V9968 Programmer's Manual Register Map

目次

はじめに	3
コントロールレジスタ	3
R#0 Mode0	3
R#1 Mode1	3
R#2 Pattern Name Table Address	4
R#3 Color Table Address (L)	
R#4 Pattern Generator Table Address	5 5
R#5 Sprite Attribute Table Address (L)	5 5
R#6 Sprite Pattern Generator Table Address	5 6
R#7 Background Color	6
R#8 Mode2	6
R#9 Mode3	
R#10 Color Table Address (H)	0
R#10 Color Table Address (D)	0
R#11 Sprite Attribute Table Address (H)	
R#12 Text Color/Back Color Register	
R#13 Blinking Period Register	<u>/</u>
R#14 VRAM Access Base Address Register	
R#15 Status Register Pointer	
R#16 Color Palette Pointer	
R#17 Control Register Pointer	/
R#18 Display Adjust Register	8
R#19 Interrupt Line Register	8
R#20 Mode5	8
R#21 Mode6	8
R#22 N/A	8
R#23 Display Offset Register	8
R#24 N/A	
R#25 Mode4	
R#26 Horizontal Offset Register (By Character Units)	9
R#27 Horizontal Offset Register (By Dot Units)	9
コマンドレジスタ	9
R#32, R#33 Source X Register	9
R#34, R#35 Source Y Register	10
R#36, R#37 Destination X Register	10
R#38, R#39 Destination Y Register	10
R#40, R#41 Number Of Dots X Register	11
R#42, R#43 Number Of Dots Y Register	11
R#44 Color Register	11
R#45 Argument Register	11
R#46 Command Register	12
R#47, R#48, R#49, R#50 Rotation unit vector	12
R#51, R#52, R#53, R#54 Output window start	13
R#55, R#56, R#57, R#58 Output window end	13
ステータスレジスタ	14
ステータスレジスタ S#0 Status register 0	14
S#1 Status register 1	1 <u>/</u>
S#2 Status register 2	1/1
S#3, S#4, S#5, S#6 Column/Row register	15
S#7 Color register	 15
S#7 Color registerS#8, S#9 Border X register	16

はじめに

本書では、V9968のレジスター構成を説明する。

0

グレーのビットは、無効ビットである。コントロールレジスタの場合、何を書き込んでも、何も作用しない。V9958の時点で無効だったビットと、V9968で無効に変わったビットがある。

A17

薄紫のビットは、V9968で追加・変更が入ったビットである。何らかの新しい機能がある。

A16

白いビットは、V9958の機能をそのまま継承しているビットである。

コントロールレジスタ

R#0 Mode0

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#0	0	DG	IE ₂	[IE ₁	M ₅	M ₄	M ₃	0	
Mode0									

モード設定用のレジスタである。

M5,M4,M3 は、画面モードを設定する。R#1 のところでまとめて説明する。

IE1 は、走査線割込許可レジスタ。ここに 1 を書き込むと R#19 で指定した走査線が表示されるタイミングで、割り込みが発生するようになる。

IE2 は、V9938 でライトペン割り込みに使われていたレジスタだが、V9958 で廃止となっており、V9968 でも無効となっている。

DG は、VDPのカラーバスの動作モードを指定するレジスタだが、V9968 では無効となっている。通常のMSXでは使われていない。

R#1 Mode1

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#1	0	BL	[IE ₀	M_1	M ₂	0	SI	MAG	
Mode1									

モード設定用のレジスタである。

M1,M2 は、画面モードを設定する。R#0 の M5,M4,M3 と合わせて、下記の設定で各種画面モードを指定できる。モード一覧を表 1 画面モード設定にまとめておく。

MAG は、Sprite mode1 及び Sprite mode2 における拡大表示指定である。0 で等倍。1 で水平垂直 2 倍。Sprite mode3 では無視される。

SI は、Sprite mode1及びSprite mode2 におけるスプライトサイズ指定である。0で8ドット×8ドットサイズ。1で16ドット×16ドットサイズになる。

IEO は、垂直同期割込許可レジスタ。ここに 1 を書き込むと垂直ブランキング期間開始のタイミングで、割込が発生するようになる。

BL は、画面表示レジスタである。0 で非表示、1 で表示となる。 非表示の場合、画面は周辺色一色になり、表示のための VRAM アクセスを行わなくなる。VDP が最も速い状態となる。

