Scientific Machine Learning (SciML) for Solving PDEs

(Case Studies: two-phase flow in porous media)

University of Campinas (Nov. 2024)

A part of INTPART project, supported by NCS2030 - National Centre for Sustainable Subsurface Utilization of the Norwegian Continental Shelf.

Contents

Day 1

Part 1: Scientific Machine Learning (SciML): Introduction and Recent Advances (1 hour)

Part 2: Physics-Informed Neural Networks (PINNs) (1.5 hours)

Day 2

Part 3: A Case Study: Inverse Calculations on Spontaneous Imbibition Experiments

Part 4: Hands-on Experience with PINNs (2.5 hours)

Inverse Calculations on Spontaneous Imbibition Experiments

APPLICATIONS | APRIL 10 2024

Application of Physics-Informed Neural Networks for Estimation of Saturation Functions from Countercurrent Spontaneous Imbibition Tests §

Journal Collections: Data Science & Engineering Analytics

Jassem Abbasi; Pål Østebø Andersen

SPE J. 29 (04): 1710–1729. Paper Number: SPE-218402-PA

https://doi.org/10.2118/218402-PA Article history

https://doi.org/10.2118/218402-PA

Spontaneous Imbibition

1D COUCSI

$$u_i = -\lambda_i [\partial_x p_i], \qquad \lambda_i = \frac{K k_{ri}}{\mu_i}, \qquad (i = w, nw),$$

NEGLECT: Viscous and Capillary Forces

Known Parameters							
Parameters	Value	Parameters	Value				
K	290 mD	μ_{w}	1.0 cP				
ϕ	0.225	μ_{nw}	2.3 cP				
S_{wr}	0.30	s_{nwr}	0.395				
s_{wi}	0.395	S_{eq}	0.999				
σ_{ow}	21 mN/m	$L^{'}$	0.1 m				
Correct Values of Unknown Parameters							
Parameters	Value	Parameters	Value				
k_{rw}^*	0.15	J_1	0.3				
k_{rnw}^*	0.35	J_2	0.03				
n_{w1}	6	n_{nw1}	2.0				
n_{w2}	2.5	n_{nw2}	0.5				

Model Architecture

A Comparison of Different Formulations

About Loss-landscapes: www.losslandscape.com/

Results of Inverse Calculations

Reference Solution: IORCoreSim (2023)

Unique Solution? Infinite Solutions?

• An ensemble with 20 members to explore the possible uncertainties in the calculations, with random initialization.

• There exists a wide range of k_r and J functions that can match the observed recovery data without coinciding with the correct curves

Types of Uncertainty

A qualitative breakdown of total uncertainty describing the contributions from:

- Data (noisy, gappy);
- Physical models (misspecification, stochasticity);
- Neural networks (architecture,
- Hyperparameters, overparametrization);
- Posterior inference

Incomplete Data (infinite-acting range)

- With more observational data (higher RF), the errors in the estimated curves reduced.
- If the observed recovery data are proportional with square root of time, there can be a large variation in CDCs explaining the observations.

Incomplete Data (finite-acting range)

 We recommend to measure recovery at least until the data are visibly deviating from the initial square root of time profile.

Impact of Noisy Data

 An increased uncertainty in the inverse calculation from increasing the measurement noises.

Multi-Fidelity Data (in-situ pressure)

 Utilizing the in-situ measurements helps in reducing the uncertainties in the predictions!

Full recovery curve with local capillary pressure data

Incomplete + In-situ Data

> combined utilization of RF and in-situ saturation data provide enough information within short time to accurately estimate the CDC curve (allows to significantly reduce laboratory test duration)

Real Experimental Data

- The produced volume of non-wetting phase (oil) versus time,
- 2. Pressure versus time at X = 1.0,
- 3. The local saturation versus time, at positions $X = \{0.2, 0.4, 0.6, 0.8, 1.0\}$.

Real Experimental Data

- > Access to a full recovery profile and detailed in situ saturation profiles can yield accurate predictions of the CDC
- > Noise/uncertainty in the data can be reflected in uncertainty in the estimated CDC function.

Observation	MNAAD in Λ		
Data	Experimental Case	Synthetic Case	
RF	0.062	0.042	
$RF + S + P_c$	0.087	0.028	

