

# A Constant Factor Approximation for Navigating Through Connected Obstacles in the Plane

### **Problem Definition**



**Input** : An arrangement of obstacles in plane, source s, target t

### **Problem Definition**



**Input** : An arrangement of obstacles in plane, source s, target t

Find an s-t path that intersects a minimum number of obstacles

## **Problem History**

- Barrier Resillience in sensor networks
  - disk obstacles

Resillience of sensor network to an adversary



# **Problem History**

- **●** *Barrier Resillience* in sensor networks
  - disk obstacles

Resillience of sensor network to an adversary



- Minimum Constraint Removal in robotics and computational geometry
  - Polygonal Obstacles

## **Problem History**

- **●** *Barrier Resillience* in sensor networks
  - disk obstacles





- Minimum Constraint Removal in robotics and computational geometry
  - Polygonal Obstacles
- *Min-Color Path* in graph theory
  - Vertices assigned a subset of colors  $\{1, 2, \ldots, m\}$  as  $\sigma: V \to 2^m$
  - find an s-t path  $\pi$  with minimum colors

minimize colors in  $\sigma(\pi) = \bigcup_{v \in \pi} \sigma(v)$ 



♦ Known to be APX-Hard even for axis-aligned rectangles

(Bandypadhyay et al.'20)

- ♦ Known to be APX-Hard even for axis-aligned rectangles

  (Bandypadhyay et al.'20)
- Recently shown to be fixed parameter tractable (Eiben and Lokshtanov'20, Eiben and Kanj'18)

- Nown to be APX-Hard even for axis-aligned rectangles (Bandypadhyay et al.'20)
- Recently shown to be fixed parameter tractable (Eiben and Lokshtanov'20, Eiben and Kanj'18)
- Limited progress on approximation algorithms
  - Constant approximation for unit-disks and some special cases
    (Bereg and Kirkpatrick'09, Chan and Kirkpatrick'12, '14)
  - $-O(\sqrt{n})$ -approximation for general obstacles (Bandypadhyay et al. '20)

- Nown to be APX-Hard even for axis-aligned rectangles (Bandypadhyay et al.'20)
- Recently shown to be fixed parameter tractable (Eiben and Lokshtanov'20, Eiben and Kanj'18)
- Limited progress on approximation algorithms
  - Constant approximation for unit-disks and some special cases
    (Bereg and Kirkpatrick'09, Chan and Kirkpatrick'12, '14)
  - $-O(\sqrt{n})$ -approximation for general obstacles (Bandypadhyay et al. '20)

#### **General Idea:** cast as a *min-color path* problem

- build a graph over the arrangement
- obstacles correspond to colors
- to each vertex, assign colors incident to it



- Nown to be APX-Hard even for axis-aligned rectangles (Bandypadhyay et al.'20)
- Recently shown to be fixed parameter tractable (Eiben and Lokshtanov'20, Eiben and Kanj'18)
- Limited progress on approximation algorithms
  - Constant approximation for unit-disks and some special cases
    (Bereg and Kirkpatrick'09, Chan and Kirkpatrick'12, '14)
  - $-O(\sqrt{n})$ -approximation for general obstacles (Bandypadhyay et al. '20)

#### **General Idea:** cast as a *min-color path* problem

- build a graph over the arrangement
- obstacles correspond to colors
- to each vertex, assign colors incident to it

Min obstacle path  $\equiv$  min-color path in this graph



- Nown to be APX-Hard even for axis-aligned rectangles (Bandypadhyay et al.'20)
- Recently shown to be fixed parameter tractable (Eiben and Lokshtanov'20, Eiben and Kanj'18)
- Limited progress on approximation algorithms
  - Constant approximation for unit-disks and some special cases
    (Bereg and Kirkpatrick'09, Chan and Kirkpatrick'12, '14)
  - $-O(\sqrt{n})$ -approximation for general obstacles (Bandypadhyay et al. '20)

#### **General Idea:** cast as a *min-color path* problem

- build a graph over the arrangement
- obstacles correspond to colors
- to each vertex, assign colors incident to it

Min obstacle path  $\equiv$  min-color path in this graph



This graph is planar and color-connected

(vertices containing any given color are connected)

