$\ensuremath{^{*}}$ Risk factors or causes of frailty among CKD patients.

	Effect (descriptions)	Risk Difference	Frailty	Sample	CKD Severity	Reference
			Assessment	Size		
Biological						
Cardiovascular	Hypertension*	RR 1.6 (1.26-	Fried	205	CKD stage 5D	1*
		2.04)	Phenotypes		(hemodialysis)	
	Peripheral vascular disease*	RR 1.58 (1.34-	Fried	205	CKD stage 5D	1*
		1.8)	Phenotypes		(hemodialysis)	
	Left ventricular dysfunction*	RR 1.18 (1.03-	Fried	205	CKD stage 5D	1*
		1.36)	Phenotypes		(hemodialysis)	
	Endothelial dysfunction	r= -0.367 (p=	Fried	61	CKD stages 3-5	2
		0.004)	Phenotypes			
		OR 3.86 (1.00-				
		14.88)				
Cerebrovascular	Cerebrovascular Accident	RR 1.34 (1.19-	Fried	205	CKD stage 5D	1*
		1.5)	Phenotypes		(hemodialysis)	
Pulmonary	COPD	OR 1.68 (1.16-	Fried	10256	CKD stages 1-5	3
		2.45)	Phenotypes			
Immunological	Inflammatory					
	IL-6*	Worse frailty	Fried	762	CKD stage 5D	4*
			Phenotypes		(hemodialysis)	
	CRP	After	Fried	5888	Chronic kidney	5

	Fibrinogen	adjustment, OR	Phenotypes		insufficiency,	
		1.76 (1.28-2.41)			serum creatinine	
		to 1.50 (1.07-			≥1.3mg/dL	
		2.09)				
Endocrinologic/	Diabetes	Frailty scores	Fried	762	CKD stage 5D	4*
Metabolic		+0.7 points per	Phenotypes		(hemodialysis)	
		year				
		OR 1.68 (1.16-	Fried	10256	CKD stages 1-5	3
		2.45)	Phenotypes			
	Obesity (IMC ≥ 30 kg/m²)	OR 6.63 (1.16-	Fried	61	CKD stages 3-5	2
		36.77)	Phenotypes			
	Higher parathyroid hormones	r= 0.30 (p=	Fried	61	CKD stages 3-5	2
	(PTH)	0.01)	Phenotypes			
Body	Higher fat mass	r= 0.25 (p=	Fried	61	CKD stages 3-5	2
Composition		0.04)	Phenotypes			
Cancer	Cancer	OR 1.89 (1.19-	Fried	10256	CKD stages 1-5	3
		2.99)	Phenotypes			
Arthritis	Arthritis	OR 3.34 (2.08-	Fried	10256	CKD stages 1-5	3
		5.38)	Phenotypes			
Laboratory Data	eGFR (mL/min/1.72m^2)					

	eGFRcys <30 eGFRcys 30-44 eGFRcys >60	Frailty prevalence 2.8 Frailty prevalence 2.1 Referent	Fried Phenotypes	336	CKD stages 1-4	6*
	Serum Albumin Concentrations (g/dL)	Frailty scores -1.1 points per g/dL	Fried Phenotypes	762	CKD stage 5D (hemodialysis)	4*
	Serum Creatinine <4 mg/dL*	RR 1.46 (1.22- 1.71)	Fried Phenotypes	205	CKD stage 5D (hemodialysis)	1*
	Testosterone, per 50% lower free testosterone*		Fried Phenotypes	440	CKD stage 5D (hemodialysis),	7*
	being frail	OR 1.40 (1.05- 1.53)			men	
	becoming frail over 12 months	OR 1.40 (1.07- 1.73)				
	Hemoglobin	Adjusted, OR	Fried	5888	Chronic kidney	5
	LDL, HDL	1.76 (1.28-2.41) to 1.50 (1.07- 2.09)	Phenotypes		insufficiency, serum creatinine ≥1.3mg/dL	
Lifestyle	Smoking*	RR 1.18 (1.04-	Fried	205	CKD stage 5D	1*

		1.34)	Phenotypes		(hemodialysis)	
Ethnicity	Hispanic*	Frailty scores	Fried	762	CKD stage 5D	4*
		+0.6 points per	Phenotypes		(hemodialysis)	
		year				

