哈尔滨工业大学

硕士学位论文中期报告

题 目:一类具一般增长的非齐次分数阶椭圆型方程的 Harnack 不等式

院	(系)_		数学学院
学		科	基础数学
导		师	雷强
研	究	生	李云鹏
学		号	22S012004
中期报告日期		日期	2024年6月

研究生院制

目 录

1	课题主要研究内容及进度情况	1
2	目前已完成的研究工作及结果	1
	2.1 准确解部分	1
3	后期拟完成的研究工作及进度安排	7
4	存在的困难与问题	7
5	如期完成全部论文工作的可能性	7
6	参考文献	7

1 课题主要研究内容及进度情况

 \mathbb{R} , $\mathrm{d}x$, $\int_{\Omega} u(x) \, \mathrm{d}x$,

1 + 1

= 2.

2 目前已完成的研究工作及结果

2.1 准确解部分

对方程 xx 证明了 Peano 存在性定理和 Picard 存在唯一性定理,如下所示。

$$\begin{cases} {}^{C}D_{0+}^{\alpha}x(t) = f(t, x(t), x(qt)), & t \ge 0, \\ x(0) = x_0 \text{ is given.} \end{cases}$$
 (1)

定理 1 Eq. (1) always has a mild solution on a small interval [0, h].

证明 记 $M < \infty$ 是集合 $\{\|f(t,u,v)\| : t \in [0,1], u,v \in B_{2\|x_0\|}(0)\}$ 的一个上界,并取 $0 < h \le 1$ 充分小,使得 $\Gamma(\alpha+1)^{-1}h^{\alpha}M \le \|x_0\|$. 对于正整数 m,作 $t_n^m := nh/m$, $n = 0,1,2,\ldots,m$,然后按下式构造 $(x_n^m)_{n=0}^m \subset \mathbb{R}^n$,

$$x_n^m = x_0 + \Gamma(\alpha)^{-1} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} (t_n - s)^{\alpha - 1} f(s, x_{k-1}^m, x_{q_{k-1}^m}^m) ds, \ n = 1, 2, \dots, m,$$
 (2)

其中 $q_k^m := \lfloor qt_k^m \rfloor$. 利用这些有限长的序列,分段线性插值地构造连续函数 $(x^m)_{m=1}^\infty : [0,h] \to \mathbb{R}^n$,即

$$x^{m}(t) := \frac{t_{n}^{m} - t}{t_{n}^{m} - t_{n-1}^{m}} x_{n-1}^{m} + \frac{t - t_{n-1}^{m}}{t_{n}^{m} - t_{n-1}^{m}} x_{n}^{m}, \ t_{n-1}^{m} \leqslant t \leqslant t_{n}^{m}.$$

另外,为方便起见,对于 $\delta > 0$,记 $D(\delta) := \{(s,t) \in [0,h] \times [0,h] : 0 \le t-s < \delta\}$.

现在证明 $||x^m(t_n)|| \le 2||x_0||$, $0 \le t \le h, n = 0, 1, 2, ..., m, m \in \mathbb{N}_+$. 施归纳于 n. n = 0 时显然。假设对于 $0 \le k < n$ 成立 $||x^m(t_k)|| \le 2||x_0||$, 根据 M 和 h 的定义,

$$||x^{m}(t_{n})|| \leq ||x_{0}|| + \Gamma(\alpha)^{-1} \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} ||f(s, x_{k-1}^{m}, x_{q_{k-1}^{m}}^{m})|| ds$$

$$\leq ||x_{0}|| + \Gamma(\alpha)^{-1} \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} M ds$$

$$= ||x_{0}|| + \Gamma(\alpha)^{-1} M \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} ds$$

$$= ||x_{0}|| + \Gamma(\alpha + 1)^{-1} M t_{n}^{\alpha}$$

$$\leq ||x_{0}|| + \Gamma(\alpha + 1)^{-1} M h^{\alpha} \leq 2||x_{0}||,$$

这样就完成了归纳。于是对任何 $t \in [0,h]$, t 必然落在某个区间 $\left[t_{n-1}^m,t_n^m\right]$ 中,从而

$$||x^m(t)|| \le \frac{t_n^m - t}{t_n^m - t_{n-1}^m} ||x_{n-1}^m|| + \frac{t - t_{n-1}^m}{t_n^m - t_{n-1}^m} ||x_n^m|| \le 2||x_0||.$$

因此对每个 $t \in [0, h]$ 都有 $(x^m(t))_{m=1}^{\infty}$ 在 \mathbb{R}^n 中相对紧.

