Code ▼

Hassoun et al_ctDNA in Testicular Cancer Clinical Analysis

library(swimplot) library(coxphf) library(grid) library(gtable) library(readr) library(mosaic) library(dplyr) library(survival) library(survminer) library(ggplot2) library(scales) library(coxphf) library(ggthemes) library(tidyverse) library(gtsummary) library(flextable) library(parameters) library(car) library(ComplexHeatmap) library(tidyverse) library(readxl) library(survival) library(janitor) library(rms) library(DT)

#ctDNA Detection rate by Stage and Window

```
#Pre-Orchiectomy
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]</pre>
circ_data <- circ_data[circ_data$preSx.ctDNA.anytime!="",]</pre>
circ data$preSx.ctDNA.anytime <- factor(circ data$preSx.ctDNA.anytime, levels=c("NEGATIV</pre>
E","POSITIVE"))
circ data$Stage <- factor(circ data$Stage, levels=c("I","II","III"))</pre>
circ_data <- subset(circ_data, preSx.ctDNA.anytime %in% c("NEGATIVE", "POSITIVE"))</pre>
positive counts by stage <- aggregate(circ data$preSx.ctDNA.anytime == "POSITIVE", by=li
st(circ_data$Stage), FUN=sum)
total counts by stage <- aggregate(circ data$preSx.ctDNA.anytime, by=list(circ data$Stag
e), FUN=length)
combined data <- data.frame(</pre>
  Stage = total counts by stage$Group.1,
  Total_Count = total_counts_by_stage$x,
  Positive_Count = positive_counts_by_stage$x,
  Rate = (positive_counts_by_stage$x / total_counts_by_stage$x) * 100 # Convert to perc
entage
)
combined data$Rate <- sprintf("%.2f%", combined data$Rate)</pre>
overall_total_count <- nrow(circ_data)</pre>
overall positive count <- nrow(circ data[circ data$preSx.ctDNA.anytime == "POSITIVE",])
overall_positivity_rate <- (overall_positive_count / overall_total_count) * 100 # Conve
rt to percentage
overall row <- data.frame(</pre>
  Stage = "Overall",
 Total_Count = overall_total_count,
  Positive_Count = overall_positive_count,
  Rate = sprintf("%.2f%", overall_positivity_rate)
combined_data <- rbind(combined_data, overall_row)</pre>
print(combined data)
```

Stage <fctr></fctr>	Total_Count <int></int>	Positive_Count <int></int>	Rate <chr></chr>
I	12	11	91.67%
II	1	1	100.00%
III	2	2	100.00%
Overall	15	14	93.33%
4 rows			

```
#MRD Window
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]</pre>
circ data <- circ data[circ data$ctDNA.MRD.Window!="",]</pre>
circ data$ctDNA.MRD.Window <- factor(circ data$ctDNA.MRD.Window, levels=c("NEGATIVE","PO</pre>
SITIVE"))
circ data$Stage <- factor(circ data$Stage, levels=c("I","II","III"))</pre>
circ_data <- subset(circ_data, ctDNA.MRD.Window %in% c("NEGATIVE", "POSITIVE"))</pre>
positive_counts_by_stage <- aggregate(circ_data$ctDNA.MRD.Window == "POSITIVE", by=list</pre>
(circ data$Stage), FUN=sum)
total_counts_by_stage <- aggregate(circ_data$ctDNA.MRD.Window, by=list(circ_data$Stage),
FUN=length)
combined_data <- data.frame(</pre>
  Stage = total counts by stage$Group.1,
 Total_Count = total_counts_by_stage$x,
  Positive_Count = positive_counts_by_stage$x,
  Rate = (positive_counts_by_stage$x / total_counts_by_stage$x) * 100 # Convert to perc
entage
)
combined_data$Rate <- sprintf("%.2f%", combined_data$Rate)</pre>
overall_total_count <- nrow(circ_data)</pre>
overall positive count <- nrow(circ data[circ data$ctDNA.MRD.Window == "POSITIVE",])
overall positivity rate <- (overall positive count / overall total count) * 100 # Conve
rt to percentage
overall row <- data.frame(</pre>
  Stage = "Overall",
 Total Count = overall total count,
  Positive_Count = overall_positive_count,
  Rate = sprintf("%.2f%", overall positivity rate)
combined_data <- rbind(combined_data, overall_row)</pre>
print(combined_data)
```

Stage <fctr></fctr>	Total_Count <int></int>	Positive_Count Rate <int> <chr></chr></int>
I	20	3 15.00%
II	9	7 77.78%
III	13	11 84.62%
Overall	42	21 50.00%
4 rows		

```
#Surveillance Window
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]</pre>
circ data <- circ data[circ data$ctDNA.surveillance!="",]</pre>
circ data$ctDNA.MRD.Window <- factor(circ data$ctDNA.surveillance, levels=c("NEGATIV</pre>
E","POSITIVE"))
circ data$Stage <- factor(circ data$Stage, levels=c("I","II","III"))</pre>
circ_data <- subset(circ_data, ctDNA.surveillance %in% c("NEGATIVE", "POSITIVE"))</pre>
positive_counts_by_stage <- aggregate(circ_data$ctDNA.surveillance == "POSITIVE", by=lis</pre>
t(circ data$Stage), FUN=sum)
total_counts_by_stage <- aggregate(circ_data$ctDNA.surveillance, by=list(circ_data$Stag
e), FUN=length)
combined_data <- data.frame(</pre>
  Stage = total counts by stage$Group.1,
 Total_Count = total_counts_by_stage$x,
  Positive_Count = positive_counts_by_stage$x,
  Rate = (positive_counts_by_stage$x / total_counts_by_stage$x) * 100 # Convert to perc
entage
)
combined_data$Rate <- sprintf("%.2f%", combined_data$Rate)</pre>
overall_total_count <- nrow(circ_data)</pre>
overall_positive_count <- nrow(circ_data[circ_data$ctDNA.surveillance == "POSITIVE",])</pre>
overall positivity rate <- (overall positive count / overall total count) * 100 # Conve
rt to percentage
overall row <- data.frame(</pre>
  Stage = "Overall",
 Total Count = overall total count,
  Positive_Count = overall_positive_count,
  Rate = sprintf("%.2f%", overall positivity rate)
combined_data <- rbind(combined_data, overall_row)</pre>
print(combined_data)
```

