TWO-PART AND HURDLE MODELS

Econometric Analysis of Cross Section and Panel Data, 2e MIT Press Jeffrey M. Wooldridge

- 1. Introduction
- 2. A General Formulation
- 3. Truncated Normal Hurdle Model
- 4. Lognormal Hurdle Model
- 5. Exponential Type II Tobit Model

1. INTRODUCTION

- We consider the case with a corner at zero and a continuous distribution for strictly positive values.
- Why should we move beyond Tobit? It can be too restrictive because a single mechanism governs the "participation decision" (y = 0 versus y > 0) and the "amount decision" (how much y is if it is positive).
- Recall that, in a Tobit model, for a continuous variable x_j , the partial effects on $P(y > 0|\mathbf{x})$ and $E(y|\mathbf{x}, y > 0)$ have the same signs (different multiples of β_j). So, it is impossible for x_j to have a positive effect on $P(y > 0|\mathbf{x})$ and a negative effect on $E(y|\mathbf{x}, y > 0)$. A similar comment holds for discrete covariates.

• Furthermore, for continuous variables x_j and x_h ,

$$\frac{\partial P(y > 0|\mathbf{x})/\partial x_j}{\partial P(y > 0|\mathbf{x})/\partial x_h} = \frac{\beta_j}{\beta_h} = \frac{\partial E(y|\mathbf{x}, y > 0)/\partial x_j}{\partial E(y|\mathbf{x}, y > 0)/\partial x_h}$$

- So, if x_j has twice the effect as x_h on the participation decision, x_j must have twice the effect on the amount decision, too.
- Two-part models allow different mechanisms for the participation and amount decisions. Often, the economic argument centers around fixed costs from participating in an activity. (For example, labor supply.)

2. A GENERAL FORMULATION

• Useful to have a general way to think about two-part models without specif distributions. Let s be a binary variable that determines whether y is zero or strictly positive. Let w^* be a nonnegative, continuous random variable. Assume y is generated as

$$y = s \cdot w^*$$
.

• Other than s being binary and w^* being continuous, there is another important difference between s and w^* : we effectively observe s because s is observationally equivalent to the indicator 1[y > 0] $(P(w^* = 0))$. But w^* is only observed when s = 1, in which case $w^* = y$.

• Generally, we might want to allow s and w^* to be dependent, but that is not as easy as it seems. A useful assumption is that s and w^* are independent conditional on explanatory variables \mathbf{x} , which we can write as

$$D(w^*|s,\mathbf{x}) = D(w^*|\mathbf{x}).$$

- This assumption typically underlies *two-part* or *hurdle* models.
- One implication is that the expected value of y conditional on x and s is easy to obtain:

$$E(y|\mathbf{x},s) = s \cdot E(w^*|\mathbf{x},s) = s \cdot E(w^*|\mathbf{x}).$$

• Sufficient is conditional mean independence,

$$E(w^*|\mathbf{x},s) = E(w^*|\mathbf{x}).$$

• When s = 1, we can write

$$E(y|\mathbf{x}, y > 0) = E(w^*|\mathbf{x}),$$

so that the so-called "conditional" expectation of y (where we condition on y > 0) is just the expected value of w^* (conditional on \mathbf{x}).

• The so-called "unconditional" expectation is

$$E(y|\mathbf{x}) = E(s|\mathbf{x})E(w^*|\mathbf{x}) = P(s = 1|\mathbf{x})E(w^*|\mathbf{x}).$$

- A different class of models explicitly allows correlation between the participation and amount decisions Unfortunately, called a *selection model*. Has led to considerable conclusion for corner solution responses.
- Must keep in mind that we only observe one variable, y (along with \mathbf{x}). In true sample selection environments, the outcome of the selection variable (s in the current notation) does not logically restrict the outcome of the response variable. Here, s=0 rules out y>0.
- In the end, we are trying to get flexible models for $D(y|\mathbf{x})$.

3. TRUNCATED NORMAL HURDLE MODEL

• Cragg (1971) proposed a natural two-part extension of the type I Tobit model. The conditional independence assumption is assumed to hold, and the binary variable *s* is assumed to follow a probit model:

$$P(s = 1|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y}).$$

• Further, w^* is assumed to have a *truncated normal distribution* with parameters that vary freely from those in the probit. Can write

$$w^* = \mathbf{x}\mathbf{\beta} + u$$

where u given \mathbf{x} has a truncated normal distribution with lower truncation point $-\mathbf{x}\boldsymbol{\beta}$.