然后讨论连续函数列 $(x^m)_{m=1}^{\infty}$ 的等度连续性。首先,对于 $0 \le k \le n \le m$,有

$$\Gamma(\alpha) \|x_{n}^{m} - x_{k}^{m}\|$$

$$\leq \sum_{j=1}^{k} \int_{t_{j-1}^{m}}^{t_{j}^{m}} \left(\left(t_{k}^{m} - s \right)^{\alpha - 1} - \left(t_{n}^{m} - s \right)^{\alpha - 1} \right) M \, \mathrm{d}s + \sum_{j=k+1}^{n} \int_{t_{j-1}^{m}}^{t_{j}^{m}} \left(t_{n}^{m} - s \right)^{\alpha - 1} M \, \mathrm{d}s$$

$$= M \cdot \left(\int_{0}^{t_{k}^{m}} \left(\left(t_{k}^{m} - s \right)^{\alpha - 1} - \left(t_{n}^{m} - s \right)^{\alpha - 1} \right) \mathrm{d}s + \int_{t_{k}^{m}}^{t_{m}^{m}} \left(t_{n}^{m} - s \right)^{\alpha - 1} \mathrm{d}s \right)$$

$$= M\alpha^{-1} \cdot \left(\left(\left(t_{k}^{m} \right)^{\alpha} - \left(t_{n}^{m} \right)^{\alpha} + 2 \left(t_{n}^{m} - t_{k}^{m} \right)^{\alpha} \right) \leq 2M\alpha^{-1} \left(t_{n}^{m} - t_{k}^{m} \right)^{\alpha}.$$

而至于 $0 \le s \le t \le h$, 不妨设 $s \in [t_{k-1}^m, t_k^m]$, $t \in [t_{n-1}^m, t_n^m]$. 如果 k < n, 那么

$$||x^{m}(t) - x^{m}(s)||$$

$$\leq ||x^{m}(t) - x^{m}(t_{n-1})|| + ||x_{n-1}^{m} - x_{k}^{m}|| + ||x^{m}(t_{k}) - x^{m}(s)||$$

$$\leq ||x_{n}^{m} - x_{n-1}^{m}|| + ||x_{n-1}^{m} - x_{k}^{m}|| + ||x_{k}^{m} - x_{k-1}^{m}||$$

$$\leq 2M\Gamma(\alpha + 1)^{-1} \left(\left(t_{n}^{m} - t_{n-1}^{m} \right)^{\alpha} + \left(t_{n-1}^{m} - t_{k}^{m} \right)^{\alpha} + \left(t_{k}^{m} - t_{k-1}^{m} \right)^{\alpha} \right)$$

$$\leq 2M\Gamma(\alpha + 1)^{-1} \left(2(h/m)^{\alpha} + (t - s)^{\alpha} \right),$$

而若是 k = n, 则有

$$\begin{aligned} \|x^m(t) - x^m(s)\| &\leq \|x_n^m - x_{n-1}^m\| \\ &\leq 2M\Gamma(\alpha + 1)^{-1} \left(t_n^m - t_{n-1}^m\right)^{\alpha} \\ &\leq 2M\Gamma(\alpha + 1)^{-1} (h/m)^{\alpha}, \end{aligned}$$

总之

$$||x^{m}(t) - x^{m}(s)|| \le 2M\Gamma(\alpha + 1)^{-1} \left(2(h/m)^{\alpha} + (t - s)^{\alpha}\right).$$
 (3)

任给 $\varepsilon > 0$, 取 $N = N(\varepsilon) \in \mathbb{N}_+$ 和 $\delta_0 = \delta_0(\varepsilon) > 0$ 分别满足 $2M\Gamma(\alpha + 1)^{-1}\delta_0^{\alpha} < \varepsilon/2$ 和 $4M\Gamma(\alpha + 1)^{-1}(h/N)^{\alpha} < \varepsilon/2$. 由式(3)可知, $\|x^m(t) - x^m(s)\| < \varepsilon$ 对任何 m > N 及 $(s,t) \in D(\delta_0)$ 成立。至于 $1 \le m \le N$, 由于每个 x^m 都是 [0,h] 上的一致连续函数,故存在有限个只依赖于 ε 的正数 $(\delta_m)_{m=1}^N$,使得对于 $(s,t) \in D(\delta_m)$ 成立 $\|x^m(t) - x^m(s)\| < \varepsilon$. 现在取 $\delta = \delta(\varepsilon) := \min_{0 \le m \le N} \delta_m > 0$,那么当 $0 \le s \le t \le h$ 且 $t-s < \delta$ 时, $\|x^m(t) - x^m(s)\| < \varepsilon$ 对于任何 $m \in \mathbb{N}_+$ 成立。这说明 $(x^m)_{m=1}^\infty$ 是 C[0,h]

