fait à la maison

Nom:								$egin{array}{cccccccccccccccccccccccccccccccccccc$	\top	
Prénom:] IN Sciper . [] [

A. Régulateur de Watt (4/10 points)

On modélise un régulateur de Watt (voir esquisse à gauche) par deux points matériels P_1 et P_2 , pesants, de masse m, reliés chacun à un point O de l'axe de rotation Oz par des tiges rigides sans masse, de longueurs R, d'inclinaison θ par rapport à la verticale. Les masses sont astreintes à se déplacer dans un plan en rotation autour de l'axe Oz avec une vitesse angulaire $\Omega = \dot{\phi}\hat{z}$. On suppose que le régulateur est sans frottement. La vitesse angulaire peut changer, par l'action sur le plan en rotation d'une corde et d'une poulie liée à ce plan, par exemple. L'axe Oz est vertical, orienté vers le bas, dans le sens de la pesanteur caractérisée par le vecteur g. Le système d'axes cartésiens Oxyz est choisi pour que θ et ϕ correspondent aux angles des coordonnées sphériques dans leur définition usuelle.

Dans ce problème, on va analyser le comportement mécanique de ce système en se concentrant uniquement sur le point matériel P_1 et on utilisera les coordonnées sphériques et le repère associé (qui n'est pas représenté sur le dessin).

1.	(0.5 point) Etablir le bilan des forces agissant sur le point matériel P_1 uniquement. Représente chacune des forces par une flèche sur le dessin et donner leurs projections sur le repère associaux coordonnées sphériques.
2.	$({f 1.0~point})$ Ecrire les équations du mouvement pour le point matériel P_1 :
	$(\hat{m{e_r}})$
	$(\hat{e_{ heta}})$
	$(\hat{m{e_\phi}})$
3.	$(\mathbf{0.5\ point})$ A quoi est égale la dérivée par rapport au temps de la composante z du moment cinétique en O du point matériel P_1 , en termes des forces extérieures appliquées à P_1 ?
	$\frac{d\left(\hat{\boldsymbol{z}}\cdot\boldsymbol{L}_{O}\right)}{dt}=\dots$
4.	(1.0 point) Exprimer l'énergie mécanique du point matériel P_1 en coordonnées sphériques, e prenant O comme point de référence du potentiel.
	$E = \dots$
5.	$(\mathbf{0.5\ point})$ Trouver l'angle θ_0 à l'équilibre quand $\dot{\phi}$ est constant, sous la condition $\theta \neq 0$.
6.	(0.5 point) On peut obtenir à nouveau l'accélération du point matériel P_1 en appliquant le formalisme du mouvement relatif, prenant le plan vertical et sa normale comme référentiel relatif et le système d'axes cartésiens $Oxyz$ comme référentiel absolu. Avec al vitesse relative $\mathbf{v}_r = r\dot{\theta}\dot{\mathbf{e}}$ et la vitesse angulaire d'entrainement du référentiel relatif $\mathbf{\Omega} = \dot{\phi}\hat{\mathbf{z}}$, calculer l'accélération de Coriolis projetée sur le repère des coordonnées sphériques :
	$oldsymbol{a}_{Coriolis} = ()\hat{oldsymbol{e}}_r$
	$+\left(ight)\hat{oldsymbol{e}}_{ heta}$

fait à la maison

Nom:								$egin{array}{cccccccccccccccccccccccccccccccccccc$	\top	
Prénom:] IN Sciper . [] [

B. Balançoire circulaire (4/10 points)

Un solide est formé d'un cercle et d'un point matériel P situé sur le cercle. Le cercle est en tout temps dans un plan vertical, il roule sans glisser sur une table horizontale, il est soumis à la pesanteur, sa masse vaut m/2, son rayon est R. La masse m/2 du cercle est répartie uniformément sur le cercle (l'intérieur est vide).

Le point matériel en P est pesant, de masse m/2, il est fixé en un point du cercle. Le solide constitué du cercle et du point matériel est donc de masse totale m. On désigne par C le centre du cercle, par P le point matériel et par G le centre de masse du solide composé du cercle et du point matériel.

Questions et réponses au verso!

1.	$({f 0.5~point})$ En utilisant la définition vectorielle du centre de masse pour tout système de point matériel, montrer que G est au milieu du segment CP .
2.	$(\mathbf{0.5~point})$ On désigne la vitesse angulaire du solide par $\boldsymbol{\omega} = \omega \hat{\boldsymbol{z}}$ où $\omega = \dot{\theta}$. Montrer que la condition de roulement sans glissement implique que $V_C = \omega R$, où V_C est la projection sur l'axe Oy de la vitesse \boldsymbol{V}_C de C .
3.	$({f 0.5~point})$ Avec des règles élémentaires sur les propriétés des moments d'inertie, calculer le moment d'inertie en G du solide (cercle et point matériel) c'est-à-dire I_G (et non pas I_C) :
	$I_G = \dots$
4.	(1.0 point) En utilisant I_G supposé connu, obtenir grâce au théorème du moment cinétique une équation du mouvement pour $\theta(t)$. Esquisser sur un dessin (celui de la donnée ou un dessin annexe) toutes les forces agissant sur le solide.
	$\ddot{ heta} =$
5.	(1.0 point) Tenant compte de la condition de roulement sans glissement $V_C = R\omega$, trouver l'expression vectorielle de l'accélération de G en termes de θ , $\dot{\theta}$ et $\ddot{\theta}$, appliquer le théorème du centre de masse et projeter selon \hat{x} pour obtenir les équations du mouvement : \hat{y} .
	$(\hat{m{x}})$ $=$
	$(\hat{m{y}})$ =
6.	$(\mathbf{0.5~point})$ En considérant I_G et la vitesse \boldsymbol{v}_P du point P connus, exprimer l'énergie mécanique du solide. Prendre comme référence du potentiel la position la plus basse du centre de masse G .
	$E = \dots$

fait à la maison

Nom:								$oxed{N^{\circ}\ Sciper:}$
Prénom :								

C. Gyrotronique (2/10 points)

Une charge électrique q considérée comme un point matériel de masse m est soumise à un champ d'induction magnétique $\mathbf{B} = B\hat{\mathbf{z}}$ uniforme et constant. On admet que le point matériel a une trajectoire dans un plan normal au champ \mathbf{B} . On note \mathbf{v} sa vitesse et \mathbf{p} sa quantité de mouvement. On veut examiner ici les conséquences de la définition relativiste de la fonction $\mathbf{p}(\mathbf{v})$. L'équation de la dynamique est donnée :

$$rac{dm{p}}{dt} = qm{v} \wedge m{B}$$

Questions et réponses au verso!

1. (0.5 point) On donne la norme du vecteur de vitesse initiale, $v = v $. Déterminer la norme du vecteur de quantité de mouvement et montrer qu'elle est indépendante du temps.
$p= oldsymbol{p} =$
2. (0.5 point) Obtenir les équations du mouvement pour p_x et p_y en termes de m, q, B et γ où $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$.

$$\ddot{p}_y = \dots$$

3. (0.5 point) Montrer que la trajectoire est un cercle et donner son rayon R en termes de m, v, q, B et γ .

$$R = \dots$$

4. (0.5 point) Quelle est la norme du vecteur de vitesse angulaire ω_c du point matériel sur le cercle?

$$\omega_c = \dots$$