Algorithmic Thresholds for Refuting Random Polynomial Systems

Jun-Ting (Tim) Hsieh Pravesh K. Kothari

March 24, 2022

CMU

Random polynomial systems

• Input: m polynomial equations $p_i(x) = b_i$ in n variables:

$$p_1(x) = b_1,$$

$$p_2(x) = b_2,$$

...

$$p_m(x) = b_m.$$

- Each p_i is a homogeneous polynomial of degree k with i.i.d. Gaussian coefficients,
- Each b_i is i.i.d. Gaussian.

Solutions?

- Is there a solution?
 - YES: can we find one?
 - NO: can we prove that it's unsatisfiable?
- Analogy: 3SAT formula $(x_1 \lor \neg x_3 \lor x_5) \land \cdots \land (x_2 \lor x_3 \lor x_5)$
 - Satisfiable: find a satisfying solution
 - Unsatisfiable: find a refutation

Solutions?

- Is there a solution?
 - YES: can we find one?
 - NO: can we prove that it's unsatisfiable?
- Analogy: 3SAT formula $(x_1 \lor \neg x_3 \lor x_5) \land \cdots \land (x_2 \lor x_3 \lor x_5)$
 - Satisfiable: find a satisfying solution -> verifiable proof of satisfiability (NP).
 - Unsatisfiable: find a refutation -> verifiable proof of unsatisfiability (coNP).

Refutation algorithm

- What are refutation algorithms?
- Given a system of equations, an algorithm that either outputs a "proof of unsatisfiability" or returns "don't know".
- We want an efficient refutation algorithm that
 - Takes the system $\{p_i(x) = b_i\}_{i \le m}$ as input.
 - With probability 1 o(1) over the randomness of the input equations, outputs a refutation.

Motivation

- **Algebraic geometry:** solution geometry of polynomial systems [Beltran-Shub'08, Burgisser-Cucker'11, Lairez'17].
- **Combinatorial optimization:** random 3SAT/3XOR/CSP refutation [Feige'02, Coja-Oghlan-Goerdt-Lanka'07, Allen-O'Donnell-Witmer15, Kothari-Mori-O'Donnell-Witmer'17].
- **Statistical Learning:** *matrix sensing* problem with "random Gaussian measurements" [Barak-Moitra'16, Potechin-Steurer'17, d'Orsi-Kothari-Novikov-Steurer'20].
- **Cryptography:** candidate PRGs based on hardness of solving random polynomial systems [Lombardi-Vaikuntanathan'17, Barak-Hopkins-Jain-Kothari-Sahai'19].

Why study refutations?

- If you can't find a solution, it would be nice to give a proof of unsatisfiability.
 - SAT solvers: output "sat" x, or "unsat" proof.
- Hardness of refutation ⇒ hardness of learning [Daniely-Linial-Shalev-Shwartz'14].
- Hardness of random "noisy" 3XOR ⇒ public-key encryption [Applebaum-Barak-Wigderson'09].

Random polynomial systems

- At what m is the input system $\{p_i(x) = b_i\}_{i \le m}$ unsatisfiable?
- m=n: information-theoretic threshold.
 - Bezout's theorem: the number of common zeros of n "generic" degree-k polynomials is at most k^n .
 - The probability that the (n + 1)-th polynomial has a common zero is 0.
- Question: What's the smallest m at which efficient algorithms can find refutations (certify that it's unsatisfiable)?
 - Algorithmic threshold.

Algorithmic threshold of refutation

Algorithmic threshold of refutation

Linearization threshold

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

- Let's restrict to the case when p_i 's are degree 2 for simplicity.
- When $m \ge \frac{n(n+1)}{2}$, easy.
 - Linearization trick: $x_i x_j \rightarrow y_{ij}$. Done via Gaussian elimination.

