

Prüfung Sommersemester 2020

Studiengang: IN/WIN/MIN
Semester: 4. Semester
Prüfungsfach: Statistik

Prüfer: Hufnagel / Scherr / Wermuth

Prüfungstermin: Abgabe bis 29 07. 2020, 8.30. Ende 09.45 Uhr per Upload in Exams

Prüfungsdauer: 60 Minuten, zuzüglich 15 Minuten zum Übermitteln **Anzahl Seiten:** insgesamt 7 (Deckblatt, vier Aufgaben, zwei Tabellen)

Name: Tröster

Vorname: Simon Nikolaus

E-Mailadresse: troestersi76444@th-nuernberg.de

Korrekturschlüssel: cbab

Note:

Punktzahl:

Aufgabe	1	2	3	4	Summe
Punkte maximal	6	6	6	6	24
Punkte					

Bitte beachten: Die Klausur müssen Sie nicht ausdrucken. Sie können also auch eigenes Papier oder ein Tablet verwenden.

Achten Sie dabei bitte auf einen hellen Hintergrund, optimal ist ein weißes Blatt ohne Zeilen bzw. Karos. Nach der Bearbeitung sind die Lösungen eingescannt oder fotografiert bis um 9.45 Uhr in Moodle-Exams hochzuladen. Für das eventuelle Drucken, Einscannen und Hochladen sind insgesamt 15 Minuten vorgesehen.

Alle Klausuren werden anschließend den Anmeldungen entsprechend unter den Prüfern verteilt.

Aufgabe 1. (6 Punkte)

a) Bei einer Messung ergaben sich für die x-Werte

$$x_1 = -2, x_2 = -1, x_3 = 1, x_4 = 2$$

die y-Werte

$$y_1 = 5, y_2 = 4, y_3 = 1$$
 und $y_4 = 7$.

Legen Sie mit Hilfe der Gaußschen Methode der kleinsten quadratischen Abweichung (least squares) eine Kurve der Form $y=ax^3+b$ durch diese Punkte. Bestimmen Sie also die Parameter a und b.

b) Bestimmen Sie ein z, für das die **Summe der Beträge** der Abstände zu den folgenden acht Messwerten

$$z_1 = 1$$
, $z_2 = 2$, $z_3 = 8.7$, $z_4 = 2$, $z_5 = 5$, $z_6 = 11.99$, $z_7 = -44$, $z_8 = 2$

minimal ist. Ist dieses z eindeutig? (Begründung!)

Aufgabe 2. (6 Punkte)

Hinweis: bei allen Teilaufgaben wird der Rechenweg bewertet, die Auswahlmöglichkeiten dienen nur zur Orientierung bzw. Kontrolle.

Ein Test auf eine Infektion ist mit 95%iger Sicherheit positiv, falls eine Person infiziert ist, mit 90%iger Sicherheit negativ, falls diese nicht infiziert ist.

Es wird davon ausgegangen, dass in einer Population 2% aller Personen infiziert sind. Verwenden Sie die Bezeichnungen I: Person infiziert und T: Test positiv.

a) Angenommen, bei einer Person verläuft der Test positiv. Wie groß ist die Wahrscheinlichkeit, dass sie tatsächlich infiziert ist? Geben Sie den Rechenweg an!

b) Angenommen, es stehe ein **zweiter** Test zur Verfügung, der bei Infektion nur mit 80% iger Sicherheit positiv ist. Die Ergebnisse der beiden Tests sind bezogen sowohl auf die infizierten als auch auf die nicht infizierten Personen bezogen voneinander unabhängig.

Wie groß ist die Wahrscheinlichkeit, dass für eine infizierte Person **mindestens ein** Test positiv ist.

1 0,98750	2 0,98800	3 0,98000	4 0,96000
5 0,99200	6 0,99000	7 0,97000	

Aufgabe 3. (6 Punkte)

Es sei X eine stetige Zufallsvariable, für die gilt:

$$P(X>x) = \begin{cases} x^{-3}, & \text{ für } x>1\\ 1, & \text{ sonst} \end{cases}$$

a) Zeigen Sie, dass die zugehörige Dichtefunktion f wie folgt lautet:

$$f(x) = \begin{cases} 3 \cdot x^{-4}, & \text{für } x > 1\\ 0, & \text{sonst} \end{cases}$$

- b) Zeigen Sie, dass gilt $\operatorname{E}(X)=\frac{3}{2}$ und bestimmen Sie x_0 mit $\operatorname{P}(X\leq x_0)=\frac{1}{2}$. Außerdem gilt (das ist **nicht** zu zeigen): $\operatorname{Var}(X)=\frac{3}{4}$.
- c) Im Rahmen einer Simulation sollen 250 unabhängige Realisierungen von X erzeugt und anschließend aufsummiert werden. Berechnen Sie mit Hilfe des Zentralen Grenzwertsatzes eine Näherung für die Wahrscheinlichkeit, dass diese Summe den Wert 395 nicht überschreitet.

