# Appendix: Simulation

## Hongyu Mou

January 21, 2024

# 1 Extrapolation Model

• Extrapolation 1 based on GPA: want to have  $Y_{GPA}$  for all scores<sup>1</sup>.

$$Y_{GPA,b} = \underbrace{\alpha_1 + \beta_1 \times GPA(\%) + \gamma \times b}_{\hat{Y}_{GPA,b}} + \epsilon_1$$

$$= 10.01 + 0.09 \times GPA(\%) + 0.2 \times b + \epsilon_1$$
where  $\epsilon_1 \sim N(0, 1.002)$  (1)

use the estimated relationship (estimated for GPA > cutoff) to extrapolate  $Y_{GPA}$  for GPA < cutoff.

• Extrapolation 2 based on Quota 2 Score: want to have  $Y_{s,GPA,Q2}$  for all scores. Assuming that s is continuous even below the cutoff, we can again assume a linear relationship in quota 2 score and GPA so that:

$$Y_{GPA,s,b,Q2>0} = \underbrace{\alpha_2 + \beta_2 \times GPA(\%) + \gamma_2 \times s(\%) + \gamma_3 \times b}_{\hat{Y}_{GPA,s,b,Q2>0}} + \epsilon_2$$

$$= 9.12 - 0.04 \times GPA(\%) + 2.33 \times s(\%) + 0.3 \times b + \epsilon_2$$
where  $\epsilon_2 \sim N(0, 0.703)$ 
(2)

use the estimated relationship (estimated for s > cutoff) to extrapolate  $Y_{s,GPA,Q2}$  for s < cutoff.

• Test if  $\epsilon_1$  and  $\epsilon_2$  are normally distributed: Figure 1 show distributions and Kolmogorov-Smirnov tests of residuals  $\epsilon_1$  and  $\epsilon_2$ :



Figure 1: Distribution of  $\epsilon_1$  and  $\epsilon_2$  from Equations (1) and (2)

Note:  $\epsilon_1$  comes from the OLS fitting as Equations (1):  $Y_{GPA,b} = \alpha_1 + \beta_1 \times GPA(\%) + \gamma \times b + \epsilon_1$ .  $\epsilon_2$  comes from the OLS fitting as Equations (2):  $Y_{GPA,s,b,Q2>0} = \alpha_2 + \beta_2 \times GPA(\%) + \gamma_2 \times s(\%) + \gamma_3 \times b + \epsilon_2$ .

<sup>&</sup>lt;sup>1</sup>Since in the empirical data we observe that the higher the GPA, the larger the earning potential.

#### 1.1 Extrapolation Plots

Note that in Figure 2a and 2b, with real data, we would not be able to fit the below-admission cutoff lines as we cannot observe the outcome of the not-admitted students.



(a) OLS Regression Lines of Equation (1)



(b) OLS Regression Lines of Equation (2) using Q2 > 0 Sub-sample

Figure 2: Extrapolation Plots for Each Background from Equation (1) and (2) Note: For both figures, we first fit the OLS line using the observed above-cutoff sample that is admitted by Q1 or Q2. Next, we extrapolate the fitted line to the below-cutoff sample that is not observed in real data.



(b) Persistence, Year 3

Figure 3: Pooled Fitted lines (Figure A9b) for Each Background in Real Data Note: This figure differs the above two in the following sense: (1) GPA (%) and Score (%) are calculated using the **admitted** sample, instead of the **applied** sample. (2) The below-zero part plots the observed relationship for those who were admitted to Q2, and the above-zero part plots the observed relationship for those who were admitted to Q1.

## 2 Simulation Model<sup>2</sup>

Whole Sample: 
$$N = 100000$$
 (Applied\_Q1)

Parameters: 
$$b$$
, GPA, and  $\epsilon$  Edu Background:  $b \sim \text{Bernoulli}(p=0.5)$ 

GPA 
$$\sim \mathcal{N}(8.8, \text{sd} = 1)$$
 if  $b = 0$ , censor at 6 and 13

GPA 
$$\sim \mathcal{N}(9.2, \text{sd} = 1)$$
 if  $b = 1$ , censor at 6 and 13

$$\epsilon_Y, \epsilon_{Q2}, \epsilon_S \sim \mathcal{N}(0, \Sigma) \text{ where } \Sigma = \begin{bmatrix} 1 & 0.5 & 0.6 \\ 0.5 & 1 & 0 \\ 0.6 & 0 & 1 \end{bmatrix}$$

$$\alpha_Y = 10, \alpha_Y^1 = 0.1, \alpha_Y^2 = 0.0, \alpha_Y^3 = 0.2$$
  

$$\beta_{Q2} = 0, \beta_{Q2}^1 = 0.2, \beta_{Q2}^2 = -0.05, \beta_{Q2}^3 = 0.1$$
  

$$\gamma_S = 0, \gamma_S^1 = 0.15, \gamma_S^2 = 0.0, \gamma_S^3 = -0.2$$

Simulate: 
$$Y, Q2$$
, and  $S$  
$$Y = \alpha_Y + \alpha_Y^1 \times GPA(\%) + \alpha_Y^2 \times GPA(\%)^2 + \alpha_Y^3 \times b + \epsilon_Y$$
 
$$Q2 = \beta_{Q2} + \beta_{Q2}^1 \times GPA(\%) + \beta_{Q2}^2 \times GPA(\%)^2 + \beta_{Q2}^3 \times b + \epsilon_{Q2}$$
 
$$S = \gamma_S + \gamma_S^1 \times GPA(\%) + \gamma_S^2 \times GPA(\%)^2 + \gamma_S^3 \times b + \epsilon_S$$

