C-Computerversuch

16. Oktober 2015

Versuchsleiter: Raphael Frey

Assistent: Jeffrey Gantner

1 Arbeitsgrundlagen

1.1 Typen von Messfehlern

- Systematische Fehler: Verursacht durch Versuchsandordnung, Versuchsumgebung, Messvorgang. Bewirken entweder eine systematische Abweichung des Messergebnisses vom eigentlichen Wert oder eine Unsicherheit der Messgrösse. Falls sie erkannt werden können sie meist korrigiert werden.
- Zufällige Fehler: Immer vorhanden, auch bei einer von systematischen Fehlern freien Anordnung. Lassen sich durch mehrmalige Wiederholung derselben Messung beliebig verkleinern.

1.2 Angabe der Genauigkeit von Messresultaten

Bestimmung von Fehlern sind Abschätzungen. Daher ist es sinnlos, sie ganauer als ca. 10%, also etwa 1 signifikante Ziffer, anzugeben.

Mittelwert der Messungen:
$$\overline{T} = 147.85 \,\mathrm{s}$$
 (1)

absoluter Fehler:
$$s_T = 4.9 \,\mathrm{s}$$
 (2)

relativer Fehler:
$$r_T = \frac{s_T}{\overline{T}} = 0.033 = 3.3\%$$
 (3)

Messresultat:
$$T = (148 \pm 5) s$$
 (4)

unsinnig:
$$T = (147.8532 \pm 4.8700) s$$
 (5)

Merke:

- Zufällige Fehler aus einer Messreihe werden mit s bezeichnet, auf Abschätzungen beruhende Unsicherheiten mit Δ .
- Üblicherweise werden relative Fehler in %, ‰ oder **ppm** (**p**arts **p**er **m**illion) angegeben.
- Eine Messgenauigkeit von 1 % gilt als gut, 1% ist sehr gut, 1ppm astronomisch gut.

1.3 Die Fehlerbestimmung für einzelne Grössen

1 Einmalige Messung einer Grösse

Fehler wird abgeschätzt. Erfahrungssache. Wird mit Δ bezeichnet (z.B. ΔT)

2 Wiederholte Messung einer Grösse

Seien N Messergebnisse $x_1, x_2, ... x_N$ unter gleichen Bedingungen ermittelt worden. Dann wird der arithmetische Mittelwert dem wahren Wert x_0 umso näher kommen, je grösser N wird.

Arithmetischer Mittelwert aller Messergebnisse:
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (6)

Fehler dieses Mittelwertes:
$$s_{\overline{x}} = \sqrt{\frac{\sum_{1}^{N} (x_i - \overline{x})^2}{N \cdot (N - 1)}}$$
 (7)

Ergebnis:
$$x = \overline{x} \pm s_{\overline{x}}$$
 (8)

Merke:

- Messwerte, die extrem vom Mittelwert abweichen, werden als Fehlmessungen (Ausreisser) betrachtet und nicht in die Fehlerrechnung einbezogen.
- Wahrscheinlichkeitstheorie: wahrer Wert T_0 liegt mit Wahrscheinlichkeit $68\,\%$ innerhalb des Intervals $T_0 \pm s_T$, mit Wahrscheinlichkeit 95 % innerhalb des Intervals $T_0 \pm 2s_T$ und mit Wahrscheinlichkeit 99 % innerhalb des Intervals $T_0 \pm 3s_T$

Mittelwertbildung mit Gewichten

Resultate mit unterschiedlichen Genauigkeiten:

$$x_1 = \overline{x_1} \pm s_{\overline{x_1}} \tag{9}$$

$$x_2 = \overline{x_2} \pm s_{\overline{x_2}} \tag{10}$$

$$\dots$$
 (11)

$$x_n = \overline{x_n} \pm s_{\overline{x_n}} \tag{12}$$

Wahrscheinlichster Wert \overline{x} wird durch Bildung des gewichteten Mittelwerts erreicht:

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}} \tag{13}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} g_{\overline{x_i}} \cdot x_i}{\sum_{i=1}^{n} g_{\overline{x_i}}}$$
(13)
Mit den Gewichten: $g_{\overline{x_i}} = \frac{1}{s_{\overline{x_i}^2}}$

Fehler des gewichteten Mittelwertes:
$$s_{\overline{x}} = \frac{1}{\sqrt{\sum_{i=1}^{n} g_{\overline{x_i}}}}$$
 (15)

Messergebnisse mit betragsmässig kleineren Fehlern werden also stärker gewichtet.

