ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5:

C07D 305/14, 413/12 C07C 271/22, C07D 263/04 (11) Numéro de publication internati nale:

WO 94/07876

(43) Date de publicati n internationale:

14 avril 1994 (14.04.94)

(21) Numéro de la demande internationale:

PCT/FR93/00965

A1

(22) Date de dépôt international:

4 octobre 1993 (04.10.93)

(30) Données relatives à la priorité:

92/11739

5 octobre 1992 (05.10.92)

FR (

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): DENIS, Jean-Noël [BE/FR]; Gîtes de Belledonne, Apt. nº 3, Le Pinet, F-38410 Uriage (FR). GREENE, Andrew [US/FR]; La Maison du Verger, Saint-Martin d'Uriage, F-38410 Uriage (FR). MAS, Jean-Manuel [FR/FR]; 1, rue du Tonkin, F-69100 Villeurbanne (FR).

(74) Mandataire: PILARD, Jacques; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

(81) Etats désignés: AU, CA, CZ, FI, HU, JP, KR, NO, NZ, PL, RU, SK, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

(54) Title: NOVEL METHOD OF ESTERIFICATION OF BACCATINE III AN 10-DEACETYLBACCATINE III

(54) Titre: NOUVEAU PROCEDE D'ESTERIFICATION DE LA BACCATINE III ET DE LA DESACETYL-10 BACCA-TINE III

TINE III

(57) Abstract

Method of preparing esters of baccatine III or 10-deacetylbaccatine III of formula (I) by esterification of protected baccatine III or 10-deacetylbaccatine III of formula (II) by means of an activated acid of formula (III). The esters of formula (I) can be used to prepare taxane derivatives having remarkable antileucemia and antitumor properties. In formulae (I), (II) and (III) Ar is an aryl radical, R_1 is a hydrogen atom or an aryl radical or an R_4 -O-CO- radical (R_4 = alkenyl, alkynyl, optionnally substituted alkyl, cycloalkyl, cycloalkynyl, bicycloalkyl, phenyl, heterocyclyle) and R_2 is a hydrogen atom, and R_3 stands for a hydroxy function protection grouping, or R_1 is defined as above and R_2 and R_3 together form a 5 or 6 membered, saturated heterocyclic ring, G_1 is an acetyl radical or

 R_1 R_2 G_1 G_2 G_3 G_4 G_4

a hydroxy function protection grouping, G_2 is a hydroxy function protection grouping, and X is an acyl radical, aryl radical or halogen atom.

(57) Abrégé

Procédé de préparation d'esters de la baccatine II ou de la désacétyl-10 baccatine III de formule (I) par estérification de la baccatine III ou de la désacétyl-10 baccatine III protégée de formule (II) au moyen d'un acide activé de formule (III). Les esters de formule (Ì) sont utiles pour préparer les dérivés du taxane ayant des propriétés antileucémiques et antitumorales remarquables. Dans les formules (I), (II) et (III), Ar représente un radical aryle, R_1 représente un atome d'hydrogène ou un radical aroyle ou un radical R_4 -O-CO-(R_4 = alcényle, alcynyle, alcoyle éventuellement substitué, cycloalcoyle, cycloalcényle, bicycloalcoyle, phényle, hétérocyclyle) et R_2 représente un atome d'hydrogène et R_3 représente un groupement protecteur de la fonction hydroxy, ou bien R_1 est défini comme précédemment et R_2 et R_3 forment ensemble un hétérocycle saturé à 5 ou 6 chaînons, G_1 représente un radical acétyl ou un groupement protecteur de la fonction hydroxy, G_2 représente un groupement protecteur de la fonction hydroxy et X représente un radical acyle, aroyle ou un atome d'halogène.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gabon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	NE	Niger
BE	Belgique	GN	Guinée	NL	Pays-Bas
BF	Burkina Faso	GR	Grèce	NO	Norvège
BG	Bulgarie	HU	Hongrie	NZ	Nouvelle-Zélande
BJ	Bénin	IE	Irlande	PL.	Pologne
BR	Brésil	IT	Italie	PT	Portugal
BY	Bélarus	ĴР	Japon	RO	Roumanie
CA	Canada	KP	République populaire démocratique	RU	Fédération de Russie
CF	République Centrafricaine		de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
Cl	Côte d'Ivoire	LI	Liechtenstein	SK	République slovaque
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LU	Luxembour	TD	Tchad
CS	Tchécoslovaquie	LV	Lettonie	TG	Togo
CZ	République tchèque	MC	Monaco	UA	Ukraine
DB	Allemagne	MG	Madagascar	US	Etats-Unis d'Amérique
DK	Danemark	ML	Mali	UZ	Ouzbékistan
ES	Espagne	MN	Mongolie	VN	Vict Nam
Fì	Finlande				

NOUVEAU PROCEDE D'ESTERIFICATION DE LA BACCATINE III ET DE LA DESACETYL-10 BACCATINE III

La présente invention concerne la préparation d'esters de la baccatine III et de la désacétyl-10 baccatine III de formule générale :

$$\begin{array}{c} R_1 \\ N \\ \hline \tilde{O} - R_3 \end{array} \qquad \begin{array}{c} G_1 - O \\ \hline \tilde{O} \\ \hline \tilde{O} - G_2 \end{array} \qquad \begin{array}{c} O - G_2 \\ \hline \tilde{O} \\ \hline \tilde{O} COCC_6 H_5 \end{array} \qquad \begin{array}{c} (I) \\ \hline \end{array}$$

5

par estérification de la baccatine III ou de la désacétyl-10 baccatine III convenablement protégée de formule générale :

