Assignment 4

Perambuduri Srikaran - AI20BTECH11018

Download all python codes from

https://github.com/srikaran-p/AI1103/tree/main/ Assignment4/codes

and latex codes from

https://github.com/srikaran-p/AI1103/tree/main/ Assignment4

PROBLEM

(STATS P1 IES ISS 2019 Q16) Let X be a Poisson random variable with p.m.f

$$P(X = k) = \begin{cases} \frac{e^{-\lambda} \lambda^k}{k!}, & k = 0, 1, 2, ...; \lambda > 0\\ 0 & \text{otherwise} \end{cases}$$
 (0.0.1)

If $Y = X^2 + 3$, then what is P(Y = y) equal to?

If
$$Y = X^2 + 3$$
, then what is $P(Y = y)$
(A) $\frac{e^{-\lambda}\lambda^{\sqrt{y-3}}}{\sqrt{(y-3)!}}$, for $y = \{3, 4, 7, 12, ...\}$
(B) $\frac{e^{-\lambda}\lambda^{-\sqrt{y-3}}}{\sqrt{(3-y)!}}$, for $y = \{3, 4, 7, 12, ...\}$
(C) $\frac{e^{-\lambda}\lambda^{\sqrt{3-y}}}{\sqrt{(3-y)!}}$, for $y = \{4, 7, 12, ...\}$
(D) $\frac{e^{-\lambda}\lambda^{-\sqrt{3-y}}}{\sqrt{(3-y)!}}$, for $y = \{4, 7, 12, ...\}$

(B)
$$\frac{e^{-\lambda}\lambda^{-\sqrt{y-3}}}{\sqrt{(3-y)!}}$$
, for $y = \{3, 4, 7, 12, ...\}$

(C)
$$\frac{e^{-\lambda_{\lambda}\sqrt{3-y}}}{\sqrt{(3-y)!}}$$
, for $y = \{4, 7, 12, ...\}$

(D)
$$\frac{e^{-\lambda}\lambda^{-\sqrt{3-y}}}{\sqrt{(3-y)!}}$$
, for $y = \{4, 7, 12, ...\}$

SOLUTION

$$Y = X^2 + 3 \tag{0.0.2}$$

$$X = \sqrt{Y - 3} \tag{0.0.3}$$

We can substitute $k = \sqrt{y-3}$ in (0.0.1)

$$p_Y(y) = \begin{cases} \frac{e^{-\lambda} \lambda^{\sqrt{y-3}}}{\sqrt{(y-3)!}}, & y = 3, 4, 7, 12, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (0.0.4)

Hence, the correct option is (A).

Fig. 4: Poisson stem plot for X ($\lambda = 5$)

Fig. 4: Poisson stem plot for Y (Simulated and Theoretical) ($\lambda = 5$)