Stage <fctr></fctr>	Total_Count <int></int>	Positive_Count Rate <int> <chr></chr></int>
I	27	4 14.81%
II	12	4 33.33%
III	12	5 41.67%
Overall	51	13 25.49%
4 rows		

```
#Anytime post-surgery
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]</pre>
circ data <- circ data[circ data$postSx.ctDNA.anytime!="",]</pre>
circ_data$postSx.ctDNA.anytime <- factor(circ_data$postSx.ctDNA.anytime, levels=c("NEGAT</pre>
IVE","POSITIVE"))
circ data$Stage <- factor(circ data$Stage, levels=c("I","II","III"))</pre>
circ data <- subset(circ data, postSx.ctDNA.anytime %in% c("NEGATIVE", "POSITIVE"))</pre>
positive_counts_by_stage <- aggregate(circ_data$postSx.ctDNA.anytime == "POSITIVE", by=l</pre>
ist(circ data$Stage), FUN=sum)
total_counts_by_stage <- aggregate(circ_data$postSx.ctDNA.anytime, by=list(circ_data$Sta
ge), FUN=length)
combined_data <- data.frame(</pre>
  Stage = total counts by stage$Group.1,
 Total_Count = total_counts_by_stage$x,
  Positive_Count = positive_counts_by_stage$x,
  Rate = (positive_counts_by_stage$x / total_counts_by_stage$x) * 100 # Convert to perc
entage
)
combined_data$Rate <- sprintf("%.2f%", combined_data$Rate)</pre>
overall_total_count <- nrow(circ_data)</pre>
overall positive count <- nrow(circ data[circ data$postSx.ctDNA.anytime == "POSITIVE",])</pre>
overall positivity rate <- (overall positive count / overall total count) * 100 # Conve
rt to percentage
overall row <- data.frame(</pre>
  Stage = "Overall",
 Total Count = overall total count,
  Positive_Count = overall_positive_count,
  Rate = sprintf("%.2f%", overall positivity rate)
combined_data <- rbind(combined_data, overall_row)</pre>
print(combined_data)
```

Stage <fctr></fctr>	Total_Count <int></int>	Positive_Count Rate <int> <chr></chr></int>
I	29	5 17.24%
II	17	12 70.59%
III	26	21 80.77%
Overall	72	38 52.78%
4 rows		

#Demographics Table

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ data <- circ data[circ data$ctDNA.available==TRUE,]</pre>
circ data subset <- circ data %>%
  select(
    Age,
    pΤ,
    Stage,
    Histology,
    Treatment.
    RPLND.Pathology,
    preSx.markers.anytime,
    Markers.postSx.anytime,
    PFS.Event,
    OS.Event,
    OS.months) %>%
  mutate(
    Age = as.numeric(Age),
    pT = factor(pT, levels = c("0","1", "2", "3", "X"), labels = c("pT0","pT1", "pT2",
"pT3","pTX")),
    Stage = factor(Stage, levels = c("I", "II", "III")),
    Histology = factor(Histology, levels = c("Non seminoma", "Seminoma")),
    Treatment = factor(Treatment, levels = c("Surveillance", "Chemotherapy", "RPLND", "R
PLND, Chemotherapy")),
    RPLND.Pathology = factor(RPLND.Pathology, levels = c("Negative", "Germ Cell/Teratom
a")),
    preSx.markers.anytime = factor(preSx.markers.anytime, levels = c("NEGATIVE", "POSITI
VE"), labels = c("Normal", "Elevated")),
    Markers.postSx.anytime = factor(Markers.postSx.anytime, levels = c("NEGATIVE", "POSI
TIVE"), labels = c("Normal", "Elevated")),
    PFS.Event = factor(PFS.Event, levels = c("FALSE", "TRUE"), labels = c("No Event", "E
vent")),
    OS.Event = factor(OS.Event, levels = c("FALSE", "TRUE"), labels = c("Alive", "Deceas
ed")),
    OS.months = as.numeric(OS.months))
table1 <- circ data subset %>%
  tbl summary(
    statistic = list(
      all continuous() ~ "{median} ({min} - {max})",
      all_categorical() \sim "{n} ({p}%)"),
    label = list(
      Age \sim "Age",
      pT ~ "Pathological T Stage",
      Stage ~ "Overall Stage",
      Histology ~ "Histology",
      Treatment ~ "Post-surgery treatment",
      RPLND.Pathology ~ "RPLND Pathology",
      preSx.markers.anytime ~ "Serum Markers pre-op",
      Markers.postSx.anytime ~ "Serum Markers anytime post-op",
      PFS.Event ~ "Event During Follow-up",
```

Characteristic	$N = 74^{1}$
Age	34 (16 - 67)
	<u> </u>
Pathological T Stage	
pT0	1 (1.4%)
pT1	39 (53%)
pT2	28 (38%)
pT3	3 (4.1%)
pTX	3 (4.1%)
Overall Stage	
ı	30 (41%)
II	17 (23%)
III	27 (36%)
Histology	
Non seminoma	51 (69%)
Seminoma	23 (31%)
Post-surgery treatment	
Surveillance	17 (23%)
Chemotherapy	30 (41%)
RPLND	5 (6.8%)
RPLND, Chemotherapy	22 (30%)
RPLND Pathology	
Negative	10 (37%)
Germ Cell/Teratoma	17 (63%)
Unknown	47
¹ Median (Range); n (%)	

Characteristic N = 74					
Serum Markers pre-op					
Normal	22 (30%)				
Elevated	52 (70%)				
Serum Markers anytime post-op					
Normal	30 (41%)				
Elevated	44 (59%)				
Event During Follow-up					
No Event	39 (53%)				
Event	35 (47%)				
Vital Status					
Alive	69 (93%)				
Deceased	5 (6.8%)				
Total Follow up (months)	17 (2 - 84)				
¹ Median (Range); n (%)					

