Taller #1 - Estadistica para la analítica de datos

Sergio Castañeda, Guillermo Castillo, Alexander Guecha 19/3/2022

Actividad # 1

En la librería car podrá encontrar una base de datos llamada Chile, la cual proporciona parcialmente, información demográfica de Chile. La base de datos tiene 2700 filas y 8 columnas.Los datos provienen de una encuesta nacional de hogares llevada a cabo en abril y mayo de 1988 por FLACSO / Chile. Hay algunos datos que faltan .

a) Proporcione un resumen descriptivo univariado de esta información y b) Desarrolle gráficos pertinentes según el tipo de variable.

Variable Region

```
Region = Chile$region
Rtabla=data.frame(table(Region ))
porcentaje=prop.table(Rtabla[,2])
Rtabla2= cbind(Rtabla, porcentaje)
cum_frequencia=cumsum(Rtabla2[,2])
Rtabla3= cbind(Rtabla2, cum frequencia)
cum porcentaje=cumsum(Rtabla3[,3])
Rtabla4= cbind(Rtabla3, cum_porcentaje)
Rtabla4
##
    Region_ Freq porcentaje cum_frequencia cum_porcentaje
## 1
         C 600 0.2222222
                                       600
                                                0.222222
          M 100 0.03703704
## 2
                                       700
                                                0.2592593
## 3
         N 322 0.11925926
                                      1022
                                                0.3785185
         S 718 0.26592593
## 4
                                      1740
                                                 0.6444444
## 5
         SA 960 0.3555556
                                       2700
                                                1.0000000
BPregion <-
barplot(prop.table(table(Chile$region)),col=c("orange","blue","green","re
d", "purple"), legend.text=c("Center", "Metropolitan", "North", "South", "City
```

Frecuencias relativas de participación por regiór

Para el caso de la variable *Region* que es cualitativa nominal, se destaca que la región de *City of Santiago (n= 960)* es la que tuvo mayor participación en las votaciones, seguida por las regiones *Sur (n=718)* y *Center (n=600)*

Variable Population

```
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
basicStats(Chile$population)
##
               X..Chile.population
## nobs
                       2.700000e+03
## NAs
                       0.000000e+00
## Minimum
                       3.750000e+03
## Maximum
                      2.500000e+05
## 1. Quartile
                      2.500000e+04
## 3. Quartile
                      2.500000e+05
## Mean
                       1.522222e+05
## Median
                      1.750000e+05
## Sum
                      4.110000e+08
## SE Mean
                      1.966802e+03
```

```
## LCL Mean
                      1.483656e+05
## UCL Mean
                      1.560788e+05
## Variance
                      1.04444e+10
## Stdev
                      1.021980e+05
## Skewness
                     -2.687220e-01
## Kurtosis
                     -1.719115e+00
#hist(Chile$population)
library(agricolae)
##
## Attaching package: 'agricolae'
## The following objects are masked from 'package:timeDate':
##
##
       kurtosis, skewness
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Chile$population, density=6,
col="blue",border="red",ylim=c(0,0.6), frequency=2,xlab="population")
h2<-graph.freq(Chile$population, border=0,ylim=c(0,0.6),
frequency=2,xlab="population")
polygon.freq(h2,col="blue", frequency=2)
```


Variable Sex

```
Sexo_= Chile$sex
Stabla=data.frame(table(Sexo_))
```

```
porcentaje=prop.table(Stabla[,2])
Stabla2= cbind(Stabla, porcentaje)
cum frequencia=cumsum(Stabla2[,2])
Stabla3= cbind(Stabla2, cum frequencia)
cum porcentaje=cumsum(Stabla3[,3])
Stabla4= cbind(Stabla3, cum_porcentaje)
Stabla4
     Sexo Freq porcentaje cum frequencia cum porcentaje
## 1
         F 1379 0.5107407
                                     1379
                                               0.5107407
## 2
         M 1321 0.4892593
                                     2700
                                               1.0000000
BPsex <-
barplot(prop.table(table(Chile$sex)),col=c("orange","blue"),legend.text=c
("Femenino", "Masculino"), ylim=c(0,0.8), xlim=c(0,3), main="Frecuencias
relativas de participación en votaciones por sexo", ylab = "Frecuencias
Relativas",names.arg = c("Femenino","Masculino"))
```

