Chapter 6: Computations lifted to a functor context I Filterable functors, their laws and structure

Sergei Winitzki

Academy by the Bay

January 29, 2018

Computations within a functor context

Example:

$$\sum_{x \in \mathbb{Z}; \ 0 \le x \le 100; \ \cos x > 0} \cos^3 x \approx 21.8$$

Scala code:

```
(0 to 100).map(math.cos(_)).filter(_ > 0).map(math.pow(_, 3)).sum
```

Using Scala's for/yield syntax ("functor block", "for comprehension")

- "Functor block" is a syntax for manipulating data within a container
 - ► Container must be a functor (has map such that the laws hold)
- A filterable functor is a functor that has a withFilter method
- Functor block works if have with Filter(p: $A \Rightarrow Boolean$): $F[A] \Rightarrow F[A]$
 - What are the required laws for withFilter?
 - What data types are filterable functors?

Filterable functors: Intuitions I

Intuition: the filter call may decrease the number of data items held

• a filterable container can hold more or fewer data items of type T

Examples:

- Option[T] $\equiv 1 + T$
 - ► Some(123).filter(_ > 0) returns Some(123)
 - ► Some(123).filter(_ == 1) returns None
 - ► Some(123).withFilter(_ == 1).map(identity) returns None
- List[T] $\equiv 1 + T + T \times T + T \times T \times T + ...$
 - ► List(10, 20, 30).filter(_ > 10) returns List(20, 30)
 - ► List(10, 20, 30).filter(_ == 1) returns List()

What we learn from these examples:

- The data type must contain a disjunction having different counts of T
- When the predicate p returns false on some T values, the remaining data goes to a part of the disjunction that has fewer T values
- Values x are algebraically replaced by 1 (a Unit) when p(x) = false
- The container can become "empty" as a result of filtering

Examples of filterable functors I

- Consider these business requirements:
 - One order can be placed on Tuesday and/or on Friday
 - ▶ An order is approved if requested amount is less than \$1,000, etc.

```
final case class Orders[A](tue: Option[A], fri: Option[A]) {
  def withFilter(p: A ⇒ Boolean): Orders[A] =
    Orders(tue.filter(p), fri.filter(p))
}
Orders(Some(500), Some(2000)).withFilter(_ < 1000)
// returns Orders(Some(500), None)</pre>
```

- The functor type is $F^A = (1 + A) \times (1 + A)$
 - ▶ When a value does not pass the filter, the A is replaced by 1
- Filtering is applied to both parts of the product type independently
- What if additional business requirements were given:
 - (a) both orders must be approved, or else no orders can be placed or
 - ▶ (b) both orders can be placed if at least one of them is approved
- Does this still qualify as "filtering"?
 - Need some algebraic laws to decide this

Filterable functors: Intuitions II

- Intuition: computations in the functor block should "make sense"
 - we should be able to reason correctly by looking at the program text
- A schematic example of a functor block program using map and filter:

```
for { // computations lifted to the List functor
  x ← List(...) // the first line has "←", other lines do not
  y = f(x) // will become a "map(f)" after compilation
  if p1(y) // will become a "withFilter(p1)"
  if p2(y)
  z = g(x, y)
  if q(x, y, z)
} yield // for all x in list, such that conditions hold, compute this:
  k(x, y, z)
```

- What we intuitively expect to be true about such programs:
 - ① y = f(x); if p(y); is equivalent to if p(f(x)); y = f(x);
 - 2 if p1(y); if p2(y); is equivalent to if p1(y) && p2(y)
 - When a filter predicate p(x) returns true for all x, we can delete the line "if p(x)" from the program with no change to the results
 - When a filter predicate p(x) returns false for some x then we must exclude that x from computations performed after "if p(x)"

Examples of filterable functors I: Checking the laws

- Properties 1 4 are expressed as laws for filter $(p\Rightarrow Boolean)\Rightarrow F^A\Rightarrow F^A$:

