

Learning in a Small World

B. Ravindran

Reconfigurable and Intelligent Systems Engineering Group

Department of Computer Science and Engineering

Indian Institute of Technology Madras

Overview

Reinforcement Learning

- Stochastic optimization to solve sequential decision problems
- Hierarchical Decomposition to speed up solution
 - Reuse solutions
 - Reduce number of decisions needed
- What are the appropriate "sub-problems" to learn?
 - Past work uses ideas from social network analysis, e.g. betweenness

Small World Networks

- Interested in distributed navigation property
- "Long range links" inversely proportional to some power of span
 - Depends on order of lattice

This Work

- Solutions to sub-problems are equivalent to long-range links
- Create small-world decision problems
- Efficient Learning

What is Reinforcement Learning?

- Learning about stimuli and actions based <u>on</u> rewards and punishments alone.
- No detailed supervision available
- Trial-and-error learning
- Delayed rewards
- Sequence of actions required to obtain reward
- Associative learning required
 - Need to associate actions to states
- Learn about policies not just actions
- Typically in a stochastic world

Running a Maze Dayan and Abbott

Running a Stochastic Maze Dayan and Abbott

The Agent Learns a Policy

Policy at step t, π_t :

a mapping from states to action probabilities $\pi_t(s, a) = \text{probability that } a_t = a \text{ when } s_t = s$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

The Markov Property

- "the state" at step t, means whatever information is available to the agent at step t about its environment.
- The state can include immediate "sensations," highly processed sensations, and structures built up over time from sequences of sensations.
- Ideally, a state should summarize past sensations so as to retain all "essential" information, i.e., it should have the Markov Property:

$$\Pr\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\} =$$

$$\Pr\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t\}$$

for all s', r, and histories s_t , a_t , r_t , s_{t-1} , a_{t-1} , ..., r_1 , s_0 , a_0 .

Markov Decision Processes

- If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- If state and action sets are finite, it is a **finite MDP**.
- To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics" defined by transition probabilities:

$$P_{ss'}^a = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\} \text{ for all } s, s' \in S, a \in A(s).$$

– reward expectations:

$$R_{ss'}^a = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$$
 for all $s, s' \in S, a \in A(s)$.

Markov Decision Processes

- MDP, M, is the tuple: $M = \langle S, A, \Psi, P, R \rangle$
 - S : set of states.
 - -A: set of actions.
 - $-\Psi\subseteq S\times A$: set of admissible state-action pairs.
 - $P: \Psi \times S \rightarrow [0,1]$: probability of transition.
 - $-R: \Psi \rightarrow \Re$: expected reward.
- Policy $\pi: S \to A$ (can be stochastic)
- Maximize total expected reward

Example

$$M = \langle S, A, \Psi, P, R \rangle$$

Value Functions

 The value of a state (action) is the expected long-term reward starting from that state (action); depends on the agent's policy:

State - value function for policy π :

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\}$$

Action - value function for policy π :

$$Q^{\pi}(s,a) = E_{\pi} \left\{ R_{t} \mid s_{t} = s, \ a_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, \ a_{t} = a \right\}$$

Optimal Value Functions

For finite MDPs, policies can be partially ordered:

$$\pi \ge \pi'$$
 if and only if $V^{\pi}(s) \ge V^{\pi'}(s)$ for all $s \in S$

- There is always at least one (and possibly many) policies that is better than or equal to all the others. This is an optimal policy. We denote them all π^* .
- Optimal policies share the same optimal statevalue function:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
 for all $s \in S$

Example

$$M = \langle S, A, \Psi, P, R \rangle$$

Bellman Optimality Equation for V*

$$V^{*}(s) = \max_{a \in A(s)} E \left\{ r_{t+1} + \gamma V^{*}(s_{t+1}) \middle| s_{t} = s, a_{t} = a \right\}$$
$$= \max_{a \in A(s)} \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{*}(s') \right]$$

 V^* is the unique solution of this system of nonlinear equations.

Similar results applicable to Q*

Solution Methods

- Temporal Difference Methods
 - $-TD(\lambda)$
 - Q-learning
 - SARSA
 - Actor-Critic
- Policy Search
 - Policy Gradient Methods
 - Evolutionary algorithms
- Stochastic Dynamic Programming

Sub-goals based decomposition

- Task is to collect all objects in the world
- 5 sub-tasks one for each room.

