Topology toolkit

All the definitions that follow are directly taken from the book?. We specify on which page the definition is given with brackets, for example we write {12} for page 12.

1 Open sets

Definition {18} (Topology). Let X be a set. A collection \mathcal{T} of subsets of X is called a topology if

- (a) $\varnothing, X \in \mathcal{T}$,
- (b) closure under finite intersections: $U_1, \ldots, U_n \in \mathcal{T} \Rightarrow U_1 \cap \ldots \cap U_n \in \mathcal{T}$,
- (c) closure under arbitrary unions: $(U_{\alpha}) \in \mathcal{T} \Rightarrow \bigcup_{\alpha} U_{\alpha} \in \mathcal{T}$.

The elements of \mathcal{T} are call open sets. (X,\mathcal{T}) is called a topological space.

Definition {18} (Neighborhood). Let (X, \mathcal{T}) be a topological space. For all $q \in X$, a neighborhood of q is an open set $A \in \mathcal{T}$ s.t. $q \in A$.

Definition {25} (Interior). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. We define

$$\operatorname{Int} A := \cup \left\{ U \subset X : U \text{ is open} \right\}. \tag{1}$$

Lemma Pb2.9 - {37} (Disjoint union topology). Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a sequence of disjoint topological spaces. Then, we define a topology on $\cup_{{\alpha}\in A}X_{\alpha}$ as being the set which intersection with each X_{α} is open in X_{α} .

2 Closed sets

Definition {24} (Closed set). Let (X, \mathcal{T}) be a topological space. We say that $A \subset X$ is closed if there exists $U \in \mathcal{T}$ such that $A = X \setminus U$.

Lemma {24} (Topology of closed sets). Let (X, \mathcal{T}) be a topological space.

- 1. \emptyset, X are closed,
- 2. Finite unions of closed sets are closed,
- 3. Arbitrary intersections of closed sets are closed.

Definition {25} (Closure, Exterior, Boundary). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. We define

$$\bar{A} := \bigcap \{ C \subset X : C \text{ is closed} \}, \tag{2}$$

$$\operatorname{Ext} A := X \backslash \bar{A} \tag{3}$$

$$\partial A := X \setminus (\operatorname{Int} A \cup \operatorname{Ext} A) \tag{4}$$

Definition {26} (Limit point). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. We say that $q \in X$ is a limit point of A if every neighborhood of q contains a point in A that is not q.

Lemma E2.11 - {26} (Sequential characterization of closed sets). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. A is closed if and only if it contains all its limit points.

Definition {27} (Dense set). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. We say that A is dense in X if $\bar{A} = X$.

3 Convergence and continuity

Definition {20} (Convergence). Let (X, \mathcal{T}) be a topological space, and (x_i) be a sequence in X. We say that (x_i) converges towards x, if for every neighborhood A of x, there exists N > 0 such that for all $i \geq N$, $x_i \in A$.

Definition {20} (Continuity). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be two topological spaces, and $f: X \to Y$. We say that f is continuous if for all $U \in \mathcal{T}_Y$, $f^{-1}(U) \in \mathcal{T}_X$.

Lemma L2.1 - {21} (Examples of continuous maps). Constant map, identity map, restriction of a continuous function to an open subset, composition of continuous functions are continuous.

Definition {22} (Homeomorphism). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be two topological spaces, and $\varphi: X \to Y$. φ is said to be a homeomorphism if it is a continuous bijection with a continuous inverse. If such a map exists, then X and Y are said to be homeomorphic, and we write $X \simeq Y$

Lemma E2.5 - $\{22\}$ (Homeomorphic sets). \simeq is an equivalence relation.

Definition {24} (Open map). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be two topological spaces, and $f: X \to Y$. f is said to be an open map if $f(U) \in \mathcal{T}$, for all $U \in \mathcal{T}$.

Definition {27} (Closed map). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be two topological spaces, and $f: X \to Y$. f is said to be a closed map if f(C) is closed, for all closed C.

4 Bases

Definition {27} (Base). Let X be a set. A basis in X is a collection \mathcal{B} of subsets of X, satisfying:

- (a) $\bigcup_{B \in \mathcal{B}} B = X$,
- (b) If $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$, there exists $x \in B_3 \subseteq B_1 \cap B_2$.

Lemma $P2.9 - \{27\}$ (Topology generated by a basis). Let X be a set, \mathcal{B} be a basis in X, and define \mathcal{T} to be the collection of all unions of elements of \mathcal{B} . Then, \mathcal{T} is a topology on X. \mathcal{T} is called the topology generated by \mathcal{B} .

