

ATK-MS53L1M 模块用户手册

高性能激光测距模块(4米)

用户手册

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2022/06/25	第一次发布
V1.1	2023/07/21	增加了注意事项描述,以及修改部分内容

目 录

1,	特性参数	1
2,	使用说明	2
	2.1 模块引脚说明	2
	2.2 模块工作模式说明	2
	2.2.1 Normal 工作模式	
	2.2.2 Modbus 工作模式	3
	2.2.3 IIC 工作模式	
	2.3 上位机使用说明	9
	2.3.1 上位机软件简介	9
	2.3.2 模块连接	12
	2.3.3 一键配置模块参数	12
	2.3.4 固件升级	14
	2.3.5 Modbus 指令调试	14
	2.4 模块使用注意事项	16
3,	结构尺寸	17
4,	其他	18

1,特性参数

ATK-MS53L1M 模块是正点原子推出的一款高性能激光测距模块,其测量距离可达 4 米。该模块可通过 UART 直接输出测量到的距离数据,非常方便使用,可应用于无人机、机器人、智能设备等场合。

ATK-MS53L1M 模块的各项基本参数,如下表所示:

项目	说明	
接口特性	3.3V/5V	
通信接口	UART/IIC	
UART 通讯波特率	2400bps~921600bps (默认 115200bps)	
测量距离	40mm~3900mm(无光学镜片可达 4000mm) ¹	
传感器精度	1mm	
工作模式	Normal 模式、Modbus 模式、IIC 模式	
数据回传速率	0.1Hz~100Hz	
工作温度	-20°C~80°C	
模块尺寸	20mm*10.6mm	

表 1.1 ATK-MS53L1M 模块基本参数

ATK-MS53L1M 模块的各项电气参数,如下表所示:

项目 说明	
工作电压 3.3V/5V (推荐 5V)	
工作电流 <30mA	
粉提拉口	UART (3.3V, 通讯波特率 2400bps~921600bps)
数据接口	IIC(SDA 和 SCL 内部已上拉 10K 电阻)

表 1.2 ATK-MS53L1M 模块电气参数

注:

1、有光学镜片下测量距离 40mm~3900mm, 无光学镜片距离可到 4000mm。

2, 使用说明

2.1 模块引脚说明

ATK-MS53L1M 模块通过 1*6 的排线同外部相连接,该模块可与正点原子战舰 STM32F103、正点原子 F407 电机控制和正点原子 MiniSTM32H750 等开发板连接。正点原子所有的 STM32 开发板,我们都提供了本模块相应的例程,用户以可直接在这些开发板上,对模块进行测试。

ATK-MS53L1M 模块的外观,如下图所示:

图 2.1.1 ATK-MS53L1M 模块实物图

ATK-MS53L1M 模块内部自带了 3.3V 超低压差稳压芯片,给内部芯片供电,因此外部的输入电压可以为 3.3V 或 5V。模块通过排线与外部连接,上图模块接线颜色对应的功能说明,如下表所示:

序号	名称	说明	
1	红色(VCC)	3.3V/5V 电源输入	
2	黑色(GND)	地线	
3	黄色(TXD)	UART 数据输出(3.3V)	
4	白色(RXD)	UART 数据输入(3.3V)	
5	蓝色 (SCL)	IIC 时钟线(模块内部已上拉 10K 电阻)	
6	绿色(SDA)	IIC 数据线(模块内部已上拉 10K 电阻)	

表 2.1.1 ATK-MS53L1M 模块引脚说明

注意:

- 1. 模块通讯引脚仅支持 3.3V 电平, 若与 5V 设备通讯, 需作额外的电平转换适配。
- 2. 建议在模块接线完成(包括电源线和信号线)后,在启动电源。

2.2 模块工作模式说明

ATK-MS53L1M 模块具有三种工作模式,分别为 Normal 工作模式、Modbus 工作模式和 IIC 工作模式。

2.2.1 Normal 工作模式

在 Normal 模式下,ATK-MS53L1M 模块会自动通过 UART 回传测量的距离数据信息,将 ATK-MS53L1M 模块通过 UART 转 TTL 与 PC 连接,即可通过串口调试助手查看