{M5,M4,M3,M2,M1}	名称	MSX-BASICのモード
00000	GRAPHIC1	SCREEN1
00001	TEXT1	SCREEN0 (Width40)
00010	MOSAIC	SCREEN3
00100	GRAPHIC2	SCREEN2
01000	GRAPHIC3	SCREEN4
01100	GRAPHIC4	SCREEN5
10000	GRAPHIC5	SCREEN6
10100	GRAPHIC6	SCREEN7
11100	GRAPHIC7	SCREEN8
01001	TEXT2	SCREENO(Width80)

表1画面モード設定

R#2 Pattern Name Table Address

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#2	A17	A16	A15	A14	A13	A12	A11	A10
Pattern Name 7	able							

パターンネームテーブルのアドレスを指定する。

TEXT0, TEXT1, MULTI COLOR, GRAPHIC1, GRAPHIC2, GRAPHIC3 では全ビット有効。A17 は、R#20 の EVR=1 のときにのみ有効。EVR=0 のときは、1 を書いても 0 を書いたことになる。

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#2	A17	A16	A15	1	1	1	1	1	
Pattern Name 1	「able								

GRAPHIC4, GRAPHIC5 では、 $bit4\sim bit0$ は 1 を指定する。A17 は、R#20 の EVR=1 のときにのみ有効。EVR=0 のときは、1 を書いても 0 を書いたことになる。

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#2	0	A17	A16	1	1	1	1	1
Pattern Name T	Гable							

GRAPHIC6, GRAPHIC7 では、 $bit4\sim bit0$ は 1 を指定し、他のモードとは bit の位置が異なることに注意すること。A17 は、R#20 の EVR=1 のときにのみ有効。EVR=0 のときは、1 を書いても 0 を書いたことになる。

GRAPHIC4, GRAPHIC5, GRAPHIC6, GRAPHIC7 の1を指定するビットは、内部演算でアドレス計算する際に AND 演算によってミックスされる。従って、0 を指定すると、強制的にそのビットは 0 固定に出来るため、繰り返しパターンの表示が可能となる。詳細は、 $v9968_programmers_manual_screen_mode$ の説明を参照。

R#3 Color Table Address (L)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#3	A13	A12	A11	A10	A9		A7	A6	
Color Table (L)									

R#4 Pattern Generator Table Address

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#4	0	A17	A16	A15	A14	A13	A12	A11	
Pattern Genera	tor Table								

R#5 Sprite Attribute Table Address (L)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#5	A14	A13	A12	A11	A10	(A9	1	1	
Sprite Attribute	Table (L)								

R#6 Sprite Pattern Generator Table Address

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#6	0	A17	A16	A15	A14	A13	A12	A11	
Sprite Pattern	Generator Table								

R#7 Background Color

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#7	тсз	TC2	TC1	тсо	BD3	BD2	BD1	BD0	
Background Col	lor								

R#8 Mode2

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#8	0	0	TP	СВ	VR	0	SPD	BW
Mode2								

R#9 Mode3

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#9	LN	0	S1	so)	IL	EO	NT	DC	
Mode3									

R#10 Color Table Address (H)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#10	0	0	0	0	A17	A16	A15	A14	
Color Table (HI	GH)								

R#11 Sprite Attribute Table Address (H)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#11	0	0	0	0	0	A17	A16	A15	
Sprite Attribute	Table (H)								

R#12 Text Color/Back Color Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#12	Т23	T22	T21	Т20	BD3	BD2	BD1	BD0	
Text Color/Bac	k Color Register								

R#13 Blinking Period Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#13 (CN3	CN2	CN1	CN0	CF3	CF2	CF1	CF0	
Blinking Period	Register								

R#14 VRAM Access Base Address Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#14 (0	0	0	0	A17	A16	A15	A14	
VRAM Address ((H)								

R#15 Status Register Pointer

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#15	0	0	0	0	S3	S2	S1	SO	$\Big]$
Status Register	Pointer								•

R#16 Color Palette Pointer

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#16	C7	C6	C5	C4	С3	C2	C1	C0	
Color Palette P	ointer								

