

TK1100

Forelesning 0x09:

Nettverkslaget

Westerdals Er det noe galt her?

Wireless LAN adapter WLANUSB:

Connection-specific DNS Suffix .: ad.nith.no Description : D-Link DWA-140 Wireless N USB Adapter(rev.B3) Physical Address. : B8-A3-86-90-50-E8 DHCP Enabled....: Yes Autoconfiguration Enabled : Yes Link-local IPv6 Address : fe80::50e5:40ff:6794:1d5a%16 (Preferred) IPv4 Address. : 10.21.28.228 (Preferred) Subnet Mask : 255.255.252.0 Lease Obtained. : 6. november 2013 15:25:30 Lease Expires : 6. november 2013 23:25:30 Default Gateway : 10.21.24.1 DHCP Server : 1.1.1.1 DHCPv6 IAID : 548971398 DHCPv6 Client DUID. : 00-01-00-01-14-6A-F2-0B-D8-D3-85-77-A0-3F DNS Servers : 158.36.131.10 Primary WINS Server : 158.36.131.10 NetBIOS over Tcpip. : Enabled

Westerdals Dagsorden

- Nettlagets oppgaver
 - Prefix-/datagram-svitsjing på nettlagsnivå
- IPv4
 - headeren
 - IP-adresser og prefix-routing
 - IP fragmentering
 - Litt om DHCP
- ICMP
- NAT
- IPv6
- Litt om AS og routing i LAN, WAN og stamnett

Westerdals Nettverkslaget

- Flytter pakker fra avsender til mottaker
- Nettverks-protokoll også på hver mellomlanding
- Routing fra avsender til mottaker
- Switching av pakker fra routers input-side til routers output-side
- Hvis nødvendig defineres router kall oppsett for hele ruten før pakke sendes

Westerdals Virtuell forbindelse (VC)

- Ligner mye på en telefon-forbindelse
- Må etablere en forbindelse (rute) først
- Hver pakke inneholder forbindelsens rute-ID
- Hver router (mellomlanding) opprettholder tilstanden for hver rute
 - Transport-laget ser bare hver ende av en rute
- Data overføres når ruten er etablert
- Ruten blir "revet ned" når overføringen er ferdig

Datagram nettverk (Internett)

- Ikke noe forhånds-oppsett på nettverklags-nivå
- Routerne bryr seg ikke om rutens tilstand
 - Tilstandsløse routere
- Pakkene rutes ut fra mottaker-ID
 - Pakkene mellom samme avsender og mottaker kan følge forskjellige ruter

Westerdals Forwardingtabell: eksempel

4 Gi mulige adresser

Adresseområde for mottager	Link interface
11001000 00010111 00010000 000000000 til 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 til 11001000 00010111 00011000 111111111	1
11001000 00010111 00011001 00000000 til 11001000 00010111 00011111 11111111	2
ellers	3

Longest prefix matching"

route print

```
C:\WINDOWS\system32\cmd.exe
C:∖>route print
Grensesnittliste
                          ..... MS TCP Loopback interface
   ....00 13 72 94 ff 78 ..... Broadcom NetXtreme 57xx Gigabit Controller - Min
 port for pakkeplanlegger
Aktive ruter:
Nettverksmål
               Nettverksmaske
                                         Gateway
                                                     Grensesnitt Metrikk
                                            10.21.4.1
                                                            10.21.5.94
                                                                              20
          0.0.0.0
                            0.0.0.0
                      255.255.252.0
                                                                              20
        10.21.4.0
                                           10.21.5.94
                                                            10.21.5.94
                   255.255.255.255
                                            127.0.0.1
   10.255.255.255
                    255.255.255.255
        127.0.0.0
                        255.255.И.И
                                                                              30
      169.254.0.0
        224.0.0.0
                          240.0.
  255.255.255.255
                   255.255.255.255
                                           10.21.5.94
|Std. gateway:
|Faste ruter:
  Ingen
```

Kan også bruke netstat -r

Westerdals Køing på utgående port

 Data kan gå tapt i køen hvis bufferet ikke er stort nok

ROUTING I STAMNETTET

Westerdals Internett nettverkslaget

Westerdals Routing GRAZI Review Rev

- Routing handler om å sette opp en routingtabell for hver enkelt router
- Tabellen angir hvilket interface et datagram skal videresendes ut av
- Alle host-maskiner har routingtabeller, men de er små
- Routere i stamnettet har tabeller med ~200000 linjer!
 - Hver linje er et IP-nettverk som routeren har funnet en billigste vei til