ATK-MS53L1M 模块在 Normal 工作模式下回传的测量数据信息,如下图所示:

图 2.2.1.1 Normal 工作模式 UART 回传数据信息

从上图中可以看到, ATK-MS53L1M 模块在 Normal 模式下回传的数据格式, 如下所示:

State:0, Range Valid

d: 194 mm

可以看到,回传的数据中包含了两项值,分别为 State 和 d,其中 State 表示数据的状态, d 表示测量到的距离数据,单位: mm。

State 表示的数据状态的含义,如下表所示:

State 值	含义
0, Range Valid	测量范围内
1 , Sigma Fail	Sigma 错误
2 , Signal Fail	信号错误
3 , Min Range Fail	超出最小测量范围
4 , Phase Fail	超出最大测量范围
5 , Hardware Fail	硬件错误
7, No Update	无数据更新

表 2.2.1.1 State 值含义。

2.2.2 Modbus 工作模式

在 Modbus 工作模式下,ATK-MS53L1M 模块不会自动通过 UART 回传测量到的距离数据信息,而需要通过 UART 发送响应的指令给 ATK-MS53L1M 模块,ATK-MS53L1M 模块收到响应的指令后,在通过 UART 输出测量到的距离数据。

Modbus 工作模式下的通讯可分为两部分: 主机发送报文和模块返回报文。

2.2.2.1 主机发送报文

主机发送报文根据不同的操作,可分为读操作报文和写操作报文,则两种报文的报文格 式是不同的。

主机发送的读操作报文的报文格式,如下表所示:

区域	字段	长度(Byte)	描述
报文头	标志头	1	0x51

UI A E	传感器类型	1	0x0B
	传感器地址	2	地址范围: 0x0000~0xFFFE
设备区			地址高位在前,低位在后
	读操作	1	0x00
数据区	功能码	1	功能寄存器
	数据长度	1	数据字节长度, 范围 1~255
检验区	12 av 12	2	CRC SUM 计算(对整个报文结构进行计算,除了检验区)
	校验码		CRC 检验码高位在前,低位在后

表 2.2.2.1.1 主机发送的读操作报文报文格式

主机发送的写操作报文的报文格式,如下表所示:

区域	字段	长度(Byte)	描述
报文头	标志头	1	0x51
	传感器类型	1	0x0B
设备区	传感器地址	2	地址范围: 0x0000~0xFFFE
以留色	下的各地址		地址高位在前,低位在后
	写操作	1	0x01
	功能码	1	功能寄存器
数据区	数据长度	1	数据字节长度,范围 1~255
	数据	1~255	整型数据
检验区	<u> </u>	2	CRC SUM 计算(对整个报文结构进行计算,除了检验区)
	校验码		CRC 检验码高位在前,低位在后

表 2.2.2.1.2 主机发送的写操作报文报文格式

注意:

- 1. 传感器地址为设备 ID, 其取值范围为 0x0000~0xFFFE, 共 65535 个设备 ID 号, 另 外 0xFFFF 的设备 ID 用于广播, 是只读的。
- 2. 协议中约定检验码为 CRC 校验和, 占 2 字节, 若 CRC 校验和超过 0xFFFF,则作溢出处理,仅保留 2 字节的数据。

2.2.2.2 从机返回报文

从机返回报文由 ATK-MS53L1M 模块在接收到主机发送报文后,根据主机发送报文作相应处理后发出,若主机发出读操作的报文,则从机返回读操作报文,若主机发出写操作的报文,则从机返回写操作报文,若是主机发送的报文有误,则从机返回异常报文。

从机返回的读操作报文的报文格式,如下表所示:

区域	字段	长度(Byte)	描述
报文头	标志头	1	0x55
	传感器类型	1	0x0B
	传感器地址	2	地址范围: 0x0000~0xFFFE
设备区	传恩希地址		地址高位在前,低位在后
	读操作	1	0x00
	工作状态码	1	正常码 0x00
数据区	功能码	1	功能寄存器
	数据长度	1	数据字节长度,范围 1~255
	数据	1~255	数据
检验区	校验码	2	CRC SUM 计算(对整个报文结构进行计算,除了检验区)

	CRC 检验码高位在前,低位在后
--	------------------

表 2.2.2.2.1 从机返回的读操作报文报文格式

从机返回的写操作报文的报文格式,如下表所示:

区域	字段	长度(Byte)	描述
报文头	标志头	1	0x55
	传感器类型	1	0x0B
	传感器地址	2	地址范围: 0x0000~0xFFFE
设备区			地址高位在前,低位在后
	写操作	1	0x01
	工作状态码	1	正常码 0x00
检验区	校验码	2	CRC SUM 计算(对整个报文结构进行计算,除了检验区)
			CRC 检验码高位在前,低位在后

表 2.2.2.2.2 从机返回的写操作报文报文格式

从机返回的异常报文的报文格式,如下表所示:

区域	字段	长度(Byte)	描述
报文头	标志头	1	0x55
	传感器类型	1	0x0B
		1	0xFF
设备区	固定值	1	0xFF
		1	0xFF
	工作状态码	1	异常码
检验区	校验码	2	CRC SUM 计算(对整个报文结构进行计算,除了检验区)
加业区	1又3201号		CRC 检验码高位在前,低位在后

表 2.2.2.2.3 从机返回的异常报文报文格式

从机返回报文中包含了工作状态码,工作状态码的含义,如下表所示:

状态	值	名称	含义
正常	0x00	正常	操作正常
	0x01	非法传感器	传感器不存在
	0x02	非法地址	传感器地址不存在
	0x03	非法操作	操作类型不存在
	0x04	非法功能码	功能码不存在
异常	0x05	非法数据长度	长度超出范围
开币	0x06	非法校验码	检验码出错
	0x07	非法数据帧	帧格式不对
	0x08	传感器设备忙	正处理操作中
	0x09	设备异常	传感器异常
	0x0A	非法数据	写入数据有误

表 2.2.2.2.4 工作状态码

2.2.2.3 功能码

主机通过 UART 使用 Modbus 协议与 ATK-MS53L1M 模块通讯时,主机发送至 ATK-MS53L1M 的报文中包含了功能码字段,功能码字段用于指定主机要读取或写入 ATK-MS53L1M 哪个功能码对应的数据,功能码的含义,如下表所示:

功能码

		R: 可读 W: 可写 写入后是否立即生效 (Y/Y1/N) Y: 写入后立即生效 Y1: 写入后立即生效,并复位 N: 复位后生效	Y: 保存写入值 N: 不保存写入值 NA: 不可写入,不关注
0x00	系统设置	R/W、Y1	N
0x01	回传速率	R/W、Y	Y
0x02	UART 通讯波特率	R/W、N	Y
0x03	设备地址	R/W、Y	Y
0x05	测量数据	R	NA
0x07	测量数据状态	R	NA
0x08	测量模式	R/W、Y	Y
0x09	校准传感器	R/W、Y1	N
0x0A	工作模式	R/W、Y	Y
0x0B	定时预设时间	R/W、Y	Y
0x0D	测量间隔	R/W、Y	Y
0x0F	异常帧输出设置	R/W、Y	Y
0x10	固件版本	R	NA

表 2.2.3.1 功能码

1. 功能码 0x00 — 系统设置

该功能码用于设置 ATK-MS53L1M 模块恢复出厂设置和系统复位,具体的描述,如下表所示:

功能码	写入	说明
	0x01	恢复出厂设置
000	0x02	复位
0x00	读取	说明
	0x00	无含义

表 2.2.3.2 功能码 0x00——系统设置

恢复出厂设置后,ATK-MS53L1M 模块的各项参数,如下表所示:

名称	参数
设备 ID	0x0001
工作模式	Nremal
测量模式	长距离
UART 通讯波特率	115200bps
回传速率	5Hz
异常帧输出设置	使能

表 2.2.3.3 恢复出厂设置参数

2. 功能码 0x01——回传速率

该功能码用于设置 ATK-MS53L1M 模块在 Normal 工作模式下的数据回传速率,具体的描述,如下表所示:

功能码	写入	说明
0x01	0x00	0.1Hz

0x01	0.2Hz
0x02	0.5Hz
0x03	1Hz
0x04	2Hz
0x05 (默认值)	5Hz
0x06	10Hz
0x07	20Hz
0x08	50Hz
0x09	100Hz

表 2.2.3.4 功能码 0x01——回传速率

3. 功能码 0x02---UART 通讯波特率

该功能码用于设置 ATK-MS53L1M 模块的 UART 通讯波特率,具体的描述,如下表所示:

功能码	写入	说明
	0x00	2400bps
	0x01	4800bps
	0x02	9600bps
	0x03	19200bps
0x02	0x04	38400bps
0x02	0x05	57600bps
	0x06 (默认值)	115200bps
	0x07	230400bps
	0x08	460800bps
	0x09	921600bps

表 2.2.3.5 功能码 0x02——UART 通讯波特率

4. 功能码 0x03——设备地址

该功能码用于设置 ATK-MS53L1M 模块的设备地址,具体的描述,如下表所示:

功能码	写入	说明
0x03	0x0000~0xFFFE(默认值:0x0001)	设备地址占用 2 字节, 高位在前, 低位在后

表 2.2.3.6 功能码 0x03——设备地址

5. 功能码 0x05——测量数据

该功能码用于获取 ATK-MS53L1M 模块在 Modbus 工作模式下测量的距离数据,具体的描述,如下表所示:

功能码	读取	说明
0x05	2字节数据	测量到的距离数据占用 2 字节, 高位在前, 低位在后, 单位: mm

表 2.2.3.7 功能码 0x05——测量数据

6. 功能码 0x07——测量数据状态

该功能码用于获取测量数据的状态,具体的描述,如下表所示:

功能码	读取	说明
	0x00	Range Valid
007	0x01	Sigma Fail
0x07	0x02	Signal Fail
	0x03	Min Range Fail

0x04	Phase Fail
0x05	Hardware Fail
0x06	No Update

表 2.2.3.8 功能码 0x06——测量数据状态

7. 功能码 0x08——测量模式

该功能码用于设置 ATK-MS53L1M 模块的测量模式, 具体的描述, 如下表所示:

功能码	读取	说明	
	0x00	短距离 (最远距离 1.3 米,误差±1.2%)	
0x08	0x01	中距离(最远距离 3 米,误差±1.6%)	
	0x02 (默认值)	长距离(最远距离 4 米,误差±1.3%)	

表 2.2.3.9 功能码 0x08——测量模式

8. 功能码 0x09——设备校准

该功能码用于校准 ATK-MS53L1M 模块的传感器,具体的描述,如下表所示:

功能码	写入	说明
	0x04	进入校准
	返回	说明
	"Calibrate_Start"	校准开始
0x09	"Calibrate_Ok"	校准成功
0x09	"Calibrate_Error"	校准失败
	读取	说明
	0x01	校准失败
	0x02	校准成功

表 2.2.3.10 功能码 0x09——设备校准

注意:

- 使用该功能码往 ATK-MS53L1M 模块写入 0x04 数据后,ATK-MS53L1M 模块会主动通过 UART 输出 "Calibrate_Start",以表示校准开始,当校准完成后,ATK-MS53L1M 模块会通过 UART 主动输出 "Calibrate_Ok"或 "Calibrate_Error", "Calibrate_Ok"表示传感器校准成功,"Calibrate_Error"表示传感器校准失败。校准后的参数和状态值会保存在模块芯片内部,随后模块会进行复位操作。
- 校准在 IIC 工作模式下失效,校准状态不作保存。