 - 2 filter $p_1^{A\Rightarrow \text{Boolean}} \circ \text{filter } p_2^{A\Rightarrow \text{Boolean}} = \text{filter } (x \Rightarrow p_1(x) \land p_2(x))$
 - 3 filter $(x^A \Rightarrow \text{true}) = \text{id}$ where the identity is of type $F^A \Rightarrow F^A$
 - 4 filter $p \circ \text{fmap } f^{A \Rightarrow B} = \text{filter } p \circ \text{fmap } (f_{|p}) \text{ where } f_{|p} \text{ is the partial function defined as } x \Rightarrow \text{if } (p(x)) \text{ f(x) else } ???$
- Check the laws for Example I
 - "Orders" example with / without business rule (a) laws hold
 - see example code
- Examples of functors that are *not* filterable:
 - $ightharpoonup F^A$ defining filter in a special way for A = Int (breaks law 1)
 - "Orders" with additional business rule (b) breaks law 2 for some $p_{1,2}$
 - $F^A = 1 + A$ defining filter $(p)(x) \equiv 1 + 0$ breaks law 3
 - ► $F^A \equiv A$ must define filter $(p^{A \Rightarrow Boolean})(x^A) = x$, breaking law 4
 - ▶ $F^A \equiv A \times (1 + A)$ unable to remove the first A, breaking law 4
- Can define a type class Filterable, method withFilter

Worked examples I: Programming with filterables

- John can have up to 3 coupons, and Jill up to 2. All John's coupons must be valid on purchase day, while each of Jill's coupons is checked independently. Implement the filterable functor describing this setup.
- A server receives a sequence of requests. Each request must be authenticated. Once a non-authenticated request is found, no further requests are accepted. Is this setup described by a filterable functor?

For each of these functors, determine whether they are filterable, and if so, implement withFilter via a type class:

- final case class P[T](first: Option[T], second: Option[(T, T)])
- **3** $F^A = \text{NonEmptyList}^A$ defined recursively as $F^A = A + A \times F^A$
- $F^{Z,A} = Z + \text{Int} \times Z \times A \times A$ (with respect to the type parameter A)
- $F^{Z,A} = 1 + Z + Int \times Z \times A \times A$ (w.r.t. the type parameter A)
- **3** Show that $C^A = A \Rightarrow$ Int is a filterable *contrafunctor* (implement withFilter with the same type signature)

Exercises I

- Onfucius gives wisdom on each of the 7 days of the week. Sometimes the wise words are hard to remember. If Confucius forgets the wisdom he said on a given day, he also forgets what he said on all the previous days of the week. Is this setup described by a filterable functor?
- ② Define evenFilter(p) on an IndexedSeq[T] such that a value x: T is retained if p(x)=true and only if the sequence has an even number of elements y for which p(y)=false. Does this define a filterable functor?

Implement filter for these functors if possible (law checking optional):

- $F^A = Int + String \times A \times A \times A$
- final case class Q[A, Z](id: Long, user1: Option[(A, Z)], user2:
 Option[(A, Z)]) with respect to the type parameter A
- **5** $F^A = \text{MyTree}^A$ defined recursively as $F^A = 1 + A \times F^A \times F^A$
- final case class R[A](x: Int, y: Int, z: A, data: List[A]), where the standard functor List already has withFilter defined
- Show that $C^A = (\operatorname{Int} \Rightarrow A) \Rightarrow \operatorname{Int}$ is a filterable contrafunctor

Filterable functors: The laws in depth I

- Is there a more elegant formulation of the laws, easier to understand? ► Main intuition: When p(x) = false, replace x: A by 1: Unit in F[A] ★ (1) How to replace x by 1 in F[A] without breaking the types? ★ (2) How to transform the resulting type back to F[A]? ▶ We could do (1) if instead of the type F[A] we had F[Option[A]] * Map F^A to F^{1+A} using fmap (Some $A \Rightarrow 1+A$): $F^A \Rightarrow F^{1+A}$ ★ Now we can replace A by 1 in each item of type 1 + A▶ Doing (2) means defining a function flatten: F[Option[A]] ⇒ F[A] ★ standard library has flatten[T]: Seq[Option[T]] ⇒ Seq[T] Express filter through flatten (see example code): ★ Note: the Boolean type is isomorphic to 1+1 or Option[Unit] ★ filter $(p) = \text{fmap}(\text{optB}(p)) \circ \text{flatten}$, where we defined optB as def optB[T](p: T \Rightarrow Option[Unit]): T \Rightarrow Option[T] = $x \Rightarrow p(x).map(_ \Rightarrow x)$ Express flatten through filter (using law 4): def flatten[F[_],T](c: F[Option[T]]): F[T] = c.filter(_.nonEmpty).map(_.get) // for F = Seq, this would be c.collect { case Some(x) \Rightarrow x }
- Law 4 is satisfied automatically if filter is defined via flatten!

