Лабораторная работа №**1**

Установка ОС Linux

Арина Валерьевна Сидорова

Содержание

1	Цел	ь рабо	ТЫ	5
2	Зад	ание		6
3	Выг	олнен	ие лабораторной работы	7
	3.1	После	е установки виртуальной машины	7
		3.1.1	tmux	7
		3.1.2	Обновления (рис. fig. 3.2)	7
		3.1.3	Повышение комфорта работы	7
		3.1.4	Автоматическое обновление	8
		3.1.5	Отключение SELinux	8
		3.1.6	Установка dkms	9
		3.1.7	Настройки раскладки клавиатуры	9
		3.1.8	Работа с языком разметки Markdown	9
	3.2	Домаг	шнее задание	11
		3.2.1	Дождитесь загрузки графического окружения и откройте тер-	
			минал. В окне терминала проанализируйте последователь-	
			ность загрузки системы, выполнив команду dmesg.(рис fig. 3.11)	11
		3.2.2	Получить информацию:(рис fig. 3.12)	
4	Выв	вод		13

Список иллюстраций

3.1	Установка драйверов	7
3.2	development-tools	7
3.3	tmux mc	8
3.4	dnf-automatic	8
3.5	Меняем значение в файле	8
3.6	Установка	9
3.7	Редактируем файл	9
3.8	Pandoc	10
3.9	Pandoc-crossref	10
3.10	Проверка версии + texlive	10
3.11	Анализ последовательности загрузки системы	11
3.12	Получение информации	12

List of Tables

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Установить операционную систему linux на виртуальную машину

3 Выполнение лабораторной работы

3.1 После установки виртуальной машины

3.1.1 tmux

Запустим терминальный мультиплексор tmux: Переключимся на роль суперпользователя: Установите средства разработки:(рис. fig. 3.1).

```
avsidorova@fedora:-$ sudo -i
[sudo] пароль для avsidorova:
root@fedora:-$ -y group install development-tools-
bash: -y: команда не найдена...
root@fedora:-$ dnf -y group install development-tools-
Обновление и загрузка репозиториев:
Репозитории загружены.
Не удалось разрешить транзакцию:
Нет соответствия для аргунента: development-tools-
Можно попробовать добавить в конандную строку:
--skip-unavailable, чтобы пропускать недоступные пакеты
root@fedora:-$ dnf -y group install development-tools
Обновление и загрузка репозиториев:
```

Рис. 3.1: Установка драйверов

3.1.2 Обновления (рис. fig. 3.2).

```
[3/3] Установка diffstat-0:1.66-2.fc41.x86_64
Завершено!
root@fedora:-# sudo dnf -y update
```

Рис. 3.2: development-tools

3.1.3 Повышение комфорта работы

Установка tmux mc (рис. fig. 3.3).

```
Завершено!
root@fedora:~# sudo dnf -y install tmux mc
Обновление и загрузка репозиториев:
```

Рис. 3.3: tmux mc

3.1.4 Автоматическое обновление

Установка программного обеспечения (рис. fig. 3.4).

```
Нечего делать.
root@fedora:~# sudo dnf -y install dnf-automatic
Обновление и загрузка репозиториев:
Репозитории загружени.
Пакет "dnf-automatic-4.21.1-1.fc41.noarch" уже установлен.
Проблема: проблена с установленным пакетом
— установленный пакет libcurl-minimal-8.9.1-3.fc41.x86_64 конфликтует с
9.1-2.fc41.x86_64 из fedora
```