HO
$$\stackrel{G_1-O}{=}$$
 $\stackrel{O-G_2}{=}$ $\stackrel{O-G_2}{=}$

au moyen d'un acide activé de formule générale :

$$\begin{array}{c}
R_1 \\
N \\
\overline{\underline{\underline{\underline{B}}}} \\
O \\
\overline{\underline{\underline{C}}} \\
O \\
-R_2
\end{array}$$
(III)

10

Dans les formules générales (I), (II) et (III), les différents symboles sont définis de la manière suivante :

- Ar représente un radical aryle,
- ou bien a) R_1 représente un radical aroyle ou un radical de formule R_4 -O-CO-dans laquelle R_4 représente :
- 15

10

15

20

30

35

- un radical alcoyle droit ou ramifié contenant 1 à 8 atomes de carbone, alcényle contenant 2 à 8 atomes de carbone, alcynyle contenant 3 à 8 atomes de carbone, cycloalcoyle contenant 3 à 6 atomes de carbone ou bicycloalcoyle contenant 7 à 10 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les atomes d'halogène et les radicaux hydroxy, alcoyloxy contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, pipéridino, morpholino, pipérazinyl-1 (éventuellement substitué en -4 par un radical alcoyle contenant 1 à 4 atomes de carbone ou par un radical phénylalcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone), cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone, phényle, cyano, carboxy ou alcoyloxycarbonyle dont la partie alcoyle contient 1 à 4 atomes de carbone,

- ou un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoyloxy contenant 1 à 4 atomes de carbone,

- ou un radical hétérocyclique azoté saturé ou non saturé contenant 4 à 6 chaînons et éventuellement substitué par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone,

étant entendu que les radicaux cycloalcoyles, cycloalcényles ou bicycloalcoyles peuvent être éventuellement substitués par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone,

R₂ représente un atome d'hydrogène, et

R3 représente un groupement protecteur de la fonction hydroxy,

ou bien b) R₁ étant défini comme ci-dessus et pouvant en outre représenter un atome d'hydrogène, R₂ et R₃ forment ensemble un hétérocycle saturé à 5 ou 6 chaînons.

G₁ représente un radical acétyle ou un groupement protecteur de la fonction hydroxy, G₂ représente un groupement protecteur de la fonction hydroxy, et

X représente un radical acyloxy ou aroyloxy ou un atome d'halogène.

Plus particulièrement, Ar et la portion aryle du radical aroyle représenté par R_1 , identiques ou différents, représentent un radical phényle ou α - ou β -naphtyle éventuellement substitué, les substituants pouvant être choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles, alcényles, alcynyles, aryles, arylalcoyles, alcoxy, alcoylthio, aryloxy, arylthio, hydroxy, hydroxyalcoyle, mercapto, formyle, acyle, acylamino, aroylamino, alcoxycarbonylamino, amino,

10

15

20

25

30

35

alcoylamino, dialcoylamino, carboxy, alcoxycarbonyle, carbamoyle, dialcoylcarbamoyle, cyano, nitro et trifluorométhyle, étant entendu que les radicaux alcoyles et les portions alcoyles des autres radicaux contiennent 1 à 4 atomes de carbone, les radicaux alcényles et alcynyles contiennent 3 à 8 atomes de carbone et que les radicaux aryles sont des radicaux phényles ou α - ou β -naphtyles.

Plus particulièrement encore, Ar et la portion aryle du radical aroyle représenté par R₁, identiques ou différents, représentent un radical phényle éventuellement substitué par un atome de chlore ou de fluor ou par un radical alcoyle (méthyle), alcoyloxy (méthoxy), dialcoylamino (diméthylamino), acylamino (acétylamino) ou alcoyloxycarbonylamino (t.butoxycarbonylamino).

Plus particulièrement, R₃ représente un groupement protecteur de la fonction hydroxy choisi parmi les radicaux méthoxyméthyle, éthoxy-1 éthyle, benzyloxyméthyle, β-triméthylsilyléthoxyméthyle, tétrahydropyranyle, trichloro-2,2,2 éthoxyméthyle, trichloro-2,2,2 éthoxycarbonyle ou -CH₂-Ph dans lequel Ph représente un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoyloxy contenant 1 à 4 atomes de carbone.

Plus particulièrement, lorsque R₂ et R₃ forment ensemble un hétérocycle saturé à 5 ou 6 chaînons, celui-ci représente un cycle oxazolidine substitué en position -2 par 1 ou 2 substituants, identiques ou différents, choisis parmi les atomes d'hydrogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone, alcoxy contenant 1 à 4 atomes de carbone, aralcoyles dont la partie alcoyle contient 1 à 4 atomes de carbone ou aryles, les radicaux aryles étant de préférence des radicaux phényles éventuellement substitués par un ou plusieurs radicaux alcoyloxy contenant 1 à 4 atomes de carbone, et les 2 substituants en position -2 pouvant former avec l'atome de carbone auquel ils sont liés un cycle ayant de 4 à 7 chaînons, ou bien un cycle oxazolidine substitué en position -2 par un radical trihalométhyle ou phényle substitué par un radical trihalométhyle, le symbole R₁ pouvant représenter en outre un atome d'hydrogène.

Plus particulièrement, G₁ représente le radical acétyle ou un groupement protecteur choisi parmi les radicaux trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle.

Plus particulièrement, G₂ représente un groupement protecteur de la fonction hydroxy choisi parmi les radicaux trichloro-2,2,2 éthoxycarbonyle ou

10

15

20

25

30

(trichlorométhyl-2 propoxy)-2 carbonyle ou trialkylsilyle, dialkylarylsilyle, alkyldiarylsilyle ou triarylsilyle dans lequel chaque partie alkyle contient 1 à 4 atomes de carbone et chaque partie aryle représente de préférence un radical phényle.

