3. If there are at least two different minimum spanning trees in a connected weighted graph and the weight of the edges in this graph are different, then we can write two different minimum spanning trees T_1 , T_2 as $T_1 = \{e_1, e_2, ..., e_n\}$, $T_2 = \{e_1', e_2', ..., e_n'\}$. And let the weights of edges in T_1 satisfy $w(e_i) < w(e_j)$ iff i < j, let the weights of edges in T_2 satisfy $w(e_i') < w(e_j')$ iff i < j, iff $w(e_p)$ represents the weight of edge e_p . Because T_1 and T_2 are different, there exists k such that $e_k \neq e_k'$, and write the least integer k as t. Assume $w(e_t) < w(e_t')$, then e_t will not belong to T_2 . Since T_2 is a tree, when we add e_t to T_2 , there will be a circuit which has e_t as one of its edges. And it's obvious that there are some edges not in the set $\{e_1', ..., e_{t-1}', e_t\}$ in this circuit; otherwise, the circuit will in T_1 , too, which contradict that T_1 is a tree. Then delete any one edge that not in the set $\{e_1', ..., e_{t-1}', e_t\}$ from $T_2 + e_t$. After this process of adding an edge and deleting an edge, the new graph is still a tree, and write it as T_2' . And because the weight of the edge we delete is more than the weight of e_t , so the total weight of e_t is less than the total weight of e_t . It causes a contradiction, because in this assumption we have found a new spanning tree whose total weight is less than the weight of the edges are all different.