cuencias relativas de participación en votaciones po

En relación con la variable *Sexo* que es cualitativa nominal, pudimos observar que la proporción de votantes hombres y mujeres es muy similar, con una leve diferencia de mayor participación por parte de las mujeres.

Variable Age

```
basicStats(Chile$age)
## X..Chile.age
## nobs 2700.000000
```

```
## NAs
                     1.000000
## Minimum
                    18.000000
## Maximum
                    70.000000
## 1. Quartile
                    26.000000
## 3. Quartile
                    49.000000
## Mean
                    38.548722
## Median
                    36.000000
## Sum
               104043.000000
## SE Mean
                     0.284040
## LCL Mean
                    37.991764
## UCL Mean
                    39.105680
## Variance
                   217.751795
## Stdev
                    14.756415
## Skewness
                     0.472448
## Kurtosis
                    -0.862391
#hist(Chile$age)
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Chile$age, density=6,</pre>
col="blue",border="red",ylim=c(0,500), frequency=1,xlab="Age")
h2<-graph.freq(Chile$age, border=0,ylim=c(0,500), frequency=1)
polygon.freq(h2,col="blue", frequency=1)
```


Variable Education

```
Educacion_= Chile$education
Etabla=data.frame(table(Educacion_))
porcentaje=prop.table(Etabla[,2])
```

```
Etabla2= cbind(Etabla, porcentaje)
cum_frequencia=cumsum(Etabla2[,2])
Etabla3= cbind(Etabla2, cum frequencia)
cum porcentaje=cumsum(Etabla3[,3])
Etabla4= cbind(Etabla3, cum porcentaje)
Etabla4
##
     Educacion_ Freq porcentaje cum_frequencia cum_porcentaje
## 1
                  11 0.004074074
                                                    0.004074074
             NA
                                              11
## 2
              P 1107 0.410000000
                                            1118
                                                    0.414074074
## 3
             PS 462 0.171111111
                                            1580
                                                    0.585185185
              S 1120 0.414814815
## 4
                                            2700
                                                    1.000000000
BPEdu <-
barplot(prop.table(table(Chile$education)), col=c("orange", "blue", "green",
"purple"), legend.text=c("Not answered", "Primary", "Post
Secundary", "Secondary"), ylim=c(0,0.8), xlim=c(0,6), main="Frecuencias"
relativas de participación en votaciones por nivel educativo", ylab
="Frecuencias Relativas")
```

cias relativas de participación en votaciones por niv

Frente a la variable *educación* que es cualitativa ordinal, se puede identificar que la proporción de votantes es mayor en personas con un nivel educativo de "*primaria*" y "*secundaria*", por su parte "*post secundaria*" cuenta con una muy baja participación en las elecciones de Chile.

Variable Income

basicStats(Chile\$income)

```
##
               X..Chile.income
## nobs
                   2.700000e+03
## NAs
                   9.800000e+01
## Minimum
                   2.500000e+03
## Maximum
                   2.000000e+05
                  7.500000e+03
## 1. Quartile
## 3. Quartile
                   3.500000e+04
## Mean
                   3.387586e+04
## Median
                   1.500000e+04
## Sum
                   8.814500e+07
## SE Mean
                   7.744172e+02
## LCL Mean
                   3.235733e+04
## UCL Mean
                   3.539440e+04
## Variance
                   1.560477e+09
## Stdev
                   3.950287e+04
## Skewness
                   2.584549e+00
## Kurtosis
                   7.291944e+00
#hist(Chile$income)
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Chile$income, density=6, col="blue",border="red",</pre>
frequency=2,xlab="Income")
h2<-graph.freq(Chile$income, border=0, frequency=2,xlab="Income")
polygon.freq(h2,col="blue", frequency=2)
```


