Copyright © 2013, Anima Anandkumar

CS/CNS/EE/IDS 165: Foundations in Machine Learning and Statistical Inference

Introduction to Detection

Anima Anandkumar

Computing and Mathematical Sciences
California Institute of Technology
anima@caltech.edu
Copyright © 2013

Outline

Concepts

- Detection and hypothesis testing.
- Deterministic and randomized detectors.
- Cost and risk.
- Bayesian, minimax, and Neyman-Pearson (NP) detectors.

References

1. H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd Ed., Springer-Verlag, 1994, Chapter II.

The Hypothesis Testing Model

The Parameter Space: Λ The parameter θ is chosen from one of the K disjoint subsets

$$\Lambda = \Lambda_0 \bigcup \cdots \bigcup \Lambda_{K-1}, \quad \Lambda_i \bigcap \Lambda_j = \emptyset$$

Each Λ_i represents hypothesis \mathcal{H}_i . If Λ_i contains a single element θ_i , the hypothesis is simple. Otherwise, it is composite. When the hypotheses are composite, the parameter may be random with (conditional) distribution $\pi_i(\boldsymbol{\theta})$ within each distribution. If in addition we know the prior probability of each hypothesis, we have

$$\boldsymbol{\Theta} \sim \sum_{i=0}^{K-1} \Pr(\boldsymbol{\theta} \in \Lambda_i) \pi_i(\boldsymbol{\theta})$$

The Statistical Model: $(\Gamma, \mathcal{F}, f(\mathbf{y}|\boldsymbol{\theta}))$

For fixed $\theta \in \Lambda$, the observation vector $\mathbf{Y} = (Y_1, \dots, Y_n)$ is distributed according to $\mathbf{Y} \sim f(\mathbf{y}|\boldsymbol{\theta})$.

The Detection Problem

The Detection (Hypothesis Testing) Problem:

Given realization (data) $\mathbf{Y} = \mathbf{y}$, detect to which Λ_i parameter $\boldsymbol{\theta}$ belongs, or equivalently, test hypotheses $\mathcal{H}_i : \mathbf{Y} \sim f(\mathbf{y}|\boldsymbol{\theta}), \quad \boldsymbol{\theta} \in \Lambda_i$.

Detector: A deterministic detector $\delta(\cdot)$ maps observation \mathbf{y} to a hypothesis index in $\{0, \dots, K-1\}$. It partitions the observation space Γ into K disjoint subsets Γ_i and identify Γ_i with hypothesis \mathcal{H}_i . When the hypotheses are simple, $\Lambda_i = \{\theta_i\}, \ \delta: \Lambda \to \{\theta_i\}.$

A randomized detector[†] $\delta(\mathbf{y})$ maps observation \mathbf{y} to a probability distribution $\delta(\mathbf{y}) = [\delta_1(\mathbf{y}), \dots, \delta_K(\mathbf{y})]$ on $\{0, \dots, K-1\}$ where $D \sim \delta(\mathbf{y})$ and

$$\delta_i(\mathbf{y}) = \Pr(D = i | \mathbf{Y} = \mathbf{y})$$

[†]Deterministic detectors are special cases of randomized detectors

Example: Detecting Signals Under GaussianNoise

- The possible signals: $\Lambda = \{\theta_1, \theta_2, \theta_3, \theta_4\} \in \mathcal{R}^2$.
- The observation: $\mathbf{Y} = \boldsymbol{\theta} + \mathbf{N}$, $\mathbf{N} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- The likelihood function: $f(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{2\pi} \exp\{-\frac{||\mathbf{y}-\boldsymbol{\theta}||^2}{2}\}$
- The ML detector is given by

$$\delta(\mathbf{y}) = \arg \max_{\boldsymbol{\theta} \in \Lambda} f(\mathbf{y}|\boldsymbol{\theta}) = \arg \min_{\boldsymbol{\theta} \in \Lambda} ||\boldsymbol{\theta} - \mathbf{y}||$$

An alternative description is the partition of \mathcal{R}^2 by

$$\Gamma_i = \{ \mathbf{y} : ||\mathbf{y} - \theta_i|| < ||\mathbf{y} - \theta_j||, \forall j \neq i. \}$$

The points on the boundary are assigned arbitrarily.