```
fit1 <- as_flex_table(
  table1,
  include = everything(),
  return_calls = FALSE,
  strip_md_bold = TRUE)</pre>
```

Warning: The `strip_md_bold` argument of `as_flex_table()` is deprecated as of gtsummary 1.6.0.

This warning is displayed once every 8 hours.

Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

Hide

fit1

Characteristic	$N = 74^{1}$
Age	34 (16 - 67)
Pathological T Stage	

¹Median (Range); n (%)

Characteristic	$N = 74^{1}$
рТ0	1 (1.4%)
pT1	39 (53%)
pT2	28 (38%)
рТ3	3 (4.1%)
рТХ	3 (4.1%)
Overall Stage	
I	30 (41%)
II	17 (23%)
III	27 (36%)
Histology	
Non seminoma	51 (69%)
Seminoma	23 (31%)
Post-surgery treatment	
Surveillance	17 (23%)
Chemotherapy	30 (41%)
RPLND	5 (6.8%)
RPLND, Chemotherapy	22 (30%)
RPLND Pathology	
Negative	10 (37%)
Germ Cell/Teratoma	17 (63%)
Unknown	47
Serum Markers pre-op	
Normal	22 (30%)
Elevated	52 (70%)
Serum Markers anytime post- op	
Normal	30 (41%)
Elevated	44 (59%)
Event During Follow-up	
No Event	39 (53%)
Event	35 (47%)
¹Median (Bange): n (%)	

¹Median (Range); n (%)

Characteristic	$N = 74^{1}$
Vital Status	
Alive	69 (93%)
Deceased	5 (6.8%)
Total Follow up (months)	17 (2 - 84)

¹Median (Range); n (%)

Hide

save_as_docx(fit1, path= "~/Downloads/table1.docx")

#Heatmap with Clinical & Genomics Factors

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")</pre>
circ data <- circ data[circ data$ctDNA.available==TRUE,]</pre>
circ_data <- circ_data %>% arrange(Stage)
circ datadf <- as.data.frame(circ data)</pre>
ha <- HeatmapAnnotation(
 Stage = circ_data$Stage,
 Histology = circ data$Histology,
 pT = circ_data$pT,
 Treatment = circ data$Treatment,
 Platinum.Response = circ_data$Platinum.Response,
 PFS.Event = circ data$PFS.Event,
 preSx.markers.anytime = circ_data$preSx.markers.anytime,
 Markers.MRD.Window = circ_data$Markers.MRD.Window,
 Markers.Surveillance = circ data$Markers.Surveillance,
 Markers.post.ACT = circ_data$Markers.post.ACT,
 Markers.post.RPLND = circ data$Markers.post.RPLND,
 Markers.postSx.anytime = circ_data$Markers.postSx.anytime,
 Markers.anytime = circ data$Markers.anytime,
 preSx.ctDNA.anytime = circ_data$preSx.ctDNA.anytime,
 ctDNA.MRD.Window = circ data$ctDNA.MRD.Window,
 ctDNA.surveillance = circ_data$ctDNA.surveillance,
  ctDNA.post.ACT = circ_data$ctDNA.post.ACT,
  ctDNA.post.RPLND = circ data$ctDNA.post.RPLND,
 postSx.ctDNA.anytime = circ_data$postSx.ctDNA.anytime,
 ctDNA.anytime = circ_data$ctDNA.anytime,
 col = list(Stage = c("I" = "seagreen1", "II" = "orange", "III" = "purple"),
   Histology = c("Non seminoma" = "goldenrod" , "Seminoma" = "blue4"),
   pT = c("0" = "coral", "1" = "coral", "2" = "darkgreen", "3" = "yellow3", "X" = "gra
y"),
    Treatment = c("Surveillance" = "lightblue", "Chemotherapy" = "orange2", "RPLND" = "kh
aki", "RPLND, Chemotherapy" = "brown2"),
    Platinum.Response = c("SD/PD" = "red3", "PR/CR" = "blue"),
    PFS.Event = c("TRUE" = "red3", "FALSE" ="blue"),
    preSx.markers.anytime = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
   Markers.MRD.Window = c("POSITIVE" = "red3", "NEGATIVE" ="blue"),
   Markers.Surveillance = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
   Markers.post.ACT = c("POSITIVE" = "red3", "NEGATIVE" ="blue"),
   Markers.post.RPLND = c("POSITIVE" = "red3", "NEGATIVE" ="blue"),
   Markers.postSx.anytime = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
   Markers.anytime = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
    preSx.ctDNA.anytime = c("POSITIVE" = "red3", "NEGATIVE" ="blue"),
    ctDNA.MRD.Window = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
    ctDNA.surveillance = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
    ctDNA.post.ACT = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
    ctDNA.post.RPLND = c("POSITIVE" = "red3", "NEGATIVE" = "blue"),
    postSx.ctDNA.anytime = c("POSITIVE" = "red3", "NEGATIVE" ="blue"),
    ctDNA.anytime = c("POSITIVE" = "red3", "NEGATIVE" ="blue")
```

```
ht <- Heatmap(matrix(nrow = 0, ncol = length(circ_data$Stage)),show_row_names = FALSE,cl
uster_rows = F,cluster_columns = FALSE, top_annotation = ha)
pdf("heatmap.pdf",width = 7, height = 7)
draw(ht, annotation_legend_side = "bottom")
dev.off()</pre>
```

#Overview plot

```
library(swimplot)
library(ggplot2)
library(grid)
library(gtable)
#0verview plot
rm(list=ls())
setwd("~/Downloads")
clinstage<- read.csv("CLIA Testicular OP.csv")</pre>
clinstage df<- as.data.frame(clinstage)</pre>
oplot_stratify <-swimmer_plot(df=clinstage_df,
                                id='PatientName',
                               end='fu.diff.months',
                               #name fill='Arm',
                               col="gray",
                               alpha=0.75,
                               width=.01,
                               base size = 14,
oplot_stratify <- oplot_stratify + theme(panel.border = element_blank())</pre>
oplot_stratify <- oplot_stratify + scale_y_continuous(breaks = seq(0, 108, by = 6))
oplot_stratify <- oplot_stratify + labs(x ="Patients" , y="Months from Orchiectomy")</pre>
oplot_stratify
```


Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes difficult to discriminate

 ${f i}$ you have requested 8 values. Consider specifying shapes manually if you need that many have them.

