

Training Neural Nets

Decisions, decisions...

- How do we...
 - Prepare the data?
 - Initialise the weights?
 - Decide on the architecture?
 - Choose activation functions?
 - Choose a training algorithm?
 - Choose training algorithm parameters?
 - Measure model accuracy?
 - Measure model complexity?

Training Neural Nets

Decisions, decisions...

- How do we...
 - Prepare the data?
 - Initialise the weights?
 - Decide on the architecture?
 - Choose activation functions?
 - Choose a training algorithm?
 - Choose training algorithm parameters?
 - Measure model accuracy?
 - Measure model complexity?
- Trial and error

Training Neural Nets

Decisions, decisions...

- How do we...
 - Prepare the data?
 - Initialise the weights?
 - Decide on the architecture?
 - Choose activation functions?
 - Choose a training algorithm?
 - Choose training algorithm parameters?
 - Measure model accuracy?
 - Measure model complexity?
- Trial and error
- "Whatever I am familiar with!"

 Correctly pre-processing your data takes you half-way to constructing a good model

 Correctly pre-processing your data takes you half-way to constructing a good model

Representation

- Decide on the inputs and the outputs
- Remove obviously irrelevant inputs (names, unique IDs...)

 Correctly pre-processing your data takes you half-way to constructing a good model

Representation

- Decide on the inputs and the outputs
- Remove obviously irrelevant inputs (names, unique IDs...)

Missing Values

Solutions?

 Correctly pre-processing your data takes you half-way to constructing a good model

Representation

- Decide on the inputs and the outputs
- Remove obviously irrelevant inputs (names, unique IDs...)

Missing Values

Solutions?

Remove the entire pattern if some data is missing

 Correctly pre-processing your data takes you half-way to constructing a good model

Representation

- Decide on the inputs and the outputs
- Remove obviously irrelevant inputs (names, unique IDs...)

Missing Values

Solutions?

- Remove the entire pattern if some data is missing
- Replace the missing value with an average for that value over all patterns (continuous) or the most frequently occuring one (discrete)

 Correctly pre-processing your data takes you half-way to constructing a good model

Representation

- Decide on the inputs and the outputs
- Remove obviously irrelevant inputs (names, unique IDs...)

Missing Values

Solutions?

- Remove the entire pattern if some data is missing
- Replace the missing value with an average for that value over all patterns (continuous) or the most frequently occuring one (discrete)
- Add an extra input unit to indicate if a parameter is missing

Coding of the Inputs/Outputs

All inputs/outputs must be numeric

- All inputs/outputs must be numeric
- In case of discrete values/labels, use binary one-hot encoding:

- All inputs/outputs must be numeric
- In case of discrete values/labels, use binary one-hot encoding:
 - A nominal input that takes n different values can be coded as n binary input parameters
 - For each pattern, input corresponding to a specific nominal value is set to 1, the rest are set to 0

- All inputs/outputs must be numeric
- In case of discrete values/labels, use binary one-hot encoding:
 - A nominal input that takes n different values can be coded as n binary input parameters
 - For each pattern, input corresponding to a specific nominal value is set to 1, the rest are set to 0
- Alternatively, use a single continuous value where every nominal value corresponds to a specific continuous value

- All inputs/outputs must be numeric
- In case of discrete values/labels, use binary one-hot encoding:
 - A nominal input that takes n different values can be coded as n binary input parameters
 - For each pattern, input corresponding to a specific nominal value is set to 1, the rest are set to 0
- Alternatively, use a single continuous value where every nominal value corresponds to a specific continuous value
 - Discrete characteristic is lost
 - Distance between categories: what does it represent?
 - The representation is more dense (less sparse)

- All inputs/outputs must be numeric
- In case of discrete values/labels, use binary one-hot encoding:
 - A nominal input that takes n different values can be coded as n binary input parameters
 - For each pattern, input corresponding to a specific nominal value is set to 1, the rest are set to 0
- Alternatively, use a single continuous value where every nominal value corresponds to a specific continuous value
 - Discrete characteristic is lost
 - Distance between categories: what does it represent?
 - The representation is more dense (less sparse)
- Which one is better: dense or sparse?

Outliers

Outlier patterns produce large errors and divert the search

Outliers

Outlier patterns produce large errors and divert the search

Solutions:

Remove outliers using statistical techniques

Outliers

Outlier patterns produce large errors and divert the search

- Remove outliers using statistical techniques
- Use a robust objective function that is not influenced by outliers

Outliers

Outlier patterns produce large errors and divert the search

- Remove outliers using statistical techniques
- Use a robust objective function that is not influenced by outliers
 - if $|E| > \epsilon$, set E to a constant value

Outliers

Outlier patterns produce large errors and divert the search

- Remove outliers using statistical techniques
- Use a robust objective function that is not influenced by outliers
 - if $|E| > \epsilon$, set E to a constant value
 - Problems with this approach?

