KEY MANAGEMENT/DISTRIBUTION LECTURE 14

Cryptography

Key Management and Distribution

- Topics of cryptographic key management / key distribution are complex
 - cryptographic, protocol & management issues
- Symmetric schemes require both parties to share a common secret key
- Public key schemes require parties to acquire valid public keys

Key Distribution

- Symmetric schemes require both parties to share a common secret key
- Issue is how to securely distribute this key
 - whilst protecting it from others
- Frequent key changes can be desirable
- Often secure system failure due to a break in the key distribution scheme

Key Distribution Alternatives

- Given parties A and B have various key distribution alternatives:
 - ▶ A can select key and physically deliver to B
 - ▶ third party can select & deliver key to A & B
 - ▶ if A & B have communicated previously can use previous key to encrypt a new key
 - if A & B have secure communications with a third party C, C can relay key between A & B

Key Hierarchy

- Typically have a hierarchy of keys
- Session key
 - ▶ temporary key
 - used for encryption of data between users
 - for one logical session then discarded
- Master key
 - used to encrypt session keys
 - shared by user & key distribution center

Figure 14.3 Key Distribution Scenario

Key Distribution Issues

- Hierarchies of KDC's required for large networks, but must trust each other
- Session key lifetimes should be limited for greater security
- Use of automatic key distribution on behalf of users, but must trust system
- Use of decentralized key distribution
- Controlling key usage

Figure 14.4 Automatic Key Distribution for Connection-Oriented Protocol

Figure 14.5 Decentralized Key Distribution

Figure 14.6 Control Vector Encryption and Decryption

Secret Key Distribution

Distribution of Public Keys

- Can be considered as using one of:
 - public announcement
 - publicly available directory
 - public-key authority
 - ▶ public-key certificates (공인인증서)

Public Announcement

- Users distribute public keys to recipients or broadcast to community at large
 - e.g. append PGP keys to email messages or post to news groups or email list
- Major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

Public Announcement

Figure 14.10 Uncontrolled Public Key Distribution

Publicly Available Directory

- Can obtain greater security by registering keys with a public directory
- Directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- Still vulnerable to tampering or forgery

Publicly Available Directory

Figure 14.11 Public Key Publication

Public-Key Authority

- Improve security by tightening control over distribution of keys from directory
- Has properties of directory and requires users to know public key for the directory
- Then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed
 - may be vulnerable to tampering

Figure 14.12 Public-Key Distribution Scenario

Public-Key Certificates

- Certificates allow key exchange without real-time access to public-key authority
- A certificate binds identity to public key
- Usually with other info such as period of validity, rights of use etc
- With all contents signed by a trusted Public-Key or Certificate Authority (CA)
- Can be verified by anyone who knows the publickey authorities public-key

Figure 14.13 Exchange of Public-Key Certificates

X.509 Certificate

Certificate Extensions

- Key and policy information
 - convey info about subject & issuer keys, plus indicators of certificate policy
- Certificate subject and issuer attributes
 - support alternative names, in alternative formats for certificate subject and/or issuer
- Certificate path constraints
 - allow constraints on use of certificates by other CA's

X.509 Certificate Use

Certificate Revocation

- Certificates have a period of validity
- May need to revoke before expiry, e.g.:
 - user's private key is compromised
 - user is no longer certified by this CA
 - ► CA's certificate is compromised
- CA's maintain list of revoked certificates
 - ▶ the Certificate Revocation List (CRL)
- Users should check certificates with CA's CRL

Public Key Infrastructure

