TABELAS-VERDADE

Lógica Matemática

X Proposições compostas tais como:

$$P(p,q) = \neg p \lor (p \to q)$$

$$Q(p,q) = (p \leftrightarrow \neg q) \land q$$

$$R(p,q,r) = (p \to \neg q \lor r) \land \neg (q \lor (p \leftrightarrow \neg r))$$

X Podem ser construídas a partir de proposições simples p,q,r,... utilizando os seguintes conectivos lógicos para combiná-las:

$$\neg$$
, \wedge , \vee , \rightarrow , \longleftrightarrow

Então com o emprego das tabelas-verdade das operações lógicas fundamentais, apresentadas anteriormente:

$$\neg p$$
, $p \land q$, $p \lor q$, $p \to q$, $p \leftrightarrow q$

É possível construir a tabela-verdade correspondente a qualquer proposição composta. A tabela-verdade mostrará os casos em que a proposição composta é verdadeira(V) ou falsa(F), sendo que seus valores lógicos só dependem dos valores das proposições simples.

CONSTRUÇÃO DE TABELAS-VERDADE

NÚMERO DE LINHAS

- X O número de linhas da tabela-verdade de uma proposição composta depende do número de proposições simples que a integram, sendo definido como:
- X A tabela-verdade de uma proposição composta com n proposições simples componentes contém 2^n linhas.

X Dada uma proposição composta $P(p_1,p_2,...p_n)$ com n proposições simples componentes $p_1,p_2,...p_n$ há tantas possibilidades de atribuição dos valores lógicos V e F a cada proposição simples quanto arranjos com repetição de 2 elementos n a n, isto é:

$$A_{rep}(2,n) = 2^n$$

X Assim uma proposição composta com n=4 proposições simples componentes teria $2^n=2^4=16$ possibilidades de atribuição de valores lógicos.

NÚMERO DE LINHAS

- X Para a construção da tabela-verdade de uma proposição composta primeiro devemos contar o número de proposições simples que a integram.
- X Se a proposição composta tem n proposições simples componentes então a tabelaverdade terá n colunas (uma para cada proposição) e 2^n linhas.

- X O preenchimento da tabela-verdade atribui valores verdadeiro(V) e falso(F) as colunas da tabela da seguinte maneira:
 - o A 1° coluna (1° proposição simples) atribui–se 2^{n-1} valores V seguidos de 2^{n-1} valores F;
 - O A 2° coluna (2° proposição simples) atribui—se 2^{n-2} valores V seguidos de 2^{n-2} valores F, repetindo a atribuição 2 vezes.
 - O De modo genérico, a k-ésima coluna (k-ésima proposição simples) atribui-se 2^{n-k} valores V seguidos de 2^{n-k} valores F, alternadamente.
 - Na última coluna, atribui-se de maneira alternada um valor V e outro F.

PREENCHIMENTO

- Mostramos exemplos do preenchimento da colunas correspondentes as proposições simples.
- X No caso em que a proposição composta possui 2 proposições simples, a tabelaverdade contém $2^2 = 4$ linhas.

p	q		
V	V		
V	F		
F	V		
F	F		

X No caso em que a proposição composta possui 3 proposições simples, a tabelaverdade contém $2^3 = 8$ linhas.

p	q	r		
V	V	V		
V	V	F		
V	F	V		
V	F	F		
F	V	V		
F	V	F		
F	F	V		
F	F	F		

CONSTRUÇÃO DE TABELAS-VERDADE

PREENCHIMENTO

- X No caso de uma proposição composta com 5 proposições simples, a tabela-verdade contém $2^5 = 32$ linhas.
- X No caso de uma proposição composta com 6 proposições simples, a tabela-verdade contém $2^6 = 64$ linhas.
- X Em geral, para uma proposição composta com n proposições simples, a tabelaverdade contém 2^n linhas.

Apresentaremos três formas de construir a tabela-verdade de uma proposição composta.