Fehlertheorie

Abbildung 1: Histogramm mit Gauss'scher Normalverteilung. Quelle: Skript "Arbeitsunterlagen", p13.

Die in Abbildung 7 gezeigte Kurve h(x) kann beschrieben werden mit:

$$h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$
 (16)

$$x_0$$
 Erwartungswert (wahrer Wert) (18)

$$\sigma$$
 Standardabweichung (19)

Für steigendes N geht der gemessene Mittelwert \overline{x} gegen den wahren Wert x_0 .

experimentelle Standardabweichung:
$$s = \sqrt{\frac{\sum_{1}^{N} (x_i - \overline{x})^2}{N - 1}}$$
 (20)

Die experimentelle Standardabweichung s konvergiert für $N \to D\infty$ gegen σ . er Fehler der Einzelmessung s_{T_i} und der Fehler $s_{\overline{T}}$ des Mittelwertes stehen in folgender Beziehung:

$$s_{\overline{T}} = \frac{s_{T_i}}{\sqrt{N}} \tag{21}$$

Daraus folgt z.B., dass der Mittelwert einer Serie von 100 Messungen die zehnfache Genauigkeit der Einzelmessung aufweist.

5 Regression ("Fitten")

$$\chi^{2}(a_{0}, a_{1}, \dots) = \sum_{i=1}^{N} \frac{[y_{i} - f(x_{i}, a_{0}, a_{1}, \dots)]^{2}}{\sigma_{i}^{2}} : \text{minimal}$$
(22)

wobei:
$$(23)$$

$$f(x, a_0, a_1)$$
: gegebene Gesetzmässigkeit/Funktion (24)

$$x_i, y_i$$
: Messwertpaare (25)

- Nichtlineare Funktionen f: Nichtlineare Regression. Gute Startwerde erforderlich für a_i .
- Polynomiale Funktion f: Lineare Regression. Unabhängig vom Startwert existiert lediglich ein Minimum. Startwerte für a_i daher nicht relevant.
- Verwendung einer Software zum Fitten: x-Werte sollen als Stellgrösse (absolute genau) betrachtet werden, y-Werte als fehlerbehaftet (Messgrösse).

Berechnung des Fehlers σ_i der Einzelmessung aus dem Fit:

$$\sigma_i = \sqrt{\frac{\sum_{1}^{N} (y_i - f(x_i, a_0, a_1, \dots))^2}{N - m}}$$
 (26)

Wobei N die Anzahl Messergebnisse, m die Anzahl Parameter $a_0, ... a_m$ bezeichnet. Die Parameter a_i müssen aus dem Fit herausgelesen werden.

1.4 Fehlerfortpflanzung und Auswertung

1 Indirekte Messung, das Fehlerfortpflanzungsgesetz

Seien:

Resultatgrösse:
$$R = R(x, y, z, ...)$$
 (27)

$$x = \overline{x} \pm s_{\overline{x}} \tag{29}$$

$$y = \overline{y} \pm s_{\overline{y}} \tag{30}$$

$$z = \overline{z} \pm s_{\overline{z}} \tag{31}$$

Gesucht: Mittelwert \overline{R} und mittlerer Fehler $s_{\overline{R}}$

$$\overline{R} = R(\overline{x}, \overline{y}, \overline{z}, \dots) \tag{32}$$

Mittlerer, absoluter Fehler (statistischer Fehler): Bestimmen mittels dem Gauss'schen Fehler-fortpflanzungsgesetz:

$$s_{\overline{R}} = \sqrt{\left(\frac{\partial R}{\partial x}\Big|_{\overline{R}} \cdot s_{\overline{x}}\right)^2 + \left(\frac{\partial R}{\partial y}\Big|_{\overline{R}} \cdot s_{\overline{y}}\right)^2 + \left(\frac{\partial R}{\partial z}\Big|_{\overline{R}} \cdot s_{\overline{z}}\right)^2 + \dots}$$
(33)