* Filterable functors: The laws in depth II

Showing that law 4 is satisfied automatically if filter is defined via flatten

- Denote $\psi^{A\Rightarrow 1+A} \equiv \text{optB}(p^{A\Rightarrow 1+1}) = x^A \Rightarrow \text{fmap}^{Opt}(\Rightarrow x)(p(x))$ ► Have property: $f^{T \Rightarrow A} \circ \text{optB}(p^{A \Rightarrow 1+1}) = \text{optB}(f \circ p) \circ \text{fmap}^{Opt} f$
- Law 4: fmap $\psi \circ$ flatten^{F,T} \circ fmap $f^{T \Rightarrow A} =$ fmap $\psi \circ$ flatten^{F,T} \circ fmap f_{ln}
 - ▶ We would like to interchange flatten and fmap here. Use Law 1?
- Reformulate Law 1 in terms of flatten:

$$\begin{split} \operatorname{fmap} f^{T\Rightarrow A} \circ \operatorname{fmap} \psi \circ \operatorname{flatten}^{F,A} &= \operatorname{filter} (f \circ p) \circ \operatorname{fmap} f \\ \operatorname{fmap} (f^{T\Rightarrow A} \circ \operatorname{optB}(p^{A\Rightarrow 1+A})) \circ \operatorname{flatten}^{F,A} &= \operatorname{fmap} (\operatorname{optB} (f \circ p)) \circ \operatorname{flatten}^{F,T} \circ \operatorname{fmap} f \\ \operatorname{fmap}^F (\operatorname{optB} (f \circ p)) \circ \operatorname{fmap}^F (\operatorname{fmap}^{\operatorname{Opt}} f) &= \operatorname{fmap}^F (\operatorname{optB} (f \circ p) \circ \operatorname{fmap}^{\operatorname{Opt}} f) \\ & \qquad \qquad [\operatorname{remove\ common\ prefix\ fmap\ } (\operatorname{optB} (f \circ p)) \circ \dots \text{\ from\ both\ sides}] \\ \operatorname{fmap\ } (\operatorname{fmap\ }^{\operatorname{Opt}} f^{T\Rightarrow A}) \circ \operatorname{flatten\ }^{F,A} &= \operatorname{flatten\ }^{F,T} \circ \operatorname{fmap\ } f \quad - \text{\ law\ } \mathbf{1} \text{\ for\ flatten\ } \end{split}$$

• We can now interchange flatten and fmap in flatten^F, I o fmap $f_{|n}^{T \Rightarrow A}$:

$$\begin{split} \mathsf{fmap}\,\psi \circ \mathsf{flatten}^{F,T} \circ \mathsf{fmap}\,f_{|_P} &= \mathsf{fmap}\,\psi \circ \mathsf{fmap}\,(\mathsf{fmap}^{\mathsf{Opt}}f_{|_P}) \circ \mathsf{flatten}^{F,A} \\ &= \mathsf{fmap}\,(\psi \circ \mathsf{fmap}^{\mathsf{Opt}}f) \circ \mathsf{flatten}^{F,A} = \mathsf{fmap}\,(\psi \circ \mathsf{fmap}^{\mathsf{Opt}}f_{|_P}) \circ \mathsf{flatten}^{F,A} \\ &\quad \psi \circ \mathsf{fmap}^{\mathsf{Opt}}f &= \psi \circ \mathsf{fmap}^{\mathsf{Opt}}f_{|_P} \quad - \ \mathsf{check} \ \mathsf{this} \ \mathsf{by} \ \mathsf{hand} \end{split}$$