Admission:

$$Admitted\_Q1 = \begin{cases} 1 & \text{if GPA} >= GPA\_cutoff \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} & \text{Applied\_Q2} = \begin{cases} 1 & \text{if } Q2 > 0 \\ 0 & \text{otherwise} \end{cases} \\ & \text{Admitted\_Q2} = \begin{cases} 1 & \text{if } S > 0 \text{ and } \text{Applied\_Q2} = 1 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

#### **Objects of Interest:**

For each background  $b \in \{0, 1\}$ :

$$P(Q2 > 0 \mid GPA(\%), Y, B = b) = \frac{P(Y \mid Q2 > 0, GPA(\%), B = b) \times P(Q2 > 0 \mid GPA(\%), B = b)}{P(Y \mid GPA(\%), B = b)}$$

$$P(S>0 \mid GPA(\%), Y, Q2>0, B=b) = \frac{P(Y \mid S>0, GPA(\%), Q2>0, B=b) \times P(S>0 \mid GPA(\%), Q2>0, B=b)}{P(Y \mid GPA(\%), Q2>0, B=b)} \\ P(S>0, Q2>0 \mid GPA(\%), Y, B=b) = P(S>0 \mid GPA(\%), Y, Q2>0, B=b) \times P(Q2>0 \mid GPA(\%), Y, B=b)$$

<sup>&</sup>lt;sup>2</sup>See Appendix for the descriptive statistics.

# **3** $P(Q2 > 0 \mid GPA(\%), Y, B = b)$

The first Bayes Rule:

$$P(Q2 > 0 \mid GPA(\%), Y, B = b) = \frac{P(Y \mid Q2 > 0, GPA(\%), B = b) \times P(Q2 > 0 \mid GPA(\%), B = b)}{P(Y \mid GPA(\%), B = b)} \quad (3)$$

Since in real data we only observe Y for those who were admitted, in the feasible  $GPA >= GPA_{cutoff}$  sub-sample, use local approximation instead of Bayes Rule (3) for each object of interest if  $N_{GPA,Y,B} \ge \bar{N}_{GPA,Y,B}$ , where  $N_{GPA,Y,B}$  is the size of each (GPA(%), Y) cell for a specific background B.

- 1. Feasible:  $\bar{N}_{GPA,Y,B} > \infty$ , i.e., all from extrapolation using Bayes Rule (3)
- 2. Feasible:  $\bar{N}_{GPA,Y,B} = 0$ , i.e., local approximation without using Bayes Rule (3), but for the  $GPA >= GPA_{cutoff}$  sample, since in real data we only observe Y for those who were admitted.
- 3. Feasible:  $\bar{N}_{GPA,Y,B} = 10$ , i.e., local approximation for the  $GPA >= GPA_{cutoff}$  sample if  $N_{GPA,Y,B} \ge 10$ ; Bayes Rule (3) from extrapolation if  $N_{GPA,Y,B} < 10$  or  $GPA < GPA_{cutoff}$ .
- 4. Feasible:  $\bar{N}_{GPA,Y,B} = 50$ , i.e., local approximation for the  $GPA >= GPA_{cutoff}$  sample if  $N_{GPA,Y,B} \ge 50$ ; Bayes Rule (3) from extrapolation if  $N_{GPA,Y,B} < 50$  or  $GPA < GPA_{cutoff}$ .

## **3.1** $P(Y \mid Q2 > 0, GPA(\%), B = b)$

• From Extrapolation: Equation (2) and S Integration. (Figure 5)
Compute

$$P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b]$$

$$= \sum_{s} P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, s(\%) \in S(\%)_{\text{bin}}, B = b]$$

$$* P[s(\%) \in S(\%)_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b]$$
(4)

where

 $-P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, s(\%) \in S(\%)_{\text{bin}}, B = b]: \text{ for each GPA}(\%) \text{ and } S(\%) \text{ grid, assume}$   $Y_{GPA,s,b,Q2>0} \sim N(\hat{Y}_{GPA,s,b,Q2>0}, std(\epsilon_2))$ (5)

then

$$P(Y \in Y_{\text{bin}} \mid GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, s(\%) \in S(\%)_{\text{bin}}) = \Phi\left(\frac{\overline{Y}_{\text{bin}} - \mu_2}{\sigma_2}\right) - \Phi\left(\frac{\underline{Y}_{\text{bin}} - \mu_2}{\sigma_2}\right) - \Phi\left(\frac{\underline{Y}_{\text{bin}} - \mu_2}{\sigma_2}\right) = \Phi\left(\frac{\underline{Y}_{\text{bin}} - \mu_2}{\sigma_2}\right) - \Phi\left(\frac{\underline{$$

