HGVS Basics

Steven Harrison Biocurator Call Feb 14 2019

http://varnomen.hgvs.org/

Current Recommendations

General	DNA	RNA
Protein	Uncertain	Checklist
Open Issues		

Background Material

Basics	Reference Sequences	Standards
Numbering	Community Consultation	HGVS Simple
Educational Material	Glossary	

Basics – REFERENCE SEQUENCE

In order to have a unique description (that prevents confusion), you must include a reference sequence when using HGVS

BRCA1 c.4366A>G

	Option 1	Option 2
NM_007294.3	c.4366A>G	c.4358-2777A>G
NM_007300.3	c.4429A>G	c.4366A>G
Genomic (GRCh37)	chr17:g.41228623T>C	chr17:g.41231408T>C

Reference sequence used **must contain** the variant residue described - a coding DNA reference sequence does not contain intron and therefore **cannot be used** to describe intron variants

not correct: NM_004006.2:c.357+1G>A

<u>correct:</u> NG_012232.1(NM_004006.2):c.357+1G>A

Variation ID:

36881

Review status:

criteria provided, multiple submitters, no conflicts

Interpretation (2)

Go to: ☑ 🛆

Clinical significance: Benign/Likely benign

Jun 14, 2016 Last evaluated:

Number of submission(s):

Condition(s): Primary familial hypertrophic cardiomyopathy [MedGen - Orphanet - Orphanet -

OMIM

Ciliary dyskinesia [MedGen - Orphanet - OMIM - Human Phenotype Ontology]

Nemaline Myopathy, Recessive [MedGen]

See supporting ClinVar records

Allele(s)

NM_000363.4(TNNI3):c.373-10G=

45542 Allele ID:

single nucleotide variant Variant type:

Cytogenetic location: 19q13.4

Genomic location: Chr19: 55154216 (on Assembly GRCh38)

Chr19: 55665584 (on Assembly GRCh37)

HGVS: NG 007866.2:g.8517G=

NG 011829.2:g.23G=

NM 000363.4:c.373-10G=

NC_000019.10:g.55154216C= (GRCh38)

LRG 432t1:c.373-10G=

NC 000019.9:g.55665584A>C (GRCh37)

NG 007866.2:g.8517= NM 000363.4:c.373-10T>G

LRG 432:g.8517G=

ClinVar asks for genome build (even if submitting all variants with NM RefSeq HGVS) because of this issue with intronic variants

Basics – REFERENCE SEQUENCE

- Only public files from NCBI or EBI are accepted as reference sequence files
 - Approved reference sequence formats include:
 - NC_# (e.g. NC_000023.10)
 - LRG_# (e.g. LRG_199, LRG_199t1)
 - NG_# (e.g. NG_012232.1)
 - NM_# (e.g. NM_004006.2)
 - NR_# (e.g. NR_002196.1)
 - NP_# (e.g. NP_003997.1)

Type of reference sequence indicated by letter used:

- c. (coding); g. (genomic); m. (mitochondrial); n. (non-coding);
- **r.** (RNA); **p.** (protein)

Basics – General Information

- All variants should be described at **the DNA level**. Descriptions at the RNA and/or protein level may be given in addition
- Descriptions should make clear whether the change was **experimentally determined** or **theoretically deduced** by giving predicted consequences in parentheses
 - NP_003997.1:p.(Trp24Cys) means amino acid Trp24is predicted to change to a Cys (no experimental proof, e.g. based on DNA level data)
 - NP_003997.1:p.Trp24Cys means amino acid Trp24 is changed to a Cys (confirmed via RNA or protein sequence analyzed)

Basics – General Information

• **Prioritization**: when a description is possible according to several types, the preferred description is: (1) deletion, (2) inversion, (3) duplication, (4) conversion, (5) insertion