中的一致等度连续函数列。

使用 Arzelà-Ascoli 定理,我们得到 $\{x^m : m \in \mathbb{N}_+\}$ 在 $C([0,h],\mathbb{R}^n)$ 中相对紧,故有一致收敛子列,这个子列仍记为 $(x^m)_{m=1}^{\infty}$,并设其极限函数为 $x \in C([0,h],\mathbb{R}^n)$. 任给 $\varepsilon > 0$,由于 f 在紧集 $[0,h] \times \overline{B_{2||x_0||}(0)} \times \overline{B_{2||x_0||}(0)} \subset [0,h] \times \mathbb{R}^n \times \mathbb{R}^n$ 上一致连续,故存在 $\delta_1 = \delta_1(\varepsilon) > 0$ 使得 $\|f(t,u,v) - f(t,x,y)\| < \varepsilon \alpha \Gamma(\alpha) h^{-\alpha}/4$ 对 $t \in [0,h]$ 以及满足 $\|u-x\| + \|v-y\| < \delta_1$ 的 $u,v,x,y \in B_{2||x_0||}(0)$ 成立。取 $N_1 = N_1(\delta_1) \in \mathbb{N}_+$,使得当 $m > N_1$ 且 $t \in [0,h]$ 时成立 $\|x^m(t) - x(t)\| < \delta_1/2$,从而

$$\left\| \int_{0}^{t} (t-s)^{\alpha-1} f(s, x^{m}(s), x^{m}(qs)) \, \mathrm{d}s - \int_{0}^{t} (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$\leq \int_{0}^{t} (t-s)^{\alpha-1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} \, \mathrm{d}s = \varepsilon \Gamma(\alpha) h^{-\alpha} t^{\alpha} / 4 \leq \varepsilon \Gamma(\alpha) / 4.$$

$$(4)$$

由 $(x^m)_{m=1}^{\infty}$ 的等度连续性,存在 $\delta_2 = \delta_2(\varepsilon) > 0$ 使得 $||x^m(t) - x^m(s)|| < \min(\delta_1/2, \varepsilon/4)$ 对任何 $m \in \mathbb{N}_+$ 及 $(s,t) \in D$ (δ_2) 成立。取 $N_2 = N_2(\delta_2) \in \mathbb{N}_+$ 使得 $h/N_2 < \delta_2$. 一方面,注意到 $m > N_2$ 时总有 $t_n - t_{n-1} < \delta_2 < \delta_1/2$, $n = 0, 1, 2, \ldots, m$, 于是 $\left\| f(t, x_{n-1}^m, x_{q_n^m}^m) - f(t, x^m(t), x^m(qt)) \right\| < \varepsilon \alpha \Gamma(\alpha) h^{-\alpha}/4$, $t \in [t_{n-1}^m, t_n^m]$, 从而

$$\Gamma(\alpha) \left\| x^{m}(t_{n}) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) ds \right\|$$

$$\leq \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} \left\| f(s, x_{k-1}^{m}, x_{q_{k-1}^{m}}^{m}) - f(s, x^{m}(s), x^{m}(qs)) \right\| ds$$

$$\leq \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} ds$$

$$= \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} ds \leq \varepsilon \Gamma(\alpha) / 4.$$
(5)

另一方面,任意 $t \in [0,h]$, 设 $t \in [t_{n-1},t_n]$, 则对任何 $m \in \mathbb{N}_+$ 成立

$$||x^m(t) - x^m(t_n)|| < \varepsilon/4.$$
(6)

