

On the identification of sales forecasting models in the presence of promotions

The 32nd Annual International Symposium on Forecasting

J. R. Trapero

N. Kourentzes, R. Fildes

Universidad de Castilla-La Mancha

Lancaster University

This work is supported by the SAS/IIF research grant

Agenda

- 1. Judgmental Forecasting and promotions
- 2. Case Study
- 3. Models
- 4. Conclusions

Judgmental forecasting

Sales forecasting relies on Forecasting Support Systems:

 Promotional and advertising activity is one of the main reasons for adjusting statistical forecasts (Fildes and Goodwin, 2007)

Promotional modelling

- It's not a new topic:
 - PromoCastTM (Cooper et al., 1999)
 - Scan*PRO evolutionary model building (Leeflang et al., 2002)
 - CHAN4CAST (Divakar et al., 2005)
- Common features:
 - PSS are based on regression models
 - Sales=f(regular prices, price cuts, feature advertising, special displays, ...)

Promotional modelling

- Issues?:
 - Important data needs. 67 variables CHAN4CAST or more.
 - Cost of acquiring information
 - Selection methods are required. (Stepwise method)
 - Multicollinearity
 - Managers have to change their forecasting process:
 - · Before: judgmental forecasting.
 - Now: Econometric models....

Can we build PSS with limited data (=reality) to support operations?

2. Case study

- A manufacturing company specialized in household detergent products:
 - Shipments
 - One-step-ahead system forecasts (SF)
 - One-step-ahead adjusted or final forecasts (FF)
 - Promotional information:
 - Price cuts
 - Shelf display
 - Feature advertising
 - Days promoted in each week
- The data contains 60 SKUs
 - In total, 8800 observations
 - Weekly sampled between October 2008 and July 2011.

Let's try some models

- Experimental setup:
 - A predictive validation experiment is carried out.
 - Last 30 weeks are reserved for validation purposes.
 - A rolling origin experiment is designed
 - The forecasting horizon is one week ahead.
- Promotional models:
 - Benchmarks: SES, Naïve, Last like promotion.
 - Proposed model ...

Let's try some models

- Dynamic regression
 - Identify univariate structure automatically by minimizing the Schwartz Information Criterion
- 4 types of promotions
 - Multicollinear → Some types of promotion take occur simultaneously for almost all SKUs
 - Use principal components of promotional inputs → simplify estimation & smaller models
- Build model for promotional and non-promotional periods separately → Aid in resolving bias and estimation issues

- Table of results:
 - MAE on the hold-out sample
 - Data has been normalized.

	SF	FF	Naïve	SES	DR
No Promo	0.607	0.652	0.762	0.629	0.592
Promo	1.069	1.327	1.092	0.904	0.861
Overall	0.671	0.745	0.808	0.667	0.624

Results:

- Dynamic regression outperforms SF & FF and benchmarks
- PCA performs well → results without PCA worse (not shown)
- Catch 1: No promotion ramp-up & -down effects → Build single model?
- Catch 2: How do you forecast promotion on a time series with no or limited promotional history?

More models...

- PCA on pooled promotions across all time series → More estimation sample
- Dynamic regression on each time series:
 - Identify univariate structure automatically by minimizing the Schwartz Information Criterion
 - Add pooled PCA with cross-SKU estimated coefficients → able to model promotional effects even with no history
 - Add lags of PCA → Model ramp-up, ramp-down effects
 - Estimate univariate coefficients simultaneously with pooled PCA coefficients

	SF	FF	Naïve	SES	DR	DR-p
No Promo	0.607	0.652	0.762	0.629	0.592 0.861 0.624	0.609
Promo	1.069	1.327	1.092	0.904		0.853
Overall	0.671	0.745	0.808	0.667		0.624

Results:

- Superior promotional & overall forecasting performance
- Provide promotional forecasts for SKUs with no promotional history
- PCA dynamics allow forecasting well non-promotional periods
- Estimation problems for univariate (on each SKU) coefficients?

Dynamic Regression under promotions

Dynamic Regression under no promotions

Dynamic Regression → Overall

4. Conclusions

- Promotional modelling might substitute judgmental forecasts with promising results.
- Dynamic Regression based on Principal components and noise term modeling have reduced the forecasting error on promotional periods.
- Pooled PCA on promotions allows for better estimation of promotional effects and ability to produce forecasts with limited or no promotional history
- PCA → transparent calculation → track promotional effects
- Some estimation issues remain

Thank you for your attention!

E-mail:

Juan Trapero Arenas
juanramon.trapero@uclm.es
Nikolaos Kourentzes
n.kourentzes@lancaster.ac.uk

2. Case study

SKU: SAIFOA75000801; Promo:PC £1.07 - £0.72 - SH

2. Case study

