4.

Notes on frame operators, the Welch bounds, and equiangular lines.

4.1.

Let V be an inner product space of dimension n, and let (e_1, \ldots, e_n) be an orthonormal basis for V. What does projection onto e_i look like? It is precisely the linear operator on V that sends $v \mapsto \langle v, e_i \rangle e_i$. We can reconstruct v as the sum of these projections:

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n.$$

In particular we have the Bessel identity

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2.$$

If we replace $(e_i)_i$ with a more general list, can we still reconstruct v from its inner products with the vectors in the list?

Definition 4.1. Let $f = (f_1, \ldots, f_m)$ be an arbitrary list of vectors in V. The associated frame operator on V is the linear operator $\Phi_f : V \to V$ defined by

$$\Phi_f v = \langle v, f_1 \rangle f_1 + \dots + \langle v, f_m \rangle f_m.$$

We often, but not always, assume that the f_i are unit vectors, so that $\langle v, f_i \rangle f_i$ is the projection of v onto f_i . We say that f is a *tight frame* if and only if

$$\Phi_f v = \lambda \cdot v$$
 for some fixed real $\lambda > 0$ and all $v \in V$.

Example 4.2. Every orthonormal basis is a tight frame. Can we find a tight frame that is not an orthonormal basis? Sure: Take a list composed of several orthonormal bases. Another example where $V = \mathbb{R}^2$ and $\langle -, - \rangle$ is the dot product: Take

$$(f_1, f_2, f_3, f_4) = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}\right).$$

What is the frame operator? $\Phi_f\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}3\\0\end{pmatrix}$ and $\Phi_f\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0\\3\end{pmatrix}$.

Example 4.3. Another example in \mathbb{R}^2 : Take the vertices of an equilateral triangle centered at the origin:

$$(f_1, f_2, f_3) = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1/2 \\ \sqrt{3}/2 \end{pmatrix}, \begin{pmatrix} -1/2 \\ -\sqrt{3}/2 \end{pmatrix} \right).$$

What is the frame operator?
$$\Phi_f\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}3/2\\0\end{pmatrix}$$
 and $\Phi_f\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0\\3/2\end{pmatrix}$.

4.2.

We can think of the list f as a linear map $A_f: F^m \to V$: namely, $A_f(e_i) = f_i$, where $(e_i)_i$ is now the standard basis of F^m . The adjoint $A_f^*: V \to F^m$, with respect to the inner product $\langle -, - \rangle$ on V and the skew dot product on F^m , must satisfy

$$e_i \cdot \overline{A_f^* v} = \langle A_f e_i, v \rangle = \langle f_i, v \rangle$$
 for all $v \in V$ and i .

This tells us that $\overline{A_f^*v} = \langle f_1, v \rangle e_1 + \cdots + \langle f_m, v \rangle e_m$, from which

$$A_f^*v = \langle v, f_1 \rangle e_1 + \dots + \langle v, f_m \rangle e_m.$$

It also shows us that the frame operator is precisely $\Phi_f = A_f \circ A_f^* : V \to V$.

In particular, Φ_f is self-adjoint(!). So by the spectral theorem, there is always a basis of V consisting of orthonormal eigenvectors for Φ_f . Moreover, the eigenvalues of Φ_f must be real and nonnegative: say, $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$. In particular:

Lemma 4.4. $f = (f_1, ..., f_m)$ forms a tight frame if and only if the eigenvalues of Φ_f are all equal and positive.

4.3.

What else can we say about the eigenvalues? Note that $A_f^*A_f$ is easier to understand:

$$A_f^* A_f e_i = \langle f_i, f_1 \rangle e_1 + \dots + \langle f_i, f_m \rangle e_m,$$

so the matrix of $A_f^*A_f$ in the standard basis is given by

$$(A_f^*A_f)_{i,i} = \langle f_i, f_i \rangle.$$

Using the identity tr(AB) = tr(BA), we deduce that

$$\overbrace{\lambda_1 + \cdots \lambda_n}^{\operatorname{tr}(\Phi_f)} = \operatorname{tr}(A_f A_f^*) = \operatorname{tr}(A_f^* A_f) = \sum_i \|f_i\|^2.$$

Moreover, since Φ_f is diagonal in the eigenvector basis, Φ_f^2 is also diagonal in that basis. The eigenvalues of Φ_f^2 are the squares of the eigenvalues of Φ_f . Therefore,

$$\overbrace{\lambda_1^2 + \cdots \lambda_n^2}^{\operatorname{tr}(\Phi_f^2)} = \operatorname{tr}((A_f A_f^*)^2) = \operatorname{tr}((A_f^* A_f)^2) = \sum_{i,j} \langle f_i, f_j \rangle \langle f_j, f_i \rangle = \sum_{i,j} |\langle f_i, f_j \rangle|^2.$$

Theorem 4.5. For any list of vectors $f_1, \ldots, f_m \in V$,

$$\sum_{i,j} |\langle f_i, f_j \rangle|^2 \ge \frac{1}{n} \left(\sum_i ||f_i||^2 \right)^2.$$

Equality holds if and only if the f_i form a tight frame.