Bibliography

- 1. YadlaM, JohnJ, MummadiM. A study of clinical assessment of frailty in patients on maintenance hemodialysis supported by cashless government scheme. *Saudi J Kidney Dis Transplant*. 2017. doi:10.4103/1319-2442.198102
- 2. MansurHN. Fragilidade na doença renal crônica: prevalência e fatores associados. 2012.
- 3. Wilhelm-LeenER, HallYN, MKT, ChertowGM. Frailty and chronic kidney disease: the Third National Health and Nutrition Evaluation Survey. *Am J Med*. 2009;122(7):664-71 e2. doi:10.1016/j.amjmed.2009.01.026
- 4. JohansenKL, DalrympleLS, DelgadoC, et al. Factors Associated with Frailty and Its Trajectory among Patients on Hemodialysis. *Clin J Am Soc Nephrol*. 2017;12(7):1100-1108. doi:10.2215/CJN.12131116
- 5. ShlipakMG, Stehman-BreenC, FriedLF, et al. The Presence of Frailty in Elderly Persons with Chronic Renal Insufficiency. *Am J Kidney Dis*. 2004;43(5):861-867. doi:10.1053/j.ajkd.2003.12.049
- 6. RoshanravanB, KhatriM, Robinson-CohenC, et al. A prospective study of frailty in nephrology-referred patients with CKD. *Am J Kidney Dis*. 2012;60(6):912-921. doi:10.1053/j.ajkd.2012.05.017
- 7. ChiangJM, KaysenGA, SegalM, ChertowGM, DelgadoC, JohansenKL. Low testosterone is associated with frailty, muscle wasting and physical dysfunction among men receiving hemodialysis: a longitudinal analysis. *Nephrol Dial Transplant*. 2018. doi:10.1093/ndt/gfy252

* Risk factors or causes of frailty among CKD patients.

	Effect (desci	riptions)	Prevalence	CKD Severity	Frailty Assessment	Sample Size	Reference
Biological							
Cardiovascular	Heart Failur	e	30% vs 12%	CKD stages 1-4	Fried	336	(Roshanravan
	Angina				Phenotypes		et al., 2012)
			34% vs. 22%	CKD stages 1-4	Fried	336	(Roshanravan
					Phenotypes		et al., 2012)
Cerebrovascular	Cerebrovascular Disease Prevalence		26.4 vs. 12.0	ESRD	Fried	324	(McAdams-
	(%)	(%)			Phenotypes		Demarco, Tan,
							et al., 2015)
Neurological	Brain Wave		F vs. NF	ESRD, under	Simple FRAIL	46	(Chao, Lai,
		Global DAR	283 ± 679 vs.	chronic dialysis	scale (SFS)		Tsai, Yang,
			2971 ± 4859				&Huang,
		DARs (left frontal)	135 ± 250 vs.				2017)
			3073 ± 4702				
		DAR (left TO)	197 ± 318 vs.				
	DAR (central)		3708 ± 6398				
			55 ± 96 vs.				
			1773 ± 3262				
		DAR (right TO)	187 ± 261 vs.				
			4400 ± 7763				

		Global DTABR	191 ± 469 vs.				
		Global B IN BIK	1781 ± 2793				
		DTABR (left frontal)	86 ± 158 vs.	_			
		DIADR (ICIT Hontal)	1680 ± 2388				
		DTABR (left TO)	130 ± 210 vs.				
		DIABR (IEIL 10)					
			1884 ± 2828	_			
		DTABR (central)	39 ± 65 vs.				
			1132 ± 1957				
		DTABR (right TO)	126 ± 178 vs.				
			2960 ± 5271				
Cognitive	Mini-Menta	l State Examination		Elderly, ≥65y/o	Edmonton	137	(Fabrício-
	(MMSE)				Frail Scale		Wehbe et al.,
		Spearman's	-0.607		(EFS)		2009)
		correlation coefficient	(p<0.01)				
		of EFS scores with					
		gross MMSE scores					
	Executive Fu	unction	F vs. NF at				
			cohort entry				
		Trail Making Tests A	+12.08	ESRD	Fried	324	(McAdams-
		(TMTA) scores			Phenotypes		Demarco, Tan,
							et al., 2015)
		Trail Making Tests B	+33.15	ESRD	Fried	324	(McAdams-

	(TMTB) scores			Phenotypes		Demarco, Tan,
			0. 0.4 0.55		64/	et al., 2015)
Microbiota	Gut Microbiota Composition		Stage 3b-4, eGFR	Fried	64 (and	(Margiotta et
	Malnutrition-	7.6 vs. 3.9	15-45ml/min	Phenotype	15	al., 2018)
	Inflammation-Score			score	control	
	(MIS)				subjects)	
	Abundance of	Directly				
	unclassified	proportional				
	Mogibacteriaceae	to MIS				
	and Oscillospira					
	Abundance of	Inversely				
	Akkermansia,	proportional				
	Ruminococcus, and	to MIS				
	Eubacterium					
	Bacterial Abundance	↑				
	of some genera					
	(Mogibacteriacee,					
	Coriobacteriacee,					
	Eggerthella, Erwinia,					
	Coprobacillus,					
	Anaerotruncus, etc)					
Immunological	Mycophenolate mofetil (MMF) dose	F vs. NF	CKD stage 5T	Fried	525	(McAdams-

