Predicción IPC para los próximos 100 meses

1 Predicciones

Año	Mes	República	Región I	Región II	Región III	Región IV	Región V	Región VI	Región VII	Región VIII
2023	Diciembre	175.27	149.77	247.87	169.7	247.98	159.96	161.0	240.1	170.92
2024	Enero	175.99	150.53	247.87	170.7	249.3	160.49	161.74	241.34	170.92
2024	Febrero	176.71	151.29	247.87	171.7	250.37	161.01	162.49	242.58	170.92
2024	Marzo	177.42	152.06	247.87	172.71	251.62	161.53	163.23	243.81	170.92
2024	Abril	178.14	152.82	247.87	173.71	252.68	162.05	163.98	245.05	170.92
2024	Mayo	178.86	153.58	247.87	174.71	253.96	162.57	164.73	246.28	170.92
2024	Junio	179.57	154.34	247.87	175.72	255.01	163.09	165.47	247.52	170.92
2024	Julio	180.29	155.1	247.87	176.72	256.28	163.6	166.22	248.75	170.92
2024	Agosto	181.01	155.86	247.87	177.73	257.33	164.12	166.96	249.99	170.92
2024	Septiembre	181.73	156.62	247.87	178.73	258.6	164.64	167.71	251.22	170.92
2024	Octubre	182.44	157.39	247.87	179.73	259.65	165.15	168.46	252.46	170.92
2024	Noviembre	183.16	158.15	247.87	180.74	260.92	165.67	169.2	253.69	170.92
2024	Diciembre	183.88	158.91	247.87	181.74	261.97	166.18	169.95	254.93	170.92
2025	Enero	184.59	159.67	247.87	182.74	263.23	166.7	170.69	256.16	170.92
2025	Febrero	185.31	160.43	247.87	183.75	264.28	167.21	171.44	257.4	170.92
2025	Marzo	186.03	161.19	247.87	184.75	265.54	167.72	172.18	258.64	170.92
2025	Abril	186.74	161.95	247.87	185.75	266.59	168.23	172.93	259.87	170.92
2025	Mayo	187.46	162.72	247.87	186.76	267.85	168.74	173.68	261.11	170.92
2025	Junio	188.18	163.48	247.87	187.76	268.89	169.25	174.42	262.34	170.92
2025	Julio	188.89	164.24	247.87	188.77	270.15	169.76	175.17	263.58	170.92
2025	Agosto	189.61	165.0	247.87	189.77	271.19	170.27	175.91	264.81	170.92
2025	Septiembre	190.33	165.76	247.87	190.77	272.45	170.78	176.66	266.05	170.92
2025	Octubre	191.04	166.52	247.87	191.78	273.49	171.28	177.41	267.28	170.92
2025	Noviembre	191.76	167.28	247.87	192.78	274.75	171.79	178.15	268.52	170.92
2025	Diciembre	192.48	168.04	247.87	193.78	275.79	172.3	178.9	269.75	170.92
2026	Enero	193.19	168.81	247.87	194.79	277.04	172.8	179.64	270.99	170.92

