Oppg. 1

Investerings mulighet [mill. USD]

-
•

l	2	3	4	5	6
15	12	16	18	9	11
38	33	31	45	23	27

Budsjett: 100 mill. USD

Begnensninger:

- · 1,2 og 3,4 gjensidig utelulhende
- · 3,4 han ible startes uten 1 eller 2.
- a) La $x_i \in \{0, 13\}$, i = 1, ..., 6, shik at $x_i = 1$ densom investeringsmulighet i benyttes.

Onsher da à malisière profit == p^T X

slik at

$$X_3 + X_4 \leq X_1 + X_2$$

$$C^{T}X \leftrightarrow b \Rightarrow 38x_{1} + 33x_{2} + 39x_{3} + 45x_{4} + 23x_{5} + 27x_{6} \leq 100$$

b) Loser problemet med solver; Excel og får følgende løsning:

	A	В	С	D	E	F	G	Н	1	J	K
1											
2	Investering	1	2	3	4	5	6			Budsjett	100
3	Estimert profitt	15	12	16	18	9	11			Profitt	33
4	Kapitalbehov	38	33	39	45	23	27			Kostnad	83
5											
6	x	1	0	0	1	0	0				
7											
8	x1+x2	1									
9	x3+x4	1									
10											

Oppg. 2

Pris Tid Tre
Stor figur 50 NOK 2t 5 dm³
Liten figur 40 NOK 3t 2 dm³
Tid Tre

Budsjett: Tid Tre
20t 35 dm³

a) La X, vane antall store figurer og X2 antall små.

Mahsimere $z = 50x_1 + 40x_2$

slik at

X1, X2 helfall,

 $2x_1 + 3x_2 \leq 20$

 $\int X_1 + 2X_2 \leq 35$

Shisse butt over:

Optimal (osning: $X_1 = 0$, $X_2 = 2$, z = 380

Fall problem 3

Min
$$Z = S \times_1 + 6 \times_2 + 7 \times_3 + 8 \times_4 + 9 \times_5$$

S.E.2

$$-3 \times_1 + 2 \times_2 - 2 \times_3 + 2 \times_4 - 2 \times_5 \leq -2$$

$$+ \times_1 + 2 \times_2 - 3 \times_3 - 2 \times_4 - 2 \times_5 \leq -1$$

$$+ \times_1 + 2 \times_2 - 3 \times_3 - 2 \times_4 - 2 \times_5 \leq -1$$
(3)

Relaxed problem: UCX; &] \ i & 7. «, 5.

Solution ? $Z_{rel}^* = 6.0$, $x^* = [7/2, 0, 1/2, 0, 0]_{v}^{T}$

Banch-And-Board

Xxx = [9,0,9,0,0], X3=7] 240= 12 6 2 incompart X=[1,0,1,0,0]= in cumber t) dprinal salikions Winder 5 (1)}(p=X) X=[1,0,0,7,]=X 2 rel- 22 > Zall $\stackrel{\boldsymbol{\sim}}{\times}$ X2=1 \{(3) No'0'82'0'0] = 32 01= 5% 6 Xria \ \ X=[1,0,33,0,0] intersible 3 xc = 1933 =10, $(x_1 = 0)$ メッン X=[1,2/1,0,0] Zali 6

Zale= 12.

Oppgare 45

Min $Z = CT \times$ 5.6. $A \times = 5$ $X_{j} = 1$, j = 1, 2, $X_{j} = S$, $j \neq 1, 2$. $X_{j} = S$, $j \neq 1, 2$. $X_{j} = S$, $X_{j} \in S$, $X_{j} \in S$.

d) Hvis 8 3x2 + 2x4 = 15, mas x5+2x6=10.

Huis 5,20, => 5,20.