Warning: Removed 178 rows containing missing values or values outside the scale range (`geom_point()`).

#Shape customization to Event_type

oplot_ev3.1 <- oplot_ev3 + ggplot2::scale_shape_manual(name="Event_type",values=c(1,16,
1,16,6,18,18,4),breaks=c('ctDNA_neg','ctDNA_pos','markers_neg','markers_pos','Imagin
g','Surgery','RPLND', 'Death'))</pre>

oplot_ev3.1

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom_point()`).

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom_point()`).

Warning: Removed 997 rows containing missing values or values outside the scale range (`geom_segment()`).

#colour customization

oplot_ev4.2 <- oplot_ev4 + ggplot2::scale_color_manual(name="Event",values=c("lightblu
e", "black", "black", "green", "red", "orange", "grey", "purple", "blue"))
oplot_ev4.2</pre>

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom point()`).

Warning: Removed 997 rows containing missing values or values outside the scale range (`geom segment()`).

#Overview plot Stratified by Stage

```
Hide
library(swimplot)
library(ggplot2)
library(grid)
library(gtable)
#0verview plot
rm(list=ls())
setwd("~/Downloads")
clinstage<- read.csv("CLIA Testicular_OP.csv")</pre>
clinstage df<- as.data.frame(clinstage)</pre>
oplot_stratify <-swimmer_plot(df=clinstage_df,</pre>
                                id='PatientName',
                                end='fu.diff.months',
                                #name_fill='Arm',
                                col="gray",
                                alpha=0.75,
                                width=.01,
                                base_size = 14,
                                stratify= c('Stage'))
oplot stratify <- oplot stratify + theme(panel.border = element blank())
oplot_stratify <- oplot_stratify + scale_y_continuous(breaks = seq(0, 108, by = 6))</pre>
oplot_stratify <- oplot_stratify + labs(x ="Patients" , y="Months from Orchiectomy")</pre>
oplot_stratify
```


Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes difficult to discriminate

i you have requested 8 values. Consider specifying shapes manually if you need that many have them.

Warning: Removed 178 rows containing missing values or values outside the scale range (`geom_point()`).

#Shape customization to Event_type

oplot_ev3.1 <- oplot_ev3 + ggplot2::scale_shape_manual(name="Event_type",values=c(1,16,
1,16,6,18,18,4),breaks=c('ctDNA_neg','ctDNA_pos','markers_neg','markers_pos','Imagin
g','Surgery','RPLND', 'Death'))</pre>

oplot_ev3.1

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom_point()`).

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom_point()`).

Warning: Removed 997 rows containing missing values or values outside the scale range (`geom_segment()`).

#colour customization

oplot_ev4.2 <- oplot_ev4 + ggplot2::scale_color_manual(name="Event",values=c("lightblu
e", "black", "green", "red", "orange", "grey", "purple", "blue"))
oplot_ev4.2</pre>

Warning: Removed 76 rows containing missing values or values outside the scale range (`g eom point()`).

Warning: Removed 997 rows containing missing values or values outside the scale range (`geom segment()`).

#Sankey Plots for all pts with post-orchiectomy timepoint available

```
##To run this commands, please visit: https://sankeymatic.com/build/
#No pre-orch [20] MRD positive #E67272
#No pre-orch [12] MRD negative #87EA86
#No pre-orch [27] no MRD timepoint #808080
#Pre-orch Positive [1] MRD positive #E67272
#Pre-orch Positive [8] MRD negative #87EA86
#Pre-orch Positive [5] no MRD timepoint #808080
#Pre-orch Negative [1] MRD negative #87EA86
#MRD positive [7] Surveillance positive #E67272
#MRD positive [7] Surveillance negative #87EA86
#MRD positive [7] no Surveillance timepoint #80808
#MRD negative [1] Surveillance positive #E67272
#MRD negative [18] Surveillance negative #87EA86
#MRD negative [2] no Surveillance timepoint #80808
#no MRD timepoint [5] Surveillance positive #E67272
#no MRD timepoint [13] Surveillance negative #87EA86
#no MRD timepoint [14] no Surveillance timepoint #808080
#Surveillance positive [13] Event #E67272
#Surveillance positive [0] No Event #87EA86
#Surveillance negative [5] Event #E67272
#Surveillance negative [33] No Event #87EA86
#no Surveillance timepoint [17] Event #E67272
#no Surveillance timepoint [6] No Event #87EA86
```

#EFS by ctDNA at the MRD Window

rm(list=ls())

```
Hide
```

```
setwd("~/Downloads")
circ data <- read.csv("CLIA Testicular GL.csv")</pre>
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]</pre>
circ data <- circ data[circ data$ctDNA.MRD.Window!="",]</pre>
circ datadf <- as.data.frame(circ data)</pre>
survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~ctDNA.MRD.Window,
data = circ_data)
Call: survfit(formula = Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event) ~
    ctDNA.MRD.Window, data = circ data)
                            n events median 0.95LCL 0.95UCL
ctDNA.MRD.Window=NEGATIVE 21
                                    3
                                          NA
                                                  NA
                                                           NA
ctDNA.MRD.Window=POSITIVE 21
                                        5.36
                                  13
                                                4.07
                                                           NA
```

```
event_summary <- circ_data %>%
  group_by(ctDNA.MRD.Window) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

ctDNA.MRD.Window <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	21	3	0.1428571	14.28571
POSITIVE	21	13	0.6190476	61.90476
2 rows				

```
surv_object <-Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)
KM_curve <- survfit(surv_object ~ ctDNA.MRD.Window, data = circ_data,conf.int=0.95,conf.
type="log-log")
ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=6, palette=c("blue","red"), title="EFS - ctDNA MRD window", ylab= "Even
t-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("ctDNA Negative", "ctDNA
Positive"), legend.title="")</pre>
```

EFS - ctDNA MRD window

Hide

summary(KM_curve, times= c(12, 24))

