FONCTIONS DE DEUX VARIABLES

Dans ce qui suit, $\langle \cdot, \cdot \rangle$ désigne le produit scalaire canonique de \mathbb{R}^2 et $\| \cdot \|$ sa norme euclidienne associée.

1 Fonctions de deux variables réelles à valeurs réelles

1.1 Définition

Une fonction de deux variables réelles est une fonction d'une partie A de \mathbb{R}^2 à valeurs dans \mathbb{R} .

Interprétation graphique

De même qu'une fonction d'une variable réelle peut-être représentée par une courbe de \mathbb{R}^2 , une fonction de deux variables réelles peut-être représentée par une surface de \mathbb{R}^3 . Plus précisément, soit $f: A \subset \mathbb{R}^2 \to \mathbb{R}$. Alors la surface représentative de f est $\mathcal{S} = \{(x, y, f(x, y)), (x, y) \in A\}$.

Exercice 1.1

Quel est l'ensemble de définition de $(x, y) \mapsto \ln(x^2 - y^2)$? Le représenter graphiquement.

1.2 Notion d'ouvert

Définition 1.1 Boule

Soient $a \in \mathbb{R}^2$ et $r \in \mathbb{R}^*_+$.

• On appelle **boule ouverte** de centre a et de rayon r l'ensemble

$$B(a,r) = \{ x \in \mathbb{R}^2, \ \|x - a\| < r \}$$

• On appelle **boule fermée** de centre a et de rayon r l'ensemble

$$\overline{\mathbf{B}}(a,r) = \left\{ x \in \mathbb{R}^2, \ \|x - a\| \le r \right\}$$

Définition 1.2 Ouvert

Soit U une partie de \mathbb{R}^2 . On dit que U est un **ouvert** si

$$\forall a \in U, \exists \varepsilon > 0, B(a, \varepsilon) \subset U$$

Exemple 1.2

- \emptyset et \mathbb{R}^2 sont des ouverts de \mathbb{R}^2 .
- Une boule ouverte est un ouvert de \mathbb{R}^2 .
- Soient $a, b, c, d \in \mathbb{R}$ tels que a < b et c < d. Alors $[a, b] \times [c, d]$ est un ouvert de \mathbb{R}^2 .

Remarque. Un ouvert de \mathbb{R}^2 est une partie de \mathbb{R}^2 qui ne contient pas sa «frontière».

A partir de maintenant, U et V désignent des ouverts de \mathbb{R}^2 .

1.3 Continuité

Définition 1.3 Continuité

Soient $f: U \to \mathbb{R}$ et $a \in U$. On dit que f est continue en a si

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in B(\alpha, \alpha), \ |f(x) - f(\alpha)| < \varepsilon$$

On dit que f est continue sur U si f est continue en tout point de U.

Exemple 1.3

Les projections canoniques $\begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x \end{cases} \text{ et } \begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto y \end{cases} \text{ sont continues sur } \mathbb{R}^2.$

Proposition 1.1 Opérations algébriques sur la continuité

Mêmes résultats que pour les fonctions d'une variable réelle.

Exemple 1.4

Les projections canoniques étant continues sur \mathbb{R}^2 , les fonctions polynomiales de deux variables sont également continues sur \mathbb{R}^2 par opérations algébriques.

Proposition 1.2

L'ensemble des applications continues sur U à valeurs dans $\mathbb R$ est un $\mathbb R$ -espace vectoriel et un anneau.

Proposition 1.3 Composition et continuité

Soient A une partie de \mathbb{R} et $f: A \to \mathbb{R}$. Soient D une partie de \mathbb{R} et $\varphi: D \to \mathbb{R}$. On suppose $f(A) \subset D$.

Si f est continue en $a \in A$ et φ est continue en f(a), alors $\varphi \circ f$ est continue en a.

Si f est continue sur A et si φ est continue sur D, alors $\varphi \circ f$ est continue sur A.

Exemple 1.5

La fonction $(x, y) \mapsto \sin(x^3 - xy)$ est continue sur \mathbb{R}^2 .

2 Dérivées partielles et fonctions de classe C^1

2.1 Dérivées partielles

Définition 2.1 Dérivées partielles

Soit $f: U \mapsto \mathbb{R}$ et $(x_0, y_0) \in U$.

- Si $x \mapsto f(x, y_0)$ est dérivable en x_0 , on appelle première dérivée partielle de f en (x_0, y_0) la dérivée de cette fonction en x_0 que l'on note $\frac{\partial f}{\partial x}(x_0, y_0)$.
- Si $y \mapsto f(x_0, y)$ est dérivable en y_0 , on appelle seconde dérivée partielle de f en (x_0, y_0) la dérivée de cette fonction en y_0 que l'on note $\frac{\partial f}{\partial y}(x_0, y_0)$.