Outliers

Outlier patterns produce large errors and divert the search

- Remove outliers using statistical techniques
- Use a robust objective function that is not influenced by outliers
 - if $|E| > \epsilon$, set E to a constant value
 - Problems with this approach?
 - if $|E| > \epsilon$, minimise |E| instead of E^2

Outliers

Outlier patterns produce large errors and divert the search

- Remove outliers using statistical techniques
- Use a robust objective function that is not influenced by outliers
 - if $|E| > \epsilon$, set E to a constant value
 - Problems with this approach?
 - if $|E| > \epsilon$, minimise |E| instead of E^2
 - This approach is called "Huber loss" in statistics

Scaling Inputs

• Inputs outside the active domain of the chosen activation function may cause saturation.

Scaling Inputs

- Inputs outside the active domain of the chosen activation function may cause saturation.
- What is saturation and why is it bad?

Scaling Inputs

- Inputs outside the active domain of the chosen activation function may cause saturation.
- What is saturation and why is it bad?

Saturation

- Derivatives near assymptotes are close to 0 => slow learning
- A saturated output unit does not indicate the "confidence" level of the NN: all patterns, even the ones not fitted very well by the NN, will be classified with the same "strength"

Scale inputs/outputs to the necessary range linearly

Scale inputs/outputs to the necessary range linearly

$$\bullet \ \frac{X-A}{B-A} = \frac{x-a}{b-a}$$

•
$$x = \frac{X-A}{B-A}(b-a) + a$$

 x - scaled, X - unscaled, A, B - unscaled min and max, a, b scaled min and max

- Scale inputs/outputs to the necessary range linearly
- $\bullet \ \frac{X-A}{B-A} = \frac{x-a}{b-a}$
- $x = \frac{X-A}{B-A}(b-a) + a$
- x scaled, X unscaled, A, B unscaled min and max, a, b scaled min and max
- Obvious disadvantage: you need to know the current range of values before you scale them to the desired range

- Scale inputs/outputs to the necessary range linearly
- $\bullet \ \frac{X-A}{B-A} = \frac{x-a}{b-a}$
- $x = \frac{X-A}{B-A}(b-a) + a$
- x scaled, X unscaled, A, B unscaled min and max, a, b scaled min and max
- Obvious disadvantage: you need to know the current range of values before you scale them to the desired range
- What if there is an outlier?

Mean Centering: Mean of 0

- Convert the existing distribution to a "gaussian" one
- Average value of variable Z_i for all $P: \bar{Z}_i = \sum_{p=1}^P Z_{i,p}/P$
- Scale:

$$\bullet \ \ Z_{i,p}^M = Z_{i,p} - \bar{Z}_i$$

Mean Centering: Mean of 0

- Convert the existing distribution to a "gaussian" one
- Average value of variable Z_i for all $P: \bar{Z}_i = \sum_{p=1}^P Z_{i,p}/P$
- Scale:

$$\bullet \ Z_{i,p}^M = Z_{i,p} - \bar{Z}_i$$

Variance Scaling: Variance of 1

- Let σ_{z_i} be the standard deviations of $Z_{i,p}$. Then:
 - $Z_{i,p}^V = \frac{Z_{i,p}}{\sigma_{z_i}}$

Combine mean centering and variance scaling

Z-score ("standard score") normalization

- Combine mean centering and variance scaling to normalize the data:
 - $Z_{i,p}^{MV} = \frac{Z_{i,p} \bar{Z}_i}{\sigma_{z_i}}$

Scaling Outputs

- Outputs outside of the activation function range will be unreachable
- NN will always produce a large error

Scaling Outputs

- Outputs outside of the activation function range will be unreachable
- NN will always produce a large error

Outputs for bounded functions

 Make outputs reachable: scale to [0,1] for Sigmoid, [-1,1] for TanH, etc.

Scaling Outputs

- Outputs outside of the activation function range will be unreachable
- NN will always produce a large error

Outputs for bounded functions

- Make outputs reachable: scale to [0,1] for Sigmoid, [-1,1] for TanH, etc.
- Trick of the trade: scale to
 [0.1, 0.9] (Sigmoid) and
 [-0.9, 0.9] (TanH) instead (why?)

Many diverse examples are better than a few similar examples

- Many diverse examples are better than a few similar examples
- The existing data set can always be artificially expanded
 - Add noise sampled from a normal distribution with a small variance and zero mean to the existing patterns

- Many diverse examples are better than a few similar examples
- The existing data set can always be artificially expanded
 - Add noise sampled from a normal distribution with a small variance and zero mean to the existing patterns
 - Image data: rotate, distort, zoom in and out, etc.