Semidefinite relaxation

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

- Write each $p_i(x) = x^T G_i x = \langle G_i, xx^T \rangle$.
- SDP relaxation: replace xx^T with X:

$$\langle G_i, X \rangle = b_i, \quad \forall i \in [m],$$

$$X \geqslant 0.$$

- Infeasible ⇒ proof of unsatisfiability.
- Feasible ⇒ don't know.
- Our first result:
 - If $m \ge \frac{n^2}{4} + \tilde{O}(n)$, then the SDP is infeasible w.h.p.
 - If $m \le \frac{n^2}{4} \tilde{O}(n)$, then the SDP is feasible w.h.p.

Our results: upper bound

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

Main result: upper bound

• For any $d \in \mathbb{N}$, we give an $n^{O(d)}$ -time refutation algorithm that succeeds when $m \ge O\left(\frac{n^2}{d}\right)$.

Our results: upper bound

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

Main result: upper bound

• For any $d \in \mathbb{N}$, we give an $n^{O(d)}$ -time refutation algorithm that succeeds when $m \ge O\left(\frac{n^2}{d}\right)$.

Our results: lower bound

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

- Is this optimal?
 - No NP-hardness known (not even for random 3SAT).

Main result: lower bound

- A subclass of $n^{O(d)}$ -time algorithms fail when $m \leq O\left(\frac{n^2}{d}\right)$.
 - Fail at distinguishing
 - Null model: the random polynomial system,
 - Planted model: a certain distribution over feasible polynomial systems.

Our results: summary

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

• Strongly suggests an algorithmic threshold of $O\left(\frac{n^2}{d}\right)$ for $n^{O(d)}$ time algorithms.

Information-computation gap!

Our results: summary

Refutation problem:

Certify that $\{p_i(x) = b_i\}_{i \le m}$ is infeasible.

• More generally, for degree-k polynomials, the algorithmic threshold is $O\left(\frac{n^k}{d^{k-1}}\right)$ for $n^{O(d)}$ time algorithms.

Information-computation gap!

Background

Background: proof systems

- Most problems in computer science can be represented as a system of polynomial constraints.
 - 3SAT:
 - $x_i \in \{0,1\} \rightarrow x_i^2 x_i = 0.$
 - Clause $(x_i \lor \neg x_j \lor x_k) \to (1 x_i)(x_2)(1 x_3) = 0.$
 - Max-Cut:
 - $x_i \in \{\pm 1\} \rightarrow x_i^2 = 1$.
 - For each edge $(i,j) \rightarrow x_i x_j = -1$.

Background: proof systems

Toy example: consider the following system

$$x_1^2 - x_1 = 0$$

$$x_2^2 - x_2 = 0$$

$$x_1 + x_2 - 2 = 0$$

$$x_1 x_2 = 0$$

• This is infeasible. How do we prove it? Linear combination of the above:

$$\frac{1}{2} \cdot (x_1^2 - 1) + \frac{1}{2} \cdot (x_2^2 - 1) + \frac{1}{2} (-x_1 - x_2 - 2) \cdot (x_1 + x_2 - 2) + 1 \cdot x_1 x_2 = 1.$$

• We have derived 1 = 0! This is a contradiction!

Background: Nullstellensatz

• Given a system of constraints $\{f_1(x) = \dots = f_m(x) = 0\}$, we can derive many more high-degree equalities, e.g.

$$f_1(x)x_1x_2 = f_1(x) + f_2(x) = 0$$
$$g(x) := \sum_{i=1}^m a_i(x)f_i(x) = 0$$

• If $\max_{i} \deg(a_i f_i) \leq d$, then this derivation can be captured by the degree-d Nullstellensatz proof system.

Background: Nullstellensatz

Given a system of constraints $\{f_1(x) = \dots = f_m(x) = 0\}$

- Suppose there exist $a_1, ..., a_m$ such that $\sum_{i=1}^m a_i f_i = 1$, then we get 1 = 0. If $\max_i \deg(a_i f_i) \le d$, this is called a degree-d Nullstellensatz refutation.
- Automatizable: such a refutation can be computed in $n^{O(d)}$ time.
 - By simply solving a system of linear equations.