Definition {27} (Basis criterion). Let X be a set, and \mathcal{B} be a collection of subsets of X. We say that $U \subseteq X$ satisfies the basis criterion with respect to B if for all $x \in U$, $\exists B \in \mathcal{B}$ s.t. $x \in B \subseteq U$.

Lemma L2.10 - {27} (Identification of the topology generated by a basis through the basis criterion). Let X be a set, \mathcal{B} be a basis in X, and define \mathcal{T} be the topology generated by \mathcal{B} . Then, $U \in \mathcal{T}$ iff U satisfies the basis criterion with respect to \mathcal{B} .

Lemma L2.11 - {29} (Characterization of an open basis for a generating a topology). Let (X, \mathcal{T}) be a topological space, and $\mathcal{B} \subseteq \mathcal{T}$. If for all $U \in \mathcal{T}$, U satisfies the basis criterion with respect to \mathcal{B} , then \mathcal{B} generates \mathcal{T} .

Lemma E2.15 - {29} (Examples of basis). 1. Let (M, ρ) be a metric space. The set of open balls is a basis for the topology induced by ρ ,

2. Let (X, \mathcal{T}) be a discrete topological space. $\{\{x\}: x \in X\}$ is a basis generating \mathcal{T} .

Lemma L2.12 - {30} (Basis characterization of continuity). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces, and \mathcal{B} be a basis generating \mathcal{T}_Y . A map $f: X \to Y$ is continuous iff for all $U \in \mathcal{B} \cap \mathcal{T}$, $f^{-1}(U) \in \mathcal{T}_X$.

Lemma Pb2.8 - $\{30\}$ (Basis generation through a homeomorphism). Let X, Y be two topological spaces, \mathcal{B} be a basis in X, and f be a surjective open map. Then, $f(\mathcal{B})$ is a basis in Y.

5 Manifolds

Definition {30} (Locally Euclidean space of dimension n). A topological space (X, \mathcal{T}) is locally Euclidean of dimension n if every point $q \in M$ has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n .

Lemma L2.13 - $\{30\}$ (Characterization of locally Euclidean space through open balls). A topological space (X, \mathcal{T}) is locally Euclidean of dimension n iff either

- 1. every point has a neighborhood homeomorphic to an open ball in \mathbb{R}^n ,
- 2. every point has a neighborhood homeomorphic to \mathbb{R}^n .

Definition {31} (Hausdorff spaces). A topological space (X, \mathcal{T}) is said to be a Hausdorff space if for all $x, y \in X$, there exists respective neighborhoods U, V of x, y such that $U \cap V = \emptyset$.

Lemma L2.14 - $\{31-32\}$ (Properties of Hausdorff spaces). Let (X, \mathcal{T}) be a Hausdorff space.

- 1. Every one-point set is closed,
- 2. If a sequence $\{x_i\}$ converges, the limit is unique.

Definition {32} (Countability). A topological space (X, \mathcal{T}) is said to be second countable if it admits a countable basis, and first countable if each points admits a neighborhood having a countable basis.

Definition {32} (Cover). A collection \mathcal{B} of subsets of X is a cover if $\bigcup_{B \in \mathcal{B}} B = X$, and an open cover if B is open for all $B \in \mathcal{B}$ (if there is a topology on X).

Lemma L2.15 - $\{32\}$ (Countable subcovers). Let (X, \mathcal{T}) be a second countable topological space. Then, every open cover has a countable subcover.

Definition $\{33\}$ (Manifold). An *n*-dimensional topological manifold (or *n*-manifold) is a second countable Hausdorff space that is locally Euclidean of dimension n.

Lemma L2.16 - $\{34\}$ (Stability through open sets). Any open subset of an *n*-manifold is an *n*-manifold.

Definition {34} (Manifold with boundary). An *n*-dimentional topological manifold (or *n*-manifold) is a second countable Hausdorff space that is locally homeomorphic to the half-open set $[0, \infty)^n$.

6 Combination of topological spaces

6.1 Subspace topology

Lemma {39} (Subspace topology). Let (X, \mathcal{T}) be a topological space, and $A \subset X$. Let the subspace topology on A be defined as

$$\mathcal{T}_A := \{ U \subset A : U = A \cap V \text{ for some open set } V \subset X \}.$$
 (5)

Definition {40} (Topological embedding). An injective continuous map that is a homeomorphism onto its image is called a topological embedding.

