COMPARACIÓN DE DIVERSOS TAMAÑOS DE BLOQUE Y TILING EN UN ALGORITMO DE MULTIPLICACIÓN DE MATRICES

Diego Steven Mejía Herrera Cod.: 9861433

HPC

UNIVERSIDAD TECNOLÓGICA DE PEREIRA INGENIERÍA DE SISTEMAS Y COMPUTACIÓN 2015

Algoritmo secuencial con diferentes tamaños de datos enteros y bloques

El tamaño del bloque no afectó el desempeño del algoritmo secuencial.

		М	N
Secuencial 4 bloques	0,4979062	512	256
Secuencial 4 bloques	3,9641292	1024	512
Secuencial 4 bloques	113,3979924	2048	1024

Tiempo Algoritmo secuencial bloque 4x4

Secuencial 4 bloques	Secuencial 4 bloques	Secuencial 4 bloques

		М	N
Secuencial 16 bloques	0,5000582	512	256
Secuencial 16 bloques	3,9924286	1024	512
Secuencial 16 bloques	113,2746582	2048	1024

		М	N
Secuencial 32 bloques	0,5020568	512	256
Secuencial 32 bloques	4,1304016	1024	512
Secuencial 32 bloques	112,5295464	2048	1024

Tiempo algoritmo secuencial con bloque 32x32

Algoritmo paralelo con diversos tamaños de bloque y set de datos enteros

	4X4	М	N
Paralelo 4 bloques	0,2223718	512	256
Paralelo 4 bloques	0,1540782	1024	512
Paralelo 4 bloques	0,2744734	2048	1024
	16x16		
Paralelo 16 bloques	0,1326094	512	256
Paralelo 16 bloques	0,1480408	1024	512
Paralelo 16 bloques	0,1807034	2048	1024
	32x32		
Paralelo 32 bloques	0,0023028	512	256
Paralelo 32 bloques	0,011037	1024	512
Paralelo 32 bloques	0,0720556	2048	1024

Algoritmo paralelo con diversos tamaños de tiling y set de datos enteros

	Tiling 4	М	N
Paralelo tiling 4	0,00226	512	256
Paralelo tiling 4	0,003178	1024	512
Paralelo tiling 4	0,2141758	2048	1024
	Tiling 16		
Paralelo tiling 16	0,0024692	512	256
Paralelo tiling 16	0,003934	1024	512
Paralelo tiling 16	0,2682676	2048	1024
	Tiling 32		
Paralelo tiling 32	0,0023028	512	256
Paralelo tiling 32	0,011037	1024	512
Paralelo tiling 32	0,0720556	2048	1024
	Sin tiling		
Paralelo sin tiling	0,0204872	512	256
Paralelo sin tiling	0,025159	1024	512
Paralelo sin tiling	0,1876418	2048	1024

Algoritmo secuencial con diferentes tamaños de datos flotantes

El comportamiento es similar al ocurrido con los datos enteros, por tal motivo se pone una sola gráfica.

	Float	М	N
Secuencial Flotante	0,5160778	512	256
Secuencial Flotante	4,022103	1024	512
Secuencial Flotante	113,720956	2048	1024
	Entero		
Secuencial Entero	0,4979062	512	256
Secuencial Entero	3,9641292	1024	512
Secuencial Entero	113,3979924	2048	1024

Entero VS float secuencial

Algoritmo paralelo con diversos tamaños de bloque y set de datos flotantes

	4X4	С	N
Paralelo 4 bloques	0,1167848	512	256
Paralelo 4 bloques	0,2178952	1024	512
Paralelo 4 bloques	0,1806714	2048	1024
	16x16		
Paralelo 16 bloques	0,097124	512	256
Paralelo 16 bloques	0,1660066	1024	512
Paralelo 16 bloques	0,3201598	2048	1024
	32x32		
Paralelo 32 bloques	0,001867	512	256
Paralelo 32 bloques	0,0092264	1024	512
Paralelo 32 bloques	0,0554254	2048	1024

Algoritmo paralelo con diversos tamaños de tiling y set de datos enteros

	Tiling 4	М	N
Paralelo tiling 4	0,0021592	512	256
Paralelo tiling 4	0,0037034	1024	512
Paralelo tiling 4	0,0074332	2048	1024
	Tiling 16		
Paralelo tiling 16	0,0022712	512	256
Paralelo tiling 16	0,0034222	1024	512
Paralelo tiling 16	0,007166	2048	1024
	Tiling 32		
Paralelo tiling 32	0,0023028	512	256
Paralelo tiling 32	0,0092264	1024	512
Paralelo tiling 32	0,001867	2048	1024
	Sin tiling		
Paralelo sin tiling	0,0034736	512	256
Paralelo sin tiling	0,0204872	1024	512
Paralelo sin tiling	0,0201864	2048	1024

Algoritmo paralelo con variación de tiling

CONCLUSIONES

 Los datos flotantes tomaron casi el mismo tiempo en procesarse que los datos enteros, sin embargo, a la hora de comparar los datos de aceleración se nota como el algoritmo acelera más cuando se trata de datos enteros, tal cual se puede apreciar en la siguiente tabla:

DATOS FLOTANTES

ACELERACIÓN CON TILING 4	238,8
ACELERACIÓN CON TILING 16	228,4
ACELERACIÓN CON TILING 32	277,0
ACELERACIÓN SIN TILING	148,0

DATOS ENTEROS

ACELERACIÓN CON TILING 4	524,5
ACELERACIÓN CON TILING 16	419,1
ACELERACIÓN CON TILING 32	1561,7
ACELERACIÓN SIN TILING	596,8

- El tamaño del bloque influye directamente proporcional en la velocidad de procesamiento. Sin embargo con un tamaño de 4 y 16 de bloque la velocidad es considerablemente similar. Por otro lado, un tamaño de 32 acelera fuertemente la ejecución del algoritmo, ante todo si se tratan set de datos muy grandes.
- El tamaño del tiling tiene una incidencia interesante en los datos. Cuando se tratan set de datos pequeños un tiling pequeño (4 o 16) puede tener mayor eficiencia que un tiling de 32. Sin embargo, cuando el set de datos es considerablemente grande (más de 4 millones de datos) un tiling de 32 se comporta de manera mucho más eficiente que el de 4 o 16.
- El tiling incremente la eficiencia del algoritmo, en las gráficas se pudo observar que el desempeño del algoritmo sin tiling es inferior con todo set de datos.