

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61F 9/00, 2/14

(11) International Publication Number: WO 95/17144

(43) International Publication Date: 29 June 1995 (29.06.95)

(21) Int national Application Number: Po

PCT/BR94/00036

(22) International Filing Date:

27 October 1994 (27.10.94)

(30) Priority Data: PI 9305251-0

22 December 1993 (22,12,93) BR

(71)(72) Applicant and Inventor: FERRARA DE ALMEIDA CUNHA, Paulo [BR/BR]; Rua Alagoas, 1314, Sala 715, Savassi, Belo Horizonte, MG (BR).

(74) Agent: DANNEMANN, SIEMSEN, BIGLER & IPANEMA MOREIRA; Rua Marquês de Olinda, 70, Botafogo, 22251-040 Rio de Janeiro, RJ (BR).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, FL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

BEST AVAILABLE COPY

(54) Title: DEVICE AND METHOD FOR IMPLANTING AN INTRALAMELLAR RING IN THE CORRECTION OF AMETROPIAS

(57) Abstract

A device that permits implantation of an intracomeal ring for the correction of ametropias very easily and without causing alterations in the comea is disclosed that comprises two semicircular complementary strip-like cutting members (6, 7), support means (5) for maintaining the cutting member in fixed relationship and a band held operating member (3) associated with the support means and having a peripheral circular finger engaging surface (4). In use, two small incisions are first made in the comea of the eye of a patient and the surgeon then, holding the operating member (3) between his fingers, presses the cutting members (6, 7) against the comea with leading ends of the cutting members inserted into the incisions, and then rotates the device through 180°. This creates a 360° tunnel in the cornea. The device is then reverse rotated and removed, after which an intralamellar split ring (16) of silicon or the like is introduced into the tunnel using forceps. The ends of the ring are rounded to facilitate insertion and apertures (17) to facilitate manipulation during the operation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			· ·		
AT	Austria	- GB	United Kingdom		
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	. Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE.	Ireland	NZ	New Zealand
BJ	Benin	11	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
ci	Canada	KG	Kyrgystan	RU	Russian Federation
CF.	Central African Republic	KP	Democratic People's Republic	5 0	Sadan
CG	Congo		of Korea	SE.	Sweden
CH	Switzerland	KR	Republic of Korea	5 1	Slovenia
ā	Coe d'Ivoire	KZ	Kazakhstan	8K	Slovakia
OM.	Carneroon	ũ	Liectronein	SN:	Secegal '
O.	China	LK	Sri Lanka	10	Chad
ČS	Czechoslovakia	LU	Luxemboure	TG	Togo
œ	Czech Republic	LV	Lervia	TJ	Tajikistan
DE	Germany	MC	Monaco	ii	Trinidad and Tobaco
DK	Denmark	MD	Republic of Moldova		
				UA	Ukraine
E S	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Moogolia	VN	Viet Nam
G٨	Gabon			-	

- l -

Title: "DEVICE AND METHOD FOR IMPLANTING AN INTRALAMELLAR RING IN THE CORRECTION OF AMETROPIAS"

FIELD OF THE INVENTION AND PRIOR ART

The present invention refers to a tunnel forming device and method for permitting the implantation of an intrlamellar ring in the cornea for the correction of ametropias.

The conception of an intracorneal ring has been developed by various authors. Published papers indicate, as one 10 of the main difficulties, an easy and reliable technique for implanting the ring.

The techniques known so far are the "pocket discision" and the "lamellar keratectomy" by means of microkeratome. Both techniques, however, have a serious draw-15 back, namely the interface formed at the level of the optical zone, which is detrimental to the transparency and the final visual result. Besides, the microkeratome is an expensive apparatus and requires a high degree of training, thus discouraging most surgeons from using it, especially bearing in mind 20 the cost-benefit relationship.

SUMMARY OF THE INVENTION

The device of the present patent application overcomes this problems, enabling the intracorneal ring to be implanted very easily, besides not causing any corneal
25 alteration. This result is achieved by forming a "tunnel" in
the cornea, for implanting the ring, using a symmetrically
balanced cutting arrangement.

According to the present invention a device for per-

mitting the implantation of an intralamellar ring in the cornea for the correction of ametropias, comprises:

- first and second complementary substantially semicircular strip-like cutting members, each of the cutting members having a free leading end and a supported trailing end to
 define a circular annular configuration with the leading end
 of the first cutting member adjacent but spaced from the
 trailing end of the second cutting member and the leading end
 of the second cutting member adjacent but spaced from the
 trailing end of the first cutting member;
 - rigid cutting member support means supporting the trailing ends of the cutting members at diametrically opposite points with respect to the circular configuration; and
- manual operating means associated with the support 15 means and having a periferal circular finger engaging surface of a diameter greater than that of the circular configuration defined by the cutting members.

