HOMEWORK 03: Frequent Graph Pattern Mining

Student name: Ngô Văn Trung Nguyên

StudentID: 20127054

Problem 1. Hierarchical Networks:

-Calculate the degree exponent of the hierarchical network shown in figure below.

- We can see that the largest hub at the center of the network acquires 3^n links during the n^{th} iteration.
- The hierarchical model generates a scale-free network with degree exponent:

$$\gamma=1+\frac{ln4}{ln3}=2.262$$

Problem 2. Communities on a Circle

Consider a one dimensional lattice with N nodes that form a circle, where each node connects to its two neighbors. Partition the line into nc consecutive clusters of size $N_c = N/n_c$.

a) Calculate the modularity of the obtained partition.

- We have: $M_c = \frac{L_c}{L} (\frac{k_c}{2L})^2$ (where L_c is the total number of links within the community C_c and k_c is the total degree of the nodes in this community).
- For one community: $M_c = \frac{L_c}{L} (\frac{k_c}{2L})^2 = \frac{N_c 1}{N} (\frac{2N_c}{2N})^2$
 - \circ Number of links L_c in comunity is the number of nodes in that comunity -1
 - All nodes have degree 2 so $k_c = number\ of\ nodes\ in\ that\ community*2$
 - This is a circle, so L = N.

- Because $N_c = \frac{N}{n_c}$, we have:

$$M_c = \frac{N_c - 1}{N} - \left(\frac{2N_c}{2N}\right)^2 = \frac{\frac{N}{n_c} - 1}{N} - \left(\frac{\frac{2N}{n_c}}{2N}\right)^2 = \frac{N - n_c}{N * n_c} - \frac{1}{n_c}^2 = \frac{1}{n_c} - \frac{1}{N} - \frac{1}{n_c^2}$$

- Because all communities are the same, we have the partition's modularity:

$$M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - (\frac{k_c}{2L})^2 \right] = \left[\frac{1}{n_c} - \frac{1}{N} - \frac{1}{n_c^2} \right] * n_c = 1 - \frac{n_c}{N} - \frac{1}{n_c}$$

- b) According to the Maximum Modularity Hypothesis, the maximum of Mc corresponds to the best partition. Obtain the community size nc corresponding to the best partition.
- To have M reach maximum, we need to find the maximum of

$$M = 1 - \frac{n_c}{N} - \frac{1}{n_c}$$

- Diffentiate:

$$\frac{dM}{dn_c} = 0 - \frac{1}{N} + \frac{1}{n_c^2} = 0$$

$$\rightarrow \frac{1}{n_c^2} = \frac{1}{N}$$

$$\rightarrow n_c = \sqrt{N}$$

- Therefore, $n_c = \sqrt{N}$.

Problem 3. Modularity Resolution Limit

Consider a network consisting of a ring of n_c cliques, each clique having N_c nodes and $\frac{m(m-1)}{2}$ links. The neighboring cliques are connected by a single link (Figure 2). The network has an obvious community structure, each community corresponding to a clique.

- a) Determine the modularity Msingle of this natural partition, and the modularity Mpairs of the partition in which pairs of neighboring cliques are merged into a single community, as indicated by the dotted lines in Figure 2.
- Each clique has $\frac{m(m-1)}{2}$ links. So $N_c = m$

-
$$M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$$

$$- M_{single} = \sum_{c=1}^{n_c} \left[\frac{m(m-1)/2}{n_c \frac{m(m-1)}{2} + n_c} - \left(\frac{m(m-1)+2}{2n_c \frac{m(m-1)}{2} + 2n_c} \right)^2 \right] = n_c \left[\frac{m(m-1)/2}{n_c \frac{m(m-1)}{2} + n_c} - \left(\frac{m(m-1)+2}{2n_c \frac{m(m-1)}{2} + 2n_c} \right)^2 \right]$$

$$\circ \quad L_c = \frac{m(m-1)}{2}$$

- o $L = n_c \frac{m(m-1)}{2} + n_c$ (total links of n_c cliques plus total connected links n_c , a ring shape has equal vertices and edges).
- o $k_c = m(m-1) + 2$ (a clique is a complete graph, so each vertex is connected to n-1 other vertices. The sum of all degrees in a clique is m(n-1), plus an additional 2 degrees because there are 2 connected links to it's 2 neighbors).

$$- M_{\text{pair}} = \sum_{c=1}^{n_c} \left[\frac{m(\text{m-1})+1}{n_c \frac{m(\text{m-1})+1}{2} + n_c} - \left(\frac{2m(\text{m-1})+4}{2n_c \frac{m(\text{m-1})}{2} + 2n_c} \right)^2 \right] = \frac{n_c}{2} \left[\frac{m(\text{m-1})+1}{n_c \frac{m(\text{m-1})+1}{2} + n_c} - \left(\frac{2m(\text{m-1})+4}{2n_c \frac{m(\text{m-1})}{2} + 2n_c} \right)^2 \right]$$

- o $L_c = m(m-1) + 1$ (a pair of neighboring cliques has m(m-1) links and one link that connects them).
- o $k_c = 2m(m-1) + 4$ (a pair of neighboring cliques has 2m(m-1) degrees, plus 2 degrees because there is 1 link connecting them, and an additional 2 degrees because each pair is connected to it's 2 neighbors with 2 links).
- b) Show that only for $n_c < 2L$ will the modularity maximum predict the intuitively correct community partition, where $L = \frac{n_c m(m-1)}{2} + n_c$.

- We have:
$$M = \frac{\frac{L \cdot n_c}{n_c}}{L} \cdot \left(\frac{\frac{2(L \cdot n_c)}{n_c} + 2}{2L}\right)^2 = \frac{1}{n_c} \cdot \frac{1}{L} \cdot \frac{1}{n_c^2}$$

$$\circ \quad L_c = \frac{L - n_c}{n_c}$$

- \circ k_c equals 2 multiply L_c plus 2 degrees because there are 2 connected links
- Because $n_c < 2L: \frac{1}{n_c} > \frac{1}{2L}$ and $\frac{1}{n_c^2} > \frac{1}{4L^2}$
- We have: $\frac{1}{n_c} \frac{1}{L} > \frac{1}{2L} \frac{1}{L} = -\frac{1}{L}$
- c) Discuss the consequences of violating the above inequality.

Problem 4. Modularity Maximum

$$M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - (\frac{k_c}{2L})^2 \right]$$

Show that the maximum value of modularity M cannot exceed one.

- Because $\sum_{c=1}^{n_c} L_c \le L$ (Total edges in all communities cannot exceed L)

$$M = \sum_{c=1}^{n_c} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right] = \sum_{c=1}^{n_c} \frac{L_c}{L} - \sum_{c=1}^{n_c} \left(\frac{k_c}{2L} \right)^2 \le \sum_{c=1}^{n_c} \frac{L_c}{L} = \frac{1}{L} \sum_{c=1}^{n_c} L_c \le 1$$