```
#Q1
#n=300, p=1/3
Exactly.100 <- dbinom(100, 300, 1/3)
At.Most.100 <- pbinom(100,300,1/3)
Fewer.Than.100 <- pbinom(99,300,1/3)
At.Least.110 <- 1 - pbinom(109,300,1/3)
Less.Than.90 <- pbinom(89,300,1/3)
More.Than.110 <- 1 - pbinom(110,300,1/3)
Between.90.110 <- 1 - Less.Than.90 - More.Than.110
round(c(
 Exactly.100 = Exactly.100,
 At.Most.100 = At.Most.100,
 Fewer.Than.100 = Fewer.Than.100,
 At.Least.110 = At.Least.110,
 Between.90.110 = Between.90.110
), 4)
```

Probability Histogram for X = Number of 1s in 10 Dice Rolls


```
RollDice(10, 100000)
x relative_frequency
               0.16065
 0
               0.32671
1
 2
               0.28947
 3
               0.15379
               0.05455
 5
               0.01236
               0.00222
 6
7
               0.00019
8
               0.00006
 9
               0.00000
10
               0.00000
```

Probability Histogram for X = Number of 1s in 10 Dice Rolls (rbinom)

> RollDiceBinom(10, 100000)		
x relative frequency		
0	0.15914	
1	0.32427	
2	0.29137	
3	0.15606	
4	0.05378	
5	0.01293	
6	0.00210	
7	0.00034	
8	0.00001	
9	0.00000	
10	0.00000	

Q3

а

```
> c(mu = mu, sigma = sigma)
mu sigma
26.000000 4.756049
```

b

```
> Left.Sample.Prop(200, 0.130)
[1] 0.14
```

С

Distribution of p-hat


```
> Dist.Left.Sample.Prop(200, 0.130, 10^5)
[1] 0.1301362
[1] 0.02378384
```

Relative Frequency of xbar (n.dice=1, m.trials=10000)


```
> DiceMeans(1, 10000)
    mu_xbar sigma_xbar
3.506400 1.707528
```

Relative Frequency of xbar (n.dice=2, m.trials=10000)

> DiceMeans(2, 10000)
 mu_xbar sigma_xbar
 3.507400 1.206562

Relative Frequency of xbar (n.dice=10, m.trials=10000)

> DiceMeans(10, 10000)
 mu_xbar sigma_xbar
3.4919500 0.5400568

Relative Frequency of xbar (n.dice=50, m.trials=10000)

> DiceMeans(50, 10000)
 mu_xbar sigma_xbar
3.4920680 0.2392131


```
> DiceMeans(100, 10000)
mu_xbar sigma_xbar
3.4978390 0.1702555
```

The mean remains approximately stable around 3.5, and the standard deviation decreases as n increases.

As n increases, the bars become more concentrated around 3.5, the distribution becomes more symmetric, and it approaches a normal distribution.