

As a buyer, how can I quantify that my purchase is reasonable?

Data-Driven Approach:

 Linear Regression Model to develop quantifable way to benchmark prices

Using a few typical features of a car

Login | Sign up

Q

₼

New Cars

Used Cars

Sell My Car

Directory

Products

Insurance

Articles

Forum

Resources

CONNECTING CAR BUYERS & SELLERS.

We'll handle your loans, insurance & other paperwork for FREE.

Find out more

Chery T11 2.0A 5DR

\$9,800

N.A

28-Apr-2010

1,971 cc

150,000 km

SUV

Available

Full Loan Available, Budget SUV In The Market, Super Cheap, Point A To Point B Car, Please Call Our Sales To View And Test Drive The Car.

1axis

A Posted: 20 Oct 2010 Trace: 2010 Chang Till 2010 shore till Chang Till shore till Chang Till till Used Chang

CONNECTING CAR BUYERS & SELLERS.

We'll handle your loans, insurance & other paperwork for FREE.

Find out more

CONNECTING CAR BUYERS & SELLERS.

We'll handle your loans, insurance & other paperwork for FREE.

Find out more

View All

Advanced

Search

℧ Search

Data Cleaning

Rows:

• 2584

Columns:

• 17

Target Variable:

Price

Predictor Variables:

• 16 variables

Feature Selection

Correlation Heat Map

- Correlation to price
- Predictors correlate to each other

Feature Selection

Correlation Heat Map

- Some predictor various poor fit with price
- Predictor variables with high correlation

Data Used: After Dropping Features

Target Variable:

Price

Predictor Variables:

- Mileage (km)
- Engine Capacity (CC)
- Car Age
- OMV
- COE Price
- Days of COE left
- Curb Weight (kg)
- # of Owners
- Transmission

Data Used: Finalized Features

Target Variable:

• Log Price

Predictor Variables:

- Log Mileage (km)
- Engine Capacity (CC)
- Car Age
- OMV
- COE Price
- Days of COE left
- Curb Weight (kg)
- # of Owners
- Transmission

Designing the Regression Model for Data

- Simple Linear Regression
- Lasso
- Ridge
- ElasticNet
- Polynomial Regression

Train / Cross-Validate each Model

Train Models on 60% Data

- Simple Linear Regression
- Lasso
- Ridge
- ElasticNet
- Polynomial Regression

KFold

- 5

Rigorous Model
Selection Method

60% Train

20% Validation

R2 Scores over 5 Validations

#	Model	R2 Score			
1	Simple Linear Regression	0.913 +- 0.016			
2	Lasso	0.913 +- 0.015			
3	Ridge	0.913 +- 0.015			
4	ElasticNet	0.913 +- 0.015			
5	Polynomial Regression	0.829 +- 0.105			

60% Train

20% Validation

Model Selection

60% Train

20% Validation

Model Selection

Easy to use

No need for hyperparameters

20% Validation

Train / Test Simple Linear Regression

Re-Train Simple Linear Regression Model

80% Train

Train / Test Simple Linear Regression

Test Simple Linear Regression Model

80% Train

Test Results

R2 Score: 0.913

80% Train

Test Results

91%

of data variation explained by model

9%

Possibly due to condition of car that could not be obtained during web-scraping

Using the Model: Model Coefficient

Feature	Coefficient Value	Feature Effect	Price Effect		
Car Age	-0.06	Every unit <i>increase</i> in Car Age	6% <i>decrease</i> in price		
Engine Capacity (CC)	0.0001	Every unit <i>increase</i> in CC	0.01% <i>increase</i> in price		

Using the Model: User Value

Use **typical**, easily accessible features of cars

Obtain **benchmark** of base car pricing

Cross-check with used car listing price and car brands

Future Ideas

Build on current features

 Model also able to predict how much a used car would cost given a brand

More customization for the user

Questions?

Appendix

Model Summary

OLS Regression Results

D 14 - 11	PRIOR LOG		0.000
Dep. Variable:	PRICE_LOG	R-squared:	0.922
Model:	OLS	Adj. R-squared:	0.921
Method:	Least Squares	F-statistic:	1731.
Date:	Wed, 30 Oct 2019	Prob (F-statistic):	0.00
Time:	01:46:15	Log-Likelihood:	716.49
No. Observations:	2067	AIC:	-1403.
Df Residuals:	2052	BIC:	-1318.
Df Model:	14		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	9.6648	0.050	194.726	0.000	9.567	9.762
MILEAGE_LOG	-5.811e-07	1.71e-07	-3.398	0.001	-9.16e-07	-2.46e-07
COE_FROM_SCRAPE_DATE	4.446e-06	2.98e-07	14.907	0.000	3.86e-06	5.03e-06
DAYS_OF_COE_LEFT	0.0003	6.56e-06	43.785	0.000	0.000	0.000
CAR_AGE	-0.0588	0.003	-22.568	0.000	-0.064	-0.054
OMV	5.969e-06	2.49e-07	23.978	0.000	5.48e-06	6.46e-06
ENGINE_CAPACITY_CC	0.0001	1.16e-05	10.458	0.000	9.87e-05	0.000
CURB_WEIGHT_KG	0.0005	2.35e-05	19.555	0.000	0.000	0.001
NO_OF_OWNERS	-0.0139	0.006	-2.514	0.012	-0.025	-0.003
TRANSMISSION	-0.1328	0.033	-4.060	0.000	-0.197	-0.069

 Omnibus:
 404.838
 Durbin-Watson:
 1.950

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 6823.058

 Skew:
 -0.429
 Prob(JB):
 0.00

 Kurtosis:
 11.859
 Cond. No.
 inf

Model Scores

• MAE: 0.123

• MSE: 0.0285

• RMSE: 0.169

• R2 Score: 0.913

Pairplot

Residual Plot

QQ Plot