Wobei $\frac{\partial R}{\partial z}|_{\overline{R}}$ für die partielle Ableitung der Funktion R nach der Variablen x, ausgewertet an der Stelle der Mittelwerte $\overline{x}, \overline{y}, \overline{z}, \dots$ steht.

Der Fehler $\pm s_R$ bezeichnet die Intervallbreite, in welcher der wahre Wert mit 68 % Wahrscheinlichkeit liegt.

2 Spezialfälle des Fehlerfortpflanzungsgesetzes ("Rezepte")

- Addition und Subtraktion: $s_R = \sqrt{s_x^2 + s_y^2}$. Es werden die absoluten Fehler quadratisch addiert.
- Multiplikation und Division: $r_R = \frac{s_R}{R} = \sqrt{(\frac{s_x}{x})^2 + (\frac{s_y}{y})^2} = \sqrt{r_x^2 + r_y^2}$. Es werden die relativen Fehler quadratisch addiert.
- Potenzen: $r_R = \frac{s_R}{R} = n * r_x$. Der relative Fehler der Messgrösse wird mit dem Exponenten multipliziert.

In Endresultaten sind immer absolute Fehler anzugeben.

6 2 DURCHFÜHRUNG

2 Durchführung

Die Daten des Versuches sind vom Dozenten zur Verfügung gestellt. Die verwendeten Tools beinhalten Taschenrechner und Tabellenkalkulation, sowie QTIPlot.

3 Auswertung

Da der Punkt dieses Versuches die Fehlerrechnung selbst ist, beinhaltet dieses Kapitel ausnahmsweise auch die Fehlerrechnung. Üblicherweise ist diese jedoch in einem separaten Kapitel zu finden.

3.1 Aufgabe 1: Schallgeschwindigkeit

1 Daten

• Länge der Messtrecke: $(2.561 \pm 0.003) \,\mathrm{m}$

• Raumtemperatur: $\vartheta = 23\,^{\circ}\mathrm{C}$

Messprotokoll:

Messung	Laufzeit t_i (ms)	Messung	Laufzeit t_i (ms)
1	6.83	11	7.36
2	7.41	12	7.31
3	7.32	13	7.56
4	7.31	14	7.14
5	7.23	15	6.94
6	7.68	16	7.32
7	7.33	17	7.34
8	7.7	18	7.28
9	7.93	19	7.01
10	7.54	20	7.76

2 Mittlere Laufzeit und ihre Unsicherheit

Mittlere Laufzeit:

$$\bar{t} = \frac{1}{20} \sum_{i=1}^{20} t_i = 7.37 \,\text{ms}$$
 (34)

Fehler des Mittelwertes:

$$s_{\bar{t}} = \sqrt{\frac{\sum_{1}^{20} (t_i - \bar{t})^2}{20 \cdot 19}} = 0.062 \,\text{ms}$$
 (35)

Standardabweichung:

$$s_{\bar{t}} = \sqrt{\frac{\sum_{1}^{20} (t_i - \bar{t})^2}{19}} = 0.28 \,\text{ms}$$
 (36)

3 Wert und Unsicherheit der Schallgeschwindigkeit

Formel für Schallgeschwindigkeit in trockener Luft um 0 °C:

$$c_{luft} = (331.3 + 0.606 \cdot \vartheta) \,\mathrm{m \, s^{-1}} = (331.3 + 0.606 \cdot 23) \,\mathrm{m \, s^{-1}} = 345.24 \,\mathrm{m \, s^{-1}}$$
 (37)

