Lecture 15 Properties of Decompositions

Decomposition of a Relation Schema

- A decomposition of R consists of replacing R by two or more relations such that:
 - Each new relation schema contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of one or more new relations
- Store instances of the relation schemas produced by the decomposition, instead of instances of R
- Decompositions should be used only when needed

Decomposition Example

- Consider a relation obtained from Hourly_Emps:
 - Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
 - Denote this relation schema by listing the attributes: SNLRWH
 - SNLRWH has FDs: S → SNLRWH and R → W
 - R → W causes violation of 3NF
 - Create a relation RW to store the associations and remove W from the main schema (decompose SNLRWH into SNLRH and RW)
- If we just store the projections of SNLRWH tuples onto SNLRH and RW, are there any potential problems that we should be aware of?

Problems with Decompositions

- Three potential problems:
 - 1. Some queries become more expensive
 - e.g., How much did sailor Joe earn? (salary = W*H)
 - 2. Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - 3. Checking some dependencies may require joining the instances of the decomposed relations
- Tradeoff: must consider these issues vs. redundancy

Problem 2: Example

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

A	В	C
1	_	3
4	2 5	6 8
7	2	8
1	2	8
7	2	3

Lossless Join Decomposition

- Decomposition of R into X and Y has the lossless-join property w.r.t. a set of FDs F if for every instance r of R that satisfies F: $\pi_X(r) \bowtie \pi_Y(r) = r$
- It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$. If the other direction holds, the decomposition is lossless-join
- Definition extends to decomposition into 3 or more relations

Lossless Join Decomposition (Cont.)

- Repeated decompositions: R is decomposed into R₁ and R₂ through a lossless join decomposition, and R₁ is decomposed into R₁₁ and R₁₂ through another lossless join decomposition. Then the decomposition of R into R₁₁, R₁₂, and R₂ is lossless join
- All decompositions used to deal with redundancy should be lossless! (Avoids problem 2)

Testing Binary Decomposition for Lossless Join

R₁, R₂ is a lossless join decomposition of R with respect to F iff at least one of the following dependencies is in F⁺(the closure of F)

$$-(R_1 \cap R_2) \rightarrow R_1$$
$$-(R_1 \cap R_2) \rightarrow R_2$$

 For example, the decomposition of R into UV and R - V is lossless if U → V holds over R

Example

ld#	Name	Address	C#	Description	<u>Grade</u>
124	Jones	Phila	Phil7	Plato	Α
789	Brown	Boston	Math8	Topology	C

Given the FD set:

```
Id# → Name, Address
C# → Description
Id#, C# → Grade
```

- Is (Id#, Name, Address) and (Id#, C#,
 Description, Grade) a lossless decomposition?
- What happens if we decompose on (Id#, Name, Address) and (C#, Description, Grade)?

Dependency Preserving Decomposition

- Consider a relation: Contracts (contractid, supplierid, projectid, deptid, partid, qty, value)
 - CSJDPQV, C is the key, JP \rightarrow C and SD \rightarrow P
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking JP → C requires a join!
- If R is decomposed into X, Y and Z through a dependency preserving decomposition, and if we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids problem 3)

Dependency Preserving Decomposition (Cont.)

- Suppose we need to update a relation in a database.
 Can we easily check whether an FD X→Y is violated?
 - We can if X ∪ Y is contained within the set of attributes
- The projection of an FD set F onto a set of attributes Z
 F_Z = {X→Y | X→Y∈F⁺ and X ∪Y ∈Z}
- A decomposition $R_1, ..., R_k$ is dependency preserving if $F^+ = (F_{R_1} \cup ... \cup F_{R_k})^+$
- Dependency preserving decomposition hasn't "lost" any essential FDs

Dependency Preserving Decompositions (Cont.)

- Decomposition of R into X and Y is dependency preserving if (F_X ∪ F_Y)⁺ = F⁺
 - i.e., if we consider only dependencies in the closure F⁺ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F⁺
- Important to consider F⁺, not F
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?
- Dependency preserving does not imply lossless join and vice versa!
 - ABC, A → B, decomposed into AB and BC

Example 1

- Given a relation schema: {Sname, Sadd, City, Zip, Item, Price} and an FD set:
 - FD1: Sname → Sadd, City
 - FD2: Sadd, City \rightarrow Zip
 - FD3: Sname, Item → Price
- Consider the decomposition: {Sname, Sadd, City, Zip} and {Sname, Item, Price}
 - Is it lossless?
 - Is it dependency preserving?
 - What if we replaced FD1 by Sname, Sadd → City?

