

# Chimica Organica Industriale

Docente

Luca Bernardi

Appunti di lezione

 $Redattore \\ Alessandro~Suprani \\ alessandro.suprani@studio.unibo.it$ 

 $Laurea\ Magistrale\ in\ Chimica\ Industriale$   $Anno\ Accademico\ 2024/2025$ 

# Indice

| _ | Solventi                                                         | 2 |
|---|------------------------------------------------------------------|---|
|   | 1.1 Reazioni senza solvente                                      |   |
|   | 1.2 Recupero del solvente                                        | 3 |
|   | Work up 2.1 Quenching                                            | 5 |
|   | Control 3.1 stabilità dei prodotti e dei prodotti in fase finale | 7 |

# 1 Solventi

5 Separate Organic Solvents Used

Figura 1: Sintesi utilizzando diversi solventi. NOTA ben 5 diversi tipi di solventi vengono impiegati

La reazione di ciclizzazione avviene grazie ad una soluzione acquosa di solfito. Il passaggio successivo è un'amidazione utilizzando DBU (diazabicicloundecene), una base forte (se protonata, forma due forme di risonanza stabili) Successivamente, avviene la rimozione del BOC con HCl in NMP (N-metilpirrolidinone), ottenendo così un'ammina che subisce una amminazione riduttiva con  $NaBH(OAc)_3$ . Dopodiché, deproteggiamo nuovamente per formare il carbamato e infine ricristallizziamo per ottenere il prodotto finito. Sono utilizzati vari solventi per questa sintesi, ma può essere condotta anche totalmente in acqua.

$$\begin{array}{c} \text{OH} \\ \text{NH}_2 \\ \text{NBoc} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NMI} \\ \text{NBoc} \\ \text{NMI} \\ \text{NH}_{30} \\ \text{THF} (15 \, \text{v%}) \\ \text{TL}_{10 \, \text{m}} \\ \text{NBoc} \\ \text{NMI} \\ \text{NBoc} \\ \text{NMI} \\ \text{NH}_{30} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NMI} \\ \text{NH}_{30} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NMI}_{40} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NMI}_{40} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NMI}_{40} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NBoc} \\ \text{NAI}_{40} \\ \text{NBoc} \\$$

Figura 2: Nuova sintesi che impiega esclusivamente acqua come solvente

Per condurla in acqua, la sintesi subisce delle modifiche: il reagente iniziale reagisce con  $NaHSO_3$  in condizioni acide per favorire il prodotto, e invece dell'estere come reagente viene utilizzato l'acido carbossilico, che migliora la miscelazione dei prodotti con l'acqua. Questo porta a una modifica nel secondo passaggio, poiché abbiamo bisogno di un reattivo di accoppiamento (NMI, N-metilimidazolo) che forma un carbonile attivato. L'NMI attacca prima l'ammina che l'acqua, quindi non si verifica l'idrolisi. Si rimuove la protezione del BOC con HCl e acqua, quindi si ossida l'alcol con TEMPOL e una piccola quantità di THF per permettere l'agitazione. Si ottiene così l'addotto di solfito. Procediamo con l'amminazione riduttiva tra il prodotto precedente e quello ottenuto all'inizio tramite borano, un agente riducente. La resa in acqua è migliore rispetto a quella ottenuta in solventi organici, con migliori PMI e utilizzando anche meno acqua, paradossalmente. Se si lavora con gruppi polari, è conveniente utilizzare l'acqua poiché questi gruppi sono facilmente miscibili in essa. Inoltre, è possibile sfruttare il pH dell'acqua per modificare la solubilità dei composti e far precipitare il prodotto desiderato.

#### 1.1 Reazioni senza solvente

Le reazioni senza solventi sono una soluzione semplice ai problemi legati ai solventi. Sebbene alcune sostanze chimiche su larga scala possano essere prodotte senza l'uso di solventi, per reazioni più complesse diventa spesso necessario utilizzarli. I solventi sono cruciali nelle reazioni esotermiche, poiché agiscono da dissipatori di calore. Anche lo spegnimento dei reagenti in eccesso può essere difficile senza l'uso di un solvente adatto. Il miscelamento efficace senza l'ausilio di solventi può essere complicato, specialmente con l'uso di reagenti solidi. Nonostante ciò, spesso i solventi sono ancora necessari per l'estrazione, la separazione e la purificazione dei prodotti. I processi senza solventi possono essere altamente efficaci, specialmente nel velocizzare le reazioni altrimenti lente e sono quindi una valida alternativa da tenere in considerazione.

