Computer Vision

Ch.6 Morphological Operation

Prof. Po-Yueh Chen (陳伯岳)

E-mail: pychen@cc.ncue.edu.tw

Ext: 8440

Introduction of Morphological Operation (1/3)

Morphology

Denote a branch of biology with the form and structure of animals and plants.

Introduction of Morphological Operation (2/3)

Original

Gray -level

Binarization

Otsu Algorithm

Introduction of Morphological Operation (3/3)

Morphological Operation (1/35)

✓ Dilation and Erosion

✓ Opening and Closing

Morphological Operation (2/35)

> Kernel

4-Connection

8-Connection

Morphological Operation (3/35)

 $A \oplus B$ A: image, B: kernel

NCUE CSIE Computer Vision

P.Y. Chen

Morphological Operation (4/35)

 \triangleright Dilation $A \oplus B$

Morphological Operation (5/35)

 \triangleright Dilation $A \oplus B$

Surround the original object.

Before After

Morphological Operation (6/35)

 \triangleright Erosion $A \ominus B$

Morphological Operation (7/35)

 \triangleright Erosion $A \ominus B$

Eliminate boundary of the original object.

Before After

Morphological Operation (8/35)

> Two basic morphological operations

Dilation takes maximum under the kernel region.

$$A \oplus B top ext{dst}(x,y) = \max_{(x',y'): ext{ element}(x',y')
eq 0} ext{src}(x+x',y+y')$$

Erosion takes minimum under the kernel region.

$$A \ominus B$$

$$\mathtt{dst}(x,y) = \min_{(x',y'):\, \mathtt{element}(x',y')
eq 0} \mathtt{src}(x+x',y+y')$$

NCUE CSIE Computer Vision

Morphological Operation (9/35)

Morphological Operation (10/35)

 \triangleright Dilation $A \oplus B$

NCUE CSIE Computer Vision

P.Y. Chen

Morphological Operation (11/35)

 \triangleright Dilation $A \oplus B$

	S	can						→	
0	0	0	0	0	0	0	0	0	0
0	0	0	*	1	0	1	1	1	0
0	0	1			1			1	0
0	1							1	0
0	0	1			1			1	0
0	0	0	1		1	1	1	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1:Foreground

NCUE CSIE

Computer Vision

P.Y. Chen

15

Morphological Operation (12/35)

 \triangleright Dilation $A \oplus B$

Scan —

NCUE CSIE

Computer Vision

P.Y. Chen

16

Morphological Operation (13/35)

 \triangleright Dilation $A \oplus B$

Morphological Operation (14/35)

Morphological Operation (15/35)

 \triangleright Erosion $A \ominus B$

NCUE CSIE

Computer Vision

P.Y. Chen

Morphological Operation (16/35)

> Erosion

Scan —

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	•	0	0	0	0	0	0
0	0	0	1	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

4-Connection

0:Background

1:Foreground

NCUE CSIE

Computer Vision

P.Y. Chen

Morphological Operation (17/35)

Erosion

NCUE CSIE

Computer Vision

P.Y. Chen

21

Morphological Operation (18/35)

> Erosion

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

*Result

4-Connection

0:Background

1:Foreground

NCUE CSIE

Computer Vision

P.Y. Chen

Morphological Operation (19/35)

> Header

```
#include <opency2/opency.hpp> #include <opency2/core/core.hpp>
```

#include "opency2/imgproc.hpp"

Morphological Operation (21/35)

Dilation's code

Syntax:

dilate(src, dst, kernel)

Simplified code

src – A **Mat** object representing the source (input image) for this operation.

dst – A Mat object representing the destination (output image) for this operation.

kernel – A **Mat** object representing the kernel. (Default 3*3)

Morphological Operation (20/35)

Dilation's code

```
Syntax: Mat()
```

dilate(src, dst, kernel, anchor, iterations)

src – A Mat object representing the source (input image) for this operation.

dst – A Mat object representing the destination (output image) for this operation.

kernel – A **Mat** object representing the kernel. (Default 3*3)

anchor – Position of the anchor within the element;

Default value (-1, -1) means that the anchor is at the element center.

iterations – Number of times which the operation is applied.

NCUE CSIE Computer Vision

Morphological Operation (22/35)

> Erosion's code

```
Syntax: Mat()
```

erode(src, dst, kernel, anchor, iterations)

src – A **Mat** object representing the source (input image) for this operation.

dst – A Mat object representing the destination (output image) for this operation.

kernel – A **Mat** object representing the kernel. (Default 3*3)

anchor – Position of the anchor within the element;

Default value (-1, -1) means that the anchor is at the element center.

iterations – Number of times which the operation is applied.