Variable Statusquo

```
library(fBasics)
basicStats(Chile$statusquo)
               X..Chile.statusquo
##
## nobs
                      2700.000000
## NAs
                        17.000000
## Minimum
                        -1.803010
## Maximum
                        2.048590
## 1. Quartile
                      -1.002235
## 3. Quartile
                       0.968575
## Mean
                        0.000000
## Median
                       -0.045580
## Sum
                       -0.000030
## SE Mean
                        0.019309
## LCL Mean
                       -0.037863
## UCL Mean
                        0.037863
## Variance
                        1.000373
## Stdev
                        1.000186
## Skewness
                       0.161683
## Kurtosis
                        -1.454072
#hist(Chile$statusquo)
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Chile$statusquo, density=6, col="blue",border="red",</pre>
frequency=2,xlab="Statusquo")
h2<-graph.freq(Chile$statusquo, border=0, frequency=2,xlab="Statusquo")
polygon.freq(h2,col="blue", frequency=2)
```


Variable Vote

```
Vote = Chile$vote
Vtabla=data.frame(table(Vote_))
porcentaje=prop.table(Vtabla[,2])
Vtabla2= cbind(Vtabla, porcentaje)
cum frequencia=cumsum(Vtabla2[,2])
Vtabla3= cbind(Vtabla2, cum_frequencia)
cum_porcentaje=cumsum(Vtabla3[,3])
Vtabla4= cbind(Vtabla3, cum porcentaje)
Vtabla4
##
     Vote_ Freq porcentaje cum_frequencia cum_porcentaje
         A 187 0.06925926
## 1
                                      187
                                               0.06925926
## 2
         N 889 0.32925926
                                     1076
                                               0.39851852
## 3
        NA 168 0.06222222
                                     1244
                                               0.46074074
## 4
            588 0.21777778
                                     1832
                                               0.67851852
            868 0.32148148
## 5
                                     2700
                                               1.00000000
BPvote <-
barplot(prop.table(table(Chile$vote)),col=c("orange","blue","green","red"
,"purple"),legend.text=c("will abstain","will vote no","not
answered","undecided","will vote
yes"),ylim=c(0,0.8),xlim=c(0,7),main="Frecuencias relativas de
participación en votaciones intención de voto por Pinochet", ylab
="Frecuencias Relativas")
```

elativas de participación en votaciones intención de

Respecto a la variable *Vote* que es cualitativa nominal y está relacionada con la intención de voto por el presidente "Pinochet", se encuentra que las personas que votaron en SI (33%) son muy cercanas a las personas que votaron en NO (32%)

c) Desagregando esta base de datos, solo para hogares del Norte y del Sur, proporcione un análisis bivariado (tabulación cruzada y un diagrama de barras comparativas) de las variables Educación y Voto.

Análisis Bivariado Educación y voto

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:timeSeries':
##
## filter, lag
## The following objects are masked from 'package:stats':
##
## filter, lag
```