- Constant factor approximation algorithm for **Min-Color Path** on **color-connected** and **planar** graphs
  - $\Rightarrow$  constant approximation for connected obstacles in the plane

- Constant factor approximation algorithm for **Min-Color Path** on **color-connected** and **planar** graphs
  - ⇒ constant approximation for connected obstacles in the plane
- Generalizes to Min-Color version of **Prize Collecting Steiner Forest** 
  - Multiple request pairs: connect pair  $s_i$ ,  $t_i$  or pay cost  $w_i$
  - Minimize total number of colors plus cost of disconnected pairs

- Constant factor approximation algorithm for **Min-Color Path** on **color-connected** and **planar** graphs
  - ⇒ constant approximation for connected obstacles in the plane
- Generalizes to Min-Color version of **Prize Collecting Steiner Forest** 
  - Multiple request pairs: connect pair  $s_i$ ,  $t_i$  or pay cost  $w_i$
  - Minimize total number of colors plus cost of disconnected pairs
- Without **planarity** or **color-connectivity**, much harder to approximate
  - cannot approximate within  $\max\{m^{1-\epsilon}, n^{1/4-\epsilon}\}$  assuming dense vs random conjecture
  - ⇒ disconnected obstacles in 2d or connected obstacles in higher dimensions are inapproximable

- Constant factor approximation algorithm for **Min-Color Path** on **color-connected** and **planar** graphs
  - ⇒ constant approximation for connected obstacles in the plane

rest of this talk

- Generalizes to Min-Color version of **Prize Collecting Steiner Forest** 
  - Multiple request pairs: connect pair  $s_i$ ,  $t_i$  or pay cost  $w_i$
  - Minimize total number of colors plus cost of disconnected pairs
- Without **planarity** or **color-connectivity**, much harder to approximate
  - cannot approximate within  $\max\{m^{1-\epsilon}, n^{1/4-\epsilon}\}$  assuming dense vs random conjecture
  - ⇒ disconnected obstacles in 2d or connected obstacles in higher dimensions are inapproximable

Given color-connected planar graph  $(G, \sigma)$ , find a min-color path



Given color-connected planar graph  $(G, \sigma)$ , find a min-color path

Alternative characterization as *hitting* "color separators"



#### Given color-connected planar graph $(G, \sigma)$ , find a min-color path

Alternative characterization as hitting "color separators"

**Color Separator**: set of colors SV(S) = vertices that contain a color in S

Removing V(S) disconnects s from t



 $S = \{3\}$  is a color separator

#### Given color-connected planar graph $(G, \sigma)$ , find a min-color path

Alternative characterization as *hitting* "color separators"

**Color Separator** : set of colors S

V(S) = vertices that contain a color in S

Removing V(S) disconnects s from t



 $S = \{3\}$  is a color separator

$$\mathcal{F}$$
 = Set of all color separators of  $G$ 

$$\mathcal{F} = \{ \{3\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}$$

#### Given color-connected planar graph $(G, \sigma)$ , find a min-color path

Alternative characterization as hitting "color separators"

**Color Separator**: set of colors S V(S) = vertices that contain a color in S Removing V(S) disconnects s from t



 $\mathcal{F}$  = Set of all color separators of G

$$\mathcal{F} = \{ \{3\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}$$

**Min-color hitting set**: smallest set of colors that "hits" every color separator smallest  $\mathcal{C}^* \subseteq \{1, \ldots, m\}$  such that  $\mathcal{C}^* \cap S \neq \emptyset$  for every  $S \in \mathcal{F}$ 

#### Given color-connected planar graph $(G, \sigma)$ , find a min-color path

Alternative characterization as hitting "color separators"

**Color Separator**: set of colors S V(S) = vertices that contain a color in S Removing V(S) disconnects s from t



 $S = \{3\}$  is a color separator

$$\mathcal{F}$$
 = Set of all color separators of  $G$ 

$$\mathcal{F} = \{ \{3\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}$$

$$C^* = \{1, 3\}$$
 hits all separators in  $\mathcal{F}$ 

**Min-color hitting set**: smallest set of colors that "<u>hits</u>" every color separator smallest  $C^* \subseteq \{1, ..., m\}$  such that  $C^* \cap S \neq \emptyset$  for every  $S \in \mathcal{F}$ 