- Descriptions at DNA, RNA and protein level differ:
 - **DNA-level** 123456A>T: number(s) referring to the nucleotide(s) affected, nucleotides in CAPITALS
 - **RNA-level** 76a>u: number(s) referring to the nucleotide(s) affected, nucleotides in lower case
 - **protein level** Lys76Asn: the amino acid(s) affected in 3- or 1-letter followed by a number (* **three-letter** amino acid code is preferred)

Variant nomenclature: cDNA

- Nucleotide 1 is the A of the ATG initiation codon (there is no c.0)
- The nucleotide 5' of the ATG initiation codon is -1, the previous -2, etc.
- The nucleotide 3' of the stop codon is *1, the next *2, etc.
- Intronic nucleotides
 - <u>5' end of the intron</u>: the number of last coding nucleotide of the preceding exon, a plus sign and the position within in the intron, e.g., c.36+1G, c.36+2T
 - 3' end of the intron: the number of the first coding nucleotide of the following exon, a minus sign and the position upstream in the intron, e.g. c.37-1G, c.37-2A

Substitutions

• Substitutions designated by: >

- Examples:
 - Genomic NC_000011.10:g.47342698G>A
 - cDNA NM_000256.3:c.1504C>T
 - RNA NM_000256.3:r.1504c>u
 - Protein NP_000247.2:p.(Arg502Trp)

Deletions

• Format: "prefix" "position(s)_deleted" "del", e.g. g.123_127del

• For all descriptions the **most 3' position** possible of the reference sequence is arbitrarily assigned to have been changed (**3'rule**)

Large Deletions

- If exons 30 and 31 are deleted and exons 29 and 32 are known to NOT be deleted, deletion is named:
 - c.(3190+1_3191-1)_(3490+1_3491-1)del

- If exons 30 and 31 are deleted and status of surrounding exons is unknown, deletion is named:
 - c.(?_3191-1)_(3490+1_?)del

Duplications

• Format: "prefix" "position(s)_duplicated" dup" e.g. g.123_345dup

c.2380dupG or c.2380dup **NOT** c.2380 2381insG

• For all descriptions the **most 3' position** possible of the reference sequence is arbitrarily assigned to have been changed (**3'rule**)

Duplications

• Format: "prefix" "position(s)_duplicated" dup" e.g. g.123_345dup

c.2379_2380dupGG or c.2379_2380dup NOT c.2380_2381insGG

• For all descriptions the **most 3' position** possible of the reference sequence is arbitrarily assigned to have been changed (**3'rule**)

Large Duplications

- If exons 30 and 31 are duplicated and exons 29 and 32 are known to NOT be duplicated, variant is named:
 - c.(3190+1_3191-1)_(3490+1_3491-1)dup
- If exons 30 and 31 are duplicated and status of surrounding exons is unknown, variant is named:
 - c.(?_3191-1)_(3490+1_?)dup
- HGVS notes in this scenario, dup should be in tandem

Which nucleotides are deleted?

NM_000492.3:c.1520_1522delTCT

```
Ile Ile Phe Gly Val
ATC ATC TTT GGT GTT

1528
1529
1521
1522
1530
1530
```


NM_000492.3:c.1521_1523delCTT

```
Ile Ile Phe Gly Val

ATC ATC TTT GGT GTT

151517

Ile Ile Gly Val

ATC ATT GGT GTT
```

Which nucleotides are deleted?

NM_000492.3:c.1520_1522delTCT

```
Ile Ile Phe Gly Val

ATC ATC TTT GGT GTT

1516

Ile Ile Gly Val

ATC ATT GGT GTT

ATC ATT GGT GTT
```


Same end result with either deletion Since we don't know which event occurred, the 3' most representation is selected

Which nucleotides are deleted?