- Many diverse examples are better than a few similar examples
- The existing data set can always be artificially expanded
 - Add noise sampled from a normal distribution with a small variance and zero mean to the existing patterns
 - Image data: rotate, distort, zoom in and out, etc.
- Adding random noise at every epoch helps prevent overfitting it becomes harder to memorise the exact patterns, so the NN learns the bigger picture instead

- Many diverse examples are better than a few similar examples
- The existing data set can always be artificially expanded
 - Add noise sampled from a normal distribution with a small variance and zero mean to the existing patterns
 - Image data: rotate, distort, zoom in and out, etc.
- Adding random noise at every epoch helps prevent overfitting it becomes harder to memorise the exact patterns, so the NN learns the bigger picture instead
- Deep learning: first record-breaking MNIST-recognizing NNs modified the data set by artificial expansion (rotations, distortions, etc.)
- http://yann.lecun.com/exdb/mnist/

 Gradient descent starts on a single point: choosing a "bad" starting point can be fatal

- Gradient descent starts on a single point: choosing a "bad" starting point can be fatal
- Population-based algorithms such as PSO and GA use a population of points: not distributing them adequately can cause stagnation/premature convergence

- Gradient descent starts on a single point: choosing a "bad" starting point can be fatal
- Population-based algorithms such as PSO and GA use a population of points: not distributing them adequately can cause stagnation/premature convergence
- Can you set all weights to zero?

- Gradient descent starts on a single point: choosing a "bad" starting point can be fatal
- Population-based algorithms such as PSO and GA use a population of points: not distributing them adequately can cause stagnation/premature convergence
- Can you set all weights to zero?
- Can you set weights to random numbers?

- Gradient descent starts on a single point: choosing a "bad" starting point can be fatal
- Population-based algorithms such as PSO and GA use a population of points: not distributing them adequately can cause stagnation/premature convergence
- Can you set all weights to zero?
- Can you set weights to random numbers?
- Random weights in a small range around 0:
 - Small net input signals
 - Midrange values produced by activation functions
 - I.e. no instant saturation => better learning potential

- Gradient descent starts on a single point: choosing a "bad" starting point can be fatal
- Population-based algorithms such as PSO and GA use a population of points: not distributing them adequately can cause stagnation/premature convergence
- Can you set all weights to zero?
- Can you set weights to random numbers?
- Random weights in a small range around 0:
 - Small net input signals
 - Midrange values produced by activation functions
 - I.e. no instant saturation => better learning potential

 Gaussian distribution can be used instead of uniform to sample the weights:

Weight Initialisation

Choosing the starting point

 Gaussian distribution can be used instead of uniform to sample the weights:

- Wessels and Barnard: choose random weights in range $\left[\frac{-1}{\sqrt{fanin}}, \frac{1}{\sqrt{fanin}}\right]$, where *fanin* is the number of incoming connections for the given unit.
 - The larger the architecture, the smaller interval will be used

- Xavier and Glorot (2010): sample random weights from a distribution with $\mu=0$ and $\sigma=\frac{\sqrt{6}}{\sqrt{fanin+fanout}}$.
 - Derived to normalise (maintain variance of) the backpropagated gradients

- Xavier and Glorot (2010): sample random weights from a distribution with $\mu=0$ and $\sigma=\frac{\sqrt{6}}{\sqrt{fanin+fanout}}$.
 - Derived to normalise (maintain variance of) the backpropagated gradients
- He Normal (He et al., 2015) [for rectified activations]:
 - Choose weights randomly from a standard normal distribution.
 - 2 Multiply each weight by $\frac{\sqrt{2}}{\sqrt{fanin}}$.
 - Bias weights are initialized to zero.

- Xavier and Glorot (2010): sample random weights from a distribution with $\mu=0$ and $\sigma=\frac{\sqrt{6}}{\sqrt{fanin+fanout}}$.
 - Derived to normalise (maintain variance of) the backpropagated gradients
- He Normal (He et al., 2015) [for rectified activations]:
 - Choose weights randomly from a standard normal distribution.
 - 2 Multiply each weight by $\frac{\sqrt{2}}{\sqrt{fanin}}$.
 - Bias weights are initialized to zero.
- Are smaller weights always better?

Training, Generalisation, Validation

- Supervised training: data patterns with known target values are presented to the NN
- Data set has to be subdivided into three parts:

Training set

Data that the training algorithm will use to iteratively adjust the weights

Training, Generalisation, Validation

- Supervised training: data patterns with known target values are presented to the NN
- Data set has to be subdivided into three parts:

Training set

Data that the training algorithm will use to iteratively adjust the weights

Generalisation/Test set

Data that will be used to calculate the generalisation error during hyperparameter optimization

Training, Generalisation, Validation

- Supervised training: data patterns with known target values are presented to the NN
- Data set has to be subdivided into three parts:

Training set

Data that the training algorithm will use to iteratively adjust the weights

Generalisation/Test set

Data that will be used to calculate the generalisation error during hyperparameter optimization

Validation set

Data that will be used to calculate the generalisation error of the optimized model

Training, Generalisation, Validation

Separating the data

Using training/optimization data for testing is not fair: generalisation error will not be an objective measure

Training, Generalisation, Validation

Separating the data

Using training/optimization data for testing is not fair: generalisation error will not be an objective measure

Data normalisation

How would you scale the data in training, testing, validation subsets?

