Q1. Which of the following pigments is essential for the photolysis of v	of wate	/sis	photoly	or the r	essential:	nents is	g pigr	following	of the	Which	01.
--	---------	------	---------	----------	------------	----------	--------	-----------	--------	-------	-----

- A. Chlorophyll a
- B. Chlorophyll b
- C. Xanthophyll
- D. Carotene

✓ nswer: A. Chlorophyll a

Explanation: Chlorophyll a is the reaction center of both PS I and PS II and is essential for photolysis and photoactivation.

Q2. Match the following with their functions:

Column I (Pigment) Column II (Function)

- A. Chlorophyll a 1. Accessory pigment
- B. Chlorophyll b 2. Primary reaction center
- C. Carotenoids 3. Photoprotection
- D. Xanthophyll 4. Yellow accessory pigment

Options:

✓ nswer: A. A–2, B–1, C–3, D–4

Explanation:

Chl a: reaction center

Chl b: accessory

Carotenoids: prevent photooxidation

Xanthophyll: yellow pigment, helps light harvesting

Q3. The correct sequence of flow of electrons during the light reaction is:

- A. PS I \rightarrow PS II \rightarrow NADP⁺
- B. PS II \rightarrow PS I \rightarrow NADP⁺
- C. PS I \rightarrow Cytochrome b6f \rightarrow NADP⁺
- D. PS II \rightarrow NADP⁺ \rightarrow PS I

✓answer: B. PS II \rightarrow PS I \rightarrow NADP⁺

Explanation: Electrons move from PS II to PS I, then reduce NADP+ to NADPH in the Z-scheme.

- Q4. Which statement about photorespiration is correct?
- A. It occurs only in C4 plants
- B. It results in loss of fixed carbon
- C. It enhances net photosynthesis
- D. It produces ATP and NADPH
- nswer: B. It results in loss of fixed carbon

Explanation: Photorespiration is a wasteful process where O₂ competes with CO₂, causing loss of carbon and energy.

- Q5. Which enzyme is responsible for carboxylation in the Calvin cycle?
- A. PEP carboxylase
- B. ATP synthase
- C. RuBisCO
- D. NADP reductase

✓ nswer: C. RuBisCO

Explanation: RuBisCO (Ribulose-1,5-bisphosphate carboxylase-oxygenase) catalyzes CO₂ fixation in C3 plants.

- Q6. Which process forms ATP during light reaction without the formation of NADPH or O₂?
- A. Non-cyclic photophosphorylation
- B. Cyclic photophosphorylation
- C. Photorespiration
- D. Glycolysis

nswer: B. Cyclic photophosphorylation

Explanation: In cyclic photophosphorylation, electrons cycle back to PS I and only ATP is formed; no NADPH/O₂.

- Q7. Photorespiration does not occur in C4 plants because:
- A. They lack RuBisCO
- B. They have high CO₂ concentration around RuBisCO
- C. They do not perform photosynthesis
- D. They lack chloroplasts in mesophyll cells
- ✓nswer: B. They have high CO₂ concentration around RuBisCO

Explanation: C4 plants use PEP carboxylase first and bundle sheath cells concentrate CO₂, preventing O₂ competition.

Q8. In C4 plants, the initial fixation of CO₂ occurs in:

- A. Bundle sheath cells by RuBisCO
- B. Mesophyll cells by RuBisCO
- C. Bundle sheath cells by PEP carboxylase
- D. Mesophyll cells by PEP carboxylase
- ✓ nswer: D. Mesophyll cells by PEP carboxylase

Explanation: C4 plants fix CO₂ in mesophyll using PEPCase, forming oxaloacetate, later transported to bundle sheath.

- Q9. Which of the following is a limiting factor for photosynthesis in bright light and moderate temperature?
- A. Light
- B. CO₂ concentration
- C. Temperature
- D. Water
- ✓ nswer: B. CO₂ concentration

Explanation: Under high light and moderate temperature, the CO₂ level becomes the limiting factor.

Q10. Assertion (A): ATP and NADPH are used in the Calvin cycle.

Reason (R): ATP is used for carboxylation, and NADPH is used for reduction.**

- A. Both A and R are true; R explains A
- B. Both A and R are true; R does not explain A
- C. A is true, R is false
- D. Both A and R are false

✓nswer: A. Both A and R are true; R explains A

Explanation:

ATP is used in regeneration and activation of RuBP

NADPH is used to reduce 3-PGA to G3P

Q11. What is the final product of the Calvin cycle that can be converted into glucose?

