Medida do Tempo de Execução de um Programa

Livro "Projeto de Algoritmos" – Nívio Ziviani Capítulo 1 – Seção 1.3.1

http://www2.dcc.ufmg.br/livros/algoritmos/

Comportamento Assintótico de Funções

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema.
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes.
- A **escolha do algoritmo** não é um problema crítico para problemas de tamanho pequeno.
- Logo, a análise de algoritmos é realizada para valores grandes de n.
- Estuda-se o comportamento assintótico das funções de custo (comportamento de suas funções de custo para valores grandes de n)
- O comportamento assintótico de f(n) representa o limite do comportamento do custo quando n cresce.

Dominação assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada.
- Definição: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para n ≥ m, temos |g(n)| ≤ c x |f(n)|.

Dominação assintótica

Exemplo:

- Sejam $g(n) = (n + 1)^2 e f(n) = n^2$.
- As funções g(n) e f(n) dominam assintoticamente uma a outra, desde que

$$|(n + 1)^2| \le 4|n^2|$$
 para $n \ge 1$ e

$$|n^2| \le |(n + 1)^2|$$
 para $n \ge 0$.

Notação O

- Escrevemos g(n) = O(f(n)) para expressar que f(n) domina assintoticamente g(n). Lê-se g(n) é da ordem no máximo f(n).
- Exemplo: quando dizemos que o tempo de execução T(n) de um programa é O(n²), significa que existem constantes c e m tais que, para valores de n≥m, T(n)≤cn².
- Exemplo gráfico de dominação assintótica que ilustra a notação O.

Notação O

O valor da constante m mostrado é o menor valor possível, mas qualquer valor maior também é válido.

Definição: Uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que g(n) ≤ cf(n), para todo n ≥m.

Exemplos de Notação O

- **Exemplo**: $g(n) = (n + 1)^2$.
 - Logo g(n) é $O(n^2)$, quando m = 1 e c = 4.
 - Isto porque $(n + 1)^2$ ≤ $4n^2$ para $n \ge 1$.
- **Exemplo**: $g(n) = n e f(n) = n^2$.
 - Sabemos que g(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
 - Entretanto f(n) não é O(n).
- Suponha que existam constantes c e m tais que para todo $n \ge m$, $n^2 \le cn$.
- Logo $c \ge n$ para qualquer $n \ge m$, e não existe uma constante c que possa ser maior ou igual a n para todo n.

Exemplos de Notação O

- **Exemplo**: $g(n) = 3n^3 + 2n^2 + n \in O(n^3)$.
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$.
- A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca do que dizer que g(n) é $O(n^3)$.
- **Exemplo**: $g(n) = \log_5 n \in O(\log n)$.
 - O log_b n difere do log_c n por uma constante que no caso é log_b c.
- Como $n = c^{\log c n}$, tomando o logaritmo base b em ambos os lados da igualdade, temos que

$$\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c.$$

Operações com a Notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações com a Notação O

Exemplo: regra da soma O(f(n)) + O(g(n)).

- Suponha três trechos cujos tempos de execução são O(n), $O(n^2)$ e $O(n \log n)$.
- O tempo de execução dos dois primeiros trechos é $O(\max(n, n^2))$, que é $O(n^2)$.
- O tempo de execução de todos os três trechos é então $O(\max(n^2, n \log n))$, que é $O(n^2)$.

Notação Ω

- Especifica um limite inferior para g(n).
- Definição: Uma função g(n) é (f(n)) se existirem duas constantes c e m tais queg(n) ≥ cf(n), para todo n ≥ m.
- **Exemplo**: Para mostrar que g(n) = $3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então
- $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$.

 Para todos os valores à direita de m, o valor de g(n) está sobre ou acima do valor de cf(n).

Notação O

- **Definição**: Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$, para todo $n \ge m$.
- Exemplo gráfico para a notação:

- Dizemos que $g(n) = \Theta(f(n))$ se existirem constantes c_1 , c_2 e m tais que, para todo $n \ge m$, o valor de g(n) está sobre ou acima de $c_1 f(n)$ e sobre ou abaixo de $c_2 f(n)$.
- Isto é, para todo n ≥ m, a função g(n) é igual a f(n) a menos de uma constante.
- Neste caso, *f*(*n*) é um **limite assintótico firme**.

Classes de Comportamento Assintótico

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F.
- A relação de dominação assintótica permite comparar funções de complexidade.
- Entretanto, se as funções *f* e *g* dominam assintoticamente uma a outra, então os algoritmos associados são equivalentes.
- Nestes casos, o comportamento assintótico não serve para comparar os algoritmos.
- Por exemplo, considere dois algoritmos F e G aplicados à mesma classe de problemas, sendo que F leva três vezes o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n)).
- Logo, o comportamento assintótico não serve para comparar os algoritmos F e G, porque eles diferem apenas por uma constante.

Comparação de Programas

■ Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.

■ Um programa com tempo de execução O(n) é melhor que outro com tempo $O(n^2)$.

■ Porém, as constantes de proporcionalidade podem alterar esta consideração.

Comparação de Programas

- ■Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$.
- Qual dos dois programas é melhor?
 - depende do tamanho do problema.
- Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n.
- Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é $O(n^2)$.
- Entretanto, quando n cresce, o programa com tempo de execução $O(n^2)$ leva muito mais tempo que o programa O(n).

$$f(n) = O(1)$$

- Algoritmos de complexidade O(1) são ditos de complexidade constante.
 - Uso do algoritmo independe de n.
- As instruções do algoritmo são executadas um número fixo de vezes.