#### Given color-connected planar graph $(G, \sigma)$ , find a min-color path

Alternative characterization as *hitting* "color separators"

**Color Separator**: set of colors S V(S) = vertices that contain a color in S Removing V(S) disconnects s from t



 $S = \{3\}$  is a color separator

$$\mathcal{F}$$
 = Set of all color separators of  $G$ 

$$\mathcal{F} = \{ \{3\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}$$

$$C^* = \{1, 3\}$$
 hits all separators in  $\mathcal{F}$ 

**Min-color hitting set**: smallest set of colors that "<u>hits</u>" every color separator smallest  $C^* \subseteq \{1, ..., m\}$  such that  $C^* \cap S \neq \emptyset$  for every  $S \in \mathcal{F}$ 

**Lemma**: Min-Color Path ⇔ Min-Color Hitting Set

 $\pi \leftarrow \text{min-color path}$ 

 $C^* \leftarrow \text{min-color hitting set}$ 

$$\pi \leftarrow \text{min-color path}$$

$$C^* \leftarrow \text{min-color hitting set}$$

**Claim**: Colorset  $\sigma(\pi)$  hits all color separators in  $\mathcal{F}$ 

$$|\mathcal{C}^*| \leq |\sigma(\pi)|$$

$$\pi \leftarrow \text{min-color path}$$

$$C^* \leftarrow \text{min-color hitting set}$$

**Claim**: Colorset  $\sigma(\pi)$  hits all color separators in  $\mathcal{F}$ 

– Suppose 
$$\sigma(\pi)$$
 did not hit some separator  $S \in \mathcal{F}$ 

- host vertex-set V(S) of S is disjoint from  $\pi$
- s and t are not separated in G V(S), contradiction.

$$|\mathcal{C}^*| \leq |\sigma(\pi)|$$



$$\pi \leftarrow \text{min-color path}$$

$$C^* \leftarrow \text{min-color hitting set}$$

**Claim**: Colorset  $\sigma(\pi)$  hits all color separators in  $\mathcal{F}$ 

– Suppose 
$$\sigma(\pi)$$
 did not hit some separator  $S \in \mathcal{F}$ 

- host vertex-set V(S) of S is disjoint from  $\pi$
- s and t are not separated in G V(S), contradiction.

$$|\mathcal{C}^*| \leq |\sigma(\pi)|$$



**Claim**: G contains a path  $\pi'$  that only uses colors in  $\mathcal{C}^*$ 

$$|\sigma(\pi)| \leq |\mathcal{C}^*|$$

 $\pi \leftarrow \text{min-color path}$ 

 $C^* \leftarrow \text{min-color hitting set}$ 

**Claim**: Colorset  $\sigma(\pi)$  hits all color separators in  $\mathcal{F}$ 

$$|\mathcal{C}^*| \leq |\sigma(\pi)|$$

- Suppose  $\sigma(\pi)$  did not hit some separator  $S \in \mathcal{F}$
- host vertex-set V(S) of S is disjoint from  $\pi$
- s and t are not separated in G V(S), contradiction.

$$s$$
 $V(S)$ 
 $t$ 

Claim: G contains a path  $\pi'$  that only uses colors in  $\mathcal{C}^*$   $|\sigma(\pi)| \leq |\mathcal{C}^*|$ 

$$|\sigma(\pi)| \leq |\mathcal{C}^*|$$

- Remove colors in  $\mathcal{C}^*$  from G, that is,  $\sigma'(v) = \sigma(v) \setminus \mathcal{C}^*$
- $-(G, \sigma')$  contains a path  $\pi'$  with zero colors

because if not  $S' = \bigcup_{v \in V} \sigma'(v)$  will be a color separator with  $S' \cap C^* = \emptyset$ contradiction

**LP formulation** variable  $0 \le x_i \le 1$  for each color  $i \in \{1, 2, ..., m\}$ 

**LP formulation** variable 
$$0 \le x_i \le 1$$
 for each color  $i \in \{1, 2, ..., m\}$ 

$$\min \sum_{i \in \{1, ..., m\}} x_i \quad \text{Minimize total colors}$$

LP formulation variable  $0 \le x_i \le 1$  for each color  $i \in \{1, 2, ..., m\}$ 

$$\min \sum_{i \in \{1, ..., m\}} x_i \qquad \text{Minimize total colors}$$

for all 
$$S \in \mathcal{F}$$
:  $\sum_{j \in S} x_j \ge 1$  All color separators are hit