Chapter 6: Functor-lifted computations I

Filterable functors: The laws in depth III

Maybe fmap o flatten is easier to handle than flatten? Let us define

$$\mathsf{fmapOpt}^{F,A,B}(f^{A\Rightarrow 1+B}): (A\Rightarrow 1+B)\Rightarrow F^A\Rightarrow F^B=\mathsf{fmap}\,f\circ\mathsf{flatten}^{F,B}$$

- fmapOpt and flatten are equivalent: flatten^{F,A} = fmapOpt^{F,1+A,A}(id^{$1+A\Rightarrow 1+A$})
- Express laws 1 3 in terms of fmapOpt and $\psi^{A\Rightarrow 1+A} \equiv \text{optB}(p)$
 - Express filter through fmapOpt: filter $(p) = \text{fmapOpt}^{F,A,A}(\psi)$
 - Consider the expression needed for law 2: $x \Rightarrow p_1(x)$ and $p_2(x)$
 - * Written in terms of ψ_1 and ψ_2 , this is $x^A \Rightarrow \psi_1(x)$.flatMap (ψ_2)
 - ▶ Similar to composition of functions, except the types are $A \Rightarrow 1 + B$
 - **★** This is a particular case of **Kleisli composition**; the general case: $\diamond_M : (A \Rightarrow M^B) \Rightarrow (B \Rightarrow M^C) \Rightarrow (A \Rightarrow M^C)$; we set $M^A \equiv 1 + A$
 - **★** The Kleisli identity function: $id_{\bigcirc \mathbf{Opt}}^{A\Rightarrow 1+A} \equiv x^A \Rightarrow \mathsf{Some}(x)$
 - ★ Kleisli composition is associative and respects the Kleisli identity!
- fmapOpt lifts a Kleisli function $f^{A\Rightarrow 1+B}$ into the functor F
- Only two laws are necessary for fmapOpt!
 - 1 Identity law (covers old law 3): fmapOpt $(id_{\diamond opt}^{A\Rightarrow 1+A}) = id^{F^A\Rightarrow F^A}$
 - **2 Composition law** (covers old laws 1 and 2): fmapOpt $(f^{A\Rightarrow 1+B}) \circ \text{fmapOpt} (g^{B\Rightarrow 1+C}) = \text{fmapOpt} (f \diamond_{\mathbf{Opt}} g)$
 - ► The two laws for fmapOpt are very similar to the two functor laws

* Filterable functors: The laws in depth IV

Showing that old laws 1-3 follow from the identity and composition laws for fmapOpt

Old law 3 is equivalent to the identity law for fmapOpt:

$$\mathsf{filter}(x^A \Rightarrow 0+1) = \mathsf{fmap}(x^A \Rightarrow 0+x) \circ \mathsf{flatten} = \mathsf{fmapOpt}(\mathsf{id}_{\diamond_{\mathbf{Opt}}}) = \mathsf{id}^{F^A \Rightarrow F^A}$$

- Derive old law 2: need to work with $\psi \equiv \text{optB}(p) : A \Rightarrow 1 + A$
 - ▶ The Boolean conjunction $x \Rightarrow p_1(x) \land p_2(x)$ corresponds to $\psi_1 \diamond_{\mathbf{Opt}} \psi_2$
 - ▶ Apply the composition law to Kleisli functions of types $A \Rightarrow 1 + A$:

$$\begin{split} & \text{filter}\,(p_1) \circ \text{filter}\,(p_2) = \text{fmapOpt}\,(\psi_1) \circ \text{fmapOpt}\,(\psi_2) \\ & = \text{fmapOpt}\,(\psi_1 \diamond_{\mathsf{Opt}} \psi_2) = \text{fmapOpt}\,(\mathsf{optB}\,(x \Rightarrow p_1(x) \land p_2(x))) \end{split}$$

