ЛАБОРАТОРНАЯ РАБОТА №5-NI

ИССЛЕДОВАНИЕ R-L-С ЦЕПЕЙ ЭЛЕКТРИЧЕСКОГО ТОКА С ПОМОЩЬЮ УСТРОЙСТВА СБОРА ДАННЫХ NI myDAQ

Поляков Даниил, 19.Б23-фз

Цель работы: ознакомиться с измерениями токов, напряжений, АЧХ и ФЧХ с помощью виртуальных приборов NI ELVISmx на примере RC-, RL- и RLC-цепей.

Оборудование

- Персональный компьютер с ПО NI ELVISmx;
- Наборная панель для сбора цепей и подключения к компьютеру;
- Генератор переменного напряжения S12;
- Набор резисторов, конденсаторов, катушек, проводов.

Расчётные формулы

• Экспериментальный и теоретический модуль импеданса конденсатора:

$$Z_{C \text{ эксn}} = \frac{U_C}{2\sqrt{2}I}$$
$$Z_{C \text{ meop}} = \frac{1}{2\pi f C}$$

 U_{C} — размах напряжения на конденсаторе; I — действующее значение переменного тока через конденсатор;

f – частота переменного тока через конденсатор; C – ёмкость конденсатора.

• Сдвиг фаз между током и напряжением в RC-цепи:

$$\tan(\phi) = \frac{Z_C}{R}$$

 Z_{C} — модуль импеданса конденсатора; R — сопротивление резистора.

$$\phi = \arctan\left(\frac{Z_C}{R}\right)$$

• Граничная частота RC-цепи:

$$f_{zp} = \frac{1}{2\pi RC}$$

R — сопротивление резистора;

C — ёмкость конденсатора.

• Параметры интегрирующей RC-цепи:

$$K = \frac{1}{\sqrt{1 + (2\pi f R C)^2}}$$

K – линейный коэффициент передачи;

L – логарифмический коэффициент передачи;

L=20 lg(K)

 ϕ — сдвиг фазы выходного сигнала;

 $\phi = -\arctan(2\pi f RC)$

f – частота переменного тока в цепи;

R – сопротивление резистора;

C – ёмкость конденсатора.

• Параметры дифференцирующей RC-цепи:

$$K = \frac{2\pi f RC}{\sqrt{1 + (2\pi f RC)^2}}$$

$$L=20 lg(K)$$

$$\phi = \arctan\left(\frac{1}{2\pi f RC}\right)$$

K – линейный коэффициент передачи;

L – логарифмический коэффициент передачи;

 ϕ — сдвиг фазы выходного сигнала;

f – частота переменного тока в цепи;

R — сопротивление резистора;

C — ёмкость конденсатора.

• Граничная частота RL-цепи:

$$f_{sp} = \frac{R+r}{2\pi L}$$

R — сопротивление резистора;

r — активное сопротивление катушки;

L – индуктивность катушки.

• Экспериментальный модуль импеданса катушки:

$$Z_L = \frac{U_L}{2\sqrt{2}I}$$

 $U_{\rm L}$ – размах напряжения на катушке;

I – действующее значение переменного тока через катушку.

• Экспериментальное и теоретическое реактивное сопротивление катушки:

$$X_{L \text{ \tiny SKCN}} = \sqrt{Z_L^2 - r^2}$$

$$X_{Lmeon} = 2 \pi f L$$

 Z_{L} – экспериментальный модуль импеданса

катушки;

r — активное сопротивление катушки;

f – частота переменного тока через катушку;

L – индуктивность катушки.

• Сдвиг фаз между током и напряжением в RL-цепи:

$$\tan(\phi) = \frac{X_L}{R+r}$$

$$\phi = \arctan\left(\frac{X_L}{R+r}\right)$$

 X_L – реактивное сопротивление катушки;

r — активное сопротивление катушки;

R — сопротивление резистора.

