URI Online Judge I 1809

Agentes Secretos

Por Desconhecido Brasil

Timelimit: 0

Todas as pessoas que já assistiram a filmes ou seriados de espionagem como *007*, *Missão Impossível* ou *Hawai 5-0*, sabem que alguns países do mundo mantém grupos de agentes secretos infiltrados em governos e organizações do Oriente Médio, América do Sul e Leste Europeu.

Um dado serviço de inteligência possui n agentes espalhados em um país não muito amigável. Cada agente conhece outros agentes e tem procedimentos específicos para arranjar um encontro secreto com cada um deles. Normalmente são trocadas mensagens codificadas para marcar tais encontros. Dados dois agentes que se conhecem i e j, existe uma certa probabilidade p_{ij} de que uma mensagem trocada entre eles seja interceptada por pessoas hostis.

De tempos em tempos, o líder do serviço de inteligência precisa difundir informações confidenciais a todos os seus agentes em campo. Para tanto, ele utiliza-se do mecanismo de troca de mensagens dos agentes, isto é, ele contacta alguns dos agentes que conhece e estes se encarregam de propagar as informações de modo que a probabilidade de interceptação P seja mínima. Como você pode perceber, o serviço é tão secreto que nem o líder conhece todos os agentes subordinados a ele. Sua tarefa neste problema é construir um programa que calcule P.

Entrada

Seu programa deverá estar preparado para trabalhar sobre diversos cenários, isto é, diversas difusões de informações confidenciais em diversos países. Cada cenário é descrito da forma que segue. Na primeira linha são especificados o número de agentes no país, $0 < n \le 100$, incluindo o líder do serviço de inteligência, e o número de pares de agentes que estão no país e se conhecem, $0 \le m \le 4950$. Nas m linhas seguintes existem dois inteiros i, j e um racional p_{ij} , com $1 \le i$, $j \le n$ e $0 \le p_{ij} \le 1$. Cada linha significa que os agentes i e j se conhecem e que uma mensagem trocada entre eles é interceptada com probabilidade p_{ij} . Um valor igual a zero para n indica o fim dos cenários. Você pode supor que sempre será possível difundir as informações confidenciais entre todos os agentes.

Saída

Para cada cenário da entrada, seu programa deve imprimir o texto Cenario x, probabilidade de interceptacao = P, onde **x** é a posição do respectivo cenário no arquivo de entrada (numerado a partir de 1) e **P** a probabilidade da informação a ser difundida ser interceptada. Tal probabilidade deve ser impressa com três casas decimais. Você deve deixar uma linha em branco entre cada cenário.

Exemplo de Entrada	Exemplo de Saída
4 6 1 2 0.3 1 3 0.1	Cenario 1, probabilidade de interceptação = 0.433
1 4 0.5 2 3 0.9 2 4 0.1 3 4 0.5 3 2 1 2 1.0	Cenario 2, probabilidade de interceptacao = 1.000
2 3 1.0 0 0	

