

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Оглавление

КОМПЛЕКТАЦИЯ	3
ОПИСАНИЕ ROBOX	4
ОПИСАНИЕ СЕРВОПРИВОДА	6
ОПИСАНИЕ RANGER CEHCOPA	7
НАЧАЛО РАБОТЫ	

КОМПЛЕКТАЦИЯ

- 1. Кейс
- 2. Сервопривод
- 3. Robox
- 4. Кабель для подключения Robox к ПК
- 5. Кабель для подключения датчика расстояния к Robox
- 6. Кабель для подключения сервопривода к Robox
- 7. Датчик расстояния с подставкой
- 8. Блок питания
- 9. Кабель для подключения блока питания к сети 220 В

ОПИСАНИЕ ROBOX

Robox является преобразователем интерфейсов USB-RS485 для подключения к ПК сервоприводов и датчиков расстояния Promobot.

Характеристики:

- Входное напряжение.....~220 B
- Выходное напряжение.....12 В
- Интерфейс......USB 2.0
- Интерфейс работы с устройствами...... RS-485, UART

Сторона А:

- 1. Кнопка разрыва питания
- 2. USB разъем для подключения к ПК
- 3. Индикация входного питания
- 4. Разъем питания
- 5. Переключатель режима работы преобразователя
- 6. Разъем UART

Сторона В:

- 7. Разъемы для подключения сервопривода
- 8. Индикация выходного питания
- 9. Индикация приема данных от устройств
- 10. Индикация передачи данных к устройствам
- 11. Разъемы для подключения датчика расстояния

ОПИСАНИЕ СЕРВОПРИВОДА

Сервопривод является высокопроизводительным исполнительным механизмом, разработанным специально для нужд робототехники. Данный сервопривод может использоваться для создания подвижных механизмов повышенной сложности, например, роботов-манипуляторов, pan-tilt модулей и т.п.

Ключевые особенности:

- Возможность последовательного подключения множества сервоприводов (до 250) посредством шины RS-485.
- Контур ПИД-регулирования по положению.
- Контур ПИД-регулирования по скорости.
- Высокое разрешение измерения положения сервопривода (14-бит).
- Высокоточное измерение тока двигателя.
- Быстрая интеграция сервопривода благодаря использованию широко распространённого протокола MODBUS.
- Возможность подключения внешнего датчика углового положения вала для более удобного монтажа.
- Гибкая настройка множества параметров под свои решения.
- Возможность удаленной прошивки сервопривода по шине RS-485.

Характеристики:

•	Напряжение питания	8-40 B
•	Ном. потребление (без нагрузки)	125 мА
•	Ном. потребление (удержание)	2.0 A
•	Крутящий момент удержания (24 В)	35.82 кг/см
•	Передаточное соотношение	1:32
•	Разрешение магнитного энкодера	0.02 °
•	Скорость холостого хода (24 В)	80 об/мин
•	Macca	500 г

ОПИСАНИЕ RANGER CEHCOPA

Ranger_Sensor предназначен для детектирования препятствий и последующего определения расстояния до них. В данном устройстве используются как ультразвуковые (УЗ) сигналы измерения, так и инфракрасные (ИК), что дает преимущество в использовании в местах, где только УЗ-датчик не применим (сложная геометрия препятствий, звукопоглощающие поверхности и т.д.).

Ключевые особенности:

- "Гибридный" режим работы. ИК + УЗ измерения.
- Возможность последовательного подключения множества датчиков (до 250) посредством шины RS-485.
- Быстрая интеграция датчика благодаря использованию широко распространённого протокола MODBUS.
- Возможность удаленной прошивки датчика по шине RS-485.

Характеристики:

•	Напряжение питания	9-12 B
•	Ном. потребление (режим измерения)	70 мА
•	Частота УЗ-сигнала	40 кГц
•	Звуковое давление УЗ-излучателя	120 дБ
•	Чувствительность УЗ-приемника	64 дБ
•	Рабочий угол измерения (УЗ)	30 °
•	Макс. измеряемое расстояние (УЗ)	.255 см
•	Мин. измеряемое расстояние (УЗ)	.4 см
•	Длина волны ИК-излучателя	940 нм
•	Макс. измеряемое расстояние (ИК)	200 см
•	Мин. измеряемое расстояние (ИК)	2 см
•	Рабочий угол ИК-излучателя	
•	Рабочий угол ИК-приемника	

НАЧАЛО РАБОТЫ

Внимание! Необходимо выполнять работы в строгом порядке, описанном далее.

- 1. Подключить блок питания к сети 220 В
- 2. Убедиться, что кнопка разрыва питания у Robox в положении "ВЫКЛ"
- 3. Подключить блок питания к Robox
- 4. Подключить кабель для работы с сервоприводом

5. Подключить кабель для работы с датчиком расстояния

- 6. Переключить кнопку разрыва питания в положение "ВКЛ"
- 7. Проверить индикацию выходного питания Robox
- 8. Перевести переключатель режима работы преобразователя в правое положение (RS485)

9. Подключить Robox к ПК USB кабелем

10. Для работы с устройствами через Robox необходимо скачать требуемые репозитории с https://github.com/Promobot-education

Robox. Руководство пользователя