Дефиниции

Композиция на функции

Нека $f:A\to B$ и $g:B\to C$ са функции. Тогава $g\circ f:A\to C$ е функция и $(g\circ f)(x)=g(f(x)).$

Обратна функция

Нека $f:A\to B$ е функция Тогава обратната ѝ функция $f^{-1}=\{(y,x)|(x,y)\in f\},\ f^{-1}:B\to A.$

Задачи

Лесни

Задача 1.1 - Записки на Ангел Димитриев

Нека $f: \mathbb{R} \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$ са функции.

A)
$$q(x) = 2x + 1$$
, $(q \circ f)(x) = 2x - 1$, $f = ?$

В)
$$f(x) = 3x - 1$$
, $(g \circ f)(x) = 6x + 5$, g е линейна функция, $g = ?$

Задача 1.2

Проверете дали следните функции са сюрекции и дали са инекции. Всички функции са с доймейн и кодомейн \mathbb{R} .

- A) f(x) = x
- B) f(x) = -x
- C) $f(x) = 2x^6 8$
- D) f(x) = ln(x)
- Е) $f(x)=x^3-x^2$ (може да се докаже, че е сюрекция като се забележи, че $\lim_{x\to -\infty}f(x)=-\infty$ и $\lim_{x\to +\infty}f(x)=+\infty$ и че функцията е непрекъсната)

F)
$$f(x) = \begin{cases} x & x \le 0 \\ e^x - 1 & x > 0 \end{cases}$$

Задача 1.3 - Задачи за самоподготовка по Дискретни структури - 2021/2022 - Добромир Кралчев

Разглеждаме функциите $f: \mathbb{R} \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$

- Покажете с пример, че $f \cup g$ може и да не е функция
- Докажете, че $h = f \cap g$ е частична функция. Какво представлява дефиниционното множество на h? На колко е равно h(x)? Отговорете на тези въпроси в общия, а после в частния случай $f(x) = x^3$ и $g(x) = |x^3|$.

Задача 1.4 - Записки на Ангел Димитриев

Да се докаже, че $f:A\to B$ е биекция, тогава и само тогава, когато f^{-1} е тотална функция.

Задача 1.5 - семестриално контролно на КН 2021

Дадено е множество A и функция $h:A\to A$, която е сюрекция. Докажете, че за всяка функция $f:A\to A$ и всяка функция $g:A\to A$ е вярно, че ако $f\circ h=g\circ h$, то f=g.

Задача 1.6 - изпит-задачи на КН 2021

Нека X и Y са произволни множества. Нека $f: X \to Y, g: Y \to X$ и $i: Y \to Y$. Нека $\forall y \in Y: i(y) = y$. Нека $f \circ g = i$. Докажете или опровергайте, че f е сюрекция.

Задача 1.7 - Записки на Бойко Борисов

Функцията $f: \mathbb{N} \to \mathbb{N}$ удовлетворява равенството f(f(f(n))) = n за всяко $n \in \mathbb{N}$. Следва ли, че f е биекция?

Задача 1.8 - Записки на Ангел Димитриев

- А) Да се докаже, че следните две условия са еквивалентни:
 - $(\forall f \in A)(\forall g \in A)(h \circ f = h \circ g \implies f = g)$
 - \bullet h е инективна
- В) Да се докаже, че следните две условия са еквивалентни:
 - $(\forall f \in A)(\forall q \in A)(f \circ h = q \circ h \implies f = q)$
 - \bullet h е сюрективна

Забележка: С $h \in {}^{A} A$ означаваме, че h е **тотална функция**, изобразяваща елементи на A.

По-забавни

Задача 2.1 - Домашна работа на КН 2021

Нека S е крайно множество и $f:S\to S$ е биекция. С f^n означаваме (n-1)-кратната композиция на f със себе си. Индуктивната дефиниция е следната.

- $\bullet \ f^1(x) = f(x)$
- $\bullet \ f^n(x) = f(f^{n-1}(x))$
- А) Докажете, че $\exists n \in \mathbb{N}$, такава че $f^{-1} = f^n$, където f^{-1} е обратната функция на f.
- В) Дайте пример за биекция $g:\mathbb{N}\to\mathbb{N},$ за която предното твърдение не е вярно.

Решения