LP formulation variable  $0 \le x_i \le 1$  for each color  $i \in \{1, 2, ..., m\}$ 

$$\min \sum_{i \in \{1, ..., m\}} x_i \qquad \text{Minimize total colors}$$

for all 
$$S \in \mathcal{F}$$
:  $\sum_{j \in S} x_j \ge 1$  All color separators are hit

LP may have an exponential number of constraints

**Lemma**: LP can be solved in polytime on color-connected planar graphs

variable  $0 \le x_i \le 1$  for each color  $i \in \{1, 2, ..., m\}$ LP formulation

$$\min \sum_{i \in \{1, ..., m\}} x_i \qquad \text{Minimize total colors}$$

for all 
$$S \in \mathcal{F}$$
:  $\sum_{j \in S} x_j \ge 1$  All color separators are hit

LP may have an exponential number of constraints

**Lemma**: LP can be solved in polytime on color-connected planar graphs

- we give a polytime algorithm for computing a min-weight color separator
- use that as a separation oracle for the ellipsoid method

**LP formulation** variable  $0 \le x_i \le 1$  for each color  $i \in \{1, 2, ..., m\}$ 

$$\min \sum_{i \in \{1, ..., m\}} x_i \qquad \text{Minimize total colors}$$

for all 
$$S \in \mathcal{F}$$
:  $\sum_{j \in S} x_j \ge 1$ 

All color separators are hit

LP may have an exponential number of constraints

**Lemma**: LP can be solved in polytime on color-connected planar graphs

- we give a polytime algorithm for computing a min-weight color separator
- use that as a separation oracle for the ellipsoid method

round  $x_i$  values to obtain an integral solution  $\hat{y} = \{y_1, y_2, \dots, y_m\}$ 

**Lemma**: Exists a rounding algorithm such that  $\sum y_i = O(1) \cdot OPT$ 

### Properties of Color Separators (on color-connected planar graphs)

Color Separator S corresponds to a **separating cycle**  $\gamma$  in dual graph  $G^*$ 



### Properties of Color Separators (on color-connected planar graphs)

Color Separator S corresponds to a **separating cycle**  $\gamma$  in dual graph  $G^*$ 



Extend coloring to  $G^*$ :

$$\sigma(v^*) = \bigcup_{v \in f} \sigma(v)$$

f is face containing dual vertex  $v^*$ 

Color Separator S corresponds to a **separating cycle**  $\gamma$  in dual graph  $G^*$ 



Extend coloring to  $G^*$ :

$$\sigma(v^*) = \bigcup_{v \in f} \sigma(v)$$

f is face containing dual vertex  $v^*$ 

– exists a labelling  $\lambda$  that selects a color from  $\sigma(v^*) \cap S$  for every  $v^* \in \gamma$ **Well behaved labelling**: All occurrence of a given color on  $\lambda(\gamma)$  are consecutive

Color Separator S corresponds to a **separating cycle**  $\gamma$  in dual graph  $G^*$ 



 $S = \{1, 2\}$  and its labelling  $\lambda(\gamma) = 1 \rightarrow 1 \rightarrow 1 \rightarrow 2$ 

Extend coloring to  $G^*$ :

$$\sigma(v^*) = \bigcup_{v \in f} \sigma(v)$$

f is face containing dual vertex  $v^*$ 

– exists a labelling  $\lambda$  that selects a color from  $\sigma(v^*) \cap S$  for every  $v^* \in \gamma$ **Well behaved labelling**: All occurrence of a given color on  $\lambda(\gamma)$  are consecutive

#### Properties of Color Separators (on color-connected planar graphs)

Color Separator S corresponds to a **separating cycle**  $\gamma$  in dual graph  $G^*$ 



 $S = \{1, 2\}$  and its labelling  $\lambda(\gamma) = 1 \rightarrow 1 \rightarrow 1 \rightarrow 2$ 

Extend coloring to  $G^*$ :

$$\sigma(v^*) = \bigcup_{v \in f} \sigma(v)$$

f is face containing dual vertex  $v^*$ 

- exists a labelling  $\lambda$  that selects a color from  $\sigma(v^*) \cap S$  for every  $v^* \in \gamma$ **Well behaved labelling**: All occurrence of a given color on  $\lambda(\gamma)$  are consecutive