	reduction (I	MDR)			Phenotypes		Demarco, Law,
		1 year since KT (%)	44 vs 40				et al., 2015)
		2 years since KT (%)	54 vs. 45				
		3 years since KT (%)	67 vs. 51				
	Viral infecti	on	F vs. NF				
		HCV (n=37)	36 vs. 1	CKD stage 5D	Fried	205	(Yadla, John,
				(hemodialysis)	Phenotypes		&Mummadi,
							2017)
Functional	Disability		F vs. NF	CKD stages 1-4	Fried	336	(Roshanravan
Status		At least one disability	15% vs. 5%		Phenotypes		et al., 2012)
		in activities of daily					
		Living (ADLs)					
		At least one disability	60% vs. 28%				
		in instrumental					
		activities of daily living					
		(IADLs)					
		At least one disability	40% vs. 18%				
		in mobility tasks					
Endocrinologic/	Diabetes		F vs. NF				
Metabolic		Prevalence	64% vs. 49%	CKD stages 1-4	Fried	336	(Roshanravan
					Phenotypes		et al., 2012)

	Obesity		F vs. NF				
		Prevalence	64% vs. 50%	CKD stages 1-4	Fried Phenotypes	336	(Roshanravan et al., 2012)
		Prevalence	51.8% vs. 23.9%	ESRD	Fried Phenotypes	324	(McAdams- Demarco, Tan,
		BMI based on dry weight	31.5 vs. 27.6				et al., 2015)
Body	Appendicular	•					
Composition		Appendicular skeletal muscle mass index (ASMI)	6.8 vs. 7.7	CKD stage 1-5	Edmonton Frail Scale (EFS)	41	(Adame Perez, Senior, Field, Jindal, &Mager, 2018)
		Higher appendicular fat percentage (for left, right lower and left, right upper extremities, respectively)	SFS scores				
		Left lower extremity	β = 0.34; t = 2.32; p = 0.03	ESRD	Simple FRAIL scale	44	(Chao, Chan, &Huang,

	Right lower	β = 0.3; t =				2017)
	extremity	2.05; p =				
		0.048				
	Left upper	β = 0.37; t =				
	extremity	2.66; p = 0.01				
	Right upper	β = 0.43; t =				
	extremity	3.09; p =				
		<0.01				
	Higher appendicular	Frail/Prefrail				
	fat percentage (for	vs. Nonfrail				
	left, right lower and					
	left, right upper					
	extremities,					
	respectively)					
	Left lower	β = 0.33; t =	ESRD	self- report	44	(Chao, Chan,
	extremity	2.31; p = 0.03		instrument		et al., 2017)
	Right lower	β = 0.32; t =		evaluating		
	extremity	2.28; p = 0.03		five		
	Right upper	β = 0.33; t =		dimensions of		
	extremity	2.35; p = 0.03		frailty		
				(fatigue,		
				resistance,		

					ambulation, illnesses, and weight loss)		
	Lower lean m	nass					
			F/PF vs. NF				
		Whole body (kg)	34.7 vs. 43.1	ESRD	Simple FRAIL	44	(Chao, Chan,
		Cephalic area (g)	3059 vs. 3288		scale		et al., 2017)
		Trunk area (kg)	17.4 vs. 22.1				
		Right upper limb (g)	1831 vs. 2493				
		Left upper limb (g)	1869 vs. 2515				
		Right lower limb (g)	4920 vs. 6114				
		Left lower limb (g)	4650 vs. 6349				
			F vs. NF				
		lean body mass (i.e.	57.1%	CKD stage 1-5	Edmonton	41	(Adame Perez
		sarcopenia) (in frail vs.	vs .14.7%		Frail Scale		et al., 2018)
		nonfrail)			(EFS)		
Laboratory Data	eGFR (mL/mi	n/1.72m^2)	18 vs. 50	CKD stage 1-5	Edmonton	41	(Adame Perez
					Frail Scale		et al., 2018)
					(EFS)		
		eGFRcys <30	Frailty	CKD stages 1-4	Fried	336	(Roshanravan
			prevalence		Phenotypes		et al., 2012)*
			2.8				

			eGFRcys 30-44 eGFRcys >60	Frailty prevalence 2.1 Referent				
		Albumin (g/L		38 vs. 41	CKD stage 1-5	Edmonton Frail Scale	41	(Adame Perez et al., 2018)
		Calcium (mm		2.24 vs. 2.36	- -	(EFS)		
		Creatinine (u	mol/L)	299 vs. 115				
	Miscellaneous	Dialysis clear	ance rate	↑	ESRD, under chronic dialysis	Simple FRAIL scale (SFS)	46	(Chao, Lai, et al., 2017)
Ps	ychological							
	Mood	Mood Chang	e	Negative	CKD stage 5D	Edmonton	N/A	(DeSouza
				change	(hemodialysis)	Frail Scale		Orlandi
						(EFS)		&Gesualdo, 2014)
	Mental Health							
	Anxiety	Hospital Anxi Scale (HADS)	iety and Depression	<u>Women</u> : ↑ in global,	ESRD, under online-	N/A	97	(Sales et al., 2017)
				psychological, social frailty Men: 1 in	haemodiafiltration (OL-HDF)			