Plus particulièrement, X représente un radical acyloxy contenant 1 à 5 atomes de carbone en chaîne droite ou ramifiée ou un radical aroyloxy dans lequel la partie aryle représente un radical phényle éventuellement substitué par 1 à 5 substituants, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux nitro, méthyle ou méthoxy ou bien X représente un atome d'halogène choisi parmi le chlore ou le brome.

Plus particulièrement encore, X représente un radical t.butylcarbonyloxy ou trichloro-2,4,6 benzoyloxy ou un atome de chlore.

Il est connu de préparer des esters de formule générale (I) en opérant dans les conditions décrites par exemple dans les brevets européens EP 0 336 840 et EP 0 336 841 ou dans la demande internationale WO 92/09589. Selon les procédés connus, l'estérification de la baccatine III ou de la désacétyl-10 baccatine III protégée au moyen d'un acide de formule générale :

dans laquelle Ar, R₁, R₂ et R₃ sont définis comme précédemment, s'effectue en présence d'un imide tel que le dicyclohexylcarbodiimide et d'une dialkylaminopyridine à une température comprise entre 60 et 90°C.

La mise en oeuvre de ces procédés nécessite l'emploi d'un excès important de l'acide de formule générale (IV) par rapport au dérivé de la baccatine.

De plus, l'emploi d'un agent de condensation tel que le dicyclohexylcarbodiimide peut industriellement poser un certain nombre de problèmes qu'il est important de pouvoir éliminer ou atténuer. En effet, le dicyclohexylcarbodiimide est un réactif coûteux qui, du fait de ses propriétés allergisantes, nécessite des conditions particulières de mise en oeuvre et qui conduit, au cours de sa mise en oeuvre, à la formation de dicyclohexylurée dont l'élimination totale est souvent difficile.

Il a maintenant été trouvé, et c'est ce qui fait l'objet de la présente invention, que les esters de formule générale (I) peuvent être obtenus par estérification de la baccatine III ou de la désacétyl-10 baccatine III convenablement protégée au moyen

10

15

20

25

d'un dérivé activé de formule générale (III) dans des conditions qui permettent de palier aux inconvénients mentionnés ci-dessus.

Selon l'invention, le dérivé activé de formule générale (III), éventuellement préparé in situ, est condensé sur la baccatine III ou la désacétyl-10 baccatine III en présence d'une base, de préférence une base organique azotée, en opérant dans un solvant organique inerte à une température comprise entre 0 et 90°C.

Comme bases organiques azotées qui conviennent particulièrement bien peuvent être citées les amines aliphatiques tertiaires telles que la triéthylamine, la pyridine ou les aminopyridines telles que la diméthylamino-4 pyridine ou la pyrrolidino-4 pyridine.

Comme solvants organiques inertes peuvent être cités les éthers tels que le tétrahydrofuranne, l'éther diisopropylique, le méthyl t.butyléther ou le dioxanne, les cétones telles que la méthylisobutylcétone, les esters tels que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle, les nitriles tels que l'acétonitrile, les hydrocarbures aliphatiques tels que le pentane, l'hexane ou l'heptane, les hydrocarbures aliphatiques tels que le dichlorométhane ou le dichloro-1,2 éthane et les hydrocarbures aromatiques tels que le benzène, le toluène ou les xylènes, l'éthylbenzène, l'isopropylbenzène ou le chlorobenzène. D'un intérêt tout particulier sont les hydrocarbures aromatiques.

Généralement, le dérivé activé de formule générale (III) est utilisé en quantité stoechiométrique par rapport au produit de formule (II) mais il peut être avantageux d'utiliser jusqu'à 3 équivalents du produit de formule (III) par rapport au produit de formule (II).

Généralement on utilise au moins 1 équivalent de base organique azotée par rapport au produit de formule générale (II) mis en oeuvre ou par rapport au dérivé de formule générale (III).

De préférence, l'estérification est réalisée à une température voisine de 20°C. Les dérivés activés de formule générale (III) peuvent être préparés, éventuellement in situ, par action d'un halogénure d'acide de formule générale :

$$R_5$$
-CO-Y (V)

dans laquelle Y représente un atome d'halogène, de préférence un atome de chlore et R5 représente un radical alcoyle contenant 1 à 5 atomes de carbone en chaîne droite ou ramifiée ou un radical aryle représentant de préférence un radical phényle éventuellement substitué par 1 à 5 substituants, identiques ou différents, choisis parmi

10

15

les atomes d'halogène et les radicaux nitro, méthyle ou méthoxy, ou d'un halogénure de thionyle, de préférence le chlorure, sur un acide de formule générale (IV).

Généralement, la réaction s'effectue dans un solvant organique inerte en présence d'une base organique azotée à une température comprise entre 0 et 30°C.

Comme solvants organiques peuvent être utilisés les éthers tels que le tétrahydrofuranne, l'éther diisopropylique, le méthyl t.butyléther ou le dioxanne, les cétones telles que la méthylisobutylcétone, les esters tels que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle, les nitriles tels que l'acétonitrile, les hydrocarbures aliphatiques tels que le pentane, l'hexane ou l'heptane, les hydrocarbures aliphatiques halogénés tels que le dichlorométhane ou le dichloro-1,2 éthane et les hydrocarbures aromatiques tels que le benzène, le toluène, les xylènes, l'éthylbenzène, l'isopropylbenzène ou le chlorobenzène.