Aufgabe 4. (6 Punkte)

a) Ein Zufallszahlengenerator erzeugt 5000 Zufallszahlen in der Menge $\{0, \dots, 9\}$.

0	1	2	3	4	5	6	7	8	9
493	475	564	502	516	462	490	536	495	467

Ist aufgrund dieser Daten die Hypothese "die Zufallszahlen sind gleichverteilt" mit einer Irrtumswahrscheinlichkeit von höchstens 5% zu verwerfen?

b) Eine Urne enthält N=9 äußerlich genau gleiche Kugeln, abgesehen von der Farbe. M der Kugeln sind schwarz. Basierend auf einer einzigen rein zufälligen Ziehung von n=5 Kugeln, bei der sich k der gezogenen Kugeln als schwarz herausstellen, soll ein Maximum-Likelihood-Schätzwert für M angegeben werden.

Die folgende Tabelle zeigt die Wahrscheinlichkeiten für die verschiedenen Wertekombinationen von M und k (hypergeometrische Verteilung).

	k: 0	1	2	3	4	5
$M\colon 0$	1	0	0	0	0	0
1	0.4444	0.5556	0	0	0	0
2	0.1667	0.5556	0.2778	0	0	0
3	0.04762	0.3571	0.4762	0.1190	0	0
4	0.007937	0.1587	0.4762	0.3175	0.03968	0
5	0	0.03968	0.3175	0.4762	0.1587	0.007937
6	0	0	0.1190	0.4762	0.3571	0.04762
7	0	0	0	0.2778	0.5556	0.1667
8	0	0	0	0	0.5556	0.4444
9	0	0	0	0	0	1

Man gebe anhand dieser Tabelle für jedes $k \in \{0,1,\ldots,5\}$ einen Maximum-Likelihood-Schätzwert für M an.

(Die Formel für die hypergeometrische Verteilung wird nicht benötigt. Es ist keine Maximumsbestimmung per Ableitung = 0 nötig!)

Tabelle I: Die Standardnormalverteilung $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$

	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.1	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.3	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.7724	0.08082	0.71904	0.08793
0.6	0.09140	0.72907	0.73237	0.73565	0.7034	0.74215	0.71220	0.71300	0.71304	0.7224
0.0	0.72373	0.72307	0.75237	0.7673	0.77035	0.74213	0.77637	0.74837	0.73173	0.7349
0.7	0.78814	0.70113	0.70424	0.79673	0.77033	0.77337	0.77037	0.77933	0.7823	0.78324
1	0.78814									0.81327
0.9		0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879 0.89796	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617		0.89973	0.90147 0.91774
	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924 0.93319	0.92073	0.9222 0.93574	0.92364 0.93699	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5		0.93448			0.93822	0.93943	0.94062	0.94179	0.94295	
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214 0.9861	0.98257 0.98645	0.983 0.98679	0.98341	0.98382 0.98745	0.98422	0.98461	0.985	0.98537 0.9887	0.98574 0.98899
2.2 2.3	0.9891	0.98043	0.98983	0.98713 0.9901	0.98743	0.98778 0.99061	0.98809 0.99086	0.9884 0.99111	0.9887	0.98899
2.3	0.98928	0.98930	0.98983	0.9901	0.99036	0.99001	0.99080	0.99111	0.99134	0.99138
2.4	0.9918	0.99202	0.99224	0.99243	0.99200	0.99280	0.99303	0.99324	0.99545	0.99501
2.6	0.99579	0.99547	0.99413	0.9943	0.99585	0.99598	0.99609	0.99492	0.99632	0.9952
2.7	0.99534	0.99547	0.9950	0.99573	0.99583	0.99398	0.99009	0.99021	0.99032	0.99043
2.8	0.99033	0.99004	0.99074	0.99063	0.99093	0.99702	0.99711	0.9972	0.99801	0.99730
2.9	0.99744	0.99732	0.9970	0.99831	0.99836	0.99781	0.99846	0.99793	0.99856	0.99861
3.0	0.99813	0.99819	0.99823	0.99878	0.99882	0.99841	0.99889	0.99893	0.99896	0.99801
3.1	0.99803	0.99906	0.9991	0.99913	0.99882	0.99918	0.99921	0.99893	0.99926	0.99929
3.1	0.99903	0.99934	0.99936	0.99913	0.99910	0.99918	0.99921	0.99924	0.99948	0.99929
3.3	0.99951	0.99953	0.99955	0.99957	0.99958	0.99942	0.99961	0.99962	0.99964	0.99965
3.4	0.99932	0.99968	0.99969	0.9997	0.99971	0.9990	0.99901	0.99902	0.99904	0.99903
3.5	0.99977	0.99978	0.99909	0.99979	0.9998	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.9999	0.9999	0.9999	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
1.0	0.77771	0.77771	0.77771		Vichtige Q		0.77770	0.77770	0.77770	0.77770
α		0.9	0.95	0.975	0.99	0.995	0.999	0.9995	0.9999	
		1.2816	1.6449	1.96	2.3263	2.5758	3.0902	3.2905	3.719	
u_{α}		1.2010	1.0777	1.70	4.5405	2.5150	5.0702	5.2705	3.117	