			Physical frailty				
	Depression	Hospital Anxiety and Depression	<u>Men</u> ↑ in	ESRD, under	N/A	97	(Sales et al.,
		Scale (HADS)	global,	online-			2017)
			psychological,	haemodiafiltration			
			physical frailty	(OL-HDF)			
		Incidence (%) (Self-reported Major	83 vs. 6	CKD stage 1-5	Edmonton	41	(Adame Perez
		Depression Inventory)			Frail Scale		et al., 2018)
					(EFS)		
M	1ental	Post-KT delirium	9.0% vs. 3.9%	CKD stage 5T	Fried	893	(Haugen et al.,
Fι	unction				Phenotypes		2018)
Soci	ological						
Is	olation						
In	nteraction	Interaction with family	Good				(Moffatt,
							Moorhouse,
							Mallery,
							Landry,
							&Tennankore,
							2018)
Phys	sical activity	Minnesota Leisure Time Activity	95 vs. 735	CKD stage 5D	Fried	68	(Johansen,
		(LTA)	(p<0.001)	(hemodialysis)	Phenotypes		Painter,
		Low Physical Activity Questionnaire	280 vs. 798				Delgado,
		(LoPAQ)	(p=0.003)				&Doyle, 2015)

	Sitting (hours	s/day)	6.5 vs. 5				
			(p=0.04)				
Quality of Life	HRQoL						
		SF-36					
		Scores in physical	\downarrow	CKD stage 1-5	Edmonton	41	(Adame Perez
		functioning, blood			Frail Scale		et al., 2018)
		pressure, role			(EFS)		
		physical, and					
		physical component					
		summary domains					
	Kidney Disea	se Quality of Life	F vs. NF				
	(KDQoL)						
		Physical health	33.7 vs. 40.7	ESRD CKD stage 5D	Fried	151	(Noori,
		Kidney disease effects	51.6 vs. 66.8	(conventional	Phenotypes		Sharma
		, , , , , , , , , , , , , , , , , , , ,		hemodialysis)			Parpia,
							Lakhani,
							Janes,
							&Goldstein,
							2018)
	Falls (times)		115 vs. 12	CKD stage 5D	Fried Frailty	205	(Yadla et al.,
				(hemodialysis)	Phenotypes		2017)
Independence	Functional In	dependence Measure		Elderly, ≥65y/o	Edmonton	137	(Fabrício-

	(FIM)				Frail Scale		Wehbe et al.,
	Spearman's	Frailty diagnosis with	-0.703		(EFS)		2009)
	correlation	global FIM	(p<0.001)				
	coefficient	Frailty diagnosis with	-0.714				
		motor FIM	(p<0.001)				
		Frailty diagnosis with	-0.575				
		cognitive FIM	(p<0.001)				
		EFS scores with gross	-0.53 (p<0.01)				
		FIM					
Health-care	Hospitalizatio	on					
utilization		Cumulative number of	↑	CKD stage 1-5	Edmonton	41	(Adame Perez
		inpatient health-care			Frail Scale		et al., 2018)
		visits			(EFS)		
		Cumulative number of					
		emergency health-					
		care visits					
		Cumulative number of					
		total health-care visits					
		>3 times (n=141)	127 vs. 14	CKD stage 5D	Fried Frailty	205	(Yadla et al.,
		1-2 times (n=64)	40 vs. 24	(hemodialysis)	Phenotypes		2017)
	Early Hospita	l Readmission (EHR) (%)	45.8 vs. 28.0				