Background: Nullstellensatz

- How powerful is Nullstellensatz? Can it capture everything?
- Completeness: (weak) Hilbert's Nullstellensatz.
 - For an algebraically closed field \mathbb{F} , given a system $\{f_1(x) = \cdots = f_m(x) = 0\}$, if it's unsatisfiable, you can always find $a_1, \ldots, a_m \in \mathbb{F}[x]$ such that

$$a_1 f_1 + \dots + a_m f_m = 1.$$

- But, we have no guarantees on the degrees of a_i .
 - The runtime $n^{O(d)}$ can be very large [Buss-Pitassi'98, Razborov'98].
 - Intuition: as m increases, d decreases.

Semidefinite Relaxation

Random polynomial systems

• Task: find a refutation for

$$p_1(x) = b_1,$$
...
$$p_m(x) = b_m.$$

- Coefficients of each p_i and b_i are chosen i.i.d. Gaussian.
- For simplicity, we assume each p_i is quadratic.

- Write each $p_i(x) = x^T G_i x = \langle G_i, xx^T \rangle$.
- SDP relaxation: replace xx^T with X:

$$\langle G_i, X \rangle = b_i, \quad \forall i \in [m],$$

$$X \geqslant 0.$$

- Infeasible ⇒ proof of unsatisfiability.
- Feasible ⇒ don't know.

- Write each $p_i(x) = x^T G_i x = \langle G_i, xx^T \rangle$.
- SDP relaxation: replace xx^T with X:

$$\langle G_i, X \rangle = b_i, \quad \forall i \in [m],$$

$$X \geqslant 0.$$

- Trivial (solutions = $\{0\}$) \Rightarrow proof of unsatisfiability.
- Non-trivial (solutions $\neq \{0\}$) \Rightarrow don't know.
- For simplicity, assume $b_i = 0$.

- $\langle G_i, X \rangle = 0, \forall i \in [m],$
- $X \ge 0$.
- We view X (symmetric matrix) as a vector in a space of dimension $\frac{n(n+1)}{2}$.
 - $\langle G_i, X \rangle = 0 \ \forall i \in [m]$ define a random linear subspace L of dimension $\frac{n(n+1)}{2} m$.
 - Let C be the cone of PSD matrices.
 - $C \cap L$ is the set of solutions.
- **Question:** is $C \cap L$ non-trivial?
 - Trivial ⇒ SDP has no non-trivial solutions ⇒ SDP succeeds at refuting.
 - Non-trivial ⇒ SDP has non-trivial solutions ⇒ SDP fails at refuting.

- $\langle G_i, X \rangle = 0, \forall i \in [m],$
- $X \ge 0$.
- The constraints $\langle G_i, X \rangle = 0 \ \forall i \in [m]$ define a random subspace: write as QL where Q is random rotation and L is any fixed subspace.
- What is $\Pr_{Q}[C \cap QL \neq \{0\}]$?
 - Conic geometry!

- $\langle G_i, X \rangle = 0, \forall i \in [m],$
- $X \ge 0$.
- Answer depends on the statistical dimension δ (generalization of dimension).
 - Subspace $L: \delta(L) = \dim(L) = \frac{1}{2}n(n+1) m$.
 - PSD cone C: $\delta(C) = \frac{1}{4}n(n+1)$.
- **Lemma** [Amelunxen-Lotz-McCoy-Tropp'14]. Let C, K be convex cones in \mathbb{R}^N and let $Q \in \mathbb{R}^{N \times N}$ be a random rotation matrix. Then,

$$\delta(C) + \delta(K) \leq N - O\left(\sqrt{N}\log(1/\eta)\right) \Longrightarrow \Pr_Q[C \cap QK \neq \{0\}] \leq \eta$$

$$\delta(\mathcal{C}) + \delta(K) \ge N + O\left(\sqrt{N}\log(1/\eta)\right) \Longrightarrow \Pr_Q[\mathcal{C} \cap QK \ne \{0\}] \ge 1 - \eta$$

- $\operatorname{tr}(G_iX) = 0, \forall i \in [m],$
- $X \geq 0$.