9. 功能码 0x0A——工作模式

该功能码用于设置 ATK-MS53L1M 模块的工作模式,具体的描述,如下表所示:

功能码	写入	说明
	0x00 (默认值)	Normal 工作模式
0x0A	0x01	Modbus 工作模式
	0x02	IIC 工作模式

表 2.2.3.11 功能码 0x0A——工作模式

10. 功能码 0x0B——定时预设时间

			, = , , , , , , , , , , , , , , , , , ,
	功能码	写入	说明
	0x0B	0x0014~0x03E8	20~1000 毫秒可修改

表 2.2.3.12 功能码 0x0B——定时预设时间

定时预设时间在不同的测量模式下有不同的默认值,具体的描述,如下表所示:

测量模式	定时预设时间(默认值)
------	-------------

短距离	0x14 (20)
中距离	0x21 (33)
长距离	0x8C (140)

表 2.2.3.13 定时预设时间默认值

注意:在更改测量模式时,内部会根据以上的默认值设置定时预设时间。定时预设时间会影响传感器第一次测量的时间,不建议用户修改。

11. 功能码 0x0D --- 测量间隔

功能码	写入	说明
0x0D	0x0001~0x03E8	1~1000 毫秒可修改

表 2.2.3.14 功能码 0x0D——测量间隔

测量间隔在不同的测量模式下有不同的默认值,具体的描述,如下表所示:

测量模式	测量间隔(默认值)
短距离	0x19 (25)
中距离	0x28 (40)
长距离	0x96 (150)

表 2.2.3.15 测量间隔默认值

注意: 在更改测量模式时,内部会根据以上的默认值设置测量间隔。测量间隔会影响传感器的两次测量之间的延迟,不建议用户修改。

测量间隔时间包含定时预设时间,若设置测量间隔 25ms,定时预设 20ms,则采样周期的时间为 25ms。测量间隔时间大于定时预设时间,则以测量间隔时间测距。若测量间隔时间短于定时预设时间,则以定时预算时间测距。

12. 功能码 0x0F——异常帧输出设置

该功能码用于设置 ATK-MS53L1M 模块的异常帧输出,具体的描述,如下表所示:

功能码	写入	说明
00E	0x00	异常帧输出关闭
0x0F	0x01 (默认值)	异常帧输出开启

表 2.2.3.15 功能码 0x0F——异常帧输出设置

13. 功能码 0x10--- 固件信息

该功能码用于获取 ATK-MS53L1M 模块的固件信息, 具体的描述, 如下表所示:

	功能码	读取	说明
ĺ	0x10	2 字节数据	固件版本

表 2.2.3.16 功能码 0x10——固件信息

2.2.3 IIC 工作模式

当设置 ATK-MS53L1M 模块的工作模式为 IIC 工作模式时,模块内部控制芯片会释放传感器的 IIC 总线,使传感器的 SDA 与 SCL 直接引出值 ATK-MS53L1M 模块的 SDA 和 SCL 引脚(见 2.1 小节"模块引脚说明")。IIC 工作模式下,详细的数据通讯方式请参考 ATK-MS53L1M 模块内部传感器 VL53L0 的数据手册,本文档不做过多介绍。

2.3 上位机使用说明

2.3.1 上位机软件简介

正点原子为 ATK-MS53L1M 模块提供了上位机软件, 其名称为 "ATK-TOF", 使用上位

机要求 ATK-MS53L1M 模块通过 UART 转 TTL 模式与 PC 进行连接,具体的连接方式请参考第 2.1 小节"模块引脚说明"。

打开上位机软件后,上位机的界面,如下如所示:

图 2.3.1.1 上位机软件主界面

上位机软件的主界面可以划分为三个区,分别为串口配置区、模块操作区、数据区,下面分别简单介绍这三个区。

1. 串口配置区

串口配置区用于配置 PC 与 ATK-MS53L1M 模块连接使用的串口,包括选择串口号、配置串口通讯的波特率和开关串口通讯,如下图所示;