Westerdals Hierarkisk ruting Maker Totals Maker Totals Maker Totals Maker Totals Maker Totals

- Internett er stort og komplekst
- Internett = nettverk av nettverk
- Deler routerene i regioner
 - Autonome systemer (AS)
- Routere i samme AS kjører samme routing-protokoll (intra-AS protokoll)
- Gateway utfører inter-AS routing mellom ulike AS
 - Bruker BGP som routingprotokoll

Intra-AS og Inter-AS ruting

Westerdals Internett AS hierarki

Westerdals Intra-AS ruting

- Også kalt Interior Gateway Protocols (IGP)
- Vanligst forekommende er
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)
 - Interior Gateway Routing Protocol (IGRP)
 - Cisco proprietær
 - EIGRP videreutvikling av IGRP
- Implemenetert i programmer på routerene
 - Utveksler routing-informasjon med andre routere innenfor AS/WAN

Westerdals Internett inter-AS ruting

- Border Gateway Protocol (BGPv4) er standarden på Internett
- Ruter også ut fra AS-Nummer
- Bruker Path Vector protokoll
 - Finner billigste vei ut fra «nabosladder»
 - Lagrer «AS-ruten» (path) til mottaker

BGP - Border Gateway Protokoll

- Når gateway X sender sitt rute-forslag til node Z over til gateway Y, kan følgende skje:
 - Ruten godtas ikke (kostnad, politikk, pålitelighet...)
 - Ruten godtas og brukes deretter fra Y til Z
 - Y sender sin oppdaterte rute-kostnad til sine «andre naboer»
- Bruker TCP mellom routerne.
- 4 typer meldinger
 - OPEN: Åpner TCP forbindelse og bekrefter avsender
 - UPDATE: Åpner ny rute eller lukker en gammel
 - KEEPALIVE: Holder liv i forbindelsen uten UPDATE
 - NOTIFICATION: Sender feilmelding. Lukker forbindelse

well-vorfor benyttes forskjellig Intra- og Inter-AS ruting?

Policy

- Inter-AS: Ønsker kontroll over routingen mellom områdene; må ta hensyn til peering-avtaler og priser
- Intra-AS: Enhetlig kontroll av rutingen innen området; primært ute etter effektivitet og lastbalansering

Skala

 Hierarkisk ruting sparer tabell-plass og reduserer oppdaterings-mengden

Ytelse

- Inter-AS: Policy kan være viktigere enn ytelse
- Intra-AS: Fokuserer (oftest) på ytelse

Westerdals Looking glass routere

 Noen «snille» firma lar deg se stamnettroutere fra «innsiden» f.eks. http://lg.he.net

TOTOCOL V4

Westerdals Internett nettverkslaget

IPv4 adressering

- IPv4 adresse: 32-bit
 «id» for hver
 vertsmaskin og router
 interface (adapter)
- En vertsmaskin kan ha flere interface
- En router har vanligvis flere forbindelser, med hver sin interface
- IP-adresse hører til hvert interface

ipconfig (ifconfig)

 ipconfig viser nettverksparametrene for interfacene/adapterene

IPv4-adressen &Nettmaske = Nettverksprefix som det routes ut fra; Std Gateway = veien ut i Internett

Teknikker for å sende IPv6 gjennom IPv4 nettverk

Westerdals IP adresser: klasser og CIDR

- Opprinnelig delt opp i 6 forskjellige klasser med hver sin forhåndsdefinerte prefixlengde
- Klasseinndeling av adresser ble for "stivt"
 - En klasse kan risikere å inneholde (mange) ubrukte adresser
- Klasse A, B, C er vanlige addresser, D er multicast, E er reservert for research, og 127.* er en reservert «klasse» for loopback
- Classless Inter-Domain Routing (CIDR)
 - Nettverks-delen har vilkårlig lengde, x
 - Format a.b.c.d/x

200.23.16.0 /23

Westerdals IPv4 adresser: tildeling

- For vertsmaskiner i LAN
 - Kan settes manuelt/statisk
 - Dynamic Host Configuration Protocol(DHCP)
- For nettverk
 - Får tildelt sin del av ISP sitt tildelte adresserom
- For Internet Service Provider (ISP)
 - Internasjonalt organ (ICANN) tildeler adresser, styrer DNS, tildeler domenenavn og løser tvister
 - "Kontinent-registraren": RIPE deler ut IP-adresser og AS-nummer til Europa m.fl.