• Because $y = w^*$ when y > 0, we can write the truncated normal assumption in terms of the density of y given y > 0 (and \mathbf{x}):

$$f(y|\mathbf{x}, y > 0) = [\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)]^{-1}\phi[(y - \mathbf{x}\boldsymbol{\beta})/\sigma]/\sigma, \ y > 0,$$

where the term $[\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)]^{-1}$ ensures that the density integrates to unity over y > 0.

• The density of y given x can be written succinctly as

$$f(y|\mathbf{x}) = [1 - \Phi(\mathbf{x}\mathbf{y})]^{1[y=0]} \{\Phi(\mathbf{x}\mathbf{y})[\Phi(\mathbf{x}\mathbf{\beta}/\sigma)]^{-1}\phi[(y-\mathbf{x}\mathbf{\beta})/\sigma]/\sigma\}^{1[y>0]},$$

where we must multiply $f(y|\mathbf{x}, y > 0)$ by $P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma})$.

- Called the *truncated normal hurdle (TNH) model*. Cragg (1971) directly specified the density.
- Nice feature of the TNH model: it reduces to the type I Tobit model when $\gamma = \beta/\sigma$.
- The log-likelihood function for a random draw *i* is

$$\ell_i(\mathbf{\theta}) = 1[y_i = 0]\log[1 - \Phi(\mathbf{x}_i\mathbf{\gamma})] + 1[y_i > 0]\log[\Phi(\mathbf{x}_i\mathbf{\gamma})]$$

$$+ 1[y_i > 0]\{-\log[\Phi(\mathbf{x}_i\mathbf{\beta}/\sigma)] + \log\{\phi[(y_i - \mathbf{x}_i\mathbf{\beta})/\sigma]\} - \log(\sigma)\}.$$

• Because the parameters γ , β , and σ are allowed to freely vary, the MLE for γ , $\hat{\gamma}$, is simply the probit estimator from probit of $s_i \equiv 1[y_i > 0]$ on \mathbf{x}_i . The MLEs of β and σ (or β and σ^2) are the MLEs from what is called a *truncated normal regression*.

• The conditional expectation has the same form as the Type I Tobit because $D(y|\mathbf{x}, y > 0)$ is identical in the two models:

$$E(y|\mathbf{x}, y > 0) = \mathbf{x}\boldsymbol{\beta} + \sigma\lambda(\mathbf{x}\boldsymbol{\beta}/\sigma).$$

- In particular, the effect of x_j has the same sign as β_j (for continous or discrete changes).
- But now, the relative effect of two continuous variables on the participation probabilities, γ_j/γ_h , can be completely different from β_j/β_h , the ratio of partial effects on $E(y|\mathbf{x}, y > 0)$.

• The unconditional expectation for the Cragg model is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y})[\mathbf{x}\mathbf{\beta} + \sigma\lambda(\mathbf{x}\mathbf{\beta}/\sigma)].$$

The partial effects no longer have a simple form, but they are not too difficult to compute:

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \gamma_j \phi(\mathbf{x}\mathbf{y}) [\mathbf{x}\mathbf{\beta} + \sigma \lambda(\mathbf{x}\mathbf{\beta}/\sigma)] + \Phi(\mathbf{x}\mathbf{y}) \beta_j \theta(\mathbf{x}\mathbf{\beta}/\sigma),$$

where $\theta(z) = 1 - \lambda(z)[z + \lambda(z)]$.

Note that

$$\log[E(y|\mathbf{x})] = \log[\Phi(\mathbf{x}\mathbf{y})] + \log[E(y|\mathbf{x}, y > 0)].$$

• The semi-elasticity with respect to x_j is 100 times

$$\gamma_j \lambda(\mathbf{x}\mathbf{y}) + \beta_j \theta(\mathbf{x}\mathbf{\beta}/\sigma)/[\mathbf{x}\mathbf{\beta} + \sigma\lambda(\mathbf{x}\mathbf{\beta}/\sigma)]$$

- If $x_j = \log(z_j)$, then the above expression is the elasticity of $E(y|\mathbf{x})$ with respect to z_j .
- We can insert the MLEs into any of the equations and average across \mathbf{x}_i to obtain an average partial effect, average semi-elastisticity, or average elasticity. As in many nonlinear contexts, the bootstrap is a convienent method for obtaining valid standard errors.
- Can get goodness-of-fit measures as before. For example, the squared correlation between y_i and $\hat{E}(y_i|\mathbf{x}_i) = \Phi(\mathbf{x}_i\hat{\boldsymbol{\gamma}})[\mathbf{x}_i\hat{\boldsymbol{\beta}} + \hat{\sigma}\lambda(\mathbf{x}_i\hat{\boldsymbol{\beta}}/\hat{\sigma})].$

4. LOGNORMAL HURDLE MODEL

• Cragg (1971) also suggested the lognormal distribution conditional on a positive outcome. One way to express y is

$$y = s \cdot w^* = 1[\mathbf{x}\mathbf{\gamma} + v > 0] \exp(\mathbf{x}\mathbf{\beta} + u),$$

where (u, v) is independent of **x** with a bivariate normal distribution; further, u and v are independent.