Comme bases organiques azotées peuvent être citées les amines aliphatiques tertiaires telles que la triéthylamine, la pyridine ou les aminopyridines comme la diméthylamino-4 pyridine ou la pyrrolidino-4 pyridine.

Généralement on utilise au moins un équivalent de produit de formule générale (V) ou l'halogénure de thionyle par rapport à l'acide de formule générale (IV).

Les esters de formule générale (I) sont particulièrement utiles pour préparer les dérivés du taxane de formule générale :

20

25

dans laquelle Ar et R₁ sont définis comme précédemment qui présentent des propriétés antileucémiques et antitumorales remarquables.

D'un intérêt tout particulier sont les produits de formule générale (VI) dans laquelle Ar étant défini comme précédemment R représente un atome d'hydrogène ou le radical acétyle et R₁ représente un radical benzoyle ou t.butoxycarbonyle.

Le produit de formule générale (VI) dans laquelle R représente le radical acétyle, R₁ représente un radical benzoyle et Ar représente le radical phényle est connu sous le nom de taxol.

10

15

Le produit de formule générale (VI) dans laquelle R représente un atome d'hydrogène, R₁ représente le radical t.butoxycarbonyle et Ar représente le radical phényle, qui est connu sous le nom de Taxotère, fait l'objet du brevet européen EP 0 253 738.

Les produits analogues du Taxotère font l'objet de la demande internationale WO 92/09589.

Selon les significations de R₁, R₂ et R₃, les produits de formule générale (VI) peuvent être obtenus à partir d'un produit de formule générale (I)

- soit directement, lorsque R₁ étant défini comme précédemment, R₂ représente un atome d'hydrogène et R₃ représente un groupement protecteur de la fonction hydroxy, par remplacement des groupements protecteurs R₃, G₁ et G₂ par des atomes d'hydrogène

- soit, lorsque R₁ étant défini comme précédemment, R₂ et R₃ forment ensemble un hétérocycle à 5 ou 6 chaînons, en passant éventuellement intermédiairement par un produit de formule générale :

dans laquelle G'_1 et G'_2 sont identiques à G_1 et G_2 et peuvent en outre représenter un atome d'hydrogène qui est soumis à l'action d'un halogénure d'aroyle ou d'un dérivé réactif de formule générale :

$$R_4$$
-O-CO-Z (VIII)

dans laquelle R₄ est défini comme précédemment et Z représente un atome d'halogène ou un reste -O-R₄ ou -O-CO-OR₄ dans lesquels R₄ est défini comme précédemment pour obtenir un produit de formule générale :

10

15

20

25

dont les groupements protecteurs G'₁ et G'₂ sont remplacés si nécessaire par des atomes d'hydrogène.

En particulier, lorsque dans la formule générale (I), R₂ et R₃ forment ensemble un cycle oxazolidine gem disubstitué en -2, le produit de formule générale (VI) est obtenu en passant intermédiairement par le produit de formule générale (VII).

Lorsque, dans la formule générale (I), R_1 représente un radical R_4 -O-CO- et lorsque R_2 et R_3 forment ensemble un cycle oxazolidine monosubstitué en -2, le produit de formule générale (IX) dans laquelle $R_1 = R_4$ -O-CO- peut être obtenu directement à partir du produit de formule générale (I).

Le produit de formule générale (VII) dans laquelle G'₁ représente un atome d'hydrogène ou un radical acétyle et G'₂ représente un atome d'hydrogène peut être obtenu à partir d'un produit de formule générale (I) dans laquelle R₁ représentant un radical R₄-O-CO- dans lequel R₄ représente un radical alkyle substitué par un ou plusieurs atomes d'halogène, R₂ et R₃ forment ensemble un cycle oxazolidine monosubstitué ou gemdisubstitué en position -2.

Le produit de formule générale (VII) peut aussi être obtenu à partir d'un produit de formule générale (I) dans laquelle R₁ représente un atome d'hydrogène et R₂ et R₃ forment ensemble un cycle oxazolidine substitué en position -2 par un radical trihalométhyle ou phényle substitué par un radical trihalométhyle.

Le remplacement direct des groupements protecteurs R₃, G₁ et G₂ d'un produit de formule générale (I) ou G'₁ et G'₂ d'un produit de formule générale (IX) par des atomes d'hydrogène est effectué par traitement par le zinc, éventuellement associé à du cuivre, en présence d'acide acétique à une température comprise entre 30 et 60°C ou au moyen d'un acide minéral ou organique tel que l'acide chlorhydrique ou l'acide acétique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone ou un ester aliphatique tel que l'acétate d'éthyle, l'acétate d'isopropyle ou l'acétate de n.butyle en présence de zinc éventuellement associé à du cuivre, lorsque

R3, G₁ et/ou G₂ représentent un radical trichloro-2,2,2 éthoxycarbonyle, ou par traitement en milieu acide tel que par exemple l'acide chlorhydrique en solution dans un alcool aliphatique contenant 1 à 3 atomes de carbone (méthanol, éthanol, propanol, isopropanol) ou l'acide fluorhyrique aqueux à une température comprise entre 0 et 40°C lorsque R3, G₁ et/ou G₂ représentent un radical silylé. Lorsque R₃ représente un groupement -CH₂-Ph, il est nécessaire de remplacer ce groupement protecteur par un atome d'hydrogène par hydrogénolyse en présence d'un catalyseur, après avoir remplacé les groupements protecteurs G₁ et G₂ par des atomes d'hydrogène dans les conditions décrites précédemment.

10

5

Le produit de formule générale (VII) peut être obtenu à partir d'un produit de formule générale (I) dans laquelle R₂ et R₃ forment ensemble un cycle oxazolidine gem disubstitué en position -2 par traitement au moyen d'acide formique éventuellement dans un alcool tel que l'éthanol ou d'acide chlorhydrique gazeux dans un alcool tel que l'éthanol.

