V	Vers	ja
	_	

Numer indeksu:	

α 1	
irnnat	٠
Grupa	

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Logika dla informatyków

Kolokwium nr 2, 20 grudnia 2019 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). W tym zadaniu p jest unarnym, a q jest 0-arnym symbolem relacyjnym. Jeśli formuła $\Big(\forall x\,(p(x)\Rightarrow q)\Big)\Rightarrow \Big((\exists x\,p(x))\Rightarrow q\Big)$ jest tautologią rachunku predykatów, to w prostokąt poniżej wpisz jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 2 (2 punkty). Jeśli dla wszystkich funkcji $f: A \to B$ oraz wszystkich zbiorów $X \subseteq A$ i $Y \subseteq B$ zachodzi równość $f[X \cup f^{-1}[Y]] = f[X] \cup Y$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=x^2,\ X=\emptyset,\ Y=\{-1\}.$$
 Wtedy $f[X\cup f^{-1}[Y]]=\emptyset,$ natomiast $f[X]\cup Y=\{-1\}.$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Rozważmy taką funkcję $f: \mathbb{Z} \times [0,1) \to \mathbb{R}$, że f(n,x) = n+2x. Jeśli funkcją f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcją odwrotna nie istnieje.

```
fnie jest różnowartościowa, np. f(1,\ 0)=f(0,\ 0.5)
```

Zadanie 4 (2 punkty). Jeśli istnieje relacja antysymetryczna, której przechodnie domknięcie jest relacją zwrotną, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

$$A = \{1,2,3\}, R \subseteq A \times A, R = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle\}$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje binarne $Bywa\subseteq O\times B$, $Lubi\subseteq O\times S$ i $Podajq\subseteq B\times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle b,s\rangle\mid\varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów i soków o tej własności, że wszystkie osoby lubiące sok s bywają tylko w barze b.

$$\forall o \in O.Lubi(o,s) \Rightarrow \forall b' \in B.(Bywa(o,b') \Rightarrow b = b')$$

Wersja:

Numer	indeksu:	

 $Grupa^1$:

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Niech $\mathcal{A} = \{A_i \mid i \in \mathbb{N}\}$ oraz $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\}$ będą nieskończonymi rodzinami podzbiorów \mathbb{N} . Powiemy, że rodzina \mathcal{A} jest *spleciona* z rodziną \mathcal{B} , jeżeli dla wszystkich $i \in \mathbb{N}$ zachodzą warunki: $A_i \subseteq B_i$ oraz $B_i \subseteq A_{i+1}$.

- (a) Podaj przykłady takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest spleciona z \mathcal{B} .
- (b) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest splecione z \mathcal{B} , zachodzi warunek $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i$?
- (c) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest splecione z \mathcal{B} , zachodzi warunek $\bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i \in \mathbb{N}} B_i$?

Podaj odpowiednie dowody lub kontrprzykłady.

Zadanie 7 (5 punktów). Na zbiorze $P(\mathbb{N})$ określamy binarną relację *prawie-równości* zbiorów \approx w taki sposób, że $A \approx B$ wtedy i tylko wtedy, kiedy A = B lub istnieje taka liczba $x \in \mathbb{N}$, że $A \setminus \{x\} = B \setminus \{x\}$. Czy relacja \approx jest (a) zwrotna, (b) symetryczna, (c) przechodnia?

Zadanie 8 (5 punktów). Niech S będzie dowolnym zbiorem. Multizbiorem nad S nazywamy dowolną funkcję $A:S\to\mathbb{N}$ (mówimy wtedy, że A(x) jest liczbą wystąpień elementu x w multizbiorze A). Jeśli A i B są multizbiorami, to ich przekrój $A\cap B$ i sumę $A\cup B$ definiujemy wzorami:

$$(A \cap B)(x) = \min(A(x), B(x))$$

$$(A \cup B)(x) = A(x) + B(x)$$

Czy dla dowolnych multizbiorów A, B, C zachodzą równości:

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$?

Podaj odpowiednie dowody lub kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersj	а

Numer indeksu:	

Grupa ¹ :	
----------------------	--

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Logika dla informatyków

Kolokwium nr 2, 20 grudnia 2019 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli dla wszystkich funkcji $f: A \to B$ oraz wszystkich zbiorów $X \subseteq A$ i $Y \subseteq B$ zachodzi równość $f^{-1}[f[X] \cup Y] = X \cup f^{-1}[Y]$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ X = \{-1\}, \ Y = \emptyset.$$
 Wtedy $f^{-1}[f[X] \cup Y] = \{-1,1\}$, natomiast $X \cup f^{-1}[Y] = \{-1\}$.

Zadanie 2 (2 punkty). Jeśli istnieje relacja symetryczna, której przechodnie domknięcie nie jest relacją zwrotną, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

$$A=\{1,2\}, R\subseteq A\times A, R=\{\langle 1,1\rangle\}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

We	rsj	ja

Numer inde	ksu:	

Grupa ¹	١.

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Na zbiorze $P(\mathbb{N})$ określamy binarną relację *prawie-zawierania* zbiorów \subseteq w taki sposób, że $A \subseteq B$ wtedy i tylko wtedy, kiedy $A \subseteq B$ lub istnieje taka liczba $x \in \mathbb{N}$, że $A \setminus \{x\} \subseteq B \setminus \{x\}$. Czy relacja \subseteq jest (a) zwrotna, (b) symetryczna, (c) przechodnia?

Zadanie 7 (5 punktów). Niech $\mathcal{A} = \{A_i \mid i \in \mathbb{N}\}$ oraz $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\}$ będą nieskończonymi rodzinami podzbiorów \mathbb{N} . Powiemy, że rodzina \mathcal{A} jest *wpleciona* w rodzinę \mathcal{B} , jeżeli dla wszystkich $i \in \mathbb{N}$ zachodzą warunki: $A_i \supseteq B_i$ oraz $B_i \supseteq A_{i+1}$.

- (a) Podaj przykłady takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wpleciona w \mathcal{B} .
- (b) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wplecione w \mathcal{B} , zachodzi warunek $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i$?
- (c) Czy dla dowolnych takich rodzin \mathcal{A}, \mathcal{B} podzbiorów \mathbb{N} , że \mathcal{A} jest wplecione w \mathcal{B} , zachodzi warunek $\bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i \in \mathbb{N}} B_i$?

Podaj odpowiednie dowody lub kontrprzykłady.

Zadanie 8 (5 punktów). Niech S będzie dowolnym zbiorem. Multizbiorem nad S nazywamy dowolną funkcję $A:S\to\mathbb{N}$ (mówimy wtedy, że A(x) jest liczbą wystąpień elementu x w multizbiorze A). Jeśli A i B są multizbiorami, to ich przekrój $A\cap B$, sumę $A\cup B$ i różnicę $A\setminus B$ definiujemy wzorami:

$$(A \cap B)(x) = \min(A(x), B(x))$$

$$(A \cup B)(x) = A(x) + B(x)$$

$$(A \setminus B)(x) = \max(A(x) - B(x), 0).$$

Czy dla dowolnych multizbiorów A, B, C zachodzą równości:

- (a) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- (b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$?

Podaj odpowiednie dowody lub kontrprzykłady.

¹Proszę zakreślić właściwą grupę ćwiczeniową.