Color Separators  $\equiv$  sequence of overlapping colors

- $oldsymbol{\circ}$  Build a *color-intersection* graph  ${\mathcal G}$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$

- **ullet** Build a *color-intersection* graph  $\mathcal G$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign *distance* value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$

- **ullet** Build a *color-intersection* graph  $\mathcal{G}$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign distance value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$
- **\odot** Graph  $\mathcal{G}$  is node-weighted region intersection graph
  - Use the **small diameter decomposition** for such graphs by Lee'17
  - gives a set of vertices X such that  $|X| = O(1) \cdot \sum d(c_i)$  and diameter of G X is at most 0.4

- $oldsymbol{\circ}$  Build a *color-intersection* graph  $\mathcal G$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign distance value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$
- **Solution** Graph  $\mathcal{G}$  is node-weighted *region intersection graph* 
  - Use the **small diameter decomposition** for such graphs by Lee'17
  - gives a set of vertices X such that  $|X| = O(1) \cdot \sum d(c_i)$  and diameter of G X is at most 0.4
- Return  $\mathcal{C}^*$ : the set of colors corresponding to vertices in X

- $oldsymbol{\circ}$  Build a *color-intersection* graph  $\mathcal G$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign *distance* value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$
- Graph G is node-weighted region intersection graph
  - Use the **small diameter decomposition** for such graphs by Lee'17
  - gives a set of vertices X such that  $|X| = O(1) \cdot \sum d(c_i)$  and diameter of G X is at most 0.4
- Return  $\mathcal{C}^*$ : the set of colors corresponding to vertices in X

**Lemma**:  $|\mathcal{C}^*| = O(1) \cdot OPT$  and the color set  $\mathcal{C}^*$  hits all color separators

- $oldsymbol{\circ}$  Build a *color-intersection* graph  $\mathcal G$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign *distance* value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$
- Graph G is node-weighted region intersection graph
  - Use the **small diameter decomposition** for such graphs by Lee'17
  - gives a set of vertices X such that  $|X| = O(1) \cdot \sum d(c_i)$  and diameter of G X is at most 0.4
- Return  $C^*$ : the set of colors corresponding to vertices in X

**Lemma**:  $|\mathcal{C}^*| = O(1) \cdot OPT$  and the color set  $\mathcal{C}^*$  hits all color separators

- $oldsymbol{\circ}$  Build a *color-intersection* graph  $\mathcal G$ 
  - contains a vertex  $c_i$  for every color i
  - contains edge  $(c_i, c_j)$  if colors  $\{i, j\} \in \sigma(v^*)$  for some dual vertex  $v^*$
- Assign *distance* value  $d(c_i) = x_i$  to each vertex of  $\mathcal{G}$
- Graph G is node-weighted region intersection graph
  - Use the **small diameter decomposition** for such graphs by Lee'17
  - gives a set of vertices X such that  $|X| = O(1) \cdot \sum d(c_i)$  and diameter of G X is at most 0.4
- Return  $\mathcal{C}^*$ : the set of colors corresponding to vertices in X

**Lemma**:  $|\mathcal{C}^*| = O(1) \cdot OPT$  and the color set  $\mathcal{C}^*$  hits all color separators

### In Summary

- O(1)-approximation for Min-Color Path on color-connected planar graphs
  - Equivalent to hitting all color separators with fewest colors
  - LP formulation that is polytime solvable on color-connected planar graphs
  - Round using small diameter decomposition of a color-intersection graph

### In Summary

- O(1)-approximation for Min-Color Path on color-connected planar graphs
  - Equivalent to hitting all color separators with fewest colors
  - LP formulation that is polytime solvable on color-connected planar graphs
  - Round using small diameter decomposition of a color-intersection graph
- Future directions : improving the constant factor

### In Summary

- O(1)-approximation for Min-Color Path on color-connected planar graphs
  - Equivalent to hitting all color separators with fewest colors
  - LP formulation that is polytime solvable on color-connected planar graphs
  - Round using small diameter decomposition of a color-intersection graph
- Future directions : improving the constant factor

#### Thanks!