Lab3 Solution&Hint

YAO ZHAO

Lab3.A: Biology and CS

- ▶ There are *M* predation relationships among *N* species in some fauna. It is guaranteed that there is no cyclic predation in the food web.
- \blacktriangleright A food chain is defined by a sequence of species $[a_1, a_2, ..., a_k]$, where
 - \blacktriangleright nothing can prey on a_1
 - $ightharpoonup a_k$ can prey on nothing
 - $ightharpoonup a_i$ can prey on a_{i+1} for i=1,2,...,k-1
- ▶ Two food chains are different, if and only if their sequences are different.
- Now each of these N species wants to know how many food chains involve with it, module $10^9 + 7$.

Sample Input 1

species	food chains	number
1	[2,3,1] [2,4,3,1] [2,4,5,1]	3
2	[2,3,1] [2,4,3,1] [2,4,5,1]	3
3	[2, <mark>3</mark> ,1] [2,4, <mark>3</mark> ,1]	2
4	[2,4,3,1] [2,4,5,1]	2
5	[2,4,5,1]	1

Sample Output 1 **3 3 2 2 1**

species	food chains	number
1	[7,5, <mark>1</mark>]	1
2	[2,4] [2,3,4] [2,6] [2,3,6]	4
3	[2, <mark>3</mark> ,4] [2, <mark>3</mark> ,6]	2
4	[2, <mark>4</mark>] [2,3, 4]	2
5	[7, <mark>5</mark> ,1]	1
6	[2, <mark>6</mark>] [2,3, <mark>6</mark>]	2
7	[<mark>7</mark> ,5,1] [7 ,8]	2
8	[7, <mark>8</mark>]	1

Sample Input 3

species	food chains	number
1	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5
2	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5
3	[2,3,1] [2,4,3,1] [2,3,6,1] [2,4,3,6,1]	4
4	[2,4,3,1] [2,4,5,1] [2,4,3,6,1]	3
5	[2,4,5,1]	1
6	[2,3, <mark>6</mark> ,1] [2,4,3, <mark>6</mark> ,1]	2

Try to find all topo order and update the chains number of each node

```
Find all nodes with no incoming edges
Init their chains number to 1 and put them to queue Q
While Q is not empty:
  get a node e from Q
  for each child c of node:
        c.indegree \leftarrow c.indegree -1
        c.chainsnumber \leftarrow c.chainsnumber+e. chainsnumber
        if c.indegree == 0
            put c to Q
```


Can't find all chains number

1	2	3	4	5	6
5	1	2	1	1	2

species	food chains	number	result
1	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5	5
2	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5	1
3	[2,3,1] [2,4,3,1] [2,3,6,1] [2,4,3,6,1]	4	2
4	[2,4,3,1] [2,4,5,1] [2,4,3,6,1]	3	1
5	[2,4,5,1]	1	1
6	[2,3, <mark>6</mark> ,1] [2,4,3, <mark>6</mark> ,1]	2	2

Only find the combination before the node

How to find all?

Reverse the edges and execute again:

```
Find all nodes with no incoming edges
Init their chains number to 1 and put them to queue Q
While Q is not empty:
  get a node e from Q
  for each child c of node:
      c.indegree \leftarrow c.indegree -1
      c.chainsnumber \leftarrow c.chainsnumber+e. chainsnumber
      if c.indegree == 0
            put c to Q
```


1	2	3	4	5	6
1	5	2	3	1	1

species	food chains	number	Result	Reverse- result
1	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5	5	1
2	[2,3,1] [2,4,3,1] [2,4,5,1] [2,3,6,1] [2,4,3,6,1]	5	1	5
3	[2,3,1] [2,4,3,1] [2,3,6,1] [2,4,3,6,1]	4	2	2
4	[2,4,3,1] [2,4,5,1] [2,4,3,6,1]	3	1	3
5	[2,4 <mark>,5</mark> ,1]	1	1	1
6	[2,3, <mark>6</mark> ,1] [2,4,3, <mark>6</mark> ,1]	2	2	1

number = result * Reverse-result

Recommended data structure

Out degree

Point to out edges list

In degree

Point to in edges list

Lab3.B: Legendary Grabbing Machine

- Satori is a hunter who likes hunting bunnies.
- Initially at moment 0, there are N bunnies, the i^{th} of which is at position p_i .
- There are also M nests, the i^{th} of which is at position q_i . Each nest can hold at most C bunnies.
- Each bunny can move at most 1 unit of distance within 1 unit of time. Once a bunny enters some nest, it will be completely safe from Satori.
- Satori's **Legendary Grabbing Machine** takes T units of time to charge. Once the machine finishes charging at moment T, all bunnies that are out of nest will be captured. Note that bunnies entering nest at moment T will be safe.
- ▶ The bunnies very are united. They wish to know the maximal number of safe bunnies if they move optimally.

Input: 2 2 1 5 45 55 40 60

Legendary Grabbing Machine

Input: 2 2 1 5 45 55 40 60

Output: 2

Legendary Grabbing Machine

Input: 2 2 1 5 55 65 40 60

Legendary Grabbing Machine

Input: 2 2 1 5 55 65 40 60 Output:

Legendary Grabbing Machine

Hint:

Sort the nests by position Sort the bunnies by position Start from one direction or another, greedily fill the nests