- Thus,
 - If $m \ge \frac{n^2}{4} + Cn \log n$, then the SDP is trivial whp \Rightarrow SDP succeeds at refuting.
 - If $m \le \frac{n^2}{4} Cn \log n$, then the SDP is non-trivial whp \Rightarrow SDP fails at refuting.
- $\frac{n^2}{4}$ is the threshold for our SDP relaxation.

- Assume the p_i 's are quadratic.
- Goal: given system $\{p_i(x) = b_i\}_{i \le m}$, find a degree-d Nullstellensatz refutation:
 - Find polynomials $a_1(x)$, ..., $a_m(x)$ of degree d-2 such that

$$\sum_{i=1}^{m} a_i(x)(p_i(x) - b_i) = 1.$$

- This gives us 1 = 0!
- Show: whp these polynomials $a_1, ..., a_m$ exist!

- We show that the generated ideal at degree d is complete:
 - For every homogeneous polynomial f of degree d, there are polynomials a_1, \ldots, a_m of degree d-2 such that $\sum_{i \le m} a_i(x)(p_i(x)-b_i)=f(x)$.
- We have a refutation since
 - We can derive $p_1(x)^{d/2} = b_1^{d/2}$, hence $b_1^{-d/2} p_1(x)^{d/2} = 1$.
 - $p_1^{d/2}$ is a homogeneous degree d polynomial, so there exist a_1, \ldots, a_m such that $1 = \sum_{i \le m} a_i (p_i b_i) = 0$. We have derived 1 = 0!

Completeness of generated ideal at degree d:

For every homogeneous polynomial f of degree d, there are polynomials a_1, \ldots, a_m such that $\sum_{i \le m} a_i (p_i - b_i) = f$.

- Let's gain some intuition. Suppose $p_i(x) = x_{j_1}x_{j_2}$ for $j_1, j_2 \in [n]$ and $b_i = 0$.
- d=2: since a_i 's must be constants, we need all monomials:

$$x_1^2, \dots, x_n^2, x_1 x_2, \dots, x_{n-1} x_n$$

- d=3: since a_i 's are degree-1, we need fewer polynomials! We can delete x_1x_2 :
 - Polynomials like $x_1x_2x_3$ is still captured by x_2x_3 : $x_1x_2x_3 = x_1 \cdot x_2x_3$.
- d = 4: we can even delete x_1x_3, x_2x_3 because $x_1x_2x_3x_4 = x_1x_2 \cdot x_3x_4$.
- ullet As d increases, we need fewer polynomials.

Completeness of generated ideal at degree d:

For every homogeneous polynomial f of degree d, there are polynomials a_1, \ldots, a_m such that $\sum_{i \le m} a_i (p_i - b_i) = f$.

- Consider a graph where $(j_1, j_2) \in E$ if $x_{j_1} x_{j_2}$ is in our set of polynomials.
 - d must be larger than the size of the largest independent set!
 - Suppose we randomly choose $m \approx \frac{n^2}{4}$ monomials, we get $G(n, \frac{1}{2})$.
 - But, largest independent set is $\Theta(\log n)$.
- Fortunately, our polynomials are dense (every monomial appears in every polynomial).

Upper bound

Completeness of generated ideal at degree d:

For every homogeneous polynomial f of degree d, there are polynomials a_1, \ldots, a_m such that $\sum_{i \le m} a_i (p_i - b_i) = f$.