• Резонансная частота RLC-цепи:

$$f_p = \frac{1}{2 \pi \sqrt{LC}}$$

L – индуктивность катушки;

C – ёмкость конденсатора.

• Сдвиг фаз между током и напряжением в RLC-цепи:

$$\tan(\phi) = \frac{X_L - Z_C}{R + r}$$

$$\phi = \arctan\left(\frac{X_L - Z_C}{R + r}\right)$$

 Z_C – модуль импеданса конденсатора;

 X_L — реактивное сопротивление катушки;

r – активное сопротивление катушки;

R — сопротивление резистора.

1. Исследование последовательной RC-цепи

1.1. Исследование распределения токов и напряжений в последовательной RCцепи

Установленный размах входного напряжения $U_0 = 11.900~B$. Размах напряжения на резисторе U_R и конденсаторе U_C измерялся с помощью осциллографа, действующее значение переменного тока в цепи I – с помощью DMM.

1.1.1. Исследование последовательной RC-цепи на одной частоте

Таблица 1.1.1. Последовательная RC-цепь с различными конденсаторами

Пар	аметры і	цепи	Измере	енные зн	ачения	Расчётные значения			ІЯ
f, Гц	R, Ом	С, мкФ	U_R , B	U_C , B	І, мА	$Z_{C {\scriptscriptstyle {\it ЭКСП}}}, \ O$ м	$Z_{C\ meop}, \ O_{M}$	$tan(\phi)$	ϕ , $^{\circ}$
		0.01	0.2041	11.893	1.28	3285	3158	69.89	89.18
		0.2	3.298	11.409	23.6	170.9	157.9	3.637	74.62
5039	47	0.47	6.942	9.613	50.5	67.30	67.20	1.432	55.07
		0.82	9.339	7.301	68.1	37.90	38.52	0.8065	38.89
		1	9.970	6.419	72.6	31.26	31.58	0.6651	33.63

Сдвиг фаз между током и напряжением ϕ рассчитан по экспериментальным значениям импеданса. Он уменьшается с увеличением ёмкости конденсатора и не превышает 90°.

График 1.1.1.1. Зависимость модуля импеданса конденсатора от ёмкости

График 1.1.1.2. Зависимость модуля импеданса конденсатора от величины, обратной ёмкости

Коэффициент наклона теоретической кривой:

$$A = 31.58 \ Om \cdot MK\Phi$$

Экспериментальные точки были аппроксимированы прямой, выходящей из начала координат. Коэффициент наклона прямой найден по методу наименьших квадратов с помощью ПО MATLAB:

$$A = 32.85 \pm 0.11 \ O_{M \cdot MK} \Phi$$

Экспериментально найденный коэффициент наклона отличается от теоретического на 4%. Это отклонение сопоставимо с погрешностью указанных на конденсаторах ёмкостей.

1.1.2. Исследование последовательной RC-цепи при разных частотах

Таблица 1.1.2. Последовательная RC-цепь на различных частотах

Пара	аметры і	цепи	Измеренные значения			Расчётные значения			
С, мкФ	R, Ом	f, Гц	U_{R} , B	U_C , B	І, мА	$Z_{C {\scriptscriptstyle {\it ЭКСП}}}, \ O$ м	$Z_{C\ meop}, \ O_{M}$	$tan(\phi)$	φ, °
		99.965	0.4167	11.893	2.70	1557	1592	33.13	88.27
		200.943	0.8187	11.868	5.44	771.3	792.0	16.41	86.51
		399.890	1.604	11.785	10.74	388.0	398.0	8.254	83.09
1	47	801.776	2.871	11.535	20.9	195.1	198.5	4.152	76.46
		1520	5.056	10.747	36.9	103.0	104.7	2.191	65.47
		2999	8.062	8.704	58.9	52.25	53.07	1.112	48.03
		5958	10.415	5.677	75.8	26.48	26.71	0.5634	29.40

Сдвиг фаз между током и напряжением ϕ рассчитан по экспериментальным значениям импеданса. Он уменьшается с увеличением частоты и не превышает 90°. Экспериментальные значения модуля импеданса конденсатора во всех случаях немного меньше теоретических, что связано с неточностью указанной ёмкости конденсатора.