15

Le produit de formule générale (IX) dans laquelle R₁ représente un radical R₄-O-CO- peut être obtenu directement à partir d'un produit de formule générale (I) dans laquelle R₁ représente un radical R₄-O-CO- et R₂ et R₃ forment ensemble un cycle oxazolidine monosubstitué en position -2 par traitement au moyen d'un acide tel que l'acide méthanesulfonique à une température comprise entre 0 et 40°C.

20

Le produit de formule générale (VII) dans laquelle G'₁ représente un atome d'hydrogène ou un radical acétyle et G'₂ représente un atome d'hydrogène peuvent être obtenus à partir d'un produit de formule générale (I) dans laquelle R₁ représente un radical R₄-O-CO- dans lequel R₄ représente un radical alcoyle substitué par un ou plusieurs atomes d'halogène, et R₂ et R₃ forment un cycle oxazolidine monosubstitué ou gem disubstitué en position -2 par traitement au moyen de zinc dans l'acide acétique ou par voie électrochimique.

25

30

Le produit de formule générale (VII) dans laquelle G'₁ représente un radical acétyle ou un groupement protecteur de la fonction hydroxy et G'₂ représente un groupement protecteur de la fonction hydroxy peut être obtenu à partir d'un produit de formule générale (I) dans laquelle R₁ représente un atome d'hydrogène et R₂ et R₃ forment ensemble un cycle oxazolidine substitué en -2 par un radical trihalométhyle ou phényle substitué par un radical trihalométhyle par traitement au moyen de zinc dans l'acide acétique.

Les exemples suivants illustrent la présente invention.

10

15

20

25

30

í

EXEMPLE 1

Dans un réacteur de 50 cm3, on introduit, sous atmosphère inerte, à une température voisine de 20°C, 0,321 g de carboxy-5 diméthyl-2,2 phényl-4 (tert.butoxycarbonyl)-3 oxazolidine-1,3-(4S,5R), 0,244 g de chlorure de trichloro-2,4,6 benzoyle, 8 cm3 de toluène anhydre et 0,101 g de triéthylamine. Le mélange réactionnel est laissé pendant 2 heures sous agitation à une température voisine de 20°C. On ajoute alors 0,896 g d'acétoxy-4 benzoyloxy-2α époxy-5β,20 dihydroxy-1β,13α oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7β,10β taxène-11 et 0,122 g de diméthylamino-4 pyridine. Après 20 heures d'agitation à une température voisine de 20°C, le chlorhydrate de triéthylamine formé est séparé par filtration et lavé avec du toluène. La phase toluénique est lavée avec 2 fois 10 cm3 d'eau, séchée sur sulfate de sodium puis concentrée à sec sous pression réduite. Un dosage par chromatographie liquide haute performance montre que le rendement en diméthyl-2,2 phényl-4 (tert.butoxycarbonyl)-3 oxazolidine-1,3-(4S,5R) carboxylate-5 d'acétoxy-4 benzoyloxy-2α époxy-5β,20 hydroxy-1β oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7β,10β taxène-11 yle-13α est de 77 % par rapport à l'alcool transformé et de 63 % par rapport à l'alcool mis en oeuvre.

EXEMPLE 2

Dans un ballon de 50 cm3 muni d'un système d'agitation magnétique, on introduit, sous atmosphère d'argon, 275 mg d'acide phényl-3 tert.butoxy-carbonylamino-3 (éthoxy-1 éthoxy)-2 propionique-(2R,3S) (0,78 mmole) en solution dans 13 cm3 de toluène anhydre. On ajoute ensuite successivement 108,5 μl de triéthylamine (0,78 mmole) et 189,5 mg de chlorocarbonyl-1 trichloro-2,4,6 benzène (0,78 mmole). On agite le mélange réactionnel pendant 54 heures à une température voisine de 25°C. Au milieu hétérogène incolore, on ajoute 190,6 mg de diméthylamino-4 pyridine (1,56 mmole). On laisse réagir pendant 5 minutes à une température voisine de 25°C puis on introduit 116 mg (0,13 mmole) d'acétoxy-4 benzoyloxy-2α époxy-5β,20 dihydroxy-1β,13α oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7β,10β taxène-11. On laisse réagir pendant 5 minutes à une température voisine de 25°C puis on chauffe le mélange réactionnel à 72-73°C. On laisse réagir, sous bonne agitation, pendant 64 heures à cette température. Après refroidissement, le mélange réactionnel jaune-orange est dilué par 60 cm3 d'acétate d'éthyle. La phase organique obtenue est lavée 3 fois par 5 cm3 d'une solution aqueuse saturée de

bicarbonate de sodium, 5 fois par 5 cm3 d'eau et 2 fois par 5 cm3 d'une solution aqueuse saturée de chlorure de sodium puis est séchée sur sulfate de sodium.

Après filtration et élimination des solvants sous pression réduite (2,7 kPa), on obtient un résidu (488 mg) qui est purifié par chromatographie préparative sur couche mince de silice en éluant avec un mélange éther éthylique-dichlorométhane (5-95 en volumes) et en effectuant 2 passages.

On obtient ainsi 46 mg de dérivé de la baccatine III de départ et 69 mg d'(éthoxy-1 éthoxy)-2 phényl-3 t.butoxycarbonylamino-3 propionate-(2R,3S) d'acétoxy-4 benzoyloxy- 2α époxy- 5β ,20 hydroxy- 1β oxo-9 bis-(trichloro-2,2,2 éthoxy-carbonyloxy)- 7β , 10β taxène-11 yle- 13α dont la structure est confirmée par le spectre infra-rouge et le spectre de résonance magnétique nucléaire du proton.