The use of a device of this nature in which the tunnel forming cutting members are semicircular results in bal20 anced resistance to rotation which permits the elimination of more complicted positioning equipment as is known in the prior art. In one embodiment of this invention, the device defined above also includes a separate base member having an annular peripheral portion supporting a radially inner guide portion defining an inner diameter substantially equal to the outer diameter of the circular configuration defined by the cutting members. Placement of the base member against the cornea permits it to be used to guide the cutter members during the tunnel forming operation.

In spite of the above, however, the device of the invention has proved to be so simple to use that the base member has been found to be unnecessary. In the preferred embodiment of the invention, therefore, the rigid support means comprise a rigid outer ring and first and second L-shaped support elements, each said element having an axially directed leg having its free end fixed to the trailing edge of a respective cutting member and a radially directed leg having its free end fixed to the rigid ring. Preferably, the manual operating means comprises a tubular part arranged to be coaxial

with the rigid outer ring, the ring being mountable over one end of the tubular part.

The device can be manufactured from any rigid, metallic or non-metallic material. Titanium is the preferred material.

In accordance with another aspect of the invention, a method of implanting an interlamellar ring in the cornea for the correction of ametropias, comprises the steps of:

- a) effecting a pair of small radially oriented 10 incisions in the cornea at two diametrically opposite locations with respect to the axis of the iris;
- b) providing a tunnel forming device having two complementary substantially semicircular cutting members in rigid fixed relation with respect to each other, each having a leading end and a trailing end, the leading end of each cutting member being circumferentially spaced from, but adjacent to the trailing end of the other cutting member;
- c) placing the device over the cornea with the leading end of each of the cutting memebers in a respective one of 20 the incisions;
 - d) pressuring the device against the cornea and twisting it through 180° in a first direction so that the leading ends form respective semicircular tunnels in the cornea:
- e) twisting the device through 180° in a second opposite direction and then removing it, whereby the cornea is formed with a circular tunnel having two diametrically opposite entrances through the pair of incisions;
- f) introducing a leading end of an interlamellar 30 ring through one of the incisions and forcing it through the tunnel until it completely fills the tunnel throughout its full extension of 360°.

The interlamellar ring comprises a still further aspect of the invention and is in the form of an extension of a 35 transparent substantially rigid material with a substantially triangular cross section, curved to form a split ring having ends closely adjacent to each other without overlap, at least one of said ends being rounded and provided with a transverse through orifice.

•

BRIEF DESCRIPRION OF THE DRAWINGS

The present invention will be better understood from the following description given merely by wa/ of example, reference being made to the accompanying drawings in which:

Pigure 1 is a perspective view of a tunnel forming device according to a first embodiment of the invention;

Figure 2 illustrates the formation of a small radially directed incision in the cornea;

Pigure 3 is a top view of the cornea with a pair of 10 small radially oriented incisions in diametrically opposite locations with respect to the axis of the iris, prior to a tunnel forming operation;

Figure 4 shows the device of Figure 1 being applied to the cornea to form a tunnel of 360°:

Pigure 5 shows the introduction of an intralamellar ring into a tunnel formed in the cornea by the device illustrated in Figure 1; and

Figure 6 is a perspective view of a second and presently preferred embodiment of a tunnel forming device accord-20 ing to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Pigure 1 is a perspective showing of a first embodiment of a tunnel forming device for permitting the implantation of an intralamellar ring in the cornea for the correction 25 of ametropias. The device illustrated comprises an upper operating part 1 and a lower base or guide part 2.

The operating part 1 comprises a rigid hand held ring 3 with a knurled circular outer surface region 4 for manipulation by the fingers of the surgeon. Internally, the ring 30 is provided with a pair of supports 5 for a pair of tunnel forming cutting members 6 and 7, the supports 5 being joined to the ring 3 at diametrically opposite points. The cutting members 6 and 7 are strip-like blade members of semicircular shape, each having a trailing end attached to one of the supports 5 and a free leading end 8. The leading ends are sharpened in their thickness and rounded in their width. It will be observed that each leading end 8 is circumferentially closely spaced from the trailing end of the other of the cutting members, without any overlap. Consequently, the cutting members 6

and 7 define a circular annular configuration.