图 2.3.1.2 上位机软件串口配置区

2. 模块操作区

模块操作区主要提供对 ATK-MS53L1M 模块固件升级和一键配置等功能,如下图所示:

图 2.3.1.3 上位机软件模块操作区

3. 数据区

数据区提供了上位机与 ATK-MS53L1M 模块的数据收发功能,同时还提供了解析 ATK-MS53L1M 模块回传的数据并通过波形图展示的功能,如下图所示:

图 2.3.1.4 上位机软件数据区一

图 2.3.1.4 上位机软件数据区二

2.3.2 模块连接

将 ATK-MS53L1M 模块通过 UART 转 TTL 模块与 PC 连接好后,打开上位机,在上位机的串口配置区配置好与 ATK-MS53L1M 模块 UART 通讯的串口号与串口通讯使用的波特率,由于 ATK-MS53L1M 模块出厂的默认 UART 通讯波特率为 115200bps,因此上位机也设置串口的通讯波特率为 115200bps,设置好以上配置后,接着点击"打开"按钮,打开上位机与 ATK-MS53L1M 模块的 UART 通讯,如以下图所示:

图 2.3.2.1 设置好串口通讯配置

此时,如果 ATK-MS53L1M 模块处于 Normal 工作模式(出厂默认的工作模式),就会看到上位机的数据区显示了 ATK-MS53L1M 模块回传的数据。

2.3.3 一键配置模块参数

在上位机的模块操作区可以一键配置 ATK-MS53L1M 模块的参数,包括设备地址、工作模式、UART 通讯波特率、回传速率、测量模式等参数。在通过上位机软件配置 ATK-MS53L1M 模块的参数前,需先在上位机中选择待配置模块的类型(ATK-MS53L1M 模块对应"TOF_4M"),然后点击"搜索模块"按钮,如果 ATK-MS53L1M 模块与上位机的连接没有问题,随后就会在下方的窗口中列出上位机搜索到的所有模块,如下图所示:

图 2.3.3.1 搜索模块

如上图所示,上位机搜索到了一个模块,其信息为"TOF_4M COM10 1",表示搜索到模块的类型为"TOF_4M",连接至 PC 的串口号为"COM10",模块的设备地址为"1"(以上模块信息,根据操作环境的不同,也会不同)。

搜索到模块后,选中需要配置的模块,然后单击上位机模块操作区下方的"配置"按钮,就会弹出配置窗口,在配置窗口中就可以对 ATK-MS53L1M 模块的参数进行一键配置,如下图所示:

配置			_		×
设备ID(HEX):	1		设置		
工作模式:	Normal	•	设置		
波特率:	115200	•	设置		
回传速率	5Hz	•	设置		
测量模式	长距离	•	设置		
	·参数	校准 复位			
固件版本:1.0	发送数据:	51 OB OO O1 OO	0 08 01 0	0 66	.:

图 2.3.3.2 配置窗口

在打开配置窗口时,上位机会读取 ATK-MS53L1M 模块当前的配置参数,并显示在配置窗口中,只需简单地修改参数值,然后点击右侧的"设置按钮",就可以一键配置模块的

参数了。

在配置窗口的下方,还有四个操作按钮。

- "读取参数"按钮:读取模块当前的配置参数,并显示在配置窗口中。
- "校准"按钮:校准模块传感器的测量值,校准前,需保证 ATK-MS53L1M 模块传感器表面清洁,并将模块以 14 厘米的距离对准白色的目标物体,随后点击"校准"按钮,等待校准完成即可。
 - "恢复出厂"按钮:将 ATK-MS53L1M 模块恢复为出厂设置。
 - "复位"按钮: 复位 ATK-MS53L1M 模块。