• w* has a lognormal distribution because

$$w^* = \exp(\mathbf{x}\boldsymbol{\beta} + u)$$
$$u|\mathbf{x} \sim Normal(0, \sigma^2).$$

Called the lognormal hurdle (LH) model.

• The expected value conditional on y > 0 is

$$E(y|\mathbf{x}, y > 0) = E(w^*|\mathbf{x}, s = 1) = E(w^*|\mathbf{x}) = \exp(\mathbf{x}\boldsymbol{\beta} + \sigma^2/2).$$

- The semi-elasticity of $E(y|\mathbf{x}, y > 0)$ with respect to x_j is $100\beta_j$. If $x_j = \log(z_j)$, β_j is the elasticity of $E(y|\mathbf{x}, y > 0)$ with respect to z_j .
- The "unconditional" expectation is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y}) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2).$$

• The semi-elasticity of $E(y|\mathbf{x})$ with respect to x_j is simply (100 times) $\gamma_j \lambda(\mathbf{x}\mathbf{y}) + \beta_j$ where $\lambda(\cdot)$ is the inverse Mills ratio. If $x_j = \log(z_j)$, this expression becomes the elasticity of $E(y|\mathbf{x})$ with respect to z_j .

• Estimation of the parameters is particularly straightforward. The density conditional on **x** is

$$f(y|\mathbf{x}) = [1 - \Phi(\mathbf{x}\mathbf{\gamma})]^{1[y=0]} \{\Phi(\mathbf{x}\mathbf{\gamma})\phi[(\log(y) - \mathbf{x}\mathbf{\beta})/\sigma]/(\sigma y)\}^{1[y>0]},$$

which leads to the log-likelihood function for a random draw:

$$\ell_i(\boldsymbol{\theta}) = 1[y_i = 0]\log[1 - \Phi(\mathbf{x}_i\boldsymbol{\gamma})] + 1[y_i > 0]\log[\Phi(\mathbf{x}_i\boldsymbol{\gamma})] + 1[y_i > 0]\{\log(\phi[(\log(y_i) - \mathbf{x}_i\boldsymbol{\beta})/\sigma]) - \log(\sigma) - \log(y_i)\}.$$

• As with the truncated normal hurdle model, estimation of the parameters can proceed in two steps. The first is probit of s_i on \mathbf{x}_i to estimate γ , and then $\boldsymbol{\beta}$ is estimated using an OLS regression of $\log(y_i)$ on \mathbf{x}_i for observations with $y_i > 0$.

- The usual error variance estimator (or without the degrees-of-freedom adjustment), $\hat{\sigma}^2$, is consistent for σ^2 .
- In computing the log likelihood to compare fit across models, must include the terms $log(y_i)$. In particular, for comparing with the TNH model.
- The second-part models can be formally compared using Vuong's (1988, *Econometrica*) *model selection statistic*.
- Vuong's approach applies to models that are nonnested. The null hypothesis is that, in the population, each model fits the data equally well, and therefore both models are necessarily misspecified.

• Let θ_1^* be the plim of the quasi-MLE from the first model and θ_2^* the plim of the QMLE from the second model. Then the null is

$$H_0: E[\ell_{i1}(\mathbf{\theta}_1^*)] = E[\ell_{i2}(\mathbf{\theta}_2^*)]$$

- Of course, if model 1 is correctly specified, $E[\ell_{i1}(\theta_1^*)] > E[\ell_{i2}(\theta_2^*)]$ (and we usually denote θ_1^* as θ_{o1}).
- Importantly, the Vuong test allows us to only reject one model against another; we cannot conclude we have the correct model.

• The statistic is based on the asymptotic distribution of

$$N^{-1/2}(\mathcal{L}_1 - \mathcal{L}_2) = N^{-1/2} \sum_{i=1}^{N} [\ell_{i1}(\hat{\boldsymbol{\theta}}_1) - \ell_{i2}(\hat{\boldsymbol{\theta}}_2)]$$

Assuming standard regularity conditions, it can be shown via a standard mean-value expansion that

$$N^{-1/2} \sum_{i=1}^{N} [\ell_{i1}(\hat{\boldsymbol{\theta}}_1) - \ell_{i2}(\hat{\boldsymbol{\theta}}_2)] = N^{-1/2} \sum_{i=1}^{N} [\ell_{i1}(\boldsymbol{\theta}_1^*) - \ell_{i2}(\boldsymbol{\theta}_2^*)] + o_p(1).$$

(See Problem 13.13.)

