EXAMPLES SHEET

David Wong

October 2020

These are some exercises designed to test your understanding of k-nearest neighbours and SVMs.

These exercises are of a similar difficult to what you will encounter in the final assessment. We have chosen to make these exercises *long-form* (rather than multiple choice), to encourage you to work through calculations carefully.

answers are provided in a separate sheet, but try to attempt the questions first before looking at the solutions

Question 1

Age (x_0)	Income (x_1)	Cats (x_2)	Dogs (x_3)	Married? (t)
15	1000	0	0	No
26	20000	1	0	No
38	50000	0	1	Yes
41	48000	0	1	Yes
55	60000	0	1	Yes
60	30000	2	0	No
72	10000	4	0	No

This question uses the data in the table, above

- 1. Briefly describe the K-nearest Neighbour learning method
- 2. What training error would a nearest neighbour classifier with K=1 have for this data and why?
- 3. calculate the training error when K=3
- 4. for the example: $[x_0, x_1, x_2, x_3] = [38, 38000, 0, 1]$ what is the predicted output, t, when K = 1? (assuming that we use a euclidean distance metric)
- 5. for the same example, what is the predicted output when K=3?
- 1. (1) start with a data set with known categories
- (2) add a new cell with unknown category
- (3) classify the new cell by looking at the nearest annotated cells.
- 2. 0. because it is overfitted and it will choose itself. Actually when k = 1, it produce decision boundaries and only this point in the boundary
- 3.0 (Income)
- 4. No.
- 5. Yes.

Question 2

In the following questions, you will consider a K-nearest neighbour that uses Euclidean distance to classify the data as '+' or '-'.

- 1. What value of K minimises the training set error for this dataset?
- 2. What is the resulting training error?
- 3. What value(s) of K minimise the leave-one-out cross-validation error for this data set?
- 4. Sketch the decision boundary for K-nearest neighbours in the case of K=1
- 1. K = 1 can make any error = 0
- 2.0
- 3. K=5,7. You should be able to understand that this will lead to an error of 4/14

Question 3

- 1. What is the main difference between the decision boundary induced by a perceptron and the decision boundary induced by a *linear* SVM with hard margins?
- 2. Consider a set of training data, \mathbf{x} with two features x_1 and x_2 , with corresponding labels, \mathbf{y} . If the training data are linearly separable, show that the margin is $2/|\mathbf{w}|$
- 3. The SVM error function with soft margins can be written as:

$$E = \sum_{i=1}^{N} \max\{0, 1 - y_i f(\mathbf{x}_i - \xi_i)\} + \frac{1}{2} \sum_{j=1}^{d} w_j^2 + C \sum_{i=1}^{N} \xi_i$$

Define the terms of this expression, i.e. state what is meant by w_j , $f(\mathbf{X}_i), C, \xi_i$. State also what is achieved by minimising the first part, versus the second part, versus the third part of the expression (i.e. before and after the '+' symbols)

 with hard margins it will seperate the data accurately, by a perceptron it allows some wrongs.
2.

Question 4

You are given the training data shown in the plot. The dataset consists of two examples with class label +1 and two with class label +1

- 1. Find the weight vector \mathbf{w} and bias b.
- 2. circle the support vectors and draw the decision boundary