Dynamic Host Configuration Protocol

- Hver DHCP-tjener har et sett med mulige adresser (pool)
- Setter adressen dynamisk med "plug-and-play"
- Vertsmaskin sender: DHCP discover
- DHCP tjener svarer: DHCP offer
- Vertsmaskin sender: DHCP request
- DHCP tjener sender: IP-adresse og andre nettverks-paramerte (f.eks. DNS-tjener) + DHCP ack
- Vertsmaskin settes opp med disse verdiene

Westerdals DHCP

- Hvordan vet DHCP-serveren hvor den skal sende dine nettverksparametere (IP, nettmaske, std gw, DNS m.m.)?
 - Din maskin kringkaster (MAC-adresse: FF-FF-FF-FF-FF) den første forespørselen i LANet
 - Dersom det finnes en DHCP-server der, så svarer den med et tilbud om IP m.m.
 - Resten kan da foregå på Nettverkslaget
 - Setter en periode du «leaser» parameterene for
 - Må fornyes når leasen går ut.

Datagram fra avsender til mottaker

Avsender A, mottaker E

- Finn nettverksadresse til E
- E på annet nettverk
 - A, E ikke direkte forbundet
- Ruting tabell: neste hopp router til E er 223.1.1.4
- Link laget sender datagram til router 223.1.1.4 i link-lagets ramme
- Datagram ankommer 223.1.1.4
- E på samme nettverk som 223.1.2.9
- Datagram sendes til 223.1.2.2

ulike	Kilde	mottag	4 - 4 -
felt	IP addr	IP addr	data

Westerdals IPv4 datagram-format

Nettmaske

- Nettmasken angir hvilke bit som er PREFIX og hvilke som er HOST
- En nettmaske er en bitmaske anvendt på en IPadresse
 - Adresse 192.168.14.181, maske 255.255.0.0

192.168.14.181 <u>AND 255.255.0.0</u> = 192.168.0.0

Wester IP-Nettverk

- Maskiner/adaptere må tilhøre samme IPnettverk for å kunne sende direkte til hverandre
 - 10.21.3.5 / 255.255.254.0 kan sende direkte til 10.21.2.255 / 255.255.254.0
 - 10.21.3.5 / 255.255.255.0 må sende via gateway
 (router) for å nå 10.21.2.255 / 255.255.255.0
- Prefixen bestemmes av IP-adressen og nettmasken, og det er denne som bestemmer om man tilhører samme IP-nett eller ikke.

Westerdals IP-adressering: CIDR

"Classfull" adressering (A, B, C, D, ..):

- ineffektiv bruk av adresserom, går fort tom for ledige adresser
- f. eks: et klasse B nett har nok adresser til 65 000 maskiner, selv om det kun er f. eks. 2000 maskiner i nettet

CIDR: Classless InterDomain Routing

- Nettverksdel (prefix) av adressen er av vilkårlig lengde
- adresseformat: a.b.c.d/x, hvor x er antall bit i nettverks-delen av adressen

200.23.16.0/23

Westerdals Ex: Hvilket nettverk?

 10.21.26.184 med nettmaske 255.255.252.0 tilhører hvilket nettverk?

```
10 . 21.0001 10 10.1011 1000
& 255.255.1111 11 00.000 0000
 10 . 21.0001 10 00.0000 0000
  22 bit til prefix, 10 bit til host
```

Nettverket er 10.21.24.0/22 Laveste adresse er 10.21.24.1 Broadcast er 10.21.27.255 alle host-bit satt til 1!!!

Spesielle IP-adresser

- Noen IP-adresser er reservert for spesiell bruk
 - Private adresser
 - Dokumentasjon
 - Selv-konfigurering
 - Kringkasting
 - Multicast
 - Nettverksadresse (hele lokale IP-nett)
 - Midlertidig adressering
 - Loopback (meg selv)
- Se RFC 1166

Spesielle IP-adresser (2)

- Private adresser brukes bare innenfor et WAN
 - kan ikke routes utenfor LAN/WAN
 - droppes automatisk av Internett-routere
- Gir fleksibilitet for organisasjoner internt
- Samme adresse kan også ha ekstern IP (NAT)

