Diferenciabilidad de funciones de dos variables

Con el concepto de aproximación lineal claro estamos preparados para definir la diferenciabilidad.

Definición Diferenciabilidad: dos variables Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Decimos que f es **diferenciable** en (x_0, y_0) , si $\partial f/\partial x$ y $\partial f/\partial y$ existen en (x_0, y_0) y si

$$\frac{f(x,y) - f(x_0, y_0) - \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) - \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)}{\|(x,y) - (x_0, y_0)\|} \to 0$$
 (2)

cuando $(x,y) \to (x_0,y_0)$. Esta ecuación especifica lo que queremos expresar cuando decimos que

$$f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)$$

es una $buena \ aproximación$ a la función f.

No siempre es fácil usar esta definición para ver si f es diferenciable, pero será fácil emplear otro criterio que proporcionaremos enseguida en el Teorema 9.

Plano tangente

Hemos usado la idea informal de plano tangente a la gráfica de una función para intuir nuestra definición de diferenciabilidad. Ahora ya estamos preparados para adoptar una definición formal de plano tangente.

Definición Plano tangente Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en $\mathbf{x}_0 = (x_0, y_0)$. El plano en \mathbb{R}^3 definido por la ecuación

$$z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0)\right](x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right](y - y_0)$$

se denomina **plano tangente** a la gráfica de f en el punto $(x_0, y_0, f(x_0, y_0))$.

Ejemplo 5

Calcular el plano tangente a la gráfica de $z=x^2+y^4+e^{xy}$ en el punto (1,0,2).

Solución

Usamos la fórmula (1), con $x_0 = 1, y_0 = 0$ y $z_0 = f(x_0, y_0) = 2$. Las derivadas parciales son

$$\frac{\partial z}{\partial x} = 2x + ye^{xy}$$
 y $\frac{\partial z}{\partial y} = 4y^3 + xe^{xy}$.