- Let $f = \sum_{i \le m} a_i (p_i b_i)$ where a_1, \dots, a_m are homogeneous polynomials of degree d-2.
- Write out the monomials

$$f(x) = \sum_{|\alpha| = d, d-2} \hat{f}(\alpha) x^{\alpha} = \sum_{i=1}^{m} \sum_{|\beta| = d-2} \hat{a}_i(\beta) \left(\sum_{|\gamma| = 2} \hat{p}_i(\gamma) x^{\beta + \gamma} - b_i x^{\beta} \right)$$

Comparing coefficients, we get a linear system

$$\hat{f} = M \cdot \hat{a}$$

• Need: for all \hat{f} , there exists \hat{a} such that $\hat{f} = M \cdot \hat{a}$.

Techniques: full rank

Completeness of generated ideal at degree d:

- It suffices to show that the matrix M is full row-rank (columns span everything).
 - In many papers on average-case complexity, the problems reduce to proving a certain structured random matrix with highly correlated entries is full rank or PSD.
 - Very non-trivial (sometimes takes 30+ pages)!
- Luckily, we can exploit the structure of our matrix.

Techniques: full rank

Completeness of generated ideal at degree d:

- Decompose the matrix! Find submatrices of *M*:
 - Each submatrix is full rank,
 - They cover all the rows of M (rows may overlap),
 - They have disjoint columns of M,
 - The diagonal entries of each submatrix are independent of (1) the off-diagonal entries, and (2) the other submatrices.
- How do we "stitch" the submatrices together to prove that M is full row-rank?

Techniques: full rank

Completeness of generated ideal at degree d:

- **Lemma.** Let $M = \begin{bmatrix} A & C_2 \\ C_1 & B \end{bmatrix}$ such that A is full rank, $B = B' + g \cdot I$, where $g \sim N(0,1)$ independent of the rest. Then M is full rank.
 - This is how we stitch two submatrices. We apply this lemma repeatedly.
 - **Proof**. *M* is full rank if and only if the Schur complement is full rank:

$$B - C_1 A^{-1} C_2 = g \cdot I - (C_1 A^{-1} C_2 - B')$$

- Suppose not, then g must be an eigenvalue of $C_1A^{-1}C_2 B'$. But due to independence of g, this occurs with probability 0.
- Remark: our upper bound holds for any "nice" distribution.

Upper bound

Completeness of generated ideal at degree d:

- **Recap:** we prove that degree-d Nullstellensatz succeeds when $m \ge O\left(\frac{n^2}{d}\right)$:
 - The generated ideal at degree d is complete \rightarrow The matrix M is full row rank.
- **Remark:** It is crucial that our polynomials p_1, \dots, p_m are dense.
 - ullet For sparse polynomials, we need d to be very large for the completeness to hold.

Lower Bound

Lower bound

- No NP-hardness.
- No reduction from a "hard" average-case problem.
- People use certain subclasses of $n^{O(d)}$ -time algorithms as proxy for all $n^{O(d)}$ -time algorithms.
 - Not very strong, but so far we don't know better lower bounds.

Background: low-degree polynomial method

- Consider the hypothesis testing problem of distinguishing between a null distribution ν_N and planted distribution ν_P over \mathbb{R}^K .
 - Example: $v_N = G(n, 1/2)$ and $v_P = G(n, 1/2) + \text{a clique of size } \sqrt{n}$.
 - Any "testing" algorithm can be seen as a function $T_K : \mathbb{R}^K \to \mathbb{R}$ on the input z which outputs "planted" if $T_K(z)$ exceeds some threshold τ .
 - The classical Neyman-Pearson lemma shows that the "optimal" test is the likelihood ratio test L.
 - Hard to compute...

Background: low-degree polynomial method

- Restrict our test functions to low-degree polynomials of the input!
- Consider the following optimization problem:

$$\max_{f} \mathbb{E}_{\nu_{P}}[f]$$

such that $\mathbb{E}_{\nu_N}[f^2] = 1$ and f is a degree d polynomial

- **Proposition** [Kunisky-Wein-Bandeira'19]. The optimizer is the normalized truncated likelihood ratio $L^{\leq d}$, and the optimal value is $\|L^{\leq d}\| = \mathbb{E}_{\nu_N} \left[\left(L^{\leq d} \right)^2 \right]^{1/2}$.
 - Suffices to show: $\mathrm{Var}_{\nu_N}[L^{\leq d}] = \sum_{1 \leq |\alpha| \leq d} \mathbb{E}_{\nu_P}[\chi_{\alpha}]^2 \leq 1$. We use the Hermite basis.
- Usually, the main step is to construct a hard-to-distinguish v_P .

