E		Project No Book No		3
n Page No $5 = \begin{cases} 2 \\ (1+9) \end{cases}$	$^{\prime}$ 2) dx			
		ininize this h		
Mote that is	ve Long	Tankina ot ma	xina Gefra, J J S/gie =	0, 6 of rot was or
At wax or a	~ / (o'	Teros(pe), do	= 0,	va.
In general X		y'(x), x) dx	Note that is any variant 2-1	
is a stat	$\frac{d}{dx} \frac{\partial f}{\partial y'} =$	1	-Lagrange E	ountion)
essed & Understood by me,	Date	Invented by	Date	rage No

Back to the slustest path

distance between l = d = 75 $S = \left(\left(1 + g'(x) \right)^{1/2} dx \right)$

Ever-lagrange ez:

f = (1+ y') 1/2 y 15 apendent variable and

X 75 Independent variable

So $\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$ for shortest path.

H = 0 suce + 13 not a Lacker of y.

 $\frac{df}{dy'} = \frac{d}{dy'} \left((1+y')'' \right) = \frac{1}{2} \left((1+y')^{-1/2} \right) = \frac{1}{2} \left((1+y')^{-1/2} \right)$

Since of, is not a function of x, then f(x) = 0 and of is a constant

Of = const

 So_{1} $\frac{1}{2}(149')^{-1/2} = const.$ this, y' = const (Playh a Mont constant Gee, let's call the constat on (La style), then) ly = mx + b were 5 B the vorter

I waster to the construction of This is he gration of a shright the ,50 a strajlet fore is the shortest distance between two points.