Theorem T3.3 - {41} (Characteristic property of Subspace Topologies). Suppose $A \subset X$ is a subspace. For any topological space Y, a map $f: Y \to A$ is continuous iff the following composite map from Y to X is continuous

$$Y \xrightarrow{f} A \xrightarrow{\iota_A} X. \tag{6}$$

Theorem T3.9 - $\{47\}$ (Uniqueness of Subspace Topologies). Suppose $A \subset X$ is a subset of X. Then, \mathcal{T}_A is the unique topology on A satisfying the characteristic property.

Lemma P3.4 - $\{41\}$ (Properties of Subspace topology). Let A be a subspace of some topological space X.

- (a) The inclusion map in continuous, and more precisely is a topological embedding.
- (b) If $f: X \to Y$ is continuous, then so is $f_{|A}$.

- (c) If $f: X \to Y$ is continuous, then so is $f: X \to f(X)$.
- (d) Closed subsets of A are intersections of A with closed subsets of X.
- (e) If $B \subset A$ is a subspace of A, then B is a subspace of X.
- (f) If $B \subset A \subset X$ is open in A, and A is open in X, then B is open in X.
- (g) \mathcal{B} is a basis then $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$ is a basis in X.
- (h) Any subspace of a Hausdorff space is Hausdorff.
- (i) Any subspace of a scond countable space is second countable.

Lemma L3.8 - {46} (Gluing lemma). Let X be a topological space, and suppose that $X = A_1 \cup \ldots A_k$, where each A_i is closed in X. For each i, let $f_i : A_i \to Y$ be a continuous map such that $f_i|_{A_i \cap A_j} = f_j|_{A_i \cap A_j}$. There exists a unique continuous map $f : X \to Y$ such that $f|_{A_i} = f_i$, for all i.

6.2 Product spaces

Definition {48} (Basis of Cartesian product). Let X_1, \ldots, X_n be topological spaces. We let

$$\mathcal{B} = \{ U_1 \times \ldots \times U_n : U_i \in \mathcal{T}_{X_i} \}. \tag{7}$$

 \mathcal{B} is a basis in $X_1 \times \ldots \times X_n$, and the topology it generates is called the product topology \mathcal{T} . $(X_1 \times \ldots \times X_n, \mathcal{T})$ is called the product space.

Theorem T3.10/11 - $\{49\}$ (Characteristic property of Product topologies). Let $X_1 \times \ldots \times X_n$ be a product space. A map $f: B \to X_1 \times \ldots \times X_n$ is comtinuous iff each component $f_i := \pi_i \circ f$ is continuous. The product topology is the only to satisfy it.

Definition Munkers (Infinite product topology (cylinder set topology)). Let X_1, \ldots, X_n, \ldots be topological spaces, and let $X := \prod_{i=1}^{\infty} X_i$. We let

$$\mathcal{B} := \{ U \subset X : \exists n \in \mathcal{N}, U_n \in \mathcal{T}_{X_n}, \pi_n^{-1}(U_n) = U \}.$$
 (8)

Then, \mathcal{B} generates a topology on X, this topology is the only one that makes the projection maps continuous.

For many properties of product topologies, see page {50}.

6.3 Quotient spaces

Definition {52} (Quotient space topology). Let X be a topological space, Y a set, and $\pi: X \to Y$ be a surjective map. We define a topology on Y by declaring $U \subset Y$ to be open iff $\pi^{-1}(U)$ is open in X. This is called the quotient topology on Y. Conversely, we say that $\pi: X \to Y$ is a quotient map if it is surjective, continuous, and Y has the quotient topology induced by π .

 $\{52\}$ We say that $U \subset X$ is saturated if there exist $V \subset Y$ such that $U = \pi^{-1}(V)$ (i.e. U is a union of equivalence classes). $\pi^{-1}(\{y\})$ is called a fiber. A saturated set is a union of fibers.

Lemma L3.16 - $\{53\}$ (Characterization quotient maps). A continuous surjective map $\pi: X \to Y$ is a quotient map iff it takes saturated open sets to open sets, and same with saturated closed sets.

Lemma L3.17 - {53} (Restriction of quotient maps). The restriction of a quotient map to a saturated open or closed set is a quotient map.

{53} A surjective continuous open or closed map is a quotient map. Composition of quotient maps are quotient maps.

Theorem T3.29/31 - $\{57\}$ (Characteristic property of Quotient topologies). Let $\pi: X \to Y$ be a quotient map. For any space $B, f: Y \to B$ is continuous iff $f \circ \pi$ is continuous. π is a quotient map iff the characteristic property holds.

