Name: Sergio Montoya Yeiferson Camacho Monica Cano

• Enunciado:

Una red de difracción produce un espectro de segundo orden de luz amarilla ($\lambda_0=550nm$) a 25° . Calcule el espacio entre las lineas de la red.

• Solución:

En este caso, utilizaremos

$$\alpha \sin \theta_m = m\lambda.$$

Por lo tanto, podemos desarrollar como sigue

$$\alpha \sin \theta_m = m\lambda$$
$$\alpha = \frac{m\lambda}{\sin \theta_m}.$$

Ahora bien, en este caso sabemos que $m=2,\,\lambda=550nm$ y $\theta_m=25^\circ$. Sin embargo, para presentar este resultado debemos convertir λ a metros. Por lo tanto esto no queda como

$$\lambda = 550nm = 5.5 \times 10^{-7}m.$$

Con esto entonces solamente debemos reemplazar estos valores en la ecuación que despejamos previamente y nos encontramos con:

$$\alpha = \frac{2(5.5 \times 10^{-7})}{\sin(25^{\circ})}$$
$$\alpha = 2.6 \times 10^{-6}.$$

Analisis Unidades:

En este caso solo contamos con un componente con unidades (Claramente la longitud de Onda). En este caso, es un componente de longitud y dado que este se encuentra en el numerador y ademas es justo la misma unidad de α entonces las unidades son correctas.