2

WHAT IS CLAIMED IS:

1	1. An apparatus for transmitting video data across a network, comprising:			
2	a video input that receives a video signal;			
3	a video predictive coding module coupled to the video input, wherein the video			
4	predictive coding module performs video predictive coding on the video signal in real			
5	time to create a video predictive coded signal; and			
6	a network interface coupled to the video predictive coding module and coupled to			
7	the network, wherein the network interface transmits the video predictive coded signal			
8	across the network concurrently with the video predictive coding module performing			
9	video predictive coding in real time.			
1	2. The apparatus for transmitting video data according to claim 2, wherein the			
2	network comprises at least one of a Fast Ethernet network and an Ethernet network faster			
3	than Fast Ethernet and the video signal comprises at least one of a composite and digital			
4	video signal.			
1	The apparatus for transmitting video data according to claim 1, wherein the video			
2	predictive coding module comprises:			
3	a delay module coupled to the video input; and			
4	a subtraction module coupled to the delay module, wherein the subtraction			
5	module subtracts a subsequent line of the video signal from a delayed line of the video			
6	signal.			
1	4. The apparatus for transmitting video data according to claim 3, wherein the delay			
2	module comprises a line buffer and wherein the line buffer delays a line of the video			
3	signal to create the delayed line of the video signal.			
1	5. The apparatus for transmitting video data according to claim 1, further comprising			

a timing control module coupled to the video input and coupled to the video predictive

- 3 coding module, wherein the timing control module controls the timing of the video
- 4 predictive coding module.
- 1 6. The apparatus for transmitting video data according to claim 1, further comprising
- a channel allocation module, wherein the channel allocation module reserves a channel of
- 3 the Ethernet network for transmitting the video predictive coded signal according to the
- 4 priority of the video predictive coded signal.
- The apparatus for transmitting video data according to claim 1, further comprising
- an analog to digital converter, wherein the video signal comprises a digitized video signal
- and the analog to digital converter converts an input video signal into the digitized video
- 4 signal.
- 1 8. The apparatus for transmitting video data according to claim 1, wherein the video
- 2 predictive coded signal comprises at least one line comprising a plurality of pixels.
- 1 9. An apparatus for receiving video data, comprising:
- a network interface that receives a video predictive coded signal from a network;
- a video predictive decoding module coupled to the network interface, wherein the
- 4 video predictive decoding module performs video predictive decoding on the video
- 5 predictive coded signal in real time to create a video predictive decoded signal; and
- a video output coupled to the video predictive decoding module, wherein the
- 7 video output outputs the video predictive decoded signal in real time.
- 1 10. The apparatus for receiving video data according to claim 9, wherein the network
- 2 comprises at least one of a Fast Ethernet and higher network and the video signal
- 3 comprises at least one of a composite and digital video signal.
- 1 11. The apparatus for receiving video data according to claim 9, wherein the video
- 2 predictive decoding module comprises:

3

4

2

3	a subtraction module coupled to the network interface; and		
4	a delay module coupled to the subtraction module, wherein the subtraction		
5	module subtracts a subsequent line of the video predictive coded signal from a line of the		
6	video predictive decoded signal delayed by the delay module.		
1	12. The apparatus for receiving video data according to claim 11, wherein the delay		
2	module comprises a line buffer and wherein the line buffer delays a line of the video		
3	predictive decoded signal to create a delayed line of the video predictive decoded signal		
1	13. The apparatus for receiving video data according to claim 9, further comprising a		
2	timing control module coupled to the video output and coupled to the video predictive		
3	decoding module, wherein the timing control module controls the timing of the video		
4	output.		
1	14. The apparatus for receiving video data according to claim 13, wherein the timing		
2	control module comprises:		

The apparatus for receiving video data according to claim 9, further comprising a 15. 1 channel allocation module, wherein the channel allocation module reserves a channel of

a clock generation module coupled to the video predictive decoding module; and

a memory control module coupled to the video predictive decoding module.

- the Ethernet network for transmitting the video predictive coded signal according to the 3
- 4 priority of the video predictive coded signal.
- The apparatus for receiving video data according to claim 9, further comprising a 16. 1
- digital to analog converter, wherein the digital to analog converter converts the video 2
- predictive decoded signal into an output video signal. 3
- The apparatus for receiving video data according to claim 9, wherein the video 1 17.
- predictive coded signal comprises at least one line comprising a plurality of pixels. 2

1	18.	A method of transmitting multimedia data over a network comprising:		
2		receiving a multimedia signal;		
3		performing video predictive coding on the multimedia signal to create a video		
4	predictive coded multimedia signal; and			
5		transmitting the video predictive coded multimedia signal over the network		
6	subst	antially concurrently with the performing step.		
1,	19.	The method according to claim 18, wherein the network comprises at least one of		
2	a Fas	t Ethernet network and an Ethernet network faster than Fast Ethernet and the		
3	multimedia signal comprises at least one of a composite and a digital video signal.			
1	20.	The method according to claim 19, further comprising:		
2		reserving a portion of an Ethernet bandwidth for channel allocation;		
3		assigning a channel allocation priority to the composite video signal; and		
4		reserving a channel path for the composite video signal.		
1	21.	The method according to claim 19, wherein the performing step further		
2	comp	orises:		
3		delaying first line of the composite video signal; and		
4		subtracting a second line of the composite video signal from the first line of the		
5	comp	composite video signal to create the video predictive coded video signal.		
1	22.	The method according to claim 18, further comprising extracting a		
2	synchronization signal from the multimedia signal, wherein the performing step p			
3	vide	predictive coding in synchronization with the synchronization signal.		
1	23.	The method according to claim 18, further comprising:		
2		extracting a synchronization signal from the multimedia signal;		
3		converting the multimedia signal from analog to digital in synchronization with		
4	the s	the synchronization signal to create a digital multimedia signal; and		