```
## The following objects are masked from 'package:base':
##
     intersect, setdiff, setequal, union
##
sel<-c("N", "S")
Chile NteySur <- Chile %>% filter(region %in% sel)
library(gmodels)
CrossTable(Chile_NteySur$education,Chile_NteySur$vote)
##
##
##
    Cell Contents
##
##
##
  Chi-square contribution
##
          N / Row Total
           N / Col Total |
##
##
          N / Table Total
##
##
## Total Observations in Table: 1040
##
##
                     Chile NteySur$vote
## Chile NteySur$education
                        A | N | NA |
υl
      Y | Row Total |
## -----|----|-----|-----|
--|-----|
                          0 | 1 |
##
                  NA |
                                               0
      1 |
                  2 |
0 |
                         0.138 | 0.253 | 0.092 |
##
0.373 | 0.057 |
                                           0.000
                         0.000 | 0.500 |
##
0.000 | 0.500 |
                  0.002
                         0.000 | 0.003 | 0.000 |
##
0.000
       0.002
                         0.000 | 0.001 |
                                            0.000
##
0.000
         0.001 |
                -----|----|-----|-----|
--|-----|
##
                  P
                           23 |
                                     99 |
                                             23
107
        227
                  479
##
                         3.114 | 14.884 | 0.036 |
3.486 | 7.713 |
                         0.048 | 0.207 | 0.048 |
##
0.223
       0.474
                  0.461
                         0.319 | 0.313 | 0.479 |
0.552 | 0.554 |
##
                         0.022 | 0.095 | 0.022 |
```

0.103 ##	0.218		 l-		
##	,	PS	14	80	8
20	51	173			
##	4 222 1		0.342	14.319	0.000
4.666 ##	4.339	ı	0.081	0.462	0.046
"" 0.116	0.295	0.166	0.001	0.402	0.040
##	0.233		0.194	0.253	0.167
0.103	0.124	•	1	·	·
##			0.013	0.077	0.008
0.019 ##	0.049	ı	1	1	1
		 	-		
##	1	s'l	35	136	17
67	131	386	·	·	·
##			2.564	2.986	0.037
0.348 ##	2.946	ı	0.091	0 2E2	0 044
## 0.174	0.339	0.371	•	0.352	0.044
##	0.333		0.486	0.430	0.354
0.345	0.320	•	1		·
##			0.034	0.131	0.016
0.064	0.126	ı	1	1	1
##		 	-	-	
##	Column	•	72	316	48
194	410	1040	·	·	·
##			0.069	0.304	0.046
0.187	0.394	1		1	
##		 	-	-	
##	1	1			
##					

Conclusiones

De acuerdo con el resultado de la anterior tabla de contingencia, encontramos que el mayor valor *Chi Cuadrado* se ubica entre un nivel de estudio de primaria (P) y la intención de votar en **NO** por Pinochet como presidente. De otra parte, se evidencia que dicha relación entre la intención de votar en **NO** por Pinochet como presidente es alta en personas con un nivel educativo de PostSecundaria (PS).

En otro de los cruces de variable en donde encontramos un *Chi Cuadrado* superior es en la intención de voto de respaldar a Pinochet con el SI en personas con un nivel educativo de primaria (P)

Actividad # 2

Una muestra de 226 personas mayores que viven en Burdeos (Gironde, suroeste de Francia) fueron entrevistados en 2000 para un estudio nutricional (base de datos: nutrition_elderly). La siguiente tabla presenta la descripción de las variables de estudio.

Proporcione un resumen estadístico descriptivo completo de dos variables cualitativas y dos cuantitativas, solo con aquellas personas mayores de 79 de género femenino.

En cada uno de los casos, proporcione los análisis, conclusiones y recomendaciones analíticas.

Selección de personas mayores de 79 de género femenino

```
Nutrition_2<-subset(Nutrition,age>79 & gender=="2")
```

Resumen estadístico descriptivo Variable Fat