TABELAS-VERDADE

Associando Valores Lógicos

X Observe que os valores lógicos da proposição composta:

$$P(p,q) = \neg(p \land \neg q) \quad (1)$$

- X correspondem a todas as possíveis atribuições de valores lógicos V e F dadas as proposições simples p e q que são (VV, VF, FV, FF); assim temos os valores lógicos V, F, V, V.
- Isso pode ser representado de maneira simplificada como:

$$P(VV) = V$$
, $P(VF) = F$, $P(FV) = V$, $P(FF) = V$

- X Observe que a proposição P(p,q) associa a cada um dos elementos do conjunto $U = \{VV, VF, FV, FF\}$ um único elemento do conjunto $\{V, F\}$.
- **X** Assim, P(p, q) é uma função de U em $\{V, F\}$:

$$P(p,q): U \rightarrow \{V,F\}$$

CONSTRUÇÃO DE TABELAS-VERDADE METODO1

- X No método 1, a tabela-verdade possui uma coluna para cada proposição simples $p, q, r \dots$
- X Dadas n proposições, essas colunas são preenchidas de acordo com a regra de arranjos com repetição de 2 em n, que resulta em 2^n linhas.
- X Além disso, a tabela possui outras colunas que correspondem as subfórmulas da proposição composta.
- X É preciso identificar as subfórmulas e os operadores associados a elas.
- X O preenchimento das colunas associadas as subfórmulas é realizado aplicando o operador lógico associado a cada subfórmula.

 ${\sf X}$ No caso de uma proposição composta pelas proposições simples p e q, a estrutura da tabela seria a seguinte.

p	q	Subfórmula1	•••	SubfórmulaK
V	V			
V	F			
F	V			
F	F			

Exemplo1 - Metodo1

X Considere a proposição:

Ordem das operações

$$P(p,q) = \neg (p \land \neg q) \qquad (1)$$

- X Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas e denote cada uma delas com uma letra maiúscula.

$$A = \neg q$$

$$B = p \land \neg q = p \land A$$

$$P = \neg(p \land \neg q) = \neg B$$

X Forme colunas para as proposições p e q. Preencha para todas as combinações.

p	q	
V	V	
V	F	
F	V	
F	F	

EXEMPLO1 - METODO1

X Considere a proposição:

Ordem das operações

$$P(p,q) = \neg(p \land \neg q) \quad (1)$$

- X Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas e denote cada uma delas com uma letra maiúscula.

$$A = \neg q$$

$$B = p \land \neg q = p \land A$$

$$P = \neg(p \land \neg q) = \neg B$$

- **X** Forme colunas para as proposições p e q. Preencha para todas as combinações.
- X Depois, forme uma coluna para cada subfórmula.

		Α	В	P
p	q	$\neg q$	$(p \wedge A)$	$\neg B$
V	V			
V	F			
F	V			
F	F			

Exemplo1 - Metodo1

X Considere a proposição:

Ordem das operações

$$P(p,q) = \neg(p \land \neg q) \quad (1)$$

- **X** Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas e denote cada uma delas com uma letra maiúscula.

$$A = \neg q$$

$$B = p \land \neg q = p \land A$$

$$P = \neg(p \land \neg q) = \neg B$$

- ${\sf X}$ Forme colunas para as proposições p e q. Preencha para todas as combinações.
- X Depois, forme uma coluna para cada subfórmula.
- **X** Finalmente, preencha as colunas de cada subfórmula com os valores verdade resultantes ao aplicar o operador lógico associado.

		A	В	P	
p	q	$\neg q$	$(p \wedge A)$	$\neg B$	
V	V	F	F	V	
V	F	V	V	F	
F	V	F	F	V	
F	F	V	F	V	

X O valores lógicos da proposição P se encontram na última coluna da tabela.

METODO2

- X No método 2, a tabela-verdade também possui uma coluna para cada proposição simples $p, q, r \dots$ e dadas n proposições simples, temos 2^n linhas.
- X A diferença se encontra na conformação das outras colunas. Considera-se a fórmula completa e cria-se uma coluna para cada proposição simples e uma coluna para cada operador lógico.
- X Caso exista um parêntese "(" ele é colocado na mesma coluna da proposição a sua direita.
- X Caso exista um parêntese ")" ele é colocado na mesma coluna da proposição a sua esquerda.
- X As colunas são resolvidas na ordem de precedência indicada pelos operadores lógicos e os parênteses.

 ${\sf X}$ No caso de uma proposição composta pelas proposições simples p e q, a estrutura da tabela seria a seguinte.

p	q	((p	operador1	q)	operador2	<i>q</i>)	:
V	V						
V	F						
F	V						
F	F						

Exemplo1 - Metodo2

Considere a proposição: Ordem das operações $P(p,q) = \neg (p \land \neg q) \quad (1)$

- ${\sf X}$ Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- **X** Forme colunas para as proposições p e q. Preencha para todas as combinações.

p	q	Γ	(p	^	Γ	q)
V	V					
V	F					
F	V					
F	F					

Exemplo1 - Metodo2

X Considere a proposição:

Ordem das operações
$$P(p,q) = \neg (p \land \neg q) \quad (1)$$

- ${\sf X}$ Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- **X** Forme colunas para as proposições p e q. Preencha para todas as combinações.
- **X** Depois, forme uma coluna para cada proposição simples e operador que aparece na fórmula $\neg(p \land \neg q)$. Agrupe os parentes "(" na coluna da proposição à direita e os parênteses ")" na coluna da proposição à esquerda.
- X Preencha as colunas para p e q na fórmula.

p	q	Γ	(p	٨	Γ	<i>q</i>)
V	V		V			V
V	F		V			F
F	V		F			V
F	F		F			F

Exemplo1 - Metodo2

X Considere a proposição:

Ordem das operações
$$P(p,q) = \neg(p \land \neg q) \quad (1)$$

- **X** Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- **X** Forme colunas para as proposições p e q. Preencha para todas as combinações.
- X Depois, forme uma coluna para cada proposição simples e operador que aparece na fórmula $\neg(p \land \neg q)$. Agrupe os parentes "(" na coluna da proposição à direita e os parênteses ")" na coluna da proposição à esquerda.
- X Preencha as colunas para p e q na fórmula.

Depois preencha as colunas correspondentes aos operadores lógicos na ordem identificada e tendo presente a subfórmula a que pertence.

		3		2	1	
p	q		(p	٨	Г	q)
V	V	V	V	F	F	V
V	F	F	V	V	V	F
F	V	V	F	F	F	V
F	F	V	F	F	V	F

X O valores lógicos da proposição composta se encontram na coluna preenchida em último lugar. Neste caso, a coluna do operador — de ordem 3.

METODO2 - SIMPLIFICADO

- X O método 2 simplificado, é quase idêntico ao método 2. Consiste em excluir as colunas correspondentes as proposições simples p, q, r ... já que elas aparecerão na fórmula novamente.
- **X** Dadas n proposições simples, a tabela possui 2^n linhas.

 ${\sf X}$ No caso de uma proposição composta pelas proposições simples p e q, a estrutura da tabela seria a sequinte.

((p	operador1	q)	operador2	q)	•••
V		V		V	
V		F		F	
F		V		V	
F		F		F	

EXEMPLO1 - METODO2 SIMPLIFICADO

X Considere a proposição:

Ordem das operações
$$P(p,q) = \neg(p \land \neg q) \quad (1)$$

- ${\sf X}$ Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- X Depois, forme uma coluna para cada proposição simples e operador que aparece na fórmula $\neg(p \land \neg q)$. Agrupe os parentes "(" na coluna da proposição à direita e os parênteses ")" na coluna da proposição à esquerda.
- **X** Preencha as colunas para p e q na fórmula, de acordo com a regra de arranjos com repetição de 2 em n=2.

Γ	(p	<	7	q)
	V			V
	V			F
	F			V
	F			F

EXEMPLO1 - METODO2 SIMPLIFICADO

X Considere a proposição:

Ordem das operações
$$P(p,q) = \neg (p \land \neg q) \quad (1)$$

- ${\sf X}$ Identifique as proposições, neste caso p e q, e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- X Depois, forme uma coluna para cada proposição simples e operador que aparece na fórmula $\neg(p \land \neg q)$. Agrupe os parentes "(" na coluna da proposição à direita e os parênteses ")" na coluna da proposição à esquerda.
- X Preencha as colunas para p e q na fórmula, de acordo com a regra de arranjos com repetição de 2 em n=2.

Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

	3		2	1	
	-1	(p	<	7	<i>q</i>)
I	V	V	F	F	V
l	F	V	V	V	F
I	V	F	F	F	V
	V	F	F	V	F

X O valores lógicos da proposição composta se encontram na coluna preenchida em último lugar. Neste caso, a coluna do operador ¬ de ordem 3.

CONSTRUÇÃO DE TABELAS-VERDADE

EXEMPLO2 - METODO1

Considere a proposição: X

Ordem das operações

$$P(p,q) = \neg(p \land q) \lor \neg(q \leftrightarrow p) \quad (2)$$

- X Identifique as proposições e a ordem das operações.
- X Identifique as subfórmulas e denote cada uma delas com uma letra maiúscula.

$$A = (p \wedge q)$$

$$B = (q \leftrightarrow p)$$

$$C = \neg A$$

$$D = \neg B$$

$$P = C \vee D$$

Forme colunas para as proposições p e q. Preencha para todas as combinações. Depois, forme uma coluna para cada subfórmula e preencha segundo o operador lógico correspondente.

