Employing Word Embeddings and Machine

CHAN, Ka Chun (20952857) LIU, Kwun Ho (20959984)

Learning For Effective Fake News Detection

Dataset

News dataset (44919 rows)

- o title
- o text
- subject
- o date
- class

- We will keep columns `text` and `class`.
- Drop the duplicate rows: 38658 rows
- Split dataset into training set (34793 rows) and testing set (3865 rows) with testing ratio = 0.1 before doing word embeddings.
- In the training set (34793 rows), 25% of them (8699 rows) forms a validation set.

Machine Learning Tasks

- Embeddings: convert the text in the news article into vectors which can be fitted into classifiers
 - Word embeddings
 - Doc2vec
 - Term Frequency Inverse Document Frequency
 - Pre-trained Large Language Models
- Classification: take an embedded text (vector) in a news article as the input, classify it as either fake news (1) or not (0).
 - Logistic Regression
 - Decision Tree
 - MLP

Machine Learning Tasks

Word embeddings (Continuous Bag Of Words)

Continuous Bag Of Words (CBOW)

Learns the embeddings by training a neural network with a single hidden layer to predict a target word based on the context words within a fixed window.

For example: window size = 2,

"I am studying machine learning"

Word embeddings (Continuous Bag Of Words)

For example: window size = 2,

"I am studying machine learning"

Context words: {"I", "am", "machine", "learning"}

```
"I": (1, 0, 0, 0, 0) = e1 "am": (0, 1, 0, 0, 0) = e2 "studying": (0, 0, 1, 0, 0) = e3 "machine": (0, 0, 0, 1, 0) = e4
```

"learning": (0, 0, 0, 0, 1) = e5

Aggregate context vectors by $\underline{\text{sum}}/\text{mean}$: e1 + e2 + e4 + e5 = (1, 1, 0, 1, 1)

Word embeddings (Continuous Bag Of Words)

Aggregate context vectors by sum/ mean:

Loss function: Cross-entropy loss $\sum_{\nu=1}^{\nu}$

Word embeddings (Skip-gram)

Skip-gram

Learns the embeddings by training a neural network with a single hidden layer to predict context words based on the middle word within a fixed window.

"Reverse of continuous bag of words"

```
For example: window size = 2,
```

" I am studying machine learning"

```
"I": (1, 0, 0, 0, 0) = e1
"am": (0, 1, 0, 0, 0) = e2
"studying": (0, 0, 1, 0, 0) = e3
"machine": (0, 0, 0, 1, 0) = e4
"learning": (0, 0, 0, 0, 1) = e5
```

Word embeddings (Skip-gram)

Loss function: Cross-entropy loss \sum_{ν}^{ν}

 $\sum_{i=1}^{V} y_i \log p_i$

 Text embeddings by weighted aggregation Instead of just simply concatenating the word embeddings in the text, we embed the text as follows:

Let's say all the tokens in the text are

and their word embeddings are

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

respectively. Then we can form an embedding matrix
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Text embeddings by weighted aggregation
 Embedding matrix "A" "B" "C" "D"

$$\begin{bmatrix} A & \text{``B''} & \text{``C''} & \text{`D} \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

1, 2, 3, 4 For example, we have a text (after tokenization) like this ["D", "A", "B",

 Text embeddings by weighted aggregation Embedding matrix

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 + 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 5 \end{bmatrix}$$

Then, we can multiply the embedding matrix and the encoding vector to get the embedding for the text.