Background: low-degree polynomial method

- Too restricted?
- $O(\log n)$ -degree polynomial:
 - They capture the strongest known algorithms for many canonical problems.
 - [Brennan-Bresler-Hopkins-Li-Schramm'20]: under appropriate assumptions, the $O(\log n)$ -degree polynomials are as powerful as the statistical query model.
 - Connection to SoS. [Hopkins-Kothari-Potechin-Raghavendra-Schramm'17] conjectured that indistinguishability by degree-d polynomials implies lower bounds for $\tilde{O}(d)$ -degree SoS.
 - Used in many works on average-case algorithmic thresholds [Hopkins'18, Gamarnik-Jagannath-Wein'20, Schramm-Wein'20].

- Planted distribution ν_P :
 - Fix a small parameter $c = o\left(\frac{1}{d\sqrt{m}}\right)$.
 - Sample z uniformly from $\left\{\pm \frac{1}{\sqrt{n}}\right\}^n$.
 - For each i, sample $b_i \sim N(0,1)$ independently.
 - For each i, sample $G_i \in \mathbb{R}^{n \times n}$ w/ Gaussian entries conditioned on $\langle G_i, zz^{\mathsf{T}} \rangle = c \cdot b_i$. Set $p_i(x) = x^{\mathsf{T}} G_i x$.
 - Sample g conditioned on $\langle g, v \rangle = b$ where $||v||_2 = 1$: sample $h \sim N(0, I)$, then set $g = bv + (I vv^{\mathsf{T}})h$.

Planted distribution ν_P : parameter $c = o(1/d\sqrt{m})$,

- $z \sim \{\pm 1/\sqrt{n}\}^n$, $b_i \sim N(0,1)$
- $G_i \sim N(0, I_{n \times n})$ conditioned on $z^{\mathsf{T}} G_i z = c \cdot b_i$. Set $p_i(x) = x^{\mathsf{T}} G_i x$.

- Remarks on the planted distribution:
 - $\{p_i(x) = b_i\}_{i \le m}$ always feasible with solution $x^* = z/\sqrt{c} \in \mathbb{R}^n$.
 - Different from the "natural" planted distribution:
 - Sample x^* , sample p_i with uniformly random coefficients, and set $b_i = p_i(x^*)$.
 - This is easy to distinguish! We can recover x^* when $m = \tilde{O}(n)$.
 - Instead, we choose b_i 's independently, and choose coefficients of p_i 's to be mildly correlated.
 - In v_P , the norm of the planted solution is large: $||x^*||_2 = 1/\sqrt{c}$.
 - Necessary since there is an efficient distinguisher if $c \gg \sqrt{n/m}$.
 - Consider matrix $Q = \sum_{i=1}^{m} \operatorname{sgn}(b_i) \cdot G_i$. The spectral norm $\|Q\|$ is a distinguisher.

Planted distribution ν_P : parameter $c = o(1/d\sqrt{m})$,

- $z \sim \{\pm 1/\sqrt{n}\}^n$, $b_i \sim N(0,1)$
- $G_i \sim N(0, I_{n \times n})$ conditioned on $z^T G_i z = c \cdot b_i$. Set $p_i(x) = x^T G_i x$.

