From Long to Short:

How Interest Rates Shape Life Insurance Markets

Ziang Li Derek Wenning Imperial College IU Kelley

^{*} Source: Guardian Life Insurance report, based on data from LIMRA

^{*} Source: Guardian Life Insurance report, based on data from LIMRA

^{*} Source: Guardian Life Insurance report, based on data from LIMRA

In-the-Money Guarantees \rightarrow Elevated Interest Rate Risk Exposure

How can life insurers address duration mismatch?

• Interest rate swaps

- Idea: swap duration with other institutions that would like to sell it
- <u>Limits</u>: regulatory + accounting disincentives (Sen, 2023)

How can life insurers address duration mismatch?

• Interest rate swaps

- Idea: swap duration with other institutions that would like to sell it
- <u>Limits</u>: regulatory + accounting disincentives (Sen, 2023)

Reaching for duration

- <u>Idea</u>: rebalance assets to <u>lengthen duration</u> to match liability duration
- <u>Limits</u>: market incompleteness, trade costs (Ozdagli & Wang, 2019; Ellul et. al, 2022)

How can life insurers address duration mismatch?

Interest rate swaps

- Idea: swap duration with other institutions that would like to sell it
- <u>Limits</u>: regulatory + accounting disincentives (Sen, 2023)

• Reaching for duration

- <u>Idea</u>: rebalance assets to <u>lengthen duration</u> to match liability duration
- <u>Limits</u>: market incompleteness, trade costs (Ozdagli & Wang, 2019; Ellul et. al, 2022)

• This paper: liability rebalancing

- Idea: shorten liability duration to match asset duration

Today: A Theoretical Framework + Empirical Facts

- Build a simple model of insurance product markets
 - Key ingredient: life insurer risk aversion → duration matching motive
 - Interest rate risk exposure $\uparrow \rightarrow$ product market distortions \uparrow
- Take the model to the data using statutory filings + monthly pricing data
 - Contrast VA issuers (exposed) with non-VA issuers (non-exposed)
 - Focus on post-GFC period when duration mismatch is highest
- Document several novel findings consistent with our theory
 - **Prices and quantities** shift to favor short-term products → *liability rebalancing*
 - Aggregate issuance + in force life insurance shrinks relative to GDP

Literature

• Insurers face interest rate risk, imperfectly hedge using assets and derivatives.

Berends et al., 2013 – Hartley et al., 2016 – Ozdagli & Wang, 2019 – Koijen & Yogo, 2021, 2022 – Huber, 2022 – Ellul et. al, 2022 – Sen, 2023 – Barbu & Sen, 2024 – Kirti & Singh, 2024 – Li, 2024 **This paper: Insurers also rebalance their liabilities to hedge their duration mismatch.**

Insurers' financial health affects their product characteristics.

Gron, 1994 - Froot, 2001 - Zanjani, 2002 - Koijen & Yogo, 2015 - Ge, 2022 - Ellul et al., 2022 - Knox & Sorensen, 2024 - Verani & Yu. 2024 - Barbu et al., 2024

This paper: Insurers distort prices on the maturity margin when exposed to interest rate risk.

• (The decline in) life insurance participation is largely demand driven.

Koijen et al., 2016 - Hartley et al., 2017 - Rampini & Vishwanathan, 2022

This paper: Insurers offer less accessible coverage as a byproduct of interest rate risk, reducing participation.

Theory

Broad Layout of the Model

- ullet Set of insurers (j) that sell products $(i \in \{s,\ell\})$ over time $(t \in \mathbb{N})$
 - Note: paper generalizes to any number of insurers and products

Broad Layout of the Model

- ullet Set of insurers (j) that sell products $(i \in \{s,\ell\})$ over time $(t \in \mathbb{N})$
 - Note: paper generalizes to any number of insurers and products
- Insurers' Legacy Balance Sheets: $K_{jt} = A_{jt} L_{jt}$
 - Asset returns: $R_{jt}^A = \overline{R}_{jt}^A D_{it}^A \Delta R_t$
 - Liability returns: $R_{jt}^L = \overline{R}_{jt}^L D_{jt}^L \Delta R_t$

Broad Layout of the Model

- ullet Set of insurers (j) that sell products $(i \in \{s,\ell\})$ over time $(t \in \mathbb{N})$
 - Note: paper generalizes to any number of insurers and products
- Insurers' Legacy Balance Sheets: $K_{jt} = A_{jt} L_{jt}$
 - Asset returns: $R_{it}^A = \overline{R}_{it}^A D_{it}^A \Delta R_t$
 - Liability returns: $R_{it}^L = \overline{R}_{it}^L D_{it}^L \Delta R_t$
- Add to their capital by issuing new policies premiums $P_{ijt}Q_{ijt}$, reserves $V_{ijt}Q_{ijt}$
 - Premium revenues invested at return R_{it}^A
 - Reserves grow according to $R_{it} = \overline{R}_{it} D_{it} \Delta R_t$
 - Note: paper also adds extensive margin using commissions/agent-based distribution