- \*  $\mu_2$ : local predicted mean  $(\hat{Y}_{GPA,s,b,Q2>0})$  from Equation (2) in this GPA(%) and S(%) grid
- \*  $\sigma_2$ : global standard deviation of  $\epsilon_2$  estimated from Equation (2) using the observed sample above the Score cutoff.
- $-P[s(\%) \in S(\%)_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b]$ : probability mass function (PMF) from local approximation, shown in Figure 4.

$$P[s(\%) \in S(\%)_{\text{bin}} \mid GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b]$$

 $= \frac{\text{Number of students with } s(\%) \text{ in } S(\%)_{\text{bin}} \text{ within the GPA}(\%) \text{ bin and Background group who have } Q2 > 0}{\text{Total Number of students in the GPA}(\%) \text{ bin and Background group who have } Q2 > 0}$ (7)



Figure 4: PMF P[S(%)|GPA(%), Q2 > 0, B] from Local Approximation

Note: This figure shows the probability of a student's score s(%) falling within a certain score bin, given that their GPA is within a specified GPA bin, they have applied to Q2 (indicated by Q2>0), and belong to a specific background group B=b. The probability is calculated using  $P\left[s(\%)\in S(\%)_{\text{bin}}\mid GPA(\%)\in GPA(\%)_{\text{bin}}, Q2>0, B=b\right]=\frac{\text{Number of students with }s(\%)\text{ in }S(\%)_{\text{bin}}\text{ within the GPA}(\%)\text{ bin and Background group who have }Q2>0}{\text{Total Number of students in the GPA}(\%)\text{ bin and Background group who have }Q2>0}.$ 



Figure 5: P(Y|Q2 > 0, GPA, B) from Extrapolation

Note: This figure shows the probability calculated using the integration over S:  $P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b] = \sum_{s} P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, s(\%) \in S(\%)_{\text{bin}}, B = b] * P[s(\%) \in S(\%)_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b], where the first term on the right-hand side the summation, <math>P[Y \in Y_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, s(\%) \in S(\%)_{\text{bin}}, B = b],$  is extrapolated using predicted value of Y from equation (2), standard deviation of  $\epsilon_2$ , and normal distribution.  $P[s(\%) \in S(\%)_{\text{bin}} | GPA(\%) \in GPA(\%)_{\text{bin}}, Q2 > 0, B = b]$  comes from local approximation using PMF (more detail in the footnote of Figure 4).

### **3.2** $P(Y \mid GPA(\%), B = b)$

• From Extrapolation: Equation (1). (Figure 6)

for each GPA(%) bin, assume

$$Y_{GPA,b} \sim N(\hat{Y}_{GPA,b}, std(\epsilon_2))$$
 (8)

then

$$P(Y \in Y_{\text{bin}} \mid GPA(\%) \in GPA(\%)_{\text{bin}}, B = b) = \Phi\left(\frac{\overline{Y}_{\text{bin}} - \mu_1}{\sigma_1}\right) - \Phi\left(\frac{\underline{Y}_{\text{bin}} - \mu_1}{\sigma_1}\right)$$
(9)

- $-\mu_1$ : local predicted mean  $(\hat{Y}_{GPA,b})$  from Equation (1) in this GPA(%) bin
- $\sigma_1$ : global standard deviation of  $\epsilon_1$  estimated from Equation (1) using the observed sample above the GPA cutoff.



Figure 6: P(Y|GPA, B) from Extrapolation

Note: This figure shows the probability extrapolated using predicted value of Y from equation (1), standard deviation of  $\epsilon_1$ , and normal distribution.

## **3.3** $P(Q2 > 0 \mid GPA(\%), B = b)$

The probability that a student applies to Q2 given their GPA and Background. See Figure 7.

$$P(Q2 > 0 \mid GPA(\%), B = b) = \frac{\text{Number of students who applied to Q2 in the GPA (\%) bin and Background group}}{\text{Total Number of students in the GPA (\%) bin and Background group}}$$

$$(10)$$



Figure 7: PMF  $P(Q2 > 0 \mid GPA(\%), B)$  from Local Approximation

Note: The probability is calculated from the local approximation of PMF:  $P(Q2 > 0 \mid GPA(\%), B = b) = \frac{\text{Number of students who applied to Q2 in the GPA (\%) bin and Background group}}{\text{Total Number of students in the GPA (\%) bin and Background group}}$ .

## 3.4 Cell Size for GPA vs. Y



Figure 8: Size of (GPA(%), Y) Cell

Note: These figures report the number of observations in each GPA(%) and Y cell, where we also indicate whether the cell size is less than 10 or 50.



(a) Local Approximation:  $\bar{N}_{GPA,Y,B} = 0$  (Figure 8a)

Note: This figure shows the observed  $P(Q2>0 \mid GPA(\%), Y, B=b)$  from local approximation in each GPA(%) and Y cell, without using any information from the extrapolation models or Bayes Rules. Note that we can only plot for the  $GPA>=GPA_{cutoff}$  sample, since in real data we only observe Y for those who were admitted.