5		buffering the digital multimedia signal in synchronization with the	
6	synchronization signal.		
1	24.	The method according to claim 18, wherein the performing step creates a video	
2	predictive coded multimedia signal represented by half the number of sampling bits of the		
3	multimedia signal.		
1	25.	A method of receiving multimedia data from a network comprising:	
2		receiving a video predictive coded multimedia signal from the network;	
3		performing video predictive decoding on the video predictive coded multimedia	
4	signal to create a multimedia signal; and		
5		outputting the multimedia signal substantially concurrently with the performing	
6	step.		
1	26.	The method according to claim 25, wherein the network comprises at least one of	
2	a Fast	Ethernet network and an Ethernet network faster than Fast Ethernet and the	
3			
1	27.	The method according to claim 26, wherein the receiving step further comprises	
2	receiving the video predictive coded multimedia signal from a reserved channel path of		
3	the Et	thernet network.	
1	28.	The method according to claim 25, wherein the performing step further	
2	comp	rises:	
3		delaying a first line of a video predictive decoded multimedia signal; and	
4		subtracting a second line of the video predictive coded multimedia signal from the	
5	delay	delayed first line of the video predictive decoded multimedia signal to create the	
6	multi	multimedia signal.	

- 1 29. The method according to claim 25, further comprising extracting a synchronization
- 2 signal from the video predictive coded multimedia signal, wherein the outputting step
- 3 outputs the multimedia signal in synchronization with the synchronization signal.
- 1 30. The method according to claim 25, further comprising:
- 2 extracting a synchronization signal while performing the video predictive
- 3 decoding;
- buffering the multimedia signal in synchronization with the synchronization
- 5 signal; and
- 6 converting the multimedia signal from digital to analog in synchronization with
- 7 the synchronization signal.
- 1 31. The method according to claim 25, wherein the receiving step receives a video
- 2 predictive coded multimedia signal.
- 1 32. A method of transmitting and switching multimedia data over a network
- 2 comprising:
- setting a portion of an Ethernet bandwidth for channel allocation;
- 4 receiving a multimedia signal that has an assigned channel allocation priority; and
- 5 reserving a channel path for the multimedia signal.
- 1 33. The method according to claim 32, wherein the network comprises at least one of
- 2 a Fast Ethernet network and an Ethernet network faster than Fast Ethernet.
- 1 34. The method according to claim 32, wherein the reserving step further comprises
- 2 reserving a very small portion of the Ethernet bandwidth for channel allocation.
- 1 35. The method according to claim 32, further comprising:
- 2 receiving a second signal; and
- 3 delaying the second signal.

41.

1	36.	The method according to claim 32, further comprising:		
2		receiving a second multimedia signal;		
3		overriding the reserved channel path; and		
4		reserving a channel path for the second multimedia signal.		
1	37.	The method according to claim 32, wherein the receiving step further comprises		
2	receiving a packet, the packet including a header addressed to a master switch, and a			
3	payload including channel allocation priority data.			
1	38.	The method according to claim 32, wherein the multimedia signal comprises a		
2	video	predictive coded video signal.		
1	39.	A method of transmitting and switching multimedia data over at least one of a		
2	Fast Ethernet network and an Ethernet network faster than Fast Ethernet comprising:			
3		allocating a portion of an Ethernet bandwidth for channel allocation;		
4		receiving a multimedia signal;		
5		assigning a channel allocation priority to the multimedia signal;		
6		transmitting data including the channel allocation priority in the allocated portion		
7	of the	of the Ethernet bandwidth;		
8		performing video predictive coding on the multimedia signal to create a video		
9	predi	ctive coded multimedia signal; and		
10		transmitting the video predictive coded multimedia signal over the network in real		
11	time.			
1	40.	The method according to claim 39, wherein the multimedia signal comprises at		
2	least	one of a composite and a digital video signal.		

The method according to claim 39, wherein the transmitting step further

comprises transmitting a data packet including a header and a payload, wherein the

3	header includes the address of a master switch and the payload includes the channel		
4	allocation priority.		
1	42	The method according to claim 39, wherein the performing step further	
1	42.		
2	comprises:		
3		delaying a first line of the multimedia signal; and	
4		subtracting a second line of the multimedia signal from the delayed first line of	
5	the multimedia signal to create the video predictive coded multimedia signal.		
1	43.	The method according to claim 39, further comprising:	
2		receiving a video predictive coded multimedia signal from the network;	
3		performing video predictive decoding on the video predictive coded multimedia	
4	signal to create a multimedia signal; and		
5		outputting the multimedia signal substantially concurrently with the performing	
6	step.		
1	44.	An access device comprising:	
2		a coding module that performs predictive coding;	
3		a decoding module that performs predictive decoding; and	
4		an allocation module that reserves a path across a network.	