Perhitungan Manual menentukan Jumlah Produksi Bakpia Pathok dengan metode Fuzzy Tsukamoto

A. Perhitungan

No	Bulan	Permintaan	Persediaan	Produksi
1	Januari	500	200	1800
2	Februari	1800	600	5400
3	Maret	800	350	3600
4	April	850	115	2285
5	Mei	1335	115	3900
6	Juni	3670	170	5400
7	Juli	300	250	1800
8	Agustus	250	195	1000
9	September	2250	230	3200
		Min 250	Min 115	Min 1000
		Max 3670	Max 600	Max 5400
		Med 850		

keterangan:

terdapat 2 variabel, yaitu : variabel permintaan dan variable persediaan, sedangkan untuk output terdapat 1 variabel, yaitu produksi barang. Variabel permintaan memiliki 3 jenis linguistik, yaitu: naik, turun dan tetap. variabel persediaan memiliki 2 jenis linguistik, yaitu : banyak dan sedikit, sedangkan variabel produksi barang memiliki 2 nilai linguistik, yaitu bertambah dan berkurang.

- permintaan tertinggi 3670 dan terendah 850
- persediaan tertinggi 600 dan terendah 115

B. Mendefinisikan Variabel

Variabel Permintaan

Terdapat 3 himpunan fuzzy, yaitu Turun, Naik dan Tetap. dengan fungsi sebagai berikut :

- 1. pmt Turun [q] = (q_med q / q_med q_min)
- 2. pmt Naik [q] = (q q_med / q_max q_med)
- pmt Tetap [q] = (q_max q / q_max q_med)

atau

(q - q_min / q_med - q_min)

nilai keanggotaan himpunan Naik, Turun dan Tetap dari variabel permintaan bisa dicari dengan :

q = 2970

- Pmt Turun [2970] = (850 2970 / 850 250) = 2120 / 600 = 3.5333333333
- Pmt Naik [2970] = (2970 850 / 3670 850) = 2120 / 2820 = 0.75177304964
- Pmt Tetap[2970] = (3670 2970 / 3670 850) = 700 / 2820 = 0.24822695035
- Variabel Persediaan terdapat 2 himpunan fuzzy, yaitu Sedikit dan Banyak. dengan fungsi sebagai berikut :
 - 1. psd Sedikit [w] = (w max w / w max w min)
 - 2. psd Banyak [w] = (w w min / w max w min)

nilai keanggotaan himpunan Naik, Turun dan Tetap dari variabel permintaan bisa dicari dengan :

w = 230

- Psd Sedikit [230] = (600 230 / 600 115) = 370 / 485 = 0.76288659793
- Psd Banyak [230] = (230 115 / 600 115) = 115 / 485 = 0.23711340206

- Variabel Produksi terdapat 2 himpunan fuzzy, yaitu Berkurang dan Bertambah. dengan fungsi sebagai berikut :
 - 1. Pr Berkurang [e] = (5400 e / 5400- 1000)
 - 2. Pr Bertambah [e] = (e 1000 / 5400 1000)

C. Inferensi

dari uraian diatas terbentuk 6 himpunan fuzzy yaitu : permintaan turun, permintaan naik, permintaan Tetap, persediaan Sedikit, persediaan Banyak, Produksi Berkurang, Produksi Bertambah, diperoleh 6 aturan fuzzy sebagai berikut :

- [P1] Jika Permintaan **turun** dan Persediaan **banyak**, maka Produksi barang **berkurang**
- [P2] Jika Permintaan **turun** dan Persediaan **sedikit**, maka Produksi barang **berkurang**
- [P3] Jika Permintaan **naik** dan Persediaan **banyak**, maka Produksi barang **bertambah**
- [P4] Jika Permintaan **naik** dan Persediaan **sedikit**, maka Produksi barang **bertambah**
- [P5] Jika Permintaan **tetap** dan Persediaan **banyak**, maka Produksi barang **berkurang**
- [P6] Jika Permintaan **tetap** dan Persediaan **sedikit**, maka Produksi barang **bertambah**

berdasarkan 6 aturan fuzzy diatas, langkah - langkah untuk mengkonfersi enam aturan tersebut sehingga diperoleh nilai α dan q dari setiap aturan

[P1] Jika Permintaan **turun** dan Persediaan **banyak**, maka Produksi barang **berkurang**

