Introduction

• Supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R$

• E.g. x^r : image, \hat{y}^r : class labels

• Semi-supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R, \{x^u\}_{u=R}^{R+U}$

• A set of unlabeled data, usually U >> R

• Transductive learning: unlabeled data is the testing data

• Inductive learning: unlabeled data is not the testing data

· Why semi-supervised learning?

- Collecting data is easy, but collecting "labelled" data is expensive
- We do semi-supervised learning in our lives

对于猫狗分类问题,如果只有一部分data有label,还有其他很大一部分data是unlabeled,那么我们可以认为unlabeled data对我们网络的训练是无用的吗?

Labelled data

Unlabeled data

(Image of cats and dogs without labeling)

Q: Why semi-supervised learning helps?

The distribution of the unlabeled data tell us **something**.

Usually with some assumptions

A: 如图所示,图中灰色圆点表示unlabeled data,其他圆点表示labeled data。如果没有unlabeled data,此时可以用一条竖直的线将猫狗进行分类,boundary为竖直的那条线;但unlabeled data的分布也可以告诉我们一些信息,对我们的训练也是有帮助的,有了unlabeled data,此时的boundary为斜直线

Semi-supervised Learning for Generative Model

Intuitive

不考虑unlabeled data、只有labeled data

- Given labelled training examples $x^r \in C_1$, C_2
 - looking for most likely prior probability P(C_i) and classdependent probability P(x | C_i)
 - $P(x|C_i)$ is a Gaussian parameterized by μ^i and Σ

The unlabeled data x^u help re-estimate $P(C_1)$, $P(C_2)$, μ^1 , μ^2 , Σ

Formulation

- Initialization: $\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$
- Step 1: compute the posterior probability of unlabeled data

$$P_{\theta}(C_1|x^u)$$
 Depending on model θ

N: total number of examples

$$P(C_1) = \frac{N_1 + \sum_{x^u} P(C_1|x^u)}{N}$$

$$N: \text{ total number of examples}$$

$$N_1: \text{ number of examples}$$

$$\text{belonging to } C_1$$

$$\mu^1 = \frac{1}{N_1} \sum_{x^r \in C_1} x^r + \frac{1}{\sum_{x^u} P(C_1|x^u)} \sum_{x^u} P(C_1|x^u) x^u \dots$$

不同的maximum likelihood对比

$$\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$$

• Maximum likelihood with labelled data Closed-form solution

$$logL(\theta) = \sum_{x^r} logP_{\theta}(x^r, \hat{y}^r) \qquad \begin{cases} P_{\theta}(x^r, \hat{y}^r) \\ = P_{\theta}(x^r | \hat{y}^r) P(\hat{y}^r) \end{cases}$$

Maximum likelihood with labelled + unlabeled data

$$logL(\theta) = \sum_{x^r} logP_{\theta}(x^r, \hat{y}^r) + \sum_{x^u} logP_{\theta}(x^u)$$
 Solved iteratively

$$P_{\theta}(x^u) = P_{\theta}(x^u|C_1)P(C_1) + P_{\theta}(x^u|C_2)P(C_2)$$
 (x^u can come from eithe

(x^u can come from either C_1 and C_2)

Low-density Separation Assumption

Self-training

有labeled data和unlabeled data, 重复以下过程:

- 从labeled data中tarin了模型 f*;
- 将 f*应用到unlabeled data,得到带label的数据,称为Pseudo-label
- 从unlabeled data中移出这部分data,并加入labeled data;要移除哪部分data,要根据具体的限 制条件而定
- 有了更多的label data、就可以继续训练我们的模型、返回第一步

- Given: labelled data set = $\{(x^r, \hat{y}^r)\}_{r=1}^R$, unlabeled data set = $\{x^u\}_{u=1}^{R+U}$
- Repeat:
 - lacksqress lacksqress Train model f^* from labelled data set

Independent to the model

Regression?

- Apply f* to the unlabeled data set
 - Obtain $\{(x^u, y^u)\}_{u=l}^{R+U}$ Pse
- Remove <u>a set of data</u> from unlabeled data set, and add them into the labeled data set

How to choose the data set remains open

You can also provide a weight to each data.

Q: 这种训练方式对regression 有用吗?

