

Banco de Dados

Sistema de Gerenciamento de Banco de Dados

O que veremos hoje?

Sistema Gerenciador de Banco de dados - SGBD

- 1. Características de um SGBD
- 2. Arquitetura do SGBD

Arquitetura Stand-Alone (Sistema de Computador Pessoal)

Arquitetura Centralizada

Arquitetura Cliente-Servidor

Arquitetura Distribuída

facebook

funciona!

SQL

 Tudo que fazemos em um banco de dados passa pelo SGBD! Ele é responsável por salvar os dados no HD, manter em memória os dados mais acessados, ligar dados e metadados, disponibilizar uma interface para programas e usuários externos acessem o banco de dados (para banco de dados relacionais, é utilizada a linguagem SQL), encriptar dados, controlar o acesso a informações, manter cópias dos dados para recuperação de uma possível falha, garantir transações no banco de dados, enfim, sem o SGBD o banco de dados não

4

Sistema de Banco de Dados

- Podemos então definir um Sistema Gerenciados de Banco de Dados como um o conjunto de softwares responsáveis pelo gerenciamento de uma base de dados.
- Seu principal objetivo é retirar da aplicação cliente a responsabilidade de gerenciar o acesso, a manipulação e a organização dos dados.

- O SGBD disponibiliza uma interface para que seus usuários possam incluir, alterar ou consultar dados previamente armazenados.
- O SGBD então é responsável por manipular os dados contidos no banco de dados e responsável por definir e construir um banco de dados.

 O SGBD faz todo o gerenciamento de transações dos bancos de dados contidos nele. Uma transação em um banco de dados consiste em um conjunto de operações que são tratadas como uma unidade lógica indivisível.

Exemplo:

SQL

Quando vamos fazer uma transferência bancária, são feitas no mínimo duas operações, a retirada do dinheiro da conta de quem está transferindo e o depósito na conta da pessoa que vai receber o valor transferido, ou seja, a transferência é o conjunto dessas

operações.

- As transações realizadas pelo SGBD nos bancos de dados devem seguir algumas propriedades fundamentais conhecidas como ACID:
 - Atomicidade
 - Consistência
 - Isolamento
 - Durabilidade

Atomicidade

 Capacidade de uma transação ter todas as suas operações executada ou nenhuma delas

Consistência

 A execução de uma transição deve levar o banco de dados de um estado consistente a outro estado consistente.

Isolamento

 A propriedade de isolamento garante que a transação não será interferida por nenhuma outra transação concorrente.

Durabilidade

SQL

A propriedade de durabilidade garante que o que foi salvo, não será mais perdido.

ESTADOS DE UMA TRANSAÇÃO

- Além da gerencia de transações o SGBD possui algumas características que permitem controlar e acompanhar melhor os dados armazenados. As características básicas de um SGBD são:
 - Controle de Redundâncias
 - Controle de Concorrência
 - Controle de Acesso
 - Controle de Integridade
 - Backups

SQL

Controle de Redundâncias

 A redundância consiste no armazenamento de uma mesma informação em locais diferentes, provocando inconsistências.

Controle de Concorrência

 O SGBD permite que duas ou mais pessoas acessem a mesma base de dados ao mesmo tempo e o sistema deve controlar para que um acesso não interfira no outro.

Controle de Acesso

 O SGDB tem mecanismos para criação de regras de segurança, que vão desde a definição de login e senha para os usuários, até a permissão de acesso ao SGBD e acesso aos dados armazenados.

Controle de Integridade

 Um SGBD pode definir regras que garantem a integridade dos dados. Essas regras são definidas para garantir que os dados contidos no banco de dados estejam corretos.

Backup

SQL

 O SGBD apresenta facilidade para recuperar falhas de hardware e software, através da existência de arquivos de "pré-imagem" ou de outros recursos automáticos, exigindo minimamente a intervenção de pessoal técnico.

SGBDs EXISTENTES

- Existem vários SGBD, e cada um deles implementa um banco de dados de maneira diferente, mas para o usuário isso é quase transparente, pois a linguagem de acesso aos dados é a mesma, o SQL.
- Os fatores que levam a escolha do SGBD são tempo de resposta, segurança, preço, espaço para armazenamento, quantidade de processos que podem ser realizados por minutos, entre outras características.

DB2

16

PRINCIPAIS SGBDs

Classificação				Tipos de Banco de	Pontos		
Abr	Mar	Abr	SGBD	Dados	Abr	Mar	Abr
2020	2020	2019			2020	2020	2019
1.	1.	1.	Oracle	Relacional	1345.42	+4.78	+65.48
2.	2.	2.	MySQL	Relacional	1268.35	+8.62	+53.21
3.	3.	3.	Microsoft SQL Server	Relacional	1083.43	-14.43	+23.47
4.	4.	4.	Postgre SQL	Relacional	509.86	-4.06	+31.14
5.	5.	5.	MongoDB	Orientado a Documento	438.43	+0.82	+36.45
6.	6.	6.	IBM Db2	Relacional	165.63	+3.07	-10.42
7.	7.	8.	Elasticsearch	Não é SQL	148.91	-0.26	+2.91
8.	8.	7.	Redis	Não é SQL	144.81	-2.77	-1.57
9.	10.	1 0.	SQLite	Não é SQL	122.19	+0.24	-2.02
10.	9.	9.	Microsoft Access	Relacional	121.92	-3.22	-22.73

Pesquise na internet um comparativo das principais vantagens e desvantagens dos principais SGBDs existentes no mercado. Apresente esse comparativo na aula seguinte.

