

We claim:

1 1. A machine-readable medium that provides instructions, which when executed by
2 a set of processors of one or more processors, cause said set of processors to perform
3 operations comprising:

4 storing an operation; and

5 executing the operation idempotently with a network resource process.

1 2. The machine-readable medium of claim 1 wherein storing the operations
2 comprises:

3 storing the operation in a log as a record;

4 receiving a commit command; and

5 moving the record into an atomic database.

1 3. The machine-readable medium method of claim 1 wherein storing the operation
2 comprises:

3 receiving the operation;

4 performing lock contention handling for the operation;

5 storing the operation if a lock contention is not detected; and

6 generating a lock contention notification if the lock contention is detected for the
7 operation.

1 4. The machine-readable medium of claim 1 wherein the operation is one of a
2 sequence of operations comprising an atomic transaction.

1 5. The machine-readable medium of claim 1 further comprising:

2 receiving the operation from a first user; and

3 receiving a second operation from a second user.

1 6. The machine-readable medium of claim 1 wherein the operation is received from
2 a first user concurrently with a second operation received from a second user.

1 7. A machine-readable medium that provides instructions, which when executed by
2 a set of processors of one or more processors, cause said set of processors to perform
3 operations comprising:

4 storing a sequence of operations; and
5 performing the sequence of operations as an atomic transaction.

1 8. The machine-readable medium of claim 7 wherein each of the sequence of
2 operations is performed idempotently.

1 9. The machine-readable medium of claim 7 wherein storing the sequence of
2 operations comprises:

3 performing lock contention handling for each of the sequence of operations;
4 storing the sequence of operations if a lock contention is not detected; and
5 generating a lock contention notification if the lock contention is detected.

1 10. The machine-readable medium of claim 7 wherein a sequence of operations is
2 received from a first user and a second sequence of operations is received from a second
3 user.

1 11. The machine-readable medium of claim 7 wherein the sequence of operations is
2 received from a first user in concurrence with receiving a second sequence of operations
3 from a second user.

1 12. A machine-readable medium that provides instructions, which when executed by
2 a set of processors of one or more processors, cause said set of processors to perform
3 operations comprising:

4 storing an operation in an atomic database; and
5 performing the operation with a network resource process in response to an
6 commit command.

1 13. The machine-readable medium of claim 12 wherein the operation is performed
2 idempotently.

1 14. The machine-readable medium of claim 12 wherein the operation is one of a
2 sequence of operations comprising a transaction.

1 15. The machine-readable medium of claim 12 wherein storing the operation in the
2 atomic database comprises:

3 performing lock contention handling for the operation;
4 storing the operation in the atomic database if a lock contention is not detected;
5 and
6 generating a notification of lock contention if the lock contention is detected.

1 16. The machine-readable medium of claim 12 wherein the operation is received from
2 a first user and a second operation is received from a second user.

1 17. The machine-readable medium of claim 12 wherein the operation is received from
2 a first user in concurrence with a second operation received from a second user.

1 18. A machine-readable medium that provides instructions, which when executed by
2 a set of processors of one or more processors, cause said set of processors to perform
3 operations comprising:

4 receiving an operation;
5 determining if a lock contention exists for a record corresponding to the
6 operation; and

7 generating a notification of the lock contention if a lock contention does exist for
8 the record.

1 19. The machine-readable medium of claim 18 wherein the operation is one of a
2 sequence of operations comprising an atomic transaction.

1 20. The machine-readable medium of claim 18 wherein the operation is performed
2 idempotently with a network resource process.

1 21. The machine-readable medium of claim 18 wherein the operation is received from
2 a first user and a second operation is received from a second user.

1 22. The machine-readable medium of claim 18 wherein the operation is received from
2 a first user in concurrence with a second operation received from a second user.

1 23. The machine-readable medium of claim 18 further comprising storing the
2 operation if the lock contention does not exist.

1 24. A machine-readable medium that provides instructions, which when executed by
2 a set of processors of one or more processors, cause said set of processors to perform
3 operations comprising:

4 storing a first and second operation as an atomic transaction;
5 performing the first and second operation idempotently with a set of network
6 resource processes.

1 25. The machine-readable medium of claim 24 wherein storing the first and second
2 operation as an atomic transaction comprises:

3 performing lock contention handling for the first and second operation;
4 storing the first and second operation of the atomic transaction in a log if a lock
5 contention is not detected; and
6 generating a lock contention notification if the lock contention is detected.