IPv4 adresser	Nettverk
10 .0.0.0 – 10.255.255.255	1 klasse A nettverk
172.16.0.0 - 172.31.255.255	16 klasse B nettverk
192.168 .0.0 – 192.168.255.255	65536 klasse C nettverk

RFC 1918

Spesielle IP-adresser (3)

- I dokumentasjon skal man bruke adresser som ikke benyttes noe annet sted
 - 192.0.**2**.0/24
 - -198.51.100.0/24
 - -203.0.113.0/24
- Ved selv-konfigurering av IP-adresse kan det hende at DHCP-serveren er utilgjengelig.
 - bruker da en «automatisk», spesiell adresse:
 - **169.254.1.0 169.254.254.254** (/16)
 - Disse er heller ikke route-bare
 - Oftest kan disse tolkes som at det er problemer med å få kontakt med DHCP-server, eller at du ikke har tilgang til LAN

Broadcast

- Ved kringkasting (generell spørring etter en tjeneste) kan man adressere enten det lokale adresserommet (subnettet) eller hele IP-nettverket
- Begrenset kringkasting
 - -255.255.255.255
- Nettverks-kringkasting

- 192.0.2.235/24 vil bruke 192.0.2.255
- 192.0.2.5/27 vil bruke 192.0.2.31
- 1100000000000000000000001000011111

Spesielle IP-adresser (5)

- Multicast er det samme som kringkasting begrenset til en gruppe noder i en liste (som ligger på router)
 - -224.0.0.0 239.255.255.255

Spesielle IP-adresser

- Ved booting kan en maskin identifisere seg med en midlertidig adresse
 - -0.0.0.0 (default route)
- Loopback betyr å adressere seg selv
 - -127.0.0.1
 - På mange systemer brukes 127.0.0.0/8

There's no place like 127.0.0.1

Subnett

IP-adresser – to deler:

- subnettdel (mest signifikante bits, bits i venstre ende)
- maskindel (minst signifikante bits, bits i høyre ende)

Hva er et subnett?

- grensesnitt med lik subnettdel av IP-adressen
- kan nå hverandre fysisk uten å gå via ruter

nettverk bestående av 3 IP-nett

Westerdals Subnett

Oppskrift

- For å finne subnettene, koble hvert interface fra sin maskin eller ruter slik at vi får øyer av isolerte nett. Hvert isolerte nett kalles da et subnett.
- Maskiner på ulike subnett må da ha en router i mellom for å få kontakt med hverandre

223.1.3.0/24

Subnett-maske: /24

Subnett

223.1.1.2

- Hvor mange subnett?
 - 3 subnett/lokalnett
 - Routerne har interface i to forskjellige IP-nett
 - 3 "linknett" som kopler sammen de tre subnettene
 - 6 ulike lp-nett/subnett

223.1.2.1

Westerdals IP fragmentering

- Nettverk har begrensning på pakke-størrelsen, Maximum Transfer Unit (MTU)
 - Alle routere må minimum takle 576 byte MTU, så det har blitt defacto pakkestørrelse
 - De fleste routere har MTU 1500 bytes (inkl ethernet header, IP header, TCP header, osv)
- Store datagrammer deles opp i mindre, selvstendige men sammenhengende datagrammer
 - Fragmenterings-flagg
 - Offset
- Settes sammen hos mottaker
 - Feiler en, feiler alle
 - TCP resender hele datagrammet

Westerdals IP fragmentering

Internet Control Message Protocol

Westerd CMP - Internet Control Message Protocol

- Brukes av host, router og gateway
 - Feil-rapportering
 - Ekko forespørsel/svar (ping)
- Nettverkslag "over" IP
 - ICMP multiplekses med datagrammet
- ICMP-melding
 - Type, kode og første 8 byte i datagrammet med feilen
- ping og tracert utnytter ofte ICMP