根据^[?] Proposition 3.2, $x, f \in C([0,h],\mathbb{R}^n)$ 蕴涵 $t \mapsto \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s,x(s),x(qs)) \, \mathrm{d}s \in C([0,h],\mathbb{R}^n)$, 因此可取 $N_3 = N_3(\varepsilon) \in \mathbb{N}_+$ 充分大 (从而 $h/N_3 > 0$ 足够小),使得 $m > N_3$ 且 $(s,t) \in D(h/N_3)$ 时, $\Gamma(\alpha)^{-1} \| \int_0^t (t-\tau)^{\alpha-1} f(\tau,x(\tau),x(q\tau)) \, \mathrm{d}\tau - \int_0^s (s-\tau)^{\alpha-1} f(\tau,x(\tau),x(q\tau)) \, \mathrm{d}\tau \| < \varepsilon/4$. 于是 当 $t \in [0,h]$ 时,设 $t \in [t_{n-1},t_n]$,有

$$\Gamma(\alpha)^{-1} \left\| \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s - \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\| < \varepsilon/4.$$
(7)

现在取 $N = N(\varepsilon) := \max\{N_1, N_2, N_3\}$,根据 Eqs. (4) to (7) 以及三角不等式,当 $m > N, t \in [0, h]$ 时,设 $t \in [t_{n-1}, t_n]$,那么可以估计

$$\left\| x^{m}(t) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$\leq \|x^{m}(t) - x^{m}(t_{n})\|$$

$$+ \left\|x^{m}(t_{n}) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) \, \mathrm{d}s \right\|$$

$$+ \left\|x_{0} + \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) \, \mathrm{d}s \right\|$$

$$-x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$+ \left\|x_{0} + \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$-x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\| < \varepsilon,$$

即 $\lim_{m\to\infty} x^m(t) = x_0 + \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s,x(s),x(qs)) \, \mathrm{d}s, \, 0 \leqslant t \leqslant h.$ 而极限的唯一性导致

$$x(t) = \Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, ds, \, 0 \le t \le h,$$

从而 $x \in C([0,h],\mathbb{R}^n)$ 是方程(1)在 [0,h] 上的一个弱解。

定理 2 如果 $f(t,\cdot,\cdot)$ 对 $t \in [0,\infty)$ 一致地局部 Lipschitz, 即对任何 r > 0, 存在不依赖于 t 的 $L = L(r) \ge 0$, 使得

$$||f(t,x,y) - f(t,u,v)|| \le L \cdot (||x - u|| + ||y - v||)$$
(8)

对任何 $t \in [0, \infty)$ 以及 $x, y, u, v \in B_r(0)$ 成立,那么方程(1)的弱解局部存在,并在存在区间上唯一。

证明(存在性)构造 Picard 序列 $(x_n)_{n=0}^{\infty}:[0,\infty)\to\mathbb{R}^n$ 满足

$$\begin{cases} x^{n+1}(t) := x_0 + \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s, x^n(s), x^n(qs)) \, \mathrm{d}s, & n \in \mathbb{N}, \\ x^0(t) := x_0. \end{cases}$$

记 $M < \infty$ 是集合 $\{\|f(t,u,v)\| : t \in [0,1], u,v \in B_{2\|x_0\|}(0)\}$ 的一个上界,并取 $0 < h \le 1$ 充分小,使得 $\Gamma(\alpha+1)^{-1}h^{\alpha}M \le \|x_0\|$. 可以归纳地证明 $\|x^n(t)\| \le 2\|x_0\|$, $t \in \mathbb{R}$

 $[0,h], n \in \mathbb{N}$. 取 $L := L(2||x_0||)$, 那么对于 $t \in [0,h], n \in \mathbb{N}_+$,

$$||x^{n+1}(t) - x^{n}(t)|| \le L\Gamma(\alpha)^{-1} \int_{0}^{t} (t - s)^{\alpha - 1} (||x^{n}(s) - x^{n-1}(s)|| + ||x^{n}(qs) - x^{n-1}(qs)||) ds.$$
(9)

现在归纳地说明

$$\left\| x^{n+1}(t) - x^{n}(t) \right\| \leq \frac{L^{n}M}{\Gamma(\alpha)^{n+1}\alpha} t^{(n+1)\alpha} \prod_{k=1}^{n} \left(1 + q^{k\alpha} \right) \mathbb{B}(\alpha, k\alpha + 1), \ t \in [0, h], n \in \mathbb{N}. \tag{10}$$

