

PRESBYTERIAN LADIES' COLLEGE A COLLEGE OF THE UNITING CHURCH IN AUSTRALIA

MATHEMATICS DEPARTMENT

Year 12 SPECIALIST MATHEMATICS

TEST 3: INTEGRATION

DATE: 6th April 2016 Name_____

Reading Time: 3 minutes

SECTION ONE: CALCULATOR FREE

TOTAL: 35 marks

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, SCSA formula sheet.

WORKING TIME: 35 minutes (maximum)

SECTION TWO: CALCULATOR ASSUMED

TOTAL: 19 marks

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing instruments,

templates, up to 3 Calculators,

1 A4 page of notes (one side only), SCSA formula sheet.

WORKING TIME: 20 minutes (minimum)

SECTION 1 Question	Marks available	Marks awarded	SECTION 2 Question	Marks available	Marks awarded
1	10		6	5	
2	8		7	6	
3	4		8	8	
4	6				
5	7				
Total	35			19	

Calculator-free [35 marks]

This paper has **Five (5)** questions. Answer **all** questions. Write your answers in the spaces provided

Question 1 [10 marks]

Determine the following indefinite integrals.

a)
$$\int \frac{x^2 + 2x - 5}{x^2} dx$$
 [3]

b)
$$\int \sin^3(2x)\cos(2x) dx$$
 [3]

c)
$$\int x\sqrt{x-1} dx$$
 [4]

Question 2 [8 marks]

Evaluate:

a)
$$\int_{0}^{\frac{\pi}{4}} \cos 2x \ dx$$
 [3]

b)
$$\int \frac{x-1}{x^2+3x+2} \ dx$$
 [5]

Question 3 [4 marks]

The curves below are $y = \cos(2x)$ and $y = \cos^2 x$. Determine the area of the shaded region.

Question 4 [6 marks]

A glass is formed by rotating the function $f(x) \stackrel{?}{=} x^2 - 1$ about the as shown in the diagram.

$$f(x) = \begin{cases} x^2 - 1 \ ; & x \le -1 \\ x^2 - 1 \ ; & x \ge 1 \end{cases}$$

[1]

b) Given the height of the glass is 8 cm determine the volume of the glass.

[5]

Question 5 [7 marks]

Find
$$\int_{0}^{\sqrt{3}} \sqrt{4-x^2} dx$$
 using the substitution $x = 2 \sin \theta$.

[3]

NAME:....

Calculator Allowed 20 minutes [19 marks]

This paper has Three (3) questions. Answer all questions. Write your answers in the spaces provided

Question 6 [5 marks]

Determine the value of p in the system of linear equations below such that there is

$$x - 2y - 3z = 11$$

 $2x - y + z = 5$
 $3x + 3y + pz = -6$

b) a unique solution

c) infinitely many solutions

[1]

Question 7 [6 marks]

The graph at the right show the curves $y = \cos x$ and $y = \sin x$.

a) Prove that the intersection of $y = \cos x$ and $y = \sin x$, is $x = \frac{\pi}{4}$ for the domain $0 \le x \le \frac{\pi}{2}$.

[1]

b) Determine the exact area of the region (shaded) which is bounded by the *y*-axis and the curves $y = \cos x$ and $y = \sin x$. [2]

c) Determine the volume of revolution obtained when this area is rotated about the *x*-axis. [3]

[2]

Question 8 [8 marks]

a) Use the identity $\cos 2\theta = 2\cos^2 \theta - 1$ to prove that $\cos \left(\frac{1}{2}x\right) = \sqrt{\frac{1 + \cos x}{2}}, \ 0 \le x \le \pi.$

 $\sin\left(\frac{1}{2}x\right), \ 0 \le x \le \pi.$ [2]

c) Hence show that $\int_{-\infty}^{\infty} (\sqrt{1 + \cos x} + \sqrt{1 - \cos x}) dx = 2\sqrt{2}$ [4]

END OF QUESTIONS