Criterios de Convergencia

sábado, 15 de enero de 2022 17:44

Condición. Ean converge => fang -> 0

- Cuterio Limite de
$$\sum a_n, \sum b_n \left\{\frac{a_n}{b_n}\right\} \longrightarrow \lambda \in \mathbb{R}^+$$
 $V(+\infty)$ comparación

- Guterio de condensación
$$=$$
 $\int a_n^2 de orece y a_n > 0 \forall n \in /N$

de Cauchy
$$\sum \frac{1}{n \log n}$$

$$\int A_n^2 = A_n = a_1 + a_2 + ... + a_n$$

$$\int B_n^2 = B_n = a_1 + 2a_2 + 4a_4 + ... + 2a_n$$
Ambas di o conven

i)
$$\alpha \leq 0$$
 $\sum_{n=1}^{+\infty} n^n$, no converge
ii) $\alpha \geq 0$ $\int_{-\infty}^{+\infty} 1^n$ decreaiente
 $\sum_{n=1}^{+\infty} converge \implies \alpha \geq 1$

- Criterio de la raiz (Series)
$$\begin{cases}
a_n \\
a_n > 0 \forall n \in |N|
\end{cases}$$

$$\begin{cases}
\int_{a_n} \int_$$

- Cuterio de Conocario (Tactorisles)

- Outerro de Raabe

$$\left\{ n\left(1 - \frac{a_{n+1}}{a_n}\right) \right\} \longrightarrow LG/R \text{ 6 ± 20}$$

$$\left\{ \left(\frac{a_n}{a_{n+1}}\right)^{\frac{n}{2}} \right\} \longrightarrow e^{\frac{1}{2}}$$

$$\left(\frac{a_n}{a_{n+1}}\right)^{\frac{n}{2}} \longrightarrow e^{\frac{1}{2}}$$

$$\left(\frac{a_n}{a_n}\right)^{\frac{n}{2}} \longrightarrow e^{$$

- Cuterio de Convergencia Absoluta (Signo [+])

- Criterio de Jeibnitz

Conceptos importantes

- Algebra de linites

$$-\underbrace{n}_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e^{-\frac{1}{n}}\underbrace{\left(\frac{n}{n+1}\right)^n}\cdot e^{-\frac{1}{n}}$$

- Series importantes

· Serie Armonica =>
$$\sum_{n\geq 1} \frac{1}{n} \geq 1 + \frac{h}{2}$$

* Alternada =)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} \int_{-\infty}^{\infty} \frac{\left(\frac{(-1)^{2n+1}}{2n}\right)^{n}} Creciente y mayorada$$
 $\left(\frac{(-1)^{2n+2}}{2n+1}\right)$ Decreciente y minorada