547x 1368 mm² sensitive area

547x 1368 mm² sensitive area

547x 1368 mm² sensitive area

Proposed prototype - option 3

547x 684 mm² sensitive area

BH M(e+e-)>1.2 GeV

BH M(e+e-)>2 GeV

BH

	M>1.2	M>2 GeV
	GeV	
Option 1,3	86%	87%
Option 2	51%	54%

Geometrical efficiency

M(e+e-)>1.2 GeV

Basic principle of capacitive-sharing readout

Please for now on focus:

- More on the charge sharing through capacitive coupling i.e. capacitive- sharing aspect i.e. all the layers except the bottom one
- not so much on the large pads, the idea equally works for strips (X/Y, U/V and whatever etc ...) as well.
- For GEM-TRD, it will be wiser to go for capacitive-sharing X/Y strip readout (rather than pads)
- Here: The DLC layer (resistive layer) serves two purposes:
 - Evacuate charges from amplification structure (µRWELL GEM or whatever)
 - Spread charges on the readout PCB with position resolution
 - But also limit the rate capability

µRWELL with capacitive-sharing readout

Capacitive-Sharing Large-Strip Readout: Low channel count X-Y strip readout

Capacitive-Sharing Large-Strip Readout: Low channel count X-Y strip readout

The above example has strip pitch of 0.8mm, starting with 0.2x0.2mm² pads and two stages of capacitive coupling.

The pitch can be scaled depending on the resolution requirement and budget.

We can start with 0.475x0.475mm² pads and after two stages will have 1.9mm strip pitch.

With 1.9mm pitch for one readout block (half chamber):

- vertical strips: 5 fADCs x 3 pre-amps x 24 chan. x 1.9mm = 360 chan. x 1.9mm = 684 mm
- horizontal strips: 4 fADCs x 3 pre-amps x 24 chan. x 1.9mm = 288 chan. x 1.9mm = 547 mm In total: 648 chan. per readout block, or 2,592 chan. for the whole project.