(b) Extrapolation and Bayes Rule (3):  $\bar{N}_{GPA,Y,B} > \infty$  Note: The figure shows the extrapolated  $P(Q2 > 0 \mid GPA(\%), Y, B = b)$  that comes from Bayes Rule (3):  $P(Q2 > 0 \mid GPA(\%), Y, B = b) = \frac{P(Y|Q2 > 0, GPA(\%), B = b) \times P(Q2 > 0|GPA(\%), B = b)}{P(Y|GPA(\%), B = b)}$ , where the blue terms  $P(Y \mid Q2 > 0, GPA(\%), B = b)$  and  $P(Y \mid GPA(\%), B = b)$  are constructed using extrapolation models as detailed in the footnotes of Figure 5 and Figure 6,

Q2 > 0, GPA(%), B = b) and  $P(Y \mid GPA(\%), B = b)$  are constructed using extrapolation models as detailed in the footnotes of Figure 5 and Figure 6, and  $P(Q2 > 0 \mid GPA(\%), B = b)$  comes from local approximation of PMF as detailed in the footnotes of Figure 7.



(c)  $\bar{N}_{GPA,Y,B} = 10$  (Figure 8b)

Note:  $\bar{N}_{GPA,Y,B}=10$ , i.e., local approximation for the  $GPA>=GPA_{cutoff}$  sample if  $N_{GPA,Y,B}\geq 10$ ; extrapolation and Bayes Rule (3) if  $N_{GPA,Y,B}<10$  or  $GPA< GPA_{cutoff}$ .



(d)  $\bar{N}_{GPA,Y,B} = 50$  (Figure 8c)

Note:  $\bar{N}_{GPA,Y,B}=50$ , i.e., use local approximation for the  $GPA>=GPA_{cutoff}$  sample if  $N_{GPA,Y,B}\geq 50$ ; use extrapolation and Bayes Rule (3) if  $N_{GPA,Y,B}<50$  or  $GPA< GPA_{cutoff}$ .

Figure 9: 
$$P(Q2 > 0 \mid GPA(\%), Y, B)$$

Note: Since in real data we can observe Y for those who were admitted, in the feasible  $GPA >= GPA_{cutoff}$  sub-sample, we use local approximation instead of extrapolation and Bayes  $\mathbb{B}$ ule (3) for each object of interest if  $N_{GPA,Y,B} \geq \bar{N}_{GPA,Y,B}$ , where  $N_{GPA,Y,B}$  is the size of each (GPA(%),Y) cell for a specific background B.

# **4** $P(S > 0 \mid GPA(\%), Y, Q2 > 0, B = b)$

The second Bayes Rule:

$$P(S > 0 \mid GPA(\%), Y, Q2 > 0, B = b) = \frac{P(Y \mid S > 0, GPA(\%), Q2 > 0, B = b) \times P(S > 0 \mid GPA(\%), Q2 > 0, B = b)}{P(Y \mid GPA(\%), Q2 > 0, B = b)}$$
(11)

So now, in the feasible  $GPA >= GPA_{cutoff} \& Q2 > 0$  sub-sample, we change to use local approximation for each object of interest if  $N_{GPA,Y,Q2>0} \ge \bar{N}_{GPA,Y,B,Q2>0}$ , where  $N_{GPA,Y,B,Q2>0}$  is the size of each (GPA(%), Y) cell for a specific background B.

- 1. Feasible:  $\bar{N}_{GPA,Y,B,Q2>0} > \infty$ , i.e., all from extrapolation using Bayes Rule (11)
- 2. Feasible:  $\bar{N}_{GPA,Y,B,Q2>0}=0$ , i.e., local approximation without using Bayes Rule (11), but for the  $GPA >= GPA_{cutoff}$  sample, since in real data we only observe Y for those who were admitted
- 3. Feasible:  $\bar{N}_{GPA,Y,B,Q2>0}=100$ , i.e., local approximation for the feasible  $GPA>=GPA_{cutoff}$  & Q2>0 sub-sample if  $N_{GPA,Y,B,Q2>0}\geq 100$ , Bayes Rule (11) from extrapolation if  $N_{GPA,Y,B,Q2>0}<100$  or  $GPA< GPA_{cutoff}$  & Q2>0

### 4.1 Feasible PMF from Local Approximation (Figure 12a)

The empirical PMF approach counts the number of occurrences where S > 0 and divides it by the total number of occurrences in each (GPA, Y) cell for the Q2 > 0 and B = b sub-sample. See Figure 12a.

