Metody Probabilistyczne i Statystyka

 Z_7

- 1. Zmienna losowa X ma rozkład jednostajny w przedziale [-1;3]. Wyznaczyć dystrybuantę i gęstość zmiennej losowej $Z = X \lfloor X \rfloor$, gdzie $\lfloor x \rfloor$ oznacza największą liczbę całkowitą nie większą niż x.
- 2. Zmienna losowa X ma rozkład ciągły o gęstości $f_X(x)=2x\cdot \mathbf{1}_{(0;1)}(x)$. Wyznaczyć dystrybuantę zmiennej losowej

$$Y = \left\{ \begin{array}{ccc} \frac{1}{2} & , & 0 < X < \frac{1}{2} \\ 1 - X & , & \frac{1}{2} \leqslant X < 1 \end{array} \right. .$$

3. Niech $\Omega=\{0,1,2,\ldots,9\}$ i niech $P(\{k\})=0.1$ dla każdego $k\in\Omega$. Wyznaczyć funkcję prawdopodobieństwa wektora (X,Y), jeśli

$$X(k) = \cos(k\pi), Y(k) = \sin\left(\frac{k\pi}{2}\right).$$

Obliczyć P(X = Y).

4. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład dyskretny dany tabelą:

$X \setminus Y$	-1	0	1
-1	a - 1/16	1/4 - a	0
0	1/8	3/16	1/8
1	a + 1/16	1/16	1/4 - a

gdzie $a \in \mathbb{R}$ jest nieznane.

- (a) Jakie wartości może mieć parametr a?
- (b) Wyznaczyć a wiedząc, że $P(X > 2Y) = \frac{7}{16}$.
- (c) Obliczyć $F_{XY}(0,0)$ oraz $F_{XY}(1,-1)$.
- 5. Wektor (X, Y) ma rozkład dyskretny o dystrybuancie

$$F_{XY}(x,y) = \begin{cases} 0, & x < 0 & \lor & y < 0 \\ 1/4, & x \in [0;2) & \land & y \in [0;1) \\ 1/2, & x \in [0;2) & \land & y \geqslant 1 \\ 3/4, & x \geqslant 2 & \land & y \in [0;1) \\ 1, & x \geqslant 2 & \land & y \geqslant 1 \end{cases}.$$

Wyznaczyć tabelę z funkcją prawdopodobieństwa rozkładu łącznego wektora (X,Y). Nastepnie wyznaczyć funkcje prawdopodobieństwa rozkładów brzegowych.

6. Dystrybuanta dwuwymiarowej zmiennej losowej (X,Y) dana jest wzorem

$$F(x,y) = \begin{cases} \left(1 - \frac{1}{x}\right) \cdot \left(1 - \frac{1}{y}\right) & x \geqslant 2 & \land \quad y \geqslant 2 \\ 0 & x < 2 & \lor \quad y < 2 \end{cases}.$$

1

Wyznaczyć dystrybu
anty brzegowe. Obliczyć prawdopodobieństwa: $P(X>2),\ P(1< X\leqslant 3,1< Y\leqslant 4),\ P(X=2,Y=2).$

7. Wektor (X,Y) ma rozkład ciągły o gęstości

$$f_{XY}(x,y) = \begin{cases} a & , -2 \le x \le 0 \land 0 \le y \le 2\\ 1/2 & , 0 < x \le 1 \land 0 < y \le 1\\ 0 & , \text{ w p.p.} \end{cases}$$

gdzie a jest pewną liczbą rzeczywistą. Wyznaczyć stałą a. Obliczyć $F_{XY}\left(\frac{1}{2},1\right)$.

8. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład ciągły o gęstości

$$f_{XY}(x,y) = \begin{cases} e^{-y} & , & x \geqslant 0 & \land & y \geqslant x \\ 0 & , & \text{w p.p.} \end{cases}.$$

Wyznaczyć gęstości brzegowe. Obliczyć $P(X+Y\leqslant 2)$.