当 n=0 时,

$$\begin{aligned} \left\| x^{1}(t) - x^{0}(t) \right\| &= \left\| x^{1}(t) - x_{0} \right\| \\ &= \frac{1}{\Gamma(\alpha)} \left\| \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x_{0}, x_{0}) \, \mathrm{d}s \right\| \\ &\leqslant \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} M \, \mathrm{d}s \\ &= \Gamma(\alpha)^{-1} \alpha^{-1} t^{\alpha} M. \end{aligned}$$

假定式(10)在n取n-1时成立,然后

$$\begin{split} & \left\| x^{n+1}(t) - x^n(t) \right\| \\ & \leq \frac{L}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left(\left\| x^n(s) - x^{n-1}(s) \right\| + \left\| x^n(qs) - x^{n-1}(qs) \right\| \right) \mathrm{d}s \\ & \leq \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} \left(\prod_{k=1}^{n-1} \left(1 + q^{k\alpha} \right) \mathrm{B}(\alpha, k\alpha + 1) \right) \int_0^t (t-s)^{\alpha-1} \left(s^{n\alpha} + (qs)^{n\alpha} \right) \mathrm{d}s \\ & = \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} \left(\prod_{k=1}^{n-1} \left(1 + q^{k\alpha} \right) \mathrm{B}(\alpha, k\alpha + 1) \right) \left(1 + q^{n\alpha} \right) \int_0^t (t-s)^{\alpha-1} s^{n\alpha} \, \mathrm{d}s \\ & = \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} \left(\prod_{k=1}^{n-1} \left(1 + q^{k\alpha} \right) \mathrm{B}(\alpha, k\alpha + 1) \right) \left(1 + q^{n\alpha} \right) t^{n\alpha + \alpha} \mathrm{B}(\alpha, n\alpha + 1) \\ & = \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} t^{(n+1)\alpha} \prod_{k=1}^n \left(1 + q^{k\alpha} \right) \mathrm{B}(\alpha, k\alpha + 1). \end{split}$$

由数学归纳原理,式(10)成立。注意到

$$\prod_{k=1}^{n} \left(1 + q^{k\alpha} \right) \leqslant \prod_{k=1}^{n} \exp\left(q^{k\alpha} \right) = \exp\sum_{k=1}^{n} \left(q^{\alpha} \right)^{k} \leqslant \exp\frac{q^{\alpha}}{1 - q^{\alpha}}$$

和

$$\prod_{k=1}^{n} \mathrm{B}(\alpha,k\alpha+1) = \prod_{k=1}^{n} \frac{\Gamma(\alpha)\Gamma(k\alpha+1)}{\Gamma((k+1)\alpha+1)} = \Gamma(\alpha)^{n} \frac{\Gamma(\alpha+1)}{\Gamma((n+1)\alpha+1)},$$

我们有

$$||x^{n+1}(t) - x^n(t)|| \le \frac{L^n M t^{(n+1)\alpha}}{\Gamma((n+1)\alpha + 1)} \exp \frac{q^{\alpha}}{1 - q^{\alpha}}, \ t \in [0, h].$$
 (11)

由 Cauchy-Hadamard 公式和 Stirling 公式易知 Mittag-Leffler 函数 $E_{\alpha}(z) = \sum_{n=0}^{\infty} \Gamma(\alpha n + 1)^{-1} z^n$ 对于任何 $z \in \mathbb{C}$ 收敛,然后根据 Weierstrass M 判别法就得到函数项级数 $\sum_{n=0}^{\infty} \left(x^{n+1} - x^n\right)$ 在 [0,h] 上绝对一致收敛,于是函数列 $(x^n)_{n=0}^{\infty}$ 在 [0,h] 上存在一致极限 x. 这说明任取 $\varepsilon > 0$,存在 $N = N(\varepsilon) \in \mathbb{N}$,使得 $\|x^n(t) - x(t)\| < \varepsilon$ 对于 n > N 和 $t \in [0,h]$ 成立。这样一来,当 $t \in [0,h]$ 时,

$$\left\| \int_{0}^{t} (t-s)^{\alpha-1} f(s, x^{n}(s), x^{n}(qs)) \, \mathrm{d}s - \int_{0}^{t} (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$\leq \int_{0}^{t} (t-s)^{\alpha-1} L \cdot (\|x^{n}(s) - x(s)\| + \|x^{n}(qs) - x(qs)\|) \, \mathrm{d}s$$

$$\leq 2\varepsilon L \int_{0}^{t} (t-s)^{\alpha-1} \, \mathrm{d}s = 2\varepsilon L\alpha^{-1} t^{\alpha},$$