#### 4.2 Feasible from Extrapolation by Bayes Rule (Figure 12b)

Remember Bayes Rule (11):

$$P(S>0 \mid GPA(\%), Y, Q2>0, B=b) = \frac{P(Y \mid S>0, GPA(\%), Q2>0, B=b) \times P(S>0 \mid GPA(\%), Q2>0, B=b)}{P(Y \mid GPA(\%), Q2>0, B=b)}$$

1.  $P(Y \mid S > 0, GPA(\%), Q2 > 0, B = b)$  from Extrapolation: Figure 10a that comes from Equation (2) using the S > 0 and Q2 > 0 sample:

$$Y_{GPA,s,b,Q2>0} = \underbrace{\alpha_2 + \beta_2 \times GPA(\%) + \gamma_2 \times s(\%) + \gamma_3 \times b}_{\hat{Y}_{GPA,s,b,Q2>0}} + \epsilon_2$$

$$= 9.12 - 0.04 \times GPA(\%) + 2.33 \times s(\%) + 0.3 \times b + \epsilon_2$$
where  $\epsilon_2 \sim N(0, 0.703)$ 

In the S > 0 and Q2 > 0 subsample, for each GPA (%) bin, we assume

$$Y_{GPA,S>0,b,Q2>0} \sim N\left(\hat{Y}_{GPA,S>0,b,Q2>0}, \operatorname{std}\left(\epsilon_2\right)\right)$$
(12)

then

$$P\left(Y \in Y_{\text{bin}} \mid GPA(\%) \in GPA(\%)_{\text{bin}}, S > 0, Q2 > 0\right) = \Phi\left(\frac{\bar{Y}_{\text{bin}} - \mu_2'}{\sigma_2}\right) - \Phi\left(\frac{\underline{Y}_{\text{bin}} - \mu_2'}{\sigma_2}\right) \quad (13)$$

where

- $\mu'_2$ : averaged local predicted mean:  $\hat{Y}_{GPA,S>0,b,Q2>0}$ , which is the average of  $\hat{Y}_{GPA,S,b,Q2>0}$  from Equation (2) for each GPA(%) bin.
- $\sigma_2$ : global standard deviation of  $\epsilon_2$  estimated from Equation (2) using the observed sample above the Score cutoff.
- 2.  $P(S > 0 \mid GPA(\%), Q2 > 0, B = b)$  from LPM: linear probability model (LPM) applied to the Q2 > 0 sub-sample for each background B = b. See Figure 10b.

$$1(S > 0, B = 0) = \underbrace{\alpha_{3,B=0} + \beta_{3,B=0} \times GPA(\%)}_{P(S > 0|GPA,Q2 > 0,B=0) \text{ from LPM}} + \epsilon_{3,B=0} = 0.51 + 0.05 \times GPA(\%) + \epsilon_{3,B=0}$$
(14)

$$1(S > 0, B = 1) = \underbrace{\alpha_{3,B=1} + \beta_{3,B=1} \times GPA(\%)}_{P(S > 0|GPA,Q2 > 0,B=1) \text{ from LPM}} + \epsilon_{3,B=1} = 0.42 + 0.06 \times GPA(\%) + \epsilon_{3,B=1}$$
 (15)



(a) P(Y|S>0, GPA(%), Q2>0, B=b) from Extrapolation Note: This figure shows the probability extrapolated using predicted value of Y from equation (2) that is averaged for the S>0 sample, standard deviation of  $\epsilon_2$ , and



(b)  $P(S > 0 \mid GPA(\%), Q2 > 0, B = b)$  from LPM

Note: This figure shows the probability from linear probability model (LPM) applied to the Q2>0 sub-sample for each background B=b:  $1(S>0,B=b)=\alpha_{3,B=b}+\beta_{3,B=b}\times GPA(\%)+\epsilon_{3,B=b}$ , where  $P(S>0\mid GPA,Q2>0,B=b)$  from LPM is  $\alpha_{3,B=b}+\beta_{3,B=b}\times GPA(\%)$ .

Figure 10:  $P(Y \mid S > 0, GPA(\%), Q2 > 0, B = b)$  and  $P(S > 0 \mid GPA(\%), Q2 > 0, B = b)$  from Extrapolation and LPM

- 3.  $P(Y \mid GPA(\%), Q2 > 0, B = b)$  from extrapolation: same as Figure 5.
- 4.  $P(S>0\mid GPA,Y,Q2>0)$  from Bayes Rule (11) where the RHS items all come from either extrapolations or LPM. See Figure 12b.

#### 4.3 Feasible and Size Threshold 100 (Figure 12c)

Use local approximation for the feasible  $GPA >= GPA_{cutoff} \& Q2 > 0$  sub-sample if  $N_{GPA,Y,B,Q2>0} \ge 100$ ; use the Bayes Rule (11) from extrapolation if  $N_{GPA,Y,B,Q2>0} < 100$  or  $GPA < GPA_{cutoff} \& Q2 > 0$ . See Figure 12c.

# Cell Size for GPA vs. Y when Q2 > 0



Figure 11: Size of (GPA(%), Y) Cell for the Q2 > 0 Sub-sample Note: These figures report the number of observations in each GPA(%) and Y cell for the Q2 > 0 sub-sample, where we also indicate whether the cell size is less than 100 or not.

## **4.5** $P(S > 0 \mid GPA(\%), Y, Q2 > 0, B = b)$



## (a) Local Approximation: $\bar{N}_{GPA,Y,B,Q2>0}=0$ (Figure 11a)

Note: This figure shows the observed  $P(S>0 \mid GPA(\%), Y, Q2>0, B=b)$  from local approximation in each GPA(%) and Y cell, without using any information from the extrapolation models or Bayes Rules. Note that we can only plot for the  $GPA>=GPA_{cutoff}$  sample, since in real data we only observe Y for those who were admitted.



