Algorithmen und Datenstrukturen Praktikum

Prof. Dr. Stephan Pareigis, MSc Oliver Neumann Department Informatik 20. April 2011

Aufgabe 04

Einzeln abgeben. Keine Gruppenabgabe!

Die folgenden Aufgaben sollen Ihr Theorieverständnis für die Komplexität von Algorithmen vertiefen. Lösen Sie die Aufgaben handschriftlich. Ihre Lösungen stecken Sie bitte pünklich zum Abgabetermin bis

Mittwoch, 27. April 8 Uhr

in mein Postfach im Eingangsbereich im Erdgeschoss¹.

1. Gegeben ist folgendes rekursives Programm:

```
problem_rekursiv(N)
{
   if ( N == 1 ) return; // kein Rechenschritt
   func(); // ein Rechenschritt
   problem_rekursiv(N/2);
   problem_rekursiv(N/2);
}
```

- (a) Bestimmen Sie die rekursive Formel für den Aufwand T(N).
- (b) Bestimmen (raten, probieren, herleiten, überlegen) Sie eine Lösung für diese Formel, also eine direkte Darstellung für T(N). Welche Komplexität hat also T?
- (c) Zeigen Sie, dass Ihre Lösung auch die rekursive Formel erfüllt.
- 2. Schreiben Sie Pseudo-Code für Programme, welche für eine gegebene Eingabe N die Summe der ganzen Zahlen von 1 bis N berechnet.
 - (a) Das Programm soll die Berechnung rekursiv vornehmen. Schreiben Sie die mathematische Formulierung für diese Implementation auf. Bestimmen Sie die Komplexität.
 - (b) Das Programm soll die Berechnung iterativ vornehmen. Schreiben Sie die mathematische Formulierung für diese Implementation auf. Bestimmen Sie die Komplexität.
 - (c) Das Programm soll die Berechnung nach der Gaußschen Formel vornehmen. Schreiben Sie die mathematische Formulierung für diese Implementation auf. Bestimmen Sie die Komplexität.

¹Ich freue mich über sorgfältige handschriftliche Ausarbeitungen mit Datum, Namen, Matr. Nummer auf jedem Blatt, zusammengetackert.

- (d) Stellen Sie alle drei Implementationen in einer Log-Log-Skala dar. Erklären Sie in einfachen Worten die Gründe für die Unterschiede in der Komplexität. Ziehen Sie Schlussfolgerungen für entsprechende Berechnungen der Fakultät-Operation (N!).
- 3. Beweisen Sie:

$$\lim_{n \to \infty} \frac{n!}{(n+1)!} = 0$$

und

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = 0$$

4. Beweisen Sie

$$n^2 + n = \Theta(n^2)$$

5. In einer Graphik sehen Sie eine Gerade mit Steigung eins. Die x-Achse ist logarithmisch skaliert, die y-Achse linear. Um welche Abhängigkeit zwischen x und y handelt es sich? (genaue Begründung!)

Abgabe: Mittwoch, 27. April 8 Uhr in meinem Postfach