第11回演習課題解答

習近平

2022年5月18日

目 次

11.1	問題 11.1	2
	11.1.1 $(1)I$ 上一様収束する	2
	11.1.2 (2)1 上一様収束しない	2
	11.1.3 (3)1 上一様収束しない	2
	11.1.4 (4)1 上一様収束する	3
	11.1.5 (5)I 上一様収束しない	3
	11.1.6 (6)I 上一様収束しない	3
11.2	各 f_n は区間 I 上連続であり , (f_n) が I 上で f に一様収束とす	
	る.この時, f も I 上連続である	4
11.3	# 雑談	1

11.1 問題 11.1

11.1.1 (1)I 上一様収束する

f(x) = 0

11.1.2 (2)I上一様収束しない

$$f(x) = 0$$

11.1.3 (3)I上一様収束しない

$$f(x) = \begin{cases} 1, x = 1\\ 0, x \neq 1 \end{cases}$$

11.1.4 (4)I上一様収束する

$$f(x) = 0$$

11.1.5 (5) / 上一様収束しない

$$f(x) = 0$$

11.1.6 (6) / 上一様収束しない

$$f(x) = 1$$

11.2 各 f_n は区間 I 上連続であり, (f_n) が I 上で f に 一様収束とする.この時,f も I 上連続である

示すべきことは以下の論理式で表される命題である:

 $\forall a \in I; \forall \varepsilon \in \mathbb{R}_{>0}; \exists \delta \in \mathbb{R}_{>0}; \forall x \in I; (|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon)$

 $a \in I, \varepsilon \in \mathbb{R}_{>0}$ を任意に取る.この時, $\varepsilon_0 = \varepsilon/3$ とする.

 (f_n) が I 上で f に一様収束することより, ε_0 に対し,ある自然数 N が存在し, $n\geq N$ を満たす任意の n に対し,任意の $x\in I$ に関して, $|f_n(x)-f(x)|<\varepsilon_0$ が成り立つ.

このような自然数 N, n を一つずつ取る.

この自然数 n に対し , f_n が I 上で連続であることより , a, ε_0 に対し , ある $\delta \in \mathbb{R}_{>0}$ が存在し , $|x-a| < \delta$ を満たす任意の $x \in I$ に関して , $|f_n(x)-f_n(a)| < \varepsilon_0$ が成立する .

このような $\delta \in \mathbb{R}_{>0}$ を取る.

この時, $|x-a|<\delta$ を満たす任意の $x\in I$ に対し,先程の自然数 n を用いて,以下の関係式が得られる:

$$|f(x) - f(a)| = |f(x) - f_n(x) + f_n(x) - f_n(a) + f_n(a) - f(a)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| \quad (11.1)$$

$$< \varepsilon_0 + \varepsilon_0 + \varepsilon_0 = \varepsilon$$

以上より,命題が成り立つことを示せた.

11.3 # 雑談

最後の問題での f_n が一様連続ならば f も一様連続になるかな、とりあえずここまでしておいて,来週以降確認するとしよう.