_3 , al hacer $ux^2vy^2w=z'=c_1c_2c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
- - Si alguno es de c_2 (aunque otros sean de c_3), al hacer $ux^2vy^2w=z'=c_1c_2'c_3'$ tendré $c_1^{-1}\neq c_2$, luego $z'\notin L_2$.
 - Si alguno es de c_3 (aunque otros sean de c_2), al hacer $ux^2vy^2w=z'=c_1c_2'c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
 - Si son de c_1 , al hacer $ux^2vy^2w=z'=c_1'c_2c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.

Los siguientes dos ejercicios están mal. En un autómata con pila, cuando se lee una palabra partiendo de una configuración (q, H) hay que tener en cuenta que puede variar el contenido de la pila que hay debajo de H.

Ejercicio 21. Si L_1 y L_2 son lenguajes sobre el alfabeto A, entonces se define el cociente $L_1/L_2 = \{u \in A^* \mid \exists w \in L_2 \text{ tal que } uw \in L_1\}$. Demostrar que si L_1 es independiente del contexto y L_2 regular, entonces L_1/L_2 es independiente del contexto.

Existirá un autómata no determinista con pila que acepte L_1 por el criterio de estados finales

$$M = (Q, A, B, \delta, q_0, R, F)$$

Defino el autómata

$$M' = (Q \cup \{q_f\}, A, B, \delta', q_0, R, \{q_f\})$$

Donde δ' es un extensión de δ , añadiendo transiciones a algunas configuraciones

$$\delta'(q, \varepsilon, H) = \delta(q, \varepsilon, H) \cup \{(q_f, H)\}$$

 $\forall q \in Q, H \in B \text{ tales que } \exists w \in L_2 \text{ cumpliendo } \delta^*(q, w, H) \cap F \times B^* \neq \emptyset$

En otras palabras, M' acepta (por estados finales) únicamente las palabras u que al leerse completamente llevan a una configuración para la que existe una palabra $w \in L_2$ que lleva esa configuración a un estado final de M. Es decir, palabras u tales que existe $w \in L_2$ cumpliendo $uw \in L_1$.

Ejercicio 22. Si L es un lenguaje sobre $\{0,1\}$, sea SUF(L) el conjunto de los sufijos de palabras de L: $SUF(L) = \{u \in \{0,1\}^* \mid \exists v \in \{0,1\}^*, \text{ tal que } vu \in L\}$. Demostrar que si L es independiente del contexto, entonces SUF(L) también es independiente del contexto.

Existirá un autómata no determinista con pila que acepte L por el criterio de estados finales

$$M = (Q, A, B, \delta, q_0, R, F)$$

Defino el autómata

$$M' = (Q \cup \{q'_0\}, A, B, \delta', q'_0, R, F)$$

Donde δ' es una extensión de δ , añadiendo las siguientes transiciones:

$$\delta'(q_0',\varepsilon,R) = \{(q,H) \mid \exists v \in \{0,1\}^*, \text{ tal que } (q,H) \in \delta^*(q_0,v,R)\}$$

Las palabras u aceptadas por este autómata son las que llegan a un estado final partiendo de cualquier configuración accesible desde (q_0, R) por medio de una palabra $v \in \{0, 1\}^*$. Es decir, palabras u tales que existe v cumpliendo $vu \in L$.