Bibliography

- Adame Perez, S. I., Senior, P. A., Field, C. J., Jindal, K., & Mager, D. R. (2018). Frailty, Health-Related Quality of Life, Cognition, Depression, Vitamin D and Health-Care Utilization in an Ambulatory Adult Population with Type 1 or Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Cross-Sectional Analysis. *Canadian Journal of Diabetes*. doi:10.1016/j.jcjd.2018.06.001
- Chao, C.-T., Chan, D.-C., & Huang, J.-W. (2017, April). Frail Phenotype Might Be Associated With Higher Appendicular but Not Truncal Fat Among End-Stage Renal Disease Patients. *Journal of Pain and Symptom Management*. United States.
- Chao, C.-T., Lai, H.-J., Tsai, H.-B., Yang, S.-Y., & Huang, J.-W. (2017). Frail phenotype is associated with distinct quantitative electroencephalographic findings among end-stage renal disease patients: an observational study. *BMC Geriatrics*, *17*, 277.
- DeSouza Orlandi, F., &Gesualdo, G. D. (2014). Assessment of the frailty level of elderly people with chronic kidney disease undergoing hemodialysis. *ACTA Paulista de Enfermagem*, *27*, 29–34.
- Fabrício-Wehbe, S. C. C., Schiaveto, F. V., Vendrusculo, T. R. P., Haas, V. J., Dantas, R. A. S., &Rodrigues, R. A. P. (2009). Cross-cultural adaptation and validity of the "Edmonton Frail Scale EFS" in a Brazilian elderly sample. *Revista Latino-Americana de Enfermagem*, 17, 1043–1049.
- Haugen, C. E., Mountford, A., Warsame, F., Berkowitz, R., Bae, S., Thomas, A., ...McAdams-DeMarco, M. (2018). Incidence, Risk Factors, and Sequelae of Post-kidney Transplant Delirium. *Journal of the American Society of Nephrology: JASN*, 29, 1752–1759.
- Johansen, K. L., Painter, P., Delgado, C., &Doyle, J. (2015). Characterization of physical activity and sitting time among patients on hemodialysis using a new physical activity instrument. *Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation*, 25, 25–30.
- Margiotta, E., Caldiroli, L., Vettoretti, S., Meneghini, M. A. E., Zanoni, F., Miragoli, F., ...Messa, P. (2018). SuO004GUT MICROBIOTA COMPOSITION AND FRAILTY IN ELDERLY PATIENTS WITH CHRONIC KIDNEY DISEASE. *Nephrology Dialysis Transplantation*, *33*, i618–i618.
- McAdams-Demarco, M. A., Law, A., Tan, J., Delp, C., King, E. A., Orandi, B., ...Segev, D. L. (2015). Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. *Transplantation*, *99*, 805–810.
- McAdams-Demarco, M. A., Tan, J., Salter, M. L., Gross, A., Meoni, L. A., Jaar, B. G., ... Sozio, S. M. (2015). Frailty and cognitive function in

- incident hemodialysis patients. Clinical Journal of the American Society of Nephrology, 10, 2181–2189.
- Moffatt, H., Moorhouse, P., Mallery, L., Landry, D., &Tennankore, K. (2018). Using the Frailty Assessment for Care Planning Tool (FACT) to screen elderly chronic kidney disease patients for frailty: the nurse experience. *Clinical Interventions in Aging*, 13, 843.
- Noori, N., Sharma Parpia, A., Lakhani, R., Janes, S., & Goldstein, M. B. (2018). Frailty and the Quality of Life in Hemodialysis Patients: The Importance of Waist Circumference. *Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation*, 28, 101–109.
- Roshanravan, B., Khatri, M., Robinson-Cohen, C., Levin, G., Patel, K.V, deBoer, I. H., ... Kestenbaum, B. (2012). A prospective study of frailty in nephrology-referred patients with CKD. *Am J Kidney Dis*, *60*, 912–921.
- Sales, C., Tavares, R., Amado, L., Martins, P., Barros, J., Miranda, V., ...Costa, E. (2017). SP651ANXIETY AND DEPRESSION IN END STAGE RENAL DISEASE PATIENTS AND ITS ASSOCIATION WITH CLINICAL AND LABORATORIAL DATA. *Nephrology Dialysis Transplantation*, *32*, iii355-iii355.
- Yadla, M., John, J., &Mummadi, M. (2017). A study of clinical assessment of frailty in patients on maintenance hemodialysis supported by cashless government scheme. *Saudi Journal of Kidney Diseases and Transplantation*. doi:10.4103/1319-2442.198102

* Risk factors or causes of frailty among CKD patients.

	Effect (descriptions)	Risk Difference	CKD Severity	Frailty Assessment	Sample Size	Reference
Biological						
Cardiovascular	Cerebrovascular Accident	OR 1.55 (1.05- 2.99)	CKD stage 5D (hemodialysis)	Fried Phenotypes	2275	(Johansen, Chertow, Jin, &Kutner, 2007)
	Vascular Access failure	HR 2.63 (1.03-6.71)	(CKD stage 5D)	Self-reported simple FRAIL scale	51	(Chao, Chiang, Huang, &Hung, 2017)
	Permanent Vascular Access (fistula or graft)	CKD stage 5D (hemodialysis)		Fried Phenotypes	2275	(Johansen et al., 2007)
Renal Function Decline	Risk for death or dialysis therapy	2.5 (1.4-4.4)- fold greater	CKD stages 1-4	Fried Phenotypes	336	(Roshanravan et al., 2012)
Immunological	Mycophenolate mofetil (MMF) dose reduction (MDR)	HR 1.29 (1.01- 1.66)	CKD stage 5T	Fried Phenotypes	525	(McAdams- Demarco, Law, et al., 2015)
Cognitive	Modified Mini-Mental State (3MS)	-2.37 to -2.80 (1 year) (p=0.03)	ESRD	Fried Phenotypes	324	(McAdams- Demarco, Tan, et al., 2015)
Diabetes	Diabetes	OR 1.35 (1.10- 1.65)	CKD stage 5D	Fried Phenotypes	2275	(Johansen et al., 2007)

