

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA Segundo semestre 2022

EYP2127 Inferencia Estadística Ayudantía 1: Modelos, parametrización e identificabilidad

Profesora: Inés M. Varas

Ayudante: Borja Márquez de la Plata

Ejercicio 1

Sea $X_1, X_2, ..., X_n$ variables aleatorias iid Exponencial, con parámetro $\lambda > 0$. Se define una muestra X como el vector $(X_1, X_2, ..., X_n)$.

- b) Encuentre el espacio muestral, el espacio paramétrico y la fdp de la muestra.
- b) Especifique un modelo estadístico para la muestra.
- c) ¿Es el modelo paramétrico?
- d) ¿Es el modelo identificable?

Ejercicio 2

Sea sea i=1,2,...,n y X_i variables aleatorias Normal, con media μ_i y desviación estándar σ_i . Se define una muestra X como el vector $(X_1, X_2, ..., X_n)$.

- a) Encuentre el espacio muestral, el espacio paramétrico y la fdp de la muestra.
- b) Especifique un modelo estadístico para la muestra.

Ejercicio 3

Sea $X_1, X_2, ..., X_n$ una muestra aleatoria iid Normal de tamaño n, con media θ^2 y desviación estándar 1.

- a) Especifique un modelo estadístico para la muestra.
- b) ¿Es el modelo identificable?

Ejercicio 4

Se está investigando como se absorbe un fertilizante por tomates cultivados. Se plantan 30 tomates, donde 7 pertenecen a una especie "A" y los otros 23 pertenecen a otra especie "B" y se exponen al fertilizante. Si la concentración de fertilizante que absorbe un tomate de la especie i distribuye $Gamma(\alpha_i, \beta_i)$, proponga un modelo estadístico para el experimento.

Res umen.

F: { f(x/0): 0 € @, x E X }

· Para metritarion:

→ Param: Nº de parametros finitos definidos -> No-faram: parametros infinitos -> dem; : tiene al menos un parametro finito e infinito

videntificabilidad: Si fuloj es uno -uno

0, \$ 02 => f(xlo) & f(xlo)

 $f_{(\nu|\theta_1)} = f_{(x|\theta_2)} = 0$

Sea $X_1, X_2, ..., X_n$ variables aleatorias iid Exponencial, con parámetro $\lambda > 0$. Se define una muestra \boldsymbol{X} como el vector $(X_1, X_2, ..., X_n)$.

- b) Encuentre el espacio muestral, el espacio paramétrico y la fdp de la muestra.
- b) Especifique un modelo estadístico para la muestra.
- c) ¿Es el modelo paramétrico?
- d) ¿Es el modelo identificable?

$$\begin{array}{lll} \chi \sim E \times \rho(\lambda) = \lambda e^{-\lambda x} \\ \lambda & \chi : \chi > 0 \longrightarrow E \times \rho_{exio} \quad \text{pure trad} \\ \Omega : \chi > 0 = \lambda e R^{\dagger} \longrightarrow E \times \rho_{exio} \quad \rho_{exio} \quad$$

b)
$$\int = \left\{ \int_{i=1}^{\infty} \lambda e^{-\lambda \kappa_i} : \lambda > 0, \chi > 0 \right\}$$

d)
$$T_{\lambda_1} e^{-\lambda_2 x_i} = T_{\lambda_2} e^{-\lambda_2 x_i}$$
 $n \ln(\lambda_1) - \lambda_1 x_i = n \ln(\lambda_2)$
 $\lambda_1^{\lambda_1} e^{-\lambda_1 x_i} = \lambda_1^{\lambda_2} e^{-\lambda_2 x_i}$ $\lambda_1^{\lambda_1} e^{-\lambda_2 x_i} = \lambda_1^{\lambda_2} e^{-\lambda_2 x_i}$

$$Nln(T_1) - T_1 \le x_i = nln(T_2) - T_2 \le x_i$$

por lo tanto $T_1 = T_2$

es identificable

independients

Sea sea i=1,2,...,n y X_i variables aleatorias Normal, con media μ_i y desviación estándar σ_i . Se define una muestra X como el vector $(X_1,X_2,...,X_n)$.

- a) Encuentre el espacio muestral, el espacio paramétrico y la fdp de la muestra.
- b) Especifique un modelo estadístico para la muestra.

$$X \sim N(\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{1}{2\sigma_i^2}(x-\mu_i)^2}$$

$$\Theta = (\mu_i, \Theta_i^1) \in \mathbb{R} \times \mathbb{R}^+_o = \Theta$$

$$f(x_1, x_2, ..., x_n/\Theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{1}{2\sigma_i^2}(x-\mu_i)^2}$$

Sea $X_1, X_2, ..., X_n$ una muestra aleatoria iid Normal de tamaño n, con media θ^2 y desviación estándar 1.

- a) Especifique un modelo estadístico para la muestra.
- b) ¿Es el modelo identificable?

of
$$f(x|\theta) = \frac{1}{12\pi^2} e^{-\frac{1}{2\pi^2}(x_i-\mu)^2}$$

$$= \frac{1}{12\pi^2} \left(\frac{1}{2\pi^2} \left(\frac$$

b)
$$\theta_{1}=1$$
, $\theta_{1}=-1$
 $f(x|\theta_{1})=f(x|\theta_{2})=0$ $\theta_{1}=0$, ident.

 $\frac{1}{1+\sqrt{2\pi}}\frac{1}{2\pi}e^{-\frac{1}{2}(x_{1}-\theta_{2}^{2})^{2}}=\prod_{i=1}^{n}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x_{i}-\theta_{2}^{2})^{2}}$

Se está investigando como se absorbe un fertilizante por tomates cultivados. Se plantan 30 tomates, donde 7 pertenecen a una especie "A" y los otros 23 pertenecen a otra especie "B" y se exponen al fertilizante. Si la concentración de fertilizante que absorbe un tomate de la especie i distribuye $Gamma(\alpha_i, \beta_i)$, proponga un modelo estadístico para el experimento.

Comma
$$(\alpha, \beta)$$
 $\xrightarrow{\beta}$ $x^{\alpha-1}$ $e^{-\beta x}$
 $f(x \mid \alpha_1, \beta_1) = \prod_{i=1}^{3} \frac{\beta^{\alpha_1}}{T(\omega)} x^{\alpha_1-1} e^{-\beta_1 x}$
 $f(x \mid \alpha_1, \beta_1) = \prod_{i=1}^{3} \frac{\beta^{\alpha_1}}{T(\omega)} x^{\alpha_1-1} e^{-\beta_1 x}$
 $f(x \mid \alpha_2, \beta_2) = \prod_{j=1}^{23} \frac{\beta^{\alpha_2}}{T(\omega)} x^{\alpha_2-1} e^{-\beta_2 x}$
 $f(x \mid \alpha_2, \beta_2) = \prod_{j=1}^{23} \frac{\beta^{\alpha_1}}{T(\omega)} x^{\alpha_2-1} e^{-\beta_2 x}$
 $f(x \mid \alpha_2, \beta_2) = \frac{1}{J^{\alpha_1}} \frac{\beta^{\alpha_2}}{T(\omega)} x^{\alpha_2-1} e^{-\beta_2 x} e^{-\beta_2 x}$
 $f(x \mid \alpha_1, \beta_2) = \frac{1}{J^{\alpha_1}} \frac{\beta^{\alpha_2}}{T(\omega)} x^{\alpha_2-1} e^{-\beta_2 x} e^{-\beta_2 x$