```
Call: survfit(formula = surv_object ~ ctDNA.MRD.Window, data = circ_data,
    conf.int = 0.95, conf.type = "log-log")
                ctDNA.MRD.Window=NEGATIVE
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12
          13
                   3
                         0.833
                               0.0889
                                               0.563
                                                            0.944
   24
           4
                   0
                         0.833
                               0.0889
                                               0.563
                                                            0.944
                ctDNA.MRD.Window=POSITIVE
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12
                                               0.219
           8
                  12
                         0.429
                                 0.108
                                                            0.623
   24
           3
                   0
                         0.429
                                               0.219
                                 0.108
                                                            0.623
```

circ_data\$ctDNA.MRD.Window <- factor(circ_data\$ctDNA.MRD.Window, levels=c("NEGATIVE","PO SITIVE"))

circ_data\$Disease.Type <- factor(circ_data\$Disease.Type, levels = c("Primary", "Metastat
ic"))</pre>

circ_data\$Histology <- factor(circ_data\$Histology, levels = c("Non seminoma", "Seminom
a"), labels = c("Non seminoma", "Seminoma"))</pre>

cox_fit <- coxph(surv_object ~ ctDNA.MRD.Window + Disease.Type + Histology, data=circ_da
ta)</pre>

ggforest(cox_fit,data = circ_data)

Hide

summary(cox_fit)

```
Call:
coxph(formula = surv_object ~ ctDNA.MRD.Window + Disease.Type +
   Histology, data = circ_data)
  n= 42, number of events= 16
                             coef exp(coef) se(coef)
                                                          z Pr(>|z|)
ctDNA.MRD.WindowPOSITIVE
                                    5.10634 0.69515 2.346
                                                               0.019 *
                          1.63048
Disease.TypeMetastatic
                          0.09773
                                    1.10267
                                             0.58170 0.168
                                                               0.867
HistologySeminoma
                         -0.27236
                                    0.76158 0.64651 - 0.421
                                                               0.674
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                         exp(coef) exp(-coef) lower .95 upper .95
ctDNA.MRD.WindowPOSITIVE
                            5.1063
                                       0.1958
                                                 1.3074
                                                           19.945
Disease.TypeMetastatic
                            1.1027
                                       0.9069
                                                 0.3526
                                                            3.448
HistologySeminoma
                            0.7616
                                                 0.2145
                                                            2.704
                                       1.3131
Concordance= 0.707 (se = 0.053)
Likelihood ratio test= 10.27 on 3 df.
                                         p=0.02
                     = 7.8 on 3 df,
Wald test
                                       p=0.05
Score (logrank) test = 9.96 on 3 df,
                                        p=0.02
```

#EFS by STMs at the MRD Window

Hide

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$ctDNA.MRD.Window!="",]
circ_data <- circ_data[circ_data$Markers.MRD.Window!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~Markers.MRD.Windo
w, data = circ_data)</pre>
```

```
event_summary <- circ_data %>%
  group_by(Markers.MRD.Window) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

Markers.MRD.Window <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	17	3	0.1764706	17.64706
POSITIVE	21	11	0.5238095	52.38095
2 rows				

```
surv_object <-Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)
KM_curve <- survfit(surv_object ~ Markers.MRD.Window, data = circ_data,conf.int=0.95,con
f.type="log-log")
ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=6, palette=c("blue","red"), title="EFS - STM at MRD window", ylab= "Eve
nt-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("Normal", "Elevated"),
legend.title="")</pre>
```

EFS - STM at MRD window

Hide

summary(KM_curve, times= c(12))

	<pre>Call: survfit(formula = surv_object ~ Markers.MRD.Window, data = circ_data,</pre>						
	Markers.MRD.Window=NEGATIVE						
	time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95%
CI							
F4	12.0000	12.0000	3.0000	0.8109	0.0988	0.5194	0.93
51							
		Markers.MRD.	Window=P0SIT	IVE			
	time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95%
CI							
	12.000	8.000	10.000	0.501	0.112	0.272	0.6
93							

circ_data\$Markers.MRD.Window <- factor(circ_data\$Markers.MRD.Window, levels=c("NEGATIV
E","POSITIVE"))</pre>

circ_data\$Disease.Type <- factor(circ_data\$Disease.Type, levels = c("Primary", "Metastat
ic"))</pre>

circ_data\$Histology <- factor(circ_data\$Histology, levels = c("Non seminoma", "Seminom
a"), labels = c("Non seminoma", "Seminoma"))</pre>

cox_fit <- coxph(surv_object ~ Markers.MRD.Window + Disease.Type + Histology, data=circ_ data)

ggforest(cox_fit,data = circ_data)

Hide

summary(cox_fit)

```
Call:
coxph(formula = surv_object ~ Markers.MRD.Window + Disease.Type +
    Histology, data = circ_data)
  n= 38, number of events= 14
                              coef exp(coef) se(coef)
                                                           z Pr(>|z|)
Markers.MRD.WindowPOSITIVE 1.2635
                                      3.5379
                                               0.7290 1.733
                                                               0.0831 .
Disease.TypeMetastatic
                            0.2467
                                      1.2798
                                               0.6342 0.389
                                                               0.6973
HistologySeminoma
                           -0.3072
                                      0.7355
                                               0.7812 - 0.393
                                                               0.6942
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                           exp(coef) exp(-coef) lower .95 upper .95
Markers.MRD.WindowPOSITIVE
                              3.5379
                                         0.2827
                                                   0.8476
                                                             14.767
Disease.TypeMetastatic
                              1.2798
                                         0.7814
                                                   0.3692
                                                              4.436
HistologySeminoma
                              0.7355
                                         1.3596
                                                   0.1591
                                                              3.401
Concordance= 0.69 (se = 0.06)
Likelihood ratio test= 6.4 on 3 df.
                                       p = 0.09
Wald test
                     = 5.2 on 3 df,
                                       p = 0.2
Score (logrank) test = 6.11 on 3 df,
                                        p=0.1
```

#Multivariate regression model for EFS at the MRD Window