- A. 3-Phosphoglycerate
- B. 1,3-Bisphosphoglycerate
- C. Glyceraldehyde-3-phosphate (G3P)
- D. RuBP

✓ nswer: C. Glyceraldehyde-3-phosphate (G3P)

Explanation: G3P is the first stable product of Calvin cycle that is used to form glucose and regenerate RuBP.

Q12. Which statement about non-cyclic photophosphorylation is incorrect?

- A. Both PS I and PS II are involved
- B. Water is split during the process
- C. Oxygen is released
- D. Electrons cycle within the same photosystem

✓ nswer: D. Electrons cycle within the same photosystem

Explanation: In non-cyclic photophosphorylation, electrons move linearly from PS II \rightarrow PS I \rightarrow NADP⁺. Cycling occurs only in cyclic type.

Q13. In a well-lit, well-hydrated plant, the major form of photophosphorylation is:

- A. Cyclic
- B. Non-cyclic
- C. Photorespiratory

D. Anaerobic

✓ nswer: B. Non-cyclic

Explanation: Under normal light and water conditions, non-cyclic photophosphorylation is dominant, producing ATP, NADPH, and O_2 .

Q14. Which pigment is NOT directly involved in trapping light energy but transfers it to chlorophyll a?

- A. Chlorophyll b
- B. Carotenoids
- C. Xanthophyll
- D. All of these

✓ nswer: D. All of these

Explanation: All are accessory pigments that absorb additional light and transfer energy to chlorophyll a.

Q15. The bundle sheath cells in C4 plants contain:

- A. Only PEPCase
- B. Only RuBisCO
- C. Only mitochondria
- D. Both PEPCase and RuBisCO

✓ Answer: B. Only RuBisCO

Explanation: In C4 plants, mesophyll has PEPCase, while bundle sheath cells contain only RuBisCO for CO₂ fixation via the Calvin cycle.

Q16. Which one of the following processes requires the expenditure of ATP in C4 plants but not in C3 plants?

- A. Carbon fixation
- B. Regeneration of RuBP
- C. Transport of malic acid
- D. Conversion of pyruvate to PEP

nswer: D. Conversion of pyruvate to PEP

Explanation: This step in C4 pathway consumes ATP, increasing the energy cost per CO₂ fixed compared to C3 plants.

Q17. Which of the following best differentiates between C3 and C4 photosynthesis?
 A. Oxygen evolution B. Presence of chloroplast C. Primary CO₂ acceptor D. Type of sugar formed
✓nswer: C. Primary CO₂ acceptor Explanation:
C3: Primary acceptor is RuBP
C4: Primary acceptor is PEP
Q18. How many ATP molecules are required to synthesize one molecule of glucose in Calvin cycle?
A. 6 B. 12 C. 18 D. 30
✓nswer: C. 18 Explanation: Calvin cycle requires 18 ATP + 12 NADPH to synthesize 1 glucose molecule (6 CO₂ fixed).
Q19. Which of the following statements about CAM plants is true?
A. Stomata remain open during the day B. They use PEPCase at night C. Calvin cycle occurs at night D. RuBisCO is not present
✓nswer: B. They use PEPCase at night Explanation: In CAM plants, CO₂ is fixed at night by PEPCase, stored as malate, and used during the day.
Q20. Assertion (A): Photorespiration is more in C3 plants.

NEET CHAPTERS PRO Page 6

Reason (R): RuBisCO has a high affinity for oxygen than CO₂.**

- A. Both A and R are true; R explains A
- B. Both A and R are true; R does not explain A
- C. A is true, R is false
- D. Both A and R are false

✓ nswer: C. A is true, R is false

Explanation: RuBisCO has a higher affinity for CO₂, but in low CO₂/high O₂, it acts as oxygenase \rightarrow

photorespiration in C3 plants.

Q21. In C4 plants, the first stable product of CO₂ fixation is:

- A. Phosphoglyceric acid (PGA)
- B. Glyceraldehyde-3-phosphate (G3P)
- C. Oxaloacetic acid (OAA)
- D. Pyruvate

nswer: C. Oxaloacetic acid (OAA)

Explanation: In C4 plants, PEP combines with CO₂ to form OAA — the first stable product.

Q22. Which statement is TRUE regarding photolysis of water?