Berechnung der mittleren Geschwindigkeit:

$$c = \frac{s}{t} \tag{38}$$

$$\bar{c} = \frac{s}{\bar{t}} = \frac{2.561 \,\mathrm{m}}{7.37 \,\mathrm{ms}} = 347.73 \,\mathrm{m \, s}^{-1}$$
 (39)

(40)

Gauss'sches Fehlerfortpflanzungsgesetz:

$$s_{\overline{R}} = \sqrt{\left(\frac{\partial R}{\partial x}\Big|_{\overline{R}} \cdot s_{\overline{x}}\right)^2 + \left(\frac{\partial R}{\partial y}\Big|_{\overline{R}} \cdot s_{\overline{y}}\right)^2 + \left(\frac{\partial R}{\partial z}\Big|_{\overline{R}} \cdot s_{\overline{z}}\right)^2 + \dots}$$
(41)

In diesem Fall ist $R(x,y,z,...):=c(s,t)=\frac{s}{t}.$ Es ergibt sich die Formel:

$$s_{\overline{c(s,t)}} = \sqrt{\left(\frac{\partial c}{\partial s}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(\frac{\partial c}{\partial t}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2}$$

$$= \sqrt{\left(\frac{\partial}{\partial s} \frac{s}{t}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(\frac{\partial}{\partial t} \frac{s}{t}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2}$$

$$= \sqrt{\left(\frac{1}{t}\Big|_{\overline{c}} \cdot s_{\overline{s}}\right)^2 + \left(-\frac{s}{t^2}\Big|_{\overline{c}} \cdot s_{\overline{t}}\right)^2}$$

$$= \sqrt{\left(\frac{1}{\overline{t}} \cdot s_{\overline{s}}\right)^2 + \left(-\frac{\overline{s}}{\overline{t}^2} \cdot s_{\overline{t}}\right)^2}$$

$$= \sqrt{\left(\frac{1}{7.37 \,\mathrm{ms}} \cdot 3 \,\mathrm{mm}\right)^2 + \left(-\frac{2.561 \,\mathrm{m}}{(7.37 \,\mathrm{ms})^2} \cdot 0.062 \,\mathrm{ms}\right)^2}$$

$$= \sqrt{\left(\frac{1}{0.007 \,37 \,\mathrm{s}} \cdot 0.003 \,\mathrm{m}\right)^2 + \left(-\frac{2.561 \,\mathrm{m}}{(0.007 \,37 \,\mathrm{s})^2} \cdot 0.0000 \,062 \,\mathrm{s}\right)^2}$$

$$= 2.93 \,\mathrm{m} \,\mathrm{s}^{-1} \,\left(\mathrm{Resultat \, von \, Tabellenkalkulations programm}\right)$$

 $=2.95\,\mathrm{m\,s^{-1}}$ (Resultat mittels Eintippen der obigen Zahlen in Taschenrechner)

Ausgerechnet mit vereinfachtem Rezept für Division:

$$s_{\overline{c(s,t)}} = \sqrt{\left(\frac{s_s}{s}\right)^2 + \left(\frac{s_t}{\overline{c}}\right)^2} \cdot \overline{c(s,t)}$$

$$= \sqrt{\left(\frac{0.003 \,\mathrm{m}}{2.561 \,\mathrm{m}}\right)^2 + \left(\frac{0.06 \,\mathrm{ms}}{7.37 \,\mathrm{ms}}\right)^2} \cdot \overline{c(s,t)}$$

$$= \sqrt{0.001^2 + 0.008^2} \cdot 347.7 \,\mathrm{m \, s^{-1}}$$

 $=2.93\,\mathrm{m\,s^{-1}}$ (Resultat von Tabellenkalkulationsprogramm)

Folglich:

$$c_{luft} = \overline{c_{luft}} \pm s_{\overline{c_{luft}}} = (347 \pm 3) \,\mathrm{m \, s^{-1}}$$

$$(42)$$

4 QtiPlot

Abbildung 2: Messdaten und Auswertung zum Versuch Schallgeschwindigkeit

13 der 20 Messpunkte (also 65%) liegen innerhalb des Mittelwerts \pm die Standardabweichung, was ziemlich nahe beim theoretischen Wert von 68% ist. Mit einer grösseren Anzahl Messungen sollte sich dieser Wert noch besser an 68% annähern.