```
rm(list=ls())
setwd("~/Downloads")
circ data <- read.csv("CLIA Testicular GL.csv")</pre>
circ data <- circ data[circ data$ctDNA.available==TRUE,]</pre>
circ data <- circ data[circ data$ctDNA.MRD.Window!="",]</pre>
circ datadf <- as.data.frame(circ data)</pre>
circ_datadf$Disease.Type <- factor(circ_datadf$Disease.Type, levels = c("Primary", "Meta</pre>
static"), labels = c("I/II", "III"))
circ_datadf$Histology <- factor(circ_datadf$Histology, levels = c("Non seminoma", "Semin</pre>
oma"), labels = c("Non seminoma", "Seminoma"))
circ_datadf$Markers.MRD.Window <- factor(circ_datadf$Markers.MRD.Window, levels=c("NEGAT</pre>
IVE","POSITIVE"), labels = c("Normal", "Elevated"))
circ_datadf$ctDNA.MRD.Window <- factor(circ_datadf$ctDNA.MRD.Window, levels=c("NEGATIV")</pre>
E","POSITIVE"), labels = c("Negative", "Positive"))
surv_object<-Surv(time = circ_datadf$PFS.months, event = circ_datadf$PFS.Event)</pre>
cox fit <- coxph(surv object ~ Age + Disease.Type + Histology + Markers.MRD.Window + ctD
NA.MRD.Window, data=circ datadf)
ggforest(cox_fit, data = circ_datadf, main = "Multivariate Regression Model for EFS", re
fLabel = "Reference Group")
```


test.ph <- cox.zph(cox_fit)

0.1

0.2

0.5

5

10

20

AIC: 88; Concordance Index: 0.76

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$ctDNA.surveillance!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~ctDNA.surveillance, data = circ_data)</pre>
```

Hide

```
event_summary <- circ_data %>%
  group_by(ctDNA.surveillance) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

ctDNA.surveillance <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	38	5	0.1315789	13.15789
POSITIVE	13	13	1.0000000	100.00000
2 rows				

```
surv_object <-Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)
KM_curve <- survfit(surv_object ~ ctDNA.surveillance, data = circ_data,conf.int=0.95,con
f.type="log-log")
ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=6, palette=c("blue","red"), title="EFS - ctDNA Surveillance window", yl
ab= "Event-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("ctDNA Negative", "ctDNA Positive"), legend.title="")</pre>
```

EFS - ctDNA Surveillance window

Tilde

summary(KM_curve, times= c(12))

Call: survfit(formula = surv_object ~ ctDNA.surveillance, data = circ_data, conf.int = 0.95, conf.type = "log-log") ctDNA.surveillance=NEGATIVE time n.risk n.event survival std.err lower 95% CI upper 95% CI12.0000 27,0000 4.0000 0.8911 0.0514 0.7352 0.95 77 ctDNA.surveillance=POSITIVE time n.risk survival std.err lower 95% CI upper 95% n.event CI12.0000 0.2308 0.1169 3.0000 10.0000 0.0558 0.47 46

Hide

circ_data\$ctDNA.surveillance <- factor(circ_data\$ctDNA.surveillance, levels=c("NEGATIV
E","POSITIVE"))
circ_data\$Disease.Type <- factor(circ_data\$Disease.Type, levels = c("Primary", "Metastatic"))
circ_data\$Histology <- factor(circ_data\$Histology, levels = c("Non seminoma", "Seminom
a"), labels = c("Non seminoma", "Seminoma"))
cox_fit <- coxph(surv_object ~ ctDNA.surveillance + Disease.Type + Histology, data=circ_data)
ggforest(cox_fit,data = circ_data)</pre>


```
summary(cox_fit)
```

```
Call:
coxph(formula = surv object ~ ctDNA.surveillance + Disease.Type +
   Histology, data = circ_data)
  n= 51, number of events= 18
                             coef exp(coef) se(coef)
                                                          z Pr(>|z|)
                                              0.5397 4.672 2.98e-06 ***
ctDNA.surveillancePOSITIVE 2.5216
                                    12.4485
Disease.TypeMetastatic
                          -0.2967
                                     0.7433
                                              0.6270 - 0.473
                                                               0.636
                                              0.5670 -1.061
                                                               0.289
HistologySeminoma
                          -0.6017
                                     0.5479
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                          exp(coef) exp(-coef) lower .95 upper .95
ctDNA.surveillancePOSITIVE
                            12.4485
                                       0.08033
                                                  4.3222
                                                            35.854
Disease.TypeMetastatic
                             0.7433
                                       1.34535
                                                  0.2175
                                                             2.540
                                       1.82529
HistologySeminoma
                             0.5479
                                                  0.1803
                                                             1.665
Concordance= 0.793 (se = 0.069)
Likelihood ratio test= 27.55 on 3 df,
                                        p=5e-06
Wald test
                    = 23.95 on 3 df,
                                        p = 3e - 05
Score (logrank) test = 38.6 on 3 df,
                                       p = 2e - 08
```

#EFS by Serum Markers at the Surveillance Window

```
Hide
```

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$Markers.Surveillance!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~Markers.Surveilla
nce, data = circ_data)</pre>
```

```
event_summary <- circ_data %>%
  group_by(Markers.Surveillance) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

Markers.Surveillance <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	48	15	0.3125000	31.25000
POSITIVE	14	11	0.7857143	78.57143
2 rows				