Méthode Calculer des dérivées partielles

En pratique, pour déterminer les dérivées partielles, il suffit de dériver par rapport à une variable en laissant l'autre fixe.

Exemple 2.1

Soient $f:(x,y)\mapsto x^2y+y$. Alors f admet des dérivées partielles en tout point de \mathbb{R}^2 et $\frac{\partial f}{\partial x}(x,y)=2xy$ et $\frac{\partial f}{\partial y}(x,y)=x^2+1$.

ATTENTION! Contrairement aux fonctions d'une variable réelle, l'existence de dérivées partielles ne garantit pas la conti-

nuité. Soit f définie par $f(x,y) = \frac{xy}{x^2 + y^2}$ et f(0,0) = 0 admet des dérivées partielles nulles en (0,0) mais n'est pas continue en (0,0).

2.2 Fonctions de classe C^1

Définition 2.2 Fonctions de classe C^1

Soit $f: U \to \mathbb{R}$. On dit que f est de classe \mathcal{C}^1 sur U si f admet des dérivées partielles en tout point de U et si ses dérivées partielles sont continues sur U.

Exemple 2.2

Les projections canoniques et les fonctions polynomiales sont de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Remarque. On peut à nouveau étendre cette notion aux fonctions de \mathbb{R}^2 dans \mathbb{R}^2 . Puisque les composantes des dérivées partielles d'une telle fonction sont les dérivées partielles des composantes, on prouve qu'une telle fonction est de classe \mathcal{C}^1 si et seulement si ses composantes le sont.

Théorème 2.1 Développement limité à l'ordre 1

Soient $f: U \to \mathbb{R}$ une application de classe \mathcal{C}^1 et $(x_0, y_0) \in U$. Alors f admet le développement limité à l'ordre 1 suivant :

$$f(x_0 + h, y_0 + k) = \int_{(h,k) \to (0,0)} f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k + o(\|(h, k)\|)$$

REMARQUE. De manière géométrique, ceci signifie que le plan d'équation

$$z = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

est tangent au graphe de f en (x_0, y_0) .

Corollaire 2.1

Une fonction de classe C^1 sur U est continue sur U.

2.3 Gradient

Définition 2.3 Gradient

Soit $f: U \to \mathbb{R}$ une application de classe \mathcal{C}^1 . On appelle **gradient** de f en (x_0, y_0) le vecteur

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Proposition 2.1 Développement limité à l'ordre 1

Soient $f: U \to \mathbb{R}$ une application de classe \mathcal{C}^1 et $(x_0, y_0) \in U$. Alors

$$f(x_0 + h, y_0 + k) = \int_{(h,k) \to (0,0)} f(x_0, y_0) + \langle \nabla f(x_0, y_0), (h,k) \rangle + o(\|(h,k)\|)$$

3 Dérivées partielles et composées

3.1 Dérivée directionnelle

Définition 3.1 Dérivée selon un vecteur

Soient $f: U \to \mathbb{R}$, $a \in U$ et $v \in \mathbb{R}^2$. Si $t \mapsto f(a+tv)$ est dérivable en 0, la dérivée de cette fonction en 0 s'appelle dérivée de f en a selon le vecteur v et est noté $D_v f(a)$.

Remarque. En notant (e_1, e_2) la base canonique de \mathbb{R}^2 ,

$$\frac{\partial f}{\partial x}(a) = D_{e_1} f(a)$$

$$\frac{\partial f}{\partial y}(a) = D_{e_2} f(a)$$

Proposition 3.1 Lien entre dérivée directionnelle, dérivées partielles et gradient

Soient $f: U \to \mathbb{R}$ de classe \mathcal{C}^1 , $a \in U$ et $v = (h, k) \in \mathbb{R}^2$. Alors

$$D_v f(a) = \langle \nabla f(a), v \rangle = \frac{\partial f}{\partial x}(a)h + \frac{\partial f}{\partial y}(a)k$$

Interprétation géométrique du gradient

En considérant u un vecteur unitaire de \mathbb{R}^2 et en remarquant que $D_v(a) = \langle \nabla f(a), v \rangle$, on voit que le gradient de f en a donne la direction de la plus forte pente sur la surface représentant f au point a et que sa norme est la valeur de cette pente.