3.2 Aufgabe 2: Eisengehalt

1 Daten

Messung	Eisengehalt (%)	absoluter Fehler (%)
1	20.3	1.2
2	21.9	1.3
3	21.1	1.1
4	19.6	0.8
5	19.9	1.3
6	18.0	1.3
7	19.4	1.0
8	22.2	2.0
9	21.6	0.8

2 Einfacher Mittelwert

Der einfache Mittelwert ergibt sich als:

$$\overline{x} = \frac{1}{9} \sum_{i=1}^{9} x_i = 20.44 \% \tag{43}$$

Mit dem zugehörigen Fehler:

$$s_{\overline{x}} = \sqrt{\frac{\sum_{1}^{9} (x_i - \overline{x})^2}{9 \cdot 8}} = 0.46 \%$$
 (44)

3 Gewichteter Mittelwert

Der gewichtete Mittelwert errechnet sich gemäss:

$$\overline{x} = \frac{\sum_{1}^{9} g_{\overline{x_i}} \cdot x_i}{\sum_{1}^{9} g_{\overline{x_i}}} = \frac{156.24}{7.67} \% = 20.37 \%$$
(45)

Der zugehörige Fehler Beträgt:

$$s_{\overline{x}} = \frac{1}{\sum_{1}^{9} g_{\overline{x_i}}} = 0.36\% \tag{46}$$

4 QtiPlot

 $\textbf{Abbildung 3:} \ \text{Messdaten mit Fehlerbalken, gewichteter und ungewichteter Mittelwert zum Versuch} \\ \textit{Eisengehalt}$

3.3 Aufgabe 3: Federkonstante

1 Daten

F (N)	z (m)
3.83	0.20
7.79	0.35
8.08	0.42
9.7	0.46
10.58	0.51
12.33	0.54
12.23	0.59
14.43	0.67
15.51	0.71
17.09	0.80

2 Rechnung mittels Tabellenkalkulation

Zum Vergleich mit dem Resultat des Taschenrechners und QtiPlot sei hier noch eine lineare Regression mit Tabellenkalkulationsprogramm durchgeführt.

F (N)	z (m)						$\hat{F}(N)$
y_i	x_i	$y_i - \overline{y}$	$x_i - \overline{x}$	$(y_i - \overline{y})(x_i - \overline{x})$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})^2$	\hat{y}
3.83	0.20	-7.33	-0.32	2.38	53.68	0.11	3.82
7.79	0.35	-3.37	-0.17	0.59	11.34	0.03	7.21
8.08	0.42	-3.08	-0.10	0.32	9.47	0.01	8.79
9.70	0.46	-1.46	-0.06	0.09	2.12	0.00	9.69
10.58	0.51	-0.58	-0.01	0.01	0.33	0.00	10.82
12.33	0.54	1.17	0.02	0.02	1.38	0.00	11.50
12.23	0.59	1.07	0.07	0.07	1.15	0.00	12.62
14.43	0.67	3.27	0.15	0.47	10.71	0.02	14.43
15.51	0.71	4.35	0.19	0.81	18.95	0.03	15.33
17.09	0.80	5.93	0.28	1.63	35.20	0.08	17.36
111.57	5.25	0.00	0.00	6.40	144.33	0.29	Summen
11.16	0.52						Durchschnitte

Die Steigung der Regressionsgeraden errechnet sich als:

$$k = \frac{\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{10} (x_i - \overline{x})^2} = \frac{144.33}{6.4} \text{N m}^{-1} = 22.57 \,\text{N m}^{-1}$$
(47)

