

Data Science Notes by Sarowar Ahmed

III Chapter: Bayesian Statistics

Topic: Bayesian inference

Pello, GitHub community! Today, let's dive into an exciting topic in statistics that might sound daunting but is incredibly powerful and useful: Bayesian inference. Whether you're a student just starting out, a professional looking to brush up on stats, or just curious about how decisions are made using data, this post will help you understand Bayesian inference in a straightforward way. Let's break it down with simple explanations, a visual guide, and real-life examples!

* What is Bayesian Inference?

 Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. It's a fantastic tool for making decisions with uncertainty, allowing us to combine prior knowledge with new evidence.

Formula of Bayesian Inference:

 Bayesian inference revolves around updating our prior belief about something based on new data or evidence. The formula used is:

 $P(H|E)=P(E|H)\times P(H)/P(E)$

Where:

- P(H | E) is the probability of the hypothesis H given the evidence E (posterior probability)
- P(E | H) is the probability of observing the evidence E given that H is true (likelihood).
- (H) is the probability of the hypothesis before seeing the evidence (prior probability).
- P(E) is the total probability of the evidence under all possible hypotheses.

Visual Aid:

Real-Life Example:

- Scenario: Let's consider a medical diagnosis. A doctor knows that 1% of the population has a certain disease (prior). A test for the disease is 99% accurate (likelihood).
- Question: What's the probability a patient has the disease if they test positive?
 Using Bayesian Inference:
- Prior probability (P(H)): 1% or 0.01
- Likelihood (P(E | H)): 99% or 0.99
- Probability of the evidence (P(E)): (0.01 * 0.99) + (0.99 * 0.01) = 0.0198

 $P(H \mid E) = 0.99 \times 0.01 / 0.0198 \approx 0.5$

So, there's a 50% chance the patient actually has the disease despite testing positive, given the rarity of the disease.

 Bayesian inference is crucial in many fields like healthcare, finance, and machine learning. It helps incorporate uncertainty into decision-making processes and adjust predictions as more data becomes available.

Got any questions about Bayesian inference!? Feel free to ask me via Linkedin! Let's keep learning together.

My LinkedIn Date: 30/04/2024