1.2. Исследование АЧХ и ФЧХ последовательной RC-цепи

В этой части работы экспериментальные параметры цепи определены следующим образом:

- f_{zp} частота, на которой измеренный коэффициент передачи K равен 0.7071;
- $K_{\it zp}$ измеренный коэффициент передачи на частоте, равной теоретической граничной частоте $f_{\it zp}$;
- $L_{\it ep}$ измеренный логарифмический коэффициент передачи на частоте, равной теоретической граничной частоте $f_{\it ep}$;
- $\phi_{\it ep}$ измеренный сдвиг фаз на экспериментальной граничной частоте $f_{\it ep}$;

Численное значение перечисленных экспериментальных параметров находилось с помощью линейной интерполяции.

1.2.1. Исследование АЧХ и ФЧХ интегрирующей RC-цепи

1.2.1.1. Исследование АЧХ и ФЧХ интегрирующей RC-цепи для первой пары элементов R и C

График 1.2.1.1.1. Амплитудно-частотная характеристика интегрирующей RC-цепи, R=47 Ом, C=1 мк Φ

График 1.2.1.1.2. Логарифмическая амплитудно-частотная характеристика интегрирующей RC-цепи, R = 47 Ом, C = 1 мкФ

График 1.2.1.1.3. Фазо-частотная характеристика интегрирующей RC-цепи, $R = 47~Om,~C = 1~mk\Phi$

Таблица 1.2.1.1. Параметры интегрирующей RC-цепи, R = 47 Ом, C = 1 мк Φ

Te	еоретическ	ие значени	1Я	Эксп	ериментал	ьные знач	ения
f _{гр} , Гц	K_{rp}	$L_{\it гp}$, дб	$\phi_{\it rp}$, $^{\circ}$	$f_{\it ep}, \Gamma u$ $K_{\it ep}$ $L_{\it ep}, \partial \delta$ $\phi_{\it ep}, \circ$			
3386	0.7071	-3.010	-45.00	3277	0.6957	-3.166	-44.70

1.2.1.2. Исследование АЧХ и ФЧХ интегрирующей RC-цепи для второй пары элементов R и C

График 1.2.1.2.1. Амплитудно-частотная характеристика интегрирующей RC-цепи, $R=100~Om,~C=4.7~mk\Phi$

График 1.2.1.2.2. Логарифмическая амплитудно-частотная характеристика интегрирующей RC-цепи, $R = 100 \ Om, \ C = 4.7 \ mk\Phi$

График 1.2.1.2.3. Фазо-частотная характеристика интегрирующей RC-цепи, $R=100~{\rm Om},~C=4.7~{\rm mk\Phi}$

Таблица 1.2.1.2. Параметры интегрирующей RC-цепи, R = 100 Ом, C = 4.7 мк Φ

Te	еоретическ	ие значени	1Я	Эксп	ериментал	ьные знач	ения
f _{гр} , Гц	K_{rp}	$L_{\it гp}$, дб	$\phi_{\it rp}$, $^{\circ}$	$f_{\it гp}, \Gamma$ ц $K_{\it гp}$ $L_{\it гp}, \partial \delta$ $\phi_{\it гp}, \circ$			
338.6	0.7071	-3.010	-45.00	336.8	0.7053	-3.045	-44.77

1.2.2. Исследование АЧХ и ФЧХ дифференцирующей RC-цепи

1.2.2.1. Исследование АЧХ и ФЧХ дифференцирующей RC-цепи для первой пары элементов R и C

График 1.2.2.1.1. Амплитудно-частотная характеристика дифференцирующей RC-цепи, R=47 Ом, C=1 мкФ