Den Achsenabschnitt F_0 erhält man aus:

$$F_0 = \overline{y} - k \cdot \overline{x} = 11.16 \,\mathrm{N} - 22.57 \,\mathrm{N} \,\mathrm{m}^{-1} \cdot 0.52 \,\mathrm{m} = -0.69 \,\mathrm{N}$$
 (48)

Die empirische Korrelation beträgt:

$$r_{xy} = \frac{\sum_{1}^{10} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{1}^{10} (x_i - \overline{x})^2 \cdot \sum_{1}^{10} (y_i - \overline{y})^2}} = \frac{6.40}{\sqrt{144.33 \cdot 0.29}} = 0.99364$$
 (49)

Das Bestimmtheitsmass beträgt:

$$R^2 = r_{xy}^2 = 0.98732 (50)$$

3 Taschenrechner

Ergebnisse ermittelt mittels TI-89:

$$F = k \cdot z + F_0$$

$$k = 0.044312 \,\mathrm{N \, m^{-1}}$$

$$F_0 = 0.03061 \,\mathrm{N}$$

$$corr = 0.993638$$

$$R^2 = 0.987316$$

4 QtiPlot

Abbildung 4: Regressionsgerade mit Messpunkten zu Aufgabe Federkonstante

Abbildung 5: Regressionsgerade mit Messpunkten, 95% Confidence Band, Prediction Band und Residuals zu Aufgabe Federkonstante

Abbildung 6: Regressionsgerade mit Messpunkten, 66% Confidence Band und Prediction Band zu Aufgabe Federkonstante

3.4 Aufgabe 4: Pendel

1 Theorie

Die gedämpfte Schwingung eines Pendels kann folgendermassen beschrieben werden:

$$y(t) = A \cdot exp(-\Gamma \cdot t) \cdot sin(2 \cdot \pi \cdot f \cdot t - \delta) + y_0 \tag{51}$$

Nun soll eine Funktion mittels QtiPlot auf die unten stehenden Messdaten gefittet werden, um die Parameter dieser Gleichung zu bestimmen.

Dabei wird von QtiPlot eine nichtlineare Regression ausgeführt. Es muss also das Minimum der folgenden Funktion gefunden werden:

$$\chi^{2}(a_{1}, a_{2}, a_{3}, ..., a_{N}) = \sum_{1}^{N} \frac{[y_{i} - f(a_{1}, a_{2}, a_{3}, ..., a_{N})]^{2}}{\sigma_{i}}$$
(52)

 σ_i sind dabei die Fehler der einzelnen Messungen y_i .

Es gilt nun, geeignete Startwerte für die nichtlineare Regression zu finden. Ansonsten wird Qti-Plot entweder kein Resultat erhalten (Algorithmus konvergiert nicht) oder ein Nebenminimum der χ^2 -Funktion finden, welches nicht die bestmögliche Annäherung an die gesuchte Gesetzmässigkeit ist.

2 Messdaten

(von Aufgabenblatt kopiert)

t(s)	y(m)	t(s)	y(m)	t(s)	y(m)	t(s)	y(m)	t(s)	y(m)	t(m)	y(m)
0.5	-0.418	8.0	0.594	15.5	-0.577	23.0	$\frac{0.417}{0.417}$	30.5	-0.132	38.0	$\frac{0.152}{0.152}$
1.0	-0.07	8.5	0.632	16.0	-0.48	23.5	0.423	31.0	-0.123	38.5	0.152 0.058
1.5	0.082	9.0	0.435	16.5	-0.414	24.0	0.45	31.5	-0.075	39.0	0.193
2.0	0.19	9.5	0.366	17.0	-0.46	24.5	0.389	32.0	-0.373	39.5	0.070
2.5	0.494	10	0.123	17.5	-0.187	25.0	0.488	32.5	-0.146	40.0	0.235
3.0	0.566	10.5	0.064	18.0	-0.171	25.5	0.317	33.0	-0.176	40.5	0.084
3.5	0.753	11.0	-0.084	18.5	-0.03	26.0	0.344	33.5	-0.193	41.0	0.248
4.0	0.913	11.5	-0.152	19.0	-0.072	26.5	0.363	34.0	-0.138	41.5	0.319
4.5	0.869	12.0	-0.299	19.5	-0.011	27.0	0.218	34.5	-0.259	42.0	0.052
5.0	0.977	12.5	-0.506	20.0	0.082	27.5	0.084	35.0	-0.078	42.5	0.159
5.5	0.956	13.0	-0.479	20.5	0.109	28.0	0.113	35.5	0.018	43.0	0.134
6.0	0.996	13.5	-0.576	21.0	0.25	28.5	0.166	36.0	-0.059	43.5	0.079
6.5	0.971	14.0	-0.662	21.5	0.404	29.0	0.02	36.5	0.056	44.0	0.097
7.0	0.827	14.5	-0.498	22.0	0.272	29.5	-0.032	37.0	0.004	44.5	0.162
7.5	0.784	15.0	-0.654	22.5	0.317	30.0	0.011	37.5	0.042	45.0	0.030