Body	Bones					
composition	Bone Mineral Density (BMD)	One year follow- up, with frailty $\beta = -0.4$, t	ESRD CKD stage 5D (chronic	Simple FRAIL Scale (SFS)	43	(Chao, Huang, &Chan, 2017)
		=-2.18, p=0.04	hemodialysis)			
	L4	ß =-0.39, t =-2.1, p=0.046				
	Femur Neck (FN)	ß =-0.5, t= -2.96,				
	Total	p<0.01 ß = -0.53, t =-3.27, p<0.01				
	Areas	One year follow- up, with frailty				
	Average L-spine areas	ß = -0.48, t =-2.84, p < 0.01				
	Changes of average L-spine areas	ß = -0.5, t =-3.02, p<0.01				
	Z-score	One year follow- up, with frailty				

	Percentage change of	ß = −0.45, t				
	L1 Z-score	=-2.11, p=0.049				
Laboratory	Serum Albumin					
data	Concentrations (g/dL)					
	<3.2 vs. ≥3.9	OR 1.89 (1.30-	CKD stage 5D	Fried Phenotypes	2275	(Johansen et
		2.59)				al., 2007)
Psychological						
Delirium	Post-KT delirium	OR 2.05 (1.02-	CKD stage 5T	Fried Phenotypes	893	(Haugen et al.,
		4.13)				2018)
Quality of Life	HRQoL					
	Fair/Poor HRQOL at	aOR 2.79 (1.32-	ESRD	Fried Phenotypes	233	(M AMcAdams-
	follow-up (median 9.4	5.90)	CKD stage 5T			DeMarco et al.,
	mo)					2016)
	Worsening HRQOL at	aRR 2.91 (1.08-				
	follow-up (median 9.4	7.80)				
	mo)					
	SF-36					
	Hierarchical regression	29% (p<0.001)	CKD stage 2-4	Fried Phenotypes	168	(S. J.Lee, Son,
	R^2 change (effects of					&Shin, 2015)
	frailty on HRQoL) in					
	Physical Component					
	Summary (PCS)					

Hierarchical regression R^2 change (effects of frailty on HRQoL) in Mental Component Summary (MCS) SF-12	21.3% (p<0.001)				
MCS	Effect estimate 0.94 (0.91-0.97) (p<0.01)	CKD stage 5D (peritoneal dialysis, n=129;	The Canadian Study of Health and Aging Clinical Frailty Scale	251	(Iyasere et al., 2016)
PCS	Effect estimate 0.88 (0.84-0.91) (p<0.01)	hemodialysis, n=122)	(CFS)		
KDQOL-SF scores in physical and kidney disease-specific HRQoL					
At KT Post-KT	Greater increase	CKD stage 5T	Fried Phenotypes	443	(Mara AMcAdams- DeMarco et al., 2018)
Illness Intrusiveness Rating Scale Barthel Index	Effect estimate 1.14 (1.09-1.20) Effect estimate	CKD stage 5D (peritoneal dialysis, n=129;	The Canadian Study of Health and Aging Clinical Frailty Scale	251	(Iyasere et al., 2016)

		0.89 (0.86093)	hemodialysis,	(CFS)		
	Symptom score	Effect estimate	n=122)			
		1.23 (1.13-1.34)				
	Hospital Anxiety and	Effect estimate				
	Depression Scale	1.21 (1.11-1.31)				
	Falls	HR 2.1 (1.21-	CKD stage 5D	Fried Phenotypes	205	(Yadla, John,
		3.92)	(hemodialysis)			&Mummadi,
						2017)
	Time to first fall or	HR 1.60 (1.16-	CKD stage 5D	Modified Fried	1646	(Delgado et al.,
	fracture requiring medical	2.20)	(maintenance	Phenotypes by Bao Y		2015)
	attention		hemodialysis)	(Bao, Dalrymple,		
				Chertow, Kaysen,		
				&Johansen, 2012).		
Graft Loss	Death-censored graft loss					
	F vs. NF (in patients with	aHR 6.20 (1.67,	CKD stage 5T	Fried Phenotypes	773	(Konel et al.,
	depressive symptoms)	22.95) vs. 3.16				2018)
		(0.90, 11.04)				
Health-care	Hospitalization/Death	HR 1.56 (1.36-	CKD stage 5D	Fried Phenotypes	2275	(Johansen et
utilization		1.79)				al., 2007)
	Hospitalization	HR 2.06 (1.18-	CKD stage 5D	Fried Phenotypes	205	(Yadla et al.,
		3.58)	(hemodialysis)			2017)
		aHR 1.80 (1.4-	CKD stage 5D	Adopted	1658	(S.Lee &Kim,