Example: Detecting the Bias of a Coin

ullet The Parameter Space: Λ

$$\Lambda = \{\theta_0\} \bigcup \{\theta_1\}$$

where $\theta_0 = \text{"HT"}, \theta_1 = \text{"HH"}.$

- The Observation space $\Gamma = \{H, T\}$
- The statistical model:

$$f(y|\theta_0) = \begin{cases} 0.5 & y = \mathtt{H} \\ 0.5 & y = \mathtt{T} \end{cases} \qquad f(y|\theta_1) = \begin{cases} 1 & y = \mathtt{H} \\ 0 & y = \mathtt{T} \end{cases}$$

• A randomized strategy for detecting bias may be given by the probability $\delta(y)$ of the detection D=1 (HH), *i.e.*,

$$\delta(y) \stackrel{\Delta}{=} \Pr(D = 1|Y = y)$$

Consider, for example,

$$\delta(y) = \left\{ \begin{array}{ll} 0 & y = \mathtt{T} \\ p & y = \mathtt{H} \end{array} \right.$$

where $p \in [0,1]$ is the probability that θ_1 is chosen when y = H.

• The detection is given by the Bernoulii trial $D \sim \mathcal{B}(\delta(y))$.

Cost and Risk

Cost: Each detection D = d is associated with a cost $C(d, \theta)$. Since D is random, the cost $C_{\delta}(D, \theta)$ is random variable, and it is a function of θ .

Risk: The risk $R_{\theta}(\delta)$ of a detector δ is the average cost (over the observation and the randomized variables). For a deterministic detector

$$R_{\boldsymbol{\theta}}(\delta) = \mathbb{E}(C(D, \boldsymbol{\theta})) = \int f(\mathbf{y}|\boldsymbol{\theta})C(\delta(\mathbf{y}), \boldsymbol{\theta})d\mathbf{y}$$

For a randomized detector, the detector is defined by the PMF $\delta(\mathbf{y}) = [\Pr(D=0|\mathbf{Y}=\mathbf{y}), \cdots, \Pr(D=K-1|\mathbf{Y}=\mathbf{y})]$, and the risk is

$$R_{\boldsymbol{\theta}}(\delta) = \mathbb{E}(C(D, \boldsymbol{\theta})) = \int f(\mathbf{y}|\boldsymbol{\theta}) \sum_{k} \underbrace{\Pr(D = k|\mathbf{Y} = \mathbf{y})}_{\delta_k(\mathbf{y})} C_{\delta}(k, \boldsymbol{\theta}) d\mathbf{y}$$

Example: Consider $\Theta = \{\theta_0, \theta_1\}$. Define the cost by

	$\theta = \theta_0$	$\theta = \theta_1$
$D = \theta_0$	0	1
$D = \theta_1$	1	0

The risk when $\theta = \theta_0$ is given by

$$R_{\theta_0}(\delta) = \mathbb{E}(C(D, \theta_0)) = \int_{\{\mathbf{y}: \delta(\mathbf{y}) \neq 0\}} f(\mathbf{y}|\theta_0) d\mathbf{y} = \Pr(\delta(\mathbf{Y}) \neq \theta_0)$$

which is the probability of detection error (when $\theta = \theta_0$).

Cost and Risk: Example

Example: For the bias detection problem, the cost $C(\hat{\theta}, \theta)$ of detection $D \sim \delta(y)$ is given by

	$\theta = \theta_0$	$\theta = \theta_1$
$D = \theta_0$	0	100
$D = \theta_1$	100	0

For the randomized detector $\hat{\theta} \sim \mathcal{B}(\delta(y))$ defined previously,

$$R_{\theta_0}(\delta) = \Pr(y = T; \theta_0) [C(\theta_0, \theta_0) \Pr(D = \theta_0 | y = T) + C(\theta_1, \theta_0) \Pr(D = \theta_1 | y = T)]$$

$$+ \Pr(y = H; \theta_0) [C(\theta_0, \theta_0) \Pr(D = \theta_0 | y = H) + C(\theta_1, \theta_0) \Pr(D = \theta_1 | y = H)]$$

$$= 50p$$

$$R_{\theta_1}(\delta) = \Pr(y = T; \theta_1)[C(\theta_0, \theta_1) \Pr(D = \theta_0 | y = T) + C(\theta_1, \theta_1) \Pr(D = \theta_1 | y = T)] + \Pr(y = H; \theta_1)[C(\theta_0, \theta_1) \Pr(D = \theta_0 | y = H) + C(\theta_1, \theta_1) \Pr(D = \theta_1 | y = H)]$$

$$= 100(1 - p)$$

The Bayesian Detector

Bayesian Risk and Bayesian Detector

The Bayesian formulation assumes a prior distribution of the parameter $\theta \sim \pi(\theta)$. The Bayesian risk is the risk averaged over priors:

$$R(\delta) = \int \pi(\boldsymbol{\theta}) R_{\boldsymbol{\theta}}(\delta) d\boldsymbol{\theta}$$

