TRABAJO PRÁCTICO VI: ESTRUCTURAS ALGEBRAICAS

1) Indicar cuales de las siguientes operaciones binarias definen grupos en A.

a)
$$A = N$$
 $a * b = a + b$

b)
$$A = Z \quad a * b = a + b$$

c)
$$A = Z \quad a * b = a \cdot b$$

d)
$$A = R$$
 $a * b = a + b + a .b$

e) $A = \{1, 2, 3, 4\}$ y la operación * dada por la siguiente tabla

*	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

f)
$$A = \{ 1, -1, i, -i \}$$
 $a * b = a . b$

2)

- a) Dado el grupo abeliano (Z, +), $n \in N$. Probar que la congruencia módulo n es compatible con la suma definida en Z.
- b) Dado el semigrupo abeliano (Z, .), $n \in N$. Probar que la congruencia módulo n es compatible con el producto definido en Z.
- c) Demostrar que $(Z_n\,,\,\overline{+}\,)$ es un grupo abeliano con $\overline{a}\,\,\overline{+}\,\overline{b}=\overline{a+b}$
- d) Demostrar que (Z_n, \bar{b}) es un semigrupo abeliano con \bar{a} $\bar{b} = \bar{a}.\bar{b}$

3)

- a) Sean (G_1 , $*_1$) (G_2 , $*_2$) dos grupos con neutro e_1 y e_2 respectivamente. Probar que (G_1 x G_2 , *) es grupo con (a_1 , a_2) * (b_1 , b_2) = (a_1 $*_1$ b_1 , a_2 $*_2$ b_2). Qué condiciones se deben cumplir para que sea un grupo abeliano?
- b) Sean (Z_2, \mp) y (Z_3, \mp) grupos abelianos definir * en Z_2 x Z_3 de forma tal que sea un grupo abeliano.

- a) Para el grupo (Z, +), probar que H = n $Z = \{a \in Z, a = n$ $z, n, z \in Z, n$ es fijo $\}$ es subgrupo de Z.
- b) Sabiendo que ({0, 1}⁴) es un grupo con

+	0	1
0	0	1
1	1	0

verificar que H = { (a, b, c, d)/a + c = 0, a, b, c, d \in {0, 1}) es subgrupo de ({0, 1}⁴, +) c) Demostrar que H = { $\bar{2}$, $\bar{0}$ } es subgrupo del grupo (Z₄, +).

- 5) Estudiar si el conjunto A es un anillo con las operaciones indicadas
- a) A = N con la suma y el producto usual en N
- b) A = Z con la suma y el producto usual en Z
- c) $A = P(B) X * Y = X \Delta Y X . Y = (X \cap Y)$
- d) $A = R^{nxn}$ con la suma y el producto usual de matrices
- e) A = R con la suma y el producto usual en R

f)
$$A = Z_n$$
 $a * b = \overline{a} + \overline{b}$ $a \cdot b = \overline{a} \cdot \overline{b}$

g)
$$A = \{ x \in R / x = a + b \sqrt{2} \ a, b \in Z \} \ a * b = a + b \ a \cdot b = a \cdot b \}$$

6) Indicar cuales de los anillos del ejercicio 5 son anillos de división. ¿Cuáles alcanzan la estructura de cuerpo?