1 26. The machine-readable medium of claim 24 wherein storing the first and second
2 operation as the atomic transaction comprises:

3 Storing the first and second operation of the atomic transaction in a log;
4 receiving a commit command for the atomic transaction;
5 indicating the atomic transaction as committed; and
6 storing the atomic transaction in an atomic database.

1 27. The machine-readable medium of claim 24 wherein the first and second operation
2 are received from a first user and a third operation of a second transaction is received
3 from a second user.

1 28. The machine-readable medium of claim 24 wherein the second operation is
2 received from a first user concurrently with a third operation received from a second user.

1 29. A network element comprising:
2 a processor to execute a set of atomic transactions; and

3 a storage unit coupled to the processor, the storage unit to store the set of atomic
4 transactions.

1 30. The network element of claim 29 wherein each of the set of atomic transactions is
2 comprised of a set of operations, the processors to execute each of the set of operations
3 idempotently.

1 31. The network element of claim 29 wherein the processor forms lock contention
2 handling for the set of atomic transactions; and the processor generates the lock
3 contention notification if the lock contention is detected.

1 32. The network element of claim 29 further comprising a set of interfaces coupled to
2 the processor, each of the set of interfaces to receive at least one of the set of atomic
3 transactions, each of the set of interfaces corresponding to a different user.

1 33. A network element comprising:
2 an interface to receive a plurality of operations from a user;
3 a configuration manager coupled to the interface, the configuration manager to
4 process the plurality of operations; and
5 an atomic database coupled to the configuration manager, the atomic database to
6 store the plurality of operations as a transaction.

1 34. The network element of claim 33 wherein the configuration manager processes
2 the plurality of operations as an atomic transaction.

1 35. The network element of claim 33 further comprising:
2 the atomic database to detect lock contention;

3 the configuration manager to generate a notification of the lock contention
4 detected by the atomic database; and
5 the interface to display a message corresponding to the notification generated by
6 the configuration manager.

1 36. The network element of claim 33 further comprising a second interface coupled to
2 the configuration manager, the second interface to receive a second plurality of
3 operations from a second user.

1 37. A computer implemented method comprising:
2 storing an operation; and
3 executing the operation idempotently with a network resource process.

1 38. A computer implemented method of claim 37 wherein storing the operations
2 comprises:
3 storing the operation in a log as a record;
4 receiving a commit command; and
5 moving the record into an atomic database.

1 39. The computer implemented method of claim 37 wherein storing the operation
2 comprises:
3 receiving the operation;
4 performing lock contention handling for the operation; storing the operation if a
5 lock contention is not detected; and
6 generating a lock contention notification if the lock contention is detected for the
7 operation.

1 40. The computer implemented method of claim 37 wherein the operation is one of a
2 sequence of operations comprising an atomic transaction.

1 41. The computer implemented method of claim 37 further comprising:
2 receiving the operation from a first user; and
3 receiving a second operation from a second user.

1 42. The computer implemented method of claim 37 wherein the operation is received
2 from a first user concurrently with a second operation received from a second user.

1 43. A computer implemented method comprising:
2 storing a sequence of operations; and
3 performing the sequence of operations as an atomic transaction.

1 44. The computer implemented method of claim 43 wherein each of the sequence of
2 operations is performed idempotently.

1 45. The computer implemented method of claim 43 wherein storing the sequence of
2 operations comprises:
3 performing lock contention handling for each of the sequence of operations;
4 storing the sequence of operations if a lock contention is not detected; and
5 generating a lock contention notification if the lock contention is detected.

1 46. The computer implemented method of claim 43 wherein a sequence of operations
2 is received from a first user and a second sequence of operations is received from a
3 second user.

1 47. The computer implemented method of claim 43 wherein the sequence of
2 operations is received from a first user in concurrence with receiving a second sequence
3 of operations from a second user.

1 48. A computer implemented method comprising:
2 receiving an operation;
3 determining if a lock contention exists for a record corresponding to the
4 operation; and
5 generating a notification of the lock contention if a lock contention does exist for
6 the record.

1 49. The computer implemented method of claim 48 wherein the operation is one of a
2 sequence of operations comprising an atomic transaction.

1 50. The computer implemented method of claim 48 wherein the operation is
2 performed idempotently with a network resource process.

1 51. The computer implemented method of claim 48 wherein the operation is received
2 from a first user and a second operation is received from a second user.

1 52. The computer implemented method of claim 48 wherein the operation is received
2 from a first user in concurrence with a second operation received from a second user.

1 53. The computer implemented method of claim 48 further comprising storing the
2 operation if the lock contention does not exist.