Encoding vector

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ 0 \end{bmatrix}$$

Performance on the validation set and the testing set

Setup:

- window size =10, embedding dimension = 100, weighted aggregation
- 3 classification models
 - Logistic regression
 - Decision tree
 - MLP classifier
 - One hidden layer,
 - Learning rate =0.001
 - 100 neurons,
 - RELU activation function

• Performance on the validation set and the testing set

Logistic Regression

	CBOW		Skip-gram	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.96	0.67	0.96	0.68
precision	0.94	0.94	0.94	0.94
recall	0.99	0.44	0.99	0.46
F1-score	0.97	0.60	0.97	0.62

• Performance on the **validation set** and the **testing set**

Decision Tree

	CBOW		Skip-gram	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.93	0.98	0.93	0.70
precision	0.94	0.98	0.94	0.97
recall	0.94	0.46	0.94	0.48
F1-score	0.94	0.63	0.94	0.64

• Performance on the validation set and the testing set

MLP

	CBOW		Skip-gram	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.98	0.68	0.97	0.66
precision	0.98	1.00	0.98	1.00
recall	0.98	0.43	0.97	0.40
F1-score	0.98	0.60	0.98	0.58

Performance on the validation set and the testing set

In our use case, recall is the metric that we care more about. "Among these fake news, how many of them can we distinguish?"

However, the recall values on testing set in our model is not ideal (< 0.5).

Experiment: Dimensions of embeddings

Setup:

- window size =10
- embedding dimension from 10 to 70
- 3 classification models
 - Logistic regression
 - Decision tree
 - MLP classifier
 - One hidden layer, 100 neurons, RELU activation functions

Experiment: Dimensions of embeddings

- Pre-trained word embeddings: Global Vectors for Word Representation (GloVe)
 - We are using `glove.6B.50d`
 - 6 billions tokens
 - Embedding dimension =50

Texts are embedded in the same method as before (weighted aggregation)

Performance on the validation set and the testing set

Logistic Regression

	Validation set	Testing set
accuracy	0.88	0.56
precision	0.85	0.56
recall	0.95	1.00
F1-score	0.90	0.72

• Performance on the validation set and the testing set

Decision Tree

	Validation set	Testing set
accuracy	0.85	0.57
precision	0.86	0.59
recall	0.87	0.81
F1-score	0.87	0.68

Performance on the validation set and the testing set

MLP

	Validation set	Testing set
accuracy	0.92	0.57
precision	0.92	0.57
recall	0.93	0.98
F1-score	0.92	0.72

Doc2vec

- An extension of CBOW/ Skip-gram
 Instead of embedding each single word, Doc2Vec embeds the whole document (text) into vectors.
- For each document, an unique document identifier (vector) is assigned to it. For each word embeddings and the document identifier, the vectors are randomly initialised before the model training.

Tokenized documents

Doc1: ["dogs", "are", "great", "pet"]

Doc2: ["the", "cat", "sits", "on", "the", "mat"]

Document identifiers

Doc1: D1 [0.1, 0.2] Doc2: D2 [0.3, 0.4]

Initial word embeddings

"dogs": [0.0, 0.1] "are"
:[0.2, 0.3]
"great": [0.4, 0.5] "pet"
:[0.5, 0.5]
"the": [0.7, 0.2] "sits"

Doc2vec

Initial word embeddings

"dogs": [0.0, 0.1]

:[0.2, 0.3] "great": [0.4, 0.5]

0.51

Distributed Memory (DM)

"pet":[0.5,

"sits"

"are"

Tokenized documents

Doc1: ["dogs", "are", "great", "pet"]

Doc2: ["the", "cat", "sits", "on", "the", "mat"]

Document identifiers

Doc1: D1 [0.1, 0.2] Doc2: D2 [0.3, 0.4]

Similar to predict the target word. In addition to the context words, the document identifiers are also

Doc2vec

Initial word embeddings

"dogs": [0.0, 0.1]

"great": [0.4, 0.5]

"pet":[0.5,

"are"

Doc2: ["the", "cat", "sits", "on", "the", "mat"]

Doc1: ["dogs", "are", "great", "pet"]

Document identifiers

Tokenized documents

Doc1: D1 [0.1, 0.2] Doc2: D2 [0.3, 0.4]

Distributed Bag, Of Words (DBOW)

[0.5]

:[0.2, 0.3]

Similar to skippigram, but it uses to document identifier to predict the

context words.

