

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF Williams, et al. Appl. No.: 09/839946 Atty Docket: MVIEWD.1A2DV1

SOBESTA BURESTER

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF Williams, et al. Appl. No.: 09/839946 Atty Docket: MVIEWD.1A2DV1

Figure 6: Deduced amino acid sequences of Pig-Baboon Chimeric (PBC) uricase, PBC uricase that is truncated at the amino and carboxyl terminals (PBC-NT-CT) and Porcine uricase containing the mutations R291M and T3018 (PKS Uricase) (SEQ ID NO:3), compared with the porcine sequence (SEQ ID NO: 1) and baboon sequence (SEQ ID NO:

Porcine	MAHYRNDYKK NDEVEFVRTG	YGKDMIKVLH IQRDGKYHSI	40
PBC	porcine sequence 1-225		40
PBC-NT-CT	porcine sequence	1-219 →	34
PKS	porcine sequence 1-288		40
Baboon	MADYHNNYKK NDELEFVRTG	YGKDMVKVLH IQRDGKYHSI	40
Porcine	KEVATSVQLT LSSKKDYLHG	DNSDVIPTDT IKNTVNVLAK	80
PBC	porcine sequence →		80
PBC-NT-CT PKS	porcine sequence →		74
Baboon	porcine sequence → KEVATSVOLT LSSKKDYLHG	DNSDIIPTDT IKNTVHVLAK	80
			80
Porcine PBC	FKGIKSIETF AVTICEHFLS porcine sequence →	SFKHVIRAQV YVEEVPWKRF	120 120
PBC-NT-CT	porcine sequence → porcine sequence →		114
PKS	porcine sequence →		120
Baboon	FKGIKSIEAF GVNICEYFLS	SFNHVIRAOV YVEEIPWKRL	120
Porcine	EKNGVKHVHA FIYTPTGTHF	CEVEOIRNGP PVIHSGIKDL	160
PBC	porcine sequence →	CEVEQIAGE EVINSGIADE	160
PBC-NT-CT	porcine sequence →		154
PKS	porcine sequence →		160
Baboon	EKNGVKHVHA FIHTPTGTHF	CEVEOLRSGP PVIHSGIKDL	160
Porcine	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA TQVYCKWRYH	200
PBC	porcine sequence →		200
PBC-NT-CT	porcine sequence →		194
PKS	porcine sequence →		200
Baboon	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA TQVYCKWRYH	200
Porcine	QGRDVDFEAT WDTVRSIVLQ	KFAGPYDKGE YSPSVQKTLY	240
PBC	porcine sequence	→ ← baboon sequence	240
PBC-NT-CT PKS	porcine sequence	\rightarrow \leftarrow baboon sequence	234
Baboon	porcine sequence → OCRDVDFEAT WGTIRDLVLE	KFAGPYDKGE YSPSVOKTLY	240
Porcine			240
POICINE		PNIHYLNIDM SKMGLINKEE	280 280
PBC-NT-CT	baboon sequence → baboon sequence →		274
PKS	porcine sequence →		280
Baboon	DIOVLSLSRV PEIEDMEISL	PNIHYFNIDM SKMGLINKEE	280
	VLLPLDNPYG RITGTVKRKL	TSRL 304	200
PBC	baboon sequence →	304	
PBC-NT-CT	baboon sequence →	295	
	porcine ← baboon	→ 304	
Baboon	VLLPLDNPYG KITGTVKRKL	SSRL 304	

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF Williams, et al. Appl. No.: 09/839946 Atty Docket: MVIEWD.1A2DV1

Uric Acid in Urine, mg/10 mL Uric Acid in Serum, mg/dL Figure 8: Inverse Relationship between Serum PEG-Uricase Activity and Uric Acid Levels in the Serum and Urine of a Uricase-Deficient Mouse Hours after First PEG-Uricase Injection 120 8 72 h 0 0.3 0.2 Serum Uricase Activity, IU/mL

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF

DOBTOOKS DZIEGE

ricase

Figure 10: Decreased Severity of Nephrogenic Diabetes Insipidus in Uricase-Deficient Mice Treated with PEG-Uricase

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF Williams, et al.

Atty Docket: MVIEWD.1A2DV1

Appl. No.: 09/839946

Figure 11:

Decreased Severity of Uric Acid-Induced Nephropathy after Treatment with PEG-Uricase, as Visualized by Magnetic Resonance Microscopy

Figure 12: Clearance from the Circulation of BALB/c Mice of PBC Uricase Tetramer and Octamer Coupled to 5-6 Strands of 10-kDa PEG/Subunit

PEG-URATE OXIDASE CONJUGATES AND USE THEREOF

Williams, et al.
Atty Docket: MVIEWD.1A2DV1