We prove that

$$\operatorname{Var}[L^{\leq d}] = \sum_{\substack{\alpha,\beta:\\1\leq |\alpha|+|\beta|\leq d}} \mathbb{E}_{(G,b)\sim\nu_P} \big[h_\alpha(G)h_\beta(b)\big]^2 \leq 1.$$

- For simplicity, we will assume $b_i = 0$.
 - We're given input $G = (G_1, ..., G_m)$ where $z^T G_i z = 0$ (z is our planted solution).
- Analyze $\mathbb{E}_{G \sim \nu_P}[h_{\alpha}(G)]$, where $\alpha \in \mathbb{N}^{m \times n \times n}$.

Planted distribution ν_P :

- $z \sim \{\pm 1/\sqrt{n}\}^n$,
- $G_i \sim N(0, I_{n \times n})$ conditioned on $z^T G_i z = 0$. Set $p_i(x) = x^T G_i x$.
- For $\alpha \in \mathbb{N}^{m \times n \times n}$, we view it as a labeled directed multigraph (with self-loops allowed) with n vertices and $|\alpha|$ edges with labels from [m].
- Let $\alpha = (\alpha^1, ..., \alpha^m)$ where each $\alpha^s \in \mathbb{N}^{n \times n}$.
 - For each $s \in [m]$, we view α^s as the adjacency matrix of the subgraph whose edges have label s.
 - Let $\Delta \in \mathbb{N}^n$ such that $\Delta_i = \sum_{s=1}^m \sum_{j=1}^n \alpha_{ij}^s + \alpha_{ji}^s$, the total degree of vertex i.
- **Lemma**. For $\alpha \in \mathbb{N}^{m \times n \times n}$,

$$\mathbb{E}_{G \sim \nu_P}[h_{\alpha}(G)] = n^{-|\alpha|} (-1)^{|\alpha|/2} \prod_{s=1}^m (|\alpha^s| - 1)!!$$

if Δ_i is even $\forall i$ and $|\alpha^s|$ is even $\forall s$, and 0 otherwise.

Planted distribution ν_P :

- $z \sim \{\pm 1/\sqrt{n}\}^n$,
- $G_i \sim N(0, I_{n \times n})$ conditioned on $z^T G_i z = 0$. Set $p_i(x) = x^T G_i x$.

Fix $|\alpha| = e \le d$.

- How many directed graphs with n vertices, e edges, even degrees?
 - Answer: $\leq (8n)^e$.
- How many ways can you assign labels in [m] to the edges such that each label appears even number of times?
 - Answer: dominated by the case when each label appears twice: $\leq (2me)^{e/2}$.
- In total: when $m = O\left(\frac{n^2}{d}\right)$,

$$\sum_{e \ge 2, \text{ even}}^{d} n^{-2e} \cdot (8n)^e (2me)^{e/2} = \sum_{e \ge 2, \text{ even}}^{d} \left(\frac{e}{2d}\right)^{e/2} \le 1$$

Planted distribution ν_P : parameter $c = o(1/d\sqrt{m})$,

- $z \sim \{\pm 1/\sqrt{n}\}^n$, $b_i \sim N(0,1)$
- $G_i \sim N(0, I_{n \times n})$ conditioned on $z^{\mathsf{T}} G_i z = c \cdot b_i$. Set $p_i(x) = x^{\mathsf{T}} G_i x$.
- **Recap:** we prove that degree-d polynomials fail when $m \leq O\left(\frac{n^2}{d}\right)$:
 - We constructed a *hard* planted distribution v_P .
 - $Var[L^{\leq d}] \leq 1$ shows that degree-d polynomials fail to distinguish between the null distribution ν_N and planted distribution ν_P .
 - Failure to distinguish ⇒ Failure to refute our random polynomial system.

Conclusion

- For random quadratic polynomial systems, $m=O\left(\frac{n^2}{d}\right)$ seems to be the algorithmic threshold (for $n^{O(d)}$ runtime).
 - Upper bound: degree-d Nullstellensatz.
 - Lower bound: degree-d low-degree hardness.
- For degree-k polynomials, $O\left(\frac{n^k}{d^{k-1}}\right)$ is the algorithmic threshold.

Thank you!