EE-222: Microprocessor Systems

Course Introduction & Logistics

Instructor: Dr. Arbab Latif [arbab.latif@seecs.edu.pk]

Why Do We Have Computers?

Why Do We Do Computing?

Why Do We Have Computers?

To Solve Problems ...

Why Do We Do Computing?

To Gain Insight ...

Why Do We Have Computers?
Why Do We Do Computing?

Overall, To Enable a Better Life and Future

Target Computing Platforms for Digital Systems

Why are there different computing platforms?

Revisit: Target Computing Platforms for Digital Systems

Field Programmable Gate Array [FPGA]

- **Programmable after Fabrication**
- Software like Flexibility
- **ASIC like Performance**

Microprocessors

Microprocessor Chips

AMD Barcelona

4 cores

Core Core Core

Intel Core i7 8 cores

IBM Cell BE 8+1 cores

IBM POWER7 8 cores

Sun Niagara II 8 cores

Nvidia Fermi 448 "cores"

Intel SCC 48 cores, networked

Tilera TILE Gx 100 cores, networked

Slide credit: Prof. Onur Mutlu

Inside a Microprocessor

What do you observe?

Inside your iPhone

What do you observe?

Basic Ingredients of a μ -Processor

 Any useful microprocessor-based computing system must have:

1. A Processing Unit:

complex circuitry that manipulates data and controls I/O devices according to the program stored in memory

2. Memory:

- To store programs.
- To store data.

3. I/O Devices:

- To allow information to be input and output
- LEDs, 7-Segment Displays, Video Monitors, Keyboards, Motors, Relays

Block Representation of a Microprocessor

Review: High-Level Language Vs. Assembly Language

lines has direct mapping to an ML instruction

Assembly Code

```
; move Y to the EAX register
      eax, Y
mov
add
      eax,4
                  ; add 4 to the EAX register
      ebx,3
                  ; move 3 to the EBX register
mov
imul
     ebx
                  ; multiply EAX by EBX
      X,eax
                    move EAX to X
mov
                    Whereas, each one of these
```

Review: Compiler vs. Assembler

High-level language program (in C)

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}
```


Assembly language program (for MIPS)

```
swap:

multi $2, $5,4

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

ir $31
```


Binary machine language program (for MIPS)

Compiler: A program that translates high-level language statements into assembly language statements.

Assembler: A program that translates a symbolic version of instructions into the binary version.

Course Plan

Hardware

- What is microprocessor?
- How it works?
- Computer memory system & its interfacing
- I/O interfacing
- Computer busses and bus protocol concepts
- What microcontroller is?
- how it works?
- Interfacing techniques with microcontrollers
- How to build real time systems using microcontrollers

Software

- Assembly language for micro-processor/controllers.
- C language for microcontrollers

Course Plan

- More specifically, we'll look at:
 - ATmega16/32 Microcontroller by Atmel
 - Download Atmel Studio development IDE on your machines:
 - https://www.microchip.com/mplab/avr-support/atmel-studio-7

- RISCV Microprocessor Architecture
 - Take a look at https://riscv.org/

- Take a look at the course outline on LMS
 - While the topics will remain the same mostly, the sequence might change
 - Also, new topics might be introduced depending on the flow of the course

Course Logistics

Course Logistics

Lectures:

- By Dr. Arbab Latif[Assist. Prof at SEECS]
 - Office: Knowledge Hub 1
 - Office Hours: By appointment
 - Email: <u>arbab.latif@seecs.edu.pk</u>

- BEE-10C:

- Tue:10:00am 10:50pm [CR-13]
- Fri: 11:00am 11:50pm [CR-13]
- Fri: 12:00pm 12:50pm [CR-13]

- BEE-10D:

- Tue: 12:00pm 12:50pm [CR-14]
- Tue: 10:00am 10:50am [CR-14]
- Wed:11:00am 11:50am [CR-14]
- Course Website: http://lms.nust.edu.pk/
- Self Enrollment Key: 053271698

Labs:

Conducted by Mr. Abrar

Tentative Grading Scheme

Туре	Weight (%)
Assignments	10
Quizzes (Un-announced)	10
OHTs	30
Labs	15
Project	10
Final	50

• This scheme may be adjusted during the semester without giving any prior notice.

Course Discipline: Ground Rules

- Classroom Etiquettes:
 - Students will be punctual for the class.
 - No attendance if you are late more than 5 mins.
 - If a student decides to attend the class, he or she will not disrupt class by leaving before the lecture has ended.
 - All the cell phones must be switched OFF prior to entering the class room.
- Academic Honesty and Plagiarism: [Both in Class and Labs]
 - Plagiarism is considered a serious offence by the university and severe penalties apply.
 - ZERO tolerance. Subject activity will be nullified.

Reading Assignment

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Section 0.4

THANK YOU