Man beachte $\Phi(-x)=1-\Phi(x)$. (Diese Tabelle wurde mit MAXIMA erzeugt.)

Tabelle II: Quantile $\chi^2_{m;q}$ der χ^2 -Verteilung (m links, q oben)

	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995
1	3.92710^{-5}	1.570910^{-4}	9.820710^{-4}	0.0039321	0.015791	2.7055	3.8415	5.0239	6.6349	7.8794
2	0.010025	0.020101	0.050636	0.10259	0.21072	4.6052	5.9915	7.3778	9.2103	10.597
3	0.071722	0.11483	0.2158	0.35185	0.58437	6.2514	7.8147	9.3484	11.345	12.838
4	0.20699	0.29711	0.48442	0.71072	1.0636	7.7794	9.4877	11.143	13.277	14.86
5	0.41174	0.5543	0.83121	1.1455	1.6103	9.2364	11.07	12.833	15.086	16.75
6	0.67573	0.87209	1.2373	1.6354	2.2041	10.645	12.592	14.449	16.812	18.548
7	0.98926	1.239	1.6899	2.1673	2.8331	12.017	14.067	16.013	18.475	20.278
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.362	15.507	17.535	20.09	21.955
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.684	16.919	19.023	21.666	23.589
10	2.1559	2.5582	3.247	3.9403	4.8652	15.987	18.307	20.483	23.209	25.188
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.275	19.675	21.92	24.725	26.757
12	3.0738	3.5706	4.4038	5.226	6.3038	18.549	21.026	23.337	26.217	28.3
13	3.565	4.1069	5.0088	5.8919	7.0415	19.812	22.362	24.736	27.688	29.819
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.064	23.685	26.119	29.141	31.319
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.307	24.996	27.488	30.578	32.801
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.542	26.296	28.845	32.0	34.267
17	5.6972	6.4078	7.5642	8.6718	10.085	24.769	27.587	30.191	33.409	35.718
18	6.2648	7.0149	8.2307	9.3905	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.6327	8.9065	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.4338	8.2604	9.5908	10.851	12.443	28.412	31.41	34.17	37.566	39.997
21	8.0337	8.8972	10.283	11.591	13.24	29.615	32.671	35.479	38.932	41.401
22	8.6427	9.5425	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.2604	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.8862	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.98	45.559
25	10.52	11.524	13.12	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.16	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.29
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.42	76.154	79.49
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.43	104.21
80	51.172	53.54	57.153	60.391	64.278	96.578	101.88	106.63	112.33	116.32
90	59.196	61.754	65.647	69.126	73.291	107.57	113.15	118.14	124.12	128.3
100	67.328	70.065	74.222	77.929	82.358	118.5	124.34	129.56	135.81	140.17
110	75.55	78.458	82.867	86.792	91.471	129.39	135.48	140.92	147.41	151.95
120	83.852	86.923	91.573	95.705	100.62	140.23	146.57	152.21	158.95	163.65
130	92.222	95.451	100.33	104.66	109.81	151.05	157.61	163.45	170.42	175.28
140	100.65	104.03	109.14	113.66	119.03	161.83	168.61	174.65	181.84	186.85
150	109.14	112.67	117.98	122.69	128.28	172.58	179.58	185.8	193.21	198.36

(Diese Tabelle wurde mit MAXIMA erzeugt.)