- Derive old law 1: express filter through fmapOpt, so law 1 becomes
 - ► fmap $f \circ \text{fmapOpt}(\text{optB}(p)) = \text{fmapOpt}(\text{optB}(f \circ p)) \circ \text{fmap } f \text{eq. (*)}$
 - ▶ denote $k_f^{A\Rightarrow 1+A} = x^A \Rightarrow 0 + f(x)$; that is, $k_f = f \circ \mathrm{id}_{\diamond_{\mathrm{Opt}}}$; then we have fmapOpt $(k_f) = \mathrm{fmap}\,k_f \circ \mathrm{flatten} = \mathrm{fmap}\,f \circ \mathrm{fmap}\,\mathrm{id}_{\diamond_{\mathrm{Opt}}} \circ \mathrm{flatten} = \mathrm{fmap}\,f$
 - ▶ rewrite (*) as fmapOpt $(k_f \diamond_{\mathsf{Opt}} \mathsf{optB}(p)) = \mathsf{fmapOpt}(\mathsf{optB}(f \circ p) \diamond_{\mathsf{Opt}} k_f)$
 - ▶ it remains to show that $k_f \diamond_{\mathbf{Opt}} \mathsf{optB}(p) = \mathsf{optB}(f \circ p) \diamond_{\mathbf{Opt}} k_f$
 - use the properties $k_f \diamond_{\mathsf{Opt}} \psi = f \circ \psi$ and $\psi \diamond_{\mathsf{Opt}} k_f = \psi \circ \mathsf{fmap}^{\mathsf{Opt}} f$, and $f \circ \mathsf{optB}(p) = \mathsf{optB}(f \circ p) \circ \mathsf{fmap}^{\mathsf{Opt}} f$ (from slide 8)

Summary so far

- Filterable functors can be defined via filter, flatten, or fmapOpt
- All three are computationally equivalent but have different roles:
 - ► The easiest to use in program code is filter / withFilter
 - ► The easiest type signature to implement is flatten
 - ► The easiest to use for checking laws is fmapOpt
- The easiest way to derive the laws is to begin with simpler laws
- * The 2 laws for fmapOpt are functor laws with a Kleisli "twist"
 - Category theory accommodates this via a generalized definition of functors as liftings between "twisted" function types. Compare:
 - **★** fmap : $(A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$ ordinary container ("endofunctor")
 - ★ fmap $_{\diamond_M}$: $(A \Rightarrow M^B) \Rightarrow F^A \Rightarrow F^B$ lifting from Kleisli $_M$ -functions
 - **★** contrafmap : $(B \Rightarrow A) \Rightarrow F^A \Rightarrow F^B$ lifting from reversed functions
 - ★ traverse : $(A \Rightarrow L^B) \Rightarrow F^A \Rightarrow L^{F^B}$
 - * etc.
 - ▶ CT gives us an intuition: look for type signatures that look like "lifting"
 - ★ but CT is abstract, does not directly deliver a good formulation of laws

Structure of filterable functors

Intuition from flatten: reshuffle data in F^A after replacing some A's by 1

• "reshuffling" means reusing different parts of a disjunction

Construction of exponential-polynomial filterable functors

- $F^A = Z$ (constant functor) for any type Z (define fmapOpt f = id)
 - Note: $F^A = A$ (identity functor) is *not* filterable
- ② $F^A \equiv G^A \times H^A$ for any filterable functors G^A and H^A
- $F^A \equiv G^A + H^A$ for any filterable functors G^A and H^A
- $F^A \equiv G^{H^A}$ for any functor G^A and filterable functor H^A
- **5** $F^A \equiv 1 + A \times G^A$ for a filterable functor G^A
 - ▶ Note: *pointed* types P are isomorphic to 1 + Z for some type Z
 - **★** Example of non-trivial pointed type: $A \Rightarrow A$
 - **★** Example of non-pointed type: $A \Rightarrow B$ when A is different from B
 - ▶ So $F^A \equiv P + A \times G^A$ where P is a pointed type and G^A is filterable
 - ▶ Also have $F^A \equiv P + A \times A \times ... \times A \times G^A$ similarly
- **6** $F^A \equiv G^A + A \times F^A$ (recursive) for a filterable functor G^A
- $m{O}$ $F^A \equiv G^A \Rightarrow H^A$ if contrafunctor G^A and functor H^A both filterable
 - ▶ Note: the functor $F^A \equiv G^A \Rightarrow A$ is not filterable