Туре	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

tracert / traceroute

- Applikasjon som setter TTL feltet i IPheaderen først til 1, så 2, så 3 osv.
- Utløser da ICMP tilbakemelding type 11 fra hver router langs veien
- Nyttig til å sjekke hvor på ruten forsinkelser/problem kan ha oppstått

```
~->traceroute google.com
traceroute to google.com (173.194.32.51), 30 hops max, 60 byte packets
1 stolav-gw4.uninett.no (158.36.84.169) 1.990 ms 1.947 ms 2.133 ms
2 stolav-gw2.uninett.no (128.39.230.137) 2.118 ms 2.102 ms 2.187 ms
3 dk-uni.nordu.net (109.105.102.25) 10.464 ms 10.453 ms 10.442 ms
4 se-tug.nordu.net (109.105.97.9) 18.141 ms 18.129 ms 18.114 ms
5 se-tug2.nordu.net (109.105.97.18) 18.100 ms 18.089 ms 18.074 ms
6 google-gw.nordu.net (109.105.98.6) 18.059 ms 17.214 ms 17.207 ms
7 216.239.43.122 (216.239.43.122) 17.770 ms 17.751 ms 17.747 ms
8 216.239.43.255 (216.239.43.255) 18.858 ms 18.854 ms 18.850 ms
9 arn06s02-in-f19.1e100.net (173.194.32.51) 17.992 ms 18.352 ms 18.335 ms
```


- Sender en ICMP-ekkopakke til adressen man spesifiserer
- Nyttig til å sjekke om IP-adressen finnes og er mulig å nå.

```
~->ping vg.no
 PING vg.no (195.88.55.16) 56(84) bytes of data.
 64 bytes from www.vq.no (195.88.55.16): icmp req=1 ttl=251 time=0.801 ms
 64 bytes from www.vq.no (195.88.55.16): icmp req=2 ttl=251 time=0.817 ms
 64 bytes from www.vq.no (195.88.55.16): icmp req=3 ttl=251 time=0.824 ms
 ^C
 --- vg.no ping statistics ---
 3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 0.801/0.814/0.824/0.009 ms
C:\>ping vg.no
Pinging vg.no [2001:67c:21e0::16] with 32 bytes of data: Reply from 2001:67c:21e0::16: time<1ms Reply from 2001:67c:21e0::16: time<1ms Reply from 2001:67c:21e0::16: time<1ms Reply from 2001:67c:21e0::16: time<1ms Reply from 2001:67c:21e0::16: time<1ms
Ping_statistics for 2001:67c:21e0::16:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
```


ETWORK ADDRESS

TRANSLATION

NAT: Network Address Translation

- Hvorfor?: LANet har kun en/noen få IP-adresse fra Internetts perspektiv:
- ISP slipper å tildele et adresseområde:
 - kun en/noen få IP-addresse(r) for en hel organisasjons nett
- Kan endre adresser innenfor LAN uten å måtte informere omverdenen om det
- Kan skifte ISP uten å måtte endre adresser i LANet
- Utstyr i LANet er direkte adresserbare eller synlige for utenforstående (bedre sikkerhet)

NAT: Network Address Translation

Alle datagram som forlater LAN har samme avsender IP addresse: f.eks. 138.76.29.7, Ulike avsender-portnummer

N Datagram avsender eller mottager innenfor dette nettverket har 10.0.0/24 addresse for kilde, mål (som vanlig) Bruker (typisk) PRIVATE ADRESSER (10.x.x.x, 192.168.x.x,..)

NAT: Network Address Translation

Westerdals NAT: Network Address Translation

Implementasjon:

NAT-router:

- utgående datagrammer: erstatte avsender IP-adresse og portnummer med NAT IP-adresse og nytt portnummer
 - . . . maskiner som svarer vil da bruke NAT IP-adresse og det nye portnummer som mottager-adresse.
- huske (i NAT translasjonstabell) hvert (avsender IP-adresse, portnummer) til (NAT IP-adresse, nytt portnummer) oversettelsepar
- innkommende datagrammer: erstatte NAT IP-adresse og det nye portnummeret i mottagerfelter med de korresponderende avsender IP-adresse og portnummer lagret i NAT-tabell

NAT traversering problemet

- Ekstern klient vil til server med adresse 10.0.0.4
 - server addressen 10.0.0.4 er lokal på LANet (klienten kan ikke bruke den som mottageradresse)
 - Bare en eksternt synlig NATet adresse: 138.76.29.7
- løsning 1: statisk konfigurere NAT til å vidersende innkommende forbindelseforespørsler til en bestemt port på serveren
 - F,eks,, (123.76.29.7, port 2500) alltid til 10.0.0.4 port 25000

NAT traversal problem

- Løsning 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) protokoll. Tillater NATet maskin å:
 - lære offentlig IP adresse (138.76.29.7)
 - Legge til/fjerne
 portkartlegginger (med
 lease tider) på router

mao, automatiser statisk NAT "port map configuration"

NAT traversal problem

- Løsning 3: relaying (f.eks. Skype)
 - NATet klient etablert forbindelse til relay
 - Extern klient oppretter forbindelse til relay
 - relay videresender pakker mellom to forbindelser