2026	Febrero	193.91	169.57	247.87	195.79	278.08	173.31	180.39	272.22	170.92	
2026	Marzo	194.63	170.33	247.87	196.8	279.33	173.81	181.14	273.46	170.92	
2026	Abril	195.35	171.09	247.87	197.8	280.37	174.31	181.88	274.69	170.92	
2026	Mayo	196.06	171.85	247.87	198.8	281.62	174.81	182.63	275.93	170.92	
2026	Junio	196.78	172.61	247.87	199.81	282.65	175.31	183.37	277.17	170.92	
2026	Julio	197.5	173.37	247.87	200.81	283.9	175.82	184.12	278.4	170.92	
2026	Agosto	198.21	174.14	247.87	201.81	284.93	176.31	184.87	279.64	170.92	
2026	Septiembre	198.93	174.9	247.87	202.82	286.18	176.81	185.61	280.87	170.92	
2026	Octubre	199.65	175.66	247.87	203.82	287.21	177.31	186.36	282.11	170.92	
2026	Noviembre	200.36	176.42	247.87	204.83	288.46	177.81	187.1	283.34	170.92	
2026	Diciembre	201.08	177.18	247.87	205.83	289.49	178.31	187.85	284.58	170.92	
2027	Enero	201.8	177.94	247.87	206.83	290.73	178.8	188.6	285.81	170.92	
2027	Febrero	202.51	178.7	247.87	207.84	291.76	179.3	189.34	287.05	170.92	
2027	Marzo	203.23	179.47	247.87	208.84	293.0	179.79	190.09	288.28	170.92	
2027	Abril	203.95	180.23	247.87	209.84	294.03	180.29	190.83	289.52	170.92	
2027	Mayo	204.66	180.99	247.87	210.85	295.27	180.78	191.58	290.75	170.92	
2027	Junio	205.38	181.75	247.87	211.85	296.29	181.27	192.32	291.99	170.92	
2027	Julio	206.1	182.51	247.87	212.86	297.53	181.77	193.07	293.22	170.92	
2027	Agosto	206.81	183.27	247.87	213.86	298.55	182.26	193.82	294.46	170.92	
2027	Septiembre	207.53	184.03	247.87	214.86	299.79	182.75	194.56	295.7	170.92	
2027	Octubre	208.25	184.8	247.87	215.87	300.81	183.24	195.31	296.93	170.92	
2027	Noviembre	208.96	185.56	247.87	216.87	302.05	183.73	196.05	298.17	170.92	
2027	Diciembre	209.68	186.32	247.87	217.87	303.06	184.22	196.8	299.4	170.92	
2028	Enero	210.4	187.08	247.87	218.88	304.3	184.7	197.55	300.64	170.92	
2028	Febrero	211.12	187.84	247.87	219.88	305.32	185.19	198.29	301.87	170.92	
2028	Marzo	211.83	188.6	247.87	220.89	306.55	185.68	199.04	303.11	170.92	
2028	Abril	212.55	189.36	247.87	221.89	307.56	186.16	199.78	304.34	170.92	
2028	Mayo	213.27	190.13	247.87	222.89	308.79	186.65	200.53	305.58	170.92	
2028	Junio	213.98	190.89	247.87	223.9	309.81	187.13	201.28	306.81	170.92	
2028	Julio	214.7	191.65	247.87	224.9	311.04	187.62	202.02	308.05	170.92	
2028	Agosto	215.42	192.41	247.87	225.9	312.05	188.1	202.77	309.28	170.92	
2028	Septiembre	216.13	193.17	247.87	226.91	313.28	188.58	203.51	310.52	170.92	
2028	Octubre	216.85	193.93	247.87	227.91	314.29	189.06	204.26	311.75	170.92	
2028	Noviembre	217.57	194.69	247.87	228.91	315.51	189.54	205.01	312.99	170.92	
2028	Diciembre	218.28	195.46	247.87	229.92	316.52	190.02	205.75	314.23	170.92	
2029	Enero	219.0	196.22	247.87	230.92	317.75	190.5	206.5	315.46	170.92	
2029	Febrero	219.72	196.98	247.87	231.93	318.75	190.98	207.24	316.7	170.92	
2029	Marzo	220.43	197.74	247.87	232.93	319.97	191.46	207.99	317.93	170.92	
2029	Abril	221.15	198.5	247.87	233.93	320.98	191.94	208.74	319.17	170.92	

