Nombre y Apellido:

Sección:_____

Cuarto Parcial (Cálculo 1)

- 1. Calcular los límites
 - a) $\lim_{x\to 0} \frac{sen(3x)}{2-2cos(x)}$ (2 pts)
 - b) $\lim_{x\to 0} \frac{\ln(x+1)}{x}$ (2 pts)
 - c) $\lim_{x\to -1} \frac{x+1}{x^3+1}$ (2 pts)
- 2. Hallar la fórmula de la recta tangente a f(x) = sen(x) en el punto $(\frac{\pi}{4}, sen(\frac{\pi}{4}))$. Graficar el sen() y la recta tangente resultante. (3 pts)
- 3. Calcular las siguientes derivadas.
 - a) $(\sqrt[\ln(x)]{-x})'$. (3 pts)
 - b) $\left[\tan\left(\arccos\left(\frac{1}{1+x^2}\right)\right)\right]'$. (3 pts)
 - c) $[sen(\sqrt{x^2}) + \frac{1}{\ln(x+2)}]'$. (3 pts)
- 4. Calcular la derivada usando fórmulas y demuestre al simplificar que

$$\left(\frac{1+\cos(x)}{1-\sin(x)}\right)' = \frac{\cos(x)-\sin(x)}{(1-\sin(x))^2}.$$
 (2 pts)

Departamento de Matemáticas.

FACYT-UC.

Sección:____

Nombre y Apellido:

C.I: _____

Cuarto Parcial (Cálculo 1)

- 1. Calcular los límites
 - a) $\lim_{x\to 0} \frac{sen(3x)}{2-2cos(x)}$ (2 pts)
 - b) $\lim_{x\to 0} \frac{\ln(x+1)}{x}$ (2 pts)
 - c) $\lim_{x\to -1} \frac{x+1}{x^3+1}$ (2 pts)
- 2. Hallar la fórmula de la recta tangente a f(x) = sen(x) en el punto $(\frac{\pi}{4}, sen(\frac{\pi}{4}))$. Graficar el sen() y la recta tangente resultante. (3 pts)
- 3. Calcular las siguientes derivadas.
 - a) $(\sqrt[\ln(x)]{-x})'$. (3 pts)
 - b) $[\tan\left(\arccos\left(\frac{1}{1+x^2}\right)\right)]'$. (3 pts)
 - c) $[sen(\sqrt{x^2}) + \frac{1}{\ln(x+2)}]'$. (3 pts)
- 4. Calcular la derivada usando fórmulas y demuestre al simplificar que

$$\left(\frac{1+\cos(x)}{1-\sin(x)}\right)' = \frac{\cos(x)-\sin(x)}{(1-\sin(x))^2}. \quad (2 \text{ pts})$$