- **1.** C
- **2.** B
- 3.
- 1. 7.3
 - (a) Consider Katz centrality $\mathbf{x} = \alpha A \mathbf{x} + \mathbf{1}$. Solving we get $(I \alpha A) \mathbf{x} = \mathbf{1}$. If we can take an inverse (which we can with probability 1), we get that $\mathbf{x} = (I \alpha A)^{-1} \mathbf{1}$. We then see we have a geometric series. So

$$\mathbf{x} = \left(\sum_{i=0}^{\infty} (\alpha A)^r\right) \mathbf{1} \tag{1}$$

$$= \mathbf{1} + \alpha A \mathbf{1} + \alpha^2 A^2 \mathbf{1} + \cdots . \tag{2}$$

- (b) Recall that $A\mathbf{1} = \mathbf{k}$. So we have that $\mathbf{x} = \mathbf{1} + \alpha \mathbf{k} + \alpha^2 A \mathbf{k} + \cdots$. Thus, we get that $\mathbf{x} = \mathbf{1} + (\sum_{i=0}^{\infty} \alpha^{i+1} A^i) \mathbf{k} = \mathbf{1} + \alpha (\sum_{i=0}^{\infty} \alpha^i A^i) \mathbf{k}$. Thus, for small α , we get that $\mathbf{x} \approx \mathbf{1} + \alpha \mathbf{k}$ since the terms $\alpha^r \mathbf{k}$ for $r \geq 2$ go to zero much faster. Adding $\mathbf{1}$ to \mathbf{k} does not change the ranking of \mathbf{k} and multiplying each entry of \mathbf{k} by the same constant α does not change the ranking. So \mathbf{x} gives the same ranking at \mathbf{k} (i.e. degree centrality) as $\alpha \to 0$.
- (c) Consider when $\alpha \to \frac{1}{\kappa_1}$. Then by part (a) we have that **x** is approaching

$$\mathbf{x} \to \frac{1}{\kappa_1} A \mathbf{x} + \mathbf{1}.$$

Note that adding 1 to each entry of $\frac{1}{\kappa_1}A\mathbf{x}$ does not change the ranking of any of the nodes. Thus the ranking of $\frac{1}{\kappa_1}A\mathbf{x} + \mathbf{1}$ is the same as eigenvector centrality. Thus, \mathbf{x} approaches eigenvector centrality as $\alpha \to \frac{1}{\kappa_1}$.

2. 7.5: Let the center node be defined as x_1 . Then

$$x_1 = \alpha \sum_{j} A_{1j} \frac{x_j}{k_j^{out}} + \beta.$$

Since we are looking at a tree, we know that $k_i^{out} = 1$ for all nodes x_i . So we get that

$$x_1 = \alpha \sum_{j} A_{1j} x_j + \beta.$$

This is just Katz centrality. Thus by problem 7.3, we see that

$$x_1 = \beta(1 + \alpha \sum_{j} A_{1j} \mathbf{1} + \alpha^2 \sum_{j} A_{1j}^2 \mathbf{1} + \cdots).$$

Recall that $\sum_j A_{1j}^r 1$ counts the number of walks of length r to 1. Since G is a tree, we know that the number of walks of length r to 1 is the number of nodes with $d_i = r$ (where d_i is the distance from i to the center node). This means that $x_1 = \beta(1 + \sum_i \alpha^{d_i})$.