Lista zadań. Nr 1. 4 marca 2017

ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

- 1. (P 1pkt) Napisz rekurencyjne funkcje, które dla danego drzewa binarnego T obliczają:
 - \bullet liczbę wierzchołków w T,
 - \bullet maksymalną odległość między wierzchołkami w T.
- 2. (1pkt) Napisz w pseudokodzie procedury:
 - przywracania porządku
 - usuwania minimum
 - usuwania maksimum

z kopca minimaksowego. Przyjmij, że elementy tego kopca pamiętane są w jednej tablicy (określ w jakiej kolejności). Użyj pseudokodu na takim samym poziomie szczegółowości, na jakim zostały napisane w Notatce nr 2 odpowiednie procedury dla zwykłego kopca.

- 3. (1pkt) Porządkiem topologicznym wierzchołków acyklicznego digrafu G=(V,E) nazywamy taki liniowy porządek jego wierzchołków, w którym początek każdej krawędzi występuje przed jej końcem. Jeśli wierzchołki z V utożsamimy z początkowymi liczbami naturalnymi to każdy ich porządek liniowy można opisać permutacją liczb 1,2,...,|V|; w szczególności pozwala to na porównywanie leksykograficzne porządków.
 - Ułóż algorytm, który dla danego digrafu znajduje pierwszy leksykograficznie porządek topologiczny.
- 4. (1pkt) Niech u i v będą dwoma wierzchołkami w grafie nieskierowanym G=(V,E;c), gdzie $c:E\to R_+$ jest funkcją wagową. Mówimy, że droga z $u=u_1,u_2,\ldots,u_{k-1},u_k=v$ z u do v jest sensowna, jeśli dla każdego $i=2,\ldots,k$ istnieje droga z u_i do v krótsza od każdej drogi z u_{i-1} do v (przez długość drogi rozumiemy sumę wag jej krawędzi).
 - Ułóż algorytm, który dla danego G oraz wierzchołków u i v wyznaczy liczbę sensownych dróg z u do v.
- 5. (1.5pkt) Ułóż algorytm, który dla zadanego acyklicznego grafu skierowanego G znajduje długość najdłuższej drogi w G. Następnie zmodyfikuj swój algorytm tak, by wypisywał drogę o największej długości (jeśli jest kilka takich dróg, to Twój algorytm powinien wypisać dowolną z nich).
- 6. (1.5pkt) Dany jest niemalejący ciąg n liczb całkowitych dodatnich $a_1 \leq a_2 \leq \ldots \leq a_n$. Wolno nam modyfikować ten ciąg za pomocą następującej operacji: wybieramy dwa elementy $a_i, \ a_j$ spełniające $2a_i \leq a_j$ i wykreślamy je oba z ciągu. Ułóż algorytm obliczający, ile co najwyżej elementów możemy w ten sposób usunąć.
- 7. (Z 1.5pkt) Ułóż algorytm, który dla danych:
 - $n, m, k, r, M \in \mathcal{N}$,
 - ciągu par liczb naturalnych $(a_1, b_1), \ldots, (a_r, b_r)$, takich, że $1 \le a_i \le n$ i $1 \le b_i \le m$,

obliczy, na ile sposobów w tablicy o rozmiarach $n \times m$ można wyznaczyć k rozłącznych ścieżek, z których każda:

• zaczyna się w pierwszej kolumnie,

- kończy się w ostatniej kolumnie,
- nie przechodzi przez żadne z pól o współrzędnych (a_i, b_i) (i = 1, ..., r),
- jeśli przechodzi przez pole (a,b) (b < m), to kolejnym polem jest (a',b+1), gdzie |a'-a|=1.

Wynik ma być podany modulo M. Przyjmij, że:

- liczba wierszy, n, jest ograniczona przez niewielką stałą (powiedzmy 8),
- liczba kolumn, m, jest wielką liczbą,
- r jest umiarkowanie duże (powiedzmy ograniczone przez 1000).

Zadania dodatkowe - do samodzielnego rozwiązywania

- 1. Co stałoby się z mocą obliczeniową maszyny RAM gdyby instrukcje ADD i MULT zostały usunięte z repertuaru instrukcji? Jak zmieniłby się koszt obliczeńn?
- Pokaż, że dla każdego programu maszyny RAM istnieje równoważny program maszyny RAM (tj. taki, który dla tych samych danych produkuje te same wyniki) używający nie więcej niż 2¹⁴ komórek pamięci.
- 3. Przypomnij sobie notację asymptotyczną dla rzędów funkcji: $O,~\Omega,~\Theta.$
- 4. Jaka jest najmniejsza wartość n, dla której algorytm o złożoności $100n^2$ działa (na tej samej maszynie) szybciej od algorytmu o złożoności 2^n ?
- 5. Dla każdej funkcji f(n) i czasu t w poniższej tabelce, określ największy rozmiar n danych, dla których algorytm wykona obliczenia w czasie t. Zakładamy, że algorytm rozwiązujący problem potrzebuje f(n) mikrosekund dla danych rozmiaru n.

	1	1	1	1	1	1	1
	sekunda	minuta	$\operatorname{godzina}$	dzieńn	miesiąc	rok	wiek
$\log n$							
\sqrt{n}							
n							
$n \log n$							
n^2							
n^3							
$ \begin{array}{c c} n \log n \\ \hline n^2 \\ \hline n^3 \\ \hline 2^n \end{array} $							
n!							

O ile większe zadania można by rozwiązywać na komputerze 1000 razy szybszym (tj. takim, na którym algorytm potrzebowałby f(n) nanosekund dla danych rozmiaru n)?

- 6. Skonstruuj program dla maszyny RAM, który dla danej liczby naturalnej n obliczy n!. Oszacuj złożoność czasową tego programu przy jednorodnym i logarytmicznym kryterium kosztów. Ustal własną miarę "rozmiaru" danych.
- 7. Napisz w C++, C lub Pascalu funkcję implementującą podany na wykładzie algorytm, który oblicza n-tą liczbę Fibonacciego (modulo stała) w czasie $O(\log n)$.
- 8. Napisz procedury, które dla danego drzewa binarnych przeszukiwańn T:
 - (0,5pkt) wstawiają zadany klucz do T;
 - \bullet (1pkt) usuwają zadany wierzchołek z T;
 - (0,5pkt) dla danego klucza k znajdują następny co do wielkości klucz w drzewie.

- 9. Napisz funkcję, która dla danej, uporządkowanej rosnąco, tablicy liczbowej T oraz liczby k, obliczy liczbę elementów w T mniejszych od k.
- 10. Określ z dokładnością do Θ złożoność (przy kryterium jednorodnym) poniższych fragmentów programów:

```
\begin{array}{ll} \text{for } i \leftarrow 1 \text{ to } n \text{ do} & \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ j \leftarrow i & \\ \text{while } j < n \text{ do} & \\ sum \leftarrow P(i,j) & sum \leftarrow P(i,j) \\ j \leftarrow j + 1 & j \leftarrow j + j \end{array}
```

Rozważ dwa przypadki:

- koszt wykonania procedury P(i,j) wynosi $\Theta(1)$
- $\bullet\,$ koszt wykonania procedury P(i,j)wynosi $\Theta(j)$

 $Krzysztof\ Lory\acute{s}$