График 1.2.2.1.2. Логарифмическая амплитудно-частотная характеристика дифференцирующей RC-цепи, R = 47 Ом, C = 1 мкФ

График 1.2.2.1.3. Фазо-частотная характеристика дифференцирующей RC-цепи, $R=47~Om,~C=1~mk\Phi$

Таблица 1.2.2.1. Параметры дифференцирующей RC-цепи, R = 47 Ом, C = 1 мкФ

Te	еоретическ	ие значени	1Я	Экспериментальные значения				
f _{гр} , Гц	K_{rp}	$L_{\it гp}$, дб	$\phi_{\it rp}$, $^{\circ}$	$f_{\it ep}, \Gamma u$ $K_{\it ep}$ $L_{\it ep}, \partial \delta$ $\phi_{\it ep}, \circ$				
3386	0.7071	-3.010	45.00	3331	0.7123	-2.957	44.57	

1.2.2.2. Исследование АЧХ и ФЧХ дифференцирующей RC-цепи для второй пары элементов R и C

График 1.2.2.2.1. Амплитудно-частотная характеристика дифференцирующей RC-цепи, $R=100~Om,~C=4.7~mk\Phi$

График 1.2.2.2. Логарифмическая амплитудно-частотная характеристика дифференцирующей RC-цепи, R = 100 Om, C = 4.7 мкФ

График 1.2.2.3. Фазо-частотная характеристика дифференцирующей RC-цепи, $R=100~{\rm Om},~C=4.7~{\rm mk}$ Ф

Таблица 1.2.2.2. Параметры дифференцирующей RC-цепи, R = 100 Ом, C = 4.7 мкФ

Te	еоретическ	ие значени	1Я	Эксп	ериментал	ьные знач	ения
f _{гр} , Гц	K_{rp}	$L_{\it гp}$, дб	$\phi_{\it rp}$, $^{\circ}$	$f_{\it гp}, \Gamma$ ц $K_{\it гp}$ $L_{\it гp}, \partial \delta$ $\phi_{\it гp}, \circ$			
338.6	0.7071	-3.010	45.00	340.5	0.7053	-3.049	44.74

2. Исследование последовательной RL-цепи

Установленный размах входного напряжения $U_0 = 11.888~B$. Размах напряжения на резисторе U_R и катушке U_L измерялся с помощью осциллографа, действующее значение переменного тока в цепи I – с помощью DMM.

2.1. Исследование последовательной RL-цепи из первого набора параметров на разных частотах

Теоретическое значение граничной частоты для этой цепи:

$$f_{rp} = 636.6 \ \Gamma y$$

Таблица 2.1. Последовательная RL-цепь из катушки с числом витков N=1000 на различных частотах

П	Іарам	етры ц	цепи	Измере	Измеренные значения			я Расчётные значения		
<i>L</i> , мГн	<i>R</i> ,	г, Ом	f, Гц	U_{R} , B	U_L , B	І, мА	$X_{L \ { m экcn}}, \ O$ м	$X_{L meop}$, $O_{\mathcal{M}}$	$tan(\phi)$	φ, °
			99.965	8.079	4.110	60.2	11.90	10.68	0.175	9.927
			200.943	7.799	5.034	58.2	22.23	21.46	0.327	18.10
			400.889	6.922	7.065	51.6	43.62	42.82	0.641	32.68
17	47	21	801.777	5.090	9.584	37.9	86.90	85.64	1.278	51.96
			1510	3.182	11.046	23.6	164.1	161.3	2.414	67.50
			3009	1.689	11.634	12.56	326.8	321.4	4.806	78.25
			5998	0.5891	11.821	6.32	661.0	640.7	9.720	84.13

Сдвиг фаз между током и напряжением ϕ рассчитан по экспериментальным значениям реактивного сопротивления. Он увеличивается с увеличением частоты и не превышает 90°. Экспериментальные значения реактивного сопротивления катушки во всех случаях немного больше теоретических, что связано с неточностью указанных параметров катушки.