Proposition 3.2 Règle de la chaîne

Soient $f: U \to \mathbb{R}$, $x: I \to \mathbb{R}$ et $y: I \to \mathbb{R}$ de classe \mathcal{C}^1 telles que $(x, y)(I) \subset U$. Alors $t \mapsto f(x(t), y(t))$ est de classe \mathcal{C}^1 sur I et:

$$\forall t \in \mathcal{I}, \ \frac{\mathrm{d}}{\mathrm{d}t}(f(x(t),y(t))) = \frac{\partial f}{\partial x}(x(t),y(t))x'(t) + \frac{\partial f}{\partial y}(x(t),y(t))y'(t)$$

Remarque. Si on note $\gamma = (x, y)$, alors $f \circ \gamma$ est de classe \mathcal{C}^1 sur I et

$$\forall t \in I, (f \circ \gamma)'(t) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle$$

Exemple 3.1

Soit f de classe \mathcal{C}^1 sur \mathbb{R}^2 et g définie par $g(t) = f(\cos t, \sin t)$ pour $t \in \mathbb{R}$. g est de classe \mathcal{C}^1 sur \mathbb{R} et pour tout $t \in \mathbb{R}$

$$g'(t) = -\sin t \, \frac{\partial f}{\partial x}(\cos t, \sin t) + \cos t \, \frac{\partial f}{\partial y}(\cos t, \sin t)$$

Exercice 3.1

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . On dit que f est homogène de degré $\alpha \in \mathbb{R}$ si

$$\forall (x, y) \in \mathbb{R}^2, \ \forall t > 0, \ f(tx, ty) = t^{\alpha} f(x, y)$$

Montrer que f est homogène de degré α si et seulement si

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$

Lignes de niveau

Soit $k \in \mathbb{R}$. L'ensemble $E_k = \{(x,y) \in U, \ f(x,y) = k\}$ est une courbe du plan appelée courbe de niveau de f. On suppose que E_k admet un paramétrage régulier $\gamma \colon t \in I \to E_k$. On a donc $f(\gamma(t)) = k$ pour $t \in I$. En dérivant, on en déduit que pour tout $t \in I$

$$\forall t \in I, (f \circ \gamma)'(t) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

Comme $\gamma'(t) \neq (0,0)$ est un vecteur directeur de la tangente à E_k en $\gamma(t)$, le gradient de f en tout point de E_k est donc orthogonal à E_k .

Proposition 3.3 Composition

Soient $f: U \to \mathbb{R}$, $\varphi: V \to \mathbb{R}$ et $\psi: V \to \mathbb{R}$ des applications de classe \mathcal{C}^1 telles que $(\varphi, \psi)(V) \subset U$. Alors l'application $g: (u, v) \mapsto f(\varphi(u, v), \psi(u, v))$ est de classe \mathcal{C}^1 sur V et

$$\frac{\partial g}{\partial u}(u,v) = \frac{\partial f}{\partial x}(\varphi(u,v),\psi(u,v))\frac{\partial \varphi}{\partial u}(u,v) + \frac{\partial f}{\partial y}(\varphi(u,v),\psi(u,v))\frac{\partial \psi}{\partial u}(u,v)$$

$$\frac{\partial g}{\partial v}(u,v) = \frac{\partial f}{\partial x}(\varphi(u,v),\psi(u,v)) \frac{\partial \varphi}{\partial v}(u,v) + \frac{\partial f}{\partial y}(\varphi(u,v),\psi(u,v)) \frac{\partial \psi}{\partial v}(u,v)$$

Passage en coordonnées polaires

Soit f une fonction de deux variables notées x et y. Passer en coordonnées polaires signifie faire le changement de variables $x = r \cos \theta$ et $y = r \sin \theta$ i.e. introduire une nouvelle fonction g telle que $g(r, \theta) = f(r \cos \theta, r \sin \theta)$. Les formules de composition donnent alors :

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + \sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\cos\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

En notant $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ la matrice de la rotation d'angle θ , on a donc $\begin{pmatrix} \frac{\partial g}{\partial r}(r,\theta) \\ \frac{1}{r}\frac{\partial g}{\partial \theta}(r,\theta) \end{pmatrix} = R(-\theta) \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$

ou encore
$$\begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix} = R(\theta) \begin{pmatrix} \frac{\partial g}{\partial r}(r,\theta) \\ \frac{1}{r} \frac{\partial g}{\partial \theta}(r,\theta) \end{pmatrix}$$
. Ceci prouve que $\nabla f(x,y)$ admet pour coordonnées $\left(\frac{\partial g}{\partial r}(r,\theta), \frac{1}{r} \frac{\partial g}{\partial \theta}(r,\theta)\right)$

dans la base (u_{θ}, v_{θ}) obtenue par rotation de la base canonique d'un angle θ , où $[r, \theta]$ sont les coordonnées polaires du point de coordonnées cartésiennes (x, y).

