Missions avec Bluecoders

Delong LI

Bluecoders

Business

- Chasse de tête
- Mission RPO
- Formation

Problèmes

- Données sous-exploitées (sur domain et technos)
- Mal à match les offres d'emploi et les utilisateurs (candidates)

id	name	created_at		domain	technos
xxxx	xxxx	xxxx	•••••	{}	{}

M1.Prédiction de domaine à partir de profile Linkedin

M2.Recommandation d'entreprise pour les coders

^{*} Au moins un champs parmi [Occupation, Titles, Description, Field of Study] est valid

Valid	l Interse	ction			in			
id	name	•••••	Occupation	Title	Experience	Education	 domain	technos
xxxx	XXXX	•••••	XXX	XXX	XXX	XXX	 {"Full-stack"}	{"PHP"}
xxxx	xxxx	•••••	XXX	XXX	/	/	 {"Software"}	{"Java"}
xxxx	xxxx	•••••	/	1	1	XXX	 {"Data"}	{"Python"}
Linke	edin Data	a						
id	name	•••••	Occupation	Title	Experience	Education	domain	technos
xxxx	xxxx	•••••	XXX	/	1	1	?	?
				XXX	XXX	1	?	?

N P n e

Stage de 6 mois Développement de plusieurs applications en C++ avec le framework Qt dans un environnement Linux. Adresse email: David@abc.com

1. Text cleaning

Enlever urls, emails, etc.

Convertir les majuscules en minuscule

Ne garder que les lettres, les chiffres et certains caractères a-z0-9âàçéèëêîïôüùû-+&#

stage de 6 mois développement de plusieurs applications en c++ avec le framework qt dans un environnement linux

2. Tokenization & Stopwords

Tokeniser les phrases en tokens

Remplacer chiffre par token (#number) Enlever stopwords (le la de du d'...)

[stage, #number, mois, développement, plusieurs, applications, c++, framework, qt, environnement, linux, adresse, email]

3. Lemmatization

Détecter la langue (français, anglais)

Enlever pluriels, accords, conjugaisons

[stage, #number, mois, développement, plusieurs, application, c++, framework, qt, environnement, linux, adresse, email]

4. N-gram

Ajouter 2-grams, 3-grams à la liste

[stage, #number, mois, développement, plusieurs, application, c++, framework, qt, environnement, linux, adresse, email stage #number, #number mois, mois développement, développement plusieurs,... stage #number mois, #number mois développement, mois développement plusieurs,...]

TF-IDF

Fréquence du terme (TF)

La fréquence « brute » d'un terme est simplement le nombre d'occurrences de ce terme dans le document considéré

Fréquence inverse de document (IDF)

$$idf(t) = \log \left| \frac{n}{\{d \in D: t \in d\}} \right|$$

La fréquence inverse de document est une mesure de l'importance du terme dans l'ensemble du corpus. Elle vise à donner un poids plus important aux termes les moins fréquents, considérés comme plus discriminants.

Pondérer les titles en fonction de l'ancienté

Les expériences plus récentes sont plus pertinentes

Raw data

Document ID	Textual description		
1	"Data science is fun"		
2	"Artificial intelligence is the future"		
3	"Business and artificial intelligence combination is the key"		

TE

Word								,	<i></i>
Document	"data"	"science"	"tun"	"artificial"	"intelligence"	"future"	"business"	"combination"	"key"
1	1	1	1	0	0	0	0	0	0
2	0	0	0	1	1	1	0	0	0
3	0	0	0	1	1	0	1	1	1

IDE

IDF									
Word	"data"	"science"	"fun"	"artificial"	"intelligence"	"future"	"business"	"combination"	"key"
Document									
1	0,48	0,48	0,48	0,18	0,18	0,48	0,48	0,48	0,48
2	0,48	0,48	0,48	0,18	0,18	0,48	0,48	0,48	0,48
3	0.48	0.48	0.48	0.18	0.18	0.48	0.48	0.48	0.48

X

TF-IDF

Word									
	"data"	"science"	"fun"	"artificial"	"intelligence"	"future"	"business"	"combination"	"key"
Document									
1	0,48	0,48	0,48	0,00	0,00	0,00	0,00	0,00	0,00
2	0,00	0,00	0,00	0,18	0,18	0,48	0,00	0,00	0,00
3	0,00	0,00	0,00	0,18	0,18	0,00	0,48	0,48	0,48

Nettoyage de domain

 Fusionner des domains similaires: Fullstack Frontend

....

 Laisser de côté quelques domains non-tech dans le but d'éviter over-fitting

Classification: Bag of Words

Corpus des documents

[PHP, Database, Node, ASP.NET...]

[DevOps, C++, CSS,...]

[Scikit-learn, algorithms, developer, supervised...]

