

KVM Forum 2008 Nested paging hardware and software

Benjamin Serebrin Jörg Rödel

Advanced Micro Devices

June 13, 2008

Outline

1. Background

- AMD64 Page Walks and Caching
- Virtualization Terminology
- Memory Management in Virtualized Systems

2. Two-Dimensional Page Walks

- Nested Paging + Current Paging = 2D Page Walk
- 2D Page Walk Caching
- Hardware and Software 2D Page Walk Acceleration

3. KVM Implementation and Results

- KVM Software Implementation
- Results

Four-Level AMD64 Page Walk

AMD64 Processor Page Walk Caching

Page Walk Cache (PWC)

- In all generations of AMD64 processors
- Stores intermediate page table values
- Low-latency access

Addresses

• GVA: guest virtual address

• GPA: guest physical address

• SPA: system physical address

Virtualization Memory Management: No hardware support: Shadow Paging

Virtualization Memory Management: Hardware support: Nested Paging

- Benefits: No more traps on Guest Page Table accesses
- Drawback: Extra page table steps add latency to TLB miss

Outline

1. Background

- AMD64 Page Walks and Caching
- Virtualization Terminology
- Address Translations in Virtualized Systems

2. Two-Dimensional Page Walks

- Nested Paging + Native Paging = 2D Page Walk
- 2D Page Walk Caching
- Hardware and Software 2D Page Walk Acceleration

3. KVM Implementation and Results

- KVM Software Implementation
- Results

Two-Dimensional (2D) Page Walk

Two-Dimensional Page Walk Caching

Average 2D Walk

14 PWC hits

- 5% of PWC misses

 gL_3

6 mixed PWC hit/miss

 gL_2 - 25% of PWC misses

4 PWC misses

- 70% of PWC misses

 gL_1

gPA

BLUE = PWC MISS

PURPLE = PWC MIXED

RED = PWC HIT

Two-Dimensional Page Walk Caching: with the Nested TLB (NTLB)

gL₄ NTLB Hit:

Skip Nested Page Walk

gL₃ NTLB Hit:

Skip Nested Page Walk

gL₂ NTLB Hit:

Skip Nested Page Walk

gL₁ NTLB Miss:

Perform Nested Page Walk

gPA NTLB Miss:

Perform Nested Page Walk

Simulated Results of not-exactly-real hardware – see ASPLOS08 paper

MIXED

MISS

HIT

10

B

Sources of 2D Walk Overhead: L2 Cache Misses

Smarter Choice

- Many PWC misses become L2 cache misses
- 1 of 4 PWC misses also miss in L2 cache

Simulated Results of not-exactly-real hardware - see **ASPLOS08** paper

Large Nested Pages & Large Guest Pages

B

Large Nested Pages

- Created by hypervisor
- Map 2MB instead of 4KB
- Eliminate nL₁ column
- Fewer PWC misses

BgL₃ B

Large Guest Pages

- Created by guest OS
- Map 2MB instead of 4KB
- Eliminate gL₁ row
- Fewer PWC misses

Large pages are good!

 nL_4 nL_3 nL_2 nL_1 G2D Walk: PWC Access

HIT MIXED MISS
5

Outline

1. Background

- AMD64 Page Walks and Caching
- Virtualization Terminology
- Address Translations in Virtualized Systems

2. Two-Dimensional Page Walks

- Nested Paging + Native Paging = 2D Page Walk
- 2D Page Walk Caching
- Hardware and Software 2D Page Walk Acceleration

3. KVM Implementation and Results

- KVM Software Implementation
- Results

- Direct mapped page table is the same as the nested page table
- Shadow Paging Code for Real Mode creates a direct mapped page table
- Nested Paging support utilizes Shadow Paging Code
- This kept implementation very simple (5 files changed, 190 insertions(+), 12 deletions(-))
- Live Migration and Guest Swapping work out of the box
- Real performance boost for KVM on AMD processors

- Hardware: AMD Phenom[™] 9550 2.2 GHz B3 silicon with 4GB RAM
- Host OS: Redhat Enterprise Linux 5.2
 - KVM-69
 - Xen-unstable 17731
- Guest OS: Redhat Enterprise Linux 5.1
- Guest: 2 VCPUs and 2 GB Memory
- For benchmarks on bare metal (Native) host was booted with "maxcpus=2 mem=2G"

Kernbench Performance: Shadow Paging vs. Native

Kernbench Performance: Nested paging KVM Nested 4KB pages

Kernbench Performance: Nested paging Performance benefits from large pages

LMBench Performance: Shadow Paging vs. Native

LMBench Performance: Nested paging KVM Nested 4KB pages

LMBench Performance: Nested paging Performance benefits from large pages

AMD Smarter Choice

Conclusion

Nested Paging

- A HW solution to reduce memory management overhead
- Also introduces overhead on TLB misses

Hardware overhead can be significantly reduced

- Nested TLB to skip nested page walks and Page walk cache
- Approach native speed with these techniques

Overhead elimination more difficult

- Some 2D walk references always miss in PWC and L2 cache
- Exclusive use of 2MB pages in hypervisor is difficult

KVM Implements Nested Paging

- Performance improves and memory footprint shrinks
- Best performance from use of large nested page sizes

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.