4 Extrema

Définition 4.1 Extremum glocal

Soient $A \subset \mathbb{R}^2$, $f : U \to \mathbb{R}$ et $a \in A$.

- On dit que f admet un **maximum global** sur A en a si $\forall x \in A, f(x) \le f(a)$.
- On dit que f admet un **minimum global** sur A en a si $\forall x \in A$, $f(x) \ge f(a)$.

Définition 4.2 Extremum local

Soient $A \subset \mathbb{R}^2$, $f : U \to \mathbb{R}$ et $a \in A$.

- On dit que f admet un **maximum local** en a s'il existe $\alpha > 0$ tel que $\forall x \in B(a, \alpha) \cap A$, $f(x) \leq f(a)$.
- On dit que f admet un **minimum local** en a s'il existe $\alpha > 0$ tel que $\forall x \in B(a, \alpha) \cap A$, $f(x) \ge f(a)$.

Définition 4.3 Point critique

Soit $f: U \to \mathbb{R}$ une application de classe \mathcal{C}^1 . On dit que $a \in U$ est un **point critique** de f si les dérivées partielles de f sont nulles en a.

Proposition 4.1

Soit $f: U \to \mathbb{R}$ une application de classe \mathcal{C}^1 . Si f admet un extremum local en $a \in U$, alors a est un point critique de f.

ATTENTION! Il est essentiel que U soit un **ouvert** de \mathbb{R}^2 .

Remarque. Dans ce cas, toutes les dérivées directionnelles sont également nulles en a.

Méthode Recherche d'extrema

Recherche des points critiques On résout le système $\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}.$

Etude au voisinage des points critiques Si (a, b) est un point critique, on pose

$$g(u, v) = f(a + u, b + u) - f(a, b)$$

et on étudie le signe de v au voisinage de (0,0).

- Si g change de signe au voisinage de (0,0), alors f n'admet pas d'extremum local en (a,b).
- Si g est de signe constant au voisinage de (0,0), alors f admet un extremum local en (a,b).

On peut passer en polaires en posant $u=r\cos\theta$ et $v=r\sin\theta$ pour simplifier la recherche du signe de g. On peut également considérer des équivalents d'expression du type $g(t,0), g(0,t), g(t,t^2), \ldots$ au voisinage de 0 pour mettre en évidence un changement de signe.

Exemple 4.1

Considérons l'application $f:(x,y)\mapsto x^3-y^2-x$.

• Recherche des points critiques :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} 3x^2 - 1 = 0\\ -2y = 0 \end{cases} \iff \begin{cases} x = \pm \frac{1}{\sqrt{3}}\\ y = 0 \end{cases}$$

• Etude au voisinage de $\left(\frac{1}{\sqrt{3}},0\right)$: on pose $u=x-\frac{1}{\sqrt{3}}$ et v=y. On a alors :

$$f(x,y) - f\left(\frac{1}{\sqrt{3}},0\right) = u^3 + u^2\sqrt{3} - v^2 = g(u,v)$$

On a g(0, v) < 0 pour v < 0 et $g(u, 0) \sim u^2 \sqrt{3}$. Ainsi g(u, 0) > 0 pour u proche de 0 non nul. Donc f n'admet pas d'extremum local au voisinage de $\left(\frac{1}{\sqrt{3}}, 0\right)$.

• Etude au voisinage de $\left(-\frac{1}{\sqrt{3}},0\right)$: on pose $u=x+\frac{1}{\sqrt{3}}$ et v=y. On a alors:

$$f(x,y) - f\left(-\frac{1}{\sqrt{3}},0\right) = u^3 - u^2\sqrt{3} - v^2 = g(u,v)$$

Or $u^3 - u^2\sqrt{3} \underset{u \to 0}{\sim} -u^2\sqrt{3} \le 0$ pour u proche de 0 et $-v^2 \le 0$. Donc $g(u,v) \le 0$ au voisinage de (0,0). Ainsi f admet un maximum local en $\left(-\frac{1}{\sqrt{3}},0\right)$.

• Extrema globaux : f n'admet pas d'extremum global puisque $\lim_{x \to +\infty} f(x,0) = +\infty$ et $\lim_{y \to +\infty} f(0,y) = -\infty$.