Full-Stack	BackEnd	FrontEnd	 	Science
2	6	1		0
5	1	1		3
2	0	2		8

- Compter la fréquence de N-grams de chaque domaine pour chaque document
- Attribuer le domaine dont la somme de fréquence est la plus élevée

Corpus des domains

X4 champs

N-grams sélectionnés

- Similarité cosinus est généralement utilisée comme métrique pour mesurer la distance entre documents
- Calculer la similarité cosinus entre vecteur document et chaque vecteur domain
- Pondérer et combiner les matrices de similarité cosinus de chaque champs
- Attribuer le domaine dont la somme de similarité cosinus est la plus élevée

Classification: K-NN

Attribuer le domaine le plus fréquent dans les K plus proches voisins (ou dans le rayon de R)

Classification: Linear SVC

Evaluation

Tradeoff: Precision, Recall, Seuil de confiance

Matric	e d'éva	luation	Prediction	Similarité Cosinus	Rayon de KNN	Distance à l'hyperplan de SVC	Groud Truth
0.02			Backend	0.8	0.1	5	Backer
		0.07	Fullstack	0.5	0.5	3	Fullsta
			Science	0.4	0.3	1	Scienc
0.12			QA	0.7	0.6	4	QA

Groud Truth
Backend
Fullstack
Science
QA

·	Similarité Cosinus	Rayon de KNN	Distance à l'hyperplan de SVC
Gamme	[0,1]	[0,1]	$[-\infty + \infty]$
Confiance	→+	+ ←	→+

Evaluation

Tradeoff: Precision, Recall, Seuil de confiance

On baisse(augmente pour RNN) le seuil afin devenir sur plus de profils, en même temps, on risque d'endommager la précision, car on a moins en moins de confiance pour les profils suivantes.

Temps (s)	BoW	Similarité Cosinus	K-NN	Linear SVC
Entraînement	1	1	0.02	0.5
Prédiction	1.95	0.02	1.19	0.02

M2. Recommandation d'entreprise pour les coders

Coder_id	Company_id
C1	E10
C1	E55
C2	E8
C3	E100

Coder_id	School_id		
C1	S6		
C2	S99		
C2	S12		
C3	S4		

Nombre d'coder par entité

Nombre d'entité par coder

- Le minimum d'occurrence de coder : 3
- Le minimum d'occurrence de company: 3

Collaborative Filtering

Matrice Feedback

1 signifie le coder avait travaillé dans cette entreprise; 0 le contraire

Objectif: représenter la matrice par le produit de 2 matrices de faible dimension (celle de coder et de company) de sorte que chaque vecteur de faible dimension représente un coder ou une entreprise

Collaborative Filtering

Alternating Least Squares

$$\min_{x_{\star},y_{\star}} \sum_{u,i} c_{ui} (p_{ui} - x_{u}^{T} y_{i})^{2} + \lambda \left(\sum_{u} ||x_{u}||^{2} + \sum_{i} ||y_{i}||^{2} \right)$$

- Sparsity of matrix: 0.00013
- Alterner entre le calcul des User embeddings et Company embeddings, et chaque étape est garantie pour réduire la valeur de cost function.
- Dimension de company/coder vecteur: 20 ; Regularization: 0.2

Visualization d'embeddings

Consumer Goods	Finance	GAFA	Industry	Luxury	Retail	Scale Up	Transport
L'oréal	HSBC	Google	Total	Kering	IKEA	Payfit	Airbus
Danone	BPCE	Amazon	EDF	Dior	Carrefour	Lydia	Safran
Nestlé	BNP Parisbas	Facebook	Air Liquide	Channel	Auchan	Back Market	Groupe PSA
Unilever	JP Morgan	Apple	Vinci	LVMH	Decathlon	Blablacar	Thales
Pernod Ricard	Société Générale	Microsoft	Schneider Electric	Cartier	Leroy Merlin	Qonto	SNCF

On a regroupé des entreprises dans 8 catégories, chacune contenant 5 entreprises, soit 40 au total.

Graph Dendrogramme de clustering

Graph Heatmap - Distance Cosinus: Couples de catégories

Graph Boxplot - Distance Cosinus à l'intérieur et à l'extérieur

Evaluation

Sur les dernières expériences des coders

Supprimer les dernières expériences de chaque coder dans la matrice d'expérience et recalculer les embeddings

8.0

0.7

-0.3

-0.6

0.1

Reproduire les similarité cosinus des deux embeddings et récupérer les éléments sur ces ground-truths

Evaluation

	Avec écoles	Sans écoles
Quantile Moyen	0.6203	0.5934
Similarité Moyen	0.2789	0.2188

- Les écoles nous aident à augmenter le quantile et le score considérablement
- Le percentile moyen à 65 est bien supérieur que la base de référence 50

Merci