Backward propagation with respect to W1, W2

Doc2Vec

• Performance on the **validation set** and the **testing set**

Logistic Regression

	DM		DBOW	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.94	0.94	0.99	1.00
precision	0.93	0.93	0.99	1.00
recall	0.96	0.96	1.00	1.00
F1-score	0.94	0.95	1.00	1.00

Doc2Vec

• Performance on the **validation set** and the **testing set**

Decision Tree

	DM		DBOW	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.85	0.86	0.93	0.94
precision	0.86	0.88	0.93	0.95
recall	0.87	0.87	0.94	0.95
F1-score	0.87	0.87	0.94	0.95

Doc2Vec

• Performance on the **validation set** and the **testing set**

MLP

	DM		DBOW	
	Validation set	Testing set	Validation set	Testing set
accuracy	0.95	0.95	0.99	0.99
precision	0.95	0.97	1.00	1.00
recall	0.95	0.95	0.99	0.99
F1-score	0.95	0.96	1.00	1.00

- Similar to BOW, TF-IDF is a word embedding method
- It calculates the importance of words to documents in a collection of corpus.
 - The higher frequency the word appear in a text, the higher meaning assigned to that word
 - But is compensated by total word frequency in the corpus (whole dataset).
 - Solved the major drawback for Bag Of Words

- Product of two terms
 - Normalised Term Frequency
 - Inverse Document Frequency

Term Frequency (TF)	Inverse Document Frequency (IDF)
In a document d, the frequency represents the number of instances of a given word t. Normalization will also be performed to ensure fairness in results.	Number of documents containing word t divided by # of documents is the document frequency (DF) of t, and we want to take the inverse and log of it to test the relevance of t.
TF(d,t) = count of t in d / number of words in d	IDF(d,t) = log(# of d / DF(t))

The words with higher scores of weight are deemed to be more significant.

Example texts

- Today is a sunny day!
- He is handsome.
- She is going to play today.

Word	TF (Before normalization)	IDF
is	1/5	0 (useless)
today	1/3	0.2385
sunny	1/6	0.4771

Performance on the validation set and the testing set

Logistic Regression

	Validation set	Testing set
accuracy	0.9836	0.9816
precision	0.98	0.98
recall	0.98	0.98
F1-score	0.98	0.98

True Positive	2087
True Negative	1707
False Positive	49
False Negative	22

Performance on the validation set and the testing set

Decision Tree

	Validation set	Testing set
accuracy	0.9939	0.9943
precision	0.99	0.99
recall	0.99	0.99
F1-score	0.99	0.99

True Positive	2100
True Negative	1743
False Positive	13
False Negative	9

Performance on the validation set and the testing set

MLP

	Validation set	Testing set
accuracy	0.9832	0.9816
precision	0.98	0.98
recall	0.98	0.98
F1-score	0.98	0.98

True Positive	2088
True Negative	1706
False Positive	50
False Negative	21

Term Frequency-Inverse Document Frequency (TF-IDF)

- Among three classifiers, decision tree has a slightly better edge
 - TF-IDF creates a sparse representation of the text inputs
 - Simpler feature space
 - More interpretable and less complex
 - Effective splits for decision tree
- Overall better than previous traditional methods
 - GloVe
 - Doc2Vec
 - CBOW/Skip-Gram

Decision Tree

	Validation set	Testing set
accuracy	0.9939	0.9943
precision	0.99	0.99
recall	0.99	0.99
F1-score	0.99	0.99

True Positive	2100
True Negative	1743
False Positive	13
False Negative	9

- A type of transformer that only consists of encoders
- Only requires unlabelled data to train on
- Self-supervised training

We will use the base BERT model for our project

- Contrast to BERT, GPT only consists of decoders
- Only requires unlabelled data to train on
- Self-supervised training
- Powerful at predicting the next token in a sequence

We will import and use the GPT2* model for our project

(* OpenAl GPT-2 English model)