PESQUISA

- O SGBD intermedia a manipulação dos dados para as aplicações
- Como esta intermediação é feita e quais elementos estão envolvidos depende do contexto da aplicação
- Aplicações podem demandar diversas configurações de arquiteturas locais ou distribuídas (ou híbridas)

- As principais arquiteturas existentes nos Sistemas de Gerenciamento de Banco de Dados são:
 - Arquitetura Stand-Alone (Sistema de Computador Pessoal)
 - Arquitetura Centralizada
 - Arquitetura Cliente-Servidor
 - Arquitetura Distribuída

Arquitetura Stand-Alone

 Os computadores pessoais trabalham em sistema stand-alone, ou seja, fazem seus processamentos sozinhos. O SGBD roda na própria máquina. No começo esse processamento era bastante limitado, porém, com a evolução do hardware, temse hoje PCs com grande capacidade de processamento. Eles funcionam como hospedeiros e terminais. Desta maneira, possuem um único aplicativo a ser executado na máquina. A principal vantagem desta arquitetura é a simplicidade.

Figura 3.1 - Arquitetura Stand-Alone

RESUMINDO

Arquitetura Stand-Alone

- Um Sistema de Computador Pessoal:
 - O computador pessoal é o hospedeiro do SGBD e o cliente ao mesmo tempo.

Arquitetura Centralizada

 Nessa arquitetura existe um computador com grande capacidade de processamento, o qual é o hospedeiro do SGBD e emuladores para os vários aplicativos. Esta arquitetura tem como principal vantagem a de permitir que muitos usuários manipulem grande volume de dados. Sua principal desvantagem está no seu alto custo, pois exige ambiente especial para mainframes e soluções centralizadas.

Figura 3.2 - Arquitetura Centralizada

Arquitetura Centralizada

 O sistema cliente servidor possui algumas vantagens como: menor intensidade de tráfego de dados na rede comparado a arquitetura distribuída; são rápidos, pois as consultas são feitas em servidores de alta potencia. A maior desvantagem dessa arquitetura é que eles exigem que os dados sejam armazenados num único sistema.

Figura 3.3 - Arquitetura Cliente-Servidor

RESUMINDO

Arquitetura Centralizada

- Um computador de grande porte que é o hospedeiro do SGBD e o emulador para os aplicativos.
- Possui alto custo, e alto poder de processamento.

- Arquitetura Cliente-Servidor
- O cliente (front_end) executa as tarefas do aplicativo, ou seja, fornece a interface do usuário (tela, e processamento de entrada e saída). O servidor (back_end) executa as consultas no SGBD e retorna os resultados ao cliente.
- Apesar de ser uma arquitetura bastante popular, são necessárias soluções sofisticadas de software que possibilitem:
 - o tratamento de transações, as confirmações de transações (commits)
 - desfazer transações (rollbacks)
 - linguagens de consultas (stored procedures) e gatilhos (triggers).

RESUMINDO

- Arquitetura Cliente-Servidor
 - O cliente executa as tarefas do aplicativo (interface gráfica), e o servidor executa o SGBD.

Arquitetura Distribuída

- A informação está distribuída em diversos servidores. Cada servidor atua como no sistema cliente-servidor, porém as consultas oriundas dos aplicativos são feitas para qualquer servidor indistintamente.
- Caso a informação solicitada seja mantida por outro servidor ou servidores, o sistema encarrega-se de obter a informação necessária, de maneira transparente para o aplicativo, que passa a atuar consultando a rede, independente de conhecer seus servidores, tanto os dados como as funções de processamento são distribuídos em diversos locais.

Arquitetura Distribuída

 Os dados podem estar replicados, se repetindo a cada nó da rede, o que aumenta a disponibilidade do banco, ou os dados podem estar fragmentados, ou seja, divididos por vários nós da rede, aumentando a velocidade pois permite processamento paralelo.

Dentre as vantagens dos sistemas distribuídos estão o menor risco de falhas, pois quando um nó falha, o trabalho é mantido pelos outros nós da rede entre e outras vantagens.

Como desvantagem é mais complexa de ser implementada, e é mais propensa a falhas de segurança tendo em vista os dados estar espalhados em vários locais.

RESUMINDO

- Arquitetura Distribuída
- Banco de dados distribuídos:
 - A informação está distribuída em diversos servidores espalhados em locais diferentes.

RESUMINDO

- Arquitetura Distribuída
- Sistema de Cliente-Servidor N camadas:
 - Acrescenta uma camada (Aplicação) entre o cliente e o banco de dados.

QUANDO NÃO USAR UM SGBD

- Mais desejável usar arquivos comuns sob as seguintes circunstâncias:
 - Aplicações de banco de dados simples e bem definidas, para as quais não se espera muitas mudanças.
 - Requisitos rigorosos, de tempo real, que podem não ser atendidos devido as operações extras executadas pelo SGBD (programas CAD, etc.).
 - Sistemas embarcados com capacidade de armazenamento limitada.
 - Nenhum acesso de múltiplos usuários aos dados.

SQL

ATIVIDADE

- 1. O que é um SGBD, e qual sua principal função?
- 2. Umas das características de um SGBD é o gerenciamento de transações. O que é uma transação no contexto de banco de dados?
- 3. Explique cada uma das propriedades ACID do gerenciamento de transações do SGBD.
 - a.Atomicidade:
 - b.Consistência:
 - c.Isolamento:
 - d.Durabilidade:
- 4. Quais os principais SGBS da atualidade?
- 5. Explique com suas palavras cada uma das características do SGBD.
- 6. Quais as principais arquitetura de SGBD? Aponte vantagens e desvantagens de cada um deles.
- 7. Explique quando não se é necessário utilizar um SGBD.