## (b) Extrapolation and Bayes Rule (11): $\bar{N}_{GPA,Y,B,Q2>0}>\infty$

Note: The figure shows the extrapolated  $P(S>0 \mid GPA(\%), Y, Q2>0, B=b)$  using Bayes Rule (11):  $P(S>0 \mid GPA(\%), Y, Q2>0, B=b) \times P(S>0 \mid GPA(\%), Q2>0, B=b) \times P(S>0 \mid GPA(\%), Q2>0, B=b)$ , where all the blue terms are constructed using extrapolation or LPM models as detailed in the footnotes of Figure 10a, Figure 10b, and Figure 5.



(c)  $\bar{N}_{GPA,Y,B,Q2>0} = 100$  (Figure 11b)

Note:  $\bar{N}_{GPA,Y,B,Q2>0}=100$ , i.e., use local approximation for the feasible  $GPA>=GPA_{cutoff}$  in the Q2>0 sub-sample if  $N_{GPA,Y,B,Q2>0}\geq 100$ ; use extrapolation and Bayes Rule (11) if  $N_{GPA,Y,B,Q2>0}<100$  or  $GPA<GPA_{cutoff}$  in the Q2>0 sub-sample.

#### Figure 12: P(S > 0|GPA(%), Y, Q2 > 0, B)

Note: For the observed  $GPA >= GPA_{cutoff} \& Q2 > 0$  sub-sample, we use local approximation if  $N_{GPA,Y,Q2>0} \ge \bar{N}_{GPA,Y,B,Q2>0}$ , where  $N_{GPA,Y,B,Q2>0}$  is the size of each (GPA(%),Y) cell for a specific background B in the Q2>0 sub-sample.

# **5** $P(S > 0, Q2 > 0 \mid GPA(\%), Y, B = b)$

 $P(S > 0, Q2 > 0 \mid GPA(\%), Y, B = b) = P(S > 0 \mid GPA(\%), Y, Q2 > 0, B = b) \times P(Q2 > 0 \mid GPA(\%), Y, B = b)$ (16)



#### (a) Local Approximations: (Figure 9a\*Figure 12a)

Note: This figure shows the observed  $P(S>0,Q2>0 \mid GPA(\%),Y,B=b)$  calculated from the multiplication of values in Figure 9a and Figure 12a, which both come from local approximations in each GPA(%) and Y cell.



#### (b) Extrapolations and Bayes Rules: (Figure 9b\*Figure 12b)

Note: This figure shows the extrapolated  $P(S>0,Q2>0 \mid GPA(\%),Y,B=b)$  calculated from the multiplication of values in Figure 9b and Figure 12b, which both come from extrapolations and Bayes Rules in each GPA(%) and Y cell



(c)  $\bar{N}_{GPA,Y,B}=10$  &  $\bar{N}_{GPA,Y,B,Q2>0}=100$ : (Figure 9c\*Figure12c) Note: This figure shows  $P(S>0,Q2>0\mid GPA(\%),Y,B=b)$  calculated from the multiplication of values in Figure 9c and Figure12c.



(d)  $\bar{N}_{GPA,Y,B}=50$  &  $\bar{N}_{GPA,Y,B,Q2>0}=100$ : (Figure 9d\*Figure12c) Note: This figure shows  $P(S>0,Q2>0\mid GPA(\%),Y,B=b)$  calculated from the multiplication of values in Figure 9d abd Figure12c.

#### Figure 13: $P(S > 0, Q2 > 0 \mid GPA(\%), Y, B)$

Note: Based on  $P(S>0,Q2>0 \mid GPA(\%),Y,B=b) = P(S>0 \mid GPA(\%),Y,Q2>0,B=b) \times P(Q2>0 \mid GPA(\%),Y,B=b)$ , these figures show the different local approximated or extrapolated  $P(S>0,Q2>0 \mid GPA(\%),Y,B=b)$  using different values of  $\bar{N}_{GPA,Y,B}$  and  $\bar{N}_{GPA,Y,B,Q2>0}$ .