R#17 Control Register Pointer

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#17	AII	0	R5	R4	R3	R2	R1	RO	
Control Registe	r Pointer								

R#18 Display Adjust Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#18		V2	V1	(vo	нз	H2	H1	НО	

R#19 Interrupt Line Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#19	IL7	IL6	IL5	IL4	[IL3	[IL2	[IL1	ILO	

R#20 Mode5

bit7 bit	t6 bit5 bit	4 bit3 bit2	bit1 bit
R#20 S16 EV	VR ECOM EPA	L SP3 ILNS	SVNS H

R#21 Mode6

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#21	CEIE	FIL	1	1	1	0	1	1

R#22 N/A

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#22	0	0	0	0	0	1	0	1	

R#23 Display Offset Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#23 (DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0	

R#24 N/A

欠番です。存在しません。

R#25 Mode4

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#25	SPS	CMD	VDS	YAE	ҮЈК	WTE	MSK	SP2	
									•

R#26 Horizontal Offset Register (By Character Units)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#26	0	0	нов	H07	H06	HO5	НО4	НОЗ	

R#27 Horizontal Offset Register (By Dot Units)

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#27	0	0	0	0	0	H02	HO1	НО0	

コマンドレジスタ

R#32, R#33 Source X Register

R#32 (bit7 SX7	bit6 SX6	bit5 SX5	bit4 SX4	bit3 SX3	bit2 SX2	bit1 SX1	bit0 Sx0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

R#34, R#35 Source Y Register

R#34 (bit7 SY7	bit6 SY6	bit5 SY5	bit4 SY4	bit3 SY3	bit2 \$Y2	bit1	bit0 SY0
R#35 (bit7 0	bit6	bit5 0	bit4 SY12	bit3	bit2 SY10	bit1	bit0

R#36, R#37 Destination X Register

R#38, R#39 Destination Y Register

R#38 (bit7 DY7	bit6	bit5 DY5	bit4	bit3 DY3	bit2 DY2	bit1	bit0	
R#39 (bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	

R#40, R#41 Number Of Dots X Register

R#40 (bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	NX7	NX6	NX5	NX4	NX3	NX2	NX1	NX0
R#41 (bit7	bit6	bit5	bit4	bit3	bit2 NX10	bit1	bit0 NX8

R#42, R#43 Number Of Dots Y Register

R#42 (bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	NY7	NY6	NY5	NY4	NY3	NY2	NY1	NY0
R#43 (bit7	bit6	bit5	bit4	bit3	bit2 NY10	bit1 NY9	bit0 NY8

R#44 Color Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#44 (СНЗ	CH2	CH1	СН0	CL3	CL2	CL1	CL0	

R#45 Argument Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#45	FG4	MXC XHR	MXD	MXS	DIY	DIX	EO	MAJ

R#46 Command Register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
R#46 (СМЗ	См2	CM1	См0	LO3	LO2	LO1	LO0	
)									

R#47, R#48, R#49, R#50 Rotation unit vector

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#47 (VX7	VX6	VX5	VX4		VX2	VX1	VX0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#48 (VX15	VX14	VX13	VX12	VX11	VX10	VX9	VX8
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#49 (VY7	VY6	VY5	VY4	EYV	VY2	VY1	VY0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#50 (VY15	VY14	VY13	VY12	VY11	VY10	VY9	VY8
·								

LRMM コマンドの回転単位ベクトルを指定する。小数部 8bit の符号付き固定小数点数で指定する。具体的な指定内容は、LRMM コマンドの説明を参照。

R#51, R#52, R#53, R#54 Output window start

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#51	WSX7	wsx6	WSX5	WSX4	wsx3	WSX2	WSX1	wsx0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#52	0	0	0	0	0	0	0	WSX8
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
1								
R#53	WSY7	WSY6	WSY5	WSY4	WSY3	WSY2	WSY1	WSY0
R#53	WSY7		WSY5	WSY4	WSY3	W\$Y2	WSY1	WSY0
R#53	WSY7	WSY6		WSY4				
R#53			bit5		bit3	bit2 WSY10	bit1 WSY9	bit0 WSY8

LRMM コマンドの転送先のウィンドウの左上座標指定。このウィンドウに収まる範囲のみ描画される。この座標そのものは、ウィンドウの内側とみなされる。具体的な指定内容は、LRMM コマンドの説明を参照。