By Corollary 3.32, quotient spaces are homeomorphic to each other.

6.4 Group actions

Definition $\{58\}$ (Topological group). A topological group is a group G endowed with a topology such that the product and inverse maps are continuous. A discrete group is a topological group with the discrete topology.

Note that any group with the discrete topology is a topological group.

Lemma L3.34 - {59} (Topological subgroup). Any subgroup are product of topological groups is a topological group.

Definition {59} (Translation). For $g \in G$, the left translation map $L_g : G \to G$ defined as $L_g(g') = gg'$ is a homeomorphism. For $g \in G$, the right translation map $R_g : G \to G$ defined as $R_g(g') = g'g$ is a homeomorphism.

Definition {59} (Group actions). Let G be a group and X a topological space. A left action of G on X is a map $G \times X \to X$, written $(g, x) \mapsto g \cdot x$, with the following properties

- (i) For any $x \in X$, and any $g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$,
- (ii) For all $x \in X$, $1 \cdot x = x$.

We say that the action of G on X is continuous if $G \times X \to X$ is continuous. For $x \in X$, we say that $G \cdot x := \{g \cdot x : g \in G\}$ is the orbit of x. We say that an action is transitive is the orbit is the entire space. It is said to be free if the only element satisfying $g \cdot x = x$ is g = 1. We define as an equivalence relation all the points that are on a same orbit. We denote the quotient sapce by X/G, also called the orbit space of the action.

7 Connectedness

7.1 Generalities on connectedness

Definition {65} (Separation and connectedness). Let (X, \mathcal{T}) be a topological space. A separation of X is a pair of disjoint open sets $U, V \in \mathcal{T}$, such that $U \cup V = X$. If a separation exists, we say that X is disconnected, and connected otherwise.

Lemma P4.2 - {66} (Characterization of connectedness). Let (X, \mathcal{T}) be a topological space. X is connected if and only if the sets that are both open and closed are X and \varnothing .

Theorem T4.3 - $\{67\}$ (Connectedness theorem). Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces, and $f: X \to Y$ be a continuous function. If X is connected, then f(X) is connected as well.

Lemma P4.4 - {67} (Properties on connected sets). (a) If A is a connected subsut of $U \cup V$, then $A \subset U$ or $A \subset V$.

- (b) A is connected $\Rightarrow \bar{A}$ is connected.
- (c) Let A_{α} be a collection of connected set with one common point. Then, $\cup_{\alpha} A_{\alpha}$ is connected.
- (d) Any finite product of connected spaces is connected.
- (e) Any quotient space of a connected set is connected.

Theorem P4.5 - $\{68\}$ (Connected sets are intervals). A nonempty subset of \mathbb{R} is connected iff it is an interval.

Theorem $T_4.6$ - {68} (Intermediate value theorem). Let X be a connected topological space and f a continued real-valued function. For $p, q \in X$, f takes all values between f(p) and f(q).

7.2 Path-connectedness

Definition {69} (Path connectedness). A path in a topological space (X, \mathcal{T}) from p to q is a continuous function $f: [0,1] \to X$ such that f(0) = p and f(1) = q. We say that (X, \mathcal{T}) is path connected if for each $p, q \in X$, there exists a path in (X, \mathcal{T}) from p to q.

Theorem T4.7 - $\{69\}$ (Path connectedness implies connectedness). Path connectedness implies connectedness.

7.3 Components, path components

Definition {70} (Connectivity relation). Let (X, \mathcal{T}) be a topological space. We define the connectivity relation $p \sim q$ as there exists a connected subset of X containing both p and q.

Lemma P4.11 - {70} (Connectivity relation is equivalent). The connectivity relation is an equivalence relation.

Definition {70} (Components). The elements of X/\sim are called the components of X.

Lemma L4.12 - $\{71\}$ (Maximal connected sets are components). The components of X are exactly the maximal connected subsets of X, that is, connected sets that are not contained in any larger connected set.

Lemma $P4.14 - \{71\}$ (Properties of components). Let X be a topological space.

- (a) the components of X are closed in X,
- (b) every connected subset of X is contained in a single component.

Definition {71/72} (Path components). Let (X, \mathcal{T}) be a topological space. We define the path connectivity relation $p \sim q$ as there exists a path from p to q. The elements of $X/\sim p$ are called the path components of X.

Lemma P4.15 - $\{72\}$ (Properties of path components). Let X be a topological space.

- (a) Each path component is contained in a single component, and each component is a disjoint union of path components,
- (b) If $A \subseteq X$ is path connected, then A is contained in a single path component.

