

TEE

Simple AI (SAI)

用户手册

2018.12.10

V1.0

本文档内容来自于北京梯易易科技有限公司(TEE),基于本文档内容,可用于评估本公司产品的性能,本文档包括环境创建,基于 Pytorch 工具的量化模型训练,模型转换,以及如何快速部署在 Windows, Linux 等平台。

1 SAI 说明

SAI 是基于 PyTorch 的卷积神经网络模型训练,转换,部署工具——可用于将 float 型卷积神经网络模型转换为定点量化模型 (1bit 或者 3bit),并可通过 TEE 公司的算力棒来运行,或者从头开始训练量化模型。部署的时候可使用主机的 CPU 和 TEE 公司的算力棒通过联合通信进行推断,支持 Windows,Linux 等主流平台。

基于 SAI 和本公司出品的算力棒,可以非常方便的训练一个精度损失较低的量化模型,并转换成可以在算力棒上运行的模型,基于转换好的模型,最后 SAI 还为开发者提供了快速的部署到 Windows, Linux 等平台的一键部署工具。

2 硬件与系统要求

SAI 运行环境对主机配置的相关要求如下:

- CPU >= Intel i5 (推荐 i7)
- 内存 >=8 GB

当前支持在如下系统上运行

- Windows 10
- Ubuntu LTS 16.04

3 软件环境依赖

启动 SAI 工具,需要先安装以下软件:

Python:

推荐直接安装 anaconda 集成 python 环境,python2.7 或者 python3.7 均可,可在 https://www.anaconda.com/download/上根据自己的系统选择下载 Windows 或者 Linux 的安装包进行安装。

安装完成后可以在控制台(Windows 下打开 Windows Command Prompt, Linux 下打开 Terminal)输入以下命令来确认 python 环境是否安装成功:

python

如果安装成功,则会显示以下信息:

Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)] :: Anaconda, Inc. on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

Pytorch:

Pytorch 是 Facebook 开源的一款神经网络框架,可在官网: https://pytorch.org 自行选择和你的环境相符合的下载命令进行安装,安装完成后,可在控制台(Windows 下打开 Windows Command Prompt, Linux 下打开 Terminal)输入以下命令来确认 pytorch 环境是否安装成功:

import torch

import torchvision

CUDA(可选):

推荐使用 GPU 来跑训练,CPU 跑训练实在是太慢,你会无法忍受的,^o^. 若要使用 GPU 来训练,就需要安装 CUDA.一般来说,需要通过以下几步安装 CUDA : 1. 安 装 NVIDIA 显 卡 驱 动 , 去 官 网 (http://www.nvidia.cn/Download/index.aspx?lang=cn)查找适配自己电脑 GPU 的 驱 动 ; 2. 安 装 CUDA9.0, 去 官 网 (https://developer.nvidia.com/cuda-90-download-archive)下载;3.安装 cuDNN,去 官网(https://developer.nvidia.com/cudnn)下载

import torch

torch.cuda.is_available()

可通过以下命令来确认 GPU 是否成功安装:

4 安装算力棒驱动

将 SAI_v1.0.zip 解压, Windows 10 系统会自动安装驱动, Linux 系统需要一些额外的步骤,请参考以下命令为算力棒安装驱动:

sudo cp lib /libftd3xx.so.0.5.21 /usr/lib/ sudo cp lib /*.rules /etc/udev/rules.d/

5 训练数据准备

将你的训练数据分为 train 和 val 两个目录,基于标签数目 N,创建 0 -- N-1 个子目录,每个子目录中放入对应标签的图像数据。然后将 train 和 val 两个目录放置于 SAI_ROOT/data目录下。

6 模型训练与转换

因为 TEE 算力棒仅支持 VGG 类型的卷积结构,所以 SAI 的模型训练工具也只提供了基于 VGG 类型的网络模型训练。当前版本支持三种类型的 VGG 网络:

- teeNet1:标准的 VGG16 网络,包括 13 个卷积结构和 3 个全连接层
- teeNet2:简化后的 VGG 网络,包括 18 个卷积结构,1 个 GAP 层,1 个全连接层
- teeNet3:去掉全连接层后的 VGG 网络,包括 16 个卷积结构