2029	Mayo	221.87	199.26	247.87	234.94	322.2	192.42	209.48	320.4	170.92
2029	Junio	222.58	200.02	247.87	235.94	323.21	192.89	210.23	321.64	170.92
2029	Julio	223.3	200.79	247.87	236.94	324.42	193.37	210.97	322.87	170.92
2029	Agosto	224.02	201.55	247.87	237.95	325.43	193.84	211.72	324.11	170.92
2029	Septiembre	224.73	202.31	247.87	238.95	326.64	194.32	212.46	325.34	170.92
2029	Octubre	225.45	203.07	247.87	239.96	327.65	194.79	213.21	326.58	170.92
2029	Noviembre	226.17	203.83	247.87	240.96	328.86	195.26	213.96	327.81	170.92
2029	Diciembre	226.89	204.59	247.87	241.96	329.86	195.73	214.7	329.05	170.92
2030	Enero	227.6	205.35	247.87	242.97	331.07	196.21	215.45	330.29	170.92
2030	Febrero	228.32	206.12	247.87	243.97	332.07	196.68	216.19	331.52	170.92
2030	Marzo	229.04	206.88	247.87	244.97	333.28	197.15	216.94	332.76	170.92
2030	Abril	229.75	207.64	247.87	245.98	334.28	197.62	217.69	333.99	170.92
2030	Mayo	230.47	208.4	247.87	246.98	335.49	198.09	218.43	335.23	170.92
2030	Junio	231.19	209.16	247.87	247.99	336.48	198.55	219.18	336.46	170.92
2030	Julio	231.9	209.92	247.87	248.99	337.69	199.02	219.92	337.7	170.92
2030	Agosto	232.62	210.68	247.87	249.99	338.69	199.49	220.67	338.93	170.92
2030	Septiembre	233.34	211.45	247.87	251.0	339.89	199.95	221.42	340.17	170.92
2030	Octubre	234.05	212.21	247.87	252.0	340.89	200.42	222.16	341.4	170.92
2030	Noviembre	234.77	212.97	247.87	253.0	342.09	200.88	222.91	342.64	170.92
2030	Diciembre	235.49	213.73	247.87	254.01	343.08	201.35	223.65	343.87	170.92
2031	Enero	236.2	214.49	247.87	255.01	344.28	201.81	224.4	345.11	170.92
2031	Febrero	236.92	215.25	247.87	256.02	345.27	202.27	225.15	346.34	170.92
2031	Marzo	237.64	216.01	247.87	257.02	346.47	202.74	225.89	347.58	170.92
2031	Abril	238.35	216.78	247.87	258.02	347.46	203.2	226.64	348.82	170.92
2031	Mayo	239.07	217.54	247.87	259.03	348.66	203.66	227.38	350.05	170.92
2031	Junio	239.79	218.3	247.87	260.03	349.65	204.12	228.13	351.29	170.92
2031	Julio	240.5	219.06	247.87	261.03	350.84	204.58	228.88	352.52	170.92
2031	Agosto	241.22	219.82	247.87	262.04	351.83	205.04	229.62	353.76	170.92
2031	Septiembre	241.94	220.58	247.87	263.04	353.02	205.5	230.37	354.99	170.92
2031	Octubre	242.66	221.34	247.87	264.05	354.01	205.95	231.11	356.23	170.92
2031	Noviembre	243.37	222.11	247.87	265.05	355.2	206.41	231.86	357.46	170.92
2031	Diciembre	244.09	222.87	247.87	266.05	356.18	206.87	232.6	358.7	170.92
2032	Enero	244.81	223.63	247.87	267.06	357.38	207.32	233.35	359.93	170.92
2032	Febrero	245.52	224.39	247.87	268.06	358.36	207.78	234.1	361.17	170.92
2032	Marzo	246.24	225.15	247.87	269.06	359.55	208.23	234.84	362.4	170.92

2 Gráficas

Figure 1: Gráfica de República

Predicción para Región I Datos Históricos Predicciones 200 -

Figure 2: Gráfica de Región I

Figure 3: Gráfica de Región II

Predicción para Región III 275 Datos Históricos Predicciones 250 225 -200 -175 -150 125 -100 -50 100 150 250 200 0

Figure 4: Gráfica de Región III

Predicción para Región IV Datos Históricos Predicciones 200 -Ó

Figure 5: Gráfica de Región IV

Predicción para Región V Datos Históricos Predicciones

Figure 6: Gráfica de Región V

Figure 7: Gráfica de Región VI

Predicción para Región VII Datos Históricos Predicciones 200 -

Figure 8: Gráfica de Región VII

Figure 9: Gráfica de Región VIII

3 Tablas de resumen

República

		-	Dep. Va Model: Date: Time:	riable:	ARI Wed,	epública MA(0, 2, 2 22 Nov 20 11:40:59	23 AIC BIC	151 -115.37 236.74 245.76	9 1	
			Sample:			0	\mathbf{HQIC}	240.41	0	
						- 151				
			Covarian	ice Type	:	opg				
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	Ljung-Box (L1) (Q):	0.23	Jarque-Bera (JB):	50.50
ma.L1	-0.5959	0.050	-11.829	0.000	-0.695	-0.497	Prob(Q):	0.63	Prob(JB):	0.00
ma.L2	-0.3491	0.061	-5.702	0.000	-0.469	-0.229	Heteroskedasticity (H):	6.78	Skew:	0.74
sigma2	0.2717	0.021	12.960	0.000	0.231	0.313	Prob(H) (two-sided):	0.00	Kurtosis:	5.43

Warnings:

Región I

			Dep. Va	riable:]	Región I	No. Observations:	151		
			Model:		ARI	MA(1, 2, 1)) Log Likelihood	-48.870	3	
			Date:		Wed,	22 Nov 20	23 AIC	103.75	3	
			Time:			11:41:00	\mathbf{BIC}	112.76	5	
			Sample:			0	\mathbf{HQIC}	107.41	4	
						- 151				
			Covaria	nce Type	e:	opg				
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	91.29
ar.L1	0.1670	0.106	1.572	0.116	-0.041	0.375	Prob(Q):	0.93	Prob(JB):	0.00
${ m ma.L1}$	-0.8758	0.043	-20.582	0.000	-0.959	-0.792	Heteroskedasticity (H):	1.78	Skew:	0.80
sigma2	0.1120	0.009	11.969	0.000	0.094	0.130	Prob(H) (two-sided):	0.04	Kurtosis:	6.49

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región II

		_								
			Dep. Va	ariable:]	Región II	No. Observations:	151	-	
			Model:		AR	IMA(0, 1,	1) Log Likelihood	-327.6	338	
			Date:		Wed.	22 Nov 2	023 AIC	659.2	75	
			Time:			11:41:00	BIC	665.2	97	
			Samples			0	HQIC	661.7	22	
			•			- 151	•			
			Covaria	nce Type	e :	opg				
	coef	$_{ m std}$ err	Z	$\mathbf{P}> \mathbf{z} $	[0.025	0.975]	Ljung-Box (L1) (Q):	2.18	Jarque-Bera (JB):	66.76
					-		Prob(Q):	0.14	Prob(JB):	0.00
ma.L1	0.2490	0.063	3.942	0.000	0.125	0.373	Heteroskedasticity (H):	2.52	Skew:	0.78
$\mathbf{sigma2}$	4.6190	0.337	13.704	0.000	3.958	5.280	Prob(H) (two-sided):	0.00	Kurtosis:	5.88

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región III

			Dep. Von Model: Date: Time:	ariable:	AR	Región III IMA(1, 2, 2 , 22 Nov 20 11:41:00	,	151 -82.05 172.10 184.11	3	
			Sample:	:		0	HQIC	176.98		
			-			- 151	•			
			Covaria	nce Typ	e:	opg			<u></u>	
	coef	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	Ljung-Box (L1) (Q):	0.30	Jarque-Bera (JB):	325.47
ar.L1	-0.8519	0.084	-10.185	0.000	-1.016	-0.688	Prob(Q):	0.50	Prob(JB):	0.00
ma.L1	0.0989	0.060	1.653	0.098	-0.018	0.216	Heteroskedasticity (H):	3.81	Skew:	1.31
$egin{array}{l} { m ma.L2} \\ { m sigma2} \end{array}$	-0.8030 0.1744	$0.060 \\ 0.011$	-13.376 15.566	0.000 0.000	-0.921 0.152	-0.685 0.196 -	Prob(H) (two-sided):	0.00	Kurtosis:	9.75
Sigiliaz	0.1144	0.011	10.000	0.000	0.102	0.100				

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región IV

			Dep. V	ariable:		Región IV	No. Observations:	151		
			Model:		AF	RIMA(4, 1.	(2) Log Likelihood	-273.5	508	
			Date:		Wed	1, 22 Nov 2	2023 AIC	561.0	16	
			Time:			11:41:00	BIC	582.0	91	
			Sample	:		0	\mathbf{HQIC}	569.5	78	
			•			- 151	-			
			Covaria	ance Typ	oe:	opg				
	\mathbf{coef}	std err	\mathbf{z}	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]				
ar.L1	-0.0894	0.097	-0.918	0.358	-0.280	0.101				
ar.L2	0.6457	0.077	8.338	0.000	0.494	0.798	Ljung-Box $(L1)$ (Q) :	0.04	Jarque-Bera (JB):	284.97
ar.L3	0.0889	0.080	1.105	0.269	-0.069	0.246	Prob(Q):	0.84	Prob(JB):	0.00
ar.L4	0.3527	0.063	5.598	0.000	0.229	0.476	Heteroskedasticity (H):	11.31	Skew:	1.39
ma.L1	0.0339	0.173	0.196	0.844	-0.304	0.372	Prob(H) (two-sided):	0.00	Kurtosis:	9.15
ma.L2	-0.9592	0.157	-6.126	0.000	-1.266	-0.652				
$\mathbf{sigma2}$	2.1923	0.294	7.450	0.000	1.616	2.769				