Insurers' Objectives: Profits + Risk Management

$$\max_{\{P_{ijt}\}} \underbrace{\sum_{i} (P_{ijt} - V_{ijt}) Q_{ijt}(P_{ijt})}_{\text{new capital from issuance}} + \underbrace{\mathbb{E}_{t} \left[\Lambda_{jt} \left(R_{jt}^{K} - \mathbb{E}_{t} \left[R_{jt}^{K} \right] \right) \right]}_{\text{expected value of risk management}}$$

• Risk management function $\Lambda(\cdot)$ increasing and concave (think mean-variance pref's)

Insurers' Objectives: Profits + Risk Management

$$\max_{\{P_{ijt}\}} \underbrace{\sum_{i} (P_{ijt} - V_{ijt}) Q_{ijt}(P_{ijt})}_{\text{new capital from issuance}} + \underbrace{\mathbb{E}_{t} \left[\Lambda_{jt} \left(R_{jt}^{K} - \mathbb{E}_{t} \left[R_{jt}^{K} \right] \right) \right]}_{\text{expected value of risk management}}$$

- Risk management function $\Lambda(\cdot)$ increasing and concave (think mean-variance pref's)
- ullet Work with first-order approximation around legacy returns, $R_{jt}^K = \widetilde{R}_{jt}^K$:

$$\Lambda_{jt}(\cdot) \approx \lambda_{jt}(\cdot) \left[\sum_{i} (D_{jt}^{A} P_{ijt} - D_{it} V_{it}) Q_{ijt} \right] \Delta R_{t} + \text{constant}$$

contribution of new product issuance to firm's interest rate risk

Risk Management Motives Affects Optimal Price Setting

Optimal markup over reserve value can be (approximately) written

$$\log \frac{P_{ijt}}{V_{it}} \approx \underbrace{\log \mu_{it}}_{\text{product-specific}} + \underbrace{\bar{\lambda}'_{jt} \sigma_{t+1}^2 \underbrace{D_{jt}^K \times (D_{it} - D_{jt}^A)}_{\text{risk management}}}_{\text{markup/discount}} \equiv \mathcal{M}_{ijt}$$

Intuition:

If $D_{it}^{K} = 0$, no need for risk management

If $D_{it}^{K} < 0$, mark up <u>long</u> duration policies, discount <u>short</u> duration policies

Liability Rebalancing: $D_{jt}^{K} \downarrow$ implies $Q_{sjt} \uparrow$ and $Q_{\ell jt} \downarrow$

Broad Changes in Net Duration Can Expand or Contract Product Markets

• With logit demand, (new customer) participation rate for product i is

$$\mathcal{P}_{it} = \frac{\sum_{j} \alpha_{jt} \mu_{jt}^{1-\varepsilon_{it}} \mathcal{M}_{ijt}^{1-\varepsilon_{it}}}{\alpha_{it}^{0} + \sum_{j} \alpha_{jt} \mu_{jt}^{1-\varepsilon_{it}} \mathcal{M}_{ijt}^{1-\varepsilon_{it}}}$$

Implication:

If $D_{jt}^{K} \downarrow$ (weakly) for all insurers, participation rate $\mathcal{P}_{st}^{0} \uparrow$ and $\mathcal{P}_{\ell t}^{0} \downarrow$ (*Total* participation depends on relative market sizes, distribution costs, etc.)

Data and Empirical Facts

Data Sources

- **Statutory Filings** regulatory reports filed annually
 - Products: insurance/policies issued and in force, gross reserves, commissions
 - Balance Sheet: assets, liabilities, leverage
 - Asset/Liability duration: bond-level holdings + Huber (2022) liability duration estimates
- Compulife agent software with life insurance quotes
 - 10, 15, 20, and 30 year term life prices
 - \sim 39 insurers per month
- CRSP insurer + market monthly stock returns
- Exposed Insurers: top 10% of (relative) variable annuity liabilities pre-GFC
 - Relatively large (assets \$95B vs. \$8.3B) and levered (19.62 vs. 6.56)
 - <u>Similar market shares</u> across products (43% vs. 54%)

Summary Statistics 11/21

Life Insurers Had Negative Net Duration After the GFC

Duration Gaps were Exacerbated Only for Exposed Insurers

► Reaching for Duration 13/21

How Does Duration Mismatch Affect Product Pricing?

