

Department of Computer Science and Engineering

23MAT206- Optimization Technique Lab

Title of Experiment

3. <u>Numerical Methods for Finding Ordinary and Partial</u> <u>Derivatives Using MATLAB</u>

Name of the Student	
Registration Number	
Date of Submission:	

Assessment Rubrics

Description	Marks Allotted	Marks Secured
Objective and Procedure	2	
Mat lab Code & Final Results	4	
Responses to the Exercise Problems	4	
Total Marks	10	

Course Faculty

Numerical Methods for Finding Ordinary and Partial Derivatives Using MATLAB

AIM:			
PROCEDURE:			

Exercise

Q1. Given the function $f(x) = \ln{(1+x^2)}$, use the MATLAB code to predict the derivative at a future point. Take $x_0 = 1$, step size h = 0. 1, and number of steps n = 3. Compute the forward, backward, and central difference approximations at $x_1 = x_0 + n \cdot h$. Compare the results with the analytical derivative $f'(x) = \frac{2x}{1+x^2}$.

MATLAB CODE AND RESULTS

OUTPUT:

```
Enter 1 for ordinary derivative f(x), 2 for partial derivative f(x,y): 1 Enter the function f(x): \log(1+x^2) Enter the initial point x0: 1 Enter the step size h: 0.1 Enter the number of steps forward (n): 3 Ordinary Derivative at x = 1.30000 Forward Difference Approximation: 0.95648 Backward Difference Approximation: 0.97543 Central Difference Approximation: 0.96596 >> |
```


Q2. Consider the function $f(x,y)=x^2\cdot e^y+y^2\cdot cos(x)$. Use the MATLAB code to predict the partial derivatives at the future point $(x1,y1)=(x0+n\cdot h,y0+n\cdot h)$ with $x_0=0$, h=0.05, and n=20. Compute $\partial f/\partial x$ and $\partial f/\partial y$ using central differences and compare with the exact partial derivatives.

MATLAB CODE AND RESULTS

OUTPUT:

```
Enter 1 for ordinary derivative f(x), 2 for partial derivative f(x,y): 2 Enter the function f(x,y): x^2 \exp(y) + y^2 \cos(x) Enter x0: 1 Enter y0: 1 Enter the step size h: 0.05 Partial Derivatives at (x, y) = (1.00000, 1.00000) \partial f/\partial x \approx 4.59544 \partial f/\partial y \approx 3.80002 >> |
```