Example 2

- Given a relation schema {Student, Teacher, Subject} and an FD set
 - FD1: Teacher → Subject
 - FD2: Student, Subject → Teacher
- Consider the decomposition: {Student, Teacher} and {Teacher, Subject}
 - Is it lossless?
 - Is it dependency preserving?

Minimum Sets of Functional Dependencies

Equivalence of FD Sets

- Two sets of FDs, F and G, are equivalent if F⁺ = G⁺
- Example: {AB → C, A → B } and {A → C,
 A→ B } are equivalent
- F⁺ contains a huge number of FDs (exponential in the size of the schema).
 One naturally looks for small equivalent
- A set of FDs F covers another set of FDs E if every FD in E is also in F⁺

Is E covered by F when every dependency in E can be inferred from F?

Yes No

Is E covered by F when every dependency in E can be inferred from F?

Yes	
	0%
No	
	0%

Is E covered by F when every dependency in E can be inferred from F?

Yes	
	0%
No	
	0%

Minimal Cover

- Minimal cover G for a set of FDs F:
 - $F^{+} = G^{+}$
 - RHS of each FD in G is a single attribute
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes
- Every FD in minimal cover G is needed, and "as small as possible" in order to get the same closure as F
 - e.g., {A → B, ABCD → E, EF → GH, ACDF → EG} has a minimal cover: {A → B, ACD → E, EF → G, EF → H)

Minimal Cover (Cont.)

- Formal Definition: A FD set F is minimal if
 - 1. Every FD in F is of the form $X \rightarrow A$, where A is a single attribute
 - 2. No redundant attributes from LHS of FDs
 - 3. No redundant FDs
- Every dependency is required and is as small as possible
 - Each attribute on the left side is necessary
 - Right side is a single attribute
- Example:

 $\{A \rightarrow C, A \rightarrow B\}$ is a minimal cover for $\{AB \rightarrow C, A \rightarrow B\}$

Finding a Minimal Cover

- Replace each functional dependency
 X → {A₁, A₂,..., A_n} in F by the n
 functional dependencies X →A₁, X
 →A₂,..., X →A_n
- Remove all redundant attributes from LHS of FDs
- 3. Remove all redundant FDs

Example

Find a minimal cover for {ABH \rightarrow C, A \rightarrow D, C \rightarrow E, BGH \rightarrow F, F \rightarrow AD, E \rightarrow F, BH \rightarrow E}

Step1: RHS are single attribute. Applying decomposition rule: ABH \rightarrow C, A \rightarrow D, C \rightarrow E, BGH \rightarrow F, F \rightarrow A, F \rightarrow D, E \rightarrow F, BH \rightarrow E

Step2: Remove redundant attributes from LHS:

 $BH \rightarrow F$

$$BH \rightarrow C \qquad (BH)^+ \Longrightarrow (BEH) \Longrightarrow (ABEFH) \Longrightarrow (ABCEFH)$$

$$BH \rightarrow E \quad E \rightarrow F \quad F \rightarrow A \quad ABH \rightarrow C$$

$$A \rightarrow D$$

$$C \rightarrow E$$

$$BH \rightarrow F$$

$$F \rightarrow A$$

$$F \rightarrow D$$

$$E \rightarrow F$$

Example (Cont.)

Step 3: Remove redundant FDs: BH \rightarrow F, F \rightarrow D, and BH \rightarrow E since:

 $BH \rightarrow F$ can be derived from $BH \rightarrow C$, $C \rightarrow E$, $E \rightarrow F$

 $F \rightarrow D$ can be derived from $F \rightarrow A, A \rightarrow D$

 $BH \rightarrow E$ can be derived from $BH \rightarrow C$, $C \rightarrow E$

A minimal cover is

 $\{BH \rightarrow C, A \rightarrow D, C \rightarrow E, F \rightarrow A, E \rightarrow F\}$

Is it possible that a set of FDs can have several minimal covers?

Is it possible that a set of FDs can have several minimal covers?

Yes	
	0%
No	
	0%

Is it possible that a set of FDs can have several minimal covers?

Yes	
	0%
No	
	0%

Exercise

- Find a minimal cover for $\{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$
- Find a minimal cover for {A → B, ABCD →E, EF →G, EF →H, ACDF →EG}