Note that the Bayesian risk no longer depends on the parameter. The Bayesian detector minimizes the Bayesian Risk

$$\min_{\delta} \mathbb{E}(R_{\boldsymbol{\theta}}(\delta)) = \min_{\delta} \int \pi(\boldsymbol{\theta}) R_{\boldsymbol{\theta}}(\delta) d\boldsymbol{\theta}$$

Example:

Let $\Theta = \{\theta_0, \theta_1\} \sim \pi(\theta)$. Define the cost by

$$C(\delta(\mathbf{y}), \theta_i) = \begin{cases} 1 & \delta(\mathbf{y}) = i \\ 0 & o.w. \end{cases}$$

The risk $R_{\theta}(\delta)$ is the conditional error probability

$$R_{\theta}(\delta) = E_{\theta}(C(\delta(\mathbf{Y}), \theta)) = \int_{\{\mathbf{y}: \delta(\mathbf{y}) \neq \theta\}} f(\mathbf{y}|\theta) d\mathbf{y} = \Pr(\delta(\mathbf{Y}) \neq \theta|\Theta = \theta)$$

The Bayesian Risk is the (unconditional) error probability

$$R(\delta) = \pi(\theta_0) \Pr(\delta(\mathbf{Y}) \neq \theta_0 | \Theta = \theta_0) + \pi(\theta_1) \Pr(\delta(\mathbf{Y}) \neq \theta_1 | \Theta = \theta_1)$$
$$= \Pr(\delta(\mathbf{Y}) \neq \Theta)$$

Minimizing the Bayesian risk minimizes the detection error probability

The Minimax Detector

The Criterion

Minimize the risk for the worst case:

$$\min_{\boldsymbol{\delta}} \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} R_{\boldsymbol{\theta}}(\boldsymbol{\delta})$$

Example:

For the problem of detecting the bias, the minimax detector is given by

$$\min_{\delta(y)} \max\{R_{\theta_0}(\delta), R_{\theta_1}(\delta)\}$$

This is equivalent to

$$\min_{p} \max\{50p, 100(1-p)\}$$

The optimal p can be computed from

$$50p_{\rm opt} = 100(1 - p_{\rm opt}) \to p_{\rm opt} = \frac{2}{3}$$

The maximum risk is \$100/3.

The Neyman-Pearson Detector

The Criterion

Minimize the risk for one parameter while imposing constraints on the risks for other parameters.

$$\min_{\delta} R_{\theta_K}(\delta)$$
 subject to $R_{\theta_i}(\delta) \leq \alpha_i, i < K$

Example

For the problem of flipping a coin with an unknown bias, the Neyman-Pearson detector can be formulated as

$$\min_{\delta} R_{\theta_1}(\delta)$$
 subject to $R_{\theta_0}(\delta) \leq 10$.

The optimal δ is given by p = 1/5.

A more common formulation is to use probabilities as risks.

$$\min_{\delta} \Pr[D \neq \theta_1; \theta_1]$$
 subject to $\Pr[\hat{\theta} \neq \theta_0; \theta_0] \leq \alpha$

Outline

Main Concepts

- The Bayesian Formulation
- The Bayesian Risk and Conditional Risk.
- Testing Binary Hypothesis.
- Examples

References

- H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd Ed., Springer-Verlag, 1994, Chapter II.
- 2. S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1993, Chapters 3, 6.
- 3. L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley, 1991, Chapter 5.
- H.L. Van Trees, Detection, Estimation, and Modulation Theory, vol. I. Wiley, New York, 1968, Chap. 2.
- 5. E.L. Lehmann, Testing Statistical Hypothesis, Wiley, 1986, Chapter 1.

The Bayesian Formulation

The Prior and the Statistical Model

We assume that the random parameter Θ has a prior distribution $\Theta \sim \pi(\theta)$, which leads to

$$\pi_i \stackrel{\Delta}{=} \Pr(\boldsymbol{\Theta} \in \Lambda_i) = \int_{\Lambda_i} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

The statistical model is defined by

$$f(\mathbf{y}, \boldsymbol{\theta}) = f(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta}).$$

Recall the problem statement: Given Y = y, test K-ary hypothesis

$$\mathcal{H}_i: \mathbf{Y} \sim f(\mathbf{y}; \boldsymbol{\theta}), \quad \boldsymbol{\theta} \in \Lambda_i, \quad i = 0, \dots, K-1$$

The (randomized) detector is defined by

$$\boldsymbol{\delta}(\mathbf{y}) = [\delta_k(\mathbf{y})], \quad \delta_k(\mathbf{y}) \stackrel{\Delta}{=} \Pr(D = k|\mathbf{Y} = \mathbf{y}).$$

From Prior to Posterior Distributions

Testing based on Priors

Suppose that we don't take any measurements. Our best bet would be based on the priors

$$\delta = \arg \max \pi_i, \quad \pi_i = \int_{\Lambda_i} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