		A	В	$\boldsymbol{\mathcal{C}}$	D	P	
p	q	$(p \wedge q)$	$(q \leftrightarrow p)$	$\neg(p \land q)$	$\neg(q \leftrightarrow p)$	$C \lor D$	
V	V	V	V	F	F	F	
V	F	F	F	V	V	V	
F	V	F	F	V	V	V	
F	F	F	V	V	F	V	

O resultado se encontra na última coluna da tabela.

Exemplo2 - Metodo2

X Considere a proposição:

$$P(p,q) = \neg(p \land q) \lor \neg(q \leftrightarrow p) \quad (2)$$

- ✗ Identifique as proposições e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- X Forme colunas para as proposições p e q. Preencha para todas as combinações. Depois, forme uma coluna para cada proposição simples e operador que aparece na proposição $\neg(p \land q) \lor \neg(q \leftrightarrow p)$.

X Preencha as colunas das proposições simples p e q. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

		2		1		3	2		1	
p	q	Г	(p	٨	<i>q</i>)	٧	Г	(q	\leftrightarrow	p)
V	V	F	V	V	V	F	F	V	V	V
V	F	V	V	F	F	V	V	F	F	V
F	V	V	F	F	V	V	V	V	F	F
F	F	V	F	F	F	V	F	F	V	F

X O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador V de ordem 3.

EXEMPLO2 - METODO2 SIMPLIFICADO

X

Ordem das

X Considere a proposição:

$$P(p,q) = \neg(p \land q) \lor \neg(q \leftrightarrow p) \quad (2)$$

- X Identifique as proposições e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- **X** Forme uma coluna para cada proposição simples e operador que aparece na proposição $\neg(p \land q) \lor \neg(q \leftrightarrow p)$.

Preencha as colunas das proposições simples p e q. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

2		1		3	2		1	
7	(p	^	q)	V	Г	(q	\downarrow	<i>p</i>)
F	V	V	V	F	F	V	V	V
V	V	F	F	V	V	F	F	V
V	F	F	V	V	V	V	F	F
V	F	F	F	V	F	F	V	F

X O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador V de ordem 3.

EXEMPLO3 - METODO1

X Considere a proposição:

Ordem das operações

$$P(p,q,r) = p \lor \neg r \to q \land \neg r \quad (3)$$

- X Identifique as proposições e a ordem das operações.
- X Identifique as subfórmulas e denote cada uma delas com uma letra maiúscula.

$$A = \neg r$$

$$B = p \vee A$$

$$C = q \wedge A$$

$$P = B \rightarrow C$$

X Forme colunas para as proposições p, q e r. Preencha para todas as combinações. Depois, forme uma coluna para cada subfórmula e preencha segundo o operador lógico correspondente.

			А	D	U	1
р	q	r	$\neg r$	$p \vee \neg r$	$q \wedge \neg r$	$B \rightarrow C$
V	V	V	F	V	F	F
V	V	F	V	V	V	V
V	F	V	F	V	F	F
V	F	F	V	V	F	F
F	V	V	F	F	F	V
F	V	F	V	V	V	V
F	F	V	F	F	F	V
F	F	F	V	V	F	F

O resultado se encontra na última coluna da tabela.

Exemplo3 - Metodo2

X

X Considere a proposição:

Ordem das operações

$$P(p,q,r) = p \lor \neg r \to q \land \neg r \quad (3)$$

- X Identifique as proposições e a ordem das operações.
- X Identifique as subfórmulas mediante marcações.
- X Forme colunas para as proposições $p, q \in r$. Preencha para todas as combinações. Depois, forme uma coluna para cada proposição simples e operador que aparece na proposição $p \lor \neg r \to q \land \neg r$.

Preencha as colunas das proposições simples p, q e r. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

p	q	r	p	V	7	r	\rightarrow	q	<	7	r
V	V	V	V	V	F	V	F	V	F	F	V
V	V	F	V	V	V	F	V	V	V	V	F
V	F	V	V	V	F	V	F	F	F	F	V
V	F	F	V	V	V	F	F	F	F	V	F
F	V	V	F	F	F	V	V	V	F	F	V
F	V	F	F	V	V	F	V	V	V	V	F
F	F	V	F	F	F	V	V	F	F	F	V
F	F	F	F	V	V	F	F	F	F	V	F

O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador \rightarrow de ordem 3.

EXEMPLO3 - METODO2 SIMPLIFICADO

X

X Considere a proposição:

Ordem das operações

$$P(p,q,r) = p \lor \neg r \to q \land \neg r \quad (3)$$

- X Identifique as proposições e a ordem das operações.
- Identifique as subfórmulas mediante marcações.
- X Forme uma coluna para cada proposição simples e operador que aparece na proposição $p \lor \neg r \to q \land \neg r$.