```
Fat = Nutrition 2$fat
Fat tabla=data.frame(table(Fat ))
porcentaje=prop.table(Fat tabla[,2])
Fat tabla2= cbind(Fat tabla, porcentaje)
cum_frequencia=cumsum(Fat_tabla2[,2])
Fat tabla3= cbind(Fat tabla2, cum frequencia)
cum porcentaje=cumsum(Fat tabla3[,3])
Fat_tabla4= cbind(Fat_tabla3, cum_porcentaje)
Fat tabla4
##
    Fat Freq porcentaje cum frequencia cum porcentaje
## 1
            1 0.04347826
                                            0.04347826
## 2 2 3 0.13043478
                                      4
                                            0.17391304
## 3 3
           8 0.34782609
                                     12
                                            0.52173913
                                            0.73913043
## 4 4 5 0.21739130
                                     17
## 5 5 3 0.13043478
                                     20
                                            0.86956522
## 6 6 3 0.13043478
                                     23
                                            1,00000000
BPFat <-
barplot(prop.table(table(Nutrition_2$fat)), col=c("orange", "blue", "green",
"purple", "yellow", "red"),
                ylim=c(0,0.4),main="Frecuencias relativas de fat",ylab
="Relativas (%)", legend.text = c("Butter", "Margarine", "Peanut
Oil", "Sunflower Oil", "Olive Oil", "Mix of vegetables Oil"))
```

Frecuencias relativas de fat

En relación con el resultado del análisi estadístico de la variable cualitativa *Fat* en personas mayores de 79 de género femenino que viven en la ciudad de Burdeos, se observa que en primer lugar es preferido el aceite de cacahuete con un 35%, seguidamente el aceite de girasol con un 22% de preferencia

Resumen estadístico descriptivo Variable Status

```
Status = Nutrition 2$status
Status tabla=data.frame(table(Status ))
porcentaje=prop.table(Status tabla[,2])
Status_tabla2= cbind(Status_tabla, porcentaje)
cum frequencia=cumsum(Status tabla2[,2])
Status tabla3= cbind(Status tabla2, cum frequencia)
cum_porcentaje=cumsum(Status_tabla3[,3])
Status tabla4= cbind(Status tabla3, cum porcentaje)
Status_tabla4
##
     Status_ Freq porcentaje cum_frequencia cum_porcentaje
## 1
           1
               20 0.86956522
                                          20
                                                  0.8695652
           2
                                          22
## 2
                2 0.08695652
                                                  0.9565217
## 3
           3
                1 0.04347826
                                          23
                                                  1.0000000
BPStatus <-
barplot(prop.table(table(Nutrition_2$status)),col=c("orange","blue","gree
n"), ylim=c(0,1),main="Frecuencias relativas de status",ylab ="Relativas
(%)", legend.text = c("Single", "Living With Spouse", "Living With Family"))
```

Frecuencias relativas de status

En relación con el resultado del análisi estadístico de la variable cualitativa *Status* en personas mayores de 79 de género femenino que viven en la ciudad de Burdeos, se observa que el 85% viven solas y el 15% restante conviven con la familia o con su esposo.

Tabla de contingencia cruzada entre Fat y Status

‡# ‡# ‡#	1	0	0	1	1
					_ !
#	l	0.870	0.087	21.043	
••		0.000	0.000	1.000	0.043
‡ #		0.000	0.000	1.000	
#		0.000	0.000	0.043	
‡#		-			
‡#	2	3	0 j	0	3
‡#	į	0.059	0.261	0.130	ĺ
#	j	1.000	0.000	0.000	0.130
#	j	0.150	0.000	0.000	i
‡ #		0.130	0.000	0.000	
: ‡#					i
: ‡#	3	8	0	øİ	8
; ‡#		0.157	0.696	0.348	
; ‡#		1.000	0.000	0.000	0.348
; ;; ‡#	İ	0.400	0.000	0.000	0.540
rπ ‡#		0.348	0.000	0.000	
r# ‡#	 	_ _	0.000	0.000 	
r# ‡#	4	3	2	0	 5
rπ ‡#	4	0.418	5.635	0.217	اد
r# ‡#		0.600	0.400	0.000	0.217
r# ‡#					0.21/
		0.150	1.000	0.000	
‡# +++		0.130	0.087	0.000	l
‡# ‡#	5			ا م	ן ו כ
	5	3	0	0	3
‡# +++		0.059	0.261	0.130	0 120
‡# +++		1.000	0.000	0.000	0.130
; #		0.150	0.000	0.000	
; #		0.130	0.000	0.000	
‡#		-			
; #	6	3	0	0	3
‡# 		0.059	0.261	0.130	
‡# 		1.000	0.000	0.000	0.130
#		0.150	0.000	0.000	
‡#		0.130	0.000	0.000	
##		-			
‡#	Column Total	20	2	1	23
‡ #		0.870	0.087	0.043	
‡#		-			
#					
‡#					

Resumen estadístico descriptivo Variable height