It will also be note that each support 5 comprise a first radial strut 9 having fixed thereto an arcuate part 9' substantially in the plane of the ring 3 and, integral with 5 the latter an axially directed part 10 to which is that is connected the trailing edge of the respective cutting member 6 or 7. It is to be noted that parts 10 are parallel to and not coincident with the axis of ring 3. As a consequence, the annular tunnel forming combination comprising the cutting mem10 bers 6 and 7 lies in a plane parallel to that of ring 3 but, in Figure 1, projected a small distance below the ring.

The lower base part 2 comprises a second ring 11 having an outer annular projection 12 to facilitate handling using forceps or the like. Its axially lower (in Pigure 1) end 15 is formed with a series of small axially directed teeth 13 so that, on being pressed downwardly, it will grip against the cornea without risk of rotation. Internally ring 11 supports a ring shaped guide portion 14 having an inner surface with a diameter substantially equal to that of the outer diameter of 20 the annular configuration defined by cutting members 6 and 7.

Figures 2 and 3 illustrate how a pair of small radially oriented incisions 15 may be made in the cornea, at diametrically opposite locations with respect to the axis of the iris, using the leading ends of cutting member 6 or 7.

25 It will be readily understood from Figure 4 in conjunction with the description given with respect to Figure 1, that when base part 2 is pressed against the cornea, the operating part 1 can be fitted over base part 2 with the cutting members guided in guide portion 14. The surgeon will then 30 place the sharpened leading ends 8 of the cutting members the respective incisions 15, apply a firm pressure to the operating part 1 and then rotate it slowly through 180° whereby the cutting members cut respective 180° tunnels in the cornea. On completion of this movement, the rotation (180°) is re-35 versed and the device removed. At this time there is a com-(360°) circular tunnel in the cornea with two diametrically opposite entrances (the incisions 15). The sura pair of forceps a suitable geon selects in intralamellar ring 16 such as that illustrated in Figure 6 and

inserts it into one of the incisions 15. He then forces it through the tunnel until it virtually completes the 360°. it proves difficult by pushing with the forceps for the front end of intralamellar ring 16 to reach the end of the tunnel, 5 it may be reached from the other end, the forceps engaging in the transverse orifice 17 so that the ring may then be pulled to the desired position.

It should be noted that the intralamellar ring 16 is of a triangular cross section, that the ends are rounded to 10 assist entry through the incision 15 and that each end is provided with a transverse orifice 17. Ring 17 may be made of any suitable, preferably transparent material that should be sufficiently rigid to be inserted in the tunnel formed by the device of this invention. Preferably it comprises acrylic or 15 silicon but it may also be made of other inert materials.

Figure 6 shows a second , but presently preferred embodiment of the present invention in the form of a tunnel forming device in which there is no lower base part 2 as is illustrated in Figure 1 with respect to the first embodiment. 20 It has been found that by increasing the axial dimension of the operating part so as to facilitate handling by the surgeon, the base or guide part is no longer necessary and in fact its absence facilitates the operation as there is one less part to be positioned correctly and removed at the end. 25 In the case of the Figure 6 embodiment the cutting members 106 and 107 are identical to members 6 and 7 in the first embodiment and they will therefore not be further described.

The operating device 101 of Figure 6 comprises a tubular hand held member 103 having a knurled circular outer 30 surface portion 104 for manipulation by the fingers of he surgeon. It is to be observed that the surface part 104 is at the top end of the tubular member 103 which extends further down to a lower end where there are diametrically opposite slots In practise, tubular member has a length of about 2 cm 35 and a diameter of about 2 cm in the region of the knurled surface portion 104 which has an axial extension of about 1 cm. The end of member 103 opposite that of the knurled surface is of a reduced diameter of about 1.1 cm.

The device 101 of Figure 6 also comprises a rigid

cutter part 119 in the form of a rigid outer ring 120 having an inner diameter substantially the same as the outer diameter of the lower end of tubular memeber 103 on which the ring is to be received by means of an interference fit. Ring 119 is 5 also provided with a pair of L-shaped support 105. Each first leg 109 is radially inwardly directed, the two legs 109 lying along a diameter of ring 120. The second leg 110 of each support 115 is axially directed and supports at its lower end the trailing end of its respective cutting member 106 or 107.