Our theory admits the following (approximate) expression

$$\begin{split} \mathbb{E}_{\mathsf{Ex}} \left[\log \frac{P_{\ell jt} / V_{\ell t}}{P_{sjt} / V_{st}} \right] - \mathbb{E}_{\mathsf{NonEx}} \left[\log \frac{P_{\ell jt} / V_{\ell t}}{P_{sjt} / V_{st}} \right] \\ &\approx \ \sigma_{t+1}^2 \times \underbrace{\left(\mathbb{E}_{\mathsf{Ex}} \left[\bar{\lambda}'_{jt} D_{jt}^{\mathcal{K}} \right] - \mathbb{E}_{\mathsf{NonEx}} \left[\bar{\lambda}'_{jt} D_{jt}^{\mathcal{K}} \right] \right)}_{\geq 0, \ \mathsf{increases} \ \mathsf{when} \ \mathsf{interest} \ \mathsf{rates} \ \mathsf{fall}} \times \underbrace{\left(D_{\ell t} - D_{st} \right)}_{>0} \end{split}$$

- Idea: Exposed insurer duration gaps ↑ relative to non-exposed when yields ↓
 - \rightarrow **Relative maturity spreads** should <u>widen</u> when yields \downarrow

(Note: Double differencing nets out firm-specific components, e.g. RBC treatments)

Relative Maturity Spreads Negatively Correlate with Long Rates

Adjust for Volatility

15/21

Relative Maturity Spreads Negatively Correlate with Long Rates

▶ Regression Table

16/21

How Do Pricing Distortions Affect Quantities?

- Ordinary Life: long term (term or whole life), accessible through agents
 - Interest sensitive due to whole life guarantees, surrender/lapsation risk
- Group Life: yearly renewable, accessible through employers
 - No dynamic component → little to no duration

Reserve Values

How Do Pricing Distortions Affect Quantities?

- Ordinary Life: long term (term or whole life), accessible through agents
 - Interest sensitive due to whole life guarantees, surrender/lapsation risk
- **Group Life:** yearly renewable, accessible through employers
 - No dynamic component → little to no duration

Theory: Exposed insurer duration gaps $\uparrow \rightarrow Q_{it}^{\text{group}} \uparrow$ while $Q_{it}^{\text{ordinary}} \downarrow$

Exposed Insurers Transition to Short Term Group Policies

▶ Levels 18/21

Exposed Insurers were Responsible for the Aggregate Decline in Issuance

As a Result, The Life Insurance Market Has Shrunk Relative to GDP

For Group Only

Conclusion

Interest Rate Risk Matters for Product Markets

- Today Large swings in product issuance and distortions due to IRR
 - Large consequences for products with different maturities!

Coming Up

- Continue tightening evidence, ruling out other potential stories (e.g. RBC concerns)
- Structural estimation + counterfactuals
 - 1. Decomposition of market size into demand + supply characteristics
 - 2. How would market look today if duration gaps never opened up?

Appendix

Summary Statistics for Statutory Filings Data

	Exposed Insurers		Non-Exposed Insurers	
	2005-2008	2009-2023	2005-2008	2009-2023
Number of Groups	26	25	239	198
Assets	94.68	100.30	8.31	14.57
Surplus	5.09	5.39	0.67	1.25
Leverage Ratio	19.62	19.17	6.56	8.97
VA Liability Share	0.57	0.50	0.01	0.01
IS Reserve Share	0.67	0.65	0.24	0.25
Issuance Market Share				
Ordinary	0.43	0.29	0.54	0.61
Group	0.45	0.42	0.54	0.51
In Force Market Share				
Ordinary	0.38	0.29	0.37	0.39
Group	0.48	0.44	0.49	0.47

1/9

Exposed Insurers Reach for Duration More After the GFC

Relative Markups Negatively Correlate with Long Rates (Adjusted)

▶ Back 3/9

Relative Maturity Spreads Negatively Correlate with Long Rates

Markup Spread
$$_{jt} = \gamma_j + \gamma_t + \beta \; \textit{Exposed}_j \times y_t^{(10)} + \varepsilon_{jt}$$

	Long-Short Category				
	20 - 15	20 - 10	30 - 15	30 - 10	
$\overline{\textit{Exposed}_{j} imes \textit{y}_{t}^{(10)}}$	-0.017***	-0.026***	-0.011***	-0.020***	
	(0.003)	(0.004)	(0.003)	(0.005)	
Month FE	\checkmark	\checkmark	\checkmark	\checkmark	
Group FE	\checkmark	\checkmark	\checkmark	✓	
Obs.	5399	5915	4639	4756	
Within-R ²	0.020	0.020	0.000	0.010	

_{Back} 4/9

Ordinary life reserves are larger and more interest sensitive than Group

Non-Exposed Insurers

▶ Back 5/9

Average Ordinary Issuance Declined (Group Increased) For Exposed Groups

6/9

Nominal Ordinary Issuance Steady While Group Life Increases

Policy Issuance Followed the Same Trends as Amounts

Group Life In Force As a Share of GDP

