Introduction into linear algebra Mathematical Preliminaries

Ali Golestani

Department of Mathematics Iran University of Science and Technology

Iran University of Science and Technology, Feb 2023

Mathematical Preliminaries

Fields

Definition 1.1

Let S be a non-empty set and $\phi: S \times S \to S$ a function.

This function is called a Binary Operator and for the image of $(a, b) \in S$ under the function ϕ we write $\phi(a, b)$ or simply $a \cdot b$.

Mathematical Preliminaries

Fields

Definition 1.1

Let S be a non-empty set and $\phi: S \times S \rightarrow S$ a function.

This function is called a Binary Operator and for the image of $(a, b) \in S$ under the function ϕ we write $\phi(a, b)$ or simply $a \cdot b$.

Definition 1.2

Let S be a non-empty set and ϕ a binary operator. The orbit of $x \in S$ is defined as follows:

$$orb(x) = \{x^j; j \in \mathbb{N}\}$$

راحاء ماستون

Corollary 1.1

Note that the set ${\it S}$ forms clouser under the operation $\phi.$

Meaning, for every $a, b \in S$ the product $a \cdot b \in S$

Theorem 1.1

If S has finite number of elements, say m, ϕ must be **Surjective**.

IUST 2023

Theorem 1.1

If S has finite number of elements, say m, ϕ must be **Surjective**.

Proof

(Proof by R.A.A) Let ϕ be non-surjective, then there exists $y \in S$ s.t. $\phi^{-1}(y) \notin S$.

From definition (1.2), $orb(y) = \{y, y^2, \dots, y^m\}$. From piegon hole principle, there exists $n \in \mathbb{N}$ s.t. $y^n = y$. Hence, for every $y \in S$, the pre-image $\phi^{-1}(y) \neq \emptyset$ and thus, ϕ is surjective.

4 / 10

IUST 2023

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

5/10

Golestani, Ali (IUST) Linear Algebra 101 IUST 2023

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

Conditions on ϕ

ullet ϕ is commutative.

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

- \bullet ϕ is commutative.
- \bullet ϕ is associative.

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

- \bullet ϕ is commutative.
- \bullet ϕ is associative.
- There exists a unique element $o \in S$ s.t. $\phi(x, o) = x$ for all $x \in S$.

Definition 1.3

Let S be a non-empty set and ϕ and ψ two binary operations on S. The triplet (S, ϕ, ψ) is called a field if the following conditions are satisfied:

- \bullet ϕ is commutative.
- \bullet ϕ is associative.
- There exists a unique element $o \in S$ s.t. $\phi(x, o) = x$ for all $x \in S$.
- For every $x \in S$ there exists a unique element $-x \in S$ s.t. $\phi(x,-x)=o.$

Conditions on ψ

 $\bullet \ \psi$ is commutative.

- ullet ψ is commutative.
- ullet ψ is associative.

Conditions on ψ

- ullet ψ is commutative.
- ullet ψ is associative.
- There exists a unique non-zero element $e \in S$ s.t. $\psi(x,e) = x$ for all $x \in S$.

6/10

Conditions on ψ

- ullet ψ is commutative.
- ullet ψ is associative.
- There exists a <u>unique</u> non-zero element $e \in S$ s.t. $\psi(x, e) = x$ for all $x \in S$.
- For every non-zero element $x \in S$ there exists a <u>unique</u> element $x^{-1} \in S$ s.t. $\psi(x, x^{-1}) = e$.

《四》《圖》《重》《重》

Conditions on ψ

- ullet ψ is commutative.
- ullet ψ is associative.
- There exists a <u>unique</u> non-zero element $e \in S$ s.t. $\psi(x, e) = x$ for all $x \in S$.
- For every non-zero element $x \in S$ there exists a <u>unique</u> element $x^{-1} \in S$ s.t. $\psi(x, x^{-1}) = e$.
- ψ distributes over ϕ .

6/10

《四》《圖》《重》《重》

IUST 2023

Note: From now on, we take ϕ to be addition and ψ to be multiplication; we also show them with the symbols (+) and (\cdot) .

Also, we show zero element o as 0 and identity element e as 1 if needed.

example 1.1

The set of complex numbers $\mathbb C$ forms a field under the addition and multiplication of complex numbers.

8/10

example 1.1

The set of complex numbers $\mathbb C$ forms a field under the addition and multiplication of complex numbers.

example 1.2

The set of rational numbers $\mathbb Q$ forms a field under the ordinary addition and multiplication.

8/10

example 1.1

The set of complex numbers $\mathbb C$ forms a field under the addition and multiplication of complex numbers.

example 1.2

The set of rational numbers ${\mathbb Q}$ forms a field under the ordinary addition and multiplication.

example 1.3

The set $\mathbb{C}[\sqrt{2}]$ forms a field under the addition and multiplication of complex numbers. (Assignments)

Vector Spaces

Definition 1.4

Let K be a field and V be a non-empty set of objects (aka vectors). The tuple (V, K) is called a linear space iff:

Vector Spaces

Definition 1.4

Let K be a field and V be a non-empty set of objects (aka vectors). The tuple (V, K) is called a linear space iff:

- V consists of an addition operator (+) satisfying the first four conditions of Addition (Definition 1.3).
- For every $k, k' \in K$ and $v, v_1, v_2 \in V$:
 - k(k'v) = kk'(v)
 - $k(v_1 + v_2) = kv_1 + kv_2$

Vector Spaces

example 1.4

Let K be a field, and V be the set of all n-tuples (x_1, x_2, \ldots, x_n) consisting of elements in K.

Define multiplication and addition as below:

- (+): For every $(x_i)_{i=1}^n$ and $(x_j)_{j=1}^n$, $(x_i) + (x_j) = (x_i + x_j)$.
- (·): For every $k \in K$, $k(x_i)_{i=1}^n = (kx_i)_{i=1}^n$

The tuple (V, K) is a linear space.

10 / 10

Golestani, Ali (IUST) Linear Algebra 101