Testing based on Posterior Distributions

Once we have Y = y, the odds have changed. The posterior distribution of θ and posterior probabilities of the hypotheses are given by

$$f(\boldsymbol{\theta}|\mathbf{y}) = \frac{\pi(\boldsymbol{\theta})f(\mathbf{y}|\boldsymbol{\theta})}{f(\mathbf{y})}, \quad \Pr(\boldsymbol{\theta} \in \Lambda_i|\mathbf{y}) = \frac{1}{f(\mathbf{y})} \int_{\Lambda_i} \pi(\boldsymbol{\theta})f(\mathbf{y}|\boldsymbol{\theta})d\boldsymbol{\theta}$$

Thus the detector that maximizes the probability of correct detection is given by the maximum a posteriori (MAP) detector:

$$\delta(\mathbf{y}) = \arg \max_{i} \int_{\Lambda_{i}} \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) d\boldsymbol{\theta}$$

For $\Lambda_i = \{\boldsymbol{\theta}_i\}$ with prior $\pi_i = \Pr(\boldsymbol{\Theta} = \theta_i)$,

$$\delta(\mathbf{y}) = \arg\max_{i} \pi_{i} f(\mathbf{y} | \boldsymbol{\theta}_{i})$$

For simple binary hypotheses, we have the likelihood ratio detector

$$\delta(\mathbf{y}) = \begin{cases} 1 & \frac{f(\mathbf{y}|\boldsymbol{\theta}_1)}{f(\mathbf{y}|\boldsymbol{\theta}_0)} > \frac{\pi_0}{\pi_1} \\ 0 & \text{otherwise} \end{cases}$$

Cost, Risk, and Bayesian Detector

Cost Function. Given θ , we define the cost function for each detection D = i by $C(i, \theta)$. The cost is uniform if, for all $\theta \in \Lambda_k$, $C(i, \theta) = C_{ik}$, and the cost function is represented by matrix $\mathbf{C} = [C_{ij}]$.

The Risks. For each fixed parameter $\theta \in \Lambda$, the risk of a detector δ is defined as

$$R_{\boldsymbol{\theta}}(\delta) = \mathbb{E}(C(D, \boldsymbol{\theta})|\boldsymbol{\Theta} = \boldsymbol{\theta}) = \sum_{k} \Pr(D = k)C(k; \boldsymbol{\theta})$$
$$= \sum_{k} C(k, \boldsymbol{\theta}) \int \delta_{k}(\mathbf{y}) f(\mathbf{y}|\boldsymbol{\theta}) d\mathbf{y}$$

The Bayesian risk is the risk averaged over prior $\pi(\theta)$

$$\begin{split} R(\delta) &= \mathbb{E}(R_{\mathbf{\Theta}}(\delta)) = \mathbb{E}(C(D, \mathbf{\Theta})) \\ &= \int f(\mathbf{y}) \mathbb{E}(C(D, \mathbf{\Theta}) | \mathbf{Y} = \mathbf{y}) d\mathbf{y} = \int f(\mathbf{y}) R(\delta | \mathbf{y}) d\mathbf{y} \end{split}$$

where $R(\delta|\mathbf{y}) \stackrel{\Delta}{=} \mathbb{E}(C(\delta(\mathbf{y}), \mathbf{\Theta})|\mathbf{Y} = \mathbf{y})$ is the conditional risk, which is a function of \mathbf{y} .

The Bayesian Detector The Bayesian detector minimizes the Bayesian risk

$$\min_{\delta} R(\delta) \leftrightarrow \min_{\delta} R(\delta|\mathbf{y}) \leftrightarrow \min_{\delta} \mathbb{E}(C(D, \mathbf{\Theta})|\mathbf{Y} = \mathbf{y})$$

where we note that $D \sim \delta(\mathbf{y})$.

Some Heuristics

Consider simple binary hypotheses with $\Theta = \{\theta_0, \theta_1\}$ and with priors $\pi_i \stackrel{\Delta}{=} \Pr(\Theta = \theta_i)$. We consider the following cost function

$$\begin{array}{|c|c|c|c|c|}
\hline
D = 0 & 0 & C_{0,1} \\
D = 1 & C_{1,0} & 0
\end{array}$$

We now argue heuristically the form of the Bayesian detector.

• A sufficient statistic is the likelihood ratio

$$L(\mathbf{y}) \stackrel{\Delta}{=} \frac{f(\mathbf{y}|\theta_1)}{f(\mathbf{y}|\theta_0)}$$

which maps the original n-D statistic to a 1-D statistic.

• It is intuitive that the larger the L(y), the more we should favor θ_1 . This suggests a threshold detector on L(y) with the threshold τ depends on $\{\pi_i, C_{ij}\}$.