Рис. 3.4: dnf-automatic

3.1.5 Отключение SELinux

В файле /etc/selinux/config заменим значение SELINUX=enforcing на значение SELINUX=permissive(рис. fig. 3.5).

```
## This file controls the state of SELinux on the system.
# SELINUX= can take one of these three values:
# enforcing - SELinux security policy is enforced.
# permissive - SELinux prints warnings instead of enforcing.
# disabled - No SELinux policy is loaded.
# see also:
# https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-selinux/#getting-started-with-selinux-selinux
# NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
# fully disable SELinux during boot. If you need a system with SELinux
# fully disabled instead of SELinux running with no policy loaded, you
# need to pass selinux=0 to the kernel command line. You can use grubby
# to persistently set the bootloader to boot with selinux=0:
# # To revert back to SELinux enabled:
# # To revert back to SELinux enabled:
# # grubby --update-kernel ALL --remove-args selinux
# # SELINUX-permissive
# # SELINUX-permissive
# # SELINUX-permissive
# # Targeted processes are protected,
# # minimum - Nodification of targeted policy. Only selected processes are protected,
# # minimum - Nodification of targeted policy. Only selected processes are protected.
# # # SELINUXTYPE=targeted.
```

Рис. 3.5: Меняем значение в файле

3.1.6 Установка dkms

Устанавливаем dkms(рис. fig. 3.6).

```
rooteredora:-# --skip-unavaitable
bash: --skip-unavailable: команда не найдена...
rootefedora:-# dnf -y install dkms
Обновление и загрузка репозиториев:
Репозитории загружены.
Пакет Арх. Версия
```

Рис. 3.6: Установка

3.1.7 Настройки раскладки клавиатуры

Отредактируем конфигурационный файл(рис. fig. 3.7).

Рис. 3.7: Редактируем файл

3.1.8 Работа с языком разметки Markdown

Установим pandoc(рис. fig. 3.8).

Рис. 3.8: Pandoc

Установим pandoc-crossref(рис. fig. 3.9)

```
Завершено!
root@fedora:-# sudo dnf -y install pandoc-crossref
Обновление и загрузка репозиториев:
```

Рис. 3.9: Pandoc-crossref

Установка texlive(рис. fig. 3.10)

Рис. 3.10: Проверка версии + texlive

3.2 Домашнее задание

3.2.1 Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg.(puc fig. 3.11)

Рис. 3.11: Анализ последовательности загрузки системы

3.2.2 Получить информацию:(рис fig. 3.12)

- Версия ядра Linux (Linux version).
- Частота процессора (Detected Mhz processor).
- Модель процессора (СРИО).
- Объём доступной оперативной памяти (Memory available).
- Тип обнаруженного гипервизора (Hypervisor detected).
- Тип файловой системы корневого раздела.
- Последовательность монтирования файловых систем.

```
[1]- OctaHobBrek dimesg | less

rootefedora:-# dimesg | grep -i "Linux version"

[ 0.000000] Linux version 6.13.5-200.fc41.x86_64 (mockbuildebe03da54f8364b379359fe70f52a8f23) (gcc (GCC) 14.2.1 20
280310 (Rod Hat 14.2.1-7), GNU ld version 2.43.1-5.fc43) #1 SMP PREEMPT_DYNAHIC Thu Feb 27 15:07:31 UTC 2025
rootefedora:-# dimesg | grep -i "Detected Mhz processor"
rootefedora:-# dimesg | grep -i "CPU0"

[ 0.574372] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i5-1235U (family: 0x6, model: 0x9a, stepping: 0x4)
rootefedora:-# dimesg | grep -i "Memory available"
rootefedora:-# dimesg | grep -i "Memory available"
rootefedora:-# dimesg | grep -i "Hemory available"
rootefedora:-# dimesg | grep -i "Memory available"
rootefedora:-# dimesg | grep -i "filesystem"
[ 2.617285] BTRFS info (device sda3): first mount of filesystem 362b0780-bcb1-4871-baec-5eafd2a83b0b
[ 3.624842] EXT4-fs (sda2): mounted filesystem 2cbc21af-0220-4a89-887d-d1891ad62901 r/w with ordered data mode. Qu ota mode: none.
```

Рис. 3.12: Получение информации

4 Вывод

Установила операционную систему Linux на виртуальную машину