- A. It occurs in PS I
- B. Manganese is not involved
- C. It generates NADPH directly
- D. It provides electrons to PS II

nswer: D. It provides electrons to PS II

Explanation: Water is split in PS II, donating electrons to replenish the excited electrons lost by PS II.

Q23. What is the role of plastocyanin in the light reaction?

- A. ATP synthesis
- B. Pigment excitation
- C. Electron transfer between cytochrome b6f and PS I
- D. Water splitting

Answer: C. Electron transfer between cytochrome b6f and PS I

Explanation: Plastocyanin is a copper-containing protein that shuttles electrons to PS I.

Q24. How many molecules of NADPH are needed to fix 6 CO ₂ molecules in the Calvin cycle?
A. 6 B. 12 C. 18 D. 24
✓nswer: B. 12 Explanation: Fixation of 6 CO₂ (to make 1 glucose) needs 12 NADPH and 18 ATP.
Q25. Which of the following environmental conditions would lead to maximum photorespiration?
A. High CO ₂ , high O ₂ B. Low CO ₂ , high O ₂ C. High CO ₂ , low O ₂ D. Equal CO ₂ and O ₂
Q26. Which one is mismatched?
A. Grana – ATP formation B. Stroma – Calvin cycle C. PS I – NADPH formation D. PS II – Cyclic photophosphorylation
✓ nswer: D. PS II — Cyclic photophosphorylation Explanation: Cyclic photophosphorylation involves only PS I, not PS II.
Q27. What is the principal advantage of the C4 pathway in hot climates?
A. Higher oxygen production

NEET CHAPTERS PRO Page 8

B. Reduced transpiration

C. Minimization of photorespiration

D. Increased photorespiration

nswer: C. Minimization of photorespiration

Explanation: C4 plants reduce oxygenase activity of RuBisCO by concentrating CO₂ in bundle sheath cells.

Q28. Photorespiration results in the loss of which fixed element?

- A. Hydrogen
- B. Oxygen
- C. Nitrogen
- D. Carbon

✓ Answer: D. Carbon

Explanation: Photorespiration consumes O₂ and releases CO₂, resulting in loss of fixed carbon.

Q29. In which cell organelle does photorespiration not occur?

- A. Chloroplast
- B. Mitochondria
- C. Peroxisome
- D. Ribosome

✓nswer: D. Ribosome

Explanation: Photorespiration occurs in chloroplasts, peroxisomes, and mitochondria — not in ribosomes.

Q30. Match the following correctly:

Column I Column II

- A. PEPCase 1. Calvin cycle
- B. RuBisCO 2. Bundle sheath
- C. ATP synthase 3. Thylakoid membrane
- D. Oxygen evolution 4. PS II

Options:

A. A-2, B-1, C-3, D-4

B. A-1, B-2, C-4, D-3

C. A-3, B-2, C-1, D-4

D. A-4, B-1, C-2, D-3

✓answer: A. A–2, B–1, C–3, D–4

Explanation:

PEPCase → C4 mesophyll → transported to bundle sheath (2)

RuBisCO \rightarrow enzyme of Calvin cycle (1)

ATP synthase → present in thylakoid membrane (3)

Oxygen evolution \rightarrow at PS II (4)

Q31. Which condition leads to maximum efficiency of RuBisCO carboxylation?

- A. Low temperature and low CO₂
- B. High temperature and high O₂
- C. Low O2 and high CO2
- D. High O₂ and low CO₂

✓nswer: C. Low O₂ and high CO₂

Explanation: These conditions favor RuBisCO's carboxylase activity, minimizing photorespiration.

Q32. Identify the incorrect statement about the light reaction:

- A. ATP is formed in thylakoids
- B. NADPH is produced during cyclic photophosphorylation
- C. Oxygen is evolved by photolysis of water
- D. Non-cyclic photophosphorylation involves both PS I and PS II

✓ Answer: B. NADPH is produced during cyclic photophosphorylation

Explanation: In cyclic photophosphorylation, only ATP is produced, not NADPH.

Q33. In photorespiration, glycolate is converted into glycine in which organelle?

- A. Mitochondria
- B. Chloroplast
- C. Peroxisome

D. Cytoplasm

✓ nswer: C. Peroxisome

Explanation: Glycolate from chloroplast is converted to glycine in the peroxisome.

Q34. Quantum yield of photosynthesis is high when:

- A. Both light and CO₂ are limited
- B. Blue light is used
- C. Green light is used
- D. Red light is used

✓ nswer: D. Red light is used

Explanation: Quantum yield (molecules of O₂ evolved per photon absorbed) is highest in red light.