# 6 Appendix

# 6.1 Descriptive Statistics of Random Seed 0 Sample

| Proups                                                                     | Variables                     | count          | mean          | std          | min           | 25%          | 50%           | 75%           | max  |
|----------------------------------------------------------------------------|-------------------------------|----------------|---------------|--------------|---------------|--------------|---------------|---------------|------|
|                                                                            | Background                    | 100000         | 0.5           | 0.5          | 0             | 0            | 1             | 1             | 1    |
| Population (Applied to Q1)                                                 | GPA                           | 100000         | 9.01          | 1.01         | 6             | 8.32         | 9.01          | 9.69          | 13   |
|                                                                            | Applied_Q1                    | 100000         | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1                   | 100000         | 0.53          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | GPA(%)_ApplyQ1                | 100000         | 0.5           | 0.29<br>1.01 | 0             | 0.25         | 0.5           | 0.75          | 14.3 |
|                                                                            | Q2                            | 100000         | 10.15<br>0.13 | 1.01         | 5.79<br>-4.71 | 9.48         | 10.16<br>0.13 | 10.84<br>0.81 | 4.1  |
|                                                                            | S S                           | 100000         | -0.02         | 1            | -4.15         | -0.7         | -0.02         | 0.65          | 4.2  |
|                                                                            | Applied Q2                    | 100000         | 0.55          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | Admitted Q2                   | 100000         | 0.27          | 0.44         | 0             | 0            | 0             | 1             | 1    |
|                                                                            | S(%)_ApplyQ2                  | 55121          | 0.5           | 0.29         | 0             | 0.25         | 0.5           | 0.75          | 1    |
| GPA>=GPA Cutoff<br>(Addmitted to Q1)                                       | Background                    | 52828          | 0.57          | 0.49         | 0             | 0            | 1             | 1             | 1    |
|                                                                            | GPA                           | 52828          | 9.77          | 0.63         | 8.93          | 9.28         | 9.65          | 10.14         | 13   |
|                                                                            | Applied_Q1                    | 52828<br>52828 | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1<br>GPA(%)_ApplyQ1 | 52828          | 1<br>0.74     | 0.15         | 0.47          | 0.6          | 0.74          | 0.87          | 1    |
|                                                                            | V ApplyQ1                     | 52828          | 10.19         | 1.01         | 6.26          | 9.52         | 10.2          | 10.87         | 14.3 |
|                                                                            | Q2                            | 52828          | 0.17          | 1.01         | -3.89         | -0.51        | 0.18          | 0.85          | 4.1  |
|                                                                            | s                             | 52828          | 0             | 1            | -4.01         | -0.67        | 0             | 0.68          | 4.2  |
|                                                                            | Applied_Q2                    | 52828          | 0.57          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | Admitted_Q2                   | 52828          | 0.28          | 0.45         | 0             | 0            | 0             | 1             | 1    |
|                                                                            | S(%)_ApplyQ2                  | 30125          | 0.51          | 0.29         | 0             | 0.26         | 0.51          | 0.76          | 1    |
| GPA <gpa cutoff<br="">(Not Addmitted to</gpa>                              | Background                    | 47172          | 0.42          | 0.49         | 0             | 0            | 0             | 1             | 1    |
|                                                                            | GPA                           | 47172          | 8.15          | 0.59         | 6             | 7.81         | 8.27          | 8.62          | 8.9  |
|                                                                            | Applied_Q1                    | 47172<br>47172 | 0             | 0            | 1             | 1            | 0             | 1             | 1 0  |
|                                                                            | Admitted_Q1<br>GPA(%)_ApplyQ1 | 47172<br>47172 | 0.24          | 0.14         | 0             | 0.12         | 0.24          | 0.35          | 0.4  |
|                                                                            | Y Approve                     | 47172          | 10.11         | 1.01         | 5.79          | 9.43         | 10.11         | 10.79         | 14.3 |
| Q1)                                                                        | Q2                            | 47172          | 0.08          | 1            | -4.71         | -0.6         | 0.08          | 0.75          | 4.1  |
| 2-7                                                                        | S                             | 47172          | -0.04         | 1            | -4.15         | -0.72        | -0.04         | 0.63          | 4.2  |
|                                                                            | Applied_Q2                    | 47172          | 0.53          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | Admitted_Q2                   | 47172          | 0.26          | 0.44         | 0             | 0            | 0             | 1             | 1    |
|                                                                            | S(%)_ApplyQ2                  | 24996          | 0.49          | 0.29         | 0             | 0.24         | 0.49          | 0.74          | 1    |
|                                                                            | Background                    | 55121          | 0.52          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | GPA                           | 55121          | 9.05          | 1.01         | 6             | 8.36         | 9.05          | 9.73          | 13   |
|                                                                            | Applied_Q1                    | 55121          | 0.55          | 0<br>0.5     | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1<br>GPA(%)_ApplyQ1 | 55121<br>55121 | 0.51          | 0.29         | 0             | 0.26         | 0.52          | 0.76          | i    |
| 2>0 (Applied to                                                            | Y                             | 55121          | 10.52         | 0.92         | 6.63          | 9.9          | 10.52         | 11.14         | 14.3 |
| Q2)                                                                        | Q2                            | 55121          | 0.85          | 0.63         | 0             | 0.35         | 0.73          | 1.22          | 4.1  |
|                                                                            | S                             | 55121          | -0.02         | 1            | -4.15         | -0.7         | -0.02         | 0.66          | 4.2  |
|                                                                            | Applied_Q2                    | 55121          | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q2                   | 55121          | 0.49          | 0.5          | 0             | 0            | 0             | 1             | 1    |
|                                                                            | S(%)_ApplyQ2                  | 55121          | 0.5           | 0.29         | 0             | 0.25         | 0.5           | 0.75          | 1    |
