Projekt

STEROWNIKI ROBOTÓW

Raport

Sterowany Pochyleniem Ręki Pojazd Prawie Autonomiczny

S.P.R.P.P.A

Skład grupy (6): Patrycjusz Auguscik, 226523 Maciej Kajdak, 226256

Termin: wtTP11

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1 Opis prac						
2	Konfiguracja mikrokontrolerów 2.1 Konfiguracja STM32L476VGT6					
3	3.3 ESP-WROOM-32	9				
4	Opis mechaniki	11				
5	Opis działania programu	13				
6	Zadania niezrealizowane	13				
7	Podsumowanie	13				

1 Opis prac

Projekt ma na celu stworzenie sterownika do małego, zdalnie sterowanego pojazdu. Sterownik ma bazować na odczytach z układu akcelerometru LSM303CTR dostępnego na płytce deweloperskiej STM32L476 Discovery. Odpowiednie pochylenie płytki będzie skutkowało ruchem pojazdu w określonych kierunkach.

Do wspomagania pracy zespołowej użyto systemu kontroli wersji Git, a repozytorium projektu znajduje się na serwerze Github pod adresem Github

Na dzień oddania Etapu II zrealizowano następujące zadania:

- Skonfigurowano sygnały oraz zegar w STMCubeMX dla płytki Discovery.
- Trwają prace nad poprawnym czytaniem danych z akcelerometru.
- Zaprojektowano i zbudowano samochodzik wchodzący w skład projektu.
- Zaprojektowano i wytworzono płytkę wchodzącą w skład samochodzika

2 Konfiguracja mikrokontrolerów

2.1 Konfiguracja STM32L476VGT6

Na rysunku 2 przedstawiono konfigurację zegara mikrokontrolera STM32L476VGT6 dostępnego na płytce deweloperskiej Discovery uwzględniając poniższe założenia:

- 1. **USART1** skonfigurowany w trybie asynchronicznym do komunikacji z modułem bluetooth. Uzywane piny PB6 i PB7 jako kolejno: BLUETOOTH TX oraz BLUETOOTH RX.
 - rozmiar danych ustawiony na 8 bitów,
 - bez bitu parzystości,
 - baud rate ustawiony na 115200 bits/s.
- 2. **USART2** skonfigurowany w trybie asynchronicznym do debugowania. Użyte piny PD5 i PD6 kolejno jako USART2_TX oraz USART2_RX. Długość słowa ustawiona na 8 bitów, bez bitu parzystości.
 - rozmiar danych ustawiony na 8 bitów,
 - bez bitu parzystości,
 - baud rate ustawiony na 115200 bits/s.
- 3. **SPI2** skonfigurowany do odczytywania danych z akcelerometru. Działa w trybie Half-Duplex Master
 - rozmiar danych ustawiony na 8 bitów,
 - baud rate dla taktowania procesora 80 MHz wynosi 10 Mb/s.

Rysunek 1: Zrzut ekranu z aplikacji STM32CubeMX dla STM32L476VGT6

Rysunek 2: Konfiguracja zegara dla płytki Discovery

Na rysunku 3 przedstawiono konfigurację peryferiów mikrokontrolera STM32L476VGT6 z uwzględnieniem powyższych założeń.

IP	Pin	Signal	GPIO mode	GPIO pull/up pull down	Max Speed	User Label
RCC	PC14- OSC32_IN (PC14)	RCC_OSC32_IN	n/a	n/a	n/a	
	PC15- OSC32_OU T (PC15)	RCC_OSC32_O UT	n/a	n/a	n/a	
	PH0- OSC_IN (PH0)	RCC_OSC_IN	n/a	n/a	n/a	
	PH1- OSC_OUT (PH1)	RCC_OSC_OUT	n/a	n/a	n/a	
SPI2	PD1	SPI2_SCK	Alternate Function Push Pull	No pull-up and no pull-down	Very High	ACC_SCK
	PD4	SPI2_MOSI	Alternate Function Push Pull	No pull-up and no pull-down	Very High	ACC_MOSI
USART1	PB6	USART1_TX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	BLUETOOTH_TX
	PB7	USART1_RX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	BLUETOOTH_RX
USART2	PD5	USART2_TX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	
	PD6	USART2_RX	Alternate Function Push Pull	No pull-up and no pull-down	Very High	
GPIO	PA0	GPIO_EXTI0	External Interrupt Mode with Rising edge trigger detection	No pull-up and no pull-down	n/a	JOY_CENTER
	PB2	GPIO Output	Output Push Pull	No pull-up and no pull-down	Low	LD R
	PE8	GPIO_Output	Output Push Pull	No pull-up and no pull-down	Low	LD_G
1 [PE0	GPIO Output	Output Push Pull	No pull-up and no pull-down	Low	ACC CS

