Natural Language Processing

Smoothing and perplexity

Alla Rozovskaya

Previous lecture

- ☐ Language models
 - Word prediction
 - Key probability terminology
 - ☐ Joint probability
 - Chain rule/conditional probability
 - ☐ Independence assumptions (Markov processes)
 - N-gram models: unigrams, bigrams, trigrams
 - Parameter estimation from a training corpus
 - Maximum likelihood estimate (relative frequencies)
 - Sparse data problems

Evaluating language models

- Parameters of a language model are estimated on a training corpus
- □Then we can evaluate how well the LM fits our (test) data that contains m sentences:

$$\prod_{i=1}^m p(s_i)$$

Perplexity

Instead of the product of probabilities, we will have the log:

$$\log \prod_{i=1}^{m} p(s_i) = \sum_{i=1}^{m} \log p(s_i)$$

☐ Then the quality of the LM is estimated using the notion of **perplexity** (related to entropy)

$$Perplexity = 2^{-l}$$

Perplexity

☐ First, we compute the average log probabilities word-by-word in the test data (M is the number of words (tokens) in the test data):

$$l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$$

Perplexity

Lower perplexity corresponds to a better fit of the language model

Perplexities and N-gram order

- ☐ Unigram language models will have the poorest fit since they generate every word independently
- Bigram language model will have a better fit as they condition on the previous word
- Trigram LMs will fit better given a sufficient amount of training data to estimate model parameters
- ☐ Trigrams are hard to beat with more sophisticated models that condition on more events

Sparse data problems

- ■When training even on a very large corpus, a lot of N-grams will not occur and thus will have 0 probability under the MLE estimate:
 - Bigram $p(w_i | w_{i-1}) = c(w_{i-1}, w_i) / c(w_{i-1})$
 - Trigram $p(w_i | w_{i-2}, w_{i-1})$

=
$$c(w_{i-2}, w_{i-1}, w_i)/c(w_{i-2}, w_{i-1})$$

□Such models will not be able to fit the test data well.

Smoothing

- ☐ Smoothing is a technique that allows us to reserve some probability mass and distribute it to "unseen" events
 - Interpolation
 - Discounting

Basic idea: "discount" probability mass from seen events and distribute to unseen events.

Add-One smoothing

- Add 1 to all counts
- ■Example (unigrams):
 - MLE estimate (N is the number of tokens in the training data):
 - $p(w_i)=c(w_i)/N$
 - $-c^*(w_i)=c(w_i)+1$
 - Then $p^*(w_i)=(c(w_i)+1)/(N+V)$ where **V** is the number of word types (vocabulary size)

Add-One smoothing (bigrams)

Recall: MLE bigram probabilities are computed as follows: c(w, w)

$$p(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

☐Then with the Add-One smoothing:

$$p^*(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Add-One smoothing

□General idea: by adding a count of 1 to every word type including those with 0 counts, we are taking away some probability mass from observed events and re-assigning it to *unseen* events

Add-One smoothing

- ☐ Problem: too much probability mass is assigned to unseen events
- This is a poor method of smoothing

Linear interpolation

☐ In a trigram model, we need to estimate:

$$p(w_i | w_{i-2}, w_{i-1})$$

☐MLE gives us:

$$p(w_i \mid w_{i-2}, w_{i-1}) = \frac{c(w_{i-2}, w_{i-1}, w_i)}{c(w_{i-2}, w_{i-1})}$$

■What happens when either of the counts did not occur?

Linear interpolation

■Basic idea: instead of just using trigram counts, interpolate these with lower-order counts:

$$p(w_i \mid w_{i-2}, w_{i-1}) = \lambda_1 \cdot p_{ML}(w_i \mid w_{i-2}, w_{i-1}) + \lambda_2 \cdot p_{ML}(w_i \mid w_{i-1}) + \lambda_3 \cdot p_{ML}(w_i)$$

Linear interpolation

 \square Values of λ_i can be learned on a separate development (tuning) set of data

Discounting methods

X	Count(x) ML bigram estimate p(
the	48	
the,dog	15	15/48
the,woman	11	11/48
the,man	10	10/48
the,park	5	5/48
the,job	2	2/48
the,telescope	1	1/48
the,manual	1	1/48
the,afternoon	1	1/48
the,country	1	1/48
the,street	1	1/48

These ML estimates are going to be high (especially for low-frequency events).