Le rendement est de 72 % par rapport à l'alcool mis en oeuvre.

EXEMPLE 3

5

10

15

20

25

En opérant de la même manière que dans l'exemple 1 mais en remplaçant le chlorure de trichloro-2,4,6 benzoyle par 0,120 g de chlorure de pivaloyle on obtient 1,16 g de produit brut dont le dosage par chromatographie liquide haute performance montre que le rendement en diméthyl-2,2 phényl-4 (tert.butoxycarbonyl)-3 oxazoli-dine-1,3-(4S,5R) carboxylate-5 d'acétoxy-4 benzoyloxy-2α époxy-5β,20 hydroxy-1β oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7β,10β taxène-11 yle-13α est de 98 % par rapport à l'alcool transformé et de 71 % par rapport à l'alcool mis en oeuvre.

EXEMPLE 4

En opérant de la même manière que dans l'exemple 1 mais en remplaçant le chlorure de trichloro-2,4,6 benzoyle par 0,119 g de chlorure de thionyle et en utilisant 0,202 g de triéthylamine, on obtient 1,36 g de produit brut dont le dosage par chromatographie liquide haute performance montre que le rendement en diméthyl-2,2 phényl-4 (tert.butoxycarbonyl)-3 oxazolidine-1,3-(4S,5R) carboxylate-5 d'acétoxy-4 benzoyloxy-2 α époxy-5 β ,20 hydroxy-1 β oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7 β ,10 β taxène-11 yle-13 α est de 93 % par rapport à l'alcool transformé et de 31 % par rapport à l'alcool mis en oeuvre.

10

15

EXEMPLE 5

A une solution agitée de 0,353 g d'acide (éthoxy-1 éthoxy)-2 phényl-3 t.butoxycarbonylamino-3 propionique-(2R,3S) et de 0,122 g de diméthylamino-4 pyridine dans 4 cm3 de toluène on ajoute, en 15 minutes et à une température voisine de 20°C, 0,244 g de chlorure de trichloro-2,4,6 benzoyle. Le mélange réactionnel est maintenu pendant 16 heures sous agitation à une température voisine de 20°C. On ajoute 0,448 g d'acétoxy-4 benzoyloxy-2 α époxy-5 β ,20 dihydroxy-1 β ,13 α oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7 β ,10 β taxène-11 et 0,122 g de diméthylamino-4 pyridine. On maintient pendant 20 heures sous agitation. Le dosage par chromatographie liquide haute performance montre que le rendement en (éthoxy-1 éthoxy)-2 phényl-3 t.butoxycarbonylamino-3 propionate-(2R,3S) et (2S,3S) d'acétoxy-4 benzoyloxy-2 α époxy-5 β ,20 hydroxy-1 β oxo-9 bis-(trichloro-2,2,2 éthoxycarbonyloxy)-7 β ,10 β taxène-11 est de 58 % par rapport à l'alcool mis en oeuvre et de 100 % par rapport à l'alcool transformé.

Le rapport des deux épimères (2R,3S) / (2S,3S) est de 84/16.

REVENDICATIONS

1 - Procédé de préparation d'esters de la baccatine III ou de la désacétyl-10 baccatine III de formule générale :

5 dans laquelle:

10

15

20

- Ar représente un radical aryle

- ou bien a) R_1 représente un radical aroyle ou un radical de formule R_4 -O-CO-dans laquelle R_4 représente :

- un radical alcoyle droit ou ramifié contenant 1 à 8 atomes de carbone, alcényle contenant 2 à 8 atomes de carbone, alcynyle contenant 3 à 8 atomes de carbone, cycloalcoyle contenant 3 à 6 atomes de carbone ou bicycloalcoyle contenant 7 à 10 atomes de carbone, ces radicaux étant éventuellement substitués par un ou plusieurs substituants choisis parmi les atomes d'halogène et les radicaux hydroxy, alcoyloxy contenant 1 à 4 atomes de carbone, dialcoylamino dont chaque partie alcoyle contient 1 à 4 atomes de carbone, pipéridino, morpholino, pipérazinyl-1 (éventuellement substitué en -4 par un radical alcoyle contenant 1 à 4 atomes de carbone ou par un radical phénylalcoyle dont la partie alcoyle contient 1 à 4 atomes de carbone), cycloalcoyle contenant 3 à 6 atomes de carbone, cycloalcényle contenant 4 à 6 atomes de carbone, phényle, cyano, carboxy ou alcoyloxycarbonyle dont la partie alcoyle contient 1 à 4 atomes de carbone,

- ou un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoyloxy contenant 1 à 4 atomes de carbone,

- ou un radical hétérocyclyle azoté saturé ou non saturé contenant 4 à 6 chaînons et éventuellement substitué par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone,

étant entendu que les radicaux cycloalcoyles, cycloalcényles ou bicycloalcoyles peuvent être éventuellement substitués par un ou plusieurs radicaux alcoyles contenant 1 à 4 atomes de carbone,

R2 représente un atome d'hydrogène, et

5 R₃ représente un groupement protecteur de la fonction hydroxy,

ou bien b) R₁ étant défini comme ci-dessus et pouvant en outre représenter un atome d'hydrogène, R₂ et R₃ forment ensemble un hétérocycle saturé à 5 ou 6 chaînons.