```
library(fBasics)
basicStats(Nutrition_2$height)

## X..Nutrition_2.height
## nobs 23.000000
## NAs 0.000000
## Minimum 140.000000
```

```
## Maximum
                           175.000000
## 1. Quartile
                           154.500000
## 3. Quartile
                           161.500000
## Mean
                           158.695652
## Median
                           159.000000
## Sum
                          3650.000000
                             1.530242
## SE Mean
## LCL Mean
                           155.522125
## UCL Mean
                           161.869179
## Variance
                            53.857708
## Stdev
                             7.338781
## Skewness
                            -0.131839
## Kurtosis
                             0.540451
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Nutrition_2$height, density=6, col="blue",</pre>
frequency=2,xlab="height",ylab="Relativa (%)",ylim=c(0,0.7))
h2<-graph.freq(Nutrition_2$height, border=0,
frequency=2,ylim=c(0,0.7),xlab="height",ylab="Relativa (%)")
polygon.freq(h2,col="blue", frequency=2)
```


En relación con el resultado del análisis estadístico de la variable cuantitativa *Height* en personas mayores de 79 de género femenino que viven en la ciudad de Burdeos, se observa que al rededor del 60% tienen una estatura entre 154 y 161 centímetros.

Resumen estadístico descriptivo Variable Weight

```
library(fBasics)
basicStats(Nutrition_2$weight)
##
                X...Nutrition_2.weight
## nobs
                            23.000000
## NAs
                             0.000000
## Minimum
                            45.000000
## Maximum
                            80.000000
## 1. Quartile
                            60.000000
## 3. Quartile
                            67.500000
## Mean
                            63.826087
## Median
                            64.000000
## Sum
                          1468.000000
## SE Mean
                              1.786701
## LCL Mean
                            60.120696
## UCL Mean
                            67.531478
## Variance
                            73.422925
## Stdev
                              8.568718
## Skewness
                             -0.144788
## Kurtosis
                             -0.427002
par(mfrow=c(1,2), mar=c(4,4,0,1), cex=0.6)
h1<-graph.freq(Nutrition_2$weight, density=6, col="blue",</pre>
frequency=2,xlab="weight")
h2<-graph.freq(Nutrition_2$weight, border=0, frequency=2,xlab="weight")</pre>
polygon.freq(h2,col="blue", frequency=2)
```


En relación con el resultado del análisis estadístico de la variable cuantitativa *Weight* en personas mayores de 79 de género femenino que viven en la ciudad de Burdeos, se observa que al rededor del 40% tienen tienen un peso corporal que oscila entre 62 y 68 kilogramos.

Coeficiente de Correlación de Pearson entre las variables cuantitativas height y weight:

```
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(ggplot2)

# Gráfico Simple (X,Y)
ggplot(data = Nutrition_2, aes(x = height, y = weight)) +
    geom_point(colour = "red4") +
    ggtitle("Diagrama de dispersión altura y peso") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))
```

Diagrama de dispersión altura y peso


```
# Midiendo el nivel de correlación:
#cor(x = log10(Nutrition_2$height), y = Nutrition_2$weight)
cor(x = Nutrition_2$height, y = Nutrition_2$weight, method = "pearson")
## [1] 0.3511394
```

De acuerdo con el resultado del análisis de correlación entre las variables *Height* y *Weight* en personas mayores de 79 de género femenino que viven en la ciudad de Burdeos, se observa que el nivel de correlación es del 35%, lo cual es muy bajo, no obstante se sugiere analizar otras variables exógenas que puedan afectar esta correlación como son el clima o el nivel social y económico de las muejeres entrevistadas, entre otras.