- When ring 120 is fitted over the lower end of tubular member, the outer ends of legs 109 are accommodated by the slots 118 in the lower end of the tubular member. This relative rotation between the tubular member and the cutter part 119.
- In use, device 101 is of great simplicity although it creates a tunnel in the cornea in a manner identical to that of the Figure 1 embodiment. Having first made the two incisions 15 in the cornea, the cutter part 119 is fitted over the tubular member 103 and the surgeon holds the latter between his fingers, introduces the leading ends of cutter members 106 and 107 in the incisions 15 and pressing the device against the cornea rotates the device, exactly as in the first embodiment but without the presence of the base part 2.

The cutting members of the two embodiments have di-25 mensions suitably within the following ranges:

> Outer diameter: 3.00 to 12.00 mm Unner diameter: 2.00 to 11.,00 mm Width of the strip: 0.50 to 2.00 mm Thickness: 0.10 to 0.30 mm

The hand held member and the cutter part may be made of metallic or non-metallic material. Silver and gold may be used, but the cutting members in particular should be of a relative hardness and titanium is preferred. material. It is to be noted that in both embodiments, the use two symmetrically arranged cutting members makes it extremely easy to produce a circular tunnel in the cornea since the resistance to rotation of the cutter is perfectly balanced.

- 8 -

CLAINS

- 1. A device for permitting the implantation of an intralamellar ring in the cornea for the correction of ametropias, comprising:
- first and second complementary substantially semicircular strip-like cutting members (6,7;106,107), each of
 said cutting members having a free leading end (8) and a supported trailing end to define a circular annular configuration
 with said leading end of said first cutting member (6;106) ad10 jacent but spaced from said trailing end of said second cutting member (7;107) and said leading end of said second
 cutting member (7;107) adjacent but spaced from said trailing
 'end of said first cutting member (6;106);
- rigid cutting member support means (5;105) sup15 porting said trailing ends of said first and second cutting members (6,7;106,107) at diametrically opposite points with respect to said circular configuration; and
- manual operating means (3;103) associated with said support means and having a periferal circular finger en20 gaging surface (4;104) having a diameter greater than that of said circular configuration defined by said cutting members (6,7;106,107).
- 2. A device according to claim 1, in which said manual operating means comprises an annular part (3;103) arranged 25 to be coaxial with said circular configuration, and said support means comprise first and second supports (5,105) respectively connecting said trailing ends of said cutting members (6,7;106,107) to diametrically opposite regions of said annular part.
- 3. A device according to claim 2, in which each of said first and second supports (5;105) comprises a first portion (10;110) substantially parallel to the axis of said annular part and a second portion (9;109) substantially parallel to the plane defined by said cutting members.
- 4. A device according to claim 3, futher comprising a base member (2) having an annular peripheral portion (11)

supporting a radially inner guide portion (14) having an inner diameter substantially equal to the outer diameter of said circular configuration.

- 5. A device according to claim 5, further comprising 5 small teeth (13) distributed around an axial end edge of said annular peripheral portion (11) for preventing rotation of said base member (2) when pressed against the cornea of a patient.
- 6. A device according to claim 1 in which said rigid 10 support means comprise a rigid outer ring (120) and first and second L-shaped support elements (105), each said element having an axially directed leg (110) having its free end fixed to said trailing edge of a respective said cutting member (106,107) and a radially directed leg (109) having its free 15 end fixed to said rigid ring (120).
- 7. A device according to claim 6, in which said manual operating means comprises a tubular part (103) arranged to be coaxial with said rigid outer ring (119), and further including mounting means (103,118) for mounting said ring (119) 20 on said tubular part (103).
- 8. Device according to claim 7, in which said mounting means include a pair of diametrically opposite radial slots (119) in an end of said tubular part (103), said end having an outer diameter substantially the same as the inner diameter of said rigid outer ring (120), said radial slots (118) being dimensioned to accommodate said radially directed legs (109) of said L-shaped support elements (105) when said ring is fitted over said end of said tubular part.
- 9. Method of implanting an interlamellar ring in the 30 cornea for the correction of ametropias, comprising the steps of:
 - a) effecting a pair of small radially oriented incisions in the cornea at two diametrically opposite locations with respect to the axis of the iris;
- b) providing a tunnel forming device having two complementary substantially semicircular cutting members in rigid fixed relation with respect to each other, each having a leading end and a trailing end, the leading end of each of said cutting members being circumferentially spaced from, but adja-

- cent to the trailing end of the other of said cutting members;
- c) placing said device over the cornea with the leading end of each of the cutting memebers in a respective one of said incisions;
- d) pressuring said device against the cornea and twisting it through 180° in a first direction so that said leading ends cut respective semicircular tunnels in the cornea;
- e) twisting said device through 180° in a second op10 posite direction and then removing said device, whereby said
 cornea is formed with a circular tunnel having two
 diametrically opposite entrances through said pair of
 incisions;
- f) introducing a leading end of an interlamellar 15 ring through one of said incisions and forcing it through said tunnel until said ring completely fills said tunnel throughout its full extension of 360°.
- 10. Interlamellar ring comprising an extension of a transparent substantially rigid material with a substantially 20 triangular cross section, curved to form a split ring (16) having ends closely adjacent to each other, at least one of said ends being rounded and provided with a transverse through orifice (17).