SAI 通过加载 training.json 文件来进行模型训练与转换, training.json 文件放置在 SAI_ROOT 目录下,可通过文本编辑器对其进行编辑修改。training.json 文件里的每个关键词 描述如下:

- num_classes 类别数目
- max epoch 最大迭代次数
- learning rate 学习率

- train_batch_size 一次加载的训练数据数目
- test batch size 一次加载的测试数据数目
- mask_bits 每个主层的量化 bit 数
- act_bits 每个主层的激活量化 bit 数
- resume 接着之前中断的训练继续开始训练
- finetune 加载一个预训练模型来微调
- full 训练一个全精度的模型

在前面的工作都准备好后,你可以在命令行窗口输入以下命令来启动模型的训练与转换 工作:

python TEE_SAI.py

运行结束后可在根目录下得到两个文件: conv.dat 和 fc.dat (如果是 teeNet3 网络,则只会得到 conv.dat 文件,因为该网络结构没有全连接层)。其中 conv.dat 是算力棒上加载运行的模型。

Tips: 关于模型训练,我们建议先使用 full 模式训练一个全精度的模型 F,再通过加载这个全精度模型 F来 finetune 训练量化模型,得到最终的可部署模型。

7 推断部署

通过前面的模型训练与转换步骤,得到了可以在算力棒上运行部署的模型,接下来我们可以通过 SAI 的 infer 工具,结合分类任务,将该模型快速的部署到终端设备上。TEE_SAI SDK目前支持 windows/linux/arm-linux 三个平台的推断部署,后续会增加 android/ios 等平台支持。

当前版本仅提供了针对 teeNet1 网络结构的分类任务推断部署。

下面我们详细介绍 3 种平台的推断的编译和部署。首先进入 SAI_ROOT/infer/目录,可根据实际需要部署的平台选择 Windows,Linux 或者 Arm-Linux 文件夹下的部署工具。

平台	依赖	描述
Windows	Opencv/openblas/ffmpeg	TEE 发布包中已经包
		含,无需编译

Linux	Opencv/ffmpeg	TEE 发布包中已经包
		含,需要时编译
Arm-linux	Opencv/ffmpeg/QT	TEE 发布包中已经包
		含,需要时编译

此处 ffmpeg 和 QT 依赖只是用于显示 demo 和界面。实际部署时可以根据使用场景选择是否去掉。

Tips: 以 Windows 平台为例,请将前面转换好的 conv.dat 和 fc.dat 文件拷贝到 SAI_ROOT/infer/windows/bin/model 目录下,运行 run.bat 即可看到演示界面。如果需要修改 类别数或者输出显示方式或者其他后处理,可以打开 SAI_ROOT/infer/windows/目录下的 TEE_SAI.sln 工程自行修改定制。

7.1 Windows 平台

文件	功能	描述
windows/TEE_SAI.sh	Windows 平台推断工程	需 要 visual studio
		2015 版本以上
windows/Lib	Windows 平台编译和运行需	
	要的静态和动态库	
windows/bin	Windows 平台编译输出和运	将 model 文件夹拷贝
	行目录	到此目录下,直接双击运
		行 run.bat

7.2 Linux 平台

文件	功能	描述
linux/CMakeLists.txt	Linux 平台编译文件	
linux/lib	Linux 平台编译和运行需要的	
	静态和动态库	
linux/build	Linux 平台独立编译目录	1. cd build
		2. cmake

		3. make
linux/bin	Linux 平台运行目录	将编译生成的可执
		行文件 TEEClassifierDemo
		和 model 文件夹拷贝到此
		目录,运行 run.sh

7.3 arm linux 平台

文件	功能	描述
Arm64/CMakeLists.txt	Arm64 linux 平台编译文件	
Arm64/lib	Arm64 Linux 平台编译和运	
	行需要的静态和动态库	
Arm64/build	Arm64 Linux 平台独立编译 目录	 cd build cmake-gui make
Arm64/bin	Arm64 Linux 平台运行目录	将编译生成的可执 行文件 TEEClassifierDemo 和 model 文件夹拷贝到此 目录,运行 run.sh

编译 aarch64 linux 时需要使用 linaro 的交叉编译工具, SAI_ROOT/arm64/toolchains/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu.tar.xz 为交叉编译工具。