Preencha as colunas das proposições simples p, q e r. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

	(2)	(1)		3		(2)	(1)	
p	>	Т	r	\rightarrow	q	<	Г	r
V	V	F	V	F	V	F	F	V
V	V	V	F	V	V	V	V	F
V	V	F	V	F	F	F	F	V
V	V	V	F	F	F	F	V	F
F	F	F	V	V	V	F	F	V
F	V	V	F	V	V	V	V	F
F	F	F	V	V	F	F	F	V
F	V	V	F	F	F	F	V	F

 X O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador \rightarrow de ordem 3.

EXEMPLO4 - METODO2 SIMPLIFICADO

X Considere a proposição:

Ordem das operações

- ✗ Identifique as proposições e a ordem das operações.
- Identifique as subfórmulas mediante marcações.
- **X** Forme uma coluna para cada proposição simples e operador que aparece na proposição composta $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$.
- Agrupe os parentes "(" na coluna a sua direita e os parênteses ")" na coluna a sua esquerda.

X Preencha as colunas das proposições simples $p, q \in r$. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

	1		2		1		3		1	
(<i>p</i>	\rightarrow	q)	٨	(q	\rightarrow	r)	\rightarrow	(p	\rightarrow	r)
V	V	V	V	V	V	V	V	V	V	V
V	V	V	F	V	F	F	V	V	F	F
V	F	F	F	F	V	V	V	V	V	V
V	F	F	F	F	V	F	V	V	F	F
F	V	V	V	V	V	V	V	F	V	V
F	V	V	F	V	F	F	V	F	V	F
F	V	F	V	F	V	V	V	F	V	V
F	V	F	V	F	V	F	V	F	V	F

f X O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador ightharpoonup de ordem 3.

EXEMPLO5 - METODO2 SIMPLIFICADO

✗ Considere a proposição:

Ordem das operações

$$P(p,q,r) = (p \to (\neg q \lor r)) \land \neg (q \lor (p \longleftrightarrow \neg r))$$
(5)

- X Identifique as proposições e a ordem das operações.
- Identifique as subfórmulas mediante marcações.
- **X** Forme uma coluna para cada proposição simples e operador que aparece na proposição composta $(p \rightarrow (\neg q \lor r)) \land \neg (q \lor (p \leftrightarrow \neg r))$.
- Agrupe os parentes "(" na coluna a sua direita e os parênteses ")" na coluna a sua esquerda.

X Preencha as colunas das proposições simples p, q e r. Preencha as colunas dos operadores na ordem identificada e tendo presente a subfórmula a que pertence.

	3	1		2		5	4		3		2	1
(<i>p</i>	\rightarrow	(¬	q	V	r)	٨	Г	(q	V	(<i>p</i>	\leftrightarrow	٦
	17	-	17	17	17			17	17	17	-	-

(<i>p</i>	\rightarrow	(¬	q	V	r))	Λ	7	(q	V	(<i>p</i>	\leftrightarrow	Г	r))
V	V	F	V	V	V	F	F	V	V	V	F	F	V
V	F	F	V	F	F	F	F	V	V	V	V	V	F
V	V	V	F	V	V	V	V	F	F	V	F	F	V
V	V	V	F	V	F	F	F	F	V	V	V	V	F
F	V	F	V	V	V	F	F	V	V	F	V	F	V
F	V	F	V	F	F	F	F	V	V	F	F	V	F
F	V	V	F	V	V	F	F	F	V	F	V	F	V
F	V	V	F	V	F	V	V	F	F	F	F	V	F

X O resultado se encontra na coluna preenchida em último lugar. Neste caso, a coluna do operador ∧ de ordem 5.

26

VALOR LÓGICO DE UMA PROPOSIÇÃO COMPOSTA

X Sabendo que os valores lógicos de p e q são respectivamente V e F, determine o valor lógico da proposição:

$$P(p,q) = \neg (p \lor q) \longleftrightarrow \neg p \land \neg q \quad (1)$$

Uso de parênteses

X Os parêntesis devem ser colocados nas proposições compostas para evitar qualquer tipo de ambiguidade.

i)
$$(p \land q) \lor r$$
 e ii) $p \land (q \lor r)$

X No entanto, em muitos casos parêntesis podem ser suprimidos a fim de simplificar as proposições representadas.

REFERÊNCIAS

<u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 3. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.