W:不能,regression输出的是一个真实的值

hard label vs soft label

self-training用的是hard label;generative model用的是soft label

- Similar to semi-supervised learning for generative model
- Hard label v.s. Soft label Considering using neural network θ^* (network parameter) from labelled data

Entropy-based Regularization

如果输出的每个类别的概率是相近的,那么这个模型就比较bad;输出的类别差距很大,比如某个类别的概率为1,其他都是0;我们可以用 $E(y^u)$ 来衡量

$$E(y^u) = -\sum_{m=1}^5 y_m^u ln(y_m^u)$$

对于第一个和第二个distribution,那么 $E(y^u)=0$; 对于第三个distribution,那么 $E(y^u)=-ln(rac{1}{5})=ln5$

那么我们现在就可以重新设计loss function,用cross entropy来估计 y^r, \hat{y}^r 之间的差距,即 $C(y^r, \hat{y}^r)$,使用labeled data,还加上了一个regularization term

$$L = \sum_{x^T} C(y^r, \hat{y}^r) + \lambda \sum_{x^u} E(y^u)$$

Outlook: Semi-supervised SVM

对于unlabeled data,如果是SVM 二分类问题,可以把所有的unlabeled data都穷举为Class1或 Class2,列举出所有可能的方案,再找出对应的boundary,计算loss,可以发现下图中黑色方框图具有最小的loss

Smoothness Assumption

Introduction

近朱者赤, 近墨者黑

"You are known by the company you keep"

假设:如果x是similar的,那么他们的y也是一样的

这样的假设是非常不精确的,下面我们做出一个更加精确的假设:

- x是分布不均匀的,有的地方很密集,有的地方很稀疏
- x^1, x^2 中间有个high density region,那么label y^1, y^2 就很可能是一样的;但 x^2, x^3 中间没有high density region,其label相同的概率就非常小

- Assumption: "similar" x has the same \hat{y}
- More precisely:
 - x is not uniform.
 - If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are the same.

connected by a high density path

Source of image: http://hips.seas.harvard.edu/files /pinwheel.png

 x^1 and x^2 have the same label x^2 and x^3 have different labels

对于下图中的数字,2之间是有过渡形态的,所以这两个图片是similar的;而2与3之间没有过渡形态,因此是不similar的

比较直观的做法是先进行cluster,再进行label

Using all the data to learn a classifier as usual

Graph-based Approach

那么我们到底要怎么才能知道 x^1, x^2 到底在high density region是不是close呢?

我们可以把data point用图来表示,图的表示有时是比较nature,有时需要我们自己找出来point之间的 联系

• How to know x^1 and x^2 are close in a high density region (connected by a high density path)

Represented the data points as a *graph*

Graph representation is nature sometimes.

E.g. Hyperlink of webpages, citation of papers

Sometimes you have to construct the graph yourself.

Graph Construction

首先定义不同point之间的相似度 $s(x^i, x^j)$,可以通过以下两个算法来添加edge:

- KNN,对于图中红色的圆点,与其最相近的三个(k=3)neighbor相连接
- e-Neighborhood,对于周围的neighbor,只有和他相似度大于1的才会被连接起来

- Define the similarity $s(x^i, x^j)$ between x^i and x^j
- Add edge:
 - K Nearest Neighbor
 - e-Neighborhood

• Edge weight is proportional to $s(x^i, x^j)$

Gaussian Radial Basis Function:

$$s(x^{i}, x^{j}) = exp\left(-\gamma ||x^{i} - x^{j}||^{2}\right)$$

edge并不是只有相连和不相连两种选择而已,也可以给edge一些weight,让这个weight和这两个point 之间的相似度成正比

labeled data会影响他的邻居,如果这个point是class1,那么他周围的某些point也可能是class1

The labelled data influence their neighbors.

Propagate through the graph

Definition

对于下图中的两幅图,如果从直观上看,我们可以认为左边的图更smooth 现在我们用数字来定量描述,S的定义如下

$$S=rac{1}{2}\sum_{i,j}w_{i,j}(y^i-y^j)^2$$

根据公式我们可以算出左图的S=0.5,右图的S=3,值越小越smooth,越小越好

• Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2$$
 Smaller means smoother
For all data (no matter labelled or not)

对原来的S进行改造一下, $S = y^T L y$

其中L=D-W,W为权重矩阵,D表示将weight每行的和放到对角线的位置

• Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = \mathbf{y}^T L \mathbf{y}$$

y: (R+U)-dim vector

$$\mathbf{y} = \left[\cdots y^i \cdots y^j \cdots\right]^T$$

L: (R+U) x (R+U) matrix

Graph Laplacian

$$L = D - \underline{W}$$

$$D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

loss function其中一项就包括cross entropy计算的loss;smoothness的量S,前面再乘上一个可以调整 的参数 λ , λS 就表示一个regularization term

网络的整体目标是使loss function 取得最小值,即cross entropy项和smoothness都必须要达到最小 值,和其他的网络一样,计算相应的gradient,做gradient descent即可

如果要计算smoothness不一定非要在output的地方,也可以是其他位置,比如hidden layer拿出来进 行一些transform,或者直接拿hidden layer,都可以计算smoothness

• Define the smoothness of the labels on the graph

Embedding

Layer

smooth

OUTPUT

smooth

J. Weston, F. Ratle, and R. Collobert, "Deep learning via semi-supervised embedding," ICML, 2008

Better Representation