- This representation is useful when the models are nonnested because then $P[\ell_{i1}(\boldsymbol{\theta}_1^*)] \neq \ell_{i2}(\boldsymbol{\theta}_2^*)] > 0$, and so $\ell_{i1}(\boldsymbol{\theta}_1^*) \ell_{i2}(\boldsymbol{\theta}_2^*)$ is not identically equal to zero. Under H_0 , it does have a zero mean.
- We can apply the CLT directly:

$$N^{-1/2} \sum_{i=1}^{N} [\ell_{i1}(\boldsymbol{\theta}_{1}^{*}) - \ell_{i2}(\boldsymbol{\theta}_{2}^{*})] \xrightarrow{d} Normal(0, \eta^{2})$$

$$\eta^2 \equiv Var(d_i^*)$$

where $d_i^* = \ell_{i1}(\theta_1^*) - \ell_{i2}(\theta_2^*)$.

• One version of the test statistic is

$$VMS = \frac{N^{-1/2} \sum_{i=1}^{N} [\ell_{i1}(\hat{\boldsymbol{\theta}}_{1}) - \ell_{i2}(\hat{\boldsymbol{\theta}}_{2})]}{\left\{ N^{-1} \sum_{i=1}^{N} [\ell_{i1}(\hat{\boldsymbol{\theta}}_{1}) - \ell_{i2}(\hat{\boldsymbol{\theta}}_{2})]^{2} \right\}^{1/2}} \stackrel{d}{\to} Normal(0, 1)$$

• An easier calculation is to define, for each i

$$\hat{d}_i = \ell_{i1}(\hat{\boldsymbol{\theta}}_1) - \ell_{i2}(\hat{\boldsymbol{\theta}}_2),$$

the difference in estimated log likelihoods for each i. Then, just do a test that the mean is zero: under the null, the estimation of θ_1^* and θ_2^* has no effect asymptotically. We can use regress \hat{d}_i on 1 and use a standard t test.

• For the current application, we only use the nonlimit observations, that is, $y_i > 0$.

Number of obs =

753

. use mroz

Probit regression

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

110	DIC ICGICD	51011			Namber	OI OD!	J	755
					LR chi	.2(7)	=	227.14
					Prob >	chi2	=	0.0000
Log	likelihood	d = -401.3021	9		Pseudo	R2	=	0.2206
	inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
		+						
	nwifeinc	0120237	.0048398	-2.48	0.013	021	5096	0025378
	educ	.1309047	.0252542	5.18	0.000	.081	4074	.180402
	exper	.1233476	.0187164	6.59	0.000	.086	6641	.1600311
	expersq	0018871	.0006	-3.15	0.002	003	3063	0007111
	age	0528527	.0084772	-6.23	0.000	0694	4678	0362376
	kidslt6	8683285	.1185223	-7.33	0.000	-1.10	0628	636029
	kidsge6	.036005	.0434768	0.83	0.408	049	9208	.1212179
	_cons	.2700768	.508593	0.53	0.595	726	7473	1.266901
		•						

^{. *} Compute Vuong test for truncated normal versus lognormal. Because the

^{. *} probit parts are the same, it does not play a role in the test. It does

^{. *} for computing partial effects on the unconditional mean and for

^{. *} comparing the log-likelihoods with other models.

. * Do LH model first:

. reg lhours nwifeinc educ exper expersq age kidslt6 kidsge6

Source 	SS 66.3633428 334.513835 400.877178	420 .79	MS 8047755 6461511 3882243		Number of obs F(7, 420) Prob > F R-squared Adj R-squared Root MSE	= 11.90 = 0.0000 = 0.1655
lhours	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc educ exper expersq age kidslt6 kidsge6cons	0019676 0385626 .073237 001233 0236706 585202 0694175 7.896267	.0044436 .0202098 .0179004 .0005378 .007248 .1186066 .0373355 .4260789	-0.44 -1.91 4.09 -2.29 -3.27 -4.93 -1.86 18.53	0.658 0.057 0.000 0.022 0.001 0.000 0.064 0.000	0107021 0782876 .0380514 0022902 0379175 8183386 1428053 7.058755	.0067668 .0011624 .1084225 0001759 0094237 3520654 .0039703 8.73378

- . predict xb1
 (option xb assumed; fitted values)
- . predict u1, resid
 (325 missing values generated)
- . di sqrt(421/428)*.89245 .88512184
- . * It is important to make sure we compute the LLF for the lognormal
- . * distribution, which means subtracting log(hours):
- . gen llf1 = log(normalden(u1/.88512184)) log(.88512184) lhours (325 missing values generated)
- . sum llf1