• Performance on the validation set and the testing set

Logistic Regression

	Validation set	Testing set
accuracy	0.9925	0.9920
precision	0.99	0.99
recall	0.99	0.99
F1-score	0.99	0.99

True Positive	2087
True Negative	1747
False Positive	15
False Negative	16

• Performance on the validation set and the testing set

Decision Tree

	Validation set	Testing set
accuracy	0.9178	0.9200
precision	0.92	0.92
recall	0.92	0.92
F1-score	0.92	0.92

True Positive	1942
True Negative	1614
False Positive	148
False Negative	161

Performance on the validation set and the testing set

MLP

	Validation set	Testing set
accuracy	0.9943	0.9959
precision	0.99	0.99
recall	0.99	0.99
F1-score	0.99	0.99

True Positive	2090
True Negative	1759
False Positive	3
False Negative	13

• Performance on the validation set and the testing set

Logistic Regression

	Validation set	Testing set
accuracy	0.9995	0.9995
precision	1.00	1.00
recall	1.00	1.00
F1-score	1.00	1.00

True Positive	2101
True Negative	1762
False Positive	0
False Negative	2

Performance on the validation set and the testing set

Decision Tree

	Validation set	Testing set
accuracy	0.9687	0.9588
precision	0.97	0.96
recall	0.97	0.96
F1-score	0.97	0.96

True Positive	2016
True Negative	1690
False Positive	72
False Negative	87

Performance on the validation set and the testing set

MLP

	Validation set	Testing set	
accuracy	0.9995	0.9997	
precision	1.00	1.00	
recall	1.00	1.00	
F1-score	1.00	1.00	

True Positive	2102
True Negative	1762
False Positive	0
False Negative	1

- Unlike TF-IDF -> BERT/GPT both have significantly lower accuracy on decision tree compared to other classifiers
- Reasons possibly due to:
 - Tokenized text embeddings are high-dimensional
 - Contextually rich
 - High complexity -> overfitting (captured noise rather than generalization)

Logistic Regression ROC AUC: 0.9999991983573808 Decision Tree ROC AUC: 0.968532587841326 MLP ROC AUC: 0.999995724572697

- Reduce dimensionality and complexity of the embeddings
 - Principal Components Analysis (PCA)
- Use random forest instead of decision tree
 - Prevent overfitting
 - Better suited for high dimensionality

Original BERT + decision tree accuracy/recall: 0.92

PCA with n_componets = 30 (BERT)

Accuracy: 0.9457408897574434							
Classification Report: precision recall				call	f1-score	support	
	0 1	0.94 0.9		0.94 0.95	0.94 0.95	3916 4783	
	accuracy macro avg ghted avg	0.99 0.99		0.95 0.95	0.95 0.95 0.95	8699 8699 8699	
		Metric	Count				
0	True Positi	ves (TP)	4555	11.			
1	True Negati	ves (TN)	3672				
2	False Positi	ves (FP)	244				
3	False Negati	ves (FN)	228				

Random Forest using PCA data (BERT)

<i>,</i> y	y/160aii. 0.32						
	Accuracy: 0.9660880560984021						
	Classificati	on Report:					
		precisio	n r	ecall	f1-score	support	
	0	0.9	7	0.95	0.96	3916	
	1	0.9	6	0.98	0.97	4783	
	accuracy				0.97	8699	
	macro avg	0.9	7	0.96	0.97	8699	
	weighted avg	0.9	7	0.97	0.97	8699	
		Metric	Count	\blacksquare			
	0 True Pos	sitives (TP)	4681	•			
	1 True Neg	atives (TN)	3723				
	2 False Pos	sitives (FP)	193				
	3 False Neg	atives (FN)	102				

Further possible exploration with our results

- Domain-specific contexts: Not limited to political news -> medical news?
- Multilingual Text Classification : Different languages?

 Discover the potentials of ensemble methods -> combining the use of pretrained model with our word-embedding methods for higher accuracy