수강반 번호		교과 목명	머신러닝	학과	켣	퓨터공학과	학년		시수/ 학점	3/3	담당 교수	변영철
Email	ycb@jejunu.kr TEL			TEL	064	1) 754–3657	교자	Ĥ	강의자료 제공			공
제4차 산업혁명과 관련하여 인공지능 및 머신러닝 전문가는 턱없이 부족하다. 본 교과목에서는 컴교과목 퓨터로 하여금 스스로 학습하게 하는 방법을 배우고, 이를 기반으로 사람보다도 훨씬 잘하는 심층 개요 신경망(딥 뉴럴네트워크)에 대하여 공부한다. 또한, 실제로 오픈된 다양한 오픈소스를 경험하고 이를 바탕으로 실무에서 쓰일 수 있는 응용 시스템을 개발해 본다.												
주별 강의 계획 (내 <mark>용은 달라질 수 있습니다.</mark>)												
주	주제 주제					주요 내용						
1	강의 소개 및 유의사항					한 학기동안 공부할 강의 내용 및 일정 설명한다.						
2	4차산업혁명과 인공지능 소개				인공지능이란 무엇인가, 그리고 이를 구현하기 위한 머신러닝은 무엇인지 소개한다.							
3	git 소개, 뇌와 뉴런				인공지능은 인간의 뇌를 모방한 것으로 이를 이해하기 위하여 뇌와 뇌를 구성하는 뉴런(신경세포)에 대하여 공부한다.							
4	뉴런과 학습 방법, 실습					뇌를 구성하는 신경세포가 어떻게 동작하고 신경세 포를 연결한 신경망이 어떻게 동작하는지 이해한다.						
5	회귀란? 선형 회귀(Linear Regression), 오류함수, 기울기의 의미, 실습			회귀의 의미에 대하여 공부하고 회귀를 잘 표현하거 나 그렇지 못한 신경세포의 오류에 대하여 이해한 다. 또한 기울기의 의미를 이해한다.								
6	선형 회귀와 학습 방법, 텐서플로우, 계산그래프, 오류의 의미, 실습			,	선형회귀를 위한 학습방법, 텐서플로우 이해, 계산그 래프란 무엇이고 오류의 의미를 학습한다.							
7	중간고사			중간고사								
8	논리 회귀(Logistic Regression), 이진 결정경계, 신경세포 입력과 결정경계, 실습			1개 뉴런이 만들어내는 논리회귀를 이해하고 이진 결정경계를 이해한다. 신경세포의 입력 수에 따른 결정경계의 모양을 이하한다.								
9	여러 클래스 결정경계, 소프트맥스, 오 류함수, 실습				여러 클래스가 존재할 때 이를 위한 결정경계 만들 기, 이를 위한 오류함수를 이해한다.							

10	플레이스 홀더, XOR 문제, 다층뉴런 과 비선형 결정경계, 실습	플레이스 홀더의 필요성, XOR 문제 및 이를 해결 하기 위한 방법으로서 비선형 결정경계를 만들기 위 한 다층뉴런, 다층 신경망을 이해한다.				
11	오류계산 그래프, 활성화함수와 미분 의 의미, 사라지는 영향역, ReLU, 실 습	뉴런 구조에 따른 오류계산 그래프의 모습을 이해하고 활성화 함수의 미분 및 사라지는 영향력을 이해한다.				
12	다충신경망 응용, MNIST, 오버피팅, Deep Neuralnetwork, 실습	다층신경망을 이용한 응용으로 MNIST 오픈 소스를 공부하고 기타 딥 신경망을 공부한다.				
13	개인별 미니 프로젝트1	개인별로 머신러닝 오픈소스를 찾아 분석, 응용해본 다.				
14	개인별 미니 프로젝트2	개인별로 머신러닝 오픈소스를 찾아 분석, 응용해본 다.				
15	기말고사	기말고사				

2. 강의 진행 방법

- [Flipped Learning] 동영상 강의 + 오프라인 수업
- 이론 2시간 + 실습 1시간

3. 강의 자료

• 깃허브: https://github.com/yungbyun/ml

4. 평가 방법

- 중간고사 및 기말고사
- 개인별 딥러닝 오픈소스 발표 (Github, Kaggle 등에 있는 오픈소스 활용)
- 중간고사 35% + 기말고사 35% + 개인 발표 20% + 출석 10% (평가 항목 및 비율 조정 가능)
- 개인별 발표 시 평가 요소: 난이도, 발표자료, 발표력(이해도)