Variable	Obs	Mean	Std. Dev.	Min	Max
11f1	428	-8.162678	.8146383	-12.79851	-6.26466

- . di 428*-8.162678
- -3493.6262

- . * So the LH log likelihood for the positive part is -3,493.63
- . * Now for the truncated normal:

. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression

hours	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
eq1						
nwifeinc	.1534399	5.164279	0.03	0.976	-9.968361	10.27524
educ	-29.85254	22.83935	-1.31	0.191	-74.61684	14.91176
exper	72.62273	21.23628	3.42	0.001	31.00039	114.2451
expersq	9439967	.6090283	-1.55	0.121	-2.13767	.2496769
age	-27.44381	8.293458	-3.31	0.001	-43.69869	-11.18893
kidslt6	-484.7109	153.7881	-3.15	0.002	-786.13	-183.2918
kidsge6	-102.6574	43.54347	-2.36	0.018	-188.0011	-17.31379
_cons	2123.516	483.2649	4.39	0.000	1176.334	3070.697
sigma	+ 					
_cons	850.766	43.80097	19.42	0.000	764.9177	936.6143

. sum 11f2

Variable	Obs	Mean	Std. Dev.	Min	Max
11f2	 428	-7.922074	.7561236	-15.55169	-6.853047

. di 428*-7.922074 -3390.6477 . gen diff = llf2 - llf1
(325 missing values generated)

. reg diff

Source	SS	df		MS		Number of obs =	428
Model Residual	+ 0 203.606866	0 427	.476	 831069		F(0, 427) = Prob > F = R-squared =	
Total	203.606866	427	 .476	 831069		Adj R-squared = Root MSE =	0.0000 69053
diff	Coef.	Std.	 Err.	t	P> t	[95% Conf. I	nterval]
_cons	.2406037	.033	 378 	7.21	0.000	.1749981 	.3062094

^{. *} The truncated normal fits substantially better, and we can reject the

^{. *} lognormal very strongly.

. di .3579²

yh1

0.3579

1.0000

.12809241

. corr hours yh2 (obs=428)

	hours	yh2
hours		1 0000
yh2	0.3723	1.0000

- . di .3723^2 .13860729
- . * So the truncated normal fits the conditional mean,
- . * E(hours | x, hours > 0), somewhat better, too.
- . * What we have not verified is whether the estimated partial effects on
- . * E(hours | x, hours > 0) are much different across the models.

- If we are mainly interested in $P(y > 0|\mathbf{x})$, $E(y|\mathbf{x}, y > 0)$, and $E(y|\mathbf{x})$, then we can relax the lognormality assumption in the TNH.
- If in $w^* = \exp(\mathbf{x}\boldsymbol{\beta} + u)$ we assume that u is independent of \mathbf{x} , can use Duan's (1983) *smearing estimate*.
- Uses $E(w^*|\mathbf{x}) = E[\exp(u)] \exp(\mathbf{x}\boldsymbol{\beta}) \equiv \tau \exp(\mathbf{x}\boldsymbol{\beta})$ where $\tau \equiv E[\exp(u)]$.
- Let \hat{u}_i be OLS residuals from $\log(y_i)$ on \mathbf{x}_i using the $y_i > 0$ data. Suppose the y_i observations are the first N_1 observations.

• Let

$$\hat{\tau} = N_1^{-1} \sum_{i=1}^{N_1} \exp(\hat{u}_i).$$

Then, $\hat{E}(y|\mathbf{x}, y > 0) = \hat{\tau} \exp(\mathbf{x}\hat{\boldsymbol{\beta}})$, where $\hat{\boldsymbol{\beta}}$ is the OLS estimator of $\log(y_i)$ on \mathbf{x}_i using the $y_i > 0$ subsample.

• A more direct approach is to just specify

$$E(y|\mathbf{x},y>0)=\exp(\mathbf{x}\boldsymbol{\beta}),$$

which contains $w^* = \exp(\mathbf{x}\boldsymbol{\beta} + u)$, with *u* independent of **x**, as a special case.

• Use nonlinear least squares or a quasi-MLE in the linear exponential family (such as the Poisson or gamma, which we will cover in EC 821B).

• Given probit estimates of $P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma})$ and NLS or QMLE estimates of $E(y|\mathbf{x}, y > 0) = \exp(\mathbf{x}\mathbf{\beta})$, can easily estimate $E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma}) \exp(\mathbf{x}\mathbf{\beta})$ without additional distributional assumptions. Computation of semi-elasticities and elasticities follows along the same lines as under the homoskedastic lognormality assumption.