3 QtiPlot

Wichtig beim Finden einer passenden Funktion ist insbesondere das Festlegen sinnvoller Startwerte (andernfalls kann es sein, dass QtiPlot auf das falsche Minimum optimiert).

In diesem Fall wurden folgende Startwerte gewählt (mithilfe von Tipps des Dozenten und etwas persönlichem Herumprobieren):

• A = 1: Anhand des Funktionswertes des ersten Ausschlages des Pendels abgeschätzt.

- $\Gamma = ln\left(\frac{A_1}{A_2}\right) \cdot \frac{1}{T} = ln\left(\frac{1}{0.5}\right) \cdot \frac{1}{20} = 0.035$: Die Abklingkonstante Γ wurde abgeschätzt mittels des logarithmischen Dekrements und der Periode. Dabei ist A_1 die Amplitude des ersten Schwingvorgangs, A_2 die Amplitude des 2. Schwingvorgangs und T die Periode der unterliegenden Sinus-Schwingung. Natürlich sind all diese Werte eher grob aus dem Scatter-Plot abgelesen und nicht hochpräzise (was aber für diesen Schritt auch nicht notwendig ist). Genaueres kann in den Quellen [1], [2] und [3] gefunden werden.
- Der Nulldurchgang der ersten Schwingung liegt ungefähr bei einer Sekunde, wie man auf dem Scatter-Plot erkennen kann. Dies entspricht der Forderung, dass $sin(2 \cdot \pi \cdot f \cdot 1 \operatorname{s} \delta) = 0$ ist, bzw. weil sin(0) = 0, muss gelten: $2 \cdot \pi \cdot f \cdot 1 \operatorname{s} \delta = 0$. Aufgelöst ergibt dies: $\delta = 2 \cdot \pi \cdot f \cdot 1 \operatorname{s} = 2 \cdot \pi \cdot \frac{1}{20\operatorname{s}} \cdot 1 \operatorname{s} = 0.31$.
- Die Periode wird aus den Peaks der zwei ersten Schwingungen auf ungefähr 20 Sekunden geschätzt, womit man für die Frequenz $\frac{1}{20s} = 0.05 \,\text{Hz}$ erhält.
- Der Offset y_0 wird vorerst auf null gesetzt.

Somit sind die Startwerte bestimmt, und es kann ein Fit erstellt werden.

Abbildung 7: Fit zur Aufgabe Pendel

LITERATUR 17

Literatur

[1] Abklingkonstante. Wikipedia. [Online]. Verfügbar: https://de.wikipedia.org/wiki/Abklingkonstante [Stand: 16. Oktober 2015].

- [2] Periode (Physik). Wikipedia. [Online]. Verfügbar: https://de.wikipedia.org/wiki/Periode_ (Physik) [Stand: 16. Oktober 2015].
- [3] Logarithmisches Dekrement. Wikipedia. [Online]. Verfügbar: https://de.wikipedia.org/wiki/Logarithmisches_Dekrement [Stand: 16. Oktober 2015].