Warnings:

Región V

			Dep. Va	riable:	I	Región V	No. Observations:	151		
			Model:		ARI	MA(1, 1, 1)) Log Likelihood	-153.3	74	
			Date:		Wed,	$22 \ \mathrm{Nov} \ 20$	23 AIC	312.74	48	
			Time:			11:41:00	\mathbf{BIC}	321.78	80	
			Sample:			0	\mathbf{HQIC}	316.4	17	
						- 151				
			Covaria	nce Type	e :	opg				
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	Ljung-Box (L1) (Q):	1.05	Jarque-Bera (JB):	125.26
ar.L1	0.9986	0.004	232.208	0.000	0.990	1.007	Prob(Q):	0.31	Prob(JB):	0.00
ma.L1	-0.9643	0.038	-25.371	0.000	-1.039	-0.890	Heteroskedasticity (H):	6.72	Skew:	0.51
sigma2	0.4467	0.030	14.742	0.000	0.387	0.506	Prob(H) (two-sided):	0.00	Kurtosis:	7.36

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región VI

		_								
			Dep. Va	riable:	R	egión VI	No. Observations:	151		
			Model:		ARI	MA(0, 2, 1)	1) Log Likelihood	-142.51	17	
			Date:		Wed,	22 Nov 20)23 AIC	289.03	3	
			Time:			11:41:01	BIC	295.04	1	
			Sample:			0	\mathbf{HQIC}	291.47	4	
			•			- 151	•			
			Covarian	ce Type	:	opg				
	coef	$_{ m std}$ err	\mathbf{z}	$\mathbf{P} > \mathbf{z} $	[0.025	0.975]	Ljung-Box (L1) (Q):	1.03	Jarque-Bera (JB):	50.59
					•		Prob(Q):	0.31	Prob(JB):	0.00
ma.L1	-0.9340	0.027	-35.106	0.000	-0.986	-0.882	Heteroskedasticity (H):	5.72	Skew:	0.78
sigma2	0.3911	0.030	12.889	0.000	0.332	0.451	Prob(H) (two-sided):	0.00	Kurtosis:	5.39

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región VII

			Dep. Va	riable:		tegión VII IMA(0, 2,		151 -291.329	<u> </u>	
			Date:			22 Nov 2	,	590.657		
			Time:		,	11:41:01	BIC	602.673		
			Sample:			0	\mathbf{HQIC}	595.539		
						- 151				
			Covaria	nce Type	e:	opg				
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	Liung Poy (L1) (O).	0.36	Innaua Dona (ID).	56.29
ma.L1	-0.7479	0.049	-15.206	0.000	-0.844	-0.652	Ljung-Box $(L1)$ (Q) : Prob (Q) :	0.50	Jarque-Bera (JB): Prob(JB):	0.00
ma.L2	-0.6340	0.057	-11.142	0.000	-0.746	-0.522	Heteroskedasticity (H):	16.06	Skew:	0.42
ma.L3	0.4119	0.053	7.829	0.000	0.309	0.515	Prob(H) (two-sided):	0.00	Kurtosis:	5.89
${f sigma2}$	2.8537	0.217	13.166	0.000	2.429	3.278				

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Región VIII

			Dep. Va Model:	riable:		egión VIII MA(2, 1, 0		151 -205.31	 13	
			Date:		Wed,	22 Nov 20)23 AIC	416.62	27	
			Time:			11:41:01	BIC	425.65	69	
			Sample:			0	\mathbf{HQIC}	420.29	06	
						- 151				
			Covaria	nce Type	e:	opg				
	\mathbf{coef}	std err	\mathbf{z}	P> z	[0.025]	0.975]	Ljung-Box (L1) (Q):	2.00	Jarque-Bera (JB):	45.50
ar.L1	0.3614	0.054	6.748	0.000	0.256	0.466	Prob(Q):	0.16	Prob(JB):	0.00
ar.L2	-0.0747	0.065	-1.148	0.251	-0.202	0.053	Heteroskedasticity (H):	4.63	Skew:	-0.07
$\mathbf{sigma2}$	0.9037	0.076	11.903	0.000	0.755	1.053	Prob(H) (two-sided):	0.00	Kurtosis:	5.69

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).