```
surv_object <-Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)
KM_curve <- survfit(surv_object ~ Markers.Surveillance, data = circ_data,conf.int=0.95,c
onf.type="log-log")
ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=6, palette=c("blue","red"), title="EFS - Serum Markers Surveillance win
dow", ylab= "Event-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("Norma
l", "Elevated"), legend.title="")</pre>
```

EFS - Serum Markers Surveillance window

Hide

summary(KM_curve, times= c(12))

Call	<pre>Call: survfit(formula = surv_object ~ Markers.Surveillance, data = circ_data,</pre>						
	Markers.Surveillance=NEGATIVE						
	time	n.risk	n.event	survival	std.err	lower 95% CI uppe	r 95%
CI							
00	12.0000	29.0000	12.0000	0.7329	0.0663	0.5770	0.83
89							
	Markers.Surveillance=POSITIVE						
	time	n.risk	n.event	survival	std.err	lower 95% CI uppe	r 95%
CI							
	12.000	8.000	6.000	0.571	0.132	0.284	0.7
80							

circ_data\$Markers.Surveillance <- factor(circ_data\$Markers.Surveillance, levels=c("NEGAT
IVE","POSITIVE"))</pre>

circ_data\$Disease.Type <- factor(circ_data\$Disease.Type, levels = c("Primary", "Metastat
ic"))</pre>

circ_data\$Histology <- factor(circ_data\$Histology, levels = c("Non seminoma", "Seminom
a"), labels = c("Non seminoma", "Seminoma"))</pre>

cox_fit <- coxph(surv_object ~ Markers.Surveillance + Disease.Type + Histology, data=cir
c data)</pre>

ggforest(cox_fit,data = circ_data)

Hide

summary(cox_fit)

```
Call:
coxph(formula = surv_object ~ Markers.Surveillance + Disease.Type +
    Histology, data = circ_data)
  n= 62, number of events= 26
                                coef exp(coef) se(coef)
                                                             z Pr(>|z|)
Markers.SurveillancePOSITIVE
                              0.5545
                                        1.7410
                                                 0.4271 1.298
                                                                 0.1942
Disease.TypeMetastatic
                             -0.3215
                                        0.7251
                                                 0.4678 - 0.687
                                                                 0.4919
HistologySeminoma
                             -1.0279
                                        0.3578
                                                 0.5944 - 1.729
                                                                 0.0838 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                             exp(coef) exp(-coef) lower .95 upper .95
Markers.SurveillancePOSITIVE
                                1.7410
                                           0.5744
                                                     0.7538
                                                                4.021
Disease.TypeMetastatic
                                0.7251
                                           1.3792
                                                     0.2899
                                                                1.814
HistologySeminoma
                                0.3578
                                           2.7952
                                                     0.1116
                                                                1.147
Concordance= 0.638 (se = 0.05)
Likelihood ratio test= 6.29 on 3 df.
                                        p = 0.1
Wald test
                     = 5.69 on 3 df,
                                        p=0.1
Score (logrank) test = 6.19
                             on 3 df,
                                        p=0.1
```

#EFS by ctDNA at post-RPLND - Stage II

Hide

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$RPLND==TRUE,]
circ_data <- circ_data[circ_data$Stage=="II",]
circ_data <- circ_data[circ_data$ctDNA.post.RPLND!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~ctDNA.post.RPLND,
data = circ_data)</pre>
```

```
event_summary <- circ_data %>%
  group_by(ctDNA.post.RPLND) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

ctDNA.post.RPLND <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	4	2	0.5	50
POSITIVE	2	2	1.0	100
2 rows				

```
surv_object <-Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)
KM_curve <- survfit(surv_object ~ ctDNA.post.RPLND, data = circ_data,conf.int=0.95,conf.
type="log-log")
ggsurvplot(KM_curve, data = circ_data, pval = TRUE, conf.int = FALSE, risk.table = TRUE,
break.time.by=3, palette=c("blue","red"), title="EFS - ctDNA post-RPLND - Stage II", yla
b= "Event-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("ctDNA Negativ
e", "ctDNA Positive"), legend.title="")</pre>
```

EFS - ctDNA post-RPLND - Stage II

Hide

summary(KM_curve, times= c(0, 12))

```
Call: survfit(formula = surv_object ~ ctDNA.post.RPLND, data = circ_data,
    conf.int = 0.95, conf.type = "log-log")
                ctDNA.post.RPLND=NEGATIVE
time n.risk n.event survival std.err lower 95% CI upper 95% CI
    0
                   0
                         1.000
                                 0.000
                                             1.00000
                                                            1.000
   12
           1
                   2
                         0.333
                                             0.00896
                                                            0.774
                                 0.272
                ctDNA.post.RPLND=POSITIVE
        time
                   n.risk
                                                           std.err lower 95% CI upper 95%
                                n.event
                                             survival
CI
           0
                         2
                                      0
                                                    1
                                                                  0
                                                                               1
1
```

Hide

circ_data\$ctDNA.post.RPLND <- factor(circ_data\$ctDNA.post.RPLND, levels=c("NEGATIVE","PO SITIVE")) cox_fit <- coxphf(surv_object ~ ctDNA.post.RPLND, data=circ_data) summary(cox fit)

#EFS by ctDNA at post-ACT - Stage II/III

Hide

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$ACT==TRUE,]
circ_data <- circ_data[circ_data$Stage!="I",]
circ_data <- circ_data[circ_data$ctDNA.surveillance!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~ctDNA.surveillance, data = circ_data)</pre>
```

```
event_summary <- circ_data %>%
  group_by(ctDNA.surveillance) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

ctDNA.surveillance <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	13	3	0.2307692	23.07692
POSITIVE	9	9	1.0000000	100.00000
2 rows				

surv_object <-Surv(time = circ_data\$PFS.months, event = circ_data\$PFS.Event)
KM_curve <- survfit(surv_object ~ ctDNA.surveillance, data = circ_data,conf.int=0.95,conf.type="log-log")</pre>

ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=3, palette=c("blue","red"), title="EFS - ctDNA post-ACT - Stage II/II
I", ylab= "Event-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("ctDNA Ne
gative", "ctDNA Positive"), legend.title="")

EFS - ctDNA post-ACT - Stage II/III

Hide

summary(KM_curve, times= c(12, 24))

```
Call: survfit(formula = surv_object ~ ctDNA.surveillance, data = circ_data,
    conf.int = 0.95, conf.type = "log-log")
                ctDNA.surveillance=NEGATIVE
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12
                   3
                        0.769
                                 0.117
                                               0.442
                                                            0.919
   24
           4
                   0
                         0.769
                                               0.442
                                 0.117
                                                            0.919
                ctDNA.surveillance=P0SITIVE
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12
           2
                   7
                        0.222
                                 0.139
                                             0.03371
                                                            0.513
   24
           1
                   1
                        0.111
                                 0.105
                                             0.00613
                                                            0.388
```