Finne din eksterne IP

INTERNET PROTOCOL V 6

Westerdals IPv4 \rightarrow IPv6

- Den kolossale veksten av Internett krever stadig flere adresser
- 3. Feb. 2011 ble de siste IPv4 adresseblokkene tildelt Verdensdel-registratene!
- IPv6 øker adressefeltet fra 32 til 128 bit
- Forenkler header-format
 - Fjerner mulighet for fragmentering
 - Fjerner sjekksummen
- Forenkler adressering og data-flyt
- Fast lengde på header = 40 byte

Westerdals IPv6 header

- Version: 0110
- Traffic Class
 - Prioritering innad i en datastrøm
- Flow Label
 - QoS
 - Sikre diffrensiering i tjenestekvalitet
 - Noe uklart definert variabel routerstøtte
- Payload length
 - Antall byte med nyttelast
- Next Header
 - Protokoll på nivået over i stacken (UDP, TCP, ...?)
 - Kan/vil også være Header-utvidelser slik som IPSec
- Hop Limit
 - Tilsvarer TTL slik det ble praktisert IPv4
- DATA

Westerdals Overgang fra IPv4 til IPv6

- Umulig å oppgradere alle routere samtidig
- Overgangsperiode hvor begge typer routere må kunne operere sammen
- To (tre) løsninger er i bruk
 - Dual stack
 - Routeren forstår begge protokoller og oversetter mellom disse
 - NAT64/DNS64, (SLAAC)
 - Tunneling
 - En IPv4 router behandler IPv6 datagram som data og slipper datagrammet urørt igjennom (innpakket i IPv4)
 - 6in4, 6rd, Teredo, ISATAP

Westerdals Dual stack

Westerdals Tunneling That The Total Addition of the Total Additio

O N

Westerdals IPv6 notasjon

- 128 bit (16 Byte) blir skrevet hexadesimalt i 8 grupper på 2 byte
- IPCONFIG /all gir f.eks.:

Ethernet-kort ethØ:

```
Tilkoblingsspesifikt DNS-suffiks : oslo.nith.no
                                   Intel(R) PRO/1000 PL Network Connecti
Reskrivelse
                                   00-0E-7B-98-F8-A1
Fysisk adresse
DHCP aktivert.
Automatisk konfigurasjon aktivert: Ja
IP-adresse
Nettverksmaske
                                    fe80::20e:7bff:fe98:f8a125
IP-adresse
Standard gateway . . 🗸
DHCP-server.
```

- %5 er Win-adapternr. (ikke egentlig del av standarden)
- fe80::=fe80:0000:0000:0000 = nettprefix
- :: er minimum fire nuller, her 12 ut fra resten av adressen
- 020e:7bff:fe98:f8a1 er basert på MAC-adressen

Westerdals IPv6 Notasjon

- Bruker CIDR for å angi nettverksprefix
- Noen spesielle adresser
 - :: /128 tilsvarer 0.0.0.0 og brukes ikke annet enn internt på node
 - ::1 tilsvarer 127.0.0.1 (localhost)
- 2000::/3 er Global Unicast (~»Vanlig Internett»)
 - 2001::/32 tildeles ISPer som typisk deler ut /48 og /64 nett til kunder
 - 2002::/16 vil bli "gamle internett" (IANA)
 - 6to4 -- Allokert til RIPE o.l.
 - 2001:db8::/32 benyttes i dokumentasjon
 - Merk: innledende null skrives ikke
 - fe80: /64 er en local link adresse. Tilsvarer på mange måter 169.254.X.X adresser (tas dersom IPv6-kapabel router ikke er tilgjenglig)
 - ::ffff:/96 benyttes på IPv4-overgangsadresser, som får formatet: ::ffff:192.0.2.114

TYPER ADRESSER

- Broadcast videreføres ikke fra v4
 - Bruker multicast i stedet.
- Tre typer adresser
 - Unicast
 - Enkeltadresse
 - Anycast
 - Første som tar mot
 - Bestemmes av router
 - Multicast
 - Til en forhåndsdefinert gruppe (site)
 - Format: FF00::/8 (F.eks. FF02::1 alle noder på samme link)
 - Bruker MLD (Multicast Listener Discovery) og ND (Neighbour Discovery) protokollene.

