Question 1:

HW1:

HW1:

Question 1:
$$Pr(a_{2nm}, a_{n} | \beta) = Pr(a_{1} | a_{2, m}, a_{n}, \beta) Pr(a_{2} | a_{3, m}, a_{n}\beta) Pr(a_{1} | a_{2} | a_{3, m}, a_{n}\beta) Pr(a_{2} | a_{3, m}$$

Therefore i
$$P_{\Gamma}(a_{1}, \dots a_{n} | \beta) = P_{\Gamma}(a_{1} | \alpha_{1}, \dots, \alpha_{n} \beta) P_{\Gamma}(a_{1} | \alpha_{2}, \dots, \alpha_{n} \beta) \dots P_{\Gamma}(a_{n} | \beta).$$

Question 2:

$$Pr(Oil) = 0.5$$
 $Pr(Natural Gas) = 0.2$ $Pr(Neither) = 0.3$

$$Pr(Pos) = Pr(Pos \mid Oil) * Pr(Oil) + Pr(Pos \mid \neg Oil) * Pr(\neg Oil)$$

= $Pr(Pos \mid Oil) * Pr(Oil) + Pr(Pos \mid Natural Gas) * Pr(Natural Gas) + Pr(Pos \mid Neither) * Pr(Neither)$

$$\rightarrow$$
 Pr(Pos) = (0.9) * (0.5) + (0.3) * (0.2) + (0.1) * (0.3) = 0.54

Bayes Rule:
$$P(Oil \mid Pos) = (Pr(Pos \mid Oil) * Pr(Oil)) / Pr(Pos)$$

$$\rightarrow$$
 P(Oil | Pos) = (0.9 * 0.5) / 0.54 = 0.833

When the test is positive, the probability that oil is present is **0.833**.

Question 3:

	apper are to the first terms of		
Bayesian Networks (a) (b) (c) (c) (c) (d) (d) (d) (d) (d	(CPTi 1, (coin Pr(c) a	a 0.2 b 0.4 C 0.8	Pr(TIC) 0.8 0.6 0.2 ach flip given C.
either Heads or Tolk (B) Bell = on or Off Probability of bell ringing given > X1,71,723	3, 24 X2 X3 H H H H T H T H T H T H T H T H T H T H	P(on x, x, x, x) I O 1 O O O	P(8/1/22) 0 1 1 0 1 1 1

Question 4:

C.
$$P_{1}(a,b,c,d,e,f,g,h) = P_{1}(a) = P_{1}(a)$$

d. Pr(A,B) = Pr(A) Pr(B) => Pr(A=1) Pr(B=1) = (0.2)(0.7) = [0.14]Since $A \notin B$ are independent.

•
$$P_r(E|A) = \sum_{b \in \{0,3\}} P_r(E=0|B=b) \cdot P_r(B=b) \Rightarrow P_r(E_0=0|B=0) \cdot P_r(B=0) + P_r(E=0|B=1) \cdot P_r(B=1)$$

 $\Rightarrow (0,1) \cdot (0,3) + (0,9)(0,7) = 0.66$

Since 12 only depends on B, and not A, we use law of total Probability.

Question 5:

b.
$$P_r(\omega) = P_r(w_0) + P_r(w_1) + P_r(w_3)$$

= 0.3 + 0.1 + 0.4
= $\boxed{0.8}$

C,
$$|A \cdot B| P_r(A,B) | P_r(AB1\alpha)$$

 $W_0 | T | T | 0.3 | 0.3/0.8 = 0.345$
 $W_1 | T | F | 0.2 = 0$
 $W_2 | F | T | 0.1 | 0.4/0.8 = 0.125$
 $W_3 | F | F | 0.4 | 0.4/0.8 = 0.5$

	A	B	17AVTB	1 TAUB
wo	T	T	1 2	T
WI	T	F	İ	E
Wz	F	T	T	T
Wzl	F	F	IT	T

$$P_r(A=778/d) = \frac{P_r(\omega_2) + P_r(\omega_3)}{P(\alpha)}$$

$$= \frac{0.1 + 0.4}{0.8} = [0.625]^{3}$$