		2.3)	(maintenance hemodialysis & peritoneal dialysis)			2015)
	Early Hospital Readmission (EHR)	aRR 1.61 (1.81- 2.19) (p=0.002)	CKD stage 5T	Fried Phenotypes	383	(M. A.McAdams- DeMarco et al., 2013)
Ī	Longer Length of Stay (LOS)					
	with delayed graft function (DGF), LOS With DGF, LOS ≥2 weeks	Relative Risk 1.15 (1.03-1.29) OR 1.57 (1.06- 2.33)	CKD stage 5T	Fried Phenotypes	589	(Mara AMcAdams- DeMarco et al., 2017)
	≥2 weeks Change in 3 categories (more frail) Change in frailty scores (more frail)	OR 2.02 (1.20- 3.40) OR 1.92 (1.13- 3.25)	CKD stage 5 to 5T	Fried Phenotypes	569	(Chu et al., 2019)
	With depressive symptoms (aRR difference between F and NF) CES-D score (10-point	aRR 1.88 (1.70- 2.08) vs. 1.38 (1.27-1.52) aRR 1.23 (1.16-				(Konel et al., 2018)

	increase) (aRR increase	1.31) vs. 1.17				
	between F and NF)	(1.08-1.27)				
Mortality	Mortality	2.17 fold	CKD stage 5T	Fried Phenotypes	537	(M AMcAdams- DeMarco et al., 2015)
		HR 1.22 (1.04- 1.43)	CKD stage 5D (incident chronic dialysis)	CFS	390	(Alfaadhel et al., 2015)
	F vs. NF (in patients with depressive symptoms)	aHR 2.62 (1.03, 6.70) vs. 1.92 (0.68, 5.38)	CKD stage 5T	Fried Phenotypes	773	(Konel et al., 2018)
	All-cause mortality					
	Adjusted	HR 1.66 (1.03- 2.67)	CKD stage 5D (incident chronic	Fried Phenotypes	370	(Fitzpatrick et al., 2019)
	Among BMI ≥30 kg/m ²	HR 3.77 (1.10- 12.92)	dialysis)			
	Above median Waist-Hip Ratio (WHR)	HR 2.38 (1.17- 4.82)				
	Post-KT mortality					
	Change in 3 categories (more frail)	HR 2.27 (1.11- 4.65)	CKD stage 5 to 5T	Fried Phenotypes	569	(Chu et al., 2019)
	Change in frailty scores	HR 2.36 (1.12-				

	(more frail)	4.99)				
Composite	Composite outcomes of all-	HR 23.58 (1.61-	CKD stage 5D	Multidimensional	46	(S. W.Lee et al.,
Outcomes	cause death or	346.03)	ESRD	frailty score based on		2017)
	cardiovascular			comprehensive		
	hospitalization			geriatric assessment		
				(CGA) protocol		

Bibliography

- Alfaadhel, T. A., Soroka, S. D., Kiberd, B. A., Landry, D., Moorhouse, P., &Tennankore, K. K. (2015). Frailty and mortality in dialysis: evaluation of a clinical frailty scale. *Clinical Journal of the American Society of Nephrology: CJASN*, 10, 832–840.
- Bao, Y., Dalrymple, L., Chertow, G. M., Kaysen, G. A., & Johansen, K. L. (2012). Frailty, dialysis initiation, and mortality in end-stage renal disease. *Arch Intern Med*, *172*, 1071–1077.
- Chao, C.-T., Chiang, C.-K., Huang, J.-W., &Hung, K.-Y. (2017, April). Self-reported frailty among end-stage renal disease patients: A potential predictor of dialysis access outcomes. *Nephrology (Carlton, Vic.)*. Australia.
- Chao, C.-T., Huang, J.-W., &Chan, D.-C. (2017). Frail phenotype might herald bone health worsening among end-stage renal disease patients. *PeerJ*, *5*, e3542.
- Chu, N. M., Deng, A., Ying, H., Haugen, C. E., Garonzik Wang, J. M., Segev, D. L., &McAdams-DeMarco, M. A. (2019). Dynamic Frailty Before Kidney Transplantation-Time of Measurement Matters. *Transplantation*. doi:10.1097/TP.0000000000002563
- Delgado, C., Shieh, S., Grimes, B., Chertow, G. M., Dalrymple, L. S., Kaysen, G. A., ...Johansen, K. L. (2015). Association of Self-Reported Frailty with Falls and Fractures among Patients New to Dialysis. *American Journal of Nephrology*, 42, 134–140.
- Fitzpatrick, J., Sozio, S. M., Jaar, B. G., Estrella, M. M., Segev, D. L., Parekh, R. S., &McAdams-DeMarco, M. A. (2019). Frailty, body composition and the risk of mortality in incident hemodialysis patients: the Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease study. *Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association European Renal Association*, 34, 346–354.
- Haugen, C. E., Mountford, A., Warsame, F., Berkowitz, R., Bae, S., Thomas, A., ...McAdams-DeMarco, M. (2018). Incidence, Risk Factors, and Sequelae of Post-kidney Transplant Delirium. *Journal of the American Society of Nephrology: JASN*, 29, 1752–1759.
- Iyasere, O. U., Brown, E. A., Johansson, L., Huson, L., Smee, J., Maxwell, A. P., ... Davenport, A. (2016). Quality of Life and Physical Function in Older Patients on Dialysis: A Comparison of Assisted Peritoneal Dialysis with Hemodialysis. *Clinical Journal of the American Society of Nephrology : CJASN*, 11, 423–430.
- Johansen, K. L., Chertow, G. M., Jin, C., &Kutner, N. G. (2007). Significance of frailty among dialysis patients. Journal of the American Society of