Rysunek 3: Konfiguracja peryferiów STM32L476VGT6

Podsumowanie konfiguracji mikrokontrolea zostało wygenerowane przez program STM32CubeMX. Poniżej zamieszczono układ pinów:

- $8~\mathrm{PC14\text{-}OSC32_IN}~(\mathrm{PC14})~\mathrm{RCC_OSC32_IN}$
- 9 PC15-OSC32_OUT (PC15) RCC_OSC32_OUT
- 12 PH0-OSC IN (PH0) RCC OSC IN
- 13 PH1-OSC OUT (PH1) RCC OSC OUT
- 23 PA0 GPIO EXTIO JOY CENTER
- 37 PB2 GPIO_Output LD_R
- 39 PE8 GPIO_Output LD_G 82 PD1 SPI2_SCK ACC_SCK
- 85 PD4 SPI2_MOSI ACC_MOSI
- $86~\mathrm{PD5}~\mathrm{USART2}~\mathrm{TX}$
- 87 PD6 USART2 RX
- 92 PB6 USART1_TX BLUETOOTH_TX
- 93 PB7 USART1_RX BLUETOOTH_RX
- 97 PE0 GPIO Output ACC CS

2.2 Konfiguracja mikrokontrolera STM32F105RBT6

Na rysunku 5 przedstawiono konfigurację zegara dla mikrokontrolera wchodzącego w skład pojazdu. Konfigurując projekt uwzględniono następujące założenia:

- 1. **TIM1** Timer skonfigurowany do generowania sygnału PWM do wejść trig czujników oraz mierzący w trybie input capture długość impulsu na pinach echo czujników
- 2. ${\bf ADC1/ADC2}$ ustawione jako wejścia kanałów pozwalające na pomiar napięcia na pinach mikrokontrolera
 - Clock Prescaler jest to dzielnik zegara taktującego przetwornik
 - Resolution jest to rozdzielczość pomiarowa przetwornika, która została ustawiona na wartość maksymalna czyli 12bit aby uzyskac jak największą dokładność pomiaru.
- 3. USART1 skonfigurowany w trybie asynchronicznym do komunikacji z modułem bluetooth.
 - rozmiar danych ustawiony na 8 bitów
 - bez bitu parzystości
 - $\bullet\,$ baud rate ustawiony na 115200 bits/s

Rysunek 4: Zrzut ekranu z aplikacji STM32CubeMX dla STM32f105RBT6

Rysunek 5: Konfiguracja zegara dla STM32F105RBT6

Na rysunku 6 przedstawiono tabelę z konfiguracją peryferiów mikrokontrolera z uwzględnieniem powyższych założeń.

IP	Pin	Signal	GPIO mode	GPIO pull/up pull down	Max Speed	User Label
ADC1	PC4	ADC1_IN14	Analog mode	n/a	n/a	battery_temperature
ADC2	PB1	ADC2_IN9	Analog mode	n/a	n/a	battery_voltage
RCC	PD0- OSC_IN	RCC_OSC_IN	n/a	n/a	n/a	
	PD1- OSC_OUT	RCC_OSC_OUT	n/a	n/a	n/a	
SYS	PA13	SYS_JTMS- SWDIO	n/a	n/a	n/a	
	PA14	SYS_JTCK- SWCLK	n/a	n/a	n/a	
TIM1	PA8	TIM1_CH1	Input mode	No pull-up and no pull-down	n/a	echo_left
	PA9	TIM1_CH2	Alternate Function Push Pull	n/a	Low	trig_left
	PA10	TIM1_CH3	Input mode	No pull-up and no pull-down	n/a	echo_right
	PA11	TIM1_CH4	Alternate Function Push Pull	n/a	Low	trig_right
USART3	PB10	USART3_TX	Alternate Function Push Pull	n/a	High *	bluetooth_tx
	PB11	USART3_RX	Input mode	No pull-up and no pull-down	n/a	bluetooth_rx
GPIO	PA0-WKUP	GPIO_Output	Output Push Pull	n/a	Low	led5
	PA1	GPIO_Output	Output Push Pull	n/a	Low	led4
	PA2	GPIO_Output	Output Push Pull	n/a	Low	led3
	PA3	GPIO_Output	Output Push Pull	n/a	Low	led2
	PA6	GPIO_Output	Output Push Pull	n/a	Low	led1
	PB12	GPIO_Output	Output Push Pull	n/a	Low	
	PB13	GPIO_Output	Output Push Pull	n/a	Low	
	PB14	GPIO_Output	Output Push Pull	n/a	Low	
	PB15	GPIO_Output	Output Push Pull	n/a	Low	
	PC6	GPIO_Output	Output Push Pull	n/a	Low	

Rysunek 6: Konfiguracja peryferiów dla STM32F105RBT6

Podsumowanie konfiguracji mikrokontrolea zostało wygenerowane przez program STM32CubeMX. Poniżej zamieszczono układ pinów:

- 5 PD0-OSC_IN RCC_OSC_IN 6 PD1-OSC_OUT RCC_OSC_OUT
- 14 PA0-WKUP GPIO_Output led5
- 15 PA1 GPIO Output led4
- $16 \text{ PA2 GPIO}_\text{Output led3}$
- 17 PA3 GPIO Output led2
- 22 PA6 GPIO Output led1
- 24 PC4 ADC1 IN14 battery temperature
- 27 PB1 ADC2 IN9 battery voltage
- 29 PB10 USART3_TX bluetooth_tx
- 30 PB11 USART3 RX bluetooth rx
- 33 PB12 GPIO Output
- 34 PB13 GPIO Output
- $35~\mathrm{PB}14~\mathrm{GPIO_Output}$
- 36 PB15 GPIO_Output
- 37 PC6 GPIO_Output 41 PA8 TIM1_CH1 echo_left
- 42 PA9 TIM1_CH2 trig_left
- 43 PA10 TIM1 CH3 echo right
- 44 PA11 TIM1 CH4 trig right
- 46 PA13 SYS JTMS-SWDIO
- 49 PA14 SYS JTCK-SWCLK

3 Wykorzystane układy zewnętrzne

3.1 Układ LSM303CTR

Do sterownika został użyty układ dostępny na płytce Discovery – LSM303CTR (pinout układu na płytce pokazany na rysunku 7).

Aby odczyty z akcelerometru były możliwe należało ustawić rejestry akcelerometru CTRL_REG1_A (20h) oraz CTRL_REG4_A (23h)

Rysunek 7: Układ LSM303CTR

3.2 HC-SR04

W projekcie będą wykorzystane dwa ultradźwiękowe czujniki odległości HC-SR04. Ich zasięg działania to 2-200cm.

Rysunek 8: Układ HC–SR04

3.3 ESP-WROOM-32

W tej części projektu został wykorzystany USART w trybie asynchronicznym, który pozwoli na komunikację poprzed Bluetooth. Ten układ komunikacji bezprzewodowej zostanie podpięty do płytki poprzez dedykowany adapter.

Rysunek 9: Układ ESP-WROOM-32

3.4 L298N

Wykorzystane zostaną dwa silniki DC. Każdy z nich zsotanie podłączony do mikrokontrolera przez mostek H. Dzięki temu będziemy mieć możliwość sterować kierunkiem obrotów silnika. W projekcie będą użyte moduły dwukanałowych sterowników L298 zawierające w sobie dwa mostki H. Układy te posiadają już wlutowane diody przeciwprzepięciowe oraz kondensatory, dzięki czemu schemat został uproszczony.

Rysunek 10: Układ modułu L298N

4 Opis mechaniki

Dla częsci projektu zajmującej się pojazdem potrzebne było stworzenie płytki, dla mikrokontrolera sterującego pojazdem. Schemat układu przedstawiono na rysunku 11 . Dodatkowo została wykonana konstrukcja, na któcj rozlokowano elementy. Pojazd przedstawiono na zdjęciu z rysunku 12 .

Rysunek 11: Schemat elektroniczny

Rysunek 12: Pojazd

5 Opis działania programu

Sterownik po włączaniu automatycznie łączy się z samochodzikiem jeśli jest dostępny. Po inicjacji potrzebnych peryferiów płytki łączą się ze sobą. Następnie przechodzą do przesyłania informacji o ruchu. Sterownik automatycznie odczytuje dane z akcelerometru w pętli i jeśli samochodzik jest włączony a komunikacja między płytkami działa – przesyła odpowiednie komendy do samochodzika.

6 Zadania niezrealizowane

Poniższe zadania muszą być zrealizowane w najbliższym czasie:

- Komunikacja między płytkami przy pomocy modułów bluetooth.
- Sterowanie silnikami na podstawie odczytów z akcelerometru

7 Podsumowanie

Biorąc pod uwagę ilość wykonanych prac i ilość prac pozostałych projekt jest wykonany w około 40% w dniu oddania etapu II. Należy wziąć pod uwagę fakt, że nie przekroczono terminów w harmonogramie.

Spis rysunków

1	Zrzut ekranu z aplikacji STM32CubeMX dla STM32L476VGT6
2	Konfiguracja zegara dla płytki Discovery
3	Konfiguracja peryferiów STM32L476VGT6
4	Zrzut ekranu z aplikacji STM32CubeMX dla STM32f105RBT6 6
5	Konfiguracja zegara dla STM32F105RBT6
6	Konfiguracja peryferiów dla STM32F105RBT6
7	Układ LSM303CTR
8	Układ HC-SR04
9	Układ ESP-WROOM-32
10	Układ modułu L298N
11	Schemat elektroniczny
12	Poiazd 12