- ARP skal bort
- DHCP trengs ikke lenger
 - men DHCPv6 kan brukes til å dele ut DNS-server og i administrerte nettverk (LAN/WAN)
 - Erstattes av IPv6 meldingsutveksling for å finne gateway som tildeler scope:globale adresse basert på MAC-adresse
- Ny ICMPv6
 - Kan «erstatte» DHCP-oppsett av router o.l.
 - Mange nye typer meldinger.
- Nye versjoner av RIP, OSPF og andre routing-protokoller.

- StateLess Address AutoConfiguration
 - Skal automatisk sette opp IPv6 nettet for deg.
- Typisk for bruk i lokal- og hjemme-nettverk med IPv6-kapabel router og ISP som tilbyr IPv6
- Bruker ICMPv6 til å finne router
 - får tildelt IPv6 adresse og andre parmetere av routeren

Westerdals Ipconfig /all (ifconfig -l) «forteller»

Wireless LAN adapter WLANUSB:

```
Connection-specific DNS Suffix . : ad.nith.no
Description . . . . . . . . . . . . . . . . D-Link DWA-140 Wireless N USB Adapter(rev.B3)
DHCP Enabled. . . . . . . . . . Yes
Autoconfiguration Enabled . . . . : Yes
Link-local IPv6 Address . . . . : fe80::50e5:40ff:6794:1d5a%16(Preferred)
IPv4 Address. . . . . . . . . . . . . . . . . 10.21.26.56(Preferred)
Lease Obtained. . . . . . . . : 19. november 2013 14:29:14
Lease Expires . . . . . . . . : 19. november 2013 22:29:14
Default Gateway . . . . . . . : 10.21.24.1
DHCP Server . . . . . . . . . : 1.1.1.1
DHCPv6 IAID . . . . . . . . . . . . . . . 548971398
DHCPv6 Client DUID. . . . . . . : 00-01-00-01-14-6A-F2-0B-D8-D3-85-77-A0-3F
DNS Servers . . . . . . . . . . . . . . . . . 158.36.131.10
Primary WINS Server . . . . . : 158.36.131.10
NetBIOS over Tcpip. . . . . . : Enabled
```

Tunnel adapter Teredo Tunneling Pseudo-Interface:

Media State		: Media disconnected
Connection-specific DNS Suf	fix	:
Description		: Teredo Tunneling Pseudo-Interface
Physical Address		: 00-00-00-00-00-00-E0
DHCP Enabled		: No
Autoconfiguration Enabled .		: Yes

Westerdals IPv6 i virkeligheten

- I Windows, OSX og Linux (kernel 2.6.x) er IPv6 en del av "standardpakken"
- I Vista, Win7&8 er IPv6 aktivert pr default, OSX (Free BSD) også aktivert som "default" siden 10.4 (?)
- I realiteten må man basere seg på tunneling gjennom IPv4 og en god del håndarbeid.
 - Det kommer (kanskje) ikke til å vare (veldig..) lenge...
 - uPnP er gira mot IPv6 f.eks.

Westerdals IPv6 problemer pr d.d.

- Tunneling ved 6in4 viser seg å stoppes av mange brannmurer fordi den legger en ny versjonskode (41) inn i IPv4-headeren
- Bare et fåtall nettverksadministratorer kan særlig mye om IPv6.
- Mange ISPer har ikke gjort noen forberedelser i det hele tatt...
- Kun få år siden DNS AAAA-records ble tilgjenglige i root-servere
- Mange applikasjoner klarer ikke å håndtere annet enn IPv4 sockets
- +++

OPPSUMMERING

Westerdals Skal nå kunne?

- Forklare hvordan prefix-routing foregår
- Forklare hva en IPv4 adresse og nettmaske er
- Finne ut hvilket IP-nett en gitt IP-adresse tilhører, og beregne broadcast-adressen
- Vite viktigste forskjeller på IPv4 og v6
- Kjenne igjen localhost, private og selvkonfigurerte adresser (IPv4)
- Forklare rollen til Standard Gateway

Westerdals Skal nå kunne?

- Beskrive virkemåten til DHCP
- Beskrive virkemåten til NAT (NAT/PAT)
- Forklare rollen til routere og routing-tabeller
- Kjenne til at routing i stamnettet er hierarkisk og foregår med BGP routing-protokollen
 - Forklare hva et AS og AS-nummer er.
- bruke ipconfig (ifconfig), ping, tracert (traceroute) og netstat -r (route print)