ASSIGNMENT-8

MUKUNDA REDDY Al21BTECH11021

Outline

Question

Solution

Exercise 7-13

The random variables X_i are i.i.d. with moment function $\phi_x(s) = E\{e^{sx_i}\} \forall i$. The random variable n takes the values 0,1,2... and its moment function equals $\Gamma_n\{z\} = E\{z^n\}$. Show that if

$$y = \sum_{i=1}^n x_i$$
, then $\phi_y(s) = E\{e^{sy}\} = \Gamma_n\{\phi_x(s)\}$

Solution

Given $y = x_1 + x_2 + ... + x_n$ and given $\phi_x(s) = E\{e^{sx_i}\} \forall i$ also by the independence of the random variable x_i we have we have

$$E\{e^{sy}|n=k\} = E\{e^{s(x_1+x_2..x_k)}\}\$$

$$= E\{e^{sx_1}\}...E\{e^{sx_k}\}\$$

$$= \phi_x(s)...\phi_x(s)(k \text{ times})\$$

$$= \phi_x^k(s)$$
(1)

Solution

$$\phi_{y}\{s\} = E\{e^{sy}\}\$$
 $= E\{E\{e^{sy}\}\}\$ Since $E\{E\{X\}\} = E\{X\}$
 $= E\{\phi_{x}^{n}(s)\}\$ from (1) (2)

We know that $E\{z^n\} = \Gamma_n(z)$. let's Consider $z = \phi_x(s)$ then we have

$$\phi_{y}\{s\} = E\{e^{sy}\} = \Gamma_{n}[\phi_{x}(s)] \tag{3}$$