5. EXPONENTIAL TYPE II TOBIT MODEL

- Now allow s and w^* to be dependent after conditioning on observed covariates, \mathbf{x} . Seems natural for example, unobserved factors that affect labor force participation can affect amount of hours.
- Can modify the lognormal hurdle model to allow conditional correlation between s and w^* . Call the resulting model the *exponential type II Tobit (ET2T) model*.
- Traditionally, the type II Tobit model has been applied to missing data problems that is, where we truly have a sample selection issue. Here, we use it as a way to obtain a flexible corner solution model.

• As with the lognormal hurdle model,

$$y = 1[x\gamma + v > 0] \exp(x\beta + u)$$

We use the qualifier "exponential" to emphasize that the latent variable is $w^* = \exp(\mathbf{x}\mathbf{\beta} + u)$.

- Later we will see why it makes no sense to have $w^* = \mathbf{x}\boldsymbol{\beta} + u$, as is often the case in the study of type II Tobit models of sample selection.
- Because v has variance equal to one, $Cov(u, v) = \rho \sigma$, where ρ is the correlation between u and v and $\sigma^2 = Var(u)$.

- Obtaining the log likelihood in this case is a bit tricky. Let $m^* = \log(w^*)$, so that $D(m^*|\mathbf{x})$ is $Normal(\mathbf{x}\boldsymbol{\beta}, \sigma^2)$. Then $\log(y) = m^*$ when y > 0. We still have $P(y = 0|\mathbf{x}) = 1 \Phi(\mathbf{x}\boldsymbol{\gamma})$.
- To obtain the density of y (conditional on x) over strictly positive values, we find $f(y|\mathbf{x}, y > 0)$ and multiply it by $P(y > 0|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{y})$.
- To find $f(y|\mathbf{x}, y > 0)$, we use the change-of-variables formula $f(y|\mathbf{x}, y > 0) = g(\log(y)|\mathbf{x}, y > 0)/y$, where $g(\cdot|\mathbf{x}, y > 0)$ is the density of m^* conditional on y > 0 (and \mathbf{x}).

• Use Bayes' rule to write

 $g(m^*|\mathbf{x}, s = 1) = P(s = 1|m^*, x)h(m^*|x)/P(s = 1|\mathbf{x})$ where $h(m^*|\mathbf{x})$ is the density of m^* given \mathbf{x} . Then,

$$P(s = 1|x)g(m^*|x, s = 1) = P(s = 1|m^*, \mathbf{x})h(m^*|\mathbf{x}).$$

• Write $s = 1[\mathbf{x}\mathbf{\gamma} + v > 0] = 1[\mathbf{x}\mathbf{\gamma} + (\rho/\sigma)u + e > 0]$, where $v = (\rho/\sigma)u + e$ and $e|\mathbf{x}, u\sim Normal(0, (1-\rho^2))$. Because $u = m^* - \mathbf{x}\boldsymbol{\beta}$, we have

$$P(s = 1|m^*, \mathbf{x}) = \Phi([\mathbf{x}\mathbf{y} + (\rho/\sigma)(m^* - \mathbf{x}\mathbf{\beta})](1 - \rho^2)^{-1/2}).$$

• Further, we have assumed that $h(m^*|\mathbf{x})$ is $Normal(\mathbf{x}\boldsymbol{\beta}, \sigma^2)$. Therefore, the density of y given \mathbf{x} over strictly positive y is

$$f(y|\mathbf{x}) = \Phi([\mathbf{x}\mathbf{\gamma} + (\rho/\sigma)(m^* - \mathbf{x}\mathbf{\beta})](1 - \rho^2)^{-1/2}))\phi((\log(y) - \mathbf{x}\mathbf{\beta})/\sigma)/(\sigma y).$$

• Combining this expression with the density at y = 0 gives the log likelihood as

$$l_i(\boldsymbol{\theta}) = 1[y_i = 0] \log[1 - \Phi(\mathbf{x}_i \boldsymbol{\gamma})]$$

$$+ 1[y_i > 0] \{ \log[\Phi([\mathbf{x}_i \boldsymbol{\gamma} + (\rho/\sigma)(\log(y_i) - \mathbf{x}_i \boldsymbol{\beta})](1 - \rho^2)^{-1/2})$$

$$+ \log[\phi((\log(y_i) - \mathbf{x}_i \boldsymbol{\beta})/\sigma)] - \log(\sigma) - \log(y_i) \}.$$

• Many econometrics packages have this estimator programmed, although the emphasis is on sample selection problems, and one must define $\log(y_i)$ as the variable where the data are missing (when $y_i = 0$). When $\rho = 0$, we obtain the log likelihood for the lognormal hurdle model from the previous subsection.