|                                                                            | Background                    | 44879          | 0.47          | 0.5          | 0             | 0            | 0             | 1             | 1    |
|                                                                            | GPA                           | 44879          | 8.96          | 1.01         | 6             | 8.27         | 8.95          | 9.64          | 13   |
|                                                                            | Applied_Q1                    | 44879          | 1<br>0.51     | 0<br>0.5     | 1             | 0            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1<br>GPA(%) ApplyQ1 | 44879<br>44879 | 0.49          | 0.29         | 0             | 0.23         | 0.48          | 0.73          | 1    |
| $Q2 \le \theta$ (Not                                                       | Y                             | 44879          | 9.7           | 0.92         | 5.79          | 9.09         | 9.71          | 10.32         | 13.5 |
| Applied to Q2)                                                             | Q2                            | 44879          | -0.76         | 0.59         | -4.71         | -1.09        | -0.64         | -0.3          | 0    |
|                                                                            | S                             | 44879          | -0.02         | 1            | -3.93         | -0.7         | -0.02         | 0.65          | 4.3  |
|                                                                            | Applied_Q2                    | 44879          | 0             | 0            | 0             | 0            | 0             | 0             | 0    |
|                                                                            | Admitted_Q2                   | 44879          | 0             | 0            | 0             | 0            | 0             | 0             | 0    |
|                                                                            | S(%)_ApplyQ2                  | 0              | 0             | 0            | 0             | 0            | 0             | 0             | 0    |
| S>0 & Q2>0<br>(Addmitted to Q2)                                            | Background                    | 27115          | 0.48          | 0.5          | 0             | 0            | 0             | 1             | 1    |
|                                                                            | GPA                           | 27115          | 9.06          | 1.01         | 6             | 8.38         | 9.06          | 9.75          | 13   |
|                                                                            | Applied_Q1                    | 27115<br>27115 | 1<br>0.55     | 0<br>0.5     | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1<br>GPA(%)_ApplyQ1 | 27115          | 0.53          | 0.29         | 0             | 0.27         | 0.52          | 0.77          | 1    |
|                                                                            | Y ApplyQ1                     | 27115          | 11            | 0.79         | 8.02          | 10.46        | 10.99         | 11.52         | 14.3 |
|                                                                            | Q2                            | 27115          | 0.85          | 0.63         | 0             | 0.35         | 0.73          | 1.22          | 4.1  |
|                                                                            | s                             | 27115          | 0.79          | 0.6          | 0             | 0.32         | 0.67          | 1.14          | 4.2  |
|                                                                            | Applied_Q2                    | 27115          | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q2                   | 27115          | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | S(%)_ApplyQ2                  | 27115          | 0.75          | 0.14         | 0.51          | 0.63         | 0.75          | 0.88          | 1    |
| GPA <gpa cutoff<br="">&amp; S&lt;=0 (Not<br/>Addmitted to<br/>Q1/Q2)</gpa> | Background                    | 24375          | 0.46          | 0.5          | 0             | 0            | 0             | 1             | 1    |
|                                                                            | GPA                           | 24375          | 8.14          | 0.59         | 6             | 7.81         | 8.26          | 8.61          | 8.9  |
|                                                                            | Applied_Q1                    | 24375          | 1             | 0            | 1             | 1            | 1             | 1             | 1    |
|                                                                            | Admitted_Q1                   | 24375          | 0             | 0            | 0             | 0            | 0 22          | 0             | 0    |
|                                                                            | GPA(%)_ApplyQ1<br>Y           | 24375<br>24375 | 0.23<br>9.65  | 0.14         | 5.79          | 0.12<br>9.05 | 0.23<br>9.66  | 0.35<br>10.26 | 12.7 |
|                                                                            | Q2                            | 24375          | 0.07          | 1.01         | -4.1          | -0.6         | 0.07          | 0.75          | 3.8  |
|                                                                            | s s                           | 24375          | -0.82         | 0.61         | -4.15         | -1.18        | -0.7          | -0.33         | 0    |
|                                                                            | Applied_Q2                    | 24375          | 0.53          | 0.5          | 0             | 0            | 1             | 1             | 1    |
|                                                                            | Admitted_Q2                   | 24375          | 0             | 0            | 0             | 0            | 0             | 0             | 0    |
|                                                                            | S(%) Apply()2                 | 12899          | 0.25          | 0.15         | 0             | 0.12         | 0.25          | 0.38          | 0.5  |

# 6.2 Coefficients of Extrapolation Equations

|                             | Equation (1): Q1 Admitted | Equation (2): Q2 Admitted | Equation (3): Background 0 | Equation (3): Background 1 | Equation (3): Pool Background |
|-----------------------------|---------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|
| background                  | 0.20                      | 0.30                      |                            |                            | -0.08                         |
| background (SE)             | (0.01)                    | (0.01)                    |                            |                            | (0.00)                        |
| const                       | 10.01                     | 9.12                      | 0.51                       | 0.42                       | 0.51                          |
| const (SE)                  | (0.02)                    | (0.02)                    | (0.01)                     | (0.01)                     | (0.00)                        |
| percentile_GPA_applyQ1      | 0.09                      | -0.04                     | 0.05                       | 0.06                       | 0.06                          |
| percentile_GPA_applyQ1 (SE) | (0.03)                    | (0.02)                    | (0.01)                     | (0.01)                     | (0.01)                        |
| percentile_S_applyQ2        |                           | 2.33                      |                            |                            |                               |
| percentile_S_applyQ2 (SE)   |                           | (0.03)                    |                            |                            |                               |
| Standard Deviation          | 1                         | 0.7                       |                            |                            |                               |

Figure 15: Coefficients of Equations (1)-(3)