Definition $\{72\}$ (Local connectedness). A topological space X is locally connected if it admits a basis of connected open sets, and locally path connected if it admits a basis of path connected open sets.

Lemma L4.16 - $\{72\}$ (Properties of locally conected sets). (a) If X is locally connected, then each component of X is open,

(b) If X is locally path connected , then each component is open, the path components and components are the same, and X is connected iff it is path connected.

Theorem $P4.17 - \{73\}$ (Path connectedness of manifolds). Every manifold is locally path connected.

8 Compactness

Definition {73} (Subcover). Let \mathcal{U} be a cover of X. Then, a subcover is a subset of \mathcal{U} that still covers X.

Definition {73} (Compactness). Let X be a topological space. X is said to be compact if every open cover of X admits a finite subcover. A subset $A \subset X$ is said to be compact if it is compact with respect to the subset topology.

Theorem T4.18 - $\{73\}$ (Compactness theorem). Let X, Y be two topological spaces, and suppose that X is compact. Let $f: X \to Y$ be a continuous function. Then, f(X) is compact.

Lemma P4.19 - {74} (Properties of compactness). (a) Every closed subset of a compact space is compact.

- (b) In a Hausdorff space X, compact sets can be separated by open sets.
- (c) Every compact set of a Hausdorff space is closed.
- (d) Every product of compact spaces is compact.
- (e) Every quotient of a compact space is compact.

Theorem $T4.20 - \{76\}$ (Extreme value theorem). If X is a compact space and $f: X \to \mathbb{R}$ is continuous, then f attains its minimal and maximal values.

8.1 Limit point and sequential compactness

Definition {76} (Limit point compactness). A space X is said to be limit point compact if for every infinite subset $A \subseteq X$, A has a limit point in X.

Definition $\{77\}$ (Sequential compactness). A space X is said to be sequntially compact if for every sequence in X has a subsequence converging in X.

Lemma P4.22 - $\{77\}$ (Compact \subset Limit point compact). Compactness implies limit point compactness.

Lemma L4.23 - $\{77\}$ (Limit point + 1st count + Hausdorff \Rightarrow Sequential). For first countable Hausdorff spaces, limit point compactness implies sequential compactness.

Lemma P4.25 - $\{79\}$ (Closed map lemma). Let F be a continuous map from a compact space to a Hausdorff space.

- (a) F is a closed
- (b) If F is surjective, it is a quotient map.
- (c) If F is injective, it is a topological embedding.
- (d) If F is bijective, it is a homemorphism.

8.2 Closed map lemma

Lemma L4.25 - $\{78\}$ (2nd count + Hausdorff \Rightarrow compactnesses are eq). For metric spaces and second countable Hausdorff spaces, compactness, limit point compactness, and sequential compactness are all equivalent.

8.3 Locally compact spaces

Definition {81} (Locally compact space). X is locally compact if there every $q \in X$ has a compact set containing one of its neighborhoods.

Definition {82} (Relatively compact space). A is relatively compact in X if \bar{A} is compact.

Lemma $\{82\}$ (Locally compact Hausdorff spaces). Let X be a Hausdorff space. The following are iff:

- (a) X is locally compact.
- (b) each point of X has a relatively compact neighborhood.
- (c) X has a basis of relatively compact open sets.

Lemma {82} (Shrinking lemma). Let X be a locally compact Hausdorff space. If $x \in X$ and U is neighborhood of x, there is a relatively compact neighborhood of c such that $\bar{V} \subseteq U$.

Definition {84} (Proper map). $f: X \to Y$ is a proper map if the inverse image of compact subsets are also compact subsets.

Lemma {84} (Proper \Rightarrow Closed). Let X, Y be a locally compact Hausdorff spaces and $f: X \to Y$ be continuous and proper. Then, f is closed.

Theorem $\{85\}$ (Baire category theorem). Let X be a locally compact Hausdorff space or a complete metric space. Every countable collection of dense open subsets has a dense intersection.

Definition {85} (Nowhere dense set). A set $A \subset X$ is said to be nowhere dense if its closure contains no nonempty open set.

Lemma $\{85\}$ (Corollary of Baire category theorem). Let X be a locally compact Hausdorff space or a complete metric space. Any countable union of nowhere dense set has empty interior.

Definition {86} (Baire categories). A first Baire category set (or meager set) is a countable union of nowhere dense sets, and a second Baire category set is a set that is not of first Baire category.

References

John M. Lee. Introduction to Topological Manifolds. Springer, 2000.