Discounted counts

- \square Count*(x)=Count(x)-0.5
- New estimates

X	Count(x)	Count*(x)	New discounted bigram estimate Count*(x) Count("the")
the	48	48	
the,dog	15	14.5	14.5/48
the,woman	11	10.5	10.5/48
the,man	10	9.5	9.5/48
the,park	5	4.5	4.5/48
the,job	2	1.5	1.5/48
the,telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the,afternoon	1	0.5	0.5/48
the,country	1	0.5	0.5/48
the,street	1	0.5	0.5/48

Discounted estimates

- ☐ The discounting method lowers the estimates of the observed bigrams
- ☐ But now we have some leftover probability

mass:
$$\frac{43}{48} < 1$$

х	Count(x)	Count*(x)	New discounted bigram estimate Count*(x) Count("the")
the	48	48	
the,dog	15	14.5	14.5/48
the,woman	11	10.5	10.5/48
the,man	10	9.5	9.5/48
the,park	5	4.5	4.5/48
the,job	2	1.5	1.5/48
the,telescope	1	0.5	0.5/48
the,manual	1	0.5	0.5/48
the,afternoon	1	0.5	0.5/48
the,country	1	0.5	0.5/48
the,street	1	0.5	0.5/48

Remaining probability mass

$$1 - \frac{43}{48} = \frac{5}{48}$$

We can now take this **leftover probability** and divide it among the words that were never seen following "the" in our training corpus.

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{Count * (w_{i-1}, w_i)}{Count(w_{i-1})}$$

$$\alpha("the") = \frac{5}{48}$$

Leftover probability

Interpolation vs. backoff

- □ Interpolation: combine estimates from higher and lower-order counts
- Backoff: use discounting to "backoff" to lower-order n-grams when there is no evidence for higher-order n-grams in the training data:
 - Estimate trigram probabilities by using bigram probabilities
 - Estimate bigrams by using unigram probabilities

Katz backoff

- ☐ If we have non-zero counts, we rely on these
- Otherwise, we "back off" to a lower-order count (and do not interpolate these)

Katz backoff models (bigrams)

 \square For word w_{i-1} , define two sets of words:

$$A(w_{i-1}) = \{w : Count(w_{i-1}, w_i) > 0\}$$

$$B(w_{i-1}) = \{w : Count(w_{i-1}, w_i) = 0\}$$

Then backed-off bigram estimates are computed as follows:

$$p_{BO}(w_{i} \mid w_{i-1}) = \begin{cases} \frac{Count * (w_{i-1}, w_{i})}{Count(w_{i-1})}, w_{i} \in A(w_{i-1}) \\ \frac{p_{ML}(w_{i})}{\sum_{w \in B(w_{i-1})} p_{ML}(w)}, w_{i} \in B(w_{i-1}) \end{cases}$$
 tover probability is

Leftover probability is distributed proportionally to unigram counts

Katz backoff models (trigrams)

☐ For bigram (w_{i-2}, w_{i-1}) , define two sets of words:

$$A(w_{i-2}, w_{i-1}) = \{w : Count(w_{i-2}, w_{i-1}, w_i) > 0\}$$

$$B(w_{i-2}, w_{i-1}) = \{w : Count(w_{i-2}, w_{i-1}, w) = 0\}$$

$$Count*(w_{i-1}, w_i)$$

Then backed-off trigram estimates are computed as follows:

$$p_{BO}(w_i \mid w_{i-2}, w_{i-1}) = \begin{cases} \frac{Count * (w_{i-2}, w_{i-1}, w_i)}{Count(w_{i-2}, w_{i-1})}, w_i \in A(w_{i-2}, w_{i-1}) \\ \alpha(w_{i-2}, w_{i-1}) \frac{p_{ML}(w_i \mid w_{i-1})}{\sum_{w \in B(w_{i-2}, w_{i-1})} p_{ML}(w \mid w_{i-1})}, w_i \in B(w_{i-2}, w_{i-1}) \end{cases}$$
Leftover probability is

Leftover probability is distributed proportionally to bigram counts

Discounted probability (trigrams)

Bigrams:
$$\alpha(w_{i-1}) = 1 - \sum_{w \in A(w_{i-1})} \frac{Count * (w_{i-1}, w_i)}{Count(w_{i-1})}$$

Trigrams:
$$\alpha(w_{i-2}, w_{i-1}) = 1 - \sum_{w \in A(w_{i-2}, w_{i-1})} \frac{Count * (w_{i-2}, w_{i-1}, w_i)}{Count(w_{i-2}, w_{i-1})}$$

Discounting parameter

- ☐ Can be obtained empirically on a tuning set
- ☐ Higher counts are said to be more reliable than low counts (e.g. <5), so it's possible to only discount these unreliable counts.