Fig. 1

Equation Number	Chemical Equation	Remarks
EQ 1	$2 \text{ Al} + 3\text{H}_2\text{O} \implies \text{Al}_2\text{O}_3 + 3\text{H}_2 + 946.2 \text{ (KJ/mol)}$	Explosive event, hydrogen gas produced
EQ 2	$2A1 + 3CuO \rightarrow Al_2O_3 + 3Cu + 1203.0 \text{ (KJ/mol)}$	Non-explosive event, no gaseous product
EQ 3	$C_3H_6O_6N_6 \rightarrow 0.77CO_2 + 2.23CO + 2.23H_2O + 0.77H_2 + 3N_2 + 1145.76 \text{ (KJ/mol)}$	RDX decomposition by detonation
EQ 4	$2A1 + 3CO_2 \rightarrow Al_2O_3 + 3CO + 820.6 \text{ (KJ/mol)}$	CO ₂ as a detonation product
EQ 5	$2A1 + 0.77CO_2 + 2.23H_2O \rightarrow Al_2O_3 + 0.77CO + 2.23H_2 + 914.0 \text{ (KJ/mol)}$	Complete reaction between RDX detonation products and Al
EQ 6	$xA1 + 0.385xCO2 + 1.115xH2O \rightarrow 0.5xAl2O3 + 0.385xCO + 1.115xH2 + 457.Ox (KJ/mol)$	Complete reaction between RDX detonation products and x moles of Al, $0 <= x <= 2$
EQ 7	$C_3H_6O_6N_6 + xAl \rightarrow (0.77 - 0.385x)CO_2 + (2.23 + 0.385x)CO + (2.23 - 1.115x)H_2O + (0.77 + 1.115x)H_2 + 3N_2 + 0.5xAl_2O_3 + (1145.76 + 457.0x) (KJ/mol)$	Complete reaction between 1 mole of RDX and x moles of Al, $0 \le x \le 2$
EQ 8	$C_3H_6O_6N_6 + xAl \rightarrow 3CO + 3H_2O + 3N_2 + Al_2O_3 + x Al + 2060.0 \text{ (KJ/mol)}$	RDX/Al mixture to produce Al in molten state, $x => 2$
EQ 9	$2Al + 3NH_4NO_3 \rightarrow Al_2O_3 + 6H_2O + 3N_2 + 2023.43 \text{ (KJ/mol)}$	AN dissolved in water to increase reactivity and to decrease Al temperature for complete chemical reaction
EQ 10	$3\text{CuO} + x \text{ Al} \rightarrow \text{Al}_2\text{O}_3 + 3\text{CuO} + (x - 2)\text{Al} + 1024.0 \text{ (KJ/mol)}$	CuO/Al mixture to produce Al in molten state, $x => 2$
EQ 11	$Fe_2O_3 + 2A1 \rightarrow Al_2O_3 + 2Fe + 846.0 \text{ (KJ/mol)}$	Thermite reaction, mixture used to produce Al in molten state when Al is surplus in stoichiometry

Fig.3

Name of Oxygen Carrier	Molecular Formula	Oxygen Balance	Solubility in Water	Decomp. Temp.	Remarks
Sodium Nitrate	NaNO ₃	47% (Na ₂ O, N ₂)	84.5 g/100 ml (20°C)	380°C	Used as oxidizer in propellant, commercial explosives and black powder
Potassium Nitrate	KNO ₃	39.6% (K ₂ O, N ₂)	38.5 g/100 ml (25°C)	400°C	Used in pyrotechnics, commercial explosives, black powder, propellants and matches
Barium Nitrate	Ba(NO ₃) ₂	30.6% (BaO, N ₂)	8.7 g/100 ml (20°C)	800°C	Used as oxidizer in propellants and pyrotechnics
Ammonium Nitrate	NH ₄ NO ₃	20% (H ₂ O, N ₂)	192 g/100ml (20°C)	210°C	Well-known fertilizer. Used in propellants and commercial explosives
Lithium Perchlorate, LP	LiClO ₄	60.2% (LiCl)	59.7 g/100ml (25°C)	400°C	Used as oxidizer in rocket and missile propellant
Potassium Perchlorate	KClO₄	46.19% (KCl)	18.2 g/100ml (100°C)	530°C	Used as oxidizer in rocket propellant and in explosives
Strontium Perchlorate	Sr(ClO ₄) ₂	44.64% (SrCl)	309.7 g/100ml (25°C)	477°C	Used as oxidizer in propellants
Ammonium Perchlorate	NH ₄ ClO ₄	34.04%	20 g/100ml (25°C)	200~300°C (low temperature decomposition)	Predominantly used as oxidizer in solid propellants for missiles and rockets
Potassium Chlorate	KClO ₃	39.17%	56.2 g/100ml (100°C)	400°C	Used with fuel to make explosives, also used in pyrotechnics and match head
Sodium Chlorate	NaClO ₃	45.10%	100 g/100ml (20°C)	melting point 248°C	Moisture absorbing, not very often used in explosives

Fig. 11

Fig. 12

Fig. 21