2.2. Исследование последовательной RL-цепи из второго набора параметров на разных частотах

Теоретическое значение граничной частоты для этой цепи:

$$f_{cp} = 1929 \Gamma u$$

Таблица 2.2. Последовательная RL-цепь из катушки с числом витков N=500 на различных частотах

Π	Іарам	етры г	цепи	Измере	енные зн	ачения	P	асчётныє	значени	1Я
<i>L</i> , мГн	<i>R</i> , Ом	г, Ом	f, Гц	U_{R} , B	U_L , B	І, мА	$X_{L \ { m экcn}}, \ O$ м	$X_{L meop}$, $O_{\mathcal{M}}$	$tan(\phi)$	φ, °
			99.965	10.814	1.232	80.6	3.741	2.638	0.073	4.204
			200.944	10.768	1.646	80.4	6.098	5.303	0.120	6.831
			401.887	10.587	2.694	79.1	11.39	10.61	0.224	12.62
4.2	47	3.9	800.779	9.956	4.761	74.3	22.32	21.13	0.438	23.67
			1510	8.432	7.488	62.7	42.04	39.85	0.826	39.56
			3009	5.723	10.087	42.2	84.42	79.41	1.659	58.91
			5948	3.251	11.313	23.3	171.6	157.0	3.372	73.48

Сдвиг фаз между током и напряжением ϕ рассчитан по экспериментальным значениям реактивного сопротивления. Он увеличивается с увеличением частоты и не превышает 90°. Экспериментальные значения реактивного сопротивления катушки во всех случаях больше теоретических, что связано с отклонением указанных параметров катушки от действительных.

3. Исследование последовательной RLC-цепи. Резонанс напряжений

Установленный размах входного напряжения $U_0 = 11.888~B$. Размах напряжения на резисторе U_R , конденсаторе U_C и катушке U_L измерялся с помощью осциллографа, действующее значение переменного тока в цепи I – с помощью DMM.

Теоретическое значение резонансной частоты для этой цепи:

$$f_p = 2456 \, \Gamma y$$

Таблица 3. Последовательная RLC-цепь, R = 47 Ом, r = 3.9 Ом, L = 4.2 мГн, C = 1 мкФ

f D.		Измереннь	Расчётные значения			
f, Гц	U_R , B	U_C , B	U_L , B	І, мА	$tan(\phi)$	φ, °
99.965	0.4063	11.903	0.0521	2.70	-30.51	-88.12
202.941	0.8236	11.944	0.1192	5.53	-14.87	-86.15
400.888	1.646	12.100	0.3783	11.08	-7.361	-82.26
800.779	3.191	12.834	1.500	23.3	-3.385	-73.54
1520	7.198	15.217	6.295	52.5	-1.184	-49.81
3009	9.312	9.993	16.126	67.9	0.626	32.03
5948	3.853	2.094	13.182	27.4	2.810	70.41

Сдвиг фаз между током и напряжением ϕ рассчитан по экспериментальным значениям импедансов. Он увеличивается с увеличением частоты и не выходит за диапазон от -90° до $+90^{\circ}$.

График 3. Амплитудно-частотные характеристики элементов RLC-цепи

Из графика находим экспериментальное значение резонансной частоты как точку пересечения зависимостей $U_{\mathcal{C}}(f)$ и $U_{\mathcal{L}}(f)$:

$$f_p = 2278 \, \Gamma y$$

Расхождение экспериментального и теоретического значений резонансной частоты цепи обусловлено погрешностью интерполяции и отклонением использованных при расчётах параметров цепи от действительных.

Выводы

В ходе работы были приобретены навыки измерения и расчёта цепей переменного тока, построения амплитудно- и фазо-частотных характеристик цепи.