G₁ représente un radical acétyle ou un groupement protecteur de la fonction hydroxy, G₂ représente un groupement protecteur de la fonction hydroxy,

caractérisé en ce que l'on estérifie la baccatine III ou la désacétyl-10 baccatine III convenablement protégée de formule générale :

HO HO
$$G_1$$
-O G_2
 G_1 -O G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1 -O G_2
 G_2
 G_1 -O G_2
 G_2
 G_2
 G_1
 G_2
 G_2
 G_1
 G_2
 G_2
 G_2
 G_2
 G_2
 G_2
 G_2
 G_1
 G_2
 G_3
 G_2
 G_3
 G_4
 G_2
 G_3
 G_4
 $G_$

dans laquelle G₁ et G₂ sont définis comme précédemment, au moyen d'un acide activé de formule générale :

$$\begin{array}{cccc}
R_1 & R_2 \\
& & \\
N & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

éventuellement préparé in situ, dans laquelle Ar, R₁, R₂ et R₃ sont définis comme précédemment et X représente un radical acyloxy ou aroyloxy ou un atome d'halogène, et isole le produit obtenu.

2 - Procédé de préparation selon la revendication 1 caractérisé en ce que R₁, R₂, R₃, G₁ et G₂ étant définis comme dans la revendication 1, Ar et la portion aryle du radical aroyle représenté par R₁, identiques ou différents, représentent un radical

phényle ou α - ou β -naphtyle éventuellement substitué, les substituants pouvant être choisis parmi les atomes d'halogène (fluor, chlore, brome, iode) et les radicaux alcoyles, alcényles, aryles, arylalcoyles, alcoxy, alcoylthio, aryloxy, arylthio, hydroxy, hydroxyalcoyle, mercapto, formyle, acyle, acylamino, aroylamino, alcoxycarbonylamino, amino, alcoylamino, dialcoylamino, carboxy, alcoxycarbonyle, carbamoyle, dialcoylcarbamoyle, cyano, nitro et trifluorométhyle, étant entendu que les radicaux alcoyles et les portions alcoyles des autres radicaux contiennent 1 à 4 atomes de carbone, les radicaux alcényles et alcynyles contiennent 3 à 8 atomes de carbone et que les radicaux aryles sont des radicaux phényles ou α - ou β -naphtyles.

10

5

3 - Procédé de préparation selon la revendication 1 caractérisé en ce que R₁, R₂, R₃, G₁ et G₂ étant définis comme dans la revendication 1, Ar et la portion aryle du radical aroyle représenté par R₁, identiques ou différents, représentent un radical phényle éventuellement substitué par un atome de chlore ou de fluor ou par un radical alcoyle (méthyle), alcoyloxy (méthoxy), dialcoylamino (diméthylamino), acylamino (acétylamino) ou alcoyloxycarbonylamino (t.butoxycarbonylamino).

20

15

4 - Procédé de préparation selon la revendication 1 caractérisé en ce que R₁, R₂, G₁ et G₂ étant définis comme dans la revendication 1, R₃ représente un groupement protecteur de la fonction hydroxy choisi parmi les radicaux méthoxyméthyle, éthoxy-1 éthyle, benzyloxyméthyle, β-triméthylsilyléthoxyméthyle, tétrahydropyranyle, trichloro-2,2,2 éthoxyméthyle, trichloro-2,2,2 éthoxycarbonyle ou -CH₂-Ph dans lequel Ph représente un radical phényle éventuellement substitué par un ou plusieurs atomes ou radicaux, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone ou alcoyloxy contenant 1 à 4 atomes de carbone.

25

30

5 - Procédé selon la revendication 1 caractérisé en ce que Ar, R, G₁ et G₂ étant définis comme dans la revendication 1, R₂ et R₃ forment ensemble un cycle oxazolidine substitué en position -2 par 1 ou 2 substituants, identiques ou différents, choisis parmi les atomes d'hydrogène et les radicaux alcoyles contenant 1 à 4 atomes de carbone, alcoyle contenant 1 à 4 atomes de carbone, aralcoyles dont la partie alcoyle contient 1 à 4 atomes de carbone ou aryles, les radicaux aryles étant de préférence des radicaux phényles éventuellement substitués par un ou plusieurs radicaux alcoyloxy contenant 1 à 4 atomes de carbone, et les 2 substituants en position -2 pouvant former avec l'atome de carbone auquel ils sont liés un cycle ayant

10

15

25

de 4 à 7 chaînons, ou bien un cycle oxazolidine substitué en position -2 par un radical trihalométhyle ou phényle substitué par un radical trihalométhyle, le symbole R₁ pouvant représenter en outre un atome d'hydrogène.

- 6 Procédé selon la revendication 1 caractérisé en ce que Ar, R₁, R₂ et R₃ étant définis comme dans la revendication 1, G₁ représente le radical acétyle ou un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle et G₂ représente un radical trichloro-2,2,2 éthoxycarbonyle ou (trichlorométhyl-2 propoxy)-2 carbonyle ou trialkylsilyle, dialkylarylsilyle, alkyldiarylsilyle ou triarylsilyle dans lequel chaque partie alkyle contient 1 à 4 atomes de carbone et chaque partie aryle représente un radical phényle.
- 7 Procédé selon la revendication 1 caractérisé en ce que X représente un radical acyloxy contenant 1 à 5 atomes de carbone en chaîne droite ou ramifiée ou un radical aroyloxy dans lequel la partie aryle représente un radical phényle éventuellement substitué par 1 à 5 substituants, identiques ou différents, choisis parmi les atomes d'halogène et les radicaux nitro, méthyle ou méthoxy ou bien X représente un atome d'halogène choisi parmi le chlore ou le brome.
- 8 Procédé selon la revendication 1 caractérisé en ce que X représente un radical t.butylcarbonyloxy ou trichloro-2,4,6 benzoyloxy ou un atome de chlore.
- 9 Procédé selon la revendication 1 caractérisé en ce que l'on opère en 20 présence d'une base.
 - 10 Procédé selon la revendication 1 caractérisé en ce que l'on opère en présence d'une base organique azotée.
 - 11 Procédé selon la revendication 1 caractérisé en ce que l'on opère en présence d'une base organique azotée choisie parmi les amines aliphatiques tertiaires, la pyridine ou les aminopyridines.
 - 12 Procédé selon la revendication 1 caractérisé en ce que l'on opère dans un solvant organique inerte.
 - 13 Procédé selon la revendication 1 caractérisé en ce que l'on opère dans un solvant organique inerte choisi parmi les éthers, les cétones, les esters, les nitriles,

