Zadanie 1

Návrh spojitých PID regulátorov z prenosovej funkcie riadeného systému

Ciel' cvičenia:

Opis riadeného systému, výber optimálnej štruktúry PID, návrh PID regulátora vybranými klasickými metódami, porovnanie jednotlivých návrhov z hľadiska dosiahnutej kvality riadenia uzavretého regulačného obvodu (maximálne preregulovanie, čas regulácie), overenie stability, výpočet ustálených hodnôt veličín a výpočet pólov.

Použité označenia

URO – uzavretý regulačný obvod

ORO – otvorený regulačný obvod

η_{max} - maximálne preregulovanie

t_{reg} - doba regulácie (spisovne čas regulácie)

Úlohy

- 1. Stručne opíšte zadaný riadený systém/proces a špecifikujte jeho vstupnú a výstupnú veličinu.
- 2. Odvoď te matematický model svojho dynamického systému v tvare
 - diferenciálnej rovnice
 - prenosovej funkcie, aj v tvare "zpk" (rozklad čitateľa a menovateľa na koreňové činitele)

Vypočítajte prechodovú a impulzovú funkciu svojho systému

Vykreslite prechodovú a impulzovú charakteristiku.

- 3. Pre svoj systém určite optimálnu štruktúru spojitého regulátora (PID, PI, PD, P) použitím Vety o konečnej hodnote.
- 4. S využitím programového systému Synreg vypočítajte optimálne parametre PID regulátora týmito štandardnými metódami:
 - Naslinova metóda
 - Metóda optimálneho modulu
 - Metóda štandardných tvarov (Graham-Lathropova a Butterworthova metóda)
 - Metódou časových konštánt.
- 5. Simulujte prechodové charakteristiky URO s jednotlivými regulátormi a zakreslite ich do jedného obrázka; vyberte "najlepší" priebeh z hľadiska dosiahnutej kvality regulačného pochodu.
- 6. Pre "najlepší" návrh vykreslite do jedného obrázka priebehy y(t), u(t), e(t) a návrh regulátora overte výpočtom.
- 7. Použitím Vety o konečnej hodnote overte ustálené hodnoty v(t), u(t), e(t).
- 8. Overte stabilitu URO
 - pomocou frekvenčných kritérií stability (Nyquist, Bode)
 - výpočtom pólov URO.

Obr.: Jednoduchý spätnoväzobný regulačný obvod s PID regulátorom

G_p(s) – prenosová funkcia riadeného systému

G_R (s) - prenosová funkcia spojitého PID regulátora

$$G_{R}(s) = \frac{U(s)}{E(s)} = P + \frac{I}{s} + Ds = P(1 + \frac{1}{T_{i}s} + T_{d}s)$$

P – proporcionálne zosilnenie, proporcionálna zložka

I – integračná zložka

D- derivačná zložka

Blok PID regulátora je v knižnici Simulink Extras/Additional Linear/PID controller

T_i – integračná časová konštanta

T_d – derivačná časová konštanta

K bodu 3: Na základe podmienky $e(\infty)=0$ určte minimálnu štruktúru regulátora pre referenčnú premennú w(t)=1(t).

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G_P(s)G_R(s)} \frac{1}{s} = \lim_{s \to 0} G_{E/W}(s) = \dots = 0$$

K bodu 4: Pomocou programového systému Synreg navrhnite 4 uvedenými metódami optimálne konštanty PID regulátora pre štruktúru vybranú v bode 1.

Pozn.: konštanty musia byť kladné!

K bodu **5:** Prechodovú charakteristiku URO môžete simulovať buď v Simulinku alebo pomocou príkazu feedback.

Napr. takto:

sys = series(sys1,sys2) – výsledná prenosová funkcia sériového zapojenie dvoch LTI modelov Konkrétne: goro = series(gp, gr) – prenosová funkcia ORO

sys = feedback(sys1,sys2, -1) – výsledné spätnoväzobné zapojenie, sys1 je v priamej väzbe, sys2 je v spätnej väzbe

Konkrétne: guro = feedback(goro, 1) – prenosová funkcia URO

$$\eta_{max} = \frac{y_{max} - y_{\infty}}{y_{\infty}}.100[\%] \qquad t_{reg} \ je \ čas, \ za \ ktorý \ prechodová \ charakteristika \ URO , "uviazne"$$

v koridore $\pm \varepsilon\%$ v okolí svojej ustálenej hodnoty y_∞ a už z neho nevyjde. Obvykle $\varepsilon \in \{1,3,5\}\%$.

K bodu 5: Veta o konečnej hodnote:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s),$$

$$\lim_{t \to \infty} u(t) = \lim_{s \to 0} sU(s)$$

Ďalšie užitočné informácie:

- Blok PID je v knižnici Simulink Extras/Additional Linear/PID
- Na vyhodnotenie kvality regulácie je možné využiť v Matlabe príkaz "stepinfo."

S = stepinfo(y, t, yfinal)

S = stepinfo(y,t)

S = stepinfo(y)

S = stepinfo(sys)

Description

S = stepinfo(y,t,yfinal) takes step response data (t,y) and a steady-state value yfinal and returns a structure S containing the following performance indicators:

RiseTime — doba nábehu

SettlingTime — doba ustálenia

SettlingMin — minimálna hodnota po dosiahnutí doby ustálenia

SettlingMax — minimálna hodnota po dosiahnutí doby ustálenia

Overshoot — max. preregulovanie [%]

Undershoot — max. podregulovanie [%]

Peak — maximálna hodnota y