- *Nephrology : JASN, 18, 2960–7.*
- Konel, J. M., Warsame, F., Ying, H., Haugen, C. E., Mountford, A., Chu, N. M., ...McAdams-DeMarco, M. A. (2018). Depressive symptoms, frailty, and adverse outcomes among kidney transplant recipients. *Clinical Transplantation*, *32*, e13391.
- Lee, S. J., Son, H., &Shin, S. K. (2015). Influence of frailty on health-related quality of life in pre-dialysis patients with chronic kidney disease in Korea: a cross-sectional study. *Health Qual Life Outcomes*, *13*, 70.
- Lee, S., &Kim, J. C. (2015). Frailty as an independent predictor for hospitalization-free survival even in relatively healthy patients receiving chronic dialysis. *Nephrology Dialysis Transplantation.*, 30, iii316.
- Lee, S. W., Lee, A., Yu, M. Y., Kim, S. W., Kim, K.Il, Na, K. Y., ...Chin, H. J. (2017). Is Frailty a Modifiable Risk Factor of Future Adverse Outcomes in Elderly Patients with Incident End-Stage Renal Disease? *Journal of Korean Medical Science*, *32*, 1800–1806.
- McAdams-DeMarco, M. A., King, E. A., Luo, X., Haugen, C., DiBrito, S., Shaffer, A., ...Segev, D. L. (2017). Frailty, Length of Stay, and Mortality in Kidney Transplant Recipients: A National Registry and Prospective Cohort Study. *Annals of Surgery*, *266*, 1084–1090.
- McAdams-DeMarco, M. A., Law, A., King, E., Orandi, B., Salter, M., Gupta, N., ...Segev, D. L. (2015). Frailty and mortality in kidney transplant recipients. *American Journal of Transplantation : Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons*, 15, 149–154.
- McAdams-DeMarco, M. A., Law, A., Salter, M. L., Chow, E., Grams, M., Walston, J., &Segev, D. L. (2013). Frailty and Early Hospital Readmission After Kidney Transplantation. *American Journal of Transplantation*, 13, 2091–2095.
- McAdams-Demarco, M. A., Law, A., Tan, J., Delp, C., King, E. A., Orandi, B., ...Segev, D. L. (2015). Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. *Transplantation*, *99*, 805–810.
- McAdams-DeMarco, M. A., Olorundare, I. O., Ying, H., Warsame, F., Haugen, C. E., Hall, R., ...Segev, D. L. (2018). Frailty and Postkidney Transplant Health-Related Quality of Life. *Transplantation*, *102*, 291–299.
- McAdams-Demarco, M. A., Tan, J., Salter, M. L., Gross, A., Meoni, L. A., Jaar, B. G., ...Sozio, S. M. (2015). Frailty and cognitive function in incident hemodialysis patients. *Clinical Journal of the American Society of Nephrology*, *10*, 2181–2189.
- McAdams-DeMarco, M. A., Ying, H., Olorundare, I., King, E. A., Desai, N., Dagher, N., ... Segev, D. L. (2016). Frailty and Health-Related Quality of

- Life in End Stage Renal Disease Patients of All Ages. The Journal of Frailty & Aging, 5, 174–179.
- Roshanravan, B., Khatri, M., Robinson-Cohen, C., Levin, G., Patel, K.V, deBoer, I. H., ... Kestenbaum, B. (2012). A prospective study of frailty in nephrology-referred patients with CKD. *Am J Kidney Dis*, *60*, 912–921.
- Yadla, M., John, J., &Mummadi, M. (2017). A study of clinical assessment of frailty in patients on maintenance hemodialysis supported by cashless government scheme. *Saudi Journal of Kidney Diseases and Transplantation*. doi:10.4103/1319-2442.198102