Proof. We must show that $n \operatorname{tr}(\Phi_f^2) \ge \operatorname{tr}(\Phi_f)^2$. Let $\vec{u} = (1, \dots, 1)$ and $\vec{v} = (\lambda_1, \dots, \lambda_n)$ in F^n . By Cauchy–Schwarz,

$$n(\lambda_1^2 + \dots + \lambda_n^2) = \|\vec{u}\|^2 \|\vec{v}\|^2$$
$$\geq |\langle \vec{u}, \vec{v} \rangle|^2$$
$$= (\lambda_1 + \dots + \lambda_n)^2.$$

Equality holds above if and only if the λ_i are all equal.

Corollary 4.6 (First Welch Bound). For any list of <u>unit</u> vectors $f_1, \ldots, f_m \in V$,

$$\sum_{i \neq j} |\langle f_i, f_j \rangle|^2 \ge \frac{m^2}{n} - m.$$

Equality holds if and only if the f_i form a tight frame.

Remark 4.7. More generally, the kth Welch bound (proved in 1974) states that above,

$$\sum_{i \neq j} |\langle f_i, f_j \rangle|^{2k} \ge \frac{m^2}{\binom{n+k-1}{k}} - m.$$

It can be proved via a similar argument, but applied to symmetric tensors in $V^{\otimes k}$. See "Geometry of the Welch Bounds" by Datta-Howard-Cochran.

4.4.

Note that by a pigeonhole-type argument,

$$\max_{i \neq j} |\langle f_i, f_j \rangle|^2 \ge \frac{1}{m(m-1)} \sum_{i,j} |\langle f_i, f_j \rangle|^2,$$

with equality if and only if the inner products $\langle f_i, f_j \rangle$ are all equal.

Definition 4.8. A collection of <u>unit</u> vectors f_1, \ldots, f_m is equiangular if and only if $\langle f_i, f_j \rangle$ is the same for all $i \neq j$.

Corollary 4.9. For any list of <u>unit</u> vectors $f_1, \ldots, f_m \in V$,

$$\max_{i \neq j} |\langle f_i, f_j \rangle|^2 \ge \frac{m - n}{n(m - 1)}.$$

Equality holds if and only if the f_i form an equiangular tight frame.

Example 4.10. The vectors f_1, f_2, f_3 in Example 4.3 are unit vectors. We compute

$$A_f^* A_f = \begin{pmatrix} 1 & -1/2 & -1/2 \\ -1/2 & 1 & -1/2 \\ -1/2 & -1/2 & 1 \end{pmatrix}$$

We get $\max_{i\neq j} |\langle f_i, f_j \rangle|^2 = \frac{1}{4} = \frac{m-2}{2(3-1)}$, confirming that these vectors form an equiangular tight frame.

4.5.

Intuitively, an equiangular tight frame is a collection of unit vectors whose pairwise inner products are as small as possible. What is the maximum size of an equiangular tight frame?

Theorem 4.11 (Sustik-Tropp-Dhillon-Heath Jr., 2007). If $m > n \ge 2$ and there is an equiangular tight frame of m unit vectors in \mathbb{C}^n , then one of the following must hold:

- (1) m = n + 1 and the vectors form the vertices of a regular m-simplex.
- (2) m = 2n. Then n is odd and 2n 1 is a sum of two perfect squares.
- (3) $m \neq n+1, 2n$. Then $\frac{n(m-1)}{m-n}$ and $\frac{(m-n)(m-1)}{n}$ are both odd perfect squares.

A related question: What is the maximum size s_n of an <u>arbitrary</u> equiangular set of <u>lines</u> in \mathbb{R}^n ? (Here, a line is a pair of opposing unit vectors. We compute angles by choosing the smallest inner products.) The numbers s_n form sequence A002853 in the OEIS:

The value $s_2 = 3$ is achieved using the lines through the vertices of an equilateral triangle: *i.e.*, Example 4.3. The value $s_3 = 6$ is achieved using the lines through the opposing vertices of an icosahedron. The value $s_7 = 28$ can be achieved as follows. Take all $\binom{8}{2} = \frac{8!}{2!6!} = 28$ images of the unit vector

$$\frac{1}{\sqrt{24}}(-3, -3, 1, 1, 1, 1, 1, 1) \in \mathbf{R}^8.$$

They are all orthogonal to the vector (1, 1, ..., 1), so we may regard them inside the 7-dimensional subspace $V = \{(a_1, ..., a_8) \in \mathbf{R}^8 \mid a_1 + \cdots + a_8 = 0\}$. The inner product on \mathbf{R}^8 restricts to an inner product on V.