Some Heuristics

How to choose threshold τ ?

• The threshold should be affected by the prior π_i . If $\pi_0 = \Pr(\Theta = \theta_0)$ is large, the region for detecting θ_0 should be larger, *i.e.*, τ larger. This should be made relative to π_1 . One possible choice is

$$\tau = \frac{\pi_0}{\pi_1}$$

In particular, such a choice makes sense when $\pi_0 = 0$.

• The threshold should also be affected by costs; if C_{01} is large, then the cost of mistakenly detecting θ_1 is high. Thus the region for detecting θ_1 should be reduced, and τ should be smaller. This again needs to be made relative to the cost C_{10} . One possible choice, incorporating the effect of priors, is

$$\tau = \frac{\pi_0 C_{10}}{\pi_1 C_{01}}$$

The choice above makes sense, but it gives no indication that it is in any way optimal.

The Optimal Bayesian Detector

Theorem

The Bayesian risk is minimized by a deterministic detector

$$\delta_k(\mathbf{y}) = \begin{cases} 1 & k = k_o \\ 0 & o.w. \end{cases} \tag{1}$$

where k_o minimizes the conditional cost

$$k_o = \arg\min_{k} \mathbb{E}(C(k, \boldsymbol{\Theta})|\mathbf{Y} = \mathbf{y})$$

= $\arg\min_{k} \int C(k, \boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$

Remark:

The Bayesian detector minimizes the cost averaged over parameter Θ and conditioned on data y.

Proof: We fix y and we need to find the optimal

$$\delta_k(\mathbf{y}) \stackrel{\Delta}{=} \Pr(D = k | \mathbf{Y} = \mathbf{y}), \quad k = 0, \dots, K - 1$$

that minimizes

$$R(\delta|\mathbf{y}) \stackrel{\Delta}{=} \mathbb{E}(C(D, \mathbf{\Theta})|\mathbf{Y} = \mathbf{y})$$

$$= \mathbb{E}(\mathbb{E}(C(D, \mathbf{\Theta})|D, \mathbf{Y} = \mathbf{y}))$$

$$= \sum_{k} \Pr(D = k|\mathbf{Y} = \mathbf{y})\mathbb{E}(C(k, \mathbf{\Theta})|D = k, \mathbf{Y} = \mathbf{y}))$$

$$= \sum_{k} \delta_{k}(\mathbf{y})\mathbb{E}(C(k, \mathbf{\Theta})|\mathbf{Y} = \mathbf{y})) = \sum_{k} \delta_{k}(\mathbf{y})c_{k}(\mathbf{y})$$

where the last equality comes from the fact that $\Theta \to \mathbf{Y} \to D$ forms a Markov chain, *i.e.*, conditioned on Y, Θ and D are independent.

We can formulate this optimization as a linear programming problem:

$$\begin{array}{ll} \text{minimize} & \displaystyle\sum_{k=0}^{K-1} \delta_k(\mathbf{y}) c_k(\mathbf{y}) \\ \\ \text{subject to} & \displaystyle\sum_{k=0}^{K-1} \delta_k(\mathbf{y}) = 1, \quad \delta_k(\mathbf{y}) \geq 0, \quad \forall k \end{array}$$

From the Fundamental Theorem of Linear Programming^{\dagger}, The solution to this optimization is given in (1).

The linear programming problem can be illustrated geometrically. The minimization corresponds to moving the plane defined by $\sum_k c_k(\mathbf{y}) \delta_k(\mathbf{y}) = \gamma \text{ up from } \gamma = 0 \text{ until it touches first the the}$ polyhedron defined by $\sum_k \delta_k(\mathbf{y}) = 1.$ The optimal $\delta_k(\mathbf{y})$ must be one of the extreme points of the polyhedron.

[†]D. G. Luenberger, *Linear and Nonlinear Programming*, 2nd Ed., Addison-Wesley, 1989.

Simple Binary Hypothesis: Detector

For simple hypothesis $\Lambda = \{\theta_0, \theta_1\}$ with priors $\pi_i = \Pr(\theta = \theta_i)$ and cost function $C_{ij} \stackrel{\Delta}{=} C(i, \theta_j)$, the conditional costs are given by

$$\mathbb{E}(C(1,\theta)|\mathbf{Y}=\mathbf{y}) = \frac{1}{f(\mathbf{y})}(C_{10}f(\mathbf{y}|\theta_0)\pi_0 + C_{11}f(\mathbf{y}|\theta_1)\pi_1)$$

$$\mathbb{E}(C(0,\theta)|\mathbf{Y}=\mathbf{y}) = \frac{1}{f(\mathbf{y})}(C_{00}f(\mathbf{y}|\theta_0)\pi_0 + C_{01}f(\mathbf{y}|\theta_1)\pi_1)$$