R#55, R#56, R#57, R#58 Output window end

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#55	WEX7	WEX6	WEX5	WEX4	WEX3	WEX2	WEX1	WEX0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#56	0	0	0	0	0	0	0	WEX8
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R#57	bit7 WEY7	bit6 WEY6	bit5 WEY5	bit4 WEY4	bit3 WEY3	bit2 WEY2	bit1 WEY1	bit0 WEY0
R#57			$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	<u> </u>	$\overline{}$
R#57			$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	<u> </u>	$\overline{}$
R#57	WEY7	WEY6	WEY5	WEY4	WEY3	WEY2	WEY1	WEY0

LRMM コマンドの転送先のウィンドウの右下座標指定。このウィンドウに収まる範囲のみ描画され る。この座標そのものは、ウィンドウの内側とみなされる。具体的な指定内容は、LRMM コマンド の説明を参照。

ステータスレジスタ

S#0 Status register 0

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#0	F		С	5TH4	5ТН3	5TH2	5TH1	5TH0	

 $5TH4\sim0$ は、Sprite mode1 では 5番目に並んで消えているスプライト番号。Sprite mode2 では 9番目に並んで消えているスプライト番号。Sprite mode3 では無効な値。 ${\sf C}$ は、スプライトが衝突したことを示すフラグ。衝突している場合に ${\sf 1}$ になる。

5S は、Sprite mode1 では 5枚以上、Sprite mode2 では 9枚以上、Sprite mode3 では 17枚以上のスプライトが並んでおり、消えている状態のスプライトがあることを示 すフラグ。1 の場合は並んでいる。 F は、垂直同期割込フラグ。割込が発生している場合に 1 になる。S#0 を読みだすと 0 にクリア

される。

S#1 Status register 1

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#1	FL	LPS	IC#4	ID#3	ID#2	ID#1	ID#0	FH	

 FH は、水平帰線割込(ライン割込、走査線割込)が発生したら 1 になり、発生していなければ 0になる。S#1 を読みだすと、0 にクリアされる。

ID#4~#0 は、VDPの識別子。

V9938 : 00000 V9958:00010 V9968:00011 V9978:00100

LPS 及び FL は、V9938 では、ライトペン関連のフラグだが、V9958 で削除されており、 無効。

S#2 Status register 2

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#2	TR	VR	HR	BD	1	1	EO	CE	
									•

CE は、VDP コマンド実行中フラグ。実行中には 1、停止中には 0 になる。

EO は、even/odd フィールドフラグ。第1フィールドは 0、第2フィールドは 1 になる。

 BD は、境界検出フラグ。 SRCH により境界を検出した場合には 1、未検出は 0 になる。

S#9 を読むと O に戻る。詳細は、SRCH コマンドの説明を参照。

HR は、水平ブランキング期間中フラグ(負論理)。 水平ブランキングは 0 になり、それ以外では 1 になる。

VR は、垂直ブランキング期間中フラグ(負論理)。垂直ブランキングは 0 になり、それ以外では 1 になる。

TR は、HMMC, LMMC, LMCM コマンドにおける転送準備完了フラグ。1 は準備完了。0 は準備未完了。詳細は、HMMC, LMMC, LMCM コマンドの説明を参照。

S#3, S#4, S#5, S#6 Column/Row register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
S#3 (Х7	X6	X5	X4	хз	X2	X1	X0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
S#4 (1	1	1	1	1	1	1	X8
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
S#5 (Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
S#6	1	1	1	1	1	1	0	Y8

スプライトの衝突座標がセットされる。詳細は、スプライトの説明を参照。

S#7 Color register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#7	C7	C6	C5	C4	СЗ	C2	C1	C0	

POINT コマンド、LMCM コマンドにより読みだされた画素値がセットされる。詳細は、POINT コマンド及び LMCM コマンドの説明を参照。

S#8, S#9 Border X register

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#8 (BX7	ВХ6	BX5	BX4	вхз	BX2	BX1	ВХО	

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
S#9	1	1	1	1	1	1	1	вх8	

 SRCH コマンドによって検出された境界の X 座標がセットされる。詳細は、 SRCH コマンドの説明を参照。