POLIEDROS Y ORIGAMI MODULAR

Poliedros Regulares y semiregulares

Sólidos Platónicos y Solidos Arquimedianos

Información básica sobre los poliedros regulares y semiregulares

No.	Poliedro	Polígonos y No. De Caras	Caras	Aristas	Vértices	
1	Tetraedro	<u> </u>	4	6	4	Sc
2	Octaedro	<u> </u>	8	12	6	Sólidos
3	Icosaedro	▲ X 20	20	30	12	
4	Hexaedro o Cubo	■ X 6	6	12	8	Platónicos
5	Dodecaedro	◆ X 12	12	30	20	SOS
6	Tetraedro Truncado	X 4	8	18	12	
7	Octaedro Truncado	■ X 6 • X 8	14	36	24	
8	Icosaedro Truncado	→ X 12	32	90	60	
9	Cubo Truncado	X 6	14	36	24	
10	Dodecaedro Truncado	▲ X 20 X 12	32	90	60	Sóli
11	Cuboctaedro	X 8	14	24	12	dos /
12	Icosidodecaedro	X 20	32	60	30	∖rqui
13	Rombicuboctaedro	X 8	26	48	24	Sólidos Arquimedianos
14	Rombicosidodecaedro	X 20	62	120	60	anos
15	Cuboctaedro (rombi) truncado	■ X 12 • X 8 • X 6	26	72	48	
16	Icosidodecaedro (rombi) truncado	■ X 30 • X 20 • X 12	62	180	120	
17	Cubo romo	▲ X 32 ■ X 6	38	60	24	
18	Dodecaedro romo	▲ X 80 • X 12	92	150	60	

Módulo Sonobè

Módulo para construir aristas

Cubo

Icosaedro

Módulo "tortuga pequeña"

Cuboctaedro

Icosaedro

La fómula de Euler

$$V-A+C-2=0$$

Denotamos por $\{p,q\}$ al poliedro regular cuyas caras son polígonos con p aristas y que incididen q de éstas en cada vértice.

Si $\{p,q\}$ tiene C caras, A aristas y V vértices, tenemos que:

$$pC = 2A = qV$$

pues cada cara tiene p aristas, en cada arista inciden dos caras y en cada vértice inciden q aristas.

Si suponemos que este poliedro satisface la fórmula de Euler, por ejemplo si el poliedro es convexo, entonces:

$$V - A + C - 2 = 0$$
.

Combinando estas igualdades, obtenemos: $C = \frac{2A}{p}$ y $V = \frac{2A}{q}$, sustituyendo en la fórmula de

Euler

$$\frac{2A}{q} - A + \frac{2A}{p} - 2 = 0$$

dividiendo por 2A, tenemos finalmente:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2} + \frac{1}{A}$$
.

De aquí que para enumerar los poliedros regulares, buscamos enteros p y q, mayores que 2, que satisfagan la desigualdad:

$$\frac{1}{p}+\frac{1}{q}>\frac{1}{2}.$$

Ahora, multiplicamos por 2 y por pg:

$$2q + 2p > pq$$
 o $pq - 2p - 2q + 4 < 4$

factorizando:

$$(p-2)(q-2)<4$$

Claramente, uno de ellos debe ser 3 y el otro 3, 4 o 5. Con ello obtenemos las siguientes posibilidades:

{3, 3} el tetraedro

{3, 4} el octaedro

{3, 5} el icosaedro

{4, 3} el cubo

{5, 3} el dodecaedro.