Hence $\delta(\mathbf{y}) = 1$ if

$$f(\mathbf{y}|\theta_1)\pi_1(C_{01}-C_{11}) \ge f(\mathbf{y}|\theta_0)\pi_0(C_{10}-C_{00})$$

Without loss of generality, assume $C_{ij} > C_{ii}$ for all i, j. We have

$$\delta(\mathbf{y}) = 1$$
 if $\frac{f(\mathbf{y}|\theta_1)}{f(\mathbf{y}|\theta_0)} \ge \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})} \stackrel{\Delta}{=} \tau_B$

Remarks

- The detector is given by the likelihood ratio (sufficient statistic for θ).
- If θ_0 is more likely, $\pi(\theta_0)$ is bigger and the threshold for detecting θ_1 is higher.
- When $C_{ii} = 0$, bigger the C_{10} , higher the threshold of detecting θ_1 .
- When the two hypothesis are equally likely, and $C_{i1} = C_{i0}$, $\tau_B = 1$, which implies that the detector picks the hypothesis that is more likely.

Simple Binary Hypothesis: The Risk

The Decision Region

The optimal detector partitions the observation space into Γ_0 and Γ_1 according to

$$\Gamma_1 \stackrel{\Delta}{=} \{ \mathbf{y} : f(y|\theta_1) \ge \tau_B f(y|\theta_0) \}, \Gamma_0 = \Gamma_1^c$$

The Bayesian Risk

The Bayesian risk of the optimal detector is given by

$$R(\delta) = \pi_0 \left[C_{00} \int_{\Gamma_0} f(\mathbf{y}|\theta_0) d\mathbf{y} + C_{10} \int_{\Gamma_1} f(\mathbf{y}|\theta_0) d\mathbf{y} \right] + \pi_1 \left[C_{01} \int_{\Gamma_0} f(\mathbf{y}|\theta_1) d\mathbf{y} + C_{11} \int_{\Gamma_0} f(\mathbf{y}|\theta_1) d\mathbf{y} \right]$$

A Special Cost

For the 0-1 cost, *i.e.*, $C_{ij} = 1$ when $i \neq j$ and $C_{ii} = 0$, we have

$$R(\delta) = \pi_0 \int_{\Gamma_1} f(\mathbf{y}|\theta_0) d\mathbf{y} + \pi_1 \int_{\Gamma_0} f(\mathbf{y}|\theta_1) d\mathbf{y}$$

= Pr(detection error)

Example: Detection of 2 Signals

Signal in Gaussian Noise

Consider the transmission of one of the two signal θ_0 and θ_1 over a Gaussian channel

$$Y = \Theta + N, \Theta \in \{\theta_0, \theta_1\}, N \sim \mathcal{N}(0, \sigma^2).$$

The prior probability is given by $\pi_i = \Pr(\Theta = \theta_i)$.

The simple binary hypothesis can be expressed as

$$\mathcal{H}_0: Y \sim \mathcal{N}(\theta_0, \sigma^2),$$

$$\mathcal{H}_1: Y \sim \mathcal{N}(\theta_1, \sigma^2).$$

Cost and Risk

Suppose that we have the cost, i.e.,

$$C_{ij} = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

The Bayesian risk for this cost is the error probability.

The Likelihood Functions

$$f(y|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\{-\frac{(y-\theta_i)^2}{2\sigma^2}\}.$$

Decision Region

The observation space is partitioned into Γ_0 and Γ_1 where

$$\Gamma_{1} \stackrel{\triangle}{=} \{ y : \frac{f(y|\theta_{1})}{f(y|\theta_{0})} \ge \frac{\pi_{0}}{\pi_{1}} \}.$$

$$= \{ y : \ln f(y|\theta_{1}) - \ln f(y|\theta_{1}) \ge \ln \frac{\pi_{0}}{\pi_{1}} \}$$

$$= \{ y : y \ge \frac{\theta_{0} + \theta_{1}}{2} + \frac{\sigma^{2}}{\theta_{1} - \theta_{0}} \ln \frac{\pi_{0}}{\pi_{1}} \stackrel{\triangle}{=} \gamma \}$$

Remarks

- When $\pi_0 = \pi_1$, the decision boundary γ lies between the means of the two density functions. The boundary moves with π_i to favor the more likely hypothesis.
- For really noisy data, $\sigma \to \infty$, the detection goes with the prior. On the other hand, for really clean data, the detection ignores the prior.