- For a true missing data problem, the last term in the log likelihood, $log(y_i)$, is not included. That is because in sample selection problems the log-likelihood function is only a partial log likelihood. Inclusion of $log(y_i)$ does not affect the estimation problem, but it does affect the value of the log-likelihood function, which is needed to compare across different models.)
- The ET2T model contains the conditional lognormal model from the previous subsection. But the ET2T model with unknown ρ can be poorly identified if the set of explanatory variables that appears in $w^* = \exp(\mathbf{x}\boldsymbol{\beta} + u)$ is the same as the variables in $s = 1[\mathbf{x}\boldsymbol{\gamma} + v > 0]$.

• Various ways to see the potential problem. First, can show that

$$E[\log(y)|\mathbf{x}, y > 0] = \mathbf{x}\boldsymbol{\beta} + \eta\lambda(\mathbf{x}\boldsymbol{\gamma})$$

where $\lambda(\cdot)$ is the inverse Mills ratio and $\eta = \rho \sigma$. We know we can consistently estimate γ by probit, so this equation nominally identifies β and η . But identification is possible only because $\lambda(\cdot)$ is a nonlinear function.

• The identification is tenuous because $\lambda(\cdot)$ is roughly linear over much of its range.

- The expression for $E[\log(y)|\mathbf{x}, y > 0]$ suggests a two-step procedure, usually called Heckman's method or Heckit. (Usually used for nonrandom sampling.) (1) Obtain $\hat{\gamma}$ from probit of s_i on \mathbf{x}_i . (2) Obtain $\hat{\beta}$ and $\hat{\eta}$ from OLS of $\log(y_i)$ on \mathbf{x}_i , $\lambda(\mathbf{x}_i\hat{\gamma})$ using only observations with $y_i > 0$.
- The correlation between $\hat{\lambda}_i$ can often be very large, resulting in imprecise estimates of β and η .

• In fact, it can be shown that if we replace the probit model for s with a linear probability model then identification of β and η is lost. Then

$$s = xy + v$$

and a natural assumption is $E(u|\mathbf{x}, v) = E(u|v) = \eta v$. The Heckman equation becomes

$$E[\log(y)|\mathbf{x}, s = 1] = \mathbf{x}\boldsymbol{\beta} + \eta v = \mathbf{x}\boldsymbol{\beta} + \eta(1 - \mathbf{x}\boldsymbol{\gamma})$$
$$= \mathbf{x}\boldsymbol{\beta} + \eta - \eta(\mathbf{x}\boldsymbol{\gamma})$$

which shows that η and β are not identified because \mathbf{x} contains an intercept and $(\mathbf{x}\boldsymbol{\gamma})$ is perfectly collinear with \mathbf{x} .

• Can be shown that the unconditional expectation is

$$E(y|\mathbf{x}) = \Phi(\mathbf{x}\mathbf{\gamma} + \eta) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2),$$

which is exactly of the same form as in the LH model (with $\rho = 0$) except for the presence of $\eta = \rho \sigma$. Because **x** always should include a constant, η is not separately identified by $E(y|\mathbf{x})$ (and neither is $\sigma^2/2$).

• If we based identification entirely on $E(y|\mathbf{x})$, there would be no difference between the lognormal hurdle model and the ET2T model when the same set of regressors appears in the participation and amount equations.

• Technically, the parameters are identified, and so we can try to estimate the full model with the same vector **x** appearing in the participation and amount equations. In practice it usually does not work very well. Like other instances of achieving identification off of nonlinearities, it is viewed with skepticism

• Partial effects can be hard to even sign. For the conditional expectation of log(y),

$$\frac{\partial E[\log(y)|\mathbf{x},y>0]}{\partial x_j} = \beta_j + \eta \lambda^{(1)}(\mathbf{x}\mathbf{y})\gamma_j$$

where $\lambda^{(1)}(\cdot)$ < 0 is the first derivative of the IMR. The sign of η is the same as $\rho = Corr(u, v)$.

• The partial effects on the unconditional expectation of y are

$$\frac{\partial E(y|\mathbf{x})}{\partial x_j} = \gamma_j \phi(\mathbf{x}\mathbf{y} + \eta) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2) + \beta_j \Phi(\mathbf{x}\mathbf{y} + \eta) \exp(\mathbf{x}\mathbf{\beta} + \sigma^2/2),$$

which is easy to sign if β_j and γ_j have the same sign, but not otherwise.

