DSAIL summer-internship

STUDENT 유혜원

Hyewon Ryu

Inductive Representation Learning on Large Graphs

Table of Contents

		Page
I	Research Background & Motivation	3
II	Related Works	5
III	Model Description	G
IV	Experiment Results	
V	Implementation	13

I Research Background & Motivation

- Low-dimensional vector embedding of nodes in large graphs have proved extremely useful as feature inputs for a wide variety of prediction and graph analysis tasks
 - Node Classification, Clustering, Link Prediction

- Previous works have focused on embedding nodes from a single fixed graph
 - However, many real-world applications require quick embedding for unseen nodes, or entirely new [sub]graphs
 - We need a system which can be used on evolving graphs
 - ex) posts on Reddit, users and videos on Youtube

I Research Background & Motivation

Transductive vs. Inductive

a. Training graph

b. Transductive inference

c. Inductive inference

Most existing approaches are inherently transductive.

- Matrix-factorization-based
 - do not generalize to unseen data
- Graph Convolution Networks [GCNs]
 have only been applied in the
 transductive setting

Inductive node embedding is difficult

- Unseen nodes requires "aligning" newly observed subgraphs
- Need to learn graph structure both in local and grobal view

In this work, extend GCNs to the task of inductive unsupervised learning

II Related Works

- | Factorization-based embedding approachs
 - Embedding using random walk statistics and matrix-factorization-based learning
 - inherently transtuctive
 - Planetoid-I
 - inductive
 - o do not use any graph structural information & feature information
- 2 | Supervised learning over graphs
 - Neural Network approaches to supervied learning over graph structures
 - main focus is to classify entire graphs, not to generate representations for individual nodes
- 3] Graph convolution networks
 - do not scale to large graphs or are designed for whole-graph classification
 - only applied to transductive setting

Process of Embedding Generation

→ Aggregate function parameters & weight matrix W

using aggregated information

Assume that the model has already been trained and parameters are fixed

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

from neighbors

Detailed Aggregating Process

Learn the topological structure of node neighborhoods

Pseudo Code of Embedding Generation

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
    Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                    \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                    AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V}; //input node feature
2 for k = 1...K do
          for v \in \mathcal{V} do
       \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\});
\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)
//agreggating
          end
6
         \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V}
8 end
\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V} //final representations output at depth K
```

Aggregate function parameters & weight matrix W

Learning the Parameters of GraphSAGE

Definition of neighborhood

 $\mathcal{N}(v)$: fixed-size, uniform draw from the set $\{u \in \mathcal{V} : (u,v) \in \mathcal{E}\}$

Loss function

• Fully unsupervised setting

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\mathsf{T}}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\mathsf{T}}\mathbf{z}_{v_n})\right)$$

v node that co-occurs near u on fixed length random walk

 σ : sigmoid function

 P_n negative sampling distribution

Q : number of negative samples

• Task-specific objective

cross-entropy loss etc

Aggregator Architectures

→ Aggregator functions must operate over an unordered set of vectors

Mean Aggregator: inductive variant of the GCN

$$\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{mean}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\})$$

Skip Connection

prevent gradient vanishing [exploding]

concatenation: simple form of a "skip connection" between the different search depth

LSTM Aggregator

- have larger expressive capability
- not symmetric
 - simply applying the LSTMs to a random permutation of the node's neighbers

Pooling Aggregator

$$AGGREGATE_k^{pool} = \max(\{\sigma\left(\mathbf{W}_{pool}\mathbf{h}_{u_i}^k + \mathbf{b}\right), \forall u_i \in \mathcal{N}(v)\})$$

IV Experiment Results

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324		
DeepWalk + features	0.701	0.701	0.691	0.691		
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

IV Experiment Results

Figure 2: **A**: Timing experiments on Reddit data, with training batches of size 512 and inference on the full test set (79,534 nodes). **B**: Model performance with respect to the size of the sampled neighborhood, where the "neighborhood sample size" refers to the number of neighbors sampled at each depth for K = 2 with $S_1 = S_2$ (on the citation data using GraphSAGE-mean).

Dataset: Cora [not in paper]

Node: Papers in machine learning domain

Edge: Citation between papers

-> node classification into specific domain [7 classes]

number of nodes: 2708

number of edges: 10556

train set: 140 nodes

validation set: 500 nodes

test set: 1000 nodes

dataset = Planetoid(root='tmp/Cora', name='Cora')

Batch creation & Neighborhood sampling

```
1 # Create batches with neighbor sampling
2 train_loader = NeighborLoader(
3 | data,
4 | num_neighbors = [25, 10], # same as paper
5 | batch_size = 40,
6 | input_nodes = data.train_mask
7 )
```