NCUE CSIE (

Computer Vision

Morphological Operation (23/35)

Erosion's code

Syntax:

erode(src, dst, kernel) <a>Simplified code

src – A **Mat** object representing the source (input image) for this operation.

dst – A Mat object representing the destination (output image) for this operation.

kernel – A **Mat** object representing the kernel. (Default 3*3)

Give it a try:

https://docs.opencv.org/master/d4/d76/tutorial_js_morphological_ops.html

Morphological Operation (24/35)

> Threshold (Review)

Morphological Operation (25/35)

Demo code

Example:

```
imshow("Original", src2);
int main() {
Mat src = imread("D:/Data.jpg");
                                                       imshow("Erode", dst1);
// Must be GrayLevel image.
                                                      imshow("Dilate", dst2);
Mat src2;
threshold(src, src2, 120, 255, THRESH_BINARY);
                                                       waitKey(0);
// Set up the binarization value
                                                       return 0;
Mat dst1,dst2;
erode(src2, dst1, Mat());
dilate(src2, dst2, Mat());
```

Morphological Operation (26/35)

- > getStructuringElement
 - ✓ Returns a structuring element of the specified size and shape for morphological operations.
 - ✓ Kernel can be created using getStructuringElement.

Syntax: getStructuringElement(shape, ksize, anchor)

```
shape – Element shape : MORPH_RECT

MORPH_CROSS

MORPH_ELLIPSE

CV_SHAPE_CUSTOM
```

ksize – Element size.

anchor – Position within the element. The default value(-1,-1).

Morphological Operation (27/35)

getStructuringElement

Type of shape:

MORPH_RECT – A rectangular structuring element $E_{ij} = 1$

MORPH_CROSS – a cross-shaped structuring element:

$$E_{ij} = \begin{cases} 1 & \text{if } i=\text{anchor.y or } j=\text{anchor.x} \\ 0 & \text{otherwise} \end{cases}$$

MORPH_ELLIPSE – An elliptic structuring element, that is, a filled ellipse inscribed into the rectangle *Rect(0, 0, esize.width, esize.height)*.

CV_SHAPE_CUSTOM -custom structuring element (OpenCV 1.x API)

Morphological Operation (28/35)

Demo code

Mat erodeStruct = getStructuringElement(MORPH_RECT, Size(5, 5)); erode(src2, dst3, erodeStruct);

imshow("Erode by Structure", dst3);

Morphological Operation (29/35)

Opening and Closing

Morphological Operation (30/35)

Opening

✓ Erosion then Dilation

Def:

Open(src) = Dilate(Erode(src))

$$A \circ B = (A \ominus B) \oplus B$$

Morphological Operation (31/35)

Closing

✓ Dilation then Erosion

Def:

Close(src) = Erode(Dilate(src))

$$A \cdot B = (A \oplus B) \ominus B$$

Morphological Operation (32/35)

Advanced research

Fingerprint

Morphological Operation (33/35)

NCUE CSIE Computer Vision P.Y. Chen Source: Morphological Operation - Chen Hua-Tsung

Morphological Operation (34/35)

Advanced research > Remove the inner noise. **Step4.** Erosion $A \ominus B$ Step3. Dilation $A \cdot B$ Closing

Source: Morphological Operation - Chen Hua-Tsung P.Y. Chen NCUE CSIE Computer Vision

Morphological Operation (35/35)

> Advanced research

Before

After

Exercise #3

P.Y. Chen

Image Source: Pixabay - Fingerprints

Please try to give a clear fingerprint for any fingerprint's image.

NCUE CSIE Computer Vision P.Y. Chen

42

Boundary Extraction (1/3)

Before

After

43

Boundary Extraction (2/3)

 \triangleright The difference between A and its erosion forms the boundary.

A: A set of foreground pixels.

B: A structuring element.

NCUE CSIE Computer Vision

P.Y. Chen

Boundary Extraction (3/3)

Apple

Grayscale Morphological Operation

Grayscale Morphological Operation (1/18)

> Two basic morphological operations (Review)

Dilation takes maximum under the kernel region.

$$extstyle{ extstyle{dst}} (x,y) = \max_{(x',y'): \, extstyle{ extstyle{element}} (x',y')
eq 0} extstyle{ extstyle{src}} (x+x',y+y')$$

Erosion takes minimum under the kernel region.

$$\mathtt{dst}(x,y) = \min_{(x',y'):\, \mathtt{element}(x',y')
eq 0} \mathtt{src}(x+x',y+y')$$

NCUE CSIE Computer Vision

Grayscale Morphological Operation (2/18)

An image of Gray-Level Pixel

NCUE CSIE Computer Vision

Grayscale Morphological Operation (3/18)

Dination in Grayscale

Grayscale Morphological Operation (4/18)

 \triangleright Dilation $A \oplus B$

Janore the outside points.