Error Probability

The Baysian risk (the error probability) is given by

$$R(\delta) = \pi_0 Q(\frac{\gamma - \theta_0}{\sigma}) + \pi_1 Q(\frac{\theta_1 - \gamma}{\sigma})$$

where the Q-function is the tail probability

$$Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

Remarks

The error probability does not depend on the actual locations of θ_i ; it depends on their relative distance $\theta_1 - \theta_0$:

$$\frac{\gamma - \theta_0}{\sigma} = \frac{\theta_1 + \theta_0}{2\sigma} + \frac{\sigma}{\theta_1 - \theta_0} \ln \frac{\pi_0}{\pi_1}$$
$$\frac{\theta_1 - \gamma}{\sigma} = \frac{\theta_1 + \theta_0}{2\sigma} - \frac{\sigma}{\theta_1 - \theta_0} \ln \frac{\pi_0}{\pi_1}$$

When the two hypotheses are equally likely, we have

$$\gamma = \frac{\theta_1 + \theta_0}{2}, R(\delta) = Q(\frac{\theta_1 - \theta_0}{2\sigma})$$

Example: Composite Binary Hypothesis

Consider the following binary hypothesis:

$$\mathcal{H}_0: Y = \Theta + N, \Theta \in \Lambda_0 = \{\theta_{00}, \theta_{01}\}\$$

$$\mathcal{H}_1: \quad y = \Theta + N, \Theta \in \Lambda_1 = \{\theta_{10}, \theta_{11}\}$$

where $N \sim \mathcal{N}(0, \sigma^2)$. Suppose also that $\pi_{ij} \stackrel{\Delta}{=} \Pr(\Theta = \theta_{ij}) = \frac{1}{4}$, and the cost is uniform, *i.e.*,

$$C_{i,\theta} = \begin{cases} 0 & \theta \in \Lambda_i, \\ 1 & \text{otherwise} \end{cases}$$

The optimal detector is given by

$$\delta(y) = \begin{cases} 0 & \sum_{i,j} C(0,\theta_{ij}) f(\mathbf{y}|\theta_{ij}) \pi_{ij} < \sum_{i,j} C(1,\theta_{ij}) f(\mathbf{y}|\theta_{ij}) \pi_{ij} \\ 1 & \sum_{i,j} C(1,\theta_{ij}) f(\mathbf{y}|\theta_{ij}) \pi_{ij} < \sum_{i,j} C(0,\theta_{ij}) f(\mathbf{y}|\theta_{ij}) \pi_{ij} \end{cases}$$

Substituting π_{ij} and $C(i,\theta)$, the detector is given by the test the ratio

$$L(y) = \frac{\pi_{10}f(y|\theta_{10}) + \pi_{11}f(y|\theta_{11})}{\pi_{00}f(y|\theta_{00}) + \pi_{01}f(y|\theta_{01})} = \frac{e^{-\frac{(y-\theta_{10})^2}{2\sigma^2}} + e^{-\frac{(y-\theta_{11})^2}{2\sigma^2}}}{e^{-\frac{(y-\theta_{00})^2}{2\sigma^2}} + e^{-\frac{(y-\theta_{01})^2}{2\sigma^2}}}$$

Suppose that $\theta_{00}=-\theta_{11}$ and $\theta_{01}=-\theta_{10}$. Intuition suggests that

$$\Gamma_0 = \{y : y < 0\}, \quad \Gamma_1 = \{y : y \ge 0\},$$

and it is true.

Example: Detecting Bias

Recall the the coin tossing problem $Y \sim p(y; \theta)$ with binary hypotheses

$$\mathcal{H}_0: f(y|\theta_0) = \left\{ \begin{array}{ll} 0.5 & y = \mathsf{H} \\ 0.5 & y = \mathsf{T} \end{array} \right. \quad \text{vs.} \\ \mathcal{H}_1: p(y;\theta_1) = \left\{ \begin{array}{ll} 1 & y = \mathsf{H} \\ 0 & y = \mathsf{T} \end{array} \right.$$

The cost is given by $C_{ii} \stackrel{\Delta}{=} C(i, \theta_i) = 0$ and $C_{ij} \stackrel{\Delta}{=} C(i, \theta_j) = 100$ for $j \neq i$. The Bayesian detector is based on testing the likelihood ratio against the threshold

$$\tau_B = \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})} = \frac{\pi_0}{\pi_1}.$$

Because we have discrete random variables, we need to do this test individually for y=T and y=H.

$$y = \mathsf{T} \quad \frac{f(\mathsf{T}|\theta_1)}{f(\mathsf{T}|\theta_0)} = 0 \le \tau_B \to \delta(\mathsf{T}) = 0.$$
$$y = \mathsf{H} \quad \frac{f(\mathsf{H}|\theta_1)}{f(\mathsf{H}|\theta_0)} = 2 \stackrel{?}{>} \tau_B$$