• The semi-elasticity is

$$\frac{\partial \log E(y|\mathbf{x})}{\partial x_j} = \gamma_j \lambda(\mathbf{x}\mathbf{y} + \eta) + \beta_j$$

which is positive if γ_j , $\beta_j > 0$ and negative if γ_j , $\beta_j < 0$. Otherwise, the sign can depend on **x**.

```
. gen lhours = log(hours)
(325 missing values generated)
```

Heckman selection model (regression model with sample selection)				Number of obs Censored obs Uncensored obs		= = =	753 325 428
Log likelihood = -938.8208				Wara onizz (/)		=	35.50 0.0000
	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
lhours nwifeinc educ exper expersq age kidslt6 kidsge6 _cons	.0066597 1193085 0334099 .0006032 .0142754 .2080079 0920299 8.670736	.0050147 .0242235 .0204429 .0006178 .0084906 .1338148 .0433138	1.33 -4.93 -1.63 0.98 1.68 1.55 -2.12	0.184 0.000 0.102 0.329 0.093 0.120 0.034 0.000	003168 166785 073477 000607 002365 054264 176923	8 7 9 3 5	.01648820718313 .0066574 .0018141 .0309167 .47028010071364 9.648352

select						
nwifeinc	0096823	.0043273	-2.24	0.025	0181637	001201
educ	.119528	.0217542	5.49	0.000	.0768906	.1621654
exper	.0826696	.0170277	4.86	0.000	.049296	.1160433
expersq	0012896	.0005369	-2.40	0.016	002342	0002372
age	0330806	.0075921	-4.36	0.000	0479609	0182003
kidslt6	5040406	.1074788	-4.69	0.000	7146951	293386
kidsge6	.0698201	.0387332	1.80	0.071	0060955	.1457357
_cons	3656166	.4476569	-0.82	0.414	-1.243008	.5117748
	+					
/athrho	-2.131542	.174212	-12.24	0.000	-2.472991	-1.790093
/lnsigma	.1895611	.0419657	4.52	0.000	.1073099	.2718123
	+					
rho	9722333	.0095403			9858766	9457704
sigma	1.208719	.0507247			1.113279	1.312341
lambda	-1.175157	.0560391			-1.284991	-1.065322
LR test of indep. eqns. (rho = 0): $chi2(1) = 34.10$ Prob > $chi2 = 0.0000$						
LK test of ind	dep. eqns. (r	no = 0):	chi2(1) =	34.10	Prob > ch:	i2 = 0.0000

. sum lhours

Variable	0bs	Mean	Std. Dev.	Min	Max
lhours	428	6.86696	.9689285	2.484907	8.507143

. di -938.8208 - 428*(6.86696) -3877.8797

- . * This value of the LLF is below the truncated normal hurdle model, which is
- . * -3,791.95. Of course, it is above that for the lognormal hurdle model
- . * because the ET2T model nests the LNH model (-3,894.93).

• The ET2T model is more convincing when the covariates determining the amount are a strict subset of those affecting participation. Then, the model can be expressed as

$$y = 1[\mathbf{x}\mathbf{\gamma} + v \ge 0] \cdot \exp(\mathbf{x}_1\mathbf{\beta}_1 + u),$$

where both \mathbf{x} and \mathbf{x}_1 contain unity as their first elements but \mathbf{x}_1 is a strict subset of \mathbf{x} . If we write $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$, then we are assuming $\gamma_2 \neq \mathbf{0}$.

• Given at least one exclusion restriction, we can see from $E[\log(y)|\mathbf{x}, y > 0] = \mathbf{x}_1 \mathbf{\beta}_1 + \eta \lambda(\mathbf{x}\mathbf{y})$ that $\mathbf{\beta}_1$ and η are better identified because $\lambda(\mathbf{x}\mathbf{y})$ is not an exact function of \mathbf{x}_1 .

- Exclusion restrictions can be hard to come by. Need something affecting the fixed cost of participating but not affecting the amount.
- Cannot use y rather than log(y) in the amount equation. In the TNH model, the truncated normal distribution of u at the value $-\mathbf{x}\boldsymbol{\beta}$ ensures that $w^* = \mathbf{x}\boldsymbol{\beta} + u > 0$.
- If we apply the type II Tobit model directly to y, we must assume (u, v) is bivariate normal and *independent* of \mathbf{x} . What we gain is that u and v can be correlated, but this comes at the cost of not specifying a proper density because the T2T model allows negative outcomes on y.

• If we apply the "selection" model to y we would have

$$E(y|\mathbf{x}, y > 0) = \mathbf{x}\boldsymbol{\beta} + \eta \lambda(\mathbf{x}\boldsymbol{\gamma}).$$

• Possible to get negative values for $E(y|\mathbf{x}, y > 0)$, especially when $\rho < 0$. It only makes sense to apply the T2T model to $\log(y)$ in the context of two-part models.