```
subgraph 0: Data(x=[500, 1433], edge_index=[2, 817], y=[500], train_mask=[500], val_mask=[500], test_mask=[500], n_id=[500], e_id=[817], input_id=[40], batch_size=40) subgraph 1: Data(x=[563, 1433], edge_index=[2, 918], y=[563], train_mask=[563], val_mask=[563], test_mask=[563], n_id=[563], e_id=[918], input_id=[40], batch_size=40) subgraph 2: Data(x=[688, 1\mu33], edge_index=[2, 1324], y=[688], train_mask=[688], val_mask=[688], test_mask=[688], n_id=[688], e_id=[1324], input_id=[40], batch_size=40) subgraph 3: Data(x=[230, 1433], edge_index=[2, 414], y=[230], train_mask=[230], val_mask=[230], test_mask=[230], n_id=[230], e_id=[414], input_id=[20], batch_size=20)
```

Degree

original graph degree

last subgraph degree

Accuracy calculation

```
1 def accuracy(pred_y, y):
2 | return((pred_y == y).sum()/len(y)).item()
```

GraphSAGE

```
1 class GraphSAGE(torch.nn.Module):
    def __init__(self, dim_in, dim_h, dim_out, agg = 'mean'):
      super().__init__()
      self.sage1 = SAGEConv(dim_in, dim_h, aggr=agg)
      self.sage2 = SAGEConv(dim_h, dim_out, aggr=agg)
      self.optimizer = torch.optim.Adam(self.parameters(),
                                         Ir=0.01,
                                         weight_decay=5e-4)
    def forward(self, x, edge_index):
      h = self.sage1(x, edge_index)
      h = torch.relu(h)
13
      h = F.dropout(h, p=0.5, training=self.training)
14
      h = self.sage2(h, edge_index)
15
      return F.log_softmax(h, dim= 1)
16
```

$$\mathbf{h}_i' = \mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \cdot mean_{j \in \mathcal{N}_i}(\mathbf{h}_j)$$

GraphSAGE training

```
17 def fit(self, data, epochs):
      criterion = torch.nn.CrossEntropyLoss()
      optimizer = self.optimizer
20
21
      self.train()
22
      for epoch in range(epochs+1):
23
       total_loss = 0
24
        acc = 0
25
        val_loss = 0
26
        val_acc = 0
27
28
        # train on batches
29
        for batch in train_loader:
30
          optimizer.zero_grad()
31
          out = self(batch.x, batch.edge_index)
32
          loss = criterion(out[batch.train_mask], batch.y[batch.train_mask])
33
          total_loss += loss.item()
34
          acc += accuracy(out[batch.train_mask].argmax(dim=1), batch.y[batch.train_mask])
35
          loss.backward()
36
          optimizer.step()
37
38
          # validation
39
          val_loss += criterion(out[batch.val_mask], batch.y[batch.val_mask])
40
          val_acc += accuracy(out[batch.val_mask].argmax(dim=1), batch.y[batch.val_mask])
41
42
        # Print metrics every 10 epochs
43
        if epoch % 5 == 0:
44
          print(f'Epoch {epoch:>3} | Train Loss: {loss/len(train_loader):.3f}'
45
                f' | Train Acc: {acc/len(train_loader)*100:>6.2f}%'
46
                f' | Val Loss: {val_loss/len(train_loader):.2f}'
               f'| Val Acc: {val_acc/len(train_loader)*100:.2f}%')
```

test

```
def test(self, data):
    test_acc = 0
    self.eval()

for batch in train_loader:
    out = self(batch.x, batch.edge_index)
    test_acc += accuracy(out[batch.test_mask].argmax(dim=1), batch.y[batch.test_mask])

print(f'GraphSAGE test accuracy: {test_acc/len(train_loader)*100:.2f}%')
```

run code

```
1 exp1_max_small = GraphSAGE(dataset.num_features, 64, dataset.num_classes, agg='max')
2 print(exp1_max_small)
3
4 # Train
5 exp1_max_small.fit(data, 30)
6
7 # Test
8 exp1_max_small.test(data)
```

Result

Train loss

Paper Result

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324	_	_
DeepWalk + features	0.701	0.701	0.691	0.691	_	_
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Implementaion Result

Mean			
small	big		
65.85%	65.86%		
LSTM			
small	all big		
59.27%	64.00%		
Max			
small	big		
63.44%	62.90%		

2023/08/01

DSAIL summer-internship

STUDENT

유혜원

Hyewon Ryu

Thank you for listening