* Worked examples II: Constructions of filterable functors I

- (2) The fmapOpt laws hold for $F^A \times G^A$ if they hold for F^A and G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_F $(f): F^A \Rightarrow F^B$ and fmapOpt_G $(f): G^A \Rightarrow G^B$
 - Define fmapOpt_{F×G} $f \equiv p^{F^A} \times q^{G^A} \Rightarrow \text{fmapOpt}_F(f)(p) \times \text{fmapOpt}_G(f)(q)$
 - Identity law: $f = id_{\diamond}$, so fmapOpt_F f = id and fmapOpt_G f = id
 - ▶ Hence we get fmapOpt_{F+G} $(f)(p \times q) = id(p) \times id(q) = p \times q$
 - Composition law:

$$\begin{split} &(\mathsf{fmapOpt}_{F \times G} \, f_1 \circ \mathsf{fmapOpt}_{F + G} \, f_2)(p \times q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_2) \, (\mathsf{fmapOpt}_F(f_1)(p) \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= (\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(p) \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2) \, (q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond f_2)(p) \times \mathsf{fmapOpt}_G(f_1 \diamond f_2)(q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_1 \diamond f_2)(p \times q) \end{split}$$

- Exactly the same proof as that for functor property for $F^A \times G^A$
 - ▶ this is because fmapOpt corresponds to a generalized functor
- New proofs are necessary only when using non-filterable functors
 - ▶ these are used in constructions 4 6

* Worked examples II: Constructions of filterable functors II

- (5) The fmapOpt laws hold for $F^A \equiv 1 + A \times G^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_G $(f): G^A \Rightarrow G^B$
 - Define fmapOpt_E $(f)(1 + a^A \times q^{G^A})$ by returning $0 + b \times \text{fmapOpt}_G(f)(q)$ if the argument is $0 + a \times q$ and f(a) = 0 + b, and returning 1 + 0 otherwise
 - Identity law: $f = id_{\diamond}$, so f(a) = 0 + a and fmapOpt_G f = id
 - ► Hence we get fmapOpt_E(id_⋄) $(1 + a \times q) = 1 + a \times q$
 - Composition law: need only to check for arguments $0 + a \times q$, and only when $f_1(a) = 0 + b$ and $f_2(b) = 0 + c$, in which case $(f_1 \diamond f_2)(a) = 0 + c$; then

$$\begin{split} & (\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(0 + a \times q) \\ &= \mathsf{fmapOpt}_F(f_2) \, (\mathsf{fmapOpt}_F(f_1)(0 + a \times q)) \\ &= \mathsf{fmapOpt}_F(f_2) \, (0 + b \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= 0 + c \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2)(q) \\ &= 0 + c \times \mathsf{fmapOpt}_G(f_1 \circ f_2)(q) \\ &= \mathsf{fmapOpt}_F(f_1 \circ f_2)(0 + a \times q) \end{split}$$