 $\alpha 1 = min(Pmt Turun[2970] - Psd Banyak [230])$

- = min([3.53333333333], [0.23711340206])
- = 0.23711340206

menurut fungsi keanggotaan himpunan Produksi barang Berkurang pada persamaan diatas maka diperoleh persamaan berikut:

```
P1=Emax-α 1( Emax-Emin)
P1=5400-0.23711340206(5400-1000)
P1=5000 - 1043.29896906
P1=3956.70103094
```

[P2] Jika Permintaan **turun** dan Persediaan **sedikit**, maka Produksi barang **berkurang**

 $\alpha 2 = min(Pmt Turun[2970] - Psd Banyak [230])$

- = min([3.533333333333], [0.76288659793])
- = 0.76288659793

menurut fungsi keanggotaan himpunan Produksi barang Berkurang pada persamaan diatas maka diperoleh persamaan berikut:

```
P2=Emax-α 2( Emax-E+
min)
P2=5400-0.76288659793(5400-1000)
P2=5000 -3356.70103089
P2=1643.29896911
```

[P3] Jika Permintaan **naik** dan Persediaan **banyak**, maka Produksi barang **bertambah**

 α 3 = min(Pmt Naik[2970] - Psd Banyak [230])

- $= \min([0.75177304964], [0.23711340206])$
- = 0.23711340206

menurut fungsi keanggotaan himpunan Produksi barang Bertambah pada persamaan diatas maka diperoleh persamaan berikut:

```
P3= α3(Emax -Emin)+ Emin
P3 = 0.23711340206(5400 – 1000) + 1000
P3 = 1043.29896906 + 1000
P3 = 2043.29896906
```

[P4] Jika Permintaan **naik** dan Persediaan **sedikit**, maka Produksi barang **bertambah**

```
α4 = min(Pmt Naik[2970] - Psd Sedikit [230])
= min([0.75177304964], [0.76288659793])
= 0.75177304964
```

menurut fungsi keanggotaan himpunan Produksi barang Bertambah pada persamaan diatas maka diperoleh persamaan berikut:

```
P4= \alpha4(Emax –Emin)+ Emin
```

```
P4 = 0.75177304964(5400 - 1000) + 1000
```

P4 = 3307.80141842 + 1000

P4 = 4307.80141842

[P5] Jika Permintaan **tetap** dan Persediaan **banyak**, maka Produksi barang **berkurang**

 $\alpha 5 = min(Pmt Tetap[2970] - Psd Banyak[230])$

- = min([0.24822695035], [0.23711340206])
- = 0.23711340206

menurut fungsi keanggotaan himpunan Produksi barang Berkurang pada persamaan diatas maka diperoleh persamaan berikut:

P5 = Emax $-\alpha$ 5(Emax-Emin)

P5 = 5400-0.23711340206(5400-1000)

P5 = 5400-1043.29896906

P5 = 4356.70103094

[P6] Jika Permintaan **tetap** dan Persediaan **sedikit**, maka Produksi barang **bertambah**

 α 6 = min(Pmt Tetap[2970] - Psd Sedikit[230])

- = min([0.24822695035], [0.76288659793])
- = 0.24822695035

menurut fungsi keanggotaan himpunan Produksi barang Bertambah pada persamaan diatas maka diperoleh persamaan berikut:

P6 = $Emax-\alpha 5$ (Emax-Emin)

P6 = 5400-0.24822695035(5400-1000)

P6 = 5400-1092.19858154

P6 = 4307.80141846

D. Defuzzifikasi

Pada metode tsukamoto, untuk menentukan output crips, digunakan defuzifikasi rata - rata terpusat, yaitu :

 $P = \alpha 1 * p 1 + \alpha 2 * p 2 + \alpha 3 * p 3 + \alpha 4 * p 4 + \alpha 5 * p 5 + \alpha 6 * p 6 / \alpha 1 + \alpha 2 + \alpha 3 + \alpha 4 + \alpha 5 + \alpha 6$

P= 0.23711340206*3956.70103094 + 0.76288659793*1643.29896911 + 0.23711340206*2043.29896906 + 0.75177304964*4356.70103094 + 0.23711340206*4356.70103094 + 0.24822695035*4307.80141846/ 0.23711340206 + 0.76288659793 + 0.23711340206 + 0.75177304964 + 0.23711340206 + 0.24822695035

P = 938.18684238 + 1253.65075993 + 484.49356998 + 3275.2504204 + 1033.0322032 + 1069.31240882/ 2.4742268041

P= 8053.92620471 / 2.4742268041

P= 3255.12850777