2.3.4 固件升级

在进行固件升级前,先读取 ATK-MS53L1M 模块的参数,查看版本信息,再考虑是否进行固件升级。

ATK-MS53L1M 模块进行固件升级时使用的 UART 通讯波特率为 115200bps,再模块上电前,先将模块的 SDA (绿色排线) 引脚接地,然后再将模块上电。上电后模块会输出 "tof boot",表示进入固件升级模式(若未在接收区查看到"tof boot",但后续升级步骤能够执行,也表示 ATK-MS53L1M 模块已进入固件升级模式),随后点击"固件升级"按钮,在弹出的固件升级窗口中,打开固件文件,然后点击"开始升级"按钮,随后上位机会发送固件升级文件至 ATK-MS53L1M 模块,固件文件发送完成后,等待模块进行固件升级,如下图所示:

图 2.3.4.1 固件升级

模块进行固件升级过程中,请勿断电。模块固件升级完成后,将 SDA 引脚悬空,然后将模式重新上电即可。

2.3.5 Modbus 指令调试

在上位机中,选择"原始数据"界面,若 ATK-MS53L1M 模块处于 Normal 工作模式,则会才接收区看到 ATK-MS53L1M 模块自动回传测量到的距离数据,如下图所示:

图 2.3.5.1 原始数据界面

为了主机发送的报文和 ATK-MS53L1M 模块回传的报文不被回传的数据内容打断,将 ATK-MS53L1M 模块配置为 Modbus 工作模式,然后勾选"HEX 接收"复选框,如下图所示:

图 2.3.5.2 勾选"HEX 接收"复选框

接下来以广播地址查询模块设备地址为例,进行 Modbus 指令调试。

根据 2.2.2.3 小节 "功能码"中的介绍在"标志头(hex)"中填入"51"(十六机制表示), "传感器"选择"4M TOF", "地址(hex)"填入"FF FF"(连续的两个十六进制用空格隔开), "操作"选择"读", "功能码(hex)"填入"03"(十六进制表示), "数据长度(dec)"填入"2"(十进制表示), 因为是读操作, 因此"数据(hex)"无需填写, 随后点击"发送"按钮, 就能够在接收区产看到 ATK-MS53L1M 模块返回的报文, 如下图所示:

图 2.3.5.3 Modbus 报文获取设备地址

根据报文的协议分析,可以获取 ATK-MS53L1M 模块返回的设备地址为 0x0001。

接下来再以获取获取模块工作模式为例,进行 Modbus 指令调试。

同样根据 2.2.2.3 小节"功能码"中的介绍在"标志头(hex)"中填入"51"(十六机制表示),"传感器"选择"4M TOF","地址(hex)"填入"00 01"(连续的两个十六进制用空格隔开),"操作"选择"读","功能码(hex)"填入"0A"(十六进制表示),"数据长度(dec)"

填入"1"(十进制表示),因为是读操作,因此"数据(hex)"无需填写,随后点击"发送"按钮,就能够在接收区产看到 ATK-MS53L1M 模块返回的报文,如下图所示:

图 2.3.5.4 Modbus 报文获取模块工作模式

根据报文的协议分析,可以获取 ATK-MS53L1M 模块的工作模式为 Modbus 工作模式。

2.4 模块使用注意事项

- 1. 模块上激光传感器视野角度 (FOV) 为 25° (激光发射器+接收器), 在测量距离时, 被测物体和模块尽量平衡呈水平角度, 如果有偏差, 偏差角不能大于视野角度, 若被测物体表面不平整, 测量会容易产生波动。
- 2. 激光光源是肉眼不可见光束型激光(可以用手机相机看见激光),在光源发射角内,若有被测物体以外的障碍物,会影响测距效果。
- 3. 模块受自然光影响。一般情况下,自然光越强影响越大,具体表现为测距距离变短、精度变差、测距结果波动大。强光情况下(如太阳光)一般推荐在近距离检测场景使用。
 - 4. 传感器在使用盖玻片后,因为受盖玻片的反射率等影响,测量的最远距离会变短。
- 5. 模块属于光学器件,保存时需注意防尘防潮。在使用时,需保持模块表面的清洁度, 以免导致测量结果不准确。

3,结构尺寸

ATK-MS53L1M 模块的尺寸结构,如下图所示:

图 3.1 ATK-MS53L1M 模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/other/ATK-MS53L1M.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