## 1.2 Recupero del solvente

Il recupero dei solventi può influenzare positivamente l'impatto ambientale e, di conseguenza, le prestazioni complessive di un processo industriale. Tuttavia, quando il recupero dei solventi non è economicamente vantaggioso, esistono altre opzioni da considerare. Ad esempio, i solventi possono essere riutilizzati in altri processi industriali o possono essere inceneriti per il recupero di calore. Solitamente, i solventi volatili richiedono meno energia per essere recuperati, ma possono comportare perdite ambientali e vapori difficili da condensare. Per esempio, il diclorometano spesso non può essere recuperato oltre il 50-60% a causa

Figura 3: Clorosolfonazione senza solvente utilizzata in larga scala

delle perdite durante l'uso e il recupero. Il suo incenerimento richiede un inceneritore resistente agli acidi e un efficiente scrubber acido per trattenere l'HCl. Al contrario, i solventi non volatili, come quelli polari aprotici come DMF, DMSO e DMAc, sono difficili da recuperare a causa del loro elevato consumo energetico. Le miscele di solventi sono più complesse da trattare rispetto ai singoli solventi e richiedono attrezzature dedicate e un controllo più preciso. Le miscele azeotropiche possono rappresentare una soluzione conveniente per il riciclo dei solventi, poiché possono essere trattate come singoli componenti. Inoltre, i solventi che formano azeotropi con l'acqua sono preferiti in quanto possono essere essiccati più facilmente. In generale, si tiene conto l'ECO-I 99 di un solvente e di conseguenza se esso risulta basso è più conveniente bruciarlo, se questo parametro risulta invece alto è più conveniente riciclarlo

# 2 Work up

Il workup, essenziale nel processo di una reazione chimica, avviene dopo la sua conclusione. Comprende diversi passaggi: il primo è il quench, che spegne la reazione inibendo i reattivi. Segue la rimozione delle impurità e dei co-prodotti, culminando nell'ottenimento del prodotto finale in una forma adatta per la cristallizzazione dei cristalli puri. È cruciale studiare il workup in modo da ridurre al minimo gli step e l'uso di recipienti, ottimizzando le separazioni per ridurre i costi (che costituiscono la maggior parte dei costi di una reazione). La stabilità del prodotto è una considerazione primaria: in impianto, le operazioni richiedono tempi prolungati, esponendo il prodotto al workup per periodi più lunghi. Pertanto, è importante considerare la stabilità del prodotto al pH, alla temperatura e tenere a mente la solubilità dei reagenti, dei prodotti e dei sali. Sfruttare al massimo le separazioni di fase e rimuovere eventuali solidi che possono formarsi, poiché rappresentano una delle principali fonti di problemi. Quando il prodotto o il sottoprodotto vengono isolati tramite filtrazione come solidi, è importante sviluppare le condizioni per la cristallizzazione al fine di controllare le caratteristiche fisiche e chimiche dei solidi. Questo perché i precipitati possono filtrare lentamente, rallentando i tempi di permanenza in impianto del prodotto. In ambito industriale, si evitano le estrazioni liquido-liquido, preferendo la cristallizzazione o la precipitazione del prodotto dalla miscela di reazione per ragioni di produttività. La precipitazione è favorita dall'uso di non solventi, sebbene sia una pratica sconsigliata ma talvolta necessaria. Per l'anidrificazione del prodotto, si ricorre agli azeotropi solvente-acqua, mentre reagenti e co-prodotti volatili possono essere rimossi senza attuare un workup attivo.

#### 2.1 Quenching

L'obiettivo del quenching è quello di neutralizzare i componenti reattivi della reazione, siano essi intermedi, reagenti non reagiti o coprodotti. E' una operazione importante e può configurarsi come parte più pericolosa della reazione. Esistono due tipi di quenching: diretto o inverso. Questi due metodi sono entrambi validi e devono possono essere considerati entrambi, tenendo a mente che il direct richiede un solo contenitore mentre il reverse almeno due.

