Glenn Smith

Q1. [25pnts] For the simplified DES, consider Sbox S0 and show how DiffCrypto attack would work. Show your work for partial credit.

The DiffCrypto attack abuses the non-uniform differential behavior of S-boxes. Even though the output for uniformly distributed single bits is uniformly distributed, the differential output between two uniformly distributed bits is not uniformly distributed.

The 4-bit input to Sbox S0 has 16 possible values. Assign variables, x, x^* , x^* = x xor x^*

The 2-bit output of Sbox S0 has 4 possible values. Assign variables, y = S0(x), $y^* = S0(x^*)$, y' = y xor $y^* = S0(x)$ xor $S0(x^*)$

The differential distribution table for S0 is:

Input	Output y'				
x'	0	1	2	3	
0	16	0	0	0	
1	0	10	6	0	
2	0	2	10	4	
3	2	4	0	10	
4	2	4	8	2	
5	4	2	2	8	
6	8	2	2	4	
7	2	8	4	2	
8	2	4	8	2	
9	0	2	2	12	
а	10	0	4	2	
b	4	10	2	0	
С	8	2	2	4	
d	2	8	4	2	
е	2	4	8	2	
f	4	2	2	8	

Note the highly non-uniform distribution of the output.

The first row is clearly explained because when x' = 0 then $x = x^*$ and clearly $y = y^*$ But all other rows show a non-uniform distribution of outputs...

Consider the input XOR 2:

Here are the possible input values for S0 with input XOR 2

$$2 \rightarrow 1$$
: D, F

$$2 \rightarrow 2$$
: 0, 1, 2, 3, 8, 9, A, B, C, E

$$2 \rightarrow 3: 4, 5, 6, 7$$

Suppose we know two inputs to S0 as 4 and 6 which XORs to 2 and the output XOR as 1 The input XOR is 2 regardless of the key because the key does not change

$$S0'_{i}$$
 = $S0_{i}$ xor $S0^{*}_{i}$
= $(S0_{E}$ xor $S0_{K})$ xor $(S0^{*}_{E}$ xor $S0_{K})$
= $S0_{E}$ xor $S0^{*}_{E}$
= $S0'_{E}$

And since $S0_I = S0_E \text{ xor } S0_K$ We know $S0_K = S0_I \text{ xor } S0_E$ Which means

D xor 4 = 9 D xor 6 = B F xor 4 = B F xor 6 = 9

So the possible keys are {B, 9}

You can repeat this for each block of subkey to derive the entire subkey

Q2 [25pnts] Consider the crypto system below and compute H(K|C)

$$P = \{a, b, c\}$$
 with $P_p(a) = 1/3$ $P_p(b) = 1/6$ $P_p(c) = 1/2$

$$K = \{k_1, k_2, k_3\}$$
 with $P_K(k_1) = 1/2$ $P_K(k_2) = 1/4$ $P_K(k_3) = 1/4$

 $C = \{1, 2, 3, 4\}$

$$e_{k1}(a) = 1$$
 $e_{k1}(b) = 2$ $e_{k1}(c) = 2$

$$e_{k2}(a) = 2$$
 $e_{k2}(b) = 3$ $e_{k2}(c) = 1$

$$e_{k3}(a) = 3$$
 $e_{k3}(b) = 4$ $e_{k3}(c) = 4$

$$P_{c}(1) = 1/6 + 1/8 = 7/24$$

$$P_{c}(2) = 1/12 + 1/4 + 1/12 = 5/12$$

$$P_c(3) = 1/24 + 1/12 = 1/8$$

$$P_{C}(4) = 1/24 + 1/8 = 1/6$$

$$H(P) = -(1/3 \log_2 1/3 + 1/6 \log_2 1/6 + 1/2 \log_2 1/2) = 1.459$$

$$H(K) = -(1/2 \log_2 1/2 + 1/4 \log_2 1/4 + 1/4 \log_2 1/4) = 1.500$$

$$H(C) = -(7/24 \log_2 7/24 + 5/12 \log_2 5/12 + 1/8 \log_2 1/8 + 1/6 \log_2 1/6) = 1.851$$

$$H(K|C) = 1.500 + 1.459 - 1.851 = 1.108$$