This is a "greedy filter": if f(a) is empty, deletes all G^A data

* Worked examples II: Constructions of filterable functors III

- (6) The fmapOpt laws hold for $F^A \equiv G^A + A \times F^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_G(f): $G^A \Rightarrow G^B$ and fmapOpt_f(f): $F^A \Rightarrow F^B$ (for use in recursive arguments as the inductive assumption)
 - Define fmapOpt_F $(f)(q^{G^A} + a^A \times p^{F^A})$ by returning $0 + \text{fmapOpt}'_F(f)(p)$ if f(a) = 1 + 0, and fmapOpt_G $(f)(q) + b \times \text{fmapOpt}'_{F}(f)(p)$ otherwise
 - Identity law: $f(a) = id_{\diamond}(a) \neq 1 + 0$, so fmapOpt_F $(id_{\diamond})(q + a \times p) = q + a \times p$
 - Composition law:
 - $(\operatorname{fmapOpt}_F(f_1) \circ \operatorname{fmapOpt}_F(f_2))(q + a \times p) = \operatorname{fmapOpt}_F(f_1 \circ f_2)(q + a \times p)$
 - For arguments q + 0, the laws for G^A hold; so assume arguments $0 + a \times p$. When $f_1(a) = 0 + b$ and $f_2(b) = 0 + c$, the proof of the previous example will go through. So we need to consider the two cases $f_1(a) = 1 + 0$ and $f_1(a) = 0 + b$, $f_2(b) = 1 + 0$
 - If $f_1(a) = 1 + 0$ then $(f_1 \diamond f_2)(a) = 1 + 0$; to show fmapOpt'_E (f_2) (fmapOpt'_E $(f_1)(p)$) = fmapOpt'_F $(f_1 \diamond f_2)(p)$, use the inductive assumption about fmapOpt'_F on p
 - If $f_1(a) = 0 + b$ and $f_2(b) = 1 + 0$ then $(f_1 \diamond f_2)(a) = 1 + 0$; to show $\mathsf{fmapOpt}_{\mathsf{F}}(f_2)(0+b\times\mathsf{fmapOpt}_{\mathsf{F}}'(f_1)(p)) = \mathsf{fmapOpt}_{\mathsf{F}}'(f_1\diamond f_2)(p), \text{ rewrite}$ $fmapOpt_{\mathcal{F}}(f_2)(0+b\times fmapOpt_{\mathcal{F}}'(f_1)(p)) = fmapOpt_{\mathcal{F}}'(f_2)(fmapOpt_{\mathcal{F}}'(f_1)(p))$ and use the inductive assumption about fmapOpt $_F'$ on p

This is a "list-like filter": if f(a) is empty, recurses into nested F^A data

Worked examples II: Constructions of filterable functors IV

Use known filterable constructions to show that

$$F^A \equiv (Int \times String) \Rightarrow (1 + Int \times A + A \times (1 + A) + (Int \Rightarrow 1 + A + A \times A \times String))$$
 is a filterable functor

- Instead of implementing Filterable and verifying laws by hand, we analyze the structure of this data type and use known constructions
- Define some auxiliary functors that are parts of the structure of F^A ,
 - $ightharpoonup R_1^A = (Int \times String) \Rightarrow A \text{ and } R_2^A = Int \Rightarrow A$
 - $G^A = 1 + \text{Int} \times A + A \times (1 + A)$ and $H^A = 1 + A + A \times A \times \text{String}$
- Now we can rewrite $F^A = R_1 [G^A + R_2 [H^A]]$
 - \triangleright G^A is filterable by construction 5 because it is of the form $G^A = 1 + A \times K^A$ with filterable functor $K^A = 1 + \text{Int} + A$
 - \triangleright K^A is of the form 1+A+X with constant type X, so it is filterable by constructions 1 and 3 with the Option functor 1 + A
 - ▶ H^A is filterable by construction 5 with $H^A = 1 + A \times (1 + A \times \text{String})$, while $1 + A \times String$ is filterable by constructions 5 and 1
- Constructions 3 and 4 show that $R_1 \left[G^A + R_2 \left[H^A \right] \right]$ is filterable Note that there are more than one way of implementing Filterable here

* Exercises II

- Implement a Filterable instance for type F[T] = G[H[T]] assuming that the functor H[T] already has a Filterable instance. Verify the laws rigorously.
- ② For type F[T] = Option[Int ⇒ Option[(T, T)]], implement a Filterable instance. Show that the filterable laws hold by using known filterable constructions (avoiding explicit proofs).
- Implement a Filterable instance for $F^A \equiv G^A + \operatorname{Int} \times A \times A \times F^A$ (recursive) for a filterable functor G^A . Verify the laws rigorously.
- **3** Show that $F^A = 1 + A \times G^A$ is in general *not* filterable if G^A is an arbitrary (non-filterable) functor; it is enough to give an example.