les hydrocarbures aliphatiques éventuellement halogénés et les hydrocarbures aromatiques.

- 14 Procédé selon la revendication 1 caractérisé en ce que l'on opère à une température comprise entre 0 et 90°C.
- 5 15 Procédé selon la revendication 1 caractérisé en ce que l'on opère à une température voisine de 20°C.
 - 16 Procédé selon la revendication 1 caractérisé en ce que l'on opère en présence de 1 à 3 équivalents d'acide activé par rapport à la baccatine III ou à la désacétyl-10 baccatine III convenablement protégée.
- 10 17 Procédé selon la revendication 1 caractérisé en ce que l'on opère en présence d'au moins 1 équivalent de base.
 - 18 Les acides activés de formule générale :

dans laquelle Ar, R₁, R₂, R₃ et X sont définis comme dans la revendication 1.

- 19 Les acides activés selon la revendication 18 pour lesquels R₁, R₂, R₃ et X étant définis comme dans la revendication 1, Ar est défini comme dans la revendication 2.
- 20 Les acides activés selon la revendication 18 pour lesquels R₁, R₂, R₃ et
 X étant définis comme dans la revendication 1, Ar est défini comme dans la revendi cation 3.
 - 21 Les acides activés selon la revendication 18 pour lesquels Ar étant défini comme dans l'une des revendications 1, 2 ou 3, R_1 et X étant définis comme dans la revendication 1, R_2 et R_3 sont définis comme dans la revendication 5.

- 22 Les acides activés selon l'une des revendications 18 à 21 pour lesquels X est défini comme dans la revendication 7.
- 23 Les dérivés activés selon l'une des revendications 18 à 21 pour lesquels X est défini comme dans la revendication 8.
- 5 24 Utilisation d'un ester obtenu selon le procédé de l'une des revendications 1 à 17 pour la préparation des dérivés du taxane de formule générale :

dans laquelle R représente un atome d'hydrogène ou le radical acétyle, R₁ est défini comme dans la revendication 1 et Ar est défini comme dans l'une des revendications 1, 2 ou 3.

INTERNATIONAL SEARCH REPORT

Inter nai Application No PCT/FR 93/00965

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C07D305/14 C07D4 C07D413/12 C07C271/22 C07D263/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 5 CO7D CO7C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' 1,18,24 EP,A,O 336 840 (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 11 October 1989 cited in the application see the whole document 1,18,24 WO,A,92 09589 (RHONE-POULENC RORER) 11 June 1992 cited in the application see page 1 - page 3 Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19.01.54 10 January 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, English, R Fax: (+31-70) 340-3016

1

IIV CRIMITIONAL SCARCE RELOKT

_aformation on patent family members

Inte mal Application No
PCT/FR 93/00965

			1		
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0336840	11-10-89	FR-A- AU-A- JP-A- US-A- US-E-	2629818 3251989 1305076 4924011 RE34277	13-10-89 12-10-89 08-12-89 08-05-90 08-06-93	
WO-A-9209589	11-06-92	FR-A- FR-A- AU-A- CA-A- EP-A-	2669631 2679557 9083891 2096833 0558623	29-05-92 29-01-93 25-06-92 24-05-92 08-09-93	

KAPPORT DE RECHERCHE INTERNATIONALE

Dem Internationale No PCT/FR 93/00965

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 5 CO7D305/14 CO7D413/1 C07D413/12 C07C271/22 C07D263/04 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB **B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE** Documentation minimale consultée (système de classification suivi des symboles de classement) C07D C07C CIB 5 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisės) C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Categorie ' Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents 1,18,24 EP,A,O 336 840 (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 11 Octobre 1989 cité dans la demande voir le document en entier 1,18,24 WO, A, 92 09589 (RHONE-POULENC RORER) 11 Juin 1992 cité dans la demande voir page 1 - page 3 Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe Catégories spéciales de documents cités: "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe "À" document définissant l'état général de la technique, non considéré comme particulièrement pertinent ou la théorie constituant la base de l'invention "E" document antérieur, mais publié à la date de dépôt international "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée pour une personne du métier document qui fait partie de la même famille de brevets Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale 10 Janvier 1994 **19.** 01. 94 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisè Office Europeen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, English, R Fax: (+31-70) 340-3016

1

CAPPORT DE RECHERCHE INTERNATIONALE

Dem Internationale No
PCT/FR 93/00965

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP-A-0336840	11-10-89	FR-A- AU-A- JP-A- US-A- US-E-	2629818 3251989 1305076 4924011 RE34277	13-10-89 12-10-89 08-12-89 08-05-90 08-06-93
WO-A-9209589	11-06-92	FR-A- FR-A- AU-A- CA-A- EP-A-	2669631 2679557 9083891 2096833 0558623	29-05-92 29-01-93 25-06-92 24-05-92 08-09-93