As expected, the Bayesian detector depends on the prior π_0 .

$$\delta_B(\mathsf{T}) = 0, \quad \delta_B(\mathsf{H}) = \begin{cases} 0 & \pi_0 \ge \frac{2}{3} \\ 1 & \pi_0 < \frac{2}{3} \end{cases}$$

The optimal Bayesian detector is given by

$$R(\delta_B) = E\{\delta(Y)C_{1,\theta} + (1 - \delta(Y))C_{0,\theta}\}$$

$$= \pi_0 P(\delta_B = 1|\theta_0) \times 100 + \pi_1 P(\delta_B = 0|\theta_1) \times 100$$

$$= \begin{cases} 100\pi_1 & \pi_0 \ge \frac{2}{3} \\ 50\pi_0 & \pi_0 < \frac{2}{3} \end{cases} \to \max_{\pi_0} R(\delta_B) = 100/3$$

Summary

Assumption: $\Theta \sim \pi(\theta)$

Key Steps: Minimizing the conditional cost:

$$d = \arg\min_{i} \mathbb{E}(C(i, \boldsymbol{\theta})|\mathbf{y})$$

where the average is taken over Θ using conditional distribution $f(\theta|\mathbf{y})$. For simple binary hypothesis

$$\frac{f(\mathbf{y}|\theta_1)}{f(\mathbf{y}|\theta_0)} < \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})}$$

Pros and Cons:

- The knowledge of $\pi(\theta)$ allows a simple tradeoff among risks $R_{\theta}(\delta)$.
- Bayesian detectors are widely used in digital communications where one can design the prior of the hypotheses (messages).
- Due to their simplicity, Bayesian detectors often serve as a mathematical device to obtain other results when the prior is unknown.
- The prior may not be available in practice, which limits the application of Bayesian detectors.
- If the prior is not accurate, the performance is not robust.

Notations

Problem Formulation

 Λ , Λ_i Parameter space. $\Lambda = \bigcup \Lambda_i$

 $\pi(\boldsymbol{\theta})$, π_i Prior probability density or mass function. $\pi_i = \Pr(\Theta \in \Lambda_i)$

 \mathcal{H}_i Hypothesis i.

 $f(\mathbf{y}|\theta)$ Conditional PDF/PMF. Likelihood function.

 $f(y|\mathcal{H}_i)$, $f_i(y)$ Conditional PDF/PMF. Likelihood function under \mathcal{H}_i

 $L(\mathbf{y}; \theta_i, \theta_j)$ Likelihood ratio $L(\mathbf{y}; \theta_i, \theta_j) = \frac{f(\mathbf{y}|\theta_i)}{f(\mathbf{y}|\theta_j)}$

 $l(\mathbf{y}; \theta_i, \theta_j)$ Log-likelihood ratio $l(\mathbf{y}; \theta_i, \theta_j) = \log L(\mathbf{y}; \theta_i, \theta_j)$

 Γ Observation space.

 Γ_i Decision region for \mathcal{H}_i .

Detector

 $\delta(\mathbf{y})$ Decision function (probability vector) that maps \mathbf{y} to $(\Pr(D = i | \mathbf{Y} = \mathbf{y}))$. For deterministic detectors, $\delta(\mathbf{y} \text{ maps } \mathbf{y} \text{ directly to } \mathcal{H}_i$.

 $\delta_{B,\pi}$ the Bayesian detector for prior π .

Costs and Risks

 $C(i, \theta)$ Cost of detection i associated with parameter θ .

 C_{ij} Uniform cost: $C_{ij} = C(i, \theta), \theta \in \Lambda_j$.

 $r(\mathbf{y})$ Likelihood ratio: $l(\mathbf{y}) = \frac{p(\mathbf{y}; \theta_1)}{p(\mathbf{y}; \theta_0)}$

 $R_{\boldsymbol{\theta}}(\delta)$ Risk associated with parameter θ : $R_{\theta}(\delta) = E\{\delta(\mathbf{y})C(1,\theta) + (1-\delta(\mathbf{y}))C(0,\theta)\}$

 $R(\delta)$ Bayesian risk of δ : $R(\delta) = \int p(\theta) R_{\theta}(\delta)$.

 $R(\delta|\mathbf{y})$ Conditional Bayesian risk: $R(\delta|\mathbf{y}) = E\{\delta(\mathbf{y})C(1,\theta) + (1-\delta(\mathbf{y}))C(0,\theta)|\mathbf{y}\}$

 $V(\pi_0)$ The minimum bayesian risk: $V(\pi_0) = \pi_0 R_{\theta_0}(\delta_{B,\pi_0}) + (1-\pi_0) R_{\theta_1}(\delta_{B,\pi_0})$