		S	can -	<u> </u>
1	2	3	2	4
1	2	4	2	5
1	1	2	0	3
2	1	3	4	1

Original Image

2		

Dilation results

 \triangleright Anchor pixel is setting to max (= 2)

Grayscale Morphological Operation (5/18)

 \triangleright Dilation $A \oplus B$

Original Image

2	4		

Dilation results

 \triangleright Anchor pixel is setup to max (= 4)

Grayscale Morphological Operation (6/18)

 \triangleright Dilation $A \bigoplus B$

Original Image

2	4	4	

Dilation results

 \triangleright Anchor pixel is setup to max (= 4)

Grayscale Morphological Operation (7/18)

 \triangleright Dilation $A \oplus B$

Original Image

2	4	4	5	

Dilation results

 \triangleright Anchor pixel is setup to max (= 5)

Grayscale Morphological Operation (8/18)

 \triangleright Dilation $A \oplus B$

Original Image

2	4	4	5	5

Dilation results

 \triangleright Anchor pixel is setup to max (= 5)

Grayscale Morphological Operation (9/18)

 \triangleright Dilation $A \oplus B$

1	2	3	2	4		
1	2	4	2	5		
1	1	2	0	3		
2	1	3	4	1	- · - 	
Original Image						
				<u> </u>	<u> </u>	

2	4	4	5	5
2	4	4	5	5
2	4	4	5	5
2	4	4	4	4

Dilation results

✓ After scanning throughout the image, the result is a grayscale image.

NCUE CSIE Computer Vision

Grayscale Morphological Operation (10/18)

ETOSION in Grayscale

Grayscale Morphological Operation (11/18)

 \triangleright Erosion $A \ominus B$

Janore the outside points.

			Scan —		
L	1	2	3	2	4
	1	2	4	2	5
	1	1	2	0	3
	2	1	3	4	1

Original Image

1		

Dilation results

 \triangleright Anchor pixel is setting to min (= 1)

Grayscale Morphological Operation (12/18)

 \triangleright Erosion $A \ominus B$

Original Image

1	1		

Dilation results

 \triangleright Anchor pixel is setting to min (= 1)

Grayscale Morphological Operation (13/18)

Erosion $A \ominus B$ Scan

1 2 2 4 2 5
1 1 2 0 2

Original Image

3

1	1	2	

Dilation results

 \triangleright Anchor pixel is setting to min (= 2)

Grayscale Morphological Operation (14/18)

 \triangleright Erosion $A \ominus B$ Scan \longrightarrow

Original Image

1	1	2	2	

Dilation results

 \triangleright Anchor pixel is setting to min (= 2)

Grayscale Morphological Operation (15/18)

 \triangleright Erosion $A \ominus B$

Original Image

1	1	2	2	2

Dilation results

 \triangleright Anchor pixel is setting to min (= 2)

Grayscale Morphological Operation (16/18)

 \triangleright Erosion $A \ominus B$

1	2	3	2	4	
1	2	4	2	5	
1	1	2	0	3	
2	1	3	4	1	
Original Image					

1	1	2	2	2
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

Dilation results

✓ After scanning throughout the image, the result is a grayscale image.

NCUE CSIE Computer Vision

Grayscale Morphological Operation (17/18)

> Dilation Results in grayscale images.

- As we can see, many black line and black regions disappear.
- The results looks brighter than before.

Grayscale Morphological Operation (18/18)

> Erosion Results in grayscale images.

- The black holes and black lines become bigger.
- So, the image seems darker.

Morphological Gradient (1/4)

Gradient(src) = Dilate(src) - Erode(src)

- ✓ Dilation and erosion can be used in combination with image subtraction to obtain morphological gradient.
- ✓ Dilation thickens regions in the image, and erosion shrinks them.

Morphological Gradient (2/4)

Figure 5-14. Morphological gradient applied to a grayscale image: as expected, the operator has its highest values where the grayscale image is changing most rapidly

Morphological Gradient (3/4)

Gradient(src) =
Dilate(src) - Erode(src)

The operator has its highest values where grayscale image is changing most rapidly.

➤ Bright perimeter edges are identified.

Source: Morphological Operation - Chen Hua-Tsung

Morphological Gradient (4/4)

Before

After

Morphological application methods (1/3)

> Top Hat

TopHat(src)

= src - Open(src)

✓ Bright local peaks are isolated.

P.Y. Chen

Morphological application methods (2/3)

> Black Hat

BlackHat(src)

= Close(src) - src

✓ Dark holes are isolated.

P.Y. Chen

Morphological application methods (3/3)

Syntax:

morphologyEx(src, dst, operation, kernel, iterations, borderType, borderValue)

MORPH_CLOSE – A closing operation

MORPH_GRADIENT – A morphological gradient

MORPH_TOPHAT – "Top Hat"

MORPH_BLACKHAT – "Black Hat"

Grayscale Morphological Operations Summary

Image

Erosion IΘB

Dialation I⊕B

Opening loB= (IΘB)⊕B

Closing $I \cdot B = (I \oplus B)\Theta B$ Grad $(I) = (I \oplus B) \cdot (I \oplus B)$ TopHat $(I) = I - (I \oplus B)$

 $BlackHat(I) = (I\Theta B) - I$

NCUE CSIE

Computer Vision

P.Y. Chen

Source: Morphological Operation - Chen Hua-Tsung

Exercise #4

Please choose any color image to complete the following operations:

- 1. Grayscale Dilation
- 2. Grayscale Erosion
- 3. Boundary extraction

- > LibreStock
- > Pixabay

✓ Note: *.sln & *.ppt(or *.pptx) are necessary and compress in a *.rar file.

Any questions?