NM_000492.3:c.1520_1522delTCT

```
Ile Ile Phe Gly Val

ATC ATC TTT GGT GTT

1516

Ile Ile Gly Val

ATC ATT GGT GTT

ATC ATT GGT GTT
```



```
Ile Ile Phe Gly Val

ATC ATC TTT GGT GTT

1515 1518 1518 1528

Ile Ile Gly Val

ATC ATT GGT GTT
```

Variant: 7-117199644-ATCT-A

Genomic databases report with VCF – meaning 5' most expression

Genomic vs cDNA 3' Rule

• The "g." and "c." variant descriptions differ regarding the deleted nucleotide when applying the 3' rule (if gene is on the minus strand)

If you delete one of the G nucleotides (genomic; or C nucleotide at cDNA)

Genomic vs cDNA 3' Rule

• The "g." and "c." variant descriptions differ regarding the deleted nucleotide when applying the 3' rule (if gene is on the minus strand)

If you delete one of the G nucleotides (genomic; or C nucleotide at cDNA)

Genomic HGVS expression would be g.5delG (which corresponds to c.4delC)

Genomic vs cDNA 3' Rule

• The "g." and "c." variant descriptions differ regarding the deleted nucleotide when applying the 3' rule (if gene is on the minus strand)

If you delete one of the G nucleotides (genomic; or C nucleotide at cDNA)

Genomic HGVS expression would be g.5delG (which corresponds to c.4delC)

cDNA HGVS expression would be c.7delC (which corresponds to g.2delG)

3' Rule Exception

3' rule is NOT used for deletions around exon/exon junctions when identical nucleotides flank the junction

If you observed a deletion of nucleotide T at c.3921 you would still call the deletion NM_004006.2:c.3921delT **not** c.3922delT (because c.3921 and c.3922 are separated by an intron)

Insertions

- Format: "prefix" "positions_flanking" "ins" "inserted_sequence", e.g. g.123_124insAGC
- MUST include the nucleotides inserted
- Cannot list only 1 flanking position

c.2380_2381insTA

NOT c.2380_2381ins2

NOT c.2380insTA

Repeats

c. 52

CTGATTGCAATGACGT**CAGCAGCAGCAGCAGCAG**TCA

- Such changes are described using the format "position-first-repeat-unit" "sequence" [number]" (e.g. c.52CAG[6]) where position-first-repeat-unit gives the location of the first unit of the variable sequence repeat and [number] the number of units present in the allele described.
- This nomenclature uses the 1st repeat NOT the most 3' repeat

Alleles

Alleles indicated by [] and separated by;

- 2 changes, 2 alleles
 - c.[428A>G];[83dupG] (both copies of the gene have a variant)

- 1 allele, several changes (haplotype)
 - c.[12C>G; 428A>G; 983dupG]

- 2 changes, allele status unknown
 - c.428A>G(;)83dupG

Protein nomenclature

- 3-letter amino acid code is preferred to describe the amino acid residues (Lys vs. K for lysine)
- For all descriptions the most C-terminal position possible is arbitrarily assigned to have been changed
- Methionine encoded by the translation initiation site (start codon) is numbered as residue 1 ("Met1" or "M1")
- "Ter" or "*" designating a translation termination codon (some labs use X)

Protein nomenclature

- Silent changes: p.Leu54Leu or p.=
- Substitutions: p.Trp26Cys
- Nonsense variant: p.Trp26Ter or p.Trp26*
- No-stop change: p.Ter110GlnextTer17 or p.*110Glnext*17
 - In-frame deletions: p.Gln8del or p.Cys28_Met30del
 - Duplications: p.Gly4_Gln6dup
 - Insertions: p.Lys2_Met3insGlnSerLys
- Frameshifts: short description: p.Arg97fs

long description: p.Arg97Profs*23

where the "Arg97Pro" describes the substitution of Arg for Pro at position 97, "fs" indicating the frameshift and the "*23" describes the position of the translational termination (stop) codon in the new reading frame (starting with proline as amino acid #1)

Acknowledgements

- Hana Zouk
- Christina Austin-Tse