#### Direct Quench

Consiste nell'inserire all'interno del reattore la miscela di quench per disattivare i reagenti. Queste miscele vanno aggiunti in largo eccesso per assicurarsi che la reazione sia spenta completamente ed è importante sapere se il prodotto una volta spento produce un sottoprodotto pericoloso ed è sempre importante considerare ciò che si forma durante il workup. Il coprodotto più comune che si forma durante la fase di quenching è  $H_2$ , che essendo esplosivo è un gas pericoloso e va quindi maneggiato con cautela. Ogni reazione ha la sua soluzione di quench preferita, ad esempio per le reazioni di riduzione si può usare acqua o metanolo(se ci troviamo a basse T dove l'acqua non può essere impiegata) oppure gli organolitii possono essere spenti con acetone, alcoli o acidi carbossilici. Se siamo invece in presenza di sali di alluminio è possibile usare i sali di rochelle per renderli solubili in acqua. In molti casi, il coprodotto della reazione si può rimuovere per filtrazione, rendendo più semplice il processo di quenching.

Figura 4: Utilizzo di acido ossalico solido per neutralizzare l'eccesso di dicicloesilcarbodiimmide (DCC). Dopo che i sottoprodotti come l'urea dicicloesilica (DCU) sono rimossi, il prodotto può essere cristallizzato e isolato

Per reagenti molto reattivi si deve procedere a step in modo tale da evitare reazioni eccessivamente violente, ad esempio  $LiAlH_4$  va spento prima con acetone poi acqua (se si deve usare solo acqua, farlo molto lentamente e agitando in maniera vigorosa per disperddere la soluzione di quench. per reazioni molto pericolose (spegnimento borano) la si equipara ad una reazione e la si considera in toto, con i suoi sottoprodotti.

Figura 5: L'utilizzo diretto di acqua comporta una reazione altamente esotermica di conseguenza è meglio è meglio utilizzare ammoniaca ammonio cloruro e successivamente acqua per spegnere le riduzioni con metalli in ammoniaca

#### Reverse quench

aggiungere la reazione alla soluzione di quench. spesso questo tipo di quench permette di avere meno sottoprodotti (o nessun sottoprodotto) rispetto ai quench diretti. è bene notare che spesso il reverse quench non è sempre possibile. Consiste nell'inserire la soluzione prodotto ad un reattore contenente la soluzione quench. Spesso questo tipo di quench permette di avere meno coprodotti e sottoprodotti rispetto al direct quench ma non è una tecnica non sempre utilizzabile o conveniente, ad esempio se la miscela di quench è volatile bisogna avere un sistema per contenerne i fumi.



Figura 6: L'utilizzo di un tecnica reverse quench permette l'ottenimento di un prodotto puro senza coprodotti e sottoprodotti a differenza di quanto osservato con l'inserimento di soluzioni di quench di acqua, acido acetico e acido cloridrico

Figura 7: L'utilizzo di un reverse quench in questo caso risulta impratico in quanto richiede una dotazione in grado di contenere i fumi di ammoniaca durante il trasferimento da un contenitore all'altro

## 3 Control

le impurezze devono essere controllate sopratutto in ambito farmaceutico. si considerano le impurezze che si possono trovare. bisogna controllare le reazioni non selettive 8chemo regio e stereo) e reazioni parassite la stabilità generale quindi al calore, umidita, all'ossigeno, viscosita, stabilita cristallina il numero ed efficienza dei punti di purificazione robustezza della sintesi (resistenza a cambiamenti di solventi)

# 3.1 stabilità dei prodotti e dei prodotti in fase finale

tenere in considerazione la stabilità chimica e fisica degli intermedi. per la formulazione bisogna controllare le proprietà del cristallo (polimorfo, dimensioni,, igroscopia, forma) composti cristallini sono più stabili di composti più stabili dei composti amorfi. proprietà importanti per i solidi sono fotostabili, termostabili, poco igroscopiche, punto di fusione (se inferiore a 60°C è un problema perchè durante la compressione della pasticca (es) le temperature si alzano). le forme dei sali di molecole organiche sono considerate proprietà intellettuale e quindi sono brevettabili.