```
circ_data$ctDNA.surveillance <- factor(circ_data$ctDNA.surveillance, levels=c("NEGATIV
E","POSITIVE"))
cox_fit <- coxph(surv_object ~ ctDNA.surveillance, data=circ_data)
ggforest(cox_fit,data = circ_data)</pre>
```



```
summary(cox_fit)
```

```
Call:
coxph(formula = surv_object ~ ctDNA.surveillance, data = circ_data)
 n= 22, number of events= 12
                            coef exp(coef) se(coef) z Pr(>|z|)
ctDNA.surveillancePOSITIVE 1.9323
                                   6.9055 0.6727 2.873 0.00407 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                          exp(coef) exp(-coef) lower .95 upper .95
ctDNA.surveillancePOSITIVE
                           6.905
                                       0.1448
                                                  1.848
                                                           25.81
Concordance= 0.716 (se = 0.067)
Likelihood ratio test= 9.95 on 1 df, p=0.002
Wald test
                    = 8.25 on 1 df,
                                     p=0.004
Score (logrank) test = 10.97 on 1 df, p=9e-04
```

```
cox_fit_summary <- summary(cox_fit)

# Extract values for HR, 95% CI, and p-value
HR <- cox_fit_summary$coefficients[2]
lower_CI <- cox_fit_summary$conf.int[3]
upper_CI <- cox_fit_summary$conf.int[4]
p_value <- cox_fit_summary$coefficients[5]
label_text <- paste0("HR = ", round(HR, 2), " (", round(lower_CI, 2), "-", round(upper_CI, 2), "); p = ", round(p_value, 3))
print(label_text)</pre>
```

```
[1] "HR = 6.91 (1.85-25.81); p = 0.004"
```

#EFS by STMs at post-ACT - Stage II/III

Hide

```
rm(list=ls())
setwd("~/Downloads")
circ_data <- read.csv("CLIA Testicular_GL.csv")
circ_data <- circ_data[circ_data$ctDNA.available==TRUE,]
circ_data <- circ_data[circ_data$ACT==TRUE,]
circ_data <- circ_data[circ_data$Stage!="I",]
circ_data <- circ_data[circ_data$Markers.Surveillance!="",]
circ_datadf <- as.data.frame(circ_data)

survfit(Surv(time = circ_data$PFS.months, event = circ_data$PFS.Event)~Markers.Surveilla
nce, data = circ_data)</pre>
```

```
event_summary <- circ_data %>%
  group_by(Markers.Surveillance) %>%
  summarise(
    Total = n(),
    Events = sum(PFS.Event),
    Fraction = Events / n(),
    Percentage = (Events / n()) * 100
)
print(event_summary)
```

Markers.Surveillance <chr></chr>	Total <int></int>	Events <int></int>	Fraction <dbl></dbl>	Percentage <dbl></dbl>
NEGATIVE	23	11	0.4782609	47.82609
POSITIVE	10	8	0.8000000	80.00000
2 rows				

surv_object <-Surv(time = circ_data\$PFS.months, event = circ_data\$PFS.Event)
KM_curve <- survfit(surv_object ~ Markers.Surveillance, data = circ_data,conf.int=0.95,c
onf.type="log-log")</pre>

ggsurvplot(KM_curve, data = circ_data, pval = FALSE, conf.int = FALSE, risk.table = TRU
E, break.time.by=6, palette=c("blue","red"), title="EFS - STMs post-ACT - Stage II/III",
ylab= "Event-Free Survival", xlab="Months from Orchiectomy", legend.labs=c("Normal", "El
evated"), legend.title="")

EFS - STMs post-ACT - Stage II/III

Hide

summary(KM_curve, times= c(12, 24))

Markers.Surveillance=NEGATIVE

time n.risk n.event survival std.err lower 95% CI upper 95% CI 12 10 9 0.580 0.107 0.346 0.756 24 3 1 0.516 0.113 0.281 0.708

Markers.Surveillance=POSITIVE

time n.risk n.event survival std.err lower 95% CI upper 95% CI 12 6 4 0.6 0.155 0.253 0.827 24 5 1 0.5 0.158 0.184 0.753

Hide

circ_data\$Markers.Surveillance <- factor(circ_data\$Markers.Surveillance, levels=c("NEGAT
IVE","POSITIVE"))</pre>

cox_fit <- coxph(surv_object ~ Markers.Surveillance, data=circ_data)
ggforest(cox_fit,data = circ_data)</pre>

0.5

Hide

2.5

3 3.5

summary(cox_fit)

AIC: 103.64; Concordance Index: 0.49

```
Call:
coxph(formula = surv_object ~ Markers.Surveillance, data = circ_data)
  n= 33, number of events= 19
                               coef exp(coef) se(coef)
                                                           z Pr(>|z|)
Markers.SurveillancePOSITIVE 0.2453
                                       1.2780
                                                0.4862 0.505
                                                                 0.614
                             exp(coef) exp(-coef) lower .95 upper .95
Markers.SurveillancePOSITIVE
                                 1.278
                                           0.7825
                                                     0.4928
Concordance= 0.49 (se = 0.058)
Likelihood ratio test= 0.25 on 1 df,
                                        p = 0.6
Wald test
                     = 0.25 on 1 df,
                                        p = 0.6
Score (logrank) test = 0.26 on 1 df,
                                        p = 0.6
```

```
cox_fit_summary <- summary(cox_fit)

# Extract values for HR, 95% CI, and p-value
HR <- cox_fit_summary$coefficients[2]
lower_CI <- cox_fit_summary$conf.int[3]
upper_CI <- cox_fit_summary$conf.int[4]
p_value <- cox_fit_summary$coefficients[5]
label_text <- paste0("HR = ", round(HR, 2), " (", round(lower_CI, 2), "-", round(upper_CI, 2), "); p = ", round(p_value, 3))
print(label_text)</pre>
```

```
[1] "HR = 1.28 (0.49-3.31); p = 0.614"
```