

08 – Floating Point Numbers

CS1022 – Introduction to Computing II

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics 32-bits 2³² unique values

e.g. unsigned integers

$$0 \dots 2^{32} - 1 = 0 \dots 4,294,967,295$$

e.g. signed integers using 2's complement

$$-2^{31} \dots 0 \dots + 2^{31} - 1 = -2,147,483,648 \dots 0 \dots + 2,147,483,647$$

How do we represent values like 3.14 or $2\frac{1}{2}$?

How do we represent values with really large magnitudes?

Think about (normalised) scientific notation ...

Convert the following binary numbers to decimal numbers with fractions

```
100101011.1
```

101000.01

Convert the following decimal numbers to binary floating point numbers

```
10½
```

51/4

7.75

2.1

Use a different interpretation of a 32-bit value to represent floating point numbers, e.g. IEEE 754

$$(-1)^s \times f \times 2^e$$

How can we represent ...

... positive and negative values?

... values with positive and negative exponents?

Where is the radix point?

Sign bit?

0 ⇒ positive floating-point number

1 ⇒ negative floating-point number

Positive and negative exponents?

Option 1: 2's Complement exponents

Option 2: Biased exponents

Subtract a constant bias (b) from stored exponent to obtain signed exponent

$$(-1)^s \times f \times 2^{e+(-b)}$$

Assume that the radix point is immediately after the LSB

Don't want multiple representations of the same value! (if $(a == b) \dots$)

Store floating-point numbers in normalised form

1.ddd ... d

Normalisation

 0.0101×2^{-4}

... becomes ...

 1.0100×2^{-6}

adjust fraction so there is a single 1 to left of radix point compensate by adjusting exponent accordingly

If there is always going to be a 1 to the left of the radix point, we don't need to store it!

Increases precision (by one bit) – like not storing the 2 LSBs of a branch target offset!

Final IEEE 754 Floating-Point Representation

$$(-1)^{s} \times 1.f \times 2^{(e+b)}$$

Examples?

Special bit patterns, e.g.

Infinity (±)

Not a Number (NaN)

Single and Double Precision

32-Bit Single Precision

64-Bit Double Precision