因此

$$\lim_{n \to \infty} \int_0^t (t - s)^{\alpha - 1} f(s, x^n(s), x^n(qs)) \, \mathrm{d}s = \int_0^t (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s.$$

现在在式(2)中命 $n \to \infty$ 就得到

$$x(t) = x_0 + \Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s, \ 0 \le t \le h.$$

On the other hand, with the help of [?] Proposition 3.2, one can deduce by induction that $(x^n)_{n=0}^{\infty} \subseteq C^{0,\alpha} \cap AC[0,h] \subseteq C[0,h]$. Then x, as the uniform limit of $(x^n)_{n=0}^{\infty}$, is also continuous on [0,h]. Now we can say x is a mild solution of Eq. (1) on [0,h], and the proof of existence is complete.

(唯一性) 设 0 < T < ∞ , $x,y \in C[0,T]$ 都是方程(1)的弱解。记 L := L (max (max $_{0 \le t \le T} \| x(t) \|$, max $_{0 \le t \le T} \| y(t) \|$)),并作 $S := \{t \in [0,T]: x(t) \ne y(t)\}$, $t_* := \inf S$,下证 $t_* = \infty$. 反证,假设 $0 \le t_* \le T$,分三种情况讨论。

如果 $t_* = T$. 那么在 [0,T) 上有 x = y, 而 x, y 都是连续的,因此必在闭区间 [0,T] 上处处相等,此时 $S = \emptyset, t_* = \infty$, 矛盾。

如果 $0 < t_* < T$. 那么在 $[0, t_*)$ 上有 x = y. 选取 $\delta > 0$ 充分小,使得 $t_* + \delta \leq T$ 且

 $q \cdot (t_* + \delta) < t_*$, 然后就有 x(qt) = y(qt), $0 \le t \le t_* + \delta$. 于是当 $t \in [0, t_* + \delta]$ 时,

$$||x(t) - y(t)|| \le L\Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1}$$

$$(||x(s) - y(s)|| + ||x(qs) - y(qs)||) ds$$

$$= L\Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1} ||x(s) - y(s)|| ds.$$

此时利用分数阶的 Gronwall 不等式**??**就得到在 $[0, t_* + \delta]$ 上都有 x = y, 故 $t_* \ge t_* + \delta$, 而这是不可能的。

如果 $t_* = 0$. 选取 $\delta \in (0,T]$ 充分小,使得 $2L\Gamma(\alpha + 1)^{-1}\delta^{\alpha} < 1$. 当 $t \in [0,\delta]$ 时,

$$\begin{split} & \|x(t) - y(t)\| \\ & \leq \frac{L}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} \big(\|x(s) - y(s)\| + \|x(qs) - y(qs)\| \big) \, \mathrm{d}s \\ & \leq \frac{2L}{\Gamma(\alpha)} \Big(\max_{0 \leqslant s \leqslant t} \|x(s) - y(s)\| \Big) \int_0^t (t - s)^{\alpha - 1} \, \mathrm{d}s \\ & = 2L\Gamma(\alpha + 1)^{-1} t^{\alpha} \max_{0 \leqslant s \leqslant t} \|x(s) - y(s)\|. \end{split}$$

上式两边对 $t \in [0, \delta]$ 取最大值,得到

$$\max_{0 \le t \le \delta} \|x(t) - y(t)\| \le 2L\Gamma(\alpha + 1)^{-1}\delta^{\alpha} \max_{0 \le t \le \delta} \|x(t) - y(t)\|,$$

结合 δ 的选取知道只可能有 $\max_{0 \le s \le \delta} ||x(s) - y(s)|| = 0$, 即等式 x = y 至少在 $[0, \delta]$ 上成立, 故 $t_* \ge \delta$, 矛盾.

综合以上各种情况知 $t_* \notin [0,T]$,只可能是 $t_* = \infty$,此时必有 $S = \emptyset$,故而 x 和 y 在整个 [0,T] 上相等。而如若 x,y 是 $[0,\infty)$ 上方程(1)的弱解,上述结果则表明它们在任何有限区间 [0,T] 上相等,因而在 $[0,\infty)$ 上相等。唯一性证毕。

- 3 后期拟完成的研究工作及进度安排
- 4 存在的困难与问题
- 5 如期完成全部论文工作的可能性
- 6 参考文献