F | G. 1

INTERNATIONAL SEARCH REPORT

Application No

PCT/BR 94/00036 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61F9/00 A61F2/14 According to International Patent Classification (IPC) or to both national damification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (damification system followed by de ification symbols) IPC 6 A61F A61B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y WO,A,93 20763 (KERAVISION) 28 October 1993 1,2,4,5, see abstract see page 17, line 25 - page 18, line 1; A 10 figures DATABASE WPI 1,2,4,5, Section PQ, Week 9151, Derwent Publications Ltd., London, GB; Class P. AN 91-37417 & SU,A,1 641 326 (ROST. MED. INST.) see abstract A DE, A, 39 36 811 (K. STORZ) 27 September see column 4, line 36 - line 39; figure 9 Further documents are listed in the continuation of box C. Patent family members are listed in annex. IX I Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but shed to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance avention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone fing date *L* document which may throw doubts on priority claim(t) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. ument referring to an oral discionure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 6. 02. 95 18 January 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5218 Patentiaen 2 NL - 2230 HV Rijswijk Tel. (+ 31-70) 340-200, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Wolf, C

INTERNATIONAL SEARCH REPORT

Enten aal Application No PCT/BR 94/00036

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Giation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	DATABASE WPI Week 9345,	1,10			
	Dervent Publications Ltd., London, GB; AN 93-358291 & SU,A,1 771 730 (ALMA-ATA DOCTORS				
•	TRAINING INST.) see abstract				
A ;	WO,A,88 10096 (KERAVISION) 29 December 1988 see abstract; figures 5-7	1,4,5,7, 10			
A .	EP,A,O 557 128 (THE UNIVERSITY OF MIAMI) 25 August 1993	1,10			
٠	see abstract; figures 14,14 see column 7, line 31 - line 56				
A	DE,A,28 11 869 (V. GEUDER) 27 September 1979 see figure 3	8			
A	DE,A,36 42 521 (J.H. KRUMEICH) 23 June 1988 see column 3, line 13 - line 16; figures	5			
A	WO,A,93 12735 (CHIRON INTRAOPTICS) 8 July 1993 see abstract; figure 2	10			
A .	US,A,4 781 187 (R.S. HERRICK) 1 November 1988 see figures 1-8	10			
P,A ·	WO,A,94 06381 (KERAVISION) 31 March 1994 see page 10, line 15 - line 24; figures 5,6A,9A	10			
-					

Form PCT/ISA/200 (continuation of second theet) (July 1972)

laformation on patent family members

Int. Jonal Application No PCT/BR 94/00036

	· -,	1		
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9320763		AU-B- CA-A- CN-A-	4047193 2117753 1085071	18-11-93 28-10-93 13-04-94
DE-A-3936811	27-09-90	NONE		
WO-A-8810096	29-12-88	AU-A- EP-A- JP-T- KR-B- US-A- US-A- US-A-	1994988 0398874 3500491 9411206 4961744 5188125 5312424	19-01-89 28-11-90 07-02-91 29-11-94 09-10-90 23-02-93 17-05-94
EP-A-0557128	25-08-93	US-A- CA-A- JP-A-	5372580 2089831 6261923	13-12-94 20-08-93 20-09-94
DE-A-2811869	27-09-79	CH-A- JP-A-	636765 54127185	30-06-83 02-10-79
DE-A-3642521	23-06-88	US-A-	4844060	04-07-89
WO-A-9312735	08-07-93	AU-B- CA-A- EP-A-	3417793 2127109 0619724	28-07-93 08-07-93 19-10-94
US-A-4781187	01-11-88	NONE	/== = = = = = = = = = = = = = = = = = =	
WO-A-9406381	31-03-94	US-A- AU-B- CN-A-	5323788 5129893 1087254	28-06-94 12-04-94 01-06-94

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
•	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
•	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.