Photo-electric effect

1. HR.p1062. Find the work-function for the surface described by the measurements shown in the figure.

Answer: $\Phi = 2.3 \text{ eV}$

2. HR.38.26. An orbiting satellite can become charged by the photoelectric effect when sunlight ejects electrons from its outer surface. Suppose a satellite is coated with Pt. Find the longest wavelength of incident sunlight that can eject electrons from Pt. Note: Satellites must be designed to minimize such charging because it can ruin the sensitive microelectronics.

Answer: 233 nm

- 3. HR.38.23. Light of wavelength $200 \ nm$ shines on an Al surface.
- a) What is the kinetic energy and speed of the fastest and the slowest ejected electrons?
- b) What is the stopping potential for this situation?
- c) What is cutoff wavelength for Al?

Answer: 2 eV; $4.42 \cdot 10^{-3} c$; 2V; 295 nm

- 4. HR.38.25. The stopping potential for electrons emitted from a surface illuminated by light of wavelength $491 \ nm$ is $0.71 \ V$. When the incident wavelength is changed to a new value, the stopping potential is $1.43 \ V$.
- a) What is this new wavelength?
- b) What is the work function of the surface?

Answer: 382 *nm*; 1.82 *eV*

Work functions for different elements

Element	Na	Al	Ag	Cu	Si	С	Ni, Au	Pt
Φ (eV)	2.7	4.2	4.3	4.7	4.8	5.0	5.1	5.32

Compton scattering

- 5. HR.38.34. (modified) A 3 pm photon undergoes Compton scattering of a stationary free electron. The photon scatters at 90° from its initial direction.
- a) What is the Compton shift of the scattered rays?
- b) What percentage of the initial x-ray photon energy is transferred to an electron in such scattering?
- c) What is the electron's kinetic energy?

Answer: 2.43 pm; 44.8%; 185 keV

- 6. HR.38.37. Consider a collision between an X-ray photon of initial energy $50 \ keV$ and an electron at rest, in which the photon is scattered backward and the electron is knocked forward.
- a) What is the energy of the backscattered photon?
- b) What is the kinetic energy and momentum of the electron?

Answer: 41.8 keV; 8.2 keV; 91.8 $\frac{keV}{c}$