matrices

Exercice 1

Dans les cas suivants, le produit A.x du vecteur x par la matrice A est il bien défini? Si oui le calculer.

1.
$$A = \begin{pmatrix} 4 & 2 & 0 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}.$$

2.
$$A = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 2 & 1 & 5 \end{pmatrix}$.

3.
$$A = \begin{pmatrix} 4 \\ -1 \\ -2 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 3 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

5.
$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \\ 5 & 7 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

6.
$$A = \begin{pmatrix} 1 & 2 \\ -6 & 3 \\ 5 & 8 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

7.
$$A = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 7 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

8.
$$A = \begin{pmatrix} 45 & 2 & 1 \\ 2 & 16 & 7 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 2 \\ 7 \\ 4 \\ 5 \end{pmatrix}.$$

9.
$$A = \begin{pmatrix} 4 & 2 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ 3 & -1 & 0 & 0 \\ 6 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}.$$

Exercice 2:

Quelles sont les applications linéaires de \mathbb{R} dans \mathbb{R} ? Nature de leur graphe?

Exercice 3:

1. Montrer que les deux applications F et G suivantes sont linéaires :

$$F: \mathbb{R}^2 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x+y \\ 3x-y \\ y \end{pmatrix}$$
$$G: \mathbb{R}^3 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y+z \\ 2x-y \\ z \end{pmatrix}.$$

2. Déterminer $G \circ F$.

Exercice 4:

1. Parmi les applications suivantes de \mathbb{R}^n dans \mathbb{R}^m , lesquelles sont linéaires ? Pour celles qui sont linéaires, donner leur matrice.

(a)
$$F_1: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x + 3y \\ x - y \\ y \end{pmatrix}$.

(b)
$$F_2: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{x^2 + y^2 + 1} \\ 2x - y \\ 0 \end{pmatrix}$.

(c)
$$F_3: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+3y \\ 2x-y \end{pmatrix}$.

(d)
$$F_4: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y+z \\ 2x-y \\ z \end{pmatrix}$.

2. Calculer $F_1 \circ F_3$, $F_2 \circ F_3$, $F_4 \circ F_1$

Exercice 5:

Dans les cas suivants, le produit AB des matrices A et B est il bien défini? Si oui le calculer.

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & 3 \end{pmatrix}.$$

2.
$$A = \begin{pmatrix} 45 & 2 & 1 \\ 2 & 16 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 7 & 2 \\ 4 & 5 \\ 5 & 0 \end{pmatrix}$$
.

3.
$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \\ 5 & 7 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

4.
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -6 & 3 & 8 \\ 5 & 8 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

5.
$$A = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}.$$

6.
$$A = \begin{pmatrix} 4 & 2 & 2 & 0 \\ 12 & 1 & 7 & 1 \\ 3 & -1 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}.$$

Exercice 6:

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par f(x) = 2x + 1.

- 1. L'application f est-elle linéaire?
- 2. Justifier que l'application f est inversible.
- 3. Exprimer f comme la composée de deux fonctions élémentaire et en déduire f^{-1} .

Exercice 7:

On considère la symétrie orthogonale $s_1:\mathbb{R}^3\to\mathbb{R}^3$ par rapport au plan d'équation z=0 et la symétrie orthogonale $s_2:\mathbb{R}^3\to\mathbb{R}^3$ par rapport au plan d'équation x=0.

- 1. Déterminer les matrices A_1 de s_1 et A_2 de s_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .
- 3. En déduire $s_1 \circ s_2$ et $s_2 \circ s_1$.

Exercice 8:

On considère la rotation $r_1: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Oz (orienté par le vecteur (0,0,1)) et d'angle $\frac{\pi}{2}$ et la rotation $r_2: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Ox et d'angle π .

- 1. Déterminer les matrices A_1 de r_1 et A_2 de r_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .
- 3. Calculer l'ensemble Δ des points fixes de $r_1 \circ r_2$ et l'ensemble Δ' des points fixes de $r_2 \circ r_1$.
- 4. Choisir un vecteur v orthogonal à Δ et déterminer sont image par $r_1 \circ r_2$. En déduire $r_1 \circ r_2$.
- 5. Choisir un vecteur w orthogonal à Δ' et déterminer sont image par $r_2 \circ r_1$. En déduire $r_2 \circ r_1$.

Exercice 9:

Calculer AB, BA, tr(AB), tr(BA) pour les matrices suivantes.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}.$$

Que remarquez vous?

Exercice 10

Soit $A \in M_2(\mathbb{R})$, $B \in M_2(\mathbb{R})$. Montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Exercice 11:

Soit $A \in M_2(\mathbb{R})$. Montrer que $\operatorname{tr}(A^t A) \geq 0$.

Exercice 12:

Soient $m, n \in \mathbb{N}^*$. Soit $A \in M_{n,m}(\mathbb{R})$, $B \in M_{m,n}(\mathbb{R})$. Montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.