Which one is correct?

Which one is correct?

Scale the whole data set before splitting:

$$T_i = \frac{T_i - \bar{T}_{all}}{\sigma_{all}}$$

Which one is correct?

Scale the whole data set before splitting:

$$T_i = \frac{T_i - \bar{T}_{all}}{\sigma_{all}}$$

Scale training and testing sets separately:

$$T_{i,train} = \frac{T_{i,train} - \bar{T}_{train}}{\sigma_{train}}, T_{i,test} = \frac{T_{i,test} - \bar{T}_{test}}{\sigma_{test}}$$

Which one is correct?

Scale the whole data set before splitting:

$$T_i = \frac{T_i - \bar{T}_{all}}{\sigma_{all}}$$

Scale training and testing sets separately:

$$T_{i,train} = \frac{T_{i,train} - \bar{T}_{train}}{\sigma_{train}}, T_{i,test} = \frac{T_{i,test} - \bar{T}_{test}}{\sigma_{test}}$$

Apply training data transformation across the board:

$$T_{i,train} = \frac{T_{i,train} - \bar{T}_{train}}{\sigma_{train}}, T_{i,test} = \frac{T_{i,test} - \bar{T}_{train}}{\sigma_{train}}$$

Which one is correct?

Scale the whole data set before splitting:

$$T_i = \frac{T_i - \bar{T}_{all}}{\sigma_{all}}$$

Scale training and testing sets separately:

$$T_{i,train} = \frac{T_{i,train} - \bar{T}_{train}}{\sigma_{train}}, T_{i,test} = \frac{T_{i,test} - \bar{T}_{test}}{\sigma_{test}}$$

Apply training data transformation across the board:

$$T_{i,train} = \frac{T_{i,train} - \bar{T}_{train}}{\sigma_{train}}, T_{i,test} = \frac{T_{i,test} - \bar{T}_{train}}{\sigma_{train}}$$

Option (3) is the correct approach.

Training, Generalisation, Validation

- Training set + generalisation set make up the training set for the optimized model
- How do we subdivide the data set?

Training set

Over 50%, up to 90% of the entire data set

Training, Generalisation, Validation

- Training set + generalisation set make up the training set for the optimized model
- How do we subdivide the data set?

Training set

Over 50%, up to 90% of the entire data set

Generalisation set

About 10% to 30% of the training set

Training, Generalisation, Validation

- Training set + generalisation set make up the training set for the optimized model
- How do we subdivide the data set?

Training set

Over 50%, up to 90% of the entire data set

Generalisation set

About 10% to 30% of the training set

Validation set

About 10% to 30% of the data set. Should never be used for training.

Training the NN

Stochastic, batch, mini-batch

Stochastic (on-line) training

- Update weights after each pattern
- Backprop each gradient
- Bound to fluctuate: is a single pattern representative?

Training the NN

Stochastic, batch, mini-batch

Stochastic (on-line) training

- Update weights after each pattern
- Backprop each gradient
- Bound to fluctuate: is a single pattern representative?

Batch training

- Update weights after all patterns were considered
- Backprop average gradient
- Stable, but computationally heavy

Training the NN

Stochastic, batch, mini-batch

Stochastic (on-line) training

- Update weights after each pattern
- Backprop each gradient
- Bound to fluctuate: is a single pattern representative?

Batch training

- Update weights after all patterns were considered
- Backprop average gradient
- Stable, but computationally heavy

Mini-Batch training: Best of both

- Calculate average gradient over a subset of patterns
- Very popular in deep learning

Shuffling the data

Training set must be shuffled at every epoch (iteration)

Shuffling the data

- Training set must be shuffled at every epoch (iteration)
- If patterns are presented in the same order, the NN may infer the order of patterns and learn it

Shuffling the data

- Training set must be shuffled at every epoch (iteration)
- If patterns are presented in the same order, the NN may infer the order of patterns and learn it
- If subsets of the data set are used, the subsets may not be representative unless the data set is shuffled

Shuffling the data

- Training set must be shuffled at every epoch (iteration)
- If patterns are presented in the same order, the NN may infer the order of patterns and learn it
- If subsets of the data set are used, the subsets may not be representative unless the data set is shuffled
- How does this apply to stochastic, batch, mini-batch training?