$f(n) = O(\log n).$

- Um algoritmo de complexidade $O(\log n)$ é dito ter complexidade logarítmica.
- Típico em algoritmos que transformam um problema em outros menores.
- Pode-se considerar o tempo de execução como menor que uma constante grande.
 - Quando n é mil, $\log_2 n \approx 10$, quando n é 1 milhão, $\log_2 n \approx 20$.
- Para dobrar o valor de log n temos de considerar o quadrado de n.
- A base do logaritmo muda pouco estes valores: quando n é 1
 milhão, o log₂n é 20 e o log₁₀n é 6.

f(n) = O(n)

- Um algoritmo de complexidade O(n) é dito ter complexidade
 linear.
- Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
- É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
- Cada vez que n dobra de tamanho, o tempo de execução dobra.

$f(n) = O(n \log n)$

- Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois.
 - Quando n é 1 milhão, nlog₂n é cerca de 20 milhões.
- Quando n é 2 milhões, nlog₂n é cerca de 42 milhões,
 pouco mais do que o dobro.

$f(n) = O(n^2)$

- Um algoritmo de complexidade $O(n^2)$ é dito ter complexidade quadrática.
- Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
- Quando n é mil, o número de operações é da ordem de 1 milhão.
- Sempre que n dobra, o tempo de execução é multiplicado por 4.
- Úteis para resolver problemas de tamanhos relativamente pequenos.

$f(n) = O(n^3)$

- Um algoritmo de complexidade $O(n^3)$ é dito ter complexidade cúbica.
 - Úteis apenas para resolver pequenos problemas.
- Quando n é 100, o número de operações é da ordem de 1 milhão.
- Sempre que n dobra, o tempo de execução fica multiplicado por 8.

$$f(n)=O(2^n)$$

- Um algoritmo de complexidade $O(2^n)$ é dito ter **complexidade exponencial**.
 - Geralmente não são úteis sob o ponto de vista prático.
- Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
- Quando n é 20, o tempo de execução é cerca de 1 milhão. Quando
 n dobra, o tempo fica elevado ao quadrado.

f(n) = O(n!)

- Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$.
- Geralmente ocorrem quando se usa força bruta para na solução do problema.
 - -n = 20 = 20! = 2432902008176640000, um número com 19 dígitos.
 - -n = 40 = um número com 48 dígitos.

Comparação de Funções de Complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Comparação de Funções de Complexidade

Função de	Computador	Computador	Computador	
custo	atual	100 vezes	1.000 vezes	
de tempo		mais rápido	mais rápido	
n	t_1	$100 \ t_1$	$1000\ t_1$	
n^2	t_2	$10\;t_2$	$31,6\;t_2$	
n^3	t_3	$4,6\ t_3$	$10 \ t_3$	
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$	

Algoritmos Polinomiais

- Algoritmo exponencial no tempo de execução tem função de complexidade $O(c^n)$; c > 1.
- Algoritmo polinomial no tempo de execução tem função de complexidade O(p(n)), onde p(n) é um polinômio.
- A distinção entre estes dois tipos de algoritmos torna-se significativa quando o tamanho do problema a ser resolvido cresce.
- Por isso, os algoritmos polinomiais são muito mais úteis na prática do que os exponenciais.
- Algoritmos exponenciais são geralmente simples variações de pesquisa exaustiva.
- Algoritmos polinomiais são geralmente obtidos mediante entendimento mais profundo da estrutura do problema.
- Um problema é considerado:
- intratável: se não existe um algoritmo polinomial para resolvê-lo.
- bem resolvido: quando existe um algoritmo polinomial para resolvê-lo.

Algoritmos Polinomiais x Algoritmos Exponenciais

- A distinção entre algoritmos polinomiais eficientes e algoritmos exponenciais ineficientes possui várias exceções.
- Exemplo: um algoritmo com função de complexidade f(n) = 2^n é mais rápido que um algoritmo $g(n) = n^5$ para valores de n menores ou iguais a 20.
- Também existem algoritmos exponenciais que são muito úteis na prática.
- Exemplo: o algoritmo Simplex para programação linear possui complexidade de tempo exponencial para o pior caso mas executa muito rápido na prática.
- Tais exemplos não ocorrem com frequência na prática, e muitos algoritmos exponenciais conhecidos não são muito úteis.

Exemplo de Algoritmo Exponencial

- Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez.
- Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem.
- A figura ilustra o exemplo para quatro cidades c_1 , c_2 , c_3 , c_4 , em que os números nos arcos indicam a distância entre duas cidades.

■ O percurso $< c_1, c_3, c_4, c_2, c_7 > e$ uma solução para o problema, cujo percurso total tem distância 24.

Exemplo de Algoritmo Exponencial

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas.
- Há (*n* 1)! rotas possíveis e a distância total percorrida em cada rota envolve *n* adições, logo o número total de adições é *n*!.
- No exemplo anterior teríamos 24 adições.
- Suponha agora 50 cidades: o número de adições seria 50! ≈ 10⁶⁴.
- Em um computador que executa 10⁹ adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições.
- ■O problema do caixeiro viajante aparece com freqüência em problemas relacionados com transporte, mas também aplicações importantes relacionadas com otimização de caminho percorrido.