Q35. C4 plants can tolerate dry and high light intensity regions because:

- A. They open stomata during night
- B. They lack RuBisCO
- C. They concentrate CO₂ in bundle sheath cells
- D. They absorb water faster

✓ Answer: C. They concentrate CO₂ in bundle sheath cells

Explanation: This prevents photorespiration, conserving energy and improving water-use efficiency.

Q36. Which pigment has the highest absorption in the red region of light?

- A. Chlorophyll b
- B. Carotenoids
- C. Chlorophyll a
- D. Xanthophyll

nswer: C. Chlorophyll a

Explanation: Chlorophyll a absorbs best in blue and red regions, especially red (~665–680 nm).

Q37. Which one is not a product of the light reaction?

A. ATP B. NADPH

C. O ₂
D. Glucose
✓nswer: D. Glucose
Explanation: Glucose is produced during dark reaction (Calvin cycle), not in the light reaction.
Q38. Which is the key enzyme responsible for fixing atmospheric CO ₂ in the Calvin cycle?
A. PEP carboxylase
B. ATP synthase
C. RuBisCO D. Cytochrome b6f
D. Cytochiome Boi
✓nswer: C. RuBisCO
Explanation: RuBisCO (Ribulose bisphosphate carboxylase oxygenase) fixes CO ₂ with RuBP in the Calvin cycle.
Q39. Identify the correct sequence in the Calvin cycle:
A Carbovulation \ Degeneration \ Deduction
 A. Carboxylation → Regeneration → Reduction B. Carboxylation → Reduction → Regeneration
C. Reduction → Carboxylation → Regeneration
D. Regeneration $ ightarrow$ Carboxylation $ ightarrow$ Reduction
✓nswer: B. Carboxylation → Reduction → Regeneration
Explanation:
1. CO₂ + RuBP → carboxylation
2. Formation of PGA \rightarrow reduction to G3P
3. Regeneration of RuBP
Q40. The primary CO ₂ acceptor in C4 plants is:
Q-70. The primary CO2 acceptor in C-+ plants is.
NEET CHAPTERS PRO Page 12

Δ	Ru	BP
л.	IVU	DI.

B. PGA

C. PEP

D. Pyruvate

✓ nswer: C. PEP

Explanation: In C4 plants, phosphoenolpyruvate (PEP) is the initial CO₂ acceptor, forming OAA.

Q41. Under which conditions does cyclic photophosphorylation occur predominantly?

A. When NADP+ is abundant

- B. When ATP demand is low
- C. When PS II is inhibited
- D. In presence of high CO₂

✓nswer: C. When PS II is inhibited

Explanation: Cyclic photophosphorylation uses only PS I, and is favored when PS II is inactive or ATP is limiting.

Q42. What happens when O₂ concentration increases in mesophyll cells of C3 plants?

- A. ATP production increases
- B. Photorespiration increases
- C. Glucose synthesis increases
- D. RuBisCO becomes more efficient

nswer: B. Photorespiration increases

Explanation: O₂ competes with CO₂, leading RuBisCO to act as oxygenase, increasing photorespiration.

Q43. Which molecule acts as both an enzyme and structural protein during photosynthesis?

- A. PEP carboxylase
- B. ATP synthase
- C. RuBisCO
- D. NADP⁺ reductase

✓ nswer: C. RuBisCO

Explanation: RuBisCO is the most abundant enzyme and also forms a large structural protein complex.

Q44. Bundle sheath cells are characterized by:

- A. Presence of PS II only
- B. Absence of chloroplasts
- C. Kranz anatomy in C3 plants
- D. Thick-walled chloroplasts with RuBisCO in C4 plants

✓ nswer: D. Thick-walled chloroplasts with RuBisCO in C4 plants

Explanation: C4 plants have Kranz anatomy with bundle sheath cells having RuBisCO and thick-walled chloroplasts.

Q45. Select the INCORRECT statement about C3 and C4 plants:

- A. C3 plants undergo high photorespiration
- B. C4 plants are more efficient in high-temperature areas
- C. C4 pathway uses ATP for CO₂ transport
- D. C3 plants fix CO₂ using PEP

✓nswer: D. C3 plants fix CO₂ using PEP

Explanation: C3 plants use RuBP as CO₂ acceptor, not PEP.