 $y_1 \in \{0,1\}$ $y_1 = \{0, S_1 \notin 0, 1, S_2 \ge 0.$

Telpass alphabers
$$M >> 0$$
,
 $S_1 - My_1 \leq \frac{1}{M}$, $S_1 < 0 \Rightarrow y = 0, 1$.
 $S_1 - My_1 \leq \frac{1}{M}$, $S_1 > 0 \Rightarrow y = 1$.

$$S_{1}-My_{1} \leq \frac{1}{M}$$
, $S_{1} > 0 = 7$ $y = 1$.
 $M(S_{1}-My_{1}) \leq 1$, if $S_{1} > \frac{1}{M}$, $y = 7$ $y = 1$.

$$M(S_1 - M S_1) = 1$$
, if $S_1 > \frac{1}{m}$, $Y = 1$, if $S < 0$, $Y = 0 = 1$.

And $S_2 + M(1 - Y_1) \ge 0$, $Y_1 = 1 = 1$, $S_2 \ge 0$.

 $S_2 - M Y_1 \ge -M$, $Y_2 = 0 = 1$, $S_2 \ge -M$,

 $S_3 - M Y_1 \ge -M$, $S_4 = 0 = 1$, $S_4 \ge -M$,

 $S_4 - M Y_1 \ge -M$, $S_4 = 0$, $S_4 \ge -M$,

Want for avoid the feasible point

 $S_4 - M Y_1 = 0$, $S_4 = 0$, $S_$

 $S_1 = 0, \ Y_1 = 0, \ MY_1 - S_1 \le 1 %$

Want to avoid the feasible point
$$S_1=0$$
, $Y_1=0$, $MY_1-S_1 \le 1$?

So the $S_1=0$ $MY_1+S_1 \ge 1$, $S_1=0 \implies y_1=1$,

Nev I Lea E Check with a binary varieble whether er not one of the Ewo constraints are satisfied. and then we impose logical (endikins on those binary wars. 1 = 3x2 + 2x4 = 15 (4x) Eleno x + 1 x 6 = 10, (24)

 $3x_2+2x_4-My_1\leq 15$, $9=\int_0^{\infty} \int_0^{\infty} \int_0^$

on y₁, y₂.

Either & $y_1 = 0$ and $y_2 = 0$,

or $y_1 = 7$, $y_2 = 0, 7$. $y_2 \neq y_1$ In total $y_2 = 0$,

Ettend the Mil model hy $y_2 = 0$

 $\tilde{A}_{x} = \frac{3x_{2} + 2x_{4} - My_{1} + S_{1} = (S_{1})}{X_{5} + 2x_{6} - My_{2} + 2} = 10,$ $Y_{2} - Y_{1} = 0$

 $y_1, y_2 \in \{0, 7\}, \quad S_1, S_2 \geq 0.$

b) Add 10x1x7 to the objective for for, whilst keeping the MIP madel. Find $Z_q = \chi_2 \cdot \chi_7 \quad Z_0 \quad \chi_2 \quad \text{In the years}$ Have to makiply something, how to do it quadratically? Max $2 = C^{7}x + 102_{1}$ If x2=7, 21=X7, allerwise 21=0. And $27 \leq MX_2$, $(M > Max X_7)$ $21 - MX_2 \leq 0$, \iiint

In the 3

Max 7 = CTX + 1021, $5, \epsilon.$ $A_x = b$

 $-M(1-x_{2})+2_{1}-x_{7} \leq 0,$ $+M(7-x_{2})+2_{7}-x_{7} \geq 0,$ $2_{7}-Mx_{1} \leq 0,$ $2 \leq (5-x_{2})$

 $Z_1 \in \{0, ..., 5\},$

 $() \qquad \chi_{s} = 0 \quad \text{old} \quad \chi_{s} = 3.$

X8 ER, it he heltall.

 $\times_{8} = 3$, $\times_{8} - S_{3} = 3$, $S_{3} \in \mathbb{R}$,

use binary variable to the ck if Sz 20:

Enforce that x = 0 if y = 0:

 $\times_{g} \leq My_{3}$ $\times_{g} -My_{3} \leq 0$ $\times_{g} -My_{3} \leq 0$ $\times_{g} -My_{3} \leq 0$ $\times_{g} -My_{3} \leq 0$