

Deep Scale-spaces: Equivariance Over Scale

 $[\psi \star_S f]_3$

 $[\psi \star_S f]_2$

Daniel Worrall, Max Welling {d.e.worrall, m.welling}@uva.nl. https://deworrall92.github.io/

The Big Idea

Design a CNN, with built-in scale symmetry

What is symmetry?

Correlations: translation symmetry

$$[\psi \star_{\mathbb{Z}} f](\underline{s}) = \sum_{x \in \mathbb{Z}} \psi(x) f(x + \underline{s})$$
 Response over shifts $x \in \mathbb{Z}$ Shifted image

Semigroups

Algebra: Closed set S with (associative) multiplication

Semigroup correlations

$$[\psi \star_S f]({\color{red} s}) = \sum_{x \in X} \psi(x) L_{{\color{red} s}}[f](x)$$
 Response Transformed image

Scale-space correlations

space + scale

NA

Scale-spaces

$$f(\mathbf{x},t) = [G(\cdot,t)*f_0](\mathbf{x}), \quad t>0$$

$$f(\mathbf{x},0) = f_0(\mathbf{x})$$
 Original image

Gauss-Weierstrass kernel

$$G(\mathbf{x}, t) = \frac{1}{(4\pi t)^{d/2}} \exp\left\{-\frac{\|\mathbf{x}\|^2}{4t}\right\}$$

The "semigroup property"

$$G(\cdot, s) * G(\cdot, t) * f_0 = G(\cdot, s + t) * f_0$$

Continuous scale, continuous grid

Discrete scale, continuous grid

Continuous scale, discrete grid

Implementation & Experiments

Table 1: Results on the Patch Camelyon and Cityscapes Dataset. Higher is better

Architecture matched experiments

- Beat baselines, but yes we have handicapped them.

PCam Model	Accuracy
DenseNet Baseline	87.0
S-DenseNet (Ours)	88.1
[Veeling et al., 2018]	89.8

, ,	
Cityscapes Model	mAP
ResNet, matched parameters	45.66
ResNet, matched channels	49.99
S-ResNet, multiscale (Ours)	63.53
S-ResNet, no interaction (Ours)	64.78

Equivariance error (normalized L2): equivariance holds in practice

Limitations

Integer scale

Computationally inefficient (implementation, large kernels, extra scale dimension Truncation of scale-space leads to boundary effects

Conclusions

Proposed new class of correlations for use in CNNs

Developed a correlation for scale-spaces

Demostrated scale-equivariance is achievable in a deep learning setting

Acknowledgements

We thank Koninklijke Philips N.V. for in-cash and in-kind support. We also give thanks to Rianne van den Berg, Patrick Forré, and our anonymous reviewers for the time and effort they put In to improving this paper