Hierarchical Reinforcement Learning

Options (Sutton, Precup, & Singh, 1999):

An option is a triple $o = \langle I, \pi_o, \beta \rangle$

- $I \subseteq S$ is the set of states in which o may be started
- π_o : $\Psi \to [0,1]$ is the (stochastic) policy followed during o
- $\beta: S \to [0,1]$ is the probability of terminating in each state

Generalising over Tasks

• Each task has a different reward structure in

the state space

Generalising over Tasks

• Each task has a different reward structure in

the state space

 Options provide a model for subtasks.

Discovering skills

- Bottlenecks [McGovern & Barto, Stolle & Precup, etc.]
- Graph partitions [Mannor et al., Mathew et al.]
- Betweenness [Simsek & Barto]
- Frequency of changes [Jonsson & Barto, Hengst]
- Bisimulation metrics [Castro & Precup]
- Our Hypothesis: Choose options so that navigating greedily using the Q function would be more effective
 - Turn the MDP into a "small" world

- A network model where every node is reachable in O(log(n)) hops from a node.
- More importantly, the O(log(n)) path can be discovered using a decentralised algorithm.
- Stanley Milgram's Experiment

- A network model where every node is reachable in O(log(n)) hops from a node.
- More importantly, the O(log(n)) path can be discovered using a decentralised algorithm.
- Stanley Milgram's Experiment
- Kleinberg's key insight: Power-law distributed neighbours

- A r-dimensional lattice graph
- Edges distributed inversely proportional to distance

- A r-dimensional lattice graph
- Edges distributed inversely proportional to distance
- A greedy agent will move from one neighbourhood to another in log(n) time

Small Worlds in RL

Construct "path options" that take an agent from state

s to s'.

• s' is chosen according to the power-law.

- Which distance based?
- Value and state-space distance are related

$$k_1 ||u - v|| - c_1 \le ||u - v||_V \le k_2 ||u - v||$$

Small World Options

Small Worlds in RL

- Many options required; how do we effectively learn them?
 - Note: We add only one extra option per state
- Key Insight: The important point is to move to an exponentially smaller neighbourhood of target.
 - Use cheap, possibly inaccurate options
- Algorithm:
 - Train an agent on T different tasks.
 - For each task, save path options using two states distributed according to the power-law, and following the policy gradient.
- Does not require complete knowledge of the MDP, nor does it need to build a model

Algorithm

Algorithm 2 QOptions: Options from a Q-Value Function

```
Require: Q, r, n
 1: O \leftarrow \emptyset
 2: \pi \leftarrow greedy policy from Q
 3: for all s in S do
 4: Choose an s' according to P_r
 5: if Q(s', \pi(s')) > Q(s, \pi(s)) then
         O \leftarrow O \cup (\{s\}, \pi, \{s'\} \cup \{t \mid Q(s', \pi(s')) < \})
 6:
         Q(t,\pi(t))\}\rangle
       end if
 8: end for s in S
 9: return A random subset of n options from O
```


Experiments

- 1. No options
- 2. 200 options generated uniformly randomly
- 3. Betweenness based options
- 4. 200 small world options
- 5. Betweenness + Small World

Experimental Results

Rooms: Cumulative Return with 200 options

Experimental Results

	Arbitrary Navigation	Rooms	Taxi
None	-31.82	-1.27	-16.90
Random	-31.23	-10.76	-18.83
Betweenness	-18.28	-8.94	80.48
Small World	-14.24 [r = 4]	8.54 [r = 2]	0.66 [r = 0.75]

R			G
Y		В	

Learning on a budget

- Differing amounts of effort required to learn options
- Fewer betweenness options than small world options
- Equalize budget for both settings
 - -10^6 epochs
 - -10^7 epochs
 - Optimal solutions
- Recall: It is sufficient if the small world option "hops" to closer region

Experimental Results

Rooms: Options Learnt on a Budget

Conclusions

- A new option generation scheme with theoretically motivated generalisation properties.
- An efficient algorithm to learn "small world" options solely from experience on a few tasks.
- Competitive performance on standard domains

Future Work

- Extending small world options to continuous domains
- Experiments on more diverse domains
- What factors affect the power-law exponent r?
- Adding options online
- Exploring implications on learning bounds

Rooms: r vs. Cumulative Return

Questions?

http://www.cse.iitm.ac.in/~ravi