Eigenvectors and Linear Transformations

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ so $\dim(V) = n$, let W be a vector space with basis $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_m\}$ so $\dim(W) = m$, and let $T : V \to W$ be a linear transformation. Thus for any $\mathbf{v} \in V$, there exist unique scalars b_1, \dots, b_n such that $\mathbf{v} = b_1 \mathbf{b}_1 + \dots + b_n \mathbf{b}_n$, so $[\mathbf{x}]_{\mathcal{B}} = \langle b_1, \dots, b_n \rangle \in \mathbb{R}^n$ and, since $T : V \to W$ is a linear transformation, it follows that $T(\mathbf{v}) = T(b_1 \mathbf{b}_1 + \dots + b_n \mathbf{b}_n) = b_1 T(\mathbf{b}_1) + \dots + b_n T(\mathbf{b}_n)$, where $T(\mathbf{v}) \in W$ and, by the linearity of the coordinate mapping $T(\mathbf{v}) \mapsto [T(\mathbf{v})]_{\mathcal{C}}$ from W onto \mathbb{R}^m , it follows from $T(\mathbf{v}) = T(b_1 \mathbf{b}_1 + \dots + b_n \mathbf{b}_n) = b_1 T(\mathbf{b}_1) + \dots + b_n T(\mathbf{b}_n)$ that $[T(\mathbf{v})]_{\mathcal{C}} = b_1 [T(\mathbf{b}_1)]_{\mathcal{C}} + \dots + b_n [T(\mathbf{b}_n)]_{\mathcal{C}}$. Observe that since each $[T(\mathbf{b}_i)]_{\mathcal{C}} \in \mathbb{R}^m$, it follows that the vector equation $[T(\mathbf{v})]_{\mathcal{C}} = b_1 [T(\mathbf{b}_1)]_{\mathcal{C}} + \dots + b_n [T(\mathbf{b}_n)]_{\mathcal{C}}$ can be expressed as a matrix equation $[T(\mathbf{v})]_{\mathcal{C}} = M[\mathbf{v}]_{\mathcal{B}}$, where M is the matrix for T relative to \mathcal{B} and \mathcal{C} , defined by $M = [[T(\mathbf{b}_1)]_{\mathcal{C}} \dots [T(\mathbf{b}_n)]_{\mathcal{C}}]$.

Linear Transformations from V to V

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $T: V \to V$ be a linear transformation, then the matrix for T relative to \mathcal{B} is a matrix $[T]_{\mathcal{B}} = [[T(\mathbf{b}_1)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}]$ that satisfies the matrix equation $[T(\mathbf{v})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}$ for all $\mathbf{v} \in V$.

Linear Transformations on \mathbb{R}^n